

NPS-68-89-004

NAVAL POSTGRADUATE SCHOOL

Monterey, California

HYDROGRAPHIC DATA FROM THE PILOT STUDY OF THE COASTAL TRANSITION ZONE (CTZ) PROGRAM 15 - 28 JUNE 1987

bу

Paul F. Jessen Steven R. Ramp Carol A. Clark

April 1989

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

RADM R.C. Austin Superintendent Harrison Shull Provost

This report is for the research project "Hydrographic Data from the Pilot study of the Coastal Transition Zone (CTZ) Program" sponsored by the Naval Postgraduate School Research Council under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was prepared by: Chief of Naval Research, Arlington, VA 22217-5000

PAUL F. JESSEN

Oceanographer

STEVEN R. RAMP

Assistant Professor of Oceanography

CAROL A. CLARK

Computer Programmer

Reviewed by:

Released by:

CURTIS A. COLLINS

Professor and Chairman

Department of Oceanography

GORDON E. SCHACHER

Dean of Science and Engineering

	REPORT DOCU	MENTATION I	PAGE				
13 REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE MARKINGS					
Unclassified							
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION Approved fo	AVAILABILITY OF r public re				
26 DECLASSIFICATION / DOWNGRADING SCHEDU	LE		n unlimited				
4 PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION RE	EPORT NUMBER(3)		
NPS-68-89-004	····						
6a NAME OF PERFORMING ORGANIZATION NAVPGSCOL	6b OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORGAI	NIZATION			
Dept. of Oceanography	68	Chief of Naval Research					
6c ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cin	y, State, and ZIP (Code)			
Monterey, CA 93943-5000	·	Arlington,	VA 22217				
83 NAME OF FUNDING/SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	ENTIFICATION NU	IMBER		
Chief of Naval Research	1122CS	N0001487WR2	4018				
8c ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBER	S			
800 N. Quincy Street Arlington, VA 22217-5000		PROGRAM ELEMENT NO. 61153N	PROJECT NO RR031-03-09	TASK NO. 4201006-6	WORK UNIT ACCESSION NO.		
Hydrographic Data from the Pilot 15-28 June 1987. (Unclassified) 12 PERSONAL AUTHOR(S) Paul F. Jessen, Steven R. Ramp, 13a TYPE OF REPORT	Carol A, Clark						
Progress FROM Oct	86 ro Sep 87	14. DATE OF REPORE 89-2-15	KI (Year, Month, L	Day) 15. PAGE	253		
16 SUPPLEMENTARY NOTATION 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP ONR CTZ ARI, CTD data, hydrographic data, California Current mesoscale eddies, cold filaments, squirts, jets.							
This is a data report which presents hydrographic (CTD) data from a cruise off Point Arena, CA during 15-28 June 1987. The study area was between 37°40'N to 39°20'N and 123°30'W to 125 30'W. The sampling plancriss-crossed a cold filament rooted near Point Arena, as observed using satellite AVHRR Sea Surface Temperature imagery. A total of 122 CTD casts to 500 m and 30 XBT drops to 750 m were made. The data are presented as individual vertical profiles, vertical sections, and property distributions on horizontal surfaces. The data were collected as part of the ONR Coastal Transition Zone program to study cold filaments, squirts, jets, and mesoscale eddies in the region.							
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT QUNCLASSIFIED/UNLIMITED SAME AS R 223 NAME OF RESPONSIBLE INDIVIDUAL Steven R. Ramp DD FORM 1473, 84 MAR 83 AP	PT. DTIC USERS R edition may be used un	21. ABSTRACT SEC Unclassified 22b TELEPHONE (I (408) 646-316	1 nclude Area Code, 62				

Hydrographic Data from the Coastal Transition Zone (CTZ) Program

15 - 28 June, 1987

bу

Paul F. Jessen Steven R. Ramp Carol A. Clark

Chief Scientist: Steven R. Ramp

	or
NTIS GRAED DTIC TAB Unanmounce Justificat	
Distribut	ion/
Ava	il and/er

TABLE OF CONTENTS

	Page
List of Tables	11
List of Figures	111
Introduction	1
Data Acquisition and Calibration	9
Data Processing	16
Data Presentation	18
Acknowledgements	18
References	242
Initial Distribution List	243

LIST OF TABLES

Table	Caption	Page
1.	List of stations occupied during the Coastal Transition Zone (CTZ2) filament study showing date, type, time, location, and weather.	10
2.	Differences between salinities calculated using the corrected CTD pressure, temperature, and conductivity readings and those of the water samples at the same depth measured by the Guildline Autosal.	17

LIST OF FIGURES

Figure	Caption	Page
1.	CTD station numbers and locations for part I of the Coastal Transition Zone (CTZ2) filament study during June 15-20, 1987 aboard the R/V POINT SUR.	2
2.	XBT station numbers and locations for all parts of the Coastal Transition Zone (CTZ2) filament study during June 15-28, 1987 aboard the R/V POINT SUR.	4
3.	CTD station numbers and locations for part II of the Coastal Transition Zone (CTZ2) filament study during June 20-23, 1987 aboard the R/V POINT SUR.	6
4.	CTD station numbers and locations for part III of the Coastal Transition Zone (CTZ2) filament study during June 23-28, 1987 aboard the R/V POINT SUR.	8
5.	Hourly averages of wind speed and direction measured at 10 m height from the R/V POINT SUR during part I of cruise CTZ2.	19
6.	Hourly averages of wind speed and direction measured at 10 m height from the R/V POINT SUR during part II of cruise CTZ2.	20
7.	Hourly averages of wind speed and direction measured at 10 m height from the R/V POINT SUR during part III of cruise CTZ2.	21
8.	Map of surface temperature during part I of cruise CTZ2, June 15-20, 1987.	22
9.	Map of surface salinity during part I of cruise CTZ2, June 15-20, 1987.	23
10.	Map of the dynamic height (dyn. m) at the sea surface relative to 500 db during part I of cruise CTZ2, June 15-20, 1987.	24
11.	Map of surface temperature during part II of cruise CTZ2, June 20-23, 1987.	25
12.	Map of surface salinity during part II of cruise CTZ2, June 20-23, 1987.	26

13.	Map of the dynamic height (dyn. m) at the sea surface relative to 500 db during part II of cruise CTZ2, June 20-23, 1987.	27
14.	Map of surface temperature during part III of cruise CTZ2, June 23-28, 1987.	28
15.	Map of surface salinity during part III of cruise CTZ2, June 23-28, 1987.	29
16.	Map of the dynamic height (dyn. m) at the sea surface relative to 500 db during part III of cruise CTZ2, June 23-28, 1987.	30
17.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 2-7 of part I.	31
18.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 7-11 of part I.	34
19.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 11-14 of part I.	37
20.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 16-21 of part I.	40
21.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 22-25 and 27-31 of part I.	43
22.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 33-43 of part I.	46
23.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 43-47 of part I.	49
24.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 47-54 of part I.	52
25.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 55-61 of part II.	55
26.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 63, 641, and 65-68 of part II.	58

27.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 70-75 of part II.	61
28.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 75-78 of part II.	64
29.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 80-82, 825, and 83-87 of part III.	67
30.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 87-90, 905, and 91-93 of part III.	70
31.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 93, 941, and 95-98 of part III.	73
32.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 98-101 of part III.	76
33.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 101-106 of part III.	79
34.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 107-111 of part III.	82
35.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 112-115 of part III.	85
36.	Vertical section of temperature for XBT stations 483-491 of cruise CTZ2.	88
37.	Vertical section of temperature for XBT stations 494-503 of cruise CTZ2.	89
38.	Listing of temperature, salinity, density anomaly, specific volume anomaly, and dynamic height at selected pressures and profiles of temperature (T), salinity (PSU), and density anomaly (γ) for all CTD stations of cruise CTZ2.	90
39.	Listing of temperature at selected pressures and profiles of temperature (T) for all XBT stations of cruise CTZ2.	211

INTRODUCTION

The data included in this report were collected as part of the Office of Naval Research (ONR) Coastal Transition Zone project during June 15-28, 1987. The study area encompassed the region from just north of Pt. Arena, California south to about 37° 40.00' N. from the coast to approximately 120 nm offshore. The purpose of this cruise was to create a quasi-synoptic 3-dimensional map of the hydrographic structure and velocity fields in a cold filament off the coast of California. Prior to the cruise satellite imagery of the sea-surface temperature along the northern coast of California was studied to find a suitable cold filament for mapping during the cruise. A strong feature was clearly seen in the NOAA-9 AVHRR image for June 11, 1987 whose source waters appeared to be located just north of Pt. Arena. This feature was chosen for study. The feature was tracked during the cruise using satellite AVHRR seasurface temperature imagery and surface gradients of temperature and salinity from continuous underway sensors (discussed in the next section). The imagery was sent to the ship in near real time via weather fax by cooperating investigators at the Scripps Institution of Oceanography. A total of 120 CTD casts to a maximum of 500 m depth and 30 XBT drops to a maximum depth 750 m were made.

The cruise was divided into three parts: Part I (CTD stations 1 - 54 and XBT drop 426) ended when the first filament could no longer be followed non-ambiguously; part II (CTD stations 55 - 78 and XBT drops 479 - 493) was ended by inclement weather; and part III (CTD stations 79 - 115) ended when the available cruise time expired.

The R/V POINT SUR departed from Moss Landing, California on the morning of June 15, 1987 and arrived on station 1 at 0900 UT of June 16 (Fig. 1) to begin hydrographic mapping of the filament. Following the completion of CTD station

Figure 1. CTD station numbers and locations for part I of the Coastal Transition Zone (CTZ2) filament study during June 15-20, 1987 aboard the R/V POINT SUR.

1 the ship proceeded inshore slightly and a section of CTD casts was made heading to the north (stations 2-7, Fig. 1), west (stations 8-11, Fig. 1), and then back south in a zigzag fashion (stations 12-21, Fig. 1) through the "root" of the filament.

Following the completion of CTD station 21 on June 17 at 1515 UT the ship steamed to 38° 34.27′ N, 124° 03.53′ W. (near station 19, Fig. 1) and deployed a group of 9 satellite tracked drifters within the filament. Eight of these drifters were expendable and one, to be recovered, was instrumented with an MER optical sensor, a Codispoti Nutrient Sampler, and a thermistor chain with an Aanderaa recorder. The drifter deployment required about 8 hours whereupon hydrographic operations resumed with a CTD cast at station 22 (Fig 1) at 0130 UT on June 18.

A section of CTD casts was then started across the filament at stations 23-25 (Fig. 1). Due to increasing seas an XBT drop (station 426, Fig. 2) was made following station 25 rather than a CTD cast. Weather then improved slightly and CTD casts were resumed at stations 27-31 (Fig. 1) completing station 31 at 1855 UT on June 18. The ship then proceeded slightly further offshore completing a CTD cast at station 32 (Fig. 1) before beginning another section of CTDs south through the filament (stations 33-43, Fig. 1). The last cast of this section (station 43) was completed at 1225 UT on June 19. The ship next turned directly west and hydrographic work continued with CTD casts at stations 44-47 (Fig. 1) completing station 47 at about 1915 UT on June 19.

Another cut was made north through the filament with CTD casts made at stations 48-54 (Fig. 1) completing the last of these at 0700 UT on June 20. During this final cut through the filament gradients of surface salinity and temperature from the continuous underway sensors were becoming very weak

Figure 2. XBT station numbers and locations for all parts of the Coastal Transition Zone (CTZ2) filament study during June 15-28, 1987 aboard the R/V POINT SUR.

leading us to conclude that it would be difficult to track the filament much farther. It was decided that the ship would steam to the source waters near Point Arena and search for a new filament to track.

This search began with a CTD cast at station 55 (Fig. 3) at 1750 UT on June 20. Following this station the ship steamed north along the coast completing CTD casts at stations 56-61 (Fig. 3) by 0415 UT on June 21. The ship then proceeded offshore about 12 nautical miles completing stations 62 and 63 (Fig. 3) before turning back south at 0640 on June 21. The ships course again paralleled the coast and CTD casts were made at stations 641 and 65-68 (Fig. 3) by 1555 on June 21.

By this time a new filament had been found and was tracked as before using the underway sensors and the real time AVHRR SST imagery to follow the filament. The ship headed further offshore completing CTD casts at stations 69 and 70 (Fig. 3) before turning north-northwest back across the filament at 1845 UT on June 21. Stations 70-73, 731, 74, and 75 of this section were finished by 0225 UT on June 22. The ship then turned south and completed CTD casts at stations 76-78 (Fig. 3). Following the CTD cast at station 78 (0710 UT of June 22) the weather became too bad to safely launch and recover the CTD.

As the ship steamed south, the filament mapping continued with XBT drops at stations 479 and 480 (Fig. 2). The ship turned north to cross the filament again at 0850 UT on June 20. Adverse weather conditions continued to prevent CTD operations, so mapping continued intermittently with XBT drops at stations 481-483 (Fig. 2). A more complete section of XBT drops were made after the ship turned south (downwind) following the XBT drop at station 483 at 1550 UT on June 22. XBT drops were made at stations 484-491 completing station 491 at 0130 UT on June 23.

Figure 3. CTD station numbers and locations for part II of the Coastal Transition Zone (CTZ2) filament study during June 20-23, 1987 aboard the R/V POINT SUR.

The ship began to steam north again in an attempt to continue mapping the filament, but after two more XBT drops (stations 492 & 493, Fig. 2) weather conditions deteriorated to the point that operations were halted and the ship steamed for shelter in Drake's Bay. The ship arrived in Drake's Bay at about 0200 UT on June 24 and remained until 0700 UT on June 25 when weather forecasts predicted workable conditions offshore.

After leaving Drake's Bay the first priority was to recover the instrumented drifter deployed at the beginning of the cruise. The latest satellite position of the drifter was relayed to the ship from the Scripps Institution of Oceanography and an estimated position of the drifter was made using the satellite position and dead reckoning. During the steam to the estimated drifter position a section of XBT's was made (stations 494-503, Fig. 2). The drifter was recovered without incident on June 25 at 1935 UT at 37° 43.19' N, 124° 36.31' W.

With no clear imagery to guide the vessel, some of the transects made prior to the bad weather were repeated. A CTD cast was made near the drifter recovery position (station 79, Fig. 4) after which the ship steamed north completing CTD casts at stations 80-82, 825, 826, and 83-87 (Fig. 4) by 1215 UT on June 26. The CTD stations of this section were approximately co-located with XBT drops 484-491 made during part II (see Fig. 2). A southerly section was completed next with CTD casts made at stations 88-90, 905, 91-93, and 935 (Fig. 4). This transect was co-located with XBT drops 480-483 of part II (see Fig. 2). Following the completion of station 935 at 2310 UT on June 26 the ship turned north to begin the next CTD section. This section included stations 941 and 95-98 (Fig. 4) and was completed by 0550 UT on June 27. These transects were co-located with stations 75-78 described earlier.

Three more expendable surface drifters were to be deployed before the end

Figure 4. CTD station numbers and locations for part III of the Coastal Transition Zone (CTZ2) filament study during June 23-28, 1987 aboard the R/V POINT SUR.

of the cruise and CTD casts were made at stations 99-108, 908, 110, and 111 (Fig. 4) to help decide where to deploy the drifters. Station 111 was completed at 2040 UT on June 27 after which the drifters were deployed. XBT drops were made at the same time as the last two drifter deployments (stations 908 and 909, Fig. 2).

As the ship steamed back towards Moss Landing a final section of CTD casts was made (stations 112-115, Fig. 4) between 0200 UT and 0545 UT on June 28. These stations were in approximately the same position as stations 71-74 of part II (see Fig. 3). The ship docked back at Moss Landing at 2200 UT on June 28. A listing of all CTD and XBT stations occupied during the cruise is shown in Table 1.

The personnel on this cruise were; Dr. Steven R. Ramp, Naval Postgraduate School (NPS), Dr. Ken Brink, Woods Hole Oceanographic Institution (WHOI), Dr. Curt Davis, Jet Propulsion Laboratory (JPL), Dr. Dave Kadko, Oregon State University (OSU), Mr. Paul Jessen (NPS), Mr. Jim Stockel (NPS), LCDR Bill Fasciano (NPS), Mr. Dick Limeburner (WHOI), Mr. Dick Kovar (OSU), and Ms. Sharon Lindsay, San Jose State University (SJSU).

DATA ACQUISITION AND CALIBRATION

Hydrographic data was acquired using a Neil Brown Mark III-B CTD and Sippican T-4 XBTs. A General Oceanics rosette sampler was attached to the CTD and was equipped with twelve 5 liter Niskin bottles for in situ water sampling. The CTD sampling rate was 32 Hz, but the acquisition software employed a pressure latch filter which limited each cast to a uniform series of 4308 data points. On the 500 m casts this resulted in the acquisition of 8 or 9 data points per meter of water. CTD data was acquired only on the downcast with a winch speed of approximately 30 m/min to 150 m then 60 m/min to 500 m. The data were acquired using an HP200 computer and stored on 3.5

Table 1. List of stations occupied during the Coastal Transition Zone (CT22) filament study, showing date, time, type, location, and weather.

Date		Time (UT)	Stn No.	Туре	Latitude	Longitude	Wi Dir S	nd pd(m/s)	Air (°C)	Dew pt. (°C)
June 1	16	0845	1	CTD	38 30.1	123 59.3	323	11.4	12.09	7.44
June	LO	1057	2	CTD	38 38.8	123 49.2	336	12.7	11.70	7.31
		1249	3	CTD	38 47.3	123 50.6	323	8.7	10.90	6.98
		1408	4	CTD	38 53.4	123 50.7	357	9.0	12.00	7.33
		1538	5	CTD	39 0.2	123 51.4	013	10.0	12.43	7.02
		1644	6	CTD	39 6.7	123 51.8	342	8.8	12.35	6.46
		1810	7	CTD	39 13.4	123 51.9	322	10.4	12.68	7.54
		1903	8	CTD	39 13.5	123 57.9	314	10.2	12.38	7.44
		2009	9	CTD	39 14.3	124 4.4	324	12.5	12.98	7.34
		2111	10	CTD	39 13.3	124 11.4	001	11.9	13.57	7.11
		2217	11	CTD	39 13.2	124 19.0	356	11.4	13.40	7.45
June :	17		12	CTD	39 6.4	124 12.4	316	13.3	13.25	7.09
		0140	13	CTD	39 3.2	124 7.4	319	12.4	13.80	6.93
		0330	14	CTD	38 58.2	124 2.4	315	15.5	13.32	7.10
		0520	15	CTD	38 54.9	124 11.9	323	14.9	13.55	7.68
		0743	16	CTD	38 51.8	124 23.2	320	16.5	12.73	7.52
		0916	17	CTD	38 46.8	124 17.0	329	13.7	12.90	7.71
		1032	18	CTD	38 41.9	124 11.9	325	13.1	13.27	7.51
		1156	19	CTD	38 36.3	124 6.2	317	12.5	12.49	7.60
		1315	20	CTD	38 31.8	124 1.2	324	13.1	11.96	7.37
		1446	21	CTD	38 25.9	123 53.3	317	10.8	12.18	7.63
June	18	0126	22	CTD	38 20.4	123 59.3	321	14.2	13.99	8.27
		0302	23	CTD	38 25.4	124 7.3	310	12.0	13.44	8.36
		0521	24	CTD	38 31.4	124 14.3	317	15.3	13.76	8.24
		0725	25	CTD	38 36.2	124 21.2	332	13.7	13.74	8.32
		1002	426	XBT	38 43.1	124 31.2	336	12.2	13.66	8.61
		1113	27	CTD	38 47.3	124 38.0	336	11.5	12.73	8.70
		1246	28	CTD	38 52.4	124 45.9	327	12.7	12.91	8.54
		1418	29	CTD	38 57.4	124 52.7	344	14.2	13.60	8.13
		1605	30	CTD	39 3.1	125 0.8	338	11.6	14.20	8.32
		1818	31	CTD	39 8.3	125 7.6	352	11.8	14.40	9.28
		2014	32	CTD	39 3.5	125 15.9	800	12.5	14.48	8.82 8.69
		2140	33	CTD	38 58.0	125 25.8	002 355	9.1 10.4	14.44 14.17	9.37
-	• •	2256	34	CTD CTD	38 50.9 38 44.4	125 22.0 125 16.7	334	11.3	14.65	9.27
June	19		35			125 10.7	339	9.8	13.76	9.43
		0143	36 27	CTD CTD	38 37.0 38 30.0	125 11.9	330	9.8	12.96	9.84
		0300	37 38	CTD	38 23.4	125 4.1	334	10.2	12.71	9.88
		0422 0553	39	CTD	38 15.8	125 0.1	323	8.9	12.40	9.63
		0736	40	CTD	38 8.5	124 56.0	322	9.5	12.52	9.67
		0858	41	CTD	38 1.6	124 51.9	322	9.4	12.67	9.65
		1027	42	CTD	37 54.1	124 47.7	333	11.0	12.71	9.73
		1203	43	CTD	37 46.9	124 44.1	328	10.3	12.73	9.57
		1336	44	CTD	37 47.0	124 56.0	344	9.8	13.03	9.47
		1515	45	CTD	37 47.0	125 9.0	346	8.8	13.42	9.17
		1657	46	CTD	37 47.0	125 22.0	012	7.6	13.33	8.73
		1844	47	CTD	37 47.1	125 33.0	353	7.6	13.77	8.36
		2009	48	CTD	37 53.7	125 35.7	005	5.6	13.68	8.12

Table 1. (continued)

0440 53 CTD 38 34.0 125 35.2 295 5.8 12.61 0613 54 CTD 38 41.9 125 35.2 318 3.7 12.80 1752 55 CTD 38 31.3 123 20.7 174 9.1 10.85 2015 56 CTD 38 42.3 123 35.7 359 5.4 12.26 2314 57 CTD 38 53.7 123 51.1 004 0.2 13.98 JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	8.36 8.04 8.83 10.04 8.28 10.20 7.83 8.85 10.47 10.83
JUNE 20 0044 51 CTD 38 18.4 125 35.4 299 7.8 13.66 JUNE 20 0044 51 CTD 38 18.4 125 35.1 310 7.8 12.74 0319 52 CTD 38 26.5 125 35.1 304 5.5 12.53 0440 53 CTD 38 34.0 125 35.2 295 5.8 12.61 0613 54 CTD 38 41.9 125 35.2 318 3.7 12.80 1752 55 CTD 38 31.3 123 20.7 174 9.1 10.85 2015 56 CTD 38 42.3 123 35.7 359 5.4 12.26 2314 57 CTD 38 53.7 123 51.1 004 0.2 13.98 JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	8.83 10.04 8.28 10.20 7.83 8.85 10.47
JUNE 20 0044 51 CTD 38 18.4 125 35.1 310 7.8 12.74 0319 52 CTD 38 26.5 125 35.1 304 5.5 12.53 0440 53 CTD 38 34.0 125 35.2 295 5.8 12.61 0613 54 CTD 38 41.9 125 35.2 318 3.7 12.80 1752 55 CTD 38 31.3 123 20.7 174 9.1 10.85 2015 56 CTD 38 42.3 123 35.7 359 5.4 12.26 2314 57 CTD 38 53.7 123 51.1 004 0.2 13.98 JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	10.04 8.28 10.20 7.83 8.85 10.47
0319 52 CTD 38 26.5 125 35.1 304 5.5 12.53 0440 53 CTD 38 34.0 125 35.2 295 5.8 12.61 0613 54 CTD 38 41.9 125 35.2 318 3.7 12.80 1752 55 CTD 38 31.3 123 20.7 174 9.1 10.85 2015 56 CTD 38 42.3 123 35.7 359 5.4 12.26 2314 57 CTD 38 53.7 123 51.1 004 0.2 13.98 JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	8.28 10.20 7.83 8.85 10.47
0440 53 CTD 38 34.0 125 35.2 295 5.8 12.61 0613 54 CTD 38 41.9 125 35.2 318 3.7 12.80 1752 55 CTD 38 31.3 123 20.7 174 9.1 10.85 2015 56 CTD 38 42.3 123 35.7 359 5.4 12.26 2314 57 CTD 38 53.7 123 51.1 004 0.2 13.98 JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	10.20 7.83 8.85 10.47
0613 54 CTD 38 41.9 125 35.2 318 3.7 12.80 1752 55 CTD 38 31.3 123 20.7 174 9.1 10.85 2015 56 CTD 38 42.3 123 35.7 359 5.4 12.26 2314 57 CTD 38 53.7 123 51.1 004 0.2 13.98 JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	7.83 8.85 10.47
2015 56 CTD 38 42.3 123 35.7 359 5.4 12.26 2314 57 CTD 38 53.7 123 51.1 004 0.2 13.98 JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	8.85 10.47
JUNE 21 0016 58 CTD 39 0.2 123 51.1 004 0.2 13.98 0110 59 CTD 39 6.8 123 51.5 193 1.2 13.89 0220 60 CTD 39 13.2 123 51.8 144 2.5 13.25	10.47
JUNE 21 0016 58 CTD 39 0.2 123 51.5 193 1.2 13.89 0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	
0110 59 CTD 39 6.8 123 51.8 144 2.5 13.25 0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	10.83
0220 60 CTD 39 13.2 123 51.8 145 3.8 13.35	
	10.76
	11.74
0356 61 CTD 39 25.4 123 52.3 178 4.7 13.09	10.83
0457 62 CTD 39 25.3 124 0.7 162 2.7 12.28	10.56
0609 63 CTD 38 25.3 124 9.2 163 5.5 12.49	10.37
0831 641 CTD 39 9.6 124 4.9 308 4.2 12.35	11.20
1021 65 CTD 38 53.3 124 1.1 345 4.6 12.55	10.71
1216 66 CTD 38 39.8 123 50.7 311 7.3 11.47	10.14
1424 67 CTD 38 26.3 123 39.3 352 7.6 11.95	10.62
1553 68 CTD 38 18.2 123 32.4 353 8.6 12.65	9.47
1657 69 CTD 38 14.7 123 39.4 349 9.9 13.65	9.42
1802 70 CTD 38 11.4 123 46.4 333 10.0 13.42	8.78
1937 71 CTD 38 18.3 123 51.4 335 11.1 14.83	9.46
2101 72 CTD 38 25.3 123 55.2 334 11.5 14.82	9.05
2222 73 CTD 38 32.2 124 0.0 308 13.9 14.68	9.01
2325 731 CTD 38 30.4 124 1.1 318 14.3 14.15	8.48
JUNE 22 0046 74 CTD 38 36.3 124 2.9 318 14.6 14.64	8.70 8.84
0225 75 CTD 38 41.5 124 6.1 328 14.1 14.74	8.44
0336 76 CTD 38 33.7 124 6.7 324 15.0 14.39 0516 77 CTD 38 27.2 124 6.4 327 13.0 14.23	8.44
	8.04
	8.24
	8.13
0850 480 XBT 38 5.2 124 6.1 326 16.4 14.01 0957 481 XBT 38 9.9 124 9.1 327 13.8 14.41	8.09
1051 482 XBT 38 14.5 124 11.4 335 15.1 14.18	8.15
1549 483 XBT 38 35.7 124 22.1 336 17.0 14.92	8.02
1909 484 XBT 38 33.6 124 24.0 338 14.1 14.34	8.37
2002 485 XBT 38 28.2 124 24.7 335 14.1 14.37	6.14
2100 486 XBT 38 22.6 124 26.0 324 13.0 14.33	8.83
2145 487 XBT 38 18.5 124 26.9 334 12.3 14.13	8.88
2238 488 XBT 38 13.8 124 26.8 333 12.9 14.78	8.78
2341 489 XBT 38 8.1 124 26.0 331 14.1 15.09	8.96
JUNE 23 0030 490 XBT 38 3.8 124 26.1 320 15.4 15.23	8.98
0133 491 XBT 37 58.5 124 26.3 333 14.1 15.05	9.13
0323 492 XBT 38 3.9 124 28.9	•
1444 493 XBT 38 57.1 124 46.6 331 14.5 14.85	9.49
JUNE 25 0832 494 XBT 37 57.1 123 9.7 217 2.3 10.25	8.89
0927 495 XBT 37 56.2 123 20.8 254 2.7 10.45	
1014 496 XBT 37 55.8 123 30.6 300 2.7 10.59	8.95 9.28

Table 1. (continued)

1104 497 XBT 37 55.2 123 40.6 325 4.4 11.46 9.51 1153 498 XBT 37 54.0 124 1.0 330 5.3 11.67 9.70 1242 499 XBT 37 54.0 124 1.0 330 5.3 11.67 9.70 1326 500 XBT 37 53.4 124 9.6 334 7.4 12.62 10.25 1416 501 XBT 37 52.5 124 19.6 343 6.9 12.28 10.16 1509 502 XBT 37 52.3 124 29.6 332 9.8 13.05 10.09 1603 503 XBT 37 50.3 124 39.6 332 9.8 13.05 10.09 1603 503 XBT 37 50.3 124 39.6 332 9.8 13.05 10.09 1603 503 XBT 37 50.3 124 37.0 019 6.7 12.54 10.22 2325 80 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 JUNE 26 0034 81 CTD 38 7.4 124 26.0 327 52 11.83 9.88 0155 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 17.6 124 26.0 327 52 11.83 9.89 0615 82 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0640 826 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0617 84 CTD 38 28.3 124 26.0 008 1.1 10.04 9.09 0617 84 CTD 38 82.3 124 26.0 008 1.1 10.04 9.09 0618 85 CTD 38 42.4 124 25.8 11.1 11. 9.75 8.79 0734 85 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 49.5 124 25.8 130 9.9 4.5 8.79 0734 85 CTD 38 42.4 124 25.8 178 0.3 9.45 8.79 0734 85 CTD 38 35.4 124 26.0 008 1.1 10.04 9.09 0734 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.2 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 34.1 124 124 25.9 139 9.45 8.79 0734 85 CTD 38 34.1 124 124 25.9 139 9.45 8.79 0734 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1826 907 XBT 38 23.1 124 15.1 128 0.6 10.5 9.00 1845 91 CTD 38 26.8 124 17.2 161 1.3 10.25 9.30 1826 907 XBT 38 23.1 124 15.1 128 0.6 10.5 9.30 1826 907 CTD 38 54.1 124 15.1 128 0.6 10.5 10.5 9.00 1845 91 CTD 38 64.2 124 15.6 142 1.7 13.4 0.9 5.5 22056 92 CTD 38 13.4 124 6.3 325 0.2 10.65 2010 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.1 1.2 1 9.33 0433 97 CTD 38 64.5 124 13.1 066 1.3 10.0 10.1 1.2 1 9.33 0433 97 CTD 38 54.6 124 17.2 161 1.8 4.9 10.5 9.00 1846 907 XBT 38 22.9 124 12.4 6.3 325 0.2 10.65 2010 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.1 1.2 1 9.3 10.6 1 1.2 1 9.3 10.5 10.1 1.2 1 9.3 10.5 10.2 1 1.2 1 9.3 10.5 10.2 1 1.2 1	Date	Time (UT)	Stn No.	Туре	Latitude	Longitude	Wir Dir Sp	nd od(m/s)	Air (°C)	Dew pt.
1153 498 KBT 37 54.7 123 50.9 318 6.2 11.28 9.47 1242 499 KBT 37 54.7 123 50.9 318 6.2 11.28 9.47 1242 499 KBT 37 54.0 124 1.0 330 5.3 11.67 9.70 1326 500 KBT 37 53.4 124 9.6 334 7.4 12.62 10.25 1416 501 KBT 37 53.4 124 9.6 343 6.9 12.28 10.16 1509 502 KBT 37 52.3 124 29.6 332 9.8 13.05 10.09 1603 503 KBT 37 50.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 37 43.3 124 37.0 019 6.7 12.54 10.22 1225 80 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 10.55 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 17.6 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 42.4 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 42.4 124 25.8 178 0.3 9.45 8.70 1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.2 2.2 9.66 1.9 9.45 8.70 1159 87 CTD 38 31.1 124 17.2 161 1.3 10.25 9.60 1159 87 CTD 38 34.1 124 19.5 113 2.2 9.56 8.60 1159 87 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 KBT 38 23.9 124 15.1 128 0.6 10.55 9.30 1821 906 KBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 KBT 38 23.9 124 15.1 128 0.6 10.55 9.30 1821 906 KBT 38 23.9 124 15.1 128 0.6 10.55 9.30 1821 906 KBT 38 20.2 124 15.6 142 17.7 16.1 1.3 10.25 9.30 1821 906 KBT 38 20.2 124 15.6 142 1.7 13.40 9.52 2225 93 CTD 38 12.4 12.4 12.5 142 22.8 10.0 10.55 9.42 11.0 12.2 12.2 12.0 3 8.55 12.2 12.0 3 8.55 12.1 12.0 12.2 12.0 3 8.55 12.1 12.0 12.1 12.1 12.1 12.1 12.1 12.1		1104	407	VDT	27 55 2	123 40 6	325	44	11.46	9.51
1242 499 XBT 37 54.0 124 1.0 330 5.3 11.67 9.70 1326 500 XBT 37 53.4 124 9.6 334 7.4 12.62 10.25 1416 501 XBT 37 52.5 124 19.6 343 6.9 12.28 10.16 1509 502 XBT 37 52.5 124 19.6 343 6.9 12.28 10.16 1509 502 XBT 37 52.5 124 99.6 332 9.8 13.05 10.09 1603 503 XBT 37 50.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 37 43.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 38 43.3 124 37.0 019 6.7 12.54 10.22 2325 80 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 10.54 10.22 2325 80 CTD 38 14.4 124 25.0 327 5.2 11.83 9.88 10.55 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 17.6 124 26.0 327 5.2 11.83 9.88 10.54 825 CTD 38 17.6 124 26.0 327 5.2 11.83 9.88 10.65 10.24 10.25 10.25 10.24 10.25 10.25 10.25 10.24 10.25 10.2										
1326 500 XBT 37 53.4 124 9.6 334 7.4 12.62 10.25 1416 501 XBT 37 52.5 124 19.6 334 6.9 12.28 10.16 1509 502 XBT 37 52.3 124 29.6 332 9.8 13.05 10.09 1603 503 XBT 37 50.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 37 43.3 124 37.0 019 6.7 12.54 10.24 1739 79 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 JUNE 26 0034 81 CTD 38 7.4 124 26.0 327 5.2 11.83 9.88 0155 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 18.6 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 35.4 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 35.4 124 25.8 178 0.3 9.45 8.79 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 11:9 87 CTD 38 42.4 124 25.8 058 2.2 9.60 8.61 1420 89 CTD 38 44.2 124 25.7 094 2.5 9.60 8.61 1420 89 CTD 38 44.1 124 19.5 113 2.2 9.56 8.70 1311 88 CTD 38 41.2 124 25.7 094 2.5 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1321 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1845 907 XBT 38 22.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1846 99 CTD 38 80.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 6.3 221 1.0 11.21 9.79 JUNE 27 0053 941 CTD 38 61.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 81.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 84.0 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 84.0 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 84.0 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 84.0 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 85.8 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 81.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 84.0 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 84.0 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 84.0 124 6.5 081 0.7 11.58 10.49 0928 101 CTD 38 49.4 124 26.5 081 0.7 11.58 10.49 0928 101 CTD 38 84.0 124 6.5 081 0.7 11.58 10.49 0928 101 CTD 38 84.0 124 6.5 081 0.7 11.58 10.49 0928 101 CTD 38 84.0 124 6.5 081 0.7 11.10.90 10.69										
1416 501 XBT 37 52.5 124 19.6 343 6.9 12.28 10.16 1509 502 XBT 37 52.3 124 29.6 332 9.8 13.05 10.09 1603 503 XBT 37 50.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 37 43.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 10.29 1739 79 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 10.50 1										
1509 502 XBT 37 52.3 124 29.6 332 9.8 13.05 10.09 1603 503 XBT 37 50.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 JUNE 26 0034 81 CTD 38 14.4 124 25.8 323 5.5 12.12 9.50 0155 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.98 0343 825 CTD 38 14.4 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 001 1.1 9.75 8.79 0934 85 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 11:9 87 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 11:9 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 24.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 23.1 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.1 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 15.1 128 0.6 10.53 9.30 JUNE 27 0053 941 CTD 38 13.4 124 6.5 0.81 0.77 11.5 9.05 JUNE 27 0053 941 CTD 38 13.4 124 6.5 0.81 0.77 11.5 10.3 0938 50TD 38 6.2 124 6.5 0.81 0.77 11.5 10.3 0939 0340 CTD 38 27.4 124 6.5 0.81 0.77 11.5 10.3 0930 945 CTD 38 12.4 124 6.5 0.81 0.77 11.5 10.9 JUNE 27 0053 941 CTD 38 13.4 124 6.5 0.81 0.77 11.5 10.9 0216 95 CTD 38 27.4 124 6.5 0.81 0.77 11.5 10.9 0216 95 CTD 38 27.4 124 6.5 0.81 0.77 11.5 10.9 0216 95 CTD 38 5.8 124 5.3 235 2.5 2.2 12.0 3.5 0433 97 CTD 38 44.5 124 6.5 0.81 0.77 11.5 10.9 0216 95 CTD 38 5.6 124 5.3 235 2.5 2.2 12.0 3.5 0430 97 CTD 38 44										
1603 503 XBT 37 50.3 124 38.2 351 8.6 12.55 10.24 1739 79 CTD 37 43.3 124 37.0 019 6.7 12.54 10.22 2225 80 CTD 38 15.1 124 25.8 323 5.5 12.12 9.50 1015 82 CTD 38 14.4 124 26.0 327 5.2 11.83 9.88 0155 82 CTD 38 17.6 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 17.6 124 26.0 327 5.2 11.83 9.89 0150 343 825 CTD 38 17.6 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 28.3 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1131 88 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 44.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1826 907 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.0 3 8.55 225 93 CTD 38 51.4 124 9.4 132 2.2 12.03 8.55 225 93 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 JUNE 27 0053 941 CTD 38 26.2 124 12.6 142 1.7 13.40 9.52 2255 93 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 225 93 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 026 92 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 44.4 124 6.3 325 0.2 10.65 0.7 11.58 10.43 0323 96 CTD 38 45.9 124 12.4 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 54.0 123 55.8 213 4.9 10.40 9.59 10.59 11.55 107 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1.50 1.9 11.50 10.3 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1.50 1.9 11.50 10.3 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1.50 1.9 11.50 10.3 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1.50 1.9 11.50 10.3 CTD 38 54.0 123 55.8 213 4.9 10.40 9.90 1.84 1.55 1.0 1.0 1.4 1.55 1.0 1.0 1.4 1.2 1.5 1.0 1.2 1.2 1.0 1.2 1.2 1.0 1.0 1.3 10.66 1.1 1.0 1.4 9.36 1.1 1.0 1.4 9.36 1.1										
1739 79 CTD 37 43.3 124 37.0 019 6.7 12.54 10.22 2325 80 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 38 3.6 38 3.6 3.7 3.8 3.23 5.5 3.8										
JUNE 26 0034 81 CTD 38 0.5 124 25.8 323 5.5 12.12 9.50 0155 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.89 0343 825 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 17.6 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 35.4 124 26.0 08 1.1 10.04 9.09 10934 85 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 44.2 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 34.1 124 12.5 11.3 2.2 9.56 8.70 1542 90 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 22.9 124 15.4 26.4 10.75 9.00 1826 907 XBT 38 20.2 124 15.4 26.4 10.75 9.00 1826 907 XBT 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 22.5 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 13.4 124 6.5 273 1.7 12.1 12.1 12.8 0.6 10.53 9.30 1826 907 XBT 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 12.4 9.4 132 2.2 12.03 8.55 22.5 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 6.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 1025 0054 94 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 1025 0054 98 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 1025 102 CTD 38 44.5 124 6.3 325 0.2 10.65										
JUNE 26 0034 81 CTD 38 7.4 124 26.0 327 5.2 11.83 9.88 0155 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 17.6 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 0008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.1 124 15.4 24 24 4.4 10.75 9.00 1825 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 12.4 124 9.5 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 12.4 124 9.5 124 22.1 12.0 13.3 0.3 9.5 12.2 12.0 3 8.55 12.2 12.0 13.8 12.4 12.4 9.5 12.5 12.2 12.0 9.5 8.5 12.2 12.0 9.5 9.0 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12										9.50
0155 82 CTD 38 14.4 124 25.9 339 4.5 11.23 9.99 0343 825 CTD 38 17.6 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 26.0 32 1.0 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 KBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 KBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 KBT 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 12.4 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 31.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 31.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 31.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 31.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 31.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 34.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 44.5 124 124 6.3 325 0.2 10.65 0715 99 CTD 38 44.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 49.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 34.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 34.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 53.3 124 1.8 173 6.4 10.99 10.89 1025 102 CTD 38 54.0 124 55.8 13 14 10.4 164 2.8 10.99 10.89 1025 102 CTD 38 54.0 124 55.8 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 49.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 54.0 124 50.0 247 1.3 10.88 10.18 1150 103 CTD 38 54.0 124 50.0 247 1.3 10.88 10.18 1150 103 CTD 38 54.0 124 50.0 247 1.3 10.88 10.18 1150 103 CTD 38 54.0 125 55.4 198 5.7 10.76 9.82 1700 108 CTD 38 54.0 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.1 124 4.6 202 6.2 10.66 9.50 1711 908 CTD 39 0.1 124 29.0 162 5.0 11.14 10.00	JUNE 26									9.88
0343 825 CTD 38 17.6 124 26.5 332 1.0 10.52 9.36 0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 11.59 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 20.2 124 15.4 242 4.4 10.75 9.00 1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 225 93 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 225 93 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 225 93 CTD 38 13.4 124 9.4 132 2.2 12.03 8.55 225 93 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 033 97 CTD 38 34.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.5 10.5 10.4 0825 100 CTD 38 55.6 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 55.6 124 20.0 247 1.3 10.89 10.69 10.59 1250 104 CTD 38 55.0 124 20.0 247 1.3 10.89 10.69 10.59 1250 104 CTD 38 55.0 124 20.0 247 1.3 10.89 10.49 9.41 1555 107 CTD 38 55.0 124 20.0 247 1.3 10.89 10.49 9.41 1555 107 CTD 38 55.0 124 20.0 247 1.3 10.89 10.49 9.41 1555 107 CTD 38 55.0 124 20.0 247 1.3 10.89 10.49 9.41 1555 107 CTD 38 55.0 124 20.0 247 1.3 10.89 10.69 10.59 1250 104 CTD 38 55.0 124 20.0 247 1.3 10.89 10.49 9.41 1555 107 CTD 38 55.0 124 20.0 247 1.3	JONE 20									9.99
0440 826 CTD 38 18.0 124 28.1 315 4.9 10.58 9.16 0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 1 9.75 8.79 10934 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 44.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 KBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1826 907 KBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 907 KBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 91 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.52 225 93 CTD 38 12.4 124 6.5 273 1.7 12.15 9.99 1210 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 1210 27 0053 941 CTD 38 27.4 124 6.3 221 1.0 11.2 1.3 10.3 10.4 10.4 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5								1.0	10.52	9.36
0545 83 CTD 38 21.4 124 26.0 008 1.1 10.04 9.09 0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 11:99 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 KBT 38 23.1 124 15.1 128 0.6 10.53 9.30 1826 907 KBT 38 22.9 124 15.1 128 0.6 10.53 9.30 1826 907 KBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 907 KBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 34.4 124 6.3 325 0.2 10.65 0.00 0323 96 CTD 38 34.4 124 6.3 325 0.2 10.65 0.00 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 39 0.1 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.11 1.13 6.66 1913 110 CTD 39 0.1 124 22.2 162 5.0 11.47 10.00 2307 908 KBT 39 3.2 124 3.3 268 2.9 12.18 9.14								4.9	10.58	9.16
0817 84 CTD 38 28.3 124 26.0 101 1.1 9.75 8.79 0934 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 115.9 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1822 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 907 XBT 38 20.2 124 14.8 242 4.4 10.75 9.00 1826 907 XBT 38 20.2 124 14.8 242 4.4 10.75 9.00 1826 907 XBT 38 20.2 124 12.6 142 1.7 13.40 9.55 2225 93 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 10.24 9.3 10.3 10.25 12.2 12.0 13.3 0433 97 CTD 38 34.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 44.5 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 44.4 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 64.9 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 53.3 124 124 6.2 20 247 1.3 10.88 10.18 1150 103 CTD 38 54.0 124 52.5 23 24 1.0 11.21 9.33 10.69 1025 102 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 10.59 11.50 103 CTD 38 54.0 124 50.0 247 1.3 10.88 10.18 1150 103 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 11.50 103 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 11.50 103 CTD 38 54.0 123 55.8 123 4.9 10.40 9.41 1555 107 CTD 39 0.2 124 4.6 20.6 2.2 10.66 9.50 175 908 CTD 39 0.2 124 4.6 20.6 2.2 10.66 9.50 175 908 CTD 39 0.2 124 1.6 173 4.9 10.85 9.66 191 11 CTD 39 0.1 124 12.6 171 4.9 10.85 9.66 191 11 CTD 39 0.1 124 12.6 171 4.9 10.85 9.66 191 11 CTD 39 0.1 124 12.6 171 4.9 10.85 9.66 191 11 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 21.0							008	1.1	10.04	
0934 85 CTD 38 35.4 124 26.0 266 1.9 9.45 8.78 1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 20.2 124 15.1 128 0.6 10.53 9.30 1826 907 XBT 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.3 241 1.0 1.1 1.1 1.2 1.3 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2							101	1.1	9.75	8.79
1046 86 CTD 38 42.4 124 25.8 178 0.3 9.45 8.60 1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1826 907 XBT 38 23.9 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 44.5 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.2 124 4.6 171 4.9 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 171 4.9 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 1					38 35.4		266	1.9	9.45	8.78
1159 87 CTD 38 49.5 124 25.7 094 2.5 9.60 9.04 1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 907 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 44.5 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 44.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 44.9 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 13.8 173 6.1 10.14 9.36 1456 106 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 13.8 173 6.1 10.14 9.36 1456 106 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 13.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.1 124 24.6 20.0 247 1.3 10.86 9.50 1715 908 CTD 39 0.1 124 24.6 10.5 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 24.0 155 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 24.0 155 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 24.0 155 3.7 11.13 8.66 1913 110 CT					38 42.4		178	0.3	9.45	8.60
1311 88 CTD 38 41.2 124 22.8 058 2.2 9.60 8.61 1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 12.4 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 10.00 18.00 9.50 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 10.216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 44.5 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 44.4 124 6.3 325 0.2 10.65 10.0 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 10.25 10.2 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1700 108 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1700 108 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1700 108 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.66 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.66 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.66 9.50 1715 908 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.						124 25.7	094	2.5	9.60	9.04
1420 89 CTD 38 34.1 124 19.5 113 2.2 9.56 8.70 1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.9 124 15.1 128 0.6 10.53 9.30 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 - 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.89 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.66 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 22.0 152 3.7 11.13 8.66					38 41.2	124 22.8	058	2.2	9.60	8.61
1542 90 CTD 38 26.8 124 17.2 161 1.3 10.25 9.42 1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0548 98 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 53.3 124 1.8 173 6.1 10.19 30.69 1250 104 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 24.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 22.0 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14					38 34.1	124 19.5	113	2.2	9.56	
1716 905 CTD 38 23.9 124 15.1 128 0.6 10.53 9.30 1821 906 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 0216 95 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 -0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 50.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.1 124 4.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14					38 26.8	124 17.2	161	1.3		
1821 906 XBT 38 23.1 124 15.4 242 4.4 10.75 9.00 1826 907 XBT 38 22.9 124 14.8 242 4.4 10.75 9.00 1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 55.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.1 124 4.6 10.15 37 11.13 8.66 2015 111 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14			905	CTD	38 23.9	124 15.1	128	0.6	10.53	
1845 91 CTD 38 20.2 124 12.6 142 1.7 13.40 9.52 2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 0216 95 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 199 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 22.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 22.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14			906	XBT	38 23.1	124 15.4	242	4.4		
2056 92 CTD 38 12.4 124 9.4 132 2.2 12.03 8.55 2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 44.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 44.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.8 13 4.9 10.40 9.41 1555 107 CTD 39 0.2 124 4.6 202 6.2 10.66 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 10.63 8.55 1806 109 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14			907	XBT	38 22.9	124 14.8	242	4.4		
2225 93 CTD 38 6.2 124 6.1 184 3.4 12.00 9.58 2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.1 124 20.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14		1845	91	CTD	38 20.2	124 12.6				
2308 935 CTD 38 5.8 124 5.3 235 2.5 12.21 9.79 JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 - 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14			92	CTD	38 12.4		132			
JUNE 27 0053 941 CTD 38 13.4 124 6.5 273 1.7 12.15 9.99 0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 - 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14		2225	93	CTD	38 6.2	124 6.1				
0216 95 CTD 38 13.2 124 6.5 081 0.7 11.58 10.43 0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 - 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14		2308	935	CTD	38 5.8					
0323 96 CTD 38 27.4 124 6.3 221 1.0 11.21 9.33 0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 - 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14	JUNE 27	7 0053	941	CTD	38 13.4					
0433 97 CTD 38 34.4 124 6.3 149 0.9 10.84 9.03 0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 - 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66			95	CTD	38 13.2					
0548 98 CTD 38 41.4 124 6.3 325 0.2 10.65 - 0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14		0323	96							
0715 99 CTD 38 44.5 124 13.1 066 1.3 10.50 10.14 0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14		0433	97							9.03
0825 100 CTD 38 46.9 124 20.3 234 2.2 10.95 10.29 0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14		0548								-
0928 101 CTD 38 49.4 124 26.2 301 2.1 10.93 10.69 1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1025 102 CTD 38 50.5 124 20.0 247 1.3 10.88 10.18 1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1150 103 CTD 38 51.7 124 13.4 164 2.8 10.69 10.59 1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1250 104 CTD 38 52.6 124 7.5 136 4.5 10.23 9.42 1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1358 105 CTD 38 53.3 124 1.8 173 6.1 10.14 9.36 1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1456 106 CTD 38 54.0 123 55.8 213 4.9 10.40 9.41 1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1555 107 CTD 39 0.4 123 55.4 198 5.7 10.76 9.82 1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1700 108 CTD 39 0.2 124 4.6 202 6.2 10.68 9.50 1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1715 908 CTD 39 0.1 124 4.4 173 6.4 10.63 8.55 1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1806 109 CTD 39 0.2 124 12.6 171 4.9 10.85 9.66 1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
1913 110 CTD 39 0.1 124 21.0 152 3.7 11.13 8.66 2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
2015 111 CTD 39 0.1 124 29.2 162 5.0 11.47 10.00 2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
2307 908 XBT 39 3.2 124 3.3 268 2.9 12.18 9.14										
2307 700 822 37 37 37 37 37 37 37 37 37 37 37 37 37										
		2352	909	XBT	38 57.0	124 2.9	277	3.6		

Table 1. (continued)

Date		Time (UT)	Stn No.	Type	Latitude	Longitude	Wind Dir Spd(m/s)	Air (°C)	Dew pt. (°C)
JUNE	28	0202	112	CTD	38 36.6	124 2.1	061 1.4	11.86	10.53
001.12		0304	113	CTD		123 59.2	023 1.4	11.90	10.45
		0427	114	CTD	38 25.7	123 54.5	316 2.2	11.96	10.28
		0541	115	CTD	38 18.7	123 50.7	350 3.3	12.13	10.00

inch diskettes. Upon return to shore the data were transferred to 9 track tape and then processed on an IBM 3033 mainframe computer.

In addition to the CTD and XBT data, an underway data acquisition loop recorded 30 second averages of sea surface temperature and salinity, sea surface skin temperature, wind speed and direction, air temperature, dew point temperature, and visible and infrared radiation. The sensors used to acquire this data included Seabird temperature and conductivity sensors for the sea surface temperature and salinity, a Rosemount 100 ohm platinum resistance thermistor for the sea surface skin temperature, an R. M. Young anemometer for the wind speed and direction, a General Eastern dewpoint sensor for the air and dewpoint temperatures, and Epply pyronometers for the visible and infrared radiation. The underway data was acquired on an HP9816 computer and recorded on 3.5 inch diskettes. Like the CTD data, the underway data were transferred to 9 track tape upon return and processed on the IBM mainframe.

The temperature, conductivity, and pressure sensors on the CTD and the temperature and conductivity sensors of the underway sampling system were calibrated shortly after the cruise. The pressure calibration was carried out using a Chandler Engineering dead weight tester as a standard. At 10 equally spaced pressures from 50 to 500 db, indicated pressures from the standard and the CTD sensor were recorded. The differences between recorded values were within the stated accuracy of the sensor (+/- 1.6 db) therefore no pressure correction was applied.

The temperature calibration was done using a Seabird temperature sensor as a standard. This standard sensor is recalibrated by the manufacturer approximately every six months. A temperature bath of 70 - 80 liters of fresh water in an insulated tub was used to compare the standard and sample sensors at 1 $^{\circ}$ C increments from 0 - 20 $^{\circ}$ C. 30 data points were collected at each

temperature and then averaged to yield a single value for each sensor. A regression analysis was run on the 21 data points revealing a linear difference between the standard sensor and all of the sample sensors. The coefficients for the correction to the CTD temperature sensor were 1.00020 (slope) and +0.02361 (intercept). The best fit for the Seabird temperature sensor used in the underway sea surface temperature was linear with a slope of 1.0027 and an intercept of +0.0087. The relationship between the resistance of the Rosemount thermistor used for measuring sea surface skin temperature and the reference sensor was also linear with a slope of 2.568 and an intercept of -256.865.

The conductivity calibration was carried out using a Guildline Model 8400 Autosal as a standard. A constant conductivity bath was used to compare the standard and sample sensor conductivities at five different conductivity levels. 10 samples were taken at each conductivity level and averaged to yield a single value for each sensor at each conductivity level. Regression analysis was run comparing the sample cell conductivities (CTD and underway) with the standard sensor conductivities (Autosal). A linear correction was found for the CTD sensor with coefficients of 1.001487 (slope) and -0.034173 (intercept). The best fit for the Seabird conductivity sensor used in the underway system was a linear correction with coefficients of 1.0027 (slope) and +0.0087 (intercept).

A total of 42 water samples were taken at 7 CTD stations for post cruise calibration. The CTD pressure, conductivity and temperature were noted as each sample was taken. These numbers, after applying the calibration coefficients, were used to calculate salinity and the results compared with the water sample salinities calculated using the Guildline Model 8400 Autosal in the laboratory. In order to avoid erroneous comparisons due to ship roll in areas

of high vertical salinity gradients, samples were eliminated from consideration if the salinity within 2 meters of the nominal sample depth changed more than 0.01 PSU. The number of comparable points was reduced to 32 by this constraint. The differences between Autosal calculated salinities and those from the CTD are listed in Table 2. The mean difference was +0.005 with a range of -0.077 to +0.025. No further adjustments were made to the CTD conductivities based on water bottle sample comparisons.

DATA PROCESSING

After the raw CTD data was transferred to the IBM 3033 mainframe computer at the Naval Postgraduate School, the described temperature and conductivity corrections were applied to produce profiles of corrected pressure, temperature, and conductivity. Salinity was calculated from these corrected values according to the algorithm of Lewis and Perkin (1981). Severe spiking due to system malfunctions was eliminated from the salinity signal with a search for vertical salinity gradients greater than 1.0 PSU/m. Points that were determined to be bad were replaced using linear interpolation. Time lag spikes were eliminated by discarding salinity data in regions where the vertical temperature gradient exceeded 0.2 °C/m and replacing the discarded data with linearly interpolated values. Finally the data were averaged within 1 m intervals and visually examined for any remaining outliers missed during processing. If found, these points were replaced with linearly interpolated values.

The density anomaly (7) at atmospheric pressure was calculated using the corrected values of temperature and salinity and the appropriate algorithms found in Volume 4 of the International Oceanographic Tables (UNESCO, 1987). Surface plots of temperature, salinity, and dynamic height relative to 500 db. were contoured subjectively by hand.

Table 2. Differences between salinities calculated using the corrected CTD pressure, temperature, and conductivity readings and those of the water samples at the same depth measured by the Guildline Autosal.

STA	Z	CTD SAL	SAMPLE SAL	DIFFERENCE
2	484	34.206	34.208	-0.002
	350	34.180	34.180	0.000
	201	34.100	34.177	-0.077
	4	33.031	33.005	+0.025
16	432	34.159	34.148	+0.011
	372	34.067	34.063	+0.004
	226	34.095	34.087	+0.008
	10	32.877	32.859	+0.018
29	489	34.176	34.169	+0.007
	448	34.127	34.126	+0.001
	399	34.097	34.094	+0.003
	348	34.092	34.090	+0.002
	299	34.094	34.086	+0.008
	8	32.820	32.812	+0.008
49	533	34.174	34.169	+0.005
	448	34.132	34.113	+0.019
	398	34.081	34.071	+0.010
	347	34.061	34.055	+0.006
	300	34.024	34.013	+0.011
	23	32.861	32.849	+0.013
71	475	34.180	34.180	0.000
	397	34.149	34.146	+0.003
	299	34.081	34.076	+0.005
	200	34.027	34.028	-0.001
81	511	34.220	34.211	+0.009
	450	34.131	34.123	+0.008
	399	34.093	34.079	+0.014
	198	33.974	33.955	+0.019
112	449	34.202	34.197	+0.005
	301	34.148	34.139	+0.009
	179	33.998	33.990	+0.008
	69	33.568	33.556	+0.012

DATA PRESENTATION

The CTD station positions and numbers for each part of the cruise are shown in Figs. 1, 3, and 4 respectively. The XBT station numbers and positions for all parts of the cruise are shown in Fig. 2. Maps of hourly averaged wind vectors during each part of the cruise are presented in Figs. 5-7.

Hydrographic data are presented in the form of horizontal maps, vertical sections, and vertical profiles. Maps of surface temperature (T), salinity (S), and dynamic height relative to 500 db ($\Delta D_0/500$) for each part of the cruise are presented in Fig. 8-16. Vertical sections of temperature, salinity, and the density anomaly at atmospheric pressure (7) from the CTD data are shown in Figs. 17-35. Sections from part I are shown in Figs. 17-24, those from part II in Figs. 25-28, and those from part III in Figs. 29-35. Figs. 36 and 37 are vertical sections of temperature from the XBT drops made during parts of the cruise. Selected data from each CTD cast is presented along with a vertical profile of temperature, salinity, and density anomaly at atmospheric pressure in Fig. 38. Fig. 39 presents the XBT data in the same form. In these two figures an asterisk next to a point in the data listing indicates that the point is an interpolated value.

ACKNOWLEDGEMENTS

This work was funded by the Office of Naval Research and the Naval Postgraduate School's direct research funding. We thank Ms. Melissa Ciandro and Mr. Bob Writner of the Scripps Institution of Oceanography for the real-time transmission of the satellite AVHRR sea surface temperature data to the R/V POINT SUR. The able assistance of the officers and crew of the POINT SUR are much appreciated.

Figure 5. Hourly averages of wind speed and direction measured at 10 m height from the R/V POINT SUR during part I of cruise CT22.

Figure 6. Hourly averages of wind speed and direction measured at 10 m height from the R/V POINT SUR during part II of cruise CTZ2.

Figure 7. Hourly averages of wind speed and direction measured at $10\ m$ height from the R/V POINT SUR during part III of cruise CTZ2.

Figure 8. Map of surface temperature during part I of cruise CTZ2, June 15-20, 1987.

Figure 9. Map of surface salinity during part I of cruise CT22, June 15-20, 1987.

Figure 10. Map of the dynamic height (dyn. m) at the sea surface relative to 500 db during part I of cruise CTZ2, June 15-20, 1987.

Figure 11. Map of surface temperature during part II of cruise CTZ2, June 20-23, 1987.

Figure 12. Map of surface salinity during part II of cruise CTZ2, June 20-23, 1987.

Figure 13. Map of the dynamic height (dyn. m) at the sea surface relative to 500 db during part II of cruise CTZ2, June 20-23, 1987.

Figure 14. Map of surface temperature during part III of cruise CTZ2, June 23-28, 1987.

Figure 15. Map of surface salinity during part III of cruise CT22, June 23-28, 1987.

Figure 16. Map of the dynamic height (dyn. m) at the sea surface relative to 500 db during part III of cruise CTZ2, June 23-28, 1987.

Figure 17. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 2--7 of part I.

Figure 17b.

Figure 18. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 7-11 of part I.

Figure 19. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 11-14 of part I.

Figure 19b.

Figure 19c.

Figure 20. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 16-21 of part I.

Figure 20b.

Figure 20c.

Figure 21. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 22-25 and 27-31 of part I.

Figure 21b.

Figure 21c.

Figure 22. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 33-43 of part I.

Figure 22b.

Figure 22c.

Figure 23. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 43-47 of part I.

Figure 23c.

Figure 24. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 47-54 of part I.

Figure 24b.

Figure 24c.

Figure 25. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 55-61 of part II.

Figure 25b.

Figure 25c.

Figure 26. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 63, 641, and 65-68 of part II.

Figure 26b.

Figure 26c.

Figure 27. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 70-75 of part II.

Figure 27b.

Figure 27c.

Figure 28. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 75-78 of part II.

Figure 28b.

Figure 28c.

Figure 29. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 80-82, 825, and 83-87 of part III.

Figure 29b.

Figure 29c.

Figure 30. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CID stations 87-90, 905, and 91-93 of part III.

Figure 30b.

Figure 30c.

Figure 31. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 93, 941, and 95-98 of part III.

Figure 31b.

Figure 31c.

Figure 32. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 98-101 of part III.

Figure 32b.

Figure 32c.

Figure 33. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 101-106 of part III.

Figure 33b.

Figure 33c.

f sure 34. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 107-111 of part III.

Figure 34b.

Figure 35. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 112-115 of part III.

Figure 35c.

Figure 36. Vertical section of temperature for XBT stations 483-491 of cruise CTZ2.

Figure 37. Vertical section of temperature for XBT stations 494-503 of cruise CTZ2.

Figure 38. Listing of temperature, salinity, density anomaly, specific volume anomaly, and dynamic height at selected pressures and profiles of temperature (T), salinity (PSU), and density anomaly (γ) for all CTD stations of cruise CTZ2.

S C V N N	0.00.0	0.012	0.027	0.042	0.057	0.071	0.084	0.098	0.111	0.123	0.134	0.155	0.177	0.196	0.215	0.233	0.276	0.318	0.359	0.400	0.439	0.477	0.514	0.550	0.585	0.619	0.653	0.685	0.718	0.749	0.780	0.808
SVA	310.1	305.8	300.2	293.8	280.7	274.9	273.0	263.1	253.3	235.7	226.1	211.2	199.1	193.0	182.4	175.9	171.2	165.4	162.3	159.0	154.5	149.7	145.8	141.5	139.2	135.4	132.2	130.8	127.8	123.9	121.1	117.0
DENSITY	24.939	24.885	24.345	25.014	25.152	25.215	25.236	25.340	25.444	25.631	25.733	25.892	26.021	26.086	26.200	26.271	26.324	26.390	25.427	26.466	26.516	26.570	26.614	26.653	26.690	26.733	26.770	26.786	26.819	26.862	26.893	26.936
SAL	32.796	32.857	32.940	33.037	33.173	33.202	33.220	33.213	33.249	33.361	33.538	33.691	33.763	33.814	33.905	33.958	33.989	34.036	34.055	34.066	34.077	34.102	34.108	34.131	34.133	34.153	34.162	34.145	34.160	34.167	34.172	34.182
TEMP	12.209	12.216	4	12.274	12.398	11.883	11.346	11.247	10.821	10.247	10.456	10.226	9.795	9.639	9.382	9.199	9.016	8.832	8,691	8.497	8.222	7.990	7.721	7.513	7.331	7.134	6.922	6.700	6.540	6.254	6.043	5.764
PRESS	-	10	10	15	20	25	30	35	40	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	007	425	450	475	499

SUN DYN	0.00.0	0.010	0.023	0.036	0.048	0.059	0.070	0.080	0.090	0.100	0.110	0.129	0.147	0.165	0.182	0.198	0.238	0.276	0.313	0.350	0.386	0.421	0.455	0.487	
SVA	258.0	258.2	258.2	245.3	7.722	220.2	210.2	208.4	202.7	195.2	193.9	185.1	177.8	172.7	168.0	161.9	155.8	150.7	147.3	144.3	141.5	137.8	137.1	133.2	
DENSITY	m	25.386	25.387	25.523	25.709	25.790	25.895	25.915	25.976	26.056	26.070	26.165	26.244	26.299	26.350	26.416	26.485	26.543	26.583	26.617	26.651	26.693	26.705	26.748	
SAL	33.219	33.218	33.212	33.166	33.432	33.510	33.597	33.619	33.657	33.697	33.697	33.740	33.795	33.827	33.877	33.930	34.047	34.106	34,110	34.120	34.136	34.148	34.151	34.153	
TEMP	11.017	11.015	10.983	9.984	10.114	9.995	9.769	9.754	9.565	9.263	9.175	8.787	8.558	8.362	8.283	8.123	8.274	8.191	7.950	7.766	7.619	7.390	7.327	7.030	
PRESS	-	'n	2	5	20	25	30	35	40	45	20	9	70	80	90	100	125	150	175	200	225	250	275	299	

SUN DYN	0.000	0.010	0.022	0.034	0.046	0.058	0.068	0.079	0.089	0.099	0.108	0.127	0.146	0.163	0.181	0.198	0.231
SVA	246.7	246.5	246.6	245.4	234.1	217.4	209.9	201.3	200.3	196.8	194.1	184.2	179.5	178.0	173.4	167.7	156.7
DENSITY	25.506	25.509	25.509	25.523	25.642	25.818	25.899	25.390	26.001	26.039	26.068	26.174	26.226	26.244	26.294	26.356	26.475
SAL	33.405	33.409	33.409	33.396	33.367	33.457	33.524	33.613	33.634	33.671	33.680	33.794	33.887	33.913	33.943	33.968	34.060
TEMP	11.157	11.158	11.158	11.025	10.207	9.574	9.402	9.268	9.298	9.242	9.106	8.999	9.132	9.148	8.977	8.708	8.405
PRESS	-	'n	5	5	20	25	30	35	9	45	20	9	70	80	06	100	120

SUM	0.000	0.010	0.023	0.036	0.049	0.061	0.072	0.082	0.092	0.102	0.111	0.129	0.146	0.163	0.180	0.196	0.216
SVA	259.8	260.1	269.4	254.5	242.4	230.5	213.3	204.5	192.4	188.3	182.8	173.1	172.3	168.3	165.1	165.0	164.8
DENSITY ANOMALY	25.358	25.366	25.363	25.427	25.555	25.681	25.863	25.956	26.084	26.129	26.138	26.292	26.302	26.345	26.381	28.384	26.388
SAL	33,364	33.363	33.359	33.347	33.380	33.443	33.552	33.616	33.749	33.833	33.888	33.938	33,959	33.931	33,984	33.985	33,986
TEMP	11.738	11.746	11.742	11.347	10.769	10.326	9.754	9.492	9.342	9.468	9.373	8.969	9.010	8.590	8.627	8.613	8.591
PRESS	-	'n	2	15	20	25	30	35	4	45	20	9	70	80	90	100	112

SC.N	0.00.0	0.0:1	0.026	0.040	0.053	0.066	0.02	0.092	0.163	0.115	0.126	0.147	0.167	0.185	0.202	0.219	0.263	0.300	0.339	0.376	0.413	0.449	0.484	0.518	0.551	0.584	0.615	0.646	0.677	0.706	C.736	0.764
SVA	287.1	235.8	284.0	273.6	258.3	263.1	247.4	246.0	229.3	221.0	218.1	208.2	190.4	175.9	169.8	166.1	163.5	156.3	151.8	149.0	144.8	141.0	137.3	134.6	132.1	129.3	125.1	122.4	119.4	119.3	116.6	113.9
DENSITY ANOMALY	25.080	25.095	25.116	25.224	25.283	25.339	25.504	25.519	25.697	25.785	25.816	25.943	26.111	26.265	26.331	26.372	26.403	26.484	26.535	26.567	26.615	26,658	26.699	26.731	26.759	26.792	26.840	26.868	25.904	26.907	26.938	26.968
SAL	3.031	33.023	33.024	33.023	33.055	33.038	33.174	33.18.	33.307	33.368	33.386	33.497	33.699	33.837	33.883	33.912	33.936	34.015	34.043	34.007	34.049	34.057	34.074	34.081	34.084	34.093	34.167	m	34		34.20	34.202
TEMP	11.894	11.782	11.674	11.074	10.880	10.708	10.137	16.076	9.601	9.352	9.243	8.992	8.926	8.635	8.441	8.320	8.235	8.111	7.918	7.502	7.397	7.134	6.927	6.735	6.540	6.347	6.426	6.039	5.988	5.906	5.878	5.634
PRESS		'n	. 0	Ϋ́	20	25	000	35	4	45	50	90	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

N N N N	0.000	0.012	0.028	0.043	0.059	9.074	0.089	0.104	0.119	0.132	0.146	0.170	C.193	0.215	0.235	0.255	0.302	0.344	0.384	0.422	0.460	0.453	0.530	0.564	0.597	0.630	0.662	0.693	0.723	0.753	0.782	0.809
SVA	308.7	308.3	308.9	308.3	308.5	307.5	300.8	294.5	281.3	273.4	259.2	236.5	222.8	209.1	199.8	194.9	177.2	161.9	156.6	151.5	145.3	141.6	137.4		132.3	128.7	125.1	122.7	120.2	117.9	115.0	112.1
DENSITY	4.85	24.854	24.854	24.862	24.861	24.872	24.944	25.011	25.151	25.235	25.384	25.625	25.771	25.916	26.016	26.068	26.259	26.426	26.485	26.541	25.609	26.652	26.697	26.734	26.754	26.794	26.834	26.861	26.890	26.916	26.948	6.98
SAL	32.880	ri	32.880	32.891	32.880	32.884	32.904	32.942	33.029	33.030	33.135	33.280	33.324	33.459	33.541	33.577	33.725	33.975	33.998	34.018	34.040	34.055	34.042	33.999	34.009	34.027	34.048	34.054	34.081	34.085	34.111	34.162
TEMP	12.470	12.471	12.473	12.436	12.436	12.394	12.096	11.896	11.503	11.041	10.656	9.909	9.225	8.972	8.747	8.587	8.095	8.291	8.017	7.739	7.384	7.163	6.757	6.221	6.122	5.916	5.728	5.550	5.485	5.295	5.199	5.246
PRESS	-	s٥	5	ί	20	25	30	35	0	45	20	90	70	80	90	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

SUM	0.00.0	600.0	0.023	0.037	0.051	0.065	0.079	0.093	0.106	0.120	0.133	0.158	0.180	0.202	0.221	0.240	0.282	0.322	0.361	0.398	0.434	0.470	0.504	0.538	0.571	0.603	0.635	0.666	0.696	0.726	0.755	0.783
SVA	283.9	284.0	284.1	283.8	281.7	280.5	276.1	271.4	268.5	268.2	262.2	236.8	215.6	207.8	186.5	177.4	163.5	157.3	151.9	147.1	141.8	139.8	136.3	133.9	130.2	128.5	125.1	123.0	120.8	117.6	115.9	113.2
DENSITY	·	25.114	25.114	25.119	25.142	25.155	25.203	25.253	25.284	25.289	25.353	25.621	25.845	25.929	26.155	26.253	26.404	26.473	26.534	26.588	26.647	26.671	26.711	26.741	26.782	26.803	26.841	26.861	26.886	26.922	26.941	•
SAL	33.031	33.030	33.030	33.032	33.039	33.040	33.051	33.043	33.063	33.067	33.092	33.224	33.394	33.463	33.690	33,794	33,989	34.011	34.047	34.073	34.086	34,106	34.125	34.142	34,159	34.169	34.177	34.120	34.108	34,133	34,136	34.160
TEMP	11.711	11.709	0	11.690	11.593	11.526	11.312	10.996	10.906	10.896	10.646	9.665	660.6	8.908	8.597	8.490	8.503	8.162	7.946	7.712	7.375	7.311	7.135	7.018	6.815	6.715	6.479	5.969	5.693	5.563	5.425	5.326
PRESS	7	۱n	5	\$	20	25	30	35	9	45	50	9	70	80	90	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

SCN DYN	0.000	0.010	6.022	C.035	0.047	0.058	0.069	0.080	0.091	0.102	0.112	0.132	0.151	0.170	0.187	0.204	0.245	0.284	0.322	0.360	0.396	0.432	0.467	0.501	0.534	0.566	0.598	0.629	0.660	0.690	0.718	0.745
SVA	247.6	247.8	247.7	247.3	236.3	224.8	221.8	216.3	212.5	211.7	208.3	193.7	186.3	181.0	171.4	167.6	159.6	153.5	150.2	148.2	144.8	141.2	137.9	134.9	129.9	127.5	125.7	123.8	121.2	117.8	111.5	110.0
DENSITY ANOMALY	25.496	25.495	25.497	25.502	25.619	25.741	25.773	25.833	25.873	25.883	25.914	25.074	26.154	26.211	26.314	26.356	26.444	26.512	26.551	26.575	26.614	26.654	26.693	26.726	26.785	26.812	26.834	26.957	26.886	26.923	26.990	27.008
SAL	33.335	33,335	33.337	33.338	33,385	33.431	33.450	33.494	33.521	33.515	33.525	33.640	33.711	33.744	33.836	33.887	33.953	33.982	34.001	34.000	34.032	34.011	34.045	34.034	34.170	34.164	34.168	34.181	34.181	34.193	34.225	34.236
TEMP										9.456					8.308	8.295	8.054	7.742	7.579	7.407	7.139	6.893	6.809	6.495	6.856	6.617	6.473	6.382	6.157	5.934	5.602	5.524
PRESS	-	'n	5	5	20	25	30	32	0.4	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

SC	0.00.0	0.012	0.026	0.041	0.055	0.070	C.084	0.099	0.112	0.126	0.139	0.164	0.189	0.211	0.232	0.251	0.296	0.337	0.375	0.413	0.449	0.484	0.519	0.553	0.586	0.618	0.649	0.683	0.709	0.738	0.766	0.793
SVA	291.3	294.7	289.9	291.8	289.0	288.3	288.0	285.1	269.6	264.5	256.3	252.6	233.2	217.5	197.6	187.3	168.4	159.2	152.3	146.4	141.9	140.3	138.7	135.1	129.7	125.3	122.9	119.9	117.1	114.1	111.7	109.3
DENSITY	5.03	25.002	25.053	25.035	25.065	25.074	25.078	25.099	25.274	25.329	25.415	25.456	25.661	25.828	26.039	26.148	26.352	26.454	26.527	26.594	26.645	26.666	26.686	26.728	26.787	26.832	26.861	26.894	CD)	26.961	26.988	27.015
SAL	32.984	32.948	33.016	32.995	33.034	33.034	33.034	33.036	33.120	33.154	33.200	33.167	33.259	33.383	33.553	33.639	33.922	33.990	33.958	34.022	34.079	34,115	34,111	34.145	34.166	34.097	34,140	34.152	34.202	34.217	4	
TEMP																			7.506				7.234	7.126	6.813	6.061	6.100	5.911	95	5.784	5.651	5.449
PRESS	-	S	5	51	20	25	30	3.5	9	45	20	60	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499

SUN D V	0.00.0	0.012	0.028	0.043	0.059	0.074	060.0	0.105	0.119	0.134	0.148	0.175	0.200	0.222	0.244	0.263	0.309	0.352	0.392	0.430	0.467	0.503	0.538	0.572	0.606	0.638	0.670	0.701	0.731	0.761	0.790	0.817
SVA	309.1	309.1	309.4	309.3	309.6	309.8	305.8	295.1	295.8	289.1	283.0	256.7	232.7	219.9	201.9	194.2	173.9	165.4	154.8	149.5	146.3	141.7	139.0	134.8	132.8	129.1	125.8	121.6	119.0	117.2	114.5	111.2
DENSITY	œ	24.830	œ	24.851	84	84	24.891	25.005	24.998	25.069	25.134	25,412	25.667	25.803	25.995	26.076	26.234	26.387	26.503	26.563	26.600	26.653	26.682	26.730	26.752	26.793	26.829	26.875	26.906	26.926	26.957	26.993
SAL	32.855	32.858	32.857	32.859	32.858	32.858	32.869	32.994	32.787	32.837	32.984	33.023	33.345	33.488	33.636	33.651	33.765	33.865	34.015	34.036	34.084	34.126	34.071	34.098	34.073	34.090	34.074	34.121	34.145	34.156	34.171	34.201
TEMP	12.393	64.		12.405	12.410	12.412	12.234	12.144	11.309	11.127	11.315	9.981	9.960	9.811	9.350	8.910	8.071	7.970	7.981	7.687	7.689	7.555	7.035	6.843	6.530	6.318	5.939	5.863	5.771	5.674	5.517	5.414
PRESS	•	'n	5	15	20	25	30	35	0	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

NC X	0.000	0.012	0.028	0.044	0.059	0.075	0.091	0.106	0.120	0.135	0.149	0.175	0.199	0.221	0.242	0.261	0.306	0.348	0.388	0.426	0.464	0.500	0.535	0.569	0.602	0.634	0.656	0.697	0.727	0.757	0.786	0.813
SVA	312.1	312.2	312.4	312.5	312.6	312.7	308.8	295.2	290.2	286.0	275.3	247.6	231.2	212.8	200.6	187.6	172.4	162.7	156.0	152.3	147.1	141.3	137.8	133.9	131.2	128.4	125.4	122.1	120.4	116.8	114.1	113.0
DENSITY	8.	24.818	24.817	24.818	24.818	24.818	24.860	25.004	25.058	25.102	25.215	25.508	25.683	25.877	26.006	26.145	26.310	26.416	26.491	26.532	26.592	26.651	26.694	26.739	26.771	26.803	26.835	26.873	26.893	26.933	26.961	26.976
SAL	32.806	32.805	32.804	32.805	32.805	32.805	32.826	32.895	32.911	32.945	33.054	33.178	33.414	33.393	33.518	33.630	33.820	33.940	33.976	33.992	34.041	34.011	34.058	34.107	34.127	34,141	34.133	34.174	34.166	34.183	34.181	34.189
TEMP	12.358	12.357	12.357	12.359	12.359	12.358	12.222	11.739	11.512	11,413	11.255	10.130	10.186	8.892	8.690	8.360	8.252	8.172	7.858	7.658	7.513	6.916	6.872	6.827	6.708	6.550	6.237	6.210	6.006	5.795	5.548	5.481
PRESS	-	'n	0	15	20	25	30	35	9	45	20	09	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

PRESSURE (DB)

PRESSURE (DB)

PRESSURE (DB)

N N N		0.011	0.026	0.040	0.054	0.068	0.080	0.093	0.104	0.115	0.126	0.147	0.168	0.187	0.207	0.225	0.269	0.311	0.351	0.389	0.427	0.453	0.498	0.533	0.566	0.599	0.632	0.663	9	1	0.752	~
SVA	285.4	285.6	285.5	285.5	281.2	257.5	249.7	243.0	223.3	216.4	212.9	207.2	204.9	192.6	189.3	184.4	168.1	162.5	156.7	152.5	146.5	143.5	139.8	136.3	132.6	130.7	127.4	123.9	120.8	118.2	114.5	
DENSITY	25.09	25.097	25.100	25.101	25.148	25.397	25.481	25.553	25.760	25.833	25.872	25.933	25.960	26.091	26.127	26.180	26.356	26.419	26.484	26.532	26.599	26.634	26.676	26.714	26.759	26.781	26.818	26.857	26.890	26.920	26.950	26.980
SAL	33.259	33.257	3.2	33.261	30	33.477	33.500	33,508	33.533	33.600	33.628	33.673	33.672	33.786	33.803	33.813	33.959	34,002	34.039	34.076	34.090	34.100	34.102	34.106	34.173	34.178	34.180	34.187	34.178	34.191	34.224	34.233
TEMP	12.724	12.725	12.721	12.721	12.647	12.050	11.699	11.342	10.275	10.153	10.055	9.897	9.734	9.477	9.337	9.058	8.662	8.472	8.236	8.107	7.731	7.545	7.260	7.004	7.065	6.928	6.670	6.418	6.104	5.951	5.835	
PRESS	-	'n	õ	15	20	25	30	35	9	4.5	20	9	07	80	90	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

SUM DYN	0.00.0	0.011	0.025	0.038	0.052	0.065	0.079	0.092	0.104	0.116	0.127	0.148	0.169	0.188	0.206	0.224	0.268	0.309	0.350	0.388	0.426	0.463	0.498	0.533	0.568	0.801	0.634	0.666	0.697	0.727	0.757	0.785
SVA	272.8	272.8	273.1	272.8	272.8	272.0	269.3	251.3	239.9	225.5	216.4	209.4	198.0	183.8	180.0	178.5	171.4	163.1	158.2	152.0	148.7	144.9	141.9	138.2	135.6	131.1	129.8	125.9	122.2	120.2	117.9	115.5
DENSITY	25.23	25.232	25.230	25.235	25.235	25.245	25.274	25.465	25.585	25.737	25.834	25.911	26.032	26.184	26.225	26.243	26.322	26.413	26.470	26.538	26.577	26.520	26.656	26.697	26.728	26.776	26.790	26.836	26.876	26.901	26.927	26.953
SAL	33.082	33.082	33.082	33.085	33.085	33.090	33.104	33.193	33.195	33.355	33.515	33.687	33.770	33.891	33.925	33.940	33.993	34.027	34.060	34.094	34.095	34,117	34.144	34.155	34.170	34.146	34.108	34,174	34.186	34.209	34.226	34.217
TEMP	11.286		J	.281					9.748														7.631	7.405	7.265	6.782	6.447	6.496	6.262	6.208	6.111	5.851
PRESS	-	'n	0	15	20	25	30	35	04	45	50	80	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

N N N N	000.0	0.012	0.023	0.043	0.058	470.0	0.089	0.104	0.118	0.131	C.143	0.167	0.189	0.209	0.228	0.246	0.230	0.332	0.373	0.413	0.452	0.489	0.526	0.562	0.597	0.631	0.664	w	0.729		Ō	0.819
SVA	307.4	307.6	307.7	307.7	307.8	308.0	304.9	290.2	267.4	255.6	239.2	229.0	208.0	195.6	184.0	181.1	168.9	166.2	161.8	158.5	152.7	147.9	145.1	142.0	137.8	134.9	132.2		126.0	122.9	Ġ	116.8
DENSITY	4.85	24.867	24.867	24.858	24.868	24.867	24.901	25.056	25.296	25.421	25.594	25.704	25.927	26.060	26.184	26.215	26.349	26.381	26.432	26.471	26.535	26.589	26.622	28.658	26.704	26.738	26.769	26.796	26.837	26.872	26.905	26.939
SAL	32.922	32.922	32.922	32.923	32.924	32.923	32.939	32.987	33.039	33.048	33.225	33.392	33.643	33.812	33.904	33.924	34.010	34.029	34.058	34.071	34.096	34,116	34.117	34.121	34.130	34.143	34.157	34.145	34.147	34.160	34.180	7
TEMP	12.570	12.576	12.574	12.574	12.575	12.578	12.467	11.843	10.732	10.042	9.836	9.959	9.798	9.789	9.476	9.377	8.964	8.852	8.672	8.486	8.194	7.937	7.719	7.492	7.214	7.042	6.900	6.628	6.326	Ψ.	•	5.777
PRESS	-	'n	01	5	20	25	30	35	9	45	50	90	70	80	90	100	123	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499

(PERATURE (°C)	a.	PRESS	TEMP	SAL	DENSITY	SVA	SUN	
8.0 10.0 12.0 14.0	16.0		i		ANOMALY	,	Z :	
+		-	12.839	32.903	24.801	313.8	0.00.0	
		'n	12.844	32.903	24.800	313.9	0.013	
		2	12.842	32.900	24.798	314.2	0.028	
\ ~			12.845	32.901	24.798	314.3	0.044	
1 ~			12.847	32.904	24.800	314.3	0.060	
J J		-	12.844	32.905	24.801	314.3	0.075	
			12.838	32.908	24.805	314.0	0.091	
<i>></i> -			12.608	32.925	24.863	308.6	0.107	
\ \		04	12.036	32.909	24.959	299.5	0.122	
م مر ب		45	11.382	32.832	25.020	293.8	0.137	
سر سر			11.209	32.833	25.052	290.9	0.151	
~		80	10.479	32.874	25.212	275.8	0.180	
~			9.775	33.065	25.479	250.5	0.206	
		80	9.644	33.247	25.643	235.1	0.230	
		06	9.691	33.561	25.880	212.8	0.253	
\ - \	- , -	100	9.610	33.616	25.937	207.6	0.274	
		125	8.623	33.652	26.122	190.3	0.323	
		150	7.984	33.779	26.318	172.0	0.369	
		175	8.180	33.978	26.445	160.4	0.410	
		200	8.004	34.008	26.494	156.1	0.450	
		225	8.004	34.085	26.555	150.8	0.488	
		250	7.507	34.045	26.596	147.1	0.525	
		275	6.854	34.003	26.653	141.6	0.562	
		300	6.523	34.006	26.700	137.4	0.596	
٧		325	6.371	34.044	26.750	132.9	0.630	
	~~~	350	6.092	34.042	26.784	129.8	0.663	
		375	5.989	34.070	26.819	126.7	0.695	
		700	5.875	34.079	26.841	124.9	0.726	
		425	5.684	34.092	26.875	121.8	0.757	
		450	5.541	34.097	26.896	120.0	0.788	
		475	5.557	34,140	26.928	117.3	0.817	
33.0 34.0	35.0	499	5.373	34.169	26.973	113.1	0.845	
SALINITY								
26.0 27.0 28.0	29.0							
/// J/13/								



N N N N	0.00.0	0.013	0.023	0.044	0.059	0.075	0.090	0.105	0.119	0.134	0.148	0.175	0.202	0.227	0.252	0.274	0.326	0.371	0.413	0.453	0.491	0.528	0.564	0.599	0.633	9.666	0.698	0.730	0.761	0.791	0.821	0.849
SVA	313.0	312.9	313.1	313.1	312.9	305.5	296.1	292.3	287.5	285.5	279.4	270.3	263.2	250.8	233.5	218.0	192.8	170.0	163.9	155.3	150.3	145.8	141.2	138.0	134.1	131.9	128.4	126.1	122.4	8.611	117.2	113.8
DENSITY	24.809	24.811	24.810	24.812	24.814	24.893	24.994	25.034	25.085	25.107	25.172	25.270	25.347	25.479	25.662	25.826	26.095	26.338	26.407	26.501	26.557	26.608	26.659	26.697	26.740	26.765	26.804	26.830	26.871	89	26.930	96
SAL	32.784	32.787	32.786	32.788	32.791	32.916	33.069	33.063	32.955	32.891	32.890	33.081	33.034	33.170	33.289	33.423	33.612	33.809	33.865	33.925	33.976	34.027	34.050	34.084	34.091	34.086	34.084	34.090	34.114	34.122	34.157	34.170
TEMP	12.319	12.319	12.320	12.321	12.320	12.415	12.507	12.273	11.549	11.152	10.777	11.064	10.418	10.266	9.727	9.361	8.592	8.002	7.834	7.512	7.400	7.318	7.084	7.003	6.727	6.506	6.200	6.033	5.857	5.675	5.652	5.433
PRESS	-	<b>K</b> O	5	15	20	25	30	35	40	45	50	90	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499







SUN DYN	$\sim$	0.014	3	7	9	0.085	9	5	0.137	2	0.171	0.204	0.235	0.266	0.295	0.323	0.386	0.439	0.487	0.530	0.572	0.611	0.649	0.686	0.722	0.757	0.791	0.823	0.855	0.887	0.917	0.946
SVA	352.8	352.9	353.1	353.2	353.3	353.4	352.9	352.4	345.2	337.9	332.1	321.2	308.5	300.0	285.1	269.1	232.3	198.3	180.7	1.69.1	160.5	154.0	150.4	145.6	141.7	137.3	132.2	129.1	127.3	123.9	120.4	116.8
DENSITY ANOMALY	24.3	24.391	24.390	24.390	24.390	24.391	24.397	24.403	24.480	24.558	24.620	24.736	24.872	24.964	25.122	25.292	25.681	26.043	26.233	26.360	28.453	26.325	26.566	26.620	26.662	26.709	26.765	26.799	26.821	26.859	26.896	6.93
SAL	32.535	32.535	32.535	32.535	32.535	32.536	32.538	32.540	32.549	32.527	32.621	32.658	32.775	32.864	32.987	33.112	33.305	33.666	33.849	33.962	34.019	34.033	34.043	34.082	34.052	34.057	34.066	34.068	34.088	34.130	34.120	4.13
TEMP	13.470	13.470	13.475	13.476	13.474	13.475	13.452	13.428	13.078	12.590	12.643	12.188	11.948	11.825	11.482	11.081	9.686	9.193	8.899	8.655	8.335	7.929	7.705	7.543	7.077	6.755	6.392	6.137	6.088	8.048	5.689	5.488
PRESS	-	'n	5	5	20	25	30	35	9	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	<b>4</b> 00	425	450	475	O





DENSITY SVA DENSITY SVA ANOMALY SSO.2 24.421 350.0 0. 24.420 350.2 0.0 24.420 350.2 0.0 24.436 349.0 0.0 24.436 349.0 0.0 24.439 349.5 0.0 24.439 349.5 0.0 24.518 341.7 0.0 24.551 334.7 0.0 24.551 334.7 0.0 24.551 334.7 0.0 25.174 280.1 0.0 25.174 280.1 0.0 25.174 280.1 0.0 25.174 280.1 0.0 26.409 156.2 0.0 26.409 156.2 0.0 26.409 156.2 0.0 26.409 156.2 0.0 26.409 156.2 0.0 26.409 156.2 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.409 128.5 0.0 26.	
DENSITY ANOMALY 24.419 24.420 24.420 24.420 24.436 24.439 24.4524 24.518 24.539 24.518 24.539 25.174 25.342 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499 26.499	0.944
ANOMA 24. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	118.5
$^{-1}$ aFFF84054FF0848FF4888E39F88F88	26.922 26.922
SAL 32.596 32.597 32.597 32.597 32.608 32.608 32.771 32.771 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.670 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.7000 32.7000 32.7000 32.7000 32.7000 32.7000 32.7000 32.7000 32.7	34.181
ရှာ လွယ်လုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလ	5.931
PRESS 10 10 10 10 10 10 10 10 10 10 10 10 10	4/3







SUX V V V	0.00.0	0.013	0.030	0.047	0.063	0.080	0.096	0.111	0.126	0.141	0.156	0.183	0.209	6.233	0.256	0.278	0.328	0.374	0.417	0.458	0.497	0.535	0.572	0.608	0.643	0.677	0.710	0.742	0.774	0.804	0.834	
SVA	333.3	333.3	333.3	333.1	331.9	326.9	313.6	305.2	297.7	293.6	283.7	263.3	251.4	238.4	220.2	211.7	191.9	175.7	167.5	159.4	153.9	149.9	146.5	141.7	137.3	133.9	130.9	127.3	125.0	121.5	118.8	115.4
DENSITY	24.596	24.597	24.597	24.602	24.615	24.668	24.809	24.898	24.978	25.023	25.128	25.343	25.471	25.609	25.801	25.892	26.107	26.281	26.369	26.458	26.519	26.566	26.605	26.658	26.705	26.743	26.775	26.816	26.841	26.881	26.913	26.930
SAL	32.638	32.638	32.640	32.635	32.631	32.599	32.628	32.707	32.823	32.814	32.881	33.091	33.179	33.233	33.425	33.442	33.768	33.874	33.837	33.894	33.963	34.014	34.021	34.069	34.009	34.036	34.031	34.051	34.053	34.095	34.131	34.165
TEMP	12.839	12.834	12.838	12.797	12.710	12.305	11.667	11.519	11.571	11.288	10.992	10.694	10.355	9.782	9.524	9.039	9.294	8.721	7.942	7.639	7.590	7.547	7.311	7.197	6.506	6.374	6.093	5.897	5.703	5.653	5.623	5.537
PRESS	-	'n	5	15	20	25	30	35	40	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499







STATION: 37 LAT: 38 30.0 N LON: 125 8.2 W DATE: 6/19/87 TIME: 0300Z

SC DYN DYN	0.000	0.012	0.026	0.041	0.056	0.020	0.085	0.100	0.114	0.129	0.143	0.168	0.191	0.211	0.231	0.250	0.294	0.336	0.376	0.415	0.452	0.489	0.525	0.560	0.594	0.627	0.660	0.692	0.723	0.753	0.783	0.811
SVA	293.1	293.1	293.2	293.3	293.5	293.5	293.3	293.1	292.6	281.2	276.8	236.6	214.0	198.2	190.1	182.7	171.7	164.2	157.8	152.4	147.6	145.3	142.0	138.8	134.9	131.2	128.5	126.2	123.6	120.4	117.8	115.6
DENSITY ANOMALY	25.0	25.019	25.019	25.019	25.018	25.170	25.023	25.027	25.033	25.153	25.200	25.624	25.864	26.031	26.118	26.199	26.318	26.402	26.472	26.532	26.586	26.613	26.651	26.686	26.729	26.769	26.801	26.827	26.857	26.891	26.921	26.946
SAL	33.146	33.148	33.148	33.149	33.148	33.147	33.145	33.142	33.137	33,131	33,125	33,352	33.550	33.643	33.747	33.860	33.944	34,009	33.973	33.983	34.024	34.018	34.020	34.022	34.027	34.039	34,054	34.064	34.086	34.093	34.118	ň
TEMP	12.692	12.692	12.695	12.699	12.697	12.686	12.660	12.631	12.577	11.920	11.643	10.245	9.738	9.157	9.122	9.170	8.830	8.623	7.970	7.614	7.462	7.232	6.973	6.725	6.432	6.189	6.038	5.893	5.792	5.552	5,469	5.333
PRESS	-	ın	5	5	20	25	30	35	9	45	20	9	70	80	90	100	123	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499





N N D N N O	0.000	0.012	0.027	0.042	0.057	0.071	0.085	0.099	0.113	0.126	0.138	0.160	0.181	0.200	0.219	0.237	0.279	0.318	0.356	0.392	0.428	0.464	0.498	0.531	0.564	0.596	0.627	0.657	0.686	_	0.743	0.770
SVA	298.2	298.3	298.4	298.4	297.3	282.8	279.0	275.4	269.3	255.3	229.8	214.7	199.0	191.9	182.7	175.5	160.9	151.8	148.4	145.3	142.6	139.2	135.7	131.6	128.3	125.2	122.4	119.8	117.2	113.6	112.2	110.0
DENSITY ANOMALY	6.3	24.964	24.964	24.965	24.979	25.132	25.173	25.212	25.277	25.425	25.693	25.855	26.021	26.098	26.196	26.273	26.430	26.530	26.569	26.605	26.636	26.675	26.714	26.759	26.796	26.831	26.864	26.894	26.923	26.962	26.981	27.003
SAL	33.118	33.117	33.117	33.114	33.091	33.128	33.185	33.200	33.209	33.201	33.354	33.533	33.629	33.684	33.762	33.813	33.918	33.997	34.001	34.011	33.993	34.008	34.035	34.040	34.070	34.072	34,109	34,132	34.148	34.159	34.190	34.170
TEMP	12.854	12.851	12.850	12.834	12.674	12.021	12.040	11.893	11.580	10.719	9.844	9.714	9.151	8.939	8.702	8.460	7.959	7.700	7.453	7.254	6.924	6.727	6.588	6.276	6.169	5.910	5.879	5.786	5.646	5.401	5.445	5.123
PRESS	-	ı,	2	15	20	25	30	35	9	4.5	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	<b>7</b> 00	425	450	475	499





SUN UV N	0.000	0.014	0.031	0.049	0.066	0.083	0.101	0.118	0.135	0.151	0.167	0.198	0.227	0.255	0.282	0.307	0.363	0.411	0.454	0.494	0.532	0.568	0.604	0.638	0.672	0.705	0.737	0.768	0.798	0.828	0.856	0.883
SVA	346.1	346.2	346.6	346.7	346.8	347.0	345.8	344.4	330.1	323.6	311.6	304.4	290.4	271.3	254.3	244.7	203.5	179.8	164.6	155.3	148.8	144.3	140.4	136.1	132.6	129.0	126.8	122.9	119.7	115.8	113.5	111.2
DENSITY ANOMALY	24.461	24.461	24.458	24.459	24.459	24.458	24.472	24.488	24.639	24.708	24.835	24.913	25.062	25.264	25.445	25.547	25.983	26.236	26.399	26.501	26.572	26.621	26.664	26.712	26.751	26.792	26.718	26.861	26.896	26.939	26.964	26.990
SAL	32.885	32.885	32.883	32.883	32.883	32.883	32.887	32.892	32.895	32.899	32.871	32.879	32.953	33.057	33.172	33.217	33.541	33.748	33.843	33.927	33.956	33.960	33.963	33.976	33.999	34.051	34.059	34.093	34.106	34.124	34.135	34.143
TEMP	14.444	14.444	14.450	14.447	14.448	14.451	14.398	14.343	13.619	13.293	12.536	12.156	11.668	10.993	10.474	10.078	8.955	8.367	7.770	7.524	7.180	6.844	6.538	6.252	6.085	6.088	5.933	5.802	5.595	5.363	5.223	5.053
PRESS	-	80	01	15	20	25	30	35	40	45	50	9	70	80	0	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499





**9**.0

4.0

25

STATION: 43 LAT: 37 46.8 N LON: 124 44.1 W DATE: 6/19/87 TIME: 1200Z

24.0

23.0

500-

4004

300

PRESSURE (DB)

200-

100









SUN DYN	0.000	410.0	0.031	0.049	0.066	0.083	0.101	0.118	0.135	0.153	0.170	0.203	0.234	0.264	0.293	0.321	0.384	0.435	0.480	0.520	0.559	0.596	0.631	0.667	0.701	0.735	0.767	0.799	0.830	0.860	0.890	0.918
SVA	347.6	347.2	347.2	347.3	347.2	347.2	347.4	347.3	345.6	342.3	342.0	318.8	301.5	296.6	287.4	274.3	227.1	186.4	167.2	158.0	150.7	144.6	141.8	139.5	136.2	132.1	128.6	125.8	122.5	120.0	117.6	115.1
DENSITY ANOMALY	24.446	24.451	24.452	24.453	24.454	24.456	24.456	24.457	24.477	24.513	24.518	24.762	24.945	25.000	25.098	25.237	25.736	26.167	26.373	26.472	26.552	26.618	26.650	26.677	26.715	26.760	26.799	26.829	26.865	26.893	26.920	26.948
SAL	32.861	32.862	32.962	32.862	32.863	32.854	32.863	32.864	32.882	32.918	32.921	32.908	32.944	32.992	32.937	33.021	33.372	33.687	33.849	33.920	33.957	33.962	33.963	33.987	34.019	34.019	34.026	34.031	34.034	34.054	34.071	34.087
TEMP	14.430	14.410	14.404	14.400	14.395	14.392	14.388	14.385	14.356	14.317	14.306	13.056	12.253	12.161	11,403	10.991	9.668	8.508	7.984	7.683	7.329	6.875	6.845	6.581	6.485	6.138	5.877	5.663	5.384	5.278	5.166	5.031
PRESS	-	'n	5	15	20	22	30	35	<b>9</b>	45	20	60	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499







SC N N N	0.000	0.014	0.030	0.047	0.064	0.081	0.097	0.114	0.130	0.145	0.161	0.191	0.220	0.248	0.276	0.302	0.360	0.411	0.456	0.498	0.538	0.575	0.612	0.648	0.682	0.716	0.750	0.782	0.813	0.844	0.874	0.902
SVA	337.8	338.1	337.5	336.1	333.1	331.7	330.3	324.0	319.9	314.0	306.2	294.8	288.6	277.6	266.1	252.4	216.7	189.7	173.9	162.0	153.1	147.9	144.2	141.2	137.2	134.3	131.3	127.9	123.9	121.0	7	114.3
DENSITY	24.548	24.546	24.554	24.570	24.603	24.619	24.634	24.702	24.746	24.809	24.892	25.014	25.081	25.199	25.321	25.466	25.845	26.134	26.303	26.431	26.527	26.585	26.626	26.660	26.704	26.737	26.770	26.809	26.851	26.883	26.917	õ
SAL	32.815	_	32.811	32.812	32.818	32.823	32.792	32.781	32.766	32.780	32.840	32.992	33.035	33.159	33.134	33. 25	33.419	33.738	33.848	33.894	33.943	33.961	33.963	33.962	33.985	33,994	34.009	34.037	34.042	34.057	34.081	34.104
TEMP	13.764	13.773	13.721	13.647	13.507	13.446	13.249	12.864	12.574	12.301	12.111	12.089	11.909	11.789	11.011	10.136	9.227	8.976	8.443	7.823	7.425	7.116	6.825	6.565	6.369	6.164	5.998	5.866	5.548	5.334	5.255	5.071
PRESS	-	'n	5	5	50	25	30	35	9	45	20	60	70	80	0	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	664













N N N N N N	0.000	410.0	0.031	0.047	0.064	0.080	0.095	0.111	0.126	0.141	0.155	0.183	0.208	0.235	0.260	0.284	0.340	0.388	0.431	0.471	0.510	0.547	0.584	0.619	0.653	0.687	0.720	0.752	0.783	0.814	0.844	0.872
SVA	339.6	339.6	338.3	334.7	329.6	311.2	307.6	303.2	300.7	296.8	290.0	267.3	255.3	251.2	246.5	243.6	202.3	179.3	165.5	157.1	152.8	147.4	143.1	139.3	136.4	132.5	129.9	126.6	124.3	121.2	119.3	116.9
DENSITY	24.530	24.531	24.545	24.534	24.639	24.833	24.872	24.919	24.947	24.989	25.060	25.301	25.429	25.475	25.526	25.558	25.997	26.242	26.391	26.483	26.535	26.591	26.641	26.684	26.713	26.756	26.785	26.822	26.849	26.884	26.907	26.935
SAL	32.607	32.608	32.605	32.605	32.610	32.711	32.707	32.688	32.596	32.721	32.764	32.981	33,141	33.194	33.223	33.250	33.674	33.738	33.930	33.977	34.018	34.010	34.075	34.096	34.009	34.026	34.028	34.049	34.072	9	Ę	34.157
TEMP	13.053	~	12.965	12.766	12.501	11.888	11.559	11, 320	11,200	11.374	13.857	10.442	10.423	10.398	10.231	10.164	9.515	8.277	8.283	7.918	7.784	7.347	7.357	7.167	6.439	6.215	5.993	5.838	5.765	5.621	5.563	.60
PRESS	-	'n	5	5	20	25	30	35	70	45	20	9	70	80	90	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499







STATION: 53 LAT: 38 33.9 N LON: 125 35.1 W DATE: 6/20/87 TIME: 0400Z

NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.00.0	0.014	0.032	0.050	0.068	0.085	0.103	0.120	0.138	0.155	0.172	0.206	0.239	0.271	0.302	0.330	0.392	0.446	0.494	0.538	0.579	0.618	0.655	0.690							0.918	0.946
SVA	355.8	355.9	355.9	355.8	354.8	353.3	353.1	346.7	342.1	341.6	341.3	337.6	329.4	315.1	292.3	269.0	230.7	202.1	181.6	168.9	158.8	150.5	144.9	141.7	138.4	133.4	130.3	128.5	125.4	122.5	119.8	117.0
DENSITY	36	24.360	24.360	24.363	24.375	24.392	24,395	24.463	24.513	24.520	24.524	24.565	24.653	24.805	25.046	25.293	25.699	26.004	26.224	26.360	26.469	26.559	26.622	26.660	26.696	26.752	26.787	26.808	26.843	26.876	26.907	26.937
SAL	32.558	32.558	32.560	32.562	32.566	32.569	32.573	32.695	32.796	32.789	32.779	32.691	32.723	32.781	32.918	33.060	33.344	33.651	33.867	33.879	33.913	33.966	34.048	34.081	34.068	34.120	34.131	34.142	34.157	34.170	4.18	34.201
TEMP	13.714	13.715	13.719	13.715	13.671	13.596	13.596	13.725	13.864	13.805	13.746	13.203	12.880	12.327	11.604	10.847	9.764	9.363	9.043	8.225	7.670	7.330	7.341	7.256	6.921	6.808	6.614	6.516	6.338	6.166	_	5.874
PRESS	-	'n	5	51	20	22	30	35	9	45	20	00	70	80	90	00	125	150	175	200	225	250	275	300	325	350	375	<b>4</b> 00	425	450	475	499



SCN	0.000	0.005	410.0	0.023	0.032	0.041	0.050	0.058	0.067	0.075	0.083	0.100	0.116	0.132	0.134
SVA	182.1	180.1	178.1	177.4	176.3	175.6	174.7	170.7	168.0	167.1	165.8	163.9	161.6	157.7	157.6
DENSITY	26.185	26.208	26.229	25.238	26.250	26.258	26.269	26.312	26.341	26.352	26.366	25.389	26.414	26.457	26.458
SAL	33.924	33,931	33.936	33.939	33,944	33,946	33.948	33,970	33.988	33.991	33,994	34.004	34.018	34.057	34.058
TEMP	9.561	9.458	9.350	9.310	9.259	9.219	9.16	9.000	8.902	8.853	8.775	8.681	8.588	8.505	8.505
PRESS	7	ĸ	5	5	50	25	30	35	04	45	20	9	70	80	



NC O √N	0.00.0	0.010	0.021	0.031	0.040	0.050	0.059	0.068	0.077	0.086	0.095	0.113	0.130	0.146	0.162	0.172
SVA	243.9	236.8	203.1	196.4	190.6	185.7	184.3	182.6	181.3	180.7	177.7	171.5	167.4	163.9	161.8	157.2
DENSITY	25.535	25.611	25.966	26.037	26.100	26.153	26.158	26.187	26.201	26.209	26.242	25.308	26.353	26.392	26.416	26.466
SAL	33.376	33.413	33.642	33.739	33.838	33.892	33.895	33.893	33.897	33.902	33.857	33.880	33.951	34.008	34.038	34.074
TEMP	10.866	10.598	9.555	9.582	9.673	9.608	9.529	9.404	9.333	9.313	8.885	8.575	8.640	8.682	8.677	8.536
PRESS	-	'n	5	15	20	25	30	35	9	45	20	9	70	80	90	96



SC N N N N	0.000	600.0	0.020	0.031	0.042	0.052	0.062	0.072	0.081	0.090	660.0	0.116	0.133	0.149	0.165	0.181	0.218
SVA	223.6	223.7	220.7	219.2	206.1	203.7	195.2	190.1	185.1	177.9	176.6	169.1	165.4	162.5	158.2	157.7	151.3
DENSITY ANOMALY	25.748	25.748	25.781	25.798	25.936	25.963	26.053	26.107	26.161	26.238	26.252	26.334	26.375	26.406	26.454	26.461	26.532
SAL	33.542	33.542	33.589	33.644	33.753	33.716	33.711	33.742	33.780	33.820	33.833	33.919	33.973	33.988	34.028	34.034	34.060
TEMP	10.386	10.386	10.411	10.556	10.249	9.922	9.351	9.164	9.014	8.721	8.697	8.606	8.614	8.485	8.380	8.365	8.027
PRESS		S	5	5	20	25	30	35	9	45	20	9	70	80	90	100	124



N D V N D O	0.00.0	600.0	0.021	0.032	0.043	0.054	0.064	0.074	0.084	0.092	0.101	0.118	0.135	0.152	0.168	0.183	0.193	
SVA	241.8	231.3	223.9	220.8	220.0	219.1	199.6	192.0	181.2	175.8	172.8	170.3	169.5	160.5	157.9	155.8	155.2	
DENSITY	25.557	25.669	25.747	25.731	25.790	25.802	25.007	26.088	26.202	26.260	26.292	26.320	26.331	26.427	26.457	26.480	26.488	
SAL	33.581	33.616	33.597	33.611	33.614	33.603	33.581	33.691	33.779	33.850	33.885	33.926	33.938	34.025	34.055	34.071	34.076	
TEMP	11.627	11.166	10.640	10.505	10.468	10.353	9,489	9.037	8.749	8.729	8.700	8.727	8.716	8.538	8.500	8.427	8.400	
PRESS	-	'n	5	5	20	25	30	35	9	45	50	9	2	80	06	100	106	



SCN	0.000	0.010	0.021	0.032	0.042	0.053	0.062	0.072	0.081	0.089	0.098	0.115	0.132	0.148	0.163	0.179	0.185
SVA	250.4	233.3	219.5	211.8	206.8	206.2	188.9	180.9	177.9	175.3	171.5	167.1	161.2	159.3	155.2	154.9	155.0
DENSITY ANOMALY	25.467	25.648	25.793	25.875	25.930	25.936	26.120	26.204	26.237	26.265	26.307	26.355	26.419	26.441	26.485	26.490	26.490
SAL	33.615	33.585	33.657	33.649	33.676	33.673	33.815	33.901	33,913	33.927	33.951	33.976	34.015	34.032	34.063	34.067	34.066
TEMP	12.247	11.147	10.643	10.130	9.934	9.879	9.442	9.334	9.191	9.082	8.340	8.756	8.542	8.486	8.353	8.340	8.338
PRESS	-	'n	5	15	20	25	30	35	9	45	20	60	2	80	06	100	104













SUN DYN	0.000	0.011	0.025	0.038	0.052	0.065	0.078	0.091	0.104	0.116	0.129	0.152	0.174	0.196	0.216	0.235	0.280	0.322	0.362	0.400	0.437	0.473	0.508	0.542	0.575	0.608	0.639	0.670	0.700	0.729	0.758	0.784
SVA	283.2	274.0	270.2	267.6	267.4	266.3	261.8	256.1	250.8	249.9	245.0	226.8	216.6	210.0	198.3	186.9	172.7	161.6	156.3	149.2	145.9	141.6	138.8	133.9	130.7	128.5	125.2	121.7	118.4	114.9	112.3	109.7
DENSITY	25.122	25.219	25.261	25.289	25.292	25.305	25.353	25.414	25.470	25.482	25.534	25.726	25.R35	25.906	26.031	26.153	26.305	26.426	26.487	26.563	26.601	26.651	25.683	26.737	26.773	26.799	26.833	26.871	26.907	26.946	26.976	27.006
SAL	33.159	33.179	33.192	33.200	33.198	33.200	33.212	33.242	33.266	33.275	33.303	33.360	33.404	33.450	33.538	33.671	33.768	33.899	33.934	33.944	33.967	34.031	34.037	34.058	34.091	34.085	34.041	34.062	34.082	34.106	34.127	34.172
TEMP	12.204	11.766	11.595	11.474	11.448	11.387	11.173	10.961	10.747	10.722	10.546	9.673	9.211	8.991	8.635	8.517	8.008	7.884	7.660	7.174	7.029	7.037	6.835	6.555	6.475	6.240	5.696	5.519	5.345	5.176	5.067	5.115
PRESS	-	'n	ō	15	20	25	30	35	40	45	50	90	70	80	90	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499





PRESSURE (DB)

NO.		0.012	0.026	0.040	0.053	0.067	0.079	0.092	0.104	0.116	0.127	0.150	0.170	0.190	0.209	0.227	0.270	0.310	0.349	0.386	0.421	0.456	0.491	0.524	0.557	0.590	0.621	0.652	0.683	0.712	0.741	0.768
SVA	301.0	294.5	277.5	275.1	263.8	258.5	256.1	251.6	239.8	228.2	226.7	214.0	204.1	190.7	184.6	176.1	166.4	156.8	150.8	145.5	141.0	138.5	135.3	133.3	130.6	128.6	125.6	122.5	119.2	115.3	114.2	
DENSITY	n	25.004	25.184	25.211	25.330	25.386	25.413	25.462	25.586	25.709	25.726	25.861	25.966	26.109	26.175	26.266	26.373	26.478	26.544	26.602	26.654	26.683	26.718	26.743	26.774		26.831	26.871	26.906	26.949	26.962	26.989
SAL	33.015	33.055	33.123	33.121	33.130	33,160	33.167	33.201	33.232	33.337	33.350	33,464	33.502	33.624	33.706	33,799	33.903	33.978	33.989	33.998	34.081	34.038	34.039	34.070	34.078	34.082	34,095	34.198	34.190	34.211	34.210	N
TEMP	12.594	12.397	11.722	11.568	10.946	10.757	10.632	10.507	9.917	9.668	9.626	9.345	8.869	8.563	8.552	8.433	8.264	7.955	7.563	7.197	7.292	6.840	6.582	6.580	6.392	6.232	6.053	6.377	6.054	5.841	5.728	59
PRESS	-	ĸ	5	5	20	22	30	35	4	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499





SC N N N N	0.00.0	600.0	0.023	0.037	0.051	0.065	0.078	0.090	0.103	0.115	0.127	0.149	0.171	0.192	0.212	0.232	0.279	0.322	0.362	0.401	0.438	0.475	0.510	0.545	0.579	0.612	0.644	0.675	0.706	0.736	0.765	0.792
SVA	291.1	287.3	285.9	7.672	277.5	265.7	256.6	250.1	246.5	235.9	230.8	225.1	211.8	206.1	200.3	195.3	178.6	163.8	157.5	152.2	148.9	145.3	139.0	136.6	133.5	129.4	127.2	124.3	121.9	117.5	115.1	111.4
DENSITY	.03	25.080	25.095	25.162	25.186	25.311	25.408	25.477	25.516	25.628	25.684	25.746	25.887	25.949	26.012	26.066	26.246	26.407	26.477	26.536	26.575	26.517	26.685	26.713	26.748	26.793	26.819	26.852	26.880	26.926	26.953	26.994
SAL	33.204	33.200	33.200	33.202	33.207	33.196	33.254	33.317	33.319	33.374	33.502	33.568	33.601	33.660	33.727	33.782	33.869	34.027	34.064	34.095	34.114	34.126	34.148	34.151	34.162	34.169	34.164	34.180	34.192	34.185	34.202	34.224
TEMP	12.811	m	12.508	12.168	12.060	11.338	11.046	10.936	10.723	10.321	10.578	10.519	9.838	9.741	9.678	9.609	8.918	8.680	8.413	8.184	8.020	7.804	7.448	7.267	7.075	6.786	6.566	6.414	6.271	5.862	5.755	5.562
PRESS	7	s	5	15	20	25	30	35	40	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



NA D V N	0.000	600.0	0.021	0.032	0.043	0.054	0.064	0.075	0.085	0.095	0.105	0.125	0.145	0.164	0.182	0.201	0.244	0.286	0.326	0.364	0.402	0.439	0.475	0.510	0.545	0.578	0.612	0.614	
SVA	233.2	233.6	228.0	220.2	216.8	213.5	212.4	207.3	205.2	202.4	2007	197.1	191.4	185.5	184.2	178.2	170.5	164.1	156.6	151.3	149.3	145.1	142.9	139.7	136.5	133.2	132.9	133.0	
DENSITY ANOMALY	25.648	25.644	25.704	25.787	25.824	25.860	25.872	25.927	25.950	25.981	26.005	26.039	26.102	26.134	26.181	26.245	26.331	26.403	26.485	26.544	26.570	26.617	26.644	26.682	26.718	26.755	26.762	26.762	
SAL	33.398	33,398	33.416	33.508	33.571	33.610	33.624	33.642	33.659	33.707	33.721	33.750	33.819	33.813	33.827	33.881	33.974	33.992	34.020	34.021	34.063	34.113	34.124	34.146	34.152	34.162	34.166	34.166	
TEMP	10.317	10.337	10.067	10.002	10.074	10.042	10.035	9.790	9.730	9.774	9.692	9.624	9.569	9.345	9.119	8.980	8.897	8.528	8.129	7.734	7.785	7.728	7.603	7.462	7.237	7.028	7.000	7.001	
PRESS	-	'n	5	15	20	25	30	35	9	45	20	9	70	80	90	001	125	150	175	200	225	250	275	300	325	350	375	377	





300-

400-

0.7 1.0

100-

200-

PRESSURE (DB)

SU N N N	0.000	0.011	0.024	0.036	0.048	0.060	0.071	0.082	0.093	0.104	0.115	0.136	0.157	0.178	0.198	0.217	0.260	0.302	0.342	0.381	0.419	0.455	0.490	0.524	0.557	0.590	0.622	0.653	0.684	0.713	0.742	0.770
SVA	278.2	276.4	248.0	240.9	233.1	226.7	223.7	221.3	218.9	217.3	214.5	211.9	208.6	203.0	195.9	183.2	166.8	162.8	160.5	153.2	146.7	141.0	137.9	136.0	132.9	129.3	126.0	123.2	119.6	117.1	115.3	113.6
DENSITY	5.17	25.194	25.494	25.569	25.653	25.721	25.753	25.781	25.807	25.824	25.855	25.884	25.922	25.982	26.058	26.193	26.370	26.417	26.445	26.524	26.596	26.658	26.693	26.717	26.751	26.791	80	•	•	con.	26.949	ത
SAL	33.257	33.240	33.308	33.359	33.429	33.501	33,593	33.617	33.629	33.636	33.666	33.693	33.743	33.711	33.756	33.857	34.022	34.044	34.051	34.031	34.054	34.063	34.070	34.093	34.084	34.092	34.104	34.117	34.144	34,164	34.170	34.178
TEMP	12.323	12.153	10.800	10.595	10.430	10.357	10.586	10.537	10.441	10.371	10.329	10.279	10.289	9.784	9.537	9.192	8.839	8.700	8.552	7.923	7.558	7.169	6.950	6.911	8.600	6.348	6.134	5.965	5.817	5.709	5.576	5.470
PRESS	*-	ĸ	0	15	20	25	30	35	9	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



SUN	0.00.0	0.011	0.025	0.039	0.053	990.0	0.079	0.092	0.105	0.118	0.130	0.153	0.174	0.194	0.214	0.233	0.278	0.320	0.360	0.399	0.436	0.472	0.508	0.543	0.577	0.610	0.642	0.674	0.704	0.734	0.764	0.792
SVA	281.2	280.6	279.B	270.8	268.8	268.6	265.5	258.8	250.6	247.9	238.4	219.7	207.2	202.3	194.1	186.2	173.1	163.6	155.8	150.9	147.6	145.2	142.1	138.0	134.0	129.9	125.8	124.2	121.7	118.9	116.5	114.2
DENSITY	25.14	25.150	25.160	25.256	25.278	25.281	25.315	25.387	25.473	25.503	25.604	25.802	25.935	25.989	26.076	26.161	26.303	26.407	26.493	26.548	26.587	26.615	26.650	26.696	26.740	26.785	26.831	26.852	25.880	26.911	26.978	26.964
SAL	33.356	33.358	33.364	33.468	33.507	33.464	33,468	33.414	33.463	33.555	33.588	33.648	33.717	33.757	33.759	33.770	33.888	33.947	34.005	34.059	34.063	34.052	34.062	34.069	34.077	34.100	34.131	34.151	34.164	34.182	34.182	34.190
TEMP	12.882	12.856	12.830	12.751	12.791	12.603	12.446	11.847	11.584	11.808	11.402	10.552	10.090	9.955	9.438	8.964	8.644	8.269	7.997	7.911	7.665	7.411	7.216	6.922	6.642	6.437	6.275	6.236	6.093	5.960	5.744	5.583
PRESS	-	ĸ	0	15	20	25	30	35	40	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



SUN	0.000	0.011	0.026	0.040	0.054	0.067	0.080	0.092	0.103	0.114	0.125	0.146	0.166	0.184	0.203	0.220	0.262	0.303	0.342	0.380	0.416	0.452	0.487	0.521	0.555	0.587	0.619	0.650	0.680	70	0.738	76
SVA	285.7	286.1	285.9	283.4	270.3	260.2	248.1	233.3	225.7	219.7	211.8	201.8	192.2	184.6	177.3	172.8	165.4	158.8	152.8	149.2	145.8	142.0	137.8	135.0	132.3	126.8	125.2	121.5	119.4	116.8	114.7	112.8
DENSITY	25.095	25.093	25.096	25.123	25.262	25.369	25.498	25.655	25.735	25.799	25.883	25.990	26.093	26.174	26.253	26.302	26,385	26.458	26.526	26.566	26.606	26.648	26.696	26.729	26.760	26.820	26.839	26.880	26.904	26.933	28.958	26.981
SAL	33.317	33.320	33.321	33.338	33.464	33.542	33.436	33.592	33.513	33.489	33,530	33.669	33.752	33.832	33.904	33.929	34.000	34.056	34.091	34.048	34.070	34.069	34.119	34.141	34.139	34.172	34,174	34.193	34.184	34.202	34.214	34.238
TEMP	12.973	12.998	12.985	12.915	12.702	12.462	11.336	11.139	10.332	9.843	9.528	9.538	9.303	9.185	9.046	8.857	8.685	8.495	8.231	7.728	7.576	7.268	7.208	7.099	6.857	6.605	6.472	6.274	6.035	5.911	5.792	.76
PRESS		50	9	15	20	25	30	35	07	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	667
•	- -																											· · ·				. S. S.







N D V D V	0.00.0	0.010	0.023	0.036	0.049	0.061	0.073	0.084	960.0	0.107	0.118	0.140	0.161	0.180	0.199	0.217	0.260	0.301	0.340	0.378	C.394	
SVA	260.9	260.6	260.6	251.1	243.5	239.4	233.4	232.4	227.3	227.2	227.0	210.5	198.2	8.061	183.6	180.8	166.0	158.3	153.8	147.5	145.6	
DENSITY ANOMALY	m	25.360	25.362	25.462	25.543	25.587	25.652	25.663	25.718	25.720	25.723	25.898	26.029	26.109	26.186	26.218	26.377	26.463	26.513	26.583	26.605	
SAL	33.319	33.322	33.322	33.334	33.315	33.311	33,396	33.404	33.456	33.458	33.444	33.466	33.635	33.691	33.767	33.806	33.936	33.967	33.992	34.030	34.060	
TEMP	11.611	11.603	11.594	11.093	10.549	10.273	10.286	10.255	10.173	10.168	10.084	9.125	9.129	8.904	8.789	8.779	8.409	8.002	7.791	7.517	7.525	
PRESS	-	'n	5	₹	20	25	30	35	04	45	20	09	7	80	06	100	125	150	175	200	211	; j



SU <b>K</b> DYN	0.000	0.012	0.026	0.041	0.055	690.0	0.082	0.095	0.107	0.119	0.131	0.153	0.175	0.195	0.214	0.233	0.277	0.318	0.358	0.396	0.433	0.470	0.507	0.542	0.576	609.0	0.641	0.673	0.704	0.734	0.763	0.790
SVA	291.8	292.0	292.2	286.6	280.2	274.3	261.8	249.1	240.6	236.5	231.1	218.6	209.0	199.4	187.8	182.2	170.7	159.5	154.4	151.1	149.4	146.3	143.4	138.5	133.9	130.4	127.5	125.8	121.6	118.2	115.0	112.2
DENSITY ANOMALY	25.032	25.030	25.029	25.089	25.158	25.220	25.353	25.487	25.577	25.622	25.680	25.813	25.915	26.018	26.142	26.202	26.328	26.450	26.507	26.546	26.568	26.602	26.636	26.690	26.742	26.782	26.814	26.834	26.880	26.918	26.952	26.984
SAL	33.074	33.072	33.072	33.101	33.122	33.137	33.174	33.187	33.256	33.342	33.351	33.434	33.457	33.553	33.720	33.770	33.903	33.954	33.989	34.017	34.033	34.020	34.017	34.028	34.090	34.115	34.120	34.126	34.147	34.160	34.181	34.210
TEMP	12.328	m	12.335	12.137	11.858	11.582	11.007	10.293	10.079	10.214	9.911	9.494	8.967	8.793	8.835	8.699	8.561	8.019	7.817	7.702	7.637	7.322	7.061	6.731	6.708	6.555	6.340	6.221	5.991	5.771	5.623	5.548
PRESS	-	'n	01	5	20	25	30	35	40	45	20	60	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499
•																																.0
3	=																															7



SUN	0.000	0.012	0.027	0.043	0.058	0.073	0.088	0.102	0.115	0.128	0.141	0.165	0.186	0.207	0.226	0.245	0.290	0.331	0.371	0.409	0.446	0.482	0.517	0.551	0.585	0.618	0.650	0.681	0.712	0.742	0.771	0.798
SVA	305.4	305.2	305.2	305.4	300.3	297.7	294.7	279.0	261.1	251.7	250.0	224.9	209.7	200.9	188.9	186.0	171.4	160.9	154.4	150.1	145.8	142.3	137.8	136.3	132.7	130.1	126.8	123.8	121.3	117.8	115.1	113.2
DENSITY	E 60	€0	24.893	24.892	24.946	24.975	25.007	25.174	25.362	25.462	25.482	25.747	25.908	26.002	26.130	26.163	26.319	26.434	26.506	26.556	26.606	26.643	26.693	26.711	26.751	26.780	26.819	26.855	26.886	26.924	26.953	26.976
SAL	32.962	32.966	32.967	32.967	32.985	32.984	32.970	32.963	33.079	33.161	33.180	33.395	33.470	33.505	33.691	33.725	33.820	33.882	33.944	34.006	34.085	34.008	34.027	34.019	34.028	34.034	34.067	34.152	34.192	34.208	34.211	34.223
TEMP	12.620	62	-	12.626	12.415	12.261	12.031	11.091	10.534	10.320	10.295	9.713	9.081	8.652	8.765	8.728	8.188	7.744	7.582	7.572	7.658	6.963	6.700	6.514	6.268	5.075	5.976	6.216	6.224	6.024	5.808	5.704
PRESS	-	'n	5	5	20	22	30	35	4	45	20	9	2	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499







STATION: 76 LAT: 38 33.2 N LON: 124 6.7 W DATE: 6/22/87 TIME: 04002

PRESSURE (DB)

SUN	0.000	0.011	0.024	0.038	0.051	0.065	0.078	0.091	0.103	0.116	0.127	0.131	0.174	0.195	0.215	0.234	0.278	0.320	0.359	0.397	0.433	0.469	0.504	0.538	0.572	0.604	0.636	0.668	0.698	0.727	0.756	0.784
SVA	270.4	269.9	270.1	270.3	270.0	269.5	262.2	253.9	245.1	236.4	234.7	232.3	225.4	207.8	194.3	185.3	168.4	160.5	153.2	148.7	145.4	141.5	138.5	134.5	132.9	128.8	126.4	122.8	119.5	116.8	114.9	112.1
DENSITY	5.2	25.263	25.261	25.261	25.264	25.271	25.349	25.437	25.530	25.624	25.643	25.669	25.743	25.929	26.073	26.170	26.353	26.439	26.521	26.572	26.611	26.653	26.689	26.734	26.752	26.794	26.822	26.865	26.899	26.929	26.952	26.984
SAL	33,146	33,153	33.151	33.152	33.154	33.148	33.182	33.228	33.220	33.426	33.459	33.471	33.341	33.473	33.596	33.704	33.934	33.945	34.030	34.103	34.103	34.087	34.136	34.141	34.086	34.049	34.080	34.132	34.121	34.134	34.159	34.190
TEMP	11.423	11.417	11.417	11.423	11.413	11.349	11.066	10.768	10.193	10.583	10.623	10.523	9.478	8.960	8.654	8.573	8.556	8.047	7.943	7.981	7.719	7.334	7.352	7.063	6.610	6.060	6.028	6.017	5.668	5.507	5.479	5.421
PRESS	-	s	2	5	20	25	30	35	9	45	20	9	70	80	06	00	125	150	175	200	225	250	275	300	325	350	375	007	425	450	475	499



SUK	0.000	0.011	0.024	0.038	0.051	0.065	0.078	0.092	0.104	0.117	$\simeq$	0.150	0.171	0.191	0.210	0.229	0.274	0.316	0.356	0.394	0.432	0.468	0.503	0.538	0.571	ø	ø	9	ĕ	.72	0.756	78
SVA	269.7	269.9	270.2	270.3	270.4	269.3	268.3	262.3	252.2	234.6	223.0	213.3	205.4	198.2	190.2	184.2	172.4	165.0	156.1	151.1	147.1	143.0	140.3	136.4	132.3	129.2	126.3	123.0	119.6	~	114.6	C.
DENSITY	5.2	25.263	25.261	25.261	25.261	25.274	25.285	25.350	25.457	25.642	25.765	25.869	25.954	26.031	26.117	26.183	26.310	26.393	26.490	26.547	26.592	26.638	26.670	26.714	26.760	26.795	26.828	26.865	26.901	26.929	26.957	26.981
SAL	33.248	33.250	33.249	33.247	33.249	33.277	33.290	33.276	33.372	33.318	33.503	33.557	33.606	33.665	33.742	33.804	33.882	33.955	34.034	34.075	34.075	34.080	34.099	34.107	34.126	34.133	34.150	34.169	34.173	34.183	34.183	Ó
TEMP	11.817	11.828	11.835	11.826	11.832	11.881	11.875	11.465	11.288	9.982	10.111	9.739	9.454	9.263	9.101	8.995	8.568	8.401	8.168	8.002	7.698	7.400	7.285	7.011	6.786	6.566	6,417	6.248	5.985	82	5.601	5.537
PRESS	-	'n	0	15	20	25	30	35	40	45	20	60	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



STATION: 78 LAT: 38 20.2 N LON: 124 6.1 W DATE: 6/22/87 TIME: 0600Z

SUN	0.000	0.013	0.029	0.045	0.061	0.077	0.093	0.108	0.124	0.140	0.155	0.186	0.216	0.244	0.270	0.295	0.350	0.398	0.443	0.484	0.523	0.560	965.0	0.632	0.666	0.699	0.732	0.763	0.794	0.824	0.853	0.880
SVA	328.7	320.7	323.2	320.1	319.1	317.3	312.7	311.4	311.4	311.3	308.9	304.7	295.3	270.5	253.1	236.1	303.6	1.6.5	168.5	158.4	153.0	147.3	142.7	138.7	135.3	131.6	128.4	124.3	121.4	118.3	114.5	111.8
DENSITY	24.644	24.729	24.704	24.738	24.749	24.769	24.819	24.834	24.835	24.838	24.864	24.910	25.011	25.273	25.457	25.638	25.981	26.166	26.359	26.469	26.529	26.591	26.642	26.686	26.725	26.764	26.800	26.844	26.877	26.910	26.954	26.983
SAL	32.725	32.784	32.771	32.798	32.807	32.823	32.857	32.847	32.846	32.847	32.851	32.842	32.937	33.169	33.243	33.352	33.592	33.711	33.844	33.933	33.959	33.979	33.982	33.987	34.031	34.008	34.031	34.037	34.070	34.077	34.122	34.134
TEMP	12.935	12.733	m	12.745	12.724	12.683	12.560	12.445	12.435	12.424	12.304	12.021	11.876	11.428	10.721	10.165	9.218	8.636	8.050	7.777	7.500	7.171	6.818	6.519	6.482	6.036	5.897	5.578	5.517	5.286	5.221	S
PRESS	-	so	01	15	20	25	30	35	4	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



SC DV DV DV	0.000	0.012	0.028	0.043	0.058	0.073	0.088	0.103	0.118	0.132	0.144	0.168	0.191	0.212	6.232	0.252	0.297	0.339	0.379	0.416	0.453	0.489	0.523	0.557	0.591	0.623	0.654	0 685	0.714	0.743	177.0	ř.
SVA	307.8	O	304.0	303.5	303.1	303.0	353.0	302.8	289.7	251.7	242.7	233.5	220.7	210.1	196.6	189.5	173.2	161.9	154.4	147.9	144.3	141.5	137.2	134.0	131.2	_	124.0	119.9	116.0	113.1	110.4	108.3
DENSITY	8	24.866	24.905	24.913	24.918	24.920	24.922	24.924	25.063	25.463	25.559	25.658	25.793	25.906	26.050	26.126	26.301	26.424	26.506	26.577	26.618	26.651	26.697	26.733	26.765	26.834	26.847	26.893	6.93	6.95	6.99	7.02
SAL	33.142	33.131	33.146	33.148	33.149	33.148	33.148	33.147	33.213	33,445	33,465	33.472	33.441	33.568	33.711	33.729	33.841	33.899	33.939	33.962	33.977	33.985	33.983	33.982	33.989	34.001	34.090	34.124	34.138	34.174	34.206	34.219
TEMP	13.454	13.400		13.234	13.211	13.195	13.189	13.171	12.724	11.566	11.122	10.594	9.653	9.566	9.369	8.983	8.418	7.903	7.553	7.179	6.963	6.770	6.405	6.125	5.915	5.668	80	5.743	4	4	4	~
PRESS						25	30	35	0	45	50	90	70	80	9.0	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499



NO N	0.000	0.013	0.029	0.045	0.060	0.075	0.090	0.105	0.119	0.132	0.145	0.170	0.192	0.213	0.233	0.252	0.298	0.340	0.379	0.417	0.453	0.488	0.522	0.556	0.589	0.621	0.652	0.683	0.713	0.742	0.771	0.797
SVA	328.1	328.8	310.9	305.9	305.1	304.3	299.2	284.5	278.6	264.2	252.3	233.5	220.6	200.8	195.3	188.7	173.6	163.1	152.7	146.2	142.5	138.9	136.0	133.4	129.2	126.5	124.3	121.4	118.8	116.2	112.5	109.6
DENSITY	24.650	24.644	24.834	24.887	24.896	24.906	24.561	25.115	25.179	25.332	25.458	25.657	25.794	26.003	26 063	26.134	26.297	26.411	26.524	26.594	26.637	26.676	26.711	26.740	26.787	26.818	26.844	26.876	26.905	26.935	26.978	7.0
SAL		32.864																											34.116	M	34	34.2
TEMP	13.460	13.476	13.160	13.037	12.964	12.820	12.405	11.343	11.361	11.647	11.120	10.321	10.016	9.094	8.881	8.566	8.170	7.853	7.416	7.097	6.787	6.506	6.572	6.313	6.067	6.007	5.862	5.629	5.587	5.412	5.466	5.326
PRESS	-	10	10	15	20	25	30	35	40	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



SUK DYN	0.00.0	0.013	0.029	0.045	0.061	0.075	0.089	0.103	0.116	0.129	0.142	0.167	0.191	0.213	0.235	0.255	0.301	0.344	0.383	0.421	0.457	0.493	0.527	0.561	0.594	0.626	0.658	0.688	0.718	0.748		0.802
SVA	326.1	326.6	323.3	322.3	289.4	285.2	283.5	268.6	260.0	258.5	252.2	243.4	232.1	224.5	207.9	194.1	175.4	162.0	153.8	147.9	144.7	139.3	136.4	133.3	130.4	128.2	124.6	120.7	118.4	114.7	112.0	108.7
DENSITY	24.671	24.668	24.703	24.715	25.062	25.107	25.126	25.284	25.375	25.392	25.458	25.554	25.672	25.755	25.930	26.077	26.278	26.422	26.513	26.579	26.615	26.674	26.738	26.742	26.775	26.801	26.840	26.884	26.912	.95	26.983	.02
SAL	2.8	2.8	32.892	2.89	33.096	33.181	33,196	33.245	33.248	33.249	33.243	33.360	33.268	33.357	33.495	33.612	33.773	33.872	33.945	34.034	34.030	34.016	34.032	34.041	34,046	34.058	34.076	34.116	34.142	34.173	34.194	34.221
TEMP	13.411	13.430	13.294	13.231	12.262	12.369	12.330	11.694	11.208	11.118	10.716	10.691	9.564	9.482	9.062	8.710	8.220	7.768	7.539	7.563	7.284	6.776	6.621	6.413	6.190	6.061	5.860	5.764	5.704	5.575	5.454	5.327
PRESS	-	'n	01	5	20	25	30	35	9	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	225	350	375	400	425	450	475	499







N N N N N	0.000	0.011	0.025	0.038	0.051	0.064	0.077	0.090	0.102	0.115	0.127	0.152	0.176	0.199	0.22	0.241	0.287	0.328	0.368	0.406	0.442	0.478	0.513	0.548	0.581	0.614	0.646	0.677	0.708	0.737	0.766	0.794
SVA			273.5	266.4	255.5	255.3	253.9	252.2	250.8	250.3	249.4	245.9	234.0	224.5	210.5	195.9	170.7	161.1	153.7	149.4	145.3	141.5	138.8	135.2	131.8	129.4	126.9	123.4	121.1	117.4	116.0	113.4
DENSITY ANOMALY	25.186	25.185	25.226	25.302	25.417	25.420	25.436	25.455	25.471	25.477	25.488	25.527	25.653	25.755	25.903	26.048	26.327	26.433	26.514	26.563	26.609	26.651	26.684	26.724	26.762	26.793	26.823	26.861	26.888	26.927	26.944	26.972
SAL	33.099	33.098	33.127	33.158	33.232	33.228	33.238	33.253	33.273	33.287	33.299	33.340	33.433	33.435	33.510	33.593	33.823	33.963	34.000	34.011	34.015	34.014	34.046	34.060	34.074	34.149	34.171	34.182	34.188	34.184	34.194	34.199
TEMP	11.608	11.611	11.507	11.224	10.902	10.866	10.820	10.778	10.773	10.802	10.793	10.756	10.443	9.855	9.304	8.801	8.153	8.176	7.828	7.551	7.247	6.937	6.881	6.662	6.458	6.671	6.580	6.356	6.184	5.852	5.774	-
PRESS	-	ĸ	5	15	20	25	30	35	04	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	667



SUN	0.000	0.009	0.024	0.039	0.053	0.067	0.081	0.095	0.108	0.122	0.135	0.160	0.184	0.207	0.229	0.250	0.298	0.342	0.382	0.421	0.458	0.495	0.531	0.565	0.599	0.633	0.665	0.697	C.728	0.759	0.789	0.817
SVA	303.7	303.3	295.7	291.3	285.4	281.0	274.5	271.7	268.9	262.0	254.3	245.1	235.6	229.3	217.7	202.7	183.2	165.3	158.6	150.9	147.0	144.7	141.3	137.1	134.6	131.6	128.9	125.7	123.1	120.6	119.3	116.8
DENSITY	.90	24.912	O)	25.040	25 103	25.151	25.220	25.250	25.280	25,354	25.436	25.535	25.636	25.705	25.828	25.988	26.197	26.390	26.464	26.549	26.594	26.621	26.561	26.708	26.737	26.771	26.801	26.838	26.867	26.895	26.911	26.939
SAL	2.92	32.926	32.954	2	m,	33.078	33.106	33.088	33.087	33.137	33.183	33.304	33.376	33.365	33.423	33.624	33.757	33.973	34.007	34.071	34.103	34.106	34.115	34.131	34.148	34.153	34.157	34.168	34.176	₩.	34.184	5
TEMP	12.378	S		11.854	11.714	11.712	11.453	11.207	11.034	10.837	10.574	10.545	10.283	9.826	9.349	9.333	8.671	8.515	8.202	7.968	7.834	7.664	7.438	7.193	7.076	6.858	6.656	6.448	6.275	6.093	5.973	5.832
PRESS	7	'n	5	5	20	25	30	35	4	45	20	20	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	S	475	O



SUM	0.000	0.012	0.027	0.041	0.056	0.020	0.084	0.098	0.111	0.123	0.135	0.159	0.182	0.204	0.223	0.242	0.286	0.328	0.369	0.408	0.446	0.483	0.519	0.554	0.588	0.622	0.655	0.687	0.719	0.750	0.780	0.808
SVA	296.6	296.6	294.6	291.9	288.1	283.1	277.9	264.4	255.1	246.8	243.1	234.6	222.3	204.7	191.7	182.4	172.7	163.3	158.8	153.7	149.6	146.2	142.8	139.2	135.4	132.7	130.6	128.6	124.3	121.6	119.6	117.3
DENSITY	4.98	24.982	25.004	25.034	25.075	25.128	25.183	25.327	25.425	25.514	25.554	25.645	25.776	25.962	26.102	26.202	26.309	26.412	26.463	26.521	26.567	26.606	26.646	26.686	26.729	26.760	26.784	26.808	.85	82	26.909	8
SAL	32.991	32.991	32.998	33.000	33.026	33.020	32.956	33.019	33.091	33.189	33.241	33.269	33.348	33.514	33.712	33.879	33.977	34.040	34.060	34.081	34.101	34.110	34.123	34.124	34.149	34.153	34.155	34.159	34.174	34.190	34.192	34.203
TEMP	12.256	12.251	12.164	12.014	11.901	11.590	11.007	10.467	10.220	10.148	10.151	9.734	9.310	8.955	9.051	9.243	9.054	8.714	8.481	8.211	8.006	7.789	7.585	7.306	7.144	6.939	6.771	6.617	6.352	6.214	6.044	5.910
PRESS	-	Ŋ	01	15	20	25	30	35	40	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



SUK	0.000	0.011	0.026	0.040	0.054	0.068	0.081	0.095	0.108	0.120	0.132	0.155	0.177	0.196	0.215	0.233	0.276	0.318	0.358	0.397	0.435	0.473	0.509	0.545	0.580	0.615	0.649	0.682	٠.	0.747	0.778	0.808
SVA	284.8	284.9	284.3	282.8	279.9	272.9	269.4	262.7	256.0	246.4	245.0	217.5	203.7	192.2	183.5	176.7	169.6	163.7	158.4	153.4	151.0	147.9	144.1	141.9	139.0	137.0	135.1	132.4	129.2	126.9	124.5	122.3
DENSITY	25.105	25.105	25.112	25.129	25.161	25.235	25.273	25.345	25.416	25.517	25.533	25.824	25.971	26.095	26.188	26.262	26.342	26.408	26.467	26.523	26.553	26.590	26.632	26.659		16	2	5	5	53	õ	ın.
SAL	33.055	33.055	33.054	33.066	33.091	33.142	33,167	33.213	33.245	33.172	33.199	33.397	33.507	33.754	33.833	33.957	34.007	34.032	34.066	34.094	34,105	34.118	34.122	34.123	34,134	34.132	34.142	34.144	34.151	34.170	34.179	34.182
TEMP	11.860	11.860	11.820	11.779	11.710	11.522	11.421	11.219	10.962	10.047	10.078	9.246	8.864	9.301	9.106	9.249	8.995	8.698	8.487	8.262	8.122	7.943	7.675	7.496	7.318	7.136	7.025	6.812	6.594	G	6.342	6.172
PRESS		'n	0	15	20	25	30	35	40	45	50	9	2	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



S C V N	0.000	0.012	0.028	0.043	0.057	0.072	0.087	0.102	0.116	0.131	0.145	0 172	0.198	0.223	0.246	0.268	0.317	0.360	0.401	0.441	0.479	0.517	0.553	0.589	0.623	0.657	0.69.0	0.722	0.754	0.784	0.814	0.842
SVA	310.8	310.9	297.7	296.7	296.4	296.5	295.7	294.5	293.6	293.2	281.0	258.9	254.0	244.1	225.9	211.9	178.2	167.2	160.1	155.8	151.3	147.9	144.4	140.5	137.6	134.4	129.9	126.3	123.2	120.3	118.6	115.2
DENSITY	E W	24.832	24.972	24.983	24.988	24.988	24.998	25.011	25.022	25.027	25.156	25.390	25.443	25.549	25.741	25.890	26.250	26.370	26.448	26.498	26.549	26.589	26.628	26.674	26.708	26.743	26.793	26.832	26.867	26.899	26.919	26.955
SAL	32.735	32.731	32.946	32.995	33.006	33.006	33.010	33.049	33.068	33.067	32.993	33.175	33.171	33.234	33.302	33.422	33.888	33.965	34.018	34.045	34.074	34.102	34.094	34.142	34.163	34.166	34.182	34.184	34.186	34.202	34.200	34.201
TEMP	6	11.979	Ξ.	Ġ	Ŋ	12.282	12.247	12.336	12.355	12.326	11.319	10.802	10.480	10.147	9.300	8.953	8.984	8.601	8.363	8.176	7.985	7.861	7.551	7.495	7.373	7.134	6.862	6.586	6.333	6.183	6.015	5.730
PRESS	-	'n	5	15	20	25	30	35	9	45	50	9	70	08	96	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499



N D N D N	0.000	0.013	0.028	0.044	0.059	0.074	0.089	0.104	0.119	0.134	0.149	0.178	0.207	0.232	0.256	0.278	0.330	0.377	0.450	0.460	0.498	0.535	0.571	909.0	0.639	0.672	0.705	0.736	0.767	0.797	C.827	0.855
SVA	315.2	315.1	312.6	308.3	304.7	300.8	299.1	297.5	296.8	297.1	297.1	295.0	270.4	246.6	226.8	216.9	198.7	176.5	164.3	155.4	150.0	145.8	141.6	136.6	133.4	130.7	127.5	125.3	122.2	119.1	116.8	
DENSITY	24.	24.787	24.815	24.862	24.901	24.943	24.962	24.979	24.988	24.987	24.987	25.012	25.271	25.523	25.732	25.838	26.033	26.270	26.402	26.499	26.562	26.610	26.656	26.713	26.748	26.779	26. F14	26.840	26.875	26.910	26.936	26.958
SAL	32.789	32.794	32.770	32.779	32.785	32.843	32.891	32.935	32.979	32.985	32.965	33.023	32.926	33.192	33.316	33.378	33.557	33.762	33.864	33.926	34.046	34.101	34.059	34.135	34.127	34.139	34.134	34.148	34.165	34.178	34.192	34.174
TEMP	12.461	12.473	12.228	12.018	11.833	11.850	11.946	12.037	12.173	12.204	12.120	12.227	10.371	10.107	9.427	9.068	8.714	8.213	7.863	7.527	7.748	7.713	7.160	7.177	6.878	6.715	6.422	6.306	6.142	Q.	5.829	ĸ.
PRESS	-	'n	9	5	20	25	30	35	9	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499







N N N N N N	0.00.0	0.011	0.025	0.039	0.053	0.067	0.080	0.094	0.107	0.119	0.130	0.152	0.173	0.194	0.213	0.231	0.274	0.315	0.354	0.391	0.428	0.464	0.500	0.534	0.568	0.601	0.633	0.665	969.0	0.727	0.756	0.784
SVA	283.3	281.5	277.2	276.7	274.3	274.2	272.3	270.2	244.5	233.2	224.6	219.5	204.5	198.9	189.7	177.8	165.1	159.2	152.2	148.4	145.6	143.2	140.2	136.8	133.5	130.9	128.0	125.8	123.2	120.0	115.8	P)
DENSITY	=	25.141	25.187	25.194	25.220	25.222	25.243	25.266	25.537	25.657	25.748	25.803	25.962	26.023	26.122	26.248	26.387	26.454	26.531	26.576	26.609	26.637	26.672	26.711	26.749	26.778	26.810	26.836	26.866	26.902	26.946	26.976
SAL	33,143	33.148	33.159	33.158	33.172	33.167	33.178	33.177	33.245	33.305	33.320	33.366	33.522	33.568	33.643	33.726	33.940	34.042	34.039	34.104	34.119	34.132	34.131	34.146	34.165	34.155	34.150	34.160	34.179	34.185	34.201	7.7
TEMP	12.140	12.058	11.854	11.815	m	11.701	11.633	11.504	10.270	9.834	9.348	9.226	8.993	8.835	8.576	8.173	8.365	8.451	8.182	7.964	7.819	7.693	7.445	7.255	7.092	6.816	6.547	6.410	6.295	6.056	5.800	.69
PRESS	-	ĸ	0	15	20	25	30	35	40	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	



NO NO			0.012	0.027	0.041	0.056	0.070	0.083	0.097	0.110	0.123	0.135	0.158	0.180	0.201	0.220	0.238	0.282	0.323	0.361	0.399	0.436	0.472	0.507	0.541	0.574	0.607	0.639	0.669	0.700	0.729	0.759	0.786
SVA	2 7 2 7	4.700	296.2	293.2	290.8	286.2	274.6	258.9	267.7	263.3	248.5	241.5	226.4	212.4	197.9	186.3	180.5	167.4	157.9	152.9	149.3	146.1	141.2	136.7	134.9	132.4	128.9	125.1	122.6	119.4	117.7	115.6	113.9
DENSITY	77 974	10000	24.983	25.019	25.045	25.094	25,218	25.278	25.292	25.339	25.496	25.569	25.731	25.879	26.034	26.157	26.220	26.363	25.467	26.522	26.564	26.600	26.655	26.709	26.729	26.760	26.797	26.840	26.869	26.904	26.924	26.948	26.968
SAL	42 999	1000	32.987	32.994	32,955	32.909	32.980	33.088	33.111	33.083	33.143	33.169	33,324	33.422	33.604	33.671	33.714	33,944	33.968	33.960	34.020	34,009	34.028	34.160	34.123	34.147	34.139	34.166	34.178	34.194	34.197	34.207	34.206
TEMP	12 325	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	12.230	12.067	11.765	11,300	10.917	11.052	11.073	10.684	10.041	9.719	9.472	9.025	E.947	8.491	8.299	8.540	7.980	7.555	7.591	7.274	6.990	7.346	6.991	6.908	5.581	6.420	6.268	6.091	5.952	5.823	5.655
PRESS	-	٠.	n	õ	15	20	25	30	35	9	45	20	9	70	80	90	001	125	150	17.5	200	225	250	275	300	325	350	375	400	425	450	475	499



SUS	0.000	0	0.025	0.038	0.052	0.065	0.078	0.091	0.104	0.116	0.128	0.152	0.175	0.196	0.217	0.236	D.281	0.324	0.364	0.402	0.440	0.476	0.511	0.545	0.579	0.612	0.644	0.675	0.705	0.735	0.764	0.791
SVA	281.9	276.2	270.5	269.6	265.5	262.4	258.5	257.0	254.0	245.6	240.9	230.0	225.5	210.2	195.5	186.8	174.9	165.5	156.8	151.7	146.3	141.9	139.8	136.0	132.7	129.4	125.5	123.2	120.2	117.4	115.4	112.5
DENSITY	25.1	25.196	25.257	25.268	25.312	25.346	25.388	25.405	25.437	25.515	25.576	25.694	25.743	25.906	26.062	26.155	26.284	26.387	26.481	26.539	26.599	26.647	26.673	26.719	26.753	26.790	26.835	26.863	26.897	26.927	26.949	26.983
SAL	33.012	0.	33.074	٠. د	33.120	33,151	33,168	33.171	33.189	33.227	33.279	33.357	33.406	33.558	33.717	33.805	33.854	33.927	33.920	33.995	34.029	34.021	34.038	34.130	34.071	34.088	34.163	34.190	34.196	34.192	34.188	34.224
TEMP	11.514	27	11,110	11.112	11.002	10.948	10.784	10.701	10.597	10.312	10.192	9.856	9.790	9.522	9.326	9.175	8.599	8.299	7.524	7.630	7.393	7.002	6.916	7.106	6.511	6.326	6.435	6.386	6.165	8	5.696	ø.
PRESS	-	'n	5	ស៊	20	25	30	35	40	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499



STATION: 905 LAT: 38 23.9 N LON: 124 15.1 W DATE: 6/26/87 TIME: 1700Z

SUN DYN	0.00.0	5	0.029	0.045	0.061	_	0.090	-	0.117	0.130	0.142	0.165	0.187	0.208	0.228	0.248	0.293	0.334	0.373	0.411	0.449	0.485	0.520	0.554	0.587	0.620	0.653	0.684	0.715	0.746	0.775	0.803
SVA	324.6	323.4	320.7	316.5	307.4	289.6	282.2	274.0	255.1	248.9	238.5	225.1	215.5	207.9	197.2	189.1	170.0	161.3	153.7	150.7	146.5	141.7	138.7	135.6	132.6	129.9	128.4	125.8	a	O)	117.3	*
DENSITY	7	24.701	24.730	24.775	24.872	25.059	25.139	25.226	25.425	25.491	25.602	25.744	25.847	25.929	26.042	26.129	26.335	26.431	26.515	26.549	26.597	26.651	26.685	26.723	26.757	26.787	26.806				26.929	
SAL	32.871	32.865	32.883	32.904	32.882	32.871	33.137	33.168	33.175	33.244	33.268	33.354	33.429	33.490	33.558	33,642	33.890	33.962	34.027	33.997	34.016	34.068	34.062	34.129	34.132	34.119	34.148	34.170	34.176	34.148	34.169	34.178
TEMP	13.288	13,199	13.119	12.974	12.386	11.330	12.022	11.680	10.599	10.529	9.988	9.536	9.258	9.046	8.660	8.523	8.447	8.184	7.965	7.570	7.336	7.247	6.966	7.073	6.842	6.543	κi	4.5	Ξ.	5.825	73	5.541
PRESS	-	'n	10	51	20	25	30	35	40	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	007	425	450	475	<b>4</b> 89



STATION: 91 LAT: 38 20.2 N LON: 124 12.6 W DATE: 6/26/87 TIME: 18002

SUN		0.012	0.026	0.039	0.053	0.066	0.079	0.092	0.104	0.116	0.128	0.151	0.172	0.194	0.214	0.234	0.280	0.322	0.363	0.401	0.439	0.475	0.510	0.545	0.577	0.610	0.642	0.673	2	73	0.762	7.
SVA	295.3	283.8	281.1	268.8	265.3	260.7	258.3	250.9	242.0	238.2	232.7	224.0	213.2	211.6	202.2	191.6	175.6	164.4	157.9	151.8	147.9	142.0	137.4	134.4	132.4	128.8	125.7	123.4	120.7	117.6	117.1	112.0
DENSITY	66	25.117	25.146	25.277	25.315	25.364	25.390	25.469	25.563	25.605	25.664	25.757	25.872	25.892	25.992	26.106	26.276	26.399	26.470	26.538	26.582	26.648	26.700	26.734	26.757	26.798	26.833	26.857	26.889	26.923	96	26.985
SAL	3	33.228	3.2	W. W	3. W	m	w.	m	33.483	m	33.536	33.591	33.636	33.675	33.728	33.790	33.846	33.981	33.979	34.019	34.021	34.064	34.127	34.097	34.097	34.119	34.141	34,117	34.150	34.149	34.172	34.191
TEMP	12.797		12.433	12.019	11.870	11.666	11.498	11.271	11.175	11.054	10.842	10.556	10.090	10.154	9.801	9.408	8.606	8.494	8.012	7.765	7.470	7.244	7.224	6.808	6.636	6.458	m	Ø	O	9	5.496	٠.
PRESS	-	'n	10	51	20	25	30	35	40	45	20	90	70	80	06	100	125	150	175	200	225	250	275	301	325	350	375	400	425	450	475	499





N N N N N	0.000	0.012	0.026	0.040	0.053	0.066	0.078	0.090	0.101	0.113	0.124	0.146	0.167	0.188	0.208	0.228	0.273	0.314	0.353	0.390	0.393
SVA	301.5	297.9	276.1	262.3	256.8	256.3	245.1	230.6	224.1	221.5	221.6	220.2	215.2	203.2	196.6	188.7	170.9	157.9	153.3	147.3	146.8
DENSITY	24.929	24.969	25.199	25.345	25.404	25.410	25.529	25.682	25.752	25.780	25.780	25.797	25.851	25.980	26.051	26.134	26.327	25.467	26.519	26.585	26.592
SAL	33.079	33.092	33.311	33.370	33.397	33.400	33.458	33.557	33.594	33.605	33.604	33.612	33.617	33.714	33.760	33.727	33.926	33.996	34.026	34.033	34,035
TEMP	12.880	12.729	12.416	11.888	11.681	11.660	11.260	10.832	10.597	10.488	10.480	10.422	10.127	9.812	9.597	8.919	8.584	8.123	7.932	7.517	7.476
PRESS	-	'n	5	5	20	25	30	35	40	45	20	90	2	80	06	100	125	150	175	200	202



SUM	0.00.0	0.012	0.026	0.039	0.051	0.064	0.075	0.087	0.098	9.109	0.120	0.142	0.162	0.182	0.202	0.220	0.265	0.307	0.347	0.385	0.423	0.459	0.494	0.529	0.562	0.594	0.626	0.657	0.687	0.717	<b>'</b>	0.773
SVA	298.8	288.6	266.9	256.1	249.5	240.3	234.2	229.1	222.6	218.7	215.1	210.9	205.5	195.1	189.9	183.0	171.0	165.2	156.7	152.2	147.5	142.8	139.2	135.5	131.2	127.4	124.8	122.1	119.6	117.4	114.9	112.7
DENSITY	O	25.066	25.295	25.410	25.481	25.578	25.644	25.698	25.768	25.810	25.848	25.894	25.953	26.064	26.121	26.194	26.326	26.391	26.484	26.535	26.587	26.639	26.680	26.722	26.769	28.812	26.843	26.874	26.903	26.928	26.957	26.980
SAL	33.152	33.209	33.352	33.400	33.393	33.436	33.492	33.538	33.578	33.603	33.629	33.640	33.656	33.738	33.764	33.812	33.918	33.957	34,001	34.029	34.040	34.045	34.073	34.088	34,100	34.133	34.170	34.189	34.203	34.211	34.217	34.214
TEMP	13.020	12.694	12.077	11.663	11.246	10.890	10.764	10.655	10.437	10.304	10.197	9.878	9.697	9.414	9.187	8.961	8.653	8.427	8.037	7.842	7.538	7.202	7.061	6.844	6.554	M	6.416	6.294	₹.	6.012	5.820	.60
PRESS	-	'n	5	15	20	25	30	35	4	45	50	90	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



NUX D√N	00	9	Ö	0.	.05	0.672	0.8	0.0	0.111	0.124	0.136	0.160	0.182	0.204	0.226	0.247	0.295	0.339	0.380	0.419	0.456	0.493	0.528	0.563	0.597	0.629	0.662	0.693	0.723	0.753	0.783	0.810
SVA	328.6	319.1	315.3	296.4	277.9	271.7	268.6	255.7	251.4	250.8	244.1	224.0	222.9	217.3	213.0	203.8	185.2	167.6	158.1	151.2	148.3	144.3	140.3	136.9	133.2	129.6	126.7	123.8	121.3		115.4	113.2
DENSITY ANOMALY	24.645	24.746	24.787	24.986	25.182	25.248	25.282	25.419	25.465	25.472	25.544	25.757	25.770	25.832	25.879	25.977	26.177	26.366	26.469	26.545	26.580	26.624	26.670	26.709	26.751	26.789	26.822	26.854	26.883	26.918	26.949	26.973
SAL	32.889	32.896	32.918	33.093	33.220	33.287	33.289	33.275	33.362	33.367	33,454	33.594	33.603	33.626	33.652	33.689	33.829	33.938	33.982	34.029	34.047	34.066	34.083	34.128	34.123	34.108	34.123	1.13	34.145	34.156	34.170	34.185
TEMP	13.568	13.093	12.967	12.642	12.136	12.059	11.889	11.079	11.197	11.181	11.155	10.569	10.533	10.281	10.123	9.708	9.157	B.492	8.039	7.769	7.631	7.421	7.195	7.167	6.835	6.458	6.298	6.124	5.955	5.745	5.583	5.478
PRESS	-	'n	5	15	20	25	30	35	07	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



STATION: 95 LAT: 38 20.4 N LON: 124 6.4 W DATE: 6/27/87

SCA	0.000	0.012	0.027	0.041	0.055	0.069	0.082	760.0	0.106	0.118	0.129	0.151	0.173	0.194	0.214	0.232	772.0	0.318	0.353	0.396	0.433	0.470	0.505	0.540	0.573	0.606	0.638	0.670	0.700	0.730	0.759	0.787
SVA	302.3		293.6	281.2	278.3	264.7	253.1	249.4	236.4	230.1	222.8	220.7	212.6	201.7	193.2	184.6	169.4	160.7	155.8	152.1	147.6	143.5	138.9	136.5	133.5	130.0	126.4	123.7	120.8	117.9	115.4	113.9
DENSITY	92	24.992	25.014	25.146	25.177	25.321	25.445	25.485	25.623	25.689	25.766	25.791	25.878	25.994	26.085	26.176	26.341	26.436	26.494	26.536	26.587	26.633	26.684	26.713	26.748	26.786	26.826	26.858	26.889	26.922	26.950	26.966
SAL	9	33.025	32.898	32.976	32.985	32.993	33.138	33.334	33.470	33.393	33.386	33.396	33.452	33.540	33.601	33.650	33.866	33.910	34.045	34.063	34.075	34.052	34.091	34.120	34.138	34.140	34.155	34.168	34.174	34,185	4.19	34.183
TEMP	12.664	12.339	11.694	11.305	11.167	10.379	10.320	10.964	10.784	10.050	9.852	9.451	9.228	8.882	8.602	8.254	8.283	7.876	8.201	8.012	7.731	7.285	7.138	7.092	6.940	6.669	6.458	6.294	6.085	∞	5.704	ĸi.
PRESS	-	'n	0	15	20	25	30	35	40	45	20	9	70	80	06	160	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499



PRESS TEMP SAL DENSITY SVA SUM ANOMALY DYN	33.039 24.950 299.6 0	33.032 25.027 292.3	11.738 33.055 25.128 282.8	11.392 33.132 25.251 271.2	11.170 33.137 25.295 267.1	33,102 25,401	10.410 33.247 25.514 246.5	10,423 33,264 25,525 245,5	10.266 33.278 25.563 242.0	33.260 25.577 240.7	10.039 33.300 25.618 236.9	33.328 25.736 225.9	0 9.270 33.504 25.904 210.1	33.590 26.055	8.559 33.690 26.161 185.9	8.659 33.828 26.254 177.3	33.916 26.359 157.8	8.319 33.992 26.435 161.0	7.868 33,998 26.507 154.5	7.662 34.045 26.573 148.5	7.750 34.104 26.607 145.7	7.392 34.089 26.647 142.2	7.307 34.120 26.683 139.1	34.064 26.700	6.387 34.050 26.760 151.9	6.796 34.132 26.829 126.0	6.228 34.145 26.848 124.5	6.061	5.907 34.163 26.903 119.7	26	499 5.656 34.192 26.957 114.9 0			
•	ءِ آخ		_																												L _ž		, g	
;	12.0 14.0	\	\			_	/			~			مر	^				~	<u>~</u>	^-	<u>_</u>				w 			_			34.0		27.0 28.0	
TURE (	6.0	<b>√</b>	ν \ \	<u>ئ</u> ر		X	سر ~~		_		<b>一</b> く		مسد												7						33.0	SALINITY	26.0 ~(KG/M³)	
ERA	- 1										•	_	~	$\sim$	سر	<u>_</u>	_	-	$\sim$	Λ													1	
TEMP	4.0 6.0 8.0	7	,																		_		~	~~	<b>-</b>	~		_			32.0		24.0 25.0	

1004

BRESSURE (DB)

100-



SCA	0.00.0	0.011		0.037	0.050	0.063	0.075	0.087	0.099	0.11	0.122	0.144	0.165	0.185	0.205	0.223	0.266	0.306	0.345	0.382	0.418	0.454	0.488	0.522	0.555	0.588	0.619	0.650	0.681	0.711	0.740	
SVA	275.1	270.7	264.1	260.6	249.9	247.7	245.0	239.8	236.0	232.0	227.5	214.1	206.6	195.9	186.9	179.3	162.8	158.4	151.7	146.8	143.9	139.0	136.2	134.4	131.9	128.1	125.4	123.7	120.4	118.0	116.3	114.0
DENSITY	25.20	25.254	25.325	25.363	25.476	25.500	25.530	25.585	25.626	25.669	25.717	25.860	25.941	26.055	26.151	26.232	26.410	26.462	26.535	26.589	26.623	26.676	26.708	26.732	26.760	26.801	26.832	26.852	26.233	26.922	26.942	26.968
SAL	3.11	33.132	3.12	60	33.136	33.179	33.235	33.297	33.309	33.316	33,335	33.418	33.496	33.615	33.673	33.751	33.943	34,005	34.004	34.013	33.981	33.969	33.998	34.054	34.039	34.053	34.079	34.084	Ξ.	34.199	34.211	34.221
TEMP	.56	11.377	10.928	10.620	10.127	10.182	10.264	10.223	10.034	9.812	9.607	9.127	9.000	8.869	8.541	8.406	8.225	8.207	7.708	7.374	6.953	6.487	6.417	6.570	6.265	6.028	5.942	5.813	5.933	5.984	5.898	.75
PRESS	-	2	5	15	20	25	30	35	40	45	50	60	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



. v ō	17 690	74 0 F F	24 053		000
5	12.697	33.067	24.955	299.3	0.012
	12.557	33.049	24.969	298.0	0.027
35	12.449	33.065	25.002	294.9	0.042
20	12.205	33.063	25.047	290.8	0.056
25	11.988	33.045	25.074	288.3	0.071
30	11.770	33.056	25.123	283.7	0.083
35	10.924	33.213	25.398	257.6	0.099
40	10.876	33.243	25.430	254.7	0.111
45	10.826	33 249	25.443	253.5	0.124
20	10.817	33.251	25.447	253.3	0.137
80	10.740	33.282	25.484	249.9	0.162
70	9.782	33.312	25.671	232.3	0.186
80	9.193	33.387	25.825	217.8	0.209
06	8.896	33.530	25.984	202.8	0.230
100	8.655	33,613	26.086	193.2	0.249
125	8.123	33.790	26.306	172.7	0.295
150	7.640	33.884	26.450	159.3	0.337
175	7.514	33.953	26.522	152.8	0.376
200	7.763	34.044	26.558	150.0	0.414
225	7.311	34.016	26.601	146.1	0.45;
250	7.411	34.093	26.647	142.2	0.487
275	6.870	34.057	26.694	137.8	0.522
300	6.621	34.051	26.723	135.3	0.556
325	6.898	34.153	26.766	131.8	0.589
350	6.606	34.153	26.805	128.2	0.622
375	6.455	34.157	26.828	126.3	0.653
400	6.239	34.130	26.835	125.8	0.685
425	5.789	34.105	26.872	122.2	0.716
450	5.824	34.153	26.906	119.4	0.746
475	5.667	34.160	26.930	117.2	$\sim$
499	5.526	34.178	96.9	114.3	0.803



STATION: 100 LAT: 38 46.8 N LON: 124 20.3 W DATE: 6/27/87

TEMP	TEMPERATURE (°C)		,	PRESS	TEMP	SAL	DENSITY	SVA	SCAN
0.0	6.0 10.0 12.0	24.0	• • •	-	12.506	32.636	24.658	327.3	0.00.0
سر	`		<del>-</del>	'n	12.565	32.607	24.625	330.6	0.013
, ,	^ ∕*			10	12.124	32.645	24.738	320.0	0.029
مرسا	<u>\</u>			15	12.007	32.655	24.768	317.2	0.045
مر	\ \			20	11.880	32.687	24.816	312.7	0.061
•	ץ ת			25	11.957	32.772	24.868	307.9	7.0.0
	ر حر			30	11 581	32.766	24.914	303.6	0.0 2
	, _			35	11.176	32.699	24.953	299.9	0.107
	/ /			70	10.972	32.736	25.018	293.8	0.122
				45	10.905	32.754	25.044	291.5	0.136
`				20	10.783	32.813	25.111	285.2	0.151
_				9	10.400	32.924	25.264	270.8	0.179
` لىر	~~ ~~	_		70	10.062	33.065	25.431	255.1	0.205
				60	9.599	33.149	25.573	241.7	0.230
7		ۍ.		06	9.497	33.422	25.803	220.0	0.253
_				100	8.921	33,443	25.912	209.8	0.274
<u> </u>		~		125	8.440	33,685	26.176	185.1	0.324
~\		~\		150	8.050	33.824	26.343	169.6	0.368
<u>~</u>				175	7.608	33.886	26.456	159.1	604.0
_				200	7.935	34.037	26.527	152.9	0.448
-ر		مر		225	7.575	34.025	26.570	149.1	0.486
~				250	7.584	34.077	26.610	145.8	0.523
•		•		275	7.379	34.109	26.664	140.9	0.559
				300	6.556	34.020	26.707	136.7	0.593
<b>~</b>	ر د			325	6.533	34.054	26.737	134.3	0.627
				350	6.605	34.098	26.762	132.3	0.661
				375	6.260	34.104	26.812	127.6	0.693
_				400	6.270	34.138	26.837	125.6	0.725
				425	6.189	34.152	26.859	123.8	0.756
~		~		450	6.054	34.176	26.895	120.6	0.786
~				475	5.952	34.197	26.924	118.0	0.816
0.	33.0	34.0	35.0	499	5.739	34.204	26.956	115.1	0.844
	<b>&gt;</b>								
25.0	26.0 27.0	28.0	29.0						
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								

7(KG/M*)
STATION: 101 LAT: 38 49.4 N LON: 124
DATE: 6/27/87

+007

PRESSURE (DB)

100-

o 2		•					
	-	17.63	33.054	24.1.34	299.1	000.0	
	Ŋ	φ.	0	24.963	298.5	0.012	
	0	12.448	33.064	25.001	294.9	0.027	
	15	12.339	33.071	25.028	292.5	0.041	
	20	12.205	33.078	25.058	289.7	0.056	
	25	12.000	33,086	25.103	285.5	0.070	
	30	11.876	33.088	25.128	283.3	0.085	
	35	11.461	33.120	25.229	273.7	0.099	
	97	10.917	33.213	25.399	257.6	0.112	
	45	10.769	33.235	25.442	253.6	0.125	
	20	10.754	33.238	25.447	253.2	0.137	
	9	10.762	33.276	25.476	250.8	0.162	
	70	10.547	33.345	25.567	242.3	0.187	
	80	9.693	33.366	25.728	227.1	0.211	
	06	9.138	33.433	25.870	213.7	0.233	
	100	8.929	33.529	25.978	203.6	0.254	
	125	8.533	33.723	26.191	183.7	0.302	
	150	7.843	33.827	26.376	166.4	0.346	
	175	7.567	33.933	26.499	155.1	0.386	
	200	7.305	33.956	26.554	150.1	0.424	
	225	7.400	34.059	26.622	144.1	0.461	
	250	7.154	34.073	26.667	140.1	0.496	
	275	6.397	33.985	26.700	136.9	0.531	
	300	6.939	34.147	26.755	132.4	0.565	
	325	6.189	34.050	26.778	130.1	0.597	
	350	6.132	34.078	26.806	127.8	0.630	
	375	6.225	34.128	26.835	125.4	0.661	
	400	5.923	34.115	26.863	122.8	0.692	
	425	6.103	34.186	26.897	120.2	0.723	
	450	5.809	34.175	.92	117.5	0.752	
	475	5.751	34.201	26.953	115.2	0.782	
a.	499	5.429	34.190	8	112.2	0.809	



N N N N N	0.000	0.012	0.026	0.039	0.052	0.066	0.02	0.091	0.103	0.115	0.127	0.150	0.172	0.193	0.213	0.232	0.277	0.319	0.358	0.396	0.433	0.469	0.503	0.537	0.570	0.603	0.635	0.666	0.696	0.726	0.755	0.781
SVA	293.6	285.1	270.9	270.7	266.3	262.0	256.5	247.1	241.8	232.8	230.5	226.5	213.2	209.0	198.2	186.3	172.2	160.6	154.5	148.7	144.9	141.8	136.9	133.4	131.6	128.7	125.2	121.4	120.0	118.5	114.0	110.1
DENSITY	25.0	25.092	25.253	25.256	25.303	25.350	25.409	25.509	25.565	25.662	25.687	25.730	25.71	25.918	26.032	26.159	26.312	26.439	26.506	26.570	26.613	26.648	26.700	26.741	26.765	26.796	26.835	26.879	26.898	6	26.965	8
SAL	33.086	33.078	33.112	33,115	33,129	33.162	33.272	33.351	33.326	33.468	33.476	33.407	33.464	33.503	33.587	33.674	33.802	33.968	33.974	34.024	34.025	33.980	33.977	34.051	34.096	34.080	34.098	34.138	34,184	•	34.215	34.234
TEMP	12.479	12.025	11.295	11.290	11.090	10.970	11.122	10.904	10.471	10.553	10.444	9.871	9.282	9.181	8.872	8.492	8.146	8.167	7.744	7.568	7.273	6.763	6.346	6.479	6.571	6.233	6.039	5.944	6.077	5.908	5.738	5.519
PRESS	-	S	5	15	20	25	30	35	9	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	007	425	450	475	



S C C C C C	0.00.0	0.011	0.024	0.037	0.050	0.053	0.076	0.087	0.099	0.109	0.120	0.140	0.159	0.177	0.194	0.211	0.253	0.293	0.331	0.368	0.404	0.439	0.474	0.508	0.541	0.573	0.605	0.635	0.666	969.0	0.725	0.752
SVA	272.6	271.7	263.6	258.3	257.9	257.0	246.5	225.0	219.8	208.8	204.3	154.1	186.8	176.4	172.2	169.0	163.3	157.9	148.7	145.6	142.4	140.5	136.0	133.6	130.4	127.5	125.3	122.5	120.5	117.5	115.6	1:2.2
DENSITY	23	25.244	25.330	25.387	25.392	25.403	25.515	25.741	25.797	25.913	25.962	26.070	26.149	26.260	26.307	26.341	25,406	26.466	26.567	26.603	26.641	26.663	26.714	26.743	26.778	26.811	26.836	26.869	•	$\sim$	26.948	26.985
SAL	33.354	33.352	33.351	33.371	33.374	33,380	33.407	33.566	33.604	33.687	33.703	33.691	33.759	33.861	33.899	33.895	33.937	33.976	34.033	34.081	34.113	34.091	34.109	34.141	34.126	34,128	34.127	34,155	34.162	34.174	34.191	34.220
TEMP	12.413	12.347	11.890	11.663	11.648	11.618	11.118	10.535	10.383	10.083	9.866	9.145	8.987	8.787	8.679	8.433	8.223	8.026	7.645	7.651	7.563	7.284	7.025	6.992	6.647	6.408	6.208	6.130	5.989	5.800	5.726	5.608
PRESS	-	ın	9	51	20	25	30	35	<b>4</b>	45	20	9	2	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



SUN	0.00.0	0.010	0.023	0.035	0.047	0.058	0.068	0.078	0.088	0.098	0.108	0.128	0.146	0.164	0.182	0.199	0.240	0.279	0.318	0.355	0.391	0.426	0.460	0.494	0.527	0.559	0.590	0.621	4	0.680	0.710	
SVA	262.8	258.7	254.2	233.4	220.4	213.7	206.2	200.4	200.3	199.6	198.6	189.4	182.8	176.3	173.2	170.4	159.8	154.6	150.6	146.1	141.7	138.8	136.3	132.3	130.2	126.9	124.7	121.0	119.5	117.4	115.7	
DENSITY ANOMALY	3	25.380	25.429	25.648	25.786	25.857	25.937	25.999	26.001	26.010	26.021	26.120	26.191	26.261	26.295	26.327	26.444	26.502	26.548	26.598	26.647	26.682	26.711	26.756	26.781	26.819	26.845	26.885	26.904	26.929	26.947	26.972
SAL	m	33.402	m	33.438	33.497	33.468	33.485	33.536	33.543	33.553	33.575	33.705	33.760	33.834	33.876	33.883	34.033	34.059	34.081	34.064	34.072	34.101	34.118	34.137	34.141	34.178	34.184	34.194	34.202	34.209	34.201	34.212
TEMP	12.042	11.830	11.530																							_	164	_	6.141	O	5.795	99
PRESS	-	'n	0	51	20	25	30	35	40	45	50	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499



STATION: 105 LAT: 38 53.2 N LON: 124 1.7 W DATE: 6/27/87 TIME: 1400Z

SCN D <n< th=""><th>0.000</th><th>0.011</th><th>0.024</th><th>0.037</th><th>0.049</th><th>0.060</th><th>0.071</th><th>0.082</th><th>0.092</th><th>6.102</th><th>0.112</th><th>0.132</th><th>0.150</th><th>0.168</th><th>0.185</th><th>0.203</th><th>0.244</th><th>0.283</th><th>0.322</th><th>0.360</th><th>0.396</th><th>0.432</th><th>0.461</th></n<>	0.000	0.011	0.024	0.037	0.049	0.060	0.071	0.082	0.092	6.102	0.112	0.132	0.150	0.168	0.185	0.203	0.244	0.283	0.322	0.360	0.396	0.432	0.461
SVA	276.1	276.7	257.1	243.5	231.0	219.6	215.2	214.4	207.1	202.4	198.6	186.2	182.5	178.0	174.1	171.9	157.2	155.9	154.4	147.5	143.5	139.9	138.5
DENSITY	25.197	25.191	25.398	25.542	25.675	25.795	25.842	25.851	25.930	25.981	26.022	26.153	26.195	26.244	26.287	26.311	26.470	26.488	26.509	26.584	26.630	26.672	26.690
SAL	33.262	33.260	33.354	33.390	33.427	33.416	33.425	33.431	33.516	33.600	33.647	33.791	33.809	33.838	33.863	33.875	34.028	34.060	34.072	34.082	34.099	34.149	34.153
TEMP	12.227	12.249	11.534	10.889	10.291	9.517	9.270	9.243	9.166	9.261	9.235	9.115	8.943	8.776	8.626	8.527	8.273	8.317	8.242	7.787	7.566	7.545	7.442
PRESS	-	ĸ	0	15	20	25	30	35	40	45	50	9	70	80	90	100	125	150	175	200	225	250	271











SCA	0.000	0.010	0.022	0.033	0.045	0.056	990.0	0.077	0.088	0.098	0.108	0.128	0.147	0.165	0.182	0.199	0.240	0.279	0.317	0.354	0.390	0.425	0.459	0.493	0.525	0.557	0.589	0.620	0.650	0.679	0.708	0.735
SVA	250.3	244.4	231.4	229.9	223.0	218.4	214.1	211.3	209.2	204.4	203.4	194.8	185.3	176.8	167.5	164.7	159.7	155.9	150.8	146.0	141.5	137.9	135.3	131.6	128.7	126.5	124.8	123.1	118.7	115.7	114.2	m
DENSITY	25.458	25.531	25.669	25.686	25.759	25.808	25.854	25.885	25.908	25.960	25.971	26.064	26.165	26.256	26.355	26.387	26.445	26.489	26.546	26.600	26.650	26.691	26.721	26.753	26.798	26.824	•	26.865	26.911	9	26.962	6.97
SAL	33,315	33.359	33.472	33.476	33.478	33.496	33.579	33.603	33.623	33.672	33.684	33.742	33.780	33.831	33.913	33.976	34.028	34.056	34.070	34.073	34.095	34.134	34.121	34.155	34.183	34.180	34.184	34.195	34.193	34.209	34.212	ü
TEMP	10.980	10.816	10.530	10.450	10.031	9.818	9.931	9.862	9.814	9.733	9.725	9.434	18.931	8.660	8.436	8.548	8.439	8.293	7.984	7.634	7.403	7.326	7.038	6.926	6.835	6.625	6.495	6.402	6.033	5.861	ŗ	5.683
PRESS	-	'n	9	₹.	20	25	30	35	40	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499
	•			•																												



SUN		0.012	0.027	0.042	0.057	0.072	0.087	0.101	0.115	0.129	0.143	0.168	0.192	0.213	0.234	0.254	0.299	0.341	0.380	0.418	0.455	0.491	0.526	0.561	0.594	0.627	0.659	0.691	0.721	'`	1	0.808
SVA	300.0	300.1	300.3	298.8	296.9	296.7	296.3	290.2	277.1	273.5	262.7	252.1	220.2	210.9	201.9	192.8	170.5	159.5	153.4	150.1	146.0	143.5	139.7	136.3	133.1	129.8	127.2	124.0	121.8	118.6	116.8	1:2.9
DENSITY	24.945	24.945	24.944	24.961	24.982	24.986	24.992	25.056	25.195	25.234	25.348	25.461	25.798	25.898	25.994	26.091	26.329	26.450	26.518	26.556	26.601	26.630	26.672	26.709	26.747	26.787	26.816	26.850	26.876	26.910	26.934	6
SAL	33.036	33.034	33.034	33.038	33.042	33.043	33.030	33.057	33.110	33.126	33.182	33.242	33.392	33.472	33.560	33.639	33.812	33.975	33.999	34.002	34.018	33.981	33.973	33.974	34.038	34.100	34.087	34.084	34.114	34.117	•	34.182
TEMP	12.627	12.620	12.524	12.552	12.458	12.443	12.361	12.130	11.605	11.461	11.071	10.594	9.385	9.154	8.983	8.757	8.083	8.128	7.796	7.552	7.317	6.833	6.538	6.257	6.355	6.426	6.125	5.835	5.813	5.554	5.654	5.438
PRESS	•	Ŋ	0,	15	20	25	30	35	40	45	50	90	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	499



SC N N N N N	0.000	0.015	0.033	0.050	0.066	0.082	860.0	0.114	0.129	0.145	0.160	0.189	0.217	0.244	0.270	0.293	0.346	0.392	0.435	0.474	0.512	0.548	0.583	0.618	0.651	0.684	0.716	0.747	0.778	0.808	0.837	mò.
SVA	375.2	375.2	350.7	326.7	317.6	315.4	314.9	315.0	313.0	307.9	300.5	288.1	273.4	263.2	244.5	223.3	197.3	176.1	163.1	154.3	148.2	141.7	138.2	135.8	133.3	130.2	126.0	123.8	119.8	117.3	115.3	112.7
DENSITY	24.156	24.158	24.415	24.669	24.765	24.790	24.795	24.796	24.818	24.872	24.951	25.082	25.239	25.348	25.546	25.771	26.048	26.275	25.415	26.511	26.577	25.648	26.689	26.718	26.747	26.782	26.827	25.850	26.897	26.928	28.951	26.980
SAL	32.529	32.526	32.561	32,658	32.805	32.807	32.812	32.815	32.779	32.744	32.722	32.770	32.895	32.979	33.148	33.302	33.574	33.758	33.861	33.928	33.948	33.952	34.042	34.061	34.065	34.079	34.082	34.056	34.136	34,191	34.194	34.209
TEMP	14.588	14.571	13.452	12.541	12.632	12.512	12.503	12.510	12.252	11.817	11.290	10.757	10.412	10.160	19.761	9.116	8.704	8.159	7.761	7.456	7.095	6.597	6.815	6.712	6.540	6.336	6.004	5.652	5.784	5.885	5.721	5.580
PRESS	•	'n	ō	15	20	25	30	35	40	45	20	9	70	080	06	100	125	150	175	200	225	250	275	300	325	350	375	700	425	450	475	499



SC N	0.00.0	0.015	0.033	0.050	0.067	0.084	0.100	0.116	0.132	0.148	0.164	0.195	0.225	0.253	0.280	0.304	0.359	907.0	0.449	0.489	0.527	0.564	0.599	0.634	0.667	0.700	0.732	0.763	0.794	0.824	0.853	0.880
SVA	374.0	373.3	353.8	337.1	330.9	328.1	326.2	325.8	320.6	318.7	318.2	302.2	290.4	274.3	255.6	238.8	199.4	176.1	165.6	154.8	149.6	144.1	140.6	135.9	131.5	129.5	127.2	124.1	120.9	118.4	114.7	111.4
DENSITY	÷	24.177	24.383	24.559	24.625	24.656	24.677	24.683	24.738	24.760	24.766	24.936	25.060	25.232	25.429	25.607	26.026	26.275	26.389	26.505	26.564	26.624	26.662	26.715	26.762	26.784	26.812	26.844	26.879	26.914	26.955	26.932
SAL	32.502	32.509	32.577	32.620	32.637	32.665	32.677	32.683	32.777	32.792	32.765	32.759	32.758	32.888	33.035	33.178	33.530	33.758	33.854	33.934	33.967	33.978	33.958	34.014	34.009	ą.	9	34.003	ó	5	34.173	7
TEMP	14.429	14.416	13.674	12.953	12.682	12.633	12.574	12.570	12.659	12.607	12.465	11.532	10.830	10.426	9.933	9.530	8.626	8.159	7.900	7.528	7.301	6.925	6.521	6.454	90	5.788	5.809	5.351	5	5.622	54	5.390
PRESS	-	'n	5	15	20	25	30	35	07	45	50	9	70	80	06	100	125	150	175	200	225	250	275	360	325	350	375	400	425	450	475	499



SUN	0.00.0	0.012	0.026	0.040	0.054	0.067	0.079	0.092	0.104	0.115	0.125	0.146	0.156	0.186	0.205	0.223	0.265	0.306	0.345	0.382	0.419	0.455	0.490	0.525	0.558	0.591	0.623	0.655	0.685	0.715	0.745	0.772
SVA	296.5	294.8	285.2	273.5	269.3	253.4	248.2	241.6	230.6	220.0	211.9	202.5	198.8	190.5	185.0	176.1	165.8	157.5	153.0	148.6	146.0	142.1	138.8	136.3	133.6	129.7	126.6	123.7	121.8	118.8	115.9	114.1
DENSITY	24.982	25.001	25.103	25.227	25.272	25.440	25.495	25.566	25.682	25.795	25.881	25.982	26.033	26.112	26.172	26.267	26,380	26.470	26.521	26.573	26.604	26.648	26.686	26.715	26.743	26.789	26.825	26.859	26.881	26.913	26.944	26.965
SAL	33.058	ω	33.056	33.119	33.140	33.134	33,209	33,223	33,278	33.390	33,490	33,544	33.569	33.656	33.738	33.831	33.917	33.927	33,991	34.084	34.110	34.107	34.131	34.141	34.052	34,131	34.169	34.188	34.200	34,192	34.182	34.186
TEMP	12.522	12,461	87	ч.	٠,	10.330	m)	9.995	9.551	9.394	9.346	8.977	8.843	8.709	8.735	8.589	8.294	7.736	7.730	7.875	7.802	7.481	7.345	7.194	6.472	6.596	6.549	6.409	6.310	6.003	5.694	ų
PRESS	-	<b>v</b> o	5	15	20	25	30	35	07	45	20	9	70	80	06	100	125	150	175	200	225	250	275	300	325	350	375	997	425	450	475	499









9

4.0

100-

200-

PRESSURE (DB)

LON: 123 54.4 W TIME: 0400Z STATION: 114 LAT: 38 25.6 N DATE: 6/28/87

25.0

24.0

300-

400-

NUX N	0.000	0.011	0.024	0.037	0.050	0.061	0.072	0.083	0.094	0.104	0.114	0.134	0.154	0.173	0.191	0.209	0.252	0.293	0.332	0.371	0.409	0.446	0.4E3	0.518	0.553	0.586	0.619	0.650	0.681	0.711	4	0.768
SVA	271.0	270.9	259.8	256.3	246.8	225.7	217.1	213.7	207.9	205.6	204.6	196.8	190.1	186.0	179.1	176.1	170.8	158.3	154.5	153.7	150.2	147.8	145.1	140.5	135.5	131.4	127.9	124.8	120.9	119.2	117.7	114.6
DENSITY	5.25	25.252	25.370	25.408	25.509	25.732	25.823	25.860	25.922	25.947	25.958	26.043	26.115	26.160	26.234	26.267	26.328	26.463	26.508	26.520	26.561	25.589	26.620	26.673	26.725	26.773	26.812	26.847	26.888	26.909	26.928	26.961
SAL	33.379	33.369	33.399	33.433	33.493	33.625	33.681	33.674	33.674	33.695	33.681	33,771	33.819	33.837	33.886	33.912	33.957	34.046	34.080	34.080	34.091	34.091	34.067	34.126	34.075	34.160	34.159	34.182	34,163	34.186	34.190	34.199
TEMP	12.425	12.373	11.874	11.810	11.516	10.852	10.580	10.332	9.973	9.919	9.787	9.701	9.488	9.300	9.075	8.994	8.834	8.410	8.294	8.211	7.993	7.803	7.457	7.414	6.745	6.883	6.589	6.461	6.029	6.007	5.882	5.673
PRESS	-	'n	5	15	20	25	30	35	9	45	20	9	20	80	06	001	125	150	175	200	225	250	275	300	325	350	375	400	425	450	475	



Figure 39. Listing of temperature at selected pressures and profiles of temperature (T) for all XBT stations of cruise CTZ2.

TEMP	5.480	5.410	5.280	4.800	4.700																											
PRESS	550	601	650	701	750																											
TEMP	13.650	12.970	12.950	12.920	12.730	12.060	11,920	7.	11.480	5	5	9.830	55	80	49	9.590	9.130	8.830	8.500	8.230	7.780	7.610	7.380	7.380	7.020	7.040	6.810	6.510	6.280	03	4	5.820
PRESS	-	'n	2	51	20	<b>5</b> 6	30	35	<b>9</b>	46	20	9	70	<b>6</b> 0	06	100	125	150	175	200	225	250	276	300	325	350	375	400	425	450	475	200



STATION: 426 LAT: 38 43.1 N LON: 124 31.2 W DATE: 6/18/87

TEMP	5.290	4.980	4.870	4.575	4.500																											
PRESS	550	601	650	701	750																											
TEMP	12.760	12.765	12.750	12.735	12.730	12.710	12.690	12.530	11.780	10.815	10.525	9.920	9.325	9.200	8.845	8.675	8.835	8.800	8.590	8.100	7.790	7.535	7.340	7.110			6.560	6.300	6.080	9	8	2.640
PRESS	-	ø	5	16	20	26	30	36	04	46	50	9	70	5	91	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 479 LAT: 38 13.3 N LON: 124 5.6 W DATE: 6/22/87

TEMP	5.880	5.505	5.315	5.340	5.130																											
PRESS	550	601	650	701	750																											
TEMP	Ó	13.030	M.0	13.010	12.910	12.230	12.050	7	ø	0	.76	a	11.200	10.200	9.975	9.645	9.285	8.250	8.700	8.100	7.840	7.640	7.650	7.530	7.320	7.190	6.880	6.535	6.345	6.245	2	6.020
PRESS	-	ø	5	16	20	<b>56</b>	30	36	9	46	20	9	70	<b>8</b> 0	16	100	125	15	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 480 LAT: 38 5.2 N LON: 124 6.1 W DATE: 6/22/87 TIME: 08532

TEMP	5.220				4.550																											
PRESS	550	109	650	107	750																											
TEMP	4.	٦.	13.430	13.430	13,400	12.350	11.880	12.135	11.870	11.035	10.585	10.220	9.860	9.430	9.320	8.635	8.583	8.430	7.800	7.660	7.480	7.560	7.375	7.280	7.000	6.840	6.730	6.380	6.040	•	63	5.475
PRESS	-	9	0	16	20	26	30	36	40	46	20	90	70	8	5	001	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 481 LAT: 38 9.9 N LON: 124 9.1 W DATE: 6/22/87 TIME: 1000Z





STATION: 482 LAT: 38 14.5 N LON: 124 11.4 W DATE: 6/22/87

TEMP	6.105	5.725	5.410	5.395	5.295																											
PRESS	550	601	650	701	750																											
TEMP	13.000	12.965	12.950	12.915	12.830	12.850	11.610	066.6	9.950	9.800	9.740	10.070	10.065	9.665	9.415	9.255	8.985	8.780	8.570	8.375	B.190	7.910	7.635	7.489	7.330	6.978	6.780	6.640	6.495	6.380	6.510	6.270
PRESS	-	9	5	16	20	26	30	36	9	46	20	80	70	<b>.8</b>	16	100	125	151	175	200	225	250	276	. 300	325	• 350	376	700	426	450	475	501



STATION: 483 LAT: 38 35.7 N LON: 124 22.1 W DATE: 6/22/87 TIME: 1553Z

TEMP	5.635	5.445	5.045	4.860	4.720																											
PRESS	550	601	650	707	750																											
TEMP	12.590	12.560	12.525	12.425	M,	12.205	11.460	9.980	9.940	9.825	9.760	•	10.015	9.900	9.580	9.380	9.030	8.840	8.590	8.435	8.200	7.975	7.725	7.460	7.260	7.020	6.735	6.570	6.450	6.290	5.17	5.880
PRESS	-	φ	2	9	20	26	30	36	9	4	20	9	70	89	9	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 484 LAT: 38 33.6 N LON: 124 24.0 W DATE: 6/22/87 TIME: 1911Z

TEMP	5.930	5.715	5.495	5.040	4.970																											
PRESS	550	601	650	701	750																											
TEMP	12.725	12.635	12.615	12.575	12.580	12.550	12.270	10.650	10.410	10.115	9.980	9.640	9.135	9.335	8.975	8.915	8.550	8.210	8.150	8.040	7.680	7.680	7.420	7.350	7.270	7.030	6.840	6.515	6.300	6.420	6.270	6.260
PRESS	-	ø	5	16	20	26	30	36	9	46	50	9	70	81	16	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 485 LAT: 38 28.2 N LON: 124 24.7 W DATE: 6/22/87

TEMP	98	9	5.520	5.525																												
PRESS	550	109	650	107	750																											
TEMP		4.0	39	12.405	12.360	12.220	12.165	12.115	12.120	11.030	10.800	9.620	9.315	9.800	9.335	9.410	9.145	8.660	8.530	8.340	8.590	7.875	7.685	7.310	7.620	7.230	7.435	6.735	6.885	7.145	4	6.135
PRESS	-	ø	5	91	20	26	30	36	9	46	20	90	20	18	9	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 486 LAT: 38 22.6 N LON: 124 25.9 W DATE: 6/22/87 TIME: 21002

TEMP	5.190	4.905	4.830	4.620	4.440																											
PRESS	550	601	650	701	750																											
TEMP	12.390	12.365	12.340	12.350	12.350	12.345	12.320	12.085	11.840	11.250	10.455	9.780	9.075	9.145	8.885	8.095	8.450	7.960	7.650	7.350	7.250	7.215	6.980	6.910	6.760	6.560	6.260	6.100	5.800	5.645	•	5.265
PRESS	-	•	2	\$	20	<b>7</b> 6	30	36	9	46	20	9	70	<u>=</u>	5	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 487 LAT: 38 18.5 N LON: 124 26.9 W DATE: 6/22/87 TIME: 2148Z

TEMP	5.175	4.995	4.775	4.625																												
PRESS	550	601	650	769																												
TEMP	12.840	12.800	12.765	12.760	12.730	12.505	10.790	10.450	10.970	11.295	11.380	10.350	9.575	9.185	9.185	8.520	7.855	7.860	7.610	7.335	6.990	6.650	6.665	6.310	6.000	5.951	5.795	5.860	5.670	5.644	5.600	5.430
PRESS	-	φ		16	20	26	30	36	40	46	20	9	70	18	16	100	125	151	175	200	225	250	276	300	325	• 350	376	400	426	• 450	475	501



STATION: 48B LAT: 38 13.8 N LON: 124 26.8 W DATE: 6/22/87 TIME: 22412

TEMP	5.600	5.455	5.180	5.140	4.845																											
PRESS	550	601	650	701	750																											
TEMP	13.440	13,435	13.415	13.400	13.260	12.420	11.545	11.520	11.310	11.395	11.130	11.410	10.265	9.505	9.105	8.755	8.465	8.020	7.810	7.545	7.500	7.140	6.935	6.770	6.520	6.370	6.230	6.145	6.095	5.970	5.810	5.740
PRESS	-	φ		16	20	<b>5</b> 6	30	36	9	46	20	9	70	89	16	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 489 LAT: 38 8.1 N LON: 124 26.0 W DATE: 6/22/87 TIME: 23472

TEMP	5.375	5.215	5.165	4.920	4.755																											
PRESS	550	601	650	701	750																											
TEMP	13.475	4	13.420	13.410	13.420	13.395		12.495	11.720	11.620	12.160	11.240	10.560	9.845	9.500	9.115	8.495	7.870	7.580	7.215	7.180	7.035	6.825	6.600	6.480	6.280	6.010	5.930	5.790	5.720	68	5.545
PRESS	-	9	5	16	20	26	30	36	9	46	20	9	70	60	6	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 490 LAT: 38 3.8 N LON: 124 26.1 W DATE: 6/23/87 TIME: 0030Z

TEMP	4	24	5.205	Ξ.																												
PRESS	550	• 601	650	701	750																											
TEMP	13.350	13.260	13.235	13.220	13.220	13.180	13.170	13.180	13.100	12.215	Ö	12.290	11.325	9.825	9.537	9.255	8.700	8.280	7.880	7.749	7.490	7.187	7.024	6.900	6.640	6.350	6.255	6.035	5.975	5.820	5.850	99
PRESS	-	9	5	16	20	26	30	36	40	46	50	9	70	80	+ 91	100	125	151	175	• 200	225	* 250	• 276	300	325	350	376	400	426	450	475	501



STATION: 491 LAT: 37 58.5 N LON: 124 26.3 W DATE: 6/23/87 TIME: 0136Z

TEMP	5.530	5.250	5.230	5.140	5.030																											
PRESS	550	109	650	701	750																											
TEMP	13.225	13.220	13.205	13.190	13.200	13,105	12.350	12.137	ó	11.902	11.635	10.590	10.260	9.800	9.410	9.440	8.565	8.160	7.700	7.425	7.070	6.795	6.710	6.610	6.420	6.350	6.095	5.875	5.848	5.843	80	5.720
PRESS	-	φ	2	16	20	79	30	36	9	46	20	9	2	<b>8</b>	6	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501
								•	٠	•																			•	•		



STATION: 492 LAT: 38 3.9 N LON: 124 28.9 W DATE: 6/23/87 TIME: 03232

TEMP	5.080	4.835	4.685	4.575																												
PRESS	550	601	650	682																												
TEMP	12.335		w	12.370	'n	12.480	12.525	M	12.240	12.020	11.770	4	10.230	73	8.935	8.940	8.270	8.170	7.930	7.615	8	2	8	6.640	.6	7.			5.733	•	~	
PRESS	-	ø	0	16	20	<b>5</b> 6	30	36	40	4	20	80	70	81	91	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 493 LAT: 38 26.8 N LON: 124 46.6 W DATE: 6/23/87 TIME: 1448Z

PRESS TEMP

1 10.840
6 10.735
10 10.500
10 10.290
20 10.290
20 10.290
30 10.135
36 10.105
40 10.090
46 10.090
46 10.015
50 9.860
60 9.240
70 9.085
81 8.830
98 8.720



STATION: 494 LAT: 37 57.1 N LON: 123 9.7 W DATE: 6/25/87

1 10.415 6 10.375 10 10.270 16 10.235 20 10.210 26 10.165 30 10.075 36 9.955 46 9.955 46 9.955 50 9.390 70 9.105 81 8.945 110 8.930



STATION: 495 LAT: 37 56.1 N LON: 123 20.8 W DATE: 6/25/87 TIME: 0930Z





STATION: 496 LAT: 37 55.7 N LON: 123 30.6 W DATE: 6/25/87 TIME: 1018Z





STATION: 497 LAT: 37 55.2 N LON: 123 40.6 W DATE: 6/25/87

TEMP	5.150	4.980	4.865	4.725	4.575																											
PRESS	550	109	650	101	750																											
TEMP	12.205	11.370	10.990	10.925	10.870	10.800	10.855	10.685	10.690	10.630	10.250	9.780	9.400	8.910	8.750	8.580	8.425	8.220	8.020	7.700	7.490	7.225	6.950	7.150	6.790	6.620	6.425	6.110	93	5.805	60	5.470
PRESS		9	0	91	20	26	30	36	07	46	20	9	70	<b>8</b>	16	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 498 LAT: 37 54.7 N LON: 123 50.9 W DATE: 6/25/87 TIME: 1153Z

TEMP	5.320	5.140	4.995	4.800																												
PRESS	550	601	650	701	750																											
TEMP	11.795	11.745	11.745	11.685	•	.5	11.590	11.400	11.270	11.235	11.225	10.310	9.570	9.270	8.750	8.550	8.910	8.270	7.900	7.680	7.480	7.390	6.875	6.640	6.450	6.220	6.115	6.085	5.890	5.755	5.640	•
PRESS	-	φ	0	16	20	26	30	36	9	46	20	90	70		10	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 499 LAT: 37 54.0 N LON: 124 1.0 W DATE: 6/25/87

TEMP	5.325	5.120	4.955	4.800	4.615																											
PRESS	550	601	650	701	750																											
TEMP	13.440	13.420	13.410	13.410	4	13.400	13.355			11.835	11.495	11.430	11.415	10.070	9.575	9.140	8.430	8.730	8.520	8.090	7.530	7.190	7.030	6.750	6.560	6.640	6.650	6.160	03	5.845	5.640	5.435
PRESS	-	Ø	10	9	20	26	30	36	<b>9</b>	46	20	9	70	8	9	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 500 LAT: 37 53.4 N LON: 124 9.6 W DATE: 6/25/87

TEMP	5.105	4.885	4.715	4.595	4.480																											
PRESS	550	601	650	701	750																											
TEMP	12.860	12.840	12.830	12.640	12.480	12.325	12.375	12.510	12.690	12.560	12.310	11.430	10.935	10.485	9.952	9.870	8.470	8.040	7.740	7.445	7.210	6.830	6.455	6.490	6.150	6.110	5.785	5.760	5.590	5.545	5.430	5.120
PRESS	-	9	5	16	20	26	30	36	9	46	50	9	70	<b>8</b> 0	91	100	125	151	175	200	225	250	276	300	325	350	376	700	426	450	475	501



STATION: 501 LAT: 37 52.5 N LON: 124 19.6 W DATE: 6/25/87 TIME: 1418Z

TEMP	5.260	98	4.855	4.775	4.570																											
PRESS	550	601	650	701	750																											
TEMP	13.305	13.280	13.260	13,255	13.250	13.215	13.215	13.155	12.750	11.545	11.280	11.050	10.628	10.364	10.124	10.065	8.995	8.500	7.810	7.530	7.200	6.930	6.645	6.470	6.130	5.820	5.692	5.580	5.665	5.625	5.480	5.500
PRESS	-	40	5	16		9	0	9	0			60	70	. 8	16	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 502 LAT: 37 52.3 N LON: 124 29.6 W DATE: 6/25/87

TEMP	5.005	3	4.755	4.635	4.490																											
PRESS	550																															
TEMP	13.125	13.100	13.065	12.965	12.910	12.840	12.555	12.215	12.120	11,495	10.925	10.320	10.370	10.745	10.300	9.785	9.055	8.710	8.110	7.595	7.120	6.710	6.505	6.190	5.850	5.710	5.585	5.465	5.315	5.310	5.350	5.140
PRESS	-											9				100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 503 LAT: 37 50.3 N LON: 124 38.1 W DATE: 6/25/87

TEMP	6	4.900	4.685	4.550	4.385																											
PRESS	550	601	650	701	750																											
TEMP	11.655	11.365	11.030	10.950	10.930	8.	11.010	10.700	8	10.330	10.310	9.790	9.210	8.805	9.035	8.885	8.330	7.840	7.870	7.975	7.320	7.380	7.220	6.910	6.590	6.470	6.300	6.225	5.950	5.695	5.590	5.480
PRESS	-	40	5	9	20	26	30	36	7	46	20	9	70	<b>∞</b>	6	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 906 LAT: 38 23.1 N LON: 124 15.4 W DATE: 6/26/87 TIME: 1823Z





STATION: 907 LAT: 38 22.9 N LON: 124 14.8 W DATE: 6/26/87

TEMP	5.500	23	5.100	2																												
PRESS	550	601	650	673																												
TEMP	12.930	12.880	12.835	11.510	11.310	10.905	10.660	10.385	10.290	9.815	9.805	9.490	9.545	9.545	9.150	8.675	8.365	8.020	7.790	7.540	7.630	7.515	7.275	7.160	7.070	6.780	6.625	6.450	6.280		Ň	5.760
PRESS	-	φ	5	9	20	<b>5</b> 6	30	36	9	46	20	80	2	<b>6</b> 0	<b>.</b>	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 908 LAT: 39 3.1 N LON: 124 3.3 W DATE: 6/27/87

TEMP	5.500	7	5.250																													
PRESS	550	601	650	682																												
TEMP	12.905	12.525	$\sim$	12.030	11.900	11.795	11.640	10.505	10.140	9.425	-	8.970	8.905	8.920	8.750	8.765	8.730	8.290	7.910	7.690	7.400	7.370	7.135	6.950	6.760	6.520	6.345	6.170	6.135	5.910	5.870	5.800
PRESS	-	9	5	16	20	26	30	36	9	46	50	9	70		16	100	125	151	175	200	225	250	276	300	325	350	376	400	426	450	475	501



STATION: 909 LAT: 38 57.0 N LON: 124 2.9 W DATE: 6/27/87

## REFERENCES

- Lewis, E. L. and R. G. Perkin, 1981. The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res., 28A, 307-328.
- UNESCO, 1987. International Oceanographic Tables, Vol. 4, National Institute of Oceanography of Great Britain; and UNESCO, Paris.

## INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Prof. Curtis Collins Dr. Steven R. Ramp Dr. Mary L. Batteen Dr. David C. Smith, IV Mr. Timothy P. Stanton Ms. Arlene A. Bird Mr. Paul Jessen	1 1 1 1 1 1 30
2.	Office of Naval Research (ONR) 800 N. Quincy St. Arlington, VA 22217	
	Dr. Tom Kinder, Code 1122CS Dr. Alan Brandt, Code 1122CS Dr. Eric Hartwig Dr. David Evans, Code 1122PO Dr. Ann Bucklin	1 1 1 1
3.	Institute for Naval Oceanography Bldg 1100 Room 311 NSTL, MS 39529	
	Dr. Christopher N.K. Mooers LCDR J. Edward Johnson, USN	1 1
4.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Dr. Robert L. Smith Dr. Adriana Huyer Dr. P. Michael Kosro Dr. Mark R. Abbott Dr. John S. Allen Dr. Tim Cowles Dr. David Kadco Dr. Ted Strub	1 1 1 1 1 1
5.	Jet Propulsion Laboratory (JPL) California Institute of Technology 4800 Oak Grove Road	
	Pasadena, CA 91109 Dr. Curt Davis	1

6.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Dr. Pearn P. Niiler Prof. Joe Reid Dr. Tom Hayward Dr. Nan Bray	1 1 1
7.	Woods Hole Oceanographic Institution Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Dr. Robert C. Beardsley	2 1
8.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Barbara Hickey	1
9.	University of Southern California Los Angeles, CA 90089	
	Dr. Burton H. Jones Dr. Libe Washburn	1
10.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
11.	Dudley Knox Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2
12.	Research Administration (Code 012) Naval Postgraduate School Monterey, CA 93943	1
13.	Monterey Bay Aquarium Research Institute 160 Central Ave Pacific Grove, CA 93950	
	Dr. Richard Barber Dr. Francisco Chavez	1
14.	Department of Meteorology Naval Postgraduate School Monterey, CA 93943	
	Dr. Robert L. Haney	1

15.	Texas A & M University College Station, TX 77843	
	Dr. Eileen Hoffman Dr. David Brooks	1
16.	EG & G Oceanographic Services 77 Rumford Ave Waltham, MA 02154	
	Dr. Bruce Magnell Dr. Cheryl Greengrove	1
17.	NASA/Goddard Space Flight Center Laboratory for Oceans Greenbelt, MD 20771	
	Dr. Michelle Rienecker	1
18.	Moss Landing Marine Laboratory Moss Landing, CA 95039	
	Dr. John Martin	1
19.	Fleet Numerical Oceanography Center Monterey, CA 93943	
	Dr. Doug McLain	1
20.	National Oceanographic Data Center National Oceanic & Atmospheric Administration La Jolla, CA 92093	
	Mr. Nelson Ross	1