① 数学検定 解答

1	(1)	できる立体は、半径 CA の円を底面とする高さ BC の円錐である。 $ \triangle ABC$ において、三平方の定理より $ CA^2 = AB^2 - BC^2 \\ = 11^2 - 6^2 \\ = 121 - 36 \\ = 85 \\ $ よって、求める立体の体積は $ CA^2 \times \pi \times BC \times \frac{1}{3} = 85 \times \pi \times 6 \times \frac{1}{3} \\ = 170 \pi (\text{cm}^3) $ (答) $170 \pi \text{cm}^3$
	(2)	(答) 108 π cm³
2	(3)	人形AとBの高さの比が $15:20=3:4$ だから,人形AとBの体積の比は $3^3:4^3=27:64$ よって,人形Bの体積は $810\times\frac{64}{27}=1920~\rm{(cm^3)}$

^{しらん} じゅけん かいきゅう かいとうよう し かくにん ふと ぶ ぶん かなら き にゅう ※自分が受検する階級の解答用紙であるか確認してください。太わくの部分は必ず記入してください。

1	ון	ふりか	٠,٩
ここに2次検定用のバーコードシールを		姓姓	
貼ってください。		せいわ	んがって
		生年	F月E
		性	
		 住	が新
		1± 	РЛ
		l	

	ふりがな		しゅけん! 受検	
	姓	名	_	
	生年月日	大正(昭和)(平成)(西暦)	年 月	にち うまれ 日 生
ľ	性別(□	をぬりつぶしてください) 男 🏻 🖁 💆	年 齢	歳
	じゅう しょ			
	住 所			10

実用数学技能検定 準2級2次 (No.2)

3	(4)	$\underline{(答) \ n=6}$
4	(5)	(答) (一7, 0), (1, 0)
	(6)	$2次方程式 x^2 + (k-6)x - 2k + 17 = 0$ の判別式を D とすると $D = (k-6)^2 - 4(-2k+17)$ $= k^2 - 12k + 36 + 8k - 68$ $= k^2 - 4k - 32$ 放物線と x 軸が異なる 2 つの共有点をもつとき, $D > 0$ だから $k^2 - 4k - 32 > 0$ $(k+4)(k-8) > 0$ $k < -4$ 、 $8 < k$
5	(7)	$\sin\theta + \cos\theta = -\frac{3}{4}$ の両辺を 2乗すると $\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{9}{16}$ $\sin^2\theta + \cos^2\theta = 1$ より $1 + 2\sin\theta\cos\theta = \frac{9}{16}$ $2\sin\theta\cos\theta = -\frac{7}{16}$ $\sin\theta\cos\theta = -\frac{7}{32}$

	(8)	(答) 56
6	(9)	求める球の入れ方の総数は、異なる5種類のものから重複を許して7個を選ぶ重複組合せの総数に等しい。 よって ${}_5H_7 = {}_{5+7-1}C_7$ $= {}_{11}C_7$ $= \frac{11\cdot 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5}{7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}$ $= 330$ (通り)
7	(10)	$ \begin{array}{c c} n & \underline{\sigma(n)} \\ 120 & 3 \end{array} $