EECS 270 W25 Midterm II Exam Review

March 27th, 2025 By: Mick Gordinier

Midterm Exam Logistics (Date/Time)

- Midterm Exam Date/Time: Tuesday April 1st, 6:00 8:00 PM
 - O A L: 220 CHRYS
 - O M R: 1010 DOW
 - O S V: 1017 DOW
 - O W Z: 1018 DOW
- SSD Accommodations
 - Tuesday April 1, 5:00 pm 8:00 pm, EECS 270 Lab (2322 EECS)
- Closed book except for TWO 8.5"x11" sheet
- No electronics

Midterm II Exam Logistics (Topics Covered)

- 1. Exam 1 Coverage (Watch previous Midterm Review)
- 2. Latches & Flip-Flops
- 3. Sequential Circuit Analysis / Design
- 4. Two Level Logic Minimization
- 5. Sequential Building Blocks (Counters/Shift Regs/...)
- 6. Register Transfer Logic (RTL) Design

Let's Get Started

The 2 Types of Digital Logic Circuits (Combinational vs. Sequential)

Combinational Circuits Overview (Projects 1 - 4)

- Outputs depend ONLY on present combination of current inputs
- Stateless / No Memory
- Verilog 'assign' Continuous assignment to a wire data type
- Verilog 'always @*' Procedural "combinational" block

Sequential Circuits Overview (Project 5 - 7)

- Combinational Circuit + Memory Element
- Outputs depend on present combination of inputs and current state
- Use of memory to store previous state/output

Latches and Flip-Flops (The Memory Element)

Latches Overview

- Basic type of memory storage unit
 - Used as temporary storage elements to store binary information
 - Can hold/store 1 bit of information.
- NO CLOCK === Asynchronous
 - Level-Sensitive Devices
 - Immediate changes to Output

S	R	Q	Q'	Name
0	0			
0	1			
1	0			
1	1			

S	R	Q	Q'	Name
0	0			
0	1			
1	0	1		
1	1			

S	R	Q	Q'	Name
0	0			
0	1			
1	0	1	0	
1	1			

S	R	Q	Q'	Name
0	0			
0	1			
1	0	1	0	SET
1	1			

S	R	Q	Q'	Name
0	0			
0	1	0		
1	0	1	0	SET
1	1			

S	R	Q	Q'	Name
0	0			
0	1	0	1	
1	0	1	0	SET
1	1			

S	R	Q	Q'	Name
0	0			
0	1	0	1	RESET
1	0	1	0	SET
1	1			

S	R	Q	Q'	Name
0	0	Q		
0	1	0	1	RESET
1	0	1	0	SET
1	1			

S	R	Q	Q'	Name
0	0	Q	Q'	
0	1	0	1	RESET
1	0	1	0	SET
1	1			

S	R	Q	Q'	Name
0	0	Q	Q'	HOLD
0	1	0	1	RESET
1	0	1	0	SET
1	1			

S	R	Q	Q'	Name
0	0	Q	Q'	HOLD
0	1	0	1	RESET
1	0	1	0	SET
1	1	0		

S	R	Q	Q'	Name
0	0	Q	Q'	HOLD
0	1	0	1	RESET
1	0	1	0	SET
1	1	0	0	

S	R	Q	Q'	Name
0	0	Q	Q'	HOLD
0	1	0	1	RESET
1	0	1	0	SET
1	1	0	0	INVALID

Overall Notes about Set-Reset (SR) Latches

- Simplest form of a latch
 - 2-inputs: Set (S) and Reset (R)
 - + Can now hold a value! (When Set and Reset = 0)

- Forms the basic building blocks of all other types of flip-flops
- ISSUE: Has an "Invalid" state

S	R	Q	Q'	Name
0	0	Q	Q'	HOLD
0	1	0	1	RESET
1	0	1	0	SET
1	1	0	0	INVALID

Bonus: Building an SR Latch in Verilog

```
module SR_Latch_Assign (
    input set, reset,
    output Q, Q_not);

assign Q = ~(reset | Q_not);
assign Q_not = ~(set | Q);
endmodule
```

```
module SR_Latch_Procedural (
    input set, reset,
    output reg Q, Q_not);

always @(*) begin
    Q = ~(reset | Q_not);
    Q_not = ~(set | Q);
    end
endmodule
```

Level-Sensitive (Asynchronous)!

Bonus: Viewing SR Latch Invalid Behavior!

output Q, Q not

endmodule

assign #1 Q = \sim (reset | Q not);

assign #1 Q not = \sim (set | Q);

initial begin

endmodule

set = 1'b1; #5; reset = 1'b1; #5;

set = 1'b0; reset = 1'b0; #1;

set = 1'b0; reset = 1'b0;

D	S	R	Q	Q'	Name
0					
1					

D	S	R	Q	Q'	Name
0	0	1	0	1	RESET
1					

D	S	R	Q	Q'	Name
0	0	1	0	1	RESET
1	1	0	1	0	SET

What's Good/Bad about D-Latches?

D	S	R	Q	Q'	Name
0	0	1	0	1	RESET
1	1	0	1	0	SET

- + No more Invalid State :D
- BUT NO MORE HOLD STATE :O
- → Has no state (Not sequential)

BONUS: JK-Latches (There are many different latches)

J	K	Q	Q'	Name
0	0			
0	1			
1	0			
1	1			

SR Latch

BONUS: JK-Latches (There are many different latches)

J	K	Q	Q'	Name
0	0	Q	Q'	HOLD
0	1	0	1	RESET
1	0	1	0	SET
1	1	Q'	Q	Toggle

SR Latch

(Positive) Enabled Level-Sensitive D-Latch

- Use of a Enable ("Clock") (BUT STILL NOT SYNCHRONOUS)
- Whenever C is high → Q = D (Level-Sensitive to D) (Set/Reset)
- Whenever C is low → Q holds (Hold)

С	D	S	R	Q	QB	Name
0	0	0	0	Q	QB	HOLD
0	1	0	0	Q	QB	HOLD
1	0	0	1	0	1	RESET
1	1	1	0	1	0	SET

Asynchronous vs. Synchronous in Logic Design

- Asynchronous Circuits
 - Circuit operates without a clock signal
- Synchronous Circuits
 - Samples inputs only once per clock cycle

Level-Sensitive Asynchronous D-Latch

Edge-Triggered Synchronous D Flip-Flop

(Positive) Edge-Triggered D Flip-Flop Timing

- When CLK is Low → Leader is open & Follower is closed
 - D will be able to affect QL
 - QL WILL NOT be able to affect Q
- When CLK is High → Leader is closed & Follower is open
 - o D WILL NOT be able to affect QL
 - QL can now affect Q
- + Clocks D on positive edge of CLK

Finite State Machines Overview

V

- Mathematical model of *sequential* behavior
- Applications: hardware, software, protocols, etc.
- Specified by two functions:

Next State:
$$X^+ = f(X,Y)$$

Output:
$$Z = g(X)$$
 or $g(X,Y)$

where

- X and X^+ are current and next state variables
- Y are input variables
- Z are output variables
- A state is a complete assignment to (valuation of) the state variables X
- Next State function specifies the *transitions* between states
- Output function specifies the *observable* outputs of the state machine

The 3 Main Components of Sequential Circuits

Component 1. Next State Logic (Combinational)

- Combinationally determining the next state = f(current state, current inputs)
- Generating <u>excitation equation</u> (Equations for next state D)
- Create excitation equations for the circuit below

Component 1. Next State Logic (Combinational)

- Combinationally determining the next state = f(current state, current inputs)
- Generating <u>excitation equation</u> (Equations for next state D)

$$D_0 = EN XOR Q_0$$

 $D_1 = EN * (Q_0 XOR Q_1) + (EN' * Q_1)$

Component 2. Memory Logic (Sequential)

- Sequentially storing the new state (Generating Transition Equations)
- NOTE: This logic should be very minimal
 - o In our designs in 270, we treat transition equations = excitation equations

$$Q_0^+ \le D_0 = EN XOR Q_0$$

 $Q_1^+ \le D_1 = EN * (Q_0 XOR Q_1) + (EN' * Q_1)$

- Combinationally determining the outputs (Generating Output Equations)
- Is our circuit a moore or a mealy machine?

What do we mean when we call something a Moore/Mealy Machine?

- Defining how the outputs are determined in our machine
- What's the difference between a Moore and Mealy machine?

- Defining how the outputs are determined in our machine
- Moore Machine Outputs can be determine from just the current state of our system
- Mealy Machine Outputs are determined by both the current state and current combination of inputs into the system

- Combinationally determining the outputs (Generating Output Equations)
- Is our circuit a moore or a mealy machine?

- Combinationally determining the outputs (Generating Output Equations)
- Moore Machine Output QTR only dependent on current state Q

- Combinationally determining the outputs (Generating Output Equations)
- Moore Machine Output QTR only dependent on current state Q

$$QTR = Q_0 & Q_0$$

Putting it all together (From Circuit → Tables/Equations)

Transition Equations:

$$Q_0^+ = D_0 = EN \oplus Q_0$$

$$Q_1^+ = D_1 = EN \cdot (Q_0 \oplus Q_1) + \overline{EN} \cdot Q_1$$

Output Equation:

$$QTR = Q_0 \cdot Q_1$$

Transition/Output Table:

input								
	current state		Ε	Ν	output 			
	$Q_1 Q_0$		0	1	QTR			
	0	0	00	01	0			
	0	1	01	10	0			
	1	0	10	11	0			
	1	1	11	00	1			
	Q ₁ ⁺ Q ₀ ⁺ next state							

State Assignment

Creating a one-to-one mapping from state encoding to state names

$Q_1 Q_0$	State name
0 0	Α
0 1	В
1 0	С
1 1	D

Moving from V1 → V2 (State Labelling)

$Q_1 Q_0$	State name
0 0	Α
0 1	В
1 0	С
1 1	D

Creating State Diagram

	_I EN					
S	0	1	QTR			
Α	Α	В	0			
В	В	C	0			
С	C	D	0			
D	D	Α	1			
S ⁺						

What would the state diagram look like?

Creating State Diagram

	ı E				
S	0	1	QTR		
Α	Α	В	0		
В	В	B C	0		
С	B C	D	0		
D	D	Α	1		
S ⁺					

Creating State Diagram

	ı E	.N	T :::		
S	0	1	QTR		
Α	Α	В	0		
В	В	B C	0		
С	B C	D	0		
D	D	Α	1		
S ⁺					

Common Sequential Building Blocks

Common Sequential Building Blocks Overview

- Registers
- Counters
 - o Ripple Counter
 - Parallel Count
- Shift Registers
 - Parallel Shift Registers
 - Universal Shift Registers
- Shift Register Counters
 - Ring Counter
 - Johnson Counter
 - Linear Feedback Shift Registers

Registers

- Collection of D Flip-Flops
- All share a common clock
- Used to store collection of bits

always @(posedge clk) begin

end

Modulo Counter

- No real physical counters are infinite
- Typically count through a series of finite states, then repeats
- Modulus Number of states in counter's sequence

```
Ex. Counter Sequence = \{1, 2, 3, 4, 5, 6, 1, \ldots\} \rightarrow
```

Ex. Counter Sequence =
$$\{5, 7, 2, 1, 6, 4, 5, \ldots\} \rightarrow$$

Modulo Counter

- No real physical counters are infinite
- Typically count through a series of finite states, then repeats
- Modulus Number of states in counter's sequence

```
Ex. Counter Sequence = \{1, 2, 3, 4, 5, 6, 1, ...\} \rightarrow Modulus = 6
Ex. Counter Sequence = \{5, 7, 2, 1, 6, 4, 5, ...\} \rightarrow
```

Modulo Counter

- No real physical counters are infinite
- Typically count through a series of finite states, then repeats
- Modulus Number of states in counter's sequence

```
Ex. Counter Sequence = \{1, 2, 3, 4, 5, 6, 1, ...\} \rightarrow Modulus = 6
Ex. Counter Sequence = \{5, 7, 2, 1, 6, 4, 5, ...\} \rightarrow Modulus = 6!!
```

BOTH HAVE THE SAME AMOUNT OF UNIQUE STATES

Ripple Counters (An Implementation of a Modulo Counter)

- What are the states of the counter below? What is the counter's modulus?
 - HINT: You can assume we start at state (Q3, Q2, Q1) = (0, 0, 0)
 - HINT: Q1 represents the LSD of the number {Q3, Q2, Q1}
 - HINT: When using JK Flip-Flops, If (J, K) == $(1, 1) \rightarrow Q \leftarrow Q$ (Toggle Q)

Ripple Counters (An Implementation of a Modulo Counter)

- Unique States of Counter = {0, 1, 2, 3, 4, 5, 6, 7, 0, ...} → Modulus = 8
- What are the Pros/Cons of using this method?

Ripple Counters (An Implementation of a Modulo Counter)

- Unique States of Counter = {0, 1, 2, 3, 4, 5, 6, 7, 0, ...} → Modulus = 8
- + Very straightforward approach of a modulo counter
- State needs to ripple through the circuit
 - Output doesn't change at the same time

Parallel Counters (Better Modulo Counter Implementation)

- + Outputs are seem right after posedge clk
 - + No more ripple
- + Able to do Enable, Load, and Reset
- + Can create unique modulus/states combos

```
always @(posedge clk) begin

If (RESET) Q <= 0

If (LOAD) Q <= {L3, L2, L1, L0}

If (EN) Q <= {Q+1}

Else Q <= Q
```

end

Note: If going through all states, will automatically handle the modulus

Shift Registers (Serial-In)

- Allowing the bits to be shifted left by one
- Specify "Serial In" bit to put in place for new Q0
- + NOTE: NOT A RIPPLE. Shifting is synchronous w/ CLK

always @(posedge clk) begin Q <= {Q2, Q1, Q0, Serial_In}; end

Shift Registers (Parallel-In)

- Giving the ability to load all register bits on CLK
- Serial-In Shift Register + Load logic

```
always @(posedge clk) begin

If (LOAD) Q <= {L3, L2, L1, L0};

Else Q <= {Q2, Q1, Q0, Serial_In};

end
```


Universal Shift Registers

- Shift register that can
 - Parallel Load
 - Hold
 - Shift Left
 - Shift Right

```
always @(posedge clk) begin  
If (MODE == LOAD) Q <= {L3, L2, L1, L0};  
If (MODE == HOLD) Q <= Q;  
If (MODE == SL) Q <= {Q2, Q1, Q0, S_ln_L};  
If (MODE == SR) Q <= {S_ln_R, Q3, Q2, Q1};  
end
```


Ring Counter

- Each Flip Flop value propagates down the chain
- One-hot encoding scheme
- Check which Flip-Flop is high to find the count number

```
always @(posedge clk) begin

If (RESET) Q <= 4'b0001;

Else Q <= {Q[2:0], Q3};

end
```

How many states exist in an n-bit ring counter?

Straight ring counter						
State	Q0	Q1	Q2	Q3		
0	1	0	0	0		
1	0	1	0	0		
2	0	0	1	0		
3	0	0	0	1		
0	1	0	0	0		
1	0	1	0	0		
2	0	0	1	0		
3	0	0	0	1		
0	1	0	0	0		

Johnson Counter

- Very similar to a ring counter
- MSB is inverted and chained to the first input

```
always @(posedge clk) begin

If (RESET) Q <= 4'b00000;

Else Q <= {Q[2:0], ~Q3};

end
```

How many states exist in an n-bit Johnson counter?

Johnson counter						
State	Q0	Q1	Q2	Q3		
0	0	0	0	0		
1	1	0	0	0		
2	1	1	0	0		
3	1	1	1	0		
4	1	1	1	1		
5	0	1	1	1		
6	0	0	1	1		
7	0	0	0	1		
0	0	0	0	0		

Linear Feedback Shift Registers

- Modification of ring counter
- First input is a function of LFSR value
- Can cover 2ⁿ 1 states!

LFSR Example						
State	Q0	Q1	Q2	Q3		
0	0	0	0	0		
1	1	0	0	0		
2	0	1	0	0		
3	1	0	1	0		
4	1	1	0	1		
5	1	1	1	0		
6	1	1	1	1		
7	0	1	1	1		
0	1	0	1	1		

Register Transfer Level (RTL) Design

RTL Design Overview

- Splitting up design in Controller and Datapath
- Controller Controls and orchestrates the Datapath operations
- Datapath Computation on the signals
 - Arithmetic Add/Subtract/Multiple/Count/...
 - Logical Shift Left / Shield Right / Arithmetic Shift / bitwise Ops
 - Other Clear / Load / Hold

RTL Sequential Circuit

Karnaugh Maps (K-Maps) (Logic Minimization)

K-Maps Overview

- Minterm: AND of every variable as itself or its complement(used to form SOP)
- Maxterm: OR of every variable as itself or its complement (used to form POS)
- K-Maps: A 2D representation of a Truth Table that visualizes which minterms/maxterms we can combine to make simpler expressions

K-Map Rules

- Only cover cells that have a 1
 (only include 'don't cares' if it helps to
 enlarge a group)
- 2. Only circle groups that are powers of 2

3. Only circle adjacent cells

Important K-Map Terminology (Prime & Ess. Prime Impl.)

- Implicant: A rectangle that covers any high outputs
- Prime implicant: The largest single implicant that can fully cover a set of high outputs
- Essential prime implicant: A prime implicant that cannot be completely covered by any combination of other prime implicants

K-Map Minimization Procedure

- 1. Identify all of your prime implicants
- 2. Determine which of the prime implicants are essential
 - a. Include those EPIS into your minimal SOP
- 3. Remove any "dominated" prime implicants
- 4. Find secondary Essential Prime Implicants (Repeat)

Let's Try Out a Few

yz W	X 00	01	11	10	
00	0	1	1	0	
01	х	0	0	1	
11	х	0	0	1	
10	0	1	1	х	

Have a cute pet? See it featured on the next exam review!

https://forms.gle/ZS4YfU8RH4iJaa626