Partial Differential Equation - HW 3

SungBin Park, 20150462

November 19, 2018

Problem 1

I'll imitate the proof in Evans.

Proof. Since each Γ_j is compact, $\partial\Omega$ is compact and we can choose finite points $x_i \in \partial\Omega$ with radius $r_i > 0$ and $\partial\Omega \subset \bigcup_{i=1}^n B\left(x_i, \frac{r_i}{2}\right)$. If x_i is not in end point of some Γ_j for all j, then we can use the argument in the Evans, so we only need to consider the case that x_i is in end point of Γ_j for some j.

Fix x^0 is in end point of Γ_j and assume that x^0 is also a end point of Γ_{j+1} . As Γ_j , Γ_{j+1} are C^1 , there exists $r_1, r_2 > 0$ and a C^1 function $\gamma_1, \gamma_2 : \mathbb{R} \to \mathbb{R}$ implicit function theorem.

Problem 2

- 1. $W_0^{1,p}(\Omega)$ is a vector space: For f = 0, $f \in W_0^{1,p}(\Omega)$, so $W_0^{1,p}(\Omega) \neq \phi$. For $f_1, f_2 \in W_0^{1,p}(\Omega)$, there exists f_1^j, f_2^j such that $(f_1^j), (f_2^j) \in C_c^{\infty}(\Omega)$ and $f_1^j \to f_1, f_2^j \to f_2$ in $W^{1,p}(U)$. Since union of two compact set in Ω is compact in Ω , $f_1^j + f_2^j \in C_c^{\infty}(\Omega)$ and for large enough N satisfying $\left\|f_1^j f_1\right\|_{W^{1,p}(\Omega)}, \left\|f_2^j f_2\right\|_{W^{1,p}(\Omega)} \leq \epsilon/2$ for j > N, $\left\|f_1^j + f_2^j f_1 f_2\right\|_{W^{1,p}(\Omega)} \leq \left\|f_1^j f_1\right\|_{W^{1,p}(\Omega)} + \left\|f_2^j f_2\right\|_{W^{1,p}(\Omega)} \leq \epsilon$. Therefore, $f_1^j + f_2^j \to f_1 + f_2$ and $f_1 + f_2 \in W^{1,p}(\Omega)$. Also, $\lambda f^j \to \lambda f$ in $W^{1,p}(\Omega)$ for scalar λ . Therefore, $W^{1,p}$ is vector space. (Other ...)
- 2. With the norm $\|\cdot\|_{W^{1,p}(\Omega)}$, $W_0^{1,p}(\Omega)$ is Banach space: Let f_j be a cauchy sequence in $W_0^{1,p}(\Omega)$. Since $W^{1,p}(\Omega)$ is Banach space, $f_j \to f$ in $W^{1,p}(\Omega)$. Since Ω is bounded and $\partial\Omega$ is C^1 , there exists bounded linear operator $T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ and $Tf_j \equiv 0$ on ∂U as $f_j \in W_0^{1,p}(\Omega)$. Then,

$$\lim_{j \to \infty} ||Tf_j - Tf||_{W^{1,p}(\Omega)} = \lim_{j \to \infty} ||T(f_j - f)||_{W^{1,p}(\Omega)} \le \lim_{j \to \infty} ||T||_{W^{1,p}(\Omega)} ||f_j - f||_{W^{1,p}(\Omega)} = 0$$

as $||T||_{W^{1,p}(\Omega)}$ is bounded. Therefore, $Tf_j \to Tf$ and $\lim_{j \to \infty} ||Tf_j||_{W^{1,p}(\Omega)} = ||Tf||_{W^{1,p}(\Omega)} = 0$. As a result, $f \in W_0^{1,p}(\Omega)$ implying Cauchy sequence in $W_0^{1,p}(\Omega)$ converges.

Therefore, $W_0^{1,p}(\Omega)$ is Banach space.

Problem 3

For $k \in \mathbb{N}$ and $\alpha \in (0, 1]$,

$$C^{k,\alpha}(\bar{\Omega}) := \{ u \in C^k(\bar{\Omega}) : ||u||_{C^{k,\alpha}(\bar{\Omega})} < \infty \}$$

Before starting, I need to show that $\|\cdot\|_{C^{k,\alpha}(\bar{\Omega})}$ is a norm on $C^{k,\alpha}(\bar{\Omega})$.

Proof. 1. By the definition of $C^{k,\alpha}(\bar{\Omega})$, we know that $||u||_{C^{k,\alpha}(\bar{\Omega})} < \infty$ for any $u \in C^{k,\alpha}(\bar{\Omega})$. Let $u,v \in C^{k,\alpha}(\bar{\Omega})$. Then

$$\begin{split} \|u+v\|_{C^{k,\alpha}(\bar{\Omega})} &= \sum_{|\alpha| \leq k} \|D^{\alpha}(u+v)\|_{C(\bar{\Omega})} + \sum_{|\alpha| = k} [D^{\alpha}(u+v)]_{C^{0,\alpha}(\bar{\Omega})} \\ &= \sum_{|\alpha| \leq k} \sup_{x \in \Omega} |D^{\alpha}(u+v)| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}(u+v)(x) - D^{\alpha}(u+v)(y)|}{|x-y|^{\alpha}} \right\} \\ &\leq \sum_{|\alpha| \leq k} \sup_{x \in \Omega} |D^{\alpha}u| + \sup_{x \in \Omega} |D^{\alpha}v| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)| + |D^{\alpha}v(x) - D^{\alpha}v(y)|}{|x-y|^{\alpha}} \right\} \\ &\leq \sum_{|\alpha| \leq k} \sup_{x \in \Omega} |D^{\alpha}u| + \sup_{x \in \Omega} |D^{\alpha}v| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x-y|^{\alpha}} \right\} + \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha}v(x) - D^{\alpha}v(y)|}{|x-y|^{\alpha}} \right\} \\ &= \|u\|_{C^{k,\alpha}(\bar{\Omega})} + \|v\|_{C^{k,\alpha}(\bar{\Omega})} \end{split}$$

Therefore, $||u+v||_{C^{k,\alpha}(\bar{\Omega})} \le ||u||_{C^{k,\alpha}(\bar{\Omega})} + ||v||_{C^{k,\alpha}(\bar{\Omega})}$.

2. For $\lambda \in \mathbb{R}$,

$$\begin{split} \|\lambda\|_{C^{k,\alpha}(\bar{\Omega})} &= \sum_{|\alpha| \le k} \sup_{x \in \Omega} |D^{\alpha} \lambda u| + \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha} \lambda u(x) - D^{\alpha} \lambda u(y)|}{|x - y|^{\alpha}} \right\} \\ &= |\lambda| \sum_{|\alpha| \le k} \sup_{x \in \Omega} |D^{\alpha} u| + |\lambda| \sum_{|\alpha| = k} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|D^{\alpha} u(x) - D^{\alpha} u(y)|}{|x - y|^{\alpha}} \right\} \\ &= \lambda \|u\|_{C^{k,\alpha}(\bar{\Omega})}. \end{split}$$

- 3. For u=0, $\|u\|_{C^{k,\alpha}(\bar{\Omega})}=0$. Conversely, if $\|u\|_{C^{k,\alpha}(\bar{\Omega})}=0$, then $\|u\|_{C(\Omega)}=0$ with continuity of u, so u=0 on $\bar{\Omega}$. Therefore, $\|\cdot\|_{C^{k,\alpha}(\bar{\Omega})}$ is a norm.
- (a) Clearly, $0 \in C^{k,p}(\bar{\Omega})$. For $f_1, f_2 \in C^{k,p}(\bar{\Omega})$, $f_1 + f_2 \in C^k(\Omega)$ and $||f_1 + f_2||_{C^{k,\alpha}(\bar{\Omega})} \leq ||f_1||_{C^{k,\alpha}(\bar{\Omega})} + ||f_2||_{C^{k,\alpha}(\bar{\Omega})} < \infty$. Therefore, $f_1 + f_2 \in C^{k,\alpha}(\bar{\Omega})$. $f_1 + f_2 = f_2 + f_1$ and for scalar λ , $\lambda f_1 \in C^{k,\alpha}(\bar{\Omega})$ for $||\lambda f_1||_{C^{k,\alpha}(\bar{\Omega})} = |\lambda| ||f_1||_{C^{k,\alpha}(\bar{\Omega})} \leq \infty$. Therefore, $C^{k,p}(\bar{\Omega})$ is a vector space.
- (b) C^{∞} Uryshon lemma
- (c) Let $\{u_i\}$ be a Cauchy sequence in $C^{k,p}(\bar{\Omega})$. For fixed $\epsilon > 0$, there exists N such that $i, j > N \Rightarrow \|u_i u_j\|_C^{k,p}(\bar{\Omega}) \le \epsilon$. It implies

$$\begin{cases} \|D^{\alpha}u_{i} - D^{\alpha}u_{j}\|_{C(\bar{\Omega})} \leq \epsilon & \text{For } |\alpha| \leq k \\ [D^{\alpha}u_{i} - D^{\alpha}u_{j}]_{C^{0,\gamma(\bar{\Omega})}} \leq \epsilon & \text{For } |\alpha| = k. \end{cases}$$

Since $D^{\alpha}u_i$ is uniformly Cauchy for $|\alpha| \leq k$, $D^{\alpha}u_i$ converges to u_{α} for $|\alpha| \leq k$ pointwisely. Also, this convergence is uniform...

Problem 4

I'll follow the proof in Evans.

Proof. Since U is bounded, open subset of \mathbb{R}^n , and $\partial\Omega$ is C^1 ,

$$W^{1,p}(\Omega) \subset C^{0,\alpha}(\bar{\Omega}), \ \|u\|_{C^{0,\alpha}(\bar{\Omega})} \le C\|u\|_{W^{1,p}(\Omega)}$$

for $\alpha = 1 - n/p$ and C depends only on p, n and Ω . Now, we need to show that each bounded sequence in $W^{1,p}(\Omega)$ is precompact in $C^{0,\alpha}(\bar{\Omega})$. Let a bounded sequence in $W^{1,p}(\Omega)$: $\{u_m\}_{m=1}^{\infty}$.

Using Extension Theorem, we can assume that $\Omega = \mathbb{R}^n$, all $\{u_m\}$ have compact support in some bounded open set $V \subset \mathbb{R}^n$, and

$$\sup_{m} \|u_m\|_{W^{1,p}(V)} < \infty$$

... (make support B_R

Problem 5

Fix $\epsilon > 0$. Define $\Omega_{\epsilon} := \{x \in \Omega | d(x, \partial \Omega) > \epsilon\}$. Let's mollify the u with standard mollifier η_{ϵ} and denote it u^{ϵ} . Then,

$$Du^{\epsilon} = \eta_{\epsilon} * Du = 0$$

in Ω_{ϵ} . It implies that if $B(x,r) \in \Omega_{\epsilon}$ for small enough r > 0, u_{ϵ} is constant on B(x,r) since the derivative of u^{ϵ} is zero on the set. In other words, it is locally constant in Ω_{ϵ} .

Let $x \in U$ and B(x,r) be an open neighborhood of x in Ω , then there exists ϵ such that $B(x,r) \subset \Omega_{\epsilon}$ and by previous, we know that u^{ϵ} is constant on B(x,r). Let the constant value c^{ϵ} . We know that $u^{\epsilon} \to u$ as $\epsilon \to 0$ and it means on u is constant a.e. on B(x,r). (If not, there always exists non measure zero set such that u^{ϵ} is different with u on B(x,r).) Therefore, u is locally constant function in a.e. sense).

Let take a partition such that $x \sim y$ if u(x) = u(y). Since Ω is locally constant, any element in partition is open set. Assume that there exists at least two element in the partition. This is impossible since Ω is connected set. Therefore, u is a.e. constant function.

Problem 6

First, I'll show that $u \in L^n(B_1(\mathbf{0}))$. Note that u is symmetric function about rotation, so we can show that integral on $B_1(\mathbf{0})$ is finite by showing that integral is finite for r. Also, we can restrict the range of r to $(0, \frac{1}{e-1})$ since u is bounded in outside of the range. In other words,

$$\int_{B_1(\mathbf{0})} u dx \le C \int_0^{\frac{1}{e-1}} \left(\left| \log \log \left(1 + \frac{1}{r} \right) \right| \right)^n r^{n-1} dr$$

for some constant $C < \infty$. Let $y = \log \left(1 + \frac{1}{r}\right)$, then

$$\left| \int_{0}^{\frac{1}{e-1}} \left(\log \log \left(1 + \frac{1}{r} \right) \right)^{n} r^{n-1} dr \right| \le \int_{1}^{\infty} \left(\log y \right)^{n} \frac{e^{y}}{(e^{y} - 1)^{n+1}} dy$$

$$\le \int_{1}^{\infty} \left(\log y \right)^{n} \frac{2^{n+1} e^{y}}{e^{(n+1)y}} dy$$

$$\le \int_{1}^{\infty} y^{n} 2^{n+1} e^{-ny} dy < \infty$$

Therefore, $u \in L^n(B_1(\mathbf{0}))$, and $u \in L^1(B_1(\mathbf{0}))$.

Next, I'll show that u has weak derivative in $B_1(\mathbf{0})$ and belongs to $L^n(B_1(\mathbf{0}))$. Since u goes to ∞ as $x \to 0$, we need to care when we compute weak derivative. However, we can ignore at $\mathbf{0}$ by the following argument. Let V be a compactly embedded set in U and ϕ be a C^{∞} function having support V. Assume $\mathbf{0} \in V$. Without $\mathbf{0}$, Du should be $\partial_{x_i} u$ for some i. Since u, $D^{\alpha} \phi$ for all α are L^1 function on V, we can use Fubini theorem, and rewrite the integral by

$$\int_{U} uD\phi dx = \int_{-1}^{1} (\cdots) dx_{1}.$$

Since n > 1, we know that the n - 1 dim plane through 0 is measure zero set and it does not effect integral to delete 0 from integral range of x_1 . Therefore, the weak derivative is just derivative of u except $\mathbf{0}$...(Fundamental of Calculus? d/dx_1 - $\dot{\iota}$ int int dx_1 dx_2 - $\dot{\iota}$ Explicitly show)

I'll show that Du is in L^n . Computing partial derivative:

$$|\partial_{x_i} u| = \left| \frac{1}{\log\left(1 + \frac{1}{|x|}\right)} \frac{1}{1 + \frac{1}{|x|}} \frac{x_i}{|x|^3} \right| \le \frac{1}{\left|\log\left(1 + \frac{1}{r}\right)\right|} \frac{1}{r + 1} \frac{1}{r}.$$

Then, by the same reason before, we just need to check whether the integral in finite for r in $\left(0, \frac{1}{e-1}\right)$.

$$\int_0^{\frac{1}{e-1}} \left(\frac{1}{\log\left(1 + \frac{1}{r}\right)} \frac{1}{r+1} \frac{1}{r} \right)^n r^{n-1} dx \le \int_0^{\frac{1}{e-1}} \left(\frac{1}{\log\left(1 + \frac{1}{r}\right)} \right)^n \frac{1}{r} dr$$

Let $x = \log \left(1 + \frac{1}{r}\right)$, then the integral becomes

$$\int_{1}^{\infty} \frac{1}{x^n} \frac{e^x}{e^x - 1} dx$$

For sufficiently large R, $\frac{e^x}{e^x-1} < 2$ for x > R and we know that $\int_1^\infty \frac{1}{x^n}$ converges for n > 2. Therefore, $Du \in L^n(B_1(\mathbf{0}))$ and $u \in W^{1,n}(B_1(\mathbf{0}))$.

Problem 7

Since $u \in L^2(\mathbb{R}^n)$, $u = (\hat{u})^{\vee}$ by Theorem 2 in chapter 4.3 Evans. Then,

$$\begin{aligned} |u(x)| & \leq \int_{\mathbb{R}^n} \left| e^{ikx} \hat{u}(k) \right| dk \leq \int_{\mathbb{R}^n} |\hat{u}(k)| dk \\ & = \int_{\mathbb{R}^n} (1 + |k|^2)^{s/2} (1 + |k|^2)^{-s/2} |\hat{u}(k)| dk \\ & \left(\leq \int_{\mathbb{R}^n} (1 + |k|^2)^s |\hat{u}|^2 dk \right)^{1/2} \left(\int_{\mathbb{R}^n} (1 + |k|^2)^{-s} dk \right)^{1/2} \end{aligned}$$

For |k| > 1, $(1 + |k|^2)^s > (2|k|)^{2s}$

$$\int_{|k|>1} k^{-2s} dk = \sigma(S^{n-1}) \int_1^\infty r^{-2s} r^{n-1} dr < \infty$$

since -2s+n-1<-1 and $\int_1^\infty r^\alpha dr<\infty$ for $\alpha<-1$. Therefore,

$$|u(x)| \le C \left(\int_{\mathbb{R}^n} (1 + |y|^2)^s |\hat{u}|^2 dy \right)^{1/2} = C ||u||_{H^s(\mathbb{R}^n)}$$

This is true for a.e. x, so

$$||u||_{L^{\infty}(\mathbb{R}^n)} \le C||H^s(\mathbb{R}^n)||$$