МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №4 по дисциплине «Вычислительная математика»

Тема: Интерполирование функций

Студент гр. 0303	 Калмак Д.А.
Преподаватель	Сучков А.И.

Санкт-Петербург

Цель работы.

Научиться применять интерполирование функции для решения практических задач, овладеть навыками применения интерполяционных формул Лагранжа заданной степени, многочленов Ньютона. Научиться оценивать погрешности интерполяционных формул и работать в программных пакетах с целью проверки полученных результатов.

Основные теоретические положения.

Пусть значение f(x) известно в некоторых точках $X = \{xj\}_{j=0}^n$, и необходимо найти $f(x_i)$: $x_i \notin X$. Для этих целей, функцию f(x) приближают функцией $L_n(x)$: $Ln(x) = \sum_{k=0}^n ak\phi k$, где ϕ — произвольный базис, удобный для данной f(x). Задача интерполяции — найти обобщённый многочлен. Существует несколько способов нахождения, например, метод Лагранжа. Он даёт готовый интерполяционный многочлен Лагранжа: $Ln(x) = \sum_{i=0}^n fili(x)$, где $f_i = f(x_i)$ — значение функции в узле x_i , а $\ell_i(x) = \prod_{k=0}^n \frac{x-xk}{xi-xk}$ — і-ый базисный полином.

Если узлы, в которых определено значение $f(x_i)$ являются равноотстоящими, т.е. $x_i = x_0 + ih$, $x_0 < x_1 < \dots < x_n$, i = 1..n, тогда можно воспользоваться интерполяционным многочленом Ньютона: $Nn(x) = \sum_{k=0}^n \frac{\Delta k f 0}{k!}$, где $\Delta^k f$ – конечная разность k-го порядка, q = (x-x0)/h.

Многочлен Чебышёва первого рода $T_n(x)$ характеризуется как многочлен степени п со старшим коэффициентом 2^{n-1} , который меньше всего отклоняется от нуля на отрезке [-1,1] $T_n(x) = cos(n*arccosx)$.

Для натурального п узлы на промежутке $x \in [-1,1]$ задаются формулой: $xk = cos(\pi \frac{2k-1}{2n}), \ k = 1..n.$ Это корни многочлена Чебышёва первого рода степени п.

Для получения узлов на произвольном отрезке [a, b], можно применить следующую формулу: $xk = \frac{a+b}{2} + \frac{b-a}{2} cos(\pi \frac{2k-1}{2n}), k = 1..n$. После нахождения

интерполяционного многочлена, необходимо вычислить и оценить его погрешность. Должно выполнятся следующее неравенство: $\max_{x \in [a,b]} |Rn(x)| \le$

$$\frac{Mn+1}{(n+1)!} \max_{x \in [a,b]} |wn+1(x)| = Qn,$$
 где $[a,b]$ промежуток

интерполирования,
$$R_n(x) = f(x) - L_n(x)$$
, $M_{n+1} = \max_{\eta \in [a,b]} |f^{(n+1)}(\eta)|$,

 $w_{n+1}(x) = \prod_{j=0}^{n} (x - xj)$. Левая часть неравенства является практической погрешностью, а правая – теоретической.

Постановка задачи.

Построить интерполяционный многочлен по 2, 3, 4, 5 и 6 узлам (равноотстоящим и чебышёвским) для функции $f(x) = \frac{A}{x^2 + px + q}$ на промежутке [a,b] по равноотстоящим и по чебышёвским узлам. Найти фактическую погрешность и сравнить её с теоретической оценкой.

Выполнение работы.

По условию:

$$a = -1$$
, $b = 6$, $A = 1000$, $p = -6$, $q = 56$.

Тогда, если подставить значения, то
$$f(x) = \frac{1000}{x^2 - 6x + 56}$$
.

Была реализована функция f(), которая вычисляет значения в функции f(x). Также была реализована функция df(), которая вычисляет n-ую производную функции f(x). Функция реализована с помощью оператора switch.

Реализована функция lagrange(), которая вычисляет интерполяционный многочлен n-го порядка по методу Лагранжа.

Разработанный код см. в Приложении А.

Определим полиномы по методу Лагранжа для равноотстоящих узлов:

$$n = 2$$
: $L = 0.2834467x + 16.1564626$

$$n = 3$$
: $L = -0.3509340x^2 + 2.0381168x + 18.2620667$

$$n = 4$$
: $L = -0.0128554x^3 - 0.2450524x^2 + 1.9072258x + 18.0124387$

 $n = 5 \colon L = 0.0067326x^4 - 0.0795252x^3 - 0.0894428x^2 + 1.9504076x + 17.8266085$

 $n=6:\ 0.0003817x^5+0.0017316x^4-0.0592505x^3-0.1105098x^2+1.9283505x+17.8512756$

Были построены графики исходной функции и интерполяционного многочлена для равноотстоящих узлов. (см. рис. 1-5).

Рисунок 1 — Графики исходной функции и интерполяционного многочлена для равноотстоящих узлов при n=2

Рисунок 2 — Графики исходной функции и интерполяционного многочлена для равноотстоящих узлов при n=3

Рисунок 3 — Графики исходной функции и интерполяционного многочлена для равноотстоящих узлов при n=4

Рисунок 4 — Графики исходной функции и интерполяционного многочлена для равноотстоящих узлов при n=5

Рисунок 5 — Графики исходной функции и интерполяционного многочлена для равноотстоящих узлов при n=6

Погрешности интерполяции с помощью равноотстоящих узлов представлены в табл. 1. С увеличением п, количества узлов, теоретическая и фактическая погрешности уменьшаются и стремятся к нулю. Происходит это по причине лучшего приближения к исходной функции при большем числе узлов.

Таблица 1 – Погрешности интерполяции для равноотстоящих узлов

Значение п	2	3	4	5	6
Значение Mn+1	0.308273	0.231095	0.141081	0.078304	0.131213
Значение max \omegan+1(x)	0	16.502407	16.656601	59.582037	37.989616
Значение (n+1)!	6	24	120	720	5040
Значение Qn	0	0.158901	0.019583	0.006480	0.000989
Значение max Rn(x)	4.314220	0.069832	0.116087	0.039042	0.017332

Определим полиномы по методу Лагранжа для чебышевских узлов:

$$n = 2$$
: $L = 0.3517701x + 17.8963048$

$$n = 3$$
: $L = -0.3694203x^2 + 2.1619627x + 18.0679914$

$$n = 4$$
: $L = -0.0132543x^3 - 0.2493885x^2 + 1.9352953x + 17.9583526$

 $n = 5 \colon L = 0.0067140x^4 - 0.0792649x^3 - 0.0894557x^2 + 1.9430902x + 17.8416431$

 $n = 6: L = 0.0003688x^5 + 0.0017367x^4 - 0.0582773x^3 - 0.1132913x^2 + 1.9258893x + 17.8568255$

Были построены графики исходной функции и интерполяционного многочлена для чебышевских узлов. (см. рис. 6-10).

Рисунок 6 — Графики исходной функции и интерполяционного многочлена для чебышевских узлов при $\mathbf{n}=2$

Рисунок 7 – Графики исходной функции и интерполяционного многочлена для чебышевских узлов при n = 3

Рисунок 8 — Графики исходной функции и интерполяционного многочлена для чебышевских узлов при n=4

Рисунок 9 — Графики исходной функции и интерполяционного $\mbox{многочлена для чебышевских узлов при } n = 5$

Рисунок 10 – Графики исходной функции и интерполяционного многочлена для чебышевских узлов при n = 6

Погрешности интерполяции с помощью чебышевских узлов представлены в табл. 2. Фактическая и теоретическая погрешности уменьшаются при увеличении п. Значения погрешности стремятся к нулю. Причиной является увеличение точности приближения с увеличением количества узлов.

Таблица 2 – Погрешности интерполяции для чебышевских узлов

Значение п	2	3	4	5	6
Значение Mn+1	0.308273	0.231095	0.141081	0.078304	0.131213
Значение $\max \omega n+1(x) $	6.125000	10.718750	18.757813	32.826172	57.445801
Значение (n+1)!	6	24	120	720	5040
Значение Qn	0.314696	0.103210	0.022053	0.003570	0.001496
Значение max Rn(x)	2.393535	0.336408	0.133380	0.021361	0.007612

Выводы.

Таким образом, были получены навыки применения интерполяционных формул Лагранжа заданной степени. Были получены интерполяционные многочлены для равноотстоящих и чебышевских узлов при разном

количестве, а также получены фактические погрешности. Практические и теоретические погрешности уменьшаются с ростом количества узлов. Погрешности стремятся к нулю.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Файл lagrangefunction.m

```
function lagrangefunction()
  format long g
  a = -1; b = 6; n = 6;
  h = (b-a)/(n-1);
  x=a:h:b;
  y = ((x.^2-6*x+56).**(-1))*1000;
  xp = linspace(a,b,100);
  res = lagrange(x);
  yp = polyval(res, xp);
  # Исходная функция
  ezplot("(x.^2-6*x+56).^(-1)*1000", [a,b])
  hold on
  # Интерполяционный многочлен
  plot(xp, yp, 'g');
  # Узлы
  plot(x,y,'k*');
  legend("Исходная функция", "Интерполяционный многочлен")
  legend('boxoff')
  hold off
  x1 = linspace(a,b,100);
  r = 1:length(x1);
  r(1:length(r))=1;
  for i=1:length(x1)
    r(i) = df(n+1, x1(i));
  endfor
  mn 1 = max(r);
  #fprintf("mn 1 = f \in 1, mn 1)
  x2 = linspace(a,b,100);
  r = 1:length(x2);
  r(1:length(r))=1;
  for i=1:length(x2)
    x2 1 = x2(i);
    for j=1:n
      r(i) *= (x2_1-x(j));
    endfor
  endfor
  wn 1 = \max(r);
  #fprintf("wn_1 = %f\n", wn 1)
  rnx = max(f(xp)-yp);
  #fprintf("rnx = %f\n", rnx)
  qn = mn 1/factorial(n+1)*wn 1;
  \#fprintf("qn = %f\n", qn)
endfunction
function res = lagrange(x)
```

```
res = 0;
                for k = 1: length(x)
                              p = 1;
                              for i = 1: length(x)
                                               if i~=k
                                                        p = conv(p, [1, -x(i)]) / (x(k)-x(i));
                                              endif
                              end
                              res += f(x(k))*p;
                end
endfunction
 function f = f(x)
                f = (x.^2-6*x+56).**(-1)*1000;
endfunction
 function df = df(n,x)
               switch(n)
                               case(3)
                                               df = -24000*(-1 + 2*(-3 + x).^2/(56 + x.^2 - 6*x))*(-3 + x)/(56
+ x.^2 - 6*x).^3;
                               case(4)
                                              df = 24000*(1 - 12*(-3 + x).^2/(56 + x.^2 - 6*x) + 16*(-3 + x).^2/(56 + x).^
x).^4/(56 + x.^2 - 6*x).^2)/(56 + x.^2 - 6*x).^3;
                               case(5)
                                              df = -240000*(-3 + x)*(3 - 16*(-3 + x).^2/(56 + x.^2 - 6*x) +
 16*(-3 + x).^4/(56 + x.^2 - 6*x).^2)/(56 + x.^2 - 6*x).^4;
                                              df = 720000*(-1 - 80*(-3 + x).^4/(56 + x.^2 - 6*x).^2 + 24*(-3 + x).^4/(56 +
x).^{2}/(56 + x.^{2} - 6*x) + 64*(-3 + x).^{6}/(56 + x.^{2} - 6*x)^{3}/(56 + x.^{2} + 6*x)^{3}/(56
x^2 - 6*x).^4;
                               case(7)
                                              df = -40320000*(-3 + x)*(-1 - 24*(-3 + x).^{4}/(56 + x.^{2} -
6*x).^2 + 10*(-3 + x).^2/(56 + x.^2 - 6*x) + 16*(-3 + x).^6/(56 + x.^2)
-6*x).^3/(56 + x.^2 - 6*x).^5;
               endswitch
endfunction
```

Файл chebyshevfunction.m

```
function chebyshevfunction()
 format long q
 a = -1; b = 6; n = 2;
 k = 1:n;
 x = (a+b)/2 + (b-a)/2*cos(pi*(2*k-1)/(2*n));
 y = ((x.^2-6*x+56).**(-1))*1000;
 xp = linspace(a,b,100);
 res = lagrange(x);
 yp = polyval(res, xp);
 # Исходная функция
 ezplot("(x.^2-6*x+56).^(-1)*1000", [a,b])
 hold on
 # Интерполяционный многочлен
 plot(xp,yp,'g');
 # Узлы
 plot(x,y,'k*');
```

```
legend("Исходная функция", "Интерполяционный многочлен")
  legend('boxoff')
  hold off
  x1 = linspace(a,b,100);
  r = 1:length(x1);
  r(1:length(r))=1;
  for i=1:length(x1)
    r(i) = df(n+1, x1(i));
  endfor
  mn 1 = max(r);
  \#fprintf("mn 1 = %f\n", mn 1)
  x2 = linspace(a, b, 100);
  r = 1:length(x2);
  r(1:length(r))=1;
  for i=1:length(x2)
    x2 1 = x2(i);
    for j=1:n
      r(i) *= (x2 1-x(j));
    endfor
  endfor
  wn 1 = \max(r);
  #fprintf("wn 1 = %f\n", wn 1)
  rnx = max(f(xp)-yp);
  #fprintf("rnx = %f\n", rnx)
  qn = mn 1/factorial(n+1)*wn 1;
  \#fprintf("qn = %f\n", qn)
endfunction
function res = lagrange(x)
  res = 0;
  for k = 1: length(x)
   p = 1;
    for i = 1: length(x)
      if i \sim = k
        p = conv(p, [1, -x(i)])/(x(k)-x(i));
      endif
    res += f(x(k))*p;
  end
endfunction
function f = f(x)
  f = (x.^2-6*x+56).**(-1)*1000;
endfunction
function df = df(n,x)
  switch(n)
    case(3)
      df = -24000*(-1 + 2*(-3 + x).^2/(56 + x.^2 - 6*x))*(-3 + x)/(56
+ x.^2 - 6*x).^3;
    case(4)
```