Análise Complexa e Equações Diferenciais

Problemas propostos para as aulas práticas

Semana 1 - 21 a 25 de Setembro de 2020

1. Escreva os seguintes números complexos na forma a + bi e represente-os geometricamente no plano de Argand:

a) (2+i)(1-i) b) $\frac{1}{1-i}$ c) $\frac{2+i}{1+i}$ d) $(2-3i)^2$

e) $\overline{(1-2i)^3}$ f) i^{234} g) $\frac{1}{i} + \frac{3}{1+i}$ h) $(1 + \frac{3}{1+i})^2$

2. Determine o módulo e o argumento dos seguintes números complexos e represente-os geometricamente:

a) 3 b) -2

c) 1+i d) 1-i e) $\sqrt{2}(1+i)$

f) $\frac{1}{1-i}$ g) (1-i)(-1-i) h) $\frac{(1+i)^2(1+\sqrt{3}i)^3}{(1-i)}$

3. Calcule os seguintes números complexos:

a) $\sqrt[3]{8i}$ b) $\sqrt[4]{-1}$ c) $\sqrt{2 - 2\sqrt{3}i}$ d) $\sqrt{2 + 2\sqrt{3}i}$ e) $\sqrt[4]{(3 - \sqrt{3}i)^6}$ f) $(\sqrt[4]{3 - \sqrt{3}i})^6$

4. Calcule, para n = 1, 2, 3, ...,

a) i^n b) $\left(\frac{1-i}{1+i}\right)^n$ c) $(1+i)^n + (1-i)^n$

5. Esboce no plano complexo o conjunto dos números complexos que satisfazem as relações seguintes:

a) |z-2|=2 b) $|z+2i| \ge 2$ c) $\left|\frac{1}{z-5i}\right| < 3$

d) 1 < |z - i| < 3 e) |z - 3i| = |z + i| f) $|z - 1| \ge |z - 1 - i|$

g) |z-2| + |z+2| = 5 h) |z-1| - |z+1| > 1 i) |z| = Re(z) + 2

j) Im(z) + Re(z) < 1 k) $\text{Im}(\frac{z+i}{2i}) < 0$ l) $\text{Re}(\frac{z-1}{z-i}) = 0$

m) $|z|^2 > z + \bar{z}$ n) $z^2 + \bar{z}^2 = 1$

1

- 6. Determine todas as soluções em $\mathbb C$ das seguintes equações:
 - a) $z^4 + 16i = 0$
 - b) $(1-z)^6 = (1+z)^6$
 - c) $1 z + z^2 = 0$
 - $d) z\bar{z} z + \bar{z} = 0$
 - e) $z^4 + z^2 = -1 i$
 - f) $1 z^2 + z^4 z^6 = 0$
 - g) $z^2 + 2\bar{z} + 1 = 6i$
 - h) $z^6 = (i+2)^3 + \frac{1-28i}{2-i}$
 - i) $1+z+z^2+...+z^7=0$
- 7. Utilize a fórmula de De Moivre para determinar expressões simplificadas das somas:

a)
$$\sum_{k=0}^{n} \operatorname{sen}((3k+1)x) = \operatorname{sen}(x) + \operatorname{sen}(4x) + \operatorname{sen}(7x) + \dots + \operatorname{sen}((3n+1)x)$$

b)
$$\sum_{k=0}^{n} \cos((3k+1)x) = \cos(x) + \cos(4x) + \cos(7x) + \dots + \cos((3n+1)x)$$

- 8. Determine todos os vértices de um polígono regular de n lados, centrado na origem, sabendo que um deles é representado pelo complexo z_1 .
- 9. Sejam z_1 , z_2 e z_3 três números complexos de módulo unitário satisfazendo $z_1 + z_2 + z_3 = 0$. Mostre que esses complexos são vértices de um triângulo equilátero.
- 10. Suponha-se que define um produto em \mathbb{R}^2 que, conjuntamente com a soma vectorial, é compatível com o produto vectorial por escalares (i.e. para todos os $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ e $\alpha \in \mathbb{R}$ tem-se $\alpha(\mathbf{x}\mathbf{y}) = (\alpha\mathbf{x})\mathbf{y} = \mathbf{x}(\alpha\mathbf{y})$) e verifica todas as propriedades de corpo (comutatividade, associatividade, distributividade, existência de unidade e inversos). Prove que, necessariamente, existirão então dois vectores linearmente independentes $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$, tais que $\mathbf{v}\mathbf{v} = \mathbf{v}$, $\mathbf{w}\mathbf{w} = -\mathbf{v}$ e $\mathbf{v}\mathbf{w} = \mathbf{w}$. Conclua que essa estrutura é isomorfa a \mathbb{C} .