

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Campus São Paulo

Aluno: Igor Domingos da Silva Mozetic		Prontuário: SP3027422	Nota
Curso: Informática – Matutino - 213	Ano/Semestre: 2020 / 4º Bimestre.	Data: 02.03.2021	
Avaliação: 2ª listinha – Cinética Química	Professores: Gouveia/Matsumoto	Código Disciplina:	

INSTRUÇÕES:

A resposta deve ser acompanhada da linha de raciocínio utilizada na resolução da questão.

CINÉTICA QUÍMICA – Fatores que influenciam na velocidade de reação, Energia de ativação (Eat)

1. O carvão é um combustível constituído de uma mistura de compostos ricos em carbono. Qual é a situação em que a forma de apresentação do combustível, do comburente e a temperatura utilizada favorecerão a combustão do carbono com maior velocidade?

	combustível	comburente	Temperatura (°C)
a)	carvão em pedaços	ar atmosférico	0
b)	carvão pulverizado	ar atmosférico	30
c)	carvão em pedaços	oxigênio puro	20
d)	carvão pulverizado	oxigênio puro	100
e)	carvão em pedaços	oxigênio liquefeito	50

Resposta: Acredito que seja a alternativa D: "carvão pulvorizado, oxigênio puro e 100°C" por conta de existerem fatores nos quais fazem com que a reação torne-se mais lenta ou mais rápida, e um desses fatores é a temperatura, portanto acredito que a temperatura utilizada que mais favorece para com a combustão do carbono com maior velocidade é a de 100°. No caso do comburente, para que exista uma combustão, é necessário o uso de gás oxigênio e para com que a combustão seja feita da melhor maneira possível, o oxigênio puro é o que mais demanda.

2. Para remover uma mancha de um prato de porcelana, fez-se o seguinte: cobriu-se a mancha com meio copo de água fria, adicionaram-se algumas gotas de vinagre e deixou-se por uma noite. No dia seguinte, a mancha havia clareado levemente.

Usando apenas água e vinagre, sugira duas alterações no procedimento, de tal modo que a remoção da mancha possa ocorrer em menor tempo. Justifique cada uma das alterações propostas

Resposta: Para que ocorra essa alteração no procedimento, um dos fatores envolvidos na reação deveriam estar em desproporcionalidade. Possa que ser o vinagre poderia estar em maior

quantidade e o outro em menor quantidade, possa ser que a água de um dos pratos possa estar mais quente do que a do outro e possa ser tambpem que a mancha no prato de porcelana possa estar mais difícil de ser tirada em um do que no outro.

3. Analise o seguinte diagrama e responda às perguntas:

a) Qual é a equação da reação química envolvida?

Resposta: A equação da reação quimica envolvida trata-se de: N₂O + NO → N₂ + NO₂.

b) Quantas e quais são as moléculas que colidem nessa reação elementar?

Resposta: As moléculas que se colidem nessa reação elementar são duas: o N₂O e NO.

c) Como se chama a situação representada por "N₃O₂"?

Resposta: A situação representada por "N₃O₂" é chamado de complexo ativado.

d) A que corresponde o trecho marcado com a letra x?

Resposta: O trecho que a letra x corresponde ao que chamamos de energia de ativação.

e) A que corresponde o trecho marcado com a letra y?

Resposta: O trecho que a letra y corresponde ao que chamamos de ΔH da reação (quantidade de calor que foi liberada nesse caso da reação).

f) A reação em questão é endotérmica ou exotérmica? Explique.

Resposta: A reação em questão é exotérmica, pois pela análise feita ao gráfico, é perceptivel que a

quantidade de caor no início da reação é maior do que no final, fazendo com que haja uma liberação de calor e criando uma reação exotérmica.

4. Considere o diagrama abaixo para a seguinte reação: Br + H₂ → HBr + H

a) Qual é a energia de ativação do sistema?

Resposta: A energia de ativação do sistema é dada através da subtração da energia potencial dos reagentes até o pico mais alto chamado de complexo ativado. Nesse caso é de 28Kcal/mol.

b) Qual é a variação de entalpia?

Resposta: A variação de entalpia é dada entre a subtração da energia potencial dos produtos com os reagentes. Nesse caso é de 25Kcal/mol.

5. Um estudante desejava estudar, experimentalmente, o efeito da temperatura sobre a velocidade de umatransformação química. Essa transformação pode ser representada por:

Após uma série de quatro experimentos, o estudante representou os dados obtidos em uma tabela:

	Número do experimento			
	1	2	3	4
temperatura (°C)	15	20	30	10
massa de catalisador (mg)	1	2	3	4
concentração inicial de A (mol/L)	0,1	0,1	0,1	0,1
concentração inicial de B (mol/L)	0,2	0,2	0,2	0,2
tempo decorrido até que a transformação se completasse (em segundos)	47	15	4	18

Que modificação deveria ser feita no procedimento para obter resultados experimentais mais adequados ao objetivo proposto?

- a) Manter as amostras à mesma temperatura em todos os experimentos.
- b) Manter iguais os tempos necessários para completar as transformações.
- c)Usar a mesma massa de catalisador em todos os experimentos.
- d) Aumentar a concentração dos reagentes A e B.
- e) Diminuir a concentração do reagente B.