Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

GitHub проекта

Автор в ВК

Содержание

1	Определение определенного интеграла. Теорема о среднем	4
2	Интеграл с переменным верхним пределом, его дифференцирование. Формула Ньютона-Лейбница	4
3	Свойства интеграла, выражаемые равенствами	4
4	Свойства интеграла, выражаемые неравенствами. Обобщенная теорема о среднем	5
5	Интегрирование по частям и замена переменной в определенном интеграле	5
6	Пропущено	6
7	Пропущено	6
8	Теорема о пределе интегральных сумм	6
9	Пропущено	6
10	Общая схема вычисления аддитивной функции промежутка	6
11	Пропущено	7
12	Пропущено	7
13	Пропущено	7
14	Пропущено	7
15	Пропущено	7
16	Пропущено	7
17	Пропущено	7
18	Определение несобственных интегралов по бесконечному и конечному промежуткам. Перманентность и простейшие свойства	7
19	Условие сходимости интеграла от неотрицательной функции	8
20	Пропущено	9
21	Пропущено	9
22	Основные определения, связанные с рядами. Простейшие свойства сходящихся рядов	9
23	Теорема о сходимости положительного ряда. Два признака сравнения	9
24	Пропущено	9
25	Интегральный признак Коши сходимости ряда. Оценка остатка	9
26	Пропущено	10
27	Признак Даламбера, его предельная форма	10
28	Признак Коши, его предельная форма	10
29	Пропущено	10
30	Пропущено	10
31	Пропущено	10

32	Пропущено	10
33	Пропущено	10
34	Пропущено	10
35	Пропущено	10
36	Поточечная и равномерная сходимости функциональной последовательности и функционального ряда. Расшифровка определения равномерной сходимости на языке неравенств	10
37	Пропущено	11
38	Теорема Стокса-Зайделя для последовательностей и рядов. Теорема Стокса-Зайделя для компактно сходящихся рядов	11
39	Теорем о предельном переходе под знаком интеграла и о почленном интегрировании функциональных рядов	12
40	Теоремы о предельном переходе под знаком производной и о почленном дифференцировании функциональных рядов	12
41	Пропущено	12
42	Пропущено	12
43	Пропущено	12
44	Лемма Абеля	12
45	Теорема о радиусе сходимости степенного ряда	13
46	Формула Адамара	13
47	Теорема о компактной сходимости и непрерывности суммы степенного ряда	13
48	Теорема о дифференцировании суммы степенного ряда	13
49	Пропущено	14
50	Разложение e^x , $\sin x$, $\cos x$ в ряд Тейлора	14
51	Почленное интегрирование вещественного степенного ряда. Разложение в ряд Тейлора функций $\ln(1+x)$ и $\arctan x$	15
52	Пропущено	16
53	Пропущено	16
54	Пропущено	16
55	Пропущено	16
56	Пропущено	16
57	Пропущено	16
5 8	Пропущено	16
59	Пространство \mathbb{R}^m . Свойства скалярного произведения. Неравенство Коши. Норма и метрика. Ортогональность. Теорема Пифагора. Шары и кубы	16
60	Пропущено	17
61	Принцип Больцано-Вейерштрасса в пространстве \mathbb{R}^m	17

62 Пропущено	17
63 Точки сгущения и точки прикосновения. Характеристика этих точек на языке последовательностей	17
64 Пропущено	18
65 Пропущено	18
66 Пропущено	18
67 Пропущено	18
68 Пропущено	18
69 Равномерная непрерывность. Модуль непрерывности. Теорема Кантора	18

1 Определение определенного интеграла. Теорема о среднем

Определение. Пусть f определена на X. F — первообразная для f на X, если $\forall x \in X \ \exists F'(x)$ и F'(x) = f(x).

Определение. Неопределенный интеграл — любая первообразная для функции на данном промежутке.

Определение. Пусть [a,b] — невырожденный промежуток, f определена и непрерывна на [a,b], то есть (f,[a,b]) является допустимой парой. Пусть D — множество таких пар. Определенный интеграл — функция, заданная на $D: J: D \to \mathbb{R}$, удовлетворяющая свойствам:

- 1) (f, [a, b]) допустимая пара, если a < c < b, то J(f, [a, b]) = J(f, [a, c]) + J(f, [c, b]).
- 2) Если для (f, [a, b]) верно, что $A \le f(x) \le B$, $\forall x \in [a, b]$, то $A(b a) \le J(f, [a, b]) \le B(b a)$.

Теорема. (о среднем). Если пара $(f, [a, b]) - \partial$ опустимая, то $\exists c \in [a, b]$, такое, что J(f, [a, b]) = f(c)(b - a).

Доказательство. Пусть $M = \max f(x), \ m = \min f(x)$ на [a,b]. Тогда $m \le f(x) \le M \ \forall x \in [a,b]$. Тогда $m(b-a) \le J(f,[a,b]) \le M(b-a)$, разделим на b-a, получим $m \le \frac{1}{b-a}J(f,[a,b]) = C \le M$. Тогда по теореме Больцано-Коши $\exists c \in [a,b]: \ f(c) = C = \frac{1}{b-a}J(f,[a,b])$, остается лишь домножить на (b-a).

2 Интеграл с переменным верхним пределом, его дифференцирование. Формула Ньютона-Лейбница

Определение. Интеграл с переменным верхним пределом — функция $\varphi(x) = J(f, [a, x])$, где $x \in [a, b]$, $a < x \le b$, (f, [a, b]) — допустимая пара и $\varphi(a) = 0$.

Теорема. Пусть $(f, [a, b]) - \partial$ опустимая. Тогда $\forall x \in [a, b] \ \exists \varphi(x) \ u \ \varphi'(x) = f(x)$, откуда сразу вытекает, что φ - первообразная f на [a, b].

Доказательство. Будем считать, что $a \le x < b$ для производной справа и $a < x \le b$ для производной слева. Положим h > 0, изучим приращения φ :

 $\Delta \varphi(x,h) = \varphi(x+h) - \varphi(x)$, где $\varphi(x+h) = J(f,[a,x+h]) = J(f,[a,x]) + J(f,[x,x+h])$, по теореме о среднем $\Delta \varphi(x,h) = J(f,[x,x+h]) = f(\bar{x})h$. Разделим: $\frac{\Delta \varphi(x,h)}{h} = f(\bar{x}) \to_{h\to+0} f(x)$, по определению это $\varphi'_+(x) = f(x)$. Для доказательства производной слева x-h.

Теорема. Пусть f непрерывна на [a,b], a F — первообразная для f. Тогда J(f,[a,b]) = F(b) - F(a).

Доказательство. Пусть $\varphi(x)=J(f,[a,x])$ — первообразная для f. $\exists c\in\mathbb{R}: \ F(x)=\varphi(x)+C.$ То есть $F(b)-F(a)=(\varphi(b)+C)-(\varphi(a)+C)=\varphi(b)=J(f,[a,b]),$ так как $\varphi(a)=0.$

3 Свойства интеграла, выражаемые равенствами

Лемма. 1) f,g — непрерывна на [a,b]. Тогда $\int_a^b (f(x)+g(x))dx=\int_a^b f(x)dx+\int_a^b g(x)dx$.

Доказательство. F,G — первообразные для f,g. Тогда h=f+g, H=F+G, значит, H'(x)=h(x). Значит, $\int_a^b (f(x)+g(x))dx=H(b)-H(a)=(F(b)+G(b))-(F(a)+G(a))=F(b)-F(a)+G(b)-G(a)=\int_a^b f(x)dx+\int_a^b g(x)dx.$

Лемма. 2) $(f,[a,b]) \in D$, $\alpha \in \mathbb{R}$. $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$.

Доказательство. F — первообразная для f . Тогда по Ньютону-Лейбницу, $\int_a^b \alpha f(x) dx = \alpha F(b) - \alpha F(a) = \alpha \int_a^b f(x) dx$.	
Лемма. 3) $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$.	
Доказательство. Очевидно следует из предыдущих пунктов.	
Лемма. 4) $\int_a^b \left(\sum_{k=1}^n \alpha_k f_k(x)\right) dx = \sum_{k=1}^n \alpha_k \int_a^b f_k(x) dx$	
Доказательство. Очевидно по индукции.	
Лемма. 5) $\int_a^b f(x)dx = -\int_b^a f(x)dx$ из формулы Ньютона-Лейбница. Пусть $a,b,c \in \mathbb{R}$, f непрерывна на любом проме жутке c концами a,b,c , тогда $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.	? -
Доказательство. При $a < c < b$ верно по определению. Рассмотрим при $b < a < c$: $\int_b^c f(x)dx = \int_b^a f(x)dx + \int_a^c f(x)dx \in \int_a^b = \int_a^c + \int_c^b$.	⇒
4 Свойства интеграла, выражаемые неравенствами. Обобщенная теорема с среднем	Э
1) Монотонность	
Лемма. f,g непрерывны на $[a,b],$ если $f \leq g \ \forall x \in [a,b],$ то $\int_a^b f(x)dx \leq \int_a^b g(x)dx.$	
Доказательство. $\int_a^b g(x)dx - \int_a^b f(x)dx = \int_a^b (g(x) - f(x))dx \ge 0$. Добавление: если $f \le g$, но f не тождественна g , тогда $\int_a^b f(x)dx < \int_a^b g(x)dx$. Доказательство: Пусть $a \le c < b$. В точке c $f(c) < g(c)$. Возьмем такое $\varepsilon < \frac{g(c) - f(c)}{2}$, чтобы $f(c) + \varepsilon < g(x) - \varepsilon$. Рассмотрим $x \in [c, c+h]$, тогда $f(x) \le f(c) + \varepsilon$, $g(x) > g(c) - \varepsilon$. Тогда $\int_a^b g(x)dx - \int_a^b f(x)dx = \int_a^b (g(x) - f(x))dx = \int_a^c + \int_{c+h}^c + \int_{c+h}^b = \int_c^{c+h} g(x)dx - \int_c^{c+h} f(x)dx$. Если мы увеличим один из этих интегралов, то разность только увеличится $\int_c^{c+h} g(x)dx - \int_c^{c+h} f(x)dx \ge (g(c) - \varepsilon)h - (f(c) + \varepsilon)h$.	=
Лемма. $(f,[a,b])\in D$. Тогда $\left \int_a^b f(x)dx\right \leq \int_a^b f(x) dx$.	
Доказательство. $- f(x) \le f(x) \le f(x) \Rightarrow -\int_a^b f(x) dx \le \int_a^b f(x) dx \le \int_a^b f(x) dx \Rightarrow \left \int_a^b f(x) dx \right \le \int_a^b f(x) dx.$	
Теорема. Обобщенная о среднем. Пусть f, g непрерывны на $[a,b], g \ge 0$. Тогда $\exists c \in [a,b],$ такая, что $\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx$.	=
Локазательство. Пусть $m = \min_{x \in \mathcal{X}} f(x)$ $M = \max_{x \in \mathcal{X}} f(x)$ на $[a,b]$ Тогла $m < f(x) < M \ \forall x \in [a,b]$ Отсюда $ma(x) < f(x)a(x) < ma(x)$	<

Доказательство. Пусть $m=\min f(x),\ M=\max f(x)$ на [a,b]. Тогда $m\leq f(x)\leq M\ \forall x\in [a,b]$. Отсюда $mg(x)\leq f(x)g(x)\leq Mg(x)$. Так как g монотонна, интегрируем: $m\int_a^bg(x)dx\leq \int_a^bf(x)g(x)dx\leq M\int_a^bg(x)dx.\ g(x)=0$ — очевидно. Пусть не так. По свойству монотонности $\int_a^b g(x)dx > 0$. Тогда на него можно разделить:

$$m \le \frac{1}{\int_a^b g(x)dx} \int_a^b f(x)g(x)dx = C \le M$$

По теореме Больцано-Коши $\exists c \in [a,b],$ такая, что f(c) = C, домножим на $\int_a^b g(x) dx.$

5 Интегрирование по частям и замена переменной в определенном интеграле

Теорема. (интегрирование по частям) $U,V\in C^1([a,b]).\ \, Tor\partial a\, \int_a^b U(x)V'(x)dx=UV|_a^b-\int_a^b U'(x)V(x)dx,\,\, что\,\, можно\,\, nepenucamь\,\, как\, \int_a^b U(x)dV=UV|_a^b-\int_a^b U'(x)V(x)dx$ $\int_a^b V dU$.

Доказательство. (UV)'=U'V+V'U. $\int_a^b(UV)'(x)dx=\int_a^bU(x)V'(x)dx+\int_a^bU'(x)V(x)dx$. На основании формулы Ньютона-Лейбница, $UV|_a^b=\int_a^bU(x)V'(x)dx+\int_a^bU'(x)V(x)dx$.

Теорема. (замена переменной)

f непрерывна на [a,b], а arphi непрерывно дифференцируема на Δ с концами p,q. При этом выполняются условия:

- 1) $\varphi(p) = a, \ \varphi(q) = b;$
- 2) $\varphi'(t) \in [a,b] \ \forall t \in \Delta$.

Тогда $\int_a^b f(x)dx = \int_a^q f(\varphi(t))\varphi'(t)dt$.

Доказательство. Пусть F(x) — первообразная для f(x). И пусть $H(t) = F(\varphi(t)), \ t \in \Delta$. Тогда $H'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$. Тогда, по формуле Ньютона-Лейбница, $\int_p^q f(\varphi(t))\varphi'(t)dt = H|_p^q = F(\varphi(q)) - F(\varphi(p)) = F(b) - F(a) = \int_a^b f(x)dx$.

6 Пропущено

7 Пропущено

8 Теорема о пределе интегральных сумм

fопределена на $[a,b],\, f \in C^1[a,b].$
 $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b.$

Определение. $\tau = (x_0, ..., x_n)$ — дробление.

Определение. $\Delta_k = [x_k, x_{k+1}].$ $\xi = (\xi_0, \xi_1, ..., \xi_{n-1})$ $\xi_k \in \Delta_k$ — оснащение.

Определение. $\sum_{k=0}^{n-1} f(\xi_k)(x_{k+1}-x_k) = \sigma(f,\tau,\xi) = \sigma_{\tau}$ — интегральная сумма.

Определение. $\lambda_{\tau} = \max(x_{k+1} - x_k)$ — ранг дробления.

Теорема. f - непрерывна,

$$\sigma(f,\tau,\xi) \to_{\lambda_{\tau} \to 0} I = \int_a^b f(x) dx$$

что означает, что $\forall \varepsilon > 0 \ \exists \delta > 0$, такое, что из $\lambda_{\tau} < \delta$ следует $|\sigma(f, \tau, \xi) - I| < \varepsilon \ \forall \xi$.

Доказательство.

$$\left|\sigma(f,\tau,\xi) - \int_a^b f(x) dx\right| = \left|\sum_{k=0}^{n-1} f(\xi_k)(x_{k+1} - x_k) - \sum_{k=0}^{n-1} \int_k^{k+1} f(x) dx\right| = (\text{по т. 0 среднем}) = \\ \left|\sum_{k=0}^{n-1} f(\xi_k)(x_{k+1} - x_k) - \sum_{k=0}^{n-1} f(c_k)(x_{k+1} - x_k)\right| = \sum_{k=0}^{n-1} |f(\xi_k) - f(c_k)| \left(x_{k+1} - x_k\right)$$

Так как $\xi_k \in \Delta_k$ и $c_k \in \Delta_k$, то $|\xi_k - c_k| \leq \lambda_\tau$. Отсюда

$$|f(\xi_k) - f(c_k)| = |f'(\bar{x})| \cdot |\xi_k - c_k| \le M\lambda_\tau$$

где $M = \max |f'(x)|$

$$|\sigma(f,\tau,\xi) - I| \le \sum_{k=1}^{n-1} M\lambda_{\tau}(x_{k+1} - x_k) = M\lambda_{\tau}(b - a)$$

то есть $|\sigma(f, \tau, \xi) - I| \leq M(b - a)\lambda_{\tau}$.

Теперь $\forall \varepsilon > 0 \; \exists \delta > 0$, такое, что $\lambda_{\tau} < \delta \Rightarrow |\sigma_{\tau} - I| < \varepsilon$. Положив $\delta = \frac{\varepsilon}{M(b-a)}$, получим $|\sigma_{\tau} - I| \leq M(b-a)\lambda_{\tau} < \varepsilon$.

9 Пропущено

10 Общая схема вычисления аддитивной функции промежутка

Определение. $\Phi: D \to \mathbb{R}$ — аддитивная функция промежутка, если $\forall a,b,c$, таких, что $a \le c \le b$: $\Phi([a,b]) = \Phi([a,c]) + \Phi([c,b])$ и $\Phi([a,a]) = 0$.

Лемма. f непрерывна на [A, B], $\Delta \subset [A, B]$.

 $M_{\Delta} = \max_{x \in \Delta} f(x) \ u \ m_{\Delta} = \min_{x \in \Delta} f(x).$

Тогда $M_{\Delta} - m_{\Delta} \to 0$, если длина $\Delta \to 0$.

Доказательство. Пусть $\Delta_k = [a_k, b_k]$. $b_k - a_k \to 0$. По теореме Больцано-Коши $\exists C_k, c_k$, такие, что $f(C_k) = M_{\Delta_k}$, $f(c_k) = m_{\Delta_k}$. $a_k \le C_k/c_k \le b_k$, $0 \le C_k - a_k/c_k - a_k \le b_k - a_k \le \text{дл}\Delta$, откуда $C_k - c_k \to 0 \Rightarrow M_{\Delta_k} - m_{\Delta_k} \to 0$.

Теорема. $\Phi - a \partial \partial u m u$ вная функция на [A, B] и f непрерывна на [A, B]. Эквивалентны:

1)
$$\forall \Delta \in [A, B] \quad \Phi(\Delta) = \int_a^b f(x) dx$$

2) $\exists A_{\Delta}, B_{\Delta}$:

 $\underline{} \underline{} a) A_{\Delta} \partial A.(\Delta) \leq \Phi(\Delta) \leq B_{\Delta} \partial A.(\Delta).$

 $___b) A_{\Delta} \le f(x) \le B_{\Delta} \ \forall x \in \Delta.$

-__c) $B_{\Delta} - A_{\Delta} \rightarrow 0$, echu $\partial n.(\Delta) \rightarrow 0$

 $\overline{3}$ $\Delta^{\pm}(x,h) = [x, x \pm h]$. Torda $\Phi(\Delta^{\pm}(x,h)) = f(x)h + o(h)$ npu $h \to 0$.

$Доказательство. 1)<math>\Rightarrow$ 2)

Пусть $A_{\Delta} = \min_{x \in \Delta} f(x), \ B_{\Delta} = \max_{x \in \Delta} f(x).$

2a — Из теоремы о среднем A_{Δ} дл $(\Delta) \leq \int_a^b f(x) dx \leq B_{\Delta}$ дл (Δ) .

2b — очевилно

2с — по лемме.

 $2)\Rightarrow 3)$

Фиксируем x для $\Delta^+(x,h)$. Согласно условию 2a, $A_{\Delta} \cdot h \leq \Phi(\Delta^+(x,h)) \leq B_{\Delta} \cdot h$. $A_{\Delta} \leq f(x) \leq B_{\Delta} \Rightarrow A_{\Delta} \cdot h \leq f(x)h \leq B_{\Delta} \cdot h$, откуда $0 \leq |\Phi(\Delta^+(x,h)) - f(x)h| \leq (B_{\Delta} - A_{\Delta})h \to 0$. $|\Phi(\Delta) - f(x)h| = o(h)$, $\Phi(\Delta) = f(x)h + o(h)$.

 $3) \Rightarrow 1)$

Введем $F(x) = \phi([A,x])$. $F(x+h) = \Phi([A,x+h]) = \Phi([A,x]) + \Phi([x,x+h]) = F(x) + f(x)h + \alpha(h)$, где $\alpha(h) = o(h)$.

Тогда

$$\frac{F(x+h)-F(x)}{h}=f(x)+\frac{\alpha(h)}{h}\to_{h\to+0}f(x)$$

Tо есть F — первообразная. Тогда, согласно формуле Ньютона-Лейбница:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = \Phi([A, b]) - \Phi([A, a]) = \Phi([A, a]) + \Phi([a, b]) - \Phi([A, a]) = \Phi([a, b])$$

Следствие: M_{Δ}, m_{Δ} — как в лемме.

Если m_{Δ} дл. $(\Delta) \leq \phi(\Delta) \leq M_{\Delta}$ дл. $(\Delta) \ \forall \Delta \subset [A,B]$, то $\phi([a,b]) = \int_a^b f(x) dx \ \forall \Delta = [a,b] \in D$.

- 11 Пропущено
- 12 Пропущено
- 13 Пропущено
- 14 Пропущено
- 15 Пропущено
- 16 Пропущено
- 17 Пропущено

18 Определение несобственных интегралов по бесконечному и конечному промежуткам. Перманентность и простейшие свойства

Определение. f непрерывна на промежутке одного из типов: $[a, +\infty)$, [a, b), $(-\infty, a]$, (a, b].

 $\Phi(A) = \int_a^A f(x) dx$. Тогда $\exists \lim_{A \to +\infty} \Phi(A) = \int_a^{+\infty} f(x) dx$ называется несобственным интегралом.

Свойства интеграла:

1) f,g непрерывны на $[a,+\infty)$. Если $\int_a^{+\infty} f(x)dx$ и $\int_a^{+\infty} g(x)dx$ сходятся (имеют конечные пределы), то сходится и $\int_a^{+\infty} (f(x)+g(x))dx = \int_a^{+\infty} f(x)dx + \int_a^{+\infty} g(x)dx$.

Доказательство. $\int_a^A (f(x) + g(x)) dx = \int_a^A f(x) dx + \int_a^A g(x) dx$ и перейти к пределу.

2) α — постоянная, то $\int_a^{+\infty} \alpha f(x) dx = \alpha \int_a^{+\infty} f(x) dx$.

Доказательство. Очевидно.

3) f непрерывна на $[a, +\infty)$, $a < c < +\infty$, и $\int_a^{+\infty} f(x) dx$ и $\int_c^{+\infty} f(x) dx$ сходятся одновременно, тогда $\int_a^{+\infty} f(x) dx = \int_a^c f(x) dx + \int_c^{+\infty} f(x) dx$.

Доказательство. Возьмем $\Phi(A) = \int_a^A f(x)dx$. $\Phi(A) = \int_a^A f(x)dx = \int_a^C f(x)dx + \int_C^A f(x)dx = \int_a^C f(x)dx + \Phi_1(A)$.

4) Если $\int_a^{+\infty} f(x) dx$ — сходится, то $\int_A^{+\infty} f(x) dx \to_{A \to +\infty} 0$.

Доказательство. $\int_A^{+\infty} f(x)dx = \int_a^{\infty} f(x)dx - \Phi(A) \to_{A \to +\infty} 0.$

- 5) $\int_{a}^{\infty} f(x)dx = \lim_{x \to \infty} F(x) F(a).$
- 6) Интегрирование по частям: $\int_a^\infty u dv \leftarrow \int_a^A u dv = uv|_a^A \int_a^A v du = \lim_{A \to \infty} u(A)v(A) u(a)v(a) \int_a^\infty v du.$

19 Условие сходимости интеграла от неотрицательной функции

Теорема. (первая сравнения)

f непрерывна на $[a,+\infty]$ и $f\geq 0$. $\int_a^{+\infty}f(x)dx$ сходится $\Leftrightarrow\Phi(A)$ — ограничена на $[a,+\infty]$, где $\Phi(A)=\int_a^Af(x)dx,\ a\leq A<+\infty$.

Доказательство.

 $\Phi(A) \to_{A \to +\infty} L \in \mathbb{R}$. Зафиксируем $\varepsilon = 1$. $\exists A_1, \ \forall A > A_1, \ \text{такая}, \ \text{что} \ |\Phi(A) - L| < 1$. $|\Phi(A)| = |\Phi(A) - L + L| \le |\Phi(A) - L| + |L| \le 1 + |L| = C'$.

 Φ непрерывна, следовательно, $\exists C'': |\Phi(A)| \leq C'' \ \forall A \in [a,A'],$ откуда $|\Phi(A)| \leq C' + C''.$

Обратно: $0 \le \Phi(A) \le C$, $\forall A \in [a, +\infty)$. Пусть A < A', откуда $\Phi(A') = \int_a^{A'} = \int_a^A + \int_A^{A'} \ge \int_a^A = \Phi(A)$. Предел существует в силу теоремы о пределе монотонной функции, а так как функция ограничена, то он конечен.

Теорема. f, g неотрицательны, непрерывны на $[a, +\infty)$.

- 1) Если $0 \le f(x) \le g(x) \ \forall x \in [a, +\infty) \ u \int_a^{+\infty} g(x) dx$ сходится, то сходится $u \int_a^{+\infty} f(x) dx$.
- 2) Если $\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = l < +\infty$ и $\int_a^{+\infty} g(x) dx$ сходится, то сходится и $\int_a^{+\infty} f(x) dx$

Доказательство.

- 1) $\int_a^A f(x)dx \le \int_a^A g(x)dx \le C$. $\Phi(A) = \int_a^A f(x)dx$ ограничен, следовательно, $\int_a^A f(x)dx$ сходится.
- g(x) получим g(x) получим g(x) g(x)

Пример.

$$\int_0^1 \frac{dx}{x^p} = \lim_{a \to 0} \int_a^1 \frac{dx}{x^p} = \lim_{a \to 0} \left(\frac{1}{1-p} x^{1-p}|_a^1 \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \frac{1}{1-p} - \lim_{a \to 0} \frac{1}{a^{p-1}(1-p)} = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac{a^{1-p}}{1-p} \right) = \lim_{a \to 0} \left(\frac{1}{1-p} - \frac$$

сходится при p < 1.

Пример.

$$\int_{1}^{A} \frac{dx}{x^{p}} = \lim_{A \to \infty} \left(\frac{1}{1 - p} x^{1 - p} \Big|_{1}^{A} \right) = \lim_{A \to \infty} \frac{1}{p - 1} \left[A^{1 - p} - 1 \right]$$

сходится при p > 1.

20 Пропущено

21Пропущено

22 Основные определения, связанные с рядами. Простейшие свойства сходящихся рядов

Определение. Числовой ряд — пара последовательностей $\{a_n\}_{n=1}^{\infty}$ и $\{S_n\}_{n=1}^{\infty}$, где $S_n = \sum_{k=1}^n a_k$.

Определение. Числа a_k — члены ряда, а суммы S_n — частичные суммы ряда.

Определение. $\sum_{n=1}^{\infty} a_n$. Если $\exists \lim_{n\to\infty} S_n \in \hat{\mathbb{R}}$, то он называется суммой ряда. Если предел конечен, то ряд сходится.

1) $(A) \sum_{n=1}^{\infty} a_n$, $(B) \sum_{n=1}^{\infty} b_n$, $c_n = a_n + b_n$. Если (A) и (B) сходятся, то сходится и $(C) \sum_{n=1}^{\infty} c_n$ и его сумма равна S(C) = S(A) + S(B).

Доказательство. $S_{C_n} = S_{A_n} + S_{B_n} =$ конеч+конеч=конеч.

- 2) $(A) \sum_{n=1}^{\infty} a_n, \ \alpha \in \mathbb{R}$. Если $\sum_{n=1}^{\infty} a_n$ сходится, то сходится и $\sum_{n=1}^{\infty} (\alpha a_n) = \alpha \sum_{n=1}^{\infty} a_n$. 3) $m \in \mathbb{R}$. $(A) \sum_{n=1}^{\infty} a_n$ сходится \Leftrightarrow сходится его m-ый остаток.

Доказательство. $S_n = a_1 + ... + a_m + ... + a_n = S_m + R_n$, где $R_n = a_m + ... + a_n$. Тогда $S(A) = S_m + \rho_m$, $S_m = R_n$ $const, S_n \to$ кон.предел, тогда $\rho_m \to$ кон.предел. Обратно: $\rho_m \to$ кон.предел, $S_m = const$ тогда $S_n = const +$ стремящееся к конечному пределу, стремится к конечному пределу.

- 4) Если ряд $(A)\sum_{n=1}^{\infty}a_n$ сходится, то $\rho_m\to_{m\to\infty}0$, так как $\rho_m=S(A)-S_m$.
- 5) Основной необходимый признак сходимости:

Теорема. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $a_n \to 0$.

Доказательство. Рассмотрим n-1-ый остаток. $\rho_{n-1}-\rho_n=a_n$. А у сходящегося ряда остатки, как мы уже доказали, стремятся к нулю.

23Теорема о сходимости положительного ряда. Два признака сравнения

Теорема. $(A):\sum_{n=1}^{\infty}a_n,\ a_n\geq 0\ \forall n,\ A_n=\sum_{k=1}^na_k.\ P$ яд $A\ cxoдится\Leftrightarrow \{A_n\}\ -\ ограничено,\ m.e.\ \exists C:A_n\leq C\ \forall n.$

 \mathcal{A} оказательство. A сходится, $\Rightarrow \exists \lim_{n \to \infty} A_n \Rightarrow \{A_n\}$ — ограничена. Обратно: $A_n \leq A_{n+1} \Rightarrow \{A_n\}$ монотонно \Rightarrow имеет предел. Так как $\{A_n\}$ ограничено, предел конечный $\Rightarrow A$ сходится.

Теорема. $(A) \sum a_n, (B) \sum b_n$ положительны,

- 1) Если $a_n \leq b_n$ HCHM u(B) cxodumcs, то (A) cxodumcs.
- 2) $b_n > 0$ $\forall n, \frac{a_n}{b_n} \rightarrow_{n \rightarrow \infty} L$. Если (B) сходится, то u (A) сходится, а если $0 < L < +\infty$, то ряды сходятся одновременно.

Доказательство.

- 1) НУО $a_n \le b_n$, (изменение первых членов не влияет на сходимость рядов). Тогда это неравенство справедливо для частичных сумм: $0 \le A_n \le B_n \le C$, по теореме (1). Последовательность A_n ограничена, значит, ряд (A) сходится.
- 2) Так как $\frac{a_n}{b_n} \to L \Rightarrow$ HCHM $\frac{a_n}{b_n} \le L+1$. Следовательно, $a_n \le (L+1)b_n = b'_n$, B' = const+B, тогда сходимость Bвлечет сходимость B' и A. Пусть L>0. Так как $\frac{a_n}{b_n}\to L>0 \Rightarrow \frac{a_n}{b_n}>0 \Rightarrow a_n>0$ НСНМ. Откуда, $\frac{b_n}{a_n}\to \frac{1}{L}<\infty$.

24 Пропущено

25 Интегральный признак Коши сходимости ряда. Оценка остатка

Теорема. f>0, непрерывна на $[1,+\infty)$, f монотонно убывает. Тогда $\sum_{n=1}^{\infty} f(n)$ сходится одновременно с $\int_{1}^{\infty} f(x)dx$.

Доказательство. Рассмотрим [k, k+1]. $\forall x \in [k, k+1]$ верно $a_{k+1} = f(k+1) \le f(x) \le f(k) = a_k$. По теореме о среднем $a_{k+1} \leq \int_k^{k+1} f(x) dx \leq a_k$ (т.к. длина [k, k+1] равна 1), $S_{n+1} - a_1 = a_2 + \ldots + a_{n+1} \leq \int_1^{n+1} f(x) dx \leq a_1 + \ldots + a_n = S_n$, откуда $S_n - a_1 \leq \int_1^n f(x) dx \leq S_n$, переходим к пределу, $S - a_1 \leq \int_1^\infty f(x) dx \leq S$. Если $\int_1^\infty f(x) dx \to \infty$, то $S \to \infty$, т.е. ряд расходится, обратно выполняется аналогично, следовательно, требуется сходимость интеграла для сходимости ряда

Замечание. $a_{m+1}+\ldots+a_n \leq \int_m^n f(x)dx \leq a_m+\ldots+a_n$. При $n \to \infty$ $a_{m+1}+\ldots+a_n = R_m$, $a_m+\ldots+a = R_{m-1}$ и $R_m \leq \int_m^\infty f(x)dx \leq R_{m-1}$.

26 Пропущено

27 Признак Даламбера, его предельная форма

Теорема. $(A) \sum_{n=1}^{\infty} a_n, \ a_n \neq 0 \ \forall n. \ D_n = \frac{|a_{n+1}|}{|a_n|}$

- 1) Если $\exists q < 1$, такое, что $D_n \leq q$ начиная с некоторого места, то ряд (A) абсолютно сходится.
- 2) Если $D_n \ge 1$ начиная с некоторого места, то ряд (A) расходится.

Доказательство.

- 1) НУО, $D_n \leq q \ \forall n$, тогда $\frac{|a_2|}{|a_1|} \leq q$, $\frac{|a_3|}{|a_2|} \leq q$, ..., $\frac{|a_n|}{|a_{n-1}|} \leq q$, перемножив, получим $\frac{|a_n|}{|a_1|} \leq q^{n-1} \Rightarrow |a_n| \leq \frac{|a_1|}{q} \cdot q^n = const$.
 - 2) НУО, $\frac{|a_n|}{|a_1|} \ge 1$, $a_n \ne 0$, ряд расходится как несоответствующий необходимому признаку сходимости.

Замечание. (предельная форма признака Даламбера):

 $D_n \to_{n\to\infty} D$. Если D < 1, то (A) абсолютно сходится. Если D > 1, то расходится.

Доказательство. ЕслиD<1, то $\exists q: D< q<1$. $D_n\to D< q\Rightarrow {\rm HCHM}\ D_n< q$. Если D>1, то $D_n\to D>1$, $D_n>1$ HCHM.

28 Признак Коши, его предельная форма

Теорема. (A) $\sum_{n=1}^{\infty} a_n$, $K_n = \sqrt[n]{|a_n|}$

- 1) Если $\exists q < 1$, такой, что $K_n \leq q$ НСНМ, то (A) абсолютно сходится.
- 2) Если $K_n \ge 1$ для бесконечного числа номеров, то ряд расходится.

Доказательство.

- 1) $|a_n| \leq q^n$ НСНМ, $\sum q^n$ сходится $\Rightarrow A$ сходится.
- 2) $K_n \geq 1$, тогда $|a_{n_i}| \geq 1$, откуда $a_n \not\to 0$.

Замечание. $K_n \to K$. Если K < 1, то (A) абсолютно сходится, а если K > 1, то (A) — расходится.

Доказательство. Пусть $K < q < 1, K_n \to K < q \Rightarrow K_n \le q$, а если $K_n \to K > 1$, то $K_n > 1$ HCHM.

- 29 Пропущено
- 30 Пропущено
- 31 Пропущено
- 32 Пропущено
- 33 Пропущено
- 34 Пропущено
- 35 Пропущено
- 36 Поточечная и равномерная сходимости функциональной последовательности и функционального ряда. Расшифровка определения равномерной сходимости на языке неравенств

Последовательность:

Определение. $\{f_n\}_{n=1}^{\infty}$ — функциональная последовательность. (При этом f_n определена на $X \, \forall n$).

Определение. Если $\forall x \in X \; \exists \; \lim_{n \to \infty} f_n(x) \in \mathbb{R}$, то последовательность $\{f_n\}$ поточечно сходится на X.

Определение. $\lim_{n\to\infty} f_n(x) = f(x)$ — предельная функция.

Определение. Последовательность поточечно сходится к f, если $\forall x \in X$, $\forall \varepsilon > 0 \; \exists N_x$ такое, что $\forall n > N_x$ верно $|f_n(x) - f(x)| < \varepsilon$.

Определение. $\{f_n\}$ равномерно сходится на X к f, если $\alpha_n = \sup_{x \in X} |f_n(x) - f(x)| \to_{n \to \infty} 0$

Замечание. $\forall x |f_n(x) - f(x)| \leq \alpha_n \to 0$, то есть из равномерной сходимости вытекает поточечная.

Лемма. $f_n \rightrightarrows f$ на $X, \Leftrightarrow \forall \varepsilon > 0 \ \exists N,$ такое, что $\forall n > N$ верно $|f_n(x) - f(x)| < \varepsilon \ \forall x \in X.$

Доказательство. $f_n \Rightarrow f$ на X, $|f_n(x) - f(x)| = \alpha_n \to 0$, тогда $\forall \varepsilon > 0 \ \exists N : \ \forall n > N$ верно $\alpha_n < \varepsilon$, следовательно, $\forall x \ |f_n(x) - f(x)| \le \alpha_n < \varepsilon$.

Обратно: $\forall x |f_n(x) - f(x)| < \varepsilon$, откуда следует, что $\alpha_n = \sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon < 2\varepsilon$.

Замечание. $\alpha_n = \sup |f_n(x) - f(x)|$ называется Чебышёвским уклонением $f_n(x)$ от f(x).

Ряд

Определение. $S_n(x) = u_1(x) + ... + u_n(x)$. Пара последовательностей $\{u_n\}\{S_n\}$ называется функциональным рядом, где $\sum_{n=1}^{\infty} f_n(x)$ — числовой ряд, $S_n(x)$ — его частичные суммы $(\forall x \in X)$.

Определение. Ряд равномерно сходится на X, если $S_n(x) \rightrightarrows_{n \to \infty} S(x)$ на X.

 $S(x) = S_k(x) + r_k(x)$. Если ряд $\sum f_n(x)$ равномерно сходится, то $r_k(x) = S(x) - S_k(x) \Rightarrow 0$, то есть $\sup |r_n(x)| = \sup |S_k(x) - S(x)| \to 0$.

37 Пропущено

38 Теорема Стокса-Зайделя для последовательностей и рядов. Теорема Стокса-Зайделя для компактно сходящихся рядов

Теорема. (Стокса-Зайделя)

 $X \in \mathbb{R}, \ f_n \ onpederenu \ на \ X \ u \ непрерывны в \ a \in X. \ Ecлu \ f_n \
ightharpoonup f \ na \ X, \ mo \ f \ -$ непрерывна в точке a.

Доказательство. $f(x) \to_{x \to a} L_n = f_n(a), f_n \rightrightarrows f \Rightarrow f_n(x) \rightrightarrows f(x) \ \forall x \Rightarrow L_n = f_n(a) \to f(a) = L$. По теореме о повторных пределах, $f(x) \to_{x \to a} L = f(a)$. А так как f_n непрерывны в точке a, то и f(x) непрерывна в a.

Теорема. (Стокса-Зайделя для рядов).

 u_n определены на $X \subset \mathbb{R}$, непрерывны в $x_0 \in X$. Если $\sum u_n$ равномерно сходится на X, S(x) — сумма ряда, то S — функция, непрерывная в точке x_0 .

Доказательство. $S_n \rightrightarrows S \Rightarrow S_n(x_0) \rightrightarrows S(x_0)$. $S_n(x) = \sum_{n=1}^{\infty} u_n(x)$ непрерывны в т. x_0 , ссылаемся на теорему Стокса-Зайделя.

Определение. f_n определена на $X = \langle a, b \rangle$. f_n сходится компактно к f на $\langle a, b \rangle$, если $\forall [c, d] \subset \langle a, b \rangle$ верно, что $f_n \rightrightarrows f$ на [c, d].

Определение. $\sum u_n$ — функциональный ряд. Если S_n сходится компактно к S на $\langle a,b \rangle$, то $\sum u_n$ сходится компактно.

Теорема. (Стокса-Зайделя для компактных)

1) f_n определены на $\langle a,b \rangle$, и непрерывны в $x_0 \in \langle a,b \rangle$. Если $f_n \to f$ компактно на $\langle a,b \rangle$, то f непрерывно в точке x_0 . 2) u_n непрерывны на $\langle a,b \rangle$. Если $\sum_{n=1}^{\infty} u_n$ компактно сходятся на $\langle a,b \rangle$, S — его сумма, то S непрерывна на $\langle a,b \rangle$.

Доказательство. $a < x_0 < b \Rightarrow \exists [c,d]: x_0 \in [c,d]$. Так как непрерывность — локальное свойство, можем рассмотреть сужение f_n/u_n на [c,d] и применить к ним доказанные теоремы Стокса-Зайделя.

39 Теорем о предельном переходе под знаком интеграла и о почленном интегрировании функциональных рядов

Теорема. f_n непрерывны на [a,b]. Если $f_n \Rightarrow f$ на [a,b], то $\int_a^b f_n(x)dx \to \int_a^b f(x)dx$.

Доказательство. f_n — непрерывна, следовательно, f — непрерывна. Оценим разность интегралов:

$$\left| \int_{a}^{b} f_{n}(x)dx - \int_{a}^{b} f(x)dx \right| \leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx < \int_{a}^{b} \sup_{x \in [a,b]} \left| f_{n}(x) - f(x) \right| dx = \alpha_{n}(b-a) \rightarrow_{n \to \infty} 0 \Rightarrow$$

$$\int_{a}^{b} f_{n}(x)dx \rightarrow \int_{a}^{b} f(x)dx$$

Теорема. u_n непрерывно и равномерно сходится на [a,b]. Тогда $\int_a^b f(x)dx = \sum_{n=1}^\infty u_n(x)dx$.

Доказательство. Пусть $I_n = \int_a^b S_n(x) dx = \sum_{k=1}^n \int_a^b u_n(x) dx$. $S_n \rightrightarrows S$, по 1 теореме

$$\sum_{n=1}^{\infty} \int_a^b u_n(x) dx \leftarrow \int_a^b S_n(x) dx \rightarrow_{n \rightarrow \infty} \int_a^b S(x) dx \Rightarrow \sum_{n=1}^{\infty} \int_a^b u_n(x) dx = \int_a^b S(x) dx$$

40 Теоремы о предельном переходе под знаком производной и о почленном дифференцировании функциональных рядов

Теорема. f_n непрерывно дифференцируемы на a > a, b > u выполняются следующие условия:

- $1)f_n \to_{n\to\infty} f(x) \ \forall x \in \langle a, b \rangle.$
- 2) $f'_n(x) \rightrightarrows \varphi(x) \ \text{ha} < a, b >$.

Тогда f непрерывно дифференцируема на a > u $f'(x) = \varphi(x)$.

Доказательство. Пусть $c \in (a,b)$ и $x \in (a,b)$. $\int_c^x \varphi(t)dt = \lim_{n \to \infty} \int_c^x f_n'(t)dt$. (по второй теореме из билета 39). Тогда $\int_c^x f_n'(t)dt = f_n(x) - f_n(c) \to_{n \to \infty} f(x) - f(c) \Rightarrow f(x) - f(c) = \int_c^x \varphi(t)dt$. Правая часть дифференцируема, слева функция минус константа, тоже дифференцируема, продифферецировав, получим $f'(x) = \varphi(x)$ и непрерывна по теореме Стокса-Зайделя.

Теорема. u_n непрерывно дифференцируемы на < a, b >, если

- 1) $\sum_{n=1}^{\infty} u_n(x)$ сходится $\forall x \in \langle a,b \rangle u$ 2) $\sum_{n=1}^{\infty} u'_n(x)$ равномерно сходится на $\langle a,b \rangle$, $\varphi = \sum_{n=1}^{\infty} u'_n(x)$, то $S = \sum_{n=1}^{\infty} u_n(x)$ непрерывно дифференцируема $u S'(x) = \varphi(x)$.

 \mathcal{L} оказательство. $S_n(x) = \sum_{k=1}^n u_k(x) \to_{n \to \infty} S, \ S'_n = \sum_{k=1}^n u'_k(x) \rightrightarrows \varphi \Rightarrow$ по 1 теореме этого билета $S'(x) = \varphi(x)$.

41 Пропущено

42Пропущено

Пропущено 43

44 Лемма Абеля

Определение. $\sum_{n=0}^{\infty}a_n(z-a)^n$ — степенной ряд, $a_n\in\mathbb{C}\ \forall n.$

Лемма. $(A) \sum_{n=0}^{\infty} a_n (z-a)^n$, сходится при $z_0 = z$, $z \neq a$. Тогда (A) и $(A') \sum_{n=1}^{\infty} n a_n (z-a)^{n-1}$ абсолютно сходятся $\forall z$, удовлетворяющего условию $|z-a| < |z_0-a|$.

Доказательство. $|a_n(z-a)^n| = |a_n||z-a|^n = \alpha_n$. $|na_n(z-a)^{n-1}| = n|a_n||z-a|^n = \frac{n}{|z-a|}\alpha_n \ge \alpha_n$, то есть если сходится (A'), то сходится и (A). $|na_n(z-a)^{n-1}| = \frac{n}{|z-a|}|a_n(z-a)^n| = \frac{n}{|z-a|}\left(\frac{|z-a|}{|z_0-a|}\right)^n|a_n(z_0-a)^n|$.

 $a_n(z_0-a)^n \to_{n\to\infty} 0$ по условию (работает необходимый признак сходимости), следовательно, $|a_n(z_0-a)^n| \le C$.

Средний множитель преобразуем как $\frac{|z-a|}{|z_0-a|} \equiv q < 1$. следовательно $na_n(z-a)^{n-1} \leq C_0 \frac{n}{|z-a|} q^n = b_n$. Множитель n ни на что не влияет (убедимся с помощью Даламбера), и ряд b_n сходится.

12

45 Теорема о радиусе сходимости степенного ряда

Теорема. $(A)\sum_{n=0}^{\infty}a_{n}(z-a)^{n},\ \exists R\in[0,+\infty],\ makee,\ vmo\ \forall z:\ |z-a|< R\ (A)\ abconvemuo\ cxodumca,\ a\ \forall z:\ |z-a|> R\ (A)$ — расходится.

Доказательство. Пусть $\mathscr{E}=\{z\in\mathbb{C}|(A)-\text{сходится в точке }z\}$. \mathscr{E} не пусто, так как $a\in\mathscr{E}$. Введем величину $R=\sup\{|z-z|\}$ $a \mid z \in \mathscr{E}$ }, утверждается, что она обладает нужными свойствами. $R = 0 \Leftrightarrow \mathscr{E} = \{a\}$, соответственно, ряд будет расходиться при |z - a| > 0.

Если R > 0. Рассмотрим $z \in \mathbb{C}: |z - a| < R. |z - a|$ не верхняя граница, следовательно, $\exists z_0 \in \mathscr{E}: |z - a| < |z_0 - a|$. Если A сходится в z_0 , то A сходится и в z. Допустим, что существует $\tilde{z} \in \mathscr{E}: |\tilde{z}-a| > R$ и в точке \tilde{z} ряд (A) сходится. $R < |\tilde{z} - a| \le R = \sup\{|z - a| \mid z \in \mathscr{E}\},$ приходим к противоречию.

46 Формула Адамара

Теорема. $(A)\sum_{n=0}^{\infty}a_{n}(z-a)^{n},\ \exists R\in[0,+\infty],\ make e,\ vmo\ \forall z:\ |z-a|< R\ (A)\ abconvemuo\ cxodumcs,\ a\ \forall z:\ |z-a|> R\ (A)$ — расходится.

Доказательство. Введем $K_n = \sqrt[n]{|a_n(z-a)^n|} = |z-a|\sqrt[n]{a_n}$. Считаем, что $z \neq a$. $\overline{\lim} K_n = |z-a|\overline{\lim} \sqrt[n]{|a_n|} = |z-a|\alpha$, где $\alpha = \overline{\lim} \sqrt[n]{|a_n|}$. По признаку Коши, $\alpha |z-a| < 1 \Rightarrow (A)$ абсолютно сходится и $\alpha |z-a| > 1 \Rightarrow (A)$ расходится. Тогда

- 1) $\alpha = +\infty$, то $\not\exists z$, такого, что $\alpha |z a| < 1$.
- 2) $\alpha=0\Rightarrow \alpha|z-a|=0|z-a|<1$ ряд (A) сходится всегда $\forall z.$

3)
$$0 < \alpha < +\infty \Rightarrow \begin{cases} |z - a| < \frac{1}{\alpha} \Rightarrow \text{ абсолютно сходится} \\ |z - a| > \frac{1}{\alpha} \Rightarrow \text{ расходится} \end{cases}$$

Отсюда:

$$R = \begin{cases} \alpha = 0 & R = +\infty \\ 0 < \alpha < +\infty & R = \frac{1}{\alpha} \\ \alpha = +\infty & R = 0 \end{cases}$$

Утверждение. Формула Адамара — $\frac{1}{R} = \overline{\lim} \sqrt[n]{|a_n|}$.

47 Теорема о компактной сходимости и непрерывности суммы степенного ряда

Определение. Ряд (A) компактно сходится в круге сходимости, если $\forall r: 0 < r < R$ ряд (A) равномерно сходится в концентрическом круге $B(a,r) = \{z \mid |z-a| \le r\}.$

Теорема. (A) $\sum a_n(z-a)^n$, R>0. Тогда:

- 1) (A) компактно сходится в B(a,R); 2) $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ непрерывна в B(a,R).

Доказательство.

- 1) $\exists z_0$, такая, что $|z_0-a|=r < R$. Тогда $\sum a_n(z_0-a)^n$ абсолютно сходится. $\forall z \in B(a,r) \ \sum |a_n||z-a|^n \le \sum |a_n|r^n < +\infty$ по признаку Вейерштрасса A равномерно сходится B(a,r).
- $(2) \ z_0 \in B(a,R). \ \delta > 0: \ \bar{B}(z_0,\delta) \subset B(a,R), \ \exists r: \ B(z_0,\delta) \subset B(a,r) \subset B(a,R).$ Непрерывность локальное свойство, отсюда $\forall n \ a_n | z - a |^n$ — непрерывна в B(a,r). (A) равномерно сходится в B(a,r), следовательно, по теореме Стокса-Зайделя $f(z) = \sum a_n |z-a|^n$ непрерывна в B(a,r).

48 Теорема о дифференцировании суммы степенного ряда

Определение. f определена на \mathbb{C} . $f'(z_0) = \lim \frac{f(z) - f(z_0)}{z - z_0}$ — производная данной функции.

Лемма. $u, v \in \mathbb{C}, |u|, |v| \leq r, n \in \mathbb{N}.$ Тогда $|u^n - v^n| \leq nr^{n-1}|u - v|$.

Доказательство.

$$(u-v)(u^{n-1}+u^{n-2}v+\ldots+ux^{n-2}+v^{n-1})=\\ =u^n+u^{n-1}v+\ldots+u^2v^{n-2}+uv^{n-1}-vu^{n-1}-\ldots-uv^{n-1}-v^n=u^n-v^n$$

13

$$|u^n-v^n| = |u-v| \cdot |u^{n-1} + u^{n-2}v + \ldots + ux^{n-2} + v^{n-1}| \leq |u-v| \sum_{k=0}^{n-1} |u^{n-1-k}| v^k| \leq |u-v| \sum_{k=0}^{n-1} r^{n-1-k} r^k = |u-v| \cdot n \cdot r^{n-1} + u^{n-2}v + \ldots + ux^{n-2} + v^{n-1}| \leq |u-v| \sum_{k=0}^{n-1} |u^{n-1-k}| v^k \leq |u-v| \sum_{k=0}^{n-1} r^{n-1-k} r^k = |u-v| \cdot n \cdot r^{n-1} + u^{n-2}v + \ldots + ux^{n-2} + v^{n-1}| \leq |u-v| \sum_{k=0}^{n-1} |u^{n-1-k}| v^k \leq |u-v| \sum_{k=0}^{n-1} r^{n-1-k} r^k = |u-v| \cdot n \cdot r^{n-1} + u^{n-2}v + \ldots + ux^{n-2} + v^{n-1}| \leq |u-v| \sum_{k=0}^{n-1} |u^{n-1-k}| v^k \leq |u-v| \sum_{k=0}^{n-1} r^{n-1-k} r^k = |u-v| \cdot n \cdot r^{n-1} + u^{n-2}v + \ldots + ux^{n-2}v + \ldots + ux^{n-2}v$$

Теорема. $(A) \sum_{n=0}^{\infty} a_n (z-a)^n, \ R>0, \ f(z)=\sum_{n=0}^{\infty} a_n (z-a)^n$ определена в B(a,R).

1) $(A') \sum_{n=1}^{\infty} n a_n (z-a)^{n-1}$. (A') имеет c (A) одинаковые радиусы сходимости, 2) f — дифференцируема u $f'(z) = \sum_{n=1}^{\infty} n a_n (z-a)^{n-1}$.

Доказательство.

1) Рассмотрим $(A_*) \sum |a_n(z-a)^n|$ и $(A_*') \sum |na_n(z-a)^{n-1}|$, при $z \neq a$. $|a_n(z-a)^n| \leq |z-a||na_n(z-a)^{n-1}|$ при $n \geq 1$. Пусть R' — радиус сходимости (A') и $|z-a| < R' \Rightarrow$ сходится (A'_*) . В силу неравенства выше, сходится ряд и $(A_*) \Rightarrow$ сходится (A), а необходимое для того условие: $|z - a| \le R$. Отсюда $R' \le R$.

Пусть $R' \neq R \Rightarrow R' < R$. Тогда R' < |z - a| < R и (A') — расходится. Возьмем z_0 , такое, что $|z - a| < |z_0 - a| < R$. (A) — сходится в точке z_0 . Тогда, по лемме Абеля, (A') — сходится в z. А этого не может быть, т.к. R' < |z-a|, то есть в точке z_0 ряд (A') должен расходиться. То есть R' = R.

2) $z, w \in B(a, R)$. $\exists r : |z - a| < r$, |w - a| < r. $f(w) = \sum a_n (w - a)^n$, $f(z) = \sum a_n (z - a)^n$. $f(w) - f(z) = \sum a_n (w - a)^n$. $\sum a_n \left[(w-a)^n - (z-a)^n \right]$, при $w \neq z$. По определению производной,

$$\left| \frac{f(w) - f(z)}{w - z} \right| = \left| \frac{\sum_{n=0}^{\infty} a_n ((w - a)^n - (z - a)^n)}{(w - a) - (z - a)} \right| \le \frac{\sum a_n n \left| (w - a) - (z - a) \right| r^{n-1}}{\left| (w - a) - (z - a) \right|} = \sum a_n n r^{n-1}$$

Откуда $\frac{f(w)-f(z)}{w-z}$ сходится, перейдя к пределу почленно, перейдя к пределу:

$$f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} = \sum a_n \lim_{w \to z} \frac{(w - a)^n - (z - a)^n}{w - z} =$$

$$= \sum a_n n \lim_{w \to z} \frac{|(w - a) - (z - a)| \left((w - a)^{n-1} + (w - a)^{n-2} (z - a) \dots + (w - a) (z - a)^{n-2} + (z - a)^{n-1} \right)}{|(w - a) - (z - a)|} =$$

$$= \sum a_n n \lim_{w \to z} \left| (w - a)^{n-1} + (w - a)^{n-2} (z - a) \dots + (w - a) (z - a)^{n-2} + (z - a)^{n-1} \right| = \sum_{n=1}^{\infty} a_n n(z - a)^{n-1}$$

— сумма A'.

49 Пропущено

Разложение e^x , $\sin x$, $\cos x$ в ряд Тейлора 50

Теорема. (1) Функции $\sin x$, $\cos x$, $e^x - cymmu$ своих рядов Тейлора при $a = 0 \ \forall x \in \mathbb{R}$.

Доказательство.

1) $f(x) = \sin x$. Как мы знаем, $f^{(n)}(x) = \sin(x + \frac{n\pi}{2})$, a = 0, f(0) = 0. Если $n=2k\Rightarrow f^{(n)}(0)=\sin(\pi k)=0$, если $n=2k+1\Rightarrow f^{(n)}(0)=\sin(\pi k+\frac{\pi}{2})=(-1)^k$ Таким образом, ряд Тейлора имеет вид

$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{(2k+1)!} x^{2k-1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \dots \quad \forall x$$

И по формуле Тейлора с остаточным членом по Лагранжу, мы имеем, что

$$\sin(x) = T_{2k}(f, 0, x) + \underbrace{\frac{f^{(2k)}(\overline{x})}{(2k)!} x^{2k}}_{r_{2k-1}(x)}$$

Оценим остаток: $|r_{2k-1}(x)| \leq \frac{x^{2k}}{(2k)!} \to_{k\to\infty} 0.$

2) Продифференцируем это равенство и получим ряд для $\cos x$:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

Оценим остаток: $|r_{2k-2}(x)| \le \frac{f^{(2k-1)}(x)}{(2k-1)!} x^{2k-1} \to_{k\to\infty} 0.$

3) $f(x) = e^x f^{(n)}(x) = e^x, f^{(n)}(0) = 1$

$$T_n(f,0,x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

По формуле Тейлора с остаточным по Лагранжу,

$$e^{x} - T_{n}(f, 0, x) = r_{n}(x) = \frac{f^{(n+1)}(\overline{x})}{(n+1)!}x^{n+1}$$

$$r_n(x) = \frac{e^{\overline{x}}}{(n+1)!} x^{n+1} \quad |\overline{x}| \le |x|$$

откуда

$$|r_n(x)| \le \frac{e^{|x|}}{(n+1)!} |x|^{n+1} \to_{n \to \infty} 0$$

51Почленное интегрирование вещественного степенного ряда. Разложение в ряд Тейлора функций $\ln(1+x)$ и $\arctan x$

(A) $\sum_{n=0}^{\infty} a_n (x-a)^n$; $a_i, a, x \in \mathbb{R}$. Если R — радиус сходимости, то по теореме $\forall x \in (a-R, a+R)$ ряд A компактно сходится. Пусть $[p,q] \subset (a-R,a+R)$. A компактно сходится на $[p,q] \Rightarrow \sum a_n \int_p^q (x-a)^n dx = \int_p^q (\sum a_n (x-a)^n) dx$.

Теорема. (2)

1) $\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ Ps θ cxodumcs npu $x \in (-1,1]$. 2) $\arctan X = X - \frac{X^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$ Ps θ cxodumcs npu $x \in [-1,1]$.

2)
$$\arctan X = X - \frac{X^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$$
 Ряд сходится при $x \in [-1,1]$.

1) Посчитаем R для $\sum (-1)^{n-1} \frac{x^n}{n}$: по формуле Адамара $R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$. $a_n = \frac{(-1)^{n-1}}{n} \Rightarrow R = 1$, то есть на (-1,1)ряд компактно сходится. При x=1 сходится по Лейбницу, при $x=-\dot{1}$ расходится как отрицательный гармонический, следовательно, ряд компактно сходится (-1, 1].

Продифференцируем ряд, а потом обратно проинтегрируем: $(\ln(1+x))' = \frac{1}{1+x} = 1 - x + x^2 - x^3 + \ldots + \sum_{n=0}^{\infty} (-1)^n x^n.$ Проинтегрируем по отрезку $[0,t]: \int_0^t \frac{dx}{1+x} = \sum_{n=0}^{\infty} (-1)^n \int_0^t x^n dx = t - \frac{t^2}{2} + \ldots + (-1)^n \frac{t^{n+1}}{n+1} + \ldots - ?$

Оценим остаток: $|r_n(x)| \leq \frac{x^{n+1}}{n+1}.$ $r_k(x) \Rightarrow 0$ на [0,1]. Проинтегрируем по отрезку [0,1]:

$$\ln 2 = \int_0^1 \frac{dx}{1+x} = \sum_{k=1}^n (-1)^k \int_0^1 x^k dx + \int_0^1 r_n(x) dx$$

Оценим: $|\int_0^1 r_n(x)dx| \leq \int_0^1 |r_n(x)|dx \leq \int_0^1 x^{n+1}dx = \frac{1}{n+2}$. Таким образом, $\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ и в качестве суммы ряда мы получаем $1 - \frac{1}{2} + \dots + (-1)^{n-1} \frac{1}{n}$, то есть сумма отличается от логарифма двух на бесконечно малую. 2) R для $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$ равен 1, следовательно, $(\arctan x)' = \frac{1}{1+x^2} = 1 - x^2 + x^4 - \dots = \sum_{n=1}^{\infty} (-1)^n x^{2n}$. Интегрируя почленно, получим $\arctan x = \sum (-1)^n \int_0^x t^{2n} dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$. Для краев сходится, остаток стремится к нулю.

- 52 Пропущено
- 53 Пропущено
- 54 Пропущено
- 55 Пропущено
- 56 Пропущено
- 57 Пропущено
- 58 Пропущено
- 59 Пространство \mathbb{R}^m . Свойства скалярного произведения. Неравенство Коши. Норма и метрика. Ортогональность. Теорема Пифагора. Шары и кубы

Определение. $\mathbb{R}^m, \ m \in \mathbb{N}$. Множество \mathbb{R}^m — множество упорядоченных наборов из m чисел: $\mathbb{R}^m \ni x, \ x = (x_1, ..., x_m)$.

Определение. Пространство \mathbb{R}^m — множество с заданными на нем операциями сложения и умножения на скаляр.

Определение. $x, y \in \mathbb{R}$ $x = (x_1, ..., x_m), \ y = (y_1, ..., y_m)$. Их скалярное произведение $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + ... + x_m y_m$

Свойства скалярного произведения:

- 0) < 0, y > = < y, 0 > = 0.
- 1) < x, y > = < y, x >.
- (2a) < x' + x'', y > = < x', y > + < x'', y >
- 2b) $\alpha \in \mathbb{R}, \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- 3) $< \alpha x' + \beta x'', y > = \alpha < x', y > +\beta < x'', y >$.

Определение. Норма вектора $x = (x_1, ..., x_m)$

$$\sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^{m} x_k^2} = ||x||$$

Для точек $z \in \mathbb{R}^2 \equiv \mathbb{C} ||z|| = |z|$.

Свойства нормы:

- 1) ||x|| > 0, $||x|| = 0 \Leftrightarrow x = 0$.
- 2) $||\alpha x|| = |\alpha| \cdot ||x|| \ \forall \alpha \in \mathbb{R}$, в частности, ||-x|| = ||x||.

Свойства скалярного произведения, связанные с нормой:

4) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ (неравенство Коши).

Доказательство: $P(t) = ||x + ty||^2 = \langle x + ty, x + ty \rangle = \langle x, x \rangle + t \langle x, y \rangle + t \langle y, x \rangle + t^2 \langle y, y \rangle = ||x||^2 + 2t \langle x, y \rangle + t^2 ||y||^2$ — неотрицательный квадрат нормы.

Дискриминант $4 < x, y >^2 -4||x||^2||y||^2 \le 0$. Отсюда $< x, y >^2 \le ||x||^2 \cdot ||y||^2$.

Неравенство Коши обращается в равенство тогда и только тогда, когда векторы линейно зависимы.

5) $||x+y|| \le ||x|| + ||y||$. (неравенство треугольника).

Доказательство:

Оценим $||x+y||^2 = \langle x+y, x+y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2 \leq ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2$. Извлекая из крайних частей квадратный корень, получим то, что нужно.

Определение. $\rho(x,y) = ||x-y||$ — расстояние. Теперь \mathbb{R}^m — метрическое.

Свойства расстояния:

- 1) $\rho(x,y) \ge 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$.
- 2) Расстояние симметрично: $\rho(x, y) = \rho(y, x)$.
- 3) $\rho(x,y) \le (x,z) + \rho(z,y)$.

$$\rho(x,y) = ||x-y|| = ||(x-z) + (z-y)|| \le ||x-z|| + ||z-y|| = \rho(x,z) + \rho(z,y).$$

Определение. Угол между векторами $(x,y\in\mathbb{R}^m)$: $\cos\varphi=\frac{\langle x,y\rangle}{||x||\cdot||y||}$

Определение. x ортогонален y, если $\langle x, y \rangle = 0 \Leftrightarrow \langle y, x \rangle = 0$.

Теорема. (теорема Пифагора) $x_1, ..., x_N$ — векторы. Если $x_i \perp x_k$ при $i \neq j$, то $||x_1 + x_2 + ... + x_N|| = ||x_1||^2 + ... + ||x_N||^2$. Доказательство.

$$\left| \left| \sum_{k=1}^{N} x_k \right| \right|^2 = \langle \sum_{k=1}^{N} x_k, \sum_{i=1}^{N} x_i \rangle = \sum_{i,k=1}^{N} \langle x_k, x_i \rangle =$$

$$\sum_{k=1}^{N} < x_k, x_k > = \sum_{k=1}^{N} ||x_k||^2$$

Определение.

 $B(a,r) = \{x \in \mathbb{R}^m | \ ||x-a|| < r\}$ — открытый шар. $\overline{B}(a,r) = \{x \in \mathbb{R}^m | \ ||x-a|| \le r\}$ — закрытый шар. $S^{m-1}(a,r) = \{x \in \mathbb{R}^m | \ ||x-a|| = r\}$ — сфера.

Определение. $\Delta_k = \langle a_k, b_k \rangle \subset \mathbb{R}$

Множество $\{x=(x_1,...,x_m)\;x_k\in\Delta_k,\;k=1,2,...,m\}$ называется m-мерным параллелепипедом. Если все промежутки открыты, то параллелепипед открытый, а если замкнуты — то и параллелепипед замкнут.

 $a = (a_1, ..., a_m), b = (b_1, ..., b_m), c = \frac{1}{2}(a+b)$ — центр параллеленинеда.

 $b_k - a_k$ — длина ребер параллелепипеда. Если же $b_k - a_k = 2h > 0$, то параллелепипед — куб.

Открытый куб обозначается Q(c,h), где c—центр, а h — половина длины ребра. Закрытый куб обозначается \overline{Q} .

60 Пропущено

61 Принцип Больцано-Вейерштрасса в пространстве \mathbb{R}^m

Определение. $A \in \mathbb{R}^m$ ограничено, если $\exists R$ такое, что $A \subset \overline{B}(0,R) \Leftrightarrow \forall x \in A$ верно, что $||x|| \leq R$.

Определение. $X \subset \mathbb{R}^m, \ T: X \to \mathbb{R}^m. \ T$ — ограничено, если T(X) ограничено, то есть $\exists R > 0: \ \forall x \in X: \ ||T(x)|| \leq R.$

Теорема. $\{x^{(n)}\}$ — последовательность в \mathbb{R}^n . Если $\{x^{(n)}\}$ ограничена, то у нее существует сходящаяся подпоследовательность $\{x^{(n_i)}\}$.

Доказательство. По индукции. Индукция по размерности:

n=1 результат известен из 1 семестра.

Пусть теорема верна в \mathbb{R}^m , докажем, что она верна в \mathbb{R}^{m+1} :

 $x^{(n)} \in \mathbb{R}^{m+1} \{x^{(n)}\}$ — ограничен. $x^{(n)} = (x_1^{(n)}, ..., x_{m+1}^{(n)})$, $\tilde{x}^{(n)} = (x_1^{(n)}, ..., x_m^{(n)})$. Ясно, что $||\tilde{x}^{(n)}|| \leq ||x^{(n)}||$. По индукционному предположению $\exists n_k : \tilde{x}^{(n_k)} \to \tilde{a} \in \mathbb{R}^m$. Пусть $\tilde{a} = (a_1, ..., a_m)$, тогда $x_i^{(n_k)} \to_{k \to \infty} a_i$ i = 1, ..., m. Теперь рассмотрим $x^{(n_k)} = (\underbrace{x_1^{(n_k)}, ..., x_m^{(n_k)}}_{\to a_1}, x_{m+1}^{(n_k)})$. $x_{m+1}^{(n_k)}$ можно проредить, чтобы получилась сходящаяся подпоследовательность: берем n_{k_i} ,

такую, что $x_{m+1}^{(n_{k_i})} \to a_{m+1}$. Такая последовательность существует согласно одномерному случаю. Теперь рассматриваем $x^{(n_{k_i})} = \underbrace{(x_1^{(n_{k_i})}, ..., x_{m-1}^{(n_{k_i})}, ..., x_{m+1}^{(n_{k_i})}, x_{m+1}^{(n_{k_i})})$. Она имеет предел покоординатно, а значит, и по норме.

62 Пропущено

63 Точки сгущения и точки прикосновения. Характеристика этих точек на языке последовательностей

Определение. $A\subset \mathbb{R}^m,\ a\in \mathbb{R}^m,\ a$ — предельная точка, если $\forall V(a)\ \dot{V}(a)\cap A\neq\varnothing.$

Лемма. a-mочка сгущения $A \Leftrightarrow \exists \{x_n\} \subset A$, такая, что

1)
$$x^{(n)} \to a$$
,

2) $x^{(n)} \neq a \ \forall n$.

Доказательство. a — точка сгущения, следовательно, $\forall \delta > 0$ верно $(B(a,\delta) \setminus \{a\}) \cap A \neq \emptyset$. Пусть $\delta = 1/n, n \to \infty$. $x^{(n)} \in (B(a, 1/n) \setminus \{a\}) \cap A \Rightarrow 0 < ||x^{(n)} - a|| < 1/n \to 0 \Rightarrow x^{(n)} \to 0.$

Обратно: $x^{(n)} \to a \Rightarrow \forall \varepsilon > 0 \ \exists N : \forall n > N \ верно, что <math>x^{(n)} \in B(a,\varepsilon)$. Так как $x^{(n)} \neq a, \ x^{(n)} \in B(a,\varepsilon) \backslash \{a\}; \ Если$ $x^{(n)} \in A, \ (B(a,\varepsilon) \setminus \{a\}) \cap A \neq \varnothing \Rightarrow$ по определению a — точка сгущения.

Определение. $A \in \mathbb{R}^m$. a — точка прикосновения A, если $\forall V(a) \ V(a) \cap A \neq 0$.

Лемма. a-mочка прикосновения, $A \subset \mathbb{R}^m \Leftrightarrow \exists \{x^{(n)}\} \subset A$, такое, что $x^{(n)} \to_{n \to \infty} 0$.

Доказательство. a — точка прикосновения, следовательно, $\forall \delta > 0$ верно $(B(a,\delta)) \cap A \neq \emptyset$. Пусть $\delta = 1/n, n \to \infty$. $x^{(n)} \in (B(a, 1/n)) \cap A \Rightarrow 0 < ||x^{(n)} - a|| < 1/n \to 0 \Rightarrow x^{(n)} \to 0.$

Обратно: $x^{(n)} \to a \Rightarrow \forall \varepsilon > 0 \ \exists N : \forall n > N \ верно, что <math>x^{(n)} \in B(a,\varepsilon). \ x^{(n)} \in A, \ (B(a,\varepsilon)) \cap A \neq \emptyset \Rightarrow$ по определению aточка прикосновения.

- 64 Пропущено
- 65 Пропущено
- 66 Пропущено
- 67 Пропущено
- 68 Пропущено

69 Равномерная непрерывность. Модуль непрерывности. Теорема Кантора

Определение. T равномерно непрерывно на X, если $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in X$, такое, что $||x-x'|| < \delta \Rightarrow ||T(x)-T(x')|| < \varepsilon$.

Замечание. Достаточным для равномерной непрерывности условием является условие Липшица: $\exists C: ||T(x) - T(x')|| \le$ $C||x - x'|| \ \forall x, x' \in X.$

Определение. Модуль непрерывности $T: \omega_T(\delta) = \sup_{\delta>0, \ x,x'\in X, \ ||x-x'||<\delta} ||T(x)-T(x')||.$

- 1) Если $\delta < \delta'$, то $\omega_T(\delta) \leq \omega_T(\delta')$;
- 2) $u, v \in X \Rightarrow ||T(u) T(v)|| \leq \omega_T(||u v||).$

Теорема. (Кантора)

X — компактное подмножество в \mathbb{R}^m , а $T:X\to\mathbb{R}^l$. Если T непрерывно на X, то T равномерно непрерывно на X.

Доказательство. Согласно замечанию, $\forall x, x' \in X : ||T(x) - T(x')|| < \omega_T(||x - x'||)$.

Если $\omega_T(\delta) \to_{\delta \to +0} 0$, то T — равномерно непрерывно (2). Проверим это: зададим произвольное $\varepsilon > 0$ $\omega_T(\delta) \to_{\delta \to 0+}$ $0 \exists \delta_0 > 0$, такая, что $\omega_T(\delta) < \varepsilon$ при $\delta < \delta_0$. Тогда $\forall x, x' \in X, ||x - x'|| < \delta_0$ и $||T(x) - T(x')|| \le \omega_T(||x - x'||) < \varepsilon$.

От противного, пусть (2) неверно: пусть $\omega_T(\delta) \not\to_{\delta \to 0+} 0$. Напомним, что ω_T возрастает. Тогда $\exists \lim_{\delta \to 0+} \omega_T(\delta) > 0$ и $\exists \lim_{\delta \to 0+} \omega_T(\delta) = \inf \omega_T(\delta) = C > 0.$

 $\forall \delta > 0 \ \omega_T(\delta) \ge C > 0, \ \forall n \ \omega_T(\frac{1}{n}) \ge C > 0, \ \text{то есть sup} \ ||T(x) - T(x')|| \ge C > 0. \ \text{Тогда} \ \exists x_n, x_n' \in X \ \text{такое, что одновре-}$ менно $||x_n - x_n'|| \le \frac{1}{n}$ и $||T(x_n) - T(x_n')|| \ge \frac{C}{2}$. Теперь, когда у нас есть последовательность, используем компактность: $\exists x_{n_k} \to x_0 \in X$. Тогда $||x_{n_k}' - x_0|| \le ||x_{n_k}' - x_{n_k}|| + ||x_{n_k} - x_0|| \le \frac{1}{n_k} + ||x_{n_k} - x_0|| \to_{n_k \to \infty} 0$. Таким образом, $x_{n_k}' \to x_0$. Отсюда $||T(x_{n_k}) - T(x_{n_k}')|| \ge \frac{C}{2}$. Перейдем к пределу: $||T(x_0) - T(x_0)|| \ge \frac{C}{2} > 0$, противо-

речие. Следовательно, (2) верно, из него вытекает равномерная непрерывность, теорема доказана.