FORMELSAMMLUNG

Deskriptive Statistik

Relative Häufigkeit	$f(a_j) = \frac{h(a_j)}{n}$ $\sum_{j=1}^k f(a_j) = 1$
[h(a _j)=absolute	n j=1 k=Anzahl verschiedener Merkmalsausprägungen
Häufigkeit, Anzahl]	
p-Quantile	$x_p := \begin{cases} x_k & \text{, falls } n \cdot p \text{ keine ganze Zahl (k ist auf } n \cdot p \text{ folgende ganze Zahl)} \\ \frac{1}{2}(x_k + x_{k+1}) & \text{, falls } n \cdot p \text{ ganze Zahl (k = n \cdot p)} \end{cases}$
Momente	$m^{k} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} \qquad m_{zentral}^{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}$
	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$ $\overline{x} = \sum_{j=1}^{k} a_{j} f(a_{j})$
Arithmetisches Mittel	
	n ist Stichprobengröße= Anzahl der Beobachtungen
	k ist Anzahl verschiedener Merkmalsausprägungen
Empirische Varianz (Streuung)	$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \overline{x}^{2} \right) \qquad s^{2} = \sum_{j=1}^{k} (a_{j} - \overline{x})^{2} \cdot f(a_{j})$ $s^{2} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \right) - \overline{x}^{2} = \overline{x^{2}} - \overline{x}^{2}$
Unverzerrte Varianz	$s_u^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{n}{n-1} s^2$ $s^2 = \frac{n-1}{n} s_u^2$
Standardabweichung	$s = \sqrt{s^2}$
Variationskoeffizient	$V = s / \overline{x}$
Tschebyscheffsche Ungleichung	$P((X - \overline{x}) \ge c) \le \frac{s^2}{c^2}$ wenn $c = ks$, erhält man $P(X - \overline{x} \ge k \cdot s) \le \frac{1}{k^2}$
Schiefe und Exzess	$Sch = \frac{m_{zentral}^3}{s^3} \qquad Ex = \frac{m_{zentral}^4}{s^4} - 3$
z-Transformation	$z_i = \frac{x_i - \overline{x}}{s}$
Ausreißer	Werte außerhalb des Intervalls [Q1-1,5IQB; Q3+1,5IQB]

1

Odds Ratio	$\gamma = \frac{h_{11} / h_{12}}{h_{21} / h_{22}}$ h _{ij} = absolute Häufigke	eit in der Zelle ij
Produkt-Moment Korrelation (Pearson)	$r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$	$r_{XY} = \frac{\operatorname{cov}(x, y)}{\sqrt{s_X^2 s_y^2}} = \frac{s_{XY}}{s_X s_Y}$
Kovarianz	$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n}$	$cov(x, y) = s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$
Rangkorrelations- koeffizient von Spearman	$r_{S} = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n(n^{2} - 1)}$	$d_i = R(x_i) - R(y_i)$ $R(x_i)$ und $R(y_i)$ sind Rangzahlen
Φ-Koeffizient (2x2 Kontingenztabelle)	$\Phi = \sqrt{\frac{\chi^2}{n}}$ n = Stichprobengröße,	$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(h_{b(i,j)} - h_{e(i,j)})^2}{h_{e(i,j)}}$ k= Zeilenanzahl, l= Spaltenanzahl
Kontingenzkoeffizient (kxl Kontingenztabelle)	$K_* = \frac{K}{K_{\text{max}}} \qquad K = \sqrt{\frac{2}{n}}$	$K_{\text{max}} = \sqrt{\frac{\min(k, l) - 1}{\min(k, l)}}$
Regression	$b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$ $b = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$ $= \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{\sum_{i=1}^{n} (y_i - \overline{y})}$	$\frac{\sum x_i y_i - n\overline{x} \cdot \overline{y}}{\sum x_i^2 - n\overline{x}^2}$ $\frac{\partial^2}{\partial x_i^2} = \frac{\text{erklärte Varianz}}{\text{Gesamtvarianz}}$ Kriterium, X ist unabhängige Variable (UV)=Prädiktor
Lineare Transformation	Für $y_i = a + bx_i$ gilt $\overline{y} = a + b\overline{x}$, Van a und b sind Konstanten (feste Zahl	

Wahrscheinlichkeitsrechnung

Bedingte	$p(B A) = \frac{p(A \cap B)}{p(A)}$		
Wahrscheinlichkeit	p(A)		
Additionstheorem	$p(A \cup B) = p(A) + p(B) - p(A \cap B)$		
Multiplikationstheorem	$p(A \cap B) = p(A) \cdot p(B A) = p(B) \cdot p(A B)$		
Satz von der totalen	$p(B) = \sum_{i=1}^{k} p(A_i) \cdot p(B A_i)$		
Wahrscheinlichkeit	k= Anzahl disjunkter Teilmengen (Ereignisse)		
Theorem von Bayes	$P(A B) = \frac{P(A)}{P(B)} \cdot P(B A) \qquad P(A_i B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B A_i) \cdot P(A_i)}{\sum_{i=1}^k P(B A_i) \cdot P(A_i)}$		
Unabhängigkeit	P(B A)=P(B) $P(A B)=P(A)$		
	$P(A \cap B) = P(A) * B(B)$		
	$\bullet P(X \le b) = F(b)$		
Bestimmung von	$\bullet P(a < X \le b) = F(b) - F(a)$		
Wahrscheinlichkeiten	$\bullet P(X>a)=1-F(a)$		
, , and sentimental	• $P(a \le X \le b) = F(b) - F(a) + P(X=a)$		
	[F(x)- Verteilungsfunktion des Merkmals/ der Zufallsvariablen X]		

Kombinatorik

N= Populationsgröße, n= Stichprobengröße

	Zurücklegen (Wiederholung)	
	ja	nein
Variation (Reihenfolge berücksichtigt)	N^n	$\frac{N!}{(N-n)!} = N \cdot (N-1) \cdot \dots \cdot (N-n+1)$
Kombination (Reihenfolge <i>nicht</i> berücksichtigt)	$\binom{N+n-1}{n}$	$\binom{N}{n} = \frac{N!}{(N-n)! \cdot n!}$
Permutationen	$\frac{N!}{n_1!n_k!}$	N!

Zufallsvariablen und Verteilungen

Häufigkeits- verteilung	WAHRSCHEINLICHKEITSVERTEILUNG		
Merkmal X	Zufallsvariable X		
	diskret	stetig	
{a1,, ak} k verschiedener Ausprägungen	$\{x_1,, x_k\}$ Wertebereich, Ergebnismenge, Träger	Werterbereich ist Teilmenge aus \mathbb{R} mit \mathbb{R} = Menge der reellen Zahlen	
f(a _j) relative Häufigkeit von a _j $\sum_{j=1}^{k} f(a_j) = 1$	WAHRSCHEINLICHKEITSFUNKTION $p(x_i)$ $\sum_{i=1}^{k} p(x_i) = p(x_1) + + p(x_k) = 1$	DICHTEFUNKTION $f(x)$ $\int_{-\infty}^{+\infty} f(x)dx = 1$	
Kumulierte	VERTEILUN	GSFUNKTION	
Häufigkeitsverteilung $F(x) = \sum_{a_j \le x} f(a_j)$	$F(x) = \sum_{x_i \le x} p(x_i)$	$F(x) = \int_{-\infty}^{x} f(t)dt$	
Arithmetisches	ERWARTUNGSWERT		
Mittel $\overline{x} = \sum_{j=1}^{k} a_j f(a_j)$	$E(X) = \mu = \sum_{i} x_{i} p(x_{i})$	$E(X) = \mu = \int_{-\infty}^{+\infty} x f(x) dx$	
VARIANZ	$Var(X) = \sigma^2 = \sum_{i} (x_i - \mu)^2 p(x_i)$	$Var(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$	
KOVARIANZ	$Cov(X,Y) = \sigma_{XY} = E[(X - \mu_X)]$	$\left[(Y - \mu_Y) \right] = E(XY) - E(X)E(Y)$	
	$\sigma_{XY} \sum_{i} \sum_{j} (x_i - \mu_x) (y_j - \mu_y) p_{ij}$	$\sigma_{XY} = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} (x_i - \mu_x)(y_j - \mu_y) f(x, y) dx dy$	

- $\bullet Cov(X,Y)=E(XY)-E(X)E(Y)$
- $\bullet Cov(X+a,Y+b)=Cov(X,Y)$
- $\bullet Cov(aX, bY) = abCov(X,Y)$
- $\bullet Cov(X, Y+Z) = Cov(X,Y) + Cov(X,Z)$
- $\bullet Cov(X, Y) = Cov(Y, X)$
- $\bullet Cov(X, X) = Var(X)$
- •Sind X, Y unabhängig Cov(X,Y)=0

Summenvariablen

Y=aX1+bX2

E(Y)=aE(X1)+bE(X2)

 $Var(Y)=a^{2}Var(X1)+b^{2}Var(X2)+2abCov(X1,X2)$

Diskrete Verteilungen

Verteilung	P(X=x)	Erwartungswert	Varianz
X~B(n,p) Binomial n= Stichprobengröße p= WS für "Erfolg"	$P(X = x) = {n \choose x} \cdot p^{x} \cdot (1-p)^{n-x}$	np	np(1-p)
X~H(n, N, M) Hypergeometrisch N= Populationsgröße M= Anzahl der "Erfolge" M/N=WS für "Erfolg" n= Stichprobengröße	$P(X = x) = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right) \cdot \frac{N - n}{N - 1}$
X~Po(λ) Poisson	$P(X = x) = \frac{\lambda^{x}}{x!} e^{-\lambda}$	λ	λ

Stetige Verteilungen

Verteilung	Erwartungswert	Varianz
Gleichverteilung	(a+b)/2	$(b-a)^2/12$
	a= kleinster Wert, b= größter Wert	(0 d) /12
Normalverteilung	μ	σ^2
Standardnormalverteilung	0	1
χ²(df)-Verteilung	df	2df
t (df)-Verteilung	0	df/(df-2) für df>2
F(n, m)-Verteilung n= Zähler df m= Nenner df df= degrees of freedom, Freiheitsgrade	m/(m-2) (für m≥2)	$\frac{2m^2(m+n-2)}{n(m-4)(m-2)^2}$ (für m\ge 4)

Ermitteln von nicht-tabellierten F-Werten:

$$F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$$

Intervallschätzung

μ Normalverteilte Grundgesamtheit, σ bekannt	$\begin{bmatrix} \overline{x} - z_{(1-\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{(1-\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}} \end{bmatrix}$ z sind Quantile der Standardnormalverteilung N(0,1)
μ Normalverteilte Grundgesamtheit, σ <i>un</i> bekannt	$\left[\overline{x} - t_{(1-\alpha/2)} \frac{s_u}{\sqrt{n}}; \overline{x} + t_{(1-\alpha/2)} \frac{s_u}{\sqrt{n}}\right] s_u = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}$ t sind Quantile der t(n-1)-Verteilung, n ist Srtichprobenröße
μ beliebig verteilte Grundgesamtheit, n>30	$\left[\overline{x} - z_{(1-\alpha/2)} \frac{s_u}{\sqrt{n}}; \overline{x} + z_{(1-\alpha/2)} \frac{s_u}{\sqrt{n}}\right]$
	$\left[\overline{x} - z_{(1-\alpha/2)} \frac{\sqrt{\overline{x}(1-\overline{x})}}{\sqrt{n}}; \overline{x} + z_{(1-\alpha/2)} \frac{\sqrt{\overline{x}(1-\overline{x})}}{\sqrt{n}}\right]$ $\sum_{n} (x_i) = \text{absolute H\"{a}ufigkeit der "Erfolge"}$
(μ=p= Wahrscheinlichkeit für "Erfolg")	$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \text{relative H\"{a}ufigkeit der Erfolge}$
σ^2 Normalverteilte Grundgesamtheit	$\left[\frac{(n-1)s_u^2}{c_2}; \frac{(n-1)s_u^2}{c_1}\right]$ c ₁ und c ₂ sind $\alpha/2$ - bzw. 1- $\alpha/2$ -Quantile der $\chi^2(n-1)$ Verteilung
ρ Bivariate Normalverteilung	$\left[R - z_{1-\alpha/2} \sqrt{\frac{1-R^2}{n-2}}; R + z_{1-\alpha/2} \sqrt{\frac{1-R^2}{n-2}}\right]$

Parametrische Tests

TEST	TESTSTATISTIK	VERTEILUNG DER TESTSTATISTIK UNTER HO
z-Test (Gauß-Test) H ₀ : μ=μ ₀	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)
Einstichproben t-Test H ₀ : μ=μ ₀	$\frac{\overline{X} - \mu_0}{S_u / \sqrt{n}}$	t(n-1)
χ²-Test für Varianz H ₀ : σ=σ ₀	$\frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{(n-1)S_u^2}{\sigma_0^2}$	χ^2 (n-1)
t-Test für zwei abhängige Stichproben (Differenztest) H ₀ : μ _d =0	$\frac{\overline{d}}{\sqrt{\sum_{i=1}^{n} (d_i - \overline{d})^2}} = \frac{\overline{d}}{s_d / \sqrt{n}}$ $\sqrt{\frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{(n-1)n}}$ $\operatorname{mit} d_i = x_i - y_i$	t(n-1) ab n>30 approximativ N(0,1)
t-Test für zwei unabhängige Stichproben H ₀ : μ ₁ =μ ₂ σ ₁ und σ ₂ bekannt	$\frac{\overline{X}_1 - \overline{X}_2}{\sigma_{(\overline{X}_1 - \overline{X}_2)}}$ $\sigma_{(\overline{X}_1 - \overline{X}_2)} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\sigma^2 \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	N(0,1)
t-Test für zwei unabhängige	$\frac{\overline{X}_1 - \overline{X}_2}{\hat{\sigma}_{\overline{X}_1 - \overline{X}_2}} \operatorname{mit} \hat{\sigma}_{\overline{X}_1 - \overline{X}_2} = \widetilde{S} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$t(n_1+n_2-2)$
Stichproben H ₀ : $\mu_1 = \mu_2$ σ <i>un</i> bekannt, $\sigma_1 = \sigma_2$	$\widetilde{S} = \sqrt{\frac{(n_1 - 1)S_{u_1}^2 + (n_2 - 1)S_{u_2}^2}{n_1 + n_2 - 2}}$	Approximativ N(0,1) für n ₁ >30 und n ₂ >30
Zweistichproben F-Test (Test auf Varianzenhomogenität) H ₀ : σ ² ₁ =σ ² ₂	$\frac{S_{u_1}^2}{S_{u_2}^2}$	F (n ₁ -1, n ₂ -1)

Korrelationstest H ₀ : ρ=ρ ₀	Für $\rho_0 = 0$ mit $R = \frac{S_{XY}}{S_X S_Y}$: $\sqrt{\frac{R^2}{(1 - R^2)/(n - 2)}}$	t~(n-2)
110. p po	Für $\rho_0 \neq 0$ und n>25: $0.5 \left(\ln \frac{1+R}{1-R} - \ln \frac{1+\rho_0}{1-\rho_0} \right) \sqrt{n-3}$	Approximativ N(0,1)
Vergleich zweier Korrelationskoeffizienten H ₀ : ρ ₁ =ρ ₂	$\frac{Z_1 - Z_2}{\sigma_{(Z_1 - Z_2)}} \operatorname{mit} \sigma_{(Z_1 - Z_2)} = \sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}$ $Z = 0.5 \ln \left(\frac{1 + \rho}{1 - \rho}\right) \text{ (Fisher Transformstion)}$	Approximativ N(0,1)

Signifikanztest für einfache Kontraste in einer ANOVA

Kontrast	Ein Kontrast ist eine gewichtete Summe der Gruppenmittelwerte: $K = c_1 M_1 + c_2 M_2 + \ldots + c_k M_k = \sum c_i M_i$
Teststatistik	$V = \frac{K}{\hat{\sigma}_K} \sim t(n-k)$
Standardfehler des Kontrastes	$\sigma_{K} = \sqrt{Var(K)}$ $Var(K) = Var\left(\sum_{i=1}^{k} c_{i} M_{i}\right) = \sum_{i=1}^{k} Var(c_{i} M_{i}) = \sum_{i=1}^{k} c_{i}^{2} Var(M_{i}) = \sum_{i=1}^{k} c_{i}^{2} \frac{\sigma_{i}^{2}}{n_{i}}$
Schätzung der Standardfehler bei Varianzenhomogenität: $\sigma_1^2 = \dots = \sigma_k^2 = \sigma^2$:	$Var(K) = \sum_{i=1}^{k} c_i^2 \frac{\sigma^2}{n_i} = \sigma^2 \sum_{i=1}^{k} \frac{c_i^2}{n_i} \hat{\sigma}_K = \sqrt{\hat{\sigma}^2 \sum_{i=1}^{k} \frac{c_i^2}{n_i}}$
Schätzung der Merkmalsvarianz (Varianz Innerhalb) aus den Streuungen aller k Gruppen	$\hat{\sigma}^2 = \tilde{S}^2 = S_I^2 = \frac{S_{u1}^2(n_1 - 1) + S_{uk}^2(n_k - 1)}{n_1 + n_k - k}$

Nichtparametrische Tests

TEST	TESTSTATISTIK	VERTEILUNG DER TESTSTATISTIK UNTER H0
χ^2 -Anpassungstest (Goodness of Fit) H ₀ : F=F ₀ bzw. H ₀ : χ^2 =0	$\chi^{2} = \sum_{j=1}^{k} \frac{\left(h_{e(j)} - h_{b(j)}\right)^{2}}{h_{e(j)}}$ $h_{e(j)} \ge 5 \text{ für alle } j = 1,, k$	$\chi^2(k-1)$
χ²- Unabhängigkeitstest H ₀ : χ²=0	$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{\left(h_{b(i,j)} - h_{e(i,j)}\right)^2}{h_{e(i,j)}}$ <i>k</i> Ausprägungen des 1. Merkmals <i>l</i> Ausprägungen des 2. Merkmals	 Erwartete Häufigkeiten bekannt: χ²(k·l-1) Erwartete Häufigkeiten unbekannt (= aus den Daten geschätzt): χ²[(k-1)(l-1)]
McNemar-Test	$\chi^2 = \sum_{j=1}^{2} \frac{\left(h_{e(j)} - h_{b(j)}\right)^2}{h_{e(j)}}, h_{e(j)} \ge 5,$ nur "Veränderungen" betrachtet	• $\chi^2(1)$
$\begin{array}{l} \textbf{U-Test} \\ (zwei \ unabhängige \ Stichproben) \\ \\ U = n_1 \cdot n_2 + \frac{n_1(n_1+1)}{2} - T_1 \\ \\ T = \text{Rangsumme}, \\ \\ n = \text{Stichprobengröße} \\ \\ \\ H_0 : \overline{R}_1 = \overline{R}_2 \ bzw. \\ \\ \mu_u = \frac{n_1 \cdot n_2}{2} \\ \\ \text{Mit } \overline{R} = \text{Durchschnittsrang} \end{array}$	$\frac{U - \mu_U}{\sigma_u}$ $\sigma_U = \sqrt{\frac{n_1 \cdot n_2 \cdot (n_1 + n_2 + 1)}{12}}$	Approximativ N(0,1)
Wilcoxon-Test $(zwei \ abhängige \ Stichproben)$ $H_0: T=T' \ btw. \ \mu_T=\frac{n\cdot (n+1)}{4}$ $T\text{- Rangsumme der Differenzen mit dem selteneren Vorzeichen}$ $T'\text{- Rangsumme der Differenzen mit dem häufigeren Vorzeichen}$	$\frac{T - \mu_T}{\sigma_T}$ $\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{24}}$	Kritische Werte sind tabelliert (Vgl. S.18) Ab n>25 approximativ N(0,1)

Regressionsanalyse

H_0 : $\beta_1 = \beta_2 =$ $\beta_p = 0$	$V = \frac{R^2/p}{(1-R^2)/(n-p-1)} \sim F(p, n-p-1)$ mit n=Stichprobengröße; p=Anzahl der Prädiktoren
H_0 : $\beta_j = b$	$V = \frac{\hat{\beta}_{j} - b}{\hat{\sigma}_{\hat{\beta}_{j}}} \sim t(n-p-1) \text{ mit } \hat{\beta}_{j} = \frac{S_{Y,x_{j}}}{S_{x_{j}}^{2}}, \sigma_{\hat{\beta}_{j}} = \sqrt{\frac{\hat{\sigma}^{2}}{nS_{X_{j}}^{2}}}, \hat{\sigma}^{2} = \frac{\sum_{i=1}^{n} \hat{u}_{i}^{2}}{n-p-1},$ $\hat{u} = \text{Modellresiduen}$
H_0 : β_1 - β_2 =c	$V = \frac{\left(\hat{\beta}_1 - \hat{\beta}_2\right) - c}{\hat{\sigma}_{\hat{\beta}_1 - \hat{\beta}_2}} \sim t(n-p-1) \text{ mit } \hat{\sigma}_{\hat{\beta}_1 - \hat{\beta}_2} = \sqrt{Var(\hat{\beta}_1) + Var(\hat{\beta}_1) - 2Cov(\hat{\beta}_1, \hat{\beta}_2)}$
LR-Test	$\frac{\left(\text{RQS}_{\text{M0}}\text{-RQS}_{\text{M1}}\right)/\text{m}}{\text{RQS}_{\text{M1}}/\left(\text{n-p-1}\right)} \sim F(\text{m,n-p-1})$ $\text{RQS=Residual quadrat summe; m=Anzahl der Restriktionen unter H}_{0}$

Einfaktorielle ANOVA mit k Stufen (between subject)

Quelle der Varianz	Quadratsumme (QS)	df	Mittel der Quadrate	Testgröße, Verteilung unter H ₀
TREATMENT (zwischen den Gruppen)	$\sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X} \right)^2$	k-1		$rac{MQ_{Zwischen}}{MQ_{Innerhalb}} \sim F(k-1;n-k)$
FEHLER (innerhalb der Gruppen)	$\sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X}_j \right)^2$	n-k	QS/df	IN Q Innerhalb
TOTAL	$\sum_{i=1}^k \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X}\right)^2$	n-1		

Post-Hoc Vergleiche mit Bonferroni-Korrektur:

 $\alpha_{\text{kor.}} = \alpha/m$, $p_{\text{kor.}} = p_{\text{zw.}} * m$ mit m=Anzahl verschiedener Paarvergleiche $\binom{k}{2}$.

Effektstärkemaße

Cohens d	$d = \frac{\mu_{EG} - \mu_{KG}}{\sigma}$
Glass Delta	$\Delta = \frac{\mu_{EG} - \mu_{KG}}{\sigma_{KG}}$
Aufgeklärte Varianz, f	$R^2 = \eta^2 = \frac{QS_{Modell}}{QS_{Gesamt}}, f = \sqrt{\frac{R^2}{1 - R^2}}$

Einfaktorielle ANOVA mit Messwiederholung (within subject)

Quelle der Varianz	Quadratsumme (QS)	df	Mittel der Quadrate	Testgröße, Verteilung unter H ₀		
ZWISCHEN VPN	$k\sum_{i=1}^{n} (\overline{X}_{i.} - \overline{X})^2$	n-1				
INNERHALB VPN	$\sum_{i=1}^{n} \sum_{j=1}^{k} (X_{ij} - \overline{X}_{i.})^{2}$	n(k-1)	QS/df	$\frac{MQ_{Treatment}}{MQ_{Residual}} \sim$		
TREATMENT (zwischen den Gruppen)	$n\sum_{j=1}^{k} (\overline{X}_{.j} - \overline{X})^2$	k-1		F[k-1;(n-1)(k-1)]		
RESIDUAL	$\sum_{i=1}^{n} \sum_{j=1}^{k} (X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} + \overline{X})^{2}$	(n-1)(k- 1)				
GESAMT	$\sum_{i=1}^n \sum_{j=1}^k \left(X_{ij} - \overline{X} \right)^2$	kn-1				

Zweifaktorielle ANOVA: Varianzanalysetabelle

		4		
Quelle der Varianz	Quadratsumme (QS)	df	S ² = Mittel der Quadrate =QS/df	Testgröße
Faktor A	$QS_A = \sum_{i=1}^k n_{i.} (\overline{X}_{i.} - \overline{X})^2$	k-1		$F_{A} = \frac{S_{A}^{2}}{S_{Fehler}^{2}}$
Faktor B	$QS_{B} = \sum_{j=1}^{p} n_{,j} (\overline{X}_{,j} - \overline{X})^{2}$	p-1		$F_{B} = \frac{S_{B}^{2}}{S_{Fehler}^{2}}$
Interaktion AxB	$QS_{\!$	(k-1)(p-1)		$F_{AxB} = \frac{S_{AxB}^2}{S_{Fehler}^2}$
Fehler (Innerhalb)	$QS_{Res} = \sum_{i=1}^{k} \sum_{j=1}^{p} \sum_{m=1}^{n_{ij}} (X_{ijm} - \overline{X}_{ij})^{2}$	k·p ·(n _Z -1)		z, S ² _{Innerhalb} : Fehler=S ² Fehler
Gesamt	$QS_{Gesamt} = \sum (X_{ijm} - \overline{X})^2$	n-1		

 n_Z : Gruppen (Zellenumfang) bei ANOVAs mit gleichen Zellhäufigkeiten df_{Fehler} allgemein: df(Gesamt)-df(Faktors A)- df(Faktors B)- df(Interaktion)

Wegweiser für die Wahl häufig benutzter statistischer Tests

		Versuchsplan (De	sign)			
	Zufallsgrupp	endesign	Wiederholungsmessungs- oder Blockdesign			
Skalenniveau Der AV	Zweigruppen- plan	Mehrgruppen- und Mehrfaktorenplan	Zweigruppenplan	Mehrgruppen- und Mehrfaktorenplan		
Nominal-Skala	χ^2 -Test	χ^2 -Test	McNemar- χ^2 -Test	Cochran-Q-Test		
Ordinal-Skala	Mann- Whitney- U-Test	Kruskal-Wallis- H-Test Jonckheere- Trendtest	Wilcoxon-T-Test	Friedman- Rangvarianz- Analyse Page-Trendtest		
Intervall- oder Ratioskala	t-Test für unabhängige Stichproben	Varianzanalyse (ANOVA)* Trendtest	t-Test für abhängige Stichproben	Varianz-Analyse (MANOVA)* Trendtest		

Binomialverteilungen

Tabelle A. Binomialverteilungen (zit. nach: Hays, W.L., Winkler, R.L.: Statistics, vol. I, pp. 609-613. New York: Holt, Rinehart and Winston 1970)

	P									
n k	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50
1 0	0,9500	0,9000	0,8500	0,8000	0,7500	0,7000	0,6500	0,6000	0,5500	0,5000
	0,0500	0,1000	0,1500	0,2000	0,2500	0,3000	0,3500	0,4000	0,4500	0,5000
2 0	0,9025	0,8100	0,7225	0,6400	0,5625	0,4900	0,4225	0,3600	0,3025	0,2500
1	0,0950	0,1800	0,2550	0,3200	0,3750	0,4200	0,4550	0,4800	0,4950	0,5000
2	0,0025	0,0100	0,0225	0,0400	0,0625	0,0900	0,1225	0,1600	0,2025	0,2500
3 0	0,8574	0,7290	0,6141	0,5120	0,4219	0,3430	0,2746	0,2160	0,1664	0,1250
1	0,1354	0,2430	0,3251	0,3840	0,4219	0,4410	0,4436	0,4320	0,4084	0,3750
2	0,0071	0,0270	0,0574	0,0960	0,1406	0,1890	0,2389	0,2880	0,3341	0,3750
3	0,0001	0,0010	0,0034	0,0080	0,0156	0,0270	0,0429	0,0640	0,0911	0,1250
4 0	0,8145	0,6561	0,5220	0,4096	0,3164	0,2401	0,1785	0,1296	0,0915	0,0625
1	0,1715	0,2916	0,3685	0,4096	0,4219	0,4116	0,3845	0,3456	0,2995	0,2500
2	0,0135	0,0486	0,0975	0,1536	0,2109	0,2646	0,3105	0,3456	0,3675	0,3750
3	0,0005	0,0036	0,0115	0,0256	0,0469	0,0756	0,1115	0,1536	0,2005	0,2500
4	0,0000	0,0001	0,0005	0,0016	0,0039	0,0081	0,0150	0,0256	0,0410	0,0625
5 0	0,7738	0,5905	0,4437	0,3277	0,2373	0,1681	0,1160	0,0778	0,0503	0,0312
1	0,2036	0,3280	0,3915	0,4096	0,3955	0,3602	0,3124	0,2592	0,2059	0,1562
2	0,0214	0,0729	0,1382	0,2048	0,2637	0,3087	0,3364	0,3456	0,3369	0,3125
3	0,0011	0,0081	0,0244	0,0512	0,0879	0,1323	0,1811	0,2304	0,2757	0,3125
4	0,0000	0,0004	0,0022	0,0064	0,0146	0,0284	0,0488	0,0768	0,1128	0,1562
5	0,0000	0,0000	0,0001	0,0003	0,0010	0,0024	0,0053	0,0102	0,0185	0,0312
6 0	0,7351	0,5314	0,3771	0,2621	0,1780	0,1176	0,0754	0,0467	0,0277	0,0156
1	0,2321	0,3543	0,3993	0,3932	0,3560	0,3025	0,2437	0,1866	0,1359	0,0938
2	0,0305	0,0984	0,1762	0,2458	0,2966	0,3241	0,3280	0,3110	0,2780	0,2344
3	0,0021	0,0146	0,0415	0,0819	0,1318	0,1852	0,2355	0,2765	0,3032	0,3125
4	0,0001	0,0012	0,0055	0,0154	0,0330	0,0595	0,0951	0,1382	0,1861	0,2344
5	0,0000	0,0001	0,0004	0,0015	0,0044	0,0102	0,0205	0,0369	0,0609	0,0938
6	0,0000	0,0000	0,0000	0,0001	0,0002	0,0007	0,0018	0,0041	0,0083	0,0156
7 0	0,6983	0,4783	0,3206	0,2097	0,1335	0,0824	0,0490	0,0280	0,0152	0,0078
1	0,2573	0,3720	0,3960	0,3670	0,3115	0,2471	0,1848	0,1306	0,0872	0,0547
2	0,0406	0,1240	0,2097	0,2753	0,3115	0,3177	0,2985	0,2613	0,2140	0,1641
3	0,0036	0,0230	0,0617	0,1147	0,1730	0,2269	0,2679	0,2903	0,2918	0,2734
4	0,0002	0,0026	0,0109	0,0287	0,0577	0,0972	0,1442	0,1935	0,2388	0,2734
5	0,0000	0,0002	0,0012	0,0043	0,0115	0,0250	0,0466	0,0774	0,1172	0,1641
6	0,0000	0,0000	0,0001	0,0004	0,0013	0,0036	0,0084	0,0172	0,0320	0,0547
7	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0006	0,0016	0,0037	0,0078

Verteilungsfunktion der Standardnormalverteilung

Cumulative normal probabilities

Cumulative normal probabilities									
Z	F(z)	z	F(z)	z	F(z)	z	F(z)		
.00	.5000000	.21	.5831662	.42	.6627573	.63	.7356527		
.01	.5039894	.22	.5870604	.43	.6664022	.64	.7389137		
.02	.5079783	.23	.5909541	.44	.6700314	.65	.7421539		
.03	.5119665	.24	.5948349	.45	.6736448	.66	.7453731		
.04 .05	.5159534 .5199388	.25 .26	.5987063 .6025681	.46 .47	.6772419	.67	.7485711		
.06	.5239222	.27	.6064199	.48	.6808225 .6843863	.68 .69	.7517478 .7549029		
.07	.5279032	.28	.6102612	.49	.6879331	.70	.7580363		
.08	.5318814	.29	.6140919	.50	.6914625	.71	.7611479		
.09	.5358564	.30	.6179114	.51	.6949743	.72	.7642375		
.10	.5398278	.31	.6217195	.52	.6984682	.73	.7673049		
.11	.5437953	.32	.6255158	.53	.7019440	.74	.7703500		
.12	.5477584	.33	.6293000	.54	.7054015	.75	.7733726		
.13	.5517168	.34	.6330717	.55	.7088403	.76	.7763727		
.14	.5556700	.35	.6368307	.56	.7122603	.77	.7793501		
.15 .16	.5596177 .5635595	.36 .37	.6405764 .6443088	.57	.7156612	.78	.7823046		
.17	.5674949	.38	.6480273	.58 .59	.7190427	.79	.7852361		
.18	.5714237	.39	.6517317	.60	.7224047 .7257469	.80 .81	.7881446 .7910299		
.19	.5753454	.40	.6554217	.61	.7290691	.82	.7938919		
.20	.5792597	.41	.6590970	.62	.7323711	.83	.7967306		
z	F(z)		F(z)		F(z)	Z	F(z)		
.84	.7995458	1.32	.9065825	1.79	.9632730	2.26	.9880894		
.85	.8023375	1.33	.9082409	1.80	.9640697	2.27	.9883962		
.86 .87	.8051055 .8078498	1.34 1.35	.9098773 .9114920	1.81 1.82	.9648521 .9656205	2.28 2.29	.9886962 .9889893		
.88	.8105703	1.36	.9130850	1.83	.9663750	2.30	.9892759		
.89	.8132671	1.37	.9146565	1.84	.9671159	2.31	.9895559		
.90	.8159399	1.38	.9162067	1.85	.9678432	2.32	.9898296		
.91	.8185887	1.39	.9177356	1.86	.9685572	2.33	.9900969		
.92	.8212136	1.40	.9192433	1.87	.9692581	2.34	.9903581		
.93	.8238145	1.41	.9207302	1.88	.9699460	2.35	.9906133		
.94	.8263912	1.42	.9221962	1.89	.9706210	2.36	.9908625		
.95	.8289439	1.43	.9236415	1.90	.9712834	2.37	.9911060		
.96	.8314724	1.44	.9250663	1.91	.9719334	2.38	.9913437		
.97	.8339768	1.45	.9264707	1.92	.9725711	2.39	.9915758		
.98	.8364569	1.46 1.47	.9278550 .9292191	1.93 1.94	.9731966 .9738102	2.40 2.41	.9918025 .9920237		
.99 1.00	.8389129 .8413447	1.48	.9305634	1.95	.9744119	2.42	.9922397		
1.01	.8437524	1.49	.9318879	1.96	.9750021	2.43	.9924506		
1.02	.8461358	1.50	.9331928	1.97	.9755808	2.44	.9926564		
1.03	.8484950	1.51	.9344783	1.98	.9761482	2.45	.9928572		
1.04	.8508300	1.52	.9357445	1.99	.9767045	2.46	.9930531		
1.05	.8531409	1.53	.9369916	2.00	.9772499	2.47	.9932443		
1.06	.8554277	1.54	.9382198	2.01	.9777844	2.48	.9934309		
1.07	.8576903	1.55	.9394292	2.02	.9783083	2.49	.9936128		
1.08	.8599289	1.56	.9406201	2.03	.9788217	2.50	.9937903		
1.09	.8621434	1.57	.9417924	2.04	.9793248	2.51 2.52	.9939634		
1.10 1.11	.8643339 .8665005	1.58 1.59	.9429466 .9440826	2.05 2.06	.9798178 .9803007	2.52	.9941323 .9942969		
1.12	.8686431	1.60	.9452007	2.07	.9807738	2.54	.9944574		
1.13	.8707619	1.61	.9463011	2.08	.9812372	2.55	.9946139		
1.14	.8728568	1.62	.9473839	2.09	.9816911	2.56	.9947664		
1.15	.8749281	1.63	.9484493	2.10	.9821356	2.57	.9949151		
1.16	.8769756	1.64	.9494974	2.11	.9825708	2.58	.9950600		
1.17	.8789995	1.65	.9505285	2.12	.9829970	2.59	.9952012		
1.18	.8809999	1.66	.9515428	2.13	.9834142	2.60	.9953388		
1.19	.8829768	1.67	.9525403	2.14	.9838226	2.70	.9965330		
1.20	.8849303	1.68	.9535213	2.15	.9842224	2.80	.9974449		
1.21	.8868606	1.69	.9544860	2.16	.9846137	2.90	.9981342		
1.22	.8887676	1.70	.9554345	2.17	.9849966	3.00	.9986501		
1.23	.8906514	1.71	.9563671	2.18	.9853713	3.20	.9993129		
1.24 1.25	.8925123 .8943502	1.72 1.73	.9572838 .9581849	2.19	.9857379 .9860966	3.40 3.60	.9996631 .9998409		
1.26	.8961653	1.73	.9590705	2.21	.9864474	3.80	.9999277		
1.27	.8979577	1.75	.9599408	2.22	.9867906	4.00	.9999683		
1.28	.8997274	1.76	.9607961	2.23	.9871263	4.50	.9999966		
1.29	.9014747	1.77	.9616364	2.24	.9874545	5.00	.9999997		
1.30	.9031995	1.78	.9624620	2.25	.9877755	5.50	.9999999		
1.31	.9049021								

Verteilungsfunktion der χ^2 -Verteilungen

Tabelle C. Verteilungsfunktion der χ^2 -Verteilungen (zit. nach: Hays, W.L., Winkler, R.L.: Statistics, vol. I, pp. 604–605. New York: Holt, Rinehart and Winston 1970)

Fläche				0.050	0.100	0.250	0.500
df	0,005	0,010	0,025	0,050	0,100	0,250	0,500
1	$392704 \cdot 10^{-10}$	$157088 \cdot 10^{-9}$	982069·10 ⁻⁹	393214·10 ⁻⁸	0,0157908	0,1015308	0,454937
2	0,0100251	0,0201007	0,0506356	0,102587	0,210720	0,575364	1,38629
3	0,0717212	0,114832	0,215795	0,351846	0,584375	1,212534	2,36597
4	0,206990	0,297110	0,484419	0,710721	1,063623	1,92255	3,35670
5	0,411740	0,554300	0,831211	1,145476	1,61031	2,67460	4,35146
6	0,675727	0,872085	1,237347	1,63539	2,20413	3,45460	5,34812
7	0,989265	1,239043	1,68987	2,16735	2,83311	4,25485	6,34581
8	1,344419	1,646482	2,17973	2,73264	3,48954	5,07064	7,34412
9	1,734926	2,087912	2,70039	3,32511	4,16816	5,89883	8,34283
10	2,15585	2,55821	3,24697	3,94030	4,86518	6,73720	9,34182
11	2,60321	3,05347	3,81575	4,57481	5,57779	7,58412	10,3410
12	3,07382	3,57056	4,40379	5,22603	6,30380	8,43842	11,3403
13	3,56503	4,10691	5,00874	5,89186	7,04150	9,29906	12,3398
14	4,07468	4,66043	5,62872	6,57063	7,78953	10,1653	13,3393
15	4,60094	5,22935	6,26214	7,26094	8,54675	11,0365	14,3389
16	5,14224	5,81221	6,90766	7,96164	9,31223	11,9122	15,3385
17	5,69724	6,40776	7,56418	8,67176	10,0852	12,7919	16,3381
18	6,26481	7,01491	8,23075	9,39046	10,8649	13,6753	17,3379
19	6,84398	7,63273	8,90655	10,1170	11,6509	14,5620	18,3376
20	7,43386	8,26040	9,59083	10,8508	12,4426	15,4518	19,3374
21	8,03366	8,89720	10,28293	11,5913	13,2396	16,3444	20,3372
22	8,64272	9,54249	10,9823	12,3380	14,0415	17,2396	21,3370
23	9,26042	10,19567	11,6885	13,0905	14,8479	18,1373	22,3369
24	9,88623	10,8564	12,4011	13,8484	15,6587	19,0372	23,3367
25	10,5197	11,5240	13,1197	14,6114	16,4734	19,9393	24,3366
26	11,1603	12,1981	13,8439	15,3791	17,2919	20,8434	25,3364
27	11,8076	12,8786	14,5733	16,1513	18,1138	21,7494	26,3363
28	12,4613	13,5648	15,3079	16,9279	18,9392	22,6572	27,3363
29	13,1211	14,2565	16,0471	17,7083	19,7677	23,5666	28,3362
30	13,7867	14,9535	16,7908	18,4926	20,5992	24,4776	29,3360
40	20,7065	22,1643	24,4331	26,5093	29,0505	33,6603	39,3354
50	27,9907	29,7067	32,3574	34,7642	37,6886	42,9421	49,3349
60	35,5346	37,4848	40,4817	43,1879	46,4589	52,2938	59,3347
70	43,2752	45,4418	48,7576	51,7393	55,3290	61,6983	69,3344
80	51,1720	53,5400	57,1532	60,3915	64,2778	71,1445	79,3343
90	59,1963	61,7541	65,6466	69,1260	73,2912	80,6247	89,3342
100	67,3276	70,0648	74,2219	77,9295	82,3581	90,1332	99,3341
z	-2,5758	-2,3263	-1,9600	-1,6449	-1,2816	-0,6745	0,0000

Verteilungsfunktion der χ^2 -Verteilungen

Tabelle C (Fortsetzung)

Fläche df	0,750	0,900	0,950	0,975	0,990	0,995	0,999
1	1,32330	2,70554	3,84146	5,02389	6,63490	7,87944	10,828
2	2,77259	4,60517	5,99147	7,37776	9,21034	10,5966	13,816
3	4,10835	6,25139	7,81473	9,34840	11,3449	12,8381	16,266
4	5,38527	7,77944	9,48773	11,1439	13,2767	14,8602	18,467
5	6,62568	9,23635	11,0705	12,8325	15,0863	16,7496	20,515
6	7,84080	10,6446	12,5916	14,4494	16,8119	18,5476	22,458
7	9,03715	12,0170	14,0671	16,0128	18,4753	20,2777	24,322
8	10,2188	13,3616	15,5073	17,5346	20,0902	21,9550	26,125
9	11,3887	14,6837	16,9190	19,0228	21,6660	23,5893	27,877
10	12,5489	15,9871	18,3070	20,4831	23,2093	25,1882	29,588
11	13,7007	17,2750	19,6751	21,9200	24,7250	26,7569	31,264
12	14,8454	18,5494	21,0261	23,3367	26,2170	28,2995	32,909
13	15,9839	19,8119	22,3621	24,7356	27,6883	29,8194	34,528
14	17,1170	21,0642	23,6848	26,1190	29,1413	31,3193	36,123
15	18,2451	22,3072	24,9958	27,4884	30,5779	32,8013	37,697
16	19,3688	23,5418	26,2962	28,8454	31,9999	34,2672	39,252
17	20,4887	24,7690	27,5871	30,1910	33,4087	35,7185	40,790
18	21,6049	25,9894	28,8693	31,5264	34,8053	37,1564	42,312
19	22,7178	27,2036	30,1435	32,8523	36,1908	38,5822	43,820
20	23,8277	28,4120	31,4104	34,1696	37,5662	39,9968	45,315
21	24,9348	29,6151	32,6705	35,4789	38,9321	41,4010	46,797
22	26,0393	30,8133	33,9244	36,7807	40,2894	42,7956	48,268
23	27,1413	32,0069	35,1725	38,0757	41,6384	44,1813	49,728
24	28,2412	33,1963	36,4151	39,3641	42,9798	45,5585	51,179
25	29,3389	34,3816	37,6525	40,6465	44,3141	46,9278	52,620
26	30,4345	35,5631	38,8852	41,9232	45,6417	48,2899	54,052
27	31,5284	36,7412	40,1133	43,1944	46,9630	49,6449	55,476
28	32,6205	37,9159	41,3372	44,4607	48,2782	50,9933	56,892
29	33,7109	39,0875	42,5569	45,7222	49,5879	52,3356	58,302
30	34,7998	40,2560	43,7729	46,9792	50,8922	53,6720	59,703
40	45,6160	51,8050	55,7585	59,3417	63,6907	66,7659	73,402
50	56,3336	63,1671	67,5048	71,4202	76,1539	79,4900	86,661
60	66,9814	74,3970	79,0819	83,2976	88,3794	91,9517	99,607
70	77,5766	85,5271	90,5312	95,0231	100,425	104,215	112,317
80	88,1303	96,5782	101,879	106,629	112,329	116,321	124,839
90	98,6499	107,565	113,145	118,136	124,116	128,299	137,208
100	109,141	118,498	124,342	129,561	135,807	140,169	149,449
Z	+0,6745	+1,2816	+1,6449	+1,9600	+2,3263	+2,5758	+3,0902

Verteilungsfunktionen der t-Verteilungen

Tabelle D. Verteilungsfunktion der t-Verteilungen und zweiseitige Signifikanzgrenzen für Produkt-Moment-Korrelationen (zit. nach Glass, G. V., Stanley, J. C.: Statistical methods in education and psychology, p. 521. New Jersey: Prentice-Hall, Englewood Cliffs 1970)

Fläche*	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	0,975	0,990	0,995	0,9995	r _{0,05}	r _{0,01}
	0.150	0.225	0.510	0.727	1.000	1 276	1,963	3,078	6,314	12,706	31,821	63,657	636,619	0,997	1,000
1	0,158	0,325	0,510	0,727	1,000	1,376	1,386	1,886	2,920	4,303	6,965	9,925	31,598	0,950	0,990
2	0,142	0,289	0,445	0,617	0,816	1,061		1,638	2,353	3,182	4,541	5,841	12,941	0,878	0,959
3	0,137	0,277	0,424	0,584	0,765	0,978	1,250		2,132	2,776	3,747	4,604	8,610	0,811	0,917
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,015	2,571	3,365	4,032	6,859	0,754	0,874
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,3/1	3,303				
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	5,959	0,707	0,834
7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499	5,405	0,666	0,798
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	5,041	0,632	0,765
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,781	0,602	0,735
10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,587	0,576	0,708
	0.120	0.360	0.206	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,437	0,553	0,684
11	0,129	0,260	0,396		0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	4,318	0,532	0,661
12	0,128	0,259	0,395	0,539		0,870	1,079	1,350	1,771	2,160	2,650	3,012	4,221	0,514	0,641
13	0,128	0,259	0,394	0,538	0,694		1,076	1,345	1,761	2,145	2,624	2,977	4,140	0,497	0,623
14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,343	1,753	2,131	2,602	2,947	4,073	0,482	0,606
15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,/33	2,131			-		,
16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921	4,015	0,468	0,590
17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,965	0,456	0,575
18	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,922	0,444	0,561
19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,883	0,433	0,549
20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,850	0,423	0,537
21	0,127	0,257	0,391	0,532	0,686	0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,819	0,413	0,526
22	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	2,074	2,508		3,792	0,404	0,515
23	0,127	0,256	0,390	0,532	0,685	0,858	1,060	1,319	1,714	2,069	2,500			0,396	0,505
24	0,127	0,256	0,390	0,531	0,685	0,857	1,059	1,318	1,711	2,064	2,492			0,388	0,496
25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	2,060	2,485			0,381	0,487
25	0,127	0,230	0,550				,								0.470
26	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,315	1,706	2,056	2,479			0,374	0,478
27	0,127	0,256	0,389	0,531	0,684	0,855	1,057	1,314	1,703		2,473			0,367	0,470
28	0,127	0,256	0,389	0,530	0,683	0,855	1,056	1,313	1,701	2,048				0,361	0,463
29	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,311	1,699					0,355	0,456
30	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,646	0,349	0,449
40	0,126	0,255	0,388	0,529	0,681	0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,551	0,304	0,393
60	0,126	0,254	0,387	0,527	0,679	0,848	1,046	1,296	1,671	2,000	2,390	2,660	3,460	0,250	0,325
120	0,126	12 10100 0			0,677	0,845	1,041	1,289	1,658				3,373	0,178	0,232
	0,126	1		,	,				1,645	10000					
Z	0,120	0,233	0,505	0,521	0,071	0,012	_,,,,,		_,	,					

^{*} Die Flächenanteile für negative t-Werte ergeben sich nach der Beziehung $p(-t_{df}) = 1 - p(t_{df})$

0.95-Quantile der F-Verteilung mit (n,m) Freiheitsgraden

	n:	1	2	3	4	5	6	7	8	9
m:										
1		161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
2		18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	6	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4		7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5		6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6		5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7		5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	6	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9		5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10		4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
12	13	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
15		4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
20	6	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
24		4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
30		4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	2	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60		4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120		3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96
∞		3.84	0	0	0	0	0	0	0	0

	n:	10	12	15	20	24	30	40	60	120	∞
m:					8	0					
1		241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2		19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3		8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	0
4		5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	0
5		4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	0
6		4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	0
7		3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	0
8		3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	0
9		3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	0
10		2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	0
12		2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	0
15		2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	0
20		2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	0
24		2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	0
30		2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	0
40		2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	0
60		1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	0
120		1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	0
∞		0	0	0	0	0	0	0	0	0	1.00

0.99-Quantile der F-Verteilung mit (n,m) Freiheitsgraden

	n:	1	2	3	4	5	6	7	8	9
m:		is .	9							
1		4052	4999.5	5403	5625	5764	5859	5928	5981	6022
2		98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3		34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4		21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5		16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6		13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7		12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8		11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9		10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10		10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
12		9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
15		8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
20		8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
24		7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26
30		7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
40		7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
60	e .	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
120		6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56
∞		6.63	0	0	0	0	0	0	0	0

	n:	10	12	15	20	24	30	40	60	120	∞
m:											
1	100	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2		99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	0
3		27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	0
4		14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	0
5		10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	0
6	100	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	0
7		6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	0
8		5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	0
9		5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	0
10	9	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	0
12		4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	0
15		3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	0
20	2	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	0
24		3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	0
30		2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	0
40		2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	0
60		2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	0
120		2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	0
∞		0	0	0	0	0	0	0	0	0	1.00

Kritische Werte für den Wilcoxon-Test

n	p=0,05	p=0,01	p=0,001
6	0		
7	2		
8	3	0	
9	5	1	
10	8	3	
11	10	5	0
12	13	7	1
13	17	9	2
14	21	12	4
15	25	15	6
16	29	16	8
17	34	23	11
18	40	27	14
19	46	32	18
20	52	37	21
21	58	42	25
22	65	48	30
23	73	54	35
24	81	61	40
25	89	68	45