SENZORI TEMPERATURE

Merenje temperature

Ekspanzioni senzori temperature – gasni

Jednačina stanja idealnog gasa:

pV=nRT

p - apsolutni pritisak gasa

V - zapremina gasa

T - temperatura gasa u K

n - broj molova gasa

R - univerzalna gasn konstanta

Ako imamo istu količinu gasa čija se zapremina ne menja: n=const., V=const.

$$p = \frac{nR}{V}T = kT$$

na
$$0^{\circ}C \rightarrow p_0 = k \cdot 273.15$$

na
$$T[^{\circ}C] \rightarrow p_t = k \cdot (273.15 + T[^{\circ}C])$$

$$p_t = p_0 + k \cdot T[^{\circ}C] = p_0(1 + \alpha \cdot T[^{\circ}C])$$

$$\alpha = k/p_0 = 1/273.15K^{-1}$$

Ekspanzioni senzori temperature sa tečnošću

Sistemske greške:

- Drift nule zbog termičkih svojstava stakla i njegovog starenja
- Nepotpuna potopljenost senzora u mernom medijumu, tako da je nepotopljeni deo izložen uticaju okoline
- Nejednakost poprečnog preseka staklene kapilare

$$V_t = V_0(1 + \alpha T[\circ C] + \beta T^2[\circ C] + \cdots)$$

Bimetalni senzori temperature

- Prave se spajanjem dva različita metala koji imaju različit koeficijent linearnog širenja
- Pri porastu temperature bimetalna traka se savija na stranu metala sa manjim koeficijentom linearnog širenja

Termoparovi termoelektrični potencijal 2/2

- Kada se homogeni provodnik zagreva lokalno, koncentracija slobodnih elektrona nije ista na svakom mestu u materijalu
- Slobodni elektroni traže tačku sa minumumom energije i sakupljaju se na hladnijem kraju
- Topliji kraj postaje pozitivnije naelektrisan u odnosu na hladniji
- Na određenoj razlici temperatura dolazi do dinamičkog ekvilibrijuma; termički napon koji je generisan kreira električno polje koje se suprostavlja difuziji elektrona
- Napon između dve tačke je proporcionalan razlici temperatura

Termoparovi termoelektrični potencijal 2/2

$$dU = K(T)dT$$

$$U_{T_2} - U_{T_1} = \int_{T_1}^{T_2} K(T)dT$$

K(T) – Seeback-ov koeficijent

Za male promene temperature:

$$U_{T_2} - U_{T_1} = K(T_2 - T_1)$$

Termopar

- A i B različiti materijali
- \Box T_1 hladan kraj, T_2 topao kraj
- \cup U=K_B(T₂-T₁)-K_A(T₂-T₁)= α (T₂-T₁)
- \square Relativni Seeback-ov koeficijent $\alpha=K_B-K_A$

Termoelektrični niz materijala u odnosu na platinu

Za relativno poređenje materijala koristan je tzv. termoelektrični niz, koji pokazuje koliki je termoelektrični napon μV/°C za neki materijal u spoju sa platinom, kada je hladni kraj na 0°C, a topli kraj na 100°C

MATERIJAL	μV/°C	MATERIJAL	μV/°C	MATERIJAL	μV/°C
Bizmut	-72	Živa	0,6	Bakar	7,6
Konstantan	-35	Ugljik	3	Volfram	8
Nikl	-16,4	Aluminijum	3,5	Molibden	12
Kobalt	-15,2	Kalaj	4,2	Gvožđe	18,5
Alumel	-12,9	Olovo	4,4	Nihrom	25
Potaša	- 9	Tantal	4,5	Hromel	28
Rodijum	-6,4	Srebro	6,5	Antimon	47
Paladijum	-5,7	Zlato	7,3	Germanijum	300
Natrijum	-2	Cink	7,5	Telur	500
Platina	0	Kadmijum	7,5	Selen	900

	<u> </u>	<u> </u>	I	<u> </u>	
TI	P KOMERCIJALNI NAZIV	MAKSIMALNI OPSEG °C	MAKSIMALNA TEMPERATURA (KRATKOTRAJNO ZAGREVANJE)	PRO− SEČNA OSET− LJIVOST µV/°C	KARAKTERISTIKE RADNE SREDINE I OGRANIČENJA U UPOTREBI
Т	Bakar/konstantan	-200 do 350	600	40,5	Slabo korozivna i redukovana atmosfera. Vakuum ili inertna atmosfera. Prisustvo vlage.
J	Gvožde/konstantan	0 do 750	1 200	52,6	Redukovana atmosfera. Vakuum ili inertna atmosfera. Ograničena upotreba na visokim temperaturama zbog pojačane korozije. Ne preporučuje se za niske temperature
Е	Kromel/konstantan	-200 do 900	1 000	67,9	Korozivna ili inertna atmosfera. Ograničena upotreba u vakuumu i redukovanoj atmosferi.
K	Kromel/alumel	-200 do 1250	1 370	38,8	Inertna atmosfera, bez korozija. Ograničena upotreba u vakuumu i redukovanoj atmosferi. Nije dozvoljena upotreba u sumpornoj atmosferi.
S	Platina– 10%rodijum/platina	0 do 1450	1 760	10,6	Korozivna ili inertna atmosfera. Dozvoljena samo kratkotrajna upotreba
R	Platina– 13%rodijum/platina	0 do 1450	1 600	12,0	u vakuumu. Zaštitni oklop samo keramički. Moguća upotreba u metalnim i nemetalnim parama. Ove
В	Platina– 30%rodijum/platina- 6%rodijum	0 do 1700	1 800	7,6	karakteristike iste su za tip S, R i B.

Konstrukcija termoparova

Načini spajanja

- Zavarivanje topljenjem
- Lemljenje
- Potapanje u živu ili rastopljen metal
- Lemljenje za treći metal
- Pričvršćenje stezaljkom ili trakom

Statičke karakteristike termoparova

Karakteristike termopara

- Aktivan senzor
- Vrlo mali izlazni napon
- Nelinearna statička karakteristika
- Meri razliku temperatura
- Kompenzacija hladnog kraja
- Parazitni termospojevi

Pojačavač AD594/AD595

- Koristi se za implementaciju transmitera za termopar
- Pojačava signal i vrši kompenzaciju temperature hladnog kraja

kompenzovani signal : $U(T_2,T_{ref})=U(T_2,T_1)+U(T_1,T_{ref})$

Otpornički senzori temperature

Karakteristika metalnog termootpornika

- Karakteristika se aproksimira polinomom 20-og reda
- U praksi se obično uzimaju prva tri člana

$$R_{\rm T}(T) = R_0 + R_0 \alpha \left[T - \delta \left(\frac{T}{100} - 1 \right) \frac{T}{100} - \beta \left(\frac{T}{100} - 1 \right) \left(\frac{T}{100} \right)^3 \right]$$

- Pasivan senzor temperature
 - Kroz njega mora da prolazi struja kako bi se odredila otpornost
 - Prolaskom struje kroz termootpornik nastaje Džulova toplota koja ga dodatno zagreva i dovodi do sistemske greske merenja

Materijali za metalne termootpornike

- Platina Pt
- Nikl Ni
- Bakar Cu

Karakteristike platine

- Čistoća 99.999%
- \square $\rho=0.1\mu\Omega m$
- $\square \alpha = 0.00392 1/°C$
- \square β =0 za T>0; β =0.11 za T<0
- \square δ =1.49
- Opseg -260 do +650°C max 1500°C
- Pt100 i Pt1000

Karakteristike nikla i bakra

□ Nikl

- ρ=0.128μΩm
- α = 0.00586 1/°C
- Opseg -50 do +250°C max 430°C

■ Bakar

- $\rho = 0.017 \mu\Omega m$
- α = 0.0042 do 0.0427 1/°C
- Opseg -50 do +180°C max 260°C

Korekcija linearizacije karakteristike Pt100 u transmiteru

Spoj termootpornika i transmitera

□ Dvožični:

Greška usled otpornosti provodnika

$$R_m = \frac{U_m}{i_s}$$

$$R_m = R_E + R_1 + R_2$$

Primer izračunavanja otpotnosti dužine kabla

- □ Poprečni presek kabla 0.5mm2
- Materijal kabla: bakar
- Otpornost: 0.017Ωmm²/m
- Dužina kabla 100m
- \square R = 2 · 100m $\frac{0.017\Omega \text{mm}^2/\text{m}}{0.5 \text{ mm}^2}$ = 6.8 Ω
- Otpor od 6.8Ω kod PT100 odgovara promeni temperature od 17C

Spoj termootpornika i transmitera

□ Trožični:

 Kompenzacija otpornosti provodnika, ali sve tri žice moraju biti isti provodnici, iste dužine

Spoj termootpornika i transmitera

Četvorožični:

- Dve žice služe za "napajanje" termootpornika, na njima dolazi do pada napona
- Dve žice služe za merenje napona na samom termootporniku, kroz njih ne teče struja pa nema ni pada napona

$$U_m = i_s R_E$$

$$R_m = \frac{U_m}{i_s} = R$$