Hypothesis Testing

Hypothesis testing is the process of using statistics to determine the probability that a specific hypothesis is true. It formulates 2 hypothesis.

- **Null Hypothesis** (H_0) : proposes the observations are a results of pure chance and there is no relationship and difference between 2 or more groups.
- Alternative Hypothesis (H_a): states the sample observations are influenced by non- random cause and there is some realtionship and difference between 2 or more groups.

significance level (\alpha): The significance level (denoted by the Greek letter α) is the probability threshold that determines when you reject the null hypothesis. Often, researchers choose a significant level of 0.01, 0.05, or 0.10, but any value between 0 and 1 can be used. Setting the significant level α = 0.01 means that there is a 1% chance that you will accept your alternative hypothesis when your null hypothesis is actually true.

For our example, we will set a significant level of $\alpha = 0.05$.

Importing necessary Package

```
In [1]: from pyforest import *
    import statsmodels.stats.api as sm
    from scipy import stats
    from scipy.stats import shapiro, anderson, pearsonr, ttest_ind, mannwhitneyu
```

Loading Dataset

```
In [2]: df = pd.read_csv('titanic_train.csv')
    df.head()
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Eml
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
4												•

In [3]: new_df = df[['Age','Fare','Survived']].dropna()
new_df.head()

Out[3]:

_		Age	Fare	Survived
	0	22.0	7.2500	0
	1	38.0	71.2833	1
	2	26.0	7.9250	1
	3	35.0	53.1000	1
	4	35.0	8.0500	0

In [4]: len(new_df)

Out[4]: 714

In [5]: survived = new_df[new_df.Survived == 1]
died = new_df[new_df.Survived == 0]

Visualizing Age Distribution:

```
In [6]: survived['Age'].plot(kind='kde', color='blue',lw=2.5, grid= True)
    died['Age'].plot(kind='kde', color='red',lw=2.5, grid= True)
    plt.legend(['survived','died'])
    plt.xlabel('Age')
```

Out[6]: Text(0.5, 0, 'Age')

Visualizing Fare Distribution:

```
In [7]: survived['Fare'].plot(kind='kde', color='blue',lw=2.5, grid= True,)
    died['Fare'].plot(kind='kde', color='red',lw=2.5, grid= True)
    plt.legend(['survived','died'])
    plt.xlabel('Fare')
```

```
Out[7]: Text(0.5, 0, 'Fare')
```


Hypothesis Test to understand

Variable Distribution Type Tests (Gaussian)

- · Shapiro-Wilk Test
- D'Agostino's K^2 Test
- · Anderson-Darling Test

Step:1 Normality Check

1. Shapiro Test

The Shapiro-Wilk test is a statistical test used to assess whether a given sample comes from a normally distributed population. It tests the null hypothesis that a sample is drawn from a normal distribution. The test is sensitive to deviations from normality in the tails of the distribution.

Here's a general overview of how the test works:

- Null Hypothesis (H0): The data follows a normal distribution.
- Alternative Hypothesis (Ha): The data does not follow a normal distribution.

The test statistic is calculated from the sample data, and a p-value is obtained. The p-value represents the probability of observing a test statistic as extreme as the one computed from the sample, assuming the null hypothesis is true.

If the p-value is less than the chosen significance level (commonly 0.05), the null hypothesis is rejected, suggesting that the data does not follow a normal distribution. If the p-value is greater than the significance level, there is insufficient evidence to reject the null hypothesis, and it is assumed that the data follows a normal distribution.

```
In [8]: # Shapiro Test for Age from Survived and died passenger
 In [9]: | stat, p_value = shapiro(survived.Age)
         print(p_value)
         0.0014263729099184275
In [10]:
         stat, p_value =shapiro(died.Age)
         print(p_value)
         7.816021252438077e-08
In [11]: | # Shapiro Test for Fare from Survived and died passenger
In [12]: stat, p value =shapiro(survived.Fare)
         print(p_value)
         2.963307919251319e-25
         stat, p_value =shapiro(died.Fare)
In [13]:
         print(p_value)
         3.4173530956723984e-32
```

=> Weak evidence against normally distributed data and null hypothesis is rejected.

2. Visual Normality Checks (Q-Q Plot)

```
In [15]: from statsmodels.graphics.gofplots import qqplot
fig, axs =plt.subplots(1,2,figsize=(8,4))

qqplot(survived.Age, line='s', ax=axs[0])
axs[0].set_title('Q-Q Plot - Survived Group')

qqplot(died.Age, line='s', ax=axs[1])
axs[0].set_title('Q-Q Plot - Died Group')

plt.show()
```


3. Visual Normality Checks (Histogram)

In [17]: survived['Age'].plot(kind='hist', bins=30, grid= True,density=True, edgecolor='black'
died['Age'].plot(kind='hist', bins=30, grid= True,density=True, edgecolor='black',cc

Out[17]: <Axes: ylabel='Frequency'>

In [18]: survived['Fare'].plot(kind='hist', bins=30, grid= True,density=True, edgecolor='black
died['Fare'].plot(kind='hist', bins=30, grid= True,density=True, edgecolor='black',c

Out[18]: <Axes: ylabel='Frequency'>

Step-2: Parametric and non-parametric test

If Data Is normally distributed:

Use Parametric Statistical Methods : t-Test, z- test, ANOVA -test

Else:

Use Nonparametric Statistical Methods: Mann-Whiney U-Test

- Independent Samples T-Test

- **Scenario**: You have two independent groups, and each data point in one group is not related to the data points in the other group. Interpretation
 - H0: the means of the samples are equal.
 - H1: the means of the samples are unequal.

- Mann-Whitney U-Test

- Scenario:
 - H0: the distributions of both samples are equal.
 - H1: the distributions of both samples are not equal.

Man-Whitney U-Test

```
In [23]: # def ttest(var1, var2, alpha = 0.05):
               t stat, p value = stats.ttest ind(var1, var2)
         #
               if p_value < alpha:</pre>
                    return (f'p-value :{p_value} < {alpha} ', 'Null Hypothesis is rejected.')</pre>
         #
         #
               else:
         #
                    return (f'p-value :{p_value} >= {alpha}', 'Null Hypothesis is not rejected'
         # def survived vs died ttest(df, col, alpha =0.05):
               survive =df[df.Survived==1][col]
               die = df[df.Survived==0][col]
         #
         #
               return ttest(survive, die, alpha)
         def utest(var1, var2, alpha = 0.05):
             t_stat, p_value = stats.mannwhitneyu(var1, var2)
             if p value < alpha:</pre>
                 return (f'p-value :{p_value} < {alpha} ', 'Null Hypothesis is rejected.')</pre>
                  return (f'p-value :{p_value} >= {alpha}', 'Null Hypothesis is not rejected')
         def survived_vs_died(df, col, alpha =0.05):
             survive =df[df.Survived==1][col]
             die = df[df.Survived==0][col]
             return utest(survive, die, alpha)
```

```
In [24]: sample_df = new_df.sample(200)
sample_df
```

Out[24]:

	Age	Fare	Survived
294	24.00	7.8958	0
357	38.00	13.0000	0
231	29.00	7.7750	0
831	0.83	18.7500	1
102	21.00	77.2875	0
736	48.00	34.3750	0
462	47.00	38.5000	0
761	41.00	7.1250	0
393	23.00	113.2750	1
816	23.00	7.9250	0

Hypothesis Test for 'Fare'

200 rows × 3 columns

- Null Hypothesis: There is no difference in Fare between those who survived and those who died.
- Alternate Hypothesis: There is significan difference in Fare between those who survived and those who died.

```
In [26]: survived_vs_died(sample_df, 'Fare' )
Out[26]: ('p-value :3.4425202375655015e-11 < 0.05 ', 'Null Hypothesis is rejected.')</pre>
```

Interpretation:

The null hypothesis (that there is no difference in Fare between those who survived and those who died) is rejected. There is evidence to suggest a significant difference in Fare for passengers who survived compared to those who did not survive.

```
In [27]: survived_vs_died(sample_df, 'Age' )
Out[27]: ('p-value :0.003532314735075274 < 0.05 ', 'Null Hypothesis is rejected.')</pre>
```

Interpretation:

The null hypothesis (that there is no difference in Age between survived and died passengers) is rejected. There is evidence to suggest a significant difference in Age for passengers who survived compared to those who did not survive.

- https://machinelearningmastery.com/statistical-hypothesis-tests/ (https://machinelearningmastery.com/statistical-hypothesis-tests/)
- https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/ (https://machinelearningmastery.com/statistical-hypothesis-tests-in-python-cheat-sheet/)