

FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA

Algebra Linear

Professor:

Dr. Lucas Marques da Cunha

lucas.marques@unir.br

Roteiro

- 1. Transformações Lineares
- 2. Transformações no plano
- 3. Conceitos e Teoremas
 - a. Núcleo
 - b. Imagem
 - c. Funções injetoras
 - d. Funções Sobrejetoras
- 4. Exercícios práticos

 Vamos supor que tenhamos dois conjuntos U e V que são espaços vetoriais

- Ou seja,
 - F(u + v) = F(u) + F(v)
 - $F(\alpha u) = \alpha F(u)$

- Funções lineares descrevem o tipo mais simples de dependência entre variáveis
- Muitos problemas podem ser representados por tais funções
- Definição: Sejam V e W dois espaços vetoriais.
 Uma transformação linear é uma função de V em W, F: V → W que satisfaz as condições:
 - ➤ i) Quaisquer que sejam u e v em V: F(u+v)=F(u)+F(v)
 - ➤ ii) Quaisquer que sejam k∈R e v∈V: F(k.v) = k.F(v)

Princípio da Superposição

Exemplo 1:

- V = R e W = R
- F: R → R definida por u → α.u ou F(u) = α.u
- Solução:
 - $F(\mathbf{u} + \mathbf{v}) = \alpha.(\mathbf{u} + \mathbf{v}) = \alpha.\mathbf{u} + \alpha.\mathbf{v} = F(\mathbf{u}) + F(\mathbf{v})$
 - $F(k.u) = \alpha.k.u = k.\alpha.u = k.F(u)$
 - Logo, F é linear!

Exemplo 2:

- F: R² → R³
- $(x,y) \rightarrow (x, y, x + y)$ ou F(x, y) = (x, y, x + y)
- Solução:
 - ➤ Dados u e v ∈ R^2 , sejam u = (1,2) e v = (-2,3),
 - F(u) = F(1, 2) = (1, 2, 3)
 - F(v) = F(-2,3) = (-2,3,1)

Exemplo 2 (cont.):

- Solução: Lembrando (x,y) → (x, y, x + y) ou F(x, y) = (x, y, x + y)
 - F(u) = F(1, 2) = (1, 2, 3)
 - F(v) = F(-2,3) = (-2,3,1)
 - Verificando se F(u+v) = F(u) + F(v)
 - \rightarrow u+v = (1,2)+(-2,3) = (-1,5) \rightarrow F(u+v) = F(-1,5) = (-1,5,4)
 - F(u) + F(v) = F(1,2) + F(-2,3) = (1, 2, 3) + (-2, 3, 1) = (-1, 5, 4)
 - ightharpoonup Então, $F(u+v) = F(u) + F(v) \rightarrow (-1,5,4) = (1, 2, 3) + (-2,3, 1)$
 - Verificando se F(k.u) = k.F(u)
 - ➤ Se k = -3, então
 - F(ku) = F(-3.(1,2)) = F(-3,-6) = (-3,-6,-9)
 - \triangleright kF(u) = -3F(1,2) = -3.(1,2,3) = (-3,-6,-9)
 - ightharpoonup Então, F(k.u) = k.F(u) \rightarrow (-3,-6,9) = -3.(1,2,3) Logo, F é Linear

- Exemplo 3:
- F: R \rightarrow R definida por $\mathbf{u} \rightarrow \mathbf{u}^2$ ou F(\mathbf{u}) = \mathbf{u}^2

Solução:

$$F(u + v) = (u + v)^2 = u^2 + 2.u.v + v^2 \neq u^2 + v^2 = F(u) + F(v)$$

➤ Logo, F não é linear!

Exemplo 4:

- F: $\mathbb{R}^2 \to \mathbb{R}^3$
- $(x,y) \rightarrow (2x, 0, x + y)$ ou F(x, y) = (2x, 0, x + y)
- Solução:
 - ightharpoonup Dados u e v \in R², sejam **u**=(x₁,y₁) e **v**=(x₂,y₂), x_i,y_i \in R
 - Verificando F(u+v) = F(u) + F(v)
 - $F(u+v)=F((x_1,y_1) + (x_2,y_2)) = F(x_1 + x_2, y_1 + y_2) =$
 - $= (2x_1 + 2x_2, 0, x_1 + x_2 + y_1 + y_2)$
 - $F(u) + F(v) = F(x_1,y_1) + F(x_2,y_2)$
 - $= (2x_1, 0, x_1 + y_1) + (2x_2, 0, x_2 + y_2)$
 - $= (2x_1 + 2x_2, 0, x_1 + x_2 + y_1 + y_2)$
 - Verificando F(k.u) = k.F(u)
 - \rightarrow F(k.u)=F(k.(x₁, y₁))=F(k.x₁, k.y₁) = (2k.x₁, 0, k.x₁+k.y₁) =
 - = $k(2x_1, 0, x_1 + y_1) = k.F(\mathbf{u})$ Logo, F é linear!

- OBS 1: Da definição de transformação linear, temos que a transformação do vetor nulo leva ao mesmo vetor nulo: T(0) = 0
- Isso ajuda a detectar transformações não lineares: se T(0)≠0, implica uma transformação não linear
- No entanto, T(0) = 0 não é condição suficiente para que T seja linear (ex.: T(u) = u²)

- OBS 2: Uma transformação para ser linear não implica que ela é derivada de uma função linear
- Por exemplo: (x, y) → (x + 5, y) não é transf.
 Linear, embora o mapeamento seja linear

- Exemplo: V = Rⁿ e W = R^m
- Seja A uma matriz mxn. Definimos:
- $L_A: R^n \to R^m \text{ por } \mathbf{v} \to A.\mathbf{v}$
- $L_A: \mathbb{R}^n \to \mathbb{R}^m$ por $\mathbf{v} \to A.\mathbf{v}$ onde \mathbf{v} é tomado como vetor coluna: $\mathbf{v} = \dots$

•
$$L_A(\mathbf{v}) = A_{mxn} \cdot \begin{bmatrix} X_1 \\ \dots \\ X_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \dots \\ y_m \end{bmatrix}$$

Transformação do Rⁿ para o R^m

Exemplo:

- Das propriedades de operações de matrizes:
 - $ightharpoonup L_A(u + v) = A.(u + v) = A.u + A.v = L_A(u) + L_A(v)$
 - $ightharpoonup L_A(k.u) = A.(k.u) = k.(A.u) = k.L_A(u)$
 - ➤ Logo, L_A é linear

Exemplo:

• Suponha A =
$$\begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

• Suponha A =
$$\begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

• $L_A: \mathbb{R}^2 \to \mathbb{R}^3$
• $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 0 \\ x_1 + x_2 \end{pmatrix}$

Então, L_A(x₁, x₂) = (2x₁, 0, x₁ + x₂) – Exemplo 4

- 1) Expansão (ou contração) uniforme:
 - ightharpoonup T: $R^2 o R^2$, $\alpha \in \mathbb{R}$, $\mathbf{v} o \alpha.\mathbf{v}$
 - ► Por exemplo, T: $R^2 \rightarrow R^2$, $\alpha = 2$, $\mathbf{v} \rightarrow 2$. \mathbf{v}

$$ightharpoonup T(x, y) = 2(x, y)$$

Na forma matricial:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow 2 \begin{bmatrix} x \\ y \end{bmatrix} ou \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Nesse caso, temos uma expansão.
 - Se 0 < α < 1, teríamos uma contração

- 2) Reflexão em Torno do Eixo X:
 - $ightharpoonup T: R^2 \rightarrow R^2$, $(x, y) \rightarrow (x, -y)$
 - Na forma matricial:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ -y \end{bmatrix} \text{ou} \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- 3) Reflexão na Origem:
 - ightharpoonup T: $R^2 o R^2$, $\mathbf{v} o -\mathbf{v}$ ou T(x, y) o (-x, -y)
 - Na forma matricial:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} -x \\ -y \end{bmatrix} \text{ou} \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

4) Rotação de um ângulo θ (sentido anti-horário)

 $x' = r.\cos(\alpha + \theta) = r.\cos\alpha.\cos\theta - r.\sin\alpha.\sin\theta$, onde $r = |\mathbf{v}|$ Mas, $r.\cos\alpha = x$ e $r.\sin\alpha = y$

 \Rightarrow x' = x.cos θ - y.sen θ

Analogamente: $y' = y.\cos\theta + x.\sin\theta$

Assim: $R_{\theta}(x,y) = (x.\cos\theta - y.\sin\theta, y.\cos\theta + x.\sin\theta)$

4) Rotação de um ângulo θ (sentido anti-horário)

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \cdot \cos\theta - y \cdot \sin\theta \\ y \cdot \cos\theta + x \cdot \sin\theta \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Caso $\theta = \pi/2$ (cos $\theta = 0$ e sen $\theta = 1$), temos:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

- 5) Cisalhamento Horizontal:
 - $ightharpoonup T(x, y) = (x + \alpha y, y), \alpha \in R$
 - \triangleright Por exemplo: T(x, y) = (x + 2y, y)

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x+2y \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

6) Translação:

Observe que, a menos que a = b = 0, essa transformação não é linear.

Lembre-se que se T(**0**) ≠ 0, T não é linear

Teorema: Dados dois espaços vetoriais V e W e uma base V, {v₁, ..., vₙ}, sejam w₁, ..., wₙ elementos arbitrários de W. Então existe uma única transformação linear T:V→W tal que T(v₁)=w₁, ..., T(vₙ)=wₙ. Esta transformação é dada por:

> Se
$$v = a_1 v_1 + + a_n v_n$$

$$ightharpoonup T(\mathbf{v}) = T(a_1 \mathbf{v_1}) + + T(a_n \mathbf{v_n})$$

$$ightharpoonup T(\mathbf{v_1}) = a_1 T(\mathbf{v_1}) + + a_n T(\mathbf{v_n}) = a_1 \mathbf{w_1} + + a_n \mathbf{w_n}$$

- Exemplo: Qual a transformação linear T:R²→R³ tal que T(1, 0) = (2, -1, 0) e T(0, 1) = (0, 0, 1)?
- Solução:

$$> e_1 = (1, 0)$$

$$e_2 = (0, 1)$$

$$> \mathbf{w_1} = (2, -1, 0)$$

$$\mathbf{w}_2 = (0, 0, 1)$$

$$\triangleright \mathbf{v} = (x, y)$$

$$\triangleright$$
 v = (x, y) = a.(1, 0) + b.(0, 1) \rightarrow x = a e y = b

$$\mathbf{v} = (x, y) = x.(1, 0) + y.(0, 1)$$

$$ightharpoonup T(\mathbf{v}) = T(x.(1, 0)) + T(y.(0, 1))$$

$$T(\mathbf{v}) = x.T(\mathbf{e_1}) + y.T(\mathbf{e_2}) = x.(2, -1, 0) + y.(0, 0, 1)$$

$$ightharpoonup T(v) = (2x, -x, y)$$

- Exemplo: Qual a transformação linear T:R²→R³ tal que T(1, 1) = (3, 2, 1) e T(0, -2) = (0, 1, 0)?
- Solução 1:
 - T(1, 1) = (3, 2, 1)T(0, -2) = (0, 1, 0)

Não formam base canônica!!

- ➤ Mas:
- $ightharpoonup T(0,-2)=(0,1,0) \Rightarrow -2.T(0,1)=(0,1,0) \Rightarrow T(0,1)=(0,-\frac{1}{2},0)$
- ightharpoonup T(1,1)=T(1,0)+T(0,1)=(3,2,1)
- \Rightarrow T(1,0) + (0,-\frac{1}{2},0) = (3, 2,1) \Rightarrow T(1,0) = (3,5/2,1)
- ightharpoonup Logo: T(1,0) = (3, 5/2, 1) e T(0,1) = (0, -\frac{1}{2}, 0)
 - Agora formam uma base canônica!

Exemplo:

- Solução 1:
 - $\triangleright \mathbf{v} = (\mathbf{x}, \mathbf{y})$
 - $T(\mathbf{v}) = x.T(\mathbf{e_1}) + y.T(\mathbf{e_2}) = x.(3, 5/2, 1) + y.(0, -\frac{1}{2}, 0)$
 - $T(\mathbf{v}) = (3x, 5/2x \frac{1}{2}y, x)$
 - ➤ OBS: Verifique... para T(1,1) e T(0,-2)
 - $T(1,1) = (3, 5/2 \frac{1}{2}, 1) = (3, 2, 1)$
 - T(0, -2) = (0, 1, 0)

- Exemplo: Qual a transformação linear T:R²→R³ tal que T(1, 1) = (3, 2, 1) e T(0, -2) = (0, 1, 0)?
- Solução 2:
 - > T(1, 1) = (3, 2, 1) > T(0, -2) = (0, 1, 0)

 Não formam base canônica!!
 - $\mathbf{v} = (x, y) = a.(1, 1) + b.(0, -2)$
 - ➤ Logo: x = a

- e $y = a 2b \Rightarrow b = (x y)/2$
- ightharpoonup Assim: $\mathbf{v} = x.(1, 1) + [(x y)/2].(0, -2)$
- $T(\mathbf{v}) = x.T(1,1) + [(x y)/2].T(0, -2)$
- $T(\mathbf{v}) = x.(3, 2, 1) + [(x y)/2].(0, 1, 0)$
- $T(\mathbf{v}) = (3x, 5/2x \frac{1}{2}y, x)$ (como antes)

- Definição: Seja T:V → W uma transformação linear. A imagem de T é o conjunto dos vetores w∈W tal que existe um vetor v∈V, que satisfaz T(v)=w. Ou seja:
 - $ightharpoonup Im(T) = \{ \mathbf{w} \in W \; ; \; \mathsf{T}(\mathbf{v}) = \mathbf{w} \; \mathsf{para} \; \mathsf{algum} \; \mathbf{v} \in V \}$
- Definição: Seja T:V → W uma transformação linear. O conjunto de todos os vetores v∈V tais que T(v)=0 é chamado de núcleo de T, sendo denotado por ker T (ker = kernel). Isto é:
 - \triangleright ker T = { $v \in V$; T(v) = 0}

 Vamos supor que tenhamos dois conjuntos U e V que são espaços vetoriais

- ker T é um subespaço vetorial de U
 - ker T ≠ Ø, pois vetor nulo de U E ker T, já que T(0) = 0
 - Im T ≠ Ø, pois vetor nulo de V E Im T, já que o vetor nulo de V é a imagem do vetor nulo de U

- Exemplo 1: T:R² \rightarrow R, (x, y) \rightarrow x + y
- Neste caso (T(x,y)=0), $ker T = \{(x,y) \in \mathbb{R}^2; x + y = 0\}$
- Isto é, ker T é a reta y = -x
- Podemos dizer ainda que ker T = {(x, -x); x∈R} = {x.(1,-1); x∈R} = [(1,-1)] (conj. gerado pelo vetor (1,-1))
- Im T = R, pois dado $\mathbf{w} \in \mathbb{R}$, $\mathbf{w} = T(\mathbf{w}, 0)$

Qualquer valor dos reais satisfaz o par (x, -x).

- Exemplo 2: Seja T:R³ → R³, dada por
 - ightharpoonup T(x, y,z) = (x, 2y, 0)
- Então a imagem de T:
 - \rightarrow Im(T) = {(x, 2y, 0): x, y \in R}
 - = $\{x(1, 0, 0) + y(0, 2, 0), x,y \in R\}$
 - = <(1, 0, 0), (0, 2, 0)>
 - \rightarrow dim Im(T) = 2
- O núcleo de T é dado por:
 - \triangleright ker T = {(x,y,z): T(x,y,z) = (0,0,0)} \Rightarrow (x, 2y, 0)=(0, 0, 0)
 - $\{(0, 0, z): z \in R\} = \{z(0,0,1): z \in R\} \Rightarrow [(0, 0, 1)]$
 - \triangleright dim ker T = 1

- Definição: Dada uma transf. T: V→W, dizemos que T é injetora se, dados u∈V e v∈V com T(u) = T(v), tivermos u = v ou, de forma equivalente, T é injetora se dados u,v∈V com u≠v, então T(u)≠T(v)
- Em outras palavras, T é injetora se as imagens de vetores distintos são distintas

- Definição: Dada uma transf. T:V→W, dizemos que T é sobrejetora se a imagem de T coincidir com W, ou seja T(V) = W
- Em outras palavras, T é sobrejetora se dado
 w∈W, existir v∈V tal que T(v) = w
 - > Para todo w deve existir um v, tal que T(v) = w

- Exemplo: T:R \rightarrow R², x \rightarrow (x, 0)
- Dados x, y∈R, suponhamos que T(x)=T(y)
- Então $(x, 0) = (y, 0) \Rightarrow x = y$
- T é injetora? T é sobrejetora?
- T é injetora.
- Mas T não é sobrejetora uma vez que lm(T)≠R²

Aplicações Lineares e Matrizes

- Teorema: Seja T:V→W uma transformação linear. Então ker T={0}, se e somente se, T é injetora
- Teorema: Seja T:V→W uma transformação linear, então: dim ker T + dim Im T = dim V
- Corolário 1: Se dim V = dim W, então T linear é injetora, se e somente se, T é sobrejetora
- Corolário 2: Seja T: V→W uma transformação linear injetora. Se dim V = dim W, então T leva base em base
 - ➢ Base de V em base de W

 Teorema: Seja T:V→W uma transformação linear. Então ker T={0}, se e somente se, T é injetora

Aplicações Lineares e Matrizes

- Corolário 1: Se dim V = dim W, então T linear é injetora, se e somente se, T é sobrejetora
- Corolário 2: Seja T:V→W uma transformação linear injetora. Se dim V = dim W, então T leva base em base
 - Base de V em base de W

- Quando uma transformação linear T:V→W for injetora e sobrejetora ao mesmo tempo, dá-se o nome de isomorfismo
 - ➤ Tais espaços vetoriais são ditos Isomorfos

- Exemplo 1: Seja T:R³→R³ dada por:
 - ightharpoonup T(x,y,z) = (x 2y, z, x + y)
- Vamos mostrar que T é um isomorfismo e calcular sua inversa T⁻¹:
- Solução:
 - Se pudermos mostrar que T é injetora, teremos que T é um isomorfismo pelo corolário 1 anterior
 - ▶ Isso equivale a mostrar que ker T = {(0, 0, 0)}
 - ightharpoonup Mas ker T ={(x, y, z); T(x, y, z) = (0, 0, 0)} e T(x,y,z) = (0,0,0), se e somente se: (x 2y, z, x + y) = (0,0,0):

Exemplo 1:

$$(x-2y, z, x+y) = (0,0,0)$$

➤ Isso implica:

- ➤ Portanto, T é isomorfismo
- Tomando a base canônica de R³, sua imagem pela transformação é:
 - $\{T(1,0,0), T(0,1,0), T(0,0,1)\} = \{(1,0,1), (-2,0,1), (0,1,0)\}$
 - que ainda é uma base de R³
- Calculemos a transformação inversa de T

Exemplo 1:

Como:

Inversa

- T(1,0,0) = (1,0,1) $\Rightarrow T^{-1}(1,0,1) = (1,0,0)$ • T(0,1,0) = (-2,0,1) $\Rightarrow T^{-1}(-2,0,1) = (0,1,0)$ • T(0,0,1) = (0,1,0) $\Rightarrow T^{-1}(0,1,0) = (0,0,1)$
- Vamos escrever (x,y,z) em relação à base {(1,0,1), (-2, 0,1), (0,1,0)}

•
$$(x, y, z) = a(1, 0, 1) + b(-2, 0, 1) + c(0, 1, 0)$$

 $\Rightarrow x = a - 2b, y = c, z = a + b$
 $\Rightarrow a = (x + 2z)/3, b = (z - x)/3, c = y$
 $\Rightarrow (x, y, z) = (\underline{x + 2z})(1, 0, 1) + (\underline{z - x})(-2,0,1) + y(0,1,0)$

Exemplo 1:

➤ Então:

•
$$T^{-1}(x, y, z) = (x + 2z)T^{-1}(1, 0, 1) + (z - x)T^{-1}(-2,0,1) + yT^{-1}(0,1,0)$$

•
$$T^{-1}(x, y, z) = (x + 2z)(1,0,0) + (z - x)(0,1,0) + y(0,0,1)$$

•
$$T^{-1}(x, y, z) = (x + 2z, z - x, y)$$

Exemplo 2:

$$\Rightarrow$$
 A = $\begin{pmatrix} 1 & -3 & 5 \\ 2 & 4 & -1 \end{pmatrix}$

- $\triangleright \beta = \{(1,0),(0,1)\} \in \beta' = \{(1,0,0),(0,1,0),(0,0,1)\}$
- $ightharpoonup T_{\Delta}: \mathbb{R}^3 \to \mathbb{R}^2$

➤ Encontremos essa transformação linear.
➤ Solução: Seja
$$x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 \Rightarrow A. $x = \begin{bmatrix} 1 & -3 & 5 \\ 2 & 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
➤ Então T_A(x, y, z) = $(x - 3y + 5z)(1,0) + (2x + 4y - z)(0,1)$

- $ightharpoonup T_{\Delta}(x, y, z) = (x 3y + 5z, 2x + 4y z)$

Exemplo 3:

- ➤ Seja T:R³ → R² tal que T(x,y,z) = (2x+y-z, 3x-2y+4z)
- \triangleright Sejam β ={(1,1,1),(1,1,0),(1,0,0)} e β '={(1,3),(1,4)}
- > Procuremos $[T]_{\beta}^{\beta}$
- Calculando T nos elementos da base β temos:
 - $T(1, 1, 1) = (2, 5) = a_{11}(1, 3) + a_{21}(1, 4) = 3(1, 3) 1(1, 4)$
 - $T(1, 1, 0) = (3, 1) = a_{12}(1, 3) + a_{22}(1, 4) = 11(1, 3) 8(1, 4)$
 - $T(1, 0, 0) = (2, 3) = a_{13}(1, 3) + a_{23}(1, 4) = 5(1, 3) 3(1, 4)$

Então:
$$[T]_{\beta}^{\beta}$$
, = $\begin{bmatrix} 3 & 11 & 5 \\ -1 & -8 & -3 \end{bmatrix}$

Exemplo 4:

- Seja T a transformação anterior (T(x,y,z) = (2x+y-z, 3x-2y+4z)
- \triangleright Sejam $\beta = \{(1,0,0),(0,1,0),(0,0,1)\}$ e $\beta' = \{(1,0),(0,1)\}$
- > Calculemos $[T]_{\beta}^{\beta}$
- Calculando T nos elementos da base β temos:
 - T(1, 0, 0) = (2, 3) = 2.(1, 0) + 3.(0, 1)
 - T(0, 1, 0) = (1, -2) = 1.(1, 0) 2.(0, 1)
 - T(0, 0, 1) = (-1, 4) = -1.(1, 0) + 4.(0, 1)
- Então: $[T]_{\beta}^{\beta}$, $=\begin{bmatrix} 2 & 1 & -1 \\ 3 & -2 & 4 \end{bmatrix}$

Exemplo 5:

- Dadas as bases
 - $\beta = \{(1, 1), (0, 1)\}\ de\ R^2$
 - $\beta'=\{(0, 3, 0), (-1, 0, 0), (0, 1, 1)\}\ de\ R^3$
- Encontremos a transformação linear T:R²→R³ cuja matriz é

$$[T]_{\beta}^{\beta} = \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 3 \end{bmatrix}$$

- > Interpretando a matriz temos:
 - Ex: $T(1,1) = a_{11}(0,3,0) + a_{21}(-1,0,0) + a_{31}(0,1,1)$
 - T(1, 1) = 0.(0, 3, 0) -1.(-1, 0, 0) -1.(0, 1, 1) = (1, -1, -1)
 - T(0, 1) = 2.(0, 3, 0) + 0.(-1, 0, 0) + 3.(0, 1, 1) = (0, 9, 3)

Exemplo 5:

- \triangleright Devemos encontrar T(x, y).
- Para isso escrevemos (x, y) em relação à base β:
 - (x, y) = a.(1, 1) + b.(0, 1)
 - (x, y) = x.(1, 1) + (y x).(0, 1)
- ➤ Aplicando T e usando a linearidade:
 - $T(x, y) = T\{x.(1, 1) + (y x).(0, 1)\}$
 - T(x, y) = x.T(1, 1) + (y x).T(0, 1)
 - T(x, y) = x.(1, -1, -1) + (y x).(0, 9, 3)
 - T(x, y) = (x, 9y 10x, 3y 4x)

Exercícios

- Seja T: R² → R uma transformação linear tal que T(x, y) = x + 2y.
 - a. Encontre T(-6, 3).
 - b. Determine o Ker(T).
- 2. Dada a transformação linear T, encontre Ker(T) e Im(T), T: $\mathbb{R}^2 \to \mathbb{R}^3$, T(x, y) = (x+y, y, x)
- 3. Dada a transformação linear T: $\mathbb{R}^2 \to \mathbb{R}$, T(x, y) = x + 2y.
 - a. Verifique se T(x, y) é injetora.
- 4. Verifique se a transformação T é injetora T: $\mathbb{R}^2 \to \mathbb{R}^3$, T(x, y) = (x+y, y, 2x)
 - a. Verifique se T(x, y) é injetora.
 - b. Verifique se T(x, y) é sobrejetora.

