KARNAUGH MAP basics 4 Kry-points. 7)

- Developed by Kurnaugh in 1953.
- It is used to minimize booken equations.
- It B build based on goay wde.
- Two Variable K-map.

- Three Variable 11-map

- Four Variable K-map

CPAB	AB OO	7B	AB 11	AB 16
00 a2	1 ,	14	112	8
10 9	1,	5	(3	1
cpll	3	7	15	L)
colo	2	16	14	1 (0

K-map rules for grouping. n

Il knowp should not contain zono and cells contain (1) must be

- 2) We can group 1,2,4,8,..., 2" (ells.
- Each group should be as large as possible.
- (scup my ovalap.
- 5) Opposite gamping and wormer grouping 17 Moved.
- 1) There should be as few goods or parable.

CDAB	00	01		11	סו	
ooL	9	1	ř	012	12	_ I ST
01	01	05		OB	09	
11	03	07		015	0 11	
10	1	1		014	110	_
		274	7		1	.

Implicants, Prime Implicants and Essential Prime Implicants in K-map.

Implicants - The group's of 1's is Implicants.

Prime Implicants - It largest possible group of 1's.

Essential prime Impliants - At least, throw is single 1 which can not be combined in other way

K-map Examples 1h

II In the sum of products function is $f(x_1, y_1, z_2) = E_m(2,3,4,5)$. The prime implicants one

- ~ 9 87, XT
 - 의 ₹Y, XTZ, XTZ
 - () XYZ, XYZ, XT
 - d 742, 772, x72

2) The K-map for a booken function is shown in figure. The number of essential prime implicants for this fundam

- is 21 4
 - 519
 - 4
 - 8 (6

3) solve given boolean expression using K-mar

y = ABC + ABC + ABC = AC + ABC = AC + AB + BC

Examples on K-Map 75.

I Find the Booken expression for K-map given below.

2] J = AB + ABC + AB + C, Solve booken expression by k-map.

3] Find The Boolean expression for K-map given below.

If the numbers of product team in the minimized Sum of product expression obtained though the following K-map is _____ [X is dentitioned].

2) Solve given bookern K-map [x is don't cone]

Y=BO+AD+ABC

3)	Solve	8	iven	boo	c47	K-map	C×	1.1	don't	(ure]
	CD AB	an 1	61	11	/ 2 nd					
	00	X	0	(15	_ 1st	4.5	7	H ATD	
	01	1	0	0		_	1 - 6	(-	F # CD	
	H	-			_					

Engineering Funda YouTube Channel

Enginearing Invested You Tube Chancel a

3) Solve K-map

K-Map for POS expression Steps for PUS exprasion - take grouping of o - find function (ta) - Put compliment of all vastables (+) * If boolean function is given by J = Em (3,6) than 9] J = B (A+() (A+Z) b) 7 = B(A12)(A+2) C) 7 = B (A+T) (A+C) d) y = B (A+C) (A+C) 」= B. (A+C). (A+C) 72 B. CA+C). (A+T) A It booleen function is given by. -) function of I in terms of POS ABC Y 000-11 00170 010+0 011-1 10000 1017 110-11 11170 Ma = (A+B+c). (A+B+C). (A+B+C). (A+B+C)

7 = (A+B+[). (A+B+c). (A+B+[). (A+B+[)

K-map examples of GATE, DROO & ISRO Examination 1

The tunction $f(A,B,C,D) = E_m(S,7,9,11,13,15)$ is independent of Variables

If BD AD

AB BD AD

2) The Standard Sum of Product of the function f=A+BC is expressed as

3) Consider the following Boolean function of four variables $f(\omega, X, 7, Z) = E_m(1,3,4,(,9,11,12,14))$, the function

- @ Independent of one Variable
- 1 Independent of two Variable
 - @ Independent of three Variable
 - (d) Dependent of all Vasiable.

$$f = x + \overline{z}x$$

$$f = x \oplus z$$

Step-5 Implient table. PI minterns 0 1 3 7 8 9 11 15 BC 0 1-8-9	Quine Mccluskey Minimizentian Technique Y(A, B, C, D) = Em (0, 1, 3, 7, 8, 9, 11, 15) Step-1- Kepisent Step-2 - Form a gooup Gair with One lift Giran Number of Pair A B C D N - A B C D N - A B C D Jacup Team A B C D O - 00 001 Gooup-1 (1) 00 00 Group-0 (0-1) 00 0-1 I - 00 11 Gooup-1 (1) 00 01 Gooup-1 (1-3) 00-1 8 - 10 000 Group-2 (3) 00 11 Group-2 (3-7) 0-11 C 8 - 10 01 Group-3 (7-1) 10-1 Group-3 (7-15) 1-11 15 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 16 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 17 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 18 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 19 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 10 - 11 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 1 - 111 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 1 - 111 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 1 - 111 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 1 - 111 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 1 - 111 Group-4 (15) 1111 Group-3 (1-15) 1-11 12 - 1 - 111 Group-4 (15) 1111 Group-3 (1-15) 1-11 13 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 14 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 15 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 16 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 17 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 18 - 1111 Group-4 (15) 1111 Group-3 (1-15) 1-11 19 - 111 Group-4 (15) 1111 Group-3 (1-15) 1-11 10 - 11 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 11 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 11 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 11 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 11 Group-4 (15) 1111 Group-3 (1-15) 1-11 11 - 11 Group-4 (15) 1111 Group-3 (1-15) 1111 1
Engineering Funda YouTube C	Step4