Algorytmy i struktury danych Lista 7

Zadanie 1.

Pokaż w jaki sposób można efektywnie przetrzymywać kopiec binarny rozmiaru n w tablicy długości n. Jak to wygląda dla kopca d-arnego?

Zadanie 2.

Pokaż w jaki sposób zbudować kopiec z losowej tablicy długości n w czasie liniowym od wielkości danych. Jak to wygląda dla kopca d-arnego?

Zadanie 3.

Pokaż algorytm sprawdzający, czy dany graf skierowany ma cykle. Jeśli ma, algorytm powinien wypisać dowolny cykl. Czas działania powinien wynosić O(|V| + |E|).

Zadanie 4.

Pokaż, że w drzewie binarnym liczba wierzchołków mających dwoje dzieci jest dokładnie o jeden mniejsza od liczby liści.

Zadanie 5.

Mamy dany spójny graf G oraz wyróżniony wierzchołek v. Wykonujemy procedury DFS i BFS, zaczynając w v i okazuje się, że obie tworzą to samo drzewo przejścia T. Pokaż, że G=T.

Zadanie 6.

Czy prawdziwe jest następujące stwierdzenie? Pokaż kontrprzykład lub udowodnij. Niech G będzie grafem o n wierzchołkach, gdzie n jest parzyste. Jeśli każdy wierzchołek ma stopień przynajmniej n/2, to graf jest spójny.

Zadanie 7.

Jaki będzie czas działania procedury BFS, jeśli graf wejściowy jest reprezentowany przez macierz sąsiedztwa, a algorytm jest zmodyfikowany w taki sposób, żeby działał poprawnie dla tej reprezentacji?

Zadanie 8.

Zaprezentuj działanie procedury DFS na następującym grafie. Podaj wartości pre i post dla każdego wierzchołka. Zaprezentuj również działanie procedury BFS zaczynając od wierzchołka A.

Zadanie 9.

Dla pewnego grafu skierowanego G=(V,E) niech $G^R=(V,E^R)$ będzie takim grafem, że

 $(u,v)\in E^R$ wtedy i tylko wtedy gdy $(v,u)\in E$

(czyli będzie grafem o tych samych wierzchołkach, ale z odwróconymi wszystkimi krawędziami).