时序分析(2) -- 单根检验

如无特殊说明,本系列文章中的数据将使用2012~2017年,分别代表国内股票、香港股票、国内债卷和国内货币 的四个指数数据。

上一篇文章我们探讨了时序数据的描述性分析和推断性分析。这一节我们主要讨论时序数据的平稳分析和单根检验。

首先我们先介绍平稳性的概念:

时序数据的平稳性属性是其非常重要的特征,上一篇中我们曾经估算指数数据的收益率、标准差、分布等,其实一切的目的都是为了很好的预测时序数据,但想想如果数据的均值和方差是经常有很大的变化的,我们又怎么能够预测呢?

平稳过程定义如下

- 1. 时序的均值不能是时间的函数。
- 2. 时序的方差不能是时间的函数。
- 3. 时序的第i项与第i+m项的协方差不能是时间的函数。

简单来说,就是时序的均值、方差和自协方差这三个统计特性不能随着时间的变换而变化。

平稳时序相对来说是比较容易预测的,因为我们可以认为未来的统计特性和当前的统计特性是一致的。大部分时序模型都假设至少是协方差稳定的。但实际上,大多数金融时序数据都不是平稳时序数据,所以在实际时序分析时,我们经常需要通过某种方法将其转变为平稳过程。

那么,我们如何得知所要处理的时序数据是否平稳时序呢?这就需要进行统计检验:单根检验。

单根检验(unit root test)就是检查时序数据是否存在单根,现在让我们简要解释一下这个概念:

考虑一个时序过程 $\{y_t, t=1,2,3,\ldots,\infty\}$ 如果可以把它写成一个p阶自回归过程:

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_p y_{t-p} + \epsilon_t$$

这里, $\{\epsilon_t, t=0,1,\ldots,\infty$ 提串行不相关的,且均值为0,有不变的方差 σ^2 的随机过程。 方便起见,不妨设 $y_0=0$,如果m=1是其特征等式

$$m^p - m^{p-1}a_1 - m^{p-2}a_2 - \dots - a_p = 0$$

,那么该时序过程就被认为存在单位根,或者称为integrated of order 1,记为I(1)。

让我们来看一个简单的例子:

一个一阶自回归过程 $y_t=a_1y_{t-1}+\epsilon_t$,当 $a_1=1$ 时存在单位根,因为其特征等式 $m-a_1=0$,是一个非平稳过程。 该过程的动量依赖于时间t

我们可以以初值 y_0 重复带入 $y_t = a_1 y_{t-1} + \epsilon_t$, 可得到

$$y_t = y_0 + \sum_{i=1}^t \epsilon_i$$

那么, y, 的方差为

$$Var(y_t) = \sum_{i=1}^{t} e^2 = te^2$$

从上式可知,方差依赖于时间t,随着时间的推移,方差必将趋向于无穷大。

如果时序中存在单位根,就说明是非平稳时序;反之就是平稳时序。 下面我们检验四个指数的收益率数据,看是否是平稳时序。

1. 导入必要的python包

In [1]:

```
import warnings
warnings.simplefilter('ignore')
```

In [2]:

```
import pandas as pd
import numpy as np
%matplotlib inline
from fintechtools.backtest import *
from fintechtools.datasource import *
from fintechtools.SimuMultiTest import *
import matplotlib
import matplotlib as mpl
from matplotlib.ticker import FuncFormatter
mpl. style. use ('classic')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.serif'] = ['SimHei']
plt.rcParams['axes.unicode minus'] = False
import seaborn as sns
sns.set_style("whitegrid", {"font.sans-serif":['simhei', 'Arial']})
sns. set context ("talk")
%load ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

2. 读入数据

In [3]:

```
start = '2012-01-01'
end = '2016-03-01'
```

In [4]:

```
indexs = pd.read_excel('./data/华夏指数.xlsx')
indexs_pv = indexs.pivot_table(index='日期', columns='简称', values='收盘价(元)')
indexs_pv.index = pd.to_datetime(indexs_pv.index, unit='d')
```

In [5]:

```
indexs_pv.columns = ['国内债券', '国内股票', '香港股票', '国内货币']
indexs_pv = indexs_pv[['国内债券', '国内股票', '国内货币', '香港股票']]
indexs_pv.fillna(axis=0, method='bfill', inplace=True)
indexs_sub = indexs_pv.loc[start:end,]
```

国内债卷:中债综合财富(总值)指数

国内股票:中证全指 香港股票:恒生指数 国内货币:货币基金

In [6]:

```
indexs_sub.head()
```

Out[6]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-04	141.5160	2571.951	1166.7726	18727.31
2012-01-05	141.5501	2513.699	1166.9696	18813.41
2012-01-06	141.7277	2527.247	1167.1185	18593.06
2012-01-09	141.8669	2619.638	1167.5058	18865.72
2012-01-10	142.0118	2713.529	1167.6330	19004.28

In [9]:

```
indexs_logret = indexs_sub.apply(log_return).dropna()
```

In [10]:

```
indexs_logret.head()
```

Out[10]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-05	0.000241	-0.022909	0.000169	0.004587
2012-01-06	0.001254	0.005375	0.000128	-0.011782
2012-01-09	0.000982	0.035906	0.000332	0.014558
2012-01-10	0.001021	0.035214	0.000109	0.007318
2012-01-11	0.000188	-0.002115	0.000113	0.007740

Augmented Dickey-Fuller Testing

• 国内股票

In [11]:

```
from arch.unitroot import ADF
adf = ADF(indexs_logret['国内股票'])
print('国内股票',adf.summary().as_text())
```

国内股票	Augmented	Dickey	-Fuller	Results
Test Statis P-value Lags	======= tic	=====	 -6. 48 0. 00	
-				

Trend: Constant

Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

• 香港股票

In [12]:

```
adf = ADF(indexs_logret['香港股票'])
print('香港股票',adf.summary().as_text())
```

香港股票 	Augmented	Dickey-Fuller	Results
Test Statis P-value Lags	tic	-30. 89 0. 00	

Trend: Constant

Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

• 国内债卷

In [13]:

```
adf = ADF(indexs_logret['国内债券'])
print('国内债券',adf.summary().as_text())
```


Trend: Constant

Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

• 国内货币

In [14]:

```
adf = ADF(indexs_logret['国内货币'])
print('国内货币',adf.summary().as_text())
```


Trend: Constant

Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Augmented Dickey-Fuller Testing 检验法得到: p-value非常小, 这四个时序是弱平稳的。

Dickey-Fuller GLS Testing

• 国内股票

In [15]:

```
from arch.unitroot import DFGLS
dfgls = DFGLS(indexs_logret['国内股票'])
print('国内股票',dfgls.summary().as_text())
```

国内股票	Dickey-Fuller	GLS Results
Test Statistic P-value Lags		-1. 403 0. 155 22

Trend: Constant

Critical Values: -2.59 (1%), -1.97 (5%), -1.64 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

• 香港股票

In [16]:

```
dfgls = DFGLS(indexs_logret['香港股票'])
print('香港股票',dfgls.summary().as_text())
```

香港股票	Dickey-Fuller	GLS Results
Test Statistic P-value Lags		-3. 191 0. 002 19

Trend: Constant

Critical Values: -2.59 (1%), -1.97 (5%), -1.64 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

• 国内债卷

In [17]:

```
dfgls = DFGLS(indexs_logret['国内债券'])
print('国内债券',dfgls.summary().as_text())
```

国内债券	Dickey-Fuller	GLS Results
Test Statistic P-value Lags		-5. 993 0. 000 14

Trend: Constant

Critical Values: -2.59 (1%), -1.97 (5%), -1.64 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

• 国内货币

In [18]:

```
dfgls = DFGLS(indexs_logret['国内货币'])
print('国内货币',dfgls.summary().as_text())
```

国内货币	Dickey-Fuller	GLS Result	S
Test Statistic	=======================================	-4. 147	
P-value		0.000	
Lags		19	

Trend: Constant

Critical Values: -2.59 (1%), -1.97 (5%), -1.64 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Dickey-Fuller GLS Testing 结论:除国内股票外,其他都是平稳时序

由于这两种单根检验法在国内股票时序数据上得到的结果不一样,下面我们再采用几种其他单根检验法对国内股票进行重复检验。

Phillips-Perron Testing

• 国内股票

In [19]:

```
from arch.unitroot import PhillipsPerron
pp = PhillipsPerron(indexs_logret['国内股票'])
print(pp.summary().as_text())
```

Phillips-Perron Test (Z-tau)

Test Statistic	-29.715
P-value	0.000
Lags	22

Trend: Constant

Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

KPSS Testing

• 国内股票

In [20]:

```
from arch.unitroot import KPSS
kpss = KPSS(indexs_logret['国内股票'])
print(kpss.summary().as_text())
```

KPSS Stationarity Test Results

Test Statistic	0.092
P-value	0.628
Lags	22

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

Variance Ratio Testing

In [21]:

```
from arch.unitroot import VarianceRatio
vr = VarianceRatio(indexs_logret['国内股票'], 12)
print(vr.summary().as_text())
```

Variance-Ratio Test Results

Test Statistic	-10.252
P-value	0.000
Lags	12

Computed with overlapping blocks (de-biased)

In []:

Phillips-Perron Testing和Variance Ratio Testing认为国内股票是平稳过程,而KPSS Testing认为国内股票不见

总结

本文展示了采用Python语言为四个指数时序数据的收益率做了多种单位根检验,并解释了单位根和平稳过程的概念,也展示了检验的结论。