Diskrétka 6

Hynek Kydlicek

10. listopadu 2020

1 Úkol 1

Graf s takovým skóre určitě existuje viz obrázek 1. Avšak nesouvislý graf s takovým skóre existovat nemůže. Protože graf musí mít 8 vrcholů a největší stupeň grafu je 7, musí existovat vrchol, který bude mít hranu s každým dalším vrcholem.

Obrázek 1: Souvislý graf

2 Úkol 2

Dokážeme sporem.

Pro spor předpokládejme, že existuje souvislý graf G(V,E) a existují dvě nejdelší cesty $P_1,\ P_2$ v G a zároveň $P_1\cap P_2=\emptyset$.

Pro |V|=1, dostáváme spor triviálně. Předpokládejme proto $|V|\geq 2$ Jelikož je graf souvislý \implies existuje cesta mezi každými 2 vrcholy grafu G. Z předpokladu $P_1\cap P_2=\emptyset$ dostáváme, že existují vrcholy $v_1\in P_1, v_2\in P_2$ a cesta

 P_3 s začátkem v_1 a koncem v_2 a $P_1 \cap P_3 = v_1 \wedge P_2 \cap P_3 = v_2$. Takovou cestu jsme schopni i zkonstruovat. Určitě existuje cesta P mezi začátkem P_1 a koncem P_2 . Pokud $|P_1 \cap P| > 1$ odeberem z P začátek, tím snížíme mohutnost o 1 nebo 0. Pokud $|P_2 \cap P| > 1$ odebereme z P konec, tím snížíme mohutnost o 1 nebo 0. Protože $P_1 \cap P_2 = \emptyset$, odebráný vrchol v má vlastnost $(v \in P_1 \wedge v \notin P_2) \vee (v \notin P_1 \wedge v \in P_2) \vee (v \notin P_1 \wedge v \notin P_2)$. Každý krok algoritmy sníží mohutnost jednoho z průniky o 0 nebo 1. Algoritmus končí pokud $|P_1 \cap P| = 1 \wedge |P_2 \cap P| = 1$. Jelikož je cesta konečná algoritmus skončí vždy.

Označme si a_1 cestu P_1 od začátku do v_1 , bez v_1 .

Označme si b_1 cestu P_1 od konce do v_1 , bez v_1 .

Označme si a_2 cestu P_2 od začátku do v_2 , bez v_2 .

Označme si b_2 cestu P_2 od konce do v_2 , bez v_2 .

Označme si d(P) délku cesty P, tedy počet vrcholů v P, tedy |P|. Proto

$$d(P_1) = d(a_1) + d(b_1) + 1 = d(P_2) = d(a_2) + d(b_2) + 1$$

BÚNO předpokladejme, že $d(a_1) \leq d(a_2) \leq d(b_2) \leq d(b_1)$ Vytvoříme novou cestu $P_g = b_1, P_3, b_2$. Z kontrukce víme, že každý vrchol se v cestě objeví maximálně jednou. Zároveň víme, že $d(P_3) \geq 2$, protože musí obsahovat minimálně vrcholy v_1, v_2 .

$$d(P_g) = d(b_1) + d(P_3) + d(b_2) \ge d(b_2) + d(P_3) + d(a_2) \ge d(b_2) + d(a_2) + 2 > d(P_2) = d(P_1)$$

Což je spor, předpokládali jsme, že P_1, P_2 jsou nejdelší cesty, ale našli jsme P_3 , která je delší.