Value function approximation

Konpat Preechakul Chulalongkorn University September 2019

Recap

Learning algorithm

- MC
- TD
- N-step

Implementation

- Tabular
- Very limited

Motivation to move away from "tabular"

Limitations of "tabular"

- If we have a grid of 1M x 1M?
 - Memory concern
- If states or actions are continuous?
 - How to "discretize"?

Generalization concern

- Grid $1M \times 1M = 1$ Trillion
- State value for each s? 1 Trillion states
- How do we even hope to visit them all in limited time?
- How many times we need to visit each of them to get a sufficient statistic?

Example of generalization

Generalization is the only hope

- We cannot deal with very large number of states
- We hope to come up with a "representation" of states
- Such that we only need to keep a "fraction" of the states

What if we represent states differently?

Better state representation

State **feature** function

$$\phi(s) = (x^{(0)}, x^{(1)}, \dots, x^{(k)})$$

- Takes a state as an input
- Outputs a vector representing the state
- Feature engineering

Rotational invariant feature

Example: Gridworld

Vector

- Current position
- Distance to traps
- Distance to goal

Extending to continuous space

Extending to continuous space

- Distance-based (RBF)
- Learned feature function (Neural nets)

Example: RBF Feature

Radial basis function (RBF) is in a form:

$$\mathbf{x}_i(s) = f(|x - c_i|)$$

Gaussian basis function:

$$\mathbf{x}_{i}(s) = \exp\left(-\frac{\|x - c_{i}\|^{2}}{2\sigma_{i}^{2}}\right)$$

 c_i are predefined center points

Example: RBF Feature

Value is a function of the representation

Linear function

$$v_{\theta}(s) = \theta^T \phi(s)$$

Non-linear function

$$v_{\theta}(s) = f_{\theta}(\phi(s))$$

With parameters **theta**

The goal of approximation

- Minimizing the distance between approximated values and the correct value
- Under some distance function

Value is approximated

- Number of states |S| is large
- We hope to approximate their values with limited "budget" $|\theta|$
- Usually, $|\theta| \ll |S|$

Limitation of approximations

- We cannot hold all values perfectly
- We do better on one, we do worse on others
- How to prioritize state values?

Does it even make sense to approximate?

Will we still get a good policy?

- It is unclear how much the policy is hurt with approximated value function
- Approximation makes sense if:

$$v_{\pi}(s) \propto v^{*}(s) - \text{error}$$

- Where π follows $\hat{q}(s, a)$ greedily
- Less error, better policy
- More error, worse policy

Yes, it makes sense!

We can show that:

$$v_{\pi}(s) \ge v^*(s) - \frac{2\epsilon}{1 - \gamma}$$

- $v^*(s)$ is the optimal policy performance
- $v_{\pi}(s)$ is our policy (using $q_{\theta}(s, a)$)
- ϵ the maximum error between $q_{\theta}(s, a)$ and $q^*(s, a)$
- Our policy has a lower bound depending on the error!

Yes, it makes sense!

$$v_{\pi}(s) \ge v^*(s) - \frac{2\epsilon}{1 - \gamma}$$

The term:
$$\frac{2\epsilon}{1-\gamma}$$

- If you care more about the future (large gamma)
 - Small error could add up to a large amount
 - Our policy could be much worse than the optimal
- If you care less
 - Error means less

Neural network as a value function

Why neural nets?

- Universal approximation theorem
 - Deep neural nets can learn any function
- We know it work on many problems
 - Regression
 - Classification
- We know how to train it
 - SGD

What do we want them do?

Learn to remember the state function

Anatomy of neural nets

Input

 $\phi(s)$

Weights

Output

$$v_{\theta}(s_t) = f_{\theta}(\phi(s))$$

• Single layer
$$v_{\theta}(s_t) = \theta^T \phi(s)$$

Feature and value in one

- First layers further learn state representation
- Last layers learn value regression

How to train neural nets?

Supervised learning

- What is the data?
- What is the loss function?
- What is the trainer? **Gradient descent**

What is the loss function?

Let's start simple with "mean squared error"

Prediction
$$v_{\theta}(s)$$

Target
$$v_{\pi}(s) = \mathbb{E}_{\pi} [G|S_0 = s]$$

Loss function

$$\mathcal{L}(\theta) = \sum_{s} P^{\pi}(s) \left[\frac{1}{2} (v_{\pi}(s) - v_{\theta}(s))^{2} \right]$$

- P(s) is how frequent s is visited under on-policy
- P(s) is how importance is the state; weight

Why do we need state importance?

- What is the desirable solution?
- Equal importance?

$$\mathcal{L}(\theta) = \frac{1}{m} \sum_{s} \left[\frac{1}{2} (v_{\pi}(s) - v_{\theta}(s))^{2} \right]$$

Why do we need state importance?

• We can visit only a few states? We should not care much of the rest

$$\mathcal{L}(\theta) = \sum_{s} P^{\pi}(s) \left[\frac{1}{2} (v_{\pi}(s) - v_{\theta}(s))^{2} \right]$$

Value Error (VE)

$$\mathcal{L}(\theta) = VE(\theta) = \sum_{s} P^{\pi}(s) \left[\frac{1}{2} (v_{\pi}(s) - v_{\theta}(s))^{2} \right]$$

- We call this Value Error (VE)
- Weighted by P(s) is only a reasonable heuristic
- Best loss function should be the one that helps improve the policy the most
- But it is unclear which one is

Surrogate target

• Usually we don't have the target:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G | S_0 = s \right]$$

- Because we cannot compute expectation
- We use a return instead

$$v_{\pi}(s) \approx G \sim \pi | S = s$$

· As long as it is an **unbiased** estimate

What is the gradient

$$\mathcal{L}(\theta) = VE(\theta) = \sum_{s} P^{\pi}(s) \left[\frac{1}{2} (G(s) - v_{\theta}(s))^{2} \right]$$

$$\nabla_{\theta} \mathcal{L}(\theta) = -\sum_{s} P^{\pi}(s) \left[(G(s) - v_{\theta}(s)) \nabla_{\theta} v_{\theta}(s) \right]$$

- Calculate return on all states
- Calculate difference on all states
- Average by on-policy state distribution

What is the optimizer

Batch Gradient Descent (GD)

Gradients are calculated from all states

Stochastic Gradient Descent (SGD)

- Gradients are calculated from a small set of states
- Depends on the experience

Value Error + GD

$$\nabla_{\theta} \mathcal{L}(\theta) = -\sum_{s} P^{\pi}(s) \left[(G(s) - v_{\theta}(s)) \nabla_{\theta} v_{\theta}(s) \right]$$
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}(\theta)$$

- Calculate the gradient for all states
- Update the parameters slowly by the learning rate
- But we don't have $P^{\pi}(s)$
- Fortunately we can "sample" from it!

What is on-policy state distribution

- Start from $S_0 \sim P_{s_0}$ initial state distribution
- Follow π until termination
- We get $\tau = (s_0, s_1, s_2, \dots, s_{T-1})$
- Counter the number of times each state is visited
- Repeat
- The normalized frequency is the on-policy state distribution $P^{\pi}(s)$

Value Error + SGD

 $\theta \leftarrow \theta + \alpha \left(G - v_{\theta}(S) \right) \nabla_{\theta} v_{\theta}(S)$

$$\nabla_{\theta} \mathcal{L}(\theta)$$

$$= -\sum_{s} P^{\pi}(s) \left[(G(s) - v_{\theta}(s)) \nabla_{\theta} v_{\theta}(s) \right]$$

$$= -\mathbb{E}_{s \sim P^{\pi}} \left[(G(s) - v_{\theta}(s)) \nabla_{\theta} v_{\theta}(s) \right]$$

$$\approx -(G - v_{\theta}(s)) \nabla_{\theta} v_{\theta}(s) \quad S \sim P^{\pi}, G \sim \pi | S$$

$$= -(G - v_{\theta}(s)) \nabla_{\theta} v_{\theta}(s)$$

$$S_{0} \sim P_{s_{0}}, S \sim \pi | S_{0}, G \sim \pi | S$$

Value Error + SGD Algorithm

```
for until v is stable do
collect a trajectory \tau using \pi
for s_t in \tau do
\theta \leftarrow \theta + \alpha \left( G_t - v_{\theta}(S) \right) \nabla_{\theta} v_{\theta}(S)
end for
end for
```

Value Error Solution

Convergence and fixed point

Convergence

• A training process converges to a fixed point where there is no further progress

Fixed point

 The solution when the training process converges

Value Error limitations

- A full-return needs to wait for an episode
- We cannot implement TD on VE
- We will later learn how to apply approximation onto TD methods
 - We will see that it gives rise to a lot of problems
 - Which are still at the bleeding edge of research

Assignments

- Learn Tensorflow 2 (notebook in github)
- Proof that:

$$v_{\pi}(s) \geq v^*(s) - \frac{2\epsilon}{1-\gamma}$$
 our policy performance

Given:

$$\max_{s,a} |q_{\theta}(s,a) - q^*(s,a)| \le \epsilon$$

$$\pi(s) = \underset{a}{\operatorname{argmax}} q_{\theta}(s,a) \text{ (our approx.)}$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} q^*(s,a)$$

$$q^*(s,a) = q_{\pi^*}^a(s,a)$$

Proof guide

$$v_{\pi}(s) \ge v^*(s) - \frac{2\epsilon}{1 - \gamma}$$

• Step 1 prove that:

$$v^*(s) - q^*(s, \pi(s)) \le 2\epsilon$$

• Step 2 prove (using Step 1):

$$v_{\pi}(s) \ge v^*(s) - \frac{2\epsilon}{1 - \gamma}$$

Hints step 1

$$q_{\theta}(s, \pi(s)) \ge q_{\theta}(s, \pi^*(s))$$

- Because π maximize q_{θ} , hence it selects a greedy action with respect to q_{θ}
 - Any other policy will have "lower" value (including true optimal policy)
- Greedy policies are deterministic

Hints step 2

• Look for the recursive structure of the equation