МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям
обнаружения ошибок

Студент гр. 7304	Нгуен К.Х.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Задание.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- A) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, CKO $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - Б) экспоненциальным законом распределения

W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{9KC\Pi}=s_{9KC\Pi}=1/b=10$.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

 $W(y)=(y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30,24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k<=5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход выполнения.

1. Равномерный закон

а. Равномерный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0.366	11	6.476	21	12.583
2	0.977	12	6.483	22	12.736
3	2.484	13	7.888	23	15.057
4	2.742	14	8.081	24	15.970
5	3.496	15	8.404	25	16.637
6	4.162	16	9.004	26	16.705
7	5.853	17	10.254	27	17.302
8	6.376	18	10.360	28	17.325
9	6.419	19	10.969	29	18.297
10	6.461	20	11.351	30	19.508

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 19.297$$

$$A > \frac{n+1}{2} = 15.5 \implies$$
 существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
31	3.0272452	2.56348458	0.46376062
32	2.5584952	2.36168022	0.19681498
33	2.25546489	2.18933028	0.06613461
34	2.03487666	2.04042482	0.00554817

35	1.86344809	1.9104848	0.04703672
36	1.7245592	1.79610383	0.07154464

Минимум при
$$m = 34$$
, $\widehat{B} = m - 1 = 33$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.00812$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

$$i \quad 31 \quad 32 \quad 33$$

$$\widehat{X}_i \quad 41.051 \quad 61.576 \quad 123.153$$

Время до завершения тестирования = $\sum_{i=31}^{33} \widehat{X}_i = 225.779$ дней Полное время тестирования $\sum_{i=1}^{30} \widehat{X}_i + \sum_{i=31}^{33} \widehat{X}_i = 516.505$ дней

b. Равномерный закон распределения (80% входных данных)

i	X	i	X	i	X
1	0.072	9	7.008	17	11.922
2	0.639	10	7.369	18	12.284
3	1.071	11	7.439	19	13.773
4	2.577	12	7.468	20	15.493
5	3.239	13	7.723	21	16.082
6	4.426	14	8.071	22	16.734
7	5.819	15	11.297	23	17.696
8	6.338	16	11.443	24	18.105

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 15.656$$

 $A > \frac{n+1}{2} = 12.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
25	2.81595818	2.5685327	0.2474254
26	2.35441972	2.32021789	0.0342018
27	2.05812342	2.11568269	0.0575592
28	1.84383771	1.94428708	0.1004493
29	1.67832046	1.79858054	0.1202600
30	1.54498713	1.67319023	0.1282031

Минимум при m = 26,
$$\hat{B} = m - 1 = 25$$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.01199$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	25	26
\widehat{X}_{i}	41.701	83.403

Время до завершения тестирования = 125.103 дней Полное время тестирования = 339.192 дней

с. Равномерный закон распределения (60% входных данных)

i	X	i	X	i	X
1	1.110,	7	4.293,	13	12.361,
2	1.210,	8	11.904,	14	12.735,
3	1.216,	9	6.456,	15	14.791,
4	1.779,	10	7.414,	16	16.290,

5	2.827,	11	8.164,	17	18.220,
6	2.938,	12	8.510,	18	19.045

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.133$$

 $A > \frac{n+1}{2} = 9.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
19	2.54773966	2.6213439	0.07360424
20	2.09773966	2.28812392	0.19038426
21	1.81202537	2.030066	0.21804063
22	1.60747992	1.8243169	0.21683698
23	1.45095818	1.6564356	0.20547742
24	1.32595818	1.5168488	0.19089062

Минимум при m = 19, $\hat{B} = m - 1 = 18 = n$

=> найдены все ошибки – тестирование завершено.

Полное время тестирования: 151.270 дней

2. Экспоненциальный закон

а. Экспоненциальный закон (100% входных данных)

i	X	i	X	i	X
1	0.160	11	2.776	21	16.341
2	0.323	12	2.846	22	17.111
3	0.658	13	3.009	23	17.516

4	0.790	14	4.086	24	17.902
5	1.309	15	5.012	25	19.146
6	1.421	16	5.700	26	19.981
7	1.633	17	7.670	27	31.447
8	1.938	18	8.460	28	33.535
9	2.054	19	12.210	29	35.165
10	2.059	20	13.160	30	42.249

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 22.858$$

 $A > \frac{n+1}{2} = 15.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
31	3.0272452	3.68491538	0.6576701
32	2.5584952	3.28180908	0.7233138
33	2.25546489	2.95820075	0.7027358
34	2.03487666	2.69268408	0.6578074
35	1.86344809	2.47090518	0.6074570
36	1.7245592	2.28287924	0.5583200

Минимум при m = 36,
$$\hat{B}$$
 = m – 1 = 35

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.00821$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	31	32	33	34	35

\hat{X}_{i} 24.36 30.451 40.601 60.901 121.80	\widehat{X}_{i}
---	-------------------

Время до завершения тестирования = 278.115 дней Полное время тестирования = 605.782 дней

b. Экспоненциальный закон (80% входных данных)

i	X	i	X	i	X
1	0.166	9	5.738	17	9.063
2	1.744	10	5.986	18	10.894
3	2.239	11	6.084	19	12.304
4	2.911	12	6.612	20	15.703
5	3.223	13	7.167	21	19.464
6	4.995	14	8.305	22	19.534
7	5.166	15	8.569	23	26.427
8	5.308	16	9.019	24	30.826

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 16.458$$

$$A > \frac{n+1}{2} = 12.5 = >$$
 существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
25	2.81595818	2.80975791	0.0062002
26	2.35441972	2.5152853	0.1608655
27	2.05812342	2.27668103	0.2185576
28	1.84383771	2.07942338	0.2355856

29	1.67832046	1.9136221	0.2353016

Минимум при m = 25, $\hat{B} = m - 1 = 24 = n$ => найдены все ошибки – тестирование завершено. Полное время тестирования = 227.458 дней

с. Экспоненциальный закон (60% входных данных)

i	X	i	X	i	X
1	0.035	7	3.910	13	16.377
2	0.426	8	4.035	14	16.781
3	0.551	9	5.888	15	17.106
4	2.598	10	9.181	16	17.957
5	3.470	11	10.666	17	18.708
6	3.851	12	10.847	18	55.144

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 13.213$$

 $A > \frac{n+1}{2} = 9.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i'} \qquad m \ge n+1$$

$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
19	2.5477396	3.1108313	0.5630916
20	2.0977396	2.6524281	0.5546885
21	1.8120253	2.3117720	0.4997467
22	1.6074799	2.0486591	0.4411792
23	1.4509581	1.8393182	0.3883600
24	1.3259581	1.6687936	0.3428354

Минимум при
$$m = 24$$
, $\widehat{B} = m - 1 = 23$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.01037$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	19	20	21	22	23
\widehat{X}_i	19.286	24.108	32.144	48.216	96.432

Время до завершения тестирования: = 220.186 дней

Полное время тестирования = 417.717 дней

3. Релеевский закон

а. Релеевский закон (100% входных данных)

i	X	i	X	i	X
1	0.993	11	5.5031,	21	10.475,
2	1.649,	12	6.170,	22	13.311,
3	1.681,	13	6.704,	23	13.891,
4	3.052,	14	7.010,	24	16.176,
5	3.811,	15	7.508,	25	16.852,
6	4.305,	16	7.666,	26	17.113,
7	4.445,	17	8.966,	27	18.060,
8	4.584,	18	9.045,	28	19.461,
9	4.702,	19	9.425,	29	23.143,
10	5.181	20	9.430,	30	25.644

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 20.073$$

 $A > \frac{n+1}{2} = 15.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
31	3.0272452	2.7456039	0.2816412
32	2.5584952	2.5153946	0.0431005
33	2.2554648	2.3208034	0.0653385
34	2.0348766	2.1541575	0.1192809
35	1.8634480	2.0098404	0.1463923
36	1.7245592	1.8836461	0.1590869

Минимум при m = 32,
$$\hat{B} = m - 1 = 31$$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.01056$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)} = 94.697$$

Время до завершения тестирования: = 94.697 дней

Полное время тестирования = 380.653 дней

b. Релеевский закон (80% входных данных)

i	X	i	X	i	X
1	2.205,	9	8.222,	17	12.378,
2	2.924,	10	9.594,	18	12.865,
3	4.774,	11	9.676,	19	14.958,
4	5.898,	12	9.850,	20	15.214,
5	6.598,	13	9.972,	21	15.304,
6	7.264,	14	10.546,	22	17.477,

7	8.105,	15	11.352,	23	19.598,
8	8.167,	16	11.512,	24	22.711

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 14.566$$

 $A > \frac{n+1}{2} = 12.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n+1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
25	2.81595818	2.30020629	0.51575189
26	2.35441972	2.0990311	0.25538862
27	2.05812342	1.93021519	0.12790823
28	1.84383771	1.78653221	0.0573055
29	1.67832046	1.6627584	0.01556206
30	1.54498713	1.55502386	0.01003673

Минимум при m = 30, $\hat{B} = m - 1 = 29$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.00694$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)}$$

i	25	26	27	28	29
\widehat{X}_i	28.818	36.023	48.030	72.046	144.092

Время до завершения тестирования: = 329.009 дней

Полное время тестирования = 586.173 дней

с. Релеевский закон (60% входных данных)

i	X	i	X	i	X
1	2.043	7	5.337	13	11.327
2	2.409	8	5.959	14	11.895
3	2.880	9	9.911	15	12.469
4	3.771	10	10.265	16	14.358
5	4.455	11	10.631	17	16.303
6	4.474	12	11.318	18	20.750

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 11.397$$

 $A > \frac{n+1}{2} = 9.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i'} \qquad m \ge n+1$$
$$g(m,A) = \frac{n}{m-A}$$

m	f(m)	g(m,A)	f-g
19	2.54773966	2.36770587	0.18003378
20	2.09773966	2.09246471	0.00527495
21	1.81202537	1.87455174	0.06252637
22	1.60747992	1.69774553	0.09026561
23	1.45095818	1.55141711	0.10045894

Минимум при m = 20, $\hat{B} = m - 1 = 19$

$$\widehat{K} = \frac{n}{(\widehat{B} - 1) * \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i * X_i} = 0.0169$$

$$\widehat{X}_{n+1} = \frac{1}{\widehat{K} \cdot (\widehat{B} - n)} = 59.171$$

Время до завершения тестирования: = 59.171 дней

Полное время тестировани = 219.726 дней

4. Полученные результаты

Закон	N=30	N=24	N=18
распределения		J	,
Равномерный	33	25	18
Экспоненциальный	35	24	23
Релеевский	31	29	19

Таблица 1 – Оценка первоначального числа ошибок

Закон	N=30	N=24	N=18
распределения			
Равномерный	516.505	339.192	151.270
Экспоненциальный	605.782	227.458	417.717
Релеевский	380.653	586.173	219.726

Таблица 2 – Оценка полного времени проведения тестирования (дней)

Выводы

В ходе выполнения лабораторной работы были исследованы показатели надёжности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных.