☐ xnanko00 / Digital-electronics-1

Digital-electronics-1 / Labs / 01-gates / README.md

1. cvičenie

GitHub link

https://github.com/xnanko00/Digital-electronics-1

2. cvičenie

De Morganove zakony

vzorec

$$f(c, b, a) = \overline{b} \, a + \overline{c} \, \overline{b}$$

$$f(c, b, a)_{\text{NAND}} = \overline{\overline{b}} \, \overline{a} \, \overline{\overline{c}} \, \overline{\overline{b}}$$

$$f(c, b, a)_{\text{NOR}} = \overline{b} + \overline{a} + \overline{c} + \overline{b}$$

VHDL kód

Screenshot

EDA Playground link

https://www.edaplayground.com/x/E2GK

Tabuľka

С	b	a	f(c,b,a)	
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	0	

3. cvičenie

Distributive laws

vzorec

$$x \cdot y + x \cdot z = x \cdot (y + z)$$
$$(x + y) \cdot (x + z) = x + (y \cdot z)$$

VHDL kód

```
architecture dataflow of gates is
begin
   f10_o <= (x_i and y_i) or (x_i and z_i);
   f11_o <= (x_i and (y_i or z_i));
   f20_o <= (x_i or y_i) and (x_i or z_i);
   f21_o <= x_i or (y_i and z_i);
end architecture dataflow;</pre>
```

Screenshot

EDA Playground link

https://www.edaplayground.com/x/8Nqu

Tabuľka

Z	у	x	x and y or x and	x and (y or z)	(x or y) and (x or z)	x or (y and z)
0	0	0	0	0	0	0
0	0	1	0	0	1	1
0	1	0	0	0	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	1	1	1	1
1	1	0	0	0	1	1
1	1	1	1	1	1	1