AI-ML:

What is Gradient Descent 1

When we break the word Gradient Descent and understand what it actually means, gradient means inclined part of a pathway or a slope, descent means to move towards the bottom of the slope. Imagine yourself to be a mountaineer, and you are trying to get to the bottom of the mountain, you are descending the gradient of a mountain.

Understanding Gradient Descent for $f(x) = x^2$ 2

Suppose function y = f(x), where x, y are real numbers.

- This function has minimum at X = 0 which we want to determine using gradient descent.
- Derivative of function denoted: f(x) or as $\frac{dy}{dx}$
- Derivative f'(x) gives the slope of f(x) at point x.
- It specifies how to scale a small change in input to obtain a corresponding change in the

$$f(x + \eta) \approx f(x) + \eta f'(x)$$
 where η is a small change made.

- It tells how you make a small change in input to make a small improvement in y.
- We know that $f(x \eta sign(f'(x)))$ is less than f(x) for small η . Thus we can reduce f(x) by moving X in small steps with opposite sign of derivative

where
$$sign(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

This technique is called gradient descent.

Consider a simple math equation $f(x) = x^2$,

Х	$f(x) = x^2$
1	1
2	4
3	9
4	16
5	25
6	36
0	0
-1	1
-2	4
-3	6
-4	8
-5	25
-6	36

When above values are plotted we get the following graph

Figure 1

Here, using gradient descent we want to find the minimum of the function f(x).

This function has minimum at X = 0 which we want to determine using gradient descent.

We have f(x) = 2x

For gradient descent, we update by -f(x)

If x(t) > 0 then x(t+1) < x(t)

If x(t) < 0 then f(x) = 2x is negative, thus x(t+1) > x(t)

Updation rule: $x \leftarrow x - \eta \frac{dy}{dx}$

Procedure:

Gradient-Descent(

x //Initial starting point

f //function to be minimized

 δ //Convergence threshold)

1 t ← 1

2 do

 $3 x(t+1) \leftarrow x(t) - \eta \frac{dy}{dx}$

 $4 t \leftarrow t + 1$

5 while $//x(t + 1) - x(t) // > \delta$

6 return (x(t))

References:

Gradient descent over multi-dimensional parameters:

https://gluon.mxnet.io/chapter06_optimization/gd-sgd-scratch.html An

Overview of Gradient Descent Algorithm:

http://ruder.io/optimizing-gradient-descent/index.html#batchgradientdescent