Latex Homework 9th Grade Unit 1 - Methods of Proof - Formal Style of a Proof Week 3 - Logic

Dr. Chapman and Dr. Rupel

Edited September 2, 2023

1

Form a logical expression using the logical statements A,B,C and the operators \land,\lor,\lnot , which is true if at least two of the statements are true, but false otherwise. Note: not every operator must be used, but you can use no others.

ii doe no ouicis.							
$(A \wedge B) \vee \neg (\neg B \vee \neg C) \vee (A \wedge C)$							
A	$\mid B \mid$	C	$A \wedge B$	$\neg(\neg B \lor \neg C)$	$A \wedge C$	$(A \land B) \lor \neg(\neg B \lor \neg C)$	$ (A \land B) \lor \neg(\neg B \lor \neg C) \lor (A \land C) $
\overline{T}	T	T	T	T	T	T	T
\overline{T}	T	F	T	F	F	T	T
\overline{T}	F	F	F	F	F	F	F
\overline{F}	T	T	F	T	F	T	T
\overline{F}	F	T	F	F	F	F	F
\overline{F}	T	F	F	F	F	F	F
\overline{T}	F	T	F	F	T	F	T
\overline{F}	F	F	F	F	F	F	F

$\mathbf{2}$

Simplify $\neg(A \land \neg(B \land \neg(A \land \neg B)))$. In particular, your answer should only have negations applied to logical variables and not compound statements.

Step 1:
$$\neg (A \land \neg (B \land \neg (A \land \neg B)))$$

Step 2:
$$\equiv \neg (A \land \neg (B \land (\neg A \lor B)))$$

Step 3:
$$\equiv \neg(A \land (\neg B \lor (A \land \neg B)))$$

Step 4:
$$\equiv A \lor (\neg B \land (\neg A \lor B)))$$

3

Prove that $A \Rightarrow (B \land C)$ is equivalent to $(A \Rightarrow B) \land (A \Rightarrow C)$.