Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Основы дискретной математики Курсовая работа. Часть №2 Синтез комбинационных схем Вариант №98

Выполнил: студент группы Р3108 Васильев Никита

Проверил: Поляков Владимир Иванович, доцент факультета ПИиКТ, кандидат технических наук

Nº	Выполняемые	Число переменных		Разрядность операндов		Фиксация переноса, заема,	
	операции	Входных	Выходных	A	В	или переполнения	
98	$C = (A \pm 1)_{mod13}$	5	5	4	-	*	

Таблица истинности

$$C = A \pm 1_{mod 13}$$
, $y = \begin{cases} 0 & \text{для } C = A + 1 \\ 1 & \text{для } C = A - 1 \end{cases}$

у	a_1	a_2	a_3	a_4	C_1	C_2	C_3	<i>C</i> ₄	V
0	0	0	0	0	0	0	0	1	0
0	0	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	1	1	0
0	0	0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	0	1	0
0	0	1	0	1	0	1	1	0	0
0	0	1	1	0	0	1	1	1	0
0	0	1	1	1	1	0	0	0	0
0	1	0	0	0	1	0	0	1	0
0	1	0	0	1	1	0	1	0	0
0	1	0	1	0	1	0	1	1	0
0	1	0	1	1	1	1	0	0	0
0	1	1	0	0	0	0	0	0	1
0	1	1	0	1	d	d	d	d	d
0	1	1	1	0	d	d	d	d	d
0	1	1	1	1	d	d	d	d	d
1	0	0	0	0	1	1	0	0	1
1	0	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	1	0
1	0	0	1	1	0	0	1	0	0
1	0	1	0	0	0	0	1	1	0
1	0	1	0	1	0	1	0	0	0
1	0	1	1	0	0	1	0	1	0
1	0	1	1	1	0	1	1	0	0
1	1	0	0	0	0	1	1	1	0

1	1	0	0	1	1	0	0	0	0
1	1	0	1	0	1	0	0	1	0
1	1	0	1	1	1	0	1	0	0
1	1	1	0	0	1	0	1	1	0
1	1	1	0	1	d	d	d	d	d
1	1	1	1	0	d	d	d	d	d
1	1	1	1	1	d	d	d	d	d

Минимизация на картах Карно

Определение МДНФ

 C_1 :

$$C_{min}(C_1) = \{10000\ 010XX\ 111XX\ X1X1X\ X1XX1\ 0X111\}$$

$$S_a = 19, S_b = 25$$

 C_2 :

	a_3a_4						
		00	01	11	10		
	00			1			
a_1a_2	01	1	\bigcap		1		
u ₁ u ₂	11		d	d	d		
	10			1			
			y = 0				

$$C_{min}(C_2) = \{1X000\ 0X011\ 1X11X\ XX101\ 001X0\}$$

$$S_a = 18, S_b = 23$$

 C_3 :

	a ₃ a ₄						
		00	01	11	10		
	00		1		1		
a_1a_2	01		1		1		
u ₁ u ₂	11		d	d	d		
	10		1		1		
	-		y = 0				

	a 3 a 4							
		00	01	11	10			
	00			1				
a_1a_2	01	1		1				
	11	1	d	d	d			
	10	1		1				
			y = 1					

 $C_{min}(C_3) = \{11X00\ 1X100\ 0XX10\ 0XX01\ 1XX11\}$

$$S_a = 17, S_b = 22$$

C₄:

	a 3 a 4						
		00	01	11	10		
	00	1			1		
a_1a_2	01	1			1		
u ₁ u ₂	11		d	d	d		
	10	1			1		
			y = 0				

	a_3a_4							
		00	01	11	10			
	00				1			
a_1a_2	01	1			1			
	11	1	d	d	d			
	10	1			1			
			y = 1					

 $C_{min}(C_4) = \{XXX10\ 0X0X0\ 11XX0\ X01X0\}$

$$S_a = 11, S_b = 15$$

	a ₃ a ₄						
		00	01	11	10		
	00						
a_1a_2	01						
a_1a_2	11	1	d	d	d		
	10						
	-		y = 0				

	a ₃ a ₄							
		00	01	11	10			
	00	1						
a_1a_2	01							
	11		d	d	d			
	10							
		•	y = 1					

$$C_{min}(V) = \{10000\ 011XX\}$$

$$S_a = 8, S_b = 10$$

$$\begin{cases}
C_1 = y\overline{a_1}\overline{a_2}\overline{a_3}\overline{a_4} \vee \overline{y}a_1\overline{a_2} \vee ya_1a_2 \vee a_1a_3 \vee a_1a_4 \vee \overline{y}a_2a_3a_4 & S_q^{C_1} = 25\\ C_2 = y\overline{a_2}\overline{a_3}\overline{a_4} \vee \overline{y}\overline{a_2}a_3a_4 \vee ya_2a_3 \vee a_2\overline{a_3}a_4 \vee \overline{y}\overline{a_1}a_2\overline{a_4} & S_q^{C_2} = 23\\ C_3 = ya_1\overline{a_3}\overline{a_4} \vee ya_2\overline{a_3}\overline{a_4} \vee \overline{y}a_3\overline{a_4} \vee \overline{y}\overline{a_3}a_4 \vee ya_3a_4 & S_q^{C_3} = 22\\ C_4 = a_3\overline{a_4} \vee \overline{y}\overline{a_2}\overline{a_4} \vee ya_1\overline{a_4} \vee \overline{a_1}a_2\overline{a_4} & S_q^{C_4} = 15\\ V = y\overline{a_1}\overline{a_2}\overline{a_3}\overline{a_4} \vee \overline{y}a_1a_2 & S_q^{V} = 10\\ S_q^{V} = 95 \end{cases}$$

Преобразование минимальных форм булевой функции

Введем вспомогательную переменную $Z=y\overline{a_1}\overline{a_2}\overline{a_3}\overline{a_4}$ и приведем функции к скобочной форме.

$$\begin{cases} Z = y\overline{a_1}\overline{a_2}\overline{a_3}\overline{a_4} & S_q^Z = 5 \\ C_1 = Z \vee a_1(\overline{y}\overline{a_2} \vee ya_2 \vee a_3 \vee a_4) \vee \overline{y}a_2a_3a_4 & S_q^{C_1} = 17 \\ C_2 = y\overline{a_2}\overline{a_3}\overline{a_4} \vee \overline{y}\overline{a_2}a_3a_4 \vee ya_2a_3 \vee a_2\overline{a_3}a_4 \vee \overline{y}\overline{a_1}a_2\overline{a_4} & S_q^{C_2} = 23 \\ C_3 = y\overline{a_3}\overline{a_4}(a_1 \vee a_2) \vee \overline{y}a_3\overline{a_4} \vee \overline{y}\overline{a_3}a_4 \vee ya_3a_4 & S_q^{C_3} = 19 \\ C_4 = \overline{a_4}(a_3 \vee \overline{y}\overline{a_2} \vee ya_1 \vee \overline{a_1}a_2) & S_q^{C_4} = 12 \\ V = Z \vee \overline{y}a_1a_2 & S_q^V = 5 \end{cases}$$

Введем новые вспомогательные переменные $Z_1 - Z_6$ и преобразуем функции системы.

$$\begin{cases} Z_1 = \overline{a_3} \overline{a_4} & S_q^{Z_1} = 2 \\ Z_2 = a_3 a_4 & S_q^{Z_2} = 2 \\ Z_3 = y a_2 & S_q^{Z_3} = 2 \\ Z_4 = \overline{y} a_2 & S_q^{Z_4} = 2 \\ Z_5 = \overline{y} \overline{a_2} & S_q^{Z_5} = 2 \\ Z_6 = y \overline{a_1} \overline{a_2} Z_1 & S_q^{Z_6} = 4 \\ C_1 = Z_6 \vee a_1 (Z_5 \vee Z_3 \vee \overline{Z_1}) \vee Z_2 Z_4 & S_q^{C_1} = 11 \\ C_2 = y \overline{a_2} Z_1 \vee Z_2 Z_5 \vee a_3 Z_3 \vee a_2 \overline{a_3} a_4 \vee \overline{a_1} \overline{a_4} Z_4 & S_q^{C_2} = 18 \\ C_3 = y Z_1 (a_1 \vee a_2) \vee \overline{y} (\overline{Z_1} \vee \overline{Z_2}) \vee y Z_2 & S_q^{C_3} = 15 \\ C_4 = \overline{a_4} (a_3 \vee Z_5 \vee y a_1 \vee \overline{a_1} a_2) & S_q^{C_4} = 10 \\ V = Z_6 \vee a_1 Z_4 & S_q^V = 4 \end{cases}$$

Синтез многовыходной комбинационной схемы в булевом базисе

Анализ схем

Анализ произведен на наборах:

$$f([y = 0, a_1 = 0, a_2 = 1, a_3 = 0, a_4 = 0]) = [C_1 = 0, C_2 = 1, C_3 = 0, C_4 = 1, V = 0]$$

$$f([y=1,a_1=0,a_2=0,a_3=0,a_4=0]) = [C_1=1,C_2=1,C_3=0,C_4=0,V=1]$$