중간 프로젝트

방 수 식 교수

(bang@tukorea.ac.kr)

한국공학대학교 전자공학부

2024년도 1학기 머신러닝실습 & 인공지능설계실습1

프로젝트 개요

- 본 프로젝트는 Activation Function이 Sigmoid인 Two-Layer Neural Network을 활용하여, 심근경색 데이터 Set 예측을 목표로 함.
 - 데이터 전처리 방법에 대한 이해 (데이터 Set 로부터 특징 추출하는 방법)
 - Activation Function을 활용한 인공신경망에 대한 이해
 - 머신의 Weight를 업데이트 하는 방식에 대한 이해

본 프로젝트에서의 심근경색 데이터 set

- 심근경색 데이터는 심장 건강 상태에 대한 대형 데이터
- 특징 수를 80개에서 15개로 축소
- Heart disease (심근경색 여부, y값) : 'yes', 'no' 로 분류, 마지막 열에 표기
- Training 데이터 : 3000개 ("yes" : 500, "no" : 2500")

	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р
1	gender	BPMeds	ВМІ	blood suga levels	r emic backgru	rological dis	meat intake	Heart rate	Weight	Cholesterol	Diabetes status	High blood pressure	Age	Smoking	height	heart disease
2	female	0	21.61	93	niddle schoo	no	3	75	61	199	0	0	30	1	116	no
3	female	0	21.18	76	high school	no	0	70	64	331	0	0	60	0	128	no
4	male	0	26.17	71	mentary sch	no	1	90	61	355	0	0	40	1	113	no
5	female	0	17.92	73	mentary sch	no	0.2	75	49	194	0	0	40	1	100.5	no
6	female	0	24.16	NaN	high school	no	0	75	66	197	0	0	50	0	126	no
7	female	0	31.57	112	mentary scho	no	0.6	72	64	NaN	0	0	40	1	130	no
8	male	0	24.36	71	NaN	no	0.8	60	53	196	0	0	40	1	107	no
9	female	NaN	24.83	78	high school	no	0	80	64	391	0	1	60	0	126	no
10	female	0	33.19	76	mentary scho	no	0	75	60	238	0	0	40	0	118	no
11	female	0	35.99	88	mentary sch	no	3	82	80.5	174	0	1	40	1	158.5	no
12	female	0	24.53	77	high school	no	0	65	57	201	0	0	70	0	110	no
13	female	0	17.48	57	:ollege schoo	no	0	75	53	205	0	0	40	0	109	no
14	female	0	20.51	66	:ollege schoo	no	0	96	54.5	260	0	0	40	0	100	no
15	female	0	18.8	NaN	middle schoo	no	2	79	48	234	0	0	50	1	98	yes
16	male	0	23.03	93	high school	no	0	77	70	152	0	1	50	0	120	no
17	female	0	32.1	68	high school	no	0	72	90	306	0	1	50	0	195	no
18	female	0	34.52	72	mentary scho	no	0	80	62	212	0	0	50	0	132	no
19	female	0	24.59	NaN	NaN	no	0	55	58	265	0	0	60	0	123	no
20	male	0	28.3	70	:ollege schoo	no	4	60	79	213	0	1	60	1	162	yes

모델의 구조 (제한 조건)

- Activation Function(활성화 함수): Sigmoid 함수 (그 외 함수 불허)
- Hidden Layer 수 : 1
- Hidden Layer의 Node 수 : 제한 없음
- Input node 수 : 제한 없음
- Output node 수 : 1개

특징 추출 (Feature Extraction)

Regression

- 경계값 설정
 - Output layer 개수 : 1개
 - ŷ < 0.5 → 'no' 로 예측
 - 0.5 ≤ ŷ → 'yes'로 예측

Training data에 대한 최종 Confusion Matrix (보고서에 삽입)

	예측값			
	0 (no)	1 (yes)		
<u>∤</u> ≅ (uo)				
철 (no) 물 (yes)				
-				

프로젝트 수행 요령 (1)

- 데이터 전처리 & 특징 추출
 - 데이터에서 주어진 특징 15개와 직접 만든 특징을 활용해 차원축소된 vector를 출력하는 알고리즘(사용자 지정함수)구현
 ex) 직접 만든 특징 : 혈당수치 x 심박수
- 수업시간에 구현한 Raw level code 활용 (주간 실습에서 허용한 라이브러리* 외 사용금지)
 - * Math / Numpy / Matplotlib / Data Load 및 save를 위한 Pandas(제한적 허용)
- Weight 초기값, Learning rate, Hidden Node 수 조정을 통하여 신경망 모델 최적화

프로젝트 수행 요령 (2)

• 데이터 전처리 & 특징 추출

```
def select_features(directory):
   ''' 데이터 불러호기 '''
   path = directory + "heart disease.csv"
   df = pd.read csv(path)
   dataset = np.array(df)
   np.random.shuffle(dataset)
   ''' 데이터 전처리 '''
   코드 작성
   코드 작성
   ''' 특징 추출 '''
   y data = dataset[:,-1] # y값
   ######## 특징 1 #######
   # 주석으로 특징 설명
   특징 추출 코드 작성
   특징 추출 코드 작성
   feature 1 = ~~~~
   ####### 특징 2 #######
   # 주석으로 특징 설명
   특징 추출 코드 작성
   특징 추출 코드 작성
   feature 2 = ~~~~
   # 특징 합치기
   selectd_features = np.column_stack((feature_1, feature_2, ..., feature_))
   # 특징 데이터 마지막 열에 v값 추가
   features = np.column stack((selected features, y data))
   return features
```


Input data size: [3000,16]

Return 값인 output data size : [3000,M+1]

프로젝트 제출물

- 최종 제출 파일: 학번.zip (예시: 2020146999.zip)
 - 아래 5개의 파일을 하나의 파일로 압축하여 제출(제출요령을 지키지 않아 발생하는 오류는 본인 책임)

연번	파일명	파일 형식
(1)	w_hidden.csv	csv 파일
(2)	w_output.csv	csv 파일
(3)	학번_feature.py	py 파일
(4)	학번_code.pdf	pdf 파일
(5)	학번_report.pdf	pdf 파일

❖ (5) 보고서의 경우, 분반 별 공지 확인

제출물 (1), (2)

• Weight Matrix (csv 파일로 제출)

- * L은 Hidden Layer Node 수
- ① Weight Matrix for Hidden Layer 입력: L by M+1 (파일명: w_hidden.csv)
- ② Weight Matrix for Output Layer 입력: 1 by L+1 (파일명: w_output.csv)

```
w_hidden = pd.read_csv('디렉토리/w_hidden.csv', header=None) #L by M+1 weight matrix 불러오기
w_output = pd.read_csv('디렉토리/w_output.csv', header=None) #1 by L+1 weight matrix 불러오기
```

- ※ 위의 코드로 본인이 제출하는 Weight Matrix가 잘 read 되는지 반드시 확인
- ※ 디렉토리는 Test하는 PC의 디렉토리로 입력할 예정

제출물 (3)

- 전처리 및 특징 추출 알고리즘이 포함된 1개의 python code 파일
 - ❖ 전처리 및 특징 추출 알고리즘 부분만 발췌

❖ 반드시 파일명 및 함수명에 대한 양식을 지킬 것

(파일명: 학번_feature.py)

```
import pandas as pd
import numpy as np
def select features(directory):
   *** 데이터 불러오기 ***
   path = directory + "heart_disease.csv"
   df = pd.read csv(path)
   dataset = np.array(df)
   np.random.shuffle(dataset)
   *** 데이터 전처리 ***
   코드 작성
   코드 작성
   ''' 특징 추출 '''
   y data = dataset[:,-1] # y값
   ######## 특징 1 ########
   # 주석으로 특징 설명
   특징 추출 코드 작성
   특징 추출 코드 작성
   feature 1 = \sim \sim \sim
   ####### 특징 2 #######
   특징 추출 코드 작성
   특징 추출 코드 작성
   feature 2 = ~~~~
   # 특징 합치기
   selectd_features = np.column_stack((feature_1, feature_2, ..., feature_))
   # 특징 데이터 마지막 열에 y값 추가
   features = np.column_stack((selected_features, y_data))
   return features
```

제출물 (4), (5)

• 본인이 프로젝트 수행에 사용한 전체 python code(주석 포함)

(파일명: 학번_code.pdf)

- ❖ hwp → pdf 파일로 옮겨서 제출
- ❖ E-class 내 표절 검사 시스템을 활용하여 code 표절률 30% 이상일 시, 0점 처리
- 보고서 (파일명: 학번_report.pdf)
 - ❖ ppt → pdf 파일로 옮겨서 제출

평가 기준 (100점 만점)

- ◆ (10점) 알고리즘 code 구현 여부
 - ▶ 가이드라인을 지키지 않아 오류 발생 시, 0점 처리
- ◆ (60점) 정확도 평가
 - ➤ A: Input Node수(사용한 특징 수), B: Hidden Node 수, C: 최종 Test set 정확도 [%]
 - ▶ 정확도 평가점수 = 0.8*C (2*A + B) => 60점 초과시, 60점으로 부여
 - ▶ 가이드라인을 지키지 않아 오류 발생 시, 정확도 30%로 가정 => 15점 처리
- ◆ (25점) 발표자료(보고서) 평가
 - ▶ (해결능력) 전처리,특징 추출 및 모델이 적절하게 설계되었는가? A(10), B(8), C(6)
 - ▶ (구성) 분석 및 결과 그림이 적절하게 표현되었는가? A(10), B(8), C(6)
 - ▶ (분량) 표지 포함 10 page = 5점 (초과/미만 페이지 당 –1점)
- ◆ (+@) 발표 평가
 - 수업시간에 발표(약 10분 분량)를 원하는 학생에 대해
 - ▶ 발표 수준에 따라 5~20점 부여