1. Define a collection C of subsets of \mathbb{R} by

$$C := \{ A \subseteq \mathbb{R} : either A is countable or A^c is countable \}$$

show that $\sigma(C) \neq \mathcal{B}(\mathbb{R})$, i.e., the Borel field σ -field is Not generated by subsets of \mathbb{R} that are countable.

answer:

First let's show that C is a σ -field;

- \mathbb{R} belongs to C because $\mathbb{R}^c = \emptyset$
- A belong to C, meaning A is countable or A^c is countable. If A^c is countable then A and A^c are both in C. if A is countable, then we know that $A = (A^c)^c$ is countable, hence A^c is in C. \Longrightarrow if $A \in C$ then $A^c \in C$.
- let $A_i \in C$, if all A_i are countable then $\bigcup_{i=1}^{\infty} A_i \in C$. If there exists an A_{no} such that A_{no} is not countable, then A_{no}^c is countable. $(\bigcup_{i=1}^{\infty} A_i)^c = \bigcap_{i=1}^{\infty} A_i^c \subset A_{no}^c$, hence countable. $\Longrightarrow \bigcup_{i=1}^{\infty} A_i \in C$.

we just showed $\sigma(C) = C$, lets take the interval (0,1), $(0,1) \notin C$ because it is not countable and neither its complement, but (0,1) is in $\mathcal{B}(\mathbb{R})$. Hence, $\sigma(C) \neq \mathcal{B}(\mathbb{R})$

2. Let's consider the set $E_n = \{\omega \in \Omega : \mathbb{P}(\{\omega\}) > 0\}$

answer:

Every set has less than n elements, hence finite. Or $\bigcup_{i=1}^{\infty} E_n$ is the set off elements with positive probability. $(\bigcup_{i=1}^{\infty} E_n$ is a finite set because it is the union of finite, countable sets. $\Longrightarrow \mathbb{P}$ can only assign positive integer to at most countable singletons.

- 3. Apply a similar method as the one explained in class to solve the problem: if a fair coin is flipped infinitely many times, what is the probability that successive three heads never occur?
 - (a) For each $n \in N$. Define A_n to be the event that successive 3 heads never occur in the first n flips, and a_n to be the number of sample points in An, i.e., a_n is the number of ways of flipping a coin n times without having successive 3 heads in the outcomes. First write down a_1 , a_2 and a_3 . Then argue that

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$

answer:

 $a_1 = 2$, either H or T. $a_2 = 4$, HH, HT, TH or TT. $a_3 = 7$, all the possible outcomes except HHH, that's 8 - 1 = 7.

First let's take a look at a_n , If the first toss is Tails, then we don't want 3 successive Heads in the remaining n-1 tosses, but if the first Toss is Heads, then we take a look at the second toss, now if the 2nd toss is Tails, then we dont want any 3 successive Heads in the remaining n-2 tosses, but if it is Heads, then the 3rd toss must be tails and then no successive 3 Heads in the remaining n-3 tosses. $\implies a_n = a_{n-1} + a_{n-2} + a_{n-3}$

(b) Show that for every $n \ge 4$, $a_n < (1.9)^n$, and argue that the probability of never having successive 3 heads when flipping a fair coin infinitely many times is zero.

answer:

For the first part, proof by induction; $Q(n) = a_n < (1.9)^n$.

Base case: For n = 4, $a_4 = a_3 + a_2 + a_1 = 7 + 4 + 2 = 13$ or $1.9^4 = 13.03 \implies a_4 < (1.9)^4$.

 $a_5 = 24 < 24.76 \approx (1.9)^5$

 $a_6 = 44 < 47.04 \approx (1.9)^6$

Let's assume that indeed Q(n) holds. Let's prove that for Q(n+1).

Induction step: $a_{n+1} = a_n + a_{n-1} + a_{n-2} < (1.9)^n + (1.9)^{n-1} + (1.9)^{n-2}$ $\rightarrow a_n + a_{n-1} + a_{n-2} < (1.9)^{n+1} \left(\frac{1}{1.9} + \frac{1}{1.9^2} + \frac{1}{1.9^3}\right) \approx 0.95 \times (1.9)^{n+1} < (1.9)^{n+1}$ Hence $a_{n+1} < (1.9)^{n+1}$ $\implies a_n < (1.9)^n$

We know that $\mathbb{P}(A_n) = \frac{a_n}{2^n}$, then $\mathbb{P}(A_n) < \frac{(1.9)^n}{2^n} = \left(\frac{1.9}{2}\right)^n$. When $n \to 0$, $P(A_n)$ goes to Zero as well, because $\frac{1.9}{2} < 1$

 \implies the probability of never having successive 3 heads when flipping a fair coin infinitely many times is zero.

- 4. Assume that there are n students in a class. Also assume that one year has 365 days, $n \leq 365$
 - (a) What is the probability that AT LEAST two students have the same birthday, First determine the exact formula (in terms of n), and then use a calculator/computer to compute the (approximated) numerical value of that probability for n=5, n=23 and n=65.

answer:

Let the event A_n : At least two people have the same birthday.

 $\overline{A_n}$: n people having disticut birthday.

$$\mathbb{P}(A_n) = 1 - \mathbb{P}(\overline{A})$$

$$\mathbb{P}(\overline{A_n}) = \frac{356}{356} \times \frac{364}{356} \times \frac{363}{356} \times \dots \times \frac{365 - n + 1}{365} = \frac{365!}{(365 - n)! \times 365^n}$$

$$\mathbb{P}(A_5) \approx 0.0271$$

$$\mathbb{P}(A_23) \approx 0.507$$

$$\mathbb{P}(A_65) \approx 0.998$$

(b) What is the probability that at least three students have the same birthday? Leave your answer in the form of an exact formula (in terms of n).

answer:

We can our partition into: Distinct birthdays, 1 pair share a birthday, 2 pairs share a birthday, ... $\frac{n}{2}$ or $(\frac{n-1}{2}; n \ odd)$ pairs share a birthday. A: at least 3 people sharing a birthday. B: 2 people share birthday from 1 to n/2 pairs. C: Distinct birthdays The probability of k pairs sharing a birthday is:

$$P(B) = \frac{C(n,2)C(n-2,2)...C(n-2k+2,2)P(365-k,n-2k)}{365^n}.$$
 Hence $\mathbb{P}(A) = 1 - \mathbb{P}(B) - \mathbb{P}(C)$
$$= 1 - \frac{P(365,n)}{365^n} - \sum_{n=1}^{\lfloor n/2 \rfloor} \frac{C(n,2)C(n-2,2)...C(n-2k+2,2)P(365-k,n-2k)}{365^n}$$

- 5. Let b,r and c be three positive integers. An urn contains b blue balls and r red balls. One ball is drawn at random from the urn, its color noted, and the ball itself plus c extra balls of the same color are put back into the urn; the process is then repeated.
 - (a) Determine the probability that the result of the first three draws are blue, blue, red, i.e., the first two balls are blue and the third is red.

answer:

Let E_1 : first ball is blue.

Let E_2 : second ball is blue.

Let E_3 : third ball is red.

$$\mathbb{P}(E_1 \cap E_2 \cap E_3) = \mathbb{P}(E_1) \times \mathbb{P}(E_2|E_1) \times \mathbb{P}(E_3|E_2 \cap E_3)$$

$$\mathbb{P}(E_1) = \frac{b}{r+b}$$

$$\mathbb{P}(E_2|E_1) = \frac{b+c}{r+b+c}$$

$$\mathbb{P}(E_3|E_1 \cap E_2) = \frac{r}{r+b+2c}$$

$$\mathbb{P}(E_1 \cap E_2 \cap E_3) = \mathbb{P}(E_1) \times \mathbb{P}(E_2|E_1) \times \mathbb{P}(E_3|E_2 \cap E_3) = \frac{b}{r+b} \times \frac{b+c}{r+b+c} \times \frac{r}{r+b+2c}$$

(b) Show by induction that the probability of the nth ball drawn being red is r/r+b. answer:

For
$$n = 1$$
 (First Draw), $\mathbb{P}(R_1) = \frac{r}{r+b}$

Let's assume this holds for (n-1), $\mathbb{P}(R_{n-1}) = \frac{r}{r+b}$. Let's prove it for $P(R_n)$

$$\mathbb{P}(R_n) = \mathbb{P}(R_n | B_{n-1}) \mathbb{P}(B_{n-1}) + \mathbb{P}(R_n | R_{n-1}) \mathbb{P}(R_{n-1})$$

(Note,
$$\mathbb{P}(B_{n-1}) = 1 - \mathbb{P}(R_{n-1}) = \frac{r+b-r}{r+b} = \frac{b}{r+b}$$
)

Hence,
$$\mathbb{P}(R_n) = (\frac{r}{r+b+c})(\frac{b}{r+b}) + (\frac{r+c}{r+b+c})(\frac{r}{r+b}),$$

Then
$$\mathbb{P}(R_n) = \frac{r}{r+b} \times \frac{b+(r+c)}{r+b+c} = \frac{r}{r+b}$$

6. There are n urns marked 1,2,...,n, and each of n urns contains 4 white and 6 black balls. There is another urn, marked (n+1), containing 5 white and 5 black balls. An urn is chosen at random from the (n+1) urns, and two balls are drawn at random from that urn, both being black. The probability that 5 white and 3 black balls are left in the chosen urn is 1/7. Determine the value of n.

answer:

let A: The event 2 black balls chosen randomly from a randomly chosen urn. and B_i : The jth urn is chosen.

We know that $\mathbb{P}(B_{n+1}|A) = 1/7$

We're gonna use Bayer's rule to solve for n. We have 5 white and 3 blacks ball remaining, then the chosen urn is the (n+1)th.

$$\mathbb{P}(B_{n+1}|A) = \frac{\mathbb{P}(A|B_{n+1})\mathbb{P}(B_{n+1})}{\sum_{k=1}^{n+1} \mathbb{P}(A|B_k)\mathbb{P}(B_k)}$$

for j = 1,..,n urns;
$$\mathbb{P}(A|B_j) = \frac{C(6,2)}{C(10,2)} = \frac{1}{3}$$

$$\mathbb{P}(A|B_{n+1}) = \frac{C(5,2)}{C(10,2)} = \frac{2}{9}$$

So,
$$\mathbb{P}(B_{n+1}|A) = \frac{\frac{2}{9} \times \frac{1}{n+1}}{\frac{n}{3(n+1)} + \frac{2}{9(n+1)}} = \frac{\frac{2}{9(n+1)}}{\frac{3n+2}{9(n+1)}} = \frac{2}{3n+2}.$$

So we have
$$\frac{2}{3n+2} = \frac{1}{7} \to 3n+2 = 14 \to n = 4$$

7. Let (Ω, \S, \mathbb{P}) be a probability space where all the singletons are events. Suppose $\{A_n : n \leq N\}$. S is an countable sequence of independent events, i.e., for any $i_1 < i_2 < ... < i_N$ where $i_k \in N$ for k = 1,...,N, events A_{i1}, A_{i2}, A_{iN} are independent. Show that if P(An) = 12 for all $n \leq N$, then all the singletons are null sets.

answer:

let $\omega \in \Omega$. Any $i \in \mathbb{N}$, ω_i is in A_i or A_i^c . So, lets consider the following Events E_i which are either, A_i or $A_i^c \to \mathbb{P}(E_i) = 1/2$. We know that A_i are independent for all i. Then the same goes for E_i for all i in \mathbb{N} . Then $\mathbb{P}(\omega) \leq \prod_{i=1}^N \mathbb{P}(E_i) = \frac{1}{2^N}$. Or \mathbb{N} is arbitrarily large, Then $\mathbb{P}(\omega) = 0$

8. Let(Ω, \S, \mathbb{P}) be a probability space and $\{An : n \in N\}$ S a countable sequence of events. Define,

$$A^* = \bigcap_{1 \le k} \bigcup_{n \ge k} A_n$$

(a) Show that if $\sum_{n\geq 1} \mathbb{P}(A_n) < \infty$ Then $\mathbb{P}(A^*) = 0$ answer:

Let $B_k = \bigcup_{k \le n} A_n$ as $k \to \infty$, $B_k \searrow A^*$, then by continuity from above we get,

$$\mathbb{P}(A^*) = \lim_{k \to \infty} \mathbb{P}(B_k) \le \lim_{k \to \infty} \sum_{n > k} \mathbb{P}(A_n) = 0$$

because $\sum_{n=1} \mathbb{P}(A_n)$ is finite, A_n must converges to Zero. Then $\mathbb{P}(A*) = 0$

(b) Further assume that $\{A_n : n \in \mathbb{N}\}$ is a sequence of independent events, Show that if $\sum_{n\geq 1} \mathbb{P}(A_n) = \infty$ Then $\mathbb{P}(A^*) = 1$ answer:

We use De mogre's law:

$$(A^*)^c = \bigcap_{1 \le k} \bigcup_{n \ge k} A_n^c$$

Let $C_k = \bigcap_{k \le n} A_n^c$. As $k \to \infty$, $C_k \nearrow A_n^c$, So we get:

$$\mathbb{P}((A^*)^c) = \lim_{k \to \infty} \mathbb{P}(C_k) = \lim_{k \to \infty} \prod_{k < n} (A^*)^c = \lim_{k \to \infty} \prod_{k < n} (1 - (A^*)) \leq \lim_{k \to \infty} e^{\sum_{n \geq k} \mathbb{P}(A_n)} = e^{-\infty} = 0$$

Then $\mathbb{P}(A^*) = 1 - \mathbb{P}((A^*)^c) = 1 - 0 = 1.$