0.1 理想

定义 0.1 (由子集生成的理想)

设 $(R, +, \cdot)$ 是一个环, 而 $A \subset R$. 则 (A), 称为**由** A 生成的理想, 定义为所有 R 中包含 A 的理想的交集, 即 $(A) = \bigcap \{I \subset R : I \supset A, I \lhd R\}.$

笔记 因为 $R \triangleleft R$ 且 $A \subset R$, 所以 $R \subset (A)$. 故 $(A) \neq \emptyset$.

命题 0.1 (生成的理想还是理想)

设 $(R,+,\cdot)$ 是一个环, 而 $A \subset R$, 则 $(A) \triangleleft R$.

证明 首先,取交集的集族非空,因为整个环 R 是包含了 A 的一个理想(对加法构成子群,且"吸收"了乘法).由于集族中每一个理想都是加法子群.因此根据命题??可知,它们的交还是加法子群.我们只须检验乘法的"吸收"性,即 $R(A) \subset (A)$,及 $(A)R \subset (A)$.根据对称性,我们证明第一个包含关系.假设 $r \in R, a \in (A)$,则对于任意集族中的理想 I,我们都有 $a \in I$.故 $ra \in I$.这对于任意这样的理想 I 都是成立的,因此 $ra \in (A)$.这就证明了 (A)是 R 的子环.

定义 0.2

设 $(R,+,\cdot)$ 是一个环,而 $a \in R$,则我们定义

$$(a) = (\{a\}).$$

称为**由** a **生成的主理想**. 一般地, 若一个理想能被一个元素生成, 我们就称其为**主理想**. 对于 $a_1, \dots, a_n \in R$, 我们定义

$$(a_1, \cdots, a_n) = (\{a_1, \cdots, a_n\}).$$

一般地, 若一个理想能被有限个元素生成, 我们就称其为有限生成的理想.

命题 0.2

设 $(R,+,\cdot)$ 是一个交换环,而 $a \in R$,则

$$(a) = Ra = \{ra : r \in R\}.$$

一般地, 若 $a_1, \dots, a_n \in R$, 则

$$(a_1, \dots, a_n) = Ra_1 + \dots + Ra_n = \{r_1a_1 + \dots + r_na_n : r_1, \dots, r_n \in R\}.$$

证明 显然有限生成的理想是主理想的特例,故我们只须证明第二个等式.

要证明 (A) = I, 我们只须证明两点. -I 是包含 A 的理想; L, 每一个包含 A 的理想都会包含 A.

首先, 要证明 $Ra_1 + \cdots + Ra_n$ 是个理想. 对加法而言, $0 = 0a_1 + \cdots + 0a_n \in Ra_1 + \cdots + Ra_n$, 而且对 $r_1a_1 + \cdots + r_na_n$, $s_1a_1 + \cdots + s_na_n(r_i, s_i \in R)$, 我们有

$$(r_1a_1 + \dots + r_na_n) - (s_1a_1 + \dots + s_na_n) = (r_1 - s_1)a_1 + \dots + (r_n - s_n)a_n \in Ra_1 + \dots + Ra_n.$$

因此 $Ra_1 + \cdots + Ra_n$ 对加法构成子群.

接下来, 因为 R 是交换环, 我们只须证明 $R(Ra_1 + \cdots + Ra_n) \subset (Ra_1 + \cdots + Ra_n)$. 而这是因为

$$R(Ra_1 + \cdots + Ra_n) = RRa_1 + \cdots + RRa_n = Ra_1 + \cdots + Ra_n.$$

这样, 我们就证明了 $Ra_1 + \cdots + Ra_n$ 是个理想, 而且显然包含 $\{a_1, \cdots, a_n\}$.

另一方面, 若 I 是一个包含了 a_1, \dots, a_n 的理想, 那么根据加法的封闭性及乘法的"吸收"性,

$$I \supset Ra_1 + \cdots + Ra_n$$
.

综上所述,这就证明了这个命题.