Whittle index based Q-Learning for restless bandits with average reward by Avrachenkov and Borkar

Navdeep Kumar

Indian Institute of Science

September 21, 2020

Multi Arm Bandit (rested and restless)

- N Controlled Markov chains $\{X_n^i, n \ge 0\}$ on state space $S = \{1,2,..,d\}$, where $1 \le i \le N$, $X_n^i \in S$
- Binary Control: $U = \{0, 1\}$
- Reward dependant on control, arm, and state: $R_u^i(X)$
- Transition probabilities:

$$\begin{aligned}
 p_u^i(j,k) &= p(X_{n+1}^i = k | X_n^i = j, U_n^i = u) \\
 i,j &\in S, u \in U, F_n = \sigma(X_m^a, U_m^a, 1 \le a \le N, m \le n), p(X_{n+1}^i = k | F_n) &= p_u^i(X_n^i, k)
 \end{aligned}$$

- Objective to maximize: $\liminf_{n\to\infty} \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{N} \sum_{m=0}^{n-1} R_{U_m^i}^i(X_m^i)\right]$
- Constraint: On number of active arm. To be discussed later.

Rested MAB (Special Case)

- Reward is zero for control u=0: $R_0^i(X) = 0$
- States freezes for control u=0: $p_0^i(j,k) = \delta(j,k)$
- Constraint: m active arm each time: $\sum_{i=1}^{N-1} U_n^i = m \quad \forall n$
- Optimal solution: Gittins Index Policy
- Gittins value at state s, for arm i: $g^i(s) = \sup_{T>0} \quad \frac{1}{T} \mathbf{E} \left[\sum_{t=0}^{T-1} R^i_{U^i_t}(X^i_t) \quad | X^i_0 = s \right]$
- Gittins Index Policy: Arrange arms in decreasing order according to Gittins value in their current states, pick top m arms for u=1, rest u=0
- Proof : Intuitive greedy approach.

reference: R. Weber, On the Gittins Index for Multiarmed Bandits, 1992.

Restless MAB (General Case)

- Reward may not be zero for control u=0: $R_0^i(X) \neq 0$
- States evolves for both control u=0,1: $p_0^i(j,k) \neq \delta(j,k)$
- Constraint: m active arm each time: $\sum_{i=1}^{N-1} U_n^i = m \quad \forall n$
- Optimal solution: Provably hard: PSPACE Complex class
 The Complexity of Optimal queuing network control, Christos H. Papadimitriou and John N. Tsitsiklis
- Heuristic for relaxed version : Whittle Index Policy

Restless MAB (Relaxed Case)

Objective: $\lim_{n\to\infty} \frac{1}{n} \mathbf{E} \left[\sum_{i=1}^{N} \sum_{m=0}^{n-1} R_{U_m^i}^i(X_m^i) \right]$

Original Problem

- Constraints: $\sum_{i=0}^{N-1} U_m^i = M \quad \forall n$
- Lagrange: $L(U, \lambda) = \lim_{n \to \infty} \mathbf{E} \left[\sum_{i=1}^{N} \sum_{m=0}^{n-1} \left(\frac{1}{n} R_{U_m^i}^i(X_m^i) \lambda_n (U_m^i M/N) \right) \right]$
- Remark: Intercoupled constraints and lagrange.

Relaxed Version

- Constraints: $\lim_{n\to\infty}\frac{1}{n}\mathbf{E}\sum_{i=0}^{N-1}U_m^i=M$ $\forall i$
- Lagrange: $L(U, \lambda) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{N} \sum_{m=0}^{n-1} (R_{U_m^i}^i(X_m^i) \lambda_i (U_m^i M/N)) \right]$
- Lagrange splits for each arm i: $L(U, \lambda) = \sum_{i=1}^{N} lim_{n\to\infty} \frac{1}{n} \mathbb{E}\left[\sum_{m=0}^{n-1} (R_{U_m^i}^i(X_m^i) \lambda_i(U_m^i M/N))\right]$

Dynamic Programming Equation for Relaxed Restless MAB's Lagrange

- Objective: maximize $L(U, \lambda) = \sum_{i=1}^{N} \sup_{U^i} \lim_{n \to \infty} \frac{1}{n} \mathbf{E} \left[\sum_{m=0}^{n-1} (R^i_{U^i_m}(X^i_m) \lambda_i (U^i_m M/N)) \right]$
- To match whittle setup, ignore $\lambda * constant$ term: maximize $L(U, \lambda) = \sum_{i=1}^{N} sup_{U^i} \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[\sum_{m=0}^{n-1} (R_{U^i}^i(X_m^i) + \lambda_i(1 U_m^i))]$
- For a each arm i, λ_i is fixed, and its in standard RL objective form (Q Learning, reward $R'(s, u) = R_u(s) + \lambda(1 u)$
- Potential equation (Bellman Equation): $V^i(k) = \max_{u \in \{0,1\}} (R^i_u(k) + \sum_i p^i(j|k,u) V^i(j) \beta^i + (1-u)\lambda_i)$
- Q value equation : $Q^{i}(k, u) = R^{i}_{u}(k) + \sum_{i} p^{i}(j|k, u) \max_{v \in \{0,1\}} Q^{i}(k, v) \beta^{i} + (1 u)\lambda_{i})$

Whittle Index

Let
$$R, u, Q, p, \beta^i$$
 have usual meaning. And λ be some constant. $Q_{\lambda}(k, u) = R_u(k) + \sum_j p(j|k, u) \max_{v \in \{0,1\}} Q_{\lambda}(k, v) - \beta^i + (1-u)\lambda$

Let $\lambda^*(k)$ denote whittle index for state k for equation Q_0 . $\lambda^*(k) := \min\{\lambda \mid Q_{\lambda}(k,0) = Q_{\lambda}(k,1)\}$

Whittle Index base Q Learning for restless bandits with average reward by Avrachenkov and Borkar

- Q update: $Q_{n+1}^i(k, u) = Q_n^i(k, u) + \alpha(i, k, n)[R_u^i(k) + (1 u)\lambda_n^i f(Q^i) Q_n^i(k, u) + \max_{v \in \{0,1\}} Q_n^i(X_{n+1}, v)]$ f(Q) = np.mean(Q)
- Whittle update: $\lambda_{n+1}^i = \lambda_n^i + \gamma(i,n)[Q^i(k,1) Q^i(k,0)]$
- Control (Policy): Arrange arms in decreasing order according to λ^i (whittle value) in their current states, pick top m arms for u=1, rest u=0

Few Remarks about above algorithm by Avrachenkov and Borkar

- It solves original Restless MAB by getting motivation/intuition from Lagrange of relaxed Restless MAB
- It requires d = |S| set of Q parameters, one for each states. When state space is large, things can get difficult.
- Convergence to Whittle index: $\lambda_n^i \to \lambda^*(i)$

Proof: Whittle Index base Q Learning for restless bandits with average reward by Avrachenkov and Borkar

Experiment: Whittle Index

Exact Whittle index = [-0.5, 0.5, 1, -1]

Exact Whittle index = [-0.9, -0.73, -0.5, -0.26, -0.01]

Experiment: Reward

Remark About Above Experiment

- Both examples are taken from the paper by Avrachenkov and Borkar
- Code is available at https://github.com/navdeepkumar12/SA
- Paper's result and my result are in agreement (not in best).
- Learning rate parameters differs. I have put $\gamma = 0.01, \alpha(i, u, n) = 1/v(i, u, n) = 1/\text{no.of}$ times state, control i,u encountered before.
- Damped Oscilatory behaviour of Whittle indices.

Possible Improvements/Generalizations on existing work

- If its a resource allocation problem, why waste resources to get inferior reward. $\sum_{i}^{N-1} U_{m}^{i} \leq M$ instead of $\sum_{i}^{N-1} U_{m}^{i} = M$
- Generalization while keeping analysis similar.
 - Instead of only two controls $U = \{0, 1\}$, have two class of control $U = \{A, B\}, A = \{a_1, a_2, ..., a_r\}, B = \{b_1, b_2, ..., b_s\}.$
 - · Same objective to maximize.
 - Constraints changes: $\sum_{i=1}^{N-1} U_m^i = M$ to $\sum_{i=1}^{N-1} \mathbf{1}(U_m^i \in A) = M$
 - Transition probabilities: No freezing, each control $u \in U = \{A, B\}$ may have different transitions probabilities.
- More generalization:
 - Control $U = \{u_1, u_2, ..., u_r\}$, weight function: $f: U \to \mathbf{R}$
 - Constraints: $\sum_{i}^{N-1} f(U_m^i) = M$

Continued ...

■ Simplification of algorithm: Present algorithm requires d = |S| sets of Q parameters. May be we can do away with only one Q, derive control using $Q_n(k,0) - Q_n(k,1)$.

Things next in order to do

- I have not yet fully understood the proof of convergence of Q-learning algorithm presented by Avrachenkov and Borkar in their paper.
- Do more experiments, observe carefully to get more intuitions.
- Understand complexity of Restless MAB.

The Complexity of optimal queuing network control by Papaditmitriou and Tsitsiklis.

Work on feasibility of ideas on the page above.

Thank You