Karlsruher Institut für Technologie (KIT)

WS 2022/2023

Institut für Analysis

Prof. Dr. Wolfgang Reichel

M.Sc. Lukas Bengel

3. Übungsblatt zur Vorlesung Analysis I

Abgabe bis Freitag, 18.11.2022, 12 Uhr

T Aufgabe 7

Beweisen Sie mit vollständiger Induktion. Für alle $n \in \mathbb{N}$ gilt:

a)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

b)
$$\sum_{j=1}^{2n} (-1)^{j+1} \frac{1}{j} = \sum_{j=1}^{n} \frac{1}{n+j}$$

c)
$$\sum_{j=1}^{n} (-1)^j j^2 = (-1)^n \frac{n(n+1)}{2}$$

- d) $n^3 + 5n$ ist durch 6 teilbar.
- e) $3^{2^n} 1$ ist durch 2^{n+1} teilbar.

T Aufgabe 8

- a) Sei $M \subset \mathbb{N}$ und $m \in M$. Beweisen Sie: M ist genau dann unendlich, wenn M bijektiv auf $M \setminus \{m\}$ abgebildet werden kann.
- b) Sei $A \subset \mathbb{R}$ und $a \in A$. Beweisen Sie: A ist genau dann unendlich, wenn A bijektiv auf $A \setminus \{a\}$ abgebildet werden kann.

T Aufgabe 9

Sei X eine Menge und $\Phi: X \to \mathcal{P}(X)$ eine Abbildung, sei $A := \{x \in X : x \notin \Phi(x)\}$. Zeigen Sie $A \notin \Phi(X)$.

Hinweis: Aus T 9 folgt der Satz von Cantor: X und $\mathcal{P}(X)$ sind nicht gleichmächtig.

K Aufgabe 5 (6 Punkte)

Zeigen Sie mit vollständiger Induktion:

a) Für alle
$$n \in \mathbb{N}$$
 gilt $\sum_{k=1}^{n} k(k+1)(k+2) = \frac{1}{4}n(n+1)(n+2)(n+3)$.

- b) Für alle $n \in \mathbb{N}$ ist $6^n 5n + 4$ durch 5 teilbar.
- c) Sei $x \in \mathbb{R}$, $|x| \neq 1$. Dann gilt für alle $n \in \mathbb{N}$:

$$\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \dots + \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} - \frac{1}{1-x^{2^n}}.$$

d) Sei $n \in \mathbb{N}$ und sei $x_1, \ldots, x_n \ge 0$. Dann gilt

$$\prod_{i=1}^{n} (1 + x_i) \ge 1 + \sum_{i=1}^{n} x_i.$$

Bemerkung: Diese Ungleichung verallgemeinert die Bernoullische Ungleichung.

K Aufgabe 6 (6 Punkte)

- a) Zeigen Sie, dass die Menge aller nichtleeren offenen Intervalle mit rationalen Endpunkten abzählbar ist.
- b) Es seien $a, b \in \mathbb{R}$ mit a < b. Zeigen Sie:
 - (i) Für alle $X \in \{(a,b), (a,\infty), (-\infty,a)\}$ existiert eine bijektive Abbildung $\varphi: X \to \mathbb{R}$.
 - (ii) [a, b] lässt sich bijektiv auf $\mathbb R$ abbilden.