Otsu Method

Md. Khaliluzzaman

Dept. of Computer Science and Engineering, IIUC

Otsu thresholding

- → Converting a grayscale image to monochrome
- → Otsu's method, named after its inventor *Nobuyuki Otsu*, is one of many binarization algorithms

Assumption: the histogram is bimodal

- This method *involves iterating* through all the possible threshold values and calculating a measure of spread for the pixel levels each side of the threshold, i.e. *the pixels that either fall in foreground or background*
 - •The aim is to find the threshold value where the sum of foreground and background spreads is at its minimum

 | Grp 1 | Grp 2

Assumption: the histogram is bimodal

- → Simple 6x6 image shown below and the histogram for the image is shown next
- To simplify the explanation, only 6 grayscale levels are used

A 6-level grayscale image and its histogram

Cont. (For Background)

→ The calculations are bellow for finding the foreground & background variances (the measure of spread) for a single threshold

Weight
$$W_b = \frac{8+7+2}{36} = 0.4722$$

Mean $\mu_b = \frac{(0\times8) + (1\times7) + (2\times2)}{17} = 0.6471$
Variance $\sigma_b^2 = \frac{((0-0.6471)^2 \times 8) + ((1-0.6471)^2 \times 7) + ((2-0.6471)^2 \times 2)}{17}$
 $= \frac{(0.4187\times8) + (0.1246\times7) + (1.8304\times2)}{17}$
 $= 0.4637$

Cont. (For Foreground)

Weight
$$W_f = \frac{6+9+4}{36} = 0.5278$$

Mean $\mu_f = \frac{(3\times6)+(4\times9)+(5\times4)}{19} = 3.8947$
Variance $\sigma_f^2 = \frac{((3-3.8947)^2\times6)+((4-3.8947)^2\times9)+((5-3.8947)^2\times4)}{19}$
 $= \frac{(4.8033\times6)+(0.0997\times9)+(4.8864\times4)}{19}$
 $= 0.5152$

→ The next step is to calculate the 'Within-Class Variance' i.e. this is simply the sum of the two variances multiplied by their associated weights

Within Class Variance
$$\sigma_W^2 = W_b \, \sigma_b^2 + W_f \, \sigma_f^2 = 0.4722 * 0.4637 + 0.5278 * 0.5152$$

= 0.4909

the threshold equal to 3, as well as being used for the example, also has the lowest sum of weighted variances

Conclusion

Result of Otsu method

Between class variance

Within Class Variance
$$\sigma_W^2 = W_b \, \sigma_b^2 + W_f \, \sigma_f^2$$
 (as seen above)
Between Class Variance $\sigma_B^2 = \sigma^2 - \sigma_W^2$
 $= W_b (\mu_b - \mu)^2 + W_f (\mu_f - \mu)^2$ (where $\mu = W_b \, \mu_b + W_f \, \mu_f$)
 $= W_b \, W_f \, (\mu_b - \mu_f)^2$

Threshold	T=0	T=1	T=2	T=3	T=4	T=5
Within Class Variance	$\sigma^2_{W} = 3.1196$	$\sigma^2_{W} = 1.5268$	$\sigma^2_{W} = 0.5561$	σ ² _W = 0.4909	$\sigma^2_{W} = 0.9779$	$\sigma^2_{W} = 2.2491$
Between Class Variance	σ ² B = 0	$\sigma^2_B = 1.5928$	$\sigma^2_B = 2.5635$	$\sigma_B^2 = 2.6287$	$\sigma^2_B = 2.1417$	$\sigma^2_B = 0.8705$