Concentration and robustness of discrepancy-based ABC

Pierre Alquier

Séminaire Parisien de Statistique Institut Henri Poincaré 14 Novembre 2022

Co-authors and paper

S. Legramanti, D. Durante & P. Alquier (2022). Concentration and robustness of discrepancy-based ABC via Rademacher complexity. Preprint arXiv:2206.06991.

Sirio Legramanti (University of Bergamo)

Daniele Durante (Bocconi University, Milan)

Contents

- Introduction
 - Randomized estimators and Bayes rule
 - Approximate Bayesian Computation (ABC)
 - Integral Probability Metric (IPM)
- Discrepancy-based ABC
 - Discrepancy-based ABC
 - Discrepancy-based ABC approximates the posterior
 - Contraction of discrepancy-based ABC

Estimators, randomized estimators and Bayes rule

- $Y_{1:n} = Y_1, ..., Y_n$ i.i.d from μ^* ,
- model : $(\mu_{\theta}, \theta \in \Theta)$,
- estimator : $\hat{\theta} = \hat{\theta}(Y_{1:n})$,
- randomized estimator : $\hat{\rho}(\cdot) = \hat{\rho}(Y_{1:n})(\cdot)$ probability measure on Θ .

Examples of randomized estimators:

• posterior :
$$\hat{\rho}(\theta) = \pi(\theta|Y_{1:n}) \propto \underbrace{\mathcal{L}(\theta;Y_{1:n})\pi(\theta)}_{\text{likelihood prior}}$$

- fractional/tempered posterior : $\hat{\rho}(\theta) \propto [\mathcal{L}(\theta; Y_{1:n})]^{\alpha} \pi(\theta)$,
- Gibbs estimator : $\hat{\rho}(\theta) \propto \exp[-\eta \underbrace{R(\theta; Y_{1:n})}_{loss}] \pi(\theta)$.

Evaluating randomized estimators

Assume in this slide that $\mu^* = \mu_{\theta_0}$: "the truth is in the model". Statistical performance of an estimator:

- consistency : $d(\hat{\theta}, \theta_0) \xrightarrow[n \to \infty]{} 0$ (in proba., a.s., ...)?
- rate of convergence : $\mathbb{E}_{Y_{1:n}}[d(\hat{\theta}, \theta_0)] \leq r_n \xrightarrow[n \to \infty]{} \theta_0$?
- ...

For a randomized estimator:

contraction rate :

$$\mathbb{P}_{\theta \sim \hat{\rho}}[d(\theta, \theta_0) \geq r_n] \xrightarrow[n \to \infty]{} 0$$
 (in proba., a.s., ...)?

- ullet average risk $: \mathbb{E}_{Y_{1:n}} \Big[\mathbb{E}_{ heta \sim \hat{
 ho}}[d(heta, heta_0)] \Big] \leq r_n$?
- ..

Approximate Bayesian Inference

- Well-known conditions to prove contraction of the posterior,
- tools from ML for randomized estimators : PAC-Bayes bounds.

Given a "non-exact" algorithm targetting $\hat{\rho}$ instead of $\pi(\cdot|Y_{1:n})$: variational approximations, ABC, etc., we can

- quantify how well $\hat{\rho}$ approximates $\pi(\cdot|Y_{1:n})$?
- study $\hat{\rho}$ as a randomized estimator and study its contraction/convergence.

Contents

- Introduction
 - Randomized estimators and Bayes rule
 - Approximate Bayesian Computation (ABC)
 - Integral Probability Metric (IPM)
- Discrepancy-based ABC
 - Discrepancy-based ABC
 - Discrepancy-based ABC approximates the posterior
 - Contraction of discrepancy-based ABC

Reminder on ABC

Approximate Bayesian Computation (ABC)

INPUT : sample $Y_{1:n} = (Y_1, \dots, Y_n)$, model $(\mu_{\theta}, \theta \in \Theta)$, prior π , statistic S, metric δ and threshold ϵ .

- (i) sample $\theta \sim \pi$,
- (ii) sample $Z_{1:n} = (Z_1, \ldots, Z_n)$ i.i.d. from P_{θ} :
 - if $\delta(S(Y_{1:n}), S(Z_{1:n})) \leq \epsilon$ return θ ,
 - else goto (i).

OUTPUT: $\vartheta \sim \hat{\rho}$.

- discrete sample space, if S = identity and $\epsilon = 0$, ABC is actually exact : $\hat{\rho}(\cdot) = \pi(\cdot|Y_{1:n})$.
- general case : ABC not exact, we can ask two questions :
 - is $\hat{\rho}(\cdot)$ a good approximation of $\pi(\cdot|Y_{1:n})$?

Reminder on IPM

Integral Probability Metrics (IPM)

Let $\mathcal F$ be a set of real-valued, measurable functions and put

$$d_{\mathcal{F}}(\mu,\nu) = \sup_{f \in \mathcal{F}} \Big| \mathbb{E}_{X \sim \mu}[f(X)] - \mathbb{E}_{X \sim \nu}[f(X)] \Big|.$$

Müller, A. (1997). Integral probability metrics and their generating classes of functions. Applied Probability.

In general, only a semimetric. However, in many cases, it is actually a metric : $d_{\mathcal{F}}(\mu,\nu) = 0 \Rightarrow \mu = \nu$. Examples :

- total variation : $\mathcal{F} = \{1_A, A \text{ measurable}\},$
- Kolmogorov : $\mathcal{F} = \{1_{(-\infty,x]}, x \in \mathbb{R}\},\$
- Wasserstein : $\mathcal{F}=$ set of 1-Lipschitz functions,
- Dudley...

Example: Maximum Mean Discrepancy (MMD)

- RKHS $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ with kernel $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$.
- If $\|\phi(x)\|_{\mathcal{H}} = k(x,x) \leq 1$ then $\mathbb{E}_{X \sim \mu}[\phi(X)]$ is well-defined .
- The map $P\mapsto \mathbb{E}_{X\sim \mu}[\phi(X)]$ is one-to-one if k is characteristic.
- Gaussian kernel $k(x, y) = \exp(-\|x y\|^2/\gamma^2)$ satisfies these assumption.

$$\mathcal{F} = \{ f \in \mathcal{H} : ||f||_{\mathcal{H}} \le 1 \}.$$

$$d_{\mathcal{F}}(\mu, \nu) = \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim \mu}[f(X)] - \mathbb{E}_{X \sim \nu}[f(X)] \right|$$

$$= \left| \left| \mathbb{E}_{X \sim \mu}[\phi(X)] - \mathbb{E}_{X \sim \nu}[\phi(X)] \right| \right|_{\mathcal{H}}.$$

IPM and statistical estimation

We define the "empirical probability distribution"

$$\hat{\mu}_{Y_{1:n}} := \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}.$$

Minimum distance estimator

$$\hat{\theta} := \underset{\theta \in \Theta}{\operatorname{arg \, min}} d_{\mathcal{F}}(\mu_{\theta}, \hat{\mu}_{Y_{1:n}}).$$

Theorem

If $d_{\mathcal{F}}$ is the MMD for a bounded & characteristic kernel,

$$\mathbb{E}\left[d_{\mathcal{F}}(\mu_{\hat{\theta}},\mu^*)\right] \leq \inf_{\theta \in \Theta} d_{\mathcal{F}}(\mu_{\theta},\mu^*) + \frac{2}{\sqrt{n}}.$$

Robust estimation with MMD

$$\mathbb{E}\left[d_{\mathcal{F}}(\mu_{\hat{\theta}},\mu^*)\right] \leq \inf_{\theta \in \Theta} d_{\mathcal{F}}(\mu_{\theta},\mu^*) + \frac{2}{\sqrt{n}}.$$

ullet well-specified case, $\mu^*=\mu_{ heta_0}$,

$$\mathbb{E}\left[d_{\mathcal{F}}(\mu_{\hat{\theta}}, \mu_{\theta_0})\right] \leq 2/\sqrt{n}.$$

• Huber contamination model $\mu^* = (1 - \varepsilon)\mu_{\theta_0} + \varepsilon \nu$,

$$\begin{split} d_{\mathcal{F}}(\mu_{\theta_{\mathbf{0}}}, \mu^{*}) &= \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim \mu_{\theta_{\mathbf{0}}}} f(X) - (1 - \varepsilon) \mathbb{E}_{X \sim \mu_{\theta_{\mathbf{0}}}} f(X) - \varepsilon \mathbb{E}_{X \sim \nu} f(X) \right| \\ &= \varepsilon \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim \mu_{\theta_{\mathbf{0}}}} f(X) - \mathbb{E}_{X \sim \nu} f(X) \right| \leq 2\varepsilon \end{split}$$

$$\mathbb{E}\left[d_{\mathcal{F}}(\mu_{\hat{\theta}}, \mu_{\theta_0})\right] \leq 4\varepsilon + 2/\sqrt{n}.$$

MDE and robustness: toy experiment

Model : $\mathcal{N}(\theta, 1)$, X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the exp. 200 times. Kernel $k(x, y) = \exp(-|x - y|)$.

	$\hat{ heta}_{ extit{ extit{MLE}}}$	$\hat{ heta}_{ ext{MMD}_{\pmb{k}}}$	$\hat{ heta}_{ ext{KS}}$
mean abs. error	0.081	0.094	0.088

Now, $\varepsilon = 2\%$ of the observations drawn from a Cauchy.

mean abs. error	0.276	0.095	0.088
-----------------	-------	-------	-------

Now, $\varepsilon = 1\%$ are replaced by 1,000.

mean abs. error	10.008	0.088	0.082

References on minimum MMD estimation

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. UAI 2015.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative Models with Maximum Mean Discrepancy. Preprint arXiv.

Chérief-Abdellatif, B.-E. and Alquier, P. (2022). Finite Sample Properties of Parametric MMD Estimation: Robustness to Misspecification and Dependence. Bernoulli.

Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A. and Fermanian, J.-D. Estimation of copulas via Maximum Mean Discrepancy. JASA (to appear).

Alquier, P. and Gerber, M. (2020). Universal Robust Regression via Maximum Mean Discrepancy. Preprint arXiv.

Contents

- Introduction
 - Randomized estimators and Bayes rule
 - Approximate Bayesian Computation (ABC)
 - Integral Probability Metric (IPM)
- Discrepancy-based ABC
 - Discrepancy-based ABC
 - Discrepancy-based ABC approximates the posterior
 - Contraction of discrepancy-based ABC

Discrepancy-based ABC

Approximate Bayesian Computation (ABC)

INPUT : sample $Y_{1:n}$, model $(\mu_{\theta}, \theta \in \Theta)$, prior π , IPM $d_{\mathcal{F}}$ and threshold ϵ .

- (i) sample $\theta \sim \pi$,
- (ii) sample $Z_{1:n}$ i.i.d. from P_{θ} :
 - if $d_{\mathcal{F}}(\hat{\mu}_{Y_{1:n}}, \hat{\mu}_{Z_{1:n}}) \leq \epsilon$ return θ ,
 - else goto (i).

OUTPUT : $\vartheta \sim \hat{\rho}_{\epsilon}$.

Rermark : when $d_{\mathcal{F}}$ is the MMD with kernel k,

$$d_{\mathcal{F}}(\hat{\mu}_{\mathsf{Y}_{1:n}}, \hat{\mu}_{\mathsf{Z}_{1:n}}) = \sum_{i,j} k(\mathsf{Y}_i, \mathsf{Y}_j) - 2 \sum_{i,j} k(\mathsf{Y}_i, \mathsf{Z}_j) + \sum_{i,j} k(\mathsf{Z}_i, \mathsf{Z}_j).$$

Approximation of the posterior

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian Computation with the Wasserstein distance. JRSS-B.

Contains a general result that can be applied here.

Theorem

Assume

- μ_{θ} has a continuous density f_{θ} and for some neighborhood V of $Y_{1:n}$ we have $\sup_{\theta \in \Theta} \sup_{v_{1:n} \in V} \prod_{i=1}^{n} f_{\theta}(v_{i}) < +\infty$.
- $v_{1:n} \mapsto d_{\mathcal{F}}(\hat{\mu}_{Y_{1:n}}, \hat{\mu}_{v_{1:n}})$ is continuous.

Then

$$\forall$$
 measurable set A , $\hat{\rho}_{\epsilon}(A) \xrightarrow[\epsilon \to 0]{} \pi(A|Y_{1:n})$.

Assumptions for contraction

(C1)
$$\mathcal{Y}$$
-valued $Y_{1:n} = (Y_1, \ldots, Y_n)$ i.i.d from μ_* , put :

$$\epsilon^* := \inf_{\theta \in \Theta} d_{\mathcal{F}}(\mu_{\theta}, \mu_*).$$

(C2) prior mass condition : there is $c > 0, L \ge 1$ such that

$$\pi\Big(ig\{ heta\in\Theta: d_{\mathcal{F}}(\mu_{ heta},\mu_*)-\epsilon^*\leq\epsilonig\}\Big)\geq c\epsilon^L$$

(C3) functions in \mathcal{F} are bounded :

$$\sup_{f \in \mathcal{F}} \sup_{y \in \mathcal{Y}} |f(y)| \le b.$$

(C4) the Rademacher complexity $\mathfrak{R}_n(\mathcal{F})$ satisfies

$$\mathfrak{R}_n(\mathcal{F}) \xrightarrow[n\to\infty]{} 0.$$

Reminder on Rademacher complexity

Rademacher complexity

$$\mathfrak{R}_n(\mathcal{F}) := \sup_{\mu} \mathbb{E}_{Y_1, \dots, Y_n \sim \mu} \mathbb{E}_{\varepsilon_1, \dots, \varepsilon_n} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(Y_i) \right].$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d Rademacher variables :

$$\mathbb{P}(\epsilon_1 = 1) = \mathbb{P}(\epsilon_1 = -1) = 1/2.$$

Examples

- TV : $\mathcal{F} = \{1_A, A \text{ measurable}\},$
 - $\mathfrak{R}_n(\mathcal{F}) \nrightarrow 0$ in general.
- Kolmogorov : $\mathcal{F} = \{1_{(-\infty,x]}, x \in \mathbb{R}\},$

$$\mathfrak{R}_n(\mathcal{F}) \leq 2\sqrt{\frac{\log(n+1)}{n}} \to 0.$$

ullet Wasserstein : $\mathcal{F}=$ set of 1-Lipschitz functions,

$$\mathfrak{R}_{\textit{n}}(\mathcal{F}) \rightarrow 0$$
 if \mathcal{X} is bounded, see Corollary 8 in

Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G.R. (2010). Non-parametric estimation of integral probability metrics. IEEE International Symposium on

Non-parametric estimation of integral probability metrics. IEEE International Symposium or Information Theory.

• MMD :

$$\mathfrak{R}_n(\mathcal{F}) \leq \sqrt{\frac{\sup_{y \in \mathcal{Y}} k(y,y)}{n}}.$$

Contraction of discrepancy-based ABC

Theorem 1

Under (C1)-(C4), with $\epsilon:=\epsilon_n=\epsilon^*+\bar{\epsilon}_n$ with $\bar{\epsilon}_n\to 0$, $n\bar{\epsilon}_n^2\to\infty$ and $\bar{\epsilon}_n/\mathfrak{R}_n(\mathcal{F})\to\infty$. Then, for any sequence $M_n>1$,

$$\hat{\rho}_{\epsilon_n}\Big(\big\{\theta\in\Theta:d_{\mathcal{F}}(\mu_\theta,\mu_*)>\epsilon^*+r_n\big\}\Big)\leq \frac{2\cdot 3^L}{cM_n}$$
 where $r_n=\frac{4\overline{\epsilon}_n}{3}+2\mathfrak{R}_n(\mathfrak{F})+b\sqrt{\frac{2\log(\frac{M_n}{\overline{\epsilon}_n^L})}{n}},$

with probability o 1 with respect to the sample $Y_{1:n}$.

Examples

• Assume $\mathfrak{R}_n(\mathcal{F}) \leq c\sqrt{1/n}$ (MMD, Kolmogorov...). Take $M_n = n$ and $\bar{\epsilon}_n = \sqrt{\log(n)/n}$ to get

$$\hat{\rho}_{\epsilon_n}\Big(\big\{\theta\in\Theta:d_{\mathcal{F}}(\mu_{\theta},\mu_*)>\epsilon^*+r_n\big\}\Big)\leq \frac{2\cdot 3^L}{cn}$$
 where $r_n=\mathcal{O}\left(\sqrt{\log(n)/n}\right)$.

• Larger $\mathfrak{R}_n(\mathcal{F})$ will lead to slower rates.

Removing (C3)-(C4)

- if we remove (C3)-(C4), we cannot use classical concentration results on $d_{\mathcal{F}}(\mu_*, \hat{\mu}_{Y_{1:n}})$ and $d_{\mathcal{F}}(\mu_{\theta}, \hat{\mu}_{Z_{1:n}})$.
- we can still provide a result under the assumption that "some concentration holds", as

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). Approximate Bayesian Computation with the Wasserstein distance. JRSS-B.

for the Wasserstein distance.

• however, this will impose assumptions on μ_* , $\{\mu_{\theta}, \theta \in \Theta\}$ and might lead to slower contraction rates. In our paper, we illustrate this with MMD with unbounded kernels :

$$\mathfrak{R}_n(\mathcal{F}) \leq \sqrt{\frac{\sup_{y \in \mathcal{Y}} k(y,y)}{n}} = +\infty.$$

Example: MMD-ABC with unbounded kernel

Theorem 2

Under (C1)-(C2), and

(C5)
$$\mathbb{E}_{Y \sim u_*}[k(Y,Y)] < +\infty$$
,

(C6)
$$\sup_{\theta \in \Theta} \mathbb{E}_{Z \sim \mu_{\theta}}[k(Z, Z)] < +\infty$$
,

 $\epsilon_n = \epsilon^* + \overline{\epsilon}_n$ with $\overline{\epsilon}_n \to 0$. Then, for some C > 0, for any sequence $M_n > 1$, with proba. $\to 1$,

$$\hat{\rho}_{\epsilon_n}\Big(\Big\{\theta\in\Theta:d_{\mathcal{F}}(\mu_\theta,\mu_*)>\epsilon^*+r_n\Big\}\Big)\leq \frac{C}{M_n}$$
 where $r_n=\frac{4\overline{\epsilon}_n}{3}+\frac{M_n^2}{n^2\overline{\epsilon}^{2L}}.$

For example $M_n = \sqrt{n}$ we can get $r_n = \mathcal{O}(1/n^{2L+1})$.

Experiments in the Gaussian case

Conclusion

- we provide an analysis of discrepancy-based ABC for a large class of IPM.
- in particular, ABC with MMD leads to robust estimation, without assumptions on the model nor on the truth.
- note that other discrepancies were studied and probably more should be investigated

Frazier, D. T. (2020). Robust and efficient Approximate Bayesian Computation: A minimum distance approach. Preprint arXiv.

Nguyen, H. D., Arbel, J., Lü, H. and Forbes, F. (2020). Approximate Bayesian computation via the energy statistic. IEEE Access.

• important extension to non i.i.d observations (time series, etc.). Note that strong concentration of $d_{\mathcal{F}}(\mu_*, \hat{\mu}_{Y_{1:n}})$ is known in this setting (our joint paper with B.-E. Chérief-Abdellatif, Bernoulli 2022).

La fin

終わり

ありがとう ございます。