

Weierstraß Institut für Angewandte Analysis und Stochastik

6. Vorlesung: Diskrete Zufallsvariablen

Nikolas Tapia

02. Mai 2024, Stochastik für Informatik(er)

Geometrische Verteilung

Definition 6.1

Sei $p \in [0,1]$. Eine Zufallsvariable X heißt **geometrisch verteilt** mit Parameter p, falls $X(\Omega) = \mathbb{N}$ und

$$\mathbb{P}(X=k)=(1-p)^{k-1}p,\quad k\in\mathbb{N}.$$

Anmerkung 1

Die geometrische Verteilung beschreibt die Anzahl der Versuche bis zum ersten Erfolg in einem wiederholten Bernoulli-Experiment.

Poisson-Verteilung

Definition 6.2

Sei $\lambda>0$. Eine Zufallsvariable X heißt **Poisson-verteilt** mit Parameter λ , falls $X(\Omega)=\mathbb{N}_0$ und

$$\mathbb{P}(X=k)=rac{\lambda^k}{k!}e^{-\lambda},\quad k\in\mathbb{N}_0.$$

Theorem 1 (Poisson-Grenzwertsatz)

Sei $n \in \mathbb{N}$, und sei $(p_n)_{n \in \mathbb{N}}$ eine Folge von Zahle aus [0,1] mit $\lim_{n \to \infty} np_n = \lambda \in (0,\infty)$.

Sei $X_n \sim \text{Binom}(n, p_n)$ eine Folge von binomialverteilten Zufallsvariablen, und sei $X \sim \text{Poisson}(\lambda)$.

Dann gilt

$$\lim_{n\to\infty}\mathbb{P}(X_n=k)=\mathbb{P}(X=k)$$

für alle $k \in \mathbb{N}_0$.

Im Durchschnitt kommen in ein Fachgeschäft unabhängig von der Tageszeit 5 Kunden pro Stunde. Wie hoch ist die Wahrscheinlichkeit, dass kein Kunde innerhalb eines Ein-Stunden-Zeitraums den Laden betritt?

WI AS

> Wie hoch ist die Wahrscheinlichkeit, dass weniger als 2 Kunden (d.h. maximal 1 Kunde) innerhalb eines Ein-Stunden-Zeitraums den Laden betreten?

und

Definition 6.3

Sei a>1. Eine Zufallsvariable X heißt **Zipf-verteilt** mit Parameter a, falls $X(\Omega)=\mathbb{N}$

$$\mathbb{P}(X=k)=\frac{k^{-a}}{\zeta(a)}, \quad k\in\mathbb{N},$$

wobei $\zeta(a) := \sum_{k \ge 1} k^{-a}$ die Riemannsche Zeta-Funktion ist.

Anmerkung 1

Die Zipf-Verteilung, als funktion von k, fällt polynomial mit Exponent a, d.h.

$$\mathbb{P}(X=k)=\frac{1}{k^a}\mathbb{P}(X=1).$$

Gemeinsame Verteilung

Definition 6.4

Seien X,Y zwei diskrete Zufallsvariablen, die auf demselben Wahrscheinlichkeitsraum definiert sind. Die **gemeinsame Verteilung** von X und Y ist gegeben durch

$$\mathbb{P}(\{X=x\}\cap\{Y=y\}):=\mathbb{P}(X=x,Y=y),\quad x,y\in X(\Omega)\times Y(\Omega).$$

Randverteilung

Definition 6.5

Seien X, Y zwei diskrete Zufallsvariablen mit gemeinsamer Verteilung $\mathbb{P}(X=x,Y=y)$. Die **Randverteilungen** von X bzw. von Y sind die Verteilungen der einzelnen Zufallsvariablen X bzw. Y. Sie sind gegeben durch

$$\mathbb{P}(X = x) := \sum_{y \in Y(\Omega)} \mathbb{P}(X = x, Y = y), \quad x \in X(\Omega),$$

$$\mathbb{P}(Y = y) := \sum_{x \in X(\Omega)} \mathbb{P}(X = x, Y = y), \quad y \in Y(\Omega).$$

2

Yackslash X	2	3	4	5	6	7	8	$\mathbb{P}(Y=y)$
1	1/16	1/8	1/8	1/8	0	0	0	7/16
2	0	0	1/16	1/8	1/8	0	0	5/16
3	0	0	0	0	1/16	1/8	0	3/16
4	0	0	0	0	0	0	1/16	1/16
$\mathbb{P}(X=x)$	1/16	1/8	3/16	1/4	1/4	1/8	1/16	1

Bedingte Verteilung

Definition 6.6

Seien X, Y zwei diskrete Zufallsvariablen mit gemeinsamer Verteilung $\mathbb{P}(X=x,Y=y)$. Die **bedingte Verteilung** von X gegeben Y=y ist definiert als

$$\mathbb{P}(X=x|Y=y) := \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)}, \quad x \in X(\Omega), y \in Y(\Omega).$$

2

$Y \setminus X$	2	3	4	5	6	7	8
1	1	1		1/2		0	0
2	0	0	1/3	1/2	2/3	0	0
3	0	0	0	0	1/3	1	0
4	0	0	0	0	0	0	1

Unabhängigkeit

Definition 6.7

Zwei diskrete Zufallsvariablen X, Y heißen **unabhängig**, falls für alle $x \in X(\Omega)$ und $y \in Y(\Omega)$ die Ereignisse $\{X = x\}$ und $\{Y = y\}$ unabängig sind, d.h.

$$\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x)\mathbb{P}(Y=y).$$

Funktionen von unabhängigen Zufallsvariablen

Aussage 6.1

Seien X, Y zwei unabhängige diskrete Zufallsvariablen, und seien f, g zwei Funktionen. Dann sind f(X) und g(Y) ebenfalls unabhängige Zufallsvariablen.

Definition 6.8

Seien X_1, \ldots, X_n diskrete Zufallsvariablen. Die heißen **unabhängig**, falls für alle x_1, \ldots, x_n die Ereignisse $\{X_1 = x_1\}, \ldots, \{X_n = x_n\}$ unabhängig sind, d.h.

$$\mathbb{P}(X_{i_1} = X_{i_1}, \dots, X_{i_k} = X_{i_k}) = \mathbb{P}(X_{i_1} = X_{i_1}) \cdots \mathbb{P}(X_{i_k} = X_{i_k})$$

für alle $k \leq n$, für alle paarweise verschiedenen $i_1, \ldots, i_k \in \{1, \ldots, n\}$, und $x_{i_1} \in X_{i_1}(\Omega), \ldots, x_{i_k} \in X_{i_k}(\Omega)$.

Faltungsformel

Aussage 6.2

Seien X, Y zwei unabhängige diskrete Zufallsvariablen. Dann hat die Zufallsvariable X + Y die Verteilung

$$\mathbb{P}(X+Y=k)=\sum_{x\in X(\Omega)}\mathbb{P}(X=x)\mathbb{P}(Y=k-x)$$

$$\text{für alle } k \in (X+Y)(\Omega) = \{m+n : m \in X(\Omega), n \in Y(\Omega)\}.$$

Summe von unabhängigen Poisson-verteilten Zufallsvariablen

Aussage 6.3

Seien X,Y unabhängige Poisson-verteilte Zufallsvariablen mit Parametern $\lambda,\mu>0$. Dann ist die Zufallsvariable X+Y Poisson-verteilt mit Parameter $\lambda+\mu$.

