Лабораторная работа №3.6.1 Спектральный анализ электрических сигналов Джокер Бэтмен, Б02-000, 18.09.2021

Введение

Цель работы: изучить спектральный состав периодических электрических сигналов.

В работе используются: аналоговый анализатор спектра, генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

Теоретическая справка

Периодическая функция может быть представлена в виде бесконечного ряда гармонических функций – ряда Фурье:

$$f(t)=\sum_{n=-\infty}^{+\infty}c_ne^{in\omega_0t}$$
 или $f(t)=\sum_{n=0}^{+\infty}a_n\cos{(n\omega_0t+arphi_n)}.$

Здесь $\omega_0 = \frac{2\pi}{T}$, где T – период функции f(t). Коэффициенты $\{c_n\}$ могут быть найдены по формуле:

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-in\omega_0 t} dt.$$

Наборы коэффициентов разложения в комплексной $\{c_n\}$ и действительной $\{a_n,\varphi_n\}$ формах связаны соотношением:

$$a_n = 2 |c_n|, \ \varphi_n = \arg c_n.$$

В качестве простейшего спектрального анализатора можно использовать высокодобротный колебательный контур с подстраиваемой ёмкостью или индуктивностью. Такой контур усиливает те гармоники входного сигнала f(t), частота которых близка к резонансной $\nu_0 = \frac{1}{2\pi\sqrt{LC}}$ и практически не реагирует на частоты, далёкие от ν_0 . С точки зрения преобразования гармоник колебательный контур является узкополосным фильтром с шириной полосы пропускания порядка $\Delta\nu\sim\frac{\nu_0}{Q}$, где $Q=\frac{1}{R}\sqrt{\frac{L}{C}}\gg 1$ — его добротность. Амплитуда колебаний в контуре пропорциональна амплитуде $|c\left(\nu_0\right)|$ гармоники в спектре функции f(t), частота которой совпадает с ν_0 . Таким образом, меняя резонансную частоту контура, можно "просканировать" весь спектр входного сигнала.

Экспериментальная установка

Исследование спектра периодической последовательности прямоугольных импульсов

Экспериментальная установка для исследования спектра периодической последовательности прямоугольных импульсов представлена на рисунке 1.

Сигнал с выхода генератора прямоугольных импульсов Г5-54 подаётся на вход анализатора спектра и одновременно — на вход Y осциллографа. С генератора импульсов на осциллограф подаётся также сигнал синхронизации, запускающий ждущую развёртку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране ЭЛТ анализатора спектра — распределение амплитуд спектральных составляющих этой последовательности.

Рис. 1 — Схема для исследования спектра периодической последовательности прямоугольных импульсов

В наблюдаемом спектре отсутствует информация об амплитуде нулевой гармоники, т.е. о величине постоянной составляющей; её местоположение (начало отсчёта шкалы частот) отмечено небольшим вертикальным выбросом.

Исследование спектра периодической последовательности цугов гармонических колебаний

Рис. 2 — Схема для исследования спектра периодической последовательности цугов высокочастотных колебаний

Исследование спектра периодически чередующихся цугов гармонических колебаний проводится по схеме, изображённой на рисунке 2. Генератор

 Γ 6-34 вырабатывает синусоидальные колебания высокой частоты. На вход AM (амплитудная модуляция) генератора Γ 6-34 подаются прямоугольные импульсы с генератора Γ 5-54 и синусоида модулируется — "нарезается" на отдельные куски — uyvu. Эти цуги с выхода генератора Γ 6-34 поступают на вход спектроанализатора и одновременно на вход Y осциллографа. Сигнал синхронизации подаётся на осциллограф с генератора импульсов.

Исследование спектра гармонических сигналов, модулированных по амлитуде

Схема для исследования амплитудномодулированного сигнала представлена на рисунке 3. В генератор сигналов генератора встроен модуляционный генератор, который расположен в левой части Γ 6-34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}}=1$ к Γ ц подаётся с модуляционного генератора на вход AM (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0=25$ к Γ ц). Амплитудно-модулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

Рис. 3 — Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом

Ход работы

А. Исследование спектра периодической последовательности прямоугольных импульсов

Соберём схему согласно 1, включим в сеть генератор Г5-54 и подготовим установку к измерениям. Установим на анализаторе спектра режим работы с однократной развёрткой и получим на экране спектр импульсов с параметрами $f=10^3$ Гц; $\tau=25$ мкс; $m_x=5$ $\frac{\kappa \Gamma_{\rm H}}{\rm дел}$. Увеличим τ вдвое при неизменном f=1 кГц и посмотрим, как меняется при этом спектр (величины $\Delta \nu$ и $\delta \nu$). Видим, что $\Delta \nu$ уменьшается вдвое при неизменной $\delta \nu$. Теперь увеличим вдвое f при неизменном τ . Видим, что $\Delta \nu$ при этом не изменится (огибающая останется прежней), однако в два раза увеличится $\delta \nu$.

Проведём измерения зависимости ширины спектра от длительности импульса $\Delta\nu$ (τ) при увеличении τ от 25 до 200 мкс при f=1 к Γ ц и $m_x=5$ $\frac{\kappa\Gamma_\Pi}{\text{дел}}$. Занесём результаты измерений в таблицу 1. Проведём также оценку погрешностей. Так как данные получены при постоянной f, то и $\delta\nu$ для них постоянна. Отсюда следует, что абсолютную погрешность определения $\Delta\nu$

можно принять равной отношению расстояния между соседними линиями спектра к ширине всей шкалы спектрометра, т.е. $\varepsilon_{\Delta\nu}=\frac{1}{50}\frac{\kappa\Gamma_{\Pi}}{\kappa\Gamma_{\Pi}}=2,0$ %. Погрешность $\Delta\tau$ равна половине цены деления шкалы, по которой выставляется τ , для $\tau=25$ мкс она равна $\Delta\tau=0,5$ мкс, для $\tau=50\dots75$ мкс — $\Delta\tau=2,5$ мкс, а для $\tau=100\dots200$ мкс — $\Delta\tau=5,0$ мкс. Отсюда несложно посчитать и погрешности $\sigma_{\frac{1}{2}}$. Занесём все эти погрешности в таблицу 1.

Таблица 1 – Зависимость ширины спектра $\Delta \nu$ от длительности импульса τ

τ , MKC	25,0	50,0	75,0	100,0	125,0	150,0	175,0	200,0
$\frac{1}{\tau}$, к Γ ц	40,0	20,0	13,3	10,0	8,0	6,7	5,7	5,0
$\sigma_{\frac{1}{\tau}}$, к Γ ц	0,8	1,0	0,4	0,5	0,3	0,2	0,2	0,1
$\Delta \nu$, к Γ ц	40,0	20,0	13,5	10,0	8,0	6,5	5,7	5,0
$\sigma_{\Delta\nu}$, к Γ ц	1,0	0,5	0,3	0,3	0,2	0,2	0,1	0,1

Приступим теперь к обработке полученных данных. Построим график $\Delta \nu\left(\frac{1}{\tau}\right)$. Видим, что точки очень хорошо ложатся на прямую, поэтому найти наклон графика и его погрешность можно, используя МНК, и затем, используя этот результат, провести на графике прямую. Получим $k=1,001\pm0,016$, откуда с хорошей точностью можем заключить, что $\tau\Delta\nu=1$, что экспериментально доказывает соотношение неопределённостей. График приведён ниже на рисунке 4.

Рис. 4 — График зависимости ширины спектра $\Delta \nu$ от обратной длительности импульса $\frac{1}{\tau}$. Прямая проведена с помощью МНК

Сделаем также ровные и чёткие фотографии спектров с параметрами f=1 к Γ п, $m_x=5$ $\frac{\kappa \Gamma \eta}{\rm дел}$ и (1) $\tau=50$ мкс, (2) $\tau=100$ мкс. Для улучшения

контраста и размера значимой части изображения обрежем фотографии и инвертируем на них цвета. Полученные результаты (рисунки 5 и 6) приведены ниже.

Б. Исследование спектра периодической последовательности цугов гармонических колебаний

Соберём теперь схему, изображённую на рисунке 2 и подготовим установку к работе. Установим частоту несущей $\nu_0=25$ к Γ ц. Сначала проведём наблюдения изменения спектра при увеличении τ вдвое (с $\tau=50$ мкс до $\tau=100$ мкс) при неизменных f=1 к Γ ц и $m_x=5$ $\frac{\kappa\Gamma\eta}{\mu}$. Видим, что спектр остаётся симметричным относительно одной и той же точки, однако "сжимается"к ней вдвое. Теперь пронаблюдаем за изменением спектра при изменении несущей частоты ν_0 (при значениях $\nu_0=25$ к Γ ц, $\nu_0=10$ к Γ ц и $\nu_0=40$ к Γ ц) при постоянных $\tau=100$ мкс, f=1 к Γ ц и $m_x=5$ $\frac{\kappa\Gamma\eta}{\mu}$. Видим, что в этом случае спектр не меняет свою форму, однако его центр смещается в соответсвии с изменением частоты несущей.

При фиксированной длительности импульсов $\tau=50$ мкс исследуем зависимость расстояния $\delta\nu$ между соседними спектральными компонентами от частоты повторения $f_{\text{повт}}$. Измерения будем проводить в диапазоне $f=1\dots 8$ к Γ ц при масштабе $m_x=5$ $\frac{\kappa\Gamma_{\text{ц}}}{\text{дел}}$, являющимся наиболее удобным для измерений. Полученные результаты занесём в таблицу 2. Проведём также оценку погрешностей. Абсолютную погрешность $\delta\nu$ можно оценть как отношение половины цены деления сетки шкалы спектрометра к её ширине, тогда $\varepsilon_{\delta\nu}=\frac{2.5}{50}\frac{\kappa\Gamma_{\text{ц}}}{\kappa\Gamma_{\text{ц}}}=5,0$ %. Погрешность определения f равна половине цены деления шкалы, по которой она выставляется, и для $f=1\dots 3$ к Γ ц она равна $\Delta f=0,02$ к Γ ц, а для $f=4\dots 8$ к Γ ц – $\Delta f=0,1$ к Γ ц. Занесём все эти погрешности в таблицу 2.

Таблица 2 – Зависимость ширины спектра $\Delta \nu$ от длительности импульса τ

f , к Γ ц	1,00	2,0	3,0	4,0	6,0	8,0
σ_f , к Γ ц	0,02	0,1	0,1	0,1	0,1	0,1
$\delta \nu$, к Γ ц	1,00	2,00	3,00	4,0	6,0	8,0
$\sigma_{\delta\nu}$, к Γ ц	0,05	0,1	0,2	0,2	0,3	0,4

Приступим теперь к обработке полученных данных. Построим график $\delta\nu$ ($f_{\text{повт}}$). Видим, что точки очень хорошо ложатся на прямую, поэтому найти наклон графика и его погрешность можно, используя МНК, и затем, используя этот результат, провести на графике прямую. Получим $k=1,00\pm0,04$. График приведён ниже на рисунке 7. Таким образом, с хорошей точностью можем сказать, что $\delta\nu=f$, что совпадает с теоретическим предсказанием. Можно сделать вывод, что npu стремлении частоты повторнения к нулю спектр переходит из дискретного в непрерывный.

Сделаем фотографии спектров с параметрами $\tau=100$ мкс, $m_x=5$ $\frac{\kappa\Gamma_\Pi}{\text{дел}}$ и (1) f=1 к Γ_Π , (2) f=2 к Γ_Π . Для улучшения контраста и размера значимой части изображения обрежем фотографии и инвертируем на них цвета. Полученные результаты (рисунки 8 и 9) приведены ниже.

Сделаем промежуточный вывод о зависимости вида спектра цуга от параметров. Итак, (1) при одинаковых периодах T и разных длительностях

импульса τ спектры имеют одни и те же центр и плотность спектральных компонент, однако разную ширину; (2) при одинаковых τ и разных T спектры имеют одни и те же центр и ширину, однако разную плотность спектральных компонент; (3) при одинаковых значениях τ и T спектры цугов и прямоугольных импульсов имеют одни и те же ширину и плотность спектральных компонент, однако спектр прямоугольного импульса сииметричен относительно точки $\nu=0$, а спектр цуга — относительно $\nu=\nu_0$ — частоты несущей.

В. Исследование спектра гармонических сигналов, модулированных по амлитуде

Соберём схему, показанную на рисунке 3 и подготовим установку к проведению измерений. Изменяя глубину модуляции m, исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии $\left(\frac{a_{6ok}}{a_{och}}\right)$ от m в диапазоне $m\in(0;1]$. Глубину модуляции m будем расчитывать по формуле $m=\frac{2A_{max}-2A_{min}}{2A_{max}+2A_{min}}$, где $2A_{max}$ и $2A_{min}$ – измеряемые на экране осциллографа удвоенные максимальная и минимальная амплитуды соответстенно. Полученные данные занесём в таблицу 3. Проведём оценку погрешностей. Для измерения амплитуды на экране осциллографа оценим погрешность в половину цены деления экранной сетки $\Delta A=0,13$, аналогично для сетки анализатора $\Delta a=0,17$. Для выражения для m получим формулу $\sigma_m=\frac{2\Delta A\sqrt{(2A_{max})^2+(2A_{min})^2}}{(2A_{max}+2A_{min})^2}$, а для отношения $\frac{a_{6ok}}{a_{och}}$ — формулу $\sigma_{\frac{a_{6ok}}{a_{och}}}=\frac{\Delta a\sqrt{a_{och}^2+a_{6ok}^2}}{a_{och}^2}$. Вычислим по ним погрешности и тоже внесём их в таблицу 3.

Таблица 3 — Зависимость относительной амплитуды боковой линии $\frac{a_{6 \text{ok}}}{a_{\text{och}}}$ от глубины модуляции m

$2A_{min}$	2,8	2,2	1,6	1,2	0,8	0,0
$2A_{max}$	4,2	4,8	5,4	5,8	6,2	7,0
m	0,20	0,37	0,54	0,66	0,77	1,00
σ_m	0,03	0,03	0,03	0,03	0,03	0,04
$a_{\text{бок}}$	1,00	1,67	2,00	2,67	3,33	4,00
$a_{\text{осн}}$	7,67	7,67	7,67	7,67	7,67	7,67
$\frac{a_{\text{бок}}}{a_{\text{осн}}}$	0,13	0,22	0,26	0,35	0,43	0,52
$\sigma_{\frac{a_{\mathrm{fok}}}{a_{\mathrm{och}}}}$	0,02	0,02	0,02	0,02	0,02	0,02

Приступим к обработке полученных данных. Построим график $\frac{a_{6\text{ok}}}{a_{\text{och}}}(m)$. Видим, что точки очень хорошо ложатся на прямую, поэтому найти наклон графика и его погрешность можно, используя МНК, и затем, используя этот результат, провести на графике прямую. Получим $k=0,497\pm0,013$. График приведён ниже на рисунке 10. Исходя из этих результатов, можно убедиться, что $\frac{a_{6\text{ok}}}{a_{\text{och}}}=\frac{m}{2}$, т.е. совпадает с теоретическим предсказанием.

Наконец, посмотрим, как меняется спектр при $m \equiv 1$ в зависимости от частоты модулирующее сигнала. Видим, что при увеличении частоты боковые линии становятся всё дальше от центральной.

Вывод

В данной работе был изучен спектральный состав периодических электрических сигналов.

В первой части работы было проверено и экспериментально подтверждено соотношение неопределённостей $\tau \Delta \nu = 1$ для прямоугольных импульсов. Были сделаны фотографии спектров с различными параметрами, качественно описаны зависимости регистрируемых картин от параметров.

Во второй части работы были исследованы спектры цугов гармонических колебаний, экспериментально подтвержджён тот факт, что при стремлении частоты повторения цугов к нулю спектр переходит в непрерывный, совпадающий с теоретическим предсказанием. Также сделаны фотографии спектров с различными параметрами, качественно описаны зависимости регистрируемых картин от параметров.

В последней части работы были исследованы спектры гармонических сигналов, модулированных по амплитуде. Экспериментально подтвержено соотношение $\frac{a_{\rm fok}}{a_{\rm och}}=\frac{m}{2},$ качественно описаны зависимости регистрируемых картин от параметров.

Результаты оценки погрешностей говорят о хорошей точности использованных методов и корректном проведении эксперимента.

Рис. 5 — Фотография спектра с параметрами f=1 к Γ ц, $m_x=5$ $\frac{\mathrm{\kappa}\Gamma$ ц $\tau=50$ мкс

Рис. 6 — Фотография спектра с параметрами f=1 к Γ ц, $m_x=5$ $\frac{\mathrm{\kappa}\Gamma$ ц $\pi}{\mathrm{дел}}$, au=100 мкс

Рис. 7 — График зависимости расстояния $\delta \nu$ между соседними спектральными компонентами от частоты повторения f. Прямая проведена с помощью МНК

Рис. 8 — Фотография спектра с параметрами $\tau=100$ мкс, $m_x=5$ $\frac{\kappa\Gamma_{\rm II}}{{
m дел}},$ f=1 к Γ ц

Рис. 9 — Фотография спектра с параметрами au=100 мкс, $m_x=5~\frac{\kappa\Gamma_\Pi}{\rm деn}f=2~\kappa\Gamma_\Pi,$

Рис. 10 — График зависимости отношения амплитуды боковой линии спектра к амплитуде основной линии $\frac{a_{\rm fok}}{a_{\rm ocn}}$ от глубины модуляции m. Прямая проведена с помощью МНК