Amendment dated September 29, 2005 Reply to Office Action of June 29, 2005

AMENDMENTS TO THE CLAIMS

Docket No.: H0006251

1. (Currently Amended) A forward position lighting device configured to be installed at a

wing of an aircraft, the aircraft wing corresponding to a particular mounting platform, the

device comprising:

a plurality of modular components, including a mounting module on which one or

more solid-state light sources are mounted,

wherein the modular components are configured so that the device is operably

compatible with multiple types of mounting platforms for aircraft wings.

2. (Original) The device of claim 1, wherein the solid-state light sources are light-

emitting diodes (LEDs), the LEDs being configured to emit at least one of aviation red

and aviation green light.

3. (Original) The device of claim 2, further comprising:

a cut-off shield module configured to limit the light emitted by the LEDs

according to predetermined angular cut-off parameters.

4. (Original) The device of claim 1, wherein the mounting module includes a heat sink.

5. (Original) The device of claim 4, the mounting module comprising a casting, wherein

the heat sink comprises cooling fins incorporated in the casting of the mounting module.

Birch, Stewart, Kolasch & Birch, LLP

6. (Original) The device of claim 1, wherein the modular components further comprise,

a base assembly module including electronic circuitry that electrically connects

Docket No.: H0006251

the solid-state light sources to a power source within the aircraft.

7. (Original) The device of claim 6, wherein the base assembly module is replaceable.

8. (Currently Amended) The device of claim 6, wherein the base assembly module is one

of the following two interchangeable types:—a first-type whose electronic circuitry is

passive, and a second the base assembly module being interchangeable with another type

whose electronic circuitry is active.

9. (Currently Amended) The device of claim-86, wherein the base assembly module is of

the second a type whose electronic circuitry is active, the active electronic circuitry being

configured as a current control device for distributing a constant current to the solid state

light sources as the power source voltage fluctuates, the base assembly module being

interchangeable with another type whose electronic circuitry is passive.

10. (Original) The device of claim 6, wherein the base assembly module includes a heat

sink.

Birch, Stewart, Kolasch & Birch, LLP

11. (Original) The device of claim 10, the base assembly module comprising a casting,

Docket No.: H0006251

wherein the heat sink comprises cooling fins incorporated in the casting of the base

assembly module.

12. (Original) The device of claim 6, further comprising a fastening mechanism operable

to fasten the mounting module to the base assembly module, and thereby fasten the

device to the aircraft wing.

13. (Original) The device of claim 12, wherein the fastening mechanism includes at least

one screw and corresponding clearance holes in the mounting module, base assembly

module, and aircraft wing.

14. (Original) The device of claim 12, further comprising:

a cut-off shield module configured to limit the light emitted by the solid-state

light sources according to predetermined angular cut-off parameters,

wherein the cut-off shield module is fastened to the mounting module and base

assembly module via the fastening mechanism.

15. (Original) The device of claim 1, the mounting module having dimensions, which are

compatible with each of the multiple types of mounting platforms, thereby allowing the

device to be mounted to the mounting platform without retrofitting the device or

modifying the mounting platform.

Birch, Stewart, Kolasch & Birch, LLP

16. (Original) A forward position lighting device utilizing light emitting diodes (LEDs), the device configured to be installed at a wing of an aircraft, the device comprising:

a mounting module including:

two side-emitting LEDs;

one or more reflectors operable to reflect at least a portion of light emitted by the side-emitting LEDs, the side-emitting LEDs and reflectors being configured so that the light emitted by the side-emitting LEDs and the light reflected by the reflectors combine according to a first distribution of light; and

a lambertian LED operable to emit light according to a second distribution of light,

wherein the lambertian LED is configured so that the first and second distributions of light combine to form a pattern of light.

17. (Currently Amended) The A forward position lighting device of claim 16, further utilizing light emitting diodes (LEDs), the device comprising:

a mounting module including:

first and second LEDs;

one or more reflectors operable to reflect at least a portion of light emitted by
the first and second LEDs, the first and second LEDs and reflectors being configured so
that the light emitted by the first and second LEDs and the light reflected by the reflectors
combine according to a first distribution of light; and

a third LED operable to emit light according to a second distribution of light,

the third LED being a lambertian LED, wherein the third LED is configured so that the

first and second distributions of light combine to form a pattern of light; and

a cut-off shield module operably connected to the mounting module, the cut-off

shield module being configured to limit the pattern of light according to predetermined

angular cut-off parameters.

18. (Original) The device of claim 17, wherein the cut-off shield module includes:

an overlap shield component configured to limit overlapping between the second

distribution of light and another forward position light of the aircraft.

19. (Original) The device of claim 18, wherein the cut-off shield module includes:

an auxiliary overlap shield component configured to limit overlapping between

the first distribution of light and the other forward position light of the aircraft.

20. (Original) The device of claim 19, wherein the overlap shield and auxiliary overlap

shield components provide angular cut-offs to the first and second distributions of light

that correspond to predetermined maximum intensity requirements.

21. (Original) The device of claim 19, wherein the cut-off shield module includes:

a perimeter shield component configured to limit overlapping between the pattern

of light and a rear position light of the aircraft.

Birch, Stewart, Kolasch & Birch, LLP

Application No. 10/811,684 Amendment dated September 29, 2005

Reply to Office Action of June 29, 2005

22. (Original) The device of claim 18, wherein an auxiliary overlap shield component is

Docket No.: H0006251

operably connected to the reflectors, the auxiliary shield component being configured to

limit overlapping between the first distribution of light and the other forward position

light of the aircraft.

23. (Original) The device of claim 18, wherein the dimensions of the mounting module

and the cut-off module are compatible with each of a plurality of distinct mounting

platforms, thereby allowing the device to be mounted to the distinct mounting platform

without retrofitting the device or modifying the mounting platform.

24. (Original) The device of claim 16, wherein a shape of the reflectors is determined

based on light-emitting characteristics of the side-emitting LED to produce the first

distribution of light.

25. (Currently Amended) The device of claim-23_24, wherein each of the reflectors

corresponds to one of the side-emitting LEDs, each of the reflectors including a curved

reflective surface whose curvature is determined based on the light-emitting

characteristics of the corresponding side-emitting LED to produce the first distribution of

light.

Birch, Stewart, Kolasch & Birch, LLP

26. (Currently Amended) The device of claim-23 24, wherein the shape of the reflectors

Docket No.: H0006251

is compatible with the light-emitting characteristics of both side-emitting LEDs that emit

aviation red light, and side emitting LEDs that emit aviation green light.

27. (Original) The device of claim 16, wherein the dimensions of the device are

compatible with multiple types of mounting platforms, thereby allowing the device to be

mounted to each of the multiple types of mounting platform without retrofitting the

device or modifying the mounting platform.

28. (Currently Amended) The device of claim-26 27, further comprising:

a base assembly module including electronic circuitry that electrically connects

the lambertian and side-emitting LEDs to a power source within the aircraft, the base

assembly module being interchangeable with a base assembly modules with different

electronic circuitry.

29. (Currently Amended) Then device of claim-27_28, wherein at least one of the

mounting module and the base assembly module comprises a casting that incorporates

cooling fins, the cooling fins being operable as a heat sink.

Birch, Stewart, Kolasch & Birch, LLP