

Gefördert durch:

Time Series Forecasting

3.4 Forecasting with Transformers

Mario Tormo Romero

Design IT. Create Knowledge.

What we'll cover in this video

- Why Transformers are relevant for time series forecasting
- Core concepts of Transformer architecture
- The self-attention mechanism explained
- How to adapt Transformers for sequential numerical data
- Strengths, limitations, and best use cases

Why Transformers for Forecasting?

- Originally developed for Natural Language
 Processing (NLP), now adapted across many domains
- Ability to model long-range dependencies without relying on recurrence
- Highly parallelizable enabling faster training compared to traditional RNNs
- Proven success in large-scale and complex forecasting problems

How Transformers Work (Core Concepts)

- Encoder-decoder structure (encoder usually optional for forecasting)
- Self-attention mechanism to relate all time steps
- Positional encoding to preserve sequence order
- Feed-forward layers for feature transformation

The Self-attention Nechanism

- Key idea: each time step can attend to any other
- Query, Key, and Value matrices
- Scaled dot-product attention
- Multi-head attention for capturing diverse relationships

Adapting Transformers for Time Series

- Differences from NLP:
 - Numeric time series inputs (uni- or multivariate)
 - Time-based positional encodings
 - Often decoder-only structure for forecasting
- Regression output layer instead of classification

Architecture	Use in Forecasting
Decoder-only	Commonly used for autoregressive, step- by-step forecasting (e.g., GPT-style models)
Encoder-decoder	Popular for multivariate and sequence-to- sequence forecasting (e.g., Temporal Fusion Transformer)
Encoder-only	Rarely used standalone; mainly for feature extraction or representation learning in forecasting pipelines

Strengths and Limitations

Strengths:

- Captures long-range dependencies
- Flexible for multi-feature sequences
- Highly scalable

Limitations:

- Requires large datasets
- Computationally intensive
- Lower interpretability

What we've learnt

- Transformers are powerful models for complex time series forecasting
- The self-attention mechanism enables global context understanding
- Adaptations are needed to handle numerical sequential data effectively
- Choice of architecture depends on forecasting task requirements
- Best suited for scenarios with ample data and computational resources