

Технически университет-София

Курсов проект

Проектиране на Водо-въздушна система за климатизиране на въздуха с вентилаторни конвектори

Катедра

"Топлинна и хладилна техника"

Студент: Теодор Детелинов Рачев

Фак.№: 051216018

Факултет: ЕМФ

Група: 14

Специалност: "Енергопреобразуващи технологии и енегрийна

ефективност в сгради и промишлени обекти"

Ръководител: дата:15.06.2020

/ас. инж. Иван Димчев/

Съдържание на обяснителната записка

- 1. Информация за сградата
- 2. Определяне на изчислителните условия
 - 2.1. Външни изчислителни условия
 - 2.2. Вътрешни изчислителни условия
- 3. Изчисляване на топлинни товари
 - 3.1. Изчисляване на коефициентите на топлопреминаване
 - 3.2. Отоплителен товар
 - 3.3. Охладителен товар
- 4. Съставяне на въздушен баланс на сградата
- 5. Построяване на процесите на топло- и влажностна обработка на влажния въздух.
- 6. Оразмеряване на елементите на ВОЦ и избор на вентилаторни конвектори
- 7. Оразмеряване и изчертаване на тръбна мрежа, избор на оборудване
- 8. Оразмеряване и изчертаване на въздуховодна мрежа, избор на оборудване
- 9. Приложения

Обяснителна записка

1. Информация за сградата

Обектът на проектиране е бизнес център в населено място Ихтиман.

Разглежда се третият етаж, чиято кота е +6,80m.

Техническото помещение е позиционирано на покрива на сградата, като захранващите въздуховоди са поставени в двоен под, връщата вентилация е поставена в тавана на етажа. Тръбната мрежа на топло- и студоносителя са положени в двоен под.

2. Определяне на изчислителните условия

2.1. Външни изчислителни условия

От Приложение №11 към чл. 194, ал. 1 и 2 от Наредба №15, според типа на сградата и местоположението й, се определят параметрите на външния въздух.

Таблица 1.

	Изчислителни параметри по групи за:											
Инсталации		зимен режим	1	летен режим								
	I	II	III	I	П	III	IV					
Отоплителна	$\overline{\theta}_{\text{e,mln}}$	$\theta_{e}(0,4\%)$	θ _e (1%)	82	%=1	545	=					
Вентилационна или климатична	$\begin{cases} \overline{\theta}_{e,min} \\ \phi_{e,l} \end{cases}$	$\begin{cases} \theta_{e} \left(0,4\% \right) \\ \phi_{e,II} \end{cases}$	$\begin{cases} \theta_{e} \left(1\%\right) \\ \phi_{e,III} \end{cases}$	$\begin{cases} \overline{\theta}_{e,max} \\ h_e(0,4\%) \end{cases}$	$\begin{cases} \theta_{e}(0,4\%) \\ h_{e}(0,4\%) \\ \phi_{e}(0,4\%) \end{cases}$	$\begin{cases} \theta_e(1\%) \\ h_e(1\%) \\ \phi_e(1\%) \end{cases}$	$\begin{cases} \theta_e(2\%) \\ h_e(2\%) \\ \phi_e(2\%) \end{cases}$					
За изсушаване на въздух, обезмъглителна	10 <u>-</u> - 1	1 1	1 (1 1	$\begin{cases} \theta_{e,d}(0,4\%) \\ h_{e}(0,4\%) \end{cases}$	$\begin{cases} \theta_{e,d}(1\%) \\ h_e(1\%) \end{cases}$	$\begin{cases} \theta_{e,d}(2\%) \\ h_e(2\%) \end{cases}$					

Типа на сградата е "Вентилационна и климатична", а сградата е административно-битова, следователно избирам група "II" (0,4% необезпеченост)

Таблица 2.

				Изчислителни параметри за външния въздух																		
	E	, KPa	зима				лято															
Населено място	исочина	налягане		необез нос		- 1 10		ос ОС		необезпеченост												
селено		н онъид	Fe,min	0.4%	1%		отоплител : пг. 🔏 = 1		_ Э _{е,так}		0.4	4%			19	6			2%	6		θ
H.	Надмо	Барометр		S.	F.	Средна	Брои (дни, Z	Денград А		\mathcal{G}_{e}	φe	he	Sed.	J.	φe	he	Sed	Đ,	φe	he	9 _{ed}	
		ш	°C	°C	°C	°C	бр.		°C	°C	%	kJ/kg	°C	°C	%	kJ/k g	°C	°C	%	kJ/kg	°C	K
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Ихтиман	637	93.9	-20	-14	-11	8.8	195	3400	34	33	31.1	60.2	24	30	36.8	57.1	23	28	40.8	54.7	22	12

2.2. Вътрешни изчислителни условия

От Приложение №12 към чл. 195, ал. 1 и 2, чл. 305, чл. 347, ал. 1 и 2 и чл. 366 от Наредба №15 Таблица 1 определям вътрешните изчислителни условия на помещенията (Категория на вътрешната топлинна среда- II).

Предназна- чение на помещението	Активност	Брой обитатели, бр./m²	Темпера усеща		сре	імална дна ост на цуха	Ниво на звуково налягане	Дебит на пресен въздух	
		Бр					db(A)	1/s, m ²	
			Лято Зима °C °C		Лято	Зима			
					m/s	m/s	-		
Единичен офис	1,2	0,1	24,5 ±1,5	22,0 ±2	0,22	0,18	35	1,4	
Конферентна	1,2	0,5	24,5 ±1,5	22,0 ±2	0,22	0,18	35	4,2	
зала									

При летен температурен режим ще се поддържат следните параметри на вътрешния микроклимат- $t_{\text{вт}}=25$ °C; $\phi_{\text{вт}}=50\%$.

При зимен температурен режим - t_{BT} = 22 °C; ϕ_{BT} = 50%.

Необработваните пространства се отчитат с температура 17 °C при зимен режим.

Температурата в лоджията при зимен режим приемам за 10 °C, след като е оградена със стъклена фасада.

3. Изчисляване на топлинни товари

3.1. Изчисляване на коефициентите на топлопреминаване на ограждащите повърхности

Пресмятането на изолация, на ограждащи елементи и конструкции, граничещи с външен въздух се извършва, чрез изчисляване на коефициента на топлопреминаване и определяне на необходимата дебелина на топлоизолацията за покриване на нормативните изисквания, посочени в Наредба №15 от 28 юли 2005 година и приложение №11 към член 194, ал. 1 и 2 (Таблица 1 и 2) и приложение №12 към чл. 195, ал. 1 и 2, член 305, член 347, ал. 1 и 2, и чл. 366 (Таблица 2) относно външните изчислителни параметри на населеното място, както и за параметрите на микроклимата.

(1)

Коефициент на топлопреминаване:

$$U = \frac{1}{R \operatorname{si} + \sum_{j=1}^{n} R + R \operatorname{se}}, [W/m^{2}K]$$

(2)

$$R_{si} = \frac{1}{hsi}$$
, m²K/W; $R_{se} = \frac{1}{hse}$, m²K/W;

Където:

U- Коефициент на топлопреминаване (изчислява се съгласно БДС EN ISO 6946), W/m^2K

 R_{si} - съпротивление на топлопреминаване от вътрешната повърхност на строителния елемент, $m^2 K/W$

 R_{se} - съпротивление на топлопреминаване на външната повърхност на строителния елемент, m^2K/W

R- термично съпротивление на строителния елемент $R_i = \delta i/\lambda i$, $W/m^2 K$

 h_{si} - Коефициент на топлопредаване от вътрешната повърхност на строителния елемент, W/m^2K

 h_{se} - Коефициент на топлопредаване от външната повърхност на строителния елемент, W/m^2K

 λ_{i} - Коефициент на топлопроводност на i-тия слой на строителния елемент, W/m^2K

 $\delta_{i^{-}}$ дебелина на i-тия слой на строителния елемент, m Стойностите на коефициентите $h_{si,}$ h_{se} и λ_{i} се взимат от справочна литература.

Стени, граничещи с външен въздух										
			λ,	R,						
Nº	Слой	δ, m	W/mk	m2K/W						
1	Външна варо-пясъчна маз.	0.02	0.87	0.023						
2	Ръшетъчни тухли	0.25	0.52	0.481						
3	Вътрешна варо-пясъчна маз.	0.02	0.7	0.029						
		Rλi		0.533						
		Rsi		0.13						
		Rse		0.04						
		U,w	ı/m2k	1.422						

Покрив, тип №2									
			λ,						
Nº	Слой	δ, m	W/mk	R, m2K/W					
1	Външна мазилка	0.025	0.692	0.036					
2	Тежък бетон	0.1	1.73	0.058					
3	Изолация	0.05	0.043	1.163					
4	Вътрешна мазилка	0.02	0.727	0.028					
		Rλi		1.285					
		Rsi		0.121					
		Rse		0.059					
		U , w/m2k		0.683					

 $U_{\text{вътрешни стени}} = 1,9 \text{ W/m}^2 \text{K}$

 $U_{\text{прозорци}} = 1,4 \text{ W/m}^2 \text{K}$

 $U_{\scriptscriptstyle B$ ътрешни врати = 2,25 W/m²K

3.2. Изчисляване на топлинните товари в помещенията

Стойностите на коефициентите на топлопреминаване на отделните повърхности са представени заедно с тези на топлинните товари на помещенията в Π риложение \mathcal{N} 1.

Общата сума от топлинните товари е на 25096 W, от където следва $88.06~\mathrm{W/m^2}.$

3.3. Изчисляване на охладителен товар

Всички пресмятания и данни на охладителните товари на отделните помещения са представени в Приложение № 2.

Общата сума от охладителните товари е на 28226 W, от където следва $94.56~{
m W/m^2}.$

4. Въздушен баланс на сградата

Данните за въздушния баланс са приети и изчислени спрямо нормите, представени в Наредба № 15. Техните стойности са изложени в Приложение № 3.

Дебитът на пресният въздух е приет да бъде с 10% повече от отработеният, за да може в помещенията да се поддържа надналягане.

5. Построяване на процесите на топло- и влажностна обработка на въздуха в системата

Процесите на обработка на въздуха са направени за помещение №309 за двата режима на работа на системата(зимен и летен). Използвания въздух, който постъпва в помещенията, с цел климатизиране, е смес от обработен външен въздух и рециркулационен.

Методиката за изчисления на Многозонова система за климатизиране на въздуха за поддържане на tп и фп. Схема с вентилаторни конвектори е взета от "Ръководство за Климатизация на въздуха, И. Банов, Издателство на ТУ-София, 2014" и е показана в *Приложение № 4*.

6. Оразмеряване на елементите на ВОЦ и избор на вентилаторни конвектори

Оразмеряването на мощностите на елементите на ВОЦ са изчислени по долупосочените формули и са изложени в Приложение № 4.

$$\dot{Q}$$
, во = \dot{m} , пв * (h вн – h во), kW(летен режим)

$$\dot{Q}$$
, дк = \dot{m} , пв * (h дк – h о), kW(зимен/летен режим)

$$\dot{Q}$$
, о = \dot{m} , пв * cp * (t во/ t пк — t о), kW(зимен/летен режим)

$$\dot{Q}$$
, пк = \dot{m} , пв * (h пк – h вн), kW(зимен режим)

За сградата са предвидени <u>подови вентилаторни конвектори</u>. За подбора на вентилаторните конвектори е използван софтуер на фирма "BPS Clima", като всички данни(мощности, тип, брой за помещение, въздушен поток и размери) от подбора са представени в *Приложение* № 5

7. Оразмеряване и изчертаване на тръбна мрежа. Избор на оборудване.

Тръбната мрежа е проектирана за полипропиленови (PPR) тръби. Данните за техническите им характеристики са взети от каталог на фирма Pipelife. Използвана е една тръбна мрежа за двата режима на работа на системата (двутръбна система), като превключването на режимите се извършва чрез трипътни вентили, разположени непосредствено след помпената система.

(Приложение №6- водоразпределителна мрежа).

Водоразпределителите и водосъбирателите на системата са групирани в две групи- "отопление" и "охлаждане", всяка с по два съданагнетателен и смукателен.

Избраните тръбопроводи и характеристиките на топло- и студоносителя в тях са посочени в *Приложение №7-щранг схема*. Изравняването на налягането се извършва чрез секретни вентили. Загубите на налягане в тръбната мрежа са посочени в *Приложение №10*.

Избраните помпи и техните характеристики са посочени в *Приложения* №14.

8. Оразмеряване и изчертаване на въздуховодна мрежа. Избор на оборудване.

За изграждането на въздуховодната мрежа са предвидени правоъгълни въздуховоди от подцинкована стомана, както и кръгли гъвкави въздуховоди за крайните отклонения на обратният въздух.

Проектирането на въздуховодната мрежа е извършено по метода на еднаквите линейни загуби на налягане във въздуховодите, като след оразмеряването са направени корекции, с цел оптимизиране на характеристиките на въздушния поток.

Данните за характеристиките на въздуховодите и фитингите са взети от ASHRAE Handbook- Fundamentals (2009/2017) и от OBK 3.

Проектираната въздуховодна система е съставена от два клона. Данните за състоянията на въздуха в отделните участъци, съпротивленията на регулиращите въздуха клапи са изложени в Приложение N = 11.

Схемата на климатизацията и вентилацията е представена в Приложение N = 8. Вентилационната система е проектирана аналогично, характеристиките и са посочени в *Приложение № 13*.

Характеристиките на решетките за обратният въздух са посочени в *Приложение № 12*.

Характеристиките на центробежният вентилатор са представени в *Приложение* N2 15.

9. Приложения.