Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond

Presented by: Ife. Adebara

Introduction

- An architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts.
- Uses a single BiLSTM encoder with a shared BPE vocabulary for all languages. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification.
- It uses a single encoder to handle multiple languages, so that semantically similar sentences in different languages are close in the embedding space.

Motivation

- NLP techniques are known to be particularly data hungry, limiting their applicability in many practical scenarios.
- Learning a separate model for each language are unable to leverage information across different languages, greatly limiting their potential performance for low-resource languages.
- Languages with limited resources benefit from joint training over many languages, zero-shot transfer of an NLP model from one language to another, and the possibility to handle codeswitching.

What is Zero-Shot Transfer

- Zero-Shot learning method aims to solve a task without receiving any example of that task at training phase.
- It can be utilized for a given task by only training the target model (e.g. classifier) on a single language.

Related work

- Learning continuous vector representations of longer linguistic units like sentences (Le and Mikolov, 2014; Kiros et al., 2015)
- Cross-lingual word embeddings (Ruder et al., 2017), which are commonly learned jointly from parallel corpora (Gouws et al., 2015; Luong et al., 2015).
- Separately train word embeddings for each language and map them to a shared space based on a bilingual dictionary (Mikolov et al., 2013a; Artetxe et al., 2018a) or in a fully unsupervised manner (Conneau et al., 2018a; Artetxe et al., 2018b).

Figure 1: Architecture of our system to learn multilingual sentence embeddings.

Methodology Architecture

- Sequence to sequence encoder decoder
- A single encoder and decoder is shared by all languages involved.
- A joint byte-pair encoding (BPE) vocabulary with 50k operations, which is learned on the concatenation of all training corpora makes the encoder learn language independent representations.
- The decoder takes a language ID embedding that specifies the language to generate, which is concatenated to the input and sentence embed- dings at every time step

Architecture

- A stacked BiLSTM encoder 1 to 5 layers, each 512-dimensional (after concatenating both directions) are 1024 dimensional.
- Decoder one layer of dimension 2048.
- The input embedding size is set to 320
- The language ID embedding has 32 dimensions.

Training Strategy

- In preceding work (Schwenk and Douze, 2017; Schwenk, 2018), each input sentence was jointly translated into all other languages.
 - Drawbacks: when trying to scale to a large number of languages, it requires an N-way parallel corpus, which is difficult to obtain for all languages and, it has a quadratic cost with respect to the number of languages
- Therefore, they use only two target languages.
- At the same time, they relax the requirement for N-way parallel corpora by considering separate alignments for each language combination.
- Training minimizes the cross-entropy loss on the training corpus, alternating over all combinations of the languages involved.

Training

- Bi- texts aligned with two target languages English and Spanish
- Training corpus combination of Europarl, United Nations, Open-Subtitles 2018, Global Voices, Tanzil and Tatoeba corpus (223 million parallel texts in all)
- Preprocessing with Moses; Jieba for Chinese and Mecab for Japanese
- Greek is romanized into the Latin alphabet
- Joint encoder itself has no information on the language or writing script of the tokenized input texts. It is even possible to mix multiple languages in one sentence.

	af	am	ar	ay	az	be	ber	bg	bn	br	bs	ca	cbk	cs	da	de
train sent.	67k	88k	8.2M	14k	254k	5k			913k		4.2M	813k	1k	5.5M	7.9M	8.7M
en→xx err. 1	11.20	60.71	8.30	n/a						83.50		4.00	24.20	3.10	3.90	0.90
xx→en err.	9.90	55.36	7.80	n/a						84.90		4.20	21.70	3.80	4.00	1.00
test sent.	1000	168	1000	_	1000	1000	1000	1000	1000	1000	354	1000	1000	1000	1000	1000
	dtp	dv	el	en	eo	es	et	eu	fi	fr	ga	gl	ha	he	hi	hr
train sent.	1k	90k	6.5M	2.6M	397k	4.8M	5.3M	1.2M	7.9M	8.8M	732	349k	127k	4.1M	288k	4.0M
en→xx err. 9	92.10	n/a	5.30	n/a	2.70	1.90	3.20	5.70	3.70	4.40	93.80	4.60	n/a	8.10	5.80	2.80
xx→en err. 9	93.50	n/a	4.80	n/a	2.80	2.10	3.40	5.00	3.70	4.30	95.80	4.40	n/a	7.60	4.80	2.70
test sent.	1000	_	1000	_	1000	1000	1000	1000	1000	1000	1000	1000	_	1000	1000	1000
	hu	hy	ia	id	ie	io	is	it	ja	ka	kab	kk	km	ko	ku	kw
train sent.	5.3M	6k	9k	4.3M	3k	3k	2.0M	8.3M	3.2M	296k	15k	4k	625	1.4M	50k	2k
en→xx err.	3.90	59.97	5.40	5.20	14.70	17.40	4.40	4.60	3.90	60.32	39.10	80.17	77.01	10.60	80.24	91.90
xx→en err.	4.00	67.79	4.10	5.80	12.80	15.20	4.40	4.80	5.40	67.83	44.70	82.61	81.72	11.50	85.37	93.20
test sent.	1000	742	1000	1000	1000	1000	1000	1000	1000	746	1000	575	722	1000	410	1000
	kzi	la	lfn	lt	lv	mg	mhr	mk	ml	mr	ms	mv	nb	nds	nl	oc
train sent.	kzj 560	la 19k	lfn 2k	lt 3.2M	lv 2.0M	mg 355k	mhr 1k	mk 4.2M	ml 373k	mr 31k	ms 2.9M	my 2k	nb 4.1M		nl 8.4M	oc 3k
train sent. en→xx err. 9	560	19k	2k	3.2M	2.0M	355k		4.2M					4.1M		8.4M	3k
	560 91.60	19k 41.60	2k 35.90	3.2M 4.10	2.0M 4.50	355k n/a	1k	4.2M 5.20	373k	31k	2.9M	2k	4.1M 1.30	12k	8.4M 3.10	3k 39.20
en→xx err. 9 xx→en err. 9	560 91.60 94.10	19k 41.60	2k 35.90 35.10	3.2M 4.10 3.40	2.0M 4.50 4.70	355k n/a	1k 87.70 91.50	4.2M 5.20	373k 3.35	31k 9.00 8.00	2.9M 3.40	2k n/a	4.1M 1.30 1.10	12k 18.60	8.4M 3.10 4.30	3k 39.20 38.40
en→xx err. 9 xx→en err. 9	560 91.60 94.10	19k 41.60 41.50	2k 35.90 35.10	3.2M 4.10 3.40	2.0M 4.50 4.70	355k n/a n/a	1k 87.70 91.50	4.2M 5.20 5.40	373k 3.35 2.91	31k 9.00 8.00	2.9M 3.40 3.80	2k n/a n/a	4.1M 1.30 1.10	12k 18.60 15.60	8.4M 3.10 4.30	3k 39.20 38.40
en→xx err. 9 xx→en err. 9	560 91.60 94.10 1000 pl	19k 41.60 41.50 1000 ps	2k 35.90 35.10 1000 pt	3.2M 4.10 3.40 1000	2.0M 4.50 4.70 1000	355k n/a n/a -	1k 87.70 91.50 1000	4.2M 5.20 5.40 1000 sk	373k 3.35 2.91 687	31k 9.00 8.00 1000	2.9M 3.40 3.80 1000 sq	2k n/a n/a –	4.1M 1.30 1.10 1000	12k 18.60 15.60 1000 sw	8.4M 3.10 4.30 1000	3k 39.20 38.40 1000
en→xx err. 9 xx→en err. 9 test sent.	560 91.60 94.10 1000 pl 5.5M	19k 41.60 41.50 1000 ps	2k 35.90 35.10 1000 pt 8.3M	3.2M 4.10 3.40 1000	2.0M 4.50 4.70 1000 ru 9.3M	355k n/a n/a - sd	1k 87.70 91.50 1000	4.2M 5.20 5.40 1000 sk	373k 3.35 2.91 687 sl 5.2M	31k 9.00 8.00 1000 so	2.9M 3.40 3.80 1000 sq	2k n/a n/a –	4.1M 1.30 1.10 1000 sv 7.8M	12k 18.60 15.60 1000 sw	8.4M 3.10 4.30 1000 ta 42k	3k 39.20 38.40 1000 te 33k
en→xx err. 9 xx→en err. 9 test sent.	560 91.60 94.10 1000 pl 5.5M 2.00	19k 41.60 41.50 1000 ps 4.9M	2k 35.90 35.10 1000 pt 8.3M	3.2M 4.10 3.40 1000 ro 4.9M 2.50	2.0M 4.50 4.70 1000 ru 9.3M	355k n/a n/a - sd 91k	1k 87.70 91.50 1000 si 796k	4.2M 5.20 5.40 1000 sk 5.2M	373k 3.35 2.91 687 sl 5.2M	31k 9.00 8.00 1000 so 85k	2.9M 3.40 3.80 1000 sq 3.2M	2k n/a n/a - sr 4.0M	4.1M 1.30 1.10 1000 sv 7.8M 3.60	12k 18.60 15.60 1000 sw 173k	8.4M 3.10 4.30 1000 ta 42k 31.60	3k 39.20 38.40 1000 te 33k 18.38
en→xx err. 9 xx→en err. 9 test sent. train sent. 6 en→xx err. xx→en err.	560 91.60 94.10 1000 pl 5.5M 2.00	19k 41.60 41.50 1000 ps 4.9M 7.20 6.00	2k 35.90 35.10 1000 pt 8.3M 4.70	3.2M 4.10 3.40 1000 ro 4.9M 2.50 2.70	2.0M 4.50 4.70 1000 ru 9.3M 4.90 5.90	355k n/a n/a - sd 91k n/a	1k 87.70 91.50 1000 si 796k n/a	4.2M 5.20 5.40 1000 sk 5.2M 3.10	373k 3.35 2.91 687 sl 5.2M 4.50 3.77	31k 9.00 8.00 1000 so 85k n/a	2.9M 3.40 3.80 1000 sq 3.2M 1.80 2.30	2k n/a n/a - sr 4.0M 4.30 5.00	4.1M 1.30 1.10 1000 sv 7.8M 3.60	12k 18.60 15.60 1000 sw 173k 45.64	8.4M 3.10 4.30 1000 ta 42k 31.60	3k 39.20 38.40 1000 te 33k 18.38
en→xx err. 9 xx→en err. 9 test sent. train sent. 6 en→xx err. xx→en err.	560 91.60 94.10 1000 pl 5.5M 2.00 2.40	19k 41.60 41.50 1000 ps 4.9M 7.20 6.00	2k 35.90 35.10 1000 pt 8.3M 4.70 4.90	3.2M 4.10 3.40 1000 ro 4.9M 2.50 2.70	2.0M 4.50 4.70 1000 ru 9.3M 4.90 5.90	355k n/a n/a - sd 91k n/a n/a	1k 87.70 91.50 1000 si 796k n/a n/a	4.2M 5.20 5.40 1000 sk 5.2M 3.10 3.70	373k 3.35 2.91 687 sl 5.2M 4.50 3.77	31k 9.00 8.00 1000 so 85k n/a n/a	2.9M 3.40 3.80 1000 sq 3.2M 1.80 2.30	2k n/a n/a - sr 4.0M 4.30 5.00	4.1M 1.30 1.10 1000 sv 7.8M 3.60 3.20	12k 18.60 15.60 1000 sw 173k 45.64 39.23	8.4M 3.10 4.30 1000 ta 42k 31.60 29.64	3k 39.20 38.40 1000 te 33k 18.38 22.22
en→xx err. 9 xx→en err. 9 test sent. train sent. 6 en→xx err. xx→en err. test sent.	560 91.60 94.10 1000 pl 5.5M 2.00 2.40 1000 tg	19k 41.60 41.50 1000 ps 4.9M 7.20 6.00 1000	2k 35.90 35.10 1000 pt 8.3M 4.70 4.90 1000	3.2M 4.10 3.40 1000 ro 4.9M 2.50 2.70 1000 tr	2.0M 4.50 4.70 1000 ru 9.3M 4.90 5.90 1000	355k n/a n/a - sd 91k n/a n/a -	1k 87.70 91.50 1000 si 796k n/a n/a -	4.2M 5.20 5.40 1000 sk 5.2M 3.10 3.70 1000	373k 3.35 2.91 687 sl 5.2M 4.50 3.77 823	31k 9.00 8.00 1000 so 85k n/a n/a -	2.9M 3.40 3.80 1000 sq 3.2M 1.80 2.30 1000	2k n/a n/a - sr 4.0M 4.30 5.00 1000	4.1M 1.30 1.10 1000 sv 7.8M 3.60 3.20 1000	12k 18.60 15.60 1000 sw 173k 45.64 39.23	8.4M 3.10 4.30 1000 ta 42k 31.60 29.64	3k 39.20 38.40 1000 te 33k 18.38 22.22
en→xx err. 9 xx→en err. 9 test sent. train sent. 6 en→xx err. xx→en err. test sent.	560 91.60 94.10 1000 pl 5.5M 2.00 2.40 1000 tg	19k 41.60 41.50 1000 ps 4.9M 7.20 6.00 1000 th 4.1M	2k 35.90 35.10 1000 pt 8.3M 4.70 4.90 1000 tl 36k	3.2M 4.10 3.40 1000 ro 4.9M 2.50 2.70 1000 tr 5.7M	2.0M 4.50 4.70 1000 ru 9.3M 4.90 5.90 1000 tt 119k	355k n/a n/a - sd 91k n/a n/a - ug 88k	1k 87.70 91.50 1000 si 796k n/a n/a - uk 1.4M	4.2M 5.20 5.40 1000 sk 5.2M 3.10 3.70 1000 ur 746k	373k 3.35 2.91 687 sl 5.2M 4.50 3.77 823 uz 118k	31k 9.00 8.00 1000 so 85k n/a n/a -	2.9M 3.40 3.80 1000 sq 3.2M 1.80 2.30 1000 wuu 2k	2k n/a n/a - sr 4.0M 4.30 5.00 1000 yue 4k	4.1M 1.30 1.10 1000 sv 7.8M 3.60 3.20 1000 zh 8.3M	12k 18.60 15.60 1000 sw 173k 45.64 39.23	8.4M 3.10 4.30 1000 ta 42k 31.60 29.64	3k 39.20 38.40 1000 te 33k 18.38 22.22
en→xx err. 9 xx→en err. 9 test sent. train sent. 4 en→xx err. xx→en err. test sent. train sent.	560 91.60 94.10 1000 pl 5.5M 2.00 2.40 1000 tg 124k	19k 41.60 41.50 1000 ps 4.9M 7.20 6.00 1000 th 4.1M 4.93	2k 35.90 35.10 1000 pt 8.3M 4.70 4.90 1000 tl 36k 47.40	3.2M 4.10 3.40 1000 ro 4.9M 2.50 2.70 1000 tr 5.7M 2.30	2.0M 4.50 4.70 1000 ru 9.3M 4.90 5.90 1000 tt 119k 72.00	355k n/a n/a - sd 91k n/a n/a - ug 88k 59.90	1k 87.70 91.50 1000 si 796k n/a n/a - uk 1.4M 5.80	4.2M 5.20 5.40 1000 sk 5.2M 3.10 3.70 1000 ur 746k 20.00	373k 3.35 2.91 687 sl 5.2M 4.50 3.77 823 uz 118k 82.24	31k 9.00 8.00 1000 so 85k n/a n/a - vi 4.0M	2.9M 3.40 3.80 1000 sq 3.2M 1.80 2.30 1000 wuu 2k 25.80	2k n/a n/a - sr 4.0M 4.30 5.00 1000 yue 4k 37.00	4.1M 1.30 1.10 1000 sv 7.8M 3.60 3.20 1000 zh 8.3M 4.10	12k 18.60 15.60 1000 sw 173k 45.64 39.23	8.4M 3.10 4.30 1000 ta 42k 31.60 29.64	3k 39.20 38.40 1000 te 33k 18.38 22.22

able 1: List of the 93 languages along with their training size, the resulting similarity error rate on Tatoeba, and number of sentences in it. Dashes denote language pairs excluded for containing less than 100 test sentences.

• • • • • • • • •

Evaluation

- The model is trained only on sentences in English and tested on all languages. The encoder is also constant and not fine-tuned for every task
 - XNLI transfer performance of an NLI model trained on English data over 14 additional test languages
 - Cross-lingual document classification (MLDoc)
 - Bitext mining (BUCC)
 - Multilingual similarity search in 112 languages

XNLI

- Given two sentences, a premise and a hypothesis, decides whether there is an entailment, contradiction or neutral relationship
- 2,500 development and 5,000 test instances translated from English into 14 languages
- Train a classifier on top of our multilingual encoder using the combination of the two sentence embeddings: $(p, h, p \cdot h, |p h|)$, where p and h are the premise and hypothesis.
- All hyperparameters were optimized on the English XNLI development corpus only, and then, the same classifier was applied to all languages of the XNLI test set. As such, we did not use any training or development data in any of the foreign languages.
- the multilingual sentence embeddings are fixed and not fine-tuned on the task or the language.

XNLI Evaluation

		EN	$EN \to XX$													
			fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur
Zero-Shot Transfer, or	ne NLI systen	n for a	ll lang	guage	s:											
Conneau et al. (2018b) BERT uncased*	X-BiLSTM X-CBOW Transformer	64.5	60.3	60.7	61.0	60.5	60.4	57.8	58.7	57.5	58.8	64.1 56.9	58.8	56.3	50.4	
Proposed method	BiLSTM	73.9	71.9	72.9	72.6	72.8	74.2	72.1	69.7	71.4	72.0	69.2	71.4	65.5	62.2	61.0
Translate test, one En	glish NLI sys	tem:														
Conneau et al. (2018b) BERT uncased*	BiLSTM Transformer				68.7 74.4							64.4 -				
Translate train, separa	ate NLI syste	ms for	each	langu	age:											
Conneau et al. (2018b) BERT cased*	BiLSTM Transformer				66.5 75.9							62.8 68.9 [†]				

Table 2: Test accuracies on the XNLI cross-lingual natural language inference dataset. All results from Conneau et al. (2018b) correspond to max-pooling, which outperforms the last-state variant in all cases. Results involving MT do not use a multilingual model and are not directly comparable with zero-shot transfer. Overall best results are in bold, the best ones in each group are underlined.

MLDoc: cross-lingual classification

- MLDoc dataset Schwenk and Li (2018),
- 1,000 training and development; 4,000 test documents for each language, divided in 4 different genres
- Train a classifier on top of our multilingual encoder using the English training data, optimizing hyperparameters on the English development set, and evaluating the resulting system in the remaining languages.

		EN	$EN \to XX$							
			de	es	fr	it	ja	ru	zh	
Schwenk	MultiCCA + CNN	92.20	81.20	72.50	72.38	69.38	67.63	60.80	74.73	
and Li	BiLSTM (Europarl)	88.40	71.83	66.65	72.83	60.73	-	-	-	
(2018)	BiLSTM (UN)	88.83	-	69.50	74.52	-	-	61.42	71.97	
Proposed	method	89.93	84.78	77.33	77.95	69.43	60.30	67.78	71.93	

Table 3: Accuracies on the MLDoc zero-shot cross-lingual document classification task (test set).

BUCC: bitext mining

- Given two comparable corpora in different languages, the task consists in identifying sentence pairs that are translations of each other.
- Extracting parallel sentences from a comparable corpus between English and four foreign languages: German, French, Russian and Chinese.
- The dataset consists of 150K to 1.2M sentences for each language, split into a sample, training and test set, with about 2–3% of the sentences being parallel.

$$score(x, y) = margin(cos(x, y),$$

$$\sum_{z \in NN_k(x)} \frac{cos(x, z)}{2k} + \sum_{z \in NN_k(y)} \frac{cos(y, z)}{2k})$$

where x and y are the source and target sentences, and $NN_k(x)$ denotes the k nearest neighbors of x in the other language. The paper explores different margin functions, with ratio (margin(a, b) = $\frac{a}{b}$) yielding the best results. This notion of margin is related to CSLS (Conneau et al., 2018a).

		TR	AIN		TEST			
	de-en	fr-en	ru-en	zh-en	de-en	fr-en	ru-en	zh-en
Azpeitia et al. (2017)	83.33	78.83	-	-	83.74	79.46	-	-
Grégoire and Langlais (2017)	-	20.67	-	-	-	20	-	-
Zhang and Zweigenbaum (2017)	-	-	-	43.48	-	-	-	45.13
Azpeitia et al. (2018)	84.27	80.63	80.89	76.45	85.52	81.47	81.30	77.45
Bouamor and Sajjad (2018)	-	75.2	-	-	-	76.0	-	_
Chongman Leong and Chao (2018)	-	-	-	58.54	-	-	-	56
Schwenk (2018)	76.1	74.9	73.3	71.6	76.9	75.8	73.8	71.6
Artetxe and Schwenk (2018)	94.84	91.85	90.92	91.04	95.58	92.89	92.03	92.57
Proposed method	95.43	92.40	92.29	91.20	96.19	93.91	93.30	92.27

Table 4: F1 scores on the BUCC mining task.

Tatoeba: similarity search

- The dataset consists of up to 1,000 English-aligned sentence pairs for each language.
- Evaluation is done by finding the nearest neighbor for each sentence in the other language according to cosine similarity and computing the error rate.

Ablation Studies

Depth	Tatoeba Err [%]	BUCC F1	MLDoc Acc [%]	XNLI-en Acc [%]	XNLI-xx Acc [%]
1	37.96	89.95	69.42	70.94	64.54
3	28.95	92.28	71.64	72.83	68.43
5	26.31	92.83	72.79	73.67	69.92

Table 5: Impact of the depth of the BiLSTM encoder.

				XNLI-en Acc [%]	
_	26.31	92.83	72.79	73.67	69.92
$\times 1$	26.89	93.01	74.51	73.71	69.10
$\times 2$	28.52	93.06	71.90	74.65	67.75
$\times 3$	27.83	92.98	73.11	75.23	61.86

Table 6: Multitask training with an NLI objective and different weightings.

#langs			XNLI-en Acc [%]	
All (93) Eval (18)		72.79 75.63	73.67 72.99	69.92 68.84

Table 7: Comparison between training on 93 languages and training on the 18 evaluation languages only.