Mathematics 242 Homework.

Here are some practice problems. I took some of these problems from the online text *Elementary Differential Equations* by William F. Trench which can be found at

http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_FREE_DIFFEQ_

It is a good source for worked examples.

Problem 1. Is $y = e^x$ a solution to $y' = \frac{1}{u^2}$? Explain how you got your answer.

Problem 2. Assume

$$\frac{dy}{dx} = \frac{1 + x - y}{1 + x^2 + y^2}$$

- (a) If y(0) = 2 what is y'(0)?
- (b) If y(2) = 4 compute y'(2) and use it to estimate y(2.05).

Problem 3. Find the critical points of the equation

$$y' = .1y(y - 5)(15 - y).$$

and sketch graphs of the critical solutions along with the solutions with y(0) = 20, y(0) = 10, y(0) = 3, and y(0) = -2 all on the same axis. If y(0) = 3 estimate y(100).

Problem 4. Find the general solution to the following:

- (a) $\frac{du}{dt} ku = 0$ where k is constant.
- (b) y'' + 3y = 1.
- (c) $y' + (\tan x)y = \cos x$. (d) $y' = \frac{3x^2 + 2x + 1}{2y 3}$.
- (e) $x^2yy' = (y^2 1)^{3/2}$.

- (e) $x yy (y 1)^{3/2}$ (f) $7xy' 2y = -\frac{x^2}{y^6}$. (g) $y' xy = x^3y^3$. (h) $y' = \frac{y + x}{x}$. (i) $y' = \frac{y^2 + 2xy}{x^2}$.

Problem 5. Find the solutions to the following initial value problems.

(a)
$$y' = \frac{xy + y^2}{x^3}$$
, $y(-1) = 2$.

(b)
$$\frac{du}{dt} - tu = tu^{3/2}, \quad u(1) = 4.$$

- (c) y' + ky = 1, y(0) = 1 where k > 0 is a constant. (d) $y' + x(y^2 + y) = 0$, y(2) = 1.

Problem 6. A ceramic insulator is baked at 400°C and cooled in a rewhich the temperature is 25°C. After 4 minutes its temperature is 25°C what is its temperature after 8 minutes?	
Problem 7. A tank initially contains 40 pounds of salt dissolved gallons of water. Starting $t = 0$, water that contains $1/2$ pound of sa	

gallon is poured into the tank at the rate of 4 gal/min and the mixture is drained from the tank at the same rate.
(a) Find a differential equation for the quantity Q(t) of salt in the tank at time t > 0 and solve the equation to determine Q(t).

	time $t > 0$ and solve the equation to determine $Q(t)$.	
(b)	Find $\lim_{t\to\infty} Q(t)$.	