## Machine Learning HW2 report R05944013 網媒一 高滿馨

## 1.Logistic Regression Function

使用cross entropy 當cost function, 把trainData和weight做內積後, 送進sigmoid function 得到最終的預測值,使用adagrad algorithm來調整learning rate。最後classify的方式是,假如最終值的結果< 0.5 就是 0, 否則就是1。

$$C = -\frac{1}{n} \sum_{x} [y \ln a + (1 - y) \ln(1 - a)],$$

```
def sigmoid( X ):
 d = 1.0/(1.0 + np.exp( -1.0*X))
 return d
```

code fragment: sigmoid function

```
def gradientDescent( trainData, yHead, weight, count ):
J_History = zeros( shape = ( iteration, 1 ) )
accumulate = 0
for x in range( 0, iteration ):
    prediction = sigmoid( trainData.dot(weight) )
    for i in range( featureNum+1 ):
         #get trainData
         tmp = trainData[:, i]
         tmp.shape = (count, 1)
        #compute gradient
        derivative = ( ( ( prediction - yHead )*tmp ).sum() )/count
        accumulate = accumulate + derivative*derivative
         learningRate = alpha/(delta+sqrt(accumulate))
        weight[i][0] = weight[i][0] - learningRate*derivative
    J_History[x][0] = computeErrorRate( trainData, yHead, weight )
    print("finish iteration " + str(x) + ", error is "+ str( J_History[x][0] ) )
return weight, J_History
```

code fragment: gradient descent

2. 方法2是使用3層的neural network來做training,第一層是input layer,第二層是hidden layer,neuron數可以調整,但試過多種參數後,最後決定使用10個neurons,最後一層是outputnode,可以直接output出最終值,假如小於0.5就判定為0,否則判定為1。 sigmoid function則是使用hyper tangent。有使用adagrad algorithm來調整learning rate,另外有再去計算momentum來更新,效果確實有比較好。最後最好的model是使用 adagrad和momentum,iteration為100圈的架構。



結果上傳kaggle的部分,最後neural network最好的model有比logistic regression的效果好。可能是因為中間那層hidden layer有做到feature transformation,所以原本無法被分開的一些測資,最後都可以順利地被classify,因此效果比logistic regression的效果好。

3.這次的作業中,在實作完基本的架構後,optimization的部分比較著重在learning rate調整的部分。有想過要用統計的方式去計算correlation,看是否能夠降維,不過看過data後覺得大部分的data都是0,感覺correlation不會有太好的效果,所以就沒有去測試。adaptive learning rate的部分,有把之前學過的多種演算法都拿來試試看,包括RMSProp,Adam等等,不過這些演算法雖然可以有效降低training error rate,找到真正的最低點,但反而會造成overfitting,準確度反而沒有提升。尤其是RMSProp,training error可以降低到0.0,但public set的準確度很低。因此,可以看出調整learning rate來得到optimize的效果是有限的。

## Performance Comparison

|                                             | Training Error      | Kaggle Score | iteration |
|---------------------------------------------|---------------------|--------------|-----------|
| Logistic Regression                         | 0.072324418895      | 0.9333       | 100000    |
| Neural Network with<br>Adagrad and Momentum | 0.02024493876530867 | 0.94         | 100       |

|                                | Training Error | Kaggle Score | iteration |
|--------------------------------|----------------|--------------|-----------|
| Neural Network with<br>RMSProp | 0.0            | 0.44         | 100       |
| Neural Network with<br>Adam    | 0.0204948762   | 0.936667     | 150       |