

Agenda

Part 1: OCR – Optical Character Recognition

- Introduction to OCR
- OCR Applications
- Technical Pipeline
- Tools & Algorithms
- Challenges and Trends

Part 2: Web Scraping

- Introduction to Web Scraping
- Key Concepts (HTML, DOM, XPath)
- Libraries & Tools
- Legal/Ethical Considerations
- Common Challenges & Best Practices

Part 3: Voice Recognition

- Voice vs Speech Recognition
- Audio Processing Concepts
- Applications & APIs
- Deep Learning in Voice Tech
- Future Directions and Challenges

What is Optical Character Recognition (OCR)?

- OCR stands for Optical Character Recognition
- •It is a technology used to convert different types of

documents—such as scanned paper documents, PDFs, or

images—into editable and searchable data

- Recognizes text characters in printed or handwritten form
- Used in digital archiving, automation, data extraction, and

more

History and Evolution of OCR

- •1929: First OCR-like machine patented for reading characters (Gustav Tauschek Germany)
- •1950s–60s: OCR developed for banking and postal systems
- •1965: IBM's "Scan-Optical Reader" introduced
- •1970s–80s: OCR commercialized for office use (reading typed or printed text)
- •1990s: Introduction of OCR software for PCs (like ABBYY, OmniPage)
- •2000s-Today:
- Al-based OCR with machine learning and deep learning
- Open-source tools like Tesseract (by Google)
- •Supports **handwriting**, multiple languages, and **real-time OCR** on smartphones

How OCR Works

SCANNED

IMAGE FILE

DOCUMENT

SCAN

OCR

TEXT

DOCUMENT

Image Acquisition

Input can be scanned documents, photos, or PDFs

Preprocessing

Noise reduction, binarization, resizing, deskewing Improves image quality for better recognition

Text Detection (Segmentation)

Locates regions in the image that contain text Segments lines, words, and individual characters

Character Recognition

Uses pattern matching or ML models to identify characters Converts visual symbols into digital characters (A–Z, 0–9, etc.)

Postprocessing

Spell check, error correction, language modeling Formats the recognized text into structured output

Output Generation

Text is saved in formats like TXT, DOCX, or searchable PDFs

Preprocessing Techniques in OCR

Grayscale Conversion

Converts color images to shades of gray to simplify processing

Binarization

Converts grayscale to black & white

Common method: Otsu's Thresholding

Noise Removal

Removes specks, distortions, or smudges using filters (e.g., median filter)

Deskewing

Corrects tilted or rotated images to align text properly

Cropping & Border Removal

Focuses on text areas and removes irrelevant parts

Text Line Segmentation

Breaks down the image into lines, words, or characters

Normalization

Rescales and aligns characters for consistent shape

recognition

Text Detection vs Text Recognition

Text Detection	Text Recognition	
Finds where text is located in image	Identifies what the text actually says	
Outputs bounding boxes around text areas	Converts image regions into actual characters	
Doesn't care about content	Focuses on content inside text areas	
Techniques: MSER, EAST, CTPN	Techniques: CNNs, RNNs, CRNNs, Tesseract OCR	
Step 1 in OCR pipeline	Step 2 in OCR pipeline	

Tools of OCR

X Tool / Algorithm	Type	Use Case	* Special Strengths
Tesseract OCR	Deep Learning (LSTM)	Document OCR	Open-source, multi-language, CLI & Python support
CRNN (CNN + RNN + CTC)	Deep Learning	Handwriting, Scene Text OCR	Sequence modeling, real-time performance
EAST (Text Detector)	Deep Learning	Scene Text Detection	Fast and accurate rotated box detection
MSER + HOG + SVM	Traditional (Classical CV)	Basic OCR, Simple Layouts	Lightweight, no training needed
Google Vision API	Cloud + Deep Learning	Documents, Images, Mobile	Powerful cloud-based OCR, real-time text reading
AWS Textract	Cloud + Deep Learning	Structured Docs (Forms, Tables)	Text + Form parsing, table structure extraction
ABBYY FineReader	Hybrid	Professional Document OCR	High-accuracy, PDF editing, OCR SDK available
OpenCV OCR	Traditional / Hybrid	Custom OCR Tasks	Flexible, can integrate Tesseract or custom tools

Challenges in OCR

Handwriting Recognition

Variability in writing styles and spacing Cursive and connected letters are hard to segment

Image Noise & Artifacts

Blurred scans, shadows, low resolution, or compression artifacts Can confuse detection and recognition stages

Skewed or Rotated Text

Scanned documents or camera-captured images may be tilted

Fonts & Text Styles

Decorative or distorted fonts can hinder recognition accuracy

Multilingual and Mixed Scripts

OCR engines may struggle with documents that mix languages/scripts E.g., Arabic + English or Latin + Cyrillic

Scene Text in Complex Backgrounds

Real-world images (e.g., street signs) have cluttered backgrounds, angles, lighting variations

Structured Documents

Tables, forms, and multi-column layouts are hard to parse correctly

Future of OCR and Al Integration

Deep Learning & Transformers for OCR

Shift from rule-based systems to AI-driven models

Transformer-based OCR (e.g., TrOCR by Microsoft) improves accuracy

Better Handwriting Recognition

Al models are learning cursive, mixed-language, and personalized handwriting

Useful for digitizing historical documents and handwritten notes

Document Understanding & Layout Analysis

Beyond just reading text — Al models extract structure, fields, tables Foundation for **Intelligent Document Processing (IDP)**

Multilingual & Cross-Script OCR

Modern OCR engines now support real-time multi-language recognition Integration with translation systems

On-Device & Edge AI OCR

OCR on mobile without internet Faster, more private, and usable in remote areas

Combining OCR with NLP & RPA

End-to-end automation: Scan → Understand → Take action Used in finance, legal, logistics, HR, and healthcare

WEB SCRAPING

What is Web Scraping?

- Web Scraping is the process of automatically extracting data from websites
- It involves sending requests to web pages and parsing the HTML content to extract structured data
- Often used to collect text, tables, prices, images, links, and more
- A key technique for data mining, competitive analysis, market research, and AI dataset creation
- Tools used include BeautifulSoup, Scrapy, Selenium, and browser automation libraries

Difference Between Scraping and Crawling

Web Scraping	Web Crawling	
Extracts specific data from web pages	Discovers and indexes multiple web pages	
Focuses on content (text, images, etc.)	Focuses on structure and links between pages	
Works on known pages or targets	Automatically explores new pages via links	
Used for data collection	Used for site indexing , data discovery	
Example: Extracting product prices	Example: Googlebot indexing websites	
Tools: BeautifulSoup, Selenium, Scrapy	Tools: Scrapy, Apache Nutch, custom crawlers	

Web Scraping Use Cases

E-commerce Price Monitoring

Track competitor pricing, discounts, and stock availability

News Aggregation

Collect headlines, articles, and summaries from news sites

Review & Sentiment Analysis

Scrape user reviews from sites like TripAdvisor, Amazon, etc. Train sentiment analysis or rating prediction models

Market & Financial Data

Extract stock prices, economic indicators, crypto values, etc.

Academic Research & Open Data

Gather data from government, health, or education portals

Job Listings & Resume Mining

Collect postings from LinkedIn, Indeed, or Glassdoor for trends or job matching

AI & ML Dataset Creation

Build custom datasets for NLP, computer vision, recommendation systems

Real Estate & Classifieds

Extract details about properties, cars, or listings for analysis or resale

How Web Scraping Works

Send HTTP Request

Use tools like requests or url lib to access a web page (GET method)

Receive HTML Response

The server returns raw HTML content of the page

Parse the HTML

Use parsers (e.g., **BeautifulSoup**, **Ixml**) to navigate the page structure

Locate elements by tags, classes, IDs, or XPath

Extract the Data

Pull specific data (text, images, links, tables) from HTML tags

Clean & Format Data

Remove unwanted tags, whitespace, or symbols Organize into structured formats (CSV, JSON, database)

Save or Use the Data

Store locally or feed into dashboards, ML pipelines, or databases

ZenRows Web Scraping Libraries in Python

Common Python Libraries

BeautifulSoup

Lightweight HTML/XML parser
Great for small projects and static pages
Easy navigation using tags, classes, and IDs

Scrapy

Full-featured web crawling and scraping framework
Supports asynchronous scraping, pipelines, and item storage
Ideal for large-scale or production scrapers

Selenium

Automates web browsers (Chrome, Firefox, etc.)
Handles JavaScript-heavy websites and dynamic content
Useful for interacting with buttons, forms, scroll, etc.

Requests

Simplifies HTTP requests (GET, POST, headers)
Often used with BeautifulSoup for static pages

Respect Terms of Service (ToS)

Many websites explicitly forbid scraping in their ToS Violating this can lead to legal action or IP bans

Follow robots.txt

A file that specifies which parts of a site can/can't be accessed by bots Ethical scrapers obey these rules

Avoid Overloading Servers

Use rate limiting and polite scraping (e.g., sleep between requests) Prevents denial of service or server crashes

Don't Scrape Personal or Sensitive Data

Avoid scraping names, emails, or private information without consent Can violate privacy laws like **GDPR** or **CCPA**

Legal Risks

Some countries treat scraping of protected content as illegal (copyright, data theft)

Notable cases: LinkedIn vs. hiQ Labs (US), Ryanair vs. screen-scrapers (EU)

Use APIs When Available

Many platforms offer official APIs — more stable, legal, and structured

Challenges of Web Scraping

Challenges in Web Scraping

Dynamic Content & JavaScript Rendering

- Many modern websites load data via JavaScript
- Requires tools like **Selenium**, **Playwright**, or **headless browsers**

Anti-Scraping Measures

- •IP blocking, CAPTCHA, honeypots, user-agent filtering
- •Solutions: proxies, user-agent rotation, CAPTCHA solvers

Changing Website Structure

- •Frequent updates to HTML layout can break scrapers
- Needs regular maintenance and robust selectors

Rate Limiting & Bans

- Sending too many requests too fast may lead to temporary/permanent bans
- Use throttling, delays, and respect

Pagination & Infinite Scroll

- Data may be split across multiple pages or loaded on scroll
- Requires logic to follow links or simulate scrolling

Complex Page Layouts & Nested Elements

- Data inside tables, accordions, tabs, or deeply nested divs
- Requires careful parsing with XPath or CSS selectors

