Lineare Abbildungen + Kern/Bild...

Christina Puhl

12. Juni 2006

Gliederung

- Aufgaben...
 - Lineare Abbildungen: Kern + Bild
 - Lineare Abbildungen Sequenzen
 - Lineare Abbildungen

Lineare Abbildungen: Kern + Bild Lineare Abbildungen - Sequenzen

Definitionen

Bild, Kern

Definition

- Ist $F: V \to W$ eine lineare Abbildung, so nennen wir
 - Im F := F(V) das Bild von F,
 - $\ker F = F^{-1}(0)$, den Kern von F.

Abbildung: ker *F*, Im *F*.

- Sei $a_3 = a_1 + a_2$ und F eine lineare Abbildung mit $F(a_1) = b_1$, $F(a_2) = b_2$ und $F(a_3) = b_3$. Was muss dann für b_1, b_2, b_3 gelten?
- Es muss gelten: $f(b_3) = f(b_1) + f(b_2)$
- Gibt es \mathbb{R} —lineare Abbildungen $\mathbb{R}^3 \to \mathbb{R}^2$ die die folgenden Vektoren $a_i \in \mathbb{R}^3$ jeweils auf die angegebenen Vekotren $b_i \in \mathbb{R}^2$ abbilden und wie sieht diese aus?
- $a_1 = (2, 1, 1)$, $a_2 = (1, 0, 0)$, $a_3 = (1, 1, 1)$ und $b_1 = (0, 0)$, $b_2 = (1, 1)$, $b_3 = (0, 1)$.
- Nein, da $a_1 = a_2 + a_3$ müsste auch $b_1 = b_2 + b_3$ gelten.

- Sei $a_3 = a_1 + a_2$ und F eine lineare Abbildung mit $F(a_1) = b_1$, $F(a_2) = b_2$ und $F(a_3) = b_3$. Was muss dann für b_1, b_2, b_3 gelten?
- Es muss gelten: $f(b_3) = f(b_1) + f(b_2)$
- Gibt es \mathbb{R} —lineare Abbildungen $\mathbb{R}^3 \to \mathbb{R}^2$ die die folgenden Vektoren $a_i \in \mathbb{R}^3$ jeweils auf die angegebenen Vekotren $b_i \in \mathbb{R}^2$ abbilden und wie sieht diese aus?
- $a_1 = (2, 1, 1)$, $a_2 = (1, 0, 0)$, $a_3 = (1, 1, 1)$ und $b_1 = (0, 0)$, $b_2 = (1, 1)$, $b_3 = (0, 1)$.
- Nein, da $a_1 = a_2 + a_3$ müsste auch $b_1 = b_2 + b_3$ gelten.

- Sei $a_3 = a_1 + a_2$ und F eine lineare Abbildung mit $F(a_1) = b_1$, $F(a_2) = b_2$ und $F(a_3) = b_3$. Was muss dann für b_1, b_2, b_3 gelten?
- Es muss gelten: $f(b_3) = f(b_1) + f(b_2)$
- Gibt es \mathbb{R} -lineare Abbildungen $\mathbb{R}^3 \to \mathbb{R}^2$ die die folgenden Vektoren $a_i \in \mathbb{R}^3$ jeweils auf die angegebenen Vekotren $b_i \in \mathbb{R}^2$ abbilden und wie sieht diese aus?
- $a_1 = (2, 1, 1)$, $a_2 = (1, 0, 0)$, $a_3 = (1, 1, 1)$ und $b_1 = (0, 0)$, $b_2 = (1, 1)$, $b_3 = (0, 1)$.
- Nein, da $a_1 = a_2 + a_3$ müsste auch $b_1 = b_2 + b_3$ gelten.

- Sei $a_3 = a_1 + a_2$ und F eine lineare Abbildung mit $F(a_1) = b_1$, $F(a_2) = b_2$ und $F(a_3) = b_3$. Was muss dann für b_1, b_2, b_3 gelten?
- Es muss gelten: $f(b_3) = f(b_1) + f(b_2)$
- Gibt es \mathbb{R} -lineare Abbildungen $\mathbb{R}^3 \to \mathbb{R}^2$ die die folgenden Vektoren $a_i \in \mathbb{R}^3$ jeweils auf die angegebenen Vekotren $b_i \in \mathbb{R}^2$ abbilden und wie sieht diese aus?
- $a_1 = (2, 1, 1)$, $a_2 = (1, 0, 0)$, $a_3 = (1, 1, 1)$ und $b_1 = (0, 0)$, $b_2 = (1, 1)$, $b_3 = (0, 1)$.
- Nein, da $a_1 = a_2 + a_3$ müsste auch $b_1 = b_2 + b_3$ gelten.

• $a_1 = (1,0,1)$, $a_2 = (1,0,0)$, $a_3 = (0,1,0)$ und $b_1 = (1,0)$, $b_2 = (0,1)$ und $b_3 = (2,4)$.

- Ja, denn $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x_1, x_2, x_3) \mapsto (2x_2 + x_1, x_1 + 4x_2 x_3)$ bildet a_i auf b_i ab.
- Weiter Darstellungsmöglichkeiten:

$$f(x_1, x_2, x_3) = (2x_2 - x_1, x_1 + 4x_2 - x_3)$$

oder

$$f(x) = \begin{pmatrix} -1 & 2 & 0 \\ 1 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

- $a_1 = (1,0,1)$, $a_2 = (1,0,0)$, $a_3 = (0,1,0)$ und $b_1 = (1,0)$, $b_2 = (0,1)$ und $b_3 = (2,4)$.
- Ja, denn $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x_1, x_2, x_3) \mapsto (2x_2 + x_1, x_1 + 4x_2 x_3)$ bildet a_i auf b_i ab.
- Weiter Darstellungsmöglichkeiten:

$$f(x_1, x_2, x_3) = (2x_2 - x_1, x_1 + 4x_2 - x_3)$$

oder

$$f(x) = \begin{pmatrix} -1 & 2 & 0 \\ 1 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

- $a_1 = (1,0,1)$, $a_2 = (1,0,0)$, $a_3 = (0,1,0)$ und $b_1 = (1,0)$, $b_2 = (0,1)$ und $b_3 = (2,4)$.
- Ja, denn $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x_1, x_2, x_3) \mapsto (2x_2 + x_1, x_1 + 4x_2 x_3)$ bildet a_i auf b_i ab.
- Weiter Darstellungsmöglichkeiten:

$$f(x_1, x_2, x_3) = (2x_2 - x_1, x_1 + 4x_2 - x_3)$$

oder

$$f(x) = \begin{pmatrix} -1 & 2 & 0 \\ 1 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

- Wie kommt man von $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $f(x) = (x_1 + x_2 3x_3, x_2)$ auf eine Matrizendarstellung?
- 1. Schritt: Schreibe eine leere Matrix mit 3-Spalten und 2-Zeilen. Dabei repäsentiert die 1. Spalte die x₁- Werte, die 2. Spalte die x₂- Werte ... des Urbildraums.

 2. Schritt: Jede Zeile repräsentiert eine Koordinate im Zielraum. Schreibe für jede Zeile die Koeffizienten der x_i auf, die den jeweiligen Wert bilden.

$$\left(\begin{array}{ccc} 1 & 1 & -3 \\ 0 & 1 & 0 \end{array}\right)$$

- Wie kommt man von $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $f(x) = (x_1 + x_2 3x_3, x_2)$ auf eine Matrizendarstellung?
- 1. Schritt: Schreibe eine leere Matrix mit 3—Spalten und 2-Zeilen. Dabei repäsentiert die 1. Spalte die x_1 Werte, die 2. Spalte die x_2 Werte ... des Urbildraums.

 2. Schritt: Jede Zeile repräsentiert eine Koordinate im Zielraum. Schreibe für jede Zeile die Koeffizienten der x_i auf, die den jeweiligen Wert bilden.

$$\left(\begin{array}{ccc} 1 & 1 & -3 \\ 0 & 1 & 0 \end{array}\right)$$

- Wie kommt man von $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $f(x) = (x_1 + x_2 3x_3, x_2)$ auf eine Matrizendarstellung?
- 1. Schritt: Schreibe eine leere Matrix mit 3—Spalten und 2-Zeilen. Dabei repäsentiert die 1. Spalte die x_1 Werte, die 2. Spalte die x_2 Werte ... des Urbildraums.

 2. Schritt: Jede Zeile repräsentiert eine Koordinate im Zielraum. Schreibe für jede Zeile die Koeffizienten der x_i auf, die den jeweiligen Wert bilden.

$$\left(\begin{array}{ccc} 1 & 1 & -3 \\ 0 & 1 & 0 \end{array}\right)$$

- Sei $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix}$ eine Matrix und F(x) := Ax. Dann stellen die Spalten von A ein Erzeugendensystem vom ImF dar.
- Betrachte

$$F(x) = Ax$$

$$= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix} \cdot x$$

$$= \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix}.$$

- D.h. Jedes $y \in \operatorname{Im} F$ hat die Form $y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_2 \end{pmatrix}$.
- Das kann man umschreiben zu

$$y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

• Also läßt sich v als Linearkombination von (1) (3) 证 d (2) 主 つく

- Sei $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix}$ eine Matrix und F(x) := Ax. Dann stellen die Spalten von A ein Erzeugendensystem vom ImF dar.
- Betrachte

$$F(x) = Ax$$

$$= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix} \cdot x$$

$$= \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix}.$$

- D.h. Jedes $y \in \operatorname{Im} F$ hat die Form $y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_2 \end{pmatrix}$.
- Das kann man umschreiben zu

$$y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

• Also läßt sich v als Linearkombination von (1) (1) (1) (1) (1) (1)

- Sei $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix}$ eine Matrix und F(x) := Ax. Dann stellen die Spalten von A ein Erzeugendensystem vom ImF dar.
- Betrachte

$$F(x) = Ax$$

$$= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix} \cdot x$$

$$= \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix}.$$

- D.h. Jedes $y \in \operatorname{Im} F$ hat die Form $y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_2 \end{pmatrix}$.
- Das kann man umschreiben zu

$$y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

● Also läßt sich v als Linearkombination voff (1)同(3) 確 d (2) き つへ

- Sei $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix}$ eine Matrix und F(x) := Ax. Dann stellen die Spalten von A ein Erzeugendensystem vom ImF dar.
- Betrachte

$$F(x) = Ax$$

$$= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix} \cdot x$$

$$= \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix}.$$

- D.h. Jedes $y \in \text{Im} F$ hat die Form $y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_2 \end{pmatrix}$.
- Das kann man umschreiben zu

$$y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

Also läßt sich v als Linearkombination von (1)@(3) and (2)

- Sei $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix}$ eine Matrix und F(x) := Ax. Dann stellen die Spalten von A ein Erzeugendensystem vom ImF dar.
- Betrachte

$$F(x) = Ax$$

$$= \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 4 \end{pmatrix} \cdot x$$

$$= \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix}.$$

- D.h. Jedes $y \in \operatorname{Im} F$ hat die Form $y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_2 \end{pmatrix}$.
- Das kann man umschreiben zu

$$y = \begin{pmatrix} x_1 + 3x_2 \\ 2x_2 + 4x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$$

• Also läßt sich v als Linearkombination von (1) (3) und (0)

Aufgabe

Sei $F: \mathbb{R}^4 \to \mathbb{R}^3$ gegeben durch die folgende Matrix:

$$\left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Welche Dimension hat Im F? Welche Dimension hat ker F?
Bestimme eine Basis von Im F und ker F.

$$\bullet \ F : A = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

- Dann bilden die Spalten ein Erzeugendensystem von Im F.
- D.h. wir suchen eine maximale Anzahl linear unabhängier Vektoren, z.B. $\{(1,0,0),(0,1,0)\}$.

$$\bullet \ F : A = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

- Dann bilden die Spalten ein Erzeugendensystem von Im F.
- D.h. wir suchen eine maximale Anzahl linear unabhängier Vektoren, z.B. $\{(1,0,0),(0,1,0)\}$.

$$\bullet \ F : A = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

- Dann bilden die Spalten ein Erzeugendensystem von ImF.
- D.h. wir suchen eine maximale Anzahl linear unabhängier Vektoren, z.B. {(1,0,0),(0,1,0)}.

$$\bullet \ F : A = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

- Dann bilden die Spalten ein Erzeugendensystem von ImF.
- D.h. wir suchen eine maximale Anzahl linear unabhängier Vektoren, z.B. $\{(1,0,0),(0,1,0)\}$.

- Bestimme die Baiss von ker $F: (A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix})$
- Löse das Gleichungssystem: Ax = 0
- Setzte $x_4 = a \Rightarrow x_3 = -a$
- Setzte $x_2 = b \Rightarrow x_1 = -b a$.
- D.h. $x \in \ker F$, dann gilt

$$x = \begin{pmatrix} -b - a \\ b \\ -a \\ a \end{pmatrix} = a \cdot \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- Bestimme die Baiss von ker $F: (A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix})$
- Löse das Gleichungssystem: Ax = 0.
- Setzte $x_4 = a \Rightarrow x_3 = -a$
- Setzte $x_2 = b \Rightarrow x_1 = -b a$.
- D.h. $x \in \ker F$, dann gilt

$$x = \begin{pmatrix} -b - a \\ b \\ -a \\ a \end{pmatrix} = a \cdot \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- Bestimme die Baiss von ker $F: (A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix})$
- Löse das Gleichungssystem: Ax = 0.
- Setzte $x_4 = a \Rightarrow x_3 = -a$
- Setzte $x_2 = b \Rightarrow x_1 = -b a$.
- D.h. $x \in \ker F$, dann gilt

$$x = \begin{pmatrix} -b - a \\ b \\ -a \\ a \end{pmatrix} = a \cdot \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- Bestimme die Baiss von ker $F: (A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix})$
- Löse das Gleichungssystem: Ax = 0.
- Setzte $x_4 = a \Rightarrow x_3 = -a$
- Setzte $x_2 = b \Rightarrow x_1 = -b a$.
- D.h. $x \in \ker F$, dann gilt

$$x = \begin{pmatrix} -b - a \\ b \\ -a \\ a \end{pmatrix} = a \cdot \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- Bestimme die Baiss von ker $F: (A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix})$
- Löse das Gleichungssystem: Ax = 0.
- Setzte $x_4 = a \Rightarrow x_3 = -a$
- Setzte $x_2 = b \Rightarrow x_1 = -b a$.
- D.h. $x \in \ker F$, dann gilt

$$x = \begin{pmatrix} -b - a \\ b \\ -a \\ a \end{pmatrix} = a \cdot \begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- Bestimme die Baiss von ker $F: (A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix})$
- Löse das Gleichungssystem: Ax = 0.
- Setzte $x_4 = a \Rightarrow x_3 = -a$
- Setzte $x_2 = b \Rightarrow x_1 = -b a$.
- D.h. $x \in \ker F$, dann gilt

$$x = \begin{pmatrix} -b - a \\ b \\ -a \\ a \end{pmatrix} = a \cdot \underbrace{\begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}}_{G} + b \underbrace{\begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}}_{G}.$$

- Bestimme die Baiss von ker $F: (A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix})$
- Löse das Gleichungssystem: Ax = 0.
- Setzte $x_4 = a \Rightarrow x_3 = -a$
- Setzte $x_2 = b \Rightarrow x_1 = -b a$.
- D.h. $x \in \ker F$, dann gilt

$$x = \begin{pmatrix} -b - a \\ b \\ -a \\ a \end{pmatrix} = a \cdot \underbrace{\begin{pmatrix} -1 \\ 0 \\ -1 \\ 1 \end{pmatrix}}_{G} + b \underbrace{\begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}}_{G}.$$

Aufgabe

Sei $F:V\to W$ eine lineare Abbildung, V und W zwei \mathbb{R} -Vektorräume. Dann gilt

 $\ker F = \{0\} \Leftrightarrow F \text{ ist injektiv.}$

- \Rightarrow : Anname es existiert $v_1, v_2 \in V$ mit $F(v_1) = F(v_2)$, aber $v_1 \neq v_2$.
- Dann gilt $F(v_1 v_2) = F(v_1) F(v_2) = 0$.
- Aber $v_1 v_2 \neq 0$.
- Widerspruch zu ker $F = \{0\}$.
- \Leftarrow :Anname es existiert ein $v \in V$ mit F(v) = 0 und $v \neq 0$.
- Dann gilt F(v) = F(0), aber $v \neq 0$. Widerspruch zu F ist injektiv.

- \Rightarrow : Anname es existiert $v_1, v_2 \in V$ mit $F(v_1) = F(v_2)$, aber $v_1 \neq v_2$.
- Dann gilt $F(v_1 v_2) = F(v_1) F(v_2) = 0$.
- Aber $v_1 v_2 \neq 0$.
- Widerspruch zu ker $F = \{0\}$.
- \Leftarrow : Anname es existiert ein $v \in V$ mit F(v) = 0 und $v \neq 0$.
- Dann gilt F(v) = F(0), aber $v \neq 0$. Widerspruch zu F ist injektiv.

- \Rightarrow : Anname es existiert $v_1, v_2 \in V$ mit $F(v_1) = F(v_2)$, aber $v_1 \neq v_2$.
- Dann gilt $F(v_1 v_2) = F(v_1) F(v_2) = 0$.
- Aber $v_1 v_2 \neq 0$.
- Widerspruch zu ker $F = \{0\}$.
- \Leftarrow : Anname es existiert ein $v \in V$ mit F(v) = 0 und $v \neq 0$.
- Dann gilt F(v) = F(0), aber $v \neq 0$. Widerspruch zu F ist injektiv.

- \Rightarrow : Anname es existiert $v_1, v_2 \in V$ mit $F(v_1) = F(v_2)$, aber $v_1 \neq v_2$.
- Dann gilt $F(v_1 v_2) = F(v_1) F(v_2) = 0$.
- Aber $v_1 v_2 \neq 0$.
- Widerspruch zu ker $F = \{0\}$.
- \Leftarrow : Anname es existiert ein $v \in V$ mit F(v) = 0 und $v \neq 0$.
- Dann gilt F(v) = F(0), aber $v \neq 0$. Widerspruch zu F ist injektiv.

- \Rightarrow : Anname es existiert $v_1, v_2 \in V$ mit $F(v_1) = F(v_2)$, aber $v_1 \neq v_2$.
- Dann gilt $F(v_1 v_2) = F(v_1) F(v_2) = 0$.
- Aber $v_1 v_2 \neq 0$.
- Widerspruch zu ker $F = \{0\}$.
- \Leftarrow :Anname es existiert ein $v \in V$ mit F(v) = 0 und $v \neq 0$.
- Dann gilt F(v) = F(0), aber $v \neq 0$. Widerspruch zu F ist injektiv.

- \Rightarrow : Anname es existiert $v_1, v_2 \in V$ mit $F(v_1) = F(v_2)$, aber $v_1 \neq v_2$.
- Dann gilt $F(v_1 v_2) = F(v_1) F(v_2) = 0$.
- Aber $v_1 v_2 \neq 0$.
- Widerspruch zu ker $F = \{0\}$.
- \Leftarrow :Anname es existiert ein $v \in V$ mit F(v) = 0 und $v \neq 0$.
- Dann gilt F(v) = F(0), aber $v \neq 0$. Widerspruch zu F ist injektiv.

- Eine Sequenz linearer Abbildung ist eine Folge von linearen Abbildungen F_i mit F_i: V_i → V_{i+1}, wobei V_i K-Vektorräume sind.
- z.B. $F_1: \mathbb{R} \to \mathbb{R}^2$, $F_2: \mathbb{R}^2 \to \mathbb{R}^{15}$ und $F_3: \mathbb{R}^{15} \to \{0\}$.

$$\mathbb{R} \xrightarrow{F_1} \mathbb{R}^2 \xrightarrow{F_2} \mathbb{R}^{15} \xrightarrow{F_3} \{0\}.$$

• Diese Sequenz heißt exakt, wenn ker $F_i = \text{Im} F_{i-1}$ gilt.

- Eine Sequenz linearer Abbildung ist eine Folge von linearen Abbildungen F_i mit F_i: V_i → V_{i+1}, wobei V_i K-Vektorräume sind.
- z.B. $F_1: \mathbb{R} \to \mathbb{R}^2$, $F_2: \mathbb{R}^2 \to \mathbb{R}^{15}$ und $F_3: \mathbb{R}^{15} \to \{0\}$.

$$\mathbb{R} \xrightarrow{F_1} \mathbb{R}^2 \xrightarrow{F_2} \mathbb{R}^{15} \xrightarrow{F_3} \{0\}.$$

• Diese Sequenz heißt exakt, wenn ker $F_i = \text{Im} F_{i-1}$ gilt.

- Eine Sequenz linearer Abbildung ist eine Folge von linearen Abbildungen F_i mit F_i: V_i → V_{i+1}, wobei V_i K-Vektorräume sind.
- z.B. $F_1: \mathbb{R} \to \mathbb{R}^2$, $F_2: \mathbb{R}^2 \to \mathbb{R}^{15}$ und $F_3: \mathbb{R}^{15} \to \{0\}$.

$$\mathbb{R} \xrightarrow{F_1} \mathbb{R}^2 \xrightarrow{F_2} \mathbb{R}^{15} \xrightarrow{F_3} \{0\}.$$

• Diese Sequenz heißt exakt, wenn ker $F_i = \text{Im} F_{i-1}$ gilt.

- Eine Sequenz linearer Abbildung ist eine Folge von linearen Abbildungen F_i mit $F_i: V_i \to V_{i+1}$, wobei V_i K-Vektorräume sind.
- z.B. $F_1: \mathbb{R} \to \mathbb{R}^2$, $F_2: \mathbb{R}^2 \to \mathbb{R}^{15}$ und $F_3: \mathbb{R}^{15} \to \{0\}$. $\mathbb{R} \xrightarrow{F_1} \mathbb{R}^2 \xrightarrow{F_2} \mathbb{R}^{15} \xrightarrow{F_3} \{0\}.$
- Diese Sequenz heißt exakt, wenn ker $F_i = \text{Im} F_{i-1}$ gilt.

Aufgabe

Aufgabe

Betrachte die Sequenz der linearen Abbildungen

$$\{0\} \xrightarrow{F_1} V \xrightarrow{F_2} W \xrightarrow{F_3} \{0\}.$$

Zeige, dass die Sequenz genau dann exakt ist, wenn F_2 ein Isomorphismus ist.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F₂ injektiv ist
- d.h. F_2 ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F₂ injektiv ist
- d.h. F_2 ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F₂ injektiv ist
- d.h. F_2 ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F₂ injektiv ist
- d.h. F_2 ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F₂ injektiv ist
- d.h. F₂ ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F2 injektiv ist
- d.h. F₂ ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F_2 injektiv ist
- d.h. F2 ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F₂ injektiv ist
- d.h. F2 ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $\operatorname{Im}(F_2) = \ker(F_3)$ folgt $\operatorname{Im}(F_2) = W$
- und somit ist F_2 auch surjektiv.

- \Rightarrow : Sei F exakt, d.h. $Im(F_1) = ker(F_2)$ und $Im(F_2) = ker(F_3)$.
- 1. z.z. F_2 ist injektiv:
- $Im(F_1) = \{0\} = ker(F_2)$, d.h. es nur gilt $F_2(0) = 0$.
- Daraus folgt, dass F₂ injektiv ist
- d.h. F₂ ist injektiv.
- 2. z.z. F_2 ist surjektiv:
- Es gilt $ker(F_3) = W$, da alle Element aus W auf $\{0\}$ abgebildet werden.
- Da $Im(F_2) = ker(F_3)$ folgt $Im(F_2) = W$
- und somit ist F₂ auch surjektiv.

- "⇐": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1)$, da $F_1 : \{0\} \to V$.
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

- "⇐": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1), \text{ da } F_1 : \{0\} \to V.$
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

- ,,∉": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1), \text{ da } F_1 : \{0\} \to V.$
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

- ,,∉": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1), \operatorname{da} F_1 : \{0\} \to V.$
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

- ,, ←": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1)$, da $F_1 : \{0\} \to V$.
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

- ,, ←": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1)$, da $F_1 : \{0\} \to V$.
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

- ,, ←": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1), \text{ da } F_1 : \{0\} \to V.$
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

- ,,∉": z.z. *F* ist exakt.
- Sei F₂ isomorph, d.h. es ist injektiv und surjektiv.
- 1. z.z. $Im(F_1) = ker(F_2)$.
- Da F_2 injektiv folgt $ker(F_2) = \{0\}$
- Also $\ker(F_2) = \{0\} = \operatorname{Im}(F_1), \text{ da } F_1 : \{0\} \to V.$
- 2. z.z. $Im(F_2) = ker(F_3)$.
- Da F_2 surjektiv gilt $Im(F_2) = W$.
- Da $F_3: W \to \{0\}$ gilt $\ker(F_3) = W$.

Aufgabe

Aufgabe

Betrachte die folgenden Sequenz:

$$\{0\} \to \mathbb{R}^2 \to \mathbb{R}^3 \to \mathbb{R}^k \to \{0\}.$$

Welchen wert muss $k \in \mathbb{N}$ annehmen, damit eine exakte Sequenz existiert?

Beweis:

k=2, da die Komposition von linearen Abbildungen wieder linear ist. Ausnutzen Aufgabe davor $\Rightarrow k=2$.

Lineare Abbildungen: Kern + Bild Lineare Abbildungen - Sequenzen Lineare Abbildungen

Aufgabe

Aufgabe

Es sei V ein K- Vektorraum und $f:V\to V$ ein Endomorphismus (f ist linear) mit $f^2=f$. Man zeige

$$V = \ker f \oplus \operatorname{im} f$$
.

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

- 1. Zeige $V = \ker f + \operatorname{im} f$.
- d.h. für jedes $v \in V$ gilt $v = v_1 + v_2$, mit $v_1 \in \ker f$ und $v_2 \in \operatorname{im} f$.
- Betrachte v = v + f(v) f(v).
- z.z. $v f(v) \in \ker f$.
- Dann gilt f(v f(v)) = f(v) f(f(v)) = 0, da $f(v) = f \circ f(v)$ gilt.
- 2. Zeige $\ker f \cap \operatorname{im} f = \{0\}.$
- Sei $v \in \ker f \cap \operatorname{im} f$ beliebig.
- Da $v \in \text{im} f$ gilt, es existiert ein $w \in V$ mit f(w) = v.
- Dann erhalten wir $v = f(w) = (f \circ f)(w) = f(v) = 0$, da $v \in \ker f$.
- D.h. $\ker f \cap \operatorname{im} f = \{0\}.$

