Link of dataset

https://www.toronto.ca/city-government/data-research-maps/open-data/open-data-catalogue/health/#e3c15b0f-5f83-0f12-fabb-c84018395c38 (https://www.toronto.ca/city-government/data-research-maps/open-data/open-data-catalogue/health/#e3c15b0f-5f83-0f12-fabb-c84018395c38)

Importing Needed libraries

```
In [1]:
```

```
%matplotlib inline
import pandas as pd
from pandas import Series, DataFrame

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.core.interactiveshell import InteractiveShell
from pandas.plotting import autocorrelation_plot

import datetime

# For fetching data from google map api
import googlemaps

import concurrent.futures
import multiprocessing
import tqdm
```

Configurations

```
In [2]:
```

```
np.random.seed(12345)
plt.rc('figure', figsize=(10, 6))
PREVIOUS_MAX_ROWS = pd.options.display.max_rows
pd.options.display.max_rows = 15
np.set_printoptions(precision=4, suppress=True)
pd.options.display.max_columns = None
```

Data Loading

```
In [162]:
```

Data Dictionary

ROW_ID - Represents the Row Number

df = pd.read csv('dinesafe.csv')

- ESTABLISHMENT_ID Unique identifier for an establishment
- INSPECTION_ID Unique identifier for each Inspection
- ESTABLISHMENT_NAME Business name of the establishment
- ESTABLISHMENTTYPE Establishment type ie restaurant, mobile cart
- ESTABLISHMENT_ADDRESS Municipal address of the establishment
- LONG/LAT- Longitude & Latitude coordinates of an establishment
- ESTABLISHMENT_STATUS Pass, Conditional Pass, Closed
- MINIMUM_INSPECTIONS_PERYEAR Every eating and drinking establishment in the City of Toronto receives a minimum of 1, 2, or 3 inspections each year depending on the specific type of establishment, the food preparation processes, volume and type of food served and other related criteria
- INFRACTION_DETAILS Description of the Infraction
- INSPECTION_DATE Calendar date the inspection was conducted
- SEVERITY Level of the infraction, i.e. S Significant, M Minor, C Crucial
- ACTION Enforcement activity based on the infractions noted during a food safety inspection
- COURT_OUTCOME The registered court decision resulting from the issuance of a ticket or summons for outstanding infractions to the Health Protection and Promotion Act
- AMOUNT_FINED Fine determined in a court outcome

```
In [167]:
```

```
df.columns= map(str.lower, df.columns)
```

Adding date dimensions

In [168]:

```
df['inspection_date'] = pd.to_datetime(df['inspection_date'])
df['year'] = pd.DatetimeIndex(df['inspection_date']).year
df['quarter'] = pd.DatetimeIndex(df['inspection_date']).quarter
df['month'] = pd.DatetimeIndex(df['inspection_date']).month
df['week'] = pd.DatetimeIndex(df['inspection_date']).week
df['year_quarter'] = df['year'].astype(str) +'-'+ df['quarter'].astype(str)
df['year_month'] = df['year'].astype(str) +'-'+ df['month'].astype(str)
df['year_week'] = df['year'].astype(str) +'-'+ df['week'].astype(str)
df['week_day'] = pd.DatetimeIndex(df['inspection_date']).weekday #the day of the
week with monday=0, sunday=6
df.head()
```

Out[168]:

	row_id	establishment_id	inspection_id	establishment_name	establishmenttype	eŧ
0	1	1222579	103868579	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
1	2	1222579	104063869	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
2	3	1222579	104246429	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
3	4	1222579	104246429	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
4	5	1222579	104246429	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87

Adding postal_code and area

In [169]:

```
loc = pd.read_csv("locations_2.csv")
loc.columns= map(str.lower, loc.columns)
loc.head()
```

Out[169]:

	unnamed: 0	latitude	longitude	postal_code	area
0	0	43.586770	-79.542082	M8W 3P2	Etobicoke
1	1	43.587910	-79.538666	M8W 1C1	Etobicoke
2	2	43.590227	-79.543784	M8W 3P1	Etobicoke
3	3	43.591013	-79.545156	M8W 1R3	Etobicoke
4	4	43.591901	-79.543077	M8W 1R3	Etobicoke

In [170]:

```
df = pd.merge(df,loc,on=['latitude','longitude'],how='left')
df.head()
```

Out[170]:

	row_id	establishment_id	inspection_id	establishment_name	establishmenttype	eŧ
0	1	1222579	103868579	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
1	2	1222579	104063869	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
2	3	1222579	104246429	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
3	4	1222579	104246429	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87
4	5	1222579	104246429	SAI-LILA KHAMAN DHOKLA HOUSE	Food Take Out	87

Data Profiling

```
In [8]:
```

```
cnt_value =[]
for col_nm in df.columns:
    a=len(df.groupby(col_nm).size())
    cnt_value.append(a)

cnt_null = df.isnull().sum()
pd.DataFrame({
    '# of distinct value': cnt_value,
    '# of null value': cnt_null
    })
```

Out[8]:

	# of distinct value	# of null value
row_id	90520	0
establishment_id	16291	0
inspection_id	55589	0
establishment_name	12780	0
establishmenttype	55	0
establishment_address	11284	0
latitude	10686	0
		•••
year_quarter	9	0
year_month	25	0
year_week	105	0
week_day	7	0
unnamed: 0	9649	11761
postal_code	5348	11761
area	6	11761

27 rows × 2 columns

```
In [9]:
tmp1 = df[df['infraction details'].notna()]
tmp1.groupby(['establishment status']).size()
Out[9]:
establishment status
Closed
                       352
Conditional Pass
                     17237
Pass
                     44109
dtype: int64
In [10]:
tmp1 = df[df['infraction details'].isna()]
tmp1.groupby(['establishment_status']).size()
Out[10]:
establishment_status
Pass
        28822
dtype: int64
In [11]:
#ESTABLISHMENT NAME
df est = df.establishment name.value counts()
df est.head(15)
Out[11]:
TIM HORTONS
                       1305
SUBWAY
                        854
MCDONALD'S
                        457
PIZZA PIZZA
                        432
SECOND CUP
                        309
FRESHII
                        275
AROMA ESPRESSO BAR
                        266
STARBUCKS COFFEE
                        234
THAI EXPRESS
                        228
STARBUCKS
                        224
METRO
                        212
BOOSTER JUICE
                        208
PIZZA NOVA
                        175
SHOPPERS DRUG MART
                        170
                        166
PIZZAIOLO
Name: establishment name, dtype: int64
```

```
#ESTABLISHMENTTYPE
df est = df.establishmenttype.value counts()
df est.head(15)
Out[12]:
Restaurant
                                       49016
Food Take Out
                                       13119
Food Store (Convenience / Variety)
                                         4448
Supermarket
                                         3209
Food Court Vendor
                                        3196
                                         2454
Bakery
Child Care - Catered
                                         2027
Child Care - Food Preparation
                                         1738
Food Caterer
                                         938
                                         901
Banquet Facility
Butcher Shop
                                         895
Food Processing Plant
                                         885
Cafeteria
                                         818
Retirement Homes(Licensed)
                                         697
Nursing Home / Home for the Aged
                                         505
Name: establishmenttype, dtype: int64
In [13]:
#ESTABLISHMENT STATUS
df.establishment_status.value_counts()
Out[13]:
Pass
                    72931
Conditional Pass
                    17237
Closed
                       352
Name: establishment_status, dtype: int64
In [14]:
#MINIMUM INSPECTIONS PERYEAR >>> Establishment Risk Category
df.minimum inspections peryear.value counts()
Out[14]:
2
     44295
3
     38629
      7596
1
Name: minimum inspections peryear, dtype: int64
```

In [12]:

```
#INFRACTION DETAILS
df inf = df.infraction details.value counts()
df inf.head(15)
Out[15]:
Operator fail to properly wash surfaces in rooms
Operator fail to properly maintain rooms
7145
Operator fail to properly wash equipment
5961
Operator fail to properly maintain equipment(NON-FOOD)
2350
Operator fail to provide proper equipment
1909
Fail to Ensure the Presence of the Holder of a Valid Food Handler's
Certificate. Muncipal Code Chapter 545-157(17)(a)
                                                      1540
FAIL TO PROVIDE THERMOMETER IN STORAGE COMPARTMENT O. REG
                                                            562/90 SE
C. 21
                                                      1297
FAIL TO HAVE TEST REAGENT AVAILABLE AT PLACE OF SANITIZATION O. REG
562/90 SEC. 75(2)
                                                    1252
Operator fail to use proper procedure(s) to ensure food safety
Food handler fail to wear headgear
1133
OPERATOR FAIL TO ENSURE COVER WILL PREVENT CONTAMINATION OR ADULTERA
TION O. REG 562/90 SEC. 59(C)(II)
                                                       949
Operator fail to provide adequate pest control
937
FAIL TO STORE FOOD ON RACKS OR SHELVES O. REG 562/90 SEC. 23
914
STORE UTENSILS IN MANNER NOT PREVENTING CONTAMINATION O. REG
SEC. 81
                                                      864
FAIL TO PROVIDE TOWELS IN FOOD PREPARATION AREA O. REG 562/90 SEC.
20(1)(C)
                                                       794
Name: infraction details, dtype: int64
In [16]:
#SEVERITY
df.severity.value counts()
Out[16]:
M - Minor
                       32280
S - Significant
                       22970
NA - Not Applicable
                        4048
```

In [15]:

C - Crucial

Name: severity, dtype: int64

2400

In [17]:

#ACTION df.action.value_counts()

Out[17]:

Notice to Comply	46529
Corrected During Inspection	14292
Ticket	693
Summons	89
Summons and Health Hazard Order	58
Not in Compliance	25
Education Provided	3
Prohibition Order Requested	3
Recommendations	3
Closure Order	2
Warning Letter	1
Name: action, dtype: int64	

In [18]:

#COURT_OUTCOME

df.court_outcome.value_counts()

Out[18]:

Pending	478
Conviction - Fined	242
Charges Withdrawn	38
Cancelled	10
Charges Quashed	5
Conviction - Fined & Order to Close by Court	5
Conviction - Suspended Sentence	3
Name: court outcome, dtype: int64	

```
In [19]:
#AMOUNT FINED
df_fined = df.amount_fined.value_counts()
df_fined.head(10)
Out[19]:
60.0
         65
120.0
          50
305.0
         24
0.0
         14
300.0
         13
460.0
           8
           5
115.0
           5
180.0
           4
95.0
310.0
           4
Name: amount_fined, dtype: int64
In [20]:
#year
df.year.value_counts()
Out[20]:
2017
        44132
2018
        34607
2016
        11781
Name: year, dtype: int64
In [21]:
#year + quarter
df.groupby(['year','quarter']).size()
Out[21]:
      quarter
year
2016
      3
                    879
      4
                  10902
2017
      1
                  10158
      2
                  11222
      3
                  10775
      4
                  11977
2018
                  12061
      1
      2
                  12227
      3
                  10319
dtype: int64
```

In [22]:

```
#year + month
save_max_rows = pd.options.display.max_rows
pd.options.display.max_rows = 0
display(df.groupby(['year','month']).size())
pd.options.display.max_rows = save_max_rows
```

year	month	
2016	9	879
	10	3815
	11	3442
	12	3645
2017	1	2746
	2	3369
	3	4043
	4	3572
	5	3464
	6	4186
	7	3256
	8	4093
	9	3426
	10	4043
	11	4170
	12	3764
2018	1	3980
	2	3888
	3	4193
	4	4259
	5	4234
	6	3734
	7	3768
	8	4359
	9	2192

dtype: int64

In [23]:

```
df.groupby(['area']).size()
```

Out[23]:

area

East York 1801 Etobicoke 6480 North York 17327 Old Toronto 36781

Scarborough 13255 York 3115

dtype: int64

A. Data Preparation

```
In [24]:

start = datetime.date(2016, 9, 1)
end = datetime.date(2018, 9, 30)
bm_rng = pd.date_range(start, end, freq='M')
df_yrmth = pd.DataFrame({
    'date': bm_rng,
    'year': bm_rng.year,
    'month': bm_rng.month,
    'day': bm_rng.day,
    'year_month': bm_rng.year.astype(str) + '-' + bm_rng.month.astype(str)
})
```

Count of Inspection by Year_Month

```
In [25]:
def count inspection(dim, val, interval):
    cnt insp = df[df[dim]==val].groupby([interval]).inspection id.nunique()
    return cnt insp
df inspection = pd.DataFrame({
#Total
'Inspection: Total': df.groupby(['year_month']).inspection_id.nunique(),
#Risk Category
'Inspection: High Risk': count_inspection('minimum_inspections_peryear',3,'year_
month'),
'Inspection: Medium Risk': count inspection('minimum inspections peryear',2,'yea
r month'),
'Inspection: Low Risk': count inspection('minimum inspections peryear',1,'year m
onth'),
#ESTABLISHMENTTYPE
'Inspection: Restaurant': count inspection('establishmenttype', 'Restaurant', 'yea
r month'),
'Inspection: Food_Take_Out': count_inspection('establishmenttype','Food Take Out
','year month'),
'Inspection: Food_Store': count_inspection('establishmenttype','Food Store (Conv
enience / Variety)','year_month'),
'Inspection: Supermarket': count inspection('establishmenttype', 'Supermarket', 'y
ear_month'),
'Inspection: Food Court': count inspection('establishmenttype', 'Food Court Vendo
r', 'year month'),
'Inspection: Bakery': count inspection('establishmenttype', 'Bakery', 'year month'
'Inspection: Child Care Catered': count inspection('establishmenttype','Child Ca
re - Catered', 'year_month'),
```

```
'Inspection: Child_Care_Food_Prep': count_inspection('establishmenttype','Child
Care - Food Preparation', 'year month'),
'Inspection: Food Caterer': count inspection('establishmenttype', 'Food Caterer',
'year month'),
'Inspection: Banquet': count inspection('establishmenttype', 'Banquet Facility','
year month'),
'Inspection: Butcher Shop': count inspection('establishmenttype', 'Butcher Shop',
'year month'),
'Inspection: Food Plant': count inspection('establishmenttype','Food Processing
Plant', 'year month'),
'Inspection: Cafeteria': count inspection('establishmenttype','Cafeteria','year
month'),
'Inspection: Retirement': count inspection('establishmenttype','Retirement Homes
(Licensed)', 'year month'),
'Inspection: Nursing Home': count inspection('establishmenttype','Nursing Home /
Home for the Aged', 'year_month'),
#ESTABLISHMENT NAME
'Inspection: TIM HORTONS': count inspection('establishment name', 'TIM HORTONS', '
year month'),
'Inspection: SUBWAY': count inspection('establishment name', 'SUBWAY', 'year month
"Inspection: MCDONALD'S": count inspection('establishment name', "MCDONALD'S", 'ye
ar month'),
'Inspection: PIZZA PIZZA': count inspection('establishment name', 'PIZZA PIZZA', '
year month'),
'Inspection: SECOND CUP': count inspection('establishment name', 'SECOND CUP', 'ye
ar month'),
'Inspection: FRESHII': count inspection('establishment name', 'FRESHII', 'year mon
th'),
'Inspection: AROMA ESPRESSO BAR': count inspection('establishment name', 'AROMA E
SPRESSO BAR', 'year month'),
'Inspection: STARBUCKS COFFEE': count inspection('establishment name', 'STARBUCKS
COFFEE', 'year month'),
'Inspection: THAI EXPRESS': count inspection('establishment name', 'THAI EXPRESS'
,'year month'),
'Inspection: STARBUCKS': count inspection('establishment name', 'STARBUCKS', 'year
month')
})
df inspection.index = df yrmth['year month']
df inspection = df inspection.fillna(0)
```

df inspection.head()

	Inspection: Total	Inspection: High Risk	Inspection: Medium Risk	Inspection: Low Risk	-	Inspect Food_Take_
year_month						
2016-9	2562	729	1490	343	1168	427
2016-10	2303	701	1332	270	1094	312
2016-11	2330	730	1330	270	1187	245
2016-12	598	145	396	57	265	122
2017-1	1834	474	1027	333	910	275

In [26]:

```
def count infraction(dim, val, interval):
    df infr = df[df['infraction details'].notna()]
   cnt_infr = df_infr[df_infr[dim]==val].groupby([interval]).inspection_id.size
()
   return cnt infr
df infraction = pd.DataFrame({
#pass rate
'Infraction: Total': df[df['infraction details'].notna()].groupby(['year month']
).inspection id.size(),
#Risk Category
'Infraction: High Risk': count infraction('minimum inspections peryear',3,'year
month'),
'Infraction: Medium Risk': count_infraction('minimum_inspections_peryear',2,'yea
'Infraction: Low Risk': count_infraction('minimum_inspections_peryear',1,'year_m
onth'),
#ESTABLISHMENTTYPE
'Infraction: Restaurant': count_infraction('establishmenttype','Restaurant','yea
r month'),
'Infraction: Food Take Out': count infraction('establishmenttype', 'Food Take Out
','year_month'),
'Infraction: Food_Store': count_infraction('establishmenttype','Food Store (Conv
enience / Variety)','year_month'),
'Infraction: Supermarket': count_infraction('establishmenttype','Supermarket','y
ear_month'),
'Infraction: Food_Court': count_infraction('establishmenttype','Food Court Vendo
r', 'year month'),
'Infraction: Bakery': count_infraction('establishmenttype','Bakery','year_month'
),
```

```
infraction: chird_care_catered : count_infraction( establishmenttype , chird ca
re - Catered', 'year_month'),
'Infraction: Child Care Food Prep': count infraction('establishmenttype','Child
Care - Food Preparation', 'year_month'),
'Infraction: Food_Caterer': count infraction('establishmenttype','Food Caterer',
'year month'),
'Infraction: Banquet': count infraction('establishmenttype', 'Banquet Facility','
year month'),
'Infraction: Butcher Shop': count infraction('establishmenttype', 'Butcher Shop',
'year month'),
'Infraction: Food Plant': count infraction('establishmenttype', 'Food Processing
Plant', 'year month'),
'Infraction: Cafeteria': count infraction('establishmenttype','Cafeteria','year
month'),
'Infraction: Retirement': count infraction('establishmenttype','Retirement Homes
(Licensed)', 'year month'),
'Infraction: Nursing Home': count infraction('establishmenttype','Nursing Home /
Home for the Aged','year_month'),
#ESTABLISHMENT NAME
'Infraction: TIM HORTONS': count infraction('establishment name', 'TIM HORTONS', '
year month'),
'Infraction: SUBWAY': count infraction('establishment name', 'SUBWAY', 'year month
'),
"Infraction: MCDONALD'S": count infraction('establishment name', "MCDONALD'S", 'ye
ar month'),
'Infraction: PIZZA PIZZA': count_infraction('establishment_name','PIZZA PIZZA','
year month'),
'Infraction: SECOND CUP': count infraction('establishment name', 'SECOND CUP', 'ye
ar month'),
'Infraction: FRESHII': count infraction('establishment name', 'FRESHII', 'year mon
'Infraction: AROMA ESPRESSO BAR': count infraction('establishment name', 'AROMA E
SPRESSO BAR', 'year month'),
'Infraction: STARBUCKS COFFEE': count infraction('establishment name', 'STARBUCKS
COFFEE', 'year month'),
'Infraction: THAI EXPRESS': count infraction('establishment name', 'THAI EXPRESS'
,'year month'),
'Infraction: STARBUCKS': count infraction('establishment name', 'STARBUCKS', 'year
month')
})
df infraction = df infraction.fillna(0)
df infraction.index = df yrmth['year month']
```

df infraction.head()

	Infraction: Total	Infraction: High Risk	Infraction: Medium Risk	Infraction: Low Risk	Infraction: Restaurant	Infraction: Food_Take_Out
year_month						
2016-9	2384	1072	1161	151	1426	331
2016-10	2162	925	1115	122	1275	297
2016-11	2395	1076	1208	111	1528	239
2016-12	532	213	305	14	300	72
2017-1	1715	765	825	125	1013	212

Infraction/Inspection Ratio by Year_Month

```
In [27]:
def ratio infr insp(dim, val, interval):
    df infr = df[df['infraction details'].notna()]
    cnt infr = df infr[df infr[dim]==val].groupby([interval]).inspection id.size
()
    cnt insp = df[df[dim]==val].groupby([interval]).inspection id.nunique()
    ratio infr insp = cnt infr/cnt insp
    return ratio infr insp
df ratio infr insp = pd.DataFrame({
#pass rate
'Ratio: Total': df[df['infraction_details'].notna()].groupby(['year_month']).ins
pection id.size() / df.groupby(['year month']).inspection id.nunique(),
#Risk Category
'Ratio: High Risk': ratio infr insp('minimum inspections peryear',3,'year month'
),
'Ratio: Medium Risk': ratio infr insp('minimum inspections peryear',2,'year mont
'Ratio: Low Risk': ratio infr insp('minimum inspections peryear',1,'year month')
#ESTABLISHMENTTYPE
'Ratio: Restaurant': ratio infr insp('establishmenttype', 'Restaurant', 'year mont
h'),
'Ratio: Food_Take_Out': ratio_infr_insp('establishmenttype','Food Take Out','yea
r month'),
'Ratio: Food_Store': ratio_infr_insp('establishmenttype','Food Store (Convenienc
e / Variety)','year month'),
'Ratio: Supermarket': ratio infr insp('establishmenttype', 'Supermarket', 'year mo
```

```
nth'),
'Ratio: Food Court': ratio infr insp('establishmenttype', 'Food Court Vendor', 'ye
ar month'),
'Ratio: Bakery': ratio infr insp('establishmenttype', 'Bakery', 'year_month'),
'Ratio: Child Care Catered': ratio infr insp('establishmenttype','Child Care - C
atered', 'year month'),
'Ratio: Child Care Food Prep': ratio infr insp('establishmenttype','Child Care -
Food Preparation','year month'),
'Ratio: Food_Caterer': ratio_infr_insp('establishmenttype','Food Caterer','year_
month'),
'Ratio: Banquet': ratio infr insp('establishmenttype', 'Banquet Facility', 'year m
onth'),
'Ratio: Butcher Shop': ratio infr insp('establishmenttype', 'Butcher Shop', 'year
month'),
'Ratio: Food Plant': ratio infr_insp('establishmenttype','Food Processing Plant'
,'year month'),
'Ratio: Cafeteria': ratio infr insp('establishmenttype','Cafeteria','year month'
'Ratio: Retirement': ratio infr insp('establishmenttype', 'Retirement Homes(Licen
sed)','year month'),
'Ratio: Nursing Home': ratio infr insp('establishmenttype','Nursing Home / Home
for the Aged', 'year_month'),
#ESTABLISHMENT NAME
'Ratio: TIM HORTONS': ratio infr insp('establishment name', 'TIM HORTONS', 'year m
onth'),
'Ratio: SUBWAY': ratio infr insp('establishment name', 'SUBWAY', 'year month'),
"Ratio: MCDONALD'S": ratio infr insp('establishment name', "MCDONALD'S", 'year mon
th'),
'Ratio: PIZZA PIZZA': ratio infr insp('establishment name', 'PIZZA PIZZA', 'year m
onth'),
'Ratio: SECOND CUP': ratio infr insp('establishment name', 'SECOND CUP', 'year mon
th'),
'Ratio: FRESHII': ratio infr insp('establishment name', 'FRESHII', 'year month'),
'Ratio: AROMA ESPRESSO BAR': ratio infr insp('establishment name', 'AROMA ESPRESS
O BAR', 'year month'),
'Ratio: STARBUCKS COFFEE': ratio_infr_insp('establishment_name','STARBUCKS COFFE
E', 'year month'),
'Ratio: THAI EXPRESS': ratio infr insp('establishment name', 'THAI EXPRESS', 'year
month'),
'Ratio: STARBUCKS': ratio infr insp('establishment name', 'STARBUCKS', 'year month
')
})
df ratio infr insp = df ratio infr insp.fillna(0)
df ratio infr insp.index = df yrmth['year month']
df ratio infr insp.head()
```

	Ratio: Total	Ratio: High Risk	Ratio: Medium Risk	Ratio: Low Risk	Ratio: Restaurant	Ratio: Food_Take_Out	Foot
year_month							
2016-9	0.930523	1.470508	0.779195	0.440233	1.220890	0.775176	0.54
2016-10	0.938776	1.319544	0.837087	0.451852	1.165448	0.951923	0.58
2016-11	1.027897	1.473973	0.908271	0.411111	1.287279	0.975510	0.34
2016-12	0.889632	1.468966	0.770202	0.245614	1.132075	0.590164	0.35
2017-1	0.935115	1.613924	0.803311	0.375375	1.113187	0.770909	0.58

In [28]:

```
def pass rate cal(dim, val, interval):
    df pass = df[df['establishment status']=='Pass']
    cnt_pass = df_pass[df_pass[dim]==val].groupby([interval]).inspection_id.nuni
que()
    cnt_insp = df[df[dim]==val].groupby([interval]).inspection_id.nunique()
   pass_rate = pd.Series(cnt_pass/cnt_insp*100)
    return pass_rate
df pass rate = pd.DataFrame({
#pass rate
'Pass Rate: Total': (df[df['establishment status']=='Pass'].groupby(['year month
']).inspection_id.nunique()/df.groupby(['year_month']).inspection_id.nunique())*
100,
#Risk Category
'Pass Rate: High Risk': pass_rate_cal('minimum_inspections_peryear',3,'year_mont
'Pass Rate: Medium Risk': pass_rate_cal('minimum_inspections_peryear',2,'year_mo
nth'),
'Pass Rate: Low Risk': pass_rate_cal('minimum_inspections_peryear',1,'year_month
'),
#ESTABLISHMENTTYPE
'Pass Rate: Restaurant': pass rate cal('establishmenttype', 'Restaurant', 'year mo
nth'),
'Pass Rate: Food_Take_Out': pass_rate_cal('establishmenttype','Food Take Out','y
ear month'),
'Pass Rate: Food_Store': pass_rate_cal('establishmenttype','Food Store (Convenie
nce / Variety)','year_month'),
'Pass Rate: Supermarket': pass_rate_cal('establishmenttype','Supermarket','year_
month'),
'Pass Rate: Food_Court': pass_rate_cal('establishmenttype','Food Court Vendor','
year month'),
```

```
Pass Rate: Bakery : pass_rate_car( establishmenttype , Bakery , year_month ),
'Pass Rate: Child_Care_Catered': pass_rate_cal('establishmenttype','Child Care -
Catered', 'year month'),
'Pass Rate: Child_Care_Food_Prep': pass_rate_cal('establishmenttype','Child Care
- Food Preparation', 'year month'),
'Pass Rate: Food Caterer': pass rate cal('establishmenttype', 'Food Caterer', 'yea
r month'),
'Pass Rate: Banquet': pass_rate_cal('establishmenttype','Banquet Facility','year
month'),
'Pass Rate: Butcher Shop': pass rate cal('establishmenttype', 'Butcher Shop', 'yea
r month'),
'Pass Rate: Food Plant': pass rate cal('establishmenttype', 'Food Processing Plan
t','year month'),
'Pass Rate: Cafeteria': pass rate cal('establishmenttype','Cafeteria','year mont
h'),
'Pass Rate: Retirement': pass rate cal('establishmenttype', 'Retirement Homes(Lic
ensed)','year_month'),
'Pass Rate: Nursing Home': pass_rate_cal('establishmenttype','Nursing Home / Hom
e for the Aged', 'year month'),
#ESTABLISHMENT NAME
'Pass Rate: TIM HORTONS': pass rate cal('establishment name', 'TIM HORTONS', 'year
month'),
'Pass Rate: SUBWAY': pass rate cal('establishment name', 'SUBWAY', 'year month'),
"Pass Rate: MCDONALD'S": pass rate cal('establishment name', "MCDONALD'S", 'year m
onth'),
'Pass Rate: PIZZA PIZZA': pass rate cal('establishment name', 'PIZZA PIZZA', 'year
month'),
'Pass Rate: SECOND CUP': pass rate cal('establishment name', 'SECOND CUP', 'year m
onth'),
'Pass Rate: FRESHII': pass rate cal('establishment name', 'FRESHII', 'year month')
'Pass Rate: AROMA ESPRESSO BAR': pass rate cal('establishment name', 'AROMA ESPRE
SSO BAR', 'year month'),
'Pass Rate: STARBUCKS COFFEE': pass rate cal('establishment name', 'STARBUCKS COF
FEE','year month'),
'Pass Rate: THAI EXPRESS': pass rate cal('establishment name', 'THAI EXPRESS', 'ye
ar month'),
'Pass Rate: STARBUCKS': pass rate cal('establishment name', 'STARBUCKS', 'year mon
th')
})
df pass rate.index = df yrmth['year month']
```

df pass rate.head()

	Pass Rate: Total	Pass Rate: High Risk	Pass Rate: Medium Risk	Pass Rate: Low Risk	Pass Rate:	Pass Rate: Food_Take_Out
year_month						
2016-9	94.964871	91.769547	95.838926	97.959184	94.349315	94.847775
2016-10	93.834129	90.584879	94.894895	97.037037	92.778793	95.833333
2016-11	94.592275	91.369863	95.563910	98.518519	93.513058	96.734694
2016-12	94.983278	93.103448	95.454545	96.491228	92.830189	97.540984
2017-1	94.274809	87.763713	95.618306	99.399399	93.296703	95.272727

Plot Functions by Year_Month

```
In [29]:
```

```
def infraction_ratio_bar(insp,infr,ratio):
    df grf = pd.DataFrame({
        '# of Inspection':df inspection[insp],
        '# of Infraction': df_infraction[infr]
    })
    f = df_grf.plot.bar(figsize=(20,5))
    ts = list(df_ratio_infr_insp[ratio])
    dt = df yrmth['year month']
    s = pd.Series(ts, index=dt)
    f = s.plot(secondary y=True, kind='line', label=ratio, legend=True, figsize=
(20,5), color ='k', marker='o')
#inspection plot
def inspection plot(var):
    dt = df yrmth['date']
    ts = list(df_inspection[var])
    s = pd.Series(ts, index=dt)
    f = s.plot(label=var, legend=True, figsize=(20,5), marker='o')
    plt.xlabel('Inspection Date')
    plt.ylabel('Inspection')
#infraction plot
def infraction_plot(var):
    dt = df yrmth['date']
    ts = list(df_infraction[var])
    s = pd.Series(ts, index=dt)
    f = s.plot(label=var, legend=True, figsize=(20,5), marker='o')
    plt.xlabel('Inspection Date')
    plt.ylabel('Infraction')
```

```
#df ratio infr insp
def ratio_infr_insp_plot(var):
    dt = df yrmth['date']
    ts = list(df ratio infr insp[var])
    s = pd.Series(ts, index=dt)
    f = s.plot(label=var, legend=True, figsize=(20,5), marker='o')
    plt.xlabel('Inspection Date')
    plt.ylabel('Infraction/Inspection Ratio')
def ratio infr insp plot y(var):
    dt = df_yrmth['date']
    ts = list(df ratio infr insp[var])
    s = pd.Series(ts, index=dt)
    f = s.plot(secondary_y=True, label=var, legend=True, figsize=(20,5), marker=
'o')
    plt.xlabel('Inspection Date')
    plt.ylabel('Infraction/Inspection Ratio')
#pass rate plot
def pass rate plot(var):
    dt = df_yrmth['date']
    ts = list(df_pass_rate[var])
    s = pd.Series(ts, index=dt)
    f = s.plot(label=var, legend=True, figsize=(20,5), marker='o')
    plt.xlabel('Inspection Date')
    plt.ylabel('Pass Rate (%)')
def pass rate_plot_y(var):
    dt = df yrmth['date']
    ts = list(df_pass_rate[var])
    s = pd.Series(ts, index=dt)
    f = s.plot(secondary y=True, label=var, legend=True, figsize=(20,5), marker=
'o')
    plt.xlabel('Inspection Date')
    plt.ylabel('Pass Rate (%)')
```

Top15 Establishment Type

```
In [30]:

df_est_type = df.establishmenttype.value_counts()

t15 = df_est_type.head(15)

df_t15 = pd.DataFrame({'establishmenttype':t15.index})

df_est_t15 = pd.merge(df_t15, df, on='establishmenttype', how='left')

df_all = df_est_t15.copy()

df_infr = df_all[df_all['infraction_details'].notna()]

cnt_infr_all = df_infr.groupby(['establishmenttype']).inspection_id.size()

cnt_insp_all = df_all.groupby(['establishmenttype']).inspection_id.nunique()

ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp_all)
```

```
dr_pass_all = dr_all[dr_all[ establishment_status ]== Pass ]
cnt_pass_all = df_pass_all.groupby(['establishmenttype']).inspection_id.nunique(
pass rate all = pd.Series(cnt pass all/cnt insp all*100)
df_17 = df_est_t15[df_est_t15['year']==2017]
df infr 17 = df all[df all['infraction details'].notna()].query('year==2017')
cnt infr 17 = df infr 17.groupby(['establishmenttype']).inspection id.size()
cnt_insp_17 = df_17.groupby(['establishmenttype']).inspection_id.nunique()
ratio_infr_insp_17 = pd.Series(cnt_infr_17/cnt_insp_17)
df pass 17 = df 17[df 17['establishment status']=='Pass']
cnt pass 17 = df pass 17.groupby(['establishmenttype']).inspection id.nunique()
pass rate 17 = pd.Series(cnt pass 17/cnt insp 17*100)
df 18 = df est t15[df est t15['year']==2018]
df infr 18 = df all[df all['infraction details'].notna()].query('year==2018')
cnt infr 18 = df infr 18.groupby(['establishmenttype']).inspection id.size()
cnt insp 18 = df 18.groupby(['establishmenttype']).inspection id.nunique()
ratio infr insp 18 = pd.Series(cnt infr 18/cnt insp 18)
df pass 18 = df 18[df 18['establishment status']=='Pass']
cnt pass 18 = df pass 18.groupby(['establishmenttype']).inspection id.nunique()
pass_rate_18 = pd.Series(cnt_pass_18/cnt_insp_18*100)
df est type = pd.DataFrame({
'infr': cnt_infr_all,
'insp': cnt insp all,
'ratio infr insp': ratio infr insp all,
'pass': cnt pass all,
'pass_rate': pass_rate_all,
'infr_17': cnt_infr_17,
'insp 17': cnt insp 17,
'ratio infr insp 17': ratio infr insp 17,
'pass_17': cnt_pass_17,
'pass rate 17': pass rate 17,
'infr 18': cnt infr 18,
'insp_18': cnt_insp_18,
'ratio infr insp 18': ratio infr insp 18,
'pass 18': cnt pass 18,
'pass_rate_18': pass_rate_18
})
df est type.head()
```

	infr	insp	ratio_infr_insp	pass	pass_rate	infr_17	insp_17	ratio_
establishmenttype								
Bakery	1831	1330	1.376692	1181	88.796992	899	666	1.349
Banquet Facility	551	590	0.933898	553	93.728814	302	304	0.993
Butcher Shop	636	518	1.227799	476	91.891892	309	255	1.211
Cafeteria	448	603	0.742952	578	95.854063	220	297	0.740
Child Care - Catered	426	1894	0.224921	1843	97.307286	228	991	0.230

Top15 Establishment Name

```
In [70]:
```

```
df est name = df.establishment_name.value_counts()
t15 = df est name.head(15)
df t15 = pd.DataFrame({'establishment name':t15.index})
df_est_t15 = pd.merge(df_t15, df, on='establishment_name', how='left')
df all = df est t15.copy()
df_infr = df_all[df_all['infraction_details'].notna()]
cnt_infr_all = df_infr.groupby(['establishment_name']).inspection_id.size()
cnt_insp_all = df_all.groupby(['establishment_name']).inspection_id.nunique()
ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp_all)
df pass all = df all[df all['establishment status']=='Pass']
cnt pass all = df pass all.groupby(['establishment name']).inspection id.nunique
pass_rate_all = pd.Series(cnt_pass_all/cnt_insp_all*100)
df_17 = df_est_t15[df_est_t15['year']==2017]
df_infr_17 = df_all[df_all['infraction_details'].notna()].query('year==2017')
cnt_infr_17 = df_infr_17.groupby(['establishment_name']).inspection_id.size()
cnt_insp_17 = df_17.groupby(['establishment_name']).inspection_id.nunique()
ratio_infr_insp_17 = pd.Series(cnt_infr_17/cnt_insp_17)
df_pass_17 = df_17[df_17['establishment_status']=='Pass']
cnt_pass_17 = df_pass_17.groupby(['establishment_name']).inspection_id.nunique()
pass_rate_17 = pd.Series(cnt_pass_17/cnt_insp_17*100)
df_18 = df_est_t15[df_est_t15['year']==2018]
df infr 18 = df_all[df_all['infraction_details'].notna()].query('year==2018')
cnt_infr_18 = df_infr_18.groupby(['establishment_name']).inspection_id.size()
cnt_insp_18 = df_18.groupby(['establishment_name']).inspection_id.nunique()
ratio_infr_insp_18 = pd.Series(cnt_infr_18/cnt_insp_18)
df_pass_18 = df_18[df_18['establishment_status']=='Pass']
cnt_pass_18 = df_pass_18.groupby(['establishment_name']).inspection_id.nunique()
```

```
pass_rate_18 = pd.Series(cnt_pass_18/cnt_insp_18*100)
df_est_name = pd.DataFrame({
'infr': cnt infr all,
'insp': cnt_insp_all,
'ratio infr insp': ratio infr insp all,
'pass': cnt_pass_all,
'pass_rate': pass_rate_all,
'infr 17': cnt infr 17,
'insp 17': cnt insp 17,
'ratio_infr_insp_17': ratio_infr_insp_17,
'pass_17': cnt_pass_17,
'pass_rate_17': pass_rate_17,
'infr_18': cnt_infr_18,
'insp_18': cnt_insp_18,
'ratio_infr_insp_18': ratio_infr_insp_18,
'pass_18': cnt_pass_18,
'pass rate 18': pass rate 18
})
df est name.head()
```

Out[70]:

	infr	insp	ratio_infr_insp	pass	pass_rate	infr_17	insp_17	ratio
establishment_name								
AROMA ESPRESSO BAR	221	126	1.753968	115	91.269841	112	59	1.898
BOOSTER JUICE	142	137	1.036496	129	94.160584	64	66	0.969
FRESHII	192	172	1.116279	156	90.697674	83	79	1.050
MCDONALD'S	266	342	0.777778	325	95.029240	132	174	0.758
METRO	178	103	1.728155	97	94.174757	86	48	1.79 ⁻

Top15 Infraction Details

```
In [72]:
```

```
df_inf_dtl = df.infraction_details.value_counts()
t15 = df_inf_dtl.head(15)
df_t15 = pd.DataFrame({'infraction_details':t15.index})
df_est_t15 = pd.merge(df_t15, df, on='infraction_details', how='left')
df_all = df_est_t15.copy()
df_infr = df_all[df_all['infraction_details'].notna()]
```

```
cnt_infr_all = df_infr.groupby(['infraction_details']).inspection_id.size()
cnt insp all = df all.groupby(['infraction details']).inspection id.nunique()
ratio infr insp all = pd.Series(cnt infr all/cnt insp all)
df pass all = df all[df all['establishment status']=='c']
cnt pass all = df pass all.groupby(['infraction details']).inspection id.nunique
()
pass rate all = pd.Series(cnt pass all/cnt insp all*100)
df_17 = df_est_t15[df_est_t15['year']==2017]
df infr 17 = df all[df all['infraction details'].notna()].query('year==2017')
cnt infr 17 = df infr 17.groupby(['infraction details']).inspection id.size()
cnt_insp_17 = df_17.groupby(['infraction_details']).inspection_id.nunique()
ratio infr insp 17 = pd.Series(cnt infr 17/cnt insp 17)
df pass 17 = df 17[df 17['establishment status']=='Pass']
cnt_pass_17 = df_pass_17.groupby(['infraction_details']).inspection id.nunique()
pass_rate_17 = pd.Series(cnt_pass_17/cnt_insp_17*100)
df 18 = df est t15[df est t15['year']==2018]
df infr 18 = df all[df all['infraction details'].notna()].query('year==2018')
cnt infr 18 = df infr 18.groupby(['infraction details']).inspection id.size()
cnt insp 18 = df 18.groupby(['infraction details']).inspection id.nunique()
ratio infr insp 18 = pd.Series(cnt infr 18/cnt insp 18)
df pass 18 = df 18[df 18['establishment status']=='Pass']
cnt_pass_18 = df_pass_18.groupby(['infraction_details']).inspection_id.nunique()
pass rate 18 = pd.Series(cnt pass 18/cnt insp 18*100)
df inf dtl = pd.DataFrame({
'infr': cnt_infr_all,
'insp': cnt insp all,
'ratio infr insp': ratio infr insp all,
'pass': cnt_pass_all,
'pass rate': pass rate all,
'infr 17': cnt infr 17,
'insp 17': cnt insp 17,
'ratio infr insp 17': ratio infr insp 17,
'pass_17': cnt_pass_17,
'pass_rate_17': pass_rate_17,
'infr_18': cnt_infr 18,
'insp 18': cnt insp 18,
'ratio_infr_insp_18': ratio infr insp 18,
'pass_18': cnt_pass_18,
'pass_rate_18': pass_rate_18
})
df inf dtl.head()
```

	infr	insp	ratio	_infr_	insp	pass	pass_rate	infr_17	insp_17	ratio_in
FAIL TO HAVE TEST REAGENT AVAILABLE AT PLACE OF SANITIZATION O. REG 562/90 SEC. 75(2)	1252	1252	1.0			NaN	NaN	654	654	1.0
FAIL TO PROVIDE THERMOMETER IN STORAGE COMPARTMENT O. REG 562/90 SEC. 21	1297	1297	1.0			NaN	NaN	669	669	1.0
FAIL TO PROVIDE TOWELS IN FOOD PREPARATION AREA O. REG 562/90 SEC. 20(1)(C)	794	794	1.0			NaN	NaN	402	402	1.0
FAIL TO STORE FOOD ON RACKS OR SHELVES O. REG 562/90 SEC. 23	914	914	1.0			NaN	NaN	506	506	1.0
Fail to Ensure the Presence of the Holder of a Valid Food Handler's Certificate. Muncipal Code Chapter 545- 157(17)(a)	1540	1540	1.0			NaN	NaN	839	839	1.0

Week Day

```
In [128]:
```

```
cnt_infr_all = df[df['infraction_details'].notna()].groupby(['week_day']).inspec
tion_id.size()
cnt_insp_all = df.groupby(['week_day']).inspection_id.nunique()
ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp_all)
df_pass_all = df[df['establishment_status']=='Pass']
cnt_pass_all = df_pass_all.groupby(['week_day']).inspection_id.nunique()
pass_rate_all = pd.Series(cnt_pass_all/cnt_insp_all*100)

df_wkdy = pd.DataFrame({
    'infr': cnt_infr_all,
    'insp': cnt_insp_all,
    'ratio_infr_insp': ratio_infr_insp_all,
    'pass': cnt_pass_all,
    'pass_rate': pass_rate_all
})

df_wkdy.head()
```

Out[128]:

	infr	insp	ratio_infr_insp	pass	pass_rate
week_day					
0	10585	9241	1.145439	8551	92.533276
1	13260	11531	1.149944	10704	92.828029
2	13430	11670	1.150814	10815	92.673522
3	13555	12235	1.107887	11372	92.946465
4	10041	10395	0.965945	9787	94.151034

Week

```
In [73]:
```

```
cnt_infr_all = df[df['infraction_details'].notna()].groupby(['week']).inspection
    _id.size()
cnt_insp_all = df.groupby(['week']).inspection_id.nunique()
ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp_all)
df_pass_all = df[df['establishment_status']=='Pass']
cnt_pass_all = df_pass_all.groupby(['week']).inspection_id.nunique()
pass_rate_all = pd.Series(cnt_pass_all/cnt_insp_all*100)

df_wk = pd.DataFrame({
    'infr': cnt_infr_all,
    'insp': cnt_insp_all,
    'ratio_infr_insp': ratio_infr_insp_all,
    'pass_rate': pass_rate_all
})

df_wk.head()
```

Out[73]:

	infr	insp	ratio_infr_insp	pass	pass_rate
week					
1	545	502	1.085657	480	95.617530
2	977	994	0.982897	932	93.762575
3	1111	1061	1.047125	995	93.779453
4	1130	1036	1.090734	957	92.374517
5	1469	1218	1.206076	1138	93.431856

Month

```
In [74]:
```

```
cnt_infr_all = df[df['infraction_details'].notna()].groupby(['month']).inspectio
n_id.size()
cnt_insp_all = df.groupby(['month']).inspection_id.nunique()
ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp_all)
df_pass_all = df[df['establishment_status']=='Pass']
cnt_pass_all = df_pass_all.groupby(['month']).inspection_id.nunique()
pass_rate_all = pd.Series(cnt_pass_all/cnt_insp_all*100)

df_mth = pd.DataFrame({
    'infr': cnt_infr_all,
    'insp': cnt_insp_all,
    'ratio_infr_insp': ratio_infr_insp_all,
    'pass_rate': pass_all,
    'pass_rate': pass_rate_all
})

df_mth.head()
```

Out[74]:

	infr	insp	ratio_infr_insp	pass	pass_rate
month					
1	4524	4199	1.077399	3929	93.569898
2	5064	4307	1.175760	4009	93.081031
3	5810	4840	1.200413	4487	92.706612
4	5737	4353	1.317942	4016	92.258213
5	5335	4651	1.147065	4280	92.023221

Top 100 Establishment Name

```
In [75]:
```

```
df est name t100 = df.establishment name.value counts()
t15 = df est name t100.head(100)
df_t15 = pd.DataFrame({'establishment_name':t15.index})
df est t15 = pd.merge(df t15, df, on='establishment name', how='left')
df all = df est t15.copy()
cnt_infr_all = df_all[df_all['infraction_details'].notna()].groupby(['establishm'])
ent name']).inspection id.size()
cnt insp all = df all.groupby(['establishment name']).inspection id.nunique()
ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp all)
df_pass_all = df_all[df_all['establishment_status']=='Pass']
cnt pass all = df pass all.groupby(['establishment name']).inspection id.nunique
()
pass rate all = pd.Series(cnt pass all/cnt insp all*100)
df est name t100 = pd.DataFrame({
'infr': cnt infr all,
'insp': cnt insp all,
'ratio_infr_insp': ratio_infr_insp_all,
'pass': cnt pass all,
'pass_rate': pass_rate_all
})
df est name t100 = df est name t100.fillna(0)
df est name t100.head()
```

Out[75]:

	infr	insp	ratio_infr_insp	pass	pass_rate
establishment_name					
2-4-1 PIZZA	41	39	1.051282	37	94.871795
7-ELEVEN	81	67	1.208955	62	92.537313
A & W	52	96	0.541667	92	95.833333
ALI BABA'S	69	40	1.725000	35	87.500000
AMAYA EXPRESS	67	41	1.634146	36	87.804878

Top 1000 Establishment Name

```
In [76]:
```

```
df est name_t1000 = df[df['infraction_details'].notna()].establishment_name.valu
e counts()
t15 = df_est_name_t1000.head(1000)
df t15 = pd.DataFrame({'establishment name':t15.index})
df est t15 = pd.merge(df t15, df, on='establishment name', how='left')
df_all = df_est_t15.copy()
cnt infr all = df all[df all['infraction details'].notna()].groupby(['establishm
ent name']).inspection id.size()
cnt_insp_all = df_all.groupby(['establishment_name']).inspection_id.nunique()
ratio infr insp all = pd.Series(cnt infr all/cnt insp all)
df_pass_all = df_all[df_all['establishment_status']=='Pass']
cnt pass all = df pass all.groupby(['establishment name']).inspection id.nunique
()
pass rate all = pd.Series(cnt pass all/cnt insp all*100)
df est name t1000 = pd.DataFrame({
'infr': cnt infr all,
'insp': cnt_insp_all,
'ratio infr insp': ratio infr insp all,
'pass': cnt pass all,
'pass_rate': pass_rate_all
})
df_est_name_t1000 = df_est_name_t1000.fillna(0)
df est name t1000.head()
```

Out[76]:

	infr	insp	ratio_infr_insp	pass	pass_rate
147 ELDER ST INC.	20	6	3.333333	5.0	83.333333
2-4-1 PIZZA	41	39	1.051282	37.0	94.871795
241 PIZZA	27	20	1.350000	18.0	90.000000
3 EGGS ALL DAY PUB & GRILL	19	7	2.714286	5.0	71.428571
4C Broast Chicken	30	11	2.727273	9.0	81.818182

Top 10000 Establishment Name

```
In [77]:
```

```
df est name t10000 = df[df['infraction details'].notna()].establishment name.val
ue counts()
t15 = df_est_name_t10000.head(10000)
df t15 = pd.DataFrame({'establishment name':t15.index})
df est t15 = pd.merge(df t15, df, on='establishment name', how='left')
df_all = df_est_t15.copy()
cnt infr all = df all[df all['infraction details'].notna()].groupby(['establishm
ent name']).inspection id.size()
cnt insp all = df_all.groupby(['establishment_name']).inspection_id.nunique()
ratio infr insp all = pd.Series(cnt infr all/cnt insp all)
df_pass_all = df_all[df_all['establishment_status']=='Pass']
cnt pass all = df pass all.groupby(['establishment name']).inspection id.nunique
()
pass rate all = pd.Series(cnt pass all/cnt insp all*100)
df est name t10000 = pd.DataFrame({
'infr': cnt infr all,
'insp': cnt_insp_all,
'ratio infr insp': ratio infr insp all,
'pass': cnt pass all,
'pass_rate': pass_rate_all
})
df est name t10000 = df est name t10000.fillna(0)
df est name t10000.head()
```

Out[77]:

	infr	insp	ratio_infr_insp	pass	pass_rate
'K' STORE	2	3	0.666667	3.0	100.000000
1 PLUS 1 PIZZA	11	6	1.833333	5.0	83.333333
1-SATELLITE KITCHEN	2	4	0.500000	4.0	100.000000
100% Korean	3	2	1.500000	2.0	100.000000
100% MEXICANO	7	5	1.400000	5.0	100.000000

ALL Establishment Name

```
In [78]:
```

```
df all = df.copy()
cnt infr all = df all['infraction details'].notna()].groupby(['establishm
ent_name']).inspection_id.size()
cnt insp all = df all.groupby(['establishment name']).inspection id.nunique()
ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp_all)
df pass all = df all[df all['establishment status']=='Pass']
cnt_pass_all = df_pass_all.groupby(['establishment_name']).inspection_id.nunique
()
pass rate all = pd.Series(cnt pass all/cnt insp all*100)
df est name all = pd.DataFrame({
'infr': cnt infr all,
'insp': cnt insp all,
'ratio infr insp': ratio infr insp all,
'pass': cnt pass all,
'pass_rate': pass_rate_all
})
df est name all = df est name all.fillna(0)
df est name all.head()
```

Out[78]:

	infr	insp	ratio_infr_insp	pass	pass_rate
'K' STORE	2.0	3	0.666667	3.0	100.000000
(RAWF 2017) HAWBERRY FARMS	0.0	1	0.000000	1.0	100.000000
1 PLUS 1 PIZZA	11.0	6	1.833333	5.0	83.333333
1-SATELLITE KITCHEN	2.0	4	0.500000	4.0	100.000000
100% Korean	3.0	2	1.500000	2.0	100.000000

Area

```
In [79]:
df all = df.copy()
cnt infr all = df all[df all['infraction details'].notna()].groupby(['area']).in
spection_id.size()
cnt insp all = df all.groupby(['area']).inspection id.nunique()
ratio_infr_insp_all = pd.Series(cnt_infr_all/cnt_insp_all)
df_pass_all = df_all[df_all['establishment_status']=='Pass']
cnt_pass_all = df_pass_all.groupby(['area']).inspection_id.nunique()
pass rate all = pd.Series(cnt pass all/cnt insp all*100)
df 17 = df[df['year'] == 2017]
cnt infr 17 = df 17[df 17['infraction details'].notna()].groupby(['area']).inspe
ction id.size()
cnt insp 17 = df 17.groupby(['area']).inspection id.nunique()
ratio infr insp 17 = pd.Series(cnt infr 17/cnt insp 17)
df pass 17 = df 17[df 17['establishment status']=='Pass']
cnt pass 17 = df pass all.groupby(['area']).inspection id.nunique()
pass rate 17 = pd.Series(cnt pass all/cnt insp all*100)
df 18 = df[df['year'] == 2018]
cnt infr 18 = df 18[df 18['infraction details'].notna()].groupby(['area']).inspe
ction id.size()
cnt insp 18 = df 18.groupby(['area']).inspection id.nunique()
ratio infr insp 18 = pd.Series(cnt infr 18/cnt insp 18)
df pass 18 = df 18[df 18['establishment status']=='Pass']
cnt pass 18 = df pass all.groupby(['area']).inspection id.nunique()
pass_rate_18 = pd.Series(cnt_pass_all/cnt insp all*100)
df area = pd.DataFrame({
'infr': cnt infr all,
'insp': cnt insp all,
'ratio infr insp': ratio infr insp all,
'pass': cnt pass all,
'pass rate': pass rate all,
'infr 17': cnt infr 17,
'insp 17': cnt insp 17,
'ratio infr insp 17': ratio infr insp 17,
'pass 17': cnt pass 17,
'pass_rate_17': pass_rate_17,
'infr_18': cnt_infr_18,
'insp 18': cnt insp 18,
'ratio_infr_insp_18': ratio_infr_insp_18,
'pass 18': cnt pass 18,
'pass_rate_18': pass_rate_18
})
df area = df area.fillna(0)
```

df area.head()

	infr	insp	ratio_infr_insp	pass	pass_rate	infr_17	insp_17	ratio_in
area								
East York	1031	1214	0.849259	1149	94.645799	554	597	0.92797
Etobicoke	2959	5122	0.577704	4969	97.012886	1490	2499	0.59623
North York	13525	8685	1.557283	7793	89.729419	6555	4339	1.51071
Old Toronto	25619	23024	1.112708	21568	93.676164	12155	11162	1.08896
Scarborough	8919	7926	1.125284	7202	90.865506	4532	4087	1.10888

B. Data Analysis

Question: Has "DineSafe Program" been effective to reduce incidence of foodborne illness?

Metrics used to measure effectiveness of the program:

#2.2. Infraction/Inspection Ratio by Establishment Type

- Infraction/Inspecation Ratio = # of infraction / # of inspection
- Pass Rate (a.k.a. Compliance Rate) = # of inspection passed / # of total inspection

DineSafe program is aimed at reducing the incidence of foodborne illness among consumers in Toronto. Increased pass rates and decreases in infraction/inspection Ratio indicate a trend to enhanced food safety.

In [80]:

#Data Analysis Outline: #1. Infraction/Inspection Ratio vs Pass Rate #1.1. Relationship between Infraction/Inspection Ratio vs Pass Rate #1.2. Infraction/Inspection Ratio vs Pass Rate - High Risk Establishment #1.3. Infraction/Inspection Ratio vs Pass Rate - Medium Risk Establishment #1.4. Infraction/Inspection Ratio vs Pass Rate - Low Risk Establishment #2. Infraction/Inspection Ratio Trend #2.1. Infraction/Inspection Ratio Trend by Establishment Risk Category #2.1.1. Infraction/Inspection Ratio Trend - High Risk Category #2.1.2. Infraction/Inspection Ratio Trend - Medium Risk Category #2.1.3. Infraction/Inspection Ratio Trend - Low Risk Category

#2.2.1. Infraction/Inspection Ratio by Establishment Type - Restaurant

#2.2.2. Infraction/Inspection Ratio by Establishment Type - Food Take Out

```
#2.2.4. Infraction/Inspection Ratio by Establishment Type - Supermarket
#2.2.5. Infraction/Inspection Ratio by Establishment Type - Bakery
#2.3. Infraction/Inspection Ratio on Top 15 Establishment Type
#2.3.1 Infraction/Inspection Ratio on Top 15 Establishment Type - 2017CY
#2.3.2 Infraction/Inspection Ratio on Top 15 Establishment Type - 2018CY
#2.3.3 Infraction/Inspection Ratio Year over Year (YoY) Change
#2.4. Infraction/Inspection Ratio on Top 15 Establishment Name
#2.4.1. Infraction/Inspection Ratio on Top 15 Establishment Name - 2017CY
#2.4.2. Infraction/Inspection Ratio on Top 15 Establishment Name - 2018CY
#2.4.3. Infraction/Inspection Ratio Year over Year (YoY) Change - Top 15 Establi
shment Name
#3. Pass Rate (Compliance Rate)
#3.1. Pass Rate Trend by Risk Category
#3.2. Pass Rate Trend by Establishment Type
#3.3. Pass Rates on Top 15 Establishment Type
#3.3.1. Pass Rates on Top 15 Establishment Type - 2017CY
#3.3.2. Pass Rates on Top 15 Establishment Type - 2018CY
#3.3.3. Pass Rate Year over Year (YoY) Change - Top 15 Establishment Type
#3.4. Pass Rates on Top 15 Establishment Name
#3.4.1. Pass Rates on Top 15 Establishment Name - 2017CY
#3.4.2. Pass Rates on Top 15 Establishment Name - 2018CY
#3.4.3. Pass Rate Year over Year (YoY) Change - Top 15 Establishment Name
#3.5. Pass Rates on Top 15 Infraction Details
#3.5.1. Pass Rates on Top 15 Infraction Details - 2017CY
#3.5.2. Pass Rates on Top 15 Infraction Details - 2018CY
#3.5.3. Pass Rate Year over Year (YoY) Change - Top 15 Infraction Details
#4. Week Day / Week / Month
#4.1. Infraction/Inspection Rate on Week Day
#4.2. Pass Rate on Week Day
#4.3. Infraction/Inspection Rate on Week
#4.4. Pass Rate on Week
#4.5. Infraction/Inspection Rate on Month
#4.6. Pass Rate on Month
```

1. Infraction/Inspection Ratio vs Pass Rate

In [81]:

```
ratio_infr_insp_plot('Ratio: Total')
pass_rate_plot_y('Pass Rate: Total')
plt.title('Infraction/Inspection Ratio vs Pass Rate (Sept 2016 to Sept 2018)', f
ontsize=15)
```

Out[81]:

Text(0.5, 1.0, 'Infraction/Inspection Ratio vs Pass Rate (Sept 2016
to Sept 2018)')

• Between Sept 2016 and Apr 2018, infraction/inspection ratio had increased. Since Apr 2018, the ratio has declined. However, the pass rates have declined in last 25 months.

1.1. Relationship between Infraction/Inspection Ratio vs Pass Rate

```
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(20,15))
ax1 = fig.add subplot(2,2,4)
plt.xlabel('Infraction/Inspection Ratio')
plt.ylabel('Pass Rate (%)')
plt.title('Top 100 Establishment Name', fontsize=12)
ax2 = fig.add subplot(2,2,3)
plt.xlabel('Infraction/Inspection Ratio')
plt.ylabel('Pass Rate (%)')
plt.title('Top 1000 Establishment Name', fontsize=12)
ax3 = fig.add subplot(2,2,2)
plt.xlabel('Infraction/Inspection Ratio')
plt.ylabel('Pass Rate (%)')
plt.title('Top 10000 Establishment Name', fontsize=12)
ax4 = fig.add subplot(2,2,1)
plt.xlabel('Infraction/Inspection Ratio')
plt.ylabel('Pass Rate (%)')
plt.title('All Establishment Name', fontsize=12)
ax1.scatter(x = df est name t100['ratio infr insp'], y = df est name t100['pass
rate'], sizes=(20,5))
ax2.scatter(x = df est name t1000['ratio infr insp'], y = df est name t1000['pas
s rate'], sizes=(20,5))
ax3.scatter(x = df_est_name_t10000['ratio_infr_insp'], y = df_est_name_t10000['p
ass rate'], sizes=(20,5))
ax4.scatter(x = df est name all['ratio infr insp'], y = df est name all['pass ra
te'], sizes=(20,5))
plt.show()
```


In [83]:

```
display(np.corrcoef(df_est_name_t100['ratio_infr_insp'],df_est_name_t100['pass_r
ate'])[0,1])
display(np.corrcoef(df_est_name_t1000['ratio_infr_insp'],df_est_name_t1000['pass
_rate'])[0,1])
display(np.corrcoef(df_est_name_t10000['ratio_infr_insp'],df_est_name_t10000['pa
ss_rate'])[0,1])
display(np.corrcoef(df_est_name_all['ratio_infr_insp'],df_est_name_all['pass_rat
e'])[0,1])
```

- -0.9041595831737087
- -0.4652592624941136
- -0.4061134115416236
- -0.4878948597623952
 - Top 100 Establishment Name has strong negative correlation.

```
In [84]:
```

```
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(15,5))

ax1 = fig.add_subplot(1,2,2)
plt.xlabel('Infraction/Inspection Ratio')
plt.ylabel('Pass Rate (%)')
plt.title('Top 100 Establishment Name', fontsize=12)

ax4 = fig.add_subplot(1,2,1)
plt.xlabel('Infraction/Inspection Ratio')
plt.ylabel('Pass Rate (%)')
plt.title('All Establishment Name', fontsize=12)

ax1.scatter(x = df_est_name_t100['ratio_infr_insp'], y = df_est_name_t100['pass_rate'],sizes=(20,5))
ax4.scatter(x = df_est_name_all['ratio_infr_insp'], y = df_est_name_all['pass_rate'],sizes=(20,5))
plt.show()
```



```
In [85]:
```

```
print(np.corrcoef(df_est_name_all['ratio_infr_insp'],df_est_name_all['pass_rate'
])[0,1])
np.corrcoef(df_est_name_t100['ratio_infr_insp'],df_est_name_t100['pass_rate'])[0,1]
```

-0.4878948597623952

Out[85]:

-0.9041595831737087

1.2. Infraction/Inspection Ratio vs Pass Rate - High Risk Establishment

In [86]:

```
ratio_infr_insp_plot('Ratio: High Risk')
pass_rate_plot_y('Pass Rate: High Risk')
plt.title('High Risk: Infraction/Inspection Ratio vs Pass Rate (Sept 2016 to Sep t 2018)', fontsize=15)
```

Out[86]:

Text(0.5, 1.0, 'High Risk: Infraction/Inspection Ratio vs Pass Rate (Sept 2016 to Sept 2018)')

1.3. Infraction/Inspection Ratio vs Pass Rate - Medium Risk Establishment

In [87]:

```
ratio_infr_insp_plot('Ratio: Medium Risk')
pass_rate_plot_y('Pass Rate: Medium Risk')
plt.title('Medium Risk: Infraction/Inspection Ratio vs Pass Rate (Sept 2016 to S ept 2018)', fontsize=15)
```

Out[87]:

Text(0.5, 1.0, 'Medium Risk: Infraction/Inspection Ratio vs Pass Rate (Sept 2016 to Sept 2018)')

1.4. Infraction/Inspection Ratio vs Pass Rate - Low Risk Establishment

```
In [88]:
```

```
ratio_infr_insp_plot('Ratio: Low Risk')
pass_rate_plot_y('Pass Rate: Low Risk')
plt.title('Low Risk: Infraction/Inspection Ratio vs Pass Rate (Sept 2016 to Sept 2018)', fontsize=15)
```

Out[88]:

Text(0.5, 1.0, 'Low Risk: Infraction/Inspection Ratio vs Pass Rate (Sept 2016 to Sept 2018)')

2. Infraction/Inspection Ratio Trend

In [89]:

```
infraction_ratio_bar('Inspection: Total','Infraction: Total','Ratio: Total')
plt.title('Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018)', fontsize
=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[89]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

Infraction Ratio has been improved since April 2018.

2.1. Infraction/Inspection Ratio Trend by Establishment Risk Category

```
In [90]:
```

```
ratio_infr_insp_plot('Ratio: Low Risk')
ratio_infr_insp_plot('Ratio: Medium Risk')
ratio_infr_insp_plot('Ratio: High Risk')
plt.title("Infraction/Inspection Ratio Trend by Risk Category")
```

Out[90]:

Text(0.5, 1.0, 'Infraction/Inspection Ratio Trend by Risk Category')

• High Risk establishments were driving the increases in infractions 2018Q1. Low and Medium Risk establishments indicate the stable infraction ratio trend.

2.1.1. Infraction/Inspection Ratio Trend - High Risk Category

In [91]:

```
infraction_ratio_bar('Inspection: High Risk','Infraction: High Risk','Ratio: High Risk')
plt.title('High Risk: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018)
', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[91]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.1.2. Infraction/Inspection Ratio Trend - Medium Risk Category

In [92]:

```
infraction_ratio_bar('Inspection: Medium Risk','Infraction: Medium Risk','Ratio:
Medium Risk')
plt.title('Medium Risk: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018)', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[92]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.1.3. Infraction/Inspection Ratio Trend - Low Risk Category

In [93]:

```
infraction_ratio_bar('Inspection: Low Risk','Infraction: Low Risk','Ratio: Low R
isk')
plt.title('Low Risk: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018)'
, fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[93]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.2. Infraction/Inspection Ratio by Establishment Type

In [94]:

```
### Figure 2.2a
ratio_infr_insp_plot('Ratio: Restaurant')
ratio_infr_insp_plot('Ratio: Food_Take_Out')
ratio_infr_insp_plot('Ratio: Food_Court')
#ratio_infr_insp_plot('Ratio: Sumpermarket')
#ratio_infr_insp_plot('Ratio: Bakery')
plt.title('Infraction/Inspection Ratio Trend by Establishment Type (Sept 2016 to Sept 2018)', fontsize=15)
```

Out[94]:

Text(0.5, 1.0, 'Infraction/Inspection Ratio Trend by Establishment T ype (Sept 2016 to Sept 2018)')

In [95]:

```
### Figure 2.2b
ratio_infr_insp_plot('Ratio: Restaurant')
#ratio_infr_insp_plot('Ratio: Food_Take_Out')
#ratio_infr_insp_plot('Ratio: Food_Court')
ratio_infr_insp_plot('Ratio: Supermarket')
ratio_infr_insp_plot('Ratio: Bakery')
plt.title('Infraction/Inspection Ratio Trend by Establishment Type (Sept 2016 to Sept 2018)', fontsize=15)
```

Out[95]:

Text(0.5, 1.0, 'Infraction/Inspection Ratio Trend by Establishment T ype (Sept 2016 to Sept 2018)')

• Supermarket's nfraction/inspection ratio is the higest followed by Barkery's.

2.2.1. Infraction/Inspection Ratio by Establishment Type - Restaurant

In [96]:

```
infraction_ratio_bar('Inspection: Restaurant','Infraction: Restaurant','Ratio: R
estaurant')
plt.title('Restaurant: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018
)', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[96]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.2.2. Infraction/Inspection Ratio by Establishment Type - Food Take Out

In [97]:

```
infraction_ratio_bar('Inspection: Food_Take_Out','Infraction: Food_Take_Out','Ra
tio: Food_Take_Out')
plt.title('Food_Take_Out: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2
018)', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[97]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.2.3. Infraction/Inspection Ratio by Establishment Type - Food Court

In [98]:

```
infraction_ratio_bar('Inspection: Food_Court','Infraction: Food_Court','Ratio: F
ood_Court')
plt.title('Food_Court: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018
)', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[98]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.2.4. Infraction/Inspection Ratio by Establishment Type - Supermarket

In [99]:

```
infraction_ratio_bar('Inspection: Supermarket','Infraction: Supermarket','Ratio:
Supermarket')
plt.title('Supermarket: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018)', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[99]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.2.5. Infraction/Inspection Ratio by Establishment Type - Bakery

In [100]:

```
infraction_ratio_bar('Inspection: Bakery','Infraction: Bakery','Ratio: Bakery')
plt.title('Bakery: Infraction/Inspection Ratio Trend (Sept 2016 to Sept 2018)',
fontsize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[100]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.3. Infraction/Inspection Ratio on Top 15 Establishment Type

```
In [101]:
```

Out[101]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

• Child care has the lowest infraction ratio while supermarket has the highest.

2.3.1 Infraction/Inspection Ratio on Top 15 Establishment Type - 2017CY

```
In [102]:
```

Out[102]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.3.2 Infraction/Inspection Ratio on Top 15 Establishment Type - 2018CY

```
In [103]:
```

Out[103]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.3.3 Infraction/Inspecation Ratio Year over Year (YoY) Change

In [104]:

```
df_grf = pd.DataFrame({'Infraction Ratio Year over Year Change':df_est_type['rat
io_infr_insp_18'] - df_est_type['ratio_infr_insp_17']})
ax1 = df_grf.plot.bar(figsize=(20,5))
plt.axhline(0)
plt.title('Top 15 Establishment Type: Infraction/Inspectation Ratio Year over Ye
ar (YoY) Change', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio YoY Chg')
```

Out[104]:

Text(0, 0.5, 'Infraction/Inspection Ratio YoY Chg')

- Overall increases in top 15 establishment type
- Banquet Facility decreased by 0.05
- Food Caterer increased by 0.20

2.4. Infraction/Inspection Ratio on Top 15 Establishment Name

```
In [105]:
```

Out[105]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.4.1. Infraction/Inspection Ratio on Top 15 Establishment Name - 2017CY

```
In [106]:
```

Out[106]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.4.2. Infraction/Inspection Ratio on Top 15 Establishment Name - 2018CY

```
In [107]:
```

Out[107]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

2.4.3. Infraction/Inspection Ratio Year over Year (YoY) Change - Top 15 Establishment Name

In [108]:

```
df_grf = pd.DataFrame({'Infraction Ratio Year over Year Change':df_est_name['rat
io_infr_insp_18'] - df_est_name['ratio_infr_insp_17']})
ax1 = df_grf.plot.bar(figsize=(20,5))
plt.axhline(0)
plt.title('Top 15 Establishment Name: Infraction/Inspectation Ratio Year Over Ye
ar (YoY) Change', fontsize=15)
plt.ylabel('Infraction/Inspection Ratio YoY Chg')
```

Out[108]:

Text(0, 0.5, 'Infraction/Inspection Ratio YoY Chg')

Aroma Expresso Bar and Pizzailolo improved infraction ratio.

3. Pass Rate (Compliance Rate)

In [110]:

```
#overall pass rate
pass_rate_plot('Pass Rate: Total')
plt.title('Pass Rate Trend (Sept 2016 to Sept 2018)', fontsize=15)
plt.show()

#autocorrelation
cnt_pass = df[df['establishment_status']=='Pass'].groupby(['year_month']).inspec
tion_id.nunique()
cnt_insp = df.groupby(['year_month']).inspection_id.nunique()
ts = cnt_pass/cnt_insp
autocorrelation_plot(ts)
plt.title('Autocorrelation: Pass Rate (Jan to Dec 2017)', fontsize=15)
plt.show()
```


- Overall pass rate is trennding down.
- No autocorrelation

3.1. Pass Rate Trend by Risk Category

```
In [111]:
```

```
pass_rate_plot('Pass Rate: Low Risk')
pass_rate_plot('Pass Rate: Medium Risk')
pass_rate_plot('Pass Rate: High Risk')
```


 Pass rates of High Risk establishments are trending down while Low and medium risk establishments are stable.

3.2. Pass Rate Trend by Establishment Type

In [112]:

```
pass_rate_plot('Pass Rate: Restaurant')
pass_rate_plot('Pass Rate: Food_Take_Out')
pass_rate_plot('Pass Rate: Food_Court')
#pass_rate_plot('Pass Rate: Sumpermarket')
#pass_rate_plot('Pass Rate: Bakery')
plt.title('Pass Rate Trend by Establishment Type (Sept 2016 to Sept 2018)', font size=15)
```

Out[112]:

Text(0.5, 1.0, 'Pass Rate Trend by Establishment Type (Sept 2016 to Sept 2018)')

 'Food Take Out' places had less infraction ratio and more stable ratio than restaurant and Food Court.

In [113]:

```
pass_rate_plot('Pass Rate: Restaurant')
#pass_rate_plot('Pass Rate: Food_Take_Out')
#pass_rate_plot('Pass Rate: Food_Court')
pass_rate_plot('Pass Rate: Supermarket')
pass_rate_plot('Pass Rate: Bakery')
plt.title('Pass Rate Trend by Establishment Type (Sept 2016 to Sept 2018)', font size=15)
```

Out[113]:

Text(0.5, 1.0, 'Pass Rate Trend by Establishment Type (Sept 2016 to Sept 2018)')

3.3. Pass Rates on Top 15 Establishment Type

```
In [114]:
```

Out[114]:

Text(0, 0.5, 'Pass Rate (%)')

• Child care, Cafeteria, and Food Caterer had higher pass rates than others while Bakery and Supermarket had the lower pass rates.

3.3.1. Pass Rates on Top 15 Establishment Type - 2017CY

Out[115]:

Text(0, 0.5, 'Pass Rate (%)')

3.3.2. Pass Rates on Top 15 Establishment Type - 2018CY

```
In [116]:
```

Out[116]:

Text(0, 0.5, 'Pass Rate (%)')

3.3.3. Pass Rate Year over Year (YoY) Change - Top 15 Establishment Type

In [117]:

```
df_grf = pd.DataFrame({'Infraction Ratio Year over Year Change':df_est_type['pas
s_rate_18'] - df_est_type['pass_rate_17']})
ax1 = df_grf.plot.bar(figsize=(20,5))
plt.axhline(0)
plt.title('Top 15 Establishment Type: Pass Rate Year over Year (YoY) Change', fo
ntsize=15)
plt.ylabel('Pass Rate (%) YoY Chg')
```

Out[117]:

Text(0, 0.5, 'Pass Rate (%) YoY Chg')

 Most pass rates of top 15 establishment type had decreased except Banquet Facility and Butcher Shop.

3.4. Pass Rates on Top 15 Establishment Name

```
In [118]:
```

Out[118]:

Text(0, 0.5, 'Pass Rate (%)')

Second Cup has the lowest pass rate from top 15 Establishment Name.

3.4.1. Pass Rates on Top 15 Establishment Name - 2017CY

```
In [119]:
```

Out[119]:

Text(0, 0.5, 'Pass Rate (%)')

3.4.2. Pass Rates on Top 15 Establishment Name - 2018CY

```
In [120]:
```

Out[120]:

Text(0, 0.5, 'Pass Rate (%)')

3.4.3. Pass Rate Year over Year (YoY) Change - Top 15 Establishment Name

In [121]:

```
df_grf = pd.DataFrame({'Infraction Ratio Year over Year Change':df_est_name['pas
s_rate_18'] - df_est_name['pass_rate_17']})
ax1 = df_grf.plot.bar(figsize=(20,5))
plt.axhline(0)
plt.title('Top 15 Establishment Name: Pass Rate Year over Year (YoY) Change', fo
ntsize=15)
plt.ylabel('Pass Rate (%) YoY Chg')
```

Out[121]:

Text(0, 0.5, 'Pass Rate (%) YoY Chg')

• Thai Express pass rate decreased by 0.15.

3.5. Pass Rates on Top 15 Infraction Details

```
In [122]:
```

Out[122]:

Note:

Operator fail to provide adequate pest control has the lowest pass rate (almost 0%).

3.5.1. Pass Rates on Top 15 Infraction Details - 2017CY

```
In [123]:
```

Out[123]:

Text(0, 0.5, 'Pass Rate (%)')

3.5.2. Pass Rates on Top 15 Infraction Details - 2018CY

```
In [124]:
```

Out[124]:

Text(0, 0.5, 'Pass Rate (%)')

3.5.3. Pass Rate Year over Year (YoY) Change - Top 15 Infraction Details

In [125]:

```
df_grf = pd.DataFrame({'Infraction Ratio Year over Year Change':df_inf_dtl['pass_rate_18'] - df_inf_dtl['pass_rate_17']})
ax1 = df_grf.plot.bar(figsize=(20,5))
plt.axhline(0)
plt.title('Top 15 Infraction Details: Pass Rate Year over Year (YoY) Change', fo
ntsize=15)
plt.ylabel('Pass Rate (%) YoY Chg')
```

Out[125]:

Text(0, 0.5, 'Pass Rate (%) YoY Chg')

4. Week Day / Week / Month

4.1. Infraction/Inspection Rate on Week Day

```
In [129]:
```

Out[129]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

Lowest infraction/inspection ratio on Friday

4.2. Pass Rate on Week Day

```
In [130]:
```

Out[130]:

Text(0, 0.5, 'Pass Rate (%)')

Higher pass rate on Friday

4.3. Infraction/Inspection Rate on Week

```
In [131]:
```

Out[131]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

4.4. Pass Rate on Week

Out[132]:

Text(0, 0.5, 'Pass Rate (%)')

tick.set rotation(0)

plt.ylabel('Pass Rate (%)')

plt.title('Pass Rates on Week (Sept 2016 to Sept 2018)', fontsize=15)

4.5. Infraction/Inspection Rate on Month

```
In [133]:
```

```
df_grf = pd.DataFrame({
        '# of Inspection':df mth['insp'],
        '# of Infraction': df mth['infr']
    })
df grf.index = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov
','Dec']
ax1 = df_grf.plot.bar(figsize=(20,5))
l = list(df mth['ratio infr insp'])
s = pd.Series(1)
ax2 = s.plot(secondary y=True, kind='line', figsize=(20,5), color ='k', marker='
0')
for tick in ax1.get xticklabels():
    tick.set rotation(0)
plt.title('Infraction/Inspection Ratio on Month (Sept 2016 to Sept 2018)', fonts
ize=15)
plt.ylabel('Infraction/Inspection Ratio')
```

Out[133]:

Text(0, 0.5, 'Infraction/Inspection Ratio')

Highest infraction/inspection ratio on April

4.6. Pass Rate on Month

```
In [134]:
```

Out[134]:

Text(0, 0.5, 'Pass Rate (%)')

Infraction Rate on Area

In [135]:

Out[135]:

Text(0, 0.5, 'Infraction/Inspection Ratio')


```
In [136]:
```

Out[136]:

Text(0, 0.5, 'Pass Rate (%)')

5. Other Analysis

6. Closed Establishment

```
In [137]:
```

```
closed = df.query("establishment_status == 'Closed'")
len(closed)
closed.head()
```

Out[137]:

	row_id	establishment_id	inspection_id	establishment_name	establishmenttype
1250	1251	9002014	104292592	BUN KING BAKERY	Bakery
1251	1252	9002014	104292592	BUN KING BAKERY	Bakery
1252	1253	9002014	104292592	BUN KING BAKERY	Bakery
1253	1254	9002014	104292592	BUN KING BAKERY	Bakery
1254	1255	9002014	104292592	BUN KING BAKERY	Bakery

```
In [138]:
```

```
df[['infraction_details','establishment_status']].query("establishment_status ==
'Closed'").head()
```

Out[138]:

	infraction_details	establishment_status
1250	FAIL TO PROVIDE REQUIRED ILLUMINATION DURING A	Closed
1251	Fail to maintain handwashing stations (liquid	Closed
1252	Fail to maintain records of pest control measu	Closed
1253	Fail to protect against harbouring of pests	Closed
1254	Fail to protect food from contamination or adu	Closed

Top 10 most inspected places

In [139]:

```
#Count the number of inspections for each establishment
count_establishment = df.groupby(['establishment_address', 'establishment_name']
)['inspection_id'].nunique()
#Transfer the series to a dataframe
freq = count_establishment.to_frame(name = 'freq_per_year')
#Order the dataframe by 'freq per year'
freq_order=freq.sort_values(['freq_per_year'],ascending = False)
freq_order['freq_per_year']=freq_order['freq_per_year']/2
freq_top_10 = freq_order[:10]
```

In [140]:


```
In [141]:
#Assign different infraction scores to establishments based on the category of s
everity
def label_severity(row):
    if row['severity'] == 'M - Minor':
        return 1
    if row['severity']== 'S - Significant':
        return 2
    if row['severity']== 'C - Crucial':
        return 3
    return 0

df['score']=df.apply(lambda row: label_severity(row),axis=1)
```

In [142]:

```
# get the total score per establishment
sum score = df.groupby(['establishment_address', 'establishment_name'])['score']
.sum()
total score = sum score.to frame(name = 'score')
total score=total score.sort values(['score'],ascending = False)
# get the total number of inspection per establishment
total inspection = df.groupby(['establishment address', 'establishment name'])['
inspection_id'].nunique()
total ins = total inspection.to frame(name = 'num inspection')
total ins=total ins.sort values(['num inspection'], ascending = False)
# join total score table with the total inspection table
temp = pd.merge(total ins, total score, on=('establishment address', 'establishme
nt name'), how='inner')
# create a avg score column
temp['Avg Score'] = temp['score']/temp['num inspection']
avgScore = temp.sort_values(['Avg_Score'],ascending = False)
# round avg score to 1 decimal
avgScore=avgScore.round(1)
# reset index for both freq order and avgScore table
freq order.reset index()
avgScore.reset_index()
# Join freq order and avgScore table to get the scoring system table
ScoreData = pd.merge(freq order, avgScore, on=('establishment address', 'establis
hment name'), how='inner')
ScoreData=ScoreData.sort_values(['score'],ascending = False)
ScoreData
top20 score data=ScoreData[:20]
top20_score_data
```

		freq_per_year	num_inspection	score	A
establishment_address	establishment_name				
3401 DUFFERIN ST	VILLA MADINA MEDITERRANEAN CUISINE	9.5	19	132	6
866 WILSON AVE	MUSTAFA	4.5	9	104	1
3555 DON MILLS RD	TASTY BBQ SEAFOOD RESTAURANT	5.0	10	89	8
531 WILSON HEIGHTS BLVD	TIMES SQUARE DINER	5.0	10	89	8
1008 WILSON AVE	PHO MI ASIA	5.0	10	86	8
3220 DUFFERIN ST	SEOUL HOUSE	4.5	9	85	9
2450 DUFFERIN ST	YUM YUM RESTAURANT	4.5	9	83	9
					Ī
3200 DUFFERIN ST	KRYSTOS MODERN GREEK CUISINE	4.5	9	69	7
2350 YONGE ST	STAR KING	4.5	9	69	7
1027 STEELES AVE W	KIVA'S BAGEL BAKERY & RESTAURANT	4.0	8	68	8
1955 QUEEN ST E	POPEYES LOUISIANA KITCHEN	8.0	16	68	4
1090 WILSON AVE	METRO	3.5	7	68	9
3203 DUFFERIN ST	LUCKY DRAGON RESTAURANT	4.5	9	65	7
2555 VICTORIA PARK AVE	HONG TAI SUPERMARKET	4.0	8	61	7

In [143]:

Out[143]:

<matplotlib.legend.Legend at 0x115bf5d68>

In [144]:

```
loc_index = top20_score_data.index.values[:10]
len(loc_index)
```

Out[144]:

10

```
In [145]:
```

```
num=1
#var data=pd.DataFrame(columns=['establishment name','variance'])
std_list=[]
str list=[]
for i in range(len(loc index)):
    plt.subplot(5,2, num)
    num+=1
    #if num in range(14):
         plt.tick params(labelbottom=False)
    #if num not in [1,4,7]:
         plt.tick params(labelleft=True)
    plt.subplots adjust(hspace=1)
    #plt.tick params(labelbottom=True)
    Villa Trend = df[(df['establishment address']==loc index[i][0]) & (df['estab
lishment name'] == loc index[i][1])].sort values(['inspection date'], ascending = T
rue)
    Villa Trend=Villa Trend.groupby('inspection date').sum()
    x=np.std(Villa Trend['score'])
    #list1=[loc index[i][1],x]
    std list.append(x)
    str list.append(loc index[i][1])
    ax v=Villa Trend['score'].plot(linestyle='-', marker='o',figsize=(20,20))
    ax v.set ylim(0,35)
    plt.title(loc index[i][1], fontsize = 10)
    ax v.xaxis.label.set visible(False)
```


Avg. Score vs. Num of inspections per year

In [146]:

```
sort_score_data = top20_score_data.sort_values(['num_inspection'],ascending = Fa
lse)
ax = sort_score_data[['Avg_Score']].plot(linestyle='-', marker='o',figsize=(20,10))
sort_score_data[['freq_per_year']].plot(kind='bar', ax=ax,color='xkcd:silver')
ax.set_title("Avg Score (lower is better) vs. Num of Inspections per Year", font size=20)
plt.legend()
```

Out[146]:

<matplotlib.legend.Legend at 0x11515da90>

In [147]:

```
std_df = pd.DataFrame({'establishment_name':str_list, 'std':std_list})
```

In [148]:

```
std_ins_corr = pd.merge(ScoreData, std_df, on=('establishment_name'), how='inner
')
std_ins_corr1=std_ins_corr.sort_values(['Avg_Score'],ascending = False)
std_ins_corr1
```

Out[148]:

	establishment_name	freq_per_year	num_inspection	score	Avg_Score	std
1	MUSTAFA	4.5	9	104	11.6	10.253575
5	SEOUL HOUSE	4.5	9	85	9.4	9.117884
6	YUM YUM RESTAURANT	4.5	9	83	9.2	10.173798
2	TASTY BBQ SEAFOOD RESTAURANT	5.0	10	89	8.9	9.893938
3	TIMES SQUARE DINER	5.0	10	89	8.9	8.780091
4	PHO MI ASIA	5.0	10	86	8.6	8.534635
9	CUSINA LOUNGE	5.0	10	75	7.5	5.953990
0	VILLA MADINA MEDITERRANEAN CUISINE	9.5	19	132	6.9	8.198034
7	JOLLYTOPS	6.0	12	81	6.8	6.206515
8	FARM FRESH SUPERMARKET	7.5	15	76	5.1	4.711216

Avg. Score vs. Std

In [149]:

```
ax_std1 = std_ins_corr[['std']].plot(linestyle='-', marker='o',figsize=(20,10))
std_ins_corr1[['Avg_Score']].plot(kind='bar',ax = ax_std1, color='xkcd:silver')
ax_std1.set_title("Avg Score vs. Standard Deviation", fontsize=20)
ax_std1.set_xticklabels(std_ins_corr1.establishment_name)
```

Out[149]:

```
[Text(0, 0, 'MUSTAFA'),
  Text(0, 0, 'SEOUL HOUSE'),
  Text(0, 0, 'YUM YUM RESTAURANT'),
  Text(0, 0, 'TASTY BBQ SEAFOOD RESTAURANT'),
  Text(0, 0, 'TIMES SQUARE DINER'),
  Text(0, 0, 'PHO MI ASIA'),
  Text(0, 0, 'CUSINA LOUNGE'),
  Text(0, 0, 'VILLA MADINA MEDITERRANEAN CUISINE'),
  Text(0, 0, 'JOLLYTOPS'),
  Text(0, 0, 'FARM FRESH SUPERMARKET')]
```


In [150]:

```
std_ins_corr1['Avg_Score'].corr(std_ins_corr1['std'])
```

Out[150]:

0.8689779472791854

```
In [151]:
```

```
#fit a regression line to the scatter plot
sns.lmplot(x='Avg_Score', y='std', data=std_ins_corr1)
```

/usr/local/lib/python3.7/site-packages/scipy/stats/stats.py:1713: Fu tureWarning: Using a non-tuple sequence for multidimensional indexin g is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[151]:

<seaborn.axisgrid.FacetGrid at 0x115c777b8>

Find Locations based on Latitude and Longitude from Google API

Before calling the google api, please consider that it's a bit less than 96K records

So it's better to:

- 1. Collect the unique list of Lat and long and save it in another data frame
- 2. Search for the address but it's not suggeted to just apply the lambda for the hole dataframe, if any record fails, it rolls back the hole dataframe and will loose the hole api calls it made
- 3. It takes around 2 hours to fetch the hole data from a PC in sequential calls
- 4. Save the data frame as a separate data frame, so for each analysis there is no need to call the api again, it saves time and cost
- 5. Check if there is no bad data in the dataset, otherwise google api throws an error and the process will be stopped
- 6. For make it faster, it's better to use async calls in parallel which drops the time from 2 hours to 15 minutes
- 7. For showing the progress bar, tqdm has been used

In [198]:

```
gmaps = googlemaps.Client(key='AIzaSyClxI-vvB3yT4Ic pO76hon9WSbBMpghiM')
def find first postal code(reverse geocode result):
    for google result in reverse geocode result:
        for item in google result.get("address components"):
            if((item["types"][0]=='postal_code')):
                return item['short name']
def find first locality name(reverse geocode result):
    for google result in reverse geocode result:
        for item in google result.get("address components"):
            if(("sublocality" in item["types"])& ("sublocality level 1" in item[
"types"])):
                return item["short name"]
def get postal code and locality(lat, long):
    reverse geocode result = gmaps.reverse geocode((lat, long))
    postal code = find first postal code(reverse geocode result)
    city = find_first_locality_name(reverse_geocode_result)
    return[lat, long, postal code, city]
```

```
In [199]:
df[df['longitude']<-90]
Out[199]:
      row_id | establishment_id | inspection_id | establishment_name | establishmenttyr
89797 | 89798
                                           FRESCO
             10638787
                              104258049
                                                              Supermarket
In [200]:
def fixLogtitude(df):
    df.longitude.iloc[89797] = df.longitude.iloc[89797] / 10**9
    df[df['longitude']<-90]</pre>
    df.LONGITUDE.iloc[89797]
In [201]:
locs = df.groupby(['latitude', 'longitude']).size().reset index(name='Count')
```

```
len(locs)
```

Out[201]:

11003

There are 11003 unique point, so it helps to have a less query

```
In [212]:
```

```
def createLocationList(locs):
   with concurrent.futures.ProcessPoolExecutor(4) as pool:
        location list = list(tqdm.tqdm(pool.map(get postal code and locality, lo
cs['latitude'], locs['longitude'], chunksize=20), total=df.shape[0])) # Without
a progressbar
        return location list
```

```
In [213]:
```

```
def put location lits to csv file(location list):
    new_locs = pd.DataFrame(columns=['latitude', 'longitude', "Postal_Code", "Area
"], data=location list)
    new_locs.to_csv("locations_2.csv", sep=',', encoding='utf-8')
```

In [214]:

```
df['score']=df.apply(lambda row: label_severity(row),axis=1)
df.groupby(['area'])['score'].mean().reset_index(name="ave").sort_values(by="ave",ascending=False)
```

Out[214]:

	area	ave
2	North York	1.107693
4	Scarborough	0.982874
3	Old Toronto	0.949077
0	East York	0.764020
5	York	0.738684
1	Etobicoke	0.567130