Chapter 5: Quadratic Reciprocity

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 5.2. Show that the number of solutions to $x^2 \equiv a(p)$ is given by 1 + (a/p).

p is an odd prime.

Proof.

- (1) If $x \equiv t(p)$ is a solution of the equation $x^2 \equiv a(p)$, then $x \equiv -t(p)$ is also a solution. Notice that $t \not\equiv -t(p)$ if $t \not\equiv 0(p)$ by using the fact that p is odd.
- (2) (Lemma 4.1.) Let $f(x) \in k[x]$, k a field. Suppose that $\deg f(x) = n$. Then f has at most n distinct roots.
- (3) If a=0, then $x^2\equiv 0$ (p) has only one solution $x\equiv 0$ (p), or 1+(a/p) solution (where (a/p)=0 in this case).
- (4) If $a \neq 0$ is a quadratic residue mod p, then by (1)(2) the equation $x^2 \equiv a(p)$ has exactly 2 solutions, or 1 + (a/p) solutions (where (a/p) = 1 in this case).
- (5) If a is not a quadratic residue mod p, then there is no solutions of the equation $x^2 \equiv a(p)$, or 1 + (a/p) solutions (where (a/p) = -1 in this case).

By (3)(4)(5), in any case the number of solutions to $x^2 \equiv a(p)$ is given by 1 + (a/p). \square

Exercise 5.4. Prove that $\sum_{a=1}^{p-1} (a/p) = 0$.

Note. $\sum_{a=0}^{p-1} (a/p) = 0$ since (0/p) = 0.

Proof. There are as many residues as nonresidues mod p (Corollary to Proposition 5.1.2). \square