# Numerical Simulation of Microfiltration of Oil-in-Water Emulsions

By:
Tohid Darvishzadeh

Advisor: Dr. Nikolai Priezjev

Department of Mechanical Engineering
Michigan State University



- •T. Darvishzadeh, V.V. Tarabara, N.V. Priezjev, Journal of Membrane Science, 447, 442-451 (2013).
- •T. Darvishzadeh, N.V. Priezjev, Journal of Membrane Science, 423-424, 468-476 (2012).
- •T. Darvishzadeh, B. Bhattarai, N.V. Priezjev, Journal of Membrane Science,

MICHIGAN STATE UNIVERSITY

#### Outline

- Introduction
- Results
  - Part 1:
    - Oil film entry into pores of arbitrary shape (effect of transmembrane pressure).
    - Oil drop entry dynamics into circular pores under shear flow (effect of shear rate and transmembrane pressure).
  - Part 2:
    - Effect of confinement on drop dynamics.
    - Effect of viscosity ratio on drop dynamics.
    - Effect of surface tension coefficient on drop dynamics.
    - Effect of contact angle on drop dynamics.
    - Effect of drop size on drop dynamics.
- Conclusions
- Proposed future work

#### Microfluidics: Characteristics and Applications

#### Fluid flow at micron-scales.



**❖**Laminar flow (small Re)



**❖**High surface to volume ratio.



❖ Negligible gravity and inertia.



❖ Encapsulation of molecules, bioreagents, and cells for delivery or reaction.



**❖**Flow through porous media (e.g. oil extraction)



❖Biological flows (e.g. flow inside blood vessels)

3

#### **Emulsions: Properties and Applications**

#### Mixture of two immiscible fluids



❖ Dispersed droplets in continuous phase.



❖Beneficial emulsion production: food (left) & oil transportation (right).

Department of Mechanical Engineering



❖ Various forms of Immiscible fluids



❖ Unfavorable emulsion production: industrial wastewater (left) & biodiesel washing (right).
Michigan State University

#### **Emulsions: Production and Separation**

#### ☐ Mixture of two-immiscible fluid







**❖**Ultrasound emulsification

**❖** Mechanical agitation

**❖** Membrane emulsification





**❖**Chemical Demulsification

**❖**Gravity separator

**❖** Membrane microfiltration

#### Microfiltration of oil: Motivations and Methods



❖Oil spill in the Gulf of Mexico.



❖Industrial wastewater in Thailand.



**❖**Cutting fluids for machining.

#### Oil-Water Separation Methods





Department of Mechanical Engineering

**Michigan State University** 

#### Membrane Fouling, Permeate Flux, and Pore Shape

- ❖ Optimum design: high water flux and high oil **rejection**.
- ❖ Major issue: Fouling reduces Water flux in time.





**Standard blocking:** deposition of drops inside the pore.



Cake Formation: happens at the final stages of filtration. A layer of drops forms on the surface.

#### Circular Pores







❖Slotted pores: **higher flux rates** than circular pores due to **lower fouling rate**.



Department of Mechanical Engineering

**Michigan State University** 

#### Critical Pressure of Permeation



**Young-Laplace** Equation: pressure drop across an interface:

$$\Delta P = \sigma \cos \theta \left( \frac{1}{R_x} + \frac{1}{R_y} \right)$$

For a spherical interface:

$$\Delta P = 2\sigma\cos\theta \left(\frac{1}{R_d}\right)$$



## Critical pressure for a droplet deposited on a circular pore:

$$P_{crit} = 2\sigma \frac{\cos(\theta)}{r_{pore}}$$

$$\times \left[1 - \left\{\frac{2 + 3\cos\theta - \cos^3\theta}{4\left(\frac{r_{drop}}{r_{pore}}\right)^3\cos^3\theta - (2 - 3\sin\theta + \sin^3\theta)}\right\}^{\frac{1}{3}}\right]$$

F.F. Nazzal and M.R. Wiesner, Water Environ. Res. (1996).

 $oldsymbol{F_L}$   $oldsymbol{F_B}$   $oldsymbol{F_R}$   $oldsymbol{F_R}$ 

## Critical Pressure of Permeation: Pressure required to permeate the dispersed fluid.



❖Critical pressure as a function of drop size and pore size.

**Michigan State University** 

#### Crossflowing Systems: Confined vs. Unconfined

Confined (T-junction)





|                            | Confined                            | Unconfined                           |
|----------------------------|-------------------------------------|--------------------------------------|
| Channel driving force      | Pressure                            | Shear stress                         |
| Deformation and breakup    | Due to pressure gradient            | Due to shear stress and pressure.    |
| Dispersion                 | Plugs                               | Droplets                             |
| Continuous phase flow rate | Very Low                            | high                                 |
| Geometry                   | Strongly dependent on channel size  | Roughly independent of channel size. |
| Droplets size              | Easily controllable (mono-disperse) | Hardly controllable (poly-disperse)  |

#### Numerical Method and Important Parameters



**❖**CFD: Inexpensive, repeatable, instructive.

**❖**Flow solver: **FLUENT** 

❖3D interface tracking: **Volume of Fluid** 

❖Interface: outlined by cells containing both phases.

❖ Surface Tension: "Continuum Surface Force"

#### **Governing Equations**

#### Continuity

$$\frac{1}{\rho_{q}} \left[ \frac{\partial}{\partial t} \left( \alpha_{q} \rho_{q} \right) + \nabla \cdot \left( \alpha_{q} \rho_{q} \vec{v}_{q} \right) = S_{\alpha_{q}} + \sum_{p=1}^{n} \left( \dot{m}_{pq} - \dot{m}_{qp} \right) \right]$$

#### Compatibility

$$\rho = \alpha_2 \rho_2 + (1 - \alpha_2) \rho_1$$

#### Momentum

$$\frac{\partial}{\partial t} (\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot \left[ \mu (\nabla \vec{v} + \nabla \vec{v}^T) \right] + \rho \vec{g} + \vec{F}$$

| Important Parameters            |           |  |
|---------------------------------|-----------|--|
| Viscosity Ratio (oil to water)  | λ         |  |
| Surface Tension<br>Coefficient  | σ         |  |
| Contact angle (measured in oil) | $\theta$  |  |
| Shear Rate                      | γ̈́       |  |
| Drop to pore size ratio         | $r_d/r_p$ |  |

#### Validation of the Numerical Simulation



#### Results

#### $\square$ Part 1:

- 1. Oil film permeation into pores of arbitrary cross-section (effect of transmembrane pressure).
- 2. Oil drop entry dynamics into circular pores under shear flow.

### Critial Pressure of Permeation of Liquid Films inside Pores of Arbitrary Cross-Section

❖ Young-Laplace (pressure vs surface tension):

$$\Delta P = 2\sigma\kappa$$

❖Mean curvature (no gravity) for arbitrary surface *z*:

$$2\kappa = \nabla \cdot \left( \frac{\nabla z}{\sqrt{1 + \left| \nabla z \right|^2}} \right)$$

**❖**Boundary condition (imposed contact angle):

$$\cos \theta = \vec{n} \cdot \left( \frac{\nabla z}{\sqrt{1 + \left| \nabla z \right|^2}} \right)$$











 $C_p$ : pore circumference

 $A_p$ : pore CS area

$$P_{crit} = \frac{\sigma C_p \cos \theta}{A_p}$$

#### Numerical Simulation of Thin Oil Film on a Rectangular Pore





- **Excellent agreement with critical pressure formula.**
- ❖For square cross-section interface is spherical.
- ❖For 90 degrees: zero curvature + zero pressure gradient.
- ❖For 150 degrees no steady shape. Corners pinned.









$$2\kappa = \nabla \cdot \left( \frac{\nabla z}{\sqrt{1 + \left| \nabla z \right|^2}} \right)$$

$$P_{crit} = 2\sigma\cos\theta\left(\frac{1}{w} + \frac{1}{l}\right)$$

#### Numerical Simulation of Thin Oil Film on an Elliptical Pore



- ❖ Excellent agreement with critical pressure formula.
- ❖Infinitely long ellipse: higher critical pressure than infinitely long rectangle.
- ❖If aspect ratio > 1.635 there is a critical contact angle above which the interface cannot remain attached.

❖Interface inside an elliptical pore is not spherical.

Using Ramanujan's formula for ellipse perimeter (0.04% error):

$$h = \frac{(a-b)^2}{(a+b)^2}$$

$$P_{crit} \approx \frac{(a+b)}{ab} \left[ 1 + \frac{3h}{10 + \sqrt{4-3h}} \right] \sigma \cos \theta$$

#### Results

#### $\square$ Part 1:

- 1. Oil film permeation into pores of arbitrary crosssection.
- 2. Oil drop entry dynamics into circular pores under shear flow (effect of shear rate and transmembrane pressure).

#### Numerical Simulation of Oil Droplet on a Circular Pore with No Crossflow



Note: If contact angle is 90 degrees, the predicted critical pressure is negative, meaning that the drop will penetrate the pore in the absence of transmembrane pressure.

- ❖Excellent agreement with critical pressure formula.
- ❖ Critical pressure increases with drop size and decreases with pore size.
- ❖ Drop entry dynamics inside pore slows down significantly when approaching critical pressure.
- Critical pressure of an infinitely large drop corresponds to an infinite oil film.

$$P_{crit} = 2\gamma \frac{\cos(\theta)}{r_{pore}} \times \left[1 - \left\{\frac{2 + 3\cos\theta - \cos^3\theta}{4\left(\frac{r_{drop}}{r_{pore}}\right)^3\cos^3\theta - (2 - 3\sin\theta + \sin^3\theta)}\right\}^{\frac{1}{3}}\right]$$

F.F. Nazzal and M.R. Wiesner, Water Environ. Res. (1996).

#### Computational setup for sheared droplet on membrane surface with a circular pore



- ❖ Channel dimensions chosen to minimize finite size effects.
- ❖ Moving top wall induces linear shear flow.
- Pressure outlet at the bottom of pore controls transmembrane pressure.
- Periodic boundary condition to ensure accurate shear flow.

$$Ca = \frac{\mu \dot{\gamma} r_d}{\sigma} \le 0.03$$
  $Re = \frac{\rho_w \dot{\gamma} r_d^2}{\mu_w} \le 0.5$ 

The mesh consists of pore diameter.



hexagonal grids and contains 30 cells along



**Michigan State University** 



T. Darvishzadeh and N.V. Priezjev, Journal of Membrane Science, 423-424, 468-476 (2012).

#### Leakage Volume with Respect to Transmembrane Pressure



- ❖ Volume of leakage: linearly dependent on transmembrane pressure.
- ❖Flow inside pore follows Hagen-Poiseuille.
- ❖For 100% rejection rate breakup should be avoided.

$$\Delta P = \frac{8\mu LQ}{\pi r^4}$$

$$U_{\mathrm{int}\mathit{erface}} \propto \Delta P$$

$$r_{pore} = 0.2 \ \mu m, \ r_{drop} = 0.9 \ \mu m, \ \lambda = 2.45, \ \sigma = 19.1 \ mN/m, \ \theta = 135^{\circ}, \ Shear = 5 \times 10^5 \ s^{-1}$$

#### Results

#### $\square$ Part 2:

- 1. Problem statement.
- 2. Effect of confinement on drop dynamics.
- 3. Effect of viscosity ratio on drop dynamics.
- 4. Effect of surface tension coefficient on drop dynamics.
- 5. Effect of contact angle on drop dynamics.
- 6. Effect of drop size on drop dynamics.

#### Problem Statement: Interaction of an Oil Droplet with a Membrane Pore



❖ Young-Laplace Equation: pressure drop across an interface:

$$\Delta P = 2\kappa\sigma$$



- ❖ Motion of interface inside the pore is slow.
- ❖ The interface inside the channel is highly dynamic.

#### Analytical formulation: Critical Capillary Number and Critical Pressure



 $\bar{r} = r_d / r_p$ 

 $Ca_{cr} \propto \frac{1}{f_D(\lambda)\bar{r}}$ 

<sup>&</sup>lt;sup>†</sup> K. Sugiyama, M. Sbragaglia, *J. Eng. Math.* **62,** 35 (2008).

#### Computational Setup, Boundary Conditions, and Mesh



- ❖ Droplet already deposited on the pore.
- **❖**Bottom of pore is blocked.
- Symmetry boundary condition solves half of the domain. As a result saves time.
- ❖Moving top wall generates linear shear flow.
- ❖ A hybrid mesh with coarse tetrahedral meshes away from the pore and fine hexagonal meshes near the pore is used.
- ❖Grid independency check is confirmed

Basic parameters:  $r_{pore} = 0.5~\mu m,~r_{drop} = 2.0~\mu m,~\lambda = 1,~\sigma = 19.1~mN/m,~\theta = 135^\circ$ 

#### Results

#### $\square$ Part 2:

- 1. Problem statement.
- 2. Effect of confinement on drop dynamics.
- 3. Effect of viscosity ratio on drop dynamics.
- 4. Effect of surface tension coefficient on drop dynamics.
- 5. Effect of contact angle on drop dynamics.
- 6. Effect of drop size on drop dynamics.

#### Effect of Confinement on Drop Dynamics Near Circular Pores

- ❖ High channel height: high computational cost.
- **❖**Low channel height: not purely unconfined.
- **❖**Optimum channel height?
- Highly confined droplet elongates more.
- ❖Higher confinement → lower breakup capillary number.
- **❖**Optimum confinement ratio ~ 0.428



$$r_{pore} = 0.5 \ \mu m, \ r_{drop} = 2.0 \ \mu m, \ \lambda = 1, \ \sigma = 19.1 \ mN/m, \ \theta = 135^{\circ}$$





#### Results

#### $\square$ Part 2:

- 1. Problem statement.
- 2. Effect of confinement on drop dynamics.
- 3. Effect of viscosity ratio on drop dynamics.
- 4. Effect of surface tension coefficient on drop dynamics.
- 5. Effect of contact angle on drop dynamics.
- 6. Effect of drop size on drop dynamics.

#### Effect of Viscosity Ratio on Breakup Time of the Droplet



 $r_{pore} = 0.5 \ \mu m, \ r_{drop} = 2.0 \ \mu m, \ \sigma = 19.1 \ mN/m, \ \theta = 135^{\circ}$ 

- ❖ Deformation time scale: measure of drop deformation time.
- **❖**Solid body -> infinite deformation time scale.
- Computed breakup time increases with viscosity ratio.
- ❖Drop profiles at breakup match very closely (self-similarity).



#### Effect of Viscosity Ratio on Drop Dynamics Near Circular Pores



- ❖ With increasing capillary number *Ca* critical permeation pressure increases.
- High viscosity ratio = high critical pressure.
- ❖ Higher viscosity ratio = easier breakup.
- ❖ Droplets with low viscosity ratio should be avoided for emulsification.
- ❖ Increasing *Ca* increases deformation.



Department of Mechanical Engineering

#### Self-similarity of the Drop Behavior for any Viscosity Ratio



- Drops with different viscosity ratio behave similarly.
- **\*** Capillary number is multiplied by  $f_D(\lambda)$  because highly viscous drops break at lower shear rates.
- Critical pressure is divided by  $f_T(\lambda)$  because highly viscous drops have higher critical pressure.

$$Ca_{cr} \times f_D(\lambda) \propto \frac{1}{\overline{r}}$$

$$(P_{cr} - P_{cr_0}) / f_T(\lambda) \propto \frac{\sigma \overline{r} Ca}{r_p}$$

$$f_D(\lambda) = \frac{2 + 4.5 \,\lambda}{1 + 1.05 \,\lambda}$$
  $f_T(\lambda) = \frac{2.19 \,\lambda}{1 + 0.90 \,\lambda}$ 

$$f_T(\lambda) = \frac{2.19 \,\lambda}{1 + 0.90 \,\lambda}$$

#### Results

#### $\square$ Part 2:

- 1. Problem statement.
- 2. Effect of confinement on drop dynamics.
- 3. Effect of viscosity ratio on drop dynamics.
- 4. Effect of surface tension coefficient on drop dynamics.
- 5. Effect of contact angle on drop dynamics.
- 6. Effect of drop size on drop dynamics.

#### Breakup time of droplet for different surface tension coefficients



- ❖ Deformation time scale decreases with surface tension.
- ❖Breakup time linearly increases with deformation time scale.
- ❖Drops with higher surface tension breakup faster.
- ❖Drop profiles at breakup match exactly (self-similarity).



#### Effect of Surface Tension on Drop Dynamics Near Circular Pores



Nazzal & Wiesner, (1996)

$$P_{crit} = 2\gamma \frac{\cos(\theta)}{r_{pore}} \times \left[ 1 - \left\{ \frac{2 + 3\cos\theta - \cos^3\theta}{4\left(\frac{r_{drop}}{r_{pore}}\right)^3 \cos^3\theta - (2 - 3\sin\theta + \sin^3\theta)} \right\}^{\frac{1}{3}} \right]$$

- ❖Surface tension resists external forces (pressure, shear stress, etc.).
- ❖Increasing surface tension coefficient increases critical pressure of permeation.
- ❖Drops with high surface tension break at higher shear rates.
- ❖ Microfiltration → high surface tension.



#### Self-similarity of the Drop Behavior for any Surface Tension



- Dividing Ca and P $_{cr}$  by the surface tension coefficient makes results independent from surface tension.
- ❖ Breakup at  $Ca \approx 0.032$ .

$$\frac{\text{%Inc}P_{crit}}{P_{crit_0}} = \frac{(P_{crit} - P_{crit_0})}{P_{crit_0}} \times 100$$

$$P_{crit_0} \propto \sigma$$

$$Ca = \frac{\mu \dot{\gamma} r_d}{\sigma}$$

#### Results

#### $\square$ Part 2:

- 1. Problem statement.
- 2. Effect of confinement on drop dynamics.
- 3. Effect of viscosity ratio on drop dynamics.
- 4. Effect of surface tension coefficient on drop dynamics.
- 5. Effect of contact angle on drop dynamics.
- 6. Effect of drop size on drop dynamics.

#### Effect of Contact Angle on Drop Dynamics Near Circular Pores



Nazzal & Wiesner, (1996)

$$P_{crit} = 2\gamma \frac{\cos(\theta)}{r_{pore}} \times \left[1 - \left\{\frac{2 + 3\cos\theta - \cos^3\theta}{4\left(\frac{r_{drop}}{r_{pore}}\right)^3\cos^3\theta - (2 - 3\sin\theta + \sin^3\theta)}\right\}^{\frac{1}{3}}\right]$$



- ❖Increasing contact angle increases the critical pressure of permeation.
- ❖Breakup shear rate is roughly independent of contact angle.
- ❖Contact angles of 115 degrees results in a 21% increase in critical pressure before breakup while 155 increases only 6%.

#### Pressure Increase vs. Capillary Number for Different Contact Angles



- ❖Increase in critical pressure roughly independent of contact angle.
- **❖**Lower contact angle drops are able to elongate more.



$$Ca = \frac{\mu \dot{\gamma} r_d}{\sigma}$$

$$T = f_T(\lambda)\pi\mu\dot{\gamma}r_d^3$$

#### Results

#### $\square$ Part 2:

- 1. Problem statement.
- 2. Effect of confinement on drop dynamics.
- 3. Effect of viscosity ratio on drop dynamics.
- 4. Effect of surface tension coefficient on drop dynamics.
- 5. Effect of contact angle on drop dynamics.
- 6. Effect of drop size on drop dynamics.

#### Effect of Drop size on Entry Dynamics Near Circular Pores



Nazzal & Wiesner, (1996)

$$P_{crit} = 2\gamma \frac{\cos(\theta)}{r_{pore}} \times \left[1 - \left\{\frac{2 + 3\cos\theta - \cos^3\theta}{4\left(\frac{r_{drop}}{r_{pore}}\right)^3\cos^3\theta - (2 - 3\sin\theta + \sin^3\theta)}\right\}^{\frac{1}{3}}\right]$$



- **❖**Larger drops: higher critical pressure.
- \*Larger drops: lower breakup shear rate.
- ❖Increase in critical pressure before breakup is higher for smaller droplets.
- ❖Increase in critical pressure is higher for larger drops for the same shear rate.

#### Self-similarity of the Drop Behavior for any Drop Size



- Modified breakup capillary number is independent of drop size.
- Smaller drops deform more near the pore.
- New non-dimensional number identified.

$$P_{cr} - P_{cr_0} \propto \frac{f_T(\lambda)\sigma \bar{r}Ca}{r_p}$$

$$Ca_{cr} \times \bar{r} \propto f_D(\lambda)$$

$$f_D(\lambda) = \frac{2 + 4.5 \,\lambda}{1 + 1.05 \,\lambda}$$

$$f_T(\lambda) = \frac{2.19 \,\lambda}{1 + 0.90 \,\lambda}$$

#### Summary

Increasing the parameters in green boxes improve rejection of oil

Increasing the parameters in green boxes increases chance of breakup



$$P_{cr} - P_{cr_0} \propto \frac{f_T(\lambda)\sigma \bar{r}Ca}{r_p}$$
 $\bar{r} = r_d/r_p$ 

$$\bar{r} = r_d / r_p$$

$$Ca_{cr} \propto \frac{1}{f_D(\lambda)\bar{r}}$$

- T. Darvishzadeh, V.V. Tarabara, N.V. Priezjev, *Journal of Membrane Science*, **447**, 442-451 (2013).
- T. Darvishzadeh and N.V. Priezjev, *Journal of Membrane Science*, **423-424**, 468-476 (2012).

#### **Important Conclusions**

- ✓ A formula for calculation of critical pressure of entry of an oil film was derived and validated numerically.
- ✓Increasing shear flow, increases critical pressure of permeation.
- ✓ Depending on transmembrane pressure and shear rate, a droplet near the pore of a membrane will be washes away, break, or permeate the pore.
- ✓ Confined drops break at lower shear rates compared to unconfined drops.
- ✓ Critical pressure for crossflow microfiltration increases with viscosity ratio, surface tension coefficient, and drop size.
- ✓ Increasing shear rate, viscosity ratio, and size of the drop increases chance of breakup.
- ✓Increasing surface tension coefficient decreases chance of breakup.
- ✓ New dimensionless variables were introduced that result in solutions independent of various parameters.

#### Proposed Future Work

Numerical simulation of a droplet on a membrane surface with hydrophobicity gradient.

- $\triangleright$  Constant contact angle ( $\theta = 137^{\circ}$ ).
- ➤ Droplet pulled towards the pore due to the induced flow.



- ➤ Linear contact angle gradient along the membrane surface.
- $\triangleright \theta = 150^{\circ}$  at pore entrance.
- $\triangleright \theta = 70^{\circ}$  at far right side.
- ➤ Droplet driven away from the pore despite the induced flow towards the pore.



#### Proposed Future Work (continued)

$$\begin{split} r_{pore} = 5~\mu\text{m},~~ r_{drop} = 33~\mu\text{m},~~ \lambda = 1,~~ \sigma = 19.1~\text{mN/m},\\ \theta = 180^{\circ},~~ \Delta P_{pore} = -10~\text{kPa},~~ \Delta P_{lat} = 1~\text{kPa} \end{split}$$

- ➤ Droplet interaction with multiple pores.
- ➤ Lateral pressure driven flow.
- Droplet released upstream.







- ➤ Multiple droplets interacting with pores of different size.
- Constant transmembrane pressure.
- ➤ Higher flow rate through larger pore.
- > Drops migrate towards larger pore.

$$\begin{split} r_{pore\_large} &= 0.1~\mu\text{m},~r_{pore\_small} = 0.05~\mu\text{m},~r_{drop} = 0.4~\mu\text{m},\\ \lambda &= 2.45,~\sigma = 19.1~\text{mN/m},~\theta = 180^\circ,~\Delta P_{pore} = -150~\text{kPa} \end{split}$$

#### Proposed Future Work (continued)

#### Droplet on slotted pore.





a = 1 
$$\mu$$
m, b =  $\infty$ ,  $r_{drop}$  = 2  $\mu$ m,  $\lambda$  = 1,  $\sigma$  = 19.1 mN/m,  $\theta$  = 135°,  $\Delta P_{pore}$  = -38 kPa



- > Droplet on inclined pore.
- ➤ Hypothesis: critical pressure increases by increasing inclination angle.

$$r_{pore} = 0.5 \mu m$$
,  $r_{drop} = 2 \mu m$ ,  $\theta_{pore} = 30^{\circ}$ ,  $\lambda = 1$ ,  $\sigma = 19.1 \text{ mN/m}$ ,  $\theta = 135^{\circ}$ , Shear  $= 5 \times 10^5 \text{ s}^{-1}$ 

#### Acknowledgements

PhD Advisor Nikolai Priezjev

PhD Committee Members:

Volodymyr Tarabara Farhad Jaberi Andre Benard

Funding and Support:

MSU Foundation

National Science Foundation

MSU High Performance Computing Center