Математический анализ данных и машинное обучение

Лекция 3

Саркисян Вероника

План на сегодня

9:30 - 10:45	SVM, многоклассовая классификация.
11:00 - 12:30	Семинар
12:30 - 13:30	Обед
13:30 - 14:30	Регуляризация, LASSO и Ридж-регрессия.
14:45 - 17:30	Снижение размерности признакового пространства: метод главных компонент.

Метод опорных векторов: разделимый случай

Будем рассматривать классификаторы вида:

$$a(x) = sign(\langle w, x \rangle + b), \qquad w \in \mathbb{R}^d, b \in \mathbb{R}.$$

Расстояние от объекта до разделяющей гиперплоскости:

$$\rho(x_0, a) = \frac{|\langle w, x \rangle + b|}{\|w\|}.$$

Расстояние от гиперплоскости до ближайшего объекта выборки:

$$\min_{x\in X^\ell}\frac{|\langle w,x\rangle+b|}{\|w\|}=\frac{1}{\|w\|}\min_{x\in X}|\langle w,x\rangle+b|=\frac{1}{\|w\|}.$$

(здесь воспользовались тем, что можно одновременно умножать w и b на положительную константу)

Оптимизационная задача:

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w,b} \\ y_i (\langle w, x_i \rangle + b) \geqslant 1, \quad i = 1, \dots, \ell. \end{cases}$$

Разделяем виды алкоголя

Метод Опорных Векторов

Метод опорных векторов: неразделимый случай

Введем штраф за попадание объектов внутрь разделяющей полосы:

$$y_i(\langle w, x_i \rangle + b) \geqslant 1 - \xi_i, \quad i = 1, \dots, \ell.$$

Новая оптимизационная задача:

Новая оптимизационная задача: параметр C отвечает за то, как сильно мы штрафуем за попадание внутрь полосы.
$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^\ell \xi_i \to \min_{w,b,\xi} \\ y_i \left(\langle w, x_i \rangle + b \right) \geqslant 1 - \xi_i, \quad i = 1, \dots, \ell, \\ \xi_i \geqslant 0, \quad i = 1, \dots, \ell. \end{cases}$$

sklearn.svm.SVC

class sklearn.svm. **svc** (C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None) [source]

Parameters: C: float, optional (default=1.0)

Penalty parameter C of the error term.

kernel: string, optional (default='rbf')

Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

degree: int, optional (default=3)

Degree of the polynomial kernel function ('poly'). Ignored by all other kernels.

tol: float, optional (default=1e-3)

Tolerance for stopping criterion.

cache_size : float, optional

Specify the size of the kernel cache (in MB).

class_weight : {dict, 'balanced'}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights

inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y))

verbose : bool, default: False

Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter : int, optional (default=-1)

Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape : 'ovo', 'ovr', default='ovr'

Whether to return a one-vs-rest ('ovr') decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). However, one-vs-one ('ovo') is always used as multi-class strategy.

Многоклассовая классификация: One-VS-All

Обучим K (K = число классов) линейных классификаторов: $b_1(x), \ldots, b_K(x)$

Каждый классификатор (бинарный!) будет отличать $b_k(x) = \langle w_k, x \rangle + w_{0k}$. один класс от всех остальных.

Итоговый класс будем вычислять как наиболее вероятный, исходя из прогнозов всех алгоритмов:

$$a(x) = \underset{k \in \{1, \dots, K\}}{\operatorname{arg max}} b_k(x).$$

Многоклассовая классификация: All-VS-All

Обучим C_K^2 классификаторов (для всех возможных пар классов):

$$b_k(x) = \operatorname{sign}(\langle w_k, x \rangle + w_{0k}).$$

Каждый классификатор (бинарный!) обучаем на подвыборке, содержащей только 2 класса.

Для классификации нового объекта подадим его на вход всем построенным классификаторам; в качестве ответа выберем наиболее "частый" среди ответов класс.

$$a(x) = \underset{k \in \{1, \dots, K\}}{\operatorname{arg \, max}} \sum_{i=1}^{K} \sum_{j \neq i} [a_{ij}(x) = k]$$

Метрики качества

Рассмотрим К двухклассовых задач (one-VS-all), для каждой вычислим матрицу ошибок:

 TP_k, FP_k, FN_k, TN_k

Микро-усреднение:

$$\operatorname{precision}(a, X) = \frac{\operatorname{TP}}{\overline{\operatorname{TP}} + \overline{\operatorname{FP}}}, \qquad \overline{\operatorname{TP}} = \frac{1}{K} \sum_{k=1}^{K} \operatorname{TP}_{k}$$

$$\overline{\mathrm{TP}} = \frac{1}{K} \sum_{k=1}^{K} \mathrm{TP}_k$$

Макро-усреднение:

$$\operatorname{precision}(a, X) = \frac{1}{K} \sum_{k=1}^{K} \operatorname{precision}_{k}(a, X); \qquad \operatorname{precision}_{k}(a, X) = \frac{\operatorname{TP}_{k}}{\operatorname{TP}_{k} + \operatorname{FP}_{k}}.$$

Датасет Iris

Регуляризация

Вернемся к задаче линейной регрессии:

$$a(x) = w_0 + \langle w, x \rangle$$

Будем штрафовать за "сложность" модели:

$$Q_{\alpha}(w) = Q(w) + \alpha R(w)$$

L2 - регуляризатор: $R(w) = \|w\|_2 = \sum_{i=1}^d w_i^2,$

rop:
$$R(w) = ||w||_1 = \sum_{i=1}^{a} |w_i|.$$

L1 - регуляризатор:

Ридж-регрессия (L2-регуляризация)

sklearn.linear_model.Ridge

class sklearn.linear_model. Ridge (alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None) [source]

LASSO (L1-регуляризация)

sklearn.linear_model.Lasso

class sklearn.linear_model. Lasso (alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic')

[source]

Метод главных компонент (РСА)

Пусть $X \in \mathbb{R}^{\ell \times D}$ — матрица «объекты-признаки», где ℓ — число объектов, а D — число признаков. Поставим задачу уменьшить размерность пространства до d. Будем считать, что данные являются центрированными — то есть среднее в каждом столбце матрицы X равно нулю.

Будем искать главные компоненты $u_1, \ldots, u_D \in \mathbb{R}^D$, которые удовлетворяют следующим требованиям:

- 1. Они ортогональны: $\langle u_i, u_j \rangle = 0, i \neq j;$
- 2. Они нормированы: $||u_i||^2 = 1$;
- 3. При проецировании выборки на компоненты u_1, \ldots, u_d получается максимальная дисперсия среди всех возможных способов выбрать d компонент.

Чтобы понизить размерность выборки до d, мы будем проецировать её на первые d компонент — из последнего свойства следует, что это оптимальный способ снижения размерности.

Дисперсия проецированной выборки показывает, как много информации нам удалось сохранить после понижения размерности — и поэтому мы требуем максимальной дисперсии от проекций.

sklearn.decomposition.PCA

class sklearn.decomposition. **PCA** (n_components=None, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None) [source]

