
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2010; month=2; day=5; hr=8; min=56; sec=2; ms=894;]

Validated By CRFValidator v 1.0.3

Application No: 10574084 Version No: 2.0

Input Set:

Output Set:

Started: 2010-01-25 15:31:31.523 **Finished:** 2010-01-25 15:31:34.844

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 321 ms

Total Warnings: 44

Total Errors: 0

No. of SeqIDs Defined: 46

Actual SeqID Count: 46

Error code		Error Description										
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)	

Input Set:

Output Set:

Started: 2010-01-25 15:31:31.523

Finished: 2010-01-25 15:31:34.844

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 321 ms

Total Warnings: 44

Total Errors: 0

No. of SeqIDs Defined: 46

Actual SeqID Count: 46

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

```
<110> ENCAM Pharmaceuticals A/S
<120> AA method of modulating cell survival, differentiation and/or
      synaptic plasticity
<130> P 810 PC00
<140> 10574084
<141> 2010-01-25
<160> 46
<170> PatentIn version 3.5
<210> 1
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig1 fragment: amino acid residues 35-47
<400> 1
Trp Phe Ser Pro Asn Gly Glu Lys Leu Ser Pro Asn Gln
       5
                                 10
<210> 2
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig1 fragment: amino acid residues 75-88
<400> 2
Tyr Lys Cys Val Val Thr Ala Glu Asp Gly Thr Gln Ser Glu
               5
                                  10
<210> 3
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig3 fragment: amino acid residues 213-224
<400> 3
Thr Leu Val Ala Asp Ala Asp Gly Phe Pro Glu Pro
1
               5
                                 10
```

```
<210> 4
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 156-164
<400> 4
Gln Ile Arg Gly Ile Lys Lys Thr Asp
<210> 5
<211> 3
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 144-146
<400> 5
Asp Val Arg
<210> 6
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 158-164
<400> 6
Arg Gly Ile Lys Lys Thr Asp
   5
<210> 7
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 144-146 and 158-164
<400> 7
Asp Val Arg Arg Gly Ile Lys Lys Thr Asp
              5
```

```
<210> 8
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 111-115
<400> 8
Lys Glu Gly Glu Asp
<210> 9
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 157-164
<400> 9
Ile Arg Gly Ile Lys Lys Thr Asp
              5
<210> 10
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 111-115 and 157-164
<400> 10
Lys Glu Gly Glu Asp Gly Ile Arg Gly Ile Lys Lys Thr Asp
                                   10
<210> 11
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig3 fragment: amino acid residues 260-264
<400> 11
Asp Lys Asn Asp Glu
```

```
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig3 fragment: amino acid residues 194-205
<400> 12
Thr Val Gln Ala Arg Asn Ser Ile Val Asn Ala Thr
              5
<210> 13
<211> 9
<212> PRT
<213> Artificial sequence
<223> rat NCAM Ig3 fragment: amino acid residues 281-289
<400> 13
Ser Ile His Leu Lys Val Phe Ala Lys
<210> 14
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 150-158
<400> 14
Leu Ser Asn Asn Tyr Leu Gln Ile Arg
<210> 15
<211> 12
<212> PRT
<213> Artificial sequence
<223> rat NCAM Ig2 fragment: amino acid residues 146-157
<400> 15
Arg Phe Ile Val Leu Ser Asn Asn Tyr Leu Gln Ile
        5
<210> 16
<211> 16
```

```
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 142-157
<400> 16
Lys Lys Asp Val Arg Phe Ile Val Leu Ser Asn Asn Tyr Leu Gln Ile
                                  10
<210> 17
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 108-119
<400> 17
Gln Glu Phe Lys Glu Gly Glu Asp Ala Val Ile Val
              5
                                  10
<210> 18
<211> 11
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 111-121
<400> 18
Lys Glu Gly Glu Asp Ala Val Ile Val Cys Asp
      5
                                 10
<210> 19
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig1 fragment: amino acid residues 10-21
<400> 19
Gly Glu Ile Ser Val Gly Glu Ser Lys Phe Phe Leu
               5
<210> 20
<211> 21
```

<212> PRT

```
<213> Artificial sequence
<220>
<223> rat NCAM Ig3 fragment: amino acid residues 243-263
<400> 20
Lys His Ile Phe Ser Asp Asp Ser Ser Glu Leu Thr Ile Arg Asn Val
                                10
Asp Lys Asn Asp Glu
         20
<210> 21
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Iglfragment : amino acid residues10-21containing
      mutation F19A
<400> 21
Gly Glu Ile Ser Val Gly Glu Ser Lys Ala Phe Leu
     5
                     10
<210> 22
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAN Ig1 fragment: amino acid residues 10-21 containing
      mutantions F19A and F20A
<400> 22
Gly Glu Ile Ser Val Gly Glu Ser Lys Ala Ala Leu
     5
                                10
<210> 23
<211> 21
<212> PRT
<213> Artificial sequence
<220>
<223> chicken NCAM Ig3 fragment: amino acid residues 243-263
<400> 23
Lys Tyr Ser Phe Asn Tyr Asp Gly Ser Glu Leu Ile Ile Lys Lys Val
               5
                                  10
                                                     15
```

```
20
<210> 24
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig3 fragment: amino acid residues 244-253
<400> 24
Lys His Ile Phe Ser Asp Asp Ser Ser Glu
          5
                                 10
<210> 25
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> chicken NCAM Ig3 fragment: amino acid residues 243-252
<400> 25
Lys Tyr Ser Phe Asn Tyr Asp Gly Ser Glu
              5
<210> 26
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig3 fragment: amino acid residues 281-289 containing
      mutantions K285A and F287S
<400> 26
Ser Ile His Leu Ala Val Ala Ala Lys
<210> 27
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig3 fragment: amino acid residues 281-289 containing
```

mutations K285A and F287G

Asp Lys Ser Asp Glu

<220>
<223> upper PCR primer

<400> 31
gaatacgtaa ctgtccaggc cagac

```
<210> 32
<211> 27
<212> DNA
<213> Artificial sequence
<220>
<223> lower PCR primer
<400> 32
aaacctaggt tactttgcaa agacctt
                                                                      27
<210> 33
<211> 75
<212> DNA
<213> Artificial sequence
<220>
<223> upper PCR primer
<400> 33
ctgcaggtag atattgttcc cagccaagga gccatcagcg ttggagcctc cgccttcttc
                                                                      60
                                                                      75
ctgtgtcaag tggca
<210> 34
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223> upper PCR primer
<400> 34
ggcgacagtt cggcgttaac catcaggaat gtggac
                                                                      36
<210> 35
<211> 39
<212> DNA
<213> Artificial sequence
<220>
<223> lower PCR primer
<400> 35
ggttaacgcc gaactgtcgc cactgaagat gtgcttctc
                                                                      39
<210> 36
<211> 45
<212> DNA
<213> Artificial sequence
<220>
<223> lower PCR primer
```

```
45
aaacttaggt tactttgctg cgactgcgag gtggatggag gcatc
<210> 37
<211> 29
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 37
tctctcgagt tctgcaggta gatattgtt
                                                                      29
<210> 38
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 38
                                                                      36
aaatacgtaa ctgtccaggc cgcccagagc atcgtg
<210> 39
<211> 16
<212> PRT
<213> Artificial sequence
<220>
<223> rat NCAM Ig2 fragment: amino acid residues 133-148
<400> 39
Lys His Lys Gly Arg Asp Val Ile Leu Lys Lys Asp Val Arg Phe Ile
              5
                                  10
<210> 40
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> NCAM Ig1 fargment: CD-srands
<400> 40
Ala Phe Ser Pro Asn Gly Glu Lys Leu Ser Pro Asn Gln
```

10

<400> 36

```
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> NCAM Ig1 fragment: FG-strands
<400> 41
Ala Lys Ser Val Val Thr Ala Glu Asp Gly Thr Gln Ser Glu
    5
                              10
<210> 42
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> NCAM Ig2 fragment: CD-strands
<400> 42
Asp Val Arg Arg Gly Ile Lys Lys Thr Asp
1 5
<210> 43
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> NCAM Ig2 fragment: EF-strands
<400> 43
Gln Ile Arg Gly Ile Lys Lys Thr Asp
<210> 44
<211> 858
<212> PRT
<213> Rattus norvegicus
<400> 44
Met Leu Arg Thr Lys Asp Leu Ile Trp Thr Leu Phe Phe Leu Gly Thr
1 5 10 15
Ala Val Ser Leu Gln Val Asp Ile Val Pro Ser Gln Gly Glu Ile Ser
```

25

30

20

<210> 41

Val Gly	Glu Se	er Lys	Phe	Phe	Leu 40	Cys	Gln	Val	Ala	Gly 45	Asp	Ala	Lys
Asp Lys 50	Asp Il	e Ser	Trp	Phe 55	Ser	Pro	Asn	Gly	Glu 60	Lys	Leu	Ser	Pro
Asn Gln 65	Gln Ar	g Ile	Ser 70	Val	Val	Trp	Asn	Asp 75	Asp	Asp	Ser	Ser	Thr 80
Leu Thr	Ile Ty	r Asn 85	Ala	Asn	Ile	Asp	Asp 90	Ala	Gly	Ile	Tyr	Lys 95	Суз
Val Val	Thr Al		Asp	Gly	Thr	Gln 105	Ser	Glu	Ala	Thr	Val 110	Asn	Val
Lys Ile	Phe Gl 115	n Lys	Leu	Met	Phe 120	Lys	Asn	Ala	Pro	Thr 125	Pro	Gln	Glu
Phe Lys	Glu Gl	y Glu	Asp	Ala 135	Val	Ile	Val	Суз	Asp 140	Val	Val	Ser	Ser
Leu Pro 145	Pro Th	nr Ile	Ile 150	Trp	Lys	His	Lys	Gly 155	Arg	Asp	Val	Ile	Leu 160
Lys Lys	Asp Va	al Arg 165	Phe	Ile	Val	Leu	Ser 170	Asn	Asn	Tyr	Leu	Gln 175	Ile
Arg Gly	Ile Ly 18		Thr	Asp	Glu	Gly 185	Thr	Tyr	Arg	Cys	Glu 190	Gly	Arg
Ile Leu	Ala Ar 195	g Gly	Glu	Ile	Asn 200	Phe	Lys	Asp	Ile	Gln 205	Val	Ile	Val
Asn Val	Pro Pr	o Thr	Val	Gln 215	Ala	Arg	Gln	Ser	Ile 220	Val	Asn	Ala	Thr
Ala Asn 225	Leu Gl	y Gln.	Ser 230	Val	Thr	Leu	Val	Cys 235	Asp	Ala	Asp	Gly	Phe 240
Pro Glu	Pro Th	nr Met 245	Ser	Trp	Thr	Lys	Asp 250	Gly	Glu	Pro	Ile	Glu 255	Asn

Glu Glu Glu Asp Asp Glu Lys His Ile Phe Ser Asp Asp Ser Ser Glu

260 265 270

Leu Thr Ile Arg Asn Val Asp Lys Asn Asp Glu Ala Glu Tyr Val Cys 275 280 285 Ile Ala Glu Asn Lys Ala Gly Glu Gln Asp Ala Ser Ile His Leu Lys 290 295 300 Val Phe Ala Lys Pro Lys Ile Thr Tyr Val Glu Asn Gln Thr Ala Met 305 310 315 320 Glu Leu Glu Glu Gln Val Thr Leu Thr Cys Glu Ala Ser Gly Asp Pro 325 330 335 Ile Pro Ser Ile Thr Trp Arg Thr Ser Thr Arg Asn Ile Ser Ser Glu 340 345 350 Glu Lys Ala Ser Trp Thr Arg Pro Glu Lys Gln Glu Thr Leu Asp Gly 355 360 365 His Met Val Val Arg Ser His Ala Arg Val Ser Ser Leu Thr Leu Lys 370 375 380 Ser Ile Gln Tyr Thr Asp Ala Gly Glu Tyr Ile Cys Thr Ala Ser Asn 390 395 385 Thr Ile Gly Gln Asp Ser Gln Ser Met Tyr Leu Glu Val Gln Tyr Ala 415 405 410 Pro Lys Leu Gln Gly Pro Val Ala Val Tyr Thr Trp Glu Gly Asn Gln 420 425 430 Val Asn Ile Thr Cys Glu Val Phe Ala Tyr Pro Ser Ala Thr Ile Ser 435 440 Trp Phe Arg Asp Gly Gln Leu Leu Pro Ser Ser Asn Tyr Ser Asn Ile 450 455 460 Lys Ile Tyr Asn Thr Pro Ser Ala Ser Tyr Leu Glu Val Thr Pro Asp 470 475 465

Ser Glu Asn Asp Phe Gly Asn Tyr Asn Cys Thr Ala Val Asn Arg Ile

490

495

485

Gly Gln Glu	Ser Leu 500	Glu Phe	Ile Le		n Ala Asp	Thr Pro	Ser
Ser Pro Ser 515	-	Arg Val	Glu Pro	o Tyr Sei	r Ser Thr 525	Ala Gln	Val
Gln Phe Asp 530	Glu Pro	Glu Ala 535	Thr Gl	y Gly Val	l Pro Ile 540	Leu Lys	Tyr
Lys Ala Glu 545	Trp Lys	Ser Leu 550	Gly Gl	u Glu Ala 555	=	Ser Lys	Trp 560
Tyr Asp Ala	Lys Glu 565	Ala Asn	Met Gl	u Gly Ile 570	e Val Thr	Ile Met 575	Gly
Leu Lys Pro	Glu Thr 580	Arg Tyr	Ala Va 58	=	ı Ala Ala	Leu Asn 590	Gly
Lys Gly Leu 595	_	Ile Ser	Ala Al	a Thr Glu	ı Phe Lys 605	Thr Gln	Pro
Val Arg Glu 610	Pro Ser	Ala Pro 615	Lys Le	u Glu Gly	y Gln Met 620	Gly Glu	Asp
Gly Asn Ser 625	Ile Lys	Val Asn 630	Leu Il	e Lys Glr 635		Gly Gly	Ser 640
Pro Ile Arg	His Tyr 645	Leu Val	Lys Ty	r Arg Ala 650	a Leu Ala	Ser Glu 655	Trp
Lys Pro Glu	Ile Arg 660	Leu Pro	Ser Gl	-	o His Val	Met Leu 670	Lys
Ser Leu Asp 675	-	Ala Glu	Tyr Gl	u Val Tyı	r Val Val 685	Ala Glu	Asn
Gln Gln Gly 690	Lys Ser	Lys Ala 695	Ala Hi	s Phe Val	L Phe Arg 700	Thr Ser	Ala
Gln Pro Thr 705	Ala Ile	Pro Ala 710	Asn Gl	y Ser Pro 715		Gly Leu	Ser 720

Thr Gly Ala Ile Val Gly Ile Leu Ile Val Ile Phe Val Leu Leu 725 730 Val Val Met Asp Ile Thr Cys Tyr Phe Leu Asn Lys Cys Gly Leu Leu 740 745 750 Met Cys Ile Ala Val Asn Leu Cys Gly Lys Ala Gly Pro Gly Ala Lys 755 760 765 Gly Lys Asp Met Glu Glu Gly Lys Ala Ala Phe Ser Lys Asp Glu Ser 770 775 780 Lys Glu Pro Ile Val Glu Val Arg Thr Glu Glu Glu Arg Thr Pro Asn 790 795 800 His Asp Gly Gly Lys His Thr Glu Pro Asn Glu Thr Thr Pro Leu Thr 805 810 815 Glu Pro Glu Lys Gly Pro Val Glu Thr Lys Ser Glu Pro Gln Glu Ser 820 825 830 Glu Ala Lys Pro Ala Pro Thr Glu Val Lys Thr Val Pro Asn Glu Ala

835 840 845

Thr Gln Thr Lys Glu Asn Glu Ser Lys Ala