CSCI 3278 Homework 2

William Christie SID: 810915676

October 3, 2016

3.2.7 Prove that
$$(X^+)^+ = (X^+)$$

Assume for the sake of contradiction that $(X^+)^+ \neq X^+$, meaning that there is at least ones more attribute that may be added to the set of attributes $\{A_1, A_2...A_n\}$ in X. However, X^+ is already a closure of X meaning that all true FD's have been claimed by the closure of X. Because all true FD's have been claimed by X^+ , no further FD's will be claimed by $(X^+)^+$. This is a contradiction, proving that $(X^+)^+ = X^+$.

3.3.1 b

Indicate all the BCNF violations and decompose the relations into collections of relations that are in BCNF.

$$R(A,B,C,D)$$
 with FD's $B\rightarrow C$ and $B\rightarrow D$

Using BCNF Decomposition Algorithm 3.20 from textbook:

1) Check whether R is in BCNF:

FD's = B
$$\rightarrow$$
C and B \rightarrow D
 $B^+ = \{B, C, D\}$ which is a BCNF violation.

2) If there are BCNF violations, let one of them be $X \rightarrow Y$. Compute X^+ . Choose $R_1 = X^+$ and let R_2 have attribute X and attributes of R that are not in X^+ .

Using B
$$\to$$
C,
 $B^+ = \{B, C, D\}$
 $R_1 = \{B, C, D\}$ and $R_2 = \{B, A\}$

3) Compute sets of FD's for R_1 and R_2 ; let them be S_1 and S_2 respectively

$$S_1 = \{B \to C, C \to D\} \text{ and } S_2 = \{\}$$

4) Recurse over R_1 and R_2 . Return union of results of decomposition.

 R_2 is in BCNF because it has 2 attributes.

 R_1 has FD's B \rightarrow C and B \rightarrow D

 $B^+ = \{B, C, D\}$ which is no longer a BCNF violation because the left side of the FD's are now super keys.

Therefore
$$\mathbf{R}_1 = \{B, C, D\}$$
 and $\mathbf{R}_2 = \{B, A\}$

3.5.1 b

Indicate all the 3NF violations and decompose into collections of relations that are in 3NF.

$$R(A,B,C,D)$$
 with FD's $B\rightarrow C$ and $B\rightarrow D$

1) Determine super key of relation.

$$AB^+ = \{A, B, C, D\}$$

2) Examine FD's of R.

B→C: B is not a super key and C is not prime.

 $B{\rightarrow}D$: B is not a super key and D is not prime.

These are both 3NF violations.

3) Decompose based on $B\rightarrow C$

 $R_1 = \{B, C\} \ R_2 = \{B, A, D\}$

R₁ fits 3NF because it contains 2 attributes.

4) Determine super key of new relation R₂

$$\mathrm{BA}^+{=}\{B,A,D\}$$

5) Examine FD's of R_2

 $B{\to}D$: B is not a super key and D is not prime. This is a 3NF violation.

6) Decompose again based on $B\rightarrow D$

$$R_3 = \{B, D\} \text{ and } R_4 = \{B, A\}$$

Now we have 3 relations with 2 attributes each which all fit 3NF.

Therefore $\mathbf{R}_1 = \{B, C\}$, $\mathbf{R}_3 = \{B, D\}$ and $\mathbf{R}_4 = \{B, A\}$