

Genetic modification of cells in culture can aid visualisation of subcellular components.

Use of naturallyfluorescent proteins

GFP from Aquorea

victoria

HeLa cells: A+B = GFP; C+D GFP-actin

Transfection is a process by which genes are introduced into mammalian cells in culture by mixing DNA with lipids.

DNA sequence encoding Promoter + GFP

Using genetic engineering techniques and transfection - any cellular protein can be synthesised as a GFP-'tagged' derivative to reveal information about its position and movement.

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2008/press.html

The Nobel Prize in Chemistry 2008	₩
Nobel Prize Award Ceremony	w
Osamu Shimomura	₩
Martin Chalfie	₩
Roger Y. Tsien	▼.

Osamu Shimomura

Photo: U. Montan

Martin Chalfie

Roger Y. Tsien

Assignments

Discussions

Grades

Pages

Syllabus

Outcomes

Quizzes

Modules

Cover Sheet

Collaborations

Piazza

Reading Lists

Chat

SCORM

People

Announcements

Files

Module A: Lecture JT1

Lecture JT1: Culturing and Visualizing Cells

Reference. Molecular Cell Biology, Lodish et al, 7th Edition. Chapter 9.1 - 9.3.

Learning Objectives;

Culture of animal cells in the laboratory.

- 1. Understand that different types of cells have different potential for mitotic division and growth.
- 2. Know the distinction between a terminally differentiated cell, a stem cell and a cancer cell.
- 3. Understand how cultures of mammalian cells are established and maintained over multiple generations (passages) in a laboratory.
- 4. Know how cultured cells can be genetically modified to study the function of genes and the definition of the term transfection.

Visualisation of cells by light microscopy

- 5. Know the basic operating principles of the light microscope and how it can be used to study mammalian cells.
- 6. Describe how immunofluorescent microscopy is carried out and compare this technique with use of green fluorescent protein to study protein distribution in cells.
- 7. Be able to describe techniques that can demonstrate the dynamics of molecules inside cells.

BIOSCI 201 Cellular and Molecular Biology

Lecture JT2.

Actin, cell motility and muscle contraction

Lodish et al., 7th ed Chapter 17

Learning Objectives.

- 1. Become familiar with the structure of actin and the reversible assembly of F-actin.
- 2. Understand the role played by actin-binding proteins.
- 3. Understand how actin is critical to the shape of different types of cells and that cell movement involves actin polymerization.
- 4. Give examples of how intracellular pathogens use actin polymerization for movement
- 5. Know the basic features of myosin structure and the function of different classes of myosin in different cell types.
- 6. Understand how actin and myosin II function together during the contraction of skeletal muscle and know how this process is regulated by other actin-binding proteins.

•There are 3 classes of cytoskeletal protein filaments in eukaryotic cells.

Each filament is a polymer of protein subunits

Preferential polymerisation of actin at the (+) end

Actin assembly in vivo - role of accessory proteins

In the cell actin polymerisation occurs faster than pure actin in vitro

In the cell action polymerisation occurs only at the + (or 'barbed' end)

profilin binds ADP-G actin at the opposite side to the cleft and promotes re-charge of ADP -ATP exchange→ polymerisation at the + end and block - end

Cofilin binds to ADP-actin near the (-) ends of a filament causing a twist and then a break, shortening the filament at the (-) end

Together, profilin and cofilin cause treadmilling of the filament