

I. Список литературы

- [1] Donella H. Meadows, Dennis L. Meadows, Jørgen Randers, William W. Behrens III, et al, **The Limits to Growth**, a report for the Club of Rome's project on the predicament of mankind, the Universe Books, New York, NY ISBN 0-87663-165-0. Второе издание: ISBN 0-87663-222-3 (матерчатая обложка), ISBN 0-87663-918-X (бумажная обложка). Официальная, бесплатная, электронная копия: http://collections.dartmouth.edu/teitexts/meadows/diplomatic/meadows_ltg-diplomatic.html
- [2] Donella H. Meadows, Jørgen Randers, Dennis L. Meadows, et al, **Beyond the Limits**, Chelsea Green Publishing, ISBN 0-9300031-62-8.
- [3] Donella H. Meadows, Jørgen Randers, Dennis L. Meadows, et al, Limits to Growth: The 30-Year Update, Chelsea Green Publishing, ISBN 978-1931498586.
- [4] Heinberg, Richard. **Peak Everything: Waking Up to the Century of Declines he End of Cheap Oil**. New Society Publishers, ISBN 978-0-86571-598-1.
- [5] Campbell, Colin. **The End of Cheap Oil**. Scientific American, 3-1998.
- [6] Lomborg, Bjørn. **The Skeptical Environmentalist: Measuring the Real State of the World**. Cambridge, UK: Cambridge University Press. ISBN 0-521-01068-3.
- [7] Meadows, Dennis L. **Dynamics of Growth in a Finite World**. Productivity Press, ISBN 978-0262131421.
- [8] Turner, Graham. A Comparison of The Limits to Growth with Thirty Years of Reality. Commonwealth Scientific and Industrial Research Organisation (CSIRO).
- [9] Perez, Richard & Marc. A Fundamental Look at Energy Reserves for the Planet. IEA/SHC Solar Update, 1/27/2009.
- [10] British Petroleum. World Energy Report, 2018. Также использованы

- отчёты с 2007 по 2017 годы.
- [11] Dye, S. T. (2012). **Geoneutrinos and the radioactive power of the Earth**. Reviews of Geophysics, 50(3).
- [12] International Energy Agency, World Energy Outlook 2000. IEA (2001).
- [13] Nico Keilman, How Accurate Are the United Nations World Population Projections? JSTOR Population Council (1998).
- [14] Malthus, T.R., An Essay on the Principle of Population. As It Affects the Future Improvement of Society, with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers, London, 1798.
- [15] Bardi, Ugo, **The Limits to Growth Revisited (SpringerBriefs in Energy)**, Springer (2011), ISBN 978-1441994158.
- [16] Marx, Carl, **Capital a Critique of Political Economy**, Progress Publishers, Moscow, USSR, by the original English edition of 1887.
- [17] Darwin Charles, **On the Origin of Species by Means of Natural Selection**, 6th Edition, 1872. Бесплатно в Интернет: http://ecologia.ib.usp.br/ffa/arquivos/abril/darwin.pdf
- [18] Randers, J, **2052: A Global Forecast for the next 40 years**, Chelsea Green Publishing Vermont USA (2012), ISBN 978-1603584210.
- [19] Hubbert, M.K., **Nuclear Energy and the Fossil Fuels**, American Petroleum Institute, 1956. Бесплатно: http://www.hubbertpeak.com/hubbert/1956/1956.pdf
- [20] Hull, Edward, The Coal-Fields of Great Britain, Their History, Structure, and Resources, with Notices of the Coal-Fields of Other Parts of the World, Second Edition, London E.Stanford, 1861. По состоянию на 2018, платно: https://ia802703.us.archive.org/24/items/coalfieldsgreat00goog/coalfieldsgreat00goog.pdf
- [21] DOE/EIA-0383(2016) Annual Energy Outlook 2016 with projections to 2040, 2016: https://www.eia.gov/outlooks/aeo/pdf/0383(2016).pdf
- [22] Hughes, David J. 2016 Shale Gas Reality Check: Revisiting the U.S. Department of Energy Play-by-play Forecasts through 2040 from annual energy outlook 2016, the Post Carbon Institute, 2016.
- [23] Hughes, David J. 2016 Tight Oil Reality Check: Revisiting the U.S. Department of Energy Play-by-play Forecasts through 2040 from annual energy outlook 2016, the Post Carbon Institute, 2016.
- [24] DOE/EIA Annual Energy Outlook 2017 with projections to 2050

(AEO2017) Jan 2017. http://www.eia.gov/aeo

- [25] MacKay, David JC, **Sustainable Energy Without the Hot Air**, UIT Cambridge Ltd, 2009, ISBN 978-0-9544529-3-3 (мягкая обложка) 978-1-906860-01-1 (твёрдая обложка). Электронная версия бесплатно: https://www.withouthotair.com/
- [26] Colin J. Campbell and Jean H. Laherrère, The End of Cheap Oil: Global production of conventional oil will begin to decline sooner than most people think, probably within 10 years, Scientific American, 3-1998, ctp. 78-83.
- [27] Jian-Liang Wang, Jiang-Xuan Feng, Yongmei Bentley, Lian-Yong Feng, Hui Qu, A review of physical supply and EROI of fossil fuels in China, Pet. Sci. (2017) 14:806–821.
- [28] Simmons, Matthew R, Twilight in the Desert: The Coming Saudi Oil Shock and the World Economy, John Wiley & Sons, 2005, ISBN 978-0471738763. Русский перевод: Симмонс, Мэтью Р, Закат арабской нефти. Будущее мировой экономики, Поколение, 2007, ISBN 978-5-9763-0045-3.
- [29] Hall, C., Klitgaard, K., **Energy and the Wealth of Nations: Understanding the Biophysical Economy**, Springer Publishing Company, 2012, New York, USA, ISBN 978-1441993977.
- [30] Lambert, J.G., Hall, C.A.S., Balogh, S, et al, **EROI of Global Energy Resources: Status, Trends and Social Implications**, SUNY ESF / NGEI, USA. Электронная версия бесплатно:
- https://assets.publishing.service.gov.uk/media/57a08a0340f0b652dd000508/60999-EROI_of_Global_Energy_Resources.pdf
- [31] Pukite, Paul, **The oil conundrum**, ISBN 1-56849-587-0. Бесплатно: http://TheOilConundrum.com
- [32] Intergovernmental Panel on Climate Change, **CLIMATE CHANGE 2013 The Physical Science Basis**, ISBN 978-1-107-05799-1. Бесплатно: https://archive.ipcc.ch/report/ar5/wg1
- [82] Laframboise, Donna, **The Delinquent Teenager Who Was Mistaken for the World's Top Climate Expert**, Createspace, USA, 2011, ISBN 9781466453487.
- [83] Paul R. Ehrlich, **The Population Bomb**, Sierra Club / Ballantine Books, ISBN 1-56849-587-0.
- [84] Simon, Julian, **The Ultimate Resource**, Princeton University Press (1981, 1996), ISBN 0-691-00381-5.
- [85] 97% CONSENSUS? NO! GLOBAL WARMING MATH MYTHS & SOCIAL PROOFS, Friends of Science Society, Calgary, 2014.

[86] Spencer, Roy W., **The Great Global Warming Blunder: How Mother Nature Fooled the World's Top Climate Scientists**, Encounter Books, USA, 2010, ISBN 9781594033735.

II. Другие использованные источники

Специально для перцев поясняю: автор не считает Интернет и другие нереферируемые источники заведомо истинными. Но, во-первых, речь в книге идёт не только о науке, но и о бизнесе, а отчёты нефтекомпаний и интервью руководителей отчего-то не подают на независимую экспертизу и в рецензируемых журналах не публикуют. Во-вторых, данная книга является не научным, а научно-популярным текстом.

Ссылки ниже приводятся для удобства читателей. Автор не несёт никакой ответственности за мнения, высказанные в перечисленных ниже источниках, а также не гарантирует их достоверность, как и то, что в будущем конкретные ссылки будут доступны в Интернет. Более того, некоторые источники ниже по мнению автора являются частично устаревшими либо неверными, о чём есть указание в тексте книги. Используйте на свой страх и риск.

Надстрочный номер соответствует ссылке в тексте.

⁹ Скачано 27 июня 2016 с http://www.kongord.ru/Index/Articles/40yearslie.html

¹² http://thirstyinsuburbia.com/2009/12/best-of-2009-clean-renewable-rubber-ducky-power/

²² https://ru.wikipedia.org/wiki/Мальтузианская ловушка

²³ http://www.johnjeavons.info/index.html

³⁴ См перепечатку: http://cassandralegacy.blogspot.com.au/2011/08/seneca-effect-origins-of-collapse.html

³⁵ Скачано с http://www.medical-enc.ru/m/12/maltuzianstvo.shtml

³⁸ von Foerster, Mora, and Amiot, «**Doomsday: Friday, 13 November, A.D. 2026**», Science, 132 #3436 стр. 1291-1295, 1960 г. См. также: Sebastien von Hoerner «**Population Explosion and Interstellar Expansion**» Journal of the British Interplanetary Society (28): 691–712.

⁴⁰ Cm. http://pikabu.ru/story/sergey kapitsa istoriya desyati milliardov 3995327

^{41 «}Успехи физических наук» 139(1) 57-71, РАН, 1996

⁴² Полное описание: Adams D, THGTTG, Phases 1 & 2, BBC, MCMLXXVIII-XXX. Каюсь, пошутил – тому способствовал номер ссылки. Имеется в виду радиопостановка «ВВС» по книге Дугласа Адамса «Автостопом по галактике». Рекомендую.

⁴⁴ James A Brandler and M. Scott Taylor, **The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use**, The American Economic Review, vol 88 issue 1, Mar 1998, 119-138.

⁴⁵ А.Чаянов, Путешествие моего брата Алексея в страну крестьянской утопии https://royallib.com/book/chayanov_aleksandr/puteshestvie_moego_brata_alekseya_v_stranu_krestyanskoy_utopii.html

⁴⁷ Hubert C Kennedy, **Karl Marx and the foundations of differential calculus** http://www.sciencedirect.com/science/article/pii/0315086077900581

⁴⁹ Cm. Nguyen Du Hung and Hung Van Le, Petroleum Geology of Cuu Long Basin - Offshore Vietnam

- ⁵² Cm. https://www.ogj.com/articles/print/volume-89/issue-2/in-this-issue/exploration/sweden39s-siljan-ring-well-evaluated.html
- ⁵⁴ Скачать (3-4 части вроде плохой RAR): http://www.deepoil.ru/index.php/bazaznaniy/item/123-%D0%BA%D0%BA%D0%BD-%D0%B2%D0%B0
- ⁵⁵ Лагеррер Жан, «**Бесплатный сыр бывает только в мышеловке**», The Wilderness Publications, 2004. Бесплатно: http://www.copvcia.com/free/ww3/102104_no_free_pt1.html
- ⁵⁷ Скачано 28 сентября 2016 г, по состоянию на декабрь 2018 уже нет. http://igs-nas.org.ua/index.php? option=com content&view=article&id=2&Itemid=9&lang=ru
- ⁵⁸ РИА Новости Украина: http://rian.com.ua/economy/20090209/78099573.html
- ⁵⁹ Скачано 28 сентября 2016: http://mignews.com.ua/regiony/lugansk/1263878.html
- 60 http://www.unian.net/society/817908-v-luganskoy-oblasti-nashli-neft.html
- 61 http://economics.lb.ua/business/2014/02/14/255432_ukrgazdobicha_otkrila_neftyanoe.html
- ⁶² Заявление для инвесторов: http://www.serinusenergy.com/
- 65 Копия статьи на http://physicsoflife.pl/dict/pic/calhoun/calhoun's-experiment.pdf
- 67 http://www.fao.org/faostat/en/#home Последние данные по состоянию на декабрь 2018 года за 2016 год, причём абсолютных значений (в тоннах) не приводится, а даются индексы производства (2005 год = 100).
- ⁶⁸ В реальном времени: https://www.esrl.noaa.gov/gmd/ccgg/trends/
- 69 Веб-страница автора (на английском): http://www.2052.info/download/
- 72 В 2015 и 2016 отчёты VN GSO (Государственного Статистического Комитета Вьетнама).
- ⁷³ Данные World Bank: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD, данные по покупательной способности доллара https://www.usinflationcalculator.com/inflation/consumer-price-index-and-annual-percent-changes-from-1913-to-2008/
- ⁷⁷ Скачано 20 декабря 2016 с блога: https://ourfiniteworld.com/2013/09/25/why-i-dont-believe-randers-limits-to-growth-forecast-to-2052/
- ⁷⁹ Скачано в марте 2018 г: http://www.fao.org/faostat/en/#data/QI
- 80 We won't be nine billion: Jørgen Randers at TEDxMaastricht https://www.youtube.com/watch?
 v=73X8R9NrX3w
- 94 Гутман И.С. «Методы подсчета запасов нефти и газа», М.: Недра, 1985.
- 98 Пресс-конференция главного экономиста «
 $\!BP\!$ » Спенсера Дэйла 13 июля 2017 г.
- $\underline{\text{https://www.skepticalscience.com/volcanoes-and-global-warming.htm}}$
- 105 Обсерватория Мауна Лоа в реальном времени: http://www.esrl.noaa.gov/gmd/ccgg/trends/
- 106 Kramer, Andrew E. «Mapmakers and Mythmakers: Russian Disinformation Practices Obscure Even

Today's OilFields, New York Times», (1 December 2005).

- ¹⁰⁸ Интервью гендиректора «*Самотлорнефтегаз*» Валентина Мамаева агентству «*Рейтер*». Скачано 21 июля 2017 с https://ru.investing.com/news/
- ¹¹² См., например: «Большая энциклопедия нефти и газа» http://www.ngpedia.ru/pg0135qxA8t6D4Z193i3N60044083401/
- 115 Hydraulic fracturing to increase well productivity, 1949 Cm. https://www.google.com/patents/US2664954
- ¹¹⁶ Cm. http://www.stanolind.com/
- 118 http://www-udc.ig.utexas.edu/geofluids/graphics/news/LowPermWS Polito.pdf
- ¹²⁰ John Browning, Scott W. Tinker, Svetlana Ikonnikova, Gurcan Gulen, Eric Potter, Qilong Fu, Susan Horvath, Tad Patzek, Frank Male, William Fisher, Forrest Roberts (University of Texas, Austin); Ken Medlock III (Rice University, Houston) «BARNETT SHALE MODEL-2: Barnett study determines full-field reserves, production forecast», Oil & Gas Journal, 02/09/2013
- 127 Скачано в ноябре 2017 http://www.rigzone.com/news/oil_gas/a/139667/study_utica_shale_larger_than_previous_estimates/ См. также http://slideplayer.com/slide/8415347/
- 128 Скачано 6 ноября 2017 года с https://www.eia.gov/naturalgas/weekly/
- 131 Как скачивать отчёты EIA: https://www.eia.gov/outlooks/aeo/info_nems_archive.php
- ¹³² Добыча сырой нефти и лицензионного газового конденсата в США: https://www.eia.gov/dnav/pet/pet_crd_api_adc_mbblpd_m.htm
- 133 Месячная продуктивность скважин в Северной Дакоте: https://www.dmr.nd.gov/oilgas/mprindex.asp
- 134 Stephanie B. Gaswirth and Kristen R. Marra, U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province, AAPG Bulletin, 2015
- ¹³⁶ Отчёт USGS: <u>https://pubs.usgs.gov/of/2017/1013/ofr20171013.pdf</u>
- ¹³⁷ Отчёт USGS https://pubs.usgs.gov/fs/2017/3029/fs2017173029%20.pdf
- ¹³⁸ Отчёт USGS https://pubs.usgs.gov/fs/2012/3051/fs2012-3051.pdf
- 140 Скачано в ноябре 2017: http://money.cnn.com/2016/03/24/investing/fracking-shale-oil-boom/index.html
- 141 https://www.oilandgas360.com/current-duc-inventory-will-require-20-8-billion-complete-enercom/
- ¹⁴² https://seekingalpha.com/article/4127133-permian-duc-wells-surge-massive-implications-wti-oil-prices-inventories-permian-oil-producers
- 143 http://marcellusdrilling.com/2017/07/oil-gas-ducs-now-flying-in-different-directions/
- 144 Некролог Д.Мак-Кея: https://www.theguardian.com/environment/2016/apr/18/sir-david-mackay-obituary
- 149 Происшествие с Джудит Надал: http://www.standard.co.uk/news/i-think-ive-made-a-mistake-last-words-of-scientist-on-phone-before-g-wiz-crash-6438558.html Надо признать, Надал была сама виновата в происшествии разговаривала по мобильнику за рулём и въехала на перекрёсток под красный сигнал.
- ¹⁵⁰ Спецификации производителя для батарей в автомобилях «*Tecna*»: https://industrial.panasonic.com/cdbs/www-data/pdf2/ACI4000/ACI4000C12.pdf

- 156 Paul Warde, Energy Consumption in England & Wales 1560-2000, Istituto di Studi sulle Società del Mediterraneo, 2007, ISBN 978-88-8080-082-8, бесплатная официальная копия: https://www.fas.harvard.edu/~histecon/energyhistory/data/Warde Energy%20Consumption%20England.pdf
- 158 Ассоциация производителей ядерного топлива: http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx
- ¹⁶¹ IAEA, Manual of acid in situ leach uranium mining technology, IAEA-TECDOC 1239, 2001
- ¹⁶⁴ База данных IAEA: https://pris.iaea.org/PRIS/home.aspx
- ¹⁷⁶ Anthony N. Stranges, Germany's Synthetic Fuel Industry 1927-1945, Energia, Vol 12, No 5, 2001.
- ¹⁷⁷ Ксе Хипинг, Ли Хонг и Ву Ганг. Скачано с http://cornerstonemag.net/chinas-coal-industry-must-follow-the-path-of-sustainable-production-capacity/ 4 сентября 2017 г.
- 183 «О состоянии и использовании минерально-сырьевых ресурсов Российской Федерации в 2014 г.» Государственный доклад / гл. ред. Е. А. Киселёв; Минприроды России. М.: Минерал-Инфо, 2015. В свободном доступе нет, цитируется по источнику: «Добыча и обогащение угля», Москва, Бюро НДТ, ИТС 37-2017.
- ¹⁸⁴ Скачано с https://www.eia.gov/energyexplained/index.php?page=coal_reserves в июне 2018 г.
- 185 Скачано с https://pronedra.ru/coal/2017/03/15/krupneyshie-ugolnye-mestorozhdeniya-mira/ в июне 2018 г.
- ¹⁸⁷ «Добыча и обогащение угля», Москва, Бюро НДТ, ИТС 37-2017
- ¹⁹⁰ Tadeusz W.Patzek, Gregory D.Croft, **A global coal production forecast with multi-Hubbert cycle analysis**, Energy, vol 35, issue 8, pp 3109-3122.
- ¹⁹¹ David Rutledge, **Estimating long-term world coal production with logit and probit transforms**, International Journal of Coal Geology 85 (2011) 23–33
- ¹⁹² Specialized Coal Mine May Be 'Economic Shot In Arm' For Small-Town Somerset Co. by Andy Sheehan http://pittsburgh.cbslocal.com/2017/06/01/somerset-county-acosta-coal-mine/
- ¹⁹³ Statement by President Trump on the Paris Climate Accord https://www.whitehouse.gov/briefings-statements/statement-president-trump-paris-climate-accord/
- 194 «Советская Сибирь», №136(5300), 1937 год.
- 195 3,6 млрд. долларов выделил Китай для реализации в Украине проекта по замещению газа углём: http://sdtec.lg.ua/?p=2599
- 196 Газ из угля: пророчество Ленина и энергетическая независимость Украины https://republic.ru/world/gaz iz uglya prorochestvo lenina i vysokie tekhnologii-1021528.xhtml
- ¹⁹⁷ Х.П.Хурсанов, С.И. Якубов, Б.Р.Раимжанов, «Состояние и перспективы подземной газификации угля в Узбекистане», «Горная книга», УДК 622.74:622.33, 2012 г. сс 173-176.
- 199 По состоянию на декабрь 2018 года статья платная: https://www.theaustralian.com.au/life/weekend-australian-magazine/linc-energys-ucg-plant-at-chinchilla-a-smart-state-disaster/news-story/89096454ced60874c5d8e2e967fb9c1c
- ²⁰⁰ Jian-Yang Yuan, Subcool, Fluid Productivity, and Liquid Level Above a SAGD Producer, Journal of Canadian Petroleum Technology, Sep 2013
- ²⁰¹ В 1996 году «*Petroconsultants*» была приобретена «*IHS*» компанией в области финансовых рисков, а та в 2016 слилась с компанией «*Markit*». Насколько известно автору, базы данных теперь лишь для внутреннего использования. За большие деньги можете заказать себе отчёт по конкретному бассейну, где будет много

умных слов и ноль данных: https://www.ihs.com/products/upstream-oil-gas.html

- ²⁰² Jean Laherrere, **The end of the peak oil myth**, ASPO France, 2014 http://aspofrance.viabloga.com/files/JL MITParis2014long.pdf
- ²⁰³ BSP finds oil in Lumut, Скачано 27 июля 2017 г: https://borneobulletin.com.bn/bsp-finds-oil-lumut/
- ²⁰⁸ «СТРАТЕГИЯ РАЗВИТИЯ МИНЕРАЛЬНО-СЫРЬЕВОЙ БАЗЫ РОССИЙСКОЙ ФЕДЕРАЦИИ до **2030** года», Москва, 2016, стр. 8.
- ²⁰⁹ Rauli Partanen, Harri Paloheimo, and Heikki Waris, The World After Cheap Oil, Routledge, 2014, ISBN 1138806374
- ²¹¹ Pre-feasibility Study for Coal Mine Methane Drainage and Utilization at the KWK"Pniówek" Coal Mine, Poland, The U.S. Environmental Protection Agency, September 2015: https://www.epa.gov/sites/production/files/2016-03/documents/polandprefeasibility.pdf
- ²¹² Скачано в июле 2018: http://www.nytimes.com/2013/03/13/business/global/japan-says-it-is-first-to-tap-methane-hydrate-deposit.html? r=0
- ²¹³ Guntis M. Seeking flammable ice, Oil and Gas J., 2003, 101/21, ctp 15.
- ²¹⁴ H.Takahashi, E.Fercho, and S.R.Dallmore, **Drilling and operations of the Mallik 2002 Production Research Well Program**, Geological Survey of Canada, Bulletin 585, 2005.
- ²¹⁵ Ai Oyama and Stephen M. Masutani, A review of the Methane Hydrate Program in Japan, Energies, 2017.
- ²¹⁶ Yamamoto, K., Overview and introduction: Pressure core-sampling and analyses in the 2012–2013 MH 21 offshore test of gas production from methane hydrates in the eastern Nankai trough. Marine Petroleum Geology. 2015.02.024
- ²¹⁷ The Cabinet Approved the Bill for the Act for Partial Revision of the Act on the Japan Oil, Gas and Metals National Corporation, Independent Administrative Agency: http://www.meti.go.jp/english/press/2016/1007 02.html
- ²¹⁸ Japan Flares Gas in 2nd Hydrate Test: https://www.naturalgasworld.com/japan-flares-gas-during-2nd-hydrate-test-37416
- ²¹⁹ Даровских С.В., Крохалев И.В., Филатов Н.В., Мулявин С.Ф., Плетнева А.Д., Промзелева Н.А., **Промыслово-геологические особенности Мессояхского газогидратного месторождения**, Вестник Нефропользователя XMAO: http://www.oilnews.ru/18-18/promyslovo-geologicheskie-osobennostimessoyaxskogo-gazogidratnogo-mestorozhdeniya/
- ²²¹ The US Department of Energy, **Methane Hydrate Primer**, 2011, https://www.netl.doe.gov/File%20Library/Research/Oil-Gas/methane%20hydrates/MH-Primer2011.pdf
- ²²³ World Bank: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
- ²²⁴ График ERoEI адаптирован с ресурса: http://thenextturn.com/eroei-energy-cliff/
- ²³⁴ Jessica G. Lambert, Charles A.S. Hall, Stephen Balogh, Ajay Gupta, Michelle Arnold, Energy, **EROI and quality of life**, Energy Policy, 64(2014)153–167
- ²³⁵ World Bank: https://data.worldbank.org/indicator/ny.gdp.mktp.cd
- ²⁴⁰ Global Human Development Indicators: http://hdr.undp.org/en/countries
- ²⁴¹ Пирамида Маслоу для ERoEI адаптирована с ресурса: http://thenextturn.com/eroei-energy-cliff/
- ²⁴⁴ Блог Гайл Тверберг: https://ourfiniteworld.com/author/gailtheactuary/

- ²⁴⁸ Hugo Foster et al, **NIGERIA: ESCALATION OF BOKO HARAM THREAT**, 2014. Скачано с https://cdn.ihs.com/www/pdf/IHS-Nigeria-Boko-Haram-Threat.pdf
- ²⁴⁹ World Bank: https://data.worldbank.org/indicator/SP.DYN.TFRT.IN
- ²⁵⁰ Cecilia Chen, **Rebellion against the polio vaccine in Nigeria: implications for humanitarian policy**, African Health Sciences. 2004 Dec; 4(3): 205–207.
- ²⁵¹ The US Department of Labor: https://www.dol.gov/agencies/ilab/resources/reports/child-labor/benin
- ²⁵⁵ Isaaks, E.H., Srivastava, R.M., **An Introduction to Applied Geostatistics**, Oxford University Press; 1 edition (January 11, 1990), ISBN 978-0195050134.
- ²⁵⁸ Jean Laherrere, **The end of the peak oil myth**, ASPO France, 2014 http://aspofrance.viabloga.com/files/JL_MITParis2014long.pdf
- ²⁶⁰ Талеб Н., «Чёрный лебедь. Под знаком непредсказуемости», «КоЛибри», 2016, ISBN 9785389098947.
- ²⁶² https://peakoil.com/production/michael-lynch-what-ever-happened-to-peak-oil
- ²⁶⁴ Charles A. S. Hall, Kent Klitgaard, **Peak Oil, EROI, Investments, and Our Financial Future**, Energy and the Wealth of Nations, SringerLink, 03 March 2018.
- 266 https://www.wells.edu/faculty-staff/kent-klitgaard
- ²⁷¹ Richard C. Duncan, World Energy Production, Population Growth, And the Road to the Olduvai Gorge, Population and Environment, May-June 2001, v. 22, № 5 стр. 503-522
- ²⁷³ «Экологически-чистый» хлебушек стоил в конце 2018 года по 1'650 рублей буханка. Ко вкусу хлеба претензий нет. https://www.metronews.ru/novosti/peterbourg/reviews/german-sterligov-otkryl-magazin-v-peterburge-hleb-stoit-1650-sol-1500-rubley-1242701/
- ²⁷⁴ График изготовлен Рембрантом Копелааром по данным Ваклава Смила и «*BP*» http://euanmearns.com/fossil-fuels-and-mankind/ Погрешность в оценке потребления биотоплива ±25%.
- ²⁸⁰ McBay, Aric, Peak Oil Survival: Preparation for Life After Gridcrash, ISBN: 9781592281275, 2006
- ²⁸¹ https://www.siemenpuu.org/en/event/promoting-solar-energy-and-solar-innovations-rural-areas
- ²⁸² Данные WNA по вводу ядерных энергоблоков: http://www.world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx
- ²⁸³ Полный текст: <u>http://www.2052.info/glimpse-64/</u>
- ²⁸⁶ Действующие лица на картинке позаимствованы из видеоролика профессора MIT Ричарда Линзена https://www.youtube.com/watch?v=OwqIy8Ikv-c&t=220s
- ²⁸⁸ Сатирический филк на климатолога МайклаМанна: https://www.youtube.com/watch?v=WMqc7PCJ-nc
- ²⁸⁹ О назначении Кельвина Дрёгмейера советником Президента США по науке: https://www.scientificamerican.com/article/trump-taps-meteorologist-as-white-house-science-advisor/
- ²⁹⁰ John Cook, Dana Nuccitelli, Sarah A Green, Mark Richardson, Barbel Winkler, Rob Painting, Robert Way, Peter Jacobs, and Andrew Skuce, **Quantifying the consensus on anthropogenic global warming in the scientific literature**, Environ. Res. Lett. 8 024024
- ²⁹² Craig D. Idso, Robert M. Carter, S. Fred Singer, Why Scientists Disagree About Global Warming, NIPCC, 2016, ISBN-13 978-1-934791-59-2
- ²⁹⁴ Поначалу Дж. Кук отказывался выдать названия использованных статей, однако редакторы журнала

- проявили настойчивость: http://www.joseduarte.com/blog/the-art-of-evasion Из Кука данные вытрясли и опубликовали: http://iopscience.iop.org/1748-9326/8/2/024024/media/erl460291datafile.txt
- ²⁹⁵ Ahdoot S, Pacheco SE, **Global Climate Change and Children's Health**; COUNCIL ON ENVIRONMENTAL HEALTH. Pediatrics. 2015 Nov;136(5):e1468-84. doi: 10.1542/peds.2015-3233. Epub 2015 Oct 26.
- ²⁹⁶ L. F. Khilyuk, G. V. Chilingar, **Global Warming: Are We Confusing Cause and Effect?** Energy Sources, 25:357–370, 2003
- ²⁹⁷ L. F. Khilyuk, G. V. Chilingar, **On global forces of nature driving the Earth's climate. Are humans involved?** Environmental Geology, August 2006, Volume 50, Issue 6, crp. 899–910
- ²⁹⁸ G. V. Chilingar, O. G. Sorokhtin, L. Khilyuk, M. V. Gorfunke, **Greenhouse gases and greenhouse effect**, Environmental Geology, October 2008
- ²⁹⁹ Robert H. Essenhigh, **Potential Dependence of Global Warming on the Residence Time (RT) in the Atmosphere of Anthropogenically Sourced Carbon Dioxide**, Energy & Fuels 23(5), May 2009
- ³⁰⁰ Roy W. Spencer and William D. Braswell, **How Dry is the Tropical FreeTroposphere? Implications for Global Warming Theory**, BAMS, Vol. 78, No. 6, 1997, crp. 1097-1106
- ³⁰¹ Roy W. Spencer, William D. Braswell, John R. Christy, and Justin Hnilo, Cloud and radiation budget changes associated with tropical intraseasonal oscillations, Geophysical Research Letters, vol. 34, 2007
- ³⁰² О нападении на офис Дж Кристи. Климатолог опасная профессия: https://www.al.com/news/huntsville/index.ssf/2017/04/shots_fired_at_office_building.html
- 303 http://www.drroyspencer.com/latest-global-temperatures/
- ³⁰⁴ [retracted!] Stephan Lewandowsky, John Cook, Klaus Oberauer, and Michael Marriott, **Recursive Fury:** Conspiracist Ideation in the Blogosphere in Response to Research on Conspiracist Ideation, Front Psychol. 2013; 4: 73.
- 305 <u>http://www.realclimate.org/</u> и <u>https://www.skepticalscience.com/</u>
- ³⁰⁶ Dana L. Royer, **CO₂-forced climate thresholds during the Phanerozoic**, Geochimica et Cosmochimica Acta 70 (2006) 5665–5675.
- ³⁰⁷ Robert A. Berner and Zavareth Kothavala, **GEOCARB III: A REVISED MODEL OF ATMOSPHERIC CO2 OVER PHANEROZOIC TIME**, American Journal of Science, Vol. 301, February, 2001, P. 182–204, Tect: http://climatemodels.uchicago.edu/geocarb/ Tekct: <a href="http://climatemodels.uc
- 308 https://github.com/gilligan-ees-3310-2018/new_geocarb/blob/master/geocarb_varco2.py
- ³⁰⁹ Dana L. Royer, Robert A. Berner, Isabel P. Montañez, Neil J. Tabor, David J. Beerling, CO₂ as a primary driver of Phanerozoic climate, GSA Today 14(3):3-7 March 2004
- ³¹⁰ Jan Veizer, Davin Ala, Karem Azmy, Peter Bruckschen, Dieter Buhl, Frank Bruhn, Giles A.F. Carden, Andreas Diener, Stefan Ebneth, Yves Godderis, Torsten Jasper, Christoph Korte, Frank Pawellek, Olaf G. Podlaha, Harald Strauss, ⁸⁷Sr, ⁸⁶Sr, δ¹³C and δ¹⁸O evolution of Phanerozoic seawater, Chemical Geology, 161 #1999. crp. 59–88.
- ³¹¹ Jan Veizer, Yves Godderis, & Louis M. Francois, Evidence for decoupling of atmospheric CO₂ and global climate during the Phanerozoic eon, Nature, January 2001, v 408, crp. 698-701.
- ³¹³ Jansen, E., J. Overpeck, K.R. Briffa, J.-C. Duplessy, F. Joos, V. Masson-Delmotte, D. Olago, B. Otto-Bliesner, W.R. Peltier, S. Rahmstorf, R. Ramesh, D. Raynaud, D. Rind, O. Solomina, R. Villalba and D. Zhang, 2007: Palaeoclimate. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Puc 6.1 Ha ctp. 441, BBepxy.

- ³¹⁴ Излучение Солнца меняется в пределах 11-летнего цикла: от примерно 1'360 до 1'363 Вт/м². См. https://spot.colorado.edu/~koppg/TSI/
- ³¹⁵ Полный код: https://github.com/pingswept/pysolar , описание: http://docs.pysolar.org/en/latest/
- ³¹⁶ I. Reda and A. Andreas, **Solar Position Algorithm for Solar Radiation Applications**, National Renewable Energy Laboratory, NREL/TP-560-34302, revised November 2005.
- ³¹⁷ J. K. B. Bishop, W. B. Rossow, and E. G. Dutton, **Surface solar irradiance from the International Satellite Cloud Climatology Project 1983-1991**, Journal of Geophysical Research, vol. 102, no. D6, March 27, 1997.
- ³¹⁸ Будыко М.И., Ронов А.Б., Яншин А.Л., «История атмосферы», М., Гидрометеоиздат, 1985.
- ³¹⁹ William D. Sellers, A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System, Journal of Applied Meteorology, v 8, June 1969, crp. 392-400
- ³²⁰ A. Faegre, **An Intransitive Model of the Earth-Atmosphere-Ocean System**. Journal of Applied Meteorology, v 11 (1) February 1972: crp. 4–6.
- ³²¹ James Hansen, Makiko Sato, Gary Russell and Pushker Kharecha, Climate sensitivity, sea level and atmospheric carbon dioxide, PTRA, October 2013.
- ³²² James C. Zachos, Gerald R. Dickens & Richard E. Zeebe, **An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics**, NATURE, Vol 451,17 January 2008, ctp. 279-283.
- ³²⁴ Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K., **Trends, rhythms, and aberrations in global climate 65 Ma to present**. Science 292, crp. 686–693 (2001).
- ³²⁵ Zachos, J.C., K. C. Lohmann, J. C. G. Walker, and S. W. Wise, Abrupt Climate Change and Transient Climates in the Paleogene: A Marine Perspective, Journal of Geology, 1993, v.100, crp. 191-213.
- ³²⁶ Jay P. Muza, Douglas F. Williams, Sherwood W. Wise, Jr., PALEOGENE OXYGEN ISOTOPE RECORD FOR DEEP SEA DRILLING SITES 511 AND 512, SUBANTARCTIC SOUTH ATLANTIC OCEAN: PALEOTEMPERATURES, PALEOCEANOGRAPHIC CHANGES, AND THE EOCENE/OLIGOCENE BOUNDARY EVENT1. Proceedings of the Deep Sea Drilling Program.
- ³²⁷ N.J. Shackleton, M.A. Hall, and D. Pate, **PLIOCENE STABLE ISOTOPE STRATIGRAPHY OF SITE 8461**, Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 138.
- ³²⁸ Timothy J. Bralower, Isabella Premoli Silva, and Mitchell J. Malone, **New evidence for abrupt climate change** in the Cretaceous and Paleogene: An Ocean Drilling Program expedition to Shatsky Rise, northwest Pacific, GSA TODAY, NOVEMBER 2002, ctp. 4-10.
- 330 https://www.ipcc.ch/site/assets/uploads/2018/05/ar4-wg1-errata.pdf
- ³³¹ Masson-Delmotte, V., M. Schulz, A. Abe-Ouchi, J. Beer, A. Ganopolski, J.F. González Rouco, E. Jansen, K. Lambeck, J. Luterbacher, T. Naish, T. Osborn, B. Otto-Bliesner, T. Quinn, R. Ramesh, M. Rojas, X. Shao and A. Timmermann, 2013: Information from Paleoclimate Archives. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- ³³² Lorraine E. Lisiecki, Maureen E. Raymo, A Pliocene-Pleistocene stack of 57 globally distributed benthic δ¹⁸O records, PALEOCEANOGRAPHY, VOL. 20, PA1003, doi:10.1029/2004PA001071, 2005
- 333 <u>http://lorraine-lisiecki.com/stack.html</u>, но представлены не все 57 скважин, а всего 51.
- ³³⁴ Maslov, L. A. (2014), Self-organization of the Earth's climate system versus Milankovitch-Berger astronomical cycles, J. Adv. Model. Earth Syst., 6, ctp. 650–657.

- 335 Berger A., Insolation signatures of Quaternary climatic changes, Il Nuovo Climinto 20(1), 1979, ctp. 63-87
- ³³⁷ Shaun A. Marcott, Jeremy D. Shakun, Peter U. Clark, Alan C. Mix, A Reconstruction of Regional and Global Temperature for the Past 11,300 Years, SCIENCE, VOL 339, 8 марта 2013, стр. 1198-1201
- ³³⁸ Данные за 1659-1973 гг: MANLEY (Q.J.R.METEOROL.SOC.,1974), 1974-современные: PARKER ET AL. (INT.J.CLIM., 1992), PARKER AND HORTON (INT.J.CLIM.,2005)
- 339 https://crudata.uea.ac.uk/cru/data/temperature/
- 340 https://data.giss.nasa.gov/gistemp
- 341 http://berkeleyearth.org
- ³⁴³ Каналы Амстердама замерзали в 2018 году: https://www.theguardian.com/world/2018/mar/03/ice-skaters-amsterdam-frozen-canals-europe-freeze-storm
- 344 https://science.sciencemag.org/content/suppl/2013/03/07/339.6124.1198.DC1 Удобочитаемая копия данных в цифровом приложении книги: https://github.com/myak555/LIMITS_TO_LIMITS/tree/master/Chapter %2017/Climate Proxy.
- ³⁴⁵ А.Панчин, «Апофения». Бесплатно: https://www.smashwords.com/books/view/461313
- https://climateaudit.org/2013/03/14/no-uptick-in-marcott-thesis/
- ³⁴⁹ Mann,M.E., R.S. Bradley and M.K. Hughes, **Global-scale temperature patterns and climate forcing over the past six centuries**. Nature, 1998, 392, стр. 779-787, а также Mann, M.E., R.S. Bradley, and M.K. Hughes, **Northern Hemisphere Temperatures During the Past Millennium: Inferences, Uncertainties, and Limitations**. Geophys. Res. Lett., 1999, 26, стр 759-762.
- 350 https://en.wikipedia.org/wiki/Hockey stick controversy
- ³⁵¹ Stephen McIntyre and Ross McKitrick, THE M&M CRITIQUE OF THE MBH98 NORTHERN HEMISPHERE CLIMATE INDEX: UPDATE AND IMPLICATIONS, Energy & Environment, Vol. 16, No. 1, 2005, crp. 69-100.
- ³⁵³ The Climategate Emails edited and annotated by John Costella, The Lavoisier Group, March 2010, бесплатно: https://www.lavoisier.com.au/articles/greenhouse-science/climate-change/climategate-emails.pdf
- 354 http://www.meteo.psu.edu/holocene/public html/Mann/tools/tools.php
- 355 https://www.nationalreview.com/2017/03/michael-mann-house-testimony-climate-change-embarrassing-rude/ Полная запись заседания (2 часа 11 минут): https://www.youtube.com/watch?v= 3 sHu34imQ
- ³⁵⁶ Jean-Baptiste-Joseph Fourier, **Mémoire sur les températures du globe terrestre et des espaces planétaires**, Memoires d l'Academie Royale des Sciences del'Institute de FranceVII570-604, crp. 182
- 358 http://solarcooking.org/newsarchive.htm
- ³⁵⁹ Professor R. W. Wood, Note on the Theory of the Greenhouse, Philosophical Magazine in 1909 (Vol. 17, ctp. 319-320)
- ³⁶¹ https://wattsupwiththat.com/2009/12/24/bbc-botches-grade-school-co2-science-experiment-on-live-tv-with-indepedent-lab-results-to-prove-it/
- ³⁶² Svante Arrhenius, **On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground**, Philosophical Magazine and Journal of Science, Series 5, Volume 41, April 1896, ctp. 237-276.
- ³⁶³ John Tyndall, The Bakerian Lecture: On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connexion of Radiation, Absorption, and Conduction, Philosophical Transactions of the Royal

- Societ of London, Vol. 151 (1861), crp. 1-36.
- ³⁶⁴ Callendar, G. S., **The artificial production of carbon dioxide and its influence on temperature**, Quarterly Journal of the Royal Meteorological Society, 1938, ctp. 223-240.
- ³⁶⁶ H. Rubens and E. Aschkinass, **Observations on the Absorption and Emission of Aqueous Vapor and Carbon Dioxide in the Infra-Red Spectrum**, Astrophysical Journal 8 (1898) crp. 176.
- ³⁶⁷ Thomas R. Anderson, Ed Hawkins and Philip D. Jones, CO₂, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models, Endeavour Vol. 40 No.3, 2016, ctp. 178-187.
- ³⁷¹ McLean, John D, An audit of uncertainties in the HadCRUT4 temperature anomaly dataset plus the investigation of three other contemporary climate issues, PhD thesis, James Cook University.
- ³⁷² Carl A. Mears and Frank J. Wentz, Sensitivity of Satellite-Derived Tropospheric Temperature Trends to the Diurnal Cycle Adjustment, doi 10.1175/JCLI-D-15-0744.1
- 373 http://www.woodfortrees.org/plot/rss-land/from:1979/mean:60/plot/gistemp-dts/from:1979/mean:60/offset:-0.38/plot/uah6-land/from:1979/mean:60/offset:0.11
- 375 https://wattsupwiththat.com/2007/06/06/my-summer-project-a-national-weather-station-audit/
- ³⁷⁶ Frank, Patrick, Uncertainty in the Global Average Surface Air Temperature Index: A Representative Lower Limit. Energy & Environment, 2010.
- ³⁷⁸ Stephen H. Schneider, On the Carbon Dioxide-Climate Confusion, JAS, Vol 33, 1975, crp. 2060-2066
- ³⁷⁹ Charney, J. G., Carbon Dioxide and Climate: A Scientific Assessment. National Academies, Science Press, Washington, DC, 1979
- ³⁸⁰ Nicholas Lewis and Judith Curry, **The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity**, Journal of Climate, 2018, doi 10.1175/JCLI-D-17-0667.1.
- 381 https://www.giss.nasa.gov/tools/modelE/
- 382 http://edgcm.columbia.edu/purchasing/
- ³⁸³ https://www.geosci-model-dev.net/11/665/2018/gmd-11-665-2018.pdf Sonja Totz, Alexey V. Eliseev, Stefan Petri, Michael Flechsig, Levke Caesar, Vladimir Petoukhov, and Dim Coumou, **The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: validation and parameter optimization**, Geosci. Model Dev., 11, ctp. 665–679, 2018
- ³⁸⁴ Simon J. Shepherd, Sergei I. Zharkov, and Valentina V. Zharkova, **PREDICTION OF SOLAR ACTIVITY FROM SOLAR BACKGROUND MAGNETIC FIELD VARIATIONS IN CYCLES 21–23**, The Astrophysical Journal, 795:46 (8pp), 2014
- 385 https://skepticalscience.com/The-Earth-continues-to-build-up-heat.html
- ³⁸⁷ **«Римский клуб: «Парниковая» афера»**, https://tsargrad.tv/articles/rimskij-klub-parnikovaja-afera_162916 (14 Октября 2018); скачано в ноябре 2018 г.
- ³⁸⁸ Полный список членов Римского клуба: https://www.clubofrome.org/membership/
- ³⁹⁰ Nebojsa Nakicenovic, Joseph Alcamo, Gerald Davis, Bert de Vries, Joergen Fenhann, Stuart Gaffin, Kermeth Gregory, Amulf Griibler, Tae Yong Jung, Tom Kram, Emilio Lebre La Rovere, Laurie Michaelis, Shunsuke Mori, Tsuneyuki Morita, William Pepper, Hugh Pitcher, Lynn Price, Keywan Riahi, Alexander Roehrl, Hans-Holger Rogner, Alexei Sankovski, Michael Schlesinger, Priyadarshi Shukla, Steven Smith, Robert Swart, Sascha van Rooijen, Nadejda Victor, Zhou Dadi, IPCC Special Report on Emissions Scenarios, CAMBRIDGE UNIVERSITY PRESS, 2000, ISBN 0 521 80081 1 (жёсткая обложка), 0 521 80493 0 (мягкая обложка).

³⁹¹ **GEA, 2006: Global Energy Assessment—Toward a Sustainable Future**. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

³⁹² «Математические проблемы тысячелетия»: http://www.claymath.org/millennium-problems/navier/6E2%80%93stokes-equation

01234567890123456789

III. Обозначения

Для удобства пользования формулами, буквенные обозначения сохраняются по всем главам. Ниже приведён полный список, с описанием и принятой размерностью. По умолчанию, прописная буква означает функцию от времени, а строчная – константу.

- А коэффициент смертности [безразмерный]
- В коэффициент рождаемости [безразмерный]
- С капитал [условные миллионы тонн]
- **D** коэффициент естественной убыли или износа [безразмерный]
- Е энергия [гигаджоули]
- F территория или площадь [млн км²]
- **G** коэффициент затратности [тонн/единицу]
- Н производство продовольствия [условные миллионы тонн]
- I коэффициент инвестиций (или восстановления) [безразмерный]
- J коэффициент продуктивности [тонн / единицу]
- L трудоспособное население [млн человек]
- М промышленное производство [условные миллионы тонн]
- O оптимум популяции [млн человек]
- **Р** население [млн человек]
- О природные ресурсы [условные млн тонн]
- T модельное время [годы]

IV. Физические величины, использованные в книге

Масса Земли	$5.972 \cdot 10^{24} \ \text{kg}$
Масса атмосферы Земли	5.148·1018 кг
Средний радиус Земли	$6.371 \cdot 10^6$ м
Площадь Земли (включая океаны)	$5.101 \cdot 10^8 \ км^2$
Площадь суши Земли	1.489·10 ⁸ км ²
Площадь континентального шельфа	$0.325 \cdot 10^8 \ \text{km}^2$
Площадь потенциальных сельхозугодий	$4.884 \cdot 10^7 \text{km}^2$
Площадь сельхозугодий под пашней в 2014 году	$1.396 \cdot 10^7 \text{ km}^2$
Масса океанов Земли	$1.35 \cdot 10^{21} \text{kg}$
Масса атмосферы Земли	$5.148 \cdot 10^{15} \text{kg}$
Суммарный сток континентов	$4.00 \cdot 10^{16} \ \text{кг/год}$
Суммарный водоотбор на нужды человека (не учитывая естественные осадки)	4.25 10 ¹⁵ кг/год
Общий поток солнечной радиации	173'000 ТВт
Геотермальный тепловой поток	47±2 TBT
Плотность энергии радиации Солнца на орбите Земли	1'361.5 МВт/км²
Плотность энергии солнечной радиации	340.4 MBт/км ²
Эквивалент зерновых на производство 1 кг протеинов	6 кг/кг
Концентрация CO ₂ в атмосфере Земли до 1800 года (в расчётах принято значение 284 ppm)	285±15 ppm

V. Физические величины, оценка которых приводится в книге

Энергия стока с континентов	10.4±2 ТВт
Плотность энергии солнечной радиации после отражения атмосферой	163.2 MBт/км²
Плотность захвата солнечной радиации биосферой	0.600 MBT/KM ²
Плотность тепловой энергии океанов	0.168 МВт/км²
Плотность энергии геотермального теплового потока	$0.092~\mathrm{MBt/km^2}$
Общий поток энергии, доступный человеку без разрушения биосферы	2'250±450 TBT
Общий поток энергии, потребляемый человеком в 2015 году, не менее	400 TBT
Максимальный теоретический поток энергии «высокой плотности» из возобновляемых источников	47±5 ТВт
Технически-реализуемый поток энергии «высокой плотности» из возобновляемых источников, исключая биомассу	4.6±0.5 ТВт
Используется энергии «высокой плотности» в 2014 году, не менее	18.5 TB _T
Используется энергии «высокой плотности» в 2014 году из ископаемого углеродного топлива, не менее	14.6 ТВт
Используется энергии «высокой плотности» из возобновляемых источников (исключая биомассу) в 2014 году, не более	0.6 ТВт
Максимальная популяция человечества из расчёта по возобновляемым источникам энергии	19±2 млрд
Максимальная популяция человечества из расчёта по возобновляемым источникам энергии с использованием реальных технологий 2018 года	1.9±0.2 млрд
Масса антропогенных выбросов CO ₂ в 2016 г	33-49·109 т

Масса годовых антропогенных выбросов CO ₂ к общей массе CO ₂ в атмосфере Земли (2016 год)	1.1±0.2%
Характерное время секвестрации CO ₂ в атмосфере Земли (наиболее вероятное 37 лет)	28-55 лет
Накопленная добыча каменного угля, включая бурый уголь и торф, с 1830 по 2017 гг	203±20·10° toe
Накопленная добыча нефти и лицензионного газового конденсата, с 1860 по 2017 гг	184±9·10° т
Накопленная добыча нефти, включая конденсат, битум и широкие фракции природного газа, по 2017 г	193±10·10° т
Накопленная добыча природного газа, с 1830 по 2017 гг	105±8·10° toe
Накопленная добыча энергетического сырья «уголь+нефть+газ» с 1830 по 2017 гг	501±50·10° toe
Оценка общих технически извлекаемых запасов энергетического сырья «уголь+нефть+газ», включая «нетрадиционные углеводороды»: 1P (P-90) 2P (P-50) 3P (P-10)	1'000·10° toe 1'400·10° toe 3'300·10° toe
Мировой пик добычи энергетического сырья «уголь+нефть+газ», не позднее	2040 года
Вероятный мировой пик добычи «классической» чёрной нефти	2005 год
Максимум добычи «классической» чёрной нефти на пике	3'240±100 млн т
Вероятный мировой пик добычи каменного угля	2014 год
Максимум добычи каменного угля на пике	3'990±200 млн toe
Вероятный мировой пик добычи энергетического сырья «уголь+нефть+газ» на душу населения	2012 год
Максимум душевого потребления энергии из угля, нефти и газа на пике	2'000±200 B _T
Вероятный мировой пик добычи энергетического сырья	

«уголь+нефть+газ+уран» на душу населения	2012 год
Максимум душевого потребления энергии из угля, нефти, газа и урана на пике	2'100±200 Bt
Вероятный мировой пик низкоэнтропийной энергии (включая все возобновляемые) на душу населения	2015 год
Максимум душевого потребления энергии на пике	2'300±200 Bt
Выработка электроэнергии в 2017 году, эквивалент мгновен мощности (включая все возобновляемые)	нной 2.92 ТВт
Выработка электроэнергии в 2017 году, эквивалент мгновен мощности (все возобновляемые)	нной 0.66 ТВт
Выработка электроэнергии в 2017 году, эквивалент мгновен мощности (все возобновляемые, кроме гидро)	нной 0.19 ТВт
Выработка электроэнергии в 2017 году (включая все возобновляемые) на душу населения то же в тепловом эквиваленте при КПД = 38%	390±20 Вт 1000±50 Вт
Утилизация заявленных установленных мощностей 2017 го солнечных батарей ветровых электростанций	оду: 13% 25%

VI. Пик нефти по странам мира

Для совместимости с историческими данными по добыче, учитывается только добыча **сырой нефти и лицензионного газового конденсата**. Включается также LTO, она же «трудноизвлекаемые запасы нефти», она же «сланцевая нефть». Не учитываются:

- природный битум, например, из Канады
- пентан и другие «широкие фракции природного газа» (NGPL Natural Gas Plant Liquids)
- продукты пиролиза природного керогена
- жидкие продукты подземной газификации угля
- продукты по технологиям «газ-в-жидкость», «каменный уголь-вжидкость»
- жидкости из возобновляемых источников (биотопливо), в том числе метанол, этанол и биодизель
- расширение и усадка при переработке

Основные данные получены с веб-ресурса EIA: https://www.eia.gov/beta/international/data/browser/

В качестве вспомогательных данных использованы отчёт «Бритиш Петролеум» [10] и отчет DOE/EIA [20]. Площади стран и территорий — по «CIA World Factbook — 2014».

По добыче в бывших союзных республиках Советского Союза официальных источников нет. Информацию можно почерпнуть из старых университетских курсов по геологии СССР, но как правило без академических ссылок. По Азербайджану, Казахстану, Узбекистану пик наступил позже 1980 г, оттого есть точные данные. По Таджикистану, Туркменистану и РФ данные противоречивы. Вообще, если дело касается индивидуальной добычи по республикам СССР, о точных числах до примерно 1985 года можно забыть. Госкомстат тогда официально выдавал лишь общую добычу по стране, а объёмы по регионам считались государственной тайной. Впрочем, все данные наверняка есть в архивах, рано или поздно кто-то рассекретит.

Государство	Источник	Пик добычи нефти и конденсата, млн т	Добыча в 2016 году, млн т
Азербайджан	«Азнефть» «ВР»	50.8 в 2010 52.2 в 2010	41.0 (нк) 42.2 (всего)
Кыргызстан	http://www.vb.kg/doc/188032_pervy y_barrel_nefti_dobyt_v_kyrgyzstane _inostrannoy_kompaniey.html	0.490 (всего) в 1958	Около 0.05
Украина	http://forum- ukraina.net/threads/dobycha-nefti-v- ukraine.17267/	14.5 (всего) в 1972	1.6

Государство	во Источник Пик добычи нефти и конденсата, млн т		Добыча в 2016 году, млн т
Туркменистан	http://cabar.asia/ru/sabar-asia- energoresursnyj-sektor- turkmenistana-ozhidaniya-i- perspektivy/	«начало добычи 1876 г, пик в 1975 г на уровне 15.5 млн т»	11.7
Белоруссия	https://www.kp.by/daily/26672.4/369 4966/	«около 8 млн в 1975»	1.3
Грузия	http://ru.reuters.com/article/busines sNews/idRUKAL83275720080228	«более 3 млн в 1980»	Около 0.02
Таджикистан	https://cyberleninka.ru/article/n/ener getika-i-problemy-ustoychivogo- razvitiya-tadzhikistana	0.418 (всего) в 1979	Около 0.01
Российская Федерация	EIA http://burneft.ru/archive/issues/2011 -04/1 «BP»	545 (нк) в 1988 547 (всего) в 1980	534.2 (HK) 547.5 (BCEFO) 554.3 (BCEFO)
Казахстан	«BP»	82.3 (всего) в 2013	79.3 (всего)
Узбекистан	EIA	5.9 (нк) в 1998 8.0 (всего) в 1996	2.7

Точность абсолютных значений добычи — не хуже $\pm 3\%$, однако не все государства показывают в статистике ШФЛУ отдельной позицией.

Группа 1 включает страны и территории, где коммерческих запасов нефти не обнаружено, либо добыча невозможна технически, либо добыча прекращена по состоянию на начало 2018 года.

Код	Страна / территория	Год пика	Добыча на пике	Добыча 2017 года	Добыча 2017 года к пику	Территория (с терр. водами)	К сумме террито- рий
			Млн т	Млн т	%%	KM²	%%
ATA	Антарктида					14000000	9.31%
ARM	Армения					29743	0.02%
AFG	Афганистан					652864	0.43%
BHS	Багамы					13943	0.01%
BEL	Бельгия					30528	0.02%
BIH	Босния и Герцеговина					51209	0.03%
BWA	Ботсвана					581730	0.39%
BFA	Буркина-Фасо					274222	0.18%
BDI	Бурунди					27834	0.02%
BTN	Бутан					38394	0.03%
VUT	Вануату					12189	0.01%
HTI	Гаити					27750	0.02%
GUY	Гайана					214969	0.14%
GMB	Гамбия					11295	0.01%
GIN	Гвинея					245857	0.16%

Код	Страна / территория	Год пика	Добыча на пике	Добыча 2017 года	Добыча 2017 года к пику	Территория (с терр. водами)	К сумме террито- рий
			Млн т	Млн т	%%	KM²	%%
GNB	Гвинея-Бисау					36125	0.02%
HND	Гондурас					112492	0.07%
GRL	Гренландия					2166086	1.44%
DJI	Джибути					23200	0.02%
DOM	Доминиканская Республика					48671	0.03%
ZMB	Замбия					752612	0.50%
SAH	Западная Сахара					266000	0.18%
ZWE	Зимбабве					390757	0.26%
IRL	Ирландия					70273	0.05%
ISL	Исландия					103000	0.07%
KHM	Камбоджа					181035	0.12%
KEN	Кения					580367	0.39%
CYP	Кипр					9251	0.01%
CYN	Кипр (Северный)					3355	0.00%
KOS	Косово					10887	0.01%
CRI	Коста-Рика					51100	0.03%
LAO	Лаос					236800	0.16%
LVA	Латвия					64559	0.04%
LSO	Лесото					30355	0.02%
LBR	Либерия					111369	0.07%
LBN	Ливан					10452	0.01%
LUX	Люксембург					2586	0.00%
MDG	Мадагаскар					587041	0.39%
MKD	Македония					25713	0.02%
MWI	Малави					118484	0.08%
MLI	Мали					1240192	0.82%
MOZ	Мозамбик					801590	0.53%
MDA	Молдова					33846	0.02%
MNE	Черногория					13812	0.01%
NAM	Намибия					825615	0.55%
NPL	Непал					147181	0.10%
NIC	Никарагуа					130373	0.09%
NCL	Новая Каледония					18575	0.01%
PSX	Палестинские территории					6020	0.00%
PAN	Панама					75417	0.05%
PRY	Парагвай					406752	0.27%
PRT	Португалия					92090	0.06%
PRI	Пуэрто-Рико					9104	0.01%
RWA	Руанда					26338	0.02%

Код	Страна / территория	Год пика	Добыча на пике	Добыча 2017 года	Добыча 2017 года к пику	Территория (с терр. водами)	К сумме террито- рий
			Млн т	Млн т	%%	KM ²	%%
SLV	Сальвадор					21041	0.01%
SWZ	Свазиленд					17364	0.01%
PRK	Северная Корея					120540	0.08%
SEN	Сенегал					196722	0.13%
SOL	Сомалиленд					176120	0.12%
SOM	Сомали					637657	0.42%
SLE	Сьерра-Леоне					71740	0.05%
TZA	Танзания					945087	0.63%
TGO	Того					56785	0.04%
UGA	Уганда					241550	0.16%
URY	Уругвай					176215	0.12%
FJI	Фиджи					18274	0.01%
FIN	Финляндия					338424	0.23%
FLK	Фолклендские о- ва					12173	0.01%
FGU	Французская Гвиана					83534	0.06%
ATF	Французские океанические владения					7747	0.01%
CAF	Центрально- Африканская Республика					622984	0.41%
CHE	Швейцария					41284	0.03%
LKA	Шри-Ланка					65610	0.04%
ERI	Эритрея					117600	0.08%
EST	Эстония					45227	0.03%
ETH	Эфиопия					1104300	0.73%
KOR	Южная Корея					100210	0.07%
JAM	Ямайка					10991	0.01%
SWE	Швеция	1976	Менее 0.1			450295	0.30%
BEN	Бенин	1985	0.4			114763	0.08%
JOR	Иордания	1986	Менее 0.1			89342	0.06%
SVN	Словения	1993	Менее 0.1			20273	0.01%
	Всего группа 1	1986	0.5			31935854	21.24%

В XXI веке добыча нефти начата в 5 странах:

2003 Чад (пик добычи в 2005, группа 2 ниже)

2005 Восточный Тимор (пик добычи в 2006, группа 2 ниже)

2006 Белиз (пик добычи в 2010, группа 3 ниже)

2006 Мавритания (пик добычи в 2006, группа 2 ниже)

2011 Нигер (пик добычи в 2012, группа 3 ниже)

Группа 2 включает страны и территории, где пик добычи прошёл до 2007 года. (Заметим, что в самом 2007 пик не прошла ни одна страна). Закраской выделены члены Организации стран — экспортёров нефти (ОПЕК): Венесуэла, Ливия, Кувейт, Иран, Габон, Экваториальная Гвинея и Нигерия. Индонезия, где внутреннее потребление превышает добычу, то покидает ОПЕК, то входит снова.

Код	Страна / территория	Год пика	Добыча на пике	Добыча 2017 года	Добыча 2017 года к пику	Территория (с терр. водами)	К сумме террито- рий
			Млн т	Млн т	%%	KM ²	%%
KGZ	Кыргызстан	1958	0.5	Менее 0.1	10%	199951	0.13%
AUT	Австрия	1965	1.4	0.7	51%	83871	0.06%
VEN	Венесуэла	1970	197.2	101.6	52%	916445	0.61%
LBY	Ливия	1970	159.5	41.4	26%	1759540	1.17%
KWT	Кувейт	1972	167.3	140.8	84%	17818	0.01%
UKR	Украина	1972	14.5	1.5	10%	603500	0.40%
CAN	Канада	1973	100.3	62.1	61%	9984670	6.64%
IRN	Иран	1974	303.2	225.0	74%	1648195	1.10%
BLR	Беларусь	1975	8.0	1.2	15%	207600	0.14%
DEU	Германия	1975	4.7	2.2	47%	357114	0.24%
PER	Перу	1975	10.1	2.2	22%	1285216	0.85%
TKM	Туркменистан	1975	15.5	12.4	80%	488100	0.32%
ROU	Румыния	1977	15.1	3.7	25%	238397	0.16%
IDN	Индонезия	1978	84.9	40.5	48%	1910931	1.27%
TJK	Таджикистан	1979	0.4	Менее 0.1	2%	143100	0.10%
BRN	Бруней	1980	12.7	5.1	40%	5765	0.00%
GEO	Грузия	1980	3.0	Менее 0.1	1%	69700	0.05%
MAR	Марокко	1980	0.1	Менее 0.1	16%	446550	0.30%
TWN	Тайвань	1980	0.3	Менее 0.1	4%	36193	0.02%
ISR	Израиль	1981	1.8	Менее 0.1	1%	28292	0.02%
TTO	Тринидад и Тобаго	1981	12.1	3.6	30%	5130	0.00%
HUN	Венгрия	1982	2.1	0.7	34%	93028	0.06%
SRB	Сербия	1982	1.9	1.0	51%	88361	0.06%
HRV	Хорватия	1982	2.5	0.7	29%	56594	0.04%
CHL	Чили	1982	2.2	0.2	8%	756102	0.50%
ALB	Албания	1983	3.8	1.1	28%	28748	0.02%
ESP	Испания	1983	2.9	Менее 0.1	4%	505992	0.34%
GRC	Греция	1984	1.3	0.1	11%	131990	0.09%
MINI	Малые острова и территории*	1984	0.1	Менее 0.1	50%	39570.7	0.03%

Код	Страна / территория	Год пика	Добыча на пике	Добыча 2017 года	Добыча 2017 года к пику	Территория (с терр. водами)	К сумме террито- рий
			Млн т	Млн т	%%	KM²	%%
MMR	Мьянма (Бирма)	1984	1.6	0.6	37%	676578	0.45%
TUN	Тунис	1984	6.1	1.7	27%	163610	0.11%
BGR	Болгария	1985	0.3	Менее 0.1	17%	110879	0.07%
CMR	Камерун	1985	9.3	4.0	43%	475442	0.32%
COD	Конго (Киншаса)	1985	1.7	1.0	58%	2344858	1.56%
NLD	Нидерланды	1986	4.7	0.9	19%	41850	0.03%
FRA	Франция	1988	3.4	0.8	23%	640679	0.43%
TUR	Турция	1991	4.4	2.5	56%	783562	0.52%
JPN	Япония	1992	0.9	0.2	23%	377930	0.25%
PNG	Папуа-Новая Гвинея	1993	6.4	2.6	41%	462840	0.31%
EGY	Египет	1996	46.7	29.8	64%	1002450	0.67%
SYR	Сирия	1996	29.5	0.7	2%	185180	0.12%
SVK	Словакия	1996	0.1	Менее 0.1	12%	49037	0.03%
GAB	Габон	1997	18.7	10.1	54%	267668	0.18%
ARG	Аргентина	1998	42.8	24.3	57%	2780400	1.85%
GTM	Гватемала	1998	1.2	0.5	40%	108889	0.07%
UZB	Узбекистан	1998	5.9	2.3	40%	447400	0.30%
GBR	Великобритания	1999	135.5	46.1	34%	242495	0.16%
AUS	Австралия	2000	36.4	13.3	37%	7692024	5.12%
YEM	Йемен	2001	22.3	0.6	3%	527968	0.35%
LTU	Литва	2001	0.5	0.1	21%	65300	0.04%
NOR	Норвегия	2001	162.9	83.4	51%	323802	0.22%
CZE	Чехия	2003	0.3	0.1	35%	78865	0.05%
BGD	Бангладеш	2004	0.3	0.2	61%	147570	0.10%
VNM	Вьетнам	2004	20.4	13.7	67%	331212	0.22%
DNK	Дания	2004	19.7	6.9	35%	43094	0.03%
CUB	Куба	2004	2.9	2.5	86%	109884	0.07%
MYS	Малайзия	2004	38.7	32.8	85%	330803	0.22%
MEX	Мексика	2004	176.0	100.3	57%	1964375	1.31%
GNQ	Экваториальная Гвинея	2004	18.5	9.5	51%	28051	0.02%
ZAF	ЮАР	2004	2.8	0.1	4%	1221037	0.81%
ITA	Италия	2005	5.8	3.9	68%	301336	0.20%
NGA	Нигерия	2005	132.7	99.6	75%	923768	0.61%
TCD	Чад	2005	8.9	6.6	74%	1284000	0.85%
CIV	Берег Слоновой Кости	2006	3.1	2.7	87%	322463	0.21%
TLS	Восточный Тимор	2006	5.1	2.0	40%	14874	0.01%
MRT	Мавритания	2006	1.5	0.2	13%	1030700	0.69%
	Всего группа 2	1998	1550.2	1152.4	74%	50039337	33.29%

* Включает страны и территории: Американские Самоа, Антиква и Барбуды, Аруба, Барбадос, Бермуды, Капе-Верде, Каймановы о-ва, Коморос, о-ва Кука, Доминика, о-ва Фаро, Французская Полинезия, Гибралтар, Гренада, Гваделупе, Гуам, Гонконг, Кирибати, Макао, Мальдивы, Мальта, Мартиника, Маврикий, Микронезия, Монсеррат, Науру, Нидерландские Атиллы, Ниуи, Реюньон, о-в Св.Елены, о-ва Св.Киттса и Невиса, о-в Св.Лючии, о-ва Св.Пьерра, Гренадинские о-ва, Самоа, Сао-Томе и Принципе, Сейшельские о-ва, Сингапур, Тонга, Кокосовые о-ва, Тувалу, Тихоокеанские малые о-ва (США), Виргинские о-ва (США), Британские Виргинские о-ва, о-в Уэйк.

Группа 3 включает страны, где пик добычи либо пройден после 2007 года, либо ещё не пройден. Отдельно добавлены Россия и США. В России пик нефти и конденсата — на уровне 545.3 млн т в год — пройден по данным ЕІА в 1988 году, а по данным ЦДУ ТЭК — в 2016 году на уровне 547.3 млн т. Добыча в 2017 году составила 546.8 млн т (99.9% от пика, данные ЦДУ ТЭК); таким образом, вопрос о «нефтяном рекорде России» находится в пределах статистической трактовки исходных данных. В США по данным ЕІА пик пройден в 1970 году на уровне 9.637 млн баррелей в сутки (462.5 млн тонн в год). «Повторный пик» 2015 года: 9.408 млн баррелей в сутки (98% от добычи 1970). Закраской выделены члены ОПЕК: Алжир, Ангола, Катар, Эквадор, Ирак, ОАЭ и Саудовская Аравия.

Код	Страна / территория	Год пика	Добыча на пике	Добыча 2017 года	Добыча 2017 года к пику	Территория (с терр. водами)	К сумме террито- рий
			Млн т	Млн т	%%	KM²	%%
USA	США	1970	462.5	447.3	97%	9525067	6.34%
DZA	Алжир	2008	86.3	66.3	77%	2381741	1.58%
AGO	Ангола	2008	98.8	84.5	86%	1246700	0.83%
NZL	Новая Зеландия	2008	3.0	1.6	53%	270467	0.18%
AZE	Азербайджан	2010	50.8	40.1	79%	86600	0.06%
BLZ	Белиз	2010	0.2	0.1	47%	22966	0.02%
SDN	Судан	2010	24.5	5.2	21%	1861484	1.24%
IND	Индия	2011	39.5	37.3	94%	3287263	2.19%
QAT	Катар	2011	79.3	77.1	97%	11586	0.01%
NER	Нигер	2012	1.0	0.6	55%	1267000	0.84%
COL	Колумбия	2013	50.7	43.1	85%	1141748	0.76%
PAK	Пакистан	2014	4.7	4.6	96%	881912	0.59%
PHL	Филиппины	2014	1.9	0.8	40%	300000	0.20%
ECU	Эквадор	2014	28.1	27.0	96%	276841	0.18%
SDS	Южный Судан	2014	7.8	5.8	74%	644329	0.43%
CHN	KHP	2015	214.6	194.8	91%	9596961	6.38%
BAHR	Бахрейн	2016	2.5	2.3	90%	765	0.00%
MNG	Монголия	2016	1.2	1.0	86%	1564110	1.04%
ARE	ОАЭ	2016	175.4	154.2	88%	83600	0.06%
RUS	Россия ^а	2016	547.3	546.8	99.9%	17098246	11.37%
SAU	Саудовская Аравия	2016	529.6	514.4	97%	2149690	1.43%
THA	Таиланд	2016	13.0	12.2	93%	513120	0.34%
BOL	Боливия	2017		3.0		1098581	0.73%

Код	Страна / территория	Год пика	Добыча на пике	Добыча 2017 года	Добыча 2017 года к пику	Территория (с терр. водами)	К сумме террито- рий
			Млн т	Млн т	%%	KM²	%%
BRA	Бразилия	2017		133.1		8515767	5.66%
GHA	Гана	2017		7.7		238533	0.16%
IRQ	Ирак	2017		226.7		438317	0.29%
KAZ	Казахстан	2017		90.2		2724900	1.81%
COG	Конго (Браззавиль)	2017		17.5		342000	0.23%
OMN	Оман	2017		49.3		309500	0.21%
POL	Польша	2017		1.0		312679	0.21%
SUR	Суринам	2017		0.9		163820	0.11%
	Всего группа 3	2016	2795.4	2791.0	99.8%	68356293	45.47%
	Всего в мире	2017		3948.6		150331484	100.00%
	По данным « <i>BP</i> » 2018*	2017		4387.1			

^а По данным ЦДУ ТЭК: http://www.cdu.ru/tek russia/articles/1/471/ (март 2018 года)

Пик нефти и конденсата по состоянию на конец 2017 года:

- 21.2% стран и территорий (по площади) нефтедобычи в коммерческих количествах нет.
- 33.3% территорий— пик пройден в прошлом веке, снижение добычи по 1.5% в год в среднем.
- Доказанная начальная плотность извлекаемых запасов нефти и конденсата на квадратный километр территории в группах 1 и 2, исключая Антарктиду и Гренландию: 63'100±6'000 / 65.8 = 960±100 toe/км².
- Доказанная начальная плотность извлекаемых запасов нефти и конденсата на квадратный километр территории в трёх группах, исключая Антарктиду и Гренландию: 184'000±18'000 / 134.2 = 1370±140 toe/км².
- В 9 странах с территорией 14.1 млн км² (9.41% суши и территориальных вод планеты) и населением 350.0 млн человек (4.7% населения Земли) пик пока не прошёл. Эти 9 стран, в том числе 1 страна ОПЕК (Ирак), обеспечивали в 2017 году 13.4% мировой добычи нефти и конденсата.
- Семь членов ОПЕК из группы 3: Алжир, Ангола, Катар, Эквадор, ОАЭ, Саудовская Аравия и Ирак, имеют территорию 6.6 млн км² (4.4% суши и территориальных вод), население 167.1 млн (2.3% населения Земли). Добыли в 2017 году 1'150 млн тонн нефти и конденсата (29.2% от планетарной добычи и 96.9% от своего уровня 2016 года).

^{*} Данные «ВР» включают все «жидкости», кроме биотоплива и жидкостей по технологиям «газ-в-жидкость» и «каменный уголь в жидкость».

Добыча нефти и лицензионного конденсата

VII. Демографический переход по странам мира

В 1950-х ожидаемая продолжительность жизни превышала 70 лет всего в пяти странах мира: Дании, Швеции, Исландии, Нидерландах и Норвегии, притом на четвёртом этапе «демографического перехода» (низкая фертильность, высокая продолжительность жизни, малый рост населения) твёрдо находились лишь первые две. Всего на четвёртом этапе в 1950 году было 24 страны или территории с общим населением 463 млн. За 65 лет население группы увеличилось на 32%.

Страна /	Населен	ие, млн	TF	R	LEB	, лет	Популяция 2015 к
террито- рия	1950	2015	1950	2015	1950	2015	1950
Австрия	6.9	8.7	1.9	1.5	66.0	81.4	1.25
Беларусь	7.7	9.5	2.5	1.7	57.7	72.7	1.22
Бельгия	8.6	11.3	2.3	1.8	67.0	81.0	1.31
Болгария	7.3	7.2	2.7	1.5	60.4	74.6	0.99
Норманд- ские о-ва	0.1	0.2	2.1	1.5	68.5	81.0	1.60
Хорватия	3.9	4.2	2.9	1.5	60.3	77.5	1.10
Чехия	8.9	10.6	2.9	1.5	65.3	78.6	1.19
Дания	4.3	5.7	2.6	1.7	70.5	80.6	1.33
Эстония	1.1	1.3	2.1	1.6	59.1	77.4	1.19
Франция	41.9	64.5	2.8	2.0	66.1	82.4	1.54
Грузия	3.5	4.0	2.7	2.0	59.8	73.1	1.12
Германия	70.0	81.7	2.1	1.5	66.9	80.8	1.17
Греция	7.7	11.2	2.5	1.3	65.4	81.0	1.46
Венгрия	9.3	9.8	2.8	1.4	62.6	75.8	1.05
Италия	46.6	59.5	2.5	1.5	65.6	82.8	1.28
Латвия	1.9	2.0	2.0	1.5	59.7	74.4	1.03
Литва	2.6	2.9	2.9	1.6	57.6	74.5	1.14
Люксембург	0.3	0.6	1.9	1.6	65.4	81.6	1.91
Россия	102.8	143.9	2.8	1.7	55.2	70.9	1.40
Испания	28.1	46.4	2.4	1.4	63.1	83.0	1.65
Швеция	7.0	9.8	2.3	1.9	71.3	82.3	1.39
Швейцария	4.7	8.3	2.3	1.5	68.7	83.1	1.78
Украина	37.3	44.7	2.7	1.5	59.1	71.8	1.20
Велико- британия	50.6	65.4	2.1	1.9	68.7	81.4	1.29
ВСЕГО:	463.0	613.2	2.5	1.6	62.9	78.0	1.32

Ещё 63 страны и территории пересекли границу 1950 года, будучи на этапе 3, но с 2000 года (или ранее) могут быть классифицированы как находящиеся

полностью на этапе 4. В этих странах совместно показатель **TFR** уменьшился с 5.3 до 1.7 при одновременном увеличении продолжительности жизни **LEB** с 52 до 77 лет.

Страна /	Населен	іие, млн	TF	·R	LEB	, лет	Популяция	
террито- рия	1950	2015	1950	2015	1950	2015	2015 к 1950	
Албания	1.3	2.9	6.0	1.7	54.2	78.2	2.31	
Антигуа и Барбуды	Менее 0.05	0.1	4.4	2.1	57.5	76.2	2.16	
Аргентина	17.2	43.4	3.2	2.3	61.4	76.4	2.53	
Армения	1.4	2.9	4.1	1.6	62.0	74.4	2.16	
Аруба	Менее 0.05	0.1	5.8	1.8	58.4	75.7	2.74	
Австралия	8.2	23.8	3.0	1.9	68.8	82.7	2.91	
Азербай- джан	2.9	9.6	5.1	2.1	57.4	71.9	3.28	
Багамы	0.1	0.4	4.0	1.8	59.2	75.5	4.89	
Барбадос	0.2	0.3	4.5	1.8	56.1	75.8	1.35	
Босния и Герцеговина	2.7	3.5	5.3	1.3	51.4	76.7	1.33	
Бразилия	54.0	206.0	6.1	1.7	50.1	75.3	3.82	
Бруней	Менее 0.05	0.4	6.9	1.9	57.2	77.0	8.70	
Канада	13.7	35.9	3.5	1.6	68.5	82.2	2.62	
Чили	6.2	17.8	5.1	1.8	54.0	79.3	2.87	
Гонконг	2.0	7.2	4.4	1.3	62.1	83.8	3.67	
Макао	0.2	0.6	4.1	1.3	59.9	83.7	3.06	
КНР	554.4	1397.0	6.7	1.6	43.0	76.1	2.52	
Коста-Рика	1.0	4.8	5.7	1.8	55.1	79.6	5.01	
Куба	5.9	11.5	4.8	1.7	58.2	79.6	1.94	
Кюрасао	0.1	0.2	4.9	2.1	58.8	78.3	1.58	
Кипр	0.5	1.2	3.9	1.4	65.8	80.3	2.35	
кндр	10.5	25.2	1.9	1.9	29.7	71.5	2.39	
Финляндия	4.0	5.5	3.1	1.8	65.5	81.1	1.37	
Гренада	0.1	0.1	5.2	2.1	55.2	73.5	1.39	
Гваделупе	0.2	0.5	5.6	2.0	51.7	81.1	2.14	
Гуам	0.1	0.2	5.4	2.4	56.1	79.4	2.71	
Гайана	0.4	0.8	5.7	2.5	58.4	66.5	1.89	
Исландия	0.1	0.3	3.6	1.9	71.7	82.6	2.31	
Ирландия	2.9	4.7	3.5	2.0	65.6	81.3	1.61	
Ямайка	1.4	2.9	3.8	2.0	56.7	75.8	2.05	
Япония	82.8	128.0	3.4	1.4	61.2	83.6	1.55	
Кувейт	0.2	3.9	7.2	2.0	51.4	74.6	25.71	
Ливан	1.3	5.9	5.8	1.7	59.6	79.4	4.38	
Македония	1.3	2.1	5.5	1.5	53.0	75.5	1.66	
Малайзия	6.1	30.7	6.4	2.1	53.5	75.1	5.03	
Мальта	0.3	0.4	4.2	1.4	65.4	80.7	1.37	

Страна /	Населен	ие, млн	TF	R	LEB	, лет	Популяция 2015 к
террито- рия	1950	2015	1950	2015	1950	2015	1950
Мартиника	0.2	0.4	5.6	1.9	54.2	81.8	1.74
Молдова	2.3	4.1	3.5	1.2	58.1	71.5	1.74
Черногория	0.4	0.6	4.6	1.7	59.2	76.9	1.59
Нидерлан- ды	10.0	16.9	3.1	1.7	71.4	81.7	1.69
Новая Зеландия	1.9	4.6	3.4	2.0	69.3	81.7	2.42
Норвегия	3.3	5.2	2.5	1.8	72.3	82.0	1.59
Польша	24.8	38.3	3.5	1.3	59.1	77.4	1.54
Португалия	8.4	10.4	3.1	1.3	59.5	81.0	1.24
Пуэрто-Рико	2.2	3.7	5.0	1.5	60.9	79.8	1.66
Катар	Менее 0.05	2.5	7.0	1.9	53.6	78.0	99.25
Юж.Корея	19.2	50.6	5.0	1.3	46.7	81.9	2.63
Румыния	16.2	19.9	3.0	1.5	61.1	75.3	1.22
СтЛючия	0.1	0.2	5.3	1.5	52.0	75.3	2.14
Сербия	6.7	8.9	3.6	1.6	58.2	75.1	1.31
Сейшелы	Менее 0.05	0.1	5.2	2.3	58.0	73.3	2.58
Сингапур	1.0	5.5	6.5	1.2	58.4	82.8	5.42
Словакия	3.4	5.4	3.6	1.4	62.2	76.7	1.58
Словения	1.5	2.1	2.9	1.6	64.5	80.8	1.41
Шри-Ланка	8.0	20.7	5.6	2.1	52.5	75.1	2.60
Тайвань	7.6	23.5	6.9	1.2	55.6	79.7	3.08
Тринидад и Тобаго	0.6	1.4	5.3	1.8	56.9	70.6	2.11
США	158.8	319.9	3.1	1.9	68.2	79.2	2.01
Виргинские о-ва (США)	Менее 0.05	0.1	5.1	2.2	61.5	79.6	3.92
Уругвай	2.2	3.4	2.7	2.0	65.8	77.3	1.53
Узбекистан	6.3	31.0	5.1	2.3	55.3	71.2	4.95
Венесуэла	5.5	31.2	6.5	2.3	53.7	74.4	5.68
Вьетнам	24.8	93.6	5.0	2.0	51.8	76.1	3.77
всего:	1099.4	2684.8	5.3	1.7	51.6	77.1	2.44

Сорок три страны вступили в 1950 на втором этапе «демографического перехода», сейчас следуют этапу 3 (при быстро снижающейся смертности уменьшается рождаемость; население растёт). С 1950 по 2015 год численность населения в странах этой группы выросла на 270%, продолжительность жизни увеличилась с 39 до 70 лет, а показатель **TFR** снизился с 6.1 до 2.3.

Страна / террито-	Население, млн		TFR		LEB	Популяция 2015 к	
рия	1950	2015	1950	2015	1950	2015	1950
Алжир†	8.9	39.9	7.3	2.8	42.1	75.9	4.49
Бахрейн†	0.1	1.4	7.0	2.1	41.2	76.8	11.87

Страна /	Населен	ие, млн	TF	R	LEB,	лет	Популяция
террито- рия	1950	2015	1950	2015	1950	2015	2015 к 1950
Белиз†	0.1	0.4	6.7	2.5	54.8	70.2	5.21
Боливия	3.1	10.7	6.9	2.9	39.5	68.8	3.47
Ботсвана†	0.4	2.2	6.5	2.8	46.8	65.8	5.36
Кабо Верде†	0.2	0.5	6.5	2.4	47.7	72.6	2.99
Камбоджа	4.4	15.5	7.0	2.6	39.9	68.6	3.50
Колумбия	12.3	48.2	6.8	1.9	48.4	74.2	3.91
Доминикан- ская респ.†	2.4	10.5	7.5	2.5	44.3	73.7	4.45
Эквадор	3.5	16.1	6.7	2.5	47.6	76.1	4.65
Сальвадор†	2.2	6.3	6.2	2.1	42.6	73.3	2.87
Фиджи†	0.3	0.9	6.3	2.5	51.1	70.1	3.09
Французск. Полинезия	0.1	0.3	6.0	2.0	45.6	76.6	4.61
Гватемала	3.1	16.3	7.1	3.0	41.9	73.2	5.22
Гондурас	1.5	9.0	7.5	2.5	40.8	73.4	5.79
Индия	376.3	1309.1	5.9	2.4	35.4	68.3	3.48
Индонезия†	69.5	258.2	5.3	2.4	42.0	69.0	3.71
Иран	17.1	79.4	6.9	1.7	39.4	75.7	4.64
Ливия†	1.1	6.2	7.1	2.3	37.3	71.8	5.54
Мальдивы†	0.1	0.4	5.6	2.1	34.2	77.0	5.68
Маврикий†	0.5	1.3	6.0	1.4	48.1	74.6	2.55
Мексика	28.0	125.9	6.7	2.2	48.6	76.9	4.49
Марокко†	9.0	34.8	6.5	2.5	45.0	75.6	3.87
Мьянма	17.2	52.4	6.0	2.2	33.3	66.5	3.06
Непал	8.5	28.7	6.0	2.2	34.0	69.9	3.38
Новая Каледония	0.1	0.3	5.2	2.2	49.1	76.8	4.15
Никарагуа†	1.3	6.1	6.9	2.2	41.0	75.1	4.70
Оман†	0.5	4.2	7.2	2.7	34.2	76.8	9.20
Панама†	0.9	4.0	5.7	2.5	55.7	77.8	4.62
Парагвай	1.5	6.6	6.5	2.5	62.7	73.0	4.51
Перу	7.7	31.4	7.0	2.4	43.1	74.7	4.06
Полинезия	0.2	0.7	6.7	2.9	48.6	75.1	2.80
Реюнион	0.2	0.9	7.2	2.3	45.3	80.1	3.48
Ст.Винцент / Гренадины†	0.1	0.1	7.3	2.0	50.0	73.1	1.63
Саудовская Аравия	3.1	31.6	7.2	2.6	41.0	74.4	10.11
ЮАР	13.6	55.3	6.0	2.5	47.2	62.0	4.06
Суринам	0.2	0.6	6.6	2.4	54.7	71.3	2.57
Таиланд	20.7	68.7	6.1	1.5	49.9	75.1	3.32
Тунис†	3.6	11.3	6.6	2.2	38.3	75.5	3.13

Страна / террито- рия	Население, млн		TFR		LEB,	Популяция 2015 к	
	1950	2015	1950	2015	1950	2015	1950
Турция	21.4	78.3	6.7	2.1	40.2	75.5	3.66
ОАЭ	0.1	9.2	6.9	1.8	41.4	77.1	131.55
Западная Сахара†	Менее 0.05	0.5	6.3	2.5	34.8	69.2	38.23
ВСЕГО:	645.1	2383.9	6.1	2.3	38.6	70.2	3.70
† – наблюдал	ось временное	повышение Т	FR между 195	0 и 2000 годам	ІИ		

В следующей группе 63 страны в 1950 были на «этапе 2», к 2000 году вошли в «этап 3» и - за исключением, вероятно, Бангладеш и Бутана - останутся на «этапе 3» до конца XXI века. Несмотря на увеличение продолжительности жизни с 37 до 65 лет, средний показатель TFR до сих пор выше 4.1, а общий прирост населения - по 2.6% за год.

Страна /	Населен	ие, млн	TF	R	LEB	, лет	Популяция 2015 к
террито- рия	1950	2015	1950	2015	1950	2015	1950
Афганистан	7.8	33.7	7.5	4.8	27.5	63.3	4.35
Ангола†	4.5	27.9	7.3	5.8	31.0	61.2	6.13
Бангладеш†	37.9	161.2	6.2	2.1	39.1	72.2	4.25
Бенин†	2.3	10.6	5.8	5.0	32.7	60.6	4.69
Бутан	0.2	0.8	6.7	2.1	31.7	69.8	4.45
Буркина Фасо†	4.3	18.1	6.0	5.4	30.0	59.9	4.23
Бурунди†	2.3	10.2	6.8	5.8	38.4	57.1	4.42
Камерун†	4.3	22.8	5.5	4.8	37.9	57.6	5.30
ЦАР†	1.3	4.5	5.4	4.9	32.6	51.4	3.43
Чад†	2.5	14.0	6.1	6.0	35.5	52.6	5.60
Коморские о-ва†	0.2	0.8	5.7	4.4	38.1	63.5	4.88
Конго†	0.8	5.0	5.7	4.7	41.6	64.1	6.04
Берег Слоновой Кости†	2.6	23.1	7.4	5.0	31.2	53.1	8.79
Д.Р. Конго†	12.2	76.2	6.0	6.2	38.3	59.2	6.25
Джибути†	0.1	0.9	6.3	2.9	40.4	62.3	14.96
Египет	20.7	93.8	6.7	3.3	38.5	71.3	4.53
Экв. Гвинея†	0.2	1.2	5.7	4.8	33.9	57.4	5.21
Эритрея	1.1	4.8	6.9	4.2	33.3	64.6	4.24
Эфиопия†	18.1	99.9	7.3	4.3	33.3	65.0	5.51
Габон†	0.5	1.9	3.9	3.9	36.0	65.7	4.08
Гамбия†	0.3	2.0	5.2	5.5	29.7	61.0	7.29
Гана†	5.0	27.6	6.4	4.0	41.1	62.4	5.54
Гвинея- Биссау†	0.5	1.8	5.9	4.7	35.4	57.0	3.31

Страна /	Населен	ие, млн	TF	R	LEB	, лет	Популяция
террито- рия	1950	2015	1950	2015	1950	2015	2015 к 1950
Гвинея†	3.1	12.1	6.0	4.9	32.5	59.4	3.91
Гаити	3.2	10.7	6.3	3.0	36.2	63.1	3.33
Ирак†	5.7	36.1	8.1	4.4	34.9	69.7	6.31
Иордания†	0.5	9.2	7.6	3.4	44.8	74.2	19.03
Кения†	6.1	47.2	7.4	3.9	41.6	66.7	7.77
Кирибати†	Менее 0.05	0.1	5.8	3.7	46.0	66.1	3.40
Лаос†	1.7	6.7	5.9	2.8	40.3	66.3	3.96
Лесото	0.7	2.2	5.8	3.1	41.0	53.7	2.96
Либерия†	0.9	4.5	6.3	4.7	32.7	62.0	4.84
Мадагаскар	4.1	24.2	7.3	4.2	35.3	65.5	5.93
Малави†	3.0	17.6	6.8	4.6	36.0	62.7	5.95
Мали	4.7	17.5	7.0	6.1	26.4	57.5	3.71
Мавритания †	0.7	4.2	6.1	4.7	37.4	63.1	6.33
Майотта	0.0	0.2	7.9	3.9	44.7	79.9	15.85
Меланезия	2.2	9.9	6.3	3.6	39.2	66.5	4.59
Федерация Микронезии †	Менее 0.05	0.1	6.2	2.9	52.8	73.3	3.26
Микронезия	0.2	0.5	7.3	3.2	53.8	69.1	3.35
Мозамбик	6.2	28.0	7.0	5.3	30.3	57.7	4.55
Намибия†	0.5	2.4	6.0	3.5	40.2	63.8	5.00
Пакистан	37.5	189.4	6.6	3.5	34.5	66.3	5.04
Палестина†	0.9	4.7	7.6	4.1	46.2	73.3	5.00
Папуа- Новая Гвинея	1.7	7.9	6.2	3.7	37.1	65.4	4.73
Филиппины	18.6	101.7	7.4	3.0	54.7	69.0	5.47
Руанда†	2.2	11.6	7.9	4.0	39.4	66.7	5.32
Самоа	0.1	0.2	7.6	4.0	44.9	74.8	2.36
Сао Томе и Принсипи†	0.1	0.2	6.2	4.5	45.5	66.5	3.26
Сенегал†	2.5	15.0	6.8	4.8	34.5	66.8	6.02
Сьерра- Леоне†	2.0	7.2	6.1	4.6	28.4	51.4	3.55
Соломоно- вы о-ва†	0.1	0.6	6.4	3.9	44.4	70.4	6.54
Сомали†	2.3	13.9	7.2	6.4	33.2	55.9	6.14
Юж.Судан†	2.6	11.9	6.6	4.9	26.7	56.3	4.60
Судан†	5.7	38.6	6.7	4.6	43.4	64.3	6.74
Свазиленд	0.3	1.3	6.7	3.1	40.5	57.1	4.83
Танзания	7.6	53.9	6.7	5.1	40.4	64.9	7.04
Toro†	1.4	7.4	6.3	4.5	33.9	59.9	5.31
Тонга	Менее 0.05	0.1	7.3	3.7	57.9	72.9	2.25

Страна / террито- рия	Население, млн		TFR		LEB, лет		Популяция 2015 к				
	1950	2015	1950	2015	1950	2015	1950				
Уганда†	5.2	40.1	6.9	5.7	39.0	59.6	7.78				
Вануату	Менее 0.05	0.3	7.7	3.3	40.7	71.9	5.55				
Йемен†	4.4	26.9	7.4	4.1	34.5	64.7	6.11				
Замбия†	2.3	16.1	6.6	5.0	41.2	61.4	6.97				
ВСЕГО:	270.6	1425.3	6.7	4.1	37.4	65.0	5.27				
† – наблюдал	† – наблюдалось вре́менное повышение TFR между 1950 и 2000 годами										

В последней группе стран демографический переход «не состоялся» или не следует общепринятой теории:

Страна /	Население, млн		TF	R	LEB	, лет	Популяция 2015 к
террито- рия	1950	2015	1950	2015	1950	2015	1950
Французск. Гвиана ^а	Менее 0.05	0.3	5.1	3.4	52.3	79.7	10.55
Израиль ^а	1.3	8.1	4.5	3.0	68.3	82.3	6.41
Казахстан ^ь	6.7	17.7	4.3	2.7	54.2	69.7	2.65
Кыргызстан ^ь	1.7	5.9	3.9	3.1	51.9	70.8	3.37
Монголия ^{†b}	0.8	3.0	5.5	2.8	42.5	69.1	3.82
Нигер ^с	2.6	19.9	7.3	7.3	34.4	59.7	7.77
Нигерия ^с	37.9	181.2	6.4	5.6	33.1	53.0	4.79
Сирия ^{†d}	3.4	18.7	7.2	3.0	46.4	69.9	5.49
Таджики- стан ^{†а}	1.5	8.5	5.0	3.4	52.2	70.9	5.58
Восточный Тимор ^с	0.4	1.2	6.5	5.6	29.0	68.6	2.86
Туркмени- стан ^{†а}	1.2	5.6	4.9	2.9	50.4	67.7	4.60
Зимбабве ^{†а}	2.7	15.8	6.8	3.8	47.7	60.4	5.74
всего:	60.3	285.9	6.0	5.0	39.1	58.3	4.74

[†] – наблюдалось вре́менное повышение TFR между 1950 и 2000 годами.

По регионам мира, распределение как показано ниже (деление на «богатые» и «бедные», а также на «развитые» и «развивающиеся» страны согласно статистике ООН):

Страна / террито- рия	Население, млн		TFR		LEB	Популяция 2015 к	
	1950	2015	1950	2015	1950	2015	1950
Азия [†]	1404.1	4419.9	6.0	2.2	41.2	72.4	3.15
Африка [†]	228.7	1194.4	6.6	4.6	36.4	61.5	5.22
Европа	549.4	740.8	2.6	1.6	62.0	77.7	1.35
Латинская Америка	168.9	632.4	5.9	2.1	50.0	75.2	3.74

^а – стабилизация TFR на высоком уровне при высокой LEB.

^ь – увеличение TFR при достижении высокой LEB.

^{° –} нет значимой корреляции между TFR и LEB, TFR>5 при увеличении LEB свыше 50.

^d – началось снижение LEB при относительно высокой фертильности TFR.

Страна / террито- рия	Население, млн		TFR		LEB, лет		Популяция
	1950	2015	1950	2015	1950	2015	2015 к 1950
Северная Америка [†]	172.6	356.0	3.1	1.8	68.2	79.5	2.06
Океания [†]	12.6	39.5	3.7	2.4	60.7	78.4	3.13
Страны с высокими доходами	672.9	1180.1	2.9	1.7	64.3	80.8	1.75
Страны со средними доходами [†]	1734.5	5558.3	5.8	2.4	42.2	70.6	3.20
Страны с низкими доходами [†]	128.1	641.9	6.3	4.8	33.5	61.8	5.01
«Развитые» страны	814.9	1253.2	2.8	1.7	63.4	78.9	1.54
«Развива- ющиеся» страны [†]	1721.4	6129.8	6.2	2.6	40.5	69.8	3.56
Мир в целом⁺	2536.3	7383.0	5.0	2.5	45.8	71.4	2.91

