GUJARAT TECHNOLOGICAL UNIVERSITY RESEMENTED VIOLEN EXAMINATION WINTER 2024

Subject Code:2160602 Date:25-11-202					
•		Jame: Applied Fluid Mechanics			
	Fime: 02:30 PM TO 05:00 PM Total Marks				
Instru					
		Attempt all questions. Make suitable assumptions wherever necessary.			
		Figures to the right indicate full marks.			
	4.	Simple and non-programmable scientific calculators are allowed.			
Q.1	(a)	Classify various types of channel.	03		
	(b)	* **	04		
		1. Boundary Layer, 2. Critical Depth, 3. Mechanical Efficiency, 4.			
		Hydraulic Jump.			
	(c)	•	07		
	()	effect of pressure gradient on boundary layer separation.			
Q.2	(a)	Write short note on Reynold's experiment.	03		
	(b)	State and derive Bernoulli's equation for incompressible fluid.	04		
	(c)	Write the expression (equation) of following phenomenon with	07		
		explanation of all terms used in the equation.			
		1. Darcy-Weisbach equation, 2. Head loss due to sudden enlarge-ment,			
		3. Dupuit's equation.			
		OR			
	(c)	Prove that the maximum velocity is twice the average velocity of the	07		
		flow for viscous flow in a circular pipe.			
Q.3	(a)	A rectangular channel carries water at the rate of 1000 liters/sec. with	03		
		bed slope 1 in 2000. Find the dimension of most economical section.			
		Take $n=0.015$.			
	(b)	Differentiate 1. Steady and Unsteady flow, 2. Uniform and Non-	04		
		Uniform flow in case of open channel.			
	(c)	-	07		
	()	OR			
Q.3	(a)	Give classification of hydraulic jump.	03		
Q.C	(b)		04		
	(c)	•	07		
	(-)	components of hydroelectric plant.			
		components of hydrociccure plants			
Q.4	(a)	What is priming of pump? Why it is necessary?	03		
~	(b)		04		
	(c)	Explain Prandtl mixing length theory and define mixing length clearly.	07		
		OR			
Q.4	(a)		03		
		in fluid flow problems?			
	(b)	Enlist dimensionless numbers. And derive equation of Froude's number	04		

through dimension analysis.

	(c)	What are similarities of model? Explain briefly about types of similarities between model and prototype.	07
Q.5	(a)	Explain the terms: Hydraulic gradient line and Total energy line.	03
	(b)	Define boundary layer thickness. Derive the expression for displacement thickness.	04
	(c)	Using Buckingham's \prod -theorem, show that the velocity through a circular orifice is given by, $V = \sqrt{2gH} \varnothing [D/H, \mu/\rho VH]$. Where H is head causing flow, D is the diameter of the orifice, μ is viscosity, ρ is density and g is the acceleration due to gravity.	07
		OR	
Q.5	(a)	Write short note on water hammer.	03
	(b)	A pipe 20 cm in diameter and 45 m long conveys water at a velocity of 2.5 m/sec. Find the head loss in friction using Darcy-Weisbatch formula. Take f=0.006.	04
	(c)	What do you mean by most economical channel section? Derive the condition for trapezoidal channel of best section.	07
