Universidad de La Salle

Ciencia Unisalle

Ingeniería Civil

Facultad de Ingeniería

2021

Análisis de comparación con la metodología BIM en proyecto de vivienda multifamiliar en el municipio de Acacias - Meta

Melissa Amaya Beltran Universidad de la Salle, Bogotá, mamaya03@unisalle.edu.co

John Alejandro Sierra Castiblanco Universidad de la Salle, Bogotá, jsierra69@unisalle.edu.co

Follow this and additional works at: https://ciencia.lasalle.edu.co/ing_civil

Part of the Civil Engineering Commons, and the Construction Engineering and Management

Commons

Citación recomendada

Amaya Beltran, M., & Sierra Castiblanco, J. A. (2021). Análisis de comparación con la metodología BIM en proyecto de vivienda multifamiliar en el municipio de Acacias - Meta. Retrieved from https://ciencia.lasalle.edu.co/ing_civil/944

This Trabajo de grado - Pregrado is brought to you for free and open access by the Facultad de Ingeniería at Ciencia Unisalle. It has been accepted for inclusion in Ingeniería Civil by an authorized administrator of Ciencia Unisalle. For more information, please contact ciencia@lasalle.edu.co.

ANÁLISIS DE COMPARACIÓN CON LA METODOLOGÍA BIM EN PROYECTO DE VIVIENDA MULTIFAMILIAR EN EL MUNICIPIO DE ACACIAS – META

MELISSA AMAYA BELTRAN

CD 40151003

JOHN ALEJANDRO SIERRA CASTIBLANCO
CD 40141169

UNIVERSIDAD DE LA SALLE
FACULTAD DE INGENIERIA
PROGRAMA DE INGENIERIA CIVIL
BOGOTA, DC 2021

ANÁLISIS DE COMPARACIÓN CON LA METODOLOGÍA BIM EN PROYECTO DE VIVIENDA MULTIFAMILIAR EN EL MUNICIPIO DE ACACIAS – META

MELISSA AMAYA BELTRAN

CD 40151003

JOHN ALEJANDRO SIERRA CASTIBLANCO CD 40141169

TRABAJO DE GRADO PRESENTADO COMO REQUISITO PARA OPTAR AL TITULO DE INGENIERA CIVIL

DIRECTOR DE TRABAJO DE GRADO ING. ALVARO RODRIGUEZ PAEZ

UNIVERSIDAD DE LA SALLE
FACULTAD DE INGENIERIA
PROGRAMA DE INGENIERIA CIVIL
BOGOTA, DC 2021

AGRADECIMIENTOS

Quisiéramos agradecerle a Dios por permitirnos consolidar nuestra formación profesional, por ser nuestra guía en este camino, y por darnos el gran regalo de cumplir nuestro sueño de ser profesionales.

A nuestros padres por estar presentes en cada una de las etapas y decisiones que tomamos, por orientarnos, ayudarnos y apoyarnos incondicionalmente para conseguir este gran logro.

A la Constructora PAXCO por brindarnos toda la información para que pudiéramos desarrollar este proyecto.

A nuestro tutor el ingeniero Álvaro Rodríguez por su disposición y apoyo durante el desarrollo de este trabajo de investigación, por sus consejos y su orientación con su conocimiento y experiencia en el tema. A nuestro jurado la ingeniera Sandra Uribe por sus comentarios y sugerencias para el logro de un excelente trabajo

Así mismo, a todos los docentes que dedicaron su tiempo en nuestra formación personal, a todos nuestros compañeros y futuros colegas quienes hicieron parte de este proyecto de grado y a la Universidad de la Salle por su excelente gestión durante el desarrollo y culminación de nuestra carrera.

DEDICATORIA

En primer lugar, a Dios, por darme la oportunidad de culminar este proceso académico, por brindarme sabiduría y fortaleza y por ser mi guía en este camino.

A mi familia por su apoyo incondicional, por estar presentes en cada proceso de mi vida.

A mi madre, quien con su amor y comprensión me acompaño en cada momento de mi vida académica, por ser mi inspiración para ser una mejor persona cada día, por enseñarme los valores de la responsabilidad y el compromiso y por demostrarme que hay que luchar por lo que se quiere sin importar lo largo que sea el camino para cumplir los sueños. A mis hermanos que han sido mi motor en los días difíciles. Y a mis abuelos, que aún tengo la fortuna de tener quienes siempre han estado para mí y me han brindado su más sincero e infinito amor.

Finalmente dedico este logro a mi compañero no solo de tesis y de carrera, sino también de vida, quien con su infinito amor a lo largo de estos años me ha apoyado, acompañado y ayudado las veces que lo he necesitado, quien me ha levantado y me ha enseñado a confiar en mí y en todas mis capacidades y quien me ha demostrado que con el más sincero y bonito amor todo es posible.

MELISSA AMAYA BELTRAN

DEDICATORIA

En primer lugar, a Dios, por darme la oportunidad de vivir este momento. A mi familia por su apoyo, a mi madre y a mi padre por enseñarme los valores de la responsabilidad y el compromiso. A mi hermano y demás familiares por su apoyo, especialmente a mi abuelito Arturo que está en el cielo, gracias por ser parte de este camino.

Finalmente a mi compañera de tesis y de vida, quien con su amor, apoyo y dedicación me ha ayudado las veces que lo he necesitado y me ha enseñado a confiar en mí y en mis capacidades.

JOHN ALEJANDRO SIERRA

DECLARACIÓN ÉTICA

Como integrantes desarrolladores del presente proyecto nos suscribimos a una declaración ética con la que nos comprometemos a cumplir con cada uno de los objetivos planteados con el fin de llegar a la completa ejecución del mismo, siendo objetivos, trasparentes y honestos durante su desarrollo, además, aplicaremos nuestro criterio ingenieril y eficiencia para obtener los mejores resultados.

Contenido

Intro	ducció	n	10
1.	Gen	eralidades	11
	1.1	Línea de investigación	11
	1.2	Naturaleza del proyecto	11
	1.3	Resumen	11
	1.4	Localización del proyecto	13
2.	Plan	teamiento del problema	14
	2.1	Antecedentes	14
	2.2	Estado del Arte	14
	2.3	Diseños del proyecto	24
	2.4	Presupuesto Tradicional	32
	2.5	Planteamiento del Problema	34
3.	Alca	ınce	36
4.	Just	lificación	36
5.	Obje	etivos	37
	5.1	Objetivo general	37
	5.2	Objetivos específicos	37
6.	Mar	cos de Referencia	37
	6.1	Marco Teorico	37
	6.2	Marco Conceptual	41
	6.3	Marco Legal	43
7.	Meto	odología	43
	7.1	Fases de Investigación	43
8.	Apli	cación de Modelación BIM	45
	8.1	Estructura	46
	8.2	Mampostería	48
	8.3	Ascensor	50
	8.4	Escaleras	51
	8.5	Muros exteriores y zonas comunes de la torre	52
	8.6	Instalaciones Hidráulicas	
	8.7	Instalaciones Eléctricas	54
	8.8	Instalaciones de gas	55

8.9	Ventanas	56
8.10	Puertas	57
	Acabados (Baños y Cocina)	
	Cubierta	
	ıltados	
	Presupuesto BIM	
	Comparación cantidades totales Metodología BIM vs Metodología Tradicional	
9.3	Comparación presupuesto total Metodología BIM vs Metodología Tradicional	69
9.4 presur	Comparación presupuesto total Metodología BIM vs Metodología Tradicion	
	onclusiones	
11. Re	ecomendaciones	75
REFERENC	IAS BIBLIOGRAFICAS	77
Lista de Ta	ablas	
	do del Arte	
	ıpuesto Real por Torre	
	idades Estructurales	
	idades de Mampostería	
	dades Foso Ascensor	
	idades Escalera	
	idades Graniplast	
	idades Hidráulicas (Suministro y Sanitarias)	
	idades de Ventaneria	
	tidades Accesorios de baño, cocina y acabados	
	tidades de Cubierta	
	supuesto BIM Reorganizado	
	nparación de cantidades REVIT y Método Tradicional 2D	
	nparación de Presupuesto BIM vs Presupuesto Tradicional	
	nparación Método BIM vs Método Tradicional Real por torre paracion BIM vs Método tradicional Real por las tres torres	
Tabla 10.Com	paración blivi vs ivictodo tradiciónal Neal por las tres torres	/3
	Istraciones Ubicación Altos de Araguaney (Google Earth)	10
	Ubicación Altos de Araguaney en el Barrio AraguaneyUbicación Altos de Araguaney en el Barrio Araguaney	
	Plano Planta Arquitectónica piso 01	
	Plano Planta Arquitectónica Tipo del piso 2 al 8	
	Plano Arquitectónico Planta Cubierta	
	Plano Corte Longitudinal A-A	
	Plano Fachada Principal	
	Plano Fachada Posterior	
	Plano Estructural Planta de Cimentación	
	. Plan Estructural del Piso 2 al 8	

Ilustración 11. Plano Estructural Cubierta	28
Ilustración 12. Plano Hidráulico. Suministro Piso 1	28
Ilustración 13. Plano Hidráulico. Suministro Piso 2 al 8	29
Ilustración 14. Plano Sanitario Piso 1	29
Ilustración 15. Plano Sanitario Piso 2 al 8	30
Ilustración 16. Plano Sanitario Cubierta	30
Ilustración 17. Plano Eléctrico Piso 1	31
Ilustración 18. Plano Eléctrico Piso 2 al 8	31
Ilustración 19. Plano de Gas Piso 1 al 8	32
Ilustración 20.Trayectoria de BIM por país (BID Mejorando Vidas)	35
lustración 21. Ciclo de Vida de un proyecto	41
Ilustración 22. Fases de la investigación. Fuente propia	45
Ilustración 23. Vista en Planta Proyecto Altos de Araguaney	46
Ilustración 24. Cimentación Altos de Araguaney. Fuente propia	47
Ilustración 25.Estructura del proyecto Altos de Araguaney. Fuente propia	47
Ilustración 26. Mamposteria. Fuente propia	49
Ilustración 27. Pañete Sala Comedor	49
Ilustración 28. Foso del Ascensor visto desde el pasillo de la torre	50
Ilustración 29. Escaleras tipo del piso 1 al 8	51
Ilustración 30. Muros exteriores con pañete y graniplast	52
Ilustración 31. Graniplast Zonas Comunes	
Ilustración 32. Instalaciones sanitarias y de agua lluvia	
Ilustración 33. Instalación eléctrica (Luminarias, Tablero 120v, interruptor y tomacorriente)	
Ilustración 34. Redes sanitarias(amarillas), suministro (blancas) y de gas (cobre)	
Ilustración 35. Ventana como Puerta Balcón	
Ilustración 36. Ventana Habitación	57
Ilustración 37. Puertas de ingreso a los apartamentos	58
Ilustración 38. Baño con inodoro, ducha y lavamanos económicos	
Ilustración 39. Cocina con estufa, lavaplatos. Zona de lavado con lavadero	
Ilustración 40. Vista en planta de la cubierta	
Ilustración 41. Torre Terminada Altos de Araguaney	
Ilustración 42. Fachada Torre Altos de Araguaney	
llustración 43. Presupuesto creado por la extensión PRIMUS	
Lista de Tablas	
Tabla 1. Estado del Arte	
Tabla 2. Presupuesto Real por Torre	
Tabla 3. Cantidades Estructurales	
Tabla 4. Cantidades de Mampostería	
Tabla 5.Cantidades Foso Ascensor	
Tabla 6. Cantidades Escalera	
Tabla 7. Cantidades Graniplast	
Tabla 8. Cantidades Hidráulicas (Suministro y Sanitarias)	
Tabla 9. Cantidades de Ventaneria	
Tabla 10. Cantidades Accesorios de baño, cocina y acabados	
Tabla 11. Cantidades de Cubierta	
Tabla 12. Presupuesto BIM Reorganizado	
Tabla 13. Comparación de cantidades REVIT y Método Tradicional 2D	
Tabla 14. Comparación de Presupuesto BIM vs Presupuesto Tradicional	
Tabla 15. Comparación Método BIM vs Método Tradicional Real por torre	
Tabla 16.Comparacion BIM vs Método tradicional Real por las tres torres	<i>73</i>

Introducción

Las empresas constructoras en Colombia enfrentan problemáticas constantes a la hora de ejecutar proyectos, esto debido a los imprevistos que se generan por los excesos constantes de tiempo, los sobrecostos, los entregables de baja calidad y la disminución de la productividad. Todo eso se atribuye a la poca planeación que se realiza al inicio de cada proyecto, donde todo se basa en las prácticas tradicionales, las cuales hacen todo más complejo en proyectos de gran magnitud. Es por ello, que se requiere implementar el sistema BIM (Building Information Modeling), el cual aborda las ineficiencias interdisciplinarias en los proyectos de construcción y potencia el trabajo colaborativo.

El sistema BIM en Colombia es muy reducido, debido a que no está aún implementado en la industria de la construcción, por lo tanto, se sigue manejando la metodología tradicional para el cálculo de las cantidades de obra y la estimación completa de los presupuestos. Esta metodología tradicional, se basa en el uso de planos 2D, los cuales, con la ayuda de un software como AUTOCAD, es posible obtener las cantidades totales del proyecto, sin embargo, en este proceso pueden ocurrir múltiples errores, ya que cada uno de los profesionales involucrados en los diseños puede manejar de diferente forma el programa, puede tener falencias en la interpretación de planos, o tener una concepción errónea del proceso constructivo, lo que afecta directamente el presupuesto del proyecto, esto a diferencia de BIM, que con softwares como Revit y Primus, ayudan a mantener en un solo conjunto el proyecto entero, generando así, la misma concepción de planimetría y presupuestos para todos los profesionales.

Por todo lo anterior, el presente trabajo, pretende comparar la funcionalidad de una herramienta tan completa como Building Information Modelling (BIM) en la estructuración de un presupuesto para un estudio de caso (Conjunto Multifamiliar Altos de Araguaney), con el sistema tradicional, con el fin de observar las falencias que se han tenido en el cálculo del

presupuesto y durante el proceso constructivo, teniendo en cuenta el análisis de planos y la estimación de cantidades de obra.

De igual manera, se busca determinar las ventajas y desventajas que conlleva la implementación de la metodología BIM con respecto a la metodología tradicional. Para finalmente discutir algunas recomendaciones sobre la implementación en Colombia, referente a los términos de calidad y beneficios que trae para el sector constructor.

1. Generalidades

1.1 Línea de investigación

Innovación y tecnología

Gestión, entorno y competitividad de las organizaciones

1.2 Naturaleza del proyecto

Tomando como base que los retrasos en obra son uno de los problemas más cotidianos para la construcción, debido a los imprevistos que se ocasionan en el trascurso de la ejecución de los proyectos y que gracias a la tecnología e investigación se crean herramientas que facilitan la planeación de los mismos, para evitar dilataciones y sobrecostos, esta investigación busca comparar el presupuesto realizado por el sistema BIM con el realizado de manera tradicional de un estudio en caso (Conjunto Multifamiliar Altos de Araguaney).

La metodología de investigación en este proyecto se basa en el análisis de la comparación de los dos sistemas, BIM y tradicional, tomando los planos iniciales del proyecto en conjunto al presupuesto desarrollado, y realizando nuevamente el diseño en Revit y posteriormente en Primus para la recolección de cantidades en el presupuesto arrojado por estas herramientas.

1.3 Resumen

El presente proyecto investigativo se realizara mediante un análisis, que va desde la

recopilación de antecedentes y estudios previos de la ejecución y planeación de un proyecto en caso, iniciando con la investigación de los aportes del sistema BIM en Colombia, específicamente en el Municipio de Acacias – Meta y finalizando con el análisis de comparación entre las dos metodologías BIM y tradicional, y la formulación de recomendaciones que puedan reducir los impactos en la planeación de obras.

El enfoque de esta investigación va hacia el sector constructor de Colombia, concretamente en el Municipio de Acacias, pues es bien sabido que el desarrollo de un país deriva del desarrollo de proyectos de infraestructura, los cuales muchas veces tienen grandes deficiencias al realizar una mala planeación, manejando sobrecostos y extensiones de tiempo, haciéndolos más complejos en su ejecución por demoras o adiciones de dinero.

La industria de la construcción debe ser competitiva en cuanto a costo, tiempo y calidad, y para lograr que esto se cumpla se debe garantizar un cumplimiento en cronogramas y presupuestos; el principal obstáculo que la gestión de proyectos debe superar, es asegurarse de que la obra sea entregada dentro de los parámetros definidos en los diseños, el segundo, es la asignación adecuada de los recursos, con el fin de que se cumplan los objetivos propuestos; y el tercero es que tomando en cuenta que las obras de construcción son un sistema seleccionado y secuencial de actividades que demandan un conjunto de recursos como el tiempo, el dinero, los materiales y la calidad, se deben tener muy claros los objetivos predefinidos, generando un eficiente desarrollo en el proyecto.

En cuanto al caso definido, es el Conjunto Multifamiliar Altos de Araguaney, el cual es un proyecto de vivienda multifamiliar, cuenta con 5 torres de 8 pisos, cada piso con 4 apartamentos para un total de 160 apartamentos; donde hasta la fecha se han ejecutado 3 torres en su totalidad, las cuales serán las comparadas entre el presupuesto inicial, el total generado durante su ejecución y el presupuesto total hallado por medio de la Metodología

BIM, con el fin de demostrar la eficiencia de esta nueva tecnología para evitar ciertos imprevistos que consumen tiempo y dinero de más.

Por último, la elección de este contenido, se debe a que la ingeniería civil avanza día a día y es necesario mantenerse actualizado en los avances que esta trae consigo, específicamente en herramientas primordiales para la gerencia y planeación de los proyectos, con el fin de posteriormente atribuirse a una buena ejecución, en pro de cumplir con los objetivos de cada proyecto a desarrollar.

Palabras clave: Metodología BIM, planeación, presupuesto, gestión de proyectos, metodología tradicional

1.4 Localización del proyecto

El proyecto está ubicado en Colombia, en el Municipio de Acacias, departamento del Meta.

Ilustración 1. Ubicación Altos de Araguaney (Google Earth)

Exactamente en la Carrera 24 No.20 – 02, Barrio Araguaney.

Ilustración 2. Ubicación Altos de Araguaney en el Barrio Araguaney

2. Planteamiento del problema

2.1 Antecedentes

En esta sección se recopilo información de fuentes que han manejado el sistema BIM a nivel mundial y en casos puntuales en Colombia, debido a que la metodología en muchos países se ha venido desarrollando como fuente principal para realizar presupuestos. Por otra parte, se recopilaron planos y el presupuesto inicial con la ayuda del desarrollo de la construcción real y de los estudios previos realizados por la Constructora encargada del proyecto.

2.2 Estado del Arte

Tabla 1. Estado del Arte

Nombre	Año	País	¿Qué se hizo?	Resultados
	2012	Colombia	Lograr que los equipos	El modelo paramétrico
			de diseño y	generado utilizando
			construcción generen	herramientas BIM
			proyectos empleando	permite una
me		metodologías BIM	visualización 3D	
			desde las primeras	acertada de la
IMPLEMENTACIÓN			fases de diseño no es edificación; aden	
DE LAS			un proceso sencillo e cuenta con los	
METODOLOGÍAS			inmediato. Requiere	parámetros necesarios

BIM COMO
HERRAMIENTA
PARA LA
PLANIFICACIÓN Y
CONTROL DEL
PROCESO
CONSTRUCTIVO
DE UNA
EDIFICACIÓN EN
BOGOTÁ

de tiempo y capacitación adecuada, además de un esfuerzo individual adicional de cada uno de los profesionales involucrados para aprender a utilizar correctamente la herramienta BIM que le permite ejecutar su trabajo de forma eficiente y colaborativa. Por tal razón se presenta este trabajo de grado que expone el caso de un proceso de modelación BIM para una edificación en la Ciudad de Bogotá D.C., Colombia. Se trata entonces de un caso de implementación de metodologías BIM real concebido como una validación de la herramienta para ser usada en el contexto de la construcción a nivel nacional. Para ello se tomó información de un proyecto de construcción que se encontraba en fase constructiva al momento de iniciar el proyecto de investigación. Se generó un modelo BIM 5D con el cual se estableció un comparativo entre los métodos de planificación de

para extracción de cantidades de obra y simulación de cronograma de obra. Es un modelo funcional y versátil que cumple con los requerimientos para considerarse un modelo paramétrico BIM. El modelo paramétrico generado está limitado a parámetros dimensionales y asignaciones de materiales. Aunque los materiales cuentan con las propiedades mecánicas reales, es requisito parametrizar adecuadamente el modelo para obtener cantidades en unidades congruentes con las cantidades suministradas por la empresa. El análisis de cantidades de obra permitió evidenciar la variación porcentual entre las cantidades que presenta la documentación y las extraídas del modelo de Revit para los ítems propuestos. Se obtuvieron variaciones porcentuales casi nulas en algunos ítems demostrando que la metodología es aplicable y funciona si se ejecuta de manera ordenada. No obstante, hubo variaciones porcentuales exageradas para otros ítems, en términos de

			proyectos tradicionales y BIM en lo referente a la obtención de cantidades de obra, programación de obra y presupuestación	cantidades y presupuestos, debido a limitaciones del modelo por insuficiencia de detalle en los planos de diseño y en los demás documentos de obra que fueron la base de la modelación.
PLANIFICACIÓN Y CONTROL DE PROYECTOS APLICANDO "BUILDING INFORMATION MODELING" UN ESTUDIO DE CASO	2016	México	A nivel internacional existe un avance significativo en materia de tecnologías de información aplicadas al sector de la construcción. En el caso de nuestro país, debido al desconocimiento de las herramientas y nuevos desarrollos tecnológicos se están desaprovechando grandes contribuciones a la productividad del sector. Tradicionalmente, los diseños, la cuantificación de materiales y la programación de obra no se relacionan entre sí y los profesionales trabajan de forma aislada. Esta situación genera múltiples problemas en el momento de la ejecución del proyecto como inconsistencias de diseño, ausencia de programación detallada de actividades, planos obsoletos, entre otros.	El modelo paramétrico generado utilizando herramientas BIM permite una visualización 3D coordinada de la edificación; además cuenta con los parámetros necesarios para extracción de cantidades de obra y simulación de cronograma de obra. El análisis de cantidades de obra permitió evidenciar la variación porcentual entre las cantidades que presenta la documentación y las extraídas del modelo para los ítems propuestos. Se obtuvieron variaciones porcentuales casi nulas en algunos ítems demostrando que la metodología es aplicable y funciona si se ejecuta de manera ordenada. No obstante, hubo variaciones porcentuales exageradas para otros ítems, debido a limitaciones del modelo por insuficiencia de detalle en los planos de

La disponibilidad de	diseño y en los demás
herramientas BIM	documentos de obra
(Building Information	que fueron la base de la
Modeling) en	modelación. La
Colombia representa	simulación aporta la
una nueva forma de	cuarta dimensión
diseñar, planear,	(tiempo) al modelo
ejecutar y operar	permitiendo una
proyectos de	visualización acertada
construcción. El	de la programación de
presente artículo está	obra original. Estas
basado en un trabajo	simulaciones facilitan el
de investigación para	control posterior de la
la aplicación de	programación en obra.
metodologías BIM al	Mediante la integración
proceso constructivo	del modelo con los
de una edificación en	Análisis de Precios
estructura metálica en	Unitarios suministrados
la ciudad de Bogotá,	por la empresa
con el fin de hacer un	constructora, se logró
análisis comparativo	generar un presupuesto
entre los resultados	para costos directos (de
arrojados por el	los ítems propuestos)
modelo, la	basado en las
documentación de	cantidades extraídas del
obra y el proceso	modelo utilizando la
constructivo real en lo	herramienta Autodesk
referente al cálculo de	
cantidades de obra,	Quantity Takeoff®.
elaboración de	
presupuestos y	
programación de obra	
para la cimentación, la	
estructura y los muros	
interiores. A partir de	
los resultados	
obtenidos se logró	
probar la validez de la	
metodología BIM para	
el caso particular y se	
generaron	
recomendaciones para	
su aplicación	
La práctica en la	Luego de establecer,
construcción de	tanto históricamente,
proyectos civiles en el	como en metodología,
área administrativa ha	las ventajas de la

PLANEACIÓN BIM:	2017	Colombia	demostrado y	implementación BIM
LINEAMIENTOS	2017	Colonibia	encontrado una serie	en los procesos de
BASICOS Y			de deficiencias en los	planeación en las
BENEFICIOS EN LA			documentos pactados	compañías
IMPLEMENTACIÓN			de diseños e	constructoras en el país
DE LA				-
METODOLOGÍA			ingeniería. Estos	se lograron llegar a las
BIM EN LA FASE			influyen e impactan negativamente durante	siguientes conclusiones; se lograron establecer
DE PLANEACIÓN			la etapa de	los beneficios
PARA COMPAÑÍAS			construcción sobre	correspondientes a
DEL SECTOR			costos y plazos de	análisis realizado
CONSTRUCTIVO			ejecución de un	durante el proceso de
COLOMBIANO			proyecto y derivan	planeación de un
COLONIDIANO			posteriormente a	proyecto utilizando la
			problemas de calidad.	metodología BIM,
			La complejidad de los	basándonos en los
			proyectos de	autores citados en el
			edificaciones es cada	Trabajo de grado,
			día mayor, sobre todo	donde se logra
			en actividades como	evidenciar: El ahorro
			instalaciones,	de tiempos en
			materiales, insumos y	programación en un
			procedimientos que	20% de acuerdo a los
			exigen la aplicación	tiempos que se gasta
			no solo de	con la metodología
			herramientas eficaces	existente, la
			de gestión y	disminución en
			planificación en la	reprocesos en diseño y
			etapa de construcción,	posibles errores en el
			sino también de una	proceso constructivo.
			adecuada revisión,	Predicciones en flujo de
			compatibilización y	caja para tomas de
			realimentación del	decisiones tempranas y
			proyecto antes de	estratégicas a beneficio
			llegar a esa etapa. Para	del proyecto.
			ello la tecnología nos	Presupuestos acertados
			propone un sistema de	que contemplen todas
			gestión de la	las posibilidades
			información conocido	constructivas del
			como BIM (Building	proyecto reduciendo los
			Information	imprevistos en un 90%.
			Modeling) que nos	Base de datos de largo
			permite compatibilizar	tiempo y
			e integrar el diseño del	retroalimentación al
			proyecto por	instante a futuros
			anticipado y mucho	proyectos hasta el cierre
			antes de llegar a	y fin de cada uno de

	1			
			campo, eliminando	ellos. Cambios al
			desperdicios, costo y	instante y automáticos
			tiempo de esta manera	en los planos, y envíos
			generar los más altos	digitales a los
			estándares de calidad.	constructores.
			ostaridares de carreda.	Aplicación en 4D de la
				-
				tecnología para
				visualización en tiempo
				real de los procesos
				constructivos acertados
				antes de la construcción
				real.
COORDINACION			El mundo de la	En nivel de detalle
DE UN PROYECTO	2019	Colombia	ingeniería siempre	(LOD) es uno de los
DE EDIFICACION	2017	Cololliol	está en constante	parámetros iniciales que
MEDIANTE				establece que cantidad
			innovación y en busca	
METODOLOGÍAS			de optimizar los	de información se
BIM – CASO DE			procesos que se llevan	quiere asociar al
ESTUDIO EDIFICIO			a cabo en el mismo,	modelo, un LOD más
TEQUENDAMA II -			BIM (Building	alto puede llegar a
PERMODA			Information	involucrar información
			Modeling) en español	hasta de gasto
			modelado de	energético de los
			información para la	diferentes componentes,
			edificación, es una	por eso antes de realizar
			metodología la cual se	la implementación BIM
			_	
			ha venido	en cualquier fase de un
			implementando en el	proyecto es importante
			país desde hace unos	definir ese nivel de
			años ya, que permite	detalle con el que se
			la gestión integral de	trabajara
			proyectos de	posteriormente, ya que
			edificaciones e	dé él depende la calidad
			infraestructura en	y cantidad de
			todas sus fases, desde	información que tenga
			un simple esquema en	el modelo final. Se
	1		modelado 3d hasta	
	1			evidencio que la
			lograr obtener una	implementación BIM al
			composición	caso de estudio puede
	1		centralizada de	conllevar errores,
	1		información específica	surgiendo reprocesos en
			del proyecto	algunas etapas, la mejor
	1		abarcando todas las	forma de evitar estos
	1		áreas del mismo	fallos es identificando y
			planificación, diseño,	analizando la
	1		construcción en	información que se
	1			_
	<u> </u>		tiempo real entre	tenga inicialmente con

otras, vinculando permanentemente durante todo el ciclo de vida del proyecto dichas áreas. Involucrando factores tan importantes para un proyecto como presupuesto, cronograma, mano de obra, materiales, interferencias de diseño. la metodología BIM es mucho más que un modelado en 3d y ha llegado para remplazar al sistema tradicional CAD que simplemente imita el proceso de lápiz y papel en 2d, que no ayuda a visualizar muy bien y tener una idea más completa de lo que se quiere llevar a cabo. Gracias a la implementación BIM en los proyectos se logra una optimización de los procesos lo cual se traduce en una mayor calidad y mayor rentabilidad para las empresas que hacen uso de esta metodología ya que como se mencionó anteriormente la información del provecto está centralizada por lo cual si se cambia un simple detalle en el modelo ya creado cambiara toda la base de datos del mismo

el fin de plantear una metodología de trabajo acertada. Es importante mencionar que la correcta coordinación e implementación BIM 4D y 5D a un proyecto de construcción depende en gran parte de las configuraciones paramétricas iniciales que se le dé al modelo, ya que, si surgen errores en dichos procesos, en las fases siguientes como el cálculo de cantidades ocurrirían imprecisiones de cuantificación etc. Para realizar un modelo BIM 4D Y 5D acertado es necesario contemplar cada una de las actividades constructivas proyectadas en una obra y tener claros los conceptos de la misma, estableciendo y siguiendo la secuencia lógica de las etapas de ejecución de obra elegidas. Gracias al uso de la metodología BIM 4D y 5D se puede realizar una mejor planificación y visualización de las actividades constructivas y gestión de costos a desarrollar, anticipándose a los problemas que se puedan generar en obra, dando una solución mucho más acertada en

	1			
			ajustando todos los	momentos cruciales de
			elementos	la línea de tiempo del
			involucrados en	proyecto.
			tiempo real.	
			La investigación tiene	Se logra determinar el
			como objetivo	impacto en el
"PROPUESTA DE			principal la	presupuesto que es un
IMPLEMENTACIÓN	2020	Perú	implementación de la	3.60% menor que el
DE LA			metodología BIM,	presupuesto obtenido de
METODOLOGÍA			también se	manera convencional;
BIM, EN LA			determinará la	debido a la exactitud
CONSTRUCCIÓN			factibilidad económica	del metrado del
DE UN EDIFICIO			de implementación, se	modelado Revit y la
MULTIFAMILIAR			realizará el	visualización 3D del
EN LA EMPRESA			modelamiento y	diseño que se realiza
CCI INGENIEROS			comparación de	paralelamente al
DEL PERÚ S.R.L.			presupuestos de una	realizar el diseño; ya
EN CAJAMARCA			vivienda multifamiliar	que en la metodología
2020"			de la empresa CCI	BIM no hay errores en
			Ingenieros del Perú	el metrado debido al
			SRL, en la provincia	factor humano, ya que
			de Cajamarca. La	el cálculo lo realiza el
			investigación nace por	programa. Debido a que
			la necesidad de	el presupuesto obtenido
			solucionar el problema	se realizó en base al
			en la empresa, donde	metrado calculado al
			existe inconsistencias	realizar el
			y deficiencias en los	modelamiento de la
			expedientes técnicos,	edificación en el
			lo que origina en la	programa Revit, lo que
			etapa de ejecución de	demuestra su
			obra, sobrecostos,	flexibilidad y
			demoras y conflictos	adaptabilidad de diseño.
			con los clientes; la	En consecuencia se
			empresa tendrá que	concluye que existe
			sacrificar parte de su	diferencias en los
			utilidad para realizar	presupuestos obtenidos
			trabajos no	de diferentes maneras,
			considerados en el	es por ello que al
			expediente realizado	realizar el comparativo
			por el método	de presupuestos de cada
			convencional, y el	especialidad se tiene
			cliente se verá	que la especialidad de
			afectado por la adición	arquitectura el
			de presupuestos	presupuesto Revit es
			adicionales que tendrá	menor en 7.10% a
			•	
			que pagar para que se	comparación del

	1			
			concluya la obra. Está	presupuesto
			investigación es	convencional, así
			descriptiva, donde se	mismo en la
			ha recopilado	especialidad de
			información respecto	estructuras también el
			al expediente técnico	presupuesto Revit es
			de la edificación, así	menor en un 4.95%, así
			mismo se ha realizado	mismo el presupuesto
			el modelado en Revit,	de instalaciones
			donde ambos	sanitarias, también es
			presupuestos	menor pero en un
			obtenidos fueron	6.09%, mientras que en
			analizados y	las instalaciones
			comparados, para	eléctricas el
			determinar cómo	presupuesto Revit es
			afecta la	mayor en 12.8% a
			implementación de	comparación del
			esta metodología en el	presupuesto
			presupuesto. En	convencional.
			conclusión, la	convencional.
			implementación de la	
			metodología BIM sí	
			logra influir en un	
			3.60% el presupuesto	
			de obra de las partidas	
			analizadas.	
DESARROLLO DE	2014	ESPAÑA	Durante estos últimos	Es evidente que la
UN PROYECTO DE	2014	LSI 711 171	años se está dando a	metodología BIM nos
CONSTRUCCIÓN			conocer una nueva	aporta muchas ventajas
CON LA			metodología de	a la hora de elaborar un
METODOLOGÍA			realización de	proyecto, pero ello no
BIM: EDIFICIO EL			proyectos de	significa que debamos
OLMO (LLÍRIA)			construcción llamada	abandonar por completo
OLIVIO (LLIKIA)			Building Information	la metodología
			Modeling (BIM), en	tradicional. De hecho,
			los sectores de la	podemos aprovecharnos
			arquitectura,	de ella y
			<u> </u>	9
			ingeniería y construcción, que está	complementarla con la metodología BIM.
			llamada a ser el futuro.	_
				Entendemos que se trata de un camino duro
			Con este Trabajo Fin	
			de Grado, se pretende	de recorrer y que las
			comparar y demostrar	limitaciones al principio
			la eficacia de la	sean considerables. El
			metodología BIM	obstáculo más difícil de
			frente la metodología	superar es el cambio de
			tradicional de	metodología de trabajo

elaboración de proyectos. Para llegar alcanzar dicho objetivo, se ha realizado un trabajo teórico y otro práctico. Por un lado, con la parte teórica se pretende explicar la metodología BIM y las diferencias existentes frente a la metodología tradicional. Por otro lado, en la parte práctica, se demostrará la eficacia de esta metodología desarrollando un modelo BIM del edificio el Olmo situado en la localidad valenciana de Llíra.

y todo lo que ello conlleva. Pero, como se indica en el trabajo, a largo plazo, esta inversión da sus frutos. Aun así, por mucho que hablemos del gran potencial del BIM, el proceso de migración hasta esta metodología será lento y de manera exponencial, ya que BIM, desgraciadamente, sigue siendo todavía un término bastante desconocido en nuestro país. Trabajo Fin de Grado Héctor Ferrer Sánchez Grado en Arquitectura Técnica -ETS de Ingeniería de Edificación -Universitat Politécnica de València Desarrollo de un proyecto de construcción con la metodología BIM: Edificio el Olmo (Llíria) 103/111 Finalmente, como opinión personal, una vez redactado mi TFG sobre la metodología BIM, he llegado a la conclusión de que esta metodología está llamada a ser el futuro de nuestra profesión.

2.3 Diseños del proyecto

Ilustración 3.Plano Planta Arquitectónica piso 01

Ilustración 4.Plano Planta Arquitectónica Tipo del piso 2 al 8

Ilustración 5.Plano Arquitectónico Planta Cubierta

Ilustración 6.Plano Corte Longitudinal A-A

Ilustración 7. Plano Fachada Principal

Ilustración 8.Plano Fachada Posterior

Ilustración 9. Plano Estructural Planta de Cimentación

llustración 10. Plan Estructural del Piso 2 al 8

Ilustración 11. Plano Estructural Cubierta

Ilustración 12. Plano Hidráulico. Suministro Piso 1

Ilustración 13. Plano Hidráulico. Suministro Piso 2 al 8

Ilustración 14. Plano Sanitario Piso 1

Ilustración 15. Plano Sanitario Piso 2 al 8

Ilustración 16. Plano Sanitario Cubierta

Ilustración 17. Plano Eléctrico Piso 1

Ilustración 18. Plano Eléctrico Piso 2 al 8

Ilustración 19. Plano de Gas Piso 1 al 8

2.4 Presupuesto Tradicional

El presente presupuesto fue realizado de forma tradicional por la constructora encargada de desarrollar el proyecto. El proyecto está en su fase 2, la cual corresponde a la construcción de las torres 4 y 5, sin embargo, a continuación se muestra el presupuesto real ejecutado para cada una de las torres.

Tabla 2. Presupuesto Real por Torre

ITEM	DESCRIPCION	VALOR TOTAL METO TRADICIONAL REA	
1,00	Localización y Replanteo	\$ 2.029.5	00,00
2,00	Contrato de Estructura	\$ 1.023.100.4	38,00

3,00	Contrato de Mampostería, Columnetas, Dinteles y Pañete (Todo Costo), Incluye filos, Cubierta, Puntos Fijos, Alistados, Enchapes.	\$ 608.279.230,00
4,00	Contrato de alistado de apartamento, patios, y acceso.	\$ 44.164.208,00
5,00	Contrato Hidrosanitario I (Todo Costo)	\$ 129.589.300,00
6,00	Contrato Eléctrico Interior Torre (Todo Costo)	\$ 191.500.705,00
7,00	Contrato de Gas (Todo Costo) + Matriculas	\$ 24.414.744,00
1,00	Contrato de Ventanería	\$ 93.587.774,00
1,00	Barandas de Balcón y Barandas Internas Escaleras. Se entrega Pintado todos los elementos.	\$ 20.887.302,00
1,00	Contrato Puerta de Acceso a Torre incluye sistema de seguridad, Puertas metálicas	\$ 625.000,00
1,00	Contrato de Carpintería, Puertas de Acceso a apartamentos, puertas de baño y hab. Ppal.	\$ 30.461.680,00
1,00	Contrato Ascensor y Nichos	\$ 105.848.404,00
1,00	Graniplast y puntos fijos internos	\$ 59.443.164,00
1,00	Acabados de Apartamentos (baños, cerámica y cocina)	\$ 210.848.685,00
	TOTAL COSTOS DIRECTOS	\$ 7.634.340.402,00
A	13%	\$ 806.171.389,00
I	2%	\$ 124.026.368,00
U	3%	\$ 186.039.551,00
	TOTAL COSTOS + AIU	\$ 8.750.577.710,00

Este presupuesto se presenta de esta forma, debido a que toda la ejecución fue realizada por contratos a todo costo, de los cuales estaba encargado cada profesional.

2.5 Planteamiento del Problema

Actualmente, desde la planeación de un proyecto se logran ver falencias para el desarrollo del mismo, puesto que es realizado por un grupo multidisciplinario de profesionales, lo que genera una gran cantidad de planos y diseños primordiales para la ejecución del mismo, entre estos están los planos topográficos, arquitectónicos, estructurales, hidráulicos, sanitarios y eléctricos, con los cuales se determinan las respectivas actividades o ítems a desarrollar, las cantidades y posteriormente sus precios de construcción, ya sean públicos o precios reales por cotización, todo esto con el fin de generar un buen presupuesto final de obra.

Toda esta reunión interdisciplinar puede afectar directamente el proyecto, debido a que cada profesional tiene una perspectiva diferente frente al proceso constructivo, lectura de planos e identificación de imprevistos a la hora de la ejecución, por lo mismo, se hace necesario mantener el proyecto de una forma monolítica, para lograr un trabajo coordinado y una comunicación asertiva entre los diversos profesionales y evitar en lo posible actividades no previstas e incremento de costos de mano de obra, maquinaria o materiales debido al aumento en los tiempos de construcción, que en conjunto representan sobrecostos que pueden poner en riesgo la culminación del proyecto a realizar.

Este método, generado tradicionalmente por el sector constructor para la planificación y ejecución de un proyecto, ha traído consigo muchas falencias, por lo tanto se han creado nuevas tecnologías, con el fin de facilitar y mantener en un solo método toda la información requerida, para que todos los profesionales involucrados tengan una misma visión frente al proyecto.

Esta tecnología es el sistema BIM, el cual es una metodología de trabajo colaborativa para la creación y gestión de un proyecto de construcción, con el objetivo de centralizar toda la información del proyecto en un modelo de información digital creado por todos sus agentes.

Esta modelación BIM se ha esparcido por el mundo, logrando la eficiencia en la planeación de un proyecto y evitando errores en la ejecución del mismo, sin embargo, en Latinoamérica, específicamente en Colombia, son muy pocas las empresas constructoras que manejan estas tecnologías, como se muestra en la ilustración 9.

Ilustración 20. Trayectoria de BIM por país (BID Mejorando Vidas)

Por otro lado, actualmente en Colombia hay en marcha dos proyectos insignias de la apertura del sector de la construcción al BIM en la ciudad de Bogotá, la Torre Atrio y la primera línea del Metro de Bogotá, las cuales se presentan como ejemplo de las ventajas del BIM sobre el método tradicional.

Sin embargo en Municipios como Acacias ubicado en el Departamento del Meta, esta tecnología no se ha implementado, debido a usualmente se maneja en empresas grandes con proyectos de

gran magnitud y en empresas emprendiendo es muy poco visible este método, porque por sus proyectos los prefieren manejar por el método tradicional el cual creen que es más confiable.

3. Alcance

El proyecto tiene como finalidad la implementación del sistema BIM por medio de los programas Revit y Primus, desarrollando la gestión del proyecto Altos de Araguaney ubicado en Acacias Meta, donde se realizará la comparación final entre este método y un método tradicional con documentos ya obtenidos que ayudaran para el planteamiento desde su prefactibilidad hasta su ejecución. Este proyecto como tal, solo realizara la primera fase de factibilidad y presupuesto, con todo lo que se tiene del proyecto, toda vez que ya está en ejecución la construcción.

4. Justificación

¿Porque decidió utilizar esa variable?

Se decidió utilizar la metodología BIM debido a que se pretende desarrollar un proyecto de gran magnitud, por lo que esta modalidad, es una muy buena alternativa para el desarrollo de proyectos, dando más eficiencia en todas sus fases (planeación, gestión, ejecución y cierre).

¿Para que servirá?

La investigación tiene como propósito mostrar el aporte de la Metodología Bim en un proyecto, con el fin de observar los beneficios que trae consigo desde la prefactibilidad hasta su cierre, teniendo toda la información requerida en un solo sistema, a diferencia del método tradicional, donde se debe tener un orden específico para mantener la información necesaria y obtener un buen desarrollo en cada paso del proyecto.

¿Qué beneficios genera esta investigación?

El proyecto al ser desarrollado por esta modalidad, podrá ser tomado como referencia para el planteamiento de otros proyectos a futuro que se quieran desarrollar tanto en la zona

como en el país, teniendo en cuenta que la Metodología BIM enlaza el diseño, la construcción y la operación de todo proyecto hasta su cierre.

¿Quiénes son los beneficiarios y de qué manera se beneficiarán?

La parte beneficiada es el gremio constructor, puesto que puede tomar como ejemplo el proyecto a desarrollar por Metodología BIM para sus futuras construcciones, puesto que esta modalidad potencia el conocimiento en obras civiles.

5. Objetivos

5.1 Objetivo general

Desarrollar y comparar los resultados obtenidos a través de la metodología BIM (Building Information Modeling) con la metodología tradicional de la vivienda multifamiliar Altos de Araguaney en el municipio de Acacias Meta, teniendo en cuenta los costos y cantidades que generan el presupuesto.

5.2 Objetivos específicos

- Recopilar la información del proyecto (planos arquitectónicos, estructurales, eléctricos, hidráulicos y de gas) con el fin de generar un modelo 3D en el software REVIT.
- Obtener las cantidades precisas y el presupuesto por medio de BIM, generándolo por medio de la extensión PRIMUS que se obtiene de la modelación en REVIT.
- Comparar el presupuesto total del proyecto obtenido por modelación BIM con el presupuesto obtenido por la metodología tradicional

6. Marcos de Referencia

6.1 Marco Teorico

La Metodología BIM (Building Information Modeling) es un nuevo acercamiento al diseño, construcción y gestión de los edificios. Se trata de una metodología que enfoca desde

un punto de vista diferente el modo de entender los edificios, su funcionamiento y la manera en la que estos mismos se construyen.

En la industria de la construcción, la incompatibilidad entre sistemas generalmente impide que los miembros del equipo de proyecto puedan intercambiar la información de manera precisa y rápida; este hecho es la causa de numerosos problemas en el proyecto como pueden ser el aumento de costos y tiempos.

La adopción de una metodología BIM y el uso de modelos digitales integrados durante todo el ciclo de vida del edificio supone un paso en la buena dirección para la eliminación de costos resultantes de una incorrecta operación de datos.

El ciclo de vida del proyecto es un conjunto de fases, generalmente secuenciales y en ocasiones superpuestas, cuyo nombre y número se determinan por las necesidades de gestión y control de la organización u organizaciones que participan en el proyecto, la naturaleza propia del proyecto y su área de aplicación. El ciclo de vida del proyecto puede ser determinado o conformado por los aspectos únicos de la organización. Mientras que cada proyecto tiene un inicio y un final definidos, los entregables específicos y las actividades que se llevan a cabo entre éstos variarán ampliamente de acuerdo con el proyecto. El ciclo de vida proporciona el marco de referencia básico para dirigir el proyecto, independientemente del trabajo específico involucrado

Características del ciclo de vida

Los proyectos varían en tamaño y complejidad. Sin importar cuán pequeños o grandes, o cuán sencillos o complejos sean, Los proyectos de construcción que ejercen un control y supervisión constante en cada una de sus etapas pueden configurarse dentro de la siguiente estructura.

Inicio

Adquisición del terreno adecuado para el desarrollo del proyecto. Como variables Teniendo en cuenta el análisis para la adquisición del lote se elabora el análisis de prefactibilidad técnica donde se plasma la norma aplicable, mediante un esquema básico de diseño arquitectónico cuyo resultado final son las unidades de vivienda, las áreas construidas y vendibles. Definir el valor total de las ventas del proyecto y su estructura de costos, en donde se tiene una visión general de todos los costos incluido el valor por el cual se puede adquirir el lote objeto del estudio de la prefactibilidad técnica, económica y legal.

Planeación

Una vez se adquiere el lote se da inicio al anteproyecto arquitectónico, el cual evoluciona a proyecto arquitectónico, con el cual se inician los diseños para ventas con planos publicitarios, material de publicidad, especificaciones de acabados y de construcción. Paralelo a este trabajo de ventas se inicia la coordinación de los diseños urbanísticos, estructurales, hidráulicos, eléctricos, y de gas para la obtención de la licencia de construcción y los planos de construcción, se elaboran los presupuestos de costos directos, indirectos, de ventas, administrativos y financieros.

• Ejecución.

El primer paso es definir las actividades preliminares de localización y las de abastecimiento de materiales, entrega de productos e inversiones. Igualmente, se determinan aspectos como tecnología, maquinaria, procesos, equipos, recursos humanos, edificaciones. La organización de las actividades se hará a través de un cronograma detallado basada en una EDT (Estructura Desglosada de Trabajo)

[13], que contenga las actividades que a lo largo del proyecto se desarrollarán con el fin de darle alcance, seguimiento y control, minimizando costos y tiempos.

• Cierre / Entrega.

Una vez concluido la construcción, cuando los inmuebles listos para ser entregados a los propietarios, habiendo cumplido con todos los requisitos legales y de pagos pactados por la compra y financiación del inmueble. Los edificios residenciales o viviendas multifamiliares se refieren a la agrupación de unidades de viviendas en vertical, los cuales se pueden clasificar según su altura y densidad, dejando a un lado por los momentos el tipo de gestión para su construcción, mantenimiento o hasta su tipo de ocupación.

Dirigir un proyecto por lo general incluye, entre otros aspectos: Identificar requisitos; abordar las diversas necesidades, inquietudes y expectativas de los interesados en la planificación y la ejecución del proyecto; establecer, mantener y realizar comunicaciones activas, eficaces y de naturaleza colaborativa entre los interesados; gestionar a los interesados para cumplir los requisitos del proyecto y generar los entregables del mismo y equilibrar las restricciones contrapuestas del proyecto que incluyen el alcance, la calidad, el cronograma, el presupuesto, los recursos y los riesgos.

Las características específicas del proyecto y las circunstancias pueden influir sobre las restricciones en las que el equipo de dirección del proyecto necesita concentrarse. La relación entre estos factores es tal que, si alguno de ellos cambia, es probable que al menos otro de ellos se vea afectado.

El proyecto ALTOS DE ARAGUANEY busca la construcción de apartamentos ubicados en el barrio Araguaney de Acacias- Meta son proyectos de vivienda privados pero que cuentan con los subsidios que ofrece el gobierno a las personas que ganan menos de 2 SMLV, este proyecto está a cargo de la Constructora PAXCO SAS, que tuvieron inicio

en enero del 2017 y consta de tres habitaciones, sala comedora, estudio, zona de ropas, dos baños, el proyecto va a contar con 5 torres de 8 pisos, cada una con 32 apartamentos, para un total de 160 apartamentos. Este proyecto cuenta con varias comodidades como piscina, parque infantil, vigilancia privada, parqueadero, entre otras.

6.2 Marco Conceptual

• Ciclo de vida de un proyecto

lustración 21. Ciclo de Vida de un proyecto

• Gestión del tiempo.

Incluye todos los procesos necesarios para optimizar el tiempo y lograr la conclusión exitosa del proyecto, pues este elemento puede ser un enemigo o un aliado a la hora de llevar a cabo una obra, debido a que es un recurso escaso y si no se controla en función de las prioridades empieza a jugar en contra ya que no se puede comprar, atrapar, detener o regresar.

Manejar el tiempo no es trabajar de prisa sino planificar y agendar las actividades diarias y así obtener los mejores resultados; los enemigos de la gestión del tiempo son: no

presupuestar bien el tiempo, confusión en las prioridades, el desorden, la falta de concentración, la impuntualidad, entre otros.

• Planificación estratégica.

Consiste en determinar la ideal dirección que debe tener un proyecto para conseguir los objetivos esperados a mediano y largo plazo; se debe hacer un análisis de las oportunidades, amenazas, fortalezas y debilidades para elaborar un diagnóstico concreto de la situación interna y externa del proyecto, y de esta manera se busca generar éxito al final del proyecto.

• Importancia de un buen cronograma.

Una de las principales e importantes características de una buena planificación se basa en la correcta realización del cronograma donde se debe realizar un análisis adecuado de cada una de las actividades para asignar tiempos, recursos económicos y el personal idóneo encargado, para dar cumplimiento a cada tarea. El éxito de un cronograma y finalización del proyecto se basa en el cumplimiento de la planeación dada al inicio de una obra en especial respecto a los tiempos, pero sin descuidar la calidad, garantizando la secuencia de actividades y esto gracias a que se debe tener fechas de inicio y fin para todas y cada unade las actividades.

• Actividades en un proyecto de construcción.

Las actividades de un proyecto de construcción se llevan a cabo de manera secuencial debido a que cada una de ellas depende de su antecesora, es por ello que cada uno de los tiempos deben estar estrictamente establecidos y de su cumplimento depende la correcta y eficaz conclusión de la obra.

Todas las actividades al ser complejas y demandar fuentes de ingresos elevados promueven el correcto cumplimiento el cual se va a ver reflejado gracias a un control pertinente.

6.3 Marco Legal

ISO 19650: es una norma internacional de gestión de la información a lo largo de todo el ciclo de vida de un activo construido utilizando el modelado de información para la edificación (BIM o Building Information Modelling). que estandariza la creación, gestión y uso de información BIM y sirve como base para esta investigación. La estrategia adoptada en este trabajo es la Investigación Constructiva, que se utiliza para resolver problemas prácticos en las áreas de arquitectura e ingeniería. En todo el mundo, BIM está cambiando profundamente las prácticas laborales tradicionales en la industria de la construcción. Por tanto, los procesos y protocolos estandarizados son importantes para definir las nuevas responsabilidades, así como las mejores prácticas para que la gestión y el uso de los datos resultantes del trabajo BIM se realicen correctamente.

7. Metodología

7.1 Fases de Investigación

Para realizar el proyecto, se desarrollarán 3 fases que ayudarán de una forma más practica a determinar su etapa de planeación, desde su prefactibilidad, teniendo en cuenta los planos, los estudios y el presupuesto. A continuación, se describen las fases correspondientes:

• Fase 1: Recopilación de antecedentes, planimetría arquitectónica, estructural, eléctrica, hidráulica y de gas; y presupuesto allegado realizado por el método tradicional

- Fase 2: Análisis de la planimetría y del presupuesto total y real generado en la ejecución del Proyecto Altos de Araguaney.
- Fase 3: Modelación en Revit teniendo en cuenta los planos allegados para generar una estructura completa, con toda su estructura y sus acometidas hidráulicas, eléctricas y de gas.
- Fase 4: Análisis y comparación de las cantidades arrojadas por REVIT y el presupuesto final creado en Primus con el presupuesto realizado por el método tradicional
- Fase 5: planteamiento de recomendaciones: Recomendaciones respecto a la funcionalidad, ventajas y desventajas del Sistema BIM frente al método tradicional.
- Fase 6: conclusiones: Se concluye sobre los aspectos más importantes, acerca de las causas y recomendaciones planteadas en el documento.

Con los pasos anteriores se obtendrá la mejor opción para realizar cada uno de los entregables necesarios y con esto realizar la modelación del proyecto previamente seleccionado con el fin de efectuar una comparación detallada, definiendo el mejor y más completo método.

Ilustración 22. Fases de la investigación. Fuente propia

8. Aplicación de Modelación BIM

El proyecto que se ha tomado como base de la investigación es el Conjunto Altos de Araguaney, que corresponde a una construcción privada de vivienda multifamiliar, este cuenta con 5 torres de 8 pisos, cada piso con 4 apartamentos para un total de 160 apartamentos. En sus zonas comunes tiene ascensor, parqueadero a doble altura, piscina, zonas verdes, salón social y parque infantil, además de ser un conjunto cerrado con vigilancia.

Ilustración 23. Vista en Planta Proyecto Altos de Araguaney

Se realizará un análisis comparativo de todos los ítems en donde las cantidades de obra y presupuesto fueron calculadas previamente por un diseñador de la constructora encargada. Por lo tanto, la modelación solo se hará para la parte del proyecto ya ejecutada, la cual es la fase 1 que son las torres 3,4 y 5; sin embargo en Revit se modelara una debido a que son torres tipo y en el presupuesto final las cantidades serán idealizadas para las tres torres a comparar.

8.1 Estructura

Se da inicio a la modelación 3D con la cimentación (Zapatas, Vigas de cimentación, Placa de Cimentación y Columnas) para esto se utilizan los planos estructurales mostrados en la ilustración 13.

Ilustración 24. Cimentación Altos de Araguaney. Fuente propia

Seguidamente, se modela el resto del esqueleto de la estructura, teniendo en cuenta, las vigas aéreas, riostras, columnas, pantallas y placas de entrepiso), todo esto con un mismo modelo, mostrado en la ilustración 14 para los pisos del 2 al 8.

Ilustración 25.Estructura del proyecto Altos de Araguaney. Fuente propia

En esta fase de estructura se encuentran las siguientes cantidades para cada uno de las actividades a ejecutar, las cuales se compararán con las cantidades tomadas con el método tradicional 2D.

Tabla 3. Cantidades Estructurales

CIMENTACION Y ESTRUCTURA			
ZAPATAS			
Z1 1.50X1.2X.6	M3	11,52	
Z2 5X1.5X6	M3	24,00	
Z3 1.7X2.5.60	M3	27,20	
Z4 1.8X2.5X.60	M3	14,40	
Z5 4.6X1.2X.06	M3	10,94	
Z6 1.7X2X.60	M3	10,88	
Z7 1.9X1.6.60	M3	19,46	
Z8 2.2X1.8X.60	M3	38,02	
LOSAS DE CIMENTACION Y	ENTREPISO		
LOSA	M3	745,08	
VIGAS			
V 10X40	M3	20,20	
V 15X40	M3	2,96	
V 20 X40	M3	3,89	
V 30X40	M3	34,59	
V 40X40	M3	31,49	
V17X40	M3	0,49	
V70X40	M3	31,33	
V 25X40	M3	9,20	
COLUMNAS			
C 1X.25	M3	25,58	
C 60X30	M3	54,34	
PANTALLAS			
PANTALLA 4.19 X .17	M3	19,39	
PANTALLA 2,20X.20	M3	22,11	
PANTALLA 4.43X.20	M3	31,87	

8.2 Mampostería

Para la mampostería se crearon muros en bloque n.4 con dimensiones de 0.30m x 0.10m x 0.20m, posteriormente se le adiciono pañete de 0,01m de grosor, puesto que todos los apartamentos se entregan en obra gris. Las cantidades arrojadas por el modelo 3d como se muestra en la ilustración 15 fue comparada con la del método tradicional

Ilustración 26. Mamposteria. Fuente propia

Ilustración 27. Pañete Sala Comedor

En esta fase se encuentran las siguientes cantidades

Tabla 4. Cantidades de Mampostería.

MAMPOSTERIA		
MURO EXTERIOR	M2	1149,43
MURO BALCON	M2	38,49
MURO LADRILLO 30X20X10	M2	3148,38
PAÑETE		
PAÑETE INTERIOR	M2	7770,16
PAÑETE EXTERIOR	M2	1187,92
ALISTADO PISO	M2	2488,34

8.3 Ascensor

El foso del ascensor es construido desde la cimentación, esta parte de la estructura es especial, puesto que esta creado por pantallas estructurales, las cuales están descritas dentro del numeral 8.1.

Ilustración 28. Foso del Ascensor visto desde el pasillo de la torre

La parte estructural, descrita como pantallas se encuentran en la tabla 3, sin embargo,

también se realizó el suministro e instalación de la maquinaria y a los muros estructurales, se les aplico pintura anti hongo para que no se dañe con facilidad. Por lo tanto, se muestran las siguientes cantidades:

Tabla 5. Cantidades Foso Ascensor

ASCENSOR		
INSTALACION ASCENSOR	UND	1,00
PINTURA ANTIHONGO ASCENSOR	M3	44,22

8.4 Escaleras

Las escaleras se crearon de acuerdo a las establecidas en plano, con un ancho de 1.20m, una huella de 0,25m y una contrahuella de 0,30m, estas se duplican del piso 1 al piso 8 como se muestra en la ilustración 27.

Al realizar la verificación de cantidades se obtiene la tabla 6.

Ilustración 29. Escaleras tipo del piso 1 al 8

Tabla 6. Cantidades Escalera

ESTRUCTURAS AUXILIARES		
ESCALERA	M2	16,38

8.5 Muros exteriores y zonas comunes de la torre

Los muros exteriores y las zonas comunes de la torre, se entregan con acabados, por lo cual se terminan con aplicación de Graniplast color amarillo crema, como se muestra en la ilustración 29, por lo tanto, se calcula la cantidad de material a utilizar.

Tabla 7. Cantidades Graniplast

ACABADOS		
GRANIPLAST EXTERIOR Y ZONAS COMUNES	M2	1667,91

Ilustración 30. Muros exteriores con pañete y graniplast

Ilustración 31. Graniplast Zonas Comunes

8.6 Instalaciones Hidráulicas

Las instalaciones hidráulicas se dividen en 2 tipos, las de suministro de agua y las sanitarias (aguas lluvias y aguas y residuales), por lo tanto se calculas los metros lineales de las acometidas con sus respectivos accesorios y las cajas de inspección como se muestra en la siguiente tabla.

Tabla 8. Cantidades Hidráulicas (Suministro y Sanitarias)

INSTALACIONES HIDRAULICAS		
SUMINISTRO		
TUBERIA PVC PRESION 1/2"	ML	74,39
TUBERIA PVC PRESION 1"	ML	1033,93
CODO PRESION 1/2"	ML	25,00
CODO PRESION 1"	ML	418,00
UNION PRESION 1/2"	UND	14,00
UNION PRESION 1"	UND	113,00
TEE PRESION 1"	UND	53,00
SANITARIO		
TUBERIA PVC SANITARIA 1 1/2"	ML	20,19
TUBERIA PVC SANITARIA 2"	ML	471,21
TUBERIA PVC SANITARIA 4"	ML	477,38
TUBERIA PVC SANITARIA 6"	ML	34,38
SIFON 2" SANITARIO 180°	UND	189,00
UNION SANITARIO 1 1/2"	UND	65,00
UNION SANITARIO 2"	UND	6,00
UNION SANITARIO 4"	UND	5,00
CODO SANITARIO 1 1/2"	UND	23,00
CODO SANITARIO 2"	UND	381,00
CODO SANITARIO 4"	UND	184,00
CODO SANITARIA 6"	UND	3,00
YEE SANITARIO 1 1/2"	UND	72,00
YEE SANITARIO 2"	UND	112,00
YEE SANITARIO 4"	UND	48,00
YEE SANITARIO 6"	UND	4,00
CAJA SANITARIA	UND	6,00

Estas tuberías se distribuyen por toda la torre como se muestra en las ilustraciones 30 e ilustración 32.

Ilustración 32. Instalaciones sanitarias y de agua Iluvia

8.7 Instalaciones Eléctricas

Las instalaciones eléctricas se distribuyen por toda la torre, cada apartamento, como se muestra en su plano inicial, de allí, se derivan las luminarias, interruptores y tomacorrientes, las cuales llegan al tablero principal de 120v, como se muestra en la ilustración 31.

Ilustración 33. Instalación eléctrica (Luminarias, Tablero 120v, interruptor y tomacorriente)

Por lo tanto, se calculan las cantidades totales de la torre a ejecutar.

INSTALACION ELECTRICA		
ACOMETIDA PARCIAL 2No10+1No12 DUCTO PVC 3/4"	ML	341,30
TABLERO 110v	UND	32,00
INTERRUPTOR	UND	380,00
LAMPARA LED	PTO	561,00
TOMA DOBLE	PTO	220,00
TOMA SIMPLE	PTO	502,00

8.8 Instalaciones de gas

Se habilita la acometida de gas únicamente para las cocinas de cada uno de los apartamentos, entrando 32 tubos por el ducto y repartiéndose pisos a piso para cada apartamento, como se muestra en la ilustración 32 por lo tanto, se presentan las siguientes cantidades

INSTALACION GAS		
TUBERIA COBRE TIPO L	ML	774,22
CODO COBRE 1"	ML	171,00

Ilustración 34. Redes sanitarias(amarillas), suministro (blancas) y de gas (cobre)

8.9 Ventanas

En el proyecto se presentan diferentes tipos de ventanas, las cuales debieron ser distribuidas de forma específica en cada uno de los apartamentos, sumándole a esto, que cada apartamento tiene un balcón, en el cual su puerta es de vidrio, por lo tanto se tomó como un tipo de ventana. Esto se muestra en la siguiente tabla.

Tabla 9. Cantidades de Ventaneria

VENTANERIA		
VENTANA 80X80	M2	10,24
VENTANA 1.20 X 1.20	M3	46,08
VENTANA 1.40 X 1.40	M4	186,20
VENTANA BALCON 2.40 X 1.60	M5	238,08

Algunos tipos de ventanas fueron diseñados como se muestran en las ilustraciones 33 y

34.

Ilustración 35. Ventana como Puerta Balcón

Ilustración 36. Ventana Habitación

8.10 Puertas

En el proyecto se presentan tres tipos de puertas, una de carpintería metálica que es la de la entrada principal y los otros dos tipos de carpintería de madera, que se ubican como entrada de cada apartamento y dentro de ellos a cada habitación. Esto se muestra en la siguiente tabla.

CARPINTERIA METALICA		
PUERTA PRINCIPAL TORRE	UND	1,00
CARPINTERIA MADERA		
PUERTAS PRINCIPALES APTOS	UND	32,00
PUERTAS 2	UND	159,00

Ilustración 37. Puertas de ingreso a los apartamentos

8.11 Acabados (Baños y Cocina)

Los acabados, corresponden a los exteriores y a las zonas comunes (Graniplast) y foso del ascensor (Pintura anti hongo), sin embargo, los apartamentos se entregan en obra gris. En el área del baño, se entregan con sanitario, lavamanos y ducha económicos; en el área de la cocina con un mesón estufa – lavaplatos; y en la zona de lavado con un lavadero prefabricado. Todas están cantidades se presentan en la tabla 10.

Tabla 10. Cantidades Accesorios de baño, cocina y acabados

ACCESORIOS DE BAÑO		
LAVAMANOS	UND	64,00
DUCHAS	UND	64,00
SANITARIO	UND	64,00
ACCESORIOS DE COCINA Y ZONA LAVADO		
LAVADERO	UND	32,00
LAVAPLATOS	UND	32,00
ESTUFA	UND	32,00
ACABADOS		
ENCHAPE BAÑOS	M2	993,02
PINTURA ANTIHONGO ASCENSOR	M3	44,22

Se modelaron en 3D, estos elementos siguiendo los planos principales como se muestra

en las ilustraciones 36, ilustración 37 e ilustración 38.

Ilustración 38. Baño con inodoro, ducha y lavamanos económicos

Ilustración 39. Cocina con estufa, lavaplatos. Zona de lavado con lavadero

8.12 Cubierta

La cubierta esta realizada con tejas Eternit, en ella se encuentran los desagües de tubería

de aguas lluvias como se muestra en la ilustración 40; por lo tanto; se obtienen las siguientes cantidades.

Tabla 11. Cantidades de Cubierta

CUBIERTA		
CUBIERTA EN TEJA FIBROCEMENTO	M2	406,60

llustración 40. Vista en planta de la cubierta

Después de toda la modelación en Revit y de tener la torre final, ilustraciones 35 y 36, se obtiene el presupuesto final en la extensión de Primus, tomando las cantidades arrojadas por el programa y colocándole precios de la Agencia de Infraestructura del Meta (AIM) 2020, el cual es un documento público utilizado para licitación y tiene APU generados para la creación de presupuestos. Cabe aclarar que estos precios al ser público, están un poco más elevados que los precios comerciales reales de elementos constructivos.

Ilustración 41. Torre Terminada Altos de Araguaney

llustración 42. Fachada Torre Altos de Araguaney

9. Resultados

9.1 Presupuesto BIM

Primus arroja el presupuesto con una cantidad de 120 páginas, debido a que muestra todos los detalles de los elementos totales que se generaron para cuantificar cada uno de los materiales, como se muestra a continuación.

Ilustración 43. Presupuesto creado por la extensión PRIMUS

Una vez obtenido el presupuesto, se importa a Excel y se organiza de tal forma que facilite la comparación de cantidades.

Tabla 12. Presupuesto BIM Reorganizado

ITE M	DESCRIPCION	UND	CANTI DADES BIM	VALOR UNITARIO	VALOR TOTAL METODO BIM
1	PRELIMINARES				
	LOCALIZACION, TRAZADO Y				
1.1	REPLANTEO	M2	340,40	4167,56	\$ 1.418.637,00
1.2	DESCAPOTE	M2	340,40	5848,55	\$ 1.990.846,00
2	CIMENTACION Y ESTRUCTURA				
2.1	ZAPATAS				
2.1.1	Z1 1.50X1.2X.6	M3	11,52	\$ 857.861,00	\$ 9.882.559,00
2.1.2	Z2 5X1.5X6	М3	24,00	\$ 857.861,00	\$ 20.588.664,00
2.1.3	Z3 1.7X2.5.60	М3	27,20	\$ 857.861,00	\$ 23.333.819,00
2.1.4	Z4 1.8X2.5X.60	М3	14,40	\$ 857.861,00	\$ 12.353.198,00
2.1.5	Z5 4.6X1.2X.06	М3	10,94	\$ 857.861,00	\$ 9.384.999,00
2.1.6	Z6 1.7X2X.60	M3	10,88	\$ 857.861,00	\$ 9.333.528,00
2.1.7	Z7 1.9X1.6.60	М3	19,46	\$ 857.861,00	\$ 16.693.975,00
2.1.8	Z8 2.2X1.8X.60	M3	38,02	\$ 857.861,00	\$ 32.615.875,00
2.2	LOSAS DE CIMENTACION Y ENTREPISO				
2.2.1	LOSA	M3	745,08	\$ 1.050.346,00	\$ 782.591.798,00
2.3	VIGAS				
2.3.1	V 10X40	М3	20,20	\$ 913.013,00	\$ 18.442.863,00
2.3.2	V 15X40	M3	2,96	\$ 913.913,00	\$ 2.705.182,00
2.3.3	V 20 X40	M3	3,89	\$ 913.013,00	\$ 3.551.621,00
2.3.4	V 30X40	M3	34,59	\$ 913.013,00	\$ 31.581.120,00
2.3.5	V 40X40	M3	31,49	\$ 913.013,00	\$ 28.750.779,00
2.3.6	V17X40	M3	0,49	\$ 913.013,00	\$ 447.376,00
2.3.7	V70X40	M3	31,33	\$ 913.013,00	\$ 28.604.697,00
2.3.8	V 25X40	M3	9,20	\$ 913.013,00	\$ 8.399.720,00
2.4	COLUMNAS				
2.4.1	C 1X.25	M3	25,58	\$ 1.109.795,65	\$ 28.388.573,00
2.4.2	C 60X30	M3	54,34	 \$ 1.109.795,65	\$ 60.306.296,00
2.5	PANTALLAS				
2.5.1	PANTALLA 4.19 X .17	M3	19,39	\$ 1.450.293,00	\$ 28.121.181,00
2.5.2	PANTALLA 2,20X.20	M3	22,11	\$ 1.450.293,00	\$ 32.065.978,00
2.5.3	PANTALLA 4.43X.20	М3	31,87	\$ 1.450.293,00	\$ 46.220.838,00
2.6	ESTRUCTURAS AUXILIARES				
2.6.1	ESCALERA	M2	16,38	\$ 1.064.899,68	\$ 17.443.057,00
3	MAMPOSTERIA				
3.1	MURO EXTERIOR	M2	1149,43	\$ 41.163,00	\$ 47.313.987,00
3.2	MURO BALCON	M2	38,49	\$ 41.163,00	\$ 1.584.364,00
3.3	MURO LADRILLO 30X20X10	M2	3148,38	\$ 41.163,00	\$ 129.596.766,00
4	PAÑETE				
4.1	PAÑETE INTERIOR	M2	7770,16	\$ 20.334,67	\$ 158.003.639,00
4.2	PAÑETE EXTERIOR	M2	1187,92	\$ 27.655,87	\$ 32.852.961,00
4.3	ALISTADO PISO	M2	2488,34	\$ 21.437,37	\$ 53.343.465,00
5	INSTALACIONES HIDRAULICAS				
5.1	SUMINISTRO				

5.1.1	TUBERIA PVC PRESION 1/2"	ML	74,39	\$	10.183,65	\$	757.562,00
5.1.2	TUBERIA PVC PRESION 1"	ML	1033,93	\$	14.621,90	\$	15.118.021,00
5.1.3	CODO PRESION 1/2"	ML	25,00	\$	2.694,35	\$	67.359,00
5.1.4	CODO PRESION 1"	ML	418,00	\$	4.294,64	\$	1.795.160,00
5.1.5	UNION PRESION 1/2"	UND	14,00	\$	2.364,26	\$	33.100,00
5.1.6	UNION PRESION 1"	UND	113,00	\$	3.473,59	\$	392.516,00
5.1.7	TEE PRESION 1"	UND	53,00	\$	4.976,61	\$	263.760,00
5.2	SANITARIO						
5.2.1	TUBERIA PVC SANITARIA 1 1/2"	ML	20,19	\$	16.577,89	\$	334.708,00
5.2.2	TUBERIA PVC SANITARIA 2"	ML	471,21	\$	20.000,88	\$	9.424.615,00
5.2.3	TUBERIA PVC SANITARIA 4"	ML	477,38	\$	29.377,29	\$	14.024.131,00
5.2.4	TUBERIA PVC SANITARIA 6"	ML	34,38	\$	74.216,00	\$	2.551.546,00
5.2.5	SIFON 2" SANITARIO 180°	UND	189,00	\$	48.437,46	\$	9.154.680,00
5.2.6	UNION SANITARIO 1 1/2"	UND	65,00	\$	5.400,07	\$	351.005,00
5.2.7	UNION SANITARIO 2"	UND	6,00	\$	6.665,66	\$	39.994,00
5.2.8	UNION SANITARIO 4"	UND	5,00	\$	18.888,84	\$	94.444,00
5.2.9	CODO SANITARIO 1 1/2"	UND	23,00	\$	5.824,61	\$	133.966,00
5.2.1	CODO SANITARIO 2"	UND	381,00	\$	7.217,88	\$	2.750.012,00
5.2.1	CODO SANITARIO 4"	UND	184,00	\$	23.647,03	\$	4.351.054,00
5.2.1	CODO SANITARIA 6"	UND	3,00	\$	129.669,56	\$	389.009,00
5.2.1	YEE SANITARIO 1 1/2"	UND	72,00	\$	9.387,39	\$	675.892,00
5.2.1	YEE SANITARIO 2"	UND	112,00	\$	10.916,27	\$	1.222.622,00
5.2.1	YEE SANITARIO 4"	UND	48,00	\$	35.455,20	\$	1.701.850,00
5.2.1	YEE SANITARIO 6"	UND	4,00	\$	142.204,24	\$	568.817,00
5.2.1 7	CAJA SANITARIA	UND	6,00	\$	551.739,81	\$	3.310.439,00
6	INSTALACION ELECTRICA						
6.1	ACOMETIDA PARCIAL 2No10+1No12 DUCTO PVC 3/4"	ML	341,30	\$	21.537,67	\$	7.350.807,00
6.2	TABLERO 110v	UND	32,00	\$	435.400,00	\$	13.932.800,00
6.3	INTERRUPTOR	UND	380,00	\$	7.534,00	\$	2.862.920,00
6.4	LAMPARA LED	PTO	561,00	\$	191.345,39	\$	107.344.764,00
6.5	TOMA DOBLE	PTO	220,00	\$	89.117,00	\$	19.605.740,00
6.6	TOMA SIMPLE	PTO	502,00	\$	76.514,00	\$	38.410.028,00
7	INSTALACION GAS						
7.1	TUBERIA COBRE TIPO L	ML	774,22	\$	40.400,43	\$	31.278.821,00
7.2	CODO COBRE 1"	ML	171,00	\$	5.453,95	\$	932.625,00
8	ACCESORIOS DE BAÑO						
8.1	LAVAMANOS	UND	64,00	\$	241.536,00	\$	15.458.304,00
8.2	DUCHAS	UND	64,00	\$	124.138,38	\$	7.944.856,00
8.3	SANITARIO	UND	64,00	\$	378.342,00	\$	24.213.888,00
9	ACCESORIOS DE COCINA Y ZONA LAVADO						
9.1	LAVADERO	UND	32,00	\$	237.572,00	\$	7.602.304,00
9.2	LAVAPLATOS	UND	32,00	\$	430.190,00	\$	13.766.080,00
9.3	ESTUFA	UND	32,00	\$	373.750,50	\$	11.960.016,00
10	CUBIERTA	32.2	- =,55	7	272.720,30	_	

10.1	CUBIERTA EN TEJA FIBROCEMENTO	M2	406,60	\$ 69.422,81	\$ 28.227.315,00
11	VENTANERIA				
11.1	VENTANA 80X80	M2	10,24	\$ 171.878,00	\$ 1.760.031,00
11.2	VENTANA 1.20 X 1.20	M3	46,08	\$ 171.878,00	\$ 7.920.138,00
11.3	VENTANA 1.40 X 1.40	M4	186,20	\$ 171.878,00	\$ 32.003.684,00
11.4	VENTANA BALCON 2.40 X 1.60	M5	238,08	\$ 244.406,00	\$ 58.188.180,00
12	CARPINTERIA METALICA				
12.1	BARANDAS	ML	244,22	\$ 237.000,00	\$ 57.880.140,00
12.2	PUERTA PRINCIPAL TORRE	UND	1,00	\$ 551.995,00	\$ 551.995,00
13	CARPINTERIA MADERA				
13.1	PUERTAS PRINCIPALES APTOS	UND	32,00	\$ 506.474,00	\$ 16.207.168,00
13.2	PUERTAS 2	UND	159,00	\$ 298.590,00	\$ 47.475.810,00
14	ASCENSOR				
14.1	INSTALACION ASCENSOR	UND	1,00	\$ 105.108.640,00	\$ 105.108.640,00
15	ACABADOS				
15.1	ENCHAPE BAÑOS	M2	993,02	\$ 51.961,48	\$ 51.598.789,00
15.2	GRANIPLAST EXTERIOR Y ZONAS COMUNES	M2	1667,91	\$ 23.987,43	\$ 40.008.874,00
15.3	PINTURA ANTIHONGO ASCENSOR	М3	44,22	\$ 17.529,64	\$ 775.161,00
				TOTAL COSTOS DIRECTOS	\$ 2.496.369.864,00
			A	13%	\$ 5.201.154,00
			I	2%	\$ 800.177,00
			U	3%	\$ 1.200.266,00
				TOTAL COSTOS + AIU	\$ 2.503.571.461,00

9.2 Comparación cantidades totales Metodología BIM vs Metodología Tradicional

Se realiza la comparación, de las cantidades resultante del sistema BIM y las cantidades tomadas de forma tradicional por el método 2D, donde se logran observar algunas diferencias puntuales, esto se debe a que en el momento de sacar las cantidades manualmente pudo haber un error, debido a que no se tomó la cantidad de elementos totales o que al contrario se tomó un elemento de más que elevo la cantidad

Tabla 13. Comparación de cantidades REVIT y Método Tradicional 2D

TEM	DESCRIPCION		CANTIDADES BIM	CANTIDAD METODO 2D	DIFERENCIA
1	PRELIMINARES				
1.1	LOCALIZACION, TRAZADO Y REPLANTEO	M2	340,40	340,40	0,00%
1.2	DESCAPOTE	M2	340,40	340,40	0,00%
2	CIMENTACION Y ESTRUCTURA				
2.1	ZAPATAS				

2.1.1	Z1 1.50X1.2X.6	M3	11,52	11,51	0,09%
2.1.2	Z2 5X1.5X6	M3	24,00	24,00	0,00%
2.1.3	Z3 1.7X2.5.60	M3	27,20	27,18	0,07%
2.1.4	Z4 1.8X2.5X.60	M3	14,40	14,30	0,70%
2.1.5	Z5 4.6X1.2X.06	M3	10,94	10,94	0,00%
2.1.6	Z6 1.7X2X.60	M3	10,88	10,88	0,00%
2.1.7	Z7 1.9X1.6.60	M3	19,46	19,46	0,00%
2.1.8	Z8 2.2X1.8X.60	M3	38,02	38,05	-0,08%
2.2	LOSAS DE CIMENTACION Y ENTREPISO		,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2.2.1	LOSA	M3	745,08	745,00	0,01%
2.3	VIGAS		,	,	1,1
2.3.1	V 10X40	M3	20,20	20,19	0,05%
2.3.2	V 15X40	M3	2,96	2,96	0,00%
2.3.3	V 20 X40	M3	3,89	3,73	4,29%
2.3.4	V 30X40	M3	34,59	34,57	0,06%
2.3.5	V 40X40	M3	31,49	31,50	-0,03%
2.3.6	V17X40	M3	0,49	0,50	-2,00%
2.3.7	V70X40	M3	31,33	31,33	0,00%
2.3.8	V 25X40	M3	9,20	9,20	0,00%
2.4	COLUMNAS				,
2.4.1	C 1X.25	M3	25,58	25,58	0,00%
2.4.2	C 60X30	M3	54,34	54,34	0,00%
2.5	PANTALLAS				,
2.5.1	PANTALLA 4.19 X .17	M3	19,39	19,39	0,00%
2.5.2	PANTALLA 2,20X.20	M3	22,11	22,11	0,00%
2.5.3	PANTALLA 4.43X.20	M3	31,87	31,87	0,00%
2.6	ESTRUCTURAS AUXILIARES				
2.6.1	ESCALERA	M2	16,38	16,40	-0,12%
3	MAMPOSTERIA				
3.1	MURO EXTERIOR	M2	1149,43	1153,40	-0,34%
3.2	MURO BALCON	M2	38,49	37,21	3,44%
3.3	MURO LADRILLO 30X20X10	M2	3148,38	3148,21	0,01%
4	PAÑETE				
4.1	PAÑETE INTERIOR	M2	7770,16	7472,42	3,98%
4.2	PAÑETE EXTERIOR	M2	1187,92	1222,83	-2,85%
4.3	ALISTADO PISO	M2	2488,34	2398,73	3,74%
5	INSTALACIONES HIDRAULICAS				
5.1	SUMINISTRO				
5.1.1	TUBERIA PVC PRESION 1/2"	ML	74,39	73,98	0,55%
5.1.2	TUBERIA PVC PRESION 1"	ML	1033,93	1033,29	0,06%
5.1.3	CODO PRESION 1/2"	ML	25,00	25,00	0,00%
5.1.4	CODO PRESION 1"	ML	418,00	418,00	0,00%
5.1.5	UNION PRESION 1/2"	UND	14,00	14,00	0,00%
5.1.6	UNION PRESION 1"	UND	113,00	113,00	0,00%
5.1.7	TEE PRESION 1"	UND	53,00	53,00	0,00%
5.2	SANITARIO				
5.2.1	TUBERIA PVC SANITARIA 1 1/2"	ML	20,19	20,05	0,70%
5.2.2	TUBERIA PVC SANITARIA 2"	ML	471,21	471,22	0,00%
5.2.3	TUBERIA PVC SANITARIA 4"	ML	477,38	477,38	0,00%

5.2.4	TUBERIA PVC SANITARIA 6"	ML	34,38	34,38	0,00%
5.2.5	SIFON 2" SANITARIO 180°	UND	189,00	189,00	0,00%
5.2.6	UNION SANITARIO 1 1/2"	UND	65,00	65,00	0,00%
5.2.7	UNION SANITARIO 2"	UND	6,00	6,00	0,00%
5.2.8	UNION SANITARIO 4"	UND	5,00	5,00	0,00%
5.2.9	CODO SANITARIO 1 1/2"	UND	23,00	23,00	0,00%
5.2.10	CODO SANITARIO 2"	UND	381,00	381,00	0,00%
5.2.11	CODO SANITARIO 4"	UND	184,00	184,00	0,00%
5.2.12	CODO SANITARIA 6"	UND	3,00	3,00	0,00%
5.2.13	YEE SANITARIO 1 1/2"	UND	72,00	72,00	0,00%
5.2.14	YEE SANITARIO 2"	UND	112,00	112,00	0,00%
5.2.15	YEE SANITARIO 4"	UND	48,00	48,00	0,00%
5.2.16	YEE SANITARIO 6"	UND	4,00	4,00	0,00%
5.2.17	CAJA SANITARIA	UND	6,00	6,00	0,00%
6	INSTALACION ELECTRICA				
6.1	ACOMETIDA PARCIAL 2No10+1No12 DUCTO	М	241.20	241.27	0.010/
6.1	PVC 3/4"	ML	341,30	341,27	0,01%
6.2	TABLERO 110v	UND	32,00	32,00	0,00%
6.3	INTERRUPTOR	UND	380,00	380,00	0,00%
6.4	LAMPARA LED	PTO	561,00	561,00	0,00%
6.5	TOMA DOBLE	PTO	220,00	220,00	0,00%
6.6	TOMA SIMPLE	PTO	502,00	502,00	0,00%
7	INSTALACION GAS				
7.1	TUBERIA COBRE TIPO L	ML	774,22	774,20	0,00%
7.2	CODO COBRE 1"	ML	171,00	170,00	0,59%
8	ACCESORIOS DE BAÑO				
8.1	LAVAMANOS	UND	64,00	64,00	0,00%
8.2	DUCHAS	UND	64,00	64,00	0,00%
8.3	SANITARIO	UND	64,00	64,00	0,00%
9	ACCESORIOS DE COCINA Y ZONA LAVADO				
9.1	LAVADERO	UND	32,00	32,00	0,00%
9.2	LAVAPLATOS	UND	32,00	32,00	0,00%
9.3	ESTUFA	UND	32,00	32,00	0,00%
10	CUBIERTA				
10.1	CUBIERTA EN TEJA FIBROCEMENTO	M2	406,60	405,98	0,15%
11	VENTANERIA				
11.1	VENTANA 80X80	M2	10,24	10,24	0,00%
11.2	VENTANA 1.20 X 1.20	M3	46,08	46,08	0,00%
11.3	VENTANA 1.40 X 1.40	M4	186,20	186,20	0,00%
11.4	VENTANA BALCON 2.40 X 1.60	M5	238,08	238,08	0,00%
12	CARPINTERIA METALICA		24/ ==	24150	0.010/
12.1	BARANDAS	ML	244,22	244,20	0,01%
12.2	PUERTA PRINCIPAL TORRE	UND	1,00	1,00	0,00%
13	CARPINTERIA MADERA		22.22	22.00	0.000/
13.1	PUERTAS PRINCIPALES APTOS	UND	32,00	32,00	0,00%
13.2	PUERTAS 2	UND	159,00	159,00	0,00%
14	ASCENSOR DISTRICT A CHARLES ASSESSED.	IDE	1.00	1.00	0.000/
14.1	INSTALACION ASCENSOR	UND	1,00	1,00	0,00%
15	ACABADOS				

15.1	ENCHAPE BAÑOS	M2	993,02	992,65	0,04%
15.2	GRANIPLAST EXTERIOR Y ZONAS COMUNES	M2	1667,91	1666,93	0,06%
15.3	PINTURA ANTIHONGO ASCENSOR	М3	44,22	44,78	-1,25%

Para observar esta comparación de una forma más detallada, se realiza un gráfico que especifica loa ítems que presentan diferencias entre las cantidades

0,05 0,04 0,03 0,02 0,01 0 -0,01 -0,02 -0,03 -0,04 CUBIER MURO TA EN PAÑET PAÑET ALISTA MURO MURO LADRIL 71 73 74 78 TEJA ESCALE LOSA BALCO EXTERI LO 1.50X1, 1.7X2.5 1.8X2.5 2.2X1.8 DO FIBROC EXTERI INTERI 10X40 X40 30X40 40X40 0 PISO OR 30X20X 2X.6 .60 X.60 X.60 FMFNT ΩR OR 0 ■Total 0,0374 0,0015 -0,001 0,0001 0,0344 -0,003 5E-05 -0,029 0,0398 0,0005 0,0429 0,0006 -3E-04 -0,02 0,0009 0,0007 0,007 -8E-04

Gráfico 1. Variación de Cantidades de Estructura, Cubierta y Mampostería

En el grafico 1 se observan detalladamente las diferencias en elementos estructurales, mampostería y cubierta, y en el grafico 2 se observan las variaciones de la instalación de redes y

algunos acabados de la torre, donde los porcentajes de variación son realmente muy pequeños, por lo tanto, los errores al momento de realizar la toma de cantidades son mínimos, sin embargo, esas diferencias influyen en el precio total. Los materiales e ítems que no aparecen en las tablas se deben a que no tienen diferencia alguna al realizar la comparación por los dos métodos.

9.3 Comparación presupuesto total Metodología BIM vs Metodología Tradicional

Se realiza la comparación, del presupuesto total calculado por sistema BIM y de forma tradicional por el método 2D, donde se logran observar algunas diferencias puntuales, esto se refleja debido a la variación de cantidades que afectan los valores de precio total.

Tabla 14. Comparación de Presupuesto BIM vs Presupuesto Tradicional

ITE M	DESCRIPCION	UND	CANTIDADES BIM	ALOR TOTAL METODO BIM	CANTIDAD METODO 2D	ALOR TOTAL METODO 2D	DIFERENC IA
1	PRELIMINARES						
1.1	LOCALIZACION, TRAZADO Y REPLANTEO	M2	340,40	\$ 1.418.637,00	340,40	\$ 1.418.637,00	0,00%
1.2	DESCAPOTE	M2	340,40	\$ 1.990.846,00	340,40	\$ 1.990.846,00	0,00%
2	CIMENTACION Y ESTRUCTURA						
2.1	ZAPATAS						
2.1.1	Z1 1.50X1.2X.6	М3	11,52	\$ 9.882.559,00	11,51	\$ 9.873.980,00	0,09%
2.1.2	Z2 5X1.5X6	М3	24,00	\$ 20.588.664,00	24,00	\$ 20.588.664,00	0,00%
2.1.3	Z3 1.7X2.5.60	М3	27,20	\$ 23.333.819,00	27,18	\$ 23.316.662,00	0,07%
2.1.4	Z4 1.8X2.5X.60	М3	14,40	\$ 12.353.198,00	14,30	\$ 12.267.412,00	0,70%
2.1.5	Z5 4.6X1.2X.06	М3	10,94	\$ 9.384.999,00	10,94	\$ 9.384.999,00	0,00%
2.1.6	Z6 1.7X2X.60	М3	10,88	\$ 9.333.528,00	10,88	\$ 9.333.528,00	0,00%
2.1.7	Z7 1.9X1.6.60	М3	19,46	\$ 16.693.975,00	19,46	\$ 16.693.975,00	0,00%
2.1.8	Z8 2.2X1.8X.60	М3	38,02	\$ 32.615.875,00	38,05	\$ 32.641.611,00	-0,08%
2.2	LOSAS DE CIMENTACION Y ENTREPISO						
2.2.1	LOSA	М3	745,08	\$ 782.591.798,00	745,00	\$ 782.507.770,00	0,01%
2.3	VIGAS						
2.3.1	V 10X40	М3	20,20	\$ 18.442.863,00	20,19	\$ 18.433.732,00	0,05%
2.3.2	V 15X40	М3	2,96	\$ 2.705.182,00	2,96	\$ 2.705.182,00	0,00%
2.3.3	V 20 X40	М3	3,89	\$ 3.551.621,00	3,73	\$ 3.405.538,00	4,29%
2.3.4	V 30X40	M3	34,59	\$ 31.581.120,00	34,57	\$ 31.562.859,00	0,06%
2.3.5	V 40X40	M3	31,49	\$ 28.750.779,00	31,50	\$ 28.759.910,00	-0,03%
2.3.6	V17X40	М3	0,49	\$ 447.376,00	0,50	\$ 456.507,00	-2,00%
2.3.7	V70X40	М3	31,33	\$ 28.604.697,00	31,33	\$ 28.604.697,00	0,00%
2.3.8	V 25X40	М3	9,20	\$ 8.399.720,00	9,20	\$ 8.399.720,00	0,00%

2.4	COLUMNAS								
2.4.1	C 1X.25	M3	25,58	\$	28.388.573,00	25,58	\$	28.388.573,00	0,00%
2.4.2	C 60X30	M3	54,34	\$	60.306.296,00	54,34	\$	60.306.296,00	0,00%
2.5	PANTALLAS		,	7		- 1,5 1	7		0,00 %
2.5.1	PANTALLA 4.19 X .17	M3	19,39	\$	28.121.181,00	19,39	\$	28.121.181,00	0,00%
2.5.2	PANTALLA 2,20X.20	M3	22,11	\$	32.065.978,00	22,11	\$	32.065.978,00	0,00%
2.5.3	PANTALLA 4.43X.20	M3	31,87	\$	46.220.838,00	31,87	\$	46.220.838,00	0,00%
2.6	ESTRUCTURAS								
2.6.1	AUXILIARES ESCALERA	M2	16,38	\$	17.443.057,00	16,40	\$	17.464.355,00	-0,12%
3	MAMPOSTERIA	IVIZ	10,38	φ	17.443.037,00	10,40	φ	17.404.333,00	0,1270
3.1	MURO EXTERIOR	M2	1149,43	\$	47.313.987,00	1153,40	\$	47.477.404,00	-0,34%
3.2	MURO BALCON	M2	38,49	\$	1.584.364,00	37,21	\$	1.531.675,00	3,44%
3.3	MURO LADRILLO	M2	3148,38	\$	129.596.766,00	3148,21	\$	129.589.768,00	0,01%
	30X20X10	IVIZ	3146,36	Ф	129.390.700,00	3148,21	ф	129.389.708,00	0,0170
4	PAÑETE INTERIOR	1/2	7770.16	¢	159,002,520,00	7470 40	¢	151 040 105 00	2.000/
4.1	PAÑETE INTERIOR	M2	7770,16	\$	158.003.639,00	7472,42	\$	151.949.195,00	3,98%
4.2	PAÑETE EXTERIOR ALISTADO PISO	M2 M2	1187,92 2488,34	\$	32.852.961,00 53.343.465,00	1222,83	\$	33.818.428,00 51.422.463,00	-2,85%
	INSTALACIONES	IVIZ	2408,34	Ф	33.343.403,00	2398,73	Ф	31.422.403,00	3,74%
5	HIDRAULICAS								
5.1	SUMINISTRO TUDERLA DVC PREGION								
5.1.1	TUBERIA PVC PRESION 1/2"	ML	74,39	\$	757.562,00	73,98	\$	753.386,00	0,55%
5.1.2	TUBERIA PVC PRESION 1"	ML	1033,93	\$	15.118.021,00	1033,29	\$	15.108.663,00	0,06%
5.1.3	CODO PRESION 1/2"	ML	25,00	\$	67.359,00	25,00	\$	67.359,00	0,00%
5.1.4	CODO PRESION 1"	ML	418,00	\$	1.795.160,00	418,00	\$	1.795.160,00	0,00%
5.1.5	UNION PRESION 1/2"	UND	14,00	\$	33.100,00	14,00	\$	33.100,00	0,00%
5.1.6	UNION PRESION 1"	UND	113,00	\$	392.516,00	113,00	\$	392.516,00	0,00%
5.1.7	TEE PRESION 1"	UND	53,00	\$	263.760,00	53,00	\$	263.760,00	0,00%
5.2	SANITARIO								
5.2.1	TUBERIA PVC SANITARIA 1 1/2"	ML	20,19	\$	334.708,00	20,05	\$	332.387,00	0,70%
5.2.2	TUBERIA PVC SANITARIA 2"	ML	471,21	\$	9.424.615,00	471,22	\$	9.424.815,00	0,00%
5.2.3	TUBERIA PVC SANITARIA 4"	ML	477,38	\$	14.024.131,00	477,38	\$	14.024.131,00	0,00%
5.2.4	TUBERIA PVC SANITARIA 6"	ML	34,38	\$	2.551.546,00	34,38	\$	2.551.546,00	0,00%
5.2.5	SIFON 2" SANITARIO 180°	UND	189,00	\$	9.154.680,00	189,00	\$	9.154.680,00	0,00%
5.2.6	UNION SANITARIO 1 1/2"	UND	65,00	\$	351.005,00	65,00	\$	351.005,00	0,00%
5.2.7	UNION SANITARIO 2"	UND	6,00	\$	39.994,00	6,00	\$	39.994,00	0,00%
5.2.8	UNION SANITARIO 4"	UND	5,00	\$	94.444,00	5,00	\$	94.444,00	0,00%
5.2.9	CODO SANITARIO 1 1/2"	UND	23,00	\$	133.966,00	23,00	\$	133.966,00	0,00%
5.2.1	CODO SANITARIO 2"	UND	381,00	\$	2.750.012,00	381,00	\$	2.750.012,00	0,00%
5.2.1 1	CODO SANITARIO 4"	UND	184,00	\$	4.351.054,00	184,00	\$	4.351.054,00	0,00%
5.2.1	CODO SANITARIA 6"	UND	3,00	\$	389.009,00	3,00	\$	389.009,00	0,00%
5.2.1	YEE SANITARIO 1 1/2"	UND	72,00	\$	675.892,00	72,00	\$	675.892,00	0,00%
5.2.1	YEE SANITARIO 2"	UND	112,00	\$	1.222.622,00	112,00	\$	1.222.622,00	0,00%
5.2.1	YEE SANITARIO 4"	UND	48,00	\$	1.701.850,00	48,00	\$	1.701.850,00	0,00%
5.2.1	YEE SANITARIO 6"	UND	4,00	\$	568.817,00	4,00	\$	568.817,00	0,00%
5.2.1 7	CAJA SANITARIA	UND	6,00	\$	3.310.439,00	6,00	\$	3.310.439,00	0,00%

6	INSTALACION ELECTRICA						
6.1	ACOMETIDA PARCIAL 2No10+1No12 DUCTO PVC 3/4"	ML	341,30	\$ 7.350.807,00	341,27	\$ 7.350.161,00	0,01%
6.2	TABLERO 110v	UND	32,00	\$ 13.932.800,00	32,00	\$ 13.932.800,00	0,00%
6.3	INTERRUPTOR	UND	380,00	\$ 2.862.920,00	380,00	\$ 2.862.920,00	0,00%
6.4	LAMPARA LED	PTO	561,00	\$ 107.344.764,00	561,00	\$ 107.344.764,00	0,00%
6.5	TOMA DOBLE	PTO	220,00	\$ 19.605.740,00	220,00	\$ 19.605.740,00	0,00%
6.6	TOMA SIMPLE	PTO	502,00	\$ 38.410.028,00	502,00	\$ 38.410.028,00	0,00%
7	INSTALACION GAS						
7.1	TUBERIA COBRE TIPO L	ML	774,22	\$ 31.278.821,00	774,20	\$ 31.278.013,00	0,00%
7.2	CODO COBRE 1"	ML	171,00	\$ 932.625,00	170,00	\$ 927.172,00	0,59%
8	ACCESORIOS DE BAÑO						
8.1	LAVAMANOS	UND	64,00	\$ 15.458.304,00	64,00	\$ 15.458.304,00	0,00%
8.2	DUCHAS	UND	64,00	\$ 7.944.856,00	64,00	\$ 7.944.856,00	0,00%
8.3	SANITARIO	UND	64,00	\$ 24.213.888,00	64,00	\$ 24.213.888,00	0,00%
9	ACCESORIOS DE COCINA Y ZONA LAVADO						
9.1	LAVADERO	UND	32,00	\$ 7.602.304,00	32,00	\$ 7.602.304,00	0,00%
9.2	LAVAPLATOS	UND	32,00	\$ 13.766.080,00	32,00	\$ 13.766.080,00	0,00%
9.3	ESTUFA	UND	32,00	\$ 11.960.016,00	32,00	\$ 11.960.016,00	0,00%
10	CUBIERTA						
10.1	CUBIERTA EN TEJA FIBROCEMENTO	M2	406,60	\$ 28.227.315,00	405,98	\$ 28.184.272,00	0,15%
11	VENTANERIA						
11.1	VENTANA 80X80	M2	10,24	\$ 1.760.031,00	10,24	\$ 1.760.031,00	0,00%
11.2	VENTANA 1.20 X 1.20	М3	46,08	\$ 7.920.138,00	46,08	\$ 7.920.138,00	0,00%
11.3	VENTANA 1.40 X 1.40	M4	186,20	\$ 32.003.684,00	186,20	\$ 32.003.684,00	0,00%
11.4	VENTANA BALCON 2.40 X 1.60	M5	238,08	\$ 58.188.180,00	238,08	\$ 58.188.180,00	0,00%
12	CARPINTERIA METALICA						
12.1	BARANDAS	ML	244,22	\$ 57.880.140,00	244,20	\$ 57.875.400,00	0,01%
12.2	PUERTA PRINCIPAL TORRE	UND	1,00	\$ 551.995,00	1,00	\$ 551.995,00	0,00%
13	CARPINTERIA MADERA						
13.1	PUERTAS PRINCIPALES APTOS	UND	32,00	\$ 16.207.168,00	32,00	\$ 16.207.168,00	0,00%
13.2	PUERTAS 2	UND	159,00	\$ 47.475.810,00	159,00	\$ 47.475.810,00	0,00%
14	ASCENSOR						
14.1	INSTALACION ASCENSOR	UND	1,00	\$ 105.108.640,00	1,00	\$ 105.108.640,00	0,00%
15	ACABADOS						
15.1	ENCHAPE BAÑOS	M2	993,02	\$ 51.598.789,00	992,65	\$ 51.579.563,00	0,04%
15.2	GRANIPLAST EXTERIOR Y ZONAS COMUNES	M2	1667,91	\$ 40.008.874,00	1666,93	\$ 39.985.367,00	0,06%
15.3	PINTURA ANTIHONGO ASCENSOR	М3	44,22	\$ 775.161,00	44,78	\$ 784.977,00	-1,25%
_		_	TOTAL COSTOS DIRECTOS	\$ 2.496.369.864,00		\$ 2.490.475.261,00	0,24%

En la comparación se encuentra que hay una diferencia del 0,24% entre los precios totales de los costos directos, esto teniendo en cuenta las diferencias de cantidades, determinando su afectación directa para el desarrollo del mismo.

Gráfico 3. Comparación costos Directos

9.4 Comparación presupuesto total Metodología BIM vs Metodología Tradicional con presupuesto Real

Una vez determinadas las comparaciones, se solicita a la constructora el presupuesto real de la ejecución de las torres, el cual se compara con el realizado en BIM, tomando los valores unitarios reales

Tabla 15. Comparación Método BIM vs Método Tradicional Real por torre

ITEM	DESCRIPCION	VALO	R TOTAL METODO BIM	 LOR TOTAL METODO RADICIONAL REAL
1,00	Localización y Replanteo	\$	2.795.777,00	\$ 2.029.500,00
2,00	Contrato de Estructura	\$	1.026.482.312,00	\$ 1.023.100.438,00
3,00	Contrato de Mampostería, Columnetas, Dinteles y Pañete (Todo Costo), Incluye filos, Cubierta, Alistados, Enchapes.	\$	326.014.805,00	\$ 608.279.230,00
4,00	Contrato de alistado de apartamento, patios, y acceso,	\$	43.741.642,00	\$ 44.164.208,00
5,00	Contrato Hidrosanitario (Todo Costo)	\$	56.995.133,00	\$ 129.589.300,00
6,00	Contrato Eléctrico Interior Torre (Todo Costo)	\$	155.395.788,00	\$ 191.500.705,00
7,00	Contrato de Gas (Todo Costo)	\$	26.413.386,00	\$ 24.414.744,00
8,00	Contrato de Ventaneria	\$	81.895.067,00	\$ 93.587.774,00
9,00	Barandas de Balcón y Barandas Internas Escaleras. Se entrega Pintado todos los elementos.	\$	47.461.715,00	\$ 20.887.302,00
10,00	Contrato Puerta de Acceso a Torre incluye sistema de seguridad	\$	452.636,00	\$ 625.000,00
11,00	Contrato de Carpintería, Puertas de Acceso a apartamentos, puertas de baño y hab. Ppal.	\$	52.220.042,00	\$ 30.461.680,00
12,00	Contrato Ascensor	\$	105.108.640,00	\$ 105.848.404,00
13,00	Graniplast	\$	32.807.277,00	\$ 59.443.164,00
14,00	Acabados de Apartamentos (baños, cerámica, y pintura)	\$	109.321.906,00	\$ 210.848.685,00
	TOTAL COSTOS DIRECTOS		2.067.106.126,00	\$ 2.544.780.134,00
Α	13%	\$	268.723.796,00	\$ 268.723.796,00
I	2%	\$	41.342.123,00	\$ 41.342.123,00
U	3%	\$	62.013.184,00	\$ 62.013.184,00
	TOTAL COSTOS + AIU	\$	2.439.185.229,00	\$ 2.916.859.237,00

Tabla 16.Comparacion BIM vs Método tradicional Real por las tres torres

	TOTAL COSTOS DIRECTOS	\$ 6.201.318.378,00	\$ 7.634.340.402,00
A	13%	\$ 806.171.389,00	\$ 806.171.389,00
I	2%	\$ 124.026.368,00	\$ 124.026.368,00
U	3%	\$ 186.039.551,00	\$ 186.039.551,00
	TOTAL COSTOS + AIU	\$ 7.317.555.686,00	\$ 8.750.577.710,00

Como se observa en la tabla 15, los ítems cambian, debido a que la ejecución de cada una de las torres se hizo por contratos a todo costo, lo que aumentó significativamente el valor total de las mismas. En la tabla 16 se observa el valor total de las 3 torre ejecutadas, las cuales también varían en precios como se observa en la siguiente grafica.

Gráfico 4. Costos Reales BIM vs Método Tradicional

10. Conclusiones

Teniendo en cuenta los resultados obtenidos y el cumplimiento de los objetivos planteados, se definen las siguientes conclusiones en el estudio comparativo:

- Al comparar las dos metodologías se obtienes algunas diferencias en varios factores que afectan directamente, como las cantidades, los ítems o actividades a evaluar y los precios; por lo tanto, se quiso realizar la comparación de estos elementos, donde se encontraron porcentajes bajitos de diferencia, los cuales influyen en el cambio del precio total de los costos directos y, por ende, del presupuesto en general.
- Realizando la comparación entre las cantidades, se pudo observar que estás cambian en algunos ítems, con diferencias que oscilan entre un 0,01% y el 5%, lo que hace entender que siempre y cuando los dos trabajos se desarrollen bien, con precaución al momento de diseñar, en el caso de BIM o al momento de tomar las cantidades por el método 2D, no

presentarán discrepancias, por lo que en este sentido, los dos métodos servirán para calcular las cantidades.

- En la comparación de los precios, se debe tener en cuenta el valor a utilizar para el presupuesto, para que se ajuste un poco más a los precios reales, debido a que hay variaciones según la tasa de manejo en el mercado, la cual puede hacer subir o bajar el precio unitario; por ello, los precios totales de los costos directos se tomaron del AIM 2020, donde al correlacionar los dos valores totales, estos varían en tan solo 0,24%.
- Al comparar el presupuesto de cantidades tomadas por BIM con el presupuesto de cantidades halladas por el método tradicional y al relacionarlas con los precios reales o comerciales del mercado, se pudo determinar una variación del 19%, toda vez, que la demanda de los materiales, la contratación de mano de obra o el transporte del material influyen directamente en el valor total de la actividad.

11. Recomendaciones

Entre las recomendaciones se tienen las siguientes:

• El método más seguro para realizar una planeación más eficaz y eficiente, con toda la información más compacta, es el sistema BIM, el cual es un sistema capaz de reunir todas las áreas encargadas del desarrollo de un proyecto es un solo dispositivo, desde su etapa inicial. Por ello, al tener todo en un solo conjunto, es mucho más fácil encontrar falencias o deficiencias dentro de una estructura al momento de organizar, programar y calcular las cantidades de todas las actividades a desarrollar, lo que permiten percibir de una manera más sensata el proceso constructivo de la edificación, permitiendo establecer cronogramas más realistas según los tiempos de ejecución y detectar conflictos antes de

- iniciar la obra, lo que obliga a tener un conocimiento más amplio del proyecto y establecer alternativas de ejecución.
- Al crear estos modelos en la Metodología BIM, los elementos más grandes y de mayor influencia constructiva como las vigas, columnas, pantallas, escaleras y losas de entrepiso, son más fáciles de calcular, teniendo así, las cantidades exactas, las cuales pueden ser proyectadas económica y temporalmente, con el fin de evitar imprevistos de gran dimensión, puesto que estos son elementos principales que mayor dinero necesitan para su desarrollo constructivo.
- La Metodología BIM ofrece un análisis más riguroso en la planeación de infraestructura, sin embargo, su implementación tiene algunos obstáculos, dado a que su conocimiento es muy pobre, por lo tanto encontrar fuentes de información que permiten su desarrollo o fácil implementación es muy difícil, debido al vacío normativo que hay actualmente en el país sobre su implementación y los costos asociados en los que se debe incurrir implementarlo.
- La Metodología BIM ayuda con la productividad, tanto para la planeación del proyecto, como durante su ejecución, puesto que al tener un solo modelo con unas cantidades definidas, es más viable que haya menos imprevistos entre los profesionales de las diferentes ramas que influyen dentro del proyecto, a diferencia del sistema tradicional, donde cada profesional mantiene sus cantidades y las maneja de la mejor forma posible según su criterio.

REFERENCIAS BIBLIOGRAFICAS

- Cerón, I. A., & Liévano Ramos, D. A. (2017). Plan de implementación de metodología BIM en el ciclo de vida en un proyecto. *Universidad Católica de Colombia*. https://repository.ucatolica.edu.co/bitstream/10983/15347/1/PLAN%20DE%20IMPLE MENTACI%c3%93N%20DE%20METODOLOGIA%20BIM.pdf
- Choclán Gámez, F., Soler Severino, M., & González Márquez, R. J. (2014). Introducción a la Metodología Bim. *Researchgate*. https://www.researchgate.net/profile/Ramon-Jesus-Gonzalez-Marquez/publication/284159764_INTRODUCCION_A_LA_METODOLOGIA_BIM/l inks/564cbc6b08aeafc2aaaf73c2/INTRODUCCION-A-LA-METODOLOGIA-BIM.pdf
- Rodríguez Lesmes, D. H. (2020). Asistencia y seguimiento técnico al proceso constructivo del proyecto de vivienda del sector privado, a cargo de la Constructora PAXCO SAS ubicado en la Calle 24 No. 20–02 barrio Araguaney en el municipio de Acacías- Meta. *Universidad Cooperativa de Colombia*. https://repository.ucc.edu.co/bitstream/20.500.12494/32717/1/2020_asistencia_seguimiento_t%c3%a9cnico.%20pdf.pdf
- Valencia Rivera, D. F., & Mojica Arboleda, A. (2012). Implementación de las Metodologías BIM como Herramienta para la Planificación y Control del Proceso Constructivo de una Edificación en Bogotá. *Pontificia Universidad Javeriana*. https://repository.javeriana.edu.co/bitstream/handle/10554/11135/MojicaArboledaAlfon so2012.pdf?sequence=1&isAllowed=y
- Ramírez León, J. A. (2018). Comparación entre Metodologías Building Information Modeling (BIM) Y Metodologías Tradicionales en el Cálculo de Cantidades de Obra y Elaboración de Presupuestos. Caso de Estudio: Edificación Educativa en Colombia. Universidad Distrital Francisco José De Caldas. http://repository.udistrital.edu.co/bitstream/11349/7820/6/RamirezLeonJorgeAndres2018.pdf
- Gómez Cabrera, A., Valencia Rivera, D. F., Mojica Arboleda, A., & Alvarado Vargas, Y. (2017). Planificación y Control de Proyectos Aplicando "Building Information Modeling" un Estudio de Caso. *Ingeniería Revista Académica de la Facultad de Ingeniería Universidad Autónoma de Yucatán*, 20(1). https://www.revista.ingenieria.uady.mx/ojs/index.php/ingenieria/article/view/47/64

- Marulanda, J. C., Fajardo Garzón, N., & Gonzales Morales, E. (2017). Planeación BIM: Lineamientos Básicos y Beneficios en la Implementación de la Metodología BIM en la Fase de Planeación para Compañías del Sector Constructivo Colombiano. *Universidad Piloto De Colombia*. http://polux.unipiloto.edu.co:8080/00004006.pdf
- Ángel Torres, y. A. (2019). Coordinación de un Proyecto de Edificación Mediante Metodologías BIM Caso De Estudio Edificio Tequendama II PERMODA. *Universidad Católica De Colombia*. https://repository.ucatolica.edu.co/bitstream/10983/23896/1/TRABAJO%20DE%20GR ADO-BIM%204D%20Y%205D-YEISON%20ANGEL-505745.pdf
- Laiza Otiniano, J. L., & Ayay Gonzales, S. (2020). Propuesta de Implementación de la Metodología BIM, en la Construcción de un Edificio Multifamiliar en la Empresa Cci Ingenieros Del Perú S.R.L. En Cajamarca 2020. *Universidad Privada del Norte*. https://repositorio.upn.edu.pe/bitstream/handle/11537/25360/Ayay%20Gonzales%2c%20Severino%20%20Laiza%20Otiniano%2c%20Jorge%20Luis%20Emanuel.pdf?sequence=1&isAllowed=y
- Arequipa Iza, D. J. (2020). Análisis de Interferencias en el Proyecto Inmobiliario "Conjunto Habitacional Reina Julia", Mediante la Metodología BIM. *Universidad de las Fuerzas Armadas*. http://repositorio.espe.edu.ec/bitstream/21000/22101/1/T-ESPE-043656.pdf
- UNE-EN ISO 19650–1:2019 Organización y digitalización de la in. . . (2019). UNE NORMALIZACION ESPAÑOLA. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0062137
- Gonçalves Carezzato, G. (2018). Protocolo de gerenciamento BIM nas fases de contratação, projeto e obra em empreendimentos civis baseado na ISO 19650. *Biblioteca Digital de Teses e Dissertações da USP Universidade de São Paulo*. Published. https://explore.openaire.eu/search/publication?articleId=od_____3056::cd37fc5b141a2 4fb0d68b6fa021ee743
- Pramod Reddy, K. (2012). BIM for Building Owners and Developers Making a Business Case for Using BIM on Projects K. Pramod Reddy. Wiley, 1.
- Eastman, C., Liston, K., Teicholz, P., & Sacks, R. (2008). BIM HANDBOOK. A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors. Wiley.

- Salazar, M., & Galindo, J. (2018). *Impacto económico del uso de BIM en el desarrollo de proyectos constructivos: estudio de caso en Manizales (Colombia). Espacios*, 39(7). https://www.revistaespacios.com/a18v39n07/a18v39n07p24.pdf
- López, P. H. A. (2018, 2 abril). Comparación entre metodologías building information modeling (BIM) y metodologías tradicionales en el cálculo de cantidades de obra y elaboración de presupuestos. Caso de estudio: edificación educativa en Colombia hdl:11349/7820. https://repository.udistrital.edu.co/handle/11349/7820
- Cabrera, G. A. (2017, 26 abril). Comparación de los principales sistemas constructivos de VIS en Colombia, desde una perspectiva de sostenibilidad, empleando BIM: caso estudio en Soacha. https://repository.javeriana.edu.co/handle/10554/19639
- Tamayo, Y. (2018, 30 octubre). Estudio sobre potencial de la metodología BIM para optimización de presupuestos de construcción. Caso de estudio. Https://Repository.Eia.Edu.Co/Handle/11190/2087.
- Cabrera, G. A. (2015, 19 enero). Razón de costo efectividad de la implementación de la metodología BIM y la metodología tradicional en la planeación y control de un proyecto de construcción de vivienda en Colombia.

 https://repository.javeriana.edu.co/handle/10554/12691
- Henriquez, P. (2021, 17 mayo). *BIM: ¿Qué tan digitalizada está la industria de la construcción en la región?* Puntos sobre la i. https://blogs.iadb.org/innovacion/es/bim-que-tan-digitalizada-esta-la-industria-de-la-construccion-en-la-region/https://blog.structuralia.com/bim-colombia