

Bayesian Inverse Problems

Jonas Latz

Technische Universität München Lehrstuhl für Numerische Mathematik (M2) Fakultät für Mathematik jonas.latz@tum.de

Guest lecture in *Algorithms for Uncertainty Quantification* with Dr. Tobias Neckel and Ionut Farcas

Outline

- Motivation: Forward and Inverse Problem
- Conditional Probabilities and Bayes' Theorem
- Bayesian Inverse Problem
- Examples
- Conclusions

Outline

- Motivation: Forward and Inverse Problem
- Conditional Probabilities and Bayes' Theorem
- Bayesian Inverse Problem
- Examples
- Conclusions

Forward Problem: A Picture

Forward Problem: A few examples

Groundwater pollution.

- G: Transport equation (PDE)
- θ: Permeability of the groundwater reservoir
- Q: Travel time of a particle in the groundwater reservoir

Figure: Final disposal site for nuclear waste (Image: Spiegel Online)

Forward Problem: A few examples

Diabetes patient.

- G: Glucose-Insulin ODE for a Diabetes-type 2 patient
- Model parameters such as exchange rate plasma insulin to interstitial insulin
- Q: Time to inject insulin

Figure: Glucometer (Image: Bayer AG)

Forward Problem: A few examples

Geotechnical Engineering

G: Deformation model

 θ : Soil

Q: Deformation/Stability/probability of failure

Figure: Construction on Soil (Image: www.ottawaconstructionnews.com)

Distribution of the parameter θ

- How do we get the distribution of θ ?
- \blacksquare Can we use data to characterise the distribution of θ ?

'Data'?

Let θ^{true} be the actual parameter. We define data y by

$$y:= \underbrace{\mathcal{O}}_{ ext{Observation operator}} \circ \underbrace{G}_{ ext{Model}} (\underbrace{ ext{$ ext{θ}^{true}}}_{ ext{actual parameter}}) + \underbrace{\eta}_{ ext{$ ext{η}}}$$

The measurement noise is a random variable $\eta \sim N(0, \Gamma)$.

'Data'? A Picture.

Identify θ^{true} ?!

 \blacksquare Can we use the data to identify θ^{true} ?

$$\iff$$

■ Can we solve the equation $y = \mathcal{O} \circ G(\theta^{\text{true}}) + \eta$?

Identify θ^{true} ?!

Can we solve equation $y = \mathcal{O} \circ G(\theta^{\text{true}}) + \eta$?

No. The problem is ill-posed.1

- The problem is not uniquely solvable due to the measurement noise.
 - For the given realisation of y there is probably no $\theta^* : \mathcal{O} \circ G(\theta^*) = y$
- The operator $\mathcal{O} \circ G$ is very complex
- dim $X \gg$ dim Y, where $X \ni \theta$ and $Y \ni y$.

¹Hadamard (1902) - *Sur les problèmes aux dérivés partielles et leur signification physique*, Princeton University Bulletin 13, pp. 49-52

Summary

- We want to use noisy observational data y to find θ^{true} , but we cannot.
- The uncertain parameter θ is still uncertain, even if we observe data y.

2 Questions:

- How can we quantify the uncertainty in θ considering the data y?
- How does this change the probability distribution of our Quantity of interest Q?

Outline

- Motivation: Forward and Inverse Problem
- Conditional Probabilities and Bayes' Theorem
- Bayesian Inverse Problem
- Examples
- Conclusions

An Experiment

We roll a dice.

The sample space of this experiment is

$$\Omega := \{1, ..., 6\}.$$

The space of events is the power set of Ω :

$$\mathcal{A} := \mathbf{2}^{\Omega} := \{ \mathbf{A} : \mathbf{A} \subseteq \Omega \}.$$

The probability measure is the Uniform measure on Ω :

$$\mathbb{P} := \mathrm{Unif}_{\Omega} := \sum_{\omega \in \Omega} \frac{1}{6} \delta_{\omega}.$$

An Experiment

We roll a dice.

- \blacksquare Consider the event $A := \{6\}$.
 - The probability of *A* is $\mathbb{P}(A) = 1/6$.
- Now, an oracle tells us before rolling the dice, whether the outcome would be even or odd.
 - $B := \{2, 4, 6\},\$
 - $B^c := \{1, 3, 5\}.$
- How does the probability of A change, if we know whether B or B^c occurs?
- → Conditional Probabilities

Conditional probabilities

Consider a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and two events $D_1, D_2 \in \mathcal{A}$, such that $\mathbb{P}(D_2) > 0$.

The conditional probability distribution of D_1 given the event D_2 is defined by:

$$\mathbb{P}(D_1|D_2) := \frac{\mathbb{P}(D_1 \text{ and } D_2)}{\mathbb{P}(D_2)} := \frac{\mathbb{P}(D_1 \cap D_2)}{\mathbb{P}(D_2)}$$

Conditional probabilities: Moving back to the experiment.

We roll a dice.

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(\{6\})}{\mathbb{P}(\{2,4,6\})} = \frac{1/6}{1/2} = \frac{1}{3},$$

$$\mathbb{P}(A|B^c) = \frac{\mathbb{P}(\emptyset)}{\mathbb{P}(\{1,3,5\})} = \frac{0}{1/2} = 0.$$

Probability and Knowledge

Probability distributions can be used to model knowledge.

When using a fair dice, we have no knowledge whatsoever concerning the outcome:

$$\mathbb{P}(\{1\}) = \mathbb{P}(\{2\}) = \mathbb{P}(\{3\}) = \mathbb{P}(\{4\}) = \mathbb{P}(\{5\}) = \mathbb{P}(\{6\}) = 1/6$$

Probability and Knowledge

Probability distributions can be used to model knowledge.

When did the French revolution start? Rough knowledge from school: End of the 18th Century, definitely not before 1750/ after 1800.

Probability and Knowledge

Probability distributions can be used to model knowledge.

Here, the probability distribution is given by a probability density function (pdf), i.e.

$$\mathbb{P}(A) = \int_{A} \mathrm{pdf}(x) \mathrm{d}x$$

Conditional probability and Learning

We represent content we learn by an event $B \subseteq 2^{\Omega}$.

Learning B is a map $\mathbb{P}(\cdot) \mapsto \mathbb{P}(\cdot|B)$.

Conditional probability and Learning

We learn that $B = \{2, 4, 6\}$ occurs. Hence, we map

$$\begin{split} [\mathbb{P}(\{1\}) = & \mathbb{P}(\{2\}) = \mathbb{P}(\{3\}) = \mathbb{P}(\{4\}) = \mathbb{P}(\{5\}) = \mathbb{P}(\{6\}) = 1/6] \\ \downarrow & \downarrow \\ & \left[\mathbb{P}(\{1\}|B) = \mathbb{P}(\{3\}|B) = \mathbb{P}(\{5\}|B) = 0; \\ \mathbb{P}(\{2\}|B) = \mathbb{P}(\{4\}|B) = \mathbb{P}(\{6\}|B) = 1/3 \right] \end{split}$$

But, how do we do this in general?

Elementary Bayes' Theorem

Consider a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and two events $D_1, D_2 \in \mathcal{A}$, such that $\mathbb{P}(D_2) > 0$. Then,

$$\mathbb{P}(D_1|D_2) = \frac{\mathbb{P}(D_2|D_1)\mathbb{P}(D_1)}{\mathbb{P}(D_2)}$$

Proof: We have

$$\mathbb{P}(D_1|D_2) = \frac{\mathbb{P}(D_1 \cap D_2)}{\mathbb{P}(D_2)} \text{ (1) and } \mathbb{P}(D_2|D_1) = \frac{\mathbb{P}(D_2 \cap D_1)}{\mathbb{P}(D_1)} \text{ (2) }.$$

(2) is equivalent to $\mathbb{P}(D_2 \cap D_1) = \mathbb{P}(D_2|D_1)\mathbb{P}(D_1)$, which can be substituted into (1) to get the final result.

Who is Bayes?

Figure: Bayes (Image: Terence O'Donnell, History of Life Insurance in Its Formative Years (Chicago: American Conservation Co:, 1936))

Thomas Bayes, 1701-1761

- English, Presbyterian Minister, Mathematician, Philosopher
- Proposed a (very) special case of Bayes' Theorem
- Not much known about him (the image above might be not him)

Who do we know Bayes' Theorem from?

Figure: Laplace (Image: Wikipedia)

Pierre-Simon Laplace, 1749–1827

- French, Mathematician and Astronomer
- Published Bayes' Theorem in 'Théorie analytique des probabilités' in 1812

Conditional probability and Learning

When did the French revolution start?

(1) Rough knowledge from school: End of the 18th Century, definitely not before 1750/ after 1800.

(2) Today in the radio: It was in the 1780s, so in the interval [1780, 1790).

Conditional probability and Learning

When did the French revolution start?

(2) Today in the radio: It was in the 1780s, so in the interval [1780, 1790).

(Image: Wikipedia)

(3) Reading in a textbook: It was in the middle of year 1789. **Problem.** The point in time x, we are looking for, is now set to a particular value $x = 1789.5 + \eta$, where $\eta \sim N(0, 0.0625)$. Hence, the event we learn is $B = \{x + \eta = 1789.5\}$. But, $\mathbb{P}(B) = 0$. Hence $\mathbb{P}(\cdot|B)$ is not defined and Bayes' Theorem does not hold.

Non-elementary Conditional Probability

- It is possible to define conditional probabilities for (non-empty) events B, with $\mathbb{P}(B) = 0$. (rather complicated)
- Easier: Consider the learning in terms of continuous random variables. (rather simple)

Conditional Densities

- We learn a random variable x_1 and observe another random variable x_2
- The joint distribution of x_1 and x_2 is given by a 2-dimensional probability density function $pdf(x_1, x_2)$.
- Given $pdf(x_1, x_2)$ the marginal distributions of x_1, x_2 are given by

$$\mathrm{mpdf}_1(x_1) = \int \mathrm{pdf}(x_1, x_2) \mathrm{d}x_2; \quad \mathrm{mpdf}_2(x_2) = \int \mathrm{pdf}(x_1, x_2) \mathrm{d}x_1$$

■ We learn the event $B = \{x_2 = b\}$, for some $b \in \mathbb{R}$. Here, the conditional distribution is given by

$$\operatorname{cpdf}_{1|2}(x_1|x_2=b)=\operatorname{pdf}(x_1,b)/\operatorname{mpdf}(b)$$

Bayes' Theorem for Conditional Densities

Similarly to the Elementary Bayes' Theorem, we can give a Bayes Theorem for Densities

$$\underbrace{\operatorname{cpdf}_{1|2}(\cdot|x_2=b)}_{\text{posterior}} = \underbrace{\operatorname{cpdf}_{2|1}(b|x_1=\cdot)}_{\text{(data) likelihood}} \underbrace{\operatorname{mpdf}_1(\cdot)}_{\text{prior}} / \underbrace{\operatorname{mpdf}_2(b)}_{\text{evidence}}$$

prior: Knowledge we have a priori concerning x_1

likelihood: The probability distribution of the data given x_1 posterior: Knowledge we have concerning x_2 knowing that

 $x_2 = b$

evidence: Assesses the model assumptions

Laplace's formulation

ce qui est le principe énoncé ci-dessus, lorsque toutes les causes sont à priori également possibles. Si cela n'est pas, en nommant p la probabilité à priori de la cause que nous venons de considérer; on aura E = Hp; et en suivant le raisonnement précédent, on trouvera

$$P = \frac{Hp}{S.Hp};$$

ce qui donne les probabilités des diverses causes, lorsqu'elles ne sont pas toutes, également possibles à priori.

Pour appliquer le principe précédent à un exemple, supposons qu'une urne renferme trois boules dont chacune ne puisse être que

Figure: Bayes' Theorem in 'Théorie analytique des probabilités' by Pierre-Simon Laplace (1812, pp. 182)

prior p, likelihood H, posterior P, integral/sum S.

Conditional probability and Learning

When did the French revolution start?

(3) Reading in a textbook: It was in the middle of year 1789.

(4) Looking it up on wikipedia.org: The actual date is 14. Juli 1789

Figure: Prise de la Bastille by Jean-Pierre Louis Laurent Houel, 1789 (Image: Bibliothèque nationale de France)

Outline

- Motivation: Forward and Inverse Problem
- Conditional Probabilities and Bayes' Theorem
- Bayesian Inverse Problem
- Examples
- Conclusions

Bayesian Inverse Problem

- Given data y and a prior distribution μ_0 the parameter θ is a random variable: $\theta \sim \mu_0$.
- Determine the posterior distribution μ^{y} , that is

$$\mu^{\mathbf{y}} = \mathbb{P}(\theta \in \cdot | \mathcal{O} \circ \mathbf{G}(\theta) + \eta = \mathbf{y})$$

■ The problem 'find μ^{y} ' is well-posed

Bayesian Inverse Problem

Bayes' Theorem (revisited)

$$\underbrace{\operatorname{cpdf}(\theta|\mathcal{O}\circ\mathcal{G}(\theta)+\eta=y)}_{\text{posterior}} = \underbrace{\operatorname{cpdf}(y|\theta)}_{\text{(data) likelihood}} \underbrace{\operatorname{mpdf}_1(\theta)}_{\text{prior}} / \underbrace{\operatorname{mpdf}_2(y)}_{\text{evidence}}$$

prior: Given by the probability measure μ_0

likelihood: $\mathcal{O} \circ G(\theta) - y = \eta \sim N(0, \Gamma) \Leftrightarrow y \sim N(\mathcal{O} \circ G(\theta), \Gamma)$

posterior: Given by the probability measure μ^y evidence: Chosen as a normalising constant

Jonas Latz (Fakultät für Mathematik, Technische Universität München)

How do we invert Bayesian?

Sampling based: Sample from the posterior measure μ^{y}

- Importance Sampling
- Markov Chain Monte Carlo
- Sequential Monte Carlo/Particle Filters

Deterministic: Use a deterministic quadrature rule, to approximate μ^y

- Sparse Grids
- QMC

Sampling based methods for Bayesian Inverse Problems

- Idea: Generate samples from μ^y .
- Use these samples in a Monte Carlo manner to approximate the distribution of $Q(\theta)$, where $\theta \sim \mu^{\gamma}$.
- **Problem**: We typically can't generate iid. samples of μ^y
 - weighted samples of the wrong distribution (Importance Sampling, SMC)
 - dependent samples of the right distribution (MCMC)

Importance Sampling

Importance sampling applies directly Bayes' Theorem and uses the following identity:

$$\mathbb{E}_{\mu^{y}}[Q] = \mathbb{E}_{\mu_{0}}[Q \cdot \underbrace{\operatorname{cpdf}(y|\cdot)}_{\text{likelihood}}] / \underbrace{\mathbb{E}_{\mu_{0}}[\operatorname{cpdf}(y|\cdot)]}_{\text{likelihood}}$$

Hence, we can integrate w.r.t. to μ^y , using only integrals w.r.t. μ_0 . In practice: Sample iid. from $(\theta_j: j=1,...,J) \sim \mu_0$ and approximate:

$$\mathbb{E}_{\mu^y}[Q] \approx J^{-1} \sum_{j=1}^J Q(\theta_j) \mathrm{cpdf}(y|\theta_j) / J^{-1} \sum_{j=1}^J \mathrm{cpdf}(y|\theta_j)$$

Deterministic Strategies

- Several deterministic methods have been proposed
- General issue: Estimating the model evidence is difficult (this also contraindicates importance sampling)

Outline

- Motivation: Forward and Inverse Problem
- Conditional Probabilities and Bayes' Theorem
- Bayesian Inverse Problem
- Examples
- Conclusions

Example 1: 1D Groundwater flow with uncertain source

Consider the following partial differential equation on D = [0, 1]

$$-\nabla(k\nabla)p = f(\theta) \qquad (\text{on } D)$$

$$p = 0 \qquad (\text{on } \partial D),$$

where the diffusion coefficient k is known. The source term $f(\theta)$ contains one Gaussian-type source at position $\theta \in [0.1, 0.9]$. (We solve the PDE using 48 linear Finite Elements.)

Example 1: (deterministic) log-Permeability

Example 1: Quantity of Interest

Considering the uncertainty in $f(\theta)$, determine the distribution of the Quantity of interest

$$Q: [0.1, 0.9] \rightarrow \mathbb{R}, \theta \mapsto p(5/12).$$

Example 1: Data

The observations are based on the observation operator \mathcal{O} , which maps

$$p \mapsto [p(2/12), p(4/12), p(6/12), p(8/12)],$$

given $\theta^{\text{true}} = 0.2$.

Example 1: Bayesian Setting

■ We assume uncorrelated Gaussian noise, with different variances:

```
(a) \Gamma = 0.8^2
```

(b)
$$\Gamma = 0.4^2$$

(c)
$$\Gamma = 0.2^2$$

(d)
$$\Gamma = 0.1^2$$

■ Prior distribution $\theta \sim \mu_0 = \text{Unif}[0.1, 0.9]$

Compare

- prior and different posteriors (with different noise levels)
- the uncertainty propagation of prior and the posteriors

(Estimations with standard Monte Carlo/Importance Sampling using J = 10000.)

Example 1: No data (i.e. prior)

Example 1: Very high noise level $\Gamma=0.8^2$

Example 1: High noise level $\Gamma = 0.4^2$

Example 1: Small noise level $\Gamma=0.2^2$

Example 1: Very small noise level $\Gamma = 0.1^2$

Example 1: Summary

- Smaller noise level ⇔ less uncertainty in the parameter ⇔ less uncertainty² in the quantity of interest
- The unknown parameter can be estimated pretty well in this setting
- Importance Sampling can be used in such simple settings.

²less uncertainty meaning 'smaller variance'.

Example 2: 1D Groundwater flow with uncertain number and position of sources

Consider again

$$-\nabla(k\nabla)p = g(\theta) \qquad (\text{on } D)$$

$$p = 0 \qquad (\text{on } \partial D),$$

- $\theta := (N, \xi_1, ..., \xi_N)$, where N is the number of Gaussian type sources and $\xi_1, ..., \xi_N$ are the positions of the sources (sorted ascendingly)
- the log-permeability is known, but with a higher spatial variability

Example 2: (deterministic) log-Permeability

Example 2: Quantity of Interest

Considering the uncertainty in $g(\theta)$, determine the distribution of the Quantity of interest

$$Q: [0.1, 0.9] \to \mathbb{R}, \theta \mapsto p(1/2).$$

Example 2: Data

The observations are based on the observation operator \mathcal{O} , which maps

$$p \mapsto [p(1/12), p(3/12), p(5/12), p(7/12), p(9/12), p(11/12)],$$

given $\theta^{\text{true}} := (4, 0.2, 0.4, 0.6, 0.8).$

Example 2: Bayesian Setting

- We assume uncorrelated Gaussian noise with variance $\Gamma = 0.4^2$
- Prior distribution $\theta \sim \mu_0$. μ_0 is given by the following sampling procedure:
 - 1 Sample $N \sim \text{Unif}\{1,...,8\}$
 - 2 Sample $\xi \sim \text{Unif}[0.1, 0.9]^N$
 - 3 Set $\xi := \operatorname{sort}(\xi)$
 - **4** Set $\theta := (N, \xi_1, ..., \xi_N)$

Compare prior and posterior and their uncertainty propagation (Estimations with standard Monte Carlo/Importance Sampling using J = 10000.)

Example 2: Prior

Figure: Prior distribution of N (left) and 100 samples of the prior distribution of the Source terms

Example 2: Posterior

Figure: Posterior distribution of N (left) and 100 samples of the posterior distribution of the Source terms

Example 2: Quantity of Interest

Figure: Quantities of interest, where the source term is distributed according to the prior (left) and posterior (right)

Example 2: Summary

- Bayesian estimation is possible in 'complicated settings' (such as this multidimensional setting)
- Importance Sampling is not very efficient

Outline

- Motivation: Forward and Inverse Problem
- Conditional Probabilities and Bayes' Theorem
- Bayesian Inverse Problem
- Examples
- Conclusions

Messages to take home

- Bayesian Statistics can be used to incorporate data into an uncertain model
- Bayesian Inverse Problems are well-posed and thus a consistent approach to parameter estimation
- Applying the Bayesian Framework is possible in many different settings, also in ones that are genuinely difficult (e.g. multidimensional parameter spaces)
- Solving Bayesian Inverse Problems is computationally very expensive
 - requires many forward solves
 - algorithmically complex

How to learn Bayesian

- Various lectures at TUM:
 - Bayesian strategies for inverse problems, Prof. Koutsourelakis (Mechanical Engineering)
 - Various Machine Learning lectures in CS
- Speak with Prof. Dr. Elisabeth Ullmann or Jonas Latz (both M2)
- GitHub/latz-io
 - A short review on algorithms for Bayesian Inverse Problems
 - Sample Code (MATLAB)
 - These slides

How to learn Bayesian

Various Books/Papers

- Moritz Allmaras et al.- Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example (2013; SIAM Rev. 55(1))
- Jun Liu Monte Carlo Strategies in Scientific Computing (2004; Springer)
- Sharon Bertsch McGrayne The Theory that would not die (2011, Yale University Press)
- Christian Robert The Bayesian Choice (2007, Springer)
- Andrew Stuart Inverse Problems: A Bayesian Perspective (2010; in Acta Numerica 19)

THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Figure: One last remark concerning conditional probability (Image: xkcd)

-www.latz.io

Jonas Latz

Input/Output: www.latz.io