

Chapter 9 Dynamic Programming

```
References:

[KT 6.1-6.2, 6.6, 6.8]

[CLRS 15, 24.1-24.2, 25.1-25.2]

[DPV 4.6, 6.3, 6.6]

[SSS 8]
```


Activity Selection Revisited

- Recall the activity selection problem
 - Want to maximize number of activities
 - What if each activity has a different "value"?

- Abstract model
 - Given: a set of intervals, each with starting time, finishing time and value
 - Goal: find a set of non-overlapping intervals with maximum total value

Greedy Does Not Work Anymore

- This problem generalizes the original (unweighted) one
 - When all value = 1, reduces to original problem
- Previous greedy approaches do not work
 - E.g. earliest finishing first:

In fact, there seems no way of "locally" adding an interval "safely"

Let's Turn to a Different Problem...

- Given an array A with n elements, choose a subset of elements so that
 - Any two chosen elements are separated by 2 cells or more
 - The sum is maximised
 - Assume empty subset has sum 0
- Example: A = 2 | 4 | 1 | 3 | 1 | 6 | 5 | 4 | 2
 - Maximum = A[2] + A[6] + A[9] = 4 + 6 + 2 = 12
- Greedy algorithms do not work
 - E.g. always choose the largest element, discard elements within 2 cells, and repeat
 - Counterexample: $A = \begin{bmatrix} 6 & 1 & 7 & 6 \end{bmatrix}$

An Important Observation

- Consider A[n]. We do not know whether A[n] should be part of the solution; but we know that
 - Either A[n] is part of the solution, or it is not.
- This sounds trivial enough, but it allows us to reduce to a smaller subproblem:
 - If A[n] is part of the solution, A[n-1] and A[n-2] cannot be;
 next step consider A[1..n-3]
 - If A[n] is not part of the solution, next step to consider A[1..n-1]
 - Which one is correct? Try both and see which solution is better!

or

4

A Recursive Formulation

- First, define subproblems: let S(i) be the solution considering only the first i elements
 - Want to find S(n)
- Recursive formula:
 - S(i) = max(S(i-3)+A[i], S(i-1))
 - Base cases: S(0) = 0, S(1) = max(0, A[1]), S(2) = max(0, A[1]), A[2])
- Recursive algorithm: (solution: call S(n))

```
S(i) { // for first i elements
  if (i==0) return 0 // base cases
  if (i==1) return max(0, A[1])
  if (i==2) return max(0, A[1], A[2])
  else return max(S(i-3) + A[i], S(i-1))
}
```


This is not Efficient...

- This approach requires exponential time!
 - Exponentially many subproblems

Memorising Solution of Subproblems

- Observation: there is no point in recomputing S(i) so many times!
 - Use an array to store solutions of subproblems computed before
 - Only compute fresh if not previously computed

Pseudocode:

```
initialize M[0] := 0, M[1] := max(0,A[1]),
M[2] := max(0,A[1],A[2]), other M[] := infinity

S(i) {
   if (M[i] == infinity) {
      M[i] := max(S(i-3) + A[i], S(i-1))
   }
   return M[i]
}
```


An Equivalent Iterative Algorithm

- Observe that recursion is only called on smaller values of i
- Hence, if we compute the array M[] in the correct order (increasing i), we can eliminate recursion completely!

Time and Space Complexity

- Time complexity:
 - for loop executed O(n) times
 - O(1) time to compute one array entry
 - Therefore, O(n) time
- Space complexity: how much working memory is used
 - Array M[]: O(n) space

Finding the Actual Solution

- The function S() or the array M[] only gives the value of the objective function (i.e. the sum), not the actual solution (i.e. which elements?)
- Record the information about which case is chosen

```
S(n) {
   M[0] := 0, M[1] := ... // same base cases
   Take[0] := false
   Take[1] := (A[1]>0) ? true : false
   Take[2] := (A[2]>A[1] && A[2]>0) ? true : false
   for i := 3 to n
      if (M[i-3] + A[i] > M[i-1])
        { M[i] := M[i-3] + A[i]; Take[i] := true }
      else
      { M[i] := M[i-1]; Take[i] := false }
}
```


Finding the Elements

With this information, we can recover the solution

j	0	1	2	3	4	5	6	7	8	9
M[j]	0	2	4	4	5	5	10	10	10	12
Take[j]	F	Т	Т	F	Т	F	Т	F	F	Τ

Optimal solution:

- Sum = M[9] = 12
- Take[9] = true, take A[9]=2, consider M[6]
- Take[6] = true, take A[6]=6, consider M[3]
- Take[3] = false, do not take A[3], consider M[2]
- Take[2] = true, take A[2]=4

Traceback

Pseudocode for this "tracing back" procedure:

```
i := n
while (i > 0) {
  if (Take[i] == true) {
    Include A[i] as part of solution
    i := i - 3
  }
  else {
    i := i - 1
  }
}
```

O(n) time

Principles of Dynamic Programming

- 1) A recursive formulation
- 2) Optimal substructure
 - Example: optimal solution for A[1..9] = {4, 6, 2}. Then {4, 6} is also optimal solution for A[1..6]

$$A = \begin{bmatrix} 2 & 4 & 1 & 3 & 1 & 6 & 5 & 4 & 2 \end{bmatrix}$$

- 3) Overlapping subproblems
 - Example: subproblems of S(4) and S(6) overlap
 - Use a table to memorize solutions of subproblems

Steps in Dynamic Programming

- Step 1: Define a recursive formulation that utilises the structure of the optimal solution
- Step 2: Compute the optimal cost using a table. Two approaches:
 - Top-down: use recursion to call smaller subproblems. Stored results used if possible
 - Bottom-up: iterate all subproblems starting from smaller ones
- Step 3: Construct the actual solution (traceback)

More on Top-down vs. Bottom-up

- Top-down approach:
 - Start with large subproblems
 - Recursively call for smaller subproblems
 - Subproblems only solved when required (so not all table entries always filled)
- Bottom-up approach:
 - Build solutions of subproblems systematically
 - When large subproblems encountered, solution to small subproblems already computed
 - No recursion overhead

Relation to Interval Selection

- The weighted interval selection problem is very similar:
 - Let S(i) = optimal solution for {I₁, ..., I_i}
 - Either include I_i and discard all intervals overlapping it
 - Or discard I_i and recursively solve S(i-1)

- $S(6) = max(S(1) + v_6, S(5))$
- $S(5) = max(S(3) + v_5, S(4))$
- ...

Sequence Comparisons

Longest Common Subsequence

- Given two sequences of letters
 - S1 = abcaabcabc, S2 = aabcabbabcc
- A subsequence is a subset of letters from a sequence in original order
 - E.g. accab (from S1, but not from S2)
- A common subsequence of S1 and S2 is a subsequence of both sequences
 - E.g. ababbc (from S1 and S2)
- A longest common subsequence is a common subsequence with maximum length

Step 1: Optimal Solution's Structure

- Common subsequences imply non-crossing matching
- Given two sequence A[1..m] and B[1..n]
- If A[m] = B[n] (last character match), then it is always safe to match them; reduce to a smaller subproblem
- If A[m] ≠ B[n] (doesn't match), then one of A[m] or B[n] (or both) is not part of LCS; reduce to a smaller subproblem

Step 2: Recursive Formulation

- Let LCS(i, j) = length of LCS of A[1..i] and B[1..j]
- So we have, for any i and j,

$$LCS(i, j) = \begin{cases} LCS(i-1, j-1) + 1 & \text{if } A[i] = B[j] \\ \max \left\{ LCS(i-1, j) & \text{if } A[i] \neq B[j] \end{cases} \end{cases}$$

- Base case: LCS(0, j) = 0, LCS(i, 0) = 0
- This gives us a recursive algorithm
- Use a table to memorize solutions of subproblems (top-down approach)

Step 3: Bottom-up Algorithm

- We can use a bottom-up algorithm instead
 - Observe each table entry (i, j) depends on at most 3 others: (i-1, j-1), (i, j-1), (i-1, j)
 - A standard double-for-loop ensures solutions to smaller subproblems already computed

```
LCS(A[1..m], B[1..n]) {
   Let L be (m+1) by (n+1) 2D array with all entries
   initialised to zero
   for i := 1 to m {
      for j := 1 to n {
        if (A[i] == B[j]) L[i][j] := L[i-1][j-1] + 1
        else L[i][j] := max(L[i-1][j], L[i][j-1])
      }
   }
}
```


Step 3: Tabular Solution

LCS of bdcaba and abcbdab

a
b
C
b
d
a
b

	b	d	С	a	b	a
0	0	0	0	0	0	0
0	0	0	0	1	1	1
0	1	1	1	1	2	2
0	1	1	2	2	2	2
0	1	1	2	2	3 ←	- 3
0	1	2	2	2	3	3
0	1	2	2	3	3	4
0	1	2	2	3	4	4

Time and Space Complexity

- Space complexity: O(mn)
 - m+1 rows and n+1 columns
- Time complexity:
 - Fill each cell in the table sequentially
 - Each cell value can be determined in O(1) time (by checking whether a_i = b_i, and looking at adjacent cell values)
 - Hence time complexity = O(mn)

Step 4: Retrieving the Actual LCS

Start from L[m][n] and "trace back" the decisions

		b	d	С	a	b	a
a b c b	0	0	0	0	0	0	0
	0	0	0	0	1	1	1
	0	1	1	1	1	2	2
	0	1	1	2	2	2	2
	0	1	1	2	2	ന	3
d	0	1	2	2	2	ന	3
a b	0	1	2	2	3	3	4
	0	1	2	2	3	4	4

bdcab a
| | | | |
ab c bdab

(can have more than one possible solutions)

Sequence Alignment

- Problem: given two sequences A[1..m] and B[1..n], change one into the other with minimum "cost"
 - Operations: insertion, deletion, substitution
 - Each operation have a cost
 - Also called "edit distance"
- Example:

- Applications: bioinformatics, text editing (spell checking)
- Similar to the LCS problem

Recursive Formulation of ED

- Assume all costs = 1
- Let D(i, j) = edit distance of A[1..i] and B[1..j]
- For any i and j,

$$D(i, j) = \begin{cases} D(i-1, j-1) & \text{if } A[i] = B[j] \\ D(i, j) = \begin{cases} D(i-1, j) \\ D(i, j-1) & \text{if } A[i] \neq B[j] \\ D(i-1, j-1) \end{cases}$$

- Base case: D(0, j) = j, D(i, 0) = i (why?)
- Similar dynamic programming algorithm

Sequence Alignment Example

Example

		b	a	С	a	b	a
a b c b	0	1	2	3	4	5	6
	1	1	2	3	3	4	5
	2	1	2	3	4	3	4
	3	2	2	2	3	4	4
	4	3	3	3	3	3	4
d	5	4	3	4	4	4	4
a	6	5	4	4	4	5	4
b	7	6	5	5	5	4	5

Edit distance = 5

Alignment:

bdcab a
| | | |
ab c bdab

Shortest Paths Revisited

(1) Directed Acyclic Graphs

 A core part of Dijkstra's algorithm is to check for shorter distances:

```
if (D[u] + d(u,v) < D[v])

D[v] := D[u] + d(u, v)
```

- This operation is always "safe"
- If we apply this procedure to each edge "in some right order", then the shortest paths can be found
- Directed Acyclic Graph (DAG)
 - A directed graph without a (directed) cycle
 - Shortest paths can be computed easily

Applying Edge Updates in DAGs

- Just apply the edge update procedure to all edges in the "correct" order (left to right)
 - Time complexity: O(m)
- Can be viewed as dynamic programming

Grid Graphs and Relation to LCS

Grid graph

- E.g. Horizontal & vertical edge weights = 2, diagonal edge weights = 3
- Let D(i, j) = distance from s to node at row i, column j
- D(i,j) = min(D(i-1,j)+2, D(i,j-1)+2, D(i-1,j-1)+3)
 (if the corresponding edges exist)
- Same as LCS/edit distance!

- More generally, for any DAG
 - we can assign ordering to vertices so that any edge always goes from a smaller vertex to a larger vertex (topological sort; details omitted)
 - This allows us to apply the edge update procedure only once, following the natural order, to give correct shortest paths
- Can solve more general problems:
 - Negative edges (not possible with Dijkstra)
 - Other optimizations e.g. longest paths (no efficient algorithm at all for non-DAG)

(2) Negative Edges and Cycles

- Recall Dijkstra's algorithm for shortest paths: extending wavefront approach
 - Does not work for negative edge weights

- We will develop an algorithm for finding shortest paths when the graph have negative edges
 - More general
 - Similar ideas used in decentralised settings, i.e. no node has global information (e.g. distributed routing algorithms)

Algorithm for Negative-Edge Case

- The presence of negative edges may introduce negative cycles (cycles with total edge weight < 0)
- A graph with negative cycles does not have a welldefined shortest path

- A graph with negative edges but not negative cycles still has shortest paths well-defined
- We will assume the graphs we consider have no negative cycles

Two Properties of Shortest Paths

- Shortest paths do not contain cycles
 - Positive cycle: can remove to give a shorter path
 - Negative cycle: assumed not to exist
- Shortest paths have at most n-1 edges
 - A path with > n-1 edges has > n vertices ⇒ some vertices must be visited twice ⇒ cycles

A Dynamic Programming Formulation

- Let S(i, v) denote the shortest path length from s to v using a path with at most i edges
- Observation 1: in the path S(i, v), either it uses fewer than i edges, or it uses exactly i edges
- Observation 2: if it uses exactly i edges, let (w,v) be the last edge in this path. Then
 - We need optimal solution from s to w (i-1 edges)
 - w can be any node in the graph

Recursive Formula and Algorithm

- Which choice is correct? Take the shortest one
- So we have

```
S(i, v) = \min \begin{cases} S(i-1, v) \\ \min\{ S(i-1, w) + d(w, v) \} \text{ for all } w \text{ in } V \end{cases}
```

Algorithm:

Example

From s to all other nodes

J	0	1	2	3	4	5
S	0	0	0	0	0	0
a	∞	4	3	3	2	0
b	∞	2	0	0	0	0
С	∞	-3	-3	-4	-6	-6
d	∞	∞	0	-2	-2	-2
e	8	3	3	3	3	3
·						

Example: S(2, a) = min(S(1,a), S(1,c)+d(ca))

Simplifying the Algorithm

- Observe that S(i, *) depends on S(i-1, *) only; no need to keep earlier entries (S(i-2, *), ..., S(0, *))
- Reuse memory
- Simplified recursive formula: let M[v] be an 1-D array. Then M[v] = min(M[v], min{ M[w] + d(w, v) })
- We can further simplify the algorithm to give the Bellman-Ford algorithm
 - Principle: apply the edge update procedure to all edges. We don't know the right order, so choose an arbitrary one and do it a "large enough" number of times
 - (proof of correctness omitted)

Bellman-Ford Algorithm

- Time complexity: O(mn)
- Space complexity: O(n)

Example

Edges: (sa) (sb) (sc) (se) (ca) (ad) (bd) (eb) (dc) (de)

initial

V	а	b	С	d	е
D[v]	∞	8	8	8	8

i = 1

V	а	b	С	d	е
D[v]	Á	2/	-3	2	3
,	3	0	-4	0	

i = 2

V	a	b	С	d	е
D[v]	2	0	-4	-2	3

(Values updated more than once in one round)

And so on...

(3) All-Pairs Shortest Paths

- Given a graph, we want to find shortest paths between all pairs of vertices
- Straightforward approach: run single-source shortest path algorithms at each vertex
 - Positive edge weights: Dijkstra's algorithm. O(m log n) x n = O(mn log n)
 - General edge weights: Bellman-Ford algorithm. O(mn) x n = O(mn²)
- Faster algorithms?
 - Dynamic programming...

Using Bellman-Ford in APSP

- Adapt the dynamic programming formulation in Bellman-Ford algorithm to the all-pairs case
- Let D_{ij}^(k) denote shortest distance from v_i to v_j using at most k edges
- $D_{ij}^{(k)} = \min (D_{ij}^{(k-1)}, \min_{\text{all } w} \{D_{iw}^{(k-1)} + d(w,j)\})$
- This gives an O(n⁴) time algorithm
- Can be improved to O(n³ log n)
 - Details omitted. See textbook if interested

Faster Algorithm: Another DP

- Consider an alternative DP formulation:
- Let D_{ij} (k) denote shortest distance from vertex v_i to v_j, using intermediate vertices with label at most k
 - D_{ij}⁽⁰⁾: edge from v_i to v_i (no intermediate vertex)
 - D_{ii}⁽ⁿ⁾: shortest path (can use any intermediate vertex)
- Consider a pair of vertices v_i and v_j, and D_{ij}(k)
- Observation: either the shortest path D_{ij}^(k) uses v_k as intermediate vertex, or it does not (i.e. uses intermediate vertices with label at most k-1)

DP using Intermediate Vertices

- This allows us to reduce to smaller subproblems:
 - If it uses intermediate vertex v_k , then two paths $v_i \to v_k$ and $v_k \to v_i$ uses intermediate vertices with label at most k-1
 - If it does not use v_k, simply have a smaller subproblem
 - Pick the shorter one

4

Floyd-Warshall Algorithm

- We arrange D_{ii}(k) in matrices
 - Let $D^{(k)}$ be an n x n matrix, k = 0, 1, ..., n
 - $D_{ij}^{(k)} = i$ -th row, j-th column entry in $D^{(k)}$
- Recursion: $D_{ij}^{(k)} = \min(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)})$

Example

Example: $D_{42}^{(1)} = \min$ $(D_{42}^{(0)}, D_{41}^{(0)} + D_{12}^{(0)})^{-1}$

D(0)

0	3	8	∞	-4
∞	0	8 ∞ 0 -5 ∞	1	7
∞	4	0	∞	∞
2	∞	-5	0	∞
∞	∞	∞	6	0

$D^{(1)}$

0	3	8	∞	-4
∞	0 4 5	∞	1	7
∞	4	0	∞	∞
2	5	-5	0	-2
∞	∞		6	0

$P^{(0)}$

/	1	1	/	1
/	/	/	2	2
/	3	/	/	/
4	/	4	/	/
/ / 4 /	/	/	5	/

P(1)

/	1	1	/	1
/ / 4 /	/	/	2	2
/	3	/	/	/
4	1	4	/	1
/	/	/	5	/

Example (cont'd)

Example: $D_{42}^{(3)} = \min_{(D_{42}^{(2)}, D_{43}^{(2)} + D_{32}^{(2)})}$

$D^{(2)}$				
0	3	8	4	-4
8	0	∞	1	7
∞	4	0	5	11
2	5	-5	0	-2
∞	∞	∞	6	0

D(3)				
0	3 0 4	8	4	-4
8 8	0	∞	1	7
∞	4	0	5	11
2		<i></i>	0	-2
∞	∞	∞	6	0

P ⁽²⁾				
/	1	1	2	1
/	/	/	2	2
/	3	/	2	2
4	1	4	/	1
/	/	/	5	/

P (3)				
/	1	1	2	1
/	/	/	2	2
/	3	/	2	2
4	3	4	/	1
/	/	/	5	/

Example (cont'd)

D (¬)				
0	3	-1	4	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

				P ⁽⁴⁾				
-1	4	-4		/	1	4	2	1
-4	1	-1		4	/	4	2	1
0	5	3		4	3	/	2	1
-5	0	-2		4	3	4	/	1
1	6	0		4	3	4	5	/
			ı					

0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

 $D^{(5)}$

P (5)				
/	3	4	5	1
4	/	4	2	1
4	3	/	2	1
4	3	4	/	1
4	3	4	5	/

Time and Space Complexity

- Time complexity: O(n³)
 - 3 nested for loops
- Space complexity: O(n²)
 - Each D array has n x n elements
 - No need to keep all D arrays, just the most recent one
- To find the actual shortest paths (not just the distances), keep track of predecessor information in another array, as before...

Finding the Actual Shortest Paths

```
Floyd-Warshall() {
  D^{(0)} := W
  P_{ij}^{(0)} := i \text{ if (i, j) is an edge,}
      otherwise nil
   for k := 1 to n \{
      for i := 1 to n {
         for j := 1 to n {
            if (D_{ij}^{(k-1)} < D_{ik}^{(k-1)} + D_{kj}^{(k-1)}) {
               D_{ij}^{(k)} := D_{ij}^{(k-1)}
               P_{ij}^{(k)} := P_{ij}^{(k-1)}
            } else {
               D_{ij}^{(k)} := D_{ik}^{(k-1)} + D_{kj}^{(k-1)}
               P_{ij}^{(k)} := P_{kj}^{(k-1)}
```