```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
ds = pd.read csv("wine-clustering.csv")
ds.head()
        Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids Nonflavanoid_Phenols
           14.23
                        1.71 2.43
                                           15.6
                                                       127
                                                                      2.80
                                                                                  3.06
                                                                                                        0.28
           13.20
                        1.78 2.14
                                            11.2
                                                       100
                                                                      2.65
                                                                                  2.76
                                                                                                        0.26
     1
     2
           13.16
                        2.36 2.67
                                            18.6
                                                       101
                                                                      2.80
                                                                                  3.24
                                                                                                        0.30
     3
           14.37
                        1.95
                             2.50
                                            16.8
                                                       113
                                                                      3.85
                                                                                  3.49
                                                                                                        0.24
           13.24
                        2.59 2.87
                                           21.0
                                                       118
                                                                      2.80
                                                                                  2.69
                                                                                                        0.39
ds.shape
     (178, 13)
ds.info()
     <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 178 entries, 0 to 177
    Data columns (total 13 columns):
     #
         Column
                                Non-Null Count Dtype
     0
                                178 non-null
         Alcohol
                                                float64
     1
         Malic_Acid
                                178 non-null
                                                float64
         Ash
                                178 non-null
                                                float64
         Ash_Alcanity
                                178 non-null
                                                float64
     3
                                178 non-null
                                                int64
     4
         Magnesium
          Total_Phenols
                                178 non-null
                                                float64
     6
          Flavanoids
                                178 non-null
                                                float64
         Nonflavanoid_Phenols 178 non-null
                                                float64
     8
          Proanthocyanins
                                178 non-null
                                                float64
          Color_Intensity
                                178 non-null
                                                float64
     10 Hue
                                178 non-null
                                                float64
     11 OD280
                                178 non-null
                                                float64
     12 Proline
                                178 non-null
                                                int64
    dtypes: float64(11), int64(2)
    memory usage: 18.2 KB
ds.isnull().sum()
    Alcohol
    Malic_Acid
                             0
    Ash
                             0
    Ash_Alcanity
    Magnesium
     Total_Phenols
    Flavanoids
    Nonflavanoid Phenols
    Proanthocyanins
    Color_Intensity
                             0
    Hue
                             0
    0D280
                             0
    Proline
                             0
    dtype: int64
plt.figure(figsize=(12,12))
sns.heatmap(ds.isna().transpose(),cmap='YlGnBu')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f3f0e13fb50>

ds.describe()

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflava
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	

plt.figure(figsize=(13,10))
corr = ds.corr()
sns.heatmap(corr, vmin=-1, center=0, vmax=1)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3f0b01e370>

ī

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

ds = sc.fit_transform(ds)

ds

 ${\tt from \ sklearn.decomposition \ import \ PCA}$

pca = PCA(n_components=2)

ds = pca.fit_transform(ds)

ds

ds

```
[-בסבממכדכי-2 בדפדפאמי-1-1
             [-1.60991228, -2.40663816],
             [-3.14313097, -0.73816104],
             [-2.2401569 , -1.17546529],
             [-2.84767378, -0.55604397],
             [-2.59749706, -0.69796554],
             [-2.94929937, -1.55530896],
             [-3.53003227, -0.8825268],
             [-2.40611054, -2.59235618],
             [-2.92908473, -1.27444695],
             [-2.18141278, -2.07753731],
[-2.38092779, -2.58866743],
             [-3.21161722, 0.2512491],
             [-3.67791872, -0.84774784],
[-2.4655558, -2.1937983],
             [-3.37052415, -2.21628914],
             [-2.60195585, -1.75722935],
             [-2.67783946, -2.76089913],
             [-2.38701709, -2.29734668],
[-3.20875816, -2.76891957]])
ds = pd.DataFrame(columns=['x','y'], data=ds)
                   х
                              у
            3.316751 -1.443463
            2.209465 0.333393
       2
            2.516740 -1.031151
       3
            3.757066 -2.756372
            1.008908 -0.869831
       ...
      173 -3.370524 -2.216289
      174 -2.601956 -1.757229
      175 -2.677839 -2.760899
      176 -2.387017 -2.297347
      177 -3.208758 -2.768920
     178 rows × 2 columns
ds.shape
     (178, 2)
from sklearn.cluster import KMeans
wcss = []
for i in range(1,11):
 kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42)
 kmeans.fit(ds)
 wcss.append(kmeans.inertia_)
plt.plot(range(1,11), wcss)
plt.xlabel("number of clusters")
plt.ylabel("wcss")
plt.show()
        1200
        1000
         800
         600
```

```
kmeans = KMeans(n_clusters=3, init='k-means++', random_state=42)
kmeans.fit(ds)

KMeans(n_clusters=3, random_state=42)

# ykmeans = kmeans.predict(ds)
ds['Labels'] = kmeans.labels_
ds
```

	х	у	Labels
0	3.316751	-1.443463	1
1	2.209465	0.333393	1
2	2.516740	-1.031151	1
3	3.757066	-2.756372	1
4	1.008908	-0.869831	1
173	-3.370524	-2.216289	0
174	-2.601956	-1.757229	0
175	-2.677839	-2.760899	0
176	-2.387017	-2.297347	0
177	-3.208758	-2.768920	0

178 rows × 3 columns

```
ds['Labels'].values
```

```
centroids = kmeans.cluster_centers_
cen_x = centroids[:,0]
cen_y = centroids[:,1]
sns.scatterplot(data = ds, x = ds['x'], y = ds['y'], hue = ds['Labels'], palette = 'crest')
sns.scatterplot(x = cen_x, y = cen_y, c = ['black'])
plt.title("clusters")
plt.xlabel("x")
plt.ylabel("y")
plt.show()
```


S