Лабораторная работа №8

Имитационное моделирование

Серёгина Ирина Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13

Список иллюстраций

3.1	Переменные окружения	7
	Модель TCP/AQM	8
3.3	График динамики изменения размера окна и длины очереди	8
3.4	Фазовый портрет (W, Q)	9
3.5	График динамики изменения размера окна и длины очереди при	
	C=0.9	9
3.6	Фазовый портрет (W, Q) при C=0.9	10
3.7	Код на языке OpenModelica	10
3.8	График динамики изменения размера окна и длины очереди	11
3.9	Фазовый портрет (W, Q)	11
3.10	График динамики изменения размера окна и длины очереди при	
	C=0.9	11
3.11	Фазовый портрет (W. O) при C=0.9	12

Список таблиц

1 Цель работы

Построить модель TCP/AQM.

2 Задание

- 1. Построить модель TCP/AQM с помощью xcos с разными параметрами.
- 2. Построить модель TCP/AQM с помощью OpenModelica с разными параметрами.

3 Выполнение лабораторной работы

Перед тем, как строить модель, я задаю контекст (рис. 3.1).

Рис. 3.1: Переменные окружения

После этого строю схему для реализации модели (рис. 3.2).

Рис. 3.2: Модель TCP/AQM

После запуска модели я получаю два графика. На (рис. 3.3) представлена динамика изменения размера ТСР окна W (t) (зеленая линия) и размера очереди Q(t) (черная линия). На (рис. 3.4) представлен фазовый портрет (W, Q), который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки.

Рис. 3.3: График динамики изменения размера окна и длины очереди

Рис. 3.4: Фазовый портрет (W, Q)

После этого я изменяю значение параметра C с C 1 на C 0.9 и заново запускаю модель. Получаю два графика. При C = C 0, 9 автоколебания более выраженные (рис. C 3.5), (рис. C 3.6).

Рис. 3.5: График динамики изменения размера окна и длины очереди при С=0.9

Рис. 3.6: Фазовый портрет (W, Q) при C=0.9

После этого открываю OMEdit и пишу код на языке OpenModelica (рис. 3.7).

```
model lab8
   parameter Real N=1;
   parameter Real R=1;
   parameter Real K=5.3;
  parameter Real C=0.9;
   parameter Real W0=0.1;
   parameter Real Q0=1;
   Real W(start=W0);
10
11
   Real Q(start=Q0);
12
   equation
13
15
   der(W)=1/R-W*delay(W,R)*K*delay(Q,R)/(2*R);
   der(Q) = if Q>0 then N*W/R-C else max (N*W/R-C,0);
16
18 end lab8:
```

Рис. 3.7: Код на языке OpenModelica

После запуска модели я получаю два графика. На (рис. 3.8) представлена динамика изменения размера ТСР окна W (t) и размера очереди Q(t). На (рис. 3.9) представлен фазовый портрет (W, Q), который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки.

Рис. 3.8: График динамики изменения размера окна и длины очереди

Рис. 3.9: Фазовый портрет (W, Q)

Затем я изменяю значение параметра C с 1 на 0.9 и заново запускаю модель. Получаю два графика. При C = 0, 9 автоколебания более выраженные (рис. 3.10), (рис. 3.11).

Рис. 3.10: График динамики изменения размера окна и длины очереди при С=0.9

Рис. 3.11: Фазовый портрет (W, Q) при C=0.9

4 Выводы

Я построила модель TCP/AQM.