Appello di MATEMATICA DISCRETA Informatica (corso A) 4 settembre 2019

Nome e cognome	Matricola	
1. Verificare che la re	lazione	
	$\mathcal{R} = \{ (x, y) \in \mathbb{Z} \times \mathbb{Z} : 11 \mid 5x + 6y \}$	
è di equivalenza		

2. (esercizio riservato agli studenti che portano il programma degli anni accademici 2017-18 e 2018-19)

È assegnato il numero complesso:

$$z = \frac{(i-3)(4+i)}{(2-i)(i+5)}.$$

Determinare:

- (a) la forma algebrica di z, specificando qual è la parte reale e quale la parte immaginaria di z;
- (b) il numero complesso coniugato di z;
- (c) il modulo di z.

- 3. È assegnato il gruppo abeliano (\mathbb{Z}_{7}^{*},\cdot).
 - (a) Determinare tutti i generatori di $(\mathbb{Z}_7^*,\cdot);$
 - (b) determinare l'ordine di $[2]_7$ in (\mathbb{Z}_7^*, \cdot) ;
 - (c) verificare che $H=\{[1]_7,[2]_7,[4]_7\}$ è un sottogruppo di (\mathbb{Z}_7^*,\cdot) e determinare l'inverso di ogni elemento di H.

4. Sono assegnate le matrici

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ -1 & -1 \end{pmatrix}$$

- (a) Calcolare, se possibile $A \cdot B$ e $B \cdot A$
- (b) calcolare, se possibile le matrici inverse di $A \cdot B$ e di $B \cdot A$.

5. È assegnato il grafo \mathcal{G} avente le seguente rappresentazione:

- (a) Stabilire se $\mathcal G$ ammette un cammino o un circuito Euleriano;
- (b) verificare che \mathcal{G} è planare, tracciandone una rappresentazione planare, e verificare la formula di Eulero;
- (c) stabilire se $\mathcal G$ è bipartito e, in caso affermativo, determinare i due partiti di $\mathcal G$.

TA T											
Nome	Ω	COGY	$n \cap m \in$	١							
TIOHIC	\mathbf{c}	COSI	\mathcal{I}		 	 	 	 	• • •	• • •	

6. (esercizio riservato agli studenti che portano il programma di un a.a. precedente al 2017-18)

È assegnato il reticolo (\mathcal{D}_{40} , |), dei divisori di 40, ordinato per divisibilità,

- (a) Tracciare il diagramma di Hasse di $(\mathcal{D}_{40},\ |\);$
- (b) determinare gli eventuali complementi di tutti gli elementi di \mathcal{D}_{40} ;
- (c) stabilire se (\mathcal{D}_{40}, \mid) è distributivo;
- (d) stabilire se (\mathcal{D}_{40}, \mid) è di Boole.