Blurring and shifting DOG responses

Blurring and shifting DOG responses

- The blurring operation as the computation of the maximum value of the weighted thresholded responses of a DoG filter.
- For weighting, multiply the responses of the DoG filter by the coefficients of a Gaussian function, whose standard deviation is a linear function of distance ρ_i from the support center of the filter.

$$\sigma' = \sigma'_0 + \alpha \rho_i$$

where σ_0' and α are constants.

- Then each blurred DoG response is shifted.
- The blurred and shifted response of DoG filter is given by:

$$s_{\sigma_i,\rho_i,\phi_i}(x,y) = \max_{x',y'} \{c_{\sigma_i}(x - \Delta x_i - x', y - \Delta y_i - y')G_{\sigma'}(x',y')\},$$

$$-3\sigma' \leqslant x', \ y' \leqslant 3\sigma' \quad \Delta x_i = -\rho_i \cos \phi_i \quad \Delta y_i = -\rho_i \sin \phi_i$$

DOG response

blurshift of DOG response

sigma	0.5
sigma0	0.5
alpha	0.1167
rho	0

DOG response

blurshift of DOG response

sigma	0.733
sigma0	0.5
alpha	0.1167
rho	2

DOG response

blurshift of DOG response

sigma	0.9667
sigma0	0.5
alpha	0.1167
rho	4

DOG response

blurshift of DOG response

sigma	1.2
sigma0	0.5
alpha	0.1167
rho	6

DOG response

sigma	0.33
sigma0	0.33
alpha	0.0167
rho	0