

Medición y Verificación en la Gestión de Proyectos de Eficiencia Energética

► Agroindustria

la Agancia Chilana da Eficiancia Engraética (AChEE), co una fundación da derecha privada. Es	un organismo autó
La Agencia Chilena de Eficiencia Energética (AChEE), es una fundación de derecho privado. Es nomo, técnico y ejecutor de políticas públicas en torno a la Eficiencia Energética. Su misión es proconsolidar el uso eficiente de la energía en Chile, articulando a los actores relevantes, tanto a nivel nacional, a través de la implementación de iniciativas públicas y privadas en los sectores de mayor contribuyendo con ello al desarrollo competitivo y sustentable del país.	omover, fortalecer y nacional como inter-

© Agencia Chilena de Eficiencia Energética

Medición y Verificación en la Gestión de Proyectos de Eficiencia Energética - Agroindustria

Primera Edición: Agosto de 2015

La Guía "Medición y Verificación en la Gestión de Proyectos de Eficiencia Energética - Agroindustria", es un proyecto desarrollado por la Agencia Chilena de Eficiencia Energética (AChEE) en el marco del Proyecto "Mapeo Nacional y Cursos en temas de Medición y Verificación"

Titularidad de los derechos:

Agencia Chilena de Eficiencia Energética (AChEE)

Autor:

Equipo multidiciplinario constituido por Sociedad Consultora Sistemas Sustentables Ltda.:

David Carrasco

Catalina Gálvez

Pilar Henríquez

Sebastián Herrera

Boris Inda

Solange Parra

Casandra Quinteros

Oscar Ramírez

Diego Ramírez

Javier Reveco

William Vidal

Revisión y edición:

Krystian Muñoz, AChEE

Álvaro Soto, AChEE

Ángelo López, AChEE

Diseño gráfico:

Boris Inda

Víctor Vinagre D., AChEE

Organización colaboradora:

Sociedad Consultora Sistemas Sustentables Ltda

Derechos reservados

Prohibida su reproducción

Indice

	INTRODUCCIÓN	06
	ANTECEDENTES DEL SECTOR	07
Ш	EFICIENCIA ENERGÉTICA	11
	MEDICIÓN Y VERIFICACIÓN DE PROYECTOS DE EFICIENCIA ENERGÉTICA	
V	SISTEMAS DE GESTIÓN DE LA ENERGÍA	23
VI	PROTOCOLOS DE MEDICIÓN Y VERIFICACIÓN	26
1/11	INTERNATIONAL PERFORMANCE MEASURAMENT AND VERIFICACTION PROTOCOL Y SU USO	
VIII	LA CERTIFICACIÓN CMVP	35
IX	CASO DE ESTUDIO	37
	CASO DE ÉXITO EN LA AGROINDUSTRIA	
	ENTIDADES RELACIONADAS A LA MEDICIÓN Y VERIFICACIÓN	
	PLANES TIPO DE MEDICIÓN Y VERIFICACIÓN	
	GLOSARIO	61
	BIBLIOGRAFÍA	64

I. Introducción

Actualmente existe una creciente necesidad a nivel nacional de optimizar el uso de la energía, en el caso particular del sector industrial se busca reducir el consumo energético, por un lado, para disminuir los costos de operación y por otro lado reducir la demanda de recursos naturales. Durante el último tiempo la preocupación ha aumentado, dada la dependencia nacional de combustibles fósiles producidos en otros países y sus precios, que han fluctuado siempre con una tendencia al alza. Adicionalmente, en sectores con uso de fuentes de energía más diversificadas, como es el caso de la generación eléctrica, la inestabilidad del recurso hídrico disponible para la generación de energía a través de centrales hidroeléctricas reduce la capacidad de satisfacer la demanda de energía por medios internos.

Para satisfacer la necesidad de reducción de consumo de energía, surge la eficiencia energética como una alternativa viable tanto técnica como económicamente y de relativamente fácil implementación para distintos sectores productivos. Pero, ¿Qué es la eficiencia energética? La eficiencia energética consiste en efectuar acciones para lograr reducir el consumo de energía, sin afectar la calidad o cantidad de bienes y servicios producidos.

Sin embargo, surge una brecha que disuade a muchas empresas de emprender acciones de eficiencia energética: ¿Cómo calcular el ahorro energía de forma confiable? Esta pregunta no se puede responder sencillamente aludiendo a la diferencia entre dos valores de factura observados, pues esta diferencia puede no deberse directamente a una medida de eficiencia energética (MEE) implementada. Cambios de temporada, cambios en la forma en que se operan las máquinas, cambios en la tarifas de recursos energéticos, cambios en los niveles de producción e incluso cambios en la gestión organizacional pueden tener impactos sustanciales en la cantidad de energía observada, y deben ser consideradas al momento de evaluar el real impacto de las mejoras en eficiencia energética implementadas.

Es así como surge el concepto de Medición y Verificación, que contempla una serie de metodologías, procedimientos y criterios para obtener un resultado confiable de cuál es el real impacto de ciertas MEE en algún proceso, actividad, e incluso en una instalación completa.

Adicionalmente, esta herramienta no sólo responde a las necesidades de ahorro energético, sino que también está profundamente vinculada con procesos de medición y mitigación de la emisión de Gases de Efecto Invernadero (GEI), principales causantes del Cambio Climático. La mitigación de las emisiones de estos gases es de principal interés para la comunidad internacional, redundando en la creación de políticas públicas y privadas que buscan combatir sus efectos adversos y que, finalmente, afectan la competitividad de las empresas que se desenvuelven en mercados globales. Es por esto que contar con metodologías confiables para la determinación del resultado energético puede eventualmente generar mayor confianza y robustez en el cálculo y reporte de emisiones de GEI evitadas debido a una determinada iniciativa.

La presente guía permitirá al lector interiorizarse en la temática de la Medición y Verificación, conocer sus potencialidades y requerimientos de aplicación, además de entender su uso a través de ejemplos con la finalidad de lograr incorporarla como parte de los procedimientos de gestión, que seguramente ya están instaurados exitosamente en las industrias.

II. Antecedentes del Sector

La Agroindustria, dentro de los antecedentes energéticos del Ministerio de Energía, está considerada dentro de la categoría de Industria Varias, la cual agrupa alrededor de 282 mil empresas de distintos rubros (SII, 2013). La actividad agroindustrial se desarrolla principalmente entre la V y la VII regiones del país. Dentro de su quehacer cuenta con procesos de alto consumo de energía, por ejemplo, las plantas de congelados, que representan un 46% del consumo total del sector (ODEPA, 2012).

La Agroindustria puede dividirse en cuatro grandes tipos:

- Concentrados: Productos obtenidos básicamente con la extracción de agua presente los jugos naturales de los alimentos, intentando minimizar las pérdidas del resto de los demás componentes. Los productos hortofrutícolas concentrados son de gran importancia para el país, pues permiten exportar al resto del mundo grandes cantidades de frutas y hortalizas a un menor volumen en forma de jugo, pulpas o pastas, las que son reconstituidas o reformuladas en los diferentes destinos.
- **Deshidratados:** Productos a los que mediante distintos procesos se les extrae el agua presente naturalmente en ellos, procurando minimizar el impacto en los nutrientes del producto. A diferencia de los concentrados, los deshidratados son productos sólidos y secos no como los concentrados que son jugos o pulpas de alta densidad.
- **Conservas:** Productos que han sido manipulados con el objetivo de retrasar su pérdida de calidad, comestibilidad o valores nutricionales en el tiempo. Esto se logra evitando el crecimiento de microorganismos, así como retrasando la oxidación de las grasas presentes.
- Congelados: Productos cuya agua presente en ellos es solidificada mediante un proceso de enfriamiento a temperaturas bajo los 0°C. Una congelación efectiva debe ser ultra-rápida, por lo que los proceso unitarios de congelación son altamente exigentes en cuanto a energía, velocidad de paso y sellado. Sin embargo, el éxito de la operación estará dado además, por la capacidad de la instalación de preservar la cadena de frío y evitar la descongelación en etapas posteriores como el envasado, el almacenamiento o distribución, lo cual incrementa la demanda energética de este tipo de productos, ya sea para mantener las bajas temperaturas en salas de proceso o cámaras de almacenamiento bajo los -18°C. Las tendencias del mercado, marcadas por la necesidad de alimentos más saludables y de fácil acceso o preparación, han dado un impulso a la industria de alimentos congelados, lo cual conlleva a una mayor demanda de energía eléctrica.

A nivel nacional la actividad industrial del sector Agroindustria, representada por el PIB, se concentra principalmente entre las regiones V y VIII, como se observa en la **Figura 2.1** (Banco Central de Chile, 2014).

Región de Región del Libertador Región del Maule Región del Bío Región Valparaíso, Metropolitana, **General Bernardo** con el 14,0% de **Bío** con el 14,4% con el 12,7% de la con el 9,4% de la O'Higgins, con el 20,9% la producción de de la producción producción de este producción de este de la producción de este este sector en el de este sector en sector en el país. sector en el país. sector en el país. país. el país.

Figura 2.1 Principales regiones que concentran la actividad Agroindustrial.

Según información reportada por el Banco Central entre el 2011 y 2013, estas tres regiones aportan cerca del 72% de la producción agroindustrial del país en términos de PIB. Sin embargo, dentro del producto interno bruto regional, esta actividad posee una participación diferente, como se observa en la **Figura 2.2**. En ella se logra apreciar que las regiones VI, VII y XIV poseen la mayor predominancia de esta industria en su actividad local, todas con más de un 10% de participación (Banco Central de Chile, 2014).

* Los porcentajes representan el aporte de la Agroindustria en el PIB regional

Figura 2.2 Porcentaje de aporte al PIB regional de la Agroindustria.

PRINCIPALES PROCESOS

La Agroindustria es el sector que se encarga de la producción e industrialización de distintos productos agropecuarios, forestales y biológicos. Para ello se utilizan una gran variedad de procesos productivos. Los cuales aprovechan la energía disponible para cumplir con el requerimiento de trabajo y así generar el producto final. Los procesos utilizados con mayor frecuencia en distintas operaciones son:

Figura 2.3 Caldera de vapor a diésel.

Sistemas de generación de frío: Se utiliza principalmente para conservar los productos que se generan en las líneas de producción. Algunos solo se mantienen a bajas temperaturas para evitar su maduración prematura, otros se congelan para ser envasados en diferentes formatos. Los refrigeradores o ambientes de atmósfera controlada generalmente utilizan energía eléctrica para la operación del proceso (Figura 2.4).

Generación de vapor: Para pre cocer algunos productos o eliminar los microorganismos presentes se utilizan autoclaves que utilizan vapor como insumo para la operación, generando un alto consumo energético en el proceso. Este fluido se produce en calderas (Figura 2.3), las cuales generan vapor con el calor obtenido principalmente de la combustión de combustibles fósiles, como el petróleo diésel, gas y carbón.

Figura 2.4 Congelador industrial de alimentos.

Bombeo: El uso de bombas (**Figura 2.5**) en líneas de producción es extensivo, siendo necesario para movilizar distintos fluidos de trabajo utilizados para tareas tan variadas como movimiento de combustibles, movimiento de productos como pulpas o concentrados, generación de fuerza por medio de presión hidráulica, etc. Las bombas que se utilizan para estos fines generalmente son bombas centrífugas, las cuales alimentan su motor con energía eléctrica

Figura 2.6 Horno de secado de fruta.

Compresión de aire: Muchos procesos productivos del sector poseen en su línea de producción, sopladores o secadores que utilizan aire comprimido. Este aire comprimido se obtiene mediante el trabajo de compresores (Figura 2.7). Estos elementos son grandes consumidores de energía en una planta, pues suelen tener extensos periodos de operación. Las líneas de aire comprimido pueden operar a altas presiones dependiendo del requerimiento del proceso, por ello se utilizan materiales resistentes para fabricar los componentes que son accesorios al compresor.

Figura 2.8 Correas transportadoras.

Figura 2.5 Bomba centrífuga eléctrica.

Utilización de hornos: Los hornos industriales (**Figura 2.6**) son utilizados para diversas tareas como el calentamiento de insumos, cocido de frutas, verduras y otros productos. Los hornos poseen un alto consumo energético pues utilizan grandes cantidades de combustible o electricidad para alcanzar las temperaturas de operación requeridas

Figura 2.7 Compresor de aire industrial.

Transporte por correas: El transporte por correas se utiliza principalmente para desplazar materiales granulados o un gran número de unidades de algún producto (**Figura 2.8**), como por ejemplo frutas deshidratadas, o unidades enteras. Este sistema es de carácter continuo que utiliza una cinta de caucho, papel o el material elástico que se requiera, el cual se mueve entre dos poleas o polines, por efecto de la fuerza suministrada por de poleas motrices, las cuales poseen motores eléctricos que entregan la energía necesaria para mover la carga.

PRINCIPALES ENERGÉTICOS UTILIZADOS EN LA AGROINDUSTRIA

El consumo energético base de los procesos agroindustriales es la electricidad, con la cual se mecanizan las líneas productivas y se enlazan los diferentes procesos unitarios (cintas transportadoras, bombeo de fluidos, sistemas de generación de frío, etc.). La energía eléctrica está presente en cada etapa del proceso productivo, sin embargo, para algunas de ellas, sobre todo las relacionadas con el control de carga patógena, como el escaldado, pasteurización, esterilización, concentración o envasado aséptico, requieren en un mayor uso de energía térmica (para generar vapor de agua), la cual es obtenida principalmente mediante la utilización de combustibles fósiles.

Electricidad: Utilizada para el movimiento de líneas productivas, cintas transportadoras, refrigeración, bombeo, etc. Se obtiene desde la red o desde motores generadores. La energía eléctrica que se utiliza en el país proviene mayoritariamente de fuentes fósiles (63%) distribuidas a lo largo de todo el país, seguido de la hidroelectricidad (34%) concentradas mayoritariamente en la zona sur del país. (Ministerio de Energía, 2012).

Combustibles fósiles: El petróleo, el gas natural y el carbón se utilizan principalmente para los procesos de calderas y generación de calor para tareas como calentar agua u otros fluidos necesarios, sistemas eléctricos de respaldo de procesos críticos (generadores), etc.

Se debe seguir trabajando en incrementar la eficiencia energética en este rubro, pues el consumo energético es considerable. Como referencia se tiene que del consumo eléctrico de una planta o empresa agroindustrial promedio un 40% se utiliza en las cámaras de frío, un 16% en el bombeo de fluidos, un 7% en líneas de lavado, un 7% en líneas de seleccionado, un 6% en líneas de envasado, un 6% en iluminación y un 18% en otras tareas (CENERGIA, 2007). Sin embargo, no todas las plantas establecen medidas de mejoramiento o eficiencia energética, ya que de un total de 219 plantas encuestadas tan solo el 37,4% de las plantas declaran contar con estos programas (ODEPA, 2012).

III. Eficiencia Energética

¿QUÉ ES LA EFICIENCIA ENERGÉTICA?

La eficiencia energética se puede entender de varias formas. Por un lado, como la reducción del uso de energía sin impactar en el nivel de producción ni en su calidad. Por otro lado, puede entenderse como hacer más con la misma cantidad de energía. Por lo tanto, la eficiencia energética es la optimización de la relación entre los productos o servicios finales obtenidos y la cantidad de energía utilizada en su producción.

Como producto de la eficiencia energética se obtiene "energía evitada" que antes se utilizaba en algún proceso o actividad en particular, y hoy se encuentra disponible para otros usos. Por lo tanto, es la fuente de energía más limpia, segura y económica para una organización. Es por esto que la eficiencia energética puede convertirse en una importante alternativa para reducir costos.

Cualquier organización o empresa puede ser poco eficiente en el uso de la energía. Esta ineficiencia se podría deber a la utilización de maquinarias sin el mantenimiento apropiado, al funcionamiento innecesario de elementos que consumen energía o a la mala planificación de operaciones, entre otras causas.

Para abordar esta situación, se plantea la aplicación correcta de Medidas de Eficiencia Energética (MEE), la cual requiere contar con una supervisión y evaluación estandarizada que asegure verificar el impacto real de las medidas implementadas.

MEDIDAS DE EFICIENCIA ENERGÉTICA

Las Medidas de Eficiencia Energética corresponden a acciones destinadas a optimizar el uso de los recursos energéticos utilizados en la organización. Aplicadas correctamente, permiten incrementar el rendimiento energético de los procesos, es decir, maximizar la relación entre los bienes o servicios producidos y la cantidad de energía utilizada para ello.

De manera general se pueden distinguir al menos tres tipos de MEE, de acuerdo a la naturaleza de las acciones que se toman para buscar obtener ahorros energéticos.

Mejoras Operacionales

Por medio de la gestión de las actividades y la optimización de los recursos disponibles es posible mejorar la eficiencia energética de la organización consiguiendo los beneficios de estas mejores prácticas.

Recambios Tecnológicos

En la actualidad los proveedores de diversos equipos o sistemas consideran relevante la eficiencia energética, por esta razón es que equipos modernos utilizan de mejor manera los recursos energéticos. Modernizar un proceso productivo incorporando máquinas o equipos más eficientes puede reportar importantes ahorros en la operación.

Cambio Cultural

La educación en eficiencia energética es fundamental para que cualquier medida o programa obtenga resultados. La adopción de una cultura de utilizar los recursos que corresponden, en sí es una forma de hacer eficiencia energética.

Es interesante notar que aunque la mayoría de las MEE se ajustan preferentemente a sólo uno de estos tipos, la realidad es que casi todas las MEE tienen componentes de los tres tipos en sí mismas. Por ello, se les puede llamar los tres pilares de la eficiencia energética.

Por ejemplo, si en algún proceso productivo se decide reemplazar un motor por otro de mayor eficiencia, esta medida es del tipo Recambio Tecnológico. Sin embargo, ¿qué pasaría si el motor es operado por semanas y meses sin aplicar un apropiado programa de mantenimiento? Es posible que en poco tiempo ya no sea tan eficiente como se pensó en un principio. Por lo tanto se requiere realizar una Mejora operacional, acompañando al Recambio Tecnológico. Ahora, ¿qué pasaría si, aún cuando el proceso ha finalizado y debe pasar un tiempo antes de volver a utilizar la máquina impulsada por este motor, el operario no se diera el trabajo de apagarlo por ese tiempo? Siempre que no existan condiciones de diseño que impidan volver a encenderlo las veces que sea necesario, es muy probable que el procedimiento establecido por la compañía haya definido sólo encenderlo cuando se va a usar. Aunque el procedimiento esté definido, se puede aplicar una iniciativa de Cambio Cultural del buen uso de los recursos de la empresa.

DESAFÍOS Y OPORTUNIDADES DE LA EFICIENCIA ENERGÉTICA EN CHILE

Existen diversos desafíos en Chile respecto al uso de la energía. Si bien éstos podrían verse como problemas, también se pueden ver como oportunidades de realizar eficiencia energética y reducir los costos de operación. Algunos de los desafíos existentes hoy se presentan a continuación.

Hoy día, son diversos los factores que pueden afectar la eficiencia energética de una máquina, una línea de ensamblaje o un proceso productivo en general, estas pérdidas de eficiencia pueden ser producidas principalmente por:

Problema

Selección inadecuada de dispositivos: Por ejemplo, el uso de motores eléctricos de baja eficiencia, calderas o calentadores inadecuados para el combustible y/o equipos de combustión no calibrados apropiadamente para trabajar en alturas mayores donde el aire es menos denso, reduciendo el oxígeno disponible.

ortunidad

Por temas de costos y de factores de seguridad de trabajo, muchas veces no se escogen equipos con los mayores niveles de eficiencia o se utilizan equipos estándar que no cumplen con los requerimientos específicos de la operación. Al seleccionar equipos de alta eficiencia se reducirían costos de producción, los que según el nivel de uso y la vida útil del equipo podrían traer importantes ahorros.

Problema

Uso de dispositivos y equipos en puntos de baja eficiencia: Esto ocurre comúnmente en la selección de bombas centrífugas, calderas, motores eléctricos, etc. Muchas veces un determinado proceso requiere una energía nominal determinada y por disposiciones de ingeniería se sobre dimensiona para permitir holguras innecesarias.

Oportunidad

Es común ver motores de 100 [hp] o mayor potencia instalados en procesos con requerimientos de 25 a 30 [hp], bombas centrífugas trabajando sobre su curva de eficiencia en el 50% o menos. Esto lleva a que las máquinas consuman más energía de la realmente necesaria para el proceso. Por ello es importante seleccionar equipos acorde a los requerimientos o utilizarlos correctamente para aprovechar la mayor parte de la energía que consumen. En la **Figura 3.1** se presenta una gráfica típica de las curvas de desempeño de un motor eléctrico. Se puede observar en la curva de Rendimiento, de color rojo, que ésta es creciente a medida que se aumenta el porcentaje de carga, es decir, a mayor carga o resistencia, el motor realiza un mejor aprovechamiento de la energía, llegando al máximo posible por sobre el 80% de carga. Si las condiciones de operación lo hacen trabajar a menor carga, el motor reducirá su eficiencia, es decir, gastará más de lo necesario para el trabajo que está ejecutando.

Figura 3.1 Curvas características del rendimiento en función del porcentaje de potencia real sobre la nominal para un motor eléctrico. Fuente: Agencia Chilena de Eficiencia Energética. Manual para la Gestión de la Energía en la Industria Metalmecánica. Santiago, Chile.

Pérdidas en la transmisión y acumulación de energía: Todos los medios de transferencia de energía tienen pérdidas de carga, por ejemplo, caídas de tensión en las líneas de transmisión eléctrica, pérdidas de presión en las líneas de transporte de fluidos. Por su parte, el acumular energía en forma de calor tiene inherentemente pérdidas de temperatura, lo cual se traduce en mayor gasto energético. Sin embargo, es poco frecuente que los departamentos técnicos de las industrias cuantifiquen y hagan gestión sobre estas pérdidas, para muchos consideradas inevitables.

Por medio de la implementación de medidas de eficiencia energética como el mejoramiento en la aislación de líneas de cañerías o el aumento del diámetro de cañerías o cables eléctricos pueden obtenerse importantes reducciones de consumo energético reduciendo pérdidas muchas veces consideradas inevitables. El aumento del diámetro de las cañerías reduce las pérdidas de carga por arrastre. Por su parte, conductores eléctricos de menor diámetro tienen mayor resistividad, por lo que se genera mayor pérdida de calor en las líneas.

Pérdidas por mala planificación de los procesos productivos: Es frecuente que en la programación y/o planificación de los procesos productivos se produzcan pérdidas innecesarias, como recirculación de materiales, desaprovechamiento de remanentes, rechazos por calidad, áreas de ensamblado muy distantes, etc.

Si se realiza una mejor planificación del proceso productivo, es posible reducir el uso redundante de equipos que consumen energía, por lo que se reduce el consumo y aumenta la eficiencia.

Problema Oportunidad

EFICIENCIA ENERGÉTICA EN LA AGROINDUSTRIA

Se han identificado las principales causas de ineficiencias y las soluciones existentes para los procesos descritos en el capítulo introductorio de la guía. A continuación se analizan las MEE aplicables a los diferentes procesos productivos demandantes de energía propios de la Agroindustria.

- **Generación de vapor:** El vapor generado es posiblemente utilizado en un sector distinto a donde se encuentra la caldera, por lo tanto resulta esencial reducir al mínimo las posibles pérdidas energéticas existentes entre el punto de generación y uso final.
 - o Calderas de vapor: El vapor se genera al interior de calderas de vapor, las cuales funcionan con distintos tipos de combustibles, por ejemplo: diésel, gas, biomasa, entre otros. Para mejorar la eficiencia en las calderas es que se realizan MEE, como precalentamiento del agua con energía solar, precalentamiento del aire dentro de la cámara de combustión con los gases de escape, etc.
 - **o Fugas de vapor:** Para solucionar estos problemas se debe integrar en el programa de mantenimiento preventivo, la detección y eliminación de fugas de vapor. Si bien ciertas fugas podrían detectarse a simple vista, esto sería en casos en que la fuga sea crítica. Por lo tanto, es necesario realizar inspecciones regulares para detectar las pérdidas y eliminarlas tan pronto sea posible. Para ello, se pueden ocupar mecanismos directos de detección térmica en este caso, tales como equipos de ultra sonido o cámaras termográficas, los cuales permiten identificar una pérdida especialmente alta de calor. También están los mecanismos indirectos de control a través del control de la presión en la línea de vapor.
 - o Pérdidas de calor: Siempre que existan dos elementos a diferente temperatura, ya sea un líquido, un sólido o un gas, ocurre transferencia de calor. Para evitar esta pérdida de energía del elemento más caliente, es necesario que todas las líneas que unen los elementos estén adecuadamente aisladas térmicamente. Así mismo, los propios sistemas de transferencia de calor generarán perdidas energéticas que deben ser consideradas. Por lo anterior, es necesario integrar en el programa de mantenimiento preventivo la revisión periódica del estado físico del aislante empleado en las líneas de transmisión de vapor, pues éste suele tener poca resistencia mecánica, y cualquier golpe podría reducir su capacidad de aislamiento.

En la Agroindustria, al igual que en el resto de la Industria Alimentaria, la energía térmica es utilizada para la inactivación enzimática o reducción de carga microbiana patógena, generalmente asociada a un Punto Crítico de Control (PCC). El vapor en este caso se usa de manera directa o indirecta (mediante el uso de agua caliente). En este contexto, una adecuada validación térmica del proceso productivo (escaldado, pasteurizado, esterelizado, concentrado, etc.) permitirá conocer de manera precisa las variables de trabajo (temperatura, tiempo, etc.) necesarias para conseguir el objetivo de la etapa productiva, minimizando las pérdidas energéticas.

- Recuperación de calor: Es importante considerar que en procesos térmicos es posible implementar MEE de recuperación de calor. Este calor, que usualmente se disipa a la atmósfera, puede ser recuperado a través de distintos sistemas de almacenamiento, como intercambiadores de calor de placa o la reutilización directa de agua caliente. Este calor remanente puede ser utilizado en otras actividades o instalación cercana al proceso térmico original.
- o Diseño de planta o línea productiva: Al momento de diseñar una planta o línea productiva, se deben evitar las distancias entre la generación y el uso del vapor, pues existirán pérdidas debido al roce por la longitud de las líneas. Las pérdidas no sólo serán en forma de calor, sino también en caídas de presión del fluido transportado, especialmente en las singularidades de los conductos, como en codos, válvulas y otras desviaciones que hacen que se deba inyectar más energía inicial para mantener el flujo en las condiciones necesarias.

- **Sistemas de bombeo:** Las pérdidas de carga antes mencionadas aumentan los requerimientos de energía que debe aplicar el sistema de bombas para mover el fluido a la velocidad deseada.
 - o Pérdidas de carga innecesarias: Existen diversas fuentespotenciales de pérdidas de carga, o presión, innecesarias.
 - o Diseño de las líneas: En ocasiones, por poco tiempo disponible para reparaciones o por falta de materiales, se pueden intervenir las líneas introduciendo pérdidas de carga innecesarias, como por ejemplo cuando se disminuye el diámetro en algún punto de la línea de forma innecesaria. Eventualmente un mal diseño inicial podría haber introducido esos errores y mantenerse ahí por años. Se debe realizar una inspección de la línea y asegurar que el diseño es óptimo, con los diámetros necesarios y las singularidades (codos, reducciones, llaves de paso) necesarias.
 - **o Materiales de conductos:** Cada material tiene distinta rugosidad superficial. Se deben evaluar las alternativas y calcular los costos energéticos de utilizar ductos de un material u otro. Eventualmente, una fuga podría ser el momento de analizar un cambio de material, y no sólo el cambio de pieza.
 - o Diseño de la planta: Es posible que el crecimiento de la planta haya desplazado el punto de utilización final del fluido bombeado respecto a la sala de bombas. Se debe analizar en la etapa de diseño de una ampliación, y también en la construcción de una nueva planta, la ubicación apropiada de las bombas.
 - **o Las pérdidas de carga:** También pueden minimizarse a través del control de la viscosidad del fluido. En la Agroindustria es muy común transportar fluidos no newtonianos¹, como pulpas de fruta, mayonesa, huevo líquido, etc., los cuales se pueden hacer más bombeables y fácilmente transportables a través de modificaciones en la viscosidad o la composición de los productos.
 - **o Otras cosideraciones:** Además de la viscosidad y composición de los elementos se debe considerar el tamaño de los productos o partículas para realizar consideraciones energéticas, es decir, la granulometría. Por ejemplo, para congelación o cocido de algunos elementos se considera la temperatura al centro del alimento, por lo tanto, mientras menor sea el diámetro o tamaño de la pieza que se quiera tratar, más rápida será la transferencia térmica, y por ende, menor el consumo energético.
 - **o Dimensionamiento del equipo:** Las bombas deben estar bien dimensionadas considerando el caudal y características del fluido que debe movilizar, para trabajar en su rango óptimo de operación y consumo energético.
- Generación de frío: Las plantas de congelados poseen una gran cantidad de procesos donde se extrae el calor bajo la acción de ciclos de refrigeración, que entre sus componentes se encuentran bombas e intercambiadores de calor, que enfrían los alimentos por medio de la circulación de distintos fluidos refrigerantes, los cuales al igual que cualquier fluido transportado por cañerías presenta fugas y pérdidas de carga que pueden ser abordadas por medio de un correcto diseño de la planta.
 - **o Ordenamiento de cámaras:** Una forma de abordar la eficiencia en la generación de frío es el ordenamiento al interior de las cámaras frigoríficas, ya que la temperatura al interior de la cámara varía según la disposición de los elementos dentro de la misma.
 - **o Buenas prácticas:** Además de mejoras tecnológicas relacionadas al diseño o a la operación del sistema, en la generación de frío son muy importantes las buenas prácticas de eficiencia, como por ejemplo, el cerrado de puertas y la mantención de la aislación de las cámaras de frío.

¹ Un fluido no newtoniano es aquel fluido cuya viscosidad varía con la temperatura y la tensión cortante que se le aplica.

- **Compresión de aire:** En el caso del aire comprimido, el factor clave para mantener un buen rango de eficiencia es, por un lado, reducir al mínimo la caída de presión del aire en su trayecto desde el compresor al punto de utilización final, y por otro, la reducción del tiempo que opera el compresor.
 - o Temperatura de admisión: Cada pistón del compresor tiene una capacidad establecida de barrido. Si el aire que ingresa al compresor está a alta temperatura estará más expandido, es decir, en el mismo espacio barrido por el compresor entrará menos aire en términos de masa. Esto llevará a que el compresor tenga que trabajar más tiempo para comprimir la misma masa de aire en comparación a que si éste ingresara frío. Se debe verificar si el aire de la zona donde se encuentran los compresores no es calentado por otro equipo o proceso. Si no es posible trasladar los equipos a otra ubicación, se debe evaluar generar un conducto de admisión que permita ingresar aire desde el exterior al compresor desde una zona de menor temperatura.
 - **o Limpieza de aletas:** Un elemento clave en los compresores son sus aletas, que disipan el calor generado en el proceso de compresión. Si éstas están sucias, el calor se mantendrá en el cilindro y reducirá la cantidad de aire admitido por el compresor en cada ciclo de compresión.
 - **o Cambio de filtro de aire:** Filtros de aire demasiado sucios entorpecen la admisión, incrementando el trabajo que debe hacer el motor del compresor para ingresar aire. Se debe realizar chequeo y cambio de filtros según las especificaciones del fabricante.
 - o Recuperación de calor: Es importante considerar que en procesos de compresión de aire es posible implementar MEE de recuperación de calor. Este calor, que usalmente se discipa a la atmósfera, puede ser recuperado a través de intercambiadores de calor y ser utilizado en otra actividad o instalación cercana al proceso de aire comprimido original.
 - **o Usos innecesarios:** Se tiende a relacionar el uso de aire comprimido como un buen mecanismo de ahorro de agua, por ejemplo, para limpieza de las instalaciones. Es importante evaluar el impacto a nivel energético de este tipo de prácticas antes de aplicarlas.
- Movimiento de cintas transportadoras: Resulta clave para el funcionamiento apropiado de este sistema el buen estado de los elementos rodantes.
 - o Mantenimiento preventivo: Algunos elementos rodantes pueden trabarse sin necesariamente detener el funcionamiento del proceso. Esto es ventajoso pues no detiene la producción inmediatamente. Sin embargo, conlleva a que el sistema de impulsión, generalmente un motor eléctrico, tenga que trabajar con mayor carga, incrementando el consumo de energía para producir lo mismo, reduciendo así la eficiencia. Para evitar estos problemas, u otros que podrían producirse cuando la no reparación oportuna pudiera generar daños más graves en la máquina, es necesario considerar y ejecutar un programa de mantenimiento.
 - o Material y diseño de la cinta: Existen cintas de diferentes características, como por ejemplo plásticas, metálicas, de tela, etc. También lisas, entramadas, anchas, angostas, más gruesas, etc. Estas características se relacionan directamente con la demanda energética de la línea, por lo cual el tipo de correa es una descisión importante para el desempeño energético de la planta.
 - o Operación de la cinta: Además del material y el mantenimiento de la cinta transportadora es importante en el consumo energético el uso que se le da a ésta. Cuando se opera con una cinta sobrecargada en peso la cinta se doblará dificultando el transporte del producto, por lo cual se consumirá mayor cantidad de energía en el mismo proceso.

- Movimiento de máquinas: El uso de motores eléctricos para movilizar las máquinas es intensivo en la industria. Los motores deben ser correctamente dimensionados a su carga para evitar consumo innecesario. Los componentes del motor, así como la condición de operación gobernarán el consumo eléctrico.
 - o Correcto dimensionamiento: En el proceso de selección del motor se debe considerar su eficiencia para el rango de operación en el que se utilizará. Estar fuera del punto de mayor eficiencia significa un gasto innecesario de energía. Del mismo modo, para las mismas condiciones de operación existirán motores de mayor eficiencia que otros, principalmente por el peso de sus componentes y la capacidad que ellos tengan para disipar el calor. Si bien su costo inicial puede ser mayor, la vida útil de estos motores permitirá eventualmente recuperar la inversión inicial adicional. Finalmente, algunas aplicaciones permiten ajustes en la partida de manera que se alcance la velocidad de giro de paulatinamente, redundando en un menor consumo.
 - o Evitar la operación en vacío y des-alineamientos: Sólo se debe accionar el motor para efectuar un trabajo ya que su operación en vacío, es decir, sin carga, genera un consumo innecesario de energía que debe ser evitado. Así mismo, un motor que no esté correctamente alineado con su carga requerirá de mayor energía para realizar el mismo trabajo.
 - **o Uso de variadores de frecuencia:** Generalmente, la velocidad de giro del motor se establece para puntos de operación específicos. Sin embargo, adicionando variadores de frecuencia, se puede establecer la velocidad de rotación apropiada para la operación requerida y que se encuentre en la zona eficiente de operación del motor.
 - **o Mantenimiento apropiado:** El mantenimiento del motor es fundamental para mantenerlo en las condiciones de operación y consumo energético para los que fue diseñado. La correcta limpieza de las aletas de disipación de calor, así como el engrase y otras recomendaciones del fabricante deben ser realizadas de manera oportuna. Finalmente, no se recomienda realizar más de dos rebobinados en la vida útil del motor.
- **Uso de calor en hornos:** Al igual que los sistemas de generación de vapor, el uso de hornos presenta muchas oportunidades de mejora en cuanto a la eficiencia energética. Algunas de ellas se mencionan a continuación:
 - **o Recuperación de calor:** Es importante considerar que en los gases de escape de los hornos se puede recuperar a través de intercambiadores de calor o de forma directa, mezclada con otros fluidos, y ser utilizado en otra actividad o en etapas previas al proceso original.
 - o Correcta operación: Tanto el proceso de calentamiento del horno, como los procesos de carga y descarga de hornos, implican pérdidas de energía. Una buena planificación de las operaciones permitirá minimizar estas pérdidas, así como una buena distribución de los productos dentro del horno permitirá un mejor aprovechamiento del calor proporcionado.
 - **o Mantenimiento apropiado:** El mantenimiento de la aislación del horno, como de los mecanismos de cerrado hermético, permitirá aprovechar a cabalidad el calor generado. Por otra parte, el buen mantenimiento de los quemadores y resistencias eléctricas evitarán el incremento en el consumo energético en el tiempo para generar una misma cantidad de calor.
 - o Limpieza y desinfección del equipo del horno: Sin una correcta limpieza de los equipos se generan engrosamientos de capas residuales en las tuberías o superficies de contacto, lo cual aumenta el peso completo del sistema o aumenta el roce del producto en el transporte, lo que afectará en el consumo energético de la planta.

- Factor de potencia: El factor de potencia representa una función de la energía o potencia eléctrica activa respecto a la reactiva que es demandada por los usuarios. Este factor aparece en una instalación eléctrica en la que existen equipos que poseen dispositivos de inducción, y es necesaria para crear campos magnéticos y eléctricos en dichos componentes. Su valor puede variar entre 0 y 1, pero si es menor a 0,93, la compañía distribuidora procede a multar a los usuarios. La razón de esto es que si todos tuvieran un factor de potencia bajo, los costos operacionales del distribuidor asociados a la transmisión y transformación de la energía se incrementarían. La multa consiste en recargar el costo de la energía en un porcentaje dependiente de la tarifa contratada por la empresa o cliente, y la multa varía por cada centésima del valor calculado. Si bien esta opción no corresponde a una MEE propiamente tal, si produce un ahorro económico en la factura de electricidad, aunque no en el energético como tal.
 - **o Corrección del factor de potencia:** Para corregir el factor de potencia se utilizan bancos de condensadores, los cuales ayudan a compensar el consumo excesivo de energía reactiva y a mejorar la relación entre ésta y la energía activa consumida.
- Transporte interno: Dentro de la Agroindustria, el uso de grúas horquilla es bastante intensivo al movilizar grandes cantidades de productos entre equipos de producción, cámaras de refrigeración y empacado final. Por ello es que existen la oportunidades de eficiencia energética a través de conducción eficiente de los conductores de grúa horquilla, elección correcta del tipo de combustible, gestión de las rutas, mantenimiento de grúas, etc.
- **Disposición de residuos:** A pesar de ser procesos secundarios dentro de la industria, los retiros de residuos son de vital importancia para mantener limpias las superficicies de transferencia de calor y despejadas las líneas de transporte de material, evitando y/o disminuyendo las pérdidas energéticas.
- Tratamiento de aguas: Este proceso se aplica para aguas de alimentación como también a aguas residuales. En los procesos de tratamientos de aguas se utilizan equipos de bombeo, mezcla y/o agitación. Estos procesos asociados representan una fracción importante del consumo energético de la planta, los que además se relaciona a obligaciones normativas que deben cumplir este tipo de industrias, por lo anterior es importante que los equipos utilizados estén en buenas condiciones de mantenimiento para un uso óptimo y disminuir pérdidas energéticas innecesarias.

Si bien se cuenta con las alternativas anteriormente descritas para realizar eficiencia energética en la Agroindustria, existen otras iniciativas de ahorro energético para implementar en distintos sectores de la industria. Sin embargo, para determinar el impacto de las medidas de eficiencia energética, éstas deben ser medidas y verificadas en el tiempo para contar con resultados confiables tanto en términos energéticos como financieros.

Para medir y validar una MEE, es necesario contar con una herramienta robusta y realista que permita evaluar de forma concreta el impacto de las iniciativas implementadas. Esta herramienta debe permitir evaluar consumos energéticos, realizar comparaciones para estimar el costo y así llevar a parámetros contables los ahorros energéticos conseguidos por las medidas de eficiencia energética. Además de permitir medir y validar ahorros generados por una MEE, la herramienta debe ser capaz de considerar las variables de operación de la industria o proceso en el cual está inserta, como los niveles de producción, la estacionalidad, el personal disponible, etc. Para ello es que se cuenta con la Medición y Verificación, la cual da respuesta a las necesidades de medición que posee la industria en los procesos productivos y las iniciativas relacionadas al mejor uso de la energía. Para mayor información, se pueden revisar la "Guía de Eficiencia Energética en proyectos de inversión" y la "Guía para la Calificación de Consultores en eficiencia energética", realizadas por la Agencia Chilena de Eficiencia Energética².

² Guía de Eficiencia Energética en proyectos de inversión: www.acee.cl/system/files/guia_de_ee_en_proyectos_de_inversion_0.pdf

IV. Medición Y Verificación de Proyectos de Eficiencia Energética

MEDICIÓN Y VERIFICACIÓN

Los ahorros no se pueden medir de forma directa, puesto que éstos representan la ausencia del consumo de energía. Ellos se determinan comparando el consumo antes y después de la implementación de una o varias MEE, a la vez que se realizan los ajustes, teóricos o prácticos, según la variación de las condiciones iniciales. El conjunto de actividades que permite establecer dichos ahorros y su seguimiento en el tiempo se conoce como Medición y Verificación.

La Medición y Verificación es la principal herramienta de un sistema de mejora continua de la eficiencia energética. En el capítulo V se estudiará una estrategia para implementar un sistema de estas características, es decir, un Sistema de Gestión de la Energía. Sin embargo, pudiera ser necesario querer cuantificar el real impacto de iniciativas aisladas que no estén contenidas en un plan, programa o lineamiento estratégico particular de una empresa, por lo que en cualquiera de los casos mencionados es necesario profundizar en el concepto de Medición y Verificación antes de abordar las componentes de un sistema más amplio.

Si bien el objetivo principal de la Medición y Verificación es lograr determinar de manera confiable el impacto o efectividad obtenido por cierta actividad o proyecto, en el proceso se recolecta información relevante para la toma de decisiones futuras, tales como los costos económicos asociados a la implementación de cada MEE y los ahorros monetarios obtenidos en el tiempo, los que son documentados y permiten realizar un análisis tanto presente como futuro del proyecto. De manera general se puede considerar que la Medición y Verificación es un proceso que requiere de la ejecución de una serie de etapas antes de efectuar las mediciones propiamente tal, como se muestra en la **Figura 4.1**. En otras palabras, la única forma de determinar los resultados reales de una MEE es a través de mediciones comparables en el tiempo y en condiciones similares. De esta forma, es de vital importancia entender el proceso global, y cómo se puede comprobar que los resultados medidos son confiables y válidos.

PLAN DE MEDICIÓN Y VERIFICACIÓN

La planificación detallada garantiza que se dispondrá de los datos requeridos para la determinación de ahorros obtenidos producto de la implementación de una MEE. Así mismo, se busca que la obtención de los datos requeridos tenga un costo razonable. La planificación antes descrita debe ser documentada en un Plan de Medición y Verificación que muestra de manera detallada la metodología utilizada para la medición, así como la captación de datos utilizados y otros aspectos relevantes a ser estudiados en el capítulo VII de la presente guía, en el contexto del estudio de protocolos de Medición y Verificación.

Para esta planificación es fundamental tener en cuenta que el proceso de Medición y Verificación comienza antes de la implementación de la MEE, por lo que es necesario identificar las etapas previas a su implementación. Las etapas mencionadas son: 1) Una auditoría de eficiencia energética donde se identifiquen los mayores consumos y las MEE aplicables, 2) Un estudio de pre-inversión o anteproyecto de eficiencia energética para definir las mejores alternativas y, finalmente, 3) La implementación de la MEE. Entonces, el proceso de Medición y Verificación empieza desde el momento de la auditoria energética o al evaluar un anteproyecto de eficiencia energética. Es en dicho momento donde es posible recopilar información que probablemente en un futuro sea muy difícil volver a tener acceso.

Este proceso en su desarrollo también considera la validación del procedimiento, por parte de quien implementa la o las MEE y del usuario final de la energía. El poder cuantificar el ahorro de una forma aceptada por todos los implicados en la gestión de las MEE dentro de la empresa, permitirá sostener las inversiones en el tiempo, y abre las puertas a un proceso de mejora continua, descubriendo los mejores caminos para obtener los mayores retornos con las MEE seleccionadas.

Figura 4.1 Esquema general del proceso de Medición y Verificación.

VENTAJAS DE CONSIDERAR LA MEDICIÓN Y VERIFICACIÓN

Actualmente existen brechas en la correcta implementación y evaluación de MEE que pueden ser abordadas mediante la Medición y Verificación. Algunas de estas brechas se describen a continuación.

- Falta de conocimiento en cómo se usa y consume la energía al interior de la organización.
- Compra de productos y servicios centrada en la inversión inicial, y no en los costos de operación durante su vida útil.
- No se tiene claridad de cuánto tiempo perdura la efectividad de una MEE aplicada, es decir, hasta cuándo se puede considerar que sigue ahorrando.
- Foco en la producción y en resolver los problemas cotidianos impide "levantar la cabeza" e identificar y cuantificar ineficiencias.
- Aunque las MEE pueden estar implementadas, no se les realiza seguimiento en el tiempo.
- No existe una búsqueda sistemática de oportunidades de mejora en la eficiencia energética.

Todos los aspectos señalados anteriormente son abordados por protocolos y metodologías internacionales que serán desarrollados en el capítulo VI de la presente guía.

Dentro de las ventajas de implementar la Medición y Verificación en los proyectos de eficiencia energética, se tiene:

- Entrega información clara para ser transmitida ya sea dentro de la organización, como para clientes y finalmente para proveedores, evitando posibles conflictos derivados de la medición de los ahorros mal determinados o cuya obtención es poco transparente.
- Es una herramienta para establecer las "reglas del juego" entre las partes relacionadas con la implementación, control y gestión de la MEE. Esto es de especial importancia cuando se quiere realizar un contrato de desempeño energético, definidos más adelante en este mismo apartado.
- Permite identificar oportunidades de mejora en los procesos más demandantes de energía.
- Si se utilizan metodologías estandarizadas como los revisados en el capítulo VI, entonces confiere credibilidad a nivel internacional de los informes de ahorro de energía. Esto permite a las empresas tomar la eficiencia energética como un elemento diferenciador respecto a su competencia en los mercados globales.

CONTRATOS POR DESEMPEÑO ENERGÉTICO

Un ejemplo de la utilidad que posee disponer de un proceso estandarizado de Medición y Verificación está representado por los Contratos por Desempeño Energético. Se define como Contrato por Desempeño Energético (CDE) o, en inglés, Energy Performance Contracting (EPC), aquel acuerdo contractual entre el Beneficiario (cliente) y el Proveedor de una medida de mejora de la eficiencia energética, cuando las inversiones de dicha medida se pagan en relación a un nivel de mejora de la eficiencia energética convenido por el contrato entre el proveedor y el cliente final.

En definitiva, bajo un Contrato por Desempeño Energético, el Proveedor examina la instalación, evalúa el nivel de ahorros energéticos que podrían ser conseguidos y ofrece la implementación del proyecto garantizando esos ahorros durante el plazo convenido. El esquema de la **Figura 4.2** presenta cómo se realiza la distribución de la reducción de consumo, o ahorro, entre las partes.

Figura 4.2 Forma de distribución clásica de los ahorros obtenidos en el modelo Contrato por Desempeño Energético con Ahorros compartidos.

En la situación actual se tiene un determinado consumo energético. En el periodo de duración del contrato, tras la implementación de las MEE, se comenzarán a ver los ahorros (como ausencia de consumo), los cuales son repartidos entre el Cliente y el Proveedor de acuerdo a lo establecido en el contrato. Una vez finalizados los pagos estipulados en el contrato, todos los ahorros futuros benefician al cliente, pues éste se queda con la MEE implementada en su instalación.

En el Contrato por Desempeño Energético se especifica el plan financiero, es decir, cómo se efectuarán los pagos o distribuciones del ahorro. Este plan puede contemplar las siguientes posibilidades:

- Ahorros compartidos: La inversión asociada al proyecto de Eficiencia Energética es asumida completamente por el Proveedor. Por lo general dicha inversión puede ser propia del Proveedor o financiada a través de la banca a través de un crédito solicitado por éste.
- Ahorros garantizados: La inversión asociada al Proyecto de Eficiencia Energética es asumida completamente por el Cliente, estando el Proveedor en obligación contractual de cumplir con los ahorros comprometidos en el contrato. De lo contrario el Cliente podrá poner en efecto el cobro de las garantías entregadas por el Proveedor.
- Inversión compartida entre el Cliente y el Proveedor: Ambas partes realizan un aporte financiero inicial.

De los modelos anteriores, el más usado es el de ahorros compartidos, pero para todas las posibles modalidades de contrato se hacen en función del porcentaje de los ahorros monetarios pactados en el Contrato por Desempeño Energético. Así mismo, dicho contrato establece los plazos en que opera este mecanismo, después del cual los ahorros son del Cliente en su totalidad. Es en este sentido que un buen desarrollo del proceso de diseño e implementación de un Plan de Medición y Verificación se hace fundamental, ya que de éste depende la validación de los ahorros energéticos generados, lo que finalmente se traduce en ahorros monetarios.

V. Sistemas de Gestión de la Energía

De acuerdo a la Norma Chilena NCh-ISO 50001, "los Sistemas de Gestión de la Energía (SGE) son un conjunto de actividades y procesos destinados a mejorar el desempeño energético³ de una organización, incluyendo la eficiencia energética, el uso y el consumo de la energía" (Instituto Nacional de Normalización, 2011).

La Norma NCh-ISO 50001 establece lineamientos aspirando a un proceso de mejora continua, el que contempla cuatro etapas específicas. Para la norma, estas actividades deben estar enmarcadas dentro de una política energética que los entes directivos deben adoptar y transmitir al resto de la organización. A continuación se describen brevemente cada una de estas etapas.

- Planificar: Consiste en realizar una revisión del consumo energético de los procesos que la organización lleva a cabo, establecer una línea base de consumo, indicadores de desempeño energético (IDE), objetivos de mejora, metas y planes de acción necesarios para conseguir los resultados esperados, de acuerdo con el potencial de mejora del desempeño energético y la política energética de la organización.
- Hacer: Implementar los planes de acción de gestión de la energía definidos en la etapa de planificación.
- **Verificar:** Realizar el seguimiento y procesos de medición de las características claves de sus operaciones que determinan el desempeño energético frente a la política y objetivos energéticos e informar los resultados.
- Actuar: Tomar acciones para mejorar de manera continua el desempeño energético y el SGE propiamente tal.

A continuación se describen las actividades enmarcadas en el proceso de mejora continua de un SGE, mostradas en la **Figura 5.1**.

Figura 5.1 Esquema de las etapas contempladas en SGE (Instituto Nacional de Normalización, 2011).

- a) Política energética: En primer lugar los cargos directivos deben definir una política energética a nivel de toda la organización, la que dará coherencia a todas las acciones que se hagan a continuación.
- b) Planificación energética: Luego, se realiza la planificación energética que contemplará los pasos a seguir para reducir el consumo energético, más una revisión energética, junto con la determinación de una línea base del consumo y el establecimiento de indicadores que permitirán determinar si las acciones llevadas a cabo a partir del plan son efectivas o no.

³ Se entiende como desempeño energético a un conjunto de resultados medibles relacionados a la eficiencia energética, uso de la energía y consumo de ella.

- c) Implementación y operación: El siguiente paso dentro de este proceso es la implementación y operación de las acciones definidas en la etapa de planificación. En este punto es donde se llevan a cabo los proyectos e iniciativas de eficiencia energética claves para disminuir el consumo energético de la organización.
- d) Verificación: En forma paralela se realiza el proceso de verificación, que consiste en el seguimiento, medición y análisis de las características claves de sus operaciones que determinen el desempeño energético. En esta etapa también se deben realizar auditorías internas para verificar que el SGE está llevándose a cabo de buena manera.
- e) Revisión por la Dirección: Una vez se ha llevado a cabo el proceso de verificación, los cargos directivos deben revisar los resultados obtenidos para evaluar acciones a tomar ya sea para mejorar el sistema de gestión, como para destacar las mejoras en el desempeño energético obtenidos ante todos los involucrados.

RELACIÓN DE LOS SISTEMAS DE GESTIÓN DE ENERGÍA Y LA MEDICIÓN Y VERIFICACIÓN

Dentro de la etapa de Planificación energética se definen los indicadores de desempeño energético y se determina, tanto a nivel de medición como de obtención de datos, la información de consumo, de producción, u otras variables que inciden en consumo de energía, que serán utilizadas para la evaluación del desempeño del SGE, las que serán evaluadas en la etapa de Verificación. En esta etapa se evaluará el desempeño de estos indicadores con el objetivo de visualizar si las políticas de eficiencia energética implementadas están siendo efectivas o no. La Medición y Verificación se utiliza para una correcta evaluación de los indicadores. De esta forma se pueden identificar las correlaciones existentes entre el consumo de energía y las variables que influyen en él, y determinar si los IDE definidos fueron seleccionados de manera adecuada durante el proceso de planificación.

Otro aspecto en que la Medición y Verificación está incluida en un SGE, es en la cuantificación de la reducciones de consumo generadas por las MEE implementadas de acuerdo a la planificación definida en las primeras etapas del SGE. De esta manera se pueden evaluar los ahorros generados y retornos de los distintos proyectos de eficiencia energética planificados en el marco del sistema de gestión, para compararlos entre sí y priorizar las inversiones que generen un mayor beneficio a la organización.

PARÁMETROS A SER MONITOREADOS DENTRO DE UN SGE

En el contexto de los SGE, existen diversos parámetros que pueden ser monitoreados para evaluar el desempeño energético de la organización a través de los IDE, y para realizar una correcta Medición y Verificación de los proyectos implementados. Esta medición permite la mejora continua que se espera como resultado de la implementación del SGE.

Algunos ejemplos de IDE que se pueden obtener a partir de los parámetros definidos anteriormente son:

- o Consumo de diésel por hora de operación de grúa horquilla, medida en [m³/h], [l/h] o [kWh/h].
- o Consumo de electricidad por cada tonelada de acero producida, medida en [kWh/t].
- o Consumo de diésel para el sanitizado de mil unidades de envases, medida en [l/Muds] o [kWh/Muds].
- o Consumo de electricidad por cada caja de fruta movilizada en una correa transportadora, medida en [kWh/t].
- o Consumo eléctrico por unidad de potencia de impulsión en una sala de bombeo, medida en [kWh/kW].

Así mismo, en la **Figura 5.2** se muestra un ejemplo de cómo se correlaciona la producción de toneladas mes con el consumo energético en unidades energéticas equivalentes [MWhe/mes]. El coeficiente de correlación R²(término estadístico cuyo valor representa una adecuada correlación entre dos o más variables) de 91,7% muestra una alta correlación lineal entre la producción y el consumo energético (se considera aceptable si es mayor a 75%), en otras palabras quiere decir que el aumento o descenso en la producción genera una fluctuación proporcional en el consumo de energía. Entendiendo que existe un buen ajuste entre ambas variables, entonces se puede construir un IDE, que es la relación lineal entre el consumo energético y la producción [MWh/t].

Figura 5.2 Correlación entre el consumo eléctrico y la producción mensual, previo a la implementación de un SGE.

En la **Figura 5.3** se presenta una comparación entre el IDE real, obtenido a través de datos de consumo energético y producción real, y el IDE estimado, que se calcula únicamente a partir de la regresión lineal de los datos previos a la implementación del SGE, mostrando cuán bien se representa el consumo energético a partir del modelo de regresión construido con los datos representados en la **Figura 5.2**. Cabe notar que en la **Figura 5.3** en el eje de las ordenadas la escala ha sido magnificada para representan cómo el modelo es capaz de representar las variaciones reales del IDE. Esta información es utilizada para la estimación de los ahorros, posterior a la implementación de un SGE.

Figura 5.3 Modelo que estima el consumo en base a la producción.

Un SGE deberá establecer una metodología de análisis específico para la correcta determinación de los indicadores planteados. Para resolver este desafío, en los próximos capítulos se revisan las tareas específicas a llevar a cabo para diseñar e implementar esta metodología. Lo anterior a través del estudio de los protocolos y metodologías específicas existentes para estos fines.

VI. Protocolos de Medición y Verificación

PROTOCOLOS DE MEDICIÓN, VERIFICACIÓN Y EFICIENCIA ENERGÉTICA

Con el fin de que las empresa y entidades que implementan MEE desarrollen procedimientos de medición y verificación adecuadamente, existe metodologías y estándares que permiten guiar paso a paso el desarrollo de dichos procedimientos.

En este contexto es que diversos organismos mundiales, tales como el Efficiency Valuation Organization (EVO), la American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), y el Department of Energy de EEUU, entre otros, han desarrollado metodologías y estándares que permiten realizar estos procesos de forma sistemática y clara. Algunos de estos estándares se muestran en la **Tabla 6.1**.

Tabla 6.1 Protocolos de Medida y Verificación.

Institución	Protocolo	Descripción
American Society of Heating, Refrigeration and Air conditioning Engineers (ASHRAE) [†]	Measurement of Energy and Demand Savings Guidelines	Provee lineamientos para medir las reducciones en consumo y demanda energética a partir de proyectos de gestión de energía en edificios.
Efficiency Valuation Organization (EVO) ⁱⁱ	International Performance Measurement and Verification Protocol (IPMVP)	Guía que describe los procedimientos y métodos estadísticos para medir, cuantificar, verificar y reportar la disminución en el uso de la energía en proyectos de eficiencia energética. También se utiliza para proyectos asociados al uso de agua.
Department of Energy, Federal Energy Management Program M&V Guidelines (US DOE FEMP) [™]	Department of Energy, Federal Energy Management Program M&V Guidelines (US DOE FEMP)	Provee los lineamientos y métodos para la medición y verificación de energía, agua y ahorros asociados a contratos por desempeño energético en edificios federales (Energy Savings Performance Contract).
California Energy Commission (CEC) ^{iv}	California Energy Efficiency Evaluation Protocols	Describe e identifica los procesos estándar para cada protocolo de medición utilizados para reportar costos de programas y beneficios.
Club des Services d'Efficacité Energétique (CLUBS2E)	Méthodes de Mesure et de Vérification (M&V)	Establece los métodos a ser implementados como parte integral del sistema de calidad de una empresa de servicios de eficiencia energética así como también del Sistema de Gestión de la Energía.

Institución	Protocolo	Descripción
The Canadian Standards Association (CSA)	Canadian Industry Program for Energy Conservation (CIPEC)	Promueve la adopción voluntaria de la eficiencia energética, para reducir el consumo industrial por unidad de producción, mejorando el desempeño económico de las industrias aportando con el objetivo de cambio climático de Canadá.
Organización Internacional para la Estandarización (ISO). ^{vi}	ISO 50001, Energy Management Systems	Esta norma internacional especifica los requisitos para establecer, implementar, mantener y mejorar un sistema de gestión de la energía, con el propósito de permitir a una organización contar con un enfoque sistemático para alcanzar una mejora continua en su desempeño energético, incluyendo la eficiencia energética, el uso y el consumo de la energía.
Instituto Nacional de Normalización (INN) ^{vii}	NCh-ISO 50001:2011, Sistemas de Gestión de la Energía. Análisis de requisitos e implementación	El estándar ISO 50001 fue aprobado por el consejo del Instituto Nacional de Normalización (INN) de Chile en septiembre del año 2011. Desde entonces, su utilización como herramienta de mejora continua del desempeño energético ha aumentado considerablemente, especialmente en el sector privado.
Organización Internacional para la Estandarización (ISO)	ISO 50015:2014, Energy Management Systems - Measurement and Verification of Energy Performance of Organizations - General Principles and Guidance	Esta norma establece los principios y directrices generales para el proceso de medición y verificación del desempeño energético de una organización o de sus componentes.
Instituto Nacional de Normalización (INN)	NCh-ISO 50015:2015, Sistemas de Gestión de la Energía - Medición y Verificación del Desempeño Energético de Organizaciones - Principios y Guías Generales	Esta norma Internacional puede ser utilizada independientemente, o en combinación con otras normas o protocolos, y se puede aplicar a todos los tipos de energía. Adopción idéntica de la versión en inglés de la norma internacional ISO 50015:2014.
Organización Internacional para la Estandarización (ISO)	ISO 17743 Definition of a Methodological Framework Application to Calculation and Reporting on Energy Savings	Establece las intenciones y metodologías generales de cuantificación de ahorros energéticos desarrolladas en las ISO 17742, 17747, 17741.
Organización Internacional para la Estandarización (ISO)	ISO 17741 General Technical Rules for Measurement, Calculation and Verification of Energy Savings of Projects	Esta norma puede ser utilizada por cualquier interesado a fin de aplicar la Medición y Verificación para la notificación de los resultados de ahorro de energía de proyectos.

i www.ashrae.org
ii www.evo-world.org/index.php?lang=es
iii www.energy.gov/sites/prod/files/2013/10/f3/mv_guidelines.pdf
iv www.energy.ca.gov
v www.iso.org/iso/home.html
vi www.guiaiso50001.cl
vii www.inn.cl

Institución	Protocolo	Descripción
Organización Internacional para la Estandarización (ISO)	ISO 17742 Energy Efficiency and Savings in for Countries, Regions or Cities	Establece los principios, metodologías, conceptos claves de la medición y verificación de resultados de proyectos de eficiencia energética en países, regiones o ciudades.
Organización Internacional para la Estandarización (ISO)	ISO 17747 Determination of Energy Savings in Organizations	Establece los principios, metodologías, y conceptos claves de la medición y verificación de resultados de proyectos de eficiencia energética en organizaciones y empresas.

Dentro de las metodologías y estándares de medición, verificación y eficiencia energética, existen varias líneas de trabajo. Entre las diferentes directrices de trabajo se encuentran:

- Proyectos individuales de eficiencia energética: Esta línea o directriz se desarrolla para la evaluación del ahorro de energía de un solo proyecto en particular, implementados en una empresa, industria o establecimiento. Este enfoque se basa en el aislamiento de la medida de eficiencia energética o aislamiento de todas las instalaciones, como por ejemplo el IPMVP.
- Evaluación de programas de eficiencia energética: Protocolos o directrices para evaluar el ahorro de energía reales generados por los programas de eficiencia energética. La evaluación del programa incluye varios componentes, siendo uno de ellos la evaluación de impacto en términos energéticos y financieros mediante la Medición y Verificación. Un ejemplo de este tipo de protocolos es el California Energy Efficiency Evaluation Protocol.
- Seguimiento a nivel nacional o regional de las tendencias en los indicadores de consumo de energía, como la intensidad energética: La intensidad energética es un indicador que da cuenta de la eficiencia energética de una economía, los procedimientos para el cálculo de este indicador realizados por los ministerios, los organismos de estadística o instituciones de investigación, incorporan nociones y planes de medición y verificación en sus procedimientos. Un ejemplo de este tipo de políticas es el CIPEC Program, del gobierno Canadiense.
- **Sistemas de medición de eficiencia para organizaciones:** Procesos y procedimientos de gestión de energía implementados en una organización para supervisar el rendimiento energético, como los estipulados por la norma ISO 50001 Energy Management System (Global).
- Certificados de Eficiencia Energética: Existen certificaciones más específicas, como por ejemplo para la construcción de edificios que entrega el Green Building Council de Estados Unidos (USGBC). La certificación LEED (Leadership in Energy and Environmental Design) es un método de evaluación de edificios verdes, a través de pautas de diseño objetivas y parámetros cuantificables. Es un sistema voluntario y consensuado, diseñado en EEUU, que mide entre otras cosas el uso eficiente de la energía, el agua, la correcta utilización de materiales, el manejo de desechos en la construcción y la calidad del ambiente interior en los espacios habitables. En particular la certificación LEED confieren mayor puntaje a aquellos proyectos que poseen un plan de Medición y Verificación, incluyendo los desarrollados con el protocolo IPMVP⁴.

De todos los estándares de Medición y Verificación, el IPMVP destaca por tener un enfoque general e integral para abordar diversos proyectos de Eficiencia Energética. En particular se enfoca ya sea, aislando el parámetro clave, la medida implementada, el sistema en que se trabaja, toda la instalación e inclusive una simulación calibrada. El alcance del IPMVP resulta suficiente para diversas aplicaciones, de este modo existen varios protocolos que se basan en éste para abordar rubros específicos como la construcción, el transporte, etc.

VII. International Performance Measurement and Verification Protocol y su uso

Como se vio en el capítulo VI, existen diversos protocolos que orientan y facilitan el proceso de Medir y Verificar los ahorros generados por proyectos de eficiencia energética, dentro de éstos, uno de los que más se destaca es el International Performance Measurement and Verification Protocol (IPMVP) (EVO, 2010).

El IPMVP fue creado en los inicios de la década de los noventa, en busca de definir una estandarización de los procesos de Medición y Verificación. Lo importante de este protocolo es su enfoque general y completo que permite ser aplicado a todos los tipos de proyectos de eficiencia energética, de ahorro de agua o de energías renovables, dando un sustento internacional a la evaluación de las actividades y proyectos de eficiencia energética realizados.

En el presente capítulo se entrega una visión general acerca del IPMVP, en donde por una parte se describen los beneficios que genera su uso, las opciones que presenta para determinar ahorros energéticos, los pasos a seguir al momento de aplicarlo, consideraciones sobre el presupuesto destinado a Medición y Verificación, así como también conceptos claves que ayudan a un mejor entendimiento del protocolo.

CONCEPTOS CLAVE

Antes de describir el protocolo cabe hacer una definición de la terminología específica que éste utiliza. Los conceptos clave se presentan en la **Tabla 7.1**

Tabla 7.1 Conceptos claves.

Concepto	Descripción
Plan de Medición y Verificación	Es donde se planifica y definen los detalles para realizar las actividades a realizar en todo el proceso de Medición y Verificación a llevar a cabo.
Medida Eficiencia Energética	Acciones o iniciativas que se llevan a cabo para disminuir el consumo de energía de una instalación o parte de ella.
Límite de medida	Es el conjunto de equipos y/o instalaciones de los cuales se va a determinar el ahorro debido a una MEE aplicada. Para la definición del límite de medida es necesario evaluar si la implementación de la MEE afecta al consumo de energía de toda la instalación, de un sistema o un grupo de sistemas, o de un componente o un grupo de componentes aislados.
Variables independientes	Parámetro que se sabe que cambiará en el tiempo y del cual depende el consumo energético de un equipo o instalación. Por ejemplo: Horas de uso de una máquina, kilómetros recorridos por un vehículo, nivel de producción de una planta, días-grados de calefacción o enfriamiento con respecto a la temperatura ambiente, etc.
Periodo de Referencia	Periodo de tiempo previo a la implementación de la MEE que es considerado como base para comparar con el consumo tras la ejecución de la misma. La duración del periodo de referencia debe ser lo suficientemente larga para abarcar un ciclo completo de consumo energético, ya sea horario, diario, semanal, mensual, etc. y debe ser lo suficientemente corto para evitar costos innecesarios e incertidumbre.

Concepto	Descripción
Periodo Demostrativo de Ahorro	Periodo de tiempo en el cual se verifica el ahorro posterior a la aplicación de una MEE. La duración de este periodo debe ser al menos la de un ciclo completo de consumo energético de la instalación o el equipo.
Factores Estáticos	Factores que se asumen como invariantes y constantes durante el periodo de referencia y que pudiesen cambiar durante el periodo demostrativo de ahorro posterior a la implementación de la MEE. Algunos ejemplos de factores estáticos son el tamaño de la planta, el número de líneas de producción existentes, la maquinaria que se está midiendo, etc. Es de vital importancia tener control y realizar el seguimiento de estos factores ya que un cambio en alguno de ellos requerirá un Ajuste de Referencia.
Ajustes rutinarios	Ajustes que se realizan para compensar los cambios generados por las variables independientes seleccionadas dentro del límite de medida. Estos ajustes pueden ser en las condiciones del periodo de referencia o en condiciones normalizadas.
Ajustes no rutinarios	Ajustes que se realizan al consumo del periodo de referencia para equiparar las condiciones con el periodo demostrativo de ahorro en el caso de existir algún cambio en los factores estáticos detectados en la etapa de planificación de la Medición y Verificación.

DESCRIPCIÓN DEL PROTOCOLO IPMVP

Con el objetivo de proveer una prueba de los resultados de la gestión energética, el IPMVP brinda un marco de trabajo y cuatro alternativas técnicas para determinar los ahorros tras la implementación de proyectos de eficiencia energética, además de un esquema que permite la confección de informes de ahorro con resultados coherentes y fiables de manera sistemática.

Dentro de las actividades que se consideran en este protocolo, están la medición de la energía utilizada, el monitoreo de variables independientes que afecten el consumo energético, el cálculo del ahorro mediante metodologías previamente establecidas, redacción de informes demostrativos de ahorro, y la creación de Planes de Medición y Verificación que consideren las actividades antes mencionadas (Efficiency Valuation Organization, 2010).

OPCIONES DEL IPMVP

Las opciones del IPMVP son cuatro alternativas para determinar los ahorros energéticos que se adecúan a la realidad, los objetivos y los presupuestos de los proyectos de eficiencia energética. Por ejemplo, si se desea determinar el ahorro de un equipo en particular, están las opciones A y B, que corresponden a una "Verificación aislada de la MEE". Por otro lado, si se desea determinar el ahorro generado por un MEE que afecte el consumo de toda una instalación o un conjunto de equipos, está la opción C, correspondiente a una "Verificación de toda la instalación". Por último, la opción D se utiliza cuando no se tiene información completa de alguno de los periodos de referencia o demostrativo de ahorro, los cuales pueden ser obtenidos mediante una simulación calibrada, ya sea para un equipo o para la instalación completa. La **Figura 7.1** muestra una breve descripción de cada una de las opciones. Por otro lado, en la sección de casos de éxito, casos de estudio y ejemplos de planes de medición y verificación, se verá en mayor detalle la aplicación de las opciones de verificación mencionadas.

- · Verificación Aislada. Medición del parámetro clave Opción A: El ahorro se determina en un límite de medida que es subconjunto de la instalación completa, midiendo un parámetro que se define como clave y estimando el resto. Esta opción se utiliza generalmente cuando el impacto de otros procesos en la planta pueden afectar los resultados de la medición, por lo que se debe disponer de medidores específicos para el área intervenida por la medida de eficiencia energética. En ocasiones se añade una dificultad adicional, cuando no todas las variables que afectan el consumo se pueden medir, como por ejemplo el impacto de la temperatura ambiente sobre un proceso de calefacción. Esta opción permite estimar el impacto de dichas variables en el consumo energético, sin medirlas directamente.
- Verificación Aislada. Medición de Todas las Variables Opción B: Al igual que en la opción anterior, el ahorro se determina en un límite de medida menor a la instalación completa, aunque en esta ocasión midiendo todos los parámetros que influyen en el consumo de energía. Generalmente, esta opción presenta menos incertidumbre que la opción A ya que todos los parámetros relevantes son medidos y no se realizan estimaciones.
- Verificación de Toda la Instalación Opción C: En este caso se determina que el impacto de la MEE afecta a toda la instalación y en la gran mayoría de los casos puede ser evaluado sin necesidad de instalar nuevos medidores en cada subsistema. El ahorro se determina considerando como límite de medida a toda la instalación, por ejemplo en base a la información que entregan el control de stock de combustible o las facturas de electricidad. Esta opción se selecciona si al momento de su evaluación el ahorro que generará la MEE provocará un alto impacto en la reducción del consumo energético de toda la instalación.
- Simulación Calibrada Opción D: Cuando faltan datos en alguno de los periodos, ya sea de referencia o demostrativo de ahorro, éstos pueden ser obtenidos mediante el uso de un programa de simulación bajo condiciones controladas. Generalmente se utiliza esta opción en el caso de un edificio nuevo, donde es imposible tener la situación base ya que no existía con anterioridad a la construcción. En este caso existen software de simulación de consumo energético, recomendados por el IPMVP, que permiten la estimación de la situación de base, calibrando dichas simulaciones con una simulación del periodo en el que sí se tiene información. De esta forma se dispone de un valor estimado para el consumo, pero cuya metodología de cálculo es validada (calibrada) con una situación real que si fue posible medir.

Opción A

Verificación Aislada Medición del Parámetro Clave

Opción C Verificación de Toda la instalación

Opción B

Verificación Aislada Medición de Todas las Variables

El ahorro se determina en un límite de midiendo todos los parámetros que influyen en el consumo de energía.

Opción D

Simulación Calibrada

Figura 7.1 Opciones del IPMVP.

PASOS BÁSICOS EN LA MEDICIÓN Y VERIFICACIÓN SEGÚN EL IPMVP

A continuación en la **Figura 7.2** se explican los pasos que se deben realizar para llevar a cabo el proceso de Medición y Verificación de un proyecto de eficiencia energética según los lineamientos del IPMVP.

Previo a la implementación de la MEE

- Definición de variables relevantes que afectan el consumo y Factores Estáticos
- Definición de medidores apropiados.
- Definición de periodos de medición apropiados.
- Medición de Periodo de Referencia.

Posterior a la implementación de la MEE

- Medición de Periodo Demostrativo de Ahorro.
- Determinación de los ahorros.
- Reportes periódicos y verificación de ahorros en el tiempo.

Figura 7.2 Pasos básicos en la Medición y Verificación según el IPMVP.

Para lograr con éxito estos pasos se debe tener en consideración las siguientes recomendaciones específicas, antes y después de la implementación de la MEE:

PREVIO A LA IMPLEMENTACIÓN DEL PROYECTO DE LA MEE:

- 1. Diseñar el proceso de Medición y Verificación: Consiste en definir un Plan de Medición y Verificación, en donde se determina la Medida de Eficiencia Energética a aplicar y sus objetivos, el límite de medida, qué opción del IPMVP se utilizará, cuánto tiempo se debe medir, condiciones de cada periodo de medición⁵, qué parámetros se medirán, metodología de análisis y de ajustes de base, precios de la energía de empresa suministradora y cómo se ajustarán los cambios futuros de los mismos, presupuesto disponible, responsables del reporte de resultados, formato de futuros informes, entre otras aspectos descritos en la **Tabla 7.2**. De acuerdo al IPMVP, el Plan de Medición y Verificación es donde se establecen todos los elementos que deben considerarse para llevar a cabo de forma adecuada el proceso de cuantificar los resultados energéticos de un proyecto de eficiencia energética. Un adecuado Plan de Medición y Verificación permite verificar el resultado real de un proyecto en base a informes demostrativos de ahorro (Efficiency Valuation Organization, 2010).
- 2. Calibrar aparatos de medición en caso de ser necesario: Calibrar para medir tantas variables independientes como se necesite, según la metodología definida en el Plan de Medición y Verificación. Lo anterior permite mejorar la precisión y confiabilidad de los resultados obtenidos del proceso. Para esto se pueden utilizar mediciones de referencia donde el valor a medir sea conocido con anterioridad o usar equipos cuya precisión esté certificada por un tercero.
- 3. Obtener datos del periodo de referencia: Obtener datos de consumo y demanda de energía, variables independientes y factores estáticos. Es importante definir y documentar de buena manera todas las condiciones sobre las cuales se construye el periodo de referencia antes de implementar cualquier MEE, ya que posiblemente de manera posterior no se podrán obtener datos bajo las mismas condiciones. Cabe destacar que estos datos se pueden obtener a partir de procesos previos a la definición de la MEE, como son la auditoría energética o un anteproyecto de implementación de la MEE.
- 4. Documentar el Plan de Medición y Verificación: Una vez se determinan las condiciones del proceso de Medición y Verificación, es necesario dejarlas explícitas en un documento.

⁵ Periodo de Referencia y Periodo Demostrativo de Ahorro

Tabla 7.2 Contenidos de un plan de Medición y Verificación.

Contenidos	Descripción
Objetivo de la MEE	Definición de la Medida de Eficiencia Energética a aplicar, y los objetivos que ésta contempla para disminuir los consumos energéticos de un equipo o un conjunto de ellos.
Opción del IPMVP y límite de medida	Selección y justificación de la opción del IPMVP a utilizar de acuerdo a un límite de medida apropiado para identificar la reducción en el consumo energético. El límite de medida dependerá principalmente del impacto que tenga el ahorro energético de la MEE sobre el consumo de toda la instalación.
Periodo de referencia	Identificación del periodo de referencia, en donde se incluye su duración, periodicidad, los consumos energéticos, variables independientes y factores estáticos.
Periodo demostrativo de ahorro	Determinación de las condiciones que debe tener el periodo demostrativo de ahorro, es decir, su duración en el tiempo, periodicidad, condiciones de operación esperada, etc.
Base para el ajuste	Establece las condiciones con las que se ajustarán todas las mediciones de energía, considerando los cambios en variables independientes por una parte, y por otra los cambios en los factores estáticos.
Procedimiento de análisis	Establecimiento del procedimiento concreto del análisis de datos para la obtención del ahorro. En este punto se determinan los modelos matemáticos del consumo energético en función de la o las variables independientes, para luego poder realizar los ajustes correspondientes.
Precios de la energía	Especificación de los precios de la energía que se utilizarán para valorar el ahorro, además de la forma en cómo se ajustarán si los precios cambian en el futuro.
Especificaciones de las mediciones	Establecimiento de los detalles con respecto a la realización de las mediciones, ya sean los puntos de medición, frecuencia de la toma de datos en caso de no ser continuas, instrumentos de medición a utilizar, entre otras.
Responsabilidades de monitorización	Determinación de las personas responsables del monitoreo y de la redacción de informes demostrativos de ahorro.
Precisión esperada	Evaluación de la precisión esperada de las mediciones, la toma de datos, el muestreo y el análisis de los datos. Inclusión de valoraciones cualitativas y medidas cuantitativas factibles con el nivel de incertidumbre de las mediciones y ajustes que se utilizarán en el informe de ahorro previsto, de acuerdo a lo establecido en el Capítulo 8.3 y el Apéndice B del IPMVP Volumen I EVO 10000-1:2010 (Es).

Presupuesto	Definición del presupuesto y los recursos necesarios para determinar el ahorro energético, tanto los costos de implementación iniciales como los costos que serán requeridos en el periodo demostrativo de ahorro.
Formato de informes demostrativos de ahorro	Definición del formato y contenidos del informe demostrativo de ahorro, según el Capítulo 6 del IPMVP Volumen I EVO 10000-1:2010 (Es).
Forma de garantizar calidad	Determinación de los procedimientos que permitirán asegurar la calidad en la preparación de los informes demostrativos de ahorro y en cualquier paso intermedio de su elaboración. Una forma de garantizar la calidad del procedimiento es contar con al menos un profesional CMVP en la ejecución y revisión de ellos.

POSTERIOR A LA IMPLEMENTACIÓN DEL PROYECTO:

- 1. Verificar la correcta implementación de la MEE: Verificar que los equipos/sistemas hayan sido instalados correctamente y estén trabajando según las especificaciones del Plan de Medición y Verificación.
- 2. Obtener datos del periodo demostrativo de ahorros: Obtener datos de consumo energético, variables independientes, monitorear la instalación para identificar cambios respecto a condiciones del periodo de referencia y del precio de la energía. Es necesario asegurarse de que toda la información es correcta, y almacenarla siguiendo siempre la metodología definida en Plan de Medición y Verificación.
- 3. Calcular ahorros según el Plan de Medición y Verificación: Realizar ajustes rutinarios de variables independientes y cualquier ajuste no rutinario que sea necesario en caso de cambios de los factores estáticos, luego calcular la reducción en el consumo de combustible.
- 4. Documentar mediante informes de ahorro: Finalmente es fundamental elaborar informes de ahorro, siguiendo los lineamientos del Plan de Medición y Verificación establecido. La periodicidad de los reportes se define considerando la vida útil del proyecto y en acuerdo con las necesidades de información que defina el cliente, que en el caso de un contrato por desempeño⁶, van de la mano con los periodos de pago. No obstante a lo anterior, es usual reportar mensualmente, semestralmente o anualmente los ahorros obtenidos.

BENEFICIOS

Finalmente, cabe enfatizar que la aplicación del IPMVP tiene una serie de beneficios específicos, entre los cuales destacan:

- Define criterios estándar para la cuantificación de la reducción del consumo energético en proyectos de eficiencia energética.
- Permite justificar la inversión financiera por rendimiento, asegurando que la determinación de ahorro de energía se realiza siguiendo un procedimiento establecido.
- Permite reducir el costo asociado a la confección de un contrato por desempeño energético, ya que la existencia de un Plan de Medición y Verificación en un proyecto puede simplificar la negociación de éstos.
- · Los informes demostrativos de ahorro generados por este protocolo presentan una validez internacional.
- Ayuda a mejorar la gestión y aumentar la credibilidad de programas referentes al uso de la energía.

⁶ Contrato por desempeño energético es un mecanismo que especifica las condiciones contractuales de proyectos de eficiencia energética, en donde se busca que la inversión realizada sea recuperada con los ahorros generados.

VIII. La Certificación CMVP

LA CERTIFICACIÓN CERTIFIED MEASUREMENT AND VERIFICATION PROFESSIONAL

Efficiency Valuation Organization (EVO) es un comité internacional de voluntarios que se unen bajo la iniciativa del Departamento de Energía de EEUU con la finalidad de desarrollar protocolos de Medición y Verificación para determinar ahorros generados por proyectos de eficiencia energética.

EVO ofrece a nivel mundial el programa Certified Measurement and Verification Professional (CMVP) que se ha establecido con el doble propósito de reconocer a los profesionales más cualificados en esta área de crecimiento de la industria de la energía, y el aumento de los estándares profesionales en general dentro de la medición y verificación. La certificación CMVP acredita de manera internacional que el profesional que la posee se encuentra capacitado para llevar a cabo un proceso de Medición y Verificación de ahorros energéticos, a través del protocolo IPMVP, por lo que posee las capacidades para llevar a cabo la implementación de un Plan de Medición y Verificación, además de verificar los ahorros energéticos generados por MEE implementadas por terceros. Estas capacidades se complementan a las descritas en la **Figura 8.1**

Figura 8.1 Labor de un profesional CMVP en el proceso de Medición y Verificación.

El rol del profesional CMVP cobra especial importancia en el contexto de un Contrato por Desempeño Energético (CDE), donde el profesional certificado puede actuar como el responsable del diseño del Plan de Medición y Verificación y de los Informes de Ahorros del proyecto propiamente tal, o como una tercera parte en el CDE, además del Cliente y el Proveedor, validando y certificando los ahorros energéticos obtenidos a través de la MME implementada.

En Chile el curso para obtener la certificación CMVP es organizado y realizado por la Agencia Chilena de Eficiencia Energética (AChEE) desde sus inicios (2011), actualmente el curso ha tenido cuatro versiones exitosas logrando certificar a un total de 75 profesionales al primer semestre del año 2015 según los registros de Efficiency Valuation Organization⁷.

⁷En el sitio web www.verificatee.cl/consultores y en el sitio web oficial de EVO www.evo-world.org se puede encontrar el listado de profesionales CMVP en Chile y el mundo.

Como se presenta en la **Figura 8.2**, la mayor parte de los certificados en Chile corresponden a consultores. El resto se distribuye entre profesionales del sector de la minería, publico, académico e implementadores de soluciones de eficiencia energética. Los rubros a los que se dedican los profesionales CMVP en Chile son variados, destacando con un 33% edificación, 31% industria y un 18% en minería, sectores productivos intensivos en el uso de recursos energéticos (AChEE, 2014).

Figura 8.2 Caracterización de los certificados CMVP en Chile de un universo de 33 profesionales entrevistados (AChEE, 2014).

Con el fin de identificar a los profesionales capacitados para implementar los planes de Medición y Verificación, la AChEE posee el Registro de Profesionales en Medición y Verificación, el cual contiene información de profesionales calificados y reconocidos por la AChEE para llevar a cabo procesos de medición y verificación de resultados energéticos asociados a una MEE desde su proceso de diseño, ejecución de las obras y posterior operación. Esta información puede ser encontrada en el sitio web del Registro en la siguiente dirección: www.verificatee.cl/consultores.

IX. Caso de Estudio

Este capítulo tiene como objetivo dar un ejemplo práctico de cómo se aborda el desafío de establecer un mecanismo apropiado de Medición y Verificación para un Medida de Eficiencia Energética (MEE) aplicable a la Agroindustria.

Para dar contexto se plantea primero la oportunidad de eficiencia energética detectada en la empresa y la MEE planteada por el Departamento de Ingeniería como solución factible. Posteriormente, se plantea los pasos para definir la solución de Medición y Verificación, expresado en forma de un Plan de Medición y Verificación, como lo describe el protocolo IPMVP (Energy Valuation Organization, 2010).

1. MEDIDA DE EFICIENCIA ENERGÉTICA

La instalación cuenta con una caldera de agua caliente que opera las 24 horas del día en la industria y que utiliza diésel como combustible. Se cuenta con agua desde un reservorio que ingresa a la caldera a una temperatura constante de 20°C, saliendo a una temperatura mayor y que posteriormente es trasladada mediante una tubería para ser utilizada por el proceso de lavado de productos y limpieza de máquinas. El proceso posee un sistema de control que regula la quema de combustible en la caldera con la finalidad de que el agua que ingresa al proceso de lavado esté a una temperatura de 55°C, tal como se observa en la **Figura 9.1**. En este contexto se detectan problemas de aislación en la línea que transporta el agua entre la caldera y el punto de utilización, lo que obligaría a la caldera a utilizar más combustible del necesario para satisfacer lo requerido. Por lo tanto, la MEE planteada es revisar y mejorar la aislación de dicha línea con la finalidad de disminuir las pérdidas térmicas del trayecto.

Figura 9.1 Esquema de instalación de agua caliente del proceso de lavado.

2. PLANIFICACIÓN DEL PROCESO DE MEDICIÓN Y VERIFICACIÓN

Bajo el supuesto de que la MEE planteada ya ha sido evaluada y determinada técnica y económicamente, este proceso no será abordado en detalle en el presente caso. De todas formas, se destaca que el ahorro proyectado es suficientemente alto como para ser medido con los instrumentos que se disponen, y que se detallarán a continuación. En cuanto a la Medición y Verificación, se debe considerar como parte de la gestión del proyecto la realización del Plan de Medición y Verificación, como se muestra a continuación:

a. Selección de opción y límite de medida

Para determinar la opción del IPMVP a utilizar se debe conocer qué factores influyen en el consumo energético de la caldera y cuáles de ellos se deberán monitorear. En este caso, el consumo de energía depende directamente del flujo de agua que se caliente, el cual se puede medir con un flujómetro ultrasónico ubicado en la salida de agua de la caldera, ya que se asume que la temperatura de entrada a la caldera es constante, así como también la temperatura de consumo en el punto de lavado, y que existe un sistema de control que regula a la caldera bajo dicho requerimiento. Dichos supuestos deben ser validados y por lo tanto, se debe medir la temperatura del agua con termocuplas ubicadas en los puntos de entrada de la caldera y al inicio del proceso siguiente. Por otro lado, el consumo energético se puede determinar midiendo la cantidad de combustible (diésel) con un medidor volumétrico de combustible ubicado en la entrada del quemador.

De esta manera, el límite de medida estaría comprendido por el sistema de la caldera, la tubería mejorada hasta el inicio del siguiente proceso, y la opción del IPMVP sería la opción B, Medición Aislada de todos los parámetros, debido a que se espera que tanto la temperatura de entrada de la caldera como la de consumo por el proceso del lavado sean constantes en el tiempo (lo que se debe verificar), y por lo tanto se podrá determinar el consumo energético de la caldera a partir de la cantidad de agua que ésta debe calentar, además de medir la cantidad de diésel consumido en el mismo periodo.

b. Periodo de referencia

El periodo de referencia debe ser elegido de tal manera que abarque un periodo representativo de trabajo, el cual sea repetible en el tiempo. Dado que en este caso la planta opera las 24 en condiciones similares durante el año, sin estacionalidades, se tomará un día completo como período de referencia. Se debe excluir de la medición períodos de calentamiento previo de la caldera, sino que ésta ya debe estar trabajando a la temperatura normal de trabajo. Se deberá realizar la medición uno o dos días antes de implementar la MEE, y considerar el tiempo de parada posterior necesario para la implementación.

i. Medición de consumo

La medición de consumo de diésel se realiza con un medidor de volumen ubicado a la entrada del quemador de la caldera. Las mediciones se harán de forma acumulada cada una hora.

ii. Variables independientes

La variable independiente en este caso es el flujo de agua que se calienta. Las mediciones se harán de forma acumulada cada una hora.

iii. Factores estáticos

Como factor estático se tiene la temperatura del agua a la entrada de la caldera y la temperatura de consumo en el siguiente proceso ya que se regula por un sistema de control automático. Se utilizarán termocuplas para medir dichos factores y comprobar que se mantienen constantes. No se debe cambiar esta condición de trabajo, pues eso cambiará las exigencias de energía a la caldera. En el caso de que uno o ambos factores estáticos cambien, los consumos deberán ser ajustados a las nuevas condiciones.

c. Periodo demostrativo de ahorro

En este caso se selecciona como periodo demostrativo de ahorro el día siguiente de la implementación. Se debe excluir de la medición periodos de calentamiento previo de la caldera, sino que ésta ya debe estar operando a la temperatura normal de trabajo al iniciar la medición.

d. Bases para el ajuste

Para realizar las bases para el ajuste tenemos dos opciones:

• Calcular el consumo de energía evitado, con la ecuación siguiente, donde todos los términos están expresados en kWh.

Ahorro de energía = Energía de referencia ajustada - Energía periodo demostrativo ahorro

± Ajustes no rutinarios

• Calcular el ahorro bajo condiciones fijas, con la ecuación siguiente, donde todos los términos están expresados en kWh.

Ahorro normalizado = (Energía de referencia ± Ajustes rutinarios condiciones fijas

- **±** Ajustes no rutinarios condiciones fijas) (Energía periodo demostrativo ahorro
- **±** Ajustes rutinarios condiciones fijas **±** Ajustes no rutinarios condiciones fijas)

Para este caso se elige la primera opción dado que no se cuenta con condiciones fijas para ajustar como un nivel estándar de producción de agua que se desee utilizar.

e. Procedimiento de análisis

Para el procedimiento de análisis se determinará la relación entre el consumo de energía en litros de diésel con la cantidad de agua a calentar por periodos de una hora durante todo un día en el periodo de referencia. Validando la correlación entre las variables mencionadas será posible determinar cuál sería el consumo de energía (diésel) con el sistema antiguo, para la cantidad de agua calentada en el periodo demostrativo de ahorro y por lo tanto, determinar el ahorro en términos energéticos. Posteriormente considerando el precio de la energía es posible determinar los ahorros financieros de la medida.

f. Precios de la energía

Para el precio de la energía referido al diésel, se considera el valor en el periodo demostrativo de ahorro, que se obtiene del contrato que se posee con el proveedor.

g. Especificaciones de la medición

Las mediciones de la variable independiente y del consumo energético se llevarán a cabo con un flujómetro ultrasónico y medidor volumétrico respectivamente para determinar la cantidad de agua calentada y el consumo de diésel. De forma adicional se utilizarán termocuplas para verificar que los factores estáticos no varían en el tiempo. Para lo último se considera apropiado realizar mediciones cada dos horas, durante un período de un día.

h. Responsabilidad de monitorización

Como responsable de monitorización se debe dejar a la persona que esté a cargo del manejo de la caldera, por estar relacionado directamente con ella y entender mejor su funcionamiento.

i. Precisión esperada

La precisión esperada dependerá de los instrumentos de medición y del modelo matemático que se utilice para ajustar el consumo del período de referencia a las condiciones del periodo demostrativo de ahorro.

j. Presupuesto

Para definir el presupuesto se debe tener en cuenta los siguientes aspectos:

- Costos de instrumentos que se deban comprar.
- Costo de realizar las mediciones.
- Costo de horas hombre del personal que realiza el procedimiento de Medición y Verificación.

k. Formato informe demostrativo de ahorro

El formato de los informes demostrativos de ahorros se define de acuerdo a los requerimientos del cliente y la recomendación del profesional a cargo del proceso de Medición y Verificación. En este caso se acuerda que los informes de ahorro tendrán el siguiente contenido mínimo:

- 1. Presentación de la Medida: Se debe describir brevemente que la MEE consistió en la revisión y mejora de la aislación de las cañerías entre la caldera y el punto de entrada de agua para el proceso de lavado, así como los objetivos esperados de dicha mejora.
- 2. Opción y Límite de Medida: Se debe mencionar de manera explícita la opción del protocolo IPMVP utilizado. En este caso se utilizó la opción B, Medición Aislada de todos los parámetros. En cuanto al límite de la medida se considera a la caldera, junto a la línea renovada hasta el punto de salida de agua al nuevo proceso.
- 3. Referencia; período, energía y condiciones: En este caso, se debe indicar el periodo de medición para la referencia, la energía medida y las condiciones en que se realizó la medición. En este caso se refiere a un día representativo antes de la implementación, y además se debe explicitar que se excluyó de la medición los periodos de calentamiento previo de la caldera, ya que debe estar operando a la temperatura normal de trabajo al iniciar la medición.
- 4. Datos del Periodo Demostrativo de Ahorro: El objetivo del informe es documentar de manera sencilla los siguientes aspectos:
 - a. Mediciones de consumo de combustible correspondientes al periodo reportado y los anteriores reportes, si los hubiere.
 - b. Variables independientes, que en este caso corresponde a la cantidad de agua calentada cada una hora.
 - c. Correcciones en los datos observados, donde se debe explicitar los ajustes realizados y su justificación, como por ejemplo, si los factores estáticos sufren cambios.

El formato típico para mostrar de manera sencilla estos aspectos es una tabla que entregue en los valores correspondientes al periodo, incorporando las notas que fueren necesarias para aclarar los cálculos.

- 5. Base para el ajuste: En este aparta se debe explicitar las ecuaciones que se utilizan para ajustar la base para la determinación de los ahorros. Esta se debe presentar aunque no se realicen ajustes, ya que debe quedar establecido como procedimiento para futuras entregas.
- 6. Procedimiento de análisis: donde se debe explicitar los cálculos desarrollados, de manera que éstos sean fácilmente reproducibles, ya sea por un tercero que evalúa el informe, o para quien desarrolle los futuros informes de ahorro.
- 7. Precio de los combustibles: Indicar de manera explícita los valores de precio de combustible y la fuente de información utilizada.

- 8. Especificaciones de la medición: Se debe dar cuenta de los medidores utilizados y sus características, además de las calibraciones realizadas, si corresponde. Esto permite identificar si en el tiempo se ha cambiado el instrumento de medición y se requiere realizar un ajuste de base o bien identificar los requerimientos futuros de calibración.
- 9. Precisión: Se debe indicar la precisión esperada en el cálculo de ahorro. Ella depende de los instrumentos de medición (especificadas en el punto anterior), y del error estándar que se determinar para los modelos de estimación, en el caso que alguno de los parámetros clave no se haya medido y el resultado dependa de un modelo matemático.
- 10. Responsabilidades de monitoreo: Se debe indicar quién es la persona a cargo del monitoreo, su cargo y principales datos de contacto.
- 11. Responsabilidad del Informe Demostrativo de Ahorro: Se debe indicar quién es la persona responsable de redactar los informes correspondientes al Periodo Demostrativo de Ahorro, su cargo y principales datos de contacto.
- 12. Ajustes del Periodo de Referencia: Se debe explicitar cualquier ajuste realizado en las mediciones del periodo de referencia, indicando su justificación y metodología de ajuste.

I. Garantía de la calidad

Se define el procedimiento que se utiliza para asegurar la calidad del cálculo del ahorro de energía. En esta caso se define que:

- a. Sólo los profesionales con certificación profesional en medición y verificación (CMVP®) podrán calcular el ahorro y ajustes.
- b. Cualquier información relacionada con cambios en los factores estáticos será enviada por el supervisor interno del proyecto para ser analizada por el CMVP para determinar los impactos directos e indirectos sobre los ahorros proyectados.

3. OBTENCIÓN DE DATOS DEL PERIODO DE REFERENCIA

Tal como se ha mencionado en el Plan de Medición y Verificación, se intentará encontrar en el periodo de referencia una relación entre el volumen de agua calentada con el consumo de combustible, que en este caso se trata de petróleo diésel. Es por esto que en el periodo de referencia se obtiene la siguiente información indicada en la **Tabla 9.1**:

⁸ CMVP: Certified Measurement and Verification Professional. Ver capítulo VIII.

Hora del día	Agua calentada [l/hora]	Consumo de diésel [l/hora]
00:00 - 01:00	6.720	42,8
01:00 - 02:00	6.850	42,8
02:00 - 03:00	6.879	43,0
03:00 - 04:00	6.882	42,7
04:00 - 05:00	6.900	43,5
05:00 - 06:00	7.200	43,9
06:00 - 07:00	7.854	48,7
07:00 - 08:00	7.960	49,8
08:00 - 09:00	8.160	51,5
09:00 - 10:00	8.297	51,9
10:00 - 11:00	9.000	55,8
11:00 - 12:00	9.005	57,3
12:00 - 13:00	9.010	56,8
13:00 - 14:00	9.011	57,4
14:00 - 15:00	9.007	55,8
15:00 - 16:00	8.849	54,8
16:00 - 17:00	8.569	54,1
17:00 - 18:00	8.440	51,4
18:00 - 19:00	7.600	47,1
19:00 - 20:00	7.345	46,3
20:00 - 21:00	7.011	44,2
21:00 - 22:00	6.911	42,8
22:00 - 23:00	6.880	43,8
23:00 - 00:00	6.700	41,5

Tabla 9.1 Datos de medición de agua caliente producida y consumo de energía del periodo de referencia.

Al realizar una regresión lineal y un análisis estadístico de las variables medidas en el periodo de referencia se observa lo siguiente:

Figura 9.2 Relación entre el consumo de agua en litros y el consumo de diésel en litros.

La correlación obtenida con estos datos queda representada por la siguiente ecuación:

Consumo de diésel
$$[L_D]$$
 = 0,0063 $\left[\frac{L_D}{L_A}\right]$ · Consumo de agua $[L_A]$ - 0,2009 $[L_D]$

Donde L_D y L_A son litros de diésel y agua respectivamente.

Para validar la correlación, se debe analizar el coeficiente de correlación (R²). Éste debe ser superior a 0,75 de acuerdo con lo sugerido por el protocolo IPMVP. En el caso analizado, el factor R² ascendió a 0,98, por lo que la correlación se considera válida para estimar el consumo en las condiciones del periodo de referencia. Por lo tanto se valida que es posible determinar el consumo de energía en el periodo de referencia a partir de la cantidad de agua calentada en cada hora de operación.

Para determinar el ahorro de energía en litros de diésel de la MEE se comparará el consumo real de diésel en el periodo demostrativo de ahorro con el consumo que hubiese consumido el sistema antiguo gracias a la relación encontrada. Posteriormente este ahorro en litros de diésel deberá ser expresado en unidades energéticas considerando el poder calorífico y la densidad del diésel.

Verificación de los factores estáticos

Debido a que el Plan de Medición y Verificación se basa en el supuesto de que dos temperaturas del proceso se mantienen constantes, éstas deben ser medidas y validadas para sustentar dichos supuestos. Es por esto que en el periodo de referencia se realizaron mediciones de temperatura del agua, tanto en el punto de entrada a la caldera, como en el punto de la entrada al proceso de lavado. Los datos medidos durante el período de referencia corresponden a los presentados en la **Tabla 9.2**.

Hora del día	Temperatura promedio al ingreso de la caldera [°C]	Temperatura promedio al ingreso del proceso de lavado [°C]
00:00 - 02:00	20,11	55,35
02:00 - 04:00	20,10	55,48
04:00 - 06:00	20,11	55,16
06:00 - 08:00	20,07	54,98
08:00 - 10:00	20,01	55,25
10:00 - 12:00	20,06	55,43
12:00 - 14:00	20,00	55,05
14:00 - 16:00	20,01	54,77
16:00 - 18:00	20,04	54,85
18:00 - 20:00	20,04	54,93
20:00 - 22:00	20,04	55,08
22:00 - 00:00	20,05	54,50

Tabla 9.2 Tabla resumen de mediciones de temperatura al ingreso de la caldera y al ingreso del proceso de lavado durante el periodo de referencia.

Con estos datos, se observa que las temperaturas medidas se mantienen de forma razonable constantes, ya que para la temperatura del agua a la entrada de la caldera se encuentra en promedio a 20,05 [°C] y la temperatura del agua al ingreso del proceso de lavado se encuentra en promedio a 55,06 [°C], ambas con una desviación estándar de tan solo 0,03 [°C] y 0,29 [°C], respectivamente. Por lo tanto, se validan los factores estáticos dentro del Plan de Medición y Verificación para el periodo de referencia.

4. IMPLEMENTACIÓN DE LA MEDIDA DE EFICIENCIA ENERGÉTICA

Luego de la Medición y Verificación de los datos del periodo de referencia, se procede a la implementación de la MEE.

5. OBTENCIÓN DE DATOS DEL PERIODO DEMOSTRATIVO DE AHORRO

Tras la implementación de la MEE, se realiza la recolección de la información del periodo demostrativo de ahorro. Los datos obtenidos se presentan en la **Tabla 9.3**.

Hora del día	Agua calentada [l/hora]	Consumo de diésel [l/hora]
00:00 - 01:00	9.610	57,2
01:00 - 02:00	10.001	59,5
02:00 - 03:00	10.181	60,6
03:00 - 04:00	10.254	61,0
04:00 - 05:00	10.074	59,9
05:00 - 06:00	10.224	60,8
06:00 - 07:00	11.153	66,4
07:00 - 08:00	11.303	67,2
08:00 - 09:00	11.914	70,9
09:00 - 10:00	11.948	71,1
10:00 - 11:00	13.050	77,6
11:00 - 12:00	13.237	78,8
12:00 - 13:00	13.425	79,9
13:00 - 14:00	13.246	78,8
14:00 - 15:00	12.700	75,6
15:00 - 16:00	12.389	73,7
16:00 - 17:00	12.682	75,5
17:00 - 18:00	12.154	72,3
18:00 - 19:00	10.716	63,8
19:00 - 20:00	10.577	62,9
20:00 - 21:00	10.306	61,3
21:00 - 22:00	9.814	58,4
22:00 - 23:00	10.251	61,0
23:00 - 00:00	10.050	59,8

Tabla 9.3 Datos de medición de agua caliente producida y consumo de energía del periodo demostrativo de ahorro.

Verificación de los factores estáticos

Al igual que en el periodo de referencia, se realiza el seguimiento de los factores estáticos para asegurar que éstos son constantes y por lo tanto no afectan la determinación del resultado energético del proyecto en estudio. Es por esto que en el periodo demostrativo de ahorros se realizaron mediciones de temperatura del agua, tanto en el punto de entrada a la caldera, como en el punto de la entrada al proceso de lavado. Los datos medidos durante el período demostrativo de ahorro corresponden a los presentados en la **Tabla 9.4**.

Hora del día	Temperatura promedio al ingreso de la caldera [°C]	Temperatura promedio al ingreso del proceso de moldeo [°C]
00:00 - 02:00	20,00	54,98
02:00 - 04:00	20,08	55,04
04:00 - 06:00	20,05	54,98
06:00 - 08:00	20,01	55,06
08:00 - 10:00	20,05	55,00
10:00 - 12:00	20,04	55,04
12:00 - 14:00	20,10	55,04
14:00 - 16:00	20,00	55,10
16:00 - 18:00	20,05	55,01
18:00 - 20:00	20,11	55,00
20:00 - 22:00	20,01	54,98
22:00 - 00:00	20,08	54,97

Tabla 9.4 Tabla resumen de mediciones de temperatura al ingreso de la caldera y al ingreso del proceso de lavado durante el período demostrativo de ahorro.

Nuevamente se observa que las temperaturas medidas se mantienen de forma razonable constantes, ya que para la temperatura del agua a la entrada de la caldera se encuentra en promedio a 20,05 °C y la temperatura del agua al ingreso del proceso de lavado se encuentra en promedio a 55,06 °C, ambas con una desviación estándar de tan solo 0,03 °C y 0,03 °C respectivamente. Por lo tanto se validan los factores estáticos dentro del Plan de Medición y Verificación para el periodo demostrativo de ahorro.

6. CÁLCULO DE LA REDUCCIÓN EN EL CONSUMO ENERGÉTICO

Ya con la validación de los factores estáticos y con la información de cantidad de agua calentada y consumo de energía (diésel) por hora tanto para el periodo de referencia como el periodo demostrativo de ahorra, es posible determinar el ahorro energético.

Para determinar el ahorro energético se considera el consumo de energía del periodo demostrativo de ahorro y se compara con la cantidad de energía que se hubiese necesitado previo a la MEE, es decir, en las condiciones del periodo de referencia. Para realizar lo anterior se utiliza la regresión lineal encontrada entre la cantidad de agua calentada y la cantidad de diésel consumido en las condiciones previas a la implementación de la MEE.

Los resultados obtenidos se pueden observar en la **Tabla 9.5**, donde considerando adicionalmente el precio del diésel entregado por el proveedor es posible determinar adicionalmente el ahorro financiero de la MEE.

Hora del día	Agua calentada [l]	Consumo de diésel [l]	Consumo de diésel ajustado* [l]	Ahorro de combusti- ble [l]	Reducción de consumo [kWh]	Precio de la energía [CLP/kWh]	Ahorro monetario por menor consumo [CLP/h]
00:00 - 01:00	9.610	57,17	60,34	3,17	29,28	50	1.464
01:00 - 02:00	10.001	59,50	62,81	3,30	30,55	50	1.527
02:00 - 03:00	10.181	60,57	63,94	3,37	31,13	50	1.556
03:00 - 04:00	10.254	61,01	64,40	3,39	31,37	50	1.568
04:00 - 05:00	10.074	59,94	63,27	3,33	30,78	50	1.539
05:00 - 06:00	10.224	60,83	64,21	3,38	31,27	50	1.563
06:00 - 07:00	11.153	66,35	70,06	3,71	34,28	50	1.714
07:00 - 08:00	11.303	67,25	71,01	3,76	34,77	50	1.738
08:00 - 09:00	11.914	70,88	74,85	3,97	36,74	50	1.837
09:00 - 10:00	11.948	71,08	75,07	3,99	36,85	50	1.843
10:00 - 11:00	13.050	77,64	82,01	4,37	40,42	50	2.021
11:00 - 12:00	13.237	78,76	83,19	4,44	41,03	50	2.052
12:00 - 13:00	13.425	79,87	84,38	4,50	41,64	50	2.082
13:00 - 14:00	13.246	78,81	83,25	4,44	41,06	50	2.053
14:00 - 15:00	12.700	75,56	79,81	4,25	39,29	50	1.965
15:00 - 16:00	12.389	73,71	77,85	4,14	38,28	50	1.914
16:00 - 17:00	12.682	75,45	79,70	4,24	39,23	50	1.962
17:00 - 18:00	12.154	72,31	76,37	4,06	37,52	50	1.876
18:00 - 19:00	10.716	63,76	67,31	3,55	32,86	50	1.643
19:00 - 20:00	10.577	62,93	66,43	3,51	32,41	50	1.621
20:00 - 21:00	10.306	61,32	64,73	3,41	31,53	50	1.577
21:00 - 22:00	9.814	58,39	61,62	3,24	29,94	50	1.497
22:00 - 23:00	10.251	60,99	64,38	3,39	31,36	50	1.568
23:00 - 00:00	10.050	59,79	63,11	3,32	30,70	50	1.535

^{*}Ajustado a las condiciones del periodo de referencia.

Tabla 9.5 Reducción de consumo energético, tanto en unidades energéticas como en unidades financieras.

7. CONCLUSIONES

La reducción del consumo de energía total es de 834,3 kWh diarios, correspondientes a CLP 41.175. La MEE resulta efectiva pues, calculando la razón ente la energía ahorrada y la energía que se consumía en el período de referencia, se tiene que el ahorro corresponde a un 5% del consumo energético.

La vida útil de la intervención se estima en mínimo 12 meses, tras lo cual se debe evaluar la revisión y reemplazo de la aislación. Considerando los ahorros acumulados en ese período, el ahorro total estimado asciende a 304.520 kWh, es decir, MM CLP 15,03.

Debido a los supuestos realizados para el análisis, es necesario continuar realizando el seguimiento de los factores estáticos, es decir, que las temperaturas del agua de entrada a la caldera y las temperaturas de salida del agua al siguiente proceso se mantengan constantes, pues de otra forma el ahorro no será el mismo.

Cabe destacar que los ahorros, obtenidos mediante la implementación de una MEE referente a la mejora en el aislamiento de la tuberías de agua caliente, pueden ser utilizados como fuente de financiamiento para nuevas MEE aplicables dentro de la misma planta, para así incrementar aún más la eficiencia energética de la empresa, en un contexto de mejora continua de la industria.

X. Caso de Éxito en la Agroindustria

Nombre del proyecto: Automatización e instalación de variadores de frecuencia en sistema de refrigeración en empresa dedicada al rubro frutícola.

- Ahorro energético estimado: 28,5 [MWh/año] (nota 1)
- Ahorro monetario esperado: 1,4 [MM CLP/año] (nota 2)
- Ahorro CO₂eq estimado: 12,3 [tCO₂eq/año] (nota 3)
- Gasto en Medición y Verificación: 1,32 [MM CLP]
- Nota 1: El periodo demostrativo de ahorro está en ejecución, por lo que todavía no se determina el ahorro real.
- Nota 2: Se utiliza un costo de la electricidad de 49,8 [CLP/kWh].
- Nota 3: Se utiliza un factor de emisión de 0,432 [tCO₂eq/kWh].

El desafío: Determinar el ahorro energético gracias a la optimización de la operación de una cámara de refrigeración.

Medida de Eficiencia Energética: La MEE consta de dos partes, por un lado, se cuenta con la automatización de condensadores evaporativos de amoníaco del sistema de refrigeración, y por otro, la instalación de variadores de frecuencia en ventiladores evaporadores. Con la primera medida se busca evitar la operación manual por parte de los trabajadores de la planta, dado que éstos debían hacer partir y detener los equipos de acuerdo a los indicadores de presión de las líneas de amoníaco. Este proceso al ser automatizado resulta ser más preciso, además de permitir la operación nocturna del sistema. Por otro lado, los variadores de frecuencia lo que hacen es modular de mejor forma la velocidad con que operan los motores de los ventiladores, manteniendo así la temperatura requerida de la cámara, evitando partidas bruscas, y en consecuencia consumiendo menos energía. La Figura 10.1 muestra la MEE a implementar.

Figura 10.1 Sistemas de control de cámara de refrigeración.

Medición y Verificación: En este caso el límite de medida fue uno de los sistemas de refrigeración de la empresa, el que incluye dos compresores, dos condensadores y 16 motores que activan los ventiladores evaporadores. Dado que el ahorro energético puede que no sea apreciable en toda la planta, se escogió la Opción B del protocolo IPMVP, la que considera la medición de todos los parámetros que influyen en el consumo. El modelo utilizado correlaciona el consumo eléctrico con la cantidad de fruta procesada (en kilogramos) y la diferencia entre la temperatura ambiente y la temperatura de enfriamiento del producto (grados día de enfriamiento). Para el monitoreo del consumo se utilizó un equipo que entrega información en línea del consumo eléctrico del sistema de refrigeración, mientras que para las variables independientes se obtuvo información del jefe de planta y de la estación meteorológica de Lo Prado.

Periodo de medición: Las variables de consumo eléctrico, kilogramos de producto procesado y grados día, fueron medidos durante el periodo de referencia, y actualmente el periodo demostrativo de ahorro está en desarrollo. Para el periodo de referencia se dispuso de información desde abril a agosto de 2014, mientras que para el demostrativo de ahorro se consideraron los 5 meses posteriores a la entrega conforme de los trabajos involucrados en la implementación de la MEE.

Con la información del periodo de referencia se construyó el modelo matemático que relacionó el consumo con las dos variables independientes. El coeficiente de correlación lineal (R²) que se obtuvo de este modelo fue de 92%, resultando estar sobre el valor recomendado por el IPMVP (75%). A continuación se muestra el modelo con el que se calculará el consumo energético del periodo de referencia ajustado utilizando las condiciones del demostrativo de ahorro:

Consumo energético [kWh] = 0,0231
$$\left[\frac{kWh}{kg}\right] \cdot X + 91,76 \left[\frac{kWh}{^{\circ}C \cdot dia}\right] \cdot Y - 17.787,36 [kWh]$$

Donde,

- X: Producto procesado [kg].
- Y: Grados día de enfriamiento [°C · día].

Cálculo del consumo de combustible evitado (ahorro): Para proceder al cálculo de ahorro se debe determinar cuál hubiese sido el consumo de combustible durante el periodo demostrativo de ahorro si la MEE no se hubiese implementado. Esto se establece calculando el consumo de combustible al mismo nivel de producción, considerando los kilogramos de producto procesado y los grados día de refrigeración del periodo demostrativo de ahorro. Actualmente la empresa está en medio de este periodo, en donde se espera un ahorro energético de 28,5 [MWh/año], y un ahorro monetario de 1,4 [MM CLP/año].

Costo de la medición: En este caso el costo de la medición considera las horas hombre de la recolección y análisis de datos, y confección de informes de ahorro, el cual asciende a un valor de 1,32 [MM CLP], costo que abarca todo el proceso de Medición y Verificación. No se considera la inversión en equipos de medición porque ya se contaba con ellos en la planta.

Estimando que los ahorros se extenderán por un periodo de 5 años, considerando que este tiempo durarán al menos los variadores de frecuencia, el ahorro monetario total será de 7 [MM CLP]. Teniendo en cuenta esto, el costo de Medición y Verificación será un 19% del ahorro monetario total (lo cual está sobre lo recomendado por el IPMVP, el que indica que los costos de Medición y Verificación deben ser menores al 10% de los ahorros monetarios). A pesar de esta situación, la empresa ha decidido seguir adelante con el proceso de Medición y Verificación dado los cobeneficios que significa la implementación de la MEE, que considera una menor emisión de gases de efecto invernadero al ambiente, menores costos energéticos y mejor calidad de sus procesos. En el gráfico mostrado en la **Figura 10.2** se muestra una relación entre el ahorro financiero anual, y el costo de Medición y Verificación, y en la **Figura 10.3** se puede observar la recomendación de gasto máximo para este ítem según las indicaciones del IPMVP para el caso particular de este proyecto.

Figura 10.2 Porcentaje del costo de la Medición y Verificación a los ahorros del caso presentado con respecto al ahorro obtenido.

Figura 10.3 Comparación entre monto máximo de inversión recomendado por el IPMVP (10% del ahorro estimado) para el proceso de medición y verificación del caso presentado.

XI. Entidades Relacionadas a la Medición y Verificación

De manera general se pueden considerar tres tipos de entidades que promueven la aplicación de estándares y procedimientos asociados a la Medición y Verificación de proyectos de eficiencia energética: 1) entidades que crean y promueven normas internacionales, 2) entidades que financian medidas o proyectos de eficiencia energética y 3) entidades que promueven y articulan la realización de éstos. A continuación se describe una breve reseña para cada una de ellas.

ENTIDADES QUE CREAN Y PROMUEVEN NORMAS INTERNACIONALES

Como se mencionó en el Capítulo VI "Protocolos de Medición, Verificación y Eficiencia Energética", alrededor del mundo existen diversas entidades dedicadas a la creación de protocolos y normas que estandarizan los procesos de Medición y Verificación, poniendo a disposición de los desarrolladores de proyectos herramientas para aumentar la probabilidad de éxito en los proyectos que desarrollan. Dos casos de especial interés para la presente guía se mencionan a continuación.

ISO - International Organization for Standarization:

La ISO es una red de los institutos de normalización de 163 países, donde se desarrollan normas voluntarias de estandarización de procesos, fabricación, etc.

Importancia para la Medición y Verificación: La ISO ha desarrollado diversas normas relacionadas con eficiencia energética y la Medición y Verificación, entre ellas las ISO 50001 y 50015 vinculadas a los sistemas de gestión de la energía para fomentar implementaciones de iniciativas de eficiencia energética exitosas en su industria, así como la medición de la efectividad del sistema de gestión. Por otra parte, las normas ISO 17741, 17747, 17742 y 17743, actualmente en desarrollo, buscan expandir las metodologías de Medición y Verificación a mayor escala, incluyendo en su alcance tanto a organizaciones completas, como a ciudades, regiones y países. Para ello integran metodologías diseñadas para proyectos donde intervienen actores públicos y privados, tales como las desarrolladas para determinar la reducción de la emisión de gases de efecto invernadero.

EVO - Efficiency Valuation Organization: Surgió como un comité de voluntarios que se unieron bajo la iniciativa del Departamento de Energía de los EEUU para desarrollar un protocolo internacional que ayudara a determinar los ahorros de energía generados a partir de proyectos de eficiencia energética.

Importancia para la Medición y Verificación: EVO desarrolló y actualiza constantemente el International Performance Measurement and Verification Protocol (IPMVP), el cual ha servido como referencia para una gran cantidad de estándares internacionales de medición de proyectos en eficiencia energética, y se analizó en detalle en la presente guía.

ENTIDADES QUE FINANCIAN PROYECTOS O INICIATIVAS DE EFICIENCIA ENERGÉTICA

Por otro lado, existen entidades y organizaciones dedicadas al financiamiento y a la promoción de la eficiencia energética a nivel internacional, fomentando también la Medición y Verificación de los resultados energéticos generados por las mismas. Entre estas organizaciones cabe mencionar algunas que poseen gran renombre a nivel internacional.

BID - Banco Interamericano del Desarrollo: Con historia desde el año 1959, hoy son la principal fuente de financiamiento para proyectos de desarrollo en América Latina.

Importancia para la Medición y Verificación: En América Latina se han desarrollado un gran número de proyectos de eficiencia energética, donde se ha realizado Medición y Verificación de resultados energéticos a través de fondos de financiamiento como el IDB's Sustainable Energy and Climate Change Initiative (SECCI)⁹. Este fondo permite financiar el desarrollo y la implementación de estudios a nivel país, el análisis de los marcos legales, y posibles reformas destinadas a fomentar la inversión en bio-combustibles, energías renovables, y eficiencia energética, financiar actividades relacionadas a la identificación, preparación y desarrollo de capacidades y apoyar a los desarrolladores en la preparación de sus proyectos.

PNUD - Programa de las Naciones Unidas para el Desarrollo: Es el organismo mundial de las naciones unidas en materias de desarrollo. Este organismo promueve el desarrollo de las naciones conectando a los países con los conocimientos, la experiencia y los recursos necesarios para ejecutar Medidas de Eficiencia Energética. Un ejemplo de esto es el programa de Fomento de Capacidades en Desarrollo Bajo en Emisiones¹º cuyo objetivo es contribuir al trabajo del Gobierno de Chile en desarrollar un sistema nacional de inventario de gases de efecto invernadero, desarrollar un programa de gestión del carbono, diseñar un sistema de Medición, Reporte y Verificación de emisiones de entidades públicas y privadas, además de diseñar una estrategia nacional de desarrollo bajo en emisiones.

Importancia para la Medición y Verificación: PNUD financia estudios para la gestión del carbono y diseño de sistemas de Medición, Reporte y Verificación (MRV) de reducción de gases de efecto invernadero.

GEF - Global Environment Facility: Es una asociación global integrada por 178 países, instituciones internacionales, organizaciones no gubernamentales y el sector privado, en la que Chile es un país beneficiario de fondos GEF.

Importancia para la Medición y Verificación: Proporciona fondos para asistir en la protección del medio ambiente y promover el desarrollo sustentable. A través de fondos como el Global Environmental Facility Trust Fund, GEF provee de recursos para cubrir el costo adicional asociado a la transformación de proyectos que inicialmente fueron definidos con el fin de generar un beneficio nacional, y transformarlos a proyectos que además buscan un beneficio al medio ambiente. Dentro de estos proyectos se encuentran aquellos que buscan la mitigación de gases de efecto invernadero, el incremento del uso de energías renovables y la disminución del uso de combustibles fósiles, así como el incremento de la eficiencia energética¹: Pueden postular todos los países en vías de desarrollo que participen de la Comisión Marco para el Cambio Climático de las Naciones Unidas (UNFCCC, por su sigla en inglés), donde Chile es miembro.

⁹ Más antecedentes en: www.climatefinanceoptions.org/cfo/node/62

¹⁰ Más antecedentes en:

 $www.cl. undp. org/content/chile/es/home/operations/projects/environment_and_energy/fomento_capacidades_bajo_emisiones. html$

¹¹ Más información en: www.thegef.org/gef/climate_change

ENTIDADES QUE PROMUEVEN Y ARTICULAN LA REALIZACIÓN DE PROYECTOS DE EFICIENCIA ENERGÉTICA

A nivel local los principales promotores de eficiencia energética y Medición y Verificación corresponden a instituciones dependientes del Estado:

Ministerio de Energía: El Ministerio de Energía es el órgano superior de colaboración del Presidente de la República en las funciones de gobierno y administración del sector de energía. El objetivo general del Ministerio de Energía es elaborar y coordinar los planes, políticas y normas para el buen funcionamiento y desarrollo del sector, velar por su cumplimiento y asesorar al Gobierno en todas aquellas materias relacionadas con la energía. A través de su División de Eficiencia Energética, es el encargado de desarrollar políticas, planes, líneas de acción y estándares vinculados al uso eficiente de la energía a nivel nacional.

Agencia Chilena de Eficiencia Energética - AChEE¹² Es una fundación de derecho privado cuya misión es promover, fortalecer y consolidar el uso eficiente de la energía articulando a los actores relevantes, a nivel nacional e internacional, e implementando iniciativas público privadas en los distintos sectores de consumo energético, contribuyendo al desarrollo competitivo y sustentable del país. Esta fundación implementa programas y proyectos específicos que impulsan la disminución del consumo energético, focalizando el trabajo hacia los principales sectores de consumo, como son: Industria y minería, transporte y edificación (comercial, público y residencial).

Ministerio de Medio Ambiente de Chile: Es el órgano del Estado encargado de colaborar en el diseño y la aplicación de políticas, planes y programas en materia ambiental, así como en la protección y conservación de los recursos naturales renovables e hídricos. A través de su de División de Calidad del Aire y Cambio Climático desarrolla, promueve y financia planes y proyectos relacionados a la reducción de gases de efectos invernadero. Dichas iniciativas, incluidas las relacionadas al uso eficiente de la energía, deben ser medidas, verificadas y reportadas mediante metodologías y estándares validados para el adecuado cumplimiento de metas y compromisos internacionales pactados por el Estado de Chile.

XII. Planes Tipo de Medición y Verificación

PLANES DE MEDICIÓN Y VERIFICACIÓN POR INDUSTRIA

Como complemento a los contenidos y a los apartado prácticos con respecto a la Medición y Verificación, sintetizado en los ejemplos presentados en el Capítulo IX - Caso de Estudio y en el Capítulo X - Caso de Éxito, a continuación se incorporan las consideraciones típicas a tomar en cuenta para cada componente de un Plan de Medición y Verificación, aplicado a seis medidas de eficiencia energética en la industria. Se busca con ello dar ejemplos simples al lector para ampliar el entendimiento de un proceso de planificación de la Medición y Verificación.

Tabla 12.1 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuada).

Ítem del plan de	MEE T	ipo
Medición y Verificación	Reemplazo de motores eléctricos que operan con carga constante	Instalación de intercambiador de calor en caldera de horno
Propósito de cada MEE y su impacto sobre las condiciones de operación	Reducir el consumo de la planta reemplazando motores antiguos por motores de última generación que presentan una mayor eficiencia.	Aprovechamiento del calor residual de los gases de escape de un horno utilizado para secar ciruelas, mediante la instalación de un intercambiador de calor de aire/aire en la chimenea del horno. El aire luego de calentarse es enviado al interior de la misma caldera.
Límite de medición para cada MEE	Se debe considerar si la MEE considera el reemplazo de un motor o un conjunto de ellos que trabajan como sistema. Generalmente el límite de medida se asocia a la ubicación del medidor de energía eléctrica más próximo y al impacto de la MEE implementada en el mismo. La energía a medir debe considerar todos los equipos a reemplazar. Si al momento de la evaluación de la MEE, el impacto estimado de ésta es inferior al 10% del consumo medido en el medidor existente, se deberá considerar la instalación de medidores, aislando la MEE.	En este caso el límite de la medida es el horno que posee medidores de flujo de combustible que es combustionado en los quemadores. En el caso de que la MEE evaluada genere un alto impacto en el consumo de combustible de la instalación, se podrá utilizar el medidor de flujo de combustible de la instalación, de no ser así se deberá considerar el medidor de combustible del horno y en caso de no existir este último, se deberá considerar la instalación de un medidor de combustible que aísle la MEE.
Opción IPMVP	Opción A, si son motores con carga constantes. Se mide la potencia instantánea y se estiman las horas funcionamiento. Podrá ser opción C si y sólo si la MEE genera una importante reducción de consumo, por sobre el 10% del consumo de toda la instalación.	Opción A o B, dependiendo de si es necesario estimar algún parámetro o no. Podrá ser opción C si y sólo si la MEE genera una importante reducción de consumo, por sobre el 10% del consumo de toda la instalación.

Tabla 12.1 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuación).

Ítem del plan de	MEE Tipo		
Medición y Verificación	Reemplazo de motores eléctricos que operan con carga constante	Instalación de intercambiador de calor en caldera de horno	
Periodo de Referencia	Si el ciclo de operación es de una semana o un día, basta con definir una muestra. Se puede tomar un par de muestra de un ciclo de operación normal.	Si el ciclo de operación es de una semana o un día, basta con definir una muestra. Se puede tomar un par de muestras de un ciclo de operación normal.	
Selección de variables independientes y de sus valores durante el periodo de referencia	En este caso la variable independiente puede corresponder al número, peso o volumen del producto generado.	Enestecasolavariableindependiente puede corresponder a las toneladas de material procesadas por el horno y la diferencia entre la temperatura ambiente y la temperatura de funcionamiento del horno (grados día de calentamiento).	
Factores estáticos (dentro de los límites) durante el periodo de referencia.	Deben mantenerse las condiciones de operación tanto en revoluciones por minuto, como de carga sobre el motor.	No debe intervenirse la estructura del horno (pared, puertas, chimenea, aislación, etc.). Tampoco debe cambiarse la relación aire y combustible fijada para el Periodo Demostrativo de Ahorro. Se deben mantener los procedimientos de mantenimiento para limpieza de quemadores y el producto a secar.	
Bases para el Ajuste	Si se cambia el régimen de revoluciones por minuto habrá una variación en el consumo. Se debe contar en el Periodo de Referencia con pruebas a distintos regímenes de operación que permita ajustar el consumo del Periodo de Referencia de acuerdo a la variación de revoluciones en el Periodo Demostrativo de Ahorro, ya que de otra forma será muy difícil determinar los ahorros.	Se debe contar con una expresión matemática que permita ajustar el consumo del periodo de referencia de acuerdo a la variación de la cantidad de producto secado y a la variación de los grados día de calentamiento del horno.	
Procedimiento de análisis	El procedimiento de análisis dependerá de cada problema, y considera los pasos lógicos a seguir para realizar los cálculos.	El procedimiento de análisis dependerá de cada problema, y considera los pasos lógicos a seguir para realizar los cálculos.	

Tabla 12.1 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuación).

6 111	MEE Tipo		
Ítem del plan de Medición y Verificación	Reemplazo de motores eléctricos que operan con carga constante	Instalación de intercambiador de calor en caldera de horno	
Precios de la energía	Se recomienda estandarizar el precio a pesos por kWh, para que se puedan comparar los ahorros de cualquier MEE. Los medidores generalmente utilizan esa unidad. Si hay cambios en el precio unitario de la energía entre el Periodo de Referencia y el Demostrativo de Ahorro, se recomienda utilizar el precio existente en el Demostrativo de Ahorro para todos los cálculos, pues es en este periodo donde se produce el ahorro. Se debe explicitar si los precios a utilizar, en el caso de la electricidad serán monómicos o unitarios.	Si hay cambios en el precio unitario del diésel entre el Periodo de Referencia y el Periodo Demostrativo de Ahorro, se recomienda utilizar el precio existente en el Periodo Demostrativo de Ahorro para todos los cálculos, pues es en este periodo donde se produce el ahorro. Debe explicitarse si el precio unitario varía en bloques de tarifa.	
Responsabilidades de monitorización	Si no existe un Encargado de Eficiencia Energética, se debe asignar esta responsabilidad a quien esté a cargo de la instalación de la aislación. Esto podría estar a cargo del Jefe de Mantenimiento de la Planta.	Si no existe un Encargado de Eficiencia Energética, se debe asignar esta responsabilidad a un Supervisor que tenga control sobre quiénes y cómo se opera el horno.	
Precisión esperada	La precisión depende del instrumento de medición, el tamaño de la muestra y de la incertidumbre del modelo que relaciona consumo y producción. Por otro lado el hecho de considerar una variable estimada también generar un error en el cálculo final del ahorro.	Para caudales de combustible la incertidumbre típica es menor al 1%. Por otra parte, se debe considerar la incertidumbre del modelo que relaciona consumo y producción.	
Presupuesto	El presupuesto debe considerar las horas hombre de la monitorización de las variables, la supervisión de la Medición y Verificación y los instrumentos que deban adquirirse. Es posible que los equipos ya cuenten con algunos instrumentos que puedan utilizarse, o la empresa cuente con información que ya es recolectada por otra área. En ese caso sólo se deben incluir las horas hombre que se invierten en recoger, ordenar y analizar la información.	El presupuesto debe considerar las horas hombre de la monitorización de las variables, la supervisión de la Medición y Verificación y los instrumentos que deban adquirirse. Es posible que los equipos ya cuenten con algunos instrumentos que puedan utilizarse, o la empresa cuente con información que ya es recolectada por otra área. En ese caso, sólo se deben incluir las horas hombre que se invierten en recoger, ordenar y analizar la información.	
Formato y frecuencia de informes	El formato seguirá el modelo del capítulo 6 del IPMVP. La frecuencia de los reportes debe ser mensual.	El formato seguirá el modelo del capítulo 6 del IPMVP. La frecuencia de los reportes debe ser mensual.	

Tabla 12.2 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuada).

6 111	MEE Tipo	
Ítem del plan de Medición y Verificación	Transporte por correas	Dimensionamiento apropiado de bombas
Propósito de cada MEE y su impacto sobre las condiciones de operación	Se ha decidido reemplazar los polines de una correa transportadora por unos nuevos que presentan un menor coeficiente de roce. Esto genera un ahorro en el consumo eléctrico por tonelada transportada.	Se busca seleccionar una bomba que, según las necesidades de presión y flujo requeridas en el proceso, trabaje dentro del rango de eficiencia óptima. Típicamente es posible alcanzar eficiencias sobre el 90% si se realiza la selección apropiada.
Límite de medición para cada MEE	En este caso se debe incorporar la carga de la cinta. Así mismo se debe considerar si la MEE considera el reemplazo de un equipo o de un conjunto de ellos que trabajan como sistema. Generalmente el límite se asocia a la ubicación del medidor de electricidad. La energía a medir debe considerar todos los equipos a reemplazar.	Se debe tener en cuenta si es que la MEE considera el reemplazo de un equipo o de un conjunto de ellos que trabajan como sistema alimentando la misma línea. Generalmente el límite se asocia a la ubicación del medidor de flujo y presión. La energía a medir debe considerar todos los equipos a reemplazar.
Opción IPMVP	Opción A o B, dependiendo de si es necesario estimar algún parámetro o no	Lo ideal es opción B, medir el consumo y el caudal de la bomba, y por otro lado, previo a la MEE determinar la eficiencia de la bomba antigua a diferente niveles de carga.
Periodo de Referencia	Un ciclo de operación que permita establecer la relación entre el consumo eléctrico y la carga transportada.	Un ciclo de operación que permita establecer la relación entre el consumo eléctrico y la carga transportada.
Selección de variables independientes y de sus valores durante el periodo de referencia	En este caso la variable independiente corresponde a las toneladas transportadas.	En este caso se considera como la variable independiente al flujo de fluido impulsado.
Condiciones estáticas (dentro de los límites) durante el periodo de referencia	Debe mantenerse la velocidad de transporte y la tensión de las correas.	No debe intervenirse el diseño de las líneas. El mantenimiento básico del equipo debe ser cumplido a cabalidad.
Bases para el Ajuste	Si se cambia el régimen de velocidad habrá una variación en el consumo. Se debe contar con una expresión matemática que permita ajustar el consumo del Periodo de Referencia de acuerdo a la variación de revoluciones en el Periodo Demostrativo de Ahorro.	Al variar el flujo de fluido que se transporta por las líneas habrá una variación en el consumo. Se debe contar con una expresión matemática que permita ajustar el consumo del Periodo de Referencia de acuerdo a la variación del flujo acumulado en el Periodo Demostrativo de Ahorro.

Tabla 12.2 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuación).

from del planets	MEE Tipo		
Ítem del plan de Medición y Verificación	Transporte por correas	Dimensionamiento apropiado de bombas	
Procedimiento de análisis	El procedimiento de análisis dependerá de cada problema, y considera los pasos lógicos a seguir para realizar los cálculos.	El procedimiento de análisis dependerá de cada problema, y considera los pasos lógicos a seguir para realizar los cálculos.	
Precios de la energía	Se recomienda estandarizar el precio a valor unitario en pesos por kWh, para que se puedan comparar los ahorros de cualquier MEE. Los medidores generalmente utilizan esa unidad. Si hay cambios en el precio unitario de la energía entre el Periodo de Referencia y el Periodo Demostrativo de Ahorro, se recomienda utilizar el precio existente en el Periodo Demostrativo de Ahorro para todos los cálculos, pues es en este periodo donde se produce el ahorro. Se debe explicitar si los precios a utilizar, en el caso de la electricidad, serán monómicos o unitarios.	La energía eléctrica generalmente se mide en [kWh], y la tarifa en pesos por [kWh]. Si hay cambios en el precio unitario de la energía entre el Periodo de Referencia y el Demostrativo de Ahorro, se recomienda utilizar el precio existente en el Demostrativo de Ahorro para todos los cálculos, pues es en ese periodo donde se produjo el ahorro. Se debe explicitar si los precios a utilizar serán monómicos o unitarios.	
Responsabilidades de monitorización	Si no existe un Encargado de Eficiencia Energética, se debe asignar esta responsabilidad a quien esté a cargo de la instalación de la aislación. Esto podría estar a cargo del Jefe de Mantenimiento de la Planta.	Si no existe un Encargado de Eficiencia Energética, se debe asignar esta responsabilidad a un Supervisor que tenga control	
Precisión esperada	La precisión depende del instrumento de medición y la precisión del modelo matemático dependerá del diseño de la muestra.	Para caudales la incertidumbre típica es menor al 1%. Por otra parte se debe considerar la incertidumbre del modelo matemático y de las variables estimadas	
Presupuesto	El presupuesto debe considerar las horas hombre de la monitorización de las variables, la supervisión de la Medición y Verificación y los instrumentos que deban adquirirse. Es posible que los equipos ya cuenten con algunos instrumentos que puedan utilizarse, o la empresa cuente con información que ya es recolectada por otra área. En ese caso sólo se deben incluir las horas hombre que se invierten en recoger, ordenar y analizar la información.	El presupuesto debe considerar las horas hombre de la monitorización de las variables, la supervisión de la Medición y Verificación y los instrumentos que deban adquirirse. Es posible que los equipos ya cuenten con algunos instrumentos que puedan utilizarse, o la empresa cuente con información que ya es recolectada por otra área. En ese caso sólo se deben incluir las horas hombre que se invierten en recoger, ordenar y analizar la información.	
Formato y frecuencia de informes	El formato seguirá el modelo del capítulo 6 del IPMVP. La frecuencia de los reportes debe ser mensual.	El formato seguirá el modelo del capítulo 6 del IPMVP. La frecuencia de los reportes debe ser mensual.	

Tabla 12.3 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuada).

form to the con-	MEE Tipo			
Ítem del plan de Medición y Verificación	Reparación de fugas de sistema de aire comprimido	Cambio de sistema de ventilación de las instalaciones		
Propósito de cada MEE y su impacto sobre las condiciones de operación	Se ha decidido eliminar las fugas del sistema de aire comprimido de la planta, permitiendo reducir el consumo de energía eléctrica usada en los compresores de tornillo a carga constante.	Instalación de un sistema de control que regula el flujo de aire de combustión de una caldera, en función de las trazas de monóxido de carbono producto de la quema de combustible, con el objetivo de realizar una combustión completa.		
Límite de medición para cada MEE	En este caso el sistema de aire comprimido nutre a toda la planta, por lo que el sistema está constituido por todas las líneas de distribución y los acumuladores.	En este caso el límite de la medida es el sistema de la caldera, que posee medidores de flujo de combustible que es combustionado en los quemadores.		
		En el caso de que la MEE evaluada genere un alto impacto en el consumot de combustible de la instalación, se podrá utilizar el medidor de flujo de combustible de la instalación, de no ser así, se deberá considerar el medidor de combustible del horno y en caso de no existir éste último se deberá considerar la instalación de un medidor de combustible que aísle la MEE.		
Opción IPMVP	Por lo general se utilizará la Opción A y se debe medir el caudal entregado a las líneas de aire comprimido, ya que éste es el producto. Si los compresores funcionan con variadores de frecuencia, entonces se debe usar la opción B y se debe medir además la presión y caudal de aire entregado por el compresor. El uso de la Opción C, que considera toda la planta, sólo se justifica si el ahorro está por sobre el 10% del consumo total de la planta.	Opción A o B, dependiendo de si es necesario estimar algún parámetro o no. Podrá ser opción C, si y sólo si, la MEE genera una importante reducción de consumo, por sobre el 10% del consumo de toda la instalación.		
Periodo de Referencia	Se debe considerar un ciclo de operación de la planta.	Si el ciclo de operación es de una semana o un día, basta con definir una muestra. Se puede tomar un par de muestras de un ciclo de operación normal.		
Selección de variables independientes y de sus valores durante el periodo de referencia	En este caso la variable independiente es presión en las líneas de aire comprimido.	En este caso la variable independiente puede corresponder al volumen de vapor producido por la caldera.		

Tabla 12.3 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuación).

6	MEE Tipo	E Tipo		
Ítem del plan de Medición y Verificación	Reparación de fugas de sistema de aire comprimido	Cambio de sistema de ventilación de las instalaciones		
Factores estáticos (dentro de los límites) durante el periodo de referencia	Deben mantenerse las horas de operación de la planta, así como la hermeticidad de las líneas de aire comprimido en la planta. Tampoco pueden existir ampliaciones de la red de aire comprimido que no sean reportadas al momento de estimar los ahorros.	No debe intervenirse la aislación de la caldera. Se deben mantener los procedimientos de mantenimiento para limpieza de quemadores existentes, además de mantener la temperatura de alimentación de la caldera y la presión del vapor producido.		
Bases para el Ajuste	Si se cambian las horas de funcionamiento se debe hacer un ajuste de base considerando las condiciones de pre y post implementación Si se cambia el diseño de las líneas habrá un cambio en los requerimientos de aire comprimido y los datos de ahorro no podrán ser estimados.	Se debe contar con una expresión matemática que permita ajustar el consumo del Periodo de Referencia de acuerdo a la producción de vapor en el Periodo Demostrativo de Ahorro.		
Procedimiento de análisis	El procedimiento de análisis dependerá de cada problema, y considera los pasos lógicos a seguir para realizar los cálculos.	El procedimiento de análisis dependerá de cada problema, y considera los pasos lógicos a seguir para realizar los cálculos.		
Precios de la energía	Se recomienda estandarizar el precio a pesos por kWh, para que se puedan comparar los ahorros de cualquier MEE. Los medidores generalmente utilizan esa unidad. Si hay cambios en el precio unitario de la energía entre el Periodo de Referencia y el Periodo Demostrativo de Ahorro, se recomienda utilizar el precio existente en el Periodo Demostrativo de Ahorro para todos los cálculos, pues es en este periodo donde se produce el ahorro. Se debe explicitar si los precios a utilizar serán monómicos o unitarios.	Si hay cambios en el precio unitario del combustible entre el Periodo de Referencia y el Periodo Demostrativo de Ahorro, se recomienda utilizar el precio existente en el Periodo Demostrativo de Ahorro para todos los cálculos, pues es en este periodo donde se produce el ahorro. Debe explicitarse si el precio unitario varía en bloques de tarifa.		
Responsabilidades de monitorización	Si no existe un Encargado de Eficiencia Energética, se debe asignar esta responsabilidad a quien esté a cargo de la instalación de la aislación. Esto podría estar a cargo del Jefe de Mantenimiento de la Planta.	Si no existe un Encargado de Eficiencia Energética, se debe asignar esta responsabilidad a un Supervisor que tenga control sobre quiénes y cómo se opera el horno.		

Tabla 12.3 Ejemplos de las componentes de planes de Medición y Verificación para medidas típicas en la industria (continuación).

from deligion de	MEE Tipo			
Ítem del plan de Medición y Verificación	Reparación de fugas de sistema de aire comprimido	Cambio de sistema de ventilación de las instalaciones		
Precisión esperada	La precisión depende del instrumento de medición y las variables estimadas, así como de la muestra seleccionada y el modelo generado.	Para caudales de combustible y vapor la incertidumbre típica es menor al 1%. Por otra parte, se debe considerar la incertidumbre del modelo que relaciona consumo y producción de vapor.		
Presupuesto	El presupuesto debe considerar las horas hombre de la monitorización de las variables, la supervisión de la Medición y Verificación y los instrumentos que deban adquirirse. Es posible que los equipos ya cuenten con algunos instrumentos que puedan utilizarse, o la empresa cuente con información que ya es recolectada por otra área. En ese caso sólo se deben incluir las horas hombre que se invierten en recoger, ordenar y analizar la información.	El presupuesto debe considerar las horas hombre de la monitorización de las variables, la supervisión de la Medición y Verificación y los instrumentos que deban adquirirse. Es posible que los equipos ya cuenten con algunos instrumentos que puedan utilizarse, o la empresa cuente con información que ya es recolectada por otra área. En ese caso sólo se deben incluir las horas hombre que se invierten en recoger, ordenar y analizar la información.		
Formato y frecuencia de informes	El formato seguirá el modelo del capítulo 6 del IPMVP. La frecuencia de los reportes debe ser mensual.	El formato seguirá el modelo del capítulo 6 del IPMVP. La frecuencia de los reportes debe ser mensual.		

Glosario

- **Ajustes de base:** Ajustes que se realizan al consumo del periodo de referencia para equiparar las condiciones con el periodo demostrativo de ahorro. Existen los ajustes rutinarios, debidos a los cambios en las variables independientes, y los ajustes no rutinarios, que corresponden a cambios en los factores estáticos.
- **Ajustes rutinarios:** Ajustes para compensar los cambios en las variables independientes seleccionadas dentro del límite de medida desde el periodo de referencia.
- Anteproyecto de Eficiencia Energética: Conjunto de trabajos anteriores al proyecto definitivo. En esta etapa se definen presupuestos y costos asociados a la implementación del proyecto definitivo.
- Auditoría de Eficiencia Energética: Proceso en el cual se analiza la estructura energética de una industria o empresa con el fin de determinar los consumos energéticos y detectar posibles oportunidades de mejoras.
- **Cambio climático:** Es la modificación del clima con respecto al historial climático a una escala global o regional. Tales cambios se producen a muy diversas escalas de tiempo y sobre todos los parámetros meteorológicos: temperatura, presión atmosférica, precipitaciones, nubosidad, etc.
- Certified Measurement and Verification Professional (CMVP): La certificación CMVP acredita de manera internacional que el profesional que la posee se encuentra capacitado para llevar a cabo un proceso de Medición y Verificación de ahorros energéticos, a través del protocolo IPMVP.
- **Coeficiente de correlación (R²):** El coeficiente de correlación refleja la medida en que un modelo de regresión explica las variaciones observadas en la variable dependiente respecto a su valor promedio.
- **Contratos por desempeño energético:** Es el instrumento legal a través del cual un usuario de energía y una empresa proveedora de servicios energéticos acuerdan las condiciones e implicancias técnicas y económicas de un proyecto determinado.
- **Desempeño energético:** Se entiende como desempeño energético a un conjunto de resultados medibles relacionados a la eficiencia energética, uso de la energía y consumo de ella.
- **Eficiencia Energética:** Es una práctica que tiene como objetivo reducir el consumo final de energía de un individuo, proceso, organización, etc.
- Factor de potencia: Indicador que se utiliza para describir la cantidad de energía eléctrica que se ha convertido en trabajo. En un circuito de corriente alterna, se define como la relación entre la potencia activa y la potencia aparente.
- Factores estáticos: Factores que deben permanecer constantes en los periodos de referencia y demostrativo de ahorro para no alterar la determinación del ahorro. Algunos ejemplos de factores estáticos son el tamaño de la planta, el número de líneas de producción existentes, la maquinaria que se está midiendo, etc. Es de vital importancia tener control de estos factores ya que un cambio en alguno de ellos requerirá un ajuste de base.
- Gases de Efecto Invernadero: Son gases cuya presencia en la atmósfera contribuyen al efecto invernadero (dióxido de carbono, metano, óxido nitroso, hidrofluorocarbonos, perfluorocarbonos y hexafluoruro de azufre), los cuales que absorben y emiten radiación en rangos de infrarrojos térmicos.
- Indicadores de desempeño energético (IDE): Valores o medidas cuantitativas del desempeño energético así definidas por la organización. Los IDE se pueden expresar como una métrica simple, como una relación o como un modelo más complejo.

- Informe demostrativo de ahorro de energía: Documento que reporta los ahorros energéticos alcanzados por un proyecto de eficiencia energética o una medida relacionada de manera periódica.
- International Performance Measurement and Verification Protocol (IPMVP): Guía que describe los procedimientos y métodos estadísticos para medir, cuantificar, verificar y reportar la disminución en el uso de la energía en proyectos de eficiencia energética. También se utiliza para proyectos asociados al uso de agua.
- **Límite de medida:** Es el conjunto de equipos y/o instalaciones de los cuales se va a determinar el ahorro debido a una MEE aplicada. Para la definición del límite de medida es necesario ver si se deben evaluar el consumo de energía de toda la instalación, de un sistema o un grupo de sistemas, o de un componente o un grupo ellos.
- **Línea base:** Datos de consumos energéticos y variables que afectan el consumo de energía del periodo previo a la implementación de cualquier actividad enfocada al ahorro energético. La línea base permite realizar una comparación del desempeño energético del periodo anterior y con el posterior a las implementaciones realizadas.
- **Medición y Verificación:** Es la práctica que tiene como objetivo medir los resultados energéticos de un determinado proyecto y verificar que los ahorros esperados de la medida de mejora se cumplan.
- Medida de Eficiencia Energética (MEE): Acciones o iniciativas que se llevan a cabo para disminuir el consumo de energía de una instalación o parte de ella.
- NCh-ISO 50001: NCh-ISO 50001:2011, Sistemas de Gestión de la Energía. Análisis de requisitos e implementación.
- **NCh-ISO 50015:** NCh-ISO 50015:2015, Sistemas de Gestión de la Energía Medición y Verificación del Desempeño Energético de Organizaciones Principios y Guías Generales.
- Periodo de referencia (línea base): Periodo de tiempo que es considerado como base para comparar con el consumo energético tras la aplicación de la MEE. La duración del periodo de referencia debe ser lo suficientemente larga para abarcar un ciclo completo de consumo energético, ya sea horario, diario, semanal, mensual, etc., y debe ser lo suficientemente corto para evitar costos innecesarios e incertidumbre.
- **Periodo demostrativo de ahorro:** Periodo de tiempo en el cual se verifica el ahorro posterior a la aplicación de una MEE. La duración de este periodo debe ser al menos la de un ciclo completo de consumo energético de la instalación o el equipo.
- Plan de Medición y Verificación: Documento en el cual se planifica y definen los detalles para realizar todo el proceso de Medición y Verificación que se llevará a cabo para una medida de eficiencia energética en particular.
- **Producto Interno Bruto (PIB):** Es la magnitud macroeconómica que expresa el valor monetario de la producción de bienes y servicios de demanda final de un país o una región durante un periodo de tiempo.
- Registro de profesionales en medición y verificación: Es una nómina propiedad de la Agencia Chilena de Eficiencia Energética, pública y segmentada de profesionales especializados en medición y verificación, con experiencia asociada a proyectos de eficiencia energética.
- **Rendimiento Energético:** Es el cociente entre la energía útil y la energía suministrada o consumida por una máquina o proceso.
- **Revisión energética:** Se entiende como revisión energética a un estudio del consumo energético dentro de la organización, evaluando los puntos de mayor consumo y las posibles mejoras a implementar.

- **Sistema de Gestión de la Energía:** De acuerdo a la Norma Chilena NCh-ISO 50001, son un conjunto de actividades y procesos destinados a mejorar el desempeño energético de una organización, incluyendo la eficiencia energética, uso y consumo de la energía.
- Variable independiente: Parámetro que se sabe que cambiará en el tiempo y del cual depende el consumo energético de un equipo o instalación. Por ejemplo: horas de uso de una máquina, kilómetros recorridos por un vehículo, nivel de producción de una planta, días-grados de calefacción o enfriamiento con respecto a la temperatura ambiente, etc.

ABREVIACIONES:

- AChEE: Agencia Chilena de Eficiencia Energética
- ASHRAE: American Society of Heating, Refrigeration and Air conditioning Engineers
- BID: Banco Interamericano del Desarrollo
- CDE: Contrato por Desempeño Energético
- CEC: California Energy Commission
- CIPEC: Canadian Industry Program for Energy Conservation
- CLP: Pesos chilenos
- CLUBS3E: Club des Services d'Efficacité Energétique
- CMVP: Certified Measurement and Verification Professional
- CSA: The Canadian Standards Association
- **EE**: Eficiencia Energética
- EPC: Energy Perfomance Contracting (Contrato por desempeño energético)
- **EVO**: Efficiency Valuation Organization
- GEF: Global Environment Facility
- GEI: Gases de Efecto Invernadero
- IDE: Indicador de Desempeño Energético
- INN: Instituto Nacional de Normalización
- IPMVP: International Performance Measurement and Verification Protocol
- ISO: International Organization for Standarization
- LEED: Leadership in Energy & Environmental Design
- M: Miles
- MEE: Medida de Eficiencia Energética
- MM: Millones
- PIB: Producto Interno Bruto
- PNUD: Programa de las Naciones Unidas para el Desarrollo
- PCC: Punto Crítico de Control
- SGE: Sistema de Gestión de la Energía
- **UC**: Unidades de Cajas
- UNFCCC: United Nations Framework Convention on Climate Change
- USGBC: US Green Building Council

Bibliografía

- 1- Banco Central de Chile. (2014). Banco Central Estadísticas Económicas.

 Obtenido de http://www.bcentral.cl/estadisticas-economicas/series-indicadores/index_aeg.htm
- 2- CENERGIA. (2007). Adaptación de Estudio de Agroindustria.
- 3- Ministerio de Energía. (2012). Estrategia Nacional de Energía 2012 2030.
- 4- Ministerio de Energia. (2013). Balance Nacional de Energía. Santiago.
- 5- ODEPA. (2012). Actualización del Catastro de la AgroIndustria Hortofruticola Chilena. Santiago.
- 6-SII. (2013). Estadísticas de empresas por rubro, económico (año tributario 2013) año comercial 2012. santiago.
- 7- AChEE. (2012). Curso de Medición y Verificación. Santiago.
- 8- Comisión Nacional para el Uso Eficiente de la Energía. (2014). Manual para la Implementación de un Sistema de Gestión de la Energía. D.F. México.
- 9- Instituto Nacional de Normalización. (2011). Norma Chilena NCh-ISO 50001.
- 10- Energy Valuation Organization. (2010). International Performance Measurement and Verification Protocol.
- 11- AChEE. (2014). Contratación de la Secretaría Técnica para Mesa de Trabajo del Protocolo IPMVP y Elaboración de Documento Publicable. Santiago.

Monseñor Nuncio Sótero Sanz n.°221 Providencia - Chile ☎ (56-2) 2571 2200

f /AChEEnergetica 😈 @AgenciAChEE

info@acee.cl www.acee.cl

