

Neural Networks for Solving Truth Tables

Mohammed Osman and Peter Boennighausen {mohammedosman, pboennig}@stanford.edu

Background and Task

- Truth tables encode the value of a propositional formula as a function of the values of the formula's variables.
- Given formula *f*, each row of the truth table for *f* consists of an assignment *w* and the value of the interpretation function *l*(*f*, *w*), which determines whether or not *w* satisfies *f*.
- **Goal:** learn *I(f, w)* to fill out truth tables for arbitrary formulae

Fig. 1. Interpretation as a classification task on (f, w) points	
116. 21 interpretation as a classification task on (1, 11) points	

p	q	pvq
T	T	T
T	F	T
F	T	T
F	F	F

Fig. 2. An example of a truth table

Data

- Artificially generated formulas by randomly adding symbols/variables
- Labeled using oracle function that recursively evaluates formula
- For simplicity, all formulae had at most 3 variables
- Each test/train run uses newly generated random data

Formula	P and Q	P and Q		R and (not S or T)	R and (not S or T)	
Assignment	{P: 1, Q: 1}	{P: 1, Q: 0}		{R: 1, S: 1, T: 1}	{R: 1, S: 1, T: 0}	
Label	1	0	•••	1	0	•••

Fig. 3. An example of labeled data as (f, w, I(f, w)) points

Implementation

- Neural networks have demonstrated incredible success in recent years on classification tasks
- Interpretation function is a classifier for formulas and weights
- Our featurization scheme allows us to create a fixed-length representation of formula *f* and assignment *w*

Fig. 4. Featurization of formula f and assignment w

Results

- Conducted a parameter sweep of all 3 layer networks with 2 to 10 units per layer
- Highest performing model used a (5, 4, 3) architecture, achieving an 87% accuracy

