

Stored Thermal Energy

Angie M. Shepherd
William E. Haskell

National Institute for Occupational Safety and Health
National Personal Protective Technology Laboratory

NIOSH/NPPTL PPT Program Stakeholders Meeting
March 3, 2009

Project Background

- Protective clothing or turnout gear is designed to insulate a fire fighter from the thermal environment.
- Protective layers and air gaps prevent the energy of the fire environment from being transferred to the fire fighter.
- Burn injuries occur when stored thermal energy (STE) within the garment layers are quickly transferred to the skin through compression of the layers.
- Current standards and testing methods do not adequately evaluate the risk caused by STE.

Photos courtesy of IAFF

Burn Injury History

- Fire fighters have referred to these burns as stored energy burns, steam burns, and compression burns
 - Little to no visual damage to the outershell material
 - Occurs more frequently in areas of the body covered with dense reinforcement materials

Photos courtesy of NCSU

Project Objectives

- Development of an apparatus and a procedure to measure the stored thermal energy (STE) in material composites
- Conduct variability studies between test labs using the STE method and apparatus
- Creation of ASTM standard entitled “Standard Test Method for Measuring the Transmitted and Stored Energy of Firefighter Protective Clothing Material Systems”
- Recommend method, parameters, and criteria to the NFPA Technical Committee on Structural and Proximity Fire Fighting

Project Approach

STE Test Apparatus

Initial Design - Horizontal

Sample Composite
with Reinforcement

Current Design - Vertical with
Water Cooled Sensor

Example STE Results

Moisture and Material Effects

- No Moisture Preconditioning
 - Similar to other thermal tests (TPP, RPP)
 - Reinforced samples have higher times to 2nd degree burn
- With Moisture Preconditioning
 - Time to burn drops with all samples
 - Composites with dense impermeable reinforcements have lower times to 2nd degree burn

Project Outputs

- ASTM Draft Standard, WK10531 - Measuring the Transmitted and Stored Energy of Firefighter Protective Clothing Systems
- Phase 1 Final Report titled, “Development of a Test Method for Measuring Transmitted Heat and Stored Thermal Energy in Firefighter Turnouts”
- Phase 2 Final Report titled, “Thermal Capacity of Fire Fighter Protective Clothing” - Available on the web:
http://nfpaf.org/assets/files/PDF/Research/PPE_Thermal_Energy.pdf

PPT Program Impact

- PPT Program Objective – Improve emergency responder protective clothing to reduce exposure to thermal, biological and chemical dermal hazards
- Incorporation of the method into nationally recognized standards is expected to reduce the number of burn injuries sustained by fire fighters due to stored thermal energy transfer
- Additional surveillance outside this project is needed to acquire anything more substantial than anecdotal information

Quality Partnerships Enhance Worker Safety & Health

Acknowledgements

North Carolina State University

NFPA Fire Protection Research Foundation

ASTM F23 Committee on Protective Clothing and Equipment

International Association of Fire Fighters

www.cdc.gov/niosh/npptl/default.html

Disclaimer: The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy.