притурка

притурка

Защо ВУЗФ?

- Практически насочени програми
- Иновативно обучение
- Обучетие, съобразено със съвременната бизнес среда
- Тук се учите от най-добрите в бранці
- Тук инвестирате в своето бъдеще

www.vuzf.bg

КАНДИДАТ-СТУДЕНТСКИ ИЗПИТИ ПО МАТЕМАТИКА 2015 г.

Сава Гроздев Цеца Байчева

Математика плюс бр. 4, 2015 г.

Софийски университет "Св. Климент Охридски" Математика второ равнище 22 март 2015 г.

Задача 1. Нека положителните числа $a_1, a_2, ..., a_{20}$ (в този ред) образуват геометрична прогресия с частно $q \ne 1$. Да се намери q, ако е известно, че сумата на първите 10 члена на прогресията е 5 пъти по-малка от сумата на всичките двадесет члена на прогресията.

Задача 2. В окръжност с радиус 2 е вписан трапец ABCD с основа AB=4 . Да се намери лицето на трапеца, ако $\angle ABC=2\angle BAC$.

Задача 3. Да се реши уравнението
$$\sqrt{25-x|x-10|}=-\frac{x^2-9x+20}{2}$$

Задача 4. В правоъгълния $\triangle ABC$ ($\angle ACB=90$) точка D, лежаща на хипотенузата AB, е такава, че AD:DB=18:7. Да се намери лицето на $\triangle ABC$, ако е известно, че периметърът му е равен на 12 и CA=CD.

Задача 5. Да се реши неравенството $3^x + 3^{|x|} \ge 2\sqrt{3}$.

Задача 6. В правилна четириъгълна пирамида ъгълът между околна стена и основата е равен на 45. Да се намери мярката на ъгъла между две съседни околни стени.

Задача 7. Нека корените x_1 и x_2 на уравнението $x^2 + ax + b = 0$ са реални числа. Да се намерят a и b, ако числата $\cfrac{1}{1+x_1}$ и $\cfrac{1}{1+x_2}$ са корени на същото уравнение.

Задача 8. В $\triangle ABC$ (AC < BC) вътрешните ъглополовящи AD и BE ($D \in BC, E \in AC$) удовлетворяват неравенствата AD < AC и BE < BC. Върху страните AC и BC са избрани съответно точки A_1 и B_1 , такива че $AA_1 = AD$ и $BB_1 = BE$. Да се намери мярката на $\angle ACB$, ако A_1B_1 е успоредна на AB.

Технически университет - София 6 юли 2015 г.

ПЪРВА ЧАСТ

01	11	В	_
õ	12	В	2
Д	13	Д	3
В	14	a	4
В	15	Γ	5
a	16	Г	6
٦	17	6	7
Г	18	6	8
Д	19	Д	9
a	20	ล	10

BTOPA YACT

26. 45	21. $x = 3$
$\frac{3\sqrt{2}}{2}cm$	
	22. $x = 4$
$\sin \varphi = \sqrt{\sin^2 \beta + \sin^2 \gamma}$	23. $x \in [-1; 2)$
29. k = -1	24. $x = \pm \frac{\pi}{4}$
30. $a = 6;$ $b = 12$	25. $\frac{1}{9}$

Технически университет – Варна 25 юни 2015 г.

π	21	В	=	Α	1	
ת	22	Α	12	В	2	
7	23	В	13	Г	3	
Δ	24	5	14	В	4	
≂	25	7	15	Б	5	
		7	16	Α	6	
		ಹ	17	В	7	
		В	18	Α	8	
		5	19	В	9	
		5	20	٦	10	

30.	64h `√cot k `\$−1
29.	$DB = \frac{a\sqrt{6}}{3}$
28.	$a \in \left(0; \frac{1}{4}\right)$
27.	- i 4
26.	∞

Техиически университет - София 18 април 2015 г.

IIBPBA 4ACT

	01	r	07	в
	6	В	61	В
	8	Д	18	В
	7	П	11	П
	9	9	91	П
170 1011	S	9	15	П
	7	ľ	14	L
	3	L	13	а
	2	L	12	9
	1	В	11	B

BTOPA 4ACT

$ \begin{array}{c} 25. \\ x \in (-\infty; 3] \{7\} \end{array} $	$30. \frac{h}{3}$
24. $\frac{8}{15}$	29. 4 cm . 8 cm
23. +0 лв.	28. 24 cm ²
22. 10	27. 6. 30. 150
x = -4	26. 2

Техинчески университет - София 25 април 2015 г.

HBPBA 4ACT

-	2	3	7	ß	9	7	∞	6	91
В	В	П	а	а	_	В	П	0	٦
=	12	13	71	15	16	17	18	16	20
æ	6	9	В	J	В	П	П	L	В

BTOPA 4ACT

	25.	096	
	24.		720
BIOLA TACI	23.	$x = 2\frac{1}{x}$	ı
a	22.	$x_1 = 0$:	$x_2 = 1$
	21.	3+	2 ,8
ł			

Софийски университет "Св. Климент Охридски" Математика първо равнище 29 март 2015 г.

Задача 1. Да се реши неравенството
$$\frac{x-4}{5x-x^2-4} \ge -1$$
.

Задача 2. В
$$\triangle ABC$$
 са дадени $\angle ACB = 30$ и височините $AA_1 = 5\sqrt{3}$ и $BB_1 = 8$. Да се намерят страните на $\triangle ABC$.

Задача 3. Да се реши уравнението
$$\sqrt{-3x-2} = 3x + 4$$
.

Задача 6. Ъглополовящата на
$$ZBAC$$
 пресича описаната около триъгълника ΔABC окръжност в точка S . Ако $AB=3$, $AS=7$ и $CS=5$, намерете страната BC .

Задача 7. Даден е трапец
$$ABCD$$
 с основи $AB=19$, $CD=5$ и бедра $BC=13$, $AD=15$. Да се намерят лицето и диагоналите AC и BD на правена

Задача 8. За кои стойности на реалния параметър
$$k$$
 уравнението $(k-2)x^4+2(2k-3)x^2+5k-6=0$ няма реални корени.

Софийски университет "Св. Климент Охридски" Математика първо равнище 20 юни 2015 г.

Задача 1. Пресметнете израза:

$$A = (\log_{3/5} \sqrt{5})^2 - \log_{3/5} 5\sqrt{5} + \log_{\sqrt{5}+1} (4 + 2\sqrt{3}).$$

Задача 3. Да се реши системата:
$$xy + x + y = 19$$
 $x^2y + xy^2 = 84$

Задача 4. Върху продължението на хипотенузата AB на правоъгълния $\triangle ABC$ е взета точка D, така че BD=BC и B е между A и D. Намерете дължината на CD, ако AC=24 и BC=7.

Задача 5. Разполагаме с три разноцветни зарчета. Каква е вероятността сборът от точките върху трите зарчета при произволно хвърляне да е 7?

 $egin{align*} {\bf 3a}_{\it n}{f a}^{\it n}{f a}^{\it n} & {f a}^{\it n} & {f b}^{\it n} & {f ca}^{\it n} & {f n}_{\it n}{f o}_{\it n}{f o}_{\it n} & {f ca}^{\it n}_{\it n} & {f ca}^{\it n}$

Задача 7. Дължините на отсечките, съединяващи петите на височините в остроъгълен триъгълник, са 8, 15 и 17. Намерете радиуса на описаната около дадения триъгълник окръжност.

Задача 8. Уравнението $x^2 + 2ax + 4a = 0$ има реални корени x_1 и x_2 .

Намерете най-голямата стойност на израза $S = |x_i| + |x_2|$, при условие, че параметърът a принадлежи на множеството от решения на неравенството $|a| \le 2$

Софийски университет "Св. Климент Охридски" Математика второ равнище 21 юни 2015 г.

Задача 1. Да се реши уравнението $(x^2 - 10x + 24)\sqrt{5 - x} = 0$.

Задача 2. В правоътълен триътълник отношението между радиусите на вписаната и описаната окръжности е 2:5. Да се намери лицето на триътълника, ако е известно, че периметърът му е равне на 12.

Задача 3. Да се реши неравенството

$$\log_{\frac{1}{5}}(x^2 - 7x + 12) - \log_{\frac{1}{5}}(x - 1) - \log_{\frac{1}{5}}(x + 1) \ge 0.$$

Задача 4. В успоредника ABCD точките M и N лежат съответно на страните AB и CD. Да се намери лицето на успоредника, ако е известно, че $AC+BD=10+2\sqrt{5}$, а четириъгълникът MBND е квадрат с лице, равно на 10.

Задача 4. а) От условнето следва, че $DM \perp (ABC)$, т.е. $DM \perp BM$ и $DM \perp AC$. Тогава AD = DC. От AD = BD следва, че AM = BM и така получаваме $\angle ABC = 90^\circ$. Но $\triangle ACB \cong \triangle ACD$, т.е. $\angle ADC = 90^\circ$. Следователно DM = BM. Така намираме $\triangle (BD; (ABC)) = \angle DBM = 45^\circ$.

6) От правоъгълния $\triangle ABC$ намираме

$$AC = a\sqrt{2} \qquad \qquad DM = \frac{a\sqrt{2}}{2}.$$

Следователно

$$egin{align*} V_{ABCD} &= \cfrac{AB.BC.DM}{6} = \cfrac{3\sqrt{2}}{12}$$
. Използваме формулата $V_{ABCD} = \cfrac{S_1 r}{3}$, където r е радиусът на вписаната в пирамидта сфера и от $S_1 = \cfrac{2a^2\sqrt{3}}{4} + \cfrac{2a^2}{2} = \cfrac{a^2\left(\sqrt{3}+2\right)}{2}$ получаваме $r = \cfrac{a\left(2\sqrt{2}-\sqrt{6}\right)}{2}$.

Технически университет - София 4 април 2015 г.

Д	ລ	В	Д	-	В	а	Г	7	õ	
20	19	18	17	16	15	14	13	12	Ξ	
6	$\tilde{0}$	Д	В	Д	Д	8	ó	a	-	,
01	9	8	7	6	5	4	3	2	-	
				4 HACT	IIbPBA					1

BTOPA YACT

x=2	21.	
$x \in \left(\frac{1}{3}:1\right]$	22.	
$x \in \left\{ -\frac{\pi}{4}; 0 \right\}$	23.	
$x = \frac{-1 + \sqrt{29}}{2}$	24.	
$f_{\min}(-1) = -1$. $f_{\max}(-3) = \frac{1}{3}$	25.	

Задача 2. а) За $x \ge 0$ даденото уравнение е еквивалентно на уравненията x-3=2x или x-3=-2x с решения x=-3<0 и x=1. Решение на даденото уравнение е x=1.

6) Нека $f(x) = x^2 + mx + m - 1$. Уравнението f(x) = 0 има реални

корсни по-малки от 1, когато
$$|D \ge 0 \> |m^2 - 4m + 4 \ge 0 \>$$
 корсни по-малки от 1, когато
$$|.f(1) > 0 \Leftrightarrow |2m > 0 \>$$
 . Решение
$$|-\frac{m}{2} < 1 \> |m > -2 \>$$

 $4 \sin x + 1 - 1 + 2 \sin^2 x = 0$. Тогава $\sin x (\sin x + 2) = 0$. Следователно уравнението $\sin x = 0$ или $\sin x + 2 = 0$. Второто уравнение няма решение. Решение на първото, а и на даденото уравнение е $x=k\pi$, където k е цяло число. даденото уравнение в) Преобразуваме

Нека AB=a , BC=c , CD=b и DA=d . От ABCD описан около окръжност получаваме a+b=c+d. От $\angle ABD=\angle DBC$ намираме Задача 3. а) б) От ABCD вписан в окръжност следва, че $\angle ADC = 120^\circ$. b=d . Тогава и a=c . От косинусова теорема за

 $\triangle ACD$ и $\triangle ACB$ получаваме съответно $b^2 = \frac{16}{3}$,

т.е. $b = \frac{4\sqrt{3}}{3}$ и $a^2 = 16$, т.е. a = 4. Получаваме

 $S_{_{ABCD}} = S_{_{ACB}} + S_{_{ACD}}$. Заместваме и намираме

$$S_{ABCD} = \frac{a^2 \sin 60^{\circ}}{2} + \frac{b^2 \sin 120^{\circ}}{2} = \frac{16\sqrt{3}}{3}$$
. Ho $\triangle ABC$ е равностранен,

т.е. $\angle ACD=60^\circ$. Тогава $\angle BCD=90^\circ$ и BD=2b . Следователно

$$R_{ABCD} = \frac{BD}{2} = b = \frac{4\sqrt{3}}{3}.$$

. Решение е

3адача 5. Правилна триъгълна пресечена пирамида $ABCA_1B_1C_1$ има основни ръбове AB = 24 и $A_1B_1 = 6$, а мярата на двустенния ъгъл при основата ABC е 45. Да се намери обемът на пирамидата.

функцията на Задача 6. Да се намери най-малката стойност $f(x) = \cos x \sin 2x - \cos 2x - 2\sin x - 1$ вадача 7. В равнобедрения $\triangle ABC$ (AC=BC) окръжността, имаща за иламетър вътрешната ъглополовяща AL ($L\!\in\!BC$), минава през средата на 5едрото AC . Точките O и $O_{\mathfrak{t}}$ са съответик ${\mathfrak{T}}$ чентровете на описаните около гриъгълниците ALC и ABL окръжности. Да се намери дължината на отсечката $00_{\scriptscriptstyle ext{I}}$, ако радиусът на описаната около $\triangle ABC$ окръжност има Задача 8. Дадена е функцията $f(x) = x^2 + ax + 1$, където a е реален параметър. Да се намерят стойностите на \boldsymbol{a} . за които за всеки три числа \boldsymbol{x} , ${m y}$ и ${m z}$ от интервала [0;1] числата $f({m x})$, $f({m y})$ и $f({m z})$ са дължини на страни на някакъв триъгълник.

Пловдивски университет "П. Хилендарски" 3 юни 2015 г.

ЧАСТ І. За верен отговор: 1 точка, иначе: 0 точки

1. Стойността на израза
$$\left\| 2\sqrt{7} - 3 \right| + \left| 2 - \sqrt{7} \right| - 4 \right|$$
 е:
A) $\sqrt{7} - 5$ Б) $9 - 3\sqrt{7}$ В) $1 - 3\sqrt{7}$ Г) $-3 - \sqrt{7}$

2. Най-малкото от числата $\log_{0.5} 3$, 0, 1, 2^{-1} e:

a)
$$\log_{0.5} 3$$
 b) 0

$$\sqrt[4]{3-x}$$
 3. Стойностите на x , за които изразът $\frac{\sqrt[4]{3-x}}{|g(x-2)|}$ има смисъл, са:

A)
$$x \neq 2$$
 B) $x \in (2, +\infty)$ **B)** $x \in (2, 3) \cup (3, +\infty)$ **Г**) $x \in (2, 3)$

4. Ако корените на квадратното уравнение $x^2 - 30x + 11 = 0$ са x_1 и

$$x_2$$
 , то $x_1 + x_2 - 2x_1x_2$ е равно на:
A) -8 **Б**) 8

$$\Gamma$$
) $\sqrt{151}$

5. Ако
$$\sin \alpha = \frac{8}{17}$$
 и $\alpha \in (\frac{\pi}{2}, \pi)$, то $tg\alpha$ е равен на:

B)
$$-\frac{15}{8}$$

6. Решенията на неравенството $9^{x+2} \ge \sqrt{3^x}$ са:

A)
$$x \in \left(-\infty, -\frac{8}{3}\right]$$

B) $x \in \left[-\frac{8}{3}, +\infty\right)$

b)
$$x \in \left(\frac{8}{3}, +\infty\right)$$

$$\Gamma) \ x \in (2, +\infty)$$

7. За аритметична прогресия е дадено, че
$$a_2 + a_6 = 4$$
. Сумата

$$S_7 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$$
 е равна на:
A) 12 **B)** 14 **B)** 16

B) 16

Γ) 15

8. Решенията на уравнението
$$\sqrt{x+3} = x-9$$
 са:

9. Числената стойност на израза
$$A = \log_2 3.\log_3 64$$
 e:

b)
$$3\log_2 3$$

A)
$$16\sqrt{2}$$

пирамидата. От *ДВДМ* ппрамидата е правилна следва, че EO е височина на Задача 4. а) Нека $AC \cap BD = O$. Тъй като $MH \perp OC$. $H \in OC$. От правоъгълния ΔEOC $\angle ((ABCD; (BMD)) = \angle MOC = 45^{\circ}.$ равнобедрен следва Нека

От свойство на ъглополовящата $\frac{CM}{5-CM}=\frac{3}{4}$ след пресмятане намираме ъглополовяща следва $OM^2 = OC.OE - CM.ME$

$$CM = \frac{15}{7}$$
 и $EM = \frac{20}{7}$. Тогава $MH = \frac{12}{7}$. Следователно

$$V_{DRCM} = \frac{S_{DRC}.MH}{3} = \frac{36}{7}$$

$$V_{DBCM} = \frac{S_{DBC}...s.}{3} = \frac{1}{7}$$
.
6) От $V_{DBCM} = \frac{S_{DBM}h_C}{3}$ получаваме $h_C = \frac{3V_{DBCM}}{S_{DBM}} = \frac{3\sqrt{2}}{2}$

Висше строително училище "Любен Каравелов" - София 8 юли 2015 г.

второто и получаваме квадратното уравнение $x^2 + 3x - 10 = 0$ с корени $x_1 = -5$ и $x_2 = 2$. Решение на ситемата са (-5;-7) и (2;0). ${f 3}$ адача 1. a) От първото уравнение изразяваме ${f y}={f x}-2$, заместваме във

6) За
$$x \neq -3$$
 от $(x+2)^2 \geq 0$ за всяко x следва, че даленото неравенство е еквивалентно на $\frac{x-1}{x+3} \leq 0$. Решение на задачата е $x \in (-3;1]$.

в) Преобразуваме
$$A = \lg 10^{-3} - \log_7 7^2 + \log_{4^{-1}} 4^3 - \log_{\sqrt{5}} 1 =$$

$$-3\lg 10 - 2\log_7 7 - 3\log_4 4 - 0 = -8$$

6) В $2^{2x} + 4.2^x - 32 = 0$ полагаме $2^x = \mathbf{u} > 0$ и получаваме квадратното уравнение $\mathbf{u}^2 + 4\mathbf{u} - 32 = 0$ с корени $\mathbf{u}_1 = -8 < 0$ и $\mathbf{u}_2 = 4$. От $2^x = 4$ намираме $\mathbf{x} = 2$.

в) За x>0 получаваме последователно $\log_3(x+2)=\log_3 x^2+\log_3 3$. Оттук следва $\log_3(x+2)=\log_3 3x^2$. Т.е. получаваме квадратното уравнение $3x^2-x-2=0$ с корени $x_1=-\frac{2}{3}<0$ и $x_2=1$. Решение на

Задача 2. а) Даденото уравнение е еквивалентно на уравненията 6x-3=6 или 6x-3=-6. Следователно x=1,5 или x=-0,5.

даденото уравнение е x = 1.

6) Намираме
$$\cos 2\alpha = \frac{1 - tg^2 \alpha}{1 + tg^2 \alpha} = \frac{1}{2}$$
, заместваме и получаваме

$$A = \frac{4}{5 + 6.\left(-\frac{1}{2}\right)} = 2.$$

в) За да има корени с различни знаци трябва $x_1x_2 = \frac{3(m-1)}{m} < 0$.

Следователно $m \in (0;1)$.

Задача 3. а) Нека вписаната в триъгълниа окръжност се допира до страните AB. BC и AC съответно в точките M, N и P. От свойствата на правоъгълен триъгълник и вписана окръжност следва CN = CP = r = 1 и BN = BM = 2. Означаваме AM = AP = x и от Питагорова теорема за $\triangle ABC$ следва $(x+1)^2 + 9 = (x+2)^2$. Намираме

 ΔABC следва $(x+1) + 9 = (x+2)^{-}$. Намираме X=3 и следователно AC=4, AB=5 и $S_{ABC}=6$.

6) Намираме
$$R = \frac{AB}{2} = \frac{5}{2}$$
.

12. В равнобедрения $\triangle ABC$, с бедра AC = BC = 10, центърът на вписаната окръжност дели височината към основата в отношение 5:2. Основата на триъгълника е:

A) 8

ЧАСТ II. За верен отговор: 2 точки, иначе: 0 точки.

13. Триъгълникът ABC има страни AC=6, BC=5 и височина CH=4. Страната AB и радиусът на описаната около триъгълника окръжност са:.....

14. Основата на равнобедрен триъгълник има дължина 8 *ст* и медианите към бедрата му са взаимно перпендикулярни. Да се намери дължината на третата медиана и лицето на триъгълника.

15. Решенията на уравнението $\log_2(x-5) + \log_2(x-4) = 1$ са:

16. Най-голямата и най-малката стойност на функцията $f(x) = 3 - 2\sin x$ са....

17. Решенията на неравенството $\frac{x^2 - x}{x + 2} \ge 0$ са:....

ЧАСТ III. Разпишете подробно и обосновано решенията на задачи 18-20. Максимален брой гочки за всяка задача: 6.

18. Намерете стойностите на параметъра k, за които уравнението $(k+1)x^2 - (2k+5)x + k = 0$ има два различни положителни корена.

19. Да се реши системата
$$\begin{vmatrix} x^2 + y^2 - xy = 7 \\ 2xy - x - y = 2 \end{vmatrix}$$

20. Даден е равнобедрен ΔABC с основа AB=6 см. и бедро AC=5 см. Окръжност с диаметър AC пресича AB в точка E и CB в точка F. Да се намери лицето на четириъгълника AEFC.

Пловдивски университет "П. Хилендарски"

ЧАСТ 1. За верен отговор: 1 точка, иначе: 0 точки

- 1. Кой от дадените изрази НЕ е равен на $4\sqrt[4]{27}$?

- B) 16√3
- F) 8√3
- 2. Ако x_1 и x_2 са корсии им уги... реални числа, то стойността на израза $x_1^{-2} + x_2^{-2}$ е:

 А) 1

 Б) $\frac{a^2-2b}{h^2}$ В) $\frac{a^3-2}{b}$ 2. Ако x_1 и x_2 са корени на уравнението $x^2+ax+b=0$, където a и b са $\Gamma\left(\frac{a}{b}\right)^2 - 2b$
- $\mathbf{b}) \frac{a^{3-2b}}{b^{2}}$

- Γ) -5 M 1

 $\Gamma)x \neq \pm 5, x \neq 2$

Г) 1 и 4

- 6. Корените на уравнението $\sqrt{x-2} = x-4$ са:

 А) 3 и 6
 Б) 6
 В) 3
 7. Решенията на неравенството $(x+1)(3-x)(x-2)^2 \ge 0$ са:

 А) $x \in (-\infty; +\infty)$ Б) $x \in [-1; 3]$ $x \in [-1; 2]$

- B) x ∈ [-1;3]F) x ∈ [-1;2] ∪ [3;+∞]
- 8. Сумата на три числа, образуващи аритметична прогресия, е равна на $\frac{2}{5}$, а сумата от квадратите на тези числа е $\frac{14}{5}$. Трите числа са:

- A) $\frac{1}{2}, \frac{1}{2}, 1$ B) $-\frac{1}{3}, -\frac{2}{3}, 1$ B) $\frac{1}{3}, \frac{2}{3}, 1$ Γ) $\frac{1}{3}, \frac{4}{3}, \frac{7}{3}$ 9. Допирната точка M на вписаната в правоъгълния триъгълник ABC ($\ll C = 90^\circ$) окръжност разделя катета BC на части с дължини BM = 3 и CM = 2. Дължината на хипотенузата е:

като P е среда на AB . 3адача $8.\ a)$ Нека DO=h е височина на пирамидата, а DP=k е апотема, Гогава

$$\angle ((ABC); (ABD)) = \angle DPC = \alpha$$
.

равностранния $\triangle ABD$ намираме $k=rac{m\sqrt{3}}{2}$, а

от правоъгълния $h = \frac{m\sqrt{3}\sin\alpha}{2}.$

Тогава

$$V_{ABCD} = \frac{S_{ABC}.DO}{3} = \frac{m^3 \sin \alpha}{8}$$

 $W_{ABCD} = \frac{S_{ABC}.DO}{3} = \frac{m^3 \sin \alpha}{8}$. $\angle CAD = \angle CBD = 90^\circ$. Тогава $CD = m\sqrt{2}$ и от равнобедрения $\triangle CDM$

намираме $\sin \frac{\alpha}{2} = \frac{\sqrt{2}}{\sqrt{3}}$. Следователно $\cos \alpha = -\frac{1}{3}$.

в) От $AB\perp CP$ и $AB\perp DP$ следва $AB\perp (CDP)$ и $AB\perp CD$. Тогава разстояние. От PC = PD следва $\angle CPH = \frac{\alpha}{2}$. Следователно $\angle(AB;CD) = 90^{\circ}$. Ако $PH \perp CD$ в $\triangle PCD$, то PH е търсеното

 $PH = \frac{m\sqrt{3}}{2}\cos\frac{\alpha}{2}.$

Висше строително училище "Любен Каравелов" - София 8 април 2015 г.

Задача 1. а) За $x \neq \{0;1\}$ получаваме $\frac{x}{x-1} - \frac{x+2}{x} \leq 0$ и след

преобразуване следва $\dfrac{-(x-2)}{x(x-1)} \leq 0$. Следователно $x \in (0;1) \cup \{2;+\infty)$.

$$g(x) = \frac{2}{3}(m+5)x^3 - 2(m+5)x + 2m + 6$$
. За да има $g(x) = 0$ три

различни реални корена $|x_1|$ и $|x_2|$, за които $|g(x_1).g(x_2)|<0$. Пресмятаме различни реални решения трябва уравнението $oldsymbol{g}^{(oldsymbol{x})}\!=\!0$ да има два $g'(x) = 2(m+5)x^2 - 2(m+5)$. За $m \neq -5$ уравнението g'(x) = 0 има корени $x_1 = -1$ и $x_2 = 1$. Тогава заместваме и след опростяване получаваме неравенството (m-1)(5m+19)<0. Следователно решение

$$m \in \left(-\frac{19}{5};1\right).$$

Задача 7. a)
$$S_{ABCD} = S_{ABO} + S_{BCO} + S_{CDO} + S_{ADO} = \frac{2R^2}{2} + \frac{2R^2 \sin \phi}{2} + \frac{R^2 \sin(180^{\circ} - \phi)}{2} = R^2 (1 + \sin \phi)$$
.

$$R_{AOD} = S_{AOD} + S_{DOC} - S_{AOC} = \frac{R^2 \left(1 + \sqrt{3}\right)}{4}$$

$$CD = \sqrt{2R^2 + 2R^2 \cos \varphi} = 2R \cos \frac{\varphi}{2}.$$

$$S_{ACD} = S_{AOD} + S_{DOC} - S_{AOC} = \frac{R^2 \left(1 + \sqrt{3} \right)}{4}$$
.

в) От косинусова теорема за ΔCDO намираме $CD = \sqrt{2R^2 + 2R^2 \cos \varphi} = 2R \cos \frac{\varphi}{2}$. Следователно

$$AB + CD = 2R\left(\sin\frac{\varphi}{2} + \cos\frac{\varphi}{2}\right) = 2R\sqrt{2}\cos\left(\frac{\varphi}{2} - 45^{\circ}\right) \le R\sqrt{8}.$$

Равенство се получава при $\cos\left(\frac{\phi}{2}-45^\circ\right)=1$, т.е. $\phi=90^\circ$. Т.е. ABCD е

10. Даден е равнобедреният триъгълник $\Delta ABC~(AC=BC)$, за който

$$\Gamma$$
) $\sqrt{54.25}$

11. Даден е ромб със страна $8\sqrt{3}$ и остър ъгъл 60° . Дължината на радиуса на вписаната в ромба окръжност е:

12. Основите на трапец имат дължини 6 и 8, а ъглите при голямата му основа имат големини 45° и 30°. Лицето на трапеца е:

A)
$$\frac{7}{\sqrt{5}-1}$$
 B) $7(\sqrt{3}$

1) B)
$$14(\sqrt{3}$$

B) $7(\sqrt{3}-1)$ B) $14(\sqrt{3}-1)$ Γ) $\frac{14}{\sqrt{3}-1}$

ЧАСТ ІІ. За верен отговор: 2 точки, иначе: 0 точки.

13. Ако $tglpha+\cot glpha=k$, то стойността на израза $tg^2lpha+\cot g^2lpha$ е:....

14. Решенията на системата
$$\begin{vmatrix} x + y = 5 \\ x^2 = y + 1 \end{vmatrix}$$
 са:...

15. Едната страна на правоъгълник е с 2 ст по-дълга от другата. Ако увеличим всяка от страните му с по 10 ста, се получава правоъгълник с лице $1224~{
m cm}^2$. Страните на дадения правоъгълник са::

16. Две от страните на триъгълник имат дължини 4 и 6, а медианата към гретата му страна има дължина 🌾 🗓 Пицето на триъгълника е:..

17. Около окръжност с радиус 4 е описан равнобедрен трапец с бедро 10. Дължините на основите на трапеца са:...

ЧАСТ III. Разпишете подробно и обосновано решенията на задачи 18-20. Максимален брой точки за всяка задача: 6.

18. Намерете корените на уравнението
$$\left(\frac{x^2+6}{x^2-4}\right)^2 = \left(\frac{5x}{4-x^2}\right)^2$$
.

19. Намерете стойностите на реалния параметър k, за които неравенството $kx^2-4x+3k+1>0$ е изпълнено за всяко реално число x

 $20.~{
m B}$ равнобедрен триъгълник с ъгъл $120^{
m c}$ е вписана окръжност с радиус $1.~{
m c}$ Намерете дължините на страните на този триъгълник.

Великотърновски университет "Св. Св. Кирил и Методий" 19 април 2015 г.

Задача 1. а) Да се намерят първият член и разликата на аритметична

прогресия, за която
$$\begin{vmatrix} a_2 + a_8 = 10 \\ a_3 + a_{14} = 31 \end{vmatrix}$$
.

6) Да се реши уравнението $\frac{1}{x^2 - 5x + 6} + \frac{5 - 2x}{x - 2} = 1 + \frac{2}{x - 3}$

в) Да се реши уравнението
$$\frac{\sin 2x}{1+\sin x} = -2\cos x.$$

Задача 2. а) Да се намери най-малката стойност на реалния параметър a, за която уравнението $a^2(x-3)+4(a+3-x)=a^3$ има единствен цял

положителен корен, който удовлетворява неравенството $\frac{x+9}{6} - \frac{x-2}{3} > 1$; 6) За така намерената стойност на \boldsymbol{a} да се реши уравнението

 $(a+2)9^x + (a-3)3^x + 2a + 5 = 0$.

Задача 3. В $\triangle ABC$ са построени височината CH и медианата CM . Ако MB=BC , CM=8 и MH=4 , да се намерят:

- a) Страните и лицето на ΔABC ;
- 6) Радиусът на вписаната в $\Delta\!ABC$ окръжност.

Задача 4. Даден е правоътълен трапец ABCD, $AB \perp AD$, в който е вписана окръжност. Известно е, че AD=4 и AB=6.

- а) Намерете страните и лицето на трапеца;
- 6) Трапецът ABCD служи за основа на пирамидата MABCD, всички околни стени на която са наклонени към равнината на основата под един и същ ъгъл с големина α . Намерете обема на пирамидата.

Великотърновски университет "Св. Св. Кирил и Методий" тест математика - 26 април 2015 г.
Първа част

1. Кое от следните числа е най-малко?

$$DH_{\scriptscriptstyle \parallel}=H_{\scriptscriptstyle \parallel}H$$
 . Следователно $HH_{\scriptscriptstyle \parallel}=rac{3V_{\scriptscriptstyle ABCD}}{S_{\scriptscriptstyle ABC}}$. Но $\Delta\!ABC$ е със страни

$$AC = BC = 2\sqrt{5}$$
, $AB = 2\sqrt{2}$. Тогава $S_{ABC} = 6$ и $HH_1 = \frac{4}{3}$.

- 6) От теоремата за трите перпендикуляра следва, че $\,C_{\scriptscriptstyle \parallel} D \perp (ABB_{\scriptscriptstyle \parallel} A_{\scriptscriptstyle \parallel})$, т.е. гърсеното разстояние е 2.
- в) равнините, които се пресичат в BB_{\parallel} са перпендикулярни, защото са стени на прав тристенен ъгъл. Следователно търсения косинус е равен на нула.

Университет по архитектура, строителство и геодезия 13 юли 2015

		1
8		
В	2	7
6	w	
Г	4	
1	IJ	

Задача 6. а) За m>0 от f(1)=0 получаваме $(\lg m+1)(2^m-1)=0$.

Тогава $\lg m + 1 = 0$ или $2^m - 1 = 0$, т.е. $m = \frac{1}{10}$ или m = 0. Следователно

решение е $m = \frac{1}{10}$.

6) От а) следва, че $x_1 = 1$ е корен на f(x) = 0 за всяко m . От

$\frac{m+1}{m+5} + \frac{m+5}{m+1} < 2$.	$1+x_2=\frac{2m+6}{m+5}$
Преобразуваме	намираме
и получаваме	$x_2 = \frac{m+1}{m+5}.$
$\frac{m+1}{m+5}$ < 0, r.e.	Следователно

в) Намираме f'(x) = 2(m+5)x - (2m+6) и f'(x) = 2(m+5). Даленото уравнение представяме във вида

 $m \in (-5;-1)$.

Да означим

$$\angle LQH = 180^\circ - \beta$$
 и $\angle AQL = \beta = 135^\circ - \gamma$. Следователно $S_{ALHC} = \frac{AH.CL\sin\angle AQL}{2} = \frac{b^2\sqrt{2}}{4}\sin\gamma\sin\left(135^\circ - \gamma\right)$.

6) Ot
$$\sin \gamma \sin \left(135^{\circ} - \gamma\right) = \frac{1}{2} \left(\cos \left(2\gamma - 135^{\circ}\right) - \cos 135^{\circ}\right)$$
 следва. Че

максималната стойност се достига, когато
$$\cos(2\gamma-135^\circ)$$
 е максимално, т.е. при $\cos(2\gamma-135^\circ)=1$. Следователно $2\gamma-135^\circ=0$, т.е. $\gamma=67^\circ30^\circ$.

в) От правоъгълните
$$\triangle AHC$$
 и $\triangle ALC$ с обща хипотенуза $AC=b$ намираме $LM=HM=AM=MC=rac{b}{2}$ и

$$\angle AHM = \angle HAC = 90^\circ - \gamma$$
. Така получаваме,

че
$$\angle LHM = \angle LHA + \angle AHM = 45 + ^\circ 90^\circ - \gamma = oldsymbol{eta}$$

Прилагаме синусова теорема и намираме

Задача 8. а) Нека пресечената пирамида е получена

върха D . От условието получаваме, че $A_{\scriptscriptstyle
m I}$, $B_{\scriptscriptstyle
m I}$ и $C_{\mathfrak{l}}$ са среди на AD , BD и CD . Тогава от пирамидата ABCD с прав тристенен ъгъл при DA = DB = 2 и DC = 4. Следователно

$$V_{ABCD} = \frac{S_{ABD}.DC}{3} = \frac{8}{3},$$

и $DH_{{}_{
m I}}$ са височините на двете пирамиди ABCD и $A_{{}_{
m I}}B_{{}_{
m I}}C_{{}_{
m I}}D$ следва, че $V_{_{A_{1}B_{1}C_{1}D}} = \frac{S_{_{A_{1}B_{1}D}}.DC_{_{1}}}{3} = \frac{1}{3} \text{ if } V_{_{ABCA_{1}B_{1}C_{1}}} = V_{_{ABCD}} - V_{_{A_{1}B_{1}C_{1}D}} = \frac{7}{3}. \text{ Akg } DH$

A)
$$\left(\frac{1}{2^3}\right)^{-1}$$
 B) $\left(\frac{2}{3}\right)^{-2}$ B) $\left(\frac{1}{2\pi}\right)^2$

2. Стойността на израза
$$\frac{x+2}{x^2-4} - \frac{1}{x-2} + \frac{x-2015}{x+3}$$
 за $x = 2015$ е ра

A) 3

3. Дефиниционното множество на функцията
$$f(x) = \frac{\sqrt{x+3}}{\log_4 x}$$
 е:

$$A) x \in [-3; 1) \cup (1; +\infty)$$

$$\mathbf{5}) x \in (0; +\infty)$$

$$\Gamma) x \in (0; 1) \cup (1; +\infty)$$

4. Броят на реалните корени на уравнението
$$x^3 + 7x^2 + 12x = 0$$
 е: A) 1 B) 0 B) 3 Г) 4

$$\mathbf{B}) \ \mathbf{x} \in (-\infty; -3]$$

5. Единият корен на квадратното уравнение
$$kx^2 + x + k - 1 = 0$$
 е $x_1 = 0$.

7. Уравнението
$$x^2 - 5x + 3 = 0$$
 има корени x_1 и x_2 . Стойността на израза

$$\frac{x_1}{x} + \frac{x_2}{x}$$
 e равна на:

$$\frac{5}{3}$$

B)
$$\frac{19}{2}$$

Ha Herappencreoto
$$3^{x+2} < 0^{x-2}$$

B)
$$x \in (0.6]$$

8. Решенията на неравенството
$$3^{x+2} \le 9^{x-2}$$
 са:

A)
$$x \in (4; +\infty)$$
 B) $x \in (5; +\infty)$ B) $x \in (0; 6]$

$$(0;6]$$
 Γ) $x \in [6;+\infty)$

9. Дадена е аритметична прогресия, за която
$$a_3=4$$
 и $a_6=5,5$. Първият член $a_{_1}$ на прогресията е равен на:

10. Ако $\cos \alpha = \frac{4}{5}$ и $\alpha \in \left(0, \frac{\pi}{2}\right)$, то стойността на $lg\alpha$ е равна на:

11. Даден е ΔABC , за който AB=10 cm и AL ($L\in BC$) е вътрешната ъглополовяща на ъгъла при върха A . Ако CL:LB=1:2 , то дължината на страната AC е равна на:

 $V=6\sqrt{3}~$ cm^3 . Дължината на височината на пирамидата е равна на 12. Дадена е правилна триъгълна пирамида с основен ръб $a=6\,$ *ст* и обем

B) 7 cm BTOPA 4ACT

Запишете само отговор.

13. Да се реши системата уравнения $\begin{vmatrix} x^2 + xy - y = 0 \\ x^2 - 5x + 6 = 0 \end{vmatrix}$

четири члена е 30. Да се намери шестият член на прогресията. 14. Частното q на геометрична прогресия е равно на 2, а сумата от първите и

височината AH ($H\in BC$) към бедрото BC . височината $\mathit{CM}\ (\mathit{M} \in \mathit{AB})$ е равна на 15. Да се намери дължината на 15. В равнобедрения $\triangle ABC$ (AC=BC) е дадено, че BC=25 и

а мерките на ъглите срещу тях се отнасят съответно както 1:2. Да се намери дължината на третата страна на триъгълника. 16. Две от страните на разностранен триъгълник са с дължини 3 $\it cm$ и $4~\it cm$

призма с обем 1680 ${\it cm}^3$. Да се намери височината на призмата 17. Трапец с основи 21 ст и 7 ст и бедра 13 ст и 15 ст е основа на

Запишете пълните решения с необходимите обосновки

18. Да се реши уравнението $3\left(6x^2 + \frac{1}{3}\right)^2 + \left(6x^2 + \frac{1}{3}\right) - 4 = 0$

Следователно $S_{ABC_iD_i} = \frac{(AB + C_iD_i)D_iM}{2} = 18\sqrt{5}$

Универентет по архитектура, строителство и геодезия 26 април 2015

a	1	
Г	2	
6	3	
а	4	
6	5	

Задача 6. а) В $f(x) = 2^{2x} - 2.2^x + a$ полагаме $2^x = u > 0$ и получаваме $g(u) = u^2 + 2u + a$ с корени $u_{1,2} = 1 \pm \sqrt{1 - a}$. За a < 1 намираме

$$x_2 = \log_2(1 + \sqrt{1 - a}) > \log_2(1 - \sqrt{1 - a}) = x_1$$
. Or $x_2 - x_1 = 1$

получаваме
$$1 = \log_2 \left(1 + \sqrt{1 - a} \right) - \log_2 \left(1 - \sqrt{1 - a} \right) = \log_2 \frac{1 + \sqrt{1 - a}}{1 - \sqrt{1 - a}}$$

т.е.
$$\frac{1+\sqrt{1-a}}{1-\sqrt{1-a}}=2$$
 . Следователно $\sqrt{1-a}=\frac{1}{3}$, т.е. $a=\frac{8}{9}$.

6) От
$$f(x)=2^{2x}-2.2^x+1+a-1=\left(2^x-1\right)^2+a-1$$
 следва, че при $x=0$ $HMCf(x)=a-1$.

в) От формулите на Виет следва
$$u_1+u_2=2$$
 и $u_1u_2=a$. Тогава $A=8^{x_1}+8^{x_2}=u_1^3+u_2^3=(u_1+u_2)^3-3u_1u_2(u_1+u_2)=8-6a$.

следва, че AC е диаметър. От $\Delta BHL pprox \Delta BAC$ получаваме Задача 7. а) От $\angle ACH + \angle ALH = \gamma + 180^{\circ} - \gamma = 180^{\circ}$ следва, че около $AH = b \sin \gamma$ If $CL = \frac{b\sqrt{2}}{2}$. Here $AH \cap CL = H$. четириъгълника ALHC може да се опише окръжност. От $\angle AHC=90$ $\angle BAC = 45$. От правоъгълните $\triangle AHC$ и $\triangle ALC$ намираме

Следователно за $u = \frac{2}{3}$ функцията получава най-голяма стойност.

Пресмятаме и намираме $\mathbf{g}\left(\frac{2}{3}\right) = \frac{4}{27}$. Т.е. най-голямата стойност на лицето

$$e^{\frac{4}{27}}$$
 npu $\sin \alpha = \frac{2}{3}$.

получаваме

$$\lim_{\alpha \to \frac{\pi}{2}} \frac{\sigma(\alpha)}{\left(\frac{\pi}{2} - \alpha\right)^2} = \lim_{\alpha \to \frac{\pi}{2}} \frac{(1 - \sin \alpha) \sin^2 \alpha}{\left(\frac{\pi}{2} - \alpha\right)^2} = \sin^2 \frac{\pi}{2} \cdot \lim_{\alpha \to \frac{\pi}{2}} \frac{(1 - \sin \alpha)}{\left(\frac{\pi}{2} - \alpha\right)^2} =$$

1.
$$\lim_{\alpha \to \frac{\pi}{2}} \frac{1 - \cos\left(\frac{\pi}{2} - \alpha\right)}{\left(\frac{\pi}{2} - \alpha\right)^2} = \lim_{\alpha \to \frac{\pi}{2}} \frac{2\sin^2\frac{\pi}{2} - \alpha}{2} = \frac{1}{2}.$$

т.е. AD=BC=6. Нека CH е височината на трапеца. От правоъгълния ΔBHC намираме $CH=3\sqrt{3}$, от ΔACH следва $AC=\sqrt{63}$, а от Задача 8. В трапеца може да се впише окръжност. Следователно 2AD = 12 ΔACC_1 получаваме $CC_1=3\sqrt{2}$.

a)
$$V = S_{ABCD} \cdot CC_1 = \frac{9+3}{2} \cdot 3\sqrt{3} \cdot 3\sqrt{2} = 54\sqrt{6}$$
 .

6) По условие
$$AC_1=9$$
, $C_1D_1=CD=9$, а от правоъгълния ΔADD_1 получаваме $AD_1=3\sqrt{6}$.

в) Търсеното сечение е равнобедрения трапец ABC_1D_1 . Ако D_1M е височината му. то от правоъгълния $\Delta AD_l M$ намираме $D_l M = 3\sqrt{5}$.

20. В правилна триъгълна пирамида дължината на радиуса на вписаната в основата окръжност е r, а дължината на апотемата е k . Да се намерят обемът и лицето на пълната повърхнина на пирамидата.

Великотърновски университет "Св. Св. Кирил и Методий" гест математика - 6 юли 2015 г.

ITBPBA 4ACT

B)
$$\sqrt{7}$$

2. Дефиниционното множество на функцията
$$f(x) = \log_x \sqrt{3-x}$$
 е:

A)
$$x \in [0;1) \cup (1;+\infty)$$

B) $x \in (0;1) \cup (1;3)$

5)
$$x \in [0;8)$$

B)
$$x \in (0;1) \cup (1;3)$$

$$\Gamma$$
) $x \in (-\infty; 8]$

3. Единият корен на квадратното уравнение
$$kx^2 + x + k + 2 = 0$$
 е $x_1 = 0$.

4. Решенията на неравенството
$$\frac{3-x}{x+1} \ge 0$$
 са:

$$\infty : -1 \cup \{3; +\infty\}$$
 $\mathbb{B}_1 \mathbf{x} \in \{-1; 3\}$ $\mathbb{B}_1 \mathbf{x} \in \{-1; 3\}$

A)
$$x \in (-\infty; -1) \cup [3; +\infty)$$
 B) $x \in (-1; 3)$ B) $x \in (-1; 3]$ F) $x \in [-1; 3)$

5. За аритметична прогресия е дадено, че
$$d=2\,$$
 и $S_{40}=400\,$. Първият член $a_1\,$ на прогресията е равен на:

A) 12449 лева В) 11236 лева В) 15000 лева Г) 9000 лева 7. В
$$\triangle ABC$$
 е дадено, че $AB=2,5$, $BC=2$ и $AC=1,5$. Мярката на $\angle ACB$ е равна на:

8. Периметърът и лицето на правоъгълник се изразяват с едно и също число тази страна е равна на: Едната страна на правоъгълника е 4 пъти по-голяма от другата. Дължината на

като AC = 15, BD = 18. Лицето на четириъгълника е равно на: 9. Диагоналите AC и BD на четириъгълника ABCD са перпендикулярни

a) 135 **b)** 270 **b)** 100
$$\Gamma$$
)

10. Ако
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
 и $\alpha \in \left[0; \frac{\pi}{2}\right]$, то стойността на $\cos 3\alpha$ е равна на:

А) 0,5

В) 2

В) -1

Г) 0,125

11. Лицата на три стени на правоътълен паралелепипед са 6 m^2 , 12 m^2 и 8

$$m^2$$
. Дължините на ръбовете (измеренията) на паралелепипеда са: A)12 m .1 m , B)12 m ,4 m . B)2 m ,3 m ,4 m Г)4 m ,6 m ,6 m

обем $V=64\,$ cm^3 . Дължината на апотемата на пирамидата е равна на 12. Дадена е правилна четириъгълна пирамида с основен ръб $a=8 \ cm$ и **b**) 3 cm B) 6 cm

втора част

Запишете само отговор.

стойността на и. 13. Ако n е естествено число и 1+2+3+...+n=55. да се намери

стойността на израза $A = \log_2 x_1 x_2 - 2^{2 + \log_2(x_1 + x_2)}$ **14.** Ако x_1 и x_2 са корени на уравнението $x^2 - 8x + 2 = 0$, да се намери

cm . Да се намери дължината на радиуса на описаната около $\Delta\!ABC$ 15. Даден е равнобедрен ΔABC с основа AB=8 cm и AC=BC=5

диагоналът е 5 *ст. 1.* Да се намери лицето на основата на призмата 16. Основата на призма е квадрат. Височината на призмата е 3 *ст*, а

срещулежащ на нея ъгъл 60. Всички околни ръбове на пирамидата са равни на 10 ст. Да се намери височината на пирамидата 17. Основата на пирамида е триъгълник с една страна $8\sqrt{3}$

в) Намираме $x_1 x_2 = 10^{-1-\sqrt{1-a}} \cdot 10^{-1+\sqrt{1-a}} = \frac{1}{100}$ и следователно получаваме

$$x_1 + x_2 \ge 2\sqrt{x_1 x_2} = 2\sqrt{\frac{1}{100}} = \frac{1}{5}$$

Задача 7. а) Нека квадрата е MNPQ. CP=m п DP=u. От

$$\Delta QPD \approx \Delta ACD$$
 следва $\dfrac{k}{d_{_{\parallel}}} = \dfrac{n}{n+m}$, а от

$$\Delta PNC pprox \Delta DBC$$
 следва $\dfrac{k}{d_{_{2}}} = \dfrac{m}{n+m}$. Събираме

двете равенства и получаваме
$$\frac{k}{d_1} + \frac{k}{d_2} = \frac{n}{n+m} + \frac{m}{n+m} = 1$$
, т.е. $\frac{1}{k} = \frac{1}{d_1} + \frac{1}{d_2}$.

б) Нека $\cos \pmb{\alpha} = \pmb{a}$. От правоъгълния ΔAOB следва $\sin \frac{\pmb{\alpha}}{2} = \frac{d_2}{2\pmb{a}}$ и

$$\cos\frac{\alpha}{2} = \frac{d_1}{2a}$$
, т.е. $d_2 = 2a\sin\frac{\alpha}{2}$ и $d_1 = 2a\cos\frac{\alpha}{2}$. От а) използваме

$$k = \frac{d_1 d_2}{d_1 + d_2}$$
 и получаваме последователно $\sigma(\alpha) = k^2 =$

$$\frac{16a^4 \sin^2 \frac{\alpha}{2} \cdot \cos^2 \frac{\alpha}{2}}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)^2} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \alpha\right)} = \frac{4a^2 (1 - \cos \alpha)(1 + \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \alpha\right)} = \frac{4a^2 (1 - \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \alpha\right)} = \frac{4a^2 (1 - \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \alpha\right)} = \frac{4a^2 (1 - \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \alpha\right)} = \frac{4a^2 (1 - \cos \alpha)}{4a^2 \left(\sin \frac{\alpha}{2} + \cos \alpha\right)} = \frac{4a^2$$

$$4a^{2}\left(\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}\right) \qquad 4\left(\sin^{2}\frac{\alpha}{2} + 2\sin\frac{\alpha}{2} \cdot \cos\frac{\alpha}{2} + \cos^{2}\frac{\alpha}{2}\right)$$

$$\frac{\cos^{2}\alpha(1 - \cos^{2}\alpha)}{1 + \sin\alpha} = \frac{(1 - \sin^{2}\alpha)\sin^{2}\alpha}{1 + \sin\alpha} =$$

$$\frac{(1-\sin\alpha)(1+\sin\alpha)\sin^2\alpha}{1+\sin\alpha} = \sin^2\alpha - \sin^3\alpha. \quad \text{Да означим } \sin\alpha = u,$$

$$u \in [0:1] \quad \text{Тогава} \quad g(u) = -u^3 + u^2. \quad \text{Намираме} \quad g'(u) = -3u^2 + 2u.$$

$$u \in [0,1]$$
. Toraba $g(u) = -u^3 + u^2$. Hamiipame $g'(u) = -3u^2 + 2u$

ABCD следва, че точката O е център на вписаната в основата окръжност. $\angle((ABCD);(BCM)) = \angle OME = \alpha$. Here AB = a in DE = k. Or и от $ME \perp BC$

правоъгълните
$$\triangle ADH$$
 и $\triangle MOE$ използваме равенствата $h_1=2r=a\sin\beta$. $tg\,\alpha=\frac{h}{r}$, $\cos\alpha=\frac{r}{k}$ и намираме $k=\frac{a\sin\beta}{2\cos\alpha}$.

$$h = rtg\alpha = \frac{a \sin \beta tg\alpha}{2}.$$
 Следователно $V_{ABCDM} = \frac{a^3 \sin^2 \beta tg\alpha}{6}$ и
$$S_1 = a^2 \sin \beta + 2ak = \frac{a^2 \sin \beta (1 + \cos \alpha)}{\cos \alpha} = \frac{2a^2 \sin \beta \cos^2 \frac{\alpha}{2}}{\cos \alpha}.$$

$$\sin \beta + 2ak = \frac{a^2 \sin \beta (1 + \cos \alpha)}{\cos \alpha} = \frac{2a^2 \sin \beta \cos^2 \frac{\alpha}{2}}{\cos \alpha}.$$

Университет по архитектура, строителство и геодезия 5 април 2015 г.

ĸ	в
7	L
3	В
2	9
1	В

Задача 6. а) За x>0 получаваме $f(x)=\lg^2x+2\lg x+a$. Ако x_1 и x_2

са корените на
$$f(x) = 0$$
 и $x_2 \ge x_1$ намираме $x_1 = 10^{-1-\sqrt{1-a}}$ и $x_2 = 10^{-1+\sqrt{1-a}}$. От $x_2 - x_1 = \frac{1}{5}$ следва $10^{-1+\sqrt{1-a}} - 10^{-1-\sqrt{1-a}} = \frac{1}{5}$.

$$x_2 = 10^{-1+\sqrt{1-a}}$$
. Ot $x_2 - x_1 = \frac{1}{5}$ cheaba $10^{-1+\sqrt{1-a}} - 10^{-1-\sqrt{1-a}} = \frac{1}{5}$.

Преобразуваме и получаваме
$$10^{\sqrt{1-a}} - \frac{1}{10^{\sqrt{1-a}}} - 2 = 0$$
. Полагаме

$$10^{\sqrt{1-a}}=u>0$$
 и стигаме до квадратното уравнение $u^2-2u-1=0$ с корени $u_{1,2}=1\pm\sqrt{2}$. Следователно $u=1+\sqrt{2}$ и $a=1-\lg^2\left(1+\sqrt{2}\right)$.

6) От
$$f(x) = (\lg x + 1)^2 + a - 1$$
 следва, че $HMCf(x) = a - 1$.

TPETA HACT

Запишете пълните решения с необходимите обосновки.

18. Да се реши системата уравнения
$$\begin{vmatrix} xy + x + y = 5 \\ x^2 + 3xy + y^2 = 11 \end{vmatrix}$$

19. Да се намерят решенията на уравнението $\sin^2 x + \sin^2 2x = 1$, конто принадлежат на интервала $[0; \pmb{\pi}]$ 20. Основата на пирамида е ромб със страна a и остър ъгъл eta . Всички околни стени на пирамидата сключват с основата и ъгъл **ຜ**. Да се намерят пицето на пълната повърхнина и обемът на пирамидата.

Упиверситет по архитектура, строителство и геодезия 5 април 2015 г.

sадача 1. Числата $a, 5, b, c, 14\,$ образуват в този ред аритметична прогресия. Гогава **а** е равно на:

a) 1
$$6)\frac{3}{2}$$
 B) 2

$$3$$
адача 2. В правоъгълен трапец с ъгъл 150° е вписан кръг с лице 1. Тогава пицето на трапеца е:

лицето на трапеца е:

a)
$$+$$

$$6) \frac{6}{\pi}$$
B) π^2
 Γ

и и лежи в I квадрант. Точка $\,P\,$ е проекция на $\,M\,$ върху оста $\,Ox\,$. Дадено е, 3адача 3. Дадена е функцията $\,f(x)\!=\!x^3\!+\!x\!-\!2$. Точка $\,M\,$ е от графиката

Задача 4. Околните ръбове на триъгълна пирамида са равни на 1, 2 и 3 и са

Задача 5. Най-голямата стойност на функцията $f(x)\!=\!\cos^2x\!+\!\cos x\!-\!1$ се достига при х равно на:

Задача 6. Дадена е функцията $f(x) = \lg^2 x + \lg x^2 + a$

- абсцисата 0x отсечка с дължина $\frac{1}{5}$. a) За кои стойности на параметъра a графиката на f(x) отсича от
- 6) Пресметнете най-малката стойност на функцията $f\left(x
 ight)$
- стойността на израза x_1x_2 и докажете, че $x_1+x_2\geq \frac{1}{5}$. в) Ако x_1 и x_2 са корените на уравнението f(x)=0, пресметнете

квадрата лежат на страните на ромба. квадрат, страните на който са успоредни на диагоналите му. Върховете на 3адача $7.\,$ В ромба $ABCD\,$ с дължини на диагоналите $d_{\scriptscriptstyle \parallel}$ и $d_{\scriptscriptstyle 2}$ е разположен

a) Докажете, че ако дължината на страната на квадрата е равна на ${m k}$, то

$$\frac{1}{k} = \frac{1}{d_1} + \frac{1}{d_2}.$$

6) Нека острият ъгъл на ромба е равен на $oldsymbol{lpha}$, а дължината на страната му е $\sigma = \sigma(\alpha)$. При коя стойност на $\sin \alpha$ лицето $\sigma(\alpha)$ е най-голямо: на квадрата като функция на $oldsymbol{lpha}$:

в) Пресметнете
$$\lim_{\alpha \to \frac{\pi}{2}} \frac{\sigma(\alpha)}{\left(\frac{\pi}{2} - \alpha\right)^2}$$
.

окръжност. Дължината на телесния диагонал $AC_{\scriptscriptstyle \parallel}$ е равна на 9. **Задача 8.** Основата на права призма $ABCDA_{\scriptscriptstyle \parallel}B_{\scriptscriptstyle \parallel}C_{\scriptscriptstyle \parallel}D_{\scriptscriptstyle \parallel}$ е равнобедрен трапец ABCD с основи AB=9 и CD=3. В трапеца може да се впише

- а) Пресметнете обемът на призмата.
- 6) Пресметнете дължините на страните на $AC_{\parallel}D$
- в) Пресметнете лицето на сечението, на равнината (AC_1D_1) с призмата.

		_	
	10	13	
	-31	14	
6	25	15	BTOPA YACT
•	∞	16	
	6	17	

Задача 18. Представяме дадената система във вида
$$\begin{vmatrix} xy+x+y=5\\ (x+y)^2+xy=11 \end{vmatrix}$$
 получаваме $\begin{vmatrix} x+y=u\\ xy=v \end{vmatrix}$ получаваме $\begin{vmatrix} u+v=5\\ u^2+v=11 \end{vmatrix}$. Умножаваме първото

уравнение с -1, прибавяме към второто и получаваме квадратното уравнение $u^2-u-6=0$ с корени $u_1=3$ и $u_2=-2$. Тогава $v_1=2$ и $v_2=7$.

Следователно
$$\begin{vmatrix} x+y=3 & x+y=-2 \\ xy=2 & xy=7 \end{vmatrix}$$
 . Първата система има решения (1;2)

и (2;1), а втората няма реални решения.

Задача 19. Преобразуваме и получаваме последователно
$$\frac{1-\cos 2x}{2} + 1-\cos^2 2x = 1 \iff 2\cos^2 2x + 2\cos 2x - 1 = 0.$$
 Полагаме
$$\cos 2x = u. \quad -1 \le u \le 1$$
 и стигаме до квадратното уравнение

$$2u^2 + u - 1 = 0$$
 с корени $u_1 = -1$ и $u_2 = \frac{1}{2}$. От $\cos 2x = -1$ и

$$\cos 2x = \frac{1}{2}$$
 намираме $x = \pm \frac{\pi}{2} + k\pi$
 $x = \pm \frac{\pi}{6} + k\pi$, където k е цяло число.

ромба ABCD . Да означим с MO=k височината на пирамидата, с $DH=h_{\scriptscriptstyle \parallel}$ височината на ромба и 3адача 20. Нека пирамидата е ABCDM с основа $OE\perp BC$. От равните двустенни ъгли при основата

TPETA 4ACT

Задача 18. Подагаме $(3x^2 + \frac{1}{3} = u > 0)$ и получаваме квадратното уравнение

$$3u^2 + u - 4 = 0$$
 c корени $u_1 = -\frac{4}{3} < 0$ и $u_2 = 1$. От $6x^2 + \frac{1}{3} = 1$

получаваме
$$x_{1,2} = \pm \frac{1}{2}$$
.

Задача 19. Използваме стандартните означения и от условието следва $\angle BAC = \angle OBC = \angle OCB = \pmb{\alpha}$. От свойство на вписан

и централен ъгъл следва $ZBOC=2\alpha$. От ΔBOC намираме $\alpha=45$. От косинусова теорема за ΔABC получаваме BC=5.

씱

Задача 20. Нека пирамидата е ABCD с основа равностранния $\triangle ABC$, DO=H е височината на пирамидата и P е среда на BC. Тогава OP=r и

Великотърновски университет "Св. Св. Кирил и Методий" тест математика - 6 юли 2015 г.

-	- 1			'	HDFDA	1 4AC 1						
2 3	3		4	w	9	7	×	6	10	Ξ	12	
		Г									1	
B B	Ā		m	4	ĽΔ	_	Д	<	22	В	Ą	
									1	1		

Университет по архитектура, строителство и геодезия 26 април 2015

Задача 1. Графиките на функциите $f(x) = x^3 + x - a$ и $g(x) = x^3 + ax^2 - x$ имат единствена пресечна точка $M(x_0; y_0)$ със строго положителни координати. Координатите на т. M са: a) (1:1) 6) (2:1)

$$\mathbf{B}\left(\frac{1}{2};\frac{1}{2}\right) \qquad \mathbf{r}\left(\frac{3}{2};2\right)$$

Задача 2. Височината на конус е 2 пъти по-голяма от височината на цилиндър, а диаметърът на основата му е 2 пъти по-малък от диаметъра на основата на цилиндъра. Тогава отношението на обема на цилиндъра към обема на конуса е:

(a)
$$\frac{8}{3}$$
 (b) $\frac{8}{3}$

Задача 3. Ако a_n и b_n са числови редици и $\lim_{n \to \infty} a_n = 0$, $\lim_{n \to \infty} b_n \neq 0$, то

$$\lim_{n\to\infty} \frac{a_n+b_n}{a_n-b_n}$$
 е равно на:

влуствата 4. Основата на пирамида е правоъгълен триъгълник, а всички околни ръбове образуват равни ъгли с основата. Тогава върхът на пирамидата се проектира в:

- а) средата на хипотенузата на триъгълника
 - б) върха на правия ъгъл на триъгълника
- в) центъра на вписаната окръжност в триъгълника
 - г) ортоцентъра на триъгълника

3адача 5. Най-голямата стойност на функцията $\cos x - \sin x$ е равна на:

Задача 6. Дадена е функцията $f(x) = 4^x - 2^{x+1} + a$.

- а) За кои стойности на параметъра a графиката на f(x) отсича от абсцисата ∂x отсечка с дължина 1.
- 6) Пресметнете най-малката стойност на функцията $f(oldsymbol{x})$.

_

стойността на израза $A = 8^{x_1} + 8^{x}$ в) Ако $oldsymbol{x}_1$ и $oldsymbol{x}_2$ са корените на уравнението $oldsymbol{f}(oldsymbol{x})=0$, пресметнете

3адача 7. В остроъгълния ΔABC AH е височина, HL е ъглополовяща в $\triangle AHB$. Известно е, че AC=b и $\angle ACB=\angle BLH=\gamma$.

- a) Пресметнете лицето на четириъгълника ACHL
- 6) За коя стойност на γ лицето на ACHL е най-голямо?
- описаната около ΔABC окръжност. описаната около ΔLMH окръжност е равна на дължината на радиуса на в) Нека M е среда на AC . Докажете, че дължината на диаметъра на

околните ръбове AA_{\sqcap} , BB_{\sqcap} , CC_{\sqcap} са два по два взаимно перпендикулярни и 3адача 8. Дадена е пресечена триъгълна пирамида $ABCA_{\scriptscriptstyle \parallel}B_{\scriptscriptstyle \parallel}C_{\scriptscriptstyle \parallel}$, такава, че $AA_1 = BB_1 = 1, \ CC_1 = 2.$ Дадено е. че лицата на двете основи се отнасят

а) Докажете, че обемът на пирамидата е равен на $\frac{7}{3}$, а височината на

пирамидата е $\frac{2}{3}$.

- б) Пресметнете разстоянието от върха $\,C_{\scriptscriptstyle \parallel}\,$ до равнината $\,ABA_{\scriptscriptstyle \parallel}B_{\scriptscriptstyle \parallel}\,$
- околния ръб $BB_{\scriptscriptstyle \parallel}$. в) Пресметнете косинуса на ъгъла между околните стени, съдържащи

Университет по архитектура, строителство и геодезия 13 юлн 2015

Задача 1. Решение на неравенството $\sin \phi \cos \phi < 0$ е:

a)
$$\varphi \in (0^\circ; 180^\circ)$$

6)
$$\varphi \in (90^{\circ}; 270^{\circ})$$

B)
$$\varphi \in (90^\circ; 180^\circ) \cup (270^\circ; 360^\circ)$$
 r) $\varphi \in (0^\circ; 90^\circ) \cup (180^\circ; 270^\circ)$

r)
$$\varphi \in (0^\circ; 90^\circ) \cup (180^\circ; 20^\circ)$$

1:2, то отношението на периметрите е: Задача 2. Ако отношението на лицата на основите на пресечена пирамида е

6) От зависимостта за правоъгълен триъгълник
$$r=\dfrac{a+b-c}{2}$$
 получаваме

$$r = 4\sqrt{3} -$$

От правоъгълния ΔBHC и BH=6-b следва около окръжност следва 6+b=c+4, т.е. c=2+bпостроим $CH\perp AB$, $H\in AB$. От ABCD описан Задача 4. а) Нека AB=a , BC=c п CD=b н да $16 + (6-b)^2 = (2+b)^2$. Така намираме b=3 и

следователно
$$S_{ABCD} = \frac{(AB + CD)AD}{2} = 18.$$

двустенните ъгли при основата са равни следва, че 6) Нека $MO\perp(ABCD)$. От условнето, че Нека $ON\perp BC$, $N\in BC$ следва, че $MN\perp BC$ O е център на вписаната в основата окръжност

и
$$\angle ONM = \alpha$$
. Ho $ON = r = \frac{AD}{2} = 2$. От

правоъгълния ΔONM получаваме $lg\alpha = \frac{OM}{ON}$

T.e.
$$OM = 2tg\alpha$$
.

ABCDM = -

 $=\frac{S.OM}{3}=12tg\alpha.$

Следователно

Великотърновски университет "Св. Св. Кирил и Методий" тест математика - 26 април 2015 г.

(3:	2			В	_	
(3;-4,5)	(2;-4),	13		5	2	
				Γ	w	
	64	14		В	4	
				Α	S	
	2	_	$BTOP_A$	A	6	HBPB.
	24	Si	BTOPA 4ACT	В	7	ПЪРВА ЧАСТ
			,	٦	8	7
n	7	16		5	9	
				Α	10	
	10	17		В	11	
		,		Α	12	

6) Даденото уравнение е еквивалентно на уравнението
$$\frac{1}{(x-2)(x-3)} + \frac{5-2x}{x-2} = 1 + \frac{2}{x-3}.$$
 За $x \neq \{2; 3\}$ опростяваме и

получаваме квадратното уравнение $3x^2 - 14x + 16 = 0$ с корени $x_1 = 2$ и

$$x_2 = \frac{\delta}{3}$$
. Решение е $x = \frac{\delta}{3}$.

в) За
$$x \neq \frac{3\pi}{2} + 2k\pi$$
. k цяло число преобразуваме и получаваме $\sin 2x = -2\cos x - 2\sin x \cdot \cos x$ $\Leftrightarrow 2\cos x(2\sin x + 1) = 0 \Leftrightarrow$

$$\cos x = 0 \cup \sin x = -\frac{1}{2}$$
. Решения на даденото уравнение са

$$x = \frac{\pi}{2} + 2k\pi$$
, $x = \frac{7\pi}{6} + 2l\pi$ и $x = \frac{11\pi}{6} + 2l\pi$, където k,l са цели

(a-2)(a+2)x = (a-2)(a+2)(a+3). I) 3a $a = \pm 2$ cnears 0.x = 0 H Задача 2. а) Преобразуваме даденото уравнение във вида уравнението има безброй решения. 2) За $a \neq \pm 2$ уравнението има единствено решение x=a+3. От условието x>0 следва a>-3 цяло число. Следователно $\frac{a+3+9}{6} - \frac{a+3-2}{3} > 1$. Опростяваме и намираме

a < 4. Решение е a = -1

$$a < 4$$
. Решение е $a = -1$.

6) За a = -1 получаваме $9^x - 4.3^x + 3 = 0$. Полагаме $3^x = u > 0$ и следва квадратното уравнение $u^2 - 4u + 3 = 0$ с корени $u_1 = 1$ и $u_2 = 3$. От

 $3^x = 1 \text{ и } 3^x = 3 \text{ намираме } x = 0 \text{ и } x = 1.$

Задача 3. а) От правоъгълния $\triangle MHC$ и CM=2MH следва, че $\angle MCH = 30$. Torama $\angle CMH = 60$ H ΔCMB e равностранен. т.е. CM = MB = BC = 8. Следователно AB = 16. От AM = BM = CM следва, $\angle ACB = 90$. Тогава $AC = 8\sqrt{3}$ и $S_{ABC} = 32\sqrt{3}$

B)
$$1:\sqrt{2}$$
 r) $\sqrt{2}:\sqrt{3}$

Задача 3. Страните на $\triangle ABC$ са AB=2, BC=3 и CA=4. Центърът на описаната окръжност лежи:

а) вътре в
$$\triangle ABC$$

в) на страната AB

$$6$$
) извън $\triangle ABC$

г) на страната
$$AC$$

Задача 4. Първите четири члена на редицата $a_n = 2^{\frac{\pi}{2}} \sin \frac{n\pi}{4}, \ n = 1, 2, 3, ...$

$$,0$$
 $6)\frac{1}{2},\sqrt{2},2,0$

$$0$$
 B) $1, \sqrt{2}, 2, \frac{1}{2}$ F)^{III}

а)
$$\frac{1}{2}$$
, 2, 2, 0 б) $\frac{1}{2}$, $\sqrt{2}$, 2, 0 в) 1, $\sqrt{2}$, 2, $\frac{1}{2}$ г)друг отговор Задача 5. Разстоянието между върха на параболата с уравнение $y = 2x^2 - 4x + 7$ и оста Ox е рвно на:

а) 3 6) -4 в) 4 г) 5 3адача 6. Дадена е функцията,
$$f(x)=(m+5)x^2-(2m+6)x+m+1$$
, където $m\neq -5$ е реален параметър.

а) За кои стойности на
$$m$$
 уравнението $f(x) = (\lg m + x)(2^m - x)$ има

корен
$$x=1$$
? (15 т + x) корен $x=1$? (15 т + x) корените на уравнението $f(x)=0$ е изпълнено неравенството $\frac{x_1}{x_2}+\frac{x_2}{x_1}<2$?

в) За кои стойности на
$$\pmb{m}$$
 уравнението $\frac{1}{3} \pmb{x}^3 f^{''}(\pmb{x}) - f^{''}(\pmb{x}) = 0$ има три различни реални корена?

Задача 7. В четириъгълника
$$ABCD$$
 страните AB и CD са успоредни. Около $ABCD$ е описана окръжност с център O и радиус R . Дадено е, че

6) За коя стойност на
$$\pmb{\varphi}$$
 е изпълнено $\pmb{A}\pmb{B}=\sqrt{3}\pmb{R}$? За тази стойност на $\pmb{\varphi}$ пресметнете лицето на ΔACD .

в) Докажете, че $AB+CD \le R\sqrt{8}$. За коя стойност на $\pmb{\varphi}$ се достига равенство? Определете вида на четириъгълника в този случай.

3адача 8. Дадена е триъгълна пирамида ABCD . Стените ABC и ABD са равностранни триъгълници със страна m , като двустенният ъгъл между тях е lpha .

- а) Пресметнете обема на пирамидата.
- 6) При m=1 пресметнете косинуса на α , за който пълната повърхнина на пирамидата е максимална.
- в) Пресметнете ъгъла и разстоянието между правите $AB\,$ и $CD\,$

Висше строително училище "Любен Каравелов" - София 8 април 2015 г.

Задача 1. а) Да се реши неравенството $\frac{x}{x-1} \le \frac{x+2}{x}$

- **б**) Да се реши уравнението $4^x + 4.2^x 32 = 0$.
- **в**) Да се реши уравнението $\log_3(x+2) = 2\log_3 x + 1$.

Задача 2. а) Да се реши уравнението |6x-3|=6.

- 6) Да се намери стойността на израза $A=\frac{4}{5+6\cos2\alpha}$, ако $t\mathbf{g}\alpha=-\sqrt{3}$.
- в) Да се намерят стойностите на реалния параметър m, за които корените на уравнението $mx^2 + 2x + 3(m-1) = 0$ са с различни знаци.

Задача 3. В правоътълен $\triangle ABC$ с хипотенуза AB и катет BC=3 радиусът на вписаната окръжност е r=1 . Да се намери:

- а) лицето на триъгълника:
- б) дължината на радиуса на описаната окръжност.

Задача 4. Дадена е правилна четириъгълна пирамида ABCDE с основен ръб с дължина $3\sqrt{2}$ и височина 4. През диагонала BD е построена равнина λ , която пресича околния ръб CE в точка M и сключва с основата ABCD ъгъл 45. Да се намери:

- a) обемът на тетраедъра BCDM
- 6) разстоянието от върха C до равнината λ .

- 18. За $x \neq \pm 2$ преобразуваме даденото уравнение в уравнението $(x^2+6)^2-(5x)^2=0 \Leftrightarrow (x^2+6-5x)(x^2+6+5x)=0$. От $x^2-5x+6=0$ намираме $x_1=3$ и $x_2=2$, а от $x^2+5x+6=0$ получаваме $x_3=-3$ и $x_4=-2$. Окончателно $x=\pm 3$.
- 19. За k=0 получаваме $x<\frac{1}{4}$. т.е. k=0 не е решение. Нека $k\neq 0$. Тогава трябва k>0 и D<0. От $D=-3k^2-k+4<0$ намираме $k\in\left(-\infty;-\frac{4}{3}\right)\cup\left(1;+\infty\right)$. Окончателно $k\in\left(1;+\infty\right)$.
- **20.** Нека е даден $\triangle ABC$ с $\angle ACB = 120$. Тогава $\angle BAC = \angle ABC = 30$. Нека CH = x е височината към основата. Следователно AC = BC = 2x и с $AH = BH = x\sqrt{3}$. Ако O е центърът на вписаната
- и AO е ъглополовяща и в $\triangle AHC$, като HO=r=1 и OC=x-1 . От свойство на ъглополовящата следва $\dfrac{AH}{AC}=\dfrac{OH}{HC}$.

окръжност, то $oldsymbol{O}$ е пресечна точка на ъглополовящите

Заместваме и намираме $x=rac{3+2\sqrt{3}}{3}$. Следователно $AB=4+2\sqrt{3}$ и

$$AC = BC = \frac{6 + 4\sqrt{3}}{3}.$$

Великотърновски университет "Св. Св. Кирил и Методий" 19 април 2015 г.

Задача 1. а) Използваме формулата за общия член на аритметична прогресия

$$a_n = a_1 + (n-1)d$$
 и получаваме $\begin{vmatrix} 2a_1 + 8d = 10 \\ 2a_1 + 15d = 31 \end{vmatrix}$ с решение $\begin{vmatrix} a_1 = -7 \\ d = 3 \end{vmatrix}$.

$$u_2 = -\frac{5}{2}$$
 $x + y = 4$ намираме решенията (1;3) и (3;1), а от $v_2 = -\frac{1}{4}$

$$x + y = -\frac{2}{2}$$
 $x + y = -\frac{1}{4}$
 $xy = -\frac{1}{4}$
 $xy = -\frac{1}{4}$

20. От AC диаметър следва, че $CE \perp AB$ и $AF \perp BC$. От ΔABC равнобедрен следва, че AE = BE = 3. От правоъгълния ΔAEC намираме CE = 4. Така получаваме $S_{ABC} = 12$.

Ho $\Delta EBF \approx \Delta CAB$. Следователно $\frac{S_{EFB}}{S_{CAB}} = \left(\frac{EB}{BC}\right)^2 = \left(\frac{3}{5}\right)^2$. Тогава $S_{EFB} = \frac{108}{25}$ и

$$S_{AEFC} = S_{ABC} - S_{EFB} = \frac{192}{25} \, .$$

Пловдивски университет "П. Хилендарски" 10 юли 2015 г.

		1
12	Р	
11	A	
10	Р	
6	2	
∞	В	
7	Б	
9	Б	
S	В	
4		
n	A	
7	2	
_	_	

,	_	,
	17	4и16
	16	3√15
	15	24 cm , 26 cm
	14	(-3;8) и (2;3)
	13	$k^2 - 2$

Висше строително училище "Любен Каравелов" - София 8 юли 2015 г.

Задача 1. а) Да се реши системата
$$\begin{vmatrix} x - y = 2 \\ x^2 + 3y = 4 \end{vmatrix}$$

6) Да се намери областта на решение на неравенството
$$\frac{(x-1)(x+2)^2}{x+3} \le ($$

в) Да се намери стойността
$$A = \lg \frac{1}{1000} - \log_7 49 + \log_{\frac{1}{2}} 64 - \log_{\sqrt{5}} 1$$
.

израза

Задача 2. а) Да се реши уравнението I x - 3 = 2x.

6) Да се намерят стойностите на реалния параметър m , за които уравнението ${m x}^2 + m{m x} + m - {m l} = 0$ има реални корени по-малки от 1.

в) Да се реши уравнението $4 \sin x + 1 - \cos 2x = 0$.

Задача 3. Даден е четириъгълник ABCD с диагонал AC=4, ZDAC=ZDBA=30, в който може да се впише окръжност и около който може да се опише окръжност. Да се намери:

а) лицето на четириъгълника ABCD ;

6) радиусът на описаната около ABCD окръжност.

Задача 4. Даден е тетраедър ABCD с основа ABC, за който AB = BD = AD = BC и ортогоналната проекция на върха D е средата M на AC . Да се намери:

а) големината на ъгъла между ръба BD и основата ABC;

6) радиусът на вписаната в тетраедъра сфера, ако дължината на ръба AB a

Гехнически университет - София 4 април 2015 г.

ПБРВА ЧАСТ: За всеки верен отговор по 1 точка

1. Стойността на израза
$$\frac{1}{3}\sqrt{12\frac{1}{4}} - \left(\frac{9.5^{-2}}{0.5.2^{-1}}\right)^{-0.5}$$
 е:

a) 1.1 6) 2 B)
$$\frac{4\sqrt{3}-5}{2}$$
 F) $\frac{1}{3}$ A) -

2. Ако
$$a = 3b + 1$$
 и $ab = 30$, то стойността на израза $a^2 + 9b^2$ е равна на: a) 181 6) 161 в) 121 г) 81 д) 31

3. Сборът на корените на уравнението
$$x^2 + 5x + 2 - \frac{x^2 + x - 2}{x + 2} = 0$$
 е равен

на:
a)
$$+$$
 b) 0 **r**) -1 **д**) 3
4. Ако x_1 и x_2 са корените на квадратното уравнение $2x^2 - 7x + 4 = 0$, то

тойността на израза
$$\left(\frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{x_2}}\right)$$
 е равна на:

стойността на израза
$$\left(\frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{x_2}}\right)^2$$
 е равна на:

a)
$$\frac{7}{4}$$
 6) $\frac{7+\sqrt{2}}{2}$ B) $\frac{7+4\sqrt{2}}{4}$ F) $\frac{7+2\sqrt{2}}{2}$ A) $\frac{2+\sqrt{7}}{4}$

5. Решенията на уравнението
$$\sqrt{(2x+3)^2} = x$$
 са:
a) -1 6) -3 в) -1 и -3 г) $\frac{3}{2}$

6. Броят на целите числа
$$n$$
. за които $\left(\frac{n+7}{2n+7}\right)^{-1} < 1$, е равен на:

а) 0 6) 2 в) $+$ г) 5 л) 6

a) 0 6) 2 в)
$$+$$
 г) 5 д) 6 7. Редицата $\{a_n\}$ е аритметична прогресия с разлика $d=2$. Стойността на

израза
$$a_6 + a_2 - a_3 - a_4$$
 e:

израза
$${\pmb a}_6 + {\pmb a}_2 - {\pmb a}_3 - {\pmb a}_4$$
 e: a) 22 6) -2

8. За геометричната прогресия
$$\{a_n\}$$
 е известно, че $a_1 + a_5 = 57$ и $a_2 + a_6 = 171$. Частното на прогресията е равно на:

Пловдивски университет "П. Хилендарски"

Б	1 2	
В	3	
8	4	
7	2	
В	9	
8	7	
٦	%	
Α	9	
В	10	
В	11	
Α	1.2	

$R = \frac{15}{4}$	$AB = 3 + 2\sqrt{5}$	13
$S=48 \ cm^2$	$CC_1 = 12 cm$	14
!	y - x	15
$f_{\mu zc} = 5$	$f_{nmc} = 1$	16
	$x \in (-2,0] \cup [1,+\infty]$	17

18. За
$$k \neq -1$$
 трябва да са изпълнени едновременно $D = 16k + 25 > 0$

$$x_1 + x_2 = \frac{2k+5}{k+1} > 0$$
 $x_1 x_2 = \frac{k}{k+1} > 0$. Or

$$D = (2k+5)^2 - 4k(k+1) > 0$$
 следва $k \in (-\frac{25}{16}, +\infty)$, от

$$x_1 + x_2 = \frac{2k+5}{k+1} > 0$$
 получаваме $k \in (-\infty, -\frac{5}{2}) \cup (-1, +\infty)$, а от

$$x_{\rm I}x_2 = \frac{k}{k+1} > 0 \quad {\rm намираме} \quad k \in (-\infty,-1) \cup (0,+\infty) \,. \quad {\rm Окончателно} \quad k \in (0,+\infty) \,.$$

19. Преобразуваме и получаваме
$$\left| (x+y)^2 - 3xy = 7 \right|$$
 Полагаме $\left| 2xy - (x+y) = 2 \right|$

$$u = x + y$$
 и следва системата $u^2 - 3v = 7$ с решения $u_1 = 4$ $v = xy$ $v_1 = 3$

че AO_1LC е вписан в оръжност. Но точките A,L,C лежат на окръжност с център O и следователно и точката $O_{\scriptscriptstyle \parallel}$ лежи на същата окръжност. Т.е дължината на ${\it OO}_{\scriptscriptstyle \parallel}$ е равна на дължината на радиуса на описаната около ΔALC окръжност. Прилагаме спнусова теорема за ΔALC и намираме $OO_1 = R_{ALC} = \frac{AC}{2\sin 108^{\circ}} = \frac{AC}{2\sin 72^{\circ}}$, a or ΔABC cheaps $\frac{AC}{2\sin 72^{\circ}}$

Тогава за да бъдат f(x) , f(y) и f(z) дължини на страни на триъгълник за всяко $x,y,z\in [0;1]$ трябва 2m>M . Ще разгледаме три случая: I) $-rac{a}{2} < 0$, т.е. a > 0. Тогава m = f(0), M = f(1) и от 2m > M следва Задача 8. Да означим за $x \in [0;1]$ $H\Gamma Cf(x) = M$ и HMCf(x) = m .

a < 0 . което означава, че в тоя случай няма решение. 2) $-\frac{a}{2} < 1$, т.е.

a < -2. Тогава M = f(0), m = f(1) и от 2m > M следва $a > -\frac{3}{2}$,

което означава, че в тоя случай няма решение. 3)
$$-\frac{a}{2} \in [0;1]$$
, т.е. $a \in [-2;0]$. Тогава $m = f\left(-\frac{a}{2}\right)$ и $M = \max\left\{f(0);f(1)\right\}$.

Следователно от 2m > M получаваме $2 - \frac{a^2}{2} > 1$ и $2 - \frac{a^2}{2} > 2 + a$. T.e.

намираме, че търсените стойности са $\boldsymbol{a} \in \left(-\sqrt{2};0\right)$.

a)
$$\frac{57}{29}$$
 6) $\frac{29}{57}$ B) 1 r) $\frac{1}{3}$

9. Ако $a = \log_3 2$, то стойността на израза $\log_9 8 + 3^a - \log_3 6$ е равна на:

6)
$$\frac{a+2}{2}$$
 B) $\frac{a-2}{2}$ r) $\frac{5a+6}{2}$ n) $a+2$

10. Вероятността на случайно събитие е числото:

a)
$$\lg 13$$
 6) $(0,4)^5$ B) $\sin 181$ r) $tg47^\circ$ a) $\frac{\sqrt{5}}{2}$

11. От 20 члена на студентски съвет трябва да се изберат председател и

$$2$$
. Стойността на числения израз $\sqrt{3t}g$ 1 $3~tg$ 4 $7~+tg$ 1 $3~+tg$ 4 $7~$ е

12. Стойността на числения израз $\sqrt{3tg}$ I 3 tg47 +tgI 3 +tg47 е:

12. Стойността на числения израз
$$\sqrt{3tg}$$
 13 tg 47 + tg 13 a) $\frac{\sqrt{3}}{4}$ 6) $\frac{\sqrt{3}}{3}$ 8) $\frac{\sqrt{3}}{2}$ г.) $\sqrt{3}$ 13. Ако $a = \lim_{n \to \infty} \frac{\sqrt{n}}{n+1}$, то:

$$\kappa_0 a = \lim_{n \to \infty} \sqrt{n}, \tau_0$$

a)
$$a = 1$$
 6) $a = \frac{1}{2}$ B) $a = \frac{2}{5}$ r) $a = \frac{2}{5}$

r)
$$a = 0$$

14. Ако
$$2^{3x-4} = 2.2^x$$
, то стойността на x е:
a) $\frac{5}{2}$
b) -1
г) $\frac{3}{2}$

за функцията 15. Множеството от допустимите стойности на х

$$f(x) = \log_x (3 - 2x - x^2)$$
 e:

a)
$$(-3;1)$$
 6) $(-3;0)$ B) $(0;1)$ г) $(1;\infty)$

a) (0;∞)

16. Даден е $\triangle ABC$, в който с M е означен медицентърът му, а с P е означена средата на страната AB . Отношението на лицата на ΔBMP $\triangle ABC$ e:

a)
$$\frac{1}{9}$$
 6) $\frac{1}{8}$ B) $\frac{1}{7}$

 $\frac{1}{5}$

17. В правоъгълен трапец ABCD ($AD \perp AB$) основите AB и CD имат дължини съответно 4 cm и 3 cm. Върху бедрото AD е построена т. M, която е равноотдалечена от върховете B и C. Ако $MC \perp MB$, то

18. Осните сечения на прав кръгов конус имат прав ъгъл при върха му, а ранусът на основата му е 3 *стп*. Отношението на радиусите на описаната и вписаната спрямо конуса сфери е равно на:

вписаната спрямо конуса сфери е равно на:
а)
$$\frac{3\sqrt{3}}{2}$$
 6) $\frac{3\sqrt{2}}{2}$ в) $1+\sqrt{2}$ г) $\frac{1+\sqrt{2}}{2}$ д) $\sqrt{2}-1$

19. Около основата на правилна четириъгълна пирамида е описана окръжност с диаметър $6\sqrt{2}$. Околните стени сключват с основата ъгли с големина α . Обемът на пирамидата е:

a)
$$36tg\alpha$$
 6) $108tg\alpha$ B) $36cotg\alpha$ r) $36\cos\alpha$ D) $72tg\alpha$

20. Разликата на най-голямата и най-малката стойност на функцията $f(x) = -2x^2 - x - 1$ в затворения интервал [-1;2] е равна на:

a) 9 6) -9 B)
$$-\frac{79}{8}$$
 r) $-\frac{97}{8}$ π $\frac{81}{8}$

ВТОРА ЧАСТ: Запишете само отговора. За всеки получен и обоснован верен отговор но 2 точки.

21. Да се намери най-малкото цяло число, което удовлетворява неравенството $4^x + 3.2^{x+1} - 16 > 0$.

22. Да се реши неравенството $\log_2(x+1) + \log_2(3x-1) \le 2$.

23. Да се намерят всички решения на уравнението $4\cos 2x - 2\sin 2x = 4\cos^2 x$, които принадлежат на затворения интервал $\begin{bmatrix} 3\pi \end{bmatrix}$

24. Да се реши уравнението
$$\sqrt{2x^2 - x - 6} = x - 1$$
.

равностранните $\triangle ABC$ и $\triangle A_1B_1C_1$. Тогава $AP \perp BC$, $A_1P_1 \perp B_1C_1$, AO:OP=2:1, $A_1O_1:O_1P_1=2:1$, OO_1 е височина на пирамидата и $\angle \left((ABCD);(BCC_1B_1)\right)=\angle OPP_1=45^\circ$. Нека $P_1H\perp AP$. $H\in AP$. От свойствата на равностранен триъгълник намираме $OP=4\sqrt{3}$ и $O_1P_1=\sqrt{3}=OH$. От равнобедрения правоъгълен $\triangle HPP_1$ получаваме $HP=HP_1=3\sqrt{3}$. Следователно $OO_1=3\sqrt{3}$. Така за обема на $3\sqrt{3}$.

пирамидата намираме
$$V=\frac{3\sqrt{3}}{3}\left(144\sqrt{3}+9\sqrt{3}+36\sqrt{3}\right)=567$$
 .
Задача 6. Преобразуваме дадената функция и получава

Задача 6. Преобразуваме дадената функция и получаваме $f(x) = 2\cos^2 x \cdot \sin x - 2\cos^2 x - 2\sin x = 2(-\sin^3 x + \sin^2 x - 1).$

Полагаме
$$\sin x = u \in [-1;1]$$
 и разглеждаме $g(u) = -u^3 + u^2 - 1$. От

$$\mathbf{g}'(u) = -3u^2 + 2u$$
 и $\mathbf{g}'(u) = 0$ намираме $u_1 = 0$ и $u_2 = \frac{2}{3}$. Но

$$g(0)=-1\,$$
 и $g(1)=-1$. Следователно най-малката стойност на $g(u)$ в интервала $[-1;1]$ е $g(0)=g(1)=-1$. Тогава най-малката стойност на $f(x)$

е -2 и тя се достига за $x=k\pi$ и $x=\frac{\pi}{2}+2l\pi$, където k и l са цели

числа.

Задача 7. Нека
$$M\in AC$$
 и $AM=MC$. От условието следва. че $LM\perp AC$. Тогава ΔALC е равнобедрен с $AL=LC$ и

$$\angle ACL = \angle CAL = \frac{1}{2} \angle BAC$$
. От $\angle BAC = \angle ABC$ следва $\angle BAC = \angle ABC = 72^\circ$ и $\angle ACB = 36^\circ$. От $\triangle ABL$ получаваме $\angle AO_1L = 2\angle ABL = 144^\circ$.

 $\frac{a+b-c}{2}$. $R=\frac{c}{2}$. Or a+b+c=12 u r:R=2: 5 намираме c=5 и Задача 2. Използваме стандартните означения за триъгълник и получаваме

a+b=7. От Питагоровата теорема следва $a^2+b^2=25$. Тогава $(a+b)^2 - 2ab = 25$ и намираме ab = 12. Следователно $S = \frac{ab}{2} = 6$.

Задача 3. От $x^2-7x>0$ и x-1>0 и x+1>0 следва $x\in (1;3)\cup (4;+\infty)$. Даленото неравенство е еквивалентно на

неравенството $\log_+(x^2-7x+12) \ge \log_+(x^2-1)$. От $\frac{1}{5} < 1$ следва

 $x^2 - 7x + 12 \le x^2 - 1$ с решение $x \ge \frac{13}{7}$. Решение на задачата е

$$x \in \left[\frac{13}{7}; 3\right) \cup (4; +\infty).$$

Задача 4. Да означим MB=a , AC=x , BD=y и AM=z . От условието следва, че $x + y = 10 + 2\sqrt{5}$ и

$$\tilde{\boldsymbol{a}}^2 = 10$$
. Heka $\boldsymbol{CH \perp AB}$, $\boldsymbol{H} \in \boldsymbol{AB}$.

намираме MD = DN = NB = MB = CH = a. Or $y = a\sqrt{2} = 2\sqrt{5}$. Следователно x = 10. От

намираме $\triangle AMD \equiv BHC$ следва, че BH = AM = z. От правоъгълния $\triangle ACH$ получаваме $x^2 = (a + 2z)^2 + a^2$. Преобразуваме

 $a + 2z = 3\sqrt{10}$. Следователно $z = \sqrt{10}$ и

$$AB = 2\sqrt{10}$$
 . Така получаваме
$$S_{_{ARCI)}} = AB.DM = 20 \, .$$

Задача 5. Нека P и P_{\parallel} са среди съответно на BC и B_1C_1 , а O и O_1 са центровете на

- функцията на Да се намерят локалните екстремуми $f(x) = rac{1}{2}x^3 + 2x^2 + 3x + rac{1}{2}$ и да се установи видът им.
- 26. Колко служители има в даден отдел, ако начините за случаен избор на двама от тях са равни на медианата на данните 41, 29, 20, 20, 27, 60?
- 27. Осемте букви на думата УЧИТЕЛКИ са написани на отделни картончета и са поставени в кутия. По случаен начин се вади едно картонче. Каква е вероятността върху него да е написана буква от думата ФРИЗБОР?
 - 28. Да се намерят стойностите на реалния параметър $oldsymbol{a}$, за които функцията

$$f\left(x
ight) =rac{1}{x^{2}-4ax+a}$$
е дефинирана за всяко реално число x .

- 29. В ромб ABCD със страна a диагоналът AC пресича височината DM на ромба в т. P така, че DP:PM=3:2. Да се намери дължината
- 30. Височината на права призма $ABCDA_1B_1C_1D_1$ има дължина 4b . Бгълът между диагонала $AC_{,}$ и равнината на основата и има големина $oldsymbol{arphi}$. Основата и ABCD е равнобедрен трапец с основи AB=6b и CD=2bДа се намери обемът на призмата.

Технически университет - София

ПЪРВА ЧАСТ: За всекн верен отговор по 1 точка

- 1. Най-малкото от посочените числа е:
- 6) $\sqrt{\frac{3}{7}}$ B) $\left(1600^{\frac{1}{2}}\right)^{-3}$ r) $\sqrt[3]{169}$

 π) 15².2⁻³

- **2.** Стойността на израза $\sqrt{\sqrt{256}} \sqrt{\left(\sqrt{2} 4\right)^2}$ е:
- r) \(\sqrt{2} a) -2

3. Сборът на корените на уравнението $2x^2 + 10x - 1 = 0$ е равен на: a) -10 6) 6 в) 5 г) -5 л) -6

 4. Решенията на неравенството $\frac{x^2 - 5x + 6}{x^2 + x + 3} < 0$ принадлежат на интервала:

a) $(-\infty; -4]$ 6) $(-\infty; -2)$ b) [-4; -3) r) (2; 3) л) (3; 4)

5. Неравенството $\log_a \frac{1}{9} > \log_a \frac{1}{7}$ е вярно точно тогава, когато:

6) 0 < a < 1 B) 1 < a < 2 r) a = 2 D) a > 2

a) $\frac{1+a}{1+b}$ 6) $\frac{1+a}{b-1}$ B) $\frac{a-1}{b+1}$ r) $\frac{a-1}{b-1}$ I) $\frac{1+a}{1-b}$ **6.** Ако $a = \log_2 3$ и $b = \log_2 10$, то изразът $\log_5 6$ е равен на

7. Стойността на израза $\frac{2tg15^{\circ}}{1+tg^215^{\circ}} + \frac{2tg15^{\circ}}{1-tg^215^{\circ}}$ е равна на: а) $\frac{\sqrt{3}}{6}$ 6) $1+\sqrt{3}$ в) $\frac{2+\sqrt{3}}{3}$ г) $\frac{2-\sqrt{3}}{6}$ д) $\frac{3+2\sqrt{3}}{6}$

6
8. Ако $\cos 2\alpha = -\frac{1}{2}$ и $\frac{3\pi}{2} < \alpha < 2\pi$, то стойността на израза

 $\sin \alpha + \sin^2 2\alpha$ e равна на:

6) $\frac{\sqrt{2}-1}{2}$ B) $\frac{\sqrt{2}+1}{2}$ F) $\frac{3+\sqrt{3}}{4}$ D) $\frac{3-2\sqrt{3}}{4}$

9. Общият член на числовата редица е $a_n = \sqrt{n^2 - 6n + 9 + 12}$. Номерът n

за който $a_{_{H}}$ приема най-малка стойност, е равен на

10. Стойността на параметъра $m{m}$, при която графиката на функцията

 $f(x) = x^3 + x - 3m$ минава през точката A(-1;7) е:

различни сборника по математика. Броят на различните комплекти от две 11. Ученик има три различни химикалки, два модела калкулатори и четири

> получаваме $\frac{A_1B_1}{AB} = \frac{CA_1}{AC} = \cos \gamma = \cos 45^\circ$, т.е. $AB = \frac{A_1B_1}{\cos 45^\circ}$. От обратната на Питагоровата теорема следва, че $ZB_{\parallel}C_{\parallel}A_{\parallel}=90^{\circ}$. т.е. $180^{\circ} - 2\gamma = 90^{\circ}$. Следователно $\gamma = 45^{\circ}$. От $\triangle ABC \approx \triangle A_{\parallel}B_{\parallel}C$ $\Delta A_1 B_1 C_1$, we $\angle C_1 A_1 B_1 = 180^{\circ} - 2\alpha$. $\angle A_1 B_1 C_1 = 180^{\circ} - 2\beta$ ${\it CC}_1$. Използваме стандатните означения за ъглите и получаваме за $\angle A_1 C_1 B_1 = 180^\circ - 2\gamma$. 3a $\Delta A_1 B_1 C_1$ получаваме $A_1 B_1^2 = B_1 C_1^2 + A_1 C_1^2$. Or

синусова теорема за $\triangle ABC$ следва $\frac{AB}{\sin 45^\circ} = 2R$. Така получаваме

$$R = \frac{A_1 B_1}{2 \sin 45^\circ \cos 45^\circ} = \frac{A_1 B_1}{\sin 90^\circ} = A_1 B_1 = 17.$$

е строго намаляваща. Тогава достига най-голяма стойност при $a=-2\,$ и тя е следва I $a \models -a$. Тогава $S^2 = 4(a^2 - 4a)$. Следователно за $a \in [-2;0]$ S^2 своите най-големи стойности за една и съща стойност на ${\it a}$. Разглеждаме $S = 4\sqrt{3}$ $S^2 = (x_1 + x_2)^2 - 2x_1x_2 + 8 | a | = 4(a^2 - 2a + 2 | a |)$. Or $a \in [-2; 0]$ $a\in (-\infty,0]\cup [4;+\infty)$. От $S=|x_1|+|x_2|\ge 0$ следва, че S и S^- достигат корените на уравнението $x^2 + 2ax + 4a = 0$ трябва $D = 4a^2 - 16a \ge 0$, т.е **Задача 8.** Решение на неравенството $|a| \le 2$ е $a \in [-2, 2]$. За да са реални $S^2 = |x_1|^2 + |x_2|^2 + 2|x_1x_2|$ и след преобразуване получаваме

Софийски университет "Св. Климент Охридски" Математика второ равнище 21 юни 2015 г.

Задача 1. За $x \le 5$ от $(x-6)(x-4)\sqrt{5-x} = 0$ следва, че решения на задачата са $x_1 = 4$ и $x_2 = 5$

$$a-b=16$$
. Следователно $AB=a=25$ и $CD=b=9$.

Задача 3. В
$$xy + x + y = 19$$
 полагаме $x + y = u$ и получаваме $xy(x + y) = 84$ $xy = v$ и получаваме $xy = 19$ $xy = 19$

Решение на дадената система са
$$(3;4)$$
. $(4;3)$. $\left(6+\sqrt{29};6-\sqrt{29}\right)$. $\left(6-\sqrt{29};6+\sqrt{29}\right)$.

Задача 4. От правоъгълния
$$\Delta ABC$$
 намираме $AB=25$ и $\sin \pmb{lpha}=rac{7}{25}$. Но

$$\angle DBC = 90^{\circ} + \alpha$$
 като външен за $\triangle ABC$. Използваме соѕ $(90^{\circ} + \alpha) = -\sin \alpha$, прилагаме косинусова теорема за $\triangle BDC$, заместваме и получаваме в в с

$$CD^2 = 49 + 49 + 2.7.7.\frac{7}{25} = \frac{49.64}{25}$$
, r.e. $CD = \frac{56}{5}$.

Задача 5. Броят на всички възможни изходи при произволно хвърляне на следва, че благоприятните изходи са 3+3!+3+3=15. Следователно търсената трите зарчета е 6.6.6=216. От представянето 7=1+1+5=1+2+4=1+3+3=2+2+3

вероятност е
$$P = \frac{15}{6.6.6} = \frac{5}{72}$$
.

Преобразуваме и получаваме $a^2 - 2ab - 2b^2 = 0$. Разделяме на $b^2 > 0$, Задача 6. От условието следва a>0, b>0 и $2a^2=b^2+(a+b)^2$.

полагаме $\dfrac{d}{h}=x>0$ и получаваме квадратното уравнение

$$x^2 - 2x - 2 = 0$$
 с корени $x_{1,2} = 1 \pm \sqrt{3}$. Следователно

$$\frac{a}{1} = 1 + \sqrt{3}$$
.

Задача 7. Нека е даден $\triangle ABC$ с височини AA_1 . BB_1 и

химикалки, един калкулатор и един сборник по математика, които той може та образува. е равен на:

a)
$$\frac{3!+4!}{12!}$$
 6) cos 120 B) sin 390 r) 1g10 a) $\sqrt{3}-\sqrt{2}$

13. В равностранен триъгълник със страна $2\sqrt{3}$ cm е вписана окръжност, чийто радиус е:

6)
$$\sqrt{3} cm$$
 B) 2 cm

a) i *cm*

r)
$$2\sqrt{3} cm$$
 д) $3\sqrt{3} cm$

14. Даден е правоъгълен
$$\Delta ABC$$
 с катет $AC=b$ и $\angle ABC=eta$. Радиусът на описаната около този триъгълник окръжност е равен на:

на описаната около този триъгълник окръжност е равен на:
а)
$$b\cos\beta$$
 б) $b\sin\beta$ в) $\frac{b\sin\beta}{2}$ г) $\frac{b}{2\sin\beta}$ д) $btg\beta$

15. Даден е равнобедрен трапец с височина
$$+$$
 ст и основи 6 *ст* и 12 *ст*. Дължината на бедрото на трапеца е равна на:

а) 3 *ст* 6) $+$ *ст* $=$ 7. $\sqrt{3}$ *ст* $=$ 7. $\sqrt{3}$ *ст* $=$ 1.5 *ст*

а) 3
$$cm$$
 б) $+ cm$ в) $2\sqrt{3}$ cm г) $3\sqrt{3}$ cm д) 5 cm 16. През пресечната точка O на диагоналите AC и BD на трапеца $ABCD$ е построена права, успоредна на основите, която пресича бедрата AD и BC съответно в точки P и Q . Дължините на отсечките PO и QO се отнасят така. както:

Обемът на първия куб се отнася към обема на втория куб така, както: a) 3:1 b)
$$3\sqrt{3}:1$$
 г) 4:1 д) $2\sqrt{2}:1$ 18. Лицето на основата на пирамида е 1 cm^2 , а обемът и е повече от 10

18. Лицето на основата на пирамида е І
$$cm^2$$
, а обемът и е повече от 10 cm^3 . Възможната дължина на височина на пирамидата е: а) 17 cm б) 29 cm в) 34 cm г) 15 cm л) 13 cm

19. В правилна триъгълна призма
$$ABCA_1B_1C_1$$
 всички ръбове имат дължина і cm . Лицето на сечението на призмата с равнината (AB_1C) е равно на:

a)
$$\frac{3}{2}$$
 cm² 6) $\frac{\sqrt{7}}{2}$ cm² B) $\frac{\sqrt{7}}{4}$ cm² r) $\frac{\sqrt{3}}{2}$ cm² $\frac{1}{4}$ cm²

20. Най-голямата стойност на функцията $f(x) = \sqrt{x(2-x)}$ е равна на:

a) 1 6) 2 B)
$$\sqrt{3}$$
 r) \pm

вТОРА ЧАСТ: Запишете само отговора. За всеки получен и обоснован верен отговор по 2 точки.

21. Да се реши уравнението
$$\sqrt{x^2 + x - 3} = \sqrt{1 - 2x}$$
.

- 22. Да се намери сборът на най-малката и най-голямата стойност на функцията $f(x) = -2x^2 + 8x + 1$ в затворения интервал [0;3].
- 23. Два пъти цената на един принтер е намалявана с по 10%. След второто намаление цената на този принтер е 275,40 лв. Да се намери първоначалната цена на принтера.
- 24. В кутия има 10 различни химикалки, 15 различни моливи с твърдост Н, 20 различни моливи с твърдост В и 30 различни моливи с твърдост НВ. Да се намери вероятността случайно избран предмет от кутията да е химикалка или молив с твърдост НВ.
- 25. Функцията f(x) е дефинирана за всяко реално число x и приема положителни стойности за всяко $x\neq 7$. Ако f(7)=0, да се реши неравенството $(x-3)f(x)\leq 0$.
- **26**. Да се намери броят на различните корени на уравнението $\frac{tgx + \sqrt{3}}{\sqrt{3}tgx 1} = 1$,

които принадлежат на отворения интервал $\left(0; \frac{3\pi}{2}\right)$.

- 27. Сборът на три числа, които са последователни членове на растяща геометрична прогресия с равен на 186. Ако първите две числа се запазят, а от третото число се извади 96, то в този ред те образуват аритметична прогресия. Да се намерят трите числа.
- **28**. Да се намери лицето на правоъгълен триъгълник с хипотенуза 10 cm и сбор от дължините на катетите 14 cm.

корени или да има само отрицателни корени. 2.1) ако
$$D<0 \Leftrightarrow 4(1-k)(k-3)<0 \Leftrightarrow (k-1)(k-3)>0$$
. Т.е. $D\geq 0$ $k\in (-\infty;1)\cup (3;+\infty)$. 2.2) Ако $u_1\leq u_2<0$. Тогава $c-b=0$ $c-b=0$ $c-b=0$

$$4(1-k)(k-3) \ge 0$$
 $k \in [1;3]$ $-\frac{2(2k-3)}{k-2} < 0$ \Leftrightarrow $k \in \left(-\infty; \frac{3}{2}\right) \cup (2; +\infty)$ с решение $\frac{5k-6}{k-2} < 0$ $k \in \left(-\infty; \frac{6}{5}\right) \cup (2; +\infty)$ $k \in \left[1; \frac{6}{5}\right] \cup (2; 3]$. Решение на задачата е $k \in \left(-\infty; \frac{6}{5}\right) \cup [2; +\infty)$.

Софийски университет "Св. Климент Охридски" Математика първо равнище 20 юни 2015 г.

Задача I. Преобразуваме и получаваме последователно $(1)^2$ 3 $(5)^2$ 0 15

$$A = \left(\log_{\frac{1}{5^{\frac{1}{5}}}} 5^{\frac{1}{2}}\right)^{2} - \log_{\frac{1}{5^{\frac{3}{2}}}} 5^{\frac{3}{2}} + \log_{\sqrt{5}+1} \left(\sqrt{3}+1\right)^{2} = \left(\frac{5}{2}\right)^{2} - \frac{9}{2} + 2 = \frac{15}{4}$$

Задача 2. Нека трапецът е ABCD с основи AB=a и CD=b и DH е височината на трапеца. От ABCD равнобедрен, описан около окръжност с диаметър 15

следва, че
$$a+b=34$$
, $AH=\frac{a-b}{2}$ и $DH=15$. От $\int_{-\infty}^{\infty}$

правоъгълния ΔAHD намираме AH=8, т.е.

Следователно a = 5 и $d^2 = 16$. т.е. $d = \pm 4$. Но прогресията е растяща. т.е. търсените числа са -3, 1, 5, 9, 13.

Запача 5. Цифрата на единиците може да е {1:5;7}, т.е. три възможности. Но цифрите са различни. Следователно броят на числата с исканите свойства е

Задача 6. От $\angle BAS = \angle CAS$ следва BS = CS = 5. Прилагаме косинусова теорема за $\triangle ABS$ и намираме

$$\cos \frac{\alpha}{2} = \frac{11}{14}$$
. Hera $SH \perp BC$, $H \in BC$. Torana

$$BH=HC$$
 . Използваме, че $\angle CBS=\angle CAS=rac{m{lpha}}{2}$ и от правоъгълния $\triangle BHS$ и $\cosrac{m{lpha}}{2}=rac{BH}{BS}$ намираме

след заместване $BH = \frac{55}{14}$. Следователно $BC = \frac{55}{7}$.

Задача 7. Построяваме $\mathit{CP} \parallel \mathit{AD}$, $\mathit{CH} \perp \mathit{AB}$, $\mathit{DE} \perp \mathit{AB}$, където $P,H,E\in AB$. Тогава APCD е успоредник и AP=5 и PC=15

Тогава PB=14. Намираме лицето на ΔPBC по Хероновата формула и получаваме $S_{PBC} = 84$. От

$$S_{PBC} = rac{PB.CH}{2}$$
 следва $CH = 12$. Следователно

решение на задачата. 2) Ако $k \neq 2$ полагаме $oldsymbol{x}^2 = oldsymbol{u}$ и следва квадратното уравнение $(k-2)u^2+2(2k-3)u+5k-6=0$. За да няма даденото уравнение реални корени трябва квадратното уравнение да няма реални Задача 8. I) Ако k=2 уравнението е $2x^2+4=0$ и следователно k=2

29. Даден е $\triangle ABC$ с височина CH ($H \not\in AB$) с дължина $\sqrt{15}$ cm и ъглополовяща CL ($L\!\in AB$), като отсечките AL и BL имат съответно дължини 2 $\it cm$ и 4 $\it cm$. Да се намерят дължините на страните $\it AC$ и $\it BC$, ако те са цели числа. 30. Височината на правилна четириъгълна пирамида е равна на $\it h$, а големината на ъгъла между две несъседни околни стени е 60. Да се намери радиусът на вписаната в пирамидата сфера.

Технически университет - София 25 април 2015 г.

ПБРВА ЧАСТ: За всеки верен отговор по 1 точка

$$2^{-\frac{1}{2}} \left(\sqrt{10} - \sqrt{6} \right)$$

1. Стойността на израза

a)
$$\sqrt{10} + \sqrt{6}$$
 6) $\sqrt{2}$ B)

B)
$$\sqrt{3} + \sqrt{5}$$

B)
$$\sqrt{3} + \sqrt{5}$$
 r)

B)
$$\sqrt{3} + \sqrt{5}$$
 r) $\sqrt{5} - \sqrt{3}$ a) $\sqrt{15}$

2. Ако x_1 и x_2 са корените на уравнението $x^2 - 8x + 10 = 0$, то стойността

на израза
$$\frac{x_1^2 x_2 + x_2^2 x_1}{\sqrt{x_1 + x_2}}$$
 e:

a)
$$16\sqrt{10}$$
 6) 10

B)
$$20\sqrt{2}$$
 r) $40\sqrt{2}$

a)
$$16\sqrt{10}$$
 6) 10 B) $20\sqrt{2}$ r) $40\sqrt{2}$ д) $4+\sqrt{6}$
3. Ako (x,y) e решение на системата $\begin{vmatrix} 2x^2+2y^2=1\\4xy+1=0 \end{vmatrix}$ то частното $\frac{x}{y}$

равно на:

$$(a) = -\frac{1}{4}$$
 $(b) = \frac{1}{2}$

4. Ако
$$a = \log_3 4$$
 , то изразът $4^{\frac{1}{a}} \log_{27} 4$ е равен на:

$$6)$$
 3 a

5. Петият член на аритметична прогресия с общ член a_n , за която

$$a_1 + a_9 = 12$$
, e

- **a)** 6 **b)** 12 **b)** 3 **c)** 2 **д)** 9 **c)** 6. Най-голямото цяло решение на неравенството |5-x|+3>2|5-x| е:

- 7. Корени на уравнението $2 + \sqrt{100 x^2} = x$ са: 6) -6 и 8

r) 10

- **8.** Ako a = $= \frac{\sqrt{3}(\cos 20^\circ - \sin 20^\circ)}{}$
- a) a = 3
- 6) $a = \sqrt{2}$ 8) $a = 3\sqrt{2}$ r) $a = 3\sqrt{6}$ A) $a = \sqrt{6}$
- 9. Ако $\cos \alpha = -\frac{3}{5} \text{ и } \frac{\pi}{2} < \alpha < \pi$, то изразът $5\cos \frac{\alpha}{2}$ е равен на:

- B) $\sqrt{2}$ r) $2\sqrt{5}$
- μ) $-2\sqrt{5}$
- 10. Не е вероятност на случайно събитие числото:
- $\mathbf{B}) \left(\frac{4}{25} \right)^{\frac{1}{2}} \qquad \mathbf{r)} \cos 138^{\circ}$

 - л) $\frac{3!+2!}{4!}$
- 11. Стойността на границата $\lim_{x \to \infty} \frac{1}{2 + x 3x^3}$ е:

- **12.** Стойността на реалния параметър $\, {m p} \,$. при която графиката на функцията
- $f(x) = 5x^2 3x + 2p$ минава през точката M(2;6) е:

- $^{-1}$ в) 10 г) 40 л) -40 $^{-1}$ 13. Най-голямата стойност на функцията $f(x) = -x^2 + 2x 5$
- затворения интервал [-3;0] е: a) -4 б) -5

- **a**) -4 **b**) -5 **b**) -8 г) -13 д) -20 **14.** Произведението на модата и медианата на данните 0, 2, 0, 1, 5, 2, 7, 2 е:

Следователно

- $\sin\left(\frac{\alpha}{2}+\gamma\right)=\sin\left(\frac{\beta}{2}+\gamma\right)$. Тогава $\frac{\alpha}{2}+\gamma=\frac{\beta}{2}+\gamma$, което е невъзможно.
- или $\frac{\alpha}{2} + \gamma = 180^\circ \left(\frac{\beta}{2} + \gamma\right)$, откълето намираме $\gamma = 60^\circ$, т.е. $\angle ACB = 60^\circ$.
- Софийски университет "Св. Климент Охридски" Математика първо равнище 29 март 2015 г.
- неравенството Задача І. За $x \neq \{1,4\}$ даденото неравенство е еквивалентно на -(x-4)(x-1) + 1 ≥ 0 . Преобразуваме и намираме
- $\frac{x-2}{x-1} \ge 0$. Следователно решение е $x \in (-\infty; 1) \cup [2; 4) \cup (4; +\infty)$.
- 3адача 2. От правоъгълните ΔAA ,C и ΔBB ,C
- получаваме $AB = 2\sqrt{19}$. BC=16. Прилагаме косинусова теорема за ΔBAC и $\angle ACB = 30^\circ$ намираме съответно $AC = 10\sqrt{3}$
- уравнение е x = -1. втора степен, преобразуваме и получаваме квадратното уравнение **Задача 3.** За $x \ge -\frac{4}{3}$ повдигаме двете страни на даденото уравнение на $x^2 + 3x + 2 = 0$ с корени $x_1 = -2$ и $x_2 = -1$. Решение на даденото
- **Задача 4.** Ако търсените числа са a-2d, a-d, a, a+d, a+2d . то $(a-2d)^2 + (a-d)^2 + a^2 + (a+d)^2 + (a+2d)^2 = 285$

 $MP=rac{a\sqrt{2}}{2}$, а от правоъгълния ΔMPC следва $MC=rac{a\sqrt{3}}{2}$. Изразяваме лицето на ΔBCM по два начина и получаваме BC.MP=CM.BH

Заместваме и намираме $BH=rac{a\sqrt{6}}{3}$. От косинусова теорема за ΔDBH

получаваме
$$\cos \phi = -\frac{1}{2}$$
. Следователно $\phi = 120^\circ$.

 $x_2 \neq -1$. I) Heka $x_1 = x_2 = u$. Toraba $u = \frac{1}{1+u}$, T.e. $u^2 + u - 1 = 0$ c Задача 7. От условието следва, че a и b са реални, $a^2-4b\geq 0$, $x_1\neq -1$,

корени $u_{1,2} = \frac{-1 \pm \sqrt{5}}{2} \neq -1$. Използваме формулите на Виет и при

$$x_1 = x_2 = \frac{-1 - \sqrt{5}}{2}$$
 намираме $a = 1 + \sqrt{5}$ и $b = \frac{3 + \sqrt{5}}{2}$. При $x_1 = x_2 = \frac{-1 + \sqrt{5}}{2}$ следва $a = 1 - \sqrt{5}$ и $b = \frac{3 - \sqrt{5}}{2}$. 2) Нека $x_1 \neq x_2$. Тогава $x_1 = \frac{1}{1 + x_1}$ и $x_2 = \frac{1}{1 + x_2}$. Следователно $x_1^2 + x_1 - 1 = 0$ и

$$=x_2=\frac{-1+\sqrt{5}}{2}$$
 cheaba $a=1-\sqrt{5}$ in $b=\frac{3-\sqrt{5}}{2}$. 2) Heka $x_1\neq x_2$.

огава
$$x_1 = \frac{1}{1+x_1}$$
 и $x_2 = \frac{1}{1+x_2}$. Следователно $x_1^2 + x_1 - 1 = 0$ и

 $x_2^2 + x_2 - l = 0$. От $x_1 \neq x_2$ следва, че x_1 и x_2 са корените на уравнението $x^2 + x - l = 0$. Т.е. $x^2 + x - l = x^2 + ax + b$, което означава, че a = 1 и b=-1. Ако $x_1=rac{1}{1+x_2}$ и $x_2=rac{1}{1+x_1}$, то следва, че $x_1=x_2$.

Задача 8. Ще използваме стандартните означения. От

$$A_1B_1\parallel AB$$
 и теоремата на Талес следва, че $\frac{CA_1}{CA}=\frac{CB_1}{CB}$.

Тогава $\frac{b-l_a}{b}=\frac{a-l_b}{a}$, т.е. $\frac{l_a}{b}=\frac{l_b}{a}$. Прилагаме синусова

теорема за $\triangle ADC$ и $\triangle BCE$ и получаваме съответно

вписаната в триъгълника окръжност. Ако $AB=2\ cm$, то периметърът на 15. Медицентърът на равнобедрен $\triangle ABC$ (AC=BC) лежи върху

16. Ъгъл ${\pmb \alpha}$ срещу страната ${\pmb a}$ на триъгълник със страни ${\pmb a}=7$, ${\pmb b}=5$ и с = 8 има големина:

(AD=BC) са взети съответно точки M,N,P и Q така, че MNPQ е 17. Върху страните AB, BC, CD и DA на равнобедрен трапец ABCDквадрат. За отсечката $A oldsymbol{Q}$ е вярно, че:

a)
$$AQ = AM$$
 6) $AQ = PC$ B) $AQ = QM$ 7) $AQ = QN$ A) $AQ = CN$

18. Изготвят се документи с различни серии от 3 различни букви от гръцката азбука, която има 24 букви. Броят на възможните документи, които могат да

19. Стойностите на реалния параметър $m{k}$, за които корените на квадратното уравнение $x^2 - (3k - 2)x + k^2 = 0$ са положителни числа, принадлежат на

a)
$$\left(\frac{2}{3};\infty\right)$$
 6) $\left[\frac{2}{5};\frac{2}{3}\right)$ B) $\left(0;2\right]$ г) $\left[2;\infty\right)$ д) $\left(\frac{2}{3};2\right]$

20. Основата ABCD на четириъгълна пирамида ABCDF е квадрат със страна $3 \; cm$. Околният ръб DF е перпендикулярен на основата, а най-

олемият и околен ръб сключва с основата ъгъл 30°. Радиусът на описаната

a)
$$\sqrt{6}$$
 cm 6) $2\sqrt{6}$ cm 8) $\frac{\sqrt{6}}{2}$ cm 1) $\frac{3\sqrt{2}}{2}$ cm 1) $\frac{3\sqrt{6}}{4}$ cm

ВТОРА ЧАСТ: Запишете само отговора. За всеки получен и обоснован зерен отговор по-2 точки.

- **21**. Да се реши неравенството $\sqrt{x+1} < x$.
- **22.** Да се реши уравнението $3.4^x + 2.9^x 5.6^x = 0$.

 $\log_{x-2} 9 - \log_3(x-2) - 1 = 0$ най-малкият корен на уравнението

първи опит? случаен начин. Каква е вероятността желаният номер да бъде набран от последните три цифри на номера, но помни, че те са различни и ги набира по 24. При набиране на телефонен номер Иван установява, че е забравил

че три да са първо качество и едно да е второ? качество. По колко начина могат случайно да се вземат четири изделия така. 25. В партида има 18 изделия, от които 10 са първо качество и 8 са второ

прогресия. Да се намерят числата x и y . прогресия, а числата 1, x, y , взети в посочения ред, образуват аритметична **26.** Числата 2, x-2, y-3, взети в този ред образуват геометрична

пресичащи тези страни съответно в точки P и Q . Ако лицето на ΔPQN е 27. Даден е равностранен триъгълник със страна II сm. През точка $N\!\in AB$, успоредно на страните AC и BC са прекарани прави $7\sqrt{3}~cm^2$, да се намери дължината на отсечката PQ

принадлежат на затворения интервал $\begin{bmatrix} \pi \\ -\frac{\pi}{2}; \pi \end{bmatrix}$. **28**. Да се намерят корените на уравнението $\cos 2x = 5\sin x - 3 = 0$, които

радиусът на вписаната в пирамидата сфера. **29**. В триъгълна пирамида всички ръбове имат дължина I $\it cm$. Да се намери

има локален екстремум, равен на 0. параметър. Да се намерят стойностите на $oldsymbol{a}$, при които функцията f(x)30. Дадена е функцията $f(x) = x^2 - (3a+2)x + a^2$, където a е реален

Технически университет - София

ПЪРВА ЧАСТ: За всеки верен отговор по 1 точка

1. Стойността на израза $2^{-4}.32^{0.25} + (27^2)^{\frac{1}{6}} - (\sqrt[3]{64})^{\frac{1}{2}}$ е равна на:

 $x \in [4;5]$, т.е. $x \le 5$ следва |x-5| = 5-x и намираме (5-x)(6-x)=0. Т.е. $x_1=6$ не е решение, а $x_2=5$ е решение

Задача 4. Нека $CH\perp AB$, $H\in AB$. От CA=CD следва, че AH=HD . От условието намираме $AH=rac{9}{25}AB$ и

$$BH=rac{16}{25}AB$$
 . От метрични зависимости в правоъгълен $\stackrel{\longleftarrow}{A}$ Н

триъгълник получаваме
$$AC=rac{3}{5}AB$$
 и $BC=rac{4}{5}AB$. Но

$$AB+BC+AC=$$
 12. Следователно $AB=$ 5. $AC=$ 3 и $BC=$ 4. Така намираме $S_{ABC}=$ 6. Задача 5. 1) За $x\ge 0$ даденото неравенство е еквивалентно на $3^x+3^x\ge 2\sqrt{3}$. т.е. $x\ge 0,5$. 2) за $x<0$ следва $3^x+3^{-x}\ge 2\sqrt{3}$. Полагаме $3^x=u>0$ и получаваме квадратното неравенство $u^2-2\sqrt{3}u+1\le 0$. Но $u<1$. Тогава решение е $0< u\le \sqrt{3}-\sqrt{2}$, т.е. $x\le \log_3\left(\sqrt{3}-\sqrt{2}\right)$. Следователно решение на даденото неравенство е $x\in \left(-\infty;\log_3\left(\sqrt{3};\sqrt{2}\right)\right]\cup \left[0,5;+\infty\right)$.

M. Да означим $AC \cap BD = O$, AB = a, BP = PC, $P \in BC$ и 3адача 6. Нека пирамидата е ABCDM с основа квадрата ABCD и връх $BH\perp CM$, $H\in CM$. Тогава MO е височината на пирамидата. От $DH \perp CM$. T.e $\Delta BCM \cong \Delta DCM$ получаваме DH = BH

$$\angle ((DCM); (BCM)) = \angle BHD = \varphi \cdot \text{OT}$$
 $MP \perp BC \text{ in } OP \perp BC \text{ cherra, qe}$
 $\angle ((BCM); (ABCD)) = \angle OPM = 45^{\circ} \cdot \text{Ho}$

$$OP=rac{a}{2}$$
 и от правоъгълния ΔPMO намираме

A , B , C и D такива, че AB=BC=CD (вж. чертежа по-долу). Намерете лицето на четириъгълника $oldsymbol{O}_1oldsymbol{O}_2oldsymbol{D}oldsymbol{A}$

A)
$$\frac{5\sqrt{3}}{4}$$
 cm² B) $\frac{5\sqrt{3}}{2}$ cm² B) $5\sqrt{3}$ cm² F) 10 cm²

AB=0.02 C=0.02 D=0.02

Solo_2Da=7

Софийски университет "Св. Климент Охридски" Математика второ равнище 22 март 2015 г.

Задача І. Използваме стандартните означения и от $5S_{10}=S_{20}$ следва

$$5a_1 \frac{q^{10}-1}{q-1} = a_1 \frac{q^{20}-1}{q-1}$$
. Преобразуваме и от условието, че числата са

положителни и $q \neq 1$ намираме $q^5 = 2$. Следователно $q = \sqrt[5]{2}$

3адача 2. Нека O е центърът на оккръжността. От ABCD вписан следва, че AD=BC и $\angle ABC=\angle BAD$. От AB=4 следва,

че AB е диаметър и $\angle ACB = 90^\circ$. Следователно $\angle COD = 60^{\circ}$ M $\triangle AOD$, $\triangle DOC$ M $\triangle COB$ ca $\angle ABC = \angle BOC = \angle AOD = 60^{\circ}$.

равностранни със с $S_{ABCD} = 3S_{AOD} = 3\sqrt{3}$.

Задача 3. Преобразуваме даденото уравнение във вида $2\sqrt{25-x|x-10|} = -(x-5)(x-4)$. Следователно $x \in [4;5]$ за да са

еквивалентни преобразуванията. Тогава x < 10 и |x-10| = 10 - x . Получаваме $2\sqrt{x^2 - 10x + 25} = -(x - 5)(x - 4) \Leftrightarrow 2 \mid x - 5 \mid = -(x - 5)(x - 4)$. Or

40

2. Ако 120% от
$${\pmb a}$$
 е равно на 40% от ${\pmb b}$, то ${\pmb a}$: ${\pmb b}$ е равно на:

$$6)\frac{1}{4}$$
 $8)\frac{1}{3}$

.. 51.0

3. Ако
$${m x}_1$$
 и ${m x}_2$ са корените на квадратното уравнение $12{m x}^2-7{m x}-12=0$, то стойността на изваза ${m x}_1^2+{m x}_2^2$ е:

3. Ако
$$x_1$$
 и x_2 са корените на квадратното уравнение $12x$ то стойността на израза $x_1^2 + x_2^2$ е:

a) $-\frac{239}{144}$

б) $\frac{251}{144}$

в) $\frac{7}{4}$

г) $\frac{47}{144}$

144

а)
$$-\frac{239}{144}$$
 б) $\frac{251}{144}$ в) $\frac{7}{4}$ г) $\frac{47}{144}$ д) $\frac{337}{144}$ 4. Даден е квадратният тричлен $f(x) = x^2 + ax + 4$, където a е реален параметър. Най-малката цяла стойност на a , за която $f(x) > 0$ за всяка реална стойност на x , е равна на:

а) -3 6) -4 в) 3 г) 2 л) 0
5. Корените на уравнението
$$\sqrt{x+1} + \sqrt{x-2} = \sqrt{x+6}$$
 принадлежат на

7. За геометричната прогресия
$$\{a_n\}$$
 е известно, че $a_1 + a_5 = 51$ и

$$m{a}_2 + m{a}_6 = 102$$
 . Частното на прогресията е равно на: $m{a}_1 + m{a}_5 = 51$ $m{a}_2 + m{a}_6 = 102$. $m{a}_3 + m{a}_5 = 51$ $m{a}_3 + m{a}_6 = 102$. $m{a}_3 + m{a}_5 = 51$

$$\frac{7}{2}$$
 — $\frac{1}{3}$ — Стойността на изваза $2^{1023} - 1$ ол — 125 ± 6 Гол

8. Стойността на израза
$$2^{\log_2 3} - \log_{\sqrt{3}} 125 + 6\log_{\frac{1}{3}} \frac{1}{5}$$
 e:

9. Ако
$$\cos \alpha = -\frac{3}{5}$$
 и $\alpha \in \left(\pi; \frac{3\pi}{2}\right)$, то стойността на $\sin \alpha$ е равна на:

a)
$$\frac{4}{5}$$
 6) $-\frac{3}{4}$ B) $\frac{3}{5}$ r) $-\frac{\sqrt{2}}{5}$

10. Ако (x,y) е решение на системата $\begin{vmatrix} x^3 - y^3 = 72 \\ x - y = 6 \end{vmatrix}$, то произведението

ху е равно на:

b) $\frac{15}{8}$ *cm*

cm да се намери дължината на медианата през върха $oldsymbol{C}$.

b) $\frac{\sqrt{19}}{2}$ cm **b**) $\frac{5}{2}$ cm

20. В $\triangle ABC$ с дължини на страните AB=7 *cm*, BC=3 *cm* и AC=5

в точки P и Q . Дължината на отсечката PQ є равна на: B) 2 cm

бедрото 5 ст ъглополовящите на ъглите при основата му пресичат бедрата

19. В равнобедрен триъгълник с дължина на основата 3 ст и дължина на

11. На графиката на функцията y=f(x) са отбелязани девет точки $oldsymbol{x}_i, i=1,...,9$. Броят на точките $oldsymbol{x}_i$, в които производната на функцията е

A) | *cm*

b) 2 *cm*

B) 3 *cm*

 Γ) \pm cm

триъгълника, ако е известно, че тя е равна на дължината на височината към

21. Дължините на две от страните на остроъгълен триъгълник са равни на

 $\sqrt{10}$ cm и $\sqrt{13}$ cm. Намерете дължината на третата страна на

топки. Вероятността точно две от изтеглените топки да са бели е: 12. В урна има 12 бели и 8 черни топки. По случаен начин се изтеглят три

a) 7

 $\triangle APQ$:

определи отношението от лицето на успоредника ABCD и лицето на

съответно точки P и Q такива. че $AP=\frac{2}{3}AB$ и $AQ=\frac{3}{7}AD$. Да се

22. Върху страните AB и AD на успоредника ABCD са избрани

13. Ako $a = \lim_{x \to -1} \frac{x^2 + 10x + 9}{x^2 + 3x + 2}$, To:

r) a = -8 μ) a = 8

равно на:

вписан квадрат. Отношението от лицето на ремба и лицето на този квадрат е

23. В ромб с остър ъгъл 30° е вписана окръжност, а в тази окръжност е

- 14. Решение на уравнението $2^x \left(\frac{1}{2}\right)^{14-4x} = 64$ е числото:

6) $-\frac{8}{5}$

- между средите на неговите диагонали е 2 ст.

- дължината на малката основа на трапеца, ако е известно, че разстоянието

24. Дължината на голямата основа на трапец е равна на *14 ст.*. Намерете

раднуси от 2 *ст*г се допират външно. Права пресича оръжностите в точки **25.** Две окръжности с центрове $oldsymbol{O}_1$ и $oldsymbol{O}_2$, които имат еднакви по дължина

- 9. Вспчки възможни стойности на $m{x}$, конто са решения на уравнението $(x-2)\sqrt{x^2-6x+9} = x-3$ ca:
 - A) x = 3 Б) x = 2 В) x = 1 и x = 3 Г)няма такива стойнсти
- A) $x \in [4; +\infty)$ B) $x \in [-2; +\infty)$ B) $x \in (2; 4]$ Г) $x \in (2; +\infty)$ **10.** Решенията на неравенството $\sqrt{x+2} > 4-x$ са:
- 11. Решенията на неравенството $\sqrt{x^2 + 10x + 25} \le 5$ са:

 - Г) няма решения
- 12. Сумата на третия и осмия член на аритметична прогресия е равна на 5.
- $\Gamma) x = \log_2 3$
- A) x=3 B) x=3 u x=-7 B) x=1**14.** Решенията на уравнението $\log_5(x+2)^2 = 2$ ca:

 Γ) x = -7

- 15. Решенията на неравенството $6^{x^2-x-2} < 1$ са: A) $x \in (-1;3)$ B) $x \in (-1;2)$ B) $x \in (-2;1)$ Г) $x \in (-1;2)$
- **16.** Решенията на неравенството $\log_{0.9} 11 \geq \log_{0.9} (2x-1)$ са всички реални
- числа x, за които: A) $x \in (1; 6]$ B) $x \in (1; +\infty)$ B) x < 1 Г) $x \in [6; +\infty)$
- 17. Стойността на $\cos 75^\circ$ е равна на:

 A) $-\frac{3}{4}$ B) $\frac{\sqrt{6}-\sqrt{2}}{2}$ Г) $\frac{\sqrt{6}+\sqrt{2}}{4}$
- 18. Дължините на страните на правоъгълен триъгълник са последователни членове на аритметична прогресия с разлика I сти. Дължината на хипотенузата на този триъгълник е равна на:

 $f(x) = \sqrt{4 - \log_2(x - 5)}$ e:

15. Множеството от допустимите стойности на х за функцията

- 16. Медицентърът на равнобедрен $\triangle ABC$ (AC=BC) лежи върху вписаната в триъгълника окръжност, чийто радиус е равен на г. Страната ABима дължина:

 - а) $\sqrt{6}r$ 6) 6r 8) $2\sqrt{3}r$ г) $3\sqrt{2}r$ д) $2\sqrt{2}r$ 17. В правоъгълен трапец с остър ъгъл 30° и лице 6 cm^2 е вписана окръжност. Диаметърът на тази окръжност е равен на:

 - a) 5*cm* 6) + *cm* в) 3 *cm* г) 2 *cm* д) 1 *cm* 18. В триъгълник две от страните са с дължини 5 *cm* и 8 *cm*, а ъгълът :рещу третата страна има големина 60° . Радиусът на описаната около срещу третата стринга окръжност е равен на: триъгълника окръжност е равен на: a) 7 cm 6) 3,5 cm в) $\frac{7\sqrt{2}}{2}$ cm г) $\frac{7\sqrt{3}}{3}$ cm д) $7\sqrt{3}$ cm в) $\frac{7\sqrt{2}}{2}$ cm г) $\frac{7\sqrt{3}}{3}$ cm д) $7\sqrt{3}$ cm в) $\frac{7\sqrt{3}}{2}$ cm г) $\frac{7\sqrt{3}}{3}$ cm д) $\frac{7\sqrt{3}}{3}$ cm
- 19. В правилна шестоъгълна пирамида с основен ръб a околната стена сключва с основата ъгъл с големина a. Обемът на пирамидата е: $a_1 \frac{3a^3 \cot g \alpha}{4}$ $b_2 \frac{2a^3 \sin \alpha}{3}$ $b_3 \frac{4a^3 \cos \alpha}{3}$ $cot \frac{9a^3 t g \alpha}{4}$ $cot \frac{3a^3 t g \alpha}{4}$
- **20.** Дадена е функцията $f(x) = ax^2 (a-1)x + 2a + 1$, където a е реален
 - параметър. Стойностите на ${\it a}$, при които уравнението $f({\it x}) = 0$ има два реални корена, принадлежат на интервала: ${\it a} {\it b} [-1;0) \cup \left(0;\frac{1}{7}\right] \quad {\it b} {\it b} \left(-\infty;-1\right] \quad {\it b} \left[\frac{1}{7};\infty\right) \quad {\it r} \left[-1;\frac{1}{7}\right] \quad {\it a} {\it b} \left[0;\frac{1}{7}\right]$
- ВТОРА ЧАСТ: Запишете само отговора. За всеки получен и обоснован верен отговор по 2 точки.
- **21**. Да се реши уравнението $\log_3(x^2 4) = 2\log_9(2x 1)$.

22. Да се намери най-голямата цяла стойност на \boldsymbol{x} , за която е изпълнено е

неравенството $\left(\frac{1}{7}\right)^{-1} > \left(\frac{1}{49}\right)^{16-x}$.

23. Да се реши неравенството $(x^2 - x + 1)(2 - x)$ $x^2(x+1)$

24. Да се намерят всички корени на уравнението $\frac{1}{\cos^2 x} + 2\sin^2 x - 3 = 0$.

които принадлежат на затворения интервал $\begin{bmatrix} \pi & \pi \\ -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$.

- намери вероятността сборът от точките върху двата зара да е равен на десет или на дванадесет. 25. Два различни правилни шестстенни зара се хвърлят еднократно. Да се
- различните хорди с краища в тези точки. 26. Върху окръжност са взети 10 точки. Да се намери максималният брой на
- $(AB \perp BD)$ като точките C и D са от различни страни на AB . Ако Хипотенузата му служи за катет на равнобедрен правоъгълен ΔABD 27. Даден е правоъгълен ΔABC с катети AC=2 cm и BC=1 cmBM е медиана в ΔABD , намерете дължината на отсечката CM
- големина $oldsymbol{eta}$ и $oldsymbol{\gamma}$, а хипотенузата му лежи в равнината $oldsymbol{lpha}$. Да се определи 28. Катетите на правоъгълен триъгълник сключват с равнина α ъгли с

синусът на ъгъла $oldsymbol{arphi}$ ($oldsymbol{arphi}
eq 90^\circ$) между равнината $oldsymbol{lpha}$ и равнината на

- през точката M(1;-1)параметър. Да се намери при коя стойност на k графиката на f(x) минава **29**. Дадена е функцията $f(x) = (k-1)x^4 - kx^2 + k + 1$. където k е реален
- параметри. Определете стойностите на a и b така, че при x=-1тричленът f(x) да има екстремум, равен на 2. 30. Даден е тричленът $f(x) = ax^2 + bx + 8$, където a и b са реални

Технически университет – Варна

1. Кое от посочените числа е равно на числото $\sqrt{11-\sqrt{5}}$?

1. Кое от посочените числа е равно на числото
$$\frac{1}{\sqrt{11-\sqrt{5}}}$$
?

A) $\sqrt{11+\sqrt{5}}$
B) $\sqrt{11-\sqrt{5}}$
 Γ) $3(\sqrt{11}-\sqrt{5})$

ността на израза
$$\left(\frac{81.9^{-9}}{81.9^{-9}}\right)^{-2} = \frac{1}{1.9^{-9}}$$

2. Стойността на израза
$$\left(\frac{81.9^{-9}}{-9^{-8}}\right)^{-2} - \frac{1}{81}$$
 е равна на:

$$\mathbf{b}) \frac{1}{\mathbf{b}} \mathbf{B}) 0$$

3. Ako
$$T = (\sqrt[3]{5} - \sqrt[3]{7})(\sqrt[3]{25} + \sqrt[3]{35} + \sqrt[3]{49})$$
, The

3. Ако
$$T = (\sqrt[3]{5} - \sqrt[3]{7})(\sqrt[3]{25} + \sqrt[3]{35} + \sqrt[3]{49})$$
, то:
A) $T = 0$ B) $T = 7$

4. Решенията на неравенството
$$\frac{25 - 10x + x^2}{2} \le 0$$

4. Решенията на неравенството
$$\frac{25-10x+x^2}{x^2-7x+12} \le 0$$
 са:
A) $x \in (-\infty;3) \cup (4;+\infty)$ Б) $x \in (3;4)$
B) $x \in (3;4) \cup \{5\}$ Г) $x \in (-\infty;3)$

A)
$$x \in (-\infty; 3) \cup (4; +\infty)$$

5. Ако
$$x_1$$
 и x_2 са корените на уравнението $x^2 - x - l = 0$, то стойността на израза $x_1(1 + x_2) + x_2$ е:

A) -2 B) 0 B) 2
$$\Gamma$$
) д
7. Решенията на уравнението $|x^2 - 25| = (5 - x)(5 + x)$ са:

A)
$$x \in (-\infty, -5]$$
 B) $x \in [5, +\infty]$

B)
$$x \in [-5;5]$$

$$\Gamma) \ x \in (-\infty, -5] \cup [5, +\infty)$$

8. Всички реални решения на уравнението
$$x^4 - 7x^2 - 18 = 0$$
 са A) $x = \pm 3$ B) $x = \pm 1$ и $x = \pm 3$ B) $x = 3$ Г) $x = \pm 1$ и $x = \pm 3$ В) $x = 3$ Г) $x = \pm 3$ Б) $x = -1$ Б)

$$x = \pm 3$$
 b $x = \pm 1$ in $x = \pm 3$ **b**