Naïve Bayes

 $\left(P(\bar{x}|A_i) pprox \prod_{j=1}^d P(x_j|A_i)\right)$ - באורה האלגוריתם שלמדנו עובד כמו שצריך. אבל, למה שהוא יעבוד, אם השערוך של ה-likelihood הוא לא טוב אז, ענינו על כך בהרצאה – הקלאס שמניב הסתברות מקסימלית בשני המקרים, הוא אותו הקלאס. כך שלמעשה אנחנו צריכים:

$$\underset{i}{\operatorname{argmax}} P(A_i) \prod_{j=1}^{d} P(x_j | A_i) = \underset{i}{\operatorname{argmax}} P(A_i) P(x_1, x_2, \dots, x_d | A_i)$$

$$P(x_j|A_i) = rac{n_{ij}}{n_i}$$
 בעת נראה דוגמה לחישוב ה-likelihood עייי ספירה של הדאטה:

- באטריביוט הרלוונטי אימון באטר או באטר בדאטה אימון עם בדאטה בדאטה בדאטה nij
 - Ai חוא מספר הדגימות בדאטה אימון עם הקלאס Ni

נשאלת השאלה מה הבעיה כאן? יכול להיות שב-training set הנתון, בהינתן קלאס לא בטוח שכל ערכי האטריביוטים הם מלאים ולכן תתכן הסתברות 0 likelihood ובגלל שאנחנו מכפילים) למרות שבחיים האמתיים הסתברות 0 לא מתרחשת. אסור לנו להניח שמה שלא ראינו (בדאטה .Laplace estimation - אימון שלנו), לא מתקיים. לכן, כדי לפתור את בעיה זו ולתת איזון נשתמש ב-

תיקון לפלס – Laplace estimation

$$Pig(x_j|A_iig) = rac{n_{ij}+1}{n_i+|V_j|}$$
 אשר מוסיף אחד במונה ואת מספר הערכים של האטריביוט במכנה. כאשר: training data מאוד פשוט אשר מספר הדגימות ב-nij

: זהו תיקון מאוד פשוט אשר מוסיף אחד במונה ואת מספר הערכים של האטריביוט במכנה. כאשר

. וערכים האפעריים של האטריביוט הרלוונטי. $V_{\rm I}$

.Ai עם קלאס training data- הוא מספר הדגימות – ni

העיקרון שנשמר בתיקון זה, הוא שיישארו כאן הסתברויות בין 0-1 אשר נסכמות ל-1, לכן זו נוסחה valid-ית להסתברות.

ביוטים: מין, לחץ history data אשר מכיל 4 אטריביוטים - קלאסים A ו-B. יש לנו מטופלים בעלי הולים בין שני טיפולים לחולים – קלאסים בישלי היש שנרצה לסווג בין שני טיפולים לחולים דם, גיל והטיפול שהמטופל קיבל. נרצה לסווג מטופל חדש עם נאיב בייס. להלן הדאטה שלנו וכן החישובים הכוללים את תיקון לפלס.

Gender	Blood Pressure	Age	Treatment
Male	Normal	Young	Α
Male	High	Old	Α
Male	High	Old	А
Female	High	Young	Α
Female	Normal	Young	А
Female	High	Old	А
Male	Low	Young	В
Male	Low	Old	В
Male	Normal	Old	В
Female	Low	Young	В
Female	Normal	Old	В
Female	Normal	Old	В

$P(A) = \frac{6}{12} = \frac{1}{2}$				$n_{ij} + 1$		
$P(male A) = \frac{3+1}{6+2} = \frac{4}{8} = \frac{1}{2}$ $P(female A) = \frac{3+1}{6+2} = \frac{4}{8} = \frac{1}{2}$			$P(x_j A_i) = \frac{n_{ij}+1}{n_i+ V_j }$			
$P(high A) = \frac{4+1}{6+3} = \frac{5}{9} P(normal A)$	$P(low A) = \frac{2+1}{6+3} = \frac{3}{9} \qquad P(low A) = \frac{0+1}{6+3} = \frac{1}{9}$					
$P(young A) = \frac{3+1}{6+2} = \frac{4}{8} = \frac{1}{2}$ $P(old A) = \frac{3+1}{6+2} = \frac{4}{8} = \frac{1}{2}$		State State State Street	Record High High High Record	Right Heating Child Child Streety	A A A	
$P(B) = \frac{6}{12} = \frac{1}{2}$			tion for tor forest tor	CM Name CM CM CM Francy CM		
$P(male B) = \frac{3+1}{6+2} = \frac{4}{8} = \frac{1}{2}$	$P(female B) = \frac{3+1}{6+2} = \frac{4}{8} = \frac{1}{2}$	Selan	Barrid	ON		
$P(high B) = \frac{0+1}{6+3} = \frac{1}{9} P(normal B)$	$P(low B) = \frac{3+1}{6+3} = \frac{4}{9}$ $P(low B) = \frac{3+1}{6+3} = \frac{4}{9}$					
$P(young B) = \frac{2+1}{6+2} = \frac{3}{8}$	$P(old B) = \frac{4+1}{6+2} = \frac{5}{8}$					

לכן למשל עבור דגימה חדשה / מטופל חדש שהוא גבר, צעיר, ובעל לחץ דם גבוהה. נחשב (כנראה שבשורה הראשונה יש טעות בשוויון האחרון):

male, young, high

• $P(A|male, young, high) = P(A) \cdot P(male|A) \cdot P(young|A) \cdot P(high|A) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{5}{9} = \frac{5}{54}$ • $P(B|male, young, high) = P(B) \cdot P(male|B) \cdot P(young|B) \cdot P(high|B) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{8} \cdot \frac{1}{9} = \frac{3}{288}$

• $P(A|male, young, high) = \frac{\frac{5}{54}}{\frac{5}{54} + \frac{3}{900}} = 0.9$ $P(B|male, young, high) = \frac{\frac{3}{200}}{\frac{5}{52} + \frac{3}{900}} = 0.1$

ונקבל כי ההסתברות שהאדם יגיב יותר טוב לטיפול A היא גבוהה יותר ועל כן נסווג אותו לטיפול A.

אלגוריתם EM

אלגוריתם איטראטיבי שבנוי משני שלבים Expectation ו-Maximization. נסמן ב-D את קבוצת נקודות הדאטה שלנו (observed data), טטה אלגוריתם איטראטיבי שבנוי משני שלבים ML = maximum likelihood. כלומר אותו נחפש.

משתמשים ב- EM כאשר אנחנו רוצים לחשב את P(x|theta), אבל חישוב כזה באופן ישיר הוא לא פשוט. חישוב P(x,z|theta) הינו פשוט יותר, באשר EM הינו איזשהו דאטה חבוי האוא חלק מהמודל. אנחנו מניחים שהדאטה החבוי נקבע עייי משתנה מקרי כלשהו CM , שהוא חלק מהמודל. הערה: המודל, תחת הוקטור טטה, שולט גם ב- CM וגם ב- CM אנחנו נראה רק את הערכים של

(כאן ניתנה הדוגמה שניתנה גם בהרצאה מספר 5 – עם ההטלה של 2 המטבעות)

$$p_A = \frac{1}{(New \ w_A)N} \sum_{i=1}^{N} r(x_i, A) v(i)$$

: כלומר בנוסחה זו: responsibilities. את הסכום ב-responsibilities, כלומר בנוסחה זו:

בסכום הבאה: את בנוסחה הבאה (1 לחלק למעל לא responsibilities), הוא למעשה חילוק בסכום ה-(N) וניתן לראות זאת בנוסחה הבאה:

New
$$w_A = \frac{1}{N} \sum_{i=1}^{N} r(x_i, A)$$

ומצד ימים את סכום ה- Pa שבה אם מכפילים ב-N גדולה את שני האגפים נקבל מצד שמאל את המכנה שמחשב את N ומצד ימים את סכום ה- Ra של N, כאמור.

EM for GMMs

(E-step) Expectation :1 .1

. נשערך את ה"responsibilities" של כל נקודת דאטה לכל גאוסיאן באמצעות הפרמטרים הנוכחיים.

2. שלב 2: Maximization).

נשערך מחדש את הפרמטרים (w-ים, מיו-ים, סיגמות) בעזרת ה-״responsibilities״ הקיימים. כלומר – כל נקודת דאטה, x, תורמת לכל מרכיב גאוסיאן, Gi, ביחס לאחריות שהיא קיבלה: r(x , Gi)

כאשר הנוסחאות עבור אלגוריתם זה הינן:

· Responsibilities:

$$r(x,k) = \frac{w_k N(x|\mu_k, \sigma_k)}{\sum_{i=1}^K w_i N(x|\mu_i, \sigma_i)}$$

• Weights:

New
$$w_j = \frac{1}{N} \sum_{i=1}^{N} r(x_i, j)$$

• Mean:

New
$$\mu_j = \frac{1}{(New w_j)N} \sum_{i=1}^{N} r(x_i, j) x_i$$

· Variance:

$$\left(New \ \sigma_j \right)^2 = \frac{1}{\left(New \ w_j \right) N} \sum_{i=1}^N r(x_i, j) \left(x_i - New \ \mu_j \right)^2$$

(ניתנה דוגמת ההרצה של 4 הגאוסיאנים שראינו בהרצאה)

נאמרה הערה לגבי הגרף שמתאר את <u>המיקסום של הלוג-לייקליהוד</u> לאורך האיטרציות, יש איזושהי התכנסות שאינה גלובלית בהרצות מוקדמות 10-40 ובסביבות האיטרציה ה-80~ כבר נגיע להתכנסות.

