







| Def  | ni hon:                                                                                              |   |
|------|------------------------------------------------------------------------------------------------------|---|
| Gegi | en ist eine (2-stellige) Agnivalentrelation Rüber A. Dann gilt:                                      |   |
|      | alls (a,b) ER ist, sagt man a und b sind äquivalen.                                                  |   |
|      | ür a E A ist che tunge                                                                               |   |
|      | $[a] = \overline{a} = \{b \in A \mid (a,b) \in \mathbb{R}^{\frac{1}{3}}\}$                           |   |
|      |                                                                                                      |   |
|      | = { b ∈ A   a m d b sind āguivalent 9                                                                |   |
|      | dre Aguivalenz Klasse zn a (beziglist der Telahon R)                                                 |   |
| 3) = | in (a,b) & R, also a und b sind aquivalent, wird hanfif                                              |   |
|      | in ligeres , Rocherteichen leingeführt, 2. I. anb.                                                   |   |
|      |                                                                                                      |   |
| Beig | el:                                                                                                  |   |
| Uns  | betralten die Zahl m= 5 E Z und folgende Relation R:                                                 |   |
|      | a,b & Z gilt a = b => 5 ist echter Teiler un b-a                                                     |   |
|      | La ist aguivalut zu b/a ist Kongment zu b                                                            |   |
| Bene | rkung: 5 ist echter Tailer von b-a => 3 KEZ: b-a=K.5                                                 |   |
|      | $R = \{(a,b) \in \mathbb{Z}^2 \mid a = b\}$ ist eve Aquivalentelation b-a 15+ even Viel.             |   |
| (4)  | $R = \{(a, b) \in \mathbb{Z} \mid a = b\}$                                                           |   |
|      | reflexiv: $a-a=0=0.5 \Rightarrow (a_1a) \in \mathbb{R} \text{ od}  a \equiv a$                       |   |
|      | symmetrist: $a = b \Rightarrow \exists k \in \mathbb{Z}: b - a = k \cdot 5$                          |   |
|      | $\Rightarrow a-b=-(b-a)=-\kappa\cdot 5=(-\kappa)\cdot 5$                                             |   |
|      | => and a-b ist eve Vielfaches von 5                                                                  |   |
|      | $\Rightarrow b \equiv a$                                                                             | _ |
|      | transitiv: $\alpha = b \wedge b = c \Rightarrow \exists k, l \in \mathbb{Z}: b-a=k.5 \wedge c-b=l.5$ | _ |
|      | $\Rightarrow c - a = (c - b) + (b - a)$                                                              | _ |
|      | $= \ell \cdot 5 + k \cdot 5 = (\ell + k) \cdot 5$                                                    | _ |
|      | => and c-a ist en Vielfaches von 5                                                                   | _ |
|      | $\Rightarrow c \equiv a$                                                                             |   |

