NOTAS DE AULAS: MICROCONTROLADORES Comunicação Serial

Prof. João Perea Martins Dep. De Computação, FC-UNESP E-mail: joao.perea@unesp.br

Registradores utilizados na programação da comunicação serial do PIC.

1) Registradores Principais:

TXSTA Transmit Status and Control Register

RCSTA Receive Status and Control Register SPBRG Baud Rate Generator

2) Buffers

TXREG Buffer de transmissão RCREG Buffer de recepção (2 bytes)

3) Registradores Auxiliares:

PIE1 Peripheral Interrupts Enable

PIR1 Individual flag bits for the peripheral interrupt

1) TXSTA: Transmit Status And Control Register

TXSTA

7	6	5	4	3	2	1	0
CSRC	TX9	TXEN	SYNC	X	BRGH	TRMT	TX9D

CSRC: Fonte do clock

Modo assíncrono: não importa.

TX9: habilita transmissão de 9º bits

1 = Seleciona a transmissão de 9 bits0 = Seleciona a transmissão de 8 bits

TXEN: Habilita transmissão

1 = transmissão ativada

0 = Transmitir desativado

SYNC: Seleção do Modo de Operação

1 = modo síncrono

0 = modo assíncrono

BRGH: Seleção de taxa para cálculo da baud rate (a escolha vai depender do cálculo).

Só é usado no modo Assíncrono

1 = alta velocidade

0 = velocidade baixa

TRMT: Status do registrador de transmissão.

1 = TSR vazio

0 = TSR cheio

TX9D: 9º bit de dados de transmissão.

Pode ser bit de paridade

2) RCSTA: Receive Status And Control Register

RCSTA

7	6	5	4	3	2	1	0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D

SPEN: Habilitação da porta serial

1 = Porta serial ativada

(Os pinos RB1/RX e RB2/TX para serial. TRISB <2:1> deve ser setado).

0 = porta serial desativada

RX9: habilitação de recebimento de 9 bits

1 = Seleciona a recepção de 9 bits

0 = Seleciona a recepção de 8 bits

SREN: Bit de habilitação de recebimento único

Modo assíncrono: não importa.

CREN: Habilita recebimento contínuo

Modo assíncrono: 1 = Permite recebimento contínuo

0 = desativa o recebimento contínuo

ADDEN: Habilitação de detecção de endereço

Modo síncrono: Não é usado

Modo assíncrono: 1 = Habilita a detecção de endereços

0 = Desativa a detecção de endereço

FERR: bit de erro de enquadramento. Indica se se houve problema na detecção do Stop-Bit

1 = Erro de enquadramento (Framig)

0 = sem erro de enquadramento

OERR: bit de erro de Overrum (O buffer já está cheio e chegam novos bytes)

1 = Erro de overrun

0 = sem erro

RX9D: 9° bit de dados

9º bit de dados recebidos (pode ser o valor do bit de paridade recebido)

3) SPBRG: USART Baud Rate Generator

O SPBRG determina a taxa de transmissão e depende do bit: TXSTA,BRGH

Se BRGH=0:

$$SPBRGH = \left(\frac{Fosc}{64*bus}\right) - 1 \tag{1}$$

Se BRGH=1:

$$SPBRGH = \left(\frac{Fosc}{16*bvs}\right) - 1 \tag{2}$$

Valores usuais de bps: 1200, 2400, 4800, 9600, 19200, 38400, 57600 e 115200 bps

4) Buffers de comunicação: TXREG e RCREG

TXREG: Funciona como um Buffer de Transmissão **RCREG**: Funciona como um Buffer de Recepção

6) PIE1: Peripheral Interrupts Enable

PIE1

,	0	RCIE	TXIE	3	2	1	U
7	6	5	1	3	2	1	Λ

PIE,RCIE = 0 Desabilita interrupção de Recepção PIE,RCIE = 1 Habilita interrupção de Recepção

PIE,TXIE = 0 Desabilita interrupção de Transmissão PIE,TXIE = 1 Habilita interrupção de Transmissão

7) PIR1: individual flag bits for the peripheral interrupt

PIR1:

7	6	5	4	3	2	1	0
		RCIF	TXIF				

PIE,RCIF = 0 Não houve interrupção de Recepção PIE,RCIE = 1 Houve interrupção de Recepção

 $\begin{array}{ll} \text{PIE,TXIF} = 0 & \text{N\~ao houve interrup\~{c\~ao} de Transmiss\~ao} \\ \text{PIE,TXIF} = 1 & \text{Houve interrup\~{c\~ao} de Transmiss\~ao} \end{array}$

ALGORITMOS BÁSICOS:

1) Programação:

TRISB = b 'xxxx x11x' TXSTA = b '0010 x110' RCSTA = b'1001 0000' SPBRS = valor-calculado

2) Lógica de recepção de um byte.

LOOP: BTFSS PIR1,RCIF ; Chegou algum byte pela serial?

GOTO LOOP ; Não

MOVF RCREG,W ; Sim, então tiro o byte do buffer de recepção

O comando RCREG,W zera automaticamente o bit PIR1,RCIF

3) Lógica de transmissão de um byte.

WAIT: BTFSS TXSTA,TRMT ; O buffer de transmissão está vazio ?

GOTO WAIT ; Não

MOWF TXREG ; Sim, então coloco dado no buffer para ser enviado

Para a transmissão, o registrador TXREG descarrega o byte em outro mecanismo de hardware chamado TSR e p bit PIR1,TXIF é setado. Quando o byte é completamente enviado pelo hardware o byte TXSTA, TRMT é setado.