D' Find the minimal Sop of the following Boolean functions wing K-map.

@ $f(a,b,c,d) = \sum m(6,7,9,10,13) + d(1,4,5,11)$

(b) F(P,9,r,s) = \(\int_{m}(6,7,9,10,13) + d(0,1,8,12)\)

f(P,q,r,s)=PF+9F+P95+P9r

© F(A,B,C,D): Em(6.8,9,10,11,12,13,14,15)

(a) $F(A,B,C,D) = \sum m(1,3,5,7,8,10,12,14)$

THE COURT OF THE

(e) F(a, b, c, d) = Em(s, 6, 7, 12, 13) + d (4,9,14,15)

2. Find the minimum Sum of products expression for each function. Underline the enembed prime implicants in your ausuur and tell relich mintern makes each one enembed.

3. Get a minimized expression for

V2 P(A, B, C) = AB = + ABC + ABC + ABC using K-map, EVM and quine Mc. churty.

K-Map

Given mintermy are: 0, 1, 3, 5

Y= F(A,B,c,D)= AB+ Bc+Ac

EVM: Method.

1	A	B	C(MEV)	1	Map Entred value	Represent in K-map
	0	0	0	1		BAOI
	0	0	ł	1		0 (1)
T	0	1	0	0		1 0
	0	1		1		= AB
	1	0	0	0		* Replace 1's mith
	1	0		1		BXSO
	1	1	0	0	0	OX
	1	1	J	0		16

H. Get Simplified Expression for Y= F(A,B,C,D,E) = Zm(0,2,3,5,7,00,11,13,14,16,18,24,

-		2	6, 28, 30)
	minterms	Binary Rpreventation	5 variable
	0	00000	Expremion.
	2	00010	Hence 25 = 32
	3	0001-1	Compination.
	5	00101	
	7	00111	
	9	0 1001	
	11	01011	
	13	0 1101	- ofter obtaining the
	14	0 1110	tor the given minterns
	16	1 0000	Group them band
	18	10010	
	24	1 0000	On number of 1'S Prevent in fu B.R
	26	1 1010	
	28	11100	
	30	1110	

Group		Minterms	Binary Representation.
	90	mo V	0 0 0 0
	91	m ₂ V	0 0 0 1 0
		m ₁₆ V	1 0 0 0
	92	m ₃ V	00011
		m ₅	00101
		mq V	0 0 0 1
		m18 V	1 0 0 1 0
		m ₂₄	1 1 0 0 0
		m ₇ v	00111
	93	mu	0 1 0 1
		m ₁₃ V	01101
		m ₁₄ ~	0 1 1 0
		m ₂₆	1 1 0 1 0
		m ₂ 8	1 1 0
	G4 M30		1110

Step 2:

Group	roup minterms		ary	Repre	went	ation
90-64	mo-m2	0	0	0	-	0
	mo - m16		0	0	0	0
61	m ₂ - m ₃	0	0	0	L	-
	m2-m18		0	0	1	0
	m16 - m18	1	0	0	-	0
	m16 - m24	1	-	0	0	0
6.	m3 - m7	0	0	-	1	1
12	m3 - m11	0	-	0	1	1
	ms - m7	0	0	1	-	. 1
	m5-m13	0		1	0	1
	mq-m11	0	1.	0	124	1
	Mq - M13	0	1	-	0	1
	m ₁₈ - ^m 26	1	-	0	1	0
	m ₂₄ - m ₂₅	Ī	1	0	-	0
	m ₂₄ - 28	1	1		0	0
6.	M14 - m30		1	1	1	0
,5	m ₂₆ - m ₃₀	1	1		1	0
	m28 - m30	1	1	1	-	0

Step 3			
Groups	minterms	Binary Representation	
90	mo-m2-m18-m18	ABO - O Elim	i nali plicali
	mo-m16-m2-m18	- 0 0 - 0	term
91	m16 - m18 - m24-m26	1 -0 -0	elininale Ouplicale
		1 -0 0 -0	
98	M24-M28-M25-M3	1 - 0	Elinvinate Puplicale
	m24 - m26 - m28-m		
	So prime 2	applicants are:	
		BCE+ACE	
		+ ABĒ	
Representin	g them in Pi	chart	
P3	o 2 3 5 7 9 (X) (X)	11 13 14 16 18 24 X X	26 28 30
		XXX	×
16,18,24 A E E 26			
24,26,28 30		X	
	y = B. E &	+ ACE + ABE	

function and then find all minimum Solutions wring petrick's method. 5. a. Find all Prime Implicants

@ F(A,B,C,D)= \(\int_m(9,12,13,15) + d(1,4,5,7,8,

mir	terms	Binary Rypre
m,	1	0001
m4	4	0100
ms	5	0101
m7	7	0111
mg	8	1 000
mq	9	1001
mu	11	1011
m12	12	1 1 0 0
MI3	13	1101
my	14	1110
mis	15	

Step		11, 14)
90	mı	00012
	my	10000
	mg	1000 ~
(.	ms	01012
91	ma	1001
	m12	1100
92	m7	0111
	mu	1041
	m13	1101
	mu	1110
43	m	5 1 1 1 1

0402

SPUP			
90	m, - mr m, - mq m, - mq	0-014	ME-W13 - 1011 ME-W4 0-01
	m4 - m12 m4 - m12 m8 - m9	1-001	$m_q - m_{13}$ $1 - 0 1$ $m_q - m_{13}$ $1 - 0 1$ $m_{12} - m_{13}$ $1 - 0 - 1$
	mg-m,	2 1 - 00 1	PE (M12-M4 11 - 0)

840	p3

Groups	minterns B.R.
90	m,-ms-mq-m13/ 017 20
	m, - mq - m5 - m13 - 01
	my-mg-m12-m13 1-0- AC
	Mu-m12-mq-m13.1-0-
	$m_8 - m_9 - m_{12} - m_{13} = 0 - \rightarrow A \bar{c}$
	-mg-m12-mq-m13 1-0-
91	$m_5 - m_{13} - m_4 - m_{15} - 1 - 1 \rightarrow BD$
	mq-mu-m13-m15/1-1
	mq-m13-m11-m15 11 -> AD
	m12-m13-m14-m15 11) AB

Representing them in PZ chart of Naming each row as Pi, Pz...

		9	12	13	15	_
P ₁	C D	X		X		
P2	A C	X	X	X		
Ps	AC	X	X	X		
Pu	BD			X	X	
Pr	AD	X		X	X	
0.4	AB		X	X	X	

The second second		
91	ms-r	0 - 0 1
	m 5 -	m13 - 1 0 1
	mq-	m,, 1 0 - 1
	mq-	m ₁₃
	m ₁₂ -	m ₁₃ ✓
	m12	-m14~
		1 1 - 0
92	m7 -	m15-V - 1 1 1 -
	mu	- m15 1 - 1 1
	m 13	-m15 1 1 - 1
	mIL	- m ₁₅ 1 1 1 -
step3	Groups	Mintems B.R. Eliminate
	90	m,-/ms-mg-m13 0 / the Duplicate
		m, -mg - ms-m13 - OI Ennies
		mu - ma m 12 - m 13 1 - 0 - 7 -> ED
		11112
		mg-mq-m12-m3 1-0-> A E
		$m_8 - m_{12} - m_9 - m_{13} + - 0 -$
		m5-m13-m7-m15 - 1 - 1 -> BD
	GI	129 - MII - MIS-MIS 1 - 1
		mq-m13-m1-m15 1-1 -) AD M12-m13-m14-m15 11-
		Scanned with CamScanner

So that

$$= (P_{1}.P_{2}+P_{1}P_{3}+P_{1}P_{6}+P_{2}+P_{2}P_{3}+P_{2}P_{6}+P_{3}.P_{2}+P_{3}+P_{8}P_{6})$$

$$+ P_{5}P_{2}+P_{5}P_{3}+P_{5}P_{6}) (P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6})$$

$$(P_{4}+P_{5}+P_{6})$$

$$= (P_{1}. P_{2} + P_{1}. P_{3} + P_{1}. P_{6} + P_{2} + P_{2} P_{3} + P_{2} P_{6} + P_{3} + P_{3} P_{6} + P_{5} P_{2} + P_{5} P_{2} + P_{5} P_{6}) (P_{1} P_{4} + P_{1} P_{5} + P_{1} P_{6} + P_{4} P_{5} + P_{2} P_{6} + P_{3} P_{6} + P_{3} P_{6} + P_{4} P_{6} P_{5} + P_{5} P_{6} + P_{6} P_{4} + P_{5} P_{6} + P_{6} P_{6} P_{6} P_{6} + P_{6} P_$$

Continue like this untill you gette the fined solution.