SRM University Department of Mathematics Complex Integration- Multiple Choice questions UNIT V

Slot-C

- 1. A contour integral is an integral along a ----- curve.
 - a. Open Curve
 - b. Closed curve
 - c. Simple closed curve
 - d. Multiple curve

Answer: c. Simple closed curve

- 2. If f(z) is analytic inside and on C, the value of $\oint_C f(z) dz$, where C is the simple closed curve is
 - a. f(a)
 - b. $2\pi i f(a)$
 - c. $\pi i f(a)$
 - d. 0

Answer: d. 0

- 3. If f(z) is analytic inside and on C, the value of $\oint_C \frac{f(z)}{(z-a)^n} dz$, where C is the simple closed curve and a is any point within c is
 - a. $2\pi i \frac{f^n(a)}{n!}$
 - b. $2\pi i f(a)$
 - c. $2\pi i \frac{f^{n-1}(a)}{(n-1)!}$
 - d. 0

Answer: c. $2\pi i \frac{f^{n-1}(a)}{(n-1)!}$

- 4. The value of $\oint_C \frac{\sin z}{z+1} dz$ where C is the circle $|z| = \frac{1}{3}$ is
 - a. 0

- b. $2\pi i$
- c. $\frac{\pi}{2}i$
- d. πi

Answer: a. 0

- 5. The value of $\oint_C \frac{e^z}{(z-2)^2} dz$ where C is the circle |z| = 3 is
 - a. 0
 - b. $2\pi i e^{-2}$
 - c. $2\pi ie^2$
 - d. $4\pi i e^{-2}$

Answer: c. $2\pi ie^2$

- 6. The value of $\oint_C \frac{z}{2z-1} dz$ where C is the circle |z| = 1 is
 - a. 0
 - b. $2\pi i$
 - c. $\frac{\pi}{2}i$
 - d. πi

Answer: d. πi

- 7. The value of $\oint_C \frac{1}{(z-3)^2} dz$ where C is the circle |z| = 1 is
 - a. 0
 - b. $2\pi i$
 - c. $\frac{\pi}{2}i$
 - d. πi

Answer: a. 0

- 8. Let C_1 : $|z a| = R_1$ and C_2 : $|z a| = R_2$ be two concentric circles $(R_2 > R_1)$, the annular region is defined as
 - a. Within C_1
 - b. Within C_2
 - c. Within C_2 and outside C_1

d. Within C_1 and outside C_2

Answer: c. Within C_2 and outside C_1

- 9. The part $\sum_{n=0}^{\infty} a_n (z-a)^n$ consisting of positive integral powers of (z-a) is called as
 - a. The analytic part of the Laurent's series
 - b. The principal part of the Laurent's series
 - c. The real part of the Laurent's series
 - d. The imaginary part of the Laurent's series

Answer: a. The analytic part of the Laurent's series

- 10.Let C_1 : $|z a| = R_1$ and C_2 : $|z a| = R_2$ be two concentric circles ($R_2 < R_1$), the f(z) can be expanded as a Laurent's series if
 - a. f(z) is analytic within C_2
 - b. f(z) is not analytic within C_2
 - c. f(z) is analytic in the annular region
 - d. f(z) is not analytic in the annular region

Answer: c. f(z) is analytic in the annular region

11. Expansion of $\frac{1-\cos z}{z}$ in Laurent's series about z=0 is

a.
$$\frac{z}{2!} - \frac{z^3}{4!} + \frac{z^5}{6!} - \cdots$$

b.
$$\frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \cdots$$

c.
$$\frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots$$

d.
$$\frac{z}{2!} + \frac{z^3}{4!} - \frac{z^5}{6!} + \cdots$$

Answer: a. $\frac{z}{2!} - \frac{z^3}{4!} + \frac{z^5}{6!} - \cdots$

12. The annular region for the function $f(z) = \frac{1}{z^2 - 3z + 2}$ is

a.
$$0 < |z| < 1$$

b.
$$1 < |z| < 2$$

c.
$$2 < |z| < 3$$

d.
$$|z| < 3$$

Answer :b. 1 < |z| < 2

13. The Laurent's series expansion $1 + \frac{3}{z} \sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{z^n} - \sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{z^n}$ for the function

$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$$
 is valid in the region

a.
$$|z| < 3$$

b.
$$|z| < 2$$

c.
$$2 < |z| < 3$$

d.
$$|z| > 3$$

e. Answer :d.
$$|z| > 3$$

14.If f(z) is not analytic at $z = z_0$ and there exists a neighborhood of $z = z_0$ containing no other singularity, then

a. The point
$$z = z_0$$
 is isolated singularity of $f(z)$

b. The point
$$z = z_0$$
 is a zero point of $f(z)$

c. The point
$$z = z_0$$
 is nonzero of $f(z)$

d. The point
$$z = z_0$$
 is non isolated singularity of $f(z)$

Answer: a. The point $z = z_0$ is isolated singularity of f(z)

15.If
$$f(z) = e^{\frac{1}{z+1}}$$
 then

a.
$$z = -1$$
 is removable singularity

b.
$$z = -1$$
 is pole of order 2

c.
$$z = -1$$
 is an essential singularity

d.
$$z = -1$$
 is zero of $f(z)$

Answer: c. z = -1 is an essential singularity

16.Let z = a is a simple pole for $f(z) = \frac{P(z)}{Q(z)}$, then the Residue of f(z) is

a.
$$\frac{P'(a)}{Q(a)}$$

b.
$$\frac{P(a)}{Q(a)}$$

b.
$$\frac{P(a)}{Q(a)}$$
c.
$$\frac{P'(a)}{Q'(a)}$$

d.
$$\frac{P(a)}{Q'(a)}$$

Answer : d.
$$\frac{P(a)}{Q'(a)}$$

17.Let z = a is a pole of order 3 for f(z), then the residue is

a.
$$\lim_{z \to a} [(z - a)f(z)]$$

a.
$$\lim_{z \to a} [(z - a)f(z)]$$

b.
$$\lim_{z \to a} [(z - a)f''(z)]$$

c.
$$\lim_{z \to a} \frac{1}{2!} \frac{d^2}{dz^2} [(z - a)^3 f(z)]$$

d.
$$\lim_{z \to a} \frac{1}{3!} \frac{d^3}{dz^3} [(z - a)^3 f(z)]$$

Answer: c.
$$\lim_{z \to a} \frac{1}{2!} \frac{d^2}{dz^2} [(z - a)^3 f(z)]$$

18. The residue of $f(z) = \frac{z}{(z-2)}$ is

a.
$$2\pi i$$

Answer: c. 2

19. The residue of $f(z) = \frac{1}{(z^2+1)^2}$ at z = i is

Answer:b. 1/4i

20. If
$$f(z) = \frac{\sin z - z}{z^3}$$
, then

a. z=0 is a simple pole

b. z=0 is a pole of order 2

c. z=0 is a removable singularity

d. z=0 is a zero of f(z)

Answer: c. z= 0 is a removable singularity

21. The value of the integral $\oint_C \frac{1}{ze^z} dz$ where |z| = 1 is

- a. $2\pi i$
- b. $\frac{\pi}{2}i$
- c. *πi*
- d. 0

Answer: a. $2\pi i$

22.If $f(z) = \frac{1}{z} + [2 + 3z + 4z^2 + \cdots]$ then the residue of f(z) at z=0 is

- a. 1
- b. -1
- c. 0
- d. -2

Answer: a. 1

23. If the integral $\oint_0^{2\pi} \frac{d\theta}{13+5\cos\theta} = \oint_C f(z)dz$, C is |z| = 1, then

- (A) z = -i/5 lies inside C and
- (B) z = -5i lies outside C. Which of the following is true.
 - a. Both A and B
 - b. Only A
 - c. Only B
- d. Neither A nor B

Answer: a. Both A and B

- 24. If the integral $\oint_{-\infty}^{\infty} \frac{\cos mx}{(x^2+1)^2} dx$, m > 0, then
 - (A) z = i double pole lies in the upper half of the z-plane and
 - (B) z = -i double pole does not lie in the upper half of the z-plane. Which of the following is true.
 - a. Both A and B
 - b. Only A
 - c. Only B
 - d. Neither A nor B

Answer: a. Both A and B

- 25. If f(z) be continuous function such that $|f(z)| \to 0$ as $|z| \to \infty$, for C is the semicircle |z| = R above the real axis, then
 - a. $\oint_C e^{-imz} f(z) dz \to \infty \text{ as } R \to \infty$.
 - b. $\oint_C e^{imz} f(z) dz \rightarrow 0 \text{ as } R \rightarrow \infty$.
 - c. $\oint_C e^{imz} f(z) dz \rightarrow 0 \text{ as } R \rightarrow 0$.
 - d. $\oint_C f(z)dz \rightarrow \infty \ as \ R \rightarrow 0$.

Answer: b. $\oint_C e^{imz} f(z) dz \rightarrow 0 \text{ as } R \rightarrow \infty$.