Contents

1	Introduction 1				
	1.1	Scope & Research Objectives	1		
	1.2	Thesis Outline	1		
2	${ m Lit}\epsilon$	erature Review	2		
	2.1	Governing Equations & Boundary Conditions	2		
	2.2	Wake Models	2		
	2.3	Wake Superposition Methods	2		
	2.4	Overview	2		
	2.5	Validation	2		
3	Met	thodology & Data	3		
	3.1	Research Methodology	4		
		3.1.1	4		
		3.1.2 Yaw misalignment	4		
		3.1.3 Rotor averaged wind speed	4		
		3.1.4 Quantification system	4		
	3.2	Radar - BEACon	4		
		3.2.1 BEACon Measurement Campaign	4		
		3.2.2 Westermost Rough Offshore Wind Farm	5		
	3.3	Large Eddy Simulations	6		
		3.3.1 Input parameters	6		
		3.3.2 Post-processing	6		
	3.4	Engineering Models	6		
		3.4.1 Park model	7		
		3.4.2 Fuga	12		
	3.5	Data Selection	13		
		3.5.1 Cases	13		
		3.5.2 Wind turbines	14		
		3.5.3 Data planes	15		
			16		
		• 9	16		
4	Par	k Model: Sensitivity Study	19		
	4.1	· · ·	20		
	4.2		- ° 21		
	4.3	Influence of wake decay coefficient and spacing			
	4.4		าา		

	4.5	Difference between Park 1 and Park 2	25
	4.6	Conclusion	26
5	Res	sults & Discussion	27
	5.1	Comparison BEACon & LES Data	27
		5.1.1	27
		5.1.2 Conclusion	27
	5.2	Comparison BEACon & Engineering Models	27
		5.2.1	27
		5.2.2 Conclusion	27
	5.3	Comparison LES & Engineering Models	27
		5.3.1	27
		5.3.2 Conclusion	27
	5.4	Superposition of single LES wakes	27
		5.4.1	27
		5.4.2 Conclusion	27
	5.5	Optimization superposition method	27
		5.5.1	27
		5.5.2 Conclusion	27
6	Con	nclusions	2 8
7 Recommendations & Further Research			29
\mathbf{A}	Par	k model: Flow Charts	31
В	Fug	ga input	32
\mathbf{C}	Wal	kos	33
C			33
			33
D	Mo	re appendices	34