Solution for Genentech Cervical Cancer Screening, 2nd place

Kohei Ozaki¹, Dmitry Efimov², Lucas Silva³, and Gilberto Titericz⁴

¹eowner@gmail.com ²diefimov@gmail.com ³lucas.eustaquio@gmail.com ⁴titericz@yahoo.com

1 Approach summary

The goal of this competition is to predict which women will not be screened for cervical cancer on the recommended schedule. Identifying at-risk populations will make education and other intervention efforts more effective, ideally ultimately reducing the number of women who die from this disease. Our solution mostly based on the feature engineering. The document is constructed in the following way: first 4 sections describe the features engineered by each team player, the last sections describe the model and the way to obtain the predictions.

2 Gilberto: feature description

Three types of features are constructed (241 features in total): counts by feature, count by level (CountVectorizer) and likelihood features. Also there is one special feature built using Vowpal Wabbit [2]

2.1 Counts

Dataset: patient_activity_head.csv:

- **f1_0**: sum(activity_type==R) by patient_id
- f1_1: sum(activity_type==A) by patient_id
- **f1_2**: max(date) by patient_id
- f1_3: (max(date)-min(date))/(1+.N) by patient_id
- f1_4: maximum number of registers by year by patient_id
- f1_5: max(date)-min(date) by patient_id
- f1_6: min(date) by patient_id
- f1_N: number of registers by patient_id
- f1_7: mean number of registers by year by patient_id
- f1_8: mean number of registers by month by patient_id

Dataset: surgical_head.csv:

- **f2_N**: number of registers by patient_id
- **f2_0**: sum(procedure_type_code==HXPR) by patient_id
- **f2_1**: sum(procedure_type_code==HX05) by patient_id
- **f2_2**: sum(procedure_type_code==HX01) by patient_id
- **f2_3**: sum(procedure_type_code==HX01) by patient_id
- **f2_4**: sum(procedure_type_code==HX02) by patient_id
- **f2_5**: sum(procedure_type_code==HX03) by patient_id
- **f2_6**: sum(procedure_type_code==0001) by patient_id
- f2_7: sum(procedure_type_code==0002) by patient_id
- f2_8: sum(procedure_type_code==0003) by patient_id

- f2_9: sum(procedure_type_code==0004) by patient_id
- **f2_10**: sum(procedure_type_code==0005) by patient_id
- **f2_11**: sum(procedure_type_code==0006) by patient_id
- **f2_12**: sum(place_of_service==INPATIENT) by patient_id
- **f2_13**: sum(place_of_service==OUTPATIENT) by patient_id
- **f2_14**: sum(place_of_service==OTHER) by patient_id
- **f2_15**: sum(place_of_service==CLINIC) by patient_id
- **f2_16**: sum(place_of_service==UNKNOWN) by patient_id
- f2_17: sum(plan_type==COMMERCIAL) by patient_id
- **f2_18**: sum(plan_type==MEDICARE) by patient_id
- **f2_19**: sum(plan_type==MEDICAID) by patient_id
- **f2_20**: sum(plan_type==GOVERNMENT) by patient_id
- f2_21: sum(plan_type==CASH) by patient_id
- f2_22: sum(plan_type==UNKNOWN) by patient_id
- f2_23: sum(primary_physician_role==ATG) by patient_id
- f2_24: sum(primary_physician_role=='') by patient_id
- **f2_25**: sum(primary_physician_role==OTH) by patient_id
- **f2_26**: sum(primary_physician_role==OPR) by patient_id
- f2_N2: number of registers by procedure_type_code, place_of_service
- **f2_N3**: number of registers by procedure_type_code, place_of_service, plan_type
- **f2_N4**: number of registers by procedure_type_code, place_of_service, plan_type, primary_physician_role

Dataset: diagnosis_head.csv:

- f3_N: number of registers by patient_id
- f3_0: sum(primary_physician_role==ATG) by patient_id
- f3_1: sum(primary_physician_role==RND) by patient_id
- f3_2: sum(primary_physician_role=='') by patient_id
- f3_3: sum(primary_physician_role==PRV) by patient_id
- f3_4: sum(primary_physician_role==ORD) by patient_id
- f3_5: sum(primary_physician_role==UNK) by patient_id
- f3_6: sum(primary_physician_role==OTH) by patient_id
- f3_7: sum(primary_physician_role==OPR) by patient_id
- f3_8: sum(claim_type==HX) by patient_id
- f3_9: sum(claim_type==MX) by patient_id
- f3_10: number of levels of claim_id by patient_id
- f3_11: number of levels of diagnosis_code by patient_id

Dataset: prescription_head.csv:

- f4_N: number of registers by patient_id
- **f4_1**: number of levels of payment_type by patient_id
- f4_2: sum(payment_type==COMMERCIAL) bypatient_id
- f4_3: sum(payment_type==CASH) by patient_id
- f4_4: sum(payment_type==MANAGED MEDICAID) by patient_id
- f4_5: sum(payment_type==MEDICAID) by patient_id
- f4_6: sum(payment_type==MEDICARE) by patient_id
- f4_7: sum(payment_type==ASSISTANCE PROGRAMS) by patient_id
- f4_8: number of levels of claim_id by patient_id

- f4_9: number of levels of drug_id by patient_id
- f4_10: number of levels of refill_code by patient_id
- f4_11: mean(days_supply) by patient_id

Dataset: procedure_head.csv:

- **f5_1**: number of registers by patient_id
- f5_2: number of levels of claim_id bypatient_id
- f5_3: number of levels of claim_line_item bypatient_id
- **f5_4**: number of levels of claim_type by patient_id
- f5_5: number of levels of procedure_code by patient_id
- **f5_6**: number of levels of place_of_service by patient_id
- f5_7: number of levels of plan_type by patient_id
- f5_8: number of levels of primary_practitioner_id bypatient_id
- **f5_9**: sum(units_administered) by patient_id
- **f5_10**: sum(charge_amount) by patient_id
- **f5_11**: number of levels of primary_physician_role by patient_id
- f5_12: number of levels of attending_practitioner_id by patient_id
- f5_13: number of levels of referring_practitioner_id by patient_id
- f5_14: number of levels of rendering_practitioner_id by patient_id
- **f5_15**: number of levels of ordering_practitioner_id by patient_id
- **f5_16**: number of levels of operating_practitioner_id by patient_id
- f5_17: sum(claim_type==HX) by patient_id
- f5_18: sum(claim_type==MX) by patient_id
- **f5_19**: sum(primary_physician_role==ATG) by patient_id

- f5_20: sum(primary_physician_role==RND) by patient_id
- f5_21: sum(primary_physician_role=='') by patient_id
- f5_22: sum(primary_physician_role==PRV) by patient_id
- f5_23: sum(primary_physician_role==ORD) by patient_id
- f5_24: sum(primary_physician_role==UNK) by patient_id
- f5_25: sum(primary_physician_role==OTH) by patient_id
- f5_26: sum(primary_physician_role==OPR) by patient_id
- f5_27: min(procedure_date) by patient_id
- **f5_28**: max(procedure_date) by patient_id
- **f5_29**: (f5_28-f5_27)/f5_1
- F5_30: max(charge_amount) by patient_id
- F5_32: max(units_administered) by patient_id

2.2 Likelihood features

All likelihood features are calculated using out-of-fold predictions with the formula:

$$LL = \frac{L \cdot \bar{y} + \sum_{i \in G} y_i}{L + |G|},$$

where G is the set of indices for the training examples such that set of chosen raw features has unique values for the examples from G, |G| is a size of group G, L is a number of levels for raw features subset, \bar{y} is an average of output for all training examples.

The prefix of each feature name can be "mean" or "max". When it begin with "mean" it means that likelihood feature is the mean of all likelihoods by patient_id. When it begins with "max" it means that likelihood feature is only the max value of all likelihood by patient_id.

2.2.1 1-Way Likelihood Features

Dataset: surgical_head.csv:

- mean_sh_surgical_code: by surgical_code
- mean_sh_place_of_service: by place_of_service
- mean_sh_plan_type: by plan_type
- mean_sh_practitioner_id: by practitioner_id
- mean_sh_primary_physician_role: by primary_physician_role
- mean_sh_sc1: by number of characters in surgical_code
- mean_sh_sc2: by first word in surgical_code
- mean_sh_sc3: by last word in surgical_code
- mean_sh_pid_1: by physician_id
- mean_sh_pid_2: by state
- mean_sh_pid_3: by specialty_code
- mean_sh_pid_4: by specialty_description
- mean_sh_pid_5: by CBSA
- mean_sh_claim_id: by claim_id
- mean_sh_procedure_type_code: by procedure_type_code
- mean_sh_surgical_procedure_date: by surgical_procedure_date
- max_sh_surgical_code: by surgical_code
- max_sh_place_of_service: by place_of_service
- max_sh_plan_type: by plan_type
- max_sh_practitioner_id: by practitioner_id
- max_sh_primary_physician_role: by primary_physician_role

- max_sh_sc1: by number of characters in surgical_code
- max_sh_sc2: by first word in surgical_code
- max_sh_sc3: by last word in surgical_code
- max_sh_pid_1: by physician_id
- max_sh_pid_2: by state
- max_sh_pid_3: by specialty_code
- max_sh_pid_4: by specialty_description
- max_sh_pid_5: by CBSA
- max_sh_claim_id: by claim_id
- max_sh_procedure_type_code: by procedure_type_code
- max_sh_surgical_procedure_date: by surgical_procedure_date

Dataset: diagnosis_head.csv:

- max_dh_diagnosis_code: by diagnosis_code
- max_dh_primary_practitioner_id: by primary_practitioner_id
- mean_dh_diagnosis_code: by diagnosis_code
- mean_dh_primary_practitioner_id: by primary_practitioner_id
- max_dh2_diagnosis_code: by diagnosis_code(letters removed)
- max_dh_diagnosis_code_sub: by diagnosis_code(numbers before .)
- max_dh_diagnosis_code_ind: by diagnosis_code(numbers after .)
- mean_dh2_diagnosis_code: by diagnosis_code(letters removed)
- mean_dh_diagnosis_code_sub: by diagnosis_code(numbers before .)
- mean_dh_diagnosis_code_ind: by diagnosis_code(numbers after .)
- max_ph_pid_dh1: by physician_id

- mean_ph_pid_dh1: by physician_id
- max_ph_pid_dh2: by state
- mean_ph_pid_dh2: by state
- max_ph_pid_dh3: by specialty_code
- mean_ph_pid_dh3: by specialty_code
- max_ph_pid_dh4: by CBSA
- mean_ph_pid_dh4: by CBSA

Dataset: prescription_head.csv:

- max_pch_drug_id: by drug_id
- mean_pch_drug_id: by drug_id
- max_pch_practitioner_id: by practitioner_id
- mean_pch_practitioner_id: by practitioner_id
- max_pch_refill_code: by refill_code
- mean_pch_refill_code: by refill_code
- max_pch_days_supply: by days_supply
- mean_pch_days_supply: by days_supply
- max_dg_drug_1: by drug_name
- mean_dg_drug_1: by drug_name
- max_dg_drug_2: by BGI
- mean_dg_drug_2: by BGI
- max_dg_drug_3: by BB_USC_name
- mean_dg_drug_3: by BB_USC_name
- max_dg_drug_4: by drug_strength

• mean_dg_drug_4: by drug_strength

Dataset: procedure_head.csv:

- max_proch_claim_line_item: by claim_line_item
- mean_proch_claim_line_item: by claim_line_item
- max_proch_procedure_code: by procedure_code
- mean_proch_procedure_code: by procedure_code
- max_proch_place_of_service: by place_of_service
- mean_proch_place_of_service: by place_of_service
- max_proch_plan_type: by plan_type
- mean_proch_plan_type: by plan_type
- max_proch_primary_practitioner_id: by primary_practitioner_id
- mean_proch_primary_practitioner_id: by primary_practitioner_id
- mean_proch_attending_practitioner_id: by attending_practitioner_id
- max_proch_referring_practitioner_id: by rendering_practitioner_id
- max_proch_rendering_practitioner_id: by rendering_practitioner_id
- max_proch_ordering_practitioner_id: by ordering_practitioner_id
- mean_proch_ordering_practitioner_id: by ordering_practitioner_id
- max_proch_operating_practitioner_id: by operating_practitioner_id
- mean_proch_operating_practitioner_id: by operating_practitioner_id

2.2.2 2-Way Likelihood Features

Dataset: diagnosis_head.csv:

- mean__diagnosis_code_claim_type: by diagnosis_code, claim_type
- max___diagnosis_code_claim_type: by diagnosis_code, claim_type
- mean_dh_diagnosis_code_diagnosis_date: by diagnosis_code, diagnosis_date
- max_dh_diagnosis_code_diagnosis_date: by diagnosis_code, diagnosis_date
- mean_dh_diagnosis_code_primary_practitioner_id: by diagnosis_code, primary_practitioner_id
- max_dh_diagnosis_code_primary_practitioner_id: by diagnosis_code, primary_practitioner_id
- mean_dh_diagnosis_code_primary_physician_role: by diagnosis_code, primary_physician_role
- max_dh_diagnosis_code_primary_physician_role: by diagnosis_code, primary_physician_role
- mean_dh_diagnosis_code_pid_dh1: by diagnosis_code, physician_id
- max_dh_diagnosis_code_pid_dh1: by diagnosis_code, physician_id
- mean_dh_diagnosis_code_pid_dh2: by diagnosis_code, state
- max_dh_diagnosis_code_pid_dh2: by diagnosis_code, state
- mean_dh_diagnosis_code_pid_dh3: by diagnosis_code, specialty_code
- max_dh_diagnosis_code_pid_dh3: by diagnosis_code, specialty_code
- mean_dh_diagnosis_code_pid_dh4: by diagnosis_code, CBSA
- max_dh_diagnosis_code_pid_dh4: by diagnosis_code, CBSA
- mean_dh_primary_physician_role_pid_dh1: by primary_physician_role, physician_id

- max_dh_primary_physician_role_pid_dh1: by primary_physician_role, physician_id
- mean_dh_primary_physician_role_pid_dh3: by primary_physician_role, specialty_code
- max_dh_primary_physician_role_pid_dh3: by primary_physician_role, specialty_code
- mean_dh_primary_physician_role_pid_dh4: by primary_physician_role, CBSA
- max_dh_primary_physician_role_pid_dh4: by primary_physician_role, CBSA
- mean_dh_primary_physician_role_primary_practitioner_id: by primary_physician_role, primary_practitioner_id
- max_dh_primary_physician_role_primary_practitioner_id: by primary_physician_role, primary_practitioner_id
- mean_dh_primary_practitioner_id_diagnosis_date: by diagnosis_code, diagnosis_date
- max_dh_primary_practitioner_id_diagnosis_date: by diagnosis_code, diagnosis_date
- **mean_dh_primary_practitioner_id_pid_dh1**: by primary_practitioner_id, physician_id
- max_dh_primary_practitioner_id_pid_dh1: by primary_practitioner_id, physician_id

The following list of features takes into account some leaks found in datasets construction regarding some procedures removed. To generate them we used the following derivative features:

- flag1: number of claim_id in diagnosis_head.csv
- flag2: number of claim_id in procedure_head.csv
- flag3: maximum(claim_line_item) number of claim_id in procedure_head.csv

• flag4: flag1 + $8 \cdot \text{flag2} + 64 \cdot \text{flag3}$

Dataset: diagnosis_head.csv and procedure_head.csv:

- mean__diagnosis_code_flag3: by diagnosis_code, flag3
- max__diagnosis_code_flag3: by diagnosis_code, flag3
- mean__diagnosis_code_flag4: by diagnosis_code, flag4
- max__diagnosis_code_flag4: by diagnosis_code, flag4
- mean__diagnosis_code_flag2: by diagnosis_code, flag2
- max__diagnosis_code_flag2: by diagnosis_code, flag2
- mean__diagnosis_code_flag1: by diagnosis_code, flag1
- max__diagnosis_code_flag1: by diagnosis_code, flag1
- mean___flag1_flag2: by flag1, flag2
- max__flag1_flag2: by flag1, flag2
- mean___flag1_flag3: by flag1, flag3
- max__flag1_flag3: by flag1, flag3
- mean___flag2_flag3: by flag2, flag3
- max__flag2_flag3: by flag2, flag3
- mean__year_flag1: by year, flag1
- max__year_flag1: by year, flag1

2.2.3 3-Way Likelihood Features

The following list of features takes into account some leaks found in datasets construction regarding some procedures removed. To generate them we used the following derivative features:

• flag1: mumber of claim_id in diagnosis_head.csv

- flag2: number of claim_id in procedure_head.csv
- flag3: maximum(claim_line_item) number of claim_id in procedure_head.csv

Dataset: diagnosis_head.csv and procedure_head.csv:

- mean___flag1_flag2_flag3: by flag1, flag2, flag3
- max__flag1_flag2_flag3: by flag1, flag2, flag3
- mean__diagnosis_code_flag1_flag2: by diagnosis_code, flag1, flag2
- max__diagnosis_code_flag1_flag2: by diagnosis_code, flag1, flag2
- mean__diagnosis_code_flag1_flag3: by diagnosis_code, flag1, flag3
- max__diagnosis_code_flag1_flag3: by diagnosis_code, flag1, flag3
- mean__diagnosis_code_flag2_flag3: by diagnosis_code, flag2, flag3
- max__diagnosis_code_flag2_flag3: by diagnosis_code, flag2, flag3

2.2.4 4-Way Likelihood Features

The following list of features takes into account some leaks found in datasets construction regarding some procedures removed. To generate them we used the following derivative features:

- flag1: number of claim_id in diagnosis_head.csv
- flag2: number of claim_id in procedure_head.csv
- flag3: maximum(claim_line_item) number of claim_id in procedure_head.csv

Dataset: diagnosis_head.csv and procedure_head.csv:

- mean__diagnosis_code_primary_practitioner_id_flag3_claim_type: by diagnosis_code, primary_practitioner_id, flag3, claim_type
- max__diagnosis_code_primary_practitioner_id_flag3_claim_type: by diagnosis_code, primary_practitioner_id, flag3, claim_type
- mean__diagnosis_code_primary_practitioner_id_flag3_primary_physician_role: by diagnosis_code, primary_practitioner_id, flag3, primary_physician_role

- max___diagnosis_code_primary_practitioner_id_flag3_primary_physician_role: by diagnosis_code, primary_practitioner_id, flag3, primary_physician_role
- mean__diagnosis_code_primary_practitioner_id_flag2_claim_type: by diagnosis_code, primary_practitioner_id, flag2, claim_type
- max__diagnosis_code_primary_practitioner_id_flag2_claim_type: by diagnosis_code, primary_practitioner_id, flag2, claim_type
- mean___diagnosis_code_primary_practitioner_id_flag2_primary_physician_role: by diagnosis_code, primary_practitioner_id, flag2, primary_physician_role
- max__diagnosis_code_primary_practitioner_id_flag2_primary_physician_role: by diagnosis_code, primary_practitioner_id, flag2, primary_physician_role

2.3 Vowpal Rabbit feature

Datasets: surgical_head.csv, surgical_code.csv and physicians.csv:

• vw1: Vowpal Wabbit Meta feature

This feature is generated as follows: features from surgical_code and physicians are merged in surgical_head, then features are concatenated as text and run over Vowpal Wabbit to build an out-of-fold logistic meta feature.

3 Kohei: feature description

Meta feature is trained by XGBoost [1]. The feature set has dense (low-dimensional) features and sparse (high-dimensional) features. Most of categorical features on this feature set is encoded by LabelEncoder [7]. For each patient, dense features are calculated by the following definition:

source table	definition
patients	age_group encoded by LabelEncoder
patients	state encoded by LabelEncoder
patients	ethinicity encoded by LabelEncoder
patients	household_income encoded by LabelEncoder
patients	education_level encoded by LabelEncoder
prescription	statistic values (min, max) of days_supply
patient_activity_head	highest value of activity_year
procedure	existance of practitioner_id (0 or 1)
procedure	existance of referring_id (0 or 1)
procedure	existance of operating_id (0 or 1)
surgical	unique count of claim_id
procedure	number of records on procedur table
procedure	unique count of claim_id
prescription	unique count of claim_id
diagnosis	number of records on diagnosis table
diagnosis	unique count of claim_id
prescription	unique count of diagnosis_date

To handle categorical variables of transaction table, this feature set uses 1-of-K coding. For each patient, sparse features on kohei_type1 are calculated by the following definition:

source table	definition
diagnosis	term counts of drug_id
diagnosis, phycisian	term counts of phycisian's specialty_description
diagnosis, phycisian	term counts of phycisian's state
prescription, drug	term counts of bb_usc_code
prescription, drug	term counts of drug_generic_name
prescription, drug	term counts of drug_manufacturer
procedure, phycisian	term counts of phycisian's specialty_description
diagnosis	term counts of diagnosis_code
diagnosis	term counts of primary_physician_role
procedure	term counts of procedure_code
procedure	term counts of place_of_service

source table	definition
procedure	term counts of plan_type
procedure	term counts of physician_state
diagnosis, diagnosis_code	1-gram of diagnosis_description
procedure, procedure_code	1-gram of procedure_description

4 Lucas: feature description

To generate some features additional tables have been created by merging the provided tables. For example, tables procedure_head2 and diagnosis_head2 are generated from procedure_head and diagnosis_head by removing claim_id without missed rows. Mainly four types of features were used.

- 1. Raw information given in patient file
- 2. Count of ocurrences of a certain condition
- 3. Smoothed likelihood of calculated based on the subset of raw categorical features
- 4. A few extra features that do not fit in any of the previous categories

More information on each type of features, as well as a description of each will be described in the subsections below.

4.1 Raw information on patient file

All features were transformed using ordinal encoding using lexical order. When sorting the values of those features, the smallest one becomes the ordinal value, the second smallest 2, and so on. The description of features from this class is following:

- patient_age_group
- patient_gender
- patient_state
- ethinicity
- household_income
- education level

4.2 Count features

- act_r_count: count by patient of all activities with activity_type value equals 'R' in the patient_activity_head table
- act_a_count: count by patient of all activities with activity_type value equals 'A' in the patient_activity_head table
- diag_count: count by patient of the number of diagnosis per patient in table diagnosis head
- **diag_desc_infect**: count by patient of diagnostics with 'infection' in its description
- **diag_desc_malig**: count by patient of diagnostics with 'malignant' in its description
- **diag_desc_carcin**: count by patient of diagnostics with 'carcinoma' in its description
- **diag_desc_oma**: count by patient of diagnostics with 'oma' in its description
- diag_desc_hodk: count by patient of diagnostics with 'hodgkins' in its description
- diag_desc_leuk: count by patient of diagnostics with 'leukemia' in its description
- **diag_desc_benig**: count by patient of diagnostics with 'benign' in its description
- **diag_desc_tuberc**: count by patient of diagnostics with 'tuberculosis' in its description
- diag_desc_virus: count by patient of diagnostics with 'virus' in its description
- diag_desc_diab: count by patient of diagnostics with 'diabetes' in its description
- diag_desc_vag: count by patient of diagnostics with 'vagina' in its description

- diag_desc_smr: count by patient of diagnostics with 'smear' in its description
- diag_desc_cvc: count by patient of diagnostics with 'cervical' in its description
- diag_desc_cvx: count by patient of diagnostics with 'cervix' in its description
- **diag_desc_ppl**: count by patient of diagnostics with 'papiloma' in its description
- diag_desc_chm: count by patient of diagnostics with 'chlamy' in its description
- diag_desc_gyn: count by patient of diagnostics with 'gyneco' in its description
- diag_desc_hiv: count by patient of diagnostics with 'hiv' in its description
- diag_phys_nrs_mw: count by patient of diagnostics whose pratictioner specialty description contains 'NURSE MIDWIFE'
- diag_phys_mfm: count by patient of diagnostics whose pratictioner specialty description contains 'MATERNAL AND FETAL MEDICINE'
- diag_phys_pc: count by patient of diagnostics whose pratictioner specialty description contains 'PATHOLOGY, CYTOPATHOLOGY
- diag_phys_gy: count by patient of diagnostics whose pratictioner specialty description contains 'GYNECOLOGY'
- diag_phys_ap: count by patient of diagnostics whose pratictioner specialty description contains 'ANATOMIC PATHOLOGY'
- diag_phys_og: count by patient of diagnostics whose pratictioner specialty description contains 'OBSTETRICS AND GYNECOLOGY'
- diag_phys_pac: count by patient of diagnostics whose pratictioner specialty description contains 'PATHOLOGY, ANATOMIC/CLINICAL'

- **diag_phys_dp**: count by patient of diagnostics whose pratictioner specialty description contains 'DERMATOPATHOLOGY'
- diag_phys_dt: count by patient of diagnostics whose pratictioner specialty description contains 'DERMATOLOGY'
- diag_phys_pccm: count by patient of diagnostics whose pratictioner specialty description contains 'PULMONARY CRITICAL CARE MEDICINE'
- diag_phys_nph: count by patient of diagnostics whose pratictioner specialty description contains 'NEPHROLOGY'
- diag_phys_pr: count by patient of diagnostics whose pratictioner specialty description contains 'PEDIATRIC RADIOLOGY'
- **diag_phys_pd**: count by patient of diagnostics whose pratictioner specialty description contains 'PEDIATRICS'
- diag_no_proc: count by patient of diagnostics without any precedure associated
- proc_count: count by patient of the total number of procedures
- **proc_no_diag**: count by patient of procedures without any diagnostics associated
- **presc_count**: count by patient of the total number of prescriptions
- surg_count: count by patient of the total number of surgeries
- **pat_ct_ds**: count by patient of the number of claims that have diagnosis and surgery
- **pat_ct_d**: count by patient of the number of claims that have only diagnosis
- **pat_ct_ps**: count by patient of the number of claims that have only procedures and surgeries
- **pat_ct_dps**: count by patient of the number of claims that have diagnosis, procedures and surgeries

- **pat_ct_dp**: count by patient of the number of claims that have only diagnostics and procedures
- pat_ct_p: count by patient of the number of claims that have only procedures

4.3 Likelihood features

The likelihood features were calculated using smoothing technique to try tweaking the probabilities for the groups that appeared only a few times:

$$\frac{k \cdot \bar{y} + \sum_{i \in G} y_i}{k + |G|},$$

where G is the set of indices for the training examples such that set of chosen raw features has unique values for the examples from G, |G| is a size of group G, k = 30 (defined empirically), \bar{y} is an average of output for all training examples. The effect of adding this k factor is the same as adding k observations with the value equals to the global average.

Each patient had several likelihoods associated with each group, for instances if the group is diagnosis_id, each patient can have many of them. To transform those list into a number we used the maximum value for each likelihood as a feature. To avoid overfitting all likelihoods were calculated using cross validation. The list of features used are presented below:

table(s)	features subset
diagnosis_head	diagnosis_code
diagnosis_head	diagnosis_code,
	primary_physician_role
diagnosis_head	diagnosis_code_prefix
diagnosis hard	diagnosis_code_prefix,
diagnosis_head	primary_physician_role
diagnosis_head	diagnosis_code_prefix,
diagnosis_nead	diagnosis_practitioner_specialty_code
diagnosis_head	diagnosis_code,
diagnosis_nead	diagnosis_practitioner_specialty_code
diagnosis head	diagnosis_code,
diagnosis_nead	ethinicity
diagnosis_head	diagnosis_practitioner_id
diagnosis_feats2	diagnosis_code,
diagnosis_leats2	primary_physician_role
	diagnosis_code,
diagnosis_head2	primary_physician_role,
	proc_claim_line_diff
	diagnosis_code,
diagnosis_head2	primary_physician_role,
	diag_count_claim
	diagnosis_code,
diagnosis_head2	primary_physician_role,
diagnosis_nead2	$diag_count_claim,$
	proc_claim_line_diff
diagnosis_head2	diag_count_claim,
	proc_claim_line_diff,
	primary_physician_role
diagnosis_head2	$diag_count_claim,$
diagnosis_nead2	primary_physician_role

table(s)	features subset
diagnosis hood?	proc_claim_line_diff,
diagnosis_head2	primary_physician_role
diagnosis_head2	diagnosis_code,
	primary_physician_role
procedure_head	procedure_code,
	procedure_primary_physician_role
procedure_head	procedure_code
procedure_head	procedure_primary_practitioner_id
procedure_head	procedure_attending_practitioner_id
procedure_head	procedure_referring_practitioner_id
procedure_head	procedure_rendering_practitioner_id
procedure_head	procedure_operating_practitioner_id
procedure_head2	procedure_code
procedure_head2	procedure_primary_practitioner_id
procedure_head3	procedure_code,
procedure_neads	proc_claim_line_diff
procedure_head3	procedure_code,
procedure_neads	diag_count_claim
	procedure_code,
procedure_head3	diag_count_claim,
	proc_claim_line_diff
procedure_head3	diag_count_claim,
procedure_neads	proc_claim_line_diff
procedure_head3	diag_count_claim,
procedure_neads	procedure_primary_practitioner_id
procedure_head3	proc_claim_line_diff,
	procedure_primary_practitioner_id
prescription_feats	drug_name
prescription_feats	drug_generic_name
prescription_feats	drug_name,
	prescription_practitioner_specialty_code
prescription_feats	bb_usc_code
prescription_feats	bb_usc_code,
	prescription_practitioner_specialty_code
prescription_feats	prescription_practitioner_id

table(s)	features subset
prescription_feats	payment_type
prescription_feats	drug_strength
prescription_feats	drug_id
prescription_feats	manufacturer
surgical_head	procedure_type_code
surgical_head	surgical_code
surgical_head	surgical_practitioner_id
surgical_head	surgical_primary_physician_role
pratictioner_head	all_pract_specialty_code
pratictioner_head	all_pract_state
	pract_specialty_code,
pratictioner_head	proc_claim_line_diff,
pratictioner_nead	all_ diag_count_claim,
	all_pract_state
pratictioner_head	all_practitioner_id
pratictioner_head	all_practitioner_id,
pratictioner_nead	proc_claim_line_diff
diagnosis_pairs_unique	diagnosis_code1,
diagnosis_pairs_dinque	$diagnosis_code2$
diagnosis_prescription_link	diagnosis_code,
diagnosis_prescription_mik	drug_generic_name
diagnosis_surgical_link	diagnosis_code,
diagnosis_surgicar_nnk	surgical_code
procedure_surgical_link	procedure_code,
procedure_surgicar_mix	surgical_code
	diagnosis_code,
diagnosis_procedure_surgical_link	procedure_code,
	surgical_code
diagnosis_procedure_link	diagnosis_code,
	procedure_code
	diagnosis_code,
diagnosis_procedure_link2	procedure_code,
	plan_type
	diagnosis_code,
diagnosis_procedure_link4	procedure_code,
diagnosis_procedure_mm4	proc_claim_line_diff,
	diag_count_claim

table(s)	features subset
diagnosis procedure links	diagnosis_code,
	$plan_type,$
diagnosis_procedure_link4	proc_claim_line_diff,
	${ m diag_count_claim}$
	diagnosis_code,
	$procedure_code,$
diagnosis_procedure_link4	primary_physician_role,
	proc_claim_line_diff,
	${ m diag_count_claim}$
	diagnosis_code,
diagnosis procedure link4	plan_type,
diagnosis_procedure_mk4	primary_physician_role,
	proc_claim_line_diff, diag_count_claim
patient_claim	claim_type
	diagnosis_code,
diagnosis_head2	primary_physician_role,
	pat_claim_type
procedure_head3	procedure_code,
procedure_nead3	pat_claim_type
surgical_head3	$surgical_code,$
	surgical_primary_physician_role,
	pat_claim_type
	surgical_plan_type,
surgical_head3	surgical_primary_physician_role,
	pat_claim_type

4.4 Extra features

- act_start: earlier date of activity for each patient
- \bullet $\mathbf{act_end}:$ latest date of activity for each patient
- ullet act_period: difference between act_end and act_start
- \bullet $\mathbf{presc_day_supply}$: average of presc_day_supply from prescription_feats by date

• **charge_amount**: sum of charge_amount from diagnosis_procedure_link2 by patient

5 Dmitry: feature description

5.1 Likelihood features

Likelihood features are calculated based on the subset of raw categorical features. Assuming that k raw categorical features with values x_1, \ldots, x_k have been chosen, for each unique combination of x_1, \ldots, x_k we calculate the average of the target variable (is_screener) in case if the number of training example for the group is greater than 50. If the number of training examples for the unique combination is less than 50 we take the global average of is_screener as a value for the likelihood feature. This average is assigned to the likelihood feature for the dataset entry with given values of the chosen categorical features. To avoid overfitting we applied 3-fold cross validation procedure and assigned likelihoods evaluated on one fold to different folds. As a result of the described procedure we had a set of likelihoods for each patient_id. To combine them and get the only likelihood features can be splitted in six groups.

• Likelihood features, type 1.

Calculated without taking into consideration that some paitent_id had repeated values for the chosen subset of categorical features. Generic function used was max of average by each patient_id

Table 1: likelihood features of type 1

Table 1: likelihood features of type 1		
table(s)	features subset	generic function
prescription_head	bb_usc_name	max
prescription_head	bb_usc_name, prescription_practitioner_id	max
prescription_head	payment_type	max
prescription_head	prescription_practitioner_id	max
diagnosis_head	diagnosis_code	max
diagnosis_head	diagnosis_practitioner_id	max
diagnosis_head	diagnosis_practitioner_id, diagnosis_code	max
diagnosis_head	diagnosis_code, diagnosis_practitioner_state	max
diagnosis_head	diagnosis_code, diagnosis_practitioner_state, diagnosis_practitioner_specialty_code	max
diagnosis_head	diagnosis_practitioner_specialty_code	max
diagnosis_head, patients	diagnosis_code, patient_age_group	max
diagnosis_head, patients	diagnosis_practitioner_id, patient_age_group	max
diagnosis_head	diagnosis_practitioner_specialty_code, diagnosis_code	max
diagnosis_head	diagnosis_code, primary_physician_role	max
diagnosis_head	diagnosis_code, diagnosis_practitioner_cbsa	max
diagnosis_head	diagnosis_code, diagnosis_practitioner_specialty_code, primary_physician_role	max

Table 1: likelihood features of type 1 (continuation)

Table 1. likelihood leatures of type 1 (continuation)		
table(s)	features subset	generic function
	diagnosis_code,	
diagnosis_head	diagnosis_practitioner_cbsa,	max
	primary_physician_role	
procedure_head	procedure_primary_practitioner_id	avg
procedure_head	procedure_code	max
nno ooduno bood	procedure_code,	****
procedure_head	place_of_service	max
procedure_head	procedure_rendering_practitioner_id	max
diagnosis_head,	procedure_code,	****
procedure_head	diagnosis_code	max
diagnosis hand	diagnosis_primary_practitioner_id,	
diagnosis_head,	$procedure_code,$	max
procedure_head	diagnosis_code	
diagnosis hood	diagnosis_code,	
diagnosis_head, procedure head	procedure_code,	max
procedure_nead	primary_physician_role	
diagnosis_head,	diagnosis_code,	max
procedure_head	place_of_service	max
diagnosis_head, procedure_head	diagnosis_code,	
	procedure_code,	max
	place_of_service	
diagnosis_head,	diagnosis_code,	max
procedure_head	plan_type	шал

• Likelihood features, type 2.

These features are calculated with taking into consideration that some paitent_id had repeated values for the chosen subset of categorical features. The main difference between type 1 and type 2 is that in type 1 the weight of target for patients with identical multiple records increases. Generic function used was max by each patient_id.

Table 2: likelihood features of type 2

table(s)	features subset	generic function	
diagnosis_head	diagnosis_code	max	
diagnosis_head,	diagnosis_code,	max	
patients	patient_age_group	max	
diagnosis head	diagnosis_code,	max	
diagnosis_nead	primary_physician_role	max	
diagnosis_head,	procedure_code,	max	
procedure_head	diagnosis_code	max	

• Likelihood features, type 3.

The same as type 1, but generic function used is second unique max value by each patient_id.

Table 3: likelihood features of type 3

table(s)	features subset
diagnosis_head	diagnosis_code
diagnosis_head,	procedure_code,
procedure_head	diagnosis_code

• Likelihood features, type 4.

The same as type 1, but generic function used is an average 3 maximum likelihoods by each patient_id.

Table 4: likelihood features of type 4

table(s)	features subset
diagnosis_head	diagnosis_code,
	primary_physician_role
diagnosis_head	diagnosis_practitioner_specialty_code,
	$diagnosis_code$
diagnosis_head	diagnosis_code
diagnosis_head,	procedure_code,
procedure_head	${\it diagnosis_code}$

• Likelihood features, type 5.

The same as type 1, but generic function used is second max value (it could be the same as max value) by each patient_id.

Table 5: likelihood features of type 5

table(s)	features subset
diagnosis_head	diagnosis_code
diagnosis_head,	procedure_code,
procedure_head	diagnosis_code

• Likelihood features, type 6.

The same as type 1, but table is filtered before likelihood is calculated.

Table 6: likelihood features of type 6

table(s)	features subset	filter column	filter value
diagnosis_head	diagnosis_code	primary_physician_role	ATG

• Likelihood features, group type.

Calculated based on each categorical in the chosen subset separately, after the maximum value of likelihoods by each entry is assigned to the group type likelihood. Generic function used was max by each patient_id.

Table 7: likelihood features of group type

table(s)	features subset
diagnosis_head	diagnosis_code,
diagnosis_nead	diagnosis_practitioner_id
	diagnosis_code,
diagnosis_head	diagnosis_practitioner_id,
	diagnosis_code_prefix,
	diagnosis_practitioner_specialty_code
diagnosis_head,	procedure_code,
procedure_head	diagnosis_code

Table 8 shows the fist step when we calculate likelihoods for the type 1, type 2 and group type. Table 9 shows the final step when the likelihoods by each patient_id are combined. The subset of raw categorical features for the tables contains diagnosis_code and diagnosis_practitioner_id.

Table 8: first step for likelihood calculation

patient	screener	diagnosis	practitioner	1,3,4,5	2	group
84654065	1	079.99	12694665	1.0	1.0	1.0
84654065	1	079.99	12694665	1.0	1.0	1.0
84654065	1	158.9	12695724	0.33	0.66	0.38
84654065	1	183.0	12669220	1.0	1.0	1.0
84884209	0	158.9	12695724	0.33	0.66	0.38
84884209	0	158.9	12695724	0.33	0.66	0.38
84884209	0	158.9	12695724	0.33	0.66	0.38
84884209	0	158.9	12695724	0.33	0.66	0.38
84884209	0	244.9	12695724	0.5	0.5	0.5
84945708	1	079.99	12694665	1.0	1.0	1.0
84945708	1	158.9	12695724	0.33	0.66	0.38
84945708	1	244.9	12695724	0.5	0.5	0.5

Table 9: second step for likelihood calculation

patient	diagnosis	practitioner	1	2	3	4	5	group
84654065	079.99	12694665	1.0	1.0	0.33	1.0	1.0	1.0
84884209	158.9	12695724	0.5	0.66	0.33	0.39	0.33	0.5
84945708	244.9	12695724	1.0	1.0	0.5	0.61	0.5	1.0

5.2 FTRL features

Another set of features have been generated using famous Google algorithm Follow The (Proximally) Regularized Leader (FTRL-Proximal) is the online algorithm presented in the [6, 5].

Assuming that our purpose is to minimise the loss function

$$L = -\frac{1}{m} \sum_{i=1}^{m} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$
 (1)

where \hat{y}_i is a prediction for the instance i, we transform the design matrix X to the sparse binary design matrix such that one column corresponds to one level of categorical feature (due to the huge number of levels we have applied the hashing trick ([4, Chapter 3]) to transform values of categorical features to indices).

The prediction for sample *i* is constructed as $\hat{y}_i = \sigma(w_i \cdot x_i)$, where w_i is a weight vector of size *n* on *i*-th iteration.

The algorithm updates the weights of the sample i+1 based on the previous samples $\{1, \ldots, i\}$ by finding

$$w_{i+1} = \arg\min_{w} \left(\sum_{r=1}^{i} g_r \cdot w + \frac{1}{2} \sum_{r=1}^{i} \tau_r ||w - w_r||_2^2 + \lambda_1 ||w||_1 \right) =$$

$$= \arg\min_{w} \left(w \cdot \sum_{r=1}^{i} (g_r - \tau_r w_r) + \frac{1}{2} ||w||_2^2 \sum_{r=1}^{i} \tau_r + \lambda_1 ||w||_1 + \text{const} \right)$$

and

$$\sum_{r=1}^{i} \tau_{rj} = \frac{\beta + \sqrt{\sum_{r=1}^{i} (g_{rj})^{2}}}{\alpha} + \lambda_{2}, \ j \in \{1, \dots, N\},$$

where λ_1 , λ_2 are regularization parameters, α , β are parameters of the learning rates schedule, $\tau_r = (\tau_{r1}, \dots, \tau_{rN})$ is a vector of learning rates for the step r, $g_r = \left(\frac{\partial L}{\partial w_{r1}}, \dots, \frac{\partial L}{\partial w_{rN}}\right)$ is a gradient vector of logarithmic loss L in the form (1) for step r.

To generate FTRL features for the training set we applied cross-validation procedure with three folds. The FTRL features for test have been calculated based on the whole training set. The generic function max has been applied to get the only value by each patient_id. FTRL features can be splitted in 4 groups:

• FTRL features, type 1.

Calculated by each entry (row) of the provided dataset. Generic function is max.

Table 10: FTRL features of type 1

table(s)	features subset
	diagnosis_practitioner_id,
	$diagnosis_code,$
diagnosis head,	patient_age_group,
patients	$patient_state,$
patients	ethinicity,
	household_income,
	education_level
diagnosis_head,	diagnosis_code,
procedure_head	procedure_code

• FTRL features type 2.

Calculated by each patient_id. No need for generic function.

Table 11: FTRL features of type 2

table(s)	features subset
diagnosis_head,	diagnosis_code,
procedure_head	procedure_code

• FTRL features type 3.

Calculated by two consequent rows in the provided dataset for each patient_id. Generic function is max.

Table 12: FTRL features of type 3

Table 12: I fled leatures of type 5			
table(s)	features subset		
	diagnosis_practitioner_id,		
	diagnosis_code,		
diagnosis_head,	patient_age_group,		
patients	patient_state,		
patients	ethinicity,		
	household_income,		
	education_level		

• FTRL features type 4.

Calculated by each claim_id. Generic function is max.

Table 13: FTRL features of type 4

table(s)	features subset
procedure_head2	procedure_code
procedure_nead2	procedure_primary_practitioner_id
procedure_head2	procedure_code
	diagnosis_practitioner_id,
$diagnosis_head2$	diagnosis_code,
	primary_physician_role
diagnosis_head2	diagnosis_code,
diagnosis_nead2	primary_physician_role
diagnosis_head2	diganosis_code

5.3 Count features

We have also created the following list of count features:

- patient _id_prescription_visit_count
- patient_id_diff_prescription_practitioner_count
- patient_id_diagnosis_visit_count
- patient_id_diff_diagnosis_practitioner_count
- patient_id_procedure_visit_count
- patient id diff procedure practitioner count
- patient id surgical visit count
- patient_id_diff_surgical_practitioner_count
- patient_id_diff_diagnosis_code_count
- patient id diff diagnosis code prefix count
- procedure_charge_amount_max
- procedure charge amount mean
- procedure_charge_amount_sum
- patient_id_diff_drug_count
- patient_id_diff_rx_number_count
- patient_id_diff_prescription_specialty_count

6 Models

The final model was homogeneous ensembling of 12 XGBoost [1] models with all features.

7 How to generate the predictions

7.1 Gilberto: file list and training

These scripts build 241 features for posterior use in the training process.

- 1. Make sure all input files are in the folder data/input/
- 2. Run the script run.all.r in the folder genentech-R-giba using R language
- 3. Uutput files containing all features are placed in data/team/giba/

Dependencies:

R: data.table, pROC, bit64

Vowpal Wabbit [2]

7.2 Kohei: file list and training

Task	File name
Build features	gen_feat.py
Train model	kohei_v52.py

Note that Kohei's model requires huge amount of computational resources. It requires 160 GB RAM and expected runtime is about 30 hours with 36 cores of CPUs. Amazon EC2 m4.10xlarge instance is suitable for computing this.

- 1. Make sure all input files are in the folder data/input/
- 2. Open command line and change path to genentech-py-kohei
- 3. Run the following list of commands:
 - python gen_feat.py
 - python gen_feat2.py
 - python kohei_v52.py --validate --fold1
 - python kohei_v52.py --validate --fold2
 - python kohei_v52.py --validate --fold3

- python kohei_v52.py --test
- python kohei_v52.py --merge

Dependencies:

Anaconda 2.4.1: Python 2.7.11, bloscpack 0.10.0, blosc 1.2.5, numpy 1.10.1, scipy 0.16.0, sklearn 0.16.0, xgboost 0.4 For reference, Dockerfile for setting up the environment is also available on the genentech-py-kohei/base directory.

7.3 Dmitry: file list and training

Task	File name		
Copy files from Amazon S3	copy from s3 to redshift.py		
to Amazon Redshift	copy_nom_so_to_reasimt.py		
Remove excluded patients	generate_train_test_without_excluded_patients.py		
Generate CV table	generate_cv_table.py		
Clean diagnosis description	clean_diagnosis_code_table.py		
Generate additional tables	generate_feature_tables.py		
Build features	build_features.py		
Helper functions	utils.py		
Build FTRL features	ftrl.py, ftrl2.py, ftrl3.py, ftrl4.py		
Credentials for Amazon	data/input/credentials.csv		

- 1. Upload all data files to Amazon S3 bucket
- 2. Fill the file credentials.csv in the folder data/input/ with your credentials for Amazon S3 and Amazon Redshift
- 3. Open command line and change path to genentech-py-dmitry
- 4. Run the script run.sh
- 5. The features will be saved in the data/team/dmitry/train_feats_dmitry_fold_x.csv files

Dependencies:

The model can be run on Linux Ubuntu 12.04 or Mac OS.

Python: psycopg2, pandas, numpy, sklearn [3], xgboost, ml_metrics, scipy, os, glob, itertools, nltk, random, sys, getopt, csv, re

Other: pypy, HDF5 (https://www.hdfgroup.org/HDF5/) The Python version used 2.7.3.

7.4 Lucas: file list and training

Task	File name	
Utility functions	base_util.py	
Builds features and loads features	ann data build py	
from other teammates	s00_data_build.py	
Run the xgb model	a01 -rab 02 -ray	
to get the final predictions	$s01_xgb_02.py$	

- 1. Run all code from other team mates
- 2. Open command line and change path to genentech-py-lucas
- 3. Run s00_data_build.py with command python3 s00_data_build.py
- 4. Run s01_xgb_02.py with command python3 s01_xgb_02.py

Dependencies:

Python: numpy, pandas, scipy, scikit-learn [3], ml_metrics, cython, psycopg2, h5py, tables, xgboost (installed from https://github.com/dmlc/xgboost.git) The Python version used 3.0.

References

- [1] https://github.com/dmlc/xgboost
- [2] https://github.com/JohnLangford/vowpal_wabbit/wiki
- [3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay *Scikit-learn: Machine Learning in Python.* 1991, Journal of Machine Learning Research, 12, pp. 2825-2830.
- [4] A. Rajaraman and J. D. Ullman *Mining of massive datasets*. 2011, Cambridge University Press.
- [5] H.B. McMahan, G. Hold, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos and J. Kubica Ad Click Prediction: a View from the Trenches. August, 2013, KDD, Chicago, Illinois, USA.
- [6] H. B. McMahan Follow-the-Regularized-Leader and mirror descent: Equivalence theorems and L1 regularization. 2011, 14th International Conference on Artificial Intelligence and Statistics (AISTATS), 15.
- [7] http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html