

## CS4277 / CS5477 3D Computer Vision

Assoc. Prof. Lee Gim Hee
AY 2022/23
Semester 2

## Course Information

#### **Lecturer:**

Dr. Lee Gim Hee,

Department of Computer Science

Office: COM2-03-54,

Email: gimhee.lee@comp.nus.edu.sg

Time: Every Wednesday, 1830hrs – 2130hrs

Venue: LT 15 (In-Person Lectures)



## Teaching Assistants

Chen Yu

Department of Computer Science

Email: e0917620@u.nus.edu

Lab: AS6-05-02

Yan Zhiwen

Department of Computer Science

Email: e0148832@u.nus.edu

Lab: AS6-05-02



## Mode of Assessments

- This grades of this module is based on 60% CA + 40% Final Exam:
- 1. 4x coding assignments (10% each; individual work)
- 20% mid-term quiz (in-person, closed-book)
- 3. 40% final exam (in-person, closed-book, one A4 cheat sheet)

 Same assessment for CS4277 and CS5477, but final grades will be moderated independently.



## Logistics - Assignments

- We will use Python as the programming language for the assignments.
- Nonetheless, you can use any programming language of your choice.
- But the helper functions and our support will be given only in Python.
- Ask my TAs on all questions regarding the assignments.



## Assignment Late Policy

- All assignments are due at 2359hrs of the dates specified on the module schedule.
- 25% of the total marks will be deducted for each day of late submission.
- Deduction of marks does not apply to the late submissions with valid reasons. Please email me your reasons to seek for approval.



## Logistics: In-Person Mid-Term Quiz

- Mid-term quiz is conducted in-person at a fixed date and time (see course schedule).
- Please arrange your schedule and make sure you are physically at NUS, make-up only possible with valid reasons.
- Mid-term quiz format:
- Consists of two questions;
- Write your answers on the blank space in the question sheet;
- 3. Closed book quiz.



## Logistics: In-Person Final Exam

- Final exam is conducted in-person at a fixed date and time (see NUS exam timetable).
- Please arrange your schedule and make sure you are physically at NUS, NO make-up final exam is possible.
- Final exam format:
- 1. Consists of four questions;
- 2. Write your answers on the provided answer booklet(s);
- 3. Closed book exam, one A4 cheat sheet is allowed.



## Honor Code

 Assignments: You may discuss and/or refer to online references, but plagiarism is strictly not allowed.

 Online quiz: Discussions with anyone and copying of solutions are strictly not allowed.

 Violation of rules: Zero will be given, and disciplinary actions that could lead to your expulsion from NUS will be taken!



## No Tutorial

- No formal tutorials, no "ten-year series" practice questions.
- Short questions and solutions will be provided (at the end of every three lectures) to reinforce the content of the lectures.

§https://en.wikipedia.org/wiki/Ten\_year\_series



## Consultations

- Please send all questions to me via email and/or Canvas Discussions (Preferred).
- To make sure your email gets my attention, use "[CS4277/CS5477] xxx" as the title of your email.
- Access NUS Canvas Discussions:

# Announcements Assignments Assignments Discussions Grades Add discussion (Top right tab) Pinned discussion (Top right tab) Pinned discussion (Top right tab)



## Consultations

- Please send all your questions on the assignments to my TAs.
- Use the discussions in Canvas. Use "[Assignment X]:
   Question Title" as the heading of your question to
   get the attention of my TAs.





## Course Schedule

| Week | Date   | Торіс                                                      | Assignments                                                                                                 |
|------|--------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1    | 11 Jan | 2D and 1D projective geometry                              | Assignment 0: Getting started with Python (Ungraded)                                                        |
| 2    | 18 Jan | 3D projective geometry, Circular points and Absolute conic |                                                                                                             |
| 3    | 25 Jan | Rigid body motion and Robust homography estimation         |                                                                                                             |
| 4    | 01 Feb | Camera models and calibration                              | Assignment 1: Metric rectification and robust homography (10%)  Due: 2359hrs, 07 Feb                        |
| 5    | 08 Feb | Single view metrology                                      | <b>Assignment 2</b> : Affine 3D measurement from vanishing line and point (10%) <b>Due:</b> 2359hrs, 14 Feb |
| 6    | 15 Feb | The Fundamental and Essential matrices                     |                                                                                                             |
| -    | 22 Feb | Semester Break                                             | No lecture                                                                                                  |
| 7    | 01 Mar | Mid-term Quiz (20%)                                        | In-person Quiz (LT 15, 1900hrs – 2000hrs)                                                                   |
| 8    | 08 Mar | Absolute pose estimation from points or lines              |                                                                                                             |
| 9    | 15 Mar | Three-view geometry from points and/or lines               |                                                                                                             |
| 10   | 22 Mar | Structure-from-Motion (SfM) and bundle adjustment          | Assignment 3: SfM and Bundle adjustment (10%)  Due: 2359hrs, 28 Mar                                         |
| 11   | 29 Mar | Two-view and multi-view stereo                             | Assignment 4: Dense 3D model from multi-view stereo (10%)  Due: 2359hrs, 04 Apr                             |
| 12   | 05 Apr | 3D Point Cloud Processing                                  |                                                                                                             |
| 13   | 12 Apr | Neural Field Representations                               |                                                                                                             |

Final Exam: 03 MAY 2023



## Recommended Readings (Not Compulsory)















## Linear Algebra Pre-requisite

Recommended reading on Linear Algebra:



Video lectures by Prof. Gilbert Strang:

https://www.youtube.com/playlist?list=PL49CF 3715CB9EF31D



## How Does a Camera Work?

#### Forward Problem:



#### Dimensionality reduction!

Image source: http://www.shortcourses.com/guide/guide1-3.html



## Projection can be Tricky...





## Projection can be Tricky...





Slide source: Steve Seitz

## Projective Geometry

#### What is lost?

Length





## Length is Not Preserved





## How to Make a Hobbit?



Frodo appears smaller than Gandalf on screen



In reality, he was seated further away from the camera



Image source: "Lord of the rings – Fellowship of the rings"

## Projective Geometry

#### What is lost?

- Length
- Angles





## Can We Recover the 3D Information from Image(s)?





## Can We Recover the 3D Information from Image(s)?







## Why do we Need 3D Computer Vision?





## Why do we Need 3D Computer Vision?



## Why Not Just Use Deep Learning?

Deep learning and 3D Computer Vision are complimentary!

In pure 3D Computer Vision, we should not learn from data when we already know the laws of Physics.



Image source: http://www.shortcourses.com/guide/guide1-3.html

