Time Series Analysis

• Data collected in a time sequence (daily, weekly, monthly).

Examples:

- Stock prices
 ✓ (daily)
- Retail sales \(\mathbb{m} \) (monthly)
- Temperature / (hourly)

Helps understand patterns (trend, seasonality) and predict future values.

Import & Setup

import pandas as pd import matplotlib.pyplot as plt from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.arima.model import ARIMA from pandas.plotting import autocorrelation_plot

Date Handling

Convert to datetime df['Order_Date'] = pd.to_datetime(df['Order_Date'])

Set as index for time-based operations df = df.set_index('Order_Date')

Extract features df['Year'] = df.index.year df['Month'] = df.index.month df['Weekday'] = df.index.day_name()

print(df.head())

Makes data time-aware so you can group/slice easily.

	Product_ID	Sale_Date	Sales_Rep	Region	Sales_Amount	Quantity_Sold	Product_Category	Unit_Cost	Unit_Price	Customer_Type	Discount	Payment_Method
0	1052	2023-02- 03	Bob	North	5053.97	18	Furniture	152.75	267.22	Returning	0.09	Cash
1	1093	2023-04- 21	Bob	West	4384.02	17	Furniture	3816.39	4209.44	Returning	0.11	Cash
2	1015	2023-09- 21	David	South	4631.23	30	Food	261.56	371.40	Returning	0.20	Bank Transfer
3	1072	2023-08- 24	Bob	South	2167.94	39	Clothing	4330.03	4467.75	New	0.02	Credit Card
4	1061	2023-03- 24	Charlie	East	3750.20	13	Electronics	637.37	692.71	New	0.08	Credit Card

Filtering & Slicing (Simple)

df['2023'] # All 2023 data df['2023-07'] # July 2023

df['2023-07-01':'2023-07-15'] # First 15 days of July

Very useful in business reports.

```
| Product_ID | Sale_Date | Sales_Rep | Region | Sales_Amount | Noder_Date |
2023-02-09 | 1052 | 2023-02-03 | Bob | North | 5053.97 |
2023-06-21 | 1093 | 2023-02-21 | Bob | West | 4384.02 |
2023-09-21 | 1015 | 2023-09-21 | Bob | South | 4631.23 |
2023-08-24 | 1061 | 2023-03-24 | Bob | South | 4631.23 |
2023-08-24 | 1061 | 2023-03-24 | Bob | South | 4631.23 |
2023-08-24 | 1061 | 2023-03-24 | Bob | South | 4631.23 |
2023-08-24 | 1061 | 2023-03-24 | Bob | South | 4631.23 |
2023-09-21 | 30 | Furniture | 152.75 | 267.22 |
2023-04-21 | 17 | Furniture | 3816.39 | 4209.44 |
2023-09-21 | 30 | Food | 261.56 | 371.40 |
2023-08-24 | 39 | Clothing | 4330.03 | 4467.75 |
2023-08-24 | 39 | Clothing | 4330.03 | 4467.75 |
2023-09-20 | Returning | 0.0 | Cash | Online |
2023-09-21 | Returning | 0.11 | Cash | Retail |
2023-09-21 | Returning | 0.11 | Cash | Retail |
2023-09-22 | Returning | 0.11 | Cash | Retail |
2023-09-23 | Returning | 0.11 | Cash | Retail |
2023-09-24 | Returning | 0.11 | Cash | Retail |
2023-09-25 | Returning | 0.10 | Bank Transfer | Retail |
2023-09-26 | Returning | 0.00 | Credit Card | Retail |
2023-09-27 | Returning | 0.00 | Credit Card | Retail |
2023-09-28 | Returning | 0.00 | Credit Card | Retail |
2023-09-29 | Returning | 0.00 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Credit Card | Retail |
2023-09-21 | Set | 8000 | Cash |
```

	rder_Date	
December 0 Address the	923-01-01	-159489.45666
Resampling & Aggregation	923-01-08	-84268.10217
	923-01-15	-153331.53100
	923-01-22	-130210.11833
# Daily sales	923-01-29	-96882.90708
	923-92-95	-97360.57615
daily_sales = df['Sales'].resample('D').sum()	923-02-12	-117043.98178
-	923-02-19	-122710.23800
	923-02-26	-140670.20538
# Weekly profit	923-93-95	-122007.71040
# Weekly profit	923-03-12	-110404.57500
weekly_profit = df['Profit'].resample('W').mean()	923-93-19	-144755.77700
Westing provide an Extended to American Company	923-93-26	-91785.06210
	923-04-02	-144229.44809
U.M. and laboration of the state of	923-04-09	-106290.28500
# Monthly sales trend	923-04-16	-131194.30500
monthly_sales = df['Sales'].resample('M').sum()	923-04-23	-155851.29529
monthly_sales - ut[sales].resample(w).sum()	923-04-30	-130951.28000
	923-05-07	-183020.903000
	923-95-14	-132528.61681
Converts irregular data → meaningful summaries.	923-05-21	-187257.70230
	923-05-28	-111243.35550
	323-06-04	-00668 58375

Rolling Statistics (Trend Smoothing)

```
# 7-day moving average df['Sales_MA7'] = df['Sales'].rolling(7).mean()
```

df[['Sales','Sales_MA7']].plot(figsize=(10,5), title="Sales with 7-Day Moving Avg") plt.show()

Removes noise, highlights underlying trend.

Exponential Moving Average (Faster Reaction)

df['Sales_EMA'] = df['Sales'].ewm(span=12, adjust=False).mean()

Unlike simple MA, EMA reacts quicker to recent changes.

Order Date		
2023-02-03	5053,970000	
2023-04-21	4950.900769	
2023-09-21	4901.720651	
2023-08-24	4481.139012	
2023-03-24	4368.686857	
2023-04-15	4497.510844	
2023-09-07	4531.179945	
2023-04-27	5007.875338	
2023-12-20	4488.120670	
2023-08-16	4555.168260	
Name: Sales	EMA. Length: 1000, dtvp	

Growth Analysis (MoM & YoY)

Month-over-Month % df['MoM'] = df['Sales'].pct_change(periods=1) * 100# Year-over-Year % df['YoY'] = df['Sales'].pct_change(periods=12) * 100

Key business KPI for tracking growth.

Seasonal Decomposition (Trend + Seasonality)

result = seasonal_decompose(df['Sales'], model='additive', period=12)
result.plot()
plt.show()

Breaks series into:

- Trend → long-term growth
- Seasonality → repeating cycles (holidays, seasons)
- Residual → noise

Cumulative Sum

df['Cumulative_Sales'] = df['Sales'].cumsum()

Tracks total growth over time.

```
Order_Date
2023-04-15 5000365.77
2023-09-07 5005082.13
2023-04-27 5012711.83
2023-12-20 5014341.30
2023-08-16 5019265.23
Name: Cumulative_Sales, dtype: float64
```

Lag Features (Feature Engineering for ML)

df['Sales_Lag1'] = df['Sales'].shift(1) # yesterday's sales
df['Sales_Lag7'] = df['Sales'].shift(7) # last week's sales

Helps models learn from past values.

```
Order_Date 2023-02-03 NaN 2023-04-21 NaN 2023-09-21 NaN 2023-09-24 NaN 2023-08-24 NaN 2023-08-24 NaN 2023-08-15 4912.69 2023-09-07 9215.32 2023-04-27 496.59 2023-08-16 2154.66 Name: Sales_Lag*, Length: 1000, dtype: float64 Name: Sales_Lag*, Length: 1000, dtype: float64
```

Rolling Correlation (Sales vs Profit)

df['Sales'].rolling(30).corr(df['Profit']).plot(title="Rolling Correlation (Sales vs Profit)")

plt.show()

Measures relationship strength over time.

Stationarity Test (Needed for Forecasting)

from statsmodels.tsa.stattools import adfuller

result = adfuller(df['Sales'])
print("ADF Statistic:", result[0])
print("p-value:", result[1])

If $p < 0.05 \rightarrow stationary (good for ARIMA)$.

ADF Statistic: -30.416398670618502 p-value: 0.0

Autocorrelation (Check Repetition)

autocorrelation_plot(df['Sales'])
plt.show()

Shows seasonal lags (e.g., sales spike every 7 days).

Forecasting with ARIMA (Basic)

model = ARIMA(df['Sales'], order=(1,1,1))
fit = model.fit()

df['Forecast'] = fit.predict(start=len(df)-12, end=len(df)+6, dynamic=True)

df[['Sales','Forecast']].plot(figsize=(10,5), title="Sales Forecast with ARIMA") plt.show()

Predicts future values based on past trends.

Train-Test Forecast Validation

train = df['Sales'][:int(0.8*len(df))] test = df['Sales'][int(0.8*len(df)):]

model = ARIMA(train, order=(1,1,1))
fit = model.fit()

forecast = fit.predict(start=len(train), end=len(df)-1, dynamic=False)

plt.plot(train, label="Train")
plt.plot(test, label="Test")
plt.plot(forecast, label="Forecast")
plt.legend()
plt.show()

Compares predicted vs actual.

Seasonal Plot (Month vs Avg Sales)

df.groupby(df.index.month)['Sales'].mean().plot(kind='bar')
plt.title("Average Sales by Month")
plt.show()

Identifies best & worst sales months.

Heatmap of Seasonality

import seaborn as sns

pivot = df.pivot_table(values="Sales", index=df.index.year, columns=df.index.month, aggfunc='sum') sns.heatmap(pivot, annot=True, fmt=".0f", cmap="YlGnBu") plt.title("Year-Month Sales Heatmap") plt.show()

Visualizes seasonal patterns across years.

