# «Метод конечных разностей во временной области (FDTD)»

# Моделирование распространения электромагнитной волны в среде с потерями

# Закон Ампера для среды с потерями

При 
$$\mathbf{j}_{\mathbf{cr}} = 0$$

$$\mathbf{j} + \varepsilon \, \varepsilon_0 \, \frac{\partial \, \mathbf{E}}{\partial \, t} = \nabla \times \mathbf{H}$$

ИЛИ

$$\sigma \mathbf{E} + \varepsilon \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{H}$$

Для одномерного случая:

$$\sigma E_z + \varepsilon \varepsilon_0 \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x}$$

### Закон Ампера для среды с потерями в дискретном виде

Запишем производные в дискретном виде для точки  $(m\Delta_x; (q+1/2)\Delta_t)$ :

$$\sigma E_{z}^{q+1/2}[m] + \varepsilon \varepsilon_{0} \frac{E_{z}^{q+1}[m] - E_{z}^{q}[m]}{\Delta_{t}} =$$

$$=\frac{H_{y}^{q+1/2}[m+1/2]-H_{y}^{q+1/2}[m-1/2]}{\Delta_{x}}$$

# Закон Ампера для среды с потерями в дискретном виде

проблема 
$$\sigma \, E_z^{q+1/2} [m] + \epsilon \, \epsilon_0 \, \frac{E_z^{q+1}[m] - E_z^{q}[m]}{\Delta_t} =$$

$$=\frac{H_y^{q+1/2}[m+1/2]-H_y^{q+1/2}[m-1/2]}{\Delta_x}$$

$$E_z^{q+1/2}[m] \approx \frac{E_z^{q+1}[m] + E_z^q[m]}{2}$$

$$E_z^{q+1/2}[m] \approx \frac{E_z^{q+1}[m] + E_z^q[m]}{2}$$

После подстановки:

$$\sigma \frac{E_{z}^{q+1}[m] + E_{z}^{q}[m]}{2} + \varepsilon \varepsilon_{0} \frac{E_{z}^{q+1}[m] - E_{z}^{q}[m]}{\Delta_{t}} = \frac{H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2]}{\Delta_{x}}$$

Поля для среды с потерями
$$E_{z}^{q+1}[m] = \frac{1 - \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}}{1 + \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} E_{z}^{q}[m] + \frac{\frac{\Delta_{t}}{\varepsilon \varepsilon_{0} \Delta_{x}}}{1 + \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2]\right)$$

$$E_{z}^{q+1}[m] = \frac{1 - \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}}{1 + \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} E_{z}^{q}[m] + \frac{\frac{\Delta_{t}}{\varepsilon \varepsilon_{0} \Delta_{x}}}{1 + \frac{\sigma \Delta_{t}}{2 \varepsilon \varepsilon_{0}}} \left(H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2]\right)$$

$$loss = \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}$$

$$C_{E_z E} = \frac{1 - loss}{1 + loss}$$

$$C_{E_zH} = \frac{S_c W_0}{\varepsilon (1 + loss)}$$

$$E_{z}^{q+1}[m] = C_{E_{z}E} E_{z}^{q}[m] + C_{E_{z}H} \left( H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right)$$

Для случая  $\sigma = 0$  См/м:

$$E_z^{q+1}[m] =$$

$$= E_{z}^{q}[m] + \frac{\Delta_{t}}{\epsilon \epsilon_{0} \Delta_{x}} \left( H_{y}^{q+1/2}[m+1/2] - H_{y}^{q+1/2}[m-1/2] \right)$$

# Закон Фарадея для среды с потерями

$$-\mathbf{j}_{m}-\mu\mu_{0}\frac{\partial\mathbf{H}}{\partial t}=\nabla\times\mathbf{E}$$

ИЛИ

$$-\sigma_m \mathbf{H} - \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} = \nabla \times \mathbf{E}$$

#### Для одномерного случая:

$$\sigma_m H_y + \mu \mu_0 \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

# Закон Фарадея для среды с потерями в дискретном виде

Запишем производные в дискретном виде для точки  $((m + 1/2)\Delta_{r}; q\Delta_{t})$ :

проблема 
$$\sigma_{m}H_{y}^{q}[m+1/2]+\mu\mu_{0}\frac{H_{y}^{q+1/2}[m+1/2]-H_{y}^{q-1/2}[m+1/2]}{\Delta_{t}}=\frac{E_{z}^{q}[m+1]-E_{z}^{q}[m]}{\Delta_{...}}$$

$$H_y^q[m+1/2] \approx \frac{H_y^{q+1/2}[m+1/2] + H_y^{q-1/2}[m+1/2]}{2}$$

$$H_y^q[m+1/2] \approx \frac{H_y^{q+1/2}[m+1/2] + H_y^{q-1/2}[m+1/2]}{2}$$

$$\sigma_{m} \frac{H_{y}^{q+1/2}[m+1/2] + H_{y}^{q-1/2}[m+1/2]}{2} + \mu \mu_{0} \frac{H_{y}^{q+1/2}[m+1/2] - H_{y}^{q-1/2}[m+1/2]}{\Delta_{t}} = \frac{E_{z}^{q}[m+1] - E_{z}^{q}[m]}{\Delta_{x}}$$

### Расчет магнитной компоненты поля для среды с потерями

$$H_{y}^{q+1/2}[m+1/2] = \frac{1 - \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}}{1 + \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}} H_{y}^{q-1/2}[m+1/2] + \frac{\Delta_{t}}{2\mu\mu_{0}}$$

$$+ \frac{\frac{\Delta_{t}}{\mu\mu_{0}\Delta_{x}}}{1 + \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}} (E_{z}^{q}[m+1] - E_{z}^{q}[m])$$

#### Расчет магнитной компоненты поля для среды с потерями

$$H_{y}^{q+1/2}[m+1/2] = \frac{1 - \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}}{1 + \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}} H_{y}^{q-1/2}[m+1/2] + \frac{\Delta_{t}}{1 + \frac{\sigma_{m}\Delta_{t}}{2\mu\mu_{0}}} (E_{z}^{q}[m+1] - E_{z}^{q}[m])$$

$$loss_m = \frac{\sigma_m \Delta_t}{2 \mu \mu_0}$$

$$C_{H_{y}H} = \frac{1 - loss_{m}}{1 + loss_{m}}$$

$$C_{H_{y}E} = \frac{S_c}{\mu W_0 (1 + loss_m)}$$

### Расчет магнитной компоненты поля для среды с потерями

$$H_{y}^{q+1/2}[m+1/2] = C_{H_{y}H} H_{y}^{q-1/2}[m+1/2] + C_{H_{y}E} (E_{z}^{q}[m+1] - E_{z}^{q}[m])$$

#### Расчет магнитной компоненты поля

Для случая 
$$\sigma_{m} = 0$$
:

$$H_y^{q+1/2}[m+1/2] =$$

$$=H_{y}^{q-1/2}[m+1/2]+\frac{\Delta_{t}}{\mu\mu_{0}\Delta_{x}}\left(E_{z}^{q}[m+1]-E_{z}^{q}[m]\right)$$

# Геометрия решаемой задачи (fdtd\_loss.py)

