Modelo predictivo del crecimiento urbano Equipo #2

Estimación de la capacidad de carga poblacional

September 7, 2024

Integrantes:

Luis Ernesto Serras Rimada Guillermo Cepero García Miguel Vadim Vilariño Pedraza

September 7, 2024

Modelo de crecimiento urbano

Entonces se tiene que:

- (P(t)) es la población en función del tiempo (t).
- (r) es la tasa de crecimiento intrínseca de la población.
- (K) es la capacidad de carga o tamaño máximo sostenible de la población.

Parámetros a Estimar:

- (r): Tasa de crecimiento intrínseca de la población.
- (K): Capacidad de carga de la población.

Modelo logístico

$$\frac{dP}{dt} = r \cdot P(t)(1 - \frac{P(t)}{K})$$

Para la tasa de crecimiento intrinseca se tiene que:

$$r = \left(\frac{N(t) - F(t)}{P(t)}\right)$$

Modelo Matemático

La función logística tiene la forma:

$$P(t) = \frac{K}{1 + Ae^{-rt}}$$

La ecuación para encontrar (A) es:

$$P(0) = \frac{K}{1 + Ae^0}$$

curvefit

Minimizar: $\sum_{i=1}^{N} (y_i - f(x_i, \theta))^2$ Donde:

- y_i son los valores medidos
- x_i son los valores independientes
- $f(x_i, \theta)$ es la función modelo con parámetros
- \bullet \sum denota la suma sobre todos los puntos de datos

curve-fit

Definición inicial: Se proporciona una función modelo $f(x, \theta)$ y los datos experimentales (xdata, ydata).

Inicialización: Se establecen valores iniciales para los parámetros θ .

Cálculo de residuales: Se calcula la diferencia entre los datos mediantes y la función modelo:

 $r = ydata - f(xdata, \theta)$

Derivación: Se calcula la derivada de los residuales respecto a cada parámetro:

$$\frac{\partial_{r}}{\partial \theta_{j}} = -\frac{\partial_{f}}{\partial \theta_{j}}$$

curve-fit

Iteración: Se actualiza cada parámetro θ_j según la fórmula de Levenberg-Marquardt:

$$\theta_j^{(n+1)} = \theta_j^n - [J^T J]^{-1} J^T r$$

Donde J es la matriz Jacobiana:

$$\frac{\partial_r}{\partial \theta_j}$$

Convergencia: El proceso se repite hasta que se alcance un criterio de convergencia.

Adaptación al modelo logístico:

La función curvefit intentará minimizar la suma de los cuadrados de los residuales para encontrar los valores óptimos de K y r que minimizan esta expresión.

Modelo sin intervalos

DataFrame para intervalos de 5 años

	К	r
0	204423337054	0.008
1	340143106946	0.003
2	10660179	-0.352
3	51052382079	0.000
4	2575174752	0.000
5	1223441	0.000
6	999003076	0.000
7	1798999	0.000

DataFrame para intervalos de 8 años

	К	г
0	2055969070415	0.009
1	10396071	-0.167
2	10981262	-0.209
3	1000853	0.000
4	11251162	0.022

DataFrame para intervalos de 10 años

	K	Г
0	2059434657188	0.009
1	10623571	-0.135
2	726227	-0.000
3	5837330070	0.000

Predicción para intervalos de 5 años

Predicción para intervalos de 8 años

Predicción para intervalos de 10 años

The End