COMPUTAÇÃO GRÁFICA E INTERFACES

LEI/FCT/UNL — Ano Lectivo 2008/09 EXAME da ÉPOCA ESPECIAL — 09/09/18

Atenção: Responda no próprio enunciado, que entregará. Em caso de engano, e se o espaço para a resposta já não for suficiente, poderá usar o verso das folhas desde que feitas as devidas referências.

Não desagrafe as folhas! A prova de exame, com duração de 2H, é sem consulta.

1. (2 valores)

Dado um objecto 2D arbitrário, pretende-se obter a sua simetria em relação a uma recta r, não vertical, de que se conhecem os parâmetros da equação y=mx+b.

a) Em termos literais, especifique rigorosamente a transformação de cada ponto P do referido objecto no correspondente ponto P' (como ilustrado na Figura) através duma <u>composição</u> natural de transformações geométricas elementares (S, R, ou T) em 2D:

b)	Justifique problema:	eventual	vantagem	do	uso	de	coordenadas	homogéneas	na	resolução	deste

2. (2 valores)

Nome	Projece	ção Axonoi	nétrica	Deser	nho Axonom	étrico
Nome	r_1	r_2	r_3	r_1	r_2	r_3
	0. 8165	0. 8165	0. 8165			
	0. 9428	0. 4714	0. 9428			

A tabela anterior mostra os factores de escala de duas projecções axonométricas.

- a) Complete a tabela com nomes mais específicos para as projecções em causa.
- b) Complete a tabela com os factores de escala para os correspondentes <u>desenhos axonométricos</u> e explique, de forma concisa, os cálculos que efectuou para obter essa resposta:

c)	Considere que o objecto imagens produzidas pela	1 0 1	-	oderiam distinguir as duas
_	E qual a diferença entre esfera?	essas imagens e a ima	gem obtida por <u>proje</u>	cção cavaleira da mesma
3.	(2 valores)			
a)	utilizados como pontos o Bézier, o mesmo se pass	de controlo para a cons ando com os pontos B _{ij} emáticas entre os refer	trução de um retalho na construção de out idos pontos de mode	o a garantir que os dois
	a.2) C^0G^1 :			
	a.3) C^1G^1 :			
	Nota: A alínea a) tem vá	árias soluções possíveis.		
b)	O quadro abaixo referesqual a classe de continu controlo entre dois retalh	se a superfícies bicúbica idade que será possível los adjacentes. Para alén	garantir <u>meramente</u> n disso, inscreva no q	ne. Indique, nesse quadro, por partilha de pontos de uadro o número de pontos fícies em causa, naquelas
		Continuidade	Continuidade	N.º de pontos de
	Suportícios do Bázior	paramétrica	geométrica	controlo partilhados
	Superfícies de Bézier			
	Superfícies de B-spline			

4. (2 valores)

a) Como tentativa de reprodução dos atributos psicológicos da cor, qual a maior diferença entre os modelos HSV e HLS?

	nela apreser	ntados:						dois casos
	RGB ₁	RGB ₂	Н	S	V	Н	L	S
	(0,0,0)	(1,1,1)						
	(1,0,0)	(0,1,0)						
	Nota: Reco	rda-se que a	cor vermelh	a é usada co	mo origem c	la contagem	dos ângulos	
c)	-	oolações da a e em HSV o						
5.	(2,5 valores)							
			A			В		
			•			•		
cui	va B-spline	ra pontos de cúbica aberta ser o mais co	que comec	e exactamen	nte no ponto	A e termine	no ponto B,	
a)		a curva na fig , escreva o ve					oços constitu	uintes. Para
b)	Justifique a -spline:	forma da cu	rva, tendo c	como base u	ma das impo	ortantes prop	oriedades da	s curvas B-

6. (3,5 valores)

São dados os polígonos P=[C,D,E,F,G,H,I,J] e Q=[1,2,3,4], sendo este último considerado como janela de recorte. As convenções quanto à orientação dos eixos cartesianos são as mesmas que se usaram nas aulas teóricas.

a) Com o objectivo de se aplicar o algoritmo de Cohen-Sutherland, suponha a seguinte ordem para os bits de código, em relação à janela de recorte e à progressão do algoritmo: para <u>baixo</u> (*B*), para a <u>esquerda</u> (*L*), para <u>cima</u> (*T*) e para a <u>direita</u> (*R*).

Escreva os bits de código, pela ordem *BLTR*, para cada um dos vértices do polígono P:

25010 100 05	0110 40 00418	, o, p • 1 a • 1 a • 1	n BB11t, pur	. • • • • • • • • • • • • • • • • • • •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 P 3 11 5 11 5 2	•
С	D	E	F	G	H	I	J

Como Resposta 1 do quadro seguinte, indique, para cada aresta, se o algoritmo a <u>aceita</u> ou <u>rejeita</u> trivialmente, ou o <u>número</u> máximo de intersecções úteis que se pode inferir imediatamente por este método de recorte. A Resposta 2 também é de preenchimento obrigatório para <u>todas</u> as arestas, independentemente do tipo da Resposta 1.

	Resposta 1	Resposta 2
Aresta	Aceitação/Rejeição/N.º máximo de intersecções a calcular	N.º de intersecções a realizar efectivamente para o recorte
CD		
DE		
EF		
FG		
GH		
HI		
IJ		
JC		

,	arestas do polígono P. Que aresta(s) de P poderá este algoritmo tratar sem ter necessidade de efectuar o cálculo de qualquer intersecção com os limites da janela de recorte?
	Justifique a resposta dada:
c)	Aplique-se ao polígono P o algoritmo de recorte de Sutherland-Hodgman em Q. Denote o resultado final obtido, completando a sequência de vértices que se sabe ser iniciada por v:
	[v,
d)	Suponha que se aplica o algoritmo de FILL AREA (<i>even-odd</i>) ao polígono P <u>antes</u> deste ser recortado. Pretende-se saber quais são as arestas que fazem parte da <u>Tabela das Arestas Activas</u> , e por que ordem, durante o percurso de tratamento da linha de varrimento que passa no ponto
d.1) w:
d.2) H:
d.3) t:
e)	Na figura dada, pinte as regiões que ficariam preenchidas pela aplicação do algoritmo de FILL AREA ao polígono P $\underline{após}$ este ter sido recortado em Q.
f)	Faz-se o mesmo pedido que na alínea d), mas tomando-se P <u>após</u> o recorte (como na alínea e)).
f.1)) w:
f.2)) H:
f.3)) t:
7.	(3 valores)
ma 102 pos	na janela, definida em coordenadas do mundo real (WC) por $x_1 \le x \le x_2$ e $y_1 \le y \le y_2$, deverá ser peada, sem distorção, num visor com centro no pixel P(500,100) de um ecrã cuja resolução é de 24x600 pixels. Satisfeitas todas as restantes condições, o visor deverá ocupar a maior área ssível no ecrã. A origem do sistema de coordenadas localiza-se no canto superior esquerdo do ã, como é característica deste tipo de equipamentos.
a)	Exprima matematicamente a condição que os dados terão que satisfazer para que a área do visor acima referido seja máxima:
b)	Especifique a necessária transformação de enquadramento janela-visor por uma matriz M (para

considere as duas situações seguintes, mas devendo ter soluções o mais idênticas possível.

usar na forma P'=M.P) deduzida e apresentada em termos da mais simples composição de transformações geométricas elementares (S, R, ou T) em 2D, com a instanciação apropriada de todos os parâmetros, quer <u>literais</u>, quer <u>numéricos</u>. Para além da observação dos dados iniciais,

b.1) Quando o formato de aspecto (*aspect ratio*) da janela for <u>superior</u> ao do visor que satisfaz as condições da alínea a):

M =

b.2) Quando o formato de aspecto (*aspect ratio*) da janela for <u>inferior</u> ao do visor que satisfaz as condições da alínea a):

M =

c) Considere o par janela-visor que se encontre nas condições da alínea <u>b.2</u>). Que coordenadas dessa janela teriam de ser necessariamente alteradas se pretendêssemos satisfazer a condição da alínea a), desde que a janela se mantivesse centrada no mesmo ponto de coordenadas WC e não se corresse o risco de desaparecimento (por recorte) de qualquer gráfico anteriormente visível?

Escreva as equações necessárias a esse cálculo:

O diagrama da Figura anterior é o grafo de uma cena, no qual os diversos Pi representam sólidos primitivos em cuja implementação se admite não se terem usado transformações geométricas.

a) Pretende-se traduzir este Grafo de Cena para um programa OpenGL equivalente. Seguindo as regras de sequenciação e notação usadas nas aulas teóricas, escreva o pseudo-código com todas

vras Push e ectivamente ensadas.	e, nas	posiçõ	es —	- e <u>s</u> (<u>ó</u> nes	sas! -	— er	n que	tais	instruçõe	s não	possam
												-10
												<u> </u>
												•
												•
												40
												-
												-

- b) Para se apresentar o grafo da Figura do enunciado na forma de grafo de cena orientado para VRML seguindo as convenções das aulas teóricas, quantos nós Transform seriam efectivamente necessários?
 - Obs.: Recorda-se que, em VRML, a <u>ordem de execução</u> das transformações geométricas num nó Transform é S-R-T.
- c) Apresente, no espaço abaixo, a simplificação máxima do grafo da Figura do enunciado, de modo a reduzir o número total de nós mas com a garantia de se manterem os mesmos resultados numa posterior visualização da cena.

Nota: Como alternativa de resposta, poderá redesenhar, na própria Figura, de forma não ambígua e devidamente identificadas, apenas as partes alteradas do grafo.