Variational Quantum Algorithms

Adrian Harkness

Lehigh University

November 16, 2023

Introduction

The Variational Quantum Eigensolver

Extensions

Background

- Two approaches to quantum algorithm design
- NISQ algorithms
- Variational quantum algorithms

Background

$$-\frac{\overline{h}^{2}}{2m}\nabla^{2}\Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) = i\overline{h}\frac{\partial\Psi(\vec{r},t)}{\partial t}$$
$$H\Psi = E\Psi$$

The Schrodinger equation is an eigenvalue equation!

Linear Algebra Representation

With n qubits:

- $|\psi\rangle$ is a 2ⁿ normalized complex column vector
- $\langle \psi |$ is its conjugate transpose
- Hamiltonian H is a 2^n by 2^n hermitian matrix

Exponential scaling means ψ and H are hard to store on a classical computer.

Objective

With VQE, the goal is to find the minimum eigenvalue of a Hamiltonian H and its corresponding eigenvector: E_0 and ψ_0 . To do so, we minimize an upper bound on E_0 :

$$\min_{\theta} \left< H_{\theta} \right>$$
 where
$$\left< H_{\theta} \right> \equiv \left< \psi_{\theta} \right| H |\psi_{\theta} \right> = E_{\theta} \geq E_{0}$$

Algorithm Overview

- 1. State Preparation (Quantum)
- 2. Expectation Value Computation (Hybrid)
- 3. Iterative minimization (Classical)

Variational Quantum Deflation

To calculate the K-th eigenvalue:

$$\min_{\theta} F(\theta)$$

where

$$F(\theta) \equiv \langle \psi(\theta_k) | H | \psi(\theta_k) \rangle + \sum_{i=0}^{k-1} \beta_i | \langle \psi(\theta_k) | \psi(\theta_i) \rangle |^2$$

Can be seen as minimizing $\langle H_{\theta} \rangle$ s.t. $|\psi(\theta_k)\rangle$ orthogonal to $|\psi(\theta_0)\rangle \dots |\psi(\theta_{k-1})\rangle$

Subspace-Search VQE

To calculate the K-th eigenvalue:

- 1. Search for lowest energy k-dimensional subspace
- 2. Search subspace for highest energy eigenvector

Algorithm:

- 1. Construct an ansatz circuit $U(\boldsymbol{\theta})$ and choose input states $\{|\varphi_j\rangle\}_{j=0}^k$ which are mutually orthogonal $(\langle \varphi_i|\varphi_j\rangle = \delta_{ij})$.
- 2. Minimize $\mathcal{L}_1(\boldsymbol{\theta}) = \sum_{j=0}^k \langle \varphi_j | U^{\dagger}(\boldsymbol{\theta}) H U(\boldsymbol{\theta}) | \varphi_j \rangle$. We denote the optimal $\boldsymbol{\theta}$ by $\boldsymbol{\theta}^*$.
- 3. Construct another parametrized quantum circuit $V(\phi)$ that only acts on the space spanned by $\{|\varphi_j\rangle\}_{j=0}^k$.
- 4. Choose an arbitrary index $s \in \{0, \dots, k\}$, and maximize $\mathcal{L}_2(\phi) = \langle \varphi_s | V^{\dagger}(\phi) U^{\dagger}(\theta^*) H U(\theta^*) V(\phi) | \varphi_s \rangle$.

