Exercice 1. On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n}$$

- 1. (a) Calculer u_1 et u_2 .
 - (b) Démontrer, par récurrence, que pour tout entier naturel n, $0 < u_n$.
- 2. On admet que pour tout entier naturel n, $u_n < 1$.
 - (a) Démontrer que la suite (u_n) est croissante.
 - (b) Démontrer que la suite (u_n) converge.
- 3. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
 - (a) Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - (b) Exprimer pour tout entier naturel n, v_n en fonction de n.
 - (c) En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.
 - (d) Déterminer la limite de la suite (u_n) .

Exercice 2. On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{2}x^2 - x + \frac{3}{2}.$$

Soit a un réel positif.

On définit la suite (u_n) par $u_0 = a$ et, pour tout entier naturel n:

$$u_{n+1} = f\left(u_n\right)$$

Le but de cet exercice est d'étudier le comportement de la suite (u_n) lorsque n tend vers $+\infty$, suivant différentes valeurs de son premier terme $u_0 = a$.

1. (a) On suppose que a = 2. Représenter graphiquement, sur le graphique donné ci-dessous, les trois premiers termes de la suite (u_n) puis émettre une conjecture quant à la convergence de la suite (u_n) .

- (b) À l'aide de la calculatrice, conjecturer le comportement de la suite (u_n) lorsque n tend vers $+\infty$, pour a=3,1.
- 2. On pose a = 2, 9.
 - (a) Vérifier que f est strictement croissante sur l'intervalle $[1; +\infty[$.
 - (b) Montrer par récurrence que, pour tout entier naturel n, on a :

$$1 \leqslant u_{n+1} \leqslant u_n$$

- (c) Montrer que (u_n) converge vers une limite ℓ et déterminer sa limite sachant que ℓ est solution de l'équation f(x) = x.
- 3. Dans cette question, on prend a = 3, 1 et on admet que la suite (u_n) est croissante.
 - (a) À l'aide des questions précédentes montrer que la suite (u_n) n'est pas majorée.
 - (b) En déduire le comportement de la suite (u_n) lorsque n tend vers $+\infty$.

Exercice 3.

Partie 1.

Sur le graphique ci-dessous, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur \mathbb{R} . On sait que :

- La tangente à la courbe \mathscr{C}_f au point A d'abscisse -1 est parallèle à l'axe des abscisses.
- Le point B(0;2) est le seul point d'inflexion de la courbe \mathcal{C}_f .
- La tangente au point B à la courbe \mathcal{C}_f passe par le point de coordonnées (1;1).

On note f' la fonction dérivée de la fonction f et f'' la dérivée seconde de la fonction f.

À partir du graphique et des renseignements fournis :

- 1. Déterminer f'(-1) et f'(0).
- 2. Déterminer le signe de f''(-1) et celui de f''(3). Justifier que f''(0) = 0.
- 3. Donner le tableau de variation de la fonction dérivée f'.

4. Une des quatre courbes ci-dessous est la représentation graphique de la fonction f' et l'autre celle de f''.

Déterminer la courbe qui représente la dérivée f' et celle qui représente la dérivée seconde f''.

Partie 2.

La fonction f est définie pour tout réel x par $f(x) = (x+2)e^{-x}$.

- 1. Déterminer, f'(x).
- 2. Donner le tableau de variation de la fonction f.
- 3. Étudier la convexité de f.
- 4. \mathcal{C}_f admet-elle un point d'inflexion? Justifier et préciser éventuellement ses coordonnées.