Лабораторная работа 1.3

Изучение колебаний на примере физического маятника

Зотов Алексей 496 гр.

21 марта 2016 г.

Цель работы: исследовать физический и математический маятники как колебательные системы, измерить зависимость периода колебаний физического маятника от его момента инерции.

В работе используются: физический маятник (однородный стальной стержень), опорная призма, математический маятник, счётчик числа колебаний, линейка, секундомер.

Рис. 1: физический маятник.

Экспериментальная установка. В данной работе в качестве физического маятника используется однородный стальной стержень длиной l На стержне закрепляется опорная призма, острое ребро которой является осью качания маятника. Призму можно перемещать вдоль стержня, меняя расстояние a от точки опоры (точки подвеса) маятника до его центра масс. Используя теорему Гюйгенса—Штейнера и считая стержень тонким (его радиус много меньше длины), вычислим его момент инерции:

$$I = \frac{ml^2}{12} + ma^2 (1)$$

Ход работы

1. Проведем n=6 экспериментов, в каждом измерим время $N_T=20$ полных колебаний физического маятника.

Среднее значение $t_{avg}=31.56$. Среднее значение периода $T_{avg}=t_{avg}/20=1.5779$ [c]. Среднеквадратичное отклонение измерения: $\sigma=\sqrt{\frac{\Sigma(t_i-t_{avg})^2}{n-1}}\approx 0.10187$ Относительная погрешность периода: $\varepsilon=\frac{\sigma}{N*T_{avg}}\approx 0.0032<0.005$

Таблица 1: Время 20 полных колебаний

i	1	2	3	4	5	6
$t_{20},(c)$	31.43	31.72	31.56	31.62	31.49	31.53

2. Возбудим малые колебания, отклонив на угол $A_0=10.0^o$. Измерим время t затухания в ≈ 1.3 раза по достижении маятником значения амплитуды $A_1\approx 7.5^o$.

 $t \approx 5$ мин 30 c = 330 (c).

Количество колебаний N=209.

Добротность $Q=\frac{\pi}{\gamma_e T}$, где $\gamma_e=1/\tau_e$ - величина обратная времени убавыния амплитуды A в e раз. Ее вычислим так : $\gamma_e=\gamma_{1.3}\ln 1.3$, тогда :

$$Q = \frac{\pi \tau_{1.3}}{T \ln(1.3)} \approx 2504.23 \tag{2}$$