# CS 224N: Assignment 1

RYAN MCMAHON SATURDAY 28<sup>TH</sup> JANUARY, 2017

## Problem 1: Softmax (10 pts)

#### (a) (5 pts)

Prove that softmax is invariant to constant offsets in the input, that is, for any input vector x and any constant c, softmax(x) = softmax(x + c), where x + c means adding the constant c to every dimension of x. Remember that

$$softmax(x)_i = \frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$

#### **Answer:**

We can show that softmax(x) = softmax(x + c) by factoring out c and canceling:

$$softmax(x+c)_{i} = \frac{e^{x_{i}+c}}{\sum_{j} e^{x_{j}+c}} = \frac{e^{x_{i}} \times e^{c}}{e^{c} \times \sum_{j} e^{x_{j}}}$$
$$= \frac{e^{x_{i}} \times \cancel{e^{e}}}{\cancel{e^{e}} \times \sum_{j} e^{x_{j}}} = softmax(x)_{i}$$

### (b) (5 pts)

Given an input matrix of N rows and D columns, compute the softmax prediction for each row using the optimization in part (a). Write your implementation in  $q1\_softmax.py$ . You may test by executing python  $q1\_softmax.py$ .

Note: The provided tests are not exhaustive. Later parts of the assignment will reference this code so it is important to have a correct implementation. Your implementation should also be efficient and vectorized whenever possible (i.e., use numpy matrix operations rather than for loops). A non-vectorized implementation will not receive full credit!

#### Answer:

See code: ~/code/q1\_softmax.py.

# Problem 2: Neural Network Basics (30 pts)

## (a) (3 pts)

Derive the gradients of the sigmoid function and show that it can be rewritten as a function of the function value (i.e., in some expression where only (x), but not x, is present). Assume that the input x is a scalar for this question. Recall, the sigmoid function is

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{2}$$

**Answer:** 

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$= \frac{e^x}{1 + e^x}$$

$$\frac{\partial}{\partial x}\sigma(x) = \frac{e^x \times (1 + e^x) - (e^x \times e^x)}{(1 + e^x)^2}$$

$$= \frac{e^x + (e^x \times e^x) - (e^x \times e^x)}{(1 + e^x)^2}$$

$$= \frac{e^x}{(1 + e^x)^2} = \sigma(x) \times (1 - \sigma(x))$$

Because  $1 - \sigma(x) = \sigma(-x)$  we can show that:

$$\frac{\partial}{\partial x}\sigma(x) = \frac{e^x}{(1+e^x)^2}$$

$$= \sigma(x) \times \sigma(-x)$$

$$= \frac{e^x}{1+e^x} \times \frac{1}{1+e^{+x}}$$

$$= \frac{e^x}{(1+e^x)^2}$$

## (b) (3 pts)

Derive the gradient with regard to the inputs of a softmax function when cross entropy loss is used for evaluation, i.e., find the gradients with respect to the softmax input vector  $\boldsymbol{\theta}$ , when the prediction is made by  $\hat{\mathbf{y}} = softmax(\boldsymbol{\theta})$ . Remember the cross entropy function is