REPONSES A L'EXERCICE I de Mathématiques

I-1-	A) $ln(a) \times ln(b)$		$\mathbf{B)} \ln(a) + \ln(b)$		$(C) \ln(a) + \ln(1 + \frac{b}{a})$		
I-2-	A)]0; +∞[B)]-1;1[(C)]-∞; -1[∪]1; +∞[)		D) $]e^{-1}$; $+\infty[$	
I-3-	A) $\lim_{x \to a} \frac{f(x)}{g(x)} = 0^+$	$\mathbf{B})\lim_{x\to a} \frac{f(x)}{g(x)} = +\infty$		C) $\lim_{x \to a} f(x) \times g(x) = 0^+$		D) $\lim_{x \to a} f(x) \times g(x) = +\infty$	
I-4-	A) asymptote horizor	ntale B) asympto		ote verticale C) déc		croissante sur $]a; +\infty[$	
	A) $f'(1) = -2$	B) $f'(1) = 10$		C) $f'(1) = 1$			
I-5-	D) $y = -2x + 3$	E) $y = 10x + 3$		F) $y = x + 2$		G) $y = -2x + 5$	
I-6-	$\mathbf{A)}f(c)=0$		naximum ou nimum local	C) $f(x) = c$ admet une unique solution			
I-7-	A) $f(a) \times f(b)$ $\Rightarrow f$ s'annule sur	Compri				mpris entre $f(a)$ et $f(b)$ = k admet une solution sur[a ; b]	
I-8-	A) f croissante sur $[a;b]$	B) f'	croissante sur [a;b]	C) f convexe su	r [a; b])	D) C_f en-dessous de $[AB]$	
I-9-	A) raison égale à 1	B) $u_{19} = 20$		C) suite convergente		$\boxed{\mathbf{D}) u_1 + \dots + u_{10} = 50}$	
I-10-	A) (u_n) géométrique de raison $\frac{5}{4}$	B) (u_n) arithmétique de raison $\frac{5}{4}$		(u_n) décroissante		$\mathbf{D)}\lim_{n\to+\infty}u_n=5$	
I-11-	A) $P(A) \times P(B)$	$\mathbf{B)}P(A)+P(B)$		$ \begin{array}{c} $			
I-12-	A) $P(X = 1) = \frac{2}{3}$	B) $P(X = 1) = \frac{1}{3}$		(C) E(X) = 2		D) $E(X) = \frac{11}{3}$	
I-13-	A) (AB) et (DC) sécantes	B) (AB) et (DC) parallèles		C) $ABCD$ parallélogramme $\Leftrightarrow b = 2a$		$\begin{array}{c} \textbf{D) } ABCD \\ \text{parallélogramme} \\ \Leftrightarrow b = -2a \end{array}$	

REPONSES A L'EXERCICE II de Mathématiques

		•
Les p <i>Or, si</i> <i>droit</i>		ants au plan de la dalle selon les droites (A_0B_0) et (F_0G_0) . Explan sécant à l'un est sécant à l'autre et leurs intersections sont deux
G ₀ F ₀ J Or, si Comr temp Etape Les p La dr paral Théo Si u de P ₁	F_1A_1 est un rectangle donc (A_0B_0) et F_1G_1 est un rectangle donc (F_0G_0) et \mathbf{deux} droites sont parallèles, alors tone les droites (A_0B_0) et (F_0G_0) sont s, puis (A_1B_1) et (F_1G_1) sont parallèles. Pet \mathcal{P}_2 sont sécants selon la droite (A_1B_1) est une droite du plan \mathcal{P}_1 lèles. Prème du toit: P_1 et P_2 sont deux plans P_2 et P_3 et P_4 et P_4 sont deux plans P_1 et P_2 et P_3 et P_4 et P_4 sont deux plans P_1 et P_4 et P_4 et P_4 sont deux plans P_4 et P_4 et P_4 et P_4 sont deux plans P_4 et P_4 et P_4 et P_4 sont deux plans P_4 et	It (A_1B_1) sont parallèles. (F_1G_1) sont parallèles. Oute droite parallèle à l'une est parallèle à l'autre. Parallèles, alors (A_1B_1) et (F_0G_0) sont parallèles, dans un premier les dans un deuxième temps. Troite (D_1H_1) . $(D_2: D_1)$ est une droite du plan $(D_1: D_2)$. Ces deux droites sont es sécants. Sécants. Sécants la droite d'intersection de la droite d'intersection d'inte
II-3-	$\overline{D_1H_1}(-10 ; 0 ; 0)$	$\overrightarrow{D_1E_1}$ (2 ; 2 ; -1)
II-4-	Le vecteur $\overrightarrow{n_1}(0;1;2)$ est un vecte En effet:	eur normal au plan \mathcal{P}_1 .
$\overrightarrow{n_1} \cdot \overrightarrow{D}$ Le ve	$\overrightarrow{_1E_1} = 2 \times 0 + 2 \times 1 - 1 \times 2 = 0$. D	0. Donc le vecteur $\overrightarrow{n_1}$ est orthogonal au vecteur $\overrightarrow{D_1H_1}$. onc le vecteur $\overrightarrow{n_1}$ est orthogonal au vecteur $\overrightarrow{D_1E_1}$. vecteurs non colinéaires du plan \mathcal{P}_1 donc c'est un vecteur normal

II-5- Equation cartésienne du plan $\mathcal{P}_1: y+2z-16=0$ En effet :

Le plan \mathcal{P}_1 a pour vecteur normal $\overrightarrow{n_1}(0;1;2)$ et passe par $D_1(0;0;8)$. Soit M(x;y;z) un point de l'espace. $M \in \mathcal{P}_1 \iff \overrightarrow{n_1} \cdot \overrightarrow{D_1 M} = 0 \iff 0 \times x + 1 \times y + 2 \times (z-8) = 0 \iff y+2z-16=0$

II-6- $z_1 = 4$

En effet:

 $F_1 \in \mathcal{P}_1$ donc ses coordonnées vérifient l'équation obtenue à la question II-5- soit :

$$y_{F_1} + 2z_{F_1} - 16 = 0 \iff 8 + 2z_1 - 16 = 0 \iff 2z_1 = 8 \iff z_1 = 4$$
.

II-7- $F_0 F_1 = 4$

II-8- $\tan \alpha = \frac{1}{2}$

II-9- La toiture du bâtiment respecte / ne respecte pas les normes de la région.

(Barrer le terme qui ne convient pas)

En effet:

 $\tan \alpha = \frac{1}{2} \operatorname{donc} \alpha \simeq 26.6^{\circ} \operatorname{et} \operatorname{n'est} \operatorname{pas} \operatorname{comprise} \operatorname{entre} 33^{\circ} \operatorname{et} 45^{\circ}.$

II-10- Une équation cartésienne du plan $(B_0C_0C_1)$ est donnée par x-y-4=0.

En effet:

 $x_{B_0} - y_{B_0} - 4 = -8 + 12 - 4 = 0$

 $x_{C_0} - y_{C_0} - 4 = 2 + 2 - 4 = 0$

 $x_{C_1} - y_{C_1} - 4 = 2 + 2 - 4 = 0$.

Les coordonnées de trois points non alignés du plan vérifient l'équation x-y-4=0, donc une équation cartésienne du plan $(B_0C_0C_1)$ est donnée par x-y-4=0.

II-11- Représentation paramétrique de la droite (B_1C_1) :

$$\begin{cases} x = t + 4 \\ y = t \\ z = \frac{1}{2}t + 8 \end{cases}, t \in \mathbb{R} \text{ ou} \begin{cases} x = 2t + 4 \\ y = 2t \\ z = t + 8 \end{cases}, t \in \mathbb{R}$$

II-12- Il est possible / impossible de prolonger le pan de toit jusqu'au sol.

(Barrer le terme qui ne convient pas)

En effet:

Intersection des deux droites
$$(A_1H_1)$$
 et (B_1C_1) :
$$\begin{cases} x = -10 = 2t + 4 \\ y = 2k = 2t \\ z = 8 + k = t + 8 \end{cases} \Leftrightarrow \begin{cases} t = k = -7 \\ x = -10 \\ y = -14 \\ z = 1 \end{cases}$$

Les deux bords du toit sont sécants en un point situé à 1m/1unité du sol. Il ne sera donc pas possible de prolonger ce toit jusqu'au sol car il s'arrêtera avant de l'atteindre.

REPONSES A L'EXERCICE III de Mathématiques

III-1-
$$\lim_{x \to -\infty} f(x) = -\infty$$

III-2-
$$\lim_{x \to +\infty} f(x) = 0$$

En effet: $f(x) = -(1+x^2)e^{-x} = -e^{-x} - x^2e^{-x}$.

Or, $\lim_{x \to +\infty} e^{-x} = 0$ et $\lim_{x \to +\infty} x^2 e^{-x} = 0$ donc par somme $\lim_{x \to +\infty} -e^{-x} - x^2 e^{-x} = 0$.

III-3-Equation cartésienne de Δ : y = 0

Position de C_f par rapport à Δ : C_f est **en-dessous de** Δ

III-4-
$$a = 1$$

$$b = -$$

En effet:

$$f'(x) = (1+x^2)e^{-x} - 2xe^{-x} = (x^2 - 2x + 1)e^{-x} = (x-1)^2e^{-x}$$

III-5-
$$\mathcal{E} = \{1\}$$

III-6-

X	-∞		1		+∞
Signe de $f'(x)$		+	0	+	
Variations de f	-8		$\frac{-2}{e}$		• 0

III-7- Equation cartésienne de T_A : $y = \frac{-2}{\rho}$

Equation cartésienne de T_B : y = x - 1

III-8-

D)

III-9- L'équation f(x) = -3 admet une unique solution dans l'intervalle [-1; 0].

En effet : La fonction f est continue et strictement croissante sur l'intervalle [-1; 0].

On a: f(-1) = -2e et f(0) = -1. Donc f(-1) < -3 < f(0).

Ainsi d'après le théorème de la bijection, l'équation f(x) = -3 admet une unique solution dans l'intervalle [-1;0].

III-10-

B)
$$-0.5$$

D) −1