Machine Learning: Predicting House **Prices** % Group 3: Anjali, Yalda, Ning, Vincent

Thinking Process

- 1. Data Collection
 - a. What was used?
 - b. What was gathered?
- Tableau
 a. Graphical data
- 3. Machine Learning a. Models

BUY ✓ SELL ✓ FIND AN AGENT

GENT INFO & ADVICE ✓

ICE V

JOIN OUR TEAM 🗸

ABOUT US V

Français

.

Kamloops, BC

\$3,999,900 3390 Shuswap Road E

20

Save + View >

\$3,999,000

13443 Mclaughlin Rd Caledon, ON

Save + View >

\$3,800,000

231 Arts Lane Port Severn, ON

Save +

Data Collection - What was gathered?

House Information

- Price
- # of bed's

Building Features

- Fireplace
- Style (Detached, Semidetached)

Gathered Data

	A	В	С	D	E			н			К	L	М	N	0 🔺
1		lat	lon	city	style	building_type	cooling_type	heating_type	price	number_of_beds	number_of_baths	extra_space	fire_place		
2	0	43.33341	-79.8829	Waterdow	Townhouse	Row / Townhouse	Central air conditioni	Forced air	749900	2	3	0	0		
3	1	43.85637	-79.3377	Markham	Detached	House	Central air conditioni	Forced air	2998000	5	8	1	1		
4	2	43.67089	-79.3169	Toronto	Detached	House	Central air conditioni	Forced air	2599900	3	4	0	1		
5	3	43.58962	-79.6444	Mississau	Semi-Detached	House	Central air conditioni	Forced air	2499850	4	4	1	. 0		
6	4	43.44744	-79.6667	Oakville	Detached	House	Central air conditioni	Forced air	1999000	5	4	. 0	1		
7	5	43.65001	-79.4828	Toronto	Detached	House	Wall unit	Hot water radiator heat	1499000	3	2	2 0	0		
8	6	43.15614	-79.9162	Mount Ho	Detached	House	Central air conditioni	Baseboard heaters, Force	1425000	3	3	0	0		
9	7	43.88012	-79.4393	Richmond	Townhouse	Row / Townhouse	Central air conditioni	Forced air	1199000	3	3		0		
10	8	43.88012	-79.4393	Richmond	Detached	House	Central air conditioni	Forced air	1098000	3	2	. 0	0		
11	9	43.68581	-79.7599	Brampton	Detached	House	Central air conditioni	Forced air	999900	4	. 2	2 0	1		
12	10	43.89756	-78.8635	Oshawa	Detached	House	Central air conditioni	Forced air	949900	4	3	1	. 0		
13	11	43.58962	-79.6444	Mississau	Townhouse	Row / Townhouse	Central air conditioni	Forced air	875000	3	3		1		
14	12	45.42088	-75.6901	Ottawa	Detached	House	Central air conditioni	Forced air	866000	3	2	. 0	0		
15	13	43.64134	-79.3998	Toronto	Townhouse	Row / Townhouse	Wall unit	Baseboard heaters	838000	2	2	. 1	. 1		
16	14	43.68581	-79.7599	Brampton	Townhouse	Row / Townhouse	Central air conditioni	Forced air	749888	3	3	0	1		
17	15	45.42088	-75.6901	Ottawa	Townhouse	Row / Townhouse	Central air conditioni	Forced air	645900	3	2	2 0	1		
18	16	45.01542	-75.6446	Kemptvill	Detached	House	Wall unit	Baseboard heaters, Other	599999	2	1		1		
19	17	43.14082	-80.2632	Brantford	Townhouse	Row / Townhouse	Central air conditioni	Forced air	599000	3	3	0	0		
20	18	45.04141	-74.734	Cornwall	Detached	House	Central air conditioni	Forced air	579000	2	2	. 1	. 0		
21	19	45.82133	-77.1105	Pembroke	Detached	House	Central air conditioni	Forced air	550000	3	2	. 0	1		
22	20	42.10133	-83.1086	Amherstb	Detached	House	Central air conditioni	Forced air	549900	3	2	. 0	0		
23	21	43.25608	-79.8729	Hamilton	Townhouse	Row / Townhouse	Central air conditioni	Forced air	400000	2	3	1	. 0		
24	22	43.25608	-79.8729	Hamilton	Townhouse	Row / Townhouse	Central air conditioni	Forced air	400000	2	3	1	. 0		
25	23	42.96929	-81.2053	London	Townhouse	Row / Townhouse	Central air conditioni	Forced air	399900	4	. 2	. 0	0		
26	24	43.62186	-79.9439	Halton Hil	Detached	House	Central air conditioni	Forced air	2999000	4	4		1		
27	25	44.35968	-78.7422	Kawartha	Detached	House	Central air conditioni	Forced air	2900000	6	6		1		
100	22					- /					_				

Data Visualization with Tableau

From these graphs
we can see price for
the house depends
on the beds, baths
and style of the
house.

Here in this visualization we can see the style whether it is detached, semi-detached or townhouse, it depends on the number of beds and baths. As in here we have much less houses if we filter number of beds to 1-2.

In this box plot we can see how the data is distributed and also the outliers in the graph.

For the map we use lat and long from predicting_house_price_csv which gives us detailed information about the houses.

Out[90]: <AxesSubplot:xlabel='number_of_baths', ylabel='price'>

Out[91]: <AxesSubplot:xlabel='extra_space', ylabel='price'>

Out[128]:	array([1.01585000e+06,	1.56945771e+14,	1.55946000e+06,	7.31953000e+05,	
		1.24823900e+06,	7.47800000e+05,	1.02449100e+06,	1.84256900e+06,	
		8.60310017e+13,	2.92055000e+05,	1.45721800e+06,	8.68272000e+05,	
		5.49327000e+05,	8.60310014e+13,	1.22818400e+06,	1.57012100e+06,	
		9.60157000e+05,	1.01606000e+06,	1.08099600e+06,	8.75368000e+05,	
		1.16884600e+06,	1.14375200e+06,	1.35823300e+06,	1.06866300e+06,	
		1.07616200e+06,	5.56999000e+05,	2.02168200e+06,	1.29882600e+06,	
		2.23158800e+06,	8.60310018e+13,	8.61417000e+05,	8.77717000e+05,	
		9.20583000e+05,	1.01358800e+06,	1.01101700e+06,	1.30957000e+06,	
		1.56945770e+14,	1.12527100e+06,	9.71176000e+05,	9.72932000e+05,	
		1.32770700e+06,	4.51835000e+05,	-4.09490264e+14,	1.53429000e+06,	
		4.39205514e+14,	1.07075400e+06,	6.16012000e+05,	1.71434300e+06,	
		1.65613300e+06,	7.19220000e+05,	3.39068344e+14,	1.21616100e+06,	
		1.00097600e+06,	7.98285000e+05,	1.29615200e+06,	7.80019000e+05,	
		1.45792000e+06,	8.60310017e+13,	1.12165200e+06,	2.06074800e+06,	
		1.65035900e+06,	1.25313200e+06,	8.33179596e+13,	1.23697300e+06,	
		6.30908000e+05,	1.81828700e+06,	1.07091400e+06,	4.97357000e+05,	
		1.56142700e+06,	1.15737700e+06,	5.94689000e+05,	1.01517600e+06,	
		6.07801000e+05,	1.70729600e+06,	1.83378100e+06,	1.01822300e+06,	
		0 (0340047-143	0 2225000005	C 774 CEAAA AE	C F00C40000F	

1 1-1

Try with different set amount of futures for Linear Regression

0.6092621922301564, 0.6091581153212526, 0.6091442221149217, 0.5779790129316478]

```
y=df['median house value']
       r2 result=[]
       for i in trim option:
           X test frame=df data scaled transformed.iloc[:,i::]
           model loop = LinearRegression()
           X train, X test, y train, y test = train test split(X test frame, y,random state=1)
           model loop.fit(X train,y train)
           LinearRegression()
           y predict=model loop.predict(X test)
           r2 = r2 score(y test, y predict)
           r2 result.append(r2)
       r2 result
t[32]: [0.62154995142617,
```

```
20]:
      1 y predict
    array([1348056.29551521, 1005081.55982772, 1005081.55982772,
            1005081.55982772, 1348056.29551521, 1005081.55982772,
            1005081.55982772, 1348056.29551521, 319132.08845274,
            1005081.55982772, 1005081.55982772, 662106.82414023,
             662106.82414023, 1348056.29551521, 1005081.55982772,
            1348056.29551521, 1005081.55982772, 1348056.29551521,
            1691031.0312027 . 1348056.29551521, 1005081.55982772.
            1348056.29551521, 1005081.55982772, 1348056.29551521,
             662106.82414023, 1005081.55982772, 1348056.29551521,
            1005081.55982772, 1005081.55982772, 1348056.29551521,
            1005081.55982772, 1348056.29551521, 1005081.55982772,
            1005081.55982772, 1005081.55982772, 1691031.0312027,
            1005081.55982772, 1005081.55982772, 1005081.55982772,
            1005081.55982772, 1005081.55982772, 662106.82414023,
             662106.82414023, 1348056.29551521, 662106.82414023,
            1005081.55982772, 1348056.29551521, 1005081.55982772,
            1348056.29551521, 662106.82414023, 1005081.55982772,
            1005081.55982772, 1005081.55982772, 1005081.55982772,
            1005081.55982772, 1005081.55982772, 1348056.29551521,
```

Methods used to increase the accuracy of the model

After not achieving the desired accuracy, another dataset with more number of columns was used for a random forest regressor model which works better for more complex models and different methods were implemented to improve the accuracy of the model such as:

- 1. Cleaning and preprocessing the data
- 2. Finding the optimal value for the other hyper-parameters
- 3. Removing the least relevant columns from the features
- 4. Trying bagging to reduce variance in the model by creating random subsets of the training dataset and training multiple decision trees based on them
- 5. Using boosting to reduce the bias in the model by iteratively adjusting the weight of the training data
- 6. Increasing the size of the training dataset

Using the mentioned methods, helped to increase the accuracy from 70% on the first iteration to 76%.

Correlation Matrix of the new dataset

Correlation Matrix of the old dataset

Analyzing the features' importance

```
[(0.5675130203384309, 'median income'),
 (0.16272857179933684, 'ocean proximity INLAND'),
 (0.07388171641296075, 'population'),
 (0.0669345253793256, 'housing median age'),
 (0.05431434066732454, 'total_bedrooms'),
 (0.03441077479484053, 'households'),
 (0.030205587219674666, 'total rooms'),
 (0.004990653452852285, 'ocean proximity NEAR OCEAN'),
 (0.0034462953614574653, 'ocean proximity <1H OCEAN'),
 (0.001574514573796469, 'ocean proximity NEAR BAY')]
```

Thank you for listening!!