高雄中學 108 學年度第二學期高二第二、三類組數學科第二次月考試題

範圍:矩陣(全)

(請將答案寫在答案卷上,請小心計算,Good Luck!!)

一、多選題: (每題 10 分共計 20 分)

說明:每題有5個選項,其中至少有1個是正確的選項。選出正確選項,寫在答案卷之「答案欄」。 各題之選項獨立判定,每個選項答對得2分,每題共計10分。

- 1. 下列各敘述何者正確?
 - (A)由 2 個 1,2 個 2,5 個 3 所組成的三階方陣共有 1260 個.
 - (B)設方陣 $A = \left[a_{ij} \right]_{10 \times 10}$,若 $a_{ij} = i^2 + j^2$,則A中一切元之總和為3850.

(C)設
$$A = \begin{bmatrix} 1 & 4 & 9 & 16 & \dots \\ 2 & 3 & 8 & 15 & \dots \\ 5 & 6 & 7 & 14 & \dots \\ 10 & 11 & 12 & 13 & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$
 $(n \ge 7)$,則 $a_{57} = 45$.

- (D) 若 A, B 為二階轉移矩陣,則 $\frac{3}{4}A^{2020}B^{109} + \frac{1}{4}B^{109}A^{2020}$ 亦為二階轉移矩陣.
- (E) 若 A, B 反矩陣均存在,則 $(AB)^{-1} = A^{-1}B^{-1}$.

$$2.$$
 設 $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$, $P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 且已知 $A = PBP^{-1}$,下列敘述何者正確?

(A)
$$A^2 - 3A - 2I = O$$
 (B) $A^4 - 7A^3 + 10A^2 - 8A + 3I = \begin{bmatrix} -37 & 36 \\ -24 & 23 \end{bmatrix}$ (C) $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

(D)
$$A^{2020} = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2^{2020} \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 1 \end{bmatrix}$$
 (E) $A^{-1} = \frac{1}{4}(A^3 - 6A^2 + 13A - 12I)$

二、填充題: (共計 70 分)

$$1. 解方程組 \begin{cases} 2y+4z+6u=12\\ x+y+4z+2u=1 \end{cases} £利用列運算將增廣矩陣 \begin{bmatrix} 0 & 2 & 4 & 6 & 12\\ 1 & 1 & 4 & 2 & 1\\ 1 & 0 & 2 & -1 & -5 \end{bmatrix} 化簡成 \begin{bmatrix} 1 & 0 & a & b & c\\ 0 & 1 & 2 & 3 & 6\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$
求數對 $(a,b,c)=$ (A)

2.
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 4 \\ 3 & -1 & 0 \end{bmatrix}$$
 且 $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 試求 $(A+I)(A^2-A+I) =$ (請完整寫出矩陣內所有元素)

3. 矩陣
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 2 \end{bmatrix}$$
,若 $A^{109} = \begin{bmatrix} a_{ij} \end{bmatrix}_{3\times 3}$ 且 $\frac{a_{31}}{109 \cdot 2^{108}} = a$,求 $a = \underline{\qquad (C)}$

4. 小杰計畫帶老婆環台旅行,將旅費放置保險箱中,且保險箱密碼為 abcd ,已知小杰將密碼 abcd 記做 abcd 。 abcd abcd

一個二階方陣
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,且滿足 $A^3 = \begin{bmatrix} 7 & 5 \\ 10 & 7 \end{bmatrix}$, $A^5 = \begin{bmatrix} 41 & 29 \\ 58 & 41 \end{bmatrix}$,試求密碼 $abcd = \underline{\qquad (D)}$

- 5. 小杰带老婆環台旅行,打算遊走於台北、台中、墾丁、花蓮等四地,兩人旅遊共識是若當夜宿於某地時,翌日早晨醒來,絕不留在原地,且小杰老婆要求說若當天夜宿花蓮則隔天絕對不去台中夜宿,假設到達各地機率均等,若小杰與老婆第一天夜宿於台中,求小杰與老婆第四天夜宿墾丁的機率為 (E)
- 6. 小杰與老婆在飯店裡玩遊戲,遊戲開始時小杰與老婆各自準備了一個袋子放有鈔票,其中小杰袋中有二張 1000 元鈔票,老婆袋中有三張 500 元鈔票,遊戲規則為兩人分別各自從自己袋中取出一張鈔票交換到對方袋子,稱為一局,若局數一直進行下去且袋中鈔票趨於穩定,求小杰袋中有 1500 元鈔票機率為___(F)___
- 7. 已知矩陣 $A = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 3 & 4 \\ 7 & 9 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 3 & 4 \\ 6 & 2 & 5 \\ 7 & 9 & 4 \end{bmatrix}$ 且 C 為三階方陣,滿足 ACA + BCB = ACB + BCA + I ,其中

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 , 求矩陣 $C =$ (G) (請完整寫出矩陣內所有元素)

8. 設
$$A = \begin{bmatrix} 2 & 1 \\ x & y \end{bmatrix}$$
, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, 若 $(A - I)^{-1}$, $(A + I)^{-1}$ 均不存在,求數對 $(x, y) = \underline{\qquad \qquad (H)}$

- 9. 在座標平面上點 $P_1=(1,1)$ 經過線性變換 $A=\begin{bmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{bmatrix}$ 的變換下得 P_2 ,再將 P_2 經過線性變換 A 的變換下得出 P_3 ,將此過程以此類推即 P_n 經過線性變換 A 的變換下得出 P_{n+1} , $\forall n \in \mathbb{N}$,若 $P_{109}=(a,b)$,試求 $\log_2 a = \underline{\qquad (I)}$
- 11. 在坐標平面上,已知直線 y=mx 將區域 $\left\{(x,y)\Big| \frac{x^2}{25} + \frac{y^2}{16} = 1, y \ge 0\right\}$ 分成兩個區域 S_1,S_2 ,已知兩區域 S_1,S_2 面積比為 S_1,S_2 可有比為 S_1,S_2 可以 S_1,S_2 可有比為 S_1,S_2 可有比为 S_1,S_2 可有比为 S_1,S_2 可有比为 S_1,S_2 可有比为 S_1,S_2 可以 $S_1,S_$

12. 若二階矩陣序列
$$\{A_n\}$$
 满足: $A_1 = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$, $A_{n+1} = PA_n + Q$, $(n=1,2,3,\cdots)$, 其中 $P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,
$$Q = \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix}$$
 ,當 $n \geq 2$ 時,試求出矩陣序列 A_n 的一般表達式為(L)(請完整寫出矩陣內所有元素)

二、計算證明題: (10分)

- 1. 設A 是二階方陣,且A 非零矩陣, $S = \left\{ X$ 為二階方陣 $\left| AX = 2XA \right\}$,試回答以下問題:

 - (2)若 $X, X^2 \in S$, 試證明: X^{-1} 不存在.
- $(3) 若 A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, 求集合 S.$

高雄中學 108 學年度第二學期高二第二、三類組數學科第二次月考答案卷

____年___组 姓名:_____ 座號:____

一、多選題: (20%)(每個選項答對得2分,每題共計10分)

1.	CD	2.	BCD

二、填充題:(70%)

1格	2 格	3 格	4格	5 格	6格	7格	8格	9 格	10 格	11 格	12 格
10分	20 分	30 分	38 分	46 分	54 分	60 分	63 分	66 分	68 分	69 分	70分

(A) $(2,-1,-5)$	$ \begin{bmatrix} -10 & -3 & -12 \\ 36 & -19 & 0 \\ -9 & -9 & -19 \end{bmatrix} $	(C) 83	(D)1121	(E) $\frac{5}{18}$
$(F) \frac{3}{5}$	$ (G) \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} $	(H) (-3,-2)	(I)108	$(J)(\frac{-7+\sqrt{3}}{2},\frac{1+7\sqrt{3}}{2})$
(K) $\frac{8+4\sqrt{3}}{5}$ 或 $\frac{-8-4\sqrt{3}}{5}$	(L) $\begin{bmatrix} -2 + 7 \cdot 2^{n-2} & 5 \cdot 2^{n-2} \\ 2 & 7 \cdot 2^{n-2} & 5 \cdot 2^{n-2} \end{bmatrix}$			

二、計算證明題:(10%)

- 1. (3%)(1)pf: 若 $X,Y \in S$,則 AX = 2XA, AY = 2YA.
 - $\therefore A(aX+bY) = A(aX) + A(bY) = aAX + bAY = 2aXA + 2bYA = 2(aX+bY)A. \quad \forall a,b \in R.$
 - $\therefore aX + bY \in S$.
 - $(3\%)(2) :: X, X^2 \in S :: AX = 2XA, AX^2 = 2X^2A$

於是 $AX^2 = (AX)X = (2XA)X = 2X(AX) = 2X(2XA) = 4X^2A$ 所以 $2X^2A = 4X^2A$. 故得 $X^2A = O$. 假設 X^{-1} 存在, $X^{-1}X^{-1}X^2A = X^{-1}X^{-1}O = O$,但是 $X^{-1}X^{-1}X^2A = X^{-1}(X^{-1}X)XA = X^{-1}XA = A$. 由上等式得出 A = O (矛盾). 所以 X^{-1} 不存在.

解得
$$x = 2w$$
 , $y = -2w$, $z = -w$, 於是 $X = \begin{bmatrix} 2w & -2w \\ -w & w \end{bmatrix} = w \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}$, $w \in R$. $\therefore S = \begin{cases} k \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix} k \in R \end{cases}$