Generalized linear models for longitudinal data with biased sampling designs

A sequential offsetted regression approach

L.S. McDaniel¹ J.S. Schildcrout² E.F. Schisterman³ P.J. Rathouz⁴

¹Biostatistics Program, School of Public Health LSU Health Sciences Center, New Orleans

²Department of Biostatistics, Department of Anesthesiology Vanderbilt University School of Medicine

³ Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institutes of Health

> ⁴Department of Biostatistics and Medical Informatics University of Wisconsin, Madison

Example - ADHD Study

- Goal: Identify risk and prognostic factors for ADHD in early childhood
- Sampling: 255 subjects, about half cases/controls Cases: Referred by parent or teacher Controls: Matched demographically
- Followed for 15 years (we have 8)
- Analyze: Time course of hyperactivity symptom count

Subject-level Sampling:

A subject is either in or out of the study

Observation-level Sampling:

A subject may be sampled at each time point

Data and Model of Interest

- Y_i : count or continuous outcome at times $t_i = 1, ..., T$
- x_j: p-vector of covariates at times t_j
- $X = (x_1, \dots, x_T)'$ is a $T \times p$ matrix of covariates

Marginal population mean model for Y_i :

$$\mu_{P_j} = E(Y_j|X) = g^{-1}(x_j'\beta)$$

Finally,

- Z_j : subject was referred at time t_j
- S_j : subject was sampled at time t_j

Assumptions

1 No interference assumption

$$E(Y_j|X) = E(Y_j|x_j)$$

2 Known value for

$$\frac{\Pr(S_j = 1 | Z_j = 1)}{\Pr(S_j = 1 | Z_j = 0)} = \frac{\pi(1)}{\pi(0)}$$

3 Sampling only depends on Z_j , and possibly baseline covariates

Modeling Steps

The assumptions allow for three modeling steps:

- **1** Estimate $Pr(Z_j = 1|Y_j, X)$ from sample, for each t_j
- **2** Compute $Pr(S_j = 1 | Y_j, X)$, for each t_j
- **3** Estimate $E(Y_j|X)$ from sample

Step 1: Estimate $Pr(Z_j = 1 | Y_j, X)$

Let w_j be a vector of covariates (possibly overlapping x_j) In the population:

$$Pr(Z_j = 1 | Y_j, X) = \lambda_{P_j}(y, X)$$

$$= \log i t^{-1} \left\{ w'_{1j} \gamma_1 + h(y) w'_{2j} \gamma_2 \right\}$$

Then, in the sample:

$$Pr(Z_{j} = 1 | Y_{j}, X, S_{j}) = \lambda_{S_{j}}(y, X)$$

$$= \log i t^{-1} \left\{ w'_{1j} \gamma_{1} + h(y) w'_{2j} \gamma_{2} + \log \pi(1) / \pi(0) \right\}$$

Step 2: Compute $Pr(S_j|Y_j,X)$

$$ho_{j}(y, X) = \Pr(S_{j} = 1 | y, X)$$

$$= \pi(0) \{1 - \lambda_{P_{j}}(y, X)\} + \pi(1)\lambda_{P_{j}}(y, X)$$

Gain stability by using

$$\frac{\rho_j(y,X)}{\rho_j(y_0,X)} = \frac{1 - \lambda_{P_j}(y,X) + \{\pi(1)/\pi(0)\} \, \lambda_{P_j}(y,X)}{1 - \lambda_{P_j}(y_0,X) + \{\pi(1)/\pi(0)\} \, \lambda_{P_j}(y_0,X)}$$

Step 3: Estimate $E(Y_j|X)$

In the population, conditional density is exponential family:

$$f_P(y|X) = \exp\left\{\frac{\theta_j y - b(\theta_j)}{\phi} + c(y;\phi)\right\}$$

Use canonical link:

$$g(\mu_{P_j}) = g(\mathsf{E}(Y_j|X)) = x_j'\beta = \theta_j$$

In sample:

$$f_{\mathcal{S}}(y|X) \propto \exp\left\{\frac{ heta_{j}y - b(heta_{j})}{\phi} + c(y;\phi) + \log
ho_{j}(y,X)
ight\}$$

Standard Errors

View the solution as stacked estimating equations:

$$\sum_{i} {\mathsf{T}_{i}(\gamma) \choose \mathsf{U}_{i}(\gamma,\beta)} = \mathbf{0}.$$

Use sandwich estimate for SE

Applicable Outcomes

Worked out for

- Binary data (binomial)
- Count data (Poisson)
- Continuous data (normal)

For continuous data, need to estimate variance

Simulations - Count Data

For each subject, i,

$$\log \mu_{ij} = \beta_0 + \beta_{x_1} x_{1i} + \beta_t t_j + \beta_{tx_1} (t_j \times x_{1i})$$

 x_{1i} is time-invariant, binary covariate.

Oversample subjects with high values for Y_{i1}

Table includes % bias and coverage probability (target of 95%)

Estimation	$\beta_0 = -1.4$	$\beta_{x_1} = 0.4$	$\beta_t = -0.1$	$\beta_{tx_1} = 0.1$
Naive GEE	-42 (0)	-21 (88)	24 (84)	-11 (92)
IPW	0 (94)	-1 (95)	3 (93)	2 (94)
SOR	1 (95)	2 (95)	2 (94)	0 (95)

Efficiency Relative to Simple Random Sampling

Estimation	$\beta_0 = -1.4$	$\beta_{x_1} = 0.4$	$\beta_t = -0.1$	$\beta_{tx_1} = 0.1$
IPW	1.17	1.17	0.63	0.60
SOR	1.40	1.37	1.26	1.14

Simulations - Continuous Data

For each subject, i,

$$Y_{ij} = \beta_0 + \beta_{x_1} x_{1i} + \beta_{x_2} x_{2ij} + \beta_{x_3} x_{3ij} + \epsilon_{ij}$$

 x_{1i} is time-invariant, x_{2ij} and x_{3ij} vary with time.

Oversample **observations** with high values for Y_{ij}

Estimation	$\beta_0 = 1$	$\beta_{x_1}=1$	$\beta_{x_2} = 1$	$\beta_{x_3}=1$
Naive GEE	443 (0)	29 (74)	29 (70)	28 (72)
IPW	-1 (94)	1 (95)	1 (94)	-1 (95)
SOR	-5 (90)	0 (95)	0 (95)	-1 (96)

Efficiency Relative to Simple Random Sampling

Estimation	$\beta_0 = 1$	$\beta_{x_1}=1$	$\beta_{x_2}=1$	$\beta_{x_3}=1$
IPW	0.34	0.37	0.34	0.33
SOR	0.75	1.33	1.31	1.26

ADHD Analysis

Repsonse is hyperactivity symptom count. Coefficients are exponentiated

	Naive		SOR	
Intercept	4.01	(3.32, 4.90)	2.75	(2.23, 3.39)
t	0.98	(0.90, 1.05)	1.06	(0.97, 1.15)
$(\mathbf{t}-2)_+$	0.95	(0.88, 1.03)	0.89	(0.80, 0.97)
age	0.87	(0.75, 1.00)	0.87	(0.75, 1.01)
sex	0.80	(0.53, 1.22)	0.62	(0.41, 0.93)
afr	1.58	(1.25, 2.03)	1.67	(1.30, 2.12)
other	1.11	(0.63, 1.95)	1.03	(0.58, 1.84)
sex*t	1.04	(0.84, 1.28)	1.07	(0.85, 1.35)
$sex^*(t-2)_+$	0.91	(0.71, 1.16)	0.89	(0.68, 1.15)