Candidate's Name:						
	Rai	ndom	No.	Per	sonal	No.
G* 4						
Signature:	 •					

(Do not write your School/Centre Name or Number anywhere on this booklet)

P525/1 CHEMISTRY Paper 1 2 3/4 hours

Uganda Advanced Certificate of Education CHEMISTRY Paper 1 2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer **all** questions in section **A** and **six** questions in section **B** All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables(3 – figure tables) are adequate or non-programmable scientific electronic calculators may be used

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = $101325 N m^{-2}$

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

Turn Over

SECTION A (46 MARKS)

1.	a) 	i)	ylamine is a weak base What is weak base ?	(1 mark
		ii)	Write the equation for the ionization of methylamine	e. (1 mark)
		iii)	Write the expression for the ionization constant of n	nethylamine. (1 mark)
	b)	i)	Calculate the hydrogen ion concentration in a 0.02M methylamine. ($K_b = 4.4 \times 10^{-4}$; $K_w = 1 \times 10^{-14}$ at 25	A solution of $5^{\circ}C$). (3 marks)
		ii)	Calculate the pH of the solution.	(1 mark)

2.	Name the reagent that you would use to distinguish between the following pairs of compounds. In each case state what you would observe when the reagent is treated with each member of the pair.								
	a) (CH ₃ CH ₂) ₂ NH and CH ₃ CH ₂ NH ₂ <i>Reagent:</i>	(2 marks)							
	Observations:								
	b) CH ₃ CH ₂ OH and CH ₃ OH <i>Reagent:</i>	(2 marks)							
	Observations:								
	c) HCOOH and CH ₃ COOH <i>Reagent:</i>	(2 marks)							
	Observations:								

3.	Write (a)	Silicon(IV) ox	tion for the reaction between kide	(1 ½ marks)
••••	(b)	Aluminium		(1 ½ marks)
••••	(c)	Zinc oxide		(1 ½ marks)
4.	a)	i) Define	a 'complex ion'.	(2 marks
		ii) Explair	n why transition metals form	complexes. (2 marks)
	(b)		following table about comple	
	Comple	2X	Oxidation state of metal ion	Co-ordination number
	[Cr(NH	3)6] ³⁺		
	[CO(NF	$H_3)_4(H_2O)_2]Cl_2$		

5.		what you would observe and write an ionic equateen aqueous copper(II) sulphate solution and:	ation for the reaction
Obse	(a) e rvatio		(2 ½ marks)
Equ	ation		
Obse	(b) e rvatio i	Aqueous potassium iodide solution. n	(2 ½ marks)
Equ	ation		
•••••	•••••		
6.		ess magnesium was added to 100 cm ³ of 0.2 M co	opper(II) sulphate
	solut a)	ion. The temperature rose by 16.9 °C. Write an equation for the reaction.	(1½ marks)
•••••	•••••		
	(b)	Calculate the enthalpy of the reaction. (Density 1.0 g/cm^3 . Specific heat capacity of the solution	
•••••	•••••		
•••••	•••••		
•••••	•••••		
•••••	•••••		

7.	a)	Define:			
	,	i) Bo	ond energy.		(1 mark)
		ii) He	eat of formation.		(1 mark)
	(b)	Given the	e following bond en	nergies.	
			Bond	Bond energy (kJ/mole	e)
			C – C	337	
			C – H	414	
			C - O	360	
			O - H	123	
		Calculate	the heat of conver	rsion of gaseous methoxym	ethane to gaseou
		ethanol.			(2 marks)
• • • • • •	•••••	•••••		•••••	•••••
· • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
					•••••
8.	a)	An alkyn	e X has molecular	formula C ₄ H ₆ . Write the n	ames and
		structural	formulae of all po	ssible isomers of X.	(2 marks)
• • • • • •	•••••				

	(b)	X rea i)		n ammoniacal solution of silver nitrate. at is observed.	(½ mark)
•••••	••••••	•••••	•••••••••••••••••••••••••••••••••••••••		
		ii)	Write the	e equation for the reaction that takes place.	(1 mark)
•••••	c)	Write	e equations	s to show how X can be synthesized from e	thane. (4 marks)
•••••	••••••				
•••••					
			•••••		
9.	Drav	w the m	olecular st	tructures of the following species.	(2 marks)
		pecies		Shape	(
(a)	SO ₃	_		•	
(b)	Cl_2				
(-)	2				
(a)	H_2S				
(0)	П2S				
(1)	go 2				
(d)	SO ₄ ² -				

SECTION B: (54 MARKS)

Answer **six** questions from this section. Additional questions answered will **not** be marked.

10.		te equations to show how the following compounds cate the reagents and conditions.	can be synthesized.
	a)	$(CH_3)_2C = NOH \text{ from propane} - 2 - ol.$	(2 marks)
	•••••		
	b)	NH·CH ₂ CH ₃ from benzene	(3 marks)
	•••••		
•••••	•••••		
•••••	c)	$CH_3CH_2C \equiv CCH_2CH_2CH_3$ from But-1-ene.	(2 marks)
•••••	•••••	d) Benzoic acid from chlorobenzene.	(2 marks)

11.	(a)	Write the formula and name of one ore of aluminium.	(1 mark)
	(b)	In the extraction of aluminium, the ore is first digested with hydroxide solution. Describe what happens and write equa reactions that take place.	tions for the (3 marks)
	(c)	Name the steps that are carried out after digesting the ore whydroxide.	(3 marks)
•••••	••••••		••••••
•••••	••••••		•••••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••••
•••••	••••••		••••••
••••	(c)	Describe how pure aluminium is obtained from the purified Write the equation for the reaction.	(2 marks)
			•••••

12.	a) 	Defi i)	ne Conductivity.	(1 mark)
		ii)	Molar conductivity	(1 mark
	(b)	1.96 3.52	electrolytic conductivity of a 0.1 M ethanoic acid at 2 x 10 ⁻² Sm ⁻¹ . Its molar conductivity at infinite dilution x 10 ⁻² S m ² mol ⁻¹ . ulate: The molar conductivity of ethanoic acid at 20°C.	20° C is
		ii)	The degree of ionization of the acid at 20°C.	(1 mark)
		iii)	The pH of the acid	(2 marks)
•••••	(c)	State the a	e two other factors other than concentration that can a	offect the pH of (2 marks)

13.	a) 		e three properties exhibited by chromium as a transit	(3 marks)
	(b)		equeous solution of iron(II) salt was added to an acid omium in the oxidation state of +6. State what was observed.	ified solution of
		1)	State what was observed.	,
		ii)	Write half equations and the overall equation for took place	
•••••	(c)	i)	State one application of chromium in the oxidation organic synthesis.	n state of $+6$ in $(\frac{1}{2} mark)$
••••	••••••	ii)	Write the equation to illustrate your answer.	(1 mark)
14.	Hydı	rogen i	iodide decomposes according to the equation.	•••••
		2 H	$I(g) \rightarrow H_2(g) + I_2(g) \Delta H = +11.3 \text{ kJ/mol.}$	
	a)	Writ	te an expression for the equilibrium constant (K _c) of	the reaction. (½ mark)
	•••••	• • • • • • • • • • • • • • • • • • • •		

	(b)	equi unde	g of hydrogen iodide was heated in a 600 cm ³ bulb at 500 °C. At librium the bulb was rapidly cooled to room temperature and broken or potassium iodide solution. The iodine liberated required 33.5 cm ³ 2 M sodium thiosulphate for complete reaction. Calculate The number of moles of hydrogen iodide that were heated. (1 mark
•••••		ii)	The number of moles of iodine that were formed from the decomposition. $(2\frac{1}{2} \text{ marks})$
		iii)	The value of K_c for the reaction at 500 °C. (3½ marks)
	(c)	i)	State what would happen to the value of K_c if the temperature changed from 500 °C to 200 °C ($^{1}\!\!/_{2}$ mark)

		ii)	Explain your answer.	(1 mark)
 15.	,		t is meant by "hydrolysis of a salt"?	(1 mark)
•••••	(b)	A so	lution was made by dissolving 2.675 g of ammoniur to make 1 litre of solution.	
		(i)	Write the equation for the hydrolysis of ammonia	(1½ marks)
•••••		(ii)	Calculate the hydrogen ion concentration and her solution in (b) above	nce the pH of the
		ii)	The degree of hydrolysis. $(K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}, K_h = 1.75 \times 10^{-5})$	(1½ marks)

16.	a)	Define partition coefficient . (1 mark)	
			•••
	(b)	50 cm ³ of 1.5 M ammonia solution was shaken with 50 cm ³ of trichloromethane. At equilibrium 20 cm ³ of the trichloromethane layer required 23 cm ³ of 0.05 M hydrochloric acid. Find the partition coefficient of ammonia between water and trichloromethane. (3 marks)	
			•••
			•••
•••••	•••••		•••
	(c)	25 cm³ of excess ammonia was added to 25 cm³ of 0.1 M copper(II) sulphate solution. 50 cm³ of trichloromethane was added. The mixture was shaken and allowed to stand. 20 cm³ of the trichloromethane layer required 10.2 cm³ of 0.05 M hydrochloric acid for complete reaction. 10 cm³ of the aqueous layer required 16.5 cm³ of 0.5 M hydrochloric acid. i) Find the concentration of ammonia in the trichloromethane layer (1½ marks)	of r.
	•••••		•••
	•••••		•••
•••••	•••••		•••
			•••

	ii)			ammonia in the aque	(1 mark)
•••••				nonia in the complex.	(1½ marks)
•••••	iv)		he formula of the	complex.	(1 mark)
17.	product is	s allowed to cool	•	ng limestone strongly amount of water in ac that take place	
	b) Gi	ve one use of lin	ne in agriculture.		(1 mark)

C		Explain the trend in the thermal stability of carbonates of ground metals.	s of group(II) (2½ marks)			
•••••	•••••		•••••			
••••••	•••••		•••••			
	•••••					
••••••	•••••		••••••			
d		The mineral "Dolomite" has formula Ca CO ₃ .MgCO ₃ . 2.5 g of was reacted with excess hydrochloric acid. 230 cm ³ of carbo was evolved at room temperature. i) Write the equation for the reaction.				
		ii) Calculate the percentage of 'Dolomite' in the sample. $(2^{1/2})$	marks)			
•••••	•••••					

PERIODIC TABLE

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 103	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)															
			57 La 139	58 Ce 140	59 Fr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Ea (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw 260

l

- 1. H indicates Atomic number
- 2. H indicates relative Atomic mass 1.0

END