Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Барсуков Егор Вячеславович

Оптимальные планы для оценивания производных в полиномиальной регрессионной модели без свободного члена

Отчет о научно-исследовательской работе

Научный руководитель: д.ф.-м.н., профессор В.Б. Мелас

Оглавление

Введение	3
Глава 1. С-оптимальные планы эксперимента	5
1.1. Определения	5
1.2. Теорема Элвинга	6
1.3. Явная формула для весов оптимального плана	6
Глава 2. План для нахождения производной на промежутке с началом	
в нуле	7
2.1. План для нахождения производной на промежутке $[0,1]$	7
2.2. Промежуток вида $[0,d]$	12
Список литературы	13

Введение

Рассмотрим регрессионную модель

$$y_j = \theta^{\top} f_j(x_j) + \varepsilon_j, \quad j = 1 \dots N, \, x_j \in \mathcal{X},$$
 (1)

где N — количество экспериментов, $\mathcal{X} \subset \mathbb{R}$, $f(x) = (f_1(x), \dots, f_n(x))^\top$ — регрессионная функция, $\theta = (\theta_1, \dots, \theta_n)^\top$ — неизвестные параметры, ε_i — некоррелированные ошибки наблюдения. При этом $\mathrm{E}[\varepsilon_i] = 0$, $\mathrm{D}[\varepsilon_i] = \sigma^2$.

Для того, чтобы при фиксированном количестве наблюдений N получить наилучшую в каком-либо смысле оценку θ строят *планы эксперимента* т.е. наборы точек $x_i \in \mathcal{X}$ в каждой из которых должно быть произведено n_i экспериментов так, что $\sum_{i}^{N} n_i = N$. В каком именно смысле будет улучшена оценка параметров модели зависит от выбора критерия одного из нескольких критериев оптимальности.

В работе будут рассматриваться полиномиальные регрессионные модели, т.е. $f_i(x) = x^{k_i}$. Для таких моделей во многих случаях явным образом были описаны оптимальные планы. Несколько работ были посвящены нахождению D-оптимальных планов [1–4]. Также существуют для такой модели явные решения для нахождения E-оптимальных планов [5–8].

В этой работе будут рассматриваться c-оптимальные планы эксперимента. Ими являются планы минимизирующие дисперсию значения скалярного произведения θ и c для заданного $c \in \mathbb{R}^n$ [8]. В общем случае нахождение c-оптимальных планов может быть достаточно сложно: для случаев малой размерности решение можно найти используя теорему Элвинга [9], однако явного решения для произвольного c не существует.

В практических приложениях важны несколько частных случаев: c = f(z) для некоторого $z \notin \mathcal{X}$ — задача экстраполяции в точке z и c = f'(z) — задача оценки производной в точке z. Для обычной полиномиальной модели оптимальный план экстраполяции был описан достаточно давно [10], также существует несколько явных решений для задачи оценки производной в некоторых случаях [11, 12].

В этой работе рассмотрен случай нахождения нахождения планов для оценки производной при полиномиальной модели без свободного члена при $\mathcal{X}=[0,d]$. Такая модель, например, может быть использована в тех случаях, когда исходя из практической задачи значения z могут принимать только положительные значения и существует априорное знание о значении функции в точке 0. Простым примером такой функции является зависимости расстояния до начальной точки от времени.

Глава 1

С-оптимальные планы эксперимента

1.1. Определения

Определение 1. Согласно [13] непрерывным планом в регрессионной модели (1) будем называть дискретную вероятностную меру

$$\xi = \begin{pmatrix} x_1 & \dots & x_m \\ \omega_1 & \dots & \omega_m \end{pmatrix}, \quad x_i \in \mathcal{X},$$

где $\omega_i \ge 0, \sum_{i=1}^n \omega_i = 1, i = 1, \dots, m.$

Для проведения N измерений с мерой ξ необходимо провести $n_i \approx N \omega_i$ измерений в точке x_i таким образом, чтобы $\sum_i^m n_i = N$.

Определение 2. Информационной матрицей для непрерывного плана эксперимента заданного мерой ξ является

$$M(\xi) = \int_{\mathcal{X}} f(x) f^{\top}(x) \xi(dt).$$

Определение 3. c-оптимальным планом для некоторого вектора c называется план эксперимента ξ минимизирующий следующую функцию

$$\Phi(\xi) = \begin{cases} c^\top M(\xi)^- c, & \text{если существует } v, \text{ такой, что } c = M(\xi) v \\ +\infty, & \text{иначе} \end{cases},$$

где $M(\xi)^-$ — матрица, обобщенно обратная к информационной матрице плана ξ . План называется допустимым, если существует такое v, что $c=M(\xi)v$.

Как было отмечено во введении, c-оптимальный план минимизирует дисперсию несмещенной оценки по методу наименьших квадратов $c^{\top}\hat{\theta}$ линейной комбинации $c^{\top}\theta$ [8].

Определение 4. Если c = f(z) для некоторого $z \in \mathbb{R}$, то соответствующий c-оптимальный план называется onmumanьнom nnahom skcmpanon suuu в точке z.

Определение 5. Если c = f'(z) для некоторого $z \in \mathbb{R}$, то соответствующий c-оптимальный план называется оптимальным планом для оценки производной в точке z.

1.2. Теорема Элвинга

Для решения задачи нахождения *с*-оптимальных планов во множестве случаев (в том числе в данной работе) используется теорема Элвинга, являющаяся геометрически интерпретируемым критерием *с*-оптимальности плана эксперимента.

Теорема 1. (Элвинга) [11] Допустимый план ξ^* с носителем $x_1, \ldots, x_m \in \mathcal{X}$ и весами $\omega_1, \ldots, \omega_m$ является c-оптимальным тогда и только тогда, когда существует $p \in \mathbb{R}^k$ и константа h такие, что выполняются следующие условия:

$$|p^{\top}f(x_i)| = 1 \qquad i = 1..m \leqslant n \tag{1.1a}$$

$$|p^{\top}f(x)| \leqslant 1 \qquad x \in \mathcal{X} \tag{1.1b}$$

$$c = h \sum_{i=1}^{m} \omega_i f(x_i) p^{\mathsf{T}} f(x_i). \tag{1.1c}$$

Кроме того

$$h^2 = c^{\mathsf{T}} M^-(\xi^*) c$$

Функцию $p^{\top}f(x_i)$ в определениях теоремы Элвинга в этой работе также будет называться экстремальным многочленом.

1.3. Явная формула для весов оптимального плана

Теорема 2. Оптимальный план для оценивания производной полиномиальной модели без свободного члена с опорными точками t_1^*, \ldots, t_m^* , где m = n или m = n - 1 имеет веса вычисленные по следующей формуле:

$$\omega_i = \frac{|L_i'(z)|}{\sum_{j=1}^m |L_j'(z)|},\tag{1.2}$$

где L_i задается следующим образом

$$L_i(x) = \frac{x \prod_{l=1}^n (x - t_l^*)}{t_i^* \prod_{l \neq i}^n (t_i^* - t_l^*)},$$
(1.3)

то есть является i-ым базисным многочленом Лагранжа без нулевого члена построенным по точкам t_1^*, \ldots, t_m^* .

Глава 2

План для нахождения производной на промежутке с началом в нуле

Здесь будут описаны оптимальные планы для нахождения производной на промежутке вида [0,d] в модели без нулевого члена. Для промежутков вида [-1,1] такие планы были описаны в [12], однако в таком случае полученные решения значительно отличаются от полученных в этом разделе. Здесь, не умаляя общности, будет доказана теорема для случая [0,1], а в конце главы будет показано, как он переносится в общий вид.

Везде в этой главе считается, что $f(x) = (x, x^2, \dots, x^n)^\top$, то есть рассматривается модель без нулеого члена.

2.1. План для нахождения производной на промежутке [0,1]

При доказательстве основной теоремы этой главы будет использована следующая лемма.

Лемма 1. Пусть $P_1(x)$ и $P_2(x)$ — многочлены степени n с корнями $t_1^1 < \ldots < t_n^1$ и $t_1^2 < \ldots < t_n^2$ соответственно. При этом корни располагаются следующим образом:

$$t_1^1 \leqslant t_1^2 < t_2^1 \leqslant t_2^2 < \ldots < t_n^1 \leqslant t_n^2$$

где хотя бы одно из неравенств $t_l^1\leqslant t_l^2$ $(l=1,\ldots,n)$ является строгим. Также обозначим корни многочленов $P_1'(x)$ и $P_2'(x)$ как v_1^1,\ldots,v_{n-1}^1 и v_1^2,\ldots,v_{n-1}^2 . Тогда справедливо следующее выражение

$$v_1^1 < v_1^2 < v_2^1 < v_2^2 < \ldots < v_n^1 < v_n^2.$$

Доказательство этого утверждения можно найти в [14] или в приложении к [12].

Теорема 3. Пусть для $i = 1, \ldots, n$

$$x_i^* = \frac{\cos\frac{(n-i)\pi}{n} + \cos\frac{\pi}{2n}}{1 + \cos\frac{\pi}{2n}},\tag{2.1}$$

и корни производной многочлена L_i из формулы (1.3) построенного по точкам $\{x_j^*\}_j^n$ равны u_1^i, \ldots, u_{n-1}^i , причем $u_k^i \leqslant u_l^i$ при k < l. Тогда при $z \in (-\infty, u_1^1) \cup (u_{n-1}^n, +\infty)$

или $z \in \left(u_{n-1}^{j+1}, u_1^j\right)$ для $j=1,\ldots,n-1$ оптимальный план для нахождения производной в точке z в полиномиальной модели степени n без свободного члена на промежутке [0,1] имеет опорные точки $\{x_j\}_j^n$ и веса вычисленные по формуле (1.2). Также при z не лежащих в этих промежутках не существует оптимального плана состоящего из n точек.

Доказательство. Полученное здесь решение основывается на применении варианта теоремы Элвинга описанного на странице 6, которая, в том числе, утверждает, что для любого c-оптимального плана должен существовать соответствующий многочлен $p^{\top}f(x)$, который не превосходит по модулю единицу на соответствующем промежутке и достигает её в опорных точках плана. Поэтому первым шагом будет нахождение таких многочленов степени n.

Построим полином без свободного члена $S_n(x)$ степени n, не превосходящий по модули единицу на промежутке [0,1], и достигающий её в n точках. Пусть $T_n(x)$ — многочлен Чебышёва степени n. Тогда по свойствам многочленов Чебышёва T_n не превосходит по модулю единицу на промежутке [-1,1] и достигает её в n+1 точках, в том числе в точках -1 и 1. Известно, что корни T_n имеют следующий вид

$$t_i = \cos\left(\frac{\pi(i+1/2)}{n}\right), \quad i = 0, \dots, n-1.$$

Если мы возьмём самый маленький корень $t_{\min} = -\cos\frac{\pi}{2n}$ и положим $\widehat{S}_n(x) = T_n(x+t_{\min})$, то \widehat{S}_n будет являться полиномом степени n с нулевым свободным членом, так как $\widehat{S}_n(0) = 0$ по построению. При этом $\left|\widehat{S}_n(x)\right| \leqslant 1$ для x на промежутке $[0, 1+\cos\left(\frac{\pi}{2n}\right)]$ и в этом промежутке абсолютная величина достигает единицы n раз в силу того, что левый край не равен 1.

Для того, чтобы привести промежуток к виду [0,1] достаточно добавить множитель $1+\cos\frac{\pi}{2n}$ к x в левой части определения $\widehat{S_n}$. После этого получается многочлен, удовлетворяющий всем требуемым свойствам

$$S_n(x) = T_n \left(x \left(1 + \cos \frac{\pi}{2n} \right) - \cos \frac{\pi}{2n} \right).$$

Экстремальные точки $T_n(x)$ расположены в точках

$$\widehat{x_i^*} = \cos\frac{(n-i)\pi}{n}, \quad i = 0, \dots, n,$$

поэтому экстремальные точки S(x) на промежутке [0,1] расположены в точках

$$x_i^* = \frac{\cos\frac{(n-i)\pi}{n} + \cos\frac{\pi}{2n}}{1 + \cos\frac{\pi}{2n}}, \quad i = 1, \dots, n,$$

при этом важно, что индексы у x_i^* начинаются с 1, в то время как у $\widehat{x_i^*}$ с 0. Так происходит из-за того, что наименьшая экстремальная точка S_n на всем промежутке оказывается меньше нуля и не попадает в требуемый промежуток.

Также нужно отметить, что

$$0 < x_1^* < x_2^* < \dots < x_n^*, \quad i = 1, \dots, n$$

И

$$S_n(x_i^*) = (-1)^{n+i}, \quad i = 1, \dots, n$$

Покажем, что $S_n(x)$ — это единственный многочлен (с точностью до знака) без нулевого члена, удовлетворяющий свойствам свойствам (1.1a) и (1.1b) на промежутке [0,1]. Пусть $P_n(x)$ — многочлен степени n и при этом $P_n(0)=0$, $P_n(1)=1$ и в промежутке [0,1) этот многочлен имеет ровно n-1 экстремум $t_1<\ldots< t_{n-1}$ в которых он равен ± 1 . В силу того, что нам требуется единственность с точностью до знака, тот факт, что $P_n(1)$ был положен положительным, не умаляет общности. Так как $P'_n(x)$ имеет степень n-1 и, соответственно, имеет n-1 корней, которые были обозначены как t_1,\ldots,t_{n-1} , то только в этих точках этот многочлен может менять свою монотонность, но также $|P_n(t_i)|=1$ для $i=1,\ldots,n-1$, поэтому в этих точках он меняет свою монотонность и $P_n(t_i)=(-1)^{n-1-i}$. Также поэтому при $x\leqslant t_1$ (ранее было определено, что $t_1>0$) $\mathrm{sign}(P'_n(x))=(-1)^n$, а учитывая, что P(0)=0 и $P(t_1)=(-1)^n$, то должна существовать такая единственная точка $t_0<0$, что $P(t_0)=(-1)^{n+1}$. После введения обозначения $t_n=1$ из факта, что $P_n(t_i)=(-1)^{n-1-i}$ для $i=0,\ldots,n$ следует, что $P_n(x)$ является чебышевским многочленом на отрезке $[t_0,1]$, то есть он единственен и $P_n=S_n$.

Из единственности многочлена без нулевого члена степени n, удовлетворяющего свойствам (1.1a) и (1.1b) на отрезке [0,1] следует, что оптимальный план состоящий из n опорных точек сосредоточен в экстремальных точках многочлена $S_n(x)$, которые имеют вид (2.1).

Осталось показать, когда выполняется условие (1.1c) при c=f'(z) и, соответственно, точки (2.1) являются опорными точками оптимального плана для оценки производной в точке z.

Построим базисные полиномы Лагранжа степени n без нулевого члена по точкам $\{x_i^*\}_{i=1}^n$

$$L_i(x) = \frac{x \prod_{l=1}^{n} (x - x_l^*)}{x_i^* \prod_{l \neq i}^{n} (x_i^* - x_l^*)}$$

Так как теорема 4 о весах оптимального плана для оценки производной в случае полиномиальной модели работает для любых промежутков, то для нахождения весов можно использовать её, и тогда, соответственно, веса имеют следующий вид

$$\omega_i = \frac{|L_i'(z)|}{\sum_{j=1}^n |L_j'(z)|}.$$

Введем обозначения $F = ((x_j^*)^i)_{i,j=1}^n$ и $\beta = (\omega_i(-1)^{i+n})_{i=1}^n$. Так как x_j^* при $i=1,\ldots,n$ являются экстремальными точками многочлена S_n и при этом $S_n(x_j^*) = (-1)^{j+n}$, то выполнение равенства для некоторого h

$$f'(z) = hF\beta \tag{2.2}$$

эквивалентно выполнению условия (1.1c) теоремы Элвинга для нахождения оптимального плана оценки производной в точке z.

Утверждение $F^{-1}F = I_n$, где I_n — единичная матрица размера n, а i-ый столбец матрицы F на самом деле равен $f(x_i^*)$ $(i=1,\ldots,n)$ можно переписать, как систему равенств

$$e_i^{\top} F^{-1} f(x_j^*) = \delta_{ij}, \quad i, j = 1, \dots, n,$$

где δ_{ij} — дельта Кронекера, а e_i — i-ый единичный вектор. Поскольку в левой части равенств (??) содержатся многочлены без нулевого коэффициента степени не больше n вычисленные в точках $x_j^*,\ j=1,\ldots,n,$ а для каждого i существует только одно j, такое, что $\delta_{ij}\neq 0$, то они определяют все базисные многочлены Лагранжа без нулевого члена степени n вычисленные в точках $x_j^*,\ j=1,\ldots,n,$ таким образом

$$e_i^{\top} F^{-1} f(z) = L_i(z), \quad i, j = 1, \dots, n.$$

Если в предыдущем выражении вычислить производную по z и переписать полученное выражение в векторной форме получим

$$f'(z) = F(L'_1(z), \dots, L'_n(z))^{\top}.$$
 (2.3)

Приравняв правые части (2.3) и (2.2) и домножив равенство на F^{-1} слева, получаем, что

$$h\beta = (L_1'(z), \dots, L_n'(z))^{\top},$$

что с учетом введенных ранее обозначений влечет, что $\mathrm{sign}(L_i'(z)) = \mathrm{sign}((-1)^{i+n}),$ $i=1,\ldots,n$ или, вспомнив, что экстремальным многочленом также может быть -S(x), $\mathrm{sign}(L_i'(z)) = \mathrm{sign}((-1)^{i+n+1}), \ i=1,\ldots,n.$

Таким образом для того, чтобы доказать, что оптимальный план находится в точках $(x_i^*)_{i=1}^n$, $i=1,\ldots,n$ с указными ранее весами, осталось доказать равенство знаков $L_i'(z)$ и $\pm S_n(x_i^*)$. Но так как знаки экстремальных точек многочлена S_n чередуются, достаточно показать при каких z выражения $(-1)^i L_i'(z)$ имеет одинаковый знак для $i=1,\ldots,n$.

Так как корни многочленов L_i и L_j для любых i и j таких, что i < j удовлетворяют условию леммы 1, условие которой было приведено на странице 7, то последовательно её применяя ко всем базисным многочленам получаем, что корни их производных, обозначения для которых были описаны в условии этой теоремы, удовлетворяют следующему соотношению:

$$u_1^n < u_1^{n-1} < \ldots < u_1^1 < u_2^n < u_2^{n-1} < \ldots < u_{n-1}^1$$

Можно видеть, что, так как все узловые точки больше нуля, знак многочлена $L_i(z)$ при $z \to -\infty$ будет равен $(-1)^{n+i+1}$. В то же время знак $L_i'(z)$ будет противоположным $L_i(z)$, так как меняется четность многочлена и при этом не меняется знак при старшем коэффициенте, то есть $\mathrm{sign}(L_i'(z)) = \mathrm{sign}((-1)^{n+i})$ при $z \to -\infty$. И, следовательно, $\mathrm{sign}((-1)^i L_i'(z)) = \mathrm{sign}((-1)^{n+2i}) = \mathrm{sign}((-1)^n)$ при $z \to -\infty$, то есть $\mathrm{sign}((-1)^i L_i'(z))$ не зависит от i и имеет постоянный знак для любых i, что означает, что при $z \in (-\infty, u_1^n)$ третье условие теоремы Элвинга выполняется и план является оптимальным.

Осталось изучить как ведут себя знаки $\operatorname{sign}((-1)^i L_i'(z))$ на остальных промежут-ках. На промежутках $[u_j^1, u_j^n]$ $(j=1, \ldots n-1)$ каждый базисный многочлен меняет свой знак ровно 1 раз и на этих промежутках знаки производных не совпадают со знаками экстремального многочлена, а на промежутках (u_j^n, u_{j+1}^1) $(j=1, \ldots n-2)$ нет ни одного корня и поэтому $\operatorname{sign}((-1)^i L_i'(z)) = \operatorname{sign}((-1)^{n+j}$ при $z \in (u_j^n, u_{j+1}^1)$ $(j=1, \ldots n-2)$, что также подтверждает третье условие теоремы Элвинга в этих промежутках и показывает, что показанный план оптимален.

На промежутке $(-\infty, u_{n-1}^n]$ каждый базисный многочлен поменял свой знак одинаковое количество раз, а так как при $z \to -\infty$ условие выполнялось, то при $z \in (u_{1,n-1}, +\infty)$ план также является оптимальным.

Таким образом план эксперимента с опорными точками (2.1) и соответствующими

им весами (1.2) является оптимальным планом для оценки производной в точке z в модели без нулевого члена тогда и только тогда, когда $z \in (-\infty, u_1^n) \cup (u_{1,n-1}, +\infty)$ или $z \in (u_{j+1}^n, u_j^1)$ для $j = 1, \ldots n-2$. Причем в силу единственности (с точностью до знака) экстремального многочлена с n экстремальными точками, не существует других планов состоящих из n опорных точек, что доказывает теорему.

2.2. Промежуток вида [0, d]

В общем случае оптимальный для всех промежутков, начинающихся в нуле, существенно не отличается от случая промежутка [0, 1], что будет показано в следующей теореме.

Теорема 4. Пусть для i = 1, ..., n и для некоторого d

$$\widehat{x_i^*} = dx_i^*, \tag{2.4}$$

где x_i^* из (2.1), и корни производной многочлена L_i из формулы (1.3) построенного по точкам $\{\widehat{x_j^*}\}_j^n$ равны u_1^i,\ldots,u_{n-1}^i , причем $u_k^i\leqslant u_l^i$ при k< l. Тогда при $z\in (-\infty,u_1^1)\cup (u_{n-1}^n,+\infty)$ или $z\in (u_{j+1}^n,u_j^1)$ для $j=1,\ldots,n-2$ оптимальный план для нахождения производной в точке z в полиномиальной модели степени n без свободного члена на промежутке [0,1] имеет опорные точки $\{x_j\}_j^n$ и веса вычисленные по формуле (1.2). Также при z не лежащих в этих промежутках не существует оптимального плана состоящего из n точек.

Доказательство. Построим многочлен $S_n^d(x) = S_n(\frac{x}{d})$. Из построения ясно что его экстремальные точки равны (2.4). Он по построению будет являться экстремальным многочленом степени n на отрезке [0,d] и будет повторять все свойства многочлена $S_n(x)$. Дальнейшее доказательство повторяет доказательство теоремы 3 с заменой многочлена S_n на S_n^d .

Список литературы

- 1. Hoel P. G. Efficiency problems in polynomial estimation // Annals of Mathematical Statistics. 1958. Vol. 29, no. 4. P. 1134–1145.
- 2. Studden W. J. D_s -optimal designs for polynomial regression using continued fractions // Annals of Statistics. 1980. Vol. 8, no. 5. P. 1132–1141.
- 3. Dette H. A generalization of D- and D_1 -optimal designs in polynomial regression // Annals of Statistics. 1990. Vol. 18. P. 1784—1805.
- 4. Dette H., Franke T. Robust designs for polynomial regression by maximizing a minimum of D- and D₁-efficiencies // Annals of Statistics. 1990. Vol. 29, no. 4. P. 1024–1049.
- 5. Pukelsheim F., Studden W. J. E-optimal designs for polynomial regression // Annals of Statistics. -1990. Vol. 21, no. 1. P. 402-415.
- 6. Dette H. A note on E-optimal designs for weighted polynomial regression // Annals of Statistics. 1990. Vol. 21, no. 2. P. 767–771.
- 7. Heiligers B. E-optimal designs in weighted polynomial regression // Annals of Statistics. -1994. Vol. 22, no. 2. P. 917–929.
- 8. Dette H., Studden W. J. Geometry of E-optimality // Annals of Statistics. 1993. Vol. 21, no. 1.—P. 416–433.
- 9. Elfving G. Optimal allocation in linear regression theory // The Annals of Mathematical Statistics. -1952. Vol. 23. P. 255–262.
- 10. Hoel P. G., Levine A. Optimal spacing and weighting in polynomial prediction // The Annals of Statistics. -1964. Vol. 35, no. 4. P. 1553–1560.
- 11. Dette H., Melas V., A. P. Optimal designs for estimating the slope of a regression // Statistics. -2010. Vol. 44, no. 6. P. 617–628.
- Dette H., Melas V., Shpilev P. Some explicit solutions of c-optimal design problems for polynomial regression with no intercept // Annals of the Institute of Statistical Mathematics. — 2019.
- 13. Kiefer J. General equivalence theory for optimum designs (approximate theory) // The Annals of Statistics. -1974. Vol. 2, no. 5. P. 416–433.
- Sahm M. Optimal designs for estimating individual coefficients in polynomial regression: Ph. D. thesis / M. Sahm; Fakultät für Mathematik, Ruhr-Universität Bochum, Germany. 1998.

- 15. L-bfgs-b fortran subroutines for large-scale bound constrained optimization : Rep. / ACM Trans. Math. Software ; Executor: Ciyou Zhu, Richard H. Byrd, Peihuang Lu, Jorge Nocedal : 1994.
- 16. Storn R., Price K. Differential evolution a simple and efficient heuristic for global optimization over continuous spaces // Journal of Global Optimization. 1997. Dec. Vol. 11, no. 4. P.~341-359.
- 17. Lawson C. L., Hanson R. J. Solving least squares problems. Siam, 1995. Vol. 15.