1.4.5 Исследование колебаний струны

Анна Назарчук Б02-109

1 Теоретические сведения

Струна - однородная гибкая упругая нить (например, струна гитары). В натянутой струне возникает поперечная упругость, то есть способность сопротивляться любому изменению формы без изменения объема.

Рассомтрим уравнение волны на струне, сила натяжения существенно превышает вес струны для отсутствия провисаний. $tg\alpha=\frac{\partial y}{\partial x}$ - угол наклона касательной к графику. Для вертикального движения элемента струны:

$$\delta m \frac{\partial^2 y}{\partial t^2} = -T_1 \sin \alpha_1 + T_2 \sin \alpha_2 \tag{1}$$

Рис. 1: Вывод уравнения волны в струне

Длина участка струны в смещенном состоянии почти равна длине участка в положении равновесия, поэтому: $T_1 \approx T_2 \approx T$. Углы наклона

Таблица 1:

т, г	ρ , M Γ /M	n	L, см	nu, Гц	$u, M/c^2$	σ_u , m/ c^2
1096.3	$\frac{\rho, m_{1}/m}{568.4}$	1	50.3	141.16	$\frac{4, \text{ M/C}}{140.915}$	0.568
1096.3	568.4	3	50.3	414.4	140.915	0.568
1096.3	568.4	5	50.3	695.9	140.915	0.568
1096.3	568.4	7	50.3	965.9	140.915	0.568
1096.3	568.4	9	50.3	1272.12	140.915	0.568
1096.3	568.4	2	50.3	283.26	140.915	0.568
1096.3	568.4	4	50.3	568.16	140.915	0.568
1096.3	568.4	0.5	50.3	70.82	140.915	0.568
1578.7	568.4	1	50.3	161.49	165.356	0.343
1578.7	568.4	3	50.3	491.54	165.356	0.343
1578.7	568.4	5	50.3	824.02	165.356	0.343
1578.7	568.4	2	50.3	327.1	165.356	0.343
602.3	568.4	2	50.3	200.54	102.549	0.288
602.3	568.4	1	50.3	102.41	102.549	0.288
602.3	568.4	3	50.3	306.81	102.549	0.288
602.3	568.4	5	50.3	510.33	102.549	0.288
940.3	568.4	1	50.3	128.2	129.866	0.264
940.3	568.4	3	50.3	384.76	129.866	0.264
940.3	568.4	5	50.3	647.31	129.866	0.264
940.3	568.4	2	50.3	257.77	129.866	0.264
1427.7	568.4	1	50.3	158.36	160.171	0.111
1427.7	568.4	3	50.3	476.9	160.171	0.111
1427.7	568.4	5	50.3	796.81	160.171	0.111
1427.7	568.4	2	50.3	318.16	160.171	0.111

малы, откуда:

$$\rho_l \frac{\partial^2 y}{\partial t^2} = \frac{-T_1 \sin \alpha_1 + T_2 \sin \alpha_2}{\partial x} \approx T \frac{\alpha_2 - \alpha_1}{\partial x} \to T \frac{\partial \alpha}{\partial x}$$
 (2)

 $ho_l=m/l$ -погонная плотность струны. Пусть $u=\sqrt{t/
ho_l}$ Тогда уравнение свободных малых поперечных колебаний струны:

$$\frac{\partial^2 y}{\partial t^2} = u^2 \frac{\partial^2 y}{\partial x^2} \tag{3}$$

1.1 Измерения и обработка данных

$$\rho_l = (552.64 \pm 3.59) \cdot 10^{-6} \text{kg/m} \tag{4}$$

Рис. 2: Зависимость ν от n

$$Q = \frac{\nu_{\text{pe3}}}{\triangle \nu} = 1.7 \cdot 10^{-3} \tag{5}$$

Рис. 3: Зависимость u^2 от T