

Industrielle Kommunikation

Allgemeines

Signal \to A/D Wandlung: Abtastung \to Digitaler Bitstrom \to D/A Wandlung: ± 1 Gewichtete NF Impulse $\pm g_{\rm S}(t) \to$ Modulation: Verschiebung ins Trägerband \to AWGN Kanal \to Detektor \to Bitstrom

1. Signale

1.1. Arten von Signalen

deterministisch: durch Funktionen beschreibbar, enthalten kein Nachricht.

Vorteile digitales Signal: Kompression, Verschlüsselung, Fehlerkorrektur

digitales Signal

quantisiertes Signal

2. Abtastung von Signalen

Bezeichnung	Symbol	Einheit
Signalstufen	V	[V] = 1
Bandbreite	В	[B] = 1Hz
Datenrate / Bitrate	R_b	$[R_b] = 1bps$
Sendepegel (Signal)	P_S	$[P_S] = 1W \text{ oder}$ $[P_{S,dBm}] = 1dBm$
Rauschpegel (Noise)	P_N	$\begin{bmatrix} P_N \end{bmatrix} = 1W$ oder $\begin{bmatrix} P_{N,dBm} \end{bmatrix} = 1dBm$
Interefrenzpegel	P_I	$ \begin{array}{ccc} [P_I] &=& 1W & oder \\ [P_{I,dBm}] &=& 1dBm \end{array} $
Signal-Rausch- Verhältnis	$SNR = \frac{P_S}{P_N}$	$ \begin{array}{ccc} [SNR] &=& 1 & oder \\ [SNR_{dB}] &=& 1dB \end{array} $
Signal- Intefrenz- Rausch- Verhältnis	$SINR = \frac{P_S}{P_I + P_N}$	$\begin{bmatrix} SINR \end{bmatrix} = 1 \text{ oder } \\ \begin{bmatrix} SINR_{dB} \end{bmatrix} = 1dB $

(Signal-To-Noise-Ratio), Signal zu Rauschabstand $SNR_{(dB)}$ $SNR_{dB} = 10\log_{10}(SNR)dB = P_{S,dBm} - P_{N,dBm}$

(Signal-To-Interference-And-Noise-Ratio) $SINR_{(dB)}$

$$SINR = \frac{P_S}{P_I + P_N}$$

$$SINR_{dB} = 10 \log_{10}(SINR) dB$$

$$SINR_{dB} = P_{S,dBm} - P_{I,dBm} - P_{N,dBm}$$

2.1. Nyquist-Abtasttheorem

 $R_{b,max} = 2Bld(V) \frac{bit}{s}$

2.2. Shannon-Abtasttheorem

 $R_{b,max} = Bld(1 + SNR) \frac{bit}{s} mit [SNR] = 1$

3. Dämpfung/Verstärkung, dB-Rechnung

3.1. Leistungspegel

Logarithmische Rechenregeln:

 $x = a \cdot log_b(c \cdot d)$ $x = log_bc \cdot d^a = log_bc^a + log_bd^a$ $b^x = (c \cdot d)^a = c^a \cdot d^a$

Durch $x = (\frac{1}{x})^{-1}$ ergeben sich die Rechenregeln für Subtraktion und

3.2. Umrechnung dB

_		
Verhältnis $\frac{P_2}{P_1}$	Verstärkung[dB]	Dämpfung[dB]
$\frac{\frac{1}{1000}}{\frac{1}{1000}} = 10^{-3}$ $\frac{\frac{1}{20}}{\frac{1}{10}} = 10^{-1}$ $\frac{\frac{1}{4}}{\frac{1}{2}}$ 1	-30	+30
$\frac{1}{20}$	-13	+13
$\frac{1}{10} = 10^{-1}$	-10	+10
$\frac{1}{4}$	-6	+6
$\frac{1}{2}$	-3	+3
1	0	0
2	+3	-3
4	+6	-6
8	+9	-9
10	+10	-10
$1000 = 10^3$	+30	-30
		'

3.3. Rechenregeln dB bzw. dBi und dBm

 $\begin{array}{lll} dB \mp dB(i) & = & dB \\ dBm \mp dB(i) & = & dBm \\ dBm - dBm & = & dB \\ dBm + dBm & = & undefiniert \\ \end{array}$

4. Baud-, Bit-/Übertragungsrate, Durchsatz

4.1. Definitionen

Bezeichnung	Symbol	Einheit
Datenmenge in bit	$D_b = 8D_B$	$[D_b] = 1bit$
Datenmenge in Byte	D_B	$[D_B] = 1Byte = 8bit$
Signalstufen	V	[V] = 1
Baudrate / Schritt- geschwindigkeit	R_{baud}	$[R_{baud}] = 1Hz$
Bitrate/Brutto- Übertragungsrate	$R_b = R_{baud} \cdot \\ ld(V)bit$	$[R_b] = 1bps = 1\frac{bit}{s}$
Durchsatz/Netto- Übertragungsrate, effektiv	$R_{eff} = \frac{D_b}{tges}$	$[R_{eff}] = 1bps$

Signalstufen V; Anzahl der möglichen annehmbaren Werte eines diskr. Signals pro Schritt

Zeit t_{ges} ab Sendestart einer Datenmenge D_b bis zum vollständigen Empfang, abhängig von verwendeten Protokollen

5. Leitungstheorie

Leitungstheorie relevant für $l >= 0, 1\lambda$

5.1. Definitionen

Leitungslänge l mit [l]= m Belagsgrößen: R',L',G',C' als Widerstands-, Induktivitäts-, Ableitungs-, Kapazitätsbelag Bsp: $R=R'\cdot l$ mit $[R']=\frac{\Omega}{m}$

Wellenimpedanz
$$\underline{Z}_L = \sqrt{\frac{(R' \cdot j\omega L')}{(G' \cdot j\omega C')}}$$

Wellenlänge λ mit $[\lambda] = \mathbf{m}$ Ausbreitungsgeschwindigkeit $v = \lambda \cdot f$ mit $[v] = \mathbf{m/s}$

Ausbreitungskonstante $\gamma=\alpha+j\beta=\sqrt{(R'\cdot j\omega L')(G'\cdot j\omega C')}$ mit $[\gamma]=\frac{1}{m}$

5.2. Leitungsmodell

5.3. Formeln

6. Wellen und Antennen

Indizes: E(empfänger), i(sotroper Kugelstrahler), r(adius), S(ender)

6.1. Poynting-Vektor

Poynting-Vektor \overrightarrow{S} ist Vektor der Leistungsflussdichte mit $[S]=1\frac{W}{m^2}$ $\overrightarrow{S}(x,y,z,t)=\overrightarrow{E}(x,y,z,t) imes \overrightarrow{H}(x,y,z,t)$ Für harmonische Zeitvorgänge und EM-Wellen $(\overrightarrow{E} \lhd \overrightarrow{H} = \frac{\pi}{2})$ gilt: $\underline{S}=S=\frac{1}{2}\underline{E}\cdot \underline{H}^*=\frac{1}{2}\underline{H}^2Z_F=\frac{1}{2}\frac{Z_F}{\underline{E}^2}$ mit $E,H\in\mathbb{C}$

Wellenwiderstand im Vakuum
$$Z_F=\sqrt{\frac{E^2}{\epsilon_0}}\approx 376,73\Omega$$

$$S_i = |\overrightarrow{S}| = \frac{P_S}{4\pi r^2}$$

Richtfaktor
$$D_i = \frac{S_{r,max}}{S_i} = 4\pi r^2 \frac{S_{r,max}}{P_S}$$

i.d.R. angegeben als $D_{i,log} = 10log D_i dBi$

Antennengewinn $G=\eta D_i$ i.d.R. angegeben in dB

Antennenwirkfläche $A_W=\frac{\lambda^2}{4\pi}G$ mit der Wellenlänge $\lambda=\frac{c}{f}$ Bsp. Empfangs- und Sendeantenne im Abstand r zueinander: $P_E=P_S\cdot G_S\cdot G_E(\frac{\lambda}{4\pi r})^2$

7. OSI-Modell

8. Zugriffsverfahren, Sicherungsschicht

8.1. Definitionen

Bezeichnung	Symbol	Einheit
Paketgröße in bit	D_P	$[D_P] = 1bit$
Rahmenzeit für ein Paket	$\tau = \frac{D_P}{R_b}$	$[\tau] = 1s$
Signallaufzeit (trans- mission time)	t_t	$[t_t] = 1s$
Round-Trip-Time/- Delay	$\begin{array}{ccc} RTT & = \\ RTD & = \\ 2 \cdot t_t & \end{array}$	$[t_t] = 1s$
durschnittliche Paketsende-Rate	λ	$[\lambda] = 1Hz$
Input, zu sendende Pakete	I	[I] = 1
Kanalauslastung / Gesamt Übertragungsversuche	$G = \lambda \cdot \tau$	[G] = 1
Throughput, kein Konflikt	S, ideal $S=G$	[S] = 1

Bei keinen verlorenen Pakete gilt I=S

Anzahl Übertragungsversuche bzw. Kanalauslastung $G=\lambda\cdot \tau$ Anzahl erfolgreich übertragener Pakete pro Rahmenzeit S, ideal S=G

8.2. Zugriffsverfahren

Ziel: Medienzugangskontrolle durch Paket-Kollisionsvermeidung und endteckung

Datendurchsatz bei ALOHA-Systemen

Pure ALOHA Zufällige Sendung von Paketen durchschnittlich alle $\frac{1}{\lambda}$ mit Paketen der zeitlichen Rahmenlänge τ

Potentielle Kollisionszeit = 2τ

S = $G \cdot e^{-2G}$ mit $S_{max}(G = G_{max} = 0, 5) = 0, 184$

Slotted ALOHA Zufälliges Senden von Paketen durschnittlich alle $\frac{1}{\lambda}$ zu Beginn eines Zeitslots mit Paketen der zeitlichen Rahmenlänge τ

Potentielle Kollisionszeit =
$$\tau$$
 $S = G \cdot E^{-G}$ mit $S_{max}(G = G_{max} = 1) = 0,368$

1-persistent CSMA (Carrier Sense Multiple Access)

regelmäßige Überprüfung auf freien Kanal, wenn frei, dann Paketsendung mit Wahrscheinlichkeit 1

Non-persistent CSMA (Carrier Sense Multiple Access)

unregelmäßige Überprüfung auf freien Kanal, wenn frei, dann Paketsendung mit Wahrscheinlichkeit 1

p-persistent CSMA (Carrier Sense Multiple Access)

regelmäßige Überprüfung auf freien Kanal, wenn frei, dann Paketsendung mit Wahrscheinlichkeit p

CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
Bestimmung Ethernet: Min. Nachrichtenlänge > Max. Konfliktdauer oder
ev. künstl. Nachrichtenverlängerung mit Padding Bits

CSMA/CD beim Ethernet

8.3. Sicherungsschicht

Stop and Wait

Senden eines Pakets, Warten auf Bestätigung (ACK), Senden des nächsten Pakets. usw.

$$R_eff = \frac{D_p}{\frac{D_p}{R_b} + 2t_t} \text{ wenn } t_t \text{ für Hin- und Rückweg gleich.}$$

Pipelining

Fenstergröße $D_{oldsymbol{W}}$ in bits bestehend aus n Paketen

Bestätigung von Paket 1 muss ankommen, bevor die Fenstergröße in bits versendet wurde, damit keine Wartezeiten anfallen.

$$\begin{split} & \text{Fall 1 (ideal): Für } \frac{DW}{Rb} \leq \frac{DP}{Rb} + 2t_t \\ & \text{gilt: } R_{eff} = R_b \\ & \text{Fall 2 (Wartezeiten): Für } \frac{DW}{R_b} < \frac{DP}{R_b} + 2t_t \\ & \text{gilt } R_{eff} = \frac{DW}{\frac{DD}{R_b} + 2 \cdot t_t} \end{split}$$

Go-back ohne Puffer

Sender überträgt, wenn nach Senden eines Pakets und Verstreichen eines Timeout-Intervall kein ACK für das Paket einging, sämtliche Daten ab dem unbestätigten Rahmen neu.

Go-back-n mit Puffer

Genauso wie ohne Puffer, nur das nach Erhalt des ACK für das erneut gesandte Paket beim ersten noch nicht gesendeten Paket weiter gesendet wird.

Selective repeat Bei Nichtürertragung eines Pakets wird nach Timeout-Intervall nur das nicht korrekt übertragene Paket neu gesandt, alle weiteren werden gepuffert.

HDLC (High Level Data Link Control)

HDLC-Rahmenformat

	Flag	Adresse	Steuerfeld	Nutzdaten	CRC	Flag	
ľ	8 Bit	8	8 oder 16	variabel	16 oder 32	8	

01111110; Bit stuffing (Bitstopfen) um Flag eindeutig zu halten

CRC Cyclic Redundancy Check

Nutzdaten CRC-Beispiel

9. Codierung

Komprimierung: Falls Bitstrom nicht gleichverteilt und mit Gedächtnis Maximale Kompression: Bits gleichverteilt, ohne Gedächtnis Entropie: kein Code kann für Z eine geringere mittlere Codewortlänge finden als $H(z) = \sum P(z) \operatorname{ld} \left(\frac{1}{P(z)} \right)$

9.1. Kompression

Kleiner Verlust bei unkodierten Bitstrom. Großer Gewinn bei Kodierung. Bsp: Feste Blocklänge mit Statusbit am Anfang: Kodiert/Unkodiert

9.2. Digitale Quellencodierung (Kompression)

Arten von Kodierern:

Verteilung Bekannt: Huffman Code, Morse, Arithmetic

Universal: Lempel-Ziv (ZIP), PPM, BWT(bZip)

Transform: Fouriertransformation (JPG,GIF,PNG,MP3)

9.3. Kanalcodierung

Single-Parity-Check: 1 Bit pro 2 bit zusätzlich: XOR (x_1,x_2) Daraus ergibt sich eine Effizienz von $\frac{2}{3}$

FEC: Forward Error Correction liefert Fehlererkennung und Korrektur.

Beispiele: Paritätsbit, CRC, Reed-Solomon-Codes, LDPC, Polar Codes

9.4. Informationsgehalt und Entropie

$$\begin{split} & \text{Info vom Symbol } s_i \text{: } I_i = -\log_2 \mathsf{P}(\mathsf{X}_Q = s_i) = -\log_2 p_i \\ & \text{Entropie von } \mathsf{X}_Q \text{: } H(\mathsf{X}_Q) = \mathsf{E}[I] = -\sum_{i=0}^{M-1} p_i \log_2 p_i \left[\frac{\mathsf{bit}}{\mathsf{Symbol}} \right] \end{split}$$

Mittlere Codewortlänge $ar{l} = \mathsf{E}[l] = \sum\limits_{i=0}^{n-1} p_i l_i$

Die minimale mittlere Codewortlänge $\bar{l} > H(x_O)$

9.5. Hamming-Code(N,n)

N Nachrichtenbits mit $N=2^k-1=n+k$ n Datenbits k Paritybits

9.6. Huffmann-Code

10. Lineare, digitale Modulation

10.1. Allgemeines

Informationsfluss:

Info-Quelle -¿ Codierung -¿ Modulation -¿ Kanal -¿ Demodulation -¿ Decodierung -¿ Info-Senke

10.2. Modulation und Signalraumzuordnung

$$\begin{split} & \text{Moduliertes Sendesignal} \\ & \tilde{S}(t) = S_I(t) \sqrt{2} \cos(2\pi f_0 t) - S_Q(t) \sqrt{2} \sin(2\pi f_0 t) \\ & = \left[\sum_{n=-\infty}^{\infty} D_{In} \, g_s(t-nT) \right] \sqrt{2} \cos(2\pi f_0 t) \\ & - \left[\sum_{n=-\infty}^{\infty} D_{Qn} \, g_s(t-nT) \right] \sqrt{2} \sin(2\pi f_0 t) \end{split}$$

10.3. Modulationsarten

Amplitudenmodulation ASK

Frequenzmodulation FSK (Winkelmodulation)

Phasenmodulation PSK (Winkelmodulation)

Quadraturmodulation QAM

Modulation mit Sinusträger: $a(t)=A(t)\cdot cos(\omega_0 t-\phi(t))$ Amplitudenmodulation wirkt sich nur auf A(t) aus Winkelmodulation wirkt sich nur auf $\phi(t)$

Tastung eines Sinusträgers

Trägerzustände der 16 QAM

 $\begin{tabular}{ll} Spread Spectrum durch Direct Sequence (DS) oder Frequency Hopping (HS) \end{tabular}$

Schützt vor Schmalbandstörern (Militär) und freuquenz-selektives Fading (Mobilfunk)

10.4. On-Off Keying (OOK)

Intensitätsmodulation mit b=1 (Laser an oder aus)

Mittlere Energie pro Symbol: $E_s = \frac{A_{
m on}^2}{2}$

10.5. Amplitude Shift Keying (M-ASK)

Für M Stufen mit Abstand Δ gilt: $\mathrm{E}[D_I^2] = \frac{\Delta^2(M^2-1)}{12}$

10.6. Phase Shift Keying (PSK)

 $\begin{aligned} &d_I^2 + d_Q^2 = r^2 & \text{(meist } r = 1\text{)} \\ &E_s = \mathrm{E}[D_I^2 + D_Q^2] \int_0^T \left|g_s(t)\right|^2 \mathrm{d}t \end{aligned}$

Offset: verhindert harte Übergänge (Nicht durch Null)
Grav-Codierung zwischen benachbarten

Gray-Codierung zwischen benachbarten Symbolen: Fehler in der Symbolerkennung hat nur geringe Bitfehler

10.6.1. DPSK

Differentielle binäre Phasenmodulation 0: Phase bleibt gleich, 1: Phase ändert sich

10.7. Quadraturamplitudenmodulation (M-QAM)

Für M Stufen und Abstand Δ : $\mathrm{E}[D_I^2 + D_Q^2] = \frac{\Delta^2(M-1)}{6}$

Auch wichtig:

Hi, Dr. Elizabeth? Yeah, uh... I accidentally took the Fourier transform of my cat...

Eigene Notizen:

Anhang

11. Mathematik

11.2. Exponentialfunktion und Logarithmus

$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$\ln(x^a) = a \ln(x)$	$\ln(\frac{x}{a}) = \ln x - \ln a$	log(1) = 0

11.3. Sinus, Cosinus $\sin^2(x) + \cos^2(x) = 1$									
	\boldsymbol{x}	0	$\pi/6$	$\pi/4$	$\pi/3$	$\frac{1}{2}\pi$	π 180°	$1\frac{1}{2}\pi$ 270°	2π
l	φ	00	30°	45°	60°	90°	180°	270°	360°
	\sin	0	$\frac{1}{2}$ $\sqrt{3}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
l	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
	tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

Additionstheoreme

Additionstheoreme	Stammfunktionen
$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) \mathrm{d}x = \cos(x) + x \sin(x)$
$\sin(x + \frac{\pi}{2}) = \cos x$	$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$

 $\begin{array}{l} \sin(x\pm y) = \sin x \, \cos y \pm \sin y \, \cos x \quad \sin x = \frac{1}{2!} (e^{\mathrm{i}x} - e^{-\mathrm{i}x}) \\ \cos(x\pm y) = \cos x \, \cos y \mp \sin x \, \sin y \quad \cos x = \frac{1}{2!} (e^{\mathrm{i}x} + e^{-\mathrm{i}x}) \end{array}$

11.4. Integralgarten

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(q(x))g'(x) dx = \int f(t) dt$

Substitution: $\int \int (g(x))g(x) dx = \int \int (t) dt$						
F(x) - C	f(x)	f'(x)				
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}				
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$				
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$				
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$				
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$				
$-\cos(x)$	$\sin(x)$	$\cos(x)$				
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$				
$\mathrm{Si}(x)$	$\operatorname{sinc}(x)$	$\frac{x\cos(x)-\sin(x)}{x^2}$				
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$				

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$
$$\int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2} \qquad \int t^2 e^{at} dt = \frac{(ax - 1)^2 + 1}{a^3} e^{at}$$

2^1	2^2	2^3	2^4	2^5	2^{6}	2^7	2^8	2^{16}
2	4	8	16	32	64	128	256	65536

12. Geometrie

$a^2 + b^2 = c^2$

Innenwinkelsumme im n-Eck: $(n-2) \cdot 180^{\circ}$

Allg. Dreieck $\triangle ABC$ mit Seiten a, b, c und Winkel α, β, γ :

Schwerpunkt:
$$x_S = \frac{1}{3}(x_A + x_B + x_C)$$

 $y_S = \frac{2}{3}(y_A + y_B + y_C)$

Rechtwinkliges Dreieck $\triangle ABC$ mit $\gamma = 90^{\circ}$ bei CPythagoras: $a^2 + b^2 = c^2$ Höhensatz: $h^2 = pq$ Kathetensatz: $a^2 = pc$

 $a = c \sin \alpha = c \cos \beta = b \tan \alpha$

Zylinder/Prisma Pyramide mit beliebiger Grundfläche G $V = G \cdot h$ $V = \frac{1}{2}G \cdot h$ $M = U \cdot h$ SP: liegt auf h mit $y_S = h/4$

13. Stochastik

13.1. Der Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P)

Ein Wahrscheinlichkeitsraum $(\Omega,\mathbb{F},\mathsf{P})$ besteht aus

Ergebnismenge	$\Omega = \{\omega_1, \omega_2, \dots\}$	Ergebnis $\omega_j \in \Omega$
Ereignisalgebra	$\mathbb{F} = \{A_1, A_2, \ldots\}$	Ereignis $A_i \subseteq \Omega$
Wahrscheinlichkeitsmaß	$P:\mathbb{F}\to[0,1]$	$P(A) = \frac{ A }{ \Omega }$

Es gilt: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

 $\mathsf{Multiplikationssatz:}\ \mathsf{P}(A\cap B)^{'} = \mathsf{P}(A|B)\ \mathsf{P}(B) = \mathsf{P}(B|A)\ \mathsf{P}(A)$

Erwartungswert: $\mathsf{E}[X] = \mu = \sum x_i P(x_i) = \int x \cdot f_\mathsf{X}(x) \, \mathrm{d}x$

 $\textbf{Varianz: } \mathsf{Var}[X] = \mathsf{E}\left[(\mathsf{X} - \mathsf{E}[\mathsf{X}])^2\right] = \mathsf{E}[\mathsf{X}^2] - \mathsf{E}[\mathsf{X}]^2$ Standard Abweichung $\sigma = \sqrt{\operatorname{Var}[X]}$

Covarianz: Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]

Binominialverteilung (diskret, n Versuche, k Treffer): $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ $\mu = np$ $\sigma^2 = np(1-p)$

Korrelation ist ein Maß für den linearen Zusammenhang von Variablen

Kreuzkorrelation von X und Y: $r_{xy} =$

Cov(X, Y)

13.2. Normalverteilung

 $Var(X) = \sigma^2$ $E(X) = \mu$

14. Signale

14.1. Faltung von Signalen

$$x(t) * h(t) = h(t) * x(t) = \int_{-\infty}^{\infty} x(\tau) \cdot h(t - \tau) d\tau$$

14.2. sinc-Singal

15. Fouriertransformation

15.1. Eigenschaften der Fouriertrafo

15.2. Wichtige Fouriertransformationen

 $\operatorname{tri}\left(\frac{t}{T}\right)$

 $|T|\operatorname{sinc}(fT)$

15.3. Weitere Paare

ı				
	f(t)	$F(\omega)$	f(t)	$F(\omega)$
	$ t^n $	$\frac{2n!}{(i\omega)^{n+1}}$	$\operatorname{sinc}(\frac{t}{T})$	$T \operatorname{rect}(fT)$
	t^n	$\frac{\frac{2n!}{(i\omega)^{n+1}}}{2\pi i^n \delta^{(n)}(\omega)}$	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(a+\mathrm{i}\omega)^n}$
			$\exp(-\alpha t)$	$\frac{1}{\mathrm{i} 2\pi f + \alpha}$
П				

16. E-Technik

16.1. title

4	-				- 1				
1	1.	IN	ıa	tu	r	kon	ısta	nten	

Konstanten..