МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения» ТЕМА: «Расчет метрических характеристик качества разработки программ по метрикам Холстеда»

Студент гр. 6304	Григорьев И.С.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать как саму характеристику, так и ее оценку.

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А.

Ручной расчёт измеримых характеристик представлен в таблице 1.

Таблица 1 – Ручной расчёт измеримых характеристик (Pascal)

№ Оператор Количество 1 := 15 2 () или begin end 15 3 ; 11 4 * 8 5 + 4 6 - 4 7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <= 1 13 repeat until 1 14 trapez 1 Bcero 71			T-4
2 () или begin end 15 3 ; 11 4 * 8 5 + 4 6 - 4 7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <=	No	Оператор	
end 3 ; 11 4 * 8 5 + 4 6 - 4 7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <= 1 13 repeat until 1 14 trapez 1	1	:=	15
3 ; 11 4 * 8 5 + 4 6 - 4 7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <=	2	() или begin	15
4 * 8 5 + 4 6 - 4 7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <= 1 13 repeat until 1 14 trapez 1		end	
5 + 4 6 - 4 7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <=	3	;	11
6 - 4 7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <= 1 13 repeat until 1 14 trapez 1	4	*	8
7 / 4 8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <= 1 13 repeat until 1 14 trapez 1	5	+	4
8 fx 3 11 abs 2 10 div 1 11 for to do 1 12 <=	6	-	4
11 abs 2 10 div 1 11 for to do 1 12 <=	7	/	4
10 div 1 11 for to do 1 12 <=	8	fx	3
11 for to do 1 12 <=	11	abs	2
12 <= 1 13 repeat until 1 14 trapez 1	10	div	1
13 repeat until 1 14 trapez 1	11	for to do	1
14 trapez 1	12	<=	1
	13	repeat until	1
Bcero 71	14	trapez	1
Bcero 71			
Bcero 71			
Всего 71			
Всего 71			
Всего 71			
Bcero 71			
l l	Bcei	0	71

№	Операнд	Количество
1	pieces	6
2	lower	5
3	sum	6
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	2
9	sum1	2
10	tol	2
11	fx	1
12	X	3
13	1.0	2
14	2.0	3
15	1	2
16	2	2
17	0.0	1
18	0.5	1
Всего)	54

Программный расчёт измеримых характеристик представлен в таблице 2. Файл с результатами программных расчётов представлен в приложении Б. Таблица 2 – Программный расчёт измеримых характеристик (Pascal)

№	Оператор	Количество
1	=	15
2	()	13
3	;	36
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	const	1
10	abs	2
11	function	1
12	for	1
13	<=	1
14	repeat	1
15	trapez	2
16	real	6
17	program	1
18	procedure	1
19	integer	1
Bcer	0	107

№	Операнд	Количество
1	pieces	7
2	lower	8
3	sum	8
4	delta_x	6
5	upper	7
6	mid_sum	5
7	end_sum	4
8	i	2
9	sum1	3
10	tol	4
11	fx	1
12	X	5
13	1.0	3
14	2.0	3
15	1	2
16	2	2
17	0.0	1
18	9.0	1
19	0.5	1
20	1.0E-6	1
21	trap	1
Всего		75

Расчетные характеристики представлены в таблице 3.

Таблица 3 – Расчётные характеристики (Pascal)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов n ₁	14	19
Число простых операндов n ₂	18	21
Общее число всех операторов N_1	71	107
Общее число всех операндов N ₂	54	75
Словарь п	32	40
Длина N _{опыт}	125	182
Теоретическая длина N _{теор}	128.3616	172.949
Объём V	625	968.591
Потенциальный объём V*	11.6096	11.6096
Уровень программы L	0.0185754	0.0119861
Оценка уровня программы L^	0.047619	0.0294737
Интеллектуальное содержание I	29.7619	28.5479
Работа программирования Е	33646.6	80809.4
Оценка времени	3364	1734.93
программирования Т^		
Время программирования Т	1312.5	4489.41
Уровень языка λ	0.215654	0.139154
Ожидаемое число ошибок в	1.5625	0.623046
программе В		

2. Определение метрических характеристик для программы на Си.

Код программы представлен в приложении В.

Ручной расчёт измеримых характеристик представлен в таблице 4.

Таблица 4 – Ручной расчёт измеримых характеристик (Си)

№	Оператор	Количество
1	=	13
2	() или {}	20
3	;	16
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	3
9	fabs	2
10	<=	1
11	for	1
12	>	1
13	do while	1
14	trapez	1
15	++	1
16	return	1
Bcei	o	82

No	Операнд	Количество
1	pieces	5
2	lower	5
3	sum	5
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	4
9	sum1	2
10	tol	2
11	X	3
12	1.0	2
13	2.0	3
14	1	1
15	2	2
16	0.0	1
17	0.5	1
Всего	0	52

Программный расчёт измеримых характеристик представлен в таблице 5. Файл с результатами программных расчётов представлен в приложении Г.

Таблица 5 – Программный расчёт измеримых характеристик (Си)

$N_{\underline{0}}$	Оператор	Количество
1	=	15
2	()	9
3	;	23
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	,	1
10	fabs	2
11	<=	1
12	for	1
13	>	1
14	do while	1
15	trapez	2
16	++	1
17	return	1
18	void	1
19	int	3
20	main	1
21	double	8
22	const	1
Bcei	О	106

№	Операнд	Количество
1	pieces	6
2	lower	8
3	sum	6
4	delta_x	6
5	upper	7
6	mid_sum	5
7	end_sum	4
8	i	4
9	sum1	3
10	tol	4
11	x	5
12	1.0	3
13	2.0	3
14	1	2
15	2	2
16	0.0	1
17	0.5	1
18	9.0	1
19	1.0E-6	1
Всег	0	72

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчетные характеристики (Си)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов	16	22
n_1		
Число простых операндов	17	19
n_2		
Общее число всех	82	106
операторов N ₁		
Общее число всех	52	72
операндов N ₂		
Словарь п	33	41
Длина N _{опыт}	134	178
Теоретическая длина N _{теор}	133.486	178.818
Объём V	675.948	953.644
Потенциальный объём V*	11.6096	11.6096
Уровень программы L	0.0171753	0.012174
Оценка уровня программы	0.040865	0.0239899
L~		
Интеллектуальное	27.6229	22.8778
содержание I		
Работа программирования	39355.8	78334.7
E		
Оценка времени	3935.58	2218.59
программирования Т^		
Время программирования Т	1654.08	4351.93
Уровень языка λ	0.1993	0.141335
Ожидаемое число ошибок в	1.689872	0.61026
программе В		

Код программы представлен в приложении Д.

Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Ручной расчёт измеримых характеристик (Ассемблер)

$N_{\underline{0}}$	Оператор	Количество
1	pushq	3
2	popq	1
3	movq	13
4	movl	5
5	movsd	37
6	movapd	3
7	addsd	6
8	addl	2
9	subsd	4
10	subq	2
11	andpd	2
12	divsd	4
13	ret	3
14	cvtsi2sd	3
15	call fx	3
16	call trapez	1
17	mulsd	5
18	pxor	1
19	sall	1
20	jmp .L4	1
21	shrl	1
22	sarl	1
23	cmpl	1
24	jle .L5	1
25	ja .L6	1
26	ucomisd	1
27	nop	1

№	Операнд	Количество
1	%rbp	55
2	%rsp	5
3	%xmm0	56
4	%xmm1	24
5	%xmm2	4
6	%rip	18
7	\$88	1
8	\$1	3
9	%rax	8
10	%eax	6
11	%edx	3
12	\$31	1
13	\$8	1
14	\$0	1

28	leave	2
29	-8	6
30	-56	5
31	-64	4
32	-72	2
33	-48	5
34	-32	5
35	-80	6
36	-88	2
37	-24	2
38	sum	5
39	-40	4
40	-16	2
41	-44	4
42	lower	2
43	upper	2
Всего		165

Всего		186
DCCIU		100

Определение расчетных характеристик представлено в таблице 8.

Таблица 8 – Расчёт расчетных характеристик (Ассемблер)

Характеристика	Ручной расчёт
Число простых операторов n ₁	43
Число простых операндов n ₂	14
Общее число всех операторов N ₁	165
Общее число всех операндов N ₂	186
Словарь п	57
Длина N _{опыт}	351
Теоретическая длина N _{теор}	286.632
Объём V	2047.344
Потенциальный объём V*	11.6096
Уровень программы L	0.00567
Оценка уровня программы L~	0.0035
Интеллектуальное содержание I	7.167497
Работа программирования Е	361046.41
Оценка времени программирования Т^	36104
Время программирования Т	58480.93
Уровень языка λ	0.065833
Ожидаемое число ошибок в программе В	5.11836

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов на трех языках

Характеристика	Ручной	Програм-	Ручной	Програм-	Ручной
	расчёт	мный	расчёт Си	мный	расчёт
	Pascal	расчёт		расчёт Си	Ассемблер
		Pascal			
Число простых операторов	14	19	16	22	43
n_1					
Число простых операндов n ₂	18	21	17	19	14
Общее число всех	71	107	82	106	165
операторов N_1					
Общее число всех	54	75	52	72	186
операндов N_2					
Словарь п	32	40	33	41	57
Длина N _{опыт}	125	182	134	178	351
Теоретическая длина N _{теор}	128.3616	172.949	133.486	178.818	286.632
Объём V	625	968.591	675.948	953.644	2047.344
Потенциальный объём V*	11.6096	11.6096	11.6096	11.6096	11.6096
Уровень программы	0.0185754	0.0119861	0.0171753	0.012174	0.00567
Оценка уровня программы	0.047619	0.0294737	0.040865	0.0239899	0.0035
L~					
Интеллектуальное	29.7619	28.5479	27.6229	22.8778	7.167497
содержание I					
Работа программирования Е	33646.6	80809.4	39355.8	78334.7	361046.41
Оценка времени	3364	1734.93	3935.58	2218.59	36104
программирования Т^					
Время программирования Т	1312.5	4489.41	1654.08	4351.93	58480.93
Уровень языка λ	0.215654	0.139154	0.1993	0.141335	0.065833
Ожидаемое число ошибок в	1.5625	0.623046	1.689872	0.61026	5.11836
программе В					

Опытная длина и объем программ на Pascal и Си практически одинаковые и меньше длины и объема программы на ассемблере более чем в 2 раза. Разница между теоретической и опытной длиной программы не

существенна, за исключением Ассемблера. Ассемблер является низкоуровневым языком программирования, что видно по метрике уровня языка. Pascal и Си находятся практически на одном уровне. Ожидаемое количество ошибок больше всего у Ассемблера и поровну у Pascal и СИ. Время программирования (и другие метрики), рассчитанное вручную, отличается от программного расчета: это связано с тем, что в программном расчете учитывались операторы и операнды, задействованные в части описания или отладки программы.

Выводы

В ходе выполнения лабораторной работы изучена система метрик Холстеда. Произведено сравнение программ, реализующих численное интегрирование методом трапеций, на языках Pascal, Си и Ассемблер.

ПРИЛОЖЕНИЕ А

Код программы на Pascal.

```
program trap;
const tol
                   = 1.0E-6;
      sum,upper,lower : real;
function fx(x: real): real;
begin
 fx:=1.0/x
end;
procedure trapez(lower,upper,tol: real;
             var sum
                                : real);
      pieces,i
                                 : integer;
var
      x,delta_x,end_sum,mid_sum,sum1 : real;
begin
 pieces:=1;
  delta_x:=(upper-lower)/pieces;
  end_sum:=fx(lower)+fx(upper);
  sum:=end_sum*delta_x/2.0;
 mid_sum:=0.0;
  repeat
    pieces:=pieces*2;
    sum1:=sum;
    delta_x:=(upper-lower)/pieces;
    for i:=1 to pieces div 2 do
    begin
      x:=lower+delta x*(2.0*i-1.0);
      mid_sum:=mid_sum+fx(x)
  sum:=(end_sum+2.0*mid_sum)*delta_x*0.5;
  until abs(sum-sum1)<=abs(tol*sum)</pre>
end;
begin
  lower:=1.0;
  upper:=9.0;
  trapez(lower,upper,tol,sum);
end.
```

приложение б

Результаты parser_pas.exe

		r module lab1	-	F
Table:		========		
Operate		========	=======	
1	13	()		
2 3	8 4	* +		
3	4 4	 _		
5	5	/		
6	36	, ;		
j 7	1	<=		
8	15	=		
9	2	abs		
10	1	const		
11 12	1 1	for function		
1 13	 4	function fx		
14	1 1	integer		
15	_ 1	procedure		
16	1	program		
17	6	real		
18	1	repeat		
19	2	trapez		
Operand		I		
1 2	1 1	0.0 0.5		
2	1	0.5 1		
4	3	1.0		
5	1 1	1.0E-6		
j 6	2	2		
j 7	j 3	2.0		
8	1	9.0		
9	6	delta_x		
10	4	end_sum		
11	1	fx :		
12 13	2 8	i lower		
14	5	mid_sum		
15	7	pieces		
16	8	sum		
17	3	sum1		
18	4	tol		
19	1	trap		
20	7	upper		
21	5	X		
Summary	/:			
-		========	.=======	:
The nur	mber of	different op	erators	: 19
		different op		: 21
		ber of operat		: 107
The to	ta⊥ num	ber of operar	nas	: 75
Diction	nanv		(D)	: 40
Length	iai y		(D)	. 40 : 182
	estima [.]	tion	(^N)	: 172.9
_				

Volume	(V)	:	968.591
Potential volume	(*V)	:	11.6096
Limit volume	(**V)	:	15.6844
Programming level	(L)	:	0.0119861
Programming level estimation	(^L)	:	0.0294737
Intellect	(I)	:	28.5479
Time of programming	(T)	:	4489.41
Time estimation	(^T)	:	1734.93
Programming language level	(lambda)	:	0.139154
Work on programming	(E)	:	80809.4
Error	(B)	:	0.623046
Error estimation	(^B)	:	0.322864

ПРИЛОЖЕНИЕ В

Код программы на Си

```
#include <stdio.h>
#include <math.h>
const double tol = 1.0E-6;
double sum, upper, lower;
double fx(double x) {
      return 1.0 / x;
}
void trapez(double lower, double upper, double tol) {
      int pieces = 1;
      double x, delta_x, end_sum, mid_sum, sum1;
delta_x = (upper - lower) / pieces;
      end_sum = fx(lower) + fx(upper);
      sum = end_sum * delta_x / 2.0;
      // printf(" 1 %.20f\n", sum);
      mid_sum = 0.0;
      do {
             pieces = pieces * 2;
             sum1 = sum;
             delta_x = (upper - lower) / pieces;
             for (int i = 1; i <= pieces / 2; i++)
                    x = lower + delta_x * (2.0 * i - 1.0);
                    mid_sum = mid_sum + fx(x);
             }
             sum = (end_sum + 2.0 * mid_sum) * delta_x * 0.5;
             // printf(" %i %.20f\n", pieces, sum);
       } while (fabs(sum - sum1) > fabs(tol * sum));
}
int main() {
      lower = 1.0;
      upper = 9.0;
      trapez(lower, upper, tol);
      //printf("area = %.20f", sum);
}
```

приложение г

Результаты parser_c.exe

Table:				
Table: ====== Operato 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Operand 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 15 16 15 16 15 16 16	======================================			
10 17 18 19	4 7 5	tol upper x		
The num The tot	===== ber of ber of al numl	different operator different operands oer of operators oer of operands		: 22 : 19 : 106 : 72
Diction Length		(D) N)	: 41 : 178

Statistics for module lab1c.lxm

Length estimation Volume Potential volume	(^N) (V) (*V)	:	178.818 953.644 11.6096
Limit volume	(**V)		15.6844
Programming level	(L)	:	0.012174
Programming level estimation	(^L)	:	0.0239899
Intellect	(I)	:	22.8778
Time of programming	(T)	:	4351.93
Time estimation	(^T)	:	2218.59
Programming language level	(lambda)	:	0.141335
Work on programming	(E)	:	78334.7
Error	(B)	:	0.61026
Error estimation	(^B)	:	0.317881

приложение д

Код программы на Ассемблер

```
tol:
      .long 2696277389
      .long 1051772663
      .comm sum,8,8
      .comm upper,8,8
      .comm lower,8,8
      .text
      .globl fx
      .type fx, @function
fx:
.LFB0:
      .cfi_startproc
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset 6, -16
      movq %rsp, %rbp
      .cfi_def_cfa_register 6
      movsd %xmm0, -8(%rbp)
      movsd .LC0(%rip), %xmm0
      divsd -8(%rbp), %xmm0
      popq %rbp
      .cfi_def_cfa 7, 8
      ret
      .cfi_endproc
.LFE0:
      .size fx, .-fx
      .globl trapez
      .type trapez, @function
trapez:
.LFB1:
      .cfi_startproc
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset 6, -16
      movq %rsp, %rbp
      .cfi_def_cfa_register 6
      subq $88, %rsp
movsd %xmm0, -56(%rbp)
      movsd %xmm1, -64(%rbp) movsd %xmm2, -72(%rbp)
      movl $1, -48(%rbp)
      movsd -64(%rbp), %xmm0
      subsd -56(%rbp), %xmm0
      cvtsi2sd
                   -48(%rbp), %xmm1
      divsd %xmm1, %xmm0
      movsd %xmm0, -32(%rbp)
      movq -56(%rbp), %rax
      movq %rax, -80(%rbp)
      movsd -80(%rbp), %xmm0
      call fx
      movsd %xmm0, -80(%rbp)
      movq -64(%rbp), %rax
      movq %rax, -88(%rbp)
      movsd -88(%rbp), %xmm0
      call fx
      addsd -80(%rbp), %xmm0
      movsd %xmm0, -24(%rbp)
      movsd -24(%rbp), %xmm0
```

```
mulsd -32(%rbp), %xmm0
      movsd .LC1(%rip), %xmm1
      divsd %xmm1, %xmm0
      movsd %xmm0, sum(%rip)
      pxor %xmm0, %xmm0
      movsd %xmm0, -40(%rbp)
.L6:
            -48(%rbp)
      sall
      movsd sum(%rip), %xmm0
      movsd %xmm0, -16(%rbp)
      movsd -64(%rbp), %xmm0
      subsd -56(%rbp), %xmm0
      cvtsi2sd
                 -48(%rbp), %xmm1
      divsd %xmm1, %xmm0
      movsd %xmm0, -32(%rbp)
      movl $1, -44(%rbp)
      jmp
            .L4
.L5:
      cvtsi2sd
                   -44(%rbp), %xmm0
      addsd %xmm0, %xmm0
      movsd .LCO(%rip), %xmm1
      subsd %xmm1, %xmm0
      mulsd -32(%rbp), %xmm0
      movsd -56(%rbp), %xmm1
      addsd %xmm1, %xmm0
      movsd %xmm0, -8(%rbp)
      movq -8(\%rbp), \%rax
      movq %rax, -80(%rbp)
      movsd -80(%rbp), %xmm0
      call fx
      movapd %xmm0, %xmm1
      movsd -40(%rbp), %xmm0
      addsd %xmm1, %xmm0
      movsd %xmm0, -40(%rbp)
      addl $1, -44(%rbp)
.L4:
      movl
            -48(%rbp), %eax
      movl %eax, %edx
      shrl $31, %edx
      addl %edx, %eax
      sarl
            %eax
      cmpl
            %eax, -44(%rbp)
      jle
            .L5
      movsd -40(%rbp), %xmm0
      addsd %xmm0, %xmm0
      addsd -24(%rbp), %xmm0
      mulsd -32(%rbp), %xmm0
      movsd .LC3(%rip), %xmm1
      mulsd %xmm1, %xmm0
      movsd %xmm0, sum(%rip)
      movsd sum(%rip), %xmm0
      subsd -16(\%rbp), \%xmm0
      movq .LC4(%rip), %xmm1
      andpd %xmm1, %xmm0
      movsd sum(%rip), %xmm1
      mulsd -72(%rbp), %xmm1
      movq .LC4(%rip), %xmm2
      andpd %xmm2, %xmm1
      ucomisd
                  %xmm1, %xmm0
      jа
            .L6
      nop
      leave
```

```
.cfi_def_cfa 7, 8
      ret
       .cfi_endproc
.LFE1:
       .size trapez, .-trapez
       .globl main
       .type main, @function
main:
.LFB2:
       .cfi_startproc
      pushq %rbp
       .cfi_def_cfa_offset 16
       .cfi_offset 6, -16
      movq %rsp, %rbp
       .cfi_def_cfa_register 6
      subq $8, %rsp
movsd .LCO(%rip), %xmm0
      movsd %xmm0, lower(%rip)
      movsd .LC5(%rip), %xmm0
      movsd %xmm0, upper(%rip)
      movsd .LC6(%rip), %xmm1
movsd upper(%rip), %xmm0
      movq lower(%rip), %rax
      movapd %xmm1, %xmm2
      movapd %xmm0, %xmm1
      movq %rax, -8(%rbp)
      movsd -8(%rbp), %xmm0
      call trapez
      movl $0, %eax
      leave
       .cfi_def_cfa 7, 8
      ret
       .cfi_endproc
```