Control Automático

Realimentación de estado integral

Contenido

- Realimentación de estado integral (REI)
- Cálculo del compensador
 - Controlabilidad del sistema REI
 - Cálculo de la matriz R
- Ejemplos y ejercicios
- Resumen
- Referencias

Control con realimentación de estado integral

Partimos de un sistema tipo 0, que no tiene polos en el origen

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$
$$y(t) = \mathbf{C}\mathbf{x}(t)$$

Aumentamos el sistema con un estado (por ser SISO)

$$u(t) = -\mathbf{K}\mathbf{x}(t) + k_I \xi(t)$$

$$\dot{\xi} = r(t) - y(t) = r(t) - \mathbf{C}\mathbf{x}(t)$$

Control con realimentación de estado integral (2)

Se define un nuevo vector de estado aumentado

$$\begin{bmatrix} \mathbf{x}(t) \\ \xi(t) \end{bmatrix}$$

Se escriben las ecuaciones del sistema aumentado para t > 0

$$\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\xi}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \xi(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix} u(t) + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r(t)$$

Se desea que en estado estacionario $y(\infty) = r$; por lo que $\dot{\xi} = 0$, con $\xi(\infty)$, $u(\infty)$ y $\mathbf{x}(\infty)$ tendiendo a valores constantes.

$$\begin{vmatrix} \dot{\mathbf{x}}(\infty) \\ \dot{\xi}(\infty) \end{vmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}(\infty) \\ \xi(\infty) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix} u(\infty) + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} r(\infty)$$

Control con realimentación de estado integral (4)

Con r(t) escalón, $r(\infty) = r$, constante, para t > 0. Al restar las dos ecuaciones anteriores tenemos:

$$\begin{bmatrix} \dot{\mathbf{x}}(t) - \dot{\mathbf{x}}(\infty) \\ \dot{\xi}(t) - \dot{\xi}(\infty) \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) - \mathbf{x}(\infty) \\ \xi(t) - \xi(\infty) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix} [u(t) - u(\infty)]$$

Se definen las variables

$$\dot{\mathbf{x}}_e(t) = \dot{\mathbf{x}}(t) - \dot{\mathbf{x}}(\infty)$$

$$\xi_e(t) = \xi(t) - \xi(\infty)$$

$$u_e(t) = u(t) - u(\infty)$$

Control con realimentación de estado integral (5)

Entonces

$$\begin{bmatrix} \dot{\mathbf{x}}_e(t) \\ \dot{\xi}_e(t) \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & 0 \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} \mathbf{x}_e(t) \\ \xi_e(t) \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}}_{\mathbf{B}} u_e(t)$$

$$u_e(t) = -\mathbf{K}\mathbf{x}_e(t) + k_I \xi_e(t)$$

Se definen

$$\mathbf{e}(t) = \begin{bmatrix} \mathbf{x}_e(t) \\ \xi_e(t) \end{bmatrix}_{n+1} \qquad \widehat{\mathbf{K}} = \begin{bmatrix} \mathbf{K} & -k_I \end{bmatrix}_{n+1}$$

Por lo que

$$u_e(t) = -\widehat{\mathbf{Ke}}(t)$$

$$u_e(t) = -\widehat{\mathbf{K}}\mathbf{e}(t)$$

$$\dot{\mathbf{e}}(t) = \widehat{\mathbf{A}}\mathbf{e}(t) + \widehat{\mathbf{B}}u_e(t)$$

Finalmente

$$\dot{\mathbf{e}}(t) = (\widehat{\mathbf{A}} - \widehat{\mathbf{B}}\widehat{\mathbf{K}}) \cdot \mathbf{e}(t)$$

Controlabilidad

La controlabilidad está dada si puede probarse que la matriz

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{C} & 0 \end{bmatrix}_{(n+1)*(n+1)}$$

tiene rango n+1 (para un sistema SISO).

 La controlabilidad también puede probarse con la matriz de controlabilidad aumentada

$$\widehat{\mathbf{M}} = [\widehat{\mathbf{B}} \quad \widehat{\mathbf{A}}\widehat{\mathbf{B}} \qquad \widehat{\mathbf{A}}^2\widehat{\mathbf{B}} \quad \dots \quad \widehat{\mathbf{A}}^{n-1}\widehat{\mathbf{B}}]$$

Cálculo de K y ki

Los valores propios $\mu_1, \mu_2, \cdots, \mu_{n+1}$ deseados para $\widehat{\mathbf{A}} - \widehat{\mathbf{B}}\widehat{\mathbf{K}}$ se especifican y entonces, si el sistema es de estado completamente controlable, la matriz $\widehat{\mathbf{K}} = [\mathbf{K} - ki]$, compuesta de la matriz de realimentación de estados y de la constante integral para el sistema homogéneo (SISO).

$$\dot{\mathbf{e}}(t) = \left(\widehat{\mathbf{A}} - \widehat{\mathbf{B}}\widehat{\mathbf{K}}\right) \cdot \mathbf{e}(t)$$

pueden determinarse con los métodos conocidos.

Ejemplo 1: Controlabilidad

Para el sistema SISO siguiente, con realimentación de estado integral, coloque los polos de lazo cerrado en las ubicaciones [-4+3j, -4-3j, -10]

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -5 & -6 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 4 & 0 \end{bmatrix} \mathbf{x}(t)$$

Probamos la controlabilidad y resulta que la matriz tiene rango n+1

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{C} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -5 & -6 & 1 \\ -4 & 0 & 0 \end{bmatrix}$$

Ejemplo 1: Cálculo de **K** y ki

$$\widehat{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{C} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -5 & -6 & 0 \\ -4 & 0 & 0 \end{bmatrix} \qquad \widehat{\mathbf{B}} = \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\widehat{\mathbf{B}} = \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Por Ackermann $\hat{\mathbf{K}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \hat{\mathbf{M}}^{-1} \varphi(\hat{\mathbf{A}})$

$$\widehat{\mathbf{M}} = [\widehat{\mathbf{B}} \quad \widehat{\mathbf{A}}\widehat{\mathbf{B}} \quad \widehat{\mathbf{A}}^2\widehat{\mathbf{B}}]$$

$$\varphi(\widehat{\mathbf{A}}) = \widehat{\mathbf{A}}^3 + 18\widehat{\mathbf{A}}^2 + 105\widehat{\mathbf{A}} + 250\mathbf{I}$$

$$\widehat{\mathbf{K}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -6 \\ 1 & -6 & 31 \\ 0 & 0 & -4 \end{bmatrix}^{-1} \begin{bmatrix} 190 & 28 & 0 \\ -140 & 22 & 0 \\ -400 & -48 & 250 \end{bmatrix} = \begin{bmatrix} 100 & 12 \\ 100 & 12 \\ -K \end{bmatrix}$$

Ejemplo 1: Resultados

Ejemplo 1: Análisis de resultados

- Puede observarse en la gráfica de respuesta temporal que la salida se comporta como se esperaba:
 - Tiene un tiempo de estabilización de aproximadamente 1s, debido a la ubicación de los polos dominantes a cuatro unidades del eje imaginario.
 - Posee un sobreimpulso menor al 2% debido a que los polos dominantes tienen un amortiguamiento de 0.8.
 - Presenta un error de estado estacionario cero ante una entrada escalón, debido a la acción integral.
 - Muestra la eliminación del efecto a la salida de las perturbaciones; aplicadas a la entrada y salida de la planta en 6 y 8 segundos respectivamente, también debido a la acción integral.

Ejemplo 2: PID_2DoF

Se tiene el modelo de un levitador magnético G(s), linealizado alrededor de 2cm. Se desea:

$$G(s) = \frac{-2200}{(s+220)(s+30)(s-30)}$$

 a) Estabilizar el sistema y ubicar los polos dominantes de lazo cerrado en:

$$s_{1,2} = -3 \pm j3 \text{ y en } s_3 = -20$$

a) b) Eliminar el error de estado estacionario

Dimensione un compensador PID_2DoF para cumplir con estos objetivos

Ejemplo 2: Estructura del PID_2DoF

$$I_{PD}(s) = +(R(s) - Y(s))\frac{Ki}{s} - Y(s)Kp - Y(s)Kd \frac{s}{(ns+1)}$$

Ejemplo 2: Reducción del orden de la planta

Se sustituye el polo menos dominante por su equivalente de CD

$$\widehat{G}(s) = \frac{-2200}{(s+30)(s-30)\lim_{s\to 0} (s+220)} = \frac{-10}{(s+30)(s-30)}$$

Ejemplo 2: Representación en forma FCC

 \blacksquare Se expresa $\widehat{G}(s)$ en forma de cociente de polinomios

$$\widehat{G}(s) = \frac{-10}{s^2 - 900}$$

Se transcribe a "forma canónica controlable", con la salida como primera variable de estado. $y = x_1$; $dy/dt = x_2$.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 900 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ -10 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

Ejemplo 2: Prueba de controlabilidad

Se comprueba que el rango de la matriz

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{C} & 0 \end{bmatrix}$$

sea n+1

$$rango \begin{bmatrix} 0 & 1 & 0 \\ 900 & 0 & -10 \\ -1 & 0 & 0 \end{bmatrix} = 3$$

Ejemplo 2: Cálculo de K

Para este caso, la matriz de ganancias es

$$\widehat{\mathbf{K}} = [Kp \quad Kd \quad -Ki]$$

Como es un sistema SISO usamos la fórmula de Ackermann

$$\widehat{\mathbf{K}} = [0 \quad 0 \quad 1] \widehat{\mathbf{M}}^{-1} \boldsymbol{\varphi}(\widehat{\mathbf{A}})$$

con

$$\widehat{\mathbf{M}} = [\widehat{\mathbf{B}} \quad \widehat{\mathbf{A}}\widehat{\mathbf{B}} \quad \widehat{\mathbf{A}}^2\widehat{\mathbf{B}}]$$

$$\boldsymbol{\varphi}(\widehat{\mathbf{A}}) = \left[(\lambda - \mu_1) * (\lambda - \mu_2) * (\lambda - \mu_3) \right]_{\widehat{\mathbf{A}}}$$

Ejemplo 2: Cálculo de **R** cont.

Evaluando el polinomio característico del sistema deseado

$$\varphi(\lambda) = (\lambda + 3 - 3j) * (\lambda + 3 + 3j) * (\lambda + 20)$$

$$\varphi(\widehat{\mathbf{A}}) = \widehat{\mathbf{A}}^3 + 26\widehat{\mathbf{A}}^2 + 138\widehat{\mathbf{A}} + 360\mathbf{I}$$

$$\boldsymbol{\varphi}(\widehat{\mathbf{A}}) = \begin{bmatrix} 23760 & 1038 & 0\\ 934200 & 23760 & 0\\ -1038 & -26 & 360 \end{bmatrix}$$

Ejemplo 2: Cálculo de **K** continua

Evaluando la matriz de controlabilidad

$$\widehat{\mathbf{M}} = \begin{bmatrix} 0 & -10 & 0 \\ -10 & 0 & -9000 \\ 0 & 0 & 10 \end{bmatrix}$$

y finalmente

$$\widehat{\mathbf{K}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -10 & 0 & 0 \\ -10 & 0 & -9000 \\ 0 & 0 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 23760 & 1038 & 0 \\ 934200 & 23760 & 0 \\ -1038 & -26 & 360 \end{bmatrix}$$

$$\hat{\mathbf{K}} = [-103.8 \quad -2.6 \quad 36]$$

Ejemplo 2: Modelo en Simulink

Simulación del comportamiento ante perturbaciones, con una referencia = 0.02 m.

Ejemplo 2: Resultados PID_DoF

Respuesta ante perturbaciones con ref. = 0.02 m cte.

Ejemplo 2: Análisis de resultados

- El control REI para el PID_2DoF funciona estabilizando la planta y eliminando la influencia de las perturbaciones, impuestas tanto a la entrada como a la salida de la planta.
- La respuesta tiene un sobrepaso apreciable al recuperarse de las perturbaciones. Eventualmente ubicar los polos dominantes en una zona con un mayor amortiguamiento relativo mejore esta respuesta.

Ejercicio 1: Diseño de servo

Se tiene la planta dada por G(s). Se desea:

$$G(s) = \frac{1331}{s^2 + 39.17s + 1265}$$

- a) Obtener una respuesta sin sobrepaso que se estabilice en 200 ms o menos y un Mp <= 5 %.
- b) Eliminar el error de estado estacionario

Tarea: Dimensione un compensador PID_2DoF para cumplir con estos dos requisitos.

Ejercicio 1: Diseño de servo

Ejercicio 1: Diseño de servo

Preguntas

- ¿Cómo cambiarían las matrices y B el cálculo para un sistema con una matriz D diferente de cero?
- Para un sistema MIMO? digamos de "m" entradas y "m" salidas.

¿Cómo serían las matrices para el cálculo de la realimentación de estado integral.

$$\widehat{\mathbf{A}} = ?$$
; $\widehat{\mathbf{B}} = ?$; $\widehat{\mathbf{K}} = ?$; $\mathbf{C} = ?$; $\mathbf{D} = ?$; \mathbf{K}_{i}

¿Cómo se probaría la controlabilidad?

¿Cuántos integradores se requerirían?

Resumen

- El método de realimentación de estado integral corrige el error de estado estacionario, aún ante perturbaciones o variaciones de parámetros; pues, para un sistema SISO aumenta el tipo de sistema en uno.
- Las ganancias requeridas K y k_i pueden ser calculadas con los métodos tradicionales de realimentación de estado, u otros:
 - Transformación a FCC
 - Sustitución directa
 - Ackermann (solo SISO) u otros similares (SISO, MIMO)

Referencias

Ogata, Katsuhiko. "Ingeniería de Control Moderna", Pearson, Prentice Hall, 2003, 4ª Ed., Madrid.

Dorf, Richard, Bishop Robert. "Sistemas de control moderno", 10ª Ed., Prentice Hall, 2005, España.