MANUFACTURE OF SEMICONDUCTOR DEVICE

Patent number:

JP60107838

Publication date:

1985-06-13

Inventor:

HOKARI YASUAKI

Applicant:

NIPPON DENKI KK

Classification:

- international:

H01L21/31; H01L27/04

- european:

Application number:

JP19830216629 19831117

Priority number(s):

Abstract of JP60107838

PURPOSE:To obtain a film, leakage currents therefrom are little and dielectric strength thereof is high, by laminating and applying first and second insulating films on the surface of a semiconductor substrate, implanting accelerated ions to the second insulating film to bring the second insulating film to an amorphous state and changing the second insulating film to a compact film through heat treatment when a dielectric film having high relative permitivity in Ta2O5, TiO2, etc. is formed on the surface of the substrate. CONSTITUTION: An SiO2 film 2 and a Ta2O5 film 3 are laminated and applied on an Si substrate 1, and ions of Ar, O2, Ta, etc. are implanted to the film 3 to change the film 3 into a Ta2O5 film 31 having amorphous structure. The surface of the substrate 1 is also brought to an amorphous state at that time, but a change into the amorphous state is not at issue practically because the change is recovered in a subsequent heat treatment process. The film 31 is turned into a Ta2O5 film 35 having compact structure through heat treatment at 600-800 deg.C in an inert gas atmosphere or an oxidizing atmosphere. Accordingly, an electrode is formed on the film 35, and MOS capacitance is shaped.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本国特许庁(JP)

10 特許出願公開

四公開特許公報(A)

昭60-107838

@Int.Cl.4 H 01 L 21/31 識別記号

庁内整理番号 7739-5F ❸公開 昭和60年(1985)6月13日

7739-5F C-8122-5F

審査請求 未請求 発明の数 1 (全3頁)

60発明の名称

半導体装置の製造方法

②特 願 昭58-216629

砂出 願 昭58(1983)11月17日

切発明者 穂 苅

泰 明 東京都

東京都港区芝5丁目33番1号 日本電気株式会社内

東京都港区芝5丁目33番1号

⑪出 願 人 日本電気株式会社

の代理人 弁理士内原 晋

明 紐 巷

1. 発明の名称

半導体装置の製造方法

2. 特許請求の範囲

半海体基板表面、もしくは眩半海体基板上に設けられた第1の絶爆膜の表面に第2の絶縁膜を設け、次に眩第2の絶縁膜表面に加速せしめたイオンを照射することにより、該第2の絶縁膜を非晶質化し、続いて熱処理を行うことにより該第2の絶縁膜を緻密な膜とする工程を有することを特徴とする半導体装置の製造方法。

3. 発明の詳細な説明

本発明は、Ta₂O₅, TiO₂ などの比勝国率の高い 既て体膜の形成方法に関し、特に、膜中を流れるリーク電流が少く、また絶縁耐圧の高い野電体 膜を形成する方法に関する。

近年、MOS型半導体装置が広く用いられ、そ

の教積度は年々高密度化が計られている。従来、高密度化はパターンを微細化することにより行なわれてきた。しかし、ダイナミック・ランダムアクセスメモリ(DRAM)の如き半導体装置荷量のは「大きなどの微細化は信号に対応した著積電荷量の低下を招き、インの微細化は信号に対射線によるより間が生まる。とのため、パターンを微がるというでは、経験がある。従来、電荷量を低下させない手段を踏ずるの絶縁にない、では、経験している。とのため、パターンをである。従来、電荷量を低下させない手段を踏ずるの絶縁になるというなど、で対処していた。しかし、絶縁疑が薄くなるとピンホールが増大っため充分を耐圧が得られず歩留りが低圧するなど、複段化にも限界があった。

通常、容量部分の絶線膜を構成する誘電体材料として、比勝電率 3.9 の SiO. が用いられているが、比勝電率の高い材料を用いれば同じ電極面積でも容量を大きくすることが可能となり、従って、いっそうの微細化が可能となる。このため、すでに、Ta₂O₁、TiO₂ などの高勝電材料が検討され

てきた。これらの腹を形成する手段は、例えばTa, Ti などの金属材料を真空中で蒸焙した後、酸窯 雰囲気中で熱処理、あるいは陽極酸化などの手段で酸化することにより、もしくはTa,O, TiO, などの絶縁物質を、真空中でスパッタ蒸焙する、あるいは気相成長法により堆積するなどの手段で形成されている。しかしながら、これらの手段を用いて形成された膜は、低電圧の印加でリーク電流が多く流れるため、末だ実用に耐える段階に至っていない。

この原因としては、形成された絶縁膜が多結晶 構造になっており、その結晶粒界を通じてリーク 電流が流れるものと考えられる。従って、腹構造 を多結晶構造にしない手段を防ずればリーク電流 を低減できるのではないかと本発明者は考えた。 本発明は、かかる考察にもとづき半導体装置に おいて従来の方法によって形成した高比酸電率の 絶録膜の絶録耐圧が低くリーク電流が大きいとい り欠点を排除し、高品質の膜を実現する手段を提 供することにある。すなわち、本発明は半導体基 板表面、もしくは該半導体基板上に設けられた第1の絶縁膜の表面に第2の絶縁膜を設け、次に該第2の絶縁膜表面に加速せしめたイオンを照射することにより、該第2の絶縁膜をいて爲処理を行うことにより、該第2の絶縁膜を緻密な膜とする工程を有することを特徴とする半導体装置の製造方法に関するものである。

以下、本発明を実施例を用いて詳細に説明する。 第1図ないし第3図は、MOS型容量の形成に本 発明を適用した場合を例にとり、その工程を説明 するための断面構造図である。図において1は半 等体基板、2は第1の絶縁膜、3は第2の絶縁膜、 4はイオンの飛来方向をそれぞれ示す。以下、半 導体基板1としてシリコン基板を、第1の絶縁膜 2としてSiO₂を、第2の絶縁膜3としてTa₂O₃ 膜を用いたMOS容量の製造工程を順を追って説明する。

まず、シリコン基板 1 の表面に SiO, 膜 2 が、 続いて Ta,O。膜 3 が形成される (第 1 図)。 SiO, 膜 2 は、 Ta,O。膜 3 を形成する過程でシリコン基板

1との反応を防止するために設けられるものであるが、比勝電率が3.9と小さいので、大きなMOS 容優を構成する上から恋いことが望ましく、50~100人の腹厚にするのが好ましい。また、Ta₂O₃腹3は、例えばTaを真空中で蒸発した後に、酸素雰囲気中で熱処理する、あるいは陽極酸化をするなどの手段、もしくはTa₂O₃を真空中でスパッタ蒸着する、あるいは気相成長法により、地積するなどの手段のいずれを用いて形成しても選択は自由である。当然Ta₂O₃腹3も大きなMOS 容量を得るためにはない方が望ましく、200~500人程度の膜厚が好ましい。形成したTa₂O₃膜3は、X線解析によれば非晶質構造であると観察されるが、電気的特性評価からは完全な非晶質とはなっていない。

次に、Ar, O₂, Taなどの物質をイオンとな し、前記Ta₂O₆膜3にイオン打込みすることに よりTa₂O₆膜3は非晶質な構造を持つTa₂O₆膜 31に変えられる(第2図)。Ta₂O₆膜3は薄膜 であるので、イオン打込みは例えば加速電圧10

- - -

~5 0 KeVの条件でドース 型 1 0¹⁴ ~ 1 0¹⁶ cm⁻²の イオンを打込めば充分 良質の非晶質膜が形成され る。

前記イオン打込みでは Ta₂O₅ 膜3の厚さ方向全体が充分に非晶質となるように、加速電圧を変化せしめてイオン打込みしても良い。この時、前記の時、前記の表面も非晶質化されるが、後の工程で知知を行うことにより結晶性が回復3の表面にイオン打なりとなるマスクとなるマスクを設めて、おいっとなるマスクを設めて、おいっとなるのみイオンでは、とない。なか前記イオンフでは、カーンを設って、ボロンなどの不純物イオンを行な、リン、ボロンなどの不純物イオンを打込ない。ことは可能であり、この場合にはシリコを地域の形成は、本発明を地域のでは、本発明を地域のでは、本発明を地域の対すしい。

非晶質 Ta₂O₃ 腹 3 1 が形成された後、不括性ガス 雰囲気中もしくは酸化雰囲気中 6 0 0 ~ 8 0 0 ℃

特開昭60-107838(3)

の温度で熱処理することにより、非晶質 Ta₂O₅ 膜3 1 が 級密な構造を持つ Ta₂O₅ 膜3 5 に変えられる(第3図)。この後、級密な構造を持つ Ta₂O₅ 膜3 5 表面に電極が形成され、MOS容量が形成される。

本発明を用いて形成したMOS容量のリーク電流量を飼べたところ、従来法に比べ約2桁リーク電流が低波し、充分良好の膜が形成されることが判明した。この効果は、Ta₂O₅膜をいったん完全な非晶質膜に変えたことにあることは明らかである。

なお、上記説明では誘電体材料としてTa₂O₅膜を形成するとして説明したが、本発明はTiO₂, MgO, Nb₂O₅ などの誘電体、もしくはBaTiO₅ などの強誘電体にも同様に適用ができる。

4. 図面の簡単な説明

第1図ないし第3図は本発明の一実施例を説明 するための各工程における半導体装置の断面図で ある。1……半導体基板、2……第1の絶縁膜、 3 ……第2の絶縁膜、4 ……イオンの飛来方向、 3 1 ……非晶質化された第2の絶縁膜、3 5 …… 緻密を構造を持つ第2の絶縁膜。

代理人 弁理士 内 原

