Lecture Notes: Real Analysis — Uncountability of Real Numbers (Course: MIT 18.100A)

Thobias K. Høivik

April 8, 2025

Proving Uncountability

Theorem 1 (Triangle Inequality). $\forall x, y \in \mathbb{R} : |x+y| \leq |x| + |y|$

Proof. By the definition of absolute value, for any $x, y \in \mathbb{R}$, we have:

$$-|x| \le x \le |x|$$

$$-|y| \le y \le |y|$$

Adding these inequalities together:

$$-(|x|+|y|) \leq x+y \leq |x|+|y|$$

By the definition of absolute value, this implies:

$$|x+y| \le |x| + |y|$$

which proves the theorem.

Definition 1. Let $x \in (0,1]$ and let $d_{-j} \in \{0,1,\ldots,9\}$ for $j \in \mathbb{N}$. We say x is represented by the digits $\{d_{-j} : j \in \mathbb{N}\}$, $x = 0.d_{-1}d_{-2}\ldots$ if $x = \sup\{d_{-1}10^{-1} + \cdots + d_{-n}10^{-n} | n \in \mathbb{N}\}$.

Example:

$$0.25000 = \sup\{\frac{2}{10}, \frac{2}{10} + \frac{5}{100}, \frac{2}{10} + \frac{5}{100} + \frac{0}{1000}, \dots\}$$
$$= \sup\{\frac{2}{10}, \frac{25}{100}\} = \frac{1}{4}$$

Theorem 2.

- 1. For every set of digits $\{d_{-j}: j \in \mathbb{N}\}$ with $d_j \in \{0, 1, 2, \dots, 9\}$, there exists a unique $x \in [0, 1]$ such that $x = 0.d_{-1}d_{-2}d_{-3}\dots$
- 2. $\forall x \in (0,1], \exists !\{d_{-j}: j \in \mathbb{N}\} \text{ such that } x = 0.d_{-1}d_{-2}\dots \text{ and } 0.d_{-1}\dots d_{-n} < x \leq 0.d_{-1}\dots d_{-n} + 10^{-n}.$

Theorem 3 (Cantor). (0,1] is uncountable.

Proof. Assume, by contradiction, that $|(0,1]| = |\mathbb{N}|$. Then $\exists f : \mathbb{N} \to (0,1]$ which is bijective. $\forall n$, write $f(n) = 0.d_{-1}^n d_{-2}^n \dots$ satisfying $f(n) \leq 0.d_{-1}^n d_{-2}^n \dots + 10^{-n}$. Let

$$e_{-j} = \begin{cases} 1 & \text{if } d_{-j}^j \neq 1 \\ 2 & \text{if } d_{-j}^j = 1 \end{cases}$$

By 1) of the previous theorem $\exists ! y \in (0,1]$ such that $y = 0.e_{-1}e_{-2}...$ Since all e_{-j} are either 1 or 2, they are non-zero. $\forall n \in \mathbb{N} : 0.e_{-1}e_{-2}...e_{-n} < y \leq 0.e_{-1}...e_{-n} + 10^{-n}$. y is then the unique decimal representation of this number from 2) in the previous theorem. Since f is surjective, $\exists m \in \mathbb{N}$ such that y = f(m). Then

$$d_{-m}^{m} = e_{-m} = \begin{cases} 1 \text{ if } d_{-m}^{m} \neq 1 \\ 2 \text{ if } d_{-m}^{m} = 1 \end{cases} \neq d_{-m}^{m}$$

Thus we have arrived at a contradiction so our assumption that (0,1] is countable is false. \Box

Sequences and Series

Definition 2. A sequence of real numbers is a function $f : \mathbb{N} \to \mathbb{R}$. We denote f(n) with X_n and the sequence by $\{X_n\}_{n=1}^{\infty}$ or $\{X_n\}$ or otherwise X_1, X_2, X_3, \ldots We may also write a_n .

Example: $\{\frac{1}{n}\} = 1, \frac{1}{2}, \frac{1}{4}, \dots$

Definition 3. A sequence X_n is bounded if $\exists b \geq 0$ such that $\forall n \in \mathbb{N} : |X_n| \leq B$.

Example: $\{\frac{1}{n}\}$ is bounded by 1 because it is never larger than 1 for any natural number n. **Non-Example:** $\{n\}$ is not bounded as it will just grow and grow for increasing n.

Proof. Let $B \geq 0$. By Archimedes Property $\exists n \in \mathbb{N} : n > B$. Therefore $\{n\}$ is unbounded.

Definition 4. A sequence $\{X_n\}$ converges to $X \in \mathbb{R}$ if $\forall \mathcal{E} > 0, \exists M \in \mathbb{N} : \forall n \geq M,$ $|X_n - X| < \mathcal{E}$. If a sequence converges we say it's convergent, otherwise it is divergent.

Theorem 4. If $x, y \in \mathbb{R}$ and $\forall \mathcal{E} > 0, |x - y| < \mathcal{E} \Rightarrow x = y$.

Proof. Suppose $x, y \in \mathbb{R}$ and $\forall \mathcal{E} > 0, |x - y| < \mathcal{E}, x \neq y$. Then |x - y| > 0. Then by $|x - y| < \frac{|x - y|}{2} \Rightarrow \frac{1}{2}|x - y| < 0 \Rightarrow |x - y| < 0$ which is not possible.

Theorem 5. If $\{X_n\}$ converges to x and y, then x = y.

Proof. Let (a_n) be a sequence such that:

$$a_n \to x$$
 and $a_n \to y$

By the definition of convergence, for any $\epsilon > 0$, there exists a positive integer N_1 such that for all $n \geq N_1$:

$$|a_n - x| < \epsilon$$

Similarly, since $a_n \to y$, for the same $\epsilon > 0$, there exists a positive integer N_2 such that for all $n \ge N_2$:

$$|a_n - y| < \epsilon$$

Let $N = \max(N_1, N_2)$. Then, for all $n \geq N$, we have both:

$$|a_n - x| < \epsilon$$
 and $|a_n - y| < \epsilon$

Now, using the triangle inequality, we obtain:

$$|x - y| = |(x - a_n) + (a_n - y)| \le |x - a_n| + |a_n - y|$$

For $n \geq N$, we know:

$$|x-y| \le |x-a_n| + |a_n-y| < \epsilon + \epsilon = 2\epsilon$$

Since ϵ is arbitrary, we can make ϵ as small as we want. Thus, for any $\epsilon > 0$, we have:

$$|x - y| \le 2\epsilon$$

Taking the limit as $\epsilon \to 0$, we get:

$$|x - y| = 0$$

Therefore, x = y.