知乎

^{自反士} **地表最强计算机网络串讲**

关注他

HTTPDNS原理

8人赞同了该文章

聊聊 HTTP DNS 的工作方式。

传统 DNS 存在的问题

当我们发出请求解析 DNS 的时候,首先,会先连接到运营商本地的 DNS 服务器,由这个服务器帮我们去整棵 DNS 树上进行解析,然后将解析的结果返回给客户端。但是本地的 DNS 服务器,作为一个本地导游,往往有自己的"小心思"。

一个最令人头痛的问题,相信每个人都遇到,就是域名劫持。

HTTPDNS 概念

HTTPNDS 不走传统的 DNS 解析,而是自己搭建基于 HTTP 协议的 DNS 服务器集群,分布在多个地点和多个运营商。当客户端需要 DNS 解析的时候,直接通过 HTTP 协议进行请求这个服务器集群,得到就近的地址。

这就相当于每家基于 HTTP 协议,自己实现自己的域名解析,自己做一个自己的地址簿,而不使用统一的地址簿。但是默认的域名解析都是走 DNS 的,因而使用 HTTPDNS 需要绕过默认的 DNS 路径,就不能使用默认的客户端。使用 HTTPDNS 的,往往是手机应用,需要在手机端嵌入支持 HTTPDNS 的客户端 SDK。

▲ 赞同 8

● 添加评论

7 分享

● 喜欢

★ 收藏

💷 申请转载

• •

知乎

地表最强计算机网络串讲

么样的尴尬。

HTTPDNS 工作模式

在客户端的 SDK 里动态请求服务端,获取 HTTPDNS 服务器的 IP 列表,缓存到本地。随着不断地解析域名,SDK 也会在本地缓存 DNS 域名解析的结果。

当手机应用要访问一个地址的时候,首先看是否有本地的缓存,如果有就直接返回。这个缓存和本地 DNS 的缓存不一样的是,这个是手机应用自己做的,而非整个运营商统一做的。如何更新、何时更新,手机应用的客户端可以和服务器协调来做这件事情。

如果本地没有,就需要请求 HTTPDNS 的服务器,在本地 HTTPDNS 服务器的IP 列表中,选择一个发出 HTTP 的请求,会返回一个要访问的网站的 IP 列表。

请求的方式是这样的。

```
curl http://106.2.xxx.xxx/d?dn=c.m.163.com
```

```
{"dns":[{"host":"c.m.163.com","ips":["223.252.199.12"],"ttl":300,"http2":0}],"client":
```

手机客户端自然知道手机在哪个运营商、哪个地址。由于是直接的 HTTP 通信,HTTPDNS 服务器 能够准确知道这些信息,因而可以做精准的全局负载均衡。

HTTPDNS 缓存设计

HTTPDNS 将解析速度和更新速度全部掌控在自己手中。

一方面,解析的过程,不需要本地 DNS 服务递归的调用一大圈,一个 HTTP 的请求直接搞定,要实时更新的时候,马上就能起作用;

另一方面为了提高解析速度,本地也有缓存,缓存是在客户端 SDK 维护的,过期时间、更新时间,都可以自己控制。

HTTPDNS 的缓存设计策略也是咱们做应用架构中常用的缓存设计模式,也即分为客户端、缓存、数据源三层,分别对应 SDK 客户端、本地缓存、HTTPDNS 服务器。

▲ 赞同 8 ▼ ● 添加评论 夕享 ● 喜欢 ★ 收藏 昼 申请转载 ・・

知 乎 首发于 地表最强计算机网络串讲

Redis是基于内存的缓存,但是同样提供持久化的能力,使得重启或者主备切换的时候,数据不会完全丢失。

SDK 中的缓存会严格按照缓存过期时间,如果缓存没有命中,或者已经过期,而且客户端不允许使用过期的记录,则会发起一次解析,保障记录是更新的。

解析可以同步进行,也就是直接调用 HTTPDNS 的接口,返回最新的记录,更新缓存;也可以异步进行,添加一个解析任务到后台,由后台任务调用HTTPDNS 的接口。

HTTPDNS调度设计

在客户端,可以知道手机是哪个国家、哪个运营商、哪个省,甚至哪个市,HTTPDNS服务端可以根据这些信息,选择最佳的服务节点返回。

如果有多个节点,还会考虑错误率、请求时间、服务器压力、网络状况等,进行综合选择,而非仅仅考虑地理位置。当有一个节点宕机或者性能下降的时候,可以尽快进行切换。

要做到这一点,需要客户端使用 HTTPDNS 返回的 IP 访问业务应用。客户端的 SDK 会收集网络请求数据,如错误率、请求时间等网络请求质量数据,并发送到统计后台,进行分析、聚合,以此查看不同的 IP 的服务质量。

在服务端,应用可以通过调用 HTTPDNS 的管理接口,配置不同服务质量的优先级、权重。 HTTPDNS 会根据这些策略综合地理位置和线路状况算出一个排序,优先访问当前那些优质的、时 延低的 IP 地址。

HTTPDNS 通过智能调度之后返回的结果,也会缓存在客户端。为了不让缓存使得调度失真,客户端可以根据不同的移动网络运营商 WIFI 的 SSID 来分维度缓存。不同的运营商或者 WIFI 解析出来的结果会不同。

小结

- 传统的 DNS 有很多问题,例如解析慢、更新不及时。因为缓存、转发、NAT问题导致客户端误会自己所在的位置和运营商,从而影响流量的调度。
- HTTPDNS 通过客户端 SDK 和服务端,通过 HTTP 直接调用解析 DNS 的方式,绕过了传统 DNS 的这些缺点,实现了智能的调度。

编辑于 2020-10-31

「真诚赞赏, 手留余香」

▲ 赞同 8

● 添加评论

マ 分享

● 喜欢

★ 收藏

💷 申请转载

• •

2021/7/28 HTTPDNS原理 - 知乎

知乎

首发于 地表最强计算机网络串讲

נאוט נאוט האוט האוט האוט ותיאווז וותיאווז

文章被以下专栏收录

地表最强计算机网络串讲

计算机网络面试必看

推荐阅读

