Class 17 – Multiple Regression Model Inference (Part III)

Pedram Jahangiry

Multiple Hypothesis Testing or Joint Hypothesis Testing: Testing multiple linear restrictions (The F-test)

Test whether performance measures have no effect/can be excluded from regression.

$$H_0: \beta_3=0, \beta_4=0, \beta_5=0$$
 against $H_1: H_0$ is not true

At least one of them is different from zero

Use Venn Diagram to show the exclusion restrictions!

Estimation of the unrestricted model (UR)

$$log(salary) = 11.19 + .0689 \ years + .0126 \ gamesyr$$
 $(0.29) \ (.0121) \ (.0026)$
 $+ .00098 \ bavg + .0144 \ hrunsyr + .0108 \ rbisyr$
 $(.00110) \land (.0161)$
 $(.0072)$

None of these variabels is statistically significant when tested individually

$$n = 353$$
, $SSR_{UR} = 183$, $R_{UR}^2 = 0.62$

<u>Idea:</u> How would the model fit be if these variables were dropped from the regression? Bigger SSR or smaller SSR?

reg_UR <- lm(log(salary)~years+gamesyr+bavg+hrunsyr+rbisyr, mlb1)
stargazer(reg_UR, type = "text")</pre>

	Dependent variable:
	log(salary)
years	0.069***
	(0.012)
gamesyr	0.013***
,	(0.003)
bavg	0.001
-	(0.001)
hrunsyr	0.014
ili ulisyi	
	(0.016)
rbisyr	0.011
,	(0.007)
	(STORY)
Constant	11.192***
	(0.289)
Observations	353
R2	0.628
Adjusted R2	0.622
Residual Std. Error	
F Statistic	117.060*** (df = 5; 347)
Note:	*p<0.1; **p<0.05; ***p<0.01
	p.5.2, p.5.05, p.6.01

Estimation of the restricted model (R) $\beta_3 = 0, \beta_4 = 0, \beta_5 = 0$

$$\beta_3 = 0, \beta_4 = 0, \beta_5 = 0$$

$$\widehat{\log(salary)} = 11.22 + .0713 \ years + .0202 \ gamesyr$$
(.11) (.0125) (.0013)

$$n = 353$$
, $SSR_R = 198$, $R_R^2 = 0.59$

The sum of squared residuals necessarily increases from 183 to 198, but is the increase statistically significant?

reg_R <- lm(log(salary)~years+gamesyr, mlb1) stargazer(reg_R, type = "text")

	Dependent variable:
	log(salary)
years	0.071*** (0.013)
gamesyr	0.020*** (0.001)
Constant	11.224*** (0.108)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	353 0.597 0.595 0.753 (df = 350) 259.320*** (df = 2; 350)
Note:	*p<0.1; **p<0.05; ***p<0.01

What is a good test statistic for testing $\beta_3 = 0, \beta_4 = 0, \beta_5 = 0$?

Joint significance test statistic:

The relative increase of the SSR when dropping variables (going from H_1 to H_0) follows a F-distribution (if the null hypothesis H_0 is correct)

Rejection rule

 \square we reject H_0 in favor of H_1 at the chosen significance level if

- \square How do you find the critical value c?
- ✓ Use table G.3
- ✓ Use R: $qf(1-\alpha,q,n-k-1)$

$$qf(0.95, 3,60) = 2.76$$

TAE	BLE G.3b	5% Criti	cal Value	es of the	F Distrib	ution					
Numerator Degrees of Freedom											
		1	2	3	4	5	6	7	8	9	10
D	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
e	44	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
n	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
0	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
n	n 14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
ı	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
n a	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
t		4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45
o	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
r	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
_	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
D e	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32
g	00	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
r		4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27
е	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25
е	20	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
s	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
o	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
f		4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
F	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
r	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
e e	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
d		3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94
o	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91
n	າ ∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

Calculating the F-statistic

$$F = \frac{(198.311 - 183.186)/3}{183.186/(353 - 5 - 1)} \approx 9.55$$

Degrees of freedom in the <u>unrestricted</u> model

Number of restrictions to be tested

$$F \sim F_{3,347} \Rightarrow c_{0.01} = 3.83$$

 $p_{value} = P(F_{statistic} > 9.55) = 0.000$

The null hypothesis is **overwhelmingly** rejected (even at very small significance levels).

R code: 1 - pf(9.55, 3,347) = 4.475229e-06

- ✓ The three variables are "jointly significant"
- ✓ They were not significant when tested individually
- ✓ The likely reason is multicollinearity between them (use Venn diagram to show it!)

Testing multiple linear restrictions Using R

$$H_0: \beta_3=0, \beta_4=0, \beta_5=0$$
 against $H_1: H_0$ is not true

```
H0 <- c("bavg=0", "hrunsyr=0", "rbisyr=0")
linearHypothesis(reg_UR, H0)
Linear hypothesis test

Hypothesis:
bavg = 0
hrunsyr = 0
rbisyr = 0

Model 1: restricted model
Model 2: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr

Res.Df RSS Df Sum of Sq F Pr(>F)
1 350 198.31
2 347 183.19 3 15.125 9.5503 4.474e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Test of overall significance of a regression

Unrestricted Model: $y = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + u$

Restricted Model: $y = \beta_0 + u$

(regression on constant)

The null hypothesis states that the explanatory variables are not useful at all in explaining the dependent variable

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} = \frac{R^2/k}{(1-R^2)/(n-k-1)} \sim F_{k,n-k-1}$$

- ✓ The test of overall significance is reported in most regression packages
- ✓ the null hypothesis is usually overwhelmingly rejected

Test of overall significance of a regression Using R

reg_UR <- lm(log(salary)~years+gamesyr+bavg+hrunsyr+rbisyr, mlb1)
stargazer(reg_UR, type = "text")</pre>

	Dependent variable:
	log(salary)
years	0.069***
	(0.012)
gamesyr	0.013***
	(0.003)
bavg	0.001
9	(0.001)
hrunsyr	0.014
Til drisyi	(0.016)
rbisyr	0.011
·	(0.007)
Constant	11.192***
Constant	(0.289)
	(0.269)
all and and and	
Observations	353
R2	0.628
Adjusted R2	0.622
Residual Std. Error	0.727 (df = 347)
F Statistic	117.060*** (df = 5; 347)
Note:	*p<0.1; **p<0.05; ***p<0.01

```
H0 <- c("years", "gamesyr", "bavg=0", "hrunsyr=0", "rbisyr=0")
linearHypothesis(reg_UR, H0)
Linear hypothesis test

Hypothesis:
years = 0
gamesyr = 0
bavg = 0
hrunsyr = 0
rbisyr = 0

Model 1: restricted model
Model 2: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr

Res.Df RSS Df Sum of Sq F Pr(>F)
1 352 492.18
2 347 183.19 5 308.99 117.06 < 2.2e-16 ***
---
signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Confirm this:

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} = \frac{R^2/k}{(1-R^2)/(n-k-1)} \sim F_{k,n-k-1}$$

Example: Test whether house price assessments are rational

Actual house price The assessed housing value (before the house was sold) Size of lot (in square feet)
$$\log(price) = \beta_0 + \beta_1 \log(assess) + \beta_2 \log(lotsize) \\ + \beta_3 \log(sqrft) + \beta_4 bdrms + u$$
 Square footage Number of bedrooms

- ☐ If house price assessments are rational, a 1% change in the assessment should be associated with a 1% change in price.
- ☐ In addition, other known factors should not influence the price once the assessed value has been controlled for.

$$H_0: \beta_1 = 1, \beta_2 = 0, \beta_3 = 0, \beta_4 = 0$$

Example: Test whether house price assessments are rational (cont'd)

Unrestricted regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + u$$

$$\log(price) = \beta_0 + \beta_1 \log(assess) + \beta_2 \log(lotsize) + \beta_3 \log(sqrft) + \beta_4 bdrms + u$$

Restricted regression

$$H_0: \beta_1 = 1, \beta_2 = 0, \beta_3 = 0, \beta_4 = 0$$

$$y = \beta_0 + x_1 + u$$

$$\Rightarrow [y-x_1] = \beta_0 + u$$

The restricted model is actually a regression of $(y-x_1)$ on a constant

$$log(price) - log(assess) = \beta_0 + u$$

Example: Test whether house price assessments are rational (cont'd) Regression output for the UnRestricted regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + u$$

$$\log(price) = \beta_0 + \beta_1 \log(assess) + \beta_2 \log(lotsize) + \beta_3 \log(sqrft) + \beta_4 bdrms + u$$

reg_UR <- lm(log(price)~log(assess)+log(lotsize)+log(sqrft)+bdrms, hprice1)
starqazer(req_UR, type = "text")</pre>

	Dependent variable:
	log(price)
log(assess)	1.043*** (0.151)
log(lotsize)	0.007 (0.039)
log(sqrft)	-0.103 (0.138)
bdrms	0.034 (0.022)
Constant	0.264 (0.570)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	88 0.773 0.762 0.148 (df = 83) 70.583*** (df = 4; 83)
Note:	*p<0.1; **p<0.05; ***p<0.01

$$\widehat{\log(price)} = .264 + 1.043 \log(assess) + .0074 \log(lotsize)$$
(.570) (.151) (.0386)
$$- .1032 \log(sqrft) + .0338 bdrms$$
(.1384) (.0221)
$$n = 88, SSR = 1.822, R^2 = .773.$$

Example: Test whether house price assessments are rational (cont'd)

```
reg_UR <- lm(log(price)~log(assess)+log(lotsize)+log(sqrft)+bdrms. hprice1)</pre>
  HO <- c("log(assess)=1","log(lotsize)=0","log(sqrft)=0","bdrms=0")
  linearHypothesis(reg_UR, H0)
Linear hypothesis test
Hypothesis:
log(assess) = 1
log(lotsize) = 0
log(sqrft) = 0
bdrms = 0
Model 1: restricted model
Model 2: log(price) ~ log(assess) + log(lotsize) + log(sqrft) + bdrms
  Res.Df RSS Df Sum of Sq
                                     F Pr(>F)
      83 1.8215 4 0.05862 0.6678 0.6162
                                F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} = \frac{(1.880 - 1.822)/4}{1.822/(88-4-1)} \approx .661
```

Conclusion: We fail to reject the null i.e. everything is reflected in variable "assess" already!