### Choice of Stepsize and Projected Gradient

#### SIE 449/549: Optimization for Machine Learning

Afrooz Jalilzadeh

Department of Systems and Industrial Engineering University of Arizona



#### **Gradient Method**

Consider the following optimization problem:

$$\min_{x} f(x)$$

- ▶ Gradient Step:  $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
- Assume f has a Lipschitz continuous gradient with constant L
- ▶ Constant Stepsize:  $\alpha_k = \alpha$ , such that  $\alpha < 2/L$
- ▶ If  $\alpha = 1/L$  and f be a convex function, then

$$f(x_T) - f(x^*) \le \frac{L}{2T} ||x_0 - x^*||^2$$
, for all  $T \ge 1$ 

▶ How many steps should we take to get to an  $\epsilon$ -suboptimality?

# Choices of Stepsize

- 1. Constant Stepsize:  $\alpha_k = \alpha < 2/L$  and if f is convex,  $\alpha = 1/L$ 
  - We need to know Lipschitz constant L
- 2. Backtracking for Convex Function: Consider  $\beta \in (0, 1)$ , start with an initial stepsize  $\alpha_k = \alpha$ . Then, while

$$\|\nabla f(x_{k+1}) - \nabla f(x_k)\| > \frac{1}{\alpha_k} \|x_{k+1} - x_k\|$$

$$\alpha_k \leftarrow \beta \alpha_k$$
.

## Choices of step size

- 3. **Diminishing Stepsize:** Decrease  $\alpha_k$  in each iteration:
  - Intuitively, as the algorithm runs, we will get closer and closer to the optimal point and it might be better to move less in case we miss the optimal point
  - $\alpha_k$  satisfies the following two conditions

$$\lim_{k\to\infty}\alpha_k=0,\qquad \sum_{k=1}^\infty\alpha_k=\infty$$

- Why we need  $\sum_{k=1}^{\infty} \alpha_k = \infty$ ?
  - Because we may get stuck in certain region and never reach optimum, it allows us to explore the entire space

# Choices of step size

4. **Line Search:** Find the "best"  $\alpha_k$  that minimize f along the direction of  $d_k$  at each iteration as follows

$$\alpha_k \in \operatorname{argmin}_{\alpha > 0} f(x_k + \alpha_k d_k)$$

- When  $d_k = -\nabla f(x_k)$ :  $\alpha_k \in \operatorname{argmin}_{\alpha>0} f(x_k \alpha_k \nabla f(x_k))$
- $\bullet$  It can be costly to search for the optimal  $\alpha$

# Choices of step size

4. **Line Search:** Find the "best"  $\alpha_k$  that minimize f along the direction of  $d_k$  at each iteration as follows

$$\alpha_k \in \operatorname{argmin}_{\alpha > 0} f(x_k + \alpha_k d_k)$$

- When  $d_k = -\nabla f(x_k)$ :  $\alpha_k \in \operatorname{argmin}_{\alpha>0} f(x_k \alpha_k \nabla f(x_k))$
- ullet It can be costly to search for the optimal lpha
- 5. **Backtracking-Armijo:** Iteratively shrink  $\alpha_k$  until the decrease in  $f(x_k) f(x_{k+1})$ , adequately matches the decrease that is expected to be achieved:
  - Given constants  $\sigma \in (0,1)$  and  $\beta \in (0,1)$  and initial stepsize s, while

$$f(x_k) - f(x_k - \alpha_k \nabla f(x_k)) < \sigma \alpha_k ||\nabla f(x_k)||^2$$

set  $\alpha_k \leftarrow \beta \alpha_k$ ;

## Optimization over a Convex Set

Consider the following constrained optimization problem

where C is a closed convex subset of  $\mathbb{R}^n$  and f is continuously differentiable over C

#### Definition 1 (Stationary Point)

Let f be a continuously differentiable function over a closed and convex set C. Then  $x^*$  is called a **stationary point** of (P) if

$$\nabla f(x^*)^T(x-x^*) \geq 0$$
, for all  $x \in C$ 

## Stationarity as a Necessary Optimality Condition

#### Theorem 2

Let f be a continuously differentiable function over a nonempty closed convex set C, and let  $x^*$  be a local minimum of (P). Then  $x^*$  is a stationary point of (P).

### Example

▶ Show that when  $C = \mathbb{R}^n$ , then  $x^*$  is a stationary point if  $\nabla f(x^*) = 0$ .

### Stationarity in Convex Optimization

▶ For convex problems, stationarity is a necessary and sufficient condition

#### Theorem 3

Let f be a continuously differentiable convex function over a nonempty closed and convex set  $C \subseteq R^n$ . Then  $x^*$  is a stationary point of

iff  $x^*$  is an optimal solution of (P).

### The Orthogonal Projection Operator

#### **Definition 4**

Given a nonempty closed convex set C, the orthogonal projection operator  $P_C : \mathbb{R}^n \to C$  is defined by

$$P_C(x) = \operatorname{argmin}\{\|y - x\|^2 : y \in C\}$$

▶ The first important result is that the orthogonal projection exists and is unique.

#### Theorem 5 (The First Projection Theorem)

Let  $C \subseteq R^n$  be a nonempty closed and convex set. Then for any  $x \in \mathbb{R}^n$ , the orthogonal projection  $P_C(x)$  exists and is unique.

# Examples

 $ightharpoonup C = \mathbb{R}^n_+$ 

▶ A box is a subset of  $R^n$ :  $C = [\ell_1, u_1] \times ... \times [\ell_n, u_n] = \{x \in \mathbb{R}^n : \ell_i \leq x_i \leq u_i\}$ 

ightharpoonup C = B[0, r]

## The Second Projection Theorem

#### Theorem 6 (The Second Projection Theorem)

Let  $C \subseteq R^n$  be a nonempty closed and convex set and let  $x \in \mathbb{R}^n$ . Then,  $z = P_C(x)$  if and only if

$$(x-z)^T(y-z) \leq 0$$
, for any  $y \in C$ 

# Properties of the Orthogonal Projection

#### Theorem 7

Let C be a nonempty closed and convex set. Then

1. For any  $v, w \in \mathbb{R}^n$ :

$$(P_C(v) - P_C(w))^T (v - w) \ge ||P_C(v) - P_C(w)||^2$$

2. (non-expansiveness) For any  $v, w \in \mathbb{R}^n$ :

$$||P_C(v) - P_C(w)|| \le ||v - w||$$

# Representation of Stationarity via the Orthogonal Projection Operator

#### Theorem 8

Let f be a continuously differentiable function over the nonempty closed convex set C, and let s > 0. Then  $x^*$  is a stationary point of

if and only if

$$x^* = P_C(x^* - s\nabla f(x^*))$$

# **Projected Gradient Method**

- ▶ From Theorem 8,  $x_k$  is a stationary point iff  $||P_C(x_k s\nabla f(x_k)) x_k|| = 0$
- ▶  $x_k$  is an  $\epsilon$ -stationary point iff  $\|P_C(x_k s\nabla f(x_k)) x_k\| \le \epsilon$

#### Algorithm 1 Projected Gradient Method

```
Initialization: pick x_0 \in \mathbb{R}^n arbitrarily for k = 0, 1, 2, \ldots do find a stepsize \alpha_k satisfying f(x_k + \alpha_k d_k) < f(x_k) set x_{k+1} = P_C(x_k - \alpha_k \nabla f(x_k)) if ||x_{k+1} - x_k|| \le \epsilon then STOP and x_{k+1} is the output end for
```

- ▶ When f is convex and has a Lipschitz gradient, then choose  $\alpha_k = 1/L$
- ▶ One can show that  $f(x_T) f(x^*) \le \mathcal{O}(1/T)$  for all  $T \ge 1$