Uniwersytet Warszawski Wydział Nauk Ekonomicznych

Andrzej Żernaczuk Jakub Wujec 407240 420463

Czy możliwe jest przewidzenie ocen filmów na podstawie analizy sentymentu komentarzy na portalu Reddit

Praca zaliczeniowa na zajęcia

Zastosowania Języka Python oraz Data-Driven Research

prowadzone przez Kristóf Gyódi i Michała Palińskiego.

SPIS TREŚCI

Vstęp	
Dane	2
Metodologia	2
Przygotowanie danych tekstowych do użycia w modelu	2
Przygotowanie modeli.	3
Pobieranie komentarzy z portalu Reddit.	5
Przygotowanie danych do porównania predykcji z właściwymi wartościami	6
Wyniki	6
Podsumowanie	10
Bibliografia	11

1. Wstęp

W niniejszej pracy podjęliśmy się zbadania możliwości przewidzenia ocen filmów poprzez analizę sentymentu komentarzy na portalu *Reddit* (dalej zwanym także Redditem). W tym celu posłużyliśmy się bazą danych z portalu *Kaggle* oraz postami z *Twittera* tak, aby wytrenować nasz model w ocenie treści komentarza.

2. Dane

Do wytrenowania modelu zostały użyte dane zawierające 1 600 000 tweetów wraz z oznaczeniem sentymentu. Ze względu na złożoność obliczeniową i zasoby potrzebne do trenowania modeli, użyliśmy losowo wybranej połowy zbioru danych.

Do stworzenia bazy filmów których ocenę chcieliśmy przewidzieć posłużyliśmy się API o nazwie *omdbapi*. Wybraliśmy pierwsze 50 filmów (z wyjątkiem następujących produkcji: *Lot nad kukulczym gniazdem, Życie jest piękne, Dobry, zły i brzydki,* pominiętych z powodu problemu z ich tytułami) z listy top500 portalu *Filmweb*. Stworzony plik JSON wyczyściliśmy z niepotrzebnych nam danych, a następnie skonwertowaliśmy do formatu CSV. Plik zawiera: tytuł, ID z portalu *IMDb*, rok, liczbę ocen oraz, co najważniejsze, oceny produkcji z 3 najważniejszych portali poświęconych ocenianiu filmów: *IMDb*, *Metacritic* oraz *RottenTomatoes*.

3. Metodologia

3.1. Przygotowanie danych tekstowych do użycia w modelu

Zarówno do uczenia modelu jak i późniejszych predykcji potrzebne jest przetworzenie danych tekstowych do formatu nadającego się dla sieci neuronowej. Pierwszą czynnością jaka została w tym celu wykonana było usunięcie nazw własnych użytkowników oznaczonych w twitterowych postach. Następnie usuwaliśmy znaki takie jak "\n" lub "\r" które służa do do formatowania tekstu oraz wszelkiego rodzaju znaki specjalne. Tak wstępnie przetworzone dane poddawane są procesowi usunięcia *stopwords*. Polega ona na usunięciu słów takich jak 'i', 'me', 'you' i tym podobnych, czyli słów które nie wnoszą nic do treści zdania, a co za tym idzie nie są potrzebne do trenowania modelu. Do tego procesu została użyta biblioteka *nltk*. Następnie następuje proces tokenizacji, do którego użyta została biblioteka *Tensorflow*. Proces ten polega na podziale zdań na pojedyńcze słowa, a następnie przyporządkowaniu każdemu z nich unikalnej cyfry. Dzięki temu otrzymujemy zbiór wszystkich unikalnych słów występujących w naszych danych wraz z przyporządkowaną do

nich unikalna liczbą. Za przykład użyjemy zdanie 'Analiza sentymentu z wykorzystaniem sieci neuronowych'. Jest ona zamieniana w następującą listę:

Następnie każde słowo zamieniane jest na wcześniej przyporządkowaną mu liczbę:

Tak przygotowane dane poddajemy procesowi *Paddingu*. Jest to procedura konieczna ze względu na różne długości tekstów na których będziemy pracować. Dzieje się tak, ponieważ model musi mieć stały kształt danych wejściowych. *Padding* polega na normalizacji długości każdej listy ze ztokenizowanymi danymi. Przykładowo, jeżeli chcemy żeby długość naszych danych wejściowych wynosiła 10, to biorąc pod uwagę, że nasze zdanie miało tylko 6 słów, w puste pola zostaną wpisane cyfry 0:

Jeżeli przykładowy tekst byłby dłuższy od wybranej przez nas długości danych wejściowych, to zdanie zostanie skrócone.

3.2. Przygotowanie modeli.

W naszym badaniu testowaliśmy dwa typy sieci neuronowych. Pierwszą z nich jest CNN czyli *Convolutional Neural Network*. Jest to sieć neuronowa zawierająca warstwy konwolucyjne. W dużym skrócie, konwolucja jest przekształceniem macierzowym, fragmentu zdjęcia, tekstu lub innych danych, mające na celu wyciągnięcie informacji o konkretnych jego cechach. Po warstwie konwolucyjnej używa się tzw. *poolingu*, służącego do zmniejszenia wymiarów cech konwolucyjnych, które zostały wyznaczone w poprzedniej warstwie, zachowując najważniejsze cechy. Drugim rodzajem sieci jest RNN czyli *Recurrent neural network*. Jest to rodzaj sieci umożliwiający wykorzystanie danych sekwencyjnych. Zawierają one tak zwane *komórki pamięci* umożliwiające sieci zachowywanie informacji z poprzednich kroków czasowych. Obydwa te modele mają jednak część wspólną - pierwszą ich warstwą jest *embedding*. Do jej stworzenia został użyty algorytm *word2vec* z wykorzystaniem biblioteki *gensim*. Proces ten polega na zamianie każdej cyfry reprezentującej ztokenizowane słowo na wektor o wymiarach przez nas wybranych. Wektory dobrane są tak, że słowa o podobnych znaczeniu znajdują się w przestrzeni blisko siebie. Model CNN wygląda w następujący sposób:

Layer (type)	Output	Shape	Param #	
embedding (Embedding)	(None,	300, 300)	138574200	
convld (ConvlD)	(None,	300, 32)	28832	
max_pooling1d (MaxPooling1D)	(None,	100, 32)	0	
conv1d_1 (Conv1D)	(None,	98, 64)	6208	
max_pooling1d_1 (MaxPooling1	(None,	32, 64)	0	
conv1d_2 (Conv1D)	(None,	30, 128)	24704	
global_max_pooling1d (Global	(None,	128)	0	
flatten (Flatten)	(None,	128)	0	
dense (Dense)	(None,	10)	1290	
dense_1 (Dense)	(None,	1)	11	
Total params: 138,635,245 Trainable params: 61,045 Non-trainable params: 138,574,200				

Składa się on z trzech warstw konwolucyjnych, po każdej z nich następuje warstwa *Max Poolingu*. Wyjątkiem jest tutaj ostatnia warstwa, która zamiast klasycznego *Max Poolingu* używa *Global Max Poolingu*. W modelu tym udało się osiągnąć około 0.73 accuracy.

Model RNN wygląda w następujący sposób:

Model: "sequential_1"				
Layer (type)	Output Shape	Param #		
embedding (Embedding)	(None, 300, 300)	138574200		
dropout (Dropout)	(None, 300, 300)	0		
lstm (LSTM)	(None, 100)	160400		
dense_2 (Dense)	(None, 1)	101		
Total params: 138,734,701 Trainable params: 160,501 Non-trainable params: 138,574,200				

Użyliśmy specjalnego wariantu sieci RNN, czyli LSTM, z angielskiego *Long short-term memory*. W celu walki z *overfittingiem*, czyli zjawiskiem nadmiernego dopasowania do danych treningowych zastosowany został *dropout*. W obydwu modelach funkcją służącą do optymalizacji jest *Adam*, a funkcją straty *binary cross-entropy*, wyrażona następującym wzorem:

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

gdzie:

N - rozmiar danych wyjściowych

W tym modelu udało się osiągnąć accuracy na poziomie 0.789

W związku z zauważalnie lepszymi wynikami dla modelu LSTM to on zostanie wykorzystany w dalszej pracy

3.3. Pobieranie komentarzy z portalu Reddit.

Do pobierania komentarzy z portalu *Reddit* używamy biblioteki *psaw*, zawierającej API do wcześniej wspomnianego portalu. Następnie pobieramy 1000 komentarzy i dla każdego z nich przeprowadzamy analizę sentymentu i liczymy średnia ważoną gdzie wagami są liczby punktów przy danym komentarzu.

3.4. Przygotowanie danych do porównania predykcji z właściwymi wartościami

Do obróbki i analizy używamy Data Frame'ów czyli dwuwymiarowych rodzajów przechowywania danych na wzór tablicy, o zmiennym rozmiarze i potencjale do przechowywania różnorodnych typów danych. Pierwszy z Data Frame'ów tworzony jest z pliku Filmweb_top50.csv w którym zawarte są dane dotyczące pięćdziesięciu pierwszych filmów z rankingu portalu Filmweb. Następnie konwertujemy oceny to spójnego formatu, w przypadku IMDb z X.Y/10 na XY, RottenTomatoes z XY% na XY i dla portalu Metacritic z XY/100 na XY. Te ujednolicenie formatowania pozwala nam porównać wartość przewidzianą z wartościami właściwymi. Różnicę między ocenami obliczaliśmy za pomocą prostego odejmowania między predykcją a oceną na danym portalu, której wynik zaokrąglaliśmy do dwóch miejsc po przecinku. Dla każdego z filmów zapisywana jest do DataFrame o nazwie data_df: przewidywana ocena oraz wielkość różnic wraz z pozostałą resztą danych. Na potrzeby zabezpieczenia się przed utratą danych w przypadku błędu lub awarii sprzętu co 5 filmów dane zapisywane były do pliku top_50_preds.csv. Po wykonaniu się całego kodu wszystkie wyniki znajdują się w wyżej wymienionym pliku.

4. Wyniki

Nasze wyniki sprawdzaliśmy na wcześniej wspomnianym zbiorze. Średni błąd dla każdego z nich wyglądał następująco: *IMDb*: 29,03, *Metacritic*: 29,01, *RottenTomatoes*: 20,5.

```
Błąd predykcji w przypadku ocen z IMDB wynosi: 29.03
Błąd predykcji w przypadku ocen z RottenTomatoes wynosi: 20.5
Błąd predykcji w przypadku ocen z Metacritic wynosi: 29.01
```

Nasz model osiągnął najlepszy rezultat dla portalu *RottenTomatoes*, w przypadku pozostałych dwóch portali średni wynik był praktycznie taki sam, jednak różnica w zakresie wielkości błędów stoi na korzyść *IMDb*. Średnia niedokładność wśród trzech portali wyniosi 26,18 punktów procentowych. Na następnych trzech stronach zaprezentowane zostały wykresy pokazujące różnice pomiędzy naszą predykcją, a faktycznymi ocenami na poprzednio wspomnianych portalach, wyrażone w punktach procentowych. Zostały one wykonane za pomoca rozwiązania *PowerBI* dostarczonego przez firmę *Microsoft*.

5. Podsumowanie

W niniejszej pracy podjęliśmy się zbadania możliwości przewidywania ocen filmów na podstawie komentarzy użytkowników *Reddita*. Nasze wyniki wskazują że jesteśmy w stanie to zrobić z średnim błędem mieszczącym się w zakresie 20-30 punktów procentowych. Nie jest to jednak satysfakcjonująca dokładność. Możliwym wytłumaczeniem tego jest inny charakter portalu *Reddit* od typowego przedstawiciela Social Mediów. Analizując komentarze z subreddita poświęconego danemu tematowi możemy spodziewać się przeważnie pozytywnych ocen, w końcu ta część forum będzie tworzona przez ludzi pozytywnie nastawionych do niego. Subreddity często opisywane są jako bańki informacyjne, gdzie pewny zbiór poglądów może być uznawany za "jedyny słuszny". W części *Reddita* poświęconej kinematografii wypowiadają się ludzie, którzy są zainteresowani kinem, przy czym na portalach poświęconym stricte filmom, częściej zabierają głos także "niedzielni" kinomaniacy. W naszej ocenie te powody mogą wpływać na osiągnięty przez nas wynik.

6. Bibliografia

https://www.reddit.com/

http://www.omdbapi.com/

https://www.filmweb.pl/ranking/film

https://www.imdb.com/

https://machinelearningmastery.com/develop-word-embedding-model-predicting-movie-revie

w-sentiment/

https://www.kaggle.com/paoloripamonti/twitter-sentiment-analysis

https://towardsdatascience.com/cnn-sentiment-analysis-9b1771e7cdd6

https://www.tensorflow.org/text/tutorials/text_classification_rnn

https://www.researchgate.net/figure/The-architecture-of-CNN-based-text-sentiment-classifica

tion fig2 328431365