Transistors

Course Content

Transistors:

Transistor configurations: CB, CE and CC; Transistor parameters: alpha, beta and gamma, working of transistor as a switch, Amplifier.

Bipolar Transistor Configurations

- At the end of this lecture, student will be able to :
 - Define transistor
 - Explain the working of transistor
 - Explain the transistor configurations
 - Draw the input output characteristics of BJT

Topics

- Introduction
- An Overview of Bipolar Transistors
- Bipolar Transistor Operation
- Bipolar Transistor configurations
- Bipolar Transistor Characteristics

Introduction to BJT

Basic models of BJT

Transistor Structure

- Collector doping is usually ~ 10⁹
- Base doping is slightly higher $\sim 10^{10} 10^{11}$
- Emitter doping is much higher ~ 10¹⁷

BJT Current and Voltage - Equations

$$I_E = I_B + I_C$$
 $V_{CE} = -V_{BC} + V_{BE}$

pnp

$$I_E = I_B + I_C$$

 $V_{EC} = V_{EB} - V_{CB}$

Understanding of BJT

BJT Operation

Transistor Current Components

• Current Components in *p-n-p Transistor*

Transistor Current Components continued..

❖ Current Components in an *n*−*p*−*n Transistor*

How Transistor Works

Bipolar Transistor Operation

- Consider npn transistors
 - pnp devices are similar but with different polarities of voltage and currents
 - when using npn transistors
 - collector is normally more positive than the emitter
 - V_{CF} might be a few volts
 - device resembles two back-to-back diodes but has very different characteristics
 - with the base open-circuit negligible current flows from the collector to the emitter

BJT configurations

(a) Common base

(b) Common emitter

(c) Common collector

BJT configurations Continued..

Biasing the transistor refers to applying voltages to the transistor to achieve certain operating conditions.

- 1. Common-Base Configuration (CB): input = $V_{EB} \& I_{E}$ output = $V_{CB} \& I_{C}$
- 2. Common-Emitter Configuration (CE): input = $V_{BE} \& I_{B}$ output= $V_{CF} \& I_{C}$
- 3. Common-Collector Configuration (CC) :input = $V_{BC} \& I_{B}$ (Also known as Emitter follower) output = $V_{EC} \& I_{E}$

BJT Biasing Modes

Bias Mode	E-B Junction	C-B Junction
Saturation	Forward	Forward
Active	Forward	Reverse
Inverted	Reverse	Forward
Cutoff	Reverse	Reverse

Transistor Characteristics

Input Characteristics

Input characteristics in the CE mode

Input characteristics in the CB mode

Common-Base Configuration of pnp Transistor

Common-Base Configuration of npn transistor

Common Base Input Characteristics

Common Base Output Characteristics

Common-Emitter Configuration of npn Transistor

Common-Emitter Configuration of pnp Transistor

Common Emitter Input Characteristics

Common Emitter Output Characteristics

Common-Collector Configuration of npn Transistor

Common-Collector Configuration of pnp Transistor

Common Collector Input Characteristics

Common Collector Output Characteristics

Summary

- BJT consist of either a P-N-P or an N-P-N semiconductor structure.
- BJT has three leads called Emitter, Base, and Collector
- BJT has three configurations: common base, common emitter and common collector
- Transistor operates in 3 regions: Active, saturation and cut off

Transistor Parameters

- At the end of this lecture, student will be able to :
 - Draw the equivalent circuit of a transistor
 - Explain about the transistor Parameters
 - Derive the relation between alpha, beta and gamma

Topics

- Equivalent circuit of transistor
- Transistor Parameters
- Relation between alpha, beta and gamma

Transfer Characteristics Continued..

Transfer characteristics

- It can be described by either the current gain or by the transconductance
- DC current gain h_{FF} or β is given by

$$\beta (h_{FE}) = I_C / I_B$$

AC current gain h_{FF} is given by

$$h_{FE} = i_c / i_b$$

Transconductance g_m is given approximately by

$$g_m \approx 40I_C \approx 40I_E$$
 Siemens

Current Amplification Factors

 β = Common-emitter current gain

 α = Common-base current gain

γ = Common collector current gain

$$I_{\mathsf{E}} = I_{\mathsf{C}} + I_{\mathsf{B}}$$

$$\alpha = \frac{\triangle I_{C}}{\triangle I_{E}} \qquad \beta = \frac{\triangle I_{C}}{\triangle I_{B}} \qquad \gamma = \frac{\triangle I_{E}}{\triangle I_{B}}$$

$$\alpha = \frac{\beta}{\beta + 1}$$
 $\beta = \frac{\alpha}{1 - \alpha}$ $\gamma = \beta + 1$

Common Base Transistor Circuit

Common Base Transistor Working

Common Base DC current gain - PNP

Common Base - Active Bias mode:

$$\mathbf{I}_{\mathcal{C}} = \alpha_{\mathsf{D}\mathcal{C}}\mathbf{I}_{\mathsf{E}} + \mathbf{I}_{\mathsf{CBO}}$$

Common Emitter Amplifier Circuit

Common Emitter Amplifier Equations

$$|_{C(max)} = \frac{V_{CC} - V_{CB(sat)}}{R_C} = |_{C(sat)}$$

$$|_{B(min)} = \frac{|_{C(sat)}}{\beta_{de}}$$

$$\beta_{dc} = \frac{\alpha_{dc}}{1 - \alpha_{dc}}$$

$$= \frac{\frac{|_{C} - |_{CO}}{|_{E}}}{1 - \frac{|_{C} - |_{CO}}{|_{E}}} = \frac{|_{C} - |_{CO}}{|_{E} - |_{C} + |_{CO}}$$

$$= \frac{\frac{|_{C} - |_{CO}}{|_{E}}}{|_{E} + |_{CO}}$$

Common Emitter Amplifier Working

Common Emitter DC current gain - PNP

Common Emitter Active Bias mode:

$$I_E = \beta_{DC}I_B + I_{CEO}$$

$$\mathbf{I}_{C} = \alpha_{\mathsf{D}C}\mathbf{I}_{\mathsf{E}} + \mathbf{I}_{C\mathsf{BO}}$$
$$= \alpha_{\mathsf{D}C}(\mathbf{I}_{C} + \mathbf{I}_{\mathsf{B}}) + \mathbf{I}_{C\mathsf{BO}}$$

$$\beta_{DC} = \alpha_{DC}/(1-\alpha_{DC})$$

GAIN!!

$$I_C = \frac{\alpha_{DC}I_B + I_{CBO}}{1 - \alpha_{DC}}$$

$$\alpha_{DC} = \beta_{DC/(1+} \beta_{DC)}$$

 $I_{CFO} = I_{CRO} / (1 - \alpha_{DC})$

Common Collector Amplifier

Common Collector Features

- Common Collector is also called emitter-follower (EF).
- It is called common-collector configuration since both the signal source and the load share the collector terminal as a common connection point.
- Output voltage is obtained at emitter terminal.
- Input characteristic of common-collector configuration is similar with commonemitter configuration.
- Common-collector circuit configuration is provided with the load resistor connected from emitter to ground.
- It is used primarily for impedance-matching purpose since it has high input impedance and low output impedance.

Characteristics of Different Transistor Configurations

Characteristic	Common Base	Common Emitter	Common Collector
Input Impedance	Low	Medium	High
Output Impedance	Very High	High	Low
Phase Angle	0°	180°	0°
Voltage Gain	High	Medium	Low
Current Gain	Low	Medium	High
Power Gain	Low	Very High	Medium

Comparison of Different Configuration

Basic circuit	Common emitter	Common collector	Common base
	v° v	v°	
Voltage gain	high	less than unity	high, same as CE
Current gain	high	high	less than unity
Power gain	high	moderate	moderate
Phase inversion	yes	no	no
Input impedance	moderate ≃ 1 k	highest ≈ 300 k	low ≈ 50 Ω
Output impedance	moderate ≈ 50 k	low ≈ 300 Ω	highest ≈ 1 Meg

Problems

Example 2.1

A certain npn transistor has a base current of 80µA and a collector current of 2mA. Calculate α , β and I_E

$$(\alpha = .96, \beta = 25, I_E = 2.08 \text{mA})$$

Example 2.2

For a transistor α =.98, I_B =50 μ A.Find values of I_C , I_E and β

Summary

- Behavior can be described by the current gain, h_{FE} or by the transconductance, g_m of the device
- CE configuration will provide the current gain .
- Voltage gain is provided by CB configuration.

Junction Field Effect Transistor

- At the end of this lecture, student will be able to :
 - Define JFET
 - Explain the construction of JFET
 - Explain the operation of JFET
 - Classify JFET and BJT

Topics

- JFET basics
- JFET construction
- JFET operation
- JFET characteristics

JFET (Junction Field Effect Transistor)

JFET continued..

JFET Construction

JFET Construction Continued...

- An n- channel is formed between two p-type layers which are connected to the gate.
- Majority carrier electrons flow from the source and exit the drain, forming the drain current.
- The pn junction is reverse biased during normal operation, and this widens the depletion layers which extend into the n channel only (since the doping of the p regions is much larger than that of the n channel). As the depletion layers widen, the channel narrows, restricting current flow.

n- Channel and p-Channel JFET

JFET operation under v_{DS} =0

$$V_{\rm GS} = 0$$

$$V_{\rm GS} < 0$$

$$V_{\rm GS} = V_{\rm GS(off)}$$

Effect of V_{DS} on I_{D} for $V_{GS(off)} < V_{GS} < 0$

 $V_{GD} > V_{GS}$

Triode region

 $V_{GD} = V_{GS(off)}$

 $V_{GD} < V_{GS(off)}$ Saturation region

N-JFET Characteristics

Operation of JFET: Ohmic Region

Operation of JFET: Saturation Region

Operation of JFET: Breakdown Region

Characteristic Curve of N Channel JFET

JFET Working

JFET Operation

JFET Equations

 The following equations describe the operation of n-channel JFETs (and of depletion-mode MOSFETs; those for enhancement-mode MOSFETs are slightly different). They also apply to p-channel JFETs by substituting v_{sg} for v_{gs} and v_{sp} for v_{ps}.

Cut – off region : $v_{GS} < -V_{P}$

Ohmic region: $v_{DS} < 0.25(v_{GS} + V_{P})$, $v_{GS} > -V_{P}$

$$R_{DS} = \frac{V_P^2}{2I_{DSS}(v_{GS} + V_P)}$$
 (equivalent drain - to - source resistance)

$$i_D \approx \frac{v_{DS}}{R_{DS}}$$

Saturation region : $v_{DS} \ge v_{GS} + V_{P}$, $v_{GS} > -V_{P}$

$$i_D = \frac{I_{DSS}}{V_P^2} (v_{GS} + V_P)^2$$

Breakdown region: $v_{DS} > V_{B}$

JFET Transfer characteristic

Simplified characteristic curve for any drain-source voltage above a few volts.

JFET Transfer characteristic continued...

Hence a large increase in drain-source:

- 'pulls harder', trying to drag the electrons more quickly from source to drain.
- 'squeezes down' the channel making it harder for the electrons to get through.
- These effects tend to cancel out, leaving the current the same at all high drain-source voltage.

Summary

- JFETS are unipolar devices.
- Gate, Drain and Source are the terminals of JFET
- JFET is a voltage controlled device.
- JFET can work in 3 regions which are Ohmic, saturation and cut off.

