

ROBT206 - Microcontrollers with Lab

Lecture 4 – Boolean Algebra

18 January, 2018

Topics

Today's Topics

Binary Logic and Gates

Boolean Algebra

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Scanned at the American Institute of Physics

Binary Logic and Gates

- **Binary variables** take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Binary Variables

- ▶ Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - **I/0**
- We use I and 0 to denote the two values.

Logical Operations

- ▶ The three basic logical operations are:
 - AND
 - ▶ OR
 - NOT
- ▶ AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (), a single quote mark (') after, or (~) before the variable.

Notation Examples

Examples:

- z = x + y
- $\mathbf{X} = \overline{\mathbf{A}}$

 $\mathbf{Y} = \mathbf{A} \cdot \mathbf{B}$ is read "Y is equal to A AND B."

is read "z is equal to x OR y."

is read "X is equal to NOT A."

Note: The statement:

I + I = 2 (read "one plus one equals two")

is not the same as

I + I = I (read "I or I equals I").

Operator Definitions

Operations are defined on the values "0" and "I" for each operator:

AND

$$0 \cdot 0 = 0$$

$$0 \cdot I = 0$$

$$\mathbf{I} \cdot \mathbf{0} = \mathbf{0}$$

$$|\cdot| = |$$

$$0 + 0 = 0$$
 $0 = 1$

$$0 + I = I \quad \bar{I} = 0$$

$$I + 0 = I$$

$$I + I = I$$

$$\overline{\mathbf{0}} = \mathbf{I}$$

$$\bar{I} = 0$$

Truth Tables

- ► Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND					
X	Y	$Z = X \cdot Y$			
0	0	0			
0		0			
	0	0			
1					

OR				
X	Y	Z = X+Y		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

NOT	
X	$z=\overline{x}$
0	I
	0

Logic Function Implementation

- Using Switches
 - For inputs:
 - ▶ logic I is <u>switch closed</u>
 - logic 0 is switch open
 - For outputs:
 - logic I is light on
 - ▶ logic 0 is <u>light off</u>.
 - NOT uses a switch such that:
 - logic I is switch open
 - logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Logic Function Implementation

Example: Logic Using Switches

- Light is on (L = I) for L(A, B, C, D) = and off (L = 0), otherwise.
- Useful model for relay circuits and for CMOS gate circuits,
 the foundation of current digital logic technology

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, **vacuum tubes** that open and close current paths electronically replaced relays.
- ▶ Today, **transistors** are used as electronic switches that open and close current paths.

Logic Gate Symbols and Behavior

Logic gates have special symbols:

(OR)

(NOT)

And waveform behavior in time as follows:

(a) Graphic symbols

(b) Timing diagram

Gate Delay

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- The delay between an input change(s) and the resulting output change is the **gate delay** denoted by t_G :

Logic Diagrams and Expressions

Truth Table

Tracii iabic							
XYZ	F		X	+	Y	•	Z
000	0						
001	I						
010	0						
0 1 1	0						
100	I						
101	I						
110	I						
H	1						

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Algebra

• An algebraic structure defined on a set of binary variables, together with three binary operators (denoted +, · and _) that satisfies the following basic identities:

$$| X + 0 = X$$

2.
$$\mathbf{X} \cdot \mathbf{I} = \mathbf{X}$$

$$3. \quad X + I = I$$

4.
$$X \cdot 0 = 0$$

$$5. X + X = X$$

6.
$$X \cdot X = X$$

7.
$$X + \overline{X} = 1$$

8.
$$\mathbf{X} \cdot \overline{\mathbf{X}} = \mathbf{0}$$

9.
$$\overline{\overline{X}} = X$$

10.
$$X + Y = Y + X$$

$$| \cdot |$$
 $XY = YX$

Commutative

12.
$$(X + Y) + Z = X + (Y + Z)$$

13.
$$(XY) Z = X(Y Z)$$

$$14. \quad X(Y+Z) = XY+XZ$$

15.
$$X + YZ = (X + Y) (X + Z)$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

DeMorgaris

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - I. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR

Example 1: Boolean Algebraic Proof

Our primary reason for doing proofs is to learn:

 $X \cdot I = X$

= A

- Careful and efficient use of the identities and theorems of Boolean algebra, and
- How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

► AB +
$$\overline{A}$$
C + BC = AB + \overline{A} C (Consensus Theorem)

Example 3: Boolean Algebraic Proofs

Proof of DeMorgan's Laws

$$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$$

$$\overline{\mathbf{x}\cdot\mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$$

Boolean Function Evaluation

FI =
$$xy\overline{z}$$

F2 = $x + \overline{y}z$
F3 = $\overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$
F4 = $x\overline{y} + \overline{x}z$

X	y	Z	F 1	F2	F3	F4
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	0	1		
1	1	0	1	1		
1	1	1	0	1		

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):

$$AB + ACD + ABD + ACD + ABCD$$

$$= AB + ABCD + A C D + A C D + A B D$$

$$= AB + AB(CD) + A C (D + D) + A B D$$

$$= AB + A C + A B D = B(A + AD) + AC$$

$$= B (A + D) + A C \rightarrow 5 \text{ literals}$$

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - I. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement F = x y z + x y zF = (x + y + z)(x + y + z)
- Example: Complement G = (a + bc)d + e G =

Any Questions?

