UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i	MAT-INF 1100 — Modellering og
Eksamensdag:	beregninger. Onsdag 7. oktober 2009.
Tid for eksamen:	15:00 – 17:00.
Oppgavesettet er på 6	sider.
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Ingen.
	t oppgavesettet er komplett før nner å besvare spørsmålene.
Husk å fyll	e inn kandidatnummer under.
	Kandidatnr:
spørsmål, men det er bare eller lar være å krysse av	er altså 50. Det er 5 svaralternativer for hvert ett av disse som er riktig. Dersom du svarer feil på et spørsmål, får du null poeng. Du blir altså oeng for å svare feil. Lykke til!
	Oppgave- og svarark
Oppgave 1. Det binære tallet □ 119 □ 121 □ 116 □ 125 □ 117	e tallet 1110111_2 er det samme som det desimale
	otallssystemet blir det heksadesimale tallet $f4f_{16}$
\square 111100001101 ₂ \square 111100000011 ₂	
$\Box 111100000011_2$ $\Box 110000001111_2$	
\Box 111101001111 ₂	
$\Box 111100001111_2$	

Oppgave 3.	Desimaltallet 5.3 kan skrives på binær form som
□ 101.0100110	$0011001\cdots$ der sifrene 1001 gjentas uendelig mange ganger
\Box 101.0100110	0011001101
\square 101.011	
\Box 101.0101010	$0101010101\cdots$ der sifrene 01 gjentas uendelig mange ganger
\Box 101.0110011	$001100110\cdots$ der sifrene 0110 gjentas uendelig mange
ganger	
Oppgave 4.	I åttetallssystemet blir det desimale tallet 40.125
$\square 49.1_8$	
$\square 40.1_8$	
\square 50.3 ₈	
$\Box 40.11_{8}$	
$\square 50.1_8$	
Oppgave 5. 2.4	I siffersystemet med grunntall $\beta=4$ blir det desimale tallet
$\square 2.3_4$	
$\square 2.10303_4$	
$\square 2.103_4$	
$\square 2.1_4$	
□ krever uend	elig mange siffer
Oppgave 6.	Tallet $\frac{1+\sqrt{2}+\sqrt{8}}{5-\sqrt{8}}$
er	
□ et rasjonalt	tall
$\Box 1 + \sqrt{2}$	
$\Box \sqrt{2} - 1$	
$\Box \sqrt{8} + \sqrt{2}$	
$\square \sqrt{8} - \sqrt{2}$	2
	En følge er definert ved $x_n = e^{-n^2}$ for $n \ge 1$. Hva er største for tallmengden gitt ved $\{x_n \mid n \ge 1\}$?
$\square 1/2$	
\square er ikke defin	nert
$\square 0$	
\square 1	
$\Box e$	

Oppgave 8. Anta at vi multipliserer ut parentesene i uttrykket $(2-x)^{99}$. Hva blir da koeffisienten foran x^{98} ? \square 99 $\Box 1$ $\Box -198$ $\Box -99$ \square 198 **Oppgave 9.** Hva er Taylor-polynomet av grad 2 om a = -1 for funksjonen $f(x) = x^4$? $\Box 3 + 9x + 7x^2$ $\Box 3 + 8x + 6x^2$ $\Box -x$ $\square x^2$ $\Box x^4$ Oppgave 10. Hva er Taylor-polynomet av grad 2 om a = 1 for funksjonen $f(x) = x^2$? $\Box x^2$ $\Box -1 + x + x^2$ $\square 3 - x - x^2$ $\square 0$ $\square x$ Vi minner om at dividerte differenser tilfredstiller relasjonene $f[x_0, x_1, \dots, x_{k-1}, x_k] = \frac{f[x_1, \dots, x_{k-1}, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$ og $f[x_k] = f(x_k)$. **Oppgave 11.** Vi har funksjonen $f(x) = \sin x$ og punktene $x_0 = 0$, $x_1 = \pi/2$ og $x_2 = \pi$. Da har den dividerte differansen $f[x_0, x_1, x_2]$ verdien $\Box -4/\pi^2$ $\square 4/\pi^2$ $\square 2/\pi$ $\Box -2/\pi$ $\square 0$ **Oppgave 12.** Vi har funksjonen $f(x) = x^4$ og punktene $x_i = i$, for i = 0, $1, \ldots, 5$. Da har den dividerte differansen $f[x_0, x_1, x_2, x_3, x_4, x_5]$ verdien \square 24 \Box 6 $\square 2$ \square 12

 $\square 0$

Oppgave 13. Vi interpolerer funksjonen $f(x) = x^3$ med et polynom p_2 av grad 2 i punktene 0, 1, 2. Da er p_2 lik

- $\square x^2$
- $\square x^3$
- $\square x + 3x(x-1)$
- $\square x 3x(x-1)$
- $\square 4x^2 3x$

Oppgave 14. Du skal tilnærme funksjonen $f(x) = e^x$ med et Taylorpolynom av grad n på intervallet [0,1], utviklet om a=0. Det viser seg at feilen er begrenset av

$$\frac{3x^{n+1}}{(n+1)!}.$$

Hva er den minste graden n som gjør at feilen blir mindre enn 0.01 for alle x i intervallet [0,1]?

- $\square n = 1$
- $\square n = 3$
- $\square n = 4$
- $\square n = 5$
- $\square n = 7$

Oppgave 15. Differensligningen

$$x_{n+1} - x_n = (-1)^{n+1}, \quad x_0 = 1/2$$

har løsningen

- $\Box x_n = (-1/2)^{n+1}$
- $\square \ x_n = (-1)^n/2$
- $\square x_n = 1/2$
- $\square x_n = (n+1)/2$
- $\square x_n = n$

Oppgave 16. Vi har gitt en differensligning med initialbetingelser,

$$x_{n+2} - 3x_{n+1} - 4x_n = 2$$
, $x_0 = 0$, $x_1 = 1$.

Hva er løsningen?

- $\square x_n = n$
- $\square x_n = n2^{n-1}$
- $\Box x_n = (4^n 1)/3$
- $\square x_n = (1 (-1)^n)$
- $\square x_n = -\sin(5n\pi/3)$

Oppgave 17. Vi har en følge definert ved

$$y_n = 1 + 2^2 + 3^2 + \dots + n^2, \quad n = 1, 2, \dots$$

og en annen følge $\{x_n\}_{n=1}^{\infty}$ definert ved differensligningen

$$x_{n+1} - x_n = (n+1)^2, \quad x_1 = 1.$$

For $n \ge 1$ er da $y_n - x_n$ gitt ved

- $\square (n-1)^2$
- $\square (n-1)^3$
- $\square 0$
- $\square (n-1)n^2$
- $\square n2^n$

Oppgave 18. Vi har differensligningen

$$x_{n+1} - \frac{x_n}{3} = 2, \quad x_0 = 2,$$

og simulerer denne med 64-bits flyttall. For alle n over en viss grense vil da den beregnede løsningen \bar{x}_n gi som resultat

- $\square 3$
- $\square 1$
- $\square \ 0$
- $\Box 3 3^{-n}$
- □ Det blir overflow

Oppgave 19. Vi har differensligningen

$$x_{n+2} - 6x_{n+1} + 12x_n = 1$$
, $n \ge 1$, $x_0 = 1/7$, $x_1 = 1/7$

og simulerer denne med 64-bits flyttall på datamaskin. For alle n over en viss grense vil da den beregnede løsningen \bar{x}_n gi som resultat:

- $\square 1/3$
- $\square 5$
- $\square 0$
- ☐ Det blir overflow
- $\square 3^n$

Oppgave 20. Vi lar P_n betegne påstanden

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \ge \sqrt{n}.$$

Et induksjonsbevis for at P_n er sann for alle heltall $n \geq 1$ kan være som følger:

- 1. Vi ser lett at P_1 er sann.
- 2. Anta nå at vi har bevist at P_1, \ldots, P_k er sanne. For å fullføre induksjonsbeviset, må vi vise at P_{k+1} også er sann. Siden vi antar at P_k er sann vet vi at

$$\sum_{i=1}^{k} \frac{1}{\sqrt{i}} \ge \sqrt{k},$$

og vi må vise at da er også

$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} \ge \sqrt{k+1}.$$

Vi har følgende relasjoner

$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{k} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}}$$

$$\geq \sqrt{k} + \frac{1}{\sqrt{k+1}}$$

$$= \frac{\sqrt{k(k+1)} + 1}{\sqrt{k+1}}$$

$$\geq \frac{\sqrt{k^2 + 1}}{\sqrt{k+1}}$$

$$= \sqrt{k+1}.$$

Vi ser dermed at om P_k er sann så må også P_{k+1} være sann. Hvilket av følgende utsagn er sant?

- $\hfill \square$ Påstanden P_n er sann, men del 2 av induksjonsbeviset er feil
- \square Påstanden P_n er feil, og del 2 av induksjonsbeviset er feil
- $\hfill\Box$ Påstanden P_n er feil, og del 1 av induksjonsbeviset er feil
- \square Både påstanden P_n og induksjonsbeviset er riktige
- □ Beviset er riktig, men det er ikke noe induksjonsbevis

Det var det!