

Figure 3.7: A visual (arrow) depiction of the red vector (1,0,0), the green vector (0,1,0), and the blue vector (0,0,1) in \mathbb{R}^3 .

4. In \mathbb{R}^2 , the vectors u=(1,1), v=(0,1) and w=(2,3) are linearly dependent, since w=2u+v.

See Figure 3.8.

Figure 3.8: A visual (arrow) depiction of the pink vector u = (1, 1), the dark purple vector v = (0, 1), and the vector sum w = 2u + v.

When I is finite, we often assume that it is the set $I = \{1, 2, ..., n\}$. In this case, we denote the family $(u_i)_{i \in I}$ as $(u_1, ..., u_n)$.

The notion of a subspace of a vector space is defined as follows.

Definition 3.4. Given a vector space E, a subset F of E is a linear subspace (or subspace) of E iff F is nonempty and $\lambda u + \mu v \in F$ for all $u, v \in F$, and all $\lambda, \mu \in K$.