Formulating Existing Force Structure Optimization

Table of Contents

- 1. Introduction
- 2. Sets
- 3. Parameters
- 4. Variables
- 5. Constraints
 - ∘ 5.1. Fills
 - o 5.2. Total Weighted Fill
 - o 5.3. Total Excess Fill
 - o 5.4. End Strength
 - 5.4.1. Deviation
 - 5.5. Objectives
- 6. Additional Goals
 - o <u>6.1. Deviation From Original Supply</u>
 - o 6.2. Additional Parameters
 - <u>6.3. Additional Variables</u>
 - o 6.4. Additional Constraints
- 7. Revised Objective

1 Introduction

A formulation for a MIP goal program to formalize force structure optimization.

2 Sets

SRCS phases

3 Parameters

- weight (phase) The priority weighting by phase, summing to unity.
- excess (SRC, phase, n) The excess fill by src, in a phase, if supply level n is chosen.
- demandmet (SRC, phase, n) The demand met by src, in a phase, if supply level n is chosen.
- strength (SRC, n) The total strength associated with src, is supply level n is chosen.
- lower (SRC) The lower bound for supply level n for src.
- upper (SRC) The upper bound for supply level n for src.
- bounds (SRC) {lower(SRC)...upper(SRC)} The integer range of supply levels for src.
- targetstrength The targeted end strength for our goal program.

4 Variables

We define a few free variables.

selected is a binary variable determining if a level of supply for an SRC was chosen:

$$selected(SRC, n) \in \{0, 1\}$$
 $\forall SRC \in SRCS$
 $\forall n \in bounds(SRC)$

Since we have end-strength goals, we introduce necessary variables to implement absolute value relations and constraints:

 $posdev \in R_+$ the "chosen" positive deviation for end strength $negdev \in R_+$ the "chosen" negative deviation for end strength

 $strdev \in R$ surrogate for the relating positive and negative deviation

5 Constraints

5.1 Fills

∀ SRC ∈ SRCS

$$(1) \qquad \qquad \textit{wfill}(SRC) = \sum_{\substack{n \in bounds(SRC) \\ \forall phase \in phases}} \textit{weight}(phase) * demandmet(SRC, phase, n) * selected(SRC, n)$$

$$wexcess(SRC) = \sum_{\substack{n \in bounds(SRC) \\ \forall phase \in phases}} weight(phase) * excess(SRC, phase, n) * selected(SRC, n)$$

(3)
$$\sum_{n \in bounds(SRC)} selected(SRC, n) = 1$$

5.2 Total Weighted Fill

(4)
$$totalfill = \sum_{SRC \in SRCS} wfill(SRC)$$

5.3 Total Excess Fill

(5)
$$totalexcess = \sum_{SRC \in SRCS} wexcess(SRC)$$

5.4 End Strength

(6) endstrength =
$$\sum_{\substack{\forall SRC \in SRCS \\ \forall n \in bounds(SRC)}} strength(SRC, n) * selected(SRC, n)$$

5.4.1 Deviation

End strength is a goal, which may deviate absolutely. We provide a fill deviation variable that captures deviation from the expectation.

Strength deviation is the measure of observed strength less the target. It may be positive or negative.

$$(7)$$
 strengthdev = posdev - negdev

Absolute strength deviation is the sum of our two positive variables, this represents |strengthdev|, which will contribute to the objective.

(8) absstrengthdev = posdev + negdev

Codify our endstrength goal.

(9) endstrength + strengthdev = target

5.5 Objectives

In the legacy example, we have 2 objectives that are maximized hierarchically.

We want to select a force structure where

- we minimize deviation from the force structure target
- maximize (or preserve) weighted fill
- maximize (or preserve) weighted excess
- (10) min absstrengthdev max totalfill max totalexcess

We could formulate this as a composite weighted objective function using the Big M method or similar (weights may need adjusting):

(11) $\max z = -10000 * \text{absstrengthdev} + 1000 * \text{totalfill} + \text{totalexcess}$

6 Additional Goals

6.1 Deviation From Original Supply

We can also codify a desire to retain the original balance of structure as much as possible by choosing to deviate as little as possible from some baseline for each SRC.

6.2 Additional Parameters

 $baseline(SRC) \in bounds(SRC)$

6.3 Additional Variables

 $posSRCdev(SRC) \in R_+$ "chosen" positive deviation in SRC structure $negSRCdev(SRC) \in R_+$ "chosen" negative deviation in SRC structure $SRCdev(SRC) \in R$ surrogate for relating positive and negative structure deviation

6.4 Additional Constraints

- (12) SRCdev(SRC) = posSRCdev(SRC) negSRCdev(SRC)
- (13) absSRCdev(SRC) = posSRCdev(SRC) + negSRCdev(SRC)

Codify our structure deviation goal:

 $\forall SRC \in SRCs$

(14)
$$\sum_{n \in bounds(SRC)} selected(SRC, n) + SRCdev = baseline(SRC)$$

(15)
$$totalSRCdev = \sum_{SRCinSRCS} absSRCdev(SRC)$$

7 Revised Objective

(16) min absstrengthdev max totalfill max totalexcess min totalSRCdev

We could formulate this as a composite weighted objective function using the Big M method or similar (weights may need adjusting):

(17)
$$\max z = -10000 * \text{absstrengthdev} + 1000 * \text{totalfill} + \text{totalexcess} - 0.01 * \text{totalSRCdev}$$

Created: 2021-04-28 Wed 13:05

Validate