Study of a predator prey model.

Moritz Wolter

May 31, 2015

1 The equation

$$\dot{x} = x(x-a)(1-x) - bxy \tag{1}$$

$$\dot{y} = xy - cy - d. \tag{2}$$

With a = 0.4, b = 0.3, and $c \in [0.650.75]$. x represents prey and y predators. The xy products of the system govern the interaction of the two species.

2 Analysis of a simplified model d = 0

2.1 One-dimensional approach

Setting d and y equal to zero turns the system into:

$$\dot{x} = x(x-a)(1-x). \tag{3}$$

For this simplified case the fixed points may be read off easily. $\dot{x} = 0$ yields $x_1 = 0$, $x_2 = a$, $x_3 = 1$. Linear analysis will lead to further insight into the nature of these fixed points reading of f(x) = x(x - a)(1 - x) and computing f'(x) leads to:

$$f'(x) = -3x^2 + 2x + 2xa - a. (4)$$

Substituting x with the fixed points yields:

$$f'(x_1) = -a \tag{5}$$

$$f'(x_2) = -a^2 + a = -0.4^2 + 0.4 > 0 (6)$$

$$f'(x_3) = -3 + 2 + 2a - a = -1 + a = -0.6 < 0$$
(7)

Thus it may be concluded, that x_2 is unstable and $x_3 \wedge x_1$ are stable. Figure 1 shows simulation results produced by a Runge-Kutta type numerical integration routine. The fixed point positions that where read off from the simplified system equation are confirmed by the results to be at $x_1 = 0$, $x_2 = a = 0.4$, $x_3 = 1$. Furthermore the fixed points show the predicted characteristics.

Figure 1: Simulation of the simplified system described by equation 3.

2.2 Two-dimensional approach

Once more the analysis starts with the computation of the fixed point locations. Setting the system equations to zero leads to:

$$0 = x(x - a)(1 - x) - bxy (8)$$

$$0 = xy - cy. (9)$$

Starting from the top equation 9 first x may be factored out:

$$0 = x[(x-a)(1-x) - by]. (10)$$

Therefore $x_1 = 0$. In order to obtain the remaining zeros the equation:

$$0 = (x - a)(1 - x) - by (11)$$

has to be solved. After factoring out the brackets the pq-Formula is applicable thus the following expression is obtained:

$$x_{2,3} = \frac{1+a}{2} \pm \sqrt{\frac{(1+a)^2}{4} - (a+by)}.$$
 (12)

Which will be simplified further once more is known about y. To finish the quest for the fixed points x values y is factored out in the second equation:

$$0 = y(x - c). (13)$$

The equation 13 is zero when $x_4 = c$. Which is the missing x component. Looking at y, $y_1 = 0$ is quickly read off from 13. Turning back to equation 9 and solving for y while assuming $x \neq 0$ gives:

$$y_2 = \frac{(x-a)(1-x)}{b} \tag{14}$$

$$\mathbf{x}_{1}^{*} = \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x}_{2}^{*} = \begin{pmatrix} x_{4} \\ y_{2} \end{pmatrix} = \begin{pmatrix} c \\ \frac{(c-a)(1-c)}{b} \end{pmatrix}$$

$$\mathbf{x}_{3}^{*} = \begin{pmatrix} x_{2} \\ y_{1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\mathbf{x}_{4}^{*} = \begin{pmatrix} x_{3} \\ y_{1} \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

Table 1: Fixed point positions.

At this point two steady state solutions at $(x_1 \ y_1)^T = (0 \ 0)^T$ and $(x_4 \ y_2)^T = (c \ \frac{(c-a)(1-c)}{b})^T$ are already known. Using y_1 again equation 12 can be simplified further after plugging in and factoring out one obtains:

$$x_{2/3} = \frac{1+a}{2} \pm \sqrt{\frac{1-2a+a^2}{4}} \tag{15}$$

$$x_{2/3} = \frac{1+a}{2} \pm \sqrt{(\frac{1-a}{2})^2} \tag{16}$$

$$x_{2/3} = \frac{1+a}{2} \pm \frac{1-a}{2} \tag{17}$$

$$\Rightarrow x_2 = 1 \land x_3 = a \tag{18}$$

Now two more fixed points are known $\begin{pmatrix} x_2 & y_1 \end{pmatrix}^T = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$ and $\begin{pmatrix} x_3 & y_1 \end{pmatrix}^T = \begin{pmatrix} a & 0 \end{pmatrix}^T$. Next the obtained points will be classified according to their properties. Starting from

Next the obtained points will be classified according to their properties. Starting from the system equations after factoring out the Jacobian is computed:

$$J = \begin{pmatrix} -3x^2 + 2x + 2xa - a - yb & -bx \\ y & x - c \end{pmatrix}$$
 (19)

Linear analysis proceeds by plugging the fixed points into the Jacobian and compute the trace τ as well as the determinant \triangle . For the first fixed point \mathbf{x}_1^* this gives:

$$J(\mathbf{x}_1^*) = \begin{pmatrix} -a & 0\\ 0 & -c \end{pmatrix}. \tag{20}$$

Therefore the trace and determinant are $\tau_1 = -a - c \wedge \Delta_1 = ac$. Thus this node is a saddle point if c < 0, if c > 0 it is stable if -a < c. The spiral condition $\tau_1 - 4\Delta = (a - c)^2 < 0$, therefore this point should never spiral. The second fixed point \mathbf{x}_2^* has the Jacobian:

$$J(\mathbf{x}_2^*) = \begin{pmatrix} c(1+a-2c) & -bc \\ (c-a)(1-c)/b & 0 \end{pmatrix}$$
 (21)

With the determinant and trace $\tau_2 = c(1 + a - 2c) \wedge \Delta_2 = c(c - a)(1 - c)$. From these two expressions it is possible to deduce, that if c > 0, \mathbf{x}_2^* is a saddle point if additionally, $c > a \wedge c < 1$. If that is not the case then the determinant is positive, now the trace determines stability. $\tau_2 < 0$ is the case if $\frac{1+a}{2} < c$. However it c < 0 then the determinant

	$c \in [0, 0.4]$	$c \in [0.4, 0.45]$	$c \in [0.45, 0.7]$	$c \in [0.7, 1]$	$c \in [0.9, 1]$	$c \in [1, 1.5]$
\mathbf{x}_1^*	stable node	stable node	stable node	stable node	stable node	stable node
\mathbf{x}_2^*	saddle point	unstable node	unstable spiral	stable spiral	stable node	saddle point
\mathbf{x}_3^*	saddle point	saddle point	saddle point	saddle point	saddle point	stable node
\mathbf{x}_4^*	unstable node	saddle point	saddle point	saddle point	saddle point	saddle point

Table 2: Fixed point classification for various intervals of c

will always be negative, making $\mathbf{x_2^*}$ a saddle point. If the third fixed point is plugged into the Jacobian-matrix it changes to:

$$J(\mathbf{x}_3^*) = \begin{pmatrix} -1+a & -b\\ 0 & 1-c \end{pmatrix} \tag{22}$$

This matrix has the trace $\tau_3 = -c + a$ and the determinant $\Delta_3 = (a-1)(1-c) = a - ac - 1 + c$. Therefore the determinant if positive if c > 1 assuming that (1-a) > 0, which is known to be true since a = 0.4. If the determinant is positive the node is stable if $\tau_3 < 0 \Rightarrow a < c$. The node has spirals is $\tau^2 - 4\Delta < 0$. All that remains is the Jacobian of the fourth fixed point:

$$J(\mathbf{x_4^*}) = \begin{pmatrix} -a^2 + a & -ba \\ 0 & a - c \end{pmatrix} \tag{23}$$

$$\tau_4 = a^2 + 2a - c$$
, $\Delta_4 = (-a^2 + a)(a - c) = -a^3 + a^2c + a^2 - ac$.

2.2.1 Topological analysis

In this section the topology of the first interval $c \in [0, 0.4]$ will be deduced from the eigenvalues and eigenvectors. For \mathbf{x}_1^* reading off from 20 the eigenvalues are found to be:

$$\lambda_{1,1} = -a \tag{24}$$

$$\lambda_{1,2} = -c \tag{25}$$

with the eigenvectors:

$$\mathbf{v}_{1,1} = \begin{pmatrix} 1 & 0 \end{pmatrix}^T \tag{26}$$

$$\mathbf{v}_{1,2} = \begin{pmatrix} 0 & 1 \end{pmatrix}^T \tag{27}$$

Thus around the stable node (1,1) all trajectories are drawn towards this stable node.

For \mathbf{x}_2^* no general expressions could be found from 21, the ones given are for c = 0.2, a = 0.4 and b = 0.3:

$$\lambda_{2.1} = 0.305 \tag{28}$$

$$\lambda_{2,2} = -1.04 \tag{29}$$

$$\mathbf{v}_{2,1} = \begin{pmatrix} -0.571 & 1 \end{pmatrix}^T \tag{30}$$

$$\mathbf{v}_{2,2} = \begin{pmatrix} 0.1967 & 1 \end{pmatrix}^T. \tag{31}$$

We have an unstable eigenvalue, therefore from this node the trajectories will leave along $\pm \mathbf{v}_{2,1}$ towards zero and infinity. While $\pm \mathbf{v}_{2,2}$ guides orbits toward the node.

Figure 2: Fixed point position for varying c. The constant position of \mathbf{x}_1^* is marked with an \mathbf{x} at 0,0. The variable position of \mathbf{x}_2^* is marked with a series of stars. Finally \mathbf{x}_3^* and \mathbf{x}_4^* are always at 0.4,0 and 1,0 marked with a square and a diamond.

Figure 3: Jacobian trace and determinant for the four fixed points for increasing c. Values associated with \mathbf{x}_1^* are marked with an x and shown in blue. Plots connected to \mathbf{x}_2^* are marked with stars and graphed in orange. Representations of the trace and determinant of \mathbf{x}_3^* have squares on each line and are colored in yellow. Finally values connected to \mathbf{x}_4^* are marked with a diamonds and a drawn in purple.

Figure 4: Plot of the spiral condition for all four fixed points. If $\tau^2 - 4\triangle < 0$ a node turns into a spiral.

For \mathbf{x}_3^* the eignevalues of the Jacobian 22 may be read of the diagonal:

$$\lambda_{3,1} = -1 + a \tag{32}$$

$$\lambda_{3,2} = 1 - c. \tag{33}$$

With the eigenvalues known the eigenvectors may be computed, they turn out to be:

$$\mathbf{v}_{3,1} = \begin{pmatrix} 1 & 0 \end{pmatrix}^T \tag{34}$$

$$\mathbf{v}_{3,2} = \begin{pmatrix} \frac{b}{-2+a+c} & 1 \end{pmatrix}^T. \tag{35}$$

When a, b, c are replaced with their numerical values this leads to $\lambda_{3,1} = -0.6$, and $\lambda_{3,2} = 0.8$. Similarly for the eigenvectors, $\mathbf{v}_{3,1} = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$, $\mathbf{v}_{3,2} = \begin{pmatrix} -2.1428 & 1 \end{pmatrix}^T$ is obtained. Finally for \mathbf{x}_4^* is very similar from 23;

$$\lambda_{4,1} = -a^2 + a \tag{36}$$

$$\lambda_{4,2} = a - c, (37)$$

are the read off eigenvalues, thus the eigenvectors are:

$$\mathbf{v}_{4,1} = \begin{pmatrix} 1 & 0 \end{pmatrix}^T \tag{38}$$

$$\mathbf{v}_{4,2} = \begin{pmatrix} \frac{-ab}{a^2 - c} & 1 \end{pmatrix}^T \tag{39}$$

One last time the numerical values have to be fed into the expressions, this yields $\lambda_1 = 0.24$ and $\lambda_2 = 0.2$. And for the vectors, $\mathbf{v}_{4,1} = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$, $\mathbf{v}_{4,2} = \begin{pmatrix} 3 & 1 \end{pmatrix}^T$. At this points numerical values for all eigenvalue, eigenvector pair are known. If the eigenvectors are added and subtracted from their corresponding fixed points location. The image shown in figure 5 is obtained. It is important to note that most eigenvectors have been scaled by either six or three to address scaling problems. The eigendirection has been deduced from the eigenvalues. $\lambda > 0$ means unstable $\lambda < 0$ means stable or attracting.

Figure 5: Prediction of the topology of the predator prey model for c=0.2. Eigenvector based predictions are shown in black, others in blue.