SKILL EDUCATION

ARTIFICIAL INTELLIGENCE (SUBJECT CODE - 417)

MARKING SCHEME FOR CLASS X (PT SESSION 3 2024-2025)

Max. Time: 2 Hours Max. Marks: 50

General Instructions:

- 1. Please read the instructions carefully.
- 2. This Question Paper consists of 21 questions in two sections Section A & Section B.
- 3. Section A has Objective type questions whereas Section B contains Subjective type questions.
- **4.** All questions of a particular section must be attempted in the correct order.
- 5. SECTION A OBJECTIVE TYPE QUESTIONS (24 MARKS):
 - i. This section has 30 questions.
 - ii. Student has to answer 24 questions.
 - iii. Do as per the instructions given.
 - iv. Marks allotted are mentioned against each question/part.

6. SECTION B - SUBJECTIVE TYPE QUESTIONS (26 MARKS):

- i. This section contains 16 questions.
- ii. A candidate has to do 10 questions.
- iii. Do as per the instructions given.
- iv. Marks allotted are mentioned against each question/part.

SECTION A: OBJECTIVE TYPE QUESTIONS

Q. No.	QUESTION	Source Material (NCERT/PSSCIVE/ CBSE Study Material)	Unit/ Chap. No.	Page no. of source material	Marks
Q.1	Answer any 4 out of the given 6 questions	on Employability Ski	lls (1 x 4 = 4 marks)		
i.	C. Maintaining eye contact	Employability Skills NCERT – Revision Notes / CBSE Textbook	Unit 1 Communication Skills	4	1
ii.	D. Understand your strengths and weaknesses	Employability Skills NCERT – Revision Notes / CBSE Textbook	Unit 2 Self- Management Skills	3	1
iii.	D. Microwave Oven.	Employability Skills NCERT – Revision Notes / CBSE Textbook	Unit 3 Information and communication Technology Skills	1	1
iv.	D. Tracking	Employability Skills NCERT – Revision Notes / CBSE Textbook	Unit 4 Entrepreneurial Skills	2	1

1

		T	_		1
v.	B. Take calculated risks and manage	Employability Skills	Unit 4	2	1
	them effectively	NCERT – Revision	Entrepreneurial		
		Notes / CBSE	Skills		
		Textbook			
vi.	C. Solar panel installation	Employability Skills	Unit 1 Green	3	1
		NCERT – Revision	Skills		
		Notes / CBSE			
		Textbook			
Q.2	Answer any 5 out of the given 6 questions	(1 x 5 = 5 marks)			
		Facilitator			
i.	B. Siri	Handbook	Intro to Al	15	1
		Hanabook			
ii.	A Google Assistant	Facilitator	Intro to Al	15	1
11.	A. Google Assistant	Handbook	IIILIO LO AI	15	1
•••	C. Carda J. (St. alta a / Landta)	Facilitator	Al Project	24	4
iii.	C. Context / Situation / Location	Handbook	Cycle	31	1
•		Facilitator	,	2-	_
iv.	A. Data Features	Handbook	Data Science	35	1
		Facilitator	Neural		
v.	D. All of the above	Handbook	Network	41	1
		Facilitator			
vi.	B. Classification	Handbook	Al Model	38	1
Q.3	Answer any 5 out of the given 6 questions			<u> </u>	<u> </u>
		Facilitator			
i.	Dcsv	Handbook	Data Science	63	1
		Facilitator			
ii.	B. Wikipedia	Handbook	Intro to Al	21	1
		Facilitator	Computor		
iii.	A. Image and Segment	Handbook	Computer Vision	76	1
iv.	D. Multiple Objects	Facilitator	Computer	78	1
		Handbook	Vision		
v.	C. Text Classification	Facilitator	NLP	101	1
		Handbook		_	
vi.	D. Cognitive Behavioral Therapy	Facilitator	NLP / Project	101	1
	.,	Handbook	Phase		
Q.4	Answer any 5 out of the given 6 questions	(1 x 5 = 5 marks)			1
	C. Prediction is the output which is				
•	given by the machine and the reality is	Facilitator	Fundamen	440	_
i.	the real scenario in which the	Handbook	Evaluation	119	1
	prediction has been made.				
		Facilitator			
ii.	B. Breaking text into words or phrases	Handbook	NLP	109	1
		Facilitator			
iii.	C. Grammatical Structure		NLP	107	1
		Handbook			
iv.	A. Sentiment Analysis	Facilitator	NLP	100	1
	,	Handbook			
v.	D. Stemming	Facilitator	NLP	110	1
٧.	D. Stellilling	Handbook	INLF	110	
	C Poth and (a) and (b)	Facilitator	NUD	104	1
vi.	C. Both and (a) and (b)	Handbook	NLP	104	1
Q.5	Answer any 5 out of the given 6 questions	(1 x 5 = 5 marks)			
•	D. Cootial viewal latallinasa.	Facilitator	1	4.4	4
ı.	B. Spatiai visuai intelligence	Handbook	intro to Al	11	1
i.	B. Spatial visual Intelligence		Intro to Al	11	:

ii.	C. System Maps	Facilitator Handbook	Al Project Cycle	60	1
iii.	B. False Negative	Facilitator Handbook	Evaluation - Confusion Matrix	122	1
iv.	C. Pixel	Facilitator Handbook	Computer Vision	79	1
v.	D. Spam Filter	Facilitator Handbook	NLP	101	1
vi.	A. Natural Language Processing – NLP	Facilitator Handbook	NLP	99	1

SECTION B: SUBJECTIVE TYPE QUESTIONS

Q. No.	QUESTION	Source Material (NCERT/PSSCIVE / CBSE Study Material)	Unit/ Chap. No.	Page no. of source material	Marks
Answ	er any 3 out of the given 5 questions in $20 - 30 \mathrm{M}$	words each (2 x 3 = 6	marks)		
Q. 6	The 7 Cs of Effective Communication — Clear, Concise, Concrete, Correct, Coherent, Complete, and Courteous — are a set of principles that help ensure communication is both effective and impactful. 1. Clear Definition: Your message should be easily understood by the recipient. Best Practice: Avoid ambiguity, jargon, or overly complex language. Be direct and straightforward. Why It Matters: Clear communication eliminates confusion and ensures that the message is easily interpreted by the audience. (or) 2. Concise Definition: Be brief and to the point. Remove unnecessary words or information. Best Practice: Focus on the main message, eliminating any redundant or irrelevant details. Why It Matters: Concise communication respects the listener's time and attention span, making it easier to digest and retain the key message.(or) 3. Concrete Definition: Be specific and provide	CBSE – Text Book – Employability Skills	(Communicati on Skills – NCRT - Revision Notes)	20	2

solid facts, details, and examples. Best Practice: Avoid vague statements and be as precise as possible.

Why It Matters: Concrete communication gives the listener a clear understanding of what you mean, backed by evidence or examples.(or)

4. Correct

Definition: Ensure your message is grammatically accurate and factually correct.

Best Practice: Double-check for spelling, grammar, and factual errors. Ensure the message aligns with the context.

Why It Matters: Correct communication maintains credibility and professionalism. Errors can lead to misunderstandings and reduce trust.(or)

5. Coherent

Definition: Your message should be logically organized and easy to follow.

Best Practice: Structure your communication in a way that flows logically, with a clear introduction, body, and conclusion.
Why It Matters: Coherent communication helps the listener or reader follow your thought process, ensuring your message is understood and absorbed effectively.(or)

6. Complete

Definition: Provide all necessary information and details the recipient needs to understand the message. Best Practice: Ensure your message answers the key questions like who, what, when, where, why, and how, as applicable.

Why It Matters: Incomplete communication can leave the listener or reader with questions or confusion, leading to incomplete understanding or action.(or)

7. Courteous

Definition: Communicate in a

	respectful and considerate manner. Best Practice: Be polite, empathetic, and professional. Avoid negative language or tone. Why It Matters: Courteous communication fosters positive relationships, reduces conflicts, and enhances collaboration. It shows respect for the other person's feelings and perspective. (note: a student can choose to any two as directed in the question paper, 1 mark each correct sentence)				
Q. 7	Time management is the process of planning and organizing tasks to maximize efficiency. One can manage time by prioritizing, setting goals, avoiding distractions, and allocating specific time for each task.		Session 5 – Self Regulation under Self- Management Skills	58	2
Q. 8	A Trojan Horse virus hides itself as a legitimate program, tricking users into downloading or executing it. Once activated, it can steal data, damage files, or provide unauthorized access to systems.	CBSE – Text Book – Employability Skills	ICT Skills (under Threats to computer)	82	2
Q. 9	We also learnt that successful entrepreneurs have the following qualities. • They are confident. They believe in themselves and their abilities. • They keep trying new ideas in their business. • They are patient. • They are creative and think differently about business ideas. • They take responsibility for their actions. • They take decisions after thinking about them. • They work hard. • They do not give up when they face a difficulty.	CBSE – Text Book – Employability Skills	Entrepreneuri al Skills	84	2
Q.10	The United Nations' 17 Sustainable Development Goals (SDGs) aim to address global challenges such as poverty, inequality, climate change, and peace, promoting a fairer, more sustainable future for all. (definition around any of the highlighted keywords can be awarded full marks)	CBSE – Text Book – Employability Skills	Green Skills	103	2

Q.11	Stop words are the words which occur very	Facilitator	NLP	109	2
	frequently in the corpus but do not add any	Handbook			
	value to it. Example: a, an, and, are, as, for, it,				
	is, into, in, if, on, or, such, the, there, to				
	(Standard definition with example – can be				
	awarded full marks)				
Q.12	Data Sciences majorly work around analyzing	Facilitator	Data	55	2
•	the data and when it comes to AI, the analysis	Handbook	Science		
	helps in making the machine intelligent				
	enough to perform tasks by itself. There exist				
	various applications of Data Science in today's				
	world. Some of them are:				
	Fraud and Risk Detection: Data science was				
	first applied in finance to reduce bad debts and				
	losses. Banks used collected data, such as				
	customer profiles and past expenditures, to				
	assess risk and promote tailored products.				
	Genetics & Genomics: Data science enables				
	personalized treatment through genetics and				
	genomics research, linking DNA to health,				
	diseases, and drug responses. Integrating				
	genomic data aids in understanding genetic				
	issues and predicting genetic risks for better				
	individual care.				
	Internet Search: Search engines like Google,				
	Yahoo, and Bing use data science algorithms to				
	deliver fast, accurate results. Google processes				
	over 20 petabytes of data daily, highlighting				
	the importance of data science in its success.				
	Targeted advertising uses data science				
	algorithms to display personalized digital ads,				
	from website banners to airport billboards.				
	This leads to higher click-through rates (CTR)				
	by targeting users based on past behavior.				
	Website recommendations, like those on				
	Amazon, use data science to suggest relevant				
	1				
	products based on users' past searches, enhancing the user experience. Companies like				
	Amazon, Netflix, and LinkedIn use this system				
	to promote products effectively.				
	The airline industry, facing losses due to high				
	fuel prices and discounts, now uses data				
	science for strategic improvements. It helps				
	predict flight delays, choose airplane models, decide on direct or stopover routes, and				
	·				
	enhance customer loyalty programs.				
	(Students expected to list 4 applications and				
2 4 2	they can describe any 2 out of the list)	Facilitate	0.0 = -1 = 1	20	_
Q.13	Once a model has been made and trained, it	Facilitator	Model	39	2
	needs to go through proper testing so that one	Handbook	Evaluation		
	can calculate the efficiency and performance				
	of the model. Hence, the model is tested with				
	the help of Testing Data and the efficiency of				
	the model is calculated on the basis of the				

			ı		
	1. Accuracy				
	2. Precision				
	3. Recall				
	4. F1 Score				
	(Definition / Description with listing the				
	evaluation parameters can be awarded full				
	marks)				
Q.14	Lemmatization : Lemmatization is the process	Facilitator	NLP	111	2
	of reducing a word to its base or root form	Handbook			
	(called a lemma) based on its meaning and				
	context. Unlike stemming, which simply				
	removes prefixes or suffixes, lemmatization				
	considers the word's part of speech and				
	converts it to its correct dictionary form. For				
	example:				
	"running" becomes "run"				
	"better" becomes "good"				
	Lemmatization ensures that words with similar				
	meanings are grouped together, improving the				
	accuracy of natural language processing tasks.				
	Stemming is the process of reducing a word to				
	its root or base form (known as the "stem") by				
	removing prefixes or suffixes. Unlike				
	lemmatization, stemming does not consider				
	the word's meaning or context and often				
	_				
	results in non-dictionary forms. The goal is to				
	simplify words to their basic root for tasks like				
	search or text analysis.				
	For example:				
	"running" becomes "run"				
	"happiness" becomes "happi"				
	"better" becomes "better" (since it doesn't				
	have a common stem form)				
	Stemming is faster but less accurate than				
	lemmatization, as it doesn't guarantee valid				
	word forms.				
	(Standard definition with 1 example each can				
	be awarded full marks)				
Q.15	The number of pixels in an image is sometimes	Facilitator	Computer	80	2
	called the resolution ¹ . When the term is used	Handbook	Vision		
	to describe pixel count, one convention is to				
	express resolution as the width by the height,				
	for example a monitor resolution of				
	1280×1024. This means there are 1280 pixels				
	from one side to the other, and 1024 from top				
	to bottom ² .				
	Here are some common examples of screen				
	resolutions:				
	HD (720p) – 1280 × 720 pixels				
	Often used for smaller TVs and some mobile				
	devices. It's the standard resolution for HD				
	content.				

	Full HD (1080p) – 1920 × 1080 pixels				
	A common resolution for many TVs,				
	monitors, and streaming content. It provides				
	a clear and sharp image.				
	Quad HD (QHD) or 2K – 2560 × 1440 pixels				
	Typically used in higher-end smartphones				
	and computer monitors for better clarity and				
	sharper images.				
	Ultra HD (4K) – 3840 × 2160 pixels				
	Widely used in large TVs, monitors, and video				
	production. 4K offers four times the				
	resolution of Full HD.				
	8K – 7680 × 4320 pixels				
	The next step after 4K, offering extremely				
	high detail, primarily used for advanced TVs				
	and professional displays.				
	Ultra-Wide (21:9) – 2560 × 1080 pixels				
	(often)				
	Used in ultra-wide monitors for enhanced				
	productivity or immersive gaming.				
	Standard Definition (SD) – 640 × 480 pixels				
	This older resolution is now less common but				
	was once standard for DVDs and early				
	television broadcasts.				
	(Standard definition with 1 example can be				
	awarded full marks)				
Q.16	Grayscale Images	Facilitator	Computer	81	2
	Grayscale images are images which have a	Handbook	Vision		
	range of shades of gray without apparent				
	colour.¹ The darkest possible shade is black,				
	which is the total absence of colour or zero				
	value of pixel. <u>The lightest possible shade is</u>				
	white, which is the total presence of colour or				
	255 value of a pixel ² . Intermediate shades of				
	gray are represented by equal brightness levels				
	of the three primary colours ³ .				
	A grayscale has each pixel of size 1 byte having				
	a single plane of 2d array of pixels. The size of				
	a grayscale image is defined as the Height x				
	Width of that image ⁴ .				
	RGB Images				
	All the images that we see around are coloured				
	images. These images are made up of three				
	primary colours Red, Green and Blue ¹ . All the				
	•				
	colours that are present can be made by				
	combining different intensities of red areas		İ		
	combining different intensities of red, green				
	and blue².				
	and blue². (each appropriate difference attract 1 marks,				
	and blue².				

Q.17	Scoping a problem is not that easy as we	Facilitator	Unit 2	31	4
٧.1/	need to have a deeper understanding	Handbook	Topic (Al	21	-
	around it so that the picture becomes		Project Cycle)		
	clearer while we are working to solve it.				
	Hence, we use the 4Ws Problem Canvas				
	to help us out.				
	4Ws Problem Canvas				
	The 4Ws Problem canvas helps in				
	identifying the key elements related to				
	the problem. Who?¹				
	The "Who" block helps in analyzing the				
	people getting affected directly or				
	indirectly due to it. Under this, we find out who the 'Stakeholders' to this				
	problem are and what we know about				
	them. Stakeholders are the people who				
	face this problem and would be benefitted with the solution.				
	What? ²				
	Under the "What" block, you need to				
	look into what you have on hand. At this				
	stage, you need to determine the nature				
	of the problem. What is the problem and how do you know that it is a				
	problem? Under this block, you also				
	gather evidence to prove that the				
	problem you have selected actually				
	exists.				
	Where? ³				
	Now that you know who is associated				
	with the problem and what the problem				
	actually is; you need to focus on the				
	context/situation/location of the				
	problem. This block will help you look				
	into the situation in which the problem				
	arises, the context of it, and the				
	locations where it is prominent.				
	Why? ⁴				
	You have finally listed down all the				
	major elements that affect the problem				
	directly. Now it is convenient to				
	understand who the people that would				
	be benefitted by the solution are; what				
	is to be solved; and where will the				
	solution be deployed. These three				
	canvases now become the base of why				
	you want to solve this problem.				
	you want to solve this problem.				

18	To calculate the Accuracy, Precision, Recall, and F1 Score from the given confusion matrix, let's	Facilitator	Unit 7	128	4
10	first break down the values from the matrix:			120	*
	Confusion Matrix:	Handbook	Topic		
	Reality: Yes Reality: No		(Evaluation –		
	Predicted: Yes 60 25 Predicted: No 5 10		Under		
	Where:		Confusion		
	True Positives (TP) = 60 (Predicted Yes and Reality Yes)		Matrix)		
	False Positives (FP) = 25 (Predicted Yes and Reality No)		IVICETIX)		
	False Negatives (FN) = 5 (Predicted No and Reality Yes)				
	True Negatives (TN) = 10 (Predicted No and Reality No)				
	1. Accuracy				
	Accuracy is the proportion of correct predictions (both True Positives and True Negatives) out of				
	all predictions.				
	$ ext{Accuracy} = rac{TP + TN}{TP + FP + FN + TN}$				
	Accuracy = $\frac{60 + 10}{60 + 25 + 5 + 10} = \frac{70}{100} = 0.70$				
	$\text{Accuracy} = \frac{1}{60 + 25 + 5 + 10} = \frac{1}{100} = 0.70$				
	So, Accuracy = 0.70 or 70%.				
	2. Precision				
	Precision (also known as Positive Predictive Value) measures the accuracy of positive predictions.				
	It is the proportion of True Positives out of all predicted positives (True Positives + False				
	Positives).				
	$ ext{Precision} = rac{TP}{TP + FP}$				
	$ ext{Precision} = rac{60}{60 + 25} = rac{60}{85} pprox 0.7059$				
	$\frac{1.608501 - 60 + 25 - 85}{60 + 25} \approx 0.7099$				
	So, Precision ≈ 0.706 or 70.6% .				
	3. Recall				
	Recall (also known as Sensitivity or True Positive Rate) measures how well the model identifies				
	positive cases. It is the proportion of True Positives out of all actual positives (True Positives + False Negatives).				
	$ ext{Recall} = rac{TP}{TP + FN}$				
	$\text{Recall} = \frac{60}{60+5} = \frac{60}{65} \approx 0.9231$				
	30 0 30				
	So, Recall ≈ 0.923 or 92.3%.				
	4. F1 Score				
	The F1 Score is the harmonic mean of Precision and Recall, providing a single measure that				
	balances both.				
	$F1\mathrm{Score} = 2 imes rac{\mathrm{Precision} imes \mathrm{Recall}}{\mathrm{Precision} + \mathrm{Recall}}$				
	Precision + Recall				
	$F1\mathrm{Score} = 2 imes rac{0.706 imes 0.923}{0.706 + 0.923} pprox 2 imes rac{0.651}{1.629} pprox 0.799$				
	So, F1 Score ≈ 0.799 or 79.9%.				
	Commence				
	Summary:				
	• Accuracy = 70%				
	• Precision ≈ 70.6%				
	• Recall ≈ 92.3%				
4.0	• F1 Score ≈ 79.9%		.		
19	A neural network is a computational	Facilitator	Neural	41	4
	model inspired by the way biological	Handbook	Network		
	neural networks in the human brain				
	work ¹ . It is composed of layers of				
	interconnected "neurons" or nodes,				
	which process input data and pass it				
	through transformations to make				
	predictions or decisions ² .				
	p. caretions of accisions .				
	Here's a brief overview of how neural				
	networks work:				
	HELWOIKS WOIK.				
	Input Layer:				
			i l		1
	The input layer receives raw data (such				
	as images, text, or numerical values) and				

processes one feature of the data. Hidden Layers³:

These layers consist of multiple neurons that process the data passed from the input layer.

Each neuron performs a weighted sum of the inputs, applies an activation function, and sends the result to the next layer.

The purpose of **hidden layers** is to capture patterns and relationships within the data.

Activation Function:

After each neuron processes the data, an activation function is applied to introduce non-linearity into the model.
Common activation functions include:

Sigmoid: Outputs a value between 0 and

1.

ReLU (Rectified Linear Unit): Outputs the input directly if positive, or zero if negative.

Output Layer:

The output layer produces the final prediction or classification result. In a binary classification task, it might output a value between 0 and 1 (representing the probability of one class).

In multi-class classification, the softmax function converts the outputs into probabilities for each class.
Features of Neural Networks:
Layered Structure:

Neural networks consist of an input layer, one or more hidden layers, and an output layer. The depth (number of hidden layers) and width (number of neurons in each layer) determine the network's complexity⁴.

Weights and Biases:

Each connection between neurons has a weight that determines the strength of the connection. Additionally, each neuron has a bias that allows the model to shift the activation function's output.

	Activation Functions:				
	Activation functions introduce non- linearity, enabling the network to learn complex patterns. Without them, the neural network would only be able to learn linear relationships. Learning: Neural networks "learn" by adjusting weights through backpropagation and optimization algorithms (like gradient descent) to minimize the loss function. Adaptability: Neural networks are highly adaptable and can learn from large datasets, making them ideal for tasks like image recognition, natural language processing, and more ⁵ . Parallel Processing: Neural networks are capable of processing multiple data inputs simultaneously, making them well- suited for large-scale and complex data tasks ⁶ . Generalization: Once trained, neural networks can generalize from their training data to make predictions or classify new,				
0.20	unseen data ⁷ .	e. Shara	No.	442	4
Q.20	The Bag of Words (BoW) algorithm is a simple text representation method in natural language processing. It converts text into a collection of words (or tokens), ignoring grammar and word order but retaining word frequency ¹ . Example ² : For two sentences: "I love AI" "Alloyes learning"	Facilitator Handbook	Natural Language Processing	112	4
	"Al loves learning" The BoW representation would be: Vocabulary: ["I", "love", "AI", "loves",				
	"learning"] Sentence 1: [1, 1, 1, 0, 0] Sentence 2: [0, 0, 1, 1, 1]				

Q.21	Supervised Learning	Facilitator	Al Models	37	4
	In a supervised learning model, the	Handbook			
	dataset which is fed to the machine is				
	labelled ¹ . In other words, we can say				
	that the dataset is known to the person				
	who is training the machine only then				
	he/she is able to label the data ² . A label				
	is some information which can be used				
	as a tag for data ³ .				
	There are two types of Supervised				
	Learning models:				
	Classification ⁴ : Where the data is				
	classified according to the labels. For				
	example, in the grading system, students				
	are classified on the basis of the grades				
	they obtain with respect to their marks				
	in the examination. This model works on				
	discrete dataset which means the data				
	need not be continuous.				
	Regression ⁵ : Such models work on				
	continuous data. For example, if you				
	wish to predict your next salary, then				
	you would put in the data of your				
	previous salary, any increments, etc.,				
	and would train the model. Here, the				
	data which has been fed to the machine				
	is continuous.				
	Unsupervised Learning				
	An unsupervised learning model works				
	on un-labelled dataset ¹ . This means that				
	the data which is fed to the machine is				
	random and there is a possibility that				
	the person who is training the model				
	does not have any information regarding				
	it ² . The unsupervised learning models				
	are used to identify relationships,				
	patterns and trends out of the data				
	which is fed into it ³ . It helps the user in				
	understanding what the data is about				
	and what are the major features				
	identified by the machine in it.				
	For example, you have a random data of				
	1000 dog images and you wish to				
	understand some pattern out of it, you				
	would feed this data into the				
	unsupervised learning model and would				
	train the machine on it. After training,				
	the machine would come up with				
	patterns which it was able to identify out				
	of it ⁴ .				
	Clustering: Refers to the unsupervised				

		T	1
learning	algorithm which can cluster the		
unknown	n data according to the patterns		
or trends	identified out of it ⁵ . The		
patterns	observed might be the ones		
which are	e known to the developer or it		
might ev	en come up with some unique		
patterns	out of it.		
Dimension	onality Reduction: We humans		
are able	to visualize upto 3-Dimensions		
only but	according to a lot of theories		
and algo	rithms, there are various		
entities v	which exist beyond 3-		
Dimensio	ons ⁵ .		
For exam	ple, in Natural language		
Processir	ng, the words are considered to		
be N-Dim	nensional entities. Which means		
that we d	cannot visualize them as they		
exist bey	ond our visualization ability.		
	make sense out of it, we need		
-	e their dimensions. Here,		
	onality reduction algorithm is		
used ⁶ .			