2.3.6

ADHARVAN KSHATHRIYA BOMMAGANI - EE25BTECH11003

September 12,2025

Question

Find the magnitude of each of the vectors \mathbf{a} and \mathbf{b} , having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{9}{2}$.

Theoretical Solution

We are given:

- Two vectors **a** and **b** with the same magnitude.
- The angle between them is 60°.
- Their scalar product is:

$$\mathbf{a}^T \mathbf{b} = \frac{9}{2}.\tag{1}$$

Let the common magnitude be r, so

$$\|\mathbf{a}\| = \|\mathbf{b}\| = r. \tag{2}$$

Theoretical Solution

The formula for the dot product is:

$$\cos \theta = \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}.$$
 (3)

Since $\|\mathbf{a}\| = \|\mathbf{b}\| = r$, this simplifies to:

$$\cos \theta = \frac{\mathbf{a}^T \mathbf{b}}{r^2}.\tag{4}$$

Given that $\theta=60^{\circ}$, we know $\cos 60^{\circ}=\frac{1}{2}$. Substituting values,

$$\frac{1}{2} = \frac{\frac{9}{2}}{r^2}. (5)$$

Theoretical Solution

Multiply throughout by $2r^2$:

$$r^2 = 9. (6)$$

Taking the positive square root (since magnitude cannot be negative),

$$r=3. (7)$$

$$||a|| = ||b|| = 3$$

Thus, the magnitude of each vector is 3.

Two vectors with magnitude 3 and angle 60° between them

Figure: Figure for 2.3.6