Q1. Which of the following bonds has the highest polarity?
A. H–F B. H–Cl C. H–Br D. H–I
Answer: A. H–F Explanation: Fluorine has the highest electronegativity, so the bond is most polar.
Q2. Which of the following molecules is linear in shape?
A. CO_2 B. NH_3 C. CH_4 D. H_2O
Answer: A. CO_2 Explanation: CO_2 has two bonding pairs, no lone pair on central atom (C), so it's linear (180°).
Q3. In which of the following molecules is the central atom sp² hybridised?
A. BF_3 B. $BeCl_2$ C. CH_4 D. NH_3
Answer: A. BF ₃ Explanation: Boron forms three sigma bonds and no lone pair; hybridisation is sp ² , trigonal planar.
Q4. The bond order of O ₂ molecule is:
A. 1 B. 2 C. 2.5 D. 3
Answer: B. 2

Explanation: O_2 has 16 electrons. Bond order = (Bonding e⁻ – Antibonding e⁻)/2 = (10-6)/2 = 2.

Q5. Assertion (A): NH₃ has a higher boiling point than PH₃.

Reason (R): NH₃ forms hydrogen bonds but PH₃ does not.

- A. Both A and R are true, and R is the correct explanation of A
- B. Both A and R are true, but R is not the correct explanation of A
- C. A is true, R is false
- D. A is false, R is true

Answer: A. Both A and R are true, and R is the correct explanation of A

Explanation: Hydrogen bonding in NH₃ raises its boiling point.

Q6. Match the following molecules with their shapes:

Molecule Shape

A. CH₄ 1. Angular/bent

B. H₂O 2. Tetrahedral

C. CO₂ 3. Linear

Options:

A. A-2, B-1, C-3

B. A-1, B-2, C-3

C. A-3, B-2, C-1

D. A-2, B-3, C-1

Answer: A. A-2, B-1, C-3

Explanation: CH_4 = tetrahedral; H_2O = bent; CO_2 = linear.

Q7. Which one of the following species is diamagnetic?

- A. O₂
- B. O_2^+
- C. B₂
- D. C₂

Answer: B. O_2^+ Explanation: O_2^+ loses one antibonding electron, making it diamagnetic (all paired electrons).
Q8. The lone pair–bond pair repulsion is maximum in:
A. CH_4 B. NH_3 C. H_2O D. BF_3
Answer: C. H_2O Explanation: H_2O has two lone pairs, increasing lone pair—bond pair repulsion and decreasing bond angle.
М
Q9. The number of sigma and pi bonds in CH_2 = CH - CH_3 is:
A. 9 sigma, 1 pi B. 8 sigma, 1 pi C. 7 sigma, 2 pi D. 9 sigma, 2 pi
Answer: A. 9 sigma, 1 pi Explanation: One double bond (1 sigma, 1 pi), rest are single (sigma). Total: 9 σ and 1 π .
Q10. Statement I: Bond angle in H₂O is less than that in NH₃.
Statement II: Lone pair–lone pair repulsion in H₂O is greater than in NH₃.
A. Both statements are true B. Only I is true C. Only II is true D. Both statements are false
Answer: A. Both statements are true Explanation: H_2O has 2 lone pairs; NH_3 has 1. Repulsion compresses the bond angle more in H_2O .
Q11. Which of the following molecules contains a coordinate bond?

A. CO ₂
B. NH₃
C. NH ₄ ⁺
D. CH ₄
Answer: C. NH ₄ ⁺
Explanation: The lone pair on N donates to H ⁺ , forming a coordinate bond.
Explanation: The lone pair of N donates to W, forming a coordinate bond.
Q12. Which of the following is not true for an ionic compound?
A. High melting and boiling point
B. Good electrical conductivity in solid state
C. Usually soluble in water
·
D. Formed between metals and non-metals
Answer: B. Good electrical conductivity in solid state
Explanation: In solid state, ions are fixed. They conduct only in molten or aqueous states.
Q13. Bond angle in BF ₃ is:
Q13. bolid aligic in big is.
A 4200
A. 120°
B. 109.5°
C. 104.5°
D. 180°
Answer: A. 120°
Explanation: BF₃ has sp² hybridisation with trigonal planar shape.
Explanation. Br ₃ has sp. hybridisation with trigonal planar shape.
Q14. Which molecule has zero dipole moment?
A. NH ₃
B. H ₂ O
C. CO ₂
D. SO ₂
Answer: C CO ₂

Explanation: Though bonds are polar, the linear geometry cancels dipoles — net μ = 0.

Q15. Which of the following is correct order of bond length?

- A. $C-C > C=C > C\equiv C$
- B. $C=C > C-C > C\equiv C$
- C. $C\equiv C > C=C > C-C$
- D. $C-C = C=C = C \equiv C$

Answer: A. $C-C > C=C > C\equiv C$

Explanation: Bond length decreases with increasing bond order.

Q16. In which of the following species is the bond angle maximum?

- A. H₂O
- B. NH₃
- C. CH₄
- D. CO₂

Answer: D. CO₂

Explanation: CO_2 is linear (180°), while CH_4 (109.5°), NH_3 (~107°), H_2O (~104.5°).

Q17. The hybridisation of central atom in ClO₃⁻ is:

- A. sp
- B. sp²
- C. sp³
- D. dsp²

Answer: C. sp³

Explanation: ClO_3^- has 3 bond pairs and 1 lone pair. Steric number = $4 \rightarrow sp^3$ hybridisation.

Q18. The correct decreasing order of bond strength among O_2 , O_2^+ , and O_2^- is:

- A. $O_2^+ > O_2 > O_2^-$
- B. $O_2^- > O_2 > O_2^+$
- C. $O_2 > O_2^+ > O_2^-$
- D. $O_2^- > O_2^+ > O_2$

Answer: A. $O_2^+ > O_2 > O_2^-$

Explanation: Bond order: $O_2^+ = 2.5$, $O_2 = 2$, $O_2^- = 1.5$; higher bond order = stronger bond.

Q19. Assertion (A): BF₃ is a Lewis acid.

Reason (R): Boron in BF₃ has incomplete octet.

A. Both A and R are true, and R is the correct explanation of A

B. Both A and R are true, but R is not the correct explanation

C. A is true, R is false

D. A is false, R is true

Answer: A. Both A and R are true, and R is the correct explanation of A

Explanation: Boron has only 6 electrons \rightarrow can accept e^- pair \rightarrow acts as Lewis acid.

Q20. Match the following molecules with the correct hybridisation:

Molecule Hybridisation

A. BeCl₂1. sp³

B. CH₄ 2. sp

C. NH₃ 3. sp³

D. CO₂ 4. sp

Options:

A. A-2, B-1, C-3, D-4

B. A-2, B-1, C-1, D-4

C. A-2, B-3, C-3, D-4

D. A-1, B-2, C-3, D-4

Answer: C. A-2, B-3, C-3, D-4

Explanation: BeCl₂ and CO₂ \rightarrow sp; CH₄ and NH₃ \rightarrow sp³.

Q21. Which of the following is the correct order of bond angles?

A. $CH_4 > NH_3 > H_2O$

Answer: A. O_2 Explanation: O_2 has two unpaired electrons in π^* orbitals.
Q25. In NH_4^+ ion, the N–H bonds are formed by:
A. sp hybrid orbitals B. sp² hybrid orbitals C. sp³ hybrid orbitals D. d²sp³ hybrid orbitals
Answer: C. sp³ hybrid orbitals Explanation: NH_4^+ has 4 sigma bonds, no lone pair — tetrahedral \rightarrow sp³ hybridisation.
Q26. The molecule with most ionic character is:
A. HF B. HCI C. HBr D. HI
Answer: A. HF Explanation: Greatest electronegativity difference \rightarrow most polar \rightarrow most ionic character.
Q27. Assertion (A): CO has dipole moment.
Reason (R): CO is linear, so net dipole moment is zero.
A. A true, R false B. A false, R true C. Both A and R are true, but R is not the correct explanation D. A true, R true and R explains A
Answer: A. A true, R false Explanation: Though CO is linear, the difference in electronegativity leads to dipole moment (~0.112 D).

NEET CHAPTERS PRO

Q28. The molecule which is planar among the following is:

A. NH ₃
B. CH ₄
C. BF ₃
D. PCI ₃
Answer: C. BF₃
Explanation: BF_3 has sp^2 hybridisation \rightarrow planar structure (trigonal planar).
Q29. Which of the following has three lone pairs on central atom?
A. H₂O
B. XeF ₂
C. ClF₃
D. I ₃ ⁻
Answer: B. XeF₂
Explanation: XeF_2 has 5 electron pairs: 2 bonding, 3 lone \rightarrow linear shape.
Q30. Number of lone pairs on central atom in I_3^- ion is:
A. 1
B. 2
C. 3
D. 4
Answer: C. 3
Explanation: I_3^- has total 10 electrons \rightarrow 2 bond pairs, 3 lone pairs \rightarrow linear shape.
Q31. The geometry and hybridisation of SF ₄ are:
A. Tetrahedral, sp ³
B. See-saw, sp ³ d
C. Trigonal bipyramidal, sp³d²
D. Square planar, dsp ²
Answer: B. See-saw, sp ³ d
Explanation: SF_4 has 4 bond pairs and 1 lone pair \rightarrow $sp^3d \rightarrow$ see-saw geometry.

Q32. Which of the following is isoelectronic with N_2 ?
A. O ₂ ⁻ B. CO C. NO ⁺ D. CN ⁻
Answer: B. CO Explanation: CO, N_2 , and CN^- have 14 electrons \rightarrow same electronic configuration \rightarrow isoelectronic.
Q33. Which of the following is not correctly matched?
A. $NO_3^ sp^2$ B. $NH_4^+ - sp^3$ C. $SF_6 - sp^3d^2$ D. $XeF_4 - sp^3d$
Answer: D. $XeF_4 - sp^3d$ Explanation: XeF_4 has 6 electron pairs $\rightarrow sp^3d^2$, not sp^3d .
Q34. The bond order in N₂ molecule is:
A. 2 B. 3 C. 2.5 D. 3.5
Answer: B. 3 Explanation: Bond order = (Bonding – Antibonding electrons)/2 = $(10-4)/2 = 3$.
Q35. Which of the following has a non-zero dipole moment?
A. $BeCl_2$ B. CO_2 C. H_2O D. BF_3

Answer: C. H ₂ O Explanation: Due to bent shape and polar bonds, H ₂ O has a net dipole moment.
Q36. Among the following, the molecule with square planar shape is:
A. SF ₄
B. XeF ₄
C. IF ₅
D. PF ₅
Answer: B. XeF₄
Explanation: XeF_4 has sp^3d^2 hybridisation with 2 lone pairs \rightarrow square planar geometry.
Q37. The molecule which is non-polar in nature despite having polar bonds:
A. HCI
B. CH₃Cl
C. CHCl₃
D. BF ₃
Answer: D. BF₃
Explanation: Symmetrical trigonal planar geometry \rightarrow bond dipoles cancel \rightarrow net dipole = 0.
Q38. Which molecule has maximum bond angle?
A. NH ₃
B. CH ₄
C. H₂O
D. CO ₂
Answer: D. CO₂
Explanation: CO_2 is linear \rightarrow bond angle = 180°, maximum among the options.
Q39. The correct statement regarding hybrid orbitals is:
A sp ³ hybrid orbitals are 50% s and 50% p

B. sp ² orbitals are 33% s and 67% p C. sp orbitals have 25% s and 75% p D. sp ³ d orbitals have 40% s character
Answer: B. sp^2 orbitals are 33% s and 67% p Explanation: $sp^2 = 1$ s + 2 p orbitals \rightarrow 33.3% s character, 66.7% p.
Q40. Which of the following molecules is linear and contains lone pairs?
A. CO ₂ B. BeCl ₂ C. I ₃ ⁻ D. XeF ₂
Answer: D. XeF_2 Explanation: XeF_2 has 3 lone pairs and 2 bond pairs arranged in trigonal bipyramidal \rightarrow linear shape.
Q41. In which of the following species is backbonding most effective?
A. BF ₃ B. BCl ₃ C. BBr ₃ D. Bl ₃
Answer: A. BF ₃ Explanation: Fluorine has high electronegativity and lone pairs \rightarrow strongest p π -p π backbonding with boron.
Q42. The molecule with zero bond order is:
A. He_2 B. H_2 C. O_2 D. H_2^+
Answer: A. He ₂ Evaluation: He, has 2 handing and 2 antihonding electrons \rightarrow hand order = 0 \rightarrow does not exist

Q43. Which has the shortest bond length?

 $A. O_2$

B. O₂⁺

C. O₂-

D. O₂²⁻

Answer: B. O₂+

Explanation: Highest bond order $(2.5) \rightarrow$ shortest bond length.

Q44. The bond angle in NH₃ is less than that in CH₄ because:

- A. NH₃ has larger atoms
- B. CH₄ is non-polar
- C. NH₃ has a lone pair causing more repulsion
- D. CH₄ has pi bonds

Answer: C. NH₃ has a lone pair causing more repulsion

Explanation: Lone pair-bond pair repulsion > bond pair-bond pair \rightarrow smaller bond angle.

Q45. The molecular orbital configuration of O₂ shows that it is:

- A. Diamagnetic with bond order 2
- B. Paramagnetic with bond order 2
- C. Paramagnetic with bond order 1
- D. Diamagnetic with bond order 3

Answer: B. Paramagnetic with bond order 2

Explanation: O_2 has two unpaired electrons in π^* orbitals and bond order = 2 \rightarrow paramagnetic.