WANG ZHENG

(+86)13931805565 • neowang311@gmail.com • cheeseofneo.github.io

EDUCATION

USTEP, Electrical Engineering and Information System, University of Tokyo

Oct 2024 - Mar 2025

- Lab: TAKEUCHI LAB, on Diffusion Noise Optimization
- Course: Multimodal Intelligent System, Distributed Programming, Data Compression

M.Eng., Electrical Engineering, Tsinghua University

Sep 2022 - Jun 2025

- Lab: OMIS(Optical Measurement and Imaging Systems) Lab, on Efficient Visual Understanding 3.82/4.0 GPA
- Course: Advanced Signal Processing, Advanced Mathematics

B.Eng., Electrical Engineering, Tianjin University

Sep 2018 - Jun 2022

Lab: MNMT(Micro-Nano Manufacture and Technology) Lab, on 3D Segmentation

3.72/4.0 GPA

- Course: Theory of Computing, Deep Learning, Machine Learning

HONORS

Research Assistant in Hong Kong Polytechnic University (2025)

NVIDIA Al-Agent Group Member(2024), Tsinghua College Scholarship(2024),

Membership of China Instrument and Control Society (2022).

ICM (Interdisciplinary Contest in Modeling) Finalist(Top 1%, 2021),

Merit Student(2021), Andon Trust Scholarship(2020), Liu Bao Scholarship(2019)

PUBLICATIONS

Wang, Z., Ma, R., Zeng, C., Liu, L., Li, X., Wang, X., & He, B. A fast and precise autofocus method using linear array CCD. In Optical Metrology and Inspection for Industrial Applications XI (Vol. 13241, pp. 446-456). SPIE.

Li, Z., Su, Y., Yang, R., Xie, C., **Wang, Z.**, Xie, Z., ... & Yang, H. (2025). Quantization meets reasoning: Exploring Ilm low-bit quantization degradation for mathematical reasoning. arXiv preprint arXiv:2501.03035.

Xiong, H., Zhang, J., **Wang, Z.**, Pan, T., & Hu, Q. (2025). VividTalker: A modular framework for expressive 3D talking avatars with controllable gaze and blink. Manuscript submitted for presentation at the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026).

RESEARCH EXPERIENCE

A Modular Framework For Expressive 3D Talking Avatars With Controllable Gaze And Blink 2025

Mar 2025- Sep

DTU & Tsinghua, Submitted to ICASSP 2026

- Developed a modular pipeline integrating diffusion-based portrait synthesis, multilingual text-to-speech (TTS), 2D-to-3D lifting, and audio-driven animation, achieving 79% efficiency improvement over existing methods.
- Designed a physiologically-grounded gaze-and-blink enhancement module simulating human-like eye dynamics via coordinated saccadic movements, spontaneous blinking (15–26 BPM), and head—eye compensation.
- Conducted extensive experiments on 40 multilingual sequences, demonstrating +59% gaze naturalness, +128% blink realism, and +53% overall user preference, while maintaining real-time performance and cross-lingual compatibility.

Low-bits Denoising Diffusion Models for Masked Images

Nov 2024-Mar 2025

TAKEUCHI Lab, University of Tokyo

- Accelerated the diffusion process by adopting an aggressive quantization scheme (W1A1) to minimize memory footprint, while simultaneously guiding the model to learn more generalizable image representations.
- Investigated the role of prompts under different noise conditions in Bi-Directional Diffusion Models (BiDM). Designed experiments to decompose the latent noise space using PCA and SVD, enabling fine-grained redistribution of basic noise components and a clearer understanding of prompt—noise interaction.
- Exploring whether the representation ability of LDMs correlates with the perceptual quality of synthesized images.
 Current experiments employ masking-based learning strategies to assess how partial observation affects latent space representation and final image fidelity.

Exploring LLM Low-Bit Quantization Degradation for Mathematical Reasoning

Dec 2024-Feb 2025

- Proposed a novel framework for analyzing and mitigating quantization-induced reasoning errors in LLMs.
- Introduced an automated error taxonomy (Conceptual, Method, Execution, Reasoning) and a compact "Silver Bullet" dataset enabling rapid recovery of math reasoning performance.
- Achieved full-precision level accuracy restoration with only 332 samples and 3–5 minutes of training on a single GPU.

A fast and precise autofocus method using linear array CCD

June 2023-Oct 2024

Master's thesis

- Design an active autofocus microscope using linear array CCD whose accuracy at the nanometer level and speed at the millisecond level. Develop a focus calibration algorithm, which conducts weighted fusion to the results.
- Propose a centroid extraction algorithm at sub-pixel level based on multiscale feature extraction, and fit linear mapping using sliding finite impulse response filter.

Deep Learning on Small Sample Pointsets for 3D Segmentation

Sep. 2021-May 2022

Bachelor's thesis: State key laboratory of precision measuring technology and instruments

- Based on a sample-aware data augmention infrastructure, proposed a novel network for point segmentation **PASN**). Adjusted feature extractor- PointNet for degeneracy to fit our specific segmentation task.
- Propagate segmentation loss to augmentor and regress pointwise and shapewise matrixs for input samples.
 Experiments proved accuracy of segmentation increase by 5% and higher robustness than PointNet on our dataset

INTERNSHIP EXPERIENCE

Baidu, Beijing China: Al Research Intern, Team Apollo

July 2024- Oct 2024

- For multisensor perception model, propose an infra of model fusion based on shared weights and backbone fusion. Also conducts a cross training strategy for multi-objection and utilize distillation to compensate accuracy.
- For bev2instance module in bev perception model, conduct novel optimization the self-attention and deformable attention modules based on precision descent and infra compression and prove efficient in training accuracy.

Momenta, Shenzhen China: System Architecture Intern, *Team Middleware of System* March 2023-July 2023

- Design the timestamp synchronization architecture of ADAS system, and construct simulated signal generator in **signal simulation platform**, which involved validating signal pathways and creating abnormal signals.
- Developed an testbench-board verification platform based on SOMEIP about resource scheduling of hardware, the signal accuracy and communication correctness on a high-concurrence scene.

OTHER EXPERIENCE

Interdisciplinary Contest in Modeling 2021, Finalist Award(top 1%):

Jan 2020 - Mar 2020

- Proposed **PRE(Page-Rank Entropy) model** vector network of musicians and quantify influence of musicians by weights of nodes at the time-span and genre-span perspectives.
- Construct local and global similarity evaluation model based on cosine similarity of multi-dimensional eigen vectors extracted by *PCA*. Utlized k-means clustering method to classify significance of eigens between and within genres.
- Adopted *silding window automatic regression model* as time series forecasting on main eigens to predict the long and short-term developing trend of musical genres.

ADDITIONAL INFORMATION

Language: Chinese(Native), English(Fluent), Japanese(Fluent) **Programming:** Python, C, C++, MATLAB/Simulink, CUDA, Verilog