вариант	ф. номер	група	поток	курс	специалност
ДР1	45655	5	1	Ι	Информатика
Име:	Майкъл Захариев Зарков				

Домашна работа № 1

Домашното се предава разделено по задачи на лекцията на 6 ноември 2019 г.

Задача 1.

а) Да се запише в алгебричен вид числото

$$\left(\frac{\sqrt{3}+5i}{2\sqrt{3}-4i}\right)^{655}.$$

- б) Да се намерят в тригонометричен вид корените на уравнението $x^{239} + \frac{3i\sqrt{3}}{2} + \frac{3}{2} = 0;$
- в) Да се намерят в алгебричен вид корените на уравнението $x^2 + (8-2i)x + (18-4i) = 0$.

Задача 2. Нека $\omega_0, \, \omega_1, \dots, \, \omega_{34}$ са тридесет и петите корени на единицата, където $\omega_k = \cos \frac{2k\pi}{35} + i \sin \frac{2k\pi}{35}$. Да се пресметне израза

$$\omega_0^{637} + \omega_1^{637} + \dots + \omega_{34}^{637}.$$

Задача 3. Да се реши системата в зависимост от стойностите на параметрите λ и μ :

$$\begin{vmatrix} 2x_1 - 2x_2 - 5x_3 + & x_4 = 1 \\ -3x_1 + x_2 + x_3 - & x_4 = \lambda \\ 29x_1 - 13x_2 - 20x_3 + (1+\mu)x_4 = 3 - 2\lambda \\ 7x_1 - 2x_2 - x_3 - & 2x_4 = -1 \end{vmatrix}$$

Задача 4.

- а) Нека V е множеството на всички безкрайни числови редици. Да се докаже, че V е линейно пространство относно обичайните операции събиране на редици и умножение на редица с число;
- б) Нека $\mathbb{W} \subset \mathbb{V}$ е множеството на финитните редици (т.е. редиците, на които само краен брой от членовете могат да бъдат ненулеви). Да се докаже, че \mathbb{W} е подпространство на \mathbb{V} ;
- в) Нека $\mathbb{W} \subset \mathbb{V}$ е множеството на всички аритметични прогресии. Да се докаже, че \mathbb{W} е подпространство на \mathbb{V} ;
 - г) Образуват ли геометричните прогресии подпространство на V? Защо?
- д) Нека \mathbb{W} е множеството на редиците a_1, a_2, \ldots , за които $a_{n+1} = a.a_n + b.a_{n-1}$ при $n \geq 2$, където $a, b \in F$ са константи. Да се докаже, че \mathbb{W} е подпространство на \mathbb{V} .

Задача 5. Нека $4\mathbb{Z}$ е множстовото от целите числа, които се делят на 4 (тези числа още наричаме кратни на числото 4). Тоест $4\mathbb{Z} = \{4z \mid z \in \mathbb{Z}\} = \{z \in \mathbb{Z} \mid \exists \ q \in \mathbb{Z} : z = 4q\}$

а) Докажете, че множеството $4\mathbb{Z}$ е подгрупа на \mathbb{Z} .

Нека R_{\sim} е следната бинарна релация над множеството на целите числа: $\forall a, b \in \mathbb{Z} \quad (a, b) \in R_{\sim} \iff a - b \in 4\mathbb{Z} \text{ (Toect } R_{\sim} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a - b \in 4\mathbb{Z}\}).$

б) Докажете, че R_{\sim} е релация на еквивалентност.

- в) Намерете (опишете) всички класове на еквивалентност на релацията R_{\sim} .
- Докажете, че ако $z \in \mathbb{Z}$, то $\forall m \in [z] \quad [m] = [z]$.
- Колко е броя на различните класове на еквивалентност?
- г) Докажете, че намерените от вас класове на еквивалентност разбиват множеството Z.

Дефинираме, операцията \oplus в множеството от класовете на еквивалентност на релацията R_{\sim} по следния начин: Нека $a, b \in \mathbb{Z}$, тогава $[a] \oplus [b] = [a+b]$. Докажете, че тази операция е дефинирана коректно (тоест не зависи от избора на представители на двата класа). Тоест докажете, че ако $[a] = [a_1]$ и $[b] = [b_1]$, то $[a] \oplus [b] = [a_1] \oplus [b_1]$. За целта използвайте, че ако [z] = [m], то $z - m \in 4\mathbb{Z}$.

д) Докажете, че множеството от класовете на еквивалентност на релацията R_{\sim} е група относно операцията \oplus .

Нека $S = \{x \in \mathbb{C} \mid x^4 = 1\}$. Тоест S е множеството от решения на уравнението $x^4 = 1$ в множеството на комплексните числа.

- e) Докажете, че множеството S e група относно операцията умножение на комплексни числа.
- ж) Постройте биекция f между множеството от класовете на еквивалентност на релацията R_{\sim} и множеството S, притежаваща следното свойство: $\forall a, b \in \mathbb{Z} \ f([a] \oplus [b]) = f([a]).f([b])$, където символът . е бинарната операция умноженение на комплексни числа.

Забележка: докажете, че f притежава свойството: $\forall a, b \in \mathbb{Z} \ f([a] \oplus [b]) = f([a]).f([b])$

Задача 6. Нека \mathbb{V} е линейно пространство и $\mathbb{W} \subsetneq \mathbb{V}$ е собствено подпространство на \mathbb{V} . Да се докаже, че:

- а) Съществува базис на V от вектори, никой от които не принадлежи на W;
- б) Ако $k \leq \dim \mathbb{W}$, то съществува базис на \mathbb{V} , в който точно k вектора принадлежат на \mathbb{W}