ECON 7103 Homework 6

Yifan Liu (yliu3494)

Spring 2023

1 Python

1. RD

It should be a sharp RD.

The sharp RD ensures that the running variable completely determines the treatment, while the fuzzy RD appears when the threshold merely discontinuously increase the probability of treatment.

In this case, the policy requires all vehicles longer than 225 inches must be equipped with the specific safety technology.

2. Scatter plot

Figure 1: Scatter plot of mpg and length-cutoff with a line at the RD cutoff

Figure 1 demonstrates a scatter plot with mpg on the y-axis and length-cutoff on the x-axis with a line at the RD cutoff.

As Figure 1 shows, there is visual evidence of bunching. There is also visual evidence of an discontinuity above and below the cutoff.

3. First-order polynomial

Figure 2: First-order Polynomial

Figure 2 above shows the resulting first-order polynomial over a scatter plot.

Table 1 and Table 2 below show the first-order polynomial regression results below and above the cutoff, respectively.

effect = rightmodel.params[1] - leftmodel.params[1] = -0.0278 - (-0.0389) = 0.0111The first-stage treatment effect estimate is 0.0111.

yright[0] - yleft[-1]

The difference at the cutoff is -8.42.

Dep. Variable:	mpg	R-squared:	0.033
Model:	OLS	Adj. R-squared:	0.032
Method:	Least Squares	F-statistic:	24.88
Date:	Mon, 27 Feb 2023	Prob (F-statistic):	7.65e-07
Time:	17:34:01	Log-Likelihood:	-2355.2
No. Observations:	720	AIC:	4714.
Df Residuals:	718	BIC:	4724.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025]	0.975]
const	33.6800	0.425	79.181	0.000	32.845	34.515
length-cutoff	-0.0389	0.008	-4.988	0.000	-0.054	-0.024
Omnibus	:	8.531	Durbin-	Watson:	1.3	93
$\operatorname{Prob}(\operatorname{Om}$	nibus):	0.014	Jarque-I	Bera (JB	6.1	80
Skew:		-0.102	Prob(JB	3):	0.04	455
Kurtosis:		2.594	Cond. N	lo.	97	.6

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 1: First-order polynomial to the left side of the cutoff in a RDD

Dep. Variable:		mpg	R	c-squared	•	0.011
Model:		OLS		Adj. R-squared:		0.008
Method:	Le	ast Squar	$\mathbf{e}\mathbf{s}$ \mathbf{F}	es F-statistic:		3.184
Date:	Mon	, 27 Feb 2	2023 P	23 Prob (F-statistic):		0.0755
Time:		17:34:01	Log-Likelihood:			-875.41
No. Observation	ns:	280	A	IC:		1755.
Df Residuals:		278	В	SIC:		1762.
Df Model:		1				
Covariance Typ	e: 1	nonrobust				
	\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	25.2510	0.514	49.101	0.000	24.239	26.263
${\it length-cutoff}$	-0.0278	0.016	-1.784	0.075	-0.059	0.003
Omnibus	:	1.162	Durbin	-Watson:	1.61	9
Prob(Om	mibus):	0.559	Jarque-	Bera (JE	3): 1.26	4
Skew:		0.124	Prob(J	B):	0.53	2
Kurtosis:		2.785	Cond.	No.	51.5	3

Table 2: First-order polynomial to the right side of the cutoff in a RD

4. Second-order polynomial

 $Figure \ 3: \ Second-order \ Polynomial$

Figure 3 shows the resulting second-order polynomial over a scatter plot. $\,$

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep.	Varial	ble:	mpg		R-squared:		(0.035
Mod	el:		OLS		Adj. I	?- square	ed: (0.032
Meth	nod:		Least Sq	uares	F-stat	istic:		12.99
Date	:		Mon, 27 Fe	eb 2023	Prob (F-statis	tic): 2.	86e-06
Time	e:		18:34:	21		kelihood		2354.7
No.	Observ	ations:	720		AIC:		4	4715.
Df R	esidual	ls:	717		BIC:		4	4729.
Df M	Iodel:		2					
Cova	riance	Type:	nonrob	ust				
		coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]	
	const	33.2671	0.579	57.444	0.000	32.130	34.404	_
	x1	-0.0608	0.022	-2.731	0.006	-0.105	-0.017	
	x2	-0.0002	0.000	-1.051	0.294	-0.001	0.000	
-	Omnik	ous:	7.964	Durbi	n-Wats	on:	1.393	_
	Prob($\mathbf{Omnibus}$	s): 0.019 Jarqu		e-Bera	(JB):	5.920	
	Skew:		-0.105 Prob (JB):		0.0518	
	Kurto	sis:	2.608	Cond.	No.		1.15e + 04	:
_	•			•	•	•	•	_

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.15e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Table 3: Second-order polynomial to the left side of the cutoff in a RDD

Dep. Variable:	mpg	R-squared: 0.011
Model:	OLS	Adj. R-squared: 0.004
Method:	Least Squares	F-statistic: 1.588
Date:	Mon, 27 Feb 202	23 Prob (F-statistic): 0.206
Time:	18:34:21	Log-Likelihood: -875.41
No. Observations:	280	AIC: 1757.
Df Residuals:	277	BIC: 1768.
Df Model:	2	
Covariance Type:	nonrobust	
coef	std err	$ m t \hspace{1.5cm} P \hspace{0.5cm} t \hspace{0.5cm} [0.025 \hspace{0.5cm} 0.975]$
const 25.2194	0.713 35.	.390 0.000 23.817 26.622
x1 -0.0249	0.048 -0.	.519 0.604 -0.119 0.070
x2 -3.869e-0	5 0.001 -0.	.064 0.949 -0.001 0.001
Omnibus:	1.160 D u	ırbin-Watson: 1.620
Prob(Omnibus	s): 0.560 Ja i	rque-Bera (JB): 1.264
Skew:	0.127 Pro	cob(JB): 0.532
Kurtosis:	2.792 Co	ond. No. 4.33e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 4.33e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Table 4: Second-order polynomial to the right side of the cutoff in a RDD

Table 3 and Table 4 show the second-order polynomial regression results below and above the cutoff, respectively.

effect = yright[0] - yleft[-1]

The difference at the cutoff (not sure if it is the treatment effect estimate) is -8.05.

5. Fifth-order polynomial

Figure 4: Fifth-order Polynomial

Figure 4 shows the resulting fifth-order polynomial over a scatter plot.

Dep. Vai	riable:	mpg	r S	R-squared:		0.036
Model:		OLS		Adj. I	Adj. R-squared:	
Method:		Least Sq	uares	F-stat	F-statistic:	
Date:		Mon, 27 Fe	eb 2023	Prob (F-statistic):): 7.74e-05
Time:		18:34:	21	$\operatorname{Log-Li}$	Log-Likelihood:	
No. Obse	ervations:	720		AIC:		4720.
Df Resid	uals:	714		BIC:		4748.
Df Mode	l:	5				
Covarian	ce Type:	nonrob	oust			
	\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	32.5318	1.088	29.911	0.000	30.396	34.667
x1	-0.1577	0.147	-1.076	0.282	-0.445	0.130
$\mathbf{x2}$	-0.0035	0.006	-0.576	0.565	-0.015	0.008
x3	-4.473e-05	9.99e-05	-0.448	0.655	-0.000	0.000
x4	-2.738e-07	7.1e-07	-0.386	0.700	-1.67e-06	1.12e-06
x5	-6.247e-10	1.77e-09	-0.352	0.725	-4.11e-09	2.86e-09
Om	Omnibus: 7.687 D		Durb	in-Wats	on: 1	1.393
Pro	b(Omnibus): 0.021): 0.021 Jarque-Bera (JB): 5.7			5.769
Ske	w:	-0.104	Prob	$\mathbf{b}(\mathbf{JB})$: 0.0		.0559
Kur	tosis:	2.614	` '		5.0	04e+10

Table 5: Fifth-order polynomial to the left side of the cutoff in a RDD

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 5.04e+10. This might indicate that there are strong multicollinearity or other numerical problems.

Dep. Va	riable:	mp	g	R-squ	ared:	0.023
Model:		OLS		Adj. R-squared:		0.005
Method:		Least Sc	quares	F-statistic:		1.265
Date:		Mon, 27 F	èb 2023	Prob (F-statistic):		e): 0.279
Time:		18:34	:21	Log-Likelihood:		-873.81
No. Obs	ervations:	280)	AIC:		1760.
Df Resid	luals:	274	1	BIC:		1781.
Df Mode	el:	5				
Covariar	ice Type:	nonrobust				
	coef	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	25.0943	1.308	19.184	0.000	22.519	27.669
x1	-0.0267	0.323	-0.083	0.934	-0.663	0.609
$\mathbf{x2}$	-2.09e-05	0.024	-0.001	0.999	-0.047	0.047
x3	6.545 e-05	0.001	0.092	0.926	-0.001	0.001
x4	-2.013e-06	8.95 e-06	-0.225	0.822	-1.96e-05	1.56e-05
x5	1.462 e-08	4.01e-08	0.364	0.716	-6.44e-08	9.36e-08
Om	Omnibus: 1.030 D		Durbi	in-Watso	on: 1	.626
Pro	${ m ob}({ m Omnibus})$	s): 0.597	Jarqu	e-Bera ((JB): 1	109
\mathbf{Ske}	ew:	0.140	Prob(JB):	0	0.574
Ku	rtosis:	2.871 Cond		No.	4.1	6e+09

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 - [2] The condition number is large, 4.16e+09. This might indicate that there are strong multicollinearity or other numerical problems.

Table 6: Fifth-order polynomial to the right side of the cutoff in a RDD

Table 5 and Table 6 show the fifth-order polynomial regression results below and above the cutoff, respectively.

effect = yright[0] - yleft[-1]

The difference at the cutoff (not sure if it is the treatment effect estimate) is -4.17.

6. 2SLS using the discontinuity as an instrument for mpq

I use the discontinuity as an instrument for mpg in two ways: a continuous variable length-cutoff and a binary variable policy where 1 means the vehicle is longer than 225 and 0 for otherwise.

Here are the results respectively (see the code for details):

- a continuous variable length-cutoff: the average treatment effect is 162.43; in other words, one unit increase in mpg is expected to increase the vehicle's sale price by 162.43 units, holding all other variables constant.
- a binary variable policy: the average treatment effect is 158.28; in other words, one unit increase in mpg is expected to increase the vehicle's sale price by 158.28 units, holding all other variables constant.

2 Stata

1. (a)

III DIA DI DO	(1)				
VARIABLES					
RD_Estimate	-7.78** (1.68)				
Observations	1,000				
Standard errors in parentheses					
** p<0.01, * p<0.05					

Table 7: First-stage regression results using the discontinuity as the instrument

	(1)				
VARIABLES	(1)				
rdplot_hat_v	135.41**				
rapiot_mat_y	(22.21)				
car	-3,693.27**				
	(222.36)				
Constant	17,622.91**				
	(711.27)				
Observations	1,000				
0	0.22				
R-squared	0.22				
Standard errors in parentheses					
** p<0.01, * p<0.05					

Table 8: Second-stage regression results using the discontinuity as the instrument

1. (b)

Figure 5: A plot of the results using rdplot

2.

To the best of my current understanding, I believe it is a valid instrument to some degree. 1) It causes variation in the treatment variable. With the strange policy, every vehicle equipped with the technology is significantly less fuel-efficient. 2) However, it might have a direct effect on the outcome variable price through other mechanisms than mpg. For example, a longer/bigger vehicle tend to be safer and prettier and cost more materials to produce. The vehicle is therefore more expensive.