Introducción a la Lógica y la Computación — Autómatas y Lenguajes Práctico 5: Gramáticas

- 1. Defina gramáticas libres de contexto que generen los siguientes lenguajes:
 - a) Números enteros (por ejemplo, 20, -344, -03).
 - b) Números enteros pares sin ceros no significativos (ej. **no** puede generar -02).
 - c) Expresiones decimales de números racionales (ej. -3,1415926; 0,0001).
- 2. Sea G la gramática con símbolo inicial S, símbolos terminales a y b, y producciones:

$$S \to bS \mid aA \mid a$$
, $A \to aS \mid bB$, $B \to bA \mid aS \mid b$.

a) Demuestre, proporcionando la derivación correspondiente, que las siguientes cadenas pertenecen a L(G)

aaabb, bbbaaaaa, abaaabbabbaa.

- b) Probar que si $\alpha \in L(G)$ entonces α tiene un número impar de símbolos a. (Ayuda: encontrar un buen invariante).
- c) Probar que la recíproca del ítem anterior es falsa.
- d) Encuentre una gramática regular que genere el mismo lenguaje que G.
- 3. Defina gramáticas regulares que generen los siguientes lenguajes:
 - a) $\{\alpha \in \{a, b, c\}^* \mid \alpha = a^n b c^m, n, m > 0\}.$
 - b) El lenguaje del Ejercicio 1a.
 - c) El lenguaje del Ejercicio 1b.
- 4. Sea G = (V, T, P, S) una gramática regular y $X \in V$. Demostrar los siguientes por inducción en el largo de la derivación $\stackrel{*}{\Longrightarrow}$:
 - a) Si $X \stackrel{*}{\Longrightarrow} \beta$ entonces $|\beta| > 1$ ó $\beta = "X"$.
 - b) $X \stackrel{*}{\Longrightarrow} \beta$ y $\beta \in (V \cup T)^* \setminus T^*$ si y sólo si $\beta = \alpha Y$ con $\alpha \in T^*$ y $Y \in V$.
 - c) $X \stackrel{*}{\Longrightarrow} \alpha$ y $\alpha \in T^*$ si y sólo si existe $Y \in V$ tal que $X \stackrel{*}{\Longrightarrow} \alpha Y$ y la producción $Y \longrightarrow \epsilon$ está en P. Se concluye que $X \stackrel{*}{\Longrightarrow} \alpha Y \Longrightarrow \alpha$.
- 5. Obtener un autómata finito no determinista cuyo lenguaje aceptado sea el generado por la siguiente gramática regular G: las variables son S, E y C, con S como variable inicial; los terminales son a, b; y las producciones son:

$$S \to bS$$
, $S \to aC$, $C \to bC$, $C \to bE$, $E \to \epsilon$.

6. Sea G la gramática definida por las producciones

$$S \to bS \mid aA \mid b$$
, $A \to aS \mid bA \mid a$

donde a y b son los símbolos terminales. Obtener:

- a) Un autómata finito no determinista M tal que L(M) = L(G).
- b) Una expresión regular r tal que L(r) = L(G).
- 7. Construir una gramática regular que genere el lenguaje denotado la expresión regular $b(a^* + b)^*bb^*a$.
- 8. Sea G la gramática regular definida por las producciones

$$S \to bS \mid aA \mid bE$$
, $A \to aS \mid bA \mid aE$, $E \to \epsilon$,

donde a y b son los símbolos terminales. Demuestre que $\alpha \in L(G)$ sii $\alpha \neq \epsilon$ y contiene un número par de símbolos a.