Blur Model and Distribution

Shrayan Roy

Blurring Model and Blur Kernel

Consider the following image blur model -

$$b = k \otimes l + \epsilon$$

Where, b is observed blurred image, l is the latent sharp image, k is the Blur Kernel or Point Spread Function, ϵ is noise and \otimes denotes convolution operator. Our aim is to estimate the latent image (l). In general, the blur kernel k is also unknown. So the problem of estimating l and k from b becomes an ill-possed problem.

In our work, we will assume some special parametric forms of blur kernel.

1. **Gaussian Kernel**: We assume a truncated Gaussian kernel defined over finite square grid. In this case we have only one parameter h.

$$k(x,y) = \frac{1}{2\pi h^2} e^{-\frac{x^2 + y^2}{2h^2}}$$

2. Circular Gaussian Kernel: Instead of considering a truncated Gaussian kernel over a finite square grid, we will consider a truncation over a circular region. Consequently we have two parameters h and r.

$$k(x,y) = \frac{1}{2\pi h^2} e^{-\frac{x^2+y^2}{2h^2}} \times I_{\{x^2+y^2 \le r^2\}}$$

3. Circular Cauchy Kernel: Similarly we can define Cauchy kernel over circular region. The kernel should be such that univariate marginals are Cauchy in both directions.

$$k(x,y) = \frac{h}{2\pi} \frac{1}{(x^2 + y^2 + h^2)^{3/2}} \times I_{\{x^2 + y^2 \le r^2\}}$$

In this case also, we have two parameters h and r. But, r is controlled by the parameter θ .

4. **Disc Kernel**: We can also define disc kernel in the similar manner. In this case, we have only one parameter r.

$$k(x,y) = \frac{1}{\pi r^2} \times I_{\{x^2 + y^2 \le r^2\}}$$

Remark: The parameter r in both the circular Gaussian and Cauchy characterizes the radius of blur circle (i.e. $c_{diam}/2$) and we have already noted in last pdf that $c_{diam} = a_{diam} f \left| \frac{d - d_{focus}}{d(d_{focus} - f)} \right|$ and scale parameter $h = \kappa \times c_{diam}$. Hence, we cannot change h and r independently.

Prior on Natural Image and Maximum Likelihood Estimation

Assuming a specific parametric form of blur kernel reduces the number of parameter in the model. But still the problem remains ill-possed problem. Thus, we need to assume a prior for the latent image. Our prior is not exactly defined on latent image intensities. But defined on image gradients (horizontal or vertical). Thus, we rewrite the model as

$$\delta_h \otimes \boldsymbol{b} = \boldsymbol{k} \otimes (\delta_h \otimes \boldsymbol{l}) + \delta_h \otimes \boldsymbol{\epsilon}$$
 and $\delta_v \otimes \boldsymbol{b} = \boldsymbol{k} \otimes (\delta_v \otimes \boldsymbol{l}) + \delta_v \otimes \boldsymbol{\epsilon}$

With $\delta_h = [-1, 1]$ and $\delta_v = [-1, 1]^T$. To keep notation simple, we will henceforth take the model

$$y = k \otimes x + n$$

Where, y denotes the gradient (vertical/horizontal) of observed blur image, x denotes the gradient of original latent image and n denotes the gradient of noise. In frequency domain, this reduces to (for all ω) -

$$Y_{\omega} = K_{\omega}X_{\omega} + N_{\omega}$$

Where, capital letters indicate the corresponding frequency domain representation of small letter symbols. Note that, $\omega = (\omega_1, \omega_2)$. As the former one is 2D image domain model. Our model assumes that $X_{\omega} \sim \mathcal{CN}(0, \sigma^2 g_{\omega})$ and $N_{\omega} \sim \mathcal{CN}(0, \eta^2 h_{\omega})$ independently for all ω . It the follows that $Y_{\omega} \sim \mathcal{CN}(0, \eta^2 h_{\omega} + \sigma^2 |K_{\omega}|^2 g_{\omega})$. As we have data on Y_{ω} . We can use maximum likelihood method to estimate the parameter of blur kernel. For that we need to find likelihood of Y_{ω} 's or equivalently $|Y_{\omega}|^2$'s.

Result: If $Z \sim \mathcal{CN}(0, \sigma^2)$. Then, Re(Z) and Im(Z) follows $\mathcal{N}(0, \frac{\sigma^2}{2})$ independently. Hence, $|Z|^2 = Re^2(Z) + Im^2(Z) \sim \frac{\sigma^2}{2}\chi_2^2$. As, $\chi_2^2 \equiv Exp(\lambda = \frac{1}{2})$, it follows that $|Z|^2 \sim Exp(\lambda = \frac{1}{\sigma^2})$.

Using the above result, $|Y_{\omega}|^2 \sim \text{Exp}(\lambda_{\omega} = \frac{1}{\eta^2 h_{\omega} + \sigma^2 |K_{\omega}|^2 g_{\omega}})$ for all ω and they are asymptotically independent. If $f_{\theta}(Y_{\omega})$ denotes the pdf of $\text{Exp}(\lambda_{\omega} = \frac{1}{\eta^2 h_{\omega} + \sigma^2 |K_{\omega}|^2 g_{\omega}})$ for given parameters θ (say,) of blur kernel. Then likelihood of $|Y_{\omega}|^2$ is given by -

$$f_{\theta}(Y) = \prod_{\omega} f_{\theta}(Y_{\omega})$$

Our aim is to maximize $f_{\theta}(Y)$ or equivalently $log(f_{\theta}(Y)) = \sum_{\omega} log(f_{\theta}(Y_{\omega}))$ as a function of θ .