Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Gizzatullina Anzhe Гр. 320201

Вариант 19

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:416e:7a68:6500:0/104

Задание 1.2: разбить сеть из п.1.1 на 25 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'\Gamma C}}$	2001: db8: 0: 4ee9: 416e: 7a68: 6500: 0/109
Префикс $N_{\text{C,PëPS}}$	2001: db8: 0: 4ee9: 416e: 7a68: 65c0: 0/109

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (19*16)/256+10=11

 $X1 = {f octatok}$ от деления $(N*16)/256 = {f octatok}$ от деления (19*16)/256 = 48

Дано: Сеть 11.48.0.0/12

Задание 2.1.1: разбить сеть на 1024 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	48	0	0
Адрес сети	00001011	00110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 6 бит из 2-го октета.

3. Итого, получается, что сеть 11.48.0.0/12 мы разбили на 1024 подсети, в каждой из которых по 1022 узлов, указываем первые 5 подсетей:

	11	48	0	0
Адрес сети дв.с	00001011	00110000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

Адрес сети $N_1/$ Префикс N_1	11.48.0.0/22
Адрес первого узла N_1	11.48.0.1
Адрес последнего узла N_1	11.48.3.254
Широковещательный адрес N_1	11.48.3.255
Адрес сети $N_2/$ Префикс N_2	11.48.4.0/22
Адрес первого узла N_2	11.48.4.1
Адрес последнего узла N_2	11.48.7.254
Широковещательный адрес N_2	11.48.7.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.48.8.0/22
Адрес первого узла N_3	11.48.8.1
Адрес последнего узла N_3	11.48.11.254
Широковещательный адрес N_3	11.48.11.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.48.12.0/22
Λ дрес первого узла N_4	11.48.12.1
Адрес последнего узла N_4	11.48.15.254
Широковещательный адрес N_4	11.48.15.255
Адрес сети $N_5/$ Префикс N_5	11.48.16.0/22
Адрес первого узла N_5	11.48.16.1
Адрес последнего узла N_5	11.48.19.254
Широковещательный адрес N_5	11.48.19.255

Дано: Сеть 11.48.0.0/12

Задание 2.1.2: разбить сеть на 250 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(250\leqslant 2^8=256)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 4 бит из 2-го октета (получается, что сеть можно разбить на 256 подсетей: $2^8=256$; оставшиеся 12 бит идут под узлы: $2^{12}-2=4094$ в каждой подсети).

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	11.48.0.0/20
Адрес первого узла N_1	11.48.0.1
Адрес последнего узла N_1	11.48.15.254
Широковещательный адрес N_1	11.48.15.255

Λ дрес сети $N_2/$ Префикс N_2	11.63.144.0/20
Адрес первого узла N_2	11.63.144.1
Адрес последнего узла N_2	11.63.159.254
Широковещательный адрес N_2	11.63.159.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 16384 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	48	0	0
Адрес сети	00001011	00110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382$. Т.е. нужно выбрать такую маску, которря выделит ровно 14 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^6=512$ подсетей по 16382 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.62.192.0/18
Адрес первого узла N_1	11.62.192.1
Адрес последнего узла N_1	11.62.255.254
Широковещательный адрес N_1	11.62.255.255
$oxedsymbol{\Lambda}$ дрес сети $N_2/$ Префикс N_2	11.63.0.0/18
Адрес первого узла N_2	11.63.0.1
Адрес последнего узла N_2	11.63.63.254
Широковещательный адрес N_2	11.63.63.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.63.64.0/18
Адрес первого узла N_3	11.63.64.1
Адрес последнего узла N_3	11.63.127.254
Широковещательный адрес N_3	11.63.127.255

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	11.63.128.0/18
Λ дрес первого узла N_4	11.63.128.1
Адрес последнего узла N_4	11.63.191.254
Широковещательный адрес N_4	11.63.191.255
Адрес сети $N_5/$ Префикс N_5	11.63.192.0/18
Адрес первого узла N_5	11.63.192.1
Адрес последнего узла N_5	11.63.255.254
Широковещательный адрес N_5	11.63.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 1500 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	48	0	0
Адрес сети	00001011	00110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=11, т.к. $2^{11}-2=2046 \geqslant 1500$.

	11	48	U	U
Адрес сети дв.с	00001011	00110000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.48.0.0/21
${ m A}$ дрес первого узла N_1	11.48.0.1
Адрес последнего узла N_1	11.48.7.254
Широковещательный адрес N_1	11.48.7.255

$oxed{f A}$ дрес сети $N_2/$ Префикс N_2	11.63.248.0/21
Адрес первого узла N_2	11.63.248.1
Адрес последнего узла N_2	11.63.255.254
Широковещательный адрес N_2	11.63.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее $500~{\rm AKTИBHЫX}$ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	48	0	0
Адрес сети	00001011	00110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$.

	11	48	0	0
Адрес сети дв.с	00001011	00110000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.63.246.0/23
${ m A}$ дрес первого узла N_1	11.63.246.1
${ m A}$ дрес последнего узла N_1	11.63.247.254
Широковещательный адрес N_1	11.63.247.255
$oxedsymbol{\Lambda}$ дрес сети $N_2/$ Префикс N_2	11.63.248.0/23
"	· / /
Λ дрес первого узла N_2	11.63.248.1
Адрес первого узла N_2 Адрес последнего узла N_2	,

11.63.250.0/23
11.63.250.1
11.63.251.254
11.63.251.255
11.63.252.0/23
11.63.252.1
11.63.253.254
11.63.253.255
11.63.254.0/23
11.63.254.1
11.63.255.254
11.63.255.255