## Programação Dinâmica

André, Salles

Departamento de Informática Universidade Federal de Viçosa

INF 333 - 2024/1

## Introdução

## Recursão

Para aprender recursão, você primeiro deve aprender recursão.

## Programação Dinâmica

Para aprender programação dinâmica, você primeiro deve aprender programação dinâmica.

## Fila de moedas

- Há uma fila de n moedas cujos valores são inteiros positivos  $c_1, c_2, \ldots, c_n$  não necessariamente distintos.
- O objetivo é pegar o máximo valor com a restrição de não pegar duas moedas adjacentes.
- Exemplo: 5 1 2 10 6 2
- Solução: 5 1 2 10 6 2, de valor 17.

Para a n-ésima moeda há duas opções:

- Pegar: ganha  $c_n$  e continua o processo da n-2
- Não pegar: continua o processo da n − 1

$$F(n) = \max\{c_n + F(n-2), F(n-1)\}$$
 for  $n > 1$ ,  
 $F(0) = 0$ ,  $F(1) = c_1$ .

## **ALGORITHM** CoinRow(C[1..n])

```
//Applies formula (8.3) bottom up to find the maximum amount of money //that can be picked up from a coin row without picking two adjacent coins //Input: Array C[1..n] of positive integers indicating the coin values //Output: The maximum amount of money that can be picked up F[0] \leftarrow 0; F[1] \leftarrow C[1] for i \leftarrow 2 to n do F[i] \leftarrow \max(C[i] + F[i-2], F[i-1]) return F[n]
```

$$F[0] = 0, F[1] = c_1 = 5$$

| index | 0 | 1 | 2 | 3 | 4  | 5 | 6 |
|-------|---|---|---|---|----|---|---|
| С     |   | 5 | 1 | 2 | 10 | 6 | 2 |
| F     | 0 | 5 |   |   |    |   |   |
| F     | U | 5 |   |   | L  |   |   |

 $F[2] = \max\{1 + 0, 5\} = 5$ 

 $F[3] = \max\{2 + 5, 5\} = 7$ 

 $F[4] = \max\{10 + 5, 7\} = 15$ 

 $F[5] = \max\{6 + 7, 15\} = 15$ 

 $F[6] = \max\{2 + 15, 15\} = 17$ 

## Troco com mínimo de moedas

- Devolver um troco de valor n com o mínimo de moedas de valores  $d_1 < d_2 < \cdots < d_m$ , sendo  $d_1 = 1$ .
- Para as moedas usadas na maioria dos países o método guloso funciona: usar a de maior valor possível até acabar.
- Mas não funciona para n = 6 e moedas 1, 3, 4, por exemplo.

Programação dinâmica resolve o caso geral de forma eficiente.

Para um valor n, testar cada valor de moeda  $d_i \leq n$ 

- devolvendo  $d_i$ , sobra  $n d_i$  para devolver
- escolher o que dá menor quantidade de moedas

$$F(n) = \min_{j: n \ge d_j} \{F(n - d_j)\} + 1 \quad \text{for } n > 0,$$
  
$$F(0) = 0.$$

```
ALGORITHM Change Making (D[1..m], n)
    //Applies dynamic programming to find the minimum number of coins
    //of denominations d_1 < d_2 < \cdots < d_m where d_1 = 1 that add up to a
    //given amount n
    //Input: Positive integer n and array D[1..m] of increasing positive
             integers indicating the coin denominations where D[1] = 1
    //Output: The minimum number of coins that add up to n
    F[0] \leftarrow 0
    for i \leftarrow 1 to n do
         temp \leftarrow \infty; j \leftarrow 1
         while j \le m and i \ge D[j] do
             temp \leftarrow \min(F[i-D[j]], temp)
             j \leftarrow j + 1
         F[i] \leftarrow temp + 1
    return F[n]
```

$$F[0] = 0$$

$$F[1] = \min\{F[1-1]\} + 1 = 1$$

$$F[2] = \min\{F[2-1]\} + 1 = 2$$

$$F[3] = \min\{F[3-1], F[3-3]\} + 1 = 1$$

$$F[4] = \min\{F[4-1], F[4-3], F[4-4]\} + 1 = 1$$

$$F[5] = \min\{F[5-1], F[5-3], F[5-4]\} + 1 = 2$$

$$F[6] = \min\{F[6-1], F[6-3], F[6-4]\} + 1 = 2$$

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| F | 0 |   |   |   |   |   |   |

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| F | 0 | 1 |   |   |   |   |   |
|   |   |   |   |   |   |   |   |
|   | _ |   | _ | _ |   | _ | _ |



## Coletor de moedas

- ullet Várias moedas são espalhadas numa grade de  $n \times m$  casas
- Um robô, localizado no canto superior-esquerdo, deve coletar o máximo de moedas e levá-las até o canto inferior-direito
- Ele coleta as moedas das casas que visita e em cada passo pode ir de sua posição atual para a casa à direita ou a casa abaixo



 O objetivo é determinar o máximo de moedas que o robô pode coletar (e o caminho pelo qual ele consegue isto)

11/27

Para cada casa, escolher se é melhor vir de cima ou da esquerda

$$\begin{split} F(i,\ j) &= \max\{F(i-1,\ j),\ F(i,\ j-1)\} + c_{ij} \quad \text{for } 1 \leq i \leq n, \ \ 1 \leq j \leq m \\ F(0,\ j) &= 0 \ \ \text{for } 1 \leq j \leq m \quad \text{and} \quad F(i,\ 0) = 0 \ \ \text{for } 1 \leq i \leq n, \end{split}$$

## **ALGORITHM** RobotCoinCollection(C[1..n, 1..m])

```
//Applies dynamic programming to compute the largest number of
//coins a robot can collect on an n \times m board by starting at (1, 1)
//and moving right and down from upper left to down right corner
//Input: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0
//for cells with and without a coin, respectively
//Output: Largest number of coins the robot can bring to cell (n, m)
F[1, 1] \leftarrow C[1, 1]; for j \leftarrow 2 to m do F[1, j] \leftarrow F[1, j - 1] + C[1, j]
for i \leftarrow 2 to n do
    F[i, 1] \leftarrow F[i - 1, 1] + C[i, 1]
    for j \leftarrow 2 to m do
         F[i, j] \leftarrow \max(F[i-1, j], F[i, j-1]) + C[i, j]
return F[n, m]
```



|     | 1 | 2 | 3 | 4 | 5 | 6 |  |  |
|-----|---|---|---|---|---|---|--|--|
| 1   | 0 | 0 | 0 | 0 | 1 | 1 |  |  |
| 2   | 0 | 1 | 1 | 2 | 2 | 2 |  |  |
| 3   | 0 | 1 | 1 | 3 | 3 | 4 |  |  |
| 4   | 0 | 1 | 2 | 3 | 3 | 5 |  |  |
| 5   | 1 | 1 | 2 | 3 | 4 | 5 |  |  |
| (b) |   |   |   |   |   |   |  |  |



obs.: caminho pode ser recuperado começando do final e verificando a cada passo se é melhor (valor maior na tabela) vir de cimda ou da direita.

## Problema da mochila

#### Dados *n* itens:

- Pesos:  $w_1, w_2, \ldots, w_n$ .
- Valores:  $v_1, v_2, \ldots, v_n$ .
- e uma mochila de capacidade W.

Que itens colocar na mochila para obter valor máximo sem ultrapassar sua capacidade?



## Solução gulosa

- escolher por ordem decrescente de valor
  - não funciona! verifique...
- escolher por ordem crescente de peso
  - não funciona! verifique...
- escolher por ordem de custo-benefício: valor/peso
  - funciona este exemplo, mas não em todos
  - por exemplo, se  $w_1 = 6$  e W = 6

WA: não existe método guloso que funciona para qualquer entrada

Solução força-bruta: testar todas as alternativas

- considere todos os subconjuntos dos n itens
- calcule o peso total de cada subconjunto para identificar os que cabem na mochila
- calcule o valor total de cada subconjunto para identificar o de maior valor entre eles (ilustrado no próximo slide)

TLE: método  $O(2^n)$ , muito lento para n grande

| Subset           | Total weight | Total value  |
|------------------|--------------|--------------|
| Ø                | 0            | \$ 0         |
| {1}              | 7            | \$42         |
| {2}              | 3            | \$12         |
| {3}              | 4            | \$40         |
| {4}              | 5            | \$25         |
| {1, 2}           | 10           | \$54         |
| {1, 3}           | 11           | not feasible |
| {1, 4}           | 12           | not feasible |
| {2, 3}           | 7            | \$52         |
| {2, 4}           | 8            | \$37         |
| $\{3, 4\}$       | 9            | \$65         |
| {1, 2, 3}        | 14           | not feasible |
| $\{1, 2, 4\}$    | 15           | not feasible |
| $\{1, 3, 4\}$    | 16           | not feasible |
| $\{2, 3, 4\}$    | 12           | not feasible |
| $\{1, 2, 3, 4\}$ | 19           | not feasible |

## Solução por programação dinâmica

- Seja F(i,j) o melhor valor com itens  $1 \dots i$  e capacidade j
- Um opção é não usar o item i
  - Teríamos o valor de F(i-1,j)
- Outra opção é usar o item i
  - Ganharíamos o valor v<sub>i</sub>...
  - ... mas usaríamos w<sub>i</sub> da capacidade
  - Teríamos então o valor  $v_i + F(i-1, j-w_j)$
- A melhor opção é a que der maior valor

$$F(i, j) = \begin{cases} \max\{F(i-1, j), v_i + F(i-1, j-w_i)\} & \text{if } j-w_i \geq 0, \\ F(i-1, j) & \text{if } j-w_i < 0. \end{cases}$$

$$F(0, j) = 0$$
 for  $j \ge 0$  and  $F(i, 0) = 0$  for  $i \ge 0$ .

|                     | 0 | $j-w_i$         | j                     | W    |
|---------------------|---|-----------------|-----------------------|------|
| 0                   | 0 | 0               | 0                     | 0    |
| $i-1$ $w_i, v_i  i$ | 0 | $F(i-1, j-w_i)$ | F(i –1, j)<br>F(i, j) |      |
| n                   | 0 |                 |                       | goal |

## Example: Knapsack problem

# ALGORITHM MFKnapsack(i, j) //Implements the memory function method for the knapsack problem //Input: A nonnegative integer i indicating the number of the first // items being considered and a nonnegative integer j indicating // the knapsack capacity //Output: The value of an optimal feasible subset of the first i items //Note: Uses as global variables input arrays Weights[1..n], Values[1..n] //and table F[0..n, 0..W] whose entries are initialized with -1's except in the content of the first initialized with o's \*\*File it of the first initialized with o's

```
//Note: Uses as global variables input arrays Weights[1..n], Values[1..n],
//and table F[0..n, 0..W] whose entries are initialized with -1's except for
if F[i, j] < 0
    if j < Weights[i]
         value \leftarrow MFKnapsack(i-1, i)
    else
         value \leftarrow \max(MFKnapsack(i-1, j),
                        Values[i] + MFKnapsack(i-1, j-Weights[i])
    F[i, j] \leftarrow value
return F[i, j]
```

| item | weight | value |
|------|--------|-------|
| 1    | 2      | \$12  |
| 2    | 1      | \$10  |
| 3    | 3      | \$20  |
| 4    | 2      | \$15  |

capacity W = 5.

## Por uma PD bottom-up

|                     |   | 1 |    | cap | acity <sub>.</sub> | j  |           |
|---------------------|---|---|----|-----|--------------------|----|-----------|
|                     | i | 0 | 1  | 2   | 3                  | 4  | 5         |
|                     | 0 | 0 | 0  | 0   | 0                  | 0  | 0         |
| $w_1 = 2, v_1 = 12$ | 1 | 0 | 0  | 12  | 12                 | 12 | 12        |
| $w_2 = 1, v_2 = 10$ | 2 | 0 | 10 | 12  | 22                 | 22 | 22        |
| $w_3 = 3, v_3 = 20$ | 3 | 0 | 10 | 12  | 22                 | 30 | 32        |
| $w_4 = 2, v_4 = 15$ | 4 | 0 | 10 | 15  | 25                 | 30 | <b>37</b> |

Por uma PD top-down (a do algoritmo mostrado)

|                     |   | ı | capacity j |    |    |    |    |  |  |
|---------------------|---|---|------------|----|----|----|----|--|--|
|                     | i | 0 | 1          | 2  | 3  | 4  | 5  |  |  |
|                     | 0 | 0 | 0          | 0  | 0  | 0  | 0  |  |  |
| $w_1 = 2, v_1 = 12$ | 1 | 0 | 0          | 12 | 12 | 12 | 12 |  |  |
| $w_2 = 1, v_2 = 10$ | 2 | 0 | _          | 12 | 22 | _  | 22 |  |  |
| $w_3 = 3, v_3 = 20$ | 3 | 0 | _          | _  | 22 | _  | 32 |  |  |
| $w_4 = 2, v_4 = 15$ | 4 | 0 | _          | _  | _  | _  | 37 |  |  |

# Exemplo de aplicação de PD

## UVa 11450 - Wedding Shopping (link)

Dados diferentes modelos de cada peça de vestuário (ex.: 3 opções de camisa, 2 de gravata, 4 de sapato, ...) e um orçamento limitado, comprar um modelo de cada peça. O valor total da compra deve ser o máximo possível, dentro do orçamento.

#### Entrada:

- M: orçamento (1  $\leq M \leq$  200)
- C: número de peças de vestuário  $(1 \le C \le 20)$
- Para cada peça  $i \in [0 \dots C-1]$  de vestuário
  - $K_i$ : quantidade de modelos (1  $\leq K_i \leq$  20) e preço de cada um

#### Exemplo de entrada:

- M = 20, C = 3
- Peça 1 : 3 modelos → 6 4 8
- Peça 2 : 2 modelos → 5 10
- Peça 3 : 4 modelos  $\rightarrow$  1 5 3 5

## Exemplo de aplicação de PD

- Força bruta: tentar todas as alternativas
  - TLE: no pior caso podem ser 20<sup>20</sup> alternativas
- Guloso: escolher o modelo mais caro que ainda pode comprar
  - WA: considere o exemplo anterior com M = 12
- PD Top-down:
  - Como um backtraking, cada chamada aumenta uma peça, testando todos os modelos (diminuindo seu valor do orçamento)
  - A chamada recursiva inclui o índice da peça e o orçamento restante
  - Tabela com resultado já encontrado para peça *i* e orçamento *j*
- PD Bottom-up:
  - Matriz de bool:  $T_{ij}$  true se é possível gastar j com peças  $1 \dots i$
  - Peça 1,  $T_{1j}$  true  $\forall j = P_{1k}$ , sendo  $P_{1k}$  os preços dos modelos
  - Peça i > 1,  $T_{ij}$  true,  $\forall j = r + P_{ik}$ , sendo r valores que  $T_{i-1,r}$  true
  - Recuperar o máximo j que  $T_{Cj}$  é true.