

Resumen

Javier Vera

November 13, 2023

0.1 Superficies Regulares

Definición 0.1.1

Un subconjunto $S \subseteq \mathbb{R}^3$ es una superficie regular si para cada $p \in S$ existe un entorno V en \mathbb{R}^3 , un abierto $U \subseteq \mathbb{R}^2$ y un mapa $\phi : U \to V \cap S$ que cumple

1. ϕ es differenciable si lo miramos como $\phi: U \to \mathbb{R}^3$. Esto significa que si escribimos

$$\phi(u,v) = (\phi_1(u,v), \phi_2(u,v), \phi_2(u,v)) \quad (u,v) \in U$$

Entonces $\phi_1(u,v), \phi_2(u,v), \phi_3(u,v)$ tienen derivadas parciales de todos los órdenes en U

- 2. ϕ es un homeomorfismo, es decir ϕ tiene inversa $\phi^{-1}:V\cap S\to U$ que es contínua, esto es ϕ^{-1} es una restrición de una mapa contínuo $F:W\subseteq\mathbb{R}^3\to\mathbb{R}^2$ definido en un abierto W que contiene a $V\cap S$
- 3. Para cada $q \in U$, la differencial $d\phi_q : \mathbb{R}^2 \to \mathbb{R}^3$ es inyectivo

0.2 Diferenciabilidad

Definición 0.2.1

Sea $f: V \to \mathbb{R}^n$ una función definida en un abierto V de una superficie regular S. Decimos que f es diferenciable en $p \in V$ si existe alguna parametrización $\phi: U \subseteq \mathbb{R}^2 \to S$ con $p \in \phi(U) \subseteq V$ tal que $f \circ \phi: U \subseteq \mathbb{R}^2 \to \mathbb{R}^n$ es diferenciable en $\phi^{-1}(p)$.

Además decimos que f es diferenciable en V si lo és para todo $p \in V$

Definición 0.2.2

Sea $f: V \subseteq \mathbb{R}^n \to S$ con V abierto se dice que f es diferenciable en $p \in V$ si existe $\phi: U \to S \cap V$ parametrización de $f(p) \in \phi(U)$, $\tilde{V} \subseteq V$, \tilde{V} entorno abierto de p tal que $f(\tilde{V}) \subseteq \phi(U)$ y $\phi^{-1} \circ f: \mathbb{R}^n \to U$ es dif en p.

Además decimos que f es diferenciable en V si f lo es $\forall p \in V$

Definición 0.2.3

Sean S_1, S_2 superficies regulares $f: S_1 \to S_2$ y $p \in S_1$. Decimos que f es diferenciable en p si existen parametrizaciones $\phi: U \to S_1$ y $\psi: V \to S_2$ de p y f(p) respectivamente tales que

- 1. $f(\phi(U)) \subseteq \psi(V)$
- 2. $\psi^{-1} \circ f \circ \phi$ es diferenciable en $\phi^{-1}(p)$

f se dice diferenciable en S_1 si lo es para todo $p \in S_1$

Definición 0.2.4

Dos superficies reguleres S_1 y S_2 se dicen difeomorfas si existe una biyección $f: S_1 \to S_2$ diferenciable con inversa diferenciable (homemorfismo). Una tal f se llama difeomorfismo

Definición 0.2.5

Localmente diferenciable p1 clase 11

0.3 Orientabilidad

Proposición 1

Sea $V \subseteq \mathbb{R}^3$ abierto, S superficie. clase 9,10

Proposición 2

Dado $R \subseteq S$ región acotada contenida en $\phi(U)$ para cierta carta $\phi: U \to S$. Se define el área de R de la siguiente manera:

$$A(R) = \int \int_{Q=\phi^{-1}(R)} ||\phi_u(u,v) \times \phi_v(u,v)|| du dv$$

Definición 0.3.1

página 1 clase 12 orientable

Proposición 3

Sea S una superficie regular supongamos que existe una $\phi: U \to S$ y $\psi: V \to S$ parametrizaciones tales que $\phi(U) \cup \psi(V) = S$ y $\phi(U) \cap \psi(V) = W$ es conexo entonces S es orientable

0.4 Isometrías

Proposición 4

Dada $F:S_1\to S_2$ se dice que F es una isometría si es un difeomorfismo tal que

$$\langle dF_p(v), dF_p(w) \rangle_{F(p)} = \langle v, w \rangle_p \quad \forall p \in S_1 \quad \forall v, w \in T_p S_1$$

Esta condición es equivalente a

$$I_{F(p)}(dF_p(v)) = I_p(v) \quad \forall p \in S_1, v \in T_pS_1$$

Proposición 5

Localemnte isometrica clase 17 p8

0.5 Egregium

Proposición 6

Los simbolos de cristoffer son las coordenadas de phi uu , phi uv , phi vv en base phiu , phiv,N pagina clase 18