Modelos de Computação CC1004

201	612	017
4 01	0/2	OII

Exame - 02.06.2017

duração: 3h

N.º	Nome
1.	Sejam L e M as linguagens de alfabeto $\Sigma = \{a, b, c\}$ dadas por
	$\mathbf{L} = \{x \mid \text{o número de b's em } x \text{ \'e m\'ultiplo de três e } x \text{ não termina em b} \}$
	$\mathbf{M} = \{x \mid x \text{ termina em bbab ou começa por bc}\}$
Not	te que $arepsilon\in\mathbf{L}$, aca $\in\mathbf{L}$, bbab $ otin\mathbf{L}$, bbab $ otin\mathbf{M}$, bcbbab $ otin\mathbf{L}$, bcbab $ otin\mathbf{L}$, bcbab $ otin\mathbf{L}$, bcbab $ otin\mathbf{L}$, bcbab $ otin\mathbf{M}$.
a)]	Descreva L por uma expressão regular abreviada. d) Desenhe o AFD mínimo que aceita M.
b)	Descreva M por uma expressão regular abreviada.
0) I	Decerove I OM por uma everessão regular abreviada
() 1	Descreva $\mathbf{L} \cap \mathbf{M}$ por uma expressão regular abreviada.
	Por aplicação do corolário do teorema de Myhill-Nerode, determine o AFD mínimo que aceita L
Just	tifique todos os passos da construção usando a relação de equivalência $R_{\mathbf{L}}$ definida nesse teorema.

	Indique uma GIC $G = (V, \Sigma, P, S)$ que gere M, não seja linear à esquerda nem à direita e, preferencialente, não seja ambígua. Se G for ambígua, a resposta terá uma penalização de 25%.
<u>5)</u>	Explique porque é que a sua resposta à alínea f) está correta (i.e., satisfaz todas as condições indicadas)
ı) X	Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson pressão regular r , segundo a construção dada nas aulas (note que r inclui a expressão s).
)	Descreva informalmente as linguagens $\mathcal{L}(s)$ e $\mathcal{L}(r)$ de alfabeto $\Sigma = \{\mathtt{a},\mathtt{b}\}.$
D)	Descreva informalmente as linguagens $\mathcal{L}(s)$ e $\mathcal{L}(r)$ de alfabeto $\Sigma=\{\mathtt{a},\mathtt{b}\}.$
D)	Descreva informalmente as linguagens $\mathcal{L}(s)$ e $\mathcal{L}(r)$ de alfabeto $\Sigma=\{\mathtt{a},\mathtt{b}\}.$
))	Descreva informalmente as linguagens $\mathcal{L}(s)$ e $\mathcal{L}(r)$ de alfabeto $\Sigma=\{\mathtt{a},\mathtt{b}\}.$
))	Descreva informalmente as linguagens $\mathcal{L}(s)$ e $\mathcal{L}(r)$ de alfabeto $\Sigma=\{\mathtt{a},\mathtt{b}\}.$
D)	Descreva informalmente as linguagens $\mathcal{L}(s)$ e $\mathcal{L}(r)$ de alfabeto $\Sigma = \{\mathtt{a},\mathtt{b}\}.$

N.º	Nome				
3. Seja A o AFND-	ε representado pelo	o diagrama de tran	sição seguinte, con	m alfabeto $\Sigma = \{\mathtt{a},\mathtt{b}\}.$	
J				ladas, apresente o con	
				consumir tal palavra	
				se "não é possível dec	
			П		
(S_4) (S_1) (S_1) (S_1)		abbab			
		<i>€</i>			
1		b bb			
a	ε	bab			
a /	a	aba			
(s_5)	(s_3)	aaabb			
	Ь	aa			
		L II	II		
c) Quantos estados f				E, não finais?	lesignar.
Explique, baseando-	se no algoritmo de	Moore.			
					ŀ

(Continua)

4. Seja $L = \{x \mid x \text{ \'e capicua e termina em b}\} \cup \{x\}$	$\mid x$ não é capicua $\}$, com $\Sigma = \{a, b\}$.
	icial S que gere L e não seja linear à direita. Explique
as ideias principais. Sugestão: tente recordar a GIC dada r	nas aulas para a linguagem das capicuas e as ideias subjacentes.
b) Na continuação de 4a) , mostre que ababb $\in \mathcal{L}(G)$	$f(x)$ e bab $\in \mathcal{L}(G)$, apresentando uma $derivação$ passo d
	ida uma (se existirem várias árvores, apresente duas).
c) Prove que a linguagem $\Sigma^* \setminus L$ não é regular, usand	lo o teorema de Myhill-Nerode ou o lema da repetição
d) Diga, justificando, se existe uma GIC linear à dire	eita que gere L e, se existir, indique-a.

(Continua)

N.º		Nome						
Re	solva apenas uma o	das questõe	s 5. e 6.					
	Na continuação de s_0 ial s_0 e símbolo inic							
tabe sua	Faça uma exposiçã ela que constrói e co correção, quais as c condições de aplicab	omo é const ondições de	ruída), d aplicabil	iga qual é a lidade, que	a ideia princ complexida	ipal subjace de tem, e o	ente que per que fazer se	rmite justificar a $:G$ não satisfizer