Workshop

Decision tree and random forests in R

Masahiro Ryo

Free University of Berlin
Berlin-Brandenburg Institute of Advanced Biodiversity Research

(Breiman et al. 1984)

Points

- 1) No need for *a priori* selection of data & statistical assumptions (just run)
- 2) Missing values allowed
- 3) Nonlinearity
- 4) Indication for variable interactions

(Breiman et al. 1984)

- 1) Find a predictor & a threshold value which separate the data into two the most distinctively.
 - ⇒ If "elevation" is > 1434 m or not

(Breiman et al. 1984)

- Find a predictor & a threshold value which separate the data into two the most distinctively.
 ⇒ If "elevation" is > 1434 m or not
- 2) For each of the separated data, repeat. ⇒ If "elevation" is > 2052 m or not (for right-hand side)

(Breiman et al. 1984)

- 1) Find a predictor & a threshold value which separate the data into two the most distinctively.
 ⇒ If "elevation" is > 1434 m or not
- 2) For each of the separated data, repeat. ⇒ If "elevation" is > 2052 m or not (for right-hand side)
- 3) Stop separation when a set of rules are achieved (i.e. no more improvement).

(Breiman et al. 1984)

From decision tree to random forests

(Breiman 2001)

Bootstrap

- To generate many replicates L^B from the original dataset L
- Each consisting of *N* cases, drawn at **RANDOM**, but with replacement (ca. **63.2**% of the original data is chosen)

(Breiman 2001)

At each node...

- •Do not compare all predictor variables
- •But RANDOMLY pick up some and then compare

e.g.

Even though you prepare 80 predictor variables, only a handful of those are compared.

(Breiman 2001)

Breiman, Machine Learning, 1996

Two problems of decision tree algorithms

Over-fitting problem

Variable selection bias

Preferential order

Binary < categorical < continuous

Random forests?

Biased estimation on relative variable importance

History

1963: Morgan & Sonquist first developed the tree model protocol

1984: Breiman radically improved ----
1987: Mingers et al. reported the two problems

1994: White & Liu proposed statistical approach to solve

1999: Strasser & Weber proposed permutation test (several attempts exist here)

(De'ath et al. (2000) introduced it to ecology)

(2001: Breiman proposed Random forests)

2006: Hothorn et al. solved the problem

Statistically-reinforced decision trees

{Alpennord{Oestliche Zentralalpen, Westliche

Conditional inference tree by Hothorn et al. (2006)

1. Estimate **p-values** for all covariates **x** based on permutation

(p-value of test statistic: $\chi^2 \& t$)

Test type & test statistic		Covariate X	
		categorical	numeric
Response y	categorial	CMH (χ²)	KW (χ²)
	numeric	KW (χ²)	Pearson (t)

CMH: Cochran-Mantel-Haenszel, KW: Kruskal-Wallis

- 2. Choose the covariate \mathbf{x}_* with minimum p-value; stop if no covariates fall below significance level (α) (with Bonferroni correction)
- 3. Find the value of the covariate x_{*} which <u>best splits</u> the sample into two subsamples and split (entropy or MSE)
- 4. Repeat steps 1-3 until being stopped

Statistically-reinforced decision trees

Conditional inference tree by Hothorn et al. (2006)

Statistically-reinforced random forests

Conditional random forest by Strobl et al. (2008)

https://mlr.mlr-org.com/

https://christophm.github.io/interpretable-ml-book/