Written problems

Note: You may need to wait until Friday's class to do and comptutions involving adding an elliptic curve point to itself (or read about this case in the textbook).

- 1. Textbook exercise 6.1 (Elliptic curve arithmetic over \mathbb{R})
- 2. Textbook exercise 6.5, parts (a) and (b) (Listing the points of an EC over $\mathbb{Z}/p\mathbb{Z}$)

Hint. You can save some time by making two lists in advance: values of y^2 for various y and values of $x^3 + Ax + B$ for various values of x, then checking for numbers occurring in both lists)

- 3. Textbook exercise 6.6(a) (addition table for an elliptic curve over $\mathbb{Z}/5\mathbb{Z}$)
- 4. Textbook exercise 6.9 (listing all solutions n to an equation $Q = n \cdot P$ on an elliptic curve).
- 5. Textbook exercise 6.16. (A more concise way to send EC points; you should read Proposition 2.26 to do part (b))

Programming problems

- 1. Write a function ecAdd(P,Q,A,B,p) to compute the sum $P \oplus Q$ of two points on the Elliptic Curve over $\mathbb{Z}/p\mathbb{Z}$ defined by $Y^2 \equiv X^3 + AX + B \pmod{p}$. You may assume that P and Q are both valid points on the curve¹. The points P and Q will be either pairs (x,y) of elements of $\mathbb{Z}/p\mathbb{Z}$, or the integer 0 (as a stand-in for the point \mathcal{O} at infinity), and the function should return the result in the same format.
- 2. Write a function ecMult(n,P,A,B,p) that computes an integer multiple $n \cdot P$ of a point P on an elliptic curve $Y^2 \equiv X^3 + AX + B \pmod{p}$. Points will be formatted (x,y), with $0 \le x,y < p$, while the point at infinity should be denoted simply as 0. Your code will need to be able to scale to very large values of n; I suggest adapting the fast-powering algorithm from modular arithmetic to elliptic curves.
- 3. Write a function ecDLP(P,Q,A,B,p,q) to solve the elliptic curve discrete logarithm problem, in cases where the prime p is up to 28 bits. Here, P,Q are points on the curve $Y^2 \equiv X^3 + AX + B \pmod{p}$, and you are given, for convenience, the number q of points on the curve (which you may assume to be prime). The function should return the minimum nonnegative n such that $n \cdot P = Q$. Note that if you find any such solution n', then you can find the minimum solution by computing $n' \pmod{q}$.

A naive trial-and-error approach will earn partial credit, but to solve all test cases I recommend adapting the BSGS algorithm to the setting of elliptic curves. Note: one issue you may encounter is that it is not possible to place a "list" (e.g. [2,3]) into a Python dict. To resolve this, make sure all of your elliptic curve points (besides \mathcal{O}) are represented as "tuples" instead (e.g. (2,3), with parentheses instead of brackets).

¹Though of course if you were using this code in real life, you should add some error handling that checks this.