DMath_u6_bf

V10 posets

6.5

a)

Prove:

Let A, B be sets. If A is uncountable and A \leq B then B is uncountable.

Proof:

(using Lemma 3.15.(ii): The relation \leq is transitive: $A \leq B \land B \leq C \implies A \leq C$) (using Definition 3.42.(iii): A set A is called countable if $A \leq N$, and *uncountable* otherwise)

$$\mathbb{N} \preceq A \wedge A \preceq B \implies \mathbb{N} \preceq B$$

b)

The set $S = \{\text{functions } \{0, 1\} \rightarrow \{0, 1\}^{\infty}\}$ is uncountable.

Proof:

We will prove this using contradiction. Let's assume the set S is countable, so $S \sim \mathbb{N}$. This means, that there is a one to one mapping onto each unique value (bijection) between functions f_n to \mathbb{N} . Let us define f_n as follows:

$$f_n \stackrel{def}{=} eta_{n,\,0},\,eta_{n,\,1},\,eta_{n,\,2},\,eta_{n,\,3},\,\ldots$$
 For some $n \in \mathbb{N}$

Let $\beta_{n,\,i}$ be the i-th bit in the n-th sequence f_n where for convenience we begin numbering the bits with i=0.

Let \overline{b} be the complement of a bit $b \in \{0, 1\}$.

We define a new semi-infinite binary sequence α as follows:

$$lpha \stackrel{def}{=} \overline{eta_{n,\,0}},\, \overline{eta_{n,\,1}},\, \overline{eta_{n,\,2}},\, \overline{eta_{n,\,3}},\, \ldots$$

Obviously, $\alpha \in \{0, 1\}^{\infty}$ but there is no $n \in \mathbb{N}$ such that $\alpha = f_n$ since α is constructed so as to disagree in at least one bit (actually the i-th bit) with every sequence f_n for $n\in\mathbb{N}$. This shows that there cannot be an bijection from f_n to \mathbb{N} , which concludes the proof. We have shown that $\mathbb{N}\succeq S$ and ${\cal S}$ is thus uncountable using Cantor's diagonalization argument.