Editorial - Gadol

Facts to consider,

- 1. Every column should contain at least 1 new brick (rule 2)
- 2. The first and last columns should not have spaces between new and old bricks and can have a maximum of k new bricks
- 3. Every other column can have a maximum of **k-1** contiguous spaces and a maximum of **k** new bricks

By taking each column separately,

- All the columns,
 - Height of the lowest new brick from ground = old height from ground + 1
- 0^{th} and $n-1^{th}$ columns,
 - Height of the highest new brick = old height + number of new bricks
 = old height + k
- Other columns,
 - Height of the highest new brick = old height + no. of spaces + no. of new bricks = old height + (k 1) + k

Above heights may violate rule 2 or 3. Therefore, the following steps should be followed to check that.

- 1. The lowest and the highest height of the new bricks of the 0th column are stored. (rule 3)
- 2. 1^{st} to $n-2^{th}$ columns are taken one by one and their possible heights are checked with the previous column's heights of the highest and lowest new brick.
 - a. If (height of the old bricks of i^{th} column is greater than or equal to the height of the lowest new brick of previous $(i-1^{th})$ column) or (height of the highest new

brick of i^{th} column is lesser than the height of the lowest new brick of the previous $(i-1^{th})$ column) then the second rule is broken. It implies that there is no solution.

- b. Then height of the highest new brick of i^{th} column is updated as follows, maxH = min(data[i] + k + (k 1), maxH + (k 1));
- c. Height of the lowest new brick of i^{th} column is updated as follows, minH = max(data[i] + 1, minH - (k - 1));

- 3. The last column's $(n-1^{th})$ heights of highest and lowest bricks are checked.
 - a. If (height of the old bricks of last $(n-1^{th})$ column is already greater than or equal to the height of the lowest new brick of previous $(n-2^{th})$ column) or (height of the highest new brick of last $(n-1^{th})$ column is lesser than the height of the lowest new brick of the previous $(n-2^{th})$ column) then the second rule is broken. It implies that there is no solution.

```
if (data[n - 1] >= maxH \mid \mid data[n - 1] + k < minH)
//no solution
```

4. If all of the above cases are false, then it is possible to lay bricks by following all the rules.