# UC Berkeley Department of Electrical Engineering and Computer Sciences

### EECS 126: PROBABILITY AND RANDOM PROCESSES

# Discussion 2 Fall 2021

#### 1. Limit of Binomial

Show that the limit of a Binomial(n, p) distribution is  $Poisson(\lambda)$ , where we take  $n \to \infty$  and keep  $\lambda = np$  fixed.

# 2. Sampling without Replacement

Suppose you have N items, G of which are good and B of which are bad (B, G, A) and N are positive integers, B + G = N). You start to draw items without replacement, and suppose that the first good item appears on draw X. Compute the mean and variance of X.

### 3. Clustering Coefficient

This problem will explore an important probabilistic concept of clustering that is widely used in machine learning applications today. Consider n students, where n is a positive integer. For each pair of students  $i, j \in \{1, ..., n\}, i \neq j$ , they are friends with probability p, independently of other pairs. We assume that friendship is mutual. We can see that the friendship among the n students can be represented by an undirected graph G. Let N(i) be the number of friends of student i and T(i) be the number of triangles attached to student i. We define the **clustering coefficient** C(i) for student i as follows:

$$C(i) = \frac{T(i)}{\binom{N(i)}{2}}.$$



Figure 1: Friendship and clustering coefficient.

The clustering coefficient is not defined for the students who have no friends. An example is shown in Figure ??. Student 3 has 4 friends (1, 2, 4, 5) and there are two triangles attached to student 3, i.e., triangle 1-2-3 and triangle 2-3-4. Therefore  $C(3) = 2/\binom{4}{2} = 1/3$ .

Find  $\mathbb{E}[C(i) \mid N(i) \geq 2]$ .