Probability Assignment -2. 1). Flight Delay times: Delay times: 5.5, 10.5, 13, 22.5, 45, 55. V = 25.256 = 20.2 min Degree of Freedom(n-1)= 5. Sample size n= b Setting up hypotheris Null Dypothesis (Ho) = $P \leq 20$ Alternative Hypothesis (Ha) = N > 20 $t = \frac{\pi - V}{\left(\frac{S}{\sqrt{n}}\right)} = \frac{25.25 - 20}{\frac{20.2}{\sqrt{6}}} = \frac{+2.25}{\left(\frac{20.2}{2.44}\right)}$ Chosen Significance level: p. value = 0.005. p-value is less than X = 0.01. ... We reject rull hypothesis : Mean delay is greater than 20 mins

$$Z = \left(\frac{X - Y}{\sigma} \right)$$

$$P(Z>1.57) = \sim 0.0594$$

$$\sim 2.33$$
 .

$$Z = \left(\frac{X - Y}{6} \right)$$

$$X = 2.33 \times 14 + 68$$

$$X = 2.33 \times 14 + 68$$

 $X = 100.62$ mins

3). Gauges:
$$V = 1.50$$
, $6 = 0.2$.

 $P(1.50-d \le X \le 1.50+d) = 0.95$ (95%. of turn)

New, $Z = (X-Y)$

7-Upper = $(1.50-d-1.50)/0.2 = -d/0.2 = -5d$.

 $Z - Lower = (1.50+d-1.50)/0.2 = d/0.2 = 5d$.

 $Z - Lower = (1.50+d-1.50)/0.2 = 0.96$.

$$-5d \le 1.96$$
.
 $d \ge -1.96 / -5$
 $d \ge 0.392$.

4). Car's transmission failure:

Dece mean = 100,000.

 $\lambda = 0.00001$

 $P(X \le 50,000) = 1 - e^{-\lambda x}$

-0.00001 x 50,000

= 1- e -1

= 0.6321

Probability that care transmusion will fail during its frist 50,000 miles is 63.2%

5. a) Probability that bearing lasts
$$<6000$$
 hrs.
 $F(x) = 1 - e^{-(x/x)^2}$

$$F(6000) = 1 - e^{-(6000/5000)^{0.5}}$$

$$= 1 - e^{-(1.2)^{0.5}}$$

$$F(6000) = 0.3156$$
.

b) Mean time to failure:

$$Y = \alpha. T(1+\frac{1}{\gamma})$$

$$V = 5000$$
, $I'(1 + \frac{1}{0.5})$