Substituted 4-heteroaroylpyrazoles, process for their preparation and their application as herbicidal agents.

Publication number: EP0410552 Publication date: 1991-01-30

Inventor:

ANGERMANN ALFRED DR (DE); FRANKE HELGA DR

(DE); GEISLER JENS DR (DE); JOHANN GERHARD DR (DE); REES RICHARD DR (DE)

Applicant:

SCHERING AG (DE)

Classification: - international:

A01N43/56; A01N43/828; C07D231/20; C07D403/06; C07D413/06; C07D417/06; A01N43/48; A01N43/72; C07D231/00; C07D403/00; C07D413/00; C07D417/00;

(IPC1-7): A01N43/50; A01N43/56; A01N43/76; A01N43/78; A01N43/80; A01N43/82; C07D231/20;

C07D403/06; C07D413/06; C07D417/06

- European:

C07D231/20; C07D403/06; C07D413/06; C07D417/06

Application number: EP19900250189 19900725 Priority number(s): DE19893925502 19890728 Also published as:

JP3066684 (A) DE3925502 (A1) BR9003618 (A)

Cited documents:

US4008200

Report a data error here

Abstract of EP0410552

The invention relates to novel substituted 4-heteroaroylpyrazoles of the general formula I in which U, V, W and Z have the meanings mentioned in the description, to processes for their preparation, and to their application as herbicidal agents.

Data supplied from the esp@cenet database - Worldwide

(2)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90250189.9

2 Anmeldetag: 25.07.90

(1) Int. Ci.5: C07D 417/06, A01N 43/56, C07D 413/06, C07D 403/06, C07D 231/20, A01N 43/78, A01N 43/82, A01N 43/76, A01N 43/50, A01N 43/80

(3) Priorität: 28.07.89 DE 3925502

(43) Veröffentlichungstag der Anmeldung: 30.01.91 Patentblatt 91/05

Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IT LI LU NL SE Anmelder: SCHERING AKTIENGESELLSCHAFT Berlin und Bergkamen Müllerstrasse 170/178 Postfach 65 03 11 D-1000 Berlin 65(DE)

Erfinder: Angermann, Alfred, Dr. Nussbaumallee 12 D-1000 Berlin 19(DE) Erfinder: Franke, Helga, Dr. Spiessergasse 6b D-1000 Berlin 27(DE)

Erfinder: Geisler, Jens, Dr. Schwendyweg 13 D-1000 Berlin 20(DE) Erfinder: Johann, Gerhard, Dr. Hermsdorfer Damm 147

D-1000 Berlin 28(DE) Erfinder: Rees, Richard, Dr. Speerweg 8

D-1000 Berlin 28(DE)

- Substituierte 4-Heteroaroyipyrazole, Verfahren zur Herstellung dieser Verbindungen und ihre Verwendung als Mittel mit herbizider Wirkung.
- Die Erfindung betrifft neue substituierte 4-Heteroaroylpyrazole der allgemeinen Formel I

(I),

in der U, V, W und Z die in der Beschreibung genannten Bedeutungen haben, Verfahren zu ihrer Herstellung und ihre Verwendung als Mittel mit herbizider Wirkung.

SUBSTITUIERTE 4-HETEROAROYLPYRAZOLE, VERFAHREN ZUR HERSTELLUNG DIESER VERBINDUNGEN UND IHRE VERWENDUNG ALS MITTEL MIT HERBIZIDER WIRKUNG

Die Erfindung betrifft neue substituierte 4-Heteroaroylpyrazole, Verfahren zur Herstellung dieser Verbindungen und ihre Verwendung als Mittel mit herbizider Wirkung.

Es ist bereits bekannt, daß gewisse 4-Benzoyl- und 4-Pyridylcarbonylpyrazolderivate eine herbizide Wirkung besitzen (JP-A 51/106 738 und JP-A 54/009 279). Häufig ist die herbizide Wirkung dieser bekannten Verbindungen aber nicht ausreichend, oder es treten Selektivitätsprobleme in wichtigen landwirtschaftlichen Kulturen auf.

Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung von neuen Verbindungen, die in ihren biologischen Eigenschaften den bisher bekannten Verbindungen überlegen sind.

Diese Aufgabe wird gelöst durch neue substituierte 4-Heteroaroylpyrazole der allgemeinen Formel I

10

15

20 in der

U ein Wasserstoffatom, einen C₁-C₄-Alkylrest oder einen Halogen-C₁-C₄-alkylrest, V ein Wasserstoffatom, einen C₁-C₄-Alkylrest oder einen Halogen-C₁-C₄-alkylrest, W eine heterocyclische Gruppe W-1 bis W-7 der allgemeinen Formeln

30

25

R S

35

40

45

R4-SNNN

W - 4

W - 5

W - 6

oder

X ein Sauerstoffatom oder ein Schwefelatom,

10

Z ein Halogenatom oder eine der Gruppen -OR1, -O-(CH2) $_n$ -CO-R1, -O-SO $_2$ -R1, -S(O) $_n$ -R1, -OM oder -NR2R3, n 0, 1 oder 2,

M ein Kation aus der Gruppe Lithium, Natrium und Kalium, ein Äquivalent aus der Gruppe Zink, Mangan, Calcium, Magnesium und Barium oder ein Ammoniumion der allgemeinen Formel

$$R^9 - N - R^{11}$$

R¹ ein Wasserstoffatom, einen C1-C18-Alkylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C1-C18-Alkylrest, einen C2-C12-Alkenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkenylrest, einen C2-C12-Alkinylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkinylrest, einen Phenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenyl rest, einen Phenyl-C₁-C₃-alkylrest oder einen ein-oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C1-C4-alkoxy substituierten Phenyl-C1-C3-alkylrest,

R² ein Wasserstoffatom, einen C₁-C₁₈-Alkylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy, Cyano, C₁-C₄-Alkoxycarbonyl, einen Rest -NR¹2R¹3 oder einen Rest -N®R¹2R¹3R¹4 substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C1-C18-Alkylrest, einen C2-C12-Alkenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkenylrest, einen C2-C12-Alkinylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkinylrest, einen C1-C6-Alkoxyrest, einen Halogen-C1-C6-alkoxyrest, einen Phenylrest, einen einoder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C1-C4-alkoxy substituierten Phenylrest, einen Phenyl-C1-C3-alkylrest oder einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C1-C4-alkoxy substituierten Phenyl-C1-C3-alkylrest,

R³ ein Wasserstoffatom, einen C1-C18-Alkylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy, Cyano, C₁-C₄-Alkoxycarbonyl, einen Rest -NR¹²R¹³ oder einen Rest -N^eR¹²R¹³R¹⁴ substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C1-C18-Alkylrest einen C2-C12-Alkenylrest, einen ein-oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkenylrest, einen C2-C12-Alkinylrest, einen ein-oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkinylrest, einen Phenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C1-C4-alkoxy substituierten Phenylrest, einen Phenyl-C1-C3-alkylrest oder einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C1-C4-alkoxy substituierten Phenyl-C1-C3-alkylrest oder

R² und R³ gemeinsam mit dem benachbarten Stickstoffatom eine Morpholinogruppe, eine Piperidinogruppe oder eine Pyrrolidinogruppe,

R⁴ ein Wasserstoffatom, ein Halogenatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkylrest, einen Halogen-C1-C4-Alkylrest, einen C1-C4-Alkoxyrest, einen Halogen-C₁-C₄-alkoxyrest, einen C₁-C₄-Alkylmercaptorest, einen C₁-C₄-Alkoxycarbonylrest, einen Phenylrest, einen durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, eine Cyanogruppe oder eine Nitrogruppe,

R⁵ ein Wasserstoffatom, ein Halogenatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkylrest, einen Halogen-C1-C4-Alkylrest, einen C1-C4-Alkoxyrest, einen Halogen-C₁-C₄-alkoxyrest, einen C₁-C₄-Alkylmercaptorest, einen C₁-C₄-Alkoxycarbonylrest, einen Phenylrest, einen durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, eine Cyanogruppe oder eine Nitrogruppe,

R⁶ ein Wasserstoffatorn, ein Halogenatorn, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Halogen-C₁-C₄-alkylrest, einen C₁-C₄-Alkylrest, einen C₁

R⁷ ein Wasserstoffatom, ein Halogenatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Halogen-C₁-C₄-alkylrest, einen C₁-C₄-Alkylmercaptorest, einen C₁-C₄-Alkoxycarbonylrest, einen Phenylrest, einen durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, eine Cyanogruppe oder eine Nitrogruppe,

R⁸ ein Wasserstoffatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Phenylrest oder einen Benzylrest,

R⁹ ein Wasserstoffatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Phenylrest oder einen Benzylrest,

R¹⁰ ein Wasserstoffatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Phenylrest oder einen Benzylrest,

 R^{11} ein Wasserstoffatom, einen C_1 - C_{12} -Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C_2 - C_{12} -Alkylrest, einen Phenylrest oder einen Benzylrest,

R12 ein Wasserstoffatom oder einen C1-C12-Alkylrest,

R13 ein Wasserstoffatom oder einen C1-C12-Alkylrest und

R14 ein Wasserstoffatom oder einen C1-C12-Alkylrest bedeuten.

Die Bezeichnung "Halogen" umfaßt Fluor, Chlor, Brom und Jod. "Halogenalkyl" oder "Halogenalkoxy" bedeutet, daß ein oder mehrere Wasserstoffatome durch Fluor, Chlor, Brom oder Jod ersetzt sind.

Unter den Begriffen "Alkyl", "Alkenyl" und "Alkinyl" sind sowohl geradkettige als auch verzweigte Kohlenwasserstoffreste zu verstehen.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können, wenn Z Hydroxy bedeutet, auch als Tautomere mit den allgemeinen Formein I und I" vorliegen,

25

30

35

50

55

in denen U, V und W die unter der allgemeinen Formel I angegebene Bedeutung besitzen.

Solche Strukturen werden ebenfalls durch die vorliegende Erfindung umfaßt, aus Vereinfachungsgründen wird aber jeweils nur die Struktur der allgemeinen Formel I angegeben.

Die Herstellung der erfindungsgemäßen Verbindungen kann in Anlehnung an bekannte Methoden durchgeführt werden (zum Beispiel Acta Chem. Scand. 13, 1668 (1959); J. Med. Chem. 24, 982 (1981); EP 0282944), beispielsweise indem man

A) falls Z eine Hydroxygruppe bedeutet, eine Verbindung der allgemeinen Formel II

N (II),

in der U und V die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem

Carbonsäurederivat der allgemeinen Formel III

in der W die unter der allgemeinen Formel I genannten Bedeutungen hat und Y für ein Halogenatom, vorzugsweise ein Chloratom oder ein Bromatom, oder einen C1-C4-Alkoxyrest steht, in Anwesenheit einer geeigneten Base oder einer Lewis-Säure zur Reaktion bringt oder

B) falls Z eine Hydroxygruppe bedeutet, eine Verbindung der allgemeinen Formel II

in der U und V die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einer Carbonsäure der allgemeinen Formel IV

$$HO - C - W$$

in der W die unter der allgemeinen Formel I genannten Bedeutungen hat, in Anwesenheit eines wasserentziehenden Mittels und einer geeigneten Base oder einer Lewis-Säure zur Reaktion bringt oder C) falls Z für die Gruppe -OR1 steht, eine Verbindung der allgemeinen Formel V

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem 45 Alkylierungsmittel der allgemeinen Formel VI R1 - Y

(Vi), in der R¹ die unter der allgemeinen Formel I genannten Bedeutungen hat und Y für die unter der allgemeinen Formel III angegebenen Bedeutungen steht, umsetzt oder

D) falls Z für die Gruppe -O-(CH₂)_n-CO-R¹ steht, eine Verbindung der allgemeinen Formel V

55

50

5

10

15

20

25

30

35

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Alkylierungsmittel oder einem Acylierungsmittel der allgemeinen Formel VII R¹-CO-(CH₂)_n-Y (VII),

in der R¹ und n die unter der allgemeinen Formel I genannten Bedeutungen haben und Y für die unter der allgemeinen Formel III angegebenen Bedeutungen steht, umsetzt oder

E) falls Z für die Gruppe -O-SO2-R1 steht, eine Verbindung der allgemeinen Formel V

25

30

35

5

15

20

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Sulfonylierungsmittel der allgemeinen Formel VIII

R1-SO2-Y (VIII),

in der R¹ die unter der allgemeinen Formel I genannten Bedeutungen hat und Y für die unter der allgemeinen Formel III angegebenen Bedeutungen steht, umsetzt oder

F) falls Z für die Gruppe -OM steht, eine Verbindung der allgemeinen Formel V

40

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einer Base der allgemeinen Formel IX

45 M - Q (IX),

in der M die unter der allgemeinen Formel I angegebenen Bedeutungen hat und Q für eine Hydroxygruppe oder ein Carbonatäquivalent steht, umsetzt oder

G) falls Z für ein Halogenatom steht, eine Verbindung der allgemeinen Formel V

50

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, nach an sich bekannten Verfahren halogeniert oder

H) falls Z für die Gruppe -NR²R³ steht, eine Verbindung der allgemeinen Formel X

5

10

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutengen haben, mit einem Amin der allgemeinen Formel XI

HNR²R³ (XI),

in der R² und R³ die unter der allgemeinen Formel I genannten Bedeutungen haben, umsetzt oder I) falls 2 für die Grupppe -S(O)_n-R¹ steht, eine Verbindung der allgemeinen Formel X

20

25

30

15

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Thioalkohol der allgemeinen Formel XII

HSR1 (XII),

in der R¹ die unter der allgemeinen Formel I genannten Bedeutungen hat, umsetzt und das Reaktionsprodukt gewünschtenfalls anschließend oxydiert.

Als Basen für die Varianten A) und B) eignen sich Pyridinderivate, wie zum Beispiel 4-(N,N-Dialkylamino)-pyridine, vorzugsweise 4-(N,N-Dimethylamino)-pyridin, N-Alkylimidazole, wie zum Beispiel N-Methylimidazol, Metallcyanide, wie zum Beispiel Kupfer-1-cyanid, Natriumcyanid, Kaliumcyanid und Zinkcyanid, 2-Hydroxyisobutansäurenitril, Alkali- und Erdalkalicarbonate und -hydroxyde, wie zum Beispiel Kalium- und Natriumcarbonat oder Kalium-, Natrium-, Magnesium- und Calciumhydroxyd, sowie Alkoholate, wie zum Beispiel Kalium-, Natrium-, Calcium- oder Magnesiumethylat und -methylat.

Als Lewis-Säuren können bei den Varianten A) und B) unter anderem Zink-, Aluminium- und Borhalogenide, beispielsweise Zink- oder Aluminiumchlorid und -bromid oder Bortrifluorid zum Einsatz kommen.

Als wasserentziehendes Mittel bei Variante B) hat sich unter anderem N,N-Dicyclohexylcarbodimid als besonders vorteilhaft erwiesen.

Die Variante G) kann beispielsweie so durchgefühert werden, daß man die nach A) oder B) erhaltene Hydroxyverbindung in einem inerten Lösungsmittel, vorzugsweise einem chlorierten Kohlenwasserstoff, löst und mit einem Überschuß an Oxalylchlorid sowie katalytischen Mengen Dimethylformamid behandelt.

Die Herstellungsmethoden A) bis I) werden vorzugsweise in Anwesenheit eines geeigneten Lösungsund bzw. Verdünnungsmittels durchgeführt.

Dabei können jeweils alle solchen Lösungs- beziehungsweise Verdünnungsmittel zum Einsatz kommen, die gegenüber den jeweiligen Reaktanden inert sind. Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die jeweils gegebenenfalls chloriert sein können, wie zum Beispiel Hexan, Cyclohexan, Petrolether, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylenchlorid, Trichlorethylen und Chlorbenzol, Ether, wie zum Beispiel Diethylether, Methylethylether, Methyl-t-butylether, Diisopropylether, Dibutylether, Dioxan und Tetrahydrofuran, Ketone, wie zum Beispiel Aceton, Methylethylketon, Methylisopropylketon und Methylisobutylketon, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Alkohole, wie zum Beispiel Methanol, Ethanol, Isopropanol, Butanol, tert.-Butanol, tert.-Amylalkohol und Ethylenglycol, Ester, wie zum

Beispiel Ethylacetat und Amylacetat, Säureamide, wie zum Beispiel Dimethylformamid und Dimethylacetamid, Sulfoxide, wie zum Beispiel Dimethylsulfoxid, und Sulfone, wie zum Beispiel Sulfolan, sowie Basen, wie zum Beispiel Pyridin und Triethylamin.

Alle Reaktionen werden vorzugsweise unter dem Druck der Umgebung durchgeführt, wenngleich sie auch bei erhöhtem oder vermindertem Druck ausgeführt werden könnten. Sie können ferner innerhalb eines breiten Temperaturbereichs durchgeführt werden. Im allgemeinen werden sie bei einer Temperatur zwischen -20°C und dem Siedepunkt des Reaktionsgemisches, vorzugsweise bei 0°C bis 150°C, durchgeführt.

Die Gegenwart eines zusätzlichen Reaktionskatalysators kann von Vorteil sein. Als solche Katalysatoren sind Kaliumjodid und Oniumverbindungen, wie quarternäre Ammonium-, Phosphonium-, Arsonium- und Sulfoniumverbindungen, geeignet. Ebenfalls geeignet sind Polyglycolether, insbesondere cyclische, wie zum Beispiel 18-Krone-6, und tertiäre Amine, wie zum Beispiel Tributylamin. Bevorzugt sind quarternäre Ammoniumverbindungen, wie zum Beispiel Benzyltriethylammoniumbromid und Tetrabutylammoniumbromid

Die nach den oben genannten Verfahren hergestellten erfindungsgemäßen Verbindungen können nach den üblichen Methoden aus dem Reaktionsgemisch isoliert werden, beispielsweise durch Abdestillieren des eingesetzten Lösungsmittels bei normalem oder vermindertem Druck, durch Ausfällen mit Wasser oder durch Extraktion. Ein erhöhter Reinheitsgrad kann in der Regel durch säulenchromatographische Aufreinigung sowie durch fraktionierte Destillation oder Kristallisation erhalten werden.

Die erfindungsgemäßen Verbindungen stellen in der Regel fast farb- und ge ruchlose Fiüssigkeiten oder Kristalle dar, die bedingt löslich in Wasser, aliphatischen Kohlenwasserstoffen, wie Petrolether, Hexan, Pentan und Cyclohexan, gut löslich in halogenierten Kohlenwasserstoffen, wie Chloroform. Methylenchlorid und Tetrachlorkohlenstoff, aromatischen Kohlenwasserstoffen, wie Benzol, Toluol und Xylol, Ethern, wie Diethylether, Tetrahydrofuran und Dioxan, Carbonsäurenitrilen, wie Acetonitril, Alkoholen, wie Methanol und Ethanol, Carbonsäureamiden, wie Dimethylformamid, Sulfoxiden, wie Dimethylsulfoxid, und - falls Z eine Hydroxygruppe bedeutet - auch in Basen wie Alkalihydroxid-, Alkalicarbonat- und Alkalihydrogencarbonatlösungen, Triethylamin oder Pyridin sind.

Die bei den Herstellungsverfahren A) und B) zur Acylierung benötigten Verbindungen der allgemeinen Formeln III und IV sind entweder literaturbekannt oder können in Anlehung an literaturbekannte Methoden hergestellt werden. Einschlägige Techniken sind beispielsweise in J. Am. Chem. Soc. 77, 5359 (1955) oder Chem. Ber. 99, 1618 (1966) beschrieben.

Die erfindungsgemäßen Verbindungen zeigen eine gute herbizide Wirkung bei breitblättrigen Unkräutern und Gräsern. Ein selektiver Einsatz der erfindungsgemäßen Wirkstoffe ist in verschiedenen Kulturen möglich, zum Beispiel in Raps, Rüben, Sojabohnen, Baumwolle, Reis, Gerste, Weizen und anderen Getreidearten. Dabei sind einzelne Wirkstoffe als Selektivherbizide in Rüben, Baumwolle, Soja und Getreide besonders geeignet. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, wie zum Beispiel Forst-, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die erfindungsgemäßen Verbindungen können zum Beispiel bei den folgenden Pflanzengattungen verwendet werden:

Dikotyle Unkräuter der Gattungen Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Brassica, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Lamium, Veronica, Abutilon, Datura, Viola, Galeopsis, Papaver, Centaurea und Chrysanthemum.

Monokotyle Unkräuter der Gattungen Avena, Alopecurus, Echinochloa, Setaria, Panicum, Digitaria, Poa, Eleusine, Brachiaria, Lolium, Bromus, Cyperus, Agropyron, Sagittaria, Monochoria, Fimbristylis, Eleocharis, Ischaemum und Apera.

Die Aufwandmengen schwanken je nach Anwendungsart im Vor- und Nachauflauf in Grenzen zwischen 0,001 bis 5 kg/ha.

Die erfindungsgemäßen Wirkstoffe können auch als Defoliant, Desiccant und als Krautabtötungsmittel verwendet werden.

Die erfindungsgemäßen Verbindungen können entweder allein, in Mischung miteinander oder mit anderen Wirkstoffen angewendet werden. Gegebenenfalls können andere Pflanzenschutz- oder Schädlingsbekämpfungsmittel je nach dem gewünschten Zweck zugesetzt werden. Sofern eine Verbreiterung des Wirkungsspektrums beabsichtigt ist, können auch andere Herbizide zugesetzt werden.

Beispielsweise eignen sich als herbizid wirksame Mischungspartner diejenigen Wirkstoffe, die in Weed Abstracts, Vol. 38, No. 3, 1989, unter dem Titel "List of common names and abbreviations employed for currently used herbicides and plant growth regulators in Weed Abstracts" aufgeführt sind.

Ëine Förderung der Wirkintensität und der Wirkungsgeschwindigkeit kann zum Beispiel durch wirkungssteigernde Zusätze, wie organische Lösungsmittel, Netzmittel und Öle, erzielt werden. Solche Zusätze lassen daher gegebenenfalls eine Verringerung der Wirkstoffdosierung zu.

Zweckmäßig werden die gekennzeichneten Wirkstoffe oder deren Mischungen in Form von Zübereitungen wie Pulvern, Streumitteln, Granulaten, Lösungen, Emulsionen oder Suspensionen, unter Zusatz von flüssigen und/oder festen Trägerstoffen beziehungsweise Verdünnungsmitteln und gegebenenfalls Haft-, Netz-, Emulgier- und/oder Dispergierhilfsmitteln angewandt.

Geeignete flüssige Trägerstoffe sind zum Beispiel aliphatische und aromatische Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Cyclohexanon, Isophoron, Dimethylsulfoxid, Dimethylformamid, weiterhin Mineralöl-fraktionen und Pflanzenöle.

Als feste Trägerstoffe eignen sich Mineralien, zum Beispiel Bentonit, Silicagel, Talkum, Kaolin, Attapulgit, Kalkstein, und pflanzliche Produkte, zum Beispiel Mehle.

An oberflächenaktiven Stoffen sind zu nennen zum Beispiel Calciumligninsulfonat, Polyethylenalkylphenylether, Naphthalinsulfonsäuren und deren Salze, Phenolsulfonsäuren und deren Salze, Formaldehydkondensate, Fettalkoholsulfate sowie substituierte Benzolsulfonsäuren und deren Salze.

Der Anteil des beziehungsweise der Wirkstoffe(s) in den verschiedenen Zubereitungen kann in weiten Grenzen variieren. Beispielsweise enthalten die Mittel etwa 10 bis 90 Gewichtsprozent Wirkstoff, etwa 90 bis 10 Gewichtsprozent flüssige oder feste Trägerstoffe sowie gegebenenfalls bis zu 20 Gewichtsprozent oberflächenaktive Stoffe.

Die Ausbringung der Mittel kann in üblicher Weise erfolgen, zum Beispiel mit Wasser als Träger in Spritzbrühmengen etwa 100 bis 1000 Liter/ha. Eine Anwendung der Mittel im sogenannten Low-Volume und Ultra-Low-Volume-Verfahren ist ebenso möglich wie ihre Applikation in Form von sogenannten Mikrogranulaten.

Die Herstellung dieser Zubereitungen kann in an sich bekannter Art und Weise, zum Beispiel durch Mahl- oder Mischverfahren, durchgeführt werden. Gewünschtenfalls können Zubereitungen der Einzelkomponenten auch erst kurz vor ihrer Verwendung gemischt werden, wie es zum Beispiel im sogenannten Tankmixverfahren in der Praxis durchgeführt wird.

Zur Herstellung der verschiedenen Zubereitungen werden zum Beispiel die folgenden Bestandteile eingesetzt:

A) Spritzpulver

- 1.) 20 Gewichtsprozent Wirkstoff
- 68 Gewichtsprozent Kaolin
- 10 Gewichtsprozent Calciumsalz der Ligninsulfonsäure
- 2 Gewichtsprozent Dialkylnaphthalinsulfonat
- 2.) 40 Gewichtsprozent Wirkstoff
- 25 Gewichtsprozent Kaolin
- 25 Gewichtsprozent kolloidale Kieselsäure
- 8 Gewichtsprozent Calciumsalz der Ligninsulfonsäure
- 2 Gewichtsprozent Natriumsalz des N-Methyl-M-oleyl-taurins

B) Emulsionskonzentrat

- 20 Gewichtsprozent Wirkstoff
- 75 Gewichtsprozent Isophoron
- 2 Gewichtsprozent ethoxyliertes Rizinusöl
- 3 Gewichtsprozent Calciumsalz der Dodecylphenylsulfonsäure
- Die folgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Verbindungen:

Beispiel 1.01

50

45

35

5-Hydroxy-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol

2,24 g (20 mmol) 5-Hydroxy-1,3-dimethylpyrazol, 2,88 g (20 mmol) 4-Methyl-1,2,3-thiadiazol-5-carbon-säure, 4,13 g (20 mmol) N,N-Dicyclohexylcarbodiimid und 1,38 g (10 mmol) Kaliumcarbonat wurden in 60 ml 2-Methylbutan-2-ol 3 Stunden auf 80°C erhitzt. Nach Abdestillieren des Lösungsmittels wurde in Wasser aufgenommen, abgesaugt und das Filtrat zweimal mit Chloroform gewaschen. Ansäuern der wäßrigen Phase mit konzentrierter Salzsäure bis pH 2 und Extraktion mit Chloroform lieferte nach Trocknen (Magnesiumsulfat), Einrotieren und Umkristallisation die Zielverbindung in Form gelblicher Nadeln.

Ausbeute: 2,91 g = 61 % der Theorie Fp. : 191-193°C

Analog zu Beispiel 1.01 wurden die folgenden erfindungsgemäßen Verbindungen hergestellt:

5	Beispiel	Name der Verbindung	Physikalische Konstante
10	1.02	5-Hydroxy-1,3-dimethyl-4-(4-meth- oxymethyl-1,2,3-thiadiazol-yl- carbonyl)-pyrazol	Fp.: 168 ⁰ C
15	1.03	4-(4-Ethyl-1,2,3-thiadiazol-5-yl-carbonyl)-5-hydroxy-1,3-dimethyl-pyrazol	Fp.: 153°C
20	1.04	5-Hydroxy-1-methyl-4-(4-methyl- 1,2,3-thiadiazol-5-ylcarbonyl)- pyrazol	Fp.: 137-139 ^o C
25 30	1.05	Gemisch aus 5-Hydroxy-1,3-di- methyl-4-(1,3-dimethyl-pyrazol- 4-ylcarbonyl)-pyrazol und 5-Hydroxy-1,3-dimethyl-4-(1,5-di-	Fp.: 191-192 ⁰ C
35 -	1.06	methyl-pyrazol-4-ylcarbonyl)-pyrazol 5-Hydroxy-4-(5-trifluormethyl-1- methyl-pyrazol-4-ylcarbonyl)-1,3- dimethylpyrazol	Fp.: 140-142 ⁰ C
40	1.07	5-Hydroxy-1,3-dimethyl-4-(4-methyl- thiazol-5-ylcarbonyl)-pyrazol	Fp.: 174-176°C
45	1.08	5-Hydroxy-1,3-dimethy1-4-(2,4-di- methyl-thiazol-5-ylcarbonyl)-pyrazol	Fp.: 154-155 ⁰ C
50	1.09	5-Hydroxy-1,3-dimethyl-4-(4-methyl- 2-phenyl-thiazol-5-ylcarbonyl)-pyrazo	Fp.: 175-176 ⁰ C

	Beispiel	Name der Verbindung	Physikalische Konstante
5	1.10	5-Hydroxy-1-methyl-4-(2,4-dime- thyl-thiazol-5-ylcarbonyl)-pyrazol	Fp.: 136-138 ⁰ C
10	1.11	4-(2-Chlor-4-methylthiazol-5-yl-carbonyl)-5-hydroxy-1,3-dimethyl-pyrazol	Fp.: 174 ⁰ C
15	1.12	<pre>4-(2-Chlor-5-methylthiazol-4-yl- carbonyl)-5-hydroxy-1,3-dimethyl- pyrazol</pre>	Fp.: 155 ⁰ C

20

Beispiel 2.01

25 5-Benzoyloxy-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol

2,38 g (10 mmol) 5-Hydroxy-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol, 1,59 g Natriumcarbonat und 1,4 ml Benzoylchlorid wurden in 60 ml tert.-Butanol 1,5 Stunden am Rückfluß erhitzt. Nach Abdestillieren des Lösungsmittels wurde in Dichlormethan aufgenommen, abgesaugt und das Filtrat eingeengt. Aus dem Rohprodukt wurde durch Säulenchromatographie an Kieselgel (Essigester/Hexan) die Titelverbindung in Form gelber Nadeln erhalten.

Ausbeute: 2,90 g = 84 % der Theorie

Fp.: 128°C

Analog zu Beispiel 2.01 wurden die folgenden erfindungsgemäßen Verbindungen hergestellt:

35

40

45

50

	Beispiel	Name der Verbindung	Physikalische Konstante
5	2.02	5-(2,4-Dichlorbenzoyloxy)-1,3-di- methyl-4-(4-methyl-1,2,3-thiadia- zol-5-ylcarbonyl)-pyrazol	Fp.: 152 ⁰ C
10	2.03	1,3-Dimethyl-5-(4-methylphenylsul- fonyloxy)-4-(4-methyl-1,2,3-thia- diazol-5-ylcarbonyl)-pyrazol	Fp.: 137 ⁰ C
15	2.04	1.3-Dimethyl-5-(4-methylphenylsul- fonyloxy)-4-(2.4-dimethyl-thiazol- 5-ylcarbonyl)-pyrazol	Fp.: 103-105°C
20	2.05	1,3-Dimethyl-5-methylsulfonyloxy-4-(2,4-dimethyl-thiazol-5-ylcarbonyl)-pyrazol	Fp.: 128-130°C
30	2.06	<pre>1,3-Dimethyl-4-(2.4-dimethyl-thiazol- 5-ylcarbonyl)-5-phenylsulfonyloxy- pyrazol</pre>	Fp.: 104-106 ⁰ C
35	2.07	5-Benzoyloxy-1,3-dimethyl-4-(2,4-dimethyl-thiazol-5-ylcarbonyl)-pyrazol	n ₀ ²⁰ : 1,5671
40	2.08	5-Benzoylmethoxy-1,3-dimethyl-4- (2,4-dimethyl-thiazol-5-ylcarbo- nyl)-pyrazol	n _D ²⁰ : 1,5972
45	2.09	4-(2,4-Dimethyl-thiazol-5-ylcar- bonyl)-1-methyl-5-(4-methylphe- nylsulfonyloxy)-pyrazol	Fp.: 112-114 °C

	Beispiel	Name der Verbindung	Physikalische Konstante
5	2.10	5-(4-Chlorphenylsulfonyloxy)-1,3-	Fp.: 106 ⁰ C
		dimethyl-4-(2,4-dimethylthiazol-5-	
		ylcarbonyl)-pyrazol	
10			
	2.11	4-(2,4-Dimethylthiazol-5-ylcarbon-	Fp.: 124 ⁰ C
		yl)-5-(2,4,6-trimethylphenylsulfon-	
15		yloxy)-1,3-dimethylpyrazol	
	2.12	5-(4-fluorphenylsulfonyloxy)-1,3-	Fp.: 76°C
		dimethyl-4-(2,4-dimethylthiazol-5-	
20		ylcarbonyl)-pyrazol	
	2.13	5-(2,4,5-Trichlorphenylsulfonyl-	Fp.: 128 ⁰ C
25		oxy)-1,3-dimethyl-4-(2,4-dimethyl-	
	-	thiazol-5-ylcarbonyl)-pyrazol	
	2.14	5-(4-Methoxyphenylsulfonyloxy)-	n ²⁸ : 1,5875
30		1,3-dimethyl-4-(2,4-dimethyl-	V
		thiazol-5-ylcarbonyl)-pyrazol	
	Ł		
35	2.15	1,3-Dimethyl-4-(2,4-dimethylthi-	Fp.: 130 ⁰ C
		azol-5-ylcarbonyl)-5-(4-nitro-	
		phenylsulfonyloxy)-pyrazol	
40			
	2.16	1,3-0imethyl-4-(2,4-dimethylthi-	Fp.: 102 ⁰ C
		azol-5-ylcarbonyl)-5-(4-nitro-	
		benzoyloxy)-pyrazol	•
45			
	2.17	1,3-Dimethyl-5-(4-methylbenzoyl-	Fp.: 80 ⁰ C
		oxy)-4-(2,4-dimethylthiazol-5-yl-	
50		carbonyl)-pyrazol .	
	2.18	(4-Chlorbenzoyloxy)-1,3-dimethyl-	Fp.: 97-98°C
		4-(2,4-dimethylthiazol-5-ylcar-	
55		bonyl)-pyrazol	•

	Beispiel	Name der Verbindung	Physikalische Konstante
5			
	2.19	1.3-Dimethyl-(5-(4-methoxybenzoyl-	Fp.: 99-101 ⁰ C
		oxy)-4-(2,4-dimethylthiazol-5-yl-	
		carbonyl)-pyrazol	
10		• • • •	
	2.20	5-(4-Fluorbenzoylmethoxy)-1,3-di-	Fp.: 83-85 ⁰ C
		methyl-4-(2,4-dimethylthiazol-5-	
15		ylcarbonyl)-pyrazol	
		•	
	2.21	5-(4-Brombenzoylmethoxy)-1,3-di-	Fp.: 93-94 ⁰ C
		methyl-4-(2,4-dimethylthiazol-5-	
20		ylcarbonyl)-pyrazol	
		•	
	2.22	5-(2,4-Dichlorbenzoylmethoxy)-1,3-	Fp.: 70°C
25		dimethyl-4-(2,4-dimethylthiazol-	
		5-ylcarbonyl)-pyrazol	
30	2.23	1,3-Dimethyl-4-(2,4-dimethylthi-	Fp.: 96-98 ⁰ C
30		azol-5-ylcarbonyl)-5-(2-naphthoyl-	
		methoxy)-pyrazol	
35	2.24	5-(4-Chlorbenzoylmethoxy)-1,3-di-	Fp.: 95-97°C
		methy1-4-(2,4-dimethylthiazol-5-	
		ylcarbonyl)-pyrazol	•
40			
	2.25	5-(4-Methylbenzoylmethoxy)-1,3-	Fp.: 88-90 ⁰ C
		dimethyl-4-(2,4-dimethyl-	
		thiazol-5-ylcarbonyl)-pyrazol	•
45			
	2.26	4-(2-Chlor-4-methylthiazol-5-yl-	Fp.: 138 ⁰ C
		carbonyl)-1,3-dimethyl-5-phenyl-	
50		sulfonyloxypyrazol	•
	`		^
	2.27	4-(2-Chlor-4-methylthiazol-5-yl-	Fp.: 94-96 ⁰ C
		carbonyl)-1,3-dimethyl-5-(4-methyl-	
55		phenylsulfonyloxy)-pyrazol	

	Beispiel	Name der Verbindung	Physikalische Konstante
5	2.28	4-(2-Chlor-4-methylthiazol-5-yl-carbonyl)-5-benzoylmethoxy-1,3-	n _D ²¹ : 1,5967
10		dimethylpyrazol	
	2.29	4-(2-Chlor-5-methylthiazol-4-yl-carbonyl)-1,3-dimethyl-5-(4-methyl-	Fp.: 104-106 ⁰ C
15		sulfonyloxy)-pyrazol	
20	2.30	1-Methyl-5-(4-methylphenylsulfonyl- oxy)-4-(2,4-dimethylthiazol-5- ylcarbonyl)-pyrazol	Fp.: 114 ⁰ C

²⁵ Beispiel 3.01

5-Chlor-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol

Zu 3,89 g (16,3 mmol) 5-Hydroxy-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol und 21 ml Oxalylchlorid in 30 ml Dichlormethan wurde tropfenweise soviel Dimethylformamid gegeben, bis kein Aufschäumen mehr zu beobachten war. Nach 4 Stunden Rühren bei 25°C wurde in Wasser/Dichlormethan aufgenommen, die organische Phase abgetrennt, getrocknet (Magnesiumsulfat) und einrotiert. Umkristallisation des Rückstandes aus Hexan lieferte gelbe Kristalle.

Ausbeute: 3,30 g = 70 % der Theorie

Fp.: 105-108°C

Beispiel 4.01

L-2-[1,3-Dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol-5-yl-amino]-propansäuremethylester

Zu 3,85 g (15 mmol) 5-Chlor-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol und 10 ml
Triethylamin in 80 ml Dichlormethan wurden bei 0°C 2,09 g (15 mmol) L-Alaninmethylester-Hydrochlorid
gegeben und anschließend noch 3 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit
Wasser gewaschen, getrocknet (Magnesiumsulfat) und einrotiert. Filtration über Kieselgel
(Essigester/Hexan) liefert der Titelverblndung in kristalliner Form.

Ausbeute: 1,80 g = 37 % der Theorie

Fp.: 122°C

Analog zu Beispiel 4.01 wurden die folgenden erfindungsgemäßen Verbindungen hergestellt:

Beispiel	Beispiel Name der Verbindung	Physikalische Konstante
4.02	1,3-Dimethyl-5-methylamino-4-(4-methyl-1,2,3-thiadiazol-5-yl-carbonyl)-pyrazol	Fp.: 178°C
4.03	5-Allylamino-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol	Fp.: 142°C
4.04	5-Isopropylamino-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-yl-carbonyl)-pyrazol	Fp.: 131°C
4.05	1,3-Dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-5-propylaminopyrazol	Fp.: 133°C
4.06	1,3-Dimethyl-5-(2-dimethylaminoethylamino-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol	Fp.: 103°C
4.07	5-Ethylmercapto-1,3-dimethyl-4-(4-methyl-1,2,3-thiadiazol-5-ylcarbonyl)-pyrazol	Fp.: 142-143°C
4.08	5-Allylamino-1,3-dimethyl-4-(2,4-dimethylthiazol-5-ylcarbonyl)-pyrazol	Fp.: 93°C
4.09	1,3-Dimethyl-4-(2,4-dimethylthiazol-5-ylcarbonyl)-5-phenylmercaptopyrazol	Fp.: 114°C

Die folgenden Beispiele erläutern die Anwendungsmöglichkeiten der erfindungsgemäßen Verbindungen.

5 Beispiel A

Im Gewächshaus wurden die aufgeführten Pflanzenspezies nach dem Auflaufen mit den aufgeführten Verbindungen in einer Aufwandmenge von 0,3 kg Wirkstoff/ha behandelt. Die Verbindungen wurden zu diesem Zweck als Emulsionen oder Suspensionen mit 500 Litern Wasser/ha gleichmäßig über die Pflanzen versprüht. Hier zeigte zwei Wochen nach der Behandlung die erfindungsgemäße Verbindung eine hohe Kulturpflanzenselektivität in Brassica sp. bei ausgezeichneter Wirkung gegen das Unkraut. Das Vergleichsmittel zeigte nicht die gleichhohe Wirksamkeit.

In der folgenden Tabelle bedeuten:

0 = keine Schädigung

15 1 = 1 - 24 % Schädigung

2 = 25 - 74 % Schädigung

3 = 75 - 89 % Schädigung

4 = 90 - 100 % Schädigung

BRSSS = Brassica sp.

20 ALOMY = Alopecurus myosuroides

SETVI = Setaria viridis

SORHA = Sorghum halepense

ABUTH = Abutilon theophrasti

GALAP = Galium aparine

25 POLSS = Polygonum sp.

VIOSS = Viola sp.

		8	A	S	S	A	G	P	٧
30		R	L	Ε	0	8	A	0	I
		S	0	T	R	IJ	L	L	0
	Erfindungsgemäße	S	М	٧	Н	T	A	S	\$
_	Verbindung	S	Y		A	н	Р	\$	<u> </u>
35									
	Beispiel 1.08	1	3	3	3	3	3	3	3
40	Unbehandelt	0	0	0	G	0	0	0	0
	•								
	<u>Vergleichsmittel</u>								
45									
	5-Hydroxy-1,3-di-	0	1	2	2	0	0	0	1
	methy1-4-(2.4-di-								
	chlor-benzoyl)-								
50	pyrazol								

Beispiel B

55

Im Gewächshaus wurden die in der Tabelle aufgeführten Verbindungen mit den ebenfalls erwähnten

Aufwandmengen appliziert. Hierzu wurden die Wirkstoffe in Form von Zubereitungen auf die Wasseroberfläche in Gefäße mit 1500 ml Wasser pipettiert. Die Testpflanzenarten wurden im 2- bis 5-Blatt-Stadium eingesetzt. Drei Wochen nach der Applikation wurde die Schädigung der Pflanzen bonitiert. Die erfindungsgemäße Verbindung zeigte eine starke Wirkung gegen wichtige Reisunkräuter bei gleichzeitiger Selektivität in Wasserreis. Das Vergleichsmittel war schwächer wirksam.

In der folgenden Tabelle bedeuten:

- 0 = keine Schädigung
- 1 = schwache Schädigung
- 2 = mittlere Schädigung
- 10 3 = starke Schädigung
 - 4 = total vernichtet

ORYSA = Oryza sativa

ECHCG = Echinochloa crus-galli

SAGPY = Sagittaria pygmaea

15 SCPJU = Scirpus juncoides

MOOVA = Monochoria vaginalis

CYPSE = Cyperus serotinus

20			U	E	2	2	п	·
20			R	С	A	С	0	Υ
			Y	н	G	P	0	P
	Erfindungsgemäße	Wasserapplikation	S	С	P	J	٧	S
25	Verbindung	kg Wirkstoff/ha	A_	G	Y	U	A	<u>E</u>
	Beispiel 1.08	1,0	0	4	4	4	4	4
30								
	<u>Vergleichsmittel</u>							
		•						
	1,3-Dimethyl-5-(4-methyl-	1,0	0	3	4	3	3	3
35	phenylsulfonyloxy)-4-(2,4	-						
	dichlorbenzoyl)-pyrazol							

Beispiel C

50

Im Gewächshaus wurden die in der Tabelle aufgeführten Verbindungen mit den ebenfalls erwähnten Aufwandmengen appliziert. Hierzu wurden die Wirkstoffe in Form von Zubereitungen auf die Wasseroberfläche in Gefäße mit 1500 ml Wasser pipettiert. Die Testpflanzenarten wurden im Vorauflauf und im 1- bis 5-Blatt-Stadium eingesetzt. Drei Wochen nach der Applikation wurde die Schädigung der Pflanzen bonitiert. Die erfindungsgemäßen Verbindungen zeigten eine starke Wirkung gegen wichtige Reisunkräuter bei gleichzeitiger Selektivität in Wasserreis. Das Vergleichsmittel zeigte nicht die gleichhohe Wirksamkeit.

In der folgenden Tabelle bedeuten:

- 0 = keine Schädigung
- 1 = schwache Schädigung
- 2 = mittlere Schädigung
- 3 = starke Schädigung
- 55 4 = total vernichtet

ORYSA = Oryza sativa

ECHCG = Echinochloa crus-galli

SAGPY = Sagittaria pygmaea

SCPJU = Scirpus juncolues
MOOVA = Monochoria vaginalis
CYPSE = Cyperus serotinus
PASDS = Paspalum distichum

			0	E	s	S	М	C	P
5			R	С	A	C	0	Y	A
			Y	н	G	ρ	0	P	2
	Erfindungsgemäße	Wasserapplikation	s	С	P	J	٧	S	D
	Verbindung	kg Wirkstoff/ha	Α	G	Υ	U	Α	_ξ	<u> </u>
10	Beispiel 1.04	0,5	0	-	-	3	4	-	4
	Beispiel 1.07	0,5	0	-	2	-	-	2	2
	Beispiel 1.08	0,5	0	3	4	4	4	-	4
15	Beispiel 1.10	0,5	0	2	-	-	4	-	2
	Beispiel 1.11	0,5	0	-	-	3	-	-	-
	Beispiel 2.04	0,5	0	3	4	-	3	4	3
	Beispiel 2.05	0,5	0	-	3	-	3	. 4	3
20	Beispiel 2.06	0,5	0	3	-	3	3	3	3
	Belspiel 2.07	0,5	0	4	4	4	4	-	4
	Beispiel 2.08	0,5	0	3	4	-	4	4	3
25	Beispiel 2.10	0,5	0	3	-	2	3	2	2
	Beispiel 2.11	0,5	G	3	-	3	3	3	2
30	Beispiel 2.12	0,5	0	3	-	3	3	2	2
	Beispiel 2.13	0,5	0	3	-	2	2	2	-
50	Beispiel 2.14	0,5	0	3	-	3	3	3	2
	Beispiel 2.15	0,5	0	3	-	3	3	2	2
	Beispiel 2.16	0,5	0	2	-	2	3	3	2
35	Beispiel 2.17	0,5	0	3	-	3	3	3	3
	Beispiel 2.18	0,5	0	2	-	3	3	2	3
	Beispiel 2.19	0,5	0	3	-	3	3	3	2
40	Beispiel 2.20	0.5	0	3	-	4	3	2	2
	Beispiel 2.21	0,5	0	3	-	3	2	2	2
	Beispiel 2.24	0,5	0	3	-	3	3	3	2
	Beispiel 2.25	., .,0,5	. 0 .		·· • · ·	. 3	3	3	2
45	Beispiel 2.27	0,5	0	2	•	3	3	-	2
	Beispiel 2.28	0,5	0	2	-	3	3	•	-
	Beispiel 4.09	0,5	. 0	2	-	3	3	2	2
50			,						
	Unbehandelt		ò	0	0	0	0	0	0
		•							
	<u>Vergleichsmittel</u>	•							_
55	Pyrazolate	0,5	0	1	-	2	•	1	2

Beispiel D

5

Im Gewächshaus wurden die aufgeführten Pflanzenspezies vor dem Auflaufen mit den aufgeführten Verbindungen in einer Aufwandmenge von 3,0 kg Wirkstoff/ha behandelt. Die Verbindungen wurden zu diesem Zweck als Emulsionen oder Suspensionen mit 500 Litern Wasser/ha gleichmäßig über den Boden versprüht. Hier zeigten drei Wochen nach der Behandlung die erfindungsgemäßen Verbindungen eine hohe 10 Kulturpflanzenselektivität in Soja und Weizen bei ausgezeichneter Wirkung gegen das Unkraut.

In der folgenden Tabelle bedeuten:

0 = keine Schädigung

1 = 1 - 24 % Schädigung

2 = 25 - 74 % Schädigung

15 3 = 75 - 89 % Schädigung

4 = 90 - 100 % Schädigung

GLXMA = Glycine maxima

TRZAX = Triticum aestivum

BEAVX = Beta vulgaris altissima

20 HELAN = Helianthus annuus

ALOMY = Alopecurus myosuroides

AVEFA = Avena fatua

SETVI = Setaria viridis

PANSS = Panicum maximum

25 CYPES = Cyperus esculentus

ABUTH = Abutilon theophrasti

GALAP = Galium aparine

MATCH = Matricaria chamomilla

POLSS = Polygonum sp.

SEBEX = Sesbania exaltata

SOLSS = Solanum sp.

VERPE = Veronica persica

VIOSS = Viola sp.

35		G	Т	8	Н	A	A	S	P	С	A	G	М	P	S	S	٧	٧	
		L	R	Ε	£	L	٧	Ε	A	Y	В	A	A	0	Ε	0	Ε	I	
		x	Z	A	L	0	Ε	T	N	P	U	L	T	L	8	L	R	0	
40	Erfindungsgemäße	M	A	٧	A	М	F	٧	S	E	T	A	С	2	E	S	P	S	
	Verbindungen	A	X	X	N	Y	Α	1	S	S	Н	Р	Н	\$_	<u> </u>	<u>_S_</u>	Ε	<u>S</u>	÷
															•		•	٠	
45	Beispiel 1.01	0	0	3	3	3	3	3	4	4	3	-	-	3	3	-	3	•	
40	Beispiel 1.03	-	0	4	3	3	-	-	3	4	-	-	4	-	-	3	-	-	
	Beispiel 1.04	0	0	4	-	-	-	4	•	.3	-	-	-	-	-	-	-	-	
	Beispiel 1.06	-	0	4	-	-	-	3	-	3	-	3	3	3	3	4	4	4	
50											•								
	Unbehandelt	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

55

Beispiel E

Im Gewächshaus wurden die aufgeführten Pflanzenspezies nach dem Auflaufen mit den aufgeführten

Verbindungen in einer Aufwandmenge von 3,0 kg Wirkstoff/ha behandelt. Die Verbindungen wurden zu diesem Zweck als Emulsionen oder Suspensionen mit 500 Litern Wasser/ha gleichmäßig über die Pflanzen versprüht. Hier zeigten zwei Wochen nach der Behandlung die erfindungsgemäßen Verbindungen eine hohe Kulturpflanzenselektivität in Mais und Weizen bei ausgezeichneter Wirkung gegen das Unkraut.

In der folgenden Tabelle bedeuten:

0 = keine Schädigung

1 = 1 - 24 % Schädigung

2 = 25 - 74 % Schädigung

3 = 75 - 89 % Schädigung

10 4 = 90 - 100 % Schädigung

ZEAMX = Zea mays

TRZAX = Triticum aestivum

BEAVX = Beta vulgaris altissima

GLXMA = Glycine maxima

15 ALOMY = Alopecurus myosuroides

SETVI = Setaria viridis

PANSS = Panicum maximum

SORHA = Sorghum halepense

CYPES = Cyperus esculentus

20 ABUTH = Abutilon theophrasti

GALAP = Galium aparine

IPOSS = Ipomoea purpurea

MATCH = Matricaria chamomilla

POLSS = Polygonum sp.

25 VERPE = Veronica persica

VIOSS = Viola sp.

	Z	T	8	G	A	S	P	S	C	A	G	1	М	P	S	S	٧	٧	
	£	R	Ε	L	L	Ε	A	0	Y	8	A	P	A	0	Ε	0	Ε	1	
	A	Z	A	×	0	T	N	R	P	u	L	0	T	L	8	L	R	0	
Erfindungsgemäße	М	A	٧	М	М	٧	S	Н	Ε	T	A	S	c	\$	Ε	S	P	S	
Verbindungen	x_	X	X	Α	Y	1	S	A	S	Н	Р	<u>s</u> _	<u>H</u>	S	X	S	Ε	S	
Beispiel 2.05	0	0	3	3	-	3	3	3	3	3	3	-	3	3	3	3	3	3	
Beispiel 2.04	-	0	4	3	3	3	-	-	-	3	3	3	3	3	3	3	3	3	
Unbehandelt	a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Ansprüche

1. Substituierte 4-Heteroaroylpyrazole der allgemeinen Formel I

50

30

35

40

N (I),

in der

U ein Wasserstoffatom, einen C1-C4-Alkylrest oder einen Halogen-C1-C4-alkylrest, V ein Wasserstoffatorn, einen C1-C4-Alkylrest oder einen Halogen-C1-C4-alkylrest, W eine heterocyclische Gruppe W-1 bis W-7 der allgemeinen Formeln

5

X ein Sauerstoffatom oder ein Schwefelatom,

Z ein Halogenatom oder eine der Gruppen -OR1, -O-(CH2)n-CO-R1, -O-SO2-R1, -S(O)n-R1, -OM oder -NR2R3, n 0, 1 oder 2,

M ein Kation aus der Gruppe Lithium, Natrium und Kalium, ein Äquivalent aus der Gruppe Zink, Mangan, Calcium, Magnesium und Barium oder ein Ammoniumion der allgemeinen Formel

$$R^9 - \frac{R^8}{N + 10} R^{11}$$

40

R1 ein Wasserstoffatom, einen C1-C18-Alkylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C1-C18-Alkylrest, einen C2-C12-Alkenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkenylrest, einen C2-C12-Alkinylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C2-C12-Alkinylrest, einen Phenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C1-C4-alkoxy substituierten Phenylrest, einen Phenyl-C1-C3-alkylrest oder einen ein-oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C1-C4-Alkyl, Halogen-C1-C4-alkyl, C1-C4-Alkoxy oder Halogen-C1-C4-alkoxy substituierten Phenyl-C1-C3-alkylrest,

R² ein Wasserstoffatom, einen C1-C18-Alkylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy, Cyano, C₁-C₄-Alkoxycarbonyl, einen Rest -NR¹²R¹³ oder einen Rest -N^eR¹²R¹³R¹⁴

substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₁-C₁₈-Alkylrest, einen C₂-C₁₂-Alkenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkenylrest, einen C₂-C₁₂-Alkinylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkinylrest, einen C₁-C₆-Alkoxyrest, einen Halogen-C₁-C₆-alkoxy rest, einen Phenylrest, einen ein-

C₂-C₁₂-Alkinylrest, einen C₁-C₆-Alkoxyrest, einen Halogen-C₁-C₆-alkoxy rest, einen Phenylrest, einen einoder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, einen Phenyl-C₁-C₃-alkylrest oder einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenyl-C₁-C₃-alkylrest,

R³ ein Wasserstoffatom, einen C₁-C₁₈-Alkylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy, Cyano, C₁-C₄-Alkoxycarbonyl, einen Rest -NR¹²R¹³ oder einen Rest -N°R¹²R¹³R¹⁴ substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₁-C₁₈-Alkylrest, einen C₂-C₁₂-Alkenylrest, einen ein-oder mehrfach, gleich oder verschieden durch Halogen, Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkenylrest, einen C₂-C₁₂-Alkinylrest, einen ein-oder mehrfach, gleich oder verschieden durch Halogen,

Hydroxy oder Cyano substituierten oder durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkinylrest, einen Phenylrest, einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenyl-C₁-C₄-alkylrest, oder einen ein- oder mehrfach, gleich oder verschieden durch

Phenyl-rest, einen Phenyl-C₁-C₃-alkylrest oder einen ein- oder mehrfach, gleich oder verschieden durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenyl-C₁-C₃-alkylrest oder

R² und R³ gemeinsam mit dem benachbarten Stickstoffatom eine Morpholinogruppe, eine Piperidinogruppe oder eine Pyrrolidinogruppe,

25 R⁴ ein Wasserstoffatom, ein Halogenatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Halogen-C₁-C₄-alkylrest, einen C₁-C₄-Alkoxyrest, einen C₁-C₄-Alkylmercaptorest, einen C₁-C₄-Alkoxycarbonylrest, einen Phenylrest, einen durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, eine Cyanogruppe oder eine Nitrogruppe,

30 R⁵ ein Wasserstoffatom, ein Halogenatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Halogen-C₁-C₄-alkylrest, einen C₁-C₄-Alkylrest, einen C₁-C₄-Alkylmercaptorest, einen C₁-C₄-Alkoxycarbonylrest, einen Phenylrest, einen durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, eine Cyanogruppe oder eine Nitrogruppe,

R⁶ ein Wasserstoffatom, ein Halogenatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂ Alkylrest, einen Halogen-C₁-C₄-alkylrest, einen C₁-C₄-Alkylrest, einen C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, eine Cyanogruppe oder eine Nitrogruppe,

R⁷ ein Wasserstoffatom, ein Halogenatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Halogen-C₁-C₄-alkylrest, einen C₁-C₄-Alkoxyrest, einen C₁-C₄-Alkylmercaptorest, einen C₁-C₄-Alkoxycarbonylrest, einen Phenylrest, einen durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, Halogen-C₁-C₄-alkyl, C₁-C₄-Alkoxy oder Halogen-C₁-C₄-alkoxy substituierten Phenylrest, eine Cyanogruppe oder eine Nitrogruppe,

45 R⁸ ein Wasserstoffatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Phenylrest oder einen Benzylrest,

R⁹ ein Wasserstoffatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Phenylrest oder einen Benzylrest,

R¹⁰ ein Wasserstoffatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstoff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Phenylrest oder einen Benzylrest,

R¹¹ ein Wasserstoffatom, einen C₁-C₁₂-Alkylrest, einen durch Sauerstöff oder Schwefel ein- oder mehrfach unterbrochenen C₂-C₁₂-Alkylrest, einen Phenylrest oder einen Benzylrest,

R12 ein Wasserstoffatom oder einen C1-C12-Alkylrest,

R¹³ ein Wasserstoffatom oder einen C₁-C₁₂-Alkylrest und

55 R¹⁴ ein Wasserstoffatom oder einen C₁-C₁₂-Alkylrest bedeuten.

2. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man

A) falls Z eine Hydroxygruppe bedeutet, eine Verbindung der allgemeinen Formel II

in der U und V die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Carbonsäurederivat der allgemeinen Formel III

$$Y - C - W$$
 (III),

in der W die unter der allgemeinen Formel I genannten Bedeutungen hat und Y für ein Halogenatom, vorzugsweise ein Chloratom oder ein Bromatom, oder einen C₁-C₄-Alkoxyrest steht, in Anwesenheit einer geeigneten Base oder einer Lewis-Säure zur Reaktion bringt oder B) falls Z eine Hydroxygruppe bedeutet, eine Verbindung der allgemeinen Formel II

in der U und V die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einer Carbonsäure der allgemeinen Formel IV

in der W die unter der allgemeinen Formel I genannten Bedeutungen hat, in Anwesenheit eines wasserentziehenden Mittels und einer geeigneten Base oder einer Lewis-Säure zur Reaktion bringt oder C) falls Z für die Gruppe -OR¹ steht, eine Verbindung der allgemeinen Formel V

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Alkylierungsmittel der allgemeinen Formel VI R¹ - Y (VI),

And the state of t

in der R¹ die unter der allgemeinen Formel I genannten Bedeutungen hat und Y für die unter der allgemeinen Formel III angegebenen Bedeutungen steht, umsetzt oder

D) falls Z für die Gruppe -O-(CH₂)_n-CO-R¹ steht, eine Verbindung der allgemeinen Formel V

5

10

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Alkylierungsmittel oder einem Acylierungsmittel der allgemeinen Formel VII R¹-CO-(CH₂)n²Y (VIII),

in der R¹ und n die unter der allgemeinen Formel I genannten Bedeutungen haben und Y für die unter der allgemeinen Formel III angegebenen Bedeutungen steht, umsetzt oder

E) falls Z für die Gruppe -O-SO₂-R¹ steht, eine Verbindung der allgemeinen Formel V

20

25

30

35

40

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Sulfonylierungsmittel der allgemeinen Formel VIII . R1-SO2-Y (VIII),

in der R¹ die unter der allgemeinen Formel I genannten Bedeutungen hat und Y für die unter der allgemeinen Formel III angegebenen Bedeutungen steht, umsetzt oder

F) falls Z für die Gruppe -OM steht, eine Verbindung der allgemeinen Formel V

45

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einer Base der allgemeinen Formel IX

M - Q (IX),

in der M die unter der allgemeinen Formel I angegebenen Bedeutungen hat und Q für eine Hydroxygruppe oder ein Carbonatäquivalent steht, umsetzt oder

G) falls Z für ein Halogenatom steht, eine Verbindung der allgemeinen Formel V

55

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, nach an sich 10 bekannten Verfahren halogeniert oder

H) falls Z für die Gruppe -NR²R³ steht, eine Verbindung der allgemeinen Formel X

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Amin der allgemeinen Formel XI

HNR²R³ (XI),

5

25

in der R² und R³ die unter der allgemeinen Formel I genannten Bedeutungen haben, umsetzt oder I) falls Z für die Grupppe -S(O)n-R1 steht, eine Verbindung der allgemeinen Formel X

in der U, V und W die unter der allgemeinen Formel I genannten Bedeutungen haben, mit einem Thioalkohol der allgemeinen Formel XII 40

HSR1 (XII),

in der R1 die unter der allgemeinen Formel I genannten Bedeutungen hat, umsetzt und das Reaktionsprodukt gewünschtenfalls anschließend oxydiert.

- 3. Mittel mit herbizider Wirkung, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung 45 gemäß dem Anspruch 1.
 - 4. Verwendung von Mitteln gemäß dem Anspruch 3 zur Bekämpfung monokotyler und dikotyler Unkrautarten in landwirtschaftlichen Hauptkulturen.
 - 5. Verfahren zur Herstellung von Mitteln mit herbizider Wirkung, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel I gemäß dem Anspruch 1 mit Träger- und/oder Hilfsstoffen vermischt.

EUROPÄISCHER TEILRECHERCHENBERICHT,

der nach Regel 45 des Europäischen Patentübereinkommens für das weitere Verfahren als
europäischer Recherchenbericht gilt

Nummer der Anmeidung

EP 90 25 0189

Kategorie		ents mit Angabe, soweit erforderlich, Sgeblichen Teile	Betrifft Anspruch		ATION DER NG (Int. Cl.4)
х .	13, 25. Septem 452, Zusammenf Columbus, Ohio A.S. SARENKO enalogs of xantion of 5-pyrasynthesis of cl	t al.: "Heterocyclic thones. II. C-Acyla- zolinones and hromono [3,2-d]pyr- M. GETEROTSIKL.		C 07 D A 01 N C 07 D C 07 D - C 07 D A 01 N A 01 N A 01 N A 01 N	43/56 413/0 403/0 231/2 43/7 43/8 43/7 43/5
	* Zusammenfass	ung *	1		
A	3, 21. Juli 199 Zusammenfassun Columbus, Ohio	g Nr. 20584s,		•	
	stimulation and	i inhibition of obium by 4-aroyl-	.		CHIERTE TE (Int. Cl.4)
	3,5-diaryl pyr. 1979; 45(9), 30	azoles", & SCI. CULT		C 07 D A 01 N	417/0 43/0
UNVOL	LSTÄNDIGE RECHER	CHE		C 07 D	
dung den V ist, auf der durchzufüh Volfständig Unvollständ Nicht reche	forschriften des Europaischen Pati Grundlage einiger Patentanaprüch				
. <u>-</u> .	Recherchenort	Abschlußdatum der Recherche	.	Průfer	
X : von: Y : von	DEN HAAG TEGORIE DER GENANNTEN DI besonderer Bedeutung allein ti besonderer Bedeutung in Verti bren Veröffentlichung derselbe	petrachtet nach de pindung mit einer D: in der A	m Anmeldedat nmeldung ang	BUYSER nt, das jedoch e tum veröffentlic jeführtes Dokun ingeführtes Dok	erst am oder ht worden is nent

	Einschlägige dokumente	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)		
etegorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der madgeblichen Teile	betrifft Anspruch		
	* Zusammenfassung *			
Α .	CHEMICAL ABSTRACTS, Band 92, Nr. 21, 26. Mai 1980, Seite 165, Zusammenfassung Nr. 175648u, Columbus, Ohio, US;			
	K. KAWAKUBO et al.: "A mechanism of chlorosis caused by 1,3-di-methyl-4-(2,4-dichlorobenzoyl)-5-hydroxypyrazole, a herbicidal compound", & PLANT PHYSIOL. 1979, 64(5), 774-9			
l	•		RECHERCHIERTE SACHGEBIETE (Int. Cl.4)	
	* Zusammenfassung *			
A	CHEMICAL ABSTRACTS, Band 92, Nr. 7, 18. Februar 1980, Seite 670, Zusammenfassung Nr. 58723d, Columbus, Ohio, US; F. EIDEN et al.: "Studies on pyrone derivatives. Part 80. Pyridone, pyrazole and pyrimidine derivatives from 3,5-diacyl-4-pyrones", & ARCH. PHARM. (WEINHEIM, GER.) 1979, 312(10), 863-72			
	* Zusammenfassung *			
A	CHEMICAL ABSTRACTS, Band 88, Nr. 21, 22. Mai 1978, Seite 597, Zusammenfassung Nr. 152485s,			
	Columbus, Ohio, US; K.A. THAKAR et al.: "Synthesis of 4-aroyl-3,5-diarylpyrazoles", & INDIAN J. CHEM., SECT. B 1977, 15B(11), 1059-61			
	* Zusammenfassung *			
	 ·			
	•/•			
	•			

	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 4)	
Kategoria	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch	
A	JOURNAL OF HETEROCYCLIC CHEMISTRY, Band 21, Juli-August 1984, Seiten 1175-1176, Provo, US; H.A. DeWALD: "Synthesis of 5-amino- 1,3-dimethylpyrazol-4-yl aryl ketones"		·
	* Der ganze Artikel *		
Α	JOURNAL OF MEDICINAL CHEMISTRY, Band 30, Nr. 10, Oktober 1987, Seiten 1807-1812, American Chemical Society, Washington, US; L.D. WISE et al.: "1,3-dialkyl-4- (iminoarylmethyl)-1H-pyrazol-5-ols A series of novel potential anti- psychotic agents"	•	RECHERCHIERTE SACHGEBIETE (Int. Cl. 4)
	* Der ganze Artikel *		
A	JOURNAL OF MEDICINAL CHEMISTRY, Band 27, Nr. 11, November 1984, Seiten 1396-1400, American Chemical Society, Washington, US; D.E. BUTLER et al.: "(1,3-dialkyl- 5-amino-1H-pyrazol-4-yl)arylmetha- nones. A series of novel central nervous system depressants"	-	
	* Der ganze Artikel *		
Α	JOURNAL OF THE CHEMICAL SOCIETY, Band JCPRB4, Nr. 15, 1. Januar 1974, Seiten 1753-1892, Letchworth GB; T. NISHIWAKI et al.: "Studies on heterocyclic chemistry. Part XIX. Synthesis of 4-aroyl-1-arylpyrazoles from alpha-aroyl-beta-anilinoacrylonitriles and photochemistry of 4-carbonyl-substituted pyrazoles"		
	* Der ganze Artikel */.		

	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (INL CI. 4)	
Catagorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch	
A	JOURNAL OF ORGANIC CHEMISTRY, Band 36, Nr. 17, 27. August 1971, Seiten 2542-2547, Easton, US; D.E. BUTLER et al.: "New general methods for the substitution of 5-chloropyrazoles. The synthesis of 1,3-dialkyl-5-chloropyrazol-4- yl aryl ketones and new 1,3- dialkyl-2-pyrazolin-5-ones"		
İ	* Der ganze Artikel *	i	
II.			
Α	JOURNAL OF THE CHEMICAL SOCIETY (C), 1967, Seiten 1494-1497, Letchworth, GB; I.L. FINAR et al.: "Preparation and properties of some pyrazolyl ketones"		RECHERCHIERTE SACHGEBIETE (IM. CL.4)
	* Der ganze Artikel *		
A	US-A-4 008 200 (L. AVAR)		
P,A	CHEMICAL ABSTRACTS, Band 111, Nr. 9, 28. August 1989, Seite 754, Zusammenfassung Nr. 78000e, Columbus, Ohio, US; & JP-A-63 316 704 (NISSAN CHEMICAL INDUSTRIES, LTD) 26-12-1988		
	* Zusammenfassung *	·•	-
		•	
	·		

Die Zahl, der in Patentanspruch 1 genannten substituierten 4-Heteroaroylpyrazolen ist so gross, dass eine vollständige Recherche auß ökonomischen Gründen nicht möglich ist (Siehe Richtlinien für die Prüfung im Europäischen Patentamt, Teil B, Kapitel III, 2, Umfang der Recherche). Die Recherche beschränkt sich deshalb ausschliesslich auf diegenigen Endprodukte, die durch physikalische oder chemische Daten charakterisiert sind, d.h. die Beispielsubstanzen.