The Welkin Standard

Oscar Bender-Stone

Abstract

Welkin is an information language. Welkin stores three independent structures: a tree of nodes, a hypergraph between nodes, and a tree of node labels. An Information Graph has a unique encoding. Using this encoding, the original Information Graph may be recovered. This document "bootstraps" Welkin to provide a finitistic basis for all information.

pagebreak()

Introduction

This document specifies the Welkin information language.

Welkin describes information as the combination of a tree, hypergraph, and labels. Together, these form the basis for storing information in a universal format.

Conventions

- Artifacts must be copied identically. They are listed below.
 - boostrap.welkin is located in Appendix A.
 - derivation.welkin is located in Appendix B.
- We write (n) for the n-th line in the bootstrap file.
- Every definition is explicitly written. **Every definition MUST exclude Peano Arithmetic.**

Syntax

Terminals

- Logic
- Symbols (1): 0, 1
- Concatenation · .
- Implication \Rightarrow
- Table of US-ASCII:
- A **word** is recursively defined.
 - Base case (5):
 - 0 is a word.
 - 1 is a word.
 - Recursion (6): let w be a word.
 - $w \cdot 0$ is a word.
 - $w \cdot 1$ is a word.

Atoms

- Strings are words with delimiters: d_1 .w. d_2 , where $d_1 \not\subset w$ and $d_2 \not\subset w$.
- Identifiers are strings without white space.
- Numbers are a subset of strings with an injective function $q: \text{NUMBER} \to Q$.
 - Q is set of strings

 $\frac{p}{q}$

where p, q are in scientific notation.

Grammar

- LALR
 - · Not ambiguous
- Welkin Grammar:

Semantics

Equality on Terms

- Two strings are equal if they contain the same strings, in order.
- Two numbers are equal if q(a) = q(b).

Valid Strings

- No relative members at toplevel (with length 2).
- No duplicate members, graphs, or connections.

Welkin Information Graphs

A Welkin Information Graph (WIG) is a structure G = (T, H, L) with:

- A tree T,
- A hypergraph H,
- A tree L isomorphic to T called the **label tree**.

AST ()

- Units:
- Members are words of units
- · Connections are WIGs with
- Graphs are WIGs with
 - Derived terms as children
 - Ordered triples are arcs.

Encoding

The **encoding** E(G) of the WIG G is the unique string where

- All nodes are listed in breadth-first order
- Leaves are terms ending with "#"
- Edges are enumerated, starting from 0. They are included in nodes:
 - s means source,
 - c means connector,
 - t means target.

Bootstrap

Theorem. The Bootstrap File (Appendix A) has the encoding

.

We prove this in the following calculations:

$$(1)0,1\Rightarrow\{0,1\}$$

$$(3) \ \mathrm{start} - \{0,1\} \to \mathrm{word} \Rightarrow (\mathrm{start}, \{0,1\}, \mathrm{word})$$

Appendix A: Boostrap File