2018 年第 19 屆亞洲物理奧林匹亞競賽 及第 49 屆國際物理奧林匹亞競賽 國家代表隊初選考試試題參考解答(暫定)

壹、填充題(每格4分,共30格,合計120分)

$$- \cdot (1) 27$$

$$\equiv (4) \frac{R_1 R_3}{R R_2}$$

$$N_{f} = \frac{mg}{L}(x + \mu_{k}h) , \quad N_{r} = \frac{mg}{L}(L - x - \mu_{k}h)$$
(5)_____

$$\pounds$$
 (8) $PV^{\beta+1} = C_1C_2 = \text{constant}$

$$x_0 = \frac{V_0}{A} \left[(1 - mg/(P_0 A))^{-1/(\beta + 1)} - 1 \right] = \frac{V_0}{A} \left[(1 - mg/P_0 A)^{-3/5} - 1 \right]$$
(9)_____

$$T = 2\pi \sqrt{\frac{3mV_0}{5A^2P_0}}$$

$$\stackrel{\sim}{\sim} (11) \quad \left\{ \left(\sqrt{2} - 1 \right) M / m + \sqrt{2} \right\} v_0$$

(16)
$$\sqrt{g(5h/14+2H)}$$

九、
$$(17)$$
 $P_0 + (W_1 + W_2)/(A_1 - A_2)$

$$+ \cdot (19) 3 \times 10^{14} \text{kg/m}^3$$

$$(20)$$
 $-2.2 \times 10^{-21} \text{rad/s}^2$

$$+- \qquad (21) \qquad -\frac{3GM^2}{5R}$$

$$(22) (GMm)/5k_BR$$

$$+$$
 $\stackrel{\cdot}{=}$ $\stackrel{\cdot}{\cdot}$ $\stackrel{\cdot}{\cdot}$

$$+ \equiv (24) \qquad 2\pi \sqrt{\frac{3(m + \frac{M}{9})}{8k}}$$

十四、
$$(25)$$
 $(L-b)/2$

$$+$$
 £ · (26) $h/2R_2$

(27)
$$\gamma_1(1/R_1 - 1/R_2)$$
 (28) $\rho \alpha u^2$

$$\frac{1}{2} \le r < 1$$

計算題 (每題 15 分,共二題,合計 30 分)

第1題評分標準:

小題	內容	得分
(A)	列出 $a^2 = b^2 + c^2$,	14 7/
(A) 4分	Уущи — D тс /	1
1 74	算出 $c = 6.0 \times 10^{11} \mathrm{m}$,	1
	列出離心率 $e = c/a = 0.8$	1
	第出e = 0.8.	1
(D)		1
(B) 3分	列出克卜勒第三定律: $\frac{T^2}{a^3} = \frac{4\pi^2}{GM}$	1
	算出 $x = \frac{4\pi^2}{Gm} \frac{a^3}{T^2} = \frac{4\pi^2}{6.67 \times 10^{-11}} \times \frac{(7.5 \times 10^{11})^3}{(300 \times 24 \times 60 \times 60)^2}$ $= 3.7 \times 10^8$	2
(C) 4分	列出系統的角動量 $L=rac{2m}{T}\pi ab$	2
	算出 $L = \frac{2 \times 1 \times 10^{24}}{300 \times 24 \times 60 \times 60} \times \pi \times 7.5 \times 10^{11} \times 4.5 \times 10^{11} = 8.2 \times 10^{40} \text{ kg} \cdot \text{m}^2/\text{s}$	2
(C) 4分	由角動量守恆求得 C 點的速率: $V_C = \frac{8.2 \times 10^{40}}{1 \times 10^{24} \times 1.35 \times 10^{12}} \cong 6.1 \times 10^4 \text{ m/s}$	1
	求得 B 點到恆星的距離為 $d = 7.5 \times 10^{11}$ 公 尺	1
	列出由角動量守恆 $L = m \times 7.5 \times 10^{11} \times V_B \times \frac{3}{5},$	1
	得出 $V_B = \frac{8.2 \times 10^{40}}{1 \times 10^{24} \times 7.5 \times 10^{11} \times \frac{3}{5}} \cong 1.8 \times 10^5 \text{ m/s}$	1

第2題評分標準:

小題	內容	得分
(A)部分	等溫氦氣滿足理想氣體定律PV/T ₀ =	
(1)2分	定值,即 $\gamma_1 = 1$	1
	絕熱氦氣滿足 $PV^{\gamma_2} = 定值。$ $\gamma_2 = 5/3$ 。	1
(人) 前八	1 DVV -> 12 1	
(A)部分 (2)3 分	由 <i>PV</i> ^γ = 定值,得出	1
(2)3 //	$\{P_0 + (w_0 + w_s)/A\}(h_f A)^{\gamma}$ = $(P_0 + w_0/A)(h_0 A)^{\gamma}$	1
	汽缸甲 $\gamma_1 = 1$,得:	
	$\frac{h_1}{h_0} = \frac{P_0 + w_0/A}{P_0 + (w_0 + w_s)/A}$	1
	汽缸乙 $\gamma_2 = 5/3$, 得出:	
		1
	$\frac{h_2}{h_0} = \left\{ \frac{P_0 + w_0 / A}{P_0 + (w_0 + w_s) / A} \right\}^{3/5}$	
(B)部分	甲汽缸中,氦氣的最終溫度T ₁ 與最初溫度	
(3)4分	T_0 相同, $\Delta U_1 = \frac{3}{2}nR\Delta T = \frac{3}{2}\Delta(PV) = 0$ 。	2
	乙汽缸中,氦氣的最終與最初壓力分別為	
	$\left(P_0 + \frac{w_0 + w_s}{4}\right)$ 與 $\left(P_0 + \frac{w_0}{4}\right)$,最終與最初體積	
	分別為(H ₂ A)與(h ₀ A)。	
		2
	$\Delta U_2 = \frac{3}{2}\Delta(PV)$	
	$= \frac{3}{3} \left[\left(P_0 + \frac{w_0 + w_s}{4} \right) H_2 - \left(P_0 + \frac{w_0}{4} \right) h_0 \right] A$	
(D) 50 /\		
(B)部分 (4)6 分	甲汽缸內的氦氣,其最初溫度與壓力,以	
(1)0 //	及最終溫度與壓力,均與小題(2)相同,	2
	$\gamma = \gamma_1 = 1$ · H_1 1	
	$\frac{H_1}{h_0} = \frac{1}{1 + w_s/(P_0 A + w_0)}$	
	整個過程為絕熱,轉移的熱量 $\Delta Q = 0$,故	
	由熱力學第一定律可知能量必須守恆,	
	$\Delta U_2 + (w_0 + w_s)(h_0 - H_2) = W_2 =$	2
	$(P_0A)(h_0-H_2)$	
	將(5)式的結果代入上式,化簡可得 $\frac{H_2}{h_0}$ =	
		2
	$\frac{P_0 + w_0/A + 2w_S/(5A)}{P_0 + (w_0 + w_S)/A}$	