

## **Experiment - 5**

Student Name: Sahil Singh UID: 23BCS80031

Branch: BE-CSE Section/Group: 634/A

**Semester:** 6<sup>th</sup> **Date of Performance:** 20/02/25

Subject Name: AP LAB-II Subject Code: 22CSP-351

# **Problem 5.1: Merge Sorted Array.**

### 1. Output:



## 2. <u>Learning outcomes:</u>

- 1. Understanding the Two-Pointer Technique
- 2. Mastering In-Place Merging
- 3. Time Complexity Analysis
- 4. Handling Edge Cases



#### **Problem 5.2: First Bad Version**

## 1. Output:



# 2. <u>Learning Outcomes:</u>

- Understanding Binary Search
- Reducing Time Complexity.
- Working with a Monotonic Condition.
- Implementing a Search with a Condition



### **Problem 5.3: Top K frequent elements**

### 1. Output:



### 2. Learning Outcomes:

- Understanding Frequency Counting (Hash Maps)
- Priority Queues (Heaps)
- Sorting and Bucket Sort.
- QuickSelect Algorithm (Partitioning)



### **Problem 5.4: Kth Largest element in an array**

#### 1. Output:



# 2. <u>Learning Outcomes:</u>

- Understanding Sorting and Its Complexity.
- Learning Efficient Selection Algorithms
- Working with Different Data Structures.
- Trade-offs Between Time and Space Complexity.



### Problem 5.5: Kth smallest element in a sorted matrix

### 1. Output:



# 2. Learning Outcomes:

- Binary Search on Answer (Matrix Search Space)
- Heap (Priority Queue) Approach
- Matrix Traversal & Counting
- Time Complexity Trade-offs