Proposition 1. For all $x, y \in \mathbb{R}$, there is $a \in \mathbb{R}$ such that x < y implies x < a < y.

Proof. (BW) Let $x, y \in \mathbb{R}$. Suppose x < y. Choose $a = \frac{x+y}{2}$. Then $a \in \mathbb{R}$ as required. We have

$$[x < a < y] \equiv \left[x < \frac{x+y}{2} < y\right],$$
 (substitution for a)

$$\equiv \left[x - \frac{x+y}{2} < 0 < y - \frac{x+y}{2}\right],$$
 (subtract $\frac{x+y}{2}$)

$$\equiv \left[\frac{x-y}{2} < 0 < \frac{y-x}{2}\right],$$
 (simplification)

$$\equiv \text{True.}$$
 ($(y-x > 0) \land (x-y < 0)$)

Proposition 2. For all $r \in \mathbb{R}_{>0}$ there is $x \in [0,1)$ such that 1-r < x.

Proof. (BW) Let $r \in \mathbb{R}_{>0}$. Choose $x = \begin{cases} 1 - \frac{r}{2} & r < 1 \\ \frac{1}{2} & r \ge 1 \end{cases}$. For r < 1, we have

$$[1-r < x] \equiv \left[1-r < 1-\frac{r}{2}\right], \qquad \text{(substitution for } x)$$

$$\equiv \left[0 < \frac{r}{2}\right], \qquad \text{(add } r-1)$$

$$\equiv \text{True.} \qquad (0 < r < 1).$$

And for $r \ge 1$, we have

$$[1-r < x] \equiv \left[1-r < \frac{1}{2}\right], \qquad \text{(substitution for } x)$$

$$\equiv \left[\frac{1}{2} < r\right], \qquad \text{(algebra)}$$

$$\equiv \text{True.} \qquad (r \ge 1).$$

Proposition 3. For all $x \in \mathbb{R}_{>0}$ there is $y \in \mathbb{R}_{>0}$ such that y < x.

Proof. (BW) Let $x \in \mathbb{R}_{>0}$. Choose y = x/2. Then $y \in \mathbb{R}_{>0}$ as required. We have

$$[y < x] \equiv \left[\frac{x}{2} < x\right],$$
 (substitution for y)
$$\equiv \left[0 < \frac{x}{2}\right],$$
 (algebra)
$$\equiv \text{True.}$$
 (x > 0)

Proposition 4. For every $y \in \mathbb{R}_{>0}$ there is $x \in \mathbb{R}_{>0}$ such that $y \ge x$.

Proof. (BW) Let $y \in \mathbb{R}_{>0}$. Choose x = y. Then $x \in \mathbb{R}_{>0}$, as required. We have

$$[y \ge x] \equiv [y \ge y],$$
 (substitution for x)
 $\equiv [0 \ge 0],$ (algebra)
 $\equiv \text{True}.$

Proposition 5. For all $x \in \mathbb{R}_{>0}$, there is $M \in \mathbb{R}$ such that $\frac{1}{x} + 1 > M$. (SB)

Proposition 6. There is $M \in \mathbb{R}$ such that for all $x \in \mathbb{R}_{>0}$, we have $\frac{1}{x} + 1 > M$. (DD)

Proposition 7. There is $m \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, we have $1 + m(x - 1) \le x^2$. (TK)

Proposition 8. For every $a \in \mathbb{R}$, there is $m \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, we have $a^2 + m(x - a) \le x^2$. (AK)

Proposition 9. For all $x, y \in \mathbb{R}$, we have $(x^2 = y^2) \implies (x = y)$. (DM)

Proposition 10. For all $x, y \in \mathbb{R}$, we have $(x^3 = y^3) \Longrightarrow (x = y)$. (CR)