

Developing Technology in Competition

1 INDEX

1	INDE	Υ
-		D Profile
		Nasses
		oaded Radius & Rolling Circumference
		Calculation Boundaries
	1.3.2	
	1.3.3	·
	1.3.4	NEW Rolling Radius Equation
	1.3.5	Rolling Radius Coefficients
		ornering Stiffness
		ateral Rigidity

1.1 2D Profile

1.2 Masses

	Masse (kg)
348R	11.40

1.3 Loaded Radius & Rolling Circumference

1.3.1 Calculation Boundaries

These parameters are extracted from a complete rig test based on:

- Speed scan
- Vertical load scan
- Camber angle scan
- Slip angle scan
- Pressure scan

1.3.2 NEW Loaded Radius Equation

$$Re(P, V, \gamma, F_{Y}) = Re_{0} + Re_{P} \cdot P + Re_{V} \cdot V^{2} + Re_{\gamma 1} \cdot \gamma^{2} + Re_{\gamma 2} \cdot |\gamma| + Re_{Y} (F_{Y} - F_{0})^{2} - \frac{F_{Z}}{K_{ZZ}}$$

$$K_{ZZ}(P, V, \gamma, F_{Y}, F_{X}) = \left(K_{ZZ_{0}} + K_{ZZ_{P}} \cdot P + K_{ZZ_{V1}} \cdot V^{2} + K_{ZZ_{V2}} \cdot V + K_{ZZ_{Y}} \cdot Y^{2}\right)$$

$$R_{libre} = Re_{0} + Re_{P} \cdot P + Re_{V} \cdot V^{2} + Re_{\gamma 1} \cdot \gamma^{2} + Re_{\gamma 2} \cdot |\gamma| + Re_{Y} (F_{Y} - F_{0})^{2}$$

With:

Re: Loaded radius [m]
Kzz: Vertical Stiffness [N/m]

R_{libre}: Free geometrical radius [m]

F_Y: Lateral force [N]
F_Z: Vertical load [N]
V: Velocity [m/s]
γ: Camber [°]

P: Pressure [bar]

1.3.3 Loaded Radius coefficients

Note 1: The critical difference is roughly ±0.6% on KZZ at 2b. Vref is 150km/h

Note 2: (Speeds must be used in m/s in the calculation).

	Rr Casing
	348R
KzzP	1.67E+05
Kzz0	3.57E+04
ReP	4.54E-04
KzzV1	-0.3176
KzzV2	798.5039
ReV	2.40E-07
KzzGamma	-5.12E+03
ReGamma1	2.76E-04
ReGamma2	-8.41E-05
Fy0	109.2906
ReY	-2.30E-11
Re0	0.3507

Vertical Stiffness - Kzz [N/m]	387649
--------------------------------	--------

Loaded Radius - Re [m]	0.33487
------------------------	---------

Pressure [bar]	2.0
Fz [N]	8000.0
IA [deg] (absolute value)	3.0
Fy [N]	0.0
V [m/s]	83.3333

Please find in the file "20210305_Kzz_LR_297R_348R.xlsx" an excel sheet to calculate tyre loaded radius with the coefficients above.

Competition

1.3.4 NEW Rolling Radius Equation

$$\begin{split} R_{roul} &= R_{Nappes} + \left(\ Re_0 + Re_P \cdot P - R_{Nappes} \right) * \exp(-\alpha * fleche) + \ R_{roul_{D2}} * \delta^2 + \ R_{roul_{D1}} * \delta + \ R_{roul_{V2}} * V^2 \\ &+ \ R_{roul_{V1}} * V + \ R_{roul_{G2}} * \gamma^2 + \ R_{roul_{G1}} * \gamma \end{split}$$

where:

$$fleche = f = \frac{F_z}{K_{zz}}$$

And:

$$K_{ZZ}(P, V, \gamma, F_Y, F_X) = \left(K_{ZZ_0} + K_{ZZ_P} \cdot P + K_{ZZ_{V_1}} \cdot V^2 + K_{ZZ_{V_2}} \cdot V + K_{ZZ_{\gamma}} \cdot \gamma^2\right)$$

NB: Kzz is calculated with loaded radius coefficients.

With:

Rroul: Rolling radius [m]
Kzz: Vertical Stiffness [N/m]

F_z: Vertical load [N] V: Velocity [m/s] γ: Camber [°] P: Pressure [bar] δ: Slip Angle [°]

For calculation of Rolling Circumference (C_{Roll}), use $C_{Roll} = R_{Roll} \times (2\pi)$

1.3.5 Rolling Radius Coefficients

Rr	Casing
----	--------

	348R
RroulNappes	0.3473
RroulAlpha: exponential coefficient	87.7024
RroulDelta1: slip angle dependancy	3.45E-05
RroulDelta2: square slip angle dependancy	-7.77E-06
RroulV1 : speed dependency	-1.78E-05
RroulV2 : square speed dependency	3.85E-07
RroulGamma1 : camber dependency	-2.73E-05
RroulGamma2 : square camber dependency	-6.22E-05
ReO	0.3507
ReP	4.54E-04

Pressure [bar]	2.0
Fz [N]	8000.0
Camber gamma [deg]	-3.0
SlipAngle [deg]	0.0000
V [m/s]	83.3

Kzz (N/m)	387649
fleche (m) = Fz / Kzz (droop)	0.0206
Rolling radius - Rroul [m]	0.3487

Please find in the file "20210305_RollingRadius_297R_348R.xlsx" an excel sheet to calculate tyre rolling radius with the coefficients above.

1.4 Cornering Stiffness

The critical difference is about $\pm 1.5\%$ on Cornering Stiffness at 5000N. The results shown are based on flattrack machine testing.

	Cornering Stiffness [N/°]
Vertical Load [N]	348R
2500	-1913.3
5000	-3573.7
7500	-4643.5

348R:

1.5 Lateral Rigidity

The results shown below are based on flattrack machine testing.

Lateral Rigidity [N/mm]		
Fz=5000N / carro / pression	348R	
Fz=5000N / 0° / 1b7	298.3	
Fz=5000N / 0° / 1b9	314.8	
Fz=5000N / -3° / 1b7	241.7	
Fz=5000N / -3° / 1b9	271	

<u> 348R :</u>

