Rattrapage Session d'Automne : Analyse Réelle, 2 heures

N.B.: Il sera tenu compte de la rédaction, la justification de réponses et la clarté de l'écriture.

Exercice 1 (6 points)

On considère les fonctions données par $ch(x) = \frac{e^x + e^{-x}}{2}$, $sh(x) = \frac{e^x - e^{-x}}{2}$ et $h(x) = \frac{sh(x)}{ch(x)}$

- Qu'appelle-t-on les fonctions ch, sh et h?
- 2. Donner l'expression explicite de la fonction h, puis étudier la parité de h sur son domaine de définition \mathcal{D}_h qu'on déterminera.
- 3. Montrer que h est dérivable, puis montrer que $h'(x) = \frac{1}{\operatorname{ch}^2(x)}$ pour tout $x \in \mathcal{D}_h$.
- 4. Étudier la fonction h; calculer $\lim_{x\to +\infty} h(x)$ et $\lim_{x\to -\infty} h(x)$; puis déduire la monotonie de la fonction h.
 - 5. Montrer que h est bijective. Montrer que $h(x) = \frac{e^{2x} 1}{e^{2x} + 1}$ pour tout $x \in \mathcal{D}_h$.
 - 6. Déterminer la fonction h^{-1} et son domaine de définition $\mathcal{D}_{h^{-1}}$. Calculer l'expression $(h^{-1})'(x)$ pour tout $x \in \mathcal{D}_{h^{-1}}$. Qu'appelle-t-on la fonction h^{-1} ?

Exercice 2 (5 points)

Soit f une fonction définie au voisinage de $x_0 \in \mathbb{R}$. On dit que f admet une dérivée symétique en x_0 si et seulement si la limite suivante existe

$$f'_s(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

c'est à dire que $f'_s(x_0) \in \mathbb{R}$.

- 1. Montrer que si f est dérivable en x_0 , alors on a : $f'_s(x_0) = f'(x_0)$.
- 2. On rappelle que la dérivée à droite $f_d'(x_0)$ (resp. la dérivée à gauche $f_g'(x_0)$) en x_0 sont

$$f'_d(x_0) = \lim_{\substack{h \to 0 \\ h > 0}} \frac{f(x_0 + h) - f(x_0)}{h} \quad \left(\text{resp.} \quad f'_g(x_0) = \lim_{\substack{h \to 0 \\ h < 0}} \frac{f(x_0 + h) - f(x_0)}{h}\right)$$

Montrer que si $f'_d(x_0)$ et $f'_g(x_0)$ existent, alors $f'_s(x_0) = \frac{1}{2} \left(f'_d(x_0) + f'_g(x_0) \right)$

- 3. Soit f la fonction définie par $f(x) = x \sin\left(\frac{1}{x}\right)$ si $x \neq 0$ et f(0) = 0. Montrer que $f'_s(0)$ existe qu'on déterminera; alors que $f'_d(0)$ et $f'_g(0)$ n'existent pas.
- 4. Que peut-on dire du signe de $f'_s(x_0)$ si $x_0 \in]a, b[$ et si f est croissante sur]a, b[?

Exercice 3 (5 points)

1. Soit ϕ la fonction définie par $\phi(t) = \frac{t^2}{e^t - 1}$ si $t \in \mathbb{R}^*$ et $\phi(0) = 0$.

- (a) Déterminer le développement de Taylor de la fonction ϕ à l'ordre 2 au voisinage de 0.
- (b) En déduire le développement de Taylor de la fonction $f(x) = \int_0^x \phi(t) dt$ à l'ordre 3 au voisinage de 0
- (c) En déduire une courbe tangente à C_f au voisinage de 0.
- 2. En utilisant le développement limité de Taylor, déterminer la limite suivante

$$\lim_{x \to 0} \frac{e^x - \sqrt{1 + 2x}}{x^2}.$$

Exercice 4 (4 points)

On considère la suite de fonctions f_n définie de [0,1] dans $\mathbb R$ par :

$$f_n(x) = \frac{1 - x^n}{1 + x^{2n}} \quad \forall n \in \mathbb{N}^*$$

- 1. Quel est le domaine de définition de f_n ? Les fonctions f_n sont-elles continues?.
- 2. Montrer que la suite (f_n) converge vers une fonction f que l'on déterminera.
- 3. La fonction f est-elle continue? La convergence est-elle uniforme?