EconoMetrics: Banking ER Analytics

Sanjukta Baruah
School of Engg. and Applied Sciences
Data Science
Buffalo, United States
sanjuktabaruah5@gmail.com

Abstract—The banking sector continuously seeks innovative strategies to enhance customer relationship management, transaction security, performance evaluation, and strategic planning. This project identifies seven critical business propositions addressable through Structured Query Language (SQL) including customer management, transaction monitoring, performance analysis, and compliance reporting. By developing an Entity-Relationship (ER) diagram and ensuring data integrity through Boyce-Codd Normal Form (BCNF), the study utilizes a hybrid data curation method. This combines synthetic data generation with the Faker library and the integration of authentic statewise data to simulate realistic scenarios. The creation of PostgreSQL tables and subsequent data importation via SQL Alchemy sets the stage for comprehensive data analysis aimed at solving these business proposals.

I. PROBLEM STATEMENT

The banking industry faces numerous challenges ranging from customer relationship management to compliance reporting and risk assessment. Addressing these challenges requires efficient data management and analysis tools. However, existing solutions often lack the flexibility and comprehensiveness needed to tackle diverse business requirements effectively. Hence, there is a need for an integrated analytics system capable of providing insights into various banking functions while ensuring data accuracy, compliance, and usability. This project aims to develop such a system, leveraging SQL-based analytics techniques to address critical banking challenges and enhance operational efficiency and decision-making processes within the banking sector.

II. DATA GENERATION AND EXPANSION FOR ENHANCED QUERY INTERPRETABILITY AND OPTIMIZATION

Data curation was approached using a hybrid method involving the generation of synthetic data through Faker library and incorporation of real-world data obtained from credible sources, maintaining the authenticity of crucial attributes.

A. Synthetic Data Generation with Faker

Utilized the Faker library to generate synthetic data for the "df_customer" dataframe. For instance, attributes such as "first_name," "last_name," "dob" (date of birth), and "gender" were populated with realistic data to simulate customer profiles.

B. Skewed Distribution Implementation

Implemented skewed distributions in certain dataframes to reflect real-world scenarios. In the "df_transaction" dataframe, transactions typically falling within the range of 1 to 700 dollars were simulated using random.beta, ensuring a skewed distribution that aligns with common transaction patterns. Similarly, in the "df_card" dataframe, the attribute "is_blocked" was skewed to predominantly represent unblocked cards, mimicking the usual scenario where the majority of cards are functional with only a few being blocked.

C. Integration of Authentic Statewise Data

Integrated actual datasets sourced from internet(link) about diverse states into the "df_statewise" dataframe. This dataframe aggregates information from consolidated CSV files containing crucial real-world data from various states. Attributes such as "state_name" and relevant data pertaining to demographics, financial indicators, or other pertinent information were included to facilitate comprehensive analysis and decision-making processes.

The next step involved the creation of tables in PostgreSQL using SQL queries. Subsequently, the data from the prepared dataframes was successfully imported into these tables utilizing SQL Alchemy.

III. QUERIES TO SOLVE THE BUSINESS PROBLEMS

A. Customer Relation Management

```
ROUND (AVG (a.bank_balance), 2) AS avg_bank_balance,
c.occupation,
s."employment_rate(%)" AS "state's_emp_rate",
s."literacy_rate(%)" AS "state's_literacy_rate",
s.branches_per_100000_residents,
s.state,
CASE
      WHEN s."children_0_to_18(%)" = GREATEST
      (s."children_0_to_18(%)",
      s."adults_19_to_25(%)",
      s."adults_26_to_34(%)",
      s."adults_35_to_54(%)",
      s."adults_55_to_64(%)",
      s."65+(%)")
          THEN 'Children 0-18'
      WHEN s."adults_19_to_25(%)"
                                   = GREATEST
      (s."children_0_to_18(%)",
      s."adults_19_to_25(%)",
      s."adults_26_to_34(%)",
      s."adults_35_to_54(%)",
      s."adults_55_to_64(%)",
      s."65+(%)")
          THEN 'Adults 19-25'
      WHEN s."adults_26_to_34(%)" = GREATEST
      (s."children_0_to_18(%)",
```

```
s."adults_19_to_25(%)",
        s."adults_26_to_34(%)",
        s."adults_35_to_54(%)",
        s."adults_55_to_64(%)",
        s."65+(%)")
            THEN 'Adults 26-34'
        WHEN s."adults_35_to_54(%)" = GREATEST
        (s."children_0_to_18(%)",
        s."adults_19_to_25(%)",
        s."adults_26_to_34(%)",
        s."adults_35_to_54(%)",
        s."adults_55_to_64(%)",
        s."65+(%)")
            THEN 'Adults 35-54'
        WHEN s."adults_55_to_64(%)" = GREATEST
        (s."children_0_to_18(%)",
        s."adults_19_to_25(%)",
        s."adults_26_to_34(%)"
        s."adults_35_to_54(%)",
        s."65+(%)")
            THEN 'Adults 55-64'
        ELSE '65+'
    END AS max_age_group
FROM account a
INNER JOIN customer c ON a.customer_id = c.customer_id
INNER JOIN branch b ON c.branch_id = b.branch_id
INNER JOIN statewise s ON b.state = s.state
GROUP BY c.occupation,
s."employment_rate(%)"
s."literacy_rate(%)",
s.branches_per_100000_residents,
s."children_0_to_18(%)",
    s."adults_19_to_25(%)"
    s."adults_26_to_34(%)",
    s."adults_35_to_54(%)"
    s."adults_55_to_64(%)",
    s."65+(%)",s.state
ORDER BY avg_bank_balance DESC
LIMIT 10;
```

	avg_bank_balance numeric	occupation character varying	state's_emp_rate anumeric	state's_literacy_rate numeric	branches_per_100000_residents a numeric	state character varying &	max_age_group &
1	17049.33	Engineer, electronics	0.574	0.824	19.3	Michigan	Adults 35-54
2	16836.38	Aid worker	0.574	0.824	19.3	Michigan	Adults 35-54
3	16437.89	Electronics engineer	0.63	0.8	19.1	Maryland	Adults 35-54
4	16429.19	Press photographer	0.574	0.824	19.3	Michigan	Adults 35-54
5	16400.27	Therapist, speech and language	0.574	0.824	19.3	Michigan	Adults 35-54
6	16317.01	Nutritional therapist	0.574	0.824	19.3	Michigan	Adults 35-54
7	16311.45	Air broker	0.63	0.8	19.1	Maryland	Adults 35-54
8	16241.51	Physiological scientist	0.574	0.824	19.3	Michigan	Adults 35-54
9	16204.07	Runner, broadcasting/film/video	0.63	0.8	19.1	Maryland	Adults 35-54
10	16161.89	Conservation officer, historic buildings	0.574	0.824	19.3	Michigan	Adults 35-54

Fig. 1. Customer Relationship Mgmt

This table provides valuable insights into how different occupations might correlate with average bank balances, and how these figures interact with broader socioeconomic indicators at the state level.

Analytical insights:

1) Occupation and Bank Balance Correlation

 Financial Behavior Analysis: By examining the link between occupations and average bank balances, banks can analyze financial behaviors specific to different professions, identifying trends and opportunities for targeted product offerings.

2) State Demographic Insights

• Economic Health Assessment: Through state data on employment and literacy rates, banks can assess the economic health of different regions, analyzing how it affects banking needs and access to inform strategic decisions on service provision.

3) Age Demographic Financial Tailoring

• Life Stage Financial Planning: By knowing the main age demographic, banks can analyze the financial needs at different life stages, allowing them to develop age-specific products and advisory services that align with their customers' life milestones.

4) Strategy Goals

- Service Customization Analysis: Banks can utilize customer data to analyze and identify opportunities for service customization, ensuring that each customer receives a personalized banking experience that meets their unique financial needs.
- Financial Literacy Initiatives Analysis: The impact of financial education on customer behavior and satisfaction can be analyzed to tailor financial literacy initiatives effectively, ensuring they are relevant and beneficial to the targeted demographic.
- Branch Network Optimization Analysis: An analysis of the distribution of bank branches relative
 to population demographics can inform an optimization strategy for branch locations, enhancing
 physical accessibility and customer convenience.
- Customer Engagement and Wellbeing Analysis:

 By integrating all these data points, banks can
 analyze the drivers of customer engagement and
 financial wellbeing to refine CRM strategies and
 ensure they are creating value for customers and
 the bank.

B. Risk Assessment Management

```
c.customer id,
    c.first_name | | ' ' | | c.last_name as full_name,
    a.account id.
    1.loan id,
    (lt.base_amount - l.amount_paid) as due_amount,
    lt.loan type
FROM
    customer c
JOIN
   account a ON c.customer_id = a.customer_id
JOIN
    loan 1 ON a.account_id = 1.account_id
JOIN
   loan_type lt ON 1.loan_type_id = lt.loan_type_id
WHERE
    EXTRACT (YEAR FROM AGE (c. date of birth)) > 65
    AND l.due date BETWEEN CURRENT DATE
    AND CURRENT DATE + INTERVAL '10 years'
   AND (lt.base_amount - l.amount_paid) > (a.bank_balance / 2)
ORDER BY
    due_amount DESC
LIMIT 10;
```

This table(Fig 2) provides valuable insights into how different occupations might correlate with average bank balances, and how these figures interact with broader socioeconomic indicators at the state level.

Analytical insights

1) Occupation and Bank Balance Correlation

 Financial Behavior Analysis: By examining the link between occupations and average bank balances, banks can analyze financial behaviors specific to different professions, identifying trends and opportunities for targeted product offerings.

	customer_id integer	full_name text	account_id integer	loan_id integer	due_amount numeric	loan_type character varying (255)
1	18676	Cody Pearson	25640	22661	49548.62	Small Business
2	28698	Angela Shaw	7057	5528	49168.66	Personal
3	22319	Jeffrey Wise	4280	21842	48979.82	Small Business
4	14545	Kelly Hardin	19553	14610	48582.72	Small Business
5	9346	Travis Strickland	8267	29127	48562.48	Personal
6	3286	Brian Morales	10607	1162	47971.92	Personal
7	6995	Jason Jones	27782	18547	47935.35	Small Business
8	24706	Scott Conway	20243	25041	47779.71	Personal
9	15773	Rachel Smith	22769	26443	47681.13	Small Business
10	8310	David Davis	12455	11533	47515.58	Personal

Fig. 2. Risk Assessment

2) State Demographic Insights

• Economic Health Assessment: Through state data on employment and literacy rates, banks can assess the economic health of different regions, analyzing how it affects banking needs and access to inform strategic decisions on service provision.

3) Age Demographic Financial Tailoring

• Life Stage Financial Planning: By knowing the main age demographic, banks can analyze the financial needs at different life stages, allowing them to develop age-specific products and advisory services that align with their customers' life milestones.

4) Strategy Goals

- Service Customization Analysis: Banks can utilize customer data to analyze and identify opportunities for service customization, ensuring that each customer receives a personalized banking experience that meets their unique financial needs.
- Financial Literacy Initiatives Analysis: The impact of financial education on customer behavior and satisfaction can be analyzed to tailor financial literacy initiatives effectively, ensuring they are relevant and beneficial to the targeted demographic.
- Branch Network Optimization Analysis: An analysis of the distribution of bank branches relative to population demographics can inform an optimization strategy for branch locations, enhancing physical accessibility and customer convenience.
- Customer Engagement and Wellbeing Analysis:
 By integrating all these data points, banks can
 analyze the drivers of customer engagement and
 financial wellbeing to refine CRM strategies and
 ensure they are creating value for customers and
 the bank.

C. Transaction Tracking and Fraud Detection

```
SELECT
    t.account_id,
    COUNT(*) as transaction_count,
    SUM(t.transaction_amount) as total_amount,
    a.acc_start_date,
    COUNT(*) / (date_part('day',
    age(CURRENT_DATE, a.acc_start_date)) + 1)
    as avg_transactions_per_day
FROM
    transaction t
```

JOIN
account a ON t.account_id = a.account_id
GROUP BY
<pre>t.account_id, a.acc_start_date</pre>
HAVING
COUNT(*) / (date_part('day',
age(CURRENT_DATE, a.acc_start_date)) + 1) > 0.26
ORDER BY avg_transactions_per_day DESC;

	account_id integer	transaction_count bigint	total_amount numeric	acc_start_date date	avg_transactions_per_day double precision
1	5629	5	2535.05	2013-09-23	5
2	20709	5	2725.12	2013-07-23	5
3	5739	5	2464.99	2013-08-23	5
4	24327	5	2706.61	2013-07-23	5
5	24256	5	2222.78	2013-02-23	5
6	1852	4	1657.20	2013-02-23	4
7	2338	4	2221.90	2013-05-23	4
8	14634	4	1845.74	2014-01-23	4
9	8043	4	1681.14	2014-01-23	4
10	19995	4	2073.65	2013-09-23	4

Fig. 3. Transaction tracking and Fraud Detection

The table displays a bank's loan account data, including customer IDs, names, loan details, and due amounts, categorized by personal and small business loans, useful for analyzing transaction patterns and detecting fraud.

Analytical insights:

1) Transaction Activity Analysis:

• By comparing the daily transactions of each account against the national average transaction rate (0.26 transactions per person per day), we can pinpoint accounts with higher-than-average activity. Accounts that consistently exceed this benchmark could be flagged for further investigation.

2) Temporal Analysis:

 We can enhance our scrutiny by taking into account the length of time each account has been open, using the acc_start_date field. By calculating the average number of transactions per day since each account's inception, we can identify any accounts that show an unusual increase in activity over time or right from the start, which might suggest fraudulent behavior.

3) Pattern Recognition:

 Beyond the frequency of transactions, analyzing the type, timing, and amounts can also reveal patterns indicative of fraud. Unusual patterns, such as high-value transactions occurring at odd hours, or transactions that do not fit the typical profile of the account holder based on their loan type (e.g., Personal vs. Small Business), could warrant a closer look.

D. Branch Performance

```
SELECT b.branch_id, b.name, SUM(a.bank_balance) as total_balance
FROM customer c
JOIN branch b ON b.branch_id = c.branch_id
JOIN account a ON a.customer_id = a.customer_id
GROUP BY b.branch_id, b.name
ORDER BY total_balance
```

	branch_id [PK] integer	name character varying (255)	total_balance numeric
1	2269	Jenkins Inc Bank Branch	386270207.07
2	3496	Becker, White and Lopez Bank Branch	386270207.07
3	3494	Lewis, Jones and Burke Bank Branch	386270207.07
4	3488	Thompson PLC Bank Branch	386270207.07
5	3483	Meyer-Martinez Bank Branch	386270207.07
6	3480	Golden-Graham Bank Branch	386270207.07
7	3477	Young-Brown Bank Branch	386270207.07
8	3476	Mccormick-Turner Bank Branch	386270207.07
9	3475	Jackson and Sons Bank Branch	386270207.07
10	3473	Whitehead, Jones and Wilson Bank Branch	386270207.07

Fig. 4. Account Management

"The bank contains various bank branches with their corresponding identifiers and total balances."

Analytical insights:

1) Total Balance Analysis:

• The total balance column in the table gives an indication of the amount of money deposited at each branch. A higher total balance could suggest that a branch is doing well in terms of attracting deposits, which is often a sign of good performance.

E. Strategic Planning and Analysis

SELECT state, "literacy_rate(%)", bank_branches_in_2023
FROM statewise
ORDER BY "literacy_rate(%)" DESC
LIMIT 10;

	state [PK] character varying	literacy_rate(%) numeric	bank_branches_in_2023 integer
1	New Hampshire	0.885	381
2	Alaska	0.873	112
3	Vermont	0.872	222
4	Montana	0.869	354
5	Minnesota	0.869	1547
6	North Dakota	0.866	394
7	Maine	0.866	432
8	Wyoming	0.864	206
9	Utah	0.855	503
10	South Dakota	0.851	430

Fig. 5. Strategic Planning and Assessment

The table contains demographic and economic data, which could be used for strategic planning, such as where to open new branches or which services to focus on in certain regions. **Analytical insights:**

1) Branch Efficiency:

Evaluating the effectiveness of each branch in attracting and managing deposits, as a uniform total balance may indicate operational anomalies or data inconsistencies.

2) Strategic Planning:

 Identifying opportunities for growth and resource allocation to optimize network performance and customer reach.

3) Market Understanding:

 Gaining insights into market conditions and customer preferences, which can guide decisions on service improvements and expansion.

F. Compliance and Reporting

SELECT a.account_id, t.transaction_amount, t.date
FROM account a
JOIN transaction t ON a.account_id = t.account_id
WHERE t.transaction_amount > (SELECT MAX(transaction_amount) * 0.80 FROM

	account_id integer	transaction_amount numeric (10,2)	date date
1	11482	567.74	2020-09-09
2	20860	654.31	2020-03-24
3	5853	602.00	2019-10-22
4	6079	676.11	2016-04-05
5	16396	657.40	2022-03-31
6	19766	606.55	2021-04-10
7	6638	641.66	2015-11-09
8	4840	600.20	2020-09-30
9	25726	658.08	2019-10-29
10	22563	589.45	2023-10-21

Fig. 6. Compliance and Reporting

The table displayed appears to list individual financial transactions, capturing the account ID, the amount of the transaction, and the date it occurred.

Analytical insights

1) Transaction Trends Analysis:

 By examining the transaction amounts and dates, we can identify patterns over time, such as peak transaction periods or changes in transaction values.
 Based on this observation, the bank can decide the release of different products or offers to attract customers.

2) Audit Compliance:

 We can generate reports that isolate transactions exceeding certain thresholds, such as 80% of the maximum transaction value, to comply with internal audits and regulatory requirements. Such reports can also be crucial in detecting outliers or unusual transactions that may warrant further investigation for error or fraud detection.

IV. KEY LEARNINGS FROM SQL IMPLEMENTATION IN BUSINESS SOLUTIONS

1) Adaptation to Database-Specific Functions:

Learning: Adapting to different database environments requires familiarity with compatible functions. While certain functions like DATE-FROMPARTS and DATEDIFF are commonly used in SQL Server, PostgreSQL may require alternative functions such as AGE and NOW. This experience highlights the importance of understanding database-specific functionalities and adapting queries accordingly to ensure compatibility and achieve desired results.

2) Syntax Compatibility in Query Construction:

• Learning: Constructing SQL queries involves attention to syntax nuances specific to the database platform being used. During query construction, issues such as mismatched column projections in subqueries may arise, necessitating iterative refinement of SQL statements. This underscores the significance of thorough syntax understanding and meticulous query construction to avoid errors and ensure query effectiveness across different database environments.

3) Comprehensive Project Execution:

Learning: The project's success relied on a comprehensive approach encompassing various stages from proposal identification to data curation, SQL query formulation, and troubleshooting. This experience emphasizes the importance of a structured project workflow, encompassing diverse tasks and meticulous execution to effectively utilize SQL in addressing multifaceted business challenges.

REFERENCES

- [1] https://www.geeksforgeeks.org/python-pandas-working-with-dates-and-times/.
- [2] https://www.geeksforgeeks.org/python-faker-library/
- [3] https://www.geeksforgeeks.org/types-of-keys-in-relational-model-candidate-super-primary-alternate-and-foreign/
- [4] https://www.holistics.io/blog/top-5-free-database-diagram-design-tools/
- [5] https://app.diagrams.net/