GR3115 半桥栅极驱动系列

■ 产品简介

GR3115是一款高性价比的半桥栅极驱动专用芯片,设计用于高压、高速驱动N型大功率 MOS管、IGBT管。内置欠压(UVLO)保护功能,防止功率管在过低的电压下工作,提高效率。内置防止直通功能和死区时间,防止功率管发生直通,有效保护功率器件。广泛应用于无刷电机的控制器电路中。

■ 产品特点

- 悬浮绝对电压+200V
- 高端输出与高端输入同相
- 3.3V/5V输入逻辑兼容

- VCC欠压保护(UVLO)
- 低端输出与低端输入反相
- 封装形式: SOP8

■ 产品用途

● 电机驱动

● DC-DC 转换器

■ 封装形式和管脚功能定义

管脚序号	管脚定义	功能说明		
1	VCC	低侧供电电压		
2	HIN	高侧输入		
3	LIN	低侧输入		
4	GND	接地		
5	LO	低侧输出		
6	VS	高侧悬浮地		
7	НО	高侧输出		
8	VB 高侧悬浮绝对电压			

■ 极限参数

项目		符号	极限值	单位
高侧悬浮绝对电压		VB	−0. 3~205	V
高侧悬	浮地电压	VS	VB−25∼VB+0. 3	V
高侧轴	输出电压	VHO	VS−0. 3∼VB+0. 3	V
低侧供电电压		VCC	−0. 3~25	V
低侧输出电压		VLO	-0.3∼VCC+0.3	V
逻辑输入电压(HIN, LIN)		VIN	-0.3∼VCC+0.3	V
耗散功率 SOP8、SOIC8		PD	≤0.625	W
工作温度		T_A	0-70	$^{\circ}$
存储温度		Ts	−55~150	$^{\circ}$ C
焊接温度		T_{w}	260, 10s	$^{\circ}\mathbb{C}$

注:极限参数是指无论在任何条件下都不能超过的极限值。如果超过此极限值,将有可能造成产品劣化等物理性损伤; 同时在接近极限参数下,不能保证芯片可以正常工作。

■ 推荐工作条件

参数名称	符号	最小值	最大值	单位
高侧悬浮绝对电压	VB	Vs+10	Vs+20	V
高侧悬浮地电压	Vs	-5	180	V
高侧输出电压	Vно	Vs	V _B	V
低侧供电电压	Vcc	10	20	V
低侧输出电压	VLO	0	Vcc	V
逻辑输入电压	Vin	0	Vcc	V
工作温度	TA	0	60	$^{\circ}$ C

■电学特性参数 (TA =25°C, VCC=VB=15V, VS=GND, 除特别注明外。)

项目	符号	测试条件	最小值	典型值	最大值	单位
高电平输入阈值电压	ViH		2.7			V
低电平输入阈值电压	VIL				0.8	٧
Vcc 欠压保护跳闸电压	Vccuv+			9.3	9.8	٧
Vcc 欠压保护复位电压	Vccuv-		7.3	8.8		٧
Vcc 欠压保护迟滞电压	Vссиvн			0.5		٧
悬浮电源漏电流	Ilk	V _B =V _S =180V		0.1	5.0	μΑ
V _{BS} 静态电流	IQBS	V⋈=0V 或 5V			200	μΑ
Vcc 静态电流	IQCCL	Vin =0V		90	600	uA
Vcc 静态电流	Ідссн	VIN = 5V		170	600	uA
LIN高电平输入偏置电流	ILIN+	VLIN=0V		30	120	μΑ
LIN低电平输入偏置电流	ILIN-	VLIN=5V			2	μΑ
HIN高电平输入偏置电流	I _{HIN+}	VHIN=5V		20	120	μΑ
HIN低电平输入偏置电流	IHIN-	V _{HIN} =0V			2	μΑ
输出高电平电压	Vон	Io=20mA		0.2	0.3	V
输出低电平电压	Vol	Io=20mA		0.06	0.2	V
Vs 静态负压	Vsn			-6.0		V

■交流开关特性 (T_A=25℃, VCC=VB=15V, VS=GND 除非特别指定, 见测试方法)

项目	符号	测试条件	最小值	典型值	最大值	单位
输出开延时	$t_{\rm on}$	CL=1nF		300		ns
输出关延时	$t_{ m off}$	CL=1nF		130		ns
输出上升时间	tr	CL=1nF		10		ns
输出下降时间	tf	CL=1nF		10		ns
死区时间	DT			280		ns

■ 原理框图

■ 逻辑真值表

输入	信号	输出		
HIN LIN		НО	LO	
0	0	0	1	
0	1	0	0	
1	0	0	0	
1	1	1	0	

■ 逻辑输入输出波形示意图

■ 时间测试方法

1、开关特性波形示意图

2、死区时间测试

■ 典型应用电路

C1: 电源滤波电容,根据电路情况可选择 1µF~100µF,尽可能的靠近芯片管脚。

R1 R2: 栅极驱动电阻,阻值根据被驱动器件而定。

D3: 自举二极管,应选择高反向击穿电压的肖特基二极管。

C2: 自举电容,应选择陶瓷电容或钽电容,根据电路情况可选择 1μF~50μF,电容应尽可能的靠近芯片管脚。

VCC: 建议接 12~15V 低压电源。

HIN、LIN:接逻辑控制信号。

NMOS 管:依据应用选择相应耐高压的功率器件。

注:以上线路及参数仅供参考,实际的应用电路根据实测结果设定参数。

■ 封装信息

SOP8

Symbol	Dimer	Dimensions In Millmeters			Dimensions In Inches		
	Min	Nom	Max	Min	Nom	Max	
Α	1.30	1.50	1.70	0.051	0.059	0.067	
A1	0.06	0.16	0.26	0.002	0.006	0.010	
b	0.30	0.40	0.55	0.012	0.016	0.022	
С	0.15	0.25	0.35	0.006	0.010	0.014	
D	4.72	4.92	5.12	0.186	0.194	0.202	
E	3.75	3.95	4.15	0.148	0.156	0.163	
е	_	1.27	_		0.050	_	
Н	5.70	6.00	6.30	0.224	0.236	0.248	
L	0.45	0.65	0.85	0.018	0.026	0.033	
θ	0.	_	8°	0.		8°	