POISSON PROCESSES AND 911 CALLS

Jacob Mortensen Advisor: Dr. Matt Heaton

March 21, 2015

Brigham Young University

INTRODUCTION

INTRODUCTION

INTRODUCTION

Data: 1389 heat-related 911 calls, 2006-2010

How many 911 calls will come in and where they will come from?

Spatial data is:

- · nonlinear
- · highly correlated

so how do we model it?

MODEL

We use a Poisson point process model

- · $N \sim Pois(\int_{S} \Lambda(s))$
- $f(s_1, s_2, \dots, s_N | N) = \prod_{i=1}^N \frac{\Lambda(s_i)}{\int_S \Lambda(s)}$
- \cdot $\Lambda(s)$ is the intensity function
- $s_1, s_2, ..., s_N$ where N = 1389 are the latitude-longitude coordinates of the observed 911 calls
- \cdot ${\cal S}$ is the set of all latitude-longitude coordinates in Houston

We use a Poisson point process model

- · $N \sim Pois(\int_{S} \Lambda(s))$
- $f(s_1, s_2, \dots, s_N | N) = \prod_{i=1}^N \frac{\Lambda(s_i)}{\int_S \Lambda(s)}$
- \cdot $\Lambda(s)$ is the intensity function
- $s_1, s_2, ..., s_N$ where N = 1389 are the latitude-longitude coordinates of the observed 911 calls
- \cdot ${\cal S}$ is the set of all latitude-longitude coordinates in Houston

$\Lambda(s)$ is the key!

MODEL

It can be shown the likelihood is:

$$L(\Lambda(s)) = \exp\left(-\int_{\mathcal{S}} \Lambda(s)\right) \prod_{i=1}^{N} \Lambda(s_i)$$

- \cdot To simplify we are going to divide ${\mathcal S}$ into a grid
- · $s_1^*, s_2^*, \dots, s_K^*$ where K = 1428 are the latitude-longitude coordinates of the prediction locations
- · This allows us to discretize $\Lambda(s)$ to make modeling easier:

$$\Lambda(\mathsf{s}) = \delta \sum_{k=1}^K \frac{\lambda_k}{|\mathcal{G}_k|} \mathbb{1} \left\{ \mathsf{s} \in \mathcal{G}_k \right\}$$

where $\lambda_k \in (0,1)$ and $\sum_{k=1}^K \lambda_k = 1$

$$\Lambda(\mathbf{s}) = \delta \sum_{k=1}^{K} rac{\lambda_k}{|\mathcal{G}_k|} \mathbb{1} \left\{ \mathbf{s} \in \mathcal{G}_k \right\}$$

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

$$\Lambda(\mathbf{s}) = \delta \sum_{k=1}^{K} rac{\lambda_k}{|\mathcal{G}_k|} \mathbb{1} \left\{ \mathbf{s} \in \mathcal{G}_k \right\}$$

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

$$\Lambda(\mathbf{s}) = \delta \sum_{k=1}^{K} rac{\lambda_k}{|\mathcal{G}_k|} \mathbb{1} \left\{ \mathbf{s} \in \mathcal{G}_k \right\}$$

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

With

$$\Lambda(\mathsf{s}) = \delta \sum_{k=1}^K \frac{\lambda_k}{|\mathcal{G}_k|} \mathbb{1} \left\{ \mathsf{s} \in \mathcal{G}_k \right\}$$

the likelihood can be rewritten as

$$L(\Lambda(s)) = \exp(-\delta) \, \delta^{N} \prod_{i=1}^{N} \frac{\lambda_{\{k: s_{i} \in \mathcal{G}_{k}\}}}{|\mathcal{G}_{k}|}$$
$$= \exp(-\delta) \, \delta^{N} \prod_{i=1}^{K} \frac{\lambda_{k}^{N_{k}}}{|\mathcal{G}_{k}|}$$

 $\delta \sim$ gamma(0.001, 0.001), conjugate

How can we use the spatial smoothness in $\Lambda(s)$ to estimate $\lambda_1, \ldots, \lambda_k$?

How can we use the spatial smoothness in $\Lambda(s)$ to estimate $\lambda_1, \ldots, \lambda_k$?

We use a Gaussian process:

· Let
$$\lambda_k \propto \exp(\lambda_k^*)$$

Let
$$m{\lambda}^* = egin{pmatrix} \lambda_1^* \ dots \ \lambda_k^* \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{M}_
u(D|\phi))$$

· Then it follows that
$$\lambda_k = rac{\exp(\lambda_k^*)}{\sum_{j=1}^K \exp(\lambda_j^*)}$$

With
$$\lambda^* \sim \mathcal{N}(0, \sigma^2 \mathbf{M})$$
,

$$\pi(\boldsymbol{\lambda}^*)L(\boldsymbol{\lambda}^*|N) \propto \exp\left(-\frac{1}{2\sigma^2}(\boldsymbol{\lambda}^*)^{'}\mathbf{M}^{-1}(\boldsymbol{\lambda}^*)\right)\prod_{k=1}^K\left(\frac{\exp(\lambda_k^*)}{\sum_{j=1}^K\exp(\lambda_j^*)}\right)^{N_k}$$

Using a Metropolis within Gibbs sampler, we generate 100,000 draws for δ and $\pmb{\lambda}^*$

Trace for δ

Trace for λ_{707}

RESULTS

RESULTS

Posterior Density of δ

Posterior Mean: 1387.65

RESULTS

Posterior Density of ${oldsymbol{\lambda}}$

Successfully answered the questions:

- · How many calls?
- · Where are they at?

Successfully answered the questions:

- · How many calls?
- · Where are they at?

So what?

Next steps:

- · Add in a lagged effect for temperature
- · Analyze demographics (e.g. age, race, etc.)
- · Merge 911 call map with a similar map for heat-related mortalities

QUESTIONS?