ELETRÔNICA BÁSICA I – ELE08497 - LABORATÓRIO 7 TRANSISTOR DE EFEITO DE CAMPO DE METAL ÓXIDO – CURVAS CARACTERÍSTICAS

1- OBJETIVO

Verificar o funcionamento de um transistor de efeito de campo de metal óxido (MOSFET) e levantar suas curvas características.

2- INTRODUÇÃO TEÓRICA

Os transistores MOSFET também são denominados de transistores FET de "Gate" isolada (IGJET). Da mesma forma que os transistores de efeito de campo de junção (JFET) os MOSFETs também podem ser de canal N ou de canal P. Adicionalmente, a forma como o processo de modulação do canal de faz pela tensão entre gate e fonte (VGS) os MOSFETS podem ser do tipo FORTALECIMENTO e DEPLEÇÃO/FORTALECIENTO. A diferença básica entre os dois está na pré-existência ou não do canal.

No MOSFET tipo fortalecimento o canal não existe inicialmente. Quando aplicamos uma tensão de entrada conhecida como tensão de threshold, um canal é criado entre a FONTE e DRENO. O estado padrão é DESLIGADO, ou seja, nenhuma corrente flui no canal se não se aplica tensão entre GATE e FONTE. Já no MOSFET tipo depleção/fortalecimento o canal já existe. Temos que aplicar uma tensão entre GATE e FONTE para estreitar/alargar o canal, de modo a diminuir/aumentar a corrente entre FONTE e DRENO. O estado padrão é LIGADO, ou seja, a corrente flui mesmo sem aplicar tensão entre GATE e FONTE.

As figuras abaixo mostram a configuração e exemplos de curvas características de MOSFETs dos tipos fortalecimento, identificado como E-MOSFET e depleção/fortalecimento, identificado como DE-MOSFET, todos com canal N.

E = Enhancement = Fortalecimento

D = Depleção

3- PARTE EXPERIMENTAL

O transistor MOSFET a ser empregado neste experimento é o 2N7000 que é um E- MOSFET e cujas características são dadas abaixo.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	2N7000	2N7002	NDS7002A	Units	
V _{DSS}	Drain-Source Voltage	60		V		
V _{DGR}	Drain-Gate Voltage ($R_{GS} \le 1 M\Omega$)	60		V		
V _{GSS}	Gate-Source Voltage - Continuous	±20			V	
	- Non Repetitive (tp < 50μs)	±40				
I _D	Maximum Drain Current - Continuous	200	115	280	mA	
	- Pulsed	500	800	1500		
P _D	Maximum Power Dissipation	400	200	300	mW	
	Derated above 25°C	3.2	1.6	2.4	mW/°C	
Т _Ј ,Т _{втв}	Operating and Storage Temperature Range	-55 to 150 -65 to		-65 to 150	°C	
T _L	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300			°C	
THERMA	L CHARACTERISTICS	•			•	
R _{OJA}	Thermal Resistance, Junction-to-Ambient	312.5	625	417	°C/W	

3.1- Característica de Saída e de Transferência

3.1.1- Monte o circuito abaixo.

- 3.1.2- Ajuste o limite de corrente da fonte V_{DD} para 300 mA e a tensão inicial em 0 V_{CC} . Ajuste o limite de corrente da fonte V_{GG} em 100 mA e a tensão para 5 V_{CC} .
- 3.1.3- Alimente o circuito acima. Para cada valor de V_{GS} indicado nas colunas da tabela abaixo, ajuste o potenciômetro de 10 $K\Omega$ tal que a tensão indicada seja atingida. Para cada valor de V_{GS} ajuste a tensão de V_{DD} , a partir do valor inicial de zero volts, tal que a tensão V_{DS} assuma os valores indicados em cada linha da coluna correspondente ao valor de V_{GS} ajustado e registre o valor de I_D .

Retorne a tensão V_{DD} para zero volts e ajuste o valor de V_{GS} para o indicado na próxima coluna da tabela abaixo e repita o processo.

		V _{GS} (V)						
		0	1,00	2,00	2,25	2,50		
	0	0						
	0,2	0						
	0,4	0						
	0,6	0						
V _{DS} (V)	0,8	0						
VD	1,0	0						
	2,0	0						
	3,0	0						
	4,0	0				\boxtimes		
	5,0	0				\boxtimes		

- OBS.: 1- A coluna correspondente a V_{GS} = 0 V já foi preenchida com zeros, como forma de tornar mais real a construção das curvas solicitadas abaixo.
 - 2- Os valores de ID correspondentes a VGS = 2,5 e VDS = 4,0 e 5,0 V podem levar à uma dissipação de potência em corrente contínua maior do que a nominal do MOSFET que é de 400 mW.

3.2- Curva Característica de saída

3.2.1- Utilizando recurso de construção de gráficos através de planilhas, construa em um mesmo gráfico as curvas $I_D \times V_{DS}$, tendo V_{GS} como parâmetro.

3.3 – Curva Característica de Transferência

3.3.1- Utilizando recurso de construção de gráficos através de planilhas, construa a curva $I_D \times V_{GS}$, tomando como referência os valores de ID correspondentes à tensão VDS = 3 V