7th Homework — MATH 304 — Fall 2023 — Due November 9th —

- 1. Determine whether the following transformations are linear: Explain your answer.
 - a. $F((x_1, x_2, x_3)^T) = (x_1 x_2, x_2 x_1)^T$
 - b. $F((x_1, x_2, x_3)^T) = (1, 2, x_1 + x_2 + x_3)^T$
 - c. $F((x_1)) = (x_1, 2x_1, 3x_1)^T$.
 - d. $F((x_1, x_2, x_3, x_4)^T) = (x_1, 0, 0, 0, x_2^2 + x_3^2 + x_4^2)^T$
- 2. Determine whether the following transformations are linear from C([0,1]) to $\mathbb{R}.$
 - a. $L(f) = f(0), (L := C([0, 1]) \to \mathbb{R})$
 - b. $L(f) = |f(0)|, (L := C([0, 1]) \to \mathbb{R})$
 - c. L(f) = f'(0) + f(0). $(L := C^1([0, 1]) \to \mathbb{R})$.
 - d. $L(f)(x) = x^2 + f(x), (L := C([0,1]) \to C([0,1])).$
- 3. For each of the following transformations, find a matrix A such that L(x) = Ax.
 - a. $L((x_1, x_2, x_3)^T) = (x_1 + x_2)^T$
 - b. $L((x_1, x_2, x_3)^T) = (x_1 + x_2, x_2 + x_3, x_1 + x_2 + x_3)^T$
 - c. $L((x_1)) = (x_1, 2x_1, 3x_1)^T$.
 - d. $L((x_1, x_2, x_3, x_4)^T) = (x_1 + x_2 + x_3 + 2x_4)^T$
- 4. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ such that

$$L((x_1, x_2, x_3)^T) = (2x_1, x_1 + x_2).$$

- a. Find A that represents L with respect to the standard basis of \mathbb{R}^3 .
- b. Find B that represents L with respect to the following basis of \mathbb{R}^3 . $E := [v_1, v_2, v_3]$, where,

$$v_1 = (1, 1, 1)^T$$
, $v_2 = (1, 1, 0)^T$, $v_3 = (1, 0, 0)^T$.

5. In the vector space $C[-\pi,\pi]$ we define inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi, \pi} f(x)g(x)dx.$$

- a. Show the the above is indeed an inner product.
- b. Show that $f(x) = \cos(x), g(x) = \sin(x)$ are orthogonal and that they have length 1.

Show your work in each exercise.