

Seat Number

King Mongkut's University of Technology Thonburi Midterm Examination

Semester 1 -- Academic Year 2016

Subject: EIE 460 Digital Signal Processing

For: Electrical Communication and Electronic Engineering, 4th Yr (Inter. Program)

Exam Date: Thursday, September 22, 2016 Time: 13.00-16.00

Instructions:-

- 1. This exam consists of 4 problems with a total of 6 pages, including the cover.
- 2. This exam is opened book.
- 3. Answer each problem on the exam itself.
- 4. A calculator compiling with the university rule is allowed.
- 5. A dictionary is not allowed.
- 6. Do not bring any exam papers outside the exam room.

Remarks:-

- Raise your hand when you finish the exam to ask for a permission to leave the exam
 room.
- Students who fail to follow the exam instruction might eventually result in a failure
 of the class or may receive the highest punishment with university rules.

Exam No.	1	2	3	4	Total
Full Score	30	20	35	45	130
Graded Score					

Name-Lastname	Student ID

This examination is designed by Dr. Raungrong Suleessathira; Tel: 9060

This examination has been approved by the committees of the ENE department.

(Assoc. Prof. Rardchawadee Silapunt, Ph.D.)

Head of Electronic and Telecommunication Engineering Department

Name-Lastname Student ID

1. Let the signal $x[n] = e^{0.001n} (u[n] - u[n-20])$ be the input to the following difference equation described by (30 marks)

$$y[n]-3.5y[n-1]-1.5y[n-2]=3x[n]+4x[n-1]$$

- a. Write Matlab script to generate and plot the signal x[n].
- b. Write Matlab script to determine the response y[n] over $0 \le n \le 200$.
- c. Find the frequency response $H(e^{j\omega})$.
- d. Find the Fourier transform $X(e^{j\omega})$.
- e. Write Matlab script to find the Fourier transform $X(e^{j\omega})$ and use 501 equispaced points for $0 \le \omega \le \pi$.

Name-Lastname _____

Student ID_

- 2. Determine whether the system $y[n] = 10\sin(0.1\pi n)x[n]$. (20 marks)
 - a. linear
 - b. time-invariant
 - c. causal
 - d. stable

- 3. An impulse response is $h[n] = (-0.9)^n u[n]$. (35 marks)
 - a. Plot h[2-n].
 - b. If an input signal is $x[n] = 0.8^n$ for $0 \le n \le 9$, find the output signal y[n].
 - c. Find the frequency response $H(e^{j\omega})$.
 - d. If an input signal is $x[n] = \cos(0.1\pi n)$, find the output signal y[n].
 - e. Find the impulse response of $e^{-j5\omega}H(e^{j\omega})$.
 - f. Can we use Matlab to find the output signal y[n]? Give a reason.

- me-Lastname Student ID

 4. Sampling an analog signal given as $x_o(t) = 4 + 2\cos(500\pi t)$ for $0 \le t \le 1$ sec. with the sampling frequency 1000 samples/sec. (45 marks)
 - a. Find the discrete-time sequence x[n].
 - b. Find the Fourier transform $X(e^{j\omega})$.
 - c. Sketch $X_a(j\Omega)$ and $X(e^{j\omega})$ for $-2\pi \le \omega \le 2\pi$ where $X_a(j\Omega)$ is the spectrum of $x_a(t)$ and $X(e^{j\omega})$ is the spectrum of x[n].
 - d. Write Matlab script to find $X_a(j\Omega)$ and $X(e^{j\omega})$ at 501 equispaced points for $0 \le \Omega \le 2000\pi$ and $0 \le \omega \le \pi$.
 - e. Use $X(e^{j\omega})$ from c. to sketch $X_s(j\Omega)$, $H_r(j\Omega)$ and $X_r(j\Omega)$.

f. Write Matlab script to reconstruct the analog signal $x_a(t)$ from the sequence x[n].

Name-Lastname	Student 1	ID
For problem 4 continued		