TRABAJO DE APLICACIÓN P3

JUAN DIEGO QUIMBIULCO

NRC:1270

05/03/2025

PRUEBA DE ANOVA

ANOVA DE UN FACTOR

Hoy en día el uso de ChatGPT es más común y al realizar una encuesta para conocer cuánto dinero han gastado en cuentas de paga de ChatGPT en los últimos seis meses a diferentes carreras en la Universidad de las Fuerzas Armadas ESPE se obtuvieron los siguientes datos:

Software	Biotecnología	Mercadotecnia
75	80	80
82	50	100
76	60	80
80	41	80

¿Hay alguna diferencia entre los promedios de dinero gastado en la compra de cuentas de paga de ChatGPT en las tres carreras? Use el nivel de significancia de 0.01.

1) Plantear
$$H_0$$
 y H_1

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

$$H_1$$
: $\mu_1 \neq \mu_2 \neq \mu_3$

 $gl\ numerador = k - 1 = 3 - 1 = 2$ $gl\ denominador = n - k = 12 - 3 = 9$

Punto crítico: 8.02

$$k = 3$$

$$n = 12$$

3) Valor de F

$$F = 6.18$$

	Software	Biotecnologi	Mercadotec	
Datos	Software	a	nia	
1	75	80	80	
2	82	50	100	
3	76	60	80	
4	80	41	80	
Total	313	231	340	
media	78	57.75	85	
n	4	4	4	
n	12	k	3	
media global	74			

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	1611.17	2.00	805.58	6.18	0.02	4.26
Dentro de los						
grupos	1173.50	9.00	130.39			
Total	2784.67	11.00				

- 4) Ho se acepta si $F \le 8.02$
- 5) Но acepta; los se de promedios dinero gastados la en compra cuentas de de paga ChatGPT son iguales.

ANOVA DE DOS FACTORES

Hoy en día el uso de ChatGPT es más común y al realizar una encuesta para conocer cuánto dinero han gastado en cuentas de paga de ChatGPT en los últimos seis meses a diferentes carreras, en base al tipo de preferencia de los estudiantes, en la Universidad de las Fuerzas Armadas ESPE se obtuvieron los siguientes datos:

ANOVA DE DOS FACTORES

Preferencia	Software	Biotecnología	Mercadotecnia
Facilidad de Uso	85	80	50
Respuesta Rápida	90	30	60
Accesibilidad	100	70	41
Calidad	70	80	80

1) Plantear hipótesis

2) Punto crítico

Tratamientos

$$gln_1 = k - 1 = 3 - 1 = 2$$
 $gln_2 = b - 1 = 4 - 1 = 3$

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

$$gld_1 = (b-1)(k-1) = (4-1)(3-1) = 6$$

$$H_1: \mu_1 \neq \mu_2 \neq \mu_3$$

Punto crítico tratamientos $\approx 10,9$

Bloques

Punto crítico bloques ≈ 9,78

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

$$H_1: \mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4$$

$$F = 2.05$$

Análisis de varianza de dos factores

RESUMEN	Cuenta	Suma	Promedio	Varianza
Facilidad de Uso	3	215	71.67	358.33
Respuesta Rápida	3	180	60.00	900.00
Accesibilidad	3	211	70.33	870.33
Calidad	3	230	76.67	33.33
Software	4	345	86.25	156.25
Biotecnología	4	260	65.00	566.67
Mercadotecnia	4	231	57.75	280.25

ANÁLISIS DE VARIANZA

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Filas	440.67	3.00	146.89	0.34	0.80	4.76
Columnas	1755.17	2.00	877.58	2.05	0.21	5.14
Error	2568.83	6.00	428.14			
Total	4764.67	11.00				

4) Regla de decisión

Tratamientos

Ho se acepta si $F \leq 10,9$

Ho se acepta; Los promedios de dinero gastado en la compra de cuentas de paga de ChatGPT de las tres carreras son iguales.

Bloques

Ho se acepta si $F \leq 9.78$

Ho se acepta; Los promedios de dinero gastado en la compra de cuentas de paga de ChatGPT de las tres carreras son iguales para todas las preferencias.

REGRESIÓN LINEAL MULTIPLE

Se quiere saber si al momento de comprar una cuenta premium de chatGPT, se tiene en cuenta las horas de estudio al mes de los estudiantes de las fuerzas armadas ESPE, se tienen los siguientes datos:

Software	Biotecnología	Horas de Sueño
75	80	20
82	50	30
76	60	41
80	41	50
90	80	60
68	100	68
20	80	70
85	80	70
90	30	75
100	70	76

Estadísticas de la regresión	
Coeficiente de correlación múltiple	0.11
Coeficiente de determinación R^2	0.01
R^2 ajustado	-0.27
Error típico	22.38
Observaciones	10.00

ANÁLISIS DE VARIANZA						
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F	
Regresión	2	39.60	19.80	0.04	0.96	
Residuos	7	3506.40	500.91			
Total	9	3546.00				

	Coeficientes	Error típico	Estadístico t	Probabilida d	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	48.56	43.06	1.13	0.30	-53.27	150.38	-53.27	150.38
Software	0.01	0.36	0.03	0.98	-0.84	0.86	-0.84	0.86
Biotecnologia	0.10	0.37	0.27	0.79	-0.77	0.97	-0.77	0.97

PRUEBAS NO PARAMETRICAS

PRUEBA DEL SIGNO

En la Universidad de las Fuerzas Armadas - ESPE, se llevó a cabo un estudio para evaluar el impacto de la publicidad en el uso del ChatGPT por parte de los estudiantes. Para ello, se seleccionó una muestra aleatoria de 11 estudiantes, a quienes se les preguntó cuántas veces usaban ChatGPT antes y después de una campaña publicitaria dirigida a universitarios. Al finalizar la campaña, se volvió a medir la frecuencia de uso.

Se quiere determinar si la campaña publicitaria fue efectiva para aumentar el uso de ChatGPT por parte de los estudiantes. Esto es, ¿los estudiantes usan más ChatGPT después de la campaña publicitaria.

	Gast	o de Premium d	e ChatGPT	
n	USO ANTES	USO DESPUES	DIFERENCIA	SIGNO DE DIFERENCIA
1	75	80	-5	-
2	82	50	32	+
3	76	60	16	+
4	80	41	39	+
5	90	80	10	+
6	68	100	-32	-
7	20	80	-60	-
8	85	80	5	+
9	90	30	60	+
10	100	70	30	+
11	70	80	-10	-

1) *Ho*: $\pi \leq 0.5$

*H*1: $\pi \geq 0.5$

2) $\alpha = 0.05$

3) Signos positivos:6 + signos negativos: 4

n = 10

Número de éxitos	Probabilidad de éxito	Probabilidad acumulada
0	0,001	1,000
1	0,010	0,999
2	0,044	0,989
3	0,117	0,945
4	0,205	0,828
5	0,246	0,623
6	0,205	0,377
7	0,117	0,172
8	0,044	0,055
9	0,010	0,011
10	0,001	0,001

5) Decisión

H0 acepta; La campaña publicitaria no aumentó el uso ChatGPT entre los estudiantes de la Universidad de las Fuerzas Armadas – ESPE

APROXIMACIÓN NORMAL A BINOMIAL

Se realizó una encuesta en la Universidad de las Fuerzas Armadas "ESPE" para evaluar el nivel de satisfacción sobre el uso del ChatGPT antes y después de una campaña publicitaria. Se encuestaron a 10 estudiantes de distintas carreras.

Uso de ChatGPT					
n	USO ANTES	USO DESPUES			
1	75	80			
2	82	50			
3	76	60			
4	80	41			
5	90	80			
6	68	100			
7	20	80			
8	85	80			
9	90				
10	100				

n	Observaciones	Rango
1	20	1
2	41	2
3	50	3
4	60	4
5	68	5
6	75	6
7	76	7
8	80	10
9	80	10
10	80	10
11	80	10
12	80	10
13	82	13
14	85	14
15	90	16
16	90	16
17	100	18
18	100	18

1)
$$Ho$$
: Me1 = Me2
 $H1$: Me1 \neq Me2

2)
$$\alpha = 0.05 \rightarrow 0.95/2 = 0.475 = \pm 1.96$$

3)
$$Z = \frac{U - \frac{n_1 \cdot n_2}{2}}{\frac{\sqrt{n_1 \cdot n_2 (n_1 + n_2 + 1)}}{12}} = 1.11$$

- **4)** Ho se acepta si: $-1.96 \le Z \le 1.96$
- **5)** Ho se acepta; no existe diferencia de conocimiento entre los dos grupos.

WILCOXON

En la Universidad de las Fuerzas Armadas "ESPE" se realizó una encuesta a una muestra de 8 estudiantes para evaluar su conocimiento sobre el uso de ChatGPT. Se les aplicó un test de conocimientos antes y después de una sesión informativa sobre la aplicación. Trabajar con un nivel de significancia de 0.05

Estudiantes	Antes	Después	diferencia	diferencia absoluta
1	80	90	-10	10
2	10	80	-70	70
3	60	50	10	10
4	90	75	15	15
5	70	60	10	10
6	90	85	5	5
7	50	80	-30	30
8	10	70	-60	60

1) Plantear la hipótesis

H0: No hay diferencia en el conocimiento sobre el uso de ChatGPT antes y después.

H1: El conocimiento después de la sesión informativa es mayor.

2) Nivel de significancia

 $\alpha = 0.05$

Valor Critico: 5

diferencia	diferencia absoluta	rango	rango asignado	
-10	10	3		3
-70	70	8		8
10	10	3	3	
15	15	5	5	
10	10	3	3	
5	5	1	1	
-30	30	6		6
-60	60	7		7
	_		12	24

3) Valor de T:

T = 12

- 4) Ho se acepta si: $T \le 5$
- **5**) Ho se rechaza; El conocimiento después de la sesión informativa es mayor.

Mann-Whitney

Se realizó una encuesta sobre el uso de ChatGPT a 2 grupos de estudiantes, un grupo de la carrera de Software y otro de la carrera de Biotecnología, y se obtuvieron los siguientes datos referentes al gasto en cuentas de paga de ChatGPT.

Con un nivel de significancia de 0,05, ¿Se puede concluir que el gasto en cuentas de paga de chatGPT es mayor en los estudiantes de Biotecnología?

Gasto d	Gasto de Premium de ChatGPT						
	Grupo A	Grupo B					
n	Software	Biotecnologia					
1	75	80					
2	82	50					
3	76	60					
4	80	41					
5	90	80					
6	68	100					
7	20	80					
8	85	80					
9	90	30					
10	100	70					
11	70	80					
12	80						

1) Determinar la hipótesis nula y la alternativa

Ho: La distribución del gasto en cuentas de paga de chatGPT es la misma en los estudiantes de Biotecnología que en los de Software

H1: La distribución del gasto en cuentas de paga de chatGPT es mayor en los estudiantes de Biotecnología que en los de Software

2) Valor Critico

$$\alpha=0.05\rightarrow0.5-0.05$$

$$= 0.45$$

$$= 1.65$$

3) Determinar el estadístico de prueba

GRUPO	POSICION	G.CUENTAS	RANGO
Α	1	20	1
В	2	30	2
В	3	41	3
В	4	50	4
В	5	60	5
Α	6	68	6
Α	7	70	7.5
В	8	70	7.5
Α	9	75	9
Α	10	76	10
Α	11	80	14
Α	12	80	14
В	13	80	14
В	14	80	14
В	15	80	14
В	16	80	14
В	17	80	14
Α	18	82	18
Α	19	85	19
Α	20	90	20.5
Α	21	90	20.5
Α	22	100	22.5
В	23	100	22.5

Gru	00 A
Software	Rango
75	9
82	18
76	10
80	14
90	20.5
68	6
20	1
85	19
90	20.5
100	22.5
70	7.5
80	14
	162

Datos:
$$Z=rac{W-rac{n_1(n_1+n_2+1)}{2}}{\sqrt{rac{n_1n_2(n_1+n_2+1)}{12}}}$$
 $n_{1=12}$ $Z=rac{162-rac{12(12+11+1)}{2}}{\sqrt{rac{12 imes 11(12+11+1)}{2}}}$ $W=162$ $Z=0.05$ $Z=1.11$

- **4)** Se acepta Ho si el estadístico de prueba es menor que el valor critico Estadístico de prueba ≤ valor crítico
- 5) Ho se acepta; La distribución del gasto en cuentas de paga de chatGPT es la misma en los estudiantes de biotecnología que los de software

Kruskal-Wallis

Se realizó una encuesta en la Universidad de las Fuerzas Armadas "ESPE" acerca del uso de ChatGPT a estudiantes de Ing. en Software, Biotecnología y Mercadotecnia. En este ejercicio se quiere saber si la publicidad influye de manera diferente entre los estudiantes de las 3 carreras, para ello se toman muestras pequeñas independientes de cada carrera, tomando un nivel de significancia de 0,05 y los siguientes datos:

Publicidad en Uso de ChatGPT							
	Grupo A	Grupo B	Grupo C				
n	Software	Biotecnología	Mercadotecnia				
1	75	80	50				
2	82	50	89				
3	76	60	45				
4	80	41	32				
5	90	80	50				
6	68	100	95				
7	20	80	60				
8	85	80	85				
9	90	30	99				
10	100	70	80				
11	70	80					
12	80						

1) Hipótesis

H0: No hay diferencias significativas entre los grupos (las distribuciones son iguales). H1: Al menos un grupo tiene una distribución diferente

2): Reorganización, recopilación de datos y asignación de rango.

Grup	о А	Grup	οВ	Gru	оо С
Software	Rango	Biotecnologia	Rango	Mercadotec nia	Rango
75	9	80	14	50	4
82	18	50	4	89	20
76	10	60	5	45	3.5
80	14	41	3	32	2.5
90	20.5	80	14	50	4
68	6	100	22.5	95	21
20	1	80	14	60	5
85	19	80	14	85	19
90	20.5	30	2	99	21.5
100	22.5	70	7.5	80	14
70	7.5	80	14		114.5
80	14		114		
	162				

3) Calculo de Kruskal – Wallis

$$H = \frac{12}{33(33+1)} \left[\frac{(162)^2}{12} + \frac{(114)^2}{11} + \frac{(114.5)^2}{10} \right] - 3(33+1)$$

$$H = 8.04$$

4) valor Critico

$$\alpha = 0.05$$

5) Regla de decisión

Ho se acepta si H \leq 5,991

H0 se rechaza; Al menos un grupo tiene una distribución diferente

Rangos de Spearman

Se realizó una encuesta en la Universidad de las Fuerzas Armadas "ESPE" para conocer la relación entre las recomendaciones del uso de ChatGPT a estudiantes de Ing. en Software y Biotecnología. Se seleccionó una muestra de 11 estudiantes de cada carrera, y se les pidió que calificaran, en una escala del 1 al 100, qué tan recomendable consideran el uso

¿Existe una relación significativa entre el uso de ChatGPT entre estudiantes de Software y Biotecnología?

Uso de ChatGPT						
n	Software	Biotecnología				
1	75	80				
2	82	50				
3	76	60				
4	80	41				
5	90	80				
6	68	100				
7	20	80				
8	85	80				
9	90	30				
10	100	70				
11	70	80				

1) Calculamos las diferencias de rangos y su cuadrado

n	Software	Rango	Biotecnologia	Rango	D	D^2
1	75	9	80	14	-5	25
2	82	18	50	4	14	196
3	76	10	60	5	5	25
4	80	14	41	3	11	121
5	90	20.5	80	14	7	42
6	68	6	100	22.5	-17	272
7	20	1	80	14	-13	169
8	85	19	80	14	5	25
9	90	20.5	30	2	19	342
10	100	22.5	70	7.5	15	225
11	70	7.5	80	14	-7	42
					34	1156

2) Aplicar la fórmula de Spearman

$$r_s = 1 - \frac{6(16)}{11(11^2 - 1)} = 0.927$$

3) Interpretación

El coeficiente de correlación de Spearman obtenido es 0.93, lo que indica una fuerte correlación positiva entre la recomendación del uso uso de ChatGPT a estudiantes de Ing. en Software y Biotecnología.

Existe una alta relación positiva entre las recomendaciones de ambas carreras.

JI – CUADRADO

En la Universidad de las Fuerzas Armadas ESPE, se ha identificado una preferencia por el uso de ChatGPT entre los estudiantes. Se tomó una muestra de 120 estudiantes para evaluar los principales motivos por los cuales prefieren esta herramienta, considerando cuatro factores clave: facilidad de uso, rapidez en las respuestas, calidad de las explicaciones y accesibilidad. Se esperaba que todos estos factores recibieran una alta calificación. Sin embargo, al analizar los resultados, los investigadores notaron que no todos los factores fueron igualmente valorados.

Por ello, surge la pregunta: ¿La diferencia en las calificaciones se debe al azar o existe un favoritismo hacia algún factor en particular? Trabaje con un nivel de significancia del 5%.

Motivos de preferencia	alta recomendación fo	alta recomendación esperada fθ	fo-fθ	(fo-fθ)^2	(fo-f0)^2/f0
Facilidad de uso	50	30	20	400	13.33
Respuesta rápida	35	30	5	25	0.83
Calidad de explicaciones	25	30	-5	25	0.83
Accesibilidad	10	30	-20	400	13.33
Total	120	120			28.32

1) Plantear la hipótesis

Ho = No existen diferencia entre el número de frecuencias observadas y esperadas

H1 = Existe diferencia entre el número de frecuencias observadas y esperadas

2) Puntos críticos

$$\alpha = 0.05$$

Grados de libertad:
$$k - 1 = 4 - 1 = 3$$

$$P.C = 7.815$$

3.) Hallar el estadístico de prueba Ji- Cuadrado

$$X^2 = \sum \left[\frac{(f_0 - f_\theta)^2}{f_\theta} \right]$$

$$X^2 = 28.32$$

4)Realizar el gráfico de Ji-Cuadrado, colocar el punto crítico y el valor de Ji - Cuadrado (0.55)

5) Regla de decisión

Ho se acepta si: $X^2 \le 7.815$

Ho se rechaza; Las calificaciones otorgadas por los estudiantes de la Universidad de las Fuerzas Armadas "ESPE" a los cuatro factores no tienden a tener una probabilidad igual de alta recomendación en cada uno de los motivos del cual prefieren chatGPT.