Bases de datos

Ejercicios de álgebra relacional

Bases de Datos

Ejercicios de álgebra relacional

1. Editoriales

Sean las relaciones siguientes:

```
EDITORIALES(<u>E#</u>, Nombre, Ciudad)
LIBROS(<u>L#</u>, Título, Autor, Año)
PAPELERÍAS(<u>P#</u>, Nombre, Ciudad)
ELP(<u>E#</u>, <u>L#</u>, <u>P#</u>, Cantidad)
```

Se pide escribir en álgebra relacional las respuestas a las preguntas siguientes:

- 1. Obtener los nombres de las papelerías abastecidas por alguna editorial de 'Madrid'.
- 2. Obtener los valores de E# para las editoriales que suministran a las papelerías P1 y P3 libros publicados en el año 1978.
- 3. Obtener los valores de P# de las papelerías abastecidas completamente por la editorial E1.
- 4. Obtener los valores de L# para los libros vendidos por todas las papelerías que no sean de 'Madrid'.

2. Programas

Dada la base de datos compuesta por las siguientes relaciones:

```
PROGRAMAS(<u>P#</u>, Memoria, SO, Distribuidor)
USUARIOS(<u>U#</u>, Edad, Sexo)
ORDENADORES(<u>O#</u>, Modelo, SO, Capacidad)
USOS(<u>U#</u>, <u>P#</u>, <u>O#</u>, Tiempo)
```

Se pide expresar en términos de álgebra relacional la secuencia de operaciones necesaria para efectuar las siguientes consultas a la base de datos:

- 1. Obtener los usuarios (U#) que usan al menos todos los programas del distribuidor 'D1'.
- 2. Obtener los programas (P#) que sólo son usados por el usuario 'U5'.
- 3. Obtener distribuidores que venden los programas 'P5'y 'P8'.
- 4. Obtener los modelos de los ordenadores que son usados por personas mayores de 30 años durante más de 3 horas.

3. Videoteca

Sean las relaciones siguientes:

```
SOCIO(Aficionado, Videoclub)
GUSTA(Aficionado, Película)
VIDEOTECA(Videoclub, Película)
```

Se pide escribir en álgebra relacional las sentencias necesarias para responder a las preguntas siguientes:

- 1. Películas que le gustan al aficionado 'José Pérez'.
- 2. Videoclubes que disponen de alguna película que le guste al aficionado 'José Pérez'.
- 3. Aficionados que son socios de al menos de un videoclub que dispone de alguna película de su gusto.
- 4. Aficionados que no son socios de ningún videoclub donde tengan alguna película de su gusto.

Bases de Datos

Ejercicios de álgebra relacional

4. Maquinaria

Dada la base de datos formada por las siguientes tablas:

```
MÁQUINAS(M#, Tipo, Matrícula, PrecioHora)
FINCAS(F#, Nombre, Extensión)
TRABAJADOR(T#, Nombre, Dirección)
PARTES(T#, M#, F#, Fecha, TipoFaena, Tiempo)
```

Se pide dar soluciones algebraicas a las siguientes consultas:

- 1. Obtener todos los T# que usan todas las máquinas de tipo 1.
- 2. Obtener todos los F# para aquellas fincas en las que han realizado trabajos las máquinas 'M1'y 'M3'.
- 3. Obtener el valor de M# para aquellas máquinas que no han sido utilizadas nunca en ningún trabajo.
- 4. Obtener todos los nombres de fincas en las que se ha trabajado más de 5 horas con máquinas cuyo precio por hora sea superior a 25€.

5. Prácticas

Dada la base de datos compuesta por las siguientes tablas:

```
ALUMNOS(<u>A#</u>, Nombre, Grupo)
PRÁCTICAS(<u>P#</u>, Curso, Fecha)
ENTREGA(<u>A#</u>, <u>P#</u>, Nota)
```

Se pide dar solución en álgebra relacional a las consultas:

- 1. Obtener los nombres de los alumnos que han aprobado todas las prácticas de tercer curso.
- 2. Obtener los nombres de los alumnos que han entregado todas las prácticas de tercer curso.
- 3. Obtener los alumnos que han entregado prácticas de segundo y tercer curso.
- 4. Obtener los alumnos que sólo han entregado prácticas de segundo curso.
- Obtener los alumnos que han entregado prácticas de segundo curso y pertenecen al grupo 'BD-11'.
- 6. Obtener el nombre de los alumnos que no han suspendido ninguna práctica de las que han entregado.

6. Ciclismo

La Federación Internacional de Ciclismo Profesional desea tener una Base de Datos Relacional (BDR) con las siguientes tablas:

```
EQUIPOS(E#, Nombre, País)
CICLISTAS(C#, Nombre, E#)
COMPETICIONES(M#, Nombre, País, Duración)
CLASIFICACIÓN(M#, C#, Puesto)
```

Se pide escribir las sentencias necesarias en álgebra relacional para:

- 1. Obtener los ciclistas que sólo han participado en competiciones de duración inferior a 15 días.
- 2. Obtener los ciclistas de equipos españoles que han competido en todas las competiciones de España.
- 3. Obtener los ciclistas que han obtenido un primer y un segundo puestos en competiciones con una duración inferior a 15 días.

UNIVERSIDAD POLITÉCNICA DE MADRID

Bases de Datos

Ejercicios de álgebra relacional

7. Infracciones de tráfico

Dada las tablas siguientes:

CONDUCTOR(C#, DNI, Nombre)
AGENTE(A#, Nombre, Rango)
INFRACCIÓN(I#, Descripción, Importe)
DENUNCIA(C#, A#, I#, Fecha, Pagada)

Se pide escribir en álgebra relacional las sentencias necesarias para:

- 1. Obtener el nombre de aquellos conductores que hayan sido denunciados por todas las infracciones inferiores a 600€.
- 2. Obtener el código de aquellos agentes que sólo hayan denunciado infracciones de 'Estacionamiento' (atributo Descripción).
- 3. Obtener el código de aquellos conductores que no tengan ninguna denuncia pendiente de pago (atributo Pagada).

Soluciones

Las soluciones que se presentan a continuación pueden diferir de las discutidas en clase, ya que están basadas en las decisiones y criterios aplicados por el profesor al momento de su elaboración. Es importante señalar que estas soluciones podrían contener errores tipográficos o imprecisiones que no afectan su propósito principal.

UNIVERSIDAD POLITÉCNICA DE MADRID

Bases de Datos

Ejercicios de álgebra relacional

1. Editoriales

- 1. $\Pi_{Nombre}\left(PAPELERIA \bowtie ELP \bowtie \sigma_{Ciudad='Madrid'}\left(EDITORIALES\right)\right)$
- **2.** $\Pi_{E\#} (\sigma_{A\tilde{n}o=1978} (LIBRO) \bowtie \sigma_{P\#='P1'} (ELP)) \cap \Pi_{E\#} (\sigma_{A\tilde{n}o=1978} (LIBRO) \bowtie \sigma_{P\#='P3'} (ELP))$
- 3. $\Pi_{P\#} \left(\sigma_{E\#='E1'} \left(ELP \right) \right) \Pi_{P\#} \left(\sigma_{E\#\neq'E1'} \left(ELP \right) \right)$
- 4. $\Pi_{L\#,P\#}(ELP) \div \Pi_{P\#}(\sigma_{Ciudad \neq' Madrid'}(PAPELERIAS))$

2. Programas

- 1. $\Pi_{U\#,P\#}(USOS) \div \Pi_{\#}(\sigma_{Distribuidor='D1'}(PROGRAMAS))$
- **2.** $\Pi_{P\#} \left(\sigma_{U\#='U5'} \left(USOS \right) \right) \Pi_{P\#} \left(\sigma_{U\#\neq'U5'} \left(USOS \right) \right)$
- **3.** $\Pi_{Distribuidor}\left(\sigma_{P\#='P5'}\left(Programs\right)\right)\cap\Pi_{Distribuidor}\left(\sigma_{P\#='P8'}\left(Programs\right)\right)$
- 4. $\Pi_{Modelo}\left(\sigma_{Edad>30}\left(USUARIOS\right)\bowtie\sigma_{tiempo>3}\left(USOS\right)\bowtie ORDENADORES\right)$

3. Videoteca

- 1. $\Pi_{Pelicula} \left(\sigma_{Aficionado='JosePerez'} \left(GUSTA \right) \right)$
- 2. $\Pi_{Videoclub} (VIDEOTECA \bowtie \sigma_{Aficionado='JosePerez'} (GUSTA))$
- 3. $\Pi_{Aficionado}\left(SOCIO\bowtie VIDEOTECA\bowtie GUSTA\right)$
- 4. $(\Pi_{Aficionado} (GUSTA) \cup \Pi_{Aficionado} (SOCIO)) \Pi_{Aficionado} (SOCIO \bowtie VIDEOTECA \bowtie GUSTA)$

4. Maquinaria

- 1. $\Pi_{T\#,M\#}\left(PARTES\right) \div \Pi_{M\#}\left(\sigma_{Tipo=1}\left(MAQUINAS\right)\right)$
- **2.** $\Pi_{F\#} (\sigma_{M\#='M1'} (PARTES)) \cap \Pi_{F\#} (\sigma_{M\#='M3'} (PARTES))$
- 3. $\Pi_{M\#} (MAQUINAS) \Pi_{M\#} (PARTES)$
- 4. $\Pi_{Nombre} \left(FINCAS \bowtie \left(\sigma_{tiempo>5} \left(PARTES \right) \bowtie \sigma_{PrecioHora>25} \left(MAQUINAS \right) \right) \right)$

5. Prácticas

- 1. $\Pi_{Nombre}\left(ALUMNOS \bowtie \left(\Pi_{A\#,P\#}\left(\sigma_{Nota>5}\left(ENTREGA\right)\right) \div \Pi_{P\#}\left(\sigma_{Curso=3}\left(PRACTICAS\right)\right)\right)\right)$
- 2. $\Pi_{Nombre}\left(ALUMNOS \bowtie \left(\Pi_{A\#,P\#}\left(ENTREGA\right) \div \Pi_{P\#}\left(\sigma_{Curso=3}\left(PRACTICAS\right)\right)\right)\right)$
- 3. $\Pi_{A\#} (\sigma_{Curso=2} (ENTREGA \bowtie PRACTICAS)) \cap \Pi_{A\#} (\sigma_{Curso=3} (ENTREGA \bowtie PRACTICAS))$
- 4. $\Pi_{A\#} (\sigma_{Curso=2} (ENTREGA \bowtie PRACTICAS)) \Pi_{A\#} (\sigma_{Curso\neq 2} (ENTREGA \bowtie PRACTICAS))$
- 5. $\Pi_{A\#}(\sigma_{Grupo='BD-11'}(ALUMNOS) \bowtie (\sigma_{Curso=2}(PRACTICAS) \bowtie ENTREGA))$
- 6. $\Pi_{Nombre} (ALUMNOS \bowtie (\Pi_{A\#} (\sigma_{Nota} >_5 (ENTREGA)) \Pi_{A\#} (\sigma_{Nota} <_5 (ENTREGA)))))$

UNIVERSIDAD POLITÉCNICA DE MADRID

Bases de Datos

Ejercicios de álgebra relacional

6. Ciclismo

- 1. $\Pi_{C\#}$ (CLASIFICACION) $\Pi_{C\#}$ (CLASIFICACION $\bowtie \sigma_{Duracion>15}$ (COMPETICIONES))
- 2. $\Pi_{C\#}(CICLISTAS \bowtie \sigma_{Pais=Espa\~na}(EQUIPOS) \bowtie (\Pi_{C\#,M\#}(CLASIFICACION) \div \Pi_{M\#}(\sigma_{Pais='Espa\~na'}(COMPETICIONES))))$
- 3. $\Pi_{C\#}(\sigma_{Duracion < 15}(COMPETICIONES) \bowtie \sigma_{Puesto=1}(CLASIFICACION)) \cap \Pi_{C\#}(\sigma_{Duracion < 15}(COMPETICIONES \bowtie \sigma_{Puesto=2}(CLASIFICACION)))$

7. Infracciones de tráfico

- 1. $\Pi_{Nombre}\left(CONDUCTOR \bowtie \left(\Pi_{C\#,I\#}\left(DENUNCIA\right) \div \Pi_{I\#}\left(\sigma_{Importe<600}\left(INFRACCION\right)\right)\right)\right)$
- 2. $\Pi_{A\#}(\sigma_{Descripcion='Estacionamiento'}(DENUNCIA\bowtie INFRACCION)) \Pi_{A\#}(\sigma_{Descripcion\neq'Estacionamiento'}(DENUNCIA\bowtie INFRACCION))$
- 3. $\Pi_{C\#}\left(DENUNCIA\right) \Pi_{C\#}\left(\sigma_{Pagada='No'}\left(DENUNCIA\right)\right)$

