

Computabilidad	14/11/2019
Computabilidad	17/11/2013

Apellidos, Nombre:.....DNI:....

Modelo 1

- 1. **(1 punto)** Expresa la siguiente frase en el lenguaje de la Lógica proposicional: "A menos que sea necesario estudiar para aprobar, no iré a la biblioteca".
- 2. (1.5 puntos) Expresa la siguiente frase en el lenguaje de la Lógica de predicados: "Algunos programadores solo implementan algoritmos, pero todos los programadores implementan algo". (Utiliza los predicados: P(x): x es un programador, A(x): x es un algoritmo, I(x,y): x implementa y)".
- 3. (1.5 puntos) Obtén la Forma Normal de Skolem de la siguiente fórmula. Justifique los pasos.

F:
$$\exists X \ \forall Z \ [\ \forall Y \ (p(X,a) \lor r(Y,Z)) \longrightarrow q(X,f(Z))]$$

Si **F** fuese la premisa de un razonamiento y $\forall X \neg \exists Y p(X,Y)$ su conclusión, ¿Cuál sería el conjunto de cláusulas al que se aplicaría Resolución General?

4. **(1.25 puntos)** Calcula los posibles resolventes de las cláusulas C₁ y C₂ e indica los correspondientes umg.

$$C_1$$
: $p(X,X) \vee q(h(X),X) \vee r(a,f(X))$, C_2 : $\neg p(Y,f(Y)) \vee \neg q(Y,b)$

5. (2.25 puntos) Demuestra la corrección del siguiente razonamiento por Deducción Natural:

$$\{ \forall X (q(X) \lor r(X) \to \neg p(X)), \exists X p(X) \} \vdash \exists X \neg q(X)$$

6. (1.5 puntos) Determina, por contradicción si la siguiente fórmula es válida

$$(q \vee \neg p \vee r) \wedge (q \vee r \leftrightarrow t) \wedge (r \vee q \rightarrow p) \rightarrow (p \leftrightarrow t)$$

- 7. (1 punto, pero si la respuesta es incorrecta resta 0,25 puntos) Sea $\{P_1, P_2, ..., P_n\} \Rightarrow Q$ un razonamiento en lógica de proposiciones. Solo una de las siguientes afirmaciones es **CORRECTA**. Señala cuál.
 - a. Si el conjunto $\{P_1, P_2, ..., P_n\}$ es consistente el razonamiento no puede ser correcto.
 - b. Si todas las premisas y la conclusión son insatisfacibles el razonamiento no es correcto.
 - c. Si el conjunto $\{P_1, P_2, ..., P_n\}$ es inconsistente el razonamiento es correcto.
 - d. Si Q es insatisfacible el razonamiento no puede ser correcto.

Computabilidad	14/11/2019

Apellidos, Nombre:.....DNI:....

Modelo 1

٨١	_A B	ΛE	A∧B	A ∧ B	
	$A \wedge B$		A	В	
∨l	A B	∨E	$A \lor B A \rightarrow C B \rightarrow C$		
	$A \lor B$ $A \lor B$				
→l	$ \begin{array}{c} A \\ \vdots \\ B \end{array} $ $A \to B$	→E	A ————————————————————————————————		
↔l	$A \rightarrow B$ $B \rightarrow A$	↔ E -	A↔B	A↔B	
	—————————————————————————————————————		$A \rightarrow B$	$B \rightarrow A$	
⊸l	A : B∧¬B ¬A	E			
V-I		V-E	V-E		
F-I	A∧¬A 	F-E	F		

∀I	(t) libre : A(t) ∀xA(x)	∀E	∀xA(x) A(a)	
31	A(a) 	ЭЕ	∃xA(x) A(t) libre ∷ B B	Condición: t∉B

t libre = el término t no puede aparecer en ninguna caja anterior abierta