

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

1. Linjen L_1 ges av

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$

och linjen L_2 ges av

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} + s \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}$$

(a) Bestäm i parameterform det plan Π som är parallellt med linjen L_1 och innehåller linjen L_2 . (2 p)

(b) Bestäm avståndet mellan linjerna L_1 och L_2 .

(2 p)

a) Varje plan som har riktningsvektorn $\begin{bmatrix} -2 & -1 & 1 \end{bmatrix}^T$ till L_1 som en av sina riktningsvektorer är parallellt med T_1 . Därför är

$$\Pi : \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} + s \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix} + t \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$

en beskrivning av Π i parameterform.

b) Punkten $Q = \begin{bmatrix} -1 & -3 & 0 \end{bmatrix}^T$ är på linjen L_1 och punkten $P = \begin{pmatrix} 4 & 2 & 3 \end{pmatrix}^T$ är på linjen L_2 . Då linjen L_2 ligger i planet Π , följer det att avståndet mellan L_1 och L_2 är längden av vektorn $\operatorname{proj}_{\vec{n}} \vec{PQ}$ - projektionen av \vec{PQ} till normalvektorn \vec{n} av planet Π . Normalvektorn ges av

$$\vec{n} = \begin{bmatrix} -2\\-1\\1\\1 \end{bmatrix} \times \begin{bmatrix} 1\\5\\1 \end{bmatrix} = \begin{bmatrix} -6\\3\\-9 \end{bmatrix}.$$

För att förenkla beräkningarna ska vi skala \vec{n} och ta $\vec{n} = \begin{bmatrix} -2 & 1 & -3 \end{bmatrix}^T$. Vektorn

$$\vec{PQ} = \begin{bmatrix} -5\\ -5\\ -3 \end{bmatrix}.$$

Av projektionsformeln har vi att

$$\operatorname{proj}_{\vec{n}} \vec{PQ} = \frac{\vec{PQ} \cdot \vec{n}}{||\vec{n}||^2} \vec{n}.$$

Vi har att $||\vec{n}||^2 = 4 + 1 + 9 = 14$, och att $\vec{PQ} \cdot \vec{n} = 10 - 5 + 9 = 14$. Det följer nu att den sökta längden är $||\vec{n}|| = \sqrt{14}$.

(1 p)

2. Vi har matrisen

$$A = \left[\begin{array}{rrr} 5 & 6 & 0 \\ -3 & -4 & 0 \\ 3 & 3 & -1 \end{array} \right].$$

- (a) Bestäm alla egenvektorer till egenvärdena 1 och -2. (3 p)
- (b) Varför är matrisen A diagonaliserbar?

a) Egenvektorerna tillhörande egenvärdet $\lambda=-1$ ges som nollskillda vektorer i nollrummet till matrisen

$$\begin{bmatrix} -6 & -6 & 0 \\ 3 & 3 & 0 \\ -3 & -3 & 0 \end{bmatrix}.$$

Med andra ord planet som ges av ekvationen x + y = 0. Egenvektorerna är följaktligen

$$t \cdot \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + s \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

för alla talpar $(t, s) \neq (0, 0)$.

Egenvektorerna till egenvärdet $\lambda=2$ ges av nollrummet till matrisen

$$\begin{bmatrix} -3 & -6 & 0 \\ 3 & 6 & 0 \\ -3 & -3 & 3 \end{bmatrix}.$$

Vi kan stryka rad 2, och utför de vanliga radoperationerna

$$\begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}.$$

Detta ger att egenvektorerna är $t \cdot \begin{bmatrix} 2 & -1 & 1 \end{bmatrix}^T$, med nollskillda tal t.

- b) Dimensionerna av egenrummen summerar till tre.
- 3. Den kvadratiska formen Q på \mathbb{R}^2 ges av

$$Q(\vec{x}) = x_1^2 + x_1 x_2 + x_2^2.$$

- (a) Ange den symmetriska matris A som uppfyller $Q(\vec{x}) = \vec{x}^T A \vec{x}$. (1 p)
- (b) Avgör om Q är positivt definit, negativt definit, positivt semidefinit, negativt semidefinit eller indefinit. (3 \mathbf{p})
 - a) Den kvadratiska formen $Q(\vec{x}) = x_1^2 + x_1x_2 + x_2^2$ kan skrivas som $\vec{x}^T A \vec{x}$,

med den symmetriska matrisen

$$A = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}.$$

b) Egenvärderna till matrisen A ges som nollställen av

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 1 & -\frac{1}{2} \\ -\frac{1}{2} & \lambda - 1 \end{bmatrix} = (\lambda - 1)^2 - \frac{1}{4}.$$

Vi löser ekvationen $(\lambda-1)^2-\frac{1}{4}=0$ och erhåller att

$$\lambda - 1 = \pm \frac{1}{2}.$$

Detta ger egenvärden $\frac{1}{2}$ och $\frac{3}{2}$. Då alla egenvärdena är positiva, har vi att den kvadratiska formen är positivt definit.

DEL B

4. Låt $T_A \colon \mathbb{R}^2 \to \mathbb{R}^2$ vara den linjära avbildning som har standardmatris

$$A = \begin{bmatrix} -1 & 3 \\ 2 & -6 \end{bmatrix}.$$

- (a) Låt L vara linjen som ges av 2x-3y=-11. Visa att T_A avbildar L på en linje $T_A(L)$.
- (b) Hitta en linje L' så att $T_A(L')$ är en punkt. Ange ekvation för L'. (2 p)
- a) Matrisen A har rang 1 och därför är bilden $\mathrm{Range}(T_A)$ en linje. Bilden $T_A(L)$ är antingen en enkel punkt eller denna linje. Vi måste utsluta att $T_A(L)$ är bara en punkt. Det räcker att betrakta punkterna

$$P = \begin{bmatrix} -4\\1 \end{bmatrix} \quad \text{och} \quad Q = \begin{bmatrix} 7\\1 \end{bmatrix}.$$

Båda punkterna ligger på L. Men

$$T_A(P) = \begin{bmatrix} 7 \\ -14 \end{bmatrix}, \quad \mathrm{medan} \quad T_A(Q) = \begin{bmatrix} -4 \\ 8 \end{bmatrix}.$$

Därför består bilden av minst två punkter.

b) Nollrummet till T_A ges av matrisekvationen

$$\begin{bmatrix} -1 & 3 \\ 2 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0.$$

Detta ger ekvationen -x+3y=0. Detta är en linje, och per definition skickas denna linje till punkten $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

5. I \mathbb{R}^4 har vi följande fyra vektorer

$$\vec{u} = \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} -1\\2\\1\\1 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} -3\\2\\-3\\3 \end{bmatrix} \quad \text{och} \quad \vec{x} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

Vektorrummet $V = \operatorname{Span}(\vec{u}, \vec{v}, \vec{w})$.

- (a) Visa att $\beta = \{\vec{u}, \vec{v}\}$ är en ortogonal bas för V. (1 p)
- (b) Vi har basen $\gamma = \{\vec{v}, \vec{w}\}$ för V. Bestäm koordinatvektorn till $\operatorname{Proj}_V(\vec{x})$ i basen γ . (3 p)

a) Vektorerna \vec{u} och \vec{v} är ortogonala då $\vec{u}\cdot\vec{v}=0$, och följdaktligen är de linjärt oberoende. Vi har vidare att

$$\vec{w} = \begin{bmatrix} -3\\2\\-3\\5 \end{bmatrix} = -2\vec{u} + \vec{v},$$

och det följer nu att $\beta = \{\vec{u}, \vec{v}\}$ är en ortogonal bas för vektorrummet V.

b) Vi har att $||\vec{u}|| = \sqrt{6}$ och att $||\vec{v}|| = \sqrt{7}$. Vi har därmed att $\{\frac{\vec{u}}{\sqrt{6}}, \frac{\vec{v}}{\sqrt{7}}\}$ är en ortonormal bas för V. Detta ger att

$$\operatorname{proj}_{V}(\vec{x}) = \frac{\vec{u} \cdot \vec{x}}{\sqrt{6}} \cdot \frac{\vec{u}}{\sqrt{6}} + \frac{\vec{v} \cdot \vec{x}}{\sqrt{7}} \cdot \frac{\vec{v}}{\sqrt{7}} = \frac{\vec{u} \cdot \vec{x}}{6} \cdot \vec{u} + \frac{\vec{v} \cdot \vec{x}}{7} \cdot \vec{v}.$$

Vi har att $\vec{u} \cdot \vec{x} = 1 + 2 - 1 = 2$, och att $\vec{v} \cdot \vec{x} = -1 + 2 + 1 + 1 = 3$. Detta ger att

$$\operatorname{proj}_{V}(\vec{x}) = \frac{1}{3}\vec{u} + \frac{3}{7}\vec{v}.$$

Tidigare har vi räknat ut att $\vec{w} = -2\vec{u} + \vec{v}$, vilket ger att

$$\vec{u} = \frac{1}{2}\vec{v} - \frac{1}{2}\vec{w}.$$

Insätter vi detta i vårt uttryck för $\operatorname{proj}_V(\vec{x})$ erhåller vi att

$$\operatorname{proj}_{V}(\vec{x}) = \frac{1}{3}(\frac{1}{2}\vec{v} - \frac{1}{2}\vec{w}) + \frac{3}{7}\vec{v} = \frac{7+18}{42}\vec{v} - \frac{1}{6}\vec{w}.$$

Koordinatvektorn i den sökta basen blir då $\begin{bmatrix} \frac{25}{42} \\ -\frac{1}{6} \end{bmatrix}$.

6. Låt A vara en symmetrisk 3×3 -matris. Anta att dess karakteristiska polynom har en enkel rot $\lambda_1=2$ med motsvarande egenvektor $\vec{v}_1=\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ och en dubbelrot $\lambda_2=-2$.

(a) Låt
$$\vec{w} = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$$
. Beräkna $A^5 \vec{w}$

a) Då matrisen A är symmetrisk vet vi att egenrummen är ortogonala, och att egenvektorerna spänner upp hela rummet. Vektorn $\vec{w} = \begin{bmatrix} 3 & -3 & 0 \end{bmatrix}^T$ är ortogonal mot egenvektorn $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$, och därför är \vec{w} en egenvektor. Egenvärdet är -2. Detta ger att

$$A^5\vec{w} = (-2)^5\vec{w} = -32 \begin{bmatrix} 3\\ -3\\ 0 \end{bmatrix}.$$

b) Egenrummet E_2 tillhörande egenvärdet $\lambda = 2$ spänns upp av $\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$. Vi har att egenrummet E_{-2} tillhörande egenvärdet $\lambda = -2$ ges av ekvationen x + y - z = 0.

En ortogonal bas för E_{-2} är $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right\}$. En ortonormal bas av egenvektorer ges därmed av vektorerna

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \quad \text{och} \quad \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\1\\2 \end{bmatrix}.$$

Vi har vidare att $A = PDP^{-1}$, där D är diagonalmatrisen med egenvärdena på diagonalen, och matrisen P har som kolonner en bas av egenvektorer. Vi väljer kolonnerna i P att vara de ortonormala egenvektorerna ovan, vilket ger att

$$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} P^{T}$$

$$= \begin{bmatrix} \frac{2}{\sqrt{3}} & -\frac{2}{\sqrt{2}} & -\frac{2}{\sqrt{6}} \\ \frac{2}{\sqrt{3}} & \frac{2}{\sqrt{2}} & -\frac{2}{\sqrt{6}} \\ -\frac{2}{\sqrt{3}} & 0 & -\frac{4}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{3} - \frac{2}{2} - \frac{2}{6} & \frac{2}{3} + \frac{2}{2} - \frac{2}{6} & -\frac{2}{3} - \frac{4}{6} \\ \frac{2}{3} + \frac{2}{2} - \frac{2}{6} & \frac{2}{3} - \frac{2}{2} - \frac{2}{6} & -\frac{2}{3} - \frac{4}{6} \\ -\frac{2}{3} - \frac{4}{6} & -\frac{2}{3} - \frac{4}{6} & \frac{2}{3} - \frac{8}{6} \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} -2 & 4 & -4 \\ 4 & -2 & -4 \\ -4 & -4 & -2 \end{bmatrix}.$$

DEL C

7. Planen P_1 och P_2 i \mathbb{R}^3 ges av ekvationerna:

$$P_1: x-y+z=5$$
 $P_2: 2x+2z=-8$

Linjen L är $\begin{bmatrix} 1\\3\\0 \end{bmatrix} + t \begin{bmatrix} 2\\0\\4 \end{bmatrix}$, godtyckliga tal t. Linjen L speglas genom P_1 till en linje L'. Avgör om L' skär planet P_2 . (4 **p**)

Vi bestämmer först skärningen mellan linjen $L = \left\{ \begin{bmatrix} 1+2t\\3\\4t \end{bmatrix} \right\}$ och planet $P_1 \colon x-y = 1$

z=5. Insättning ger 1+2t-3+4t=5, vilket betyder att 6t=7, det vill säga $t=\frac{7}{6}$. Skärningspunkten P har koordinater

$$P = \begin{bmatrix} 1 + \frac{7}{3} \\ 3 \\ \frac{14}{3} \end{bmatrix} = \begin{bmatrix} \frac{10}{3} \\ 3 \\ \frac{14}{3} \end{bmatrix}.$$

En riktningsvektor för linjen L är vektorn $\vec{v} = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$, och en normalvektor för planet P_1 är

$$\vec{n} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
. Vi har, av figur t.ex., att

$$\operatorname{proj}_{\vec{n}} \vec{v} + -1 \cdot (v - \operatorname{proj}_{\vec{n}} \vec{v}) = 2 \operatorname{proj}_{\vec{n}} \vec{v} - \vec{v}$$

är en riktningsvektor för den speglade linjen L'. Vi har att

$$\operatorname{proj}_{\vec{n}} \vec{v} = \frac{\vec{n} \cdot \vec{v}}{||\vec{n}||^2} \vec{n} = \frac{2+4}{3} \vec{n}.$$

Detta ger att

$$2\operatorname{proj}_{\vec{n}}\vec{v} - \vec{v} = 4\vec{n} - \vec{v} = \begin{bmatrix} 4-2\\ -4-0\\ 4-4 \end{bmatrix} = \begin{bmatrix} 2\\ -4\\ 0 \end{bmatrix}$$

är en riktningsvektor för L'. Vi har att L' går genom P, sådan att linjen

$$L' = \begin{bmatrix} \frac{10}{3} \\ \frac{3}{4} \\ \frac{14}{3} \end{bmatrix} + t \cdot \begin{bmatrix} 2 \\ -4 \\ 0 \end{bmatrix}.$$

Insätter vi parameterbeskrivningen av L' i ekvationen för planet P_2 , erhåller vi

$$2(\frac{10}{3} + 2t) + 2(\frac{14}{3}) = \frac{20}{3} + \frac{28}{3} + 4t = -8,$$

vilket har lösning, och vi har att speglingen L' skär planet P_2 .

8. Låt

$$\beta = \{\cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(10x), \sin(10x)\}.$$

Mängden β bildar en bas för ett delrum V av vektorrummet av reellvärda funktioner av en variabel x. Derivationsavbildningen $D\colon V\longrightarrow V$ är den linjära avbildning som skickar en vektor f(x) i V till

$$D(f(x)) = \frac{df}{dx},$$

dess derivata.

(a) Hitta matrisrepresentationen till
$$D$$
 i basen β . (2 p)

(b) Avgör om avbildningen D är diagonaliserbar. (2 \mathbf{p})

Vi har att

$$\frac{d}{dx}(\cos(nx)) = -n\sin(nx) \quad \text{och att}$$

$$\frac{d}{dx}(\sin(nx)) = n\cos(nx).$$

Matrisrepresentationen av derivationsavbildningen i basen β blir då

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & \cdots & 0 \\ -1 & 0 & 0 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 0 & 2 & \cdots & \cdots & 0 \\ 0 & 0 & -2 & 0 & \cdots & \cdots & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 10 \\ 0 & 0 & 0 & 0 & \cdots & -10 & 0 \end{bmatrix}.$$

b) Vi bestämmer först det karakteristiska polynomet till derivationsavbildningen, det vill säga $\det(\lambda I - D)$. Vi noterar att determinanten till ett block på formen

$$\begin{bmatrix} \lambda & -n \\ n & \lambda \end{bmatrix}$$

är $(\lambda^2 + n^2)$. Det följer att det karakteristiska polynomet till D är

$$(\lambda^2 + 1)(\lambda^2 + 4) \cdots (\lambda^2 + 10^2),$$

som inte har några reella nollställen. Avbildningen är speciellt inte diagonaliserbar.

9. Låt A och P vara 3×3 -matriser, där P är inverterbar.

(a) Visa att
$$tr(A) = tr(P^{-1}AP)$$
, där tr betecknar spåret av matrisen. (2 p)

(b) Antag att A är diagonaliserbar och uppfyller följande tre villkor

$$tr(A) = 0,$$

 $tr(A^2) = 14,$
 $tr(A^3) = -18.$

Beräkna $\det(A)$. (2 p)

a) Det karakteristiska polynomet till A är på formen

$$\det(\lambda I - A) = \lambda^3 - c_1 \lambda^2 + c_2 \lambda - c_3.$$

Lite eftertanke ger att c_1 är spåret till matrisen. För att lösa uppgiften är det därför nog om vi påvisar att similära matriser har samma karakteristiska polynom. Vi har följande identitet av matriser,

$$\lambda I - P^{-1}AP = P^{-1}(\lambda I - A)P.$$

Detta ger att det karakteristiska polynomet till $P^{-1}AP$ är

$$\det(\lambda I - P^{-1}AP) = \det(P^{-1})\det(\lambda I - A)\det(P)$$

$$= \det(\lambda I - A).$$

Detta betyder att similära matriser har samma karakteristiska polynom, och vi har visat påståendet.

b) Vi kan anta från uppgift a) att A är en diagonalmatris. Låt a,b och c vara diagonalelmenten i A. Vi vill beräkna

$$\det(A) = abc$$
.

Vi har att a+b+c=0, att $a^2+b^2+c^2=14$ och att $a^3+b^3+c^3=-18$. Den första ekvationen ger att c=-a-b, och att

$$c^2 = a^2 + 2ab + b^2$$
 och att $c^3 = -a^3 - 3a^2b - 3ab^2 - b^3$.

Kombinerar vi detta med den tredje ekvationen, har vi vidare att

$$-18 = a^3 + b^3 + c^3 = -3(a^2b + ab^2).$$

Determinanten $abc = ab(-a - b) = -(a^2b + ab^2)$ är därmed -6.