2. Odcinek

Zadanie

Dana jest tablica kwadratowa T o boku n zawierająca wartości całkowite. Szukamy w tablicy T takiego ciągu k sąsiednich elementów (położonych w wierszu, kolumnie lub na przekątnej - prawo lub lewoskośnie), których suma wartości T_{ij} jest największa. Stosujemy zasadę periodycznych warunków brzegowych: każdy element tablicy ma dokładnie 8 najbliższych sąsiadów. Na przykład sąsiadami elementu T_{00} są elementy T_{10} , T_{11} , T_{01} , $T_{(n-1)1}$, $T_{(n-1)0}$, $T_{(n-1)(n-1)}$, $T_{0(n-1)}$, $T_{1(n-1)}$. W związku z tym odcinek może leżeć częściowo poza tablicą: w tym przypadku tablica jest powielana w odpowiednim kierunku (kierunkach).

Napisz program, który:

- 1. Wczyta rozmiar tablicy, n, długość odcinka, k, i tablicę T,
- 2. Wyznaczy optymalne położenie odcinka,
- 3. Wypisze maksymalną sumę k sąsiednich elementów T.

Wejście:

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite $1 \le n \le 100$ i $2 \le k \le n$. Kolejne n wierszy zawiera po n liczb całkowitych (wiersze T).

Wyjście:

Program powinien wypisać jedną liczbę całkowitą - największą sumę k sąsiednich wartości elementów tablicy T.

Przykład:

Dla danych wejściowych:

```
5 2
8 1 0 1 0
2 3 4 7 1
```

2 7 4 0 1 1 8 5 1 4 0 1 6 3 9

poprawną odpowiedzią jest:

17

Maksymalny odcinek tworzą elementy T_{00} i $T_{44}. \label{eq:tworza}$