Übungsaufgaben für die Vorlesung Theoretische Informatik

Prof. Dr. U. Hedtstück

HTWG Konstanz, Fakultät Informatik, SS 2015 Blatt 2

AUFGABE 1:

Geben Sie zu den folgenden regulären Sprachen über dem Alphabet $\{0,1\}$ jeweils einen (deterministischen oder nichtdeterministischen) endlichen Automaten an, der die Sprache akzeptiert.

- a) $\{w \mid w \text{ beginnt mit einer ungeraden Anzahl Nullen, anschließend folgt eine gerade Anzahl Einsen (0 ist eine gerade Zahl).}$
- b) $\{w \mid w \text{ enthält mindestens zwei Nullen und höchstens eine Eins.}\}$
- c) $\{w \mid w \text{ enthält nicht das Teilwort 110.}\}$
- d) $\{w \mid w \text{ enthält mindestens 3 Einsen.}\}$

AUFGABE 2:

Geben Sie einen (nichtdeterministischen oder deterministischen) endlichen Automaten M an, der alle Wörter über dem Alphabet $\{a,b\}$ akzeptiert, außer den Wörtern, die mit drei a oder mit drei b beginnen.

AUFGABE 3:

Gegeben sei der folgende endliche Automat M:

Beschreiben Sie T(M) mit Hilfe eines regulären Ausdrucks. Verwenden Sie dazu nur die Operatoren Alternative, Konkatenation und Kleene-Star.

Übungsaufgaben für die Vorlesung **Theoretische Informatik** SS 2015, Blatt 2, S. 2/4

AUFGABE 4:

Geben Sie einen (nichtdeterministischen oder deterministischen) endlichen Automaten M über dem Alphabet $V = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, :\}$ an, der die folgende Sprache akzeptiert:

 $L = \{hh:mm \in V^* \mid hh:mm \text{ ist korrekte Uhrzeit zwischen } 00:00 \text{ Uhr und } 24:00 \text{ Uhr mit Stunde } hh \text{ und Minute } mm.\}$

AUFGABE 5:

Es gilt die folgende Aussage: Eine Teilmenge einer regulären Sprache muss nicht regulär sein.

Geben Sie als Beispiel zwei Sprachen L_1 und L_2 über dem Alphabet $\{0,1\}$ an mit $L_1 \subseteq L_2$, L_2 regulär und L_1 nicht regulär.

AUFGABE 6:

In einem gegebenen Text über dem Alphabet $V = \{a,b\}$ sollen alle Vorkommen der Wörter abb und baa ermittelt werden. Geben Sie dazu einen deterministischen endlichen Automaten M an, der diese Aufgabe dadurch erledigt, dass er alle Wörter über V erkennt, die mit einem der gesuchten Wörter enden.

Überlegen Sie sich zunächst einen nichtdeterministischen endlichen Automaten und konstruieren Sie daraus mit Hilfe eines Zustandsbaums den deterministischen endlichen Automaten.

 $\it Hinweis$: Der nichtdeterministische endliche Automat liest einen beliebigen Anfangsteil und kann anschließend sowohl mit $\it abb$ als auch mit $\it baa$ in einen Endzustand gelangen.

Übungsaufgaben für die Vorlesung **Theoretische Informatik** SS 2015, Blatt 2, S. 3/4

AUFGABE 7:

Gegeben sei das Alphabet $V = \{a, ..., z, 0, ..., 9, \#, \&\}$, das aus Kleinbuchstaben und Ziffern sowie zwei Sonderzeichen besteht. Die Sprache L bestehe aus allen Wörtern $w \in V^*$, die nach den folgenden Regeln gebildet sind:

- \bullet w beginnt mit einem Buchstaben und endet mit einem Buchstaben.
- w enthält genau einmal das Sonderzeichen # und genau einmal das Sonderzeichen &.
- Zwischen den beiden Sonderzeichen steht mindestens ein Zeichen aus der Menge {a,...,z,0,...,9}.

Typische Wörter aus L sind z. B. x3a#cd1&uv oder a2&1ab0#u. Die Wörter #abc&53a, a&b1#, ab#12x#bc und abc#&xy sind z. B. nicht in L.

Lösen Sie die folgenden Aufgaben:

- a) Geben Sie einen (nichtdeterministischen oder deterministischen) endlichen Automaten M mit T(M) = L an.
- b) Beschreiben Sie L mit Hilfe eines regulären Ausdrucks. Es sind nur die drei Grundoperationen Konkatenation, Alternative und Kleene-Stern erlaubt sowie die Abkürzungen für Listen wie z. B. $[a_1a_2a_3a_4a_5]$ bzw. $[a_1-a_n]$, oder auch z. B. $[a_1a_2b_1-b_na_3a_4a_5]$.

Übungsaufgaben für die Vorlesung Theoretische Informatik SS 2015, Blatt 2, S. 4/4

Multiple Choice-Test

 $Genau\ eine\ Antwort\ ist\ anzukreuzen.\ Falsche\ Antworten\ werden\ nicht\ negativ\ bewertet!$

		richtig	falsch
1.	Der reguläre Ausdruck $(a b)^*c(a b)^*(a b)$ beschreibt alle Wörter über dem Alphabet $\{a, b, c\}$, die genau ein c enthalten, aber nicht mit c enden.		
2.	Die regulären Ausdrücke $(a b^*)^*$ und $(a^* b)^*$ sind äquivalent.		
3.	Das Wort $bababa$ ist in der Sprache enthalten, die von dem regulären Ausdruck $(a^* b)^*$ beschrieben wird.		
4.	Ist die Grammatik G kontextfrei, aber nicht regulär, dann ist $L(G)$ ebenfalls nicht regulär.		
5.	Sei M ein endlicher Automat mit n Zuständen. Wenn M ein Wort w akzeptiert mit $ w > n$, dann ist $T(M)$ unendlich.		
6.	Jeder nichtdeterministische endliche Automat mit Eingabealphabet $V = \{a, b\}$ und genau zwei Zuständen, der mehr als drei unterschiedliche Wörter akzeptiert, akzeptiert eine unendliche Sprache.		
7.	Es gibt endliche Automaten, die für manche Eingabewörter nie stoppen.		