

PCL: Proxy-based Contrastive Learning for Domain Generalization

Xufeng Yao¹, Yang Bai¹, Xinyun Zhang¹, Yuechen Zhang¹, Qi Sun¹, Ran Chen¹, RuiYu Li², Bei Yu¹

¹The Chinese University of Hong Kong ²SmartMore {xfyao,byu}@cse.cuhk.edu.hk

May. 27, 2022

Background and Motivation

Background of Domain Generalization

- DG aims to train a model from multiple source domains that can generalize well on target domain.
- Contrastive learning offers a potential solution, but is not effective in DG.
- We aims to use proxy-based contrastive learning to address the problem.

Comparison between two losses

- Contrastive loss: sample-to-sample pairs
- Proxy loss: proxy-to-sample pairs

Complexity comparison

Loss function positive pair negative pair relations category	training complexity
softmax CE loss $\mid (w_y, x_i) \mid (w_1, x_i), (w_2, x_i),, (w_j, x_i) \mid$ proxy-to-sample \mid proxy-based	O(CN)
Contrastive loss (x_i, x_i^*) $(x_i, x_1), (x_i, x_2),, (x_1, x_n)$ sample-to-sample pair-based	$O(N^2)$
MS Loss $ (x_i, x_j)(x_i, x_m) $ $ (x_i, x_1), (x_i, x_2)(x_1, x_n) $ sample-to-sample $ $ pair-based	$O(N^2)$
triplet Loss $\mid (x_i, x_j)(x_i, x_m) \mid (x_i, x_1), (x_i, x_2)(x_1, x_n) \mid$ sample-to-sample \mid pair-based	$O(N^3)$

- Pair-based loss: rich sample-to-sample pairs, high complexity
- Proxy-based loss: low complexity, high generalization

Proxy-based Contrastive Learning

Review of softmax CE Loss

Review of softmax CE loss

- Pros: Learn a proxy for each classes efficiently.
- Pros: Low complexity, safe convergence.
- Cons: Miss rich sample-to-sample pairs.

$$\mathcal{L}_{CE} = -\log \frac{\exp(\boldsymbol{w}_{c}^{\top} \boldsymbol{z}_{i})}{\exp(\boldsymbol{w}_{c}^{\top} \boldsymbol{z}_{i}) + \sum_{j=1}^{C-1} \exp(\boldsymbol{w}_{j}^{\top} \boldsymbol{z}_{i})},$$
(1)

Review of Contrastive Loss

Review of Contrastive loss

- Pros: Leverage dense sample-to-sample pairs.
- Pros: Implicit hard pair mining.
- Cons: High complexity, unstable convergence.

$$\mathcal{L}_{CL} = -\log \frac{\exp(\mathbf{z}_i^{\top} \mathbf{z}_+ \cdot \alpha)}{\exp(\mathbf{z}_i^{\top} \mathbf{z}_+ \cdot \alpha) + \sum \exp(\mathbf{z}_i^{\top} \mathbf{z}_- \cdot \alpha)},$$
 (2)

Hard pair mining

Implicit hard pair mining in contrastive loss

- By controlling α , contrastive loss implicitly conduct hard pair mining.
- Sufficient pairs guarantee the performance.

$$\mathcal{L}_{CL} = \lim_{\alpha \to \infty} \frac{1}{\alpha} - \log\left(\frac{\exp(\alpha \cdot s_p)}{\exp(\alpha \cdot s_p) + \sum_{j=1}^{N-1} \exp(\alpha \cdot s_n^j)}\right)$$

$$= \lim_{\alpha \to \infty} \frac{1}{\alpha} \log\left(1 + \sum_{j=1}^{N-1} \exp(\alpha(s_n^j - s_p))\right)$$

$$= \max[s_n^j - s_p]_+,$$
(3)

Gradient Analysis

High complexity may impede the performance

Combine Softmax CE and Conrtastive Loss

- Softmax: Low complexity, overlook sample-to-sample pairs
- Contrastive: High complexity, rich pairs, unstable convergence.

$$\mathcal{L}_{PCL} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(\mathbf{w}_{c}^{\top} \mathbf{z}_{i} \cdot \alpha)}{Z},$$
(4)

where *Z* is given by:

$$Z = \exp(\mathbf{w}_c^{\top} \mathbf{z}_i \cdot \alpha) + \sum_{k=1}^{C-1} \exp(\mathbf{w}_k^{\top} \mathbf{z}_j \cdot \alpha) + \sum_{j=1, j \neq i}^{K} \exp(\mathbf{z}_i^{\top} \mathbf{z}_j \cdot \alpha).$$
 (5)

Experimental Results

Visualizaiton of learned features

Experimental Results

Table: Comparison with state-of-the-art methods on OfficeHome benchmark with ResNet-50 imagenet-pretrained model

Algorithm	A	C	P	R	Avg
Mixstyle ¹	51.1	53.2	68.2	69.2	60.4
SagNet ²	63.4	54.8	75.8	78.3	68.1
CORAL ³	65.3	54.4	76.5	78.4	68.7
$SWAD^4$	66.1	57.7	78.4	80.2	70.6
Ours	67.3	59.9	78.7	80.7	71.6

¹Zhou; Kaiyang; et al. Domain generalization with mixstyle. ICLR 2021...

²Nam; Hyeonseob; et al. Reducing domain gap by reducing style bias. CVPR. 2021..

³Sun; Baochen;

and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. ECCV; 2016...

⁴Cha; Junbum; et al. Swad: Domain generalization by seeking flat minima. NeurIPS; 2021...

Experimental results

Table: Comparison with state-of-the-art methods on PACS benchmark with ResNet-50 imagenet-pretrained model

Algorithm	A	C	P	S	Avg.
Mixstyle ⁵	86.8	79.0	96.6	78.5	85.2
CORAL ⁶	88.3	80.0	97.5	78.8	86.2
SagNet ⁷	87.4	80.7	97.1	80.0	86.3
SWAD ⁸	89.3	83.4	97.3	82.5	88.1
Ours	90.2	83.9	98.1	82.6	88.7

⁵Zhou; Kaiyang; et al. Domain generalization with mixstyle. ICLR 2021..

⁶Sun; Baochen;

and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. ECCV; 2016...

⁷Nam; Hyeonseob; et al. Reducing domain gap by reducing style bias. CVPR. 2021..

⁸Cha; Junbum; et al. Swad: Domain generalization by seeking flat minima. NeurIPS; 2021..

Experimental Resutls

Table: Comparison with state-of-the-art methods on TerraIncognita benchmark with ResNet-50 imagenet-pretrained model

Algorithm	Location100	Location38	Location43	Location46	Avg.
Mixstyle ⁹	54.3	34.1	55.9	31.7	44.0
$CORAL^{10}$	51.6	42.2	57.0	39.8	47.7
SagNet ¹¹	53.0	43.0	57.9	40.4	48.6
SWAD ¹²	55.4	44.9	59.7	39.9	50.0
Ours	58.7	46.3	60.0	43.6	52.1

⁹Zhou; Kaiyang; et al. Domain generalization with mixstyle. ICLR 2021..

¹⁰Sun; Baochen;

and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. ECCV; 2016...

¹¹Nam; Hyeonseob; et al. Reducing domain gap by reducing style bias. CVPR. 2021..

¹²Cha; Junbum; et al. Swad: Domain generalization by seeking flat minima. NeurIPS; 2021..

Experimental Results

Table: Comparison with state-of-the-art methods on DomainNet benchmark with ResNet-50 ImageNet pre-trained model

Algorithm	clip	info	paint	quick	real	sketch	Avg
Mixstyle ¹³	51.9	13.3	37.0	12.3	46.1	43.4	34.0
SagNet ¹⁴	57.7	19.0	45.3	12.7	58.1	48.8	40.3
CORAL ¹⁵	59.2	19.7	46.6	13.4	59.8	50.1	41.5
SWAD ¹⁶	66.0	22.4	53.5	16.1	65.8	55.5	46.5
Ours	67.9	24.3	55.3	15.7	66.6	56.4	47.7

¹³Zhou; Kaiyang; et al. Domain generalization with mixstyle. ICLR 2021..

 $^{^{14}}$ Nam; Hyeonseob; et al. Reducing domain gap by reducing style bias. CVPR. 2021..

¹⁵Sun; Baochen;

and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. ECCV; 2016...

¹⁶Cha; Junbum; et al. Swad: Domain generalization by seeking flat minima. NeurIPS; 2021...

THANK YOU!