$$MRTS_{LK} = \frac{MP_{L}}{MP_{K}} \cdot MP_{L} = \frac{1}{2} L^{\frac{1}{2}} K^{\frac{1}{2}} \cdot MP_{K} = \frac{1}{2} L^{\frac{1}{2}} K^{\frac{1}{2}}$$

$$MRTS_{LK} = \frac{K}{L} \cdot \frac{\Delta(\frac{K}{L})}{\Delta MRTS_{LK}} = 1$$

$$6 = 1 \times \frac{MRTS_{LK}}{\frac{K}{L}} = 1$$

$$16)$$

$$MRTS_{LK} = \frac{MP_{L}}{MP_{K}} = \frac{1}{2} \cdot \Delta MRTS_{LK} = 0$$

$$B \frac{MRTS_{LK}}{MP_{K}} = \frac{1}{2} \cdot \Delta MRTS_{LK} = 0$$

$$B \frac{MRTS_{LK}}{\Delta MRTS_{LK}} = \frac{MRTS_{LK}}{K/L} = \frac{\Delta K/L}{0} = \infty$$

生產函數	9=5LK	9=2L+3k	q = minfL,k}	9= (012L-015+018K-015)-2
邊際產量	MPL = 5 K MPK = 5 L	MPL = 2 MPk = 3	無法微分	$MPL = 0.2(\Delta)^{-3}L^{-1.5}$ $MPK = 0.8(\Delta)^{-3}K^{-1.5}$ $\Delta = 0.2L^{-0.5} + 0.8K^{-0.5}$
邊際技術 替代率	K L	23	1,0,00	0125 (k) 15
規模報酬	IRS	CRS	crs	cR3
產量彈性	EL = Ek =	$\mathcal{E}_{L} = \frac{2L}{2L+3K}$ $\mathcal{E}_{k} = \frac{3K}{2L+3K}$	斯韦微分	$\mathcal{E}_{k} = \frac{0.2 L^{-0.5}}{\Delta}$ $\mathcal{E}_{k} = \frac{0.8 k^{-0.5}}{\Delta}$
睦産力彈性	2	1	1	1
成了學生	1	Ø	0	2 3

8.

(A)
$$F(\lambda L, \lambda k) = [(\lambda L)^{\alpha} + (\lambda k)^{\alpha}]^{\beta} = \lambda^{\alpha \beta} q$$

 $\alpha \beta = 1 \rightarrow cRS , \alpha \beta > 1 \rightarrow IRS , \alpha \beta < 1 \rightarrow DRS$

(c)
$$F(\Lambda L, \Lambda K) = [min(a\Lambda L, b\Lambda K)]^{\alpha} = \Lambda^{\alpha}q$$

 $\alpha = 1 \rightarrow cRS, \alpha > 1 \rightarrow IRS, \alpha < 1 \rightarrow DRS$