POLYNOMIAL HASH CODE

- Instead of summation, let's use a polynomial hash code, which works as follows:
 - **Cut** k into multiple pieces, $x_0, x_1, ..., x_{m-1}$ that each takes ≤ 32 bits
 - Cast each piece into int
 - Set a constant a
 - ightharpoonup Compute: $x_0a^{m-1} + x_1a^{m-2} + \cdots + x_{m-3}a^2 + x_{m-2}a + x_{m-1}$
- This is better than summation because it considers the order of the pieces.

- Be careful! The final result could become very large, and may overflow, i.e., not fit in the 32-bit of the integer, in which case would simply ignore the extra bits!
- To minimize the chance of that, choose a to be a number that takes only few bits.

POLYNOMIAL HASH CODE

- We can choose the value of a based on experiments!
- For example, the authors of the textbook ran some experiments where the keys are taken from a list of 50,000 English words
- They found that taking $a \in \{33, 37, 39, 41\}$ produced < 7 collisions in each case!

CYCLE-SHIFT HASH CODE

- An alternative to polynomial hash code is the cycle-shift hash code:
 - **Cut** k into multiple pieces, $x_0, x_1, ..., x_{m-1}$ that each take ≤ 32 bits
 - > **Shift** the hash code h by some bits (initially h = 0)
 - \triangleright Cast x_0 into int and Add x_0 to h, then shift h by some bits
 - \triangleright Cast x_1 into int and Add x_1 to h, then shift h by some bits
 - and so on . . .
- To implement this, we need to use bitwise operations. Before we see the implementation, let us remind ourselves of the bitwise operations we've seen earlier this semester.

BITWISE OPERATORS

Suppose that the bitwise representation of a variable, a, is
Suppose that the bitwise representation of a variable, b, is
00000101
00001001

Bitwise operator:		<u>Example</u> :	
~exp	bitwise complement	~a /	// 11111010
exp & exp	bitwise and	a&b /	// 00000001
exp ^ exp	bitwise exclusive-or	a^b /	// 00001100
exp exp	bitwise or	a b /	// 00001101
exp1 << exp2	shift exp1 left by exp2 bits	b<<1 /	// 00010010
exp1 >> exp2	shift exp1 right by exp2 bits	b>>1 /	// 00000100

- The left-shift operator fills with zeros.
- The **right-shift operator** fills with zeros if **exp1** is an unsigned variable. Otherwise, it fills with 0 if **exp1** is positive, and with 1 if **exp1** is negative.
- In our cycle-shift hash code implementation, we'll use an unsigned int, so the right shift ">>" will always fill with zeros

CYCLE SHIFT HASH CODE

 Here is a C++ implementation of a cycle shift hash code: where the key, k, is an array of m elements of type char

This line performs a cyclic 5-bit shift, i.e., the 5 shifted bits wrap around the 32 bits

int hashCode(const char* k, int m) {
 unsigned int h = 0;
 for (int i = 0; i < m; i++) {
 h = (h << 5) | (h >> 27);
 h += (unsigned int) k[i];
 }
 return h;
}

h 01110000001001100000000011000101

CYCLE SHIFT HASH CODE

We can choose the number of bits to shift based on experiments!

Example:

- Experimenting with keys taken from list of 25,000
 English words
- For each word, the cyclic shift hash code cuts the word into separate characters, then repeatedly adds a character and performs a cyclic shift.
- As can be seen, given a 5-bit shift, there were only 4 collisions (i.e., 4 entries that would end up being inserted in an already filled bucket), and no bucket would have more than 2 entries
- Note that, with a cyclic shift of 0, this hash code reverts to the summation hash code

	Collisions		
Shift	Total	Max	
0	23739	86	
1	10517	21	
2	2254	6	
3	448	3	
4	89	2	
5	4	2	
6	6	2	
7	14	2	
8	105	2	

COMPRESSION FUNCTIONS

- If you remember, we said a hash function involves two steps:
 - \triangleright Convert the key to an integer $\in [-\infty, \infty]$ called the hash code
 - ▶ Use something called a "compression function" that converts the hash code to an integer in $\in [0, N-1]$, where N is the size of your hash table.
- So far we talked about alternative hash codes:
 - > The summation hash code
 - > The polynomial hash code
 - ➤ The cycle-shift hash code
- Next, we discuss compression functions . . .

1) DIVISION FUNCTION

- We need a "compression function" that converts the hash code to an integer in $\in [0, N-1]$, where N is the size of your hash table.
- One possible compression function is the division function:

$$h(k) = |k| \mod N$$

Example: Given N = 100 and k = -1070, the division function returns 70.

<u>Problem</u>: This may lead to many collisions, e.g., given N = 100 the following hash codes will all be converted to the same index:

- k = -1070
- k = -970
- k = -870
- k = -770

• . . .

Take N to be a prime number!

2) THE MAD METHOD

A better compression function is the MAD method, which stands for Multiply, Add and Divide:

$$h(k) = |\underline{a}k + \underline{b}| \mod N$$

where N is a prime number, and a and b are randomly chosen as positive integers that are not multiples of N.

- By "randomly chosen", we mean that when you first create the compression function, pick a and b randomly then stick to them
 - E.g., you may randomly pick values of α and b, see how many collisions you end up with; if there are many, pick new values of α and b (which gives a new compression function), and keep trying till you get a good function, i.e., one that minimizes the chance of collision.

COLLISION HANDLING SCHEMES

Each bucket can be a map implemented as a linked list. This way, we can readily use the methods that come with the map!

This is a method for handling collisions called **Separate Chaining**.

- There is another collision handling method, *Open Addressing*, which utilizes some simple methods, including:
 - Linear probing
 - Quadratic probing
- They store the values directly into the hash table cells, in which each cell will store at most one value.
- If A[h(k)] is occupied, keep trying probing different cells until you find a vacancy:
 - Linear: $A[(h(k)+i) \mod N]$ For i=(1,2,3,...)
 - O Quadratic: $A[(h(k)+j^2) \mod N]$ For j=(0,1,2,...)

N is a prime number for both methods

ORDERED MAPS

ORDERED MAPS

- So far, entries in a map have no particular order. In an ordered map, entries are ordered based on their keys.
- In addition to all the functions in a map ADT, the ordered map has the following:

```
firstEntry(): Return an iterator to the entry with smallest key; if map is empty, return end.
```

lastEntry(): Return an iterator to the entry with largest key; if map is empty, return end.

ceilingEntry(k): Return an iterator to the **entry with the least key** $\geq k$; if there is no such entry, return end.

floorEntry(k): Return an iterator to the **entry with the greatest key** $\leq k$; if there is no such entry, return end.

higherEntry(k): Return an iterator to the **entry with the least key** > k; if there is no such entry, return end.

lowerEntry(k): Return an iterator to the **entry with the greatest key** < k; if there is no such entry, return end.

ORDERED MAPS

- With ordered maps, the map can be implemented as a vector, where entries are sorted in an ascending order based on their keys. We refer to such implementation as an ordered search table.
- What is the running time for Insert(k,v) and erase(k) in ordered maps?
 - They take O(n) time, since we need to shift entries around.
- What about find(k)?
 - A naïve implementation would search through all n entries to find one whose key equals k (or to determine that no such entry exists in the ordered map); this takes O(n) time.
 - But we can do better using "binary search"

BINARY SEARCH

- Basic idea: To find an entry with key k, check the middle of the array:
 - If you find an entry with key = k, great!
 - If you find an entry with key > k, focus on the left half!
 - ▶ If you find an entry with key < k, focus on the right half!</p>

BINARY SEARCH

What is the complexity of this algorithm?

O(log n)

Example:

log(1024) = 10, and to searching through 1024 entries we need at most 10 comparisons, because:

- After the 1st comparison, you're left with 512 entries to search
- After the 2nd comparison, you're left with 256
- After the 3rd comparison, you're left with 128
- After the 4th comparison, you're left with 64
- After the 5th comparison, you're left with 32
- After the 6th comparison, you're left with 16
- After the 7th comparison, you're left with 8
- After the 8th comparison, you're left with 4
- After the 9th comparison, you're left with 2
- After the 10th comparison, you've found it!

This pattern is the signature of an O(log n) time algorithm!

BINARY SEARCH

What is the complexity of this algorithm?

 $O(\log n)$

In other words:

Grows exponentially Grows linearly With 10 comparisons, you can search 1,024 entries

- With 11 comparisons, you can search 2,048 entries
- With 12 comparisons, you can search 4,096 entries
- With 13 comparisons, you can search 8,192 entries
- With 14 comparisons, you can search 16,384 entries
- With 15 comparisons, you can search 32,768 entries
- With 16 comparisons, you can search 65,536 entries
- With 17 comparisons, you can search 131,072 entries
- With 18 comparisons, you can search 262,144 entries
- With 19 comparisons, you can search 524,288 entries

This pattern is the signature of an O(log n) time algorithm!

BINARY SEARCH: PSEUDO CODE

To search for an entry with key = k, call BinarySearch(L, k, O, n-1), which would run recursively

```
Algorithm BinarySearch(L, k, low, high):
  Input: An ordered vector L storing n entries
           and integers low and high
  Output: An entry of L with key equal to k and
            index between low and high, if such
             an entry exists, and otherwise the
            special sentinel end
  if low > high then
      return end
  else
      mid \leftarrow |(low+high)/2| e \leftarrow L.at(mid)
      if k = e.key() then
        return e
      else if k < e.key() then
        return BinarySearch(L, k, low, mid–1)
      else
        return BinarySearch(L, k, mid+1, high)
```


BINARY SEARCH: PSEUDO CODE

To search for an entry with key = k, call BinarySearch(L, k, O, n-1), which would run recursively

```
Algorithm BinarySearch(L, k, low, high):
  Input: An ordered vector L storing n entries
          and integers low and high
  Output: An entry of L with key equal to k and
            index between low and high, if such
            an entry exists, and otherwise the
            special sentinel end
  if low > high then
     return end
  else
     mid \leftarrow |(low+high)/2| e \leftarrow L.at(mid)
     if k = e.key() then
        return e
     else if k < e.key() then
        return BinarySearch(L, k, low, mid–1)
     else
        return BinarySearch(L, k, mid+1, high)
```

Complexity analysis:

- The runtime is proportional to number of recursive calls.
- The number of remaining candidates is reduced by half with each recursive call
 - Initially, the number of candidate entries is n;
 - after the first call, it is at most n/2;
 - after the second call, it is at most n/4;
 - after the third call, it is at most n/8;
 - ...
 - after the i-th call, it is at most $n/2^i$.
- Hence, the time complexity is O(log n)

SEARCH TABLE VS. HASH TABLE

Method	Hash Table	Search Table
size, empty	O(1)	O(1)
find	O(1) exp., $O(n)$ worst-case	$O(\log n)$
insert	O(1)	O(n)
erase	O(1) exp., $O(n)$ worst-case	O(n)

- Given a hash function that minimizes collision, finding or erasing an entry from a hash table takes:
 - O(1) expected time (since we expect to have a single entry per bucket on average)
 - O(n) time (because in the worst case all elements will end up in the same bucket)
- Given an ordered search table :
 - \circ Finding an entry whose key = k takes $O(\log n)$ time (since it uses binary search)
 - \circ Erasing an entry takes O(n) time (since we must shift other entries around)

SKIP LISTS

SKIP LISTS

- As mentioned earlier, when implementing an ordered map using a search table :
 - \circ Finding an entry whose key = k takes $O(\log n)$ time (since it uses binary search)
 - Inserting or erasing an entry takes O(n) time (since we must shift other entries)
- However, if we implement an ordered map using a "skip list", then:
 - Finding an entry whose key = k takes O(log n) time on average
 - Inserting or erasing an entry takes O(log n) time on average
- Here, the notion of average time complexity depends on the use of a random-number generator in the implementation of the insertions, to help decide where to place the new entry.
- The running time is averaged over all possible outcomes of the random numbers used when inserting entries.