

SEQUENCE LISTING

<110> NELSON, DAVID R.

5 <120> A LIVE, AVIRULENT STRAIN OF V. ANGUILLARUM THAT
PROTECTS FISH AGAINST INFECTION BY VIRULENT V.
ANGUILLARUM

10 <130> 5112

15 <140>

<141>

<160> 4

15 <170> PatentIn Ver. 2.1

20 <210> 1
<211> 3609
<212> DNA
<213> V. Anguillarum

25 <220>

<223> "n" bases may be a, t, c, g, other or unknown

30 <400> 1
gtcgacttat tgcattgatg gcgtacatgg tagtgccatc cttcggttgc taacaagcgt 60
tgtataaaag ctgggtcggt ttcatcaagt tgaacacaat actcatgatt tttccactt 120
ccggaaaggg aaaagtggaa atagctttg agatcagct gttctagcag cttttcaatg 180
atcttttcg tcgttacgtt ttgaaaatc tgacgactgc gtttgttattt caacaagcta 240
agtggatcca atatctctat ttgataataa aactgctgct tgcgttgc atatccgtg 300
aattgcagag tgctacatat acctgaaaaa aaacgcttc cagaatctaa ttgcgtaaag 360
acacaaacag ctttacctag gttttggta tcgatctcca tgcgttgcgc gatggaaacg 420
gaaaactgac acccgccgga tacgtttcc tctccgatta attgcgtgac aatataactt 480
ttgctatctg aaagcttaat ggtgagggag cgggttttgtt gcttaattt gttactgctc 540
atattcaatt aattcactat taaataaaca gttctaaaag gctgtttattt ggatgaatat 600
tcgaaattat cacataataa ttgatgtat tattacttgc tgcgttgc tcaacttca 660
tgctctatac atgtaatata tttcgagttt gacctaattt caaggtaattt tgcgttgc 720
attattatct gaataatata tgcgttgc ctttgcgtt attttatgtt ttgcgttgc 780
40 tttaatgacg gtgagctgt gcattcatat ttttatgtt gacaacatct ttgatgaagt 840
atttaaagata ttgttaatgc atgagggtt tgcgttgc ttttatattt aatcataata 900
aaatcaacaa tatatgttat tttgtgtttt tttatatttgc tgcgttgc 960
acctaaggt cgcctagaa tatggcgtaa attgcattt ctataattca cctcaaagat 1020
acactattgg caaattgaca aatatgtcac ttgcgttgc acaatattt tagatgttgc 1080
45 ttttgcgtca aaaataaaaaa ttttgcgttgc tggaaataactt caaggcctct agcgtttcc 1140
tttatcttaa aatacagaa atagcgattt aagttaattt acacttaagg aasdrmagaa 1200
tagtcaacctt aacagagcag gaaacctatgc ctttgcgttgc gcatcaattt gagcaactt 1260
ctaaacctct gagtgcgtat tgcgttgc tggaaataactt caaggcctct agcgtttcc 1320
ttcgcccatt acgttaatggaa ttgcgttgc cgccaaacttgc gctgcgttgc ctaagtcaaa 1380
50 accctagtgc tgacgagaga gatgcgttgc aagaggcatg tctaaataag tggaaaggattc 1440
tctctgacag tttgtacgaa cagtttcaaa aaacaaccatg agatatcgat ctcatctcat 1500
ggtttgcgttgc tgctcaattt ctttgcgttgc ccacatttgc aagtgcgtcg aatagccttgc 1560
agtgggttagc ggatthaagt gagaaggactt gggatcactt caaccctgtt cttaccgttgc 1620
aaacgctcaa atctgtat tgcgttgc aagaaaaggaa gcaaggatgat gcgaaaggat 1680
55 aagcattttt ccaacttagtc ggcgtatgc aggaaaagctt gattctctat ggcgcgggtgc 1740
tgcaactgccc cttgtcggg gaagtgcgttgc ttttgcgttgc tcaaagtgc gggaaaaggat 1800
gcgaaatcag ccaactgaaa tctatgcgttgc gggccacggat ggcgcgttgc 1860

	ttcaattcaa	gatggaaaac	gccaaacgtt	gtgtcaccca	attagatcgt	ttgtcagcgt	1920
	tggtagcac	taagtgtcat	tctctaggca	gtcaaaagtac	caacttcgga	tttgcgaagt	1980
	cactgcttac	ccgtgttcaa	aacgctttgg	ttcatctaag	tggaaattaag	ttagcaccga	2040
	aaggcgaggc	caagacagta	gagcaagagg	ttgcgaaag	ttcagttct	gaaggggagc	2100
5	tgccaaggcca	tatggataca	aaacatata	agcgaatacc	gatggcatca	gaggaggctc	2160
	agaccgtaag	ccaacactta	cacgcaggaa	acctctctga	actgggtaat	ttaacaata	2220
	tgaaccgaga	cttagcttc	catttgttga	gagaagtctc	tgattatttt	cgcagagcg	2280
	aaccgcata	cccaatttca	tttttgttag	aaaaagcgat	tcgatgggga	tatttatcct	2340
	tacctgagtt	gctgcgagaa	atgatgtcgg	aacaaaacgg	tgacgcttct	agtacgattt	2400
10	ttaatgccgc	cggattgaat	catctcgatc	aggtttgct	gccggagtg	agtactccaa	2460
	cggtgtggcat	tgaaagcccc	caaacacctc	aagcgaagcc	ttccgttgc	gatccgcgaa	2520
	gtgttgaaga	gcatgtatct	cagacttccc	ctgtagatac	ccaatctaag	caagatcaaa	2580
	aaccacaatc	atccgcta*s	drbcgtcggc	tctgagttgg	taattgtt	taaaaaataa	2640
	ggaaaaatca	tggcaagtat	ttacatgcgt	gtaagcggtc	ttcaagttga	ggcgcagcg	2700
15	actatcggtc	agctagaaaac	ggctgaaggt	aaaaatgacq	gttggttgc	aatcaactt	2760
	tactcttggg	gtggcgtcg	taacgttgc	atggacatcg	gtaacggcac	caatgcggat	2820
	tcaggcatgg	ttggcgttaag	cgaagttagc	gtaactaaag	aagtgcgttgc	tgcttctgaa	2880
	gacctactgt	cttattttt	caacccaggt	aaagacggta	aaactgttga	ggttgcattt	2940
	actaaggcctt	ctaacgatgg	tcaaggtgca	gacgtttact	tccaaagtta	gctagaaaaaa	3000
20	gacgtttag	tttcttacaa	cgtgagcggg	actgacggat	ctcaaccgtt	cgagagccta	3060
	tctctttctt	acacttctat	ttctcagaag	catcaactatg	agaaaagaagg	ttgtgaacta	3120
	caaagcggtt	gtgttgtgac	ttacgaccta	ccgaccggga	aaa*tgactt	ctgttaagta	3180
	attctttcat	tagacatgcc	acgttaattt	gcatgtctat	ttcatgaata	tctcsdrat	3240
	tttaggacac	cgttatggca	ttgaactcac	aacataagcg	cgtttagtaag	aaccgtgtca	3300
25	gcatcaccta	tgacgttgaa	acgaatggcg	ccgtaaagac	gaaagagctg	ccgtttgttg	3360
	ttggcgtcat	tggcgacttt	tcaggacaca	aaccagaatc	agaaaaagtt	gatttagaaag	3420
	agcgagagtt	cacgggtatc	gataaaagaca	acttcgatac	agtgtatgggg	caaattcacc	3480
	cgcgttttc	gtacaagggtt	gataacaagc	ttgtaatga	tgatagccag	tttgaagtga	3540
30	acttgagcct	ccgttcgtat	aaagatttcc	acccagagaa	tttagttgat	naaatttgagc	3600
	cccttaaaag						3609

<210> 2
<211> 463
<212> PRT
<213> V. Anquillarum

<400> 2
Met Pro Leu Ser Lys His Gln Ile Glu Gln Leu Ser Lys Pro Leu Ser
1 5 10 15

Asp Asp Ser Ile Cys Gly Val Tyr Leu Lys Leu Glu Lys Ser Ala Phe
 20 25 30

45 Arg Pro Leu Arg Asn Glu Phe Asn Val Ala Gln Thr Ala Leu Arg Lys
35 40 45

Leu Ser Gln Asn Pro Ser Ala Asp Glu Arg Asp Ala Leu Gln Glu Ala
50 55 60

50 Cys Leu Asn Lys Trp Lys Ile Leu Ser Asp Ser Leu Tyr Glu Gln Phe
65 70 75 80

Ser Lys Thr Thr Arg Asp Ile Glu Leu Ile Ser Trp Phe Val Ala Ala
85 90 95

Gln Phe Leu Leu Asp Thr Thr Leu Glu Ser Ala Ala Asn Ser Leu Glu

	100	105	110
	Trp Leu Ala Asp Leu Ser Glu Lys His Trp Asp His Leu Asn Pro Val		
	115	120	125
5	Leu Pro Val Glu Thr Leu Lys Ser Asp Asp Asp Lys Gly Lys Glu Arg		
	130	135	140
	Glu Gln Ala Asp Ala Lys Val Lys Ala Phe Phe Gln Leu Val Gly Asp		
10	145	150	155
	Ser Glu Glu Ser Ser Ile Leu Tyr Ala Pro Val Leu Gln Leu Pro Leu		
	165	170	175
	Val Gly Glu Val Thr Phe Phe Asp Phe Gln Ser Ala Glu Arg Lys Gly		
15	180	185	190
	Glu Ile Ser Gln Leu Lys Ser Met Leu Thr Thr Val Ala Gln Glu		
	195	200	205
20	Arg Phe Ala Ile Gln Phe Lys Met Glu Asn Ala Lys Arg Cys Val Thr		
	210	215	220
25	Gln Leu Asp Arg Leu Ser Ala Leu Val Ser Thr Lys Cys His Ser Leu		
	225	230	235
	Gly Ser Gln Ser Thr Asn Phe Gly Phe Ala Lys Ser Leu Leu Thr Arg		
	245	250	255
30	Val Glu Asn Ala Leu Val His Leu Ser Gly Ile Lys Leu Ala Pro Lys		
	260	265	270
35	Ala Glu Ala Lys Thr Val Glu Gln Glu Val Ala Glu Ser Ser Val Ser		
	275	280	285
	Glu Gly Glu Leu Pro Ser His Met Asp Thr Lys His Ile Glu Arg Ile		
	290	295	300
40	Pro Met Ala Ser Glu Gln Ala Gln Thr Val Ser Gln His Leu His Ala		
	305	310	315
	Gly Asn Leu Ser Glu Leu Gly Asn Leu Asn Asn Met Asn Arg Asp Leu		
	325	330	335
45	Ala Phe His Leu Leu Arg Glu Val Ser Asp Tyr Phe Arg Gln Ser Glu		
	340	345	350
	Pro His Ser Pro Ile Ser Phe Leu Leu Glu Lys Ala Ile Arg Trp Gly		
	355	360	365
50	Tyr Leu Ser Leu Pro Glu Leu Leu Arg Glu Met Met Ser Glu Gln Asn		
	370	375	380
55	Gly Asp Ala Leu Ser Thr Ile Phe Asn Ala Ala Gly Leu Asn His Leu		
	385	390	395
	Asp Gln Val Leu Leu Pro Glu Val Ser Thr Pro Thr Val Gly Ile Glu		

	405	410	415
	Ser Pro Gln Thr Pro Gln Ala Lys Pro Ser Val Ser Asp Pro Arg Ser		
	420	425	430
5	Val Glu Glu His Val Ser Gln Thr Ser Pro Val Asp Thr Gln Ser Lys		
	435	440	445
	Gln Asp Gln Lys Pro Gln Ser Ser Ala Thr Ser Ala Leu Ser Trp		
10	450	455	460
	<210> 3		
	<211> 176		
15	<212> PRT		
	<213> V. Anguillarum		
	<400> 3		
	Met Ala Ser Ile Tyr Met Arg Val Ser Gly Leu Gln Val Glu Gly Ala		
20	1	5	10
	Ala Thr Ile Gly Gln Leu Glu Thr Ala Glu Gly Lys Asn Asp Gly Trp		
	20	25	30
25	Phe Ala Ile Asn Ser Tyr Ser Trp Gly Gly Ala Arg Asn Val Ala Met		
	35	40	45
	Asp Ile Gly Asn Gly Thr Asn Ala Asp Ser Gly Met Val Gly Val Ser		
30	50	55	60
	Glu Val Ser Val Thr Lys Glu Val Asp Gly Ala Ser Glu Asp Leu Leu		
	65	70	75
	80		
35	Ser Tyr Leu Phe Asn Pro Gly Lys Asp Gly Lys Thr Val Glu Val Ala		
	85	90	95
	Phe Thr Lys Pro Ser Asn Asp Gly Gln Gly Ala Asp Val Tyr Phe Gln		
	100	105	110
40	Val Lys Leu Glu Lys Ala Arg Leu Val Ser Tyr Asn Val Ser Gly Thr		
	115	120	125
	Asp Gly Ser Gln Pro Tyr Glu Ser Leu Ser Leu Ser Tyr Thr Ser Ile		
45	130	135	140
	Ser Gln Lys His His Tyr Glu Lys Glu Gly Gly Glu Leu Gln Ser Gly		
	145	150	155
	160		
50	Gly Val Val Thr Tyr Asp Leu Pro Thr Gly Lys Met Thr Ser Gly Lys		
	165	170	175
	<210> 4		
	<211> 117		
	<212> PRT		
55	<213> V. Anguillarum		
	<220>		

<223> "Xaa" may be any, other or unknown amino acid

<400> 4

Met Ala Leu Asn Ser Gln His Lys Arg Val Ser Lys Asn Arg Val Ser
5 1 5 10 15

Ile Thr Tyr Asp Val Glu Thr Asn Gly Ala Val Lys Thr Lys Glu Leu
20 25 30

10 Pro Phe Val Val Gly Val Ile Gly Asp Phe Ser Gly His Lys Pro Glu
35 40 45

Ser Glu Lys Val Asp Leu Glu Glu Arg Glu Phe Thr Gly Ile Asp Lys
50 55 60

15 Asp Asn Phe Asp Thr Val Met Gly Gln Ile His Pro Arg Leu Ser Tyr
65 70 75 80

20 Lys Val Asp Asn Lys Leu Ala Asn Asp Asp Ser Gln Phe Glu Val Asn
85 90 95

Leu Ser Leu Arg Ser Met Lys Asp Phe His Pro Glu Asn Leu Val Asp
100 105 110

Xaa Ile Glu Pro Leu
115