

Machine Learning for Cyber Security Part 1

Dr Carlos Moreno Garcia

c.moreno-garcia@rgu.ac.uk

Senior Lecturer in Computing

Robert Gordon University, Aberdeen, Scotland, UK

1. Introduction

Objectives

Understand the main principles of Machine Learning (ML)

 Be exposed to the most relevant tools used in academia and the industry to implement ML-based solutions

 Comprehend a series of real cases where ML is used to solve cybersecurity problems

- 2005-2010: Bachelor of Electronic Engineering (Major in Telecommunications)
 - Tec de Monterrey, Mexico City
- 2010-2012: Teacher/Researcher
 - Research group: Centro de Investigación en Mecánica y Biodiseño (Prof. Rogelio Bustamante)
 - Tec de Monterrey, Mexico City
- 2012-2013: Ms C. Cyber Security and Intelligent Systems
 - Universitat Rovira i Virgili, Tarragona, Spain
- 2013-2016: Ph. D. Computer Science and Mathematics of Security
 - Research group: Sistemas Sensoriales Aplicados a la Industria (Prof. Francesc Serratosa)
 - Universitat Rovira i Virgili, Tarragona, Spain
- 2017-2018: Research Fellow in Computing
 - Research w/ Dr Eyad Elyan and Prof Chrisina Jayne (Industrial collaboration with DNV GL)
 - Robert Gordon University, Aberdeen, UK
- 2018: Lecturer in Computing
 - Placements and Electives Coordinator
 - Robert Gordon University, Aberdeen, UK
- 2020: Senior Lecturer in Computing
 - Research Degrees Coordinator
 - Robert Gordon University, Aberdeen, UK

Main Achievements

- Published 57 scientific papers in international journals and conferences
- Two patents and several prototypes
- Worked with multiple academic partners:
 - UNAM
 - IPN
 - Tec de Monterrey
 - IMP
 - University of Utah
 - University of Munster
 - Taylors's University (Malaysia)
- Collaboration with the industry:
 - Energy sector: DNV GL, Equinor (Statoil), Total, Baker, AISUS, Mintra Group, etc.
 - Healthcare: NHS, ISSSTE
- EuDIF (RedGlobalMX and Google)

Event	Equip	Size	Number
JDY/CELLAR/RJAS/W	Piping	16	
JDY/CELLAR/RJAS/W	Act. Valve	16	0.5
JDY/CELLAR/JASIN/W	Piping	16	
JDY/CELLAR/JASIN/W	Act. Valve	16	0.5
JDY/PROC/JASIN/W	Piping	16	
JDY/PROC/JASIN/W	Act. Valve	16	2
JDY/PROC/JASIN/W	Flange	16	7
JDY/PROC/JASIN/W	Piping	6	
JDY/PROC/JASIN/W	Man Valve	16	3
JDY/PROC/JASIN/W	Piping	2	
JDY/PROC/JASIN/W	Flange	2	2
JDY/PROC/JASIN/W	Inst. Con.	2	2
JDY/PROC/JASIN/W	Man Valve	6	0.5

Where am !!?

How did I get "here"?

MSc Cyber Security John Mccain JohnMccain Barack Obama Barack Obama Bill Gate Bill Clinton **Networks Biometrics**

2. Fundamentals of ML

Go to www.menti.com and use the code you see on the screen

What is ML?

- "Machine learning is the scientific study of algorithms and statistical models that computer systems
 use to perform a specific task without using explicit instructions, relying on patterns and inference
 instead." Wikipedia
- "Machine learning at its most basic is the practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world." — Nvidia
- "Machine learning is the science of getting computers to act without being explicitly programmed."
- Stanford
- Our working definition, it's the statistical discrimination, where the "machine" itself learns the discriminator (mathematical models) using the provided data

What is ML?

- Artificial Intelligence: Whole knowledge field
- Machine Learning: An important part of AI, but not the only one
- Neural Networks: One of popular machine learning types
- Deep Learning: A modern way of building, training and using NN. A new architecture

Why ML?

- Imagine you need to buy a house
 - Searched all over, newly built (£400k), year old (£380k), 2-year old (£360), 3- year old (£340), and so on.
 - Price drops by 20k every year, but no less than 100k!
 - Predict the price based on known historical data (regression)
 - But its not that simple, different dates, #bed rooms, present condition, location, seasonal demand spikes, etc
 - How many hidden factors there to determine the house price?
 - An average human can't find these patterns!
- Machine copes with this task much better than a human

How ML fits in Cyber Security?

- Monitoring (user/systems)
 activities to search for known
 attacks and/or suspicious activities
- Signature/misuse based detection
 - Contain a database of recognised attacks
 - Activity is compared with signature database
 - Zero Day go undetected!

How ML fits in Cyber Security?

- Anomaly/behaviour based
 - Use tools borrowed from Machine Learning (ML)
 - Assumption → behaviour differ
 - Have a notion of normal activity
 - Learnt from previously seen benign activities
 - High false positive rate!

ML Components

- Goal: Predict results based on incoming data:
- 1. Training data
 - Want forecast stocks? Find the price history
 - Want to detect spam? Find samples of spam/nonspams
- . How to gather?
 - Manual (accurate, expensive) and automatic (cheaper)
 - . Google use their customers to label data
- Collecting a good quality dataset is extremely difficult
 - Garbage in, garbage out
 - Companies may be happy to reveal algorithms, but not the data!

ML Components

2. Features

- Individual measurable characteristic, factors for a machine to look at
 - Organised in a table, features are column names
- Choosing right features is a crucial
 - Informative, discriminating and independent
- Domain knowledge is essential here

3. Algorithms

- Multiple algorithms for one problem (spot-check different algorithms)
- The method you choose affects the precision, performance, and size of the final model
- . If the data is bad, even the best algorithm won't help!

Types of Data

- Structured
 - Easily mapped to identifiable column headers
- Unstructured
 - Cannot be mapped
- Semi-structured
 - A mix
- Labelled
 - Contains tags
- Unlabelled
 - Doesn't

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit
1000025	5	1	1	1	2	1	3	1	1
1002945	5	4	4	5	7	10	3	2	1
1015425	3	1	1	1	2	2	3	1	1
1016277	6	8	8	1	3	4	3	7	1
1017023	4	1	1	3	2	1	3	1	1
1017122	8	10	10	8	7	10		7	1
1018099	1	1	1	1	2	10	3	1	1
1018561	2	1	2	н	2	1	3	1	1
1033078	2	1	1	1	2	1	1	1	5
1033078	4	2	1	1	2	1	2	1	1

3.1. Tools for ML

Go to www.menti.com and use code the code you see on the screen

Types of Programming Languages

Why to Use High-Level?

- Widely used
- Huge growing ecosystems
- Industry is on board!
- Data-driven
- Leads to dashboards

- CONS: Speed
 - May be crucial in CyberSec, but there are ways to solve it

Why ML Top Programming Languages

TIOBE Index

Jul 2023	Jul 2022	Change	Programming Language		Ratings	Change
1	1			Python	13.42%	-0.01%
2	2		9	С	11.56%	-1.57%
3	4	^	G	C++	10.80%	+0.79%
4	3	•	(Java	10.50%	-1.09%
5	5		8	C#	6.87%	+1.21%
6	7	^	JS	JavaScript	3.11%	+1.34%
7	6	•	VB	Visual Basic	2.90%	-2.07%
8	9	^	SQL	SQL	1.48%	-0.16%
9	11	^	php	РНР	1.41%	+0.21%
10	20	*		MATLAB	1.26%	+0.53%

TIOBE Index

44	40	^	•	Farture	4.050/	.0.400/
11	18	*	F	Fortran	1.25%	+0.49%
12	21	*		Scratch	1.07%	+0.35%
13	12	~	-GO	Go	1.07%	-0.07%
14	8	*	ASM	Assembly language	1.01%	-0.64%
15	14	v	(3)	Delphi/Object Pascal	0.98%	-0.08%
16	15	~	a	Ruby	0.91%	-0.08%
17	29	*	₿	Rust	0.89%	+0.47%
18	10	*		Swift	0.88%	-0.39%
		<u> </u>				
19	19		R	R	0.87%	+0.11%
20	26	*	***	COBOL	0.86%	+0.33%

IEEE

Rank	Language	Type			Score
1	Python~	#	Ţ	0	100.0
2	Java	#	Ţ		95.4
3	C~		Ţ	0	94.7
4	C++~		Ţ	0	92.4
5	JavaScript ~	#			88.1
6	C#~	#	Ţ	0	82.4
7	Rv		Ţ		81.7
8	Gov	#	Ţ		77.7
9	HTML~	#			75.4
10	Swift-		Ģ		70.4

https://spectrum.ieee.org/top-programming-languages/

Top paying technologies

https://insights.stackoverflow.com/survey/2021

How they connect?

https://insights.stackoverflow.com/survey/2019

What are R and Python?

 Open-source programming language for statistical analysis, graphics, data science and machine learning.

 Command-line based, however, complementary tools provide a friendly user interface(s).

Will require you to learn both syntax and semantics.

What do we use them for?

Exploratory and statistical data analysis.

Visualisation and graphics.

Data preparation (data wrangling).

Machine learning and modelling.

Why these tools?

- Free.
- Easy to use.
- Have packages for everything.
- Have great online support community.
- Statistics tools AND programming languages.
- Available across platforms.
- Similar to MATLAB.
- Robust for visualisations.
- You can produce reports of your work easily.

How to Install?

- 1. Download R
- http://cran.r-project.org/
- 2. Download RStudio (IDE)
- http://www.rstudio.com
- 3. Download Python
- https://www.python.org/downloads/
- 4. Download an IDE
- https://www.spyder-ide.org/
- https://www.jetbrains.com/pycharm/
- https://jupyter.org/

OR Download Anaconda!

https://www.anaconda.com/

Open Source ecosystems for Data Science

Where to Learn?

- Coursera
 - https://www.coursera.org/

- Datacamp
 - https://www.datacamp.com/
- RGU offers online short courses!
 - https://www.rgu.ac.uk/study/courses/3274-introduction-to-data-science-with-python-15-credits-at-scqf-level-9

3.2. Demo of Python and R

- R in RStudio
- Python in
 - Console
 - Spyder
 - PyCharm
 - Jupyter Notebook
 - Rise Slides

3.3. Demo of Online Notebook Platforms

- Google Colab (mostly for Python)
- Kaggle (both, plus a great data source)
- HuggingFace

4.1 Types of ML

(Main) Types

Supervised

- Learn from labelled data, used to classify or predict
- e.g. object recognition systems, spam detectors

Unsupervised

- Initial data is not labelled, insights are drawn by processing data (structure is unknown in advance), clustering, association, anomaly detection.
- e.g. user behaviour analysis, market basket analysis

Reinforcement

- No supervisor, only a reward signal is used for an agent to determine if they are doing well or not
- Type of dynamic programming, system learns from its environment, maximises the gain
- Reward, no training data involved, learns on the go via trial and errors (rewards and punishments)
- e.g. self driving cars to navigate through the traffic https://www.youtube.com/watch?v=W2CAghUiofY&feature=emb-logo

(More) Types

- Semi-Supervised
 - Initial training data is incomplete, both labelled and unlabelled data are used in the training
- Deep
 - Neural networks (NN) with number of hidden layers Back-propagation to train deep neural nets
- Active
 - User constantly feeds algorithm with labels
 - Used for NLP tasks (systematic reviewing)
- Imitation
 - Used mostly in robotics

Solving a problem using ML logic

Feature 1

K Nearest Neighbours (KNN)

- Classified by a majority vote of neighbours
 - K is an integer specified by human
 - Non-parametric algorithm not making any assumption on data distribution
 - Lazy algorithm does not really learn any model and make generalisation of the data
- Advantages: Simple to implement, robust to noisy training data, and effective if training data is large
- Disadvantages: Need to determine the value of K computation cost is high

R CODE

Decision Tree

- Simplest and easiest classification model
- Supervised Machine Learning
- Segment the predictor space into multiple regions
- Each region has only a subset of the training dataset
- High variance → Small change in the training data can give an entirely different decision trees model
- Led to better classifiers → Random Forests

Naïve Bayes (NB)

- Probabilistic classifier inspired by the Bayes theorem
- Assumes attributes are conditionally independent
- Advantages: small amount of training data required, extremely fast
- Disadvantages: zero probability problem, if the conditional probability is zero for a particular attribute ...
- "Hard" to understand, simple to implement

```
x <- cbind(x_train,y_train)
fit <-naiveBayes(y_train ~ ., data = x)
predicted= predict(fit,x_test)</pre>
```


Support Vector Machine (SVM)

- Discriminative classifier defined by a separating hyperplane
- Tuning parameters in SVM classifier
 - Kernel transformation method, e.g. Polynomial and exponential kernels
 - Regularization how much to avoid misclassifying each training example
 - Gamma how far the influence of a single training example reaches, high gamma → only nearby examples
- A margin in SVM is a separation of line to the closest class points
 - Good margin is one where this separation is larger for both the classes

x <- cbind(x_train,y_train)
fit <-svm(y_train ~ ., data = x)
predicted= predict(fit,x_test)</pre>

Neural Network (NN)

- Each "neuron" is trained to be activated/deactivated given certain weights and biases
- Multiple neurons work together to solve a multi-variable problem
- If more layers are added to the NN model, second-order relations can be discovered
- There are "easy models" that can be implemented in three lines of code, but if you want to do it properly, you need to be more skilled!

Clustering (unsupervised) with K Means

- Not to be confused with KNN!
- Two main steps:
 - 1. Cluster assignment
 - 2. Centroid recalculation

Example

https://www.youtube.com/watch?v=Ao2vnhelKhl

1. Select the number of clusters & randomly initialise k centroids.

https://www.youtube.com/watch?v=Ao2vnhelKhI

2. Assign each data point to a cluster (red or blue) according to the minimum distance to a centroid.

https://www.youtube.com/watch?v=Ao2vnhelKhI

3. Compute the mean of each cluster and *move the centroid* to that position.

https://www.youtube.com/watch?v=Ao2vnhelKhI

4. Compute a new set of clusters based on the new centroids.

https://www.youtube.com/watch?v=Ao2vnhelKhl

5. Iterate until clusters don't change (convergence).

https://www.youtube.com/watch?v=Ao2vnhelKhl

4.2 Practical Example (Iris)

Link to online Jupyter Notebook:

https://colab.research.google.com/drive/1gDVOrqs3d3Ycb7X2wY7XC9oCMsKzb0j7?usp=sharing

5. Evaluating ML

Evaluating ML

 Now that we know how to implement (basic) ML algorithms, we need to assess their effectiveness

Accuracy is **not** the only way!

There are numerous metrics that help us understand how well our algorithms are performing

Train
Validation
Test

Over/Under Fitting

Assume we want to fit a regression to a series of observations:

Assuming a binary scenario

- True Positives (TP)
 - This is what many people think accuracy is (but it's not!)
 - Samples from the positive class that are classified correctly
- True Negatives (TN)
 - How many samples from the negative class are NOT classified as being from the positive one
- False Positives (FP)
 - How many samples from the negative class are classified as being from the positive class
 - Also known in statistics as False Alarms or Type I Error
- False Negatives (FN)
 - How many samples from the positive class are classified as being from the negative class
 - Also known in statistics as Type II Error

So what is the accuracy?

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Value between 0 and 1

• Not a suitable metric for **imbalanced** scenarios

Why?

Precision and Recall

 These metrics focus on the balance between the relevant and irrelevant elements

 Consider if the positive case is easy to find

Precision

$$Precision = \frac{TP}{TP + FP}$$

•How much of what I have I need?

How many selected items are relevant?

Recall

$$Recall = \frac{TP}{TP + FN}$$

•How much of what I need I have?

How many relevant items are selected?

F1-score

Harmonic mean between precision and recall

Helps gauge both

$$F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} = \frac{2 \times TP}{(2 \times TP) + FP + FN}$$

There are different interpretations and variations

Confusion Matrix

Confusion Matrix

		Actual class	
		Cat	Non-cat
Predicted	Cat	5 True Positives	2 False Positives
	Non-cat	3 False Negatives	3 True Negatives

Multiclass

- There are many ways to adapt the aforementioned metrics to these scenarios, the most common one being the **One vs All** approach
 - Comparing a metric of one class against the rest as if these were a single class
- Considering that you can still calculate precision, recall and F1-score for each class (against the rest), another commonly used approach is macro/weighted/micro metrics:
 - Macro: Arithmetic mean
 - Weighted: multiply each by number of sample
 - Micro: Harmonic mean → accuracy

6. Final Considerations

Final Considerations

- Runtime
 - Not very academic, but HUGELY important in practice!
- How "green" is my algorithm?
 - https://medium.com/codex/what-are-the-greenest-programming-languages-e738774b1957
- How "ethical" is my algorithm
 - Data privacy
 - Jobs that it will take/create?
- Check that our algorithms are NOT racist!
 - https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-technology/
- End of days!
 - ChatGPT
 - Dall-E

```
import time

t = time.perf_counter()

# do stuff

x=0

for i in range(1000):
    x=x+i

# stuff has finished
print('Elapsed time: ',time.perf counter() - t)
```


"Homework"

- Review the classical concepts of programming
 - Data structures (string, int, Boolean, etc)
 - Conditional (if/else, while, for)
 - Creating functions

- Get familiar with Python and/or R
 - Do a course according to your level
 - Practice!
 - https://www.w3schools.com/python/python exercises.asp
 - https://projecteuler.net/