CRYPTOGRAPHY

PRATIKSHA PATIL

CONTENTS

- Introduction
- Need of Cryptography
- Types of Attacks
- Techniques of Cryptography
- Encryption Algorithm
 - Symmetric
 - Asymmetric
- Digital Signature
- Visual cryptography

INTRODUCTION

• What is Cryptography?

- "Hidden Writing"
- Mainly used to protect Information.

NEED OF ENCRYPTION

- Confidentiality
- Integrity
- Authentication
- Nonrepudiation
- Access Control
- Availability

TYPES OF ATTACKS

- A General View:
- Criminal attacks
- Publicity attacks

- Passive attacks
- Modification
- 3. Fabrication

- A Practical Side of Attacks:
- Application level
- Network level
- Programs that Attack:
- Virus(infects)
- Worm (replicates)
- Trojan (hidden)
- 4. Applets and Active X controls (downloadable)

BASIC TERMINOLOGIES

Encryption

 Encryption is the process of encoding a message so that its meaning is not obvious

Decryption

 Decryption is the reverse process, transforming an encrypted message back into its normal, original form

Cryptosystem

A system for encryption and decryption is called a cryptosystem.

BASIC TERMINOLOGIES

- Plaintext
- Cipher text

- o Key -
 - key refers to a sequence of symbols or a numerical value used by an algorithm to alter information & making that information secure

Encryption algorithm

 The cryptosystem involves a set of rules for how to encrypt the plaintext and how to decrypt the cipher text.

Cryptanalysis

Cryptanalysis is an attempt to break the cipher text.

TECHNIQUES OF CRYPTOGRAPHY

- □ Substitution Technique
 - Caesar Cipher
 - Monoalphabetic Cipher
 - Playfair Cipher
 - Polyalphabetic Cipher
- □ Transposition Technique
 - Rail Fence Technique
 - Vernam Cipher(One -time Pads)
 - Simple Columnar Cipher

ENCRYPTION ALGORITHM

- Symmetric
 - Same key for encryption and decryption
 - Key distribution problem
- Asymmetric
 - Key pairs for encryption and decryption
 - Public and private keys

SYMMETRIC ALGORITHM

- It is also called as Secret Key Cryptography
 - Single key used for both encrypt & decrypt
 - Key must be known to both the parties

Symmetric Cryptosystem

ASYMMETRIC ALGORITHM

- Private keys are used for decrypting.
- Public keys are used for encrypting

SYMMETRIC ALGORITHM

Data Encryption Standard (DES):
 56 bits key

Advance Encryption Standard (AES):

128, 192 or 256 bits key

International Data Encryption Algorithm(IDEA):

128 bits key

DATA ENCRYPTION STANDARD

- Developed by IBM and it is known as the Data Encryption Standard
- It is also known as Data Encryption Algorithm
- The DES algorithm is a careful and complex combination of two fundamental building blocks of encryption:
 - Substitution and
 - Transposition
- DES uses only standard arithmetic and logical operations on numbers up to 64 bits long

BROAD LEVEL STEPS IN DES

DATA ENCRYPTION STANDARD

- 1st 64 bit plain text is handed over to initial permutation function.
- IP is performed over the plain text.
- IP produces two halves of the permuted blocks left plain text (LPT) & right plain text (RPT).
- Now LPT & RPT goes 16 rounds of encryption process, each with its own key.
- Now LPT & RPT are rejoined and FINAL PERMUTATION (FP) is performed on the combined block.
- The result is 64 bit cipher text.

DETAILS OF ONE ROUND IN DES

ADVANTAGES OF DES:

- DES is also an ANSI and ISO standard anybody can learn the details and implement it.
- Hard to crack.

DISADVANTAGES OF DES:

Software implementations of DES are slow.

ASYMMETRIC ALGORITHM

Rivest Shamir Adleman (RSA) Encryption:

Based on factoring the product of large prime numbers.

o Knapsack Algorithm:

If M1,M2..., Mn are given values & S is the sum, S=b1M1+b2M2....+bnMn where, bi can be 0 or 1

RSA

- It is named after its three inventors **R**ivest Shamir and **A**dleman
- This algorithm was introduced in 1978 and to date remains secure.
- RSA has been the subject of extensive cryptanalysis, and no serious flaws have yet been found.
- The encryption algorithm is based on the underlying problem of factoring large numbers.

GENERATING PUBLIC AND PRIVATE KEYS

- pick two prime numbers, we'll pick p = 3 and q =
 11
- 2. calculate n = p * q = 3 * 11 = 33calculate z = (p - 1) * (q - 1) = (3 - 1) * (11 - 1) = 20
- 3. choose a prime number k, such that k is co-prime to z, i.e, z is not divisible by k. We have several choices for k: 7, 11, 13, 17, 19 (we cannot use 5, because 20 is divisible by 5). Let's pick k=7
- 4. So, the numbers n = 33 and k = 7 become the Server's public key.

- Now, still done in advance of any transmission, the Server has to calculate it's secret key. Here is how.
- 2. $k * j = 1 \pmod{z}$
- 3. $7 * j = 1 \pmod{20}$
- 4. (7 * j) / 20 = ? with the remainder of 1
- 5. 21 / 20 gives "something" with the remainder of 1. So, 7 * j = 21, and j = 3. This is our secret key.

Encrypting the message

Here is the encryption math that Browser executes.

$$P \wedge k = E \pmod{n}$$

P is the Plain message we want to encrypt n and k are Server's public key

E is our Encrypted message we want to generate

After plugging in the values, this equation is solved as

follows:

$$14 \land 7 = E \pmod{33}$$

This equation says: raise 14 to the power of 7, divide this by 33, giving the remainder of E.

$$3194348 * 33 = 10541348$$

$$E = 105413504 - 10541348 = 20$$

• So, our Encrypted message is E=20. This is now the value that the Browser is going to send to the Server. When the Server receives this message, it then proceeds to Decrypt it, as follows.

Decrypting the Message

Here is the decryption math the Server executes to recover the original Plain text message which the Browser started with.

$$E \wedge j = P \pmod{n}$$

E is the Encrypted message just received

j is the Server's secret key

P is the Plain message we are trying to recover

n is Server's public key

After plugging in the values:

$$20 \land 3 = P \pmod{33}$$

8000 / 33 = ? with the remainder of P. So to calculate this remainder:

$$8000 / 33 = 242.424242...$$

P = 8000 - 7986 = 14, which is exactly the Plain text message that the Browser started with!

DIGITAL SIGNATURE

 When an author signs a document, it cannot be changed.

 When you send a document electronically, you can also sign it.

Signing the digest

- The two most common hash functions are:
 - Message digest 5 (MD5)
 - Secure hash algorithm (SHA-1)
- The properties of hash function
 - One-way: the digest can only be created from the message, but not vice versa
 - One-to-one: be very difficult to find two messages that create the same digest.

Sender site

Receiver site

WEB SECURITY

- Web now widely used by business, government, individuals
- but Internet & Web are vulnerable
- have a variety of threats
 - integrity
 - confidentiality
 - denial of service
 - authentication
- need added security mechanisms

SSL (SECURE SOCKET LAYER)

- transport layer security service
- originally developed by Netscape
- uses TCP to provide a reliable end-to-end service

3

SSL Handshake Protocol

- o allows server & client to:
 - authenticate each other
 - to negotiate encryption
 - to negotiate cryptographic keys to be used
- o comprises a series of messages in phases
 - Establish Security Capabilities
 - Server Authentication and Key Exchange
 - Client Authentication and Key Exchange
 - Finish

Overview of Visual Cryptography

The basis matrices and the collections of the encoding matrices in the conventional (2,2) scheme can be written as:

$$S^{0} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad S^{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$C_{0} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \right\}$$

$$C_{1} = \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

IMPLEMENTATION

pixel		share #1	share #2	superposition of the two shares
	p = .5 $p = .5$			
1	p = .5 p = .5			

FIG₁

$$C_0 = \{ \begin{bmatrix} 01\\01 \end{bmatrix} \begin{bmatrix} 10\\10 \end{bmatrix} \}$$
 $C_1 = \{ \begin{bmatrix} 01\\10 \end{bmatrix} \begin{bmatrix} 10\\01 \end{bmatrix} \}$

2 OUT OF 2 SCHEME (4 SUB PIXELS)

• 6 ways to place two black subpixels in the 2 x 2 square

2 out of 2 Scheme (4 subpixels)

2 out of 2 Scheme (4 sub pixels)

EXAMPLE OF TWO-OUT-OF-TWO VC SCHEME:

#
WELCOME
TO
KIT'S COE
KOLHAPUR
#

(b)

(a)

(c) (d)

HALFTONE VISUAL CRYPTOGRAPHY

- 1. The halftoning technique is used to convert the gray-scale image into the binary image.
- 2. The methods of halftoning that we are going to use are **Error Diffusion** and **Direct Binary Search**.

BACKGROUND HALFTONE VISUAL CRYPTOGRAPHY

Replacing the secret information pixels with the corresponding subpixels in a matrix M, which is randomly selected as (a), (b) from C_0 if p=0, or (c), (d) from C_1 if p=1. The secret pixel p can be visually decoded by superimposing the two shares.

Assign the values of all SIPs

underlying VC scheme

Distributions of SIPs

Construction of a two-out-of-two scheme. Cell size is Q=4.

ER

$$\frac{1}{16} \times \begin{array}{|c|c|c|c|c|} \hline & \bullet & 7 \\ \hline & 3 & 5 & 1 \\ \hline \end{array}$$

Floyd–Steinberg error filter. \bullet indicates the current pixel. The weights are given by: $h(0,1)=7/16,\,h(1,-1)=3/16,\,h(1,0)=5/16,$ and h(1,1)=1/16.

ERROR DIFFUSION

HVC VIA ERROR DIFFUSION

Block diagram of HVC using method 1. Depending on the secret image and VC scheme chosen, the SIP assignment block outputs the SIPs. If $g_i(m,n)$ is an SIP, its value is prefixed. Otherwise, $g_i(m,n)$ is determined by the output of the thresholding block.

THANK YOU