Week 01b: Analysis of Algorithms

Analysis of Algorithms

Running Time

2/87

An algorithm is a step-by-step procedure

- for solving a problem
- in a finite amount of time

Most algorithms map input to output

- running time typically grows with input size
- average time often difficult to determine
- Focus on worst case running time
 - o easier to analyse
 - o crucial to many applications: finance, robotics, games, ...

Empirical Analysis

3/87

- 1. Write program that implements an algorithm
- 2. Run program with inputs of varying size and composition
- 3. Measure the actual running time
- 4. Plot the results

Limitations:

- requires to implement the algorithm, which may be difficult
- results may not be indicative of running time on other inputs
- same hardware and operating system must be used in order to compare two algorithms

Theoretical Analysis

4/87

- Uses high-level description of the algorithm instead of implementation ("pseudocode")
- Characterises running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode 5/87

Example: Find maximal element in an array

... Pseudocode 6/87

Control flow

```
if ... then ... [else] ... end if
while .. do ... end while
repeat ... until
for [all][each] .. do ... end for
```

Function declaration

• f(arguments): Input ... Output ...

Expressions

- = assignment
- equality testing

- n² superscripts and other mathematical formatting allowed
- swap A[i] and A[j] verbal descriptions of simple operations allowed

... Pseudocode 7/87

- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Exercise #1: Pseudocode

8/87

Formulate the following verbal description in pseudocode:

To reverse the order of the elements on a stack S with the help of a queue:

- 1. In the first phase, pop one element after the other from S and enqueue it in queue Q until the stack is empty.
- 2. In the second phase, iteratively dequeue all the elements from Q and push them onto the stack ASSIGNMENT Project Exam Help

As a result, all the elements are now in reversed order on S.

https://tutorcs.com

Sample solution:

```
while S is not empty dechat: cstutorcs
pop e from S, enqueue e into Q
end while
while Q is not empty do
dequeue e from Q, push e onto S
end while
```

Exercise #2: Pseudocode

10/87

Implement the following pseudocode instructions in C

1. A is an array of ints

```
swap A[i] and A[j]
```

2. S is a stack

```
\ldots swap the top two elements on S \ldots
```

```
    int temp = A[i];
        A[i] = A[j];
        A[j] = temp;
    x = StackPop(S);
        y = StackPop(S);
        StackPush(S, x);
        StackPush(S, y);
```

The following pseudocode instruction is problematic. Why?

```
swap the two elements at the front of queue {\bf Q} ...
```

The Abstract RAM Model

12/87

RAM = Random Access Machine

- A CPU (central processing unit)
- A potential support the properties of the prop
- Memory cells are numbered, and accessing any one of them takes CPU time

https://tutorcs.com

Primitive Operations

13/87

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent of the programming language
- Exact definition not important (we will shortly see why)
- Assumed to take a constant amount of time in the RAM model

Examples:

- evaluating an expression
- indexing into an array
- calling/returning from a function

Counting Primitive Operations

14/87

By inspecting the pseudocode ...

- we can determine the maximum number of primitive operations executed by an algorithm
- as a function of the input size

Example:

Estimating Running Times

15/87

Algorithm arrayMax requires 5n-2 primitive operations in the *worst* case

• best case requires 4n-1 operations (why?)

Define:

- a... time takens in the fastest prim the operation Exam Help
- b ... time taken by the slowest primitive operation

```
Let T(n) be worst-case time of arrayNax. Then ntp S: / tutor cs.com a(5n-2) \le T(n) \le b(5n-2)
```

Hence, the running time time times functions

... Estimating Running Times

16/87

Seven commonly encountered functions for algorithm analysis

- Constant ≅ 1
- Logarithmic $\cong \log n$
- Linear ≅ *n*
- N-Log-N $\cong n \log n$
- Quadratic $\cong n^2$
- Cubic $\cong n^3$
- Exponential ≅ 2ⁿ

... Estimating Running Times

17/87

In a log-log chart, the slope of the line corresponds to the growth rate of the function

... Estimating Running Times

18/87

The growth rate is not affected by constant factors or lower-order terms

- Examples:
 - \circ 10²n + 10⁵ is a linear function
 - \circ 10⁵ n^2 + 10⁸n is a quadratic function

... Estimating Running Times Lat: cstutorcs

19/87

Changing the hardware/software environment

- affects *T(n)* by a constant factor
- but does not alter the growth rate of *T(n)*
- \Rightarrow Linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Exercise #3: Estimating running times

20/87

Determine the number of primitive operations

```
end for end for return C
```

```
matrixProduct(A, B):
   Input n×n matrices A, B
   Output n×n matrix A • B
   for all i=1..n do
                                               2n+1
      for all j=1...n do
                                               n(2n+1)
         C[i, j] = 0
                                              n^2(2n+1)
          for all k=1..n do
                                               n^3 \cdot 4
             C[i, j] = C[i, j] + A[i, k] \cdot B[k, j]
          end for
      end for
   end for
   return C
                                             6n^3+4n^2+3n+2
                                    Tota1
```

Big-Oh

Assignment Project Exam Help

Big-Oh Notation

23/87

Siven functions f(n) and g(n), we say that

WeChat! "Cstutorcs

if there are positive constants c and n_0 such that

 $f(n) \le c \cdot g(n) \quad \forall n \ge n_0$

Hence: O(g(n)) is the set of all functions that do not grow faster than g(n)

... Big-Oh Notation

24/87

Example: function 2n + 10 is in O(n)

- $2n+10 \le c \cdot n$ $\Rightarrow (c-2)n \ge 10$ $\Rightarrow n \ge 10/(c-2)$
- pick c=3 and $n_0=10$

... Big-Oh Notation

25/87

Example: function n^2 is not in O(n)

Assignment Project Exam Help

- $n^2 \le c \cdot n$ $\Rightarrow n \le c$
- inequality cannot be satisfied since constant

Exercise #4: Big-OhWeChat: cstutorcs

26/87

Show that

- 1. 7n-2 is in O(n)
- 2. $3n^3 + 20n^2 + 5$ is in $O(n^3)$
- 3. $3 \cdot \log n + 5$ is in $O(\log n)$
- 1. 7n-2 ∈ O(n)

need c>0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$

- \Rightarrow true for c=7 and n₀=1
- 2. $3n^3 + 20n^2 + 5 \in O(n^3)$

need c>0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$

- \Rightarrow true for c=4 and n₀=21
- 3. $3 \cdot \log n + 5 \in O(\log n)$

need c>0 and $n_0 \ge 1$ such that $3 \cdot \log n + 5 \le c \cdot \log n$ for $n \ge n_0$

 \Rightarrow true for c=8 and n₀=2

Big-Oh and Rate of Growth

28/87

- Big-Oh notation gives an upper bound on the growth rate of a function
 - \circ "f(n) \in O(g(n))" means growth rate of f(n) no more than growth rate of g(n)
- use big-Oh to rank functions according to their rate of growth

	$f(n) \in O(g(n))$	$g(n) \in O(f(n))$
g(n) grows faster	yes	no
f(n) grows faster	no	yes
same order of growth	yes	yes

Big-Oh Rules

29/87

- If f(n) is a polynomial of degree $d \Rightarrow f(n)$ is $O(n^d)$
 - o lower-order terms are ignored
 - constant factors are ignored
- Use the smallest possible class of functions
 - say Assignment Project Exam Help
 - but keep in mind that, $2n \text{ is in } O(n^2)$, $O(n^3)$, ...
- Use the simplest expression of the class
 - o say "3n + 5 int(t)) is steat bit entires s 6(8) in

Exercise #5: Big-OhWeChat: cstutorcs

30/87

Show that
$$\sum_{i=1}^{n} i$$
 is $O(n^2)$

$$\sum_{i=1}^n i = rac{n(n+1)}{2} = rac{n^2+n}{2}$$

which is $O(n^2)$

Asymptotic Analysis of Algorithms

32/87

Asymptotic analysis of algorithms determines running time in big-Oh notation:

- find worst-case number of primitive operations as a function of input size
- express this function using big-Oh notation

Example:

algorithm arrayMax executes at most 5n – 2 primitive operations
 ⇒ algorithm arrayMax "runs in O(n) time"

Constant factors and lower-order terms eventually dropped ⇒ can disregard them when counting primitive operations

Example: Computing Prefix Averages

33/87

• The *i-th prefix average* of an array X is the average of the first i elements:

$$A[i] = (X[0] + X[1] + ... + X[i]) / (i+1)$$

NB. computing the array A of prefix averages of another array X has applications in financial analysis

... Example: Computing Prefix Averages

34/87

A quadratic algorithm two moute prefix averages: CSTUTOTCS

```
prefixAverages1(X):
   Input array X of n integers
   Output array A of prefix averages of X
   for all i=0..n-1 do
                                  0(n)
      s=X[0]
                                 0(n)
                                  0(n^2)
      for all j=1...i do
         S=S+X[j]
                                 0(n^2)
      end for
      A[i]=s/(i+1)
                                 0(n)
   end for
                                  0(1)
   return A
```

$$2 \cdot O(n^2) + 3 \cdot O(n) + O(1) = O(n^2)$$

⇒ *Time complexity* of algorithm prefixAverages1 is O(n²)

... Example: Computing Prefix Averages

35/87

The following algorithm computes prefix averages by keeping a running sum:

Thus, prefixAverages2 is O(n)

Example: Binary Search

36/87

The following recursive algorithm searches for a value in a *sorted* array:

```
| Input value v | array a[lo..hi] of values |
| Output true if v in a[lo..hi] | false otherwise |
| mid=(lo+hi) 2 ssignment Project Exam Help |
| if lo>hi then return false |
| if a[mid]=v then | return true | https://tutorcs.com |
| else if a[mid] < v then | return search(v, a, mid+1, hi) |
| else | return search(v, Wood-hat: cstutorcs |
| end if
```

... Example: Binary Search

37/87

Successful search for a value of 8:

... Example: Binary Search

38/87

Unsuccessful search for a value of 7:

... Example: Binary Search

39/87

Cost analysis:

- c_i = #call Assignment Project Exam Help
- for best case, $C_n = 1$
- for a[i.. j], j<i (length=0)://tutorcs.com $\circ c_0 = 0$
- for a[i..j], $i \le j$ (length=n)

Thus, binary search is O(log₂ n) or simply O(log n) (why?)

... Example: Binary Search

40/87

Why logarithmic complexity is good:

Math Needed for Complexity Analysis

41/87

Logarithms

```
    log<sub>b</sub> (xy) = log<sub>b</sub> x + log<sub>b</sub> y
    log<sub>b</sub> (x/y) = log<sub>b</sub> x - log<sub>b</sub> y
    log<sub>b</sub> x<sup>a</sup> = a log<sub>b</sub> x
    log<sub>b</sub> a = log<sub>x</sub> a / log<sub>x</sub> b
    Exponentials
    a<sup>(b+c)</sup> = a<sup>b</sup>a<sup>c</sup>
    a<sup>bc</sup> = (a<sup>b</sup>)<sup>c</sup>
    a<sup>b</sup> / a<sup>c</sup> = a<sup>(b-c)</sup>
    b = a<sup>log<sub>a</sub>b</sup>
    b<sup>c</sup> = a<sup>c-log<sub>a</sub>b</sup>
```

- Proof techniques
- Summation (addition of sequences of numbers)
- Basic probability (for average case analysis, randomised algorithms)

Exercise #6: Analysis of Algorithms

42/87

What is the complexity of the following algorithm?

```
enqueue (Q, Elem):

Input queue Q, element Elem Project Exam Help

Output Q with Sal Edition tenter Project Exam Help

Q. top=Q. top+1

for all i=Q. top downttps.//tutorcs.com

Q[i]=Q[i-1]

end for

Q[0]=Elem

return Q

WeChat: cstutorcs
```

Answer: O(|Q|)

Exercise #7: Analysis of Algorithms

44/87

What is the complexity of the following algorithm?

Assume that creating a stack and pushing an element both are O(1) operations ("constant")

Answer: O(log n)

Relatives of Big-Oh

46/87

big-Omega

• $f(n) \in \Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that

$$f(n) \ge c \cdot g(n) \quad \forall n \ge n_0$$

big-Theta

• $f(n) \in \Theta(g(n))$ if there are constants c',c'' > 0 and an integer constant $n_0 \ge 1$ such that

$$c' \cdot g(n) \le f(n) \le c'' \cdot g(n) \quad \forall n \ge n_0$$

... Relatives of Big-Oh

47/87

- f(n) belongs to O(g(n)) if f(n) is asymptotically less than or equal to p(n)
- f(n) belongs to 2 (g(n)) if f(n) is asymptotically greater than or equal to g(n)
- f(n) belongs to $\Theta(g(n))$ if f(n) is asymptotically *equal* to g(n)

https://tutorcs.com

... Relatives of Big-Oh

48/87

Examples:

WeChat: cstutorcs

- $\frac{1}{4}n^2 \in \Omega(n^2)$
 - o need c > 0 and $n_0 \ge 1$ such that $\frac{1}{4}n^2 \ge c \cdot n^2$ for $n \ge n_0$
 - \circ let c= $\frac{1}{4}$ and n₀=1
- $\frac{1}{4}n^2 \in \Omega(n)$
 - need c > 0 and $n_0 \ge 1$ such that $\frac{1}{4}n^2 \ge c \cdot n$ for $n \ge n_0$
 - \circ let c=1 and n₀=2
- $\frac{1}{4}n^2 \in \Theta(n^2)$
 - \circ since $\frac{1}{4}$ n² belongs to $\Omega(n^2)$ and $O(n^2)$

Complexity Analysis: Arrays vs. Linked Lists

Static/Dynamic Sequences

50/87

Previously we have used an array to implement a stack

- fixed size collection of heterogeneous elements
- can be accessed via index or via "moving" pointer

The "fixed size" aspect is a potential problem:

- how big to make the (dynamic) array? (big ... just in case)
- what to do if it fills up?

The rigid sequence is another problems:

• inserting/deleting an item in middle of array

... Static/Dynamic Sequences

51/87

Inserting a value (4) into a sorted array a with n elements:

Assignment Project Exam Help

... Static/Dynamic Sequences

52/87

Deleting a value (3) from a sorted array a with it elements.

... Static/Dynamic Sequences

53/87

The problems with using arrays can be solved by

- allocating elements individually
- linking them together as a "chain"

Benefits:

- insertion/deletion have minimal effect on list overall
- only use as much space as needed for values

Self-referential Structures

54/87

To realise a "chain of elements", need a *node* containing

- a value
- a link to the next node

To represent a chained (linked) *list* of nodes:

- we need a *pointer* to the first node
- each node contains a pointer to the next node
- the next pointer in the last node is NULL

... Self-referential Structures

55/87

Linked lists are more flexible than arrays:

- values do not have to be adjacent in memory
- values can be rearranged simply by altering pointers
- the number of Salgenment Byrange Tyrange Exam Help
- values can be added or removed in any order

Disadvantages:

https://tutorcs.com

- it is not difficult to get pointer manipulations wrong
- each value also requires storage for next pointer CStULOTCS

... Self-referential Structures

56/87

Create a new list node:

Exercise #8: Creating a Linked List

57/87

Write pseudocode to create a linked list of three nodes with values 1, 42 and 9024.

```
mylist=makeNode(1)
mylist.next=makeNode(42)
(mylist.next).next=makeNode(9024)
```

Iteration over Linked Lists

When manipulating list elements

- typically have pointer p to current node
- to access the data in current node: p. value
- to get pointer to next node: p. next

To iterate over a linked list:

- set p to point at first node (head)
- examine node pointed to by p
- change p to point to next node
- stop when p reaches end of list (NULL)

... Iteration over Linked Lists

60/87

Standard method for scanning all elements in a linked list:

```
list // pointer to first Node in list p // pointer to "current" Node in list Assignment Project Exam Help p=list while p\neqNULL do | ... do something with p value :"/tutorcs.com end while
```

... Iteration over Linked Lists cstutores

61/87

... Iteration over Linked Lists

62/87

... Iteration over Linked Lists

63/87

Check if list contains an element:

```
Input linked list L, value d
Output true if d in list, false otherwise

p=L Assignment Project Exam Help
while p≠NULL do
if p. value=d then // element found
return true https://tutorcs.com
end if
p=p. next
end while
return false

We'climat not intlistores
```

Time complexity: O(|L|)

... Iteration over Linked Lists

64/87

Print all elements:

```
showLL(L):

| Input linked list L
|
| p=L
| while p≠NULL do
| print p.value
| p=p.next
| end while
```

Time complexity: O(|L|)

Exercise #9: Traversing a linked list

65/87

What does this code do?

```
p=list
1
   while p≠NULL do
3
      print p. value
4
      if p.next≠NULL then
5
         p=p. next. next
6
      else
7
         p=NULL
8
      end if
   end while
9
```

What is the purpose of the conditional statement in line 4?

Every second list element is printed.

If p happens to be the last element in the list, then p. next. next does not exist. The if-statement ensures that we do not attempt to assign an undefined value to pointer p in line 5.

Exercise #10: Traversing a linked list

67/87

Rewrite showLL() as a recursive function.

Assignment Project Exam Help

```
printLL(L):
| Input linked list L | https://tutorcs.com
| if L≠NULL do | print p. value | printLL(L. next) | end if | WeChat: cstutorcs
```

Modifying a Linked List

69/87

Insert a new element at the beginning:

```
insertLL(L, d):
    Input linked list L, value d
    Output L with d prepended to the list
    new=makeNode(d) // create new list element
    new.next=L // link to beginning of list
    return new // new element is new head
```

Time complexity: O(1)

... Modifying a Linked List

70/87

Delete the *first* element:

```
Output L with head deleted

return L. next // move to second element
```

Time complexity: O(1)

Delete a *specific* element (recursive version):

Time complexity: O(|L|)

Assignment Project Exam Help

Exercise #11: Implementing a Queue as a Linked List

71/87

Develop a datastructure for poleue based on linked lists such that ...

- enqueuing an element takes constant time

Use pointers to both ends

Dequeue from the front ...

Enqueue at the rear ...

```
enqueue (Q, d):
| Input queue Q
```

```
new=makeNode(d) // create new list element
Q.rear.next=new // add to end of list
Q.rear=new // link to new end of list
```

Comparison Array vs. Linked List

73/87

Complexity of operations, n elements

	array	linked list
insert/delete at beginning	O(n)	O(1)
insert/delete at end	O(n) O(1)	O(1) ("doubly-linked" list, with pointer to rear)
insert/delete at middle	O(n)	O(n)
find an element ASS19	O(n) (O(log n), if array is	o(n) t Exam Help
index a specific element	0(1)	O(n)

https://tutorcs.com

Complexity Classes

WeChat: cstutorcs

Complexity Classes

75/87

Problems in Computer Science ...

- some have *polynomial* worst-case performance (e.g. n^2)
- some have *exponential* worst-case performance (e.g. 2ⁿ)

Classes of problems:

- P = problems for which an algorithm can compute answer in polynomial time
- NP = includes problems for which no P algorithm is known

Beware: NP stands for "nondeterministic, polynomial time (on a theoretical *Turing Machine*)"

... Complexity Classes

76/87

Computer Science jargon for difficulty:

- tractable ... have a polynomial-time algorithm (useful in practice)
- intractable ... no tractable algorithm is known (feasible only for small n)
- non-computable ... no algorithm can exist

Computational complexity theory deals with different degrees of intractability

Generate and Test

77/87

In scenarios where

- it is simple to test whether a given state is a solution
- it is easy to generate new states (preferably likely solutions)

then a *generate and test* strategy can be used.

It is necessary that states are generated systematically

- so that we are guaranteed to find a solution, or know that none exists
 - some randomised algorithms do not require this, however (more on this later in this course)

... Generate and Test

78/87

Simple example: checking whether an integer n is prime

- generate/test all possible factors of noject Exam Help
- if none of them pass the test $\Rightarrow n$ is prime

Generation is straightfortatps://tutorcs.com

• produce a sequence of all numbers from 2 to *n-1*

Testing is also straightforward:

Chat: cstutorcs

• check whether next number divides *n* exactly

... Generate and Test

79/87

Function for primality checking:

Complexity of isPrime is O(n)

Can be optimised: check only numbers between 2 and $\lfloor \sqrt{n} \rfloor \Rightarrow \mathrm{O}(\sqrt{n})$

80/87

Example: Subset Sum

Problem to solve ...

Is there a subset S of these numbers with $\Sigma_{x \in S} x = 1000$?

```
34, 38, 39, 43, 55, 66, 67, 84, 85, 91, 101, 117, 128, 138, 165, 168, 169, 182, 184, 186, 234, 238, 241, 276, 279, 288, 386, 387, 388, 389
```

General problem:

- given *n* arbitrary integers and a target sum *k*
- is there a subset that adds up to exactly *k*?

... Example: Subset Sum

81/87

Generate and test approach:

```
subsetsum(A, k):

| Input set A of n integers, target sum k
| Output true Ais Significant Project Exam Help |
| for each subset B \subseteq A do |
| if \Sigma_{b \in B} b = k the https://tutorcs.com |
| return true |
| end if end for return false | WeChat: cstutorcs
```

- How many subsets are there of *n* elements?
- How could we generate them?

... Example: Subset Sum

82/87

Given: a set of ${\bf n}$ distinct integers in an array ${\bf A}$...

• produce all subsets of these integers

A method to generate subsets:

- represent sets as *n* bits (e.g. *n=4*, 0000, 0011, 1111 etc.)
- bit *i* represents the *i* th input number
- if bit /is set to 1, then A[i] is in the subset
- if bit i is set to 0, then A[i] is not in the subset
- e.g. if A[]=={1, 2, 3, 5} then 0011 represents {1, 2}

... Example: Subset Sum

83/87

Algorithm:

```
subsetsum1 (A, k):

| Input set A of n integers, target sum k | Output true if \Sigma_{x \in S} x = k for some S \subseteq A | false otherwise |

| for s = 0...2^n - 1 do | if k = \Sigma_{(i^{th} \ bit \ of \ s \ is \ 1)} A[i] then | return true | end if | end for | return false
```

Obviously, subsetsum1 is O(2ⁿ)

... Example: Subset Sum

84/87

Alternative approach ...

```
subsetsum2 (A, n, k) (returns true if any subset of A[0...n-1] sums to Freturns false otherwise) ASSIGNMENT Project Exam Help
```

Chat: estutores

- if the n^{th} value A[n-1] is part of a solution ...
 - then the first n-1 values must sum to k-A[n-1]
- if the nth value is rations to stuttons com
 - \circ then the first *n*-1 values must sum to *k*
- base cases: k=0 (solved by {}); n=0 (unsolvable if k>0)

```
subsetsum2(A, n, k):
```

... Example: Subset Sum

85/87

Cost analysis:

- C_i = #calls to subsetsum2() for array of length i
- for worst case,
 - \circ C₁ = 2
 - $\circ \ C_n = 2 + 2 \cdot C_{n-1} \ \Rightarrow C_n \cong 2^n$

Thus, subsetsum2 also is $O(2^n)$

... Example: Subset Sum

86/87

Subset Sum is typical member of the class of NP-complete problems

- intractable ... only algorithms with exponential performance are known
 - o increase input size by 1, double the execution time
 - \circ increase input size by 100, it takes $2^{100} = 1,267,650,600,228,229,401,496,703,205,376$ times as long to execute
- but if you can find a polynomial algorithm for Subset Sum, then any other *NP*-complete problem becomes *P* ...

Summary

87/87

- Big-Oh notation
- Asymptotic analysis of algorithms
- Examples of algorithms with logarithmic, linear, polynomial, exponential complexity
- Linked lists vs. arrays

Assignment Project Exam Help

Suggested reading:
 Sedgewick, Ch. https://tutorcs.com

Produced: 6 Jan 2020

WeChat: cstutorcs