ODE笔记8: 周期系数LODEs、n阶LODE、特征方程

周期系数LODEs (Floqnet理论):

 $\vec{X}'=A(t)\vec{X}, A(t+T)=A(t)$. 若 $\Phi(t)$ 为基解矩阵,则: $\Phi'(t+T)=A(t+T)\Phi(t+T)$ \implies $\Phi(t+T)$ 也是基解矩阵。故

存在 \vec{c} 可逆, $\Phi(t+T) = \Phi(t)\vec{c} = \Phi(t)e^{RT} \implies \Phi(t+T)e^{-R(t+T)} = \Phi(t)e^{-RT} \triangleq P(t)$

那么 P(t) 为周期函数,可逆, $\Phi(t) = P(t)e^{Rt}$

今

$$\ln(J_i) = \ln(\lambda_i E) + \ln(E + rac{D}{\lambda_i}) = (\ln \lambda_i)E + \sum_{m=1}^\infty rac{(-1)^{m+1}}{m} (rac{D}{\lambda_i})^m = M_i \;,\; \ln J = 0$$

・ は果不唯一:
$$\ln c = P \begin{pmatrix} M_1 & & \\ & \ddots & \\ & & M_s \end{pmatrix} P^{-1} + 2\pi k i \cdot E$$

n阶LODE:

$$\frac{d^nX(t)}{dt^n} + a_1(t)\frac{d^{n-1}X(t)}{dt^{n-1}} + \dots + a_n(t)X(t) = f(t)$$
 令
$$\begin{cases} x_1 = x \\ x_2 = x' \\ \vdots \\ x_n = x^{(n-1)} \end{cases}, \ \vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ \vec{M} \vec{A} \vec{X}' = \begin{pmatrix} 0 & 1 & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & 1 \\ -a_n & -a_{n-1} & \cdots & -a_1 \end{pmatrix} \vec{X} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f(t) \end{pmatrix}$$

定理2.1:

 $f(t), a_i(t) \in C(I), i=1,\ldots,n$,则:

$$\begin{cases} Lx = f(t) \\ X(t_0) = x_{01}, X'(t_0) = x_{02}, \dots, X^{(n-1)}(t_0) = x_{0n} \end{cases}$$

其中 $t_0 \in I$,在I上 \exists !解X(t).

齐次: Lx=0 \iff $\vec{X}'=A\vec{X}$. 基本解组: $\vec{X}_1,\ldots,\vec{X}_n$

定理2.2:

Lx=0 所有解构成的集合为 n 维线性空间,设 $\phi_1(t),\ldots,\phi_n(t)$ 为 n 个线性无关解。则通解:

$$x(t) = c_1\phi_1(t) + \cdots + c_n\phi_n(t).$$

其中 c_1,\ldots,c_n 为任意常数,称 $\phi_1(t),\ldots,\phi_n(t),t\in I$ 为**基本解组**。

$$ec{X}_1 = egin{pmatrix} \phi_1 \ \phi_1' \ dots \ \phi_1^{(n-1)} \end{pmatrix}, \cdots, ec{X}_n = egin{pmatrix} \phi_n \ \phi_n' \ dots \ \phi_n^{(n-1)} \end{pmatrix}$$

定理2.3:

若 Lx=0 有基本解组 $\phi_1(t),\ldots,\phi_n(t),t\in I$,则 Lx=f(t) 的通解:

$$x(t)=c_1\phi_1(t)+\cdots+c_n\phi_n(t)+\phi^*(t)$$

其中 c_1, \ldots, c_n 为任意常数。

朗斯基行列式:

$$W(t) = egin{bmatrix} \phi_1 & \cdots & \phi_n \ \phi_1' & \cdots & \phi_n' \ dots & dots \ \phi_1^{(n-1)} & \cdots & \phi_n^{(n-1)} \ \end{pmatrix}$$

定理2.4:

若 $\phi_1(t),\ldots,\phi_n(t)$ 为 Lx=0 在 I 上解, $\phi_1(t),\ldots,\phi_n(t)$ 在 I 上:

线性相关 \iff $W(t)=0, \forall \ t\in I$ \iff $\exists \ t_0, st. \ W(t_0)=0$

线性无关 \iff $W(t) \neq 0, \forall \ t \in I \iff W(t_0) \neq 0, \forall \ t_0 \in I$

特征方程: y'' + py' + qy = 0 \iff $\lambda^2 + p\lambda + q = 0$

解为 λ_1, λ_2 , 有以下结论:

 $(1)\lambda_1
eq \lambda_2$,通解: $y=c_1e^{\lambda_1x}+c_2e^{\lambda_2x}$

 $(2)\lambda_1=\lambda_2=\lambda$,通解: $y=c_1e^{\lambda x}+c_2xe^{\lambda x}$

 $(3)\lambda=lpha\pm ieta,lpha,eta\in R,eta
eq 0$,通解: $y=e^{lpha x}\left(c_1\coseta x+c_2\sineta x
ight)$

通法: $L(y)=y^{(n)}+a_1y^{(n-1)}+\cdots+a_ny=0$ 对应的特征方程: $\lambda^n+a_1\lambda^{n-1}+\cdots+a_n=0$

特征值: $\lambda_1,\ldots\lambda_s, \alpha_1\pm i\beta_1,\ldots\alpha_l\pm i\beta_l$ 重数: $n_1,\ldots,n_s,m_1,\ldots,m_l$

那么该方程的 n 个线性无关解:

$$\underbrace{e^{\lambda_1 t}, te^{\lambda_1 t}, \cdots, t^{n_1-1}e^{\lambda_1 t}}_{$$
 $, \cdots, \underbrace{e^{\alpha_1 t}\coseta_1 t, e^{lpha_1 t}\sineta_1 t, \dots, t^{m_1-1}e^{lpha_1 t}\coseta_1 t, t^{m_1-1}e^{lpha_1 t}\sineta_1 t}_{}, \cdots$

考虑 y'' + py' + qy = f(t) (*) 形式的问题:

解: 齐次方程通解: $y = c_1y_1(t) + c_2y_2(t)$

$$\Rightarrow y(t) = u_1(t)y_1(t) + u_2(t)y_2(t).$$

$$\implies u_1'y_1' + u_2'y_2' + \underbrace{u_1y_1'' + pu_1y_1' + qu_1y_1}_{=0} + \underbrace{u_2y_2'' + pu_2y_2' + qu_2y_2}_{=0} = f$$

设
$$y=u_1y_1+u_2y_2$$
 为 $(*)$ 解,其中 u_1',u_2' 使得: $\begin{pmatrix} y_1&y_2\\y_1'&y_2'\end{pmatrix}\begin{pmatrix} u_1'\\u_2'\end{pmatrix}=\begin{pmatrix} 0\\f\end{pmatrix}$

非齐次:
$$\vec{X} = \begin{pmatrix} y \\ y' \end{pmatrix}, \vec{X}' = A\vec{X} + \begin{pmatrix} 0 \\ f(t) \end{pmatrix}$$

 $ec{X}(t) = \Phi(t)ec{c} + \Phi(t)\int\Phi^{-1}Bds$. 将 $ec{X}(t) = \Phi(t)ec{U}(t)$ 代入LODE

$$\implies$$
 $\oint U + \Phi U' = A\Phi U' + B \implies \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} 0 \\ f(t) \end{pmatrix}$

推广到 n 阶: Ly = f(t). Ly = 0 通解: $y = c_1y_1 + \ldots + c_ny_n$

设
$$Ly=f(t)$$
 解: $y=u_1y_1+\cdots+u_ny_n$. 其中 u_1',\cdots,u_n' 满足: $\Phi(t)egin{pmatrix}u_1'\\ dots\\ u_n'\end{pmatrix}=egin{pmatrix}0\\ dots\\ f(t)\end{pmatrix}$

接下来介绍几种特殊的题型:

(1)
$$f(t)=P_m(t)e^{\alpha t}=(a_mt^m+\cdots+a_0)e^{\alpha t}$$

猜测:
$$y = Q(t)e^{\alpha t} = (b_k t^k + \dots + b_0)e^{\alpha t}$$
. 代入: $e^{\alpha t} (Q'' + 2\alpha Q' + \alpha^2 Q + PQ' + P\alpha Q + qQ) = e^{\alpha t} \cdot P_m(t)$

左边
$$egin{cases} k$$
次多项式,当 $lpha^2+plpha+q
eq 0 \quad (lpha$ 不是特征值) $k-1$ 次多项式,当 $lpha^2+plpha+q=0$ $egin{cases} 1. \ lpha$ 是单根 $2. \ lpha$ 是二重根 $lpha$

当 α 非特征值: 设 $y^*(t) = Q_m(t)e^{\alpha t}$

$$lpha$$
 单根: $y^*(t)=tQ_m(t)e^{lpha t}$ \implies 通解: $y(t)=c_1y_1+c_2e^{lpha t}+tQ_m(t)e^{lpha t}$

$$lpha$$
 二重根: $y^*(t)=t^2Q_m(t)e^{lpha t}$ \implies 通解: $y(t)=c_1e^{lpha t}+c_2te^{lpha t}+t^2Q_m(t)e^{lpha t}$

注:对于 $Lx=P_m(t)e^{lpha t}, lpha$ 为 k 重根。设 $y^*(t)=t^kQ_m(t)e^{lpha t}, Q_m(t)=b_mt^m+\ldots+b_0, b_i$ 待定,代入方程求出 b_0,\ldots,b_m .

(2)
$$f(t) = P_m(t)e^{\alpha t}\cos\beta t = \mathrm{Re}(P_m(t)e^{(\alpha+i\beta)t})$$

解:
$$Ly=P_m(t)e^{(\alpha+i\beta)t}, \alpha+i\beta$$
 为 k 重根。 $y^*=t^kQ_m(t)e^{(\alpha+i\beta)t}, \; Ly^*=P_m(t)e^{(\alpha+i\beta)t}$

$$Ly = f(t)$$
 特解: $y^* = Re\left(t^k Q_m(t)e^{(\alpha+i)}\right) = t^k e^{\alpha t} \left(\cos \beta t R_m(t) + \sin \beta t Q_m(t)\right).$

$$\Longrightarrow L^* \operatorname{Re} y^* = \operatorname{Re} L y^* = f(t)$$

定理5.3:

 $Ly=P_m(t)e^{\alpha t}\cos\beta t$ 或 $P_m(t)e^{\alpha t}\sin\beta t$ 或 $e^{\alpha t}(P_m(t)\cos\beta t+\tilde{P}_m(t)\sin\beta t)$. 若 $\alpha+i\beta$ 为重根,则LODE可取特解:

$$y^*(t) = t^k e^{lpha t} \left(\left(b_m' t^m + \dots + b_0'
ight) \cos eta t + \left(b_m'' t^m + b_0''
ight) \sin eta t
ight)$$

其中系数 $b_0', \cdots, b_m', b_0'', \cdots, b_m''$ 待定。 (2m+2 个等式)

例1:
$$y'' - 3y' + 2y = 3e^t - 10\cos 3t$$

解:特征方程: $\lambda^2-3\lambda+2=0, \lambda_1=1, \lambda_2=2$,故齐次方程通解为: $y(t)=c_1e^t+c_2e^{2t}$

(1)
$$y'' - 3y' + 2y = 3e^t$$
 : 1 为单根,设 $y_1^* = tAe^t$,代入计算得 $y_1^* = -3te^{3t}$

(2)
$$y'' - 3y' + 2y = -10\cos 3t$$
 :: $3i$ 不是特征值,设 $y_2^* = A\cos 3t + B\sin 3t$,代入计算得 $y_2^* = \frac{7}{13}\cos 3t + \frac{9}{13}\sin 3t$

$$\implies y(t) = c_1 e^t + c_2 e^{2t} - 3t e^{3t} + \frac{7}{13} \cos 3t + \frac{9}{13} \sin 3t$$

例2:
$$\begin{cases} 2x'+y'+y-t=0 & (1) \ x'+y'-x-y-2t=0 & (2) \end{cases}$$

解:
$$(1) - (2): x' + x + 2y + t = 0$$
 \Longrightarrow $y = -\frac{1}{2}(x' + x + t)$ (3)

$$(3) 代入 (1) 中: \ 2x' - \frac{1}{2}(x'' + x' + 1) - \frac{1}{2}(x' + x + t) - t = 0 \\ \implies x'' - 2x' + x = (-1 - 3t)e^{0t}$$

特征方程:
$$\lambda^2-2\lambda+1=0, \lambda_1=\lambda_2=1$$
, 齐次方程通解: $y(t)=c_1e^t+c_2te^t$

设
$$x^*=At+B$$
,代入得 $x^*=-3t-7$ \implies 通解为 $x=c_1e^t+c_2e^{2t}-3t-7$

代入
$$(3)$$
, 得: $y=e^tig(-c_1-rac{1}{2}c_2-rac{1}{2}c_2tig)+5+t$