FCC REPORT

Applicant: iMushroom Audio Co.,Ltd.

Address of Applicant:

No.21,Nanxing Three Road,Nanfang Industrial Park,Beizha

Village, Humen Town, Dongguan, China

Equipment Under Test (EUT)

Product Name: Bluetooth Speaker

Model No.: M3

FCC ID: 2ABP8-M3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 11 Dec., 2013

Date of Test: 12 Dec., 2013 to 15 Jan., 2014

Date of report issued: 15 Jan.,2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	15 Jan.,2014	Original

Prepared by: Date: 15 Jan., 2014

Report Clerk

Reviewed by: Date: 15 Jan., 2014

Project Engineer

3 Contents

		I	Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4		EST SUMMARY	
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	TE	EST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8 6.9	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
		9.1 Conducted Emission Method	
	٠.	9.2 Radiated Emission Method	
	6.10		
	00	10.1 Conducted Emission Method.	
		10.2 Radiated Emission Method	
7	TE	EST SETUP PHOTO	61
R	FI	IIT CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	iMushroom Audio Co.,Ltd.
Address of Applicant:	No.21,Nanxing Three Road,Nanfang Industrial Park,Beizha Village,Humen Town,Dongguan,China
Manufacturer/Factory:	GUANGDONG SIGELAN ELECTRONIC LIMITED
Address of Manufacturer/ Factory:	No.21,Nanxing Three Road, Nanfang Industrial Park, Beizha Village, Humen Town, Dongguan, China

5.2 General Description of E.U.T.

Product Name:	Bluetooth Speaker			
Model No.:	M3			
Operation Frequency:	2402MHz~2480MHz			
Transfer rate:	1/2/3 Mbits/s			
Number of channel:	79			
Modulation type:	GFSK, π/4-DQPSK, 8DPSK			
Modulation technology:	FHSS			
Antenna Type:	Internal Antenna			
Antenna gain:	0 dBi			
Power supply:	Rechargeable Li-ion Battery DC3.7V-2600mAh			
AC adapter:	Model:SK01G-0500150U			
	Input:100-240VAC,50/60Hz 0.2A			
	Output:5.0VDC MAX1.5A			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz	
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz	
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz	
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz	
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz	
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz	
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz	
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19 2421MHz 39 2441MHz 59 2461MHz								

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014		
7	Coaxial cable CCIS		N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014		
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014		
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2013	Mar. 31 2014		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer 9k-30GHz Rohde & Schwarz		FSP	CCIS0023	May. 25 2013	May. 24 2014		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014		
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2013	May. 24 2014		
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2013	May. 24 2014		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May 24 2014			
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2013	Mar. 31 2014			
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0 dBi.

6.2 Conducted Emissions

 - Conducted Emissions						
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4:2003					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swee	p time=auto				
Limit:	For any or any or (NALLE)	Limit (dE	BuV)			
	Frequency range (MHz)	Average				
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm of t	the frequency.				
Test setup:	Reference Plane					
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table Insight=0 8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Bluetooth (Continuous transmitting	g) mode				
Test results:	Pass					
	I.					

Measurement Data

Line:

: CCIS Conducted test Site : FCC CLASS-B QP LISN LINE : 559RF Site Condition

Job No. : Bluetooth Speaker

Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: A-bomb

1050	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	₫B	₫B	dBu₹	dBu∇	₫B	
1	0.150	49.78	0.27	0.00	50.05	66.00	-15.95	QP
2	0.150	30.52	0.27	0.00	30.79	56.00	-25.21	Average
1 2 3 4 5 6 7 8 9 10	0.330	39.99	0.27	0.00	40.26	59.44	-19.18	QP
4	0.330	31.04	0.27	0.00	31.31	49.44	-18.13	Average
5	0.984	40.81	0.25	0.00	41.06	56.00	-14.94	QP
6	0.984	31.00	0.25	0.00	31.25	46.00	-14.75	Average
7	1.636		0.26	0.00	37.61	56.00	-18.39	QP
8	1.636	29.03	0.26	0.00	29.29	46.00	-16.71	Average
9	5.564	34.39	0.30	0.00	34.69	60.00	-25.31	QP
	5, 564	28.76	0.30	0.00	29.06	50.00	-20.94	Average
11	19.021	42.56	0.34	0.00	42.90		-17.10	
12	19.021	35.92	0.34	0.00	36.26	50.00	-13.74	Average

Neutral:

Trace: 92

: CCIS Conducted test Site : FCC CLASS-B QP LISN NEUTRAL : 559RF Site Condition

Job No.

EUT : Bluetooth Speaker

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: A-bomb

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫₿	₫B	dBu∇	dBuV	₫B	
1	0.150	45.79	0.25	0.00	46.04	66.00	-19.96	QP
2	0.150	21.93	0.25	0.00	22.18	56.00	-33.82	Average
3	0.194	23.38	0.25	0.00	23.63	53.84	-30.21	Average
4	0.198	41.14	0.25	0.00	41.39	63.71	-22.32	QP
1 2 3 4 5 6 7 8 9	0.242	36.23	0.25	0.00	36.48	62.04	-25.56	QP
6	0.242	19.80	0.25	0.00	20.05	52.04	-31.99	Average
7	0.294	36.04	0.26	0.00	36.30	60.41	-24.11	QP
8	0.330	24.42	0.26	0.00	24.68	49.44	-24.76	Average
9	1.229	22.01	0.24	0.00	22.25	46.00	-23.75	Average
10	1.296	35.37	0.25	0.00	35.62	56.00	-20.38	QP
11	18.039	38.00	0.26	0.00	38.26	60.00	-21.74	QP
12	19.021	25.48	0.26	0.00	25.74	50.00	-24.26	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

measurement Data				
GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	5.00	21.00	Pass	
Middle	4.99	21.00	Pass	
Highest	3.92	21.00	Pass	
	π/4-DQPSK r	node		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	3.69	21.00	Pass	
Middle	3.56	21.00	Pass	
Highest	2.28	21.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest			Pass	
Middle	3.94 21.00 Pass		Pass	
Highest	2.68	21.00	Pass	

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Test showned	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	897.80	1242.48	1218.44
Middle	893.79	1230.46	1226.45
Highest	893.79	1258.52	1218.44

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

	GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1002	598.53	Pass	
Middle	1002	598.53	Pass	
Highest	1002	598.53	Pass	
	π/4-DQPSK mod	de		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1002	839.01	Pass	
Middle	1002	839.01	Pass	
Highest	1002	839.01	Pass	
	8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1002	817.63	Pass	
Middle	1002 817.63 Pass		Pass	
Highest	1002	1002 817.63 Pass		

Note: According to section 6.4

Mode	20dB bandwidth (kHz)	Limit (kHz)
Mode	(worse case)	(Carrier Frequencies Separation)
GFSK	897.80	598.53
π/4-DQPSK	1258.52	839.01
8DPSK	1226.45	817.63

Test plot as follows:

Modulation mode:

GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.16992		
GFSK	DH3	0.28864	0.4	Pass
	DH5	0.32747		
	2-DH1	0.17440		
π /4-DQPSK	2-DH3	0.29152	0.4	Pass
	2-DH5	0.32917		
	3-DH1	0.17376		
8DPSK	3-DH3	0.29056	0.4	Pass
	3-DH5	0.32832		

For GFSK, π/4-DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.531*(1600/ (2*79))*31.6=169.92ms DH3 time slot=1.804*(1600/ (4*79))*31.6=288.64ms DH5 time slot=3.070(1600/ (6*79))*31.6=327.47ms

2-DH1 time slot=0.545*(1600/ (2*79))*31.6=174.40ms

2-DH3 time slot=1.822*(1600/ (4*79))*31.6=291.52ms

2-DH5 time slot=3.086(1600/ (6*79))*31.6=329.17ms

3-DH1 time slot=0.543*(1600/ (2*79))*31.6=173.76ms

3-DH3 time slot=1.816*(1600/ (4*79))*31.6=290.56ms

3-DH5 time slot=3.078(1600/ (6*79))*31.6=328.32ms

Test plot as follows:

DH5

Center 2.441 GHz
Date: 17.DEC.2013 13:15:29

2-DH5

3-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

6.9.2 Radiated Emission Method

		<u>- </u>					
Test Requirement:	FCC Part15 C Se	ection 15.209 and	l 15.205				
Test Method:	ANSI C63.4: 2003	3					
Test Frequency Range:	2.3GHz to 2.5GH	Z					
Test site:	Measurement Dis	stance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Above 4CUz Peak 1MHz 3MHz Peak Value					
	Above 10112	Peak	1MHz	10Hz	Average Value		
Limit:	Freque	ency	Limit (dBuV/		Remark		
	Above 1	GHz	54.0		Average Value		
Test setup:			74.0	0	Peak Value		
	EUT Turn Table	→ 3m → 4m		Horn Ant Spectrum Analyzer	ienna		
Test Procedure:	at a 3 meter of position of the 2. The EUT was was mounted 3. The antenna hadetermine the polarizations of 4. For each suspithe antenna was turned from 5. The test-receive Bandwidth with 6. If the emission specified, therefore be reported. Or re-tested one	amber. The table highest radiation set 3 meters away on the top of a variety of the antenna are ected emission, as tuned to heigh am 0 degrees to 3 ever system was should have the testing could be otherwise the emission of the EUT at testing could be otherwise the emission.	was rotated in a y from the interiable-height om one meter of the field street to make the EUT was not from 1 meter of the from 1 meter of the EUT was not from 1 meter of the peak peak of the peak mode. In peak mode stopped and issions that diak, quasi-peak was not for the peak mode of the pea	terference-re antenna tow to four meter to four meter arranged to iter to 4 meter to 4 meter to 4 meter to 4 meter to 5 find the material function to 4 meter function fu	ers above the ground to horizontal and vertical ement. its worst case and then ers and the rota table eximum reading.		
Test Instruments:	Refer to section 5						
Test mode:	Non-hopping mode						
Test results:	Passed						

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Trace: 12

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 559RF Condition

Job NO.

EUT : Bluetooth Speaker Model : M3

Test mode : BT mode BE-DH1-L Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

ReadAntenna Cable Preamp Level Factor Loss Factor Level Limit Over Line Limit Remark Freq Level Factor dBuV dB dB/m dB dBuV/m dBuV/m dB 2390.000 23.82 27.58 5.67 2390.000 13.84 27.58 5.67 0.00 57.07 74.00 -16.93 Peak 0.00 47.09 54.00 -6.91 Average

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job NO.

: Bluetooth Speaker EUT Model : M3 Test mode : BT mode BE-DH1-L

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m dB MHz dB dBuV/m dBuV/m 2390.000 24.00 27.58 2390.000 13.83 27.58 0.00 57.25 74.00 -16.75 Peak 0.00 47.08 54.00 -6.92 Average 5.67 2 5.67

Test channel: Highest

Horizontal:

Trace: 22

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job NO. EUT : 559RF

: Bluetooth Speaker Model : M3 Test mode : BT mode BE-DH1-H Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: A-bomb

	Freq		adAntenna Cable Preamp el Factor Loss Factor			Limit Line			
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Vertical:

Trace: 24

1 2

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 559RF

Job NO. EUT : Bluetooth Speaker

Model : M3

Test mode : BT mode BE-DH1-H Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: A-bomb

Freq		Antenna Factor				Limit Line	1945 P. C.	
MHz	dBuV	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
2483.500 2483.500				- 100 miles (100 miles)	CONTRACTOR OF THE PARTY OF THE		324	

π/4-DQPSK mode Test channel: Lowest

Horizontal:

Trace: 14 Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 559RF Job NO. EUT

: Bluetooth Speaker Model : M3

Test mode : BT mode BE-2DH1-L Power Rating : AC120V/60Hz Environment : Temp: 25.5°C Huni: 55%

Test Engineer: A-bomb

ReadAntenna Cable Preamp Limit Over Line Limit Remark Freq Level Factor Loss Factor Level dBuV dB/m MHz dB dB dBuV/m dBuV/m dB 5.67 0.00 56.92 74.00 -17.08 Peak 5.67 0.00 47.08 54.00 -6.92 Average 2390.000 23.67 27.58 2390.000 13.83 27.58

Vertical:

Trace: 32

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job NO. EUT : 559RF

: Bluetooth Speaker Model : M3

Test mode : BT mode BE-2DH1-L Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: A-bomb

	Freq		Antenna Factor						
	MHz	dBu∜		dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Trace: 20

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 559RF Condition

Job NO.

: Bluetooth Speaker EUT Model : M3
Test mode : BT mode BE-2DH1-H
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: A-bomb

	Freq	Read	Antenna Factor	tenna Cable Preamp actor Loss Factor		Level	Limit Line	Over Limit	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500			5.70 5.70	0.00 0.00	58.01 47.82	74.00 54.00	-15.99 -6.18	Peak Average

Vertical:

Frequency (MHz) Trace: 26

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 559RF Condition

Job NO.

EUT : Bluetooth Speaker Model

Test mode : BT mode BE-2DH1-H
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: A-bomb

	Freq		ReadAntenna Cable Preamp Level Factor Loss Factor						
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

8DPSK mode

Test channel: Lowest

Horizontal:

Trace: 16

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 559RF

Job NO. EUT : Bluetooth Speaker

Model : M3

Test mode : BT mode BE-3DH1-L Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: A-bomb

	Freq			na Cable Preamp or Loss Factor					
	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	dB	
1 2	2390, 000 2390, 000								

Vertical:

Trace: 30 Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 559RF Job NO.

EUT : Bluetooth Speaker Model : M3 Test mode : BT mode BE-3DH1-L Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:

Huni:55%

Test Engineer: A-bomb

ReadAntenna Cable Preamp Over Limit Freq Level Factor Loss Factor Level Line Limit Remark dB/m dB MHz dB dB dBuV/m dBuV/m 2390.000 24.47 27.58 2390.000 13.83 27.58 0.00 57.72 74.00 -16.28 Peak 0.00 47.08 54.00 -6.92 Average 5.67 5.67

Test channel: Highest

Horizontal:

Trace: 18

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job NO. EUT : 559RF

: Bluetooth Speaker

Model : M3

Test mode : BT mode BE-3DH1-H Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: A-bomb

	Freq	ReadAntenna Cable Preamp Freq Level Factor Loss Factor							
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

Vertical:

Frequency (MHz) Trace: 28

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 559RF Condition

Job NO.

EUT : Bluetooth Speaker : M3 Model

Test mode : BT mode BE-3DH1-H Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: A-bomb

	Freq		ReadAntenna Cable Preamp Level Factor Loss Factor						
	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

GFSK

Date: 17.DEC.2013 13:17:31

30MHz~25GHz

Middle channel

Date: 17.DEC.2013 13:25:55

30MHz~25GHz

Highest channel

Date: 17.DEC.2013 13:28:28

 $30MHz\sim25GHz$

$\pi/4$ -DQPSK

Lowest channel

Date: 17.DEC.2013 13:34:58

30MHz~25GHz

Middle channel

Date: 17.DEC.2013 13:36:48

30MHz~25GHz

Highest channel

Date: 17.DEC.2013 13:39:35

30MHz~25GHz

8DPSK

Date: 17.DEC.2013 13:43:02

30MHz~25GHz

Middle channel

Date: 17.DEC.2013 13:44:00

30MHz~25GHz

Highest channel

Date: 17.DEC.2013 13:45:24

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated E	mission Method				
Test Requirement:	FCC Part15 C Se	ction 15.209			
Test Method:	ANSI C63.4: 2003	3			
Test Frequency Range:	9 kHz to 25 GHz				
Test site:	Measurement Dis	tance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above IGHZ	Peak	1MHz	10Hz	Average Value
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark
	30MHz-8	8MHz	40.0)	Quasi-peak Value
	88MHz-21	16MHz	43.5	5	Quasi-peak Value
	216MHz-9	60MHz	46.0)	Quasi-peak Value
	960MHz-	1GHz	54.0)	Quasi-peak Value
	Above 1	CH ₇	54.0)	Average Value
	Above i	GLIZ	74.0)	Peak Value
	Ground Plane Above 1GHz	3m 4m 0.8m 1m 4m 1m 4m		Antenna Tower Horn Antenna Spectrum Analyzer	

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Bluetooth Speaker EUT

: 559RF Model Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: A-bomb REMARK :

Freq								Remark
MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
31.399	41.57	12.32	0.85	26.42	28.32	40.00	-11.68	QP
147.921	54.64	8.24	2.50	29.26	36.12	43.50	-7.38	QP
162.041	59.97	8.72	2.60	29.72	41.57	43.50	-1.93	QP
213.763	55.65	11.00	2.85	29.75	39.75	43.50	-3.75	QP
277.094	49.30	12.59	2.88	29.50	35.27	46.00	-10.73	QP
341.979	41.13	14.15	3.07	29.64	28.71	46.00	-17.29	QP
	MHz 31.399 147.921 162.041 213.763 277.094	Freq Level MHz dBuV 31.399 41.57 147.921 54.64 162.041 59.97 213.763 55.65 277.094 49.30	MHz dBuV dB/m 31.399 41.57 12.32 147.921 54.64 8.24 162.041 59.97 8.72 213.763 55.65 11.00 277.094 49.30 12.59	MHz dBuV dB/m dB 31.399 41.57 12.32 0.85 147.921 54.64 8.24 2.50 162.041 59.97 8.72 2.60 213.763 55.65 11.00 2.85 277.094 49.30 12.59 2.88	MHz dBuV dB/m dB dB 31.399 41.57 12.32 0.85 26.42 147.921 54.64 8.24 2.50 29.26 162.041 59.97 8.72 2.60 29.72 213.763 55.65 11.00 2.85 29.75 277.094 49.30 12.59 2.88 29.50	MHz dBuV dB/m dB dB dBuV/m 31.399 41.57 12.32 0.85 26.42 28.32 147.921 54.64 8.24 2.50 29.26 36.12 162.041 59.97 8.72 2.60 29.72 41.57 213.763 55.65 11.00 2.85 29.75 39.75 277.094 49.30 12.59 2.88 29.50 35.27	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m 31.399 41.57 12.32 0.85 26.42 28.32 40.00 147.921 54.64 8.24 2.50 29.26 36.12 43.50 162.041 59.97 8.72 2.60 29.72 41.57 43.50 213.763 55.65 11.00 2.85 29.75 39.75 43.50 277.094 49.30 12.59 2.88 29.50 35.27 46.00	Freq Level Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 31.399 41.57 12.32 0.85 26.42 28.32 40.00 -11.68 147.921 54.64 8.24 2.50 29.26 36.12 43.50 -7.38 162.041 59.97 8.72 2.60 29.72 41.57 43.50 -1.93 213.763 55.65 11.00 2.85 29.75 39.75 43.50 -3.75 277.094 49.30 12.59 2.88 29.50 35.27 46.00 -10.73

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Bluetooth Speaker

Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: A-bomb
REMARK

EMARK	:								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m		dB	dBu√/m	dBuV/m	dB	
1	98.142	39.51	13.03	1.97	30.09	24.42	43.50	-19.08	QP
1 2 3 4 5 6	162.041	56.42	8.72	2.60	29.72	38.02	43.50	-5.48	QP
3	219.075	55.36	11.17	2.85	29.73	39.65	46.00	-6.35	QP
4	287.990	52.74	12.84	2.91	29.47	39.02	46.00	-6.98	QP
5	406.088	48.09	15.18	3.09	29.98	36.38	46.00	-9.62	QP
6	432.546	46.38	15.53	3.16	30.31	34.76	46.00	-11.24	QP

Above 1GHz:

Test channel:			owest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	51.55	31.53	8.90	40.24	51.74	74.00	-22.26	Vertical
7206.00	47.75	36.47	10.59	41.24	53.57	74.00	-20.43	Vertical
4804.00	51.14	31.53	8.90	40.24	51.33	74.00	-22.67	Horizontal
7206.00	47.04	36.47	10.59	41.24	52.86	74.00	-21.14	Horizontal

Test channel:		L	Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	41.34	31.53	8.90	40.24	41.53	54.00	-12.47	Vertical
7206.00	38.11	36.47	10.59	41.24	43.93	54.00	-10.07	Vertical
4804.00	42.31	31.53	8.90	40.24	42.50	54.00	-11.50	Horizontal
7206.00	38.25	36.47	10.59	41.24	44.07	54.00	-9.93	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:		Middle		Level:		Peak		
Frequency	Read	Antenna		Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization
(1411 12)	(dBuV)	(dB/m)	(dB)	(dB)	(dDd V/III)	(aba v/iii)	(dB)	
4882.00	54.20	31.58	8.98	40.15	54.61	74.00	-19.39	Vertical
7323.00	47.35	36.47	10.69	41.15	53.36	74.00	-20.64	Vertical
4882.00	49.43	31.58	8.98	40.15	49.84	74.00	-24.16	Horizontal
7323.00	47.44	36.47	10.69	41.15	53.45	74.00	-20.55	Horizontal

Test channel:			Middle		Level:		Average		
Fraguency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization	
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(ubu v/III)	(dB)		
4882.00	45.26	31.58	8.98	40.15	45.67	54.00	-8.33	Vertical	
7323.00	38.64	36.47	10.69	41.15	44.65	54.00	-9.35	Vertical	
4882.00	40.23	31.58	8.98	40.15	40.64	54.00	-13.36	Horizontal	
7323.00	38.13	36.47	10.69	41.15	44.14	54.00	-9.86	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channe	Test channel:		Highest		Level:		Peak	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Date de la Cara
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polarization
((dBuV)	(dB/m)	(dB)	(dB)	(42417111)	(424.77.11)	(dB)	
4960.00	50.89	31.69	9.08	40.03	51.63	74.00	-22.37	Vertical
7440.00	48.50	36.60	10.80	41.05	54.85	74.00	-19.15	Vertical
4960.00	48.49	31.69	9.08	40.03	49.23	74.00	-24.77	Horizontal
7440.00	49.13	36.60	10.80	41.05	55.48	74.00	-18.52	Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	40.99	31.69	9.08	40.03	41.73	54.00	-12.27	Vertical
7440.00	38.44	36.60	10.80	41.05	44.79	54.00	-9.21	Vertical
4960.00	38.64	31.69	9.08	40.03	39.38	54.00	-14.62	Horizontal
7440.00	39.41	36.60	10.80	41.05	45.76	54.00	-8.24	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.