Examen final

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

Le 1 mai 2018

Documentation permise : 2 feuilles de notes recto verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (9h30 – 11h20).

1. (30 points) Questions à courts développements

Soit le circuit de la <u>Figure 1</u>.

- a) Dessinez son modèle petit signal.
- b) Donnez son impédance de sortie. **Note : utilisez les résultats vus en classe et** justifiez votre démarche.
- c) Donnez son gain de tension. Note: utilisez les résultats vus en classe et justifiez votre démarche.
- d) Remplacez la source de courant idéale *I* par un circuit de polarisation. Pour ce faire, utilisez une source de courant PMOS polarisée par un miroir de courant et une résistance. **Dessinez votre circuit de polarisation.**
- e) Expliquez brièvement le fonctionnement du convertisseur illustré à la <u>Figure 2</u> et dites dans quelles circonstances il est approprié de l'utiliser.
- f) Soit le circuit montré à la <u>Figure 3</u>. Remplacez la boîte de droite (entre v₁ et v₂) par un circuit utilisant 1 ampli-op afin d'obtenir un oscillateur non-linéaire. Dessinez l'oscillateur complet avec le circuit que vous proposez. Décrivez brièvement le fonctionnement de ce circuit et de l'oscillateur complet.

Figure 1.

Figure 2.

Figure 3.

2. (30 points) Analyse de circuits

Soit le circuit suivant :

Figure 4.

Répondez aux questions suivantes en expliquant bien votre raisonnement.

- (a) Dessinez le modèle petit signal de ce circuit.
- g) Donnez l'impédance vue dans le drain de Q₁. **Note : utilisez les résultats vus en** classe et justifiez votre démarche.
- h) Donnez l'impédance d'entrée et l'impédance de sortie du circuit. **Note : utilisez les** résultats vus en classe et justifiez votre démarche.
- i) Donnez l'expression du gain v_o/v_i en fonction des paramètres petit signal du circuit.
 Note: utilisez les résultats vus en classe et justifiez votre démarche.
 - (b) Déterminez la plage de tensions de sortie $v_{o_min} < v_o < v_{o_max}$. Note : On considère que les sources de courant ont des chutes de tension minimums de V_s à leurs bornes.
 - (c) Utilisez un étage cascode pour augmenter le gain de ce circuit.
 - i. Redessinez le circuit avec son étage cascode.
 - ii. Donnez le gain et l'impédance de sortie de ce nouveau circuit.

3. (40 points) Conception d'un amplificateur opérationnel CMOS

Figure 5.

L'ampli-op montré ci-dessus possède les caractéristiques suivantes : $V_{DD} = V_{SS} = 1.8 \text{ V}$, $V_{tn} = |V_{tp}| = 0.6 \text{ V}$, $\mu_n C_{ox} = 200 \text{ }\mu\text{A}/\text{V}^2$ et $\mu_p C_{ox} = 50 \text{ }\mu\text{A}/\text{V}^2$ et V_A = 18 V/ μ m. Utilisez $L = 1 \text{ }\mu\text{m}$ et $V_{OV} = 0.25 \text{ V}$ pour tous les MOSFET. **Notez que W**₅ = **320 \mum**, **W**₇ = **160 \mum et que I**_{REF} = **100 \muA**.

- (a) Donnez la fonction de chaque transistor (Q_1 à Q_8).
- (b) Calculez les courants I_D et les W/L de tous les transistors.
- (c) Calculez les g_m et les r_o de tous les transistors.
- j) Calculez le gain en boucle ouverte (v_o/v_i) et la résistance de sortie de cet ampli-op.
 Note: utilisez les résultats vus en classe et justifiez votre démarche.
 - (d) Déterminez sa plage de tension d'entrée en mode commun v_{icm min}<v_{icm}<v_{icm max}.
 - (e) Déterminez sa plage de tension de sortie $v_{o_min} < v_o < v_{o_max}$.
 - (f) Calculez le taux de rejet du mode commun <u>de cet ampli-op.</u> **Note : référez-vous à** l'Aide mémoire à la fin.
 - (g) Dessinez le diagramme de Bode approximatif du gain v_o/v_i et situez approximativement l'emplacement du premier pôle. Expliquez d'où provient ce pôle en fonction des paramètres petit signal et des nœud internes de l'ampli-op.

Aide mémoire

Courant de drain et paramètres petit signal du MOSFET

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

$$r_o = \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$

$$g_{m} = \frac{2I_{D}}{V_{OV}},$$
 $g_{m} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{t}),$ $g_{m} = \sqrt{2\mu_{n}C_{ox}(W/L)I_{D}}$

$$g_m = \sqrt{2\mu_n C_{ox}(W/L)I_D}$$

$$V_{GS} = V_{tn} + \sqrt{\frac{2I_D}{\mu_n C_{ox}(W/L)}}$$

Paire différentielle

$$A_{cm} = \frac{v_o}{v_{icm}} = \frac{r_{o4}}{2R_{ss}} \frac{1}{1 + g_{m3}r_{o3}}$$

Modèle petit signal de l'ampli-op à 2 étages

