Definition: Longer Markov Chains

We can extend the definition of Markov chains to more than three variables:

Definition: Markov chain (of length n)

The random variables X_1,X_2,\ldots,X_n form a Markov chain (notation: $X_1\to X_2\to\cdots\to X_n$) if for all $3\le i\le n$,

$$P_{X_i|X_1\cdots X_{i-1}} = P_{X_i|X_{i-1}}$$
 .

Markov chains of length n exhibit similar properties to the properties we have seen for Markov chains of length 3. In particular, the reverse chain is also a Markov chain ($X_n \to \cdots \to X_2 \to X_1$), and a more general form of the data-processing inequality holds in the sense that the further apart two variables are in the chain, the less correlated they are.

Proposition

If $X_1 o X_2 o X_3 o X_4$ is a Markov chain, the following are Markov chains as well:

a.
$$X_1 o X_2 o X_3$$

b.
$$X_2 o X_3 o X_4$$

c.
$$X_1 o X_2 X_3 o X_4$$

d.
$$X_4 o X_3 o X_2 o X_1$$

Proof

left as exercise

In the exercises, we will prove that if X_1, X_2, \ldots, X_n forms a Markov chain, then for all $1 \leq i \leq j \leq k \leq n$: $I(X_i, X_j) \geq I(X_i, X_k)$. This is a generalized form of the **data-processing inequality**.

created: 2018-12-11