CMOS 模拟集成电路原理 第十一周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年11月25日

目录

1	流程	简述	1
2	逼近	器设计	3
3	设计	过程	4
4	实验	结果	4
List of Figures			
	1	对输入信号进行采样	2
	2	对输入信号进行保持	2
	3	逐次逼近信号大小	2
	4	断开回路的电容采样电压	3
	5	转换完成后输出中断信号	3
	6	SAR 模块接口	4
	7	多路选择器内部设计	4
	8	SAR ADC 整体设计	5
	9	封装测试台示意图	5
	10	数模混合配置	5
	11	ADC 采样输出波形	5
	12	ADC 采样输出中断间隔	6

1 流程简述

SAR-ADC(Successive-approximation Register ADC)是利用 DAC 模块逐次二分逼近最终得到合适的 ADC 值的一种方法。接下来简要介绍整体流程。

- 1. 在一次转换的开始,如**图1**,对输入信号进行采样,所有由 DAC 输出控制的开关摆向底板,底板连接到输入信号,采样端此时需要接地,那么电容两端的电势差为 $0 V_{in}$ 。
- 2. 采样完成后,需要将得到的信号进行保持,如图 2,将所有由 DAC 控制的开关摆向地,将底板接到参考电压,采样端断开,此时电容的通路断开,不能放电,将所有的电荷保持住,采样的电压被拉到 $-V_{in}$,如图 4。
- 3. 接下来进行逐次的比较,从最高位开始进行比较,如 **图 3** ,将 DAC 输出的最高位置为高,此时的采样电压为 $V_{ref}2^{-1}-V_{in}$,比较 DAC 对应的电压与采样的电压的关系,若是不足则保持本位的输出,反之,取消本位。
- 4. 对其他位依次进行以上操作,直到比较完成,向外部发出中断,标志本次转换已经完成,如**图 5**。

图 1: 对输入信号进行采样

图 2: 对输入信号进行保持

图 3: 逐次逼近信号大小

图 4: 断开回路的电容采样电压

图 5: 转换完成后输出中断信号

2 逼近器设计

首先,作为一个时序逻辑数字模块,需要存在某种形式的时钟信号与复位信号,实际使用的模块还需要使用使能信号来启用模块以及启动信号。另外,根据上一节的分析,需要使用采样/保持信号,以及比较结果作为输入进行比较,需要每位控制开关的数据信号¹。据此定义模块的端口。

```
module sar (
    clk,
    reset,
    en,
    start,
    intr,
    hold,
    cmp,
    data
);

// the timing signal and control signal
input clk, reset, en, start;
// the interrupt and discharge
output reg intr, hold;
```

¹同时也是系统的输出

```
// the result of comparator
input cmp;
// the output of SAR
output reg [4:0] data;
```

接下来定义各个状态,状态之间的转换关系如下:

• idle: 等待开始信号, 之后转换到 init。此时, 不进行保持。

• init: DAC 输出的信号为全高,直接转换到 ready。

• ready: 此时开始保持, 进行采样, 进入 compare 。

• compare: 修改输出的数据, 进入check。

• check:对来自比较器的数据进行检测,决定下一状态的数据。

3 设计过程

设计的数字模块如 ${\bf 8}$ 6,设计的多路选择器如 ${\bf 8}$ 7,模块整体如 ${\bf 8}$ 8,封装后如 ${\bf 8}$ 9,其配置文件如 ${\bf 8}$ 10。

图 6: SAR 模块接口

图 7: 多路选择器内部设计

4 实验结果

ADC 的输出如 **图 11** ,间隔见 **图 12** 其中可见运行的中断存在,中断间隔小于 1us ,满足要求。

图 8: SAR ADC 整体设计

图 9: 封装测试台示意图

图 10: 数模混合配置

图 11: ADC 采样输出波形

图 12: ADC 采样输出中断间隔