Question Number	Scheme	Marks
2	$\frac{\mathrm{d}A}{\mathrm{d}t} = 8$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$	M1
	$A = 50$ $r = \sqrt{\frac{50}{\pi}} $ (3.989)	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}A} \times \frac{\mathrm{d}A}{\mathrm{d}t}, = \frac{1}{2\pi\sqrt{\frac{50}{\pi}}} \times 8, = 0.319 \text{ (cm/s)}$	M1,A1ft,A1 [6]
NB	For either method, accept A or S for area, r for radius. Any other letters used for area and/or radius must be defined.	
B1	$\frac{dA}{dt} = 8$ seen explicitly or used	
M1	Attempt to differentiate πr^2 to obtain $\frac{dA}{dr}$ Power of r must decrease	
M1 M1	Attempt to obtain r when $A = 50 \text{ cm}^2$ (ie solve $50 = \pi r^2$) For a correct, useful, chain rule. Derivatives can appear in any order	
A1ft	Substitute their known quantities and rearrange to $\frac{dr}{dt} =$ if not in this form already.	
A1	All 3 M marks needed Correct answer, must be 3 sf	
ALT	$\frac{\mathrm{d}A}{\mathrm{d}t} = 8$	B1
	$r = \sqrt{\frac{a}{\pi}}$ oe	M1
	$\frac{\mathrm{d}r}{\mathrm{d}A} = \frac{1}{2\sqrt{\pi}}A^{-\frac{1}{2}}$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} \times \frac{\mathrm{d}r}{\mathrm{d}A} = \frac{\mathrm{d}r}{\mathrm{d}t}$	M1
	$= 8 \times \frac{1}{2\sqrt{\pi}} A^{-\frac{1}{2}} = 8 \times \frac{1}{2\sqrt{\pi}} \times \frac{1}{\sqrt{50}}$	A1ft
	= 0.3191 = 0.319 (cm/s)	A1
B1	$\frac{dA}{dt} = 8$ seen explicitly or used	
M1	Attempt to find r in terms of A	
M1	Attempt to differentiate their expression for r to obtain $\frac{dr}{dA}$ power of A must decrease	
M1	For a correct, useful, chain rule. Derivatives can appear in any order	
A1ft	Substitute their known quantities and rearrange to $\frac{dr}{dt} =$ if not in this form already. All	
A1	3 M marks needed Correct answer, must be 3 sf	