Angles and Radian Measure

An angle is in standard position if

An angle is in standard position if

• Vertex is at the origin.

An angle is in standard position if

- Vertex is at the origin.
- Initial side runs along positive *x*-axis.

An angle is in standard position if

- Vertex is at the origin.
- Initial side runs along positive *x*-axis.

Positive angles open **counter-clockwise** and negative angles open **clockwise**.

An angle is in standard position if

- Vertex is at the origin.
- Initial side runs along positive *x*-axis.

Positive angles open **counter-clockwise** and negative angles open **clockwise**.

A quadrantal angle is one whose terminal side lies on an axis. In other words, it's a multiple of 90° .

Radians

One **radian** is the measure of the central angle of a circle in which the radius equals the length of the intercepted arc.

Radian Interpretation

In other words, its when the length of your slice of pizza's crust is equal to the radius of the pizza.

Table of Contents

1 Convert degrees to radians and radians to degrees.

2 Draw angles in standard position.

3 Find a coterminal angle to a given angle

4 Calculate arc length and sector area

$$360^{\circ} = 2\pi \text{ radians}$$

$$360^{\circ} = 2\pi \text{ radians}$$

$$180^{\circ} = \pi$$
 radians

$$360^{\circ}=2\pi$$
 radians

$$180^\circ = \pi \text{ radians}$$

$$\frac{180^{\circ}}{\pi}=1 \; \text{radian}$$

Convert Degrees to Radians and Radians to Degrees

• To convert degrees to radians, multiply by $\frac{\pi}{180^{\circ}}$.

Convert Degrees to Radians and Radians to Degrees

- To convert degrees to radians, multiply by $\frac{\pi}{180^{\circ}}$.
- \bullet To convert radians to degrees, multiply by $\frac{180^\circ}{\pi}.$

Convert each angle to radians.

(a) 30°

Convert each angle to radians.

(a) 30°

 30°

$$(a)$$
 30°

$$30^{\circ}
ightarrow 30^{\circ} \left(rac{\pi}{180^{\circ}}
ight)$$

(a)
$$30^{\circ}$$

$$30^{\circ} \rightarrow 30^{\circ} \left(\frac{\pi}{180^{\circ}}\right)$$
$$= \frac{30\pi}{180}$$

$$(a)$$
 30°

$$30^{\circ} \rightarrow 30^{\circ} \left(\frac{\pi}{180^{\circ}}\right)$$
$$= \frac{30\pi}{180}$$
$$= \frac{\pi}{6}$$

Convert each angle to radians.

(b) 90°

Convert each angle to radians.

(b) 90°

 90°

$$90^{\circ} \rightarrow 90^{\circ} \left(\frac{\pi}{180^{\circ}}\right)$$

$$90^{\circ} \rightarrow 90^{\circ} \left(\frac{\pi}{180^{\circ}}\right)$$
$$= \frac{90\pi}{180}$$

$$90^{\circ} \rightarrow 90^{\circ} \left(\frac{\pi}{180^{\circ}}\right)$$
$$= \frac{90\pi}{180}$$
$$= \frac{\pi}{2}$$

(c)
$$-135^{\circ}$$

(c)
$$-135^{\circ}$$

$$-135^{\circ}$$

(c)
$$-135^{\circ}$$

$$-\ 135^\circ \rightarrow -135^\circ \left(\frac{\pi}{180^\circ}\right)$$

(c)
$$-135^\circ$$

$$-135^\circ \to -135^\circ \left(\frac{\pi}{180^\circ}\right)$$

$$= \frac{-135\pi}{180}$$

(c)
$$-135^{\circ}$$

$$-135^{\circ} \rightarrow -135^{\circ} \left(\frac{\pi}{180^{\circ}}\right)$$

$$= \frac{-135\pi}{180}$$

$$= \frac{-3\pi}{4}$$

(a)
$$\frac{\pi}{3}$$

(a)
$$\frac{\pi}{3}$$

$$\frac{\pi}{3}$$

(a)
$$\frac{\pi}{3}$$

$$\frac{\pi}{3} \to \frac{\pi}{3} \left(\frac{180^{\circ}}{\pi} \right)$$

(a)
$$\frac{\pi}{3}$$

$$\frac{\pi}{3} \to \frac{\pi}{3} \left(\frac{180^{\circ}}{\pi} \right)$$
$$= \frac{180^{\circ}}{3}$$

(a)
$$\frac{\pi}{3}$$

$$\frac{\pi}{3} \to \frac{\pi}{3} \left(\frac{180^{\circ}}{\pi} \right)$$
$$= \frac{180^{\circ}}{3}$$
$$= 60^{\circ}$$

(b)
$$-\frac{5\pi}{4}$$

(b)
$$-\frac{5\pi}{4}$$

$$-\frac{5\pi}{4}$$

(b)
$$-\frac{5\pi}{4}$$

$$-\;\frac{5\pi}{4}\to -\frac{5\pi}{4}\left(\frac{180^\circ}{\pi}\right)$$

(b)
$$-\frac{5\pi}{4}$$

$$-\frac{5\pi}{4} \rightarrow -\frac{5\pi}{4} \left(\frac{180^{\circ}}{\pi}\right)$$
$$= -\frac{900^{\circ}}{4}$$

(b)
$$-\frac{5\pi}{4}$$

$$-\frac{5\pi}{4} \rightarrow -\frac{5\pi}{4} \left(\frac{180^{\circ}}{\pi}\right)$$
$$= -\frac{900^{\circ}}{4}$$
$$= -225^{\circ}$$

Table of Contents

Convert degrees to radians and radians to degrees

2 Draw angles in standard position.

Find a coterminal angle to a given angle.

4 Calculate arc length and sector area

(a)
$$\alpha = \frac{\pi}{6}$$

(a)
$$\alpha = \frac{\pi}{6}$$
 $\alpha = 30^{\circ}$

(a)
$$\alpha = \frac{\pi}{6}$$
 $\alpha = 30^{\circ}$

(a)
$$\alpha = \frac{\pi}{6}$$
 $\alpha = 30^{\circ}$

(b)
$$\beta = -\frac{4\pi}{3}$$

(b)
$$\beta = -\frac{4\pi}{3}$$
 $\beta = -240^{\circ}$

(b)
$$\beta = -\frac{4\pi}{3}$$
 $\beta = -240^{\circ}$

(b)
$$\beta = -\frac{4\pi}{3}$$
 $\beta = -240^{\circ}$

(c)
$$\gamma = -\frac{9\pi}{4}$$

(c)
$$\gamma = -\frac{9\pi}{4}$$
 $\gamma = -405^{\circ}$

(c)
$$\gamma = -\frac{9\pi}{4}$$
 $\gamma = -405^{\circ}$

(c)
$$\gamma = -\frac{9\pi}{4}$$
 $\gamma = -405^{\circ}$

(d)
$$\delta = -\frac{5\pi}{2}$$

(d)
$$\delta = -\frac{5\pi}{2}$$
 $\delta = -450^{\circ}$

(d)
$$\delta = -\frac{5\pi}{2}$$
 $\delta = -450^{\circ}$

(d)
$$\delta = -\frac{5\pi}{2}$$
 $\delta = -450^{\circ}$

Table of Contents

Convert degrees to radians and radians to degrees

Draw angles in standard position.

3 Find a coterminal angle to a given angle.

4 Calculate arc length and sector area

Coterminal Angles

Two angles that have the same initial and terminal side are coterminal angles.

Coterminal Angles

Two angles that have the same initial and terminal side are coterminal angles.

To find coterminal angles, add (or subtract) multiples of 360° (or 2π radians).

Find a coterminal angle between 0° and 360° (or 0 and 2π radians) for each.

(a) 400°

Find a coterminal angle between 0° and 360° (or 0 and 2π radians) for each.

(a) 400°

 400°

Find a coterminal angle between 0° and 360° (or 0 and 2π radians) for each.

(a)
$$400^{\circ}$$

$$400^{\circ} \rightarrow 400^{\circ} - 360^{\circ}$$

Find a coterminal angle between 0° and 360° (or 0 and 2π radians) for each.

(a)
$$400^{\circ}$$

$$400^{\circ} \rightarrow 400^{\circ} - 360^{\circ}$$
$$= 40^{\circ}$$

(b)
$$-\frac{4\pi}{3}$$

(b)
$$-\frac{4\pi}{3}$$

$$-\frac{4\pi}{3}$$

(b)
$$-\frac{4\pi}{3}$$

$$-\,\frac{4\pi}{3}\rightarrow -\frac{4\pi}{3}+2\pi$$

(b)
$$-\frac{4\pi}{3}$$

$$-\frac{4\pi}{3} \to -\frac{4\pi}{3} + 2\pi$$
$$= \frac{2\pi}{3}$$

(c)
$$\frac{9\pi}{4}$$

(c)
$$\frac{9\pi}{4}$$

$$\frac{9\pi}{4}$$

(c)
$$\frac{9\pi}{4}$$

$$\frac{9\pi}{4} \to \frac{9\pi}{4} - 2\pi$$

(c)
$$\frac{9\pi}{4}$$

$$\frac{9\pi}{4} \to \frac{9\pi}{4} - 2\pi$$
$$= \frac{\pi}{4}$$

(d)
$$-785^{\circ}$$

(d)
$$-785^{\circ}$$

 -785°

(d)
$$-785^{\circ}$$

$$-~785^\circ \rightarrow -785^\circ + 1080^\circ$$

(d)
$$-785^{\circ}$$

$$-785^{\circ} \rightarrow -785^{\circ} + 1080^{\circ}$$

$$= 295^{\circ}$$

Table of Contents

Convert degrees to radians and radians to degrees

2 Draw angles in standard position.

3 Find a coterminal angle to a given angle

4 Calculate arc length and sector area

$$\frac{s}{2\pi r} = \frac{\theta}{2\pi}$$

$$\frac{s}{2\pi r} = \frac{\theta}{2\pi}$$

$$2\pi s = 2\pi r\theta$$

$$\frac{s}{2\pi r} = \frac{\theta}{2\pi}$$

$$2\pi s = 2\pi r\theta$$

$$s = r\theta$$

$$\frac{A}{\pi r^2} = \frac{\theta}{2\pi}$$

$$\frac{A}{\pi r^2} = \frac{\theta}{2\pi}$$
$$2\pi A = \theta \pi r^2$$

$$2\pi A = \theta \pi r^2$$

$$\frac{A}{\pi r^2} = \frac{\theta}{2\pi}$$

$$2\pi A = \theta \pi r^2$$

$$A = \frac{1}{2}\theta r^2$$

Find the exact arc length and sector area of the circle with

$$r = 5$$
 ft; $\theta = \frac{\pi}{2}$

Find the exact arc length and sector area of the circle with

$$r = 5$$
 ft; $\theta = \frac{\pi}{2}$

Find the exact arc length and sector area of the circle with

$$r = 5$$
 ft; $\theta = \frac{\pi}{2}$

$$s = r\theta$$

Find the exact arc length and sector area of the circle with

$$r = 5$$
 ft; $\theta = \frac{\pi}{2}$

$$s = r\theta$$

$$s=5\left(\frac{\pi}{2}\right)$$

Find the exact arc length and sector area of the circle with

$$r = 5$$
 ft; $\theta = \frac{\pi}{2}$

$$s = r\theta$$
$$s = 5\left(\frac{\pi}{2}\right)$$
$$s = \frac{5\pi}{2} \text{ ft}$$

$$A = \frac{1}{2}\theta r^2$$

$$A = \frac{1}{2}\theta r^2$$

$$A=\frac{1}{2}\left(\frac{\pi}{2}\right)(5^2)$$

$$A = \frac{1}{2}\theta r^2$$

$$A = \frac{1}{2}\left(\frac{\pi}{2}\right)(5^2)$$

$$A = \frac{25\pi}{4} \text{ ft}^2$$