Zijia Wang Joint Work with David Wiredu and Elizabeth Ofori University of Calgary

Alberta Mathematics Dialogue, 2016

OUTLINE

BACKGROUND

BACKGROUND

Drop in Oil Prices Reasons behind the Drop Motivation

METHODOLOGY

Heston's Model Bates' Model Markov Chain Monte-Carlo Simulation

Numerical Result Parameters Estimates **Options Pricing**

Conclusions

REASONS BEHIND THE DROP

The price of a barrel of oil fell more than 60% compared with June 2014 levels. The reasons behind the drop boils down to the simple economics of supply and demand.

- Oversupply
 - ▶ United States Domestic Production
 - Disagreement among OPEC
- Declining demand
 - ► Weak Economies
 - ► More Energy-Efficient Vehicles
- ► Strong US dollar

MOTIVATION

- We have noticed a very high volatility in oil prices over the last two years, which may indicate the existence of "jumps" in oil prices.
- ► We are interested in evaluating the performance of Heston's and Bates' models during the oil crisis.

In Heston's model, the stock price S_t and its variance V_t are given by

$$\begin{cases} dS_t = \mu S_t dt + \sqrt{V_t} S_t dW_{1t} \\ dV_t = \kappa [\theta - V_t] dt + \sigma \sqrt{V_t} dW_{2t} \\ \rho dt = \text{cov}(dW_{1t}, dW_{2t}) \end{cases}$$

where

- ▶ W_{1t} , W_{2t} are Wiener processes with correlation ρ
- ightharpoonup growth rate or expected return for the asset
- $\blacktriangleright \kappa$ mean reversion speed
- ▶ θ the long-run average of variance
- \bullet σ the volatility of volatility.

BATES' MODEL

The general formula for Bates' model is given by

$$\begin{cases} dS_t = \mu S_t dt + \sqrt{V_t} S_t dW_{1t} - \lambda (e^{\mu_s + (1/2)\sigma_s^2} - 1) S_t dt + dQ_t \\ dV_t = \kappa (\theta - V_t) dt + \sigma \sqrt{V_t} dW_{2t} \\ \rho dt = \text{cov}(dW_{1t}, dW_{2t}) \end{cases}$$

where the additional variable Q_t is a compound Poisson process with arrival intensity λ and i.i.d lognormal distributed jump size distribution e^{Z_j} , where $Z_j \sim \mathcal{N}(\mu_z, \sigma_z^2)$.

Basic Idea We want to construct a Markov chain whose stationary distribution is the desired posterior distribution, and then we can run this chain to get draws that are approximately from the posterior distribution once the chain has converged.

Burn In Since convergence will occur regardless of the starting point, we can usually pick any feasible starting point. However, the time it takes for the chain to converge varies depending on the starting point.

BACKGROUND

- ▶ The estimated parameters are μ , κ , θ , σ , μ_z , σ_z , ρ , λ
- ► According to the Bayesian method, the posterior distribution is given by

Posterior probability \propto Likelihood \times Prior probability.

$$P(\mu|S, V, \kappa, \theta, \sigma, \mu_z, \sigma_z, \rho, \lambda) \propto P(S, V|\mu, \kappa, \theta, \sigma, \mu_z, \sigma_z, \rho, \lambda) \cdot P(\mu)$$

► All priors chosen are those frequently used in previous literature. Initial values for the MCMC algorithm were chosen based off on the observed data

BACKGROUND

For the parameters $\{\mu, \kappa, \theta, \sigma, \mu_z, \sigma_z, \rho, \lambda\}$, a Gibbs sampler is used. The process involves mainly

- 1. Start from a set $\{\mu^{(0)}, \kappa^{(0)}...V_0^{(0)}, V_1^{(0)}...V_{\tau_{\perp 1}}^{(0)}\}$ of initial values.
- 2. Draw a value $\mu^{(1)}$ from the full conditional $P(\mu|S, \kappa^{(0)}...V_0^{(0)}, V_1^{(0)}...V_{T+1}^{(0)})$, then update the set to $\{\mu^{(1)}, \kappa^{(0)}...V_0^{(0)}, V_1^{(0)}...V_{T+1}^{(0)}\}.$
- 3. Apply step 2 to obtain draws for $\kappa^{(1)}$, $\theta^{(1)}$... and then update the current state of the Markov chain in step 1 with each draw.
- 4. The process in step 3 is repeated for 1, 2, ..., n iterations.

BACKGROUND

For the state space $\{V_0, ..., V_T\}$ a Metropolis- Hastings approach is used. This involves

- 1. Starting with the initial values $\{V_0^{(0)},, V_{\tau_{\perp 1}}^{(0)}\}$ for the 0th step;
- 2. For a fixed ith step, draw from the proposal density for $V_{\iota}^{(t)}$ for $t \in \{1, ..., T\}$ by $V_{t}^{*(i)} = V_{t}^{(i-1)} + \mathcal{N}_{t}$, where $\mathcal{N}_t \sim \mathcal{N}(0, \sigma_{N_t}^2).$
- 3. Compute an acceptance ratio r, accept $V_{\iota}^{*(i)}$ as $V_{\iota}^{(i)}$ with probability min(r, 1). If $V_t^{*(i)}$ is not accepeted, then $V_{\iota}^{(i)} = V_{\iota}^{(i-1)}$.
- 4. Running the algorithm for *n* steps, to get $\{V_0^{(i)}, V_1^{(i)}, \dots, V_{T+1}^{(i)}\}, \text{ for } i \in \{1, \dots, n\}.$

WTI crude oil futures CLM16 and CLJ16 were chosen as underlying assets.

- ► For Parameter Estimation: CLJ16 and CLM16 futures were chosen with maturities 21st March 2016 and 20th May 2016 respectively.
- ► For each of the futures, the historical data was collected from 28th March 2014 to 25th Feb 2016.
- ► The corresponding future call options CLJ16 and CLM16 are with maturity periods 9 days and 21 days respectively.

PARAMETER ESTIMATES

Table: Parameters estimates for CLM16 and CLJ16 oil futures.

	CLM16		CLJ16	
	Bates	Heston	Bates	Heston
μ	-15.13%		-20.00%	
	(12.08%)		(11.43%)	
μ_z	0.50%		-0.01%	
	(4.17%)		(2.46%)	
σ_z	14.73%		11.87%	
	(9.00%)		(1.86%)	
λ	3.20%		5.70%	
	(1.14%)		(2.63%)	
κ	49.57%	45.29%	65.17%	56.23%
	(45.70%)	(41.42%)	(47.03%)	(43.82%)
θ	26.99%	40.02%	17.91%	29.26%
	(33.48%)	(39.92%)	(25.53%)	(33.12%)
σ_V	14.44%	31.71%	15.06%	24.26%
	(7.55%)	(17.24%)	(16.54%)	(3.08%)
ρ	-63.17%	-58.35%	-78.13%	-73.17%
	(12.17%)	(10.91%)	(8.33%)	(10.10%)
V	4.27%	6.89%	4.24%	7.36%
	(2.65%)	(4.99%)	(2.51%)	(5.10)

PARAMETER ESTIMATES

BACKGROUND

From the table above we observe that:

- 1. Both of the estimates for the average return in the models (given by μ) are negative reflecting the persistent decline in prices.
- 2. The parameter ρ which measures the correlation between instantaneous volatility and returns indicates a strong negative correlation in the Bates' model.
- 3. The estimates of λ , the jump density indicates that jumps are very infrequent.

COMPARING DISTRIBUTIONS

BACKGROUND

KOLMOGOROV-SMIRNOV (K-S) TEST

Despite the considerable differences observed in the plots we perform the K-S test.

► The hypothesis for each of the parameters is

$$H_0: F(X) = F(Y)$$

$$H_A: F(X) \neq F(Y)$$

where F(X) and F(Y) are cumulative distribution functions of each parameter under Heston's model and Bates' model respectively. We reject H_0 if the p-value is less than 0.05.

	ρ	κ	θ
D_{KS}	0.21909	0.24664	0.49491
p value	2.2e-16	2.2e-16	2.2e-16

BACKGROUND

ICING OIL FUTURES OF HONS

Using the estimated parameters, we got oil futures options prices under the strike prices between \$25 and \$55.

Table: Call Option Prices for CLJ16

Numerical Result

00000000000

_				
	Strikes	Actual	Heston	Bates
	25	12.9	12.9579	12.907
	26	11.91	11.9603	11.9076
	27	10.91	10.9625	10.9083
	28	9.92	9.9649	9.9090
	29	8.92	8.9672	8.9097
	30	7.76	7.9696	7.9106
	31	6.60	6.9724	6.9119
	42	0.13	0.0377	0.044
	43	0.09	0.012	0.0189
	44	0.08	0.0033	0.0098
	45	0.04	0.0008	0.0067
	46	0.03	0.0002	0.0055
	47	0.03	0	0.0049
	48	0.02	0	0.0045

Figure: CLJ16 Call Option Prices under Different Strikes

Figure: CLM16 Call Option Prices under Different Strikes

Figure: CLJ16 In the Money Call Option Prices

Figure: CLJ16 Out of the Money Option Prices

EVALUATING THE GOODNESS-OF-FIT

We employed the chi-square test.

► The hypothesis is

H₀: Estimated prices have a good fit

H_A: Estimated prices do not have a good fit

We reject H_0 if the p-value is less than 0.05 in each case.

Table: χ^2 Test for CLJ16 and CLM16

p-value	CLJ16	CLM16
Bates	0.246	0.238
Heston	0.0001	0.241

- ► The MCMC algorithm was successful in obtaining draws from the posterior distributions. The estimated values in Bates' model are smaller than those in Heston's model since part of the volatility in the model is accounted for using by the jump term.
- ► In our project, the Bates' model is better suited to short-term ITM and OTM options while the Heston's model performs better in medium to long term ATM cases.

LIMITATIONS

BACKGROUND

- ► Insufficient data
- ► The selection of prior parameters
- ► Difficulty in detecting jumps

Conclusions

BACKGROUND

- Heston, S.L.(1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Yale: Yale School of Organization and Management.
- Bates, S,D. (1996), Jumps and Stochastic Volatility: Exchange Rate processes Implicit in Deutchemark Options, Review of Financial Studies 9, 69-107.
- Geyer, J., Charles. (1992). Introduction to Markov Chain Monte Carlo. Vol. 7, No. 4 (pp 473-483). Institute of Mathematical Statistics.