AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1. (currently amended): A resist composition comprising:
- (A) a compound capable of generating an active seed upon irradiation with one of an actinic ray and a radiation,
- (B) a compound capable of reacting with the active seed generated from the compound (A) and/or performing electron transfer to generate an active seed different from the active seed generated from the compound (A), and
- (C) a compound capable of performing electron transfer from the active seed generated from the compound (B) to generate an acid,

and the following component (D1) or (D2):

- (D1) an alkali-soluble resin having a phenol skeleton,
- (D2) a resin capable of increasing its solubility in an alkali developer by the action of an acid,

wherein supposing that the 1/2 wave of the oxidation potential of the active seed generated from the compound (B) is E_{pa} and the 1/2 wave of the reduction potential of the active seed generated from the compound (C) is E_{pc} , the relationship: $E_{pc} - E_{pa} > 0$ is satisfied.

2. (original): The resist composition according to claim 1, wherein the compound (A) contains a structure represented by the following formula (a):

$$Ra - Rb - COO^{-}$$
 (a)

wherein Ra represents a hydrogen atom, a substituted or unsubstituted C_6 - C_{16} aryl group, a substituted or unsubstituted C_1 - C_{20} straight-chain, branched or cyclic alkyl group, -COO $^-$ or -SO $_3$ $^-$, and Rb represents a single bond, -C(=O)-, -NH- or -S(=O) $_2$ $^-$.

3. (currently amended): The resist composition according to claim 1, wherein the compound (A) is at least one <u>compound</u> selected from the group consisting of compounds represented by the formulae (a) and (I) to (IV) in combination:

$$R_{16}$$
 R_{17} R_{24} R_{25}
 R_{20} R_{22} R_{23} R_{24} R_{25} R_{25} R_{24} R_{25} R_{25} R_{25} R_{25} R_{26} R_{27}

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/613,044

$$R_{42} - N^{+} - R_{40}$$
 (IV).

wherein R₁ to R₃₇ each independently represents a hydrogen atom, a straight-chain, branched or cyclic alkyl or alkoxy group, a hydroxyl group, a halogen atom or –S-R₃₈ in which R₃₈ represents a straight-chain, branched or cyclic alkyl or aryl group, with the proviso that two or more of R₁ to R₁₅, R₁₆ to R₂₇ and R₂₈ to R₃₇ may be bonded to each other to form a ring containing one or more selected from the group consisting of a single bond, a carbon atom, an oxygen atom, a sulfur atom and a nitrogen atom, and

 R_{39} to R_{42} each independently represents a hydrogen atom or a straight-chain, branched or cyclic alkyl or aryl group.

4. (currently amended): The resist composition according to claim 1, wherein the compound (A) is represented by the following formula (V):

$$R_{4}$$
 R_{5}
 R_{6}
 R_{6}
 R_{1}
 R_{15}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{13}
 R_{14}
 R_{15}
 R_{14}
 R_{15}

wherein Ra represents a hydrogen atom, a substituted or unsubstituted C_6 - C_{16} aryl group, a substituted or unsubstituted C_1 - C_{20} straight-chain, branched or cyclic alkyl group, -COO or $-SO_3$,

Rc represents CH2, CHRa or C(Ra)2, and

 R_1 to R_{15} each independently represents a hydrogen atom, a straight-chain, branched or cyclic alkyl or alkoxy group, a hydroxyl group, a halogen atom or $-S-R_{38}$ in which R_{38} represents a straight-chain, branched or cyclic alkyl or aryl group, with the proviso that two or more of R_1 to R_{15} may be bonded to each other to form a ring containing one or more selected from the group consisting of a single bond, a carbon atom, an oxygen atom, a sulfur atom and a nitrogen atom.

5. (original): The resist composition according to claim 1, wherein the compound (A) is represented by the following formula (VI) or (VII):

$$R_{8}$$
 R_{9}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{14}
 R_{15}
 R_{14}
 R_{15}
 R_{15}
 R_{14}

$$R_{42} - N^{\dagger} - R_{40} \quad R_{a} - R_{c} - O^{\bullet}$$
 (VII)

wherein Ra represents a hydrogen atom, a substituted or unsubstituted C_6 - C_{16} aryl group, a substituted or unsubstituted C_1 - C_{20} straight-chain, branched or cyclic alkyl group, -COO or $-SO_3$,

Rc represents CH₂, CHRa or C(Ra)₂,

 R_1 to R_{15} each independently represents a hydrogen atom, a straight-chain, branched or cyclic alkyl or alkoxy group, a hydroxyl group, a halogen atom or $-S-R_{38}$ in which R_{38} represents a straight-chain, branched or cyclic alkyl or aryl group, with the proviso that two or more of R_1 to R_{15} may be bonded to each other to form a ring containing one or more selected from the group consisting of a single bond, a carbon atom, an oxygen atom, a sulfur atom and a nitrogen atom, and

 R_{39} to R_{42} each independently represents a hydrogen atom or a straight-chain, branched or cyclic alkyl or aryl group.

- 6. (original): The resist composition according to claim 1, wherein E_{pc} of the compound (C) is higher than $-1.15~\rm{V}$.
- 7. (currently amended): The resist composition according to claim 1, wherein the compound (C) is a compound having a partial structure represented by the following formula (VIII) and a counter ion capable of generating an acid upon irradiation with one of an actinic ray and a radiation:

$$\begin{bmatrix}
\begin{pmatrix}
R_1 \\
\downarrow \\
\downarrow \\
R_2
\end{bmatrix}
\xrightarrow{A}
\xrightarrow{A}
\xrightarrow{X}
\xrightarrow{B}$$
(VIII)

wherein X represents a sulfur atom or an iodine atom, with the proviso that the plurality of X's may be the same or different,

 R_1 and R_2 each independently represents an alkyl or an aryl group, with the proviso that the plurality of R_1 's, if any, may be the same or different, the plurality of R_2 's, if any, may be the same or different, and R_1 and R_2 , R_1 and R_2 , and R_3 and R_4 and R_5 and R_6 and R_7 and R_8 and

A and B each independently represents a hydrocarbon structure connecting between X^{+} 's, with the proviso that at least one of connections of X^{+} 's with A or B indicates a structure in which X^{+} 's connected are in the same conjugation and the plurality of A's, if any, may be the same or different,

I represents 0 or 1, with the proviso that when X is a sulfur atom, the number l of R_1 's connected to X^+ represents 1, and when X is an iodine atom, the number l of R_1 's connected to X^+ represents 0,

m represents an integer of from 0 to 10, and

- 8. (original): The resist composition according to claim 1, wherein the compound (B) is a phenol derivative containing from 1 to 10 benzene ring atomic groups per molecule and having at least one hydroxymethyl group and at least one alkoxymethyl group per molecule.
- 9. (original): The resist composition according to claim 1, wherein the compound (B) contains a structure represented by the following formula (b):

$$Rf - \left(-C = CH_2 \right)_n$$
 (b)

wherein Rf represents a substituted or unsubstituted aryl group, a substituted or unsubstituted straight-chain, branched or alicyclic hydrocarbon group or a combination thereof, which may have a carbonyl group, an oxygen atom or a sulfur atom in the middle portion thereof, and n represents an integer of from 1 to 10.

- 10. (original): The resist composition according to claim 1, wherein the compound (B) is a cyclic ether compound.
- 11. (original): The resist composition according to claim 1, further comprising (E) a nitrogen-containing basic compound.
- 12. (original): The resist composition according to claim 1, wherein the actinic ray or radiation is selected from the group consisting of electron ray, X ray and EUV ray.

- 13. (currently amended): A negative-working resist composition comprising:
- (A) at least one <u>compound</u> selected from the group consisting of compounds represented by the formulae (a) and (I) to (IV) in combination,
- (B) a crosslinking agent capable of carrying out addition reaction with the alkali-soluble resin which is the component (D1) by the action of an acid,
- (C) a compound having a partial structure represented by the following formula (VIII) and a counter ion capable of generating an acid upon irradiation with one of an actinic ray and a radiation, and
 - (D1) an alkali-soluble resin having a phenol skeleton:

$$Ra - Rb - COO^{-}$$
 (a)

wherein Ra represents a hydrogen atom, a substituted or unsubstituted C_6 - C_{16} aryl group, a substituted or unsubstituted C_1 - C_{20} straight-chain, branched or cyclic alkyl group, -COO or $-SO_3$, and Rb represents a single bond, -C(=O)-, -NH- or $-S(=O)_2$:

$$R_{16}$$
 R_{17} R_{24} R_{25} R_{20} R_{22} R_{23} R_{28} R_{28} R_{28} R_{33} R_{34} R_{34}

$$R_{42} - N + R_{40}$$
 (IV).

wherein R_1 to R_{37} each independently represents a hydrogen atom, a straight-chain, branched or cyclic alkyl or alkoxy group, a hydroxyl group, a halogen atom or $-S-R_{38}$ in which R_{38} represents a straight-chain, branched or cyclic alkyl or aryl group, with the proviso that two or more of R_1 to R_{15} , R_{16} to R_{27} and R_{28} to R_{37} may be bonded to each other to form a ring containing one or more selected from the group consisting of a single bond, a carbon atom, an oxygen atom, a sulfur atom and a nitrogen atom, and

 R_{39} to R_{42} each independently represents a hydrogen atom or a straight-chain, branched or cyclic alkyl or aryl group:

wherein X represents a sulfur atom or an iodine atom, with the proviso that the plurality of X's may be the same or different,

 R_1 and R_2 each independently represents an alkyl or an aryl group, with the proviso that the plurality of R_1 's, if any, may be the same or different, the plurality of R_2 's, if any, may be the same or different, and R_1 and R_2 , R_1 and R_1 and R_2 , and R_3 and R_4 and R_5 and R_6 and R_7 and R_8 and

A and B each independently represents a hydrocarbon structure connecting between X^+ 's, with the proviso that at least one of connections of X^+ 's with A or B indicates a structure in which X^+ 's connected are in the same conjugation and the plurality of A's, if any, may be the same or different,

I represents 0 or 1, with the proviso that when X is a sulfur atom, the number 1 of R_1 's connected to X^+ represents 1, and when X is an iodine atom, the number 1 of R_1 's connected to X^+ represents 0,

m represents an integer of from 0 to 10, and

n represents an integer of from 1 to 6, with the proviso that when m is 0, n represents an integer of not smaller than 2.

14. (currently amended): A negative-working resist composition comprising:

Attorney Docket Q76465

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Application No.: 10/613,044

- (A) at least one <u>compound</u> selected from the group consisting of compounds represented by the formulae (a') and (I) to (IV) in combination,
- (B) a crosslinking agent capable of carrying out addition reaction with the alkali-soluble resin which is the component (D1) by the action of an acid, and
- (C) a compound having a partial structure represented by the following formula (VIII) and a counter ion capable of generating an acid upon irradiation with one of an actinic ray and a radiation, and
 - (D1) an alkali-soluble resin:

$$Ra - O$$
 (a')

wherein Ra represents a hydrogen atom, a substituted or unsubstituted C_6 - C_{16} aryl group, a substituted or unsubstituted C_1 - C_{20} straight-chain, branched or cyclic alkyl group, -COO or $-SO_3$:

$$R_{4}$$
 R_{3}
 R_{7}
 R_{6}
 R_{7}
 R_{6}
 R_{1}
 R_{15}
 R_{12}
 R_{13}
 R_{14}
 R_{12}
 R_{13}
 R_{15}

$$R_{16}$$
 R_{17} R_{24} R_{25} R_{20} R_{22} R_{23} R_{28} R_{27} R_{18} R_{19} R_{20} R_{23} R_{26} R_{27}

$$R_{42} - N^{+} - R_{40}$$
 (IV).

wherein R_1 to R_{37} each independently represents a hydrogen atom, a straight-chain, branched or cyclic alkyl or alkoxy group, a hydroxyl group, a halogen atom or $-S-R_{38}$ in which R_{38} represents a straight-chain, branched or cyclic alkyl or aryl group, with the proviso that two or more of R_1 to R_{15} , R_{16} to R_{27} and R_{28} to R_{37} may be bonded to each other to form a ring containing one or more selected from the group consisting of a single bond, a carbon atom, an oxygen atom, a sulfur atom and a nitrogen atom, and

 R_{39} to R_{42} each independently represents a hydrogen atom or a straight-chain, branched or cyclic alkyl or aryl group:

wherein X represents a sulfur atom or an iodine atom, with the proviso that the plurality of X's may be the same or different,

 R_1 and R_2 each independently represents an alkyl or an aryl group, with the proviso that the plurality of R_1 's, if any, may be the same or different, the plurality of R_2 's, if any, may be the same or different, and R_1 and R_2 , R_1 and R_2 , and R_3 and R_4 and R_5 and R_6 and R_7 and R_8 and

A and B each independently represents a hydrocarbon structure connecting between X^{+} 's, with the proviso that at least one of connections of X^{+} 's with A or B indicates a structure in which X^{+} 's connected are in the same conjugation and the plurality of A's, if any, may be the same or different,

I represents 0 or 1, with the proviso that when X is a sulfur atom, the number 1 of R_1 's connected to X^+ represents 1, and when X is an iodine atom, the number 1 of R_1 's connected to X^+ represents 0,

m represents an integer of from 0 to 10, and

Attorney Docket Q76465

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/613,044

- 15. (currently amended): The negative-working resist composition according to claim 13, wherein the component (A) is at least one <u>compound</u> selected from the compounds represented by the formula (a) and the formula (I) or (II) in combination.
- 16. (currently amended): The <u>positive negative</u>-working resist composition according to claim 13, further comprising (E) a nitrogen-containing basic compound.
 - 17. (currently amended): A positive-working resist composition comprising:
- (A) at least one <u>compound</u> selected from the group consisting of compounds represented by the formulae (a) and (I) to (IV) in combination,
- (C) a compound having a partial structure represented by the following formula (VIII) and a counter ion capable of generating an acid upon irradiation with one of an actinic ray and a radiation, and
 - (D2) a resin increasing the solubility in an alkali developer by the action of an acid:

$$Ra - Rb - COO^{-}$$
 (a)

wherein Ra represents a hydrogen atom, a substituted or unsubstituted C_6 - C_{16} aryl group, a substituted or unsubstituted C_1 - C_{20} straight-chain, branched or cyclic alkyl group, -COO or -SO₃, and Rb represents a single bond, -C(=O)-, -NH- or -S(=O)₂:

$$R_{8}$$
 R_{9}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{14}
 R_{12}
 R_{13}
 R_{13}
 R_{14}

$$R_{16}$$
 R_{17} R_{24} R_{25} R_{20} R_{22} R_{24} R_{25} R_{20} R_{21} R_{23} R_{24} R_{25} R_{25} R_{21} R_{23} R_{24} R_{25} R_{25} R_{27}

$$R_{42} - N^{+} - R_{40}$$
 (IV).

wherein R_1 to R_{37} each independently represents a hydrogen atom, a straight-chain, branched or cyclic alkyl or alkoxy group, a hydroxyl group, a halogen atom or $-S-R_{38}$ in which R_{38} represents a straight-chain, branched or cyclic alkyl or aryl group, with the proviso that two or more of R_1 to R_{15} , R_{16} to R_{27} and R_{28} to R_{37} may be bonded to each other to form a ring containing one or more selected from the group consisting of a single bond, a carbon atom, an oxygen atom, a sulfur atom and a nitrogen atom, and

 R_{39} to R_{42} each independently represents a hydrogen atom or a straight-chain, branched or cyclic alkyl or aryl group:

wherein X represents a sulfur atom or an iodine atom, with the proviso that the plurality of X's may be the same or different,

 R_1 and R_2 each independently represents an alkyl or an aryl group, with the proviso that the plurality of R_1 's, if any, may be the same or different, the plurality of R_2 's, if any, may be the same or different, and R_1 and R_2 , R_1 and R_2 , and R_3 and R_4 and R_5 and R_6 and R_8 and

A and B each independently represents a hydrocarbon structure connecting between X^+ 's, with the proviso that at least one of connections of X^+ 's with A or B indicates a structure in which X^+ 's connected are in the same conjugation and the plurality of A's, if any, may be the same or different,

I represents 0 or 1, with the proviso that when X is a sulfur atom, the number l of R_1 's connected to X^+ represents 1, and when X is an iodine atom, the number l of R_1 's connected to X^+ represents 0,

m represents an integer of from 0 to 10, and

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/613,044

- 18. (currently amended): A positive-working resist composition comprising:
- (A) at least one <u>compound</u> selected from the group consisting of compounds represented by the formulae (a') and (I) to (IV) in combination,
- (C) a compound having a partial structure represented by the following formula (VIII) and a counter ion capable of generating an acid upon irradiation with one of an actinic ray and a radiation, and
 - (D2) a resin increasing the solubility in an alkali developer by the action of an acid:

$$Ra - O^{-}$$
 (a')

wherein Ra represents a hydrogen atom, a substituted or unsubstituted C_6 - C_{16} aryl group, a substituted or unsubstituted C_1 - C_{20} straight-chain, branched or cyclic alkyl group, -COO or $-SO_3$:

$$R_{4}$$
 R_{5}
 R_{6}
 R_{1}
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{14}
 R_{12}
 R_{13}
 R_{14}

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 10/613,044

$$R_{16}$$
 R_{17} R_{24} R_{25} R_{20} R_{22} R_{25} R_{20} R_{21} R_{23} R_{24} R_{25} R_{25} R_{25} R_{26} R_{27}

$$R_{42} - N^{+} - R_{40}$$
 (IV).

wherein R_1 to R_{37} each independently represents a hydrogen atom, a straight-chain, branched or cyclic alkyl or alkoxy group, a hydroxyl group, a halogen atom or $-S-R_{38}$ in which R_{38} represents a straight-chain, branched or cyclic alkyl or aryl group, with the proviso that two or more of R_1 to R_{15} , R_{16} to R_{27} and R_{28} to R_{37} may be bonded to each other to form a ring containing one or more selected from the group consisting of a single bond, a carbon atom, an oxygen atom, a sulfur atom and a nitrogen atom, and

 R_{39} to R_{42} each independently represents a hydrogen atom or a straight-chain, branched or cyclic alkyl or aryl group:

wherein X represents a sulfur atom or an iodine atom, with the proviso that the plurality of X's may be the same or different,

 R_1 and R_2 each independently represents an alkyl or an aryl group, with the proviso that the plurality of R_1 's, if any, may be the same or different, the plurality of R_2 's, if any, may be the same or different, and R_1 and R_2 , R_1 and R_2 , and R_3 and R_4 and R_5 and R_6 and R_7 and R_8 and

A and B each independently represents a hydrocarbon structure connecting between X^+ 's, with the proviso that at least one of connections of X^+ 's with A or B indicates a structure in which X^+ 's connected are in the same conjugation and the plurality of A's, if any, may be the same or different,

I represents 0 or 1, with the proviso that when X is a sulfur atom, the number I of R_1 's connected to X^+ represents 1, and when X is an iodine atom, the number I of R_1 's connected to X^+ represents 0,

m represents an integer of from 0 to 10, and

Attorney Docket Q76465

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Application No.: 10/613,044

- 19. (currently amended): The positive-working resist composition according to claim 17, wherein the component (A) is at least one <u>compound</u> selected from the compounds represented by the formula (a) and the formula (I) or (II) in combination.
- 20. (original): The positive-working resist composition according to claim 17, further comprising (E) a nitrogen-containing basic compound.
- 21. (original): The resist composition according to claim 13, wherein the actinic ray or radiation is selected from the group consisting of electron ray, X ray and EUV ray.