MATH 243 Statistical Inference

Midterm Examination - Fall 2000/2001

Answer <u>ALL</u> Questions All Equal Marks

- 1. Let X_1, X_2, \ldots, X_n be a random sample from a Bernoulli distribution with parameter θ .
 - (a) i. Show that the method of moments estimator of θ and the maximum likelihood estimator of θ are identical.
 - ii. Verify that the estimator found in (a)(i), denoted T_1 , is unbiased, and find its variance.

Date: 3 November 2000

Time Allowed: 2 hours

- iii. Find the Cramer Rao lower bound of θ . Does the variance of T_1 achieve the lower bound?
- (b) Suppose that an estimator of the function $\tau = \tau(\theta)$ defined by $\tau(\theta) = \theta^n$ is sought.
 - i. Find the probability mass function of the discrete random variable T_2 defined by

$$T_2 = \operatorname{Min}(X_1, \dots, X_n)$$

and hence show that T_2 is an unbiased estimator of τ .

- ii. Find the variance of T_2 .
- iii. Find the maximum likelihood estimator of τ .
- 2. Let X_1, \ldots, X_n be a random sample from the normal density with mean θ and variance $\sigma^2 = 1$. Let T be an estimator of θ .
 - (a) Find the maximum likelihood estimator of θ , $\hat{\theta}$.
 - (b) Find the mean-square-error of

$$T_1 = c\hat{\theta}, \quad c > 0.$$

where T_1 is also an estimator of θ . Then, find the values of c, in terms of θ , for which

$$MSE(T_1) < MSE(\hat{\theta})$$
.

What happens to these values of c as $n \to \infty$?

Hint: $MSE(T) = Var(T) + [bias(T)]^2$.

- 3. (a) Let Z_1 , Z_2 be a random sample of size 2 from N(0,1) and X_1 , X_2 a random sample of size 2 from N(1,1). Suppose the Z'_i s are independent of the X'_j s. Answer the following:
 - i. What is the distribution of $\bar{X} + \bar{Z}$?
 - ii. What is the distribution of $[(X_2 X_1)^2 + (Z_2 Z_1)^2]/2$?
 - iii. What is the distribution of $(Z_1 + Z_2)/\sqrt{[(X_2 X_1)^2 + (Z_2 Z_1)^2]/2}$? Remark: $(Z_1 + Z_2)$ and $[(X_2 X_1)^2 + (Z_2 Z_1)^2]$ are independent.
 - iv. What is the distribution of $(X_2+X_1-2)^2/(X_2-X_1)^2$? Remark: (X_2+X_1-2) and (X_2-X_1) are independent.
 - (b) i. What is the probability that the larger of two random observations from any continuous distribution will exceed the median?
 - ii. Generalize the above result to samples of size n.