1 Definitions and Notation

A graph G = (V, E) is an ordered pair of vertices $V = \{v_1, v_2, \dots v_{|V|}\}$ and edges E. Here, we only consider undirected graphs without loops, i.e., $E \subseteq \{\{v, w\} : v, w \in V, v \neq w\}$. Two vertices v and w are called connected in case there exists a path between them. A graph is called connected in case any pair of vertices (v, w) is connected. For a subset V' of the vertex set V, we refer to $G^{V'} = (V', E'), E' := \{\{v, w\} \in E : v, w \in V'\}$ as the V'-induced subgraph of G.

As the k-Neighborhood $N_k(e)$ of an edge $e=\{a,b\}$, we denote the set of all (k-2)-tuples of vertices $v\in V, a\neq v\neq b$ that are connected to vertices a or b in the induced subgraph. We call each element $N\in N_k(e)$ a neighbor set of e. Each of them corresponds to the subgraph $G^{\{a,b\}\cup N}$ of G that contains a and b as well as k-2 other vertices.

For a graph G, its adjacency matrix $A(G) = A_{i,j}$ is an $n \times n$ matrix defined as follows:

$$A_{ij}^{u} = \begin{cases} 1 \text{ (true)} & \text{if } i > j \land \{v_i, v_j\} \in E \\ 0 \text{ (false)} & \text{if } i > j \land \{v_i, v_j\} \notin E \\ \text{undefined} & \text{otherwise} \end{cases}$$

We denote the set of all adjacency matrices of size k as \mathcal{A}_k , $|\mathcal{A}_k| = 2^{\frac{n \cdot (n-1)}{2}}$. The set of the adjacency matrices of connected graphs of size k is denoted as $\mathcal{A}_k^{con} \subset \mathcal{A}_k$. As examples consider the following adjacency matrices:

Figure 1: Examples of connected 4-vertex graphs

Assume a to be the sequence of all defined entries of an adjacency matrix A, i.e., $a = (a_1, a_2, \dots a_{\frac{k \cdot (k-1)}{2}}) := (A_{1,2}, A_{1,3}, \dots A_{k-1,k})$ Then, we define the key of an adjacency matrix A and the corresponding graph G as follows:

$$n(A) = n(G) := \sum_{i=1}^{\frac{k \cdot (k-1)}{2}} a_i \cdot 2^{i-1}$$

Then, $\mathcal{N}_k^{con} \subset [0, 2^{\frac{k \cdot (k-1)}{2}}]$ denotes the set of all keys of connected graphs of size k.

As a dynamic graph, we consider a graph whose set of edges E changes over time. We assume that in each time step, a single edge is either added to or removed from E. This change is denoted as an update: either add(e) or rm(e). A graph is transformed from G_i to G_{i+1} by the application of update u_{i+1} .

2 Motifs

As motifs of size k, also called k-vertex motifs or k-motifs, we consider the equivalence classes of isomorph connected k-vertex graphs which we denote as \mathcal{M}_k .

Therefore, each connected adjacency matrix $A \in \mathcal{A}_k^{con}$ is element of exactly one equivalence class represented by a motif $m \in \mathcal{M}_k$. We express this property as a function that maps the key n(A) of a connected adjacency matrix A to a motif $m \in \mathcal{M}_k$, i.e.,

$$r: \mathcal{N}_k^{con} \to \mathcal{M}_k$$

This assignment can be computed by enumerating all connected adjacency matrices and determining their equivalence class by performing an isomorphism check with all existing motifs.

Figure 2: Examples for the set of motifs \mathcal{M}_k for different sizes

add example of graph transformation over time...

3 Implementation

For simplicity, we store the function r as integer pairs (n, m) where n is the key of a connected adjacency matrix and m the index of the equivalence class, or motif, it belongs to.

4 Algorithm

Whenever an edge $e = \{a, b\}$ is added to or removed from a graph G_i , each subgraph $G_i^{\{a,b\} \cup N}$, $N \in N_k(e)$ represents a motif that is created, transformed, or dissolved.

In case $u_i = rm(e)$, $n(A_i^{\{a,b\} \cup N})$ is the key of the adjacency matrix for $N \in N_k(e)$ before the removal. After the removal, the key will be $n(A_{i+1}^{\{a,b\} \cup N}) = n(A_i^{\{a,b\} \cup N}) - 1$, i.e., the same adjacencies except for the missing edge between the first two vertices. If $n(A_i^{\{a,b\} \cup N}) - 1 \notin \mathcal{N}_k^{con}$, the existing motif will be dissolved and is transformed otherwise.

Similarly, in case e is added to the graph G_i , $n(A_{i+1}^{\{a,b\}\cup N}) = n(A_i^{\{a,b\}\cup N}) + 1$ is the key of the adjacency matrix for the neighbor set $N \in N(a,b)$ afterwards. If $n(A_i^{\{a,b\}\cup N}) \notin \mathcal{N}_k^{con}$, a new motif is created and an existing one transformed otherwise.

From this, we can define an algorithm that updates the motif frequency \mathcal{F} for the application of an update u_i . In addition, all changes to motifs in the graph can be listed:

5 Complexity of Algorithm

define d_{max} here?!?

When processing an update u_{i+1} , i.e., $add(\{a,b\})$ or $rm(\{a,b\})$, we must iterate over all elements of $N_k(a,b)$ with $|N_k(a,b)| \leq d_{max}^{k-2}$. Processing each neighborhood $N \in N_k(a,b)$ can be done in O(1) as it only requires the generation of the key $n(A^{\{a,b\}\cup N})$, its lookup in the pre-computed assignment r, and the adaptation of \mathcal{F} . Therefore, the complexity for the execution of the algorithms is $O(d_{max}^{k-2})$.

6 Statistics about motifs

```
Data: G_i, e = \{a, b\}, type \in \{add, rm\}, print \in \{true, false\}
begin
     for N \in N_k(e) do
          n_i = n(A_i^{\{a,b\} \cup N}) ;
                                                                                        /* key before */
           if type = add then
            | n_{i+1} = n_i + 1 ;
                                                                        /* key after addition */
           else
                                                                         /* key after removal */
                 n_{i+1} = n_i - 1 ;
          n_{i+1} - n_i = 1; if n_i \in \mathcal{N}_k^{con} then \mid \mathcal{F}(r(n_i)) - = 1; if n_{i+1} \in \mathcal{N}_k^{con} then \mid \mathcal{F}(r(n_{i+1})) + = 1;
                                                                                /* decr old motif */
                                                                                /* incr new motif */
           if print then
                 if n_i \in \mathcal{N}_k^{con} \wedge n_{i+1} \in \mathcal{N}_k^{con} then | print 'transformed: a, b, N (r(n_i) \to r(n_{i+1}))'
                 else if n_i \in \mathcal{N}_k^{con} then | print 'dissolved: a, b, N (r(n_i))'
                 else
                 print 'created: a, b, N (r(n_{i+1}))'
     \quad \text{end} \quad
end
```

Algorithm 1: $StreaM_k$ for maintaining \mathcal{F} in dynamic graphs

\overline{k}	2	3	4	5	6	7
$ \mathcal{A}_k $	2	8	64	1,024	32,768	2,097,152
$ \mathcal{A}_k^{con} $	1	4	38	827	26,704	$1,\!866,\!256$
$ \mathcal{M}_k $	1	2	6	21	112	853

Table 1: Statistics about adjacency matrices and motifs of different sizes