

UNIVERSIDADE FEDERAL FLUMINENSE

ANÁLISE SOBRE A INFLUÊNCIA DE UM PROGRAMA DE EXERCÍCIOS RESISTIDOS EM PACIENTES QUE FAZEM HEMODIÁLISE

Luiz Fernando Coelho Passos, Lyncoln Sousa de Oliveira

Sumário

Resumo	2
Metodologia	3
Resultados	5
Perda de Energia Protéica - PEW	5
Marcadores de Inflamação	5
Marcadores Antropométricos	6
Marcadores de Capacidade Física	6
Conclusão	7
Anexo	8
Perda de Energia Protéica - PEW	8
Marcadores de Inflamação	9
Marcadores Antropométricos	10
Marcadores de Capacidade Física	11
Referências	13

Resumo

Pacientes submetidos à hemodiálise apresentam inflamação persistente e perda de energia protéica (PEW), o que contribui para altas taxas de mortalidade. Este estudo teve como objetivo avaliar os efeitos de um programa de treinamento de exercícios resistidos (RETP) sobre inflamação e PEW em pacientes em hemodiálise. Foi coletado dados dos paciêntes antes da realização do RETP e depois de 6 meses da prática dos exercícios. Foi utilizado a linguagem de programação R para auxiliar na análise para avaliar o resultado desse programa de treinamento.

Metodologia

Com o banco de dados em mãos foi percebido que havia muitos valores faltantes, pois por alguma razão alguns pacientes tiveram dados coletados antes do RETP e mas não depois, e dentre esses que foram coletados havia exercícios sem dados preenchidos. Por se tratar de amostra dependente, mesmo paciente antes e depois da intervenção, foi necessário um tratamento na base de dados para que assim pudesse utilizar métodos aconselhados para tal amostra.

Aplicando a correção em todo o banco de dado, excluindo os indivíduos que não respoderam pelo menos 1 questão, teríamos no final uma amostra pouco informativa, com apenas 2 indivíduos dentre o total de 54, devido a isso, foi decido realizar o estudo de maneira focada nas variáveis, ou seja, comparar a variável antes com a variável depois para todas as variáveis do banco de dados. Assim, pode-se obter uma amostra para cada comparação de pelo menos 20 pacientes, ainda não é muito representativa, porém foi a melhor maneira encontrada. A hipótese de fazer o estudo dividindo os pacientes por sexo foi levantada, porém como o tamanho da amostra é de 54 pacientes, dividi-la deixaria muito pouco representativa, devido a isso o estudo baseado nesta hipótese não foi realizado.

As variáveis do banco de dados, para a análise, foram separadas nos seguintes grupos:

- Inflamação:
 - TNFa
 - ICAM: Níveis de moléculas de adesão plasmática
 - PCR: Proteína C-reativa
 - IL6: Interleucina-6
 - VCAM: Níveis de moléculas de adesão plasmática
- Antropométricos:
 - IMC: Índice de Massa Corporal
 - AMB: Área Muscular do Braco
 - Mas Magra: Massa Magra
- Capacidade física:
 - SL10: Sentar e Levantar 10 vezes
 - SL60: Sentar e Levantar durante 60s
 - Torque extensor Esquerdo
 - Torque extensor Direito
 - Torque flexor Esquerdo
 - Torque flexor Direito

Ao decorrer das análises foram utilizados testes de hipóteses estatísticos, metodologia estatística que nos auxilia a tomar decisões sobre uma ou mais populações baseado na informação obtida da amostra, são eles:

- Shapiro: teste para verificar se a distribuição de probabilidade associada a um conjunto de dados pode ser aproximada pela distribuição normal. O teste foi utilizado para verificar normalidade das variáveis referentes aos marcadores inflamatórios, antropométricos e capacidade física.
- McNemar: teste apropriado para comparar frequências oriundas de amostras pareadas. O teste foi utilizado para verificar se o estudo teve efeito sobre PEW.
- Teste-t: usado para verificar se houve diferença da média das variáveis antes do REPT para a mesma variável depois do REPT.

Em todos os testes de hipótese aplicados adotou-se um nível de significância de 5%. Considerou-se normalidade para todas as variáveis quantitativas da base de dados. Foi

definido a hipótese nula como a igualdade entre as médias das variáveis coletadas antes e depois do REPT e a hipótese alternativa a diferença. Para mais detalhes sobre os testes utilizados é aconselhado a leitura do livro Estatística Básica escrito por Bussab e Morettin.

Com a análise exploratória dos dados, examinar os dados previamente, pode-se obter um resumo dos dados e confeccionou-se:

- Gráfico de barras: utilizado para realizar comparações entre as categorias de uma variável qualitativa ou quantitativa discreta. O gráfico foi utilizado para comparar a PEW antes e depois do RETP.
- Boxplot: gráfico utilizado para avaliar a distribuição empírica das idades dos paciente em relação ao sexo e as variáveis referentes aos marcadores inflamatórios, antropométricos e capacidade física. As linhas cinzas que ligam alguns boxplots representa a posição do mesmo pacinte antes e depois.

Figure 1: Explicação sobre o boxplot.

Resultados

Perda de Energia Protéica - PEW

	Presença de perda antes do RETP		Presença de perda depois do RETP			
Marcador	Apresentou perda	Não apresentou perda	Apresentou perda	Não apresentou perda	Tamanho da amostra	P-valor (Teste de McNemar)
PEW	25	8	16	17	33	0,027

Table 1: Marcador PEW

Pode-se observar pelo gráfico de barras e pela tabela uma diminuição na quantidade de pacientes que apresentaram perda e um aumento na quantidade de pacientes que não apresentaram perda antes e depois RETP. Pelo teste de McNemar, obtivemos de fato que houve diferença entre os pacientes na coleta dos dados antes e depois do REPET.

Marcadores de Inflamação

	Antes do RETP		Depois do RETP			
Marcador Inflamatório	Média	Desvio Padrão	Média	Desvio Padrão	Tamanho da amostra	P-valor (Teste t)
ICAM	2205	1460,4	1653,1	1193,6	20	0,478
IL6	81,3	9,4	78,7	10,4	26	0,045
PCR	2,3	0,9	1,7	0,6	37	<0,001
TNFa	25,7	6,5	24,3	8,7	26	0,403
VCAM	5500,9	1553,9	3367,3	1998,6	23	<0,001

Table 2: Marcadores de Inflamação

Para as variáveis ICAM e PCR pode-se observar pelo boxplot e pela tabela uma diminuição de sua média e desvio padrão para a coleta de dados depois do REPET. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do REPET.

Já para as variáveis IL6, TNFa e VCAM pode-se observar pelo boxplot e pela tabela uma diminuição de sua média mas um crescimento no desvio padrão para a coleta de dados depois do REPET. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do REPET.

Marcadores Antropométricos

	Antes do RETP		Depois do RETP			
Marcador Antropométrico	Média	Desvio Padrão	Média	Desvio Padrão	Tamanho da amostra	P-valor (Teste t)
AMB	27,2	6,6	28,6	6,1	39	0.006
IMC	23,4	3,9	23,9	4,3	41	0.002
Massa Magra	45,2	11,1	46,8	10,8	41	0.010

Table 3: Marcadores Antropométricos

Para a variável AMB pode-se observar pelo boxplot e pela tabela uma diminuição de sua média e desvio padrão para a coleta de dados depois do REPET. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do REPET.

Já para as variáveis IMC e Massa Magra pode-se observar pelo boxplot e pela tabela um aumento de sua média, porém um aumento e uma dimunuição, respectivamente, ppara o desvio padrão para a coleta de dados depois do REPET. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do REPET.

Marcadores de Capacidade Física

	Antes do RETP		Depois do RETP			
Marcador Capac. FÃsica	Média	Desvio Padrão	Média	Desvio Padrão	Tamanho da amostra	P-valor (Teste t)
SL10	25,7	6,5	20	5	28	<0.001
SL60	28,5	7,4	31,7	7,8	28	0.008
Torque Extensor Direito	90,1	37,2	91,1	43,9	28	0.693
Torque Extensor Esquerdo	96,6	43,7	94,9	41,8	28	0.748
Torque Flexor Direito	49,3	22,7	53,8	27,9	28	0.625
Torque Flexor Esquerdo	51,1	24,4	52,2	25,3	28	0.151

Table 4: Marcadores de Capacidade Física

Para as variáveis SL10 e Torque Extensor Esquerdo pode-se observar pelo boxplot e pela tabela uma diminuição de sua média e desvio padrão para a coleta de dados depois do REPET. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do REPET para a variável SL10, já para a variável Torque Extensor Esquerdo obteve-se, pelo teste-t, que não houve diferença entre as médias de antes e depois do REPET.

Já para as variáveis SL60, Torque Extensor Direito, Torque Flexor Direito e Torque Flexor Esquerdo pode-se observar pelo boxplot e pela tabela um aumento de sua média e desvio padrão para a coleta de dados depois do REPET. Pelo teste-t, obtivemos de fato que houve diferença entre as médias de antes e depois do REPET.

Conclusão

O foco do estudo foi verificar se os pacientes submetidos à hemodiálise apresentaram melhoras nas variáveis com respeito a inflamação e perca de energia proteica(PEW) depois do programa de treinamento de exercícios resistidos(RETP). A base de dados tratada para o estudo possui poucos indivíduos aptos para realizar as análises, o que pode gerar um problema de representividade da amostra para a população alvo. Porém, com os dados obtidos é possível visualizar alteração nas variáveis ICAM e TNFa ligados a inflamação, o que pode significar melhoria dos pacientes em questão a inflamação. Sobre o PEW, analisando os dados obtidos, foi notado uma grande redução dos pacientes que possuíam essa perca de energia proteica. Logo, foi concluído que o programa de treinamento de exercícios resistidos(REPT) trouxe benefícios para os pacientes de hemodiálise, o que pode gerar diminuição da taxa de mortalidade dos mesmos.

Anexo

Figure 2: Idade dos pacientes por Sexo.

Perda de Energia Protéica - PEW

Figure 3: Presença da PEW antes e depois do RETP.

Marcadores de Inflamação

Figure 4: ?? Figure 5: ??

Figure 6: ?? Figure 7: ??

Figure 8: ??

Marcadores Antropométricos

Figure 9: ?? Figure 10: ??

Figure 11: ??

Marcadores de Capacidade Física

Figure 12: ?? Figure 13: ??

Figure 14: ??

Figure 15: ??

Figure 16: ??

Figure 17: ??

Referências

- 1. http://www.portalaction.com.br/inferencia/64-teste-de-shapiro-wilk
- 2. http://www.portalaction.com.br/tabela-de-contingencia/teste-de-mcnemar-para-frequencias-correlacionadas
- 3. https://www.inf.ufsc.br/andre.zibetti/probabilidade/teste-de-hipoteses.html
- 4. http://www.portalaction.com.br/estatistica-basica/14-grafico-de-barras
- 5. http://www.portalaction.com.br/estatistica-basica/31-boxplot
- 6. BUSSAB, W; MORETTIN, P. Estatística Básica: 9. ed. Editora Saraiva, 2017.
- 7. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.r-project.org/.
- 8. Hadley Wickham and Evan Miller (2018). haven: Import and Export 'SPSS', 'Stata' and 'SAS' Files. R package version 1.1.2. https://CRAN.R-project.org/package=haven
- 9. Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2018). dplyr: A Grammar of Data Manipulation. R package version 0.7.6. https://CRAN.R-project.org/package=dplyr
- 10. Stefan Milton Bache and Hadley Wickham (2014). magrittr: A Forward-Pipe Operator for R. R package version 1.5. https://CRAN.R-project.org/package=magrittr
- 11. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
- 12. Baptiste Auguie (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra
- 13. Hadley Wickham and Lionel Henry (2018). tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions. R package version 0.8.1. https://CRAN.R-project.org/package=tidyr
- 14. Alboukadel Kassambara (2018). ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.2. https://CRAN.R-project.org/package=ggpubr
- 15. Lionel Henry and Hadley Wickham (2018). purrr: Functional Programming Tools. R package version 0.2.5. https://CRAN.R-project.org/package=purrr
- 16. David Gohel (2018). flextable: Functions for Tabular Reporting. R package version 0.4.4. https://CRAN.R-project.org/package=flextable
- 17. Hadley Wickham (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr
- 18. Luiz Passos (2019). pacotin: Trying to make your life easier. R package version 0.0.0.9000.