

INTERNET DE LAS COSAS

COMPARACIÓN ENTRE MQTT Y COAP

COMPARACIÓN ENTRE MQTT Y COAP

La comparación técnica entre MQTT y CoAP revela diferencias fundamentales en sus aproximaciones arquitectónicas y casos de uso óptimos. La elección entre ambos protocolos es crítica en proyectos IoT, ya que afecta directamente al consumo energético, latencia, y complejidad de implementación en dispositivos con recursos limitados.

Tabla 1. Diferencias fundamentales

Característica	MQTT	CoAP
Protocolo de transporte	TCP	UDP
Tipo de comunicación	Asíncrona (publish/ subscribe)	Síncrona (request/ response)
Complejidad	Mayor (requiere mantenimiento de estado)	Menor (sin conexión persistente)
Consumo energético	Más alto (por TCP y retención de estado)	Más bajo (por simplicidad de UDP)
Latencia	Mayor, pero más confiable	Menor, con riesgo de pérdida sin confirmación
Arquitectura	Centralizada (broker)	Punto a punto

Estas diferencias se traducen en ventajas operacionales distintas. Según Domínguez Mínguez (2021):

- MQTT es ideal para comunicación many-to-many, gracias a su arquitectura publish-subscribe, que desacopla completamente productores y consumidores de datos. También ofrece retención de mensajes y sesiones persistentes.
- CoAP está orientado a aplicaciones con interacciones directas entre dispositivos, operando con eficiencia incluso en redes intermitentes. Implementa descubrimiento automático de servicios, observación de recursos, y comunicación tipo HTTP.

Pruebas de rendimiento muestran que CoAP consume aproximadamente 22% menos ancho de banda que MQTT en aplicaciones de sensores simples.

Aplicaciones en ingeniería de software

La elección entre MQTT y CoAP define significativamente la arquitectura del sistema:

- MQTT es más adecuado para un sistema de monitoreo ambiental empresarial, donde cientos de sensores reportan a múltiples aplicaciones. Su broker centralizado distribuye eficientemente los datos según temas jerárquicos.
- CoAP es ideal para automatización doméstica, donde los dispositivos deben interactuar directamente sin servidor central, gracias a su soporte para descubrimiento de servicios y observación sin intermediarios.

Aplicación práctica

Se compara un mismo caso de uso usando ambos protocolos: un sensor de temperatura que reporta datos cada minuto durante una hora.

Tabla 2. Comparación Práctica entre MQTT y CoAP en un Escenario IoT

Elemento	MQTT	CoAP
Modo de operación	Publicador envía a tema "sensores/temperatura/ sala01"	Servidor expone recurso "/ temperatura"
Infraestructura	Varios suscriptores reciben datos	Clientes observan directamente el recurso
Herramienta de análisis	Wireshark	Wireshark
Tráfico generado	≈3.6KB + sobrecarga TCP	≈2.8KB + sobrecarga UDP
Resultado	Mayor confiabilidad, mejor enrutamiento	Menor consumo de red, más simple

CoAP resulta más eficiente en términos de ancho de banda (22% menos), mientras que MQTT ofrece mayor confiabilidad y flexibilidad de enrutamiento, lo que lo hace preferible en escenarios con mayores requerimientos de robustez.