Exercise 4 of Exercise Sheet 8

(a) **Definition.** Let $f:(I^n,\partial I^n)\to (F_{p(e_0)},e_0)$ represent an element of $\pi_n(F_{p(e_0)},e_0)$, and let γ be a path $\gamma:e_0\leadsto e_1$. Consider the diagram

$$I^{n} \times \{0\} \cup \partial I^{n} \times I \xrightarrow{\varphi} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$I^{n} \times I \xrightarrow{(\vec{s}, t) \mapsto p(\gamma(t))} B$$

where $\varphi(\vec{s},0)=f(\vec{s})$ for all $\vec{s}\in I^n$, and $\varphi(\vec{s},t)=\gamma(t)$ for $\vec{s}\in\partial I^n$. Note that for $\vec{s}\in\partial I^n$, we have $f(\vec{s})=e_0=\gamma(0)$, so φ is well defined and continuous. Also note that the square commutes, since $p\circ f=\mathrm{const}_{e_0}$ and $p(\gamma(0))=e_0$. Now we note that p is a Serre fibration, and $(I^n\times I,I^n\times\{0\}\cup\partial I^n\times I)=(I^{n+1},J^n)\cong(D^n\times I,D^n\times\{0\})$ so the lower map lifts to a map $H:I^n\times I\to E$ such that the diagram commutes. Then $p(H(\vec{s},1))=p(\gamma(1))=p(e_1)$ for all $\vec{s}\in I^n$, and $H(\vec{s},1)=\gamma(1)=e_1$ for all $\vec{s}\in\partial I^n$; so

$$\bar{\gamma}[f] := H(-,1) : (I^n, \partial I^n) \to (F_{p(e_1)}, e_1)$$

defines an element of $\pi_n(F_{p(e_1)}, e_1)$ (which is homotopic to f via H). To see that this map is well defined, we need the following:

Claim: If [f] = [g] in $\pi_n(F_{p(e_0)}, e_0)$ then $\bar{\gamma}[f] = \bar{\gamma}[g]$ in $\pi_n(F_{p(e_1)}, e_1)$.

Proof. To see this, suppose $H: I^n \times I \to F_{p(e_0)}$ is a homotopy from f to g, relative to ∂I^n , and let $H_0, H_1: I^n \times I \to E$ be the homotopies from f to $\bar{\gamma}[f]$ and from g to $\bar{\gamma}[g]$ respectively, that arise in the construction of $\bar{\gamma}$. We want to construct a homotopy from $\bar{\gamma}[f]$ to $\bar{\gamma}[g]$, relative to ∂I^n , with its image in $F_{p(e_1)}$. We consider the following diagram

$$\begin{array}{c} I^n \times I \times \{0\} \cup I^n \times \{0\} \times I \cup I^n \times I \times \{1\} \xrightarrow{\varphi} E \\ \downarrow \downarrow p \\ I^n \times I \times I \xrightarrow{(\vec{s},t,u) \mapsto p(\gamma(t))} B \end{array}$$

where $\varphi(\vec{s},t,0)=H_0(\vec{s},t),\ \varphi(\vec{s},0,u)=H(\vec{s},u)$ and $\varphi(\vec{s},t,1)=H_1(\vec{s},t)$ for all $\vec{s}\in I^n$ and $t,u\in I$. Then φ is well defined and continuous, since $H_0(\vec{s},0)=H(\vec{s},0)=f(\vec{s})$ on $I^n\times I\times \{0\}\cap I^n\times \{0\}\times I=I^n\times \{(0,0)\},$ and $H_1(\vec{s},0)=H(\vec{s},1)=g(\vec{s})$ on $I^n\times \{0\}\times I\cap I^n\times I\times \{1\}=I^n\times \{(0,1)\}.$ Also note that the square commutes, since by the construction of H_0,H_1 we have $p(H_0(\vec{s},t))=p(\gamma(t))=p(H_1(\vec{s},t))$ for all $(\vec{s},t)\in I^n\times I.$ Lastly, we note that $I^n\times I\times \{0\}\cup I^n\times \{0\}\times I\cup I^n\times I\times \{1\}$ is isomorphic to $I^{n+1}\times \{0\}\subseteq I^{n+2},$ since it is basically a folded rectangle that consists of three faces of I^{n+2} , which is isomorphic to just one face. Therefore we have a lift $\mathcal{H},$ such that $\mathcal{H}(-,-,0)=H_0$ and $\mathcal{H}(-,-,1)=H_1,$ and such that the image of $\mathcal{H}(-,1,-)$ lays in $F_{p(e_1)}$. Therefore $\mathcal{H}(-,1,-)$ is a homotopy from $\mathcal{H}(-,1,0)=H_0(-,1)=\bar{\gamma}[f]$ to $\mathcal{H}(-,1,1)=H_1(-,1)=\bar{\gamma}[g]$ in $F_{p(e_1)}$. This shows that $\bar{\gamma}[f]=\bar{\gamma}[g].$

See exercise 4(b) for the proof that homotopic paths induce the same map, and that the constant path const_{e0} induces the identity on $\pi_n(F_{p(e_0)}, e_0)$.

Claim: For paths $\gamma_1: e_0 \leadsto e_1$ and $\gamma_2: e_1 \leadsto e_2$, we have $\overline{(\gamma_1 * \gamma_2)}[f] = \bar{\gamma}_2[\bar{\gamma}_1[f]]$.

Proof. We need to show that there is a homotopy from $\overline{(\gamma_1 * \gamma_2)}[f]$ to $\overline{\gamma}_2[\overline{\gamma}_1[f]]$, with its image entirely in the fiber $F_{p(e_2)}$. We consider the diagram

$$I^{n} \times \{0\} \cup \partial I^{n} \times I \xrightarrow{f \cup (\gamma_{1} * \gamma_{2})} E$$

$$\downarrow^{p}$$

$$I^{n} \times I \xrightarrow{(\vec{s}, t) \mapsto p((\gamma_{1} * \gamma_{2})(t))} B$$

where H is a homotopy from H(-,0) = f to $H(-,1) = \overline{(\gamma_1 * \gamma_2)}[f]$, and on the other hand, the diagrams

$$I^{n} \times \{0\} \cup \partial I^{n} \times I \xrightarrow{f \cup \gamma_{1}} E \qquad I^{n} \times \{0\} \cup \partial I^{n} \times I \xrightarrow{\bar{\gamma}_{1}[f] \cup \gamma_{2}} E$$

$$\downarrow p \qquad \qquad \downarrow p \qquad \qquad \downarrow p \qquad \qquad \downarrow p$$

$$I^{n} \times I \xrightarrow{(\bar{s}, t) \mapsto p(\gamma_{1}(t))} B$$

$$I^{n} \times I \xrightarrow{(\bar{s}, t) \mapsto p(\gamma_{2}(t))} B$$

Where H_1 is a homotopy from f to $\bar{\gamma}_1[f]$, and H_2 a homotopy from $\bar{\gamma}_1[f]$ to $\bar{\gamma}_2[\gamma_1[f]]$. We define

$$G(\vec{s},t) = \begin{cases} H_1(\vec{s},2t) & \text{if } 0 \le t \le \frac{1}{2}, \\ H_2(\vec{s},2t-1) & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

which is a homotopy from f to $\bar{\gamma}_2[\gamma_1[f]]$. First, will show that there is a homotopy from H to G. We note that H(-,0) = G(-,0) = f. Also, for $\vec{s} \in \partial I^n$, we have

$$H(\vec{s},t) = \begin{cases} \gamma_1(2t) & \text{if } 0 \le t \le \frac{1}{2}, \\ \gamma_2(2t-1) & \text{if } \frac{1}{2} \le t \le 1 \end{cases} = G(\vec{s},t)$$

so H and G coincide on $I^n \times \{0\} \cup \partial I^n \times I$. Now we consider the following diagram

$$\begin{array}{c} I^n \times I \times \{0\} \cup I^n \times I \times \{1\} \cup \{0\} \times I^{n-1} \times I \times I \xrightarrow{\varphi} E \\ & \downarrow p \\ I^n \times I \times I \xrightarrow{----(\vec{s},t,u) \mapsto p((\gamma_1 * \gamma_2)(t))} B \end{array}$$

Here φ denotes the map that takes the value $H(\vec{s},t)$ on $(\vec{s},t,0)$, the value $G(\vec{s},t)$ on $(\vec{s},t,1)$ and $H(\vec{s},t)=G(\vec{s},t)$ on $(\vec{s},t,u)\in\{0\}\times I^{n-1}\times I\times I$. The latter is possible since $\vec{s}=(0,s_2,\ldots,s_n)\in\partial I^n$. Also this map is continuous, since it is well defined on the overlaps $I^n\times I\times\{0\}\cap\{0\}\times I^{n-1}\times I\times I$ and $I^n\times I\times\{1\}\cap\{0\}\times I^{n-1}\times I\times I$. As before, we also observe that $I^n\times I\times\{0\}\cup I^n\times I\times\{1\}\cup\{0\}\times I^{n-1}\times I\times I$ is isomorphic to $I^{n+1}\times\{0\}\subseteq I^{n+1}$.

Now it is clear that \mathcal{H} is a homotopy from $\mathcal{H}(-,-,0)=H$ to $\mathcal{H}(-,-,1)=G$. We also note that the image of $\mathcal{H}(-,1,-)$ lays entirely in $F_{p(e_2)}$, and it is a homotopy from $\mathcal{H}(-,1,0)=H(-,1)=\overline{(\gamma_1*\gamma_2)}[f]$ to $\mathcal{H}(-,1,1)=G(-,1)=\bar{\gamma}_2[\bar{\gamma}_1[f]]$. This finishes our proof.

(b) Proof. Suppose $b_0, b_1 \in B$. Then since B is path-connected, there exists a path $\delta : b_0 \leadsto b_1$. We pick a basepoint $e_0 \in F_{b_0}$. As seen in the diagram

$$\begin{cases}
0 \\
\downarrow \\
I \\
\delta \\
B
\end{cases} E$$

 δ lifts to a path $\gamma: e_0 \leadsto e_1$ in E, for some $e_1 \in F_{b_1}$. This γ gives rise to a map $\bar{\gamma}: \pi_n(F_{b_0}, e_0) \to \underline{\pi_n(F_{b_1}, e_1)}$. If we denote by γ^{-1} its inverse path $\gamma^{-1}: e_1 \leadsto e_0$, it determines a map $\gamma^{-1}: \pi_n(F_{b_1}, e_1) \to \pi_n(F_{b_0}, e_0)$. Note that $\gamma * \gamma^{-1}$ and $\gamma^{-1} * \gamma$ are null-homotopic.

We will first show that in general, the constant path $const_{e_0}$ in E induces the identity on $\pi_n(F_{p(e_0)}, e_0)$.

Proof. Indeed, to see what $\overline{\text{const}_{e_0}}$ does to an arbitrary [f] in $\pi_n(F_{p(e_0)}, e_0)$, we consider the following diagram:

$$I^{n} \times \{0\} \cup \partial I^{n} \times I \xrightarrow{f \cup \operatorname{const}_{e_{0}}} E$$

$$\downarrow p$$

$$I^{n} \times I \xrightarrow{-(\vec{s}, \vec{t}) \mapsto p((\operatorname{const}_{e_{0}})(t))} B$$

Then by definition, H is a homotopy from f to $\overline{\text{const}_{e_0}}[f]$. On the other hand, we can define $H': I^n \times I \to E$ to be $H(\vec{s},t) = f(\vec{s})$. Then H', instead of H, also makes the diagram above commute; and H and H' coincide on $I^n \times \{0\}$ and on $\partial I^n \times I$. As in the proof of the proposition in 4(a), it follow that there is a homotopy $\mathcal{H}: I^n \times I \times I \to E$ from H to H', which gives rise to a homotopy $\mathcal{H}(-,1,-)$ from $H(-,1) = \overline{\text{const}_{e_0}}[f]$ to H'(-,1) = [f] with its image entirely in the fiber $F_{p(e_1)}$. This shows that the map induced by const_{e_0} equals $\text{id}_{\pi_n(F_{p(e_0)},e_0)}$.

We also need to show: suppose $\gamma_1, \gamma_2 : I \to E$ are paths, such that there is a homotopy $H: I \times I \to E$ with $H(-,0) = \gamma_0, H(-,1) = \gamma_1$, such that for all $u \in I$, $p(H(0,u)) = p(e_0)$ and $p(H(1,u)) = p(e_1)$ (so γ_1 and γ_2 are homotopic, not necessarily with respect to their endpoints, but their endpoints on both sides lay in the same fiber). Then the induced maps $\bar{\gamma}_1, \bar{\gamma}_2 : \pi_n(F_{p(e_0)}, e_0) \to \pi_n(F_{p(e_1)}, e_1)$ coincide.

Proof. To see this, let H_0 be the homotopy from f to $\bar{\gamma}_0[f]$, and H_1 the homotopy from f to $\bar{\gamma}_1[f]$. We want to construct a homotopy from $\bar{\gamma}_0[f]$ to $\bar{\gamma}_1[f]$ with its image in $F_{p(e_1)}$. Let $H:I\times I\to E$ be the homotopy from γ_0 to γ_1 as above. We consider the diagram

$$\begin{array}{c} I^n \times I \times \{0\} \cup \{0\} \times I^{n-1} \times I \times I \cup I^n \times I \times \{1\} \xrightarrow{\varphi} E \\ \downarrow \downarrow p \\ I^n \times I \times I \xrightarrow{(\vec{s},t,u) \mapsto p(H(t,u))} B \end{array}$$

where $\varphi(\vec{s},t,0)=H_0(\vec{s},t), \ \varphi(0,s_2,\ldots,s_n,t,u)=H(t,u)$ and $\varphi(\vec{s},t,1)=H_1(\vec{s},t)$. This is well defined, since for $(\vec{s},t,0)\in I^n\times I\times\{0\}\cap\{0\}\times I^{n-1}\times I\times I=\{0\}\times I^{n-1}\times I\times\{0\}$ we have $\vec{s}=(0,s_1,\ldots,s_n)\in\partial I^n$, so $H_0(\vec{s},t)=\gamma_0(t)=H(t,0)$. Likewise, for $(\vec{s},t,1)$ in $I^n\times I\times\{1\}\cap\{0\}\times I^{n-1}\times I\times I=\{0\}\times I^{n-1}\times I\times\{1\}$, we have $\vec{s}\in\partial I^n$, therefore $H(t,1)=\gamma_1(t)=H_1(\vec{s},t)$. As before, there is a lift \mathcal{H} . The image of $\mathcal{H}(-,1,-)$ is in

 $F_{p(e_1)}$, since $p(H(1,u)) = p(e_1)$ for all u. So $\mathcal{H}(-,1,-)$ is a homotopy from $\mathcal{H}(-,1,0) = H_0(-,1) = \bar{\gamma}_0[f]$ to $\mathcal{H}(-,1,1) = H_1(-,1) = \bar{\gamma}_1[f]$ in $F_{p(e_1)}$, therefore $\bar{\gamma}_1[f] = \bar{\gamma}_2[f]$ in $\pi_n(F_{p(e_1)},e_1)$.

Now back to the question: we can now see that both compositions of $\bar{\gamma}: \pi_n(F_{b_0}, \underline{e_0}) \to \frac{\pi_n(F_{b_1}, e_1)}{\gamma^{-1}}: \pi_n(F_{b_1}, e_1) \to \pi_n(F_{b_0}, e_0)$ are equal to the identity, since $\bar{\gamma} \circ \gamma^{-1} = \gamma^{-1} * \gamma$ as we saw in 4(a), and $\gamma^{-1} * \gamma = \overline{\text{const}_{e_1}} = \mathrm{id}_{\pi_n(F_{b_1}, e_1)};$ and similarly $\gamma * \gamma^{-1} = \mathrm{id}_{\pi_n(F_{b_0}, e_0)}.$ Since F_{b_0} and F_{b_1} are path connected, their homotopy groups do not depend on the choices of e_0 and e_1 , so we can conclude that $\pi_n(F_{b_0}) \cong \pi_n(F_{b_1}).$

(c) We identify $E = W(\{b_0\} \hookrightarrow B)$ with $\{\gamma \in \text{Map}(I, B) \mid \gamma(0) = b_0\}$, so that $p : E \to B$ is given by $\gamma \mapsto \gamma(1)$.

Let $f: I \to B$ define an element of $\pi_1(B, b_0)$. Then $f(0) = f(1) = b_0$. Let the constant loop const_{b₀} be the basepoint in $F_{b_0} = \Omega B$. Consider the diagram

Then f lifts to a path $F: I \to E$ in E, from $\operatorname{const}_{b_0}$ to some F(1) in the fiber over $f(1) = b_0$, i. e. in ΩB . As before, F induces a map $\bar{F}: \pi_n(\Omega B, \operatorname{const}_{b_0}) \to \pi_n(\Omega B, F(1))$ for every $n \geq 0$, with an inverse, the map induced by the inverse path F^{-1} . Note that by corollary 7.20, $\pi_n(\Omega B, \operatorname{const}_{b_0}) \cong \pi_{n+1}(B, b_0)$. So in conclusion, every f representing an $[f] \in \pi_1(B, b_0)$ gives, via its lift F, an automorphism \bar{F} of $\pi_n(B, b_0)$, for $n \geq 1$.

We claim that if $[f_0] = [f_1]$ in $\pi_1(B, b_0)$, then their lifts F_0, F_1 are homotopic, and moreover there is a homotopy $H: I \times I \to E$ with $H(-,0) = F_0$, $H(-,1) = F_1$, such that for all $u \in I$, $p(H(0,u)) = b_0$ and $p(H(1,u)) = b_0$. If this is the case, than we can apply the same argument as in 4(b) and conclude that $\bar{F}_0 = \bar{F}_1$.

Note that F_0 and F_1 do not necessarily have the same endpoints, but $F_0(0) = F_1(0) = \text{const}_{b_0}$, and $F_0(1), F_1(1)$ lay in the same fiber over b_0 . Now we consider the diagram

$$I \times \{0\} \cup \{0\} \times I \cup I \times \{1\} \xrightarrow{\varphi} E$$

$$\downarrow p$$

$$I \times I \xrightarrow{(t,u) \mapsto b_0} B$$

where $\varphi(t,0) = F_0(t)$, $\varphi(0,u) = \text{const}_{b_0}$ and $\varphi(t,1) = F_1(t)$ for all $t,u \in I$. It is clear that φ is well-defined, and that the diagram commutes, so there is a lift H that clearly satisfies what we asked.

So now at least we have, for $n \geq 1$, a well defined map

$$\Phi: \pi_1(B, b_0) \to \operatorname{Aut}(\pi_n(B, b_0)), [f] \mapsto \bar{F}.$$

We still need to show that this map defines a group action.

Note that a possible lift for $const_{b_0} \in \pi_1(B, b_0)$ is $const_{const_{b_0}}$. From what we just showed,

it immediately follows that lifts are unique up to homotopy. As we saw in 4(b), the constant path $\operatorname{const}_{\operatorname{const}_{b_0}}$ induces the identity on $\pi_{n-1}(F_{b_0}, \operatorname{const}_{b_0}) \cong \pi_n(B, b_0)$ for $n \geq 1$. So $\Phi([\operatorname{const}_{b_0}]) = \overline{\operatorname{const}_{\operatorname{const}_{b_0}}} = \operatorname{id}_{\pi_n(B, b_0)}$.

Moreover, we have seen in part (a) that $\overline{F_0 * F_1}[g] = \overline{F}_1[\overline{F}_0[g]]$ for all $g \in \pi_{n-1}(F_{b_0}, \operatorname{const}_{b_0}) \cong \pi_n(B, b_0)$, for $n \geq 1$. Therefore what we have defined, is a right-action of $\pi_1(B, b_0)$ on $\pi_n(B, b_0)$ for $n \geq 1$, which we will denote by \bullet (note that with this notation, $\overline{F}[g]$ is the same as $[g] \bullet [f]$).

Now we want to see what this action concretely looks like, for n=1. We let $[f] \in \pi_1(B,b_0)$, via the path F it induces in E, act on a $[g] \in \pi_1(B,b_0)$. With n=0 and γ replaced by F, the first diagram in 4(a) now looks like

$$\begin{cases}
0\} & \xrightarrow{\varphi} E \\
\downarrow & \downarrow p \\
I & \xrightarrow{p \circ F} B
\end{cases}$$

where φ maps 0 to $g \in F_{b_0} = \Omega B$. Now H is a path in E from g, which lays in the fiber $F_{b_0} = \Omega B$, to H(1) in the fiber over $p(F(1)) = F(1)(1) = b_0$, and by definition this $H(1) \in \Omega B$ is a representative of $[g] \bullet [f] \in \pi_1(B, b_0)$, which we will denote by $g \bullet f$. Now we observe that $H: I \to E$ can also be seen as $\hat{H}: I \times I \to B$, a homotopy from $\hat{H}(0, -) = g$ to $\hat{H}(1, -) = g \bullet f$ (note that I is locally compact, so by proposition 6.9 \hat{H} is continuous). We also note that for each $s \in I$, we have $\hat{H}(s, 1) = H(s)(1) = p(H(s)) = p(F(s)) = f(s)$. Furthermore we have $\hat{H}(s, 0) = H(s)(0) = b_0$ for all s, since H(s) is an element of E and therefore a path starting at b_0 . We can visualize H as

Now by straightening out the bottom right corner, we can homeomorphically deform the square into a triangle

We note that this triangle is homeomorphic to $I \times I/\{1\} \times I$, Where the side const_{b0} gets homeomorphically mapped to $\{0\} \times I$, the side $g \bullet f$ to $I \times \{1\}$ and the side g * f to $I \times \{0\}$.

Then we get a continuous map

$$G:I\times I\xrightarrow{p}I\times I/\{1\}\times I\cong \Delta\xrightarrow{H'}B$$

that is a pointed homotopy from $g \bullet f$ to g * f. Now we have shown that $[g] \bullet [f] = [g \bullet f] = [g * f] = [g] * [f]$, so the action coincides with right multiplication in $\pi_1(B, b_0)$.