Lecture Notes on Quantum Mechanics

Tran Van Than Department of Physics, Leibniz University Hannover

January 31, 2025

Contents

1	Schrödinger Equation 3					
	1.1	Time-Dependent Schrödinger Equation				
	1.2	Time-Independent Schrödinger Equation				
2	One-Dimensional Potentials					
	2.1	Quantum Tunneling				
	2.2	Quantum Reflection				
	2.3	Periodic Potentials and Energy Bands				
3	Operators and Commutation Rule					
	3.1	Position Operator				
	3.2	Momentum Operator				
	3.3	Commutation Rule				
4	Heisenberg Uncertainty Principle					
	4.1	Heisenberg Uncertainty Principle				
	4.2	Derivation from the Commutation Relation				
5	Harmonic Oscillator and Ladder Operators 8					
	5.1	Harmonic Oscillator				
	5.2	Ladder Operators				
	5.3	Action of Ladder Operators				
6	Heisenberg Equation 10					
	6.1	Heisenberg Equation of Motion				
	6.2	Derivation				
	6.3	Example: Position and Momentum Operators				
7	Central Potentials					
	7.1	Schrödinger Equation for Central Potentials				
	7.2	Separation of Variables				

8	Angular Momentum			
	8.1	Orbital Angular Momentum	12	
	8.2	Spin Angular Momentum	12	
	8.3	Total Angular Momentum	12	
9	Time-Independent Perturbation Theory			
	9.1	First-Order Perturbation Theory	13	
	9.2	Second-Order Perturbation Theory	13	
10	Energy Structure of the Hydrogen Atom			
	10.1	Coulomb Potential	14	
	10.2	Fine Structure Corrections	14	
	10.3	Hyperfine Structure	15	

1 Schrödinger Equation

The Schrödinger equation is fundamental to quantum mechanics, describing the time evolution of a quantum state. It exists in two forms: time-dependent and time-independent.

1.1 Time-Dependent Schrödinger Equation

The time-dependent Schrödinger equation is given by:

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi(\mathbf{r}, t),$$
 (1)

where:

- \hbar is the reduced Planck's constant.
- $\Psi(\mathbf{r},t)$ is the time-dependent wavefunction, representing the probability amplitude.
- \hat{H} is the Hamiltonian operator, representing the total energy of the system.

The Hamiltonian operator is given by:

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \hat{V}(\mathbf{r}, t), \tag{2}$$

where:

- \bullet m is the mass of the particle.
- \bullet ∇^2 is the Laplacian operator, representing the spatial second derivatives.
- $\hat{V}(\mathbf{r},t)$ is the potential energy function.

1.2 Time-Independent Schrödinger Equation

For stationary states, the wavefunction $\Psi(\mathbf{r},t)$ can be separated as:

$$\Psi(\mathbf{r},t) = \psi(\mathbf{r})e^{-iEt/\hbar},\tag{3}$$

where $\psi(\mathbf{r})$ is the time-independent wavefunction and E is the energy eigenvalue.

The time-independent Schrödinger equation is:

$$\hat{H}\psi(\mathbf{r}) = E\psi(\mathbf{r}),\tag{4}$$

with the Hamiltonian operator:

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \hat{V}(\mathbf{r}). \tag{5}$$

2 One-Dimensional Potentials

2.1 Quantum Tunneling

Quantum tunneling refers to a particle crossing a potential barrier even when its classical energy is insufficient. The one-dimensional Schrödinger equation governing this behavior is:

$$\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + \left[E - V(x) \right] \psi(x) = 0. \tag{6}$$

For a rectangular potential barrier of height V_0 and width a, the transmission probability T is given by:

$$T = \frac{1}{1 + \frac{V_0^2}{4E(V_0 - E)} \sinh^2\left(\frac{\sqrt{2m(V_0 - E)}}{\hbar}a\right)}, \quad (E < V_0).$$
 (7)

For $V_0 \gg E$, an approximate expression is:

$$T \approx e^{-2\kappa a}$$
, where $\kappa = \frac{\sqrt{2m(V_0 - E)}}{\hbar}$. (8)

2.2 Quantum Reflection

Quantum reflection occurs when a particle reflects off a potential gradient, even when its energy exceeds the potential (E - V(x)). The Schrödinger equation remains:

$$\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + \left[E - V(x) \right] \psi(x) = 0. \tag{9}$$

For a particle incident on a potential step, the reflection coefficient R is:

$$R = \left| \frac{k_1 - k_2}{k_1 + k_2} \right|^2,\tag{10}$$

where:

- $k_1 = \sqrt{2mE}/\hbar$ is the wavevector in the region where V(x) = 0.
- $k_2 = \sqrt{2m(E V_0)}/\hbar$ is the wavevector where $V(x) = V_0$.

If $E < V_0$, total reflection occurs.

2.3 Periodic Potentials and Energy Bands

In a periodic potential V(x), the potential satisfies V(x + a) = V(x), where a is the periodicity. Bloch's theorem states that solutions take the form:

$$\psi_k(x) = e^{ikx} u_k(x),\tag{11}$$

where:

- $u_k(x)$ is a periodic function with the same periodicity as V(x).
- k is the wavevector related to momentum.

The energy spectrum forms energy bands, separated by forbidden gaps. For a simple sinusoidal potential $V(x) = V_0 \cos(2\pi x/a)$, the band structure can be approximated using the Kronig-Penney model, leading to the dispersion relation:

$$\cos(ka) = \cos(qa) + \frac{mV_0a}{\hbar^2 q}\sin(qa), \tag{12}$$

where
$$q = \sqrt{\frac{2m(E-V_0)}{\hbar^2}}$$
.

3 Operators and Commutation Rule

3.1 Position Operator

The position operator \hat{x} represents the position of a particle. When acting on a wavefunction $\psi(x)$, it is defined as:

$$\hat{x}\psi(x) = x\psi(x),\tag{13}$$

where x is the position variable.

3.2 Momentum Operator

The momentum operator \hat{p} is expressed in terms of the spatial derivative. In the position representation, it takes the form:

$$\hat{p} = -i\hbar \frac{\partial}{\partial x},\tag{14}$$

where \hbar is the reduced Planck's constant, and i is the imaginary unit.

3.3 Commutation Rule

The position and momentum operators satisfy the fundamental commutation relation. The commutator $[\hat{x}, \hat{p}]$ is defined as:

$$[\hat{x}, \hat{p}] = \hat{x}\hat{p} - \hat{p}\hat{x}. \tag{15}$$

Substituting the definitions of \hat{x} and \hat{p} , we obtain:

$$[\hat{x}, \hat{p}]\psi(x) = \hat{x}\left(-i\hbar\frac{\partial\psi(x)}{\partial x}\right) - \left(-i\hbar\frac{\partial}{\partial x}\right)(x\psi(x)) \tag{16}$$

$$= -i\hbar x \frac{\partial \psi(x)}{\partial x} + i\hbar \left(\psi(x) + x \frac{\partial \psi(x)}{\partial x} \right)$$
 (17)

$$= i\hbar\psi(x). \tag{18}$$

Thus, the commutation relation is:

$$[\hat{x}, \hat{p}] = i\hbar. \tag{19}$$

4 Heisenberg Uncertainty Principle

4.1 Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle states that certain pairs of observables cannot be simultaneously measured with arbitrary precision. For position x and momentum p, we have:

$$\Delta x \Delta p \ge \frac{\hbar}{2},\tag{20}$$

where:

- Δx is the uncertainty in position.
- Δp is the uncertainty in momentum.
- \hbar is the reduced Planck's constant, $\hbar = \frac{h}{2\pi}$.

4.2 Derivation from the Commutation Relation

The uncertainty principle can be derived from the commutation relation between the position operator \hat{x} and the momentum operator \hat{p} :

$$[\hat{x}, \hat{p}] = i\hbar. \tag{21}$$

For any two operators \hat{A} and \hat{B} , the general uncertainty relation is:

$$\Delta A \Delta B \ge \frac{1}{2} \left| \left\langle [\hat{A}, \hat{B}] \right\rangle \right|. \tag{22}$$

Setting $\hat{A} = \hat{x}$ and $\hat{B} = \hat{p}$, we obtain:

$$\Delta x \Delta p \ge \frac{1}{2} |\langle i\hbar \rangle| = \frac{\hbar}{2}.$$
 (23)

5 Harmonic Oscillator and Ladder Operators

5.1 Harmonic Oscillator

The quantum harmonic oscillator is a cornerstone of quantum mechanics, describing a particle subjected to a restoring force proportional to its displacement. The Hamiltonian for a one-dimensional harmonic oscillator is given by:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2, \tag{24}$$

where:

- \hat{p} is the momentum operator.
- \hat{x} is the position operator.
- m is the mass of the particle.
- ω is the angular frequency of the oscillator.

The energy eigenvalues and eigenfunctions are derived from the Schrödinger equation:

$$\hat{H}\psi_n(x) = E_n\psi_n(x),\tag{25}$$

with solutions:

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots$$
 (26)

$$\psi_n(x) = \sqrt{\frac{1}{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega x^2}{2\hbar}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right), \tag{27}$$

where $H_n(x)$ are the Hermite polynomials.

5.2 Ladder Operators

Ladder operators \hat{a} (annihilation operator) and \hat{a}^{\dagger} (creation operator) simplify the analysis of the harmonic oscillator. They are defined as:

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), \tag{28}$$

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right). \tag{29}$$

These operators satisfy the commutation relation:

$$[\hat{a}, \hat{a}^{\dagger}] = 1. \tag{30}$$

The Hamiltonian can be expressed in terms of these operators as:

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right), \tag{31}$$

where $\hat{a}^{\dagger}\hat{a}$ is the number operator.

5.3 Action of Ladder Operators

The ladder operators act on the eigenstates $|n\rangle$ as:

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle, \qquad (32)$$

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle \,, \tag{33}$$

where $|n\rangle$ represents the *n*-th quantum state.

6 Heisenberg Equation

6.1 Heisenberg Equation of Motion

The Heisenberg equation describes the time evolution of operators in the Heisenberg picture of quantum mechanics. It provides an alternative perspective to the time-dependent Schrödinger picture. The general form of the Heisenberg equation of motion is given by:

$$\frac{d\hat{A}}{dt} = \frac{i}{\hbar}[\hat{H}, \hat{A}] + \frac{\partial \hat{A}}{\partial t},\tag{34}$$

where:

- \hat{A} is an operator in the Heisenberg picture.
- \hat{H} is the Hamiltonian operator of the system.
- $[\hat{H}, \hat{A}]$ denotes the commutator of \hat{H} and \hat{A} .
- $\frac{\partial \hat{A}}{\partial t}$ represents the explicit time dependence of \hat{A} , if any.

6.2 Derivation

The Heisenberg equation can be derived from the Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle.$$
 (35)

In the Heisenberg picture, the time dependence is transferred from the state $|\psi\rangle$ to the operators \hat{A}_H :

$$\hat{A}_H(t) = e^{i\hat{H}t/\hbar} \hat{A}_S e^{-i\hat{H}t/\hbar},\tag{36}$$

where \hat{A}_S is the corresponding operator in the Schrödinger picture. Differentiating $\hat{A}_H(t)$ with respect to time leads to the Heisenberg equation.

6.3 Example: Position and Momentum Operators

For the position operator \hat{x} and momentum operator \hat{p} , the Heisenberg equation yields:

$$\frac{d\hat{x}}{dt} = \frac{i}{\hbar}[\hat{H}, \hat{x}] = \frac{\hat{p}}{m},\tag{37}$$

$$\frac{d\hat{p}}{dt} = \frac{i}{\hbar}[\hat{H}, \hat{p}] = -\frac{\partial V(\hat{x})}{\partial \hat{x}},\tag{38}$$

where $V(\hat{x})$ is the potential energy.

7 Central Potentials

7.1 Schrödinger Equation for Central Potentials

A central potential depends only on the radial distance r, i.e., $V(\vec{r}) = V(r)$. For a particle of mass m moving under a central potential V(r), the time-independent Schrödinger equation is:

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \Psi(r) = E \Psi(r). \tag{39}$$

In spherical coordinates (r, θ, ϕ) , the Laplacian operator is:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}.$$
 (40)

7.2 Separation of Variables

For central potentials V(r), the Schrödinger equation separates into radial and angular components:

$$\Psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r)Y_{l,m}(\theta,\phi), \tag{41}$$

where:

- \bullet *n* is the principal quantum number.
- ℓ is the angular momentum quantum number.
- m is the magnetic quantum number.

The angular part $Y_{l,m}(\theta,\phi)$, known as the spherical harmonics, satisfies:

$$\nabla_{\text{angular}}^2 Y_{l,m}(\theta,\phi) = -\ell(\ell+1) Y_{l,m}(\theta,\phi). \tag{42}$$

The radial part R(r) satisfies:

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + V_{\text{eff}}(r) \right] u(r) = Eu(r), \tag{43}$$

where $V_{\text{eff}}(r) = V(r) + \frac{\ell(\ell+1)\hbar^2}{2mr^2}$ is the effective potential, and u(r) = rR(r) is the reduced radial wavefunction.

8 Angular Momentum

8.1 Orbital Angular Momentum

In quantum mechanics, the orbital angular momentum operator is defined as:

$$\hat{L} = \hat{L}_x \hat{i} + \hat{L}_u \hat{j} + \hat{L}_z \hat{k},\tag{44}$$

where the components are given by:

$$\hat{L}_x = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \tag{45}$$

$$\hat{L}_y = -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right), \tag{46}$$

$$\hat{L}_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right). \tag{47}$$

8.2 Spin Angular Momentum

Spin angular momentum is an intrinsic property of particles, represented by the spin operator \hat{S} :

$$\hat{S}^2 |s, m_s\rangle = \hbar^2 s(s+1) |s, m_s\rangle, \qquad (48)$$

where s is the spin quantum number and m_s is the spin projection.

For spin- $\frac{1}{2}$ particles, the spin operators are represented using the Pauli matrices:

$$\hat{S}_i = \frac{\hbar}{2}\sigma_i, \quad i = x, y, z, \tag{49}$$

where σ_i are the Pauli matrices. They are given by:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
 (50)

8.3 Total Angular Momentum

The total angular momentum operator is defined as:

$$\hat{J} = \hat{L} + \hat{S}.\tag{51}$$

The total angular momentum satisfies the commutation relations:

$$[\hat{J}_i, \hat{J}_j] = i\hbar \epsilon_{ijk} \hat{J}_k, \tag{52}$$

$$\hat{J}^2 |j, m\rangle = \hbar^2 j(j+1) |j, m\rangle, \qquad (53)$$

$$\hat{J}_z |j, m\rangle = \hbar m |j, m\rangle. \tag{54}$$

The allowed values of total angular momentum j result from adding orbital and spin angular momentum:

$$j = |\ell - s|, \dots, (\ell + s). \tag{55}$$

Clebsch-Gordan coefficients describe the expansion of total angular momentum states in terms of individual angular momentum states.

9 Time-Independent Perturbation Theory

Perturbation theory is a powerful method used to find approximate solutions to the Schrödinger equation when the Hamiltonian can be written as:

$$\hat{H} = \hat{H}_0 + \lambda \hat{H}',\tag{56}$$

where \hat{H}_0 is the unperturbed Hamiltonian, and $\lambda \hat{H}'$ represents a small perturbation.

9.1 First-Order Perturbation Theory

The first-order energy correction is given by:

$$E_n^{(1)} = \langle n^{(0)} | \hat{H}' | n^{(0)} \rangle. \tag{57}$$

The first-order correction to the wavefunction is:

$$|n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle m^{(0)} | \hat{H}' | n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}} |m^{(0)}\rangle.$$
 (58)

9.2 Second-Order Perturbation Theory

The second-order energy correction is given by:

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| \left\langle m^{(0)} \middle| \hat{H}' \middle| n^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_m^{(0)}}.$$
 (59)

The second-order correction to the wavefunction is:

$$\left| n^{(2)} \right\rangle = \sum_{m \neq n} \sum_{k \neq n} \frac{\left\langle m^{(0)} \middle| \hat{H}' \middle| k^{(0)} \right\rangle \left\langle k^{(0)} \middle| \hat{H}' \middle| n^{(0)} \right\rangle}{\left(E_n^{(0)} - E_m^{(0)} \right) \left(E_n^{(0)} - E_k^{(0)} \right)} \left| m^{(0)} \right\rangle. \tag{60}$$

10 Energy Structure of the Hydrogen Atom

The total Hamiltonian of the hydrogen atom consists of three main contributions:

$$H = H_{\text{Coulomb}} + H_{\text{Fine}} + H_{\text{Hyperfine}}.$$
 (61)

10.1 Coulomb Potential

The dominant term in the hydrogen atom Hamiltonian is the Coulomb interaction between the electron and the proton:

$$H_{\text{Coulomb}} = \frac{\mathbf{p}^2}{2m} - \frac{e^2}{4\pi\epsilon_0 r},\tag{62}$$

where:

- $\mathbf{p} = -i\hbar\nabla$ is the momentum operator,
- \bullet m is the reduced mass of the system,
- r is the radial distance between the electron and proton.

Solving the Schrödinger equation for this Hamiltonian gives the well-known hydrogen energy levels:

$$E_n = -\frac{13.6 \text{ eV}}{n^2}, \quad n = 1, 2, 3, \dots$$
 (63)

10.2 Fine Structure Corrections

The fine structure corrections include relativistic correction, spin-orbit coupling, and the Darwin term:

Relativistic Correction to Kinetic Energy

A relativistic expansion of the kinetic energy gives a correction term:

$$H_{\rm rel} = -\frac{\mathbf{p}^4}{8m^3c^2}. (64)$$

Applying first-order perturbation theory, this leads to an energy correction:

$$\Delta E_{\rm rel} = -\frac{E_n^2}{2mc^2} \left(\frac{4n}{l+1/2} - 3 \right). \tag{65}$$

Spin-Orbit Coupling

The spin-orbit interaction comes from the coupling between the electron's spin and the effective magnetic field due to orbital motion:

$$H_{SO} = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}.$$
 (66)

For the Coulomb potential $V(r) = -e^2/4\pi\epsilon_0 r$, this results in the energy correction:

$$\Delta E_{SO} = \frac{\alpha^2}{2n^3} \left(\frac{j(j+1) - l(l+1) - \frac{3}{4}}{l(l+1/2)(l+1)} \right) E_n, \tag{67}$$

where α is the fine-structure constant and j is the total angular momentum quantum number.

Darwin Term

For s-orbitals (l=0), there is an additional quantum fluctuation correction called the Darwin term:

$$H_{\rm D} = \frac{\hbar^2}{8m^2c^2}\nabla^2V. \tag{68}$$

For a Coulomb potential, this results in:

$$\Delta E_{\rm D} = \frac{\alpha^4}{4n^3} E_n \delta_{l,0}. \tag{69}$$

Total Fine Structure Correction

Combining all terms, the total fine structure correction is:

$$H_{\text{Fine}} = H_{\text{rel}} + H_{\text{SO}} + H_{\text{D}}.\tag{70}$$

10.3 Hyperfine Structure

The hyperfine structure arises due to the interaction between the electron's magnetic moment and the proton's nuclear spin.

Magnetic Dipole Interaction

The dominant hyperfine interaction comes from the dipole-dipole interaction between the electron and proton magnetic moments:

$$H_{\text{Hyperfine}} = \frac{8}{3} \frac{\mu_0}{4\pi} \frac{g_e g_p \mu_B \mu_N}{r^3} \mathbf{S}_e \cdot \mathbf{S}_p. \tag{71}$$

where \mathbf{S}_e and \mathbf{S}_p are the electron and proton spin operators.

The energy shift due to hyperfine interaction is:

$$\Delta E_{\text{Hyperfine}} = \frac{8}{3} \alpha^4 \left(\frac{m_e}{m_p} \right) \frac{E_1}{n^3} \left(\mathbf{S}_e \cdot \mathbf{S}_p \right). \tag{72}$$

For the ground state (n = 1), this hyperfine splitting gives rise to the famous 21 cm line observed in astrophysics.

References

- 1. Schwabl, F. (2007). Quantum Mechanics. Springer Science & Business Media.
- $2.\ Zettili,\ N.\ (2009).\ \textit{Quantum Mechanics: Concepts and Applications}.$