

# 732G12 Data Mining

Föreläsning 5

Johan Alenlöv IDA, Linköping University, Sweden

## Dagens föreläsning

- Neurala nätverk
- Feature learning
- Optimering av neurala nätverk
- Hyperparametrar

#### **Tentainformation**

Finns några gamla tentor på Lisam. Den tenta ni får kommer vara liknande men inget som har med associationsanalys/sekventiell data är med i kursen nu.

Inte bara kod som ska lämnas in utan även lösningar. Använd Rmarkdown för att skriva fina lösningar med plottar och kod. All kod ska bifogas i inlämningen.

På Lisam finns mapp med alla hjälpfiler för tentan. Dessa kommer finnas på datorerna när tentan börjar. Kolla igenom dessa i god tid innan tentan för att få en uppfattning om vad som finns och var!

#### Neuralt nätverk

När vi pratar om neurala nätverk kan vi prata om lite vad som helst. Finns **väldigt många** olika sorters nätverk.

Kan använda neurala nätverk för att lösa många olika problem:

- Övervakad inlärning
- Oövervakad inlärning
- Reinforcement learning
- Generativa modeller
- Representation learning

#### Neurala nätverk

För övervakad inlärning kan vi t.ex. använda

- Feed-forward network / Multiple layer perceptron (MLP)
- Radial basis network
- Convolutional neural networks (CNN)
- Recurrent neural networks

#### Neurala Nätverk

#### För oövervakad inlärning:

- Dolda representationer: Autoencoders
- Clustering: Self Organizing Map

#### Generativa modeller:

- Används för att lära sig komplexa fördelningar för att sen dra nya samples.
  - Sampla nya bilder
  - Skriva text
- Generative adversarial network (GAN)

Vi går tillbaka till linjär regression,

$$y = \mathbf{X}\beta + \varepsilon$$
,  $\mathbb{E}[\varepsilon] = 0$ ,  $\mathbb{V}[\varepsilon] = \sigma^2$ .

Vad kan vi göra om data inte följer denna linjära modell?

Vanligt i linjär regression,

- Givet data  $\mathbf{X} = (x_1, x_2, \dots, x_p)$  och  $y = \mathbf{X}\beta$ .
- Vi kan transformera variablerna i X:
  - Polynomregression,  $\mathbf{X} = (x, x^2, x^3, \dots, x^p)$
  - Funktioner,  $\log(x), \sqrt{x}, \exp(x), \dots$
  - Interaktioner, x<sub>1</sub>x<sub>2</sub>
  - Stegfunktioner
  - Disktretisering
  - Dummy-kodning
- Kallas i maskininlärning för "feature engineering"
  - Svårt att veta vilken transformation som vi ska göra för varje problem.
  - Svårt med komplexa datastrukturer som text eller bild.

- Vi har data  $\mathbb{X} = (x_1, x_2, \dots, x_p)$ .
- Transformationer är funktioner av data.
  - Ex.  $h(x) = \log(x), h(x_1, x_2) = \exp(x_1 \cdot x_2).$
- Anta en x-variabel, låt h(x) vara en viktad summa av andra funktioner,

$$z = h(x) = \sum_{i=1}^{M} w_i h_i(x),$$

där  $h_i(x)$  är godtyckliga funktioner.

- Vi har data  $\mathbb{X} = (x_1, x_2, \dots, x_p)$ .
- Transformationer är funktioner av data.
  - Ex.  $h(x) = \log(x), h(x_1, x_2) = \exp(x_1 \cdot x_2).$
- Anta en x-variabel, låt h(x) vara en viktad summa av andra funktioner,

$$z = h(x) = \sum_{i=1}^{M} w_i h_i(x),$$

där  $h_i(x)$  är godtyckliga funktioner.

• Om vi har många x-variabler får vi,

$$z = h(x_1, x_2, ..., x_p) = \sum_{i=1}^{M} w_i h_i(x_1, x_2, ..., x_p).$$

• Hur ska vi välja  $h_i(x)$ ?

För en linjär transformation hitta matriserna W och V,

$$\label{eq:Z} \begin{split} \mathbf{Z}_{n\times m} &= \mathbf{X}_{n\times p} \cdots \mathbf{W}, \qquad \mathbf{Z}_{n\times g} &= \mathbf{X}_{n\times p} \cdots \mathbf{W}_{p\times m} \cdot \mathbf{W}_{m\times g}. \end{split}$$

För neurala nätverk vill vi kunna modellera icke-linjära funktioner.

Idé: Använd många "enkla" icke-linjära funktioner för att skapa en komplex icke-linjär funktion!

#### Neurala nätverk

Låt  $\sigma(\cdot)$  vara en enkel icke-linjär funktion och låt  $h_i(x_1,\ldots,x_p)$  vara en linjär funktion,

$$h_i(x_1, x_2, \ldots, x_p) = \beta_{0i} + \beta_i^\top \mathbf{x}.$$

Låt nu

$$z = \sigma(h_i(x_1, x_2, \dots, x_p)) = \sigma(\beta_{0i} + \beta_i^\top \mathbf{x}),$$

nästla sedan många sådana funktioner för att bygga upp en godtyckligt komplex icke-linjär funktion.

För MLP brukar vi skriva

$$\mathbf{a}_{k\times 1}^{(p+1)} = \sigma\left(\mathbf{W}_{k\times n}^{(p)} \cdot \mathbf{a}_{n\times 1}^{(p)} + \mathbf{b}_{k\times 1}^{(p)}\right).$$

Här är:

k Dimension av nya lagret

n Dimension av föregående lager

W Viktmatris

b Bias

(p) Vilket lager

 $\sigma()$  Vår funktion som opererar elementvis

Historiskt har sigmoid eller hyperbolic tangent varit vanliga aktiveringsfunktioner. Numera är ReLu (eller varianter) den vanligaste,

$$ReLu(x) = max(0, x).$$

#### Vi kan se ett neuralt nätverk som att vi

- 1. Automatiskt lär oss transformationer av de förklarande variablerna.
- Gör linjär (logistisk,multinomiell) regression på transformationerna (sista lagret).

#### OBS!

- Komplexa funktioner kräver mycket data att lära sig!
- Neurala nätverk kan lätt överanpassa träningsdata!
- Funkar när vi har stort antal förklarande variabler.
- Om vi låter gömda lager ha mindre dimension än förklarande variabler får vi "icke-linjär variabelreduktion".

#### Universal approximation theorem

Vilka funktioner kan vi då lära oss med ett neuralt nätverk av detta slag?

**Universal approximation theorem**: Let  $C(X, \mathbb{R}^m)$  denote the set of continuous functions from  $X \subset \mathbb{R}^n$  to  $\mathbb{R}^m$ . Let  $\sigma \in C(\mathbb{R}, \mathbb{R})$ . Note that  $(\sigma \otimes x)_i = \sigma(x_i)$ , so  $\sigma \otimes x$  denotes  $\sigma$  applied to each component of x. Then  $\sigma$  is not polynomial if and only if for every  $n \in \mathbb{N}$ ,  $m \in \mathbb{N}$ , compact  $K \subseteq \mathbb{R}^n$ ,  $f \in C(K, \mathbb{R}^m)$ ,  $\varepsilon > 0$  there exists  $k \in \mathbb{N}$ ,  $A \in \mathbb{R}^{k \times n}$ ,  $b \in \mathbb{R}^k$ ,  $C \in \mathbb{R}^{m \times k}$  such that

$$\sup_{x\in K}\|f(x)-g(x)\|<\varepsilon,$$

where  $g(x) = C \cdot (\sigma \otimes (A \cdot x + b))$ .

## Optimering av neurala nätverk

Gradient decent: Hitta minimum på en funktion genom att gå dit den lutar mest!

Vill hitta

$$a^* = \arg\min_{a} L(a) = \sum_{i} L_i(f(x^{(i)}, a), y^{(i)}).$$

Löser detta genom sekvensen

$$a_{n+1} = a_n - \gamma \cdot \nabla L(a_n).$$

- Vi behöver gradienter (partiella derivator)
- Backpropagation: kedjeregel f
  ör derivator p
  å neruala n
  ätverk.
- Gradient decent: dyrt när vi har många observationer!

## Optimering av neurala nätverk

Svårt problem med många fallgropar.

- Lokala minima
  - Ställen som ser ut som ett minima (eller grannar har högre kostand) men inte är det bästa som finns.
  - Kan ha hög kostand eller låg.
  - Identifikationsproblem:
    - Viktsymmetri
    - Skalning mellan lager
  - Kan ha oräkneligt antal lokala minima.

## Optimering av neurala nätverk

#### Platåer och sadelpunkter

- Ställen där gradienten är noll (eller nära), fast vi inte är på ett loaklt min/max.
- Sadelpunkter:
  - Lokalt minima i några riktningar.
  - Lokalt maxima i andra riktningar.
- Antalet sadelpunkter tenderar att öka med antalet dimensioner.
- Platåer är stora områden som är platta (gradient nära noll).
- Platåer och sadelpunkter gör optimeringen med gradient decent svårare.

## Stochastic gradient decent (SGD)

Det är dyrt att beräkna  $\nabla L(a_n)$  för alla datapunkter.

Gör istället en väntesvärdesriktig skattning  $\nabla \hat{L}(a_n)$  av gradienten genom att ta ett slumpmässigt sample från data (mini-batch).

- Större batch ger mindre varians i skattningen men blir dyrare att beräkna.
- Kräver fler iterationer och mindre learning rate.
- Kräver att vi har oberoende observationer.
- Funkar bra för neurala nätverk!
- En epoch är en genomgång av all träningsdata.

## Hyperparametrar

#### I neruala nätverk finns massvis med Hyperparametrar!

- Arkitektur:
  - Antal gömda lager
  - Antal neuroner i varje lager
  - Aktiveringsfunktioner
  - (Speciella typer av neuroner/lager)
- Optimeringen:
  - Mini-batch storlek
  - Learning rate (fix eller föränderlig)
  - Antal epoker
  - (Vilken optimeringsalgoritm som används)

## Hyperparametrar

Hur ska vi bestämma deras värden?

- Svår fråga utan exakt svar.
- Mycket trial and error.
- Valideringsdata
- För stora problem kan det ta lång tid att hitta bra hyperparametrar