STAT 408 Applied Regression Analysis

Miles Xi

Department of Mathematics and Statistics
Loyola University Chicago

Fall 2022

Statistical Inference in Multiple Linear Regression

Motivation

• Similar to simple linear model, the least square estimation

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

is still a random variable due to the randomness of sample data

- The statistical inference in multiple linear regression can
 - 1. Examine the distribution of $\hat{\beta}$
 - 2. Test the significance of single parameter β_i
 - 3. Jointly test the significance of multiple parameters β s
 - 4. Test the relationship among parameters, e.g., $\beta_j = \beta_k$

Distribution of Error

• We still start from our classical assumption "error term ϵ follows a normal distribution and different ϵ_i 's are independent"

$$\epsilon_i \sim N(0, \sigma^2)$$

$$\epsilon_i \perp \epsilon_j$$
 for $i \neq j$

Using matrix notation

$$\varepsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

the error vector ε is a multivariate normal distribution with zero covariance

$$\varepsilon \sim N(\mathbf{0}, \sigma^2 I)$$

where **0** is a zero vector, σ^2 is common variance, I is identity matrix

Distribution of Response Variable

In our linear model

$$y = X\beta + \varepsilon$$

both X and β are fixed, only ε is a random variable

- y is the sum of a "constant" and a multivariable normal random variable
- y is also a random variable, and follows a multivariable normal distribution as ε

 To show the complete distribution of y, we need to know its expectation and variance

Distribution of response variable

Recall the expectation and variable operation in scaler case

$$E(a + X) = a + E(X)$$
$$V(a + X) = V(X)$$

where α is a constant and X is a random variable

The sample rule applies to random variables in matrix form

$$E(y) = E(X\beta + \varepsilon) = E(X\beta) + E(\varepsilon) = X\beta$$
$$V(y) = V(X\beta + \varepsilon) = V(\varepsilon) = \sigma^2 I$$

Distribution of response variable

• Therefore, response variable y follows a multivariate normal distribution

$$y \sim N(X\beta, \sigma^2 I)$$

Let's take a look at our main focus

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

• Since $\hat{\beta}$ is a random variable, what distribution do you think it follows?

• Since $\hat{\beta}$ is still a "constant" multiplied by a normal random variable, $\hat{\beta}$ also follows a multivariate normal distribution

$$E(\hat{\beta}) = E\left(\left(X^T X\right)^{-1} X^T y\right) = \left(X^T X\right)^{-1} X^T E(y) = \left(X^T X\right)^{-1} X^T X \beta = \beta$$

• Recall if x is a scaler and a is a constant

$$V(ax) = a^2 V(x)$$

• Similar, in matrix form

$$V(MX) = MV(X)M^T$$

where M is a matrix and X is a multivariate random variable (vector of rv)

• With this rule, the variance of \hat{eta} is

$$V(\hat{\beta}) = V\left((X^T X)^{-1} X^T y\right) = (X^T X)^{-1} X^T V(y) [(X^T X)^{-1} X^T]^T$$
$$= (X^T X)^{-1} X^T \sigma^2 I[(X^T X)^{-1} X^T]^T = \sigma^2 (X^T X)^{-1} X^T X(X^T X)^{-1} = (X^T X)^{-1} \sigma^2$$

in which we use

$$V(y) = \sigma^{2}I$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(A^{-1})^{T} = (A^{T})^{-1}$$

$$AA^{-1} = I \quad AI = A$$

• To summarize, the least square estimation \hat{eta} follows a multivariate normal distribution as

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2)$$

- 1. $E(\hat{\beta}) = \beta$ indicates that the least square estimate is an <u>unbiased</u> estimator of model parameter β
- 2. Each individual $\hat{\beta}_i$ follows a normal distribution
- 3. $E(\hat{\beta}_i) = \beta_i$
- 4. $V(\hat{\beta}_j)$ is the jth diagonal element in the covariance matrix $(X^TX)^{-1}\sigma^2$
- 5. $Cov(\hat{\beta}_j, \hat{\beta}_k)$ is the jkth and kjth off-diagonal element in the covariance matrix $(X^TX)^{-1}\sigma^2$

• In practice, we don't know σ^2 and has to estimate it

$$\hat{\sigma}^2 = \frac{RSS}{n - p}$$

• We can understand $\hat{\sigma}^2$ as "the average variation not explained by model"

Hypothesis Tests to Compare Models

- Given several predictors in the data, we might wonder if all are needed
- Consider a larger model, Ω , and a smaller model, ω , which consists of a subset of the predictors that are in Ω
 - We prefer ω if two model fits are "not very different" (for simplicity)
 - We prefer Ω if the large model fit is "improved" over small model

• Statistically, the previous judgement is a <u>hypothesis test</u>

 H_0 : ω is better

 H_a : Ω is better

How can we design a test statistic for this hypothesis test?

Hypothesis Tests to Compare Models

- The RSS is still a good choice, but like before, we need to consider the model complexity
- We use the follow F statistic

$$F = \frac{(RSS_{\omega} - RSS_{\Omega})/(p-q)}{RSS_{\Omega}/(n-p)}$$

where p = number of parameters in Ω , q = number of parameters in ω

- With the assumption of normal errors, under H_0 , $F \sim F_{p-q,n-p}$
- We reject H_0 if $F > F_{p-q,n-p}^{(\alpha)}$, where α is significant level

Hypothesis Tests to Compare Models

$$F = \frac{(RSS_{\omega} - RSS_{\Omega})/(p-q)}{RSS_{\Omega}/(n-p)}$$

- F statistics can be understood as the ratio of "average" residuals per predictor
- Remember that

$$df_{\Omega} = n - p$$

$$df_{\omega} = n - q$$

Then the F statistics can be rewritten as

$$F = \frac{(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})}{RSS_{\Omega}/df_{\Omega}}$$

Example: Test of All Predictors

- Let the full model Ω be $y = X\beta + \varepsilon$
- Let the small model ω be $y = \beta + \varepsilon$
- We call $y = \beta + \varepsilon$ "null model" and estimate β by \overline{y} (least square estimation)
- If we want to test if the full model is better than the null model, we can use the following hypothesis test:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$$

 H_a : At lease some predictors $\beta \neq 0$

Example: Test of All Predictors

```
# F test for model comparison

lm.model <- lm(insulin~., data = pima)

null.model <- lm(insulin~1, data=pima)

anova(null.model, lm.model)
```

check coding 3.r for manually conducting F test

Example: Testing a Pair of Predictors

• Suppose we want to know whether the <u>glucose or bmi</u> had any relation to the response

• In other words

$$H_0$$
: $\beta_{glucose} = \beta_{bmi} = 0$

$$H_a$$
: $\beta_{glucose} \neq 0$ or $\beta_{bmi} \neq 0$

Example: Testing a Pair of Predictors

```
# Test a Pair of Predictors

pima <- read.csv('pima.csv')

pima <- pima[complete.cases(pima), ]

lm.model <- lm(insulin~., data = pima)

small.model <- lm(insulin~pregnant+diastolic+triceps+diabetes+age+test, data=pima)

anova(small.model, lm.model)
```

Example: Testing a Relationship

We want to test whether the glucose and bmi have the same effect on insulin

$$H_0$$
: $\beta_{glucose} = \beta_{bmi}$
 H_a : $\beta_{glucose} \neq \beta_{bmi}$

- It is equivalent to say that we can merge glucose and bmi in linear model
 - Merging generates a small model

Example: Testing a Relationship

```
# Test relationship of two predictors
pima <- read.csv('pima.csv')
pima <- pima[complete.cases(pima), ]
lm.model <- lm(insulin~., data = pima)
small.model <-
lm(insulin~l(glucose+bmi)+pregnant+diastolic+triceps+diabetes+age+test, data=pima)
anova(small.model, lm.model)</pre>
```

Example: Testing a Subspace

• Another example is to test whether a parameter can be set to a particular value

$$H_0$$
: $\beta_{glucose} = 2$
 H_a : $\beta_{glucose} \neq 2$

```
# Test a subspace
pima <- read.csv('pima.csv')
pima <- pima[complete.cases(pima), ]
Im.model <- Im(insulin~., data = pima)
small.model <-
Im(insulin~offset(2*glucose)+bmi+pregnant+diastolic+triceps+diabetes+age+test, data=pima)
anova(small.model, Im.model)
```

When the F Test not Working

1. We cannot test a non-linear hypothesis, for example

$$H_0: \beta_j \beta_k = 1$$

2. We cannot compare models that are <u>not nested</u> using an F-test

Model one: glucose + bmi

Model two: glucose + pregnant + age

3. The models we compare use different datasets

Permutation Test

The previous F test and t test all rely on the assumption of normal errors

$$\varepsilon \sim N(\mathbf{0}, \sigma^2 I)$$

- How can we perform hypothesis test <u>if this assumption is violated?</u>
- Recall our F statistics

$$F = \frac{(RSS_{\omega} - RSS_{\Omega})/(df_{\omega} - df_{\Omega})}{RSS_{\Omega}/df_{\Omega}}$$

- Intuitively, if the response truly is related to predictors (full model is preferable), then F statistics should be "large"; otherwise it is "small"
- This result is correct without the normal error assumption

Permutation Test

- Our logic is
 - 1. Suppose that the H_a is preferable (full model is right), then the F statistic should be "large"
 - 2. If we randomly shuffle the response Y, then we break the relationship between response and predictors in each shuffled dataset
 - 3. The F statistics calculated under those shuffled datasets should be "small", because the model of shuffled data is wrong
- Let $\{F_j\}$, j=1,2,..., M be the set of those F statistics calculated based on each shuffled dataset (M is the number of random shuffle)
- If H_a is preferable, most F_j s should be less than the original F_j , then we reject H_0
- If H_0 is preferable, then F is not different from other F_j s, we cannot reject H_0

Permutation Test: Example

• We use the following method to conduct permutation test

Permutation p-value =
$$\frac{Number\ of\ F_{j}s\ greater\ than\ F}{Number\ of\ shuffling\ M}$$

- We can use the value of this ratio as the p-value
- Small permutation p-value indicates most (shuffled) F_js are less than the (unshuffled) F statistic, thus we prefer full model

Permutation Test: Example

 Let's see one example. We first fit the full model and calculate the p-value of regular F test

 Then we conduct a permutation test to compare the permutation p-value and regular p-value

• See coding 3.r for example code

Permutation Test: One Predictor

- We can also use permutation test to <u>test one predictor</u>
- The idea is to break this predictor's relation with the response
- Instead of F statistic, we use t statistic $\hat{\beta}/se(\hat{\beta})$

- The method is straightforward:
 - 1. Randomly shuffle that predictor M times
 - 2. Each time, calculate shuffled t statistics t_is (absolute value)
 - 3. Permutation p-value = $\frac{Number\ of\ t_{j}s\ greater\ than\ original\ t\ (abs)}{Number\ of\ shuffling\ M}$
- See coding 3.r for example code

Confidence Interval for β

- \bullet Confidence intervals (CIs) provide another way to measure the uncertainty in the estimates of β
- Recall that $\hat{\beta}$ follows a multivariate normal distribution

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, (X^T X)^{-1} \boldsymbol{\sigma}^2)$$

• And we estimate σ^2 by

$$\hat{\sigma}^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{n - p} = \frac{RSS}{n - p}$$

• Then any $\hat{\beta}_i$ also follows a univariate normal distribution

$$\hat{\beta}_i \sim N(\beta_i, se(\hat{\beta}_i))$$

where $se(\hat{\beta}_i)$ is the square root of the *i*th diagonal element in covariance matrix $(X^TX)^{-1}\sigma^2$

Confidence Interval for eta

• Recall that in normal distribution, the critical value and standard deviation σ determines the probability

$$\hat{\beta}_i \sim N\left(\beta_i, se(\hat{\beta}_i)\right) \rightarrow \frac{\hat{\beta}_i - \beta}{se(\hat{\beta}_i)} \sim N(0,1)$$

Therefore, we have

$$P\left(-z^{0.025} < \frac{\hat{\beta}_i - \beta}{se(\hat{\beta}_i)} < z^{0.025}\right) = 0.95$$

$$P\left(\hat{\beta}_{i} - z^{0.025} * se(\hat{\beta}_{i}) < \beta_{i} < \hat{\beta}_{i} + z^{0.025} * se(\hat{\beta}_{i})\right) = 0.95$$

Confidence Interval for $oldsymbol{eta}$

• Therefore, the 95% confidence interval for true parameter β_i is

$$\hat{\beta}_i \pm z^{0.025} * se(\hat{\beta}_i)$$

where i = 0, 1, 2,..., p – 1, and $z^{0.025} = 1.96$

- We can switch $z^{0.025}$ to other critical values for different confidence levels
- See coding 3.r for example code

Bootstrap Confidence Interval

• The previous construction of CI also relies on the normality assumption

$$\varepsilon \sim N(\mathbf{0}, \sigma^2 I)$$

- We can construct CIs without such assumptions
- Remember the uncertainty of $\hat{\beta}$ comes from the fact that we only have sample instead of the population
- If we can draw multiple samples from the population, and obtain one $\hat{\beta}$ for each sample, then we will have the <u>empirical distribution and CI of $\hat{\beta}$ </u>
- One way to implement this is to <u>sample from our sample</u>, but with replacement to keep sample size same, which is called <u>bootstrap</u>

Bootstrap Confidence Interval

- 1. Randomly draw a sample (X, Y)* of size n with replacement from current data (X, Y)
- 2. Fit a linear model on $(X, Y)^*$ and obtain the estimated parameter $\hat{\beta}^*$
- 3. Repeat the process by multiple times and save all the \hat{eta}^* s
- 4. Construct empirical CIs and standard deviation based on all the $\hat{\beta}^*$ s

Gauss – Markov Theorem

• Recall that the least square estimate is an <u>unbiased</u> estimator of model parameter β

$$E(\hat{\beta}) = \beta$$

• Also, $\hat{\beta}$ is a <u>linear estimator</u> because it is essentially a linear transformation of response y

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

• With the normality assumption for random error $\varepsilon \sim N(\mathbf{0}, \sigma^2 I)$, we have the Gauss–Markov Theorem:

The least squares $\hat{\beta}$ estimator has the lowest variance within the class of linear unbiased estimators or "Best unbiased linear estimator (BLUE)"