

Université de Montpellier - Faculté des Sciences

Année Universitaire 2023-2024

HA8401H : Calcul Différentiel et Intégral en Plusieurs Variables Chapitre 5 : Intégrales multiples

Philippe Castillon (1)

Exercice 1. Soit 0 < a < b et 0 < h des nombres réels, et soit T le triangle de \mathbb{R}^2 de sommets (0,0), (a,h) et (b,0). Calculer l'aire et le centre de gravité de T.

Exercice 2. Calculer les intégrales doubles suivantes :

1.
$$I_1 = \iint_D \frac{dx \, dy}{(x+y+1)^2}$$
 où $D = [0,1]^2$.

2.
$$I_2 = \iint_D \cos(\pi(x-y)) dx dy$$
 où $D = [0,1] \times [1,2]$.

3.
$$I_3 = \iint_D e^{x^2} dx dy$$
 où $D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x \le 1\}$.

4.
$$I_4 = \iint_D (x+y)e^{-x}e^{-y} dx dy$$
 où $D = \{(x,y) \in \mathbb{R}^2 \mid x,y \ge 0, x+y \le 1\}.$

5.
$$I_5 = \iint_D x \sin y \, dx \, dy$$
, où $D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le \frac{\pi}{2}, 0 \le x \le \cos y\}$. Dessiner!

6.
$$I_6 = \iint_D \frac{xy}{1+x^2+y^2} dx dy$$
 où $D = \{(x,y) \in [0,1]^2 \mid x^2+y^2 \ge 1\}.$

Exercice 3. Le simplexe est la partie $E \subset \mathbb{R}^3$ définie par $E = \{(x, y, z) \in \mathbb{R}^3 \mid x \geq 0, y \geq 0, z \geq 0, x + y + z \leq 1\}.$

- 1. Montrer que E admet des descriptions en piles et en tranches, et calculer $\operatorname{Vol}(E)$ de deux façons différentes.
- 2. Calcular $\iiint_E \frac{dx \, dy \, dz}{(1+x+y+z)^3}.$

Exercice 4. Pour tout a > 0 on note $I(a) = \int_{-a}^{a} e^{-t^2} dt$. Le but de l'exercice est de calculer $\lim_{a \to +\infty} I(a)$.

Dans la suite, on note $K_a = [-a, a]^2$ le carré de côté 2a centré en l'origine et $B_R(0)$ la boule de rayon R centrée en l'origine.

1. Montrer que
$$I(a)^2 = \iint_{K_a} e^{-x^2 - y^2} dxdy$$

$$\text{2. Montrer que}\, \iint_{B_a(0)} \mathrm{e}^{-x^2-y^2}\, dx dy \leq \iint_{K_a} \mathrm{e}^{-x^2-y^2}\, dx dy \leq \iint_{B_a\sqrt{2}} \mathrm{e}^{-x^2-y^2}\, dx dy$$

- 3. Pour tout R > 0, calculer $\iint_{B_R(0)} e^{-x^2-y^2} dxdy$ en faisant un changement de variables.
- 4. Conclure.

^{1.} Département de Mathématiques, CC 051, Université Montpellier II, Pl. Eugène Bataillon, 34095 Montpellier cedex 5. Mèl : philippe.castillon@umontpellier.fr