CIÊNCIA SE ENCONTRAM NA UNIVERSIDADE

Universidade Federal do Ceará Campus de Quixadá

O ensino de Assembly na construção de um pensamento crítico em programação de computadores

Bolsista: Pedro Henrique Magalhães Botelho

Orientador: Roberto Cabral Rabêlo Filho

Programa de Iniciação à Docência

Engenharia de Computação – 6° Semestre Encontros Universitários - 2021

Introdução

- Computadores \rightarrow Dia-a-dia.
- Para operar o computador \rightarrow Saber seu funcionamento intrínseco.
 - Programar → Como o programa vai se comportar?
 - Aprender como o computador funciona \rightarrow Capacidades do processador.
- - Linguagem Assembly.
 - Entendimento do computador.

Objetivos

- Objetivos Principais:
 - Estabelecer o Assembly como uma **ferramenta de ensino** da arquitetura.
- Objetivos Específicos:
 - Importância de entender o funcionamento da plataforma.
 - Propor um **modelo de ensino** de *Assembly*, baseado em pesquisas.

Trabalhos Relacionados

- [de Andrade 2014] \rightarrow Primeira linguagem da 2^{a} geração.
- [Vidal 2017] \rightarrow Aplicações na Engenharia de Computação.
- [Jorgensen 2020] \rightarrow Vantagens na programação em geral.
- [Silva 2021] e [Faquer 2017] \rightarrow Vantagens em áreas específicas:
 - Engenharia reversa, exploração de binários e otimização de código.
 - Segurança da informação.

Trabalhos Relacionados

- [Dandamudi 2005] \rightarrow Conjunto de Instruções x86-32.
 - Abordagem voltada para a Arquitetura x86 em si.
- [Zhirkov 2017] \rightarrow Conjunto de Instruções x86-64.
 - Abordagem crítica da programação C e Assembly.

Fundamentação Teórica

- Saber usar os recursos da plataforma \rightarrow Entender seu funcionamento.
- Organização de Computadores → Componentes e interconexões.
- Arquitetura de Computadores → Elementos que impactam a execução.
 - Arquitetura de Processadores → Linha de processadores com características semelhantes.
- Computador \rightarrow Sistema Digital.
 - Instruções para operar.
 - Cada arquitetura \rightarrow Conjunto de Instruções.
 - Níveis de Abstração \rightarrow Alto e baixo.

Nível de Software

Nível de Conjunto de Instrução

Nível Digital

Fundamentação Teórica

- Linguagem $Assembly \rightarrow Instruções em formato mnemônico.$
 - Descreve as características de uma arquitetura.
 - Todo programa executável \rightarrow Binário.
- Assembler \rightarrow Transforma código Assembly em um programa executável.
- Compilador \rightarrow Transforma código em alto nível em Assembly.
 - Relação intrínseca do C com o Assembly.
- Estudar $Assembly \rightarrow Aprender a arquitetura.$

Metodologia

Arquitetura de Computadores:

- Linguagem de Montagem específica.
- Pensamento crítico.
- "Programar melhor mesmo sem escrever uma linha de código em Assembly".

2) Engenharia de Computação:

- Projeto de Sistemas Computacionais.
- Relação *Hardware Firmware*.
- Entender o funcionamento e as capacidades do microprocessador.

3) Modelo de Ensino:

- Conteúdos mais importantes da arquitetura em questão.
- Levar o programador ou engenheiro a um grau de compreensão elevado.

Resultados

- Dados da pesquisa com os alunos do 3° semestre de Engenharia de Computação sobre a utilidade de Assembly:
 - A programação conjunta em C e Assembly para SE e desktop é viável.
 - Visão mais ampla e otimizada de programação.
 - Especificar melhor arquitetura da plataforma.

Você acha que a programação Assembly mudou sua forma de programar? Por exemplo, se lhe possibilitou pensar de uma maneira mais otimizada, diminuindo laços ou construindo algoritmos melhores.

7 respostas

Como você acha que esses conhecimentos influenciam na programação de computadores? Eles influenciam na sua área?

7 respostas

Resultados

- Para construir um programa em $Assembly \rightarrow Pensar$ fora da caixa.
- Modelo de Ensino \rightarrow Curso de Assembly para a Arquitetura x86.
 - Estrutura Generalizada.
 - Curso dividido em três partes.
 - Usar C para melhorar o entendimento \rightarrow Forte relação entre C e Assembly.

Modelo de Curso de Assembly para a Arquitetura x86

- Introdução → Motivação do estudo.
 - Definição da linguagem Assembly e sua história.
 - Funcionamento do compilador e montador.
- Noções de Organização de Computadores

 Elementos do computador.
 - Organização de um sistema computacional.
 - Funcionamento de um sistema digital.
- Arquitetura $x86 \rightarrow As$ bases da arquitetura em estudo.
 - Conjunto de instruções e o Assembly x86.
 - Pipeline de execução.
 - Banco de registradores.
 - Modos de processamento.
 - Organização de memória.
 - Primeiro programa em Assembly.

Modelo de Curso de Assembly para a Arquitetura x86

- Movimentação de Dados → Como operar a memória da arquitetura.
 - Instruções que operam a memória.
 - Endereçamento e Segmentação de memória.
- Aritmética e $Flags \rightarrow$ Entender o funcionamento da ULA.
 - Flags do processador.
 - Operações aritméticas e bitwise.
- Controle de Fluxo \rightarrow Como estruturas condicionais operam no baixo nível.
 - Instruções de Comparação.
 - Instruções de Saltos Condicionais.
- Procedimentos \rightarrow Funções em Assembly.
 - Pilha de execução.
 - Escopo de variáveis.
 - Bibliotecas externas.

Modelo de Curso de Assembly para a Arquitetura x86

- Interface com Linguagem $C \to Program ar em C em conjunto com Assembly.$
 - Incorporar o Assembly ao C.
- Interrupções → Entender e usar o mecanismo de entrada e saída.
 - Interrupções de software, hardware e exceções.
 - Interface de entrada e saída.
- Conjuntos de Instruções Estendidos \rightarrow Para valores em ponto flutuante e vetoriais.
 - Instruções SSE e AVX.
- Programação Bare Metal \rightarrow Aplicar os conhecimentos construindo um firmware.
 - Programar diretamente sobre a *BIOS*.
 - Utilização de interrupções para interação com dispositivos.

Conclusão:

- Detalhes de baixo nível e obter uma visão crítica!
- Esse trabalho ressaltou as vantagens no aprendizado do Assembly.
 - Desenvolvimento \longleftrightarrow Ferramenta de Aprendizado.
 - Aplicações além do aprendizado → Assembly oferece maior controle.
- Dúvida popular: O Assembly está morto?
 - Todo código em alto nível irá passar pelo Assembly.
 - Crescimento do estudo de computadores \rightarrow Devemos conhecê-los.
- Portanto, todo programador deve ter noções em Assembly.

Conclusão:

"Conhecer o campo de batalha é antecipar o movimento do inimigo. Conhecer o inimigo é antecipar a vitória", Sun Tzu, "Arte da Guerra".

Obrigado a todos pela atenção!

Referências Bibliográficas:

de Andrade, E. (2014). História da computação: Um pouco de assembly.

Faquer, C. (2017). Importância da linguagem de programação de baixo ní vel.

Jorgensen, E. (2020). x86-64 Assembly Language Programming with Ubuntu.

Silva, L. F. (2021). Aprendendo Assembly.

Vidal, V. (2017). Vale a pena aprender o bom e velho assembly?

Dandamudi, S. P. (2005) Guide to Assembly Language Programming in Linux, Springer.

Zhirkov, I. (2017) Low-Level Programming C, Assembly and Program Execution on Intel 64 Architecture, Apress.

