Unrestricted Grammars

Chapter 23

Grammars, SD Languages, and Turing Machines

Unrestricted Grammars

An *unrestricted grammar* G is a quadruple (V, Σ, R, S) , where:

- *V* is an alphabet,
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of $(V^+ \times V^*)$,
- S (the start symbol) is an element of V Σ .

The language generated by *G* is:

$$\{W \in \Sigma^* : S \Rightarrow_G^* W\}.$$

Unrestricted Grammars

Example: $A^nB^nC^n = \{a^nb^nc^n, n \ge 0\}.$

$$S \rightarrow aBSc$$

 $S \rightarrow \epsilon$
 $Ba \rightarrow aB$
 $Bc \rightarrow bc$
 $Bb \rightarrow bb$

Proof:

- Only strings in AⁿBⁿCⁿ:
- All strings in AⁿBⁿCⁿ:

Another Example

$$\{w \in \{a, b, c\}^* : \#_a(w) = \#_b(w) = \#_c(w)\}$$

$$S \rightarrow ABCS$$

$$S \to \epsilon$$

$$AB \rightarrow BA$$

$$BA \rightarrow AB$$

$$BC \rightarrow CB$$

$$CB \rightarrow BC$$

$$AC \rightarrow CA$$

$$CA \rightarrow AC$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

$WW = \{ww : w \in \{a, b\}^*\}$

Idea:

1. Generate a string in ww^R, plus delimiters aaabbCbbaaa#

2. Reverse the second half.

$WW = \{ww : w \in \{a, b\}^*\}$

```
S → T#
                  /* Generate the wall exactly once.
T \rightarrow aTa
                            /* Generate wCw^R.
T \rightarrow bTb
T \rightarrow C
C \rightarrow CP
                            /* Generate a pusher P
                            /* Push one character to the right
Paa→ aPa
Pab \rightarrow bPa
                                      to get ready to jump.
Pba \rightarrow aPb
Pbb \rightarrow bPb
                             /* Hop a character over the wall.
Pa\# \rightarrow \#a
Pb\# \rightarrow \#b
C\# \to \epsilon
```

Equivalence of Unrestricted Grammars and Turing Machines

Theorem: A language is generated by an unrestricted grammar if and only if it is in SD.

Proof:

Only if (grammar \rightarrow *TM):* by construction of an NDTM.

If $(TM \rightarrow grammar)$: by construction of a grammar that mimics the behavior of a semideciding TM.

Grammar → **Turing Machine**

Given G, produce a Turing machine M that semidecides L(G).

M will be nondeterministic and will use two tapes:

		a	b	a	b			
	1	0	0	0	0	0	0	
_	a	S	T	a	a	b		
	1	0	0	0	0	0	0	

For each nondeterministic "incarnation":

- Tape 1 holds the input.
- Tape 2 holds the current state of a proposed derivation.

At each step, *M* nondeterministically chooses a rule to try to apply and a position on tape 2 to start looking for the left hand side of the rule. Or it chooses to check whether tape 2 equals tape 1. If any such machine succeeds, we accept. Otherwise, we keep looking.

Turing Machine → **Grammar**

Build *G* to simulate the forward operation of a TM *M*:

The first (generate) part of G: Create all strings over Σ^* of the form:

$$W = \# \square \square q000 a_1 a_1 a_2 a_2 a_3 a_3 \square \square \#$$

The second (test) part of G simulates the execution of M on a particular string w. An example of a partially derived string:

Examples of rules:

q100 b b
$$\rightarrow$$
 b 2 q101 a a q011 b 4 \rightarrow q011 a a b 4

The Last Step

The third (cleanup) part of *G* erases the junk if *M* ever reaches any of its accepting states, all of which will be encoded as A.

Rules:

 $\forall x$ $x \land A \rightarrow A x$ /* Sweep A to the left. $\forall x, y$ #A $x y \rightarrow x$ #A /* Erase duplicates. #A# $\rightarrow \epsilon$

Decision Problems for Unrestricted Grammars

- Given a grammar G and a string w, is $w \in L(G)$?
- Given a grammar G, is $\varepsilon \in L(G)$?
- Given two grammars G_1 and G_2 , is $L(G_1) = L(G_2)$?
- Given a grammar G, is $L(G) = \emptyset$?

Or, as languages:

- $L_a = \{ \langle G, w \rangle : w \in L(G) \}.$
- $L_{\varepsilon} = \{ \langle G \rangle : \varepsilon \in L(G) \}.$
- $L_{=} = \{ \langle G_1, G_2 \rangle : L(G_1) = L(G_2) \}.$
- $L_{\emptyset} = \{ \langle G \rangle : L(G) = \emptyset \}.$

None of these questions is decidable.

$L_a = \{ \langle G, w \rangle : w \in L(G) \} \text{ is not in D.}$

Proof: Let R be a mapping reduction from:

 $A = \{ \langle M, w \rangle : \text{Turing machine } M \text{ accepts } w \} \text{ to } L_a:$

R(<M, w>) =

- 1. From M, construct the description $\langle G \# \rangle$ of a grammar G # such that L(G #) = L(M).
- 2. Return <*G*#, *w*>.

If *Oracle* decides L_a , then $C = Oracle(R(\langle M, w \rangle))$ decides A. We have already defined an algorithm that implements R. C is correct:

- If < M, $w > \in A$: M(w) halts and accepts. $w \in L(M)$. So $w \in L(G\#)$. Oracle(< G#, w >) accepts.
- If < M, $w > \notin A$: M(w) does not accept. $w \notin L(M)$. So $w \notin L(G\#)$. Oracle(< G#, w >) rejects.

But no machine to decide A can exist, so neither does *Oracle*.