Prof. Dr. Marlene Müller marlene.mueller@bht-berlin.de

Master Data Science Summer 2023

Formulae, R Reference and Tables

(Version: April 13, 2023)

Contents

1	Mathematics	2
	1.1 Derivatives of Functions	2
	1.2 Multidimensional Functions	2
	1.3 Linear Algebra	2
2	Probability	4
	2.1 Probability of Events	4
	2.2 Random Variables	6
	2.3 Random Vectors	7
	2.4 Frequently used Distributions	8
3	Linear Models	9
4	Generalized Linear Models	12
Α	R Reference	13
	A.1 General	13
	A.2 Data	14
	A.3 Statistics	15
	A.4 Graphics	16
	A.5 Programming	16
	A.6 Creating Documents	16
	A.7 Regression Models	17
В	Tables	19
	B.1 Gaussian CDF Φ	19
	B.2 Gaussian Quantiles	21
	B.3 <i>t</i> Quantiles	21
	B.4 Chi Square Quantiles	22
	B.5 F Quantiles	24

1 Mathematics

1.1 Derivatives of Functions

- ▶ constant, multiplying with a constant: (c)' = 0, $(c \cdot f(x))' = c \cdot f'(x)$
- ▶ power function: $(x^n)' = n x^{n-1}$
- ▶ logarithms and exponential functions:

$$(\ln(x))' = \frac{1}{x}$$
, $(\log_a(x))' = \frac{1}{\ln(a)} \cdot \frac{1}{x}$, $(e^x)' = e^x$, $(a^x)' = \ln(a) \cdot a^x$

- ▶ sine and cosine: $(\sin(x))' = \cos(x)$, $(\cos(x))' = -\sin(x)$
- ▶ sum rule: $(f(x) \pm g(x))' = f'(x) \pm g'(x)$
- ▶ product rule: $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$ short: (uv)' = u'v + uv'
- ▶ quotient rule: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$ short: $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$
- ▶ chain rule: $(g(h(x))' = g'(h(x)) \cdot h'(x)$

1.2 Multidimensional Functions

▶ gradient vector and Hessian matrix:

$$\mathcal{D}_f(\boldsymbol{x}) = \left(\begin{array}{c} \frac{\partial}{\partial x_1} f(\boldsymbol{x}) \\ \vdots \\ \frac{\partial}{\partial x_p} f(\boldsymbol{x}) \end{array} \right) \text{ and } \mathbf{H}_f(\boldsymbol{x}) = \left(\begin{array}{ccc} \frac{\partial^2}{\partial x_1 \partial x_1} f(\boldsymbol{x}) & \dots & \frac{\partial^2}{\partial x_1 \partial x_p} f(\boldsymbol{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial x_1 \partial x_p} f(\boldsymbol{x}) & \dots & \frac{\partial^2}{\partial x_p \partial x_p} f(\boldsymbol{x}) \end{array} \right)$$

1.3 Linear Algebra

Vectors

- lacktriangle inner product: $oldsymbol{u}^{ op} oldsymbol{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$
- lacksquare norm (length): $\|u\| = \sqrt{u^{ op}u}$

Matrices

properties:

$$(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}, \quad (c \, \mathbf{A})^{\mathsf{T}} = c \, \mathbf{A}^{\mathsf{T}}, \quad (\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}, \quad (\mathbf{A} \cdot \mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{A}^{\mathsf{T}}$$

ightharpoonup system of equations: Ax = b

properties:

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}, \quad s(\mathbf{A} \cdot \mathbf{B}) = (s\mathbf{A}) \cdot \mathbf{B} = \mathbf{A} \cdot (s\mathbf{B})$$

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}, \quad (\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$$

Square Matrices

$$lacksquare$$
 symmetric matrix: $\mathbf{A}^{\top} = \mathbf{A}$, identity matrix: $\mathbf{I}_n = \mathbf{I} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$

► trace:
$$\operatorname{trace}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

properties:

$$\operatorname{trace}(\mathbf{A} + \mathbf{B}) = \operatorname{trace}(\mathbf{A}) + \operatorname{trace}(\mathbf{B}), \quad \operatorname{trace}(c \mathbf{A}) = c \operatorname{trace}(\mathbf{A})$$
$$\operatorname{trace}(\mathbf{A}) = \operatorname{trace}(\mathbf{A}^{\top}), \quad \operatorname{trace}(\mathbf{A}\mathbf{B}\mathbf{C}) = \operatorname{trace}(\mathbf{C}\mathbf{A}\mathbf{B}) = \operatorname{trace}(\mathbf{B}\mathbf{C}\mathbf{A})$$

▶
$$2 \times 2$$
 determinant: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$

► 3 × 3 determinant: (Sarrus' rule)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

► determinant properties:

multiply a row or column by a scalar $\Rightarrow s \cdot \det(\mathbf{A})$

exchanging two rows or columns $\Rightarrow -\det(\mathbf{A})$.

add a multiple of a row/column to another row/column $\ \Rightarrow\$ no change

$$\det(\mathbf{A}^{\top}) = \det(\mathbf{A})$$

$$\det(s\,\mathbf{A}) = s^n\,\det(\mathbf{A})$$

row/column completely zero $\Rightarrow \det(\mathbf{A}) = 0$

two rows/columns identical $\Rightarrow \det(\mathbf{A}) = 0$

$$\det(\mathbf{A}) \cdot \det(\mathbf{B}) = \det(\mathbf{B}) \cdot \det(\mathbf{A}) = \det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{B} \cdot \mathbf{A})$$

▶ inverse matrix: $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$

▶
$$2 \times 2$$
 inverse: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

▶ inverse matrix properties:

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}, \quad \det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}, \quad (\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$$
$$(s\,\mathbf{A})^{-1} = \frac{1}{s}\mathbf{A}^{-1}, \quad (\mathbf{A}\cdot\mathbf{B})^{-1} = \mathbf{B}^{-1}\cdot\mathbf{A}^{-1}$$

ightharpoonup equivalent $n \times n$ matrix properties:

$$\det(\mathbf{A}) \neq 0 \iff \mathbf{A} \text{ invertible} \iff \operatorname{rank}(\mathbf{A}) = n$$
 $\iff \operatorname{rows/columns} \text{ of } \mathbf{A} \text{ are linearly independent}$
 $\iff \mathbf{A} \boldsymbol{x} = \boldsymbol{b} \quad \text{has exactly one solution} \quad \boldsymbol{x} = \mathbf{A}^{-1} \boldsymbol{b}$

- ▶ eigenvalues, eigenvectors: $Av = \lambda v$, characteristic polynomial to determine λ : $det(A \lambda I) = 0$
- lacktriangle spectral decomposition of a symmetric matrix f A: $f A = \Gamma \Lambda \Gamma^{ op} = \sum_{j=1}^d \lambda_j \gamma_j \gamma_j^{ op}$

where Λ $(d\times d)$ is the diagonal matrix of all eigenvalues λ_j and Γ $(d\times d)$ is an orthogonal matrix containing the eigenvectors γ_j as columns

properties:

orthogonality:
$$\boldsymbol{\gamma}_j^{\top} \boldsymbol{\gamma}_j = 1$$
, $\boldsymbol{\gamma}_j^{\top} \boldsymbol{\gamma}_k = 0$ for $j \neq k$ if \mathbf{A} has full rank d , then all $\lambda_j \neq 0$
$$\operatorname{trace}(\mathbf{A}) = \sum_j \lambda_j \,, \quad \det(\mathbf{A}) = \prod_j \lambda_j \,, \quad \mathbf{A}^{-1} = \Gamma \Lambda^{-1} \Gamma^{\top}$$
 $\mathbf{\Lambda} > \mathbf{0} \iff \mathbf{A} > \mathbf{0} \,, \quad \mathbf{\Lambda} \geq \mathbf{0} \iff \mathbf{A} \geq \mathbf{0}$

2 Probability

2.1 Probability of Events

- ▶ Laplace probability: $P(A) = \frac{n(A)}{n(\Omega)} = \frac{\text{number of elementary events in } A}{\text{number of all elementary events}}$
- ► Kolmogorov Axioms:
 - (A1) For any event A holds $P(A) \geq 0$.
 - (A2) The sure event Ω has probability $P(\Omega)=1$.
 - (A3) For any two disjoint events A, B holds $P(A \cup B) = P(A) + P(B)$.
- ▶ properties of *P*:

$$P(A^{C}) = 1 - P(A)$$

$$P(\emptyset) = 0$$

$$A \subseteq B \implies P(A) \le P(B)$$

$$P(B \setminus A) = P(B) - P(A \cap B)$$

inclusion–exclusion principle: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

▶ sums of probabilities:

for n mutually disjoint events: $P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n)$ for any n events:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) \mp \dots$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \subseteq \{1, \dots, n\}, n(I) = k} P\left(\bigcap_{i \in I} A_{i}\right)$$

▶ conditional probability:
$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$
 if $P(A) > 0$

stochastically independent events:

$$P(B \mid A) = P(B \mid A^C) = P(B) \iff P(A \cap B) = P(A) \cdot P(B)$$

\triangleright 2 × 2 table:

	В	B^C	Σ
A	$P(A \cap B)$	$P(A \cap B^C)$	P(A)
A^C	$P(A^C \cap B)$	$P(A^C \cap B^C)$	$P(A^C)$
Σ	P(B)	$P(B^C)$	1

products of probabilities:

for n (stochastically) independent events: $P(A_1 \cap ... \cap A_n) = P(A_1) ... P(A_n)$ for any n events:

$$P(A_1 \cap \ldots \cap A_n) = P(A_n \mid A_1 \cap \ldots \cap A_{n-1}) \cdot P(A_{n-1} \mid A_1 \cap \ldots \cap A_{n-2})$$
$$\cdot \ldots \cdot P(A_2 \mid A_1) \cdot P(A_1)$$

▶ Bayes' formula:
$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$$

▶ total probability: consider B and mutually disjoint A_i with $P(A_1 \cup ... \cup A_n) = \Omega$, then:

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) \cdot P(A_i)$$

▶ Bayes' theorem:
$$P(A_k \mid B) = \frac{P(B \mid A_k) \cdot P(A_k)}{\sum\limits_{i=1}^n P(B \mid A_i) \cdot P(A_i)}$$

2.2 Random Variables

▶ pdf vs. cdf: $F(x) = P(X \le x)$, i.e.

$$F(x) = \sum_{j:x_i \le x} f(x)$$
 or $F(x) = \int_{-\infty}^{\infty} f(x) dx$

 \blacktriangleright expectation of a function g(X):

$$E(g(X)) = \sum_{j} g(x_j) f(x_j)$$
 or $E(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) dx$

- ▶ variance: $Var(X) = E(X E(X))^2 = E(X^2) (E(X))^2$
- lacktriangle expectation of a linear function: $E(a_0+a_1X_1+\ldots a_nX_n)=a_0+a_1E(X_1)+\ldots+a_nE(X_n)$
- ► covariance: Cov(X,Y) = E(X E(X))(Y E(Y)) = E(XY) E(X)E(Y)
- ► correlation: $\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)} \cdot \sqrt{\operatorname{Var}Y}}$
- ▶ (stochastically) independent random variables $X_1, ..., X_n$:

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdot\ldots\cdot f_{X_n}(x_n)$$

variance of a linear function:

for any two random variables

$$Var(a + bX + cY) = b^{2} Var(X) + c^{2} Var(Y) + 2bc Cov(X, Y)$$

for n (stochastically) independent random variables

$$\operatorname{Var}(a_0 + a_1 X_1 + \dots a_n X_n) = \sum_{i} a_j^2 \operatorname{Var}(X_j)$$

for any n random variables

$$\operatorname{Var}(a_0 + a_1 X_1 + \dots a_n X_n) = \sum_j a_j^2 \operatorname{Var}(X_j) + 2 \sum_{j \le k} a_j a_k \operatorname{Cov}(X_j, X_k)$$

 \blacktriangleright marginal pdf of X (calculated from the joint distribution of X and Y):

$$f_X(x) = \sum_k f(x, y_k)$$
 or $f_X(x) = \int f(x, y) dy$

- ► conditional pdf of X given Y = y: $f(x|y) = f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}$
- lacktriangledown median, quantiles of a continuous random variable: $x_{0.5} = F^{-1}(0.5), x_p = F^{-1}(p)$

2.3 Random Vectors

► expectation, variance—covariance matrix:

$$EX = \begin{pmatrix} EX_1 \\ \vdots \\ EX_n \end{pmatrix}, \quad \operatorname{Var}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_1, X_2) & \operatorname{Var}(X_2) & \dots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_1, X_n) & \operatorname{Cov}(X_2, X_n) & \dots & \operatorname{Var}(X_n) \end{pmatrix}$$

properties: if
$$\mu = EX$$
 and $\Sigma = Var(X)$

$$E(c + AX) = c + A\mu$$

$$\operatorname{Var}(\boldsymbol{c} + \mathbf{A}\boldsymbol{X}) = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}$$

$$E(\boldsymbol{X}^{\top}\mathbf{B}\boldsymbol{X}) = \boldsymbol{\mu}^{\top}\mathbf{B}\boldsymbol{\mu} + \operatorname{trace}(\mathbf{B}\boldsymbol{\Sigma})$$

$$Cov(\mathbf{A}X, \mathbf{D}X) = \mathbf{A}\Sigma \mathbf{D}^{\top}$$

2.4 Frequently used Distributions

Discrete	parameters	values	f(x)	E(X)	$\operatorname{Var}(X)$
$\begin{array}{c} \text{Bernoulli} \\ B(1,p) \end{array}$	0	$X \in \{0,1\}$	$p^x(1-p)^{1-x}$	d	p(1-p)
binomial $B(m,p)$	$0 m \in \mathbb{N}$	$X \in \{0, \dots, m\}$	$\binom{m}{x} p^x (1-p)^{m-x}$	d m	m p (1-p)
$\begin{array}{ll} hypergeometric \\ H(N,M,n) \end{array}$	$N, M, n \in \mathbb{N}$ $M, n \leq N$	$X \in {\max(0, n + M - N), \dots, \min(n, M)}$	$\frac{\binom{N-N}{x-n}\binom{N}{x}}{\binom{N}{n}}$	$n \cdot \frac{M}{N}$	$n \cdot \frac{N-n}{N-1} \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right)$
$\begin{array}{c} \text{geometric} \\ Geo(p) = NB(1,p) \end{array}$	0	$X\in\mathbb{N}$	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
negative binomial $NB(r,p)$	$0 r \in \mathbb{N}$	$X \in \{r, r+1, \ldots\}$	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Poisson $Poi(\lambda)$	$\lambda > 0$	$X \in \{0, 1, 2, \ldots\}$	$\frac{\lambda^x}{x!}e^{-\lambda}$	~	Y

Continuous	parameters values	values	f(x)	F(x)	E(X)	Var(X)
uniform $U[a,b]$	$a,b \in \mathbb{R}$ $a < b$	$X \in [a,b]$	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
normal $N(\mu,\sigma^2)$	$\mu \in \mathbb{R}$ $\sigma > 0$	$X\in\mathbb{R}$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	μ	σ^2
exponential $Exp(\lambda)$	$\lambda > 0$	$X \in \mathbb{R}$ $X \ge 0$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
lognormal $LN(\mu,\sigma^2)$	$\mu \in \mathbb{R}$ $\sigma > 0$	$X \in \mathbb{R}$ $X > 0$	$\frac{1}{\sqrt{2\pi}\sigma x} \exp\left(-\frac{(\ln(x) - \mu)^2}{2\sigma^2}\right)$	$\Phi\left(\frac{\ln(x)-\mu}{\sigma}\right)$	$\exp\left(\mu + \frac{\sigma^2}{2}\right) = \frac{e}{\cdot}$	$\frac{\exp(2\mu+\sigma^2)}{\cdot \left(\exp(\sigma^2)-1\right)}$

3 Linear Models

Simple Linear Regression

▶ model: $Y = \beta_0 + \beta_1 x + \varepsilon$, data: pairs (x_i, y_i) , i = 1, ..., n

parameter estimation by least squares (LSE):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1 \in \mathbb{R}} \qquad \Rightarrow \quad \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x} \,, \quad \widehat{\beta}_1 = \frac{s_{xy}}{s_x^2}$$

coefficient of determination:

$$R^2 = \frac{\sum\limits_{i=1}^n (\widehat{y}_i - \overline{y})^2}{\sum\limits_{i=1}^n (y_i - \overline{y})^2} = \frac{s_{\widehat{Y}}^2}{s_Y^2} \quad \in [0,1] \qquad \text{in simple linear regression holds: } R^2 = r_{XY}^2$$

Multiple Linear Regression

 $lackbox{ model:} \quad Y=eta_0+eta_1x_1+\ldots+eta_px_p+arepsilon$, data: vectors $(x_{i1},\ldots,x_{ip},y_i)$, $i=1,\ldots,n$

lacktriangleq in vector–matrix form: $oldsymbol{Y}=\mathcal{X}oldsymbol{eta}+oldsymbol{arepsilon}$

$$\boldsymbol{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \quad \mathcal{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_1^\top \\ \boldsymbol{x}_2^\top \\ \vdots \\ \boldsymbol{x}_n^\top \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

▶ parameter estimation by least squares (LSE):

$$Q(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2 = \|\boldsymbol{y} - \mathcal{X}\boldsymbol{\beta}\|^2 \to \min_{\boldsymbol{\beta} \in \mathbb{R}^p}$$

$$\Rightarrow \widehat{\boldsymbol{\beta}} = (\mathcal{X}^{\top} \mathcal{X})^{-1} \mathcal{X}^{\top} \boldsymbol{y}, \quad \widehat{\boldsymbol{y}} = \mathcal{X} (\mathcal{X}^{\top} \mathcal{X})^{-1} \mathcal{X}^{\top} \boldsymbol{y} = \mathbf{P} \boldsymbol{y}, \quad \widehat{\boldsymbol{\varepsilon}} = \boldsymbol{y} - \widehat{\boldsymbol{y}} = (\mathbf{I} - \mathbf{P}) \boldsymbol{y}$$

$$RSS = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} \widehat{\boldsymbol{\varepsilon}}_i^2 = \boldsymbol{y}^{\top} (\mathbf{I} - \mathbf{P}) \boldsymbol{y}, \quad \widehat{\boldsymbol{\sigma}}^2 = \frac{RSS}{n - p - 1}$$

coefficient of determination:

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{s_{\widehat{Y}}^{2}}{s_{Y}^{2}} = 1 - \frac{\text{RSS}}{\text{TSS}} \in [0, 1] \quad \text{it holds: } R^{2} = r_{Y\widehat{Y}}^{2}$$

 $\qquad \text{prediction:} \quad \widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \ldots \widehat{\beta}_p x_{ip} = \widehat{\boldsymbol{\beta}}^\top \boldsymbol{x}_i = \boldsymbol{x}_i^\top \widehat{\boldsymbol{\beta}} \qquad \Longleftrightarrow \qquad \widehat{\boldsymbol{y}} = \mathcal{X} \widehat{\boldsymbol{\beta}}$

▶ properties under fixed design and $E\varepsilon = 0$, $Var(\varepsilon) = \sigma^2 \mathbf{I}$:

$$\begin{split} E\widehat{\boldsymbol{\beta}} &= \boldsymbol{\beta}, \quad E\widehat{\sigma}^2 = \sigma^2 \\ \mathrm{Var}(\widehat{\boldsymbol{\beta}}) &= \sigma^2 (\boldsymbol{\mathcal{X}}^\top \boldsymbol{\mathcal{X}})^{-1} \\ \widehat{\boldsymbol{\beta}} & \text{is BLUE} \end{split}$$

lacktriangledown properties under fixed design and normality, i.e. $m{arepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$:

(i)
$$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\boldsymbol{\mathcal{X}}^{\top} \boldsymbol{\mathcal{X}})^{-1}\right)$$

(ii)
$$\widehat{m{\beta}}$$
 and thus $\widehat{m{Y}} = \mathcal{X}\widehat{m{\beta}}$ are (stoch.) independent of $\mathrm{RSS} = m{Y}^{ op}(\mathbf{I} - \mathbf{P})m{Y}$

(iii)
$$\frac{1}{\sigma^2} RSS \sim \chi^2_{n-p-1}$$

(vi)
$$\frac{\widehat{\beta}_j - \beta_j}{\widehat{\sigma}\sqrt{c_{jj}}} \sim t_{n-p-1}$$
 ($j = 0, \dots, p$ and c_{jj} is the j th diagonal element of $(\mathcal{X}^\top \mathcal{X})^{-1}$)

▶ maximum likelihood estimates under normality:

$$\widehat{\boldsymbol{\beta}} = (\mathcal{X}^{\top} \mathcal{X})^{-1} \mathcal{X}^{\top} \boldsymbol{Y}, \quad \widetilde{\sigma}^2 = \frac{\text{RSS}}{n}$$

▶ standardized residuals: $\frac{\widehat{\varepsilon}_i}{\widehat{\sigma}\sqrt{1-p_{ii}}}$ (where p_{ii} are diagonal elements of P)

t Test for Coefficients

• $H_0: \beta_j = 0$ vs. $H_1: \beta_j \neq 0$

reject
$$H_0$$
 if $|t_{value,j}| = \left| \frac{\widehat{\beta}_j}{\widehat{\sigma} \sqrt{c_{jj}}} \right| > t_{n-p-1,1-\alpha/2}$

$$p_{value,j} = 2 - 2F_{t_{n-p-1}}(|t_{value,j}|)$$

Confidence Regions

$$\qquad \qquad \bullet \quad (1-\alpha) \text{ confidence interval for } \beta_j \colon \quad \left[\widehat{\beta}_j - t_{n-p-1,1-\alpha/2} \, \widehat{\sigma} \sqrt{c_{jj}} \, ; \, \widehat{\beta}_j + t_{n-p-1,1-\alpha/2} \, \widehat{\sigma} \sqrt{c_{jj}} \right]$$

▶ $(1 - \alpha)$ confidence ellipsoid for β :

$$\frac{(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\top} (\mathcal{X}^{\top} \mathcal{X}) (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{(p+1)\widehat{\sigma}^{2}} \sim F_{p+1,n-p-1}$$

$$\Rightarrow \left\{ \boldsymbol{\beta} \mid (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\top} (\mathcal{X}^{\top} \mathcal{X}) (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \leq (p+1)\widehat{\sigma}^{2} F_{p+1,n-p-1,1-\alpha} \right\}$$

▶ $(1 - \alpha)$ confidence interval for $\beta^{\top} x_0$:

$$\widehat{y}_0 = \widehat{\boldsymbol{\beta}}^{\top} \boldsymbol{x}_0 \sim N \left(\boldsymbol{\beta}^{\top} \boldsymbol{x}_0, \sigma^2 \boldsymbol{x}_0^{\top} (\mathcal{X}^{\top} \mathcal{X})^{-1} \boldsymbol{x}_0 \right)$$

$$\Rightarrow \left[\widehat{y}_0 - t_{n-p-1,1-\alpha/2} \widehat{\sigma} \sqrt{\boldsymbol{x}_0^{\top} (\mathcal{X}^{\top} \mathcal{X})^{-1} \boldsymbol{x}_0} ; \widehat{y}_0 + t_{n-p-1,1-\alpha/2} \widehat{\sigma} \sqrt{\boldsymbol{x}_0^{\top} (\mathcal{X}^{\top} \mathcal{X})^{-1} \boldsymbol{x}_0} \right]$$

F Test for Model Comparison

► *F* test for comparing with the constant model:

$$\begin{split} H_0 &: \quad \beta_1 = \ldots = \beta_p = 0 \\ H_1 &: \quad \exists \beta_j \neq 0 \ (j=1,\ldots,p) \end{split}$$
 reject H_0 if $F_{value} = \frac{n-p-1}{p} \frac{(\mathrm{RSS}_{H_0} - \mathrm{RSS}_{H_1})}{\mathrm{RSS}_{H_1}} > F_{p,n-p-1,1-\alpha}$
$$p_{value} = 1 - F_{F_{p,n-p-1}}(F_{value})$$

► *F* test for comparing two nested models:

 $H_1 : \text{ larger model}$ $\text{reject } H_0 \text{ if } \quad F_{value} = \frac{\left(\mathrm{RSS}_{H_0} - \mathrm{RSS}_{H_1} \right) / \left(\mathrm{df}_0 - \mathrm{df}_1 \right)}{\mathrm{RSS}_{H_1} / \mathrm{df}_1} > F_{\mathrm{df}_0 - \mathrm{df}_1, \mathrm{df}_1, 1 - \alpha} = F_{p_1 - p_0, n - p_1 - 1, 1 - \alpha}$ $p_{value} = 1 - F_{F_{p_1 - p_0, n - p_1 - 1}} (F_{value})$

 H_0 : smaller model

Modell Choice

▶ unbiased estimate of the mean sqaures error (MSE):

Mallows'
$$C_p(s) = \|\mathbf{Y} - \mathbf{P}_s \mathbf{Y}\|^2 + 2\operatorname{trace}(\mathbf{P}_s)\widehat{\sigma}^2 - n\widehat{\sigma}^2$$

► Akaike's information criterion:

$$AIC(s) = n \log \left(\frac{1}{n} || \mathbf{Y} - \mathbf{P}_s \mathbf{Y} ||^2\right) + 2 \operatorname{Spur}(\mathbf{P}_s)$$

more general AIC:

$$AIC = -2 \cdot log\text{-likelihood} + 2 \cdot no.$$
 of coefficients

► Schwarz' Bayesian information criterion:

$$\operatorname{BIC}(s) = n \log \left(\frac{1}{n} || \mathbf{Y} - \mathbf{P}_s \mathbf{Y} ||^2 \right) + \log(n) \operatorname{Spur}(\mathbf{P}_s)$$

Coding Factors as Dummy Variables

- ightharpoonup choose a reference category, say r
- \blacktriangleright add a column to \mathcal{X} for each further category c, defined by

$$x_{i,c} = \begin{cases} 1 & \text{if } x_i = c \\ 0 & \text{otherwise} \end{cases}$$

4 Generalized Linear Models

- ▶ logistic regression (logit model): $E(Y|\mathbf{x}) = F(\mathbf{\beta}^{\top}\mathbf{x})$ with $F(u) = \frac{1}{1 + e^{-u}}$
- $\qquad \qquad \textbf{probit model:} \quad E(Y|\boldsymbol{x}) = \Phi(\boldsymbol{\beta}^{\top}\boldsymbol{x}) \ \ \text{with} \ \ \Phi(u) = F_{N(0,1)}$
- ▶ generalized linear model (GLM): $E(Y|x) = G(\beta^{\top}x)$ where G is the inverse link function

	notation	$y \in$	b(heta)	$\mu(\theta)$	canonical link $\theta(\mu)$	variance $V(\mu)$	$a(\psi)$
Bernoulli	$B(1,\mu)$	$\{0, 1\}$	$\log(1+e^{\theta})$	$\frac{e^{\theta}}{(1+e^{\theta})}$	logit	$\mu(1-\mu)$	1
Binomial	$B(k,\mu)$	$\{0,\ldots,k\}$	$k\log(1+e^{\theta})$	$\frac{ke^{\theta}}{(1+e^{\theta})}$	logit	$\mu\left(1-\frac{\mu}{k}\right)$	1
Poisson	$Poi(\mu)$	\mathbb{N}_0	$\exp(\theta)$	$\exp(\theta)$	\log	μ	1
Negative binomial	$NB(\mu,k)$	\mathbb{N}_0	$-k\log\left(1-e^{\theta}\right)$	$\frac{ke^{\theta}}{(1-e^{\theta})}$	$\log\left(\frac{\mu}{k+\mu}\right)$	$\mu + \frac{\mu^2}{k}$	1
Normal	$N(\mu, \sigma^2)$	\mathbb{R}	$\theta^2/2$	θ	identical	1	σ^2
Exponential	$Exp(\mu)$	\mathbb{R}^+	$-\log(-\theta)$	$-1/\theta$	reciprocal	μ^2	1
Gamma	$G(\mu, \nu)$	\mathbb{R}^+	$-\log(-\theta)$	$-1/\theta$	reciprocal	μ^2	$1/\nu$
Inverse normal	$IN(\mu, \sigma^2)$	\mathbb{R}^+	$-\sqrt{-2\theta}$	$\frac{-1}{\sqrt{-2\theta}}$	squared reciprocal	μ^3	σ^2

A R Reference

A.1 General

- q() quit R
- ls(), rm(list = ls())
 list / remove all objects in / from
 workspace
- help(<func>) or alternatively
 ?<func> to show help on <func>
- apropos ('<keyword>')
 show functions that contain keyword
- require, library load a package
- system.time
 measure CPU times of a command
 sequence, e.g. system.time(n < 100000; x <- rnorm(n))</pre>

Relations, Operations

- ==, != equal to, unequal to
- <, >, <=, >=
 less than, greater than
 (or equal to)
- -, +, *, / elementwise operations
- %*% matrix product
- \$\$, $\ \$/\$$ modulo, integer division
- ! logical "NOT"
- ۵, ۵۵ logical "AND" (۵۵ operates only on the first component)
- |, || logical "OR" (|| operates only on the first component)

Constants, Special Values

- pi $\pi = 3.141593...$
- TRUE, FALSE

logical values (numerically 1, 0)

letters, LETTERS

vector of the 26 small / capital letters

Mathematical Functions

- a^x, sqrt(x) exponent (basis a), square root
- abs(x) absolute value
- sin(x), cos(x), tan(x)
 trigonometric functions
- $\exp(x)$, $\log(x)$ exponent (basis e), natural logarithm (math. \ln)
- factorial(n), choose(n,k)
 factorial, binomial coefficient
- gamma(x), lgamma(x)
 gamma- and log-gamma functions

Vectors and Matrices

- c create vector
- rep repeat elements
- rev revert elements
- seq
- sequence of values, e.g.
- seq(-3, 3, by=0.5 or
- seq(0,1,length=10)
- matrix create matrix
- cbind

combine column vectors into matrix

rbind

combine row vectors into matrix

length

length of a vector (or number of elements in a matrix)

dim dimension of a matrix or array

select elements from vector

[,] select elements from matrix e.g.
 m[1,2], m[1:2,], m[,2:3],
 m[1:2,2:3]

t matrix transpose

diag

diagonal of a matrix / generate diagonal matrix from vector

dimnames

row / column names of matrix or dataframe

which.min, which.max index of smallest / largest elements

which

extracts indices following a condition, e.g. which (a >5)

rowSums, colSums

det determinant

eigen eigen values and vectors

solve

solve a system of linear equations (solve(A,b)) or determine the invers (solve(A))

outer

outer product for a function,
z.B. outer (1:5,7:9,"+")

apply

row- or columnwise evaluation of a function on a matrix

Lists

list create list

[[]] select list component,
 e.g. mylist[[2]]

\$ select list component by name,
e.g. mylist\$date

names names of all list components

lapply, sapply variants of apply for lists

A.2 Data

Data Input and Output

setwd

set the working directory,
e.g. setwd("d:/MyDir")

read.csv, read.csv2
read a .csv file (English/German)

write.csv, write.csv2
write a .csv file (English/German)

data.frame
data matrix (mixed data types possible)

\$ select component by its name, e.g.
mydata\$date

attach, detach

load / remove components of a data matrix into / from workspace

Data Manipulation

sort sort a vector

order

find the ranks in a vector, e.g.
v[order[v]] equals sort(v)

cut cut a vector into intervals

factor, ordered convert numerical data into factors

table frequency table

tapply variant of apply for data matrices

Strings

paste

concatenate strings (converts nemerical values automatically)

substr

extract substring, e.g. "abc"
by substr("abcde", 1, 3)

A.3 Statistics

Chacteristic Numbers

mean, median, quantile

min, max
minimum, maximum

var, sd, cov, cor variance, standard deviation, covariance, correlation

summary

several characteristic numbers of a data matrix

fivenum

five number summary of a data vector

Hypotheses Tests

chisq.test, fisher.test

test for independence in a cross table (contingency table)

binom.test, prop.test test for p using Bernoulli data

t.test

one or two sample t tests for the mean

wilcox.test

Wilcoxon test a a nonparamtric alternative to the *t* test

var.test χ^2 tests for the variance (variance comparison)

rowMeans, colMeans

row and column means of a matrix

table frequency table

Distributions

dnorm, pnorm, qnorm, rnorm
pdf, cdf, quantiles and pseudo random numbers for the normal distribution

other distributions:

continuous uniform ${r|d|p|q}unif$ exponential {r|d|p|q}exp lognormal $\{r|d|p|q\}lnorm$ binomial $\{r|d|p|q\}$ binom Poisson {r|d|p|q}pois hypergeometric {r|d|p|q}hyper geometric $\{r|d|p|q\}$ geom negative binomial $\{r|d|p|q\}$ nbinom logistic {r|d|p|q}logis χ^2 ${r|d|p|q}$ chisq t $\{r|d|p|q\}t$ F $\{r|d|p|q\}f$

set.seed

fix the seed of the random number generator

bartlett.test

variance comparison for more than two samples

cor.test

t test for the correlation

ks.test

Kolmogoroff Smirnoff test for a specific continuous distribution (or for comparing two continuous distributions)

shapiro.test

Shapiro Wilk test for normality

A.4 Graphics

R Builtin Function plot

plot
lines, points add curve/points
abline add a straight line

text, legend, title
 add text/legend/plot title

par(mfrow=c(r,c))
 split display into r rows and c columns

rug add rug plot

polygon fill polygone with color

Parameters for plot

type change type, e.g. ='1' (line), ='p'(points), ='b' (both), ... col change color, e.g. col='red' or col=rainbow(25) lwd, lty change line width and type pch change symbol cex change factor for symbol or text size main set plot title xlab, ylab change labels for the axes xlim, ylim change ranges of the axes log use axes in log scale (e.g. log='x') more options under ?plot and ?par

Specific Plots

barplot, pie
mosaicplot, spineplot
boxplot
 optionally groupwise by e.g.
 boxplot(y ~ g)

```
hist histogram

pairs scatterplot matrix

ecdf empirical cdf

qqnorm, qqplot quantile—quantile plot

curve

matplot plot several curves simultaneusly

contour plot contours (bivariate function)

persp perspective plot in 3D

persp3D

persp6D

persp6D

persp6D

persp6D

persp6D

persp6D

persp6D
```

A.5 Programming

```
i f
    conditional execution, i.e.
                               if (
    <cond> ) { <command sequence>
    } or
    if ( <cond> ) { <command se-
                        <other com-
    quence> } else {
    mand sequence> }
for, while, repeat
    different loops e.g.
                        for (i in
    1:n) { <command sequence> } or
    while ( <cond> ) { <command
    sequence> } or repeat { <com-</pre>
    mand sequence> ; if (<cond>)
    break }
function
    function defintion,
    f <- function(<parameters>) {
    <command sequence>; return (<result>)
    }
```

A.6 Creating Documents

xtable from package xtable:
 create/save tables or other objects in
LATEXor HTML

postscript, pdf, png, ...
 save plots in different formats

A.7 Regression Models

lm, glm

fit a linear or generalized linear model

abline

add the regression line for a simple linear model

▶ List of functions to extract components from a model.

Application example: model <- $lm(y \sim x)$; summary (model)

Function	Description
summary	<pre>summary output (see also ?summary.lm)</pre>
coef	estimated coefficients
residuals	residuals $\widehat{arepsilon}_i$
fitted	predicted values \widehat{y}_i
predict	<pre>predicted values, useful for new data (see also ?predict.lm)</pre>
anova	test for comparing two nested models
plot	some diagnostic plots
confint	confidence intervals for the coefficients
deviance	residual sum of squares RSS
VCOV	estimated covariance matrix (of the coefficients)
logLik	log-likelihood (under normality assumption)
AIC	Akaike's information criterion (for model choice)

► Further terms can be obtained from summary.

Application example: summary (model) \$call

Function	Description
call	call of lm
terms	information on the explanatory variables
residuals	residuals $\widehat{arepsilon}_i$
coefficients	table of coefficients, standard errors, t values and p values
sigma	estimated standard deviation $\widehat{\sigma}$
df	degrees of freedom
r.squared	coefficient of determination \mathbb{R}^2
adj.r.squared	adjusted coefficient of determination
fstatistic	F statistic with acc. degress of freedom
cov.unscaled	unscaled covariance matrix (results in vcov when multiplied with $\hat{\sigma}^2$)

► Examples for building models:

Formula	Description
y ~ 1	constant model (intercept only) $y_i = \beta_0 + \varepsilon_i$
у ~ х	simple linear model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
y ~ x - 1	regression without intercept ("through the origin") $y_i = \beta_1 x_i + \varepsilon_i$
y ~ x + I(x^2)	linear and quadratic term $y_i = \beta_1 x_i + \varepsilon_i$
$y \sim x + I(x^2) + I(x^3)$	linear and quadratic and cubic term $y_i=eta_0+eta_1x_i+eta_2x_i^2+eta_2x_i^3+arepsilon_i$
$y \sim x + I(\sin(x)) + I(\cos(x))$	sine and cosine transformations $y_i = \beta_0 + \beta_1 \sin(x_i) + \beta_2 \cos(x_i) + \varepsilon_i$
y ~ x1 + x2	two regressors (explanatory variables) $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$
y ~ x1 * x2	two regressors plus interaction $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \varepsilon_i$
y ~ x1 + x2 + x1:x2	again, two regressors plus interaction $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \varepsilon_i$
$y \sim (x1 + x2)^2$	another way, two regressors plus interaction $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \varepsilon_i$
$y \sim (x1 + x2 + x3)^2$	three regressors and all bivariate interactions $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 + \beta_3 x_{i3} \\ + \beta_4 x_{i1} x_{i2} + \beta_5 x_{i1} x_{i3} + \beta_6 x_{i2} x_{i3} + \varepsilon_i$
y ~ x1 * x2 * x3	three regressors and all possible interactions $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 + \beta_3 x_{i3} + \beta_4 x_{i1} x_{i2} + \beta_5 x_{i1} x_{i3} + \beta_6 x_{i2} x_{i3} + \beta_7 x_{i1} x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_7 x_{i1} x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_7 x_{i1} x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_8 x_{i3} x_{i4} + \beta_8 x_{i1} x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_8 x_{i3} x_{i4} + \beta_8 x_{i1} x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_8 x_{i1} x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_8 x_{i3} x_{i4} + \beta_8 x_{i1} x_{i2} x_{i3} + \beta_8 x_{i2} x_{i3} + \beta_8 x_{i3} x_{i4} + \beta_8 x_{i4} x_{i4} x_{i5} + \beta_8 x_{i4} x_{i5} + \beta_8 x_{i5} x_{i5} + \beta_8 $

► Additional functions for regression:

options(contrasts=c('contr.treatment','contr.poly'))
 code factor into dummy variables (see ?contrasts for other ways of coding)
stepAIC from package MASS:
 perform stepwise model choice on the basis of AIC (or BIC)

Anova from package car:

other ways for performing ANOVA (type II and III for example)

influencePlot from package car:

analyze the influence of single observations

allEffects from package effects:

calculate and plot effects and interactions

B Tables

B.1 Gaussian CDF Φ

application example: $Z \sim N(0,1), P(Z \le -1.23) = \Phi(-1.23) = 0.10935$

0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414 -0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465 -0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591 -0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35569 0.35197 0.34827 -0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207 -0.5 0.30854 0.30503 0.30153 0.29866 0.29460 0.29166 0.28774 0.28435 0.22663 0.22363 0.225143 0.24825 0.24510 -0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.217		0.00	0.04	0.00	0.00	0.04	0.05	0.00	0.07	0.00	0.00
0.1 0.46017 0.45620 0.45224 0.44828 0.44033 0.44038 0.43244 0.43251 0.42858 0.32874 0.38974 0.38974 0.38974 0.38974 0.38974 0.38974 0.38974 0.38929 0.37828 0.37448 0.37070 0.36693 0.36177 0.35969 0.35197 0.34827 0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32774 0.28430 0.28774 0.28434 0.28036 0.22765 0.26169 0.25785 0.25463 0.25103 0.28426 0.224196 0.23885 0.23576 0.23270 0.22065 0.22663 0.22363 0.22065 0.21770 0.21476 0.8 0.214166 0.28885 0.23576 0.23270 0.2045 0.19489 0.19215 0.18430 1.8667 0.13350 0.13166 0.18421 0.14660 0.18431 0.14660 0.16160 0.16160 0.16160 1.16160 1.16160 0.16160 1.16160 1.16160 1.16160 <		0.00	-0.01	-0.02	-0.03	-0.04	-0.05	-0.06	-0.07	-0.08	-0.09
-0.2 0.42074 0.41683 0.41294 0.40905 0.40129 0.39743 0.39358 0.38974 0.38599 0.35698 0.36937 0.35699 0.35569 0.35569 0.35569 0.35569 0.35569 0.35569 0.32976 0.36836 0.32276 0.35569 0.32761 0.35669 0.32276 0.23666 0.22760 0.28745 0.28435 0.23636 0.22663 0.25765 0.25453 0.25765 0.25745 0.25425 0.22037 0.22965 0.22663 0.22643 0.26763 0.26436 0.22663 0.22665 0.22770 0.22466 0.22655 0.21770 0.21476 0.08 0.2186 0.23856 0.23270 0.2045 0.19466 0.19425 0.18436 0.16170 0.14 0.1860 0.15625 0.15386 0.15151 0.17461 0.14666 0.14457 0.144231 0.14070 0.14666 1.1 0.15625 0.15386 0.15910 0.14466	0.0										
-0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35569 0.35197 0.34827 0.4 0.34458 0.33090 0.33724 0.33360 0.32936 0.32276 0.31918 0.31561 0.21206 0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.22765 0.25434 0.28096 0.22767 0.0 0.24196 0.23876 0.22896 0.22663 0.22363 0.22965 0.22496 0.29116 0.20327 0.2045 0.19489 0.19215 0.18435 0.16109 0.9 0.18406 0.18141 0.17879 0.17361 0.17160 0.18853 0.16602 0.18354 0.16109 1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14860 0.144231 0.14007 0.13363 0.1300 0.14111 0.14007 0.13363 0.14007 0.13146 0.11140 0.11416 0.14507 0.14860 0.14507 0.14160 0.14160 0.	-0.1	0.46017	0.45620								
0.4 0.34458 0.34090 0.33724 0.33080 0.32997 0.32636 0.32746 0.28746 0.28774 0.28344 0.28030 0.20760 0.6 0.27425 0.27030 0.26763 0.26409 0.25785 0.25673 0.25143 0.26109 0.25785 0.25635 0.26109 0.25785 0.25635 0.26140 0.25785 0.24166 0.24196 0.23885 0.23576 0.23270 0.20645 0.26603 0.22363 0.22065 0.21180 0.11810 0.11860 0.18141 0.17619 0.17361 0.17610 0.16803 0.16602 0.16354 0.16109 1.1 0.18606 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786 1.1 0.13567 0.13350 0.13136 0.12941 0.12574 0.15033 0.10204 0.10027 0.07833 1.2 0.1560 0.05340 0.05340 0.07636 0.07635 0.06545 0.050520 0.04947	-0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
-0.5 0.30854 0.30503 0.30153 0.29806 0.29416 0.28774 0.28434 0.28096 0.24760 0.6 0.27425 0.27093 0.26456 0.26109 0.25785 0.25463 0.25143 0.24826 0.24151 0.7 0.24196 0.23865 0.23676 0.23270 0.22965 0.22663 0.22363 0.22065 0.21476 0.8 0.21186 0.20897 0.20611 0.20327 0.2045 0.19489 0.19215 0.18434 0.18489 0.18406 0.18441 0.17878 0.17619 0.17366 0.14487 0.14231 0.14007 0.13366 0.15156 0.15386 0.15151 0.142174 0.12507 0.14231 0.14007 0.13786 1.13 0.15866 0.151586 0.151516 0.19474 0.14557 0.14307 0.14307 0.11900 0.11790 0.11790 0.1336 0.15386 0.15190 0.14142 0.14600 0.09342 0.09383 0.03607 0.08233 0.08241 0.08349	-0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
-0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.23633 0.22655 0.22363 0.22365 0.21365 0.21476 0.24196 0.23885 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476 0.8 0.2186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18363 0.16020 0.16354 0.16109 0.18414 0.17879 0.17906 0.18683 0.16602 0.16354 0.16107 0.13666 0.15866 0.15386 0.15151 0.14917 0.14666 0.13350 0.13366 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702 1.1710 0.11366 0.13333 0.13136 0.12924 0.12714 0.12506 0.03330 0.03260 0.03310 0.03412 0.03831 0.03831 0.03831 0.03831 0.03831 0.03836 0.03725 0.072636 0.09912 0.08831 0.08941 0.04546 0.04648	-0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
-0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21170 0.21476 0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673 0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16802 0.16020 0.14007 0.13786 1.1 0.13566 0.15625 0.15386 0.15110 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786 1.1.1 0.13567 0.13336 0.12924 0.12714 0.12507 0.12302 0.12100 0.11702 1.2.1 0.11507 0.13134 0.1123 0.09912 0.08851 0.08033 0.08204 0.08176 0.09912 0.08851 0.08330 0.08349 0.08340 0.08340 0.08611 0.05562 0.05480 0.05562 0.05155 0.050565 0.04947 0.04846 0.04446 0.04541 <	-0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
-0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19469 0.19489 0.19215 0.18943 0.18663 0.16602 0.16853 0.16602 0.16363 0.16602 0.16363 0.16602 0.16363 0.16002 0.16363 0.16602 0.16863 0.16602 0.16363 0.13186 0.12924 0.12707 0.14487 0.144231 0.14007 0.13786 -1.1 0.13567 0.13335 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11902 -1.2 0.15868 0.09510 0.09342 0.09176 0.09012 0.08851 0.08834 0.08079 0.07890 0.07636 0.07493 0.07235 0.072078 0.06944 0.0811 -1.5 0.06681 0.065370 0.05262 0.05155 0.05050 0.04947 0.04466 0.04481 0.04551 -1.7 0.04457 0.04363 0.04272 0.04182 0.04933 0.03214 0.03444 0.03044 0.0344 <th>-0.6</th> <th>0.27425</th> <th>0.27093</th> <th>0.26763</th> <th>0.26435</th> <th>0.26109</th> <th>0.25785</th> <th>0.25463</th> <th>0.25143</th> <th>0.24825</th> <th>0.24510</th>	-0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
-0.9 0.18406 0.18141 0.17879 0.17361 0.17306 0.16853 0.16802 0.16325 0.16306 0.16386 0.16365 0.15366 0.15365 0.15366 0.15366 0.15367 0.13350 0.13316 0.12924 0.12714 0.12507 0.12100 0.11007 0.113786 -1.2 0.11507 0.11314 0.11132 0.10935 0.10749 0.10565 0.10333 0.10204 0.0027 0.09853 -1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08266 -1.4 0.08076 0.07527 0.07780 0.07636 0.07493 0.07353 0.07215 0.05481 0.06552 0.06426 0.06515 0.05050 0.04947 0.04846 0.04746 0.04648 0.04511 -1.5 0.06840 0.05527 0.024482 0.04938 0.04406 0.03392 0.03363 0.03754 0.03633 -1.8 0.02527 0.02807	-0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
-1.0	-0.8	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
-1.1	-0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
-1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853 0.09868 0.098510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08276 0.08076 0.08076 0.07493 0.07353 0.07215 0.07078 0.069811 0.05705 0.05592 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 0.05592 0.05426 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 0.05705 0.05592 0.04467 0.04457 0.04457 0.04457 0.04438 0.03362 0.03388 0.03362 0.03388 0.03216 0.03144 0.03074 0.03005 0.02938 0.02872 0.02807 0.02473 0.02688 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330 0.0275 0.02222 0.02169 0.02118 0.02688 0.02018 0.01570 0.01403 0.01406 0.01430 0.01404 0.00174 0.01463 0.01466 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01416 0.0130 0.01404 0.01072 0.00385 0.00578 0.00242 0.00385 0.00384 0.00368 0.00344 0.00389 0.00368 0.00444 0.00478 0.00466 0.00457 0.00555 0.00554 0.00554 0.00554 0.00568 0.00568 0.00666 0.00657 0.00666 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 0.00364 0.00368 0.00357 0.00368 0.00440 0.00427 0.00415 0.00429 0.00289 0.00280 0.00272 0.00264 0.00368 0.00357 0.00368 0.00357 0.00368 0.00357 0.00368 0.00357 0.00368 0.00357 0.00368 0.00358 0.00440 0.00429 0.00440 0.00429 0.00440 0.00429 0.00440 0.00440 0.00440 0.00440 0.00440 0.00440 0.00459 0.00568	-1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0.14007	0.13786
-1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08334 0.08379 0.06824 -1.4 0.08076 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811 -1.5 0.06681 0.06582 0.06426 0.05305 0.05080 0.04947 0.04846 0.04746 0.04648 0.04576 0.04363 0.04272 0.04182 0.04094 0.04846 0.04746 0.04648 0.04574 0.04836 0.03754 0.03836 0.03754 0.03673 -1.8 0.03593 0.03515 0.03438 0.03262 0.03288 0.03216 0.03144 0.03075 0.02375 -1.9 0.02275 0.02280 0.02188 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330 -2.1 0.02275 0.02220 0.02168 0.02619 0.02578 0.01579 0.01672 0.01146 0.011426 -2.2 0.01390 0.01	-1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
-1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811 -1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 -1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04648 0.04648 0.04575 0.0457 0.04457 0.04830 0.04572 0.04888 0.03216 0.03144 0.03074 0.03005 0.02381 -1.9 0.02872 0.022807 0.02493 0.02619 0.02599 0.02599 0.02500 0.02442 0.02385 0.02385 0.02275 0.02222 0.02188 0.02618 0.02180 0.01970 0.01923 0.01860 0.02418 0.02018 0.01970 0.01923 0.01860 0.01821 0.02218 0.02190 0.01923 0.01831 0.01831 0.01831 0.01743 0.01010 0.01829 0.0	-1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
-1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 -1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 -1.7 0.04457 0.04363 0.04722 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03050 0.02938 -1.9 0.02872 0.022807 0.02743 0.02680 0.02619 0.02519 0.02519 0.02519 0.02183 0.01923 0.01836 0.02330 -2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01530 0.01463 0.01426 -2.2 0.01390 0.01355 0.01321 0.01287 0.01222 0.01191 0.01140 0.01014 0.01017 0.00990 0.00944 0.00939 0.00914 0.00889 0.0066 0.00840 -2.2 0.01320 0.00786 0.005	-1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
-1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 -1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 -1.7 0.04457 0.04363 0.04722 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03050 0.02938 -1.9 0.02872 0.022807 0.02743 0.02680 0.02619 0.02519 0.02519 0.02519 0.02183 0.01923 0.01836 0.02330 -2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01530 0.01463 0.01426 -2.2 0.01390 0.01355 0.01321 0.01287 0.01222 0.01191 0.01140 0.01014 0.01017 0.00990 0.00944 0.00939 0.00914 0.00889 0.0066 0.00840 -2.2 0.01320 0.00786 0.005	-1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
-1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 -1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673 -1.8 0.03593 0.03515 0.03438 0.03268 0.02559 0.02500 0.02442 0.02385 0.02330 -2.0 0.02275 0.02222 0.02189 0.02118 0.02668 0.02218 0.01500 0.01426 0.02330 -2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01530 0.01500 0.01463 0.01426 -2.2 0.01390 0.01355 0.01321 0.01257 0.01222 0.01191 0.01100 0.01430 0.01410 -2.3 0.01072 0.01044 0.01017 0.00990 0.00944 0.00939 0.00914 0.00889 0.00860 0.00842 -2.4 0.00820 0.00798 0.00776	-1.5										
-1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673 -1.8 0.03593 0.03515 0.03438 0.03622 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938 -1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02336 -2.0 0.02275 0.02222 0.02118 0.02068 0.02018 0.01970 0.01923 0.01463 0.01463 -2.1 0.01786 0.01743 0.01709 0.01659 0.01618 0.01539 0.01500 0.01463 0.01140 -2.2 0.01390 0.01355 0.01321 0.01287 0.01285 0.01539 0.00110 0.01140 0.01143 0.01141 -2.3 0.01072 0.01444 0.00175 0.00755 0.00734 0.00741 0.00695 0.06676 0.00657 0.00639 -2.5 0.00621 0.00645	-1.6	0.05480	0.05370							0.04648	0.04551
-1.8 0.03593 0.03515 0.03438 0.0362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938 -1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02303 -2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01866 0.01242 -2.1 0.01786 0.01743 0.01070 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 -2.2 0.01395 0.01321 0.01225 0.01222 0.01191 0.01160 0.01130 0.01466 -2.3 0.01072 0.01044 0.01077 0.00994 0.00939 0.00914 0.00889 0.00866 0.00842 -2.4 0.00820 0.00798 0.00755 0.00734 0.00539 0.00523 0.00668 0.00464 0.00466 0.00453 0.00407 0.00415 0.00402 0.0039	-1.7										0.03673
-1.9 0.02872 0.02870 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330 -2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831 -2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 -2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 -2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00339 0.0014 0.00889 0.00866 0.00862 -2.4 0.00820 0.00798 0.00776 0.00570 0.00554 0.00539 0.00523 0.00508 0.00440 0.00480 -2.5 0.00661 0.00326 0.00317 0.00340 0.00249 0.00249 0.00233 0.00249 0.00249 0.00240 0.0023	-1.8										
-2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831 -2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 -2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 -2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00666 0.00842 -2.4 0.00820 0.00798 0.00776 0.00570 0.00554 0.00539 0.00508 0.00667 0.00689 -2.5 0.00661 0.00640 0.00587 0.00570 0.00554 0.00539 0.00508 0.00494 0.00480 -2.6 0.00466 0.00453 0.00427 0.00427 0.00427 0.00428 0.00229 0.00228 0.00289 0.00280 0.00270 0.00280 0.002	_										
-2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 -2.2 0.01390 0.01355 0.01321 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 -2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00666 0.00667 0.00639 -2.4 0.00820 0.00798 0.00576 0.00575 0.00534 0.00539 0.00523 0.00580 0.00494 0.00480 -2.5 0.00661 0.00453 0.00440 0.00427 0.00415 0.00492 0.00391 0.00379 0.00368 0.00357 -2.7 0.00347 0.00336 0.00217 0.00307 0.00298 0.00280 0.00272 0.00264 -2.8 0.00256 0.00248 0.00240 0.00233 0.00266 0.00214 0.00154 0.00149 0.00144 0.00139 -2.0 0.00135											
-2.2 0.01390 0.01355 0.01321 0.01287 0.01225 0.01222 0.01191 0.01160 0.01130 0.01101 -2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842 -2.4 0.00820 0.00798 0.00776 0.00575 0.00534 0.00539 0.00530 0.00508 0.00467 0.00480 -2.5 0.00621 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 -2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 -2.8 0.00256 0.00248 0.00240 0.00233 0.00266 0.00219 0.00250 0.00199 0.00193 -2.9 0.00187 0.00118 0.00159 0.00144 0.00149 0.00144 0.00139 -3.0 0.00135 0.00131 0.00126	-2.1	0.01786									
-2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842 -2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639 -2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00391 0.00308 0.00494 0.00480 -2.6 0.00466 0.00453 0.00440 0.00427 0.00377 0.00298 0.00289 0.00280 0.00272 0.00264 -2.7 0.00347 0.00336 0.00240 0.00233 0.00226 0.00219 0.00255 0.00199 0.00193 -2.9 0.00187 0.00181 0.00175 0.00169 0.00184 0.00154 0.00149 0.00144 0.00139 -3.0 0.00135 0.00131 0.00126 0.00182 0.00184 0.00014 0.00114 0.00114 0.00174 0.00079 0.00064 0.00079 0.000	-2.2										
-2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639 -2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480 -2.6 0.00466 0.00453 0.00440 0.00427 0.00371 0.00298 0.00289 0.00280 0.00272 0.00264 -2.7 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00199 0.00193 -2.9 0.00187 0.00181 0.00175 0.00169 0.00184 0.00154 0.00149 0.00144 0.00139 -3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00010 -3.1 0.00069 0.00066 0.00062 0.00060 0.00068 0.00079 0.00066 0.00074 0.00010 -3.3 0.000048 0.000041											
-2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480 -2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 -2.7 0.00347 0.00336 0.00240 0.00233 0.00226 0.00219 0.00289 0.00205 0.00199 0.00193 -2.8 0.00256 0.00248 0.00240 0.00233 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139 -2.9 0.00187 0.00181 0.00126 0.00122 0.00118 0.00114 0.00114 0.00149 0.00144 0.00139 -3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00111 0.00107 0.00104 0.00109 -3.1 0.00097 0.00064 0.00062 0.00064 0.00082 0.00079 0.00076 0.00074 0.00071 -3.2 0.00044											
-2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 -2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 -2.8 0.00256 0.00248 0.00240 0.00169 0.00164 0.00159 0.00144 0.00149 0.00014 0.00015 0.00068											
-2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 -2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193 -2.9 0.00187 0.00181 0.00175 0.00169 0.00114 0.00119 0.00144 0.00139 -3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00110 0.00107 0.00104 0.00100 -3.1 0.00097 0.00094 0.00099 0.00087 0.00084 0.00082 0.00079 0.00074 0.00071 -3.2 0.00069 0.00066 0.00042 0.00060 0.00058 0.00056 0.00054 0.00052 0.00055 -3.3 0.00048 0.00047 0.00043 0.00042 0.00040 0.00039 0.00038 0.00038 0.00036 0.00052 0.00025 0.00025 0.00025 0.00025 0.000											
-2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193 -2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139 -3.0 0.00135 0.00131 0.00126 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071 -3.1 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 -3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038											
-2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139 -3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100 -3.1 0.00097 0.00094 0.00090 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 -3.2 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00038 0.00039 0.00038 0.00031 0.00017 0.00017 0.00017 0.00017 0.00011 0.0											
-3.0											
-3.1 0.00097 0.00094 0.00099 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071 -3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 -3.3 0.00048 0.00047 0.00045 0.00031 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024 -3.4 0.00034 0.00032 0.00022 0.00021 0.00029 0.00019 0.00019 0.00018 0.00017 0.00017 -3.5 0.00023 0.00015 0.00014 0.00014 0.00013 0.00019 0.00018 0.00017 0.00017 -3.6 0.00016 0.00015 0.00015 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 -3.7 0.00011 0.00001 0.00006 0.00006 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.000											
-3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 -3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035 -3.4 0.00034 0.00032 0.00021 0.00029 0.00028 0.00027 0.00026 0.00025 0.00017 -3.5 0.00016 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00011 -3.7 0.00011 0.00015 0.00016 0.00010 0.00010 0.00009 0.00008	1										
-3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035 -3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024 -3.5 0.00023 0.00022 0.00021 0.00014 0.00019 0.00019 0.00018 0.00017 0.00017 -3.6 0.00016 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 -3.7 0.00011 0.00010 0.00010 0.00009 0.00008	1										
-3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024 -3.5 0.00023 0.00022 0.00021 0.00020 0.00019 0.00018 0.00017 0.00017 -3.6 0.00016 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 -3.7 0.00011 0.00010 0.00010 0.00009 0.00009 0.00008 0.0	1										
-3.5											
-3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 -3.7 0.00011 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008 0.00008 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 <th></th>											
-3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00003 0.00003 0.00004 0.00004 0.00004 0.00004 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0	1										
-3.8 0.00007 0.00007 0.00007 0.00006 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0											
-3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0	1										
-4.0 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0	1										
-4.1 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0											
-4.2 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	1										
-4.3 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	1										
-4.4 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000											
	-4.4	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197			0.52392		0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567		0.56356		0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483		0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930		0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003		0.67724	0.68082		0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824		0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907			0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562			0.96784		0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
	0.99952									
	0.99966									
	0.99977									
1 1	0.99984									
	0.99989									
1 1	0.99993									
$\overline{}$	0.99995									
1 1	0.99997									
1 1	0.99998									
1 1	0.99999									
1 1	0.99999									
4.4	0.99999	0.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

B.2 Selected Quantiles of the Gaussian

application example: 99.5% quantile of the Gaussian N(0,1) distribution $z_{0.995}=2.57583$

α	z_{α}
0.600	0.25335
0.750	0.67449
0.800	0.84162
0.900	1.28155
0.950	1.64485
0.975	1.95996
0.990	2.32635
0.995	2.57583

B.3 Selected Quantiles of the t Distribution with m DF

application example: 99.5% quantile of the t_{10} distribution $t_{10;0.995}=3.169$

					\overline{n}	$\overline{\imath}$					
α	1	2	3	4	5	6	7	8	9	10	α
0.600	0.325	0.289	0.277	0.271	0.267	0.265	0.263	0.262	0.261	0.260	0.600
0.750	1.000	0.817	0.765	0.741	0.727	0.718	0.711	0.706	0.703	0.700	0.750
0.800	1.376	1.061	0.979	0.941	0.920	0.906	0.896	0.889	0.883	0.879	0.800
0.900	3.078	1.886	1.638	1.533	1.476	1.440	1.415	1.397	1.383	1.372	0.900
0.950	6.314	2.920	2.353	2.132	2.015	1.943	1.895	1.860	1.833	1.813	0.950
0.975	12.706	4.303	3.182	2.776	2.571	2.447	2.365	2.306	2.262	2.228	0.975
0.990	31.821	6.965	4.541	3.747	3.365	3.142	2.998	2.897	2.821	2.764	0.990
0.995	63.657	9.925	5.841	4.604	4.032	3.707	3.500	3.355	3.250	3.169	0.995

					m	$\overline{\iota}$					
α	11	12	13	14	15	16	17	18	19	20	α
0.600	0.260	0.259	0.259	0.258	0.258	0.258	0.257	0.257	0.257	0.257	0.600
0.750	0.697	0.696	0.694	0.692	0.691	0.690	0.689	0.688	0.688	0.687	0.750
0.800	0.876	0.873	0.870	0.861	0.866	0.865	0.863	0.862	0.861	0.860	0.800
0.900	1.363	1.356	1.350	1.345	1.341	1.337	1.333	1.330	1.328	1.325	0.900
0.950	1.796	1.782	1.771	1.761	1.753	1.746	1.740	1.734	1.729	1.725	0.950
0.975	2.201	2.179	2.160	2.145	2.131	2.120	2.110	2.101	2.093	2.086	0.975
0.990	2.718	2.681	2.650	2.625	2.603	2.584	2.567	2.552	2.540	2.528	0.990
0.995	3.106	3.055	3.012	2.977	2.947	2.921	2.898	2.878	2.861	2.845	0.995

					\overline{n}	\overline{n}					
α	21	22	23	24	25	26	27	28	29	30	α
0.600	0.257	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.600
0.750	0.686	0.686	0.685	0.685	0.684	0.684	0.684	0.683	0.683	0.683	0.750
0.800	0.859	0.858	0.858	0.857	0.856	0.856	0.855	0.855	0.854	0.854	0.800
0.900	1.323	1.321	1.320	1.318	1.316	1.315	1.314	1.313	1.311	1.310	0.900
0.950	1.721	1.717	1.714	1.711	1.708	1.706	1.703	1.701	1.699	1.697	0.950
0.975	2.080	2.074	2.069	2.064	2.060	2.056	2.052	2.048	2.045	2.042	0.975
0.990	2.518	2.508	2.500	2.492	2.485	2.479	2.473	2.467	2.462	2.457	0.990
0.995	2.831	2.819	2.807	2.797	2.787	2.779	2.771	2.763	2.756	2.750	0.995

B.4 Selected Quantiles of the Chi Square Distribution with m DF

application example: 99.5% quantile of the χ^2_{10} distribution $\chi^2_{10;0.995}=25.19$

						\overline{m}					
α	1	2	3	4	5	6	7	8	9	10	α
0.005	0.00	0.01	0.07	0.21	0.41	0.68	0.99	1.34	1.73	2.16	0.005
0.010	0.00	0.02	0.11	0.30	0.55	0.87	1.24	1.65	2.09	2.56	0.010
0.025	0.00	0.05	0.22	0.48	0.83	1.24	1.69	2.18	2.70	3.25	0.025
0.050	0.00	0.10	0.35	0.71	1.15	1.64	2.17	2.73	3.33	3.94	0.050
0.100	0.02	0.21	0.58	1.06	1.61	2.20	2.83	3.49	4.17	4.87	0.100
0.200	0.06	0.45	1.01	1.65	2.34	3.07	3.82	4.59	5.38	6.18	0.200
0.250	0.10	0.58	1.21	1.92	2.67	3.45	4.25	5.07	5.90	6.74	0.250
0.400	0.27	1.02	1.87	2.75	3.66	4.57	5.49	6.42	7.36	8.30	0.400
0.500	0.45	1.39	2.37	3.36	4.35	5.35	6.35	7.34	8.34	9.34	0.500
0.600	0.71	1.83	2.95	4.04	5.13	6.21	7.28	8.35	9.41	10.47	0.600
0.750	1.32	2.77	4.11	5.39	6.63	7.84	9.04	10.22	11.39	12.55	0.750
0.800	1.64	3.22	4.64	5.99	7.29	8.56	9.80	11.03	12.24	13.44	0.800
0.900	2.71	4.61	6.25	7.78	9.24	10.64	12.02	13.36	14.68	15.99	0.900
0.950	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	16.92	18.31	0.950
0.975	5.02	7.38	9.35	11.14	12.83	14.45	16.01	17.53	19.02	20.48	0.975
0.990	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	21.67	23.21	0.990
0.995	7.88	10.60	12.84	14.86	16.75	18.55	20.28	21.95	23.59	25.19	0.995

					r	\overline{n}					
α	11	12	13	14	15	16	17	18	19	20	α
0.005	2.60	3.07	3.57	4.07	4.60	5.14	5.70	6.26	6.84	7.43	0.005
0.010	3.05	3.57	4.11	4.66	5.23	5.81	6.41	7.01	7.63	8.26	0.010
0.025	3.82	4.40	5.01	5.63	6.26	6.91	7.56	8.23	8.91	9.59	0.025
0.050	4.57	5.23	5.89	6.57	7.26	7.96	8.67	9.39	10.12	10.85	0.050
0.100	5.58	6.30	7.04	7.79	8.55	9.31	10.09	10.86	11.65	12.44	0.100
0.200	6.99	7.81	8.63	9.47	10.31	11.15	12.00	12.86	13.72	14.58	0.200
0.250	7.58	8.44	9.30	10.17	11.04	11.91	12.79	13.68	14.56	15.45	0.250
0.400	9.24	10.18	11.13	12.08	13.03	13.98	14.94	15.89	16.85	17.81	0.400
0.500	10.34	11.34	12.34	13.34	14.34	15.34	16.34	17.34	18.34	19.34	0.500
0.600	11.53	12.58	13.64	14.69	15.73	16.78	17.82	18.87	19.91	20.95	0.600
0.750	13.70	14.85	15.98	17.12	18.25	19.37	20.49	21.60	22.72	23.83	0.750
0.800	14.63	15.81	16.98	18.15	19.31	20.47	21.61	22.76	23.90	25.04	0.800
0.900	17.28	18.55	19.81	21.06	22.31	23.54	24.77	25.99	27.20	28.41	0.900
0.950	19.68	21.03	22.36	23.68	25.00	26.30	27.59	28.87	30.14	31.41	0.950
0.975	21.92	23.34	24.74	26.12	27.49	28.85	30.19	31.53	32.85	34.17	0.975
0.990	24.72	26.22	27.69	29.14	30.58	32.00	33.41	34.81	36.19	37.57	0.990
0.995	26.76	28.30	29.82	31.32	32.80	34.27	35.72	37.16	38.58	40.00	0.995

					r	\overline{n}					
α	21	22	23	24	25	26	27	28	39	40	α
0.005	8.03	8.64	9.26	9.89	10.52	11.16	11.81	12.46	13.12	13.79	0.005
0.010	8.90	9.54	10.20	10.86	11.52	12.20	12.88	13.56	14.26	14.95	0.010
0.025	10.28	10.98	11.69	12.40	13.12	13.84	14.57	15.31	16.05	16.79	0.025
0.050	11.59	12.34	13.09	13.85	14.61	15.38	16.15	16.93	17.71	18.49	0.050
0.100	13.24	14.04	14.85	15.66	16.47	17.29	18.11	18.94	19.77	20.60	0.100
0.200	15.44	16.31	17.19	18.06	18.94	19.82	20.70	21.59	22.48	23.36	0.200
0.250	16.34	17.24	18.14	19.04	19.94	20.84	21.75	22.66	23.57	24.48	0.250
0.400	18.77	19.73	20.69	21.65	22.62	23.58	24.54	25.51	26.48	27.44	0.400
0.500	20.34	21.34	22.34	23.34	24.34	25.34	26.34	27.34	28.34	29.34	0.500
0.600	21.99	23.03	24.07	25.11	26.14	27.18	28.21	29.25	30.28	31.32	0.600
0.750	24.93	26.04	27.14	28.24	29.34	30.43	31.53	32.62	33.71	34.80	0.750
0.800	26.17	27.30	28.43	29.55	30.68	31.79	32.91	34.03	35.14	36.25	0.800
0.900	29.62	30.81	32.01	33.20	34.38	35.56	36.74	37.92	39.09	40.26	0.900
0.950	32.67	33.92	35.17	36.42	37.65	38.89	40.11	41.34	42.56	43.77	0.950
0.975	35.48	36.78	38.08	39.36	40.65	41.92	43.19	44.46	45.72	46.98	0.975
0.990	38.93	40.29	41.64	42.98	44.31	45.64	46.96	48.28	49.59	50.89	0.990
0.995	41.40	42.80	44.18	45.56	46.93	48.29	49.64	50.99	52.34	53.67	0.995

	I										
					r	n					
α	31	32	33	34	35	36	37	38	39	40	α
0.005	14.46	15.13	15.82	16.50	17.19	17.89	18.59	19.29	20.00	20.71	0.005
0.010	15.66	16.36	17.07	17.79	18.51	19.23	19.96	20.69	21.43	22.16	0.010
0.025	17.54	18.29	19.05	19.81	20.57	21.34	22.11	22.88	23.65	24.43	0.025
0.050	19.28	20.07	20.87	21.66	22.47	23.27	24.07	24.88	25.70	26.51	0.050
0.100	21.43	22.27	23.11	23.95	24.80	25.64	26.49	27.34	28.20	29.05	0.100
0.200	24.26	25.15	26.04	26.94	27.84	28.73	29.64	30.54	31.44	32.34	0.200
0.250	25.39	26.30	27.22	28.14	29.05	29.97	30.89	31.81	32.74	33.66	0.250
0.400	28.41	29.38	30.34	31.31	32.28	33.25	34.22	35.19	36.16	37.13	0.400
0.500	30.34	31.34	32.34	33.34	34.34	35.34	36.34	37.34	38.34	39.34	0.500
0.600	32.35	33.38	34.41	35.44	36.47	37.50	38.53	39.56	40.59	41.62	0.600
0.750	35.89	36.97	38.06	39.14	40.22	41.30	42.38	43.46	44.54	45.62	0.750
0.800	37.36	38.47	39.57	40.68	41.78	42.88	43.98	45.08	46.17	47.27	0.800
0.900	41.42	42.58	43.75	44.90	46.06	47.21	48.36	49.51	50.66	51.81	0.900
0.950	44.99	46.19	47.40	48.60	49.80	51.00	52.19	53.38	54.57	55.76	0.950
0.975	48.23	49.48	50.73	51.97	53.20	54.44	55.67	56.90	58.12	59.34	0.975
0.990	52.19	53.49	54.78	56.06	57.34	58.62	59.89	61.16	62.43	63.69	0.990
0.995	55.00	56.33	57.65	58.96	60.27	61.58	62.88	64.18	65.48	66.77	0.995

B.5 Selected Quantiles of the F Distribution with m_1 and m_2 DF

application example: 95% quantile of the $F_{10,15}$ distribution $F_{10,15,0.95}=2.54$

95% quantiles

m_1	-	Ŋ	က	4	Ŋ	9	7	∞	ი	10	15	20	30	40	20	100
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.77	1.68	1.57	1.52	1.48	1.39
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.87	1.78	1.69	1.63	1.60	1.52
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	1.92	1.84	1.74	1.69	1.66	1.59
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.01	1.93	1.84	1.79	1.76	1.70
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.20	2.12	2.04	1.99	1.97	1.91
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40	2.33	2.25	2.20	2.18	2.12
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85	2.77	2.70	2.66	2.64	2.59
6	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2.86	2.83	2.80	2.76
m ₂	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3.15	3.08	3.04	3.02	2.97
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51	3.44	3.38	3.34	3.32	3.27
9	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.94	3.87	3.81	3.77	3.75	3.71
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.50	4.46	4.44	4.41
4	7.71	6.94	6.59	6.39	6.26	6.16	60.9	6.04	00.9	5.96	5.86	5.80	5.75	5.72	5.70	5.66
က	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.66	8.62	8.59	8.58	8.55
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.43	19.45	19.46	19.47	19.48	19.49
-	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	245.95	248.01	250.10	251.14	251.77	253.04
m_1	-		က													100

99% quantiles

	0 m ₁	- 0	2	က လ	4	5	9										00 74 50 50
																	1 1.80 5 1.74
																	2.01
	40	7.31	5.18	4.31	3.83	3.51	3.28	3.12	2.98	2.86	2.80	2.52	2.37	2.20		Ņ	2.06
	30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.70	2.55	2.39	000	9.5	2.25
	20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.09	2.94	2.78	2 60	5	2.64
	15	8.68	6.36	5.45	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.52	3.37	3.21	33	;	3.08
	10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.56	4.41	4.25	4.17		4.12
	တ	10.56	8.02	6.9	6.42	90.9	5.80	5.61	5.47	5.32	5.26	4.96	4.81	4.65	4.57		4.52
m_2	∞	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.55	5.36	5.20	5.12		5.07
	7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.31	6.16	5.99	5.91		5.86
	9	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.56	7.40	7.23	7.14		7.09
	2	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.72	9.55	9.38	9.29		9.24
	4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.20	14.02	13.84	13.75		13.69
	က	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23	26.87	26.69	26.50	26.41		26.35
	7	98.50	99.00	99.17	99.25	99.30	99.33	98.36	99.37	99.39	99.40	99.43	99.45	99.47	99.47		99.48
	_	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47	6055.85	6157.28	6208.73	6260.65	6286.78		6302.52
	m_1	-	0	က	4	2	9	7	∞	တ	10	15	50	30	40		20