Proof of algebraic condition for extortionate strategies

The defining equations for an extortionate strategy are:

$$\tilde{p}_1 = \alpha(R - P) + \beta(R - P) \tag{1}$$

$$\tilde{p}_2 = \alpha(S - P) + \beta(T - P) \tag{2}$$

$$\tilde{p}_3 = \alpha(T - P) + \beta(S - P) \tag{3}$$

$$\tilde{p}_4 = 0 \tag{4}$$

Using equation (2, α is isolated

$$\alpha = \frac{-\beta(P-T) - \tilde{p}_2}{P-S} \tag{5}$$

Substituting this value in to equation (3), β is isolated:

$$\beta = -\frac{P\tilde{p}_1 - P\tilde{p}_2 + S\tilde{p}_2 - T\tilde{p}_1}{(S - T)(2P - S - T)} \tag{6}$$

Substituting this back in to (5) gives:

$$\alpha = \frac{-\tilde{p}_2 + (P - T)(P\tilde{p}_1 - P\tilde{p}_2 + S\tilde{p}_2 - T\tilde{p}_1)}{(S - T)(2P - S - T)(P - S)}$$
(7)

Substituting equations (6-7) in to equation (1) gives the required expression for p_1 . Taking the ratio of equations (6-7) gives the required expression for χ . Finally, the condition $\chi > 1$ corresponds to:

$$\tilde{p}_2(P-T) + \tilde{p}_3(S-P) > \tilde{p}_2(P-S) + \tilde{p}_3(T-P)$$
 (8)

which can be simplified to:

$$\tilde{p}_2 > -\tilde{p}_3 \tag{9}$$

recalling that $\tilde{p}_2 = p_2 - 1$ and $\tilde{p}_3 = p_3$ gives the required result.