_					
USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

IV Semester B. E. Grade Improvement Examinations Nov-2020

Common to CS / IS

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART A

1	1.1	The operation of the algorithm that contributes the most to the running	
		time is known as	01
	1.2	What is the time complexity of the following code looping statement: (c is a	
		constant):	
		int i = 1;	
		do	
		{	
		i = i * c;	
		}	
		$while(i \le n);$	02
	1.3	Write the generalized form for the maximum number of key comparisions	
		done in bubble sort for an input size of <i>n</i> .	01
	1.4	Mention why Master Theorem can't be applied for the following recurrence	
		relation:	
		$T(n) = 2^n T(n/2) + n^n.$	01
	1.5	Give an example for in-place algorithm.	01
	1.6	The edge which from a vertices to their descendants in the tree other than	
		their children is known	01
	1.7	Breadth-first search method of graph traversal cannot be used to determine	
		·	01
	1.8	Mention the three ways the algorithm/problem can be transformed in	
		transform and conquer.	01
	1.9	Count the number of paths of size 2 that exists in the graph given below:	
		(2)	02
	1.10		02
	1.11	The Floyd-warshall all pairs shortest path algorithm computes the shortest	
		paths between each pair of nodes in time complexity.	01
	1.12	Mention any two real time application of Huffman coding.	01

1.13	Problems that can be solved in polynomial time are called as				
1.14	What is promising and non-promising nodes?				
1.15	Which of the following problems has highest run-time complexity:				
	i) Tower of Hanoi				
	ii) Fibonacci Series				
	iii) Prime number series	01			
1.16	and are main measures for the efficiency of an				
	algorithm.	01			

PART B

2	а	Outline the general frame work for analyzing the efficiency of the algorithms with an example.	06	
	b	With an example explain asymptotic notations. Mention the basic efficiency		
		classes with example for any two efficiency classes.		
	С	Write an algorithm for selection sort and find its efficiency class.		
3		Cout the list F V A M D I F is also betieved and assessing Osciela Cout	06	
3	a b	Sort the list E, X, A, M, P, L, E in alphabetical order using Quick Sort Write the algorithm for merging and sorting. Write the recurrence relation	06	
	D	and mention the time complexity of merge sort.		
	c	Analyze the time complexity of multiplication of large integers using divide		
		and conquer.		
		OR		
4	a	Differentiate between DFS and BFS and mention its real time application.	05	
	b	Apply the source removal an <i>DFS</i> based algorithm (Assume 'A' as source node) to solve the topological sorting problem for the following digraph: (Steps to be shown)		
		A B C D E		
		H	06	
	c	Generate all permutations of {1,2,3,4} by the Johnson-Trotter algorithm.	05	
5	a b	Construct 2 – 3 for the following elements: 7,6,3,2,1,10,11,34,25 Apply Horspool's algorithm to locate the pattern <i>TCCTATTCTT</i> in the following <i>DNA</i> sequence:	06	
		TTATAGATCTCGTATTCTTTATAGATCTCCTATTCTT	06	
	c	Write the naïve string matching algorithm.	04	
		OR		

6	a	Construct the heap using bottom up method and perform heap sort for the following elements: 1,2,3,4,5,6,7,8,9,10 (sort in ascending order)	06				
	b	Apply Boyer Moore algorithm to locate the pattern TCCTATTCTT in the					
		following DNA sequence:					
		TTATAGATCTCGTATTCTTTATAGATCTCCTATTCTT					
	С	Analyze the time complexity of computing mode using input enhancement					
		with an algorithm.	04				
7	а	Construct a Huffman code for the following data:					
		$oxed{Symbol} oxed{A} oxed{B} oxed{C} oxed{D} oxed{-}$					
		Frequency 0.4 0.1 0.2 0.15 0.15					
		D 1 404004404040					
	1.	Decode 1010011010100	05				
	b	Apply the bottom-up dynamic programming algorithm to the following					
		instance of the knapsack problem: instance of the knapsack problem: item Weight Value					
		item Weight Value 1 3 \$25					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		3 1 \$15					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		5 5 \$50					
		Capacity $W = 6$	07				
	С	Write an algorithm to find the minimum spanning tree using Prim's					
	Č	algorithm.	04				
8	a	Apply backtracking to the problem of finding n -Queens for $n = 5$ (2 solutions					
		and 2 no solution). How many solutions are there for $n = 4$.					
	b	Apply the branch and bound algorithm to solve the travelling salesman					
		problem for the following graph:					
		10 20 15					
		25 30					
		35					
		2 3 0					