Limbaje formale, automate și compilatoare

Curs 7

Limbaje formale și automate

- Limbaje de tipul 3
 - Gramatici regulate
 - Automate finite
 - Deterministe
 - Nedeterministe
 - Expresii regulate
 - a, a $\in \Sigma$, ϵ , \emptyset
 - $E_1.E_2$, $E_1|E_2$, E_1^* , (E_1)
- Limbaje de tipul 2
 - Gramatici de tipul 2

Plan

- Istoric
- Paşii compilării
- Analiza lexicală
 - Descriere lexicală
 - Interpretare
 - Interpretare orientată dreapta
 - Descriere lexicală bine formată
- Analiza sintactică ascendentă
 - Parser ascendent general
 - Analiză LR
 - LR(0)

Istoric - 1940

- Programe scrise în instrucțiuni procesor
- Calculatoare puţine
- Programatori puţini

Istoric - 1950

- Fortran (1957):
 - Primul compilator (expresii aritmetice, instrucțiuni, proceduri)
 - Încă este folosit pentru aplicații complexe computațional sau pentru testarea performanței
- Algol (1958):
 - Gramatici BNF (Backus-Naur Normal Form), bloc de instrucțiuni, recursie
 - Precursorul sintaxei curente
- Lisp (1958)
 - Programare funcțională
 - Structuri aroborescente, gestiunea automată a spațiului de stocare, dynamic typing
- ▶ COBOL (1959)
 - Sintaxă similară limbii engleze
 - Business oriented
 - Pune accent pe citire şi scriere de date in format text şi numeric

Istoric - 1960 - 1970

- Simula (1965)
 - Bazat pe ALGOL 60
 - Primul limbaj orientat obiect
 - Obiecte, clase, moștenire, funcții virtuale, etc.
- Programare structurată (1968)
 - Edsger Dijkstra GOTO Considered Harmful
- Pascal (1970)
- C (1973)
 - IRQ, variabile dinamice, multitasking

Istoric – 1980 – prezent

- ADA (1980)
 - primul limbaj standardizat
- Objective C (1984)
 - Inspirat de Smalltalk
 - Orientare obiect
- ► C++ (1985)
 - C with Classes;
 - Orientare-obiect, excepții, template-uri
 - Inspirat de Simula
- Java (1995)
 - just-in-time compilation
- C# (2000)
 - Tehnologia .NET

Compilare

Compilare

- ▶ **Def.** 1 Fie Σ un alfabet (al unui limbaj de programare). O *descriere lexicală* peste Σ este o expresie regulată $E = (E_1 | E_2 | ... | E_n)^+$, unde n este numărul unităților lexicale, iar E_i descrie o unitate lexicală, $1 \le i \le n$.
- **Def. 2** Fie E o descriere lexicală peste Σ ce conține n unități lexicale şi $w ∈ Σ^+$. Cuvântul w este *corect relativ la descrierea* E dacă w ∈ L(E). O *interpretare* a cuvântului w ∈ L(E) este o secvență de perechi $(u_1, k_1), (u_2, k_2), ..., (u_m, k_m), unde <math>w = u_1u_2...u_m, u_i L(E_{ki})$ 1 ≤ i ≤ m, 1 ≤ ki ≤ n.

Exemplu

- $\mathbf{w} = \text{alpha} := \text{beta} = 542$
- Interpretări ale cuvântului w:
 - (alpha, Id), (:=, Asignare), (beta, Id), (=, Egal), (542, Intreg)
 - (alp, Id), (ha, Id), (:=, Asignare), (beta, Id), (=, Egal), (542, Intreg)
 - (alpha, Id), (:, Dp), (=, Egal), (beta, Id), (=, Egal),
 (542, Intreg)

▶ **Def. 3** Fie E o descriere lexicală peste Σ şi w ∈ L(E). O interpretare a cuvântului w, $(u_1, k_1)(u_2, k_2)$, ... (u_m, k_m) , este *interpretare drept –orientată* dacă $(\forall i) \ 1 \le i \le m$, are loc:

```
|u_i| = \max\{|v|, v \in L(E_1|E_2|...|E_n) \cap Pref(u_iu_{i+1}...u_m)\}. (unde Pref(w) este mulțimea prefixelor cuvântului w ).
```

- Există descrieri lexicale E în care nu orice cuvânt din L(E) admite o interpretare drept-orientată.
- $E = (a | ab | bc)^+$ şi w = abc.

- ▶ Def. 4 O descriere lexicală E este bine -formată dacă orice cuvânt w din limbajul L(E) are exact o interpretare drept-orientată.
- ▶ **Teoremă** Dată o descriere lexicală E este decidabil dacă E este bine formată.
- Def. 5 Fie E o descriere lexicală bine formată peste Σ. Un analizor lexical (scanner) pentru E este un program ce recunoaşte limbajul L(E) şi produce, pentru fiecare w ∈ L(E), interpretarea sa drept-orientată.

- Fie o descriere lexicală E peste Σ. Crearea unui analizor lexical pentru E inseamnă:
 - 1. Se construieşte automatul finit echivalent A
 - 2. Din A se obține automatul determinist echivalent cu E, fie acesta A'.
 - 3. (Opțional) Automatul minimal echivalent cu A'.
 - 4. Implementarea automatului A'.

Exemplu de analizor lexical

- Fie descrierea lexicală:
 - litera → a | b |...|z
 - cifra → 0 | 1 |...| 9
 - identificator → litera (litera | cifra)*
 - semn → + | -
 - numar \rightarrow (semn $\mid \epsilon$) cifra+
 - operator → + | -| * | / | < | > | <= | >= | < >
 - asignare → :=
 - doua_puncte → :
 - cuvinte_rezervate → if| then|else
 - paranteze →) | (

Compilare

Parser ascendent general

Configurații

- O configurație ($\#\gamma$, u#, π) este interpretată în felul următor:
 - -#γ este conţinutul stivei cu simbolul # la baza.
 - -u# este conţinutul intrării.
 - -π este conţinutul ieşirii.
- ► $C_0 = \{(\#, w\#, \epsilon) | w \in T^*\}$ mulţimea configuraţiilor iniţiale.

Tranziţii

- Parserul ascendent ataşat gramaticii G este perechea (C₀, ⊢) unde C₀ este mulţimea configuraţiilor iniţiale, iar ⊢ este o relaţie de tranziţie definită astfel:
 - $(\# \gamma, au\#, \pi) \vdash (\# \gamma a, u\#, \pi) ($ deplasare) pentru orice $\gamma \in \Sigma^*, a \in T, u \in T^*, \pi \in P^*.$
 - $(\#\alpha\beta, u\#, \pi) \vdash (\#\alpha A, u\#, \pi r) \text{ dacă } r = A \rightarrow \beta \text{ (} \textit{reducere).}$
 - Configurația (#S, #, π) unde $\pi \neq \epsilon$, se numește *configurație de acceptare.*
 - Orice configurație, diferită de cea de acceptare, care nu este în relația – cu nici o altă configurație este o configurație eroare.
- Parsere de deplasare/reducere.

Exemplu

- ▶ Fie gramatica $S \rightarrow aSb \mid \epsilon$. Tranziţiile sunt:
 - $(\#\gamma, u\#, \pi) \vdash (\#\gamma S, u\#, \pi 2)$
 - $(\#\gamma aSb, u\#, \pi) \vdash (\#\gamma S, u\#, \pi 1)$
 - $(\#\gamma, au\#, \pi) \vdash (\#\gamma a, u\#, \pi)$
 - $(\#\gamma, bu\#, \pi) \vdash (\#\gamma b, u\#, \pi)$
- O succesiune de tranziţii se numeşte calcul
 - $(\#, \#, \epsilon) \vdash (\#S, \#, 2)$
 - (#, aabb#, ε) ⊢ (#a, abb#, ε) ⊢ (#aa, bb#, ε) ⊢ (#aaS, bb#, 2) ⊢ (#aaSb, b#, 2) ⊢ (#aSb, b#, 21) ⊢ (#aSb, #, 21) ⊢ (#S, #, 211)

Conflicte

- Parserul este nedeterminist:
 - Pentru o configuraţie de tipul (#αβ, au#, π), S→β, există două posibilităţi (conflict deplasare/reducere):
 - $(\#\alpha\beta, au\#, \pi) \vdash (\#\alpha S, au\#, \pi r)$ (reducere cu $S \rightarrow \beta$)
 - $(\#\alpha\beta, au\#, \pi) \vdash (\#\alpha\beta a, u\#, \pi)$ (deplasare)
 - Pentru o configurație (# γ , u#, π) cu $\gamma = \alpha_1 \beta_1 = \alpha_2 \beta_2$ și $A \rightarrow \beta_1$, $B \rightarrow \beta_2$, reguli (conflict **reducere/reducere**)
 - $(\#\alpha_1\beta_1, u\#, \pi) \vdash (\#\alpha_1A, au\#, \pi r_1)$
 - $(\#\alpha_2\beta_2, u\#, \pi) \vdash (\#\alpha_2B, au\#, \pi r_2)$

Corectitudine

- Spunem că un cuvânt weT* este acceptat de un parser ascendent dacă există măcar un calcul de forma
 - $(\#, W\#, \varepsilon) \vdash^{+} (\#S, \#, \pi)$
- Pentru ca parserul descris să fie corect, trebuie ca el să accepte toate cuvintele din L(G) şi numai pe acestea.

Teorema

• Parserul ascendent general ataşat unei gramatici G este corect: pentru orice $w \in T^*$, $w \in L(G)$ dacă şi numai dacă în parser are loc calculul (#, w#, ε) \vdash +(#S, #, π).

Analiza sintactică LR

- Gramatici LR(k):Left to right scanning of the input, constructing a Rightmost derivation in reverse, using k symbols lookahead
- Definiţie
 - O gramatică G se numeşte gramatică LR(k), k≥0, dacă pentru orice două derivări de forma:
 - S' \Rightarrow S $_{dr}$ \Rightarrow * α Au $_{dr}$ \Rightarrow $\alpha\beta$ u = δ u
 - S' \Rightarrow S $_{dr}$ \Rightarrow * α 'A'u' $_{dr}$ \Rightarrow α ' β 'u' = $\alpha\beta v$ = δv
 - pentru care k:u = k:v, are loc $\alpha=\alpha'$, $\beta=\beta'$, A=A'

Analiza sintactică LR

Teorema 1

- Dacă G este gramatică LR(k), k≥0, atunci G este neambiguă.
- Un limbaj L este (în clasa) $\mathcal{LR}(k)$ dacă există o gramatică LR(k) care îl generează

Teorema 2

• Orice limbaj $\mathcal{LR}(k)$ este limbaj de tip 2 determinist.

Teorema 3

Orice limbaj de tip 2 determinist este limbaj LR(1).

Teorema 4

• Pentru orice limbaj $\mathcal{LR}(k)$, $k \ge 1$, există o gramatică LR(1) care generează acest limbaj, adică LR(0) \subset LR(1) = LR(k), $k \ge 1$.

Gramatici LR(0)

Definiţie

• Fie G = (V, T, S, P) o gramatică independentă de context redusă. Să presupunem că simbolul • nu este în Σ . Un **articol** pentru gramatica G este o producție $A \rightarrow \gamma$ în care s-a adăugat simbolul • într-o anume poziție din γ . Notăm un articol prin $A \rightarrow \alpha \bullet \beta$ dacă $\gamma = \alpha \beta$. Un articol în care • este pe ultima poziție se numește **articol complet**.

Definiţie

o Un **prefix viabil** pentru gramatica G este orice prefix al unui cuvânt $\alpha\beta$ dacă S_{dr} ⇒* α Au $_{dr}$ ⇒ $\alpha\beta$ u . Dacă β = $\beta_1\beta_2$ şi ϕ = $\alpha\beta_1$ spunem că articolul A → β_1 • β_2 este **valid** pentru **prefixul viabil** ϕ .

Exemplu

- ▶ Exemplu S → A, A → aAa | bAb | c | ϵ .
 - Articole: $S \rightarrow \bullet A$, $S \rightarrow A \bullet$, $A \rightarrow \bullet aAa$, $A \rightarrow a \bullet Aa$, $A \rightarrow aA \bullet a$, $A \rightarrow aAa \bullet$, $A \rightarrow \bullet bAb$, $A \rightarrow bA \bullet bA$, $A \rightarrow bAb \bullet b$, $A \rightarrow bAb \bullet b$, $A \rightarrow bAb \bullet c$, $A \rightarrow c \bullet$, $A \rightarrow c \bullet$, $A \rightarrow \bullet c$
- Articole valide pentru prefixe viabile:

Prefixul viabil	Articole valide	Derivarea corespunzătoare	
ab	A→b∙Ab	S⇒A⇒aAa⇒abAba	
	A→•aAa	S⇒A⇒aAa⇒abAba⇒abaAaba	
	A→•bAb	S⇒A⇒aAa⇒abAba⇒abbAbba	
3	S→•A	S⇒A	
	A→•bAb	S⇒A⇒bAb	
	A→•c	S⇒A⇒c	

Gramatici LR(0)

Lema

• Fie G o gramatică şi $A \rightarrow \beta_1 \bullet B\beta_2$ un articol valid pentru prefixul viabil γ . Atunci, oricare ar fi producţia $B \rightarrow \beta$, articolul $B \rightarrow \bullet \beta$ este valid pentru γ .

▶ **Teorema** (caracterizare LR(0))

- Gramatica G este gramatică LR(0) dacă şi numai dacă, oricare ar fi prefixul viabil γ, sunt îndeplinite condiţiile:
 - 1.nu există două articole complete valide pentru γ .
 - 2.dacă articolul $A \rightarrow \beta \bullet$ este valid pentru γ , nu există nici un articol $B \rightarrow \beta_1 \bullet a\beta_2$, $a \in T$, valid pentru γ .

Gramatici LR(0)

Teorema

 Fie G = (V, T, S, P) o gramatică independentă de context. Mulţimea prefixelor viabile pentru gramatica G este limbaj regulat.

Demonstraţie

- G' este G la care se adaugă S'→S.
- $M = (Q, \Sigma, \delta, q_0, Q)$, unde:
 - Q este mulţimea articolelor gramaticii G',
 - $\Sigma = V \cup T$, $q_0 = S' \rightarrow \bullet S$
 - $\delta:Qx(\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$ definită astfel:
 - $\delta(A \rightarrow \alpha \bullet B\beta, \epsilon) = \{B \rightarrow \bullet \alpha \mid B \rightarrow \gamma \in P\}.$
 - $\delta(A \rightarrow \alpha \bullet X\beta, X) = \{ A \rightarrow \alpha X \bullet \beta \}, X \in \Sigma.$
 - $\delta(A \rightarrow \alpha \bullet a\beta, \epsilon) = \emptyset$, $\forall a \in T$.
 - $\delta(A \rightarrow \alpha \bullet X\beta, Y) = \emptyset$, $\forall X,Y \in \Sigma \text{ cu } X \neq Y$.

Se arată că are loc:

• $(A \rightarrow \alpha \bullet \beta \in \delta \land (q_0, \gamma) \Leftrightarrow \gamma$ este prefix viabil şi $A \rightarrow \alpha \bullet \beta$ este valid pentru γ .

Exemplu

Automatul LR(0)

- Algoritmul 1(procedura închidere(t))
- Intrare:
 - Gramatica G = (V, T, S, P);
 - Mulţimea t de articole din gramatica G;
- leşire: t'=închidere(t)={q \in Q| \exists p \in t, q \in δ (p, \in)} = δ (t, \in)

Automatul LR(0)

```
t' = t ; flag = true;
while(flag) {
   • flag = false;
   • for (A \rightarrow \alpha \bullet B\beta \in t') {
      • for (B \rightarrow \gamma \in P)
          • if (B \rightarrow \bullet \gamma \notin t') {
          • t' = t' \cup \{B \rightarrow \bullet \gamma\};
          flag = true;
          }//endif
      }//endforB
   }//endforA
}//endwhile
 return t';
```

Automatul LR(0)

- Algoritmul 2 Automatul LR(0)
 - Intrare: Gramatica G = (N, T, S, P) la care s-a adăugat S' → S;
 - Ieşire: Automatul determinist $M = (T, \Sigma, g, t_0, T)$ echivalent cu M.

- ▶ t0=închidere(S' → S); $T=\{t_0\}$; marcat $(t_0)=$ false;
- ▶ while(\exists t \in T && !marcat(t)) { // marcat(t) = false
 - for($X \in \Sigma$) {// $\Sigma = N \cup T$
 - $t' = \emptyset$;
 - for($A \rightarrow \alpha \bullet X\beta \in t$)
 - $t' = t' \cup \{B \rightarrow \alpha X \bullet \beta \mid A \rightarrow \alpha \bullet X \beta \in t\};$
 - if(t'≠∅){
 - t' = închidere(t');
 - if(t'∉T) {
 - $T = T \cup \{ t' \};$
 - marcat(t') = false;
 - }//endif
 - g(t, X) = t';
 - }//endif
 - }//endfor
 - > }//endfor
 - marcat(t) = true;
- }// endwhile

Automatul LR(0) - Exemplu

 \rightarrow S' \rightarrow S, S \rightarrow aSa | bSb | c

Test LR(0)

- Definiţie Fie G o gramatică şi M automatul LR(0) ataşat lui G.
 - Spunem că o stare a lui M are un conflict **reducere/reducere** dacă ea conține două articole complete distincte $A \rightarrow \alpha \bullet$, $B \rightarrow \beta \bullet$.
 - Spunem că o stare a lui M are un conflict deplasare/reducere dacă ea conţine un articol complet A→α• şi un articol cu terminal după punct de forma B→β•aγ.
 - Spunem că o stare este consistentă dacă ea nu conţine conflicte şi este inconsistentă în caz contrar.
- Teorema Fie G o gramatică şi M automatul său LR(0). Gramatica G este LR(0) dacă şi numai dacă automatul M nu conține stări inconsistente

Exemplu

 $ightharpoonup S
ightharpoonup aAd \mid bAB, A
ightharpoonup cA \mid c, B
ightharpoonup d$

Algoritmul de analiză LR(0)

- Tabela de parsare coincide cu automatul LR(0),
 M.
- Configurație: (σ, u#, π) unde σεt₀T*, uεT*, π εP*.
- Configurația inițială este $(t_0, w#, \varepsilon)$,
- Tranziţiile:
 - Deplasare: $(\sigma t, au\#, \pi) \vdash (\sigma tt', u\#, \pi) dacă g(t, a) = t'$.
 - Reducere: $(\sigma t \sigma' t', u\#, \pi) \vdash (\sigma t t'', u\#, \pi r) dacă A \rightarrow \beta \bullet \epsilon t', r = A \rightarrow \beta, |\sigma' t'| = |\beta| şi t'' = g (t, A).$
 - Acceptare: $(t_0t_1, \#, \pi)$ este configurația de acceptare dacă $S' \rightarrow S \bullet \in t1, \pi$ este parsarea acestuia.
 - Eroare: o configurație căreia nu i se poate aplica nici o tranziție

Algoritmul de analiză LR(0)

```
char ps[]= "w#"; //ps este sirul de intrare w
  i = 0; // pozitia in sirul de intrare
> STIVA.push(t0); // se initializeaza stiva cu t0
while(true) { // se repeta pana la succes sau eroare
   o t = STIVA.top();
   o a = ps[i] // a este simbolul curent din intrare
   • if ( q(t, a) \neq \emptyset { //deplasare
     STIVA.push(q(t, a));
     • i++; //se inainteaza in intrare
     • }
   • else {
   \circ if (A \rightarrow X_1X_2...X_m \bullet E t) {
     • if (A == ...S'')
        • if (a == "#") exit( "acceptare");
        • else exit("eroare");

    else // reducere

        for( i = 1; i <= m; i++) STIVA.pop();</pre>
           STIVA.push(q(top(STIVA), A));
      } //endif
   • else exit("eroare");
   • }//endelse
```

Exemplu

 \rightarrow S' \rightarrow S S \rightarrow E\$ E \rightarrow E+T T \rightarrow (E) E \rightarrow T T \rightarrow a 1 $S' \rightarrow \bullet S$ $E \rightarrow T \bullet$ $S' \rightarrow S \bullet$ $S \rightarrow \bullet E\$$ S $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ 2 $T \rightarrow \bullet(E)$ $S \rightarrow E \bullet \$$ $T \rightarrow \bullet a$ $T \rightarrow (\bullet E)$ $\mathsf{E} \to \mathsf{E} {\bullet} {+} \mathsf{T}$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet(E)$ $T \rightarrow \bullet a$ \$ а 5 $T \rightarrow a \bullet$ $S \rightarrow E\$ \bullet$ Е 8 $T \rightarrow (E \bullet)$ $E \rightarrow E \bullet + T$ $\mathsf{E} \to \mathsf{E}\text{+}{}_{\bullet}\mathsf{T}$ 9 $T \rightarrow \bullet(E)$ $T \rightarrow \bullet a$ $E \rightarrow E+T \bullet$ 10 $T \rightarrow (E) \bullet$

Exemplu

 \rightarrow S' \rightarrow S S \rightarrow E\$ E \rightarrow E+T T \rightarrow (E) E \rightarrow T T \rightarrow a

Stiva	Intrare	Acţiune	leşire
0	a+(a+a)\$#	deplasare	
05	+(a+a)\$#	reducere	T → a
03	+(a+a)\$#	reducere	E → T
02	+(a+a)\$#	deplasare	
027	(a+a)\$#	deplasare	
0274	a+a)\$#	deplasare	
02745	+a)\$#	reducere	T → a
02743	+a)\$#	reducere	E → T
02748	+a)\$#	deplasare	
027487	a)\$#	deplasare	
0274875)\$#	reducere	T → a
0274879)\$#	reducere	E → E+T
02748)\$#	deplasare	
02748'10'	\$#	reducere	T → (E)
0279	\$#	reducere	E → E+T
02	\$#	deplasare	
026	#	reducere	S → E\$
01	#	acceptare	

Corectitudinea parserului LR(0)

- **Lema 1, 2** Fie G = (N, T, S, P) o gramatică LR(0), $t_0 \sigma$, $t_0 \tau$ drumuri în automatul LR(0) etichetate cu φ respectiv γ şi u, v ∈ T*. Atunci, dacă în parserul LR(0) are loc ($t_0 \sigma$, uv#, ε) \vdash +($t_0 \tau$, v#, π), atunci în G are loc derivarea $\phi_{dr} \Rightarrow_{\pi} u$ şi reciproc.
- **Teoremă** Dacă G este gramatică LR(0) atunci, oricare ar fi cuvântul de intrare w ε T*, parserul LR(0) ajunge la configurația de acceptare pentru w, adică (t₀σ, uv#, ε) \vdash +(t₀τ, v#, π) dacă şi numai dacă φ_{dr} ⇒_πu

Bibliografie

Grigoraş Gh., Construcţia compilatoarelor. Algoritmi fundamentali, Editura Universităţii "Alexandru Ioan Cuza", Iaşi, 2005