E-Commerce Sales Data – Technical Documentation Report

1. Introduction

This report provides a comprehensive overview of the ETL pipeline, data cleaning methodologies, design rationale, and analytical assumptions employed in the examination of e-commerce sales data. It includes well-documented code for each phase of the Extract, Transform, Load (ETL) process and presents key business insights derived from Power BI visualizations.

2. ETL Pipeline

2.1 Extract (Data Ingestion)

Data Source:

The dataset originates from a leading online retailer specializing in home appliances and electronics.

The data spans transactions from April 2020 to November 2020.

- Technologies Utilized:
 - Power BI for data visualization
 - Pandas (Python) for data preprocessing and cleaning

Code Snippet: Data Extraction Using Pandas

import pandas as pd

```
import pandas as pd
import psycopg2

# Load dataset (en/sure correct file path)
df = pd.read_csv("kz.csv")

# Check dataset structure
print(f"Total Rows: {df.shape[0]}")
print(df.head())
print(df.info())
```

2.2 Transform (Data Cleaning & Processing)

Data Cleaning Process:
 Handling Missing Values:

- `category_code`, `brand`, and `price` had missing values, which were either filled or removed based on significance.
- Datetime Conversion:
 - The `event_time` column was converted to a DateTime format to enable accurate time-series analysis.
- Duplicate Removal:
 - Eliminated redundant records to maintain data integrity.
- Column Standardization:
 - Column names were standardized for readability and consistency.

Code Snippet: Data Cleaning

```
# Check missing values
print("Missing Values Before Handling:\n", df.isnull().sum())
# Remove duplicate rows and reset index
print(f"Duplicate Rows Before: {df.duplicated().sum()}")
df = df.drop_duplicates().reset_index(drop=True)
print(f"Duplicate Rows After: {df.duplicated().sum()}")
# Convert event_time to datetime
df["event_time"] = pd.to_datetime(df["event_time"])
# Convert user_id safely to integer
df["user_id"] = pd.to_numeric(df["user_id"], errors="coerce").fillna(-1).astype("Int64")
```

```
# Handle missing values

df = df.assign(
    category_code=df["category_code"].fillna("Unknown"),
    brand=df["brand"].fillna("Unknown"),
    price=df["price"].fillna(df["price"].median()),
    category_id=df["category_id"].fillna(df["category_id"].mode().iloc[0] if not df["category_id"].mode().empty else -1),
    user_id=df["user_id"].fillna(-1),
)
```

```
# Verify missing values are handled
print("Missing Values After Handling:\n", df.isnull().sum())
# Save cleaned dataset to the specified folder
output_path = "cleaned_dataset.csv"
df.to_csv(output_path, index=False)
print(f" Cleaned dataset saved successfully at {output_path}!")
# Save cleaned dataset
df.to_csv("cleaned_dataset.csv", index=False)
print(" Dataset cleaned and saved successfully!")
```

2.3 Load (Data Storage & Integration)

```
# Database connection parameters
DB NAME = "ecommerce db"
DB USER = "postgres" # Default username
DB PASSWORD = "kal@12" # Replace with your actual password
DB HOST = "localhost" # Use "127.0.0.1" if needed
DB PORT = "5432" # Default PostgreSQL port
try:
    conn = psycopg2.connect(
       dbname=DB NAME,
       user=DB USER,
       password=DB PASSWORD,
       host=DB HOST,
        port=DB PORT
   cursor = conn.cursor()
    print("☑ Connected to PostgreSQL successfully!")
except Exception as e:
   print("X Connection failed:", e)
```

```
create_table_query = """
CREATE TABLE IF NOT EXISTS ecommerce_data (
    event_time TIMESTAMP,
    order_id BIGINT PRIMARY KEY,
    product_id BIGINT,
    category_id BIGINT,
    category_code TEXT,
    brand TEXT,
    price NUMERIC(10,2),
    user_id BIGINT
);
"""
# Execute create table query
cursor.execute(create_table_query)
conn.commit()
print("    Table 'ecommerce_data' created successfully!")
```

```
# Insert data row by row (Handling NULL values)
for _, row in df.iterrows():
        cursor.execute("""
            INSERT INTO ecommerce_data (event_time, order_id, product_id, category_id, category_code, brand, price, user_id)
           VALUES (%s, %s, %s, %s, %s, %s, %s)
           ON CONFLICT (order id) DO NOTHING;
           row["event time"].strftime('%Y-%m-%d %H:%M:%S') if pd.notna(row["event_time"]) else None,
            int(row["order id"]) if pd.notna(row["order id"]) else None,
            int(row["product id"]) if pd.notna(row["product id"]) else None,
            int(row["category_id"]) if pd.notna(row["category_id"]) else None,
            row["category_code"] if pd.notna(row["category_code"]) else "Unknown",
            row["brand"] if pd.notna(row["brand"]) else "Unknown",
            float(row["price"]) if pd.notna(row["price"]) else 0.0,
            int(row["user_id"]) if pd.notna(row["user_id"]) else None
    except Exception as e:
        print(f" X Error inserting row: {row}")
        print("Error:", e)
conn.commit()
cursor.close()
conn.close()
print("  Data successfully loaded into PostgreSQL!")
```

Storage and Integration Strategy:

The cleaned dataset was imported into Power BI for visualization and analysis.

• Logical relationships were established between `order_id`, `user_id`, and `product_id` to facilitate structured queries.

 DAX (Data Analysis Expressions) measures were utilized to compute key business metrics.

Steps to Load Data into Power BI:

- 1. Open Power BI and navigate to 'Get Data'.
- 2. Select 'CSV' (or appropriate database connection) and import the cleaned dataset.
- 3. Validate data types for key attributes ('event_time' as Date/Time, 'price' as Currency, etc.).

3. Data Schema & Relationships

Schema Rationale:

Column Name	Data Type	Description
event_time	Date/Time	Timestamp of the purchase event
order_id	integer	Unique ID for each order
product_id	Integer	Unique ID for each product purchased
category_id	Integer	Identifier for the product category
category_code	String	Name of the product category (e.g.,
		electronics, apparel)
brand	String	Brand of the purchased product
price	Float	Price of the product
user_id	Integer	Unique identifier for the customer

Why a Single Table?

Since all purchase-related details (orders, products, customers, and brands) are stored in **one table**, there was **no need to create relationships** between multiple tables.

How This Affects Power BI?

- **Easier Filtering:** Since everything is in one table, slicers and filters can directly access all fields.
- **More Efficient Data Modeling:** We don't need to join tables, making queries and calculations faster.

◇ Power BI Implementation

- Even with a **single table**, we optimized our Power BI model by: Using **DAX measures** instead of calculated columns to improve performance
- Applying **sort and rank functions** to analyze top-performing brands and categories.

5. Key Findings & Insights

Sales Performance Analysis:

- Total Revenue: Over \$22 million in recorded sales.
- Peak Sales Periods: November and December exhibited the highest transaction volumes, highlighting strong holiday demand.
- Recommendation: Intensify marketing campaigns and promotional discounts during Q4 to maximize sales.

6. Power BI Dashboard Features

Implemented Visuals:

- KPI Cards: Total Sales, Total Orders, Total Customers, AOV.
- Line Chart: Sales trends over time.
- Bar Chart: Top five brands ranked by revenue.
- Pie Chart: Sales distribution by product category.
- Data Table: Detailed brand revenue rankings.

7. Conclusion & Next Steps

Summary of Findings:

- Electronics dominate sales, emphasizing the importance of highmargin products.
- Samsung & Apple are key drivers of revenue, necessitating continued brand collaboration.
- The average transaction value of \$307 suggests a demand for premium products.
- Sales exhibit strong seasonality, with Q4 showing significant peaks.