NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

AY2021, Semester 1 MA1508E Linear Algebra for Engineering Tutorial 9

- 1. Apply Gram-Schmidt Process to convert
 - (a) $\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} \right\}$ into an orthonormal basis for \mathbb{R}^4 .
 - (b) $\left\{ \begin{pmatrix} 1\\2\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\2\\1 \end{pmatrix} \right\}$ into an orthonormal set. Is the set obtained an orthonormal basis? Why?
- 2. Let $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 6 \\ 3 \\ -1 \\ 1 \end{pmatrix}$.
 - (a) Show that the linear system Ax = b is inconsistent.
 - (b) Find a least squares solution to the system. Is the solution unique? Why?
 - (c) Use your answer in (b), compute the projection of **b** onto the column space of **A**. Is the solution unique? Why?
- 3. **(MATLAB)** Let W be the nullspace of $\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$.
 - (a) Find a basis S for W.
 - (b) Find the projection of the *i*-th vector in the standard basis \mathbf{e}_i of \mathbb{R}^5 onto W for i=1,...,5. (**Hint:** Let \mathbf{N} be a matrix whose columns are vectors in S. Consider the equation $\mathbf{N}^T\mathbf{N} = \mathbf{N}^T\mathbf{b}$ for some \mathbf{b} .)
 - (c) Find the projection of $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$ onto W.
- 4. (Application) A line

$$p(x) = a_1 x + a_0$$

is said to be the least squares approximating line for a given a set of data points $(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)$ if the sum

$$S = [y_1 - p(x_1)]^2 + [y_2 - p(x_2)]^2 + \dots + [y_m - p(x_m)]^2$$

is minimized. Writing

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}, \ \text{and} \ p(\mathbf{x}) = \begin{pmatrix} p(x_1) \\ p(x_2) \\ \vdots \\ p(x_m) \end{pmatrix} = \begin{pmatrix} a_1x_1 + a_0 \\ a_1x_2 + a_0 \\ \vdots \\ a_1x_m + a_0 \end{pmatrix}$$

the problem is now rephrased as finding a_0, a_1 such that

$$S = ||\mathbf{y} - p(\mathbf{x})||^2$$

is minimized. Observe that if we let

$$\mathbf{N} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{pmatrix} \text{ and } \mathbf{a} = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix},$$

then $\mathbf{Na} = p(\mathbf{x})$. And so our aim is to find a that minimizes $||\mathbf{y} - \mathbf{Na}||^2$.

It is known the equation representing the dependency of the resistance of a cylindrically shaped conductor (a wire) at $20^{\circ}C$ is given by

$$R = \rho \frac{L}{A},$$

where R is the resistance measured in Ohms Ω , L is the length of the material in meters m, A is the cross-sectional area of the material in meter squared m^2 , and ρ is the resistivity of the material in Ohm meters Ωm . A student wants to measure the resistivity of a certain material. Keeping the cross-sectional area constant at $0.002m^2$, he connected the power sources along the material at varies length and measured the resistance and obtained the following data.

L	0.01	0.012	0.015	0.02
R	2.75×10^{-4}	3.31×10^{-4}	3.92×10^{-4}	4.95×10^{-4}

It is known that the Ohm meter might not be calibrated. Taking that into account, the student wants to find a linear graph $R = \frac{\rho}{0.002}L + R_0$ from the data obtained to compute the resistivity of the material.

- (a) Relabeling, we let $R=y, \frac{\rho}{0.002}=a_1$ and $R_0=a_0$. Is it possible to find a graph $y=a_1x+a_0$ satisfying the points?
- (b) Find the least square approximating line for the data points and hence find the resistivity of the material. Would this material make a good wire?
- 5. (Application, MATLAB) Suppose the equation governing the relation between data pairs is not known. We may want to then find a polynomial

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

of degree $n, n \leq m-1$, that best approximates the data pairs $(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)$. A least square approximating polynomial of degree n is such that

$$||\mathbf{y} - p(\mathbf{x})||^2$$

is minimized. If we write

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}, \ \mathbf{N} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^n \end{pmatrix} \text{ and } \mathbf{a} = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix},$$

then $p(\mathbf{x}) = \mathbf{N}\mathbf{a}$, and the task is to find \mathbf{a} such that $||\mathbf{y} - \mathbf{N}\mathbf{a}||^2$ is minimized. Observe that \mathbf{N} is a matrix minor of the Vandermonde matrix. If at least n+1 of the x-values $x_1, x_2, ..., x_m$ are distinct, the columns of \mathbf{N} are linearly independent, and thus \mathbf{a} is uniquely determined by

$$\mathbf{a} = (\mathbf{N}^T \mathbf{N})^{-1} \mathbf{N}^T \mathbf{y}.$$

We shall now find a quartic polynomial

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

that is a least square approximating polynomial for the following data points

X	4	4.5	5	5.5	6	6.5	7	8	8.5
У	0.8651	0.4828	2.590	-4.389	-7.858	3.103	7.456	0.0965	4.326

Enter the data points.

$$\Rightarrow$$
 x=[4 4.5 5 5.5 6 6.5 7 8 8.5];

Next, we will generate the 10×10 Vandermonde matrix.

We only want the matrix minor up to the 4-th power, that is, up to the 5-th column,

Use this to find the least square approximating polynomial of degree 4.

6. Compute the eigenvalues of the following matrices A.

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
.

(b)
$$\mathbf{A} = \begin{pmatrix} 9 & 8 & 6 & 3 \\ 0 & -1 & 3 & -4 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- 7. (a) Show that λ is an eigenvalue of **A** if and only if it is an eigenvalue of \mathbf{A}^T .
 - (b) Suppose \mathbf{v} is an eigenvector of \mathbf{A} associated to eigenvalue λ . Show that \mathbf{v} is an eigenvector of \mathbf{A}^k associated to eigenvalue λ^k for any positive integer k.
 - (c) If **A** is invertible, show that **v** is an eigenvector of \mathbf{A}^k associated to eigenvalue λ^k for any negative integer k.
 - (d) Recall that a matrix is nilpotent if there is a positive integer k such that $\mathbf{A}^k = \mathbf{0}$. Show that if \mathbf{A} is nilpotent, then 0 is the only eigenvalue.

Supplementary Problems

8. (QR-factorisation) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3)$$
, where \mathbf{u}_i is the *i*-th column of \mathbf{A} for $i = 1, 2, 3$.

- (a) Use Gram-Schmidt Process to transform $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ into an orthonormal basis $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ for the column space of \mathbf{A} . (Do not change the order of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ when applying the Gram-Schmidt Process.)
- (b) Write each of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ as a linear combination of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$.
- (c) Hence or otherwise, write $\mathbf{A} = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is a 4×3 matrix with orthonormal columns and \mathbf{R} is a 3×3 upper triangular matrix with positive entries along its diagonal. (**Hint:** Recall that if $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is a solution to $\mathbf{M}\mathbf{x} = \mathbf{b}$, then $\mathbf{b} = a\mathbf{m}_1 + b\mathbf{m}_2 + \mathbf{m}_3$, where \mathbf{m}_i is the *i*-th column of \mathbf{M} .)

In general, we have

Theorem. If A is an $m \times n$ matrix with linearly independent columns, then A can be factorised into $A = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is an $m \times n$ matrix whose columns form an orthonormal basis for the column space of A and R is an $n \times n$ invertible upper triangular matrix.

Remark: QR-factorisation is widely used in computer algorithms for various computations concerning matrices. We can show easily that in general, the matrix **R** is always invertible. Let **x** be a solution to the linear system $\mathbf{R}\mathbf{x} = \mathbf{0}$. Pre-multiplying **Q** on both sides, we have

$$\mathbf{Q}(\mathbf{R}\mathbf{x}) = \mathbf{Q}\mathbf{0} \Rightarrow (\mathbf{Q}\mathbf{R})\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{x} = \mathbf{0}.$$

Since the columns are **A** are linearly independent, the rank of **A** is equal to the number of columns, and thus the nullity of **A** zero. Hence, the nullspace is trivial, and so necessarily $\mathbf{x} = \mathbf{0}$. This means the trivial solution is the only solution to $\mathbf{R}\mathbf{x} = \mathbf{0}$. Thus **R** must be invertible.

9. Let \mathbf{v}_1 be an eigenvector of \mathbf{A} associated to the eigenvalue λ_1 and \mathbf{v}_2 an eigenvector of \mathbf{A}^T associated to eigenvalue λ_2 . Suppose $\lambda_1 \neq \lambda_2$. Show that v_1 and v_2 are orthogonal.