Optical Flow

Where did each pixel in image 1 go to in image 2

Optical Flow

Pierre Kornprobst's Demo

Introduction

• Given a video sequence with camera/objects moving we can better understand the scene if we find the motions of the camera/objects.

Scene Interpretation

- How is the camera moving?
- How many moving objects are there?
- Which directions are they moving in?
- How fast are they moving?
- Can we recognize their type of motion (e.g. walking, running, etc.)?

Applications

• Recover camera ego-motion.

Result by MobilEye (www.mobileye.com)

Applications

• Motion segmentation

Applications

Structure from Motion

Input

Reconstructed shape

Result by: L. Zhang, B. Curless, A. Hertzmann, S.M. Seitz "Shape and motion under varying illumination: Unifying structure from motion, photometric stereo, and multi-view stereo" ICCV '03

Examples of Motion fields

Forward motion

Rotation

Horizontal translation

Closer objects appear to move faster!!

Motion Field & Optical Flow Field

- Motion Field = Real world 3D motion
- Optical Flow Field = Projection of the motion field onto the 2d image

When does it break?

The screen is stationary yet displays motion

Homogeneous objects generate zero optical flow.

Fixed sphere.
Changing light source.

Non-rigid texture motion

The Optical Flow Field

Still, in many cases it does work....

- Goal:
 - Find for each pixel a velocity vector $\vec{\mathbf{u}} = (u, v)$ which says:
 - How quickly is the pixel moving across the image
 - In which direction it is moving

How do we actually do that?

Estimating Optical Flow

• Assume the image intensity I is constant

Time =
$$t$$

Time =
$$t+dt$$

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$

Brightness Constancy Equation

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$

First order Taylor Expansion

$$= I(x, y, t) + \frac{\partial I}{\partial x} dx + \frac{\partial I}{\partial y} dy + \frac{\partial I}{\partial t} dt$$

Simplify notations:

$$I_x dx + I_v dy + I_t dt = 0$$

Divide by dt and denote:

$$u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$$

$$I_x u + I_y v = -I_t$$

Problem I: One equation, two unknowns

Problem II: "The Aperture Problem"

• For points on a line of fixed intensity we can only recover the normal flow

Where did the blue point move to?

We need additional constraints

Use Local Information

Sometimes enlarging the aperture can help

Local smoothness Lucas Kanade (1984)

$$I_{x}u + I_{y}v = -I_{t} \quad \Longrightarrow \quad \left[I_{x} \quad I_{y}\right] \left. \begin{matrix} u \\ v \end{matrix} \right] = -I_{t}$$

Assume constant (u,v) in small neighborhood

$$\begin{bmatrix} I_{x1} & I_{y1} \\ I_{x2} & I_{y2} \\ \vdots \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t1} \\ I_{t2} \\ \vdots \end{bmatrix}$$

Lucas Kanade (1984)

Goal: Minimize $\|A\vec{\mathbf{u}} - b\|^2$

Method: Least-Squares

$$A\vec{\mathbf{u}} = b$$

$$A^{T}A\vec{\mathbf{u}} = A^{T}b$$

$$2x2 \ 2x1 \ 2x1$$

$$\vec{\mathbf{u}} = (A^{T}A)^{-1}A^{T}b$$

$$\vec{\mathbf{u}} = \left(A^T A\right)^{-1} A^T b$$

$$A^{T} A = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

We want this matrix to be invertible.

i.e., no zero eigenvalues

• Edge \rightarrow $A^T A$ becomes singular

• Homogeneous $\rightarrow A^T A \approx 0 \rightarrow 0$ eigenvalues

• Textured regions \rightarrow two high eigenvalues

• Edge $\rightarrow A^T A$ becomes singular $\circ \circ$

• Homogeneous regions \rightarrow low gradients $A^T A \approx 0$

$$A^T A \approx 0$$

• High texture → (°°)

Other break-downs

Brightness constancy is **not** satisfied

- A point does **not** move like its neighbors
 - what is the ideal window size?

• The motion is **not** small (Taylor expansion doesn't hold)

Multi-Scale Flow Estimation

Multi-Scale Flow Estimation

Examples: Motion Based Segmentation

Input

Segmentation result

Examples: Motion Based Segmentation

Input

Segmentation result

Other break-downs

• Brightness constancy is **not** satisfied

Correlation based methods

- A point does **not** move like its neighbors
 - what is the ideal window size?

Regularization based methods

• The motion is **not** small (Taylor expansion doesn't hold)

Use multi-scale estimation

Regularization Horn and Schunk (1981)

Add global smoothness term

Smoothness error:

$$E_{s} = \iint_{D} (u_{x}^{2} + u_{y}^{2}) + (v_{x}^{2} + v_{y}^{2}) dx dy$$

Error in brightness constancy equation

$$E_c = \iint_D (I_x u + I_y v + I_t)^2 dx dy$$

Minimize:

$$E_c + \lambda E_s$$

Solve by calculus of variations

Robust Estimation Black & Anandan (1993)

Regularization can over-smooth across edges

Use "smarter" regularization

Minimize:

$$\iint_{D} \rho_{1}(I_{x}u + I_{y}v + I_{t}) + \lambda \left[\rho_{2}(u_{x}, u_{y})\rho_{2}(v_{x}, v_{y})\right] dx dy$$

Brightness constancy

Smoothness

Examples: Motion Based Segmentation

Input

Segmentation result

Affine Motion

For panning camera or planar surfaces:

$$u = p_1 + p_2 x + p_3 y$$
$$v = p_4 + p_5 x + p_6 y$$

$$I_x(p_1 + p_2x + p_3y) + I_y(p_4 + p_5x + p_6y) = -I_t$$

$$\begin{bmatrix} I_x & I_x x & I_x y & I_y & I_y x & I_y y \end{bmatrix} \vec{p} = -I_t$$

Only 6 parameters to solve for \rightarrow Better results

Segmentation of Affine Motion

Input

Segmentation result

Panoramas

Input

Motion estimation by Andrew Zisserman's group

Stabilization

Result by: L.Zelnik-Manor, M.Irani "Multi-frame estimation of planar motion", PAMI 2000

Layered Representation

For scenes with multiple affine motions

Some Results

Nebojsa Jojic and Brendan Frey, "Learning Flexible Sprites in Video Layers", CVPR 2001.

Action Recognition

• A bit more fun

"Recognizing Action at a Distance"

A.A. Efros, A.C. Berg, G. Mori, J. Malik

Image frame

Optical flow $F_{x,y}$

Use optical flow as a template for frame classification

"Recognizing Action at a Distance"

A.A. Efros, A.C. Berg, G. Mori, J. Malik

Image frame

Optical flow $F_{x,y}$

 F_x, F_y

 $F_{x}^{-}, F_{x}^{+}, F_{y}^{-}, F_{y}^{+}$

blurred $F_{x}^{-}, F_{x}^{+}, F_{y}^{-}, F_{y}^{+}$

"Recognizing Action at a Distance" A.A. Efros, A.C. Berg, G. Mori, J. Malik

71.71. C11 03, 71.0. Doi g, 0. Moi i, 0. Maiii

Database:

Test sequence:

For each frame in test sequence find closest frame in database

References on Optical Flow

Lucas-Kanade method:

- B.D. Lucas and T. Kanade "An Iterative Image Registration Technique with an Application to Stereo Vision" IJCAI '81 pp. 674-679
- S. Baker and I. Matthews "*Lucas-Kanade 20 Years On: A Unifying Framework*" IJCV, Vol. 56, No. 3, March, 2004, pp. 221 255. http://www.ri.cmu.edu/projects/project_515.html (papers + code)

Regularization based methods:

- B. K. P. Horn and B. Schunck, "*Determining Optical Flow*," Artificial Intelligence, 17 (1981), pp. 185-203
- Black, M. J. and Anandan, P., "A framework for the robust estimation of optical flow", ICCV '93, May, 1993, pp. 231-236 (papers + code)

Comparison of various optical flow techniques:

Barron, J.L., Fleet, D.J., and Beauchemin, S. "*Performance of optical flow techniques*". IJCV, 1994, 12(1):43-77

Layered representation (affine):

James R. Bergen P. Anandan Keith J. Hanna Rajesh Hingorani "*Hierarchical Model-Based Motion Estimation*" ECCV' 92, pp. 237-- 252