Games, graphs, and machines

Neighbour graph

Draw the graph whose

- vertices are the states or territories of Australia,
- two vertices are joined by an edge if they share a border.

Write the adjacency matrix.

1

Another adjacency matrix

Write the adjacency matrix of the following directed graph.

Degree of a vertex

- The *out-degree* of a vertex is the number of edges going out of it.
- The *in-degree* of a vertex is the number of edges coming into it.
- 1. Find the incoming and outgoing degrees in the previous graph.

2. How are you read off the degrees from the adjacency matrix?

Matrix multiplication

Multiply the following matrices

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}.$$

Powers of the adjacency matrix

Let A be the adjacency matrix of

Calculate A^2 and A^3 .

Why does A^k count length k paths?

Theorem

The (i,j) entry if A^k is the number of paths from vertex i to vertex j.

Suppose n = 3.

$$A_{i,j}^2 = A_{i,1} \cdot A_{1,j} + A_{i,2} \cdot A_{2,j} + A_{i,3} \cdot A_{3,j}$$

Why does A^k count length k paths?

We have n = 3.

$$A_{i,j}^3 = A_{i,1}^2 \cdot A_{1,j} + A_{i,2}^2 \cdot A_{2,j} + A_{i,3}^2 \cdot A_{3,j}$$

Why does A^k count length k paths?

We have n = 3.

$$A_{i,j}^4 = A_{i,1}^3 \cdot A_{1,j} + A_{i,2}^3 \cdot A_{2,j} + A_{i,3}^3 \cdot A_{3,j}$$