SI231b: Matrix Computations

Lecture 10: QR Factorization

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 15, 2020

MIT Lab, Yue Qiu

Recap: Householder Reflection

▶ Problem: given $\mathbf{x} \in \mathbb{R}^m$, find an orthogonal $\mathbf{H} \in \mathbb{R}^{m \times m}$ such that

$$\mathbf{H}\mathbf{x} = egin{bmatrix} eta \ \mathbf{0} \end{bmatrix} = eta \mathbf{e}_1, \qquad ext{for some } eta \in \mathbb{R}.$$

Figure 1: Householder reflection

Outline

- ► QR Factorization through Householder Reflection
- ▶ QR Factorization via Givens Rotation
- ► Solving Full-rank Least Squares

Householder Reflection

▶ Householder reflection: let $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{v} \neq \mathbf{0}$. Let

$$\mathbf{H} = \mathbf{I} - \frac{2}{\|\mathbf{v}\|_2^2} \mathbf{v} \mathbf{v}^T,$$

which is a reflection matrix, **H** is an orthogonal matrix.

▶ it can be verified that (try)

$$\mathbf{v} = \mathbf{x} \mp \|\mathbf{x}\|_2 \mathbf{e}_1 \implies \mathbf{H}\mathbf{x} = \pm \|\mathbf{x}\|_2 \mathbf{e}_1;$$

the sign above may be determined to be the one that maximizes $\|\mathbf{v}\|_2$, for the sake of numerical stability (why?)

•
$$\mathbf{v} = \mathbf{x} - \|\mathbf{x}\|_2 \mathbf{e}_1 \text{ if } x_1 > 0$$

•
$$\mathbf{v} = \mathbf{x} + \|\mathbf{x}\|_2 \mathbf{e}_1 \text{ if } x_1 < 0$$

Here, x_1 denotes the first entry of \mathbf{x} .

Householder QR

▶ let $\mathbf{H}_1 \in \mathbb{R}^{m \times m}$ be the Householder reflection w.r.t. \mathbf{a}_1 . Transform \mathbf{A} as

$$\mathbf{A}^{(1)} = \mathbf{H}_1 \mathbf{A} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

let $\tilde{\mathbf{H}}_2 \in \mathbb{R}^{(m-1)\times (m-1)}$ be the Householder reflection w.r.t. $\mathbf{A}_{2:m,2}^{(1)}$ (marked red above). Transform $\mathbf{A}^{(1)}$ as

$$\mathbf{A}^{(2)} = \underbrace{\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \end{bmatrix}}_{=\mathbf{H}_2} \mathbf{A}^{(1)} = \begin{bmatrix} \times & \times & \dots & \times \\ \mathbf{0} & \times & \times & \dots & \times \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \mathbf{A}^{(1)}_{2:m,2:n} \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \dots & \times \\ 0 & \times & \times & \dots & \times \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

by repeatedly applying the trick above, we can transform **A** as the desired

R

Householder QR

$$\mathbf{A}^{(0)} = \mathbf{A}$$

end

for
$$k = 1, \ldots, n$$

$$\mathbf{A}^{(k)} = \mathbf{H}_k \mathbf{A}^{(k-1)}$$
, where

$$\mathbf{H}_k = egin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \ \mathbf{0} & \mathbf{ ilde{H}}_k \end{bmatrix},$$

 \mathbf{I}_k is the $k \times k$ identity matrix; $\tilde{\mathbf{H}}_k$ is the Householder reflection of $\mathbf{A}_{k:m,k}^{(k-1)}$

- ightharpoonup H_k introduces zeros under the diagonal of the k-th column
- ▶ the above procedure results in

$$\mathbf{A}^{(n)} = \mathbf{H}_n \mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A}, \quad \mathbf{A}^{(n)}$$
 taking an upper triangular form

- **b** by letting $\mathbf{R} = \mathbf{A}^{(n)}$, $\mathbf{Q} = (\mathbf{H}_n \mathbf{H}_{n-1} \cdots \mathbf{H}_2 \mathbf{H}_1)^T$, we obtain the full QR
- ▶ a popularly used method for QR decomposition

Applying the Householder Matrix: HA

$$\mathbf{H}\mathbf{A} = (\mathbf{I} - \beta \mathbf{v} \mathbf{v}^T)\mathbf{A} = \mathbf{A} - (\beta \mathbf{v})(\mathbf{v}^T \mathbf{A})$$

- \blacktriangleright takes $\mathcal{O}(4mn)$ flops, rather than $\mathcal{O}(m^2n)$
- only acts on a submatrix of **A** as the process goes
- ► takes $\mathcal{O}(2mn^2 \frac{2}{3}n^3)$ flops to obtain **R** (m > n). What for m < n?

Computations of Q

Recall $\mathbf{Q} = (\mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1)^T = \mathbf{H}_1 \mathbf{H}_2 \cdots \mathbf{H}_n$, with $\mathbf{H}_k = \mathbf{I} - \beta_k \mathbf{v}^{(k)} (\mathbf{v}^{(k)})^T$ and

$$\mathbf{v}^{(k)} = \begin{bmatrix} 0 & \cdots & 0 & v_k^{(k)} & v_{k+1}^{(k)} & \cdots & v_m^{(k)} \end{bmatrix}^T$$

By letting $\mathbf{Q}_{n+1} = \mathbf{I}$, and executing $\mathbf{Q}_k = \mathbf{H}_k \mathbf{Q}_{k+1}$ for k = n : -1 : 1, we obtain $\mathbf{Q} = \mathbf{Q}_1$

- efficiently computations by applying Householder matrix
- ▶ takes $\mathcal{O}(4mn^2 2n^3)$ flops (m > n), what for m < n?

MIT Lab, Yue Qiu

Rotation Matrix

Example: Let

$$\mathbf{J} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

where $c = \cos(\theta)$, $s = \sin(\theta)$ for some θ . Consider y = Jx:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 + sx_2 \\ -sx_1 + cx_2 \end{bmatrix}.$$

It can be verified that

- J is orthogonal;
- $y_2 = 0$ if $\theta = \arctan(x_2/x_1)$, or if

$$c = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad s = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}.$$

Givens Rotations

Givens rotations:

where $c = \cos(\theta)$, $s = \sin(\theta)$.

- $J(i, k, \theta)$ is orthogonal
 - let $y = J(i, k, \theta)x$. It holds that

$$y_j = \begin{cases} cx_i + sx_k, & j = i \\ -sx_i + cx_k, & j = k \\ x_j, & j \neq i, k \end{cases}$$

• y_k is forced to zero if we choose $\theta = \tan^{-1}(x_k/x_i)$.

Givens QR

Example: consider a 4 × 3 matrix.

where $\mathbf{B} \xrightarrow{\mathbf{J}} \mathbf{C}$ means $\mathbf{B} = \mathbf{JC}$; $\mathbf{J}_{i,k} = \mathbf{J}(i,k,\theta)$, with θ chosen to zero out the (i,k)th entry of the matrix transformed by $\mathbf{J}_{i,k}$.

MIT Lab, Yue Qiu SI231b: Matrix Computations, ShanghaiTech

Givens QR

▶ Givens QR: assume $m \ge n$. Perform a sequence of Givens rotations to annihilate the lower triangular parts of **A** to obtain

$$\underbrace{\left(\mathbf{J}_{m,n}\ldots\mathbf{J}_{n+2,n}\mathbf{J}_{n+1,n}\right)\ldots\left(\mathbf{J}_{2m}\ldots\mathbf{J}_{24}\mathbf{J}_{23}\right)\!\left(\mathbf{J}_{1m}\ldots\mathbf{J}_{13}\mathbf{J}_{12}\right)}_{\mathbf{Q}^{T}}\mathbf{A}=\mathsf{R}$$

where R takes the upper triangular form, and Q is orthogonal.

 \blacktriangleright applying Givens rotations $J_{i,k}A$ only updates the i,k row of A, i.e.,

$$\mathbf{A}([i,j],:) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \mathbf{A}([i,j],:)$$

- ▶ takes $\mathcal{O}(3mn^2 n^3)$ flops to get **R**, what for **Q**?
- ► can be faster than Householder QR if **A** has certain sparse structures and we exploit them

Solving Full Rank Least Squares

$$\mathbf{x}_{LS} = \arg\min \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$$

Using orthogonal projection

- ightharpoonup solving $\mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b}$ to obtain \mathbf{x}_{LS}
 - A has orthonormal basis $\{q_1, q_2, \dots, q_n\}$ (can be computed using QR factorization),

$$\mathbf{x}_{LS} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{b}$$
 (reduced QR)

• using $P = A(A^TA)^{-1}A^T$,

$$(\mathbf{A}^T \mathbf{A}) \mathbf{x}_{LS} = \mathbf{A}^T \mathbf{b}$$
 (normal equation)

Using optimality condition

$$f(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$$

$$\nabla f(\mathbf{x}) = 0 \Longrightarrow \mathbf{x}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b},$$

Rank-deficient LS, cf. [Golub-van Loan 13]

MIT Lab. Yue Qiu

Pseudoinverse

In the real field ${\mathbb R}$

For $\mathbf{A} \in \mathbb{R}^{m \times n}$, the pseudoinverse of \mathbf{A} denoted by $\mathbf{A}^+ \in \mathbb{R}^{n \times m}$ satisfying the Moore–Penrose conditions¹

- 1. $AA^{\dagger}A = A$
- 2. $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}$
- 3. $(\mathbf{A}\mathbf{A}^{\dagger})^T = \mathbf{A}\mathbf{A}^{\dagger}$
- 4. $(\mathbf{A}^{\dagger}\mathbf{A})^{T} = \mathbf{A}^{\dagger}\mathbf{A}$

When **A** has full rank and m > n

- $\blacktriangleright \mathbf{A}^{\dagger} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}$
 - In terms of reduced QR factorization of A

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T} = \mathbf{R}^{-1}\mathbf{Q}^{T}$$

 $^{^1}$ R. Penrose, A Generalized Inverse for Matrices. *Mathematical Proceedings of the Cambridge Philosophical Society*, 51(3), 1955