2^{nde}8, novembre 2013 Calcul littéral

1 Pourquoi des lettres?

1.1 Désigner n'importe quel nombre dans une affirmation

Exemple 1. Quand on écrit:

$$(a+b)^2 = a^2 + 2ab + b^2,$$

il faudrait écrire plutôt :

Pour tous nombres réels a et b, on a $(a+b)^2 = a^2 + 2ab + b^2$.

On parle d'identité.

1.2 Désigner une inconnue dans une équation

Exemple 2. Pour résoudre 2x - 3 = 11, on écrit :

$$2x - 3 = 11 \iff 2x = 14 \iff x = 7$$
,

alors qu'il faudrait plutôt écrire : soit x un nombre réel. On a les équivalences :

$$2x - 3 = 11 \iff 2x = 14 \iff x = 7$$
,

donc 7 est l'unique solution de l'équation 2x - 3 = 11.

Exercice 1. Statut de la lettre : 22, 23 (calculatrice graphique), 24, 25, 26, 27 (notation inclusion) p. 93. Équation du 1er degré : 67 a. et b. p. 89, 71 p. 89 (moyenne), 72 p.96.

2 Développement

2.1 Distibutivité

Identité k(a+b) énoncée proprement (axiome), illustration Rousseau, exemples avec règle des signes.

Exercice 2. 69 p. 96 (équations).

Identité (a + b)(c + d) énoncée proprement et prouvée, illustration.

Exercice 3. 28 et 30 p. 94 (calcul).

2.2 identités remarquables

Énoncé et preuves.

Exercice 4. 42 p. 94 (aires), 21 p. 93 (algo.), p. 94 (calculs).

3 Factorisation

Il s'agit d'utiliser les plus simples des identités de distributivité, mais de droite à gauche.

- 3.1 Distributivité
- 3.2 Dénominateur commun
- 3.3 Identités remarquables