Теортест-1 (Вариант 37)

Тема – определенный интеграл

Задача 1

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^2-x+1}{x^2+x}$;
- 2. $\frac{x^9}{x^5+1}$;
- 3. $\frac{x^2+1}{x^5}$;
- 4. $\frac{x^4}{x^2-1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2};$
- 2. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt;$
- 3. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt;$
- 4. $\int f(x)d(2x) = \int \frac{f(\sqrt{t})}{\sqrt{t}}dt;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-2, 20];
- 2. [0, 10];
- 3. [-1, 10];
- 4. [-1, 20];

Задача 4

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. Если $f \ge 0$ на [a, b], то F не убывает на [a, b];
- 2. Если f непрерывна на [a,b], то F первообразная для f на [a,b];
- 3. F имеет разрывы в точках разрыва функции f;
- 4. F непрерывна на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a,b] и f((a+b)/2) = 1;
- 2. f(a) > 0, f(b) > 0;
- 3. f непрерывна в точке a и f(b) = 1;
- 4. f возрастает (нестрого) на [a, b] и f(b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 2. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 3. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a,b];
- 4. Если f > 0 на [a, b], то $\int_a^b f(x) dx > 0$;

Задача 7

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ – интегральная сумма для f, построенная по разбиению τ с оснащением $\xi; s_{\tau}, S_{\tau}$ – нижняя и верхняя суммы Дарбу. Выберите все утверждения, равносильные интегрируемости функции f на отрезке [a,b]:

- 1. $\exists E \in \mathbb{R}: \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \tau: |\tau| < \delta \ \exists \xi: \ -\varepsilon < \sigma_{\tau}(\xi) E < \varepsilon;$
- 2. $\forall \tau, \exists \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\exists \tau, \forall \xi : s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 4. $\forall \varepsilon > 0 \ \exists \delta > 0$: $\forall \tau : |\tau| < \delta \ \exists \xi : S_{\tau} \sigma_{\tau}(\xi) < \varepsilon$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь A всегда положительна;
- 2. $S(A) = S(A \cap B) + S(A \setminus B)$;
- 3. площадь одной точки равна нулю;
- 4. при движении площадь не меняется;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v' = u + C;
- 2. u = v' + C;
- 3. vdt = du;
- 4. v = u' + C:

Задача 10

Выберите все верные утверждения:

- 1. Любая кривая имеет бесконечно много различных параметризаций;
- 2. Кусочно-гладкая кривая спрямляема;
- 3. Длина замкнутой кривой равна нулю;
- 4. Длина любой кривой конечна;
- 5. Любая кривая имеет неотрицательную длину;