Análise de algoritmos

Algoritmos gulosos

Conteúdo I

Introdução: Algoritmos gulosos

Um problema de seleção de atividades

Introdução: Um problema de seleção de atividades

A subestrutura ótima do problema de seleção de atividades

Fazendo a escolha gulosa

Um algoritmo guloso recursivo

Um algoritmo guloso iterativo

Exercícios

Elementos da estratégia gulosa

Introdução: Elementos da estratégia gulosa

Propriedade de escolha gulosa

Subestrutura ótima

Estratégia gulosa versus programação dinâmica

Exercícios

Referências

Introdução: Algoritmos gulosos I

- Similar a programação dinâmica
- Usados para problemas de otimização
- Para muitos problemas de otimização é um exagero usar programação dinâmica: algoritmos mais simples e mais eficientes darão conta da mesma tarefa
- Um algoritmo guloso sempre faz a escolha que parece ser a melhor no momento
- Faz uma escolha ótima local na esperança de que essa escolha leve a uma solução ótima global
- Nem sempre produzem soluções ótimas, mas as produzem para muitos problemas

Introdução: Algoritmos gulosos II

- Método guloso funciona bem para uma ampla faixa de problemas, incluindo:
 - ► Algoritmos de árvore geradora mínima
 - ► Algoritmo de Dijkstra para para caminhos mais curtos que partem de uma única origem

Introdução: Um problema de seleção de atividades I

- n atividades requerem o uso exclusivo de um recurso comum
 - Exemplo: O uso de uma sala de aula
- ▶ Conjunto de atividades $S = \{a_1, ..., a_n\}$ que desejam usar um recurso
- $ightharpoonup a_i$ precisa usar o recurso durante o período $[s_i, f_i)$
 - ► s_i: tempo de início
 - ▶ f_i: tempo de término
 - ▶ Onde $0 \le s_i < f_i < \infty$
 - a_i e a_j são compatíveis se $s_i \ge f_j$ ou $s_j \ge f_i$
- Objetivo: Selecionar o maior conjunto possível de atividades não sobrepostas (mutuamente compatíveis)
- Supomos que as atividades estão ordenadas pelo tempo de término:

$$f_1 \le f_2 \le f_3 \le ... \le f_{n-1} \le f_n$$

- Nota: Podem haver outros objetivos
 - Escalonar sala pelo maior período de tempo
 - Maximizar as taxas de renda de aluguel

Introdução: Um problema de seleção de atividades II

► Exemplo:

i	1	2	3	4	5	6	7	8	9	10 2 14	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

▶ (...)

Introdução: Um problema de seleção de atividades III

- \triangleright { a_3, a_9, a_{11} }
- \blacktriangleright { a_1, a_4, a_8, a_{11} }
- \blacktriangleright { a_2 , a_4 , a_9 , a_{11} }

A subestrutura ótima do problema de seleção de atividades

- ▶ S_{ij} : conjunto de atividades que começam após o término da atividade a_i e terminam antes do início da atividade a_i
- Suponha que queremos determinar um conjunto máximo de atividades mutuamente compatíveis em S_{ij} e que tal subconjunto máximo é A_{ij}, que inclui algum atividade a_k
- Incluindo a_k em uma solução ótima, ficamos com dois subproblemas em mãos:
 - S_{ik} (começam após o término de a_i e terminam antes do início de a_k)
 - ▶ S_{kj} (começam após o término de a_k e terminam antes do início de a_j)
- ▶ Sejam $A_{ik} = A_{ij} \cap S_{ik}$ e $A_{kj} = A_{ij} \cap S_{kj}$
 - ▶ A_{ik} : contém atividade em A_{ij} que terminam antes do início de a_k

A subestrutura ótima do problema de seleção de atividades

- A_{kj} : contém atividade em A_{ij} que começam após o término de a_k
- ▶ Assim: $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$
- ▶ E portanto: o conj. de tam. máx. A_{ij} de ativ. mutuamente exclusivas em S_{ij} consiste em $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$
- Ótima, pelo argumento de recortar e colar (no livro)
- Isso sugere que poderíamos usar PD
- ▶ Denotando tamanho de uma sol. ótima para o conjunto S_{ij} por c[i,j] teremos

$$c[i,j] = c[i,k] + c[k,j] + 1$$

► Teremos de examinar todas as atividades em S_{ij}:

A subestrutura ótima do problema de seleção de atividades III

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \left\{ c[i,k] + c[k,j] + 1 \right\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

- Poderíamos fazer um algoritmo recursivo e memoizá-lo ou trabalhar de baixo para cima
- Porém, estaríamos ignorando uma outra característica importante do problema que podemos usar e seria muito vantajoso

Fazendo a escolha gulosa I

- ► E se pudéssemos escolher uma atividade para acrescentar à nossa solução ótima sem ter de resolver primeiro todos os subproblemas?
 - Nos pouparia de ter de considerar todas as escolhas na última recorrência
 - No problema de seleção de atividades precisamos considerar somente a escolha gulosa

Fazendo a escolha gulosa II

- ► Intuição:
 - Deveríamos escolher uma atividade que deixa o recurso disponível para o maior número possível de outras atividades
 - ► Agora, entre as atividades que acabamos escolhendo, uma deve ser a primeira a terminar
 - Portanto, escolher a atividade em S que tenha o tempo de término mais cedo, já que isso deixaria o recurso disponível para atividades posteriores
 - Atividades ordenadas: a escolha gulosa é a atividade a₁
 - ► Fazendo a escolha gulosa, restará somente um subproblema: determinar atividades que começam após o término e a₁. Por que não temos de considerar atividades que terminam antes de a₁ começar?
 - s₁ < f₁, e f₁ é o tempo mais cedo de término de qualquer atividade
 - Portanto, nenhuma atividade pode ter o tempo de término menor ou igual a s₁
 - Todas as que são compatíveis com a₁ devem começar depois que a₁ terminar

Fazendo a escolha gulosa III

- O problema exibe subestrutura ótima
 - ▶ Seja $S_k = \{a_i \in S : s_i \ge f_k\}$ com aquelas que começam após o término de a_k
 - Escolhendo a₁, S₁ permanecerá como um único problema a resolver
 - S.o. diz: Se a₁ estiver na solução ótima, uma sol. ótima para o problema original consistirá de a₁ e todas as atividades em uma solução ótima para o subproblema S₁

Fazendo a escolha gulosa IV

Nossa intuição está correta? A escolha gulosa – na qual escolhemos a primeira atividade a terminar – é sempre parte de alguma solução ótima?

Fazendo a escolha gulosa V

Teorema 16.1

Considere um subproblema qualquer não vazio S_k , e seja a_m uma atividade em S_k com o tempo de término mais cedo. Então, a_m estará incluída em algum subconjunto de tamanho máximo de atividades mutuamente compatíveis de S_k .

Prova: Seja A_k um subconjunto de tamanho máximo de atividade mutuamente compatíveis em S_k , e seja a_i a atividade em A_k que tem o tempo de término mais cedo. Se $a_i = a_m$, terminamos aqui, visto que já mostramos que a_m está em algum subconjunto de tamanho máximo de atividades mutuamente compatíveis de S_k . Se $a_i \neq a_m$ considere o conjunto $A'_k = A_k - \{a_i\} \cup \{a_m\}$, que é A_k substituindo a_i por a_m . As atividades em A'_k são disjuntas, o que decorre porque as atividades em A_k são disjuntas, a_i é a primeira atividade a terminar em A_k e $f_m \leq f_i$. Visto que $|A'_k| = |A_k|$, concluímos que A'_k é um subconjunto de tamanho máximo de atividades mutuamente compatíveis de S_k e ele inclui a_m .

Fazendo a escolha gulosa VI

- ▶ # de subproblemas na solução ótima: antes = 2; depois = 1
- # de escolhas a considerar: antes = j i 1; depois = 1
- ► Podemos escolher repetidamente a atividade que termina primeiro
- Manter somente as atividades compatíveis com ela
- Repetir o processo até não restar nenhuma atividade
- Os tempos de término das atividades que escolhermos deve crescer estritamente
- ► Podemos considerar cada atividade apenas uma vez no total, em ordem monotonicamente crescente de tempos de término

Fazendo a escolha gulosa VII

- Algoritmo para seleção de atividades não precisa funcionar de baixo para cima, como PD baseado em tabela
- Pode ser de cima para baixo:
 - Escolhendo uma atividade para colocar na solução ótima; e
 - Resolvendo o problema de escolher atividade entre as que são compatíveis com as já escolhidas
- Projeto normalmente usado em algoritmo gulosos

Um algoritmo guloso recursivo I

- Procedimento recursivo direto
- Como parâmetros os tempos de início e término por meio dos arranjos s e f,
- ightharpoonup ...índice k define o subproblema S_k a ser resolvido e
- ...o tamanho n do problema original
- Retorna um conjunto de tamanho máximo de atividade mutuamente compatíveis em S_k
- Consideramos que as entradas já estão ordenadas por tempo de término
- ▶ Se não, podemos fazer em $O(n \lg n)$
- ▶ Atividade fictícia a_0 , com $f_0 = 0$. Assim, subproblema S_0 é o conjunto inteiro de atividades S
- ► Chamada inicial: Recursive-Activity-Selector(s, f, 0, n)

Um algoritmo guloso recursivo II

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

- ▶ Considerando entrada ordenada, o tempo é $\Theta(n)$
- Considerando todas as chamadas recursivas, cada atividade é examinada exatamente uma vez no teste do laço while da linha 2
- ▶ Em particular, a atividade a_i é examinada na última chamada feita na qual k < i

Um algoritmo guloso recursivo III

Um algoritmo guloso recursivo I

Um algoritmo guloso iterativo I

- O procedimento recursivo é quase um "recurso de cauda"
- Converter para um iterativo é uma tarefa direta
- Também considera entradas ordenadas
- ▶ Retorna atividades selecionadas no conjunto A

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

Um algoritmo guloso iterativo II

- \triangleright k indexa a adição mais recente a A (corresp. à a_k)
- ► Em ordem crescente: f_k é sempre o tempo máximo de qualquer atividade em A
- Primeiro seleciona a₁
- Laço for encontra a atividade que termina mais cedo em S_k: considera cada atividade a_m por vez, e a acrescenta a A se for compatível com todas as anteriores
- ▶ Tempo: $\Theta(n)$

Exercícios I

- ▶ 2^a ed.: 16.1-1 a 16.1-4.
- ▶ 3^a ed.: 16.1-1 a 16.1-5.
 - ▶ 16.1-3 da 3ª ed. é igual ao 16.1-4 da 2ª ed.
 - ▶ 16.1-4 da 3ª ed. é igual ao 16.1-3 da 2ª ed.
 - ▶ 16.1-5 é novo na 3ª ed.

Introdução: Elementos da estratégia gulosa I

- Algoritmo guloso faz uma sequência de escolhas
- Para cada ponto de decisão, escolhe a opção que parece melhor no momento
- O processo visto, foi um pouco mais complicado que o normal:
 - 1. Determinar a subestrutura ótima do problema
 - 2. Desenvolver uma solução recursiva
 - 3. Provar que, se fizermos a escolha gulosa, restará somente um subproblema
 - 4. Provar que, é sempre seguro fazer a escolha gulosa
 - Desenvolver um algoritmo recursivo que implemente a estratégia gulosa
 - 6. Converter o algoritmo recursivo em um algoritmo iterativo

Introdução: Elementos da estratégia gulosa II

- ▶ Vimos os fundamentos de PD de um algoritmo guloso
 - ▶ No problema de seleção de atividades: primeiro definimos os subproblemas *S_{ii}*, no qual *i* e *j* variavam
 - ightharpoonup Constatamos que, se sempre fizéssemos a escolha gulosa, poderíamos restringir os subproblemas à forma S_k
- Alternativamente, poderíamos ter formado nossa subestrutura ótima tendo em mente:
 - Uma escolha gulosa
 - De modo que deixasse apenas um subproblema
- Poderíamos ter começado:
 - Descartando o segundo índice e definindo subproblemas da forma S_k
 - Provado que uma escolha gulosa (primeira atividade a_m a terminar em S_k), combinada com uma solução ótima para S_m , produz uma solução ótima para S_k

Introdução: Elementos da estratégia gulosa III

- Passos para projeto de algoritmos gulosos:
 - Expressar o problema de otimização como um problema no qual fazemos uma escolha e ficamos com um único subproblema para resolver
 - Provar que sempre existe uma solução ótima para o problema original que usa a escolha gulosa, de modo que a escolha gulosa é sempre segura
 - 3. Demonstrar subestrutura ótima mostrando que, tendo feito a escolha gulosa, o que resta é um subproblema com a seguinte propriedade: se combinarmos uma solução ótima para o subproblema com a escolha gulosa que fizemos, chegamos a uma solução ótima para o problema original
- Nenhum método geral para dizer se um algoritmo guloso é ótimo, mas dois componentes fundamentais são:
 - ▶ Propriedade de escolha gulosa
 - Subestrutura ótima

Propriedade de escolha gulosa I

- Propriedade da escolha gulosa: podemos montar uma solução globalmente ótima fazendo escolhas (gulosas) locais ótimas
- Programação dinâmica
 - ► Faz uma escolha em cada passo
 - Escolha depende de sabermos soluções ótimas para subproblemas
 - Resolver primeiro os subproblemas
 - Resolve de baixo para cima
- Algoritmos gulosos
 - Faz uma escolha a cada passo
 - ► Faz a escolha *antes* de resolver os subproblemas
 - Resolve de cima para baixo

Propriedade de escolha gulosa II

- ▶ Tipicamente, temos de mostrar a propriedade da escolha gulosa, como fizemos para a seleção de atividades:
 - Examinar uma solução globalmente ótima para algum subproblema
 - Mostrar como modificar a solução para usar a escolha gulosa no lugar de alguma outra escolha
 - Resultando em um subproblema semelhante, porém menor
- Podemos obter ganho de eficiência com a propriedade da escolha gulosa:
 - Pré-processar entrada para colocá-la na ordem gulosa
 - Ou, caso os dados sejam dinâmicos, usar uma fila de prioridades

Subestrutura ótima I

- Um problema exibe subestrutura ótima se uma solução ótima para o problema contiver soluções ótimas para subproblemas
- Essa propriedade é um componente fundamental para avaliar a aplicabilidade de:
 - PD
 - Algoritmos gulosos
- Na subestrutura ótima apresentada, vimos:
 - Se uma solução ótima S_{ij} incluir uma atividade a_k ...
 - lacktriangle ...então, ela também deve conter soluções ótimas para S_{ik} e S_{kj}
 - Dada essa subestrutura ótima, demonstramos que, se soubéssemos qual usar como a_k...
 - ightharpoonup ...poderemos construir uma sol. ótima para S_{ij} ,
 - ▶ selecionando a_k e as atividades em sols. ótimas para subproblemas S_{ik} e S_{kj}
 - Com base nisto, criamos a recorrência

Subestrutura ótima II

- Normalmente, usamos uma abordagem mais direta em relação à subestrutura ótima quanto aplicamos algoritmos gulosos
- Supor que chegamos a um subproblema por termos feito a escolha gulosa no problema original
- Basta demostrar que uma solução ótima para o subproblema, combinada com a escolha gulosa já feita, produz um solução ótima para o problema original

Estratégia gulosa versus programação dinâmica l

- O problema da mochila é um bom exemplo da diferença
- Ler item Estratégia gulosa versus programação dinâmica da seção 16.2 Elementos da estratégia gulosa

Exercícios I

- ▶ 2^a ed.: 16.2-1 a 16.2-7.
- ▶ 3^a ed.: 16.2-1 a 16.2-7.
 - ▶ O 16.2-4 da 3ª ed. é diferente do 16.2-4 da 2ª ed., mas eles possuem ideia semelhante.

Referências

- ► Thomas H. Cormen et al. Introdução a Algoritmos. 3ª edição em português. Capítulo 16.
- ► Thomas H. Cormen et al. Introdução a Algoritmos. 3ª edição em inglês. Capítulo 16.
- ► Thomas H. Cormen et al. Introdução a Algoritmos. 2ª edição em português. Capítulo 16.