Randomization and Mixed Strategies

By Marzie Nilipour Spring 2023

Mixed strategies

 So far, we have been discussing how to achieve NE by players selecting their pure strategies

• In principle, players can also randomize over their pure strategies

• Let's seen an example!

Example

- Rock, paper, scissors game
- Pure strategies = {R, S, P}
- Any dominated strategies?
- Pure NE?

	R	S	Р
R	0,0	1,-1	-1,1
S	-1,1	0,0	1,-1
Р	1,-1	-1,1	0,0

Example

- Rock, paper, scissors game
- Pure strategies = {R, S, P}
- Any dominated strategies? No
- Pure NE? No

	R	S	Р
R	0,0	1,-1	-1,1
S	-1,1	0,0	1,-1
Р	1,-1	-1,1	0,0

 Claim: there is a NE if player choose with probability 1/3 each of his pure strategies

Reminder!

A payoff matrix only shows the payoffs for pure-strategy profiles

- For mixed strategies, use expected value (utility)
 - X: a random variable

•
$$E[X]$$
: Expected value of X

$$E[X] = \sum x. p(x)$$

A weighted average of different values of X

Expected utilities

$$E\left[U_{1}\left(R,\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\right)\right] = \frac{1}{3}0 + \frac{1}{3}1 + \frac{1}{3}(-1) = 0$$

$$E\left[U_{1}\left(S,\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\right)\right] = \frac{1}{3}(-1) + \frac{1}{3}0 + \frac{1}{3}1 = 0$$

$$E\left[U_{1}\left(P,\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\right)\right] = \frac{1}{3}1 + \frac{1}{3}(-1) + \frac{1}{3}0 = 0$$

$$\Rightarrow E\left[U_{1}\left(\left(\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3}\right),\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\right)\right] = \frac{1}{3}0 + \frac{1}{3}0 + \frac{1}{3}0 = 0$$

Definition: Mixed strategies

A mixed strategy p_i is a randomization over i's pure strategies

Definition: Mixed strategies

A mixed strategy p_i is a randomization over i's pure strategies

- $p_i(s_i)$ is the probability that p_i assigns to pure strategy s_i
- $p_i(s_i)$ could be zero \rightarrow in RSP: (1/2, 1/2, 0)
- $p_i(s_i)$ could be one \rightarrow in RSP: 'P' a pure strategy if $p_i(P) = 1$

Definition: Expected Payoffs

The expected payoff of the mixed strategy p_i is the weighted average of the expected payoffs of each of the pure strategies in the mix of -i

Definition: Expected Payoffs

The expected payoff of the mixed strategy p_i is the weighted average of the expected payoffs of each of the pure strategies in the mix of -i

 Every player is mixing, hence you have to take the joint probabilities for a strategy profile to occur

• Battle of the sexes game

• Player 1: p = (1/5, 4/5)

• Player 2: q = (1/2, 1/2)

What's the players expected payoff by using p and q?

- Battle of the sexes game
- Player 1's expected payoff by using p?

$$E\left[U_1\left(M, \left(\frac{1}{2}, \frac{1}{2}\right)\right)\right] = \frac{1}{2}2 + \frac{1}{2}0 = 1$$

$$E\left[U_1\left(N, \left(\frac{1}{2}, \frac{1}{2}\right)\right)\right] = \frac{1}{2}0 + \frac{1}{2}1 = \frac{1}{2}$$

- Battle of the sexes game
- Player 2's expected payoff by using q?

$$E\left[U_{2}\left(\left(\frac{1}{5}, \frac{4}{5}\right), M\right)\right] = \frac{1}{5}1 + \frac{4}{5}0 = \frac{1}{5}$$

$$E\left[U_{2}\left(\left(\frac{1}{5}, \frac{4}{5}\right), N\right)\right] = \frac{1}{5}0 + \frac{4}{5}2 = \frac{8}{5}$$

• Battle of the sexes game

What's the players expected payoff totally?

$$E\left[U_1\left(\left(\frac{1}{5}, \frac{4}{5}\right), \left(\frac{1}{2}, \frac{1}{2}\right)\right)\right] = \frac{1}{5}1 + \frac{4}{5}\frac{1}{2} = \frac{3}{5}$$

$$E\left[U_2\left(\left(\frac{1}{5}, \frac{4}{5}\right), \left(\frac{1}{2}, \frac{1}{2}\right)\right)\right] = \frac{1}{2}\frac{1}{5} + \frac{1}{2}\frac{8}{5} = \frac{9}{10}$$

Definition: Mixed Best Response

if
$$p_i^*(s_i) > 0 \Rightarrow s_i^*$$
 is also a BR to p_{-i}^*

Definition: Mixed Best Response

if $p_i^*(s_i) > 0 \Rightarrow s_i^*$ is also a BR to p_{-i}^*

To compute mixed strategies NE, $E[u_i(s_i, p_{-i})]$ must be the same for all pure strategy s_i such that $p_{-i}(s_i) > 0$.

Definition: Mixed Strategies Nash Equilibrium

A mixed strategy profile $(p_1^*, p_2^*, ..., p_N^*)$ is a mixed strategy NE if for each player i:

 p_i^* is a BR to p_{-i}^*

• Let's go to some examples for finding p,q values


```
Nadal r

Federer L 50,50 80,20
R 90,10 20,80
```

- Is there any dominated strategies?
- Is there any pure strategy NE profile?

```
Nadal r

Federer L 50,50 80,20
R 90,10 20,80
```

- Is there any dominated strategies? No
- Is there any pure strategy NE profile? No

- How to find mixed strategy NE?
 - Each player's randomization is the best response to the other player's randomization

Federer's expected utility?

$$\begin{split} E\Big[U_{Federer}\Big(L,&\left(q,1-q\right)\Big)\Big] &= 50q + 80(1-q) \\ E\Big[U_{Federer}\Big(R,&\left(q,1-q\right)\Big)\Big] &= 90q + 20(1-q) \end{split}$$

Federer's expected utility?

$$\begin{split} E\Big[U_{Federer}\Big(L,&\left(q,1-q\right)\Big)\Big] &= 50q + 80(1-q) \\ E\Big[U_{Federer}\Big(R,&\left(q,1-q\right)\Big)\Big] &= 90q + 20(1-q) \end{split}$$

$$\Rightarrow 50q + 80(1-q) = 90q + 20(1-q)$$

$$\Rightarrow 40q = 60(1-q)$$

$$\Rightarrow q = 0.6$$

Similarly, Nadal's expected utility?

$$\begin{split} E\Big[U_{Nadal}\left(\left(p,1-p\right),l\right)\Big] &= 50\,p + 10(1-p) \\ E\Big[U_{Nadal}\left(\left(p,1-p\right),r\right)\Big] &= 20\,p + 80(1-p) \\ \Rightarrow 50\,p + 10(1-p) &= 20\,p + 80(1-p) \\ \Rightarrow 30\,p &= 70(1-p) \\ \Rightarrow p &= 0.7 \end{split}$$

• Mixed strategy NE =
$$\{(p, 1-p), (q, 1-q)\}$$

=
$$\{(0.7, 0.3), (0.6,0.4)\}$$

L R l r

- What would happen if Nadal jumped to the left more often than 0.6?
 - Federer would be better of playing the pure strategy 'R'!

- What if he jumped less often than 0.6?
 - Federer would be shooting to the 'L' all time!

$$\{(0.7, 0.3), (0.6, 0.4)\}$$

NASH THEOREM

Every finite game has a mixed strategy Nash equilibrium

NASH THEOREM

Every finite game has a mixed strategy Nash equilibrium

- Why this is important?
- Armed with this theorem, we also know that every finite game has an equilibrium, and thus we can simply try to locate the equilibria.