University of Oxford

Multilocus sequence analysis of the pathogen Neisseria meningitidis

Daniel J. Wilson

St. John's College

Mathematical Genetics and Bioinformatics

Department of Statistics

A thesis submitted for the degree of Doctor of Philosophy

September 2005

Multilocus sequence analysis of the pathogen Neisseria meningitidis

Daniel J. Wilson, St. John's College D.Phil. thesis, Trinity Term 2005

ABSTRACT

Neisseria meningitidis is the bacterium responsible for meningococcal meningitis and septicaemia in humans. Meningococcal disease is primarily a disease of young children, characterized by rapid deterioration from first symptoms to death, with an 11% fatality rate and a global distribution. Patterns of genetic diversity in meningococcal populations provide an account of their evolutionary history and structure, which can be inferred by population genetics modelling. Understanding these phenomena can inform control and prevention strategies, and provides interesting case studies in evolution. The aim of this thesis is to develop population genetics techniques for inferring the evolutionary history of meningococci.

I begin by reviewing the field, and justifying the use of coalescent methods in modelling microparasite populations. Inference on carriage populations of meningococci under the standard neutral model and the neutral microepidemic model is performed using a modification to approximate Bayesian computation. AMOVA and Mantel tests are used to quantify the differentiation between carriage and disease populations, and the extent to which geography and host age structure carriage populations. The results are used to propose revised coalescent models for meningococcal evolution.

The role of natural selection in shaping meningococcal diversity is investigated using a novel method that utilises an approximation to the coalescent and reversible-jump Markov chain Monte Carlo to detect sites under selection in the presence of recombination. Having performed a simulation study to assess the statistical properties of the method, I apply it to the *porB* antigen locus and seven housekeeping loci in *N. meningitidis*. There is strong evidence for selection imposed by the host immune system in the antigen locus, but not the housekeeping loci which are functionally constrained. Finally I discuss the future direction of population genetic approaches to understanding infectious disease.

Acknowledgements

Thanks go to members of the Mathematical Genetics and Bioinformatics Group of the Department of Statistics and the Bacterial Population Structure and Public Health Group of the Department of Zoology. In particular I would like to thank Adam Auton, Ella Chase, Daniel Falush, Bob Griffiths, Rosalind Harding, Chris Holmes, Keith Jolley, Stephen Leslie, Jonathan Marchini, Noel McCarthy, Chris Spencer and Rachel Urwin. I would also like to thank Graham Coop and Don Conrad of the Human Genetics Department at the University of Chicago. Ziheng Yang kindly provided C computer code and Jeremy Derrick the molecular structure of the PorB molecule. Special thanks to Gillian Kay and my parents Brian and Janet, who in addition to support also kindly helped to proof-read the thesis. Finally I would like to thank my co-supervisors, Gil McVean and Martin Maiden.

This thesis was supported by a research studentship from the Biotechnology and Biological Sciences Research Council. Much of the computational work presented here was conducted on a multi-node AMD compute cluster that was bought with a grant awarded by the Wolfson Foundation to Peter Donnelly. Part of the work in this thesis was presented at the Society for Molecular Biology and Evolution, Newport Beach, California, June 2003, the London Mathematical Society Symposium on Mathematical Genetics, Durham, July 2004, the 14th International Pathogenic Neisseria Conference, Milwaukee, Wisconsin, September 2004, and the 10th Congress of the European Society for Evolutionary Biology, Krakow, Poland, August 2005. I would like to thank the BBSRC, the London Mathematical Society and St. John's College, Oxford for financial support in attending these conferences.

Thanks also to my examiners, Brian Charlesworth and Jotun Hein.

Table of Contents

Abstract		i
Acknowledg	ements	ii
Table of Cor	ntents	iii
Chapter 1		
Epidemiolog	gy of Neisseria meningitidis	1
1.1 Over	view of Neisseria meningitidis	4
1.1.1	Epidemiology	4
1.1.1.1	Pathology	4
1.1.1.2	Epidemiology of meningococcal disease	6
1.1.1.3	Epidemiology of carriage	8
1.1.2	Typing	10
1.1.2.1	Immunological typing	11
1.1.2.2	Electrophoretic typing	13
1.1.2.3	Sequence typing	15
1.1.3	Control and prevention	18
1.1.3.1	Polysaccharide vaccines	19
1.1.3.2	Polysaccharide-protein conjugate vaccines	20
1.1.3.3	Outer membrane protein vesicle vaccines	22
1.2 Popu	lation biology of Neisseria meningitidis	24
1.2.1	The clonal complex	24
1.2.1.1	Serogroup A lineages	25
1.2.1.2	Serogroup B and C lineages	29
1.2.2	How clonal are bacteria?	30
1.2.2.1	Epidemic clone model	31
1.2.2.2	Relative contribution of recombination and mutation	33
1.2.2.3	BURST	37
1.2.3	Strain theory	42
1.2.3.1	Immune selection can structure the pathogen population	42

1.2.3.2	Evidence for meningococcal strain structure	44
1.2.4	Neutral models	45
1.2.4.1	Standard neutral model	46
1.2.4.2	Neutral microepidemic model	48
1.3 Pop	ulation genetics in epidemiology	50
1.3.1	Pathogen biology	50
1.3.2	The origin and history of pathogens	52
1.3.3	Immune-mediated selection on pathogen genomes	54
1.3.4	The relevance of recombination	56
1.3.5	Phylogenetic and population genetic approaches to inference	59
1.3.6	Advantages and disadvantages of population genetics	61
1.4 Coa	lescent models of Neisseria meningitidis	63
1.4.1	Epidemiological models	63
1.4.1.1	SIS	64
1.4.1.2	2 SIRS	66
1.4.2	Metapopulations and the coalescent	67
1.4.2.1	The coalescent	67
1.4.2.2	2 The coalescent with recombination	68
1.4.2.3	Coalescence in a metapopulation	69
1.4.3	Epidemiology and the coalescent	74
1.4.3.1	SIRS with superinfection	74
1.4.3.2	Metapopulation with SIRS	77
Cl. 4 2		
Chapter 2		0.1
•	genetics of Neisseria meningitidis	
	cription of a carriage population	
2.1.1	Diversity	
2.1.2	Frequency distributions	
2.1.3	Recombination	
	ng the standard neutral model	
2.2.1	Composite likelihood inference	
2.2.2	Parameter estimates	99

2.2.3	Simulating under the coalescent
2.2.4	Goodness-of-fit testing105
2.3 App	roximate Bayesian inference
2.3.1	MCMC without likelihoods
2.3.2	Fitting the standard neutral model
2.3.2.1	Update θ
2.3.2.2	Update κ
2.3.2.3	Update ρ
2.3.3	Parameter estimates
2.3.4	Bayesian cross-validation
2.4 Refi	ning the model
Chapter 3	
	acturing in Neisseria meningitidis
3.1 Neu	tral microepidemic model
3.1.1	Coalescent formulation of the microepidemic model137
3.1.2	Approximate Bayesian inference
3.2 Ana	lysing population structure
3.2.1	Analysis of molecular variance140
3.2.1.1	Two-way AMOVA143
3.2.2	Mantel test145
3.3 Geo	graphic structuring in Europe
3.3.1	Structuring within the Czech Republic
3.3.2	Differentiation between European countries
3.4 Mer	ningococcal population structure in Bavaria152
3.4.1	Role of host age-structure
3.4.2	Geographic differentiation
3.4.2.1	Evidence for population structure
3.4.2.2	Evidence for isolation by distance
3.4.3	Institution type and genetic structure
3.5 Rela	ationship between disease and carriage
3.6 Sum	nmary

Daniel Wilson	22 May 2006

3.6.1	Causes of structure in meningococcal populations	172
Charten 4		
Chapter 4	w. Madal of Immuna Calastian	176
	y Model of Immune SelectiondN/dS ratio	
4.1 The	Models that incorporate the dN/dS ratio	
4.1.1.1	1	
4.1.1.1		
4.1.2	Inferring immune selection using dN/dS	
4.1.2.1		
4.1.2.2		
4.1.2.3	,	
4.1.2.4		
	lelling selection with recombination	
4.2.1	Population genetics inference	
4.2.2	An approximation to the coalescent	
4.2.2.1	••	
4.2.2.2		
4.2.2.3	Recombination model	195
4.2.2.4	Computing the likelihood	196
4.2.3	NY98 in the coalescent approximation	
4.2.4	An indel model for NY98	
4.2.5	Variation in ω and ρ along a gene	202
4.3 Bay	esian inference	204
4.3.1	Type A. Change ω within a block	206
4.3.2	Type B. Extend an ω block 5' or 3'	207
4.3.3	Types C and D. Split and Merge an ω block	207
4.3.3.1	Ratio of priors	208
4.3.3.2	Ratio of proposal probabilities	208
4.3.3.3	Ratio of density functions	209
4.3.3.4	Jacobian	210
4.3.3.5	Acceptance probabilities	211

4.3	3.4	Implementation	213
4.4	Sim	ulation study	215
4.4	4.1	Permutation test for recombination	215
4.4	4.2	Simulation study A	217
4.4	4.3	Mixing properties of reversible jump moves	220
4.4	4.4	Simulation study B	223
4.5	Sun	nmary	226
Chap	oter 5		
Evid	ence fo	or Immune Selection in an Antigen of Neisseria meningitidis	228
5.1	Ana	llysis of the porB locus	228
5.	1.1	Previous analyses	230
5.	1.2	Isolates	233
5.	1.3	Test for recombination	234
5.	1.4	Codon frequencies	235
5.	1.5	Priors	236
5.	1.6	Results	238
5.2	Mo	del criticism	243
5.2	2.1	Prior sensitivity analysis	243
5.2	2.2	Posterior predictive <i>p</i> -values	246
5.2	2.3	Simulating under a PAC model	247
5.2	2.4	Combining <i>p</i> -values	248
5.2	2.5	Choice of statistics and results	250
5.2	2.6	Analysis of the global study	252
5.3	Evi	dence for false positives	254
5.4	Ana	llysis of housekeeping loci	258
5.5	Sun	nmary	264
Chap	oter 6		
Furth	ner De	velopments	265
6.1	Mei	ningococcal population structure	267

6.1.1	Advantages of explicit evolutionary models	267
6.1.2	Bayesian inference in the structured coalescent	270
6.2 I	Detecting selection in Neisseria meningitidis	271
6.2.1	Comparison of PorB3 analyses	272
6.2.2	Aspects of the Bayesian approach	274
6.2.3	Limitations of the method	276
6.2.4	Extensions to the method	279
6.2.5	Implications for vaccine research	280
6.2.6	Separation of timescales in microparasite evolution	282
6.3	Summary	284
Glossary	y of Acronyms	286
Literatu	re Cited	287