Una Historia de la Lógica

Jake Kettinger

4 Septiembre 2024

Prefacio

Esta charla sigue mayormente los libros *A History of Philosophical and Formal Logic: from Aristotle to Tarski*, editado por Malpass y Marfori, y *A History of Formal Logic*, escrito por Bocheński.

Los silogismos de Aristóteles

Un silogismo es un método de razonar que tiene tres partes: dos premisas (una mayor y una menor) y una conclusión. Por ejemplo:

```
Todos los humanos son mortales. (PM)
Yo soy un humano. (Pm)
Por lo tanto, yo soy mortal. (C)
```

Aristóteles observó que si las dos premisas son ciertas, entonces la conclusión sigue naturalmente. Dice que la conclusión no es casualmente verdad, pero que ella *no puede dejar de ser verdad*.

Argumentos sólidos y válidos

Aristóteles tambien observó la diferencia entre un argumento cuya conclusión sigue de las premisas, y un argumento cuyas premisas son verdaderas.

Todos los pájaros pueden volar. (PM) El águila es un tipo de pájaro. (Pm) Por lo tanto el águila puede volar. (C)

El razonamiento del silogismo es válido y la conclusión es verdad, pero la premisa mayor tiene un error factual: No todos los párajos pueden volar.

Este argumento es válido, pero no es sólido.

Nyaya-sutra

En el Nyāya-sūtra, lógico indio Akṣāpada Gótama usó un silogismo de cinco partes. La estructura es:

- Pratijna (proposición): "Hay fuego en la montaña."
- 4 Hetu (razón): "Porque hay humo en la montaña."
- Udaharana (regla/ejemplo): "Donde hay humo, hay fuego, como en una cocina."
- Upanaya (aplicación): "La montaña tiene humo."
- Nigamana (conclución): "Por lo tanto, hay fuego en la montaña."

Contradicciónes

En De interpretatione, Aristóteles observó que

"Debe ser posible negar lo que alguien ha afirmado, y afirmar lo que alguien ha negado."

Él identificó cuatro tipos de proposiciones categóricas:

Catușkoți (el tetralema)

En la lógica india, algunos filósofos usaban una sistema de argumentación que se llama Catuṣkoṭi, o el tetralema. De una proposición P, hay cuatro posibilidades:

- P (P es verdadera).
- \bigcirc ¬P (P no es verdadera).
- **3** $P \wedge \neg P$ (P es a la vez verdadera y falsa).

Aquí vemos una perspectiva de contradicciónes diferente a la de Aristóteles.

Nāgārjuna (c. 150 – c. 250) usaba el tetralema.

Leyes de la consecuencia

Los filósofos medievales pensaban sobre implicacion y consecuencia. Walter Burley (c. 1275 – 1344) escribió algunos leyes de la implicación, incluyendo:

- Si $P \Rightarrow Q$, entonces $\neg \diamond (P \land \neg Q)$ (\diamond significa "posiblemente").
- Si $P \Rightarrow Q$, entonces $(Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$.
- Si $P \Rightarrow Q$, entonces $(R \Rightarrow P) \Rightarrow (R \Rightarrow Q)$.

Aquí vemos el concepto de la consecuencia está empezando a ser codificado.

Bolzano

La base de la lógica de Bolzano era la proposición, en vez de la idea. (Una idea es simplemente "algo que puede ser parte de una proposición... sin ser en sí mismo una proposición.")

- Una proposición es verdadera o falsa.
- Las proposiciónes son abstractas.
- Los pensamientos tienen proposiciones como contenido.
- Las oraciones expresan proposiciones.
- Dos oraciones de diferente escructura pueden expresar la misma proposición.

La verdad es una idea abstracta que se aplica a las proposiciones.

Variación y validez

Bolzano habló sobre una proposición A y "A, pero sustituimos todas las apariciónes de la idea i por la idea j." Este es una "i-variante" de A. Autores modernos usan la notación A(j/i).

Ejemplo: Una "primos"-variante de "Carlos y Teddy son primos" es "Carlos y Teddy son hermanos."

Una proposición A es valida con respecto a las ideas i,j,\ldots si y sólo si toda i,j,\ldots -variante "relevante" es verdadera.

Él dio tambien definiciones similares para proposiciones *compatibles* (A y B con compatibles si...) y *deducibles* (A es deducible de B, C, ... si...).

La filosofía de Frege

Frege propuso un análisis lógico formado de función y argumento, en vez de sujeto y predicado.

Podemos dividir un pensamiento en un predicado y un argumento.

Según Frege, un *predicado* es una función desde el dominio de los objetos a el conjunto {verdadero, falso}.

Frege representó un predicado como una función: P(a). El simbolo P representa un predicado que se aplica a la constante a.

La notación de Frege

Frege inventó una notación de la lógica que él usó en *Begriffschrift*, donde él desarrolló un sistema axiomático.

La notación de Frege	La notación moderna
A	$A \Rightarrow B$
Γ	$\Gamma \Rightarrow (A \Rightarrow B)$
<i>⊢ A</i>	$\neg A$

Los axiomas de Frege

El idioma lógico de Frege tenía 9 axiomas. Algunos de los axiomas son:

Russell

En 1902, Russell escribió en una carta a Frege que su sistema lógico era inconsistente:

"Sea w el predicado: 'ser un predicado que no puede ser predicado en sí mismo.' ¿Puede w ser predicado en sí mismo? Desde cada respuesta, lo opuesto sigue. Entonces debemos concluir que w no es un predicado. Asimismo no hay una clase (como una totalidad*) de las clases que, cada una tomada como una totalidad, no se pertenece a sí mismo. De esto concluyo que, bajo ciertas circunstancias, una colección definible no forma una totalidad." -16 Junio 1902, carta a Frege

La lógica de Frege afirma que cado un predicado define un conjunto. Este defecto en su lógica se hizo conocido como ¡la paradoja de Russell!

(*Jake: Creo que una *totalidad* es un conjunto de objetos que son verdaderos bajo un predicado determinado.)

El círculo vicioso y la teoría de tipos

El principio del círculo vicioso es:

"Ningún objeto o propiedad puede introducirse mediante una definición que dependa de ese objeto o propiedad en sí"

Esta es una forma de evitar la paradoja de Russell.

Russell formuló una teoría de tipos para codificar este principio. Según esta teoría, está prohibido hablar generalmente sobre cosas de tipos diferentes.

Este es el requisito de "homogeneidad local." Los conjuntos no pueden ser el mismo tipo que sus elementos, entonces " $x \in x$ " y " $x \notin x$ " no son oraciones validas. La pregunta de "verdadera" o "falsa" no llega.

A Hilbert no le gustan las paradojas

Hilbert esperaba proteger las matemáticas de paradojas haciéndo un idioma lógico en el cual no es posible decir $T \vdash \phi \land \neg \phi$ en una teoría T.

Él quería una teoría de los numeros naturales que fuera a la vez consistente y completa.

Consistente: no es posible deducir una contradicción dentro del sistema.

$$\neg (T \vdash \phi \land \neg \phi)$$

Completa: es posible deducir todas las fórmulas verdaderas como teoremas.

$$T \vDash \phi \Rightarrow T \vdash \phi$$

Teoremas de incompletitud de Gödel

La esperanza para un sistema completo y consistente fue destruida por Gödel. Él escribió dos teoremas de incompletitud.

Definition

Una teoría de los números naturales T es ω -consistente si cuando T puede probar $\phi(0), \phi(1), \ldots, \phi(k), \ldots$ individualmente, no es posible que T probar $\exists v \in \mathbb{N} : \neg \phi(v)$.

Theorem (El primer teorema de incompletitud)

Sea T una teoría de los numeros naturales que es ω -consistente y se expresa en un idioma I. Entonces hay una oración γ de I cuando

$$T \not\vdash \gamma \ y \ T \not\vdash \neg \gamma.$$

Entonces T es incompleta. La oración γ es un **oración de Gödel**.

Tarski

Tarski estaba interesado en el concepto de verdad. Él analizó la paradoja del mentiroso ("Esta oración es falsa.") para entender cuales propiedades de un idioma la hacen posible.

Un idioma en el cual es posible decir la paradoja del mentiroso es "semánticamente universal." Según Tarski, sólo vale la pena estudiar en los idiomas que no son semánticamente universales (i.e. un idioma formal, no un idioma natural).

Tarski hizo una distinción entre "uso" y "mención:" Si yo dijera que Tarski era un humano, estaría *usando* el nombre 'Tarski.' Pero si dijera que 'Tarski' era el nombre de un humano, estaría *mencionandolo*

Una teoría semántica de la verdad

La teoría de Tarski comienza con la Convención T:

"P" is verdadera si y sólo si P.

E.g. "La nieve es blanca" es verdadera si y sólo si la nieve es blanca. E.g. "Snow is white" es verdadera si y sólo si la nieve es blanca.

Si un idioma tiene \neg ("no"), \wedge ("y"), \vee ("o"), \forall ("para todos"), $y \exists$ ("existe"), los propiedades de la verdad son:

- Convención T
- "¬P" es verdadera si y sólo si "P" no es verdadera.
- " $A \wedge B$ " es verdadera si y sólo si "A" es verdadera y "B" es verdadera.
- " $A \lor B$ " es verdadera si y sólo si una de "A," "B," o " $A \land B$ " es verdadera.
- " $\forall x(Fx)$ " es verdadera si y sólo si, para todos los objectos x, "Fx" es verdadera.
- " $\exists x(Fx)$ " es verdadera si y sólo si, existe un objecto x donde Fx es verdadera.

Fin

La *definición* de la verdad de Tarski es muy complicada... pero quizá puede ser el sujeto de otra charla...

Ahora que alguien ha definido la verdad... hemos terminado con la lógica :)