Simulación y análisis de sistemas con ProModel

Eduardo García Dunna Heriberto García Reyes Leopoldo E Cárdenas Barrón

Simulación y análisis de sistemas con ProModel®

Simulación y análisis de sistemas con ProModel®

Eduardo García Dunna Heriberto García Reyes Leopoldo Eduardo Cárdenas Barrón

REVISIÓN TÉCNICA:

Dr. Lino AA Notarantonio Departamento de ingeniería industrial Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Santa Fe

Bonifacio Román Tapia Facultad de Ingeniería Universidad Nacional Autónoma de México

Datos de catalogación bibliográfica

GARCÍA DUNNA EDUARDO, GARCÍA REYES HERIBERTO Y CÁRDENAS BARRÓN LEOPOLDO EDUARDO

Simulación y análisis de sistemas con ProModel Primera edición

PEARSON EDUCACIÓN, México, 2006

ISBN: 970-26-0773-6

Formato: 18.5 × 23.5 cm Páginas: 280

Edición en español:

Editor: Pablo Miguel Guerrero Rosas

e-mail: pablo.guerrero@pearsoned.com

Editor de desarrollo: Bernardino Gutiérrez Hernández

Supervisor de producción: Enrique Trejo Hernández

Primera edición, 2006

D.R.© 2006 por Pearson Educación de México, S.A. de C.V.

Atlacomulco 500-5º Piso Colonia Industrial Atoto

53519, Naucalpan de Juárez, Edo. de México e-mail: editorial.universidades@pearsoned.com

Cámara Nacional de la Industria Editorial Mexicana. Reg. Núm. 1031.

Prentice Hall es una marca registrada de Pearson Educación de México, S.A. de C.V.

Reservados todos los derechos. Ni la totalidad ni parte de esta publicación pueden reproducirse, registrarse o transmitirse, por un sistema de recuperación de información, en ninguna forma ni por ningún medio, sea electrónico, mecánico, fotoquímico, magnético o electroóptico, por fotocopia, grabación o cualquier otro, sin permiso previo por escrito del editor.

El préstamo, alquiler o cualquier otra forma de cesión de uso de este ejemplar requerirá también la autorización del editor o de sus representantes.

ISBN: 970-26-0773-6

Impreso en México. Printed in Mexico.

1234567890 - 09 08 07 06

Contenido

Prólogo			ix
Capítulo 1	Princ 1.1 1.2 1.3 1.4 1.5 1.6	ipios básicos de la simulación Introducción a la simulación Definiciones de simulación Ventajas y desventajas de la simulación Elementos clave para garantizar el éxito de un modelo de simulación Pasos para realizar un estudio de simulación Problemas	1 2 3 7 8 10 13
Capítulo 2	2.1 2.2 2.3 2.4	Los números pseudo aleatorios Generación de números pseudo aleatorios 2.2.1 Algoritmo de cuadrados medios 2.2.2 Algoritmo de productos medios 2.2.3 Algoritmo de multiplicador constante 2.2.4 Algoritmo lineal 2.2.5 Algoritmo congruencial multiplicativo 2.2.6 Algoritmo congruencial aditivo 2.2.7 Algoritmos congruenciales no lineales Propiedades de los números pseudo aleatorios entre 0 y 1 Pruebas estadísticas para los números pseudo aleatorios 2.4.1 Prueba de medias 2.4.2 Prueba de varianza 2.4.3 Pruebas de independencia Problemas	17 18 18 20 21 22 23 25 26 27 28 31 31 32 34
Capítulo 3	Varia 3.1 3.2 3.3	Definición de variable aleatoria Tipos de variables aleatorias Determinación del tipo de distribución de un conjunto de datos 3.3.1 Prueba Chi-cuadrada 3.3.2 Prueba de Kolmogorov-Smirnov 3.3.3 Prueba de Anderson-Darling 3.3.4 Ajuste de datos con Stat::Fit	53 54 54 56 57 59 62 67

	 3.4 Generación de variables aleatorias 3.4.1 Método de la transformada inversa 3.4.2 Método de convolución 3.4.3 Método de composición 3.4.4 Método de transformación directa 3.5 Expresiones comunes de algunos generadores de variables aleatorias 3.6 Problemas 	72 72 79 82 85 87 90
Capítulo 4	 Simulación de variables aleatorias 4.1 Verificación y validación de los modelos de simulación	105 106 106 109 109 113 117 121 124
Capítulo 5	 Simulación con ProModel 5.1 Introducción al uso de ProModel 5.2 Elementos básicos 5.3 Estructura de programación en ProModel 5.4 Construcción de un modelo 5.4.1 Modelo M/M/1 de líneas de espera 5.4.2 Mejoramiento visual del modelo 5.4.3 Modelado de un sistema que incluye más de un proceso 5.4.4 Inclusión de gráficos de fondo en el modelo 5.5 Caso integrador 5.6 Problemas 	131 132 132 133 133 146 154 162 164 166
Capítulo 6	 Instrucciones de ProModel 6.1 Uso de la biblioteca de probabilidades 6.2 Recursos 6.3 Paros en los equipos 6.4 Reglas de ruteo 6.5 Ensambles, acumulación y agrupamiento de piezas 6.6 Transporte entre estaciones 6.7 Caso integrador 6.8 Problemas 	171 172 175 182 185 190 208 214 219
Anexo 1 Anexo 2 Anexo 3	Distribuciones de probabilidad A.1 Distribuciones continuas A.2 Distribuciones discretas Reportes estadísticos en ProModel Distribuciones de probabilidad	231 232 240 245 255
vi		

A mis padres Martha y Eduardo, a mi esposa Carmen Alicia y a mis hijos Eduardo y José Pablo.

Eduardo

A mis padres Heriberto y María de Jesús, a mi esposa Cyntia y a mis hijos Heriberto, Daniel Alejandro y José Miguel.

Heriberto

A mi amada esposa: Saraí; por su amor y cariño constante.
A mis valiosos tesoros: David Nahúm, Italia Tatnaí y Zuriel Eluzai,
quienes son la fuente de mi inspiración.
A mis adorados padres: María Guadalupe Amada y Rafael,
por su esfuerzo y dedicación para hacer de mí
un buen hombre y profesionista.
A mis queridos hermanos: Mario Rafael, Óscar,
Viviana Guadalupe y Nora Alicia, por creer en mí.
A los padres de mi esposa: Argelia y Cayetano por su apoyo.

Leopoldo Eduardo

Prólogo

La complejidad en la operación de los sistemas de producción y servicios de la actualidad requieren de una modelación cada vez más apegada a la realidad, que permita un análisis profundo y detallado. Por ello, herramientas que permitan modelar esta complejidad se hacen relevantes y necesarias. Estamos convencidos que la simulación es una de las herramientas que hace posible conocer mejor el sistema en estudio, ya que permite evaluar diversos escenarios considerando múltiples variables de decisión y visualizar su comportamiento a través del tiempo. Aquí pretendemos dar al lector la oportunidad de iniciarse en el diseño, desarrollo y análisis de sistemas de una manera sencilla a través de la simulación utilizando de manera especial el programa ProModel.

El capítulo 1 establece los conceptos básicos relacionados con un proyecto de simulación, e incluye la introducción a la técnica y la metodología para su desarrollo. El capítulo 2 presenta los números aleatorios, base de los modelos estocásticos, sus propiedades, manejo y generación, así como todos los requerimientos para ser considerados como tales. El capítulo 3 ofrece los conceptos de pruebas de bondad de ajuste, para determinar la distribución de probabilidad asociada con las variables de decisión y eventos en el sistema a modelar; para con ello generar variables aleatorias a usarse durante la simulación. Este capítulo incorpora el uso de la herramienta Stat:Fit, que se incluye con el CD que acompaña el libro. Esta herramienta permite determinar automáticamente la distribución de probabilidad de las variables y eventos a modelar en el sistema.

El capítulo 4 maneja los conceptos de validación y análisis de los modelos de simulación; y presenta al final del capítulo ejemplos, desarrollados en hojas de cálculo, sobre líneas de espera, procesos de ensamble y sistemas de inventarios, con la esperanza de que al final el lector sea capaz de realizar modelos simples usando una hoja de cálculo. El capítulo 5 presenta las características y bondades de ProModel por medio de ejemplos que guían al usuario en la construcción de los modelos. El capítulo 6, por su parte, cubre elementos más complejos de programación que le permitirán ampliar sus capacidades de modelación.

Al final de cada capítulo encontrará una serie de ejercicios que le ayudarán a fortalecer su aprendizaje. Asimismo, al final del libro existe una sección de tres anexos: el 1 proporciona información fundamental sobre las distribuciones de probabilidad más comunes. El 2 describe de manera exhaustiva el significado de los resultados obtenidos en los reportes de ProModel. Finalmente, el 3 incluye un conjunto de tablas estadísticas que serán de utilidad en el análisis de los modelos.

Es importante destacar que el CD-ROM que se incluye con el libro contiene la versión estudiantil de **ProModel** con todas las funciones de la versión profesional, con la única restricción en cuanto al tamaño de los modelos que pueden construirse.

Agradecemos enormemente a nuestros colegas del departamento de Ingeniería Industrial y de Sistemas del ITESM-Campus Monterrey, por sus comentarios y por el impulso

que nos dieron para que este libro llegara a ser realidad, y a nuestros estudiantes por el interés mostrado con este proyecto. Queremos agradecer de una manera muy especial a ProModel por permitirnos incluir su software, y en especial a Daniel Villarreal Parás por su apoyo constante e incondicional para lograrlo. Por último, agradecemos a Pearson Educación de México por creer en nosotros.

Los autores

CAPÍTULO 1

PRINCIPIOS BÁSICOS DE LA SIMULACIÓN

- **1.1** Introducción a la simulación
- **1.2** Definiciones de simulación
- **1.3** Ventajas y desventajas de la simulación
- **1.4** Elementos clave para garantizar el éxito de un modelo de simulación
- **1.5** Pasos para realizar un estudio de simulación
- **1.6** Problemas

1.1 Introducción a la simulación

En años recientes, el advenimiento de nuevos y mejores desarrollos en el área de la computación ha traído consigo innovaciones igualmente importantes en los terrenos de la toma de decisiones y el diseño de procesos y productos. En este sentido, una de las técnicas de mayor impacto es la **simulación**.

Hoy en día, el analista tiene a su disposición una gran cantidad de software de simulación que le permite tomar decisiones en temas muy diversos. Por ejemplo, determinar la mejor localización de una nueva planta, diseñar un nuevo sistema de trabajo o efectuar el análisis productivo de un proceso ya existente pero que requiere mejoras. Sin duda, la facilidad que otorga a la resolución de éstas y muchas otras problemáticas, ha hecho de la simulación una herramienta cuyo uso y desarrollo se han visto significativamente alentados. Cada vez resulta más sencillo encontrar paquetes de software con gran capacidad de análisis, así como mejores animaciones y características para generación de reportes. En general, dichos paquetes —ya sea orientados a procesos, a servicios o de índole general— nos proveen de una enorme diversidad de herramientas estadísticas que permiten un manejo más eficiente de la información relevante bajo análisis, y una mejor presentación e interpretación de la misma.

El concepto de simulación engloba soluciones para muchos propósitos diferentes. Por ejemplo, podríamos decir que el modelo de un avión a escala que se introduce a una cámara por donde se hace pasar un flujo de aire, puede simular los efectos que experimentará un avión real cuando se vea sometido a turbulencia. Por otro lado, algunos paquetes permiten hacer la representación de un proceso de fresado o torneado: una vez que el usuario establezca ciertas condiciones iniciales, podrá ver cómo se llevaría a cabo el proceso real, lo que le permitiría revisarlo sin necesidad de desperdiciar material ni poner en riesgo la maquinaria.

Entre los distintos tipos de procesos de simulación que podemos utilizar, en este libro nos ocuparemos del que se basa en el uso de ecuaciones matemáticas y estadísticas, conocido como **simulación de eventos discretos**. Este proceso consiste en relacionar los diferentes eventos que pueden cambiar el estado de un sistema bajo estudio por medio de distribuciones de probabilidad y condiciones lógicas del problema que se esté analizando. Por ejemplo, un proceso de inspección donde sabemos estadísticamente que 0.2% de los productos tiene algún tipo de defecto puede simularse con facilidad mediante una simple hoja de cálculo, considerando estadísticas de rechazos y productos conformes, y asignando una distribución de probabilidad con 0.2% de oportunidad de defecto para cada intento de inspección.

En el presente capítulo abordaremos las definiciones básicas de los conceptos de la simulación de eventos discretos. En los siguientes se presentarán algunos otros elementos relevantes, como los números pseudo aleatorios y las pruebas estadísticas necesarias para comprobar esta aleatoriedad, la generación de variables aleatorias y la caracterización de algunas distribuciones de probabilidad de uso común en la simulación, lo cual nos permitirá realizar una simulación sencilla con ayuda de una hoja de cálculo. Por último, describiremos la utilización de un software comercial: Promodel, una versión limitada del cual se incluye en este libro.

1.2 Definiciones de simulación

Para poder realizar un buen estudio de simulación es necesario entender los conceptos básicos que componen nuestro modelo.

Comenzaremos por definir el concepto de **simulación de eventos discretos** como el conjunto de relaciones lógicas, matemáticas y probabilísticas que integran el comportamiento de un sistema bajo estudio cuando se presenta un evento determinado. El objetivo del modelo de simulación consiste, precisamente, en comprender, analizar y mejorar las condiciones de operación relevantes del sistema.

En la definición anterior encontramos elementos como sistema, modelo y evento, de los cuales se desprenden otros conceptos importantes dentro de una simulación, por lo que a continuación abundaremos en cada uno de ellos.

La definición básica de **sistema** nos dice que se trata de un *conjunto de elementos que se interrelacionan para funcionar como un todo*; desde el punto de vista de la simulación, tales elementos deben tener una frontera clara. Por ejemplo, podemos hablar del sistema de atención de clientes en un banco, del sistema de inventarios de una empresa o del sistema de atención en la sala de emergencia de un hospital. Cada uno de ellos puede dividirse en elementos que son relevantes para la construcción de lo que constituirá su modelo de simulación; entre ellos tenemos entidades, estado del sistema, eventos actuales y futuros, localizaciones, recursos, atributos, variables y el reloj de la simulación.

Una **entidad** es la *representación de los flujos de entrada a un sistema*; éste es el elemento responsable de que el estado del sistema cambie. Ejemplos de entidades pueden ser los clientes que llegan a la caja de un banco, las piezas que llegan a un proceso o el embarque de piezas que llega a un inventario.

El **estado del sistema** es la condición que guarda el sistema bajo estudio en un momento determinado; es como una fotografía de lo que está pasando en el sistema en cierto instante. El estado del sistema se compone de variables o características de operación puntuales (digamos el número de piezas que hay en el sistema en ese momento), y de variables o características de operación acumuladas, o promedio (como podría ser el tiempo promedio de permanencia de una entidad en el sistema, en una fila, almacén o equipo).

Un **evento** es un *cambio en el estado actual del sistema*; por ejemplo, la entrada o salida de una entidad, la finalización de un proceso en un equipo, la interrupción o reactivación de una operación (digamos por un descanso del operario), o la descompostura de una máquina. Podemos catalogar estos eventos en dos tipos: **eventos actuales**, que son aquellos que están sucediendo en el sistema en un momento dado, y **eventos futuros**, que son cambios que se presentarán en el sistema después del tiempo de simulación, de acuerdo con una programación específica. Por ejemplo, imagine que cierta pieza entra a una máquina para que ésta realice un proceso. El evento actual sería precisamente que la entidad llamada "pieza" se encuentra en la máquina. El evento futuro podría ser el momento en que la máquina concluirá su trabajo con la pieza y ésta seguirá su camino hacia el siguiente proceso lógico, de acuerdo con la programación: almacenamiento, inspección o entrada a otra máquina.

Las **localizaciones** son todos aquellos *lugares en los que la pieza puede detenerse para ser transformada o esperar a serlo*. Dentro de estas localizaciones tenemos almacenes, bandas transportadoras, máquinas, estaciones de inspección, etcétera.

Los **recursos** son aquellos *dispositivos* —diferentes a las localizaciones— *necesarios para llevar a cabo una operación*. Por ejemplo, un montacargas que transporta una pieza de un lugar a otro: una persona que realiza la inspección en una estación y toma turnos para descansar; una herramienta necesaria para realizar un proceso pero que no forma parte de una localización específica, sino que es trasladada de acuerdo con los requerimientos de aquel.

Un **atributo** es una *característica de una entidad*. Por ejemplo, si la entidad es un motor, los atributos serían su color, peso, tamaño o cilindraje. Los atributos son muy útiles para diferenciar entidades sin necesidad de generar una entidad nueva, y pueden adjudicarse al momento de la creación de la entidad, o asignarse y/o cambiarse durante el proceso.

Como indica su nombre, las **variables** son *condiciones cuyos valores se crean y modifi*can por medio de ecuaciones matemáticas y relaciones lógicas. Pueden ser continuas (por ejemplo, el costo promedio de operación de un sistema) o discretas (por ejemplo, el número de unidades que deberá empacarse en un contenedor). Las variables son muy útiles para realizar conteos de piezas y ciclos de operación, así como para determinar características de operación del sistema.

El **reloj de la simulación** es el contador de tiempo de la simulación, y su función consiste en responder preguntas tales como cuánto tiempo se ha utilizado el modelo en la simulación, y cuánto tiempo en total se quiere que dure esta última. En general, el reloj de simulación se relaciona con la tabla de eventos futuros, pues al cumplirse el tiempo programado para la realización de un evento futuro, éste se convierte en un evento actual. Regresando al ejemplo de la pieza en la máquina, cuando el tiempo de proceso se cumpla, la pieza seguirá su camino hasta su siguiente localización; el reloj de la simulación simula precisamente ese tiempo.

Podemos hablar de dos tipos de reloj de simulación: el **reloj de simulación absoluto**, que parte de cero y termina en un tiempo total de simulación definido, y el **reloj de simulación relativo**, que sólo considera el lapso de tiempo que transcurre entre dos eventos. Por ejemplo, podemos decir que el tiempo de proceso de una pieza es relativo, mientras que el tiempo absoluto sería el tiempo global de la simulación: desde que la pieza entró a ser procesada hasta el momento en el que terminó su proceso.

Como se mencionó antes, existen distintos **modelos** de simulación que permiten representar situaciones reales de diferentes tipos. Podemos tener modelos físicos —como el del avión que mencionamos en la sección anterior— o modelos matemáticos, a los cuales pertenecen los modelos de simulación de eventos discretos. Asimismo, los modelos pueden diferenciarse según el tipo de ecuaciones matemáticas que los componen. Por ejemplo, se conoce como **modelos continuos** a aquellos en los que las relaciones entre las variables relevantes de la situación real se definen por medio de ecuaciones diferenciales, dado que éstas permiten conocer el comportamiento de las variables en un lapso de tiempo continuo. Problemas como saber de qué manera se transfiere el calor en un molde o determinar cómo fluye cierto material dentro de una tubería, e incluso discernir el comportamiento del nivel de un tanque de gasolina al paso del tiempo mientras el vehículo está en marcha, pueden simularse en estos términos.

Además de modelos continuos tenemos **modelos discretos**. En ellos el comportamiento que nos interesa analizar puede representarse por medio de ecuaciones evaluadas en un punto determinado. Por ejemplo, si hacemos un muestreo del número de

personas que llegaron a un banco en un lapso de tiempo específico, podemos simular esta variable con ecuaciones ligadas a distribuciones de probabilidad que reflejen dicho comportamiento.

Otro tipo de clasificación es el de los modelos dinámicos o estáticos. Los **modelos dinámicos** son aquellos en los que el estado del sistema que estamos analizando cambia respecto del tiempo. Por ejemplo, el número de personas que hacen fila para entrar a una sala de cine varía con el tiempo. Por otro lado, los **modelos estáticos** representan un resultado bajo un conjunto de situaciones o condiciones determinado; por ejemplo, al lanzar un dado los únicos valores que se puede obtener son 1, 2, 3, 4, 5 o 6, de manera que el resultado de la simulación será uno de tales valores posibles; este tipo de simulación generalmente se conoce como simulación de Monte Carlo.

Por último, podemos hablar de **modelos determinísticos** y **modelos probabilísticos**, conocidos también como **estocásticos**. Los primeros se refieren a relaciones constantes entre los cambios de las variables del modelo. Por ejemplo, si las cajas empleadas en un proceso contienen siempre 5 productos, cada vez que se añada una caja al inventario éste se incrementará en 5 unidades. Si, por el contrario, se da una distribución de probabilidad en el proceso de manera que algunas cajas contienen 3 productos, otras 4 y así por el estilo, el inventario se modificará según el número de piezas de cada caja y, en consecuencia, será necesario un modelo estocástico. En el caso de la simulación de eventos discretos hablaremos de modelos matemáticos, discretos, dinámicos, y que pueden incluir variables determinísticas y probabilísticas.

Ejemplo 1.1

Un taller recibe ciertas piezas, mismas que son acumuladas en un almacén temporal en donde esperan a ser procesadas. Esto ocurre cuando un operario transporta las piezas del almacén a un torno. Desarrolle un modelo que incluya el número de piezas que hay en el almacén esperando a ser atendidas en todo momento, y el número de piezas procesadas en el torno.

En la siguiente figura podemos observar cómo se vería un modelo de simulación para este ejemplo.

Figura 1.1 Modelo de simulación para el ejemplo 1.1

En este ejemplo podemos identificar algunos de los elementos que participan en un modelo de simulación, de acuerdo con las definiciones que hemos comentado:

Sistema: En este caso, el sistema está conformado por el conjunto de elementos interrelacionados para el funcionamiento del proceso: las piezas, el almacén temporal, el operario, el torno.

Entidades: En este modelo sólo tenemos una entidad: las piezas, que representan los flujos de entrada al sistema del problema bajo análisis.

Estado del sistema: Podemos observar que cuando llevamos 1 hora 10 minutos de simulación (vea el extremo superior derecho de la figura) en el almacén se encuentran 9 piezas esperando a ser procesadas; el operario está transportando una pieza más para procesarla en el torno. El torno, por lo tanto, no está trabajando en ese momento, aunque ya ha procesado 4 piezas. Además de estos datos, podemos llevar un control de otras estadísticas relacionadas con el estado del sistema, como el tiempo promedio de permanencia de las piezas en los estantes del almacén temporal o en el sistema global.

Eventos: Entre otros, podríamos considerar como eventos de este sistema el tiempo de descanso del operario o la salida de una pieza tras ser procesada por el torno. Además es posible identificar un evento futuro: la llegada de la siguiente pieza al sistema (tendríamos más eventos de este tipo respecto de las piezas que esperan a que el operario las tome). **Localizaciones:** En este caso tenemos el almacén al que deberán llegar las piezas y en el que esperarán a ser procesadas, así como el torno en donde esto ocurrirá.

Recursos: En este modelo, un recurso es el operario que transporta las piezas del almacén al torno.

Atributos: Digamos que (aunque no se menciona en el ejemplo) las piezas pueden ser de tres tamaños diferentes. En este caso, un atributo llamado tamaño podría agregarse a la información de cada pieza que llega al sistema, para posteriormente seleccionar el tipo de operación que deberá realizarse y el tiempo necesario para llevarla a cabo de acuerdo con dicho atributo.

Variables: Tenemos dos variables definidas en este caso: el número de piezas en el almacén y el número de piezas procesadas en el torno.

Reloj de la simulación: Como se puede ver en la esquina superior derecha de la figura 1.1, en este momento la simulación lleva 1 hora 10 minutos. El reloj de la simulación continuará avanzando hasta el momento que se haya establecido para el término de la simulación, o hasta que se cumpla una condición lógica para detenerla, por ejemplo, el número de piezas que se desean simular.

Otro concepto importante que vale la pena definir es el de **réplica** o **corrida** de la simulación. Cuando ejecutamos el modelo en una ocasión, los valores que obtenemos de las variables y parámetros al final del tiempo de simulación generalmente serán distintos de los que se producirán si lo volvemos a correr usando diferentes números pseudo aleatorios. Por lo tanto, es necesario efectuar más de una réplica del modelo que se esté analizando, con la finalidad de obtener estadísticas de intervalo que nos den una mejor ubicación del verdadero valor de la variable bajo los diferentes escenarios que se presentan al modificar los números pseudo aleatorios en cada oportunidad.

En este sentido, la pregunta clave es cuánto tiempo se debe simular un modelo para obtener resultados confiables. En general, podemos decir que todas las variables que se obtienen en términos de promedios presentan dos diferentes etapas: un **estado transitorio** y un **estado estable**. El primero se presenta al principio de la simulación; por ejemplo, en el arranque de una planta, cuando no tiene material en proceso: el último de los procesos estará inactivo hasta que el primer cliente llegue, y si el tiempo de simulación es bajo, su impacto sobre la utilización promedio de este proceso será muy alto, lo cual no ocurriría si el modelo se simulara lo suficiente para lograr una compensación. En el estado transitorio hay mucha variación entre los valores promedio de las variables de decisión del modelo, por lo que formular conclusiones con base en ellos sería muy arriesgado, toda vez que difícilmente nos darían una representación fiel de la realidad.

Por otro lado, en el **estado estable** los valores de las variables de decisión permanecen muy estables, presentando sólo variaciones poco significativas. En este momento las decisiones que se tomen serán mucho más confiables. Sin embargo no todas las variables convergen al estado estable con la misma rapidez: algunas pasan con más lentitud que otras de un estado transitorio a un estado estable. Es responsabilidad del analista verificar que las variables de decisión del modelo se encuentren en estado estable antes de detener el tiempo de la simulación.

Otro factor importante para decidir el tiempo de simulación es el costo de la corrida. Mayor tiempo de simulación requiere más tiempo computacional, lo cual implica, necesariamente, un costo más alto. Por supuesto, la situación empeora si a esto le agregamos que en algunos casos es necesario efectuar más de tres réplicas.

Figura 1.2Gráfica de estabilización de una variable

1.3 Ventajas y desventajas de la simulación

Como hemos visto hasta ahora, la simulación es una de las diversas herramientas con las que cuenta el analista para tomar decisiones y mejorar sus procesos. Sin embargo, es necesario destacar que, como todas las demás opciones de que disponemos, la simulación de eventos discretos presenta ventajas y desventajas que es preciso tomar en cuenta al determinar si es apta para resolver un problema determinado.

Dentro de las ventajas más comunes que ofrece la simulación podemos citar las siquientes:

- a) Es muy buena herramienta para conocer el impacto de los cambios en los procesos sin necesidad de llevarlos a cabo en la realidad.
- b) Mejora el conocimiento del proceso actual al permitir que el analista vea cómo se comporta el modelo generado bajo diferentes escenarios.
- c) Puede utilizarse como medio de capacitación para la toma de decisiones.
- d) Es más económico realizar un estudio de simulación que hacer muchos cambios en los procesos reales.
- e) Permite probar varios escenarios en busca de las mejores condiciones de trabajo de los procesos que se simulan.
- f) En problemas de gran complejidad, la simulación permite generar una buena solución.
- g) En la actualidad los paquetes de software para simulación tienden a ser más sencillos, lo que facilita su aplicación.
- h) Gracias a las herramientas de animación que forman parte de muchos de esos paquetes es posible ver cómo se comportará un proceso una vez que sea mejorado.

Entre las desventajas que puede llegar a presentar la simulación están:

- a) Aunque muchos paquetes de software permiten obtener el mejor escenario a partir de una combinación de variaciones posibles, la simulación no es una herramienta de optimización.
- b) La simulación puede ser costosa cuando se quiere emplearla en problemas relativamente sencillos de resolver, en lugar de utilizar soluciones analíticas que se han desarrollado de manera específica para ese tipo de casos.
- c) Se requiere bastante tiempo —generalmente meses— para realizar un buen estudio de simulación; por desgracia, no todos los analistas tienen la disposición (o la oportunidad) de esperar ese tiempo para obtener una respuesta.
- d) Es preciso que el analista domine el uso del paquete de simulación y que tenga sólidos conocimientos de estadística para interpretar los resultados.

1.4 Elementos clave para garantizar el éxito de un modelo de simulación

Independientemente de los beneficios que conlleva la simulación, es imposible garantizar que un modelo tendrá éxito. Existen ciertas condiciones clave que pueden traer problemas si no se les pone atención al momento de usar la simulación para la toma de decisiones. A continuación destacaremos algunas de las causas por las que un modelo de simulación podría no tener los resultados que se desean:

Tamaño insuficiente de la corrida. Como se mencionó antes, para poder llegar a conclusiones estadísticas válidas a partir de los modelos de simulación es necesario que las variables aleatorias de respuesta estén en estado estable. El problema estriba en que, ge-

neralmente, cuando el modelo consta de más de una variable de decisión, es difícil que éstas alcancen un estado estable al mismo tiempo: es posible que una se encuentre estable y la otra no en un momento determinado, por lo que las conclusiones respecto de la segunda variable no serán estadísticamente confiables.

Variable(s) de respuesta mal definida(s). Aun cuando el modelo de simulación sea muy eficiente y represente la realidad en gran medida, si la variable de respuesta seleccionada no es la apropiada será imposible tomar decisiones que tengan impacto en la operación del sistema bajo estudio.

Por ejemplo, digamos que una variable de respuesta es el nivel de inventarios de cierto producto. Al mismo tiempo, la política de la empresa establece que no se debe parar ninguno de los procesos de fabricación. En consecuencia, el problema no será el inventario final, sino el ritmo de producción necesario para que aquel cumpla con los requerimientos de diseño que se desean.

Errores al establecer las relaciones entre las variables aleatorias. Un error común de programación es olvidar las relaciones lógicas que existen entre las variables aleatorias del modelo, o minimizar su impacto. Si una de estas variables no está definida de manera correcta, ciertamente aún es posible tener un modelo que se apegue a la realidad actual; sin embargo, si el sistema no se lleva hasta su máxima capacidad para observar su comportamiento, podría resultar imposible visualizar el verdadero impacto de las deficiencias.

Errores al determinar el tipo de distribución asociado a las variables aleatorias del modelo. Este tipo de problema es muy similar al anterior, sólo que en este caso se utilizan distribuciones que no son las más adecuadas o que responden únicamente a un intento de simplificar los estudios estadísticos. Digamos, por ejemplo, que se nos dan los siguientes parámetros de producción aproximados: mínimo 10, máximo 40 y promedio 30. En esta circunstancia la tentación de simplificar el estudio de la variable asignándole una distribución triangular con parámetros (10, 30, 40) es muy grande; no obstante, hacerlo afectaría de manera importante los resultados de la simulación, pues el modelo podría alejarse de lo que sucede en la realidad.

Falta de un análisis estadístico de los resultados. Un problema común por el que la simulación suele ser objeto de crítica, radica en asumir que se trata de una herramienta de optimización. Esta apreciación es incorrecta, ya que involucra variables aleatorias y características propias de un modelo que incluye probabilidades. Por lo mismo —como se apuntó antes—, es necesario realizar varias corridas a fin de producir diferentes resultados finales para las variables de respuesta y, a partir de esos valores, obtener intervalos de confianza que puedan dar un rango en dónde encontrar los valores definitivos. Este tipo de problemas se presentan también al comparar dos escenarios: podríamos encontrar un mejor resultado para uno de ellos, pero si los intervalos de confianza de las variables de respuesta se traslapan resultaría imposible decir que el resultado de un escenario es mejor que el del otro. De hecho, estadísticamente hablando ambos resultados pueden ser iguales. En ese caso incrementar el tamaño de corrida o el número de réplicas puede ayudar a obtener mejores conclusiones.

Uso incorrecto de la información obtenida. Un problema que se presenta en ocasiones es el uso incorrecto de la información recabada para la realización del estudio, ya sea a través de un cliente o de cualesquiera otras fuentes. Muchas veces esta información se recolecta, analiza y administra de acuerdo con las necesidades propias de la empresa, lo

que implica que no siempre está en el formato y la presentación que se requiere para la simulación. Si la información se utiliza para determinar los parámetros del modelo sin ser depurada y reorganizada, es muy probable que la precisión de los resultados del estudio se vea afectada.

Falta o exceso de detalle en el modelo. Otro punto importante a considerar es el nivel de detalle del modelo. En muchas ocasiones algún proceso se simplifica tanto que tiende a verse como una "caja negra" que nos impide ver qué ocurre en el interior, aunque sí haya entrada y salida de datos que interactúan con otras partes del modelo. Cuando esto sucede, el impacto que podrían tener los subprocesos que se llevan a cabo en la "caja negra" (es decir, del proceso sobresimplificado) no se incluye en la simulación. Por ejemplo, si se analiza un sistema de distribución y se da por sentado que el almacén siempre surte sus pedidos, no incluiremos el impacto de los tiempos necesarios para surtir las órdenes, ni la posibilidad de que haya faltantes de producto; excluiremos también los horarios de comida, en los que no se surten pedidos, y las fallas en los montacargas que transportan los pedidos hasta los camiones para su distribución. Por otra parte, si el modelo se hace demasiado detallado, tanto el tiempo dedicado al estudio como el costo de llevarlo a cabo podrían incrementarse sustancialmente. Es labor del encargado de la simulación sugerir y clarificar los niveles de detalle que se requieren en el modelo, resaltando los alcances y limitaciones de cada uno.

1.5 Pasos para realizar un estudio de simulación

Debemos considerar que —igual a como ocurre con otras herramientas de investigación— la realización de un estudio de simulación requiere la ejecución de una serie de actividades y análisis que permitan sacarle el mejor provecho. A continuación se mencionan los pasos básicos para realizar un estudio de simulación, aunque en muchas ocasiones será necesario agregar otros o suprimir algunos de los aquí enumerados, de acuerdo con la problemática en cuestión.

1. Definición del sistema bajo estudio. En esta etapa es necesario conocer el sistema a modelar. Para ello se requiere saber qué origina el estudio de simulación y establecer los supuestos del modelo: es conveniente definir con claridad las variables de decisión del modelo, determinar las interacciones entre éstas y establecer con precisión los alcances y limitaciones que aquel podría llegar a tener.

Antes de concluir este paso es recomendable contar con la información suficiente para lograr establecer un modelo conceptual del sistema bajo estudio, incluyendo sus fronteras y todos los elementos que lo componen, además de las interacciones entre éstos, flujos de productos, personas y recursos, así como las variables de mayor interés para el problema.

2. Generación del modelo de simulación base. Una vez que se ha definido el sistema en términos de un modelo conceptual, la siguiente etapa del estudio consiste en la generación de un modelo de simulación base. No es preciso que este modelo sea demasiado detallado, pues se requiere mucha más información estadística sobre el comportamiento de las variables de decisión del sistema. La generación de este modelo es el primer reto para el programador de la simulación, toda vez que debe traducir a un lenguaje de simulación

la información que se obtuvo en la etapa de definición del sistema, incluyendo las interrelaciones de todos los posibles subsistemas que existan en el problema a modelar. En caso de que se requiera una animación, éste también es un buen momento para definir qué gráfico puede representar mejor el sistema que se modela.

Igual que ocurre en otras ramas de la investigación de operaciones, la simulación exige ciencia y arte en la generación de sus modelos. El realizador de un estudio de simulación es, en este sentido, como un artista que debe usar toda su creatividad para realizar un buen modelo que refleje la realidad del problema que se está analizando. Conforme se avanza en el modelo base se pueden ir incluyendo las variables aleatorias del sistema, con sus respectivas distribuciones de probabilidad asociadas.

- **3. Recolección y análisis de datos.** De manera paralela a la generación del modelo base, es posible comenzar la recopilación de la información estadística de las variables aleatorias del modelo. En esta etapa se debe determinar qué información es útil para la determinación de las distribuciones de probabilidad asociadas a cada una de las variables aleatorias innecesarias para la simulación. Aunque en algunos casos se logra contar con datos estadísticos, suele suceder que el formato de almacenamiento o de generación de reportes no es el apropiado para facilitar el estudio. Por ello es muy importante dedicar el tiempo suficiente a esta actividad. De no contar con la información necesaria o en caso de desconfiar de la que se tiene disponible, será necesario realizar un estudio estadístico del comportamiento de la variable que se desea identificar, para posteriormente incluirla en el modelo. El análisis de los datos necesarios para asociar una distribución de probabilidad a una variable aleatoria, así como las pruebas que se debe aplicar a los mismos, se analizarán más adelante. Al finalizar la recolección y análisis de datos para todas las variables del modelo, se tendrán las condiciones necesarias para generar una versión preliminar del problema que se está simulando.
- **4. Generación del modelo preliminar.** En esta etapa se integra la información obtenida a partir del análisis de los datos, los supuestos del modelo y todos los datos que se requieran para tener un modelo lo más cercano posible a la realidad del problema bajo estudio. En algunos casos —sobre todo cuando se trata del diseño de un nuevo proceso o esquema de trabajo— no se cuenta con información estadística, por lo que debe estimarse un rango de variación o determinar (con ayuda del cliente) valores constantes que permitan realizar el modelado. Si éste es el caso, el encargado de la simulación puede, con base en su experiencia, realizar algunas sugerencias de distribuciones de probabilidad que comúnmente se asocien al tipo de proceso que se desea incluir en el modelo. Al finalizar esta etapa el modelo está listo para su primera prueba: su verificación o, en otras palabras, la comparación con la realidad.
- **5. Verificación del modelo.** Una vez que se han identificado las distribuciones de probabilidad de las variables del modelo y se han implantado los supuestos acordados, es necesario realizar un proceso de verificación de datos para comprobar la propiedad de la programación del modelo, y comprobar que todos los parámetros usados en la simulación funcionen correctamente. Ciertos problemas, en especial aquellos que requieren muchas operaciones de programación o que involucran distribuciones de probabilidad difíciles de programar, pueden ocasionar que el comportamiento del sistema sea muy diferente del que se esperaba. Por otro lado, no se debe descartar la posibilidad de que ocurran errores humanos al alimentar el modelo con la información. Incluso podría darse el

caso de que los supuestos iniciales hayan cambiado una o varias veces durante el desarrollo del modelo. Por lo tanto, debemos asegurarnos de que el modelo que se va a ejecutar esté basado en los más actuales.

Una vez que se ha completado la verificación, el modelo está listo para su comparación con la realidad del problema que se está modelando. A esta etapa se le conoce también como validación del modelo.

6. Validación del modelo. El proceso de validación del modelo consiste en realizar una serie de pruebas al mismo, utilizando información de entrada real para observar su comportamiento y analizar sus resultados.

Si el problema bajo simulación involucra un proceso que se desea mejorar, el modelo debe someterse a prueba con las condiciones actuales de operación, lo que nos dará como resultado un comportamiento similar al que se presenta realmente en nuestro proceso. Por otro lado, si se está diseñando un nuevo proceso la validación resulta más complicada. Una manera de validar el modelo en este caso, consiste en introducir algunos escenarios sugeridos por el cliente y validar que el comportamiento sea congruente con las expectativas que se tienen de acuerdo con la experiencia. Cualquiera que sea la situación, es importante que el analista conozca bien el modelo, de manera que pueda justificar aquellos comportamientos que sean contrarios a las experiencias de los especialistas en el proceso que participan de su validación.

- **7. Generación del modelo final.** Una vez que el modelo se ha validado, el analista está listo para realizar la simulación y estudiar el comportamiento del proceso. En caso de que se desee comparar escenarios diferentes para un mismo problema, éste será el *modelo raíz*; en tal situación, el siguiente paso es la definición de los escenarios a analizar.
- 8. Determinación de los escenarios para el análisis. Tras validar el modelo es necesario acordar con el cliente los escenarios que se quiere analizar. Una manera muy sencilla de determinarlos consiste en utilizar un escenario pesimista, uno optimista y uno intermedio para la variable de respuesta más importante. Sin embargo, es preciso tomar en cuenta que no todas las variables se comportan igual ante los cambios en los distintos escenarios, por lo que tal vez sea necesario que más de una variable de respuesta se analice bajo las perspectivas pesimista, optimista e intermedia. El riesgo de esta situación radica en que el analista podría caer en un diseño de experimentos capaz de generar una gran cantidad de réplicas, lo que redundaría en un incremento considerable de costo, análisis y tiempo de simulación. Es por ello que muchos paquetes de simulación cuentan con herramientas para realizar este proceso, eliminando la animación y acortando los tiempos de simulación. Estas herramientas permiten realizar varias réplicas del mismo escenario para obtener resultados con estadísticas importantes respecto de la toma de decisiones (por ejemplo, los intervalos de confianza).

Por su parte, el analista también puede contribuir a la selección de escenarios, sugiriendo aquellos que considere más importantes; al hacerlo dará pie a que se reduzca el número de combinaciones posibles.

9. Análisis de sensibilidad. Una vez que se obtienen los resultados de los escenarios es importante realizar pruebas estadísticas que permitan comparar los escenarios con los mejores resultados finales. Si dos de ellos tienen resultados similares será necesario comparar sus intervalos de confianza respecto de la variable de respuesta final. Si no hay intersección de intervalos podremos decir con certeza estadística que los resultados no son

iguales; sin embargo, si los intervalos se traslapan será imposible determinar, estadísticamente hablando, que una solución es mejor que otra. Si se desea obtener un escenario "ganador" en estos casos, será necesario realizar más réplicas de cada modelo y/o incrementar el tiempo de simulación de cada corrida. Con ello se busca acortar los intervalos de confianza de las soluciones finales y, por consiguiente, incrementar la probabilidad de diferenciar las soluciones.

10. Documentación del modelo, sugerencias y conclusiones. Una vez realizado el análisis de los resultados, es necesario efectuar toda la documentación del modelo.

Esta documentación es muy importante, pues permitirá el uso del modelo generado en caso de que se requieran ajustes futuros. En ella se deben incluir los supuestos del modelo, las distribuciones asociadas a sus variables, todos sus alcances y limitaciones y, en general, la totalidad de las consideraciones de programación. También es importante incluir sugerencias tanto del uso del modelo como sobre los resultados obtenidos, con el propósito de realizar un reporte más completo. Por último, deberán presentarse asimismo las conclusiones del proyecto de simulación, a partir de las cuales es posible obtener los reportes ejecutivos para la presentación final.

En la figura 1.3 se presenta una gráfica de Gantt en donde se muestra, a manera de ejemplo, la planificación de los pasos para realizar una simulación que hemos comentado en esta sección.

Actividad							
Definición del sistema							
Modelo de simulación base							
Recolección y análisis de datos							
Modelo preliminar de simulación							
Verificación del modelo							
Validación del modelo							
Modelo final de simulación							
Determinación de escenarios							
Análisis de sensibilidad							
Documentación final							
							Tiempo

Figura 1.3 Gráfica de Gantt de un proyecto de simulación

1.6 Problemas

- 1. Determine los elementos de cada uno de los siguientes sistemas, de acuerdo con lo que se comentó en la sección 1.2.
 - a) La sala de emergencia de un hospital.
 - b) Un banco mercantil.

- c) Una línea telefónica de atención a clientes.
- *d*) La recepción de un hotel.
- e) Un taller de tornos.
- f) El proceso de pintura de un automóvil.
- Determine los elementos de cada uno de estos sistemas, de acuerdo con lo que se analizó en la sección 1.2.
 - a) El sistema de mantenimiento de los equipos de una empresa, llevado a cabo por una cuadrilla de personas.
 - b) Un aeropuerto.
 - c) Una bodega de distribución de productos.
 - d) Una línea embotelladora de refrescos.
 - e) Un sistema de control de tránsito para la ciudad.
 - f) Una línea de armado de refrigeradores.
- 3. Determine cuáles podrían ser las entidades en cada uno de los siguientes sistemas.
 - a) Un cajero automático.
 - b) Un sistema automático de inspección de botellas.
 - c) Una máquina dobladora de lámina.
 - d) Un proceso de empaque de televisores.
- 4. Determine cuáles podrían ser las entidades en cada uno de los siguientes sistemas.
 - a) Un sistema de distribución de paquetería.
 - b) Un sistema de cobranza.
 - c) Un conmutador telefónico.
 - d) Un departamento de devolución de mercancía.
- 5. Determine qué atributos podrían ser relevantes para la simulación de los siguientes sistemas.
 - a) El maquinado de una familia de engranes.
 - b) Un proceso de pintura de refrigeradores.
 - c) Un sistema de recepción de materia prima.
 - d) Un proceso de soldadura para varios productos.
- 6. Determine qué atributos podrían ser relevantes para la simulación de los siguientes sistemas.
 - a) Un proceso de empaque de 10 productos por caja, donde cada producto es diferente.
 - b) Un proceso de separación de 3 productos para enviarlos a sus respectivas áreas de procesamiento.
 - c) Un sistema de inspección de calidad de piezas maquinadas.
 - d) Un sistema de programación de mantenimiento que califica sus trabajos como urgentes y no urgentes, además de asignarles etiquetas de "Pendiente de asignar", "Asignado", "En proceso" y "Terminado".

7. Determine el promedio móvil de los números de la tabla siguiente y grafique los promedios, ¿llega a estado estable la gráfica? En caso afirmativo, ¿a partir de qué valor se puede considerar el inicio del estado estable?

0.563	0.240	0.558	0.805	0.417	0.545	0.549	0.559	0.772	0.233
0.102	0.471	0.569	0.380	0.822	0.687	0.710	0.935	0.139	0.454
0.095	0.136	0.919	0.150	0.165	0.977	0.130	0.110	0.252	0.444
0.950	0.941	0.741	0.933	0.081	0.830	0.457	0.186	0.550	0.893
0.903	0.113	0.111	0.876	0.001	0.622	0.461	0.069	0.916	0.348
0.942	0.380	0.876	0.534	0.659	0.827	0.593	0.428	0.916	0.730
0.093	0.469	0.574	0.562	0.191	0.214	0.267	0.786	0.322	0.476
0.558	0.089	0.397	0.015	0.860	0.961	0.775	0.046	0.112	0.756
0.425	0.733	0.879	0.444	0.886	0.638	0.661	0.289	0.890	0.513
0.178	0.051	0.598	0.328	0.041	0.267	0.556	0.814	0.326	0.795
0.226	0.145	0.508	0.611	0.760	0.979	0.020	0.601	0.145	0.123

Promedio móvil: $r_n = \frac{1}{n} \sum_{i=1}^{n} r_i$ para n = 1, 2, ..., 100

8. Determine el promedio móvil de los números de la tabla siguiente y grafique los promedios, ¿llega a estado estable la gráfica? En caso afirmativo, ¿a partir de qué valor se puede considerar el inicio del estado estable?

0.899	0.053	0.141	0.226	0.506	0.523	0.316	0.870	0.614	0.844
0.873	0.402	0.823	0.476	0.969	0.472	0.248	0.326	0.221	0.946
0.209	0.925	0.873	0.965	0.525	0.055	0.454	0.560	0.789	0.083
0.048	0.317	0.680	0.372	0.821	0.474	0.559	0.849	0.366	0.852
0.801	0.048	0.721	0.525	0.363	0.433	0.151	0.335	0.668	0.528
0.970	0.354	0.276	0.638	0.527	0.776	0.285	0.084	0.438	0.942
0.111	0.888	0.010	0.529	0.852	0.536	0.704	0.804	0.095	0.329
0.784	0.570	0.885	0.165	0.020	0.224	0.425	0.300	0.801	0.831
0.942	0.888	0.367	0.343	0.703	0.365	0.457	0.110	0.891	0.320
0.734	0.165	0.085	0.962	0.692	0.123	0.588	0.738	0.388	0.984

Promedio móvil: $r_n = \frac{1}{n} \sum_{i=1}^{n} r_i$ para n = 1, 2, ..., 100

9. Genere en una hoja de cálculo 100 números con la función $x_i = -3\ln(1-r_i)$, donde r_i es un número pseudo aleatorio entre cero y uno, obtenido a partir de la función ALEATORIO de la hoja de cálculo. Suponga que estos valores son tiempos de proceso de cierta pieza. Determine un promedio móvil de estos valores conforme se va realizando el procesamiento de las piezas, y grafique ese promedio. ¿El tiempo promedio

- de proceso es estable? ¿Y si ahora se generan 200 números? (Sugerencia: Para evitar que se recalculen los números aleatorios, es necesario copiarlos y pegarlos usando un pegado especial de sólo valores.)
- 10. Genere en una hoja de cálculo 100 números con la función $x_i = 5 + 10r_i$, donde r_i es un número pseudo aleatorio entre cero y uno, obtenido a partir de la función ALEA-TORIO de la hoja de cálculo. Suponga que estos valores son tiempos de atención a clientes en un banco. Determine un promedio móvil de estos valores conforme se va realizando la atención de los clientes, y grafique ese promedio. ¿El tiempo promedio de atención a clientes es estable? ¿Y si ahora se generan 200 números?

CAPÍTULO 2

NÚMEROS PSEUDO ALEATORIOS

- 2.1 Los números pseudo aleatorios
- **2.2** Generación de números pseudo aleatorios
 - **2.2.1** Algoritmo de cuadrados medios
 - **2.2.2** Algoritmo de productos medios
 - **2.2.3** Algoritmo de multiplicador constante
 - **2.2.4** Algoritmo lineal
 - **2.2.5** Algoritmo congruencial multiplicativo
 - **2.2.6** Algoritmo congruencial aditivo
 - **2.2.7** Algoritmos congruenciales no lineales
- 2.3 Propiedades de los números pseudo aleatorios entre 0 y 1
- **2.4** Pruebas estadísticas para los números pseudo aleatorios
 - **2.4.1** Prueba de medias
 - **2.4.2** Prueba de varianza
 - **2.4.3** Pruebas de uniformidad
 - **2.4.4** Pruebas de independencia
- **2.5** Problemas

2.1 Los números pseudo aleatorios

Para poder realizar una simulación que incluya variabilidad dentro de sus eventos, es preciso generar una serie de números que sean aleatorios por sí mismos, y que su aleatoriedad se extrapole al modelo de simulación que se está construyendo. Como puede comprender, en la construcción del modelo los números aleatorios juegan un papel relevante.

Así, una de las primeras tareas que es necesario llevar a cabo consiste en determinar si los números que utilizaremos para "correr" o ejecutar la simulación son realmente aleatorios o no; por desgracia, precisar lo anterior con absoluta certidumbre resulta muy complicado, ya que para ello tendríamos que generar un número infinito de valores que nos permitiera comprobar la inexistencia de correlaciones entre ellos. Esto sería muy costoso y tardado, volviendo impráctico el uso de la simulación aun con las computadoras más avanzadas.

A pesar de lo anterior, podemos asegurar con altos niveles de confiabilidad que el conjunto de números que utilizaremos en una simulación se comportan de manera muy similar a un conjunto de números totalmente aleatorios; por ello es que se les denomina números pseudo aleatorios. Casi todas las aplicaciones comerciales tienen varios generadores de números pseudo aleatorios que pueden generar un conjunto muy grande de números sin mostrar correlación entre ellos. En el presente capítulo discutiremos algunos de los métodos de generación de números pseudo aleatorios, y precisaremos qué características deben tener para emplearlos como una fuente confiable de variabilidad dentro de los modelos. Asimismo se mostrarán algunas de las pruebas más comunes para comprobar qué tan aleatorios son los números obtenidos con dichos generadores.

2.2 Generación de números pseudo aleatorios

Para realizar una simulación se requieren números aleatorios en el intervalo (0,1), a los cuales se hará referencia como r_i , es decir, una secuencia $r_i = \{r_1, r_2, r_3, ..., r_n\}$ que contiene n números, todos ellos diferentes; n recibe el nombre de periodo o ciclo de vida del generador que creó la secuencia r_i .

Los r_i constituyen la parte medular de la simulación de procesos estocásticos, y generalmente se usan para generar el comportamiento de variables aleatorias, tanto continuas como discretas. Debido a que no es posible generar números realmente aleatorios, consideramos los r_i como números pseudo aleatorios, generados por medio de algoritmos determinísticos que requieren parámetros de arranque.

Para simular el comportamiento de una o más variables aleatorias es necesario contar con un conjunto suficientemente grande de r_i que permita, por ejemplo, que la secuencia tenga al menos un periodo de vida de $n=2^{31}=2$ 147 483 648. De acuerdo con L'Ecuyer [4] una secuencia de r_i con periodo de vida de $n=2^{31}$ es relativamente pequeña; de hecho, incluso una secuencia de r_i que contenga un ciclo de vida de $n=2^{64}$ se considera pequeña. En la actualidad contamos ya con generadores y procesadores capaces de construir una secuencia de r_i con periodo de vida de $n=2^{200}$.

Probablemente el lector se preguntará por qué debe interesarnos construir una secuencia de números r_i suficientemente grande. A continuación ilustraremos la razón mediante un ejemplo. Suponga que queremos simular el tiempo de atención a clientes en un

banco que tiene 5 cajeros en paralelo, cada uno de los cuales atiende aproximadamente 50 clientes diarios. Para simular el tiempo de atención se requiere un generador de variable aleatoria en función de r_i , por ejemplo $T_i = 5 + 2r_i$, expresado minutos para toda i = 1, 2, 3, ..., n. (El tema de generadores de variables aleatorias se presenta en el capítulo 3.) Si simulamos el tiempo de atención de manera aislada, es decir, sin considerar el tiempo transcurrido desde la llegada de éstos, serán necesarios $5 \times 50 = 250$ números r_i para simular un día; si deseáramos simular 5 días se necesitarían $250 \times 5 = 1$ 250 r_i . Ahora bien, si consideramos el tiempo desde la llegada de los clientes, precisaríamos de 250 r_i para simular el tiempo transcurrido desde la llegada al banco de los 250 clientes por día, y $250 \times 5 = 1$ 250 r_i para simular el correspondiente al total de clientes atendidos durante 5 días. Por lo tanto, se requerirán 2 500 números pseudo aleatorios r_i para simular la operación del banco durante 5 días.

Como se mencionó antes, los resultados no pueden basarse en una sola simulación del sistema; por el contrario, es necesario realizar varias *réplicas* de la misma, corriendo cada una de ellas con números pseudo aleatorios diferentes. Retomando el ejemplo del banco, simular 5 días otra vez significa que necesitamos otros 2 500 números pseudo aleatorios en el intervalo (0,1). En consecuencia, se requieren 5 000 r_i para realizar la simulación del sistema de atención a clientes con dos réplicas.

El lector podrá imaginar cuántos números r_i serán necesarios para simular la operación del banco durante un año con 9 réplicas, o cuántos números r_i se requieren para simular un sistema productivo durante un año, con varias líneas de producción, y cada línea de producción con varias estaciones, y cada estación con uno o más procesos.

Dada la importancia de contar con un conjunto de r_i suficientemente grande, en esta sección se presentan diferentes algoritmos determinísticos para obtenerlo. Por otra parte, es conveniente señalar que el conjunto de r_i debe ser sometido a una variedad de pruebas para verificar si los números que lo conforman son realmente independientes y uniformes. (Las pruebas estadísticas que determinan si un conjunto r_i tiene las propiedades de independencia y uniformidad se cubren en la sección 2.4.) Una vez generado el conjunto r_i mediante un algoritmo determinístico, es necesario someterlo a las pruebas antes mencionadas: si las supera, podrá utilizarse en la simulación; de lo contrario, simplemente deberemos desecharlo.

Un conjunto de r_i debe seguir una distribución uniforme continua, la cual está definida por:

$$f(r) = \begin{cases} 1, & 0 \le r \le 1 \\ 0, & \text{en cualquier otro valor} \end{cases}$$

Generar un conjunto de r_i es una tarea relativamente sencilla; para ello, el lector sólo tiene que diseñar su propio algoritmo de generación. Lo que resulta difícil es diseñar un algoritmo que genere un conjunto de r_i con periodo de vida suficientemente grande (N), y que además pase sin problema las pruebas de uniformidad e independencia, lo cual implica evitar problemas como éstos:

• Que los números del conjunto r_i no estén uniformemente distribuidos, es decir, que haya demasiados r_i en un subintervalo y en otro muy pocos o ninguno.

- Que los números r, generados sean discretos en lugar de continuos.
- Que la media del conjunto sea muy alta o muy baja, es decir, que esté por arriba o por debajo de ½.
- Que la varianza del conjunto sea muy alta o muy baja, es decir, que se localice por arriba o por debajo del 1/12 (la obtención de estos valores se discute en la sección 2.3).

En ocasiones se presentan también anomalías como números r_i seguidos por arriba o por debajo de la media; secuencia de r_i por arriba de la media, seguida de una secuencia por debajo de la media, y viceversa, o varios r_i seguidos en forma ascendente o descendente.

A continuación se presentan diferentes algoritmos determinísticos para generar los r_i , los cuales se clasifican en algoritmos no congruenciales y congruenciales. Los algoritmos no congruenciales que analizaremos en esta obra son cuadrados medios, productos medios y multiplicador constante. Entre los algoritmos congruenciales se encuentran los algoritmos congruenciales lineales y los no lineales. En este libro abordaremos los algoritmos congruenciales lineales —tales como algoritmo congruencial lineal, multiplicativo y aditivo—, y los algoritmos no lineales, como el algoritmo de Blum, Blum y Shub, y el congruencial cuadrático.

2.2.1 Algoritmo de cuadrados medios

Este algoritmo no congruencial fue propuesto en la década de los cuarenta del siglo xx por Von Neumann y Metropolis [1]. Requiere un número entero detonador (Ilamado semilla) con D dígitos, el cual es elevado al cuadrado para seleccionar del resultado los D dígitos del centro; el primer número r_i se determina simplemente anteponiendo el "0." a esos dígitos. Para obtener el segundo r_i se sigue el mismo procedimiento, sólo que ahora se elevan al cuadrado los D dígitos del centro que se seleccionaron para obtener el primer r_i . Este método se repite hasta obtener n números r_i . A continuación se presentan con más detalle los pasos para generar números con el algoritmo de cuadrados medios.

- 1. Seleccionar una semilla (X_0) con D dígitos (D > 3).
- 2. Sea X_0 = resultado de elevar X_0 al cuadrado; sea X_1 = los D dígitos del centro, y sea r_i = 0.D dígitos del centro.
- 3. Sea Y_i = resultado de elevar X_i al cuadrado; sea X_{i+1} = los D dígitos del centro, y sea r_i = 0.D dígitos del centro para toda i = 1, 2, 3, ..., n.
- 4. Repetir el paso 3 hasta obtener los n números r_i deseados.

Nota: Si no es posible obtener los D dígitos del centro del número Y_i , agregue ceros a la izquierda del número Y_i .

Para ilustrar la mecánica del algoritmo de cuadrados medios se presenta el siguiente ejemplo.

Ejemplo 2.1

Generar los primeros 5 números r_i a partir de una semilla $X_0 = 5$ 735, de donde se puede observar que D = 4 dígitos.

Solución:

$$Y_0 = (5735)^2 = 32890225$$
 $X_1 = 8902$ $r_1 = 0.8902$
 $Y_1 = (8902)^2 = 79245604$ $X_2 = 2456$ $r_2 = 0.2456$
 $Y_2 = (2456)^2 = 06031936$ $X_3 = 0319$ $r_3 = 0.0319$
 $Y_3 = (0319)^2 = 101761$ $X_4 = 0176$ $r_4 = 0.0176$
 $Y_4 = (0176)^2 = 030976$ $X_5 = 3097$ $r_5 = 0.3097$

El algoritmo de cuadrados medios generalmente es incapaz de generar una secuencia de r_i con periodo de vida n grande. Además, en ocasiones sólo es capaz de generar un número, por ejemplo, si $X_0 = 1\,000$, entonces $X_1 = 0000$; $r_i = 0.0000$ y se dice que el algoritmo se degenera con la semilla de $X_0 = 1\,000$.

2.2.2 Algoritmo de productos medios

La mecánica de generación de números pseudo aleatorios de este algoritmo no congruencial es similar a la del algoritmo de cuadrados medios. La diferencia entre ambos radica en que el algoritmo de productos medios requiere dos semillas, ambas con D dígitos; además, en lugar de elevarlas al cuadrado, las semillas se multiplican y del producto se seleccionan los D dígitos del centro, los cuales formarán el primer número pseudo aleatorio $r_i = 0.D$ dígitos. Después se elimina una semilla, y la otra se multiplica por el primer número de D dígitos, para luego seleccionar del producto los D dígitos que conformarán un segundo número r_i . Entonces se elimina la segunda semilla y se multiplican el primer número de D dígitos por el segundo número de D dígitos; del producto se obtiene el tercer número r_i . Siempre se irá eliminando el número más antiguo, y el procedimiento se repetirá hasta generar los n números pseudo aleatorios. A continuación se presentan con más detalle los pasos del método para generar números con el algoritmo de producto medios.

- 1. Seleccionar una semilla (X_0) con D dígitos (D > 3).
- 2. Seleccionar una semilla (X_1) con D dígitos (D > 3).
- 3. Sea $Y_0 = X_0 * X_1$; sea $X_2 = \log D$ dígitos del centro, y sea $r_i = 0.D$ dígitos del centro.
- 4. Sea $Y_i = X_i^* X_{i+1}$; sea $X_{i+2} = \log D$ dígitos del centro, y sea $r_{i+1} = 0.D$ dígitos del centro para toda i = 1, 2, 3, ..., n.
- 5. Repetir el paso 4 hasta obtener los n números r_i deseados.

Nota: Si no es posible obtener los D dígitos del centro del número Y_i , agregue ceros a la izquierda del número Y_i .

Para ilustrar la mecánica del algoritmo de productos medios se presenta el siguiente ejemplo.

Ejemplo 2.2

Generar los primeros 5 números r_i a partir de las semillas $X_0 = 5$ 015 y $X_1 = 5$ 734; observe que ambas semillas tienen D = 4 dígitos.

Solución:

$$Y_0 = (5\ 015)\ (5\ 734) = 28\ 756\ 010$$
 $X_2 = 7\ 560$ $r_1 = 0.7560$ $Y_1 = (5\ 734)\ (7\ 560) = 43\ 349\ 040$ $X_3 = 3\ 490$ $r_2 = 0.3490$ $Y_2 = (7\ 560)\ (3\ 490) = 26\ 384\ 400$ $X_4 = 3\ 844$ $r_3 = 0.3844$ $Y_3 = (3\ 490)\ (3\ 844) = 13\ 415\ 560$ $X_5 = 4\ 155$ $r_4 = 0.4155$ $Y_4 = (3\ 844)\ (4\ 155) = 15\ 971\ 820$ $X_6 = 9\ 718$ $r_5 = 0.9718$

2.2.3 Algoritmo de multiplicador constante

Este algoritmo no congruencial es similar al algoritmo de productos medios. Los siguientes son los pasos necesarios para generar números pseudo aleatorios con el algoritmo de multiplicador constante.

- 1. Seleccionar una semilla (X_0) con D dígitos (D > 3).
- 2. Seleccionar una constante (a) con D dígitos (D > 3).
- 3. Sea $Y_0 = a^*X_0$; sea $X_1 = \log D$ dígitos del centro, y sea $Y_0 = a^*X_0$; sea
- 4. Sea $Y_i = a^*X_i$; sea $X_{i+1} = \log D$ dígitos del centro, y sea $r_{i+1} = 0.D$ dígitos del centro para toda i = 1, 2, 3, ..., n.
- 5. Repetir el paso 4 hasta obtener los n números r_i deseados.

Nota: Si no es posible obtener los D dígitos del centro del número Y_i , agregue ceros a la izquierda del número Y_i .

Para ilustrar la mecánica del algoritmo de multiplicador constante se presenta el siquiente ejemplo.

Ejemplo 2.3

Generar los primeros 5 números r_i a partir de la semilla $X_0 = 9803$ y con la constante a = 6965. Observe que tanto la semilla como la constante tienen D = 4 dígitos.

Solución:

$$Y_0 = (6\ 965)\ (9\ 803) = 68\ 277\ 895$$
 $X_1 = 2\ 778$ $r_1 = 0.2778$ $Y_1 = (6\ 965)\ (2\ 778) = 19\ 348\ 770$ $X_2 = 3\ 487$ $r_2 = 0.3487$ $Y_2 = (6\ 965)\ (3\ 487) = 24\ 286\ 955$ $X_3 = 2\ 869$ $r_3 = 0.2869$ $Y_3 = (6\ 965)\ (2\ 869) = 19\ 982\ 585$ $X_4 = 9\ 825$ $r_4 = 0.9825$ $Y_4 = (6\ 965)\ (9\ 825) = 68\ 431\ 125$ $X_5 = 4\ 311$ $r_5 = 0.4311$

2.2.4 Algoritmo lineal

Este algoritmo congruencial fue propuesto por D. H. Lehmer^[5] en 1951. Según Law y Kelton^[3], este algoritmo ha sido el más usado. El algoritmo congruencial lineal genera una secuencia de números enteros por medio de la siguiente ecuación recursiva:

$$X_{i+1} = (aX_i + c) \mod(m)$$
 $i = 0, 1, 2, 3, ..., n$

donde X_0 es la semilla, a es la constante multiplicativa, c es una constante aditiva y m es el módulo; $X_0 > 0$, a > 0, c > 0 y m > 0 deben ser números enteros. La operación "mod m" significa multiplicar X_i por a, sumar c y dividir el resultado entre m para obtener el residuo X_{i+1} . Es importante señalar que la ecuación recursiva del algoritmo congruencial lineal genera una secuencia de números enteros $S = \{0, 1, 2, 3, ..., m-1\}$, y que para obtener números pseudo aleatorios en el intervalo (0,1) se requiere la siguiente ecuación:

$$r_i = \frac{X_i}{m-1}$$
 $i-1, 2, 3, ..., n$

Analice el ejemplo siguiente para comprender mejor la mecánica del algoritmo congruencial lineal.

Ejemplo 2.4

Generar 4 números entre 0 y 1 con los siguientes parámetros: $X_0 = 37$, a = 19, c = 33 y m = 100.

Solución:

$$X_1 = (19*37 + 33) \mod 100 = 36$$
 $r_1 = 36/99 = 0.3636$
 $X_2 = (19*36 + 33) \mod 100 = 17$ $r_2 = 17/99 = 0.1717$
 $X_3 = (19*17 + 33) \mod 100 = 56$ $r_3 = 56/99 = 0.5656$
 $X_4 = (19*56 + 33) \mod 100 = 97$ $r_4 = 97/99 = 0.9797$

En el ejemplo anterior se colocaron de manera arbitraria cada uno de los parámetros requeridos: X_0 , a, c, m. Sin embargo, para que el algoritmo sea capaz de lograr el máximo periodo de vida n, es preciso que dichos parámetros cumplan ciertas condiciones. Banks, Carson, Nelson y Nicol [1] sugieren lo siguiente:

Bajo estas condiciones se obtiene un periodo de vida máximo: $N = m = 2^g$. Veamos un ejemplo más, tomando en cuenta lo anterior.

Ejemplo 2.5

Generar suficientes números entre 0 y 1 con los parámetros $X_0 = 6$, k = 3, g = 3 y c = 7, hasta encontrar el periodo de vida máximo (N).

Como podemos ver, si se cumplen las condiciones que Banks, Carson, Nelson y Nicol sugieren, se logrará el periodo máximo N=m=8. A continuación se presenta el desarrollo de la generación de los números r_i .

$$a = 1 + 4 (3) = 13$$
 y $m = 2^3 = 8$
 $X_0 = 6$
 $X_1 = (13*6 + 7) \mod 8 = 5$ $r_1 = 5/7 = 0.714$
 $X_2 = (13*5 + 7) \mod 8 = 0$ $r_2 = 0/7 = 0.000$
 $X_3 = (13*0 + 7) \mod 8 = 7$ $r_3 = 7/7 = 1.000$
 $X_4 = (13*7 + 7) \mod 8 = 2$ $r_4 = 2/7 = 0.285$
 $X_5 = (13*2 + 7) \mod 8 = 1$ $r_5 = 1/7 = 0.142$
 $X_6 = (13*1 + 7) \mod 8 = 4$ $r_6 = 4/7 = 0.571$
 $X_7 = (13*4 + 7) \mod 8 = 3$ $r_7 = 3/7 = 0.428$
 $X_8 = (13*3 + 7) \mod 8 = 6$ $r_8 = 6/7 = 0.857$

Es importante mencionar que el número generado en $X_8 = 6$ es exactamente igual a la semilla X_0 , y si continuáramos generando más números, éstos se repetirían. Además sabemos que el algoritmo congruencial lineal genera una secuencia de números enteros $S = \{0, 1, 2, 3, ..., m - 1\}$. Observe que en este caso se genera la secuencia $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

Ejemplo 2.6

Consideremos nuevamente el ejemplo anterior, pero tratemos de violar de manera arbitraria alguna de las condiciones. Supongamos que a = 12; se sabe que a no es el resultado de 1 + 4k, donde k es un entero. Veamos el comportamiento del algoritmo congruencial lineal ante tal cambio.

Solución:

$$a = 1 + 4(3) = 13$$
 y $m = 2^3 = 8$
 $X_0 = 6$
 $X_1 = (12*6 + 7) \mod 8 = 7$ $r_1 = 7/7 = 1.000$
 $X_2 = (12*7 + 7) \mod 8 = 3$ $r_2 = 3/7 = 0.428$
 $X_3 = (12*3 + 7) \mod 8 = 3$ $r_3 = 3/7 = 0.428$

El periodo de vida en este caso es N=3, de manera que, como puede ver, el periodo de vida máximo no se logra. Como conclusión tenemos que si no se cumple alguna de las condiciones, el periodo de vida máximo N=m no se garantiza, por lo que el periodo de vida será menor que m.

2.2.5 Algoritmo congruencial multiplicativo

El algoritmo congruencial multiplicativo surge del algoritmo congruencial lineal cuando c = 0. Entonces la ecuación recursiva es:

$$X_{i+1} = (aX_i) \mod(m)$$
 $i = 0, 1, 2, 3, ..., n$

En comparación con el algoritmo congruencial lineal, la ventaja del algoritmo multiplicativo es que implica una operación menos a realizar. Los parámetros de arranque de este algoritmo son X_0 , a y m, todos los cuales deben ser números enteros y mayores que cero. Para transformar los números X_i en el intervalo (0,1) se usa la ecuación $r_i = x_i/(m-1)$. De acuerdo con Banks, Carson, Nelson y Nicol^[1], las condiciones que deben cumplir los parámetros para que el algoritmo congruencial multiplicativo alcance su máximo periodo son:

```
m = 2^g

a = 3 + 8k o a = 5 + 8k

k = 0, 1, 2, 3, ...

X_0 debe ser un número impar

q debe ser entero
```

A partir de estas condiciones se logra un periodo de vida máximo $N = k/4 = 2^{g-2}$

Ejemplo 2.7

Generar suficientes números entre 0 y 1 con los siguientes parámetros: $X_0 = 17, k = 2$ y g = 5, hasta encontrar el periodo o ciclo de vida.

Solución:

$$a = 5 + 8(2) = 21$$
 y $m = 32$
 $X_0 = 17$
 $X_1 = (21*17) \mod 32 = 5$ $r_1 = 5/31 = 0.1612$
 $X_2 = (21*5) \mod 32 = 9$ $r_2 = 9/31 = 0.2903$
 $X_3 = (21*9) \mod 32 = 29$ $r_3 = 29/31 = 0.9354$
 $X_4 = (21*29) \mod 32 = 1$ $r_4 = 1/31 = 0.3225$

$$X_5 = (21*1) \mod 32 = 21$$
 $r_5 = 21/31 = 0.6774$
 $X_6 = (21*21) \mod 32 = 25$ $r_6 = 25/31 = 0.8064$
 $X_7 = (21*25) \mod 32 = 13$ $r_7 = 13/31 = 0.4193$
 $X_8 = (21*13) \mod 32 = 17$ $r_8 = 17/31 = 0.5483$

Toda vez que la semilla X_0 se repite, volverán a generarse los mismos números. Por lo tanto, el periodo de vida es n=8, el cual corresponde a N=m/4=32/4=8.

Ejemplo 2.8

Ahora bien, si violamos la condición de que la semilla sea un número impar, digamos con $X_0 = 12$, tenemos:

Solución:

$$X_0 = 12$$

 $X_1 = (21*12) \mod 32 = 28$ $r_1 = 28/31 = 0.9032$
 $X_2 = (21*28) \mod 32 = 12$ $r_2 = 12/31 = 0.3870$

En vista de que la semilla X_0 se repite, volverán a generarse los mismos números. Por lo tanto, el periodo de vida es N = 2.

2.2.6 Algoritmo congruencial aditivo

Este algoritmo requiere una secuencia previa de n números enteros $X_1, X_2, X_3, X_4, ..., X_n$ para generar una nueva secuencia de números enteros que empieza en $X_{n+1}, X_{n+2}, X_{n+3}, X_{n+4}, ...$ Su ecuación recursiva es:

$$X_i = (X_{i-1} + X_{i-n}) \mod (m)$$
 $i = n + 1, n + 2, n + 3, ..., N$

Los números r, pueden ser generados mediante la ecuación

$$r_i = x_i/(m-1)$$

Ejemplo 2.9

Generar 7 números pseudo aleatorios entre cero y uno a partir de la siguiente secuencia de números enteros: 65, 89, 98, 03, 69; m = 100.

Sean $X_1 = 65$, $X_2 = 89$, $X_3 = 98$, $X_4 = 03$, $X_5 = 69$. Para generar r_1 , r_2 , r_3 , r_4 , r_5 , r_6 y r_7 antes es necesario generar X_6 , X_7 , X_8 , X_9 , X_{10} , X_{11} , X_{12} .

Solución:

```
X_6 = (X_5 + X_1) \mod 100 = (60 + 65) \mod 100 = 34 r_1 = 34/99 = 0.3434 r_2 = (X_6 + X_2) \mod 100 = (34 + 89) \mod 100 = 23 r_2 = 23/99 = 0.2323 r_3 = 21/99 = 0.2121 r_4 = 24/99 = 0.2424 r_5 = 93/99 = 0.2424 r_6 = 27/99 = 0.2424 r_7 = (X_1 + X_2) \mod 100 = (93 + 34) \mod 100 = 27 r_8 = 27/99 = 0.2727 r_8 = (X_1 + X_2) \mod 100 = (27 + 23) \mod 100 = 50 r_7 = 50/99 = 0.5050
```

2.2.7 Algoritmos congruenciales no lineales

En esta sección se analizarán dos algoritmos congruenciales no lineales: el congruencial cuadrático y el algoritmo presentado por Blum, Blum y Shub^[2].

2.2.7.1 Algoritmo congruencial cuadrático

Este algoritmo tiene la siguiente ecuación recursiva:

$$X_{i+1} = (aX_i^2 + bX_i + c) \mod(m)$$
 $i = 0, 1, 2, 3, ..., N$

En este caso, los números r_i pueden ser generados con la ecuación $r_i = x_i/(m-1)$. De acuerdo con L'Ecuyer^[4], las condiciones que deben cumplir los parámetros m, a, b y c para alcanzar un periodo máximo de N = m son:

```
m = 2^g

a debe ser un número par

c debe ser un número impar

g debe ser entero

(b-1) \mod 4 = 1
```

De esta manera se logra un periodo de vida máximo N = m.

Ejemplo 2.10

Generar, a partir del algoritmo congruencial cuadrático, suficientes números enteros hasta alcanzar el periodo de vida, considerando los parámetros $X_0 = 13$, m = 8, a = 26, b = 27 y c = 27. Como todas las condiciones estipuladas para los parámetros se satisfacen, es de esperarse que el periodo de vida del generador sea N = m = 8, tal como podrá comprobar al revisar los cálculos correspondientes, que se presentan a continuación.

Solución:

$$X_1 = (26*13^2 + 27*13 + 27) \mod (8) = 4$$

 $X_2 = (26*4^2 + 27*4 + 27) \mod (8) = 7$
 $X_3 = (26*7^2 + 27*7 + 27) \mod (8) = 2$
 $X_4 = (26*2^2 + 27*2 + 27) \mod (8) = 1$
 $X_5 = (26*1^2 + 27*1 + 27) \mod (8) = 0$
 $X_6 = (26*0^2 + 27*0 + 27) \mod (8) = 3$
 $X_7 = (26*3^2 + 27*3 + 27) \mod (8) = 6$
 $X_8 = (26*6^2 + 27*6 + 27) \mod (8) = 5$
 $X_9 = (26*5^2 + 27*5 + 27) \mod (8) = 4$

Por otro lado, el algoritmo cuadrático genera una secuencia de números enteros $S = \{0, 1, 2, 3, ..., m - 1\}$, al igual que el algoritmo congruencial lineal.

2.2.7.2 Algoritmo de Blum, Blum y Shub^[2]

Si en el algoritmo congruencial cuadrático a=1,b=0 y c=0, entonces se construye una nueva ecuación recursiva:

$$X_{i+1} = (X_i^2) \mod(m)$$
 $i = 0, 1, 2, 3, ..., n$

La ecuación anterior fue propuesta por Blum, Blum y Shub^[2] como un nuevo método para generar números que no tienen un comportamiento predecible.

2.3 Propiedades de los números pseudo aleatorios entre 0 y 1

En la sección anterior hablamos de cómo generar números aleatorios usando diferentes métodos. Sin embargo, ¿de qué manera se puede garantizar que tales números son realmente aleatorios entre 0 y 1?, ¿cuáles son las características que los identifican?, ¿cuáles son sus parámetros? La respuesta a las preguntas anteriores es muy importante, dado que los números aleatorios serán utilizados en la simulación para generar los valores de cualquier variable aleatoria. En gran medida, conocer las propiedades que deben tener estos números aleatorios garantiza una buena simulación, por ello, se enumeran a continuación.

Media de los aleatorios entre 0 y 1. En vista de que estos números deben tener la misma probabilidad de presentarse, es preciso que su comportamiento muestre una distribución de probabilidad uniforme continua, con límite inferior cero y límite superior uno. La función de densidad de una distribución uniforme es la siguiente:

$$f(x) = \frac{1}{b-a}$$
 $a \le x \le b$; en este caso, $a = 0$ y $b = 1$

Gráficamente se vería de la siguiente manera:

Figura 2.1Forma general de la distribución uniforme entre *a* y *b*

Para obtener la media de la distribución multiplicamos la función de densidad por x, y la integramos en todo el rango de la misma distribución de la siguiente manera:

$$E(x) = \int_{a}^{b} \frac{1}{b-a}(x) = \frac{x^{2}}{b-a} \Big|_{a}^{b}$$

Sustituyendo los valores de a y b

$$E(x)-\frac{1}{2}$$

Por lo tanto, el valor esperado (es decir, la media de los números aleatorios entre 0 y 1) es μ = 0.5.

Varianza de los números aleatorios. Partiendo de la misma distribución uniforme continua obtenemos la varianza de la distribución por medio de la ecuación:

$$V(x) = \sigma^2 = E(x^2) - \mu^2$$

lo que nos da $E(x^2)$:

$$E(x^2) = \int_a^b \frac{1}{b-a} (x^2) = \frac{x^3}{3(b-a)} \Big|_a^b$$

Al sustituir tenemos que

$$E(x^2) = \frac{1}{3}$$

Por lo tanto,

$$V(x) = \frac{1}{3} - \left(\frac{1}{2}\right)^2 = \frac{1}{12}$$

Dados estos resultados podemos decir que los números aleatorios entre 0 y 1 deben tener

$$\mu = \frac{1}{2}$$
 y $\sigma^2 = \frac{1}{12}$

Independencia. Ésta es una propiedad muy importante, e implica que los números aleatorios no deben tener correlación entre sí; es decir, deben ser independientes, de manera que puedan dispersarse uniformemente dentro de todo el espectro de valores posibles. La figura 2.2a muestra una gráfica totalmente dispersa en los valores posibles, y la figura 2.2b presenta una acumulación de los valores en la parte central, lo cual quiere decir que hay una correlación entre los mismos.

Figura 2.2(a) Valores uniformemente dispersos y (b) valores correlacionados

Es posible realizar una serie de pruebas para corroborar que no existe correlación entre los números aleatorios, e incluso para garantizar que no exista un sesgo o tendencia entre los dígitos de cada uno de ellos. Estas pruebas se revisarán con más detalle en la siguiente sección.

2.4 Pruebas estadísticas para los números pseudo aleatorios

En la sección 2.2 se presentaron diversos algoritmos para construir un conjunto r_i , pero ése es sólo el primer paso, ya que el conjunto resultante debe ser sometido a una serie de pruebas para validar si los números que lo integran son aptos para usarse en un estudio de simulación.

A continuación se analizarán las pruebas estadísticas básicas que se emplean generalmente para determinar si un conjunto de números pseudo aleatorios entre cero y uno cumplen con las propiedades básicas de independencia y uniformidad. El objetivo, en otras palabras, es validar que el conjunto r_i realmente está conformado por números aleatorios. Es importante mencionar que las pruebas que se discutirán no son únicas; si desea conocer otras, consulte Banks, Carson, Nelson y Nicol^[1].

2.4.1 Prueba de medias

Una de las propiedades que deben cumplir los números del conjunto r_i , es que el valor esperado sea igual a 0.5. La prueba que busca determinar lo anterior es la llamada *prueba de medias*, en la cual se plantean las siguientes hipótesis:

$$H_0: \mu_{r_i} = 0.5$$

 $H_1: \mu_{r_i} \neq 0.5$

La prueba de medias consiste en determinar el promedio de los n números que contiene el conjunto r_i , mediante la ecuación siguiente:

$$\overline{r} = \frac{1}{n} \sum_{i=1}^{n} r_i$$

Posteriormente se calculan los límites de aceptación inferior y superior con las ecuaciones siguientes:

$$LI_{\bar{r}} = \frac{1}{2} - Z_{\alpha/2} \left(\frac{1}{\sqrt{12n}} \right)$$

$$LS_{\overline{r}} = \frac{1}{2} + Z_{\alpha/2} \left(\frac{1}{\sqrt{12n}} \right)$$

Si el valor de \bar{r} se encuentra entre los limites de aceptación, concluimos que no se puede rechazar que el conjunto r_i tiene un valor esperado de 0.5 con un nivel de aceptación de $1 - \alpha$. En caso contrario se rechaza que el conjunto r_i tiene un valor esperado de 0.5.

Para el cálculo de los límites de aceptación se utiliza el estadístico $_{z\alpha/2'}$ el cual se determina por medio de la tabla de la distribución normal estándar (también se puede calcular dicho valor utilizando la función PROMEDIOA (o AVERAGE) —media aritmética—de Excel).

Ejemplo 2.11

Considere los 40 números del conjunto r_i que se presenta a continuación, y determine si tienen un valor esperado de 1/2 con un nivel de aceptación de 95 por ciento.

	0.0449	0.1733	0.5746	0.049	0.8406	0.8349	0.92	0.2564
	0.6015	0.6694	0.3972	0.7025	0.1055	0.1247	0.1977	0.0125
	0.63	0.2531	0.8297	0.6483	0.6972	0.9582	0.9085	0.8524
	0.5514	0.0316	0.3587	0.7041	0.5915	0.2523	0.2545	0.3044
	0.0207	0.1067	0.3587	0.1746	0.3362	0.1589	0.3727	0.4145
- 1								

El conjunto r_i contiene 40 números, por lo tanto, n=40. Un nivel de aceptación de 95% implica que $\alpha=5\%$. Enseguida procedemos a calcular el promedio de los números y los límites de aceptación:

$$\overline{r} = \frac{1}{n} \sum_{i=1}^{n} r_i = \frac{1}{40} \sum_{i=1}^{40} r_i$$

$$\overline{r} = \frac{1}{40} [0.04487 + 0.17328 + 0.57548 + 0.04901 + \dots + 0.33616 + 0.15885 + 0.37266 + 0.41453]$$

$$\overline{r} = 0.43250$$

$$LI_{\overline{r}} = \frac{1}{2} - Z_{\alpha/2} \left(\frac{1}{\sqrt{12n}} \right) = \frac{1}{2} - Z_{0.05/2} \left(\frac{1}{\sqrt{12(40)}} \right)$$

$$LI_{\overline{r}} = \frac{1}{2} - (1.96) \left(\frac{1}{\sqrt{12(40)}} \right) = 0.410538649$$

$$LS_{\overline{r}} = \frac{1}{2} + Z_{\alpha/2} \left(\frac{1}{\sqrt{12n}} \right) = \frac{1}{2} + Z_{0.05/2} \left(\frac{1}{\sqrt{12(40)}} \right)$$

$$LS_{\overline{r}} = \frac{1}{2} + (1.96) \left(\frac{1}{\sqrt{12(40)}} \right) = 0.589461351$$

Como el valor del promedio: $\bar{r}=0.43250$ se encuentra entre los límites de aceptación, se concluye que no se puede rechazar que el conjunto de 40 números r_i tiene un valor esperado de 0.5, con un nivel de aceptación de 95 por ciento.

2.4.2 Prueba de varianza

Otra de la propiedades que debe satisfacer el conjunto r_i , es que sus números tengan una varianza de 1/12. La prueba que busca determinar lo anterior es la *prueba de varianza*, que establece las siguientes hipótesis:

$$H_0: \sigma_{r_i}^2 = 1/12$$

 $H_1: \sigma_{r_i}^2 \neq 1/12$

La prueba de varianza consiste en determinar la varianza de los n números que contiene el conjunto r_i , mediante la ecuación siguiente:

$$V(r) = \frac{\sum_{i=1}^{n} (r_i - \overline{r})^2}{n-1}$$

Después se calculan los límites de aceptación inferior y superior con las ecuaciones siguientes:

$$LI_{V(r)} = \frac{\chi^{2}_{\alpha/2, n-1}}{12 (n-1)}$$

$$LS_{V(r)} = \frac{\chi_{1\alpha/2, n-1}^{2}}{12 (n-1)}$$

Si el valor de V(r) se encuentra entre los límites de aceptación, decimos que no se puede rechazar que el conjunto r_i tiene una varianza de 1/12, con un nivel de aceptación de 1 – α ; de lo contrario, se rechaza que el conjunto r_i tiene una varianza de 1/12.

Ejemplo 2.12

Realizar la prueba de varianza a los 40 números r_i del ejemplo 2.11.

Considerando que n=40 y $\alpha=5\%$, procedemos a calcular la varianza de los números, y los límites de aceptación correspondientes:

$$V(r) = \frac{\sum_{i=1}^{n} (r_i - \overline{r})^2}{n-1} = \frac{\sum_{i=1}^{40} (r_i - 0.43250)^2}{40 - 1}$$

$$V(r) = \frac{1}{39} \left[(0.04487 - 0.43250)^2 + (0.17328 - 0.43250)^2 + \dots + (0.37266 - 0.43250)^2 + \dots + (0.41453 - 0.43250)^2 \right]$$

$$V(r) = 0.08695062$$

$$LI_{V(r)} = \frac{\chi_{\alpha/2, n-1}^2}{12(n-1)} = \frac{\chi_{0.05/2, 39}^2}{12(39)} = \frac{58.1200541}{468} = 0.12418815$$

$$LS_{V(r)} = \frac{\chi_{1-\alpha/2, n-1}^2}{12(n-1)} = \frac{\chi_{1-0.05/2, 39}^2}{12(39)} = \frac{23.6543003}{468} = 0.05054338$$

Dado que el valor de la varianza: V(r) = 0.8695062 está entre los límites de aceptación, podemos decir que no se puede rechazar que el conjunto de 40 números r_i tiene una varianza de 1/12 = 0.08333.

2.4.3 Pruebas de uniformidad

Una de las propiedades más importantes que debe cumplir un conjunto de números r_i es la uniformidad. Para comprobar su acatamiento se han desarrollado pruebas estadísticas tales como las pruebas Chi-cuadrada y de Kolmogorov-Smirnov. En cualquiera de ambos casos, para probar la uniformidad de los números de un conjunto r_i es necesario formular las siguientes hipótesis:

$$H_0$$
: $r_i \sim U(0,1)$
 H_1 : r_i no son uniformes

Veamos a continuación cómo funciona cada una de estas pruebas.

2.4.3.1 Prueba Chi-cuadrada

La prueba Chi-cuadrada busca determinar si los números del conjunto r_i se distribuyen uniformemente en el intervalo (0,1). Para llevar a cabo esta prueba es necesario dividir el intervalo (0,1) en m subintervalos, en donde es recomendable $m = \sqrt{n}$. Posteriormente se clasifica cada número pseudo aleatorio del conjunto r_i en los m intervalos. A la cantidad de números r_i que se clasifican en cada intervalo se le denomina frecuencia observada (O_i) , y a la cantidad de números r_i que se espera encontrar en cada intervalo se le llama frecuencia esperada (E_i) ; teóricamente, la r_i es igual n/m. A partir de los valores de O_i y E_i se determina el estadístico χ_0^2 mediante la ecuación

$$\chi_0^2 = \sum_{i=1}^m \frac{(E_i - O_i)}{E_i}$$

Si el valor del estadístico χ_0^2 es menor al valor de tablas de $\chi_{\alpha,m-1}^2$, entonces no se puede rechazar que el conjunto de números r_i sigue una distribución uniforme. En caso contrario, se rechaza que r_i sigue una distribución uniforme.

Ejemplo 2.13

Realizar la prueba Chi-cuadrada a los siguientes 100 números de un conjunto r_i , con un nivel de confianza de 95 por ciento.

0.347	0.832	0.966	0.472	0.797	0.101	0.696	0.966	0.404	0.603
0.993	0.371	0.729	0.067	0.189	0.977	0.843	0.562	0.549	0.992
0.674	0.628	0.055	0.494	0.494	0.235	0.178	0.775	0.797	0.252
0.426	0.054	0.022	0.742	0.674	0.898	0.641	0.674	0.821	0.19
0.46	0.224	0.99	0.786	0.393	0.461	0.011	0.977	0.246	0.881
0.189	0.753	0.73	0.797	0.292	0.876	0.707	0.562	0.562	0.821
0.112	0.191	0.584	0.347	0.426	0.057	0.819	0.303	0.404	0.64
0.37	0.314	0.731	0.742	0.213	0.472	0.641	0.944	0.28	0.663
0.909	0.764	0.999	0.303	0.718	0.933	0.056	0.415	0.819	0.444
0.178	0.516	0.437	0.393	0.268	0.123	0.945	0527	0.459	0.652

Antes de proceder, es recomendable crear una tabla similar a la tabla 2.1, en donde se resumen los pasos que deben llevarse a cabo en la prueba Chi-cuadrada.

Intervalo	O _i	$E_i = \frac{n}{m}$	$\frac{(E_i - O_i)^2}{E_i}$
[0.00-0.10)	7	10	0.9
[0.10-0.20)	9	10	0.1
[0.20-0.30)	8	10	0.4
[0.30-0.40)	9	10	0.1
[0.40-0.50)	14	10	1.6
[0.50-0.60)	7	10	0.9
[0.60-0.70)	11	10	0.1
[0.70-0.80)	14	10	1.6
[0.80-0.90)	9	10	0.1

Tabla 2.1 Cálculos para la prueba Chi-cuadrada

El estadístico $\chi_0^2 = \sum_{i=1}^{10} r_i \frac{(E_i - O_i)^2}{E_i} = 6.2$ es menor al estadístico correspondiente de

la Chi-cuadrada $\chi^2_{0.05,9}$ = 16.9. En consecuencia, no se puede rechazar que los números r_i siguen una distribución uniforme.

10

0.4

2.4.3.2 Prueba Kolmogorov-Smirnov

12

[0.90-1.00)

Propuesta por Kolmogorov y Smirnov, ésta es una prueba estadística que también nos sirve para determinar si un conjunto r_i cumple la propiedad de uniformidad. Es recomendable aplicarla en conjuntos r_i pequeños, por ejemplo, n < 20. El procedimiento es el siguiente:

1. Ordenar de menor a mayor los números del conjunto r_i .

$$r_1 \le r_2 \le r_3 \le \dots \le r_n$$

2. Determinar los valores de: D^+ , D^- y D con las siguientes ecuaciones:

$$D^{+} = \max_{1 < i < n} \left\{ \frac{i}{n} - r_{i} \right\}$$

$$D^+ = \max_{1 \le i \le n} \left\{ r_i - \frac{i-1}{n} \right\}$$

$$D = \max(D^+, D^-)$$

- 3. Determinar el valor crítico $D_{\alpha,n}$ de acuerdo con la tabla de valores críticos de Kolmogorov-Smirnov para un grado de confianza α , y según el tamaño de la muestra n.
- 4. Si el valor D es mayor que el valor crítico $D_{\alpha,n'}$ se concluye que los números del conjunto r_i no siguen una distribución uniforme; de lo contrario se dice que no se ha detectado diferencia significativa entre la distribución de los números del conjunto r_i y la distribución uniforme.

Ejemplo 2.14

Realizar la prueba Kolgomorov-Smirnov, con un nivel de confianza de 90%, al siguiente conjunto r_i de 10 números:

$$r_i = \{0.97, 0.11, 0.65, 0.26, 0.98, 0.03, 0.13, 0.89, 0.21, 0.69\}$$

El nivel de confianza de 90% implica α = 10%. Ordenando los números r_i de menor a mayor, la secuencia es:

	0.03	0.11	0.13	0.21	0.26	0.65	0.69	0.89	0.97	0.98	
--	------	------	------	------	------	------	------	------	------	------	--

Para determinar los valores de D^+ , D^- y D es recomendable realizar una tabla como la siguiente:

Tabla 2.2 Cálculos de la prueba Kolmogorov-Smirnov

i	1	2	3	4	5	6	7	8	9	10
i n	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
r _i	0.03	0.11	0.13	0.21	0.26	0.65	0.69	0.89	0.97	0.98
<u>i – 1</u> n	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
$\frac{i}{n} - r_i$	0.07	0.09	0.17	0.19	0.24	-0.05	0.01	-0.09	-0.07	0.02
$r_i - \frac{i-1}{n}$	-0.04	0.02	-0.04	0.02	0.02	0.70	0.68	0.98	1.04	0.96
n	10									
D+	0.24	D-	1.04	D	1.04					

De acuerdo con la tabla de valores para la prueba Kolmogorov-Smirnov, el valor crítico $D_{0.10,10}$ correspondiente a n=10 es $D_{0.10,10}=0.368$, que resulta menor al valor D=1.04; por lo tanto, se concluye que los números del conjunto r_i no se distribuyen uniformemente.

2.4.4 Pruebas de independencia

Recuerde que las dos propiedades más importantes que deben satisfacer los números de un conjunto r_i son uniformidad e independencia. En la sección anterior comentamos las pruebas que buscan determinar si los números del conjunto r_i son uniformes. A continuación hablaremos de las pruebas estadísticas que tratan de corroborar si los números en el intervalo (0,1) son independientes o, en otras palabras, si parecen pseudo aleatorios.

Para probar la independencia de los números de un conjunto r_i primero es preciso formular las siguientes hipótesis:

 H_0 : los números del conjunto r_i son independientes H_1 : los números del conjunto r_i no son independientes

2.4.4.1 Prueba de corridas arriba y abajo

El procedimiento de esta prueba consiste en determinar una secuencia de números (S) que sólo contiene unos y ceros, de acuerdo con una comparación entre r_i y r_{i-1} . Posteriormente se determina el número de corridas observadas, C_O (una corrida se identifica como la cantidad de unos o ceros consecutivos). Luego se calcula el valor esperado, la varianza del número de corridas y el estadístico Z_O , mediante las ecuaciones:

$$\mu_{C_o} = \frac{2n-1}{3}$$

$$\sigma_{C_o}^2 = \frac{16n-29}{90}$$

$$Z_0 = \left| \frac{C_O - \mu_{C_O}}{\sigma_{C_O}} \right|$$

Si el estadístico Z_0 es mayor que el valor crítico de $Z_{\alpha/2^i}$ se concluye que los números del conjunto r_i no son independientes. De lo contrario no se puede rechazar que el conjunto de r_i sea independiente.

Considere el siguiente conjunto r_i de 21 números:

$$r_i = \{0.89, 0.26, 0.01, 0.98, 0.13, 0.12, 0.69, 0.11, 0.05, 0.65, 0.21, 0.04, 0.03, 0.11, 0.07, 0.97, 0.27, 0.12, 0.95, 0.02, 0.06\}$$

La secuencia de unos y ceros se construye de esta manera: se coloca un cero si el número r_i es menor que o igual al número r_i anterior; en caso de ser mayor que el número r_i anterior, se pone un uno. Considerando la secuencia de los 21 números del conjunto r_i que se dio arriba, la secuencia de unos y ceros es:

$$S = \{0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1\}$$

Observe que la secuencia S contiene n-1 números, en este caso 20. Esto se debe a que el primer número $r_i=0.89$ no tiene número anterior con el cual compararlo. Recuerde que una corrida se forma con unos consecutivos o ceros consecutivos. Por ejemplo los primeros dos ceros de la secuencia forman la primer corrida, la cual se dice que tiene una longitud de dos; el tercer número de la secuencia, uno, forma la segunda corrida con longitud de uno; después siguen dos ceros, los cuales forman la tercera corrida con longitud de dos; después sigue un uno, el cual forma la cuarta corrida con longitud de uno, etc. Siguiendo el proceso anterior se determina que el número de corridas de la secuencia es $C_0=14$.

Ejemplo 2.15

Realizar la prueba de corridas arriba y abajo con un nivel de aceptación de 95% al siguiente conjunto de números r_i :

0.34	0.83	0.96	0.47	0.79	0.00	0.37	0.72	0.06	0.18
0.67	062						0.02		
0.46	0.22	0.99	0.78	0.39	0.18	0.75	0.73	0.79	0.29
0.11	0.19	0.58	0.34	0.42	0.37	0.31	0.73	0.74	0.21

Realizaremos la asignación de unos y ceros por renglón (o fila). Por lo tanto, la secuencia S es:

Obteniéndose un valor de $C_O = 24$, y $\alpha = 5\%$. A continuación se presentan los cálculos correspondientes al valor esperado y a la varianza del número de corridas:

$$\mu_{C_o} = \frac{2n-1}{3} = \frac{2(40)-1}{3} = 26.333$$

$$\sigma_{C_o}^2 = \frac{16n-29}{90} = \frac{16(40)-29}{90} = 6.788$$

$$Z_0 = \left| \frac{C_o - \mu_{C_o}}{\sigma_{C_o}} \right| = \left| \frac{16(40)-29}{6.788} \right|$$

Como el estadístico Z_0 es menor que el valor de tabla de la normal estándar para $Z_{\alpha/2} = Z_{5\%/2} = 1.96$, se concluye que no se puede rechazar que los números del conjunto r_i son independientes. Es decir, de acuerdo con esta prueba, los números son aptos para usarse en simulación.

2.4.4.2 Prueba de corridas arriba y abajo de la media

El procedimiento de esta prueba consiste en determinar una secuencia de unos y ceros, de acuerdo con una comparación entre los números del conjunto r, y 0.5. Posteriormente

se determina el número de corridas observadas, C_O , y los valores de n_0 y n_1 . C_O es el número de corridas en la secuencia, determinado de la misma manera que en la prueba de corridas arriba y abajo; n_0 es igual a la cantidad de ceros en la secuencia, y n_1 es igual a la cantidad de unos en la secuencia, cumpliéndose que $n_0 + n_1 = n$. (Recuerde que una corrida se identifica como la cantidad de unos o ceros consecutivos.) Luego se calcula el valor esperado, la varianza del número de corridas y el estadístico Z_0 con las siguientes ecuaciones:

$$\mu_{C_o} = \frac{2n_0n_1}{n} + \frac{1}{2}$$

$$\sigma_{C_o}^2 = \frac{2n_0n_1(2n_0n_1 - n)}{n^2(n - 1)}$$

$$Z_0 = \frac{C_O - \mu_{C_o}}{\sigma_{C_o}}$$

Si el estadístico Z_0 está fuera del intervalo: $-z_{\frac{\alpha}{2}} \le z_0 \le z_{\frac{\alpha}{2}}$, se concluye que los números

del conjunto r_i no son independientes. De lo contrario no se puede rechazar que el conjunto de r_i es independiente.

Considere la siguiente secuencia de 10 números de un conjunto r.:

$$r_i = \{0.67, 0.62, 0.05, 0.49, 0.59, 0.42, 0.05, 0.02, 0.74, 0.67\}$$

La secuencia de unos y ceros se construye de la siguiente manera: se asigna un uno si el número r_i es mayor que o igual a 0.5. En caso contrario se asignará un cero. Siguiendo esta regla, la secuencia de unos y ceros es:

$$S = \{1, 1, 0, 0, 1, 0, 0, 0, 1, 1\}$$

El número de corridas se determina de la misma manera que en la prueba de corridas arriba y abajo. En este caso se tiene que el número de corridas de la secuencia S es $C_O = 5$. Por otra parte, la secuencia tiene 5 ceros y 5 unos, así que $n_0 = 5$ y $n_1 = 5$.

Ejemplo 2.16

Realizar la prueba de corridas arriba y abajo, con un nivel de aceptación de 95%, al siguiente conjunto de números r_i :

	0.809	0.042	0.432	0.538	0.225	0.88	0.688	0.772	0.036	0.854
	0.397	0.268	0.821	0.897	0.07	0.721	0.087	0.35	0.779	0.482
	0.136	0.855	0.453	0.197	0.444	0.799	0.809	0.691	0.545	0.857
	0.692	0.055	0.348	0.373	0.436	0.29	0.015	0.834	0.599	0.724
	0.564	0.709	0.946	0.754	0.677	0.128	0.012	0.498	0.6	0.913
- 1										

Construiremos la secuencia de unos y ceros por renglón quedando de la siguiente manera:

$$S = \{1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1\}$$

A partir de la secuencia anterior se determina que hay 21 corridas, 23 ceros y 27 unos. Por lo tanto, $C_0 = 21$, $n_0 = 23$ y $n_1 = 27$. A continuación se presentan los cálculos del valor esperado y de la varianza del número de corridas:

$$\mu_{C_o} = \frac{2n_0n_1}{n} + \frac{1}{2} = \frac{2(23)(27)}{50} + \frac{1}{2} = 25.34$$

$$\sigma_{C_o}^2 = \frac{2n_0n_1(2n_0n_1 - n)}{n^2(n - 1)} = \frac{2(23)(27)[2(23)(27) - 50]}{(50)^2(50 - 1)} = 12.08542$$

$$Z_0 = \frac{C_O - \mu_{C_o}}{\sigma_{C_o}} = \frac{21 - 25.34}{12.08542} = 1.2484146$$

Como el valor de Z_0 cae dentro del intervalo $-1.96 \le Z_0 = -1.2484146 \le 1.96$, se dice que no se puede rechazar que los números del conjunto r_i son independientes con un nivel de confianza de 95%. De acuerdo con esta prueba, el conjunto de números r_i se puede usar en un estudio de simulación.

2.4.4.3 Prueba póker

Esta prueba consiste en visualizar el número r_i con cinco decimales (como si fuera una mano del juego de póker, con 5 cartas), y clasificarlo como: todos diferentes (TD), exactamente un par (1P), dos pares (2P), una tercia (T), una tercia y un par (TP), póker (P) y quintilla (Q). Por ejemplo, si r_i = 0.69651 se le clasifica como par, porque hay dos números 6. Ahora bien, consideremos el caso de r_i = 0.13031, el cual debe clasificarse como dos pares (dos números 1 y dos números 3). Finalmente, r_i = 0.98898 debe clasificarse como una tercia y un par, porque hay tres números 8 y dos números 9. La prueba póker se puede realizar a números r_i con tres, cuatro y cinco decimales. Para r_i con tres decimales sólo hay tres categorías de clasificación: todos diferentes (TD), un par (1P) y una tercia (T). Cuando se consideran r_i con cuatro decimales se cuenta con cinco opciones para clasificar los números: todos diferentes (TD), exactamente un par (1P), dos pares (2P), una tercia (T) y póker (P).

Tabla 2.3 Prueba póker para números con tres decimales

Categoría	Probabilidad	E _i
Todos diferentes (TD)	0.72	0.72n
Exactamente un par (1P)	0.27	0.27n
Tercia (T)	0.01	0.01 <i>n</i>

Tabla 2.4 Prueba póker para números con cuatro decimales

Categoría	Probabilidad	E _i		
Todos diferentes (TD)	0.5040	0.5040 <i>n</i>		
Exactamente un par (1P)	0.4320	0.4320 <i>n</i>		
Dos pares (2P)	0.0270	0.0270 <i>n</i>		
Tercia (T)	0.0360	0.0360 <i>n</i>		
Póker (P)	0.0010	0.0010 <i>n</i>		

Tabla 2.5 Prueba póker para números con cinco decimales

Categoría	Probabilidad	E _i		
Todos diferentes (TD)	0.3024	0.3024n		
Exactamente un par (1P)	0.5040	0.5040 <i>n</i>		
Dos pares (2P)	0.1080	0.1080 <i>n</i>		
Una tercia y un par (TP)	0.0090	0.0090 <i>n</i>		
Tercia (T)	0.0720	0.0720n		
Póker (P)	0.0045	0.0045 <i>n</i>		
Quintilla (Q)	0.0001	0.0001 <i>n</i>		

Las tablas 2.3 a 2.5 presentan la probabilidad esperada para cada una de las categorías de clasificación de esta prueba para conjuntos r_i que contienen n números con 3,4 y 5 decimales.

La prueba póker requiere el estadístico de la distribución Chi-cuadrada $\chi^2_{\alpha,6}$ para números con cinco decimales, $\chi^2_{\alpha,4}$ para números con cuatro decimales y $\chi^2_{\alpha,2}$ para números con tres decimales. $\chi^2_{\alpha,6}$ tiene 6 grados de libertad, debido a que los números se clasifican en siete categorías o clases: todos diferentes, exactamente un par, dos pares, una tercia y un par, una tercia, póker y quintilla.

El procedimiento de la prueba consiste en:

- a) Determinar la categoría de cada número del conjunto r_i .
- b) Contabilizar los números r_i de la misma categoría o clase para obtener la frecuencia observada (O_i) .

c) Calcular el estadístico de la prueba χ_0^2 con la ecuación

$$\chi_0^2 = \sum_{i=1}^m \frac{(E_i - O_i)^2}{E_i},$$

donde E_i es la frecuencia esperada de números r_i en cada categoría, y m representa la cantidad de categorías o clases en las que se clasificaron los números r_i , siendo m = 7, m = 5 y m = 3 los números de categorías para la prueba póker con cinco, cuatro y tres decimales, respectivamente. Por último:

d) Comparar el estadístico de $\chi_0^2 \cos \chi_{\alpha,m-1}^2$.

Si χ_0^2 es menor que $\chi_{\alpha,m-1}^2$, se dice que no se puede rechazar la independencia de los números del conjunto r_i . En caso contrario la independencia de los números del conjunto r_i se rechaza

Ejemplo 2.17

Realizar la prueba póker, con un nivel de aceptación de 95%, a los siguientes 30 números entre cero y uno, con cinco decimales.

0.06141	0.72484	0.94107	0.56766	0.14411	0.87648
0.81792	0.48999	0.18590	0.06060	0.11223	0.64794
0.52953	0.50502	0.30444	0.70688	0.25357	0.31555
0.04127	0.67347	0.28103	0.99367	0.44598	0.73997
0.27813	0.62182	0.82578	0.85923	0.51483	0.09099

Primero clasificamos cada número del conjunto r_i , asignándole las claves que se mencionaron antes. El resultado es el que se muestra en la tabla 2.6:

Tabla 2.6 Clasificación de los números de un conjunto r_i , de acuerdo con la prueba póker

0.06141	1P	0.72484	1P	0.94107	TD	0.56766	Т	0.14411	TP	0.87648	1P
0.81792	TD	0.48999	Т	0.18590	TD	0.06060	TP	0.11223	2P	0.64794	1P
0.52953	1P	0.50502	2P	0.30444	Т	0.70688	1P	0.25357	1P	0.31555	Т
0.04127	TD	0.67347	1P	0.28103	TD	0.99367	1P	0.44598	1P	0.73997	2P
0.27813	TD	0.62182	1P	0.82578	1P	0.85923	TD	0.51483	TD	0.09099	TP

Para seguir con la prueba se recomienda hacer una tabla como la siguiente:

Categorías	O _i	E _i	$\frac{(E_i - O_i)^2}{E_i}$
Todos diferentes (TD)	8	(0.3024)(30) = 9.072	0.12667
Exactamente un par (1P)	12	(0.5040)(30) = 15.12	0.64380
Dos pares (2P)	3	(0.1080)(30) = 3.24	0.01777
Una Tercia y un Par (TP)	3	(0.0090)(30) = 0.27	27.6033
Tercia (T)	4	(0.0720)(30) = 2.16	1.56740
Póker (P)	0	(0.0045)(30) = 0.135	0.135
Quintilla (Q)	0	(0.0001)(30) = 0.003	0.003

Tabla 2.7 Cálculos de la prueba póker

El estadístico $\chi_0^2 = \sum_{i=1}^7 \frac{(E_i - O_i)^2}{E_i} = 30.0969$ es mayor que el estadístico correspondiente de la Chi-cuadrada: $\chi_{0.0.5,6}^2 = 12.59$. En consecuencia, se rechaza que los números del conjunto r_i son independientes.

2.4.4.4 Prueba de series

Esta prueba consiste en comparar los números con el propósito de corroborar la independencia entre números consecutivos. Las hipótesis básicas son:

$$H_0$$
: $r_i \sim$ Independientes H_1 : $r_i \sim$ Dependientes

La prueba funciona de esta manera: se inicia creando una gráfica de dispersión entre los números consecutivos (r_i, r_{i+1}) ; posteriormente se divide la gráfica en m casillas, como se muestra en la figura 2.3, siendo m el valor entero más cercano a \sqrt{n} que permita formar de preferencia, aunque no necesariamente, una matriz cuadrada.

Enseguida se determina la frecuencia observada O_i , contabilizando el número de puntos en cada casilla y su correspondiente frecuencia esperada E_i , de acuerdo con $E_i = (n-1)/m$, donde n-1 es el número total de pares ordenados o puntos en la gráfica. Se procede entonces a calcular el error o estadístico de prueba $\chi_0^2 = \sum_{i=1}^m \frac{(E_i - O_i)^2}{E_i}$; finalmente, si el valor del error es menor que o igual al estadístico de tablas $\chi_{\alpha,m-1}^2$, no podemos rechazar la hipótesis de independencia entre números consecutivos.

Figura 2.3Gráfica de dispersión:
Primer paso de la prueba de series

Ejemplo 2.18

Realizar la prueba de series a los siguientes 30 números, con un nivel de confianza de 95 por ciento.

0.872	0.950	0.343	0.058	0.384
0.219	0.041	0.036	0.213	0.946
0.570	0.842	0.706	0.809	0.300
0.618	0.152	0.462	0.005	0.203
0.291	0.151	0.596	0.443	0.868
0.913	0.511	0.586	0.608	0.879

Para empezar, generamos la gráfica de dispersión (vea la figura 2.4) con la secuencia de los 29 pares ordenados $(x, y) = (r_i, r_{i+1})$ siguientes:

$$(r_1, r_2) = (0.872, 0.219)$$

$$(r_2, r_3) = (0.219, 0.570)$$

$$(r_3, r_4) = (0.570, 0.618)$$

$$(r_4, r_5) = (0.618, 0.291)$$

$$(r_5, r_6) = (0.291, 0.913)$$

$$(r_6, r_7) = (0.913, 0.950)$$

• • •

$$(r_{28}, r_{29}) = (0.203, 0.868)$$

$$(r_{29}, r_{30}) = (0.868, 0.879)$$

Figura 2.4 Gráfica de dispersión del ejemplo 2.18

En la tabla 2.8 se presenta el resto del procedimiento: se contabiliza el número de puntos en cada casilla O_i , y se calcula la frecuencia esperada E_i de acuerdo con E_i = 29/9; en la última columna se presenta el cálculo del estadístico de prueba

$$\chi_0^2 = \sum_{i=1}^m \frac{(E_i - O_i)^2}{E_i} = \sum_{i=1}^9 \frac{(3.22 - O_i)^2}{3.22}$$

Tabla 2.8 Cálculos de la prueba de series

Intervalo i	O _i	$E_i = \frac{n-1}{m} = \frac{29}{9}$	$\chi_0^2 = \sum_{i=1}^m \frac{(E_i - O_i)^2}{E_i}$		
1	3	3.22	0.015		
2	3	3.22	0.015		
3	5	3.22	0.984		
4	3	3.22	0.015 2.400		
5	6	3.22			
6	1	3.22	1.530		
7	5	3.22	0.984		
8	1	3.22	1.530		
9	2	3.22	0.462		
Total	29	29	7.935		

El valor de tablas $\chi^2_{0.05,8}=15.507$ es mayor que el error total de 7.935, por lo cual no podemos rechazar la hipótesis de independencia.

2.4.4.5 Prueba de huecos

Esta prueba consiste en comparar los números con el propósito de verificar el tamaño del "hueco" que existe entre ocurrencias sucesivas de un número. Las hipótesis fundamentales son:

 H_0 : $r_i \sim$ Independientes H_1 : $r_i \sim$ Dependientes

La prueba se inicia definiendo un intervalo de prueba (α, β) , donde $(\alpha, \beta) \in (0, 1)$; posteriormente se construye una secuencia de unos y ceros de esta manera: se asigna un uno si el r_i pertenece al intervalo (α, β) , y un 0 si no pertenece a dicho intervalo. Por ejemplo, si se define un intervalo $(\alpha, \beta) = (0.6, 0.7)$ y se tiene la muestra de 10 números

$$r_i = \{0.67, 0.62, 0.05, 0.49, 0.59, 0.42, 0.64, 0.06, 0.74, 0.67\},$$

se asignará un uno si el r_i está entre 0.6 y 0.7; en caso contrario se asignará un cero. Siguiendo la regla anterior, la secuencia binaria es:

$$S = \{1, 1, 0, 0, 0, 0, 1, 0, 0, 1\}$$

El tamaño de hueco i se define como el número de ceros existentes entre unos consecutivos. En el caso de la secuencia de nuestro ejemplo tenemos h=3 huecos, el primero de tamaño 0, el segundo de tamaño 4 y el tercero de tamaño 2 de acuerdo con:

$$S = \left\{ \underbrace{1, 1,}_{0}, \underbrace{0, 0, 0, 0,}_{4}, 1, \underbrace{0, 0,}_{2}, 1 \right\}$$

A partir del conjunto anterior se determina la frecuencia observada O_i , contabilizando el número de ocurrencias de cada tamaño de hueco y su correspondiente frecuencia esperada E_i , de acuerdo con $E_i = (h)(\beta - \alpha)(1 - (\beta - \alpha))^i$, donde h es el número total de huecos en la muestra. La frecuencia del último intervalo se puede calcular mediante la diferencia entre el total y la suma de las frecuencias esperadas de los intervalos anteriores.

Un resumen de estos cálculos se muestra en la siguiente tabla:

Tabla 2.9 Frecuencias observadas y esperadas en la prueba de huecos

Tamaño del hueco i O _i		$E_i = (h)(\beta - \alpha)(\beta - \alpha)^i$ $E_i = (3)(0.7 - 0.6)(1 - (0.7 - 0.6))^i$	E _i
0 1 1 0 2 1		(3)(0.1)(0.9) ⁰	0.3
		(3)(0.1)(0.9) ¹	0.27
		(3)(0.1)(0.9) ²	0.243
3	0	(3)(0.1)(0.9) ³	0.2187
4	1	(3)(0.1)(0.9) ⁴	0.1968
≥5 0		(3)(0.9) ⁵	1.7715
Total	h = 3	h = 3	h = 3

Se procede entonces a calcular el error o estadístico de prueba $\chi_0^2 = \sum_{i=1}^m \frac{(E_i - O_i)^2}{E_i}$; por último, si este valor es menor que o igual al estadístico de tablas $\chi_{\alpha,m-1}^2$, no podemos rechazar la hipótesis de la independencia entre los números.

Ejemplo 2.19

Realizar la prueba de huecos a los siguientes 30 números, con un nivel de confianza de 95% para el intervalo $(\alpha, \beta) = (0.8, 1.0)$.

0.872	0.950	0.343	0.058	0.384
0.219	0.041	0.036	0.213	0.946
0.570	0.842	0.706	0.809	0.300
0.618	0.152	0.462	0.005	0.203
0.291	0.151	0.596	0.443	0.868
0.913	0.511	0.586	0.608	0.879

Tomando los números por renglón (o fila) y teniendo en cuenta el intervalo (0.8,1.0), la secuencia de unos y ceros es:

$$S = \{1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1\}$$

Calculando los huecos de la muestra, tenemos:

El número de ocurrencias de cada tamaño de hueco O_i , su correspondiente frecuencia esperada E_i y el cálculo del estadístico de prueba se muestran en la tabla 2.10.

Tabla 2.10 Ejemplo de la prueba de huecos

Tamaño del hueco <i>i</i>	O _i	$E_{i} = (h)((\beta - \alpha)(-1(\beta - \alpha)))^{i}$ $E_{i} = (7)(0.2)(0.8)^{i}$	$\frac{(E_i - O_i)^2}{E_i}$	
0 2 1 2 2 0		1.4	0.2571	
		1.12	0.6914	
		0.896	0.896	
3	1	0.7168	0.1119	
4	0	0.5734	0.5734	
≥5 2		$7(0.8)^5 = 2.2938$	0.0376	
Total	h = 7	h = 7	2.5675	

Ya que el estadístico de prueba $\chi_0^2 = \sum_{i=1}^6 \frac{(E_i - O_i)^2}{E_i} = 2.5675$ es menor que el estadístico de tablas $\chi^2_{\alpha,m-1} = \chi^2_{0.05,5} = 11.07$, no podemos rechazar la hipótesis de independen-

2.5 Problemas

- 1. Determine el ciclo o periodo de vida de los siguientes generadores congruenciales.

 - a) $x_{i+1} = (21x_i + 15) \mod(31)$ $con \quad x_0 = 21$ b) $x_{i+1} = (13x_i + 9) \mod(128)$ $con \quad x_0 = 7$ c) $x_{i+1} = (17x_i) \mod(31)$ $con \quad x_0 = 23$ d) $x_{i+1} = (121 + x_i) \mod(256)$ $con \quad x_0 = 17$ e) $x_{i+1} = (21x_i + 15x_{i-1}) \mod(64)$ $con \quad x_0 = 21$ $y \quad x_1 = 43$
- 2. Programe en una hoja de cálculo la serie congruencial $x_{i+1} = (553 + 121x_i) \mod(177)$ $con x_0 = 23$, y haga lo que se indica.
 - a) Determine el ciclo o periodo de vida.
 - b) Realice las pruebas de media, varianza y uniformidad.
- 3. Programe en una hoja de cálculo la generación automática de números pseudo aleatorios con el método de cuadrados medios. Genere una muestra de 50 números con la semilla 5 735, y determine con un nivel de aceptación de 90% si son uniformes entre 0 y 1.
- 4. Realice las pruebas de media, varianza y uniformidad a los 50 números de la tabla siquiente, con un nivel de aceptación de 95 por ciento.

0.8797	0.3884	0.6289	0.8750	0.5999	0.8589	0.9996	0.2415	0.3808	0.9606
0.9848	0.3469	0.7977	0.5844	0.8147	0.6431	0.7387	0.5613	0.0318	0.7401
0.4557	0.1592	0.8536	0.8846	0.3410	0.1492	0.8681	0.5291	0.3188	0.5992
0.9170	0.2204	0.5991	0.5461	0.5739	0.3254	0.0856	0.2258	0.4603	0.5027
0.9170	0.2204	0.5991	0.5461	0.5739	0.3254	0.0856	0.2258	0.4603	0.5027
0.8376	0.6235	0.3681	0.2088	0.1525	0.2006	0.4720	0.4272	0.6360	0.0954

- 5. Genere la secuencia de aleatorios del generador congruencial $x_{i+1} = (71x_i) \mod(357)$ con x_0 = 167 y efectúe lo que se indica:
 - a) Realice la prueba de corridas arriba y abajo.
 - b) Realice la prueba de corridas arriba y abajo de la media.
- 6. Determine si la siguiente lista de 100 números de 2 dígitos tiene una distribución uniforme con un nivel de aceptación de 90 por ciento.

0.78	0.98	0.24	0.73	0.43	0.16	0.78	0.47	0.18	0.55
0.04	0.29	0.68	0.77	0.16	0.03	0.79	0.22	0.37	0.80
0.96	0.26	0.91	0.55	0.75	0.55	0.64	0.39	0.53	0.45
0.61	0.14	0.38	0.12	0.40	0.74	0.78	0.98	0.27	0.60
0.43	0.67	0.62	0.32	0.53	0.54	0.24	0.29	0.18	0.08
0.82	0.94	0.19	0.98	0.41	1.00	0.74	0.92	0.14	0.43
0.83	0.88	0.18	0.21	0.50	0.13	0.43	0.69	0.08	0.12
0.22	0.50	0.16	0.11	0.18	0.89	0.80	0.42	0.29	0.87
0.83	0.79	0.65	0.28	0.78	0.49	0.36	0.86	0.87	0.64
0.51	0.07	0.18	0.94	0.50	0.22	0.66	0.91	0.48	0.24

7. Utilice la prueba de póker con nivel de aceptación de 95% para comprobar la hipótesis de que los números de la siguiente lista son aleatorios.

0.5632	0.2396	0.5583	0.8050	0.4166	0.5454	0.5491	0.5593	0.7725	0.2326
0.1020	0.4708	0.5690	0.3802	0.8224	0.6866	0.7098	0.9352	0.1388	0.4535
0.0945	0.1357	0.9191	0.1503	0.1645	0.9770	0.1301	0.1100	0.2523	0.4439
0.9499	0.9415	0.7413	0.9335	0.0805	0.8295	0.4575	0.1863	0.5504	0.8926
0.9035	0.1133	0.1115	0.8761	0.0007	0.6222	0.4605	0.0688	0.9164	0.3482
0.9419	0.3802	0.8765	0.5340	0.6593	0.8266	0.5932	0.4277	0.9162	0.7300
0.0927	0.4691	0.5736	0.5615	0.1909	0.2143	0.2672	0.7684	0.3218	0.4765
0.5581	0.0888	0.3969	0.0151	0.8605	0.9615	0.7752	0.0461	0.1122	0.7559
0.4251	0.7327	0.871	0.4445	0.8864	0.6384	0.6607	0.2892	0.8905	0.5126
0.7184	0.0512	0.5982	0.3277	0.0407	0.2668	0.5557	0.8139	0.3261	0.7949
0.2263	0.1455	0.5083	0.6106	0.7605	0.9788	0.0204	0.6006	0.1452	0.1234

8. Determine, mediante las pruebas de independencia (corridas arriba y abajo, corridas arriba y abajo de la media, de póker, de series o de huecos) si los 100 números de la tabla son pseudo aleatorios con un nivel de aceptación de 90 por ciento.

	0.78	0.98	0.24	0.73	0.43	0.16	0.78	0.47	0.18	0.55
	0.04	0.29	0.68	0.77	0.16	0.03	0.79	0.22	0.37	0.80
	0.96	0.26	0.91	0.55	0.75	0.55	0.64	0.39	0.53	0.45
	0.61	0.14	0.38	0.12	0.40	0.74	0.78	0.98	0.27	0.60
	0.43	0.67	0.62	0.32	0.53	0.54	0.24	0.29	0.18	0.08
	0.82	0.94	0.19	0.98	0.41	1.00	0.74	0.92	0.14	0.43
	0.83	0.88	0.18	0.21	0.50	0.13	0.43	0.69	0.08	0.12
	0.22	0.50	0.16	0.11	0.18	0.89	0.80	0.42	0.29	0.87
	0.83	0.79	0.65	0.28	0.78	0.49	0.36	0.86	0.87	0.64
	0.51	0.07	0.18	0.94	0.50	0.22	0.66	0.91	0.48	0.24
П										

- 9. Abra el directorio telefónico en la primera página de la letra D y seleccione los últimos 5 dígitos de los primeros 50 números telefónicos. Determine si esta selección es aleatoria con un nivel de aceptación de 95%; utilice para ello las pruebas de corridas arriba y abajo, arriba y abajo de la media, y póker.
- 10. Determine con la prueba de corridas arriba y abajo si los 50 números de la tabla son independientes con un nivel de aceptación de 90 por ciento.

0.6069	0.5316	0.0529	0.4131	0.2991	0.6848	0.8291	0.1233	0.2497	0.9481
0.4411	0.8195	0.3521	0.8068	0.1062	0.5384	0.9287	0.7954	0.7271	0.5739
0.4029	0.2549	0.1003	0.5523	0.1897	0.8725	0.4439	0.6056	0.8310	0.4709
0.1926	0.0266	0.5696	0.7504	0.8542	0.6045	0.2269	0.7970	0.3738	0.1284
0.6367	0.9543	0.5385	0.2574	0.2396	0.3468	0.4105	0.5143	0.2014	0.9900

11. Determine, con la prueba de corridas arriba y abajo de la media, si los 50 números de la tabla son independientes con un nivel de aceptación de 90 por ciento.

0.6351	0.0272	0.0227	0.3827	0.0659	0.3683	0.2270	0.7323	0.4088	0.2139
0.4271	0.4855	0.2028	0.1618	0.5336	0.7378	0.3670	0.6637	0.1864	0.6734
0.9498	0.9323	0.0265	0.4696	0.7730	0.9670	0.7500	0.5259	0.5269	0.5406
0.3641	0.0356	0.2181	0.0866	0.6085	0.4468	0.0539	0.9311	0.3128	0.1562
0.8559	0.7280	0.7789	0.1746	0.6637	0.0687	0.5494	0.1504	0.8397	0.2995

12. Utilice la prueba de series para determinar si los 50 números de la tabla son independientes con un nivel de aceptación de 90 por ciento.

0.5858	0.8863	0.8378	0.3203	0.4115	0.2710	0.9238	0.1959	0.9268	0.6702
0.6213	0.4360	0.6279	0.8415	0.5786	0.0543	0.3567	0.1655	0.3380	0.8080
0.1931	0.0843	0.9152	0.6093	0.7587	0.4515	0.3203	0.5139	0.7070	0.9123
0.1242	0.8826	0.9921	0.8523	0.6723	0.8540	0.4722	0.4781	0.2101	0.1680
0.8658	0.4028	0.6136	0.8720	0.1126	0.5857	0.9172	0.8943	0.8095	0.6408

- 13. Genere en una hoja de cálculo 200 números aleatorios en una misma columna, usando la función predeterminada ALEATORIO (o RAND). Copie estos valores y ubíquelos en la siguiente columna, pero desfasándolos una posición. Copie el último de los valores en el lugar que quedó vacío al principio, y haga una gráfica de relación X = Y. ¿Se observa que los datos están uniformemente dispersos?
- 14. Obtenga la media y la varianza de los datos del problema 12. ¿Son exactamente los mismos que para una distribución uniforme entre cero y uno? ¿A qué atribuye esta diferencia?
- 15. Un método multiplicativo mixto genera 19 500 números de 3 dígitos, de los cuales 13 821 tienen todos sus dígitos diferentes, 5 464 pares y 215 tercias. Calcule el error respecto de las frecuencias esperadas bajo la prueba póker.

- 16. Un método congruencial genera 71 500 números de 4 dígitos, de los cuales 3 500 se clasifican como 2 pares. Calcule el error de este evento respecto de su frecuencia esperada bajo la prueba póker.
- 17. Al realizar la prueba póker a 50 números aleatorios de 4 dígitos, el resultado del error total es de 11.07.; Aceptaría la hipótesis de independencia con nivel de aceptación de 95 por ciento?
- 18. Al realizar la prueba póker a X cantidad de números aleatorios de 6 dígitos, el resultado del error total es de 15.51. ¿Aceptaría la hipótesis de independencia con nivel de aceptación de 95 por ciento?
- 19. Un método congruencial genera 357 500 números de 6 dígitos, de los cuales 17 500 se clasifican como 2 pares. Calcule el error de este evento respecto de su frecuencia esperada bajo la prueba póker.
- 20. ¿Cuáles de las aseveraciones siguientes son correctas?
 - a) La prueba póker requiere números aleatorios de 5 dígitos.
 - b) Si acepto que los números son uniformes (0,1), no necesito hacer la prueba de media = $\frac{1}{2}$ y de varianza = $\frac{1}{12}$.

 - c) Si acepto la prueba de series los números no contienen ciclos o tendencias. d) Si acepto la prueba de media $=\frac{1}{2}$ y la de varianza $=\frac{1}{12}$, entonces los números son uniformes (0,1).
- 21. La siguiente tabla muestra los resultados de la prueba de series después de clasificar los números entre 0 y 1.

92	85	90	93
88	98	93	90
96	91	86	88
100	85	84	81

- a) Calcule el error total existente (C) entre lo real y lo teórico.
- b) ¿Existe evidencia estadística de falta de independencia de la secuencia de números con un nivel de 90% de aceptación?
- 22. Calcule la cantidad mínima y máxima de corridas que deben existir en una secuencia de 17 000 números para concluir que son números aleatorios con un nivel de confianza de 95 por ciento.
- 23. Genere 100 números pseudo aleatorios usando cualquier hoja de cálculo, y realice las pruebas de corridas, uniformidad e independencia. ¿Bajo este análisis es posible considerar que el generador de números aleatorios que tiene la hoja de cálculo usada es confiable?

24. La siguiente tabla muestra los resultados de la prueba de huecos con $\beta - \alpha = 0.1$ después de clasificar los números uniformes.

Tamaño del hueco	Frecuencia observada
0	5
1	4
2	3
3	3
>3	25
Total	40

- a) Calcule el error total existente entre lo real y lo teórico.
- b) ¿Se puede considerar que esta muestra es pseudo aleatoria con un nivel de aceptación de 90 por ciento?
- 25. Determine, mediante la prueba de huecos, con α = 0.5 y α = 0.8, si los 50 números de la tabla son independientes con un nivel de aceptación de 90 por ciento.

0.5858	0.8863	0.8378	0.3203	0.4115	0.2710	0.9238	0.1959	0.9268	0.6702
0.6213	0.4360	0.6279	0.8415	0.5786	0.0543	0.3567	0.1655	0.3380	0.8080
0.1931	0.0843	0.9152	0.6093	0.7587	0.4515	0.3203	0.5139	0.7070	0.9123
0.1242	0.8826	0.9921	0.8523	0.6723	0.8540	0.4722	0.4781	0.2101	0.1680
0.8658	0.4028	0.6136	0.8720	0.1126	0.5857	0.9172	0.8943	0.8095	0.6408

Referencias

- [1] Banks, J., Carson, J.S., Nelson, B.L. y Nicol, D.M.: *Discrete-Event System Simulation*, 4a. ed. Prentice Hall, N. J. (2005).
- [2] Blum, L., Blum, M. y Shub, M.: *A Simple Unpredictable Pseudo-random Number Generator, SIAM J. Comput*, vol. 15, núm. 2: pp. 364-383 (1986).
- [3] Law, A. M. y Kelton, W. D.: Simulation Modeling and Analysis, 3a. ed., McGraw-Hill (2000).
- [4] L'Ecuyer, P.: Uniform Random Number Generation, Ann. Of Operations Research, 53: 77-120 (1994b).
- ^[5] Lehmer, D. H.: *Proceedings of the Second Symposium on Large-Scale Digital Computing Machinery*, Harvard University Press, Cambridge, MA. (1951).

CAPÍTULO 3

VARIABLES ALEATORIAS

- **3.1** Definición de variable aleatoria
- **3.2** Tipos de variables aleatorias
- 3.3 Determinación del tipo de distribución de un conjunto de datos
 - 3.3.1 Prueba Chi-cuadrada
 - **3.3.2** Prueba de Kolmogorov-Smirnov
 - **3.3.3** Prueba de Anderson-Darling
 - **3.3.4** Ajuste de datos con Stat::Fit
- **3.4** Generación de variables aleatorias
 - **3.4.1** Método de la transformada inversa
 - **3.4.2** Método de convolución
 - **3.4.3** Método de composición
 - **3.4.4** Método de transformación directa
- 3.5 Expresiones comunes de algunos generadores de variables aleatorias
- 3.6 Problemas

3.1 Definición de variable aleatoria

A lo largo de los capítulos anteriores hemos mencionado que un modelo de simulación permite lograr un mejor entendimiento de prácticamente cualquier sistema. Para ello resulta indispensable obtener la mejor aproximación a la realidad, lo cual se consigue componiendo el modelo a base de variables aleatorias que interactúen entre sí. Pero, ¿cómo podemos determinar qué tipo de distribución tiene una variable aleatoria? ¿Cómo podemos usarla en el modelo, una vez que conocemos su distribución asociada? En este capítulo comentaremos los métodos y herramientas que pueden dar contestación a estas interrogantes clave para la generación del modelo.

Podemos decir que las variables aleatorias son aquellas que tienen un comportamiento probabilístico en la realidad. Por ejemplo, el número de clientes que llegan cada hora a un banco depende del momento del día, del día de la semana y de otros factores: por lo general, la afluencia de clientes será mayor al mediodía que muy temprano por la mañana; la demanda será más alta el viernes que el miércoles; habrá más clientes un día de pago que un día normal, etc. Dadas estas características, las variables aleatorias deben cumplir reglas de distribución de probabilidad como éstas:

- La suma de las probabilidades asociadas a todos los valores posibles de la variable aleatoria x es uno.
- La probabilidad de que un posible valor de la variables x se presente siempre es mayor que o igual a cero.
- El valor esperado de la distribución de la variable aleatoria es la media de la misma, la cual a su vez estima la verdadera media de la población.
- Si la distribución de probabilidad asociada a una variable aleatoria está definida por más de un parámetro, dichos parámetros pueden obtenerse mediante un estimador no sesgado. Por ejemplo, la varianza de la población σ^2 puede ser estimada usando la varianza de una muestra que es s^2 . De la misma manera, la desviación estándar de la población, σ , puede estimarse mediante la desviación estándar de la muestra s.

3.2 Tipos de variables aleatorias

Podemos diferenciar las variables aleatorias de acuerdo con el tipo de valores aleatorios que representan. Por ejemplo, si habláramos del número de clientes que solicitan cierto servicio en un periodo de tiempo determinado, podríamos encontrar valores tales como 0, 1, 2, ..., n, es decir, un comportamiento como el que presentan las distribuciones de probabilidad discretas. Por otro lado, si habláramos del tiempo que tarda en ser atendida una persona, nuestra investigación tal vez arrojaría resultados como 1.54 minutos, 0.028 horas o 1.37 días, es decir, un comportamiento similar al de las distribuciones de probabilidad continuas. Considerando lo anterior podemos diferenciar entre variables aleatorias discretas y variables aleatorias continuas.

Variables aleatorias discretas. Este tipo de variables deben cumplir con estos parámetros:

$$P(x) \ge 0$$

$$\sum_{i=0}^{\infty} p_i = 1$$

$$P(a \le x \le b) = \sum_{i=a}^{b} p_i = P_a + \dots + P_b$$

Algunas distribuciones discretas de probabilidad son la uniforme discreta, la de Bernoulli, la hipergeométrica, la de Poisson y la binomial (vea la figura 3.1). Podemos asociar a estas u otras distribuciones de probabilidad el comportamiento de una variable aleatoria. Por ejemplo, si nuestro propósito al analizar un muestreo de calidad consiste en decidir si la pieza bajo inspección es buena o no, estamos realizando un experimento con dos posibles resultados: la pieza es buena o la pieza es mala. Este tipo de comportamiento está asociado a una distribución de Bernoulli. Por otro lado, si lo que queremos es modelar el número de usuarios que llamarán a un teléfono de atención a clientes, el tipo de comportamiento puede llegar a parecerse a una distribución de Poisson. Incluso podría ocurrir que el comportamiento de la variable no se pareciera a otras distribuciones de probabilidad conocidas. Si éste fuera el caso, es perfectamente válido usar una distribución empírica que se ajuste a las condiciones reales de probabilidad. Esta distribución puede ser una ecuación o una suma de términos que cumplan con las condiciones necesarias para ser consideradas una distribución de probabilidad.

Figura 3.1
Distribución de probabilidad de una variable aleatoria discreta

Variables aleatorias continuas. Este tipo de variables se representan mediante una ecuación que se conoce como función de densidad de probabilidad. Dada esta condición, cambiamos el uso de la sumatoria por la de una integral para conocer la función acumulada de la variable aleatoria. Por lo tanto, las variables aleatorias continuas deben cumplir los siguientes parámetros:

$$P(x) \ge 0$$

$$P(x = a) = 0$$

$$\int_{-\infty}^{\infty} f(x) = 1$$

$$P(a \le x \le b) = P(a < x < b) = \int_{a}^{b} f(x)$$

Entre las distribuciones de probabilidad tenemos la uniforme continua, la exponencial, la normal, la de Weibull, la Chi-cuadrada y la de Erlang (vea la figura 3.2). Al igual que en el caso de las distribuciones discretas, algunos procesos pueden ser asociados a ciertas distribuciones.

Figura 3.2 Distribución de probabilidad de una variable aleatoria continua

Por ejemplo, es posible que el tiempo de llegada de cada cliente a un sistema tenga una distribución de probabilidad muy semejante a una exponencial, o que el tiempo que le toma a un operario realizar una serie de tareas se comporte de manera muy similar a la dispersión que presenta una distribución normal. Sin embargo, debemos hacer notar que este tipo de distribuciones tienen sus desventajas, dado que el rango de valores posibles implica que existe la posibilidad de tener tiempos infinitos de llegada de clientes o tiempos de ensamble infinitos, situaciones lejanas a la realidad. Por fortuna, es muy poco probable de se presenten este tipo de eventos, aunque el analista de la simulación debe estar consciente de cómo pueden impactar valores como los descritos en los resultados del modelo. En las siguientes secciones revisaremos algunas herramientas útiles para lograr ese objetivo.

3.3 Determinación del tipo de distribución de un conjunto de datos

La distribución de probabilidad de los datos históricos puede determinarse mediante las pruebas Chi-cuadrada, de Kolmogorov-Smirnov y de Anderson-Darling. En esta sección se

revisarán los procedimientos de cada una de estas pruebas, así como la forma de realizarlas a través de Stat::Fit, una herramienta complementaria de ProModel.

3.3.1 Prueba Chi-cuadrada

Se trata de una prueba de hipótesis a partir de datos, basada en el cálculo de un valor llamado *estadístico de prueba*, al cual suele comparársele con un valor conocido como *valor crítico*, mismo que se obtiene, generalmente, de tablas estadísticas. El procedimiento general de la prueba es:

- 1. Obtener al menos 30 datos de la variable aleatoria a analizar.
- 2. Calcular la media y varianza de los datos.
- 3. Crear un histograma de $m = \sqrt{n}$ intervalos, y obtener la frecuencia observada en cada intervalo O_i .
- 4. Establecer explícitamente la hipótesis nula, proponiendo una distribución de probabilidad que se ajuste a la forma del histograma.
- 5. Calcular la frecuencia esperada, E_i , a partir de la función de probabilidad propuesta.
- 6. Calcular el estadístico de prueba:

$$c = \sum_{i=1}^{m} \frac{(E_i - O_i)^2}{E_i}$$

- 7. Definir el nivel de significancia de la prueba, α , y determinar el valor crítico de la prueba, $\chi^2_{\alpha,m-k-1}$ (k es el número de parámetros estimados en la distribución propuesta).
- 8. Comparar el estadístico de prueba con el valor crítico. Si el estadístico de prueba es menor que el valor crítico no se puede rechazar la hipótesis nula.

Ejemplo 3.1

Éstos son los datos del número de automóviles que entran a una gasolinera cada hora:

14	7	13	16	16	13	14	17	15	16
13	15	10	15	16	14	12	17	14	12
13	20	8	17	19	11	12	17	9	18
20	10	18	15	13	16	24	18	16	18
12	14	20	15	10	13	21	23	15	18

Determinar la distribución de probabilidad con un nivel de significancia α de 5 por ciento.

El histograma (vea la figura 3.3) de los n = 50 datos, considerando m = 11 intervalos, la media muestral de 15.04 y la varianza muestral de 13.14, permiten establecer la siguiente hipótesis:

 H_0 : Poisson ($\lambda = 15$) automóviles/hora

*H*₁: Otra distribución

Figura 3.3 Histograma de frecuencias de la llegada de automóviles a la gasolinera

Comenzamos por calcular la probabilidad de cada intervalo a partir de la función de probabilidad de Poisson:

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!} \qquad x = 0, 1, 2, \dots$$

$$p(x) = \frac{15^x e^{-15}}{x!}$$
 $x = 0, 1, 2, ...$

Por ejemplo, para el intervalo 8-9

$$p(x = 8, 9) = \frac{15^8 e^{-15}}{8!} + \frac{15^9 e^{-15}}{9!} = 0.0519$$

Enseguida calculamos la frecuencia esperada en cada intervalo, multiplicando la probabilidad p(x) por el total de datos de la muestra:

$$E_i = np(x)$$

$$E_i = 50p(x)$$

Y luego estimamos el estadístico de prueba:

$$c = \sum_{i=1}^{m} \frac{(E_i - O_i)^2}{E_i} = \frac{(0.9001 - 1)^2}{0.9001} + \frac{(2.5926 - 2)^2}{2.5926} + \dots + \frac{(0.3092 - 0)^2}{0.3092} = 1.7848$$

A partir de los cálculos anteriores se obtiene la tabla 3.1.

Tabla 3.1	Cálculos	para la	prueba	Chi-cuadrada
-----------	----------	---------	--------	--------------

Intervalo	O _i	p (x)	$E_i = 50*p(x)$	с
0-7	1	0.0180	0.9001	0.0111
8-9	2	0.0519	2.5926	0.1354
10-11	4	0.1149	5.7449	0.5300
12-13	10	0.1785	8.9233	0.1299
14-15	11	0.2049	10.2436	0.0559
16-17	10	0.1808	9.0385	0.1023
18-19	6	0.1264	0.1264 6.3180	
20-21	4	0.0717	3.5837	0.0483
22-23	1	0.0336	1.6821	0.2766
24-25	1	0.0133	0.6640	0.1700
25-8	0	0.0062	0.3092	0.3092
Total	50	1	50	1.78481

El valor del estadístico de prueba, c=1.7848, comparado con el valor de tablas crítico, $\chi^2_{0.05,11-0-1}=18.307$, indica que no podemos rechazar la hipótesis de que la variable aleatoria se comporta de acuerdo con una distribución de Poisson, con una media de 15 automóviles/hora.

3.3.2 Prueba de Kolmogorov-Smirnov

Desarrollada en la década de los treinta del siglo XX, esta prueba permite —al igual que la prueba Chi-cuadrada— determinar la distribución de probabilidad de una serie de datos. Una limitante de la prueba de Kolmogorov-Smirnov estriba en que solamente se puede aplicar al análisis de variables continuas. El procedimiento general de la prueba es:

- 1. Obtener al menos 30 datos de la variable aleatoria a analizar.
- 2. Calcular la media y la varianza de los datos.
- 3. Crear un histograma de $m = \sqrt{n}$ intervalos, y obtener la frecuencia observada en cada intervalo O_i .
- 4. Calcular la probabilidad observada en cada intervalo $PO_i = O_i/n$, esto es, dividir la frecuencia observada O_i entre el número total de datos, n.
- 5. Acumular las probabilidades PO; para obtener la probabilidad observada hasta el

- i-ésimo intervalo, POA:
- 6. Establecer explícitamente la hipótesis nula, proponiendo una distribución de probabilidad que se ajuste a la forma del histograma.
- 7. Calcular la probabilidad esperada acumulada para cada intervalo, *PEA*_i, a partir de la función de probabilidad propuesta.
- 8. Calcular el estadístico de prueba:

$$C = \max |PEA_i - POA_i|$$
 $i = 1, 2, 3, ..., k, ..., m$

- 9. Definir el nivel de significancia de la prueba α , y determinar el valor crítico de la prueba, $D_{\alpha,n}$ (consulte la tabla de valores críticos de la prueba de Kolmogorov-Smirnov en la sección de apéndices).
- 10. Comparar el estadístico de prueba con el valor crítico. Si el estadístico de prueba es menor que el valor crítico no se puede rechazar la hipótesis nula.

Ejemplo 3.2

Un estudio del comportamiento del tiempo entre roturas de cierto filamento, medido en minutos/rotura, se muestra a continuación:

4.33	1.61	2.16	2.88	0.70	0.44	1.59	2.15	8.59	7.36
9.97	7.86	5.49	0.98	4.52	2.12	4.44	0.82	6.96	3.04
2.81	14.39	3.44	9.92	4.38	8.04	2.18	6.19	4.48	9.66
4.34	1.76	2.30	5.24	11.65	10.92	12.16	6.60	0.85	4.82
1.36	3.53	6.58	1.45	8.42	3.69	2.44	0.28	1.90	2.89

Determinar la distribución de probabilidad con un nivel de significancia α de 5 por ciento. El histograma (vea la figura 3.4) de los n=50 datos con m=8 intervalos, la media muestral de 4.7336 y la varianza muestral de 12.1991 permiten estimar un parámetro de forma de 1.38 y un parámetro de escala de 5.19, y establecer la hipótesis:

 H_0 : Weibull ($\alpha = 1.38, \beta = 5.19$) minutos/rotura

*H*₁: Otra distribución

Figura 3.4Histograma de frecuencias del tiempo entre roturas

Iniciamos el procedimiento calculando la probabilidad observada en cada intervalo:

$$PO_i = \frac{O_i}{n} = \frac{O_i}{50} = \left\{ \frac{12}{50}, \frac{13}{50}, \frac{9}{50}, \frac{6}{50}, \frac{6}{50}, \frac{2}{50}, \frac{1}{50}, \frac{1}{50} \right\}$$

para después calcular la probabilidad observada acumulada hasta el intervalo i.

$$POA_{i} = \frac{\sum O_{i}}{n} = \frac{\sum O_{i}}{50} = \left\{ \frac{12}{50}, \frac{25}{50}, \frac{34}{50}, \frac{40}{50}, \frac{46}{50}, \frac{48}{50}, \frac{49}{50}, \frac{50}{50} \right\} = \{0.24, 0.50, \dots, 1\}$$

Posteriormente calculamos la probabilidad esperada acumulada de cada intervalo *PEA*, a partir de la función de probabilidad acumulada de Weibull:

$$F(x) = \int_{0}^{x} \alpha \beta^{-a} x^{a-1} e^{-\left(\frac{x}{\beta}\right)^{a}} dx$$

$$F(x) = 1 - e^{-\left(\frac{x}{\beta}\right)^{a}}$$

$$F(x) = 1 - e^{-\left(\frac{x}{5.19}\right)^{1.38}}$$

Por ejemplo, para el intervalo con el límite superior de 8:

$$PEA_8 = F(x) = 1 - e^{-\left(\frac{8}{5.19}\right)^{1.38}} = 0.8375$$

Por último, calculamos el estadístico de prueba

$$c = \max |POA_i - PEA_i| = \max \{|0.24 - 0.2353|, |0.50 - 0.5025|, ..., |1 - 1|\} = 0.0375$$

A partir de los cálculos anteriores se obtiene la tabla 3.2:

Tabla 3.2 Cálculos para la prueba de Kolmogorov-Smirnov

Intervalo	O _i	PO _i	POAi	PEA _i	$ POA_i - PEA_i $
0-2	12	0.24	0.24	0.23526	0.0047
2-4	13	0.26	0.50	0.50247	0.0025
4-6	9	0.18	0.68	0.70523	0.0252
6-8	6	0.12	0.80	0.83747	0.0375
8-10	6	0.12	0.92	0.91559	0.0044
10-12	2	0.04	0.96	0.95839	0.0016
12-14	1	0.02	0.98	0.98042	0.0004
14-8	1	0.02	1.00	1	0.0000
Total	50	1		с	0.0375

El valor del estadístico de prueba, c = 0.0375, comparado con el valor de tablas crítico, $D_{0.05,50} = 0.1923$, indica que no podemos rechazar la hipótesis de que la variable aleatoria se comporta de acuerdo con una distribución de Weibull con parámetro de escala 5.19 y parámetro de forma 1.38.

3.3.3 Prueba de Anderson-Darling

Dada a conocer en 1954, esta prueba tiene como propósito corroborar si una muestra de variables aleatorias proviene de una población con una distribución de probabilidad específica. En realidad se trata de una modificación de la prueba de Kolmogorov-Smirnov, aunque tiene la virtud de detectar las discrepancias en los extremos de las distribuciones. La principal desventaja de la prueba de Anderson-Darling estriba en que es necesario calcular los valores críticos para cada distribución. La prueba es muy sensible en los extremos de la distribución, por lo que debe ser usada con mucho cuidado en distribuciones con límite inferior acotado, y no es confiable para distribuciones de tipo de discreto. Actualmente es posible encontrar tablas de valores críticos para las distribuciones normal, lognormal, exponencial, log-logística, de Weibull y valor extremo tipo I. El procedimiento general de la prueba es:

- 1. Obtener *n* datos de la variable aleatoria a analizar.
- 2. Calcular la media y la varianza de los datos.

- 4. Ordenar los datos en forma ascendente: Y_i i = 1, 2, ..., n5. Establecer explícitamente la binéticai i = 1, 2, ..., n5. Establecer explícitamente la hipótesis nula, proponiendo una distribución de probabilidad.
- 6. Calcular la probabilidad esperada acumulada para cada número Y_i , $PEA(Y_i)$, y la probabilidad esperada acumulada para cada número, $PEA(Y_{n+1-i})$, a partir de la función de probabilidad propuesta.
- 7. Calcular el estadístico de prueba:

$$A_n^2 = -\left[n + \frac{1}{n}\sum_{i=1}^n (2i - 1)[\ln PEA(Y_i) + \ln(1 - PEA(Y_{n+1-i}))]\right]$$

- 8. Ajustar el estadístico de prueba de acuerdo con la distribución de probabilidad
- 9. Definir el nivel de significancia de la prueba α , y determinar su valor crítico, $a_{\alpha n}$ (vea la tabla 3.3).
- 10. Comparar el estadístico de prueba con el valor crítico. Si el estadístico de prueba es menor que el valor crítico no se puede rechazar la hipótesis nula.

Tabla 3.3 Estadísticos de prueba y valores críticos para la prueba de Anderson-Darlir	on-Darling	orueba de Anders	ra la prue	críticos pai	a v valores	prueba	Estadísticos de	Tabla 3.3
--	------------	------------------	------------	--------------	-------------	--------	-----------------	-----------

		\	/alores c	ríticos a	<i>!</i>
Distribución	Estadístico de prueba ajustado	0.1	0.05	0.025	0.001
Parámetros conocidos $n \ge 5$	A_n^2	1.933	2.492	3.070	3.857
Normal	$A_n^2\left(1+\frac{4}{n}-\frac{25}{n^2}\right)$	0.632	0.751	0.870	1.029
Exponencial	$A_n^2\left(1+\frac{3}{5n}\right)$	1.070	1.326	1.587	1.943
De Weibull	$A_n^2 \left(1 + \frac{1}{5\sqrt{n}}\right)$	0.637	0.757	0.877	1.038
Log-logística	$A_n^2 \left(1 + \frac{1}{4\sqrt{n}} \right)$	0.563	0.660	0.769	0.906

Ejemplo 3.3

Los siguientes son los datos de un estudio del tiempo de atención a los clientes en una florería, medido en minutos/cliente:

9.400	8.620	9.346	13.323	7.112	13.466	5.764	8.974	9.831	10.056
7.445	6.619	9.260	6.775	8.306	5.633	8.864	13.944	8.952	9.355
10.489	6.306	12.685	11.078	6.957	9.532	9.192	11.731	11.350	14.389
12.553	8.045	9.829	11.804	9.274	12.190	10.270	14.751	9.237	6.515
12.397	8.453	9.628	13.838	9.935	7.827	9.269	8.690	11.515	8.527

Determinar la distribución de probabilidad con un nivel de significancia α de 5 por ciento. El histograma (vea la figura 3.5) de los n=50 datos, considerando m=10 intervalos, la media muestral de 9.786 y la varianza muestral de 5.414 permiten establecer la siguiente hipótesis nula:

 H_0 : Normal (1/ μ = 10, σ = 2.0) minutos/cliente

 H_1 : Otra distribución

En la tabla 3.4 se muestran los resultados de los cálculos de cada uno de los pasos del procedimiento siguiente:

- En la columna C1 se ordenaron los datos Y_i i = 1, 2, ..., 30 en forma ascendente.
- En la columna C2 se organizaron los datos Y_{30+1+i} i=1,2,...,30 en forma descendente.
- En la columna C3 se calcula la variable auxiliar $2_i 1$ i = 1, 2, ..., 30 del estadístico de prueba.
- En las columnas C4 y C5 se calcula la probabilidad esperada acumulada para cada número Y_i : $PEA(Y_i)$ de la columna C1, y el complemento de la probabilidad esperada acumulada para cada número Y_{n+1-i} : $1 PEA(Y_{n+1-i})$ de la columna C2 a par-

Figura 3.5
Histograma de frecuencias
del tiempo de servicio
en la florería

tir de la función de probabilidad propuesta, que en este ejemplo es una normal (10, 2).

Tomando, por ejemplo, el renglón i=7 con $Y_7=7.8266$ de la columna C1 y $Y_{24}=10.0562$ de la columna C2, y estandarizando ambos valores

$$z_{i=7} = \frac{7.8266 - 10}{2} = -1.0867$$

$$z_{i=24} = \frac{10.0562 - 10}{2} = 0.0281$$

se encuentra la probabilidad acumulada en la tabla normal estándar. De esta forma tenemos una $PEA_7 = 0.1385$ para z = -1.0867 y, para z = 0.0285 una $PEA_{24} = 0.5112$ y 1 – $PEA_{24} = 0.4888$.

En las columnas C6, C7 y C8 se desglosan los cálculos del estadístico de prueba:

$$A_{n=-}^{2} \left[n + \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left[\ln PEA(Y_{i}) + \ln(1 - PEA(Y_{n+1-i})) \right] \right]$$

$$A_{n=-}^{2} \left[30 + \frac{1}{30} \sum_{i=1}^{30} (2i - 1) \left[\ln PEA(Y_{i}) + \ln(1 - PEA(Y_{n+1-i})) \right] \right]$$

$$A_{n=-}^{2} \left[30 + \frac{1}{30} (1) \left[-4.2399 - 3.1812 \right] + (3) \left[-4.0692 - 3.1812 \right] + \dots + (59) \left[-0.0424 - 0.0146 \right] \right]$$

$$A_n^2 = 2.825724$$

Una vez calculado el estadístico de prueba es necesario ajustarlo de acuerdo con la tabla 3.3. En este caso, como tenemos $n \ge 5$ no se requiere ajuste.

Finalmente, al comparar el estadístico de prueba $A_n^2=2.825724$ con el valor crítico de la prueba con el nivel de significancia seleccionado, $a_{0.05,30}=2.492$ (vea la tabla 3.3, en donde se dan los valores críticos de α), se rechaza la hipótesis H_0 .

Tabla 3.4 Cálculos de la hipótesis inicial en la prueba de Anderson-Darling

	C1	C2	<i>C</i> 3	C4	C5	C6	С7	C8
i	Y _i	Y _{30+1-i}	2 _{<i>i</i>-1}	PEA(Y _i)	1-PEA(Y _{30+1-i})	LN(C4)	LN(C5)	(C3)*((C6) + C(7))
1	5.63282	13.4663	1	0.014496	0.0415	-4.2339	-3.1812	-7.4151
2	5.76414	13.4663	3	0.01709	0.0145	-4.0692	-3.1812	-21.7513
3	5.76414	13.3229	5	0.01709	0.0483	-4.0692	-3.0301	-35.4967
4	6.95686	12.6853	7	0.064058	0.0897	-2.7480	-2.4114	-36.1152
5	7.11163	12.19	9	0.074343	0.1368	-2.5991	-1.9896	-41.2977
6	7.11163	10.2697	11	0.074343	0.4464	-2.5991	-0.8066	-37.4625
7	7.8266	10.0562	13	0.138585	0.4888	-1.9763	-0.7158	-34.2732
8	8.30552	9.93504	15	0.198431	0.5130	-1.1673	-0.6676	-34.5836
9	8.61959	9.83097	17	0.245033	0.5337	-1.4064	-0.6280	-35.7676
10	8.86415	9.82943	19	0.245033	0.5340	-1.2551	-0.6274	-36.6755
11	8.97359	9.62768	21	0.303903	0.5738	-1.1910	-0.5554	-36.6755
12	9.1919	9.53164	23	0.343089	0.5926	-1.0698	-0.5233	-36.6399
13	9.25952	9.39954	25	0.355602	0.6180	-1.0339	-0.4813	-37.8803
14	9.26901	9.34602	27	0.357372	0.6282	-1.0290	-0.4650	-40.3362
15	9.27425	9.34602	29	0.58348	0.6282	-1.0262	-0.4650	-43.2450
16	9.34602	9.27425	31	0.371838	0.6417	-0.9893	-0.4437	-44.4233
17	9.34602	9.26901	33	0.371838	0.6426	-0.9893	-0.4422	-47.2391
18	9.39954	9.25952	35	0.382	0.6444	-0.9623	-0.4394	-49.0620
19	9.53164	9.1919	37	0.407422	0.6569	-0.8979	-0.4202	-48.7701
20	9.62768	8.97359	39	0.426161	0.6961	-0.8529	-0.3623	-47.3930
21	9.82943	8.86415	41	0.466018	0.7150	-0.7635	-0.3355	-45.0617
22	9.83097	8.61959	43	0.466323	0.7550	-0.7629	-0.2811	-44.8902
23	9.93504	8.30552	45	0.487045	0.8016	-0.7194	-0.2212	-42.3263
24	10.0562	7.8266	47	0.511216	0.8614	-0.6710	-0.1492	-38.5467
25	10.2697	7.11163	49	0.553636	0.9257	-0.5912	-0.0773	-32.7565
26	12.19	7.11163	51	0.863247	0.9257	-0.1471	-0.0773	-11.4396
27	12.6853	6.95686	53	0.910306	0.9359	-0.0940	-0.0662	-8.4894
28	13.3229	5.76414	55	0.951689	0.9829	-0.0495	-0.0172	-3.6715
29	13.4663	5.76414	57	0.958464	0.9829	-0.0424	-0.0172	-3.4007
30	13.4663	5.63282	59	0.958464	0.9855	-0.0424	-0.0146	-3.3645

Replanteando una nueva hipótesis:

 H_0 : Normal (1/ μ = 9.604, σ = 2.0) minutos/cliente H_1 : Otra distribución

En la tabla 3.5 se presenta el resumen de resultados de cada uno de los pasos del procedimiento; la modificación se ve reflejada en los cálculos de las probabilidades esperadas acumuladas. Por ejemplo, para el renglón i = 7 tenemos ahora:

$$z_{i=7} = \frac{7.8266 - 9.604}{2} = -0.8887$$

$$z_{i=24} = \frac{10.0562 - 9.604}{2} = 0.2261$$

Con estos valores se encuentra la probabilidad esperada acumulada en la tabla normal estándar: a z=-0.8887 le corresponde $PEA_7=0.18707$, y a z=0.2261 $PEA_{24}=0.5894$ y $1-PEA_{24}=0.4106$.

Calculando de nuevo el estadístico de prueba:

$$A_{n=-}^{2} \left[n + \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left[\ln PEA(Y_{i}) + \ln(1 - PEA(Y_{n+1-i})) \right] \right]$$

$$A_{n=-}^{2} \left[30 + \frac{1}{30} \sum_{i=1}^{30} (2i - 1) \left[\ln PEA(Y_{i}) + \ln(1 - PEA(Y_{n+1-i})) \right] \right]$$

$$A_{n=-}^{2} \left[30 + \frac{1}{30} (1) \left[-3.749 - 3.6218 \right] + (3) \left[-3.5961 - 3.6218 \right] + \dots + (59) \left[-0.0271 - 0.0238 \right] \right]$$

$$A_{n}^{2} = 1.3516$$

Una vez calculado el estadístico de prueba, es necesario ajustarlo de acuerdo con la tabla 3.3. En este caso, como tenemos $n \ge 5$, no se requiere ajuste.

Por último, al comparar el estadístico de prueba $A_n^2 = 1.3516$ con el valor crítico con el nivel de significancia seleccionado, $a_{0.05,30} = 2.492$ (tabla 3.3 de valores críticos de α), vemos que no se puede rechazar la hipótesis H_0 .

Tabla 3.5 Cálculos de la segunda hipótesis en la prueba de Anderson-Darling

	C1	C2	C3	C4	C5	C6	C7	C8
i	Y _i	Y _{30+1-i}	2 _{<i>i</i>-1}	PEA(Y _i)	1-PEA(Y _{30+1-i})	LN(C4)	LN(C5)	(C3)*((C6) + C(7))
1	5.63282	13.4663	1	0.02354	0.0267	-3.7491	-3.6218	-7.3709
2	5.76414	13.4663	3	0.02743	0.0267	-3.5961	-3.6218	-21.6535
3	5.76414	13.3229	5	0.02743	0.0315	-3.5961	-3.4583	-35.2718
4	6.95686	12.6853	7	0.09282	0.0617	-2.3771	-2.7854	-36.1375

(Continúa)

Tabla 3.5 (Continuación)

5 7.11163 12.19 9 0.10634 0.0980	-2.2411 -2.3227 -41.0743
6 7.11163 10.2697 11 0.10634 0.3696	-2.2411 -0.9952 -35.5997
7 7.8266 10.0562 13 0.18707 0.4106	-1.6763 -0.8902 -33.3641
8 8.30552 9.93504 15 0.25808 0.4343	-1.3545 -0.8341 -32.8282
9 8.61959 9.83097 17 0.31128 0.4548	-1.1671 -0.7878 -33.2332
10 8.86415 9.82943 19 0.35571 0.4551	-1.0336 -0.7872 -34.5951
11 8.97359 9.62768 21 0.37629 0.4953	-0.9774 -0.7026 -35.2802
12 9.1919 9.53164 23 0.41837 0.5144	-0.8714 -0.6647 -35.3296
13 9.25952 9.39954 25 0.43161 0.5407	-0.8402 -0.6148 -36.3768
14 9.26901 9.34602 27 0.43348 0.5513	-0.8359 -0.5954 -38.6460
15 9.27425 9.34602 29 0.43451 0.5513	-0.8335 -0.5954 -41.4399
16 9.34602 9.27425 31 0.44867 0.5655	-0.8015 -0.5701 -42.5173
17 9.34602 9.26901 33 0.44867 0.5665	-0.8015 -0.5682 -45.2004
18 9.39954 9.25952 35 0.45927 0.5684	-0.7781 -0.5650 -47.0071
19 9.53164 9.1919 37 0.48556 0.5816	-0.7225 -0.5419 -46.7817
20 9.62768 8.97359 39 0.50471 0.6237	-0.6838 -0.4721 -45.0777
21 9.82943 8.86415 41 0.54486 0.6443	-0.6072 -0.4396 -42.9200
22 9.83097 8.61959 43 0.54516 0.6887	-0.6067 -0.3729 -42.1221
23 9.93504 8.30552 45 0.56572 0.7419	-0.5697 -0.2985 -39.0677
24 10.0562 7.8266 47 0.58943 0.8129	-0.5286 -0.2071 -34.5783
25 10.2697 7.11163 49 0.63037 0.8937	-0.4615 -0.1124 -28.1205
26 12.19 7.11163 51 0.90199 0.8937	-0.1031 -0.1124 -10.9946
27 12.6853 6.95686 53 0.93829 0.9072	-0.0637 -0.0974 -8.5385
28 13.3229 5.76414 55 0.96852 0.9726	-0.0320 -0.0278 -3.2892
29 13.4663 5.76414 57 0.97326 0.9726	-0.0271 -0.0278 -3.1301
30 13.4663 5.63282 59 0.97326 0.9765	-0.0271 -0.0238 -3.0042

3.3.4 Ajuste de datos con Stat::Fit

La herramienta Stat::Fit de ProModel se utiliza para analizar y determinar el tipo de distribución de probabilidad de un conjunto de datos. Esta utilería permite comparar los resultados entre varias distribuciones analizadas mediante una calificación. Entre sus procedimientos emplea las pruebas Chi-cuadrada, de Kolmogorov-Smirnov y de Anderson-Darling. Además calcula los parámetros apropiados para cada tipo de distribución, e incluye información estadística adicional como media, moda, valor mínimo, valor máximo y varianza, entre otros datos. Stat::Fit se puede ejecutar desde la pantalla de inicio de ProModel, o bien desde el comando **Stat::Fit** del menú **Tools** (vea la figura 3.6).

Figura 3.6Pantalla de inicio de ProModel

Una vez que comience a ejecutarse el comando Stat: :Fit, haga clic en el icono de la hoja en blanco de la barra de herramientas Estándar para abrir un nuevo documento (también puede abrir el menú **File** y hacer clic en **New**). Enseguida se desplegará una ventana con el nombre Data Table (vea la figura 3.7), en la que deberá introducir los datos de la variable a analizar, ya sea utilizando el teclado o mediante los comandos Copiar y Pegar (Copy / Paste) para llevar dichos datos desde otra aplicación, como puede ser Excel o el Bloc de notas de Windows.

Figura 3.7 Introduzca los datos de la variable que desea analizar en esta ventana de Stat::Fit

Una vez introducida la información es posible seleccionar una serie de opciones de análisis estadístico, entre ellas las de estadística descriptiva y las de pruebas de bondad de ajuste, de las cuales nos ocuparemos en los siguientes ejemplos.

Ejemplo 3.4

Los datos del número de automóviles que entran a una gasolinera por hora son:

14	7	13	16	16	13	15	17	15	16
13	15	10	15	16	14	12	17	14	12
13	20	8	17	19	11	12	17	9	18
20	10	18	15	13	16	24	18	16	18
12	14	20	15	10	13	21	23	15	18

Determinar la distribución de probabilidad con un nivel de significancia α de 5 por ciento.

Después de introducir estos datos en Stat::Fit, despliegue el menú **Statistics** y seleccione el comando **Descriptive**. Enseguida aparecerá una nueva ventana con el nombre de Descriptive Statistics, en donde se muestra el resumen estadístico de la variable (vea la figura 3.8).

Figura 3.8 Ventana de resultados estadísticos de Stat::Fit

Para determinar el tipo de distribución de probabilidad de los datos, seleccione el comando **AutoFit** del menú **Fit** en la pantalla principal de Stat::Fit. A continuación se desplegará un cuadro diálogo similar al que se ilustra en la figura 3.9, en el cual se tiene que seleccionar el tipo de distribución que se desea probar, si dicha distribución es no acotada en ambos extremos (unbounded), o si el límite inferior está acotado; en este último caso se puede aceptar la propuesta de que la cota del límite inferior sea el dato más pequeño de la muestra (lower bound), o seleccionar explícitamente otro valor como límite inferior (assigned bound). Para este ejemplo seleccionamos una distribución de tipo discreto: **discrete distributions**, ya que los datos de la variable aleatoria [automóviles/hora] tienen esa característica.

Figura 3.9
Este cuadro de diálogo
permite seleccionar el tipo
de variable aleatoria

Haga clic en el botón **OK** para que el proceso de ajuste se lleve a cabo. El resultado se desplegará en la ventana **Automatic Fitting**, donde se describen las distribuciones de probabilidad analizadas, su posición de acuerdo con el ajuste, y si los datos siguen o no alguna de las distribuciones. En la figura 3.10 se observa el resultado del análisis de ajuste del ejemplo, el cual nos indica que no se puede rechazar la hipótesis de que los datos provengan de cualquiera de dos distribuciones, Binomial, con N = 104 y p = 0.145, o de Poisson, con media 15.0 (esta última coincide con el resultado que obtuvimos en el ejemplo 3.1 mediante la prueba de bondad de ajuste Chi-cuadrada).

Figura 3.10 Ventana de resultados del análisis de la variable aleatoria

Haga clic con el ratón en cualquiera de las dos distribuciones (vea la figura 3.10); enseguida se desplegará el histograma que se ilustra en la figura 3.11, presentándole un histograma: las barras azules representan la frecuencia observada de los datos; la línea roja indica la frecuencia esperada de la distribución teórica.

El formato del histograma puede ser modificado mediante el comando **Graphics style** del menú **Graphics** (esta opción solamente está disponible cuando se tiene activa la ventana Comparison Graph; vea la figura 3.11).

Figura 3.11Histogramas
teórico y real de la
variable aleatoria

Ejemplo 3.5

Éstos son los datos de un estudio del tiempo de atención a los clientes en una florería, medido en minutos/cliente:

9.400	8.620	9.346	13.323	7.112	13.466	5.764	8.974	9.831	10.056
7.445	6.619	9.260	6.775	8.306	5.633	8.864	13.944	8.952	9.355
10.489	6.306	12.685	11.078	6.957	9.532	9.192	11.731	11.350	14.389
12.553	8.045	9.829	11.804	9.274	12.190	10.270	14.751	9.237	6.515
12.397	8.453	9.628	13.838	9.935	7.827	9.269	8.690	11.515	8.527

Determinar la distribución de probabilidad con un nivel de significancia α de 5 por ciento.

Dadas las características de la variable aleatoria a analizar, al desplegarse el cuadro de diálogo Auto::Fit (vea la figura 3.9) debemos activar la opción **continuous distributions**. El resumen de resultados que se ilustra en la figura 3.12 indica que la muestra puede provenir de cualquiera de las cuatro distribuciones listadas, resultado que coincide con el análisis ejemplificado previamente en la prueba de Anderson-Darling acerca de la normalidad de los datos.

En la ventana **Comparison Graph** puede compararse la forma de la distribución normal (verde) y lognormal (roja) propuestas por Stat::Fit, y la diferencia respecto del histograma de frecuencias de la muestra.

Figura 3.12 Resumen del análisis de la variable aleatoria del ejemplo 3.5

3.4 Generación de variables aleatorias

La variabilidad de eventos y actividades se representa a través de funciones de densidad para fenómenos continuos, y mediante distribuciones de probabilidad para fenómenos de tipo discreto. La simulación de estos eventos o actividades se realiza con la ayuda de la generación de variables aleatorias.

Los principales métodos para generar las variables aleatorias son:

- Método de la transformada inversa.
- Método de convolución.
- Método de composición.
- Método de la transformación directa.
- Método de aceptación y rechazo.

En las siguientes secciones se describirán los primeros cuatro métodos; el lector interesado en el método de aceptación y rechazo puede consultar la bibliografía recomendada.

3.4.1 Método de la transformada inversa

El método de la transformada inversa puede utilizarse para simular variables aleatorias continuas, lo cual se logra mediante la función acumulada f(x) y la generación de números pseudoaleatorios $r_i \sim U(0, 1)$. El método consiste en:

- 1. Definir la función de densidad F(x) que represente la variable a modelar.
- 2. Calcular la función acumulada F(x).
- 3. Despejar la variable aleatoria x y obtener la función acumulada inversa $F(x)^{-1}$.
- 4. Generar las variables aleatorias x, sustituyendo valores con números pseudoaleatorios $r_i \sim U(0, 1)$ en la función acumulada inversa.

El método de la transformada inversa también puede emplearse para simular variables aleatorias de tipo discreto, como en las distribuciones de Poisson, de Bernoulli, binomial, geométrica, discreta general, etc. La generación se lleva a cabo a través de la probabilidad acumulada P(x) y la generación de números pseudoaleatorios $r_i \sim U(0, 1)$. El método consiste en:

- 1. Calcular todos los valores de la distribución de probabilidad p(x) de la variable a modelar.
- 2. Calcular todos los valores de la distribución acumulada P(x).
- 3. Generar números pseudoaleatorios $r_i \sim U(0, 1)$.
- 4. Comparar con el valor de P(x) y determinar qué valor de x corresponde a P(x).

En la figura 3.13 se muestra gráficamente la metodología para generar variables aleatorias continuas:

Figura 3.13 Esquematización del método de la transformada inversa para variables continuas

Por su parte, la figura 3.14 muestra de manera gráfica la metodología para generar variables aleatorias discretas.

Figura 3.14 Esquematización del método de la transformada inversa para variables discretas

8

Distribución uniforme

A partir de la función de densidad de las variables aleatorias uniformes entre a y b,

$$f(x) = \frac{1}{b-a} a \le x \le b$$

se obtiene la función acumulada

$$F(x) = \int_{0}^{x} \frac{1}{b-a} dx = \frac{x-a}{b-a} \quad a \le x \le b$$

Igualando la función acumulada F(x) con el número pseudoaleatorio $r_i \sim U(0,1)$, y despejando x se obtiene:

$$x_i = a + (b - a)F(x)_i$$

 $x_i = a + (b - a)r_i$

Ejemplo 3.6

La temperatura de una estufa se comporta uniformemente dentro del rango de 95 a 100° C. Una lista de números pseudoaleatorios y la ecuación $x_i = 95 + 5r_i$ nos permiten modelar el comportamiento de la variable aleatoria que simula la temperatura de la estufa (vea la tabla 3.6).

Tabla 3.6 Simulación de las temperaturas de una estufa

Medición	r _i	Temperatura °C
1	0.48	97.40
2	0.82	99.10
3	0.69	98.45
4	0.67	98.35
5	0.00	95.00

Distribución exponencial

A partir de la función de densidad de las variables aleatorias exponenciales con media $1/\lambda$,

$$f(x) = \lambda e^{-\lambda x}$$
 para $x \ge 0$

se obtiene la función acumulada

$$F(x) = \int_{0}^{x} \lambda e^{-\lambda x} dx = 1 - e^{-\lambda x} \quad \text{para} \quad x \ge 0$$

Igualando la función acumulada F(x) con el número pseudoaleatorio $r_i \sim U(0, 1)$, y despejando x se obtiene:

$$x_i = -\frac{1}{\lambda} \ln(1 - F(x)_i)$$

$$x_i = -\frac{1}{\lambda} \ln(1 - r_i)$$

Ejemplo 3.7

Los datos históricos del tiempo de servicio en la caja de un banco se comportan de forma exponencial con media de 3 minutos/cliente. Una lista de números pseudoaleatorios $r_i \sim U(0,1)$ y la ecuación generadora exponencial $x_i = -3\ln(1-r_i)$ nos permiten simular el comportamiento de la variable aleatoria (vea la tabla 3.7).

Tabla 3.7 Simulación del tiempo de servicio en la caja de un banco

Cliente	r _i	Tiempo de servicio (min)
1	0.64	3.06
2	0.83	5.31
3	0.03	0.09
4	0.50	2.07
5	0.21	0.70

Distribución de Bernoulli

A partir de la distribución de probabilidad de las variables aleatorias de Bernoulli con media

$$p(x) = p^{x}(1-p)^{1-x}$$
 para $x = 0, 1$

se calculan las probabilidades para x = 0 y x = 1, para obtener

X	0	1		
p(x)	1 – <i>p</i>	р		

Acumulando los valores de p(x) se obtiene:

X	0	1
P(x)	1 – p	1

Generando números pseudoaleatorios $r_i \sim U(0, 1)$ se aplica la regla:

$$x_{i} = \begin{cases} si & r_{i} \in (0, 1 - p) & x = 0 \\ si & r_{i} \in (1 - p, 1) & x = 1 \end{cases}$$

Ejemplo 3.8

Los datos históricos sobre la frecuencia de paros de cierta máquina muestran que existe una probabilidad de 0.2 de que ésta falle (x = 1), y de 0.8 de que no falle (x = 0) en un día determinado. Generar una secuencia aleatoria que simule este comportamiento.

A partir de la distribución de probabilidad de la variable aleatoria de Bernoulli con media 0.8.

$$P(x) = (0.2)^{x}(0.8)^{1-x}$$
 para $x = 0, 1$

se calculan las probabilidades puntuales y las acumuladas para x = 0 y x = 1, y se obtienen los datos ilustrados en la tabla 3.8:

Tabla 3.8 Cálculo de las probabilidades acumuladas de las fallas de la máquina del ejemplo 3.8

X	0	1
P(x)	0.8	0.2
P(x)	0.8	1

La regla para generar esta variable aleatoria estaría dada por:

$$x_i = \begin{cases} si & r_i \in (0 - 0, 8) & x = 0 \\ si & r_i \in (0.8 - 1) & x = 1 \end{cases}$$

Con una lista de números pseudoaleatorios $r_i \sim U(0,1)$ y la regla anterior es posible simular el comportamiento de las fallas de la máquina a lo largo del tiempo, considerando que:

- si el número pseudoaleatorio es menor que 0.8, la máquina no fallará, y
- si el número pseudoaleatorio es mayor que 0.8, ocurrirá la falla (vea la tabla 3.9).

Tabla 3.9 Simulación de las fallas de la máquina

Día	r _i	x _i	Evento: la máquina
1	0.453	0	no falla
2	0.823	1	falla
3	0.034	0	no falla
4	0.503	0	no falla
5	0.891	1	falla

Ejemplo 3.9

El número de piezas que entran a un sistema de producción sigue una distribución de Poisson con media de 2 piezas/h. Simular el comportamiento de la llegada de las piezas al sistema.

A partir de la distribución de probabilidad de la variable aleatoria de Poisson con media 2.

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 para $x = 0, 1, 2, 3, ...$
 $p(x) = \frac{2^x e^{-2}}{x!}$ para $x = 0, 1, 2, 3, ...$

se calculan las probabilidades puntuales y las acumuladas para x = 0, 1, 2, ..., y se obtienen los datos de la tabla 3.10.

Tabla 3.10 Cálculo de las probabilidades acumuladas para el ejem

X	p(x)	P(x)			
0	0.1353	0.1353			
1	0.2706	0.4060			
2	0.2706	0.6766			
3	0.1804	0.8571			
4	0.0902	0.9473			
5	0.0360	0.9834			
6	0.0120 0.9954				
7	7 0.0034 0.9989				
8	0.0008 0.9997				
9	0.0001	0.9999			
10	0.00003	0.9999			

La regla para generar esta variable aleatoria estaría dada por:

$$x_i = \left\{ \begin{array}{lll} 0 & \text{si} & r_i \in (0-0.1353) \\ 1 & \text{si} & r_i \in (0.1353-0.4060) \\ 2 & \text{si} & r_i \in (0.4060-0.6766) \\ 3 & \text{si} & r_i \in (0.6766-0.8572) \\ 4 & \text{si} & r_i \in (0.8571-0.9473) \\ 5 & \text{si} & r_i \in (0.9473-0.9834) \\ 6 & \text{si} & r_i \in (0.9934-0.9954) \\ 7 & \text{si} & r_i \in (0.9954-0.9989) \\ 8 & \text{si} & r_i \in (0.9989-0.9997) \\ 9 & \text{si} & r_i \in (0.9997-0.9999) \end{array} \right. ...$$

Con una lista de números pseudoaleatorios $r_i \sim U(0,1)$ y la regla anterior es posible simular la llegada de las piezas al sistema de producción, con los resultados consignados en la tabla 3.11.

Tabla 3.11 Simulación de la llegada de piezas al sistema, con variables aleatorias de Poisson

Hora	r _i	Piezas/h
1	0.6754	2
2	0.0234	0
3	0.7892	3
4	0.5134	2
5	0.3331	1

Ejemplo 3.10

La tabla siguiente muestra la demanda diaria de cepillos dentales en un supermercado. Simular el comportamiento de la demanda mediante el método de la transformada inversa.

Día	1	2	3	4	5	6	7	8	9
Demanda	1	2	2	1	3	0	3	1	3

A partir de la información histórica se calculan las probabilidades puntuales y las acumuladas para x = 0, 1, 2, 3 (vea la tabla 3.12).

Tabla 3.12 Cálculo de las probabilidades acumuladas para el ejemplo 3.10

X	p(x)	P(x)			
0	0.1111	0.1111			
1	0.2222	0.3333			
2	0.3333	0.6666			
3	0.3333	1			

La regla para generar esta variable aleatoria estaría dada por:

$$x_i = \begin{cases} 0 & \text{si} & r_i \in (0-0.1111) \\ 1 & \text{si} & r_i \in (0.1111-0.3333) \\ 2 & \text{si} & r_i \in (0.3333-0.6666) \\ 3 & \text{si} & r_i \in (0.6666-1) \end{cases}$$

Con una lista de números pseudoaleatorios $r_i \sim U(0, 1)$ y la regla anterior es posible simular la demanda diaria de cepillos dentales, tal como se muestra en la tabla 3.13.

Día	r _i	Demanda diaria
1	0.213	1
2	0.345	2
3	0.021	0
4	0.987	3
5	0.543	2

Tabla 3.13 Simulación de la demanda de cepillos dentales

3.4.2 Método de convolución

En algunas distribuciones de probabilidad la variable aleatoria a simular, Y, puede generarse mediante la suma de otras variables aleatorias X de manera más rápida que a través de otros métodos. Entonces, el método de convolución se puede expresar como:

$$Y = X_1 + X_2 + ... + X_k$$

Las variables aleatorias de cuatro de las distribuciones más conocidas (de Erlang, normal, binomial y de Poisson) pueden ser generadas a través de este método, como se verá a continuación.

Distribución de Erlang

La variable aleatoria k-Erlang con media $1/\lambda$ puede producirse a partir de la generación de k variables exponenciales con media $1/k\lambda$:

$$Y = X_1 + X_2 + \dots + X_4$$

$$Y = -\frac{1}{k\lambda} \ln(1 - r_1) - \frac{1}{k\lambda} \ln(1 - r_2) - \dots - \frac{1}{k\lambda} \ln(1 - r_k)$$

$$Y = -\frac{1}{k\lambda} \left[\ln(1 - r_1) + \ln(1 - r_2) + \dots + \ln(1 - r_k) \right]$$

$$Y = -\frac{1}{k\lambda} \left[\ln((1 - r_1)(1 - r_2) + \dots + (1 - r_k)) \right]$$

$$Y = -\frac{1}{k\lambda} \left[\ln((1 - r_1)(1 - r_2) + \dots + (1 - r_k)) \right]$$

$$Y = ER_i = -\frac{1}{k\lambda} \left[\ln \prod_{i=1}^k (1 - r_i) \right]$$

Ejemplo 3.11

El tiempo de proceso de cierta pieza sigue una distribución 3-Erlang con media $1/\lambda$ de 8 minutos/pieza. Una lista de números pseudoaleatorios $r_i \sim U(0, 1)$ y la ecuación de gene-

ración de números Erlang permite obtener la tabla 3.14, que indica el comportamiento de la variable aleatoria.

$$Y = ER_i = -\frac{8}{3} \left[\ln \prod_{i=1}^{k} (1 - r_i) \right]$$

$$Y = -\frac{8}{3} \ln[(1 - r_1)(1 - r_2)(1 - r_k)]$$

Tabla 3.14 Simulación del tiempo de proceso para el ejemplo 3.11

Pieza	1 – r _i	1 – r _i	1 - r _i	Tiempo de proceso (min/pza)
1	0.28	0.52	0.64	6.328
2	0.96	0.37	0.83	3.257
3	0.04	0.12	0.03	23.588
4	0.35	0.44	0.50	6.837
5	0.77	0.09	0.21	11.279

Distribución normal

La variable aleatoria normal con media μ y desviación estándar σ puede generarse usando el teorema del límite central:

$$Y = X_1 + X_2 + ... + X_k \sim N(k\mu_x, k\sigma_x^2)$$

Al sustituir X_i por números pseudoaleatorios r_i , se obtiene:

$$Y = r_1 + r_2 + \dots + r_k \sim N\left(k\frac{1}{2}, k\frac{1}{12}\right)$$

$$Y = r_1 + r_2 + \dots + r_{12} \sim N\left(\frac{12}{2}, \frac{12}{12}\right) \sim N(6, 1)$$

$$Y = Z = (r_1 + r_2 + \dots + r_{12}) - 6 \sim N(0, 1)$$

$$Z = \sum_{i=1}^{12} (r_i) - 6 = \frac{x - \mu}{\sigma} \sim N(0, 1)$$

Despejando X, tenemos que

$$x = N_i = \left[\sum_{i=1}^{12} (r_i) - 6\right] \sigma + \mu$$

Ejemplo 3.12

El volumen de líquido de un refresco sigue una distribución normal con media de 12 onzas y desviación estándar de 0.4 onzas. Generar 5 variables aleatorias con esta distribución para simular el proceso de llenado.

$$N_{i} = \left[\sum_{i=1}^{12} (r_{i}) - 6\right] \sigma + \mu$$

$$N_{i} = \left[\sum_{i=1}^{12} (r_{i}) - 6\right] (0.4) + 12$$

Tabla 3.15 Simulación del volumen de llenado de refrescos (ejemplo 3.12)

Botella	$\sum_{i=1}^{12} (r_i)$	$\sum_{i=1}^{12} (r_i) - 6$	Volumen (onzas)
1	6.21	0.21	12.084
2	5.34	-0.66	11.736
3	6.03	0.03	12.012
4	6.97	0.97	12.038
5	4.81	-1.19	11.524

Distribución binomial

La variable aleatoria binomial con parámetros *N* y *p* puede ser generada a través de la suma de *N* variables aleatorias con distribución de Bernoulli con parámetro *p*.

$$Y = B_i = BE_1 + BE_2 + ... + BE_N \sim BI(N, p)$$

Ejemplo 3.13

Al inspeccionar lotes de tamaño N = 5, la probabilidad de que una pieza sea defectuosa es 0.03. Simular el proceso de inspección para determinar el número de piezas defectuosas por lote.

Este proceso sigue una distribución binomial con N=5 y p=0.03, y será simulado mediante la generación de variables aleatorias de Bernoulli con p=0.03, de acuerdo con el procedimiento señalado en la sección anterior, donde $BE_i=0$ representa una pieza en buen estado y $BE_i=1$ una pieza defectuosa. (Observe los resultados en la tabla 3.16.)

$$BE_{i} = \begin{cases} 0 & \text{si} & r_{i} \in (0 - 0.97) \\ 1 & \text{si} & r_{i} \in (0.97 - 1) \end{cases}$$

$$B_i = BE_1 + BE_2 + \ldots + BE_5$$

Lote	<i>r</i> ₁	BE ₁	r ₂	BE ₂	r ₃	BE ₃	r ₄	BE ₄	r ₅	BE ₅	Piezas defectuosas
1	0.49	0	0.32	0	0.15	0	0.01	0	0.45	0	0
2	0.11	0	0.85	0	0.93	0	0.99	1	0.61	0	1
3	0.57	0	0.92	0	0.84	0	0.74	0	0.82	0	0
4	0.62	0	0.01	0	0.68	0	0.98	1	0.99	1	2
5	0.34	0	0.98	1	0.99	1	0.02	0	0.98	1	3

Tabla 3.16 Simulación del sistema de inspección del ejemplo 3.13

3.4.3 Método de composición

El método de composición —conocido también como método mixto— permite generar variables aleatorias x cuando éstas provienen de una función de densidad fx que puede expresarse como la combinación convexa de m distribuciones de probabilidad fi(x). Entonces, la combinación convexa se puede expresar como:

$$f(x) = \sum_{i=1}^{m} f_i(x) I_A(x)$$

donde:

$$I_{A}(x) = \begin{cases} 0 & \text{si} & x \in A \\ 1 & \text{si} & x \notin A \end{cases}$$

Algunas de las distribuciones más conocidas que pueden expresarse como una combinación convexa son: triangular, de Laplace y trapezoidal. El procedimiento general de generación es el siguiente:

- 1. Calcular la probabilidad de cada una de las distribuciones $f_i(x)$.
- 2. Asegurar que cada función $f_i(x)$ sea función de densidad.
- 3. Obtener, mediante el método de la transformada inversa, las expresiones para generar variables aleatorias de cada una de las distribuciones $f_i(x)$.
- 4. Generar un número pseudoaleatorio r_i que permita definir el valor de $I_{\Delta}(x)$.
- 5. Seleccionar la función generadora correspondiente a la función $f_i(x)$.
- 6. Generar un segundo número pseudoaleatorio r_i y sustituirlo en la función generadora anterior para obtener Y.

Distribución triangular

A partir de la función de densidad triangular

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & a < x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & c < x \le b \end{cases}$$

calcular la probabilidad de cada uno de los segmentos de la función

$$p(x) = \begin{cases} \int_{a}^{c} \frac{2(x-a)}{(b-a)(c-a)} dx \\ \int_{c}^{b} \frac{2(b-x)}{(b-a)(b-c)} dx \end{cases}$$
$$\begin{cases} \frac{(c-a)}{(b-a)} & a < x \le c \end{cases}$$

$$p(x) = \begin{cases} \frac{(c-a)}{(b-a)} & a < x \le c \\ \frac{(b-c)}{(b-a)} & c < x \le b \end{cases}$$

Ya que los segmentos por separado no son funciones de densidad, se ajustan dividiendo por su correspondiente p(x).

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} \frac{(b-a)}{(c-a)} = \frac{2(x-a)}{(c-a)^2} & a < x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} \frac{(b-a)}{(b-c)} = \frac{2(b-x)}{(b-c)^2} & c < x \le b \end{cases}$$

Expresando la función como una combinación convexa se obtiene:

$$f(x) = \sum_{i=1}^{m} f_i(x) I_A(x) = \sum_{i=1}^{2} f_i(x) I_A(x)$$

$$f(x) = \frac{2(x-a)}{(c-a)^2} I_{a \le x \le c}(x) + \frac{2(b-x)}{(b-c)^2} I_{c \le x \le b}(x)$$

donde:

$$I_A(x) = \begin{cases} 0 & \text{si} & x \in A \\ 1 & \text{si} & x \notin A \end{cases}$$

Primero integramos para aplicar el método de la transformada inversa a cada segmento de la función:

$$F(x) = \begin{cases} \int_{a}^{x} \frac{2(x-a)}{(c-a)^{2}} dx = \frac{(x-a)^{2}}{(c-a)^{2}} & a \le x \le c \\ \int_{c}^{x} \frac{2(b-x)}{(b-c)^{2}} dx = 1 - \frac{(b-x)^{2}}{(b-c)^{2}} & c \le x \le b \end{cases}$$

Luego, despejando x y sustituyendo r_i en F(x) obtenemos:

$$x = \begin{cases} a + (c - a)\sqrt{r_i} \\ b - \left[(b - c)\sqrt{1 - r_i} \right] \end{cases}$$

Por último, al expresar la ecuación anterior incluyendo la función indicadora $I_A(x)$ tenemos que:

$$x = \begin{cases} a + (c - a)\sqrt{r_i} & \text{si} \quad r_j \le \frac{(c - a)}{(b - a)} \\ b - \left[(b - c)\sqrt{1 - r_i} \right] & \text{si} \quad r_j > \frac{(c - a)}{(b - a)} \end{cases}$$

Ejemplo 3.14

Generar una muestra de 5 variables aleatorias con distribución triangular a partir de los parámetros: valor mínimo 5, moda 10 y valor máximo 20.

$$x = \begin{cases} a + (c - a)\sqrt{r_i} & \text{si} \quad r_j \le \frac{(c - a)}{(b - a)} \\ b - \left[(b - c)\sqrt{1 - r_i} \right] & \text{si} \quad r_j > \frac{(c - a)}{(b - a)} \end{cases}$$

Sustituyendo a = 5, c = 10 y b = 20 obtenemos:

$$x = \begin{cases} 5 + (5)\sqrt{r_i} & \text{si} & r_j \le \frac{(5)}{(15)} \\ 20 - \left[(10)\sqrt{1 - r_i} \right] & \text{si} & r_j > \frac{(5)}{(15)} \end{cases}$$

Al generar una secuencia de números pseudoaleatorios se obtiene la secuencia de variables triangulares que se lista en la tabla 3.17:

			$x = 5 + 5\sqrt{r_i}$	$x = 20 - 10 \sqrt{1 - r_i}$			
Variable	r _j	r _i	si $r_j \leq 0.33$	si			
1	0.231	0.456	8.37	-			
2	0.421	0.967	-	18.18			
3	0.853	0.982	-	18.65			
4	0.048	0.134	6.83	-			
5	0.675	0.536	_	13 18			

Tabla 3.17 Simulación de variables aleatorias triangulares

3.4.4 Método de transformación directa

Utilizado para generar variables aleatorias normales, este método se basa en el teorema de Pitágoras. En la figura 3.15 se muestra la relación entre las variables involucradas en él.

Figura 3.15 Generación de variables aleatorias $z \sim N(0, 1)$

Geométricamente,

$$z_2 = h \operatorname{sen} \theta$$

 $z_2 = \sqrt{z_1^2 + z_2^2} \operatorname{sen} \theta$

La suma de v variables aleatorias normales estándar sigue una distribución Chi-cuadrada con v grados de libertad:

$$z_2 = \sqrt{\chi_{v=2}^2} \operatorname{sen} \theta$$

La función de densidad de una variable aleatoria Chi-cuadrada con 2 grados de libertad es la misma de una distribución exponencial con media igual a 2. En consecuencia, usando la ecuación obtenida por el método de la transformada inversa para generar variables aleatorias exponenciales, y sustituyéndola en la ecuación anterior se obtiene:

$$z_2 = \sqrt{-2\ln(1-r_i)}$$
 sen θ

Se generan valores aleatorios uniformes del ángulo θ entre 0 y 2π mediante el método de la transformada inversa:

$$\theta = a + b (b - a)r_j$$

$$\theta = (2\pi)r_j$$

Y sustituyendo obtenemos:

$$z_2 = \sqrt{-2\ln(1-r_i)}\operatorname{sen}(2\pi r_j)$$

Para cualquier variable aleatoria normal N,

$$z = \frac{N - \mu}{\sigma}$$

Al despejar N y sustituir el valor de z previamente desarrollado, se llega a la expresión final para la generación de variables aleatorias normales:

$$N_i = \left[\left(\sqrt{-2\ln(1-r_i)} \right) \operatorname{sen}(2\pi r_i) \right] \sigma + \mu$$

Este procedimiento iniciarse también a través de la generación de la variable aleatoria z_1 , lo cual dará lugar a la ecuación final

$$N_i = \left[\left(\sqrt{-2\ln(1-r_i)} \right) \cos(2\pi r_i) \right] \sigma + \mu$$

Cualquiera de las dos últimas ecuaciones pueden utilizarse para resolver el ejemplo 3.12, en donde el generador de variables aleatorias que simulan el volumen de las botellas sería:

$$N_i = \left[\left(\sqrt{-2\ln(1-r_i)} \right) \operatorname{sen}(2\pi r_i) \right] (0.4) + 12$$

De manera que si producimos los números pseudoaleatorios uniformes 0.43 y 0.75, el volumen del líquido generado para alguna de las botellas sería:

$$N_i = \left[\left(\sqrt{-2 \ln(1 - 0.43)} \right) \operatorname{sen}(2\pi(0.75)) \right] (0.4) + 12 = 11.575 \text{ onzas}$$

3.5 Expresiones comunes de algunos generadores de variables aleatorias

En la tabla 3.18 se presentan los generadores de variables aleatorias de las distribuciones de probabilidad más usuales.

Tabla 3.18 Generadores de variables aleatorias

Distribución	Generador	Parámetros
Uniforme <i>U_i</i>	$U_i = a + (b - a)r_i$	a = Límite inferior de la distribución uniforme. b = Límite superior de la distribución uniforme. $r_i = N$ úmero aleatorio con distribución uniforme entre 0 y 1.
Triangular T _i	$T_{i} = \begin{cases} a + \sqrt{(b-a)(c-a)r_{i}} \\ \text{si } r_{i} \leq \frac{(c-a)}{(b-a)} \\ b - \sqrt{(b-a)(b-c)(1-r_{i})} \\ \text{si } r_{i} > \frac{(c-a)}{(b-a)} \end{cases}$	 a = Límite inferior de la distribución triangular. c = Moda de la distribución triangular. b = Límite superior de la distribución triangular.
Triangular T _i	$T_{i} = \begin{cases} a + (c - a)\sqrt{r_{i}} \\ \text{si } r_{j} \leq \frac{(c - a)}{(b - a)} \end{cases}$ $b - \left[(b - c)\sqrt{1 - r_{i}} \right]$ $\text{si } r_{j} > \frac{(c - a)}{(b - a)}$	 a = Límite inferior de la distribución triangular. c = Moda de la distribución triangular. b = Límite superior de la distribución triangular.

(Continúa)

 Tabla 3.18 (Continuación)

Distribución	Generador	Parámetros
χ ²	$\chi_i^2 = \sum_{j=1}^n Z_j^2$	Z_j = Números aleatorios con distribución normal estándar. n = Grados de libertad.
Erlang <i>ER_i</i>	$ER_i = -\frac{1}{k\lambda} \ln \prod_{i=1}^k (1 - r_i)$	$1/\lambda = \text{Valor}$ esperado. $k = \text{Parámetro de}$ forma.
Normal <i>N_i</i>	$N_{i} = \left[\left(\sqrt{-2\ln(1 - r_{i})} \right) \cos(2\pi r_{j}) \right] \sigma + \mu$ $N_{i} = \left[\left(\sqrt{-2\ln(1 - r_{i})} \right) \sin(2\pi r_{j}) \right] \sigma + \mu$	μ = Media de la distribución normal σ = Desviación estándar de la distribución normal.
Normal <i>N_i</i>	$N_i = \left[\sum_{i=1}^{12} (r_i) - 6\right] \sigma + \mu$	μ = Media de la distribución normal. σ = Desviación estándar de la distribución normal.
Exponencial E_i	$E_i = -\frac{1}{\lambda} \ln(1 - r_i)$	$1/\lambda = Media de la$ distribución exponencial.
Weibull <i>W_i</i>	$W_i = \gamma + \beta \sqrt[\alpha]{-\ln(1-r_i)}$	β = Parámetro de escala. α = Parámetro de forma. γ = Parámetro de localización.
Gamma <i>G_i</i>	$G_i = -\frac{1}{k\lambda} \ln \prod_{i=1}^k (1 - r_i)$	$1/\lambda = \text{Valor esperado.}$ $k = \text{Parámetro de}$ forma.

(Continúa)

Tabla 3.18 (Continuación)

Distribución	Generador	Parámetros
Lognormal LN;	$LN_i = e^{N_i}$ donde: $N_i = \left(\sum_{i=1}^{12} (r_i) - 6\right) * \left(\ln\left(1 + \frac{\sigma^2}{\mu^2}\right)\right)^{1/2} + \left(\ln\frac{\mu^2}{\sqrt{\mu^2 + \sigma^2}}\right)$	μ = Valor esperado. σ^2 = Varianza.
Bernoulli <i>BE_i</i>	$BE_{i} = \begin{cases} si & r_{i} \in (0, 1 - p) & x = 0 \\ si & r_{i} \in (1 - p, 1) & x = 1 \end{cases}$	p = Probabilidad de ocurrencia del evento x = 1. 1 – p = Probabilidad de ocurrencia del evento.
Binomial <i>B_i</i>	$B_i = \sum_{j=1}^{N} BE_j$	BE_j = Números aleatorios con distribución de Bernoulli. N = Número del evento máximo de la distribución binomial. p = Probabilidad de éxito de la distribución binomial que se involucra al generar los Bernoulli.
Poisson P _i	Inicialización. Hacer $N=0, T=1$ y generar un aleatorio r_i . Paso 1: Calcular $T'=(T)(r_i)$ Paso 2: Si la $T'=\geq e^{-\lambda}$, entonces hacer $N=N+1, T=T'$, calcular otro r_i y regresar al paso 1. Si $T', entonces la variable generada está dada por: P_i=N. Para generar la siguiente variable de Poisson, regresar a la fase de inicialización.$	λ = Media de la distribución de Poisson. N = Contador. T = Contador.

3.6 Problemas

1. Utilice la prueba Chi-cuadrada para determinar, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos.

17.392	8.110	4.078	3.151	3.528	2.440	5.924	3.461	2.052	10.369
3.690	10.870	4.793	2.498	0.569	8.281	0.154	5.959	3.384	12.877
13.602	5.244	16.677	5.977	4.313	4.767	2.381	6.443	1.392	1.578
8.115	4.891	6.720	7.728	2.717	10.451	5.901	0.818	7.088	2.637
4.714	3.032	1.495	15.733	7.768	2.333	7.822	3.708	6.412	1.290
3.957	5.285	7.094	3.078	1.264	2.630	10.177	2.155	2.945	7.552
11.094	4.772	7.281	14.344	19.867	0.119	2.072	1.486	3.791	4.214
1.611	1.781	1.530	3.280	4.301	0.202	7.489	1.422	1.453	0.022
6.001	9.269	8.477	3.043	0.877	6.966	2.103	1.816	0.433	2.547
0.843	1.182	8.121	2.007	1.395	4.661	7.378	5.300	17.066	12.171

2. A partir de la prueba Chi-cuadrada determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos.

18.799	14.889	20.977	25.106	24.793	26.933	11.266	19.063	24.380	15.653
17.239	13.238	12.612	16.089	16.906	11.528	17.728	18.384	20.539	18.538
18.692	18.519	25.371	19.659	19.255	17.947	27.889	23.463	29.503	17.380
26.646	13.550	22.156	23.609	27.676	19.662	17.905	22.701	18.475	23.030
14.223	16.611	13.914	18.548	19.870	20.112	18.709	28.778	13.030	17.054
9.690	25.791	14.881	17.386	23.031	21.867	23.498	22.383	14.513	15.537
22.776	21.291	16.241	19.036	20.526	22.231	20.555	16.356	27.539	21.949
20.289	23.319	23.448	17.454	16.307	24.445	15.195	13.764	22.845	22.554
28.823	25.775	25.216	20.452	20.008	21.815	19.898	15.781	12.901	23.313
21.777	22.472	20.854	15.892	24.953	18.755	16.640	16.715	18.284	18.187

3. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; utilice la prueba Chi-cuadrada.

12.656	11.664	11.855	11.399	11.845	9.766	11.866	10.671	12.157	12.503
13.317	11.381	11.252	12.146	11.769	11.792	13.577	12.038	11.854	13.830
11.369	13.271	11.985	11.936	13.610	12.363	12.437	11.765	12.683	11.931
11.264	10.902	12.204	11.019	13.940	11.873	10.412	11.665	12.957	11.617
11.346	10.634	12.316	11.836	12.571	11.363	11.654	12.286	11.669	12.212
9.526	11.931	12.247	14.116	10.475	10.441	9.695	13.172	14.374	11.610
10.999	12.548	12.659	11.148	12.809	12.660	11.793	10.452	13.013	12.763
11.650	11.309	12.863	12.347	12.556	14.086	12.273	10.893	12.480	10.771
12.566	11.843	12.299	12.357	12.131	11.728	10.653	14.121	13.598	13.049
10.522	10.883	12.533	12.074	11.991	12.161	10.118	11.743	11.062	11.002

4. Emplee la prueba Chi-cuadrada para determinar, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos. Compruebe con la herramienta Stat: :Fit de ProModel.

1.679	1.187	0.234	1.780	1.458	2.628	0.504	0.951	1.383	0.486
0.561	0.494	4.923	0.635	0.504	2.606	0.382	1.380	2.700	0.468
2.771	3.141	1.019	2.516	1.182	2.258	0.161	8.055	0.464	2.312
2.327	0.761	1.876	1.506	2.451	0.831	5.715	0.699	1.450	3.582
0.684	3.192	1.427	0.518	2.198	0.922	1.597	2.660	2.933	4.518
0.904	0.598	0.081	2.756	0.151	1.662	0.223	0.531	1.229	0.347
1.228	0.235	2.060	1.182	0.280	7.860	0.664	2.898	2.815	0.121
2.294	2.087	1.424	1.525	0.754	7.145	0.754	1.962	1.613	0.003
1.337	3.399	1.639	3.591	2.393	0.412	3.258	0.256	1.419	0.156
2.775	0.355	0.046	1.243	0.776	0.585	0.667	0.123	1.202	6.985

5. Determine, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos; emplee la prueba de Kolmogorov-Smirnov.

12.561	2.695	12.082	10.335	13.260	2.549	4.594	2.500	24.930	7.805
8.322	7.422	11.143	20.599	7.508	4.367	1.544	3.706	8.185	14.405
4.057	15.584	9.049	6.265	10.663	10.257	11.475	4.688	16.256	4.688
11.963	5.599	19.204	1.784	25.998	12.299	10.317	3.779	18.993	7.419
15.154	9.579	8.423	6.934	2.005	13.234	5.542	5.271	12.831	8.231
15.330	7.958	7.103	16.134	0.189	10.165	14.624	15.696	10.212	0.891
3.186	9.051	11.118	4.449	17.901	15.497	6.645	5.078	11.555	3.724
21.500	7.160	13.528	3.372	15.334	7.603	31.066	1.992	21.127	10.784
3.643	27.334	3.178	1.313	10.962	6.936	3.140	16.877	19.171	6.620
3.775	16.675	1.368	17.583	1.669	11.157	16.432	2.831	7.844	10.745

6. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; emplee la prueba de Kolmogorov-Smirnov. Compruebe con la herramienta Stat: :Fit de ProModel.

	22.029	21.073	18.436	17.574	16.257	13.345	22.863	12.846	15.557	16.526
1	20.169	23.479	26.853	18.338	23.217	15.495	17.403	22.671	17.469	18.489
1	15.907	20.346	19.209	2.690	20.232	21.411	21.107	14.238	20.098	19.881
1	21.878	22.208	9.784	21.427	14.581	23.523	19.670	16.021	18.107	13.315
1	10.279	19.301	23.787	15.305	21.170	16.155	22.880	20.774	14.255	12.478
1	16.032	24.076	16.463	21.151	14.817	14.702	27.014	12.165	16.597	21.404
1	18.825	19.364	18.515	14.240	24.154	19.916	16.238	20.795	25.924	18.874
ı	17.532	16.713	16.677	18.739	14.206	19.501	18.590	18.587	19.929	25.354
1	12.858	16.452	17.487	22.658	22.240	17.471	16.537	23.960	14.417	18.338
1	28.501	16.939	17.926	24.477	17.673	22.422	13.373	21.971	20.549	24.509
ı										

7. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos usando la prueba de Kolmogorov-Smirnov. Compruebe con Stat::Fit.

4.548	3.136	5.366	1.979	6.097	3.823	5.520	4.203	4.972	8.429
3.242	4.705	5.919	5.530	6.891	5.997	6.640	6.376	6.860	5.991
6.303	6.476	8.503	3.863	1.738	2.913	5.171	6.856	5.665	3.396
5.225	5.966	4.743	7.228	6.030	6.184	7.600	5.716	5.781	4.465
5.307	8.546	6.093	4.720	5.771	4.521	3.715	5.368	1.871	1.629
6.536	8.441	3.822	6.176	5.059	5.325	6.476	4.229	5.619	4.062
4.769	4.484	2.938	6.459	3.083	6.199	2.590	7.407	7.001	8.501
3.154	3.546	6.316	4.364	8.986	4.195	2.952	3.590	7.356	6.269
5.427	3.431	6.532	6.101	2.625	4.463	7.900	3.715	4.881	7.410
3.404	5.769	2.917	6.739	7.049	5.743	5.448	3.958	6.632	7.036

8. Utilice la prueba de Anderson-Darling para determinar, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos. Compruebe con Stat::Fit.

-0.056	1.219	-1.631	1.583	1.472	-1.413	0.066	-0.423	-0.174	-1.139
1.510	0.890	0.889	0.824	0.627	-0.618	-1.425	0.061	0.700	-0.078
-2.067	-0.860	-1.553	1.905	-0.965	1.542	0.270	2.293	-0.889	0.099
-0.869	1.733	-0.204	-0.112	0.017	-1.152	0.512	2.324	0.654	-1.281
-1.293	0.365	0.436	-0.559	0.880	-0.930	0.121	0.595	0.597	-0.185
-1.018	0.283	1.672	-0.289	-1.343	-0.418	1.317	0.249	0.937	-0.670
-1.322	-0.296	-1.638	1.970	-0.541	1.567	-1.717	0.125	-0.608	1.027
2.295	-0.952	0.431	2.210	-0.477	0.913	-0.697	-0.145	-1.088	0.137
-1.108	-0.281	0.564	0.683	-0.691	0.010	-0.429	-1.420	-0.070	1.517
0.095	-0.104	1.240	-0.354	-1.525	1.077	0.200	-0.959	-0.144	-1.169

9. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; utilice la prueba de Kolmogorov-Smirnov.

7.982	40.122	5.862	21.920	7.902	10.824	22.258	13.343	11.045	23.603
18.951	12.348	8.725	11.536	10.187	11.442	13.396	13.070	13.668	7.954
6.361	6.405	34.450	24.956	5.442	12.996	5.073	13.620	11.020	11.729
3.382	14.387	10.037	5.481	2.969	7.503	4.159	23.466	5.219	11.713
37.134	21.099	9.021	6.080	9.053	5.178	18.700	9.056	6.647	5.767
17.684	8.814	22.939	2.491	10.123	3.244	9.433	11.774	3.271	10.390
6.839	7.073	10.708	25.237	7.568	1.152	8.059	26.399	29.285	22.350
3.274	7.325	10.046	9.888	13.798	15.255	20.507	11.147	19.691	7.711
22.836	11.811	14.650	2.898	20.041	10.228	9.553	19.870	8.520	26.182
12.427	14.432	24.699	6.848	7.197	12.156	1.674	8.582	16.293	16.126

10. A partir de la prueba de Kolmogorov-Smirnov, determine con un nivel de confianza de 90% qué tipo de distribución siguen los datos.

5.091	11.319	3.274	3.366	12.233	5.725	9.186	8.232	6.545	6.481
6.752	10.640	7.242	2.910	8.391	2.288	4.582	6.114	9.965	10.643
11.584	13.333	10.081	11.892	14.542	9.851	11.088	6.301	5.350	3.465
9.595	13.784	4.867	3.171	7.782	5.682	9.587	12.519	9.964	1.298
7.556	8.120	6.451	10.263	5.367	3.059	6.341	3.613	3.068	7.291
4.179	10.035	5.599	5.582	4.836	8.663	6.975	8.441	2.064	5.147
13.470	1.512	11.317	9.799	7.825	9.464	7.799	6.929	8.915	8.007
9.710	5.259	8.086	4.141	2.972	14.575	2.248	6.565	13.418	5.238
14.135	5.937	2.954	9.264	14.970	6.742	5.551	5.313	6.348	5.723
12.436	8.153	5.418	4.028	6.515	9.474	6.817	10.190	4.961	13.263

11. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; utilice la prueba de Kolmogorov-Smirnov.

1.338	0.530	0.580	0.102	0.285	0.725	5.567	6.773	0.101	5.549
1.198	0.049	0.294	3.661	3.072	5.193	0.329	2.721	0.988	0.716
1.852	1.426	1.586	0.664	6.032	0.093	3.856	1.779	1.729	1.456
3.050	4.688	4.117	2.350	2.954	0.883	1.790	3.847	2.659	3.622
1.003	0.460	1.645	2.342	3.983	1.517	0.695	3.564	0.573	0.204
0.286	1.581	0.395	3.986	2.416	0.577	0.617	1.494	0.468	1.037
2.283	0.774	0.483	0.852	4.342	0.064	0.299	0.214	3.294	0.345
0.388	0.429	2.156	4.276	0.371	4.520	0.408	0.113	0.240	2.923
0.095	2.267	1.355	2.859	0.799	4.718	8.664	0.339	1.892	1.262
0.265	2.032	7.487	2.852	0.040	1.860	0.716	3.551	0.493	0.269

12. Determine, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos; emplee la prueba de Kolmogorov-Smirnov. Compruebe con Stat::Fit.

26.739	22.607	19.584	18.390	19.825	23.279	23.206	19.351	15.240	15.792
23.396	28.553	24.449	24.364	19.200	21.265	16.905	27.313	18.097	20.233
21.326	15.138	21.150	22.105	25.775	22.137	27.514	15.766	22.029	25.164
17.539	19.921	22.216	15.625	16.168	29.769	18.158	18.293	15.858	25.111
26.421	18.044	25.744	19.743	24.525	18.112	26.259	19.466	26.276	25.948
20.931	18.562	26.714	25.275	24.580	22.090	19.608	15.447	29.631	28.821
28.013	26.693	29.751	22.189	20.807	27.339	22.556	24.069	15.724	21.614
25.570	18.746	16.818	29.122	27.190	26.915	26.844	19.573	26.853	17.053
22.518	18.883	26.128	24.007	28.127	25.213	19.964	27.141	25.458	26.060
29.791	17.890	15.515	24.985	17.717	19.063	29.986	24.074	23.517	20.733

13. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos usando la prueba de Anderson-Darling. Compruebe con Stat::Fit.

7.717	7.971	5.261	5.994	7.215	6.100	6.876	7.514	6.409	6.679
6.377	6.155	7.512	7.936	7.960	6.157	5.796	7.579	6.450	6.719
6.150	5.983	5.091	7.492	6.974	5.386	6.347	5.053	5.129	5.922
6.174	5.962	5.153	6.838	5.741	5.478	5.471	7.745	5.057	5.548
7.814	6.238	7.484	6.150	7.561	7.734	5.595	7.587	5.235	7.872
7.354	5.826	5.858	5.316	7.081	6.476	7.394	5.304	5.175	6.499
7.990	5.793	5.057	5.245	6.246	7.538	7.314	5.909	6.215	6.949
7.495	6.004	7.374	7.071	5.549	6.932	6.262	5.531	6.355	5.271
5.021	6.800	7.322	7.840	5.547	5.601	6.524	6.169	5.484	6.823
6.351	6.438	7.760	7.771	7.118	5.500	5.901	5.104	7.633	6.074

14. Utilice la prueba Chi-cuadrada para determinar, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos. Compruebe con Stat::Fit.

91.917	73.105	82.187	76.753	88.371	65.272	86.162	68.147	69.933	76.248
77.588	66.832	96.937	60.197	88.431	73.495	97.580	61.771	77.024	76.276
98.002	90.854	88.819	93.535	79.007	77.388	96.893	97.305	70.684	72.537
63.479	73.711	76.159	82.416	63.766	96.594	75.734	60.659	93.200	70.569
62.686	86.060	79.560	99.813	81.931	91.540	81.057	98.783	62.849	90.697
71.680	81.149	97.491	68.180	95.076	63.185	75.425	80.150	68.181	97.844
86.478	91.051	95.882	95.804	62.614	92.978	97.926	69.716	70.205	73.864
89.360	97.891	83.945	60.747	75.734	83.704	93.645	84.366	64.310	86.950
95.181	91.325	72.550	63.391	96.829	90.108	75.107	68.775	92.229	77.148
90.591	83.537	91.262	69.235	69.346	74.473	80.042	68.510	63.499	89.607

15. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos. Emplee la prueba Chi-cuadrada y compruebe con Stat::Fit.

4.142	5.080	4.951	3.028	3.046	3.449	4.907	2.782	1.810	4.344
1.689	3.049	4.111	6.767	2.330	3.408	2.171	5.337	6.385	2.949
3.796	2.912	3.820	5.444	3.208	2.225	3.903	5.329	4.879	3.572
2.744	3.786	2.848	4.347	3.347	4.398	5.813	5.617	2.173	2.369
4.123	2.649	4.075	4.339	2.804	3.292	4.375	5.246	1.340	2.370
2.076	3.724	5.187	3.775	1.443	4.098	2.919	4.043	1.677	3.501
3.137	1.806	4.968	2.370	3.009	3.964	4.057	4.035	2.499	3.200
3.983	4.102	4.574	5.331	3.309	3.351	3.722	6.430	3.587	5.006
1.556	4.993	4.328	2.749	4.374	3.018	4.606	2.682	4.870	2.727
3.899	5.828	1.874	1.316	3.361	2.639	2.246	4.463	4.164	6.351

16. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; utilice la prueba de Anderson-Darling. Compruebe con Stat::Fit.

198.912	193.496	198.169	186.553	186.699	189.485	197.916	184.548	176.613	194.666
186.720	175.625	193.319	208.652	180.861	189.234	179.564	200.401	206.452	185.913
185.615	191.500	191.643	201.017	187.908	180.002	192.118	200.353	197.755	190.210
191.445	184.243	185.089	194.686	188.845	194.979	203.149	202.014	179.576	181.175
183.463	193.388	193.112	194.638	184.730	188.484	194.847	199.871	172.773	181.189
191.088	178.781	199.534	191.382	173.618	193.244	185.665	192.927	175.524	189.795
176.583	187.396	198.267	181.183	186.406	192.473	193.006	192.881	182.241	187.850
193.267	192.581	195.991	200.364	188.597	188.870	191.077	206.708	190.292	198.489
198.414	174.540	194.575	184.283	194.842	186.476	196.176	183.730	197.700	184.097
203.231	192.099	177.140	172.582	188.939	183.386	180.174	195.355	193.626	206.255

17. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos. Emplee la prueba Chi-cuadrada y compruebe con Stat::Fit.

17.264	18.129	15.235	15.281	16.162	18.089	14.601	12.091	17.516	12.258
14.938	17.223	19.787	13.435	16.082	13.025	18.482	19.439	15.032	10.816
16.751	16.805	18.580	15.663	13.163	16.930	18.475	18.064	16.390	15.989
14.257	14.772	17.520	15.959	17.579	18.917	18.737	13.028	13.534	14.233
16.651	17.175	17.510	14.658	15.845	17.552	18.398	10.877	13.538	13.217
12.082	18.345	16.733	11.144	17.206	14.954	17.131	11.747	16.260	17.652
17.211	18.145	13.536	15.188	17.020	17.150	17.120	13.871	15.645	17.293
18.168	17.770	18.476	15.881	15.967	16.648	19.480	16.416	18.180	19.408
18.930	17.497	14.517	17.551	15.210	17.803	14.342	18.055	14.458	15.287
17.264	11.779	16.766	14.504	17.239	12.777	15.501	17.047	11.436	16.925

18. Utilice la prueba de Kolmogorov-Smirnov para determinar, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos. Compruebe con Stat::Fit.

2.865	4.419	3.681	6.502	1.141	2.773	2.299	4.589	7.142	1.783
2.336	2.201	1.186	3.610	0.753	2.653	3.574	3.588	3.128	3.100
3.420	1.123	3.264	2.219	1.962	2.915	4.282	4.835	3.057	1.000
1.242	3.725	4.317	1.694	3.286	3.698	3.208	1.628	3.704	1.020
3.117	1.283	3.821	0.943	1.713	4.715	1.740	2.769	2.877	3.956
1.904	3.144	3.541	1.494	6.983	1.649	4.020	1.475	1.802	1.569
1.304	2.151	2.953	1.060	7.800	7.621	2.872	1.474	2.180	2.395
5.632	2.941	2.274	1.841	1.651	4.009	2.540	2.669	1.539	1.917
2.285	4.579	3.631	6.574	1.941	3.255	1.372	2.284	4.499	4.037
2.819	3.470	3.158	2.194	1.524	2.105	2.806	4.819	1.946	3.197

19. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos usando la prueba de Kolmogorov-Smirnov. Compruebe con Stat::Fit.

174.847	402.174	282.143	859.252	36.146	164.428	116.195	432.915	1034.500	73.830
119.609	107.279	38.269	271.768	21.400	151.421	266.496	268.621	206.518	203.016
244.874	35.337	223.936	108.878	87.316	180.701	378.203	479.587	197.647	30.094
40.973	288.761	384.365	67.650	226.819	284.664	216.767	63.229	285.525	30.911
205.085	43.048	303.220	27.863	68.959	456.507	70.826	164.015	176.297	324.298
82.842	208.481	261.858	54.809	989.300	64.625	334.560	53.719	75.188	59.444
44.148	102.905	185.161	32.573	1231.860	1176.460	175.667	53.632	105.450	125.164
647.174	183.747	113.870	78.092	64.731	332.889	139.595	153.120	57.566	83.781
114.911	431.138	274.864	877.946	85.668	222.815	47.822	114.754	416.533	337.344
169.609	251.844	210.369	106.671	56.651	98.984	168.127	476.397	86.082	215.320

20. A partir de la prueba de Kolmogorov-Smirnov, determine con un nivel de confianza de 90% qué tipo de distribución siguen los datos. Compruebe con Stat::Fit.

0.488	0.116	0.731	0.094	0.684	0.093	0.368	0.090	0.761	0.420
0.995	0.908	0.183	0.146	0.633	0.567	0.058	0.507	0.780	0.139
0.088	0.382	0.707	0.413	0.581	0.254	0.440	0.447	0.251	0.870
0.149	0.427	0.743	0.434	0.260	0.738	0.300	0.302	0.314	0.423
0.731	0.313	0.908	0.845	0.937	0.607	0.025	0.302	0.608	0.078
0.591	0.781	0.850	0.048	0.580	0.346	0.723	0.787	0.535	0.610
0.745	0.005	0.256	0.845	0.445	0.777	0.896	0.245	0.335	0.194
0.307	0.692	0.905	0.046	0.128	0.766	0.366	0.513	0.302	0.833
0.084	0.080	0.160	0.028	0.714	0.454	0.913	0.666	0.213	0.373
0.967	0.280	0.333	0.531	0.285	0.504	0.837	0.681	0.209	0.626

21. Determine, con un nivel de confianza de 90%, si la variable aleatoria representada por la siguiente tabla de frecuencia sigue una distribución exponencial con media 1.

Intervalo	Frecuencia
0-1	29
1-2	18
2-3	18
3-4	12
4-5	8
5-6	3
6-7	2
7-8	5
8-9	3
9-10	0
10-?	2

22. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; emplee la prueba de Anderson-Darling y compruebe con Stat::Fit.

Intervalo	Frecuencia
-?-12	3
12.0-12.5	4
12.5-13.0	3
13.0-13.5	6
13.5-14.0	8
14.0-14.5	15
14.5-15.0	12
15.0-15.5	13
15.5-16.0	7
16.0-16.5	16
16.5-17.0	7
17.0-?	6

23. Determine, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos. Utilice la prueba Chi-cuadrada.

24. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; emplee la prueba Chi-cuadrada.

25. Utilice la prueba de Kolmogorov-Smirnov para determinar con un nivel de confianza de 95% qué tipo de distribución siguen los datos.

4	5	3	5	5	4	3	2	4	3
4	6	4	3	5	2	2	3	3	4
4	4	3	3	3	2	2	3	2	3
3	4	5	2	3	4	3	3	5	3
2	5	3	4	4	1	4	5	4	5
7	2	4	4	2	4	1	5	4	4
5	5	5	2	4	4	5	4	4	1
6	4	6	6	2	4	4	2	2	2
3	3	2	5	3	5	1	3	2	4
1	2	5	2	3	1	5	3	2	5

26. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos usando la prueba de Kolmogorov-Smirnov.

1	0	0	1	0	0	1	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
1	0	1	2	1	1	1	0	0	0
1	0	1	2	0	0	1	1	0	1
0	1	1	0	0	1	1	2	1	0
1	2	0	1	1	1	0	1	0	1
1	0	1	2	0	0	1	2	1	0
1	0	0	0	0	0	0	0	1	0
0	0	0	1	0	1	2	1	0	0

27. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; use la prueba de Kolmogorov-Smirnov y compruebe con Stat::Fit.

5	3	2	4	6	4	3	2	2	0
3	2	4	6	2	8	6	3	3	3
11	5	9	3	7	4	7	2	7	3
4	7	7	3	3	4	8	4	2	7
5	4	5	3	6	4	4	3	1	3
1	4	5	4	6	2	5	5	4	8
7	6	4	6	4	5	4	2	2	5
4	5	5	2	4	2	3	6	3	5
4	5	4	6	2	5	7	5	4	6
5	7	3	7	0	4	5	7	5	11

28. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos. Use la prueba de Kolmogorov-Smirnov y compruebe con la herramienta Stat::Fit.

10	9	8	10	9	8	13	10	16	13
14	15	11	6	12	10	5	10	9	12
8	7	8	9	10	8	10	5	3	13
9	12	15	7	5	9	14	12	11	10
4	12	13	7	7	7	18	5	9	10
12	11	14	9	13	14	10	10	10	15
9	14	11	5	11	2	10	15	4	15
11	8	5	9	11	11	7	10	13	5
9	9	8	4	9	8	13	12	15	15
7	9	13	10	11	6	9	10	15	7

29. A partir de la prueba Chi-cuadrada, determine con un nivel de confianza de 90% qué tipo de distribución siguen los datos.

2	1	2	0	1	1	2	1	0	1
1	2	2	1	0	0	0	0	1	1
1	1	0	2	2	0	0	2	1	0
2	0	0	1	2	1	0	0	2	2
1	1	1	1	2	1	1	1	2	0
2	0	3	2	0	0	1	2	1	1
1	2	3	0	0	0	0	1	1	0
1	1	1	0	2	0	0	0	3	1
0	1	0	1	0	1	1	2	3	2
1	2	0	0	1	1	0	0	2	0

30. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; emplee la prueba Chi-cuadrada.

0	0	0	0	0	0	0	1	0	0
0	0	1	0	1	0	1	0	1	0
0	1	1	0	0	1	1	1	0	1
0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1	1	0
0	0	0	0	0	1	0	0	1	1
0	1	1	1	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0
1	1	0	0	0	1	0	0	0	0
0	1	0	0	0	0	0	1	0	0

31. Determine, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos; emplee la prueba Chi-cuadrada.

0	8	6	6	4	7	5	1	6	6
0	8	5	-	6	5	1	4	6	4
6	8	5 6	4 8	7	5 5	4	6	5	6
0		-	0			4			7
6	5	8	_	6	8	5	5	4	/
6	8	8	5	6	7	4	4	7	6
4	5	6	5	8	4	5	8	4	8
6	5	7	4	7	8	8	4	5	4
5	7	6	6	5	5	6	5	5	5
5	6	6	5	8	4	8	5	6	7
4	4	4	4	7	7	8	8	5	7

32. Utilice la prueba Chi-cuadrada para determinar, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos. Compruebe con Stat::Fit.

1	2	0	1	2	1	0	0	1	2
2	1	1	1	1	2	0	2	2	1
1	1	2	1	1	0	0	0	1	1
0	1	0	0	1	0	2	0	1	2
0	1	1	1	0	0	0	0	1	0
0	0	2	0	0	0	2	0	1	2
0	0	0	1	1	0	0	1	0	2
0	2	2	1	0	1	2	1	2	1
0	2	2	0	1	3	1	2	0	1
1	1	0	1	0	0	1	1	2	2

33. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos. Utilice la prueba de Kolmogorov-Smirnov y compruebe con Stat::Fit.

4	5	4	4	4	4	5	4	5	3
5	5	4	4	3	5	5	4	4	5
3	3	4	5	3	5	4	4	4	5
3	5	5	5	5	3	5	5	3	3
5	5	4	5	4	5	5	4	4	4
4	4	5	3	3	3	5	4	5	4
5	5	5	3	5	3	5	4	4	4
3	4	4	5	3	3	4	2	5	5
3	4	3	4	3	5	3	5	5	3
5	5	3	4	4	4	5	5	5	4

34. Determine, con un nivel de confianza de 95%, qué tipo de distribución siguen los datos; emplee la prueba Chi-cuadrada y compruebe con Stat::Fit.

x	Frecuencia
0	11
1	29
2	31
3	14
4	9
5-?	6

35. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos; use la prueba Chi-cuadrada. Compruebe con Stat::Fit.

0	1	0	2	2	1	0	2	5	0
6	0	0	0	3	1	4	0	0	2
1	2	1	0	1	4	0	0	0	1
2	2	2	0	1	0	0	0	4	3
0	1	0	0	2	1	0	0	9	3
4	2	0	1	8	0	2	0	6	1
1	1	0	3	2	0	0	0	3	1
0	5	0	0	1	1	1	0	1	0
7	0	0	2	0	2	0	2	0	2
0	0	5	9	1	2	4	0	0	0

36. Emplee la prueba Chi-cuadrada para determinar, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos.

x	Frecuencia
0	21
1	17
2	14
3	9
4	8
5	6
6	6
7	1
8	4
9	4
10	1
11	0
12	1
13	2
14-?	6

37. Determine, con un nivel de confianza de 90%, si los datos se distribuyen de acuerdo con una distribución binomial con N = 10 y p = 0.5.

38. Determine, con un nivel de confianza de 90%, si los datos se distribuyen de acuerdo con una distribución uniforme discreta (1-6).

39. Genere, mediante el método de la transformada inversa, 100 números aleatorios para la siguiente distribución de probabilidad.

$$p(x) = \frac{1}{5} \left(\frac{4}{5}\right)^{x-1}$$
 para $x = 1, 2, 3, ...$

40. Obtenga, con el método de la transformada inversa, la expresión matemática para generar variables aleatorias que sigan las funciones de densidad indicadas.

a)
$$f(x) = \frac{x}{5} e^{\frac{x^2}{10}}$$
 para $x \ge 0$

b)
$$f(x) = 36x^2 e^{-12x^3}$$
 para $x \ge 0$

c)
$$f(x) = 4x^3 e^{-x^4}$$
 para $x \ge 0$

41. Genere, con el método de la transformada inversa, variables aleatorias con densidad f(x) usando los números aleatorios 0.642, 0.225, 0.134, 0.176, 0.954 y 0.245.

$$f(x) = \begin{cases} 3/4 & 0 \le x \le 1 \\ 1/4 & 1 \le x \le 2 \end{cases}$$

42. Obtenga el valor de la variable aleatoria que se generaría mediante el método de composición al utilizar los números aleatorios 0.5623 y 0.9825 con la función de densidad siguiente:

$$f(x) = \begin{cases} 3/4 & 0 \le x \le 1 \\ 1/4 & 1 \le x \le 2 \end{cases}$$

43. Genere 100 variables aleatorias para las siguientes distribuciones de probabilidad; utilice el método de la transformada inversa.

a)
$$f(x) = \frac{(x-4)^2}{72}$$
 para $0 \le x \le 10$

b)
$$f(x) = \frac{1}{5}$$
 para $2 \le x \le 7$

b)
$$f(x) = \frac{1}{5}$$
 para $2 \le x \le 7$
c) $f(x) = \frac{x}{2}$ para $0 \le x \le 2$

44. Genere 50 variables aleatorias para las siguientes distribuciones de probabilidad; emplee el método de la transformada inversa.

a)
$$f(x) = \frac{(x-1)}{72}$$
 para $1 \le x \le 3.828$

b)
$$f(x) = \frac{1}{6}$$
 para $7 \le x \le 13$
c) $f(x) = \frac{3}{2}x$ para $1 \le x \le 1.527$

c)
$$f(x) = \frac{3}{2}x$$
 para $1 \le x \le 1.527$

45. Obtenga la expresión para generar variables aleatorias con distribución de probabilidad.

$$f(x) = \frac{3}{28}(x+1)^2$$
 para $-2 \le x \le 2$

46. Determine los valores de *X* para los números aleatorios 0.2456, 0.7867, 0.9845, 0.2345 y 0.6735, dado que *X* es una variable aleatoria con la siguiente distribución de probabilidad.

$$f(x) = \frac{1}{5}e^{-\frac{x}{5}} \qquad \text{para} \qquad x \le 0$$

- 47. Utilizando cualquier hoja de cálculo, genere 100 variables aleatorias
 - a) exponencialmente distribuidas con $\lambda = 3$.
 - b) normalmente distribuidas con media 10 y varianza 4.
 - c) uniformemente distribuidas con límite inferior igual a 10 y límite superior igual a 30.
 - d) triangularmente distribuidas con límite inferior = 5, valor más probable = 10 y límite superior = 15.
 - e) con distribución binomial y parámetros N = 5, p = 0.3, q = 0.7.
 - f) con distribución de Poisson, con $\lambda = 3$.

Compruebe con Stat: :Fit si las variables aleatorias generadas siguen la distribución de probabilidad que se esperaría de ellas.

Referencias

- [1] Azarang, M. y García, E., Simulación y Análisis de Modelos Estocásticos, 1a. ed., McGraw-Hill (1996).
- [2] Banks, J., Carson, J.S., Nelson, B.L. y Nicol, D.M., *Discrete-Event System Simulation*, 4a. ed., Prentice Hall N. J. (2005).
- [3] Law, A.M. y Kelton, W.D., Simulation Modeling and Analysis, 3a. ed., McGraw-Hill (2000).

CAPÍTULO 4

SIMULACIÓN DE VARIABLES ALEATORIAS

- **4.1** Verificación y validación de los modelos de simulación
 - **4.1.1** Simulaciones terminales
- **4.2** Simulaciones no terminales o de estado estable
 - **4.2.1** Longitud de las réplicas
- **4.3** Modelos de simulación
 - **4.3.1** Modelos de una línea de espera con un servidor
 - **4.3.2** Modelo de un proceso de ensamble e inspección
 - **4.3.3** Modelo de un sistema de inventarios
- **4.4** Selección de lenguajes de simulación
- **4.5** Problemas

4.1 Verificación y validación de los modelos de simulación

Gracias al avance tecnológico, en la actualidad existen en el mercado aplicaciones con interfases gráficas tan poderosas que permiten a muchos usuarios con inclinaciones técnicas desarrollar modelos en el área de la simulación. Por desgracia, en general dichos usuarios aprenden a usar el lenguaje relacionado y manejan algunos de los conceptos básicos, pero ponen muy poca atención al análisis correcto de los resultados. Así, muchos estudios son interpretados de manera errónea y es muy probable que conduzcan, en consecuencia, a malas decisiones.

Entre otras, el fenómeno que acabamos de describir ocurre por razones como éstas: en primer lugar, el falso sentido de seguridad que desarrolla el usuario por el simple hecho de conocer el lenguaje utilizado en el área; la facilidad de uso del software de simulación actual y su capacidad para desarrollar gráficos y animaciones y, sobre todo, la dificultad implícita en el análisis estadístico de la información. Es muy común encontrar personas que después de simular un sistema estocástico aseguran de manera bastante ingenua que el resultado de la variable de respuesta es un valor único —por ejemplo, que el número de piezas que se acumulan ante una máquina es tan sólo el promedio de la variable—, dejando de lado un completo análisis estadístico de dicha variable. Para evitar que el lector se convierta en uno de esos usuarios, a continuación se discutirán los aspectos mínimos que deben cuidarse en el análisis de las variables de salida.

Para empezar debemos distinguir dos categorías entre los modelos de simulación: modelos de categoría terminal y modelos no terminales o de estado estable. A continuación se explica esta clasificación con más detalle.

4.1.1 Simulaciones terminales

Los modelos de tipo terminal tienen como característica principal la ocurrencia de un evento que da por terminada la simulación. Un ejemplo sería el siguiente: digamos que nos interesa conocer el tiempo que llevaría procesar un lote de 10 piezas, el tiempo requerido para vender 100 periódicos, o el número de clientes que se atiende en una cafetería entre las 8:00 y 9:00 a.m. El análisis estadístico recomendado para este tipo de simulaciones involucra la utilización de intervalos de confianza y la determinación de la distribución de probabilidad de la variable de salida.

4.1.1.1 Intervalos de confianza

Debido a la naturaleza aleatoria de los resultados de este tipo de modelos, es necesario determinar su distribución de probabilidad y su intervalo de confianza en las diferentes réplicas. En la sección 3.3 del capítulo anterior se discute cómo obtener la distribución de probabilidad de una variable aleatoria; por lo tanto, aquí nos ocuparemos de los intervalos de confianza.

Si la variable aleatoria sigue una distribución normal, el intervalo de confianza está dado por:

$$IC = \left[\overline{x} - \frac{s}{\sqrt{r}} \left(t_{\alpha/2, r-1} \right) , \overline{x} + \frac{s}{\sqrt{r}} \left(t_{\alpha/2, r-1} \right) \right]$$

En caso de que la variable aleatoria siga otro tipo de distribución, el intervalo de confianza es relativamente más amplio, y se calcula como:

$$IC = \left[\bar{x} - \frac{s}{\sqrt{r\alpha/2}} \quad , \quad \bar{x} + \frac{s}{\sqrt{r\alpha/2}} \right]$$

En ambas ecuaciones:

r = Número de réplicas

 α = Nivel de rechazo

$$\bar{x} = \frac{1}{r} \sum_{i=1}^{r} x_{i}$$

$$s = \left(\frac{1}{r-1} \sum_{i=1}^{r} (x_{i} - \bar{x})^{2}\right)^{1/2}$$

Ejemplo 4.1

Los resultados de 10 réplicas de la simulación de un sistema de inventario promedio en un almacén son 190.3, 184.2, 182.4, 195.6, 193.2, 190.5, 191.7, 188.5, 189.3, 188.4. Determinar el intervalo de confianza con un nivel de aceptación de 95 por ciento.

La media y la desviación estándar de la muestra son:

$$\bar{x} = 189.41$$

 $s = 3.916$

Bajo la premisa de que el inventario promedio sigue una distribución normal, el intervalo de confianza se calcularía de la siguiente forma:

$$IC = \left[\overline{x} - \frac{s}{\sqrt{r}} (t_{\alpha/2, r-1}) , \overline{x} + \frac{s}{\sqrt{r}} (t_{\alpha/2, r-1}) \right]$$

$$IC = \left[189.41 - \frac{3.916}{\sqrt{10}} (t_{0.025, 9}) , 189.41 + \frac{3.916}{\sqrt{10}} (t_{0.025, 9}) \right]$$

$$IC = \left[189.41 - \frac{3.916}{\sqrt{10}} (2.685) , 189.41 + \frac{3.916}{\sqrt{10}} (2.685) \right]$$

$$IC = \left[186.08 - 192.73 \right] \text{ piezas promedio en el almacén}$$

Si la variable aleatoria no fuera normal, o si la suposición de normalidad se considerara inadecuada, el intervalo de confianza se calcularía así:

$$IC = \left[\overline{x} - \frac{s}{\sqrt{r\alpha/2}} \quad , \quad \overline{x} + \frac{s}{\sqrt{r\alpha/2}} \right]$$

$$IC = \left[189.41 - \frac{3.916}{\sqrt{10(0.025)}}\right]$$
, $189.41 + \frac{3.916}{\sqrt{10(0.025)}}$

IC = [181.57 – 197.24] piezas promedio en el almacén

En consecuencia, si la variable aleatoria sigue una distribución normal y realizamos 100 réplicas del experimento, esperamos que el resultado de 95% de las mismas se encuentre entre 186.08 y 192.73, a diferencia de lo que ocurriría en una variable no normal, en donde tras 100 réplicas del experimento esperamos que 95% de ellas se encuentren entre 181.57 y 197.24, lo cual implica mucho menos exactitud.

Ejemplo 4.2

Un cliente ha solicitado la entrega de un pedido de 100 artículos. Como analistas, deseamos conocer un valor estimado del tiempo promedio de entrega del pedido, y un intervalo de confianza con un nivel de 90 por ciento.

Toda vez que este problema exige una simulación de tipo terminal, debemos desarrollar un modelo y realizar suficientes réplicas independientes para obtener la distribución de probabilidad y el intervalo de confianza que nos interesan. Con este propósito realizamos 30 réplicas, obteniendo los siguientes resultados del tiempo de entrega del producto, medido en días transcurridos desde la formulación del pedido.

9.57	4.81	7.33	5.72	7.90	12.03	6.30	5.83	8.39	9.74
6.55	2.92	10.65	7.85	8.04	4.60	10.20	7.27	6.32	7.08
4.69	6.77	4.85	5.72	9.75	6.33	8.35	8.89	5.83	3.77

En la figura 4.1 se muestran el histograma del tiempo de entrega y el resultado de la prueba de bondad de ajuste.

Figura 4.1 Histograma de las réplicas del modelo de tiempo de entrega del producto (ejemplo 4.2)

Tomando en cuenta la evidencia estadística de normalidad, así como la media y la desviación estándar de la muestra, calculamos el intervalo de confianza:

$$\bar{x} = 7.14$$

 $s = 2.12$

$$IC = \left[\overline{x} - \frac{s}{\sqrt{r}} (t_{\alpha/2, r-1}) , \overline{x} + \frac{s}{\sqrt{r}} (t_{\alpha/2, r-1}) \right]$$

$$IC = \left[7.14 - \frac{2.12}{\sqrt{30}} (t_{0.05, 30}) , 7.14 + \frac{2.12}{\sqrt{30}} (t_{0.05, 30}) \right]$$

$$IC = \left[7.14 - \frac{2.12}{\sqrt{30}} (1.697) , 7.14 + \frac{2.12}{\sqrt{30}} (1.697) \right]$$

$$IC = \left[6.46 - 7.79 \right] dias$$

4.2 Simulaciones no terminales o de estado estable

A diferencia de los modelos anteriores, las simulaciones no terminales o de estado estable no involucran una ocurrencia en el tiempo en que tengan que finalizar. Por ejemplo, si deseáramos conocer el número de máquinas que deben instalarse en un sistema de producción cuya operación tiene que mantenerse activa continuamente durante todo el año, podríamos modelar el sistema hasta que la variable de interés llegara a un estado estable. En este caso surge la necesidad de determinar la longitud de la corrida para asegurar la estabilización de los resultados del modelo. Veamos cómo satisfacer dicho requisito.

4.2.1 Longitud de las réplicas

Para que el resultado de una variable aleatoria llegue al estado estable en una simulación no terminal, es necesario garantizar que la longitud de la réplica, n, sea lo suficientemente grande para que la variación entre réplicas no difiera de cierta exactitud, \in , el $100(1 - \alpha)\%$ de las veces.

En caso de normalidad el tamaño de corrida de la simulación se calcula como:

$$n = \left(\frac{\sigma Z_{\alpha/2}}{\in}\right)^2$$

Eiemplo 4.3

Determinar la longitud de la réplica para estimar, dentro de un rango de ± 2 , el valor de una variable normal con desviación estándar 4 y un nivel de aceptación de 5 por ciento.

Solución:

$$n = \left(\frac{\sigma Z_{\alpha/2}}{\epsilon}\right)^2$$

$$n = \left(\frac{4Z_{0.025}}{2}\right)^2 = ((2)(1.96))^2 = 15.36$$

$$n = 16$$

Figura 4.2 Comportamiento del promedio de la variable aleatoria normal con seis réplicas; exactitud deseada de 1 σ

La figura 4.2 representa los resultados de la simulación de seis réplicas independientes de longitud n=16 de una variable aleatoria con distribución normal y desviación estándar 4. Como puede ver, los resultados finales de la variable aleatoria se encuentran dentro de la exactitud deseada. Dado el nivel de aceptación de 5%, si realizáramos 100 réplicas cabría esperar que cinco de ellas estarían fuera de la exactitud deseada.

Si se tiene la certeza de normalidad pero se desconoce el valor de la desviación estándar, será necesario realizar una corrida inicial de tamaño n' para determinar un estimador de la desviación. En este caso la longitud de la réplica se determina mediante

$$n = \left(\frac{s}{\in} (t_{\alpha/2, n'-1})\right)^2$$

Ejemplo 4.4

Se realizó una corrida inicial de tamaño n' = 10 para estimar la desviación estándar s = 13.21 de una variable normal. Determinar la longitud de la réplica para estimar el valor medio dentro de un rango de ± 0.3 con un nivel de aceptación de 90 por ciento.

Solución (vea la figura 4.3):

$$n = \left(\frac{s}{\in} (t_{\alpha/2, n'-1})\right)^{2}$$

$$n = \left(\frac{13.21}{0.3} (t_{0.05, 9})\right)^{2} = ((44.03)(2.262))^{2} = 9920.83$$

$$n = 9920$$

Cuando se desconoce el tipo de distribución de la variable aleatoria a simular o bien la suposición de normalidad no existe, es preciso hacer uso del teorema de Tchebycheff para calcular la longitud de la réplica. En este caso se utiliza

Figura 4.3 Comportamiento del promedio de la variable aleatoria normal; exactitud deseada de $0.045\,\sigma$

$$n = \frac{1}{\alpha} \left(\frac{\sigma}{\epsilon} \right)^2$$

Ejemplo 4.5

Supongamos que la suposición de normalidad del ejemplo anterior no es válida, y consideremos la misma información con n' = 10 y s = 13.21. La longitud de la réplica para estimar el valor de la variable dentro de un rango de ± 0.3 con un nivel de aceptación de 90% es:

$$n = \frac{1}{\alpha} \left(\frac{\sigma}{\epsilon}\right)^2 = \frac{1}{\alpha} \left(\frac{s}{\epsilon}\right)^2$$

$$n = \frac{1}{0.1} \left(\frac{13.21}{0.3}\right)^2 = 19389.3$$

$$n = 19390$$

Este resultado concuerda con el concepto expuesto en el ejemplo 4.1: para distribuciones diferentes, aun con los mismos rangos deseados, los requerimientos de simulación cambian, en este caso respecto de la *n*. Ahora bien, veamos qué sucede al momento de simular la variable aleatoria exponencial. La figura 4.4 muestra el comportamiento prome-

Figura 4.4 Comportamiento del promedio de la variable aleatoria exponencial; exactitud lograda de $0.063\,\sigma$

dio de la variable; a pesar de haberla simulado en 9 920 ocasiones, dicha variable está lejos de lograr la exactitud que se observa en la figura 4.3, en donde la variable simulada sigue una distribución normal. Para que el comportamiento de la variable llegue a la zona de estabilización con la exactitud deseada de $0.045\,\sigma$, es preciso generar 19 390 variables exponenciales (al simular solamente 9 920 variables exponenciales la exactitud es de $0.063\,\sigma$).

Ejemplo 4.6

Determinar la longitud de la réplica para estimar, dentro de un rango de ± 0.5 con un nivel de aceptación de 90%, el valor promedio de una variable con σ = 8. Se desconoce la distribución de probabilidad de la variable.

Solución:

$$n = \frac{1}{\alpha} \left(\frac{\sigma}{\epsilon}\right)^2$$

$$n = \frac{1}{0.1} \left(\frac{8}{0.5}\right)^2 = 2560$$

Ejemplo 4.7

Determinar la longitud de la réplica, de manera que el estimado del valor promedio de una variable con distribución de Weibull y desviación estándar σ no difiera en más de 1/4 de la desviación estándar, con un nivel de rechazo de 5 por ciento.

Solución:

$$n = \frac{1}{\alpha} \left(\frac{\sigma}{\epsilon}\right)^2$$

$$n = \frac{1}{\alpha} \left(\frac{\sigma}{\frac{1}{4}\sigma}\right)^2 = \frac{1}{\alpha} (4)^2 = \frac{16}{0.05} = 320$$

En la figura 4.5 se muestran los resultados de 10 réplicas de longitud 320; cada una representa el promedio móvil de una variable aleatoria de Weibull con σ de 1.6. De acuerdo con los cálculos del ejemplo, esta longitud de la réplica debería asegurar la estabilización de la variable aleatoria —lo cual aparentemente ocurre, según la gráfica—, con una exactitud de 0.25 σ . Los resultados confirman los cálculos, ya que el valor final de las réplicas estuvieron entre 54.41 y 54.57. La diferencia de 0.16 equivale a una exactitud relativa a la desviación estándar de apenas 0.1 σ .

Figura 4.5
Comportamiento del promedio de la variable aleatoria de Weibull; exactitud deseada de $0.25\,\sigma$

4.3 Modelos de simulación

Con el propósito de dar una idea de cómo desarrollar un modelo de simulación y de qué manera emplear los conceptos expuestos a lo largo del presente capítulo, a continuación se presentan algunos ejemplos programados en un programa de hoja de cálculo.

4.3.1 Modelo de una línea de espera con un servidor

Ejemplo 4.8

El tiempo que transcurre entre la llegada de ciertas piezas a una estación de inspección sigue una distribución exponencial con media de 5 minutos/pieza. El proceso está a cargo de un operario, y la duración de la inspección sigue una distribución normal con media de 4.0 y desviación estándar de 0.5 minutos/pieza. Calcular el tiempo promedio de permanencia de las piezas en el proceso de inspección.

Para solucionar el problema anterior se debe:

1. Construir una tabla de eventos en la que se describa la relación entre las variables involucradas en el proceso. Para la construcción de dicha tabla es preciso identificar los elementos que se listan a continuación.

Variable de estado	Tiempo en el sistema de inspección (7)		
Entidades	Piezas		
Eventos	Tiempo de llegada (2)		
	Fin de la inspección (5)		
Evento secundario	Inicio de la inspección (3)		
Actividades	Tiempo entre llegadas (1)		
	Tiempo de inspección (4)		

Los números entre paréntesis indican la columna que ocupa cada elemento en las tablas 4.1 y 4.2.

- 2. Definir las relaciones lógico-matemáticas entre los elementos; en la tabla 4.1 se describen, por ejemplo, las siguientes relaciones:
 - a) El tiempo entre llegadas es una variable aleatoria, simulada utilizando el generador RAND() o ALEATORIO() de la hoja de cálculo de Excel y la función generadora de variables exponenciales $E_i = -5 \ln(1 r_i)$.
 - b) El evento *tiempo de llegada* de la pieza corresponde al valor acumulado de la columna (1).
 - c) Tomando en cuenta que solamente existe un operario encargado de la tarea, el *inicio de la inspección* puede ocurrir cuando la pieza entra al sistema, en caso de que el operario esté ocioso (2), o bien cuando termina de inspeccionar la pieza anterior (5).
 - d) El tiempo de inspección es una variable aleatoria normal con media 4 y desviación estándar 0.5, generada mediante la función interna normal acumulada inversa (NORMINV o DISTNORMINV) y como probabilidad el generador de números aleatorios RAND() o ALEATORIO().
 - e) El fin de la inspección se calcula sumando el tiempo de inspección (4) al tiempo de inicio de la inspección (3).
 - f) La variable *tiempo en inspección* se calcula, finalmente, como la diferencia entre el tiempo de llegada (2) y el fin de la inspección (5).
 - g) Si bien no forma parte del objetivo del ejemplo, también es posible determinar el *tiempo de espera* de una pieza antes de ser inspeccionada, ya que es igual a la diferencia entre el tiempo de inicio de inspección (3) y el tiempo de llegada de la pieza (2).
 - Esta última columna permite calcular el tiempo promedio de inspección como promedio móvil: cada vez que una nueva pieza es simulada, el tiempo promedio de inspección se recalcula.

Tabla 4.1 Relación entre los eventos y actividades involucradas en el proceso (ejemplo 4.8)

	С	D	Е	F	G	Н	1	J	K
		Tiempo entre llegadas	Tiempo de Ilegada	Inicio de la inspección	Tiempo de inspección	Fin de la inspección	Tiempo en inspección	Tiempo en espera	Tiempo promedio en inspección
3	Pieza	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4									
5	1	=5*LN(1-RAND())	=D5	=E5	=NORMINV(RAND(), 4,0.5)	=F5+G5	=H5-E5	=F5-E5	=AVERAGE(\$I\$5:15)
6	2	=5*LN(1-RAND())	=D6+E5	=MAX(E6,H5)	=NORMINV(RAND(), 4,0.5)	=F6+G6	=H6-E6	=F6-E6	=AVERAGE(\$I\$5:16)
7	3	=5*LN(1-RAND())	=D7+E6	=MAX(E7,H6)	=NORMINV(RAND(), 4,0.5)	=F7+G7	=H7-E7	=F7-E7	=AVERAGE(\$I\$5:17)
8	4	=5*LN(1-RAND())	=D8+E7	=MAX(E8,H7)	=NORMINV(RAND(), 4,0.5)	=F8+G8	=H8-E8	=F8-E8	=AVERAGE(\$I\$5:18)

 Una vez definidas las relaciones se simula el proceso, teniendo cuidado de que el tamaño de la réplica o experimento sea lo suficientemente grande para asegurar la estabilidad del resultado final. La réplica cuyos resultados se ilustran en la tabla 4.2 se realizó con 1 500 piezas; la información nos indica que el tiempo promedio de espera es de 15.05 minutos/pieza. Además de este resultado, la columna 8 permite visualizar la estabilización del sistema mediante una gráfica de líneas.

Tabla 4.2 Simulación del proceso de inspección (en una hoja de cálculo de Excel)

Pieza	Tiempo entre llegadas (1)	Tiempo de llegada (2)	Inicio de la inspección (3)	Tiempo de inspección (4)	Fin de la inspección (5)	Tiempo en inspección (6)	Tiempo en espera (7)	Tiempo promedio en inspección (8)
1	4.82	4.82	4.82	4.03	8.84	4.03	0.00	4.03
2	2.77	7.59	8.84	4.77	13.61	6.02	1.25	5.02
3	3.72	11.32	13.61	3.97	17.59	6.27	2.30	5.44
4	3.39	14.71	17.59	3.71	21.30	6.59	2.88	5.73
5	2.59	17.30	21.30	3.10	24.40	7.10	4.00	6.00
6	0.19	17.49	24.40	2.64	27.04	9.56	6.91	6.59
7	1.85	19.33	27.04	4.34	31.38	12.05	7.71	7.37
8	0.93	20.26	31.38	4.16	35.54	15.28	11.12	8.36
9	4.65	24.92	35.54	4.41	39.95	15.03	10.63	9.10
10	6.02	30.94	39.95	4.14	44.09	13.15	9.01	9.51
•••	•••	•••	•••	•••	•••	•••	•••	•••
1495	0.04	7380.97	7390.99	3.68	7394.66	13.70	10.02	15.02
1496	1.46	7382.42	7394.66	4.45	7399.11	16.69	12.24	15.02
1497	1.56	7383.99	7399.11	4.32	7403.43	19.45	15.13	15.03
1498	1.98	7385.97	7403.43	3.66	7407.09	21.13	17.47	15.03
1499	0.37	7386.34	7407.09	3.48	7410.57	24.23	20.75	15.04
1500	1.86	7388.20	7410.57	4.57	7415.15	26.94	22.37	15.05

La gráfica de estabilización que se obtuvo a partir de la columna 8 (Tiempo promedio en inspección) se muestra en la figura 4.6. Dicha gráfica nos indica que el tamaño de la réplica es lo suficientemente grande para asegurar la convergencia del resultado. Cabe señalar que esta gráfica de estabilización corresponde a una réplica diferente a la de la tabla de eventos.

Figura 4.6 Periodo de estabilización de tiempo promedio de permanencia en el sistema

Al trabajar con procesos donde se involucran variables, actividades y eventos aleatorios, las variables de estado o variables de respuesta serán, en consecuencia, aleatorias. La figura 4.7 muestra las gráficas de estabilización de 5 diferentes réplicas del mismo modelo. Si bien la estabilización está asegurada, el resultado final nunca es el mismo; es evidente que replicar el experimento debe ser una práctica común en cualquier simulación.

Figura 4.7 Gráficas de estabilización de 5 réplicas independientes

Al replicar el experimento 50 veces se obtienen los resultados que se listan en la tabla 4.3. Para comprender el comportamiento de la variable es necesario analizar estadísticamente esta información.

Tabla 4.3 Resultados de 50 réplicas del experimento

El análisis estadístico de la réplicas —realizado en este caso con la herramienta Stat::Fit de ProModel— permite concluir, a través de una prueba de bondad de ajuste, que el tiempo promedio de espera en el proceso de inspección sigue una distribución de Erlang con los siguientes parámetros: localización 9, forma 3 y escala 1.06 (vea la figura 4.8); además tenemos los siguientes estadísticos básicos:

- Media: 12.18 minutos/pieza.
- Desviación estándar: 1.76 minutos/pieza.

- Intervalo de confianza con 1 α = 0.95: [11.66,12.69] minutos/pieza.
- Valor mínimo en la muestra: 9.69 minutos/pieza.
- Valor máximo en la muestra: 17.09 minutos/pieza.
- Coeficiente de asimetría (skewness): 0.08177.
- Curtosis: -0.071.

Figura 4.8 Histograma de las réplicas (obtenido con Stat::Fit)

4.3.2 Modelo de un proceso de ensamble e inspección

Ejemplo 4.9

Dos barras metálicas de diferente longitud son unidas mediante un proceso de soldadura para formar una barra de mayor longitud. La longitud del primer tipo de barra sigue una distribución uniforme entre 45 y 55 cm. La longitud del segundo tipo de barra sigue una distribución 4-Erlang con media de 30 cm. Las especificaciones del producto final son de 80±10 cm. Determinar el porcentaje de barras fuera de especificación.

Para la solución del ejemplo se requiere:

Identificación de los elementos:

Variable de estado	Cantidad de barras fuera de especificación
Entidades	Barras
Evento	Comparación contra especificaciones
	0: Dentro de especificaciones
	1: Fuera de especificaciones
Actividades	Medición de la longitud de la barra 1
	Medición de la longitud de la barra 2
	Soldadura de las barras 1 y 2

• Construcción de la tabla de eventos.

Tabla 4.4	Relación entre	los elementos	(ejemplo 4.9)
-----------	----------------	---------------	---------------

С	D	Е	F	G	Н	I	J
							Probabilidad de
	Longitud barra 1	Longitud barra 2	Longitud total				estar fuera de
	(cm)	(cm)	(cm)	Ei	Es	Estado de la barra	especificaciones
Ensamble	(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	=(55-45)*RAND()+45	=-(30/4)*LN(RAND()	=D5+E5	70	90	=IF(F5 <g5,1,if(f5>H5,1,0))</g5,1,if(f5>	=SUM(\$I\$5:I5)/C5
2	=(55-45)*RAND()+45	=-(30/4)*LN(RAND()	=D6+E6	70	90	=IF(F6 <g6,1,if(f6>H6,1,0))</g6,1,if(f6>	=SUM(\$I\$5:I6)/C6
3	=(55-45)*RAND()+45	=-(30/4)*LN(RAND()	=D7+E7	70	90	=IF(F7 <g7,1,if(f7>H7,1,0))</g7,1,if(f7>	=SUM(\$I\$5:I7)/C7
4	=(55-45)*RAND()+45	=-(30/4)*LN(RAND()	=D8+E8	70	90	=IF(F8 <g8,1,if(f8>H8,1,0))</g8,1,if(f8>	=SUM(\$I\$5:I8)/C8

La tabla 4.4 muestra la relación matemática entre las diferentes variables o elementos del sistema; fue desarrollada en una hoja de cálculo y el significado de cada columna es el siguiente:

- 1. La *longitud de la barra 1* es una variable aleatoria con distribución uniforme entre 45 y 50 cm. Fue simulada con el generador RAND() o ALEATORIO() de la hoja de cálculo, y CON la ecuación generadora de variables uniformes $U_i = a + (b a)r_i$.
- 2. La longitud de la barra 2 es una variable aleatoria simulada con la función RAND() o ALEATORIO(), y CON la ecuación generadora de eventos Erlang: $ER_i = -\frac{40}{3} \ln(\prod_{i=1}^3 r_i)$
- 3. Longitud total: Esta columna representa el proceso de soldadura, y se obtiene sumando las longitudes de las barras pequeñas de las columnas (1) y (2).
- 4. La variable *Ei* simula el límite inferior de las especificaciones.
- 5. La variable Es simula el límite superior de las especificaciones.
- 6. Se asigna el atributo de calidad a cada pieza, denominado *Estado de la barra*, mediante la comparación de la longitud total de la barra y los límites de especificación
- 7. Para determinar la *Probabilidad de estar fuera de especificaciones* se divide el número de piezas defectuosas entre el número de piezas totales. Esto permite obtener la probabilidad como promedio móvil, de manera que cada vez que es simulado un nuevo ensamble la probabilidad se recalcula.
- Simulación de sistema.

Una réplica con los resultados numéricos de las ecuaciones de la tabla 4.4 se muestra en la tabla 4.5.

A partir de la información de la variable aleatoria *Estado de la barra* (columna 6) y mediante una prueba de bondad de ajuste, es posible demostrar que esa variable sigue una distribución de probabilidad de Bernoulli con media 0.5.

Tabla 4.5 Si	mulación del	proceso ((en Excel)
--------------	--------------	-----------	------------

Ensamble	Longitud barra 1 [cm] (1)	Longitud barra 2 [cm] (2)	Longitud total [cm] (3)	Ei (4)	Es (5)	Estado de la barra (6)	Probabilidad (7)
Ensamble	(1)	(2)	(3)	(1)	(3)	(0)	(,,
1	47.25	22.50	69.75	70.00	90.00	1.00	1.00
2	48.65	43.32	91.96	70.00	90.00	1.00	1.00
3	53.59	16.32	69.92	70.00	90.00	1.00	1.00
4	47.79	35.74	83.53	70.00	90.00	0.00	0.75
5	52.08	25.62	77.70	70.00	90.00	0.00	0.60
6	51.93	37.48	89.41	70.00	90.00	0.00	0.50
7	51.31	19.86	71.17	70.00	90.00	0.00	0.43
8	53.17	39.58	92.75	70.00	90.00	1.00	0.50
9	45.58	32.53	78.11	70.00	90.00	0.00	0.44
10	49.10	25.01	74.12	70.00	90.00	0.00	0.40
•••	•••		•••	•••	•••	•••	•••
995	46.83	12.19	59.02	70.00	90.00	1.00	0.50
996	54.31	8.04	62.35	70.00	90.00	1.00	0.50
997	52.36	16.18	68.54	70.00	90.00	1.00	0.50
998	49.32	48.40	97.72	70.00	90.00	1.00	0.50
999	51.30	6.82	58.11	70.00	90.00	1.00	0.50
1000	49.88	38.76	88.64	70.00	90.00	0.00	0.50

• Construcción de la gráfica de estabilización.

La gráfica de estabilización (vea la figura 4.9) de la información de la *Probabilidad* (columna 7) de la tabla 4.5 permite visualizar que la réplica entra a la zona de estado estable después de 200 ensambles, y se mantiene oscilando alrededor de 0.5 hasta el final de la simulación. Ésta nos permite comprobar visualmente que el experimento tiene las dimensiones suficientes para asegurar la convergencia del resultado.

Figura 4.9 Gráfica de estabilización de la probabilidad de que una barra esté fuera de especificaciones

• Réplicas.

Al replicar el experimento 42 veces, modificando sólo la secuencia de números pseudo aleatorios, se obtienen los resultados de la tabla 4.6.

Tabla 4.6	Resultados o	de 42 re	éplicas d	el exi	perimento

0.50	0.49	0.50	0.51	0.50	0.54
0.52	0.51	0.48	0.49	0.51	0.54
0.50	0.53	0.53	0.51	0.49	0.49
0.51	0.51	0.52	0.51	0.52	0.50
0.51	0.46	0.50	0.52	0.52	0.51
0.52	0.49	0.50	0.50	0.50	0.53
0.54	0.54	0.49	0.50	0.51	0.53

Análisis estadístico de la variable de estado:

El análisis del resultado de las réplicas de la tabla 4.6 —realizado con ayuda de la herramienta Stat::Fit de ProModel— permite concluir, a través de una prueba de bondad de ajuste, que la *Probabilidad de que un ensamble esté fuera de especificaciones* sigue una distribución de Erlang con estos parámetros: localización, 0, forma 31.5, y escala, 0.517 (vea la figura 4.10).

Figura 4.10Histograma de las réplicas (obtenido con Stat::Fit)

Además, la variable de respuesta tiene los siguientes estadísticos:

- Media: 0.509.
- Desviación estándar: 0.0175.
- Intervalo de confianza con 1 α = 0.95: [0.504,0.514] minutos/pieza.
- Valor mínimo en la muestra: 0.46.
- Valor máximo en la muestra: 0.54.

- Coeficiente de asimetría: -0.124.
- Curtosis: 0.014.

4.3.3 Modelo de un sistema de inventarios

Ejemplo 4.10

La demanda de azúcar en una tienda sigue una distribución exponencial con media de 100 kg/día. El dueño de la tienda revisa el inventario cada 7 días, y hace un pedido a la planta igual a la capacidad de la bodega menos la cantidad de azúcar que tiene disponible en ese momento; la entrega es inmediata. La demanda no surtida por falta de existencias representa ventas perdidas. La capacidad de almacenamiento de la bodega es de 700 kg. El costo de ordenar es de \$1 000/orden. El costo de faltante es de \$6/kg, y el costo de llevar el inventario es de \$1/kg. Determinar el comportamiento del inventario a lo largo del tiempo y el costo promedio/día para un horizonte de dos meses.

Para la solución del ejemplo se requiere:

Identificación de los elementos:

Variable de estado	Inventario en el almacén
Entidades	Clientes
Evento	Demanda
	Ventas
	Entrega de material por parte del proveedor
Actividades	Cálculo de los costos

Construcción de la tabla de eventos.

Tabla 4.7 Tablas de eventos para el ejemplo 4.10

9	В	С	D	Е	F	G
			Inventario			
10	Día	Entregas del proveedor	inicial	Demanda	Ventas	Inventario final
11	0	700	=C11	=-100*LN(1-RAND())	=IF(D11>=E11,E11,D11)	=MAX(0,\$D11-\$E11)
12	=B11+1	=IF(MOD(B12,7)=0,700-G11,0)	=G11+C12	=-100*LN(1-RAND())	=IF(D12>=E12,E12,D12)	=MAX(0,\$D12-\$E12)
13	=B12+1	=IF(MOD(B13,7)=0,700-G12,0)	=G12+C13	=-100*LN(1-RAND())	=IF(D13>=E13,E13,D13)	=MAX(0,\$D13-\$E13)
14	=B13+1	=IF(MOD(B14,7)=0,700-G13,0)	=G13+C14	=-100*LN(1-RAND())	=IF(D14>=E14,E14,D14)	=MAX(0,\$D14-\$E14)
15	=B14+1	=IF(MOD(B15,7)=0,700-G14,0)	=G14+C15	=-100*LN(1-RAND())	=IF(D15>=E15,E15,D15)	=MAX(0,\$D15-\$E15)

(a) Relación entre los elementos

9	Н	I	J	К	L
		Costo de llevar			
10	Costo de ordenar	inventario	Costo de faltante	Costo total	Costo promedio
11	=IF(MOD(B11,7)=0,1000,0)	=1*(D11+G11)/2	=IF(D11<=E11,6*(E11-D11), 0)	=SUM(J11:L11)	=AVERAGE(\$M\$11:M11)
12	=IF(MOD(B12,7)=0,1000,0)	=1*(D12+G12)/2	=IF(D12<=E12,6*(E12-D12), 0)	=SUM(J12:L12)	=AVERAGE(\$M\$11:M12)
13	=IF(MOD(B13,7)=0,1000,0)	=1*(D13+G13)/2	=IF(D13<=E13,6*(E13-D13), 0)	=SUM(J13:L13)	=AVERAGE(\$M\$11:M13)
14	=IF(MOD(B14,7)=0,1000,0)	=1*(D14+G14)/2	=IF(D14<=E14,6*(E14-D14), 0)	=SUM(J14:L14)	=AVERAGE(\$M\$11:M14)
15	=IF(MOD(B15,7)=0,1000,0)	=1*(D15+G15)/2	=IF(D15<=E15,6*(E15-D15), 0)	=SUM(J15:L15)	=AVERAGE(\$M\$11:M15)

(b) Relación entre los costos

Las tablas 4.7(a) y 4.7(b) muestran la relación matemática entre las diferentes variables o elementos del sistema; la tabla está desarrollada en un programa de hoja de cálculo, y el significado de cada columna es el siguiente:

- **B:** Contador de los *Días* transcurridos.
- C: En esta columna se simulan las Entregas de material: cada siete días se restablece el inventario en un nivel de 700 kg. Los valores se calculan como la diferencia entre la Capacidad del almacén y el Inventario final del día anterior. El uso de la función residuo o módulo (MOD) permite controlar que la entrega se realice cada vez que el Día (columna B) sea múltiplo de siete.
- **D:** El *Inventario al inicio* del día se calcula sumando el *Inventario final* del día anterior y las *Entregas de material* por parte del proveedor.
- **E:** La *Demanda* es una variable aleatoria con distribución exponencial y media de 100 kg. Se simula mediante el generador RAND() o ALEATORIO() de la hoja de cálculo y la ecuación generadora $E_i = -\frac{1}{\lambda} \ln(1 r_i)$
- **F:** Las *Ventas* representan la cantidad que le fue entregada al cliente, y se calcula como el valor mínimo entre el *Inventario al inicio* del día y la *Demanda*.
- **G:** El *Inventario al final* del día se calcula restando las *Ventas* (columna F) del *Inventario inicial* del día (columna D), verificando previamente que no exista faltante.
- **H:** En esta columna la función *residuo* o *módulo* (MOD) permite incrementar en \$1 000 el *Costo de ordenar* cada vez que llegue una orden a la tienda.
- I: Se calcula el inventario promedio durante el día, y el resultado se multiplica por \$1/kg.
- **J:** En caso de no cubrir la *Demanda*, el *Costo de faltante* se calcula multiplicando la demanda no surtida en ese día por el costo de faltante por unidad, que en el ejemplo es de \$6/kg.
- **K:** El *Costo total* se determina mediante la suma de las columnas *Costos de inventario, Faltante* y *Ordenar*.
- L: La forma de calcular esta columna permite tener el *Costo total* como promedio móvil: cada vez que se simula un nuevo día, el costo se recalcula. Con esta columna se analiza la estabilidad de la variable inventario promedio.

Simulación de sistema:

La tabla 4.8 muestra que los resultados es una réplica de 14 días de la simulación del sistema, utilizando las ecuaciones de las tablas 4.7(a) y 4.7(b).

Tabla 4.8 Tabla de eventos del sistema de inventarios (realizada en Excel)

Día	Entregas del proveedor	Inventario inicial	Demanda	Ventas	Inventario final	Costo de ordenar	Costo de llevar inventario	Costo de faltante	Costo total	Costo promedio
0	700.00	700.00	181.23	181.23	518.77	1 000.00	609.39		1 609.39	1 609.39
1		518.77	29.40	29.40	489.37		504.07		504.07	1 056.73
2		489.37	205.65	205.65	283.72		386.55		386.55	833.33
3		283.72	112.36	112.36	171.36		227.54		227.54	681.89
4		171.36	107.42	107.42	63.94		117.65		117.65	569.04
5		63.94	77.26	63.94	0.00		31.97	79.96	111.93	492.85
6		0.00	43.34	0.00	0.00		0.00	260.06	260.06	459.60
7	700.00	700.00	42.02	42.02	657.98	1 000.00	678.99		1 678.99	612.02
8		657.98	121.36	121.36	536.61		597.30		597.30	610.38
9		536.61	83.89	83.89	452.73		494.67		494.67	598.81
10		452.73	139.21	139.21	313.52		383.12		383.12	579.20
11		313.52	185.00	185.00	128.51		221.01		221.01	549.36
12		128.51	46.62	46.62	81.89		105.20		105.20	515.19
13		81.89	329.79	329.79	0.00		40.94	1 487.43	1 528.37	587.56
14	700.00	700.00	150.99	150.99	549.01	1 000.00	624.51		1 624.51	656.69

Resultados:

La figura 4.11 muestra el comportamiento del inventario al inicio del día (columna C) a lo largo del tiempo, para el periodo simulado de 60 días.

Figura 4.11 Simulación del sistema de inventarios (realizada en Excel)

El análisis del costo promedio de operación de la tienda incluye primeramente las gráficas de estado estable (figura 4.12) de cinco réplicas independientes de los resultados de la tabla 4.8. El resultado nos permite observar la convergencia del costo respecto del tiempo.

Figura 4.12Costo promedio por día de cinco réplicas independientes

Los valores finales del costo de operación de estas cinco réplicas son 592.55, 527.45, 506.13, 605.59 y 597.85. Con esta información calculamos un valor promedio de 565.9 y una desviación estándar de 45.7. Debido a que esta información es insuficiente para demostrar la normalidad de los datos, el cálculo del intervalo de confianza con un nivel de significancia de 90% se realiza mediante el teorema de Tchebycheff:

$$IC = \left[\overline{x} - \frac{s}{\sqrt{r\alpha/2}} \right], \quad \overline{x} + \frac{s}{\sqrt{r\alpha/2}}$$

$$IC = \left[565.9 - \frac{45.7}{\sqrt{(5)(0.05)}} \right], \quad 565.9 + \frac{45.7}{\sqrt{(5)(0.05)}}$$

$$IC = \left[474.49 - 657.33 \right]$$
\$\text{S}\text{dia}

4.4 Selección de lenguajes de simulación

En un principio, los programas de simulación se elaboraban utilizando algún lenguaje de propósito general, como ASSEMBLER, FORTRAN, ALGOL o LP/1. A partir de la década de 1960 hacen su aparición los lenguajes específicos para simulación que permiten a analistas y programadores desarrollar modelos de una forma más rápida, gracias a módulos estandarizados. En aquella época surgieron lenguajes como GPSS, GASP, SIMSCRIPT, SLAM, SIMAN y SSED. En la última década del siglo pasado la aparición de las interfases gráficas revolucionan el campo de las aplicaciones en esta área, y ocasionaron el nacimiento de los simuladores, con los cuales se ha facilitado enormemente la programación de los modelos.

En el terreno práctico, es importante utilizar la aplicación que mejor se adecue al tipo de sistema a simular, ya que de la selección del lenguaje o simulador dependerá el tiempo de desarrollo del modelo de simulación. Las opciones van desde las hojas de cálculo, lenguajes de tipo general (como Visual Basic, C++ o FORTRAN), lenguajes específicos de simulación (como GPSS, SLAM, SIMAN, SIMSCRIPT, GAS y SSED), hasta simuladores específicamente desarrollados para diferentes objetivos (como SIMPROCESS, ProModel, Witness, Taylor II y Crystal Ball).

En la actualidad la selección del lenguaje o simulador depende de los siguientes factores:

- 1. Los mercados primarios a los que atenderá la simulación, así como las aplicaciones típicas en que se le utilizará, por ejemplo: administración estratégica, logística, telecomunicaciones, manufactura, sistemas militares, sistemas de salud, manejo de materiales, análisis de riesgo, simulación continua o discreta, etcétera.
- 2. Requerimientos de equipo, como plataforma o sistema operativo, memoria RAM y utilización de disco duro.
- 3. Capacidad de construcción y programación del modelo a través de iconos o mediante procesos de tipo "arrastrar y colocar" (drag and drop), así como acceso a programación estándar. A este respecto también es importante considerar el tiempo y la velocidad en la detección de errores, así como la posibilidad de reutilizar partes de código, objetos o plantillas (templates).
- 4. Inclusión de herramientas complementarias para la realización de pruebas de bondad de ajuste en forma automática, el análisis de las variables de respuesta, la posibilidad de crear diseño de experimentos y la optimización del sistema simulado.
- 5. La animación del sistema, considerando aspectos como velocidad, uso de diferentes vistas, facilidad de exportación, compatibilidad con otras aplicaciones y la posibilidad de poder prescindir del uso de la animación.
- 6. El costo y el tipo de licencia otorgada, así como el soporte técnico y la facilidad de entrenamiento y uso de manuales y ayudas en línea.
- 7. Otras consideraciones, como la capacidad de empaquetamiento de los modelos, la distribución a otros usuarios, y la capacidad que tenga la compañía para actualizar su producto.

Algunas aplicaciones en el área de simulación disponibles actualmente en el mercado son:

Analytica	AnyLogic 5.0	Arena	AutoMod
Crystal Ball	DecisionPro	eM-Plant	Enterprise Dynamics 5.0
DecisionScript	Extend	Factory Explorer	First STEP Designer
Flexsim	GAUSS	GoldSim	GPSS
MAST	Micro Saint	Mystrategy	NAG SMP Library

PASION Simulation	PIMSS System	ProcessModel	ProModel
Proplanner Manufacturing Process Management Software	ProVision	Resource Manager	SAIL
SansGUI Modeling and Simulation Environment	SAS Software	ShowFlow	SIGMA
SIMPROCESS	SIMUL8	SLIM	Supply Chain Builder
VisSim	Visual Simulation Environment	Witness	

4.5 Problemas

1. En un restaurante de comida rápida se venden hamburguesas a \$6 cada una, con un costo de producción por unidad de \$3.5. Al realizar un estudio se ha encontrado que la demanda por hora en este local se distribuye de acuerdo con la siguiente función de probabilidad:

Demanda	0	1	2	3	4	5	6
Probabilidades	0.10	0.15	0.25	0.20	0.15	0.08	0.07

Simule la utilidad promedio por hora que se obtendría en 100 horas de trabajo. Realice 5 corridas y construya la gráfica de estabilización de la utilidad promedio para cada corrida, incluyendo su respectivo intervalo de confianza a 95 por ciento. ¿Considera que las conclusiones obtenidas son estadísticamente válidas? ¿Por qué? ¿Cuál es la diferencia de concluir usando los intervalos de confianza de cada réplica y emplear el intervalo de confianza global para las 5 réplicas?

- 2. Después de realizar una simulación de 5 réplicas se obtuvieron los siguientes valores en estado estable para el nivel de ingresos promedio mensual de una compañía: 1 236, 1 324, 1 289, 1 302 y 1 265. Determine el intervalo de confianza para establecer el verdadero valor del nivel de ingresos promedio mensual de la compañía.
- 3. A un operario le llegan ciertas piezas para que las inspeccione; la revisión se desarrolla de acuerdo con la distribución de tiempo $t = 3r_i^2$. Si el operario recibe un lote de 10

piezas, simule cuánto tiempo tardará en revisar el lote. Utilice los siguientes números aleatorios: 0.6251, 0.5948, 0.6674, 0.2807, 0.9359, 0.1655, 0.1189, 0.7857, 0.4783, 0.9987.

- 4. Se tiene un proceso de fabricación de refrigeradores. La demanda diaria de este producto está normalmente distribuida. La demanda promedio es de 80 refrigeradores por día, con una desviación estándar de 10 refrigeradores diarios. Se desea saber cuál es la mejor política de producción, considerando 60, 70, 80, 90 y 100 refrigeradores por día. El costo por faltante es de \$8/refrigerador por día, y el costo de tener un refrigerador en el inventario es de \$5/refrigerador por día.
 - a) Se le pide realizar 5 corridas de 100 días para cada política.
 - b) Obtenga el costo promedio por día de cada política, y un intervalo de confianza para ese promedio diario.
 - c) Determine, con base en sus resultados, cuál de las políticas seleccionadas es la que debe implementar la empresa.
- 5. Un cilindro con diámetro x_1 será insertado en un agujero con diámetro x_2 . Si x_1 sigue una distribución normal con media de 1.5 cm y varianza de 0.0016, y x_2 una distribución 2-Erlang y una media de 2.5 cm, simule en una hoja de cálculo la inserción de 500 cilindros y determine mediante el estimador la probabilidad de que haya interferencia (es decir, que cilindro pequeño no entre en el agujero).
- 6. Una barra de longitud x_1 será unida mediante soldadura a otra de longitud x_2 . Si x_1 sigue una distribución normal con media de 30 cm y varianza de 0.81, y x_2 una distribución Erlang con k=2 y una media de 15 cm, simule la soldadura de 300 barras, tomando en cuenta que la especificación superior de diseño es de 50 cm. También determine el estimador de la probabilidad de que una barra esté fuera de especificación.
- 7. Un proceso consta de 2 etapas: la primera tiene una duración de t_1 minutos y la segunda dura t_2 minutos. Si t_1 sigue una distribución normal con media de 30 min y varianza de 10 min, y t_2 una distribución 3-Erlang y una media de 20 min, y si el tiempo máximo de producción permitido de este proceso es de 55 min, simule en una hoja de cálculo la producción de 1 000 piezas y estime la probabilidad de que una pieza consuma más tiempo del permitido.
- 8. Un tirador de flecha se encuentra entrenando para las próximas olimpiadas. El blanco a que le dispara consiste en un cuadrado de $10 \text{ cm} \times 10 \text{ cm}$. Un equipo de investigadores midió el comportamiento histórico de su pulso, y llegaron a la conclusión de que la desviación de cada disparo respecto del centro es normal ($\sigma = 3$) cm en el eje "y", y uniforme(-12, +12) en el eje "x". Simule en una hoja de cálculo 500 disparos (por réplica) del tirador y calcule:
 - a) La probabilidad de dar en el blanco simulando sólo una réplica.
 - b) El intervalo de confianza a un nivel de 90% de la distancia entre el punto donde pegó el disparo y el centro del blanco, usando 10 réplicas.

- 9. En el cierre de la novena entrada del 7º juego del Clásico de Otoño en el Yankee Stadium, Kevin Brown, lanzador de los Padres de San Diego, se enfrenta a Chili Davis, bateador del equipo contrario. Los Padres de San Diego mantienen una mínima ventaja de 1 a 0. Con casa llena, 2 outs y 1 bola en la cuenta del bateador, Davis recibe la señal de esperar. El árbitro ha estado manteniendo una zona de strike de 40 cm \times 40 cm. Estadísticamente, Kevin Brown lanza la pelota respecto del centro de la zona de strike con una desviación normal (σ = 10) cm en el eje "y", y uniforme(-30, +30) en el eje "x". Simule en una hoja de cálculo hasta que el bateador quede eliminado, y calcule:
 - a) El porcentaje de strikes al simular sólo una réplica.
 - b) El intervalo de confianza a un nivel de 95% de la distancia entre el punto por donde pasó el lanzamiento y el centro de la zona de strike, usando 100 réplicas.

Nota: Con 3 strikes (strike = lanzamiento en la zona de 40×40) acumulados, el bateador pierde; con 4 bolas (bola = lanzamiento fuera de la zona) el bateador gana.

- 10. La llegada de clientes a un banco con 2 cajeras y una fila tiene una distribución de Poisson con media de 40 personas/h. Simule en una hoja de cálculo este proceso durante 8 h y determine el tiempo promedio en el sistema, sabiendo que el proceso de servicio es exponencial con media 4.4 minutos/cliente.
- 11. Se tiene un proceso al cual llegan piezas con una distribución de probabilidad. Estas piezas pasan por un proceso de inspección donde un operario las revisa, tardando 6 ± 2 minutos por pieza. El porcentaje de rechazos que se tiene es de 15%, y las piezas defectuosas son eliminadas. Asumiendo que el inspector siempre tiene piezas disponibles para revisar, simule este sistema durante 100 piezas.
 - a) Realice 5 corridas y determine, por medio de un intervalo de confianza, el valor promedio de piezas defectuosas que se generarán en el sistema.
 - b) ¿Considera que los resultados obtenidos de la simulación son confiables? ¿Por qué?
- 12. A un centro de maquinado llegan diversas piezas para ser procesadas. Cada pieza se trabaja bajo los siguientes tiempos: 30% tarda 2 min; con distribución exponencial, el 35% tarda 3 ± 1 min; 20% tarda 4 min. De manera constante, 15% se distribuye de acuerdo con una distribución normal con media de 5 min, y con una desviación estándar de 1 min. Por otra parte, 5% del total de las piezas maquinadas son retiradas como producto no conforme, y enviadas al área de reproceso.
 - a) Simule el sistema hasta obtener 100 piezas buenas.
 - b) Realice 5 replicas y calcule un intervalo de confianza para el tiempo necesario para completar las 100 piezas.
 - c) ¿Considera que los resultados obtenidos en el inciso c tienen validez? En caso de que no los considere válidos, ¿qué sugiere para mejorar sus conclusiones?
- 13. Un camión de reparto tarda 30 ± 10 minutos en ser cargado, 20 ± 5 minutos en ser descargado y 40 minutos con distribución exponencial en trasladarse, ya sea de su base al lugar de entrega, o del lugar de entrega a su base.
 - a) Simule el sistema por 10 horas y realice 5 replicas.

- b) Calcule un intervalo de confianza para el número de viajes que se pueden hacer en un día.
- c) Sólo hay espacio para cargar un camión a la vez. Si la empresa necesita realizar al menos 10 entregas por día, ¿qué recomendaciones daría para lograrlo? Justifique su respuesta y establezca sus supuestos.
- 14. A una estación de gasolina que cuenta con una sola bomba llegan clientes a una tasa de 10 por hora con distribución exponencial. Estos clientes son atendidos por el operador de la bomba, que les da el servicio y les cobra. El tiempo de servicio se distribuye exponencialmente con media de 4 minutos por cliente.
 - a) Determine el número promedio de clientes en el sistema.
 - b) Determine el porcentaje del tiempo que el operador está ocupado.
 - c) Determine el tiempo promedio de permanencia en la fila.
- 15. Por un proceso de control de calidad pasan cajas de manera constante, para inspeccionar al azar cierto número de productos de una caja seleccionada también arbitrariamente. La probabilidad de seleccionar una caja para inspección es de 30%; de las cajas que se revisan, en 50% de los casos se revisa sólo un producto, en 30% 2 productos y en el 20% restante 3 productos. Se sabe que la probabilidad de que una caja contenga uno o más productos defectuosos es de 2%, y que la probabilidad (en porcentaje) de que este producto sea encontrado durante la inspección es de (10 × número de productos inspeccionados).
 - a) Simule 100 cajas que pasan por el proceso de control de calidad.
 - b) Determine el número de cajas que contendrán productos defectuosos al ser inspeccionadas.
 - c) Determine cuántas cajas con productos defectuosos no fueron detectadas. Si el costo de que una caja con productos defectuosos salga al mercado es de \$20/caja, determine el costo total en el que se incurriría.

CAPÍTULO 5

SIMULACIÓN CON PROMODEL

- **5.1** Introducción al uso de ProModel
- **5.2** Elementos básicos
- **5.3** Estructura de programación en ProModel
- **5.4** Construcción de un modelo
 - **5.4.1** Modelo M/M/1 de líneas de espera
 - **5.4.2** Mejoramiento visual del modelo
 - **5.4.3** Modelado de un sistema que incluye más de un proceso
 - **5.4.4** Inclusión de gráficos de fondo en el modelo
- **5.5** Caso integrador
- **5.6** Problemas

5.1 Introducción al uso de ProModel

ProModel es uno de los paquetes de software comercial para simulación más usados en el mercado. Cuenta con herramientas de análisis y diseño que, unidas a la animación de los modelos bajo estudio, permiten al analista conocer mejor el problema y alcanzar resultados más confiables respecto de las decisiones a tomar.

Básicamente, este producto se enfoca a procesos de fabricación de uno o varios productos, líneas de ensamble y de transformación, entre otros. La misma compañía de desarrollo ofrece otros paquetes, como MedModel y ServiceModel, diseñados para simulación de sistemas médicos y de servicios, respectivamente. Sin embargo, aunque no es su especialidad, podemos realizar buenas simulaciones de operaciones de servicio usando Pro-Model, tal como se verá a lo largo de este capítulo.

Para conocer las noticias más recientes sobre nuevos productos y casos de aplicación, visite la página Web http://www.promodel.com, la cual también pone a su disposición demos de sus artículos e información referente a los mismos.

5.2 Elementos básicos

En ProModel podemos distinguir una serie de módulos que permiten al analista hacer un estudio más completo sobre el modelo que quiere simular. Cada uno de estos módulos cuenta con herramientas de trabajo que hacen de ProModel uno de los mejores paquetes de simulación que existen en el mercado. A continuación daremos una breve descripción de cada uno de ellos.

ProModel. Es el área de trabajo donde se definirán el modelo y todos sus componentes. En este módulo se programa todo lo que tiene que ver con las relaciones entre las variables del modelo, tanto contadores como relaciones lógicas, flujos, actividades y ciclos de producción, por ejemplo.

Editor gráfico. El editor gráfico de ProModel cuenta con una serie de bibliotecas que permiten dar una mejor presentación visual a los modelos realizados. Además cuenta con la capacidad de importar y crear las imágenes necesarias para representar con mayor propiedad el problema a simular. Incluso pueden importarse dibujos hechos con algún software para dicho propósito.

Resultados. ProModel cuenta con una interfaz de resultados que facilita la administración, el manejo y el análisis de la información. En este módulo se pueden ver los resultados de todas las variables del modelo. Algunas de ellas se reportan de manera automática, y otras se obtienen bajo solicitud expresa del analista. Además, el módulo permite la interacción con programas de hoja de cálculo, como Excel.

Stat: :Fit. El software incluye una herramienta estadística llamada Stat::Fit (algunas de cuyas funciones se comentaron ya en el capítulo 3), que permite hacer pruebas de bondad de ajuste sobre datos muestra, produciendo información muy importante para determinar las distribuciones asociadas a las variables aleatorias del modelo. Además, constituye una gran ayuda si se desconoce cómo alimentar distribuciones complejas de la biblioteca de ProModel en el modelo de simulación.

Editor de turnos. El editor de turnos permite asignar turnos de trabajo a los elementos del modelo que lo requieran, por ejemplo, descansos programados, como el tiempo de comida.

Simrunner. Ésta es una herramienta muy útil en el análisis posterior del modelo. Con ella se pueden diseñar experimentos destinados a conocer el impacto de factores críticos que se generan a partir de la variación en los valores de las variables aleatorias seleccionadas para ello. Asimismo, permite discernir cuál es la mejor combinación de factores para obtener el máximo beneficio al mejorar un proceso.

Referencias y Ayuda. Estos módulos de ProModel facilitan el uso y la programación del software.

5.3 Estructura de programación en ProModel

En ProModel, la programación para la simulación constituye sólo una parte del proceso de construcción del modelo ya que, como se ha mencionado, el software también cuenta con diversas herramientas —de animación, por ejemplo— que el analista debe aprender a manejar para obtener los mejores resultados.

A fin de ayudarle a lograr una comprensión integral acerca del uso de ProModel, en este capítulo utilizaremos varios ejemplos que nos llevarán de lo más simple a lo más complejo. A pesar de lo anterior, esta obra no pretende cubrir de manera exhaustiva todos y cada uno de los elementos que componen el producto. Si desea obtener más detalles respecto de su funcionamiento, le recomendamos consultar los manuales de referencia que acompañan al paquete.

5.4 Construcción de un modelo

En esta sección comenzaremos nuestro análisis de algunas de las instrucciones de programación del paquete. Para empezar, comentaremos algunos modelos básicos de líneas de espera.

5.4.1 Modelo M/M/1 de líneas de espera

Un modelo sencillo de líneas de espera podría describirse como aquel en donde el tiempo entre llegadas y el tiempo de servicio son exponenciales. Consideraremos que el orden de atención (clientes en espera de algún servicio, piezas involucradas en un proceso de ensamble, etc.) sigue la estructura "primero que llega, primero en recibir atención". Por otro lado, daremos por sentado que tanto la capacidad de clientes (o piezas) que puede haber en el sistema analizado en un tiempo determinado como la población que puede requerir del servicio, son infinitas.

Ejemplo 5.1

Una prensa cuenta con un sistema automatizado de carga y descarga de piezas. Al sistema llegan piezas de diferentes características cada 5 minutos, con distribución exponencial. La prensa tarda 4 minutos, también con distribución exponencial, en terminar su

trabajo con cada pieza, considerando carga, proceso y descarga. Asumiendo que se puede tener cualquier cantidad de piezas esperando a ser procesadas, simular el proceso por 100 días.

Un primer análisis del problema nos permite ver que nuestro sistema incluye diferentes elementos a considerar. Debemos suponer que las piezas llegan a una fila de espera, después son procesadas en la prensa y abandonan, por último, el área de trabajo con destino hacia algún otro almacén y/o proceso. Dado que lo que ocurra con ellas al salir de la prensa no nos interesa de momento, el sistema bajo análisis concluye cuando se terminan las piezas en la prensa. Una vez identificados estos detalles, procederemos a realizar la programación para simular el proceso en ProModel.

El primer paso, por supuesto, consiste en ejecutar el software para comenzar a trabajar en la definición del sistema que deseamos modelar. Una vez que se despliegue la ventana del programa, empezaremos por construir las localizaciones, es decir, una representación de todos aquellos lugares físicos donde las piezas serán trabajadas o esperarán su turno para ser procesadas. En este caso el sistema cuenta sólo con una fila o almacén temporal, y con la prensa en donde se realizará el trabajo. Para definir dichas localizaciones, abra el menú **Build** y haga clic en el comando **Locations**, como se muestra en la figura 5.1.

Figura 5.1 El comando Locations del menú Build nos permite comenzar a crear las localizaciones para nuestro modelo

Además de Locations, el menú **Build** agrupa todos los comandos referentes a la construcción de elementos dentro del diseño de nuestro sistema: **Entities** (entidades), **Path Networks** (rutas de movimiento de los recursos o entidades), **Resources** (recursos), **Arrivals** (llegadas de entidades al sistema) y **Processing** (la programación de la simulación en sí misma), entre otros.

(*Nota:* Al igual que muchos otros programas, ProModel ofrece la posibilidad de acceder a sus comandos tanto a través de los menús como mediante métodos abreviados de teclado. Para conocer dichos métodos, abra cualquiera de los menús y observe la referencia a

las teclas correspondientes a la derecha de cada comando [vea la figura 5.1]. Por ejemplo, para ejecutar el comando Locations oprima simultáneamente las teclas Ctrl y L.)

Una vez que ejecute el comando Locations aparecerán tres ventanas en la pantalla: **Locations**, **Graphics** y **Layout** (vea la figura 5.2). En la primera definiremos las características de las localizaciones y en la segunda las de los gráficos; la tercera ventana constituye el área en donde determinaremos la configuración general del modelo.

Gracias a la interfaz gráfica del programa, para definir cada una de las localizaciones podemos proceder de dos maneras. La primera consiste en escribir directamente en los campos de la ventana **Locations** la información correspondiente a cada localización: nombre, capacidad de atención, número de unidades, estado, reglas y demás datos relacionados. La otra es más intuitiva y aprovecha los botones del área **Graphics** y la característica de "arrastrar y colocar". El procedimiento es como sigue:

- Haga clic en uno de los iconos del área Graphics y, sin soltar el botón del ratón, arrástrelo hasta la ventana Layout y libere el botón. De esta manera habrá creado una nueva localización. El icono correspondiente tendrá un nombre preasignado en el campo Name de la ventana Locations. Para cambiar el nombre, simplemente selecciónelo y escriba. Para quitar la selección del icono actual, sólo elija un nuevo icono y repita la operación.
- Para señalar los lugares a donde queremos que lleguen las entidades, haga clic en el icono predefinido de localización (un círculo rojo con una equis blanca) y, sin soltar el botón del ratón, arrástrelo hasta la posición deseada en la ventana Layout.
- Para agregar texto a las localizaciones, haga clic en el botón de texto de la ventana
 Graphics (Aa). Este texto puede editarse con sólo hacer doble clic sobre él.

Aunque para este primer ejemplo no es necesario, se puede alimentar el modelo con más información respecto de las localizaciones; por ejemplo, su capacidad de atención a entidades, el número de localizaciones iguales, si se tomarán en cuenta los tiempos de descompostura, etcétera.

(*Nota:* Es importante señalar que los gráficos únicamente constituyen un elemento visual de apoyo, y no la simulación en sí misma.)

En el caso particular de nuestro ejemplo, debemos considerar que toda pieza que llegue puede esperar a ser atendida. Para ello definiremos una localización a la que llamaremos "fila", y le asignaremos una capacidad infinita en el campo **Cap.** escribiendo *infinite*, o simplemente *inf*, para cada localización.

Si por alguna razón deseáramos cambiar el icono de una localización, todo lo que hay que hacer es:

- Seleccionar la fila en que reside dentro de la ventana Locations.
- Oprimir la tecla Supr (o Delete).
- Desmarcar la casilla de verificación New de la ventana Graphics y seleccionar el nuevo icono.

Figura 5.2 Definición de localizaciones en ProModel

Otra posibilidad consiste en hacer clic con el botón derecho del ratón en el icono que define la localización en la ventana **Layout**. Enseguida aparecerá un menú contextual con comandos para editar o eliminar la localización y borrar, incluso, toda la información referente a ella. Por ejemplo, si selecciona el comando **Edit Graphic** podrá modificar el tamaño y color del icono seleccionado, pero no la localización en sí misma. Para usar un gráfico diferente que identifique la localización, tendrá que borrar el actual y remplazarlo por el nuevo.

(*Nota*: Si olvida desmarcar la casilla de verificación **New** de la ventana **Graphics**, al realizar cualquiera de las acciones anteriores estará creando más localizaciones de las necesarias [en el caso de nuestro ejemplo, dos]. Para eliminar aquellas que no le sean útiles, seleccione la fila apropiada en la ventana **Locations**, abra el menú **Edit** y haga clic en el comando **Delete**.)

Para continuar, definiremos la localización que representará la prensa. Igual que antes, seleccione un icono cualquiera en la ventana **Graphics**. Gracias a la interfaz gráfica de Pro-Model puede anexar una posición sobre el icono, de manera que "se vea" que la pieza llega a la prensa; para ello, emplee el botón . Una vez concluidas estas definiciones preliminares, la ventana Layout podría lucir como se ilustra en la figura 5.3.

Figura 5.3 Definición de localizaciones en Layout

Una vez definida la configuración del proceso, pasaremos a definir la *entidad* que representará la pieza en proceso. Para ello:

 Abra el menú Build y haga clic en el comando Entities. Una vez más, en la pantalla aparecerán tres ventanas: Entities, Entity Graphics y Layout, cuyo propósito es muy similar al de sus equivalentes en el caso de la definición de localizaciones.

Tanto la definición de entidades como su edición se lleva a cabo mediante procedimientos parecidos a los que se realizaron con las localizaciones. Es posible modificar el gráfico seleccionado para cambiar sus dimensiones y su color, y definir, como se describe a continuación, varios gráficos para una misma entidad:

 Desmarque la casilla de verificación New de la ventana Entity Graphics. Enseguida aparecerán nuevos lugares para definir más iconos que identifican la misma entidad; una vez seleccionado el icono, su pantalla será similar a la que se ilustra en la figura 5.4.

(*Nota*: Al igual que en el caso de las localizaciones, si mantiene marcada la casilla de verificación New definirá nuevas entidades con cada selección de icono que haga.)

Figura 5.4 Definición de entidades

Una vez definidas las entidades determinaremos su frecuencia de llegadas a nuestro modelo. Para ello:

Abra el menú Build y haga clic en el comando Arrivals. A continuación se desplegará la ventana Arrivals (vea la figura 5.5). En ella definiremos la frecuencia de llegadas para nuestra pieza.

Figura 5.5 Definición de llegadas de la entidad al sistema

 Para seleccionar la entidad oprima el botón Entity. Luego especifique a qué localización llegará la entidad; en este caso será a una localización llamada "fila": haga

- clic en el botón **Location** para que se desplieguen todas las localizaciones que definimos previamente.
- Ahora determine, en la columna **Qty Each**, cuántas piezas llegarán cada vez que se cumpla el tiempo entre llegadas; en este caso determinamos una (1) a la vez.
- Prosiga su trabajo, especificando esta vez el tiempo de ocurrencia del primer evento de llegada en la columna **First Time**.
- En la columna **Occurrences** debe indicarse el número de repeticiones del evento de llegada. En este caso especifique **infinite** (o simplemente **inf**), lo cual implica que se admitirá un número infinito de eventos de llegada.
- En la columna de Frequency especifique la distribución del tiempo entre llegadas;
 en este caso manejaremos un valor exponencial con media de 5 minutos: e(5) min.

(*Nota:* Si desea conocer las opciones predeterminadas de las distribuciones de probabilidad que ofrece ProModel, despliegue la ayuda del programa haciendo clic en el menú **Help**, consulte el tema **Functions** y elija la opción **Probability Distributions**.)

Finalmente completaremos nuestro modelo definiendo la lógica de la simulación; para ello abra el menú **Build** y elija **Processing**. En esta ocasión se desplegarán dos ventanas en las que programaremos de manera secuencial el proceso que sigue la pieza en el sistema: **Process** y **Routing for**. En la primera definiremos las operaciones que se harán sobre la entidad, y en la segunda indicaremos la ruta secuencial en el proceso. Al analizar una vez más el ejemplo, verá que podemos dividir el proceso en los siguientes pasos:

- 1. La pieza llega a la fila para esperar su turno de procesamiento. Cuando se cumpla la condición sobre el estado de la prensa, la pieza abandonará la fila y seguirá su ruta hacia la localización "prensa".
- 2. La pieza llega a la prensa, donde se le procesa durante un tiempo promedio de 4 minutos, con distribución exponencial. Una vez terminado el proceso en la prensa, la pieza abandona esta localización; su siguiente paso es salir del sistema.

Cada uno de estos pasos deberá programarse de manera independiente, es decir, en un registro separado. Empezaremos por definir la llegada de las piezas a la fila. Para ello:

- Seleccione la entidad correspondiente en la ventana Processing, ya sea haciendo clic en el botón Entity o escribiendo directamente el nombre de la entidad en el campo de dicha columna.
- Para programar la localización de llegada de la entidad (en este caso la localización llamada "fila"), haga clic en el botón **Location**; debajo se desplegarán todas las localizaciones definidas.

Dado que en esta localización la pieza sólo espera a que la prensa esté disponible, no se programa nada en la columna **Operation**. A continuación definiremos la ruta de salida en la ventana **Routing for**:

 En este caso la entidad de salida es nuevamente la pieza, por lo que ése es el nombre que escribimos en la columna Output.

- El destino de la pieza es la prensa, así que seleccionamos dicha localización en la columna Destination.
- La siguiente columna, **Rule**, indica la regla de movimiento; el valor predeterminado aquí es **FIRST 1**, lo que significa que la entidad avanzará tan pronto se tenga capacidad disponible en la localización de destino.
- La última columna, **Move Logic**, determina el movimiento lógico de salida; en este caso dejaremos en blanco el campo. Una vez completada, la primera línea de programación deberá quedar como se ilustra en la figura 5.6.

Figura 5.6 Definición de la primera línea de programación

Para continuar es preciso definir el proceso que se llevará a cabo con la pieza en la prensa. Una vez más, comenzaremos por establecer que la entidad cuyo comportamiento nos interesa es la pieza, que la localización en la que se encuentra es la prensa y que el proceso ocupa un tiempo específico de esta localización: 4 minutos promedio con distribución exponencial. Para conocer los comandos de programación necesarios para especificar lo anterior, haga clic en el botón **Operation** de la ventana **Process**. Enseguida se desplegará la ventana **Operation** (vea la figura 5.7), en donde se escribirá la lógica del proceso.

 Haga clic en el icono de martillo para comenzar la construcción lógica. Al hacerlo se abrirá otra ventana, que contiene todos los comandos de programación existentes.

ProModel hará una sugerencia de comandos que podrían resultar útiles. Al colocar el cursor del ratón sobre cada uno de ellos se mostrará una sugerencia en pantalla con una breve descripción de su utilización.

El comando que puede ser de utilidad en nuestro caso es **WAIT**, que implica una espera de la entidad en cierto momento (por ejemplo, para realizar una operación). Toda vez que queremos manejar un tiempo exponencial de 4 minutos, la instrucción completa será **WAIT E(4) min**. La sintaxis general del comando es la siguiente:

WAIT <unidades de tiempo>

Procedamos a definir la ruta de salida de este registro. En este caso la entidad de salida es la pieza, y su destino es salir del sistema. Finalmente la programación debe lucir como se ilustra en la figura 5.8.

Figura 5.8 Definición de la segunda línea de programación

Observe que, al definir el segundo registro, la ventana de la ruta de salida empieza de cero. Esto significa que la ventana de programación nos permite ver los procesos de las piezas de manera secuencial, aunque la ventana correspondiente a la ruta de salida del proceso sólo mostrará la programación correspondiente a la línea seleccionada en la ventana del procesamiento.

Finalizada la programación, nos queda por definir el tiempo de simulación. Para ello:

Abra el menú Simulation y haga clic en el comando Options. Enseguida se abrirá la ventana correspondiente, en cuyo campo Run hours escribiremos 100 day. En el campo Number of Replications podemos determinar el número de veces que deseamos correr el modelo, es decir el número de replicas. En este caso sólo requeriremos de una repetición.

El modelo está terminado. Para ejecutarlo, lo único que tiene que hacer es desplegar el menú **Simulation** y hacer clic en el comando **Save & Run**. Una vez que esté corriéndose la simulación, podrá —si así lo desea— ajustar su velocidad con la barra que aparece en la parte superior de la ventana, o cancelar la animación mediante el comando **Animation Off** del menú **Options**.

Al terminar la simulación de los 100 días se desplegará un cuadro de mensaje confirmando la finalización del tiempo programado. Si desea ver los resultados, haga clic en el botón **Yes** (estos resultados pueden compararse con los que se obtienen teóricamente mediante las ecuaciones matemáticas de líneas de espera para un modelo M/M/1). Enseguida se abrirá una ventana con varias fichas que muestran los resultados estadísticos de la simulación (vea la figura 5.9). Los datos pueden leerse y graficarse de inmediato con las herramientas que ofrece ProModel, o guardarse en archivos con formato de Excel para personalizarlos posteriormente. En ambos casos podremos encontrar la siguiente información relevante (las cifras pueden variar dependiendo de los números aleatorios que haya utilizado durante la simulación).

Figura 5.9 Reporte de datos generales del modelo (ficha General)

Ficha General

Los datos que despliega esta ficha indican qué archivo se usó para obtener los resultados, así como la fecha y hora en la que se realizó la simulación.

Ficha Locations

En esta sección (vea la figura 5.10) se presenta la información de cada una de las localizaciones, las horas simuladas, su capacidad (en este caso la capacidad infinita se representa con 999999), el número total de entidades que entraron durante la simulación, el tiempo promedio de estancia de las entidades en cada localización, el número promedio de piezas, el número máximo de entidades, el número actual de entidades al momento de finalizar la simulación y el porcentaje de utilización de cada una de las localizaciones. También se pueden revisar las estadísticas independientes de cada localización con capacidad unitaria—como la prensa— y de aquellas que tienen capacidad mayor a uno—como la de la fila.

Figura 5.10 Reporte estadístico de las localizaciones (ficha Locations)

La ficha Locations también incluye información respecto de los parámetros de un sistema de líneas de espera, como: la utilización de la prensa (P), que es un porcentaje de la operación; el número promedio de clientes en el sistema (L), que es el **Avg Contents** de la fila más el **Avg Contents** de la prensa; el número promedio de clientes en la fila (Lq), que es el **Avg Contents** de la fila; el tiempo promedio de permanencia en el sistema (W), que es la suma de los **Avg time per Entry** de la fila y de la prensa, y el tiempo promedio de permanencia en la fila (Wq), que es únicamente el tiempo de la fila.

Si comparamos estos resultados con los teóricos, veremos que son muy similares (vea la tabla 5.1). La diferencia puede deberse a que la simulación no ha llegado a estado estable, o a la variabilidad natural del modelo. En cualquier caso, es recomendable graficar la variable o variables de respuesta que se desea comparar.

Tabla 5.1	Comparación entre los resultados teóricos
	y los obtenidos mediante simulación

Parámetro	Resultado teórico	Resultado de la simulación
L	4 piezas	3.83 piezas ¹
Lq	3.2 piezas	3.04 piezas
W	20 minutos	19.35 minutos
Wq	16 minutos	15.35 minutos
Р	80%	79.28%

¹ Es la suma de piezas de ambas localizaciones; lo mismo sucede en el caso del tiempo total de permanencia en el sistema.

Fichas Locations States Single/Tank y Locations States Multi

En la primera de estas fichas se presenta la información de las localizaciones que tienen capacidad de uno (conocidas como de capacidad unitaria), y la segunda la de aquellas que pueden contener más de una entidad a la vez durante la simulación (denominadas de multicapacidad; vea las figuras 5.11 y 5.12). En nuestro ejemplo tenemos una de cada tipo: la localización "fila" tiene capacidad infinita, mientras que la localización "prensa" tiene capacidad de uno.

En esta sección del reporte podemos encontrar información referente al porcentaje de tiempo vacío, parcialmente ocupado, lleno y no disponible respecto del tiempo disponible para cada localización con capacidad mayor a uno. En este caso, la localización "fila" se encuentra 37.29% del tiempo vacía, 62.71% del tiempo con al menos una pieza y nunca llena ni no disponible, pues le asignamos capacidad infinita y no se programaron eventos que limitaran el acceso y/o salida de las entidades a esta localización. Por otro lado, la localización "prensa" es de capacidad unitaria, así que el reporte informa el porcentaje de tiempo que la prensa estuvo procesando alguna pieza (79.28% del tiempo), el porcentaje de tiempo dedicado a actividades de preparación (en este ejemplo no existen), el porcentaje de tiempo que la prensa estuvo inactiva debido a que no había piezas que procesar,

Figura 5.11 Reporte de localizaciones con capacidad unitaria (es decir, con capacidad para una sola entidad)

Figura 5.12 Reporte de localizaciones con multicapacidad (es decir, con capacidad para varias entidades)

el porcentaje de tiempo que la localización espera a que un recurso u otra entidad lleguen para iniciar el proceso (por ejemplo, en las situaciones en que hay ensambles o cuando la prensa requiere de un dado especial para procesar la pieza), el porcentaje de tiempo en que la localización no está realizando trabajo alguno —ya que la capacidad de su localización destino está llena—, y finalmente el porcentaje de tiempo en el que la localización se encuentra no disponible.

Ficha Failed Arrivals

Esta ficha (vea la figura 5.13) lista las entidades de cada modelo, e indica si alguna de ellas no pudo entrar al sistema en la localización definida en **Arrivals**. Esto puede suceder, por ejemplo, cuando la localización de llegada tiene una capacidad finita. Si ésta se completa y una entidad desea ocupar un espacio en la localización, al no poder encontrarlo es destruida y eliminada del sistema. Esta información es útil, por ejemplo, cuando se analizan sistemas de líneas de espera con capacidad finita y se desea saber el porcentaje de clientes que no pudieron ser atendidos.

Figura 5.13
Estadística de entidades no ingresadas
(ficha Failed Arrivals)

Ficha Entity Activity

Esta ficha del reporte refleja las estadísticas de cada entidad definida en el modelo. Como se observa en la figura 5.14, en este caso sólo tenemos la entidad llamada "pieza". La información reportada es la entidad, el total de entidades que salieron del sistema (en este ejemplo 28521), las entidades que se encuentran en el sistema al finalizar la simulación (3), el tiempo promedio de permanencia en el sistema (19.36 minutos, que es el mismo que se informa en la ficha **Locations**), el tiempo promedio que la entidad pasó en un traslado o movimiento de una localización a otra (mismo que no se programó en nuestro modelo), el tiempo promedio que la entidad espera a otra entidad para un ensamble o a un recurso para ser procesada o transportada (por ejemplo, por un montacargas), el tiempo promedio que se encuentra en procesamiento o viajando en un transportador y, finalmente, el tiempo que no puede avanzar debido a que la localización destino está totalmente ocupada (15.36 minutos, el tiempo promedio de espera en la fila).

Figura 5.14 Estadísticas de la actividad de las entidades en el sistema (ficha Entity Activity)

Ficha Entity States

En esta ficha del reporte (vea la figura 5.15) podemos encontrar un resumen de los datos de la ficha Entity Activity, pero en términos porcentuales. Por ejemplo, como en este caso la entidad "pieza" pasa sólo 4 minutos en operación, el reporte indica que pasó 20.68% del tiempo total de permanencia en el sistema (19.36 minutos), mientras que estuvo bloqueada para continuar su camino a la localización destino el tiempo restante, 15.36 minutos (es decir, 79.32% del tiempo total).

Figura 5.15 Estadística porcentual de la actividad de las entidades (ficha Entity States)

5.4.2 Mejoramiento visual del modelo

ProModel permite incrementar la capacidad visual del modelo mediante un conjunto de herramientas específicas para dicho propósito. En esta sección hablaremos sobre cómo utilizarlas, basándonos una vez más en el modelo que se construyó para el ejemplo 5.1.

Ejemplo 5.2

Nuestro trabajo en esta sección se basará en el ejemplo 5.1, aunque le haremos algunas modificaciones con el objetivo de mejorar su presentación al momento de ejecutar la simulación. Además, trataremos de obtener información relevante para el tomador de decisiones y/o para el programador del modelo.

Para comenzar, determinaremos la cantidad de piezas que hay en el almacén en cualquier momento dado. Esto se puede hacer de dos formas:

- Abra el menú Build y haga clic en el comando Locations.
- En la ventana Graphics, haga clic en el icono predeterminado para la función de contabilización de entidades en una localización (00). (Es importante resaltar que debe desmarcar la casilla de verificación New para poder integrar este contador a la localización que deseemos editar.)
- Vaya a la columna Cap. del registro de la localización que desea modificar (en este caso "fila") , y cambie su capacidad a 50.
- Seleccione los iconos correspondientes en la ventana Graphics, como se muestra en la figura 5.16.
- Agregue una barra que ilustre la capacidad utilizada del total (es por eso que cambiamos la capacidad de la localización a 50; si la hubiéramos mantenido en infinito no aparecería registro alguno en la barra). Para ello emplearemos el icono predeterminado, la barra de color azul que se encuentra debajo del icono 00 en la ventana Graphics. Si al momento de colocar la barra de capacidad no ve la escala, abra el menú View y haga clic en el comando Refresh Layout para actualizar la vista del modelo. Al hacerlo su pantalla deberá lucir como se ilustra en la figura 5.16.

Figura 5.16 Determinación de la cantidad de piezas en una localización

La otra manera de llevar a cabo este procedimiento consiste en utilizar una variable e igualarla al comando predeterminado **CONTENTS**(*fila*) para contabilizar los contenidos de las localizaciones.

Para agregar el número de piezas procesadas utilizaremos una variable. Para ello:

 Abra el menú Build, haga clic en el submenú More Elements y elija Variables (global). Enseguida se desplegará en pantalla la ventana de definición de variables, misma que se ilustra en la figura 5.17.

Figura 5.17 La ventana Variables (global) nos servirá para definir las variables del modelo

Nuestro propósito es definir los parámetros de la variable pzas tot. Para ello:

- Colóquese en el primer campo (**ID**) y modifique el nombre de la variable.
- Cambie al campo de la segunda columna (**Type**) para definir el tipo de variable, que puede ser entera (integer) o real; en este caso la variable es entera.
- En el campo de la siguiente columna, **Inicial Value**, determine como **0** el valor inicial de la variable.
- Toda vez que queremos que el icono de esta variable aparezca en la simulación, haga clic en la columna **Icon** y después haga clic nuevamente en el lugar en donde quiere que aparezca el contador (vea la figura 5.18).

Figura 5.18 Determinación de los parámetros de la variable que contabiliza piezas totales

El siguiente paso consiste en especificar que la variable cambie cada vez que entre una pieza a la prensa. Esto se logra programando esta acción como una operación que se ejecutará al momento de que la pieza termine de ser procesada en la prensa. Para lograrlo:

• Elija el comando **Processing** del menú **Build**. En este caso añadiremos la instrucción **pzas tot** = **ENTRIES(Prensa)** en el segundo registro de la programación, que

corresponde al proceso que se realiza en la localización "prensa". Esta línea de programación hará que cada vez que una pieza termine su proceso de 4 minutos con distribución exponencial en la prensa se contabilice como una pieza terminada. La programación deberá quedar como se muestra en la figura 5.19.

Figura 5.19 Uso de la instrucción ENTRIES()

Si corriéramos la simulación en este momento, podríamos ver que tanto el contador como la barra reflejan la cantidad de piezas que se encuentran en un momento determinado en el almacén definido en la simulación. Sin duda el modelo ya simula el problema que estamos ejemplificando, a pesar de que lo único que hemos hecho es agregar un par de gráficos que hagan más entendible lo que pasa.

La segunda modificación que haremos consistirá en cambiar el tiempo de simulación, de manera que su ejecución no sea muy larga. Suponga que queremos cambiar la duración del modelo a sólo 30 días. Para ello:

• Despliegue el menú **Simulation** y haga clic en el comando **Options**, como se muestra en la figura 5.20.

Figura 5.20 Acceso a las opciones de la simulación

 A continuación se abrirá el cuadro de diálogo Simulation Options (vea la figura 5.21), en donde es posible modificar varias opciones de la simulación. Por lo pronto, cambie el valor del cuadro de texto Run hours a 30 days y haga clic en OK.

Una interrogante importante para el tomador de decisiones es si las variables del modelo están en estado estable o todavía se encuentran en un estado transitorio. Como se mencionó en el capítulo anterior, si queremos evitar la variabilidad que ofrecen los resultados del estado transitorio, es necesario que nuestras soluciones se basen en las estadísticas del estado estable.

Una opción de mucha utilidad para obtener estadísticas estables, consiste en definir un tiempo transitorio o de preparación (*warmup*) dentro del modelo. Como probablemente recordará, la gráfica de estabilización que mencionamos en capítulos anteriores nos muestra que los valores de las variables de respuesta en el estado transitorio suelen describir una alta variabilidad. Para evitar que el efecto de esta variación se diluya y podamos obtener respuestas estables, es necesario contar con mayor tiempo de ejecución. Definir un periodo de *warmup* implica ejecutar el modelo durante cierto tiempo, después del cual las estadísticas regresarán a cero. Gracias a ello se eliminarán los registros correspondientes a las variables de respuesta en el estado transitorio, y se conservará únicamente

el valor final de las variables de respuesta, lo cual implica menos tiempo de simulación y, por consiguiente, menor inversión de tiempo de computadora y menor costo. Esto es muy útil en casos en los que el sistema se encuentra vacío en el arranque. Si se da un tiempo transitorio mientras el sistema se llena, ese tiempo sería el que colocaríamos de warmup. Le sugerimos colocar un tiempo de un día para comparar resultados entre los modelos con y sin tiempo transitorio. La simulación terminará cuando se cumplan 31 días: uno transitorio que no será tomado en cuenta al generar las estadísticas, y 30 que sí aportarán datos para obtener los promedios finales de las variables de respuesta.

Ahora nos falta colocar algún elemento que muestre la utilización de la prensa en todo momento. Esto nos servirá para determinar si la variable de respuesta que deseamos conocer —la utilización del equipo— se encuentra en estado estable o aún en estado transitorio. Con dicho propósito incluiremos lo que se conoce como un gráfico dinámico. Para construirlo:

- Corra la simulación y, mientras ésta se encuentra en ejecución, abra el menú Information y haga clic en el comando Dynamic Plot. Al realizar esta selección aparecerá una ventana con las diferentes estadísticas que ProModel recopila de manera automática.
- Como en este caso deseamos vincular el gráfico dinámico con una localización, haga clic en el botón Locations. Luego seleccione la localización "prensa", y determine la estadística del porcentaje de utilización (Utilization %). La gráfica resultante puede ser modificada tal como si se tratara de un gráfico de Excel.

Si desea guardar el gráfico dinámico para utilizarlo en futuras ocasiones, agréguelo a la configuración de esta manera:

 Despliegue el menú Information, abra el submenú Dynamic Plot y haga clic en el comando Configurations. En ese momento aparecerá una ventana en la que podrá asignar un nombre al gráfico que acaba de crear, y guardarlo para emplearlo en alguna oportunidad posterior (por ejemplo, nos será útil en la solución del ejemplo 5.2). La sintaxis general del gráfico dinámico es la siguiente:

DYNPLOT "nombre del gráfico dinámico"

Una vez guardado el gráfico dinámico podremos activarlo al inicio de la simulación. Para ello modificaremos lo que se conoce como *lógica inicial* del modelo:

• Abra el menú **Build** y elija el comando **General Information**. Enseguida se desplegará en su pantalla el cuadro de diálogo correspondiente (vea la figura 5.22).

Este cuadro de diálogo nos permite acceder a una opción para colocar notas que identifiquen el modelo. (Para crearlas, haga clic en el botón **Model Notes**, y para activarlas, despliegue el cuadro de diálogo **Simulation Options** [**Simulation/Options**] y marque la casilla de verificación **Display Notes**.)

El cuadro de diálogo muestra además la ruta de la biblioteca de gráficos que actualmente se está usando en el modelo, y permite definir las unidades de tiempo y distancia.

Figura 5.22 El cuadro de diálogo General Information

Finalmente, en él podemos especificar eventos o características iniciales y finales del modelo. Por ejemplo, es posible desplegar un mensaje de advertencia que anuncie el inicio o el término de la simulación. Sin embargo, por el momento sólo activaremos el gráfico dinámico al comienzo de la simulación. Siga estos pasos:

 Haga clic en el botón Initialization Logic para desplegar la ventana de programación correspondiente (vea la figura 5.23).

Esta ventana es similar a la de **Operation** (vea la figura 5.7). En ella colocaremos la instrucción **DYNPLOT** "**nombre del gráfico**". Una vez introducida la instrucción, cierre la ventana. Si ejecuta en este momento la simulación, el gráfico dinámico aparecerá desde el inicio, mostrando su periodo transitorio y permitiendo observar si la variable graficada está estable o no.

Durante la ejecución es posible que el gráfico oculte la simulación de nuestro sistema. Para evitarlo podríamos modificar el tamaño del gráfico, aunque con ello sacrificaríamos su calidad. Otra solución consiste en definir una vista donde el sistema se muestre alineado hacia el lado contrario a donde aparece el gráfico dinámico. Para lograrlo:

 Primero dimensionaremos el sistema actual. Abra el menú View y haga clic en el comando Views.

Figura 5.23 Ventana de programación para la lógica inicial del modelo

- Enseguida haga clic en la opción **Add** del cuadro de diálogo que aparece.
- Escriba un nombre específico para la vista, y haga clic en OK. Ahora el botón Set View del menú View está disponible para seleccionar la vista que acaba de definir. Haga clic en él.
- Para desplegar la vista, abra el menú View, elija el submenú Views y haga clic en el nombre de la vista que definió en el paso anterior. Otra opción es ejecutar la vista mediante el método abreviado de teclado que aparece al lado de su nombre, el cual se compone de la tecla Ctrl y un número que corresponde al número de la vista, en este caso Ctrl+1.

Dado que la vista deberá ser activada al inicio de la simulación, regrese a la ventana **Initialization Logic** y escriba, en el siguiente renglón después de la instrucción del gráfico dinámico: **VIEW "nombre de la vista"**. De esta manera la vista se activará al comienzo de la simulación, al igual que el gráfico dinámico. El resultado de estas acciones podría verse como se ilustra en la figura 5.24. La sintaxis general de la instrucción VIEW es:

VIEW "nombre de la vista"

Figura 5.24 Ejemplo 5.2 terminado

Como pudimos ver en este ejemplo, incrementar el potencial gráfico de nuestro modelo es relativamente sencillo. Pero las herramientas de ProModel no sólo están destinadas a mejorar la interpretación visual del modelo; también nos permiten integrar muchos otros elementos con propósitos distintos, por ejemplo: la tasa de descomposturas de un equipo, el tiempo que tarda en reparase, la probable generación de piezas defectuosas en el proceso, los niveles de retrabajo o de utilización de los recursos, etc. Evidentemente, entre más apegado a la realidad queramos que resulte nuestro modelo, más cantidad de ajustes tendremos que hacer; ésta es la razón por la que un buen modelo de simulación toma tiempo en ser construido. No obstante, es preciso tomar en cuenta, en todo momento, que de nada sirve un modelo gráficamente perfecto si no se tienen buenos datos estadísticos de entrada.

5.4.3 Modelado de un sistema que incluye más de un proceso

Ejemplo 5.3

A un sistema arriban 2 tipos de piezas. La primera es un engrane que llega a una estación de rectificado donde se procesa por 3±1 minutos; la distribución de probabilidad asociada a las llegadas de este engrane a la fila de la rectificadora es una distribución normal con tiempo promedio de 13 minutos y desviación estándar de 2 minutos. La segunda pieza es una placa de metal que llega a una prensa con una distribución de probabilidad exponencial con media de 12 minutos. La prensa procesa un engrane cada 3 minutos con distribución exponencial. Al terminar sus procesos iniciales, cada una de estas piezas pasa a un proceso automático de lavado que permite limpiar 2 piezas a la vez de manera independiente; este proceso, con distribución constante, tarda 10 minutos. Finalmente, las piezas son empacadas en una estación que cuenta con 2 operadores, cada uno de los cuales empaca un engrane en 5±1 minuto y una placa en 7±2 minutos. Se sabe que los tiempos de transporte entre las estaciones es de 3 minutos con distribución exponencial. No hay almacenes entre cada proceso: sólo se tiene espacio para 30 piezas antes de la prensa y 30 antes de la rectificadora. Asuma que cada día de trabajo es de 8 horas. Simule este sistema por 40 días, indicando el momento en que se inicia y se termina la simulación.

Esquematización inicial del modelo

Antes de comenzar a definir el modelo en ProModel, es conveniente analizar el problema. El primer paso consiste en esquematizar el sistema, como se muestra en la figura 5.25.

Definición de localizaciones

Recordemos que el modelado en ProModel comienza por la definición de las localizaciones físicas de nuestros procesos, en este caso:

- 1. La fila de llegada para la rectificadora, con capacidad para 30 piezas.
- 2. La fila de llegada para la prensa, con capacidad para 30 piezas.
- 3. El proceso de rectificado, con capacidad para una pieza.
- 4. El proceso de prensado, con capacidad para una pieza.
- 5. El proceso de limpieza, con capacidad para limpiar dos piezas de manera independiente.
- 6. El proceso de empaque, en el que participan dos operadores independientes.

Figura 5.25 Esquema del sistema a modelar en el ejemplo 5.3

En este modelo aparece un nuevo tipo de localización, ya que debemos definir filas de entrada. En muchos sistemas se tienen bandas o transportadores que se encargan de desplazar las piezas de un proceso a otro; en otros casos, como el de las instituciones bancarias, hay solamente una fila, donde cada cliente espera a ser atendido. ProModel permite simular estos detalles.

Por ejemplo, para definir una fila:

- Abra el menú Build y elija Locations.
- Seleccione el icono que parece una escalera horizontal (per la ventana Graphics, y haga clic en la posición de la ventana Layout donde quiere que aparezca la fila de rectificado. Si mueve el cursor del ratón al realizar este procedimiento, una flecha indicará que está definiendo la fila; colóquese en el lugar donde quiere que termine la fila y haga doble clic. Es importante mencionar que si sólo hace un clic en la posición final, seguirá construyendo la misma fila; esta característica es muy útil para definir en una sola localización bandas o transportadores que pasen por toda la planta o por varios procesos.

Podría ocurrir que al definir nuestra fila el icono apareciera como una banda de rodillos más que como una fila; sin embargo, es importante que el modelo sepa que se ha definido una fila y no una banda, pues al momento de la simulación trata cada elemento de manera diferente. Le recomendamos que consulte la ayuda de ProModel para conocer todas las características que se pueden asignar a una fila y a una banda. Por lo pronto, una buena forma de asegurarse de que la localización es una fila (queue) y no una banda (conveyor), haga doble clic en ella desde la ventana Layout; enseguida se desplegará el cuadro de diálogo Conveyor / Queue (vea la figura 5.26), en donde además, podrá controlar varias características de la localización:

Figura 5.26Definición de las características de una fila

- Asegúrese de que esté marcada la casilla de verificación de la opción **Queue**.
- Recuerde que el icono es sólo una representación visual, así que puede decidir, en la sección Style, si el icono aparecerá sólido (Solid), como banda de rodillos (Roller) o sólo como una línea (Line).
- Si desea que el icono no aparezca al momento de ejecutar la simulación, marque la casilla de verificación de la opción Invisible During Simulation.
- Además de estas características, el cuadro de diálogo permite definir otras, como el color de borde y de relleno del icono (mediante los botones Border Color y Fill Color) y su longitud (Length), en metros.
- Al terminar de definir las características de la fila de rectificado, haga clic en el botón OK.

Repita el procedimiento para determinar la localización de la prensa. (Recuerde que ambas filas tienen una capacidad de 30 piezas solamente.) Luego defina la prensa y la rectificadora de la misma manera que definimos otros procesos en los ejemplos anteriores.

A continuación definiremos la lavadora, seleccionando para ello el icono que deseemos que la represente. Para una mejor visualización, coloque 2 iconos de posicionamiento sobre el icono que representará a la lavadora (recuerde que ésta tiene capacidad de limpiar dos piezas a la vez y de manera independiente).

Por último, defina los operadores de ensamble. De acuerdo con la descripción, en el proceso participan dos operadores que realizan la misma operación, pero de manera independiente. Observe que, en el caso de la lavadora, un mismo equipo tiene capacidad para realizar 2 procesos de lavado, mientras que ahora tenemos dos operarios que realizan la misma operación de empaque.

Para definir esto en el modelo podemos proceder de dos maneras. La primera consiste en especificar a cada operador de empaque como una nueva localización; sin embargo, a

nivel de programación tendremos que determinar rutas de entrada y salida para cada uno de ellos. La segunda opción es más práctica: se trata de establecer que el proceso de ensamble tiene 2 unidades de capacidad, una por cada operador. Para lograrlo:

 Defina una operación de empaque y, al terminar, coloque un 2 en la columna Units de la ventana Locations. Después de aceptar este cambio aparecerá una segunda localización, idéntica a la que definimos originalmente.

Si desea cambiar de posición dicha localización, hágalo; esto no afectará el modelo. Es importante mencionar que si la definición del proceso implica más de un icono, es posible mover todos los iconos de esa localización a la vez si se toman de la línea punteada que aparece en su contorno.

Esta manera de definir localizaciones iguales facilita la programación y permite seguirlas tratando de manera independiente, lo cual resulta muy útil cuando queremos simular, por ejemplo, un banco con 10 cajeros que realizan las mismas operaciones.

Al terminar estas definiciones, el modelo se verá como se muestra en la figura 5.27.

Figura 5.27 Definición de localizaciones para el ejemplo 5.3

Observe que, aunque las filas aparecen como líneas en el modelo, en la ventana **Locations** siempre lucirán como bandas de rodillos.

Definición de entidades

El siguiente paso en la construcción de nuestro modelo será la definición de las entidades. Para ello es necesario desplegar la ventana apropiada mediante el comando **Entities** del menú **Build**. En este problema será necesario definir dos entidades: una que represente el engrane y otra que represente la placa.

Comenzaremos por definir el engrane seleccionando el gráfico para dicho propósito. Como se mencionó en el ejemplo 5.1, para mejorar el aspecto visual podemos agregar una segunda gráfica. Después repetimos el mismo proceso para la placa. Observe que en la parte inferior de la ventana **Graphics** aparecen unas dimensiones bajo el concepto **Conveyor Only**: estás dimensiones son las que tomaría la pieza si entrara a alguna localización definida como banda y no como fila. Uno de los problemas que podrían presentarse al momento de simular el modelo, es que estas dimensiones sean demasiado grandes, lo que ocasionaría que las piezas no pudieran ser contenidas en la banda. Al momento de definir el modelo es importante considerar que el simulador tomará en cuenta las dimensiones físicas de las piezas definidas en la opción **Conveyor Only** en caso de entrar a una banda; sin embargo, las ignorará cuando entren a una fila.

Definición de llegadas

El siguiente paso en la construcción del modelo es la definición de los arribos o llegadas de las piezas al sistema; para ello, abra el menú **Build** y haga clic en el comando **Arrivals**.

Al especificar los parámetros, recuerde que las llegadas de los engranes tienen distribución normal con media de 13 minutos y desviación estándar de 2 minutos, mientras que las de las placas tienen distribución exponencial con media de 12 minutos. Una vez definidas ambas llegadas, la ventana **Arrivals** deberá lucir como se muestra en la figura 5.28.

Figura 5.28 Definición de llegadas de las entidades (ejemplo 5.3)

Definición del proceso: uso de la opción View Text

A continuación definiremos la lógica de procesamiento de la simulación. Para ello ejecute el comando **Processing** del menú **Build**.

Para programar las operaciones y rutas de ambas entidades (engranes y placas), procederemos como se indicó en el ejemplo 5.1, pero primero es conveniente tener un esquema del proceso secuencial de cada una de ellas. Es en este tipo de situaciones donde herramientas como los diagramas de operación resultan útiles para realizar una programación más eficiente.

Recuerde que el tiempo de transporte entre procesos es de 3 minutos, con distribución exponencial. Por lo tanto, en cada ruta que implique movimiento de un proceso a

otro será necesario programar la instrucción **move for E(3)** en la columna **Move Logic** de la ventana **Routing**. La sintaxis general de esta instrucción es:

MOVE FOR <tiempo>,

donde el tiempo puede ser una constante, una distribución de probabilidad, una variable o un atributo numérico.

Para ilustrar la programación de ambas piezas en este modelo, emplearemos una opción de ProModel que permite visualizar la mayor parte de la información. Siga estos pasos:

 Abra el menú File y haga clic en el comando View Text. Enseguida se desplegará en la pantalla toda la información que hemos incluido hasta el momento en el modelo. Esto es muy útil, sobre todo en problemas en los que se requiere mucha programación. En la figura 5.29 se muestra la parte correspondiente al procesamiento que desplegará el comando View Text. Tome está información como referencia para verificar si ha programado la secuencia de los procesos y las rutas de manera adecuada.

Observe que en este ejemplo hemos utilizado el comando **GRAPHIC** #, mismo que permite cambiar la gráfica de la entidad por otra determinada al momento de definir las entidades. El símbolo # representa la posición que tiene la gráfica dentro de la lista de gráficos definidos para esta entidad. Vea también cómo se usa la instrucción **MOVE FOR** en cada caso donde se requiere un transporte de un proceso a otro. Finalmente, observe que se programaron primero las trayectorias del engrane y posteriormente las de la placa. ProModel permite definir cualquier proceso y ruta sin importar el orden cronológico. Sin embargo, con el propósito de lograr una mejor lectura de la programación, se recomienda proceder como se muestra en este ejemplo. De esta manera, si por algún motivo fuera necesario modificar la programación, será más sencillo insertar y eliminar líneas para darle un orden secuencial a la sintaxis de nuestro modelo.

******		Processing				****				
		Process			Routing					
Entity	Location	Operation	Blk	Output	Destination	Rule		Hove	Log	ie
Engrane Engrane Engrane	Fila_rectificadora Rectificadora lavadora	wait u(3,1)	1	Engrane Engrane	Rectificadora lavadora	PIRST PIRST		nove	for	E<3
Engrane	Enpaque	Graphic 2 wait u(5,1)	1	Engrane Engrane	Enpaque EXIT	PIRST	1	nove	for	EC3
placa placa placa	Fila_prensa Prensa lavadora	wait E(3)	1	placa	Prensa lavadora	PIRST		nove	for	E¢3
placa	Enpaque	Graphic 2 wait u(7,2)	1	placa	Inpaque	PIRST	1	nove	for	ECI
			1	placa	EXIT	FIRST	1			

Figura 5.29 Instrucciones de procesamiento del ejemplo 5.3

Uso de la instrucción DISPLAY

A partir de los pasos que hemos seguido hasta este momento, el modelo deberá poder ejecutarse sin problemas. Sin embargo, aún no hemos incluido el mensaje de inicio y de fin de la simulación que se nos pidió. Para hacerlo:

- Abra el menú **Build** y haga clic en el comando **General Information** para desplegar el cuadro de diálogo correspondiente (vea la figura 5.22).
- Haga clic en el botón Initilization Logic y, en la ventana que aparece, escriba la instrucción DISPLAY "Inicio de la Simulación". Esta instrucción desplegará una ventana de mensaje que detendrá la simulación hasta que hagamos clic en uno de los botones incluidos en ella: si hacemos clic en Cancel, la simulación no se ejecutará; si hacemos clic en OK la simulación comenzará.

Una vez que haya programado el mensaje de inicio, deberá hacer lo propio con el mensaje de finalización de la simulación.

- Vuelva a desplegar el cuadro de diálogo General Information, y ahora haga clic en el botón Termination Logic.
- Cuando se abra la ventana Termination Logic, coloque nuevamente el comando DISPLAY, pero esta vez con un mensaje de finalización de la simulación. (Recuerde colocar el texto entre comillas dobles.)

La instrucción **DISPLAY** es muy útil para programar mensajes de alerta dentro de la simulación, o para realizar interacción con el usuario del modelo. Sin embargo, tiene el inconveniente de que detiene la simulación, por lo que es importante utilizarla únicamente cuando el mensaje sea relevante. Por otro lado, si el programador desea colocar comentarios dentro de la programación, puede hacerlo en los espacios reservados para las notas del modelo. Además, si se considera necesario, es posible usar comentarios en la programación de las operaciones y rutas de las entidades, usando cualquiera de las siguientes opciones al comienzo del renglón:

- // texto de un solo renglón
- # texto de un solo renglón
- /* texto en varios renglones */. En este caso es necesario definir el inicio del comentario y la finalización del mismo; es por ello que se utilizan dos símbolos

La sintaxis general de la instrucción **DISPLAY** es:

DISPLAY "mensaje" {, < expresión > },

Nuestro modelo se encuentra casi terminado. Sólo nos falta incluir el tiempo que deseamos simular el sistema.

Definición del tiempo de simulación

En el planteamiento del problema se estableció que cada día tiene 8 horas hábiles de trabajo. También se estipuló que el modelo del sistema abarcaría 40 días, por lo que el

tiempo total de simulación será de 320 horas. Dé los pasos pertinentes para determinar estos parámetros como sigue:

 Abra el menú Simulation y haga clic en el comando Options. En el cuadro de diálogo que se despliega, especifique 320 Hr. en el campo Run Hours. Tenga cuidado de no determinar 40 day, porque si lo hace el modelo simulará el sistema por 40 días de 24 horas cada uno.

Estamos listos para guardar y ejecutar el modelo. Abra el menú **Simulation** y haga clic en el comando **Save & Run**. Verifique que el modelo se ejecute sin problemas.

Entidades que no pudieron entrar al sistema

Una de las problemáticas que pueden presentarse al momento de modelar un sistema, radica en que la capacidad de las localizaciones de llegada resulte insuficiente para recibir todas las piezas que llegan al sistema. Cuando esto ocurre, ProModel genera, al final de la simulación, un mensaje de advertencia como el que se ilustra en la figura 5.30 (en español, el mensaje dice: "¿Quiere ver los resultados? [NOTA: Se presentaron fallas en la llegada de entidades debido a capacidad insuficiente])."

Figura 5.30Aviso de llegadas fallidas

En este ejemplo se espera que se presente esta situación. Es posible, sin embargo, que no sea así. Todo depende de la computadora que se esté manejando, y también del número de veces que se ejecute la simulación, dado que al ejecutarse en repetidas ocasiones, los números aleatorios que se utilizan para el modelo cambian, modificando a su vez los resultados finales.

Observe que el mensaje de la figura anterior no estipula cuántas entidades no pudieron ser simuladas. Para conocer el dato preciso, consulte la información de la ficha **Failed Arrivals** en el reporte de resultados, donde se mostrará el número de piezas que no pudieron entrar al sistema.

En cualquier caso, a fin de evitar la ocurrencia de este tipo de problema se sugiere al lector que cambie la capacidad de las filas de entrada. Dicho incremento no disminuye de manera lineal el número de piezas que no pudieron ser simuladas. Incluso si se incrementa 300% la capacidad actual de las filas, el modelo seguirá presentando entidades que no pudieron ser simuladas. El analista debe evaluar si es mejor tener filas más grandes —que ocupan más espacio— o modificar algunos de los procesos, de manera que las piezas puedan fluir mejor por el sistema.

5.4.4 Inclusión de gráficos de fondo en el modelo

En algunos casos podría ser necesario modelar procesos sobre un plano real de una planta o de un área de trabajo, en especial con miras a mejorar la presentación visual de la simulación. En ProModel esto es posible por medio de un cambio del gráfico de fondo del modelo. Veamos cómo funciona esto en el ejemplo siguiente.

Ejemplo 5.4

Tomando como base el ejemplo 5.1, modifique el fondo de la simulación y agregue un código de colores a la prensa, para saber cuándo está trabajando y cuándo se encuentra ociosa. Simule este sistema por 40 días.

Para comenzar, haremos las modificaciones pertinentes en las localizaciones: agregar un código de colores a la prensa, para identificar sus periodos activos e inactivos:

- Abra el menú **Build** y haga clic en el comando **Locations**.
- Seleccionamos el icono de la prensa en la ventana Layout.
- Desmarque la casilla de verificación de la opción **New** en la ventana **Graphics**.
- Seleccione el icono del punto azul en la ventana **Graphics**, y arrástrelo hasta colocarlo a un lado de la prensa.

El icono cambiará de color automáticamente durante la simulación, indicando el estado de la prensa: será azul si está ociosa, verde cuando esté realizando alguna operación y rojo cuando no esté disponible (en este caso, cuando se presente el evento del mantenimiento preventivo).

El siguiente paso consiste en cambiar el fondo de la simulación. Podemos hacerlo de dos maneras; la primera consiste en modificar así el fondo del área de trabajo:

- Abra el menú View, elija el submenú Layout Settings, y haga clic en el comando Background Color (vea la figura 5.31).
- Seleccione el color que desee en la ventana que se despliega, y haga clic en el botón **OK**; el cambio se reflejará de inmediato en el área de trabajo.

Figura 5.31 Siga esta ruta para cambiar el color de fondo del área de trabajo de la simulación

El otro método para modificar el fondo del área de simulación nos permite, además, colocar una imagen con formato BMP, WMF, GIF o PCX. Esto facilita la importación de archivos de AutoCad, por ejemplo, permitiendo trabajar sobre el plano de una planta real. En este caso es recomendable colocar el fondo antes de comenzar a definir las localizaciones, ya que de otra manera éstas podrían quedar desfasadas de su lugar si se hiciera una modificación de tamaño al plano, exigiendo invertir más tiempo en su reubicación.

Para poder insertar el archivo gráfico como fondo:

• Abra el menú **Build**, elija el submenú **Background Graphics**, y haga clic en el comando **Behind Grid** (vea la figura 5.32).

Figura 5.32 Primer paso para la inserción de una imagen de fondo en el área de trabajo

Enseguida se desplegará en la pantalla una interfaz gráfica que nos permite insertar imágenes de fondo, o incluso diseñar nuestros propios fondos para el área de trabajo (vea la figura 5.33). Sin embargo, en este ejemplo ilustraremos sólo cómo insertar una imagen con formato BMP.

Una vez que entre al área de importación y generación de imágenes de fondo:

- Abra el menú **Edit** y elija **Import Graphic**. A continuación se desplegará un cuadro de diálogo **Open**, similar al habitual en los programas de plataforma Windows.
- Localice el archivo que le interese en la unidad y carpeta de su computadora en donde esté almacenado (en ProModel los formatos predeterminados para importación son BMP y WMF, aunque admite otros formatos). Selecciónelo y haga clic en el botón OK. El archivo gráfico se abrirá de inmediato como fondo de la simulación (las imágenes importadas generalmente aparecen en la esquina superior izquierda del área de trabajo).

En ocasiones el gráfico importado resulta muy pequeño, por lo que tendrá que agrandarlo manualmente. Para ello, selecciónelo, coloque el cursor del ratón en una de sus esquinas, haga clic y, sin soltar el botón del ratón, arrastre hasta lograr el tamaño deseado. Es importante señalar que, en el caso de los archivos BMP en particular, un incremento de tamaño implica también mayor distorsión de la imagen.

Figura 5.33 Importación de una imagen de fondo a la simulación

Una vez completada la importación podríamos ver un fondo como el que se muestra en la figura 5.34. En este caso se colocó un gráfico predeterminado de Windows como fondo del sistema.

Con esto concluimos las modificaciones visuales requeridas en el ejemplo 5.4.

5.5 Caso integrador

Se tiene una línea de empaque a la que llegan piezas cada 2 minutos con distribución exponencial. Esta línea cuenta con cinco procesos, que se describen a continuación:

- Recepción de materiales. Cuenta con un espacio ilimitado de almacenamiento. En este lugar se reciben las piezas que llegan al sistema, y luego éstas pasan a un proceso de lavado. El traslado de las piezas de una estación a otra tarda 3 minutos con distribución exponencial.
- 2. Lavado de la pieza. La lavadora tiene capacidad para limpiar 5 piezas a la vez. El tiempo de proceso de cada pieza se distribuye normalmente con media de 10 minutos y desviación estándar de 2 minutos. De aquí pasan a un proceso de pintura, antes del cual llegan a un almacén con capacidad para un máximo de 10 piezas. El tiempo de traslado entre estas estaciones es de 2 minutos con distribución exponencial.

Figura 5.34 El fondo de esta simulación utiliza un archivo gráfico en formato BMP para mejorar su presentación

- 3. **Pintura.** En el área de pintura se tiene capacidad para pintar 3 piezas a la vez. El tiempo de pintado tiene una distribución triangular de (4, 8, 10) minutos. Posteriormente las piezas pasan a un horno, el cual cuenta con un almacén que tiene capacidad para 10 piezas. El tiempo de transporte entre estos procesos está uniformemente distribuido con limite inferior de 2 minutos y superior de 5 minutos.
- 4. **Horno.** En el horno se seca la pintura. El horno sólo puede procesar una pieza a la vez. La duración del proceso es de 3 ± 1 minutos. De aquí son transportadas a dos mesas de inspección visual. No existe un almacén entre el horno y las mesas de inspección. El tiempo de transporte entre estas estaciones es de 2 ± 1 minutos.
- 5. **Inspección.** En cada mesa hay un operario que realiza la inspección de 3 elementos en cada pieza. La revisión de cada elemento tarda 2 minutos con distribución exponencial. Al finalizar este proceso, las piezas salen del sistema.

Realice lo siguiente:

- a) simule el sistema por 90 días de 24 horas cada uno;
- b) ejecute 3 réplicas de la simulación;
- c) analice el archivo de resultados del modelo;
- d) obtenga un intervalo de confianza para el número de piezas producidas;
- e) determine, en una tabla, las utilizaciones de todas las localizaciones del modelo.

Análisis del modelo

Cada una de las siguientes preguntas es independiente, y tienen como base el modelo original. Respóndalas con base en el análisis de sus resultados.

- 1. ¿Dónde se encuentra el cuello de botella de este sistema?
- 2. ¿Qué sugerencias haría para mejorar el sistema?
- 3. El hecho de que una entidad se encuentre en estado de bloqueo significa que la pieza ha terminado sus operaciones en la localización actual pero no puede avanzar a la siguiente, puesto que no hay espacio para colocarla. De acuerdo con esto, ¿considera que es grave el problema de bloqueo de las piezas? ¿En qué localizaciones? ¿Qué se puede hacer para mejorar la situación? Haga los cambios que considere necesarios al modelo, y ejecútelo nuevamente para determinar la mejora porcentual respecto del número de piezas terminadas.
- 4. Si pudiera lograr una mejoría de 10% en el tiempo de proceso de alguna de las estaciones, ¿en cuál de ellas sería y por qué?
- 5. ¿Es necesario que alguno de los almacenes sea más grande? ¿Cuál y por qué razones?
- 6. ¿Considera necesario colocar un almacén entre el horno y las mesas de inspección? ¿De qué capacidad?
- 7. Cada pieza deja una utilidad de \$5 y ninguna de las inversiones debe recuperarse en más de 3 meses. ¿Cuál sería su recomendación si se está analizando la posibilidad de comprar otro horno con la misma capacidad y que cuesta \$100,000?
- 8. ¿Cuál sería su recomendación si lo que se desea comprar es otra lavadora de la misma capacidad y con un costo de \$100 000?
- 9. ¿Valdría la pena contratar otro operario para la inspección? El costo de esta operación es de \$50 000.
- Con base en su conocimiento del sistema, haga combinaciones de los incisos anteriores y trate de obtener la mayor cantidad de piezas con el mínimo costo de inversión.

5.6 Problemas

1. A un centro de maquinado llegan tres diferentes tipos de piezas. Antes del centro existe un almacén de producto en proceso, con capacidad prácticamente infinita. El tiempo de operación y la tasa de entrada de las piezas son las siguientes:

Tipo de pieza	Tasa de entrada (piezas/h)	Tiempo de maquinado (min/pieza)
1	2	3
2	4	5
3	2	10

Simule este sistema en ProModel durante 100 horas, y determine:

- a) la utilización del centro de maquinado.
- b) número total de piezas producidas.
- c) tiempo promedio de espera de las piezas en el almacén.
- d) número promedio de piezas en el almacén.
- 2. A un operario de limpieza le entregan cada hora 60 piezas simultáneamente. El tiempo de limpieza es de 50 segundos/pieza. Simule el proceso anterior durante 500 horas para determinar:
 - a) la utilización del operario.
 - b) tiempo promedio de permanencia de las piezas en todo el proceso.
 - c) tiempo promedio de espera de las piezas antes de ser limpiadas.
- 3. Un sistema de pintura consta de dos procesos en serie: pintura y horneado. El tiempo de pintura es de 10 minutos/pieza, y el tiempo de horneado es de 6 minutos/pieza. Para el proceso hay dos pintores y un horno. La tasa de entrada es de 7 piezas/hora (pieza tipo 1) y de 3 piezas/hora (pieza tipo 2). El tiempo para moverse de un proceso a otro es de 30 segundos. Simule el sistema 5 días para determinar:
 - a) la utilización de cada operación.
 - b) tiempo promedio de permanencia de las piezas en todo el proceso.
 - c) tiempo promedio de espera de las piezas antes del pintado y antes del horneado.
- 4. A un centro de copiado llegan tres tipos de trabajos. Si un trabajo no puede ser iniciado inmediatamente, espera en una fila común hasta que esté disponible alguna de las tres copiadoras. El tiempo de copiado y la tasa de entrada de los trabajos son como sigue:

Tipo de trabajo	Tasa de entrada (trabajos/h)	Tiempo de copiado (min/trabajo)
1	4	12
2	8	15
3	16	1

Después del proceso de copiado los trabajos son inspeccionados por un empleado en un tiempo de 3, 6, 10 minutos para los trabajos 1, 2 y 3, respectivamente. Simule el sistema en ProModel durante 50 horas, y determine:

- a) la utilización del empleado y de las copiadoras en la situación propuesta.
- b) número de empleados y copiadoras mínimos necesarios para asegurar el flujo constante de los trabajos.

5. Cierto tipo de pieza entra a una línea de producción; el proveedor entrega las piezas en grupos de 5 cada 10 minutos. La línea consta de 5 operaciones, con una máquina dedicada a cada operación. Los tiempos de proceso son:

Operación	1	2	3	4	5
Tiempo (min/pza)	2	1	0.5	0.25	0.125

El tiempo para moverse entre estaciones es de 0.0625 minutos. La animación debe incluir un contador de las piezas producidas. Simule en ProModel el proceso de 1 000 piezas para determinar:

- a) tiempo total de simulación.
- b) utilización de cada operación.
- c) tiempo de espera antes de la primera operación.
- d) % del tiempo que la pieza está bloqueada.
- 6. A un cajero automático llegan clientes cada 10 minutos con distribución exponencial. El tiempo que tarda cada cliente en hacer sus movimientos bancarios se distribuye exponencialmente con media de 4 minutos. Lleve a cabo lo que se indica a continuación:
 - a) Si se desea que el cajero no tenga más de 5 clientes haciendo fila en un momento determinado, ¿qué recomendación haría al banco, basándose en una simulación de una semana de 40 horas de trabajo?
 - b) Realice un análisis de sensibilidad variando el tiempo promedio de servicio del cajero, y determine cuál es el tiempo máximo que un cliente debe tardar para que la fila de espera no exceda 5 clientes en ningún momento.
 - c) Programe un gráfico dinámico que muestre la utilización del cajero automático durante la simulación. ¿Qué observaciones puede hacer respecto de la gráfica de estabilización generada?
- 7. A un centro de copiado llegan clientes cada 5 minutos, con distribución exponencial. Ahí son atendidos por un operario con un promedio de servicio de 6 minutos con distribución exponencial. Sólo hay espacio para tres personas en la fila; si llega alguien más, se le envía a otro centro de copiado. Simule el sistema a partir de esta información y determine:
 - a) ¿Cuál es el número promedio de clientes que esperan en la fila?
 - b) ¿Cuál es la utilización del centro de copiado?
 - c) Si cada cliente que se va le cuesta \$5 al centro de copiado, ¿a cuánto asciende la perdida esperada?
- 8. Un centro de servicio cuenta con 3 cajeros. Los clientes llegan en promedio a razón de 60 por hora con distribución de Poisson. El tiempo promedio que se requiere para atender a un cliente es de 2 minutos con distribución exponencial. Los clientes hacen una sola fila y no hay límite para su longitud. Haga lo siguiente:
 - a) simule el sistema por 40 horas.
 - b) determine la utilización de los cajeros.

- c) si el costo de tener a un cliente haciendo fila es de \$5/cliente promedio-hora, determine el costo de operación de este sistema.
- 9. Un banco está diseñando su área de cajas, y desea determinar cuántas ventanillas debe colocar. Después de hacer un análisis estadístico, la empresa sabe que sus clientes llegan con un tiempo medio de 3 minutos con distribución exponencial; asimismo, se sabe —a partir de información de otras sucursales del mismo banco— que cada cajera tarda un tiempo promedio de 8 minutos con distribución exponencial en atender a un cliente. La empresa planea utilizar una sola fila donde se ubicarían todos los clientes, para después pasar a la primera caja desocupada.

Si el costo de tener un cajero es de \$15 por hora, y además se sabe que por política de la empresa el costo de que un cliente esté esperando a ser atendido es de \$8/cliente-hora, determine:

- a) el número óptimo de cajeros de acuerdo con el costo. Tomando en cuenta este número de cajeros, determine también la probabilidad de que el sistema esté vacío, la utilización de los cajeros, el tiempo promedio en el sistema, el tiempo promedio en la fila y el número promedio de clientes en el sistema.
- realice este mismo análisis considerando que cada caja tiene su propia fila y que las llegadas se distribuyen proporcionalmente al número de cajas; es decir, las llegadas a cada fila son iguales al número total de llegadas, dividido entre el número de cajas.
- c) ¿Cuál de los dos modelos sería mejor y a qué atribuye este resultado?
- d) ¿Cuál sería el costo de utilizar el modelo original de una sola fila y evitar, al mismo tiempo, que 70% de los clientes hagan fila?
- 10. A un sistema llegan piezas de acuerdo con una distribución uniforme de entre 4 y 10 minutos. Las piezas son colocadas en un almacén con capacidad infinita, donde esperan a ser inspeccionadas por un operario. El tiempo de inspección tiene una distribución exponencial con media de 5 minutos. Después de la inspección las piezas pasan a la fila de empaque, con capacidad para 5 piezas. El proceso de empaque está a cargo de un operario que tarda 8 minutos con distribución exponencial en empacar cada pieza. Posteriormente las piezas salen del sistema.
 - a) Simule el sistema por 40 horas.
 - b) Identifique dónde se encuentra el cuello de botella.
 - c) Genere vistas para cada uno de los procesos por separado.
 - d) Incrementar el espacio en el almacén cuesta \$5/semana; aumentar 10% la velocidad de empaque cuesta \$15/semana; el costo de incluir otro operario para que se reduzca el tiempo de empaque a 5 minutos con distribución exponencial, es de \$20/semana. Cada unidad producida deja una utilidad de \$0.40. Con base en esta información, determine qué mejoras podrían hacerse al sistema para incrementar su utilidad semanal.
- 11. A un torno llegan barras cada 3 minutos con distribución exponencial. Ahí se procesan de acuerdo con una distribución normal con media de 5 minutos y desviación estándar de 1 minuto. Posteriormente pasan a un proceso de inspección. La capaci-

dad del almacén previo al torno es de 10 piezas. Por otro lado, a una fresadora llegan placas cada 5 ± 1 minutos. El tiempo de proceso de las placas en la fresadora se distribuye triangularmente (2,4,7). Después, las placas pasan a inspección. La capacidad del inventario antes de la fresadora es de 10 piezas. En el proceso de inspección se cuenta con espacio disponible para almacenar 15 piezas, mientras que el tiempo de inspección es de 4 ± 2 minutos para las barras y de 6 ± 1 para las placas. Tras la inspección, las piezas salen del sistema. Considere un tiempo de transporte entre estaciones de 2 minutos, con distribución constante.

- a) Simule el sistema por 40 horas para determinar la capacidad mínima de cada inventario, de manera que todas las piezas que lleguen al sistema se procesen y no exista bloqueo por falta de capacidad.
- b) ¿Cuál es la diferencia en el número de piezas producidas entre el modelo original y el modelo mejorado?
- c) Coloque mensajes de inicio y fin de la simulación.
- d) Cambie las gráficas de ambas piezas después de ser procesadas.
- 12. A una línea de emergencias médicas llegan llamadas normalmente distribuidas con un tiempo medio entre llamadas de 6 minutos, y desviación estándar de 1.5 minutos. El tiempo de atención de cada llamada es de 10 minutos con distribución exponencial. Se desea determinar el número de líneas necesarias para que por lo menos 80% de los clientes no tenga que esperar a ser atendido. Simule el sistema por 7 días de 24 horas cada uno para responder las siguientes preguntas.
 - a) ¿Cuántas líneas telefónicas se necesitan para cumplir con la meta?
 - b) Si el costo de cada línea es de \$150/semana, ¿cuál es el costo de operación por semana?
 - c) ¿Cuál es el costo de incrementar el porcentaje de clientes atendidos sin espera a 90%?
 - d) ¿Cuál sería el número de llamadas en espera que se tendría en el caso a)? ¿Cuál sería en el caso c)?
 - e) Si el costo de cada cliente en línea de espera es de \$40/cliente, ¿qué opción sería mejor, a) o c)?
- 13. A una empresa llegan piezas con media de 8 minutos y distribución exponencial. Las piezas entran a un almacén con capacidad para 50 unidades, donde esperan a ser procesadas en un torno. Ahí son torneados por 3 minutos con distribución exponencial. El tiempo de transportación del almacén al torno tiene una distribución normal con media de 4 minutos y desviación estándar de 1 minuto. Posteriormente, las piezas son transportadas a una estación de inspección donde se encuentran 2 operarios, cada uno trabajando de manera independiente. La inspección tarda 6 ± 2 minutos por pieza. El tiempo de transporte entre el torno y los operarios es de 4 ± 1 minutos.
 - a) Simule el sistema por 30 días de 8 horas de trabajo cada uno.
 - b) Incluya un contador y una gráfica de barra para las piezas en el almacén.
 - c) Incluya un indicador de actividad para el torno.
 - d) Realice 3 réplicas y obtenga un intervalo de confianza para el número de piezas que salieron del sistema.

CAPÍTULO 6

INSTRUCCIONES DE PROMODEL

- **6.1** Uso de la biblioteca de probabilidades
- **6.2** Recursos
- **6.3** Paros en los equipos
- **6.4** Reglas de ruteo
- **6.5** Ensambles, acumulación y agrupamiento de piezas
- **6.6** Transporte entre estaciones
- **6.7** Caso integrador
- **6.8** Problemas

6.1 Uso de la biblioteca de probabilidades

La biblioteca de distribuciones de probabilidad de ProModel permite simular la variabilidad de los procesos. En la tabla 6.1 se listan las distribuciones de probabilidad incluidas en ProModel y la forma de programar cada una de ellas.

Tabla 6.1 Funciones de probabilidad disponibles en ProModel

Distribución de probabilidad	Codificación en ProModel	Parámetros
Beta	B (1, α_1 , α_2 , a, b)	α_1 : forma α_2 : forma a: mínimo b: máximo
Binomial	BI (N, p)	N: intentos p: probabilidad
k-Erlang	ER (μ, k)	k: forma μ : media
Exponencial	Ε (μ)	μ: media
Gamma	$G(\alpha,\beta)$	α : forma β : escala
Geométrica	GEO (p)	p: probabilidad
Lognormal	L (1, μ , σ^2)	μ : media σ^2 : varianza
Normal	Ν (μ, σ)	μ : media σ : desviación
De Poisson	Ρ (μ)	μ: media
De Pearson V	Ρ5 (1, α, β)	α : forma β : escala
De Pearson VI	P6 (1, α_1 , α_2 , β)	α_1 : forma α_2 : forma β : escala
Triangular	T (a, b, c)	a: mínimo c: moda b: máximo
Unifome	U (μ, hr)	μ: media hr: medio rango
Uniforme discreta	-	a: mínimo b: máximo
De Weibull	W (α, β)	α : forma β : escala

Ejemplo 6.1

A un proceso llegan tres diferentes tipos de pieza. El proceso consta de dos operaciones en serie: lavado e inspección. Antes de cada operación existen almacenes de producto en proceso, con capacidad prácticamente infinita. Se dispone de una lavadora y de dos inspectores en paralelo. Los datos de tiempo entre llegadas y tiempos de proceso para cada tipo de pieza son los siguientes:

	Tiempo entre llegadas	•	e proceso pieza)
Pieza	(min/pieza)	Lavado	Inspección
Α	Exponencial(6)	Uniforme (3 \pm 2)	Normal (8, 2)
В	Exponencial(9)	3-Erlang (4)	Triangular (3, 5, 7)
С	Exponencial(8)	De Weibull (0, 2, 3)	De Weibull (9, 1, 4)

Para empezar, definiremos las 4 localizaciones, como se muestra en la figura 6.1 (recuerde que esto se hace mediante el comando **Build / Locations**).

Figura 6.1 Diseño del ejemplo 6.1

Ahora determinaremos las entidades correspondientes a los tres tipos de piezas (**Build / Entities**), y el tiempo exponencial entre llegadas, utilizando para ello la columna **Frequency** de la ventana **Arrivals** (**Build / Arrivals**), como se muestra en la figura 6.2.

	Intity	Location	Qty Tach	First Time	Doguerense	the Theorem
	Piese_A	Almesen_1	1	0	INF.	E161:
Plana C Almanan 1 1 0 DEF Billi	lines.)	Almeren_1	I.	2	DIF	#191
and the second s	Fiers_C	Almaden_1	1	0	DIF	1111

Figura 6.2 Programación de la distribución de probabilidad del tiempo entre llegadas

Enseguida programaremos las tres diferentes rutas y cada uno de los tiempos de proceso, utilizando la columna **Operation** de la ventana **Processing** (**Build / Processing**). La figura 6.3 muestra parte del proceso y la forma de programar las distribuciones de probabilidad.

Figura 6.3 Programación de las funciones de probabilidad del tiempo de proceso

En caso de que no recuerde la forma de programar alguna de las funciones, haga clic en el botón **Operation** de la ventana **Processing** para hacer uso del constructor de lógica, que permite acceder a la ventana de diálogo **Logic Builder** con sólo hacer clic en el icono del martillo. Luego haga clic en la opción **Distribution Functions** de la sección **Logic Elements** para desplegar las diferentes funciones de probabilidad (vea la figura 6.4).

Figura 6.4 Uso del constructor de lógica para programar funciones de probabilidad

Para consultar el texto completo del programa que hemos creado en ProModel para el ejemplo 6.1, abra el menú **File** y elija **View Text**. El resultado deberá ser similar al que se ilustra en la figura 6.5.

6.2 Recursos

Los recursos son mecanismos que requieren las entidades para completar una operación, y se caracterizan principalmente por tener una disponibilidad limitada. En ProModel encontramos dos tipos de recursos:

Recursos estáticos. Son aquellos sin una ruta de movimiento y que, por lo tanto, permanecen inmóviles. Se utilizan principalmente para modelar recursos necesarios para llevar a cabo una tarea dentro de una localización (por ejemplo, el operador de una máquina). También pueden emplearse en más de una localización, o bien para mover entidades de una localización a otra, siempre y cuando la ausencia de movimiento no sea un factor relevante en el modelo.

**********	****	*****	****	******	****	• • • • • • • •	******	*****	*****	***	*****	***
•			For	rmatted	List	ing of M	lodel:					
O TO COMMON TO STATE OF THE PARTY OF THE PAR						Hode 1\Mc				base		
		*****	*****	• • • • • • • • • • • • • • • • • • • •	****	******	*****	*****	*****	***	•••••	***
Time Units:					Mim	utes						
Distance Un					Feet							
						Commission						
										444		444
					Locat							
	****	*****	****	*****			*****	*****	*****	***	*****	***
Name	Cap	Unite	State		Pule		Coa	t				
Almacen_1	INF	1		Series								
Lavadora	1	1	Time	Series	Older	st, ,						
Almacen 2			Time	Series	Older	st, ,						
Inspector	1	2	Time	Series	Olde:	st Fi	Je 1					
Inspector.1		1		Series								
Inspector.2		1		Series								
												4 = 4
					Enti			TO THE PARTY OF TH				
******	****	****		*****		******	*****	****	*****	***	****	***
Name	Speed	(fpm)	St	ate	Co	at.						
Pieza A	150	74 35 TA	776	me Seri		1100-140	11-11-0					
	150			me Seri								
Pieza C	150		Tita	me Seri								
The state of the state of				CHICAGO IN						***		***
	1	Silve		•••••	Proce	ssing	a salahan		10000			
	1	*****		•••••	Proce	ssing	*****		10000			
	****	Proc			Proce	ssing	Routi	ng	*****	***	*****	***
Entity Loc	ation	*****	ess ratio	 	Proce	ssing	Routi		*****	***		***
Entity Loc	ation	Proc	ess ratio	 	Proce	Output	Routi	ng nation	*****		*****	***
Entity Loc	ation	Proc	cess ratio	n	Proces	Output Pieza 2	Routi Desti	ng nation	Pule	1	*****	***
Entity Loc	stion	Proc	cess ratio	n	Plk	Output Pleza A	Routi Desti	ng nation lora en_2	Pule FIRST FIRST	1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Lav Pieza A Alm	ation	Proc	ration	n	Proces	Output Pleza A	Desti Lavad Almac	ng nation ora en_2 eter	Pule FIRST FIRST	1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Alm Pieza A Ins	stion scen_ score	Proc	ration	n	Proces	Output Pieza A Pieza A Pieza A	Routi Desti Lavad Almac Inspe	ng nation lora en_2 etor	Pule FIRST FIRST FIRST	1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Lav Pieza A Inc Pieza A Inc Pieza B Alm	stion scen_ score pecto scen_	Process Open	cess cation	, 2)	Plk	Output Pieza A Pieza A Pieza A	Routi Desti Lavad Almac Linspe	ng nation lora lora lora lora lora lora	Pule FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Ins Pieza A Ins Pieza A Ins Pieza B Alm Pieza B Lav	ation acen_ acen_ pecto acen_ acen_	Process Open	cess cation	, 2)	Blk 1 1 1 1 1 1	Output Pieza A Pieza A Pieza A Pieza D Pieza D	Pouti Desti Lavad Almac EXIT Lavad Almac	ng nation ora en_2 etor	Pule FIRST FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1	*****	***
Entity Loc Dieza A Alm Pieza A Lav Pieza A Ins Pieza B Alm Pieza B Lav Pieza B Alm	ation acen_ acen_ pecto acen_ acen_ acen_	Proc Oper 1 WAII 2 WAII 1 WAII	TU(3,	n ,2) ,2)	Plk	Output Pleza A Pleza A Pleza A Pleza B Pleza B Pleza B	Routi Desti Lavad Almac Inspe EXIT Lavad Almac Inspe	ng nation ora en_2 etor ora en_2 etor	Pule FIRST FIRST FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Lav Pieza A Ins Pieza B Alm Pieza B Alm Pieza B Alm Pieza B Alm	stion scen score pecto acen scen scen scen	Proc Oper WAII WAII WAII	TU(3,	n ,2) ,2)	Plk	Output Pieza A Pieza A Pieza A Pieza A Pieza B Pieza B Pieza B	Routi Desti Lavad Almac Inspe EXIT Lavad Almac Thepe EXIT	ng nation lora lora lora lora lora lora ctor	Pule FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Ins Pieza B Alm Pieza B Lav Pieza B Ins Pieza B Ins Pieza B Ins Pieza B Ins	ation acen acen pecto acen acen acen pecto acen	Proc Oper WAII WAII WAII WAII	TU(3,	,2) ,2) ,2) ,5,7)	Proces	Output Pieza A Pieza A Pieza A Pieza B Pieza B Pieza B Pieza B Pieza B	Routi Desti Lavad Almac Inspe EXII Lavad Almac Tinspe EXII Lavad Lavad Lavad	ng nation lora en_2 etor lora en_2 ctor	Pule FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Ins Pieza B Alm Pieza B Ins Pieza B Ins Pieza B Ins Pieza B Ins Pieza C Ins Pieza C Ins	ation adors acen pecto acen pecto acen pecto acen pecto acen	Proc Open 1 WAII 2 WAII 1 WAII 2 WAII 1 WAII	TU(3,	,2) ,2) ,2) ,5,7)	Plk	Output Pieza A Pieza A Pieza A Pieza B Pieza E Pieza E Pieza E Pieza C Pieza C	Routi Desti Lavad Almac Inspe EXIT Lavad Almac Inspe EXIT Lavad Almac Almac	ng nation ora en_2 etor ora en_2 etor	Pule FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Ins Pieza A Ins Pieza B Alm Pieza B Alm Pieza B Ins Pieza C Alm Pieza C Iau Pieza C Alm	ation acen acen pecto acen acen acen acen acen acen acen	Process Open	T U (3,	, 2) , 2) , 3) , 5, 7)	Proces	Output Pieza A Pieza A Pieza A Pieza B Pieza B Pieza B Pieza B Pieza C Pieza C Pieza C	Desti	ng nation ora en_2 etor ora en_2 etor	Pule FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Ins Pieza A Ins Pieza B Alm Pieza B Alm Pieza B Ins Pieza C Alm Pieza C Iau Pieza C Alm	ation acen acen pecto acen acen acen acen acen acen acen	Proc Open 1 WAII 2 WAII 1 WAII 2 WAII 1 WAII	T U (3,	, 2) , 2) , 3) , 5, 7)	Plk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Pieza A Pieza A Pieza A Pieza B Pieza E Pieza E Pieza E Pieza C Pieza C	Desti	ng nation ora en_2 etor ora en_2 etor	Pule FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	***
Entity Loc Pieza A Alm Pieza A Lav Pieza A Ins Pieza B Alm Pieza B Alm Pieza B Alm Pieza B Alm Pieza B Ins Pieza C Alm Pieza C Ins Pieza C Ins	acen acen acen acen acen acen acen acen	Proc Oper WAII WAII WAII WAII WAII WAII	T 10 (2)	,2) ,2) (1,8) ,5,7) ,3) (1,4)	Proce	Output Pleza A Pleza A Pleza A Pleza B Pleza B Pleza B Pleza G Pleza C Pleza C Pleza C	Routi Desti Lavad Almac Inspe EXIT Lavad Almac Inspe EXIT Lavad Inspe EXIT	ng nation iora en_2 etor iora en_2 etor etor etor etor etor	Pule FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hove L	oqi
Entity Loc Piera A Alm Piera A Ins Piera B Alm Piera B Ins Piera B Alm Piera B Ins Piera C Alm Piera C Ins Piera C Ins	ation acen acen pecto acen acen acen acen acen acen acen	Process Open	T U (3, T ER (* T T ER (, 2) , 2) , 5, 7) , 3) (1, 4)	Blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Pleza A Pleza A Pleza B Pleza B Pleza B Pleza B Pleza C Pleza C Pleza C	Pouri Desti Lavad Almac Inspe EXIT Lavad Almac Inspe EXIT Lavad Almac Inspe EXIT	ng nation ora en_2 ector ora en_2 ector	Pule FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Move L	ogi
Entity Loc Piera A Alm Piera A Ins Piera B Alm Piera B Ins Piera B Alm Piera B Ins Piera C Alm Piera C Ins Piera C Ins	ation acen acen pecto acen acen acen acen acen acen acen	Process Open	T U (3, T ER (* T T ER (, 2) , 2) , 5, 7) , 3) (1, 4)	Blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Pleza A Pleza A Pleza B Pleza B Pleza B Pleza B Pleza C Pleza C Pleza C	Pouri Desti Lavad Almac Inspe EXIT Lavad Almac Inspe EXIT Lavad Almac Inspe EXIT	ng nation ora en_2 ector ora en_2 ector	Pule FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Move L	ogi
Entity Loc Piera A Alm Piera A Ins Piera B Alm Piera B Ins Piera B Alm Piera B Ins Piera C Alm Piera C Ins Piera C Ins	ation acen_ acen_ pecto acen_ acen_ acen_ acen_ acen_ acen_ acen_ acen_	Process Open	T U (3,	,2) ,2) ,3) ,5,7) ,3) (1,4)	Blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Pleza A Pleza A Pleza A Pleza B Pleza E Pleza C Pleza C Pleza C Pleza C	Routi Desti Lavad Almac Inspe EXII Lavad Almac Inspe EXII Lavad Inspe EXII Lavad Inspe EXII Lavad Inspe EXII Lavad Inspe	ng nation lora lora lora lora lora lora lora lora	Rule FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hove L	ogi
Entity Loc Pieza A Alm Pieza A Lav Pieza A The Pieza B Alm Pieza B Alm Pieza B Alm Pieza B Alm Pieza C Alm Pieza C Iav Pieza C Ins Pieza C Ins	action acen acen acen acen acen acen acen ace	Process Open	T U (3,	,2) ,2) ,3) ,5,7) ,3) (1,4)	Blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Pleza A Pleza A Pleza A Pleza B Pleza B Pleza B Pleza C Plez	Routi Desti Lavad Almac Inspe EXIT Lavad Almac Inspe EXIT Lavad Inspe EXIT	ng nation iora en_2 etor iora en_2 etor iora en_2 etor retor	Rule FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hove L	ogi
Entity Loc Pieza A Alm Pieza A Lav Pieza A Ins Pieza B Alm Pieza B Ins Pieza B Ins Pieza C Ins	ation acen acen acen acen acen acen acen ace	Process of the proces	T U (3,	,2) ,2) ,5,7) ,3) (1,4)	Blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Pieza A Pieza A Pieza A Pieza B Pieza B Pieza B Pieza C	Routi Desti Lavad Almac Inspe EXIT Lavad Almac Thape EXIT Lavad Fixed Fi	ng nation lora lora lora lora lora lora lora lora	Rule FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hove L	ogi
Entity Loc Pieza A Alm Pieza A Lav Pieza A The Pieza B Alm Pieza B Alm Pieza B Alm Pieza B Alm Pieza C Alm Pieza C Iav Pieza C Ins Pieza C Ins	ation acen_ acen_ acen_ acen_ acen_ acen_ acen_ acen_ pecto	Process Open	T U (3,	,2) ,2) ,3) ,5,7) ,3) (1,4)	Blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Output Pleza A Pleza A Pleza A Pleza B Pleza B Pleza B Pleza C Plez	Routi Desti Lavad Almac Inspe EXIT Lavad Almac Thape EXIT Lavad Fixed Fi	ng nation iora en_2 etor iora en_2 etor iora en_2 etor retor	Rule FIRST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hove L	ogi

Figura 6.5 Sintaxis del programa para el ejemplo 6.1

Recursos dinámicos. Son aquellos que se mueven a través de una red de rutas (**Path Networks**). Estos recursos permiten transportar entidades entre localizaciones, para modelar, por ejemplo, un montacargas que mueve contenedores de una máquina a un almacén, o un operario que tiene que operar dos o más máquinas; en estos casos, el tiempo de traslado entre las máquinas impacta los resultados del modelo.

Las instrucciones más comunes relacionadas con el uso de un recurso son GET, FREE, USE y MOVE WITH. Analicemos a continuación dos de las más utilizadas.

Instrucción GET

La sintaxis general de esta instrucción es:

GET {<Cantidad>} <recurso> {,<prioridad 1> {,<prioridad 2>}} {AND o OR {Cantidad} <recurso> {,<prioridad 1> {,<prioridad2>}}}

La instrucción **GET** captura un recurso o combinación de recursos, de acuerdo con cierta prioridad especificada. Si ya se tiene un recurso capturado previamente, la entidad tratará de capturar un recurso adicional.

Eiemplos:

GET Herramenta1 GET 1 Operario, 2, 25 GET Grua1, 20 AND (Grua2,10 OR Polipasto,20,70) GET 2 Cajas, AND (Pegamento OR Cinta)

Instrucción FREE

La sintaxis general es:

FREE <{cantidad} recurso 1>,...

FREE libera recursos previamente capturados con las instrucciones GET o JOINTLY GET.

Ejemplos:

FREE pallet FREE Juan, Paco, Luisa FREE 4 Tornillos, 3 Tuercas FREE all

Ejemplo 6.2

Considere el sistema de manufactura que se ilustra en la figura 6.6, el cual consta de dos procesos en serie: torneado y fresado de barras en las máquinas llamadas Lathe y Mill, respectivamente. El tiempo de torneado es de 3 minutos/pieza, y el de fresado es de 2.7 minutos/pieza. Para operar ambas máquinas se ha contratado a un solo operario llamado Machinist. Las barras esperan antes de cada proceso en almacenes denominados Pallet1 y Pallet2. La tasa de entrada es de 10 piezas/hora. Simule el sistema por 24 horas para determinar la utilización del equipo y del personal.

Figura 6.6 Layout del sistema de manufactura (ejemplo 6.2)

Iniciaremos la construcción del modelo definiendo los siguientes elementos:

 En la ventana Locations (Build / Locations) active la ventana de edición que se ilustra en la figura 6.7, y defina las localizaciones Lathe, Mill, Pallet1 y Pallet2.

Figura 6.7 Definición de las localizaciones y su capacidad

En la ventana Entities (Build / Entities) defina la entidad Barra (vea la figura 6.8).

Figura 6.8 Ventana de edición para la definición de la entidad Barra

En la ventana Arrivals (Build / Arrivals) especifique un número infinito de ocurrencias para la entidad Barra, con un tiempo entre llegadas de 6 minutos al Pallet1 (vea la figura 6.9). (Al definir un número de ocurrencias infinito, es necesario que el modelo de simulación se detenga mediante la determinación de un tiempo de corrida.)

Entity	Location	Qty each	First Time	Occurrences	Frequency
Barra	Palleti	1	0	INF	6

Figura 6.9 Modelado de las llegadas de material

• En la ventana **Resources** (**Build / Resources**) defina el recurso **Machinist** y la cantidad del recurso que se tiene (vea la figura 6.10).

Figura 6.10 Ventana de edición para la definición de recursos

 En la ventana Processing (Build / Processing), cree la ruta de producción de las barras a través del torno y la fresadora, incluyendo en dichas localizaciones la captura del recurso con la instrucción GET Machinist, y su liberación con la instrucción FREE Machinist después del tiempo de proceso. La figura 6.11 muestra una parte de la programación de la ruta.

Figura 6.11 Ruta de producción de las barras

Por último, abra el menú Simulation y haga clic en el comando Options para desplegar el cuadro de diálogo que se muestra en la figura 6.12. En el cuadro de texto de este cuadro establezca la longitud de la corrida de simulación en 24 horas.

Figura 6.12 Definición de la duración de la corrida de simulación

Para consultar el resultado de los pasos anteriores, abra el menú **File** y haga clic en el comando **View Text**. En la figura 6.13 hemos resaltado, mediante un círculo, el uso de las instrucciones GET y FREE.

*					Locati	ons				
	****		пиппи						*******	
Name	Сар	Units	Stat	5	Rules		Cost			
									-	
Lathe	1	1			oldest					
M111	1	1	Time	Series	Oldest					
Pallet1	inf	1			Oldest					
Pallet2	inf	1	Time	Series	oldest	1 1				
**********	****			*****	*****	*****			*******	********
					Entit	ies				
	****		****	******	*****	***	*****	*****	******	
Name	Sper	d (fo	n) 5	tats	******	****				
Name	Spee	ed (fp	n) S	tats	Cos	****		*****		
Name Barra	Spee 150	d (fp		tats	Cos	****				
		d (fp			Cos	****				
		ed (fp			Cos	t			******	
		d (fp			Cos	t			******	********
		d (fp	÷	ime Ser	Cos ies Resour	t			*******	********
8arra **********************************	150		T	ime Ser	ies Resour	t Ces			*******	********
8arra **********************************	150	ed (fpr	T	ime Ser	Cos ies Resour	t Ces		Motio	*******	cost

Figura 6.13 La programación completa de la simulación (*continúa*)

Figura 6.13 La programación completa de la simulación (continuación)

Ejecute el modelo. Observe que no se presenta ningún tipo de movimiento del recurso, ya que no se trata de un recurso dinámico. Esto se debe a que, al definir el recurso *Machinist*, el parámetro de la columna **Specs** de la ventana **Resources** se conservó como **No Network** (vea la figura 6.10). Más adelante emplearemos recursos en combinación con Path Networks para permitir la visualización de recursos en movimiento.

Finalmente, revise el reporte de resultados de la simulación. Para ello:

Abra el **Output** y haga clic en el comando **View Statistics**. La ventana que se desplegará será similar a la que se muestra en la figura 6.14. Como puede observar, el recurso ha sido utilizado un total de 95% del tiempo, 50% del cual corresponde al torno y 45% a la fresadora.

General:	Locations	Local	tion States Mu	N Location	States Single/Tank	Resources	Resource States	Node Entres	Falled Arrivals	Entity Activity 4 4
					Leca	dione for se	owne			
Name	Sche Time		Capacit	Total Entries	Avg Time Per Entry (MIN)	Contents	Maximum Content	Curre Conte		2 Utilization
Lafve Må Palert Paler2	10		1.00 1.00 999999 999999	241.00 240.00 241.00 240.00	2.99 2.70 0.00 0.00	0.50 0.45 0.00 0.00	1.0 1.0	0 0	00 00 00	\$0.00 45.00 0.00
III Report	and the same									
Seresi I	Locations	Loca	non States Mu	N Location	States Single/Tank	Resources	Resource States	Node Entres	Faled Amrats	Entity Activity a a
					Reso	urces for re	curso			
Name	Units		eduled e (MIN)	Number Time Use			me Itavel To Av	rg Time Travel Perk (MI		ked in Travel Valication
Machinel	1.00		1440.00	461.0	00 2	84	8.00		00	0.00 95.00

Figura 6.14 Reporte de resultados del uso de localizaciones y recursos

6.3 Paros en los equipos

Un paro provoca que un recurso o localización quede inhabilitada para operar, o fuera de servicio. Desde el punto de vista de la simulación, un paro puede representar fallas, descansos, mantenimientos preventivos (en cuyo caso se necesitarán uno o más recursos), interrupciones programadas o cambios de turno.

Una localización puede quedar fuera de servicio en función del tiempo de simulación (Clock), por tiempo de uso (Usage), por número de entidades procesadas (Entity) o por un cambio en el tipo de entidad a procesar (Setup). Los paros se procesan de manera independiente, por lo que diferentes paros pueden ocurrir simultáneamente en una misma localización (excepto aquellos que se deban a cambios de tipo de entidad).

Por su parte, un recurso puede quedar fuera de servicio solamente en función del tiempo de simulación (Clock) o por tiempo de uso (Usage).

Otro método para definir paros por descansos o turnos consiste en utilizar el editor de turnos (Shift Editor). Este procedimiento tiene la ventaja de permitir paros en todo un grupo de localizaciones.

Para definir un paro en una localización o en un recurso:

Abra el menú Build y haga clic en el comando Locations (o Resources, según el caso) para desplegar la ventana de edición que se muestra en la figura 6.15 (por supuesto, si está definiendo un paro en un recurso, la ventana mostrará el nombre Resources en la barra de título).

Icon	Name	Cap.	Units	DTs	
	Lathe	4	4	None	Clock
4	Mill	1	1	None	Entry Usage
\$	Pallet1	inf	1	None	Setup
4	Pallet2	inf	1	Mone	Called

Figura 6.15 Programación de diferentes tipos de paro en las localizaciones

Haga clic en el botón leyenda DTs y elija, en el menú contextual que aparece, el tipo de paro que desea programar. Enseguida se abrirá una ventana de edición similar a la que se ilustra en la figura 6.16.

Las ventanas de edición de paros contienen un conjunto de columnas donde podemos especificar los valores de los siguientes parámetros:

Frequency. Representa el tiempo que transcurre entre paros consecutivos. **First time.** Representa la hora en que ocurre el primer paro; si se deja en blanco, el parámetro tomará el valor asignado en el campo **Frequency**.

Clock down	times for Lathe				[1] . [I	×
Frequency	First Time	Priority	Scheduled	Logic	Disable	
600	20	55	No	wait 25	No	1

Figura 6.16 Determinación de parámetros de un paro en una localización

Priority. Representa la prioridad relativa que tendrá el paro. De manera predeterminada, la prioridad es 99. Si los paros ocurren hasta que la entidad que está en posesión de la localización sale de ella, el rango de prioridades es de 0 a 99. Si un paro ocurre mientras la localización está ocupada, interrumpiendo el proceso de la entidad, el rango de prioridades es de 100 a 999.

Scheduled. Permite indicar si los paros son programados o no. Los paros programados se deducen del tiempo total de simulación para el cálculo estadístico de los resultados.

List. En caso de tener varias unidades de un mismo recurso, este parámetro permite seleccionar el número de la unidad al que se aplica el paro.

Node. En caso de recursos dinámicos, representa el nodo, dentro de su ruta, donde debe esperar el recurso mientras el paro esté activo.

Logic. Permite programar los eventos y actividades que ocurren durante el paro. En este campo es posible utilizar las instrucciones GET, FREE, WAIT, USE, GRAPHIC y JOINTLY GET. **Disable.** Permite deshabilitar temporalmente el paro, sin tener que eliminarlo.

Ejemplo 6.3

Considere un sistema de manufactura similar al del ejemplo 6.2, con dos máquinas en serie para los procesos de torneado y fresado. El tiempo de torneado es de 3 minutos/pieza, y el de fresado es de 2.7 minutos/pieza. Para operar ambas máquinas se ha contratado a un solo operario. La tasa de entrada es 10 piezas/hora.

El torno tiene una frecuencia de fallas exponencial de 400 minutos, y para su reparación se necesita un mecánico. El tiempo de reparación es de 10 ± 3 minutos, con distribución uniforme. El operario de producción descansa 5 minutos con distribución exponencial cada 120 minutos de trabajo. Simule el sistema por 24 horas para determinar el impacto de las fallas y los descansos en la utilización del equipo y del personal.

Partiendo de los elementos definidos en el modelo del ejemplo anterior:

- Abra el menú **Build** y elija **Resources** para acceder a la ventana de edición correspondiente (vea la figura 6.17).
- Defina como recurso al mecánico que hará las reparaciones del torno. En cuanto al recurso *Machinist*, haga clic en el botón **DTs** para editar sus descansos.

Figura 6.17 Edición de los descansos de Machinist y adición del recurso Mecanico

 Abra la ventana Locations (Build / Locations). Seleccione la localización Lathe (vea la figura 6.18), haga clic en el el botón DTs y luego en Clock (del menú contextual) para editar las fallas del equipo. En este caso la prioridad de 999 permite que la máquina falle aún teniendo una entidad en proceso.

Figura 6.18 Edición de los descansos de Machinist y uso del recurso Mecanico para hacer la reparación

Abra el reporte de resultados (Output / View Statistics) para verificar las estadísticas del nuevo recurso Mecanico, y el impacto de los paros en las estadísticas de Machinist, Lathe y Mill (vea la figura 6.19).

Figura 6.19 Impacto de los paros en la utilización de los recursos y las localizaciones

6.4 Reglas de ruteo

La ventana de edición que se ilustra en la figura 6.20 muestra una de las herramientas disponibles en ProModel. **Rule** permite gran versatilidad en la creación del proceso al construir las rutas de las entidades. Para desplegar la ventana correspondiente, abra el menú **Build** y haga clic en el comando **Processing**.

Figura 6.20 Acceso a las reglas de ruteo

La columna **Rule** permite seleccionar la condición que se debe cumplir para que una entidad sea transferida desde la localización actual (definida en la columna **Location**) hasta la localización siguiente (definida en la columna **Destination**).

Al oprimir el botón **Rule** se abre el cuadro de diálogo **Routing Rule**. En él se puede seleccionar cualquiera de las siguientes reglas de ruteo:

First available. Selecciona la primera localización que tenga capacidad disponible. **By turn.** Rota la selección entre las localizaciones que estén disponibles.

If Join Request. Selecciona la localización que solicite una entidad para un proceso de unión (requiere el uso de la instrucción JOIN).

If Send. Selecciona la localización que solicite una entidad para un proceso de envío (requiere el uso de la instrucción SEND).

Until Full. Selecciona la localización hasta que esté llena.

Random. Selecciona aleatoriamente y en forma uniforme alguna de las localizaciones disponibles.

Most Available. Selecciona la localización que tenga la mayor capacidad disponible.

If Load Request. Selecciona la localización que solicite una entidad para un proceso de carga (requiere el uso de la instrucción LOAD).

Longest Unoccupied. Selecciona la localización que tenga el mayor tiempo desocupada. **If Empty.** Selecciona la localización solamente cuando está vacía, y continuará seleccionándola hasta que esté llena.

Probability. Selecciona la localización de acuerdo con un porcentaje asignado.

User Condition. Selecciona la localización que satisfaga una condición booleana especificada por el usuario.

Continue. Se mantiene en la localización para realizar operaciones adicionales.

As Alternate. Selecciona la localización como alternativa si está disponible y ninguna de las reglas anteriores se cumple.

As Backup. Selecciona una localización como respaldo si la que tiene preferencia está descompuesta.

Dependent. Selecciona una localización solamente si la ruta inmediata anterior ya fue ejecutada.

Quantity. Es un campo adicional que permite definir el número de unidades que saldrán de esta localización por cada unidad que entre. Esta instrucción se utiliza para procesos de corte y separación.

Ejemplo 6.4

El proceso de manufactura ilustrado en la figura 6.21 consta de 2 tornos y 1 almacén donde las piezas esperan antes de ser procesadas. Los tiempos de proceso son de 12 y 15 minutos/pieza en los tornos 1 y 2, respectivamente. La tasa de entrada a este proceso es de 6 piezas/hora con distribución de Poisson. Simule el proceso.

Figura 6.21Esquematización de un proceso de torneado

Para empezar, definiremos las localizaciones Almacén, Torno_1 y Torno_2 en la ventana Locations (Build / Locations). Especifique la capacidad de dichas localizaciones como se muestra en la figura 6.22.

Figura 6.22 Definición de capacidad de las localizaciones

• Defina la entidad *Pieza* en la ventana **Entities** (**Build / Entities**), como se muestra en la figura 6.23.

Figura 6.23 Definición de la entidad

A continuación programaremos las llegadas de la *Pieza* al *Almacén*. Abra la ventana **Arrivals** (**Build / Arrivals**) y especifique los parámetros que se muestran en la figura 6.24.

Figura 6.24 Entrada de materia prima (Pieza) al punto inicial del proceso (Almacén)

• Despliegue la ventana **Processing** (**Build / Processing**) para crear la ruta de producción de las piezas a través de cualquiera de los 2 tornos (vea la figura 6.25).

Figura 6.25 Selección del torno donde se procesará la pieza

Como puede ver en la figura 6.25, en el campo **Rule** aparece, de manera predeterminada, el valor FIRST para ambas salidas. En este caso la regla de ruteo indica que la pieza deberá moverse al primer torno que se encuentre disponible. Si ambos están disponibles, el torno 1 será la opción elegida. El "1" a la derecha del primer FIRST indica el valor del campo **Quantity** del cuadro de diálogo **Routing Rule** (vea la figura 6.26).

 Haga clic en el botón Rule de la ventana Routing for para desplegar el cuadro de diálogo Routing Rule (figura 6.26), en donde podrá seleccionar alguna de las reglas de ruteo para el registro activo, en este caso para Torno_1.

Figura 6.26
Seleccione en este cuadro de diálogo la regla de transferencia entre localizaciones

Por ejemplo si desea cambiar la regla de manera que 30% de las piezas sean procesadas en el torno 1 y el resto en el torno 2:

 Abra primero la ventana Routing Rule para el torno 1, seleccionamos la opción Probability, y escriba 0.3 en el cuadro de texto correspondiente. Haga clic en OK. Repita los pasos anteriores para el torno 2, teniendo cuidado de que la opción Start New Block esté desmarcada en este caso. Elija Probability y escriba 0.7 en el campo de texto. La figura 6.27 muestra parte de este procedimiento.

Figura 6.27 Selección del torno en función de porcentajes

Podemos seleccionar de manera similar cualquier otra regla de ruteo. La sintaxis de programación del ejemplo (manteniendo la regla probabilística) se muestra en la figura 6.28:

Figura 6.28 Sintaxis completa de la programación para el ejemplo 6.4 (continúa)

			*****	****	*****	********		
=					Entiti	es		
*******			*****	****	******	*******		******
Name	Speed	(fpm)	Stats		Cost			
Pieza	150		Time	Serie	25			
						*******		******
					rocess	tna		
********	*********	*****	*****		*****	********	*********	
		Proc	ess			Routs	ng	
Entity	Location	Operat	100	BIK	Output	Destinat	ton Rule	Move 1

Pieza	Almacen			1	Pieza			00 1
Pieza	Torno_1	wait 1	2	1	P1eza	EXIT	FIRST	1
Pieza	Torno_2	wait 1	5	1	Pieza	EXIT	FIRST	1
******	*****		*****			******	******	
*					Arriva	115		
********		****	*****	****	*****	********	******	******
Entity	Location	qty e	ach	First	Time	Occurrences	Frequency	Logic
Pieza	Almacen	4		0		INF	E(10) min	

Figura 6.28 Sintaxis completa de la programación para el ejemplo 6.4 (continuación)

6.5 Ensambles, acumulación y agrupamiento de piezas

Un gran número de procesos de producción incluyen operaciones de separación, ensamble, agrupamiento y unión. A continuación se resumen varias de las funciones que ProModel tiene para modelar este tipo de procesos.

Instrucción ACCUM

La instrucción **ACCUM**, cuya sintaxis general es:

ACCUM < Cantidad >,

retrasa el proceso de las entidades hasta que cierta cantidad del mismo tipo se haya acumulado en algún lugar del modelo. Una vez que se han acumulado, se permite a todas ellas continuar en forma separada. Si la entidad a procesar se define con el parámetro **ALL**, todas las entidades, sin importar su tipo, entran en el proceso de acumulación. Esta instrucción no consolida las entidades (vea la figura 6.29).

Ejemplos: ACCUM 5 ACCUM 10

Figura 6.29 Ejemplo de un proceso de manufactura de 12 minutos, que inicia cuando se han acumulado 5 piezas en la máquina

Instrucción GROUP

La sintaxis general de esta instrucción es:

GROUP < Cantidad > AS < Nueva entidad >,

y su propósito es realizar una unión temporal de entidades de un mismo tipo (a menos que se utilice como parámetro la palabra **ALL**, en cuyo caso puede unir entidades de diferente tipo). Las entidades agrupadas se mantienen en ese estado hasta que encuentran una instrucción **UNGROUP**. Si se utiliza la opción **AS**, la entidad resultante de la unión puede tener un nombre diferente (vea la figura 6.30).

Ejemplos: GROUP 10 GROUP 10 AS Amigos GROUP PROD() AS Lote

Figura 6.30 Ejemplo de un sistema de producción de 10 minutos/lote, con agrupación previa de 5 piezas en el almacén (incluye la sintaxis de programación completa del proceso)

Instrucción UNGROUP

La instrucción **UNGROUP** tiene la siguiente sintaxis general:

UNGROUP

El objetivo de esta instrucción es separar las entidades agrupadas previamente con la instrucción **GROUP**. Las entidades son desagrupadas de acuerdo con el esquema "primero en entrar, primero en salir", a menos que se indique lo contrario con la expresión **LIFO** (vea la figura 6.31).

Ejemplos: UNGROUP UNGROUP LIFO

Figura 6.31 Ejemplo de un sistema de producción de 10 minutos/lote, agrupando previamente 5 piezas en el almacén y desagrupando después del proceso

Instrucción COMBINE

La sintaxis general de la instrucción es:

COMBINE < Cantidad > AS < Nueva entidad >

Su propósito es realizar una unión definitiva de entidades de un mismo tipo, a menos que se utilice como parámetro la palabra **ALL**, en cuyo caso puede unir entidades de diferente tipo. La entidad resultante mantiene el nombre y atributos de la última entidad combinada; si se utiliza el parámetro **AS**, la entidad resultante de la unión puede tener un nombre diferente (vea la figura 6.32).

Ejemplos: COMBINE 10 COMBINE 50 AS Lote

Figura 6.32 Ejemplo de un sistema de empaque en un almacén, combinando 10 piezas/caja (incluye parte de la sintaxis de programación del modelo)

Instrucción JOIN

Con la sintaxis general:

JOIN < Cantidad > < Entidad a ensamblar > ,

la instrucción **JOIN** ensambla entidades de cierto tipo a la entidad actual. Las entidades a ensamblar provienen de otra localización, y se dirigen mediante la regla de ruteo **IF JOIN REQUEST**. Una vez ensambladas, las entidades pierden su identidad y atributos.

Ejemplos:
JOIN 24 Refrescos
JOIN Variable_1 Cajas

Ejemplo 6.5

Como se ilustra en la figura 6.33, un operario empaca cajas de 25 piezas cada una. El tiempo de empaque es exponencial de 1 minuto. Las tasas de entrada por hora son constantes, de 1 500 en el caso de las piezas, y de 60 en el de las cajas.

Figura 6.33 Proceso de empaque para el ejemplo 6.5

- Para comenzar, defina las localizaciones *Almacén_Caja*, *Almacén_Pieza* y *Operario* en la ventana **Locations** (**Build / Locations**).
- Especifique las entidades *Caja_vacía, Caja_llena* y *Pieza* en la ventana **Entities** (**Build / Entities**).
- En la ventana **Arrivals** (**Build / Arrivals**) determine las entradas al sistema, de la *Ca-ja_vacía* al *Almacén_Caja*, y de la *Pieza* al *Almacén_Pieza*.
- En la ventana **Processing** (**Build / Processing**), cree la ruta de cada tipo de entidad.

Para modelar la unión de las entidades son necesarios dos procesos: uno para la entidad principal, *Caja_vacía*, y otro para la entidad secundaria, *Pieza*. El primer proceso se ilustra en la figura 6.34; en él haremos uso de la instrucción **JOIN** para indicar que la entidad actual, *Caja_vacía*, en la localización *Operario* solicita 25 entidades *Pieza* para llevar a cabo la unión. La entidad resultante de este proceso se identifica como *Caja_llena*, y es enviada al exterior.

Figura 6.34 Programación de la instrucción JOIN

El segundo proceso a programar es para la entidad *Pieza*, y consiste en modificar la regla de ruteo hacia la localización *Operario*. En la figura 6.35 se muestra cómo llevarlo a cabo mediante la selección de la opción **If Join Request** en el cuadro de diálogo **Routing Rule**.

Figura 6.35 Programación de la regla de ruteo If Join Request

La sintaxis de programación del ejemplo 6.5 se ilustra en la figura 6.36.

Instrucción LOAD

La instrucción **LOAD**, cuya sintaxis general es:

LOAD <Cantidad> IFF <Condición> IN <Tiempo>,

agrupa temporalmente entidades de cierto tipo a la entidad actual. Las entidades a agrupar provienen de otra localización, y se dirigen mediante la regla de ruteo **If Load Request**. Las entidades agrupadas mantienen su identidad y atributos, y se separan cuando encuentran una instrucción **UNLOAD**.

Ejemplos: LOAD 5

LOAD 10 IFF Tipo > 2

LOAD 2 IFF Peso > 3 IN 5 min

LOAD 5 IN 10 min

Instrucción UNLOAD

La sintaxis general de esta instrucción es:

UNLOAD < Cantidad > IFF < Expresión >,

y su propósito es permitir que una entidad descargue o desagrupe otras entidades previamente agrupadas por una instrucción **LOAD** o **GROUP** si se cumple la condición especificada.

Ejemplos:

UNLOAD 10

UNLOAD 2 IFF entity() = Pieza

Figura 6.36 Sintaxis completa de la programación para el ejemplo 6.5

Ejemplo 6.6

Un proceso requiere mover material en contenedores de un lugar a otro. Cada contenedor debe llevar 5 piezas. El tiempo para cargar el contenedor es de 1 minuto. Los contenedores se mueven a través de una banda transportadora en 30 segundos. Al final de

este movimiento se separan y cada entidad continúa por separado en bandas transportadoras independientes. Vea la esquematización de este problema en la figura 6.37.

Figura 6.37 Esquematización de la simulación de un proceso de unión y separación de entidades

Para este ejemplo, antes que nada es necesario definir las siete localizaciones que se muestran en la figura 6.37 (almacén de piezas, almacén de pallets, carga, banda, banda pallets, descarga y banda piezas), las dos entidades que se mueven a través del sistema (pallet y piezas), y la información sobre la llegada del material al sistema. Estos elementos y sus características se describen más adelante en la sintaxis de programación del modelo.

De la misma forma que en el caso de la instrucción **JOIN**, para lograr la unión o carga se requieren dos procesos: uno para la entidad principal, *Pallet*, y otro para la entidad secundaria, *Piezas*.

El primero de dichos procesos se muestra en la figura 6.38. En él se hace uso de la instrucción **LOAD** para indicar que la entidad actual, *Pallet*, solicita en la localización *Carga* 5 entidades para llevar a cabo la unión, incluyendo el tiempo necesario para hacerlo. La entidad resultante de este proceso es enviada hacia la banda transportadora *Banda*.

Figura 6.38 Programación de la instrucción LOAD

El segundo proceso a programar es para la entidad *Piezas*, y consiste en modificar la regla de ruteo desde el *Almacen_de_piezas* hacia la localización *Carga*. La figura 6.39 ilustra cómo se lleva esto a cabo mediante la selección de la opción **If Load Request** en el cuadro de diálogo **Routing Rule**.

Figura 6.39 Programación de la regla de ruteo If Load Request

Una vez transportado el *Pallet* por la banda, se lleva a cabo el proceso de separación o descarga mediante la instrucción **UNLOAD**, de manera que cada entidad sea enviada a su siguiente proceso (vea la figura 6.40).

Figura 6.40 Programación de la instrucción UNLOAD

Observe la sintaxis de programación completa para el modelo del ejemplo 6.6 en la figura 6.41.

******	********	*******	*****		*****	****	****	******	******	*****	**
4					ng of						+
•		C:\Prol	Sods\m	odels'	Ejempl	o LO	AD.M	DD.			*
*******					******	****	••••			*****	**
Time Un	its:			Min	tes						
Distanc	e Unite:			Feet							
*			- 2	Locati	one						*
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	******	• • • • • •	******	****	*****			*****	**
Name		Cap	Units	State		Rul	.00		Cost		
Almecen	de_pallets	INFINITE	1	Time	Series	Old	est,	20			
	de piezas	INFINITE	1	Time	Series	01d	est,				
Banda		INFINITE	1	Time	Series	- Q1d	est,	FIFO,			
Descerq		1	1	Time	Series	Old	est,	133			
Carca		1	1	Time	Series	01d	est.				
Banda p	allets	INFINITE	1		Series						
Banda_p		INFINITE			Series						
*******	*********	********					****	******	******	*****	**
•				Engir	tes						*
*******	*********	*******	*****			****	****	******			44
Name	Speed (tpm) Stat	te	Cos	t						
Piezas	150		e Serie								
Pallet	150	Time	e Serie	0.0							
*******	*********				*****	****	****				
*	*********	*******		Proces	esing						
		1	Proces	3				Re	outing		
Entity	Location		Operati	ion		B1 k	Outpu	it. Dest	instion	Rule	
Pallet	Almacen de	pallets				1	Palle	t Care	12	FIRST	1
Pallet.	Carus		LOAD 5	THE 1	min	_	Palle			FIRST	
Pallet	Banda		MAIT 30					t Desc	The second second	FIRST	
Pallet	Descarga		mload				Palle		a pallets		
Pallet	Banda palle		wait 30			-	Palle			FIRST	
Piezas	Almacen de							s Caro		LOAD	î
Piezas	Descarga	Jan 192				1				FIRST	_
Piezas	Banda pieza	AH 1	wait 30	sec		1	Pieza			FIRST	
				Arriv	ente.						
******	********	*******	*****			****	***	*****	******	*****	44
Entity	Location		Qty es	ach	First	Time	Deet	irrences	Frequenc	y Lon	10
			***								-
Piezas	Almacen_de	e piezae	1000		0		1		1		
the second secon							1		1		
Pallet	Almacen de				0		1		1		

Figura 6.41 Sintaxis completa de la programación para el ejemplo 6.6.

Instrucción SPLIT

La sintaxis general de la instrucción **SPLIT** es:

SPLIT < Cantidad > AS < Nueva entidad >

su propósito es dividir una entidad en varias entidades, y asignar a cada una de ellas (de manera opcional) un nuevo nombre. Las entidades resultantes de la división mantienen los mismos atributos que la entidad original.

Ejemplos: SPLIT 10 SPLIT 20 AS *Botella* SPLIT Variable_4 AS *Láminas*

El uso de esta instrucción se recomienda solamente cuando existan operaciones adicionales a las entidades dentro de la localización actual. En caso contrario es mejor utilizar la estructura de reglas de ruteo que se ilustra en la figura 6.42 para definir la cantidad de entidades a separar.

Figura 6.42 Separación de entidades mediante la opción de cantidad disponible en el cuadro de diálogo Routing Rule

Ejemplo 6.7

A la cortadora de la figura 6.43 llegan rollos a una tasa de 5 por hora. El proceso de cortado es de 30 segundos, y de cada rollo se obtienen 10 láminas, las cuales se envían al siquiente proceso a través de una banda transportadora.

Figura 6.43 Proceso de corte

El modelo requiere definir 3 localizaciones: *Entrada*, con capacidad infinita; *Cortadora*, con capacidad 1, y *Salida*, con capacidad infinita. Además, es preciso especificar dos entidades, llamadas *Rollo* y *Lámina*, y las llegadas de rollos al proceso con un tiempo entre llegadas de 12 minutos. La descripción completa de los elementos mencionados se encuentra en la sintaxis de programación del modelo, que se presentará más adelante.

El punto importante de este modelo se ilustra en la figura 6.44, y ocurre al crear la ruta de proceso cuando el *Rollo*, después de un tiempo de operación de 30 segundos, se transfiere hacia la localización *Salida*. Es en el cuadro de diálogo **Routing Rule** donde determinamos el valor de la variable **Quantity** en 10.

Figura 6.44 Uso del parámetro Quantity para simular procesos de corte y separación

La sintaxis de programación completa del ejemplo 6.7 se muestra en la figura 6.45.

Figura 6.45 Sintaxis general del programa de modelado para el ejemplo 6.7

Como se mencionó anteriormente, también es posible modelar este proceso con el uso de la instrucción **SPLIT**. Para hacerlo se deben realizar cambios solamente en la ruta del proceso. En la figura 6.46 se muestra la parte del programa que sufre modificaciones.

********	*********		44.44.4		********	*******	*********
			roces	sing		********	
		Proces	5		Routi	ng	
Entity	Location	Operation	81k	Output	Destination	Rule	Move Logic
Rollo Rollo	Entrada Cortadora	WAIT 30 Sec Solit 10 as Lami		Rollo	Cortadora	FIRST 1	
Lamina Lamina	Contadora Salida		1	Lamina Lamina	The second second	FIRST 1	

Figura 6.46 Uso de la instrucción SPLIT para el ejemplo 6.7

Instrucción ROUTE

La sintaxis general de esta instrucción es:

ROUTE <Bloque de ruteo>

La instrucción **ROUTE** envía la entidad hacia el proceso especificado por el número del bloque.

Ejemplos: ROUTE 2 ROUTE Tipo_de_pieza

Ejemplo 6.8

Simule el proceso de separación de tres tipos de pieza (vea la figura 6.47): 20% de las piezas son de tipo 1; 50% son de tipo 2, y el resto son de tipo 3. El tiempo de transporte es de 3 minutos en las bandas de entrada; de 3 minutos en las bandas de salida de las piezas tipo 1 y 3, y de 5 minutos en la banda de de salida de las piezas tipo 2. El tiempo entre llegadas al sistema es de 1 minuto/pieza, distribuido exponencialmente.

Figura 6.47 Proceso de separación de materiales

- Defina las localizaciones *Entrada, Separacion, Banda_1, Banda_2* y *Banda_3* en la ventana **Locations** (**Build / Locations**), siguiendo el esquema de la figura 6.47.
- Defina la entidad *Gear* en la ventana **Entities** (**Build / Entities**), especificando tres formas diferentes para que cada entidad pueda diferenciarse por su color (revise el procedimiento descrito en el ejemplo 5.3 de la sección 5.4.3).
- Abra la ventana **Attibutes** (**Build / Attributes**) para definir el atributo *Ruta* que identifique la trayectoria que seguirá cada tipo de pieza (vea la figura 6.48).

Figura 6.48 Identificación del atributo RUTA

En la ventana User Distributions (Build / User Distributions), defina una tabla similar a la que se muestra en la figura 6.49 para determinar la mezcla de producto donde la variable Tipo_de_pieza tomará los valores 1, 2, 3, de acuerdo con los porcentajes definidos.

Figura 6.49 Definición de la distribución de usuario Tipo_de_pieza

Haga clic en el botón Logic de la ventana Arrivals (Build / Arrivals) para desplegar la ventana Logic y asignar ahí los atributos de cada pieza (vea la figura 6.50). Indique, en la columna Frequency de la misma figura, el tiempo entre llegadas: exponencial con media de 1 minuto/pieza. Al llegar cualquier pieza se evaluará la función Tipo_de_pieza, y se asigna un valor al atributo RUTA y a la forma de la entidad (graphic RUTA).

Estos valores permanecerán como característica de la entidad hasta que sea destruida.

Figura 6.50 Asignación de atributos a la entidad

• Abra la ventana Processing (Build / Processing) para definir la ruta de la entidad Gear a través de las localizaciones. Tenga cuidado al crear el proceso de separación que se ilustra en la figura 6.51; observe que en la localización Separación existen tres posibles rutas de salida, identificadas en el campo BIk como 1, 2, 3. Para lograrlo es necesario marcar la casilla de verificación de la opción Start a New Block en el cuadro de diálogo Routing Rule.

Figura 6.51 Segmento de la ruta de la localización Separación

La sintaxis completa de la programación para el ejemplo 6.8 se muestra en la figura 6.52.

*				ocati	ons			-
*******		*****				******		********
Name	Cap	Units	Stats	R	ules	Cost		
Separaci		1	Time Ser					
Banda_1	INFINIT	E 1	Time Ser	tes o	Idest. FI	FO.		
Banda 2	INFINIT	E 1	Time Ser	ics 0	ldest, FI	FO.		
Banda_3	INFINIT				ldest. FI			
Entrada	INFINIT	E 1			ldest, FI			
*******	********	*****	*******	*****	*******	*******	*******	******
				Entit				
**********	**********	*****	*********		******	**********		********
Name	Speed (tats	Cos	t			
Gear	150		ime Serie	5				
a Parti Ingues								
	****	*****				******	*****	******
=		*****		roces	sing	******		
		Proc	ess			Routing		
Entity	Location	Operat	100	BIK	Output	Destination	on Rule	Move Logic
Gear	Entrada	wait 3		1	Gear	Separacion	FIRST 1	
Gear	Separacion		RUTA	1	Gear	Banda_1	FIRST 1	
acui	Sepai acton	MODIL I	NO IN	2	Gear	Banda_2	FIRST 1	
					Gear	Banda_3	FIRST 1	
Comm	manufa +			1		EXIT	FIRST 1	
Gear	Banda_1	wait 3			Gear			
Gear	Banda_2	wait 5		1	Gear	EXIT	FIRST 1	
Gear	Banda_3	wait 3			Gear	EXIT	FIRST 1	
*****	*********						*********	******
			A	rrival	5		anger broken mena	CONTRACTOR OF THE PARTY OF THE
*****	*********		******	****	********		********	*******
Entity Lo	cation Qty	each	First Ti	ne Occ	urrences	Frequency	Logic	
Gear En	trada 1		0		INF		RUTA-Tipo graphic Ru	
	********						*******	
				tribut				
			******	*****	*****		a-residence.	
ID	Туре	C18	ssificat	ion	*******	******		
******		C12		ion	*****	*********		
ID Ruta	Type Integer	C1a Ent	ssificat ity	ion				*******
ID Ruta	Type Integer	C1a Ent	ssificat	ion	utions		**********	
ID Ruta	Type Integer	Ent	user D	ion	ossesses outions	**********	**********	
ID Ruta	Type Integer	Ent	ssificat	ion	utions	**********	**********	
ID Ruta	Type Integer	Cla Ent	ussificat ity user D	ion	ossesses outions	enenenenenenenenenenenenenenenenenenen	**********	TO BE TO SERVE OF SERVE
ID Ruta	Type Integer	Cla Ent	user D	ion	essesses outions essesses Percentage	 e Value	**********	TO BE TO SERVE OF SERVE

Figura 6.52 Sintaxis completa de la programación del modelo para el ejemplo 6.8

6.6 Transporte entre estaciones

En ProModel, el modelado del transporte de entidades a través de un sistema se lleva a cabo gracias a los recursos dinámicos y a la creación de rutas de transporte. El procedimiento es el siguiente:

- Definir la ruta y sus propiedades en la ventana Path Network (Build / Path Network).
- Determinar el recurso en la ventana **Resource** (**Build / Resource**), y asociarlo con la ruta creada previamente.
- Programar en la ventana Processing (Build / Processing) la captura del recurso con la instrucción GET, el uso del recurso con las instrucciones MOVE WITH o MO-VE FOR, y la liberación del recurso con la instrucción FREE.

Ejemplo 6.9

Al inicio del día entran 100 barriles de 200 litros a un almacén de material en proceso. Estos barriles deben ser transportados hacia un proceso de inspección, en donde el operario, llamado Casimiro, inspecciona el producto en 5 minutos con distribución exponencial. Debido al tamaño de los barriles, un montacargas debe realizar el movimiento del producto desde el almacén hasta donde se encuentra Casimiro. El tiempo de transporte es de 2 a 3 minutos con distribución uniforme. Observe el esquema del problema en la figura 6.53.

Figura 6.53Esquematización del ejemplo 6.9

Tomando como base el esquema de la figura 6.53, resulta claro que debemos:

- Definir en la ventana Locations (Build / Locations) dos localizaciones: Almacén y Casimiro.
- Especificar en la ventana Entities (Build / Entities) la entidad Barril.
- Definir en la ventana Arrivals (Build / Arrivals) las características de las llegadas del Barril al Almacén.
- En la ventana **Path Network** (**Build / Path Network**), active una ventana de edición para especificar la trayectoria por donde se moverá el recurso. Al crear la ruta deberá establecer los valores de los siguientes parámetros:

Graphic. Permite seleccionar el color de la trayectoria, y ésta será visible o no durante la simulación. Si es una grúa viajera permitirá especificar sus colores, la separación del puente y la representación gráfica.

Name. Nombre de la trayectoria.

Type Set. Permite definir la posibilidad de rebasar dentro de la trayectoria. Seleccione la opción **Crane** si la trayectoria es una grúa viajera.

T/S. Permite determinar si el movimiento es con base en el tiempo o en la velocidad. **Paths.** Permite crear y editar la trayectoria y sus nodos.

Interfaces. Permite asociar los nodos con las localizaciones.

Mapping. Permite realizar el mapeo de destinos y rutas.

Nodes. Se crean automáticamente al crear la trayectoria.

Para crear la ruta y sus nodos:

- Haga clic en el botón **Paths** de la ventana **Path Networks**.
- Haga clic con el botón izquierdo del ratón sobre el punto del layout donde desee marcar el inicio de la ruta. Haga clics sucesivos para determinar cambios de dirección. Haga clic con el botón derecho del ratón en el punto donde quiera fijar un nodo. Si desea seguir agregando nodos, repita el proceso anterior a partir del último nodo que haya determinado (vea la figura 6.54).
- Defina el resto de las características de la trayectoria. Como en este ejemplo deseamos mover el recurso de acuerdo con el tiempo, active la opción **Time** en la columna **T/S** y, en la ventana de edición **Paths**, establezca un tiempo U(2.5, 0.5) entre el nodo N1 y N2 en la columna Time.

Figura 6.54 Creación de la ruta del montacargas

• Terminado este proceso, haga clic en el botón **Interfaces** para abrir el cuadro de diálogo que se muestra en la figura 6.55. Asocie cada nodo con su localización respectiva: en este caso, asocie el nodo *N1* con *Almacén*, y el nodo *N2* con *Casimiro*.

Figura 6.55Registre en este cuadro de diálogo la interfaz entre cada nodo y la localización asociada

En la figura 6.56 vemos finalizado el proceso de creación de la trayectoria. Los círculos señalan la asociación; en el layout ésta se identificará mediante una línea punteada entre el nodo y la localización.

Figura 6.56 Definición final de la ruta

Para continuar el modelado del problema:

• Abra la ventana **Resources** (**Build / Resources**) para especificar el recurso *Montacargas* y la cantidad de unidades que contiene (vea la figura 6.57).

Figura 6.57 Definición del recurso Montacargas

- Haga clic en el botón Specs (identificado mediante un círculo en la figura 6.57) para asociar el recurso con la ruta. Enseguida se abrirá el cuadro de diálogo Specifications (vea la figura 6.58), en donde deberá seleccionar la ruta por la que se moverá el recurso Montacargas. En este ejemplo, la Ruta tendrá asociado un nodo que será la base del recurso; también determinaremos si cuando dicho recurso esté ocioso deberá regresar a ese punto. Asimismo podemos especificar otras propiedades, como velocidad de movimiento, aceleración, desaceleración, etc. (En este ejemplo dichos campos quedan en blanco, ya que el movimiento entre los nodos se definió en función del tiempo y no en función de la velocidad.)
- Abra la ventana Processing (Build / Processing) para crear la ruta considerando los detalles de la figura 6.59, que consisten en la captura del recurso en el Almacén, su movimiento hacia Casimiro, y su liberación final.

Figura 6.58 Especificaciones del recurso y su asociación con la ruta

Figura 6.59 Segmento de la programación de la captura, uso y liberación del recurso dentro del proceso

La sintaxis de programación del modelo para el ejemplo 6.9 se muestra en la figura 6.60.

	****			Locations	
Name	Cap	Units	Stats	Rules	Cost
Almacen	INF	1	Time Series	Oldest, .	
A REAL PROPERTY AND ADDRESS.	4444	*		Oldest First	

Figura 6.60 Sintaxis completa del modelo para el ejemplo 6.9 (continúa)

	*****	******	******	Entiti	*******	*****	*****	****	****	****	***
17											
Name	Speed	(fgm) 2	tate	Cost							
Barril	150	I	ime Seri								
*********	*****	*****			******	*****	*****		****		****
•				th Nett							
*******	****	*****	******		*******		*****		****		
Name 1	уре	1/8	4	From	To	18	Dist/	Cime	Speed	s Fac	tor
Ruta I	assing	Time	1	N1	112	Bi	U(2.5,	(0.5)			
	*****	*****				*****	*****	****	****	****	****
		20100000		Interfa		THE PARTY		0.000000	4.77		
					**********				*****		
Net	Node	Loc	ation								
Puta	N1	31-	acen								
	N2		imiro								
				Resourc							
*********	*****	******	THE RESERVE TO STATE OF THE PARTY OF THE PAR	******	NAME OF TAXABLE PARTY.						***
63	2000.1	12.0	Res	Ent	US 60	0.0	195		12		
Name	Unite	State	Search	Searc	h Path	Mo	otion		Cost		
			and the second second second	and the same and the same	10 0 1 2 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1				2000		
Monta carga	= 1	By Unit	Closes	Cides	E Ruta						
Montacarga	s 1	By Unit	Closes	Cides	Ruta Home: 1	 Mi					10.02
Montacarga	= 1	By Unit	Closes	. Older		R1					
Montacarga	= 1	By Unit		Process	Home: 1	R1	•••••				
Montacarga		By Unit		Process	Home: 1	N1	•••••		••••		:
Montacarga	= 1	By Unit		Process	Home: 1		Pour in		••••		:
Montacarga	******	By Unit		Process	Home: 1		Routing		••••		
		By Unit	Proces	Process	Home: 1		Routing	Man -		Nove	Logs
Entity Lo	cation	Operation	Proces	Process	Home: N	Destin	nation	Rule			
Entity Lo	cation		Proces	Process	Home: 1		nation	Man -	T 1 1	MOVE Monta	WIT
Entity Lo	cation	Operation	Proces	Process	Home: N	Destin	nation	Rule	T 1 1	NOVE	WIT
Entity Lo	cation	Operatio	Proces:	Process Blk	Home: 1	Destin	nation	Rule	T 1 1	MOVE Monta	WIT
Entity Lo	cation	Operatio	Proces:	Process s Blk	Home: 1	Destin	nation	Rule	T 1 1	MOVE Monta	WIT
Entity Lo	cation	Operatio	Proces:	Process S Blk	Home: N	Destin	nation	Rule	T 1 1	MOVE Monta	WIT
Entity Lo	cation macen	Operation CET Mont	Process in acargas	Process Blk 1 1	Home: N	Destir Casimi	iro	FIRST	T 1 1	MOVE Monta	WIT
Entity Le	cation macen	Operation CET Mont WAIT E(5	Process in acargas	Process Blk 1 1	Home: Notes of the control of the co	Destir Casimi	iro	FIRST	T 1 1	MOVE Monta	WIT

Figura 6.60 Sintaxis completa del modelo para el ejemplo 6.9 (continuación)

6.7 Caso integrador

La empresa EHLE, S.A. se dedica a la fabricación y ensamble de circuitos electrónicos (PCB) para la industria automotriz, y desea instalar una nueva celda flexible de manufactura donde se puedan ensamblar 22 nuevos tipos de circuitos electrónicos. Las operaciones para fabricar y ensamblar son las siguientes:

- 1. Carga de la tarjeta en el contenedor (CTC).
- 2. Limpieza (LI).
- 3. Corte con cizalla (CCZ).
- 4. Taladrado de orificios (TO).
- 5. Copia de patrones (CP).
- 6. Ataque químico (AQ).
- 7. Deposición electrolítica (DE).
- 8. Inspección (IN).
- 9. Inserción de componentes (IC).
- 10. Soldadura, limpieza y pruebas (SLP).
- 11. Descarga del circuito del contenedor (DCC).

La línea de ensamble puede trabajar de 1 a 3 turnos en función de la demanda de los clientes. Los productos se mueven en contenedores a través de la celda, y cada proceso se lleva a cabo sobre el contenedor. Existe solamente una banda transportadora por donde se mueven los contenedores, de manera que es imposible que uno rebase a otro. Actualmente la empresa cuenta con 350 contenedores y desea saber cuántos asignar a la celda para el transporte y manejo de materiales. El diagrama 1 muestra el flujo de la celda.

Diagrama 1 Diagrama de flujo de la línea de fabricación y ensamble

En cada una de las estaciones solamente se puede procesar un contenedor a la vez, excepto en Lavado y Limpieza; además, existen lugares de espera limitados de acuerdo con los siguientes parámetros:

		de contenedores n la estación
Estación	En espera	En proceso
Carga de la tarjeta en el contenedor	4	1
Limpieza	0	5
Corte con cizalla	6	1
Taladrado de orificios	0	1
Copia de patrones	0	1
Ataque químico	0	1
Deposición electrolítica	9	1
Inspección	0	1
Inserción de componentes	0	1
Soldadura	4	1
Limpieza y pruebas	0	10
Descarga del circuito del contenedor	9	1

En el diagrama 2 se presenta, en forma esquemática, el proceso de producción, incluyendo los tiempos de proceso y los tiempos de transporte en cada etapa (todos los tiempos están en minutos y por contenedor). Casi todos estos tiempos son constantes, excepto las estaciones marcadas con la expresión f(t), ya que el tiempo de proceso en esas operaciones depende de cada tipo de producto y familia. En algunos casos, como en el de Taladrado, existen 2 componentes de tiempo, uno constante y otro que depende del producto.

Diagrama 2 Tiempos de proceso y transporte (minutos/contenedor)

La celda puede procesar 22 tipos de productos diferentes, aunque en un programa de producción de un día típico de trabajo se pueden fabricar solamente entre 8 y 12 tipos distintos de circuitos. Esto se debe a la distribución de probabilidad de la demanda diaria de cada producto. La columna 2 de la tabla 6.2 muestra esas distribuciones; por ejemplo, del producto 1 se pueden programar entre 8 y 10 circuitos con distribución uniforme; del

Tabla 6.2 Programa de producción y definición de familias

Tipo de circuito	de U = Uniforme		CCZ	то	DE	DCC
		Fami	lia a la qu	ue perten	ece el ci	rcuito
1	U(8-10)	С	Α	Α	В	С
2	P(12)	Α	С	Α	Α	Α
3	P(14)	Α	С	Α	В	В
4	P(12)	В	С	Α	Α	В
5	P(12)	В	В	Α	Α	С
6	U(23-27)	С	В	В	Α	В
7	P(4)	В	D	В	Α	Α
8	U(0-2)	Α	Α	С	Α	А
9	P(8)	Α	Α	С	Α	В
10	U(20-30)	В	Α	С	Α	С
11	P(5)	С	D	C	Α	С
12	P(1)	С	D	С	Α	С
13	P(1)	Α	С	С	Α	Α
14	P(13)	Α	D	С	Α	А
15	P(5)	Α	Е	С	Α	А
16	U(2-3)	Α	Е	D	Α	Α
17	P(2)	А	Е	D	Α	Α
18	U(1-2)	А	С	D	Α	Α
19	U(0-4)	А	Е	D	Α	А
20	P(2)	А	Е	D	В	Α
21	U(2-3)	А	Е	D	В	Α
22	U(0-3)	Α	Е	D	Α	Α

producto 2 se pueden programar en promedio 12 circuitos con distribución de Poisson, y así sucesivamente. El departamento de Administración de la Producción envía este programa a Producción un día antes, de tal manera que Producción acerca el material y lo deja disponible desde el inicio del turno, para comenzar a procesarlo durante el día.

Los circuitos se han agrupado por familias, de acuerdo con su tiempo de proceso en cada etapa. Por ejemplo, según la tabla 6.2, el circuito tipo 1 pertenece a la familia C en el proceso de Carga, a la familia A en el proceso de Corte, a la familia A en el proceso de Taladrado, a la familia B en el proceso de Deposición y a la familia C en el proceso de Descarga.

Los contenedores están vacíos al inicio de cada turno, empiezan a cargarse con los diferentes productos y, al finalizar la producción, deben quedar vacíos nuevamente.

En todos los casos, la componente aleatoria del tiempo de proceso, f(t), se expresa con una función de densidad Erlang con un valor esperado (t) y un parámetro de forma k, como se muestra en la tabla 6.3 para cada una de las familias y procesos. Por ejemplo, todos los productos que pertenezcan a la familia A en el proceso de Carga tendrán un valor esperado de 7.55 minutos, con k=3, etcétera.

Tabla 6.3 Familias y distribución de probabilidad de los tiempos de proceso: *k*-Erlang(*t*) en minutos/contenedor

		Operación		
СТС	CCZ	ТО	DE	DCC
А	А	Α	Α	А
3-Er(7.55)	2-Er(6.37)	4-Er(3.91)	3-Er(3.12)	1-Er(9.45)
В	В	В	В	В
3-Er(7.70)	2-Er(12.1)	4-Er(6.56)	3-Er(4.44)	4-Er(9.36)
С	С	С		С
2-Er(8.28)	2-Er(6.96)	2-Er(3.64)		2-Er(8.12)
D	D	D		D
3-Er(8.82)	1-Er(2.27)	3-Er(6.15)		4-Er(8.52)
	Е			
	2-Er(8.02)			

Con el propósito de modelar correctamente la celda y diseñarla tomando en cuenta todos los factores, se ha decidido incluir el comportamiento de las fallas y el tiempo de reparación de las estaciones de Limpieza e Inserción de componentes. Las tablas 6.4, 6.5, 6.6 y 6.7 muestran los comportamientos históricos de máquinas similares a las que se desea instalar. Las fallas en el resto de los equipos son despreciables.

Tabla 6.4 (MTBF) Tiempo entre fallas en Limpieza, en minutos/falla

144.58	162.38	156.07	158.88	156.20	159.20	164.52	163.47	162.24	156.55
147.81	160.84	150.95	161.59	162.62	154.24	155.31	159.86	165.35	160.61
148.81	163.69	156.03	154.46	159.01	159.17	158.80	149.89	152.04	159.39
154.93	151.48	151.57	154.49	156.82	163.19	156.67	158.04	161.51	155.36
149.38	161.79	160.45	160.52	154.32	159.79	158.38	151.09	159.86	152.91
156.73	156.07	159.80	147.14	157.08	159.91	161.32	161.08	153.76	155.70
160.50	161.15	157.82	163.80	160.10	160.32	150.71	161.35	154.19	146.04
154.19	156.13	166.73	150.44	163.32	156.10	167.30	150.09	153.58	157.50
153.25	161.83	158.62	159.87	165.06	162.57	164.22	157.25	155.42	160.31
158.61	163.26	154.16	160.51	158.68	162.83	162.44	161.66	153.06	156.41
154.97	162.96	165.15	155.87	155.02	160.53	161.51	164.42	162.64	157.49

Tabla 6.5 (MTBF) Tiempo entre fallas en Inserción, en minutos/falla

390.38	340.79	353.86	375.09	387.54	376.53	368.91	364.23	380.81	382.50
352.23	353.55	366.98	387.21	381.95	366.98	372.79	373.68	368.01	371.33
334.49	346.45	344.52	384.61	333.35	351.04	354.60	350.01	310.28	387.16
366.33	379.57	376.32	373.21	388.54	356.29	325.38	320.72	346.07	324.70
380.62	379.65	360.09	330.05	387.11	410.69	352.58	383.61	365.38	358.24
334.37	386.09	347.36	388.19	347.10	310.49	379.52	334.38	353.17	356.86
332.71	358.20	356.32	336.09	384.46	349.54	347.12	363.04	357.66	362.61
351.00	406.17	326.97	311.41	345.02	378.39	390.65	333.74	350.43	332.19
373.34	370.81	374.81	387.64	361.44	360.25	384.13	386.91	372.00	343.56
355.54	354.69	368.34	340.94	319.74	377.43	387.61	379.29	322.39	383.20

Tabla 6.6 (MTTR) Tiempo de reparación en Limpieza, en minutos/falla

6.28	24.89	51.35	10.58	4.91	29.36	3.13	4.02	0.69	34.10
4.44	23.85	19.33	36.39	13.50	2.72	8.35	33.61	23.50	3.67
30.66	16.96	4.01	29.91	42.99	3.22	8.07	12.02	24.44	36.41
54.85	31.30	23.95	17.92	3.91	10.32	5.25	7.15	24.54	14.78
22.95	7.28	1.30	2.08	10.60	21.08	113.92	24.26	36.74	8.38
12.06	46.07	20.42	7.53	2.41	0.89	11.72	5.32	8.70	60.55
9.83	15.74	5.23	2.18	19.01	10.24	1.99	0.06	12.75	4.59
4.51	13.01	9.06	9.68	18.81	3.09	0.17	6.85	15.59	8.24
28.26	7.28	6.31	10.39	43.10	9.33	4.70	26.90	6.98	65.31
17.86	26.64	35.21	0.01	62.72	7.94	18.47	19.49	20.52	31.61

Tabla 6.7 (MTTR) Tiempo de reparación en Inserción, en minutos/falla

16.73	16.50	17.67	15.16	17.84	19.15	17.23	16.39	16.35	14.68
17.70	16.12	14.94	16.89	17.97	15.91	18.01	17.39	17.72	15.97
18.37	18.34	18.28	16.29	15.40	16.83	16.92	18.18	16.08	15.34

(continúa)

Tabla 6.7(continuación)

15.29	15.19	17.19	16.36	16.89	14.87	17.25	17.27	14.97	18.05
16.14	17.09	17.97	16.55	17.55	17.69	15.86	16.36	17.48	16.87
15.39	17.82	16.40	17.99	17.26	16.00	16.68	17.32	16.28	16.49
18.08	16.98	16.51	16.84	17.40	15.08	14.34	17.30	16.94	16.77
17.73	17.55	16.71	16.49	16.21	15.81	16.24	18.20	15.94	16.70
17.20	15.24	15.99	16.85	18.57	17.89	15.58	16.11	17.24	15.22
16.66	16.83	16.25	16.00	15.10	14.49	17.79	15.09	16.94	16.84

Dentro de la empresa se ha generado una serie de preguntas, ya que se vislumbra —en un futuro cercano— un incremento considerable en la demanda de productos. Para contestar tales interrogantes desarrolle en ProModel un modelo de simulación estadísticamente válido, que permita determinar:

- a) La operación en que se presenta un cuello de botella.
- b) La hora de terminación del programa de producción diario, considerando la variación en la demanda de un día para otro, con un nivel de 90% de confianza.
- c) La cantidad óptima de contenedores que debe asignarse a la celda. Es posible justificarla mediante una gráfica donde se relacione el número de contenedores asignados contra la producción diaria lograda, observando a partir de qué punto la producción prácticamente no se incrementa.
- d) El inventario promedio de contenedores en cada operación.
- e) El tiempo de permanencia promedio de los contenedores en cada operación.
- f) El tiempo promedio de permanencia de un contenedor en la celda de manufactura.

6.8 Problemas

- 1. Un inspector recibe siempre 120 piezas/hora. El tiempo promedio de inspección es uniforme, entre 20 y 30 segundos/pieza. Simule el sistema en ProModel, y calcule la utilización del inspector y el número máximo de piezas acumuladas antes del proceso de inspección.
- 2. Un cajero automático recibe 30 clientes/hora con distribución de Poisson. Existen 5 escenarios posibles:

Escenario	Tiempo promedio de servicio (min/cliente)
1	Exponencial con media 1.8
2	2-Erlang con media 1.8
3	4-Erlang con media 1.8
4	Normal con media 1.8 y varianza 0.2
5	1.8

Simule el sistema en ProModel y calcule, para cada escenario:

- a) la utilización del cajero.
- b) el número promedio de clientes en espera.
- c) si en todos los casos el tiempo promedio de servicio es el mismo, ¿a qué factor se deben las diferencias (si es que existen)?
- d) ¿Qué diferencia existe entre el primero y el último escenarios?
- 3. A una ferretería con dos dependientes y una fila llegan 56 clientes/hora con distribución de Poisson. El tiempo de servicio es exponencial con media de 2 min/cliente. Simule el sistema hasta lograr el estado estable y calcule:
 - a) la utilización de los dependientes.
 - b) el tiempo promedio de espera en la fila.
- 4. Una tienda de aparatos electrónicos vende 2 tipos de microcomputadoras: la E-GD y la H-GR. El tiempo entre llegadas es exponencial con media de 45 minutos/cliente. Se trata de una tienda pequeña, por lo que solamente requiere un empleado para atender a los clientes de acuerdo con un esquema "primero en llegar, primero en salir". 25% de los clientes que entran no realizan compra alguna, y utilizan al empleado durante 15 minutos exactamente; 50% de los clientes que entran compran una computadora tipo E-GD, y el tiempo que les lleva realizar la transacción sigue una distribución uniforme de entre 31 y 36 minutos; 25% restante entra a la tienda y compra la computadora tipo H-GR. El tiempo que se requiere para la venta en este caso sigue una distribución exponencial con media de 70 minutos. Simule 8 horas y determine:
 - a) la utilización del empleado.
 - b) el tiempo promedio que un cliente tiene que esperar antes de ser atendido.
- 5. Un sistema de producción cuenta con 10 tornos. El tiempo de operación de cada torno sigue una distribución de probabilidad exponencial con media de 96 horas, después del cual ocurre una falla y tiene que ser enviado a mantenimiento. El tiempo de reparación es exponencial con media de 72 horas. El tiempo de traslado de los tornos entre producción y mantenimiento es uniforme, con parámetros de 60 ± 15 minutos. Se desea simular el sistema hasta alcanzar el estado estable, con 1, 2, 3, 5, ..., 10 mecánicos para determinar en cada caso la utilización de los mecánicos y el número promedio de tornos en espera de reparación.
- 6. La empresa LECAR dispone de 100 telares. El tiempo de operación de cada telar antes de que ocurra una rotura sigue una distribución de probabilidad exponencial, y el telar se detiene en espera de que un obrero repare la rotura y reinicie la operación. El tiempo de reparación es de 2-Erlang con media de 5 minutos. El tiempo promedio entre roturas depende de la calidad del hilo, de acuerdo con los siguientes escenarios:

Escenario	Calidad del hilo	Tiempo promedio entre roturas (min/rotura)
Optimista	Primera	40
Promedio	Segunda	20
Pesimista	Dudosa	5

Cree un modelo de simulación para cada escenario, y determine el número de obreros que deben asignarse a la reparación de roturas con el objetivo de mantener en operación los telares 95% del tiempo.

- 7. A una biblioteca llega un promedio de 52 personas/año con distribución de Poisson, para pedir prestado cierto libro. La persona que logra encontrarlo lo regresa en promedio 2 días después, con distribución exponencial. Las personas que solicitan el libro pero no lo reciben por estar en préstamo, se van y nunca regresan. Simule el proceso durante un año, con 1, 2, 3 y 4 ejemplares del libro, y determine en cada caso el número esperado de personas que podrán leer el libro.
- 8. A la operación de empacado de bolsas de detergente entran bolsas a una velocidad de 20 por minuto. Cuando las bolsas entran al sistema son colocadas en una banda que las transporta hasta la mesa de un operario de empaque. El tiempo de transporte en la banda es de 20 segundos/bolsa. Una vez que la bolsa llega al final de la banda, cae por gravedad hacia una mesa donde se va acumulando con otras. Un operario toma las bolsas de la mesa y las introduce en una caja con capacidad de 30 unidades; el tiempo que le lleva al operario tomar una bolsa y colocarla dentro de la caja es de 1 segundo/bolsa. Una vez que la caja se llena, el operario la lleva al almacén de cajas; allí la deja y recoge una caja vacía para repetir el procedimiento de llenado. El tiempo que le toma en llevar la caja llena y traer una vacía sigue una distribución exponencial con media de 3 minutos.

Simule el sistema anterior en ProModel, para obtener la gráfica del número de bolsas en la mesa, el número promedio de bolsas y el tiempo promedio de espera en la mesa a lo largo del tiempo.

9. A un proceso de troquelado llegan láminas, de acuerdo con una distribución de Poisson con promedio de 82 láminas/min. Se cuenta con 7 troqueladoras, cada una de las cuales es capaz de procesar una lámina en 5 segundos. Hay un almacén de grandes dimensiones para materia prima, de manera que todas las piezas que no puedan ser troqueladas inmediatamente podrán esperar ahí. El costo de operación de las máquinas

- se estima en \$10/hora-troqueladora, y el costo de mantener una lámina en inventario se estima en \$0.500/hora-lámina. Simule el sistema para determinar el inventario promedio de láminas y el costo total/hora.
- 10. A un proceso de troquelado llegan láminas de acuerdo con una distribución de Poisson con promedio de 82 láminas/min. Se cuenta con 7 troqueladoras, cada una de las cuales es capaz de procesar una lámina en 5 segundos. Hay un almacén para materia prima con capacidad de 5 láminas; si una lámina llega y no puede entrar al proceso o al almacén de materia prima, debe ser enviada a otro lugar de la planta para la realización del troquelado. El costo de operación de las máquinas se estima en \$10/horatroqueladora; el costo de mantener una lámina en inventario se estima en \$0.500/hora-lámina, y el costo de enviar a las láminas hacia otro lugar es de \$0.800 por lámina. Simule el sistema para determinar el inventario promedio de láminas en el almacén antes de troquelado, y el costo total/hora.
- 11. A un centro de maquinado llegan tres diferentes tipos de pieza. Antes del centro existe un almacén de producto en proceso, con capacidad prácticamente infinita. El tiempo de operación y la tasa de entrada de las piezas son las siguientes:

Tipo de pieza	Tasa de entrada Poisson (piezas/hora)	Tiempo de maquinado exponencial (min/pieza)
1	2	3
2	4	5
3	2	10

Simule el sistema en ProModel durante 100 horas, y determine:

- a) la utilización del centro de maguinado.
- b) el número total de piezas producidas.
- c) el tiempo promedio de espera de las piezas en el almacén.
- d) el número promedio de piezas en el almacén.
- 12. A un operario de limpieza le entregan cada hora 60 piezas en forma simultánea. El tiempo de limpieza es uniforme, de 50 ± 10 segundos/pieza. Simule el proceso anterior durante 500 horas para determinar:
 - a) la utilización del operario.
 - b) el tiempo promedio de permanencia de las piezas en todo el proceso.
 - c) el tiempo promedio de espera de las piezas antes de ser limpiadas.
- 13. Un sistema de pintura tiene dos procesos en serie: pintura y horneado. El tiempo de pintura es exponencial, de 10 minutos/pieza, y el de horneado es triangular (3, 6, 15) minutos/pieza. Para ambos procesos hay dos pintores y un horno. La tasa de entrada es de 7 piezas/hora en el caso de la pieza tipo 1, y de 3 piezas/hora en el caso de la pieza tipo 2. El tiempo para moverse de un proceso a otro es de 30 segundos. Simule

- el sistema 5 días para determinar:
- a) la utilización de cada operación.
- b) el tiempo promedio de permanencia de las piezas en todo el proceso.
- c) el tiempo promedio de espera de las piezas antes de pintura y antes del horneado.
- 14. A un centro de copiado llegan tres tipos de trabajos. Si un trabajo no puede ser iniciado inmediatamente, espera en una fila común hasta que esté disponible alguna de las tres copiadoras con las que cuenta el centro. El tiempo de copiado y la tasa de entrada de los trabajos son como siguen:

Tipo de trabajo	Tasa de entrada (trabajos/hora)	Tiempo de copiado (min/trabajo)
1	4	Exponencial (12)
2	Poisson (8)	Normal (15, 2)
3	16	3-Erlang (1)

Después del proceso de copiado los trabajos son inspeccionados por un empleado en un tiempo exponencial con media de 3, 6, 10 minutos para los trabajos 1, 2 y 3, respectivamente. Simule el sistema en ProModel durante 50 horas, y determine:

- a) la utilización del empleado y las copiadoras en la situación propuesta.
- b) el número de empleados y copiadoras mínimos necesarios para asegurar el flujo de los trabajos.
- 15. Un tipo de pieza entra a una línea de producción. El proveedor entrega en forma exponencial con media de 2 min/pieza. La línea consta de 3 operaciones con una máquina en cada operación. Los tiempos de proceso son:

Operación	1	2	3
Tiempo	Constante	Exponencial	Uniforme
(min/pieza)	(2)	(1)	(0.5 ± 0.1)

El tiempo para moverse entre estaciones es de 0.0625 minutos. La animación debe incluir un contador de las piezas producidas. Simule en ProModel el proceso de 500 piezas para determinar:

- a) el tiempo total de simulación.
- b) la utilización de cada operación.
- c) el tiempo de espera antes de la primera operación.
- d) % del tiempo que la pieza estuvo bloqueada.
- 16. A un proceso de perforado llegan piezas a partir de las 8:00 a.m. El tiempo entre llegadas es exponencial, con media de 30 segundos/pieza. La perforación se puede realizar en cualquiera de las 3 máquinas existentes; sin embargo, debido al tamaño del transformador de energía eléctrica, las máquinas no pueden trabajar simultáneamente.

Se ha decidido que la producción se realice en la máquina 1 las primeras 3 horas del turno, en la máquina 2 las 3 horas siguientes, y en la máquina 3 las 2 últimas horas. Por razones de programación, la máquina 1 inicia siempre a las 8:15 a.m. Los tiempos de perforado en cada máquina se muestran a continuación:

Máquina	Tiempo promedio de proceso (segundos/pieza)
1	Exponencial (20)
2	Exponencial (10)
3	Uniforme (15 ± 5)

Realice un modelo en ProModel para simular 30 días de 8 horas cada uno, y obtenga:

- a) la producción al final de cada uno de los días.
- b) la distribución de probabilidad de la producción diaria.
- 17. A una oficina llegan 2 tipos de clientes. La tasa de llegadas de los clientes tipo I sigue una distribución uniforme (100-150) minutos/cliente; la tasa del segundo tipo sigue una distribución constante con media de 120 minutos/cliente. Solamente existe un servidor, que tiene que atender a ambos tipos de clientes de acuerdo con un esquema de "primero en llegar, primero en salir". El tiempo que tarda en atender a los clientes tipo I sigue una distribución exponencial con media de 25 minutos/cliente, mientras que el tiempo de servicio del segundo tipo de clientes sigue una distribución 2-Erlang con media de 35 minutos/cliente. Simule hasta que hayan sido atendidos 500 clientes de tipo II y determine:
 - a) el tiempo total de simulación.
 - b) el número de clientes tipo I que fueron atendidos.
 - c) el tiempo promedio de estancia en la oficina por cada tipo de cliente.
 - d) el número máximo de clientes en la oficina.
- 18. En un banco hay 2 cajas, cada una con su propia fila de tamaño infinito: la caja 1 para clientes "rápidos", con tiempo de 2 minutos, y la caja 2 para clientes "lentos" con tiempo de 16.4 minutos, en ambos casos con distribución exponencial. Los clientes "lentos" y "rápidos" llegan de acuerdo con una función exponencial, con media de 8 y 20 minutos/cliente, respectivamente. Algunos días, en particular, solamente viene a trabajar 1 cajera que tiene que atender ambas filas según la siguiente secuencia cíclica: 5 clientes "rápidos" y 2 clientes "lentos". El tiempo para moverse entre las cajas es de 0.33 minutos. Simule en ProModel el proceso por 80 horas, y determine:
 - a) el número promedio de clientes en espera en cada fila.
 - b) la secuencia óptima de atención para minimizar el tiempo promedio de espera, considerando ambos tipos de clientes.
- 19. Intercambiadores de calor entran a un sistema de limpieza en forma exponencial, con media de 5 horas/pieza. El proceso consta de 3 operaciones con una máquina en cada operación. Los tiempos de proceso son:

Operación	Tiempo promedio de proceso (horas/pieza)
1	Constante (4.9)
2	Exponencial (4)
3	Uniforme (4.7 ± 0.3)

Se tiene un montacargas para todos los movimientos entre estaciones. El tiempo de traslado entre estaciones es 3-Erlang con media de 30 minutos/intercambiador. La animación debe incluir un contador de las piezas producidas.

- I. Simule en ProModel el proceso de 500 intercambiadores para determinar:
 - a) el tiempo total de simulación.
 - b) la utilización de cada operación.
 - c) el tiempo de espera antes de la primera operación.
 - d) % del tiempo que la pieza estuvo bloqueada.
 - e) ;Recomendaría tener otro montacargas? Justifique su respuesta.
- II. Simule el modelo con un escenario donde el montacargas falle en forma exponencial cada 15 horas de trabajo y sea reparado con una distribución normal con media de 30 minutos y desviación estándar de 5 minutos. En este caso, ¿sería apropiado tener dos o más montacargas? Justifique su respuesta.
- 20. Un promedio de 10 personas/hora con distribución de Poisson intentan entrar al jacuzzi de un hotel. En promedio, cada persona permanece 20 minutos con distribución exponencial. En el jacuzzi existen solamente 6 espacios, por lo que si una persona llega y están ocupados todos los lugares, se retira enojado y no regresa. Simule el proceso durante 100 horas.
 - a) ¿Cuál es la utilización del jacuzzi?
 - b) ¿En promedio cuántas personas se encuentran en el jacuzzi?
 - c) ¿En promedio cuántas personas por hora no pueden usar el jacuzzi?
 - d) ¿Cuántos lugares debería tener el jacuzzi para asegurar que 95% de las personas que llegan puedan entrar?
- 21. Determine mediante ProModel el número de máquinas que requiere un sistema para procesar las piezas, teniendo como restricción mantener una utilización entre 60 y 80%. Las piezas llegan de acuerdo con una distribución de Poisson, con media de 1.5 clientes por minuto. Cuando una pieza entra y todas las máquinas están ocupadas, permanece en una sola fila común a las máquinas. El tiempo de proceso sigue una distribución exponencial con media de 3 minutos. Incluir dentro de los resultados los valores de la utilización, tiempo de espera promedio y número de piezas promedio en espera.
- 22. El diagrama muestra el proceso y ruta de las piezas dentro de una celda de manufactura. Todas las piezas deben entrar y salir de la celda a través de la máquina de carga

y descarga (AS/RS). Los números en las flechas dentro del diagrama representan el porcentaje de flujo que es enviado a otros equipos; por ejemplo, 10% de lo que entra a corte se envía al AS/RS, 85% a escuadre, y 5% a reproceso. Un sistema de control automático mantiene siempre 10 piezas dentro del sistema. (Observe el diagrama siguiente.)

El tiempo de proceso en cada operación es:

Operación	(min/pieza)
AS/RS	1.000
CORTE	0.465
ESCUADRE	0.500
REPROCESO	6.666

Simule en ProModel y determine para cada operación:

- a) la utilización.
- b) el número máximo de piezas.
- c) el número promedio de piezas.
- 23. En el sistema cerrado que se muestra en el diagrama se mantienen siempre 20 piezas en proceso. Cada pieza entra desde una banda principal a través de un robot de transferencia, y debe visitar las 2 estaciones de rectificado antes de regresar al robot de transferencia para ser enviada de nuevo hacia la línea principal. Las piezas se mueven a través de bandas transportadoras. (Observe el diagrama siguiente.)

Los tiempos de producción son:

Operación	Tiempo de proceso (min/pieza)
Robot	Normal (4, 1)
Rectificado 1	Normal (6, 0.3)
Rectificado 2	Exponencial (4)
Transporte entre estaciones	1

Simule durante 200 horas y determine:

- a) la producción por hora.
- b) la utilización de las estaciones.
- c) el inventario promedio en proceso en cada estación.
- d) el tiempo promedio de permanencia de las piezas en el sistema cerrado.
- 24. Cinco camiones son utilizados para transportar concreto de un lugar a otro. Solamente se tiene una tolva de carga, y el tiempo para hacerlo sigue una distribución exponencial con media de 20 minutos. El tiempo para transportar el concreto y regresar por más material sigue una distribución exponencial con media de 180 minutos. Simule el movimiento de los camiones para contestar:
 - a) en promedio, ¿cuánto espera un camión en la fila de la tolva?
 - b) ¿qué fracción del tiempo no se utiliza la tolva?
 - c) si se han programado 500 viajes, ¿cuánto tiempo tomará hacerlos?
- 25. A un sistema de producción de la empresa EHYPSA llegan piezas de tipo 1 cada 5 ± 3 minutos, y piezas tipo 2 cada 3 ± 2 minutos. Las piezas tipo 1 pasan por limpieza en un tiempo de 8 ± 3 minutos; al salir, 25% deben limpiarse de nuevo, y el 75% restante sale del sistema para su venta. Las piezas tipo 2 pasan primero por verificación en un tiempo de 9 ± 3 minutos, y después por limpieza en un tiempo de 3 ± 1 minutos. Al salir de limpieza, 5% deben limpiarse de nuevo, y el 95% restante sale del sistema para su venta. Simule el sistema 1 mes y determine el número mínimo de operarios de verificación y limpieza que permitan maximizar la producción por hora. Indique el número de piezas de cada tipo que se produjeron durante el mes.
- 26. En el hospital HELEED, los pacientes entran a las salas de emergencia a una tasa Poisson con media de 4 persona/hora: 80% de los pacientes entran directamente a una de las 5 las salas; el 20% restante son llevados con una secretaria para un proceso de registro de datos. El tiempo en registro es de 5 ± 0.5 minutos/paciente, pasando posteriormente a las salas de emergencia. Se tiene de guardia a dos médicos en las salas de emergencia, y éstos tardan en revisar a los pacientes un tiempo 3-Erlang con media de 30 minutos/paciente. Después de este tiempo el paciente es trasladado a otras áreas del hospital, de acuerdo con su estado.

Realice un modelo en ProModel para simular 3 réplicas de 48 horas de la situación anterior y determinar, con un intervalo de confianza, de 95 por ciento:

- a) el tiempo promedio de espera de los pacientes en el proceso de registro.
- b) el número máximo de clientes que estuvieron en todo el hospital.
- c) la utilización de los médicos, las salas de emergencia y la secretaria.
- 27. Cierta pieza requiere 2 operaciones: soldadura en 6 minutos, y esmerilado en 6.4 minutos. La llegada de piezas es uniforme entre 10 y 15 minutos/pieza. Existen almacenes de tamaño infinito antes de cada operación. Se tiene solamente un operario para hacer ambas operaciones, de acuerdo con la siguiente secuencia cíclica: 5 piezas en soldadura y 5 piezas en esmerilado. El tiempo para moverse entre las máquinas es de 1 minuto. Simule en ProModel el proceso 480 horas, y determine el tiempo promedio de espera de las piezas en los almacenes antes de cada operación.
- 28. Una máquina empacadora es alimentada por dos bandas transportadoras. Por la primera entran dulces a una razón constante de 2 000 dulces/hora. Por la segunda entran bolsas. La máquina empaca 50 dulces por bolsa y coloca el producto empacado en una tercera banda, para su transportación hacia el almacén de producto terminado. El tiempo total de empaque es de 20 segundos. La velocidad de las bandas es de 150 pies por minuto. Cada 3 horas la empacadora se detiene para ajuste y limpieza; el tiempo para llevar a cabo estas operaciones es exponencial con media de 10 minutos. Mientras la empacadora es ajustada, las bolsas y los dulces siguen entrando al sistema. Desarrolle un modelo en ProModel y determine la tasa promedio de entrada de las bolsas.
- 29. A la oficina de la SRE llegan clientes para recibir su pasaporte a una tasa de Poisson con media de 18 clientes/hora. Al entrar toman una ficha que permite atenderlos en el orden de llegada: 90% de los clientes entran directamente a la sala de espera, y el resto llena primero algunas formas en un tiempo uniforme (6 ± 2) minutos. Existen 2 servidores para atender a los clientes de la sala de espera; el tiempo promedio de atención es exponencial con media de 6 minutos.

La sala de espera dispone de 40 sillas. Si un cliente llega y todas las sillas están ocupadas, permanece de pie y se sienta cuando se desocupa alguna de ellas.

Cada vez que se expiden 10 pasaportes, el servidor deja de atender la fila y conduce a los clientes atendidos a la parte posterior, después de lo cual sigue atendiendo la fila; el tiempo en ir y venir sigue una función exponencial con una media de 5 minutos.

Haga un modelo en ProModel para simular durante 8 horas la situación actual, de manera que, al finalizar la simulación, se indique en pantalla los siguientes resultados:

- a) el tiempo promedio de espera en la fila.
- b) el número promedio de personas sentadas.
- c) el número promedio de personas de pie.
- d) el número máximo de personas en la sala de espera.
- e) la utilización de los servidores.

30. En la compañía PESYPINSA, las piezas entran a un proceso de pintura a una tasa de Poisson con media de 1.0 piezas/min. Antes de pintarse, las piezas deben ser pesadas en cualquiera de las dos básculas existentes: el tiempo en la báscula es uniforme, de (2 ± 0.5) minutos. Existe una persona que realiza la operación de pintura en 12 minutos por pieza, con distribución exponencial.

Hay también un pintor de reserva, que entra a proceso cada vez que el número de piezas en el almacén de producto en proceso entre las básculas y la pintura excede de 10, y permanece trabajando durante 1 hora, después de lo cual deja de pintar y regresa a su posición de pintor de reserva.

Haga un modelo en ProModel para simular durante 8 horas la situación actual, de manera que, al finalizar la simulación, se indique en pantalla:

- a) el tiempo promedio de espera en el almacén de pintura.
- b) el número máximo de piezas que se llegaron a acumular en todo el sistema.
- c) la utilización de la báscula y de los pintores.
- 31. La empresa MOLGADE Co. fabrica moldes y desea simular en ProModel una parte de su proceso. Los moldes inicialmente se encuentran en el almacén de materia prima, en cantidad suficiente para no detener la producción por falta de material. La primera operación es una limpieza con chorro de arena, con duración de 4 minutos. Enseguida, uno de seis inspectores verifica la dimensión de los moldes; cada inspector tarda 3-Erlang con media de 18 minutos en la verificación. Posteriormente los moldes son transportados a un horno en lotes de 5, utilizando una grúa viajera. El tiempo de transporte es de 6 minutos, y la empresa cuenta con dos grúas para este movimiento. En el horno se cargan 4 lotes para iniciar el proceso de calentamiento; este tiempo es de 1 hora. Al salir del horno, los moldes se enfrían al aire libre en 3 ± 1 hora. Una vez terminado el proceso, se empacan en cajas de 25 moldes. El tiempo de empaque es triangular de (2, 3, 6) minutos/caja, y los moldes se transportan en contenedores de 8 cajas cada uno hasta el área de producto terminado en un AGV. El tiempo requerido para este movimiento es de 10 minutos.

Se trabajan tres turnos de 8 horas cada uno. Modele la operación durante un mes para:

- a) determinar la utilización de los equipos, el inventario promedio en proceso y el tiempo de permanencia de un molde en el sistema.
- b) detectar problemas y proponer el aumento o disminución de recursos.
- c) determinar, para la solución propuesta, la utilización de los equipos, el inventario promedio en proceso y el tiempo de permanencia de un molde en el sistema.

ANEXO 1

DISTRIBUCIONES DE PROBABILIDAD

- **A.1** Distribuciones continuas
- **A.2** Distribuciones discretas

A.1 Distribuciones continuas

Distribución de Erlang

Codificación	$k - Er(1/\lambda)$
Función de densidad	$f(x) = \frac{\lambda(\lambda x)^{k-1}}{(k-1)!}e^{-\lambda x}$ para $x \ge 0$
Distribución acumulada	$F(x) = 1 - \frac{\Gamma(k, x\lambda)}{\Gamma(k)}$ para $x \ge 0$
Parámetros	Parámetro de localización: 0 Parámetro de forma: k Parámetro de escala: $\frac{1}{\lambda} \ge 0$
Rango	[0,∞)
Media	$k\left(\frac{1}{\lambda}\right)$
Varianza	$k\left(\frac{1}{\lambda}\right)^2$
	5(x) Erlang (0, 3, 5) 3.00 0.00 2.0 4.0 6.0 8.0x10 ¹

Distribución exponencial

Codificación	Ε(1/λ)
Función de densidad	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{en otro caso} \end{cases}$
Distribución acumulada	$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{en otro caso} \end{cases}$
Parámetros	Parámetro de escala: $\frac{1}{\lambda} \ge 0$
Rango	[0,∞)
Media	$\frac{1}{\lambda}$
Varianza	$\frac{1}{\lambda^2}$
	_{f(x)} Exponencial (2)
	0.50
	0.00 0.0 2.0 4.0 6.0 8.0 10.0 x

Distribución gamma

Codificación	G(lpha,eta)
Función de densidad	$f(x) = \frac{\beta^{-\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-x/\beta}$ para $x \ge 0$
Distribución acumulada	$F(x) = \begin{cases} - & \text{para } \alpha \text{ no entera} \\ 1 - e^{-x/\beta} \sum_{j=0}^{\alpha-1} \frac{(x/\beta)^j}{j!} & \text{para } \alpha \text{ entera} \end{cases}$
Parámetros	Parámetro de forma: α Parámetro de escala: $\beta \ge 0$
Rango	[0,∞)
Media	$\alpha\beta$
Varianza	$\alpha \beta^2$
	f(x) Gamma (3.86, 5.25) 2.50 0.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2x10 ² x

Distribución lognormal

Codificación	$LN(\mu,\sigma^2)$
Función de densidad	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\ln x - \mu)^2/(2\sigma^2)}$ para $x > 0$
Distribución acumulada	_
Parámetros	Parámetro de escala: μ Parámetro de forma: $\sigma > 0$
Rango	[0, ∞)
Media	$e^{\mu+\sigma^2/2}$
Varianza	$(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$
	0.70 Lognormal (4, 0.792) 0.70

Distribución normal

Codificación	$N(\mu,\sigma^2)$
Función de densidad	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/(2\sigma^2)}$ para $x > -\infty$
Distribución acumulada	-
Parámetros	Parámetro de localización: μ Parámetro de escala: $\sigma > 0$
Rango	$(-\infty,\infty)$
Media	μ
Varianza	σ^2
	Normal (10, 2) 0.20 0.10 0.00 0.4 0.6 0.8 1.0 1.2 1.4 1.6x10 ¹

Distribución triangular

Codificación	Τ(a, b, c)
Función de densidad	$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{si} a \le x \le c \\ 2(b-x) & \text{si} a \le x \le b \end{cases}$
	$\left(\frac{(b-a)(b-c)}{(b-a)(b-c)}\right) \text{si} c \leq x \leq b$
Distribución acumulada	$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{si } a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & \text{si } c \le x \le b \end{cases}$ $f(x) = \begin{cases} \frac{(x-a)^2}{(b-a)(c-a)} & \text{si } a \le x \le c \\ 1 - \frac{(b-x)^2}{(b-a)(b-c)} & \text{si } c \le x \le b \end{cases}$
Parámetros	Parámetro de localización: <i>a</i> Parámetro de escala: <i>b – a</i> Parámetro de forma: <i>c</i> Valor mínimo: <i>a</i> Valor máximo: <i>b</i> Moda: <i>c</i>
Rango	[a,b]
Media	$\frac{1}{3} (a+b+c)$
Varianza	$\frac{1}{18} (a^2 + b^2 + c^2 - ab - ac - bc)$
	Triangular (1, 7, 3) 0.35 0.17 0.00
	0.0 2.0 4.0 6.0 8.0 10.0 x

Distribución uniforme

Codificación	U(a,b)
Función de densidad	$f(x) = \begin{cases} \frac{1}{b-a} & \text{si} a \le x \le b \\ 0 & \text{en otro caso} \end{cases}$
Distribución acumulada	$F(x) = \begin{cases} 0 & \text{si} & x < a \\ \frac{x - a}{b - a} & \text{si} & a \le x \le b \\ 1 & \text{si} & b < x \end{cases}$
Parámetros	a y b son números reales, con $a < b$; Parámetro de localización: a Parámetro de escala: $b - a$ Valor mínimo: a Valor máximo: b
Rango	[a, b]
Media	$\frac{1}{2} (a+b)$
Varianza	$\frac{1}{12} (b-a)^2$
	Uniforme (5, 10)
	0.00

Distribución de Weibull

Codificación	$W(\gamma, \alpha, \beta)$
Función de densidad	$f(x) = \begin{cases} \alpha \beta^{-\alpha} (x - \gamma)^{\alpha - 1} e^{-\left(\frac{x - \gamma}{\beta}\right)^{\alpha}} & \text{si} x \ge 0\\ 0 & \text{en otro caso} \end{cases}$
Distribución acumulada	$f(x) = \begin{cases} 1 - e^{-\left(\frac{x - \gamma}{\beta}\right)^{\alpha}} & \text{si} x \ge 0\\ 0 & \text{en otro caso} \end{cases}$
Parámetros	Parámetro de localización: γ Parámetro de escala: $\beta > 0$ Parámetro de forma: $\alpha > 0$
Rango	[γ,∞)
Media	$\gamma + \beta \Gamma (1 + \alpha^{-1})$
Varianza	$\beta^{2}[\Gamma(1+2\alpha^{-1})-\Gamma^{2}(1+\alpha^{-1})]$
	0.50 - Weibull (4, 2, 1) 0.50 - 0.00 4.0 4.5 5.0 5.5 6.0 6.5 7.0

A.2 Distribuciones discretas

Distribución de Bernoulli

Codificación	BE(p)
Distribución de probabilidad	$p(x) = \begin{cases} 1 - p & \text{si} & x = 0\\ p & \text{si} & x = 1\\ 0 & \text{en otro caso} \end{cases}$
Distribución acumulada	$F(x) = \begin{cases} 0 & \text{si} & x < 0 \\ 1 - p & \text{si} & 0 \le x < 1 \\ 1 & \text{si} & x \ge 1 \end{cases}$
Rango	{0,1}
Parámetros	$p \in (0,1)$
Media	p
Varianza	p(1-p)
	0.70

Distribución binomial

Codificación	BI(N, p)
Distribución de probabilidad	$p(x) = \begin{cases} \frac{N!}{x!(N-x)!} p^{x} (1-p)^{N-x} \\ 0 \end{cases}$	si $x = 0, 1, 2,, N$ otro caso
Distribución acumulada	$F(x) = \begin{cases} 0 \\ \sum_{i=0}^{\lfloor x \rfloor} \frac{N!}{i!(N-i)!} p^{i} (1-p)^{N-i} \\ 1 \end{cases}$	si $x < 0$ si $0 \le x < 1$
Danas		SI X > 1
Rango	{0, 1,, <i>N</i> }	
Parámetros	N es un número entero	
	$p \in (0,1)$	
Media	Np	
Varianza	<i>Np</i> (1 − <i>p</i>)	
	Binomial (5, 0.	.5)
	0.35 —	
	0.17 — 0.00 — 1.0 — 2.0 x	3.0 4.0 5.0

Distribución geométrica

Codificación	GE(p)
Distribución de probabilidad	$p(x) = \begin{cases} p(1-p)^x & \text{si} x = 0, 1, \dots \\ 0 & \text{otro caso} \end{cases}$
Distribución acumulada	$F(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor + 1} & \text{si} x = 0, 1, \dots \\ 0 & \text{otro caso} \end{cases}$
Rango	{0, 1,}
Parámetros	$p \in (0,1)$
Media	$(1-p)p^{-1}$
Varianza	$(1-p)p^{-2}$
	Geométrica (0.5) 0.50 0.25 0.00 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

Distribución de Poisson

Codificación	Ρ(λ)
Función de densidad	$p(x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & \text{si} x = 0, 1, 2, \dots \\ 0 & \text{otro caso} \end{cases}$
Distribución acumulada	$F(x) = \begin{cases} 0 & \text{si} & x < 0 \\ \sum_{i=0}^{ x } \frac{\lambda^{i}}{i!} e^{-\lambda} & \text{si} & x \ge 0 \end{cases}$
Rango	{0,1,}
Parámetros	$\lambda > 0$ es un número entero
Media	λ
Varianza	λ
	Poisson (4) 0.20 0.10 0.00 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4x10 ¹

Distribución uniforme discreta

Codificación	UD(i, j)									
Distribución de probabilidad	$p(x) = \begin{cases} \frac{1}{j-i+1} & \text{si} x \in \{i, i+1,, j\} \\ 0 & \text{en otro caso} \end{cases}$									
Distribución acumulada	$F(x) = \begin{cases} 0 & \text{si} & x < i \\ \frac{\lfloor x \rfloor - i + 1}{j - i + 1} & \text{si} & i \le x \le j \\ 1 & \text{si} & x > j \end{cases}$									
Rango	$\{i,i+1,\ldots,j\}$									
Parámetros	i y j son números enteros, con $i < jParámetro de localización: iParámetro de escala: j - i$									
Media	$\frac{1}{2}(i+j)$									
Varianza	$\frac{1}{12} \left[(j-i+1)^2 - 1 \right]$									
	Uniforme discreta (1, 6)									
	0.20									
	0.10 -									
	0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0									

ANEXO 2

REPORTES ESTADÍSTICOS EN PROMODEL

Los reportes que genera ProModel contienen los resultados numéricos de la simulación, presentados en un formato de hoja de cálculo.

El reporte contiene la información separada en las siguientes fichas:

General

En la ficha General se encuentran los datos generales del modelo, como nombre, fecha de ejecución y ruta del archivo.

Entity Activity

Incluye la información que se describe a continuación:

- Total Exits. Número de entidades que abandonaron el sistema.
- Current Qty In System. Número de entidades que permanecen en el sistema al finalizar la simulación.
- Avg Time In System (MIN). Tiempo promedio que las entidades permanecieron en el sistema simulado.

- Avg Time In Move Logic (MIN). Tiempo promedio que las entidades permanecieron viajando entre las localizaciones.
- **Avg Time Wait For Res (MIN).** Tiempo promedio que las entidades permanecieron esperando un recurso u otra entidad.
- **Avg Time In Operation (MIN).** Tiempo promedio que las entidades permanecieron en operación o en una banda transportadora.
- **Avg Time Blocked (MIN).** Tiempo promedio que las entidades permanecieron esperando una localización desocupada.

Entities Costing

Esta ficha incluye datos como los siguientes:

- Total Cost. Costo total de las entidades.
- % Total Cost. Porcentaje del costo de una entidad activa respecto del costo total de las entidades.

Entity States By Percentage

Ofrece la siguiente información:

- % In Move Logic. Porcentaje del tiempo que las entidades permanecieron viajando entre localizaciones.
- Wait For Res. Porcentaje del tiempo que las entidades permanecieron esperando un recurso u otra entidad.
- **% In Operation.** Porcentaje del tiempo promedio que las entidades permanecieron en operación o en una banda transportadora.
- **% Blocked.** Porcentaje del tiempo promedio que las entidades permanecieron esperando una localización desocupada.

Failed Arrival

Esta ficha ofrece los siguientes datos:

- Entity Name. Nombre de la entidad.
- Location Name. Localización donde ocurre la llegada de la entidad.
- **Failed Arrivals.** Número de entidades que no entraron a la localización por falta de capacidad.

Locations Costing

Aguí podrá obtener la información que se lista a continuación:

- Operation Cost. Costo del tiempo de operación.
- % Operation Cost. Porcentaje del costo de la localización, respecto de la suma de los costos de operación.
- Resource Cost. Costo por el uso de un recurso que opera dentro de la localización.
- **Resource Cost.** Porcentaje del costo de un recurso en la localización, respecto de la suma de los costos del resto de los recursos.
- Total Cost. Costo de operación más costo del recurso.
- % Total Cost. Porcentaje del costo total de la localización respecto de la suma de los costos totales de las localizaciones.

III Report for ejemplo4.1 Locations Location States Multi General Location States Single/Tank Resources Location States Multi for ejemplo4.1 Scheduled ≥ Part Occupied Name 2 Empty Time (MIN) Full Down Almacen 1 19200.40 82.91 17.09 0.00 0.00 19200.40 0.00 0.00 Almacen 2 99.38 0.62

Location States By Percentage (Multiple Capacity)

En esta ficha encontrará los siguientes datos:

- **Scheduled Time.** Porcentaje de tiempo en operación.
- % Empty. Porcentaje de tiempo que la localización estuvo vacía.
- % Partially Occupied. Porcentaje de tiempo que la localización estuvo parcialmente llena.
- % Full. Porcentaje de tiempo que la localización estuvo llena.
- **% Down.** Porcentaje de tiempo que la localización estuvo no disponible por paros no programados.

IIII Report for ejemplo4.1 Location States Multi Location States Single/Tank Locations Resources Resource 4 Location States Single/Tank for ejemplo4.1 Scheduled z 2 z Name Time [MIN] Down Operation Idle Blocked Setup Waiting Lavadora 19200.40 46.15 0.00 53.85 0.00 0.00 0.00 19200.40 41.32 0.00 58.68 0.00 0.00 0.00 Inspector.1 Inspector.2 19200.40 16.59 0.00 83.41 0.00 0.00 0.00 Inspector 38400.80 28.95 0.00 71.05 0.00 0.00 0.00

Location States By Percentage (Single Capacity/Tank)

Con esta información:

- Scheduled Time. Tiempo total programado.
- **Operation.** Porcentaje de tiempo que la localización estuvo en operación.
- % **Setup.** Porcentaje de tiempo que la localización estuvo en preparación.
- % Idle. Porcentaje de tiempo que la localización estuvo ociosa por falta de entidades.
- **% Waiting.** Porcentaje de tiempo que pasó la entidad esperando un recurso u otra entidad para agruparse, unirse, etcétera.
- **Blocked.** Porcentaje de tiempo que las entidades permanecieron bloqueadas en la localización.
- % **Down.** Porcentaje de tiempo por paros no programados.

Locations

La ficha Locations le ofrece esta información:

- Scheduled Time (MIN). Tiempo total programado de la localización.
- Capacity. Capacidad de la localización.
- Total Entries. Total de entidades que entraron a la localización.
- Avg Time Per Entry (MIN). Tiempo promedio de permanencia en la localización.
- Avg Contents. Número promedio de entidades en la localización.
- Maximum Contents. Número máximo de entidades en la localización en el transcurso de la simulación.
- Current Contents. Número de entidades en la localización al final de la simulación.
- % Utilization. Porcentaje de utilización.

Logs

La ficha Logs da al usuario los datos que se listan a continuación:

- Number Observations. Número de entidades que ejecutaron la instrucción LOG durante la simulación.
- Minimum Value. El mínimo valor de tiempo registrado por la instrucción LOG.
- Maximum Value. El máximo valor de tiempo registrado por la instrucción LOG.
- Avg Value. El valor promedio de tiempo registrado por la instrucción LOG.

Node Entries

Node Entries presenta estos datos:

- Path Name. Nombre de la trayectoria.
- Node Name. Número del nodo.
- Total Entries. Total de entradas de un recurso a un nodo.
- Blocked Entries. Número de veces que el nodo estuvo bloqueado por otro recurso.

Resource Costing

Esta ficha indica:

- NonUse Cost. Costo atribuible al ocio del recurso.
- NonUse Cost. Porcentaje del costo de ocio del recurso respecto de la suma de los costos de ocio de todos los recursos.
- Usage Cost. Costo por usar el recurso.
- W Usage Cost. Porcentaje del costo de utilización del recurso respecto de la suma de los costos de utilización de todos los recursos.
- Total Cost. Costo de utilización más costo de ocio.
- % Total Cost. Porcentaje del costo total del recurso respecto de la suma de los costos de todos los recursos.

Resource States By Percentage

Incluye la siguiente información:

- Scheduled Time (MIN). Tiempo total que el recurso fue programado para estar disponible.
- % In Use. Porcentaje de tiempo que el recurso fue utilizado.
- % Travel To Use. Porcentaje de tiempo que el recurso fue utilizado en movimientos entre localizaciones.
- % Travel To Park. Porcentaje de tiempo que el recurso estuvo viajando a su nodo base.
- % Idle. Porcentaje de ocio del recurso.
- **% Down.** Porcentaje que el recurso estuvo no disponible a causa de paros no programados.

Resources

La ficha Resources presenta estos datos:

- Units. Número de recursos.
- Scheduled Time (MIN). Tiempo programado para utilizar el recurso.
- Number of Times Used. Número de ocasiones que se utilizó el recurso.
- Avg Time Per Usage (MIN). Tiempo promedio de utilización del recurso.
- Avg Time Travel To Use (MIN). Tiempo promedio por viaje del recurso.
- Avg Time Travel To Park (MIN). Tiempo promedio para dirigirse al nodo base.
- Blocked In Travel. Porcentaje de tiempo que el recurso estuvo bloqueado al final del viaje.
- % Utilization. Porcentaje de utilización del recurso.

Variables

Finalmente, la ficha Variables ofrece la siguiente información:

- Total Changes. Total de cambios de valor de la variable.
- Average Time Per Change. El tiempo promedio entre cambios de valor de la variable.
- Minimum Value. Valor mínimo de la variable en el transcurso de la simulación.
- Maximum Value. Valor máximo de la variable en el transcurso de la simulación.
- Current Value. Valor de la variable al finalizar la simulación.
- Avg Value. Valor promedio de la variable a lo largo del tiempo.

ANEXO 3

DISTRIBUCIONES DE PROBABILIDAD

Probabilidades acumuladas para la distribución Normal Estándar

-		2.24	2.22	0.00	0.04	0.05	0.04			2.22	-
Z_{α}	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	Z_{α}
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	0.00
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	0.10
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	0.20
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	0.30
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	0.40
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	0.50
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	0.60
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	0.70
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	0.80
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	0.90
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	1.00
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.9749	0.8770	0.8790	0.8810	0.8830	1.10
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	1.20
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	1.30
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	1.40
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9419	0.9429	0.9441	1.50
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	1.60
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	1.70
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	1.80
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	1.90
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	2.00
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	2.10
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	2.20
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.909	0.9911	0.9913	0.9916	2.30
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	2.40
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	2.50
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	2.60
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	2.70
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	2.80
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	2.90
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	3.00
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993	3.10
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	3.20
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997	3.30
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998	3.40
3.50	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	3.50
3.60	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	3.60
3.70	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	3.70
3.80	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	3.80
3.90	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	3.90
4.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	4.00

Valores críticos para la distribución t-student

			t_{lpha}					
v grados de								
libertad	t _{0.10}	t _{0.05}	T _{0.025}	t _{0.01}	t _{0.005}	t _{0.001}		
1	3.078	6.314	12.706	31.821	63.657	318.309		
2	1.886	2.920	4.303	6.965	9.925	22.327		
3	1.638	2.353	3.182	4.541	5.841	10.215		
4	1.533	2.132	2.776	3.747	4.604	7.173		
5	1.476	2.015	2.571	3.365	4.032	5.893		
6	1.440	1.943	2.447	3.143	3.707	5.208		
7	1.415	1.895	2.365	2.998	3.499	4.785		
8	1.397	1.860	2.306	2.896	3.355	4.501		
9	1.383	1.833	2.262	2.821	3.250	4.297		
10	1.372	1.812	2.228	2.764	3.169	4.144		
11	1.363	1.796	2.201	2.718	3.106	4.025		
12	1.356	1.782	2.179	2.681	3.055	3.930		
13	1.350	1.771	2.160	2.650	3.012	3.852		
14	1.345	1.761	2.145	2.624	2.977	3.787		
15	1.341	1.753	2.131	2.602	2.947	3.733		
16	1.337	1.746	2.120	2.583	2.921	3.686		
17	1.333	1.740	2.110	2.567	2.898	3.646		
18	1.330	1.734	2.101	2.552	2.878	3.610		
19	1.328	1.729	2.093	2.539	2.861	3.579		
20	1.325	1.725	2.086	2.528	2.845	3.552		
21	1.323	1.721	2.080	2.518	2.831	3.527		
22	1.321	1.717	2.074	2.508	2.819	3.505		
23	1.319	1.714	2.069	2.500	2.807	3.485		
24	1.318	1.711	2.064	2.492	2.797	3.467		
25	1.316	1.708	2.060	2.485	2.787	3.450		
26	1.315	1.706	2.056	2.479	2.779	3.435		
27	1.314	1.703	2.052	2.473	2.771	3.421		
28	1.313	1.701	2.048	2.467	2.763	3.408		
29	1.311	1.699	2.045	2.462	2.756	3.396		
30	1.310	1.697	2.042	2.457	2.750	3.385		
40	1.303	1.684	2.021	2.423	2.704	3.307		
50	1.299	1.676	2.009	2.403	2.678	3.261		
60	1.296	1.671	2.000	2.390	2.660	3.232		
70	1.294	1.667	1.994	2.381	2.648	3.211		
80	1.292	1.664	1.990	2.374	2.639	3.195		
90	1.291	1.662	1.987	2.368	2.632	3.183		
100	1.290	1.660	1.984	2.364	2.626	3.174		
∞	1.282	1.645	1.960	2.326	2.576	3.090		

Valores críticos para la distribución χ^2

			χ^2_{α}				
ν grados de							
libertad	$\chi^2_{0.10}$	$\chi^2_{0.05}$	$\chi^2_{0.025}$	X ² _{0.01}	$\chi^2_{0.005}$	X ² _{0.001}	
1	2.706	3.841	5.024	6.635	7.879	10.828	
2	4.605	5.991	7.378	9.210	10.597	13.816	
3	6.251	7.815	9.348	11.345	12.838	16.266	
4	7.779	9.488	11.143	13.277	14.860	18.467	
5	9.236	11.070	12.833	15.086	16.750	20.515	
6	10.645	12.592	14.449	16.812	18.548	22.458	
7	12.017	14.067	16.013	18.475	20.278	24.322	
8	13.362	15.507	17.535	20.090	21.955	26.124	
9	14.684	16.919	19.023	21.666	23.589	27.877	
10	15.987	18.307	20.483	23.209	25.188	29.588	
11	17.275	19.675	21.920	24.725	26.757	31.264	
12	18.549	21.026	23.337	26.217	28.300	32.909	
13	19.812	22.362	24.736	27.688	29.819	34.528	
14	21.064	23.685	26.119	29.141	31.319	36.123	
15	22.307	24.996	27.488	30.578	32.801	37.697	
16	23.542	26.296	28.845	32.000	34.267	39.252	
17	24.769	27.587	30.191	33.409	35.718	40.790	
18	25.989	28.869	31.526	34.805	37.156	42.312	
19	27.204	30.144	32.852	36.191	38.582	43.820	
20	28.412	31.410	34.170	37.566	39.997	45.315	
21	29.615	32.671	35.479	38.932	41.401	46.797	
22	30.813	33.924	36.781	40.289	42.796	48.268	
23	32.007	35.172	38.076	41.638	44.181	49.728	
24	33.196	36.415	39.364	42.980	45.559	51.179	
25	34.382	37.652	40.646	44.314	46.928	52.620	
26	35.563	38.885	41.923	45.642	48.290	54.052	
27	36.741	40.113	43.195	46.963	49.645	55.476	
28	37.916	41.337	44.461	48.278	50.993	56.892	
29	39.087	42.557	45.722	49.588	52.336	58.301	
30	40.256	43.773	46.979	50.892	53.672	59.703	
40	51.805	55.758	59.342	63.691	66.766	73.402	
50	63.167	67.505	71.420	76.154	79.490	86.661	
60	74.397	79.082	83.298	88.379	91.952	99.607	
70	85.527	90.531	95.023	100.425	104.215	112.317	
80	96.578	101.879	106.629	112.329	116.321	124.839	
90	107.565	113.145	118.136	124.116	128.299	137.208	
100	118.498	124.342	129.561	135.807	140.169	149.449	

Para
$$v > 100$$
 usar $\chi^2_{v,\alpha} = 0.5 \left(Z_{\alpha} + \sqrt{2v - 1} \right)^2$ (continúa)

Valores críticos para la distribución χ^2 (continuación)

			χ^2_{α}				
ν grados de							
libertad	$\chi^{2}_{0.90}$	X ² _{0.95}	$\chi^2_{0.975}$	X ² _{0.99}	$\chi^2_{0.995}$	$\chi^2_{0.999}$	
1	0.016	0.004	0.001	0.000	0.000	0.000	
2	0.211	0.103	0.051	0.020	0.010	0.002	
3	0.584	0.352	0.216	0.115	0.072	0.024	
4	1.064	0.711	0.484	0.297	0.207	0.091	
5	1.610	1.145	0.831	0.554	0.412	0.210	
6	2.204	1.635	1.237	0.872	0.676	0.381	
7	2.833	2.167	1.690	1.239	0.989	0.598	
8	3.490	2.733	2.180	1.646	1.344	0.857	
9	4.168	3.325	2.700	2.088	1.735	1.152	
10	4.865	3.940	3.247	2.558	2.156	1.479	
11	5.578	4.575	3.816	3.053	2.603	1.834	
12	6.304	5.226	4.404	3.571	3.074	2.214	
13	7.042	5.892	5.009	4.107	3.565	2.617	
14	7.790	6.571	5.629	4.660	4.075	3.041	
15	8.547	7.261	6.262	5.229	4.601	3.483	
16	9.312	7.962	6.908	5.812	5.142	3.942	
17	10.085	8.672	7.564	6.408	5.697	4.416	
18	10.865	9.390	8.231	7.015	6.265	4.905	
19	11.651	10.117	8.907	7.633	6.844	5.407	
20	12.443	10.851	9.591	8.260	7.434	5.921	
21	13.240	11.591	10.283	8.897	8.034	6.447	
22	14.041	12.338	10.982	9.542	8.643	6.983	
23	14.848	13.091	11.689	10.196	9.260	7.529	
24	15.659	13.848	12.401	10.856	9.886	8.085	
25	16.473	14.611	13.120	11.524	10.520	8.649	
26	17.292	15.379	13.844	12.198	11.160	9.222	
27	18.114	16.151	14.573	12.879	11.808	9.803	
28	18.939	16.928	15.308	13.565	12.461	10.391	
29	19.768	17.708	16.047	14.256	13.121	10.986	
30	20.599	18.493	16.791	14.953	13.787	11.588	
40	29.051	26.509	24.433	22.164	20.707	17.916	
50	37.689	34.764	32.357	29.707	27.991	24.674	
60	46.459	43.188	40.482	37.485	35.534	31.738	
70	55.329	51.739	48.758	45.442	43.275	39.036	
80	64.278	60.391	57.153	53.540	51.172 46.520		
90	73.291	69.126	65.647	61.754	59.196	54.155	
100	82.358	77.929	74.222	70.065	67.328	61.918	

Para
$$v > 100 \text{ usar } \chi_{v,\alpha}^2 = 0.5 (Z_{\alpha} + \sqrt{2v - 1})^2$$

\ / I	/. •		1 4 1 1 1 /	
VAINTES	Criticos	GE IS	distribilition	$F \operatorname{con} \alpha = 0.05$
VUICICS		MC IG	MISTINGCIOII	/ COII a - 0.03

		Grados de libertad para el denominador													
	Χ	1	2	3	4	5	6	8	9	10	15	20	30	50	100
	1	161.45	18.51	10.13	7.71	6.61	5.99	5.32	5.12	4.96	4.54	4.35	4.17	4.03	3.94
	2	199.50	19.00	9.55	6.94	5.79	5.14	4.46	4.26	4.10	3.68	3.49	3.32	3.18	3.09
5	3	215.71	1916	9.28	6.59	5.41	4.76	4.07	3.86	3.71	3.29	3.10	2.92	2.79	2.70
erad	4	224.58	19.25	9.12	6.39	5.19	4.53	3.84	3.63	3.48	3.06	2.87	2.69	2.56	2.46
el numerador	5	230.16	19.30	9.01	6.26	5.05	4.39	3.69	3.48	3.33	2.90	2.71	2.53	2.40	2.31
la el	6	233.99	19.33	8.94	6.16	4.95	4.28	3.58	3.37	3.22	2.79	2.60	2.42	2.29	2.19
para	8	238.88	19.37	8.85	6.04	4.82	4.15	3.44	3.23	3.07	2.64	2.45	2.27	2.13	2.03
libertad	9	240.54	19.38	8.81	6.00	4.77	4.10	3.39	3.18	3.02	2.59	2.39	2.21	2.07	1.97
	10	241.88	19.40	8.79	5.96	4.74	4.06	3.35	3.14	2.98	2.54	2.35	2.16	2.03	1.93
s de	15	245.95	19.43	8.70	5.86	4.62	3.94	3.22	3.01	2.85	2.40	2.20	2.01	1.87	1.77
Grados	20	248.01	19.45	8.66	5.80	4.56	3.87	3.15	2.94	2.77	2.33	2.12	1.93	1.78	1.68
Ū	30	250.10	19.46	8.62	5.75	4.50	3.81	3.08	2.86	2.70	2.25	2.04	1.84	1.69	1.57
	50	251.77	19.48	8.58	5.70	4.44	3.75	3.02	2.80	2.64	2.18	1.97	1.76	1.60	1.48
	100	253.04	19.49	8.55	5.66	4.41	3.71	2.97	2.76	2.59	2.12	1.91	1.70	1.52	1.39

Fuente: Valores calculados con Excel.

Valores críticos de la distribución F con α = 0.1

						Grado	s de lik	ertad p	ara el c	denomi	nador				
	X	1	2	3	4	5	6	8	9	10	15	20	30	50	100
	1	39.86	8.53	5.54	4.54	4.06	3.78	3.46	3.36	3.29	3.07	2.97	2.88	2.81	2.76
	2	49.50	9.00	5.46	4.32	3.78	3.46	3.11	3.01	2.92	2.70	2.59	2.49	2.41	2.36
<u> </u>	3	53.59	9.16	5.39	4.19	3.62	3.29	2.92	2.81	2.73	2.49	2.38	2.28	2.20	2.14
erad	4	55.83	9.24	5.34	4.11	3.52	3.18	2.81	2.69	2.61	2.36	2.25	2.14	2.06	2.00
el numerador	5	57.24	9.29	5.31	4.05	3.45	3.11	2.73	2.61	2.52	2.27	2.16	2.05	1.97	1.91
	6	58.20	9.33	5.28	4.01	3.40	3.05	2.67	2.55	2.46	2.21	2.09	1.98	1.90	1.83
para	8	59.44	9.37	5.25	3.95	3.34	2.98	2.59	2.47	2.38	2.12	2.00	1.88	1.80	1.73
Grados de libertad para	9	59.86	9.38	5.24	3.94	3.32	2.96	2.56	2.44	2.35	2.09	1.96	1.85	1.76	1.69
liber	10	60.19	9.39	5.23	3.92	3.30	2.94	2.54	2.42	2.32	2.06	1.94	1.82	1.73	1.66
de	15	61.22	9.42	5.20	3.87	3.24	2.87	2.46	2.34	2.24	1.97	1.84	1.72	1.63	1.56
ados	20	61.74	9.44	5.18	3.84	3.21	2.84	2.42	2.30	2.20	1.92	1.79	1.67	1.57	1.49
ট	30	62.26	9.46	5.17	3.82	3.17	2.80	2.38	2.25	2.16	1.87	1.74	1.61	1.50	1.42
	50	62.69	9.47	5.15	3.80	3.15	2.77	2.35	2.22	2.12	1.83	1.69	1.55	1.44	1.35
	100	63.01	9.48	5.14	3.78	3.13	2.75	2.32	2.19	2.09	1.79	1.65	1.51	1.39	1.29

Valores críticos de la prueba de Kolmogorov-Smirnov

v grados			
de libertad	$D_{\alpha=0.1}$	$D_{\alpha = 0.05}$	$D_{\alpha = 0.01}$
1	0.950	0.975	0.995
2	0.930	0.842	0.929
3	0.770	0.708	0.929
4	0.564	0.708	0.828
5	0.504	0.565	0.755
3	0.510	0.565	0.009
6	0.470	0.521	0.618
7	0.470	0.321	0.577
8	0.411	0.457	0.543
9	0.388	0.432	0.514
10	0.368	0.410	0.490
11	0.352	0.391	0.468
12	0.338	0.375	0.450
13	0.325	0.361	0.433
14	0.314	0.349	0.418
15	0.304	0.338	0.404
16	0.295	0.328	0.392
17	0.286	0.318	0.381
18	0.278	0.309	0.371
19	0.272	0.301	0.363
20	0.264	0.294	0.356
25	0.250	0.270	0.320
30	0.220	0.240	0.290
35	0.210	0.230	0.270
40	0.193	0.215	0.258
45	0.182	0.203	0.243
Para valores	1.22	1.36	1.63
mayores a 35	\sqrt{n}	\sqrt{n}	\sqrt{n}

Fuente: Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit, The Journal of the American Statistical Association, vol. 46, pp. 70 (1951).

Estadísticos de prueba y valores críticos para la prueba de Anderson-Darling

				críticos α	
Distribución	Estadístico de prueba ajustado	0.1	0.05	0.025	0.001
Parámetros conocidos $n \ge 5$	A_n^2	1.933	2.492	3.070	3.857
Normal	$A_n^2\left(1+\frac{4}{n}=\frac{25}{n^2}\right)$	0.632	0.751	0.870	1.029
Exponencial	$A_n^2\left(1+\frac{3}{5n}\right)$	1.070	1.326	1.587	1.943
Weibull	$A_n^2 \left(1 + \frac{1}{5\sqrt{n}} \right)$	0.637	0.757	0.877	1.038
Log-logistica	$A_n^2 \left(1 + \frac{1}{4\sqrt{n}} \right)$	0.563	0.660	0.769	0.906

Fuente: Law, A.M. y Kelton, W.D. Simulation Modeling and Analysis, 3a. ed., pp. 368, McGraw Hill (2000).

Valores de la función Gamma

X	$\Gamma(x)$	X	Γ(x)	Х	$\Gamma(x)$	X	$\Gamma(x)$
1.00	1.0000000	1.25	0.9064025	1.50	0.8862269	1.75	0.9190625
1.01	0.9943259	1.26	0.9043971	1.51	0.8865917	1.76	0.9213749
1.02	0.9888442	1.27	0.9045971	1.52	0.8870388	1.77	0.9213749
1.02	0.9835500	1.28	0.9023031	1.53	0.8875676	1.78	0.9237031
1.03	0.9833300		0.8990416	1.54	0.8881777	1.79	0.9262273
1.04	0.9784382	1.29	0.8990416	1.54	0.8881777	1./9	0.928/6/5
1.05	0.0725042	1 20	0.0074707	1.55	0.0000000	1.00	0.0212020
1.05	0.9735043	1.30	0.8974707	1.55	0.8888683	1.80	0.9313838
1.06	0.9687436	1.31	0.8960042	1.56	0.8896392	1.81	0.9340763
1.07	0.9641520	132	0.8946405	1.57	0.8904897	1.82	0.9368451
1.08	0.9597253	1.33	0.8933781	1.58	0.8914196	1.83	0.9396904
1.09	0.9554595	1.34	0.8922155	1.59	0.8924282	1.84	0.9426124
1.10	0.9513508	1.35	0.8911514	1.60	0.8935153	1.85	0.9456112
1.11	0.9473955	1.36	0.8901845	1.61	0.8946806	1.86	0.9486870
1.12	0.9435902	1.37	0.8893135	1.62	0.8959237	1.87	0.9518402
1.13	0.9399314	1.38	0.8885371	1.63	0.8972442	1.88	0.9550709
1.14	0.9364161	1.39	0.8878543	1.64	0.8986420	1.89	0.9583793
1.15	0.9330409	1.40	0.8872638	1.65	0.9001168	1.90	0.9617658
1.16	0.9298031	1.41	0.8867647	1.66	0.9016684	1.91	0.9652307
1.17	0.9266996	1.42	0.8863558	1.67	0.9032965	1.92	0.9687743
1.18	0.9237278	1.43	0.8860362	1.68	0.9050010	1.93	0.9723969
1.19	0.9208850	1.44	0.8858051	1.69	0.9067818	1.94	0.9760989
1.20	0.9181687	1.45	0.8856614	1.70	0.9086387	1.95	0.9798807
1.21	0.9155765	1.46	0.8856043	1.71	0.9105717	1.96	0.9837425
1.22	0.9131059	1.47	0.8856331	1.72	0.9125806	1.97	0.9876850
1.23	0.9107549	1.48	0.8857470	1.73	0.9146654	1.98	0.9917084
1.24	0.9085211	1.49	0.8859451	1.74	0.9168260	1.99	0.9958133
						2.00	1.0000000

Valores calculados a partir de la ecuación de aproximación de Lanczos

Para valores de x no tabulados, usar la relación $\Gamma(x+1) = x\Gamma(x)$

Para valores naturales de x, usar $\Gamma(x) = x (x - 1)!$

Fuente: A Precision Aproximation of the Gamma Function, J. SIAM No. anal. ser. B., vol. 1, pp. 68-96 (1964).

Probabilidades acumuladas de la distribución Poisson

		Media									
X	0.01	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.9900	0.9512	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066
1	1.0000	0.9988	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725
2		1.0000	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371
3			1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865
4				1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977
5						1.0000	1.0000	1.0000	0.9999	0.9998	0.9997
6									1.0000	1.0000	1.0000

						Media					
X	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
0	0.3679	0.3329	0.3012	0.2725	0.2466	0.2231	0.2019	0.1827	0.1653	0.1496	0.1353
1	0.7358	0.6990	0.6626	0.6268	0.5918	0.5578	0.5249	0.4932	0.4628	0.4337	0.4060
2	0.9197	0.9004	0.8795	0.8571	0.8335	0.8088	0.7834	0.7572	0.7306	0.7037	0.6767
3	0.9810	0.9743	0.9662	0.9569	0.9463	0.9344	0.9212	0.9068	0.8913	0.8747	0.8571
4	0.9963	0.9946	0.9923	0.9893	0.9857	0.9814	0.9763	0.9704	0.9636	0.9559	0.9473
5	0.9994	0.9990	0.9985	0.9978	0.9968	0.9955	0.9940	0.9920	0.9896	0.9868	0.9834
6	0.9999	0.9999	0.9997	0.9996	0.9994	0.9991	0.9987	0.9981	0.9974	0.9966	0.9955
7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.999
8									1.000	1.000	1.000

						Media					
X	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5
0	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067	0.0041	0.0025	0.0015	0.0009	0.0006
1	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404	0.0266	0.0174	0.0113	0.0073	0.0047
2	0.5438	0.4234	0.3208	0.2381	0.1736	0.1247	0.0884	0.0620	0.0430	0.0296	0.0203
3	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650	0.2017	0.1512	0.1118	0.0818	0.0591
4	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405	0.3575	0.2851	0.2237	0.1730	0.1321
5	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160	0.5289	0.4457	0.3690	0.3007	0.2414
6	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622	0.6860	0.6063	0.5265	0.4497	0.3782
7	0.996	0.988	0.973	0.949	0.913	0.867	0.809	0.744	0.673	0.599	0.525
8	0.999	0.996	0.990	0.979	0.960	0.932	0.894	0.847	0.792	0.729	0.662
9	1.000	0.999	0.997	0.992	0.983	0.968	0.946	0.916	0.877	0.830	0.776
10		1.000	0.999	0.997	0.993	0.986	0.975	0.957	0.933	0.901	0.862
11			1.000	0.999	0.998	0.995	0.989	0.980	0.966	0.947	0.921
12				1.000	0.999	0.998	0.996	0.991	0.984	0.973	0.957
13					1.000	0.999	0.998	0.996	0.993	0.987	0.978
14						1.000	0.999	0.999	0.997	0.994	0.990
15							1.000	0.999	0.999	0.998	0.995
16								1.000	1000	0.999	0.998
17										1.000	0.999
18											1.000

Fuente: Valores calculados con Excel.

(continúa)

Probabilidades acumuladas de la distribución Poisson (continuación)

						Media					
X	8	9	10	11	12	13	14	15	16	18	20
0	0.0003	0.0001	0.0000	0.0000	0.0000						
1	0.0030	0.0012	0.0005	0.0002	0.0001	0.0000	0.0000				
2	0.0138	0.0062	0.0028	0.0012	0.0005	0.0002	0.0001	0.0000	0.0000		
3	0.0424	0.0212	0.0103	0.0049	0.0023	0.0011	0.0005	0.0002	0.0001	0.0000	
4	0.0996	0.0550	0.0293	0.0151	0.0076	0.0037	0.0018	0.0009	0.0004	0.0001	0.0000
5	0.1912	0.1157	0.0671	0.0375	0.0203	0.0107	0.0055	0.0028	0.0014	0.0003	0.0001
6	0.3134	0.2068	0.1301	0.0786	0.0458	0.0259	0.0142	0.0076	0.0040	0.0010	0.0003
7	0.453	0.324	0.220	0.143	0.090	0.054	0.032	0.018	0.010	0.003	0.001
8	0.5925	0.4557	0.3328	0.2320	0.1550	0.0998	0.0621	0.0374	0.0220	0.0071	0.0021
9	0.7166	0.5874	0.4579	0.3405	0.2424	0.1658	0.1094	0.0699	0.0433	0.0154	0.0050
10	0.8159	0.7060	0.5830	0.4599	0.3472	0.2517	0.1757	0.1185	0.0774	0.0304	0.0108
11	0.8881	0.8030	0.6968	0.5793	0.4616	0.3532	0.2600	0.1848	0.1270	0.0549	0.0214
12	0.9362	0.8758	0.7916	0.6887	0.5760	0.4631	0.3585	0.2676	0.1931	0.0917	0.0390
13	0.9658	0.9261	0.8645	0.7813	0.6815	0.5730	0.4644	0.3632	0.2745	0.1426	0.0661
14	0.9827	0.9585	0.9165	0.8540	0.7720	0.6751	0.5704	0.4657	0.3675	0.2081	0.1049
15	0.9918	0.9780	0.9513	0.9074	0.8444	0.7636	0.6694	0.5681	0.4667	0.2867	0.1565
16	0.9963	0.9889	0.9730	0.9441	0.8987	0.8355	0.7559	0.6641	0.5660	0.3751	0.2211
17	0.9984	0.9947	0.9857	0.9678	0.9370	0.8905	0.8272	0.7489	0.6593	0.4686	0.2970
18	0.9993	0.9976	0.9928	0.9823	0.9626	0.9302	0.8826	0.8195	0.7423	0.5622	0.3814
19	0.9997	0.9989	0.9965	0.9907	0.9787	0.9573	0.9235	0.8752	0.8122	0.6509	0.4703
20	0.9999	0.9996	0.9984	0.9953	0.9884	0.9750	0.9521	0.9170	0.8682	0.7307	0.5591
21	1.0000	0.9998	0.9993	0.9977	0.9939	0.9859	0.9712	0.9469	0.9108	0.7991	0.6437
22		0.9999	0.9997	0.9990	0.9970	0.9924	0.9833	0.9673	0.9418	0.8551	0.7206
23		1.0000	0.9999	0.9995	0.9985	0.9960	0.9907	0.9805	0.9633	0.8989	0.7875
24			1.0000	0.9998	0.9993	0.9980	0.9950	0.9888	0.9777	0.9317	0.8432
25				0.9999	0.9997	0.9990	0.9974	0.9938	0.9869	0.9554	0.8878
26				1.0000	0.9999	0.9995	0.9987	0.9967	0.9925	0.9718	0.9221
27					0.9999	0.9998	0.9994	0.9983	0.9959	0.9827	0.9475
28					1.0000	0.9999	0.9997	0.9991	0.9978	0.9897	0.9657
29						1.0000	0.9999	0.9996	0.9989	0.9941	0.9782
30							0.9999	0.9998	0.9994	0.9967	0.9865
31							1.0000	0.9999	0.9997	0.9982	0.9919
32								1.0000	0.9999	0.9990	0.9953
33									0.9999	0.9995	0.9973
34									1.0000	0.9998	0.9985
35										0.9999	0.9992
36										0.9999	0.9996
37										1.0000	0.9998
38											0.9999
39											0.9999
40											1.0000

ÍNDICE

A	CONTENTS, 147
ACCUM (cantidad), 190	Continue, 186
Aceptación y rechazo, 72	Continuous distributions, 71
Actividades, 10	Convergencia, 115
Agrupamiento, 190	Convolución, 53
Ajuste de datos, 67	Corrida, 8, 110
Aleatorio, 50	Corridas arriba y abajo, prueba, 37, 39
Algoritmo	Crystal Ball, 125
congruencial aditivo, 26	Cuadrados medios, 21
congruencial cuadrático, 27	
congruencial multiplicativo, 25	CH
de Blum, Blum y Shub, 28	Chi-cuadrada, 34, 35, 53, 56
de cuadrados medios, 20	prueba, 34, 57
de multiplicador constante, 22	
de productos medios, 21	D
lineal, 23	D. H. Lehmer, 23
Algoritmos congruenciales no lineales, 27	Definición, 10
Análisis	Dependent, 186
de datos, 11	Descriptive, 69
de sensibilidad, 12	Discrete distributions, 69
Anderson-Darling, 56	Discretos, 20
prueba, 53, 62	DISPLAY, 160
Arena, 125	DISPLAY "mensaje" {(expresión)}, 160
Arrivals, 134, 138	DISTNORMINV, 114
As Alternate, 186	Distribución
As Backup, 186	binomial, 81
Atributo, 4	de Bernoulli, 75
Atributos, 6	de Erlang, 79
Autofit, 69	exponencial, 74
Automatic Fitting, 70	normal, 80
AutoMod, 125	triangular, 9, 83
	uniforme, 19, 74
В	Distribuciones
Banks, Carson, Nelson y Nicol, 25	continuas, 231
Bernoulli, 55, 89	discretas, 55, 231
Biblioteca de probabilidades, 172	Documentación, 13
Binomial, 55, 89	DYNPLOT, 151
Build, 134	DYNPLOT "nombre del gráfico dinámico", 151
By turn, 185	_
	E
C	Editor
Ciclo, 48	de turnos, 133
COMBINE (cantidad) AS (nueva entidad), 193	gráfico, 132
Composición 53	Ensamble e inspección 117

Ensambles, acumulación, 190	GET, 177
Entidad, 3	GPSS, 124
Entidades, 6	Gráfica
Entities, 134	de dispersión, 44
Entity, 138	de estabilización, 115
Entity Activity, 246	de Gantt, 13
Entity Activity, ficha, 145	GRAPHIC #, 159
Entity States, ficha, 145	GROUP (cantidad) AS (nueva entidad), 191
ENTRIES, 148	
Erlang, 56, 88	Н
Estado	Hipergeométrica, 55
del sistema, 3	Histograma, 57
desventajas, 8	Hoja de cálculo, 48
estable, 7	•
transitorio, 7	I
ventajas, 8	If Empity, 186
Evento, 3	If Join Request, 185
secundario, 113	If Load Request, 186
Eventos, 6	If Send, 186
Exactitud, 111	IFF (condición), 196
Excel, 119	IN (tiempo), 196
Exponencial, 56, 88	Independencia, 19, 30
Exponencial, 50, 00	Instrucción, 191
F	Instrucciones
F, 260	ACCUM, 190
Failed Arrival, 248	COMBINE, 193
ficha, 144	FREE, 177
File, 68	GET, 177
First available 185	JOIN, 194
First Times, 139	LOAD, 194
Fit, 69	ROUTE, 204
Flexsim, 125	SPLIT, 201
FORTRAN, 124	UNGROUP, 192
Frecuencia	UNLOAD, 196
esperada, 34	Intervalos de confianza, 12, 106
observada, 34	Inventario, 121
FREE, 177, 208	J
Frequency, 139	_
Función de densidad de probabilidad, 55	JOIN (cantidad) (entidad a ensamblar), 194
G	K
Gamma, 88, 263	Kolmogorov-Smirnov, 34, 53, 56, 261
GASP, 124	prueba, 59
GE, 208	
Generación, 10	L
de variables aleatorias, 72	L'Ecuyer, 18
Generadores de variables aleatorias, 53	Lanczos, 263
General, 246	Law, A. M. y Kelton, W. D., 262
ficha, 142	Límite central, teorema, 80

Límites de aceptación, 33	0
Línea de espera, 113	Occurences, 139
LOAD (cantidad), 196	
Localizaciones, 3, 6	Р
Location, 249	Par, 40
Locations, 250	Paros en los equipos, 182
ficha, 143	Path Networks, 134
Locations States Single/Tank, ficha, 143	Periodo de vida, 48
Locations States Multi, ficha, 143	Poisson, 55, 57, 89, 264
Locations Costing, 248	Póker, 40
Log-logística, 62	prueba, 40
Lognormal, 62, 89	Probabilidad
Logs, 250	esperada acumulada, 61
Longest Unoccupied, 186	distribuciones, 11
Longitud de la réplica, 109, 110	Probability, 186
	Processing, 134
M	ProModel, 91, 131, 132
M/M/1 de líneas de espera, 133	Propiedades de los números pseudo aleatorios
Massey, F. J., 261	entre 0 y 1, 28
Media, 20	Prueba
de los aleatorios entre 0 y 1, 28	chi-cuadrada, 34, 56, 57
Método	de Anderson-Darling, 53, 62
de composición, 82	de corridas arriba y abajo, 37, 39
de convolución, 79	de corridas arriba y abajo de la media, 38
de la transformada inversa, 72	de huecos, 46
de transformación directa, 85	de Kolmogorov-Smirnov, 35, 36, 59
Modelo, 10, 131	de medias, 31
Modelos, 4	de series, 43
continuos, 4	de varianza, 31
de simulación, 113	póker, 40
determinísticos, 5	de independencia, 37
dinámicos, 5	Pruebas, 19
discretos, 4	de uniformidad, 34
estáticos, 5	estadísticas para los números pseudo
estocásticos, 5	aleatorios, 31
probabilísticos, 5	Pseudo aleatorios, 78
Módulo (MOD), 122	números, 17, 18
Most Available, 186	Pzas_tot=ENTRIES (prensa), 148
MOVE FOR, 208	
(tiempo), 159	Q
MOVE WITH, 208	Qty Each, 139
M	Quantity, 186
N	Quintilla, 40
Normal, 56	D.
estándar, 256	R
NORMINV, 114	Rand, 50
Number of Replications, 141	Random, 186
Número de corridas, 39	Recolección y análisis de datos, 11
Números pseudo aleatorios, 18	Recursos, 4, 175

Referencias y ayuda, 133 Reglas de ruteo, 185 Reloj de la simulación, 4 Réplica o corrida, 6 Réplicas, 12, 19 Reportes, 246 Residue, 133	Tools, 67 Transformación directa, 53 Transformada inversa, 53 Transporte, 208 Triangular, 87 t-Student, 257
Residuo, 122 Resources, 134, 252	U
Resultados, 132	UNGROUP, 192
ROUTE (bloque de ruteo), 204	Uniformidad, 19
Rule, 185	UNLOAD (cantidad) IFF (expresión), 196
Run hours, 141	Until Full, 186
,	User Condition, 186
S	
Semilla, 20	V
Sensibilidad, análisis, 12	Validación, 12
SIMAN, 124	Valor extermo tipo I, 62
SIMPROCESS, 125, 126	Variable
Simrunner, 133	aleatoria, 54
SIMSCRIPT, 124	de respuesta, 9
Simulación, 1, 2, 9	Variables, 6, 253
de eventos discretos, 2	aleatorias, 19
reloj, 4	continuas, 55
Simulaciones	discretas, 55
no terminales o de estado estable, 109	Varianza, 20
terminales, 106	de los números aleatorios, 29
Simulation, 141	Verificación, 11
Sistema, 3, 6	y validación, 106
de inventarios, 121 estado del, 6	Visual Basic, C++, 125 VIEW, 152
SLAM, 124	"nombre de la vista", 153
SPLIT (cantidad) AS (nueva entidad), 201	Views, 152
SSED, 124	Von Neumann y Metropolis, 20
Staf::Fit, 53, 67, 91, 132	von reamann y menopons, 20
Statistics, 69	W
	WAIT, 141
T	(unidades de tiempo), 141
Tabla de eventos, 113	Weibull, 56, 88
Taylor, 125	Witness, 125, 126
Tchebycheff, teorema, 110	
Teorema del límite central, 80	X
Tercia, 40	X ² , 88, 258, 259