

Cours: Logique Formelle

Chapitre 3: Logique des prédicats Partie 2/3

Réalisé par:

Dr. Sakka Rouis Taoufik

Chapitre 3: Logique des prédicats

I. Règles d'inférences:

Une règle d'inférence est la représentation d'un procédé qu'à partir d'une ou plusieurs formules dériver d'autres formules.

Exemple:

- La règle d'inférence appelée Modus Ponens, à partir de deux formules respectivement de la forme G et (G→H), dérivé la formule H.
- 2. La règle d'inférence spécialisation universelle, à partir d'une formule de la forme (∀X).G(X) et de n'importe quelle constante, soit : « a », dérive la formule G(a): toutes les occurrences de X dans G sont remplacées par « a ».
- 3. La règles d'inférence appelée Modus Tollens, à partir de deux formules respectivement de la forme ($_{7}$ H) et ($_{9}$ -H), dérive la formule ($_{7}$ G).

Les formules choisies initialement sont appelées **axiomes**. Les formules obtenus par application des règles d'inférences sont appelées **théorèmes**.

Une chaîne d'application de règles d'inférence conduisant, depuis les axiomes, à un théorème, constitue une preuve de théorème.

II. Définition d'une Interprétation :

- Une interprétation I est la donnée :
 - d'un univers non vide D éventuellement infini
 - d'une évaluation dans D de chaque variable
 - d'un ensemble P de prédicats.
- La valeur de la formule A sous l'interprétation I est notée : [A] T

3

Chapitre 3: Logique des prédicats

II. Définition d'une Interprétation :

- Exemples: Soient les formules suivantes:

G1: (∀x) P(X) et G2:

Soit une interprétation de l1 de G1:

et G2: (∀x) (∃Y) Q(X,Y)

I1: D1 ={1,2}

PI1={2} où

I1[(P(1)]=F

I1[(P(2)]=V

Donc on peut conclure que:

[G1] ₁₁ =F

Car c'est faux que $\forall X$ dans D1

on a P(X)=V

Soit une interprétation de l2 de G2:

I2: D2={1,3}; QI2={(1,3), (3,3)}

I2[Q(1,1)]=F

I2[Q(1,3)]=V

I2[Q(3,1)]=F

I2[Q(3,3)]=V

Donc on peut conclure que:

 $[G2]_{T2} = V$

Car $\forall X$ dans D2, on peut trouver un Y

dans D tq Q(X,Y) = V

II. Définition d'une Interprétation :

```
Exemple: A: \forall x \ (P(x) \rightarrow (Q(f(x), a))

soit l'interprétation I1 définie comme suite:

D_{I1} = \{1,2\}
a_{I1} = 1 \quad \text{(l'interprétation de la constante a dans I1 est égale 1)}
P_{I1} = \{2\} \ \text{(sig seulement } P(2) = V \text{)}
Q_{I1} = \{(1,1),(1,2)\}
\text{(sig seulement } Q(1,1) = \text{vrai et } Q(1,2) = \text{vrai } \text{)}
f_{I1}: 1 \rightarrow 2
2 \rightarrow 1
[A]_{I1}(x = 1) = P_{I1}(1) \rightarrow Q_{I}(2,1) = F \rightarrow F = V
[A]_{I1}(x = 2) = P_{I1}(2) \rightarrow Q_{I}(1,1) = V \rightarrow V = V
Donc pour x = 1 et x = 2, la formule est vraie, donc [A] x_{I1} = V
```

Chapitre 3: Logique des prédicats

II. Définition d'une Interprétation :

```
Exemple : A : \forall x \ (P(x) \rightarrow (Q(f(x), a)))
D_{I2} = \{1,2,3\}
I2 : a_{I2} = 1
P_{I2} = \{2\} \ (\text{sig seulement } P(2) = V)
Q_{I2} = \{(1,1),(1,2), (1,3)\}
(\text{sig seulement } Q(1,1) = \text{vrai, } Q(1,2) = \text{vrai et } Q(1,3) = \text{vrai })
f_{I2} : 1 \rightarrow 2
2 \rightarrow 1
3 \rightarrow 1
[A]_{I2} (x = 1) = P_{I}(1) \rightarrow Q_{I}(2,1) = F \rightarrow F = V
[A]_{I2} (x = 2) = P_{I}(2) \rightarrow Q_{I}(1,1) = V \rightarrow V = V
[A]_{I2} (x = 3) = P_{I}(3) \rightarrow Q_{I}(1,1) = F \rightarrow V = V
Donc pour x = 1, x = 2 et x = 3, la formule est toujours vraie, donc [A]_{I2} = {}^{6}V
```

II. Définition d'une Interprétation :

Exercice: Soit l'interprétation suivante du calcul des prédicats :

- Constantes : a : Adel : b : Basma; c : Chahira
- Prédicat : $P(x,y) = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle c, c \rangle, \langle c, a \rangle \}$ Nous dirons que la relation « P(x,y) = x voit y ».
- 1/ Est-ce que Chahira voit Adel?
- 2/ Est-ce que Chahira voit Basma?
- 3/ Dites si les formules suivantes sont vraies dans cette interprétation :

```
a/ P(b,a)
b/ P(c,b) \lor P(c,c)
c/ P(b,a) \to P(c,c)
d/ (P(a,b) \to (P(b,a) \lor \neg P(c,b))) \to P(b,c)
e/ \exists x P(x,x)
```

f/ ∀x P(x,c) g/ ∀x P(a,x) h/ ∃x ∀y P(y,x) i/ ∃x ∀y P(x,y) j/ ∀x (P(x,x) → ∃y ¬P(x,y))

P.

Chapitre 3: Logique des prédicats

III. Satisfiable - Valide:

<u>**Définition : Cas d'une formule Close**</u> ($Var(A) = \emptyset$) (pas de variable libre)

- A est satisfaite (ou satisfiable) par (D,I) ssi [A] I = V, noté (D,I) = A
 (D,I) est appelée un modèle de A
- Une formule A est satisfiable ssi elle admet un modèle
- Elle est insatisfiable dans le cas contraire (aucun modèle).
- Une formule A est dite ${\bf valide}$ (tautologie) ssi elle est satisfiable pour tout $({\sf D},{\sf I})$

Notation : \models A

- Elle est invalide dans le cas contraire (antilogie).

III. Satisfiable - Valide:

Définition : Cas d'une formule non Close

Soient:

- A une formule non close
- $Var(A) = \{x_1, x_2, \dots, x_n\}$ les variables libres de A
- On appelle clôture universelle de A, la formule :

$$\forall x_1 \ \forall x_2 \dots \forall x_n \ A$$

- On appelle clôture existentielle de A, la formule :

$$\exists x_1 \exists x_2 \dots \exists x_n A$$

۵

Chapitre 3: Logique des prédicats

III. Satisfiable - Valide:

Définition : Cas d'une formule non Close

soit A une formule non close

- A est satisfiable ssi sa clôture existentielle est satisfiable
- A est valide dans (D,I) ssi sa clôture universelle est satisfaite par (D,I)

Notation : $(D,I) \models A$

 - A est valide universellement (tautologie) ssi sa clôture universelle est valide.
 Notation : ⊨ A

III. Satisfiable - Validité:

	formule Close Var(A) = ∅	formule non Close $Var(A) = \{x_1, x_2,,x_n\}$
Satisfiable	Il existe (D,I): I[A] = V	Il existe (D,I): $I[\exists x_1 \exists x_n A] = V$
		Valide dans / satisfiable par (D,I)
Valide	Pour tout (D,I): I[A] = V	Il existe (D,I): $I[\forall x_1 \forall x_n A] = V$
		Valide universellement Pout tout (D,I) = $I[\forall x_1 \forall x_n A] = V$

11

Chapitre 3: Logique des prédicats

IV. Equivalence et conséquence sémantique:

Définition:

- A est une conséquence de B ssi tout modèle de B est un modèle de A ,

B ⊨ A

• Dans le cas des formules non closes, on passe par la clôture universelle :

 $B \models A \ ssi \ (\forall \ Var(B) \ B) \models (\forall \ Var(A) \ A)$

• On appelle équivalence sémantiquement la congruence associé au pré-ordre

c.a.d A = B ssi $A \models B$ et $B \models A$

Propositions:

- B \models A ssi \models (B \rightarrow A) (signifie B \rightarrow A est une Tautologie)
- B = A ssi \models (B \leftrightarrow A)) (signifie B \leftrightarrow A est une Tautologie)

IV. Equivalence et conséquence sémantique:

Propriétés : Equivalence

$$\cdot \neg (\forall x A) = \exists x (\neg A)$$

$$\cdot \forall x A = \neg (\exists x (\neg A))$$

$$\cdot \neg (\exists x A) = \forall x (\neg A)$$

$$\cdot \exists x A = \neg (\forall x (\neg A))$$

$$\cdot \forall x (A \land B) = (\forall x (A)) \land (\forall x (B))$$

$$\cdot \exists x (A \lor B) = (\exists x (A)) \lor (\exists x (B))$$

•
$$\forall x \forall y A = \forall y \forall x A$$

$$\cdot \exists x (A \rightarrow B) = (\forall x A) \rightarrow (\exists x B)$$

13

ч

Chapitre 3: Logique des prédicats

IV. Equivalence et conséquence sémantique:

Propriétés : Conséquence

• $\exists x \ \forall y \ A \ (x,y) \models \forall y \ \exists x \ A(x,y)$ (pas le contraire)

• $\exists y \ \forall x \ A \ (x,y) \models \forall x \ \exists y \ A(x,y)$ (pas le contraire)

 $\cdot \exists x (A \land B) \models (\exists x (A)) \land (\exists x (B))$ (pas le contraire)

 $\cdot \forall x (A \lor B) \models (\forall x (A)) \lor (\forall x (B))$ (pas le contraire)

Exemple 1: $P(a,b) = \{ le couple d'entiers relatifs (a,b) est tel que a + b = 5 \}$

∀a ∀b P(a,b)	{Tout couple d'entiers relatifs (a,b) vérifie : a + b = 5 }	F
∃a∃b P(a,b)	{Il existe un couple d'entiers relatifs (a,b) tel que : a + b = 5}	٧
∃b ∀a P(a,b)	{Il existe un entier relatif b tel que pour tout entier relatif a on ait : $a + b = 5$ }	F
∀a ∃b P(a,b)	{Quelque soit l'entier relatif a il existe un entier relatif b tel que : a + b = 5}	٧
∃a ∀b P(a,b)	{Il existe un entier relatif a tel que pour tout entier relatif b on ait : $a + b = 5$ }	F
∀b ∃a P(a,b)	{Quelque soit l'entier relatif b il existe un entier relatif a tel que : $a + b = 5$ }	٧

IV. Equivalence et conséquence sémantique:

Propriétés : Equivalence lorsque $x \notin Var(A)$

$$\cdot \forall x \ A = \exists x \ A = A$$

•
$$\forall x (A \land B) = A \land (\forall x (B))$$

$$\cdot \exists x (A \land B) = A \land (\exists x (B))$$

$$\cdot \forall x (A \lor B) = A \lor (\forall x (B))$$

$$\cdot \exists x (A \lor B) = A \lor (\exists x (B))$$

$$\cdot \exists x (A \rightarrow B) = A \rightarrow (\exists x B)$$

•
$$\forall x (A \rightarrow B) = A \rightarrow (\forall x B)$$

$$\cdot \exists x (B \rightarrow A) = (\forall x B) \rightarrow A$$

$$\cdot \forall x (B \rightarrow A) = (\exists x B) \rightarrow A$$

/. Méthodes des arbres:

La méthode des arbres permet de vérifier des tautologies ou des arguments valides en calcul des prédicats.

- 1) pour vérifier une tautologie on vérifie que l'arbre de sa négation se
- 2) Pour vérifier un argument, on aligne ses prémisses, et la négation de la conclusion, et on vérifie que l'arbre qui en résulte se ferme.

Où c est une constante nouvelle qui n'a pas été utilisée jusqu'à présent dans cette branche.

Où a et b sont toutes les constantes utilisées dans cette branche

17

Chapitre 3: Logique des prédicats

V. Méthodes des arbres: Exemple: $\exists x (P(x) \rightarrow Q(x)) \rightarrow (\forall x P(x) \rightarrow \exists x Q(x))$ \neg ($\exists x (P(x) \rightarrow Q(x)) \rightarrow (\forall x P(x) \rightarrow \exists x Q(x))$) $\exists x \ (P(x) \rightarrow Q(x))$ $\neg (\forall x P(x) \rightarrow \exists x Q(x))$ $\forall x P(x)$ $\neg \exists x \ Q(x)$ Sens: "S'il y a quelqu'un qui, quand il mange, il boit, $P(a) \rightarrow Q(a)$ alors si tout le monde mange, quelqu'un boit." $\neg P(a)$ Q(a)P(a) P(a) $\neg Q(a)$ $\neg Q(a)$ X X 18