SEMANTICE
I = limbaj orden intai si it e a I - structura.
e:V → A evaluance a voir lui & in et
[interpretaries term enilox
tet (e) e A imbrorestarea term. t. rul evaluarea e.
· dace t = x ∈ V => tct(e) = e(x)
· daca t=ce & => tot(e) = ect
· daca t= g(t,tm) => tut(e) = gut(t,it(e)tm)
Negatio 2 implication: - (7P) et (e) = 1- get (e)
$(\varphi \rightarrow \psi)(t(e) = \varphi(t(e) \rightarrow \psi(t(e)))$
$e_{x\mapsto a}:V\to A$, $e_{x\mapsto a}(v)=\begin{cases} e(v) & \text{if } v\neq x \\ a & \text{if } v=x \end{cases}$
Imterpretarea garmieller $(\forall x ?)^{A}(e) = \begin{cases} 1 & yA(extra) = 1 & \forall a \in A \end{cases}$
Jornala [e satisface I'm et daçà yare)=1 et = 1[e] e mu satisface I'm et daçà yet(e)= e mu satisface I'm et daçà yet(e)=
e mu satisface 4 m et de se soctions
et # Prez
Caralas

CURS 8

Pt ouce 4, 4 gormale & x voir.

· et = (74) [e] (=) et ≠ 4 [e] · et = 17 → y) ses (=> et = 4 ses implied et = y ses · A = (Yx 4) ses => pt taca, A = 4 [exma] P, Y Josemule si x variabile • (4 v y) et (e) = pet(e) v y A(e) · (4 × 4) (e) = 4 (e) × 4 (e) • $(\varphi \leftrightarrow \psi)^{A}(e) = \varphi^{ct}(e) \leftrightarrow \psi^{A}(e)$ • (3x4) θ (e) = {1, 3aeA a. γ. y. (ex +) = 1. lo, altfel Cordon: et = 19 N y) [e] (=> et = P[e] & A = Y[e] · et = (PV8) [e] => et = P[e] san et = F[e] · of = (4 or y) (e) => et = 9 [e] ddaea et = 3 [e] · of = (3x7) [e] (=>] a ect a. 1. A = \$(ex+)a) " Y satisfiabile dacă 3 et = 2- steuctura si e: V → A a. et = 9 sez => (ct, e) model al lui 9 " 4 adularata vintri-o L-structura = A daca pt te V→A. A = 4(e) => et satisface 4 sau et = P · 4 gormula universal admorata / logie valida daca V A= Z- staretura => et = 4 • 4 (=> y daca + A = 4-structura & He: V → A => => of = Y cez <=> of = y cez. Notații echiv logic: 4 = 4

· Y = Y , Y consecinta semantica a	lui	φ.,	¥ et	= 2-10	bud.
& te: V -> A => of = PEET => of	E 9	Ee.7			
• Observate: $- Y \neq Y \iff E \Rightarrow Y \Rightarrow$	r				
L 4 H 4 (3) (4 F 4	^ Y	F 3)<=>	<i>⊨</i>	→ Y
• 4, 4 formule si x, y variabile:					
• 73×4 Ħ 4×74					
• ¬∀x♥ Ħ ∃x7♥					
· AX (LVA) H AXA V AXA					
· Fx Y V Fxy = Fx (Y V Y)					
YXE N PXE = (YNP) XE.					
EXEVPXE H (EVY) XE.	· ·				
· \x (4 \rightarrow Y) \= \x \x \q \rightarrow \x \Y					
EXE ← PXE = (E ← P) XE.					
• 9 = 3x9					
1/24 - 9					
V.V. 4 H HUHS V		. ,			
4 7 W Y F F F F F F F F F F F F F F F F F F		•	• •		
→ = s=t ∧t=	u -	7	= M		

r satisficialiste daca I et = L-structura et a e:V→A at et = y [e] +yer => (A, e) model at luit I consecimté semantica a lui r => + et = 2-struct & Ye: V -> A => Ut = T (e) => Ut = 9 Ee) , T = 9 X apare legata pe parisia k ûn 4 daca x=4k 3 7 0 ≤ i ≤ k ≤ j = m-1 a.t. li li este de forma tx x x apare libera pe parifia k ûn 4 daça x=4k . dar mu opare legata pe par k ûn 9 X = variabila legata a lui 4 dace 3 k a 1. x pare leg. pe panifia le ûn 9 X = Vou. lilura a lui 9 dace 3 k a 1. X pore libera pe parina k Im 4 * FV (9) = multimer var libere ale lui 4 · + et= L-structura on + e, , e2: V → A, + + termen daçà e((v) = ez (v) tre Var (t) => tex(ex) = tex(ex). y enez: V →A , + fermula. ♦ Y et = 2 - structura doca $e_1(v) = e_2(v)$ + ve =v(4) => A = P[ei] (=> d = P[ei] y x & FV (γ) you alula ♥ 9, 4 govmule. YXEHP. • 4 # 4×4 • 4x(4x4) H • \x(\q ~ \y) \≠ \q ~ \\x\y

- YXENP H (YNP)XE.
- · チ× (チハみ) H カハヨ×み
- · 4x(4→A) H 4→ 4×A
- とxE ← P H (V ← P)xE。
- . Ax(A → A) H 3xA → A
- 3×(A → b) H +×A → b

· Emunt = 9 formula dacoi ∓V(9) = Ø <=> 9 mu avec var liber

.

.

· Sent y = multimea enuntivilar lui X

· Y enunt > + e1, e2: V -> A => eA = Y leis (=) eA = Y leis

et = 2-structura model al 4= envent daça A = 4[e]

∀ e: V → A

· I enunt ad d 5 T multime enunt wei

→ r satisfiabile (=> 3 et= &-structura a.T. et =)

YYET => OF FT

TEP <=> + A= &- structura => ex = => ex = =>

Mod (T) = clasa modelelar lui T (encent)

Lema: T = Y <=> Mad (T) = Mad (Y)

T = D (=> Mod (D) = Mod (T)

T satisfialila <=> Mod (T) # 0

unde . T. D = muet, enunturi si y enunt