Ekstraksi Fitur

Fitur

- Feature Extraction atau ekstraksi fitur merupakan suatu pengambilan ciri (feature) dari suatu bentuk yang nantinya nilai yang didapatkan akan dianalisis untuk proses selanjutnya.
- Ekstraksi Fitur→ Ekstraksi karakteristik unik dari suatu objek
- Konsep fitur sangat general dan pemilihan fitur dalam sistem computer vision tertentu mungkin sangat tergantung pada masalah yang ditangani.
- Jenis fitur kadang-kadang digunakan bersama untuk menyelesaikan masalah.

Fitur Bentuk

- Bentuk dari suatu objek adalah karakter konfigurasi permukaan yang diwakili oleh garis dan kontur.
- Fitur bentuk dikategorikan bergantung pada teknik yang digunakan. Kategori tersebut adalah berdasarkan batas (boundary-based) dan berdasarkan daerah (region-based).
- Teknik berdasarkan batas (boundary-based) menggambarkan bentuk daerah dengan menggunakan karakteristik eksternal, contohnya adalah piksel sepanjang batas objek.
- Sedangkan teknik berdasarkan daerah (region- based) menggambarkan bentuk wilayah dengan menggunakan karakteristik internal, contohnya adalah piksel yang berada dalam suatu wilayah.

Fitur Bentuk

Fitur bentuk yang biasa digunakan adalah:

- Wilayah (area) yang merupakan jumlah piksel dalam wilayah digambarkan oleh bentuk (foreground).
- Lingkar (perimeter) adalah jumlah dari piksel yang berada pada batas dari bentuk. perimeter didapatkan dari hasil deteksi tepi.
- Kekompakan (compactness).
- Euler number atau faktor E adalah perbedaan antara jumlah dari connected component (C)dan jumlah lubang (H) pada citra.

Contoh

0	1	1	1	0	0
1	0	0	1	0	0
1	0	0	1	0	0
1	1	0	0	1	0
0	1	1	0	0	1
0	0	1	1	1	1

$$A = 25$$

Compactness =
$$\frac{P^2}{A} = \frac{17^2}{25} = 11.5600$$

Circularity =
$$\frac{4\pi A}{P^2} = \frac{4 * \pi * 25}{17^2} = 1.0871$$

$$P = 17$$

$$A = 32$$

Compactness =
$$\frac{P^2}{A} = \frac{17^2}{25} = 11.5600$$
 Compactness = $\frac{P^2}{A} = \frac{17^2}{32} = 9.0313$

Circularity =
$$\frac{4\pi A}{P^2} = \frac{4 * \pi * 25}{17^2} = 1.0871$$
 Circularity = $\frac{4\pi A}{P^2} = \frac{4 * \pi * 32}{17^2} = 1.3914$

Fitur Tekstur

- Untuk membedakan tekstur objek satu dengan objek lainnya dapat menggunakan ciri statistik orde pertama atau ciri statistik orde dua.
- Ciri orde pertama didasarkan pada karakteristik histogram citra. Ciri orde pertama umumnya digunakan untuk membedakan tekstur makrostruktur (perulangan pola lokal secara periodik). Ciri orde pertama antara lain: mean, variance, skewness, kurtosis, dan entropy.
- Ciri orde dua didasarkan pada probabilitas hubungan ketetanggaan antara dua piksel pada jarak dan orientasi sudut tertentu. Ciri orde dua umumnya digunakan untuk membedakan tekstur mikrostruktur (pola lokal dan perulangan tidak begitu jelas). Ciri orde dua antara lain: Angular Second Moment, Contrast, Correlation, Variance, Inverse Different Moment, dan Entropy.

Berbagai citra yang memiliki sifat tekstur yang berbeda-beda (Sumber: citra Brodatz)

Dua daun dengan bentuk yang serupa, tetapi berbeda dalam pola tekstur

Tekstur Berbasis Histogram

- 1. Fitur pertama adalah rerata intensitas
- 2. Fitur kedua berupa deviasi standar.
- 3. Varians, untuk kekontrasan

Pendekatan statistik

Mean

Ukuran rata-rata intensitas

$$m = \sum_{i=0}^{L-1} z_i p(z_i)$$

Standar deviasi

Ukuran rata-rata kontras
$$\sigma=\sqrt{\mu_2(z)}=\sqrt{\sigma^2}$$
Othness $R=1-1/\left(1+\sigma^2\right)$

Smoothness

$$R = 1 - 1/(1 + \sigma^2)$$

Ukuran smoothness relatif dari intensitas dalam region. R bernilai 0 untuk region dalam intensitas konstan dan mendekati 1 untuk region dengan ekskursi yang besar dalam nilai level intensitas. Dalam prakteknya, varian digunakan dalam ukuran ini yang dinormalisasikan dalam range [0,1] oleh pembagian dengan (L-1)²

Uniformity

$$U = \sum_{i=0}^{L-1} p^2(z_i)$$

Ukuran keseragaman. Ukuran ini maksimum ketika semua gray level sama (keseragaman maksimal) dan menurun dari sana.

Entropy

Ukuran keacakan.
$$e = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

Contoh

0	3	3	2
4	2	4	6
3	7	3	7
2	7	2	5

Rata-rata

Standar deviasi

$$\sigma = ((0-3.75)^2 + (3-3.75)^2 + (3-3.75)^2 + (2-3.75)^2 + (4-3.75)^2 + (2-3.75)^2 + (4-3.75)^2 + (6-3.75)^2 + (3-3.75)^2 + (7-3.75)^2$$

Contoh

Smoothness

$$R = 1 - 1/(1 + \sigma^2)$$

$$R = 1 - 1/(1 + 2.1134^2)$$

$$= 0.8171$$

Uniformity

$$U = \sum_{i=0}^{L-1} p^2(z_i)$$

$$U = p(0)^{2} + p(1)^{2} + p(2)^{2} + p(3)^{2} + p(4)^{2} + p(5)^{2} + p(6)^{2} + p(7)^{2}$$

$$= 0.0625^{2} + 0^{2} + 0.25^{2} + 0.25^{2} + 0.125^{2} + 0.0625^{2} + 0.0625^{2} + 0.1875^{2}$$

$$= 0.1875$$

Entropy
$$e = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

- Metode yang sederhana untuk mendapatkan tekstur adalah dengan mendasarkan pada histogram
- Metode statistis menggunakan perhitungan statistika untuk membentuk fitur. Contoh GLCM (*Gray Level Co-occurrence Matrices*)

 berupa angular second moment (ASM), contrast, inverse different moment (IDM), entropi, dan korelasi
- Metode struktural menjabarkan susunan elemen ke dalam tekstur. Contoh metode struktural adalah *Shape Grammar*
- Metode spektral adalah metode yang didasarkan pada domain frekuensi-spasial. Contoh metode spektral adalah distribusi energi domain *Fourier*, *Gabor*, dan filter *Laws*

Fitur Warna

- Pada ekstraksi fitur warna, ciri pembeda adalah warna. Biasanya ekstraksi fitur ini digunakan pada citra berwarna yang memiliki komposisi warna RGB (red, green, blue) (Nahari, 2010).
- Untuk membedakan suatu objek dengan warna tertentu dapat menggunakan nilai hue yang merupakan representasi dari cahaya tampak (merah, jingga, kuning, hijau, biru, ungu). Nilai hue dapat dikombinasikan dengan nilai saturation dan value yang merupakan tingkat kecerahan suatu warna.
- Untuk mendapatkan ketiga nilai tersebut, perlu dilakukan konversi ruang warna citra yang semula RGB (Red, Green, Blue) menjadi HSV (Hue, Saturation, Value)

sehingga ruang warna citra yang semula berbentuk kubus berubah bentuk menjadi kerucut

$$r=rac{R}{(R+G+B)}$$
 , $g=rac{G}{(R+G+B)}$, $b=rac{B}{(R+G+B)}$

$$V = \max(r, g, b)$$

$$S = \begin{cases} 0, & \text{jika V} = 0\\ 1 - \frac{\min(r, g, b)}{V}, & \text{V} > 0 \end{cases}$$

$$H = \begin{cases} 0, & jika S = 0\\ \frac{60*(g-b)}{S*V}, & jika V = r\\ 60*\left[2 + \frac{b-r}{S*V}\right], & jika V = g\\ 60*\left[4 + \frac{r-g}{S*V}\right], & jika V = b \end{cases}$$

$$H = H + 360$$
 jika $H < 0$

Fitur Warna

- Beberapa obyek bisa dibedakan berdasarkan warnanya seperti bunga dan buah.
- Warna-warna pada citra pemandangan (landscape) juga mempunyai ciri-ciri yang spesifik.

- Ciri warna pada citra ditunjukkan dengan distribusi warna dan warna dominan pada citra.
- Distribusi warna menyatakan frekwensi kemunculan warna atau histogram warna.
- Warna dominan bisa dihasilkan dengan cara segmentasi atau clustering warna.

- Google mengenalkan sebuah konsep pencarian berdasarkan kemiripan gambar.
- Proses pencarian gambar ini yang disebut dengan QBIC (Query Base Image Content)
- Salah satu fitur dominan yang digunakan adalah warna.

Aplikasi ini menggunakan warna dominan sebagai fitur dari foto tomat yang diletakkan di depan kamera. Kematangan buah tomat saat dipetik menentukan lama tidaknya waktu simpan buah tomat. Kematangan buah tomat dibagi menjadi tiga bagian: mentah, campur dan matang.

Fitur berdasarkan warna

- Citra dikonversikan ke dalam suatu ruang warna tertentu
- Setiap komponen ruang dibuat histogramnya
- Fitur yang diambil yaitu intensitas citra dengan frekuensi tertinggi
- Contoh HSV, L*ab, YCBcR

Contoh Kasus

Apabila kita ingin merancang sebuah sistem pengenalan wajah (face recognition) manusia, maka muncul pertanyaan "Ciri apakah yang membedakan antara wajah satu dengan wajah yang lain?".

Tidak mungkin apabila ciri yang kita gunakan adalah jumlah mata, jumlah telinga, maupun jumlah hidung karena antara wajah satu dengan yang lain jumlah organ-organ tersebut adalah sama.

- Oleh karena itu, ciri yang memungkinkan antara lain warna kulit, tekstur wajah, geometri wajah (jarak antara mata kiri dengan mata kanan, jarak antara mata kanan/kiri dengan hidung, jarak antara mata kanan/kiri dengan mulut, jarak antara hidung dengan mulut, dsb).
- Kita dapat memilih salah satu ataupun mengkombinasikan ciri-ciri tersebut. Proses pengenalan wajah yang baik adalah proses pengenalan yang menghasilkan akurasi yang tinggi dengan jumlah ciri seminimal mungkin agar dapat menghemat proses komputasi.

Identifikasi Citra Wajah Asia, Afrika dan Eropa Ekstraksi Fitur Tekstur *Standard Deviation, Third Moment* dan *Entropy*

Latar Belakang

- Wajah mempunyai banyak informasi dalam proses identifikasi
- Citra Wajah Asia, Afrika dan eropa yang mempunyai ciri ciri tersendiri.

Rumusan Masalah

Cara mengidentifikasi citra wajah asia, afrika dan eropa berdasarkan deteksi tepi canny dan mengekstraksi fitur tekstur *standard deviation*, *third moment* dan *entropy* berdasarkan intensitas histogram suatu objek area citra.

Batasan Masalah

- 150 Citra Referensi yang digunakan adalah Citra hasil Segmentasi
- Hanya mengekstraksi dengan 3 fitur tekstur yaitu *Standard* deviation, *Third Moment* dan *Entropy*

Tujuan

- Mengidentifikasi citra wajah Asia, Afrika dan Eropa berdasarkan deteksi tepi canny yang bertujuan untuk menghindari intensitas citra yang tidak relevan
- Mengekstraksi objek area citra tersebut dengan menggunakan 3 fitur tekstur yaitu *standard deviation*, *thrid moment* dan *entropy* agar menjadi lebih otomatis.

Metodologi

Tekstur

Tekstur adalah sifat-sifat atau karakteristik yang dimiliki oleh suatu daerah yang cukup besar sehingga secara alami sifat-sifat tadi dapat berulang dalam daerah tersebut.

- **Standard Deviation** adalah pengukuran banyak digunakan variabilitas atau keragaman yang digunakan dalam statistik dan teori probabilitas.
- **Third Moment** Menunjukkan tingkat kemiringan relatif kurva histogram dari suatu citra. mengukur kemiringan dari histogram. ukuran ini adalah 0 untuk histogram simetris, positif oleh histogram miring ke kanan (sekitar mean) dan negatif untuk histogram miring ke kiri.

$$\mu_3(z) = \sum_{i=0}^{\infty} (z_i - m)^3 p(z_i).$$

• **Entropy** Entropy menunjukan ketidakaturan bentuk. merupakan suatu istilah dalam hukum termodinamika yang menunjukkan suatu ukuran ketidakpastian dari suatu sistem.

Data ketiga Fitur Tekstur pada Citra Wajah Asia

NO	Citra Asia	Standard deviation	Thrid Moment	Entropy
1	seg_as1	399.4824	85.7395	15.8118
2	seg_as2	398.3814	85.4579	15.5594
3	seg_as3	399.3937	85.7463	15.3815
4	seg_as4	362.9024	73.3683	13.9405
5	seg_as5	380.8479	79.5187	14.7293
6	seg_as6	365.6179	74.2436	13.9956
7	seg_as7	379.6955	79.0988	14.9396
8	seg_as8	323.2133	60.2051	11.2691
9	seg_as9	350.7094	69.2388	12.8934
10	seg_as10	365.8372	74.4067	13.5271

NO	Citra Asia	Standard deviation	Thrid Moment	Entropy
11	seg_as11	355.2961	71.0103	12.2273
12	seg_as12	391.7829	83.1921	15.3072
13	seg_as13	388.9056	82.2343	14.8931
14	seg_as14	378.9919	78.9239	14.2895
15	seg_as15	369.1661	75.4900	13.6973
16	seg_as16	420.9682	93.1277	15.9504
17	seg_as17	399.3280	85.7649	15.5418
18	seg_as18	351.9571	69.7080	13.1232
19	seg_as19	414.1584	90.8134	14.6107
20	seg_as20	414.7470	91.0452	15.8743
21	seg_as21	428.1476	95.6096	17.1276
22	seg_as22	392.5133	83.4399	15.0786
23	seg_as23	388.1499	82.0172	14.7690
24	seg_as24	389.2543	82.4428	14.4385

NO	Citra Asia	Standard deviation	Thrid Moment	Entropy
26	seg_as26	317.6684	58.4558	10.5062
27	seg_as27	315.8724	57.8170	10.4004
28	seg_as28	387.6527	82.0325	13.9361
29	seg_as29	366.8872	74.7991	13.1521
30	seg_as30	428.3878	95.6312	16.5798
31	seg_as31	386.5554	81.5535	14.5451
32	seg_as32	367.1449	74.9016	13.3774
33	seg_as33	349.8286	68.9725	12.5145
34	seg_as34	374.4681	77.4417	13.8631
35	seg_as35	309.8809	55.7829	11.2391
36	seg_as36	337.8835	64.9718	12.0607
37	seg_as37	333.2174	63.3364	12.6355
38	seg_as38	356.2552	71.2180	13.1278
39	seg_as39	372.5460	76.8925	13.1447

NO	Citra Asia	Standard deviation	Thrid Moment	Entropy
41	seg_as41	351.0228	69.4724	12.1736
42	seg_as42	424.3799	94.4247	15.8238
43	seg_as43	364.0370	73.8625	13.2672
44	seg_as44	403.9149	87.4902	15.3068
45	seg_as45	395.1332	84.2864	15.4439
46	seg_as46	401.2655	86.5025	14.6479
47	seg_as47	396.7461	85.0111	15.1080
48	seg_as48	391.3501	82.9872	15.3359
49	seg_as49	411.2533	89.8534	15.6140
50	seg_as50	363.9060	73.7654	13.0179

Data ketiga Fitur Tekstur pada Citra Wajah Afrika

NO	Citra Afrika	Standard deviation	Thrid Moment	Entropy
1	seg_afl	447.2982	102.0017	17.0693
2	seg_af2	416.0056	91.5532	15.7770
3	seg_af3	429.4031	95.7466	16.7903
4	seg_af4	397.5316	85.1734	14.9476
5	seg_af5	448.4581	102.2030	16.9729
6	seg_af6	449.9219	102.7050	17.4203
7	seg_af7	473.0480	109.9428	18.3346
8	seg_af8	417.8387	92.2224	15.2454
9	seg_af9	424.4674	94.2401	16.2519
10	seg_af10	425.6721	94.6652	16.4082

NO	Citra Afrika	Standard deviation	Thrid Moment	Entropy
11	seg_af11	470.2789	109.1015	18.4044
12	seg_af12	471.8457	109.5441	17.7123
13	seg_af13	418.0594	92.1407	15.6918
14	seg_af14	419.6199	92.8103	15.6713
15	seg_af15	413.3687	90.3948	16.4191
16	seg_af16	421.2909	93.3273	15.5876
17	seg_af17	431.3017	96.7552	15.8160
18	seg_af18	427.6211	95.4313	15.8246
19	seg_af19	406.9734	88.5177	14.8333
20	seg_af20	445.5042	101.2325	16.8395
21	seg_af21	424.8214	94.3426	16.3933
22	seg_af22	438.8913	99.1678	16.7873
23	seg_af23	417.5800	91.9902	15.7771
24	seg_af24	414.4387	90.7304	16.0067
25	seg_af25	460.2494	105.8591	18.0424

NO	Citra Afrika	Standard deviation	Thrid Moment	Entropy
26	seg_af26	430.7644	96.7560	15.3888
27	seg_af27	434.8357	97.8644	16.2367
28	seg_af28	412.2557	90.2630	15.6726
29	seg_af29	439.5019	99.3106	17.1604
30	seg_af30	439.8471	99.5415	16.5963
31	seg_af31	432.8784	97.0428	16.5944
32	seg_af32	419.7904	92.7770	15.7939
33	seg_af33	428.6050	95.8512	15.6467
34	seg_af34	425.6908	94.7433	15.4887
35	seg_af35	462.5548	106.6375	17.7723
36	seg_af36	449.9206	102.6837	17.2447
37	seg_af37	416.8802	91.7893	15.8541
38	seg_af38	438.5197	99.1239	16.0158
39	seg_af39	442.6726	100.5310	16.3097
40	seg_af40	472.4241	109.9225	17.9125

NO	Citra Afrika	Standard deviation	Thrid Moment	Entropy
41	seg_af41	447.0817	101.8422	17.0514
42	seg_af42	437.6276	98.5343	17.1002
43	seg_af43	404.7988	87.8787	14.6300
44	seg_af44	417.5938	92.3790	14.8775
45	seg_af45	436.9788	98.4794	16.6818
46	seg_af46	445.1557	101.2511	16.1801
47	seg_af47	464.8679	107.3615	17.5610
48	seg_af48	439.2656	99.1934	16.7395
49	seg_af49	443.8314	100.6039	16.9563
50	seg_af50	423.6153	94.0228	15.9712

Data ketiga Fitur Tekstur pada Citra Wajah Eropa

NO	Citra Eropa	Standard deviation	Thrid Moment	Entropy
1	seg_er1	400.9678	86.5187	15.3313
2	seg_er2	391.0071	83.0439	14.2372
3	seg_er3	426.4100	95.0024	16.3232
4	seg_er4	395.0518	84.5099	14.5155
5	seg_er5	388.8979	82.3209	14.1362
6	seg_er6	427.4183	95.4321	15.4710
7	seg_er7	402.5796	86.8684	14.7457
8	seg_er8	438.7728	99.1006	16.9246
9	seg_er9	424.2424	94.1408	17.2599
10	seg_er10	411.3540	90.0069	14.2898

NO	Citra Eropa	Standard deviation	Thrid Moment	Entropy
11	seg_er11	404.0607	87.3718	15.2411
12	seg_er12	425.8696	94.9058	16.1751
13	seg_er13	388.2783	82.0837	13.7895
14	seg_er14	393.8093	84.1330	14.0817
15	seg_er15	395.2757	84.8392	13.6045
16	seg_er16	412.5791	90.5695	14.9423
17	seg_er17	424.1030	94.3753	15.8894
18	seg_er18	428.3001	95.5613	16.0647
19	seg_er19	424.7124	94.5567	15.8376
20	seg_er20	430.0610	96.1400	16.3471
21	seg_er21	402.9932	87.2055	14.6435
22	seg_er22	401.3708	86.7390	13.7867
23	seg_er23	417.8789	92.2911	15.1012
24	seg_er24	412.5594	90.2802	15.5553

NO	Citra Eropa	Standard deviation	Thrid Moment	Entropy
26	seg_er26	457.4355	105.1312	17.7438
27	seg_er27	420.9712	93.3196	15.4517
28	seg_er28	419.3169	92.4565	16.4661
29	seg_er29	404.8438	87.9101	14.5298
30	seg_er30	403.8604	87.4069	15.0325
31	seg_er31	430.5435	96.3757	16.8990
32	seg_er32	402.8921	87.0629	14.3090
33	seg_er33	424.5997	94.4756	16.0038
34	seg_er34	430.9201	96.8004	15.7391
35	seg_er35	384.7694	80.9132	13.3229
36	seg_er36	378.0697	78.9283	12.9035
37	seg_er37	401.6333	86.4913	15.4056
38	seg_er38	416.8115	92.0122	14.9273
39	seg_er39	406.7649	88.3616	15.0202

NO	Citra Eropa	Standard deviation	Thrid Moment	Entropy
41	seg_er41	425.0239	94.5931	15.9969
42	seg_er42	407.5747	88.4962	15.9082
43	seg_er43	412.1319	90.2465	15.2128
44	seg_er44	434.4009	97.6263	17.0075
45	seg_er45	411.6929	89.8828	15.5422
46	seg_er46	422.7488	93.9113	15.7548
47	seg_er47	433.0256	97.5366	15.7223
48	seg_er48	383.1544	80.4934	13.5214
49	seg_er49	412.0215	90.0573	15.5332
50	seg_er50	403.9139	87.3788	15.0580

Nilai Rata – Rata Setiap Fitur Tekstur Terhadap Citra Wajah Asia, Citra Wajah Afrika dan Citra Wajah Eropa

Fitur Tekstur	Citra Wajah Asia	Citra Wajah Afrika	Citra Wajah Eropa
Standard Deviation	377.73742	434.388948	412.189118
Thrid Moment	78.504036	97.563658	90.24379
Entropy	14.097962	16.409216	15.261876

Klasifikasi Daun ???

Gambar 6. Dataset Citra Foliage

Gambar 5. Dataset Citra Flavia

Klasifikasi Daun

