CSE 2254 about:sredoc

Exam Date & Time: 09-Jun-2022 (02:00 PM - 05:00 PM)



## FOURT SEMESTER B.TECH END SEMESTER EXAMINATIONS, JUNE 2022

## FORMAL LANGUAGES & AUTOMATA THEORY [CSE 2254]

Marks: 50 Duration: 180 mins.

A

## Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

1) Find grammar for  $L = \{w : |w| \mod 3 \ge |w| \mod 2\}$ .

(3)

A)

B) Minimize the given DFA using Mark and Reduce Procedure



- C) Find right quotient  $(L_1 / L_2)$  for  $L_1 = \{b*abb*\}$  and  $L_2 = \{ba*\}$  by drawing DFA and giving all necessary steps required. (4)
- Prove that the language  $L = \{a^n b^m c^{n+m} : n,m \ge 0\}$  is not regular.

(3)

A)

- B) Construct an NPDA for the language  $L = \{w \in \{a,b\}^* : n_a(w) = n_b(w)\}.$  (3)
- C) Simplify the following grammar and covert the grammar to Chomsky Normal Form.

 $S \rightarrow aBcDE \mid CBD \mid ad$ 

$$B \rightarrow cDE \mid bc \mid CD$$
 (4)

 $C \rightarrow dd \mid ee \mid aC$ 

 $D \rightarrow aCd \mid bC \mid d$ 

1 of 2 03-06-2022, 16:09

CSE 2254 about:srcdoo

E→CD | e

| 3) |    | Design a Turing machine $M=(Q,\sum,\acute{\Gamma},\partial.q_0,\Box,F)$ using transition diagram to accept the language $L=\{a^nb^mc^md^{n+m}\colon n,m>0\}$ .                                                                                                                                                           | (5) |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | A) |                                                                                                                                                                                                                                                                                                                          |     |
|    | B) | What is ambiguous grammar? Check whether the grammar $E \rightarrow E + E \mid E * E \mid (E) \mid 2$ where E is the start variable and 2 is the terminal sybol, is ambiguous or not. Give derivation tree for $2 + 2 * 2$ using above productions.                                                                      | (3) |
|    | C) | Differentiate between the Types of languages classified in Chomsky Hierarchy.                                                                                                                                                                                                                                            | (2) |
| 4) |    | Design a Transducer using transition diagram to compute the difference between two positive integers, A and B where A>B with minimum states. The integers are represented in the Turing machine with corresponding number of 1's separated by a 0.                                                                       | (5) |
|    | A) |                                                                                                                                                                                                                                                                                                                          |     |
|    | B) | Give Regular Expressions for the following:                                                                                                                                                                                                                                                                              |     |
|    |    | i. String of a's and b's of even length                                                                                                                                                                                                                                                                                  |     |
|    |    | ii. String of a's and b's with odd number of b's.                                                                                                                                                                                                                                                                        | (3) |
|    |    | iii. String of length 3 of a's and b's whose 2 <sup>nd</sup> element from RHS is a.                                                                                                                                                                                                                                      |     |
|    | C) | Check whether the language L={w   w C{a,b} $^*$ accepted by PDA is NPDA or DPDA.                                                                                                                                                                                                                                         | (2) |
| 5) | A) | Construct an NPAD that accepts the language generated by the grammar G=({A,B}, {0,1},S,P) where set of productions are given as S $\rightarrow$ 0ABB   0AA , A $\rightarrow$ 0BB   0, B $\rightarrow$ bBB   A. Using instantaneous description, show that, the string '0000' is accepted by the NPDA constructed by you. | (5) |
|    | B) | Show that the L = {WW   W $\epsilon$ {a,b} * } is not context free.                                                                                                                                                                                                                                                      | (3) |
|    | C) | Design a DPDA to accept the language $L=\{0^n \ 1^{2n} \mid n>=1\}$ .                                                                                                                                                                                                                                                    | (2) |

-----End-----

2 of 2 03-06-2022, 16:09

(2)