

Large Sample Asymptotic for Nonparametric Mixture Model with Count Data

MOTIVATION

- Scalability in Bayesian nonparametric.
- Hard clustering for fast inference.
- Small variance asymptotic [1,2]
- Multinomial observations with large number of trials [3].

CONTRIBUTIONS

- A novel view of Large Sample Asymptotic (LSA).
- Theoretical derivation for the proposed LSA on Dirichlet Process Mixture model with count data.
- Comparative study with the existing clustering techniques.

Dirichlet Process Mixture - Gibbs Sampler

Gibbs sampler for posterior inference

$$p(z_i = k \mid z_{-i}, x_i, \phi, \alpha, G) \propto \begin{cases} N_k \times p(x_i | \phi_{z_i}) & \text{used } k \\ \alpha \times \int_{\phi} p(x_i | \phi) dG(\phi) & \text{new } k \end{cases}$$

DPM - Small Variance Asymptotic [1,2]

Assume the data variance approaches to zero $\sigma \to 0$

$$\lim_{\sigma \to 0} \hat{\gamma}(z_i = k) = \begin{cases} D_{KL}(x_i, \phi_k) & \text{used } k \\ \lambda & \text{new } k \end{cases}$$

where $D_{KL}(x_i, \phi_k)$ is a KL divergence.

Large Sample Asymptotic (LSA)

Multinomial likelihood
$$p(x \mid \phi) = \frac{n!}{\prod_{d=1}^{D} x_d!} \prod_{d=1}^{D} \phi_d^{x_d}$$

Average Log Likelihood
$$\bar{L} \equiv \log p(x \mid \phi)^{\frac{1}{n}}$$

Equivalently
$$\bar{L} = \frac{1}{n} \log n! - \frac{1}{n} \sum_{d=1}^{D} \log x_d! + \sum_{d=1}^{D} \frac{x_d}{n} \log \phi_d$$

Stirling Approximation
$$\log n! = n \log n - n + O(\log n)$$

Alternative representation of Multinomial likelihood

$$P(x \mid \phi) = \exp\{-nD_{KL}(\hat{x}||\phi) + O(\log n) + \sum_{d=1}^{D} O(\log x_d)\}$$

DPM - LSA

Sampling
$$z_i = k$$

$$p(z_i = k) \propto N_k \times \exp[-nD_{KL}(\hat{\boldsymbol{x}}_i||\phi_{z_i}) + T]$$

Sampling
$$z_i = k^{\mathrm{new}}$$

$$p(z_i = k^{\text{new}}) \propto p(z_i = k^{\text{new}}|z_{-i}, \alpha) p(x_i|z_i = k^{\text{new}}, G)$$

$$p(z_i = k^{\text{new}}) \propto \alpha \frac{n!}{\prod_{d=1}^{D} x_{id}!} \frac{\Gamma(\sum_{d=1}^{D} \gamma_d)}{\Gamma(\sum_{d=1}^{D} [\gamma_d + x_{id}])} \prod_{d=1}^{D} \frac{\Gamma(x_{id} + \gamma_d)}{\Gamma(\gamma_d)}$$

$$p(z_i = k^{\text{new}}) \propto C(x_i) \exp(-n\lambda) \exp[O(\log n)]$$

Let the number of trials in Multinomial distribution go to infinity

$$\lim_{n\to\infty} \hat{\gamma}(z_i = k) = \begin{cases} D_{KL}(\hat{x}_i||\phi_k) & \text{used } k \\ \lambda & \text{new } k. \end{cases}$$

Experiments

NUS WIDE dataset

- 3411 images
- SIFT features (500 dimensions)

Matlab environment

	Approach	AP	K-means	GMM	DPM	DPmeans	DPM-LSA
	Setting	Euclidian distance	Euclidian distance	Expectation Maximization	Collapsed Gibbs	$\lambda = 5960$	$\lambda = 1.73$
	#Cluster	K=18	K=5-30	K=5-30	K=17	K=17	K=19
	NMI	0.166	0.19(.01)	0.19(.01)	0.188	0.161	0.174
	F1score	0.145	0.16(.01)	0.16(.01)	0.173	0.166	0.184
	Time	167.8	14	15	1200	38	39.8

Reference

- [1] Kulis, Brian, and Michael I. Jordan. "Revisiting k-means: New Algorithms via Bayesian Nonparametrics." ICML 2012.
- [2] Jiang, Ke, Brian Kulis, and Michael I. Jordan. "Small-variance asymptotics for exponential family Dirichlet process mixture models." NIPS 2012.
- [3] Shlens, Jonathon. "Notes on Kullback-Leibler Divergence and Likelihood." arXiv preprint arXiv:1404.2000 (2014).