Работа 3.4.5 Петля Гистерезиса

Шарапов Денис, Зелёный Николай, Б05-005

Содержание

1	Аннотация	2
2	Теоретические сведения	2
	2.1 Экспериментальная установка	2
3	Результаты измерений и обработка данных	3
	3.1 Каллибровка	4
	3.2 Исследование образцов	4
4	Вывол	5

1 Аннотация

В работе используются: автотрансформатор, понижающий трансформатор, интегрирующая ячейка, амперметр и вольтметр, резистор, делитель напряжения, электронный осциллограф, тороидальные образцы с двумя обмотками.

2 Теоретические сведения

К ферромагнетикам принадлежат железо, никель, кобальт, гадолиний, их многочисленные сплавы с другими металлами. К ним примыкают ферриты — диэлектрики со структурой антиферромагнетика.

Магнитная индукция B и напряженность магнитного поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца.

2.1 Экспериментальная установка

Рис. 1: Схема установки

Схема установки приведена на рис. 1. Напряжение сети (220В, 50Γ п) через разделительный понижающий трансформатор Тр подаётся на реостат R_1 , ВКлючённый как потенциометр. Регулируемое напряжение $\sim 6,3$ В подведено к средним точкам переключателя K_0 : в положении «П» (петля) напряжение подводится к клеммам «6,3» на панели установки, В положении «Д» (делитель) — к клеммам делителя напряжения.

С клемм «6,3» регулируемое напряжение подаётся на намагничивающуую обмотку N_0 исследуемого образца.

Ток в обмотке N_0 измеряется мультиметром А. Напряжение с сопротивления R_0 , включенного последовательно с обмоткой N_0 , подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm H}$ на вход интегрирующей RC — цепочки подаётся напряжение $U_{\rm BX}$, пропорциональное производной

 \dot{B} , а с выхода снимается напряжение $U_{
m BbIX} = U_C$, пропорциональное величине B, и подаётся на вход Y.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, — каким значениям B и H соответствуют эти напряжения (или току).

Измерение напряжения с помошью осциллографа. Исследуемый сигнал подаётся на вход X Θ 0; длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_X в вольтах на деление нгкалы экрана (B/cм), то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0} = 2x \cdot K_X$$

Напряжение, подаваемое на ось Y, измеряется аналогично. Калибровку осей осциллографа $(K_X$ и $K_Y)$ можно использовать для построения кривой гистерезиса в координатах B и H.

Зная величину сопротивления R_0 , с которого снимается сигнал, можно рассчитать чувствительность канала по току $K_{XI} = K_X/R_0[{\rm A}\ /\ {\rm дел}\]$, затем определить цену деления шкалы ЭО в A/M Проверка калибровки горизонтальной оси ЭО с помошью амперметра проводится при закороченной обмотке N_0 . Эта обмотка с помещённым В неё ферромагнитным образцом является нелинейным элементом, так что ток в ней не имеет синусоидальной формы, и это не позволяет связать амплитуду тока с показаниями амперметра.

При закороченной обмотке N_0 амперметр A измеряет эффективное значение синусоидального тока Iэф , текущего через известное сопротивление R_0 . Сигнал с этого сопротивления подаётся на вход X ЭО. Измерив 2x длину горизонтальной прямой на экране, можно рассчитать m_X — чувствительность канала X:

$$m_X = 2R_0\sqrt{2}I_{\ni\Phi}/(2x)$$
 [В/ Дел]

Проверка калибровки вертикальной оси ЭО с помощью вольтметра. Сигнал с потенциометра R_1 подаётся на вход делителя напряжения (K_0 в положении "Д". Часть этого напряжения снимается с делителя с коэффициентом деления $K_{\rm Д}$ (1/10 или 1/100) и подаётся на вход Y ЭО (вместо напряжения U_C). Цифровой вольтметр V измеряет напряжение $U_{\rm ЭФ}$ на этих же клеммах делителя. Измерив 2y — длину вертикальной прямой на экране, можно рассчитать чувствительность канала Y:

$$m_Y = 2\sqrt{2}U_{\ni \Phi}/(2y)$$
 [В/ дел]

3 Результаты измерений и обработка данных

Параметры исследуемых образцов представлены в таблице 1.

Таблица 1: Параметры образцов

	N_0 , витков	N_U б витков	S, cm ²	$2\pi R$, cm
Феррит	45	400	3,0	25
Пермаллой	15	300	0,66	14,1
Кремнистое железо	20	200	2	11

3.1 Каллибровка

Откалибруем X канал осциллографа, измерив зависимость показаний осциллографа от тока через амперметр. Занесем результаты в таблицу 2. Рассчитаем коэффециент пересчета делений в ток dI для всех диапазонов.

Откалибруем Y канал осциллографа, сравним показания вольтметра и осциллографа и занесем результаты в таблицу 3. Домножив U на $2\sqrt{2}$ получим, что в среднем U_V отличается от U_O на 2%.

X = 20 мBX = 50 мBX = 100 мBДел I, мА Дел I, мА Дел I, мА $dI \approx 36,0 \pm 3$ мА $dI \approx 88,4 \pm 3$ мА $dI \approx 180 \pm 6$ мА

Таблица 2: Каллибровка канала Х

Таблица 3: Каллибровка канала Ү

U_V , мВ	U_O , MB
20	50
40	110
60	170
80	220
100	275
120	325
140	390

3.2 Исследование образцов

Для каждого образца запишем значения коэффициентов усиления K_x и K_y , ток $I_{3 ф}$. Измерим двойные амплитуды для коэрцитивной силы 2x(c) и индукции насыщения 2y(s). Результаты представлены в таблице 4.

Таблица 4: Результаты измерения коэффициентов усиления и двойных амплитуд образцов

	$K_x, \frac{\text{мB}}{\text{дел}}$	$K_y, \frac{\text{мB}}{\text{дел}}$	$I_{\rm эф}$, мА	2x, дел	2у, дел
Феррит	100	20	990	6,2	6,8
Пермаллой	20	50	218	7	3,5
Кремнистое железо	10	50	92,6	7,1	8

Снимем для каждого образца начальную кривую намагничивания (табл. 5-7), плавно уменьшая ток до нуля и отмечая вершины частных петель.

Таблица 5: Начальная кривая намагничивания для кремнистого железа

№	1	2	3	4	5	6	7	8	9	10	11	12	13
х, дел	2,0	1,8	1,6	1,5	1,4	1,2	1,0	0,8	0,6	0,5	0,4	0,2	0,0
y, дел	3,0	2,8	2,7	2,5	2,3	2,1	2,0	1,6	1,2	0,7	0,4	0,1	0,0

Таблица 6: Начальная кривая намагничивания для пермаллоя

№	1	2	3	4	5	6	7	8	9	10	11	12	13
х, дел	3,0	2,8	2,6	2,4	2,2	2,0	1,8	1,5	1,2	0,8	0,5	0,2	0,0
y, дел	1,8	1,7	1,5	1,4	1,1	1,0	0,9	0,7	0,5	0,4	0,2	0,1	0,0

Таблица 7: Начальная кривая намагничивания для феррита

	$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7	8	9	10	11	12	13
Γ	х, дел	3,0	2,5	2,3	1,8	1,6	1,4	1,2	1,0	0,8	0,6	0,4	0,2	0,0
	y, дел	3,6	3,4	3,3	3,1	3,0	2,7	2,4	2,2	2,0	1,2	0,5	0,2	0,0

Восстановим предельные петли для образцов и рассчитаем B и H. После чего рассчитаем коэрцитивную силу H_c и индукцию насыщения B_s для каждого образца. Результаты измерений внесём в таблицу 8.

Таблица 8: Результаты измерений магнитной индукции и напряженности для: 1. феррит; 2. пермаллой; 3. кремнистое железо

	Н, А / м	В, Тл / дел	H_c , А / м	B_s , Тл / дел
1	$9,0 \pm 1,0$	$(3,33\pm0,6)\cdot10^{-2}$	$8,1 \pm 0,2$	$(12,9\pm0,02)\cdot10^{-2}$
2	$10,6 \pm 1,2$	$1,01 \pm 0,2$	$24, 4 \pm 0, 5$	$1,82 \pm 0,6$
3	$90,9 \pm 10,1$	$0,20\pm0,03$	$54,5\pm0,8$	$0,70 \pm 0,1$

Из графиков, представленных на рисунках 2-4 определим максимальные значения дифференциальной магнитной проницаемости. Результаты внесём в таблицу 9.

Таблица 9: Результаты измерения максимальной магнитной проницаемости

	μ_{max}
Феррит	$(7,6\pm0,6)\cdot10^3$
Пермаллой	$(89,7\pm7,6)\cdot10^3$
Кремнистое железо	$(30,6\pm 2,9)\cdot 10^3$

4 Вывод

Петля гистерезиса является качественной характеристикой намагничивания ферромагнетика, показывая такие эффекты, как домены, скачки Баркгаузена (которые можно было бы увидеть при значительно большем масштабе, но в любом случае), в том числе площадь петли пропорциональна энергии, теряемой в единице объёма вещества за время цикла.

Рис. 2: Петля Гистериза для феррита

Рис. 3: Петля Гистериза для пермаллоя

Рис. 4: Петля Гистериза для кремнистого железа