Problem Solving: Homework 3.4

Name: Chen Shaoyuan Student ID: 161240004

September 26, 2017

1 [GC] Problem 7.1

- (a) For every ordered pair of vertices u, v in D, let w be any vertex of D other than u, v, then D w is strong and there exists a path from u to v. Hence D is strong.
- (b) Let $\{a,b,c,d\}$ be the vertex set of D. Consider D-d whose order is 3, since it is oriented and strong, it must be a directed triangle. Without loss of generality, assume that the arcs are ab,bc,ca. Likewise D-c is also a directed triangle. Since ab has already been an arc of D-c, its arcs are ab,bd,da. Now consider D-b containing arcs ca,da. Note that it is impossible to make D-b both strong and oriented by adding arcs. Therefore there does not exist such graph satisfying the property described in the problem.

2 [GC] Problem 7.2

- If: since G is Eulerian, it must have an Eulerian cycle $(u_1, u_2, \dots, u_n, u0)$. Let the directions of the edges be (u_1, u_2) , (u_2, u_3) , \dots , (u_{n-1}, u_n) , (u_n, u_0) . For every vertex v of G, it may appear more than once in Eulerian cycle, but for each appearance u_i of v, (u_{i-1}, u_i) and (u_i, u_{i+1}) provide one indegree and one outdegree for v. Therefore, idv = odv for every vertex v of the orientation. Hence G has an Eulerian orientation.
- Only if: if G has an Eulerian orientation, then for every vertex v of G, idv = odv. The underlying graph of the orientation, i.e. G, satisfies that deg v is odd for every v because deg v = idv + odv where idv = odv. Therefore G is Eulerian.

3 [GC] Problem 7.4

• If: for every ordered pair of vertices u, v, there exists a v - u path in \vec{D} because \vec{D} is strong. By the definition of the converse of a graph, the v -

- *u* path in \vec{D} is simultaneously a u v path in *D*. Hence *D* is strong.
- Only if: note that the converse of the converse of a graph of is the graph itself. Interchanging D with \vec{D} in the proof of 'if' gives the proof of 'only if'.

4 [GC] Problem 7.5

- If: Let's prove by contradiction. If D is not strong, then it must contain at least two strongly connected components. Let C_1 be one of the components, and $C_2 = D C_1$ contains all other strongly connected components. The edges connecting C_1 and C_2 in C_3 form an edge cut of C_3 , and thus there exists an arc from C_3 to C_4 and an arc from C_3 to C_4 . This means that C_4 and C_5 are strongly connected, which leads to contradiction.
- Only if: Let u and v be any vertex of A and B, respectively. Since D is strong, there must exists a directed path from u to v. Futhermore, there must exist an arc (x,y), such that $x \in A$ and $y \in B$. Likewise there must exist an arc (z,w) such that $z \in B$ and $w \in A$. Therefore, there is an arc from A to B and an arc from B to A.

5 [GC] Problem **7.9**

• If: for a tournament T of order n, it contains n(n-1)/2 arcs, and thus the sum of outdegrees over all verices of T is n(n-1)/2. Since every two vertices of T have distinct outdegrees, it must be the case that, for every integer i ($0 \le i \le n$), there exists exactly one vertex v_i such that od $v_i = i$. Futhermore, there exist arcs from v_n to all other vertices, arcs from v_{n-1} to all other vertices except v_n, \cdots . In other words, (v_i, v_j) is an arc of T if and only if i < j. Since the relation '<' is transitive, the tournament T is also transitive.

• Only if: By Theorem 7.8, there exists a Hamiltonian path $P = (u_1, u_2, \dots u_n)$ of T. By transitivity, (u_i, u_j) is an arc of T if and only if i < j. Therefore, od $u_i = n - i$, i.e. every two vertices of T have distinct outdegrees.

6 [GC] Problem 7.10

Let $(u = u_0, u_1, \dots, u_k = v)$ be a shortest path from u to v. (u, u_2) , (u, u_3) , \dots m (u, u_k) are not arcs of the tournament, for any one of them will make the shortest path even shorter. Therefore, (u_2, u) , (u_3, u) , \dots , (u_k, u) are arcs of the tournament, which means that id $u \ge k - 1$.

7 [GC] Problem **7.13**

Since u and v are vertices of a tournament, either arc (u,v) or arc (v,u) is in the tournament. Without loss of generality, assume (u,v) is in the tournament, then $\vec{d}(u,v)=1$. However, (v,u) is not in the tournament, which makes $\vec{d}(v,u)>1$. Therefore, $\vec{d}(u,v)\neq\vec{d}(v,u)$.

8 [GC] Problem 7.14

- (a) We try to construct a tournament T of order n (n is odd) such that every vertex of T has the same indegree (or outdegree). Let v_1, v_2, \cdots, v_n be vertices of K_n . We assign directions for edges of K_n according to the following rule: for every pair of vertices v_i, v_j (i < j), (v_i, v_j) is an arc of T if i and j have the same parity, and (v_j, v_i) is an arc of T if the parities of i and j differ. For every vertex v_i , id $v_i = \lfloor (i-1)/2 \rfloor + \lceil (n-i)/2 \rfloor = (n-1)/2$, which means that all teams tie for first place.
- (b) Suppose, to the contrary, that all teams tie for first place. Let T denote the corresponding tournament of even order n. If all vertice of T has equal indegree d and outdegree n-1-d, then the sum of the indegrees and outdegrees over all vertices are nd and n(n-1-d), respectively. Since d and n-1-d have different parities, $nd \neq n(n-1-d)$, which violates Theorem 7.1. So it is impossible for all teams to tie for the first place.

9 [GC] Problem 7.15

We first prove by mathematical induction, that for every integer k with $3 \le k \le n$, a strong tournament T of

order n has a strong tournament subgraph T_k of order k

For the base step, $T = T_n$ it self is a strong tournament subgraph of T.

For the induction step, assume that T_n contains a tournament subgraph T_k of order k ($4 \le k \le n$). By Theorem 7.11, there exists vertex v of T_k , such that $T_{k-1} = T_k - v$ is a strong tournament subgraph of T_n .

By mathematical induction, T has a strong tournament subgraph T_k of order k for all k with $3 \le k \le n$. Since T_k is Hamiltonian by Theorem 7.10, T contains a cycle of length k, i.e. the Hamiltonian cycle of T_k , for every integer k with $3 \le k \le n$.