Program Verification

CMPSC 461
Programming Language Concepts
Penn State University
Fall 2016

Correctness

A program implements the desired property for all possible inputs

E.g.,

Functional correctness: a program calculates n!

Type safety: no typing errors at run time

Memory safety: no buffer overflow in a program

Security: no information leakage

We will focus on functional correctness in this course

Functional Correctness

```
r:=0, i:=0;
while (i<n) {
   r := r+2;
   i ++;
}</pre>
```

This code ensures $r = 2 \times n$ when $n \ge 0$?

- Testing: assert r:= 2*n and execute with different values of n (cannot cover all inputs in general)
- *Verification*: prove $r = 2 \times n$ for any possible n

Is a program correct (e.g., is the result n!)?

We need to formally specify

- 1) The desired property
- 2) The behavior of program

Logics as our specification language

Background: Propositional Logic

Proposition: statements that can either be true or false

E.g.,
$$1 > 0$$
 (true), $0 \times 5 = 0$ (true), $5 - 1 = 5$ (false)

Composed propositions: with prop. p and q,

And: $p \wedge q$ true iff both p and q are true

Or: $p \lor q$ false iff both p and q are false

not: $\neg p$ true iff p is false

E.g.,
$$1 > 0 \land 0 \times 5 = 0$$
 (true)
 $0 \times 5 = 0 \lor 5 - 1 = 5$ (true)

Implication

A proposition p implies another proposition q (written as $p \Rightarrow q$) iff $(\neg p \lor q)$

(intuitively, q is true whenever p is true)

E.g.,
$$7 > 5 \Rightarrow 5 > 3$$
 (true)
 $1 > 2 \Rightarrow 2 > 3$ (true, due to the false condition)
 $2 > 1 \Rightarrow 2 > 3$) (false)

Derivation:

Modus Ponens: given $p \Rightarrow q$ and p, we have q

(First-Order) Predicate Logic

A formula can mention bounded variables

For all (Universally quantified): $\forall x. p$

E.g., $\forall x. x = 5$ (false)

Exists (Existentially quantified): $\exists x. p$

E.g., $\exists x. x = 5$ (true)

(We assume the domain of integers for simplicity)

(First-Order) Predicate Logic

E.g.,
$$\forall x. (x > 5 \Rightarrow x > 3)$$
 (true)
 $\forall x. (x > 1 \Rightarrow x > 3)$ (false, consider $x = 2$)
 $\exists x. (x > 1 \Rightarrow x > 3)$ (true, consider $x = 4$)

Truth value of a formula can be *proved* based on derivation rules from predicate logic and number theory

We only use simple formulas in this course; in general, some tools (e.g., an SMT solver) can automatically tell the truth value of many formulas

We need to formally specify

1) The desired property

```
int Max(int a, int b) {
  int m;
  if (a>b) m:=a;
  else m:=b;
  return m;
}
Assignment
```

```
Precondition (true) function symbol in logics

Postcondition (m = \max(a, b))
```

We need to formally specify

1) The desired property

```
int factorial(int n) {
  int r:=1, i=n;
  while (i>0) {
    r := r*i;
    i --;
  }
  return r;
}
```

Precondition $(n \ge 0)$ Postcondition (r = n!)

Is a program correct?

We need to formally specify

- 1) The desired property
- 2) The behavior of program

Informally ...

```
x := 5;
y := 1;
```

After second assignment, we know $\{x = 5, y = 1\}$

Why?

- 1. Initially, we assume nothing
- 2. After the first assignment, we know $\{x = 5\}$
- 3. After the second assignment, we know $\{y = 1\}$ is true as well

Formalizing the Reasoning

```
x := 5;
y := 1;
```

- 1. Initially, we assume nothing
- 2. After the first assignment, we know $\{x = 5\}$
- 3. After the second assignment, we know $\{y = 1\}$ is true as well

The reasoning:

$${\text{true}}_{x:=5} \{x = 5\} \ y:=5 \ \{x = 5 \land y = 1\}$$

Each predicate specifies the assertion that must be true before/after a statement

Hoare Triple

Assertion: a predicate that describes the *state* of a program at a point in its execution

Hoare Triple: $\{P\}s\{Q\}$

Precondition *P*: an assertion before execution

Postcondition Q: an assertion after execution

Program s: program being analyzed

A triple is *valid* If we start from a state satisfying P, and execute s, then final state must satisfy Q

Examples

```
{true}x:=5{x = 5}

{y = 6}x:=5{x = 5, y = 6}

{true}x:=5{x < 10}

{x = y}x:=x+3{x = y + 3}

{x = a}if (x<0) then x:=-x {x = |a|}
```

All of these triples are valid

Program Correctness

A program is correct (w.r.t. pre/postcondition) if the corresponding Hoare triple is valid

```
{true}
int m;
if (a>b) m:=a;
else m:=b;
{m=max(a,b)}
```

```
{n >= 0}
int r:=1, i:=n;
while (i>0) {
   r := r*i;
   i --;
}
{r = n!}
```

How can we tell the validity of a Hoare triple?

Goal: check if $\{P\}s\{Q\}$ is valid

$${\text{true}}_{x:=5} {x = 5}$$

 ${\text{true}}_{x:=5} {x = 5 \lor x = 2}$
 ${\text{true}}_{x:=5} {x > 0}$
 ${\text{true}}_{x:=5} {x < 10}$

Observation: some postconditions are more useful

$$x = 5 \Rightarrow x = 5 \lor x = 2$$

 $x = 5 \Rightarrow x > 0$
 $x = 5 \Rightarrow x < 10$

Need to compute the *strongest* postcondition

Goal: check if $\{P\}s\{Q\}$ is valid Method 1: check $\operatorname{sp}(s, P) \Rightarrow Q$

Strongest Postcondition

sp(s, P) is the **strongest postcondition** of s, w.r.t. P Property: $\{P\}s\{Q\}$ is valid iff $sp(s, P) \Rightarrow Q$

Hence, validity of a triple $\{P\}s\{Q\}$ is equivalent to the truth value of proposition $\operatorname{sp}(s,P)\Rightarrow Q$

Assignment Rule (Floyd's Axiom)

$$sp(x := e, P) = (\exists v. (x = (e[x \leftarrow v])) \land (P[x \leftarrow v]))$$

Substitute x with v in e

Examples:

$$sp(x := 5, true) = (\exists v. (x = 5) \land true) = (x = 5)$$

 $sp(x := x+3, x = y) = (\exists v. (x = v + 3) \land (v = y))$
 $= (x = y + 3)$

Composition Rule

```
sp(s1; s2, P)=sp(s2, sp(s1, P))
```

```
x := 5;
y := 1;
```

```
sp(x:=5; y:=1, true) = sp(y:=1, sp(x:=5, true))
= sp(y:=1, x = 5) (previous slide)
= (\exists v. (y = 1) \land (x = 5))
= (y = 1) \land (x = 5)
```

Composition Rule

```
sp(s1; s2, P)=sp(s2, sp(s1, P))
```

```
x := 5;
x := 2;
```

```
sp(x := 5; x := 2, true) = sp(x := 2, sp(x := 5, true))
= sp(x := 2, x = 5)
= (\exists v. (x = (2[x \leftarrow v])) \land (x = 5[x \leftarrow v]))
= (\exists v. (x = 2) \land (v = 5))
= (x = 2)
```

The existential quantifier complicates the formula ...