Single Source Shortest Path: The Bellman-Ford Algorithm

Single Source Shortest Path Problem

Shortest path network.

- Directed graph G = (V, E, w).
- Weight w_e = weight of edge e.

Shortest path problem: given a starting vertex s, find shortest directed path from s to all other vertices

Option #1: if all edge weights are non-negative, use Dijkstra

• Greedy algorithm works in $O(n^2)$ or $O(m \log n)$

Option #2: if some edge weights are negative, use Bellman-Ford

- Runs in O(mn) time
- Also used to determine if there exists a negative-weight cycle

Applications Involving Shortest Paths with Negative Edge Weights

Applications:

- Arbitrage scenarios in finance
 - Situations in which it is possible to make guaranteed profit
 - E.g. currency exchange in which you start with one currency and end up after a sequence of conversions with more money than you started with
 - A negative cycle implies an arbitrage scenario
- Distance-vector routing protocols in networking

Converting to Positive Weights.

- Couldn't we just add a sufficiently large constant to each edge weight so that they all become positive?
- And then back out this extra weight from each path when we're done?
- No the problem is that the actual shortest paths might change to the wrong answer

Key Observation:

■ If there are no negative cycles, then the shortest path from s to t is simple (no repeat nodes) and has at most n-1 edges

Why?

- Any path with more than n-1 edges must visit at least one node twice, but the corresponding cycle can't help the shortest path (because all cycles have non-negative weight), so it could be removed and the total distance could only get better.

Basic Idea:

- Iterate over the number of vertices
- Keep track of current shortest path (distance and parent) for each vertex
- For each iteration, "relax" all edges
 - Consider whether this edge can be used to improve the current shortest path of the vertex at its endpoint
- After k iterations, the first k steps of any shortest path are correct and will never change from that point (we'll prove shortly)
- Because every shortest path is simple, we know that after at most
 n-1 iterations, we'll have every shortest path determined

Bellman-Ford algorithm.

- Complexity: O(mn)
 - Iterate over the vertices
 - Consider every edge during each iteration

```
Bellman-Ford (G=(V,E,w), s)
1. For every vertex v
2. d[v] = \infty
3. d[s]=0
4. For i=1 to |V|-1 do
5. For every edge (u,v) in E do
6.
        If d[v]>d[u]+w(u,v) then
           d[v]=d[u]+w(u,v), parent[v] = u
7.
8. For every edge (u,v) in E do
     If d[v]>d[u]+w(u,v) then
   Return NEGATIVE CYCLE
10.
11.Return d[], parent[]
```

Bellman-Ford - Correctness

Correctness Argument assuming no negative weight cycles:

- Proof by induction over the iterations of the algorithm
- Claim: Consider any vertex t and a shortest path P from s to t. Let P be defined as $v_0v_1v_2...v_k$, where v_0 = s and v_k = t. After $n \le k$ iterations of Bellman-Ford, all vertices along the path $v_0v_1...v_n$ have had their shortest path computed.
- Base case: n = 0. Shortest path for s is 0, and can't be improved by any cycles.
- Inductive case: Suppose true for j iterations. Then the shortest path from s to v_j has been calculated, and in iteration j+1, all edges are relaxed again, in particular edge $e = (v_j, v_{j+1})$, such that the shortest path is correctly computed for v_{j+1} .
- Note that by definition of the Bellman-Ford algorithm, the shortest path to a vertex can never increase from one iteration to the next, and it can never get lower than the true shortest path.

Bellman-Ford: Negative Cycles

Negative Cycles

- Assuming there are no negative cycles, every shortest path is simple and contains at most n-1 edges
- Therefore the Bellman-Ford algorithm correctly identifies all shortest paths from source vertex s in at most n-1 iterations.
- As soon as you have an iteration in which nothing changes (no vertices receive improved shortest paths) the algorithm is finished - nothing can change from that point.
- So to check for cycles, after completing n-1 iterations of Bellman-Ford, simply scan all edges one more time to see if there is a vertex that could still be improved.
 - If so, that implies a path longer than n-1 edges to achieve the shortest path, which implies a negative cycle.