

COMUNICAÇÕES DIGITAIS

Prof. Claudio Coutinho

Aula oo

Apresentação da disciplina

Apresentação

- Prof. Claudio Coutinho
- Formação:
 - Engenheiro da Computação (UFPA-2012)
 - Mestre em Engenharia Elétrica, Telecomunicações (UFPA-2015)
 - Doutorando em Engenharia Elétrica, Telecomunicações (UFPA, Université de Nantes)

• Áreas de interesse:

- Desenvolvimento de software, Processamento de Imagens, Visão Computacional, Inteligência Artificial
- Pesquisa:
 - Rastreamento ocular, modelos de atenção visual, aprendizagem profunda
 - MEDIA LAB/Unifesspa
- Extensão:
 - Coordenador da Empresa Júnior de Eng. da Computação (BITS Jr.)

Diretrizes

- Disciplina de caráter obrigatório;
- > Módulo II
- > CH: 68 h/a

- ➤ Avaliação:
 - ≥3 provas
 - ➤ Listas de exercício

Diretrizes

➤ Cálculo da nota no período remoto:

$$\triangleright NF = \frac{(1A + 2A + 3A)}{3}$$

$$> 0 \le iA \le 10$$
;

>CONCEITOS:

- $> 0 \leq NF < 5:INS$
- > 5 \leq NF < 7: REG
- > 7 \leq NF < 9: BOM
- $>9 \le NF \le 10$: EXC

Horário e Cronograma (2021.4)

• Horários:

Quinta-feira: 11:10 às 12:50 (2 h/a)

• Sexta-feira: 11:10 às 12:50 (2 h/a)

CRONOGRAMA						
Março	Abril	Maio	Junho			
17, 18, 24, 25, 31	01, 07, 08, <mark>14</mark> , 15, 22, 28, 29	05, 06, 12, 13, <mark>19</mark> , 20, 26, 27	02, 03, 09, 10, 16, 17			
	1A: 14/04	2A: 19/05	3A: 17/06			

Contato

- Contato aluno/professor
 - SIGAA (Oficial)
 - Bloco 02, Sala 02 (1º andar)
 - Email para contato: <u>claudio.coutinho@unifesspa.edu.br</u>

• Monitoria

Indisponível

Introdução

- Antes do advento dos computadores, a análise de circuitos era a ferramenta que possuíamos para manipular sinais.
- Com a possibilidade do **processamento digital de sinais**, um leque de possibilidades de análise tornaram-se praticáveis.
 - Operações que antes exigiam uma complexa circuitaria, passaram a ser "simplificados" por algoritmos.
- As comunicações também seguiram por este paradigma.

Sistemas de Comunicação Digitais (SCDs)

- Um sistema de comunicação digital é aquele que, durante um intervalo de tempo, transmite uma forma de onda de um conjunto finito de formas de onda possíveis.
- Já os sistemas de comunicação analógicos são aqueles que têm infinitas possibilidades de formas de onda para transmitir.
- Nos SCDs, focamos em enviar e receber bits.
- Nos SCDs não precisamos encontrar exatamente no receptor a onda que foi transmitida, mas identificar, a partir de uma onda modicada, que onda foi transmitida.
- Nos SCDs, uma métrica que e utilizada para determinar a qualidade de uma transmissão é a **probabilidade de erro**, P_E .

Processamento de Sinais em Comunicações Digitais

Por que transmitir digitalmente?

Um sinal digital pode ser regenerado!

- Vários setores estão migrando para as comunicações digitais devido à **facilidade de regeneração** desses sinais.
- Mesmo após os efeitos de atenuação, distorção e ruído, ainda é possível recuperar o sinal transmitido.
 - Atenuação diminui a amplitude da onda.
 - Distorção modifica a forma da onda, geralmente em um efeito de espalhamento.
 - Ruído modifica a forma da onda por um processo aditivo.

Regeneração de sinais digitais

- Todos os efeitos listados anteriormente modicam a forma de onda transmitida.
- Estes mecanismos tendem a se acumular com a distância.
- Antes da forma de onda passar a se confundir com outra, é preciso utilizar um repetidor regenerador.

Regeneração de sinais digitais

- A regeneração sé é possível devido os Sistemas de Comunicação Digitais (SCD) operarem em um conjunto de estados finito.
- Dessa maneira, ruídos com magnitude moderada podem ser tolerados.
- O mesmo não ocorre em comunicações analógicas, em que o menor ruído pode tornar impossível a tarefa de regeneração do sinal.

Outros benefícios dos SCDs

- SCDs são mais confiáveis.
- Há a possibilidade de barateamento do sistema por consumo de energia.
- São mais flexíveis.
- Tipos diferentes de sinais podem ser tratados da mesma forma. Um bit em um tipo de sistema, e visto da mesma forma em outro sistema!
- Podem utilizar ferramentas poderosas de PDS para se **defender de interferência**, *jamming*, etc.
- Podem proteger os dados com o uso de técnicas avançadas de criptografia.

Desvantagens dos SCDs

• Precisam de **alto investimento** em processamento de sinais.

Precisam ser sincronizados.

• Em SNRs baixas, o serviço pode cair bruscamente.

Aspectos a se considerar em SCDs

	Chave	Sistema Digital	Sistema analógico
1	Tipo de sinal	O Sistema Digital usa sinais discretos como on/off representando o formato binário. Desligado é 0, Ligado é 1.	O Sistema Analógico usa sinais contínuos com magnitude variável.
2	Tipo de onda	O Sistema Digital usa ondas quadradas.	O sistema analógico usa ondas senoidais.
3	Tecnologia	O sistema digital primeiro transforma as ondas analógicas em um conjunto limitado de números e depois os grava como ondas quadradas digitais.	Os sistemas analógicos registram as formas de onda físicas à medida que são geradas originalmente.
4	Transmissão	A transmissão digital é fácil e pode ser feita à prova de ruído sem perda alguma.	Os sistemas analógicos são muito afetados pelo ruído durante a transmissão.
5	Flexibilidade	O hardware do sistema digital pode ser facilmente modulado de acordo com os requisitos.	Os hardwares do sistema analógico não são flexíveis.
6	Largura de banda	A transmissão digital precisa de mais largura de banda para transportar as mesmas informações.	A transmissão analógica requer menos largura de banda.

	Chave	Sistema Digital	Sistema analógico
7	Memória	Os dados digitais são armazenados na forma de bits.	Os dados analógicos são armazenados na forma de sinais de forma de onda.
8	Requisito de energia	O sistema digital precisa de baixa potência em comparação com o seu homólogo analógico.	Os sistemas analógicos consomem mais energia do que os sistemas digitais.
9	Mais adequado para	O sistema digital é bom para computação e eletrônica digital.	Os sistemas analógicos são bons para gravações de áudio/vídeo.
10	Custo	O sistema digital é caro.	Os sistemas analógicos são baratos.
11	Exemplo	Os sistemas digitais são: Computador, CD, DVD.	Os sistemas analógicos são: Eletrônicos analógicos, rádio de voz usando frequência AM.