Suponha que desejamos estudar como o comportamento muda sob certas condições experimentais. Pensamos, em particular, em uma sequência de eventos começando com a percepção de um estímulo, seguida pela execução de uma resposta (pressionar uma barra, correr em um labirinto, etc.), e terminando com a ocorrência de um evento ambiental (apresentação de comida, choque elétrico, etc.):

O comportamento é medido pela probabilidade p de que a resposta ocorra durante um determinado intervalo de tempo após o início da sequência. A ideia geral é que p denote o nível de desempenho do sujeito e seja aumentada ou diminuída após cada ocorrência da resposta, conforme os fatores ambientais sejam reforçadores ou inibidores.

Se imaginarmos um experimento no qual um sujeito é repetidamente exposto a essa sequência de eventos (estímulo—resposta—evento ambiental), podemos dividir o experimento em estágios, cada estágio sendo uma tentativa durante a qual o sujeito percorre a sequência. O nível de desempenho do sujeito é então uma função do número de tentativas, denotado por n, e seja p a probabilidade da resposta (durante o intervalo de tempo especificado após o estímulo) na n-ésima tentativa.

O número p_0 será tomado como o valor inicial que descreve a disposição do sujeito em relação à resposta quando ele é introduzido no experimento propriamente dito. A função p é então definida no domínio do conjunto de valores $n = 0, 1, 2, \ldots$ Ao chamar p de uma probabilidade, impomos a normalização:

$$0 \le p \le 1, \quad n = 0, 1, 2, \dots$$
 (2.95)

o que apenas identifica os extremos de nenhuma resposta e resposta certa com os valores 0 e 1, respectivamente.

Assumimos inicialmente que p_{n+1} depende apenas de p_n e não dos valores anteriores da função p. Em outras palavras, o desempenho do sujeito na tentativa n+1, embora dependente do nível de comportamento na tentativa anterior (medido por p_n), é independente do histórico completo até a tentativa n. Isso é conhecido como a propriedade de Markov do modelo.

Seguindo Bush e Mosteller, fazemos a suposição simplificadora de que essa dependência de p_{n+1} em relação a p_n é linear, ou seja, uma linha reta resulta quando p_{n+1} é representada graficamente como função de p_n . A forma de inclinação e intercepto dessa equação é:

$$p_{n+1} = a + mp_n, \quad n = 0, 1, 2, \dots$$
 (2.96)

onde a é o intercepto (isto é, o valor de p_{n+1} quando $p_n = 0$) e m é a inclinação da linha (isto é, a variação em p_{n+1} por unidade de variação de p_n).

Para nossos propósitos, é mais conveniente escrever essa relação linear na forma de "ganho-perda". Introduzimos o parâmetro b pela equação definidora:

$$m = 1 - a - b \tag{2.97}$$

Assim, a relação 2.96 pode ser reescrita como:

$$p_{n+1} = p_n + a(1 - p_n) - bp_n, \quad n = 0, 1, 2, \dots$$
 (2.98)

Nota: se conhecemos os valores de a e m, então b é unicamente determinado pela equação 2.97; se a e b são conhecidos, também podemos determinar m.

Assim, as equações (2.96) e (2.98) são formas alternativas, mas equivalentes, da relação linear entre p e p_{n+1} .

Se o nível de desempenho do sujeito na tentativa de número n é dado por p, então 1-p é o aumento máximo possível de desempenho e -p é a diminuição máxima possível ao passar para a tentativa n+1. Isso decorre do fato de que 1 e 0 são os maiores e menores valores possíveis de probabilidade.

A equação (2.98) pode ser interpretada dizendo que a mudança no nível de desempenho, $\Delta p = p_{n+1} - p_n$, é proporcional ao ganho máximo possível e à perda máxima possível. Por esse motivo, a equação (2.98) é chamada de forma "ganho-perda". As constantes de proporcionalidade são a e b, e podemos, portanto, medir com o parâmetro a os eventos ambientais que são reforçadores (por exemplo, apresentação de uma recompensa) e com b os eventos que são inibidores (por exemplo, punição ao sujeito).

As restrições sobre a e b são impostas apenas para garantir que, não importa qual seja o valor de p, consistente com (2.95), o valor seguinte p_{n+1} também estará entre 0 e 1 inclusive.

Se p = 0, então $p_{n+1} = a$, de modo que exigimos:

$$0 \le a \le 1. \tag{2.99}$$

Se p = 1, então $p_{n+1} = 1 - b$, e, portanto, requeremos:

$$0 \le b \le 1. \tag{2.100}$$

Mostramos que as condições (2.99) e (2.100) são necessárias para que p_{n+1} esteja entre 0 e 1. Não é difícil mostrar que essas condições também são suficientes (ver Problema 1 da Seção 2.10). Essas são as únicas restrições impostas sobre os parâmetros a e b na equação fundamental de diferenças (2.98).

Assim, a=0 descreve uma situação na qual nenhuma recompensa é dada após a resposta ocorrer, b=0 descreve uma tentativa sem punição, e a=b implica que as medidas de recompensa e punição são iguais.

Citamos Bush e Mosteller: "podemos agora descrever a mudança progressiva na probabilidade de uma resposta em um experimento como o de Graham-Gagné (pista de corrida) ou a caixa de Skinner, nos quais os mesmos eventos ambientais seguem cada ocorrência da resposta."

Vamos considerar um exemplo específico: se a=0.4 e b=0.1, então a equação (2.98) torna-se:

$$p_{n+1} = p_n + 0.4(1 - p_n) - 0.1p_n$$

= 0.5p_n + 0.4 (2.101)

Se assumirmos $p_0 = 0.2$, podemos calcular sucessivamente:

$$p_1 = 0.5(0.2) + 0.4 = 0.5,$$

 $p_2 = 0.5(0.5) + 0.4 = 0.65.$

Para resolver a equação (2.101) e obter p_n para todo n, usamos o Teorema 2.7 com $A=0.5,\ B=0.4$. O limite p é dado por:

$$p = \frac{B}{1 - A} = \frac{0.4}{1 - 0.5} = 0.8. \tag{1}$$

A solução geral é então:

$$p_n = (0.5)^n (p_0 - 0.8) + 0.8. (2.102)$$

Essa solução mostra exatamente como o nível de desempenho varia com o número de tentativas. Como 0 < A < 1 e $p_0 < p$, sabemos (ver Tabela 2.2) que a sequência $\{p_n\}$ é monótona crescente com limite p=0,8.

Assim, para tentativas repetidas em que recompensa e punição têm peso na razão 4:1 (como em a=0,4 e b=0,1), as probabilidades de resposta e de não resposta, $p \in 1-p$, se aproximam de valores limites cuja razão é a mesma.

Voltando ao caso geral, notamos que (2.98) pode ser reescrita na forma padrão:

$$p_{n+1} = (1 - a - b)p_n + a, \quad n = 0, 1, 2, \dots$$
 (2.103)

Reconhecemos essa equação como uma equação de diferenças linear de primeira ordem com coeficientes constantes. De fato, usando a notação do Teorema 2.7, temos:

$$A = 1 - a - b, \quad B = a.$$

e, portanto, o valor limite p é:

$$p = \frac{B}{1 - A} = \frac{a}{a + b}, \text{ se } a + b \neq 0.$$
 (2.104)

Temos então a solução geral:

$$p_n = \begin{cases} (1 - a - b)^n (p_0 - p) + p, & \text{se } a + b \neq 0, \\ p_0, & \text{se } a + b = 0, \end{cases}$$
 (2.105)

À luz das condições (2.99) e (2.100), a constante A=1-a-b está entre -1 e 1, com os extremos atingidos apenas se a e b forem ambos iguais a 0 ou ambos iguais a 1.

Se a=b=1, então A=-1 e a sequência $\{p_n\}$ oscila finitamente entre os valores p_0 e $1-p_0$. Mas em todos os outros casos a sequência $\{p_n\}$ converge, para o limite p_0 se a=b=0, e para o limite p caso contrário.

Se 0 < a + b < 1, então 0 < A < 1 e $\{p_n\}$ é monótona:

• decrescente, se $p_0 > p$,

- crescente, se $p_0 < p$,
- constante, se $p_0 = p$.

Se 1 < a + b < 2, então -1 < A < 0 e $\{p_n\}$ é uma sequência oscilatória amortecida com limite p. O caso especial a+b=0 gera uma sequência constante (com valor p_0), e a+b=1 gera uma sequência em que todos os elementos são iguais a p.

Casos Especiais

Concluímos com dois casos especiais:

1. a = 0

2. a = b

Caso (1): Assume-se que nenhuma recompensa é dada após a ocorrência da resposta. A equação de diferenças (2.98) torna-se:

$$p_{n+1} = (1-b)p_n (2)$$

com solução:

$$p_n = (1-b)^n p_0, \quad n = 0, 1, 2, \dots$$
 (3)

Esta é uma equação que descreve a diminuição constante da probabilidade de resposta (à medida que $n \to \infty$) a partir da probabilidade inicial p_0 . Ao representar p como função de n, obtemos uma curva de extinção experimental (ver discussão no Capítulo 0, Exemplo 1).

Caso (2): Quando a=b, as medidas de reforço e punição são iguais. Descartando os casos extremos a=b=0 e a=b=1, temos que a quantidade $(1-a-b)\to 0$ conforme $n\to\infty$, e a equação (2.105) mostra que o limite de p_n é:

$$p = \frac{a}{a+b} = \frac{a}{2a} = \frac{1}{2}.$$

Ou seja, a resposta tende a ocorrer (no intervalo de tempo especificado após o estímulo) em metade das tentativas. O equilíbrio entre forças de recompensa e punição produz, no longo prazo, uma simetria correspondente no desempenho.

Problemas 2.10

1. Se $p_{n+1} = p_n + a(1 - p_n) - bp_n$ e $0 \le p_n \le 1$, mostre que, se $0 \le a \le 1$ e $0 \le b \le 1$, então também $0 \le p_{n+1} \le 1$.

 $[{\bf Dica:}\ {\bf Estabeleça}\ {\bf as}\ {\bf desigual dades:}$

$$p + a(1-p) - bp \le p + 1(1-p) - 0 = 1$$
, quando $p = 0$; $p + a(1-p) - bp \ge p + 0(1-p) - p = 0$, quando $p = 1$.

2. Usando a equação (2.98) com a=0,5 e b=0,2, calcule os valores de p_{n+1} para:

$$p_n = 0, 0, 1, 0, 2, \dots, 0, 9, 1$$

e trace o gráfico da reta, com p_n no eixo horizontal e p_{n+1} no eixo vertical.

- 3. (a) Resolva a equação de diferenças (2.98) no caso $p_0=0.5,\ a=0.1,\ e$ $b=0.4,\ e$ mostre que, quando as medidas de reforço e punição estão na razão 1:4, as probabilidades limites de resposta e não resposta estão na mesma razão.
 - (b) Generalize esse resultado mostrando que, quando as medidas de reforço e punição estão na razão a:b, as probabilidades limites de resposta e não resposta estão na mesma razão.
- 4. Com n no eixo horizontal e p_n no eixo vertical, trace os gráficos da função p_n nos seguintes casos:
 - (a) a = 0, b = 0,2
 - (b) a = 0, b = 0.5
 - (c) a = 0, b = 0.8

Suponha $p_0=0.5$ e mostre que quanto maior for b, mais rapidamente $p_n\to 0$.

- 5. Repita o problema anterior com $p_0 = 0.5$, mas agora:
 - (a) a = 0.2, b = 0
 - (b) a = 0.5, b = 0
 - (c) a = 0.8, b = 0