Mathematical analysis II Collection of problems

Not for handing in

Exercise 1 (Metrics).

a) Let

$$d(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|.$$

Show that (\mathbb{R}, d) is a metric space. Are the metrics d and $d_1(x, y) := |x - y|$ equivalent? Show or disprove.

b) Let (X, d) be a metric space. Find all $k \in \mathbb{R}$ such that

$$d_1(x,y) := (k-1)(k-3)d(x,y)$$

is a metric on X.

c) Let (X, d) be a metric space and define like in HW 1

$$\delta(x,y) = \min\{d(x,y), 1\}.$$

Are, in general, the metrics d and δ equivalent? Show or disprove.

Exercise 2 (Open and closed sets).

- a) Give an example of a set $A \subset \mathbb{R}$ (with the euclidean metric) that is neither closed nor open. Can you also find such a set $A \subset \mathbb{R}^2$ or even $A \subset \mathbb{R}^n$?
- b) Give an example of metric spaces (X, d) and (Y, e), a function $f : X \to Y$, and a closed subset $B \subset Y$ such that $f^{-1}[B]$ is not closed. Give also an example where you switch every "closed" with "open".
- c) Find a function $f : \mathbb{R} \to \mathbb{R}$, a closed set $A \subset \mathbb{R}$ and an open set $B \subset \mathbb{R}$ such that f[A] and f[B] are neither open nor closed.
- d) A space X is called *connected*, if the only sets that are both closed an open (clopen) are just \emptyset and X.
 - 1) Give an example $X \subset \mathbb{R}$ that is not connected. Determine all clopen subsets of X.
 - 2) Let (X, d) and (Y, e) be metric spaces and

$$f: X \to Y$$

be continuous and onto (surjective). Show that if X is connected, then Y is as well.

Exercise 3 (Continuity).

- a) Determine whether or not the following functions $f_i : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ are continuous. Can we extend them in such a way that the functions are continuous on the whole of \mathbb{R}^2 ?
 - 1) $f_1(x,y) = \frac{x+y}{\sqrt{x^2+y^2}}$
 - 2) $f_2(x,y) = \frac{x^2y^2}{x^2+y^2}$
 - 3) $f_3(x,y) = \frac{x^2+y^2}{|x|+|y|}$
- b) Let (X, d), (Y, e) be metric spaces, where $X = A \cup B$ is the union of open or closed subsets of X. Let moreover $f_A : A \to Y$ and $f_B : B \to Y$ be continuous with $f_A = f_B$ on $A \cap B$. Show that the function

$$f: X \to Y, \qquad f(x) = \begin{cases} f_A(x) & \text{if } x \in A, \\ f_B(x) & \text{if } x \in B \end{cases}$$

is continuous.

Exercise 4 (Differentiability, extrema, tangential planes).

- a) Let $f: \mathbb{R}^n \to \mathbb{R}$ be an affine mapping, that is, there is some linear mapping $L: \mathbb{R}^n \to \mathbb{R}$ such that f(y) f(x) = L(y x). Show that f is totally differentiable on \mathbb{R}^n . How the total differential looks like?
- b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable, $x_0 \in \mathbb{R}^n$ and $c = f(x_0)$. Show that the gradient $\nabla f(x_0)$ is perpendicular to the level set

$$N_f(c) = \{ x \in \mathbb{R}^n : f(x) = c \},$$

i.e., the following holds: If $\varepsilon > 0$ and $\phi : (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ is a differentiable curve with $\phi(0) = x_0$ and $\phi[(-\varepsilon, \varepsilon)] \subset N_f(c)$, then

$$\langle \phi'(0), \nabla f(x_0) \rangle = 0.$$

(Hint: Consider the function $g := f \circ \phi$.)

- c) Calculate the partial derivatives up to order 2 of f_1 and f_2 from Exercise 3.
- d) Determine position and kind of all extrema to the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = (x^2 - 1)^2 + y^4.$$

Additionally, calculate the tangent plane at the point $x_0 = (2,3)$. What happens to the extrema if we consider $g(x,y) = (x^2 - 1)^2 + y^3$ instead?

e) Let

$$f(t) = (1 + t, t^2, 1 - t),$$
 $g(x, y, z) = 1 + x + xyz.$

Calculate once with and once without the help of the chain rule $D(g \circ f)(0)$.

Exercise 5 (Mean value theorem, second order derivatives).

a) Show that the mean value theorem fails for functions $f: \mathbb{R}^n \to \mathbb{R}^m$ with $m \geq 2$. More precisely, given a = 0, $h = 2\pi$, and

$$f: \mathbb{R} \to \mathbb{R}^2, \qquad f(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix},$$

show that there does not exist a $\theta \in (0,1)$ such that $f(a+h) - f(a) = f'(a+\theta h)h$.

b) Show that for the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{else,} \end{cases}$$

we have $\partial_x \partial_y f(0,0) \neq \partial_y \partial_x f(0,0)$. Why this is not a contradiction to Schwarz' theorem?

Exercise 6 (Compactness, completeness).

- a) Let (X, d) be a metric space. Show or disprove: if X is compact, then it is complete.
- b) Let (X, d) be a metric space. Show or disprove: if X is complete, then it is compact.
- c) Let $f: \mathbb{R} \to \mathbb{R}$ be a function, $K \subset \mathbb{R}$ and $V \subset \mathbb{R}$. Find examples for the following situations:
 - 1) K is compact, but f[K] is not.
 - 2) K is compact, but $f^{-1}[K]$ is not.
 - 3) V is complete, but f[V] is not.
 - 4) V is complete, but $f^{-1}[V]$ is not.
- d) Show or disprove: if (X, d) and (Y, e) are metric spaces, $f: X \to Y$ is continuous and X is complete, then f[X] is complete.
- e) Let (X, d) be a metric space and $A \subset X$. For $x \in X$ we define the distance from x to A by $\operatorname{dist}(x, A) = \inf\{d(x, y) : y \in A\}$.
 - 1) Show that $\operatorname{dist}(\cdot, A) : X \to \mathbb{R}$ is continuous.
 - 2) Let $A \subset X$ be compact and $x \notin A$. Show that $\operatorname{dist}(x,A) > 0$. Does this also hold if we replace "compact" by "closed"?
- f) (a bit harder task, don't waste too much time with that one) Let $A \subset \mathbb{R}^n$, I be any (countable or uncountable) index set and $U_i \subset \mathbb{R}^n$ be open for any $i \in I$. We call $(U_i)_{i \in I}$ an *(open) covering* of A if $A \subset \bigcup_{i \in I} U_i$. Show that A is compact if and only if for any open covering $(U_i)_{i \in I}$ there is a finite subcovering, i.e., there are finitely many U_{i_1}, \ldots, U_{i_n} with $i_1, \ldots, i_n \in I$ such that $A \subset \bigcup_{j=1}^n U_{i_j}$. (In this sense, "compactness" is a generalization of "finiteness").
- g) Give for (0,1) and $[0,\infty)$ open coverings that do not posses a finite subcovering.