

Walmart Stock Analysis

HIVE | PYSPARK | SPARKSQL | MYSQL | TABLEAU

Shubham Ghate | Futurense Technologies | Jul -2023

HIVE - Analysis

MYSQL

Create Database, Tables & load data-

- ✓ mysql> create database Project;
- ✓ mysql> create table AAL(Date date,Low float,Open float,Volume float,high float,close float,Adjusted_close float);
- ✓ mysql> LOAD DATA INFILE '/home/cloudera/project/AAL.csv' INTO TABLE AAL FIELDS TERMINATED BY ',' (@varı,@var2,@var3,@var4,@var5,@var6,@var7) SET Date=STR_TO_DATE(@varı,'%d-%m-%Y'),Low=@var2,Open=@var3,Volume=@var4,high=@var5,Close=@var6,Adjusted_close=@var7;

Add Stock Name column in each file -

✓ mysql> alter table AAL add stock_name varchar(20) default 'AAL';

Stock_Data - Merge all four stock files-

- ✓ mysql> create table Stock_Data(Date date,Low float,Open float,Volume float,high float,close float,Adjusted_close float,Stock_Name varchar(20));
- ✓ mysql> insert into Stock_Data select * from AAL union all select * from AAOI
 union all select * from ABIO union all select * from ABMD;

```
Low
                              Volume
                                                  | close | Adjusted_close |
                                                                              stock name
                   | Open
                                           high
              19.1
                     21.05
19.3
                             961200
5.7479e+06
                                           21.4
                                                     19.3
20.5
                                                                    18.1949
19.3262
                                                                              AAL
              19.2
rows in set (0.00 sec)
ysql> select * from AAOI limit 2;
             | Low | Open | Volume | high
                                              | close | Adjusted_close |
                                                                          stock name
                                        10.09
                              253300
rows in set (0.00 sec)
ysql> select * from ABIO limit 2;
                                Volume | high
             Low
                      | Open
                                                   close
                                                            | Adjusted close | stock name
rows in set (0.00 sec)
ysql> select * from ABMD limit 2;
                      | Open | Volume | high
                                                | close | Adjusted close | stock name
 rows in set (0.00 sec)
```

SQOOP Pipeline for MYSQL to HDFS -

[cloudera@quickstart ~]\$ sqoop import --connect jdbc:mysql://localhost:3306/project -username root --password cloudera --table Stock_Data --target-dir /user/cloudera/Shubz/Stock_Data.txt -m 1

```
[cloudera@quickstart ~]$ sqoop import --connect jdbc:mysql://localhost:3306/project --username root --password cloud
era --table Stock Data --target-dir /user/cloudera/Shubz/Stock Data.txt -m 1
Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail.
```

Creating Schema & Loading data into HIVE –

- √ hive> create table Stock_Data(Date string,Low float,Open float,Volume int,High float,Close float,Adjusted_close float,Stock_Name string) row format delimited fields terminated by ',';
- ✓ hive> load data inpath 'Shubz/Stock_Data.txt' into table Stock_Data;

```
hive> create table Stock_Data(Date string,Low float,Open float,Volume int,High float,Close float,Adjusted_close floa
t,Stock_Name string) row format delimited fields terminated by ',';
DK
Time taken: 0.235 seconds
hive> load data inpath 'Shubz/Stock_Data.txt' into table Stock_Data;
```

Implementing Partitioning and Bucketing in Hive: Optimizing Data Storage and Query Performance

- ✓ hive> create table Stock(Date string,Low float,Open float,Volume int,High float,Close float,Adjusted_close float) partitioned by(Stock_Name string) clustered by(Date) into 3 buckets row format delimited fields terminated by '';
- ✓ hive> Set hive.enforce.bucketing=true;
- ✓ hive> Set hive.dynamic.partition=true;
- ✓ hive> set hive.exec.dynamic.partition.mode=nonstrict;
- ✓ hive> set hive.exec.max.dynamic.partitions.pernode=8000;
- √ hive> insert overwrite table Stock partition(Stock_Name) select
 Date,Low,Open,Volume,High,Close,Adjusted_close,Stock_Name from Stock_Data;

```
hive> create table Stock(Date string,Low float,Open float,Volume int,High float,Close float,Adjusted_close float) pa
rtitioned by(Stock_Name string) clustered by(Date) into 3 buckets row format delimited fields terminated by ' ';

OK
Time taken: 0.103 seconds
hive> Set hive.enforce.bucketing=true;
hive> Set hive.dynamic.partition=true;
hive> Set hive.dynamic.partition=true;
hive> set hive.exec.dynamic.partition.mode=nonstrict;
hive> set hive.exec.dynamic.partition.mode=nonstrict;
hive> set hive.exec.max.dynamic.partitions.pernode=8000;
hive> insert overwrite table Stock partition(Stock_Name) select Date,Low,Open,Volume,High,Close,Adjusted_close,Stock_Name from Stock_Data;
```

Problem Statements: -

1. Write a Hive query to identify the top three dates that experienced the largest percentage change in stock price (from open to close) for every stock.

----> EXTERNAL TABLE CREATION:

Hive> create external table Quei(Stock_Name string,Date string,Percentage_change float) row format delimited fields terminated by ',' location '/user/hive/warehouse/Quei/result.txt';

```
hive> create external table Quel(Stock_Name string,Date string,Percentage_change float) row format delimited fields
terminated by ',' location '/user/hive/warehouse/Quel/result.txt';
OK
Time taken: 0.157 seconds
```

---->TRANSFERRING OUTPUT DATA TO EXTERNAL TABLE

hive> insert overwrite table Quei

SELECT stock_name,date,percentage_change

FROM (select stock_name,date,percentage_change,row_number() over(Partition by stock_name order by percentage_change desc) as rank

FROM (select Stock_name,date,((close-open)/open)*100 as percentage_change from Stock) as s1) as s2 where rank<=3;

----->MYSQL TABLE CREATED (CLIENT DATABASE)

mysql> create table Quei(Stock_name varchar(20),Stock_date date,Percentage_change float);

---->SQOOP COMMAND TO TRANSFER O/P TABLE TO MYSQL

[cloudera@quickstart ~]\$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloudera --table Quei --export-dir /user/hive/warehouse/Quei/result.txt/000000_0 --input-fields-terminated-by ','

```
[cloudera@quickstart ~]$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloud
era --table Quel --export-dir /user/hive/warehouse/Quel/result.txt/000000 0 --input-fields-terminated-by ','
Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
```

---->FINAL OUTPUT DATA -

Stock_name	Stock_date	Percentage_change
AL	2008-07-22	45.2381
AOI	2018-11-08	20.5556
AAL	2008-10-10	40.6728
AA0I	2020-03-19	18.8748
ABIO	2010-03-26	145.373
ABMD	1987-12-31	28.5714
ABMD	1994-12-30	27.7778
\AL	2020-06-04	30.1167
AA0I	2022-09-16	24.9169
ABIO	2009-01-28	122.5
ABIO	2020-05-28	117.8
ABMD	1995-02-22	29.6296

2. write a Hive query to identify the dates where Low is less than average month low for every stock.

----> EXTERNAL TABLE CREATION:

hive> create external table Que2(Stock_Name string,Date string) row format delimited fields terminated by ',' location '/user/hive/warehouse/Que2/result.txt';

---->TRANSFERRING OUTPUT DATA TO EXTERNAL TABLE

hive> insert overwrite table Que2 select stock_name,date from (select stock_name,date, low,avg(low) over(partition by stock_name,year(date),month(date)) as avg_monthly_low from stock) as si where low<avg_monthly_low;

----->MYSQL TABLE CREATED (CLIENT DATABASE)

mysql> create table Que2(Stock_name varchar(20),Stock_date date);

----->SQOOP COMMAND TO TRANSFER O/P TABLE TO MYSQL

[cloudera@quickstart ~]\$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloudera --table Que2 --export-dir /user/hive/warehouse/Que2/result.txt/oooooo_o --input-fields-terminated-by ','

---->FINAL OUTPUT DATA -

3. Write a Hive query to find the date with the longest consecutive streak of increasing closing prices for every stock.

----> EXTERNAL TABLE CREATION:

hive> create external table Que3(Stock_Name string,streak_date string) row format delimited fields terminated by ',' location '/user/hive/warehouse/Que3/result.txt';

---->TRANSFERRING OUTPUT DATA TO EXTERNAL TABLE

hive> insert overwrite table Que3
SELECT stock_name, streak_date FROM (SELECT stock_name,
streak_date,ROW_NUMBER() OVER (PARTITION BY stock_name ORDER BY
streak_length DESC) AS rn
FROM (SELECT stock_name, date, close,SUM(is_increasing) OVER (PARTITION BY
stock_name, grp ORDER BY date) AS streak_length,FIRST_VALUE(date) OVER
(PARTITION BY stock_name, grp ORDER BY date) AS streak_date

FROM (SELECT stock_name, date, close,CASE WHEN LAG(close, 1) OVER (PARTITION BY stock_name ORDER BY date) < close THEN 1 ELSE 0 END AS is_increasing,DATE_SUB(date, ROW_NUMBER() OVER (PARTITION BY stock_name ORDER BY date)) AS grp FROM Stock) as sub) as sub2) as sub3 WHERE rn = 1;

----->MYSQL TABLE CREATED (CLIENT DATABASE)

mysql> create table Que3(Stock_name varchar(20),Streak_date date);

----->SQOOP COMMAND TO TRANSFER O/P TABLE TO MYSQL

[cloudera@quickstart ~]\$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloudera --table Que3 --export-dir /user/hive/warehouse/Que3/result.txt/oooooo_o --input-fields-terminated-by ','

---->FINAL OUTPUT DATA -

4. write a Hive query to find the dates where AAL open price is higher than AAOI open price OR AAL volume greater than AMBD (write your query in an optimised way)

----> EXTERNAL TABLE CREATION:

hive> create external table Que4(Date string) row format delimited fields terminated by ',' location '/user/hive/warehouse/Que4/result.txt';

---->TRANSFERRING OUTPUT DATA TO EXTERNAL TABLE

hive> insert overwrite table Que4 SELECT s1.date FROM Stock s1 JOIN Stock s2 ON s1.date = s2.date

JOIN Stock s₃ ON s₁.date = s₃.date
WHERE (s₁.stock_name = 'AAL' AND s₁.open > s₂.open AND s₂.stock_name = 'AAOI')
OR (s₁.stock_name = 'AAL' AND s₁.volume > s₃.volume AND s₃.stock_name = 'AMBD');

----->MYSQL TABLE CREATED (CLIENT DATABASE)

mysql> create table Que4(Stock_date date);

----->SQOOP COMMAND TO TRANSFER O/P TABLE TO MYSQL

[cloudera@quickstart ~]\$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloudera --table Que4 --export-dir /user/hive/warehouse/Que4/result.txt/oooooo_o --input-fields-terminated-by ','

---->FINAL OUTPUT DATA -

5. write a Hive query to calculate VH ratio(volume to hive ratio).

----> EXTERNAL TABLE CREATION:

hive> create external table Que5(Stock_Name string,Volume int,High float,VH_Ratio float) row format delimited fields terminated by ',' location '/user/hive/warehouse/Que5/result.txt';

---->TRANSFERRING OUTPUT DATA TO EXTERNAL TABLE:

hive> insert overwrite table Que5 SELECT Stock_Name,Volume,High, volume / adjusted_close AS vh_ratio FROM Stock;

----->MYSQL TABLE CREATED (CLIENT DATABASE)

mysql> create table Que5(Stock_name varchar(20),Volume int,High float,VH_ratio float);

----->SQOOP COMMAND TO TRANSFER O/P TABLE TO MYSQL

[cloudera@quickstart ~]\$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloudera --table Que5 --export-dir /user/hive/warehouse/Que5/result.txt/oooooo_o --input-fields-terminated-by ','

---->FINAL OUTPUT DATA -

Stock_name	Volume	High	VH_ratio
ABMD	592400	114.5	5218
ABMD	355200	110.2	3224.11
ABMD	791800	108.48	7320.64
ABMD	558200	104.27	5354.44
ABMD	625700	102.84	6151.2
ABMD	801800	100.46	8080.22
ABMD	294400	102.45	2885.43
ABMD	414800	104.91	3974.32
ABMD	381600	101.97	3745.95
ABMD	321200	99.85	3220.37
ABMD	428800	99.82	4304.36
ABMD	538000	95.35	5659.58
ABMD	419800	96.64	4453.17
ABMD	408700	96.86	4239.19
ABMD	503800	95.95	5306.51
ABMD	1641100	101.4	16593.5
ABMD	561700	102.43	5620.37
ABMD	315500	102.34	3084.07
ABMD	410500	103.12	4031.23
ABMD	825000	103.17	8218.77

6. Write a Hive query to find the dates where previous day close and current day open difference is greater than o for each stock.

----> EXTERNAL TABLE CREATION:

hive> create external table Que6(Stock_Name string,Date string) row format delimited fields terminated by ',' location '/user/hive/warehouse/Que6/result.txt';

---->TRANSFERRING OUTPUT DATA TO EXTERNAL TABLE:

hive> insert overwrite table Que6

SELECT stock_name, date

FROM (SELECT stock_name, date,lag(close,1) OVER (PARTITION BY stock_name

ORDER BY date) AS prev_close,open

FROM Stock) sub

WHERE (open - prev_close) > o;

---->MYSQL TABLE CREATED (CLIENT DATABASE)

mysql> create table Que6(Stock_name varchar(20),Streak_date date);

----->SQOOP COMMAND TO TRANSFER O/P TABLE TO MYSQL

[cloudera@quickstart ~]\$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloudera --table Que6 --export-dir /user/hive/warehouse/Que6/result.txt/oooooo_o --input-fields-terminated-by ','

----->FINAL OUTPUT DATA -

7. Find median of volume for ABIO.

----> EXTERNAL TABLE CREATION:

hive> create external table Que7(median_volume float) row format delimited fields terminated by ',' location '/user/hive/warehouse/Que7/result.txt';

---->TRANSFERRING OUTPUT DATA TO EXTERNAL TABLE:

hive> insert overwrite table Que7 SELECT percentile(volume, o.5) AS median_volume FROM Stock WHERE stock_name = 'ABIO';

----->MYSQL TABLE CREATED (CLIENT DATABASE)

mysql> create table Que7(median_volume float);

----->SQOOP COMMAND TO TRANSFER O/P TABLE TO MYSQL

[cloudera@quickstart ~]\$ sqoop export --connect jdbc:mysql://localhost:3306/project --username root --password cloudera --table Que7 --export-dir /user/hive/warehouse/Que7/result.txt/oooooo_o --input-fields-terminated-by ','

---->FINAL OUTPUT DATA -

```
mysql> select * from Que7 limit 20;

+-------+

| median_volume |

+------+

| 61.5 |

+------+

1 row in set (0.01 sec)
```

PYSPARK – Analysis

IMPORT LIBRARIES

- ✓ import findspark
- ✓ import pyspark
- ✓ from pyspark.sql import SparkSession
- ✓ from pyspark.sql.functions import *

READ DATAFILE

spark1 = SparkSession.builder.appName('Walmart_project').getOrCreate()
df=spark1.read.csv("walmart_stock.csv",inferSchema=True,header=True)

scenario 1: print out first 5 columns

scenario 2: There are too many decimal places for mean and stddev in the describe() dataframe. Format the numbers to just show up to two decimal places. Pay careful attention to the datatypes that .describe() returns, we didn't cover how to do this exact formatting, but we covered something very similar.

mean 72,35785375357799 72,83938807631165 71,9186009594594 72,38844998012726 8222693.481717011 67,2388384724 stddev 6.76809024470826 6.768186808159218 6.744075756255496 6.758659163732991 4519780.8431556 6.722609449994 min 56,389938999999996 57,060001 56,299999 56,419998 20943900 56,365 max 99.800003 90.970001 89.25 90.470001 80898100 84.91421600004 summary Open High Low Close Volume Adj Close count 1258.0 1258.0 1258.0 1258.0 1258.0					(i))	nd(col(i),2).alias		
count 1258	-+	444.63						+
mean 72,35785375357790 72,8393807631165 71.9186009594594 72.388844998012726 8222093.481717011 67.2388384724 stddev 6.76889024470826 6.768186808159218 6.744075756255496 6.75685916373291 4519780.8431556 6.722609449994 min 56.38999899999999 57.060001 56.299999 56.419998 2094300 56.365 max 99.800003 90.970001 89.25 90.470001 80898100 84.91421600004 84.91421600004 84.91421600004 84.91421600004 84.91421600004 84.9142160004	el	Adj Close	Volume	Close	LOW	High	Open	summary
stddev 6.76809024470826 6.768186808159218 6.744075756255496 6.756859163732991 4519780.8431556 6.722609449996 min 56.389998999999996 57.060001 56.299999 56.419998 2094900 50.361 56.299999 56.419998 2094900 50.361 56.299999 56.419998 2094900 50.361 56.299999 56.419998 2094900 50.361 56.299999 56.419998 2094900 50.361 56.299999 56.419998 2094900 50.361 56.299999 56.419998 2094900 50.361 56.299999 56.419998 2094900 56.361 56.299999 56.419998 56.419998 56.41998 56.361 56.299999 56.41998 56.41998 56.299999 56.41998 56.299999 56.41998 56.299999 56.41998 56.299999 56.41998 56.299999 56.41998 56.299999 56.41998 56.299999 56.41998 56.299999 56.41998 56.299999 56.299999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999 56.29999		1258						
min 56.38999899999996								
summary Open High Low Close Volume Adj Close count 1258.0 1258.0 1258.0 1258.0 1258.0 1258.0		50.363689						
summary Open High Low Close Volume Adj Close	1	4.91421600000001	80898100	90.470001	89.25	90.970001	90.800003	max
count 1258.0 1258.0 1258.0 1258.0 1258.0					Adj Close	Close Volume	High Low	summary Op
mean /2.36 /2.84 /1.92 /2.39 8222093.48 6/.24					8 67.24	72.39 8222093.4	6 72.84 71.92	mean 72
stddev 6.77 6.74 6.76 4519780.84 6.72		Activate Wi						
min 56.39 57.06 56.3 56.42 2094900.0 50.36 Activate		Go to Settings t				90.47 8.08981E7		max 90

scenario3: Create a new dataframe with a column called HV Ratio that is the ratio of the High Price versus volume of stock traded for a day.?

```
In [173]: df2=df.withColumn('HV_Ratio',round(col('Volume')/col('High'),2))
             for i in df2.columns[1:]:
                 df2=df2.withColumn(i,round(col(i),2).alias(i))
            df2.show(15,truncate=False)
               |Open |High |Low |Close|Volume |Adj Close|HV_Ratio |
             |2012-01-03 00:00:00|59.97|61.06|59.87|60.33|12668800|52.62
|2012-01-04 00:00:00|60.21|60.35|59.47|59.71|9593300||52.08
                                                                                             207481.16
                                                                                             158961.07
             2012-01-05 00:00:00|59.35|59.62|58.37|59.42|12768200|51.83
|2012-01-06 00:00:00|59.42|59.45|58.87|59.0|8069400|51.46
                                                                                             214159.68
                                                                                             135734.23
              2012-01-09 00:00:00|59.03|59.55|58.92|59.18|6679300 |51.62
                                                                                             1112162.89
              2012-01-10 00:00:00|59.43|59.71|58.98|59.04|6907300
              2012-01-11 00:00:00|59.06|59.53|59.04|59.4 |6365600 |51.81
                                                                                             106930.96
             2012-01-12 00:00:00|59.79|60.0 |59.4 |59.5 |7236400 |51.9 |
2012-01-13 00:00:00|59.18|59.61|59.01|59.54|7729300 |51.93
                                                                                             120606.67
129664.48
             2012-01-17 00:00:00|59.87|60.11|59.52|59.85|8500000 |52.2
|2012-01-18 00:00:00|59.79|60.03|59.65|60.01|5911400 |52.34
                                                                                             141407.42
             2012-01-19 00:00:00|59.93|60.73|59.75|60.61|9234600 |52.86
|2012-01-20 00:00:00|60.75|61.25|60.67|61.01|10378800|53.21
                                                                                             1152059.94
             |2012-01-23 00:00:00|60.81|60.98|60.51|60.91|7134100 |53.13
                                                                                             116990.82
                                                                                                                                          Activate Windows
              2012-01-24 00:00:00|60.75|62.0 |60.75|61.39|7362800 |53.54
             only showing top 15 rows
```

scenario4: What day had the Peak High in Price?

```
In [174]: peak_high_day = df.select("Date").orderBy(col("High").desc()).first()[0]
print(peak_high_day)
2015-01-13 00:00:00
```

SPARK-SQL – Analysis

df.createOrReplaceTempView("walmart")

scenario5: What is the mean of the Close column?

```
In [109]: spark1.sql("Select mean(Close) as Close_Mean from walmart").show()

| Close_Mean|
| 72.38844998012726|
```

scenario6: What is the max and min of the Volume column?

```
In [112]: spark1.sql("Select max(volume) as max_volume,min(volume) as min_volume from walmart").show()

| max_volume|min_volume|
| 80898100| 2094900|
```

scenario7: How many days was the Close lower than 60 dollars?

```
In [114]: spark1.sql("select count(date) as total_days from walmart where close<60").show()

| total_days|
| 81|
| 81|
```

Scenario8: What percentage of the time was the High greater than 80 dollars? In other words, (Number of Days High>80)/(Total Days in the dataset)

Scenario9: What is the max High per year?

Visualization

Stocks with Positive Difference between Previous Day Close and Current Day Open

