ECEN 642 Digital Image Processing

Lecture 6: Image Restoration Notes & Chapter 5

ECE Department
Texas A&M University

Image Restoration

- Image Restoration, like image enhancement, aims to improve the pictorial information in an image.
- Unlike image enhancement, it is assumed in image restoration that some information about the corrupting process is known, in the form of a degradation model.
- The degradation model allows one to mathematically obtain an operation that can best "undo" the degradation in some sense, and thus restore the original, uncorrupted image.
- Such optimal operation is called the restoration filter.

Degradation Model

It is common to assume an additive model

corrupted image = degradation + noise

- The degradation is an unwanted distortion introduced by the imaging system. For example:
 - The point spread function (PSF) of an optical system (lens).
 - Motion blurring produced by a moving object.
 - Atmospheric blurring in remote sensing applications.
- The noise representes a spurious component that is added to the image. For example:
 - Statistical sensor noise (usually accentuated under low-light conditions).
 - Thermal sensor noise.
 - Etc.

Linear Degradation Model

- The linear degradation model has a long history in engineering and statistics. Here, two additional things are assumed:
 - The degradation can be represented by a shift-invariant linear operator, i.e., by convolution.
 - The noise is uncorrelated or white noise.

In the spatial domain:

$$g(x,y) = f(x,y) * h(x,y) + n(x,y)$$

or, in the frequency domain:

$$G(u,v) = F(u,v)H(u,v) + N(u,v)$$

Example –Image Model

corrupted image = degradation + noise

original image

degraded image (motion blur)

observed image

n(x, y)

white noise

Statistical Properties of Noise

- We assume that the noise is a realization from an underlying random process (random image) n(x,y).
- We assume that n(x,y) is identically distributed, meaning that the noise has the same distribution for all pixels. In particular, we have

$$E[n(x,y)] = \mu$$
 and $Var[n(x,y)] = \sigma^2$

independently of the pixel (x,y).

- It is also often assumed that the noise is zero-mean, that is, $\mu = 0$.
- We also assume that n(x,y) is uncorrelated, meaning that the noise affecting one pixel is uncorrelated with the noise affecting any other distinct pixel. Assuming zero-mean noise, this is equivalent to

$$E[n(x,y)n(x+s,y+t)] = 0$$
, for all $s,t \neq 0$

Cross-Correlation and Auto-Correlation

 Given two random images f(x,y) and g(x,y) one defines the cross-correlation function as the image

$$R_{fg}(s,t) = E[f(x,y)g(x+s,y+t)]$$

When f = g, this defines the auto-correlation function of f(x,y):

$$R_{ff}(s,t) = E[f(x,y)f(x+s,y+t)]$$

- This implicitly assume that the correlations do not depend on (x,y), but only on the shift (s,t).
- We talk about the wide-sense stationarity (WSS) property if:
 - Mean is constant
 - Correlation depends only on the shift.

Relationship with Correlation Operator

 Under WSS, the cross-correlation and auto-correlation functions can be approximated as

$$R_{fg}(s,t) \approx \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)g(s+m,t+n) = \frac{1}{MN} [f \odot g](s,t)$$

$$R_{ff}(s,t) \approx \frac{1}{MN} [f \odot f](s,t)$$

We can compute the Fourier Transform (continuous or DFT) of the autocorrelation, which gives the power spectral density (PSD) of f:

$$S_f(u,v) = \Im \left[R_{ff}(s,t) \right]$$

The PSD receives this name because it can be shown that its integration (summation) over a range of frequencies gives the power of the signal contained in that frequency range.

Power Spectral Density - II

Using the correlation theorem

$$f(x,y) \odot g(x,y) \stackrel{\Im}{\longleftrightarrow} F^*(u,v)G(u,v)$$

it follows that

$$S_f(u, v) = \Im [R_{ff}(s, t)] \approx \frac{1}{MN} \Im [[f \odot f](s, t)]$$

= $\frac{1}{MN} F^*(u, v) F(u, v) = \frac{1}{MN} |F(u, v)|^2 = I(u, v)$

- The quantity I(u,v) is called the periodogram of f(x,y). It is an approximation to the PSD.
- While the correlation scaled by 1/MN (which can be obtained as the IDFT of I(u,v)) yields a good approximation to the autocorrelation function, the periodogram is usually a poor approximation to the PSD.

Uncorrelated Noise (White Noise)

 If the noise n(x,y) is identically-distributed, zero-mean, and uncorrelated (which in particular imply WSS), then it follows that

$$R_{nn}(s,t) = E[n(x,y)n(x+s,y+t)] = 0$$
, for all $s, t \neq 0$

and

$$R_{nn}(0,0) = E[n(x,y)n(x,y)] = \sigma^2$$

In other words:

$$R_{nn}(s,t) = \sigma^2 \delta(s,t)$$

This means that the PSD of the noise is a constant

$$S_n(u,v) = \sigma^2$$

that is, all frequency ranges contain the same power, hence the term white noise (as opposed to "colored noise" for correlated noise).

Gaussian Noise

The most common distribution assumed for noise is the Gaussian distribution:

$$p(z) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(z-\overline{z})^2}{2\sigma^2}} -\infty < z < \infty$$

where z represents intensity \bar{z} is the mean σ is the standard deviation

For Gaussian noise, uncorrelated noise means independent noise.

Rayleigh Noise

 This distribution is useful for modeling the shape of skewed histograms:

$$p(z) = \begin{cases} \frac{2}{b}(z - a)e^{-(z - a)^2/b} & z \ge a \\ 0 & z < a \end{cases}$$

$$\overline{z} = a + \sqrt{\pi b/4}$$

$$\sigma^2 = \frac{b(4-\pi)}{4}$$

Exponential noise

- Gaussian noise is symmetric around the mean (for zero-mean noise, this implies that the noise is equally likely to be positive or negative).
- Some processes introduce noise that is asymmetric (usually strictly positive). A common case is exponential noise:

Uniform Noise

• Other processes produce noise that take equally likely values over a range [a,b]. This is the case of uniform noise:

$$p(z) = \begin{cases} \frac{1}{b-a} & a \le z \le b \\ 0 & \text{otherwise} \end{cases}$$

$$\overline{z} = \frac{a+b}{2}$$

$$\sigma^2 = \frac{(b-a)^2}{12}$$

Salt and Pepper Noise

$$p(z) = \begin{cases} P_s & \text{for } z = 2^k - 1\\ P_p & \text{for } z = 0\\ 1 - (P_s + P_p) & \text{for } z = V \end{cases}$$

Example – Test pattern for illustrating noise models

Restoration: Noise-Only Model

 Assume that the degradation operation is identitity, so that image corruption consists solely of noise:

$$g(x,y) = f(x,y) * h(x,y) + n(x,y) = f(x,y) + n(x,y)$$

Note that

$$E[g(x,y)] = E[f(x,y) + n(x,y)] = f(x,y) + E[n(x,y)] = f(x,y)$$

and

$$Var[g(x,y)] = Var[f(x,y) + n(x,y)] = 0 + Var[n(x,y)] = \sigma^2$$

Image Averaging

 The most effective method in this case is to take multiple independent observations of the scene. If K observations g_i(x,y) of the image are available, let

$$\hat{f}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

We have that

$$E[\hat{f}(x,y)] = \frac{1}{K} \sum_{i=1}^{K} E[g_i(x,y)] = \frac{1}{K} K f(x,y) = f(x,y)$$

and

$$\operatorname{Var}[\hat{f}(x,y)] = \frac{1}{K^2} \sum_{i=1}^{K} \operatorname{Var}[g_i(x,y)] = \frac{1}{K^2} K \sigma^2 = \frac{\sigma^2}{K}$$

Image Averaging - II

Therefore, the estimator is unbiased

$$E[\hat{f}(x,y)] = f(x,y)$$

and its variance tends to zero:

$$\operatorname{Var}[\hat{f}(x,y)] = \frac{\sigma^2}{K} \to 0 \text{ as } K \to \infty$$

We say that $\hat{f}(x,y) \to f(x,y)$ in the mean-square sense.

 Note however that the standard deviation of the noise goes to zero only as the square root of K:

$$\operatorname{std}[\hat{f}(x,y)] = \frac{\sigma}{\sqrt{K}}$$

which can be slow.

Example

1- Noise-only model:

$$g(x,y) = f(x,y) * h(x,y) + n(x,y) = f(x,y) + n(x,y)$$

The most effective method in this case is to take multiple independent observations of the scene & average!

noisy image

image averaging with K = 5

image averaging with K = 50

Restoration: Degradation-Only Model

 Assume that there is no noise, so that image distortion consists solely of the degradation functional:

$$g(x,y) = f(x,y) * h(x,y)$$

- In such a case, one attempts to find a deconvolution filter $\hat{h}(x,y)$ that will attempt to "undo" the distortion introduced by h(x,y)
- We have that

$$\hat{f}(x,y) = \hat{h}(x,y) * g(x,y) = \hat{h}(x,y) * [f(x,y) * h(x,y)]$$
$$= \left[\hat{h}(x,y) * h(x,y)\right] * f(x,y)$$

Therefore, we need to have

$$\hat{h}(x,y) * h(x,y) = \delta(x,y)$$

Inverse Filter

 The previous equation can be solved easily by transforming to the frequency domain:

$$\hat{H}(u,v)H(u,v) = 1 \Rightarrow \hat{H}(u,v) = \frac{1}{H(u,v)}$$

- In other words, one just inverts the frequency response of the degradation. For this reason, this filter is called the inverse filter.
- Also for obvious reasons, this process is often called deconvolution.
- In practice, one does not know H(u,v), and it must be estimated.
 The restoration process is then sometimes called blind deconvolution.
 Estimation of H(u,v) is application-specific.

Example

2- Degradation-only model:

$$g(x,y) = f(x,y) * h(x,y)$$

In such a case, one attempts to find a deconvolution filter that will attempt to "undo" the distortion introduced by h(x, y)

Estimation of the Degradation Function:

- Image Observation
- Experimentation
- Mathematical Modeling

Example of Deconvolution

 In astronomical imaging, stars are essentially points of light, that is, impulses. The degradation function, also known in this context as the point-spread function (PSF), is the system impulse response, and thus can be found from images of isolated stars.

original image of M1

deconvolved image

Restoration: Full Degradation Model

- In practice, it is unrealistic to assume a noise-free model.
- Noise is always present, and if one tries to apply the inverse filter in this case, even if one knows the exact degradation function, one gets

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = \frac{F(u,v)H(u,v) + N(u,v)}{H(u,v)}$$
$$= F(u,v) + \frac{N(u,v)}{H(u,v)}$$

- The degradation frequency response H(u,v) will usually have values close to zero, which make the spurious second term large. We say then that the noise "dominates" the restored result.
- As the troublesome spots with near-zero H(u,v) tend to occur away from the origin, the situation may be remedied by lowpassing the result prior to taking the IDFT.

Example of Deconvolution in Noise

Original

Degraded

Example of Deconvolution in Noise

Wiener Filter

- If deconvolution does not work, or performs poorly, one should use the Wiener filter.
- The origins of the Wiener filter lie in the pioneering theoretical work of Norbert Wiener, the founder of modern Signal Processing (and Cybernetics), and of Eberhard Hopf.
- The Wiener filter is the optimal linear MSE filter. In our setting, this
 means that, given the original image f(x,y), the degraded image
 g(x,y), and the restored image

$$\hat{f}(x,y) = \hat{h}(x,y) * g(x,y)$$

the mean-square error (MSE)

$$MSE(\hat{f}(x,y)) = E\left[(\hat{f}(x,y) - f(x,y))^2\right]$$

is minimized when $\hat{h}(x,y)$ is chosen to be the Wiener filter.

Wiener Filter for Linear Degradation Model

$$\hat{f}(x,y) = \hat{h}(x,y) * g(x,y)$$

$$MSE(\hat{f}(x,y)) = E\left[(\hat{f}(x,y) - f(x,y))^2\right]$$

In the frequency domain:

$$\widehat{F}(u,v) = \left[\frac{H^*(u,v)S_f(u,v)}{S_f(u,v)|H(u,v)|^2 + S_{\eta}(u,v)} \right] G(u,v)$$

Wiener Filter for Linear Degradation Model

• Therefore:

$$\widehat{H}(u,v) = \frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v)/S_f(u,v)}$$

 $\widehat{F}(u,v)$ = FT of the estimated undegraded image

G(u, v) = FT of the degraded image

H(u, v) = degradation transfer function (FT of the spatial degradation);

 $H^*(u, v)$ = complex conjugate

$$|H(u,v)|^2 = H^*(u,v)H(u,v)$$

 $S_{\eta}(u, v) = |N(u, v)|^2$ = power spectrum of the noise

 $S_f(u, v) = |F(u, v)|^2$ = power spectrum of the undegraded image

Signal-to-Noise Ratio

The ratio

$$SNR(u,v) = \frac{S_f(u,v)}{S_n(u,v)}$$

is called the signal-to-noise ratio (SNR) at frequency (u,v).

It is easy to see that

$$SNR(u, v) \approx 0 \implies \hat{H}(u, v) \approx 0$$

that is, if the SNR is very low at a particular frequency, the Wiener filter suppresses that frequency from the output. On the other hand,

$$SNR(u, v) \approx \infty \Rightarrow \hat{H}(u, v) \approx \frac{1}{H(u, v)}$$

that is, if the SNR is very high at a particular frequency, the Wiener filter behaves as an ordinary deconvolution filter at that frequency.

Signal-to-Noise Ratio - II

- In fact, if there is no noise (i.e., we have a degradation-only model), then S_n(u,v) = 0 for all (u,v), and the Winer filter reduces to the inverse filter, showing that the latter is indeed the optimal linear MSE filter in this case.
- In practice, estimation of SNR(u,v) may not be trivial. It is common to assume in such cases a constant SNR, in which case the frequency response of the restoration filter becomes

$$\hat{H}(u,v) = \frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}$$

where K = 1/SNR.

Wiener Filter Example

