Math 120A (Differential Geometry) University of California, Los Angeles

Aaron Chao

Winter 2022

These are my lecture notes for Math 120A (Differential Geometry), which is taught by Fumiaki Suzuki. The textbook for this class is *Differential Geometry of Curves and Surfaces*, by Kristopher Tapp. Many of the figures I include in these notes are taken from Tapp's book, and will be referenced throughout my notes.

Contents					
1	1.1	3, 2022 What is Differential Geometry? Parametrized Curves			

1 Jan 3, 2022

1.1 What is Differential Geometry?

Differential geometry studies geometry via analysis and linear algebra.

Geometry	Analysis	Linear Algebra
Intuitive	Rigorous	Computable
Curved	$\xrightarrow{\operatorname{tangent space}}$	Linear
Global	Local	

1.2 Parametrized Curves

Example 1.1

A unit circle $S' = \{\vec{x} \text{ in } \mathbb{R}^2 \mid |\vec{x}| = 1\}$

$$\vec{\gamma}: [0, 2\pi) \to \mathbb{R}^2$$

 $t \mapsto (\cos t, \sin t)$

$$\vec{\gamma}[0,2\pi) = S'$$

Definition 1.2 (Parametrized curve and Trace)

A (parametrized) curve is a smooth function $\vec{\gamma}: I \to \mathbb{R}^n$, where I is an interval in \mathbb{R} . The image

$$\vec{\gamma}(I) = \{\vec{\gamma}(t) \mid t \in I\}$$

is called the <u>trace</u> of $\vec{\gamma}$.

Recall 1.3 An interval is a subset of $\mathbb R$ that has one of the following forms:

$$(a,b),[a,b],(a,b],(a,b),(-\infty,b),(-\infty,b],(a,\infty),[a,\infty),(-\infty,\infty)=\mathbb{R}.$$

A function $\vec{\gamma}: I \to \mathbb{R}^n$ is called <u>smooth</u> if $\vec{\gamma}$ is infinitely differentiable, or equivalently, each of the component functions $x_i: I \to \mathbb{R}$ is infinitely differentiable.

Example 1.4 $\vec{\gamma}(t) = (\cos t, \sin t, t), t \in (-\infty, \infty)$ is a curve, called a helix.

 ${\operatorname{fdsa}}$