Seattle Crime

By Alejandro Harrison

Business Goal

- ► Seattle large, growing city
- ► Major problem is crime
- ► As mayor, want to reduce crime to make city safer
- Need to be able to predict crime to reduce

Method

- ► Use of Multiclass Classification models
- ► Looking at past crimes
- ► Able to classify types and location of new crimes
- ► What is Multiclass Classification?

Multiclass Classification

- Dividing data into more than 2 classes/categories
- Can be used to predict future values
- Crime type and location

The Data

- Seattle.gov SPD crime dataset(2008-present)
- Over 1 million rows
- ▶ 17 variables such as crime date, crime category, crime location, etc
- Data categorical

1	RangeIndex: 1036236 entries, 0 to 1036235							
1	Data columns (total 17 columns):							
1	#	Column	Non-Null Count	Dtype				
1								
1	0	Report Number	1036236 non-null	object				
1	1	Offense ID	1036236 non-null	int64				
1	2	Offense Start DateTime	1034989 non-null	object				
1	3	Offense End DateTime	583385 non-null	object				
1	4	Report DateTime	1036236 non-null	object				
1	5	Group A B	1036236 non-null	object				
1	6	Crime Against Category	1036236 non-null	object				
1	7	Offense Parent Group	1036236 non-null	object				
1	8	Offense	1036236 non-null	object				
1	9	Offense Code	1036236 non-null	object				
1	10	Precinct	1036232 non-null	object				
1	11	Sector	1036234 non-null	object				
1	12	Beat	1036234 non-null	object				
1	13	MCPP	1036236 non-null	object				
1	14	100 Block Address	992187 non-null	object				
	15	Longitude	1036236 non-null	float64				
	16	Latitude	1036236 non-null	float64				

The Models

- ▶ Built two separate models
- Used two different algorithms
- CatBoost (gradient boosted decision tree)
- ► Random Forest

CatBoost

- Gradient boosted Decision Tree
- Used when data is categorical
- Decision tree splits data into series of decisions
- ► At end, final decision reached and data is categorized
- Decision Trees prone to overfitting

CatBoost Continued

- ► Reduce overfitting with gradient boosting
- ► Adding series of decision trees, each one improves upon last
- ▶ Other benefits include great default models and able to train on GPU

Random Forest

- Random samples created from data
- Individual decision trees made for each sample
- All tree predictions compared together
- Majority vote for best prediction

Crime Type Best Model

- ► Compared Random Forest and CatBoost models
- ► Found our CatBoost model to be the best model

Crime Location Best Model

- Compared a default CatBoost model and a tuned CatBoost model
- ► Found initial CatBoost model was our best one

Results

- ► Crime type, crime locations
- ► Recall, True Positives, False Negatives
- ➤ Total number of certain type crime/crime location, what percent did model correctly predict(Recall)
- ► How many crimes/crime locations were correctly predicted (TP)
- ► How many crimes/crime locations wrongly predicted as not belonging to a certain class (FN)

Crime Type Recall

- Best predicted crimes were Shoplifting and Simple Assault
- ► Shoplifting recall was .62
- Simple Assault recall was.56

		1 '			
	precision	recall	f1-score	support	
Aggravated Assault	0.36	0.28	0.32	2493	
All Other Larceny	0.20	0.10	0.14	4879	
Burglary/Breaking & Entering	0.32	0.33	0.32	7460	
Destruction/Damage/Vandalism of Property	0.22	0.10	0.14	5540	
Identity Theft	0.36	0.73	0.48	2921	
Intimidation	0.35	0.32	0.33	2250	
Motor Vehicle Theft	0.24	0.29	0.26	4563	
Robbery	0.12	0.08	0.10	1319	
Shoplifting	0.32	0.62	0.42	2975	
Simple Assault	0.47	0.56	0.51	3790	
Theft From Building	0.09	0.09	0.09	1492	
Theft From Motor Vehicle	0.30	0.24	0.26	7111	
Theft of Motor Vehicle Parts or Accessories	0.17	0.17	0.17	4061	
Trespass of Real Property	1.00	1.00	1.00	1711	
accuracy			0.32	52565	
macro avg	0.32	0.35	0.33	52565	
weighted avg	0.30	0.32	0.30	52565	

Crime Type TP/FN

- ➤ Shoplifting had 1,859 true positive instances, 1,116 false negative instances
- ➤ Simple Assault had 2,139 true positive instances, 1,651 false negative instances

2000

Crime Location Results

- Seattle separated into precincts, sectors, and beats
- ▶ Beats are what we use
- ► Recall, TP/FN

Crime Location Recall

- Best predicted crime locations were B3, E1, L2 Beats
- For recall B3 was .75, E1 was .99, and L2 was 1.0
- ► High recall

Crime Location TP/FN

- ► For True Positives, B3 had 1,187 instances, E1 had 1,406 instances, and L2 had 1,604 instances
- ➤ For False Negatives B3 had 399 instances, E1 had 9 instances, and L2 had 0 instances.

Additional Analysis

- Looked at data without the use of ML models
- Looked at which crimes occurred the most in our best predicted Beats
- We can see top crimes between the 3 Beats are Burglarly/Breaking & Entering and Theft From Motor Vehicle crimes

Crime Type Feature Importance

- ➤ The variable that is most useful for predicting crime type is the "Crime Against Category" variable
- Next let's look at crime location

Crime Location Feature Importance

- ► The variable that is most useful for predicting crime location is the "Sector" variable
- ► Look at final results

Final Results

- ▶ Our model best classifies new crimes as occurring in the B3, E1 and L2 Beats
- ► Top crimes are Shoplifting, Simple Assault, Burglary/Breaking & Entering and Theft From Motor Vehicle
- ► Variable most useful for predicting crime type is "Crime Against Category".
- ► Variable most useful for predicting crime location is "Sector".

Recommendations

- Initial recommendations based on what current model best predicts
- Once we improve models, able to make more specific preventative recommendations.
- Build more stations between B3 and L2
- Alternatively divert some southern police forces north
- Another option to form neighborhood watch for each Beat

Recommendations Continued

- ► Install more security cameras in strategic places, with 24-hour surveillance
- ► Easier to track all crimes, may also deter crime
- ► Lastly, build more monitored, affordable parking

Recommendations Continued

- ► Implementing model
- ► Implement model in Dispatch center and police laptops
- ► Integrate with social media

Next Steps

- ► Reduce overfitting in location model
- ▶ Obtain higher recall scores in crime type model
- ► Model takes while to train
- ► Run faster by training on GPU

Next Steps

- ▶ Once model successfully tuned and implemented, will have numerous positive effects
- ▶ Decrease crime, improve police-public relations, increase business/tourism
- ► Once proven successful, model may even be implemented in other parts WA, and then even other states

Questions and Contact Information

- ▶ Questions?
- ► Any additional inquiries can be directed to linkedin:
 - https://www.linkedin.com/in/alejandro-harrison/