

SEQUENCE LISTING

<110> PEETERS, PIETER JOHAN

GOHLMANN, HINRICH WILHELM HELMUT

SWAGEMAKERS, SIGRID MARIA ALICE

FIERENS, FREDERIK LUCIEN PETER

<120> GENES WHOSE EXPRESSION IS INCREASED IN RESPONSE TO
STIMULATION BY CORTICOTROPIN-RELEASING HORMONE

<130> PRD-2008-USPCT1

<140> 10/532,740

<141> 2005-04-26

<150> PCT/EP03/011793

<151> 2003-10-23

<150> PCT/EP02/12273

<151> 2002-10-31

<160> 94

<170> PatentIn Ver. 3.3

<210> 1

<211> 1389

<212> DNA

<213> Mus musculus

<400> 1

atgcagctga gaaaaatgca gaccatcaa aaggagcccg caccctaga tcctaccagc 60
agctcagaca agatgctgt gctgaactt gccttagctg aggtggccga ggacctagcc 120
tcaggtgaag atttgctctt gaacgaaggg agcatggggaaaacaaatc ctcggcgtgt 180
cgaggaaaaac gggattatcat tccggacgag aagaaagacg ccatgtatttggagaaacgg 240
cgggaaaaaca acgaagctgc caaaagatct cggggagaagg gcccctcaa tgacctgggt 300
ttggagaaca agtgtgatttc cctggagaa gaaaatgcca cttaaaaaggc tgagctgtc 360
tccctgaaat taaagtttgg tttaatttgc tccacggcgt atgccaaga aatccagaaa 420
ctcagtaatt ccacagctgt ctactttcag gactaccaga catccaaggc tgccgtgagc 480
tcttttggtgg acgagcatga gcctgcgtatg gtggccggaa gttgcatctc agtcatcaag 540
caactctcccc agagctcgct ctccgatgtc tcagaggtgt cctcgggttgc gcacactcag 600
gaaaggcccc cacagggagg ctggccggc ccttggagaca agttccctgt gatcaaggcag 660
gagcccggtgg agttggagag ctttggcagg gaggccagg aggagccgggg cacgtattcc 720
acctccatctt accagagctt catgggaaggc tctttctcca cttactccca ctccccaccc 780
ctcttgcagg tccatgggttgc cactagcaac tccccaaagaa cctcgggttgc cgatgggggt 840
gtagtggca agtcttctgt tggggaaagac gaacaacagg tccctaaaggccccttccat 900
tctccagtgg agtgcacacg gggtcacgc acgggtgtga aggtttccggaa agtgaaccct 960
tctgccttac cgcacaaagct tcggattaaa gccaaggcca tgcagttcaa agtggaggct 1020
ttggacagcg agtttgaagg catgcagaaa ctcttccac cccatccatgc gatgcacaaa 1080
agacattttgc acctggagaa acatgaaacc tcgggtatgg cccatccctc cctccctcc 1140
ttctcagtgc aggtgacgaa cattcaagat tggccctca aatcgaaaca ctggcatcac 1200
aaagaactga gcagcaaaac tcagagtgc ttcaaaacag gtgtgttggaa agtcaaagac 1260
ggggctata aggtttccgaa agtgcagaaat ttgttatttgc agcaggaaat agcaaactta 1320
tctgcagagg tggctcgctt caagagatttca atagccacac aaccgatctc ggcttcggac 1380
tccaggtaa 1389

<210> 2
 <211> 462
 <212> PRT
 <213> Mus musculus

<400> 2
 Met Gln Leu Arg Lys Met Gln Thr Ile Lys Lys Glu Pro Ala Pro Leu
 1 5 10 15

Asp Pro Thr Ser Ser Ser Asp Lys Met Leu Leu Leu Asn Ser Ala Leu
 20 25 30

Ala Glu Val Ala Glu Asp Leu Ala Ser Gly Glu Asp Leu Leu Leu Asn
 35 40 45

Glu Gly Ser Met Gly Lys Asn Lys Ser Ser Ala Cys Arg Arg Lys Arg
 50 55 60

Glu Phe Ile Pro Asp Glu Lys Lys Asp Ala Met Tyr Trp Glu Lys Arg
 65 70 75 80

Arg Lys Asn Asn Glu Ala Ala Lys Arg Ser Arg Glu Lys Arg Arg Leu
 85 90 95

Asn Asp Leu Val Leu Glu Asn Lys Leu Ile Ala Leu Gly Glu Glu Asn
 100 105 110

Ala Thr Leu Lys Ala Glu Leu Leu Ser Leu Lys Leu Lys Phe Gly Leu
 115 120 125

Ile Ser Ser Thr Ala Tyr Ala Gln Glu Ile Gln Lys Leu Ser Asn Ser
 130 135 140

Thr Ala Val Tyr Phe Gln Asp Tyr Gln Thr Ser Lys Ala Ala Val Ser
 145 150 155 160

Ser Phe Val Asp Glu His Glu Pro Ala Met Val Ala Gly Ser Cys Ile
 165 170 175

Ser Val Ile Lys His Ser Pro Gln Ser Ser Leu Ser Asp Val Ser Glu
 180 185 190

Val Ser Ser Val Glu His Thr Gln Glu Ser Pro Ala Gln Gly Gly Cys
 195 200 205

Arg Ser Pro Glu Asn Lys Phe Pro Val Ile Lys Gln Glu Pro Val Glu
 210 215 220

Leu Glu Ser Phe Ala Arg Glu Ala Arg Glu Glu Arg Gly Thr Tyr Ser
 225 230 235 240

Thr Ser Ile Tyr Gln Ser Tyr Met Gly Ser Ser Phe Ser Thr Tyr Ser
 245 250 255

His Ser Pro Pro Leu Leu Gln Val His Gly Ser Thr Ser Asn Ser Pro
 260 265 270

Arg Thr Ser Glu Ala Asp Glu Gly Val Val Gly Lys Ser Ser Asp Gly
 275 280 285
 Glu Asp Glu Gln Gln Val Pro Lys Gly Pro Ile His Ser Pro Val Glu
 290 295 300
 Leu Gln Arg Val His Ala Thr Val Val Lys Val Pro Glu Val Asn Pro
 305 310 315 320
 Ser Ala Leu Pro His Lys Leu Arg Ile Lys Ala Lys Ala Met Gln Val
 325 330 335
 Lys Val Glu Ala Leu Asp Ser Glu Phe Glu Gly Met Gln Lys Leu Ser
 340 345 350
 Ser Pro Ala Asp Ala Ile Ala Lys Arg His Phe Asp Leu Glu Lys His
 355 360 365
 Gly Thr Ser Gly Met Ala His Ser Ser Leu Pro Pro Phe Ser Val Gln
 370 375 380
 Val Thr Asn Ile Gln Asp Trp Ser Leu Lys Ser Glu His Trp His His
 385 390 395 400
 Lys Glu Leu Ser Ser Lys Thr Gln Ser Ser Phe Lys Thr Gly Val Val
 405 410 415
 Glu Val Lys Asp Gly Gly Tyr Lys Val Ser Glu Ala Glu Asn Leu Tyr
 420 425 430
 Leu Lys Gln Gly Ile Ala Asn Leu Ser Ala Glu Val Val Ser Leu Lys
 435 440 445
 Arg Phe Ile Ala Thr Gln Pro Ile Ser Ala Ser Asp Ser Arg
 450 455 460

<210> 3
 <211> 1704
 <212> DNA
 <213> Mus musculus

<400> 3
 tgtccgctct gcctcccaca cctagcaccc cagcccgctg ctgccccgtt gagaacccccc 60
 agcttgggcc ttgtcatggt gccagcagggt ggccttgagc ttctgacagg ggcctgccta 120
 tagacctgca ggcctgaggg ctcagactca cactcaaggg gcaaggaggcc ctggggccccc 180
 acctaagagc cacctctgtc cccagccctg ctgccccact gatgtctgac tgagacccag 240
 cagtgaccct gagctgcctg cccactgcct ctcctggtc cctgaggttg gctctgcga 300
 ggacggacga ctcttctgaa gcaggcggtt aacggaagaca gccccaaagcc tccaccgcag 360
 catgggcagt gccagccca gcttgagcaa cgtgtccccc ggttgcctgc tactgttccc 420
 agatgtggca ccacgaacag ggacggagaa ggcagcatca ggagcaatgg gccctgagaa 480
 gcaggaatgg agtccttagtc cacccgcccac ccctgagcag ggcctgtctg ctttctaccc 540
 ctcttacttt aacatgtatc ccgacatag cagctgggtc gccaaagtcc ccgaggcccg 600
 tgccggggag gaccacccgg aggagcccgaa gcagtggtccc gtcattgaca gccaggccctc 660
 tgggagcactg ttggatgagc actcgctaga gcaggtgcaa tcgatggttg tggggcgaggt 720
 cctgaaagat attgagacgg cctgcaagct tctgaacatc acagcagacc ctggggactg 780
 gagccctggt aacgtgcaga agtggctttt atggacagaaa caccagtacc ggctgcctcc 840
 agcaggcaag gccttccagg agctggcggtt taaggagactg tgccgcctatgtt cccgaggaaca 900

gttcgcgtcag	cgtgcaccct	tgggtgggga	tgtactgcac	gcccacccctgg	acatctggaa	960
gtcagcgccc	tggatgaagg	agaggacactc	gcctgggacc	cttcaactact	gcgcctccac	1020
cagcgaggag	ggctggacgg	atggtgaggt	ggactctgtcg	tgctccgggc	agccccattca	1080
cctgtggcag	ttcctgaaaag	aactgtctgt	caagccccac	agctatggcc	gcttcatccg	1140
ctggctcaac	aaggagaaaaag	gcatcttcaa	aattgaggac	tcagcacagg	tggcccgact	1200
gtgggggtgt	cgcaagaacc	ggccagccat	gaactatgtat	aaactaagcc	gctccatccg	1260
ccagtttatac	aagaagggca	tcattctgtaa	accggacatc	tctcagcgcc	ttgtctacca	1320
atttgtcat	ccagtcttag	agccacagag	accagaggcc	tacaacctgc	cccaggcagc	1380
cactctctgg	ttggcctgg	cctctctgt	cactctgtat	tcaggggctg	ctggtatccc	1440
agaacccaag	gtcccagata	gacagccact	gatcttaggga	tacacatgag	ctctctgggt	1500
catacacagg	ccccaggaag	atcgaggggag	ctagttcagc	acacagggac	tggaccaagt	1560
cagctcaccg	gacagtgtat	tcactgtct	ctgtccctgc	cacaatcctg	taccatatct	1620
ggcatggtgc	taagagatgt	ctgtaccctg	cgttgggaaag	ccaggggtgc	cctggggatg	1680
qataataaaag	acctaagata	actq				1704

<210> 4
<211> 325
<212> PRT
<213> Mus musculus

<400> 4
 Met Gly Ser Ala Ser Pro Gly Leu Ser Asn Val Ser Pro Gly Cys Leu
 1 5 10 15
 Leu Leu Phe Pro Asp Val Ala Pro Arg Thr Gly Thr Glu Lys Ala Ala
 20 25 30
 Ser Gly Ala Met Gly Pro Glu Lys Gln Glu Trp Ser Pro Ser Pro Pro
 35 40 45
 Ala Thr Pro Glu Gln Gly Leu Ser Ala Phe Tyr Leu Ser Tyr Phe Asn
 50 55 60
 Met Tyr Pro Asp Asp Ser Ser Trp Val Ala Lys Val Pro Glu Ala Arg
 65 70 75 80
 Ala Gly Glu Asp His Pro Glu Glu Pro Glu Gln Cys Pro Val Ile Asp
 85 90 95
 Ser Gln Ala Ser Gly Ser Thr Leu Asp Glu His Ser Leu Glu Gln Val
 100 105 110
 Gln Ser Met Val Val Gly Glu Val Leu Lys Asp Ile Glu Thr Ala Cys
 115 120 125
 Lys Leu Leu Asn Ile Thr Ala Asp Pro Gly Asp Trp Ser Pro Gly Asn
 130 135 140
 Val Gln Lys Trp Leu Leu Trp Thr Glu His Gln Tyr Arg Leu Pro Pro
 145 150 155 160
 Ala Gly Lys Ala Phe Gln Glu Leu Gly Gly Lys Glu Leu Cys Ala Met
 165 170 175
 Ser Glu Glu Gln Phe Arg Gln Arg Ala Pro Leu Gly Gly Asp Val Leu
 180 185 190

His Ala His Leu Asp Ile Trp Lys Ser Ala Ala Trp Met Lys Glu Arg
 195 200 205

Thr Ser Pro Gly Thr Leu His Tyr Cys Ala Ser Thr Ser Glu Glu Gly
 210 215 220

Trp Thr Asp Gly Glu Val Asp Ser Ser Cys Ser Gly Gln Pro Ile His
 225 230 235 240

Leu Trp Gln Phe Leu Lys Glu Leu Leu Lys Pro His Ser Tyr Gly
 245 250 255

Arg Phe Ile Arg Trp Leu Asn Lys Glu Lys Gly Ile Phe Lys Ile Glu
 260 265 270

Asp Ser Ala Gln Val Ala Arg Leu Trp Gly Val Arg Lys Asn Arg Pro
 275 280 285

Ala Met Asn Tyr Asp Lys Leu Ser Arg Ser Ile Arg Gln Tyr Tyr Lys
 290 295 300

Lys Gly Ile Ile Arg Lys Pro Asp Ile Ser Gln Arg Leu Val Tyr Gln
 305 310 315 320

Phe Val His Pro Val
 325

<210> 5

<211> 4701

<212> DNA

<213> Mus musculus

<400> 5

cgggtcgacc cacgcgtccg cccacgcgtc cggcggagct tctgggttgc gggccgaaac 60
 ggcaagcgga tggagggcgcc tcgaacggcc aggtgtcggtg attaaatttag tcagccctca 120
 gagacaggcg tcctacacctc ttatccaga cctcaaaagc cccgtgtgc acccggtggtg 180
 gttttcac cttccctgtt tcgttcctcca ctgtatggcc cagacatgag tggcccccta 240
 gaaggggccc atgggggagg agaccccagg cccggagaac cttttgtcc tggaggagtc 300
 ccatcccctg gggcccccgc gcacccgcct tgcaggcc ccagctggc tgatgacact 360
 gatgcaaaca gcaatggctc aagtggcaat gaggccaacg gacccgagtc cagggggcgca 420
 tctcagcgga gttctcatag ttccttttgc ggcaatggca aggactcagc tctgctggag 480
 accactgaga gcagcaagag tacaaactca cagagcccat ccccacccag cagctccatt 540
 gcctacagcc tcctgagtgc gagctcagag caggacaacc catctaccag tggctgcagc 600
 agtgaacagt cagctcgagc caggacccag aaagaactca tgactgact tcgggagctc 660
 aaacttcgac tgccaccaga gcgtcggggc aaggccgcct ctgggacctt ggccacactg 720
 cagtacgctc tggcctgtgt caagcagggt caggcttaacc aggaatatta ccagcagtgg 780
 agtctggagg agggtgagcc ttgtgccatg gacatgtcta cttacaccct ggaggaattg 840
 gagcatatca catccgataa cacactcga aaccaggaca cttctctgt ggctgtgtcc 900
 ttcctgacag gccggattgt ctatatttcg gaggcaggcag gtgtcctgt gcgttgc当地 960
 cgggatgtgt ttcgggggtgc ccgttctca gagctcctgg ctccccagga tgggggtgtc 1020
 ttctatggct ctactacacc atctcgactg cccacctgg gcactggcac ctctgcaggt 1080
 tcaggctca aggacttcac ccagggaaaag tctgtttctt gccgaatcag aggaggtcct 1140
 gaccgggatc cagggcctcg gtaccagcca ttccgcctaa ccccatatgt gaccaagatt 1200
 cgggtctcg atggagcccc tgcacagccg tgctgcctac tcattgcccga ggcgcac 1260
 tctgggtatg aagctccccg gatccctctt gacaagagga tcttccaccac ccgacacaca 1320
 ccaagctgcc tcttcagga tgttagatgaa agggctgccc cactgctggg ttacctccc 1380
 caggatctcc tgggggctcc agtacttctc tttctacatc ctgaggaccg acccctcatg 1440

ctggccattc ataagaagat actgcagctg gcaggccagc ccttgcacca ttcccattt 1500
 cgcttcgtg ctccgaacgg ggaatatgtc accatggaca ccagctggc cggtttgtg 1560
 caccccttga gccgcaaggt ggcttcgtg ttgggtcgcc ataaagtgcg cacggcaccc 1620
 ctgaatgagg acgtcttcac tcccccagcc cccagccag ctccgtccct ggactctgat 1680
 atccaggagc ttcagagca gatccatcgat ttgtctgtc agcctgtgca cagctccagc 1740
 cccacggggc tctgtggagt tggccctctg atgtccctgt gtcctctaca cagccctggc 1800
 tcctccagtg atagcaatgg gggggacgt gaggggcctg ggcctctgc tccagtgact 1860
 ttccagcaga tctgttaagga tttgtcatcgat gtaaaagcacc agggacaaca gcttttcatt 1920
 gaatctcggg ccaagcccccc accccggccc cgccctcttg ctacaggtac attcaaagcc 1980
 aaagtccctc cctgcccagtc cccaaacccc gaactggagg tggcccaactg tcctgaccaa 2040
 gcctcgtag ctttggcccc tgaggagcca gagaggaaag aaacctctgg ctgttccctac 2100
 cagcagatca actgccttgc cagcatcctc aggtatttgg agagctgcaa cattcccaact 2160
 acaaccaaggc gtaaaatgtgc ctcccttc tcctacactg cctcttcage ctctgtatgat 2220
 gacaaggcaga gggcagggtcc agtttcgtgt gggggcaaga aagatccgtc gtcagcaatg 2280
 ctgtctgggg agggggcaac ccctcggaaag gagccagtgg tggggggcac cctgagcccg 2340
 ctgccttgc ccaataaggc agagagcgtg gtgtccgtca ccagtcgtg tagcttcagc 2400
 tccaccatcg tccatgtggg agacaagaag ccccccggagt cggacatcat catgtggaa 2460
 gacctgcctg gcctggcccc tggcccaagg cccagtcggg ccccccggcc cacagtagcc 2520
 cctgacccaa ccccaactgc ttatcgccca gtgggtctga ccaaggccgt gctgtccctg 2580
 cacacacaga aggaagagca agccttcctc aaccgttca gagatttgg caggcttctg 2640
 ggacttgaca cctttctgt ggccccccta gcccctggct gccaccatgg ccccaattccc 2700
 cctggctgcc gacaccactg ccgatctaaa gcaaaagcgtt cccgcacca ccaccaccag 2760
 acccccccggc cggaaaactcc ctgctatgtc tcccatcctt caccgtgtcc ctttctgg 2820
 ccctggccac ccccaaccaggc cacgacccccc ttcccagcaa tggccagcc ctacccactc 2880
 ccagtattct cccctcgagg aggacccag cccctccccc ctgcccctac atctgtgtcc 2940
 cctgctacctt ccccttcctcc cttatgtacc ccaatgggtt ccttgggtgtt ccctaactat 3000
 ctattcccta ccccacctag ttatccatat ggggtgtccc aggccctgt tgagggggca 3060
 cccacgcctg ctcccactc gcccctccca tccctggccc caccacctct cagccccccc 3120
 caccggccag actcccccact gttcaactcg agatgcagct ccccaactcca gctcaatctg 3180
 ctgcagcttgc aggagtcccccc cgcacggag gggggcgctg ctgcaggagg cccaggaagc 3240
 agtgcgtggc ccctgcctcc cagtgaggag actgctgagc cagagccag attgggtggag 3300
 gttactgagt ctgttccatca ggtatgcactt tcaggctcca gcgactgtc ggagctactg 3360
 ctccaagaag actctcgctc gggcacaggc tccgcagcc caggctccct gggctctggc 3420
 ctgggctctg ggtctgggtt aggatcccac gaagggggaa gcacccatcagc cagcatcacc 3480
 cgcagcagtc agagcagccatacaagcaag tactttggca gcatcacttc ttccggaggct 3540
 gaagctgggg ctgtctgggg caggactgag cctggggacc aggtcattaa gtgtgtgtc 3600
 caggacccttca tctggctgtc catggccat ggcggccaggc gtgtcatgat gacataccag 3660
 gtggcggttccca gggatgcaggc ctctgtctg aagcaagacc gggagggctt ccggggccatg 3720
 cagaaaacagc agccacgggtt ctcaaggac cagaggccggg aactgggtgc tgcactcc 3780
 tgggtccggaa agggccagct gcctcgccctt cttatgttgc tggcgtgtt gactgtggc 3840
 agcagcgttc aagatcctgg ccactctgtat gaccgcgttct tctcagaact ggtatggattt 3900
 gggctggagc ccatggaaaga ggggtggaggc gaggggtgggt ggtgtgtt gggcggttgt 3960
 ggggggtgttgc gttgtggaggc gggccagacc caaatgggg ctaagggttc aagctctcag 4020
 gactctgccttca tggaggaaaga agagaagggtt gggggctcat ccagcccagc ttatctgc 4080
 gaagaaaaca gcaccaggcttca gatccatccc gggggccgtt acagcagtct aatgagaggc 4140
 ttcccttcgttccca ccatgttggg gttcttataa ctcaagatatac agctggacca accaatagg 4200
 aactggccca gttctccca acataggggg ctggacccccc attaccagcc caggcacagg 4260
 agctgcctct agcttcttag cagagtggaa gttctcgtcc ccattttggag gattgtccac 4320
 gcccgtccca ctgaggagac gggcggttct tcgggtttaagg ttgtctgacaa gctgtgttgc 4380
 tgggtctgtcc aaatcccaggc tgagcctgag tcccaactgc aggggtgggg ctgcacttat 4440
 ttatggggaa gagacagtc actctccac ctcaccccaaa gatggggaggc gggggacccctg 4500
 ggtatctgtgttgc aggttccagg tccgttaccc cctagctgtc ccaggggtggg ggaggttggg 4560
 ggaccatggaa gttccctgggtt ctggccctca ggtggggaccc aggtttctc agctctaccc 4620
 tctaccaatg acattttgtgt ttttgcattt gttgtctgttta tttttttttt aataaaaaat 4680
 gacaaaaatga aaaacaaaaa a 4701

<210> 6
 <211> 1291
 <212> PRT
 <213> Mus musculus

<400> 6
 Met Ser Gly Pro Leu Glu Gly Ala Asp Gly Gly Asp Pro Arg Pro
 1 5 10 15

Gly Glu Pro Phe Cys Pro Gly Gly Val Pro Ser Pro Gly Ala Pro Gln
 20 25 30

His Arg Pro Cys Pro Gly Pro Ser Leu Ala Asp Asp Thr Asp Ala Asn
 35 40 45

Ser Asn Gly Ser Ser Gly Asn Glu Ser Asn Gly Pro Glu Ser Arg Gly
 50 55 60

Ala Ser Gln Arg Ser Ser His Ser Ser Ser Gly Asn Gly Lys Asp
 65 70 75 80

Ser Ala Leu Leu Glu Thr Thr Glu Ser Ser Lys Ser Thr Asn Ser Gln
 85 90 95

Ser Pro Ser Pro Pro Ser Ser Ile Ala Tyr Ser Leu Leu Ser Ala
 100 105 110

Ser Ser Glu Gln Asp Asn Pro Ser Thr Ser Gly Cys Ser Ser Glu Gln
 115 120 125

Ser Ala Arg Ala Arg Thr Gln Lys Glu Leu Met Thr Ala Leu Arg Glu
 130 135 140

Leu Lys Leu Arg Leu Pro Pro Glu Arg Arg Gly Lys Gly Arg Ser Gly
 145 150 155 160

Thr Leu Ala Thr Leu Gln Tyr Ala Leu Ala Cys Val Lys Gln Val Gln
 165 170 175

Ala Asn Gln Glu Tyr Tyr Gln Gln Trp Ser Leu Glu Glu Gly Glu Pro
 180 185 190

Cys Ala Met Asp Met Ser Thr Tyr Thr Leu Glu Glu Leu Glu His Ile
 195 200 205

Thr Ser Glu Tyr Thr Leu Arg Asn Gln Asp Thr Phe Ser Val Ala Val
 210 215 220

Ser Phe Leu Thr Gly Arg Ile Val Tyr Ile Ser Glu Gln Ala Gly Val
 225 230 235 240

Leu Leu Arg Cys Lys Arg Asp Val Phe Arg Gly Ala Arg Phe Ser Glu
 245 250 255

Leu Leu Ala Pro Gln Asp Val Gly Val Phe Tyr Gly Ser Thr Thr Pro
 260 265 270

Ser Arg Leu Pro Thr Trp Gly Thr Gly Thr Ser Ala Gly Ser Gly Leu
 275 280 285

Lys Asp Phe Thr Gln Glu Lys Ser Val Phe Cys Arg Ile Arg Gly Gly
 290 295 300

Pro Asp Arg Asp Pro Gly Pro Arg Tyr Gln Pro Phe Arg Leu Thr Pro
 305 310 315 320

Tyr Val Thr Lys Ile Arg Val Ser Asp Gly Ala Pro Ala Gln Pro Cys
 325 330 335

Cys Leu Leu Ile Ala Glu Arg Ile His Ser Gly Tyr Glu Ala Pro Arg
 340 345 350

Ile Pro Pro Asp Lys Arg Ile Phe Thr Thr Arg His Thr Pro Ser Cys
 355 360 365

Leu Phe Gln Asp Val Asp Glu Arg Ala Ala Pro Leu Leu Gly Tyr Leu
 370 375 380

Pro Gln Asp Leu Leu Gly Ala Pro Val Leu Leu Phe Leu His Pro Glu
 385 390 395 400

Asp Arg Pro Leu Met Leu Ala Ile His Lys Lys Ile Leu Gln Leu Ala
 405 410 415

Gly Gln Pro Phe Asp His Ser Pro Ile Arg Phe Cys Ala Arg Asn Gly
 420 425 430

Glu Tyr Val Thr Met Asp Thr Ser Trp Ala Gly Phe Val His Pro Trp
 435 440 445

Ser Arg Lys Val Ala Phe Val Leu Gly Arg His Lys Val Arg Thr Ala
 450 455 460

Pro Leu Asn Glu Asp Val Phe Thr Pro Pro Ala Pro Ser Pro Ala Pro
 465 470 475 480

Ser Leu Asp Ser Asp Ile Gln Glu Leu Ser Glu Gln Ile His Arg Leu
 485 490 495

Leu Leu Gln Pro Val His Ser Ser Pro Thr Gly Leu Cys Gly Val
 500 505 510

Gly Pro Leu Met Ser Pro Gly Pro Leu His Ser Pro Gly Ser Ser Ser
 515 520 525

Asp Ser Asn Gly Gly Asp Ala Glu Gly Pro Gly Pro Pro Ala Pro Val
 530 535 540

Thr Phe Gln Gln Ile Cys Lys Asp Val His Leu Val Lys His Gln Gly
 545 550 555 560

Gln Gln Leu Phe Ile Glu Ser Arg Ala Lys Pro Pro Pro Arg Pro Arg
 565 570 575

Leu Leu Ala Thr Gly Thr Phe Lys Ala Lys Val Leu Pro Cys Gln Ser
 580 585 590
 Pro Asn Pro Glu Leu Glu Val Ala Pro Val Pro Asp Gln Ala Ser Leu
 595 600 605
 Ala Leu Ala Pro Glu Glu Pro Glu Arg Lys Glu Thr Ser Gly Cys Ser
 610 615 620
 Tyr Gln Gln Ile Asn Cys Leu Asp Ser Ile Leu Arg Tyr Leu Glu Ser
 625 630 635 640
 Cys Asn Ile Pro Ser Thr Thr Lys Arg Lys Cys Ala Ser Ser Ser Ser
 645 650 655
 Tyr Thr Ala Ser Ser Ala Ser Asp Asp Asp Lys Gln Arg Ala Gly Pro
 660 665 670
 Val Pro Val Gly Ala Lys Lys Asp Pro Ser Ser Ala Met Leu Ser Gly
 675 680 685
 Glu Gly Ala Thr Pro Arg Lys Glu Pro Val Val Gly Gly Thr Leu Ser
 690 695 700
 Pro Leu Ala Leu Ala Asn Lys Ala Glu Ser Val Val Ser Val Thr Ser
 705 710 715 720
 Gln Cys Ser Phe Ser Ser Thr Ile Val His Val Gly Asp Lys Lys Pro
 725 730 735
 Pro Glu Ser Asp Ile Ile Met Met Glu Asp Leu Pro Gly Leu Ala Pro
 740 745 750
 Gly Pro Ala Pro Ser Pro Ala Pro Ser Pro Thr Val Ala Pro Asp Pro
 755 760 765
 Thr Pro Asp Ala Tyr Arg Pro Val Gly Leu Thr Lys Ala Val Leu Ser
 770 775 780
 Leu His Thr Gln Lys Glu Glu Gln Ala Phe Leu Asn Arg Phe Arg Asp
 785 790 795 800
 Leu Gly Arg Leu Arg Gly Leu Asp Thr Ser Ser Val Ala Pro Ser Ala
 805 810 815
 Pro Gly Cys His His Gly Pro Ile Pro Pro Gly Arg Arg His His Cys
 820 825 830
 Arg Ser Lys Ala Lys Arg Ser Arg His His His His Gln Thr Pro Arg
 835 840 845
 Pro Glu Thr Pro Cys Tyr Val Ser His Pro Ser Pro Val Pro Ser Ser
 850 855 860
 Gly Pro Trp Pro Pro Pro Ala Thr Thr Pro Phe Pro Ala Met Val
 865 870 875 880

Gln Pro Tyr Pro Leu Pro Val Phe Ser Pro Arg Gly Gly Pro Gln Pro
 885 890 895

 Leu Pro Pro Ala Pro Thr Ser Val Ser Pro Ala Thr Phe Pro Ser Pro
 900 905 910

 Leu Val Thr Pro Met Val Ala Leu Val Leu Pro Asn Tyr Leu Phe Pro
 915 920 925

 Thr Pro Pro Ser Tyr Pro Tyr Gly Val Ser Gln Ala Pro Val Glu Gly
 930 935 940

 Pro Pro Thr Pro Ala Ser His Ser Pro Ser Pro Ser Leu Pro Pro Pro
 945 950 955 960

 Pro Leu Ser Pro Pro His Arg Pro Asp Ser Pro Leu Phe Asn Ser Arg
 965 970 975

 Cys Ser Ser Pro Leu Gln Leu Asn Leu Leu Gln Leu Glu Glu Ser Pro
 980 985 990

 Arg Thr Glu Gly Gly Ala Ala Gly Gly Pro Gly Ser Ser Ala Gly
 995 1000 1005

 Pro Leu Pro Pro Ser Glu Glu Thr Ala Glu Pro Glu Ala Arg Leu Val
 1010 1015 1020

 Glu Val Thr Glu Ser Ser Asn Gln Asp Ala Leu Ser Gly Ser Ser Asp
 1025 1030 1035 1040

 Leu Leu Glu Leu Leu Gln Glu Asp Ser Arg Ser Gly Thr Gly Ser
 1045 1050 1055

 Ala Ala Ser Gly Ser Leu Gly Ser Gly Leu Gly Ser Gly Ser Gly Ser
 1060 1065 1070

 Gly Ser His Glu Gly Gly Ser Thr Ser Ala Ser Ile Thr Arg Ser Ser
 1075 1080 1085

 Gln Ser Ser His Thr Ser Lys Tyr Phe Gly Ser Ile Asp Ser Ser Glu
 1090 1095 1100

 Ala Glu Ala Gly Ala Ala Arg Ala Arg Thr Glu Pro Gly Asp Gln Val
 1105 1110 1115 1120

 Ile Lys Cys Val Leu Gln Asp Pro Ile Trp Leu Leu Met Ala Asn Ala
 1125 1130 1135

 Asp Gln Arg Val Met Met Thr Tyr Gln Val Pro Ser Arg Asp Ala Ala
 1140 1145 1150

 Ser Val Leu Lys Gln Asp Arg Glu Arg Leu Arg Ala Met Gln Lys Gln
 1155 1160 1165

 Gln Pro Arg Phe Ser Glu Asp Gln Arg Arg Glu Leu Gly Ala Val His
 1170 1175 1180

Ser Trp Val Arg Lys Gly Gln Leu Pro Arg Ala Leu Asp Val Met Ala
1185 1190 1195 1200

Cys Val Asp Cys Gly Ser Ser Val Gln Asp Pro Gly His Ser Asp Asp
1205 1210 1215

Pro Leu Phe Ser Glu Leu Asp Gly Leu Gly Leu Glu Pro Met Glu Glu
1220 1225 1230

Gly Gly Gly Glu Gly Gly Cys Gly Val Gly Gly Gly Gly Gly Asp
1235 1240 1245

Gly Gly Glu Glu Ala Gln Thr Gln Ile Gly Ala Lys Gly Ser Ser Ser
1250 1255 1260

Gln Asp Ser Ala Met Glu Glu Glu Glu Gln Gly Gly Gly Ser Ser Ser
1265 1270 1275 1280

Pro Ala Leu Pro Ala Glu Glu Asn Ser Thr Ser
1285 1290

<210> 7
<211> 1897
<212> DNA
<213> *Mus musculus*

<400> 7
gaattcggca cgagcagcga gacgcccgc acgggtgttc cccagtggag ccaatcggt 60
aaccgcgct ccggcagagt cttggcgct cgccccggc cgggacagac caccgcctc 120
tggccgtct ctggaccctg gccgccccga gcgaagactg gagaaaatg atgcttcaac 180
atccaggcca ggtctctgcc tcagaagtca gtggcaccgc cattgtcccc tgcctctcac 240
ctccctgggtc actggattt gaggatttg ctaacctgac accctttgtc aaggaagagc 300
tgagattcgc catccagaat aaacacccct gccatcggtat gtcctctgctc ctggagttag 360
ttaccgtcaa caacagaccc ctggagatgt cagtcaccaa gtctgaggcg gcccctgaag 420
aagatgagag gaaaaggagg cggcgagaaa gaaataaaaat tgctgctgcc aagtgtcgaa 480
acaagaaaaa ggagaagaca gagtgccctgc agaaagagtc agagaaactg gagagtgtga 540
atgctgagct gaaggccctcg attgaggagc tgaagaatga gaaacagcat ttgatataca 600
tgctcaacct gcaccggccc acctgtatcg tccgggctca gaatggacgg acaccggaaag 660
acgagaggaa ccttttatc caacagataa aagaagggAAC attgcagagc taaggcagg 720
tggcacggag gcaattgggg agttcttact gaatcctctt tttccacccc acaccctgaa 780
gccattggaa aactggcttc ctgtgcactt ctagaatccc agcagccaaag agccgttggg 840
gcaggaggcgc ctgtgggtgac ctactgcatt gaccactct gcccccgagt gaaccgttgg 900
gcaggcggaa gcattttttg tctcaccat tccaggattt aggcccttatac atccggcca 960
gtctcagatg accttagctgg ccccgaggctg gggctctatg caaagcagga tccactaat 1020
gggatttcagg cagaagtgtc taccttgata gttgggggtgg gaccacatcc tccactgtgg 1080
ctgacaacgc ctttccaagg gaatatggaa tgaaacatc cattatttagt gttgttcaat 1140
ggccagggtt tgctttctag aaaatatgtt gtttgttccc agaatgactg tgcataagggt 1200
atccgttca gagcctgggtt ttgtgttatt tagatgtttg tcttgccacaa cattggcatg 1260
attttccgg gagtttcatc agatctgatt tctgagagtc tggggatctg ccatgggttgg 1320
aagtgcctt caaaaggatt tggtggttca catgaacttgg ctggcaccag gggagtggaaa 1380
ctggctgtatg accagcttag ccactttgtt ccaacagagg atggacgaca ctttccctg 1440
tacccactgc agaggaagaa ccctgggcac agcagcttgc tccttggcta caaactgtta 1500
caacgtcaca caatgaaggc acaaagtcca actttcaaaag ggtgttaggac tccataactca 1560
gtgacaggcgc aggaagagcc aaagataacc acagccacag cctgtggaga ccagggttgg 1620
aagccagggtg cagggccagg catctgcatt gtggatgtt aatggcactt ttgtcttggta 1680
gctattttga gatgtggtcc agagcatttc agctgggaga tctccctctg gccaccaggaa 1740
ctctggctac tggtaaaatc ctgatgttgc tggtaatcc tcagtggttta atcccaactca 1800

atagtatcat tacagtttc tgtaagagaa aatattactt atttatccca gtattcctag 1860
 cctgtcaaca taataaatat cggaacaaaa cctggta 1897

<210> 8
 <211> 181
 <212> PRT
 <213> Mus musculus

<400> 8
 Met Met Leu Gln His Pro Gly Gln Val Ser Ala Ser Glu Val Ser Ala
 1 5 10 15

Thr Ala Ile Val Pro Cys Leu Ser Pro Pro Gly Ser Leu Val Phe Glu
 20 25 30

Asp Phe Ala Asn Leu Thr Pro Phe Val Lys Glu Glu Leu Arg Phe Ala
 35 40 45

Ile Gln Asn Lys His Leu Cys His Arg Met Ser Ser Ala Leu Glu Ser
 50 55 60

Val Thr Val Asn Asn Arg Pro Leu Glu Met Ser Val Thr Lys Ser Glu
 65 70 75 80

Ala Ala Pro Glu Glu Asp Glu Arg Lys Arg Arg Arg Arg Glu Arg Asn
 85 90 95

Lys Ile Ala Ala Ala Lys Cys Arg Asn Lys Lys Lys Glu Lys Thr Glu
 100 105 110

Cys Leu Gln Lys Glu Ser Glu Lys Leu Glu Ser Val Asn Ala Glu Leu
 115 120 125

Lys Ala Gln Ile Glu Glu Leu Lys Asn Glu Lys Gln His Leu Ile Tyr
 130 135 140

Met Leu Asn Leu His Arg Pro Thr Cys Ile Val Arg Ala Gln Asn Gly
 145 150 155 160

Arg Thr Pro Glu Asp Glu Arg Asn Leu Phe Ile Gln Gln Ile Lys Glu
 165 170 175

Gly Thr Leu Gln Ser
 180

<210> 9
 <211> 1038
 <212> DNA
 <213> Mus musculus

<400> 9
 cccagagata agctgacgct gggcaaacccttggggaaag gttgcggcg gcaagtagtc 60
 atggctgaag cagtggaaat cgataaagac aaacccaagg aggccgtcac cgtggcagtgc 120
 aagatgttgc aagatgtgc cacagagaag gacctgtctg atctggatc agagatggag 180
 atgatgaaga tgattggaa acataagaac attatcaacc tcctggggc ctgcacgcag 240
 gatggacctc tctacgtcat agttgaatat gcacatcgaaag gcaacccctcg ggaatacctc 300

cgagccccgga	ggcacacctgg	catggagtagc	tccttatgaca	ttaaccgtgt	cccccaggag	360
cagatgaccc	tcaaggactt	gggtcctgc	acctaccaggc	tggctagagg	catggagtagc	420
ttggcttccc	aaaaatgtat	ccatcgagat	ttggctgcc	gaaacgtgtt	ggttaacagaa	480
aacaatgtga	tgaagatagc	agactttggc	ctggccaggg	atatacaca	catagactac	540
tataaaaaga	ccacaaatgg	gcgacttcca	gtcaagtgg	tggctctga	agccctttt	600
gatagagttt	acactcatca	gagcgtatgtc	tggctcttcg	gggtgttaat	gtggagatc	660
tttactttag	ggggctcacc	ctacccaggg	attttccgtgg	aggaactttt	taagctgctc	720
aaagaggggac	acaggatgg	caagccccacc	aactgcacca	atgaactgt	catgatgtat	780
agggatttgt	ggcatgtgt	accctcacag	agacccacat	tcaagcagt	ggtcgaagac	840
ttggatcgaa	ttctgactct	cacaaccaat	gaggaatact	tggatctcac	ccagcctctc	900
gaacagtatt	ctcttagtta	ccccgacaca	agtagcttt	gttcttcagg	ggacgattct	960
gtgttttctc	cagaccccat	gccttatgaa	ccctgtctgc	ctcagtatcc	acacataaac	1020
ggcagtgtta	aaacatga					1038

<210> 10
<211> 345
<212> PRT
<213> *Mus musculus*

<400> 10
 Pro Arg Asp Lys Leu Thr Leu Gly Lys Pro Leu Gly Glu Gly Cys Phe
 1 5 10 15

 Gly Gln Val Val Met Ala Glu Ala Val Gly Ile Asp Lys Asp Lys Pro
 20 25 30

 Lys Glu Ala Val Thr Val Ala Val Lys Met Leu Lys Asp Asp Ala Thr
 35 40 45

 Glu Lys Asp Leu Ser Asp Leu Val Ser Glu Met Glu Met Met Lys Met
 50 55 60

 Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu Gly Ala Cys Thr Gln
 65 70 75 80

 Asp Gly Pro Leu Tyr Val Ile Val Glu Tyr Ala Ser Lys Gly Asn Leu
 85 90 95

 Arg Glu Tyr Leu Arg Ala Arg Arg Pro Pro Gly Met Glu Tyr Ser Tyr
 100 105 110

 Asp Ile Asn Arg Val Pro Glu Glu Gln Met Thr Phe Lys Asp Leu Val
 115 120 125

 Ser Cys Thr Tyr Gln Leu Ala Arg Gly Met Glu Tyr Leu Ala Ser Gln
 130 135 140

 Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Thr Glu
 145 150 155 160

 Asn Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg Asp Ile Asn
 165 170 175

 Asn Ile Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu Pro Val Lys
 180 185 190

Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr His Gln Ser
 195 200 205
 Asp Val Trp Ser Phe Gly Val Leu Met Trp Glu Ile Phe Thr Leu Gly
 210 215 220
 Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe Lys Leu Leu
 225 230 235 240
 Lys Glu Gly His Arg Met Asp Lys Pro Thr Asn Cys Thr Asn Glu Leu
 245 250 255
 Tyr Met Met Met Arg Asp Cys Trp His Ala Val Pro Ser Gln Arg Pro
 260 265 270
 Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Ile Leu Thr Leu Thr
 275 280 285
 Thr Asn Glu Glu Tyr Leu Asp Leu Thr Gln Pro Leu Glu Gln Tyr Ser
 290 295 300
 Pro Ser Tyr Pro Asp Thr Ser Ser Ser Cys Ser Ser Gly Asp Asp Ser
 305 310 315 320
 Val Phe Ser Pro Asp Pro Met Pro Tyr Glu Pro Cys Leu Pro Gln Tyr
 325 330 335
 Pro His Ile Asn Gly Ser Val Lys Thr
 340 345

<210> 11
 <211> 2429
 <212> DNA
 <213> Mus musculus

<400> 11
 acccacgcgt cccggccggt tcactgctcc cctcagtctc ttttgggctc tttccgggca 60
 tcgggacat gaccgtcaaa gcccaggctg ctgcgaagcac ctttacacctac tccagaatgta 120
 ggggaatggt agcgattctc atcgctttta tgaaacagag aaggatgggc ctgaacgatt 180
 ttattcagaa gattgccagc aacacctatg catgcaaaca cgctgaagtt cagtcattt 240
 tgaaaatgtc ccattccttag gagccggagc ttatgaacgc taaccctct cctccgcca 300
 gtccctctca acaaatacAAC ctgggtccgt cctccaaacc tcacgcca 360
 ttcacttctt gaaaatgtatc ggaaaggca gtttgaaa ggttctctg gctaggcaca 420
 aggcagaaga agtattctat gcagtc 345 aagggcatac ctgaagaaga 480
 aagaggagaa gcatattatgc tcagagcggaa atgttctgtt gaagaatgtg aagcaccctt 540
 tcctggtggg ccttcacttc tcattccaga ccgtgcacaa actctacttt gtcctggact 600
 acattaatgg tggagagctg ttctaccatc tccagagggg ggcgtcttc ctggaccac 660
 gggctcgatt ctacgcagct gaaaatgcca gtgccttggg ctatctgcac tccctaaaca 720
 tcgtttatag agacttaaaa cctgagaata ttctccatagaa ctcccagggg cacatcg 780
 tcactgactt tgggctctgc aaagagaata ttgagcataa cgggacaaca tctacctt 840
 gtggcagcc ttagtatctg gtcctgagg tcctccatataa gcagccgtat gaccggacgg 900
 tggactggg gtgtcttggg gtcgtcctgt atgagatgt ctacgcctg cccccgtttt 960
 atagccggaa cacggctgag atgtacgaca atattctgaa caagcctctc cagttgaaac 1020
 caaatattac aaactcgccaa aggccaccc tggaaaggccct cctgcagaag gaccggacca 1080
 agaggctggg tgccaaggat gactttatgg agattaagag tcatattttc ttctctttaa 1140
 ttaactgggat tgatctcatc aataagaaga ttacacccccc attaaaccca aatgtgagtg 1200
 ggcccagtga ctttcggcac tttgatcccg agtttaccga ggagccggtc cccagctcca 1260

tcggcaggc ccctgacagc atcctgtca cggccagtgt gaaggaagca gcagaagcct 1320
 tcctcggtt ctccatgc ctcctgtgg attccttcct ctgagtgctc cgggatgg 1380
 tctgaaggac ttccctcagcg ttccctaaag tgtttcctt acccttggt ggaggttgc 1440
 agctgacaga acatttaaa agaatttgc cacctgaaag cttggcagtc tcgcctgcc 1500
 ggcgtggcgc gacgcgcgc ggcgtgttgc atgggagctt tccgaagagc acaccctcc 1560
 ctcaatgagc ttgtgagggtc ttctttctt ctcttccttc caacgtggt ctagctccag 1620
 gcgagcgcgc gtgagagtgc cgcctgagac agacaccttgc tctcagtttgaaggaagat 1680
 gcaggctaa gaggaaatccc cgacgtctgt ctgagctgtg atcaagaata ttctgcaatg 1740
 tgcctttctt gagatcgtgt tagctccaaa gcttttcctt atcgcagagt gttcagttt 1800
 tgtttgggg tttttttttt gttttttttt tcccttggcg gattttccgt gtgtcagttg 1860
 gctgtgggtg gctatgcctg atcacagacg gttttgttgc gagcatcaat gtgacactt 1920
 caggacacta caatgtggg cattgtttgt ttcttccaca tttggaaat aaatttatgt 1980
 gtagactgtt ttgttaagata tagttataaa ctaaaaccta ttgaaacggt cttgcaatga 2040
 cgagcattca gatgcttaag gaaagcatttgc ctgctacaaa tatttttattt tttagaaagg 2100
 gttttatgg accaatgccc cagttgttag tcaaagccgt tggtgttttcaattttaaa 2160
 atgtcaccta taaaacgggg attattttatg ttttttttcc ctttggcat attttttgc 2220
 attcctgattt attgtatgtt tcgtgtaaag gaagtctgtt cattgggtta taacactaga 2280
 tattttaaact tacaggcttta tttgttaaccatcattttaa tgtactgttaa ttaacatggg 2340
 ttataatatg tacaatttccctt cctccttacc acacaactttt ttttgggtgc gataaacc 2400
 ttttgggttttgc caataaaaatc ttgaaacctt 2429

<210> 12
 <211> 431
 <212> PRT
 <213> Mus musculus

<400> 12			
Met Thr Val Lys Ala Glu Ala Ala Arg Ser Thr Leu Thr Tyr Ser Arg			
1	5	10	15
Met Arg Gly Met Val Ala Ile Leu Ile Ala Phe Met Lys Gln Arg Arg			
20	25		30
Met Gly Leu Asn Asp Phe Ile Gln Lys Ile Ala Ser Asn Thr Tyr Ala			
35	40		45
Cys Lys His Ala Glu Val Gln Ser Ile Leu Lys Met Ser His Pro Gln			
50	55		60
Glu Pro Glu Leu Met Asn Ala Asn Pro Ser Pro Pro Pro Ser Pro Ser			
65	70	75	80
Gln Gln Ile Asn Leu Gly Pro Ser Ser Asn Pro His Ala Lys Pro Ser			
85	90		95
Asp Phe His Phe Leu Lys Val Ile Gly Lys Gly Ser Phe Gly Lys Val			
100	105		110
Leu Leu Ala Arg His Lys Ala Glu Glu Val Phe Tyr Ala Val Lys Val			
115	120		125
Leu Gln Lys Lys Ala Ile Leu Lys Lys Lys Glu Glu Lys His Ile Met			
130	135		140
Ser Glu Arg Asn Val Leu Leu Lys Asn Val Lys His Pro Phe Leu Val			
145	150	155	160

Gly Leu His Phe Ser Phe Gln Thr Ala Asp Lys Leu Tyr Phe Val Leu
 165 170 175

 Asp Tyr Ile Asn Gly Gly Glu Leu Phe Tyr His Leu Gln Arg Glu Arg
 180 185 190

 Cys Phe Leu Glu Pro Arg Ala Arg Phe Tyr Ala Ala Glu Ile Ala Ser
 195 200 205

 Ala Leu Gly Tyr Leu His Ser Leu Asn Ile Val Tyr Arg Asp Leu Lys
 210 215 220

 Pro Glu Asn Ile Leu Leu Asp Ser Gln Gly His Ile Val Leu Thr Asp
 225 230 235 240

 Phe Gly Leu Cys Lys Glu Asn Ile Glu His Asn Gly Thr Thr Ser Thr
 245 250 255

 Phe Cys Gly Thr Pro Glu Tyr Leu Ala Pro Glu Val Leu His Lys Gln
 260 265 270

 Pro Tyr Asp Arg Thr Val Asp Trp Trp Cys Leu Gly Ala Val Leu Tyr
 275 280 285

 Glu Met Leu Tyr Gly Leu Pro Pro Phe Tyr Ser Arg Asn Thr Ala Glu
 290 295 300

 Met Tyr Asp Asn Ile Leu Asn Lys Pro Leu Gln Leu Lys Pro Asn Ile
 305 310 315 320

 Thr Asn Ser Ala Arg His Leu Leu Glu Gly Leu Leu Gln Lys Asp Arg
 325 330 335

 Thr Lys Arg Leu Gly Ala Lys Asp Asp Phe Met Glu Ile Lys Ser His
 340 345 350

 Ile Phe Phe Ser Leu Ile Asn Trp Asp Asp Leu Ile Asn Lys Lys Ile
 355 360 365

 Thr Pro Pro Phe Asn Pro Asn Val Ser Gly Pro Ser Asp Leu Arg His
 370 375 380

 Phe Asp Pro Glu Phe Thr Glu Glu Pro Val Pro Ser Ser Ile Gly Arg
 385 390 395 400

 Ser Pro Asp Ser Ile Leu Val Thr Ala Ser Val Lys Glu Ala Ala Glu
 405 410 415

 Ala Phe Leu Gly Phe Ser Tyr Ala Pro Pro Val Asp Ser Phe Leu
 420 425 430

<210> 13
 <211> 2447
 <212> DNA
 <213> Mus musculus

<400> 13

gcagggcggg tgagagcgcc gtgaaagccg cggAACGCCG tgcacCCG cgactctact 60
 acggcaagct agtccggacg ggtcgctgc cccgcgcGCC accagccctt ggtaaaacgaa 120
 cagggagcgt ccggcttccc cagcacccgc ctgcgagact caaaaacagcc acaccgcaaa 180
 gcgagcctcg ggcggaaagga ggcggagctt caggccggcc cgcctccgcg gaaggataca 240
 catctccgtg gtccaaaacc cccgggcgag gccccccccg cgtgtgagct gtcggccag 300
 ctggcgctca cggcgcttcg cggggccacc gggcaactgc gccgcgcggc tgccccgctg 360
 agcgctcgc ctcggggccg tggatccgc cgcgtgtct gcggtcagga agaccgcct 420
 ccccgctct tgccggacgg gtcagaggcg gcacccgacg cgaggccacc cgcgtatgctg 480
 ctgtccaagt tcggctccct ggccacccctc tgccggcctg gccgcgtgaa ccacccccc 540
 gtgaagatcc tacagccagc caaggctgac aaggagagct tcgagaagggt gtaccaggta 600
 ggcgcgtgc tggcgagcgg cggctcgc acggctcactc cgggcagccg catcgccgac 660
 ggactcccg tggctgtgaa gcacgtggg aaggagccgg tgaccggatg gggcagtctc 720
 ggcggagtgg cctgccccctt ggagggtggg ctgcgtgcga aggtgggcgc ggcggggccg 780
 ggcgcgcggc teatccgctt gctggactgg ttcgagcggc cgcacggctt ctttgtggg 840
 ctggagcgcac ccggagccggc acaggacccctc ttgcacttca tcactaaacg aggccccc 900
 gacgagccgc tggcgctcg ctgcgtgc cagggtcttg cgcgtgtgcg gcactgccac 960
 aattgtgggg tcgtgcaccc cgacatcaag gacgagaacc tgctgtgaa cctgcgtctc 1020
 ggagagctga agctcatcgat cttcgctcg ggcgcgtgca tcaaggacac ggtctacact 1080
 gactttgatg gcacccgtgt gtacagcccc ccagagtggaa tccgatatac ccgatatac 1140
 gggcggtctg coactgtgtg gtctctgggt gtactgtct acgacatggt gtgtggggac 1200
 attccctttg agcaggatgaa ggagatcttgc cggccggcaggc tcttttccg gaggagggtc 1260
 tccccagagt gccagcagct tatttagtgg tgctctccct tgaggccctc agagaggccc 1320
 tccctggacc aaattgctgc ccaccctgg atgctggggaa cagaggggag cgttccagag 1380
 aactgtgacc ttccggctttg tgccctggat actgacgacg gagccagttac cacttccagc 1440
 agtgagagct tgtgaggagg agaaggggcc tggcgctcgcc ctagccagcg ctctcccaga 1500
 attgaacact ttctgcctgg gatgtctgtc gaaaaagcag tgacctctga cccctggta 1560
 ccttgctct cggcacccggg cctgttctt ttgctttgag tgccttttg aacgctgctc 1620
 cacagggcctt gggtttctt gagctttctt gtccaaagat ggctgaggac taagcaagg 1680
 cctgccttgg gtggataactt gaaccagaga tcccgaccct gctgtccat ctcaaggaggc 1740
 agccttcctg accaagtgttgc tttgacatgg agccctgt ggtgcaccacc tccaaaccctc 1800
 cagtctctg gtgttcatct gggcatgtct gcacaagcaa tgcaacgtgc ggccactgtc 1860
 gcccgtctgc ctccccggca cggcacggct cccgcacgc cctaagcgtg ccaccacgg 1920
 ctcttattttt tgggtgtatc accctgggg ggcggggccg cctgtgggg ctatttattt 1980
 tttaattttt ttgtgtggat tccctccaagg aaccaccttc tccaggcccc tgggggtgtt 2040
 aaagtcataat gtggctgttg agtccacaga ccccccattt aatttcgtca cctggaggag 2100
 ttccccaacc cccgttgggg cgggaggaaag catttttaca gtggcttaatt taagggggat 2160
 gggagaccct gtcaccctga gcactctgcg ctggggagg gtttaattt ttgaccttgc 2220
 acagctgtct tgcgtggctct gaaagctggg gttgggggac agagtcataa gcccctaatt 2280
 tattttagca gctgtgtttc tgcgtggctc gttgtactaa gcatcagggg tgggggtgt 2340
 taagttcaaa agtgtgaaat gtctgaagat catatttt atacaggtat ttcaattaaa 2400
 tgttttggta tataatggaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2447

<210> 14

<211> 326

<212> PRT

<213> Mus musculus

<400> 14

Met	Leu	Leu	Ser	Lys	Phe	Gly	Ser	Leu	Ala	His	Leu	Cys	Gly	Pro	Gly
1								10					15		

Gly	Val	Asp	His	Leu	Pro	Val	Lys	Ile	Leu	Gln	Pro	Ala	Lys	Ala	Asp
						20		25				30			

Lys	Glu	Ser	Phe	Glu	Lys	Val	Tyr	Gln	Val	Gly	Ala	Val	Leu	Gly	Ser
									35	40		45			

Gly Gly Phe Gly Thr Val Tyr Ala Gly Ser Arg Ile Ala Asp Gly Leu
 50 55 60

Pro Val Ala Val Lys His Val Val Lys Glu Arg Val Thr Glu Trp Gly
 65 70 75 80

Ser Leu Gly Gly Val Ala Val Pro Leu Glu Val Val Leu Leu Arg Lys
 85 90 95

Val Gly Ala Ala Gly Gly Ala Arg Gly Val Ile Arg Leu Leu Asp Trp
 100 105 110

Phe Glu Arg Pro Asp Gly Phe Leu Leu Val Leu Glu Arg Pro Glu Pro
 115 120 125

Ala Gln Asp Leu Phe Asp Phe Ile Thr Glu Arg Gly Ala Leu Asp Glu
 130 135 140

Pro Leu Ala Arg Arg Phe Phe Ala Gln Val Leu Ala Ala Val Arg His
 145 150 155 160

Cys His Asn Cys Gly Val Val His Arg Asp Ile Lys Asp Glu Asn Leu
 165 170 175

Leu Val Asp Leu Arg Ser Gly Glu Leu Lys Leu Ile Asp Phe Gly Ser
 180 185 190

Gly Ala Val Leu Lys Asp Thr Val Tyr Thr Asp Phe Asp Gly Thr Arg
 195 200 205

Val Tyr Ser Pro Pro Glu Trp Ile Arg Tyr His Arg Tyr His Gly Arg
 210 215 220

Ser Ala Thr Val Trp Ser Leu Gly Val Leu Leu Tyr Asp Met Val Cys
 225 230 235 240

Gly Asp Ile Pro Phe Glu Gln Asp Glu Glu Ile Leu Arg Gly Arg Leu
 245 250 255

Phe Phe Arg Arg Arg Val Ser Pro Glu Cys Gln Gln Leu Ile Glu Trp
 260 265 270

Cys Leu Ser Leu Arg Pro Ser Glu Arg Pro Ser Leu Asp Gln Ile Ala
 275 280 285

Ala His Pro Trp Met Leu Gly Thr Glu Gly Ser Val Pro Glu Asn Cys
 290 295 300

Asp Leu Arg Leu Cys Ala Leu Asp Thr Asp Asp Gly Ala Ser Thr Thr
 305 310 315 320

Ser Ser Ser Glu Ser Leu
 325

<210> 15
 <211> 2299
 <212> DNA
 <213> Mus musculus

<400> 15
 cctggggccc gccgcggacg cgcgagccg cctggccgc gccggaggag ggcggggaga 60
 ggaccatgtg aatgtgctcc ggagctgagc gccaagccaa gcagttttga aaggaacag 120
 gatgctgatc taatcggtgc aaaaagttag tccgaccgct ggtttcaag acatgtggtg 180
 tatataaaagt ttgtgatagt tggtgaaat ttggagactt ggataatggg ctgtgtgcaa 240
 tgtaaggata aagaagcagc gaaactgaca gaggagaggg acggcagcct gaaccagagc 300
 tctgggtacc gctatggcac agaccacc cctcagcact accccagctt cggcgtgacc 360
 tccatcccga actacaacaa cttccacgca gctggggcc agggactcac cgtctttggg 420
 ggtgtgaact ctcctctca cactgggacc ctacgcacga gaggagggac aggagtgaca 480
 ctgtttgtgg cgcttttatga ctatgaagca cggacggaaat atgacactgag tttcacaaa 540
 ggagaaaaat ttccaaatattt gaacagctcg gaaggaggat ggtggaaagg ccgccttgc 600
 acaaccgggg aaactggta cattccacgca aattacgtgg ctccagttga ctccatccag 660
 gcagaagagt ggtactttgg aaaacttggc cgcaaaagatg ctgagagaca gtcctgtcc 720
 ttggaaaacc caagaggtac ctttcttatac cgcgagagcc aaaccaccaa aggtgcctac 780
 tcactttcca tccgtatttgg gatgatatg aaaggggacc acgtcaaaca ttataaaatc 840
 cgcaagcttgc acaatggtgg atactatatac acaacgcggg cccagtttga aacacttcag 900
 caactgggtac agcattactc agagaaaagct gatggttgtt gttttaactt aactgtgggt 960
 tcatcaagtt gtacccaca aacttcttggaa ttggctaaatg atgctggga agttgcacgt 1020
 gactcggtgt ttctggagaa gaagctgggg cagggtgtt tcgctgaagt gtggcttgg 1080
 acctggaaatg gaaataacaaa agtagccata aagacccttta agccaggcac catgtctccg 1140
 gagtccttcc tggaggagggc gcagatcatg aagaagctga agcatgacaa gtcggcggc 1200
 ctctacgcgg tcgtgtctga ggagccatt tacatcgta cggagatcat gagcaaaagg 1260
 agtttgcgttgc acttcttaaa agatggtaa ggaagagctc tgaagggttgc aaaccttgc 1320
 gacatggcgg cacagggttgc tgcaaatg gcttacatcg agcgcatttgc ttatatccac 1380
 agagatctgc gatcagcaaa cattcttagt gggaaatggac taatttgcac gattgctgac 1440
 ttggatttgg ctgggttgc tgaagacaat gaatacacag caagacaagg tgcgaagttt 1500
 cccatataagt ggacagcccc cgaaggccgc ctgtatggaa gtttcacaaat caagtctgac 1560
 gtatggtctt ttggaaatctt actcacagag ctggtcacca aaggaagagt gccataccac 1620
 ggcataaca accggggagggt gctggaggcgt gtggagagag gctataggat gcccctgc 1680
 caggactgccc cgtatccccc gcacgagctc atgatccact gctggaaaaaa ggatccggaa 1740
 gagcggccga ctttgcgttgc ttcctggagg actacttac gcccacacag 1800
 cccactatc agccgggttgc aaaccttgc ttcacgcgc ttccatccgag 1860
 gcctccctac ccctccccat tagcttccaa ttctgttagcc agctggccca gagcaggaga 1920
 accgtccagg atcagattgc atgtacttgc tgaagcttgc cttccacggc cctcattat 1980
 gacacttgc ccccgatccgc aacctcttgc gtgaaccatc tgagacagaa gcgtgttatt 2040
 tctcagactt ggaaatgcat tgcattgc tttatgttcaaa ggcacaaatctt ctgttcagtg 2100
 taaaatagctg ctccctgtgcc aacaatccca gtgtttccct tttttaaaaaa agaaaaagca 2160
 aatcctatgt gatTTTaaact ctgatttcac ctgattcaac taaaaaaaaa aaagtattat 2220
 ttccaaaag tggccttttgc tgcattaaaca ataaaatTTT ttttcatgtt ttaacaaaaa 2280
 aaaaaaaaaa aaaaaaaaaa 2299

<210> 16
 <211> 534
 <212> PRT
 <213> Mus musculus

<400> 16
 Met Gly Cys Val Gln Cys Lys Asp Lys Glu Ala Ala Lys Leu Thr Glu
 1 5 10 15
 Glu Arg Asp Gly Ser Leu Asn Gln Ser Ser Gly Tyr Arg Tyr Gly Thr
 20 25 30

Asp Pro Thr Pro Gln His Tyr Pro Ser Phe Gly Val Thr Ser Ile Pro
 35 40 45

 Asn Tyr Asn Asn Phe His Ala Ala Gly Gly Gln Gly Leu Thr Val Phe
 50 55 60

 Gly Gly Val Asn Ser Ser His Thr Gly Thr Leu Arg Thr Arg Gly
 65 70 75 80

 Gly Thr Gly Val Thr Leu Phe Val Ala Leu Tyr Asp Tyr Glu Ala Arg
 85 90 95

 Thr Glu Asp Asp Leu Ser Phe His Lys Gly Glu Lys Phe Gln Ile Leu
 100 105 110

 Asn Ser Ser Glu Gly Asp Trp Trp Glu Ala Arg Ser Leu Thr Thr Gly
 115 120 125

 Glu Thr Gly Tyr Ile Pro Ser Asn Tyr Val Ala Pro Val Asp Ser Ile
 130 135 140

 Gln Ala Glu Glu Trp Tyr Phe Gly Lys Leu Gly Arg Lys Asp Ala Glu
 145 150 155 160

 Arg Gln Leu Leu Ser Phe Gly Asn Pro Arg Gly Thr Phe Leu Ile Arg
 165 170 175

 Glu Ser Gln Thr Thr Lys Gly Ala Tyr Ser Leu Ser Ile Arg Asp Trp
 180 185 190

 Asp Asp Met Lys Gly Asp His Val Lys His Tyr Lys Ile Arg Lys Leu
 195 200 205

 Asp Asn Gly Gly Tyr Tyr Ile Thr Thr Arg Ala Gln Phe Glu Thr Leu
 210 215 220

 Gln Gln Leu Val Gln His Tyr Ser Glu Lys Ala Asp Gly Leu Cys Phe
 225 230 235 240

 Asn Leu Thr Val Val Ser Ser Ser Cys Thr Pro Gln Thr Ser Gly Leu
 245 250 255

 Ala Lys Asp Ala Trp Glu Val Ala Arg Asp Ser Leu Phe Leu Glu Lys
 260 265 270

 Lys Leu Gly Gln Gly Cys Phe Ala Glu Val Trp Leu Gly Thr Trp Asn
 275 280 285

 Gly Asn Thr Lys Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser
 290 295 300

 Pro Glu Ser Phe Leu Glu Glu Ala Gln Ile Met Lys Lys Leu Lys His
 305 310 315 320

 Asp Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr
 325 330 335

Ile Val Thr Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys
 340 345 350

Asp Gly Glu Gly Arg Ala Leu Lys Leu Pro Asn Leu Val Asp Met Ala
 355 360 365

Ala Gln Val Ala Ala Gly Met Ala Tyr Ile Glu Arg Met Asn Tyr Ile
 370 375 380

His Arg Asp Leu Arg Ser Ala Asn Ile Leu Val Gly Asn Gly Leu Ile
 385 390 395 400

Cys Lys Ile Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu
 405 410 415

Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro
 420 425 430

Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser
 435 440 445

Phe Gly Ile Leu Leu Thr Glu Leu Val Thr Lys Gly Arg Val Pro Tyr
 450 455 460

Pro Gly Met Asn Asn Arg Glu Val Leu Glu Gln Val Glu Arg Gly Tyr
 465 470 475 480

Arg Met Pro Cys Pro Gln Asp Cys Pro Ile Ser Leu His Glu Leu Met
 485 490 495

Ile His Cys Trp Lys Lys Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr
 500 505 510

Leu Gln Gly Phe Leu Glu Asp Tyr Phe Thr Ala Thr Glu Pro Gln Tyr
 515 520 525

Gln Pro Gly Glu Asn Leu
 530

<210> 17
<211> 2804
<212> DNA
<213> Mus musculus

<400> 17

ggacgtcaga ctagagagta gggagagaga ctggtgctcg agggacaggg ctagcccgga 60
 cgcgtgtccg cgccctcgagg gtggcaagta ggcagtgtcg ggtggcgagg caacgatgg 120
 gctcctgcgg actatcacct accagccgc cgccggcacc aagatgtgcg agcaggctct 180
 gggcaaagct tgcggcgggg actcaaagaa gaagcgacca cagcagcctt ctgaagatgg 240
 gcagccccaa gcccaggtga ccccgccgc cccgcaccac catcaccacc attcccaactc 300
 gggaccggag atctcgccga ttatagtcga ccccacgacg gggaaagcgt actgccgggg 360
 caaagtgtcg ggcaagggtg gatttgcaaa gtgttacgaa atgacagatc tgacaaacaa 420
 caaagtctac gtcgaaaaaaaa ttatttcctca cagcagagta gctaaccctc atcagaggg 480
 aaagatcgac aaagaaaatcg agcttcacag actactgcac cataagcatg tcgtgcgtt 540
 ttaccactac ttgttgcgaca aagaaaaatcat ttacattctc ttgttgcgtt gcaatgtttt 600
 gtccatggct cacatcttgc aagcaagaaa ggtgttgcaca gagccagaag tccgataacta 660
 cctcaggcgat attgtgtcag gactcaagta tcttcacgaa caagaaatct tgcacaggg 720

tctcaagcta gggaaacttta ttattaatga agccatggag ctgaagggtgg gagactttgg 780
 tttggcagcc agactggaac cactggaaca cagaaggaga acaaatatgtg gaaccccaa 840
 ttatctctcc cccgaagtcc tcaacaaaaca aggacacggc tgtgaatcag acatctggc 900
 cttaggctgt gtaatgtata cgatgctgct aggaagaccc ccattcgaaa ccacaaatct 960
 gaaaagaaacg tacagggtgca taagggaaagc aagggtatacc atgccgtcct cattgctggc 1020
 ccctgctaag cacttgataag cttagcatgct gtccaaaaac ccagaggacc gccccagtt 1080
 gnatgacatc attcggcatg acttcttcgc gcagggtttc actccggaca gactctttc 1140
 cagctgttgc cacacagttc cagattcca cttgtcaagg ccagccaaga atttctttaa 1200
 gaaagccgca gcccgtctt ttggggcaaa gaaggacaaa gcaagatata acgacacaca 1260
 caataaggtg tctaaggaag atgaagacat ttacaagctt cggcatgatt tgaagaaagt 1320
 gtcgataacc cagcagccata gcaaacacag agcagacgag gagcccccagc cgcctccac 1380
 tactgttgc agatctggaa cgtccgcagt ggaaaacaaa cagcagattt gggatgcaat 1440
 ccggatgata gtcagggggg ctctccggcag ctgcagcagc agcagcgaat gccttgaaga 1500
 cagcaccatg ggaagtgttgc cagacacat ggcaagagtc ctgcaggat gtctagaaaa 1560
 catgcccggaa gctgactgtt tccccaaaga gcagctgagc acgtctttc agtgggtcac 1620
 caagtgggtc gactacttca acaaataatgg ctttgggtt cagctctcg accacactgt 1680
 tggcgtcctt ttcaacaacg gggctcacat gggccctt ccggacaaaa agacagttca 1740
 ctattatgcg gaacttggcc aatgctctgt ttcccggca acatgtccc ctgaacaatt 1800
 tattagtcaa gtgacgggtc tgaaaactt ttctcattac atggaggaga acctcatgg 1860
 tggtgggtat ctcccggatgt ttactgacat tcgaagaccc cggcttacc ttctgcagtg 1920
 gttaaagtct gataaaagct taatgatgct ttcaatgac ggcacatttcc aggtgaattt 1980
 ctaccacgat catacaaaaaa tcatcatctg taaccagatg gaagaatacc ttctcaccta 2040
 catcaatgag gacaggatct ctacaacttt cagactgacg actctgtga tgcgtggctg 2100
 ttcgttagaa ttggaaaatc gaatgaaata tgccctgaaat atgcttttac agagatgtaa 2160
 ctgaaaacat tattattattt attattataa ttatttcgag cggacctcat gggactctt 2220
 tccactgtga gatcaacagg gaagccagcg gaaagataca gagcatgtt gagaagtcgg 2280
 acaggtgggtg gtacgaataac aattcccttg tggcctgctg gactgctggg accagaccag 2340
 cctaaggtgt agagttgact ttggacaatc ctgagtgtgg agccgagtgc agttttccct 2400
 gagataacctg tcgtgaaaag gtttatggga cagttttca gaaagatgca ttgactctga 2460
 agttctctt gttgagagcg tcttcagttt gaaagacttgg aactgtgaat acacttcctg 2520
 aaggggaggg agaagggagg ttgctccctt gctgtttaaa ggctacaatc agagcagctt 2580
 ttggctgctt aactgtgaac tatggccata cattttttt tttttgtt tttttgaata 2640
 cacttgtgtt tggaaaatgtt cattccctgt taataaaactt ttatttttac agcccccaa 2700
 gagcagtatt tattatcaag atgttctt tttttatgtt gaccatttca aactcttggc 2760
 aataaaagagt atgacataga aaaaaaaaaa aaaaaaaaaa aaaa 2804

<210> 18
<211> 682
<212> PRT
<213> Mus musculus

<400> 18
Met Glu Leu Leu Arg Thr Ile Thr Tyr Gln Pro Ala Ala Gly Thr Lys
1 5 10 15
Met Cys Glu Gln Ala Leu Gly Lys Ala Cys Gly Gly Asp Ser Lys Lys
20 25 30
Lys Arg Pro Gln Gln Pro Ser Glu Asp Gly Gln Pro Gln Ala Gln Val
35 40 45
Thr Pro Ala Ala Pro His His His His His Ser His Ser Gly Pro
50 55 60
Glu Ile Ser Arg Ile Ile Val Asp Pro Thr Thr Gly Lys Arg Tyr Cys
65 70 75 80

Arg Gly Lys Val Leu Gly Lys Gly Gly Phe Ala Lys Cys Tyr Glu Met
 85 90 95
 Thr Asp Leu Thr Asn Asn Lys Val Tyr Ala Ala Lys Ile Ile Pro His
 100 105 110
 Ser Arg Val Ala Lys Pro His Gln Arg Glu Lys Ile Asp Lys Glu Ile
 115 120 125
 Glu Leu His Arg Leu Leu His His Lys His Val Val Gln Phe Tyr His
 130 135 140
 Tyr Phe Glu Asp Lys Glu Asn Ile Tyr Ile Leu Leu Glu Tyr Cys Ser
 145 150 155 160
 Arg Arg Ser Met Ala His Ile Leu Lys Ala Arg Lys Val Leu Thr Glu
 165 170 175
 Pro Glu Val Arg Tyr Tyr Leu Arg Gln Ile Val Ser Gly Leu Lys Tyr
 180 185 190
 Leu His Glu Gln Glu Ile Leu His Arg Asp Leu Lys Leu Gly Asn Phe
 195 200 205
 Ile Ile Asn Glu Ala Met Glu Leu Lys Val Gly Asp Phe Gly Leu Ala
 210 215 220
 Ala Arg Leu Glu Pro Leu Glu His Arg Arg Arg Thr Ile Cys Gly Thr
 225 230 235 240
 Pro Asn Tyr Leu Ser Pro Glu Val Leu Asn Lys Gln Gly His Gly Cys
 245 250 255
 Glu Ser Asp Ile Trp Ala Leu Gly Cys Val Met Tyr Thr Met Leu Leu
 260 265 270
 Gly Arg Pro Pro Phe Glu Thr Thr Asn Leu Lys Glu Thr Tyr Arg Cys
 275 280 285
 Ile Arg Glu Ala Arg Tyr Thr Met Pro Ser Ser Leu Leu Ala Pro Ala
 290 295 300
 Lys His Leu Ile Ala Ser Met Leu Ser Lys Asn Pro Glu Asp Arg Pro
 305 310 315 320
 Ser Leu Asp Asp Ile Ile Arg His Asp Phe Phe Leu Gln Gly Phe Thr
 325 330 335
 Pro Asp Arg Leu Ser Ser Cys Cys His Thr Val Pro Asp Phe His
 340 345 350
 Leu Ser Ser Pro Ala Lys Asn Phe Phe Lys Lys Ala Ala Ala Leu
 355 360 365
 Phe Gly Gly Lys Lys Asp Lys Ala Arg Tyr Asn Asp Thr His Asn Lys
 370 375 380

Val Ser Lys Glu Asp Glu Asp Ile Tyr Lys Leu Arg His Asp Leu Lys
 385 390 395 400
 Lys Val Ser Ile Thr Gln Gln Pro Ser Lys His Arg Ala Asp Glu Glu
 405 410 415
 Pro Gln Pro Pro Pro Thr Thr Val Ala Arg Ser Gly Thr Ser Ala Val
 420 425 430
 Glu Asn Lys Gln Gln Ile Gly Asp Ala Ile Arg Met Ile Val Arg Gly
 435 440 445
 Thr Leu Gly Ser Cys Ser Ser Ser Glu Cys Leu Glu Asp Ser Thr
 450 455 460
 Met Gly Ser Val Ala Asp Thr Val Ala Arg Val Leu Arg Gly Cys Leu
 465 470 475 480
 Glu Asn Met Pro Glu Ala Asp Cys Ile Pro Lys Glu Gln Leu Ser Thr
 485 490 495
 Ser Phe Gln Trp Val Thr Lys Trp Val Asp Tyr Ser Asn Lys Tyr Gly
 500 505 510
 Phe Gly Tyr Gln Leu Ser Asp His Thr Val Gly Val Leu Phe Asn Asn
 515 520 525
 Gly Ala His Met Ser Leu Leu Pro Asp Lys Lys Thr Val His Tyr Tyr
 530 535 540
 Ala Glu Leu Gly Gln Cys Ser Val Phe Pro Ala Thr Asp Ala Pro Glu
 545 550 555 560
 Gln Phe Ile Ser Gln Val Thr Val Leu Lys Tyr Phe Ser His Tyr Met
 565 570 575
 Glu Glu Asn Leu Met Asp Gly Gly Asp Leu Pro Ser Val Thr Asp Ile
 580 585 590
 Arg Arg Pro Arg Leu Tyr Leu Leu Gln Trp Leu Lys Ser Asp Lys Ala
 595 600 605
 Leu Met Met Leu Phe Asn Asp Gly Thr Phe Gln Val Asn Phe Tyr His
 610 615 620
 Asp His Thr Lys Ile Ile Cys Asn Gln Ser Glu Glu Tyr Leu Leu
 625 630 635 640
 Thr Tyr Ile Asn Glu Asp Arg Ile Ser Thr Thr Phe Arg Leu Thr Thr
 645 650 655
 Leu Leu Met Ser Gly Cys Ser Leu Glu Leu Lys Asn Arg Met Glu Tyr
 660 665 670
 Ala Leu Asn Met Leu Leu Gln Arg Cys Asn
 675 680

<210> 19
<211> 658
<212> DNA
<213> Mus musculus

<400> 19
aaccttagctg gactgcagcc ttctccgctg gaactcgcca agccagctga tttccccatc 60
caaagccatg aagagcggcg tatgtctgtg cgtggtgatg gcagtcctag ctgctggcgc 120
cctggcgcag ccggtagtcc ctgcagaagc tacggacccc gtggagcagc gggcgcaaga 180
ggcgccccga aggcaagctgc gggctgtctc ccggacggac ggcgagcccc gagcgcgcot 240
gggcgcactg ctacgcgcgt acatccagca ggtccgcaaa gtccttctg gccgcattgtc 300
cgttcttaag aacctgcaga gcctggaccc cagccataga ataagtgacc gggactacat 360
gggctggatg gatttggcc ggcgcagtgc cgaggactac gaatacccat cgttagtgggc 420
cagcgtcttgc gcctgtctt gaggaggatgg aatgaggaaa caaccacaca tacgacccct 480
cgccttaat gtcgtacgtt ttgagtatct atttataag tccccatgt gaaatctgtc 540
cagagtgtgc aatgcagcca catctcagcc tagctgtgtg gtcgaaaggc agtgtttcc 600
tcagtgactc ccagacctaa tgttgtatg ctattaaaga gatttccttc tgcccccc 658

<210> 20
<211> 115
<212> PRT
<213> Mus musculus

<400> 20
Met Lys Ser Gly Val Cys Leu Cys Val Val Met Ala Val Leu Ala Ala
1 5 10 15
Gly Ala Leu Ala Gln Pro Val Val Pro Ala Glu Ala Thr Asp Pro Val
20 25 30
Glu Gln Arg Ala Gln Glu Ala Pro Arg Arg Gln Leu Arg Ala Val Leu
35 40 45
Arg Thr Asp Gly Glu Pro Arg Ala Arg Leu Gly Ala Leu Leu Ala Arg
50 55 60
Tyr Ile Gln Gln Val Arg Lys Ala Pro Ser Gly Arg Met Ser Val Leu
65 70 75 80
Lys Asn Leu Gln Ser Leu Asp Pro Ser His Arg Ile Ser Asp Arg Asp
85 90 95
Tyr Met Gly Trp Met Asp Phe Gly Arg Arg Ser Ala Glu Asp Tyr Glu
100 105 110
Tyr Pro Ser
115

<210> 21
<211> 1381
<212> DNA
<213> Mus musculus

<400> 21
cttggtgaca ctagacagag caactccagc gttaccgctc ccgctcctgg tttctcggt 60
tctcatcgca gtcatatctt gactttgggg ttttgctact gtcagaagga cttctttctg 120

cttcaagtgc ttgacaacgc acccccttat cagggtatca gagcatgcc acagaatgaa 180
 gctggttcc atcaccctga ttttattggg ttcactcgct tccttaggc cggacactgc 240
 agggccagat actccttcgc agttccgaaa gaagtggaat aagtggcgc taagtcgtgg 300
 gaagagggaa ctacaagcat ccagcagcta ccctacggga ctcgctgatg agacgacagt 360
 tcctaccag actcttgatc cattcctgga cgagcagaac acaactggcc ccctacaagc 420
 cagcaatcg agcgaagccc acattcgtgt caaacgctac cgccagagca tgaaccaggg 480
 ttcccgacg aatggatgcc gtttccggac ctgcacattt cagaatttgg cccaccagat 540
 ctaccagcta acagacaaag acaaggacgg catggctccc agaaacaaga tcagccctca 600
 aggctatggc cgccggcgc ggcgtccct gctggaggtc ctccgtccc ggactgtgga 660
 gtcctccag gagcagacac acacagcccc aggccccctgg ggcgcacatct ccagactctt 720
 taggatata gtcgtgggtga cagcattgaa cagtcggcg agtattccgt tggcgctgc 780
 ggaatcagag aacttcgcac cggggcggac tgagacaattt ctgcagagat ctgcctggct 840
 gccccttaggg gaggcagagg aacccaagac caagccaggc tcatgccaga aaccgagact 900
 tacaggctga tactctccgg gcaggggtct gagccactgc cttgcccgt cataaaactgg 960
 tttctcacgg ggcataagcc tcattactac ttgaactttt caaaacctag cgaggaacgt 1020
 gcaatgttg ttgtccagcc aaaggttaact atagtattt agtttttgtc tgcgttgc 1080
 tttttttttg taacttcaaa tatatagaga tattttgtt cgttatatat tgcgttgc 1140
 gcattttaaa gtgattatat tgcacccctc ccctattttt agacgtgaat gtctcagcaa 1200
 ggtgttaaggt ttgttggttc cgtgtgtgtg tgcgttgc 1260
 taaggtggag agcgcctgat tatcgctgt ggatgaagaa aaaacattgt gtttccata 1320
 atctatttac ataaaatatg tgcgttgc 1380
 g
 1381

<210> 22
 <211> 184
 <212> PRT
 <213> Mus musculus

<400> 22
 Met Lys Leu Val Ser Ile Thr Leu Met Leu Leu Gly Ser Leu Ala Phe
 1 5 10 15

 Leu Gly Ala Asp Thr Ala Gly Pro Asp Thr Pro Ser Gln Phe Arg Lys
 20 25 30

 Lys Trp Asn Lys Trp Ala Leu Ser Arg Gly Lys Arg Glu Leu Gln Ala
 35 40 45

 Ser Ser Ser Tyr Pro Thr Gly Leu Ala Asp Glu Thr Thr Val Pro Thr
 50 55 60

 Gln Thr Leu Asp Pro Phe Leu Asp Glu Gln Asn Thr Thr Gly Pro Leu
 65 70 75 80

 Gln Ala Ser Asn Gln Ser Glu Ala His Ile Arg Val Lys Arg Tyr Arg
 85 90 95

 Gln Ser Met Asn Gln Gly Ser Arg Ser Asn Gly Cys Arg Phe Gly Thr
 100 105 110

 Cys Thr Phe Gln Lys Leu Ala His Gln Ile Tyr Gln Leu Thr Asp Lys
 115 120 125

 Asp Lys Asp Gly Met Ala Pro Arg Asn Lys Ile Ser Pro Gln Gly Tyr
 130 135 140

Gly Arg Arg Arg Arg Ser Leu Leu Glu Val Leu Arg Ser Arg Thr
 145 150 155 160
 Val Glu Ser Ser Gln Glu Gln Thr His Thr Ala Pro Gly Pro Trp Ala
 165 170 175
 His Ile Ser Arg Leu Phe Arg Ile
 180

<210> 23
<211> 850
<212> DNA
<213> Mus musculus

<400> 23
tcgagcggcc gccccggcag gtccaggatc aagagtacc cttcgcaag cactgcctgg 60
ctccatcagg atccccgcag gtcagctcc aaggcaccgc tcaccaggaa ggcatcatgg 120
gcttcctgaa gttctcccct ttcctgggttgc tcagcatctt gtcctgtac caggcatgca 180
gcctccaggc agtgcccttg aggtcaatct tggaaagcag cccaggcatg gccactctca 240
gtgaagaaga agttcgcttg ctggctgcac tggtgcagga ctatatgcag atgaaaagcca 300
gggagctgga gcaggaggaa gagcaggagg ctgagggctc tagctggac agccccagat 360
ctaagcggtg tggaaatctg agtacctgca tgctggcac gtacacacaa gacctaaca 420
agtttacac cttcccccaa acttcaattt gggtaaaggc acctggcaag aaaaggatg 480
tggccaagga cttggagaca aaccaccaat cccattttgg caactaagct cttctctcc 540
tttctagttt cttcttgct ttcttcctat aacttgcatgc atgttagttcc tctctgggtt 600
ctctccaggc tattactggt tgcttcctg aggcaaaagaa tggtatctga aatccccagt 660
gggtgaggag aaagtccac aggtctaaag agaatcaccc aggaagatgg cagagagcaa 720
gggcacactc aggaagatgg cagagagcaa gggcagtcat ctggcttcct agtagagctt 780
ctagtcttgc ttctggaaagt gttgggttgg tggaaataaa aactatttt taaaaaaaaa 840
aaaaaaaaaa 850

<210> 24
<211> 136
<212> PRT
<213> Mus musculus

<400> 24
Met Gly Phe Leu Lys Phe Ser Pro Phe Leu Val Val Ser Ile Leu Leu
 1 5 10 15
Leu Tyr Gln Ala Cys Ser Leu Gln Ala Val Pro Leu Arg Ser Ile Leu
 20 25 30
Glu Ser Ser Pro Gly Met Ala Thr Leu Ser Glu Glu Val Arg Leu
 35 40 45
Leu Ala Ala Leu Val Gln Asp Tyr Met Gln Met Lys Ala Arg Glu Leu
 50 55 60
Glu Gln Glu Glu Gln Glu Ala Glu Gly Ser Ser Leu Asp Ser Pro
 65 70 75 80
Arg Ser Lys Arg Cys Gly Asn Leu Ser Thr Cys Met Leu Gly Thr Tyr
 85 90 95

Thr Gln Asp Leu Asn Lys Phe His Thr Phe Pro Gln Thr Ser Ile Gly
 100 105 110

Val Glu Ala Pro Gly Lys Lys Arg Asp Val Ala Lys Asp Leu Glu Thr
 115 120 125

Asn His Gln Ser His Phe Gly Asn
 130 135

<210> 25
<211> 2912
<212> DNA
<213> Mus musculus

<400> 25
aaaggcagcc tgataaaagct ctttgaca ggctgtcttg ccagtctccc agtatgctcc 60
tcttgctctg aagtgcctca ggattgaaac cacagcttcc caaattagcc tggaaagagt 120
gtgcggaccc agcagccttt taaccccggt cagtcctt gctatgttca agactgctgt 180
tttggatgtt gaatgttagc tagcactcca tcgagacatg acagaaaaaa attctccaaa 240
agaatttact gtttcggaat ctgagggttg cataaagact ttcaaggagc agatgcgtt 300
ggaactttag gttccaaagc taccaggaaa cagacctaca tctccaaaaa tttctccacg 360
cagttcacca aggaattcac catgctttt cagaaaagttt ctggtaata aaagcatccg 420
acagccgcgt cgcttcacgg tggctcatac atgctttgtt gtggaaaatg gcccttctcc 480
aggtcgagc ccactggacc ctcagccgg ctcttcgtcg ggactggatc ttcatgccgc 540
cttccttggg cacagccagg gcagggatgc gttcctctac gatcttgaca gcgactatga 600
cttgtcacca aaagcgatgt ccaggaactc atcacttccc agtgagcaac acggcgatga 660
cctgattgtc actcctttt cccaggttct tgccagctt cgaagtgtaa gaaacaactt 720
caccctgctg acgaacccatc atggagcgcga aacaagagg tcaccagcg cttagtcaggc 780
tccagttctcc agagtgcgc tgcaagagga atcatatcg aaactagcaa tggagacgtt 840
ggaggaacta gactgggtgcc tagaccagct agagaccatc cagacctacc gctctgtca 900
cgagatggct tcaaacaagt tcaaaaggat gctgaaccgg gagctgacac acctctcaga 960
gatgagcaga tcagggaaacc aggtgtctga gtacattca aacacgttct tagacaagca 1020
gaacgatgtg gaaatcccat ctcacacgcga gaaggacagg gagaagaaga agaagcagoa 1080
gctcatgacc cagataagtg gagtggaaactgatgcac agctcaagcc tgaacaacac 1140
aagcatctca cgcttcggga tcaacacggg aaatggatgtt catctagcca aggagctgg 1200
agacctgaac aatggggcc ttaacatctt caatgtggct ggtactcac ataatcgcc 1260
ccttacgtgc atcatgtatg caatattcca gggaaagagac cttctgaaga cgtttaaaat 1320
ctcatctgac acctttgtaa cctacatgtatg gacttttagaa gaccattacc attctgtatgt 1380
ggcatatcac aacagcctgc atgctgtca cgtggccca gtaactcacc ttctccttcc 1440
tacgccccca ctggatgtctg tcttcacaga cctggaaatc ctggctgcca ttttgcagg 1500
tgccatccat gatgtcgatc atcctggagt ctccaatcg tttctcatca atacaattt 1560
tgaacttgc ttgatgtata atgatgaatc tttctggaa aaccatcacc ttgctgtgg 1620
attcaaatttgc ctacaagagg aacactgcga catctttca gatcttacca agaagcaacg 1680
ccagacactc agggaaatgg tgattgacat ggtgttggca actgatatgt ccaaacacat 1740
gagcctctg gcagaccta aaacaatggt agggaaaccaag aaggtgacaa gctccgggt 1800
tctcctctg gacaactata ctgaccggat acaggttctt cgcaacatgg tacactgtgc 1860
agacctgagc aacccccacca agtccttggaa attgtatcgca caatggaccg atcgatcat 1920
ggaggaggtt ttccagcagg gagacaaaaga acggggagagg ggaatggaga ttagccaaat 1980
gtgtgataag cacacagctt ctgtggaaaa atcccaggtt ggttccattt actacattgt 2040
ccatccactg tgggagacct gggcagacct ggttcaacccg gatgctcaag atattctgg 2100
tacactagaa gataacagga actggatcca gagtatgata cccccagagcc cttccccggcc 2160
actggatggag aggacggagg actgccaagg ctgtatggag aagtttcaagt ttgaactgac 2220
ccttgaggaa gaggattctg agggaccggaa aaaggaggaa gaaggccaca gctatttcag 2280
cagcacaaag acgtttgtt tgattgtatcc agagaacagg gattctctgg aagagactga 2340
catagacatt gcaacagaag acaagttctcc gatcgacaca taatctctt cccctgtgtt 2400
ggagatgaac attccaccct tgactgagca tgcccgctga gtggtagggt cacctaccat 2460
ggccaaggcc tgcacaggac aaaggccacc tggcccttcc agttacttga gtttggagcc 2520

agaatgccag gccgtgaagc aaatagcagt tccatgctgt cttgccttgc ctgcaagctt 2580
 ggcggagacc cgtagtgcata tgtaggtgtt gaggccaggccc cccatcaaag ctaaaatggc 2640
 ttgaaaacag aggacacaaa gctgagagat tgctctgcac taggtgttgg gaagctgtcc 2700
 tgacagatga ctgaaactcac taacaacttc atctataaaat ctcaccaccc aaccattgtt 2760
 ctgccaacctt gtgtgccttt ttttgaaaaa tgtttgcgt tctttgaaat gcctgttggaa 2820
 tatcttagat tttagtaccaa cttctacaaa ctttttgag tctttcttga aaaacaaaaaa 2880
 aaaaaaaaaaaaaaa aaaaaaaaaaaaaaa aa 2912

<210> 26
<211> 721
<212> PRT
<213> Mus musculus

<400> 26
Met Thr Ala Lys Asn Ser Pro Lys Glu Phe Thr Ala Ser Glu Ser Glu
1 5 10 15
Val Cys Ile Lys Thr Phe Lys Glu Gln Met Arg Leu Glu Leu Glu Leu
20 25 30
Pro Lys Leu Pro Gly Asn Arg Pro Thr Ser Pro Lys Ile Ser Pro Arg
35 40 45
Ser Ser Pro Arg Asn Ser Pro Cys Phe Phe Arg Lys Leu Leu Val Asn
50 55 60
Lys Ser Ile Arg Gln Arg Arg Arg Phe Thr Val Ala His Thr Cys Phe
65 70 75 80
Asp Val Glu Asn Gly Pro Ser Pro Gly Arg Ser Pro Leu Asp Pro Gln
85 90 95
Ala Gly Ser Ser Ser Gly Leu Val Leu His Ala Ala Phe Pro Gly His
100 105 110
Ser Gln Arg Arg Glu Ser Phe Leu Tyr Asp Leu Asp Ser Asp Tyr Asp
115 120 125
Leu Ser Pro Lys Ala Met Ser Arg Asn Ser Ser Leu Pro Ser Glu Gln
130 135 140
His Gly Asp Asp Leu Ile Val Thr Pro Phe Ala Gln Val Leu Ala Ser
145 150 155 160
Leu Arg Ser Val Arg Asn Asn Phe Thr Leu Leu Thr Asn Leu His Gly
165 170 175
Ala Pro Asn Lys Arg Ser Pro Ala Ala Ser Gln Ala Pro Val Ser Arg
180 185 190
Val Ser Leu Gln Glu Glu Ser Tyr Gln Lys Leu Ala Met Glu Thr Leu
195 200 205
Glu Glu Leu Asp Trp Cys Leu Asp Gln Leu Glu Thr Ile Gln Thr Tyr
210 215 220

Arg Ser Val Ser Glu Met Ala Ser Asn Lys Phe Lys Arg Met Leu Asn
 225 230 235 240

Arg Glu Leu Thr His Leu Ser Glu Met Ser Arg Ser Gly Asn Gln Val
 245 250 255

Ser Glu Tyr Ile Ser Asn Thr Phe Leu Asp Lys Gln Asn Asp Val Glu
 260 265 270

Ile Pro Ser Pro Thr Gln Lys Asp Arg Glu Lys Lys Lys Gln Gln
 275 280 285

Leu Met Thr Gln Ile Ser Gly Val Lys Lys Leu Met His Ser Ser Ser
 290 295 300

Leu Asn Asn Thr Ser Ile Ser Arg Phe Gly Ile Asn Thr Glu Asn Glu
 305 310 315 320

Asp His Leu Ala Lys Glu Leu Glu Asp Leu Asn Lys Trp Gly Leu Asn
 325 330 335

Ile Phe Asn Val Ala Gly Tyr Ser His Asn Arg Pro Leu Thr Cys Ile
 340 345 350

Met Tyr Ala Ile Phe Gln Glu Arg Asp Leu Leu Lys Thr Phe Lys Ile
 355 360 365

Ser Ser Asp Thr Phe Val Thr Tyr Met Met Thr Leu Glu Asp His Tyr
 370 375 380

His Ser Asp Val Ala Tyr His Asn Ser Leu His Ala Ala Asp Val Ala
 385 390 395 400

Gln Ser Thr His Val Leu Leu Ser Thr Pro Ala Leu Asp Ala Val Phe
 405 410 415

Thr Asp Leu Glu Ile Leu Ala Ala Ile Phe Ala Ala Ala Ile His Asp
 420 425 430

Val Asp His Pro Gly Val Ser Asn Gln Phe Leu Ile Asn Thr Asn Ser
 435 440 445

Glu Leu Ala Leu Met Tyr Asn Asp Glu Ser Val Leu Glu Asn His His
 450 455 460

Leu Ala Val Gly Phe Lys Leu Leu Gln Glu Glu His Cys Asp Ile Phe
 465 470 475 480

Gln Asn Leu Thr Lys Lys Gln Arg Gln Thr Leu Arg Lys Met Val Ile
 485 490 495

Asp Met Val Leu Ala Thr Asp Met Ser Lys His Met Ser Leu Leu Ala
 500 505 510

Asp Leu Lys Thr Met Val Glu Thr Lys Lys Val Thr Ser Ser Gly Val
 515 520 525

Leu Leu Leu Asp Asn Tyr Thr Asp Arg Ile Gln Val Leu Arg Asn Met
 530 535 540
 Val His Cys Ala Asp Leu Ser Asn Pro Thr Lys Ser Leu Glu Leu Tyr
 545 550 555 560
 Arg Gln Trp Thr Asp Arg Ile Met Glu Glu Phe Phe Gln Gln Gly Asp
 565 570 575
 Lys Glu Arg Glu Arg Gly Met Glu Ile Ser Pro Met Cys Asp Lys His
 580 585 590
 Thr Ala Ser Val Glu Lys Ser Gln Val Gly Phe Ile Asp Tyr Ile Val
 595 600 605
 His Pro Leu Trp Glu Thr Trp Ala Asp Leu Val Gln Pro Asp Ala Gln
 610 615 620
 Asp Ile Leu Asp Thr Leu Glu Asp Asn Arg Asn Trp Tyr Gln Ser Met
 625 630 635 640
 Ile Pro Gln Ser Pro Ser Pro Pro Leu Asp Glu Arg Ser Arg Asp Cys
 645 650 655
 Gln Gly Leu Met Glu Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu
 660 665 670
 Asp Ser Glu Gly Pro Glu Lys Glu Gly Glu His Ser Tyr Phe Ser
 675 680 685
 Ser Thr Lys Thr Leu Cys Val Ile Asp Pro Glu Asn Arg Asp Ser Leu
 690 695 700
 Glu Glu Thr Asp Ile Asp Ile Ala Thr Glu Asp Lys Ser Pro Ile Asp
 705 710 715 720

Thr

<210> 27
 <211> 1240
 <212> DNA
 <213> Mus musculus

<400> 27
 ggccgcgcgg gagtctgaga atgcaaagtg ccatgttcct ggctgtccag cacgactgcg 60
 tacccatgga caagagtgcg ggcacggcc ccaaggctcg ggagaagcgg gagaaaatgaa 120
 agcggacact cttaaaccat tggaaagaccc gtttgagcta cttctgtcg aattcctctg 180
 ctcctgggaa gcccaaaaact ggcaagaaaa gcaaacagca aacttttatac aagccttctc 240
 ctgaggaagc gcacgtctgg gcagaagcat ttgatgaaact gctggccagt aaatatgggc 300
 tggctgcatt cagggcggtt ttaaagtccg agttctgtga agaaaaacatt gaattctgg 360
 tggcttgtga agacttcaaa aaaacccaat caccggaaaa actgtccctca aaagcaagga 420
 aaatctatac cgacttcata gagaaggaag cttcccaaaa gataaacata gacttccaaa 480
 cggaaatctct gattgcccaa aatatccaaag aggctacaag tggctgttc accacagctc 540
 agaagagggt gtacagttt atggagaaca attcttatcc tcgggtcttg gagtccgaat 600
 tctaccagga ctatgtaaa aagccacaga tcaccacgga gccccatgct acatgagacc 660
 aggagcccc ccacacacaa aggacattcc attctgtctc ccaagagcaa aggctgtgac 720

ctgccagaaa aaaaaaaaaaa actgaccttg aattcagcct gagtgttagg aaaacatgc 780
 tcagaactat tgattcaatg ttgggttagtg aatcaggaag tcagcaacct aggagaggct 840
 ctgtgtgaga acggcttccc tcactgtgtg aagaacagag ggagggaca ggcctctgaa 900
 tggttcttc ctccttgcg ggaaagcaga gtttgagatg aaagatccga tgcaatgtt 960
 ttggagcatt taaaatcaag aggtctggta ttatgtggcc ttagcttagt ggctgtacac 1020
 cttccctaaa cttagtccatg ttacacatag tggtgttagt tctagttta atattttagt 1080
 actaagtaac attacaatgt ttactgtgtg caagggtgtt gacgttctta ggactacaga 1140
 tcatttagtac tagtgtgtca cgtatcactg aaactgagaa gtatgttga gttgttaat 1200
 ggtgtgtgtg atggaccgaa tgctgtgccg tgctgttagaa 1240

<210> 28
 <211> 211
 <212> PRT
 <213> Mus musculus

<400> 28
 Met Gln Ser Ala Met Phe Leu Ala Val Gln His Asp Cys Val Pro Met
 1 5 10 15

Asp Lys Ser Ala Gly Asn Gly Pro Lys Val Glu Glu Lys Arg Glu Lys
 20 25 30

Met Lys Arg Thr Leu Leu Asn His Trp Lys Thr Arg Leu Ser Tyr Phe
 35 40 45

Leu Gln Asn Ser Ser Ala Pro Gly Lys Pro Lys Thr Gly Lys Lys Ser
 50 55 60

Lys Gln Gln Thr Phe Ile Lys Pro Ser Pro Glu Glu Ala His Val Trp
 65 70 75 80

Ala Glu Ala Phe Asp Glu Leu Leu Ala Ser Lys Tyr Gly Leu Ala Ala
 85 90 95

Phe Arg Ala Phe Leu Lys Ser Glu Phe Cys Glu Glu Asn Ile Glu Phe
 100 105 110

Trp Leu Ala Cys Glu Asp Phe Lys Lys Thr Lys Ser Pro Gln Lys Leu
 115 120 125

Ser Ser Lys Ala Arg Lys Ile Tyr Thr Asp Phe Ile Glu Lys Glu Ala
 130 135 140

Pro Lys Glu Ile Asn Ile Asp Phe Gln Thr Lys Ser Leu Ile Ala Gln
 145 150 155 160

Asn Ile Gln Glu Ala Thr Ser Gly Cys Phe Thr Thr Ala Gln Lys Arg
 165 170 175

Val Tyr Ser Leu Met Glu Asn Asn Ser Tyr Pro Arg Phe Leu Glu Ser
 180 185 190

Glu Phe Tyr Gln Asp Leu Cys Lys Lys Pro Gln Ile Thr Thr Glu Pro
 195 200 205

His Ala Thr
 210

<210> 29
<211> 2345
<212> DNA
<213> Mus musculus

<400> 29
aaaaagtata tgaggacaaa tgtaaggcaa atgaccatgg aaacagttga atcacagcag 60
gatcgaagtg taacacgttc tgtggcagag catacgctcg ctcatatgc gactggtcaa 120
atttctgttc ctactctagc tcaggttagca acaattgcag agacagatga ttctgcagac 180
tcagaagtaa ttgattcgc taaacgtaga gaaattctt cacgaagacc ctcatataga 240
aaaatactga atgaacttc ctctgatgtg cctggattcc ccaagattga agaagaaaaaa 300
tcagaggaag aaggcaccc acctaaccatt gtcaccatgg cagtaccaac tagcatatat 360
cagactagca cggggcaata caatgaggag actgaccctt ccccaagtca catggctgct 420
gccacacgtt acatgccaac ttaccagatc cgagctcta ctactgtttt gecacaagg 480
gtggtgatgg ctgcctcacc aggaagctg cacagtcccc agcaactagc agaagaagca 540
actcgcaagc gggagctgag gctgatgaaa aacagggaag ctgcccggga gtgtcgcagg 600
aagaagaaaag aatatgtcaa atgtcttcaa aatcgtgtgg ctgtgcttga aaatcaaaac 660
aagaccctca ttgaggaact caagggccctc aaagacctt attgcataa agcagagtaa 720
ctgtgtttga ttggacctt gttgactgtg aactctaattt ggggcaggcg atgcagcattc 780
ctcataatgg ccatgtggac ttgttagatgg gtctcttaac ccttgcttaa gaatacagtc 840
tgctgttagag tggtaattgg gaatactgtt ccatgggttga atgcagct cccctcacat 900
taccaagctt gctctattgc caatagcatg caacatatgt tttgtttgcc ctctgcttc 960
tacttttttc agggaaagctg ctaaaagaatg tcgacgtcgaa aagaaaagagt atgtgaagtg 1020
tcttgagagt cgagtcgca gtcgttagt tcagaacaag aagcttataag aggagcttga 1080
aactttgaaa gacatttgct ctcccaaaac agatttagt aaatatttaa ctatgaactg 1140
attacagcat gtacagttgc ttttgaatgc aatacaaata tatagccggc aagaatttatg 1200
gcttttcct ttgtatcatt catctaactt tctaaaacta acattctaa gatgctttgt 1260
tgttatttaat ttgtcttac ctctaaaggc aatttttttag aagagacaaa ctcaaaaaat 1320
gtatgtaca aattcttaaa atgaagtatt tggtaagactt gttccagtca acatattttac 1380
agttcccaagt ctctctgtca tgaatagtgt cctatgcaat aaaaattttt caggttttaa 1440
gaatcattttt agggaaagggtt gaatcaaagg cagtgcattt ctccaggatg aagataaaaat 1500
caaccatcatg agatacctca ggaaagaatg aaagggaaatgtt tattcgtatg acatgacgtg 1560
agaatagcc tccaaatgttattt ttatgcattt atagattttt ataatcgtca ctttggtaaaag 1620
aaagtattgtt atgtctgtcc ttgggtgcca cagttgaaga cagttttaaa tagaaccatg 1680
ttgggtgctc ttgttactat ttggatatta tttaagtatc tgagcattta ctacagtttc 1740
ctactatgtt tggtagtatgtt gaattttcac aaaaagttgtt gctcttgc gtttatttaat 1800
gaaagagaca acatattttc attatctggaa atgagttcca caagtatgaa tttattgcta 1860
caactggatca gcagcccttgc aaatactggg ccatttcattt agaggacaac agcagggttc 1920
taggagcaga gttcagttgtt gggacttgc ctggcatgtt acatgttcag ttgaaaggaa 1980
agacccatcaag ctctgcattt ggaatgggtt ccaggggaaag aggtagagg ttggcttttgc 2040
tgctgtacta ggcttcttgc tgatcgatgtt gggatgttgc gctgtatgacc ctccattgtt 2100
aattcttgcac acctcaggaa tggtaacgtt taaaaaaactt cccaaatgtt catttttgc 2160
tttacaactt ggatcaattt tgggttgc tttggatattt agctgtgttac atttgcacg 2220
taggtttagg ctggccctttaa actcacagttt ctcttgcctt agcctctgtt gttcgttggat 2280
tacggatgtt ggccagaata tccagttgtt tcaagtattt ttttataaaa tattactttc 2340
ttttt 2345

<210> 30
<211> 229
<212> PRT
<213> Mus musculus

<400> 30
Met Thr Met Glu Thr Val Glu Ser Gln Gln Asp Arg Ser Val Thr Arg
1 5 10 15

Ser Val Ala Glu His Ser Ser Ala His Met Gln Thr Gly Gln Ile Ser
 20 25 30

Val Pro Thr Leu Ala Gln Val Ala Thr Ile Ala Glu Thr Asp Asp Ser
 35 40 45

Ala Asp Ser Glu Val Ile Asp Ser His Lys Arg Arg Glu Ile Leu Ser
 50 55 60

Arg Arg Pro Ser Tyr Arg Lys Ile Leu Asn Glu Leu Ser Ser Asp Val
 65 70 75 80

Pro Gly Ile Pro Lys Ile Glu Glu Glu Lys Ser Glu Glu Glu Gly Thr
 85 90 95

Pro Pro Asn Ile Ala Thr Met Ala Val Pro Thr Ser Ile Tyr Gln Thr
 100 105 110

Ser Thr Gly Gln Tyr Asn Glu Glu Thr Asp Leu Ala Pro Ser His Met
 115 120 125

Ala Ala Ala Thr Gly Asp Met Pro Thr Tyr Gln Ile Arg Ala Pro Thr
 130 135 140

Thr Ala Leu Pro Gln Gly Val Val Met Ala Ala Ser Pro Gly Ser Leu
 145 150 155 160

His Ser Pro Gln Gln Leu Ala Glu Glu Ala Thr Arg Lys Arg Glu Leu
 165 170 175

Arg Leu Met Lys Asn Arg Glu Ala Ala Arg Glu Cys Arg Arg Lys Lys
 180 185 190

Lys Glu Tyr Val Lys Cys Leu Glu Asn Arg Val Ala Val Leu Glu Asn
 195 200 205

Gln Asn Lys Thr Leu Ile Glu Glu Leu Lys Ala Leu Lys Asp Leu Tyr
 210 215 220

Cys His Lys Ala Glu
 225

<210> 31
 <211> 9848
 <212> DNA
 <213> Mus musculus

<400> 31

```

gctgaagcgt ttcctcaagc ctgccgggt gggaggagag gaggaggtgg tggtggtgga 60
ggagggtggag gcagagggtg gagagagaga aagcgcacgc cgagaggagg tgtgggtgtt 120
ccgctcccat cctaacggaa cgagctccct cttcgccggac atgggattgc ccagcggctg 180
ctaaccctc tcctggctc gatccccaa accggcgtgg ctcccccgtc accaaggagc 240
tgattacaag ggaccaggat ttgcattcctt ggctgggcgt ccattggcta cagagtgcct 300
gacctgggtc aggctttcca acacggacat gtctgacaaa atgtcgagtt tcctacatat 360
tggagacatt tgttctctgt atgcggaggg atctacgaat ggatttatca gcaccttagg 420
cttgggttcat gaccgttgtt ttgtacagcc agaagccggg gacctaaca atccacccaa 480
  
```

gaaattcaga gactgcctct ttaagctatg tccttatgaat cgatactccg cacagaaaaca 540
 gttctggaaa gctgctaagc ccggggccaa cagcaactaca gatgcagtgc tgctcaacaa 600
 attgcatcat gctgcagact tggaaaagaa gcagaatgag acagaaaaca gaaaattgtt 660
 ggggaccggtc atccaatatg gcaacgtatg ccagctcctg catttggaaa gcaataaata 720
 cctgactgtg aataagaggg tcccagcctt gctagagaag aatgccatga gggtgacgtt 780
 ggacgaggct gaaaaatgaag ggtcctgggt ttacattcaa ccattttaca agcttcgctc 840
 catcgagac agtgtgttca taggcacaa ggtagtttg aatcctgtca atgctggcca 900
 gcctctacat gccagcagtc atcagctgtt ggataacccca ggctgcaatg aggtcaactc 960
 cgtcaactgt aataacaagct ggaagatagt gctttcatg aaatggagtg ataacaaaga 1020
 cgacattctc aaaggagggt atgtgttgc gctcttccat gccgagcaag agaagttct 1080
 cacctgtat gagcaccggaa agaagcagca tggccttgc aggaccaccg gcaggcagtc 1140
 agccacgtcg gccaccaggat ctaaaggccct gtgggaagtg gaggtatgtcc agcacgaccc 1200
 atgtcggggt ggagctgggt actggaatag cctcttccgg ttcgaagcacc tggctacagg 1260
 gcattacttgc gctgcaggg tagaccctga ctttgaggaa gaatgcctgg agtttcagcc 1320
 ctcagtgaccc cctgtatcgg atgcacatcg gagtaggtt agaaaacgcgc aaaaaaaaaat 1380
 ggtataatct ctggctccgt tggcctgaagg caacgcacatc tccctcatct ttgagctaga 1440
 cccccacgact ctgcgtggag gtgacacgcct tggcccaagg aactcctatg tccgtctcag 1500
 acacctgtgc accaaacaccc ggtacacag cacaacacatc cccatcgaca aggaagagga 1560
 gaagcctgtg atgctgaaaa ttggtacctc tcccctgaag gaggacaagg aagcatttgc 1620
 catagttctt gttccctctt ctggagttcg ggacctggac tttgccaatg atgcccagcaa 1680
 ggtgctggc tccatcgctg ggaagttgga aaagggcacc atcacccaga atgagagaag 1740
 gtctgtcactg aagctttgg aagacttggt ttactttgtc acgggtggaa ctaactctgg 1800
 ccaagacgtg cttgaagttt tcttctctaa gccaatcga gagcggcaga agctgatgag 1860
 ggaacagaat attctcaagc agatcttcaa gctgttgcag gcccccttca cggactgcgg 1920
 ggtatggcccg atgcttcggc tggaggagct gggggatcag cgccatgctc ctttcagaca 1980
 tatttgcga ctctgttaca gggtcctgcg acactcacag caagactaca ggaagaacca 2040
 ggagtacata gccaaggcagt ttggcttcat gcagaaggcag attggctatg acgtgctggc 2100
 cgaagacacc atcaactgccc tgctccacaa caaccggaaa ctccctggaga agcacatcac 2160
 cggccgagag attgacacgt ttgtcagcct ggtgcggaaag aacaggggagc ccaggttctt 2220
 ggattacctc tctgacctct gcgtatccat gaacaagtca atccctgtga cacaggagct 2280
 catctgtaaa gctgtgtca atcccaccaa tgctgacatc ctgattgaga ccaagctgg 2340
 tctttctctgt tttagtggg aaggcgtttca cactggagag aatgctctgg aagccgggaa 2400
 ggtatgggaa gaggtgtggc tggcctggag ggacagcaac aaagagatcc gtagtaagag 2460
 tggccggaa ttggcgaag atgctaaaga gggacagaag gaagacaggg acatcctcag 2520
 ctactacaga tatcagctga acctctttgc aaggatgtgt ctggccggcc agtacctggc 2580
 catcaatgaa atctccgggc agtctgtatg tgcatttcatct ctccctgtca tgcattgtac 2640
 gaaacctcccc tacgacatca gggcatctt ttggccctc atgcttcaca tgcattgtgg 2700
 ccgagatccc caagagcagg tgacacctgt gaaatatgcg cgactgtggt cagaaattcc 2760
 ctctgagatc gccattgtatc actatgacag cagtggaaaca tccaaagatg aaattaagga 2820
 gaggtttgca cagacgatgg agtttgtgaa ggagtaccta agagatgtgg tttgtcaaaag 2880
 attcccttc tctgataagg agaaaaataaa gctcacgtt gaggtgtga acttagccag 2940
 gaatctcata tactttgggt tctacaactt ttctgacctt ctccgattaa ccaagatcct 3000
 cttggcaatc ttagactgtg tccatgtgac cactatctt cccattagca agatgacaaa 3060
 aggagaagag aataaaaggca gtaacgtatg gaggcttacatc catggcggtt gggagctgat 3120
 gacccagggtg gtgctcgccc gaggaggctt ctggccatg actcccatgg ctggggcccc 3180
 tgaaggaaat gtgaaggcagg cagagccaga gaaagaggac atcatgtca tggacaccaa 3240
 gttgaagatc attgaaataac tccagtttat ttgtatgtt agattggatt ataggatctc 3300
 ctgcctctgt tgcatttttca agcagatgtt tgatgaaagc aattccctgt catcagaaac 3360
 atccctccgaa aacagcagcc aggaaggccc aagtaatgtt ccaggtgctc tgcattttga 3420
 acacattgaa gaacaagcgg aaggcatctt tggaggaagt gaggagaaca cacctttgga 3480
 cttggatgac catggtggca gaaaccttctt cagggtctgt ctccacttgc caatgcatga 3540
 ctaccaccc ctgggtgtctg gggccctgcg gctcttgcg cggcacttca gccagaggca 3600
 ggaggccctt caggccctca aacaggttca actgctgggtt actagccaaatg atgtggacaa 3660
 ctacaaacag atcaagcaag acttggacca actaaggtcc attgtggaga agtctgagct 3720
 ctgggtgtac aaaggccaaatg tccctgtatg gcttgcgttggac ggagctccg tggaaaatga 3780
 gcataagaaa accgaggagg ggacgagca gccacttgcg caccggagca ccagcagct 3840
 caactaccga gtggtaaaatg agatgttgcg tgcacttgc aagctctgcg tgcaggagag 3900
 cgctcggtt gagaagagcc ggaagcagca gcaacgactg ctgaggaaaca tggggcgaca 3960

tgtgggcaac	tgtgggacct	tcaccagagg	ctaccggggc	atggttctgg	atgtggagg	7500
cctctatcat	ttgtgtata	tactcatctg	tgc当地	ctcttctg	atgagttctt	7560
ctatagctt	ctgttttg	atttagtga	cagagaggag	actttgtta	atgtcattaa	7620
aagtgtcacc	cgcaatggac	ggtccatcat	cttgacageg	gtc当地	tgatcctgtt	7680
ttacctgttc	tcaattgtgg	gctatctgtt	cttcaaggat	gactttatct	tggaagtaga	7740
taggttgc	aatgaaacag	ctgttccaga	aactggcgag	agtttggcca	acgatttcct	7800
gtactctgtat	gtgtgcaggg	tagagacggg	ggagaactgc	acctctcctg	cacccaaaga	7860
agagctgtctc	cctgcccgaag	aaacggaaaca	ggataaggaa	cacacgtgt	agaccctgtc	7920
catgtgcac	gtcactgttc	tgagtcacgg	gctgcggagt	gggggagggg	taggagacgt	7980
gctcaggaaag	ccatccaaag	aggagctct	gtttgctgca	agggtgatct	acgacctct	8040
cttcttc	atggtcatca	tcatcgctt	gaacctgatt	ttc当地	tcatcgacac	8100
cttgcgtac	ctgaggagtg	agaagcaaaa	gaaggaggag	atcttaaaaa	ccacgtgtt	8160
catctgcggc	ttgaaaaggg	acaagttga	caataagact	gtcaccttt	aagagcacat	8220
caaggaagaa	cacaacatgt	ggcactatct	gtgcttcatc	gtgctgttga	aagtgaagga	8280
ctccacagag	tacaccgggc	ctgagagttt	cgtggcagag	atgatcaggg	aaagaaaact	8340
tgattgtt	ctcagaatga	gagccatgtc	cctggtcagc	agcgttctg	aagggaaaca	8400
gaacgagctg	aggaacactgc	aggagaagct	ggagtttacc	atgaagctgg	tcaccaatct	8460
ttctggccag	ctgtcagaac	taaaggacca	gatgacagaa	cagaggaagc	agaaaacaaag	8520
aatcgccct	ctaggacatc	ctcctcacat	gaatgtcaac	ccacagcagc	cggcctaggc	8580
aaatgaggca	gagggactct	gctcagccct	ctgttatata	ctgtcagggt	gggtacggct	8640
cattggttct	gattgcccc	ctaagggtac	atgtgcgtt	agtacattt	taaatactca	8700
gttttgtatt	gtatgtat	gattgctatt	ctcagaggtt	tggactttcg	tattgttaatt	8760
agctctgtt	gcatggtgac	ttgtcactcc	tgccaaaaat	attaaaaatg	ccttttttgg	8820
aaggactaca	gaaagtacct	gatttgact	tgaaccagat	tatagattt	aaagtatatg	8880
acatgttatt	tgtattttaa	actagaatag	ccagtttta	tgtttttat	aaaactgtgc	8940
aatacaaatt	atgcaatcac	cataacttt	taactcctga	gtgtcctaag	ggagtacaca	9000
tctttgaagc	tgattttgtt	atactcggt	aataaatggt	taaataatcaa	atgctgtgc	9060
tgctgc当地	attatattaa	tagcgagttt	ctggccctgt	ggcaatttt	taccttgtaa	9120
ttatcctatg	gtgtatgtt	tttgcgttgc	taatggcatt	agtcccctg	tatcctagtg	9180
ataactccag	gtctgtgaac	cattcaaaca	gcattcattt	tgagaaaaagc	aacttttgtt	9240
tcaaggataa	ttttaagctt	caaattaat	cattaaagt	gtttctttaa	gagagccatg	9300
tttagggctc	acactttagc	ttgaaaaggag	ttgatgaaat	aattttttaa	agggaaactt	9360
ttcatgacg	tttggaaataa	cagcatattt	ctgaccgttc	agtgtcatct	cccccgttga	9420
ttttgtatgc	acgttatagt	caaatgatgt	agtgatgtt	ttcttagattt	tctctcttgc	9480
aaccatgatg	cagtaggtaa	gaagtttata	tgc当地	catatataca	ttcatatacgt	9540
acaaagtagg	agctgtcccc	tttaggtatc	tagtgc当地	taggttacgt	agctgaacac	9600
tgacaatggc	gttcttctga	aagagccacg	tttgggtttt	atttcttgt	cacatgattt	9660
cttttcttgg	ttgggtgc当地	gtatcacagg	aaagtttttc	tctctgtcgc	cttgggttgc	9720
acctgggtct	cgcttacta	gaccgtctct	gcacaaaagt	ttaaaaactg	aaccgtatgc	9780
agagttccga	agcaagtcaa	gtttgttaaaat	gcatacctaa	aaatatttaa	taaacgtatgc	9840
agaatcc						9848

<210> 32
<211> 2749
<212> PRT
<213> *Mus musculus*

<400> 32
Met Ser Asp Lys Met Ser Ser Phe Leu His Ile Gly Asp Ile Cys Ser
1 5 10 15

Leu Tyr Ala Glu Gly Ser Thr Asn Gly Phe Ile Ser Thr Leu Gly Leu
20 25 30

Val Asp Asp Arg Cys Val Val Gln Pro Glu Ala Gly Asp Leu Asn Asn
35 40 45

Pro Pro Lys Lys Phe Arg Asp Cys Leu Phe Lys Leu Cys Pro Met Asn
 50 55 60

Arg Tyr Ser Ala Gln Lys Gln Phe Trp Lys Ala Ala Lys Pro Gly Ala
 65 70 75 80

Asn Ser Thr Thr Asp Ala Val Leu Leu Asn Lys Leu His His Ala Ala
 85 90 95

Asp Leu Glu Lys Lys Gln Asn Glu Thr Glu Asn Arg Lys Leu Leu Gly
 100 105 110

Thr Val Ile Gln Tyr Gly Asn Val Ile Gln Leu Leu His Leu Lys Ser
 115 120 125

Asn Lys Tyr Leu Thr Val Asn Lys Arg Leu Pro Ala Leu Leu Glu Lys
 130 135 140

Asn Ala Met Arg Val Thr Leu Asp Glu Ala Gly Asn Glu Gly Ser Trp
 145 150 155 160

Phe Tyr Ile Gln Pro Phe Tyr Lys Leu Arg Ser Ile Gly Asp Ser Val
 165 170 175

Val Ile Gly Asp Lys Val Val Leu Asn Pro Val Asn Ala Gly Gln Pro
 180 185 190

Leu His Ala Ser Ser His Gln Leu Val Asp Asn Pro Gly Cys Asn Glu
 195 200 205

Val Asn Ser Val Asn Cys Asn Thr Ser Trp Lys Ile Val Leu Phe Met
 210 215 220

Lys Trp Ser Asp Asn Lys Asp Asp Ile Leu Lys Gly Gly Asp Val Val
 225 230 235 240

Arg Leu Phe His Ala Glu Gln Glu Lys Phe Leu Thr Cys Asp Glu His
 245 250 255

Arg Lys Lys Gln His Val Phe Leu Arg Thr Thr Gly Arg Gln Ser Ala
 260 265 270

Thr Ser Ala Thr Ser Ser Lys Ala Leu Trp Glu Val Glu Val Val Gln
 275 280 285

His Asp Pro Cys Arg Gly Gly Ala Gly Tyr Trp Asn Ser Leu Phe Arg
 290 295 300

Phe Lys His Leu Ala Thr Gly His Tyr Leu Ala Ala Glu Val Asp Pro
 305 310 315 320

Asp Phe Glu Glu Cys Leu Glu Phe Gln Pro Ser Val Asp Pro Asp
 325 330 335

Gln Asp Ala Ser Arg Ser Arg Leu Arg Asn Ala Gln Glu Lys Met Val
 340 345 350

Tyr Ser Leu Val Ser Val Pro Glu Gly Asn Asp Ile Ser Ser Ile Phe
 355 360 365

Glu Leu Asp Pro Thr Thr Leu Arg Gly Gly Asp Ser Leu Val Pro Arg
 370 375 380

Asn Ser Tyr Val Arg Leu Arg His Leu Cys Thr Asn Thr Trp Val His
 385 390 395 400

Ser Thr Asn Ile Pro Ile Asp Lys Glu Glu Lys Pro Val Met Leu
 405 410 415

Lys Ile Gly Thr Ser Pro Leu Lys Glu Asp Lys Glu Ala Phe Ala Ile
 420 425 430

Val Pro Val Ser Pro Ala Glu Val Arg Asp Leu Asp Phe Ala Asn Asp
 435 440 445

Ala Ser Lys Val Leu Gly Ser Ile Ala Gly Lys Leu Glu Lys Gly Thr
 450 455 460

Ile Thr Gln Asn Glu Arg Arg Ser Val Thr Lys Leu Leu Glu Asp Leu
 465 470 475 480

Val Tyr Phe Val Thr Gly Gly Thr Asn Ser Gly Gln Asp Val Leu Glu
 485 490 495

Val Val Phe Ser Lys Pro Asn Arg Glu Arg Gln Lys Leu Met Arg Glu
 500 505 510

Gln Asn Ile Leu Lys Gln Ile Phe Lys Leu Leu Gln Ala Pro Phe Thr
 515 520 525

Asp Cys Gly Asp Gly Pro Met Leu Arg Leu Glu Glu Leu Gly Asp Gln
 530 535 540

Arg His Ala Pro Phe Arg His Ile Cys Arg Leu Cys Tyr Arg Val Leu
 545 550 555 560

Arg His Ser Gln Gln Asp Tyr Arg Lys Asn Gln Glu Tyr Ile Ala Lys
 565 570 575

Gln Phe Gly Phe Met Gln Lys Gln Ile Gly Tyr Asp Val Leu Ala Glu
 580 585 590

Asp Thr Ile Thr Ala Leu Leu His Asn Asn Arg Lys Leu Leu Glu Lys
 595 600 605

His Ile Thr Ala Ala Glu Ile Asp Thr Phe Val Ser Leu Val Arg Lys
 610 615 620

Asn Arg Glu Pro Arg Phe Leu Asp Tyr Leu Ser Asp Leu Cys Val Ser
 625 630 635 640

Met Asn Lys Ser Ile Pro Val Thr Gln Glu Leu Ile Cys Lys Ala Val
 645 650 655

Leu Asn Pro Thr Asn Ala Asp Ile Leu Ile Glu Thr Lys Leu Val Leu
 660 665 670
 Ser Arg Phe Glu Phe Glu Gly Val Ser Thr Gly Glu Asn Ala Leu Glu
 675 680 685
 Ala Gly Glu Asp Glu Glu Glu Val Trp Leu Phe Trp Arg Asp Ser Asn
 690 695 700
 Lys Glu Ile Arg Ser Lys Ser Val Arg Glu Leu Ala Gln Asp Ala Lys
 705 710 715 720
 Glu Gly Gln Lys Glu Asp Arg Asp Ile Leu Ser Tyr Tyr Arg Tyr Gln
 725 730 735
 Leu Asn Leu Phe Ala Arg Met Cys Leu Asp Arg Gln Tyr Leu Ala Ile
 740 745 750
 Asn Glu Ile Ser Gly Gln Leu Asp Val Asp Leu Ile Leu Arg Cys Met
 755 760 765
 Ser Asp Glu Asn Leu Pro Tyr Asp Leu Arg Ala Ser Phe Cys Arg Leu
 770 775 780
 Met Leu His Met His Val Asp Arg Asp Pro Gln Glu Gln Val Thr Pro
 785 790 795 800
 Val Lys Tyr Ala Arg Leu Trp Ser Glu Ile Pro Ser Glu Ile Ala Ile
 805 810 815
 Asp Asp Tyr Asp Ser Ser Gly Thr Ser Lys Asp Glu Ile Lys Glu Arg
 820 825 830
 Phe Ala Gln Thr Met Glu Phe Val Glu Glu Tyr Leu Arg Asp Val Val
 835 840 845
 Cys Gln Arg Phe Pro Phe Ser Asp Lys Glu Lys Asn Lys Leu Thr Phe
 850 855 860
 Glu Val Val Asn Leu Ala Arg Asn Leu Ile Tyr Phe Gly Phe Tyr Asn
 865 870 875 880
 Phe Ser Asp Leu Leu Arg Leu Thr Lys Ile Leu Leu Ala Ile Leu Asp
 885 890 895
 Cys Val His Val Thr Thr Ile Phe Pro Ile Ser Lys Met Thr Lys Gly
 900 905 910
 Glu Glu Asn Lys Gly Ser Asn Val Met Arg Ser Ile His Gly Val Gly
 915 920 925
 Glu Leu Met Thr Gln Val Val Leu Arg Gly Gly Phe Leu Pro Met
 930 935 940
 Thr Pro Met Ala Ala Ala Pro Glu Gly Asn Val Lys Gln Ala Glu Pro
 945 950 955 960

Glu Lys Glu Asp Ile Met Val Met Asp Thr Lys Leu Lys Ile Ile Glu
 965 970 975

Ile Leu Gln Phe Ile Leu Asn Val Arg Leu Asp Tyr Arg Ile Ser Cys
 980 985 990

Leu Leu Cys Ile Phe Lys Arg Glu Phe Asp Glu Ser Asn Ser Gln Ser
 995 1000 1005

Ser Glu Thr Ser Ser Gly Asn Ser Ser Gln Glu Gly Pro Ser Asn Val
 1010 1015 1020

Pro Gly Ala Leu Asp Phe Glu His Ile Glu Glu Gln Ala Glu Gly Ile
 1025 1030 1035 1040

Phe Gly Gly Ser Glu Glu Asn Thr Pro Leu Asp Leu Asp Asp His Gly
 1045 1050 1055

Gly Arg Thr Phe Leu Arg Val Leu Leu His Leu Thr Met His Asp Tyr
 1060 1065 1070

Pro Pro Leu Val Ser Gly Ala Leu Gln Leu Leu Phe Arg His Phe Ser
 1075 1080 1085

Gln Arg Gln Glu Val Leu Gln Ala Phe Lys Gln Val Gln Leu Leu Val
 1090 1095 1100

Thr Ser Gln Asp Val Asp Asn Tyr Lys Gln Ile Lys Gln Asp Leu Asp
 1105 1110 1115 1120

Gln Leu Arg Ser Ile Val Glu Lys Ser Glu Leu Trp Val Tyr Lys Gly
 1125 1130 1135

Gln Gly Pro Asp Glu Pro Met Asp Gly Ala Ser Gly Glu Asn Glu His
 1140 1145 1150

Lys Lys Thr Glu Glu Gly Thr Ser Lys Pro Leu Lys His Glu Ser Thr
 1155 1160 1165

Ser Ser Tyr Asn Tyr Arg Val Val Lys Glu Ile Leu Ile Arg Leu Ser
 1170 1175 1180

Lys Leu Cys Val Gln Glu Ser Ala Ser Val Arg Lys Ser Arg Lys Gln
 1185 1190 1195 1200

Gln Gln Arg Leu Leu Arg Asn Met Gly Ala His Ala Val Val Leu Glu
 1205 1210 1215

Leu Leu Gln Ile Pro Tyr Glu Lys Ala Glu Asp Thr Lys Met Gln Glu
 1220 1225 1230

Ile Met Arg Leu Ala His Glu Phe Leu Gln Asn Phe Cys Ala Gly Asn
 1235 1240 1245

Gln Gln Asn Gln Ala Leu Leu His Lys His Ile Asn Leu Phe Leu Lys
 1250 1255 1260

Pro Gly Ile Leu Glu Ala Val Thr Met Gln His Ile Phe Met Asn Asn
 1265 1270 1275 1280

 Phe Gln Leu Cys Ser Glu Ile Asn Glu Arg Val Val Gln His Phe Val
 1285 1290 1295

 His Cys Ile Glu Thr His Gly Arg Asn Val Gln Tyr Ile Lys Phe Leu
 1300 1305 1310

 Gln Thr Ile Val Lys Ala Glu Gly Lys Phe Ile Lys Lys Cys Gln Asp
 1315 1320 1325

 Met Val Met Ala Glu Leu Val Asn Ser Gly Glu Asp Val Leu Val Phe
 1330 1335 1340

 Tyr Asn Asp Arg Ala Ser Phe Gln Thr Leu Ile Gln Met Met Arg Ser
 1345 1350 1355 1360

 Glu Arg Asp Arg Met Asp Glu Asn Ser Pro Leu Met Tyr His Ile His
 1365 1370 1375

 Leu Val Glu Leu Leu Ala Val Cys Thr Glu Gly Lys Asn Val Tyr Thr
 1380 1385 1390

 Glu Ile Lys Cys Asn Ser Leu Leu Pro Leu Asp Asp Ile Val Arg Val
 1395 1400 1405

 Val Thr His Glu Asp Cys Ile Pro Glu Val Lys Ile Ala Tyr Ile Asn
 1410 1415 1420

 Phe Leu Asn His Cys Tyr Val Asp Thr Glu Val Glu Met Lys Glu Ile
 1425 1430 1435 1440

 Tyr Thr Ser Asn His Met Trp Lys Leu Phe Glu Asn Phe Leu Val Asp
 1445 1450 1455

 Ile Cys Arg Ala Cys Asn Asn Thr Ser Asp Arg Lys His Ala Asp Ser
 1460 1465 1470

 Ile Leu Glu Lys Tyr Val Thr Glu Ile Val Met Ser Ile Val Thr Thr
 1475 1480 1485

 Phe Phe Ser Ser Pro Phe Ser Asp Gln Ser Thr Thr Leu Gln Thr Arg
 1490 1495 1500

 Gln Pro Val Phe Val Gln Leu Leu Gln Gly Val Phe Arg Val Tyr His
 1505 1510 1515 1520

 Cys Asn Trp Leu Met Pro Ser Gln Lys Ala Ser Val Glu Ser Cys Ile
 1525 1530 1535

 Arg Val Leu Ser Asp Val Ala Lys Ser Arg Ala Ile Ala Ile Pro Val
 1540 1545 1550

 Asp Leu Asp Ser Gln Val Asn Asn Leu Phe Leu Lys Ser His Asn Ile
 1555 1560 1565

Val Gln Lys Thr Ala Leu Asn Trp Arg Leu Ser Ala Arg Asn Ala Ala
 1570 1575 1580
 Arg Arg Asp Ser Val Leu Ala Ala Ser Arg Asp Tyr Arg Asn Ile Ile
 1585 1590 1595 1600
 Glu Arg Leu Gln Asp Ile Val Ser Ala Leu Glu Asp Arg Leu Arg Pro
 1605 1610 1615
 Leu Val Gln Ala Glu Leu Ser Val Leu Val Asp Val Leu His Arg Pro
 1620 1625 1630
 Glu Leu Leu Phe Pro Glu Asn Thr Asp Ala Arg Arg Lys Cys Glu Ser
 1635 1640 1645
 Gly Gly Phe Ile Cys Lys Leu Ile Lys His Thr Lys Gln Leu Leu Glu
 1650 1655 1660
 Glu Asn Glu Glu Lys Leu Cys Ile Lys Val Leu Gln Thr Leu Arg Glu
 1665 1670 1675 1680
 Met Met Thr Lys Asp Arg Gly Tyr Gly Glu Lys Gln Ile Ser Ile Asp
 1685 1690 1695
 Glu Ser Glu Asn Ala Glu Leu Pro Gln Ala Pro Glu Ala Glu Asn Ser
 1700 1705 1710
 Thr Glu Gln Glu Leu Glu Pro Ser Pro Pro Leu Arg Gln Leu Glu Asp
 1715 1720 1725
 His Lys Arg Gly Glu Ala Leu Arg Gln Ile Leu Val Asn Arg Tyr Tyr
 1730 1735 1740
 Gly Asn Ile Arg Pro Ser Gly Arg Arg Glu Ser Leu Thr Ser Phe Gly
 1745 1750 1755 1760
 Asn Gly Pro Leu Ser Pro Gly Gly Pro Ser Lys Pro Gly Gly Gly
 1765 1770 1775
 Gly Gly Pro Gly Ser Ser Ser Thr Ser Arg Gly Glu Met Ser Leu Ala
 1780 1785 1790
 Glu Val Gln Cys His Leu Asp Lys Glu Gly Ala Ser Asn Leu Val Ile
 1795 1800 1805
 Asp Leu Ile Met Asn Ala Ser Ser Asp Arg Val Phe His Glu Ser Ile
 1810 1815 1820
 Leu Leu Ala Ile Ala Leu Leu Glu Gly Gly Asn Thr Thr Ile Gln His
 1825 1830 1835 1840
 Ser Phe Phe Cys Arg Leu Thr Glu Asp Lys Lys Ser Glu Lys Phe Phe
 1845 1850 1855
 Lys Val Phe Tyr Asp Arg Met Lys Val Ala Gln Gln Glu Ile Lys Ala
 1860 1865 1870

Thr Val Thr Val Asn Thr Ser Asp Leu Gly Asn Lys Lys Lys Asp Asp
 1875 1880 1885

Glu Val Asp Arg Asp Ala Pro Ser Arg Lys Lys Ala Lys Glu Pro Thr
 1890 1895 1900

Thr Gln Ile Thr Glu Glu Val Arg Asp Gln Leu Leu Glu Ala Ser Ala
 1905 1910 1915 1920

Ala Thr Arg Lys Ala Phe Thr Thr Phe Arg Arg Glu Ala Asp Pro Asp
 1925 1930 1935

Asp His Tyr Gln Ser Gly Glu Gly Thr Gln Ala Thr Thr Asp Lys Ala
 1940 1945 1950

Lys Asp Asp Leu Glu Met Ser Ala Val Ile Thr Ile Met Gln Pro Ile
 1955 1960 1965

Leu Arg Phe Leu Gln Leu Leu Cys Glu Asn His Asn Arg Asp Leu Gln
 1970 1975 1980

Asn Phe Leu Arg Cys Gln Asn Asn Lys Thr Asn Tyr Asn Leu Val Cys
 1985 1990 1995 2000

Glu Thr Leu Gln Phe Leu Asp Cys Ile Cys Gly Ser Thr Thr Gly Gly
 2005 2010 2015

Leu Gly Leu Leu Gly Leu Tyr Ile Asn Glu Lys Asn Val Ala Leu Ile
 2020 2025 2030

Asn Gln Thr Leu Glu Ser Leu Thr Glu Tyr Cys Gln Gly Pro Cys His
 2035 2040 2045

Glu Asn Gln Asn Cys Ile Ala Thr His Glu Ser Asn Gly Ile Asp Ile
 2050 2055 2060

Ile Thr Ala Leu Ile Leu Asn Asp Ile Asn Pro Leu Gly Lys Lys Arg
 2065 2070 2075 2080

Met Asp Leu Val Leu Glu Leu Lys Asn Asn Ala Ser Lys Leu Leu Leu
 2085 2090 2095

Ala Ile Met Glu Ser Arg His Asp Ser Glu Asn Ala Glu Arg Ile Leu
 2100 2105 2110

Tyr Asn Met Arg Pro Lys Glu Leu Val Glu Val Ile Lys Lys Ala Tyr
 2115 2120 2125

Met Gln Gly Glu Val Glu Phe Glu Asp Gly Glu Asn Gly Glu Asp Gly
 2130 2135 2140

Ala Ala Ser Pro Arg Asn Val Gly His Asn Ile Tyr Ile Leu Ala His
 2145 2150 2155 2160

Gln Leu Ala Arg His Asn Lys Glu Leu Gln Thr Met Leu Lys Pro Gly
 2165 2170 2175

Gly Gln Val Asp Gly Asp Glu Ala Leu Glu Phe Tyr Ala Lys His Thr
 2180 2185 2190
 Ala Gln Ile Glu Ile Val Arg Leu Asp Arg Thr Met Glu Gln Ile Val
 2195 2200 2205
 Phe Pro Val Pro Ser Ile Cys Glu Phe Leu Thr Lys Glu Ser Lys Leu
 2210 2215 2220
 Arg Ile Tyr Tyr Thr Thr Glu Arg Asp Glu Gln Gly Ser Lys Ile Asn
 2225 2230 2235 2240
 Asp Phe Phe Leu Arg Ser Glu Asp Leu Phe Asn Glu Met Asn Trp Gln
 2245 2250 2255
 Lys Lys Leu Arg Ala Gln Pro Val Leu Tyr Trp Cys Ala Arg Asn Met
 2260 2265 2270
 Ser Phe Trp Ser Ser Ile Ser Phe Asn Leu Ala Val Leu Met Asn Leu
 2275 2280 2285
 Leu Val Ala Phe Phe Tyr Pro Phe Lys Gly Val Arg Gly Gly Thr Leu
 2290 2295 2300
 Glu Pro His Trp Ser Gly Leu Leu Trp Thr Ala Met Leu Ile Ser Leu
 2305 2310 2315 2320
 Ala Ile Val Ile Ala Leu Pro Lys Pro His Gly Ile Arg Ala Leu Ile
 2325 2330 2335
 Ala Ser Thr Ile Leu Arg Leu Ile Phe Ser Val Gly Leu Gln Pro Thr
 2340 2345 2350
 Leu Phe Leu Leu Gly Ala Phe Asn Val Cys Asn Lys Ile Ile Phe Leu
 2355 2360 2365
 Met Ser Phe Val Gly Asn Cys Gly Thr Phe Thr Arg Gly Tyr Arg Ala
 2370 2375 2380
 Met Val Leu Asp Val Glu Phe Leu Tyr His Leu Leu Tyr Leu Leu Ile
 2385 2390 2395 2400
 Cys Ala Met Gly Leu Phe Val His Glu Phe Phe Tyr Ser Leu Leu Leu
 2405 2410 2415
 Phe Asp Leu Val Tyr Arg Glu Glu Thr Leu Leu Asn Val Ile Lys Ser
 2420 2425 2430
 Val Thr Arg Asn Gly Arg Ser Ile Ile Leu Thr Ala Val Leu Ala Leu
 2435 2440 2445
 Ile Leu Val Tyr Leu Phe Ser Ile Val Gly Tyr Leu Phe Phe Lys Asp
 2450 2455 2460
 Asp Phe Ile Leu Glu Val Asp Arg Leu Pro Asn Glu Thr Ala Val Pro
 2465 2470 2475 2480

Glu Thr Gly Glu Ser Leu Ala Asn Asp Phe Leu Tyr Ser Asp Val Cys
 2485 2490 2495
 Arg Val Glu Thr Gly Glu Asn Cys Thr Ser Pro Ala Pro Lys Glu Glu
 2500 2505 2510
 Leu Leu Pro Ala Glu Glu Thr Glu Gln Asp Lys Glu His Thr Cys Glu
 2515 2520 2525
 Thr Leu Leu Met Cys Ile Val Thr Val Leu Ser His Gly Leu Arg Ser
 2530 2535 2540
 Gly Gly Gly Val Gly Asp Val Leu Arg Lys Pro Ser Lys Glu Glu Pro
 2545 2550 2555 2560
 Leu Phe Ala Ala Arg Val Ile Tyr Asp Leu Leu Phe Phe Phe Met Val
 2565 2570 2575
 Ile Ile Ile Val Leu Asn Leu Ile Phe Gly Val Ile Ile Asp Thr Phe
 2580 2585 2590
 Ala Asp Leu Arg Ser Glu Lys Gln Lys Lys Glu Glu Ile Leu Lys Thr
 2595 2600 2605
 Thr Cys Phe Ile Cys Gly Leu Glu Arg Asp Lys Phe Asp Asn Lys Thr
 2610 2615 2620
 Val Thr Phe Glu Glu His Ile Lys Glu Glu His Asn Met Trp His Tyr
 2625 2630 2635 2640
 Leu Cys Phe Ile Val Leu Val Lys Val Lys Asp Ser Thr Glu Tyr Thr
 2645 2650 2655
 Gly Pro Glu Ser Tyr Val Ala Glu Met Ile Arg Glu Arg Asn Leu Asp
 2660 2665 2670
 Trp Phe Leu Arg Met Arg Ala Met Ser Leu Val Ser Ser Asp Ser Glu
 2675 2680 2685
 Gly Glu Gln Asn Glu Leu Arg Asn Leu Gln Glu Lys Leu Glu Ser Thr
 2690 2695 2700
 Met Lys Leu Val Thr Asn Leu Ser Gly Gln Leu Ser Glu Leu Lys Asp
 2705 2710 2715 2720
 Gln Met Thr Glu Gln Arg Lys Gln Lys Gln Arg Ile Gly Leu Leu Gly
 2725 2730 2735
 His Pro Pro His Met Asn Val Asn Pro Gln Gln Pro Ala
 2740 2745

<210> 33
 <211> 3454
 <212> DNA
 <213> Mus musculus

<400> 33

ggcacgagcc gagttggagg aagcagcggc agcggcagcg gcagcggtag cggtgaggac 60
 ggctgtgcag ccaaggaacc gggacagcga agcgcacggca ggtcgcagct ggatgcagg 120
 agcctggag ctgggagctt cagaggccgc tgaagcccag gctggcaga ggaaggaagc 180
 gagccgaccc ggaggtgaag ctgagagtgg agcgtggcag taaaatcaga cgacagatgg 240
 acagtgtgac aggaacgtca gagaggattt ggcctcgct cgagagtcag cctggagtca 300
 aggtgttgc aagttgctga gaaggacacg tgggaggacg gtggcgcgc gagggagagc 360
 cctgtcttca gtcacccccgt tgatggagga cagatggaca gcagcggac gcccagtcac 420
 ctctcttaaa cctttggata gtggctctt gtgctctgc ggacacctgt tggggatttt 480
 agccattct ctgaactcac ttctcttaa aacgtaaact cggacggcag tgtgcagcc 540
 agtcctctg tggcagggca cttagagtc agacatgagt gcagagggct accagtacag 600
 agactgtac gactacaaga aggagcggaga ggaagacatt gacctacacc tgggggacat 660
 actgactgt aataaaaggct ccttagtggc acttggattt agtgatggcc aggaagcccg 720
 gcctgaagat attggctgg taaatggcta caatggaaacc actggggaga ggggagactt 780
 tccagaact tacgttgaat acatttggaaag gaaaaaat tcacccctta ctccccagcc 840
 tggccccctt cgaccgcttc ctgttgcctt ggggttctca aaaactgaag ctgacacgg 900
 gcagcaagcg ttgccccttc ctgacctggc cgagcagttt gcccctctg atgttgcctt 960
 gcctctcctt ataaagctcc tggaaagccat tgagaagaaa ggactggaat gttcgactt 1020
 atacagaaca caaagctcca gcaaccctgc agaattacga cagttcttgc attgtatgc 1080
 cgcgtcagt gacttggaga tgatgcacgt acacgtctt gcagatgctt tcaaaccgcta 1140
 tctcggcgtt ttagccaaatc ctgtcatttc tgtagctgtt tacaatgaga tgatgtctt 1200
 agcccaagaa ctacagagcc ctgaagactg catccagctg ttgaagaagc tcattagatt 1260
 gcctaataata cctcatcagt gttggcttac gcttcagttt ttgctcaagc attttttcaa 1320
 gctctctcaa gcctccagca aaaacctttt gaatgcaaga gtcctctctg agatttttag 1380
 ccccgctt ttcagattt cagccggcag ctctgataat actgaacacc tcataaaagc 1440
 gatagagatt ttaatctcaa cggaatggaa tgagagacag ccagcaccag cactgcccc 1500
 caaaccaccc aagcccacta ctgtagccaa caacagcatg aacaacaata tgccttgc 1560
 ggatgctgaa tggtaactggg gagacatctc aagggaaagaa gtgaatgaaa aactccgaga 1620
 cactgctgat gggacctttt tggtacgaga cgcacatctact aaaatgcacg gcgattacac 1680
 tcttacaccc agggaaaggag gaaataacaa attaatcaaa atcttcacc gtgatggaaa 1740
 atatggcttc tctgtatccat taaccttcaa ctctgtgggt gaggtaataa accactaccc 1800
 gaatgagtct ttagctcagt acaaccccaa gctggatgtt aagttgcctt acccagtgctc 1860
 caaataccag caggatcaag ttgtcaaaga agataatatt gaagctgttag gaaaaaaatt 1920
 acatgaatatt aatactcaat ttcaaaaaaa aagtccggaa tatgatagat tatatgagga 1980
 gtacacccgtt acttcccagg aaatccaaat gaaaagaacg gctatcgaag catttatgta 2040
 aaccataaaa atatttgaag aacaatgcca aaccaggag cgttacagca aagaatacat 2100
 agagaagttt aaacgcgaag gcaacggaaa agaaattcaa aggattatgc ataaccatga 2160
 taagctgaag tcgcgtatca gtgagatcat tgacagtagg aggaggttgg aagaagactt 2220
 gaagaagcag cgagctgagt accgagagat cgacaaacgc atgaacagta ttaagccgga 2280
 cctcatccag ttgagaaaga caagagacca atacttgatg tggctgacgc agaaagggtgt 2340
 gcgccagaag aagctgaacg agtggctggg gaatgaaaat accgaagatc aataactccct 2400
 ggtagaagat gatgaggatt tgccccacca tgacgagaag acgtggaatg tcgggagcag 2460
 caaccggaaac aaagcggaga acctattgcg agggaaagcga gacggcactt tccttgcctc 2520
 ggagagcagt aagcagggtt gctatgcctg ctccgttagt gtagacggcg aagtcaagca 2580
 ttgcgtcatt aacaagactg ccacccgcta tggcttgc gggcttaca acctgtacag 2640
 ctccctgaag gagctgggtc tacattatca acacacccctt ctcgtgcagc acaatgactc 2700
 cctcaatgtc acactagcat acccagtata tgcacaacag aggcgtatgaa ggcgtccct 2760
 cggatccagt tcctcacctt caagccaccc aaggcctctg agaagcaaag ggctcctctc 2820
 cagcccgacc tggtaactga gctgcagaaa tgaagccggc tggctgcaca tggactaga 2880
 gctttcttgg aaaaaaaat gtcggggaaag acacgcagcc tcggactgtt gatgaccag 2940
 acgttcttaa ctttatccctt tttctttttt tttctttttt tttctttttt 3000
 tttctttttt tttctttttt tttcttaattt aagccacaa cacacaacca acacacagag 3060
 agaaagaaat gaaaaaatctt ctccgtgcag ggacaaagag gcctttaacc atgggtctt 3120
 ttaacgcttt ctgaagctttt accagttaca agttggact tggagacca gaaggttagac 3180
 agggccgaag agcctgcgcc tggggccgt tggtccagcc tggtagcc tgggtgtcgc 3240
 tgggtgtgtt gaaaaatccacact gtggattt tccctttaa aagagcgaat 3300
 gatatgtatc agagagccgc gtctgctcac gcaggacact ttgagagaac attgtatgc 3360
 tctgtcggaa gaaaaatga aacaccagaa aacgtttttt tttaaactta tcaagtca 3420

aaccaacaac ccaccaacag aaaaaaaaaaa aaaa

3454

<210> 34
<211> 723
<212> PRT
<213> Mus musculus

<400> 34
Met Ser Ala Glu Gly Tyr Gln Tyr Arg Ala Leu Tyr Asp Tyr Lys Lys
1 5 10 15
Glu Arg Glu Glu Asp Ile Asp Leu His Leu Gly Asp Ile Leu Thr Val
20 25 30
Asn Lys Gly Ser Leu Val Ala Leu Gly Phe Ser Asp Gly Gln Glu Ala
35 40 45
Arg Pro Glu Asp Ile Gly Trp Leu Asn Gly Tyr Asn Glu Thr Thr Gly
50 55 60
Glu Arg Gly Asp Phe Pro Gly Thr Tyr Val Glu Tyr Ile Gly Arg Lys
65 70 75 80
Arg Ile Ser Pro Pro Thr Pro Lys Pro Arg Pro Pro Arg Pro Leu Pro
85 90 95
Val Ala Pro Gly Ser Ser Lys Thr Glu Ala Asp Thr Glu Gln Gln Ala
100 105 110
Leu Pro Leu Pro Asp Leu Ala Glu Gln Phe Ala Pro Pro Asp Val Ala
115 120 125
Pro Pro Leu Leu Ile Lys Leu Leu Glu Ala Ile Glu Lys Lys Gly Leu
130 135 140
Glu Cys Ser Thr Leu Tyr Arg Thr Gln Ser Ser Asn Pro Ala Glu
145 150 155 160
Leu Arg Gln Leu Leu Asp Cys Asp Ala Ala Ser Val Asp Leu Glu Met
165 170 175
Ile Asp Val His Val Leu Ala Asp Ala Phe Lys Arg Tyr Leu Ala Asp
180 185 190
Leu Pro Asn Pro Val Ile Pro Val Ala Val Tyr Asn Glu Met Met Ser
195 200 205
Leu Ala Gln Glu Leu Gln Ser Pro Glu Asp Cys Ile Gln Leu Leu Lys
210 215 220
Lys Leu Ile Arg Leu Pro Asn Ile Pro His Gln Cys Trp Leu Thr Leu
225 230 235 240
Gln Tyr Leu Leu Lys His Phe Phe Lys Leu Ser Gln Ala Ser Ser Lys
245 250 255

Asn Leu Leu Asn Ala Arg Val Leu Ser Glu Ile Phe Ser Pro Val Leu
 260 265 270
 Phe Arg Phe Pro Ala Ala Ser Ser Asp Asn Thr Glu His Leu Ile Lys
 275 280 285
 Ala Ile Glu Ile Leu Ile Ser Thr Glu Trp Asn Glu Arg Gln Pro Ala
 290 295 300
 Pro Ala Leu Pro Pro Lys Pro Pro Lys Pro Thr Thr Val Ala Asn Asn
 305 310 315 320
 Ser Met Asn Asn Asn Met Ser Leu Gln Asp Ala Glu Trp Tyr Trp Gly
 325 330 335
 Asp Ile Ser Arg Glu Glu Val Asn Glu Lys Leu Arg Asp Thr Ala Asp
 340 345 350
 Gly Thr Phe Leu Val Arg Asp Ala Ser Lys Met His Gly Asp Tyr Thr
 355 360 365
 Leu Thr Pro Arg Lys Gly Gly Asn Asn Lys Leu Ile Lys Ile Phe His
 370 375 380
 Arg Asp Gly Lys Tyr Gly Phe Ser Asp Pro Leu Thr Phe Asn Ser Val
 385 390 395 400
 Val Glu Leu Ile Asn His Tyr Arg Asn Glu Ser Leu Ala Gln Tyr Asn
 405 410 415
 Pro Lys Leu Asp Val Lys Leu Leu Tyr Pro Val Ser Lys Tyr Gln Gln
 420 425 430
 Asp Gln Val Val Lys Glu Asp Asn Ile Glu Ala Val Gly Lys Lys Leu
 435 440 445
 His Glu Tyr Asn Thr Gln Phe Gln Glu Lys Ser Arg Glu Tyr Asp Arg
 450 455 460
 Leu Tyr Glu Glu Tyr Thr Arg Thr Ser Gln Glu Ile Gln Met Lys Arg
 465 470 475 480
 Thr Ala Ile Glu Ala Phe Asn Glu Thr Ile Lys Ile Phe Glu Glu Gln
 485 490 495
 Cys Gln Thr Gln Glu Arg Tyr Ser Lys Glu Tyr Ile Glu Lys Phe Lys
 500 505 510
 Arg Glu Gly Asn Glu Lys Glu Ile Gln Arg Ile Met His Asn His Asp
 515 520 525
 Lys Leu Lys Ser Arg Ile Ser Glu Ile Ile Asp Ser Arg Arg Arg Leu
 530 535 540
 Glu Glu Asp Leu Lys Lys Gln Ala Ala Glu Tyr Arg Glu Ile Asp Lys
 545 550 555 560

Arg Met Asn Ser Ile Lys Pro Asp Leu Ile Gln Leu Arg Lys Thr Arg
 565 570 575

Asp Gln Tyr Leu Met Trp Leu Thr Gln Lys Gly Val Arg Gln Lys Lys
 580 585 590

Leu Asn Glu Trp Leu Gly Asn Glu Asn Thr Glu Asp Gln Tyr Ser Leu
 595 600 605

Val Glu Asp Asp Glu Asp Leu Pro His His Asp Glu Lys Thr Trp Asn
 610 615 620

Val Gly Ser Ser Asn Arg Asn Lys Ala Glu Asn Leu Leu Arg Gly Lys
 625 630 635 640

Arg Asp Gly Thr Phe Leu Val Arg Glu Ser Ser Lys Gln Gly Cys Tyr
 645 650 655

Ala Cys Ser Val Val Val Asp Gly Glu Val Lys His Cys Val Ile Asn
 660 665 670

Lys Thr Ala Thr Gly Tyr Gly Phe Ala Glu Pro Tyr Asn Leu Tyr Ser
 675 680 685

Ser Leu Lys Glu Leu Val Leu His Tyr Gln His Thr Ser Leu Val Gln
 690 695 700

His Asn Asp Ser Leu Asn Val Thr Leu Ala Tyr Pro Val Tyr Ala Gln
 705 710 715 720

Gln Arg Arg

<210> 35
<211> 3446
<212> DNA
<213> Mus musculus

<400> 35
ggaaggatga ggcggcccgcg gcggccccggg ggctccgggg gctccgggggg ctccggggggc 60
ctccggctgc tggctgcct gctgtgctg agcggccgccc ccggggggctg cagcgccatc 120
agtgcacg gctgtctgt tgaccgcaga ctttgttcgc atctgaagt ctgtattcag 180
gatggctgtt ttggacagtg ccaggcagga gtggggcagg cacggccctt cttacaagtc 240
acttccccag ttctccagcg cttacaagggt gtgctccggc aactcatgtc ccaaggcttg 300
tcctggcatg atgacccatcc ccagcatgtg atctccagg agatgaaacg catccccagg 360
cttcgcacccca cagagcccca tccaaaggac aggtctgggt tggtgcccgaaaccaggc 420
cctgcagggg aattgctaac tcagggcaat cctactggct cctctctgc tgcccaggc 480
tttccaaggc ctgcagggggg acggagctgg ggccgctccc cactgtcctc tctgcaggct 540
gagttgttac cccctctttt ggagcatctg ctaatgcccc cacagccctcc acaccctgt 600
ctgacctatg aacctgcact gctacagccct tacctttcc accagttgg ctcccgagat 660
ggctccggg gctcagagag ctcctctggg gtagttgggt ttggtcacct gtccaaaggct 720
gaaggctctg cactcttcag cagaagtgcc tccaaaggcca ttttggggac tcactctgga 780
cactcttttgg gggacccatcc aggtccctca cctgctcaac ttttccaaga ttcagggtctg 840
ctctacatgg cccaaagagtt gccagtgcct ggcagagccc gggcaccaag gttgccagag 900
aatgggggca acagggcaga ggactctca gagggccatg aggaggaagt actaggggggt 960
cgtggggaga agtccccctcc ccaaggcagca caaccagaat tgagttctgca gagattgact 1020
gctgtactgg caggctatgg agtagagctg cgtcagttga ccccgagca gttttctacc 1080

ctcttacccc tgatgcagtt gctgccaaag ggcacaggaa gaaatcttga aggggctgt 1140
 aatgttggag gagccgatgt caagaaaaca atacaacaga tgcagagagg agacccagca 1200
 gaagctctgc cccccacacc ctcgcttctt gggtaacctca ctgccagccc tgcctccagc 1260
 gaagttcagc aggtgctgaa ccctggttt cctgaacctc cccacacacc cagccctctg 1320
 ggctccctct cagtcccttc ggagaagaaa agtcccttg gccagagcca gcccacagt 1380
 gtgggacggc catcagctcg accatcgcc gaggagtagt gctatatcgact cactgaccag 1440
 aaaccctcta gcctgggccc tggagtgagg ctgctggaga ttctggctga gcacgtgcat 1500
 atgtccctcg gtagctttat caacatcagt gtgggggac cagctgtcac cttccgaatc 1560
 cggcacaatg agcagaaacct gtcttggca gatgtgaccc agcaagctgg gctggtaag 1620
 tctgaactgg aagcgcagac agggtccag attttcaga caggggtggg acagagggag 1680
 gaagcagctg aagtccctcc ccgacaagcc catggcatat ctcccatgct ctcagtgt 1740
 cttaactctag tggccctggc aggctgcgt gggctgttag tggcttggc agtggcctt 1800
 tgtatgcgc atcattcgag acagccggat aaggagcgc tggcagcgt ggggcccggag 1860
 ggggccccatg gtgacactac tttttagtac caggacactgt gtcgcgcgca catggccaca 1920
 aagtccctgt ttaaccgggc ggagggtcag ccagacccat ctagggtgag cagtgtgtcc 1980
 tcccaagttca ggcacggggc ccaggccagg cccagttccc acagcagctc tccatcttgg 2040
 tgcgaggagc cggcccaggc caacatggac atctccacag gacacatgtat tctggcatac 2100
 atggaggatc accttcggaa ccgggaccgg ttggccaagg agtggcaggc tctgtgcgcc 2160
 taccaagcag agccaaacac ctgtggccgc gcacaggatg agagcaacat caagaagaac 2220
 cgccatccctg acttccttacc ctatgaccat gcccgaatca agctgaaaagt ggagagcagc 2280
 cttctcgga gtgattacat caacgccagc cccatcatcg agcatgaccc tcggatgccc 2340
 gcctacatag ccacacaggg accactgtcc cacaccatcg cggacttctg gcatgtgg 2400
 tgggagagtg gctgcactgt catcgatcg ctgaccctgt tggggagga cgggtgtcaa 2460
 cagtgtgacc gctactggcc ggtgaagga tcttccctct accacgtcta tgaggtgaac 2520
 ctgggttcgg agcacatctg gtgcgaggac ttctgggtgc ggagcttcta ccttaagaac 2580
 ctgcagaccc aggagacgcg cacgctcaact cagttccact tcctcagctg gccggcagag 2640
 ggcactccgg cctccacccg gccgctgctg gacttccgca ggaaagtgaa caagtgtac 2700
 agaggccgct cctgccccat catagtgcac tgcagtgaac gtgcaggag gacaggcacc 2760
 tacatccta ttgacatggt cctgaatcg atggccaaag gagtgaagga gattgatatt 2820
 gctgccaccc tggagcatgt ccgtgaccag cggcctggac ttgtccgttc taaggaccag 2880
 tttgagtttgcgctgac gctggcagag gaggtgaatg ctatctcaa ggcctgccc 2940
 cagtgagccc ccctgggccc ctcagtggc atcctggctt cggctccctc tgcctgtgt 3000
 agcacatctgtg caccacttc tcagccctta cccatctgccc accttggct gacttggcca 3060
 tgggagccctt tcccaaccca gtgtgaaagg gagtcgggag ggaaggaagg ggtaggctg 3120
 ccctgttta tccatgtca aaccatggta tcccatggga agcagacagc aggcaaggag 3180
 aggctggac accggccaca ggtgtcccg agccctacc tacctgagtc tctgtctccc 3240
 tctctggata tgcgttccc cactcccacc acccttaccac ctatagacaa agcagaacga 3300
 ggaaacccca gctccccca ccctgttacc actggcctgc caccttgacc ctgctcaacc 3360
 ttctccctctt agcacaaggaa aacatttcta gaaaagtaaa atctactttt gtatcagtgt 3420
 gaataaaagtt agtgttgc 3446

<210> 36
 <211> 978
 <212> PRT
 <213> Mus musculus

<400> 36
 Met Arg Arg Pro Arg Arg Pro Gly Gly Ser Gly Gly Ser Gly Ser
 1 5 10 15

Gly Gly Leu Arg Leu Leu Val Cys Leu Leu Leu Leu Ser Gly Arg Pro
 20 25 30

Gly Gly Cys Ser Ala Ile Ser Ala His Gly Cys Leu Phe Asp Arg Arg
 35 40 45

Leu Cys Ser His Leu Glu Val Cys Ile Gln Asp Gly Leu Phe Gly Gln
 50 55 60

Cys Gln Ala Gly Val Gly Gln Ala Arg Pro Leu Leu Gln Val Thr Ser
 65 70 75 80

Pro Val Leu Gln Arg Leu Gln Gly Val Leu Arg Gln Leu Met Ser Gln
 85 90 95

Gly Leu Ser Trp His Asp Asp Leu Thr Gln His Val Ile Ser Gln Glu
 100 105 110

Met Glu Arg Ile Pro Arg Leu Arg Pro Pro Glu Pro His Pro Arg Asp
 115 120 125

Arg Ser Gly Leu Val Pro Arg Lys Pro Gly Pro Ala Gly Glu Leu Leu
 130 135 140

Thr Gln Gly Asn Pro Thr Gly Ser Ser Pro Ala Ala Gln Gly Phe Pro
 145 150 155 160

Arg Pro Ala Gly Gly Arg Ser Trp Gly Gly Ser Pro Leu Ser Ser Leu
 165 170 175

Gln Ala Glu Leu Leu Pro Pro Leu Leu Glu His Leu Leu Met Pro Pro
 180 185 190

Gln Pro Pro His Pro Ala Leu Thr Tyr Glu Pro Ala Leu Leu Gln Pro
 195 200 205

Tyr Leu Phe His Gln Phe Gly Ser Arg Asp Gly Ser Arg Gly Ser Glu
 210 215 220

Ser Ser Ser Gly Val Val Gly Val Gly His Leu Ser Lys Ala Glu Gly
 225 230 235 240

Pro Ala Leu Phe Ser Arg Ser Ala Ser Lys Ala Ile Leu Gly Thr His
 245 250 255

Ser Gly His Ser Phe Gly Asp Leu Thr Gly Pro Ser Pro Ala Gln Leu
 260 265 270

Phe Gln Asp Ser Gly Leu Leu Tyr Met Ala Gln Glu Leu Pro Val Pro
 275 280 285

Gly Arg Ala Arg Ala Pro Arg Leu Pro Glu Asn Gly Gly Asn Arg Ala
 290 295 300

Glu Asp Ser Ser Glu Gly His Glu Glu Glu Val Leu Gly Gly Arg Gly
 305 310 315 320

Glu Lys Ser Pro Pro Gln Ala Ala Gln Pro Glu Leu Ser Leu Gln Arg
 325 330 335

Leu Thr Ala Val Leu Ala Gly Tyr Gly Val Glu Leu Arg Gln Leu Thr
 340 345 350

Pro Glu Gln Phe Ser Thr Leu Leu Thr Leu Met Gln Leu Leu Pro Lys
 355 360 365

 Gly Thr Gly Arg Asn Leu Glu Gly Ala Val Asn Val Gly Gly Ala Asp
 370 375 380

 Val Lys Lys Thr Ile Gln Gln Met Gln Arg Gly Asp Pro Ala Glu Ala
 385 390 395 400

 Leu Pro Pro Thr Pro Ser Leu Pro Gly Tyr Leu Thr Ala Ser Pro Ala
 405 410 415

 Ser Ser Glu Val Gln Gln Val Leu Ser Pro Gly Phe Pro Glu Pro Pro
 420 425 430

 His Thr Pro Ser Pro Leu Gly Ser Ser Ser Val Leu Leu Glu Lys Lys
 435 440 445

 Ser Pro Leu Gly Gln Ser Gln Pro Thr Val Val Gly Arg Pro Ser Ala
 450 455 460

 Arg Pro Ser Ala Glu Glu Tyr Gly Tyr Ile Val Thr Asp Gln Lys Pro
 465 470 475 480

 Leu Ser Leu Val Ala Gly Val Arg Leu Leu Glu Ile Leu Ala Glu His
 485 490 495

 Val His Met Ser Ser Gly Ser Phe Ile Asn Ile Ser Val Val Gly Pro
 500 505 510

 Ala Val Thr Phe Arg Ile Arg His Asn Glu Gln Asn Leu Ser Leu Ala
 515 520 525

 Asp Val Thr Gln Gln Ala Gly Leu Val Lys Ser Glu Leu Glu Ala Gln
 530 535 540

 Thr Gly Leu Gln Ile Leu Gln Thr Gly Val Gly Gln Arg Glu Glu Ala
 545 550 555 560

 Ala Glu Val Leu Pro Arg Gln Ala His Gly Ile Ser Pro Met Arg Ser
 565 570 575

 Val Leu Leu Thr Leu Val Ala Leu Ala Gly Val Ala Gly Leu Leu Val
 580 585 590

 Ala Leu Ala Val Ala Leu Cys Met Arg His His Ser Arg Gln Arg Asp
 595 600 605

 Lys Glu Arg Leu Ala Ala Leu Gly Pro Glu Gly Ala His Gly Asp Thr
 610 615 620

 Thr Phe Glu Tyr Gln Asp Leu Cys Arg Gln His Met Ala Thr Lys Ser
 625 630 635 640

 Leu Phe Asn Arg Ala Glu Gly Gln Pro Glu Pro Ser Arg Val Ser Ser
 645 650 655

Val Ser Ser Gln Phe Ser Asp Ala Ala Gln Ala Ser Pro Ser Ser His
 660 665 670
 Ser Ser Ser Pro Ser Trp Cys Glu Glu Pro Ala Gln Ala Asn Met Asp
 675 680 685
 Ile Ser Thr Gly His Met Ile Leu Ala Tyr Met Glu Asp His Leu Arg
 690 695 700
 Asn Arg Asp Arg Leu Ala Lys Glu Trp Gln Ala Leu Cys Ala Tyr Gln
 705 710 715 720
 Ala Glu Pro Asn Thr Cys Ala Ala Ala Gln Asp Glu Ser Asn Ile Lys
 725 730 735
 Lys Asn Arg His Pro Asp Phe Leu Pro Tyr Asp His Ala Arg Ile Lys
 740 745 750
 Leu Lys Val Glu Ser Ser Pro Ser Arg Ser Asp Tyr Ile Asn Ala Ser
 755 760 765
 Pro Ile Ile Glu His Asp Pro Arg Met Pro Ala Tyr Ile Ala Thr Gln
 770 775 780
 Gly Pro Leu Ser His Thr Ile Ala Asp Phe Trp Gln Met Val Trp Glu
 785 790 795 800
 Ser Gly Cys Thr Val Ile Val Met Leu Thr Pro Leu Val Glu Asp Gly
 805 810 815
 Val Lys Gln Cys Asp Arg Tyr Trp Pro Asp Glu Gly Ser Ser Leu Tyr
 820 825 830
 His Val Tyr Glu Val Asn Leu Val Ser Glu His Ile Trp Cys Glu Asp
 835 840 845
 Phe Leu Val Arg Ser Phe Tyr Leu Asn Leu Gln Thr Gln Glu Thr Arg
 850 855 860
 Thr Leu Thr Gln Phe His Phe Leu Ser Trp Pro Ala Glu Gly Thr Pro
 865 870 875 880
 Ala Ser Thr Arg Pro Leu Leu Asp Phe Arg Arg Lys Val Asn Lys Cys
 885 890 895
 Tyr Arg Gly Arg Ser Cys Pro Ile Ile Val His Cys Ser Asp Gly Ala
 900 905 910
 Gly Arg Thr Gly Thr Tyr Ile Leu Ile Asp Met Val Leu Asn Arg Met
 915 920 925
 Ala Lys Gly Val Lys Glu Ile Asp Ile Ala Ala Thr Leu Glu His Val
 930 935 940
 Arg Asp Gln Arg Pro Gly Leu Val Arg Ser Lys Asp Gln Phe Glu Phe
 945 950 955 960

Ala Leu Thr Ala Val Ala Glu Glu Val Asn Ala Ile Leu Lys Ala Leu
965 970 975

Pro Gln

<210> 37
<211> 1933
<212> DNA
<213> *Mus musculus*

<400>	37					
cggcgggagg	aaagcgccgt	gaagccagat	taggacgcgc	gagcaactgg	ggacttaggg	60
ccacaggaca	ccgcacaaga	tgcaccgact	tttctggag	aaccgcagaa	cgggcacgct	120
ggggtcgctg	ggctggcca	tggtgatgga	ggtgggcattc	ctggacgccc	gggggctgcg	180
cgcgctgctg	cgagagggcg	ccgcgcagt	ccttgttgc	gattgtcgct	ccttcgtcgc	240
tttcaacgcc	ggccacatcg	ccggctcagt	gaacgtgcgc	ttagccacca	tcgtgcggcg	300
ccgcgc当地	ggcgc当地	gcctggagca	tatcggtccc	aacgctgaac	tgcgtggccg	360
cctgctgccc	ggagcctacc	acgcgcgtgg	gctgtggac	gagcgcagcg	cctccctgga	420
ccgcgc当地	cgcgacggca	ccctggccct	ggccgc当地	gchgctcgcc	gagaggcgcg	480
ctccactcaa	gtcttcttcc	tccaaaggagg	atatgaagcgc	tttctggctt	cctgc当地	540
gctgtgc当地	aaacagtcc	ccccacggg	gctcagcctc	ccctctgat	ctagtgtgc	600
tgc当地gtca	gaatccggat	gcagctctg	tagtacccct	ctctacatc	aggggggcccc	660
atggagatc	ctgtcttcc	tgtacttgg	cagtgcctat	cacgc当地tcc	ggaaggatata	720
gcttgacgcc	ttgggcatca	ccgccttgc	caacgtctca	gccaattgtc	ctaaccactt	780
tgagggtcac	taccatata	agagcatccc	tgtggaggac	aaccacaagg	cagacatcag	840
ctccctggcc	aaccaggct	ttgacttcat	agactccatc	aaggatgctg	gaggagaggt	900
gttggccat	tgccaggccg	gcatctcccg	gtcagccacc	atctgc当地t	cttacactat	960
gaggactaac	cgggtaaagc	tggacgaggc	cttgc当地t	gtgaagcaga	ggcggaggtat	1020
catctccccg	aacttcagct	tcatgggcca	gctgctgc当地	tttgc当地tcc	aagtgc当地	1080
ccctcaetgc	tctgtgaag	ctgggagccc	tgccatggct	gtccttgacc	ggggcacctc	1140
tactaccaca	gtcttcaact	tccctgttcc	catecccgtc	cacccacga	acagtgc当地	1200
gaactaccc	aaaagcccc	tcaccaccc	tccaaagctgc	tgaaggccaa	ggggaggtgt	1260
ggagtttcc	ttgccacccg	gtcgccactc	ctccgtggg	aggagcaatg	caataactct	1320
gggagaggt	catgggagct	ggtccttatt	tatataacac	ccccctcacc	cccccaactcc	1380
tcctgagttc	cactgagttc	ctaaggactc	acaacaatga	cttgaccgca	agacatttgc	1440
tgaactccgc	acattccgg	ccaatatatt	gtgggtacat	caagtc当地t	tgacaaaaaca	1500
gggc当地aga	gaaaggactc	tgtttgaggc	agtttcttcg	cttgcccttgc	ttttttttct	1560
agaaactca	tgc当地tgcac	accacccact	attaaccatt	cccgatgaca	tgc当地tgc当地	1620
agagtttta	ccttattta	ttttgc当地	ggtc当地tgc当地	tttgc当地tcc	acaaaatgtca	1680
ttgtctactc	atagaagaac	caaataacctc	aattttgtgt	tttgc当地tgc当地	tactatcttgc	1740
taaatagacc	cagagcagg	ttgctttcgg	cactgacaga	caaaggccact	gttaggtttgt	1800
agcttca	tatcgacact	tgtatgttt	tttattttat	atctgaagta	atataatttct	1860
tcttctgtga	agacatttt	ttactggat	gactttttt	atacaacaga	ataaaattatg	1920
acgtttctat	tga					1933

<210> 38
<211> 367
<212> PRT
<213> *Mus musculus*

<400> 38
Met Val Met Glu Val Gly Ile Leu Asp Ala Gly Gly Leu Arg Ala Leu
1 5 10 15

Leu Arg Glu Gly Ala Ala Gln Cys Leu Leu Leu Asp Cys Arg Ser Phe
 20 25 30

 Phe Ala Phe Asn Ala Gly His Ile Ala Gly Ser Val Asn Val Arg Phe
 35 40 45

 Ser Thr Ile Val Arg Arg Ala Lys Gly Ala Met Gly Leu Glu His
 50 55 60

 Ile Val Pro Asn Ala Glu Leu Arg Gly Arg Leu Leu Ala Gly Ala Tyr
 65 70 75 80

 His Ala Val Val Leu Leu Asp Glu Arg Ser Ala Ser Leu Asp Gly Ala
 85 90 95

 Lys Arg Asp Gly Thr Leu Ala Leu Ala Gly Ala Leu Cys Arg Glu
 100 105 110

 Ala Arg Ser Thr Gln Val Phe Phe Leu Gln Gly Gly Tyr Glu Ala Phe
 115 120 125

 Ser Ala Ser Cys Pro Glu Leu Cys Ser Lys Gln Ser Thr Pro Thr Gly
 130 135 140

 Leu Ser Leu Pro Leu Ser Thr Ser Val Pro Asp Ser Ala Glu Ser Gly
 145 150 155 160

 Cys Ser Ser Cys Ser Thr Pro Leu Tyr Asp Gln Gly Gly Pro Val Glu
 165 170 175

 Ile Leu Ser Phe Leu Tyr Leu Gly Ser Ala Tyr His Ala Ser Arg Lys
 180 185 190

 Asp Met Leu Asp Ala Leu Gly Ile Thr Ala Leu Ile Asn Val Ser Ala
 195 200 205

 Asn Cys Pro Asn His Phe Glu Gly His Tyr Gln Tyr Lys Ser Ile Pro
 210 215 220

 Val Glu Asp Asn His Lys Ala Asp Ile Ser Ser Trp Phe Asn Glu Ala
 225 230 235 240

 Ile Asp Phe Ile Asp Ser Ile Lys Asp Ala Gly Gly Arg Val Phe Val
 245 250 255

 His Cys Gln Ala Gly Ile Ser Arg Ser Ala Thr Ile Cys Leu Ala Tyr
 260 265 270

 Leu Met Arg Thr Asn Arg Val Lys Leu Asp Glu Ala Phe Glu Phe Val
 275 280 285

 Lys Gln Arg Arg Ser Ile Ile Ser Pro Asn Phe Ser Phe Met Gly Gln
 290 295 300

 Leu Leu Gln Phe Glu Ser Gln Val Leu Ala Pro His Cys Ser Ala Glu
 305 310 315 320

Ala Gly Ser Pro Ala Met Ala Val Leu Asp Arg Gly Thr Ser Thr Thr
325 330 335

Thr Val Phe Asn Phe Pro Val Ser Ile Pro Val His Pro Thr Asn Ser
340 345 . . 350

Ala Leu Asn Tyr Leu Lys Ser Pro Ile Thr Thr Ser Pro Ser Cys
355 360 365

<210> 39
<211> 1981
<212> DNA
<213> *Mus musculus*

<400> 39

atacccatca	aatgaagcac	caaagacaac	tgtgttggc	gccccctggc	ctggctcatt	60
cttaatcata	ttggccatctt	tactgctctg	attccttaga	tccccgcaat	gactctgaat	120
aatgtcacca	tgcgccaagg	cactgtggc	atgcagccac	agcagcgctg	gagtatgcct	180
gctgatgccca	ggcatctgtat	ggtccagaag	gatccccacc	cctgcaacct	ccgaaaccgc	240
cactctactg	ctccggagaaga	gcactgcccgg	cgacgtgggt	cgtccgactc	cacagactcg	300
gtcatctctt	ctgagttctgg	aaacaccctac	taccgagtag	tgcttataagg	ggagcaagga	360
gtgggcaagt	ccaccctggc	caacatcttt	gcaggtgtgc	atgacagcat	ggacagcgac	420
tgtgaggtct	tgggagaaga	tacatatgag	cgtaccctgg	tcgttgacgg	agagagtgc	480
accattatcc	tcctggacat	gtggggaaaat	aaggggggaga	acgaatggct	ccatgaccac	540
tgcattgcagg	tcggggatgc	ctatctgatc	gtctactcta	tcacagaccg	tgcaagcttc	600
gagaaggcat	ctgagcttag	gattcagctc	cgcagggccc	ggcagacaga	agacattcct	660
ataattttgg	ttggcaacaa	aagcgactta	gtgcgggtgtc	gagaagtgtc	tgtgtcagaa	720
gggagagctt	gtgtgtgtgt	gttcgactgc	aaattcatcg	agacctctgc	ggctgtgcag	780
cacaacgtga	aggaactgtt	tgagggcatt	gagcgacagg	tgccgcctgcc	gagggacagc	840
aaggagaaga	atgagaggag	gctggcctac	cagaagaggc	gggagagcat	tcccaggaaa	900
gccaggcgct	tctggggcaa	aattgtggcc	aaaaacaaca	agaacatggc	ttcaagctcc	960
aagtcaaaat	cctgcccata	cctgtctgt	ctctaggcac	ccagtgtaac	ccagatgtcc	1020
cttgggtggac	atcggtgaag	gttattggga	ccagtgtatct	atatttagatt	ggatacataa	1080
gcatttgttag	acgcaacttc	ccctatggca	gatggaaacc	aacagggttag	ccttggggc	1140
aaccaagtgc	acgggcaatg	aatgagctct	gtcaagagtc	agtattttatt	catagggaaaa	1200
gcttgagctg	ctacgtggat	gtctcagact	cattaagac	acgcttcggg	ttcacatgag	1260
tttctctctc	cttggacag	cagaatattt	ttttcctcag	tgttgttcca	tgtgatttcg	1320
aggctcttgg	gtcatataga	aatgttagga	aatggcggtt	gtttatttgg	aggagaaggg	1380
ctcaactgcat	acttataatcc	ctgaaacgac	atcttttagag	ctggcctcat	cacagtgtg	1440
actattttctg	ctccagtgaa	gagaatttgtt	agatttgcgt	gaaactgagg	cttaactaaca	1500
gtttttgttt	aaagaccaca	gagatttgtag	acttaggagc	tatatggtac	tacttataagg	1560
ttcaaaaaat	tgtttactta	tgtgtcgtag	aagtgtttat	tttgaggaaa	ctatttttt	1620
ttttgccaaa	ttctacttag	tcaaatcata	ttctatgtct	tgctgtttt	taaatcatta	1680
agctatcata	aaatattttt	taaaaaaaatc	tcaactatat	tgataaacctg	cagtgcaaaa	1740
ttttaaatat	agtccctgttt	ttccccccaaa	acataaaacat	gccccatcct	ttgggttgct	1800
tctgtatgcc	acagctgaat	tatattttatt	atttgcaat	aaccatTTA	tatttgataa	1860
agatatttat	gagcatatTTT	cttactgaga	aaatgtctgt	tttattacct	tttatatttt	1920
ttcaaaagtat	tcaagttttt	acctattgtc	ttataataaa	taaataaaaat	cttgaaaaag	1980

<210> 40
<211> 295
<212> PRT
<213> Mus musculus

<400> 40
 Met Thr Leu Asn Asn Val Thr Met Arg Gln Gly Thr Val Gly Met Gln
 1 5 10 15

Pro Gln Gln Arg Trp Ser Met Pro Ala Asp Ala Arg His Leu Met Val
 20 25 30

Gln Lys Asp Pro His Pro Cys Asn Leu Arg Asn Arg His Ser Thr Ala
 35 40 45

Pro Glu Glu His Cys Arg Arg Thr Trp Ser Ser Asp Ser Thr Asp Ser
 50 55 60

Val Ile Ser Ser Glu Ser Gly Asn Thr Tyr Tyr Arg Val Val Leu Ile
 65 70 75 80

Gly Glu Gln Gly Val Gly Lys Ser Thr Leu Ala Asn Ile Phe Ala Gly
 85 90 95

Val His Asp Ser Met Asp Ser Asp Cys Glu Val Leu Gly Glu Asp Thr
 100 105 110

Tyr Glu Arg Thr Leu Val Val Asp Gly Glu Ser Ala Thr Ile Ile Leu
 115 120 125

Leu Asp Met Trp Glu Asn Lys Gly Glu Asn Glu Trp Leu His Asp His
 130 135 140

Cys Met Gln Val Gly Asp Ala Tyr Leu Ile Val Tyr Ser Ile Thr Asp
 145 150 155 160

Arg Ala Ser Phe Glu Lys Ala Ser Glu Leu Arg Ile Gln Leu Arg Arg
 165 170 175

Ala Arg Gln Thr Glu Asp Ile Pro Ile Ile Leu Val Gly Asn Lys Ser
 180 185 190

Asp Leu Val Arg Cys Arg Glu Val Ser Val Ser Glu Gly Arg Ala Cys
 195 200 205

Ala Val Val Phe Asp Cys Lys Phe Ile Glu Thr Ser Ala Ala Val Gln
 210 215 220

His Asn Val Lys Glu Leu Phe Glu Gly Ile Glu Arg Gln Val Arg Leu
 225 230 235 240

Pro Arg Asp Ser Lys Glu Lys Asn Glu Arg Arg Leu Ala Tyr Gln Lys
 245 250 255

Arg Arg Glu Ser Ile Pro Arg Lys Ala Arg Arg Phe Trp Gly Lys Ile
 260 265 270

Val Ala Lys Asn Asn Lys Asn Met Ala Ser Ser Ser Lys Ser Lys Ser
 275 280 285

Cys His Asp Leu Ser Val Leu
 290 295

<210> 41
<211> 1242
<212> DNA
<213> Mus musculus

<400> 41
tatcccgctg ttgctgcaag ccggctgcat cttagttggc catgaagacc ccagcacagc 60
ggctgcacct tcttccactg ttgttgcgtc tttgtgtga gtgtccccag gtatgcggct 120
gcaacagac agggatgctg gagaggctgc ctgcgtgtgg gaaaggcttc gctgacatga 180
tgcagaaggt ggctgtctgg aagtgtgtca acctgtcgga gttcatcgta tattatgaaa 240
gcttcactaa ctgcaccgag atggagacca acatcatggg ctgctactgg cccaaccgc 300
tggcccgag cttcatcact ggaatccaca ggcagttctt ttccaaactgc acggtgac 360
ggaccactg ggaagacccc ccggatgtaa tactcatccc actgatcgcg gttcctgtcg 420
tgctgatgt ggctatggct ggcctgtgg tggcgcgcaag caagcacat gatcggctgc 480
tgtgaggatc tgctggatgg agggccatgc ctggcagggc gggagaatgt tgctcagagc 540
tctgagagct ggcagactcg gcttcgtctt ggtttgtttt ggccacaccc tacctggcca 600
tgccaaagtc ctcccgacca ggctgtgtg gccctgtct tctagctgc cgcctgtgg 660
ggttcagatt gtccatactt tgctcttct tgggcttagt gaagaaatgt acaaattcca 720
agtttgtgaa ccaggcatgg aaatcaactg ttgctgagcc ccgctccca ggctcggttc 780
cctagttctt agccgtttct tggcagagtc ttgctcagcc tgaacccgc cccaggtcct 840
gaccatttc tagtcctgac cctgaccctt gctacactt gccagagagg gcaggcaagg 900
tcatctggaa gatgtggacg cccccccgc tctattcaag agactgagca catcattat 960
cagacatgaa ggatagcctg gggcattag gagccacgtg tgacctactg acccacctgc 1020
ctgtcccttc tgtatctgt cacgattctg tgcgtgtt gggctggagc tggcgttgc 1080
ttagcccttc aaagacaccc accctgcagg tagacgtga acctccttct tgaggggtat 1140
tcctggagttt gggcgcact gagtgtgtc aagggttctg tctgctgatg tcagttctt 1200
ttgattaaag tgctccctta caaaaaaaaaaaaaaa aa 1242

<210> 42
<211> 147
<212> PRT
<213> Mus musculus

<400> 42
Met Lys Thr Pro Ala Gln Arg Leu His Leu Leu Pro Leu Leu Leu Leu
1 5 10 15
Leu Cys Gly Glu Cys Ala Gln Val Cys Gly Cys Asn Glu Thr Gly Met
20 25 30
Leu Glu Arg Leu Pro Arg Cys Gly Lys Ala Phe Ala Asp Met Met Gln
35 40 45
Lys Val Ala Val Trp Lys Trp Cys Asn Leu Ser Glu Phe Ile Val Tyr
50 55 60
Tyr Glu Ser Phe Thr Asn Cys Thr Glu Met Glu Thr Asn Ile Met Gly
65 70 75 80
Cys Tyr Trp Pro Asn Pro Leu Ala Gln Ser Phe Ile Thr Gly Ile His
85 90 95
Arg Gln Phe Phe Ser Asn Cys Thr Val Asp Arg Thr His Trp Glu Asp
100 105 110

Pro Pro Asp Glu Val Leu Ile Pro Leu Ile Ala Val Pro Val Val Leu
 115 120 125

Thr Val Ala Met Ala Gly Leu Val Val Trp Arg Ser Lys His Thr Asp
 130 135 140

Arg Leu Leu
 145

<210> 43
 <211> 1115
 <212> DNA
 <213> Mus musculus

<400> 43
 atgctcaaca aagccaagaa ttcaaagagt gcccagggtc tggctggtct tcgaaacatt 60
 gggAACACGT gCTTCATGAA CTCAATTCTT CAGTCCTGA GCAACACCCG AGAGCTGAGA 120
 gattactgcc tccagaggct gtacatgcgg gacctcgGCC acaccAGCAG CGCTCACACG 180
 gccctcatgg aagagtttgc aaaactaatac cagaccatat ggacgtcgTC ccccaatgat 240
 gtggtagGCC catctgagtt caagACCCAG ATCCAGAGAT atgcGCCACG CTTCATGGGC 300
 tataatcAGC aggatgctca ggaattcCTT cgTTTCCCTC tggatggtct ccacaatgag 360
 gtgaACCggg tggcagcaag gcctaaggCC agCCCTGAGA ccCTTGATCA tCTCCCTGAT 420
 gaagaaaagg ggcgacagat gtggaggaag tatctggaaa gggaaGACAG tcggattggg 480
 gatcttcg ttgggcagct gaagagctcc ctcacatgca ccgattgtgg ctactgctct 540
 acagtcttcg atcccttctg ggatcttcg ttgcccattcg caaagagagg ttacccttag 600
 gtgacgttaa tggattgtat gaggctctc accaaagagg acatattgga tggtgatgag 660
 aagccaactt gctGCCGCTG ccgaggcaga aaacgatgca taaaaaagtt ctctgtccag 720
 aggttccaa agatcttggt gctccacctg aagcgattct cagaatccag gatacgaacc 780
 agcaagctca caacatttgta gatttccca ctaagagacc tggacttgag agaatttgct 840
 tcagaaaaca ccaaccatgc tgTTTACAAC CTGTATGCTG tgtccaatca ctccggAAC 900
 accatgggag gccactatac agcctactgc cgaagtccgg ttacaggcga atggcacact 960
 ttcaatgatt ccagtgtcac acccatgtcc tccagccaag tgCGCACCAG CGACGCCTAT 1020
 ttgctttct atgaactggc cagtcaccc tcccgtatgt agcattgagg agctgcggcc 1080
 ctccccctt ccctgtgggt gccccacgTC ctaag 1115

<210> 44
 <211> 353
 <212> PRT
 <213> Mus musculus

<400> 44
 Met Leu Asn Lys Ala Lys Asn Ser Lys Ser Ala Gln Gly Leu Ala Gly
 1 5 10 15

Leu Arg Asn Leu Gly Asn Thr Cys Phe Met Asn Ser Ile Leu Gln Cys
 20 25 30

Leu Ser Asn Thr Arg Glu Leu Arg Asp Tyr Cys Leu Gln Arg Leu Tyr
 35 40 45

Met Arg Asp Leu Gly His Thr Ser Ser Ala His Thr Ala Leu Met Glu
 50 55 60

Glu Phe Ala Lys Leu Ile Gln Thr Ile Trp Thr Ser Ser Pro Asn Asp
 65 70 75 80

<210> 45
<211> 3034
<212> DNA
<213> Mus musculus

<400> 45

gcggagcgtg agctgtgcga gcgagcgagc gcgagcatag cctgcgagcg agcagagaga 60
aagagcgagg gcaagagagc ggcgaggcgcc ctgcgcgatg ctggggcccc taagcccgcg 120
gcccgtggcc agccggacg gacatgcgcg ggagggcgcc gcggggtccc gtccttgg 180
ggaaatgaaa gctactggtt gacttaaaa caccctggct ttacaaattt gaaggcatcc 240
cagagtgggg cacaatgtca acagcaggag ttgtctgtca ggatattcga gtcccatcaa 300
aaactggatt tctccataat ggtcaggcct tggggatat gaagtcctgc tggggcagtc 360
acagtggatt tgaaaataac ttttaataa ttgatccat aaccatggcc tacaatctga 420
actccctgc tcaggagcac ctaacaactg ttggatgtgc tgctcggtct gtcctaggaa 480
gcccgcacct cttgcagag tgggtccat ctccaagggtc aagcttgcctt ccttgccta 540
tctcacaag tgaaagctcg ggacagcggtg aagaggatca agttatgtgt ggtttttaga 600
aactctcaatg gaatggggtc tgcacttcca cacttccact tacaccattt aaaagctgcc 660
cttcccttccc cccctgtgcg gctctgtgt atccgggttc tcggccgtc ccgcactgtc 720
ccatctctga agacatctgt gtggatgagg ccgacagtga ggttagactt ctaaccacca 780
gctcagacac agacttgctt ttagaagact ctggcccttc agatttcaaa tacatgtctc 840
ctggcaggcg cagcttcgtt gggtgccggcc agatcaacta tgcattttt gacagccaa 900
ctgtttctgt ggcagatctt agctgtgcattt ctgaccagaa cagagttgtt ccagacccaa 960
accctcccccc acctcaaagc catcgagat taaggagggtc tcactcagga ccagctgggt 1020
catttaacaa gccagccattt cgatatactt gctgcacaca cagagttctt cctagctctg 1080
atgaagacaaa gcctgagggtc cttcccaagggttccatatacc tcctaggcca gcaaagccag 1140
actatagacg gtgttcagca gaagtgcattt ccaacaccta cagtgtatgaa gataggcctc 1200
ccaaagtccc cccgagagaa ctttgcgtc ggagtaactt ccgtacccca agtctaaaaa 1260
gccttcgtc ttacctcaat ggggtcatgc ccccaacaca gagttcgct cctgacccca 1320
agtatgtcag cagcaaaagcc ctgcagagac agagcagcga agatctgcc aacaagggtt 1380
cttgcatttgc gcccatttattt gaaaatggga agaaggtagt ctcaacgcatttacttac 1440
tacctgagag gcccacgtac ctggacaaaat atgaaaaggta tttttaggaa gcagaagaaaa 1500
caaacccaaag cacccaaattt cagccattttt ctgtgcctt tggatggcc tctgcacac 1560
aaaagctggc ctccagaatg aaaatagata tggtagcca cgggaagcgc aaacacttat 1620
cctacgttgtt ttccatataa atatggggat catgattcaa cagaagttac atgggatgaa 1680
tggctcccaag tttccatgtt tgagggtcgtt agaacaatgtt caagtggcaa aatgaagttg 1740
gtggactccg ccttaatgag aaaggcttagt agcagttatgtt aggtgtctt atgctgggag 1800
tccctgtatctt atcagcatag gaaaaaaatgatgatattt agatgtgcta gggggaggaga 1860
aaaatggca acttttacat ttgactacat tataaccta tgtataaaatgatgatattt 1920
ccatagacca tagctgcaggc caattcaaac aagctggagg aacagcttctt gatagtgtga agagtaatct gtattcagaa 1980
agcaatattt ttagatcaga ttataaattt gttaagttttaa gatttgacca aatgggagaa 2040
ctgtctataa atttgtttt cccctccctt gccagcgtc ttctccatatac acgacagggc 2100
gtgttccca ccaggcgtgtt aacatcttgcgtt tgagatcattt tctatggccc aatacttgc 2220
gctctgggtt tttgtctgtt tgaggagagg acagcgtttt ctggaccatgtt ttagtgcctt 2280
tgtgtgtctc atatcttggaa aatttgacaca tttttgtgaat aacttttcca tactattctt 2340
gtttttccca tccactgaaa cagcgttgcgtt tagaagagg ctttcaagag tgcgtggag 2400
ttgcgttgcg catcagtgtt tggggtctga gtttgataga ctatgcgcg gatcagccat 2460
atgattgaga gctactttggg ggtatataatgg tacgttgcgtt ttgtttttttaa gacttataaa 2520
aggacaacac gagctgggtctt tgggtgtctt gttccat tttatcttgcgtt ggtttttttttaa 2580
tgctttttaa gtgaaacact tctgaccaatt acgacagaaac gtcttaatgc cagagggtc 2640
ttcagcatct tcctgcttttgc agacacgcgcg ttttttacat cctctgtattt gttttttttttaa 2700
acaaagagaaa ggtgtttgcgtt gtttttgcgtt gttccat gttttttttttaa 2760
ttaaactgtt gaatgacattt atttgagctt tttttttttttaa 2820
aaggtaaaaa catgttttag aaaaatgcac tgatctccgc actgtgtgtt cagttttttttttaa 2880
caaaggattt attcatttttgcgtt tttttttttttaa 2940
tatattactt atttatgaaa aaaaaaaaaaaaaaaa 3000
3034

<210> 46
 <211> 461
 <212> PRT
 <213> Mus musculus

<400> 46
 Met Ser Thr Ala Gly Val Ala Ala Gln Asp Ile Arg Val Pro Leu Lys
 1 5 10 15

Thr Gly Phe Leu His Asn Gly Gln Ala Leu Gly Asn Met Lys Ser Cys
 20 25 30

Trp Gly Ser His Ser Glu Phe Glu Asn Asn Phe Leu Asn Ile Asp Pro
 35 40 45

Ile Thr Met Ala Tyr Asn Leu Asn Ser Pro Ala Gln Glu His Leu Thr
 50 55 60

Thr Val Gly Cys Ala Ala Arg Ser Ala Pro Gly Ser Gly His Phe Phe
 65 70 75 80

Ala Glu Cys Gly Pro Ser Pro Arg Ser Ser Leu Pro Pro Leu Val Ile
 85 90 95

Ser Pro Ser Glu Ser Ser Gly Gln Arg Glu Glu Asp Gln Val Met Cys
 100 105 110

Gly Phe Lys Lys Leu Ser Val Asn Gly Val Cys Thr Ser Thr Pro Pro
 115 120 125

Leu Thr Pro Ile Lys Ser Cys Pro Ser Pro Phe Pro Cys Ala Ala Leu
 130 135 140

Cys Asp Arg Gly Ser Arg Pro Leu Pro Pro Leu Pro Ile Ser Glu Asp
 145 150 155 160

Leu Cys Val Asp Glu Ala Asp Ser Glu Val Glu Leu Leu Thr Thr Ser
 165 170 175

Ser Asp Thr Asp Leu Leu Glu Asp Ser Ala Pro Ser Asp Phe Lys
 180 185 190

Tyr Asp Ala Pro Gly Arg Arg Ser Phe Arg Gly Cys Gly Gln Ile Asn
 195 200 205

Tyr Ala Tyr Phe Asp Ser Pro Thr Val Ser Val Ala Asp Leu Ser Cys
 210 215 220

Ala Ser Asp Gln Asn Arg Val Val Pro Asp Pro Asn Pro Pro Pro Pro
 225 230 235 240

Gln Ser His Arg Arg Leu Arg Arg Ser His Ser Gly Pro Ala Gly Ser
 245 250 255

Phe Asn Lys Pro Ala Ile Arg Ile Ser Ser Cys Thr His Arg Ala Ser
 260 265 270

Pro Ser Ser Asp Glu Asp Lys Pro Glu Val Pro Pro Arg Val Pro Ile
 275 280 285
 Pro Pro Arg Pro Ala Lys Pro Asp Tyr Arg Arg Trp Ser Ala Glu Val
 290 295 300
 Thr Ser Asn Thr Tyr Ser Asp Glu Asp Arg Pro Pro Lys Val Pro Pro
 305 310 315 320
 Arg Glu Pro Leu Ser Arg Ser Asn Ser Arg Thr Pro Ser Pro Lys Ser
 325 330 335
 Leu Pro Ser Tyr Leu Asn Gly Val Met Pro Pro Thr Gln Ser Phe Ala
 340 345 350
 Pro Asp Pro Lys Tyr Val Ser Ser Lys Ala Leu Gln Arg Gln Ser Ser
 355 360 365
 Glu Gly Ser Ala Asn Lys Val Pro Cys Ile Leu Pro Ile Ile Glu Asn
 370 375 380
 Gly Lys Lys Val Ser Ser Thr His Tyr Tyr Leu Leu Pro Glu Arg Pro
 385 390 395 400
 Pro Tyr Leu Asp Lys Tyr Glu Lys Tyr Phe Lys Glu Ala Glu Glu Thr
 405 410 415
 Asn Pro Ser Thr Gln Ile Gln Pro Leu Pro Ala Ala Cys Gly Met Ala
 420 425 430
 Ser Ala Thr Glu Lys Leu Ala Ser Arg Met Lys Ile Asp Met Gly Ser
 435 440 445
 His Gly Lys Arg Lys His Leu Ser Tyr Val Val Ser Pro
 450 455 460

<210> 47
 <211> 2328
 <212> DNA
 <213> Mus musculus

<400> 47
 atggctgaac aacttcttcc tcaggctttg tatttgcgca atatgcggaa agctgtgaag 60
 atacgagaga gaaccccaga agacatttc aaacctacca atggatcat ctatcacttt 120
 aaaaccatgc accgatacac gctggagatg ttcagaacat gccagtttg cccacagtcc 180
 cgagagatca tccacaaaagc acttattgac agaagtgtcc aggctccct ggaaagccag 240
 aagaagctca actggtgtcg tgaagtccagg aagctcggtt ctctgaaaac caatggtgat 300
 ggaaactgcc tcatgcatgc agcttgtcag tacatgtggg gtgttcagga tactgacctg 360
 gtcctgagga aggccctctg cagcacccctt aaggagacag acactcgaa ctttaaattc 420
 cgctggcagc tggaatctct gaaatctcg gaatttgcgg aaacaggact ttgctacgac 480
 actcgaact ggaatgacgaa atgggacaac ttggtaaaaa tggcatcagc agacacaccc 540
 gcagcccgaa gtggacttca gtacaattcc ctggaaagaaa tccacatatt tgcctcagc 600
 aacatcctca gaagacccat cattgtcatt ttagacaaaa tgctaagaag ttggaaatct 660
 ggttccaatt ttgctccctt gaaagtgggt gggatttatac tgcctctca ctggcctgcc 720
 caggagtgtt acagatatcc catcgccata ggctatgaca gccagcactt tgtacccctg 780
 gtgaccctga aggacagtgg acctgaactt cgccgtgttc cacttgttaa cagagacccgg 840
 ggttaggttg aagacttaaa agttcacttc ttgacagatc ctgagaatga gatgaaggaa 900

aagcttctaa aggagtactt gatagtgtatg gagatccctg tgcaaggctg ggaccacggc 960
 acgactcacc tgatcaacgc tgcaaaattt gatgaagcta acttacccaa agaaaataat 1020
 ttggtagacg attactttga gcttggtcag cacgaataca agaaatggca ggagaacagc 1080
 gatcaggcca ggagagcggc acatgcgcag aaccccttgg agcctccac accccagcta 1140
 tcactcatgg atataaaatg tgagacaccc aactgtcctt tcttcatgtc cgtgaacact 1200
 cagcctttat gccacgaatg ctcagagagg cgccaaaaga atcagagcaa gctccaaag 1260
 ctgaactcga agctaggccc tgaaggactc ccaggcgtgg gacttggctc ctcaaactgg 1320
 agccccgagg aaaccgctgg aggacactcat tcagccccac ccacagcacc cagcctttt 1380
 ctcttcagtg agaccactgc aatgaagtgc aggagtcttg ggtgccttt tactttgaat 1440
 gtgcagcata atggattctg tgagcgttgc cacgcccggc agattaatgc cagccacacc 1500
 gcagaccctg gaaagtgcca agcctgcctt caggatgtca ctggacactt taatggcattc 1560
 tgcagttaccc gtttcaaaag gactacagca gagcccgact ccagcctcac ttccagttatc 1620
 cctgcctctt gtcaccaacg ctccaagtct gacccttcac aactcatcca aagtctcaact 1680
 ccacactctt gccaccggac tggaaatgtc tctccttctg gtcgccttc ccaggctgca 1740
 cggactccag gagacagagc agggacaagc aagtgcaggaa aagctggctg catgtatTTT 1800
 gggactccag aaaacaaggc cttttgcact ctatgtttca tcgaatatacg agaaaataaag 1860
 cagtctgtta ctgcctctgc gaaagctggg tccccggccc ccagggttcca gaacaatgtc 1920
 ccgtgcctgg cgaggagtg cggcacactc ggaaggcacca tgtttgaagg gtactgtcag 1980
 aagtgtttca tcgaagctca gaaccagaga ttccatgaag caagaagaac ggaagaacag 2040
 ctgagatcaa gccagcatag agacatgcct cgaactacac aggtgcctc aaggctgaaa 2100
 tggcccccggg cctcctgcaa gaacattctg gcctgtcga gtgagaaact ctgtatggag 2160
 tgccagcacc taagccaacg agtagttct gtggcccacc ggggtgagcc cacgcctgaa 2220
 gagcccccta aacagcgctg ccggggccct gcttgtatc actttggcaa tgccaaagtgt 2280
 aatggttact gcaatgatgtt ctaccagttc aagcagatgt atggctaa 2328

<210> 48
 <211> 775
 <212> PRT
 <213> Mus musculus

<400> 48			
Met Ala Glu Gln Leu Leu Pro Gln Ala Leu Tyr Leu Ser Asn Met Arg			
1	5	10	15
Lys Ala Val Lys Ile Arg Glu Arg Thr Pro Glu Asp Ile Phe Lys Pro			
20	25	30	
Thr Asn Gly Ile Ile Tyr His Phe Lys Thr Met His Arg Tyr Thr Leu			
35	40	45	
Glu Met Phe Arg Thr Cys Gln Phe Cys Pro Gln Phe Arg Glu Ile Ile			
50	55	60	
His Lys Ala Leu Ile Asp Arg Ser Val Gln Ala Ser Leu Glu Ser Gln			
65	70	75	80
Lys Lys Leu Asn Trp Cys Arg Glu Val Arg Lys Leu Val Ala Leu Lys			
85	90	95	
Thr Asn Gly Asp Gly Asn Cys Leu Met His Ala Ala Cys Gln Tyr Met			
100	105	110	
Trp Gly Val Gln Asp Thr Asp Leu Val Leu Arg Lys Ala Leu Cys Ser			
115	120	125	
Thr Leu Lys Glu Thr Asp Thr Arg Asn Phe Lys Phe Arg Trp Gln Leu			
130	135	140	

Glu Ser Leu Lys Ser Gln Glu Phe Val Glu Thr Gly Leu Cys Tyr Asp
 145 150 155 160

Thr Arg Asn Trp Asn Asp Glu Trp Asp Asn Leu Val Lys Met Ala Ser
 165 170 175

Ala Asp Thr Pro Ala Ala Arg Ser Gly Leu Gln Tyr Asn Ser Leu Glu
 180 185 190

Glu Ile His Ile Phe Val Leu Ser Asn Ile Leu Arg Arg Pro Ile Ile
 195 200 205

Val Ile Ser Asp Lys Met Leu Arg Ser Leu Glu Ser Gly Ser Asn Phe
 210 215 220

Ala Pro Leu Lys Val Gly Gly Ile Tyr Leu Pro Leu His Trp Pro Ala
 225 230 235 240

Gln Glu Cys Tyr Arg Tyr Pro Ile Val Leu Gly Tyr Asp Ser Gln His
 245 250 255

Phe Val Pro Leu Val Thr Leu Lys Asp Ser Gly Pro Glu Leu Arg Ala
 260 265 270

Val Pro Leu Val Asn Arg Asp Arg Gly Arg Phe Glu Asp Leu Lys Val
 275 280 285

His Phe Leu Thr Asp Pro Glu Asn Glu Met Lys Glu Lys Leu Leu Lys
 290 295 300

Glu Tyr Leu Ile Val Met Glu Ile Pro Val Gln Gly Trp Asp His Gly
 305 310 315 320

Thr Thr His Leu Ile Asn Ala Ala Lys Leu Asp Glu Ala Asn Leu Pro
 325 330 335

Lys Glu Ile Asn Leu Val Asp Asp Tyr Phe Glu Leu Val Gln His Glu
 340 345 350

Tyr Lys Lys Trp Gln Glu Asn Ser Asp Gln Ala Arg Arg Ala Ala His
 355 360 365

Ala Gln Asn Pro Leu Glu Pro Ser Thr Pro Gln Leu Ser Leu Met Asp
 370 375 380

Ile Lys Cys Glu Thr Pro Asn Cys Pro Phe Phe Met Ser Val Asn Thr
 385 390 395 400

Gln Pro Leu Cys His Glu Cys Ser Glu Arg Arg Gln Lys Asn Gln Ser
 405 410 415

Lys Leu Pro Lys Leu Asn Ser Lys Leu Gly Pro Glu Gly Leu Pro Gly
 420 425 430

Val Gly Leu Gly Ser Ser Asn Trp Ser Pro Glu Glu Thr Ala Gly Gly
 435 440 445

Pro His Ser Ala Pro Pro Thr Ala Pro Ser Leu Phe Leu Phe Ser Glu
 450 455 460

Thr Thr Ala Met Lys Cys Arg Ser Pro Gly Cys Pro Phe Thr Leu Asn
 465 470 475 480

Val Gln His Asn Gly Phe Cys Glu Arg Cys His Ala Arg Gln Ile Asn
 485 490 495

Ala Ser His Thr Ala Asp Pro Gly Lys Cys Gln Ala Cys Leu Gln Asp
 500 505 510

Val Thr Arg Thr Phe Asn Gly Ile Cys Ser Thr Cys Phe Lys Arg Thr
 515 520 525

Thr Ala Glu Pro Ser Ser Leu Thr Ser Ser Ile Pro Ala Ser Cys
 530 535 540

His Gln Arg Ser Lys Ser Asp Pro Ser Gln Leu Ile Gln Ser Leu Thr
 545 550 555 560

Pro His Ser Cys His Arg Thr Gly Asn Val Ser Pro Ser Gly Cys Leu
 565 570 575

Ser Gln Ala Ala Arg Thr Pro Gly Asp Arg Ala Gly Thr Ser Lys Cys
 580 585 590

Arg Lys Ala Gly Cys Met Tyr Phe Gly Thr Pro Glu Asn Lys Gly Phe
 595 600 605

Cys Thr Leu Cys Phe Ile Glu Tyr Arg Glu Asn Lys Gln Ser Val Thr
 610 615 620

Ala Ser Ala Lys Ala Gly Ser Pro Ala Pro Arg Phe Gln Asn Asn Val
 625 630 635 640

Pro Cys Leu Gly Arg Glu Cys Gly Thr Leu Gly Ser Thr Met Phe Glu
 645 650 655

Gly Tyr Cys Gln Lys Cys Phe Ile Glu Ala Gln Asn Gln Arg Phe His
 660 665 670

Glu Ala Arg Arg Thr Glu Glu Gln Leu Arg Ser Ser Gln His Arg Asp
 675 680 685

Met Pro Arg Thr Thr Gln Val Ala Ser Arg Leu Lys Cys Ala Arg Ala
 690 695 700

Ser Cys Lys Asn Ile Leu Ala Cys Arg Ser Glu Glu Leu Cys Met Glu
 705 710 715 720

Cys Gln His Leu Ser Gln Arg Val Gly Ser Val Ala His Arg Gly Glu
 725 730 735

Pro Thr Pro Glu Glu Pro Pro Lys Gln Arg Cys Arg Ala Pro Ala Cys
 740 745 750

Asp His Phe Gly Asn Ala Lys Cys Asn Gly Tyr Cys Asn Glu Cys Tyr
 755 760 765

Gln Phe Lys Gln Met Tyr Gly
 770 775

<210> 49
 <211> 499
 <212> DNA
 <213> Mus musculus

<220>
 <221> modified_base
 <222> (461)
 <223> a, g, c or t

<400> 49
 tttttttca tacttgataa aatttttattt aaaaaaaaaag agaataataa tttataccct 60
 tgacaaaata aaagatctta taatataaat gtttcttaga aaatatatga aaagataata 120
 ttacaaatat taataaatca atattcacat gacagcaaaa gtggcaatga ttctacaaga 180
 aggtgaggag gaagatgctt tccggccgc agcaatgtct ctggagaggc ctccctgtccc 240
 ttcttctcc ttcaatgagg tgtgctccta ttttaagaaa acctgataca agcagatcta 300
 atcagtttag gaagctggta tttatggca ccgcaaaaata attttttac aaaaaaaaaatt 360
 ctatcaagga tcctttaaat atcaagtttc ccaatgcact tagaatacag ttaaccaaatt 420
 ttacaagtct tcgacttctc tctggtgtag ctctaccgca nggcgtgagg tattgctgaa 480
 gtgagtgcgt gcgtccgtg 499

<210> 50
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 50
 catcttggcc tcactgtccca c

21

<210> 51
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide

<400> 51
 tgcttgctga tccacatctg ctgga

25

<210> 52
 <211> 19
 <212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 52
gggccggact catcgtact 19

<210> 53
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 53
gggaggacct tacctgttgc t 21

<210> 54
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 54
caccaggctg tgggcctcaa gg 22

<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 55
ccagatgtgg atgcttgcaa 20

<210> 56
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 56
gggagaacag aagcgccctg

19

<210> 57
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 57
agaagggtga ggatccccca aatcagagt

29

<210> 58
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 58
cccttgtttc aatcactccc a

21

<210> 59
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 59
tttctgaaca gtgagggtccg c

21

<210> 60
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 60
ccggaagagg tggcgccgca

19

<210> 61
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 61
gggctctgat ggagtgc^ttg 20

<210> 62
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 62
ttggaagacc cg^tttt^tgagct a 21

<210> 63
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 63
tcttcagaa ttcc^ctcgt cctggg 26

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 64
tttcttgcca gttttggc^tt 20

<210> 65
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 65
agacttccat ggaaatgata gca

23

<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 66
cctctcggtcc ggcagctggc

20

<210> 67
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 67
aatgtgtaag ccgggcagaa

20

<210> 68
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 68
aatcctttgt ccaatactgt acacaca

27

<210> 69
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 69
gaaaaatgca ctgatctccg ca

22

<210> 70		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide		
<400> 70		
gtatgaacta aatgaagggtt aaaacatgct		30
<210> 71		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide		
<400> 71		
ccatggtgct tggtaacgct tt		22
<210> 72		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide		
<400> 72		
cccaacttgt agctggtaaa gcttca		26
<210> 73		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide		
<400> 73		
cctgtctacc ttctggtctc caa		23
<210> 74		
<211> 23		
<212> DNA		
<213> Artificial Sequence		

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 74
cttgctgatc gtctggagag ttt

23

<210> 75
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 75
tgctgatgac cctccattgt ga

22

<210> 76
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 76
ttaacattcc tgaggttgca agaa

24

<210> 77
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 77
gccgtgtgta tggctgcat

19

<210> 78
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 78
cagcccccag gccactgtgg 20

<210> 79
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 79
aggagggata acaggtgctg tgt 23

<210> 80
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 80
cctggacccc agccataga 19

<210> 81
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 81
agcccatgt a gtcccggtca ctta 24

<210> 82
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 82
tgcgcggcc aaaa 14

```

<210> 83
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 83
gcttggacag ccccaagatc                                19

<210> 84
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 84
ggtaactcaga ttccccacacc gctt                                24

<210> 85
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 85
tgtgtgtacg tgcccagcat                                20

<210> 86
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide

<400> 86
gcgagtttga aggcatgca                                19

<210> 87
<211> 23
<212> DNA
<213> Artificial Sequence

```

<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide		
 <400> 87		
ctctttcac ccggcgatgc gat		23
 <210> 88		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
 <220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide		
 <400> 88		
ccatgttctt ccaggtcaaa atg		23
 <210> 89		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
 <220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide		
 <400> 89		
tggcagactc ggcttctgt		19
 <210> 90		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
 <220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide		
 <400> 90		
tttgcttgg ccacacccta cctgg		25
 <210> 91		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
 <220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide		
 <400> 91		
ctggtcggga ggactttgg		19

<210> 92
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 92
tggaccaatg ccccagtt

18

<210> 93
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 93
tcagtcaaag ccgttggtgt tttcattg

28

<210> 94
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 94
ccccgttta tagtgacat tttaa

25