GIS로 공간을 탐구하다

☞학습목표

### 2022-1 공간정보와 시각화 🖎

실습조교 : 김지윤 (석사과정) geogjiyun@snu.ac.kr

- 5. 기초 공간 분석 및 시각화 벡터/래스터 오퍼레이션 -
- 1) 벡터 기반 GIS 기초 분석을 시행할 수 있다.
- 2) 속성을 통한 벡터 데이터 선택을 할 수 있다.
- 3) 공간 합역(intersect)을 통한 속성값 형성이 가능하다.
- 4) 래스터 데이터를 이용하여 정규식생지수 (NDVI-Normalized Difference Vegetation Index)를 시각화 할 수 있다.
- 5) 정규식생지수가 높은 곳을 추출하여 근접도(래스터 거리)를 시각화 한다.

## 1. 점을 기반으로 버퍼 형성하기

무더운 여름날, 여러분은 패스트푸드점에서 식사를 마치고 PC방에서 게임을 하려고 한다. 날씨가 매우 더워서 여러분은 패스트푸드점에서 100m 이내에 위치하는 PC방을 가려고 한다. 이에 적합한 패스트푸드점 및 PC방을 찾아보기 위해 아래의 방법을 이용한다.



① [레이어] > [레이어 추가] > [벡터 레이어 추가]를 눌러 ""fastfood\_5178.shp" 파일을 불러온 후, "PC 방\_seoul.shp"도 연다.



② PC방 레이어에 아이콘이 뜨는데, 이는 좌표계가 정해지지 않았기 때문이다. 필터에 5178을 입력 하여 Korean 1985 좌표계를 선택하면 해결된다.



③ PC방 레이어는 속성 테이블을 열면 글자가 깨져 나온다. 따라서 PC방 레이어 우클릭 - [속성] - [원본]에 가서 인코딩을 UTF-8로 설정한다.



④ 속성테이블을 열면 서울시 내에 총 13,991개의 PC방이 있음을 알 수 있다.



⑤ 패스트푸드점에서 100m 이내에 입지한 PC방에 대해 알아보기 위해, 패스트푸드점을 기준으로 100m의

버퍼를 만들어 보자.[벡터]-[지리 정보 처리 도구]-[버퍼] 버튼을 누른다.



⑥ [입력 레이어]에서 fastfood 레이어를 고르고 [거리] 부분을 100으로 고쳐준다. 기타 사항은 그대로 하고, [산출물]에서 [파일로 저장]을 누르고 저장할 위치를 지정한다. 이후 [실행] 버튼을 클릭한다.



⑦ 위와 같이 패스트푸드점을 기준으로 100m의 버퍼가 주어진 것을 확인할 수 있다.

(혹시 버퍼만 보이고 기존의 패스트푸드 point 레이어가 보이지 않는다면, 레이어 창에서 fastfood 레이어의 위치를 위로 올려주면 된다.)

### 2. 공간 합역에 따른 분석, 속성에 의한 선택

| <b>교차</b> (intersection)<br>도구 | 두 개의 공간자료를 위상학적으로 통합하는 것으로,<br>두 입력 자료의 공통 영역만을 남긴다.(AND 연산)<br>*intersect: 교차하다, 가로지르다 /intersection: 교집합 |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------|--|
| 통합 (union) 도구                  | 두 집합의 각 요소를 모두 합친 집합을 표시한다.<br>(OR 연산)<br>* union : 조합, 결합, 합집합                                            |  |

이번 실습에서는 교차 영역 도구를 사용한다.



① 수많은 PC방들 중에서 패스트푸드점과 가까이 있는 곳만 선택하고 싶다. PC방들 중 패스트푸드점에서 직선거리로 100m 이내에 있는 곳을 선택하기 위해 교차 영역 (intersection)을 시행한다. [벡터]-[지리정보 처리 도구]-[교차영역 (intersection)]을 클릭한다.



② [입력 레이어]에는 버퍼와 겹치는지 궁금한 'PC방\_seoul'을, [중첩 레이어]에는 그 틀이 될 '버퍼'를 넣는다. 그 후 파일을 저장할 위치를 지정하고, [실행] 버튼을 눌러 시행한다. 두 자료의 좌표계가 달라 경고문이 나올 수도 있지만, 무시한다.



③ 위와 같이 'Intersection'에는 PC방 가운데, 버퍼 내에 속한 것들만 남아있다(하얀 동그라미). 이를 통해 거리 기반 분석을 시행할 수 있다.



④ 'PC방\_seoul'의 속성 테이블을 연다. 이 자료를 분석하고 싶은데 이는 지오코딩 자료이기 때문에 정확하게 좌표가 부여되지 않은 데이터도 있다. 이를 위해 속성 테이블에 있는 필드 중 [CLSS]에 정좌표인 객체들만 선택하고자 한다.



⑤ 속성 테이블을 열고 좌측 하단의 [고급 필터(표현식)]을 클릭한다.



⑥ 표현식 기반 필터에서 중간의 탭의 최하단에 있는 [필드와 값]을 누른다. 그러면 파일의 필드가 나타난다. 이 가운데 [CLSS]를 더블 클릭하면, 왼쪽의 하얀 콘솔에 나타난다. 그 후 우측 하단의 [모든 유일값]을 클릭하면 [CLSS]에 속한 모든 속성값이 나타난다. 이 가운데 '정좌표'인 것만 선택하고 싶으므로, 좌측 상단의 '='표시를 클릭하고, '정좌표'를 클릭하여 좌측의 콘솔에 그림과 같이 나타나게 한다. 그 후 확인을 누른다.

|    | 입력주  | X      | Υ       | CLSS | PNU                     | 주소구  | 정지 🕯   |  |
|----|------|--------|---------|------|-------------------------|------|--------|--|
| 1  | NULL | 939818 | 1943819 | 정좌표  | CLSS<br>String(51) NULL | NULL | NULL _ |  |
| 2  | NULL | 939828 | 1943880 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 3  | NULL | 939860 | 1943874 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 4  | NULL | 939924 | 1943887 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 5  | NULL | 939924 | 1943887 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 6  | NULL | 939925 | 1943885 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 7  | NULL | 939925 | 1943885 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 8  | NULL | 940088 | 1943747 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 9  | NULL | 940131 | 1943812 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |
| 10 | NULL | 940131 | 1943812 | 정좌표  | 공개용버전 미                 | NULL | NULL   |  |

⑦ 속성 창의 제목을 보면 "필터링된 객체 수: 12894"로 나타난 것을 알 수 있다. 즉, 전체 13,991개의 PC 방 자료 가운데 정좌표인 것은 12,894개이다.

## 3. 래스터 데이터를 이용한 정규식생지수(NDVI-Normalized Difference Vegetation Index) 의 시각화

정규식생지수는 가시광선 파장 중 적색(Red)파장과 근적외선(Near-Infrared, NIR)파장을 이용하는 지수이다. 이 지수는 건강하고 활력이 높거나 밀도가 높은 식생에서 근적외선의 반사율이 매우 높게 나타나는 것에 착안하여 만든 지수이다. 즉 정규식생지수 수치가 높은 값을 갖는다는 것은 근적외선의 반사율이 높다는 것이고, 결국 식생이 밀집되어 있거나 활력이 매우 높다는 것이다. 정규식생지수는 1에서 -1까지의 값을 갖는다.

$$NDVI = \frac{NIR - RED}{NIR + RED} = \frac{Band \ 8 - Band \ 4}{Band \ 8 + Band \ 4}$$



|  | Sentinel – 2A<br>MSI | Bands | Resolution (m) | Central wavelength (nm) | Spectral Region                  |
|--|----------------------|-------|----------------|-------------------------|----------------------------------|
|  |                      | B4    | 10             | 664.6                   | Red                              |
|  |                      | B8    | 10             | 832.8                   | Visible and Near Infrared (VNIR) |



① [실습\_5 파일]-[Seoul\_Raster]에 위치한 B4, B8 파일(확장자는 jp2)을 QGIS에서 연다.



② [래스터] - [래스터 계산기]를 클릭한다.



③ 래스터 밴드, 연산자, 래스터 계산기 표현식을 이용하여 NDVI를 시각화한다. 우선 산출 레이어를 설정해준다.



④ 래스터 계산기 표현식을 입력한다. 타이핑을 하면 오류가 날 가능성이 크므로, 꼭 클릭을 하여 표현식을 입력한다. (B8 - B4)/(B8 + B4)이후 원하는 경로에 'ndvi' 이름으로 산출 레이어를 저장한다.



⑤ 결과물을 확인한다. 하지만 결과물은 일반적으로 우리가 알고 있던 컬러 정규식생지수 시각화 자료와 다른 모습이다.



⑥ 새로 만든 [레이어 속성]-[심볼]에서 렌더링 유형을 '단일 밴드 유사색상'으로 바꿔주고, 색상 램프, 급간 등의 설정을 바꿔준다.



⑦ 정규식생지수의 시각화 결과물을 확인한다.

## 4. 정규식생지수가 높은 곳에 대한 근접도(래스터 거리) 시각화



① 방금 만든 NDVI 레이어를 사용한다.



② 식생지수가 높은 지역을 선택하기 위해 [래스터] - [래스터 계산기]를 이용한다.



③ 래스터 계산기 표현식에 설정하고 싶은 식생지수의 범위(이 과제에서는 0.8 이상)을 입력하고 산출 레이어를 설정해준다.



④ 식생지수가 0.8보다 높은 곳은 1 그렇지 않은 곳은 0으로 표현된 결과물을 확인한다.



⑤ 결과물이 제대로 도출되었는지 시각적으로 확인하기 위해 새로운 플러그인을 설치한다.



⑥ MapSwipe Tool 플러그인을 설치한다.



② 상단의 MapSwipe Tool 아이콘 을 클릭하여 지도의 아무 데나 드래그해보자. 식생지수가 0.8이상인 지역을 NDVI영상과 비교해본다. 특히나 녹색 혹은 푸른색에 가까운 지역 위주로 필터링된 것을 확인할수 있다.



⑧ 근접도(래스터 거리)를 시각화 하기 위해 [래스터] - [분석] - [근접도 (래스터 거리)]를 클릭한다.



⑨ 원본 이미지에서 대상 픽셀로 간주해야 할 픽셀 값 목록을 1(식생지수 0.8 이상인 지역)로 설정해주고,

거리 단위를 지리참조 좌표로 바꿔준다. 마지막으로 저장 경로를 설정하여 준다.



⑩ 근접도(래스터 거리)를 시각화한 결과물을 확인한다.



# 실습5 과제

| Q1. 패스트푸드점 100m 이내에 있는 pc방 가운데 정좌표인 pc방의 개수를 적고, 전체 모습을로 보여주세요.   | <u>스크린샷으</u> |
|-------------------------------------------------------------------|--------------|
|                                                                   |              |
| Q2. 래스터 데이터를 이용하여 정규식생지수를 시각화한 결과물을 스크린샷으로 보여주세요.                 |              |
|                                                                   |              |
|                                                                   |              |
| Q3. 식생지수의 범위를 0.85 이상으로 설정하고, 근접도(래스터 거리)를 시각화한 결과물을 스.<br>보여주세요. | <u>크린샷으로</u> |
|                                                                   |              |