Homework 2 (Due Sept 8, 2023)

Jack Hyatt MATH 554 - Analysis I - Fall 2023

December 28, 2023

Justify all of your answers completely.

2.10 Prove if $a, b \in \mathbb{F}$, then exactly one of the following holds:

$$a < b$$
, $a = b$, $a > b$

Proof. Assume $a, b \in \mathbb{F}$. Since \mathbb{F} is an ordered field, $b - a \in \mathbb{F}$.

Case 1: $(b-a) \in \mathbb{F}_+$. Then by definition of <, a < b.

Case 2: b - a = 0. Then by definition of =, a = b.

Case 3: $(b-a) \in \mathbb{F}_{-}$. Then by definition of >, a > b.

2.11 Prove if a < b and b < c, then a < c.

Proof. Assume a < b and b < c. Then $(b-a) \in \mathbb{F}_+$ and $(c-b) \in \mathbb{F}_+$. $((c-b)+(b-a)) \in \mathbb{F}_+$ since \mathbb{F} is an ordered field. $((c-b)+(b-a)) = (c-b+b-a) = (c-a) \in \mathbb{F}_+ \implies a < c$.

2.12 Prove if a < b and c < d, then a + c < b + d.

Proof. Assume a < b and c < d. Then $(b-a) \in \mathbb{F}_+$ and $(d-c) \in \mathbb{F}_+$. $((d-c)+(b-a)) \in \mathbb{F}_+$ since \mathbb{F} is an ordered field. $((d-c)+(b-a))=(d-c+b-a)=(d+b)-(c+a) \in \mathbb{F}_+ \Longrightarrow a+c < b+d$.

2.13 Prove if a < b and c > 0, then ac < bc.

Proof. Assume a < b and c > 0. Then $(b-a) \in \mathbb{F}_+$ and $c \in \mathbb{F}_+$. $(c(b-a)) \in \mathbb{F}_+$ since \mathbb{F} is an ordered field. $(c(b-a)) = (cb-ca) \in \mathbb{F}_+ \implies ac < bc$.

2.14 Prove if a < b and c < 0, then ac > bc.

Proof. Assume a < b and c < 0. Then $(b-a) \in \mathbb{F}_+$ and $-c \in \mathbb{F}_+$. $(-c(b-a)) \in \mathbb{F}_+$ since \mathbb{F} is an ordered field. $(-c(b-a)) = (-cb+ca) = (ac-bc) \in \mathbb{F}_+ \implies ac > bc$.

2.15 Prove if a < b and c < d, then a + c > b + d.

Proof. See 2.12

2.16 Prove if 0 < a < b and $0 < c \le d$, then ac < bd.

Proof. Assume 0 < a < b and $0 < c \le d$. Then $a, b, c, d \in \mathbb{F}_+$ and $(b-a), (d-c) \in \mathbb{F}_+$.

Case 1: c = d. See 2.13

Case 2: c < d. Since \mathbb{F} is an ordered field and $b, c, (d-c), (b-a) \in \mathbb{F}_+, (b(d-c)+c(b-a))) \in \mathbb{F}_+$. $(b(d-c)+c(b-a)) = (bd-bc+bc-ac) = (bd-ac) \in \mathbb{F}_+ \implies ac < bd$.

2.17 Prove if $a_1, a_2, \ldots, a_n > 0$, then $\prod_{i=1}^n a_i > 0$ and $\sum_{i=1}^n a_i > 0$.

Proof. Let us induct on n.

Base Case: n = 1 Obvious

n=2 $a_1, a_2 \in \mathbb{F}_+ \implies (a_1 + a_2), (a_1 a_2) \in \mathbb{F}_+ \text{ since } \mathbb{F} \text{ is an ordered field.}$

Induction Step: Assume $a_1, a_2, \ldots, a_n > 0 \implies \prod_{i=1}^n a_i > 0$ and $\sum_{i=1}^n a_i > 0$.

Consider n+1. Assume $\forall i \in [n+1], a_i > 0$. Consider $\prod_{i=1}^{n+1} a_i$ and $\sum_{i=1}^{n+1} a_i$. Since \mathbb{F} is an ordered field, $\prod_{i=1}^{n+1} a_i = (\prod_{i=1}^n a_i) \cdot a_{n+1}$ and $(\sum_{i=1}^n a_i) + a_{n+1}$. By the Induction Hypothesis, $\prod_{i=1}^n a_i \in \mathbb{F}_+$ and $\sum_{i=1}^n a_i \in \mathbb{F}_+$. Since $a_{n+1} \in \mathbb{F}_+$ and \mathbb{F} is an ordered field, $((\prod_{i=1}^n a_i) \cdot a_{n+1}) \in \mathbb{F}_+$ and $((\sum_{i=1}^n a_i) + a_{n+1}) \in \mathbb{F}_+$.

2.18 Prove if $a \neq 0 \implies a^2 > 0$.

Proof. Case 1: a > 0. Since \mathbb{F} is an ordered field, $a \in \mathbb{F}_+ \implies a \cdot a \in \mathbb{F}_+ \implies a^2 > 0$. Case 2: a < 0. Since \mathbb{F} is an ordered field, $a \in \mathbb{F}_- \implies -a \in \mathbb{F}_+ \implies (-a)(-a) \in \mathbb{F}_+ \implies (-a)^2 \in \mathbb{F}_+ \implies a^2 > 0$.

2.19 Prove if $a_1, \ldots, a_n \in \mathbb{F}$, then

$$\sum_{i=1}^{n} a_i^2 \ge 0$$

with equality iff $\forall i \in [n], a_i = 0$.

Proof. Let us induct on n.

Base Case: n = 1 Obvious

n=2 Let $a_1, a_2 \in \mathbb{F}$.

Case 1: Let $a_1 = a_2 = 0$. Since $x \cdot 0 = 0$ $\forall x \in \mathbb{F}$, $0^2 = 0$. So $a_1^2 + a_2^2 = 0^2 + 0^2 = 0 + 0 = 0$.

Case 2: WLOG, let $a_1 \neq 0$ and $a_2 = 0$. By the same logic in case 1, just remove the zero term, and we are left with a_1^2 , which is greater than 0 by 2.18.

Case 3: Let both of a_1, a_2 be nonzero. By 2.18, $a_1^2 > 0$ and $a_2^2 > 0$. So $a_1^2, a_2^2 \in \mathbb{F}_+ \Longrightarrow a_1^2 + a_2^2 \in \mathbb{F}_+$.

Induction Step: Assume if $a_1, \ldots, a_n \in \mathbb{F}$, then

$$\sum_{i=1}^{n} a_i^2 \ge 0$$

with equality iff $\forall i \in [n], a_i = 0$. Let $a_{n+1} \in \mathbb{F}$. Consider $\sum_{i=1}^{n+1} a_i^2$.

$$\sum_{i=1}^{n+1} a_i^2 = \left(\sum_{i=1}^n a_i^2\right) + a_{n+1}^2$$

We know $\sum_{i=1}^n a_i^2 \in \mathbb{F}_+$ by the Induction Hypothesis, and $a_{n+1}^2 \in \mathbb{F}_+$ by 2.18. So by closure, $\sum_{i=1}^{n+1} a_i^2 \in \mathbb{F}_+$.

2.20 Prove if a > 0 then 1/a > 0, and if a < 0 then 1/a < 0.

Proof. BWOC, assume a > 0 and $1/a \le 0$. 1 = a(1/a) = (positive)(nonpositive) = (nonpositive).

BWOC, assume a < 0 and $1/a \ge 0$. 1 = a(1/a) = (negative)(nonnegatvie) = (nonpositive).

2.21 Prove if 0 < a < b, then 1/b < 1/a.

Proof. Assume 0 < a < b. Then $a, b, (b-a) \in \mathbb{F}_+$. By 2.18, $ab \in \mathbb{F}_+$. By 2.20, $\frac{1}{ab} \in \mathbb{F}_+$. By 2.18, $\frac{b-a}{ba} \in \mathbb{F}_+$. So $\frac{b-a}{ba} = \frac{1}{a} - \frac{1}{b} \in \mathbb{F}_+ \implies 1/b < 1/a$

2.22 Prove for $a \in \mathbb{F}$, $|a| \ge 0$ with equality iff a = 0.

Proof. Case 1: a > 0. Then |a| = a > 0 by definition of absolute value.

Case 2: a < 0. Then |a| = -a > 0 by definition of absolute value.

Case 3: a = 0. Then |a| = 0 by definition of absolute value.

2.23 Prove for $a \in \mathbb{F}$, $a \leq |a|$.

Proof. Case 1: a > 0. Then $|a| = a \le a$ by definition of absolute value.

Case 2: a < 0. Then |a| = -a > a by definition of absolute value.

Case 3: a = 0. Then $|a| = 0 \le a$ by definition of absolute value.

2.24 Prove for $a \in \mathbb{F}$, $a^2 = |a|^2$.

Proof. Case 1: a > 0. Then $|a| = a \implies |a| \cdot |a| = a \cdot |a| = a^2$ by definition of absolute value.

Case 2: a < 0. Then $|a| = -a \implies |a| \cdot |a| = -a \cdot |a| = a^2$ by definition of absolute value.

Case 3: a = 0. Then $|a| = 0 \implies |a|^2 = 0 = a^2$ by definition of absolute value.

2.25 Prove for $a, b \in \mathbb{F}$, the following are equivalent:

$$|a| = |b|,$$
 $a = \pm b,$ $a^2 = b^2$

Proof. $(|a| = |b| \implies a = \pm b)$

Case 1: $a \ge 0$. Then $|a| = a = |b| = \pm b$.

Case 2: a < 0. Then $|a| = -a = |b| = \pm b \implies a = -(\pm b) \implies a = \pm b$.

 $(a \pm b \implies a^2 = b^2)$

Case 1: a = b. Then $a \cdot a = b \cdot a = b \cdot b$.

Case 2: a=-b. Then $a\cdot a=-b\cdot a=(-b)\cdot (-b)=b^2$.

$$(a^2 = b^2 \implies |a| = |b|)$$

$$(a^2 = b^2 \Longrightarrow |a| = |b|)$$

$$a^2 = b^2 \Longrightarrow |a|^2 = |b|^2 \text{ by } 2.24, \Longrightarrow |a| = |b|.$$