Lecture 4 - Continuous-Time Interest Rate Models

Chen Yi-Chun

NUS

Spring 2020

The Martingale Approach

- ▶ A prevailing approach to the pricing of bonds and interest rate derivatives that uses the theory of martingales to establish prices and hedging strategies.
- Some of the earliest descriptions of this approach can be found in the papers by Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983).

The Martingale Approach

- Consider a term-structure model with a one-dimensional Brownian motion as the only source of randomness (one factor).
- Suppose that we have the stochastic differential equations (SDEs) for the risk-free rate of interest, r(t), and the price at time t of a zero-coupon bond P(t,T) which matures at time T, then

$$dr(t) = a(t)dt + b(t)dW(t)$$
 (1)

$$dP(t,T) = P(t,T)[m(t,T)dt + S(t,T)dW(t)]$$
 (2)

where

- ▶ a(t), b(t), m(t, T), and S(t, T) are previsible functions (so they can be stochastic).
- ▶ a short-rate model takes a(t) and b(t) as given and determines m(t, T) and S(t, T) accordingly.

The Martingale Approach

Associated with these processes we have the risk-free cash account, B(t), which satisfies the SDE

$$dB(t) = r(t)B(t)dt$$

to which the solution is

$$B(t) = B(0) \exp \left[\int_0^t r(u) du \right].$$

▶ Define the market price of risk to be the previsible process

$$\gamma(t) = \frac{m(t, T) - r(t)}{S(t, T)}$$

which represents the excess expected return per unit of volatility.

Fundamental Theorem

- \triangleright Consider an interest rate derivative contract which pays X_S $(\mathcal{F}_{S}$ -measurable) at time S < T.
- ▶ What is the no-arbitrage price, V(t), at time t < S for this contract, given the short rate process r(t) and bond price process P(t, T)?
- ▶ **FT**: There exists a measure Q equivalent to P (i.e., $P(A) > 0 \iff Q(A) > 0$ with

$$V(t) = E_Q \left[\exp \left(-\int_t^S r(u) du \right) X_S | \mathcal{F}_t \right]$$

where

$$dr(t) = (a(t) - \gamma(t)b(t))dt + b(t)d\tilde{W}(t)$$

and $ilde{W}(t)$ is a standard Brownian motion under Q.

Math Review: Product Rule

► Suppose *X*(*t*) and *Y*(*t*) are one-dimensional diffusion processes:

$$dX(t) = a_X(t)dt + b_X(t)dW(t);$$

$$dY(t) = a_Y(t)dt + b_Y(t)dW(t).$$

▶ Let R(t) = X(t)Y(t). Then,

$$dR(t) = X(t)dY(t) + Y(t)dX(t) + d\langle X, Y \rangle(t).$$

where

$$d\langle X,Y\rangle(t)=b_X(t)b_Y(t)dt$$

▶ $d\langle X, Y\rangle(t)$ is often written as dX(t)dY(t) and we apply "box calculus".

Step 1

Define the discounted price process

$$Z(t,T) = \frac{P(t,T)}{B(t)} = P(t,T) \exp\left(-\int_0^t r(u)du\right).$$

- As in discrete time, the key step is to establish the probability measure Q equivalent to P under which the discounted price process, Z(t, T), is a martingale.
- By the product rule we have

$$dZ(t, T) = B(t)^{-1}dP(t, T) + P(t, T)d(B(t)^{-1}) + d\langle B^{-1}, P \rangle(t).$$

Step 1

By Itô's formula

$$d(B(t)^{-1}) = -\frac{1}{B(t)^2}dB(t) + \frac{1}{2}\frac{2}{B(t)^3}d\langle B\rangle(t)$$

$$= -\frac{r(t)dt}{B(t)} (dB(t) \text{ has no volatility})$$

Hence,

$$\begin{split} dZ(t,T) &= \frac{P(t,T)}{B(t)}(m(t,T)dt + S(t,T)dW(t)) \\ &- \frac{r(t)P(t,T)dt}{B(t)} \left(d\left\langle B^{-1},P\right\rangle(t) = 0 \text{ by product rule}\right) \\ &= Z(t,T)[(m(t,T)-r(t))dt + S(t,T)dW(t)] \end{split}$$

ightharpoonup Z(t, T) is not a martingale under the real world probability P.

Example: Probability Density Function

▶ Given $X \sim \mathsf{Uniform}[0,1]$ under P, define a random variable

$$Y=2X$$
.

Then we can easily show that

$$Y > 0$$
, $E[Y] = 1$.

▶ Define a new probability \tilde{P} such that for any set A

$$\tilde{\mathsf{P}}\left(A\right)=\mathsf{E}\left(1_{A}\cdot Y\right).$$

► For instance,

$$\widetilde{P}[(0,1/2)] = \frac{1}{4} \text{ and } \widetilde{P}[(1/2,1)] = \frac{3}{4}, \text{ whereas}$$

$$P[(0,1/2)] = \frac{1}{2} \text{ and } P[(1/2,1)] = \frac{1}{2}.$$

▶ In fact, \tilde{P} is the distribution of \sqrt{X} whose CDF is $F(x) = x^2$ and pdf is 2x.

Change of Probabilities for a Random Variable

▶ Y is a random variable with $P(Y \ge 0) = 1$ and E(Y) = 1 (think about Y being a density). Then for any set A we can define

$$\tilde{\mathsf{P}}\left(\mathsf{A}\right)=\mathsf{E}\left(\mathsf{1}_{\mathsf{A}}\cdot\mathsf{Y}\right)$$
,

- ▶ Then it can be shown that \tilde{P} is a new probability.
- ► It can be shown that the transform that goes from E to E is given by

$$\tilde{\mathsf{E}}\left[X\right] = \mathsf{E}\left[X \cdot Y\right]. \tag{3}$$

Going Back and Forth

▶ When Y > 0 *P*-almost surely, for any random variable X, we can introduced a new random variable $\frac{X}{Y}$. Now by (3)

$$\widetilde{\mathsf{E}}\left[\frac{X}{Y}\right] = \mathsf{E}\left[\frac{X}{Y} \cdot Y\right] = \mathsf{E}\left[X\right],$$

which give the transform from \tilde{E} to E:

$$\mathsf{E}\left[X\right] = \widetilde{\mathsf{E}}\left[\frac{X}{Y}\right].\tag{4}$$

▶ Such Y is called the Radon-Nikodym derivative, denoted as

$$\frac{d\widetilde{P}}{dP}$$
.

Example: Normal Random Variables

• Given $X \sim N(0,1)$ under P, define a random variable

$$Y = \exp\left\{-\gamma X - rac{1}{2}\gamma^2
ight\}.$$

Then we can easily show that

$$Y > 0$$
, $E[Y] = 1$ (5)

Define a new probability P

such that for any set A

$$\widetilde{\mathsf{P}}\left(A\right) = \mathsf{E}\left(1_{A}\cdot Y\right).$$

Now consider

$$\tilde{X} = X + \gamma$$
.

Then, under P, \tilde{X} has a distribution of $N(\gamma, 1)$, and under \tilde{P} , \tilde{X} has a distribution of N(0, 1).

▶ The probability density function of *X* is

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}, x \in \mathbb{R}.$$

For any constant $\gamma \in \mathbb{R}$, the probability density function of $X-\gamma$ is

$$f(x+\gamma) = \frac{1}{\sqrt{2\pi}}e^{\frac{-(x+\gamma)^2}{2}} = f(x)e^{-\gamma x - \frac{\gamma^2}{2}}, \quad x \in \mathbb{R}.$$

▶ Then, for every bounded function ψ , we have

$$E[\psi(X - \gamma)] = \int \psi(x) f(x) e^{-\gamma x - \frac{\gamma^2}{2}} dx$$
$$= E[\psi(X) e^{-\gamma X - \frac{\gamma^2}{2}}] = \tilde{E}[\psi(X)],$$

which means that !! the P-distribution of $X - \gamma$ coincides with the $\tilde{\mathsf{P}}$ -distribution of X, i.e.

under
$$\tilde{P}$$
, $X + \gamma$ is distributed as $N(0, 1)$.

Change of Measure for Stochastic Processes

ightharpoonup First, we introduce a \mathcal{F}_T -measurable random variable Y such that

$$Y > 0$$
, $E[Y] = 1$.

Second, we define a Radon-Nikodym derivative process

$$Y(t) = E[Y|\mathcal{F}_t], \ 0 \le t \le T.$$

- ightharpoonup Y(t) is a martingale with respect to P (Tower Property);
- ▶ For any $X_T \in \mathcal{F}_T$, define

$$\tilde{\mathsf{E}}\left(X_{T}\right) \equiv \mathsf{E}\left(X_{T} \cdot Y\left(T\right)\right)$$

Again, denote the corresponding new measure by \tilde{P} (i.e., $\tilde{P}(A) = E(1_A \cdot Y)$ for each $A \in \mathcal{F}_T$).

Radon-Nikodym Derivative Process

▶ Now suppose that $X_t \in \mathcal{F}_t$. We have

$$\tilde{E}(X_t) = E(X_t \cdot Y(T))
= E(E(X_t \cdot Y(T) | \mathcal{F}_t))
= E(X_t \cdot E(Y(T) | \mathcal{F}_t))
= E(X_t \cdot Y(t)).$$

▶ This means Y(t) can be used to evaluate the expectation of $X_t \in \mathcal{F}_t$ under the new measure $\widetilde{\mathsf{P}}$.

(6)

▶ Thus, (**Exercise**) for $X \in \mathcal{F}_t$, we have

$$\widetilde{\mathsf{E}}\left[X|\mathcal{F}_s
ight] = \mathsf{E}\left[X\cdot rac{Y(t)}{Y(s)}|\mathcal{F}_s
ight], \ \ 0\leq s\leq t\leq T.$$

► This means we could more generally view

$$rac{Y(t)}{Y(s)} = rac{d\widetilde{\mathsf{P}}}{d\mathsf{P}}\left(s,t
ight)$$

as the Radon-Nikodym derivative to evaluate the expectation of $X \in \mathcal{F}_t$ and conditional on \mathcal{F}_s under the new measure $\widetilde{\mathsf{P}}$.

Cameron and Martin Formula

- ▶ Suppose that under probability P, W(t) is a standard Brownian motion.
- ▶ For any constant γ , and T > 0 and $T \ge t \ge 0$, we can choose a special Radon-Nikodym derivative process

$$Y(t) := \exp(-\gamma W(t) - \frac{1}{2}\gamma^2 t).$$

 $lackbox{ Define a new probability $\widetilde{\mathsf{P}}\left(\cdot\right)$ on $\mathcal{F}_{\mathcal{T}}$ by }$

$$\widetilde{\mathsf{P}}\left(A\right) := \mathsf{E}\left(1_{A} \cdot Y\left(T\right)\right), \quad A \in \mathcal{F}_{T}.$$

- ▶ Then the two probability measures \tilde{P} and P are equivalent when restricted on \mathcal{F}_T .
- ► Cameron and Martin (1944): under $\tilde{\mathsf{P}}$, $\tilde{W}(t) = W(t) + \gamma t$ is a standard Brownian motion, and therefore, $W(t) = \tilde{W}(t) \gamma t$ is a Brownian motion with drift $-\gamma$ and variance one.

Girsanov Theorem

Let W(t) be a standard Brownian motion under P. For a process $\gamma(s) \in \mathcal{F}_s$ consider the process

$$Y(t) = \exp\left\{-\int_0^t \gamma(s)dW(s) - rac{1}{2}\int_0^t \gamma(s)ds
ight\}$$

Assume that Novikov's condition holds:

$$\mathsf{E}\left[\exp\left\{\frac{1}{2}\int_0^T\gamma(t)^2dt\right\}\right]<\infty.$$

► Then, Y(t) is a martingale with E[Y(t)] = 1 (i.e., a Radon-Nikodym derivative process), and

$$\tilde{W}(t) := W(t) + \int_0^t \gamma(s) ds, \quad 0 \le t \le T$$

is a standard Brownian motion under \tilde{P} .

Step 1

Define a new process $ilde{W}(t) = W(t) + \int_0^t \gamma(u) du$ where we recall

$$\gamma(t) = \frac{m(t,T) - r(t)}{S(t,T)}.$$

Then we have

$$dZ(t,T) = Z(t,T)[(m(t,T) - r(t) - \gamma(t)S(t,T))dt + S(t,T)(dW(t) + \gamma(t)dt)]$$

= $Z(t,T)S(t,T)d\tilde{W}(t)$. (7)

Provided $\gamma(s)$ satisfies the *Novikov* condition

$$E_P\left[\exp\left(\frac{1}{2}\int_0^T\gamma(u)^2du\right)
ight]<\infty,$$

by Girsanov Theorem, there exists a measure Q equivalent to P with Radon-Nikodym derivative:

$$\frac{dQ}{dP} = \exp\left(-\int_0^T \gamma(u)dW(u) - \frac{1}{2}\int_0^T \gamma(u)^2 du\right)$$

under which $\tilde{W}(t)$ is a standard Brownian motion.

19/28

Step 1

Note that under the same change of measure we have

$$dP(t,T) = P(t,T)[r(t)dt + S(t,T)d\tilde{W}(t)]. \tag{8}$$

- ▶ In particular, under *Q*, the prices of all tradable assets have drift equal to the current price times the risk-free rate.
- ▶ We will see later that this feature holds for all assets (not just zero-coupon bonds) and in fact beyond one-factor model.

Step 1

- Now we note that the SDE for Z(t, T) under Q (equation (7)) has zero drift (that is, no dt term).
- ▶ It follows that Z(t, T) is a martingale under Q if one of the following (sufficient) technical conditions is satisfied:

$$E_{Q}\left[\left(\int_{0}^{T}S(t,T)^{2}Z(t,T)^{2}dt\right)^{\frac{1}{2}}\right]<\infty$$

or

$$E_Q\left[\exp\left(\frac{1}{2}\int_0^T S(t,T)^2 dt\right)\right] < \infty$$

(A *necessary* condition for Z(t, T) to be a martingale is that it has zero drift in the SDE.)

• We are done if X = 1 (ZCB).

Steps 2 and 3

- ▶ For t < S < T define $D(t) = E_Q[B(S)^{-1}X_S|\mathcal{F}_t]$. This is a martingale under Q (Tower Property).
- ▶ Since Z(t,T) and D(t) are both Q-martingales, by the Martingale Representation Theorem (Theorem A.10 in the textbook) there exists a previsible process $\phi(t)$ such that

$$D(t) = D(0) + \int_0^t \phi(u) dZ(u, T).$$

Note that this requires S(t,T) to be non-zero for all t < S almost surely.

Step 4: Replicating Portfolio

- Consider the portfolio which holds at time t
 - $\phi(t)$ units of P(t, T);
 - $\psi(t) \equiv D(t) \phi(t)Z(t, T)$ units of B(t).
- ► The value at time t of this portfolio is

$$V(t) = \phi(t)P(t,T) + \psi(t)B(t)$$

= $B(t)[\phi(t)Z(t,T) + \psi(t)] = B(t)D(t).$

The instantaneous investment gain is

$$\phi(t)dP(t,T) + \psi(t)dB(t).$$

Step 4: Self-Financing

The corresponding instantaneous change in the portfolio value is

$$\begin{split} dV(t) &= d[B(t)D(t)] \\ &= B(t)dD(t) + D(t)dB(t) \text{ (product rule)} \\ &= B(t)\phi(t)dZ(t,T) + D(t)r(t)B(t)dt \\ &= \phi(t)B(t)S(t,T)Z(t,T)d\tilde{W}(t) \\ &+ \left[\phi(t)Z(t,T) + \psi(t)\right]r(t)B(t)dt \text{ (def of } \psi(t)\text{)} \\ &= \phi(t)P(t,T)(r(t)dt + S(t,T)d\tilde{W}(t)) + \psi(t)r(t)B(t)dt \\ &= \phi(t)dP(t,T) + \psi(t)dB(t). \end{split}$$

which is equal to the instantaneous investment gain over the same period.

Step 5: Replicating

▶ The portfolio replicates X since

$$V(S) = B(S)D(S)$$

$$= B(S)E_{Q}[B(S)^{-1}X_{S}|\mathcal{F}_{s}]$$

$$= X_{S}.$$

It follows that

$$V(t) = B(t)D(t) = E_{Q} \left[\frac{B(t)}{B(S)} X_{S} | \mathcal{F}_{t} \right]$$
$$= E_{Q} \left[\exp \left(- \int_{t}^{S} r(u) du \right) X_{S} | \mathcal{F}_{t} \right].$$

ightharpoonup As a result, for all S such that 0 < S < T,

$$P(t,S) = E_Q \left[\exp \left(- \int_t^S r(u) du \right) | \mathcal{F}_t \right].$$

Other Asset

Recall

$$\begin{split} dV(t) &= \phi(t)P(t,T)[r(t)dt + S(t,T)d\tilde{W}(t)] + \psi(t)B(t)r(t)dt \\ &= [\phi(t)P(t,T) + \psi(t)B(t)]r(t)dt \\ &+ \phi(t)P(t,T)S(t,T)d\tilde{W}(t) \\ &= V(t)[r(t)dt + \sigma_V(t)d\tilde{W}(t)] \end{split}$$

where

$$V(t)\sigma_V(t) = \phi(t)P(t,T)S(t,T).$$

- ▶ Thus, under Q, the prices of all assets have the risk-free rate of interest as the expected growth rate.
- ▶ In contrast, under the real-world measure P, we have

$$dV(t) = V(t)[r(t)dt + \sigma_V(t)(dW(t) + \gamma(t)dt)]$$

= $V(t)[(r(t) + \gamma(t)\sigma_V(t))dt + \sigma_V(t)dW(t)].$

Risk Premium

- ▶ The excess expected growth rate under P on the bond or derivative, $\gamma(t)\sigma_V(t)$, is called the risk premium.
- Risk premiums on different assets are closely linked (through their dependence on $\gamma(t)$) and can differ (in a one-factor model) only through the volatility in the tradable asset, e.g., $\sigma_V(t)$ in the derivative or S(t,T) for a zero-coupon bond.

Risk Premium

- In general, we anticipate that ZCB will have a positive risk premium (that is, $\gamma(t)S(t,T)>0$ for all T>t) to reward investors for the extra (future interest-rate) risk they are taking on.
- It follows that derivatives V(t) for which $\sigma_V(t)$ has the same sign as S(t,T), e.g., call options on P(t,T), have a positive risk premium.
- derivatives V(t) for which $\sigma_V(t)$ has the opposite sign as S(t, T), e.g., put options on P(t, T), have a negative risk premium.