Fyzikální olympiáda závěrečná - starší

1. Ó všemocná nabla (14 bodů)

Spočtěte gradient skalární funkce

$$f(\vec{r}) = \frac{\vec{h} \cdot (\vec{r} \times \vec{a})}{r},\tag{1}$$

kde \vec{a}, \vec{b} jsou konstantní vektory.

2. Vlaštovka (8 bodů)

Spočtěte, na jakou vzdálenost musí vlaštovka nést kokosový ořech od kokosové palmy na Madagaskaru do Anglie. Sférické souřadnice zavádíme jako

$$x = r\cos\varphi\cos\theta\tag{2a}$$

$$y = r\sin\varphi\cos\theta \tag{2b}$$

$$z = r\sin\theta \tag{2c}$$

Severní šířku měříme v kladném smyslu θ , východní délku měříme v kladném smyslu φ .

Souřadnice kokosové palmy na Madagaskaru: 15° j.š. 47° v.d. Místo shozu v Anglii: 51.5° s.š. 0.9° v.d.

3. Asteroid (12 bodů)

Mějme absolutně černý kulový asteroid o průměru 1 km a hustotě 2 500 kg m⁻³ obíhající po kruhové dráze kolem kolabující nezářící hvězdy hmotnosti Slunce ve vzdálenosti 150 milionů km. Představme si, že na něj gravitací působí pouze tato hvězda a ta náhle zkolabuje a začne zářit se stejným výkonem jako sto tisíc Sluncí. Spočtěte, jak se bude měnit jeho trajektorie s rostoucím časem, jak se změní za milion let, co se stane po miliardě let.

4. Laser (8 bodů)

Vlnová délka červeného světla He-Ne laseru ve vakuu je 632,8 nm. Jakou vlnovou délku má toto světlo ve vodě? Index lomu vody $n_v = 1,33$.

5. Koulování (10 bodů)

Mějme pevnou a nepohyblivou kouli o poloměru 1 m na povrchu Země. Stojí na ní miniaturizovaný skateboardista (o zanedbatelných rozměrech) a po nekonečně malém šťouchnutí se díky gravitaci rozjíždí dolů. V jaké výšce se od koule odlepí?

6. Interferometr (8 bodů)

Dráhový rozdíl dvou koherentních paprsků bílého světla je 2,50 μ m. Pro které vlnové délky λ viditelného světla (390 až 790 nm) nastává interferenční maximum? Pro která nastává minimum?

7. Moment setrvačnosti (12 bodů)

Spočtěte moment setrvačnosti rovnostranného trojbokého hranolu podél jeho osy trojčetné symetrie.

8. Mýdlová bublina (10 bodů)

Mydlinová blána (n=1,33) se při kolmém dopadu světla jevila v odraženém světle modrá (450 nm). Určete její tloušťku.

9. Vážíme světlo (10 bodů)

Kolik kilogramů světla dopadne na Zemi za rok? Plošná hustota výkonu slunečního záření je ve vzdálenosti 1 AU od Slunce $W_0=1361~{\rm W\cdot m^{-2}}.$

10. Úplný odraz (8 bodů)

Pro jaký úhel nastává úplný odraz při přechodu světla ze vzduchu (n=1) do vody (n=1.33)? Pro jaký úhel nastává úplný odraz při přechodu světla z vody do vzduchu?