MCMT Homework 8

Shun Zhang

Exercise 8.1

For any non-negative constant c, define $\{\tau \leq t\} = 1_{|(X_0, \dots, X_t)| = c}$. Then $\tau = c$ is a stopping time.

Suppose there are two stopping times τ_1 and τ_2 . We can make $\{X_0, \dots, X_s\}$ satisfy $\{\tau_1 \leq s\}$ and $\{X_s, \dots, X_t\}$ satisfy $\{\tau_2 \leq t - s\}$. That is, $\{\tau_1 + \tau_2 \leq t\} = \{\tau_1 \leq s\} \land \{\tau_2 \leq t - s, X_0 = y\}$, where y is the state when $\{\tau_1 \leq s\}$ is true. So $\tau_1 + \tau_2$ is a stopping time.

Exercise 8.2

Let A be the set of vetices in one complete graph except the shared vertex. Then $P(A,V\setminus A)=\frac{1}{2n-1}.$

Start with any state in
$$A$$
, $\mathbb{P}(X_t \in A) \ge (1 - \frac{1}{2n-1})^t \ge 1 - \frac{t}{2n-1}$. As $\pi(A) < \frac{1}{2}$, we want $\mathbb{P}(X_t = A) < \frac{1}{2} + \frac{1}{4}$ for $t = t_{mix}$. So $1 - \frac{t}{2n-1} < \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$, $\frac{t}{2n-1} > \frac{1}{4}$, $t > \frac{n}{2}$. That is, $t_{mix} > \frac{n}{2}$.