

(2) Jacobi 迭代格式的收敛性

东南大学数学学院杜睿

(2) Jacobi 迭代格式的收敛性 由定理 3.11, Jacobi 迭代格式收敛 $\Longleftrightarrow \rho(\textbf{\textit{J}}) < 1.$

东南大学数学学院杜睿

数值分析

(2) Jacobi 迭代格式的收敛性 由定理 3.11, Jacobi 迭代格式收敛 $\Longleftrightarrow
ho({m J}) < 1.{m J}$ 的特征方程为

$$|\lambda \mathbf{I} - \mathbf{J}| = |\lambda \mathbf{I} + \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})| = |\mathbf{D}^{-1}(\lambda \mathbf{D} + \mathbf{L} + \mathbf{U})| = 0.$$

$$\iff |\lambda \mathbf{D} + \mathbf{L} + \mathbf{U}| = 0.$$

(2) Jacobi 迭代格式的收敛性 由定理 3.11, Jacobi 迭代格式收敛 $\Longleftrightarrow \rho(\mathbf{J}) < 1.\mathbf{J}$ 的特征方程为

$$|\lambda \mathbf{I} - \mathbf{J}| = |\lambda \mathbf{I} + \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})| = |\mathbf{D}^{-1}(\lambda \mathbf{D} + \mathbf{L} + \mathbf{U})| = 0.$$

$$\iff |\lambda \mathbf{D} + \mathbf{L} + \mathbf{U}| = 0.$$

例 3.13

讨论用 Jacobi 迭代格式解方程组

$$\begin{bmatrix} 8 & -1 & 1 \\ 2 & 10 & -1 \\ 1 & 1 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}.$$

的收敛性.

4 D > 4 B > 4 E > 4 E > E 990

解: Jacobi 迭代矩阵 J 的特征方程为

$$\begin{vmatrix} 8\lambda & -1 & 1 \\ 2 & 10\lambda & -1 \\ 1 & 1 & -5\lambda \end{vmatrix} = 0,$$

展开得

东南大学数学学院杜睿

$$400\lambda^3 + 12\lambda - 3 = 0,$$

用 Newton 迭代法求得一个实根为 $\lambda_1 = 0.146084$.

记另两根为 λ_2, λ_3 , 通过待定系数可得

$$(\lambda - \lambda_1)(400\lambda^3 + b\lambda + c) = 0,$$

其中

$$b = \frac{1}{400\lambda_1}, \quad c = \frac{3}{\lambda_1}.$$

易知 λ_2, λ_3 为共轭复根, 且有

$$|\lambda_2 \lambda_3| = \frac{3}{400\lambda_1},$$

$$|\lambda_2| = |\lambda_3| = \sqrt{\frac{3}{400\lambda_1}} = 0.226584,$$

所以

$$\rho(\mathbf{J}) = \max_{i=1,2,3} \{ |\lambda_i| \} = 0.226584 < 1,$$

Jacobi 迭代格式收敛.

4日 → 4周 → 4 恵 → 4 恵 → 9 9 (

设 A 是严格对角占优矩阵, 则 $|A| \neq 0$.

数值分析 59 / 68

设 A 是严格对角占优矩阵, 则 $|A| \neq 0$.

证 这里仅证 A 是按行严格对角占优的情况. 用反证法. 设 $|{m A}|=0,$ 则齐次方程组 ${m A}{m x}={m 0}$ 有非零解 ${m x}^*=(x_1^*,x_2^*,\cdots,x_n^*)^T.$

东南大学数学学院杜睿

设 A 是严格对角占优矩阵, 则 $|A| \neq 0$.

证 这里仅证 A 是按行严格对角占优的情况. 用反证法. 设 $|{m A}|=0$,则齐次方程组 ${m A}{m x}={m 0}$ 有非零解 ${m x}^*=(x_1^*,x_2^*,\cdots,x_n^*)^T$.设 $\|{m x}^*\|_\infty=|x_k^*|\neq 0$. 由第 k 个方程

$$a_{kk}x_k^* + \sum_{j=1, j \neq k}^n a_{kj}x_j^* = 0$$

设 A 是严格对角占优矩阵, 则 $|A| \neq 0$.

证 这里仅证 A 是按行严格对角占优的情况. 用反证法. 设 $|\mathbf{A}|=0$, 则齐次方程组 $\mathbf{A}\mathbf{x}=\mathbf{0}$ 有非零解 $\mathbf{x}^*=(x_1^*,x_2^*,\cdots,x_n^*)^T$.设 $\|\mathbf{x}^*\|_\infty=|x_k^*|\neq 0$. 由第 k 个方程

$$a_{kk}x_k^* + \sum_{j=1, j \neq k}^n a_{kj}x_j^* = 0$$

可得

$$|a_{kk}| \cdot |x_k^*| = |\sum_{j=1, j \neq k}^n a_{kj} x_j^*| \le \sum_{j=1, j \neq k}^n |a_{kj}| \cdot |x_j^*|$$

$$\le \sum_{j=1, j \neq k}^n |a_{kj}| \cdot |x_k^*|$$

设 A 是严格对角占优矩阵, 则 $|A| \neq 0$.

证 这里仅证 A 是按行严格对角占优的情况. 用反证法. 设 |A|=0, 则齐次方程组 Ax=0 有非零解 $x^*=(x_1^*,x_2^*,\cdots,x_n^*)^T$.设 $\|x^*\|_\infty=|x_k^*|\neq 0$. 由第 k 个方程

$$a_{kk}x_k^* + \sum_{j=1, j \neq k}^n a_{kj}x_j^* = 0$$

可得

$$|a_{kk}| \cdot |x_k^*| = |\sum_{j=1, j \neq k}^n a_{kj} x_j^*| \le \sum_{j=1, j \neq k}^n |a_{kj}| \cdot |x_j^*|$$

$$\le \sum_{j=1, j \neq k}^n |a_{kj}| \cdot |x_k^*|$$

两边约去 $|x_k^*|$,得 $|a_{kk}| \leq \sum_{j=1, j \neq k}^n |a_{kj}|$,与按行严格对角占优矛盾。因而 $|\mathbf{A}| \neq 0$

给定线性方程组 Ax = b, 如果 A 是严格对角占优矩阵, 则 Jacobi 迭代格式收敛。

给定线性方程组 Ax = b, 如果 A 是严格对角占优矩阵, 则 Jacobi 迭代格式收敛。

证明 记

$$\boldsymbol{B}(\lambda) = \begin{pmatrix} \lambda a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda a_{nn} \end{pmatrix}$$

则 Jacobi 迭代矩阵 \boldsymbol{J} 的特征方程为 $|\boldsymbol{B}(\lambda)|=0$.

4 D > 4 B > 4 E > 4 E > 4 O > 4 O

给定线性方程组 Ax = b, 如果 A 是严格对角占优矩阵, 则 Jacobi 迭代格式收敛。

证明 记

$$\boldsymbol{B}(\lambda) = \begin{pmatrix} \lambda a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda a_{nn} \end{pmatrix}$$

则 Jacobi 迭代矩阵 J 的特征方程为 $|B(\lambda)|=0$.设 A 是按行严格对角占优的,则当 $|\lambda|\geq 1$ 时,有

$$|\lambda a_{ii}| \ge |a_{ii}| > \sum_{j=1, j \ne k}^{n} |a_{ij}| \quad (i = 1, 2, \dots, n)$$

即 $B(\lambda)$ 是严格按行对角占优的。

4 D > 4 B > 4 E > 4 E > 9 Q C

数值分析

给定线性方程组 Ax = b, 如果 A 是严格对角占优矩阵, 则 Jacobi 迭代格式收敛。

证明 记

$$\boldsymbol{B}(\lambda) = \begin{pmatrix} \lambda a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda a_{nn} \end{pmatrix}$$

则 Jacobi 迭代矩阵 J 的特征方程为 $|B(\lambda)|=0$.设 A 是按行严格对角占优的,则当 $|\lambda|\geq 1$ 时,有

$$|\lambda a_{ii}| \ge |a_{ii}| > \sum_{j=1, j \ne k}^{n} |a_{ij}| \quad (i = 1, 2, \dots, n)$$

即 ${\bf B}(\lambda)$ 是严格按行对角占优的。由引理 3.1 可知,当 $|\lambda|\geq 1$ 时, $|{\bf B}(\lambda)|\neq 0$. 换句话说,方程 $|{\bf B}(\lambda)|=0$ 的 n 个根 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 都应满足 $|\lambda_i|<1$, $i=1,2,\cdots,n$. 于是 $\rho({\bf J})<1$. 同样可证当 ${\bf A}$ 按列严格对角占优的情况。因而 Jacobi 迭代格式收敛。

マロトマタトマミトマミト ミークの(

(3) Gauss-Seidel 迭代格式的收敛性 同样由定理 3.12, Gauss-Seidel 迭代收敛 $\Longleftrightarrow \rho(\textbf{\textit{G}}) < 1.$

东南大学数学学院杜睿

4 D > 4 D > 4 E > 4 E > E 990

信公坵

(3) Gauss-Seidel 迭代格式的收敛性

同样由定理 3.12, Gauss-Seidel 迭代收敛 $\Longleftrightarrow \rho(G) < 1$. G 的特征方程为

$$|\lambda \mathbf{I} - \mathbf{G}| = |\lambda \mathbf{I} + (\mathbf{D} + \mathbf{L})^{-1} \mathbf{U}|$$

= $|(\mathbf{D} + \mathbf{L})^{-1} (\lambda (\mathbf{D} + \mathbf{L}) + \mathbf{U}| = 0.$
 $\iff |(\lambda (\mathbf{D} + \mathbf{L}) + \mathbf{U}| = 0.$

(3) Gauss-Seidel 迭代格式的收敛性

同样由定理 3.12, Gauss-Seidel 迭代收敛 $\Longleftrightarrow \rho(\textbf{\textit{G}}) < 1$. $\textbf{\textit{G}}$ 的特征方程为

$$|\lambda \mathbf{I} - \mathbf{G}| = |\lambda \mathbf{I} + (\mathbf{D} + \mathbf{L})^{-1} \mathbf{U}|$$

= $|(\mathbf{D} + \mathbf{L})^{-1} (\lambda (\mathbf{D} + \mathbf{L}) + \mathbf{U}| = 0.$
 $\iff |(\lambda (\mathbf{D} + \mathbf{L}) + \mathbf{U}| = 0.$

例 3.14

讨论用 Gauss-Seidel 迭代格式解线性方程组

$$\begin{bmatrix} 8 & -1 & 1 \\ 2 & 10 & -1 \\ 1 & 1 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}.$$

的收敛性.

4 D > 4 B > 4 E > 4 E > E 9 9 C

解: Gauss-Seidel 迭代矩阵 G 的特征方程为

$$\begin{vmatrix} 8\lambda & -1 & 1 \\ 2\lambda & 10\lambda & -1 \\ \lambda & \lambda & -5\lambda \end{vmatrix} = \lambda(400\lambda^2 + 10\lambda - 1) = 0,$$

求得
$$\lambda_1 = 0$$
, $\lambda_2 = \frac{-1 + \sqrt{17}}{80}$, $\lambda_2 = \frac{-1 - \sqrt{17}}{80}$,

$$\rho(\mathbf{G}) = \max_{i=1,2,3} \{|\lambda_i|\} = 0.0640388 < 1,$$

Gauss-Seidel 迭代收敛.

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q C

数值分析

解: Gauss-Seidel 迭代矩阵 G 的特征方程为

$$\begin{vmatrix} 8\lambda & -1 & 1 \\ 2\lambda & 10\lambda & -1 \\ \lambda & \lambda & -5\lambda \end{vmatrix} = \lambda(400\lambda^2 + 10\lambda - 1) = 0,$$

求得
$$\lambda_1 = 0$$
, $\lambda_2 = \frac{-1 + \sqrt{17}}{80}$, $\lambda_2 = \frac{-1 - \sqrt{17}}{80}$,

$$\rho(\mathbf{G}) = \max_{i=1,2,3} \{ |\lambda_i| \} = 0.0640388 < 1,$$

Gauss-Seidel 迭代收敛.

定理 3.15

给定线性方程组 Ax = b, 如果 A 是严格对角占优矩阵, 则 Gauss-Seidel 迭代格式收敛.

(3) SOR 迭代格式的收敛性 SOR 迭代的迭代矩阵为

$$S_{\omega} = (\mathbf{D} + \omega \mathbf{L})^{-1} [(1 - \omega)\mathbf{D} - \omega \mathbf{U}],$$

由定理 3.12, SOR 迭代收敛 $\Longleftrightarrow \rho(S_{\omega}) < 1$.

(3) SOR 迭代格式的收敛性 SOR 迭代的迭代矩阵为

$$S_{\omega} = (\mathbf{D} + \omega \mathbf{L})^{-1} [(1 - \omega)\mathbf{D} - \omega \mathbf{U}],$$

由定理 3.12, SOR 迭代收敛 $\Longleftrightarrow \rho(S_{\omega}) < 1$.

定理 3.16

SOR 迭代收敛的必要条件是 $0 < \omega < 2$.

证 设 S_{ω} 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则由线性代数知

$$|\det(S_{\omega})| = |\lambda_1 \lambda_2 \cdots \lambda_n| \le \rho(S_{\omega})^n.$$

另一方面, 由定理 3.12, 若 SOR 收敛, 则 $\rho(S_{\omega}) < 1$, 从而有 $|\det(S_{\omega})| < 1$.

证 设 S_{ω} 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则由线性代数知

$$|\det(S_{\omega})| = |\lambda_1 \lambda_2 \cdots \lambda_n| \le \rho(S_{\omega})^n.$$

另一方面,由定理 3.12,若 SOR 收敛,则 $\rho(S_\omega) < 1$,从而有 $|\det(S_\omega)| < 1$.而行列式

$$\det(S_{\omega}) = \det[(\boldsymbol{D} + \omega \boldsymbol{L})^{-1}] \det[(1 - \omega)\boldsymbol{D} - \omega \boldsymbol{U}]
= \left(\prod_{i=1}^{n} a_{ii}\right)^{-1} \prod_{i=1}^{n} [(1 - \omega)a_{ii}]
= (1 - \omega)^{n}.$$

证 设 S_{ω} 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则由线性代数知

$$|\det(S_{\omega})| = |\lambda_1 \lambda_2 \cdots \lambda_n| \le \rho(S_{\omega})^n.$$

另一方面,由定理 3.12,若 SOR 收敛,则 $\rho(S_{\omega})<1$,从而有 $|\det(S_{\omega})|<1$.而行列式

$$\begin{aligned} \det(S_{\omega}) &= \det[(\boldsymbol{D} + \omega \boldsymbol{L})^{-1}] \det[(1 - \omega) \boldsymbol{D} - \omega \boldsymbol{U}] \\ &= \left(\prod_{i=1}^{n} a_{ii}\right)^{-1} \prod_{i=1}^{n} [(1 - \omega) a_{ii}] \\ &= (1 - \omega)^{n}. \end{aligned}$$

从而有

东南大学数学学院杜睿

$$|(1-\omega)^n|<1,\quad\Longrightarrow 0<\omega<2.$$

| 4 ロ ト 4 回 ト 4 亘 ト 4 亘 - り 9 0 0

给定线性方程组 Ax = b. 如果 A 对称正定, 且 $0 < \omega < 2$, 则 SOR 迭代收敛.

数值分析

给定线性方程组 Ax = b. 如果 A 对称正定, 且 $0 < \omega < 2$, 则 SOR 迭代收敛.

数值分析

例

给定线性方程组 Ax = b, A 为 n 阶非奇异矩阵. 构造迭代

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \omega(\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}), \quad (k = 0, 1, 2, \dots)$$

其中 $\omega \neq 0$ 为常数.

 $lackbox{f 0}$ 证明: 如果迭代收敛, 则迭代序列 $\{{f x}^{(k)}\}_{k=0}^\infty$ 收敛于方程 ${f A}{f x}={f b}$ 的解.

② 设
$$\mathbf{A}=\left[egin{array}{ccc} 2&1&1\\1&2&1\\1&1&2 \end{array}
ight]$$
,则 ω 取何值时迭代收敛?

解

① 证 设 $\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{x}^*$. 在迭代格式两边取极限

$$\lim_{k \to \infty} \mathbf{x}^{(k+1)} = \lim_{k \to \infty} [\mathbf{x}^{(k)} + \omega(\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)})].$$

得 $\mathbf{x}^* = \mathbf{x}^* + \omega(\mathbf{b} - \mathbf{A}\mathbf{x}^*)$. 因为 $\omega \neq 0$, 所以 $\mathbf{A}\mathbf{x}^* = \mathbf{b}$, 即 \mathbf{x}^* 是方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解.

② 迭代格式的迭代矩阵为 $I-\omega A$, 迭代收敛 $\Longleftrightarrow \rho(I-\omega A) < 1$. 矩阵 $I-\omega A$ 的特征方程为

$$\begin{split} |\lambda \pmb{I} - (\pmb{I} - \omega \pmb{A})| \\ &= \begin{vmatrix} (\lambda - 1 + 2\omega) & \omega & \omega \\ \omega & (\lambda - 1 + 2\omega) & \omega \\ \omega & \omega & (\lambda - 1 + 2\omega) \end{vmatrix} = 0, \\ & \vdots \\ |\mathcal{I}\mu = (\lambda - 1 + 2\omega), \Longrightarrow \mu^3 - 3\omega^2\mu + 2\omega^3 = 0, \\ & \Longrightarrow (\mu - \omega)^2(\mu + 2\omega) = 0. \\ & \Longrightarrow \mu = \omega \vec{\mathbf{x}}\mu = -2\omega, \Longrightarrow \lambda = 1 - \omega \vec{\mathbf{x}}\lambda = 1 - 4\omega. \\ & \begin{cases} |1 - \omega| < 1 \\ |1 - 4\omega| < 1 \end{cases} \Longrightarrow 0 < \omega < \frac{1}{2}. \end{split}$$

- イロトイ部トイミトイミト ヨーの

习题 3 p.118

4, 5(1), 8, 17, 18, 19, 20, 23, 24, 27, 28, 32(1) 上机作业: 40 或 41