Mechatronics Systems Design	
Laboratory ECE 491	
Lean Dannahau	
Igor Paprotny	
Uncoming Chackaut	
Upcoming Checkout	
 This week: Motor controller – Using MAX620 (Lab 5) 	
Next week:DC – DC Converter – Lab 6	
Quiz 2 (2/28/2017)	
• 30 min at start of class	
• Topics:	
DC-DC converterOP-Amps	
Encoders (incl. today)	

PCB Board 1

- Designs to John by Wednesday 3/8/2017
 - Noon
- Use template provided for you
- Shall contain:
 - power supply (DC-DC)
 - Remember disconnect switch
 - Motor controllers

Midterm (3/14/2017)

- Open Book/Open Notes
- Topics:
 - Motors
 - Motor controllers
 - FET review
 - DC-DC converter
 - OP-Amps review
 - Encoders (incl. today)

Motor Controllers Topologies

- Single FET motor controllers have the
 - simplest topology

 Can only accelerate, and coast to stop
- Other topologies allow for:
- BreakingBackwards motion
- Most common, full H-bridge
- Possible to use a half-bridge to simplify the controller design

single transistor controller

Motor Controllers Topology: Half-Bridge

- It is possible to accelerate breaking by use the concept of **dynamic breaking**
- The V_{emf} generated by the motor is used to drive current through armature to cause breaking of the motor
- Required additional FET

Motor Controllers Topology – H-Bridge

- The most versatile motor controller topology is an Hbridge
- Requires four (4) FETs per

Review: Power Supply for Autonomous Car battery Dower Supply Dower Supply MCU Sensors Schematic of the required power supply for the sub-systems

Power Supply II: Boost Converter – 1 **Charge Stage**

- The switch is closed
- The inductor starts storing magnetic energy by conserving current passing through

Power Supply II: Boost Converter – 2 Step-up Stage

- · The switch opens
- Inductor "attempts" to maintain current and thus throws large inversed voltage to maintain current $\mathbf{i}_{L}.$
- The current i_L passes through diode D and charges up capacitor C

Power Supply II: Boost Converter – LT1370

- Solid state solution switching regula
- Low (minimum) supply voltage 2.7 '
- Maximum 6A output current
- Use low ESR capacitors

5

Power Supply for Autonomous Car — Entire System • Two-component stable power-supply: 1. Boost converter to make sure input voltage to linear regulator is always > 5 V + V_{dropout} • E.g. 12 V 2. Linear regulator to provide stable 5 V supply TO-DC Boost Converter Voltage Regulator Vout

Power Supply for Autonomous Car — Entire System Redundancy: - Reliability through redundancy - can disconnect the DC-DC converter and still most likely be ok. - Can avoid high current conditions in SW 7.2 V 8 DC-DC Boost Converter Voltage Regulator Voltage Regulator

Sensors - An Introduction

- Obtains the information about the environment
- Provides transduction between the physical (mechanical) and electrical domains
 - Transduction: Conversion of energy between energy domains

Review - Operational Amplifiers

- Operational Amplifiers (OpAmps) are commonly used to amplify (precondition) sensing signal for input to a microcontrollers
- OpAmps are analyzed as ideal

Ideal OP-Amp: $V_{out} = A(V^+ - V^-)$

High input impedance (i+ ≈ 0, i- ≈ 0)
 Low output impedance
 Infinite gain (A is very large)

Review – Operational Amplifiers

Two main configurations:

Non-inverting Amplifier

Inverting Amplifier

Review - Operational Amplifiers

Inverting OpAmp as charge integrator

 $V_{out}(t') = -\int_0^{t'} \frac{V_{in}(t)}{RC} dt + V_{out}(0)$

Review - Operational Amplifiers

Single supply inverting OpAmp

Summary: Sensors and Operational Amplifiers

- Sensors provide information about the state of the Environment to the microcontroler
- Operational Amplifiers (OpAmps) are often used to amplify the sensing signal
- OpAmps come in two flavors
 - Non-inverting
 Inverting
- $\bullet \quad \hbox{Gain of a non-inverting amplifier is always} > 1 \\$
- A virtual ground can be used if an amplifier is used as single supply

Optical Rotary Encoders and Velocity Sensing

- Velocity sensing is necessary for a car to reach a set velocity

 - To reach the desired velocity, the car has to accelerate, i.e. increase i_m
 Once desired velocity is reach the car has to coast, reducing i_m to counteract friction and drag
 - $-\ \ I_{\rm m}$ must be larger to maintain same velocity if traversing an incline
- Velocity = distance / time
- Assuming a no-slip condition:

Resulting velocity:

$$\Delta x = \Delta \theta \cdot n$$

$$v = \frac{\Delta x}{\Delta t} = \frac{\Delta \theta}{\Delta t} \cdot r = \omega \cdot r$$

Optical Rotary Encoders and Velocity Sensing

- Optical Rotary Encoders:

 - Non-contact way to measure rotation/angular velocity
 Can be purchased enclosed, or can be build onto the car wheel base
- Basics of operations:

Optical Rotary Encoders and Velocity Sensing

- Two ways to measure velocity:
 1. Count number of transitions (edges) within a fixed amount of time.
 2. Measure time between two transitions, i.e. the width of pulse or valley.
- Depends on the number of transitions v.s. sampling rate

Optical Rotary Encoders and Velocity Sensing

Count number of edges in a fixed amount of time:

Optical Rotary Encoders and Velocity Sensing

Velocity Sensing – Alternative Approaches

- Optical encoder is just one way to measure velocity
 Other approaches include:
 Back EMF from the motors
 Other types of proximity sensors to mark a revolution of the wheel
 Good example is Hall-effect sensors

Summary: Optical Rotary Encoders and **Velocity Sensing**

- Assuming no-slip conditions, wheel rotation corresponds to distance traveled
- An optical rotary encoder wheel can be used to measure rotation
- Two approaches:
 - Measure time between transitions
 - Count number of transitions within a time interval
- Which approach to chose depends on: velocity, sampling time, allowable error
- Other approaches, such as sensing back EMF or hall effect (magnetic) sensing can be used to estimate the velocity

Optical Line Camera and Line **Following**

- A vision system is a key component in any autonomously driving car
- Optical camera projects an image onto a surface composed of light sensitive
- Charge Coupled Device (CCD) image sensor:
 - An array of light sensitive pixels fabricated on a silicon chip, used to detect project
 2D array an essential component in many digital cameras
- Sophisticated image reconstruction algorithms usually need
- Line or edge following can be constructed using a 1D CCD array, and a simplified

Optical Line Camera and Line Following Line camera contains 1D CCD array (line) Lens to focus the image across the CCD array

11

