2 Loi de Poisson

La loi de Poisson intervient dans la modélisation de phénomènes aléatoires où le futur est indépendant du passé.

Exemples : pannes de machines, appels téléphoniques dans un standard, sinistres, files d'attente...

1. Définition

Une variable aléatoire X suit la loi de Poisson de paramètre $\lambda(\lambda>0)$ notée $\mathcal{P}(\lambda)$ lorsque pour tout entier naturel k:

$$P(X=k) = \frac{e^{-\lambda} \times \lambda^k}{k!} \quad \text{où} \quad k! = 1 \times 2 \times 3 \times ... \times k \text{ si } k \neq 0 \text{ et } 0! = 1.$$

2. Propriété

Si une variable aléatoire X suit la loi de Poisson $\mathcal{P}(\lambda)$ de paramètre λ on a :

$$E(X) = \lambda \text{ et } \sigma(X) = \sqrt{\lambda}.$$

Remarque : tous les calculs avec la loi de Poisson seront effectués avec la calculatrice ou un logiciel.

Approximation d'une loi binomiale par une loi de Poisson

On admet que si n est « grand », p « voisin de 0 » et np pas trop grand, alors la **loi binomiale de paramètres** n et p, $\mathfrak{B}(n, p)$, peut être approchée par **la loi de Poisson de paramètre** $\lambda = np$.