Math 462: Homework 7

Paul Hacking

4/4/10

- (1) Consider the motion T of \mathbb{R}^3 defined by $T(\mathbf{x}) = -\mathbf{x}$.
 - (a) Is T a direct or opposite motion?
 - (b) We classified motions of \mathbb{R}^3 into 6 types: rotations, reflections, rotary reflections, translations, glides, and twists. What type of motion is T? Give a precise geometric description in these terms (include angle of rotation and/or plane of reflection etc.).
 - (c) Now let P be a regular polyhedron in \mathbb{R}^3 with center at the origin (so P is either a tetrahedron, cube, octahedron, dodecahedron, or icosahedron). In which cases is T a symmetry of P?
- (2) Recall that the dihedral group D_n is the group of symmetries of a regular n-sided polygon P. We showed in class that D_n consists of n rotations (including the identity transformation) and n reflections. Moreover, if a denotes a rotation about the center of P through angle $2\pi/n$ anticlockwise and b denotes reflection in a line of symmetry of P, then D_n is generated by a and b (more precisely, the rotations are $1, a, \ldots, a^{n-1}$ and the reflections are $b, ab, \ldots, a^{n-1}b$). The symmetries a and b satisfy the relations $a^n = b^2 = 1$ and $ba = a^{-1}b$ (and all other relations can be derived from these). Express the following products in D_5 in the form $a^i b^j$ where $0 \le i \le 5$ and $0 \le j \le 1$ and describe them geometrically.
 - (a) a^3bab .
 - (b) $a^2ba^3b^2a$
 - (c) $a^2ba^{-1}b^{-1}a^3b^3$.
- (3) In this problem we see that the dihedral group D_n can be realized as a subgroup of the group of rotations of \mathbb{R}^3 . Let P be a regular n-sided polygon. Position P in the plane $(z=0) \subset \mathbb{R}^3$ with center O at the origin and one vertex Q on the x-axis.

- (a) What is the matrix A of the rotation S of \mathbb{R}^3 about the z-axis through angle $2\pi/n$ anticlockwise? What is the symmetry of P induced by S?
- (b) Describe a rotation T of \mathbb{R}^3 which maps P to itself and when regarded as a symmetry of P is given by reflection in the line OQ. What is the matrix B of T?
- (c) Use parts (a) and (b) to describe the dihedral group D_n (the group of symmetries of P) in terms of rotations of \mathbb{R}^3 . What are the matrices of these rotations?
- (4) Recall that a permutation of 1, 2, ..., n is a function $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ such that $f(i) \neq f(j)$ for $i \neq j$. The symmetric group S_n is the group of all permutations with the group law being composition of functions. A transposition is a permutation f that switches two elements f and f and leaves the remaining elements fixed, that is, f(i) = j, f(j) = i, and f(k) = k for $k \neq i, j$. A permutation f is a cycle of length f if there are distinct numbers f, ..., f such that f(f) = f, f(f) = f, and f(f) = f. We say two cycles f, f are disjoint if for each f either f(f) = f or f(f) = f. In class we explained that every permutation can be written as a product of transpositions. We also explained how to write a permutation as a composition of disjoint cycles.
 - (a) Show that order of S_n (the number of permutations of 1, 2, ..., n) equals $n! = n \cdot (n-1) \cdots 2 \cdot 1$.
 - (b) Write each of the following permutations as a product of disjoint cycles.
 - (i) $f: \{1, \dots, 5\} \to \{1, \dots, 5\}, f(1) = 3, f(2) = 4, f(3) = 5, f(4) = 1, f(5) = 2.$
 - (ii) $g: \{1, \dots, 7\} \to \{1, \dots, 7\}, g(1) = 7, g(2) = 6, g(3) = 1, g(4) = 2, g(5) = 3, g(6) = 4, g(7) = 5.$
 - (iii) $h: \{1, \dots, 8\} \to \{1, \dots, 8\}, \ h(1) = 6, \ h(2) = 2, \ h(3) = 5, \ h(4) = 7, \ h(5) = 8, \ h(6) = 1, \ h(7) = 3, \ h(8) = 4.$
 - (c) Using part (b) or otherwise, write each of the permutations f, g, h as a composition of transpositions.
 - (d) The cycle type of a permutation f is the (unordered) list of the lengths of the cycles in the description of f as a composition of

- disjoint cycles. For example f = (123)(45)(67) has cycle type 2, 2, 3. List the possible cycle types for S_4 and S_5 . How can we determine the order of a permutation from its cycle type? (The *order* of a permutation is the least number $r \geq 1$ such that applying the permutation r times gives the identity permutation.)
- (e) We say that a permutation is *even* if it can be written as a product of an even number of transpositions. The set of even permutations is a subgroup of S_n called the *alternating group* A_n . What are the possible cycle types for elements of A_4 and A_5 ? What are their orders?
- (5) In HW6 we showed that the group of symmetries of the tetrahedron can be identified with the symmetric group S_4 of permutations of 4 objects by considering the permutations of the vertices of the tetrahedron induced by its symmetries. For each cycle type of S_4 describe the corresponding symmetries geometrically. What is the geometric significance of the subgroup $A_4 \subset S_4$?