Centro de Investigación y de Estudios Cinvestav Avanzados del Instituto Politécnico Nacional Unidad Guadalajara

Tarea 1. Consenso lineal

Presentado por

Jesús Alejandro Díaz Hernández

Presentado para el curso de Tópicos avanzados de control 2

Curso impartido por: Héctor Manuel Becerra Fermín Profesor

Guadalajara, Jalisco

20 de mayo 2024

Pregunta 1.-

El grafo utilizado es el mostrado a continuación:

a)

De acuerdo con su conectividad el grafo es $\bf No~dirigido$

b)

De acuerdo a su forma el grafo es un **ciclo**, pero también podría nombrarse **2-regular** porque todos sus nodos tienen dos conexiones

c)

La matriz de grado del grafo es

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

d)

La matriz de adyacencia del grafo es

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

e)

La matriz de Laplaciana del grafo es

$$\begin{bmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

f)

La matriz de valores propios del grafo es

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

y la de vectores propios es

$$\begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} & \frac{1}{2} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2} & -\frac{1}{2\sqrt{3}} & \frac{1}{2} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{2\sqrt{3}} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{2\sqrt{3}} & \frac{1}{2} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

Nótese que el primer vector está en el span de $\vec{1}$. Tiene una conectividad algebraica de: $\lambda_2=1$.

 $\mathbf{g})$

Considerando cada nodo como $\dot{x}=u,y$ definiendo las entradas de control como el negativo del error de consenso para cada agente. Se calcula el error mediante

$$e_i(t) = \sum_{j \in N_i} a_{ij} (x_j(t) - x_i(t))$$

Usando un ciclo "for" en un script de MATLAB

h)

resolviendo la ecuación diferencial con la aproximación de Euler obtenemos la siguiente gráfica de evolución en el tiempo:

i)

Haciendo lo mismo, pero con el Laplaciano obtenemos

2.-

Se incluyeron las siguientes aristas en el grafo

a)

La matriz Laplaciana del grafo es

$$\begin{bmatrix} 3 & -1 & -1 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

b)

La matriz de valores propios (escritos como decimales) del grafo es

[0	0	0	0	0	0
0	1.5857	0	0	0	0
0	0	2	0	0	0 0 0 0 0 5
	0	0	3	0	0
0	0	0	0	4.4121	0
0	0	0	0	0	5

y la de vectores propios es

0.4082	0.2705	-0.4082	0.2886	-0.6532	-0.2886
0.4082	0	-0.4082	-0.5773	0	0.5773
0.4082	-0.2705	-0.4082	0.2886	0.6532	-0.2886
0.4082	-0.6532	0.4082	0.2886	-0.2705	0.2886
0.4082	0	0.4082	-0.5773	0	-0.5773
0.4082	0.6532	0.4082	0.2886	0.2705	0.2886

Nótese que el primer vector está en el span de $\vec{1}$

c)

Nuevamente considerando el modelo de cada nodo como en el punto anterior e implementando el control de consenso con la matriz Laplaciana

$$x_{k+1} = x_k + \Delta t(-Lx_k)$$

obtenemos la evolución de estados del siguiente inciso

d)

Evolución de estados

3.-

Agregando aristas de forma que quede el siguiente grafo completo:

a)

La matriz Laplaciana del grafo es

$$\begin{bmatrix} 5 & -1 & -1 & -1 & -1 & -1 \\ -1 & 5 & -1 & -1 & -1 & -1 \\ -1 & -1 & 5 & -1 & -1 & -1 \\ -1 & -1 & -1 & 5 & -1 & -1 \\ -1 & -1 & -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & -1 & -1 & 5 \end{bmatrix}$$

b)

La matriz de valores propios del grafo es

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}$$

y la de vectores propios es

$$\begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} & -\frac{1}{2\sqrt{5}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \sqrt{\frac{5}{6}} & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & 0 & 0 & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} & -\frac{1}{2\sqrt{5}} & \frac{\sqrt{3}}{2} & 0 & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} & -\frac{1}{2\sqrt{5}} & -\frac{1}{2\sqrt{3}} & \sqrt{\frac{2}{3}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} & -\frac{1}{2\sqrt{5}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Nótese que el primer vector está en el span de $\vec{1}$

c)

Volvemos a modelar el sistema como en los puntos anteriores y obtenemos la evolución del siguiente inciso

d)

4.-

Si calculamos el valor en estado estacionario mediante

$$\frac{1}{n}\vec{1}\vec{1}^T x(0)$$

podremos observar que este valor es un promedio de los valores iniciales, en mi caso como los valores iniciales fueron arbitrariamente elegidos como $x(0) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$ Este promedio corresponde a 3.5.

Como podemos observar a partir de las gráficas en el primer punto, calcular la acción de control en lazo cerrado utilizando los negativos de los errores o bien el Laplaciano nos resulta en lo mismo. Esto se puede apreciar comparando las gráficas del punto h) y del i). Además, comparando las gráficas de los tres puntos, podemos ver que el valor en estado estacionario (el valor de consenso) es el mismo para todos los grafos. Debido a que todos tienen las mismas condiciones iniciales, sin embargo, mientras más conectado está el sistema, más rápido converge a este valor.