

#### **MULTIPLE INTEGRALS**

# Double Integrals over General Regions

In this section, we will learn:

How to use double integrals to find
the areas of regions of different shapes.

#### **SINGLE INTEGRALS**

For single integrals, the region over which we integrate is always an interval.

For double integrals, we want to be able to integrate a function *f* not just over rectangles but also over regions *D* of more general shape.

 One such shape is illustrated.



## We suppose that *D* is a bounded region.

■ This means that *D* can be enclosed in a rectangular region *R* as shown.



Then, we define a new function *F* with domain *R* by:

$$F(x,y)$$

$$=\begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D \\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}$$

If *F* is integrable over *R*, then we define the double integral of *f* over *D* by:

$$\iint\limits_D f(x,y) \, dA = \iint\limits_R F(x,y) \, dA$$

where *F* is given by Equation 1.

Definition 2 makes sense because R is a rectangle and so  $\iint_R F(x,y) dA$ 

has been previously defined.

The procedure that we have used is reasonable because the values of F(x, y) are 0 when (x, y) lies outside D—and so they contribute nothing to the integral.

■ This means that it doesn't matter what rectangle *R* we use as long as it contains *D*.

In the case where  $f(x, y) \ge 0$ , we can still interpret

$$\iint_D f(x,y) dA$$

as the volume of the solid that lies above D and under the surface z = f(x, y) (graph of f).

## You can see that this is reasonable by:

- Comparing the graphs of f and F here.
- Remembering  $\iint_R F(x,y) dA$  is the volume under the graph of F.



This figure also shows that *F* is likely to have discontinuities at the boundary points of *D*.



Nonetheless, if f is continuous on D and the boundary curve of D is "well behaved" then it can be shown that  $\iint_D F(x,y) dA$  exists and so  $\iint_D f(x,y) dA$  exists.

In particular, this is the case for the following types of regions.

In particular, this is the case for the following types of regions.

A plane region *D* is said to be of type I if it lies between the graphs of two continuous functions of *x*, that is,

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

where  $g_1$  and  $g_2$  are continuous on [a, b].

Some examples of type I regions are shown.







To evaluate  $\iint_D f(x,y) dA$  when D is a region of type I, we choose a rectangle  $R = [a, b] \times [c, d]$  that contains D.



Then, we let *F* be the function given by Equation 1.

■ That is, *F* agrees with *f* on *D* and *F* is 0 outside *D*.

## Then, by Fubini's Theorem,

$$\iint_{D} f(x, y) dA = \iint_{R} F(x, y) dA$$
$$= \int_{a}^{b} \int_{c}^{d} F(x, y) dy dx$$

Observe that F(x, y) = 0

if  $y < g_1(x)$  or

 $y > g_2(x)$  because (x, y)

then lies outside D.



### Therefore,

$$\int_{c}^{d} F(x, y) dy = \int_{g_{1}(x)}^{g_{2}(x)} F(x, y) dy$$
$$= \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy$$

because F(x, y) = f(x, y)when  $g_1(x) \le y \le g_2(x)$ .

Thus, we have the following formula that enables us to evaluate the double integral as an iterated integral.

If *f* is continuous on a type I region *D* such that

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

then

$$\iint_{D} f(x,y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx$$

The integral on the right side of Equation 3 is an iterated integral.

■ The exception is that, in the inner integral, we regard x as being constant not only in f(x, y) but also in the limits of integration,  $g_1(x)$  and  $g_2(x)$ .

#### **Equation 4**

We also consider plane regions of type II, which can be expressed as:

$$D = \{(x, y) \mid c \le y \le d, h_1(y) \le x \le h_2(y)\}$$

where  $h_1$  and  $h_2$  are continuous.

Two such regions are illustrated.



Using the same methods that were used in establishing Equation 3, we can show that:

$$\iint_{D} f(x,y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) dx dy$$

where *D* is a type II region given by Equation 4.

Evaluate 
$$\iint_D (x+2y) dA$$

where *D* is the region bounded by the parabolas  $y = 2x^2$  and  $y = 1 + x^2$ .

#### **Example 1**

The parabolas intersect when  $2x^2 = 1 + x^2$ , that is,  $x^2 = 1$ .

■ Thus,  $x = \pm 1$ .



We note that the region *D* is a type I region but not a type II region.

So, we can write:

$$D = \{(x, y) \mid -1 \le x \le 1, \\ 2x^2 \le y \le 1 + x^2\}$$



The lower boundary is  $y = 2x^2$  and the upper boundary is  $y = 1 + x^2$ .

 So, Equation 3 gives the following result.



$$\iint_{D} (x+2y) dA$$

$$= \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x+2y) dy dx$$

$$= \int_{-1}^{1} [xy + y^{2}]_{y=2x^{2}}^{y=1+x^{2}} dx$$

$$= \int_{-1}^{1} [x(1+x^{2}) + (1+x^{2})^{2} - x(2x^{2}) - (2x^{2})^{2}] dx$$

$$= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx$$

$$= -3\frac{x^5}{5} - \frac{x^4}{4} + 2\frac{x^3}{3} + \frac{x^2}{2} + x \bigg]_{-1}^{1} = \frac{32}{15}$$

#### **NOTE**

When we set up a double integral as in Example 1, it is essential to draw a diagram.

 Often, it is helpful to draw a vertical arrow as shown.



#### NOTE

## Then, the limits of integration for the inner integral can be read from the diagram:

- The arrow starts at the lower boundary y = g<sub>1</sub>(x), which gives the lower limit in the integral.
- The arrow ends at the upper boundary y = g<sub>2</sub>(x), which gives the upper limit of integration.



#### NOTE

For a type II region, the arrow is drawn horizontally from the left boundary to the right boundary.

Find the volume of the solid that lies under the paraboloid  $z = x^2 + y^2$  and above the region D in the xy-plane bounded by the line y = 2x and the parabola  $y = x^2$ . From the figure, we see that *D* is a type I region and

$$D = \{(x, y) \mid 0 \le x \le 2, x^2 \le y \le 2x\}$$

So, the volume under  $z = x^2 + y^2$  and above *D* is calculated as follows.



V

$$= \iint\limits_D (x^2 + y^2) \, dA$$

$$= \int_0^2 \int_{x^2}^{2x} (x^2 + y^2) \, dy \, dx$$

$$= \int_0^2 \left[ x^2 y + \frac{y^3}{3} \right]_{y=x^2}^{y=2x} dx$$

#### **TYPE I REGIONS**

#### E. g. 2—Solution 1

$$= \int_0^2 \left[ x^2 (2x) + \frac{(2x)^3}{3} - x^2 x^2 - \frac{(x^2)^3}{3} \right] dx$$

$$= \int_0^2 \left( -\frac{x^6}{3} - x^4 + \frac{14x^3}{3} \right) dx$$

$$= -\frac{x^7}{21} - \frac{x^5}{5} + \frac{7x^4}{6} \bigg]_0^2$$

$$=\frac{216}{35}$$

#### **TYPE II REGIONS**

E. g. 2—Solution 2

From this figure, we see that *D* can also be written as a type II region:

$$D = \{(x, y) \mid 0 \le y \le 4, \frac{1}{2}y \le x \le \sqrt{y}$$

 So, another expression for V is as follows.



#### **TYPE II REGIONS**

#### E. g. 2—Solution 2

$$V = \iint_D (x^2 + y^2) dA = \int_0^4 \int_{\frac{1}{2}}^{\sqrt{y}} (x^2 + y^2) dx dy$$

$$= \int_0^4 \left[ \frac{x^3}{3} + y^2 x \right]_{x = \frac{1}{2}y}^{x = \sqrt{y}} dy$$

$$= \int_0^4 \left( \frac{y^{3/2}}{3} + y^{5/2} - \frac{y^3}{24} - \frac{y^3}{2} \right) dy$$

$$= \frac{2}{15} y^{5/2} + \frac{2}{7} y^{7/2} - \frac{13}{96} y^4 \Big]_0^4 = \frac{216}{35}$$

The figure shows the solid whose volume is calculated in Example 2.

#### It lies:

- Above the xy-plane.
- Below the paraboloid  $z = x^2 + y^2$ .
- Between the plane y = 2x and the parabolic cylinder  $y = x^2$ .



**Evaluate** 

$$\iint_{D} xy \, dA$$

where *D* is the region bounded by the line y = x - 1 and the parabola  $y^2 = 2x + 6$ 

## The region D is shown.

Again, D is both type I and type II.



#### **TYPE I & II REGIONS**

#### **Example 3**

However, the description of *D* as a type I region is more complicated because the lower boundary consists of two parts.



#### **TYPE I & II REGIONS**

#### **Example 3**

Hence, we prefer to express *D* as a type II region:

$$D = \{(x, y) \mid -2 \le y \le 4, \ 1/2y^2 - 3 \le x \le y + 1\}$$

 Thus, Equation 5 gives the following result.



$$\iint_D xy dA = \int_{-2}^4 \int_{\frac{1}{2}y^2 - 3}^{y+1} xy \, dx \, dy$$

$$= \int_{-2}^{4} \left[ \frac{x^2}{2} y \right]_{x = \frac{1}{2}y^2 - 3}^{x = y + 1} dy$$

$$= \frac{1}{2} \int_{-2}^{4} y \left[ (y+1)^2 - (\frac{1}{2}y^2 - 3)^2 \right] dy$$

$$= \frac{1}{2} \int_{-2}^{4} \left( -\frac{y^5}{4} + 4y^3 + 2y^2 - 8y \right) dy$$

$$= \frac{1}{2} \left[ -\frac{y^6}{24} + y^4 + 2\frac{y^3}{3} - 4y^2 \right]_{-2}^4 = 36$$

#### **TYPE I & II REGIONS**

#### **Example 3**

If we had expressed *D* as a type I region, we would have obtained:

$$\iint_D xy dA = \int_{-3}^{-1} \int_{-\sqrt{2x+6}}^{\sqrt{2x+6}} xy \, dy \, dx + \int_{-1}^{5} \int_{x-1}^{\sqrt{2x+6}} xy \, dy \, dx$$

 However, this would have involved more work than the other method.



Find the volume of the tetrahedron bounded by the planes

$$x + 2y + z = 2$$

$$x = 2y$$

$$x = 0$$

$$z = 0$$

# In a question such as this, it's wise to draw two diagrams:

- One of the three-dimensional solid
- One of the plane region D over which it lies

#### **Example 4**

The figure shows the tetrahedron T bounded by the coordinate planes x = 0, z = 0, the vertical plane x = 2y, and the plane

$$x + 2y + z = 2$$
.



#### **Example 4**

As the plane x + 2y + z = 0 intersects the xy-plane (whose equation is z = 0) in the line x + 2y = 2, we see that:

■ *T* lies above the triangular region *D* in the *xy*-plane within the lines x = 2y x + 2y = 2 x = 0



**Example 4** 

The plane x + 2y + z = 2 can be written as z = 2 - x - 2y.

So, the required volume lies under the graph of the function z = 2 - x - 2y and above

$$D = \{(x, y) \mid 0 \le x \le 1, x/2 \le y \le 1 - x/2\}$$

### Therefore,

$$V$$

$$= \iint_{D} (2 - x - y) dA$$

$$= \int_{0}^{1} \int_{x/2}^{1 - x/2} (2 - x - 2y) dy dx$$

$$= \int_{0}^{1} \left[ 2y - xy - y^{2} \right]_{y = x/2}^{y = 1 - x/2} dx$$

#### **Example 4**

$$= \int_0^1 \left[ 2 - x - x \left( 1 - \frac{x}{2} \right) - \left( 1 - \frac{x}{2} \right)^2 - x + \frac{x^2}{2} + \frac{x^2}{4} \right] dx$$

$$= \int_0^1 (x^2 - 2x + 1) dx$$

$$= \frac{x^3}{3} - x^2 + x \bigg]_0^1$$

$$=\frac{1}{3}$$

### Evaluate the iterated integral

$$\int_0^1 \int_x^1 \sin(y^2) dy dx$$

- If we try to evaluate the integral as it stands, we are faced with the task of first evaluating  $\int \sin(y^2) dy$
- However, it's impossible to do so in finite terms since is not an elementary function. (See their of 5) ection 7.5)

# Hence, we must change the order of integration.

- This is accomplished by first expressing the given iterated integral as a double integral.
- Using Equation 3 backward, we have:

$$\int_0^1 \int_x^1 \sin(y^2) dy dx = \iint_D \sin(y^2) dA$$

where  $D = \{(x, y) \mid 0 \le x \le 1, x \le y \le 1\}$ 

## DOUBLE INTEGRALS Example 5 We sketch that region *D* here.



Then, from this figure, we see that an alternative description of *D* is:

$$D = \{(x, y) \mid 0 \le y \le 1, 0 \le x \le y\}$$

 This enables us to use Equation 5 to express the double integral as an iterated integral in the reverse order, as follows.



$$\int_{0}^{1} \int_{x}^{1} \sin(y^{2}) dy dx = \iint_{D} \sin(y^{2}) dA$$

$$= \int_{0}^{1} \int_{0}^{y} \sin(y^{2}) dx dy$$

$$= \int_{0}^{1} \left[ x \sin(y^{2}) \right]_{x=0}^{x=y} dy$$

$$= \int_{0}^{1} y \sin(y^{2}) dy$$

$$= -\frac{1}{2} \cos(y^{2}) \Big]_{0}^{1}$$

$$= \frac{1}{2} (1 - \cos 1)$$

# We assume that all the following integrals exist.

■ The first three properties of double integrals over a region *D* follow immediately from Definition 2 and Properties 7, 8, and 9 in Section 15.1

#### **PROPERTIES 6 AND 7**

$$\iint_{D} [f(x,y) + g(x,y)] dA$$

$$= \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA$$

$$\iint_{D} cf(x,y)dA = c\iint_{D} f(x,y)dA$$

#### **PROPERTY 8**

If  $f(x, y) \ge g(x, y)$  for all (x, y) in D, then

$$\iint\limits_D f(x,y) \, dA \ge \iint\limits_D g(x,y) \, dA$$

#### **PROPERTIES**

The next property of double integrals is similar to the property of single integrals given by the equation

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

#### **PROPERTY 9**

If  $D = D_1 \stackrel{.}{\to} D_2$ , where  $D_1$  and  $D_2$  don't overlap except perhaps on their boundaries, then

$$\iint_{D} f(x,y)dA = \iint_{D_{1}} f(x,y)dA + \iint_{D_{2}} f(x,y)dA$$



#### **PROPERTY 9**

Property 9 can be used to evaluate double integrals over regions *D* that are neither type I nor type II but can be expressed as a union of regions of type I or type II.



The next property of integrals says that, if we integrate the constant function f(x, y) = 1 over a region D, we get the area of D:

$$\iint\limits_{D} 1 \, dA = A(D)$$

#### **PROPERTY 10**

The figure illustrates why Equation 10 is true.

- A solid cylinder whose base is D and whose height is 1 has volume
   A(D) ⋅ 1 = A(D).
- However, we know that we can also write its volume as



