Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

USDA FOREST SERVICE RESEARCH NOTE

PN W-147

April 1971

VOLUME TABLES AND EQUATIONS FOR WHITE SPRUCE, BALSAM POPLAR, AND PAPER BIRCH OF THE KUSKOKWIM RIVER VALLEY, ALASKA

by

RONALD M. DIPPOLD, Associate Photogrammetrist

and

WILBUR A. FARR, Mensurationist.

Institute of Northern Forestry

PSW FOREST AND RANGE
EXPERIMENT STATION

SEP 1 1971

STATION LIBRARY COPY

ABSTRACT

Volume tables and equations were derived from a sample of trees from the Kuskokwim River valley. Cubic-foot tables were developed for white spruce, paper birch, and balsam poplar. Board-foot tables, International 1/4-inch and Scribner rules, were prepared for white spruce.

KEYWORDS: Volume tables, volume equations, white spruce, balsam poplar, paper birch, Kuskokwim River valley, Alaska.

INTRODUCTION

Analysis of data obtained during a preliminary timber reconnaissance in the Kuskokwim River valley in 1966 indicated the volume equations developed by Haack for interior Alaska did not apply to this area. Therefore, in 1967, when an inventory was made of the forest resources along the Kuskokwim River, 295 trees were felled and measured so that volume equations and tables could be developed. Volume equations and tables derived from these measurements are presented here.

The species sampled were white spruce (*Picea glauca* (Moench) Voss), balsam poplar (*Populus balsamifera* L.), and paper birch (*Betula papyrifera* Marsh.). Sample trees were selected by extending the standard forest inventory 10-point cluster to an 11th point. Commercial forest land and operable noncommercial forest land were sampled. 3/

Up to three trees 5-inch diameter breast high (d.b.h.) or larger were systematically selected per point. Cull and obviously deformed trees were not included in the sample

The sample trees were felled and measured using procedures similar to those described by Haack. 4 Diameter outside bark and double bark thickness were recorded at the 1-foot stump, d.b.h., 9.15 feet on the bole, and then at 8.15-foot intervals to a 4.0-inch diameter outside bark. Measurements were also taken where there were pronounced changes in diameter such as at forks. For spruce sawtimber trees, 9-inch d.b.h. or larger, and hardwood species, 11-inch d.b.h. or larger, measurements were also taken at the minimum saw-log diameter, 7-inch and 9-inch diameter outside bark, respectively.

^{1/} Paul M. Haack, Jr. Volume tables for trees of interior Alaska. Juneau, USDA Forest Serv. Res. Note NOR-5, 11 p., 1963.

^{2/} USDA Forest Service, FSH 4813.1 Forest Survey Handbook. p. 42.9--1, March 1967.

³/Sites capable of producing at least 20 cubic feet per acre per year are classified as commercial forest land by Forest Survey, and sites producing less, noncommercial. Noncommercial sites presently supporting 800 or more cubic feet per acre are considered operable noncommercial.

 $[\]frac{4}{}$ Paul M. Haack. Compilation of tree measurement data by hand or computer. Juneau, USDA Forest Serv. Northern Forest Exp. Sta., 17 p., 1964.

Smalian's formula was used to compute cubic-foot volume to a 4-inch diameter outside bark.

International 1/4-inch and Scribner rules were used to compute board-foot volumes for white spruce sawtimber trees from a 1-foot stump to a 7.0-inch diameter outside bark for 16.30-foot 1 logs. Partial logs 8.15 feet to 16.30 feet long were treated as full logs. Partial log lengths shorter than 8.15 feet were given zero volume.

These same log rules were used to compute board-foot volumes for birch and poplar sawtimber trees from a 1-foot stump to a 9.0-inch diameter outside bark. Because the sample yielded only 11 birch and 20 poplar sawtimber trees, reliable board-foot volume equations or tables could not be developed. Analysis of the data, however, indicated paper birch in the Kuskokwim River valley has less volume and balsam poplar more volume for a given diameter (D) and total height (H) than reported by Haack (D) for the interior of Alaska in general.

Regression analysis was used to develop the volume (V) equations. Equations tested were:

Weighted combined variable,

$$\frac{V}{D^{2}_{H}} = \frac{b_{0}}{D^{2}_{H}} + \frac{b_{1}}{DH} + \frac{b_{2}}{H} + \frac{b_{3}}{D^{2}} + b_{4} + \frac{b_{5}}{D^{4}_{H}}$$

Logarithmic combined variable,

$$log V = log b_0 + b_1 log D^2H + b_2 (log D^2H)^2$$

and the Schumacher logarithmic equation,

$$log V = log b_0 + b_1 log D + b_2 log H$$

Separate formulas were developed for each species, location (upper and lower Kuskokwim), and land use (commercial and noncommercial forest land) combination. Subsequent tests using analysis of covariance indicated that data from the upper and lower Kuskokwim and from commercial and noncommercial forest land could be pooled. Analysis of covariance also indicated that cubic-foot volume data for balsam poplar and paper birch could be pooled.

 $[\]frac{5}{}$ Includes 0.3-foot trim allowance.

 $[\]frac{6}{5}$ See footnote 1.

Relative efficiency of weighted combined vs. the logarithmic regressions was determined in the manner suggested by Furnival. 7/In all cases, the weighted combined variable equation reduced to the form:

$$\frac{V}{D^{2}H} = \frac{b_0}{D^{2}H} + b_4$$

and this form of the equation proved more efficient than either of the logarithmic equations. Schumacher's logarithmic equation was second best in all cases.

The basic data used by Haack^{8} to develop volume tables for interior Alaska were compared with these data by use of analysis of covariance. These tests showed a significant difference between equations for all species-volume combinations.

DISCUSSION

These equations and tables were developed for and used with the forest inventory of the Kuskokwim River valley. They may prove superior to other existing tables for use in other timber stands in western Alaska such as the lower Yukon, Koyukuk, and Kobuk River valleys, but no tests have been made to determine this.

The equations used and their precision are given in footnote 1 of each volume table.

^{7/}G. M. Furnival. An index for comparing equations used in constructing volume tables. Forest Sci. 7: 337-341, 1961.

 $[\]frac{8}{2}$ See footnote 1.

Table 1.--Cubic-foot volumes (1-foot stump to 4-inch top, d.o.b.), Smalian's formula, for white spruce, Kuskokwim River valley, Alaska<u>l</u>/

Basis: trees	meas- ured4/	Number 5	11 16 18 14	15 11 8 6	11 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	!-!	-
	110				67.0 75.1 83.8 92.9	102 112 123 134	157 170 182
	105				56.6 63.9 71.7 79.9 88.6	97.7 107 117 128 139	150 162 174
	100			47.3	53.9 60.9 68.3 76.1 84.4	93.1 102 112 122 132	143 154 166
	95			44.9	51.1 57.8 64.8 72.3 80.1	88.4 97.1 106 116 125	136 146 157
	06			27.1 31.8 37.0 42.5	48.4 54.7 61.4 68.5 75.9	83.7 91.9 101 109	129 139 149
	85		17.6	21.4 25.5 30.0 34.9 40.1	45.7 51.7 58.0 64.6 71.7	79.1 86.8 94.9 103	121 131 141
)3/	80		13.3	20.1 24.0 28.2 32.8 37.7	43.0 48.6 54.5 60.8 67.4	74.4 81.7 89.3 97.3	114 123 133
Total height in feet $(H)\overline{3}/$	75		9.8 12.5 15.5	18.8 22.5 26.5 30.8 35.4	40.3 45.5 51.1 57.0 63.2	69.7 76.5 83.7	
eight ın	70		6.9 9.1 11.6	17.5 21.0 24.7 28.7 33.0	37.6 42.5 47.7 53.2 58.9	65.0 71.4 78.1	
Total he	65	3.0	4.6 6.3 8.4 13.4	16.3 19.4 22.9 22.9 30.6	34.9 39.4 44.2 49.3 54.7	60.4	
	09	2.8	4.2 5.8 7.7 9.9	15.0 17.9 21.1 24.5 28.2	32.2 36.3 40.8 45.5 50.5	55.7	
	55	2.5	3.8 5.3 7.1 9.0	13.7 16.4 19.3 22.4 25.8	29.4 33.3 37.4 41.7 46.2	51.0	
	50	2.2	3.4 4.8 6.4 8.2 10.2	12.4 14.9 17.5 20.4 23.4	30.2		
	45	2.0	3.0 4.3 5.7 7.3 9.1	13.3	24.0		
	40	1.7	3.7	9.9 11.8 13.9 16.2			
	35	1.4	2.3	8.6			
	30	1.2	3.7				
D.b.h.	(0) 5/	Inches 5	6 8 9 10	122 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	16 17 19 20	21 22 24 25 25	26 27 28

 $\frac{1}{2}$ Based on weighted regression: V = -0.40972 + 0.0021198 D^2H . Standard error of estimate = 1.37 cubic feet or 5.81 percent of the mean volume. $\frac{2}{2}$ 10-inch class includes trees 9.6- to 10.5-inch d.b.h. $\frac{3}{4}$ 70-foot class includes trees 67.6 to 72.5 feet in height. $\frac{4}{4}$ Number of trees; range of data for 167 trees enclosed by solid lines.

5

Table 2.--Board-foot volumes (1-foot stump to 7-inch top, d.o.b.), International 1/4-inch scale, for white spruce, Kuskokwim River valley, Alaska 1/

25 26 27 28	20 21 22 22 23 24	15 16 17 18	10 11 12 13	Inches 9	(D)2/	D.b.h.
			19 28	11 .	35	
			26 36 48 60 74	16	40	
		102	32 44 57 71	21	45	
		116 136 157	38 51 81 98	26	50	
	251 [279	130 152 175 179 199 224	44 59 75 92	3]	55	
	276 307	145 168 193 219 247	51 66 84 102 123	36	60	
	301 335	159 184 211 239 270	57 74 93 113	41	65	Tot
	326 362 400 440 481	173 200 229 260 292	63 82 102 124 147	46	70	tal heigh
	351 390 430 473 517	187 216 247 280 315	69 89 111 134 160	52	75	Total height in feet $(H)^{3/2}$
602 653 706 762	376 418 461 506 553	201 232 265 300 337	76 97 120 145 172	57	80	et (H)3/
641 696 752 811	402 445 491 539 589	215 248 283 283 360	82 104 129 155 184	62	85	
680 738 798 860	427 473 521 572 625	229 264 301 341 383	138 166 196		90	
720 780 843 909	452 501 552 605 661	243 280 320 361 405			95	
759 823 889 958	477 528 582 638 697	257 296 338 382 428			100	
798 865 935 1007	502 556 612 672 733	312 356 402 451			105	
837 907 981 1056	527 583 643 705 770	374 422 473			110	
1-11	_	5682	14 115 111 8	Number	meas- ured4/	Basis: trees

 $[\]frac{1}{2}$ / Based on weighted regression: V = -24.62022 + 0.0125346 D^2H . Standau $\frac{2}{2}$ / 10-inch class includes trees 9.6-to 10.5-inch d.b.h. $\frac{3}{4}$ / 70-foot class includes trees 67.6 to 72.5 feet in height. $\frac{4}{4}$ / Numbér of trees; range of data for 116 trees enclosed by solid lines. Standard error of estimate = 21.43 board feet or 12.8 percent of the mean volume.

Table 3.--Board-foot volumes (1-foot stump to 7-inch top, d.o.b.) Scribner scale, for white spruce, Kuskokwin River valley, Alaska $^{1/}$

	Basis: trees	meas- ured4/	Number 11	4 1 1 8	9 L L 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	w -	::-:
	Total height in feet $({}_{ m H})^{\overline{3}/}$	110			326 369 415	462 513 566 621 679	739 801 867 934
		105			271 310 351 394	440 488 539 591 646	704 764 826 890
		100			222 257 294 333 374	418 464 512 562 614	669 726 785 847
		95			210 243 278 315 354	396 439 485 532 582	634 688 744 803
		06		116 141 168	197 228 262 297 334	373 414 458 503 550	599 650 704 759
		85	48	66 86 108 132 157	185 214 246 279 314	351 390 431 473 518	564 613 663 715
		80	44	61 79 100 122 146	200 229 229 261 294	329 365 404 444 486	529 575 622 671
		75	39	55 73 92 113 135	160 186 213 243 L	306 341 377 414	
		70	35	49 66 84 103 124	147 171 197 224 253	284 316 350 385	
		65	30	44 59 76 76 113	135 157 181 206 233	262	
		09	26	38 52 68 84 103	122 143 165 188 213	239	
		55	21	33 46 60 75 92	109 128 170 170	217	
		50	16	27 39 52 66 81	97 114 133		
		45	12	21 32 44 46 70	100		
		40	7	16 25 36 47 59			
		35	က	01			
	D.b.h.	/ 7 (a)	Inches 9	1332	15 17 18 19	20 21 23 24	25 26 27 28

Based on weighted regression: V = -28.74136 + 0.0111643 D^2H . Standard error of estimate = 18.21 board feet or 12.7 percent of the mean volume. $\frac{1}{2}/$ Based on weighted regression: V = -co./res 1.6.h. $\frac{2}{2}/$ 10-inch class includes trees 9.6- to 10.5-inch d.b.h. $\frac{3}{4}/$ 70-foot class includes trees 67.6 to 72.5 feet in height. $\frac{4}{4}/$ Number of trees; range of data for 116 trees enclosed by solid lines.

Table 4 .-- Cubic-foot volume (1-foot stump to 4-inch top, d.o.b.) Smalian's formula, for paper birch and balsam poplar, Kuskokwim River valley, Alaska 1

16 17 18 19	11 12 13 14 15	10 10	υı	Inches	3	D.b.h. $(D)^{2/2}$
		1.7 2.5 3.4	Ξ		30	
		3.0 4.0 5.2 6.5	1.3		35	
	9.1	2.5 4.6 7.5	1.6		40	
	10.3 12.3 14.5 16.9	8.5.4.0	1.8		45	
24.7	11.5 13.8 16.2 18.9 21.7	3.2 4.4 5.9 7.6	2.1		50	_
27.3 30.8	12.7 15.2 17.9 [20.8 23.9	3.5 4.9 6.5 8.4	2.3		55	otal hei
29.8 33.7 37.8 42.1	13.9 16.6 19.5 22.7 26.1	3.9 5.4 7.2 9.2	2.6		60	Total height in feet $(H)^{3/2}$
32.3 36.5 41.0 45.7	15.1 18.0 21.2 24.6 28.3	4.2 5.9 7.8 10.0	2.8		65	eet (H)3
34.8 39.3 44.1 49.2	16.2 19.4 22.8 26.5 30.5	4.6 6.4 8.4 10.8	3.1		70	
37.3 1 42.2 47.3 52.8	17.4 20.8 24.5 28.5 32.7] 6.8 9.0 11.5 14.3			75	
39.8 45.0 50.5 56.3	18.6 22.2 26.2 1 30.4 34.9	9.7 12.3 15.3			80	
1 42.3 47.8 1 53.7 59.8	19.8] 23.6 27.8 32.3 37.2	10.3			85	
		ш		1	æ	
111	10 3 2	13 8 1	=	Number	Birch	Basis: trees measured4
1-23	2244	10	ω	dž	Poplar	: ad <u>4</u> /

^{1/} Based on weighted regression: $V = -0.37551 + 0.0019624 \ p^2H$. Standard error of estimate =0.98 cubic foot or 9.8 percent of the mean volume.

of the mean volume. $\frac{2}{4}$ / 10-inch class includes trees 9.6- to 10.5-inch d.b.h. $\frac{3}{4}$ / 70-foot class includes trees 67.6 to 72.5 feet in height.

4/ Number of trees; range of data for 67 paper birch and 61 balsam poplar enclosed by solid lines.