and the second

Model: Logistic Regression

Reculto

Conclusions

Future

Tulips - Nonlinear Logistic Regression

Arthur Lui

Department of Statistics Brigham Young University

December 6, 2014

Model: Logistic Regressio

.

Conclusion

Future

Introduction

Result

Conclusion

Future

Tulip Germination Experiment

 Goal: Understand the effect of chilling time on germination of tulip bulbs.

Data:

- 12 populations each with 210 tulips (2005-2009)
- Each population randomly and evenly split into 7 groups and assigned to one of 7 chilling times (0, 2, 4, ..., 12 weeks).
- Response Variable: Indicator (bulb germinated or not).
- Population 12 did not germinate at all, so it was removed from the analysis.

Model: Logistic Regression

Data

Results

Conclusion

Entire

Research Questions

- Is the effect of chilling time the same across all Populations?
 Which populations are the same / different?
- Is there an "ideal" chilling time?
 Does this ideal chilling time vary by population?
- What effect will a decrease from 10 to 8 weeks of chilling time have for tulips?

Introduction

Data

Model:
Logistic

Logistic Regression Model

Results

Conclusion

Future

Germination Rates

Chilling Time (Weeks)							
Population	0	2	4	6	8	10	12
1	0.40	0.97	0.83	0.87	0.87	0.97	0.90
2	0.13	0.53	0.73	0.73	0.83	0.90	0.83
3	0.00	0.53	0.80	0.83	0.97	0.90	0.87
4	0.00	0.17	0.53	0.60	0.73	0.90	0.73
5	0.33	0.87	0.67	0.73	0.70	0.57	0.50
6	0.00	0.03	0.07	0.40	0.43	0.80	0.67
7	0.00	0.00	0.10	0.33	0.47	0.83	0.67
8	0.00	0.03	0.27	0.33	0.33	0.30	0.30
9	0.00	0.00	0.00	0.00	0.07	0.60	0.60
10	0.00	0.17	0.10	0.53	0.87	0.87	0.83
11	0.00	0.00	0.20	0.23	0.67	0.83	0.47

Tulips -Nonlinear Logistic Regression

Arthur Lui

Introduction

IIItroductio

Model: Logistic Regression

Data

Danilla

Conclusions

Future

Germination Rates

and the second

Data

Model: Logistic Regressio

_ .

Conclusion

Euturo

Germination Rates

Model: Logistic Regression Model

Results

Conclusion

Logistic Regression Model (Linear)

$$Y_i \stackrel{ind}{\sim} \mathsf{Bernoulli}(p_i)$$
 $log\left(rac{p_i}{1-p_i}
ight) = \mathbf{x}_i'eta$
 $\Rightarrow p_i = rac{e^{\mathbf{x}_i'eta}}{1+e^{\mathbf{x}_i'eta}}$

where
$$p_i = P(Y_i = 1)$$

Model: Logistic Regression Model

Danilla

Conclusion

F.

Logistic Regression Model (Nonlinear)

$$Y_i \stackrel{ind}{\sim} \mathsf{Bernoulli}(p_i)$$
 $log\left(\frac{p_i}{1-p_i}\right) = (ns(\mathbf{x}_i))'\beta$

$$\Rightarrow p_i = \frac{e^{\mathsf{ns}(\mathbf{x}_i)'\beta}}{1+e^{\mathsf{ns}(\mathbf{x}_i)'\beta}}$$

where
$$p_i = P(Y_i = 1)$$

Introduction

Model: Logistic Regression Model

Docul+

Conclusion

e .

- + Model is flexible
 - Number of knots needs to be predetermined

Tulips -Nonlinear Logistic Regression

Arthur Lui

Introduction

minoductio

Model: Logistic Regressio

Results

Conclusions

Future

Model

Effect of Chilling Time

Models to compare for every pair of populations:

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + pop_i\beta_1 + ns(chill_i)\beta_2 + pop_ins(chill_i)\beta_3$$

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + ns(chill_i)\beta_2$$

Tulips -Nonlinear Logistic Regression

Arthur Lui

Results

Effect of Chilling Time

Populations that respond similarly to chilling time: (3,2), (4,2), (10,4), (7,6), (10,6), (11,6), (10,7), (11,7),

Results

Conclusions

Futur

Ideal Chilling Time

	Estimate	95% Lower.CI	95% Upper.CI
Population 1	8.99	2.31	15.67
Population 2	10.37	6.34	14.39
Population 3	8.23	3.59	12.87
Population 4	10.57	7.06	14.08
Population 5	4.59	3.30	5.89
Population 6	11.27	9.36	13.18
Population 7	11.37	9.56	13.18
Population 8	7.36	2.52	12.21
Population 9	11.00	9.85	12.15
Population 10	9.92	8.08	11.76
Population 11	9.20	8.30	10.10
All Populations	11.46	9.76	13.15

Model: Logistic Regressio

Results

Conclusions

Future

Ideal Chilling Time

Best Chilling Times

Introduction

Model: Logistic Regressio

Results

Conclusions

Future

Effect of Decrease in Chilling Time from 10 to 8 Weeks

	Estimate	95% CI.Lo	95% CI.Hi
Population 1	-0.02	-0.10	0.06
Population 2	-0.02	-0.11	0.06
Population 3	0.01	-0.04	0.06
Population 4	-0.03	-0.12	0.06
Population 5	0.09	0.01	0.17
Population 6	-0.11	-0.21	-0.01
Population 7	-0.12	-0.23	0.00
Population 8	0.04	-0.05	0.12
Population 9	-0.53	-0.71	-0.35
Population 10	-0.04	-0.11	0.02
Population 11	-0.01	-0.09	0.07
All Populations	-0.04	-0.07	-0.01

Model: Logistic Regressio

Results

Conclusions

Future

Effect of Decrease in Chilling Time from 10 to 8 Weeks

Effect of Decrease in Chilling Time from 10 to 8 Weeks

Logistic Regressic Model

Results

Conclusions

Entur

Conclusions

- Populations: (3,2), (4,2), (10,4), (7,6), (10,6), (11,6), (10,7), (11,7), (11,10) are the same.
- Ideal Chilling Time: 11.5 (9.908898, 13.097589)
- Effect of Chilling Time Decrease on Germination Rates:
 -0.041 (-0.066 -0.017)

......

Dat

Model: Logistic Regression Model

. .

Conclusion

Future

• Try Smoothing Splines

1000

Data

Model: Logistic Regression Model

Reculto

Conclusion

Future

Thanks for the great semester!