Machine Learning (CSE 574) Classification and Regression PA - 1 PROJECT GROUP - 36

Shubham Gulati (sgulati3)

Mohammad Umair (m39) Yichen Wang (yichenwa)

Accuracy of IdaLearn = 97 % Accuracy of qdaLearn = 97 %

LDA: Same covariance matrix is used for all the classes. QDA: Different covariance matrix is used for each class.

The difference in boundaries comes from using same covariance matrix (Σ) in case of LDA and different covariance matrices in case of QDA. Because of this, the lines in case of QDA become quadratic in nature whereas they are linear in case of LDA. This quadratic nature induces a curve in the lines in case of QDA.

Train Data:

MSE without intercept = 19099.44684457MSE with intercept = 2187.16029493

MSE with intercept, i.e. 2187, is better than MSE without intercept, i.e. 19099, by multiple orders of magnitude. This is because a line is able to fit better if it is not enforced to pass through the origin.

Test Data:

MSE without intercept = 106775.36155952MSE with intercept = 3707.84018127

MSE with intercept, i.e. 3707, is better than MSE without intercept, i.e. 106775, by multiple orders of magnitude.

MSE without intercept is way more worse for test data than it for training data because the prediction without an intercept is very poor. However, MSE with intercept in test data is comparable to MSE with intercept in train data.

MSE for train data increases with the increase of lambda because increasing the value of lambda doesn't let the curve fit as closely as it could on the training data points. Setting lambda to 0 makes the curve to overfit the training data which gives us the least error on the training data but this curve (lambda = 0) performs very poor on the test data.

MSE for Linear Regression on train data = 2187.16029493

MSE for Linear Regression on test data = 3707.84018127

MSE for Ridge Regression on train data (optimal value of lambda) = 2187.16029493

MSE for Ridge Regression on test data (optimal value of lambda) = 2851.33021344

As expected, MSE for Linear Regression on train data is less than MSE for Ridge Regression on train data. This is because the regularisation term in Ridge Regression doesn't let the curve to overfit. Consequently, when the curve is not overfitting on train data, the MSE for Ridge Regression on test data is less than MSE for Linear Regression on test data.

	Problem 3										
lambda	train	test									
0	2187.16029	3707.84018	0.25	2684.84808	2961.59864	0.5	2923.63009	3159.01404	0.75	3121.8865	3350.42388
0.01	2306.83222	2982.44612	0.26	2695.34894	2969.19764	0.51	2932.26044	3166.92132	0.76	3129.12784	3357.75665
0.02	2354.07134	2900.97359	0.27	2705.75963	2976.855	0.52	2940.82719	3174.81329	0.77	3136.32151	3365.06203
0.03	2386.78016	2870.94159	0.28	2716.08251	2984.56432	0.53	2949.33106	3182.68891	0.78	3143,46804	3372.3399
0.04	2412.11904	2858.00041	0.29	2726.31959	2992.31972	0.54	2957.77278	3190.54722	0.79	3150.56798	3379.59014
0.05	2433.17444	2852.66574	0.3	2736.47263	3000.11581	0.55	2966.15304	3198.38732	0.8	3157.62183	3386.81266
0.06	2451.52849	2851.33021	0.31	2746.54319	3007.94762	0.56	2974.47256	3206.20838	0.81	3164.63012	3394.00739
0.07	2468.07755	2852.34999	0.32	2756.53266	3015.81055	0.57	2982.73204	3214.00963	0.82	3171.59334	3401.17425
0.08	2483.36565	2854.87974	0.33	2766.44232	3023.70039	0.58	2990.93216	3221.79035	0.83	3178.51201	3408.31318
0.09	2497.74026	2858.44442	0.34	2776.27331	3031.61318	0.59	2999.07361	3229.54985	0.84	3185.3866	3415.42415
0.1	2511.43228	2862.75794	0.35	2786.02672	3039.5453	0.6	3007.15707	3237.28752	0.85	3192.21761	3422.50712
0.11	2524.60004	2867.63791	0.36	2795.70357	3047.49335	0.61	3015.1832	3245.00278	0.86	3199.00551	3429.56207
0.12	2537.3549	2872.96228	0.37	2805.30482	3055.4542	0.62	3023.15267	3252.69509	0.87	3205.75078	3436.58897
0.13	2549.77689	2878.64587	0.38	2814.8314	3063.42491	0.63	3031.06613	3260.36394	0.88	3212.45388	3443,58783
0.14	2561.92453	2884.62691	0.39	2824.28419	3071.40277	0.64	3038.92422	3268.00889	0.89	3219.11526	3450.55865
0.15	2573.84129	2890.85911	0.4	2833.66406	3079.38524	0.65	3046.7276	3275.62949	0.9	3225.73537	3457.50143
0.16	2585.55987	2897.30666	0.41	2842.97185	3087.36995	0.66	3054.47688	3283.22536	0.91	3232.31467	3464.4162
0.17	2597.10519	2903.94113	0.42	2852.20839	3095.35469	0.67	3062.17269	3290.79612	0.92	3238.85357	3471.30298
0.18	2608.4964	2910.73937	0.43	2861.37447	3103.33742	0.68	3069.81565	3298.34146	0.93	3245.35253	3478.16179
0.19	2619.74839	2917.68216	0.44	2870.4709	3111.31622	0.69	3077.40636	3305.86105	0.94	3251.81195	3484.99269
0.2	2630.87282	2924.75322	0.45	2879.49847	3119.28929	0.7	3084.94543	3313.35462	0.95	3258.23225	3491.79571
0.21	2641.87895	2931.93854	0.46	2888.45794	3127.25496	0.71	3092.43344	3320.82191	0.96	3264.61386	3498.57091
0.22	2652.77413	2939.22593	0.47	2897.35008	3135.21168	0.72	3099.87098	3328.26269	0.97	3270.95717	3505.31832
0.23	2663,5643	2946.60462	0.48	2906.17565	3143.15799	0.73	3107.25863	3335.67673	0.98	3277.26258	3512.03803
0.24	2674.2543	2954.06506	0.49	2914.93541	3151.09253	0.74	3114.59695	3343.06385	0.99	3283.53049	3518.73008
gr.						- 6		52	1	3289.76128	3525.39455

As can be seen in the above table, we get the least value of MSE for test data when lambda equals 0.06. Therefore, this is our optimal value of lambda.

Serial Number	weight using OLE	weight using Ridge	Serial Number	weight using OLE	weight using Ridge	Serial Number	weight using OLE	weight using Ridge
1	148.154876	150.4595981	23	82.24245937	71.67974829	45	-729.6435311	-89.33525423
2	1.274852212	4.807768988	24	-1456.662084	-69.30906366	46	377.4083369	-22.73053674
3	-293.3835224	-202.9061147	25	827.3867027	-124.0343729	47	439.7942904	65.41116624
4	414.7254483	421.7194576	26	869.2909523	102.639818	48	308.5143733	55.11621318
5	272.0891343	279.4510729	27	586.2344952	72.64220588	49	189.8596788	19.14925041
6	-86639.45704	-52.29708233	28	427.0267266	79.24754013	50	-109.773797	-59.84315841
7	75914.46795	-128.5941891	29	90.246769	38.48319215	51	-1919.65699	26.64350735
8	32341.62279	-167.5005703	30	-17.88762242	32.98009446	52	-1924.633779	108.4050128
9	221.1012142	145.740681	31	141.6967738	92.09539122	53	-3489.795277	-137.6175697
10	29299.55117	496.3060412	32	582.8193844	68.97936154	54	11796.96872	-83.04383566
11	125,2303603	129.9484578	33	-234.0375107	-24.41700914	55	530.6744148	-20.40214777
12	94.41108333	88.30438076	34	-256.0714523	101.8538797	56	543.3059057	24.9726362
13	-93.86286322	11.29067689	35	-385.1774005	1.391226691	57	1821.07518	-0.924510929
14	-33.72827997	1.885325306	36	-33.4176738	20.85757155	58	-10463.98068	191.9130658
15	3353.197721	-2.583641569	37	-10.73500661	-29.65490134	59	-516.6276109	34.78309393
16	-621.0962997	-66.89445481	38	257.1071888	130.4111599	60	2064.359174	-43.90393505
17	791.7365341	-20.61939955	39	59.95545922	-16.75108796	61	-4199.413348	23.2002376
18	1767.760389	113.3930145	40	383.7280423	87.51340344	62	-140.4957052	20.8504118
19	4191.674054	17.99086827	41	-404.1583898	-45.64238362	63	374.15709	-117.853228
20	119.4381209	52.50235963	42	-514.2864343	-30.92288499	64	51.47574916	75.30611309
21	76.61034004	109.6876551	43	38,36366416	-10.07139781	65	-46.44927304	60.36839226
22	-15,2001293	-10.72779629	44	-44.6102889	31.13334896			

It is visible from the above graph that weights vary too much in case of Linear Regression. On the other hand, in case of Ridge Regression, weights do not vary as much because of the regularisation term which puts a high penalty on large values of w.

From the above graphs of MSE for train and test data, it is clear that applying gradient descent is pretty much same as as doing direct minimization by finding the inverse covariance matrix.

While gradient descent is slow in performance as it has to go through the iterations step by step, it is still better in the sense that there is no need to compute inverse of a matrix which is not possible a lot of times. Therefore, gradient always works whereas direct minimization technique is dependent on the existence of inverse of the covariance matrix.

We get the least value of MSE for test data when lambda equals 0.08. Therefore, 0.08 is our optimal value of lambda in case of gradient descent.

In the left graph, we can see that as p increases, the error keeps on decreasing for the train data. This is because a higher order polynomial curve is easily able to fit the training data than a lower order polynomial curve. The error for regularisation is more than no regularisation because regularisation stops the model from overfitting, and hence there is more error in the train data.

In the right graph, we can see that with regularization (lambda = 0.06), error for large values of p (p>3) in case of test data is small and more or less constant. However, error drastically increases without regularization in case of test data for large values of p because the model overfits without the presence of the regularization term.

Error vs p plot for MSE without regularization:

As can be seen in the above table, without regularization, the optimal value of p is 1. At p = 1, the error is least.

Error vs p plot for MSE with regularization:

As can be seen in the above table, with regularization, the optimal value of p could be either one of 3, 4, 5 or 6. We would prefer a smaller value as it leads to lesser amount of computation. Therefore, the optimal value of p is 3.

FINAL RESULTS

Metric used is MSE

In the below table we compare all MSE and find out the best solution.

Methods	Training Data	Testing Data		
MSE without Intercept	19099.4468	106775.3615		
MSE with Intercept	2187.1602	3707.8401		
MSE with Ridge regression (Lambda = 0.06)	2187.1602	2851.3302		
MSE with Ridge regression using Gradient Descent (Lambda = 0.08)	2415.8618	2836.5677		
MSE with Non-Linear regression without regularization (p=1)	3866.8834	3845.0347		
MSE with Non-Linear regression with Regularization (p=3)	3950.6823	3895.5826		

In the above table we can see all errors and we use this table to choose the best solution among the given techniques for the provided datasets. From the table we can see for training data, **Linear Regression with Intercept** gives the least error which is 2187.1602. For testing data, **Ridge Regression using Gradient Descent** gives us the least error which is 2836.5677. We conclude the ridge regression with a lambda of 0.08 is the best technique for the given dataset.