Name of Department:- Computer Science and Engineering

1.	Subject Code:	TCS 409	Course Title	Design and Analysis of
2.	Contact Hours:	L: 3	T: P: _	Algorithms

3. Semester: IV

4. Pre-requisite: TCS 101, TCS 201, TCS 302

- 5. Course Outcomes: After completion of the course students will be able to
 - 1. Discuss various asymptotic notations to analyze time and space complexity of algorithms
 - 2. Analyze the various paradigms for designing efficient algorithms using concepts of design and conquer, greedy and dynamic programming techniques
 - 3. Provide solutions to complex problems using the concept of back tracking and branch and bound techniques.
 - 4. Apply algorithm design techniques to predict the complexity of certain NP complete problems.
 - 5. Implement Dijkstra's, Bellman-ford, Prims, Kruskal's algorithms to solve the real world problems like traveling salesman problem, job sequencing, packet routing etc
 - 6. Apply pattern matching algorithms like Rabin Karp Algorithm, Brute-force techniques etc to find a particular pattern.

6.Detailed Syllabus

UNIT	CONTENTS	Contact Hrs
Unit – I	Asymptotic Notations and Searching Algorithms Introduction to Algorithms - What is an Algorithm, Rate of growth, Commonly used rate of growths, Types of analysis, Asymptotic Notations, Master theorem Searching - Linear search (sorted and unsorted), Iterative and recursive binary search, Exponential search, Tower of Hanoi and solving its recursion, Fibonacci and solving its recursion	8
Unit - II	Sorting Algorithms Sorting - Bubble sort, Insertion sort, selection sort, quick sort, randomized quick sort, merge sort, Heap & Heap sort, counting sort, External sorting, Radix sort, bucket sort. Divide sorting algorithms into following types - online sort, stable sort, in place sort, Comparison of sorting algorithms on the basis of number of swaps, by number of	

	comparisons, recursive or iterative nature, time and space complexity			
	Graph Algorithms			
Unit – III	Representation of Graphs, Breadth-first search (BFS), depth-first search (DFS), topological sort, Difference between BFS and DFS Data structures for disjoint sets - Finding cycle in a graph, Finding strongly connected components	sets -		
	Minimum spanning trees - Kruskal and Prim algorithms (Greedy Algorithms) Single source shortest paths - Dijkstra (Greedy Approach) and Bellman ford (Dynamic Programming) algorithms, Working on -ve edge & cycle, difference & similarity.			
	All pair shortest paths - The Floyd Warshall algorithm			
	Algorithm Design Techniques - Greedy and Dynamic Programming			
Unit – IV	Greedy algorithms –O ptimal substructure property,Activity selection problem, Job sequencing problem, Huffman codes, fractional knapsack problem			
	Dynamic Programming - Overlapping substructure property, Optimal substructure property, Tabulation vs Memoization, Fibonacci numbers, 0/1 Knapsack problem, Longest common subsequence, Matrix chain multiplication, Longest increasing subsequence.			
	Hashing, String Matching and NP-Completeness			
	Hashing - Introduction to Hashing, Hash function, Collision and collision handling, - Chaining, Open addressing (longest probing, quadratic probing, double hashing)			
Unit – V	String Matching - Naive string-matching algorithm, The Rabin-Karp algorithm, The Knuth-Morris-Pratt algorithm, Trie.	10		
	NP-Completeness - Importance of NP-completeness, P, NP, NP Complete and NP hard problems, Polynomial time and polynomial time verification, The subset-sum problem, The traveling salesman problem			
	Total	50		

Text Books:

1. Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein:" Introduction to Algorithms", 2nd Edition, PHI, 2006.