Divide-and-conquer: closest pair (Chap.33)

- Given a set of points, find the closest pair (measured in Euclidean distance)
- Brute-force method: $O(n^2)$.
- Divide-and-conquer method:
 - Want to be lower than $O(n^2)$, so expect $O(n \lg n)$.
 - Need T(n)=2T(n/2)+O(n).
- How?
 - Divide: into two subsets (according to x-coordinate)
 - Conquer: recursively on each half.
 - Combine: select closer pair of the above.
 - what left? One point from the left half and the other from the right may have closer distance.

Figure 33.11 Key concepts in the proof that the closest-pair algorithm needs to check only 7 points following each point in the array Y'. (a) If $p_L \in P_L$ and $p_R \in P_R$ are less than δ units apart, they must reside within a $\delta \times 2\delta$ rectangle centered at line l. (b) How 4 points that are pairwise at least δ units apart can all reside within a $\delta \times \delta$ square. On the left are 4 points in P_L , and on the right are 4 points in P_R . There can be 8 points in the $\delta \times 2\delta$ rectangle if the points shown on line l are actually pairs of coincident points with one point in P_L and one in P_R .

Divide and conquer

- Divide: into two subsets (according to x-coordinate):
 P_L<=I <=P_R (O(n))
- Conquer: recursively on each half.
 - Get δ_{l} , δ_{R}
 - 2T(*n*/2).
- Combine:
 - select closer pair of the above. δ =min{ δ_L , δ_R), O(1)
 - Find the smaller pairs, one∈P_L and the other∈P_R
 - Creat an array Y' of points within 2δ vertical strip, sorted by y-coor. $O(n \lg n)$ or O(n).
 - for each point in Y', compare it with its following 7 points. O(7n).
 - If a new smaller δ' is found, then it is new δ and the new pair is found.

Sort points according to coordinates

- Sort points by x-coordinates will simplify the division.
- Sorting by y-coordinates will simplify the computation of distances of cross points.
- sorting in recursive function will not work
 - $O(n \lg n)$, so total cost: $O(n \lg^2 n)$
- Instead, pre-sort all the points, then the half division will keep the points sorted
 - The opposite of merge sort.

CLOSEST_PAIR(P, X, Y)

- P: set of points, X: sorted by x-coordinate, Y: sorted by y-coordinate
- Divide P into P_L and P_R, X into X_L and X_R, Y into Y_L and Y_R,
 - $-\delta_1$ =CLOSET-PAIR(P₁,X₁,Y₁) and //T(n/2)
 - $-\delta_2$ =CLOSET-PAIR(P_R,X_R,Y_R) //T(n/2)
- Combine:
 - $-\delta = \min(\delta_1, \delta_2)$
 - compute the minimum distance between the points $p_l \in P_l$ and $p_r \in P_R$. // O(n).
 - Form Y', which is the points of Y within 2δ-wide vertical strip.
 - For each point p in Y', 7 following points for comparison.

CLOSEST-PAIR

- Sort X (or X_L, X_R) and Y (or Y_L,Y_R):
 - Pre-sort first,
 - Cut X to get X_I and X_R , naturally sorted.
 - $P_L = X_L$, $P_R = X_R$
 - From Y, get sorted Y_L and Y_R by the algorithm:
 (p.961)
 - Length[Y_L]=length[Y_R]=0
 - For i=1 to length[Y]
 - $If(Y[i] \in P_L)$ then
 - » Length[Y_L]++, Y_L[Length[Y_L]]=Y[i]
 - Else
 - » Length[Y_R]++, Y_R[Length[Y_R]]=Y[i]

Question: $Y[i] \in P_L$? P_L is defined by line=x, so $Y[i].x \le x$.

Any further question?

In summary

- T(n)=-O(1), if n <= 3. $-2T(n/2)+O(n \lg n) \to O(n \lg^2 n)$
- $T'(n)=O(n\lg n)+T(n)$
 - -T(n)=2T(n/2)+O(n)
 - So $O(n \lg n) + O(n \lg n) = O(n \lg n)$.

Improvements: Comparing 5 not 7?

Does not pre-sort Y?

Different distance definition?

Three dimensions?