- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- A PO OMP

(43) Internationales Veröffentlichungsdatum (28. Juni 2001 (28.06.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/46336 A2

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen:

PCT/EP00/12891

C09K 19/00

(22) Internationales Anmeldedatum:

18. Dezember 2000 (18.12.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 61 702.3 21. Dezember 1999 (21.12.1999)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HECKMEIER, Michael [DE/DE]; Bahnhofstrasse 14, 64625 Bensheim (DE). SCHULER, Brigitte [DE/DE]; Blumenstrasse 13, 63808 Haibach (DE). GÖTZ, Achim [DE/DE]; C.

Mierendorff-Strasse 14, 64665 Hähnlein (DE). KIRSCH, Peer [DE/DE]; Wilhelm-Leuschner-Strasse 13, 64293 Darmstadt (DE). POETSCH, Eike [DE/DE]; Am Buchwald 4, 64367 Mühltal (DE). PAULUTH, Detlef [DE/DE]; Königsberger Strasse 17, 64372 Ober-Ramstadt (DE).

- (74) Gemeinsamer Vertreter: MERCK PATENT GMBH; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (81) Bestimmungsstaaten (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Fortsetzung auf der nächsten Seite]

- (54) Title: LIQUID CRYSTALLINE MEDIUM
- (54) Bezeichnung: FLÜSSIGKRISTALLINES MEDIUM

$$R - \underbrace{A} - Z^{1} - \underbrace{B} - Z^{2} \underbrace{O}_{1}^{2} \times X \qquad (IA)$$

- (57) Abstract: The invention relates to a liquid crystalline medium based on a mixture of polar compounds with positive dielectric anisotropy, characterized in that said medium contains one or more alkenyl compounds of the formula (I) and one or more compounds of the formula (IA) wherein R, R¹, R², ring A and ring B, L¹, L²; L³; L⁴; X, Z¹, Z², y and z have the meanings cited in Claim 1.
- (57) Zusammenfassung: Die Erfindung betrifft ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit positiver dielektrischer Anisotropie, dadurch gekennzeichnet, dass es eine oder mehrere Alkenylverbindungen der Formel (I) und eine oder mehrere Verbindungen der Formel (IA) enthält, worin R, R¹, R², Ring A und Ring B, L¹, L², L³, L⁴, X, Z¹, Z², y und z die in Anspruch 1 angegebenen Bedeutungen haben.

Veröffentlicht:

 Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Flüssigkristallines Medium

Die vorliegende Erfindung betrifft ein flüssigkristallines Medium, sowie dessen Verwendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen.

5

10

15

Flüssige Kristalle werden vor allem als Dielektrika in Anzeigevorrichtungen verwendet, da die optischen Eigenschaften solcher Substanzen durch eine angelegte Spannung beeinflusst werden können. Elektrooptische Vorrichtungen auf der Basis von Flüssigkristallen sind dem Fachmann bestens erkannt und können auf verschiedenen Effekten beruhen. Derartige Vorrichtungen sind beispielsweise Zellen mit dynamischer Streuung, DAP-Zellen (Deformation aufgerichteter Phasen), Gast/Wirt-Zellen, TN-Zellen mit verdrillt nematischer ("twisted nematic") Struktur, STN-Zellen ("super-twisted nematic"), SBE-Zellen ("superbirefringence effect") und OMI-Zellen ("optical mode interference"). Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-Helfrich-Effekt und besitzen eine verdrillt nematische Struktur.

Die Flüssigkristallmaterialien müssen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristallmaterialien niedere Viskosität aufweisen und in den Zellen kurze Ansprechzeiten, tiefe Schwellenspannungen und einen hohen Kontrast ergeben.

25

30

35

Weiterhin sollten sie bei üblichen Betriebstemperaturen, d.h. in einem möglichst breiten Bereich unterhalb und oberhalb Raumtemperatur eine geeignete Mesophase besitzen, beispielsweise für die oben genannten Zellen eine nematische oder cholesterische Mesophase. Da Flüssigkristalle in der Regel als Mischungen mehrerer Komponenten zur Anwendung gelangen, ist es wichtig, dass die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die elektrische Leitfähigkeit, die dielektrische Anisotropie und die optische Anisotropie, müssen je nach Zellentyp und Anwendungsgebiet unterschiedlichen Anforderungen genügen. Beispielsweise sollten Materialien für Zellen mit verdrillt

WO 01/46336

PCT/EP00/12891

nematischer Struktur eine positive dielektrische Anisotropie und eine geringe elektrische Leitfähigkeit aufweisen.

- 2 -

Beispielsweise sind für Matrix-Flüssigkristallanzeigen mit integrierten nichtlinearen Elementen zur Schaltung einzelner Bildpunkte (MFK-Anzeigen)

Medien mit grosser positiver dielektrischer Anisotropie, breiten
nematischen Phasen, relative niedriger Doppelbrechung, sehr hohem
spezifischen Widerstand, guter UV- und Temperaturstabilität und
geringerem Dampfdruck erwünscht.

Derartige Matrix-Flüssigkristallanzeigen sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d.h. Transistoren) verwendet werden. Man spricht dann von einer "aktiven Matrix", wobei man zwei Typen unterscheiden kann:

15

20

30

35

 MOS (Metal Oxide Semiconductor) oder andere Dioden auf Silizium-Wafer als Substrat.

2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.

Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygrösse, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stössen zu Problemen führt.

Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektrooptischer Effekt üblicherweise der TN-Effekt verwendet. Man unterscheidet
zwei Technologien: TFT's aus Verbindungshalbleitern wie z.B. CdSe oder
TFT's auf der Basis von polykristallinem oder amorphem Silizium. An
letzterer Technologie wird weltweit mit grosser Intensität gearbeitet.

Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen

WO 01/46336 PCT/EP00/12891

erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.

- 3 -

Die TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten Polarisatoren in Transmission und sind von hinten beleuchtet.

Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d.h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).

Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z.B. Taschenfernseher) oder für hochinformative Displays für Rechneranwendungen (Laptop) und im Automobil- oder Flugzeugbau.

- Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKOGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H.,
- SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-
- Anzeige und es kann das Problem der "after image elimination" auftreten.

 Da der spezifische Widerstand der Flüssigkristallmischung durch

 Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)Widerstand sehr wichtig, um akzeptable Standzeiten zu erhalten.
- Insbesondere bei low-volt-Mischungen war es bisher nicht möglich, sehr hohe spezifische Widerstände zu realisieren. Weiterhin ist es wichtig, dass der spezifische Widerstand eine möglichst geringe Zunahme bei steigender Temperatur sowie nach Temperatur- und/oder UV-Belastung zeigt. Besonders nachteilig sind auch die Tieftemperatureigenschaften der Mischungen aus dem Stand der Technik. Gefordert wird, dass auch bei

WQ 01/46336

PCT/EP00/12891

-4-

tiefen Temperaturen keine Kristallisation und/oder smektische Phasen auftreten und die Temperaturabhängigkeit der Viskosität möglichst gering ist. Die MFK-Anzeigen aus dem Stand der Technik genügen somit nicht den heutigen Anforderungen.

Es besteht somit immer noch ein grosser Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig grossem Arbeitstemperaturbereich, kurzen Schaltzeiten auch bei tiefen Temperaturen und niedriger Schwellenspannung, die diese Nachteile nicht oder nur in geringerem Maße zeigen.

10

Bei TN-(Schadt-Helfrich)-Zellen sind Medien erwünscht, die folgende Vorteile in den Zellen ermöglichen:

- erweiterter nematischer Phasenbereich (insbesondere zu tiefen
 Temperaturen)
 - lagerstabil, auch bei extrem tiefen Temperaturen
- Schaltbarkeit bei extrem tiefen Temperaturen (out-door-use, Automobil, Avionik)
 - erhöhte Beständigkeit gegenüber UV-Strahlung (längere Lebensdauer)
- Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es nicht möglich, diese Vorteile unter gleichzeitigem Erhalt der übrigen Parameter zu realisieren.
- Bei höher verdrillten Zellen (STN) sind Medien erwünscht, die eine höhere Multiplexierbarkeit und/oder kleinere Schwellenspannung und/oder breitere nematische Phasenbereiche (insbesondere bei tiefen Temperaturen) ermöglichen. Hierzu ist eine weitere Ausdehnung des zur Verfügung stehenden Parameterraumes (Klärpunkt, Übergang smektisch-nematisch bzw. Schmelzpunkt, Viskosität, dielektrische Größen, elastische Größen) dringend erwünscht.

Der Erfindung liegt die Aufgabe zugrunde, Medien insbesondere für derartige MFK-, TN- oder STN-Anzeigen bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße, und vorzugsweise gleichzeitig sehr hohe spezifische Widerstände und niedrige Schwellenspannungen aufweisen.

5

Es wurde nun gefunden, dass diese Aufgabe gelöst werden kann, wenn man in Anzeigen erfindungsgemässe Medien verwendet.

Gegenstand der Erfindung ist somit ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit positiver dielektrischer Anisotropie, dadurch gekennzeichnet, dass es eine oder mehrere Alkenylverbindungen der Formel I

15

$$R^1 \longrightarrow H \longrightarrow H$$

$$Q \longrightarrow Q$$

$$L^1$$

$$L^2$$

20

und eine oder mehrere Verbindungen der Formel IA

$$R - \underbrace{A} - Z^{1} - \underbrace{B} - Z^{2} - \underbrace{O}_{L^{4}}^{13} X$$

$$IA$$

25

enthält, worin die einzelnen Reste folgende Bedeutungen besitzen:

30

R

einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind,

R¹	ein Alkenylrest mit 2 bis	7 C-Atomen,
----	---------------------------	-------------

- R² eine der Bedeutungen von R oder, falls y 1 oder 2 ist, auch Q-Y,
- 5 Q CF₂, OCF₂, CFH, OCFH, OCHFCF₃, OCF₂CHFCF₂ oder eine Einfachbindung,
 - Y F oder Cl,
- 10 X F, Cl, CN, halogenierter Alkylrest, halogenierter Alkenylrest, halogenierter Alkoxyrest oder halogenierter Alkenyloxyrest mit bis zu 6 C-Atomen,
- jeweils unabhängig voneinander - CF_2O_- , - OCF_2 oder eine Einfachbindung, wobei im Fall z = 1 $Z^1 \neq Z^2$ ist,

- y 0, 1 oder 2 und 25
 - z 0 oder 1, und
- L^1 , L^2 , L^3 und L^4 jeweils unabhängig voneinander H oder F. 30

-7-

Die Verbindungen der Formeln I und IA besitzen einen breiten Anwendungsbereich. In Abhängigkeit von der Auswahl der Substituenten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der Formeln I und IA flüssigkristallinen Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren.

- Die Verbindungen der Formeln I und IA sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Chemisch, thermisch und gegen Licht sind sie stabil.
- Falls R einen Alkylrest und/oder einen Alkoxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Ethoxy, Propoxy, Butoxy, Pentoxy, Hexoxy oder Heptoxy, femer Methyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Methoxy, Octoxy, Nonoxy, Decoxy, Undecoxy, Dodecoxy, Tridecoxy oder Tetradedoxy.
 - Oxaalkyl bedeutet vorzugsweise geradkettiges 2-Oxapropyl (= Methoxymethyl), 2-(= Ethoxymethyl) oder 3-Oxybutyl (= 2-Methoxyethyl), 2-, 3- oder 4-Oxypentyl, 2-, 3-, 4- oder 5-Oxyhexyl, 2-, 3-, 4-, 5- oder 6-Oxyheptyl, 2-, 3-, 4-, 5-, 6-, oder 7-Oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Oxanonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadexyl.
- Falls R einen Alkylrest bedeutet, in dem eine CH₂-Gruppe durch -CH=CHersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl, Prop-1-, oder Prop-2-enyl, But-1-, 2- oder But-3-enyl,

25

-8-

Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1-, 2-, 3-, 4- oder Hex-5-enyl, Hept-1-, 2-, 3-, 4-, 5- oder Hept-6-enyl, Oct-1-, 2-, 3-, 4-, 5-, 6- oder Oct-7-enyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-enyl.

- Falls R einen Alkylrest bedeutet, in dem eine CH₂-Gruppe durch -O- und eine durch -CO- ersetzt ist, so sind diese bevorzugt benachbart. Somit beinhalten diese eine Acyloxygruppe -CO-O- oder eine Oxycarbonylgruppe -O-CO-. Vorzugsweise sind diese geradkettig und haben 2 bis 6 C-Atome. Sie bedeuten demnach besonders Acetyloxy, Propionyloxy, Butyryloxy,
- Pentanoyloxy, Hexanoyloxy, Acetyloxymethyl, Propionyloxymethyl, Butyryloxymethyl, Pentanoyloxymethyl, 2-Acetyloxyethyl, 2-Propionyloxyethyl, 2-Butyryloxyethyl, 2-Acetyloxypropyl, 3-Propionyloxypropyl, 4-Acetyloxybutyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxy-carbonyl, Butoxycarbonyl, Pentoxycarbonyl, Methoxycarbonylmethyl,
- Ethoxycarbonylmethly, Propoxycarbonylmethyl, Butoxycarbonylmethyl, 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(Propoxycarbonyl)ethyl, 3-(Methoxycarbonyl)-propyl, 3-(Ethoxy-carbonyl)-propyl oder 4-(Methoxycarbonyl)-butyl.
- Falls R einen Alkylrest bedeutet, in dem eine CH₂-Gruppe durch unsubstituiertes oder substituiertes -CH=CH- und eine benachbarte CH₂-Gruppe durch CO oder CO-O oder O-CO ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 4 bis 12 C-Atome. Er bedeutet demnach besonders Acryloyloxymethyl, 2-
- Acryloyl-oxyethyl, 3-Acryloyloxypropyl, 4-Acryloyloxybutyl, 5-Acryloyloxypentyl, 6-Acryloyloxyhexyl, 7-Acryloyloxyheptyl, 8-Acryloyloxyoctyl, 9-Acryloyl-oxynonyl, 10-Acryloyloxydecyl, Methacryloyloxymethyl, 2-Methacryloyl-oxyethyl, 3-Methacryloyloxypropyl, 4-Methacryloyloxybutyl, 5-Methacryl-oyloxypentyl, 6-Methacryloyloxyhexyl,
- 30 7-Methacryloyloxyheptyl, 8-Methacryloyloxyoctyl, 9-Methacryloyloxynonyl.

Falls R einen einfach durch CN oder CF₃ substituerten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig. Die Substitution durch CN oder CF₃ ist in beliebiger Position.

-9-

Falls R einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig und Halogen ist vorzugsweise F oder Cl. Bei Mehrfachsubstitution ist Halogen vorzugsweise F. Die resultierenden Reste schließen auch perfluorierte Reste ein. Bei Einfachsubstitution kann der Fluor- oder Chlorsubstituent in beliebiger Position sein, vorzugsweise jedoch in ω -Position.

Verbindungen mit verzweigten Flügelgruppen R können gelegentlich wegen einer besseren Löslichkeit in den üblichen flüssigkristallinen Basismaterialien von Bedeutung sein, insbesondere aber als chirale Dotierstoffe, wenn sie optisch aktiv sind. Smektische Verbindungen dieser Art eignen sich als Komponenten für ferroelektrische Materialien.

Verzweigte Gruppen dieser Art enthalten in der Regel nicht mehr als eine Kettenverzweigung. Bevorzugt verzweigte Reste R sind Isopropyl, 2-Butyl (= 1-Methylpropyl), Isobutyl (= 2-Methylpropyl), 2-Methylbutyl, Isopentyl (= 3-Methylbutyl), 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propylpentyl, Isopropoxy, 2-Methylpropoxy, 2-Methylbutoxy, 3-Methylpentoxy, 2-Methylpentoxy, 1-Methylhexoxy, 1-Methylpentoxy.

20

25

30

5

10

15

Falls R einen Alkylrest darstellt, in dem zwei oder mehr CH₂-Gruppen durch -O- und/oder -CO-O- ersetzt sind, so kann dieser geradkettig oder verzweigt sind. Vorzugsweise ist er verzweigt und hat 3 bis 12 C-Atome. Er bedeutet demnach besonders Bis-carboxy-methyl, 2,2-Bis-carboxy-ethyl, 3,3-Bis-carboxy-propyl, 4,4-Bis-carboxy-butyl, 5,5-Bis-carboxy-pentyl, 6,6-Bis-carboxy-hexyl, 7,7-Bis-carboxy-heptyl, 8,8-Bis-carboxy-octyl, 9,9-Bis-carboxy-nonyl, 10,10-Bis-carboxy-decyl, Bis-(methoxy-carbonyl)-methyl, 2,2-Bis-(methoxycarbonyl)-ethyl, 3,3-Bis-(methoxy-carbonyl)-propyl, 4,4-Bis-(methoxycarbonyl)-hexyl, 7,7-Bis-(methoxy-carbonyl)-heptyl, 8,8-Bis-(methoxycarbonyl)-octyl, Bis-(ethoxycarbonyl)-methyl, 2,2-Bis-(ethoxycarbonyl)-propyl, 4,4-Bis-(ethoxycarbonyl)-butyl, 5,5-Bis-(ethoxycarbonyl)-propyl, 4,4-Bis-(ethoxycarbonyl)-butyl, 5,5-Bis-(ethoxycarbonyl)-hexyl.

- 10 -

Die Verbindungen der Formeln I und IA werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen. Die Verbindungen der Formel IA sind z. B. bekannt aus der DE-OS-40 06 921.

Gegenstand der Erfindung sind auch elektrooptische Anzeigen

(insbesondere STN- oder MFK-Anzeigen mit zwei planparallelen
Trägerplatten, die mit einer Umrandung eine Zelle bilden, integrierten
nicht-linearen Elementen zur Schaltung einzelner Bildpunkte auf den
Trägerplatten und einer in der Zelle befindlichen nematischen
Flüssigkristallmischung mit positiver dielektrischer Anisotropie und hohem
spezifischem Widerstand), die derartige Medien enthalten sowie die
Verwendung dieser Medien für elektrooptische Zwecke.

Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine bedeutende Erweiterung des zur Verfügung stehenden Parameterraumes. Die erzielbaren Kombinationen aus Klärpunkt, Viskosität bei tiefer Temperatur, thermischer und UV-Stabilität und dielektrischer Anisotropie übertreffen bei weitem bisherige Materialien aus dem Stand der Technik.

- Die Forderung nach hohem Klärpunkt, nematischer Phase bei tiefer
 Temperatur sowie einem hohen Δε konnte bislang nur unzureichend erfüllt
 werden. Systeme wie z.B. ZLI-3119 weisen zwar vergleichbaren Klärpunkt
 und vergleichbar günstige Viskositäten auf, besitzen jedoch ein Δε von nur
 +3.
- Andere Mischungssysteme besitzen vergleichbare Viskositäten und Werte von Δε, weisen jedoch nur Klärpunkte in der Gegend von 60 °C auf.

20

- 11 -

Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es bei Beibehaltung der nematischen Phase bis -20 °C und bevorzugt bis -30 °C, besonders bevorzugt bis -40 °C, Klärpunkt oberhalb 60 °C, vorzugsweise oberhalb 65 °C, besonders bevorzugt oberhalb 70 °C, gleichzeitig dielektrische Anisotropiewerte Δε ≥ 6, vorzugsweise ≥ 8 und einen hohen Wert für den spezifischen Widerstand zu erreichen, wodurch hervorragende STN- und MKF-Anzeigen erzielt werden können. Insbesondere sind die Mischungen durch kleine Operationsspannungen gekennzeichnet. Die TN-Schwellen liegen unterhalb 2,0·V, vorzugsweise unterhalb 1,5 V, besonders bevorzugt < 1,3 V.

10

15

20

25

30

5

Es versteht sich, dass durch geeignete Wahl der Komponenten der erfindungsgemäßen Mischungen auch höhere Klärpunkte (z.B. oberhalb 110 °C) bei höheren Schwellenspannungen oder niedrigere Klärpunkte bei niedrigeren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigenschaften realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringen Schwellen erhalten werden. Die erfindungsgemäßen MFK-Anzeigen arbeiten vorzugsweise im ersten Transmissionsminimum nach Gooch und Tarry [C.H. Gooch und H.A. Tarry, Electron, Lett. 10, 2-4, 1974; C.H. Gooch und H.A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], wobei hier neben besonders günstigen elektrooptischen Eigenschaften, wie z.B. hohe Steilheit der Kennlinie und geringe Winkelabhängigkeit des Kontrastes (DE-PS 30 22 818) bei gleicher Schwellenspannung wie in einer analogen Anzeige im zweiten Minimum, eine kleinere dielektrische Anisotropie ausreichend ist. Hierdurch lassen sich unter Verwendung der erfindungsgemäßen Mischungen im ersten Minimum deutlich höhere spezifische Widerstände verwirklichen als bei Mischungen mit Cyanverbindungen, Der Fachmann kann durch geeignete Wahl der einzelnen Komponenten und deren Gewichtsanteilen mit einfachen Routinemethoden die für eine vorgegebene Schichtdicke der MFK-Anzeige erforderliche Doppelbrechung einstellen.

10

15

20

35

Die Fließviskosität v_{20} bei 20 °C ist vorzugsweise < 60 mm²·s⁻¹, besonders bevorzugt < 50 mm²·s⁻¹. Die Rotationsviskosität γ_1 der erfindungsgemäßen Mischungen bei 20 °C ist vorzugsweise < 160 mPa·s, besonders bevorzugt < 150 mPa·s. Der nematische Phasenbereich ist vorzugsweise mindestens 90°, insbesondere mindestens 100°. Vorzugsweise erstreckt sich dieser Bereich mindestens von -20° bis +80°.

Bei Flüssigkristallanzeigen ist eine kleine Schaltzeit erwünscht. Dies gilt besonders für Anzeigen die Videowiedergabe-fähig sind. Für derartige Anzeigen werden Schaltzeiten (Summe: t_{on} + t_{off}) von maximal 25 ms benötigt. Die Obergrenze der Schaltzeit wird durch die Bildwiederholfrequenz bestimmt. Neben der Rotationsviskosität γ₁ beeinflußt auch der Tiltwinkel die Schaltzeit. Insbesondere Mischungen mit ≥ 20 % der Verbindungen der Formel IA zeigen einen Tiltanstellwinkel von > 2,5, vorzugsweise > 3,0 im Vergleich zu dem Verkaufsprodukt ZLI-4792 der Fa. Merck KGaA.

Messungen des "Voltage Holding-ratio" (HR) [S. Matsumoto et al., Liquid Crystals <u>5</u>, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals <u>5</u>, 1381 (1989)] haben ergeben, dass erfindungsgemäße Mischungen enthaltend Verbindungen der Formel IA eine deutlich kleinere Abnahme des HR mit steigender Temperatur aufweisen als analoge Mischungen enthaltend anstelle den Verbindungen der Formel IA

Auch die UV-Stabilität der erfindungsgemäßen Mischungen ist erheblich besser, d.h. sie zeigen eine deutlich kleinere Abnahme des HR unter UV-Belastung.

35

Formel I umfasst vorzugsweise folgende Verbindungen

worin R¹, L¹, L², Q und Y die in Anspruch 1 angegebenen Bedeutungen besitzen, und R² eine der für R angegebenen Bedeutungen besitzt.

Besonders bevorzugt sind erfindungsgemäße Medien, die wenigstens eine Verbindung der Formel I-1 und/oder I-3, besonders bevorzugt jeweils wenigstens eine Verbindung der Formel I-1, enthalten.

In den Formein I-1, I-2 und I-3, bedeutet R¹ besonders bevorzugt 1 E-Alkenyl oder 3 E-Alkenyl mit 2 bis 7 C-Atomen.

Besonders bevorzugte Verbindungen der Formel I-1 sind solche, worin R²
Alkenyl mit 2 bis 7 C-Atomen bedeutet, insbesondere solche der folgenden
Formeln

$$R^{1a}$$
 H H H^{2a} $I-1b$

- 14 -

worin R^{1a} und R^{2a} jeweils unabhängig voneinander H, CH₃, C₂H₅ oder n-C₃H₇ und alkyl eine geradkettige Alkylgruppe mit 1 bis 7 C-Atomen bedeuten.

Besonders bevorzugt sind erfindungsgemäße Medien, die mindestens eine Verbindung der Formeln I-1a und/oder I-1c enthalten, in denen R^{1a} und R^{2a} jeweils dieselbe Bedeutung aufweisen, sowie Medien, die mindestens eine Verbindung der Formel I-1e enthalten.

In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien eine oder mehrere Verbindungen der Formel I-2.

Besonders bevorzugte Verbindungen der Formel I-2 sind solche, worin L¹
und L² H bedeuten, sowie solche, worin R² Alkyl mit 1 bis 8, insbesondere
1, 2 oder 3 C-Atomen und R¹ 1E-Alkenyl oder 3E-Alkenyl mit 2 bis 7,
insbesondere 2, 3 oder 4 C-Atomen bedeuten.

Besonders bevorzugte Verbindungen der Formel I-3 sind solche, worin L¹ und/oder L² F und Q-Y F oder OCF₃ bedeuten. Ferner bevorzugt sind Verbindungen der Formel I-3, worin R¹ 1E-alkenyl oder 3E-alkenyl mit 2 bis 7, insbesondere 2, 3 oder 4 C-Atomen bedeutet.

Besonders bevorzugte Verbindungen der Formel IA sind Verbindungen der Formeln IA-1 bis IA-15:

$$_{5}$$
 R- $\left(H\right)$ O $\left(CF_{2}O-O\right)$ O $\left(O\right)$ OCF $_{3}$

$$R - H - O - CF_2O - O - OCF_3$$
 IA-2

$$R \longrightarrow H \longrightarrow CF_2O \longrightarrow F$$
IA-3

$$R - H - CF_2O - H - O F$$
IA-4

$$R - H - O - CF_2O - OCF_3$$
 IA-5

$$R \longrightarrow F$$
 $O \longrightarrow CF_2O \longrightarrow OCF_3$ IA-6

$$R - H - CF_2O - F$$
 IA-7

- 16 -

$$R \longrightarrow H \longrightarrow CF_2O \longrightarrow OCF_3$$
 IA-8

 $R \longrightarrow H \longrightarrow CF_2O \longrightarrow O \longrightarrow OCF_3$ IA-9

10 $R \longrightarrow H \longrightarrow O \longrightarrow CF_2O \longrightarrow O \longrightarrow F$ IA-10

15 $R - H - O - CF_2O - O - F$ IA-11

 $R \longrightarrow H \longrightarrow CF_2O \longrightarrow F$ IA-12

 $R \longrightarrow O \longrightarrow CF_2O \longrightarrow F$ IA-13

 $R \longrightarrow H \longrightarrow CF_2O \longrightarrow F$ IA-14

- 17 -

$$R - CF_2O - CF_2O - F$$
 IA-15

5

worin R die in Formel IA angegebene Bedeutung hat.

Von diesen bevorzugten Verbindungen sind besonders bevorzugt solche der Formeln IA-1, IA-2, IA-3 und IA-4, insbesondere die der Formeln IA-1 und IA-2.

Die Verbindungen der Formel IA sind z. B. bekannt aus der DE-OS-40 06 921.

15

Bevorzugte Ausführungsformen sind im folgenden angegeben:

- Das Medium enthält ein, zwei oder mehr Verbindungen der Formeln IA-1 bis IA-12;

20

 Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II bis VI:

25

$$R^0$$
 H O X^0

30

$$R^0 \longrightarrow H \longrightarrow C_2H_4 \longrightarrow O \longrightarrow X^0$$

- 18 -

5

$$R^0 \longrightarrow H \longrightarrow Z^0 \longrightarrow H \longrightarrow V$$

10

$$R^0$$
 H Z^0 O X^0 VI

15

worin die einzelnen Reste die folgenden Bedeutungen haben:

n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen,

X⁰ F, Cl, halogeniertes Alkyl, Alkenyl, Alkenyloxy oder Alkoxy mit bis zu 6 C-Atomen,

25 Z^0 -C₂F₄-, -C₂H₄-, -(CH₂)₄-, -OCH₂- oder -CH₂O-,

Y¹ und Y² jeweils unabhängig voneinander H oder F,

r 0 oder 1.

PCT/EP00/12891

Die Verbindung der Formel IV ist vorzugsweise

20

- Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln VII bis XIII:

$$R^{0} \longrightarrow H \longrightarrow H \longrightarrow C_{2}H_{4} \longrightarrow C_{2}H_{4} \longrightarrow VIII$$

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow X^0$$
 IX

$$R^0$$
 H C_2H_4 O X

10

$$R^0$$
 H C_2H_4 H O X^0 X^1

15

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow H \longrightarrow X^0$$

20

$$R^0$$
 H O O $XIII$

25

worin R^0 , X^0 , Y^1 und Y^2 jeweils unabhängig voneinander eine der in Anspruch 4 angegebene Bedeutung haben. Y^3 bedeutet H oder F. X^0 ist vorzugsweise F, Cl, CF_3 , OCF_3 , oder $OCHF_2$. R^0 bedeutet vorzugsweise Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 6 C-Atomen.

30

Das Medium enthält zusätzlich eine oder mehrere Ester-Verbindungen der Formel n Ea bis Ed

- 21 -

$$R^0$$
 H COO O F Ea

5

$$R^0$$
 H O COO O OCF_3 Eb

10

15

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow OCF_3$$
 Ed

20 worin R⁰ die in Anspruch 4 angegebene Bedeutung hat;

- Der Anteil der Verbindung der Formeln Ea bis Ed ist vorzugsweise 10-30 Gew.%, insbesondere 15-25 Gew.%;
- 25 Der Anteil an Verbindungen der Formeln IA und I bis VI zusammen beträgt im Gesamtgemisch mindestens 50 Gew.%;
 - Der Anteil an Verbindungen der Formel I beträgt im Gesamtgemisch
 0,5 bis 40, besonders bevorzugt 1 bis 30 Gew.%;

30

 Der Anteil an Verbindungen der Formel IA beträgt im Gesamtgemisch 1 bis 50, besonders bevorzugt 15 bis 40 Gew.%; - Der Anteil an Verbindungen der Formeln II bis VI im Gesamtgemisch beträgt 30 bis 80 Gew.%;

10

$$F$$
 CF_3
 CF_3
 CF_3
 CO
 CF_2
 CO
 CO

- 20 Das Medium enthält Verbindungen der Formeln II, III, IV, V oder VI;
 - R⁰ ist geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen;
- Das Medium besteht im wesentlichen aus Verbindungen der Formeln 25 IA, I bis VI und XIII;
 - Das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den allgemeinen Formeln XIV bis XVII:

$$R^0 \longrightarrow O \longrightarrow O \longrightarrow X^0$$
 XIV

$$R^0 \longrightarrow O \longrightarrow CH_2CH_2 \longrightarrow O \longrightarrow XV$$

$$R^0 \longrightarrow CH_2CH_2 \longrightarrow O \longrightarrow XVI$$

10

$$R^0 \longrightarrow C_2H_4 \longrightarrow X^{02}$$
 ($X^{02} = F \text{ oder CI}$) XVIII

15

worin R⁰ und X⁰ die oben angegebene Bedeutung haben und die 1,4-Phenylenringe durch CN, Chlor oder Fluor substituiert sein können. Vorzugsweise sind die 1,4-Phenylenringe ein- oder mehrfach durch Fluoratome substituiert.

20

Das Medium enthält zusätzlich ein oder mehrere Verbindungen der Formeln XVIII

25

$$R^0 \longrightarrow O \longrightarrow O \longrightarrow X^0$$
, XVIII

30

worin R⁰, X⁰, Y¹, Y² die oben angegebenen Bedeutungen haben

- Das Medium enthält zusätzlich ein, zwei, drei oder mehr, vorzugsweise zwei oder drei, Verbindungen der Formel

- 24 -

worin "Alkyl" und "Alkyl*" die nachfolgend angegebene Bedeutung haben.

10

5

Der Anteil der Verbindungen der Formeln O1 und/oder O2 in den erfindungsgemäßen Mischungen beträgt vorzugsweise 5-10 Gew.%

- Das Medium enthält vorzugsweise 5-35 Gew.% der Verbindung IVa.

15

- Das Medium enthält vorzugsweise ein, zwei oder drei Verbindungen der Formel IVa, worin X° F oder OCF₃ bedeutet.
- Das Medium enthält vorzugsweise ein oder mehrere Verbindungen der Formeln IIa bis IIg,

$$R^0$$
 H O F

25

$$R^0$$
 H O F

30

$$R^0$$
 H O OCF₃

- 25 -

$$R^0$$
 H O OCF_3

 $R^{0} \longrightarrow H \longrightarrow O \longrightarrow OCF_{3}$

10 R^0 H O $OCHF_2$

15 R^0 H O OCHF₂

- worin R⁰ die oben angegebenen Bedeutungen hat. In den Verbindungen der Formeln IIa-IIe bedeutet R⁰ vorzugsweise Ethyl, n-Propyl, n-Butyl und n-Pentyl.
 - Das Gewichtsverhältnis (I + IA) : (II + III + IV + V + VI) ist vorzugsweise 1 : 10 bis 10 : 1.
 - Medium besteht im wesentlichen aus Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln IA und I bis XIII.
- Der Anteil der Verbindungen der Formel IVb und/oder IVc, worin X°
 Fluor und R⁰ C₂H₅, n-C₃H₇, n-C₄H₅ oder n-C₅H₁₁ bedeutet, beträgt im Gesamtgemisch 2 bis 20 Gew.%, insbesondere 2 bis 15 Gew.%;

Medium enthaltend zusätzlich ein, zwei oder mehr Verbindungen mit annellierten Ringen der Formeln AN1 bis AN7:

10 R^0 O CF_3 AN2

 $R^0 \longrightarrow C \longrightarrow F$ AN6

- 27 -

5

worin R⁰ die oben angegebenen Bedeutungen hat;

Es wurde gefunden, dass bereits ein relativ geringer Anteil an Verbindungen der Formeln I und IA im Gemisch mit üblichen Flüssigkristall-10 materialien, insbesondere jedoch mit einer oder mehreren Verbindungen der Formeln II, III, IV, V und/oder VI zu einer beträchtlichen Erniedrigung der Schwellenspannung und zu niedrigen Werten für die Doppelbrechung führt, wobei gleichzeitig breite nematische Phasen mit tiefen Übergangstemperaturen smektisch-nematisch beobachtet werden, wodurch die 15 Lagerstabilität verbessert wird. Bevorzugt sind insbesondere Mischungen, die neben ein oder mehreren Verbindungen der Formeln I und IA ein oder mehrere Verbindungen der Formel IV enthalten, insbesondere Verbindungen der Formel IVa, worin X⁰ F oder OCF₃ bedeutet. Die Verbindungen der Formeln I bis VI sind farblos, stabil und untereinander 20 und mit anderen Flüssigkristallmaterialien gut mischbar.

Der Ausdruck "Alkyl" bzw. "Alkyl*" umfasst geradkettige und verzweigte Alkylgruppen mit 1-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 2-5 Kohlenastoffatomen sind im allgemeinen bevorzugt.

Der Ausdruck "Alkenyl" umfasst geradkettige und verzweigte Alkenylgruppen mit 2-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Bevorzugte Alkenylgruppen sind C₂-C₇-1E-Alkenyl, C₄-C₇-3E-Alkenyl, C₅-C₇-4-Alkenyl, C₆-C₇-5-Alkenyl und C₇-6-Alkenyl, insbesondere C₂-C₇-1E-Alkenyl, C₄-C₇-3E-Alkenyl und C₅-C₇-4-Alkenyl. Beispiele besonders bevorzugter Alkenylgruppen sind Vinyl, 1E-Propenyl, 1E-Butenyl, 1E-Pentenyl, 1E-Hexenyl, 3-Butenyl.

25

- 28 -

3E-Pentenyl, 3E-Hexenyl, 3E-Heptenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl, 4Z-Heptenyl, 5-Hexenyl, 6-Heptenyl und dergleichen. Gruppen mit bis zu 5 Kohlenstoffatomen sind im allgemeinen bevorzugt.

Der Ausdruck "Fluoralkyl" umfasst vorzugsweise geradkettige Gruppen mit endständigem Fluor, d.h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluorbutyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.

Der Ausdruck "Oxaalkyl" umfasst vorzugsweise geradkettige Reste der Formel C_nH_{2n+1}-O-(CH₂)_m, worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten. Vorzugsweise ist n = 1 und m 1 bis 6.

Durch geeignete Wahl der Bedeutungen von R⁰ und X⁰ können die Ansprechzeiten, die Schwellenspannung, die Steilheit der Transmissionskennlinien etc. in gewünschter Weise modifiziert werden. Beispielsweise führen 1E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und dergleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nematischen Tendenzen und einem höheren Verhältnis der elastischen Konstanten k₃₃ (bend) und k₁₁ (splay) im Vergleich zu Alkyl- bzw.

Alkoxyresten. 4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von k₃₃/k₁₁ im Vergleich zu Alkyl- und Alkoxyresten.

Eine -CH₂CH₂-Gruppe führt im allgemeinen zu höheren Werten von k₃₃/k₁₁ im Vergleich zu einer einfachen Kovalenzbindung. Höhere Werte von k₃₃/k₁₁ ermöglichen z.B. flachere Transmissionskennlinien in TN-Zellen mit 90° Verdrillung (zur Erzielung von Grautönen) und steilere Transmissionskennlinien in STN-, SBE- und OMI-Zellen (höhere Multiplexierbarkeit) und umgekehrt.

30

Das optimale Mengenverhältnis der Verbindungen der Formeln I, IA und II + III + IV + V + VI hängt weitgehend von den gewünschten Eigenschaften, von der Wahl der Komponenten der Formeln I, IA, II, III, IV, V und/oder VI und der Wahl weiterer gegebenenfalls vorhandener Komponenten ab.

- 29 -

Geeignete Mengenverhältnisse innerhalb des oben angegebenen Bereichs können von Fall zu Fall leicht ermittelt werden.

Die Gesamtmenge an Verbindungen der Formeln IA und I bis XIII in den erfindungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die Ansprechzeiten und die Schwellenspannung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der Formeln IA und I bis XIII sind.

10

15

- In einer besonders bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien Verbindungen der Formel II bis VI (vorzugsweise II, III und/oder IV, insbesondere IVa), worin X⁰ F, OCF₃, OCHF₂, F, OCH=CF₂, OCF=CF₂ oder OCF₂-CF₂H bedeutet. Eine günstige synergistische Wirkung mit den Verbindungen der Formeln I und IA führt zu besonders vorteilhaften Eigenschaften. Insbesondere Mischungen enthaltend Verbindungen der Formel IA und der Formel IVa zeichnen sich durch ihre niedrige Schwellenspannung aus.
- Die einzelnen Verbindungen der Formeln IA und I bis XVII und deren Unterformeln, die in den erfindungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.
- Der Aufbau der erfindungsgemäßen MFK-Anzeige aus Polarisatoren, Elektrodengrundplatten und Elektroden mit Oberflächenbehandlung entspricht der für derartige Anzeigen üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefasst und umfasst auch alle Abwandlungen und Modifikationen der MFK-Anzeige, insbesondere auch Matrix-Anzeigeelemente auf Basis poly-Si TFT oder MIM.
 - Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.

WO 01/46336

- 30 -

PCT/EP00/12891

Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die
gewünschte Menge der in geringerer Menge verwendeten Komponenten in
der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der
Komponenten in einem organischen Lösungsmittel, z.B. in Aceton,
Chloroform oder Methanol, zu mischen und das Lösungsmittel nach
Durchmischung wieder zu entfernen, beispielsweise durch Destillation.

Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze enthalten. Beispielsweise können 0-15 % pleochroitische Farbstoffe oder chirale Dotierstoffe zugesetzt werden.

C bedeutet eine kristalline, S eine smektische, S_c eine smektisch C, N eine nematische und I die isotrope Phase.

15

20

25

5

In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste C_nH_{2n+1} und C_mH_{2m+1} sind geradkettige Alkylreste mit n bzw. m C-Atomen; n und m sind ganze Zahlen und bedeuten vorzugsweise 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12. Die

- 31 -

Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt von Acronym für den Grundkörper mit einem Strick ein Code für die Substituenten R^{1*}, R^{2*}, L^{1*}, L^{2*} und L^{3*}:

5	Code für R ^{1*} , R ^{2*} , L ^{1*} , L ^{2*} , L ^{3*}	R ^{1*}	R ^{2*}	L1*	L ^{2*}	L ^{3*}
	nm	C _n H _{2n+1}	C _m H _{2m+1}	Н	Н	Н
10	nOm	OC _n H _{2n+1}	C_mH_{2m+1}	Н	Н	Н
	nO.m	C_nH_{2n+1}	OC_mH_{2m+1}	Н	Н	Н
	n	C _n H _{2n+1}	CN	Н	Н	Н
	nN.F	C _n H _{2n+1}	CN	Н	Н	F
4.5	nN.F.F	C_nH_{2n+1}	CN	Н	F	F
15	nF	C_nH_{2n+1}	F	Н	Н	Н
	nOF	OC_nH_{2n+1}	F	Н	Н	Н
	nF.F	C _n H _{2n+1}	F	Н	Н	F
	nmF	C_nH_{2n+1}	C_mH_{2m+1}	F	Н	Н
20	nOCF ₃	C_nH_{2n+1}	OCF ₃	Н	Н	Н
	nOCF ₃ .F	C _n H _{2n+1}	OCF ₃	F	Н	Н
	n-Vm	C_nH_{2n+1}	-CH=CH-C _m H _{2m+1}	Н	Н	Н
	nV-Vm	C _n H _{2n+1} -CH=CH-	-CH=CH-C _m H _{2m+1}	Н	Н	Н

25

- 32 -

Bevorzugte Mischungskomponenten finden sich in den Tabellen A und B.

Tabelle A:

СРТР

$$R^{1} - \left(H\right) - C_{2}H_{4} - \left(O\right) - C = C - \left(O\right) - R^{2}$$

CEPTP

25

35

CFU

$$R^{1'} - H - H - C_{2}H_{4} - O - R^{2'} - R^{1'} - H - C_{2}H_{4} - H - C_{2}H_{4} - O - H - H -$$

- 34 -

PCT/EP00/12891

Tabelle B:

5

10

- 36 -

$$C_{n}H_{2n+1} \longrightarrow CF_{2}O \longrightarrow F$$

$$C_{n}H_{2n+1} \longrightarrow O \longrightarrow F$$

$$C_{n}H_{2n+1} \longrightarrow O \longrightarrow F$$

$$C_{n}H_{2n+1} \longrightarrow F$$

$$C_{n}H$$

15 CCGU-n-F

$$C_nH_{2n+1}$$
 H H CF_2O O F

20 CCQG-n-F

$$C_nH_{2n+1}$$
 \longrightarrow O \longrightarrow CF_2O \longrightarrow F

25 CUQU-n-F

Besonders bevorzugt sind flüsigkristalline Mischungen, die neben den Verbindungen der Formeln I und IA mindestens ein, zwei, drei oder vier Verbindungen aus der Tabelle B enthalten.

Tabelle C:

5

In der Tabelle C werden mögliche Dotierstoffe angegeben, die in der Regel den erfindungsgemäßen Mischungen zugesetzt werden.

10
$$C_2H_5$$
-CH-CH₂O O O CN C_2H_5 -CH-CH₂O O CN C_2H_5 -CH-CH₂O CN C_2H_5 -CH-

CM 21

R/S-811

CM 45 CM 47

- 38 -

$$C_{5}H_{7} \hspace{-0.1cm} \longleftarrow \hspace{-0.1cm} \begin{array}{c} \hspace{-0.1cm} \begin{array}{c} \hspace{-0.1cm} \hspace$$

R/S-1011

 C_3H_7 H O O O O O

10 R/S-3011

15

20

25

30

35

 $C_3H_7 - H - H - O - O + O + C_6H_{13}$

R/S-2011

Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent. Alle Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet Schmelzpunkt, Kp. = Klärpunkt. Ferner bedeuten K = kristalliner Zustand, N = nematische Phase, S = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen dar. Δn bedeutet optische Anisotropie (589 nm, 20 °C), die Fließviskosität v_{20} (mm²/sec) und die Rotationsviskosität γ_1 (mPa·s) wurden jeweils bei 20 °C bestimmt.

. - 39 -

	Beispiel 1			
	CC-5-V	14,0 %	$S \rightarrow N [^{\circ}C]$	< -40
	CC-3-V1	8,0 %	Klärpunkt [°C]:	+72,5
	CCQU-3-F	22,0 %	∆n [589 nm; 20 °C]:	+0,0838
5	BCH-3F.F.F	8,0 %	Δε [1 kHz; 20 °C]:	9,8
	CGU-2-F	10,0 %	γ₁ [mPa⋅s; 20 °C]:	103
	CGU-3-F	11,0 %	d·∆n [µm; 20 °C]:	0,50
	CCZU-2-F	4,0 %	Verdrillung:	90°
	CCZU-3-F	15,0 %	V _{10,0,20} :	1,23 V
10	CCZU-5-F	1,0 %		
	CCG-V-F	7,0 %		
	Beispiel 2			
15	PCH-7F	4,0 %	Klärpunkt [°C]:	95,9
	CC-5-V	12,0 %	Δn [589 nm; 20 °C]:	0,085
	CCQU-3-F	18,0 %	Δε [1 kHz; 20 °C]:	6,9
	CCP-3F.F.F	5,0 %	γ₁ [mPa⋅s; 20 °C]:	135
	CCP-5F.F.F	7,0 %	d·∆n [µm; 20 °C]:	0,50
20	CWCG-3-F	8,0 %	Verdrillung:	90°
	CCP-2OCF ₃	8,0 %		
	CCP-3OCF₃	8,0 %		
	CCP-4OCF ₃	6,0 %		
	CCP-5OCF ₃	8,0 %		
25	BCH-2F.F	8,0 %		
	BCH-3F.F	8,0 %		

- 40 -

•	Beispiel 3			
	CCQU-3-F	· 18,0 %	Klärpunkt [°C]:	73,8
	CCP-5F.F.F	5,0 %	Δn [589 nm; 20 °C]:	0,087
	CWCU-3-F	4,0 %	Δε [1 kHz; 20 °C]:	11,2
5	CCG-V-F	1,0 %	γ₁ [mPa⋅s; 20 °C]:	155
	CCP-3OCF ₃	6,0 %	d·∆n [µm; 20 °C]:	0,50
	CCP-5OCF ₃	2,0 %	Verdrillung:	90°
	CGU-2-F	11,0 %		
	CGU-3-F	11,0 %		
10	CGU-5-F	10,0 %		
	BCH-3F.F.F	4,0 %		
	CCZU-2-F	7,0 %		
	CCZU-3-F	14,0 %		
	CCZU-5-F	7,0 %		
15				
	Beispiel 4			
	CC-3-V1	3,00 %	Klärpunkt [°C]:	79,0
	CCP-2OCF ₃	8,00 %	∆n [589 nm; 20 °C]:	0,0849
20	CCP-3OCF ₃	8,00 %	Δε [1 kHz; 20 °C]:	9,8
	CCP-4OCF ₃	8,00 %	γ₁ [mPa·s; 20 °C]:	129
	CCQU-2-F	15,00 %		
	CCQU-3-F	13,00 %		
	CCQU-5-F	8,00 %		
25	CCP-2F.F.F	10,00 %		
	BCH-3F.F.F	9,00 %		
	CGU-2-F	10,00 %		
	CGU-3-F	6,00 %		
	CBC-33	2,00 %		
30				

- 41 -

	Beispiel 5					
	CC-5-V	12,00 %	Klärpunk	d [°C]:	66,7	
	CC-3-V1	10,00 %	∆n [589	nm; 20 °C]:	0,080	
	CCQU-2-F	15,00 %	Δε [1 kH:	z; 20 °C]:	8,5	·
5	CCQU-3-F	12,00 %	γ₁ [mPa·	s; 20 °C]:	103	
	BCH-3F.F.F	8,00 %				
	BCH-2F.F.F	2,00 %				
	CGU-2-F	11,00 %				
	CGU-3-F	10,00 %				
10	CCZU-2-F	4,00 %				
	CCZU-3-F	12,00 %				
	BCH-32	4,00 %				
	Beispiel 6					
15						
	CCP-20CF₃	2,0	0 %	$S \rightarrow N [^{\circ}C]$:		< -40,0
	CCP-20CF ₃ CCP-30CF ₃		0 % 0 %	S → N [°C]: Klärpunkt [°	C]:	< -40,0 +78,5
·	•	9,0			_	
·	CCP-30CF ₃	9,0 9,0	0 %	Klärpunkt [°	20 °C:]	+78,5
20	CCP-30CF ₃ CCP-2F.F.F	9,0 9,0	0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm,	, 20 °C:] C]:	+78,5 +0,1048
20	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F	9,0 9,0 3,0	0 % 0 % 0 % 0 %	Klärpunkt [° Δn [589 nm, d · Δn [20 °C	, 20 °C:] C]:	+78,5 +0,1048 0,50
20	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT	9,0 9,0 3,0 14,0 10,0	0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
20	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT	9,0 9,0 3,0 14,0 10,0	0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
20	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT CCZU-2-F	9,0 9,0 3,0 14,0 10,0 4,0 15,0	0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
20	CCP-30CF₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT CCZU-2-F CCZU-3-F	9,0 9,0 3,0 14,0 10,0 4,0 15,0 2,0	0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT CCZU-2-F CCZU-3-F CCZU-5-F	9,0 9,0 3,0 14,0 10,0 4,0 15,0 2,0 3,0	0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT CCZU-2-F CCZU-3-F CCZU-5-F CGU-2-F	9,0 9,0 3,0 14,0 10,0 4,0 15,0 2,0 3,0 9,0	0 % 0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT CCZU-2-F CCZU-3-F CCZU-5-F CGU-2-F	9,0 9,0 3,0 14,0 10,0 4,0 15,0 2,0 3,0 9,0	0 % 0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT CCZU-2-F CCZU-3-F CCZU-5-F CGU-2-F PGU-2-F	9,0 9,0 3,0 14,0 10,0 4,0 15,0 2,0 3,0 9,0 6,0	0 % 0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90
	CCP-30CF ₃ CCP-2F.F.F CCP-3F.F.F CGZP-2-OT CGZP-3-OT CCZU-2-F CCZU-3-F CCZU-5-F CGU-2-F PGU-2-F PGU-2-F	9,0 9,0 3,0 14,0 10,0 4,0 15,0 2,0 3,0 9,0 2,0 6,0	0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %	Klärpunkt [° ∆n [589 nm, d · ∆n [20 °0 Verdrillung	, 20 °C:] C]:	+78,5 +0,1048 0,50 90

	Beispiel 7			
	CCP-20CF ₃	8,00 %	S → N [°C]:	< -40,0
	CCP-30CF ₃	8,00 %	Klärpunkt [°C]:	+71,5
	CGZP-2-OT	12,00 %	Δn [589 nm, 20 °C]:	+0,1047
5	CGZP-3-OT	8,00 %	γ₁ [20 °C, m Pa⋅s]:	141
	CCZU-2-F	5,00 %	d · ∆n [20 °C]:	0,50
	CCZU-3-F	14,00 %	Verdrillung [°]:	90
	CUQU-2-F	6,00 %	V ₁₀ [V]:	0,97
	CUQU-3-F	6,00 %		
10	CUQU-5-F	2,00 %		
	CGU-2-F	6,00 %		
	CGU-3-F	4,00 %		
	PGU-2-F	8,00 %		
	PGU-3-F	5,00 %		
15	CC-3-V1	3,00 %		
	CCH-35	5,00 %		
	Beispiel 8			<i>,</i>
20	CC-3-V1	3,00 %	S → N [°C]:	< -30,0
	CCH-35	5,00 %	Klärpunkt [°C]:	+74,0
	CC-5-V	18,00 %	∆n [589 nm, 20 °C]:	+0,0796
	CUQU-2-F	7,00 %	γ₁ [20 °C, m Pa·s]:	94
	CUQU-3-F	4,00 %	d · ∆n [20 °C]:	0,50
25	CCP-30CF ₃	8,00 %	Verdrillung [°]:	90
	CCP-40CF ₃	7,00 %	V ₁₀ [V]:	1,25
	CCP-2F.F.F	6,00 %		
	CGU-2-F	9,00 %		
	CCZU-2-F	4,00 %		
30	CCZU-3-F	15,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	3,00 %		

- 43 -

	Beispiel 9			
	CCP-2F.F.F	10,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3F.F.F	10,00 %	Klärpunkt [°C]:	+80,5
	CCP-20CF ₃	8,00 %	Δn [589 nm, 20 °C]:	+0,0775
5	CCP-30CF ₃	8,00 %	γ₁ [20 °C, m Pa⋅s]:	105
	CCP-40CF ₃	4,00 %	d · ∆n [20 °C]:	0,50
	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	CCZU-3-F	14,00 %	V ₁₀ [V]:	1,30
	CUQU-2-F	6,00 %		
10	CUQU-3-F	6,00 %		
	CC-3-V1	9,00 %		
	CGZP-2-OT	10,00 %		
	CC-5-V	10,00 %		
15	Beispiel 10			
	CCH-35	5,00 %	S → N [°C]:	< -40,0
	CC-3-V1	3,00 %	Klärpunkt [°C]:	+71,0
	CC-5-V	18,00 %	∆n [589 nm, 20 °C]:	+0,0778
20	CUQU-2-F	6,00 %	γ₁ [20 °C, m Pa⋅s]:	95
	CUQU-3-F	5,00 %	d · ∆n [20 °C]:	0,50
	CUQU-5-F	2,00 %	Verdrillung [°]:	90
	CCP-30CF ₃	8,00 %	V ₁₀ [V]:	1,21
	CCP-2F.F.F	9,00 %	•	
25	CCP-3F.F.F	6,00 %		
	BCH-3F.F.F	3,00 %		
	CGU-2-F	3.50 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	14.50 %		
30	CGZP-2-OT	10,00 %		
	CGZP-3-OT	3,00 %		

- 44 -

	Beispiel 11			
	CC-3-V	18,00 %	Klärpunkt [°C]:	+79,5
	CC-3-V1	9,00 %	∆n [589 nm, 20 °C]:	+0,1014
	CCH-35	3,00 %	d · ∆n [20 °C]:	0,50
5	CC-5-V	2,00 %	Verdrillung [°]:	90
	CCP-30CF ₃	7,00 %	V ₁₀ [V]:	1,58
	CCP-20CF₃	6,00 %		
	PGU-2-F	7,00 %		
	PUQU-2-F	7,00 %		
10	PUQU-3-F	11,00 %		
	CGZP-3-OT	6,00 %		
	CCG-V-F	5,00 %		
	CCP-V-1	16,00 %		
	BCH-32	3,00 %		
15				
	Beispiel 12			
	CC-3-V	18,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	9,00 %	Klärpunkt [°C]:	+80,0
20	CCH-35	3,00 %	Δn [589 nm, 20 °C]:	+0,1020
	CC-5-V	2,00 %	γ₁ [20 °C, m Pa⋅s]:	72
	PCH-53	2,00 %	d · ∆n [20 °C]:	0,50
	CCP-20CF₃	2,00 %	Verdrillung [°]:	90
	CCP-30CF₃	6,00 %	V ₁₀ [V]:	1,57
25	PGU-2-F	7,00 %		
	PUQU-2-F	6,00 %		
	PUQU-3-F	11,00 %		
	CCZU-3-F	4,00 %		
	CGZP-3-OT	8,00 %		
30	CCG-V-F	5,00 %		
	CCP-V-1	13,00 %		
	CBC-33	2,00 %		
	BCH-32	2,00 %		

- 45 -

	Beispiel 13			
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+79,5
	CC-5-V	8,00 %	Δn [589 nm, 20 °C]:	+0,1040
	PCH-301	4,00 %	d · Δn [20 °C]:	0,50
5	CCH-35	4,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	1,28
	CCZU-3-F	11,00 %	;5.5.5	
	PUQU-2-F	7,00 %		
	PUQU-3-F	10,00 %		
10	PGU-2-F	7,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	7,00. %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF₃	7,00 %		
15	CBC-33	2,00 %		
	Beispiel 14			
	CC-3-V1	10,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
20	PCH-53	3,00 %	Klärpunkt [°C]:	+80,0
	CC-5-V	8,50 %	Δn [589 nm, 20 °C]:	+0,0846
	CCH-35	4,00 %	γ₁ [20 °C, m Pa⋅s]:	85
	CCP-2F.F.F	9,00 %	d · ∆n [20 °C]:	0,50
٠	CCP-3F.F.F	9,00 %	Verdrillung [°]:	90
25	CCP-20CF₃	8,00 %	V ₁₀ [V]:	1,62
	CCP-30CF₃	8,00 %		
	CCP-50CF₃	5,00 %		
	PUQU-2-F	5,50 %		
	PUQU-3-F	9,00 %		
30	CCP-V-1	6,00 %		
	CCG-V-F	15,00 %		

- 46 -

	Beispiel 15			
	CC-3-V1	10,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	PCH-53	1,00 %	Klärpunkt [°C]:	+80,5
	CC-5-V	11,00 %	Δn [589 nm, 20 °C]:	+0,0808
5	CCP-20CF ₃	8,00 %	γ ₁ [20 °C, m Pa·s]:	81
	CCP-30CF ₃	8,00 %	d · ∆n [20 °C]:	0,50
	CCG-V-F	17,00 %	Verdrillung [°]:	90
	BCH-2F.F	8,00 %	V ₁₀ [V]:	1,82
	BCH-3F.F	8,00 %		
10	BCH-3F.F.F	5,00 %		•
	PUQU-2-F	6,00 %		
	PUQU-3-F	9,00 %	•	
	BCH-32	5,00 %		
	CCP-V-1	4,00 %		
15				
	Beispiel 16			
	CCH-35	4,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-5-V	12,00 %	Klärpunkt [°C]:	+80,5
20	PCH-53	4,00 %	∆n [589 nm, 20 °C]:	+0,0808
	CC-3-V1	10,00 %	γ₁ [20 °C, m Pa⋅s]:	81 '
	CCG-V-F	20,00 %	d · ∆n [20 °C]:	0,50
	CCP-2F.F.F	10,00 %	Verdrillung [°]:	90
	CCP-3F.F.F	10,00 %	V ₁₀ [V]:	1,82
25	PUQU-3-F	9,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	5,00 %		
	CCP-V-1	8,00 %		

- 47 -

	Beispiel 17			
	PCH-53	4,50 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+80,0
	CC-5-V	12,00 %	Δn [589 nm, 20 °C]:	+0,1040
5	CCG-V-F	20,00 %	γ₁ [20 °C, m Pa⋅s]:	83
	BCH-3F.F.F	11,00 %	d · ∆n [20 °C]:	0,50
	BCH-2F.F	8,00 %	Verdrillung [°]:	90
	BCH-3F.F	8,00 %	V ₁₀ [V]:	1,79
	PUQU-3-F	9,50 %		•
10	BCH-32	4,00 %		
	CCP-V-1	13,00 %		
,				
	Beispiel 18			
15	CC-3-V1	11,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	PCH-53	1,00 %	Klärpunkt [°C]:	+80,0
	CC-5-V	10,00 %	Δn [589 nm, 20 °C]:	+0,1038
	CCP-20CF ₃	8,00 %	γ₁ [20 °C, m Pa⋅s]:	85 .
	CCP-30CF ₃	8,00 %	d · ∆n [20 °C]:	0,50
20	CCG-V-F	17,00 %	Verdrillung [°]:	90
	BCH-2F.F	8,00 %	V ₁₀ [V]:	1,60
	BCH-3F.F	8,00 %		
	BCH-3F.F.F	5,00 %		
	PUQU-2-F	6,00 %		
25	PUQU-3-F	9,00 %		
	BCH-32	5,00 %		,
	CCP-V-1	4,00 %		

- 48 -

	Beispiel 19			
	CC-5-V	8,00 %	S VIII.	- 40.0
	CC-3-V1	11,00 %	S → N [°C]: Klärpunkt [°C]:	< -40,0
	CCH-35	4,00 %	Δn [589 nm, 20 °C]:	+79,0
5	PUQU-2-F	4,00 % 6,00 %	Δη [369 ημη, 20 °C]. γ ₁ [20 °C, m Pa⋅s]:	+0,1046 99
	PUQU-3-F	10,00 %	γ_1 [20°C, in Pa·s]. d · Δ n [20°C]:	
	CGU-2-F	10,00 %	Verdrillung [°]:	.0,50 90
	CGU-3-F	10,00 %		
			V ₁₀ [V]:	1,26
10	CGZP-2-OT CGZP-3-OT	11,00 % 7,00 %		
		·		
	CCP-30CF ₃	8,00 %		
	CCP-40CF ₃	8,00 %		
	CCP-V-1	4,00 %		
15	CBC-33	3,00 %		
15	D.::-100			
	Beispiel 20			
	CC-3-V1	11,00 %	S → N [°C]:	< +79,5
•	PCH-53	2,00 %	Klärpunkt [°C]:	-40,0
20	CC-5-V	8,00 %	Δn [589 nm, 20 °C]:	+0,1040
	CCP-20CF ₃	8,00 %	d · Δn [20 °C]:	0,50
	CCP-30CF ₃	8,00 %	Verdrillung [°]:	90
	CCG-V-F	16,00 %	Verdillang []. V₁₀ [V]:	1,79
	BCH-2F.F	8,00 %	V 10 LV J.	1,7 3
25	BCH-3F.F	8,00 %		
20	BCH-3F.F.F	8,00 %		
		5,00 % 5,00 %		
	PUQU-2-F			
	PUQU-3-F	9,00 %		
30	BCH-32	4,00 %		
30	CCP-V-1	5,00 %		

- 49 -

·		
001105	C . N [90].	4 40 0
CCH-35 4,00 %	S → N [°C]:	< -40,0
CC-5-V 9,00 %	Klärpunkt [°C]:	+80,0
PCH-53 5,00 % 5 CC-3-V1 10.00 %	Δn [589 nm, 20 °C]:	+0,0821
,	d · Δn [20 °C]:	0,50
CCG-V-F 20,00 %	Verdrillung [°]:	90
CCP-2F.F.F 9,00 %	V ₁₀ [V]:	1,79
CCP-3F.F.F 9,00 %	•	
BCH-3F.F.F 4,00 %		
10 PUQU-3-F 9,00 %		
CCP-20CF ₃ 8,00 %		
CCP-30CF ₃ 3,00 %		
CCP-V-1 10,00 %		
15 <u>Beispiel 22</u>		
CC-3-V 20,00 %	Klärpunkt [°C]:	+81,0
CC-3-V1 11,00 %	∆n [589 nm, 20 °C]:	+0,0994
CCP-30CF ₃ 8,00 %	d · ∆n [20 °C]:	0,50
20 CCP-20CF ₃ 8,00 %	Verdrillung [°]:	90
PGU-2-F 8,00 %	V ₁₀ [V]:	1,55
PUQU-3-F 12,00 %		
CGZP-2-OT 9,00 %		
CCZU-2-F 4,00 %		
25 CCP-2F.F.F 3,00 %		
CCG-V-F 2,00 %		
CCP-V-1 11,00 %		
BCH-32 4,00 %		

- 50 -

	Beispiel 23			
	CC-3-V	19,00 %	S → N [°C]:	< -40,0
	CC-3-V1	8,00 %	Klärpunkt [°C]:	+80,0
	CCZU-2-F	4,00 %	Δn [589 nm, 20 °C]:	+0,1008
5	CCG-V-F	9,00 %	d · ∆n [20 °C]:	0,50
	PUQU-2-F	7,00 %	Verdrillung [°]:	90
	PUQU-3-F	11,00 %	V ₁₀ [V]:	1,34
	PGU-2-F	4,00 %		
	CGZP-2-OT	11,00 %		
10	CGZP-3-OT	6,00 %	,	
	CCP-40CF₃	8,00 %		
	CCP-30CF ₃	8,00 %		
	BCH-32	3,00 %		
	CBC-33	2,00 %		
15				
	Beispiel 24			
	CC-3-V	18,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	9,00 %	Klärpunkt [°C]:	+80,0
20	CCH-35	3,00 %	∆n [589 nm, 20 °C]:	+0,1025
	CC-5-V	2,00 %	γ₁ [20 °C, m Pa⋅s]:	78
	PGU-2-F	8,00 %	d · ∆n [20 °C]:	0,50
	PUQU-2-F	6,00 %	Verdrillung [°]:	90
	PUQU-3-F	11,00 %	V ₁₀ [V]:	1,37
25	CCP-20CF ₃	2,00 %		
	CCP-30CF₃	6,00 %		
	CGZP-2-OT	8,00 %		
	CGZP-3-OT	7,00 %		
	CCZU-3-F	10,00 %		
30 ·	CCP-V-1	8,00 %		
	CBC-33	2,00 %		

- 51 -

	Beispiel 25		•	
	CC-5-V	15,00 %	Klärpunkt [°C]:	+79,5
	CC-3-V1	9,00 %	Δn [589 nm, 20 °C]:	+0,1042
	CCZU-2-F	4,00 %	d · ∆n [20 °C]:	0,50
5	CCZU-3-F	4,00 %	Verdrillung [°]:	90
	PUQU-3-F	18,00 %	V ₁₀ [V]:	1,30
	PGU-2-F	6,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
10	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	8,00 %		
	CCG-V-F	4,00 %		
	BCH-32	2,00 %		
	CC-V-1	2,00 %		
15				
	Beispiel 26			
	CC-3-V	18,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	6,00 %	Klärpunkt [°C]:	+79,0
20	CCZU-2-F	4,00 %	Δn [589 nm, 20 °C]:	+0,1046
	CCZU-3-F	8,00 %	γ₁ [20 °C, m Pa⋅s]:	88
	PUQU-2-F	7,00 %	d · Δn [20 °C]:	0,50
	PUQU-3-F	11,00 %	Verdrillung [°]:	90
	PGU-2-F	6,00 %	V ₁₀ [V]:	1,25
25	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	8,00 %		
	BCH-32	2,00 %		
30	CBC-33	2,00 %		

	Beispiel 27			
	CC-5-V	8,00 %	Klärpunkt [°C]:	+81,5
	CC-3-V1	8,00 %	Δn [589 nm, 20 °C]:	+0,1052
	CC-3-2V	8,00 %	d · Δn [20 °C]:	0,50
5	CCH-35	4,00 %	Verdrillung [°]:	90
_	CCZU-2-F	4,00 %	Volumeng []. V ₁₀ [V]:	1,35
	CCZU-3-F	5,00 %	4 10 F 4 1·	1,00
	PUQU-2-F	7,00 %		
	PUQU-3-F	11,00 %	•	
10	PGU-2-F	7,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	8,00 %		
15	CBC-33	2,00 %		
	020 00	2,00		
	Beispiel 28			
				
	CCH-301	12,00 %		
20	CC-3-V1	11,00 %		
	CCH-35	5,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	5,00 %		
	PUQU-2-F	7,00 %		
25	PUQU-3-F	11,00 %		
	PGU-2-F	7,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
	CCP-20CF ₃	8,00 %		
30	CCP-30CF ₃	8,00 %		
	CBC-33	2,00 %		

	Beispiel 29			
	CC-5-V	10,00 %		
	PCH-301	4,00 %		
	CC-3-V1	10,00 %		
5	CCH-35	4,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	5,00 %		
	PUQU-2-F	7,00 %		
	PUQU-3-F	11,00 %		
10	PGU-2-F	7,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
	CCP-40CF₃	8,00 %		
	CCP-30CF ₃	8,00 %		
15	CBC-33	2,00 %		
	Pointin 20			
	Beispiel 30	•		
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+80,5
20	CC-3-2V	10,00 %	Δn [589 nm, 20 °C]:	+0,1060
	CCH-301	3,00 %	d · ∆n [20 °C]:	0,50
	CCH-35	4,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	1,27
	CCZU-3-F	10,00 %	•	
25	PUQU-2-F	7,00 %		•
	PUQU-3-F	11,00 %		
	PGU-2-F	8,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
30	CCP-20CF ₃	3,00 %		
	CCP-30CF ₃	8,00 %		
	CBC-33	2,00 %		

- 54 -

	Beispiel 31	•		
	CC-5-V	16,00 %	Klärpunkt [°C]:	+85,5
	CC-3-V1	10,00 %	Δn [589 nm, 20 °C]:	+0,1052
	CCH-3CF₃	2,00 %	d · Δn [20 °C]:	0,50
5	CCH-35	5,00 %	Verdrillung [°]:	90
	CCZU-2-F	5,00 %	V ₁₀ [V]:	1,46
	PUQU-2-F	8,00 %		
	PUQU-3-F	11,00 %		
	PĠU-2-F	5,00 %		
10	CGZP-2-OT	10,00 %		
	CGZP-3-OT	7,00 %		
	CCP-30CF ₃	8,00 %		
	CCP-V-1	9,00 %		
	CBC-33	3,00 %		
15	CBC-53	1,00 %		
	Beispiel 32			
	CC-5-V	16,00 %	Klärpunkt [°C]:	+78,5
20	CC-3-V1	9,00 %	∆n [589 nm, 20 °C]:	+0,1027
	CCH-3CF ₃	2,00 %	d · ∆n [20 °C]:	0,50
	CCH-35	5,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	1,44
	PUQU-2-F	8,00 %	•	
25	PUQU-3-F	11,00 %		
	PGU-2-F	6,00 %		
	CGZP-2-OT	10,00 %		
	CGZP-3-OT	8,00 %		
	CCP-30CF ₃	8,00 %		
30	CCP-V-1	13,00 %		

- 55 -

	Beispiel 33			
	CC-5-V	13,00 %	Klärpunkt [°C]:	+80,0
	CC-3-V1	9,00 %	Δn [589 nm, 20 °C]:	+0,1060
	CCH-35	5,00 %	d · ∆n [20 °C]:	0,50
5	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	PUQU-2-F	7,00 %	V ₁₀ [V]:	1,42
	PUQU-3-F	13,00 %		
	PGU-2-F	7,00 %		
	CGZP-2-OT	10,00 %		
10	CGZP-3-OT	7,00 %		
	CCP-30CF ₃	8,00 %		
	CCP-20CF₃	4,00 %		
	CCP-V-1	12,00 %		
15	Beispiel 34			
	CC-5-V	18,00 %		
	CC-3-V1	10,00 %		
	CCH-3CF ₃	0,00 %		
20	CCH-35	5,00 %		
	CCP-30CF ₃	8,00 %	·	
	PGU-2-F	2,00 %		
	PGU-3-F	0,00 %		
	CGU-2-F	0,00 %		•
25	CGZP-2-OT	12,00 %		
	CGZP-3-OT	7,50 %		
	CCZU-2-F	0,00 %		
	CCZU-3-F	2,00 %		
	BCH-32	4,00 %		
30	PUQU-2-F	10,00 %		
	PUQU-3-F	12,00 %		
	CCP-V-1	9,50 %		

- 56 -

	Beispiel 35			
	CC-5-V	13,00 %	Klärpunkt [°C]:	+81,0
	CC-3-V1	9,00 %	Δn [589 nm, 20 °C]:	+0,1043
	CCH-35	5,00 %	γ₁ [20 °C, m Pa⋅s]:	90
5	CCZU-2-F	5,00 %	d · ∆n [20 °C]:	0,50
	PUQU-2-F	7,00 %	Verdrillung [°]:	90
	PUQU-3-F	13,00 %	V ₁₀ [V]:	1,38
	PGU-2-F	5,00 %		
	CGU-2-F	1,00 %		
10	CGZP-2-OT	11,00 %		
	CGZP-3-OT	7,00 %		
	CCP-30CF ₃	8,00 %		
	CCP-20CF ₃	7,00 %		•
	CCP-V-1	8,00 %		
15	CBC-33	1,00 %		
	Beispiel 36			
	CC-5-V	12,00 %	Klärpunkt [°C]:	+79,0
20	CC-3-V1	9,00 %	∆n [589 nm, 20 °C]:	+0,1037
	CCH-35	3,00 %	d · ∆n [20 °C]:	0,50
	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	PUQU-2-F	7,00 %	V ₁₀ [V]:	1,33
	PUQU-3-F	13,00 %		
25	PGU-2-F	6,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	7,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	7,00 %		
30	CCP-40CF ₃	4,00 %		•
	CCG-V-F	2,00 %		
	CCP-V-1	6,00 %		

- 57 -

	Beispiel 37			
	CCP-2F.F.F	12,00 %	Klärpunkt [°C]:	+80,0
	CCP-3F.F.F	11,00 %	Δn [589 nm, 20 °C]:	+0,0807
	CCP-5F.F.F	6,00 %	d · ∆n [20 °C]:	0,50
5	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	CCZU-3-F	15,00 %	V ₁₀ [V]:	1,19
	CCZU-5-F	4,00 %		
	CCP-20CF ₃	5,00 %		
	CCP-30CF ₃	3,00 %	•	
10	CCOC-3-3	3,00 %		
	CCOC-4-3	4,00 %		
	CCOC-3-5	3,00 %		
	CC-5-V	11,00 %		
	PUQU-3-F	8,00 %		
15	PUQU-2-F	10,00 %		
	Beispiel 38			
	CCH-35	5,00 %	$S \rightarrow N$ [°C]:	< -40,0
20	CC-5-V	15,50 %	Klärpunkt [°C]:	+71,0
	CCH-3CF ₃	3,50 %	Δn [589 nm, 20 °C]:	+0,0768
	CCP-20CF ₃	6,00 %	γ₁ [20 °C, m Pa⋅s]:	94
	CCP-40CF ₃	8,00 %	d · ∆n [20 °C]:	0,50
	CCP-20CF ₃ .F	5,00 %	Verdrillung [°]:	90
25	CCP-2F.F.F	10,00 %	V ₁₀ [V]:	1,21
	CCP-3F.F.F	10,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	15,00 %		
	CCZU-5-F	3,00 %		
30	PUQU-2-F	9,00 %		
	PUQU-3-F	6,00 %		

- 58 -

	Beispiel 39			
	CCH-35	4,00 %	S → N [°C]:	< -20,0
	CCP-30CF₃	8,00 %	Klärpunkt [°C]:	+81,5
	CCP-40CF₃	8,00 %	Δn [589 nm, 20 °C]:	+0,1034
5	CCP-2F.F.F	10,00 %	γ₁ [20 °C, m Pa⋅s]:	161
	CGZP-2-OT	14,00 %	d · ∆n [20 °C]:	0,50
	CGZP-3-OT	10,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	0,94
	CCZU-3-F	15,00 %		
10	CCZU-5-F	3,00 %		
	PGU-2-F	2,00 %		
	PUQU-2-F	11,00 %		
	PUQU-3-F	11,00 %		
15	Beispiel 40			
	CCP-2F.F.F	9,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-20CF₃	8,00 %	Klärpunkt [°C]:	+71,5
	CCP-30CF₃	5,00 %	Δn [589 nm, 20 °C]:	+0,1044
20	CCP-40CF ₃	4,00 %	γ₁ [20 °C, m Pa⋅s]:	151
	CCQU-2-F	10,00 %	d · ∆n [20 °C]:	0,50
	CCQU-3-F	12,00 %	Verdrillung [°]:	90
	CCQU-5-F	8,00 %	V ₁₀ [V]:	0,92
	PUQU-2-F	12,00 %		
25	PUQU-3-F	12,00 %		
	PGU-2-F	9,00 %		
	PGU-3-F	2,00 %		
	CCGU-3-F	5,00 %		
	CBC-33	1,00 %		
30	CCOC-3-3	3,00 %		

- 59 -

	Beispiel 41			
	001105			
•	CCH-35	5,00 %		
	CC-5-V	16,00 %		
_	CCH-3CF₃	5,00 %		
5	CCP-20CF ₃	6,00 %		
	CCP-40CF₃	8,00 %		
	CCP-20CF ₃ .F	3,00 %		
	CCP-2F.F.F	10,00 %		
	CCP-3F.F.F	10,00 %		
10	CCZU-2-F	3,50 %		
	CCZU-3-F	15,00 %		
	CCZU-5-F	2,50 %		
	PUQU-2-F	8,00 %		
	PUQU-3-F	7,00 %		
15	CCOC-3-3	1,00 %		
	D 1 1 1 40			
	Beispiel 42			
	CCH-35	4,50 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
20	CCP-30CF ₃	8,00 %	Klärpunkt [°C]:	+80,0
	CCP-40CF₃	5,00 %	Δn [589 nm, 20 °C]:	+0,1025
	CCP-50CF₃	2,00 %	d · Δn [20 °C]:	0,50
	CCP-2F.F.F	9,50 %	Verdrillung [°]:	90
	CCP-3F.F.F	2,00 %	V ₁₀ [V]:	0,94
25	CGZP-2-OT	14,00 %		
	CGZP-3-OT	10,00 %		
	CCZU-2-F	3,50 %		
	CCZU-3-F	15,00 %		
	CCZU-5-F	2,50 %		
30	PGU-2-F	2,00 %		
	PUQU-2-F	8,00 %		
	PUQU-3-F	14,00 %	•	
	·	7 1,02 70		

- 60 -

	Beispiel 43			
	CC-3-V1	4.00.0/		
	CC-3-V1	4,00 %		
		5,00 %		
5	CC-5-V	17,00 %	•	
5	CCH-3CF ₃	2,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	6,50 %		
	CCP-2F.F.F	10,00 %		
10	CCP-3F.F.F	9,00 %		
10	CGZP-2-OT	4,50 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	14,00 %		
	PUQU-3-F	8,00 %		
15	Beispiel 44			
	CC-3-V1	4,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCH-35	5,00 %	Klärpunkt [°C]:	+71,0
	CC-5-V	17,00 %	Δn [589 nm, 20 °C]:	+0,0797
20	CCH-3CF ₃	2,00 %	d · Δn [20 °C]:	0,50
	CCP-20CF ₃	8,00 %	Verdrillung [°]:	90
	CCP-30CF ₃	6,50 %	V ₁₀ [V]:	1,28
	CCP-2F.F.F	10,00 %	10 % 3	·
	CCP-3F.F.F	9,00 %		
25	CGZP-2-OT	4,50 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	14,00 %		
	PUQU-3-F	8,50 %		
	PUQU-3-F	7,50 %		
30		-,	·	

- 61 -

	Beispiel 45			
	CCP-2F.F.F	12,00 %	Klärpunkt [°C]:	+82,0
	CCP-3F.F.F	10,00 %	Δn [589 nm, 20 °C]:	+0,0800
	CCP-5F.F.F	6,00 %	d · Δn [20 °C]:	0,50
5	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	CCZU-3-F	15,00 %	V ₁₀ [V]:	1,26
	CCZU-5-F	4,00 %		
	CCP-20CF ₃	3,00 %		
	CCP-30CF ₃	2,00 %		
10	CCP-50CF₃	3,00 %		
	CCOC-3-3	3,00 %		
	CCOC-4-3	4,00 %		
	CCOC-3-5	3,00 %		
	CC-5-V	13,00 %		
15	PUQU-3-F	17,00 %		
	Beispiel 46			
	CCP-2F.F.F	9,00 %	S → N [°C]:	< -40,0
20	CCP-20CF ₃	8,00 %	Klärpunkt [°C]:	+74,5
	CCP-30CF ₃	4,50 %	Δn [589 nm, 20 °C]:	+0,1056
	CCP-40CF ₃	4,00 %	γ₁ [20 °C, m Pa⋅s]:	152
	CCQU-2-F	10,00 %	d · ∆n [20 °C]:	0,50
•	CCQU-3-F	12,00 %	Verdrillung [°]:	90
25	CCQU-5-F	8,00 %	V ₁₀ [V]:	0,91
	PUQU-2-F	12,00 %		
	PUQU-3-F	12,00 %		
	PGU-2-F	9,00 %		
	PGU-3-F	1,50 %		
30	CCGU-3-F	5,00 %		
	CBC-33	2,00 %		
	CCOC-3-3	3,00 %		

- 62 -

	Beispiel 47			
	CCP-2F.F.F	10,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-20CF ₃	8,00 %	Klärpunkt [°C]:	+69,0
	CCP-30CF ₃	8,00 %	Δn [589 nm, 20 °C]:	+0,1044
5	CCP-40CF ₃	4,00 %	d · ∆n [20 °C]:	0,50
	CGZP-2-OT	12,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	0,94
	CCZU-3-F	14,00 %		
	PUQU-2-F	12,00 %		
10	PUQU-3-F	12,00 %		
	PGU-2-F	8,00 %		
	CC-3-V1 .	6,00 %		
	CCP-V-1	2,00 %		
15	Beispiel 48			
	CCP-2F.F.F	9,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3F.F.F	3,00 %	Klärpunkt [°C]:	+68,5
	CCP-20CF ₃	8,00 %	∆n [589 nm, 20 °C]:	+0,1052
20	CCP-30CF ₃	6,00 %	d · ∆n [20 °C]:	0,50
	CGZP-2-OT	11,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	0,96
	CCZU-3-F	13,00 %		
	PUQU-2-F	12,00 %		
25	PUQU-3-F	11,00 %		
	PGU-2-F	9,00 %		
	CC-3-V1	9,00 %		
	CCP-V-1	5,00 %		

- 63 -

	Beispiel 49			
	CCH-35	4,00 %	Klärpunkt [°C]:	+81,0
	CCP-20CF₃	2,00 %	Δn [589 nm, 20 °C]:	+0,1054
	CCP-30CF₃	7,00 %	γ₁ [20 °C, m Pa⋅s]:	163
5	CCP-40CF₃	6,50 %	d · ∆n [20 °C]:	0,50
	CCP-2F.F.F	10,00 %	Verdrillung [°]:	90
	CGZP-2-OT	14,00 %	V ₁₀ [V]:	0,94
	CGZP-3-OT	10,00 %		
	CCZU-2-F	4,00 %		
10	CCZU-3-F	15,00 %		
	CCZU-5-F	3,00 %		
	PGU-2-F	4,50 %		
	PUQU-3-F	20,00 %		
15	Beispiel 50			
	CC-3-V1	4,00 %	$S \rightarrow N [^{\circ}C]$:	< -30,0
	CCH-35	5,00 %	Klärpunkt [°C]:	+74,0
	CC-5-V	18,00 %	∆n [589 nm, 20 °C]:	+0,0807
20	CCP-20CF ₃	8,00 %	γ₁ [20 °C, m Pa⋅s]:	86
	CCP-30CF ₃	8,00 %	d · ∆n [20 °C]:	0,50
•	CCP-2F.F.F	10,00 %	Verdrillung [°]:	90
	CCP-3F.F.F	8,00 %	V ₁₀ [V]:	1,31
	CGZP-2-OT	4,00 %		
25	CCZU-2-F	4,00 %		
	CCZU-3-F	15,00 %		
	PUQU-3-F	16,00 %		

- 64 -

	Beispiel 51			
	CCP-2F.F.F	10,00 %	S → N [°C]:	< -40,0
	CCP-3F.F.F	10,00 %	Klärpunkt [°C]:	+80,0
	CCP-20CF ₃ .F	10,00 %	Δn [589 nm, 20 °C]:	+0,0804
5	CCP-20CF ₃	8,00 %	γ, [20 °C, m Pa·s]:	112
·	CCP-30CF ₃	5,00 %	d · Δn [20 °C]:	0,50
	CCP-40CF ₃	4,00 %	Verdrillung [°]:	90
	CCZU-2-F	5,00 %	Voidinang []. V ₁₀ [V]:	0,96
	CCZU-3-F	15,00 %	. 10 L*J*	0,00
10	CCZU-5-F	4,00 %		
	PUQU-3-F	13,00 %		
	CCH-35	5,00 %		
	CC-5-V	11,00 %		
15	Beispiel 52			
	CCP-2F.F.F	10,00 %	S → N [°C]:	< -40,0
	CCP-20CF ₃	8,00 %	Klärpunkt [°C]:	+71,0
	CCP-30CF ₃	5,00 %	Δn [589 nm, 20 °C]:	+0,1047
20	CGZP-2-QT	12,00 %	γ₁ [20 °C, m Pa⋅s]:	125
	CGZP-3-OT	4,00 %	d · ∆n [20 °C]:	0,50
	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	CCZU-3-F	12,00 %	V ₁₀ [V]:	0,96
	PUQU-3-F	20,00 %		
25	CGU-2-F	3,00 %		
	PGU-2-F	8,00 %		
	CC-3-V1	3,50 %		
	CCH-35	5,00 %		
	CCP-V-1	4,50 %		
30				

- 65 -

	Beispiel 53		·	
	CCP-2F.F.F	10,00 %	S → N [°C]:	< -40,0
	CCP-20CF ₃	8,00 %	Klärpunkt [°C]:	+68,5
	CCP-30CF ₃	8,00 %	Δn [589 nm, 20 °C]:	+0,1043
5	CCP-40CF ₃	4,00 %	γ ₁ [20 °C, m Pa·s]:	126
	CGZP-2-OT	12,00 %	d · ∆n [20 °C]:	0,50
	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	CCZU-3-F	15,00 %	V ₁₀ [V]:	0,91
	PUQU-3-F	22,00 %		
10	PGU-2-F	9,00 %		
	PGU-3-F	1,00 %		
	CC-3-V1	3,50 %		
	CCH-35	2,50 %		
15	Beispiel 54	·		
	CCP-2F.F.F	9,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3F.F.F	9,00 %	Klärpunkt [°C]:	+69,0
	CCP-20CF ₃ .F	5,00 %	Δn [589 nm, 20 °C]:	+0,1049
20	CCP-20CF ₃	8,00 %	γ₁ [20 °C, m Pa⋅s]:	144
	CCP-30CF ₃	7,00 %	d · ∆n [20 °C]:	0,50
	CCP-40CF ₃	4,00 %	Verdrillung [°]:	90
	CCZU-2-F	5,00 %	V ₁₀ [V]:	0,92
	ĊCZU-3-F	15,00 %		•
25	PUQU-3-F	25,00 %	•	
	PGU-2-F	8,00 %		
	PGU-3-F	2,00 %		
	CBC-33	3,00 %		

- 66 -

	Beispiel 55		•	
	CC-3-V	18,00 %	Klärpunkt [°C]:	+79,5
	CC-3-V1	9,00 %	Δn [589 nm, 20 °C]:	+0,1014
	CCH-35	3,00 %	d · ∆n [20 °C]:	0,50
5	CC-5-V	2,00 %	Verdrillung [°]:	90
	CCP-30CF ₃	7,00 %	V ₁₀ [V]:	1,58
	CCP-20CF ₃	6,00 %		
	PGU-2-F	7,00 %		
	PUQU-2-F	7,00 %		
10	PUQU-3-F	11,00 %		
	CGZP-3-OT	6,00 %		
	CCG-V-F	5,00 %		
	CCP-V-1	16,00 %		
	BCH-32	3,00 %		
15				
	Beispiel 56			
	CC-3-V1	11,00 %	$S \rightarrow N [^{\circ}C]$:	< -79,5
	PCH-53	2,00 %	Klärpunkt [°C]:	+40,0
20	CC-5-V	8,00 %	Δn [589 nm, 20 °C]:	+0,1040
	CCP-20CF ₃	8,00 %	d · ∆n [20 °C]:	0,50
	CCP-30CF ₃	8,00 %	Verdrillung [°]:	90
	CCG-V-F	16,00 %	V ₁₀ [V]:	1,59
	BCH-2F.F	8,00 %	•	
25	BCH-3F.F	8,00 %		
	BCH-3F.F.F	8,00 %		
	PUQU-2-F	5,00 %		
	PUQU-3-F	9,00 %		
	BCH-32	4,00 %	•	
30	CCP-V-1	5,00 %		

- 67 -

	Beispiel 57			
	CC-3-V	20,00 %	Klärpunkt [°C]:	+81,0
	CC-3-V1	11,00 %	Δn [589 nm, 20 °C]:	+0,0994
	CCP-30CF ₃	8,00 %	d · ∆n [20 °C]:	0,50
5	CCP-20CF ₃	8,00 %	Verdrillung [°]:	90
	PGU-2-F	8,00 %	V ₁₀ [V]:	1,55
	PUQU-3-F	12,00 %		
	CGZP-2-OT	9,00 %		
	CCZU-2-F	4,00 %		
10	CCP-2F.F.F	3,00 %		
	CCG-V-F	2,00 %		
	CCP-V-1	11,00 %		
	BCH-32	4,00 %		
15	Beispiel 58			
	CC-3-V	19,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	8,00 %	Klärpunkt [°C]:	+80,0
•	CCZU-2-F	4,00 %	Δn [589 nm, 20 °C]:	+0,1008
20	CCG-V-F	9,00 %	d · ∆n [20 °C]:	0,50
	PUQU-2-F	7,00 %	Verdrillung [°]:	90
	PUQU-3-F	11,00 %	V ₁₀ [V]:	1,34
	PGU-2-F	4,00 %		
	CGZP-2-OT	11,00 %		
25	CGZP-3-OT	6,00 %		
	CCP-40CF₃	8,00 %		
	CCP-30CF ₃	8,00 %		
	BCH-32	3,00 %		
	CBC-33	2,00 %		
30				

- 68 -

	Beispiel 59			
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+79,5
	CC-5-V	8,00 %	Δn [589 nm, 20 °C]:	+0,1040
	PCH-301	4,00 %	d · Δn [20 °C]:	0,50
5	CCH-35	4,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	Verdiniding []. V ₁₀ [V]:	1,28
	CCZU-3-F	11,00 %	4 10 [4]·	1,20
	PUQU-2-F	7,00 %		
	PUQU-3-F	10,00 %		
10	PGU-2-F	7,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	7,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	7,00 %		
15	CBC-33	2,00 %		
	020 00	2,00 /0		
	Beispiel 60			
	CCH-35	4,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
20	CC-5-V	12,00 %	Klärpunkt [°C]:	+80,5
	PCH-53	4,00 %	Δn [589 nm, 20 °C]:	+0,0808
	CC-3-V1	10,00 %	γ₁ [20 °C, m Pa·s]:	81
	CCG-V-F	20,00 %	d · ∆n [20 °C]:	0,50
,	CCP-2F.F.F	10,00 %	Verdrillung [°]:	90
25	CCP-3F.F.F	10,00 %	V ₁₀ [V]:	1,82
	PUQU-3-F	9,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	5,00 %		
	CCP-V-1	8,00 %		
30		,		

- 69 -

	Beispiel 61			
	CC-5-V	15,00 %	Klärpunkt [°C]:	+79,5
	CC-3-V1	9,00 %	Δn [589 nm, 20 °C]:	+0,1042
	CCZU-2-F	4,00 %	d · Δn [20 °C]:	0,50
5	CCZU-3-F	4,00 %	Verdrillung [°]:	90
	PUQU-3-F	18,00 %	V ₁₀ [V]:	1,30
	PGU-2-F	6,00 %	·	
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
10	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	8,00 %		
	CCG-V-V	4,00 %		
	BCH-32	2,00 %		
	CCP-V-1	2,00 %		
15				
	Beispiel 62			
•				
	CC-3-V	18,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	6,00 %	Klärpunkt [°C]:	+79,0
20	CCZU-2-F	4,00 %	Δn [589 nm, 20 °C]:	+0,1046
	CCZU-3-F	8,00 %	γ₁ [20 °C, m Pa⋅s]:	88
	PUQU-2-F	7,00 %	d · ∆n [20 °C]:	0,50
	PUQU-3-F	11,00 %	Verdrillung [°]:	90
	PGU-2-F	6,00 %	V ₁₀ [V]:	1,25
2 5	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	8,00 %		
	BCH-32	2,00 %		
30	CBC-33	2,00 %		

- 70 -

	Beispiel 63			
	CC-5-V	8,00 %	Klärpunkt [°C]:	+81,5
	CC-3-V1	8,00 %	Δn [589 nm, 20 °C]:	+0,1052
	CC-3-2V	8,00 %	d · Δn [20 °C]:	0,50
5	CCH-35	4,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	1,35
	CCZU-3-F	5,00 %	. 10 [- 1.	.,
	PUQU-2-F	7,00 %		
	PUQU-3-F	11,00 %		
10	PGU-2-F	7,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-2-OT	9,00 %		
	CCP-20CF₃	8,00 %		
	CCP-30CF ₃	8,00 %		
15	CBC-33	2,00 %		
	Beispiel 64			
	i			
	CCH-301	12,00 %		
20	CC-3-V1	11,00 %		
	CCH-35	5,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	5,00 %		
	PUQU-2-F	7,00 %		
25	PUQU-3-F	11,00 %		•
	PGU-2-F	7,00 %		•
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
	CCP-20CF₃	8,00 %		
30	CCP-30CF ₃	8,00 %		
	CBC-33	2,00 %		

- 71 -

	Beispiel 65			
	CC-5-V	10,00 %		
	PCH-301	4,00 %		
	CC-3-V1	10,00 %		
5	CCH-35	4,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	5,00 %		
	PUQU-2-F	7,00 %		
	PUQU-3-F	11,00 %		
10	PGU-2-F	7,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
	CCP-40CF ₃	8,00 %	•	
	CCP-30CF ₃	8,00 %		
15	CBC-33	2,00 %		
	Beispiel 66			
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+80,5
20	CC-3-2V	10,00 %	Δn [589 nm, 20 °C]:	+0,1060
	CCH-301	3,00 %	d · ∆n [20 °C]:	0,50
	CCH-35	4,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	1,27
	CCZU-3-F	10,00 %	,	•
25	PUQU-2-F	7,00 %		
	PUQU-3-F	11,00 %		
	PGU-2-F	8,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	9,00 %		
30	CCP-20CF₃	3,00 %		

- 72 -

	Beispiel 67			
	CCP-2F.F.F	9,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3F.F.F	10,00 %	Klärpunkt [°C]:	+73,0
	CCQU-2-F	11,00 %	Δn [589 nm, 20 °C]:	+0,0667
5	CCQU-3-F	11,00 %		
	CCQU-5-F	4,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	14,00 %		
	CCP-20CF ₃ .F	5,00 %		
10	CCCG-V-F	5,00 %		
	CGU-2-F	3,00 %		
	CC-5-V	14,00 %		
	CCH-501	7,00 %		
	PCH-7F	3,00 %		
15				
	Beispiel 68			
		•		
	CC-5-V	11,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	7,00 %	Klärpunkt [°C]:	+79,5
20	BCCP-3F.F	6,00 %	Δn [589 nm, 20 °C]:	+0,1006
	BCCP-5F.F	6,00 %	γ₁ [20 °C, m Pa⋅s]:	114
	CCQU-2-F	10,00 %	d · ∆n [20 °C]:	0,50
	CCQU-3-F	10,00 %	Verdrillung [°]:	90
	BCH-3F.F.F	15,00 %	V ₁₀ [V]:	1,54
25	BCH-2F.F	8,00 %		
•	BCH-3F.F	8,00 %		
	CGU-2-F	10,00 %		
	BCH-32	5,00 %		
	CCP-V-1	4,00 %		
30				

- 73 -

	Beispiel 69			
5	CC-5-V CCH-35 CGU-2-F CGU-3-F CCP-2F.F.F	11,00 % 4,00 % 10,00 % 10,00 % 5,00 %	Klärpunkt [°C]: Δn [589 nm, 20 °C]: d Δn [20 °C]: Verdrillung [°]: V ₁₀ [V]:	+88,0 +0,0801 0,50 90 1,59
10	CCQG-2-F CCQG-3-F CCQG-5-F ECCP-3F.F ECCP-5F.F	14,00 % 14,00 % 10,00 % 12,00 % 10,00 %		
	Beispiel 70			
15	CC-3-V1 CCH-35 CC-5-V CCQU-2-F CCQU-3-F	5,00 % 5,00 % 18,00 % 11,50 % 12,00 %	S \rightarrow N [°C]: Klärpunkt [°C]: Δ n [589 nm, 20 °C]: d \cdot Δ n [20 °C]: Verdrillung [°]:	< -20,0 +77,5 +0,0800 0,50 90
20	CGU-2-F CGU-3-F CCZU-2-F CCZU-3-F CGZP-2-OT CGZP-3-OT	9,00 % 6,00 % 4,00 % 15,00 % 10,50 % 4,00 %	V ₁₀ ·[V]:	1,29

- 74 -

	Beispiel 71			
	CCP-2F.F.F	9,00 %	S → N [°C]:	< -40,0
	CCP-3F.F.F	10,00 %	Klärpunkt [°C]:	+76,0
	CCQU-2-F	11,00 %	Δn [589 nm, 20 °C]:	+0,0671
5 ·	CCQU-3-F	11,00 %	Δε [1 kHz, 20 °C]:	8,0
	CCQU-5-F	4,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	14,00 %		
	CCP-20CF ₃ .F	5,00 %		
10	CCG-V-F	5,00 %		
	CGU-2-F	3,00 %		
	CC-5-V	16,00 %		
	CCH-501	7,00 %		
	PCH-7F	1,00 %		
15				
	Beispiel 72			
	CCP-2F.F.F	8,00 %	Klärpunkt [°C]:	+80,5
	CCP-3F.F.F	8,00 %	Δn [589 nm, 20 °C]:	+0,0838
20	CCP-5F.F.F	7,00 %	d · ∆n [20 °C]:	0,50
	CCP-20CF ₃	8,00 %	Verdrillung [°]:	90
	CCP-30CF ₃	8,00 %	V ₁₀ [V]:	1,27
	CGU-2-F	10,00 %		
	CGU-3-F	3,00 %		
25	BCH-3F.F.F	7,00 %	·	
	CCG-V-F	10,00 %		
	CC-3-V1	4,00 %	•	
	CCQU-2-F	8,00 %		
	CCQU-3-F	10,00 %	•	
30	CCQU-5-F	9,00 %		

- 75 -

	Beispiel 73			
	CCP-2F.F.F	10,00 %	. S → N [°C]:	< -40,0
	CCP-3F.F.F	10,00 %	Klärpunkt [°C]:	+82,5
	CCP-5F.F.F	4,00 %	Δn [589 nm, 20 °C]:	+0,0791
5	CCP-20CF ₃	8,00 %	d · Δn [20 °C]:	0,50
	CCP-30CF ₃	8,00 %	Verdrillung [°]:	90
	CCP-40CF ₃	4,00 %	V ₁₀ [V]:	1,38
	CCZU-2-F	5,00 %		•
	CCZU-3-F	15,00 %		
10	CCZU-5-F	4,00 %		
	PUQU-3-F	12,00 %		
	CCH-35	5,00 %		
	CC-5-V	15,00 %		
	CGZP-2-OT	0,00 %		
15				
	Beispiel 74			
•	CCP-2F.F.F	10,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-20CF ₃	8,00 %	Klärpunkt [°C]:	+71,5
20	CCP-30CF ₃	4,00 %	Δn [589 nm, 20 °C]:	+0,1044
	CGZP-2-OT	12,00 %	Δε [1 kHz, 20 °C]:	14,5
	CGZP-3-OT	4,00 %	γ₁ [20 °C, m Pa⋅s]:	115
	CCZU-2-F	4,00 %	d · ∆n [20 °C]:	0,50
	CCZU-3-F	9,00 %	Verdrillung [°]:	90
25	PUQU-3-F	20,00 %	V ₁₀ [V]:	1,02
	CGU-2-F	5,00 %		
	PGU-2-F	6,00 %		
	CC-3-V1	9,00 %		
	CCH-35	2,00 %		
30	CCP-V-1	7,00 %		

- 76 -

	Beispiel 75			
	(ME2N.F	2,00 %	Klärpunkt [°C]:	+89,9
B	ME3N.F	3,50 %	Δn [589 nm, 20 °C]:	+0,1380
·	ME4N.F	6,00 %	Δε [1 kHz, 20 °C]:	13,9
5	PCH-3N.F.F	14,00 %	γ₁ [20 °C, m Pa⋅s]:	140
	(CC-5-V	12,00 %		
) CC-3-V1	5,00 %		
IV) CC-3-V1 CCP-V-1	8,00 %		
	CCP-V2-1	4,00 %		
10	CVCP-V-O1	5,00 %		
	PPTUI-3-2	14,50 %		
1.0	PPT01-3-2 PTP-201 CCPC-33 /CCQU-2-F	3,00 %		
/2a	CCPC-33	3,00 %	1	1
Λ	/CCQU-2-F	10,00 %		'
15 ^{/1}	CCQU-3-F	10,00 %		
	Beispiel 76			
	CC-3-V1	9,00 %	S → N [°C]:	< -40,0
20	CC-5-V	12,00 %	Klärpunkt [°C]:	+85,5
	CCQU-2-F	12,00 %	Δn [589 nm, 20 °C]:	+0,0775
	CCQU-3-F	11,00 %	γ₁ [20 °C, m Pa⋅s]:	115
	CCP-3F.F.F	7,00 %	d · Δn [20 °C]:	0,50
	CCQG-2-F	12,00 %	Verdrillung [°]:	90
25	CCQG-3-F	12,00 %	V ₁₀ [V]:	1,55
	CCQG-5-F	8,00 %		
	CGU-2-F	5,00 %		
	BCH-3F.F.F	12,00 %		
	•			

- 77 -

	Beispiel 77			
	CC 5 V	10.00.0/	e Micol	< -40,0
	CC-5-V	10,00 %	$S \rightarrow N [^{\circ}C]$:	·
•	CC-3-V1	8,00 %	Klärpunkt [°C]:	+79,0
_	CCQG-2-F	10,00 %	Δn [589 nm, 20 °C]:	+0,0996
5	CCQG-3-F	11,00 %	d · Δn [20 °C]:	0,50
	CCQU-2-F	11,00 %	Verdrillung [°]:	90
	BCH-3F.F.F	15,00 %	V ₁₀ [V]:	1,49
	BCH-2F.F	8,00 %		
	BCH-3F.F	8,00 %		
10	CGU-2-F	10,00 %		
	BCH-32	5,00 %		
	CCP-V-1	4,00 %		
45	Beispiel 78			
15		• •		
	CCP-30CF ₃	8,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-40CF ₃	6,00 %	Klärpunkt [°C]:	+78,5
	CCP-2F.F.F	7,00 %	Δn [589 nm, 20 °C]:	+0,1042
	CGZP-2-OT	14,00 %	γ₁ [20 °C, m Pa⋅s]:	178
20	CGZP-3-OT	10,00 %	d · ∆n [20 °C]:	0,50
	CCZU-2-F	4,00 %	Verdrillung [°]:	90
	CCZU-3-F	15,00 %	V ₁₀ [V]:	0,93
	CCZU-5-F	3,00 %		
	CGU-2-F	4,00 %		
25	PGU-2-F	10,00 %		
	CUQU-3-F	16,00 %		
	CCP-V-1	3,00 %		

- 78 -

	Beispiel 79			
	CCP-30CF ₃	8,00 %	Klärpunkt [°C]:	+80,5
	CCP-40CF ₃	6,00 %	Δn [589 nm, 20 °C]:	+0,1060
	CCP-50CF ₃	2,00 %	γ ₁ [20 °C, m Pa·s]:	181
5	CCP-2F.F.F	7,00 %	d · Δn [20 °C]:	0,50
	CGZP-2-OT	13,50 %	Verdrillung [°]:	90
	CGZP-3-OT	9,50 %	V ₁₀ [V]:	0,97
	CCZU-2-F	4,00 %		
	CCZU-3-F	15,00 %		
10	CCZU-5-F	3,00 %		
	CGU-3-F	2,00 %	•	
	PGU-2-F	9,00 %		
	PGU-3-F	3,00 %		•
	CUQU-2-F	7,00 %		
15	CUQU-3-F	9,00 %		
	CCP-V-1	2,00 %		
	Beispiel 80			
20	CCP-20CF ₃	8,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-30CF₃	8,00 %	Klärpunkt [°C]:	+72,0
	CGZP-2-OT	12,00 %	Δn [589 nm, 20 °C]:	+0,1056
	CGZP-3-OT	8,00 %	γ₁ [20 °C, m Pa⋅s]:	131
	CCZU-2-F	3,00 %	d · ∆n [20 °C]:	0,50
25	CCZU-3-F	13,00 %	Verdrillung [°]:	90
	CUQU-2-F	6,00 %	V ₁₀ [V]:	1,02
	CUQU-3-F	6,00 %		
	CUQU-5-F	2,00 %		
	CGU-2-F	5,00 %	•	
30	CGU-3-F	6,00 %		
	PGU-2-F	7,00 %		
	PGU-3-F	5,00 %		•
	CC-3-V1	9,00 %		
	CCH-35	2,00 %		
35				

- 79 -

	Beispiel 81			
	CC-3-V	4,00 %	S → N [°C]:	< -30,0
	CCP-30CF ₃	8,00 %	Klärpunkt [°C]:	+79,5
	CCP-40CF ₃	7,50 %	Δn [589 nm, 20 °C]:	+0,1058
5	CCP-2F.F.F	10,00 %	γ₁ [20 °C, m Pa⋅s]:	157
	CGZP-2-OT	14,00 %	d · ∆n [20 °C]:	0,50
	CGZP-3-OT	10,00 %	Verdrillung [°]:	90
	CCZU-2-F	4,00 %	V ₁₀ [V]:	0,95
	CCZU-3-F	15,00 %		
10	CCZU-5-F	3,00 %	•	
	PGU-2-F	4,50 %		
	PUQU-3-F	20,00 %		
	Beispiel 82			
15				
	. CC-3-V1	8,00 %	Klärpunkt [°C]:	+87,5
	CC-5-V	8,00 %	Δn [589 nm, 20 °C]:	+0,0876
	CCQU-2-F	12,00 %	d · ∆n [20 °C]:	0,50
	CCQU-3-F	13,00 %	Verdrillung [°]:	90
20	CCP-2F.F.F	4,00 %	V ₁₀ [V]:	1,58
	CCG-V-F	4,00 %		
	BCH-3F.F.F	7,00 %		
	CGU-2-F	10,00 %		•
	CGU-3-F	6,00 %		
25	ECCP-3F.F	8,00 %		
	ECCP-5F.F	8,00 %		
	CCP-V-1	11,00 %		
	CBC-33	1,00 %		

- 80 -

	Beispiel 83			
	CC-5-V	8,00 %	S → N [°C]:	< -40,0.
	CC-3-V1	7,00 %	Klärpunkt [°C]:	+80,5
-	ECCP-3F.F	8,00 %	Δn [589 nm, 20 °C]:	+0,0978
5	ECCP-5F.F	8,00 %	d · Δn [20 °C]:	0,50
	CCQU-2-F	12,00 %	Verdrillung [°]:	90
	CCQU-3-F	11,00 %	V ₁₀ [V]:	1,50
	BCH-3F.F.F	15,00 %		
	BCH-2F.F	8,00 %		
10	BCH-3F.F	5,00 %		
	CGU-2-F	10,00 %		
	BCH-32	5,00 %		
	CCP-V-1	3,00 %		
15	Beispiel 84			
	CCP-2F.F.F	8,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-20CF₃	6,00 %	Klärpunkt [°C]:	+79,5
	CCP-30CF ₃	4,00 %	Δn [589 nm, 20 °C]:	+0,0855
20 ·	CGU-2-F	10,00 %	d · ∆n [20 °C]:	0,50
	CGU-3-F	4,00 %	Verdrillung [°]:	90
	BCH-3F.F.F	7,00 %	V ₁₀ [V]:	1,24
	BCH-32	2,00 %		
	CCZU-2-F	4,00 %		
25	CCZU-3-F	14,00 %		
	CCG-V-F	10,00 %		
	CC-3-V1	9,00 %		•
	CCQU-2-F	11,00 %		
	CCQU-3-F	11,00 %		
30				

- 81 -

	Beispiel 85			
	CCP-2F.F.F	10,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3F.F.F	10,00 %	Klärpunkt [°C]:	+79,0
	CCP-5F.F.F	5,00 %	Δn [589 nm, 20 °C]:	+0,0865
5	CCP-20CF ₃	8,00 %	d · ∆n [20 °C]:	0,50
	CCP-30CF₃	8,00 %	Verdrillung [°]:	90
	CGU-2-F	10,00 %	V ₁₀ [V]:	1,24
	CGU-3-F	5,00 %		•
	BCH-3F.F.F	6,00 %		
10	BCH-32	2,00 %		
	CCG-V-F	6,00 %		
	CC-3-V1	3,00 %		
	CCQU-2-F	8,00 %		
	CCQU-3-F	10,00 %		
15	CCQU-5-F	11,00 %		
	Beispiel 86			
	CC-5-V	18,00 %	S → N [°C]:	< -40,0
20	CC-3-V1	7,00 %	Klärpunkt [°C]:	+72,0
	CCH-35	3,00 %	Δn [589 nm, 20 °C]:	+0,0842
	CCG-V-F	4,00 %	γ₁ [20 °C, m Pa⋅s]:	93
	CCQU-2-F	10,00 %	d · Δn [20 °C]:	0,50
	CCQU-3-F	7,00 %	Verdrillung [°]:	90
25	BCH-3F.F.F	7,00 %	V ₁₀ [V]:	1,28
	CGU-2-F	10,00 %		,
	CGU-3-F	8,00 %		
	CCZU-2-F	3,00 %		
	CCZU-3-F	12,00 %		
30	CGZP-2-OT	8,00 %		
	CGZP-3-OT	2,00 %		
	CCP-V-1	1,00 %		
		*		

- 82 -

	Beispiel 87			
	CCP-20CF₃	8,00 %	S → N [°C]:,	< -40,0
	CCP-30CF ₃	7,00 %	Klärpunkt [°C]:	+80,5
	CCP-40CF ₃	3,00 %	Δn [589 nm, 20 °C]:	+0,0897
5	CCP-50CF ₃	5,00 %	d · Δn [20 °C]:	0,50
	CCP-2F.F.F	10,00 %	Verdrillung [°]:	90
	CCP-3F.F.F	5,00 %	V ₁₀ [V]:	1,22
	CGU-2-F	11,00 %		
	CGU-3-F	6,00 %		
10	BCH-3F.F.F	9,00 %		
	BCH-32	3,00 %		
	CCQU-2-F	11,00 %		
	CCQU-3-F	11,00 %		
	CCQU-5-F	11,00 %		
15				
	Beispiel 88			÷
	CGZP-2-OT	12,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CGZP-3-OT	3,00 %	Klärpunkt [°C]:	+69,0
20	CC-5-V	20,00 %	Δn [589 nm, 20 °C]:	+0,0900
	CC-3-V1	10,00 %	γ₁ [20 °C, m Pa⋅s]:	88
	CCP-2F.F.F	4,00 %	d · ∆n [20 °C]:	0,50
	CCP-20CF ₃	2,00 %	Verdrillung [°]:	90
	BCH-3F.F.F	8,00 %	V ₁₀ [V]:	1,34
25	CGU-2-F	10,00 %		
	CGU-3-F	10,00 %		
	BCH-32	4,00 %		
	CCQU-2-F	10,00 %		
	CCQU-3-F	7,00 %		
30				

- 83 -

	Beispiel 89			
	CC-5-V	9,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+79,0
	CCQG-2-F	12,00 %	Δn [589 nm, 20 °C]:	+0,0998
5	CCQG-3-F	12,00 %	γ₁ [20 °C, m Pa⋅s]:	114
	CCQG-5-F	9,00 %	d · ∆n [20 °C]:	0,50
	BCH-2F.F	8,00 %	Verdrillung [°]:	90
	BCH-3F.F	7,00 %	V ₁₀ [V]:	1,51
	BCH-3F.F.F	14,00 %		
10	CGU-2-F	10,00 %		
	CGU-3-F	5,00 %		
	BCH-32	4,00 %		•
	Beispiel 90			
15	<u> </u>			
	CC-5-V	8,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+80,0
	CCQG-2-F	12,00 %	Δn [589 nm, 20 °C]:	+0,0978
	CCQG-3-F	12,00 %	d · ∆n [20 °C]:	0,50
20	CCQG-5-F	10,00 %	Verdrillung [°]:	90
	BCH-2F.F	8,00 %	V ₁₀ [V]:	1,51
	BCH-3F.F	6,00 %		
	BCH-3F.F.F	15,00 %		
	CGU-2-F	10,00 %		
25	CGU-3-F	5,00 %		
	CCP-V-1	2,00 %		
	BCH-32	2,00 %		

- 84 -

	Beispiel 91			
	CCP-2F.F.F	10,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3F.F.F	10,00 %	Klärpunkt [°C]:	+74,5
	CCP-5F.F.F	4,00 %	Δn [589 nm, 20 °C]:	+0,0930
5	CCQG-2-F	10,00 %	γ₁ [20 °C, m Pa⋅s]:	155
	CCQG-3-F	10,00 %	d · ∆n [20 °C]:	0,50
	CCP-20CF₃	8,00 %	Verdrillung [°]:	90
	CCP-30CF₃	7,00 %	V ₁₀ [V]:	1,19
	CCP-50CF₃	4,00 %		
10	CGU-2-F	11,00 %	•	
	CGU-3-F	11,00 %		
	CGU-5-F	6,00 %		
	BCH-3F.F.F	7,00 %		
	BCH-32	2,00 %		
15				
	Beispiel 92			
				
	CC-5-V	6,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	10,00 %	Klärpunkt [°C]:	+82,0
20	CCQG-2-F	12,00 %	Δn [589 nm, 20 °C]:	+0,1002
	CCQG-3-F	12,00 %	d · ∆n [20 °C]:	0,50
	CCQG-5-F	10,00 %	Verdrillung [°]:	90
	BCH-2F.F	8,00 %	V ₁₀ [V]:	1,46
	BCH-3F.F	5,00 %		
25	BCH-3F.F.F	15,00 %		
	CGU-2-F	10,00 %		
	CGU-3-F	6,00 %		
	BCH-32	2,00 %		
	CCP-V-1	4,00 %		
30				

- 85 -

	Beispiel 93			
	CC-3-V1	6,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-5-V	13,00 %	Klärpunkt [°C]:	+86,5
	CCQG-2-F	12,00 %	Δn [589 nm, 20 °C]:	+0,08750
5	CCQG-3-F	12,00 %	γ₁ [20 °C, m Pa⋅s]:	121
	CCQG-5-F	10,00 %	d · ∆n [20 °C]:	0,50
	CCP-20CF ₃	3,00 %	Verdrillung [°]:	90
•	CCP-30CF ₃	5,00 %	V ₁₀ [V]:	1,62
	ECCP-3F.F	10,00 %		
10	BCH-3F.F.F	10,00 %		
	CGU-2-F	10,00 %		
	CGU-3-F	7,00 %		
	BCH-32	2,00 %		
15	Beispiel 94			
	CC-5-V	8,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	7,00 %	Klärpunkt [°C]:	+78,0
	ECCP-3F.F	9,00 %	Δn [589 nm, 20 °C:]	+0,0984
20	ECCP-5F.F	9,00 %	d · ∆n [20 °C]:	0,50
	CCQU-2-F	12,00 %	Verdrillung [°]:	90
	CCQU-3-F	11,00 %	V ₁₀ [V]:	1,47
	BCH-3F.F.F	15,00 %		
	BCH-2F.F	8,00 %		
25	BCH-3F.F	6,00 %		
	CGU-2-F	10,00 %		
	BCH-32	5,00 %		

- 86 -

	Beispiel 95			
	CCH-301	16,00 %	Klärpunkt [°C]:	+98,5
	CCH-501	18,00 %	Δn [589 nm, 20 °C]:	+0,0606
	CC-5-V	4,00 %	d · ∆n [20 °C]:	0,50
5	CCZU-2-F	4,00 %	Verdrillung [°]:	90
	CCZU-3-F	13,00 %	V ₁₀ [V]:	2,14
	CCZU-5-F	4,00 %	10 2 4	•
	CCPC-33	3,00 %		
	CCPC-34	3,00 %		
10	CCOC-3-3	3,00 %		
	CCOC-4-3	4,00 %		
	CCOC-3-5	3,00 %		
	CCQPC-3-3	2,00 %		
	CCQPC-2-3	2,00 %		
15	CCQU-2-F	8,00 %		
	CCQU-3-F	8,00 %		
	CCQU-5-F	5,00 %		
	Beispiel 96			
20				
	CC-3-V1	8,00 %		
	CC-5-V	6,00 %		
	CCP-20CF ₃	6,00 %		
	CCQU-2-F	11,00 %		
25	CCQU-3-F	11,00 %		
	CCP-2F.F.F	6,00 %		
	CGU-2-F	11,00 %		
	CGU-3-F	10,00 %		
	CCZU-2-F	4,00 %		
30	CCZU-3-F	14,00 %		
	CGZP-2-OT	11,00 %		
	CGZP-3-OT	2,00 %		

- 87 -

	Beispiel 97			
	CCP-2F.F.F	6,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3.F.F.F	8,00 %	Klärpunkt [°C]:	+81,5
	CCP-5F.F.F	4,00 %	Δn [589 nm, 20 °C]:	+0,0808
5	CGU-2-F	10,00 %	d · ∆n [20 °C]:	0,50
	CGU-3-F	12,00 %	Verdrillung [°]:	90
	CCZU-2-F	5,00 %	V ₁₀ [V]:	1,01
	CCZU-3-F	14,00 %		
	CCZU-5-F	4,00 %		
10	CCQU-2-F	10,00 %		
	CCQU-3-F	12,00 %		
	CCQU-5-F	8,00 %		
	CCOC-3-3	2,00 %		
	CCOC-4-3	3,00 %		
15	CCOC-3-5	2,00 %		
	Beispiel 98			
	CGU-2-F	9,00 %	Klärpunkt [°C]:	+74,0
20	CCZU-2-F	5,00 %	∆n [589 nm, 20 °C]:	+0,0783
	CCZU-3-F	14,00 %		
	CCZU-5-F	4,00 %		
	CCQU-2-F	10,00 %		
	CCQU-3-F	12,00 %		
25	CCQU-5-F	8,00 %		
	CDU-2-F	10,00 %		
	CDU-3-F	10,00 %		
	CDU-5-F	6,00 %		
	CGZP-2-OT	8,00 %		
30	CGZP-3-OT	4,00 %		

- 88 -

	Beispiel 99	•		
	CCH-301	7,00 %		
	CCH-501	14,00 %		
	CCOC-3-3	3,00 %		
5	CCOC-3-5	3,00 %		
	CCOC-4-3	4,00 %		
	CCZU-2-F	5,00 %		
	CCZU-3-F	15,00 %		
	CCZU-5-F	4,00 %		
10	CDU-2-F	9,00 %		
	CDU-3-F	9,00 %		
	CDU-5-F	5,00 %		
	CCQU-2-F	7,00 %		
	CCQU-3-F	8,00 %		
15	CCQU-5-F	7,00 %		
	Beispiel 100			
	CGU-2-F	5,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
20	CCZU-2-F	4,00 %	Klärpunkt [°C]:	+78,5
	CCZU-3-F	14,00 %	∆n [589 nm, 20 °C]:	+0,0809
	CCZU-5-F	4,00 %	d · ∆n [20 °C]:	0,50
	CCQU-2-F	10,00 %	Verdrillung [°]:	90
	CCQU-3-F	12,00 %	V ₁₀ [V]:	0,90
25	CCQU-5-F	5,00 %		
	CDU-2-F	10,00 %		
	CDU-3-F	12,00 %		
	CDU-5-F	6,00 %		
	CGZP-2-OT	12,00 %		
30	CGZP-3-OT	6,00 %		

- 89 -

	Beispiel 101			
	CC-3-V1	4,00 %	S → N [°C]:	< -40,0
	CCH-35	5,00 %	Klärpunkt [°C]:	+71,5
	CC-5-V	17,00 %	Δn [589 nm, 20 °C]:	+0,0772
5	CCH-3CF ₃	4,00 %	γ ₁ [20 °C, m Pa·s]:	96
	CCQU-2-F	10,00 %	d · Δn [20 °C]:	0.50
	CCQU-3-F	9,00 %	Verdrillung [°]:	90
	CCP-2F.F.F	4,00 %	V ₁₀ [V]:	1,29
	CGU-2-F	9,00 %	10 6 3	•
10	CGU-3-F	6,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	14,00 %		
	CGZP-2-OT	9,00 %		
	CGZP-3-OT	5,00 %		
15				
	Beispiel 102			
	CCP-2F.F.F	11,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-3F.F.F	12,00 %	Klärpunkt [°C]:	+79,0
20	CCP-5F.F.F	4,00 %	Δn [589 nm, 20 °C]:	+0,0804
	CGU-2-F	8,00 %	γ₁ [20 °C, m Pa⋅s]:	177
	CGU-3-F	4,00 %	d · ∆n [20 °C]:	0,50
	CCZU-2-F	5,00 %	Verdrillung [°]:	90
	CCZU-3-F	14,00 %	V ₁₀ [V]:	1,00
25	CCZU-5-F	4,00 %		
	CCQU-2-F	10,00 %		
	CCQU-3-F	12,00 %		
	CCQU-5-F	8,00 %		
	CGZP-2-OT	8,00 %		
30				

- 90 -

	Beispiel 103	
•	CCP-2F.F.F	8,00 %
	CCP-3F.F.F	4,00 %
	CCZU-2-F	5,00 %
5	CCZU-3-F	14,00 %
	CGU-2-F	7,00 %
	CGZP-2-OT	10,00 %
	CGZP-3-OT	5,00 %
	CCQU-2-F	9,00 %
10	CCQU-3-F	12,00 %
	CCQU-5-F	6,00 %
	CDU-2-F	10,00 %
	CDU-3-F	10,00 %
15	Beispiel 104	
	CC-5-V	18,00 %
	CCH-3-CF ₃	5,00 %
	CCQU-2-F	9,00 %
20	CCQU-3-F	9,00 %
	CCQU-5-F	5,00 %
	CCP-2F.F.F	9,00 %
	CCP-3F.F.F	4,00 %
	CCG-V-F	5,00 %
25	CGU-2-F	9,00 %
	CCZU-2-F	3,00 %
	CCZU-3-F	13,00 %
	CGZP-2-OT	11,00 %

- 91 -

	Beispiel 105			
	CC-3-V1	4,00 %	S → N [°C]:	< +40,0
	CC-5-V	17,00 %	Klärpunkt [°C]:	-69,0
	CCH-3CF ₃	6,00 %	Δn [589 nm, 20 °C]:	+0,0738
5	CCQU-2-F	9,00 %	γ ₁ [20 °C, m Pa·s]:	97
	CCQU-3-F	10,00 %	d · ∆n [20 °C]:	0,50
	CCQU-5-F	5,00 %	Verdrillung [°]:	90
	CCP-2.F.F.F	10,00 %	V ₁₀ [V]:	1,22
	BCH-3F.F.F	2,50 %		
10	CGU-2-F	8,50 %		
	CCZU-2-F	3,00 %		
	CCZU-3-F	14,00 %		
	CGZP-2-OT	9,00 %		
	CGZP-3-OT	2,00 %		
15				

- 92 -

Patentansprüche

 Flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit positiver dielektrischer Anisotropie, dadurch gekennzeichnet, dass es eine oder mehrere Alkenylverbindungen der Formel I

$$R^{1} \xrightarrow{H} \xrightarrow{H} CO \xrightarrow{L^{1}}_{L^{2}} R^{2}$$

und eine oder mehrere Verbindungen der Formel IA

15
$$R - A - Z^{1} - B - Z^{2} - X$$

$$L^{4}$$
IA

- enthält, worin die einzelnen Reste folgende Bedeutungen besitzen:
- einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen jeweils unabhängig voneinander durch -C=C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind,
- R¹ ein Alkenylrest mit 2 bis 7 C-Atomen, 30
 - R² eine der Bedeutungen von R oder, falls y 1 oder 2 ist, auch Q-Y,

Q CF₂, OCF₂, CFH, OCFH, OCHFCF₂, OCF₂CHFCF₂ oder eine Einfachbindung,

Y F oder Cl,

5 X F, Cl, CN, halogenierter Alkylrest, halogenierter
Alkenylrest, halogenierter Alkoxyrest oder halogenierter
Alkenyloxyrest mit bis zu 6 C-Atomen,

 Z^1 und Z^2 jeweils unabhängig voneinander - CF_2O -, - OCF_2 - oder eine Einfachbindung, wobei im Fall z = 1 $Z^1 \neq Z^2$ ist,

y 0, 1 oder 2 und

z 0 oder 1, und

 L^1 , L^2 , L^3 und L^4 jeweils unabhängig voneinander H oder F. 25

2. Medium nach Anspruch 1, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der folgenden Formeln enthält

30 R^{1a} H H R^{2a} I-1b 35

- 94 -

$$R^{1a}$$
 H alkyl I-1d

H alkyl I-1e

worin R^{1a} und R^{2a} jeweils unabhängig voneinander H, CH₃, C₂H₅ oder n-C₃H₇ und alkyl eine Alkylgruppe mit 1 bis 7 C-Atomen bedeuten.

3. Medium nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es ein, zwei oder mehr Verbindungen der Formeln IA1-IA15 enthält:

 $R - H - O - CF_2O - O - OCF_3$ IA-1

 $R - H - O - CF_2O - OF_3$ IA-2

 $R \longrightarrow CF_2O \longrightarrow F$ IA-4

5

WO 01/46336

$$R - H - O - CF_2O - O - OCF_3$$
 IA-5

10
$$R - H - CF_2O - O - F$$
 IA-7

$$R \longrightarrow H \longrightarrow CF_2O \longrightarrow OCF_3$$
 IA-8

$$R \longrightarrow G$$
 $O \longrightarrow CF_2O \longrightarrow G$ F IA-10

- 96 -

$$R \longrightarrow O \longrightarrow CF_2O \longrightarrow F$$
 IA-13

 $R - H - CF_2O - O - F$ IA-14

10
$$R \longrightarrow CF_2O \longrightarrow F$$

$$F$$

$$IA-15$$

worin R die in Anspruch 1 angegebene Bedeutung hat.

4. Medium nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II, III, IV, V und VI enthält:

$$R^{0} \xrightarrow{H} R^{0} X^{0}$$

$$R^{0} \longrightarrow C_{2}H_{4} \longrightarrow C_{2}H_{4} \longrightarrow III$$

- 97 -

٧

 $R^0 \longrightarrow H \longrightarrow Z^0 \longrightarrow H \longrightarrow X^0$

 $R^{0} \xrightarrow{H} Z^{0} \xrightarrow{Q} X^{0} \qquad VI$

15

worin die einzelnen Reste die folgenden Bedeutungen haben:

R^o n-Alkyl, Oxaalkyl, Fluoralkyl oder alkenyl mit jeweils bis zu 9 C-Atomen,

20

Xº F, CI, halogeniertes Alkyl, Alkenyl oder Alkoxy mit bis zu 6 C-Atomen,

25

 Z^{0} $-C_{2}F_{4}$ -, $-C_{2}H_{4}$ -, $-(CH_{2})_{4}$ -, $-OCH_{2}$ - oder $-CH_{2}O$ -,

Y¹ und Y²

jeweils unabhängig voneinander H oder F,

r 0 oder 1.

³⁰ 5.

5. Medium nach Anspruch 4, dadurch gekennzeichnet, dass der Anteil an Verbindungen der Formeln IA und I bis VI zusammen im Gesamtgemisch mindestens 50 Gew.-% beträgt.

- 98 -

6. Medium nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere Verbindungen der Formeln Ea bis Ed enthält,

10
$$R^0 \longrightarrow H \longrightarrow O \longrightarrow COO \longrightarrow OCF_3$$
 Eb

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow COO \longrightarrow F \longrightarrow Ec$$

$$R^0 \longrightarrow H \longrightarrow COO \longrightarrow OCF_3$$
 Ed

worin R^o die in Anspruch 4 angegebene Bedeutung hat.

7. Medium nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formeln IIa bis IIg enthält,

$$R^0$$
 H O F

- 99 -

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow F$$

10 $R^0 \longrightarrow H \longrightarrow O \longrightarrow OCF_3$

20

25

35

 R^0 H O OCHF₂

 R^0 H O CHF₂

worin R⁰ die in Anspruch 4 angegebene Bedeutung hat.

- 8. Medium nach mindestens einem der Ansprüche 1 bis 7, dadurch 30 gekennzeichnet, dass der Anteil an Verbindungen der Formel IA im Gesamtgemisch 10 bis 50 Gew.% beträgt.
 - 9. Verwendung des flüssigkristallinen Mediums nach mindestens einem der Ansprüche 1 bis 7 für elektrooptische Zwecke.

- 100 -

10. Elektrooptische Flüssigkristallanzeige enthaltend ein flüssigkristallines Medium nach mindestens einem der Ansprüche 1 bis 7.