- 55. Which positive integers can be written as the difference of two squares and in how many ways? To solve the analogous problem for sums instead of differences, we introduce the *Gaussian integers*: $\alpha = a + bi$, where a and b are integers. The Gaussian integers form an integral domain G, divisibility, unit, gcd, irreducible, and prime are defined as usual. We show that G is a Euclidean ring, hence it is (a PID, and so) a UFD. Therefore, the irreducible elements are the same as the primes, and we shall use the (shorter) name Gaussian primes. Also, we shall characterize all Gaussian primes. An important tool is the *norm*: $N(\alpha) = a^2 + b^2 = |\alpha|^2 = \alpha \cdot \overline{\alpha}$.
- **56.** Prove:
- (a) $\alpha \mid N(\alpha)$; (b) $N(\alpha\beta) = N(\alpha)N(\beta)$; (c) $\alpha \mid \gamma \Rightarrow N(\alpha) \mid N(\gamma)$, but the converse is false;
- (d) $N(\alpha) = 0 \iff \alpha = 0;$ (e) $N(\alpha) = 1 \iff \alpha \text{ is a unit } \iff \alpha = \pm 1, \pm i.$
- **57.** Which Gaussian integers are divisible by 1 + i?
- **58.** Prove that G is a Euclidean ring with the norm as a Euclidean function: To every $\beta \neq 0, \alpha \in G$ there exist $\gamma, \varrho \in G$ satisfying $\alpha = \beta \gamma + \varrho$ and $N(\varrho) < N(\beta)$.
- **59.** Verify: (a) $\alpha \mid \gamma \iff \overline{\alpha} \mid \overline{\gamma}$; (b) α is a Gaussian prime iff $\overline{\alpha}$ is a Gaussian prime.
- **60.** Let p > 2 be a prime. Prove that the congruence $x^2 \equiv -1$ is solvable iff $p \equiv 1 \pmod{4}$.
- **61.** We characterize all Gaussian primes π :
- (a) Every π divides exactly one positive prime p;
- (b) Every p is either a Gaussian prime, or the product of two conjugate Gaussian primes;
- (c) $2 = (1+i)(1-i) = -i(1+i)^2$ provides $\pi = 1+i$ (and its associates);
- (d) Each prime $p \equiv -1 \pmod{4}$ is a Gaussian prime;
- (e) Each prime $p \equiv 1 \pmod{4}$ is the product of two conjugate, non-associate Gaussian primes: $p = \pi \cdot \overline{\pi}$.
- **62.** Factor (a) 35000i; (b) 270 + 2610i; (c) 86 + 162i into the product of Gaussian primes.
- **63.** True or false $(\alpha = a + bi)$:
- (a) If α and β are coprime, then also $N(\alpha)$ and $N(\beta)$ are coprime.
- (b) If $N(\alpha)$ and $N(\beta)$ are coprime, then also α and β are coprime.
- (c) If a and b are coprime, then also α and $\overline{\alpha}$ are coprime.
- (d) If α and $\overline{\alpha}$ are coprime, then also a and b are coprime.
- (e) If α is a Gaussian prime, then $N(\alpha)$ is a prime number.
- (f) If $N(\alpha)$ is a prime number, then α is a Gaussian prime.
- (g) If α is the cube of a Gaussian integer, then $N(\alpha)$ is the cube of a non-negative integer.
- (h) If $N(\alpha)$ is the cube of a non-negative integer, then α is the cube of a Gaussian integer.
- *64. Which positive integers can be represented and in how many ways as the sum of squares of (a) two integers; (b) two *coprime* integers?
- **65.** Determine the largest r such that there exist infinitely many sequences of r consecutive integers each being the sum or difference of two squares.
- *66. How many representations has a positive integer as the sum of two squares, in average? In a precise formulation, we ask about the approximate behavior of the mean value function

$$\frac{r(1)+r(2)+\ldots+r(n)}{n}$$

for "large" values of n, where r(n) denotes the number of integer solutions of the equation $x^2 + y^2 = n$.

*67. Find all integer solutions of the equation $x^2 + 4 = y^3$.

freud@caesar.elte.hu

freud.web.elte.hu/bsm/index.html