Nome	
Cognome	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Prima Parte Prova Finale - 5 Settembre 2014

ATTENZIONE: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.

l.	(3 punti) Determinare l'intero (in base $10)$ rappresentato dalla sequenza di bit 10001011 nelle codifiche in complemento a 2 e in modulo e segno.
	Modulo e segno Complemento a due
2.	(2 punti) Convertire da base 7 a base 3 il seguente numero intero. $116_7 \ \ \underline{\hspace{1.5cm}}$
	(2 punti) Convertire da base 10 a base 2 il seguente numero frazionario utilizzando 4 bit (riportare i 4 bit dopo la virgola).
	0,3:
1.	(2 punti) Convertire da base 2 a base 10 il seguente numero frazionario.
	$0,1001_2$
5.	(5 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

5. (5 punti) Determinare la forma SOP minimale della funzione	le booleana avente la seguente tabella	l
di veritá utilizzando il metodo delle mappe di Karnaugh:		

SOP

x_1	x_2	x_3	x_4	$f(x_1,x_2,x_3,x_4)$
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	-
0	1	0	1	1
0	1	1	0	-
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	-
1	1	0	1	0
1	1	1	0	_
1	1	1	1	0

 $6.\ (3\ \mathrm{punti})$ Dimostrare che l'operatore NOR é funzionalmente completo.

7. (7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti $3,6,9,12,\ldots$ e in generale j=3i per $i\geq 1,$ $z_j=1$ se e solo se tra gli ultimi 3 bit letti x_{j-2} x_{j-1} x_j ci sono almeno 2 bit uguali a 0, mentre in tutti gli altri istanti $z_j=0$.

8. (6 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo T. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

\boldsymbol{x}	y_1	y_2	Y_1	Y_2	t_1	t_2	z
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

t_1 :	t_2 :	

Disegno della rete :