2º Teste (recurso) de ÁLGEBRA LINEAR para a Engenharia

Licenciatura em Engenharia Biomédica - Licenciatura em Engenharia Química e Biológica 9 de fevereiro de 2022 Duração: **1h40m**

Nome :	N^{0}	Curso	

Relativamente às questões seguintes notar que nas suas respostas:

- i) devem ser apresentados os cálculos essenciais e uma **justificação** da resposta, nos espaços indicados.
- ii) a resolução de sistemas de equações lineares deve ser feita pelo método de Gauss, de Gauss- Jordan ou pela regra de Cramer;
- iii) o cálculo de determinantes deve ser feito por aplicação do teorema de Laplace ou através da condensação de Gauss.
 - 1. Sejam $C = \{(3,1,3), (2,0,1), (1,1,2)\} \in \mathcal{S} = \langle C \rangle$.
 - (a) Diga se $(-2,2,2) \in \mathcal{S}$ e, em caso afirmativo, escreva (-2,2,2) como combinação linear dos vetores de C.
 - (b) Determine um sistema de equações lineares cujo conjunto das soluções é \mathcal{S} .

- 2. Em \mathbb{R}^4 considere os dois seguintes subespaços vetoriais: $\mathcal{U} = \{(x_1, \cdots, x_4) \in \mathbb{R}^4 : x_1 + x_2 = x_4\}$ e $\mathcal{W} = \{(x_1, \cdots, x_4) \in \mathbb{R}^4 : 2x_1 + x_3 = x_4, x_2 + 2x_4 = x_3, 2x_1 + x_3 + 2x_4 = x_2\}.$
 - (a) Verifique se $\mathcal{U} = \langle (1,0,-1,1), (1,-1,-1,0), (0,1,0,1), (1,0,0,1) \rangle$.
 - (b) Verifique se $W \subseteq \mathcal{U}$.

3. Sejam B_4 a base canónica de \mathbb{R}^4 e $\mathcal{B} = ((1,1,1), (1,0,2), (0,1,0))$ uma base de \mathbb{R}^3 . Sejam $f: \mathbb{R}^4 \to \mathbb{R}^3$ e $g: \mathbb{R}^4 \to \mathbb{R}^4$ aplicações lineares tais que

$$\mathcal{M}(f; B_4, B) = \begin{bmatrix} 1 & 0 & -1 & 0 \\ -2 & 1 & 1 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} \quad \text{e} \quad \mathcal{M}(g; B_4, B_4) = \begin{bmatrix} 1 & 2 & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -1 & 0 & -2 & 1 \end{bmatrix}.$$

- (a) Calcule $\dim Nuc g$.
- (b) Calcule $f \circ g(2, -2, 1, 1)$ e uma base do subespaço $Im f \circ g$.

- 4. Seja $B=\left[\begin{array}{cc} 0 & 1\\ 1 & 0\\ -1 & 0\\ 0 & 2 \end{array}\right]$ uma matriz de entradas reais.
 - (a) (i) Verifique se $\begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}$ é um vetor próprio da matriz $B\,B^T$. (ii) Calcule os valores próprios de $B\,B^T$.

(Sugestão: no cálculo do determinante, comece por usar a Teorema de Laplace pela $1^{\underline{a}}$ linha)

(b) Calcule o conjunto dos vetores próprios associados ao valor próprio 5.