COOPERATIVE GAME THEORY

RICHARD MUŽÍK

RICHARD@IMUZIK.CZ

APRIL 15, 2023

MOTIVATIONS AND INTRODUCTION

Goal: To analyse and solve conflicting interaction between subjects

Goal: To analyse and solve conflicting interaction between subjects

Basic model: game in **normal form** (N, S, v):

Goal: To analyse and solve conflicting interaction between subjects

Basic model: game in **normal form** (N, S, v):

 \blacksquare *N* ... set of *n* players

Goal: To analyse and solve conflicting interaction between subjects

Basic model: game in **normal form** (N, S, v):

- \blacksquare *N* ... set of *n* players
- $S = S_1 \times S_2 \times \cdots \times S_n$... strategy profiles

Goal: To analyse and solve conflicting interaction between subjects

Basic model: game in **normal form** (N, S, v):

- \blacksquare *N* ... set of *n* players
- $S = S_1 \times S_2 \times \cdots \times S_n$... strategy profiles
 - \triangleright S_i ... strategies of player i

Goal: To analyse and solve conflicting interaction between subjects

Basic model: game in **normal form** (N, S, v):

- \blacksquare *N* ... set of *n* players
- $S = S_1 \times S_2 \times \cdots \times S_n$... strategy profiles
 - \triangleright S_i ... strategies of player i
- $v: S \to \mathbb{R}^n$... utility function

Goal: To analyse and solve conflicting interaction between subjects

Basic model: game in **normal form** (N, S, v):

- \blacksquare *N* ... set of *n* players
- $S = S_1 \times S_2 \times \cdots \times S_n$... strategy profiles
 - \triangleright S_i ... strategies of player i
- \blacksquare $v: S \to \mathbb{R}^n$... utility function
 - \triangleright $v(S)_i$... utility of player *i* under strategy *S*

Goal: To analyse and solve conflicting interaction between subjects

Basic model: game in **normal form** (N, S, v):

- \blacksquare *N* ... set of *n* players
- \blacksquare $S = S_1 \times S_2 \times \cdots \times S_n$... strategy profiles
 - \triangleright S_i ... strategies of player i
- $v: S \to \mathbb{R}^n$... utility function
 - \triangleright $v(S)_i$... utility of player i under strategy S

Fundamental question: What strategy should player i choose?

SOLUTION OF GAMES IN NORMAL FORM? NASH EQUILIBRIUM

Idea: Deviation from the actual strategy to a new strategy does not improve the outcome.

Nash equilibrium

Strategy profile $(s_1, ..., s_n)$ is **Nash equilibrium**, if it holds for every player i,

$$v_i(s_1,\ldots,s_{i-1},s_i,s_{i+1},\ldots,s_n) \geq v_i(s_1,\ldots,s_{i-1},t_i,s_{i+1},\ldots,s_n)$$

for every $t_i \in S_i$.

SOLUTION OF GAMES IN NORMAL FORM? NASH EQUILIBRIUM

Idea: Deviation from the actual strategy to a new strategy does not improve the outcome.

Nash equilibrium

Strategy profile $(s_1, ..., s_n)$ is **Nash equilibrium**, if it holds for every player i,

$$v_i(s_1,\ldots,s_{i-1},s_i,s_{i+1},\ldots,s_n) \geq v_i(s_1,\ldots,s_{i-1},t_i,s_{i+1},\ldots,s_n)$$

for every $t_i \in S_i$.

Is this model suitable for the analysis of cooperation?

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

Nash equilibrium does not lead to cooperation

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?
 - ► The prisoners cannot agree on a strategy in advance

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?
 - ► The prisoners cannot agree on a strategy in advance
- Solution?

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?
 - ► The prisoners cannot agree on a strategy in advance
- Solution?
 - 1. Fix the existing model

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?
 - ► The prisoners cannot agree on a strategy in advance
- Solution?
 - 1. Fix the existing model
 - ⇒ Pareto optimum
 - Nash "cooperative" solution

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?
 - ► The prisoners cannot agree on a strategy in advance
- Solution?
 - 1. Fix the existing model
 - ⇒ Pareto optimum
 - Nash "cooperative" solution

Prisoner A	Prisoner B	Silence	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?
 - ► The prisoners cannot agree on a strategy in advance
- Solution?
 - 1. Fix the existing model
 - ⇒ Pareto optimum
 - ⇒ Nash "cooperative" solution
 - 2. Create a new model

	Prisoner B	Silence	Speak
Prisoner A		Siterice	Speak
Silence		-1/-1	-3/0
Speak		0/-3	-2/-2

- Nash equilibrium does not lead to cooperation
- Main problem?
 - ► The prisoners cannot agree on a strategy in advance
- Solution?
 - 1. Fix the existing model
 - ⇒ Pareto optimum
 - ⇒ Nash "cooperative" solution
 - 2. Create a new model
 - model of cooperative games

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

■ *N* ... set of players

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

- N ... set of players
- \blacksquare \mathbb{R}^m_+ ... comodity space

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

- N ... set of players
- \blacksquare \mathbb{R}^m_+ ... comodity space
- $A \in \mathbb{R}^{m \times n}$... matrix of initial allocations

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

- N ... set of players
- \blacksquare \mathbb{R}^m_+ ... comodity space
- $A \in \mathbb{R}^{m \times n}$... matrix of initial allocations

$$\blacktriangleright A = \begin{pmatrix} | & | & | \\ a^1 & a^2 & \dots & a^n \\ | & | & | \end{pmatrix}$$

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

- N ... set of players
- \blacksquare \mathbb{R}^m_+ ... comodity space
- $A \in \mathbb{R}^{m \times n}$... matrix of initial allocations

$$\blacktriangleright A = \begin{pmatrix} | & | & | \\ a^1 & a^2 & \dots & a^n \\ | & | & | \end{pmatrix}$$

 $ightharpoonup a^i \in \mathbb{R}^m$... commodities owned by player i

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

- N ... set of players
- \blacksquare \mathbb{R}^m_+ ... comodity space
- $A \in \mathbb{R}^{m \times n}$... matrix of initial allocations

- $ightharpoonup a^i \in \mathbb{R}^m$... commodities owned by player i
- $W = W_1 \times W_2 \times ... W_n$... utility function

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

- N ... set of players
- \blacksquare \mathbb{R}^m_+ ... comodity space
- $A \in \mathbb{R}^{m \times n}$... matrix of initial allocations

$$\blacktriangleright A = \begin{pmatrix} | & | & & | \\ a^1 & a^2 & \dots & a^n \\ | & | & & | \end{pmatrix}$$

- $ightharpoonup a^i \in \mathbb{R}^m$... commodities owned by player i
- $W = W_1 \times W_2 \times ... W_n$... utility function
 - $ightharpoonup w_i \colon \mathbb{R}_+^m o \mathbb{R}$... utility function of player i

Goal of model? Understanding of the behaviour of markets

Market

A **market** $(N, \mathbb{R}^m_+, A, w)$ is given by:

- N ... set of players
- \blacksquare \mathbb{R}^m_+ ... comodity space
- $A \in \mathbb{R}^{m \times n}$... matrix of initial allocations

$$\blacktriangleright A = \begin{pmatrix} | & | & & | \\ a^1 & a^2 & \dots & a^n \\ | & | & & | \end{pmatrix}$$

- $ightharpoonup a^i \in \mathbb{R}^m$... commodities owned by player i
- $W = W_1 \times W_2 \times ... W_n$... utility function
 - $ightharpoonup w_i \colon \mathbb{R}^m_+ o \mathbb{R}$... utility function of player i
 - ► w_i is continuous, concave function

Market games are **transferable utility** games

Market games are transferable utility games

- better understanding after we define cooperative games
- meanwhile: money used for evaluation of profit

Market games are transferable utility games

- better understanding after we define cooperative games
- meanwhile: money used for evaluation of profit
- formally: $W_i(x,\zeta) = w_i(x) + \zeta$

Market games are transferable utility games

- better understanding after we define cooperative games
- meanwhile: money used for evaluation of profit
- formally: $W_i(x,\zeta) = w_i(x) + \zeta$
 - $ightharpoonup x \in \mathbb{R}^m$... vector of commodities
 - $ightharpoonup \zeta \in \mathbb{R} \dots$ money

Market games are transferable utility games

- better understanding after we define cooperative games
- meanwhile: money used for evaluation of profit
- formally: $W_i(x,\zeta) = w_i(x) + \zeta$
 - \triangleright $x \in \mathbb{R}^m$... vector of commodities
 - $ightharpoonup \zeta \in \mathbb{R} \dots$ money
 - ζ may be negative
 - amount we paid to buy the commodities

Goal of market games? Determine trade on the market

Trade of coalition S

Trade for market $(N, \mathbb{R}^n_+, A, w)$ between players in $\emptyset \neq S \subseteq N$ is a collection $(x^i, \zeta^i)_{i \in S}$ satisfying:

Goal of market games? Determine trade on the market

Trade of coalition S

Trade for market $(N, \mathbb{R}^n_+, A, w)$ between players in $\emptyset \neq S \subseteq N$ is a collection $(x^i, \zeta^i)_{i \in S}$ satisfying:

1. $\sum_{i \in S} x^i = \sum_{i \in S} a^i$ (preservation of commodities)

Goal of market games? Determine trade on the market

Trade of coalition S

Trade for market $(N, \mathbb{R}^n_+, A, w)$ between players in $\emptyset \neq S \subseteq N$ is a collection $(x^i, \zeta^i)_{i \in S}$ satisfying:

- 1. $\sum_{i \in S} x^i = \sum_{i \in S} a^i$ (preservation of commodities)
- 2. $\sum_{i \in S} \zeta^i = 0$ (preservation of money).

Goal of market games? Determine trade on the market

Trade of coalition S

Trade for market $(N, \mathbb{R}^n_+, A, w)$ between players in $\emptyset \neq S \subseteq N$ is a collection $(x^i, \zeta^i)_{i \in S}$ satisfying:

- 1. $\sum_{i \in S} x^i = \sum_{i \in S} a^i$ (preservation of commodities)
- 2. $\sum_{i \in S} \zeta^i = 0$ (preservation of money).

Questions:

Goal of market games? Determine trade on the market

Trade of coalition S

Trade for market $(N, \mathbb{R}^n_+, A, w)$ between players in $\emptyset \neq S \subseteq N$ is a collection $(x^i, \zeta^i)_{i \in S}$ satisfying:

- 1. $\sum_{i \in S} x^i = \sum_{i \in S} a^i$ (preservation of commodities)
- 2. $\sum_{i \in S} \zeta^i = 0$ (preservation of money).

Questions:

Goal of market games? Determine trade on the market

Trade of coalition S

Trade for market $(N, \mathbb{R}^n_+, A, w)$ between players in $\emptyset \neq S \subseteq N$ is a collection $(x^i, \zeta^i)_{i \in S}$ satisfying:

- 1. $\sum_{i \in S} x^i = \sum_{i \in S} a^i$ (preservation of commodities)
- 2. $\sum_{i \in S} \zeta^i = 0$ (preservation of money).

Questions:

■ Which coalitions agree on trading?

Goal of market games? Determine trade on the market

Trade of coalition S

Trade for market $(N, \mathbb{R}^n_+, A, w)$ between players in $\emptyset \neq S \subseteq N$ is a collection $(x^i, \zeta^i)_{i \in S}$ satisfying:

- 1. $\sum_{i \in S} x^i = \sum_{i \in S} a^i$ (preservation of commodities)
- 2. $\sum_{i \in S} \zeta^i = 0$ (preservation of money).

Questions:

- Which coalitions agree on trading?
- What trade will occur within a given coalition?
 - ► What is the profit of player **i** for a given market?

Goal: Understanding of voting systems a coalition formation

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, W) is given by:

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, \mathcal{W}) is given by:

■ N ... set of player

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- N ... set of player
- $\blacksquare \mathcal{W} \subseteq 2^N$... množina vítězných koalic

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- N ... set of player
- $\blacksquare \mathcal{W} \subseteq 2^N$... množina vítězných koalic
 - \blacktriangleright $\emptyset \notin \mathcal{W}$
 - $ightharpoonup S \subseteq T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- N ... set of player
- $\blacksquare \mathcal{W} \subseteq 2^N$... množina vítězných koalic
 - \triangleright $\emptyset \notin \mathcal{W}$
 - $ightharpoonup S \subseteq T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

Special case: (Weighted) majority games

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- N ... set of player
- $\blacksquare \mathcal{W} \subseteq 2^N$... množina vítězných koalic
 - \triangleright $\emptyset \notin \mathcal{W}$
 - $ightharpoonup S \subseteq T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

Special case: (Weighted) majority games

 $\mathbf{v}_i \in \mathbb{R}$... power of player i

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- N ... set of player
- $\blacksquare \mathcal{W} \subseteq 2^N$... množina vítězných koalic
 - \triangleright $\emptyset \notin \mathcal{W}$
 - \triangleright $S \subset T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

Special case: (Weighted) majority games

- $\mathbf{v}_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$

Goal: Understanding of voting systems a coalition formation

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- N ... set of player
- $\blacksquare \mathcal{W} \subseteq 2^N$... množina vítězných koalic
 - \triangleright $\emptyset \notin \mathcal{W}$
 - $\blacktriangleright \ S \subseteq T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- \blacksquare $v(S) = \sum_{i \in S} v_i \dots$ power of coalition $S \subseteq N$
- $\blacksquare S \in \mathcal{W} \iff v(S) \geq k$
 - $ightharpoonup k \in \mathbb{R}$... voting quota

Special case: (Weighted) majority games

Special case: (Weighted) majority games

■ $v_i \in \mathbb{R}$... power of player i

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$
- $\blacksquare S \in \mathcal{W} \iff v(S) \geq k$
 - ▶ $k \in \mathbb{R}$... voting quota

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- \blacksquare $v(S) = \sum_{i \in S} v_i \dots$ power of coalition $S \subseteq N$
- \blacksquare $S \in \mathcal{W} \iff v(S) \geq k$
 - $ightharpoonup k \in \mathbb{R}$... voting quota

Application: Voting system UN Security Council

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$
- $\blacksquare S \in \mathcal{W} \iff v(S) \geq k$
 - ▶ $k \in \mathbb{R}$... voting quota

Application: Voting system UN Security Council

■ 15 members (5 permanent)

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- \blacksquare $v(S) = \sum_{i \in S} v_i \dots$ power of coalition $S \subseteq N$
- $\blacksquare S \in \mathcal{W} \iff v(S) \geq k$
 - ▶ $k \in \mathbb{R}$... voting quota

Application: Voting system UN Security Council

- 15 members (5 permanent)
 - permanent members: right of veto

Special case: (Weighted) majority games

- $\mathbf{v}_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$
- $\blacksquare S \in \mathcal{W} \iff v(S) > k$
 - \triangleright $k \in \mathbb{R}$... voting quota

Application: Voting system UN Security Council

- 15 members (5 permanent)
 - permanent members: right of veto
- to adopt resolution: 9 votes needed

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$
- $\blacksquare S \in \mathcal{W} \iff v(S) \geq k$
 - ▶ $k \in \mathbb{R}$... voting quota

Application: Voting system UN Security Council

- 15 members (5 permanent)
 - permanent members: right of veto
- to adopt resolution: 9 votes needed
- $N = \{1, \dots, 15\}$

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$
- $\blacksquare S \in \mathcal{W} \iff v(S) \geq k$
 - ▶ $k \in \mathbb{R}$... voting quota

Application: Voting system UN Security Council

- 15 members (5 permanent)
 - permanent members: right of veto
- to adopt resolution: 9 votes needed
- \blacksquare $N = \{1, \ldots, 15\}$
- k = 39

Special case: (Weighted) majority games

- $v_i \in \mathbb{R}$... power of player i
- $v(S) = \sum_{i \in S} v_i$... power of coalition $S \subseteq N$
- \blacksquare $S \in \mathcal{W} \iff v(S) \geq k$
 - ▶ $k \in \mathbb{R}$... voting quota

Application: Voting system UN Security Council

- 15 members (5 permanent)
 - permanent members: right of veto
- to adopt resolution: 9 votes needed
- \blacksquare $N = \{1, \ldots, 15\}$
- k = 39
- $\mathbf{v}_i = \begin{cases} 7 & i = 1, \dots, 5 \\ 1 & i = 6, \dots, 15 \end{cases}$

Goal: Does cooperation lead to reduction of costs?

Examples:

Goal: Does cooperation lead to reduction of costs?

■ N ... set of players

Examples:

Goal: Does cooperation lead to reduction of costs?

- N ... set of players
- lacksquare c(S) ... value of costs for a service shared by $S\subseteq N$

Examples:

Goal: Does cooperation lead to reduction of costs?

- *N* ... set of players
- \blacksquare c(S) ... value of costs for a service shared by $S \subseteq N$

$$c(S) + c(T) \ge c(S \cup T)$$

Examples:

Goal: Does cooperation lead to reduction of costs?

- *N* ... set of players
- lacksquare c(S) ... value of costs for a service shared by $S\subseteq N$
 - $ightharpoonup c(S) + c(T) \ge c(S \cup T)$
 - a common solution simulated by union of individual solutions

Examples:

Goal: Does cooperation lead to reduction of costs?

- N ... set of players
- \blacksquare c(S) ... value of costs for a service shared by $S \subseteq N$
 - $ightharpoonup c(S) + c(T) \ge c(S \cup T)$
 - a common solution simulated by union of individual solutions

Examples:

drinking water supply

Goal: Does cooperation lead to reduction of costs?

- *N* ... set of players
- lacksquare c(S) ... value of costs for a service shared by $S\subseteq N$
 - $ightharpoonup c(S) + c(T) \ge c(S \cup T)$
 - a common solution simulated by union of individual solutions

Examples:

- drinking water supply
- municipal waste collection

Goal: Does cooperation lead to reduction of costs?

- *N* ... set of players
- lacksquare c(S) ... value of costs for a service shared by $S\subseteq N$
 - $ightharpoonup c(S) + c(T) \ge c(S \cup T)$
 - ▶ a common solution simulated by union of individual solutions

Examples:

- drinking water supply
- municipal waste collection
- subscriptions to scientific journals

COOPERATION - EXAMPLES OF MODELS: MINIMAL SPANNING-TREE GAMES

Goal: Find the best connection of players to a source

COOPERATION - EXAMPLES OF MODELS: MINIMAL SPANNING-TREE GAMES

Goal: Find the best connection of players to a source

■ $N = N' \cup \{o\}$... set of players + source

COOPERATION - EXAMPLES OF MODELS: MINIMAL SPANNING-TREE GAMES

Goal: Find the best connection of players to a source

- $N = N' \cup \{o\}$... set of players + source
- $c_{ii} ... cost of connecting i, j$

COOPERATION - EXAMPLES OF MODELS: MINIMAL SPANNING-TREE GAMES

Goal: Find the best connection of players to a source

- $N = N' \cup \{o\}$... set of players + source
- $c_{ij} ... cost of connecting i, j$
- solution: a network, where each $i \in N$ is connected to 0 with minimal sum of costs

Cooperative game

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

 \blacksquare $S \subseteq N$... coalition

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- $S \subseteq N$... coalition
- \blacksquare v(S) ... values of coalition

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- \blacksquare Γ^n ... set of *n*-person cooperative games
- \blacksquare $S \subseteq N$... coalition
- \blacksquare v(S) ... values of coalition

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- \blacksquare Γ^n ... set of *n*-person cooperative games
- \blacksquare $S \subseteq N$... coalition
- \blacksquare v(S) ... values of coalition
- \blacksquare usually $N = \{1, \ldots, n\}$

Cooperative game

A **cooperative game** is an ordered pair (N, v), where N is a set of players and $v: 2^N \to \mathbb{R}$ is the characteristic function. Further, $v(\emptyset) = 0$.

- \blacksquare Γ^n ... set of *n*-person cooperative games
- \blacksquare $S \subseteq N$... coalition
- \blacksquare v(S) ... values of coalition
- \blacksquare usually $N = \{1, \ldots, n\}$
 - \blacktriangleright (S, v_S) is **subgame** (N, v):

 - $\mathbf{v}_{S}(T) := v(T) \text{ pro } T \subseteq S$

COOPERATION - EXAMPLES OF MODELS: MARKET GAMES

 \blacksquare $(N, \mathbb{R}^m_+, A, w)$... market

Feasible S-allocation

Feasible S-allocations is $(a_S^i)_{i \in S}$ satisfying

$$\sum_{i\in S}a_S^i=\sum_{i\in S}a^i.$$

We denote the set of feasible S-allocations by A_S .

COOPERATION - EXAMPLES OF MODELS: MARKET GAMES

 \blacksquare $(N, \mathbb{R}^m_+, a, w)$... market

Feasible S-allocation

Feasible S-allocation is $(a_S^i)_{i \in S}$ satisfying $\sum_{i \in S} a_S^i = \sum_{i \in S} a^i$. We denote the set of feasible S-allocations by A_S .

Market game

Cooperative game (N, v) is **market game**, if there is market $(N, \mathbb{R}^m_+, A, w)$ satisfying

$$v(S) = \max\{\sum_{i \in S} w^i(a_S^i) \mid (a_S^i)_{i \in S} \in \mathcal{A}_S\}.$$

COOPERATION - EXAMPLES OF MODELS: VOTING GAMES

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- *N* ... set of players
- $\blacksquare \mathcal{W} \subseteq 2^N$... set of winning coalitions
 - \blacktriangleright $\emptyset \notin \mathcal{W}$
 - $\blacktriangleright \ S \subseteq T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

COOPERATION - EXAMPLES OF MODELS: VOTING GAMES

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- N ... set of players
- $\blacksquare \mathcal{W} \subseteq 2^N \dots$ set of winning coalitions
 - \triangleright $\emptyset \notin \mathcal{W}$
 - $\blacktriangleright \ S \subseteq T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

Simple game

Simple game (N, v) satisfies:

- 1. $V: 2^N \to \{0,1\}$
- 2. $S \subseteq T \land v(S) = 1 \implies v(T) = 1$

COOPERATION - EXAMPLES OF MODELS: VOTING GAMES

Voting game

A **voting game** (N, \mathcal{W}) is given by:

- *N* ... set of players
- $\blacksquare \mathcal{W} \subseteq 2^N$... set of winning coalitions
 - \triangleright $\emptyset \notin \mathcal{W}$
 - $\blacktriangleright \ S \subseteq T \land S \in \mathcal{W} \implies T \in \mathcal{W}$

Simple game

Simple game (N, v) satisfies:

- 1. $V: 2^N \to \{0,1\}$
- 2. $S \subseteq T \land v(S) = 1 \implies v(T) = 1$
- \blacksquare $v(S) = 1 \iff S \in \mathcal{W}$

Goal: Does cooperation lead to reduction of costs?

- N ... set of players
- lacksquare c(S) ... value of costs for a service shared by $S\subseteq N$
 - $ightharpoonup c(S) + c(T) \ge c(S \cup T)$
 - ▶ a common solution simulated by union of individual solutions

Goal: Does cooperation lead to reduction of costs?

- N ... set of players
- c(S) ... value of costs for a service shared by $S \subseteq N$
 - $ightharpoonup c(S) + c(T) > c(S \cup T)$
 - a common solution simulated by union of individual solutions

Cooperative game

Goal: Does cooperation lead to reduction of costs?

- N ... set of players
- c(S) ... value of costs for a service shared by $S \subseteq N$
 - $ightharpoonup c(S) + c(T) \ge c(S \cup T)$
 - ▶ a common solution simulated by union of individual solutions

Cooperative game

- \blacksquare $c: 2^N \to \mathbb{R}$
- \blacksquare a so called cost game (N, c)

Goal: Does cooperation lead to reduction of costs?

- N ... set of players
- lacksquare c(S) ... value of costs for a service shared by $S\subseteq N$
 - $ightharpoonup c(S) + c(T) \ge c(S \cup T)$
 - a common solution simulated by union of individual solutions

Cooperative game

- \blacksquare $c: 2^N \to \mathbb{R}$
- \blacksquare a so called cost game (N, c)
 - ightharpoonup c(S) ... values represent costs
 - \triangleright v(S) ... values represent profit

Example: Bigger coalitions are better coalitions...

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

■ superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S)+v(T)\leq v(S\cup T)$$

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

■ superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S) + v(T) \le v(S \cup T)$$

▶ $S \cup T$ can behave as separate S and T

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

■ superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S) + v(T) \le v(S \cup T)$$

- $ightharpoonup S \cup T$ can behave as separate S and T
- does not hold if there are costs of managing coalitions

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

■ superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S) + v(T) \leq v(S \cup T)$$

- $ightharpoonup S \cup T$ can behave as separate S and T
- does not hold if there are costs of managing coalitions
- ► cost-games: $c(S) + c(T) \ge v(S \cup T)$... **subadditive game**

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

u superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S) + v(T) \leq v(S \cup T)$$

- ► $S \cup T$ can behave as separate S and T
- does not hold if there are costs of managing coalitions
- ► cost-games: $c(S) + c(T) \ge v(S \cup T)$... subadditive game
- **convex game** $(S, T \subseteq N)$

$$v(S) + v(T) \le v(S \cap T) + v(S \cup T)$$

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

■ superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S) + v(T) \le v(S \cup T)$$

convex game $(S, T \subseteq N)$

$$v(S) + v(T) \le v(S \cap T) + v(S \cup T)$$

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

u superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S) + v(T) \le v(S \cup T)$$

convex game $(S, T \subseteq N)$

$$v(S) + v(T) \leq v(S \cap T) + v(S \cup T)$$

► also supermodular game

Example: Bigger coalitions are better coalitions...

monotonic game $(S \subseteq T \subseteq N)$

$$v(S) \leq v(T)$$

superadditive game $(S, T \subseteq N, S \cap T = \emptyset)$

$$v(S) + v(T) \le v(S \cup T)$$

convex game $(S, T \subseteq N)$

$$v(S) + v(T) \leq v(S \cap T) + v(S \cup T)$$

- ► also supermodular game
- ► cost-game: $c(S) + c(T) \ge c(S \cap T) + c(S \cup T)$
 - concave (submodular)

Money first!

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - $ightharpoonup x_i$ represents payoff of player i

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient**, if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **individually rational**, if $x_i \geq v(i)$

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \geq v(i)$
 - ▶ players prefer x_i over v(i)

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \geq v(i)$
 - ightharpoonup players prefer x_i over v(i)
- $\mathcal{I}^*(v) = \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$... preimputation
 - $ightharpoonup x(S) := \sum_{i \in S} x_i$

GOAL OF THE MODEL OF COOPERATIVE GAMES

Money first!

- **Payoff vector** $\mathbf{x} \in \mathbb{R}^n$
 - \triangleright x_i represents payoff of player i
- Vector $\mathbf{x} \in \mathbb{R}^n$ is **efficient,** if $\sum_{i \in N} x_i = v(N)$
 - ightharpoonup Usually, we distribute v(N)
 - 1. value of cooperation v(N)
 - 2. shared costs c(N)
- Vector $\mathbf{x} \in \mathbb{R}^n$ is individually rational, if $x_i \geq v(i)$
 - ightharpoonup players prefer x_i over v(i)
- $\mathcal{I}^*(v) = \{x \in \mathbb{R}^n \mid x(N) = v(N)\}$... preimputation ► $x(S) := \sum_{i \in S} x_i$
- $\mathcal{I}(v) = \{x \in \mathcal{I}^*(v) \mid \forall i \in \mathbb{N} : x_i \geq v(i)\}$... imputation

■ Set of payoff vectors satisfying further properties are **solution concepts**

- Set of payoff vectors satisfying further properties are solution concepts
- Can reflect payoff distribution, which is

- Set of payoff vectors satisfying further properties are solution concepts
- Can reflect payoff distribution, which is
 - ► ...fair...
 - ► ...non-discriminatory...
 - ► ...stable (players will accept it)...

...

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \left\{x \in \mathcal{I}^*(v) \mid x(S) \geq v(S), \forall S \subseteq N\right\}.$$

■ assumption: homo economicus

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals
- \blacksquare v(N) ... value, which is distributed among players

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - ► model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals
- \blacksquare v(N) ... value, which is distributed among players
- $x(S) > v(S) \implies$ coalition S does not leave N

Idea: Payoff distribution leads to cooperation...

The core

For a cooperative game (N, v), the **core** C(v) is

$$\mathcal{C}(v) = \{x \in \mathcal{I}^*(v) \mid x(S) \ge v(S), \forall S \subseteq N\}.$$

- assumption: homo economicus
 - model of human as a player
 - strictly rational and selfish
 - ► follows his subjective goals
- \blacksquare v(N) ... value, which is distributed among players
- $x(S) > v(S) \implies$ coalition S does not leave N
 - ightharpoonup would lead to (S, v_S)
 - \triangleright v(S) ... distributed value

EXAMPLES OF SOLUTION CONCEPTS: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

22

EXAMPLES OF SOLUTION CONCEPTS: THE SHAPLEY **VALUE**

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subset N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
- $=\frac{s!(n-s-1)!}{n!}$
- $\blacksquare \sum_{S \subseteq N \setminus i}$

22

EXAMPLES OF SOLUTION CONCEPTS: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_{i}(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)
- $\blacksquare \sum_{S \subseteq N \setminus i}$

22

EXAMPLES OF SOLUTION CONCEPTS: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)
- $=\frac{s!(n-s-1)!}{n!}$
 - weights reflecting different sizes of coalitions
- $\blacksquare \sum_{S \subseteq N \setminus i}$

EXAMPLES OF SOLUTION CONCEPTS: THE SHAPLEY VALUE

Idea: Divide the profit in a fair way...

The Shapley value

For a cooperative game (N, v), the **Shapley value** $\phi(v)$ of player i is

$$\phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{s!(n-s-1)!}{n!} \left(v(S \cup i) - v(S) \right)$$

- \blacksquare $v(S \cup i) v(S)$
 - ightharpoonup marginal contribution (of player i in $S \cup i$)
- $\frac{s!(n-s-1)!}{n!}$
 - weights reflecting different sizes of coalitions
- $\blacksquare \sum_{S \subseteq N \setminus i}$
 - ▶ sum of all marginal contributions of i

- 1. sets of payoff vectors
- 2. functions on games

- 1. sets of payoff vectors
 - $\blacktriangleright \ \Sigma(v) = \{x \in \mathbb{R}^n \mid \dots \}$
- 2. functions on games

- 1. sets of payoff vectors
 - $\blacktriangleright \ \Sigma(v) = \{x \in \mathbb{R}^n \mid \dots \}$
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

We distringush

Formally:

- 1. sets of payoff vectors
 - \triangleright $\Sigma(v) = \{x \in \mathbb{R}^n \mid \dots \}$
- 2. functions on games
 - $\triangleright \Sigma : \Gamma^n \to 2^{\mathbb{R}^n}$

We distringush

1. single-point solution concepts

2. multi-point solution concepts

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $\blacktriangleright \ \Sigma \colon \Gamma^n \to 2^{\mathbb{R}^n}$

We distringush

- 1. single-point solution concepts
 - ightharpoonup as a set: $\Sigma(v) = \{x\}$
 - we prefer: $\Sigma(v) = x$
- 2. multi-point solution concepts

Formally:

- 1. sets of payoff vectors
- 2. functions on games
 - $ightharpoonup \Sigma \colon \Gamma^n o 2^{\mathbb{R}^n}$

We distringush

- 1. single-point solution concepts
 - ightharpoonup as a set: $\Sigma(v) = \{x\}$
 - we prefer: $\Sigma(v) = x$
 - ▶ as a function: $\Sigma : \Gamma^n \to \mathbb{R}$
- 2. multi-point solution concepts

ALTERNATIVE WAY TO DEFINE THE SHAPLEY VALUE

It is possible to define it using its properties...

The Shapley value

The **Shapley value** $\phi(v)$ is the only function $f: \Gamma^n \to \mathbb{R}$ satisfying for all games (N, v), (N, w):

- 1. (AXIOM OF EFFICIENCE)
 - $ightharpoonup \sum_{i \in N} f_i(v) = v(N)$
- 2. (AXIOM OF SYMMETRY)

$$\forall i,j \in N \ (\forall S \subseteq N \setminus \{i,j\} : v(S \cup i) = v(S \cup j)) \implies f_i(v) = f_j(v)$$

- 3. (AXIOM OF NULL PLAYER)
 - $ightharpoonup \forall i \in N \ (\forall S \subseteq N : v(S) = v(S \cup i)) \implies f_i(v) = 0$
- 4. (AXIOM OF ADDITIVITY)
 - \triangleright $v, w \in \Gamma^n : f(v+w) = f(v) + f(w)$

SUMMARY

Cooperative games

A **cooperative game** is given by a set of players and real values representing the profit of each subset of players (*coalition*). These values are encoded by the *characteristic function* of a game. The goal of the cooperative game theory is to find payoffs (in form of **payoff vectors**) for individual players based on values of the game. Payoff vectors satisfying further properties form **solution concepts**. These can be expressed as:

- 1. sets of payoff vectors
- 2. functions on games
 - 2.1 defined by formula
 - 2.2 defined by its properties