9831 Probability and Stochastic Processes for Finance, Fall 2016

Lecture 2

Anja Richter

Department of Mathematics

Outline

- · Multivariate normal r.v.s
- · Brownian motion

1 Multivariate normal random variables

Recall: X is said to have a (one-dimensional) normal distribution with mean $\mu\in\mathbb{R}$ and variance $\sigma^2>0$ if X has density

$$f_X(x) = rac{1}{\sqrt{2\pi} \; \sigma} \, e^{-rac{(x-\mu)^2}{2\sigma^2}}.$$

To include the degenerate case $\sigma=0$, we shall say that X has a degenerate normal distribution if $X=\mu$ a.s..

The degenerate distribution, clearly, has no density, its distribution μ_X is δ_μ .

Definition 1

A random vector $X=(X_1,X_2,\ldots,X_n)$ is said to be **Gaussian (equivalently, normal)** if for every $a\in\mathbb{R}^n$ the random variable

$$\langle a,X
angle := \sum_{i=1}^n a_i X_i$$

has a (one-dimensional, possibly degenerate) normal distribution.

Theorem 2

An n-dimensional Gaussian vector X has a density iff C is non-degenerate.

In this case

$$f_X(x) = rac{1}{(2\pi)^{n/2}\sqrt{\det C}}\,e^{-rac{1}{2}\langle(x-\mu,C^{-1}(x-\mu)
angle}.$$

The proof can be found in Jacod/Protter, Probability essentials, Chapter 16, and is based on the following useful fact:

Lemma 3

Let $X=(X_1,X_2,\ldots,X_n)$ be a r.v. with density $f_X(x)$.

Then for every invertible n imes n matrix A and $\mu \in \mathbb{R}^n$ the random vector $Y = \mu + AX$ has density

$$f_Y(y)=rac{1}{|{
m det}\,A|}\,f_X(A^{-1}(y-\mu)).$$

Proof: Let $B \in \mathcal{B}^n$, $g(x) = \mu + Ax$, and $D = g^{-1}(B)$.

Then by the change of variable formula we have

$$P(Y \in B) = P(X \in D) = \int_D f_X(x) \, dx = \int_{g^{-1}(B)} f_X(x) \, dx = \int_B f_X(A^{-1}(y-\mu)) | \det A^{-1}| \, dy.$$

This implies that Y has density

$$f_Y(y) = f_X(A^{-1}(y-\mu)) | \det A^{-1} | = rac{1}{|\det A|} \, f_X(A^{-1}(y-\mu)).$$

Definition 4

• The characteristic function of a r.v. $X=(X_1,X_2,\ldots,X_n)$ is

$$\phi_X(t) = E(e^{i\langle t, X
angle}), \quad t \in \mathbb{R}^n.$$

Characteristic functions uniquely characterize the distribution of a r.v., i.e. if two r.v. have the same characteristic function then they have the same distribution.

Example 5

• $Z \sim N(0,1)$:

$$egin{aligned} \phi_Z(t) &= E(e^{itZ}) \ &= \int_{-\infty}^{\infty} e^{itz} rac{1}{\sqrt{2\pi}} e^{-rac{z^2}{2}} dz \ &= \int_{0}^{\infty} e^{itz} rac{1}{\sqrt{2\pi}} e^{-rac{z^2}{2}} dz + \int_{-\infty}^{0} e^{itz} rac{1}{\sqrt{2\pi}} e^{-rac{z^2}{2}} dz \ &= \int_{0}^{\infty} e^{itz} rac{1}{\sqrt{2\pi}} e^{-rac{z^2}{2}} dz + \int_{0}^{\infty} e^{-itz} rac{1}{\sqrt{2\pi}} e^{-rac{z^2}{2}} dz \ &= 2 \int_{0}^{\infty} \cos(tz) rac{1}{\sqrt{2\pi}} e^{-rac{z^2}{2}} dz \end{aligned}$$

Compute the derivative and integrate by parts:

$$egin{align} \phi_Z'(t) &= -rac{2}{\sqrt{2\pi}} \int_0^\infty e^{-rac{z^2}{2}} z \sin(tz) dz \ &= rac{2}{\sqrt{2\pi}} \int_0^\infty \sin(tz) d\left(e^{-rac{z^2}{2}}
ight) \ &= rac{2}{\sqrt{2\pi}} e^{-rac{z^2}{2}} \sin(tz) igg|_0^\infty - rac{2}{\sqrt{2\pi}} \int_0^\infty e^{-rac{z^2}{2}} t \cos(tz) dz \ &= -t \phi_Z(t) \ \end{aligned}$$

The ODE $\phi_Z(t)=-t\phi_Z(t)$, has the solution $\phi_Z(t)=ce^{-t^2/2}$. As $\phi_Z(0)=1$, the integration constant is c=1. Hence we have

$$\phi_Z(t)=e^{-t^2/2}.$$

• $X \sim N(\mu, \sigma^2)$, then

$$\phi_X(t)=E(e^{itX})=e^{it\mu-\sigma^2t^2/2}.$$

Indeed, write $X=\mu+\sigma Z$ where $Z\sim N(0,1).$ Then

$$\phi_X(t) = E(e^{it(\mu+\sigma Z)}) = e^{it\mu}E(e^{it\sigma Z}) = e^{it\mu}e^{-\sigma^2t^2/2}$$

Theorem 6

 $X=(X_1,X_2,\ldots,X_n)$ is a Gaussian vector iff its characteristic function has the form

$$\phi_X(t) = \expigg(i\langle t, \mu
angle - rac{1}{2}\langle t, Ct
angleigg), \ t \in \mathbb{R}^n,$$

where $\mu \in \mathbb{R}^n$ and C is n imes n symmetric non-negative semi-definite matrix.

C is then the covariance matrix of X and μ is the mean of X.

Proof:

• Suppose (1) holds. Let $a\in\mathbb{R}^n$ and consider $Y=\langle a,X
angle$. Then for $t\in\mathbb{R}$

$$\phi_Y(t) = \phi_X(at) = e^{it\langle \mu,a
angle - t^2 \langle a,Ca
angle/2},$$

which means that $\phi_Y(t)$ is the characteristic function of a normal r.v. with mean $\langle \mu, a \rangle$ and variance $\langle a, Ca \rangle$.

Therefore, Y is normal. Since a was arbitrary, we conclude that X is Gaussian.

Now suppose that X is Gaussian.

Then we know that for every $a \in \mathbb{R}$ the random variable $Y = \langle a, X \rangle$ is (one-dimensional) normal. We can compute the mean and variance of Y:

$$egin{aligned} E(Y) &= \langle a, \mu
angle \ \operatorname{Var}(Y) &= E((\langle a, X
angle - \langle a, \mu
angle)^2) \ &= E((a^T(X - \mu))^2) \ &= E((a^T(X - \mu)(X - \mu)^Ta)) \ &= a^T C a \ &= \langle a, C a
angle, \end{aligned}$$

where $C = E((X - \mu)(X - \mu)^T)$.

Since Y is normal,

$$\phi_Y(t) = E(e^{it\langle a,\mu
angle - t^2\langle a,Ca
angle/2}).$$

Then

$$\phi_X(a) = E(e^{i\langle a, X
angle}) = \phi_Y(1) = e^{i\langle a, \mu
angle - \langle a, Ca
angle/2},$$

and we conclude that the characteristic function of X has the claimed form (replace a with t).

Theorem 7

Let $X = (X_1, X_2, \dots, X_n)$ be a Gaussian vector. The components X_1, X_2, \dots, X_n are independent iff they are uncorrelated (i.e. C is diagonal).

The proof is based on the fact that r.v. X_1, X_2, \ldots, X_n are independent if the characteristic function of (X_1, X_2, \ldots, X_n) splits into the product of characteristic functions of X_1, X_2, \ldots, X_n . We omit the details.

Theorem 8

Let X be an n-dimensional Gaussian vector with mean vector μ .

Then there exist independent normal r.v.s Y_1,Y_2,\ldots,Y_n with $Y_i\sim N(0,\sigma_i^2),\ \sigma_i\geq 0$, and an orthogonal $n\times n$ matrix A such that $X=\mu+AY$, where $Y=(Y_1,Y_2,\ldots,Y_n)$.

Proof: Let C be the covariance matrix of X. Since C is symmetric, non-negative semi-definite, there is an orthogonal matrix A and a diagonal matrix D with non-negative diagonal elements such that $C = ADA^{-1}$.

Set $Y = A^T(X - \mu)$. Since X is Gaussian, Y (as an affine transformation of X) is also Gaussian.

Moreover, E(Y)=0 and

$$\stackrel{\cdot}{E}(YY^T)=E(A^T(X-\mu)(X-\mu)^TA)=A^TCA=A^T(ADA^T)A=D,$$

since $AA^T = A^TA = I_n$.

By Theorem 7, Y_1, Y_2, \ldots, Y_n are independent and $\mathrm{Var}(Y_i) = D_{ii} =: \sigma_i^2 \geq 0$.

Theorem 9

Let X be an n-dimensional Gaussian vector and Y be an m-dimensional Gaussian vector.

If X and Y are independent then (X,Y) is an n+m-dimensional Gaussian vector.

Proof: Let Z=(X,Y). By independence of X and Y,

$$\phi_Z(t)=\phi_X(u)\phi_Y(v),\quad t=(u,v),\ u\in\mathbb{R}^n,\ v\in\mathbb{R}^m.$$

Therefore,

$$\phi_Z(t) = e^{i\langle u, \mu_x
angle - rac{1}{2}\langle u, C_X u
angle} e^{i\langle v, \mu_y
angle - rac{1}{2}\langle v, C_Y v
angle} = e^{-\langle (u,v), (\mu_X, \mu_Y)
angle - rac{1}{2}\langle t, C t
angle},$$

where

$$C = \left[egin{array}{cc} C_X & 0 \ 0 & C_Y \end{array}
ight]$$

By Theorem 6, we conclude that Z is n+m-dimensional Gaussian vector.

2 Brownian motion

2.1 Definition

Let (Ω, \mathcal{F}, P) be a probability space.

Suppose that for each $\omega\in\Omega$ there is a continuous function B_t , $t\geq 0$, such that $B_0=0$.

Then $B:=(B_t)_{t\geq 0}$ is called a **(standard) Brownian motion** if

1. for each $m \in \mathbb{N}$ and $t_0 = 0 < t_1 < \dots < t_n$ the r.v.s

$$B_{t_1},\; B_{t_2}-B_{t_1},\; \cdots,\; B_{t_n}-B_{t_{n-1}}$$

are independent,

2. for all $s>0,\ t\geq 0$ the r.v. B_t-B_s has a normal distribution with mean 0 and variance t-s.

Remark: The standard Brownian motion starts at 0. A Brownian motion starting at $x \neq 0$ is obtain by shifting $x + B_t$.

2.2 First properties of Brownian motion

The following properties hold for Brownian motion B.

- Symmetry The process $-B_t$, $t\geq 0$, is a Brownian motion.
- ullet Time-homogeneity For any s>0, the process $B_{t+s}-B_s$, $t\geq 0$, is also a Brownian motion.
- Self-similarity For every c>0, the process cB_{t/c^2} , $t\geq 0$, is a Brownian motion.

Zooming in on Brownian motion.

- Time inversion The process X defined by $X_0=0$, $X_t=tB_{1/t}$ for t>0, is a Brownian motion.

Definition

Let (Ω, \mathcal{F}, P) be a probability space.

A stochastic process $(X_t)_{t \geq 0}$ is called **Gaussian process**, if for each $m \in \mathbb{N}$ and $t_0 = 0 < t_1 < \ldots < t_m$ the random variables $X_{t_1}, X_{t_2}, \ldots, X_{t_m}$ are jointly normally distributed.

Remark:

This means, all its finite dimensional distributions are multivariate normally. Thus, a Gaussian process is fully characterized by its

- mean function $\mu(t) = \mathbb{E}\left[X_t
 ight]$ and
- covariance function $\gamma(t,s) = \operatorname{Cov}(X_t,X_s)$.

Fact: Brownian motion is a Gaussian process, it is fully characterized by the mean and the covariance functions.

- $\mathbb{E}\left[B_{t}
 ight]=0$ for all t
- $\operatorname{Cov}(B_t, B_s) = \min\{s, t\}$

To calculate the covariance, without loss of generality, we assume s < t.

$$egin{aligned} \operatorname{cov}(B_t,B_s) &= \mathbb{E}\left[B_t\,B_s
ight] \ &= \mathbb{E}\left[(B_t-B_s+B_s)B_s
ight] \ &= \mathbb{E}\left[(B_t-B_s)B_s
ight] + s & \left(B_s \sim N(0,s)
ight) \ &= \mathbb{E}\left[B_t-B_s
ight] \,\mathbb{E}\left[B_s
ight] + s & \left(ext{ independent increments}
ight) \ &= s \ &= \min\{s,t\}. \end{aligned}$$

2.3 Constructing Brownian motion - Donsker's invariance principle

Suppose $\{X_i\}_{i=1}^\infty$ is an iid sequence of random variables with mean 0 and and variance 1.

Let $S_n = \sum_{i=1}^n X_i$, i.e. S is a symmetric random walk.

Define the function \mathfrak{S}_n of t by

$$\mathfrak{S}_n(t) = rac{1}{\sqrt{n}} \sum_{i=1}^n \left[S_{i-1} + n \left(t - rac{i-1}{n}
ight) X_i
ight] \, 1_{\left(rac{i-1}{n}, rac{i}{n}
ight]}(t).$$

In fact, \mathfrak{S}_n is simply the linear interpolation of the scaled random walk $\left\{\frac{S_1}{\sqrt{n}}, \frac{S_2}{\sqrt{n}}, \cdots, \frac{S_n}{\sqrt{n}}\right\}$.

Then, $\mathfrak{S}_n \to B$ in distribution as $n \to \infty$, where B denotes a Brownian motion.

In other words, as $n\to\infty$, the linearly interpolated scaled random walk \mathfrak{S}_n converges in distribution to a Brownian motion.

In [25]: # Simulate BM by using the Donsker's invariance principle
N <- 1000
nu <- 3
X <- rt(N,df=nu)/sqrt(nu/(nu-2))
BM <- c(0,cumsum(X)/sqrt(N))
t <- c(0,(1:N)/N)
plot(t,BM,type='l',col='blue')</pre>

2.4 Brownian motion as martingale

Definition

Let (Ω, \mathcal{F}, P) be a probability space.

- A **filtration** on (Ω, \mathcal{F}, P) is a collection of σ -algebras $(\mathcal{F}_t)_{t \geq 0}$ satisfying the following property: $\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}$ for all \$0\le s
- Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration, and $(X_t)_{t\geq 0}$ be a stochastic process on (Ω,\mathcal{F},P) .

 $(X_t)_{t\geq 0}$ is said to be **adapted** to the filtration $(\mathcal{F}(t))_{t\geq 0}$ if X_t is \mathcal{F}_t -measurable for each $t\geq 0$.

- Let $(B_t)_{t\geq 0}$ be a Brownian motion on (Ω, \mathcal{F}, P) . A filtration for the Brownian motion is a filtration $(\mathcal{F}_t)_{t\geq 0}$ such that
 - $(B_t)_{t\geq 0}$ is adapted to it and
 - $lacksquare B_t B_s$ is independent of \mathcal{F}_s for all $0 \leq s \leq t$.
- The **natural filtration** $(\mathcal{F}_t)_{t\geq 0}$ of a Brownian motion is the filtration such that each \mathcal{F}_t is the smallest σ -algebra which contains all sets of the form $\{B_{t_1}\leq x_1, B_{t_2}\leq x_2, \ldots, B_{t_m}\leq x_m\}$ for all $m\geq 1$, $0\leq t_1< t_2<\cdots< t_m\leq t$, $x_1,x_2,\ldots,x_m\in\mathbb{R}$.

In general, $(\mathcal{F}_t)_{t\geq 0}$ can be generated not only by the Brownian motion but by the Brownian motion together with some other process or processes. In such case the filtration $(\mathcal{F}_t)_{t\geq 0}$ can be strictly larger than the natural filtration.

Definition

A stochastic process $(M_t)_{t\geq 0}$, on (Ω,\mathcal{F},P) is said to be a **martingale** with respect to filtration $(\mathcal{F}_t)_{t\geq 0}$ if

- (i) $E(|M_t|) < \infty$ for all $t \geq 0$;
- (ii) M_t is \mathcal{F}_t -measurable for all $t\geq 0$;
- (iii) $E(M_t \,|\, \mathcal{F}_s) = M_s$ a.s. for all $t \geq s \geq 0$.

Theorem

Let $(B_t)_{t\geq 0}$ be a Brownian motion and $(\mathcal{F}(t))_{t\geq 0}$ be a filtration for this Brownian motion.

The following processes are martingales relative to $(\mathcal{F}(t))_{t\geq 0}$:

- $(B_t)_{t\geq 0}$;
- $(B_t^2 t)_{t>0}$;
- $\left(e^{\sigma B_t \sigma^2 t/2}
 ight)_{t\geq 0}$ (for each $\sigma\in\mathbb{R}$).

Proof:

• $(B_t)_{t\geq 0}$ is a martingale. Indeed, (i) and (ii) hold by construction.

Furthermore, we have for all $0 \leq s \leq t$

$$E(B_t|\mathcal{F}_s) = E(B_t - B_s|\mathcal{F}_s) + E(B_s|\mathcal{F}_s)$$

$$= E(B_t - B_s) + B_s$$

$$= 0 + B_s$$

$$= B_s.$$

The other two parts are exercises in HW02.

2.5 Extensions of Brownian motion

Brownian motion with drift

Let $(\Omega, \mathcal{F}_t, \mathbb{P})$ be a filtered probability space and B_t a Brownian motion on $(\Omega, \mathcal{F}_t, \mathbb{P})$. A stochastic process X of the form

$$X_t = x + B_t + \int_0^t \mu_s ds$$

is called a **Brownian motion with drift** μ_t , where μ_t is adapted to the filtration \mathcal{F}_t .

Remark:

- X_t is a Gaussian process if μ_t is deterministic. Then, the mean function is $\mathbb{E}\left[X_t\right] = x + \int_0^t \mu_s ds$ and the covariance function $\gamma(t,s) = \operatorname{Cov}(X_t,X_s) = \min\{t,s\}$.
- We can always transform a Brownian motion with drift into a standard Brownian motion by change of the underlying probability measure so long as the drift μ_t satisfies certain conditions, say, bounded (see future lectures).

Brownian bridge

Let B_t be a Brownian Motion in [0,1]. Define the process

$$X_t := B_t - tB_1, \quad t \in [0,1],$$

then X_t is called the (standard) **Brownian bridge**.

- Note that $X_0=X_1=0$.
- X is a Gaussian process.
- The mean and autovariance function of Brownian bridge X_t are $\mathbb{E}\left[X_t\right]=0$ and $\mathrm{Cov}(X_s,X_t)=s(1-t)$ respectively, for $0\leq s\leq t\leq 1$. In particular, $\mathrm{Var}(X_t)=t(1-t)$.
- The Brownian bridge appears as the limit process of the normalized empirical distribution function of a sample of iid uniform U(0,1) random variables.

Brownian bridge with inital and terminal points other than 0 is obtained by adding a linear function to the standard Brownian bridge. For example, Brownian bridge X with $X_0=a$ and $X_1=b$ is given by

$$X_t = B_t - tB_1 + a + (b-a)t,$$

where again B_t is a standard Brownian motion.

```
In [21]: # Simulate Brownian bridge X_t = B_t - t*B_1

Bt <- function(n){cumsum(rnorm(n,sd=1/sqrt(n)))}

# Generates Brownian bridge with n points

Xt <- function(n, final){
    tmp <- Bt(n)
        c(0,tmp + (1:n)/n * (final-tmp[n]))
    }

n <- 1000
    t <- c(0,(1:n)/n)
    plot(t,Xt(n,0),type='l',col='blue')
    abline(h=0,col='green')
    plot(t,Xt(n,0),type='l',col='red')
    abline(h=0,col='green')</pre>
```


