Question 1

- a. f(n) = n and g(n) = (n + 1) / 2. $f/g \rightarrow \lim_{n\to\infty} n/n + 1/2 = 2$, f(n) = Big Theta(g(n))
- b. $f(n) = n^2$ and $g(n) = n^2 + 6n$. Lim n-> inf $n^2/n^2+6n = 1$, f(n) = Big Theta(g(n))
- c. f(n) = log n and $g(n) = log n^2$. Lim n-> inf logn/logn $^2 = \frac{1}{2}$, f(n) = Big Theta (g(n))
- d. $f(n) = 2^n$ and $g(n) = 2^{2n}$. lim n->inf $2^n/2^2 = 0$, f(n) = o(g(n))
- e. f(n) = 5n and $g(n) = 4n^{3/2}$. Lim n->inf $5n/4n \wedge 3/4 = 1/infinity = 0$, f(n) = o(g(n))

Question 2

- a. $(n + 1)^3$ is $O(n^3)$. Lim n->inf $(n+1)^3/n^3 = 1$, f(n) = Big Theta(g(n))Growing slower so f(n) = O(g(n)), $f(n) = (n^3)$
- b. 2^{n+1} is $O(2^n)$. Lim n->inf $2^2n+1/2^n = 2$, same as above, f(n) = O(g(n)), $f(n) = O(2^n)$
- c. n is $o(n \log n)$. $\lim_{n\to \infty} n/n\log n = 0$, $f(n) = o(g(n)) -> f(n) = O(n\log n)$
- d. n^2 is $\omega(n)$. $\lim_{n\to\infty} n^2/n = \inf_{n\to\infty} f(n) = \omega(g(n))$
- e. $n^3 \log n$ is $\Omega(n^3)$. Lim n-> $n^3 \log n/n^3 = \text{infinity}$, $f(n) = \omega(n^3) -> g(n) = o(f(n)) -> f(n) = \Omega(n^3)$

Question 3

a. Algorithm 1:

b. Algorithm 2:

c. Algorithm 3:

d. Algorithm 4:

$$s = 0$$

for $i = 1$ to 2 * n
for $j = 1$ to i
 $s = s + i$
 $0(4n^3) \rightarrow 0(n^3)$

e. Algorithm 5: