Proposizione 1. Sia $n \in \mathbb{N} - \{0,1\}$. La relazione $\mathcal{R}_n = \{(a,b) \in \mathbb{Z} \times Z : n \mid a-b\}$ è una relazione di equivalenza su \mathbb{Z} .

La dimostrazione viene lasciata per esercizio.

Definizione 1. La relazione di equivalenza \mathcal{R}_n si dice congruenza modulo n.

Notazione Per ogni $a, b \in \mathbb{Z}$, invece che $(a, b) \in \mathcal{R}_n$ si scrive

$$a \equiv b \pmod{n}$$

e si legge "a congruo b modulo n".

Teorema 1. L'insieme quoziente di \mathbb{Z} per \mathcal{R}_n ha esattamente n elementi, cioè:

$$\mathbb{Z}/\mathcal{R}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\},\$$

dove $[x]_n$ indica la classe di equivalenza di $x \in \mathbb{Z}$.

Dimostrazione. Si dimostra prima che le classi di equivalenza $[0]_n, [1]_n, \ldots, [n-1]_n$ sono distinte fra loro. Siano $a, b \in \mathbb{N}$, con $a \neq b, 0 \leq a \leq n-1, 0 \leq b \leq n-1$, e si può supporre che sia a < b. Se fosse $[a]_n = [b]_n$ allora sarebbe $b \equiv a \pmod{n}$ cioè $n \mid b-a$. Però $b-a \leq n-1$ e quindi n potrebbe essere un divisore di b-a solo se b-a=0, il che contraddice l'ipotesi $a \neq b$.

Resta da provare che non ci sono classi di equivalenza diverse da $[0]_n, [1]_n, \ldots, [n-1]_n$ in \mathbb{Z}/\mathcal{R}_n . A tale scopo, sia $m \in \mathbb{Z}$. Per il teorema sulla divisione, esistono $q, r \in \mathbb{Z}$, con $0 \le r < n$ tali che m = nq + r. Allora m - r = nq, per cui $n \mid m - r$, ovvero $m \equiv r \pmod{n}$ e quindi $[m]_n = [r]_n$. Segue che:

$$\forall [m]_n \in \mathbb{Z}/\mathcal{R}_n \ \exists r \in \mathbb{N}, \ \text{con } 0 \leq r \leq n-1 \ \text{tale che } [m]_n = [r]_n$$

e ciò conclude la dimostrazione.

Definizione 2. L'insieme quoziente di \mathbb{Z} per \mathcal{R}_n si chiama insieme dei resti modulo n e si indica con il simbolo \mathbb{Z}_n .

Definizione 3. Siano $a, b \in \mathbb{Z}$, $a \neq 0$, $n \in \mathbb{N} - \{0, 1\}$. Si dice congruenza lineare l'espressione

$$ax \equiv b \pmod{n}.$$

Si dice soluzione di (1) ogni intero x_0 tale che $ax_0 \equiv b \pmod{n}$.

Teorema 2. Siano $a, b \in \mathbb{Z}$, $a \neq 0$, $n \in \mathbb{N} - \{0, 1\}$ e sia d = M.C.D.(a, n). Allora

- 1. la congruenza lineare (1) ammette soluzioni se e solo se $d \mid b$.
- 2. se x_0 è una soluzione di (1), posto $\bar{n} = \frac{n}{d}$, tutte le altre soluzioni di (1) sono $x_0 + k\bar{n}$, al variare di $k \in \mathbb{Z}$
- 3. ci sono esattamente d soluzioni non congrue tra loro mod n, cioè $x_0, x_0 + \bar{n}, \ldots, x_0 + (d-1)\bar{n}$.

Dimostrazione. Per provare 1., si osserva che, affermare che la congruenza lineare (1) ha soluzioni equivale a dire che esiste $x_0 \in \mathbb{Z}$ tale che

$$n \mid ax_0 - b$$
,

ovvero che esistono $x_0, y_0 \in \mathbb{Z}$ tali che

$$ax_0 - b = ny_0,$$

ossia

(2)
$$ax_0 + n(-y_0) = b.$$

Questo vuol dire che l'equazione diofantea ax + ny = b ammette soluzione $(x_0, -y_0)$. Dal teorema sulle equazioni diofantee è noto che 2 ha soluzioni se e solo se M.C.M.(a, n)|b.

Anche la 2. segue subito dal teorema sulle equazioni diofantee. La dimostrazione della 3. si tralascia.