# IFT 4030/7030, Machine Learning for Signal Processing Week 9: Time Series Modeling

Cem Subakan







#### Admin

- Homework 2 is out. You can do it all on the notebook.
  - ▶ Devoir 2 est publié. Vous pouvez tout faire sur le notebook.
- If you have doubts on your projects contact me. Thanks for those of you who already did. If you do a good project it will help you in your job search / grad school search.
  - Si vous avez des doutes sur vos projets, c'est très important que vous me contactez. Merci pour ceux qui a déjà fait. Si vous faites un bon projet ça va vous aider à trouver un job, ou un grad student position...

#### **Admin**

- Homework 2 is out. You can do it all on the notebook.
  - Devoir 2 est publié. Vous pouvez tout faire sur le notebook.
- If you have doubts on your projects contact me. Thanks for those of you who already did. If you do a good project it will help you in your job search / grad school search.
  - Si vous avez des doutes sur vos projets, c'est très important que vous me contactez. Merci pour ceux qui a déjà fait. Si vous faites un bon projet ça va vous aider à trouver un job, ou un grad student position...
- I will share a sign-up sheet soon for project presentations.
  - ▶ Je partager un sign-up sheet bientot pour les presentations.
- This week: / Cette semaine: Time series!

# Our view of data so far (well, mostly)

- IID: (not the institute) Independent and Identically Distributed
- Remember last week? / Souvenez-vous de ça de la semaine dernière?



# Our view of data so far (well, mostly)

- IID: (not the institute) Independent and Identically Distributed
- Remember last week? / Souvenez-vous de ça de la semaine dernière?



# Our view of data so far (well, mostly)

- IID: (not the institute) Independent and Identically Distributed
- Remember last week? / Souvenez-vous de ça de la semaine dernière?



- Well, this week we will have this instead:
  - ▶ Bon, cette semain on aura ça:



## **Motivation**

■ Are these signals similar? / Ces deux signals, sont-ils similaires?



## **Motivation**

■ Are these signals similar? / Ces deux signals, sont-ils similaires?



- If we calculate a distance in the 100d space they are distant.
  - ▶ Si on calcule une distance dans une espace de 100d, ils sont distants.

#### **Motivation**

■ Are these signals similar? / Ces deux signals, sont-ils similaires?



- If we calculate a distance in the 100d space they are distant.
  - ▶ Si on calcule une distance dans une espace de 100d, ils sont distants.
- What can we do?
  - ▶ Que peut-on faire?

## How about these?

■ Are these similar? / Sont-ils similaires?



■ How about these? / Et ces deux?



## **Table of Contents**

#### Dynamic Time Warping

#### Hidden Markov Models

Interence Learning

Decoding

HMM Applications

**HMM Variants** 

# **Dynamic Time Warping**

- We can to find a 'warping function' between two signals to match them.
  - ➤ On peut trouver une fonction de 'warping' entre les deux signaux pour les matcher.





# **Dynamic Time Warping**

■ The problem formulation / La formulation du problème

$$\mathsf{DTW}(x,y) = \min_{\pi} \sqrt{\sum_{(i,j) \in \pi} d(x_i, y_i)}$$

- where,  $\pi$  is a path defined over the indices. / où  $\pi$  est un path défini sur les indices.
- More formally/Plus formellement  $\pi = [(i_0, j_0), (i_1, j_1), \dots, (i_K, j_K)]$ .
- Constraints: / Contraints:

$$\pi_0 = (0,0)$$

$$\pi_K = (n-1, m-1)$$

$$i_{k-1} \le i_k \le i_{k-1} + 1$$

$$j_{k-1} \le j_k \le j_{k-1} + 1$$

# The dynamic programming solution

■ The recursion / La recursion

$$C_{i,j} = d(x_i, y_j) + \min(C_{i-1,j}, C_{i,j-1}, C_{i-1,j-1})$$

# The dynamic programming solution

■ The recursion / La recursion

$$C_{i,j} = d(x_i, y_j) + \min(C_{i-1,j}, C_{i,j-1}, C_{i-1,j-1})$$

 Optimal path after backtracking / La trace optimale après backtracking



# **DTW** examples



# **DTW** examples



# **DTW** on two arrays

 $\times$  = [0, 1, 2, 3, 4], y = [1, 2, 3, 4, 5].



# **DTW** on two arrays

 $\times = [0, 1, 2, 3, 4], y = [1, 2, 4, 4, 5].$ 



## **DTW** on Audio

- DTW on same person saying 'zero' two different times.
  - ▶ DTW sur la meme personne qui dit 'zero' deux differentes fois.



25

#### **DTW** on Audio

- DTW on same person saying 'zero' and 'one'
  - ▶ DTW sur la meme personne qui dit 'zero' et 'one'.



▶ Do you notice something? / Vous remarquez quelque chose qui peut etre utile?

# Using DTW for sequence classification

- An extremely basic speech classifier / Un classificateur vocale extremement simple.
- We can store templates for each class and then assign to the one with smallest DTW cost.
  - On peut garder des templates pour chaque classe, et assigner le séquence test à la classe avec le cout DTW le plus petit.



## **DTW** classification in action



#### To summarize DTW

- It's a distance over time-series, and having that is awesome.
  - C'est une distance sur des time-series, et c'est magnique d'en avoir un.
- You can train a neural net with it, do clustering (maybe? can you? what would be a problem?).
  - Vous pouvez entrainer un réseau neural avec ca, ou clustering (peut-etre vous pouvez?)

#### To summarize DTW

- It's a distance over time-series, and having that is awesome.
  - C'est une distance sur des time-series, et c'est magnique d'en avoir un.
- You can train a neural net with it, do clustering (maybe? can you? what would be a problem?).
  - Vous pouvez entrainer un réseau neural avec ca, ou clustering (peut-etre vous pouvez?)
- You can even dub movies! / Vous pouvez meme faire du doublage avec DTW.

## **Table of Contents**

#### Dynamic Time Warping

#### Hidden Markov Models

Inference Learning Decoding HMM Applications HMM Variants

#### A model over time series

- DTW is nice and all, but it's just a distance, it's not a model.
  - ▶ DTW est bon mais ce n'est qu'une distance, n'est pas une modèle.
- Remember the duality between likelihood / and distances (e.g. Gaussian and Euclidean distance)

# Let's remember GMMs



## **GMMs** with time



# **GMMs** with time



Image taken from UIUC MLSP class

#### Tired of IID models? HMMs

■ Model / Modèle:



$$h_n|h_{n-1} \sim \mathsf{Discrete}(A(:,h_{n-1}))$$
  
 $x_n|h_n \sim p(x_n|h_n,O)$ 

- $h_n \in \{1, ..., K\}$ , latent variables (embeddings). Difference from before is  $h_n$  and  $h_{n+1}$  are connected!
  - ▶ Différence avec avant est que les variables latent sont connéctés.
- $\mathbf{x}_n \in \mathbb{R}^L$ , observed data items / les données observées.
- The parameters  $\theta = \{O, A\}$  / Les paramètres.
- $O \in \mathbb{R}^{L \times K}$ , the emission matrix,  $A \in \mathbb{R}^{K \times K}$ , the transition matrix.
- Learning is conceptually all the same. Just that E-step is little different.
  - L'apprentissage est meme qu'avant. C'est juste que E-step est un peu différent.

# Continuous data generated from an HMM



In this case  $p(x_t|r_t, O) = \mathcal{N}(x_n; \mu_{r_t}, \sigma^2 I)$ .

# Discrete data generated from an HMM



In this case  $p(x_t|r_t, O) = Discrete(x_t; O[:, r_t])$ .

#### Statistical Problems to solve with HMMs

#### ■ Inference / Evaluation

▶ How do we calculate  $p(x_{1:T}|\theta)$ . / Comment est-ce qu'on calcule ce marginale?

#### Decoding

What are the optimal state values (not probabilities) given x<sub>1:T</sub> and a learnt model. / Comment obtiens-t-on les valeurs des états optimales?

#### Learning

▶ Given a sequence x<sub>1:T</sub>, how do we learn the optimal model parameters? / Étant donné une séquence x<sub>1:T</sub> comment est-ce qu'on peut apprendre les paramètres optimales du modèle?

## **Table of Contents**

#### Dynamic Time Warping

#### Hidden Markov Models Inference

Learning
Decoding
HMM Applications
HMM Variants

## Inference in HMMs

■ The precise inference question / La question précise pour l'inférence.

$$p(x_{1:T}|\theta) = \sum_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta)$$

$$egin{split} 
ho(x_{1:T}| heta) &= \sum_{h_{1:T}} 
ho(x_{1:T},h_{1:T}| heta) \ &= \sum_{h_{1:T}} \prod_{t=1}^T 
ho(x_t|h_t) 
ho(h_t|h_{t-1}) \end{split}$$

$$\begin{aligned} p(x_{1:T}|\theta) &= \sum_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta) \\ &= \sum_{h_{1:T}} \prod_{t=1}^{T} p(x_t|h_t) p(h_t|h_{t-1}) \\ &= \sum_{h_T} \dots \sum_{h_2} \sum_{h_1} p(x_T|h_T) p(h_T|h_{T-1}) \dots p(x_2|h_2) p(h_2|h_1) p(h_1) \end{aligned}$$

■ The precise inference question / La question précise pour l'inférence.

$$\begin{split} p(x_{1:T}|\theta) &= \sum_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta) \\ &= \sum_{h_{1:T}} \prod_{t=1}^{T} p(x_t|h_t) p(h_t|h_{t-1}) \\ &= \sum_{h_T} \dots \sum_{h_2} \sum_{h_1} p(x_T|h_T) p(h_T|h_{T-1}) \dots p(x_2|h_2) p(h_2|h_1) p(h_1) \end{split}$$

■ This is a huge sum! / C'est une operation immense.

$$\begin{split} p(x_{1:T}|\theta) &= \sum_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta) \\ &= \sum_{h_{1:T}} \prod_{t=1}^{T} p(x_t|h_t) p(h_t|h_{t-1}) \\ &= \sum_{h_T} \dots \sum_{h_2} \sum_{h_1} p(x_T|h_T) p(h_T|h_{T-1}) \dots p(x_2|h_2) p(h_2|h_1) p(h_1) \end{split}$$

- This is a huge sum! / C'est une operation immense.
- What can we do? / Qu'est-ce qu'on peut faire?

- The forward inference: (The filtering density)
  - ► Inférence en avançant

$$\alpha(h_t) := p(x_{1:t}, h_t)$$

- The backward inference:
  - ► Inférence en réculant

$$\beta(h_t) := p(x_{t+1:T}|h_t)$$

# The Dynamic Programming Solution (Again)

$$\alpha(h_t) = p(x_t|h_t) \sum_{h_{t-1}} p(h_t|h_{t-1}) p(x_{t-1}|h_{t-1}) \dots p(x_2|h_2) \sum_{h_1} p(h_2|h_1) p(x_1|h_1) \underbrace{p(h_1)}_{\alpha(h_1)} \underbrace{p(h_1)}_{\alpha(h_{t-1})}$$

$$\beta(h_t) = \sum_{h_{t+1}} p(h_{t+1}|h_t) p(x_{t+1}|h_{t+1}) \dots \underbrace{\sum_{h_T} p(h_T|h_{T-1}) p(x_T|h_T)}_{\beta(h_{t+1})} \underbrace{1}_{\beta(h_{t+1})}$$

#### The forward and backward recursions

■ The forward recursion / La recurrence en avançant:

$$\alpha(h_t) = p(x_t|h_t) \sum_{h_{t-1}} p(h_t|h_{t-1}) \alpha(h_{t-1})$$

■ The backward recursion / La recurrence en reculant:

$$\beta(h_t) = \sum_{h_{t+1}} p(h_{t+1}|h_t) p(x_{t+1}|h_{t+1}) \beta(h_{t+1})$$

# Ok but what happened to the likelihood question?

Note:

$$\alpha(h_T) = p(x_1, x_2, \dots, x_T, h_T)$$

■ So how do we get  $p(x_{1:T})$  ?

# Ok but what happened to the likelihood question?

Note:

$$\alpha(h_T) = p(x_1, x_2, \ldots, x_T, h_T)$$

- So how do we get  $p(x_{1:T})$  ?
- $p(x_{1:T}) = \sum_{h_T} p(x_{1:T}, h_T) = \sum_{h_T} \alpha(h_T).$

# Why do we need the backward?

 $\alpha(h_t)$  are "forward messages".  $\beta(h_t)$  are "backward messages". One forward pass and one backward pass is sufficient since, / Une passe en avançant et une passe en réculant suffissent parce que,

$$p(h_t|x_{1:T}) \propto p(h_t, x_{1:T})$$

$$= p(h_t, x_{1:t}) p(x_{t+1:T}|h_t)$$

$$= \alpha(h_t) \beta(h_t)$$

Traditionally (EE traditions),  $\alpha_{1:T}$  is known as the filtering density.  $\gamma_{1:T} := \alpha_{1:T} \cdot * \beta_{1:T}$  is the smoothing density (la densité smoothing).



## **Forward Pass in Action**



## **Table of Contents**

#### Dynamic Time Warping

#### Hidden Markov Models

Inference

## Learning

Decoding HMM Applications

HMM Variants

■ The learning question / La problématique d'apprentissage

$$\begin{split} \widehat{\theta} &= \arg\max_{\theta} p(x_{1:N}|\theta) \\ &= \arg\max_{\theta} \sum_{h_{1:N}} p(x_{1:N}, h_{1:N}|\theta) \end{split}$$

■ The learning question / La problématique d'apprentissage

$$\widehat{\theta} = \arg \max_{\theta} p(x_{1:N}|\theta)$$

$$= \arg \max_{\theta} \sum_{h_{1:N}} p(x_{1:N}, h_{1:N}|\theta)$$

■ Write down/Écrit log-likelihood:

$$\log p(x_{1:N}|\theta) = \log \sum_{h_{1:N}} \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} q(h_{1:N}) = \log \mathbb{E}_q \left[ \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} \right]$$

■ The learning question / La problématique d'apprentissage

$$\begin{split} \widehat{\theta} &= \arg\max_{\theta} p(x_{1:N}|\theta) \\ &= \arg\max_{\theta} \sum_{h_{1:N}} p(x_{1:N}, h_{1:N}|\theta) \end{split}$$

■ Write down/Écrit log-likelihood:

$$\begin{split} \log p(x_{1:N}|\theta) &= \log \sum_{h_{1:N}} \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} q(h_{1:N}) = \log \mathbb{E}_q \left[ \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} \right] \\ &\geq VLB := \mathbb{E}_q \left[ \log \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} \right] =^+ \mathbb{E}_q \left[ \log p(x_{1:N}, h_{1:N}|\theta) \right] \end{split}$$

■ The learning question / La problématique d'apprentissage

$$egin{aligned} \widehat{ heta} &= rg \max_{ heta} p(x_{1:N}| heta) \ &= rg \max_{ heta} \sum_{h_{1:N}} p(x_{1:N},h_{1:N}| heta) \end{aligned}$$

■ Write down/Écrit log-likelihood:

$$\begin{split} \log p(x_{1:N}|\theta) &= \log \sum_{h_{1:N}} \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} q(h_{1:N}) = \log \mathbb{E}_q \left[ \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} \right] \\ &\geq VLB := \mathbb{E}_q \left[ \log \frac{p(x_{1:N}, h_{1:N}|\theta)}{q(h_{1:N})} \right] =^+ \mathbb{E}_q \left[ \log p(x_{1:N}, h_{1:N}|\theta) \right] \end{split}$$

Except the fact that the posterior distribution is  $q(h_t|x_{1:T}) = p(h_t|x_{1:T})$ . Not  $p(h_t|x_t)$  (unlike the GMM case. / La différence du cas des GMMs est que maintenant le posterior ne se factorise pas sur temps.

## **EM Algorithm for HMMs**

Randomly initialize  $\theta$ .

while Not converged do

E-step:

Do a Forward and backward pass. Get all  $\alpha(h_t)$  and  $\beta(h_t)$ .

M-step:

$$\begin{split} \widehat{\mu}_k &= \frac{\sum_{t=1}^{T} \mathbb{E}_q[h_t = k] \times_t}{\sum_{t=1}^{T} \mathbb{E}_q[h_t = k]} \\ \widehat{A}_{ij} &= \frac{\sum_{t=1}^{T-1} \mathbb{E}_q[h_t = j, h_{t+1} = i]}{\sum_{t=1}^{T-1} \mathbb{E}_q[h_t = j]} \end{split}$$

end while

$$\blacksquare \mathbb{E}_q[h_t] = \alpha(h_t)\beta(h_{t+1})/Z$$

$$\mathbb{E}_{q}[h_{t}, h+1] = p(h_{t}, h_{t+1}|x_{1:T}) \propto \\ p(x_{1:t}, h_{t})p(h_{t+1}|h_{t})p(x_{t+1}|h_{t+1})p(x_{t+2:T}|h_{t+1}) = \\ \alpha(h_{t})p(h_{t+1}|h_{t})p(x_{t+1}|h_{t+1})\beta(h_{t+1}) = \alpha(h_{t})AO[:, h_{t+1}]\beta(h_{t+1})$$

## **Table of Contents**

#### Dynamic Time Warping

#### Hidden Markov Models

Inference

Learning

Decoding

HMM Applications

$$p(x_{1:T}, h_{1:T}^*|\theta) = \max_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta)$$

$$\begin{aligned} \rho(x_{1:T}, h_{1:T}^*|\theta) &= \max_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta) \\ &= \max_{h_{1:T}} \prod_{t=1}^{T} p(x_t|h_t) p(h_t|h_{t-1}) \end{aligned}$$

$$\begin{split} \rho(x_{1:T}, h_{1:T}^*|\theta) &= \max_{h_{1:T}} \rho(x_{1:T}, h_{1:T}|\theta) \\ &= \max_{h_{1:T}} \prod_{t=1}^{T} \rho(x_t|h_t) \rho(h_t|h_{t-1}) \\ &= \max_{h_T} \dots \max_{h_2} \max_{h_1} \rho(x_T|h_T) \rho(h_T|h_{T-1}) \dots \rho(x_2|h_2) \rho(h_2|h_1) \rho(h_1) \end{split}$$

■ The precise inference question / La question précise pour l'inférence.

$$\begin{split} p(x_{1:T}, h_{1:T}^*|\theta) &= \max_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta) \\ &= \max_{h_{1:T}} \prod_{t=1}^{T} p(x_t|h_t) p(h_t|h_{t-1}) \\ &= \max_{h_{T}} \dots \max_{h_2} \max_{h_1} p(x_T|h_T) p(h_T|h_{T-1}) \dots p(x_2|h_2) p(h_2|h_1) p(h_1) \end{split}$$

■ This is a huge max! / C'est une operation immense.

$$\begin{split} p(x_{1:T}, h_{1:T}^*|\theta) &= \max_{h_{1:T}} p(x_{1:T}, h_{1:T}|\theta) \\ &= \max_{h_{1:T}} \prod_{t=1}^{T} p(x_t|h_t) p(h_t|h_{t-1}) \\ &= \max_{h_T} \dots \max_{h_2} \max_{h_1} p(x_T|h_T) p(h_T|h_{T-1}) \dots p(x_2|h_2) p(h_2|h_1) p(h_1) \end{split}$$

- This is a huge max! / C'est une operation immense.
- What can we do? / Qu'est-ce qu'on peut faire?

# The Dynamic Programming Solution (Again)

$$V(h_t) = p(x_t|h_t) \max_{h_{t-1}} p(h_t|h_{t-1}) p(x_{t-1}|h_{t-1}) \dots p(x_2|h_2) \max_{h_1} p(h_2|h_1) p(x_1|h_1) \underbrace{p(h_1)}_{V(h_2)} \underbrace{p(h_1)}_{V(h_{t-1})}$$

We run this recursion, and then backtrack to find the optimal path  $h_{1:T}^*$ . (The Viterbi algorithm) / On roule la recurrence et puis backtrack pour trouver la trace optimale  $h_{1:T}^*$ .

## **Table of Contents**

#### Dynamic Time Warping

#### Hidden Markov Models

Inference

Learning

Decoding

**HMM Applications** 

HMM Variants

# **An HMM Learning Application**

#### ■ Human Action Recognition



# **Getting the sequences**



## **HMMs** for classification

- Train an HMM for each class / On entraine un HMM pour chaque classe.
- In test time we assign to the HMM that yields the max likelihood.

$$\widehat{c}_n = \arg\max_k p(x_n|\theta_k)$$

#### **HMMs** for classification

- Train an HMM for each class / On entraine un HMM pour chaque classe.
- In test time we assign to the HMM that yields the max likelihood.

$$\widehat{c}_n = \arg\max_k p(x_n|\theta_k)$$

■ We saw this type of thing before, remember? / Vous vous souvenez de ça?

#### **HMMs** for classification

- Train an HMM for each class / On entraine un HMM pour chaque classe.
- In test time we assign to the HMM that yields the max likelihood.

$$\widehat{c}_n = \arg\max_k p(x_n|\theta_k)$$

- We saw this type of thing before, remember? / Vous vous souvenez de ça?
- Generative classification.. B=boxing, HC=Hand Clapping, HW=Hand Waving ...

| EM, 70.1 % |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|
|            | В  | HC | HW | J  | R  | W  |
| В          | 32 | 4  | 1  | 0  | 1  | 0  |
| нс         | 1  | 31 | 6  | 0  | 1  | 0  |
| HW         | 0  | 1  | 29 | 0  | 0  | 0  |
| J          | 1  | 0  | 0  | 17 | 20 | 3  |
| R          | 0  | 0  | 0  | 7  | 10 | 0  |
| W          | 2  | 0  | 0  | 12 | 4  | 33 |
|            |    |    |    |    |    |    |

# HMMs for speech recognition

- Each state should correspond to a semantically meaningful thing. (e.g. a phoneme) / Chaque état HMM devrait correspondre à quelque chose qui a une sense semantique.
- Someone saying 'one'. / Quelqu'un qui dit 'one'.



Image taken from UIUC MLSP course.

# **HMM** learning on speech



# **HMM** learning on speech



## A big ASR system with HMMs

A real life HMM speech recognizer in a nut shell / La sommaire d'un système ASR avec HMMs.



Image taken from UIUC MLSP course.

You have an HMM for each word, then you connect the HMMs..

# And don't say HMMs are outdated!



Image taken when I was at SANE 2023 last year

Using HMMs to analyze the training behavior of LLMs from 2023.

## **Table of Contents**

#### Dynamic Time Warping

#### Hidden Markov Models

Interence Learning Decoding HMM App

**HMM Applications** 

**HMM Variants** 

### More Advanced HMM Variants

Mixture of HMMs



■ Factorial HMM



Switching HMMs



HMM with Mixture observations



# Super Similar but different: Linear Dynamical System

Model:



$$h_n|h_{n-1} \sim \mathcal{N}(h_n; Ah_{n-1}, \Sigma_1)$$
  
 $x_n|h_n \sim \mathcal{N}(x_n; Oh_n, \Sigma_2)$ 

- $h_n \in \mathbb{R}^K$ , latent variables/variables latents.
- $\mathbf{z}_n \in \mathbb{R}^L$ , observed data items / données observées.
- $O \in \mathbb{R}^{L \times K}$ , the emission matrix / la matrice d'emission,  $A \in \mathbb{R}^{K \times K}$ , the transition matrix / la matrice de transition.
- lacksquare  $\theta = \{O, A\}$  parameters / paramètres.
- The inference is done with a Kalman filter. / Le fameux filtre de Kalman est utilisé pour l'inférence.

## Tired of directed graphs? MRFs

■ The joint distribution is defined with clique "potentials".

$$p(h_{1:K}, x_{1:J}|\theta) = \frac{1}{Z(\theta)} \prod_{C \in \mathcal{G}} \exp(\theta^T \phi(x_C, h_C))$$

## Tired of directed graphs? MRFs

The joint distribution is defined with clique "potentials".

$$p(h_{1:K}, x_{1:J}|\theta) = \frac{1}{Z(\theta)} \prod_{C \in G} \exp(\theta^T \phi(x_C, h_C))$$

■ Example: (An image segmentation model)

$$Z(\theta) = \int \prod_{C \in \mathcal{G}} \exp(\theta^T \phi(x_C, h_C)) dx_{1:J} dh_{1:K}$$

The notorious partition function!

## How to do inference in general graphs?

Forward-Backward algorithm is an instance of "Belief Propagation".

#### Example

$$p(h_{1:4}) = \frac{1}{Z}\psi(h_1, h_2)\psi(h_2, h_4)\psi(h_2, h_3)$$

$$p(h_2) \propto \sum_{h_1,h_3,h_4} \psi(h_1,h_2)\psi(h_2,h_4)\psi(h_2,h_3)$$

$$= \underbrace{\left(\sum_{h_1} \psi(h_1,h_2)\right)}_{m_{1\to 2}} \underbrace{\left(\sum_{h_4} \psi(h_2,h_4)\right)}_{m_{4\to 2}} \underbrace{\left(\sum_{h_3} \psi(h_2,h_3)\right)}_{m_{3\to 2}}$$

## **Example continued**

#### Example



$$\begin{split} p(h_1) &\propto \sum_{h_2,h_3,h_4} \psi(h_1,h_2) \psi(h_2,h_4) \psi(h_2,h_3) \\ &= \sum_{h_2} \psi(h_1,h_2) \left( \sum_{h_4} \psi(h_2,h_4) \right) \left( \sum_{h_3} \psi(h_2,h_3) \right) \\ &= \sum_{h_2} \psi(h_1,h_2) \mathsf{m}_{4\to 2}(h_2) \mathsf{m}_{3\to 2}(h_2) \end{split}$$

#### **BP**, summarized

**Compute** all messages for all possible (i, j) pairs with,



Figure is taken from Yedidia et al. 2001.

#### **BP**, summarized

**Compute** all messages for all possible (i, j) pairs with,

 $\mathsf{m}_{i o j}(h_j) = \sum_{h_i} \psi(h_i, h_j) \underbrace{\prod_{l \in \mathcal{N}(i) \setminus j} \mathsf{m}_{l o i}(h_i)}_{\mathsf{I} \in \mathcal{N}(i) \setminus \mathsf{j}}$ 

$$\bigcirc_{i} \longrightarrow \bigcirc_{j} \qquad = \qquad \longrightarrow \bigvee_{i} \bigvee_{j}$$

Figure is taken from Yedidia et al. 2001.

■ The Belief for node i is  $B(h_i) = p(h_i) = \prod_{j \in \mathcal{N}(i)} \mathsf{m}_{j \to i}(h_i)$ .

#### **BP.** summarized

Compute all messages for all possible (i, j) pairs with,

 $\mathsf{m}_{i \to j}(h_j) = \sum_{h_i} \psi(h_i, h_j) \prod_{I \in \mathcal{N}(i) \setminus j} \mathsf{m}_{I \to i}(h_i)$   $\bigcirc_{i} \longrightarrow \bigcirc_{j} = \sum_{h_i} \underbrace{\psi(h_i, h_j)}_{I \in \mathcal{N}(i) \setminus j}$ 

Figure is taken from Yedidia et al. 2001.

- The Belief for node i is  $B(h_i) = p(h_i) = \prod_{j \in \mathcal{N}(i)} \mathsf{m}_{j \to i}(h_i)$ .
- One pass from leaves to root and one pass from leaves to root, and we are done.

#### **BP.** summarized

Compute all messages for all possible (i, j) pairs with,

$$\mathsf{m}_{i \to j}(h_j) = \sum_{h_i} \psi(h_i, h_j) \underbrace{\prod_{I \in \mathcal{N}(i) \setminus j} \mathsf{m}_{I \to i}(h_i)}_{I \in \mathcal{N}(i) \setminus j} = \underbrace{\sum_{h_i} \psi(h_i, h_j)}_{j}$$

Figure is taken from Yedidia et al. 2001.

- The Belief for node i is  $B(h_i) = p(h_i) = \prod_{j \in \mathcal{N}(i)} \mathsf{m}_{j \to i}(h_i)$ .
- One pass from leaves to root and one pass from leaves to root, and we are done.
- BP converges to true beliefs in trees. What about general graphs?

#### Recap

- Dynamic Time Warping
  - It's a way to measure distances between sequences. / Way to measure distances between sequences
- HMMs
  - Probability distribution over sequences. Can be thought of generalization of DTW. / HMMs définissent une distribution de probabilité sur les séquences. Vous pouvez le voir comme étant une géneralization de DTW.
- HMM Applications
  - Speech Recognition, Human Action Recognition, Sequence Clustering, LLM State Transition Understanding, ...
- More Advanced HMMs
  - Mixture of HMMs, Swiching HMMs, HMMs with Mixture observations, Linear Dynamical Systems, MRFs, ...

## **Suggested reading**

- The classic HMM Tutorial: http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf
- Bishop chapter 13.

#### Next week

■ Graph Signal Processing / Machine Learning