```
In [1]: #Name : Akanksha Giri
         #Roll no :41
         #section : 3A
         #Date :05/10/2024
In [ ]: #Aim : To perform simple linear regression
In [2]:
         import pandas as pd
In [3]:
         import os
In [4]:
         os.getcwd()
         'C:\\Users\\HP'
Out[4]:
In [5]:
         os.chdir("C:\\Users\\HP\\Desktop")
In [7]: df=pd.read csv("salary.csv")
In [8]:
         df
             YearsExperience
                             Salary
Out[8]:
          0
                         1.1
                              39343
                         1.3
                              46205
          1
          2
                         1.5
                              37731
          3
                         2.0
                              43525
          4
                         2.2
                              39891
          5
                         2.9
                              56642
          6
                              60150
                         3.0
          7
                         3.2
                              54445
          8
                         3.2
                              64445
          9
                         3.7
                              57189
                              63218
         10
                         3.9
                              55794
         11
                         4.0
                              56957
         12
                         4.0
                              57081
         13
                         4.1
         14
                         4.5
                              61111
                         4.9
                              67938
         15
                              66029
         16
                         5.1
         17
                         5.3
                              83088
         18
                              81363
                         5.9
         19
                         6.0
                              93940
         20
                         6.8
                              91738
         21
                         7.1
                              98273
```

	YearsExperience	Salary
22	7.9	101302
23	8.2	113812
24	8.7	109431
25	9.0	105582
26	9.5	116969
27	9.6	112635
28	10.3	122391
29	10.5	121872
30	11.2	127345
31	11.5	126756
32	12.3	128765
33	12.9	135675
34	13.5	139465

In [9]: df.head()

Out[9]:	YearsExperie	nce	Salary
	0	1.1	39343
	1	1.3	46205
:	2	1.5	37731
;	3	2.0	43525
	4	2.2	39891

In [10]: df.tail()

Out[10]:		YearsExperience	Salary
	30	11.2	127345
	31	11.5	126756
	32	12.3	128765
	33	12.9	135675
	34	13.5	139465

```
In [11]: df.shape
```

Out[11]: (35, 2)

In [12]: df.size

Out[12]: 70

In [13]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35 entries, 0 to 34

Data columns (total 2 columns):

Column Non-Null Count Dtype
--- 0 YearsExperience 35 non-null float64
1 Salary 35 non-null int64

dtypes: float64(1), int64(1)
memory usage: 692.0 bytes

In [14]: df.describe()

Out[14]:		YearsExperience	Salary
	count	35.000000	35.000000

mean	6.308571	83945.600000
std	3.618610	32162.673003
min	1.100000	37731.000000
25%	3.450000	57019.000000
50%	5.300000	81363.000000
75%	9.250000	113223.500000
max	13.500000	139465.000000

In [15]: df.ndim

Out[15]: 2

Out[16]:

In [16]: df.isnull()

	YearsExperience	Salary
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False

	16	False	False
	17	False	False
	18	False	False
	19	False	False
	20	False	False
	21	False	False
	22	False	False
	23	False	False
	24	False	False
	25	False	False
	26	False	False
	27	False	False
	28	False	False
	29	False	False
	30	False	False
	31	False	False
	32	False	False
	33	False	False
	34	False	False
In [17]:	df.isnull())	
Out[17]:	YearsExperi Salary dtype: bool		Fals Fals
In [18]:	df.isnull()).sum()	
Out[18]:	YearsExperi Salary dtype: int@		0 0
In [19]:	a="ashish"		
In [20]:	print(a)		
	ashish		
In [21]:	a[0]		
Out[21]:	'a'		
	af 11		
In [22]:	a[-1]		
	'h'		
In [22]:	'h'		

YearsExperience Salary

```
Out[23]: 'sh'
         a[1:4]
In [25]:
          'shi'
Out[25]:
In [26]: #Assiging values in X & Y
         x = df.iloc[:, :-1].values
         y = df.iloc[:, -1].values
         #X = df['YearsExperience']
         #y = df['Salary']
In [27]: print(x)
         [[1.1]]
          [ 1.3]
          [ 1.5]
          [ 2. ]
          [ 2.2]
          [ 2.9]
          [ 3. ]
          [ 3.2]
          [ 3.2]
          [ 3.7]
          [ 3.9]
          [ 4. ]
          [ 4. ]
          [4.1]
          [4.5]
          [4.9]
          [5.1]
          [5.3]
          [5.9]
          [ 6. ]
          [6.8]
          [7.1]
          [7.9]
          [ 8.2]
          [ 8.7]
          [ 9. ]
          [9.5]
          [9.6]
          [10.3]
          [10.5]
          [11.2]
          [11.5]
          [12.3]
          [12.9]
          [13.5]]
In [28]: print(y)
         [ 39343
                  46205 37731 43525 39891
                                               56642
                                                      60150
                                                             54445 64445
                                                                           57189
                  55794 56957 57081 61111 67938 66029 83088 81363 93940
           63218
           91738 98273 101302 113812 109431 105582 116969 112635 122391 121872
          127345 126756 128765 135675 139465]
In [29]:
         import matplotlib.pyplot as plt
         import seaborn as sns
         import numpy as np
```

```
In [37]: #Splitting testdata into x train,x test,y train,y test
         from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(x, y, test size=.3, random state
In [39]: print(X_train)
         [[12.9]
          [1.1]
          [ 2.2]
          [5.3]
          [ 9.6]
          [ 2.9]
          [ 4. ]
          [ 1.3]
          [ 1.5]
          [12.3]
          [ 2. ]
          [11.2]
          [ 8.2]
          [11.5]
          [ 3.9]
          [7.9]
          [5.9]
          [ 9. ]
          [ 3. ]
          [6.8]
          [13.5]
          [ 3.2]
          [4.5]
          [10.3]]
In [40]: print(X test)
         [[ 9.5]
          [4.1]
          [8.7]
          [7.1]
          [4.9]
          [10.5]
          [ 6. ]
          [ 4. ]
          [ 3.2]
          [5.1]
          [ 3.7]]
In [41]: print(y train)
         [135675 39343 39891 83088 112635 56642 55794 46205
                                                                    37731 128765
           43525 127345 113812 126756 63218 101302 81363 105582 60150 91738
          139465 54445 61111 122391]
         print(y_test)
In [42]:
         [116969 57081 109431 98273 67938 121872 93940 56957 64445 66029
           57189]
In [43]: from sklearn.linear model import LinearRegression
         lr = LinearRegression()
         lr.fit(X train, y train)
```