- · STATS 412: 4 P.M. SKB 2500
 - AT /OI's for population proportion
 - AI/DIs for diff of population means
 - AT/STs for mean of population diffs (same as 1-pop)
 - ATICIS for diff between population proportions
 - General Interence Topics" ??
 - Correlation Coeff + LSRL
 - Uncertainties in data
 - Chech assumptions to transform doubt

HYPOTHESIS TESTS FOR POP. PROPORTION:

· Pop. proportion = pop. mean for Os, 1s population

$$\rightarrow$$
 X ~ N ($\mu = np$, $\sigma^2 = np(1-p)$)

$$\Rightarrow \hat{p} = \frac{x}{n} \sim N \left(\mu \cdot p, \sigma^2 \cdot \frac{p(1-p)}{n} \right)$$

- USE Z-TEST
- → Assumptions:
 - RANDOM SAMPLE (no interdependence)
 - Approx Normal
 - → # successes, # failures 210
 - → np ≥ 10; n(1-p) ≥ 10

$$\frac{-\tilde{z} = \hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}}$$
 style v of original

[Binomial]

Let p be the population property of all Genters who would say that " ... " is a good thing for over society,

$$H_0: \hat{P}_{\xi} \leq 0.52$$
 population proportion

14: 6 > 0.50

- (1) We would like a RS from Bernovilli population and distribution of & can be approximated of Normal dist. 1 R.S.: Not stated We hope that any one individual sampled had no effect on any other individual's answer
 - · 1178 is 5% of 23560. Reasonable that pop. size of Oen 2-en
 - (1) Is Normal Appens Good ?: np = 1178 (0.5x) = 612.6 = 10 } to, f ~ appens Normal.

 (178(1-0.5x) = 565.4 = 10 } to, f ~ appens Normal.

 50, con via 2-procedures
- 3 Step 3: Calculate test statistic

$$\frac{2 \cdot \frac{\hat{p} - p_0}{\sqrt{p_0 (2 - p_0)}_{p_0}}}{\sqrt{p_0 (2 - p_0)}_{p_0}} = \frac{\frac{730}{1178} - 0.52}{\sqrt{(0.52)(0.40)/1198}} = 6.85$$

$$\frac{P \cdot \text{velous}}{\sqrt{p_0 (2 - p_0)}_{p_0}} = \frac{P \cdot p_0}{\sqrt{p_0 (2 - p_0)}_{p_0}} = \frac{10.85}{\sqrt{p_0 (2 - p_0)}_{p_0}}$$

$$P \cdot \text{velous}} = P \cdot p_0 \cdot p_0 \cdot p_0$$

$$P \cdot \text{velous}} = \frac{P \cdot p_0}{\sqrt{p_0 (2 - p_0)}_{p_0}} = \frac{10.85}{\sqrt{p_0 (2 - p_0)}_{p_0}$$

Step 4: As me rejected to, there is strong (p20) evidence to suggest that the population proportion of all Gen-Zers who would say that increased dirently is happen than 52%, which is the corresponding

C.I.s for Rop. PROPURTION:

- AGRESTI- COULL ADJUSTMENT

$$\rightarrow \hat{n} = n + 4$$
; $\hat{p} = \frac{X+2}{n+4}$ (add 4 observations

- CI:
$$\hat{p}$$
 \hat{z} \hat{z} \hat{y} \hat

- Assumptions:

- ONLY RANDOM SAMPLE
- no need to check normality

HYPOTHESIS TESTS FOR DIFF OF POP MEANS (X - Y) - not paired

- · Assumptions:
 - 2 indepent R.S. from normally dist. pops
 - 1 R.S. (for buth)

-(2) independent sumply sufficiently kye"

-(3) normality

· Use t-test unless both pop. stdeus known (rare)

$$T = \frac{(\bar{x} - \bar{y}) - \Delta_0}{\sqrt{\frac{S_{x^2}}{n_x} + \frac{S_{y^2}}{n_y}}} \qquad (df complicated, given an exam)$$

• CIs:

$$(\overline{y} - \overline{y}) \pm t_{y}, \alpha_{2} \sqrt{\frac{5x^{2}}{n_{x}}} + \frac{5x^{2}}{n_{y}}$$

POPULATION MEAN OF DIFFERENCES (X-Y) (paired)

· Assumptions:

$$T: \overline{D} - \Delta_0$$

$$S_D/N_D$$

DIFFERENCE BETWEEN TWO PROPORTIONS:

- * Assumptions:
 - Independence between samply
 - R.S.
 - ~ Normal (10 succ/fail in each sumple)
- · POOLED Proportion:

$$\hat{\beta} := \frac{\frac{X + Y}{n_X + n_Y}}{\frac{\hat{p}_X}{n_X} + \frac{\hat{p}_Y}{n_X}}$$

$$\hat{\beta} := \frac{\hat{p}_X^2 - \hat{p}_Y^2}{\sqrt{\hat{p}_X^2 + \frac{1}{n_Y}}}$$

$$\hat{\beta} := \frac{\hat{p}_X^2 - \hat{p}_Y^2}{\sqrt{\hat{p}_X^2 + \frac{1}{n_Y}}}$$

$$\hat{\beta} := \frac{X + Y}{\frac{1}{n_X + n_Y}}$$

- · CONFIDENCE INTERVALS
 - -> No need to chech somple sizes/normality
 - AURESTI COULL
 - 7 Add 4 sumplus still
 - 2 to outh, 15/11
 - $\Rightarrow \tilde{n}_{x} = n_{x+2} \qquad \tilde{p}_{x} = \frac{x+1}{n_{x}+2}$ $\tilde{n}_{y} = n_{y+2}$ $\tilde{p}_{y} = \frac{y+1}{n_{y+2}}$

$$-\left(\widehat{p}_{x}-\widehat{p}_{y}^{x}\right) \stackrel{!}{=} t_{xyz} \sqrt{\frac{\widehat{p}_{x}(\widehat{q}-\widehat{p}_{y}^{x})}{n_{x}} + \frac{\widehat{p}_{y}^{x}(\widehat{q}-\widehat{p}_{y}^{x})}{n_{y}}}$$

- · Fixed level testing: decide a before dulu
- · TYPE I / TYPE IT errors:
 - \rightarrow If Ho is true and you reject \rightarrow TYPE I
 - \Rightarrow If H_0 is false and you accept \Rightarrow Type II
 - I: Ho true
 - 1 : H, true
 - → P (type I) = α (for single-sided tol)

 traditionally, we focus on minimizing Type I

As a incress, p (error)

INTRU TO ZINEAR REGRESSION:

describing scathy wh

- (1) Form
- 2 Direction
- 3 Strength
- (4) Oction / Unusual

$$\hat{y} = B_0 + B_1 \times$$

y: - ĝi (negative → overestimata)

- · Use Multiple R2 from R autjust
- · Do NUT extapuluh

•
$$R^2$$
: amount of variation explained by regress line
$$\frac{Sy^2 - Sresid^2}{S_y^2} = R^2 = 0.879$$

- · Types of Outlikes
 - Non-leverage: weird y, but in x-range
 - Leverage: Out of x rongs
 - Influential: changes like (y mem)
 - Non-influential: does not chyc line (y fre for that x)
- · Checking Conditions
 - > L: Linearity
 - → I: Independent Samples (no time series / time parttern)
 - -> N: Nearly Normal Residuals (no outliers, lash @ Q-Q plot)
 - → E: Equal Variability; Variability around LSRL ~ same (Lown e residuels vs. fitted plot)

 No formy