INSTANCE BASED LEARNING

1. Given the following data items and class labels for a 1-D scenario.

Data Item	X ₁	Class Label
1	0.0	+1
2	1.5	+1
3	2.0	-1
4	2.8	-1
5	3.9	-1

You decide to perform 5-fold cross-validation on this dataset using 1-NN. What is the value of total error? Repeat the process with 3-NN and calculate the error?

2. In the following questions you will consider a k-nearest neighbor classifier using Euclidean distance metric on a binary classification task. We assign the class of the test point to be the class of the majority of the k nearest neighbors.

- a. Sketch the decision boundary of 1-NN classification
- b. If you perform 6-fold cross validation using 1-NN, what will be the total training error?
- c. How would the point (8,1) be classified using this dataset?

1. Consider the following training set in the 2-dimensional Euclidean space:

\overline{x}	y	Class
-1	1	_
0	1	+
0	2	_
1	-1	_
1	0	+
1	2	+
2	2	_
2	3	+

Figure 1 shows a visualization of the data.

Figure 1: Dataset for Problem 2

- (a) (1pt) What is the prediction of the 3-nearest-neighbor classifier at the point (1,1)?
- (b) (1pt) What is the prediction of the 5-nearest-neighbor classifier at the point (1,1)?
- (c) (1pt) What is the prediction of the 7-nearest-neighbor classifier at the point (1,1)?

