MSO 202A: Complex Variables

August-September 2022

Assignment-3

Throughout C will denote the unit circle around origin, oriented counterclockwise.

1. (T) Find all the zeros of the function $f(z) = 2 + \cos z$.

Solution: The zeros of f(z) are solutions of the equation

$$\cos(x + \iota y) = \cos x \cosh y - \iota \sin x \sinh y = -2.$$

So we must have $\cos x \cosh y = -2$ and $\sin x \sinh y = 0$.

Now $\sin x \sinh y = 0$ if and only if either $\sinh y = 0$ or $\sin x = 0$. The first case is excluded because it requires y = 0 and f(z) can not have real zero. (no real z can satisfy $\cos z = -2$)

So we must have $\sin x = 0$ i.e. $x = k\pi$ for $k \in \mathbb{Z}$. Hence from the other equation $\cosh y = (-1)^k 2$. But $\cosh y = (e^y + e^{-y})/2 \ge 1$ for all real y with equality if and only if y = 0; otherwise, $\cosh y = C$ has two distinct real roots for every C > 1. We conclude that $-2 = \cos x \cosh y = \cos k\pi \cosh y = (-1)^k \cosh y$ has a solution if and only if $x = k\pi$ for some odd integer k and y is one of the two real roots of $\cosh y = 2$.

2. (**T**)The Bernoulli numbers B_n are defined by the series power series

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n.$$

Show that $\frac{z}{e^z-1}+\frac{z}{2}=\frac{z}{2}\coth\frac{z}{2}$. Conclude that $B_1=-\frac{1}{2}$ and $B_{2n+1}=0,\ n\geq 1$. Deduce that

$$z \cot z = \sum_{n=0}^{\infty} (-1)^n \frac{B_{2n}}{(2n)!} z^{2n}.$$

Solution:

$$\frac{z}{e^z - 1} + \frac{z}{2} = \frac{z}{2} \frac{e^z - 1}{e^z + 1} = \frac{z}{2} \frac{e^{z/2} - e^{-z/2}}{e^{z/2} + e^{-z/2}} = \frac{z}{2} \coth \frac{z}{2}$$

Since $\frac{z}{2}$ coth $\frac{z}{2}$ is an even function, the power series expansion will have only even powers of z. Thus

$$\frac{z}{2}\coth\frac{z}{2} = \frac{z}{e^z - 1} + \frac{z}{2} = \frac{z}{2} + \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n = \sum_{n=0}^{\infty} \frac{B_{2n}}{2n!} z^{2n}$$

Hence $B_1 = 1/2$ and $B_{2n+1} = 0$ for n > 0

$$\cot z = \frac{\cos z}{\sin z} = \frac{(e^{\iota z} + e^{-\iota z})/2}{(e^{\iota z} - e^{-\iota z})/2\iota} = \iota \coth(\iota z)$$

Replacing z by $2\iota z$ in the formula for $\frac{z}{2} \coth \frac{z}{2}$, we get

$$z \cot z = \iota z \coth(\iota z) = \sum_{n=0}^{\infty} \frac{B_{2n}}{2n!} (2\iota z)^{2n} = \sum_{n=0}^{\infty} (-1)^n \frac{B_{2n}}{(2n)!} z^{2n}.$$

3. (T)Let a be a positive real number and Γ be the rectangle with vertices $0, a, a + 2\pi\iota, 2\pi\iota$. Explicitly compute the integral $\int_{\Gamma} e^z dz$ and verify that the integral is 0.

Solution:

Orient the rectangle anticlockwise. Then the integral is sum of four integrals.

On the x-axis the integral is $\int_0^a e^x dx = e^a - 1$.

On the horizontal line $y = 2\pi$ the integral is $-\int_0^a e^{x+2\pi i} dx = -\int_0^a e^x dx = -(e^a - 1)$.

On the x=a line, the integral is $\int_0^{2\pi} e^{a+\iota y} dy = e^a (e^{2\pi i} - 1) = 0$

On the x=0 line, the integral is $-\int_0^{2\pi} e^{iy} dy = (e^{2\pi i} - 1) = 0$

Thus adding all these integrals we get 0.

4. Calculate by hand $\int_C \frac{1}{z} dz$ and $\int_{-C} \frac{1}{z} dz$, where -C is C with opposite orientation.

Solution:

$$C: z = \cos t + \iota \sin t = e^{\iota t} \text{ so } \int_{C} \frac{1}{z} dz = \int_{t=0}^{2\pi} \frac{1}{e^{\iota t}} \iota e^{\iota t} dt = 2\pi \iota$$
$$-C: z = \cos t - \iota \sin t = e^{-\iota t} \text{ so } \int_{-C} \frac{1}{z} dz = \int_{t=0}^{2\pi} \frac{1}{e^{-\iota t}} (-\iota e^{-\iota t}) dt = -2\pi \iota$$

5. Show that 1/z is holomorphic on \mathbb{C}^* but it does not admit a primitive/antiderivative on \mathbb{C}^* . Use it to show that $u = 1/2 \log(x^2 + y^2)$ does not admit a harmonic conjugate on \mathbb{C}^* .

Solution: $\int_C \frac{1}{z} dz = 2\pi \iota$. So it does not admit a primitive on \mathbb{C}^* .

If the harmonic function $u = 1/2 \log(x^2 + y^2)$ on \mathbb{C}^* admits a harmonic conjugate $i.ef = u + \iota v$ holomorphic, then $f' = u_x - \iota u_y = 1/z$. So 1/z has a primitive on \mathbb{C}^* which is a contradiction.

6. Let γ be the upper half of the unit circle described anticlockwise. Show that

$$\left| \int_{\gamma} \frac{\exp(z)}{z} dz \right| \le \pi e.$$

Solution:

 $L=\pi$.

$$M = \sup_{z \in \gamma} |\frac{e^z}{z}| = \sup_{z \in \gamma} |e^z| = \sup_{t \in [0,\pi]} e^{\cos t} = e$$

Hence by ML-estimate we have the required inequality.

7. (T)Show that

$$\left| \int_{C_2} \frac{1}{z^2 + \iota} dz \right| \le \frac{3\pi}{4}.$$

Solution:

Here $L=6\pi$

$$M = \sup_{z \in C_3} \left| \frac{1}{z^2 + \iota} \right| = \frac{1}{\inf_{z \in C_3} |z^2 + \iota|} = \frac{1}{\inf_{w \in C_9} |w + \iota|} = 1/8.$$

Thus by ML-estimates $\left| \int_{C_3} \frac{1}{z^2 + \iota} dz \right| \le 6\pi/8 = \frac{3\pi}{4}$.

8. (T)Show that

$$\left| \int_{\gamma} \log(z) dz \right| \le \frac{\pi^2}{4},$$

where γ is the first quadrant portion of the circle C. Here principal branch of log is used.

Solution:

Here $L = \text{length of } \gamma = \pi/2$.

For $z \in \gamma$, we have $\log z = \iota \theta$ where $0 \le \theta \le \pi/2$. Thus $M = \sup_{z \in \gamma} |\log z| = \pi/2$. So by ML-estimate we have $|\int_{\gamma} \log(z) dz| \le \frac{\pi}{2} \cdot \frac{\pi}{2}$.

9. Suppose f(z) is analytic and satisfies the relation |f(z)-1|<1 in a region Ω . Show that

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

for every closed curve γ in Ω .

Solution: The function Log f(z) is holomorphic on Ω with derivative f'/f.

10. (**T**)Show that $\int \overline{f(z)} f'(z) dz$ is purely imaginary where γ is any smooth closed curve in a region Ω and f is holomorphic in Ω .

Solution:

$$f = u + \iota v$$
. Then $\bar{f}f' = (u - \iota v)(u_x + \iota v_x) = uu_x + vv_x + \iota(uv_x - vu_x)$ Write $\gamma(t) = x(t) + \iota y(t)$. Then

$$\bar{f}f'\gamma' = [uu_x + vv_x + \iota(uv_x - vu_x)](x' + \iota y') = [(uu_x + vv_x)x' - (uv_x - vu_x)y'] + \iota(\cdots)$$

Using CR-equations, the real part is

$$(uu_x + vv_x)x' - (uv_x - vu_x)y' = uu_xx' + uu_yy' + vv_xx' + vv_yy'$$

= $\frac{d}{dt}[u^2(x(t), y(t)) + v^2(x(t), y(t))]$

Therefore integral of the real part over closed curve is zero. Hence the given integral is purely imaginary.

- 11. Compute the following integrals:
 - (a) $(\mathbf{T}) \int_{|z|=1} e^z z^{-n} dz; \quad n \in \mathbb{Z};$

Solution:

If $n \ge 0$, then the function is analytic on and inside |z| = 1 and so the integral is zero.

When n < 0, take $f(z) = e^z$. Then by Cauchy's integral formula, the integral is $2\pi i f^{(n)}(0)/(n!) = 2\pi i/(n!)$

(b)
$$\int_{|z|=2} z^n (1-z)^m dz$$
; $m, n \in \mathbb{Z}$

Solution:

Done in class using Cauchy's theorme.

(c)
$$(\mathbf{T}) \int_{|z|=1}^{\infty} \frac{\cos z}{\sin z} dz$$

Solution:

The value of the integral is 0 since the function $\cos z/\sin z$ is analytic inside |z|=1.

(d)
$$\int_{|z|=1} (z - \frac{1}{z})^n \frac{dz}{z} = \begin{cases} 2\pi i \binom{n}{n/2} (-1)^{n/2} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Use it to show that

$$\int_0^{2\pi} \sin^n t \ dt = \begin{cases} \frac{\pi}{2^{n-1}} \binom{n}{n/2} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Solution: The integral is $\int \frac{(z^2-1)^n}{z^{n+1}} dz = \frac{2\pi\iota}{n!} \frac{d^n}{d^n z} (z^2-1)^n|_{z=0}$. Now $\frac{d^n}{d^n z} (z^2-1)^n|_{z=0}$ = (coefficient of z^n in $(z^2-1)^n$)(n!). Hence the result.

For the second part, put $z = e^{it}$ and simplify.