Fourier formula Evolution Core	Geometric Series (a) $\sum_{n=0}^{N-1} \alpha^n = \begin{cases} \frac{1-\alpha^N}{1-\alpha} & \alpha \neq 1 \\ N & \alpha = 1 \end{cases}$ (b) $\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} & \alpha < 1$ (c) $\sum_{n=k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} & \alpha < 1$ Euler's Formula $\cos\theta = (e_{j\theta} + e_{-j\theta})/2 = \sin(\theta + (\pi/2))$ $\sin\theta = (e_{j\theta} - e_{-j\theta})/2j = \cos(\theta - (\pi/2))$	Causal: n<=0 Anti-Causal: n>0 Non-Causal: n>0& \mathbb{R} Non-Causal: n>0& \mathbb{R} Non-Causal: n>0& \mathbb{R} Non-Causal: n>0& \mathbb{R} Square Sum: $\mathbb{R}[x[n]] < \infty$ Square Sum: $\mathbb{R}[x[n]]^2 < \infty$ Energy: $\mathbb{R}[x[n]]^2 > \mathbb{R}[x[n]]^2$ Power: $\mathbb{R}[x[n]]^2 > \mathbb{R}[x[n]]^2$ P.Power: $\mathbb{R}[x[n]]^2 > \mathbb{R}[x[n]]^2$ Power(Freq): $\mathbb{R}[x[n]]^2 > \mathbb{R}[x[n]]^2$ Stable System: 1) BIBO ($\mathbb{R}[x[n]] < \mathbb{R}[x[n]] < \mathbb{R}[x[n]]$ 2 Stable System: 1) Trigo Identities
	X= sin(at)+cos(bt) Tx =lcm(1/a,1/b) Woosh. You will pass	
	your exams	
	Parseval Identity DTFS: $\frac{1}{N}\sum_{n=0}^{N-1} x[n] ^2 = \sum_{n=0}^{N-1} C_k ^2$ DTFT: $\sum_{n=-\infty}^{\infty} x[n] ^2 = \int_0^{2\pi} X(e^{j\omega}) ^2d\omega$	
	Z-transform	
		PFE

Down sampling

Up sampling

Filter Specifications

 $\begin{array}{ll} \text{Cut-off Freq} & :\omega_c = 0.5 \text{A (A = amplitude)} \\ \text{Cut-off Attenuation:} 20 \text{log}_{10} \, | \, \text{H}(e^{j\omega c}) \, \, | = -3 \text{dB} \end{array}$

Passband Edge : ω_p = Freq which (1+ δ_p) > A > (1- δ_p)

Passband Attenuation: $20\log_{10}(1+\delta_p)/(1-\delta_p)$

Stopband Edge : ω_s = Freq where A < δ_s

Stopband Attenuation: 20log₁₀δ_s

Non-Int Conversion Ratio

Upsample (Interpolator) then Downsample (Decimator) (i.e. L = 100, M = 101, T' = 1.01T) LPF Cut-off = $\min(\frac{\pi}{M}, \frac{\pi}{L})$, Gain = L

Increasing Window Length

- 1) Main Lobe Reduced
- 2) Height of first Side Lobe same
- 3) Narrower transition band

Finite Impulse Response (FIR) Filter Design(Zero Terms)

$$h_i(n\neq 0) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} H(\omega) e^{j\omega n} d\omega$$

$$h_i(n=0) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} H(\omega) e^{j\omega 0} d\omega$$

$$h_i(n \neq 0) = \frac{\sin(n\omega_c)}{\pi n}$$

$$h_i(n=0) = \frac{\omega_c}{\pi}$$

Hamming = 0.54 + 0.46 cos (n π / N) – N is order, = L-1

Hanning = $0.5(1-\cos(2 \pi n/N))$

Filter Length Estimation:

Kaiser :
$$N \cong \frac{-10log_{10}(\delta_p\delta_s)-13}{14.6\frac{(\omega_s-\omega_p)}{1}}$$

Bellanger :
$$N \cong \frac{-2log_{10}(10\delta_p\delta_s)}{3(f_s-f_p)} - 1$$

Since $H_r(e^{j\omega})$ is real, its inverse DTFT is even and symmetric Since $\theta(\omega)=\alpha\omega$ is linear phase, so it merely shifts the corresponding even and symmetric magnitude in the time domain, so the resulting impulse response is symmetric.

Hr(ejw) is imaginary then IDTFT is odd symmetric.

The frequency responses of the four types of FIR filters are summarized below:

$$H(e^{j\omega}) = e^{-j[(N/2)\omega]} \left\{ h\left(\frac{N}{2}\right) + 2\sum_{n=1}^{N/2} h\left[\frac{N}{2} - n\right] \cos(n\omega) \right\}$$

$$H(e^{-j\omega}) = e^{-j[(N/2)\omega]} \left\{ 2\sum_{n=1}^{(N+1)/2} h\left[\frac{N+1}{2} - n\right] \cos\left(\left(n - \frac{1}{2}\right)\omega\right) \right\}$$

for type l

$$H(e^{-j\omega}) = e^{-j[(N\omega - \pi)/2]} \left\{ 2 \sum_{n=1}^{N/2} h \left[\frac{N}{2} - n \right] \sin(n\omega) \right\}$$

for type II

$$H(e^{-j\omega}) = e^{-j[(N\omega - \pi)/2]} \left\{ 2 \sum_{n=1}^{(N+1)/2} h\left[\frac{N+1}{2} - n\right] \sin\left(\left(n - \frac{1}{2}\right)\omega\right) \right\}$$