

Adversarial Learning and Secure Al

Chapter 09

Universal Post-Training Backdoor Defense for Classifiers

Online

- 1. Background
 - Overfitting & ReLUs in DNNs (Als)
 - ii. Different backdoor incorporation methods
- Universal (backdoor agnostic) backdoor detection, UnivBD
- 3. Universal backdoor mitigation, UnivBM
- 4. Additional Methods & References

Different backdoor patterns and methods of backdoor incorporation

A1: "chessboard"

A2: "pixel"

A₃: noisy patch

A₄: unicolor patch A₅: blended patch

- A backdoor induces overfitting to target class to "overcome" source-class discriminative features.
- That is, the backdoor pattern is typically classified to the target class with a very large margin.
- Note that large neural activations of ReLUs permit such large classification margins.

- Let f_k:U →Y be the class-k logit activation function for a backdoor-poisoned DNN with target class t, i.e., the inferred class for input <u>x</u> is argmax_k f_k(<u>x</u>).
- Suppose an additive backdoor pattern <u>v</u> has small magnitude.
- Suppose a clean sample x_s from source-class s≠t was used to create a backdoor-poisoned training example.
- For all classes k, By Taylor's theorem at \underline{x}_s

$$f_k(\underline{x}_s + \underline{v}) \approx f_k(\underline{x}_s) + \langle \underline{w}_k, \underline{v} \rangle$$
, where $\underline{w}_k = \nabla f_k(\underline{x}_s)$.

• Assume that after deep learning, each training sample \underline{x} (including the poisoned samples) is classified to class label c(x) with margin at least τ :

$$f_{c(x)}(\underline{x}) - \max_{k \neq c(x)} f_k(\underline{x}) \ge T$$

• Thus, for the poisoned training sample $\underline{x}_s + \underline{v}$ with class label t,

$$f_t(\underline{x}_s + \underline{v}) - f_s(x_s + \underline{v}) \ge T$$

• So, $f_t(\underline{x}_s) + \langle \underline{w}_t, \underline{v} \rangle - (f_s(\underline{x}_s) + \langle \underline{w}_s, \underline{v} \rangle) \ge T$

- Again, $f_t(\underline{x}_s) + \langle \underline{w}_t, \underline{v} \rangle (f_s(\underline{x}_s) + \langle \underline{w}_s, \underline{v} \rangle) \ge \tau$
- Suppose \underline{x}_s is also classified to s with margin at least τ , i.e.,

$$f_s(\underline{x}_s) - f_t(\underline{x}_s) \ge T$$

• Thus, the derivative of f_t - f_s at \underline{x}_s in the direction of small-magnitude \underline{v} ,

$$\langle \underline{W}_t - \underline{W}_s , \underline{V} \rangle \geq 2T$$

For the special case where f_t - f_s is linear,

$$f_t(\underline{v}) - f_s(\underline{v}) \ge 2T$$

This suggests that after deep learning on the backdoor-poisoned training dataset,
 the model is overfit to the backdoor pattern v compared to clean training samples.

- UnivBD is based on the influence of a BA on the landscape of the classifier's logit functions, independent of the backdoor type.
- For a victim model we observed that

$$\max_{\underline{x}\in\mathcal{U}}\left[f_t(\underline{x})-\max_{k\in\mathcal{Y}\setminus t}f_k(\underline{x})\right]\gg\max_{\underline{x}\in\mathcal{U}}\left[f_i(\underline{x})-\max_{k'\in\mathcal{Y}\setminus i}f_{k'}(\underline{x})\right],\quad\forall i\in\mathcal{Y}\setminus t.$$

- Here U is the input space of the DNN and Y is the set of classes.
- So, we hypothesize that the maximum margin (MM) statistic for the true backdoor-attack target will be much larger than the MM statistics for all other classes.

Motivation of UnivBD: MM for 2D data with two different poisoning rates (10,100) & target class 3

UnivBD for few target classes and without clean data \mathcal{D}

• Estimation step: For each putative target class $i \in \mathcal{Y}$, we estimate a maximum margin statistic by solving:

$$\underset{\underline{x} \in \mathcal{U}}{\text{maximize}} \quad f_i(\underline{x}) - \underset{k \in \mathcal{Y} \setminus i}{\text{max}} f_k(\underline{x})$$

starting from a random initial \underline{x} (no clean samples used).

- Detection step for the case of a single backdoor attack:
 - Denote the estimated maximum margin statistic for each class i as r_i and the largest statistic as $r_{\max} = \max_i r_i$.
 - A null distribution H_0 (e.g., Gamma) is estimated using all statistics excluding r_{max} .
 - The order statistic p-value is given by $pv = 1 (H_0(r_{max}))^{K-1}$
 - We claim a detection with confidence 1θ (e.g. $\theta = 0.05$) if $pv < \theta$.

Experiments: Detection Performance

		CIFAR-10										
	$N_{ m img}$	clean	A_1-S	A_1 -M	A ₂ -S	A ₂ -M	A ₃ -S	A ₃ -M	A ₄ -S	A ₄ -M	A ₅ -S	A ₅ -M
NC[49]	10	12/20	4/10	10/10	2/10	3/10	8/10	10/10	9/10	7/10	3/10	3/10
TABOR[17]	10	13/20	4/10	8/10	7/10	8/10	6/10	7/10	0/10	5/10	7/10	9/10
ABS[30]	1	19/20	2/10	7/10	4/10	6/10	8/10	10/10	7/10	5/10	7/10	8/10
META[56]	10k	15/20	8/10	6/10	0/10	0/10	9/10	10/10	4/10	2/10	9/10	7/10
TND[50]	5	11/20	2/10	2/10	3/10	8/10	3/10	3/10	1/10	0/10	5/10	6/10
PT-RED[54]	100	15/20	10/10	10/10	9/10	10/10	1/10	0/10	1/10	1/10	4/10	7/10
PT-RED+ABS	100	14/20	10/10	10/10	9/10	10/10	8/10	10/10	7/10	5/10	8/10	10/10
UnivBD	0	18/20	9/10	8/10	8/10	10/10	10/10	10/10	8/10	10/10	9/10	10/10

		CIFAR-100			TinyIm	nageNet	GTSRB					
		clean	A ₂ -M	A ₃ -M	A ₄ -M	clean	A ₃ -M	clean	A_1 -M	A ₂ -M	A ₄ -M	A ₅ -M
NC	1	4/10	3/10	10/10	9/10	3/10	8/10	13/20	9/10	5/10	2/10	6/10
TABOR	1	4/10	6/10	4/10	4/10	4/10	7/10	11/20	7/10	6/10	1/10	4/10
ABS	1	10/10	2/10	9/10	9/10	9/10	2/10	17/20	2/10	9/10	4/10	6/10
TND	1	2/10	2/10	2/10	5/10	5/10	3/10	12/20	3/10	4/10	0/10	1/10
UnivBD	0	10/10	10/10	10/10	10/10	10/10	9/10	17/20	7/10	10/10	9/10	10/10

Detection accuracy of our UnivBD compared with other detectors (acc. ≥ 0.8 is in bold).

Note that L-PT-RED version of I-PT-RED scales to ≫10 classes.

Experiments: Detection Execution Times

	CIFAR10	CIFAR100	TinyImageNet	GTSRB
NC	$308.4 \pm 50.1s$	800.4 ± 147.5 s	11227.0±1537.8s	412.5±51.4s
TABOR	$57.7 \pm 4.3s$	$341.1 \pm 25.2s$	$10792.2 \pm 824.6s$	$138.7 \pm 6.5s$
ABS	$50.3 \pm 3.2s$	234.6 ± 14.5 s	$819.1 \pm 91.7s$	$92.8 \pm 7.1s$
META	32h	-	-	-
TND	$591.9 \pm 16.6s$	$8207.3 \pm 257.2s$	$53530.8 \pm 1035.1s$	$1161.0\pm33.8s$
PT-RED	$342.5 \pm 37.2s$	-	-	-
UnivBD	$27.2{\pm}3.4s$	$114.8 \pm 10.3s$	$503.4 \pm 42.1s$	$37.1 \pm 4.2s$

Adaptive (white box) attack

- To defeat UnivBD, the attacker can fine-tune the classifier's parameters on the same poisoned training set (to keep both a high ASR and a high ACC) while minimizing the maximum margin for the backdoor target class, t.
- To do so, the attacker minimizes the following training loss, given clean & poisoned training samples $\mathcal{X}=\mathcal{D}_T\cup\mathcal{D}_B$ and DNN architecture (strong adaptive attacker):

$$\min_{\phi} \quad \beta_{\mathrm{T}} \times \frac{1}{|\mathcal{D}_{\mathrm{T}}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\mathrm{T}}} \mathcal{L}_{\mathrm{E}}(\hat{c}(\mathbf{x}; \phi), y) + \beta_{\mathrm{B}} \times \frac{1}{|\mathcal{D}_{\mathrm{B}}|} \sum_{(\tilde{\mathbf{x}}, t) \in \mathcal{D}_{\mathrm{B}}} \mathcal{L}_{\mathrm{E}}(\hat{c}(\tilde{\mathbf{x}}, \phi), t) + \beta_{\mathrm{M}} \times \mathcal{L}_{\mathrm{M}}(t; \phi)$$

where:

$$\mathcal{L}_{\mathbf{M}}(i; \varphi) = \max_{\mathbf{x}} f_i(\mathbf{x}; \varphi) - \max_{k \in \mathcal{Y} \setminus i} f_k(\mathbf{x}; \varphi)$$

 \mathcal{L}_{E} is the cross-entropy loss

Adaptive attack – results on CIFAR-10

beta=0 (baseline)

looo

looo

beta=1e-5

beta=1e-4

sorted classes

(a) ASR and ACC for attacks with different $\beta_{\rm M}$.

(b) MM statistics for attacks with different $\beta_{\rm M}$.

Results for strong adaptive attack.

Adaptive attack (cont)

- So, an adaptive attack can overcome UnivBD (large β=10⁻⁴),
- but more complex computation is required (to min the max margin),
- by a strong adversary who controls the training objective (omnipotent insider),
- and ASR and ACC (on clean data) may still both be low.

UnivBD – concluding remarks

- Maximum classification Margin (MM) based UnivBD (a.k.a. MMBD) has very good detection performance with low computational cost and no clean data required.
- For plural X2X attacks, UnivBD needs enough non-target classes to create an accurate null.
- Experiments show that UnivBD may also also detect error-generic data poisoning attacks, see Chap. 13; e.g., deep learning identifies and overfits to "shortcut" features of mislabeled samples.
- Can also try to detect backdoor triggers at test time by computing p-values of classification margins of test samples w.r.t. a class-conditional null model estimated from a small clean dataset \mathcal{D} .

Toward mitigation: Two rules-of-thumb from software/protocol security

- For security and robustness, need to fully explore the software's input space, not just the inputs for nominal operation (as in fuzzing).
- For DNNs, this means, e.g., searching for backdoors in regression (see Chapter 12), shortcuts/backdoors between classes, or neural network inversion to detect potential TTEs.
- Generally, removing unnecessary functionality, both in the application software and supporting OS, reduces the attack surface.
- So, one can reduce the number of DNN parameters to train (Occam's Razor) rather than using convenient random dropout technique to avoid overfitting by overparameterized models, and ...

Rectified Linear Units (ReLUs)

- Unnecessary functionality leads to larger attack surfaces,
- e.g., deploying an IoT device using a general-purpose operating system with far more functionality than the application software requires.
- ReLUs are used in DNNs to expedite learning allowing for larger-magnitude gradients, which are also easier to calculate.
- But ReLUs permit much larger neural activations than required by the nominal training data set.
- That is, ReLUs accommodate overfitting to backdoors.

Post-training backdoor mitigation

- Now consider the problem of post-training backdoor mitigation, agnostic to the method of backdoor incorporation.
- Again, we don't have access to training dataset, but now assume we do have access to a small, clean, labelled dataset with representatives from all classes, \mathcal{D} .

Fine-Pruning (FP) backdoor mitigation

- FP is an example of a method that removes neurons in the penultimate layer in increasing order of their average activations over the clean data set, up until there is unacceptable loss in classification accuracy.
- FP's premise is to remove neurons not activated by clean data, but nothing inherent about gradient-based neural net training leads to such "dichotomization" of neural function.
- Note that FP does not actually detect the presence of backdoor attacks neurons are pruned even for an unattacked (clean) classifier.
- Other mitigation methods "refine" the DNN parameters after detection, e.g., NC-Mitigation (NC-M), NAD.

Backdoor Mitigation: UnivBM

- UnivBM mitigates backdoor attack by upper bounding the abnormally large activations of the DNN's internal layers.
- For each class c, now define logits as:

$$\bar{g}_c(\mathbf{x}; \mathbf{Z}) = \mathbf{w}_c^T(\bar{\sigma}_L(\bar{\sigma}_{L-1}(\cdots \bar{\sigma}_2(\sigma_1(\mathbf{x}); \mathbf{z}_2) \cdots; \mathbf{z}_{L-1}); \mathbf{z}_L)) + b_c,$$

where $Z = \{z_2 \dots z_L\}$ are the upper bound vectors of layer 2 to layer L.

• **Z** estimated by solving the following using small clean dataset \mathcal{D} :

$$\begin{aligned} & \min_{\mathbf{Z} = \{\mathbf{z}_2, \cdots, \mathbf{z}_L\}} \quad \sum_{l=2}^L ||\mathbf{z}_l||_2 \\ & \text{subject to} \quad & \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} \mathbb{1}[y = \argmax_{c \in \mathcal{Y}} \bar{g}_c(\mathbf{x}; \mathbf{Z})] \geq \pi, \end{aligned}$$

Bounded ReLU

Experiments: Mitigation performance

subtle global chessboard BP

D.				1								
	$N_{ m img}$		A_1 -S	A_1-M	A_2-S	A_2-M	A_3-S	A_3-M	A ₄ -S	A_4-M	A_5-S	A ₅ -M
Without		ASR	99.94	99.94	91.09	91.28	99.41	99.92	97.78	98.44	96.36	96.86
Mitigation		ACC	91.31	91.06	91.80	91.12	91.63	91.59	91.31	91.36	91.35	91.48
NC-M[49]	500	ASR	39.58	38.45	26.94	61.23	21.75	28.30	55.86	93.20	13.37	47.53
NC-M[45]	300	ACC	86.96	87.70	90.78	85.96	84.91	76.66	86.00	85.13	88.42	88.24
Fine-	500	ASR	31.91	52.40	61.12	71.56	86.67	89.50	89.16	86.91	65.38	75.48
Pruning[29]	300	ACC	90.72	90.60	91.19	91.45	91.18	91.59	91.32	90.90	91.59	91.61
Univ (s)	20	ASR	99.42	99.46	7.84	8.98	3.05	1.80	12.23	5.02	10.79	9.97
Univ (s)	20	ACC	90.44	90.65	87.39	88.30	87.22	90.55	89.83	89.77	88.74	90.79
Univ	500	ASR	55.17	53.14	2.44	2.39	1.18	1.70	1.22	1.22	2.30	2.28
+Fine-Pruning	300	ACC	90.06	90.20	90.19	89.68	89.96	90.15	90.48	90.24	89.59	89.89

Average ASR(%) and average ACC(%) of classifiers in each of the ten BA ensembles created for CIFAR-10, after each of NC-M, FP, and our UnivBM is applied for backdoor mitigation.

Mitigation effectiveness on small patch (A_3) and subtle global chessboard pattern (A_1)

UnivBM alone doesn't work well on global attacks (A₁)...

Stem plots of the activations of the first convolutional layer.

UnivBM – concluding remarks

- UnivBM (a.k.a. MMBM) also works against simultaneous X2X attacks because all backdoors will overfit.
- UnivBM can also be applied to non-ReLU activations, e.g., the completely unbounded "LeakyReLU."

Other Mitigation Methods

- MMAC uses an MM based objective to set neural activation bounds.
- MMDF operates both the original and "mitigated" models, where a backdoor trigger is detected if
 - their decisions differ or
 - the difference in classification confidence is anomalous (w.r.t. a null based on \mathcal{D}).
- I-BAU [Zeng et al., ICLR'21]
 - finds untargeted, sample-specific perturbations (recall T-PT-RED) of the small clean dataset that cause an untargeted change in classification;
 - the model is then fine-tuned to classify each perturbed sample as its unperturbed counterpart.

Additional mitigation references

- [I-BAU] Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia. Adversarial unlearning of backdoors via implicit hypergradient. In *Proc. ICLR*, 2021.
- H. Wang, Z. Xiang, D.J. Miller, G. Kesidis. MM-BD: Post-Training Detection of Backdoor Attacks with Arbitrary Backdoor Pattern Types Using a Maximum Margin Statistic. In *Proc. IEEE Symposium on Security and Privacy*, San Francisco, May 2024.
- [MMAC,MMDF] Ibid. Improved Activation Clipping for Universal Backdoor Mitigation and Test-Time Detection. https://arxiv.org/abs/2308.04617, 2023.
- [BNA] X. Li, Z. Xiang, G. Kesidis, B. Li, and D.J. Miller. Correcting Activation Distribution for Trojan Mitigation. *preprint*, 2023.
- G. Kesidis, D.J. Miller and Z. Xiang. Notes on Margin Training and Margin p-Values for Deep Neural Network Classifiers. https://arxiv.org/abs1910.08032, 2019.

