Today

- Neural networks and deep learning
 - Single layer neural networks
 - Multi-layer neural networks
 - Convolutional neural networks
 - Other: transformers, U-net, RNN, LSTM

Multiple linear regression

Input layer Output layer

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$
$$= \beta_0 + \sum_{j=1}^{p} \beta_j X_j$$

Input layer Hidden layer

Output layer

Input Hidden Output layer layer layer **Activation function Transform** A_1 from X to A X_1 Like a GLM A_2 (generalized linear model): X_2 linear predictor A_3 f(X) X_3 inverse link function A_4 X_4 A_5 j = 1 ... p

k = 1 ... K

Input Hidden Output layer layer layer **Activation function Transform** A_1 from X to A X_1 β_{02} β_{12} Like a GLM A_2 (generalized β_{22} linear model): X_2 β_{32} linear predictor A_3 f(X) $\langle \beta_{42} \rangle$ X_3 inverse link function A_4 X_4 A_5 j = 1 ... pk = 1 ... K

Input Hidden Output layer layer layer **Activation function Transform** A_1 from X to A X_1 Like a GLM A_2 (generalized linear model): X_2 linear predictor A_3 f(X) β_{15} *X*₃ β_{25} inverse link function A_4 β_{35} X_4 β_{05} β_{45} A_5 j = 1 ... pk = 1 ... K

aka (logit link)⁻¹

Input layer Hidden layer

Output layer

Activation function

$$A_k = g\left(\beta_{0k} + \sum_{j=1}^p \beta_{jk} X_j\right)$$

ReLU

Rectified linear unit

k = 1 ... K

Model algorithm

define g(z) load x_i

oot V

set K

set parameters: $\beta_{..}$

for each activation unit k in 1:K

calculate linear predictor: $z_k = \beta_{0k} + \sum_j \beta_{jk} x_j$

calculate nonlinear activation: $A_k = g(z_k)$

calculate linear model: $f(x) = \beta_0 + \sum_k \beta_k A_k$

return f(x)

 $\sum_{j=1}^{p} \omega_{jk}^{(1)} X_j$

data rows i = 1...n multiply down columns then add across rows

data columns j = 1...p

Matrix multiplication

$$X\omega_k$$

R: x %*% w

Model algorithm

define g(z)load and prepare x_j set Kset $\omega_{jk}^{(1)}$, $b_k^{(1)}$, $\omega_{k1}^{(2)}$, $b_1^{(2)}$

for each activation unit k in 1:K

calculate linear predictor: $z_k = b_k^{(1)} + \boldsymbol{X}\boldsymbol{\omega}_k^{(1)}$ calculate nonlinear activation: $A_k = g(z_k)$ calculate linear model: $f(x) = b_1^{(2)} + \boldsymbol{A}\boldsymbol{\omega}_1^{(2)}$ return f(x)

Code: ants_neural_net.R

Loss function (e.g. MSE)

$$MSE(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 \qquad \theta = \frac{\beta_1}{\beta_{10}} \beta_{11}$$

```
Stochastic gradient descent guess \theta (typically random) set \lambda (learning rate) for iterations (e.g. until MSE(\theta) stops decreasing) randomly sample the data calculate gradient of MSE(\theta): \frac{\delta \text{MSE}(\theta)}{\delta \theta} Method: back propagation \theta \leftarrow \theta - \lambda \; \frac{\delta \text{MSE}(\theta)}{\delta \theta}
```

```
Stochastic gradient descent (mini batch) guess \theta (typically random) set \lambda (learning rate) for many epochs randomly partition data into batches for each batch calculate gradient of \text{MSE}(\theta): \frac{\delta \text{MSE}(\theta)}{\delta \theta} \theta \leftarrow \theta - \lambda \; \frac{\delta \text{MSE}(\theta)}{\delta \theta}
```

e.g. simplest neural net!

$$f(X) = \beta_0 + \beta_1 X_1$$

Code: mini_batch_stoch_gradient_descent.R