

Description

Features

- 20V, 90A
 - $R_{DS(ON)} < 4.0 \text{m}\Omega$ @ $V_{GS} = 4.5 \text{V}$ $R_{DS(ON)} < 6.0 \text{m}\Omega$ @ $V_{GS} = 2.5 \text{V}$
- Lead free and Green Device Available
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM90N02-T2	VSM90N02	TAPING	TO-252	13inch	2500	25000

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		±12	V
I _D	Continuous Drain Current	T _C = 25°C	90	Α
		T _C = 100°C	59	Α
I _{DM}	Pulsed Drain Current note1		360	Α
E _{AS}	Single Pulsed Avalanche Energy note2		110	mJ
P _D	Power Dissipation	T _C = 25°C	81	W
Rejc	Thermal Resistance, Junction to Case		1.85	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250 μ A	20	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V	-	-	1	μA		
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±12V, V _{DS} =0V	-	-	±100	nA		
On Charac	On Characteristics							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.4	0.7	1.0	V		
	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =30A	-	2.8	4	mΩ		
R _{DS(on)}	note3	V _{GS} =2.5V, I _D =20A		4	6			
Dynamic C	Characteristics		-	•				
C _{iss}	Input Capacitance		-	3200	-	pF		
C _{oss}	Output Capacitance	V _{DS} =10V, V _{GS} =0V,	-	460	-	pF		
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	445	-	pF		
Qg	Total Gate Charge	.,	-	48	-	nC		
Q _{gs}	Gate-Source Charge	V _{DS} =10V, I _D =30A, V _{GS} =4.5V	-	3.6	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	V _{GS} -4.3V	-	19	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-On Delay Time	V _{DS} =10V, I _D =30A,	-	9.7	-	ns		
t _r	Turn-On Rise Time		-	37	-	ns		
t _{d(off)}	Turn-Off Delay Time	R_G =1.8 Ω , V_{GS} =4.5 V	-	63	-	ns		
t _f	Turn-Off Fall Time		-	52	-	ns		
Drain-Sou	rce Diode Characteristics and Maxin	num Ratings						
Is	Maximum Continuous Drain to Source Diode Forward Current			-	90	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	360	Α		
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _{SD} =30A, T _J =25℃	-	-	1.2	V		
t _{rr}	Reverse Recovery Time	T _J =25°C, I _F =30A,	-	23	-	ns		
Q _{rr}	Reverse Recovery Charge	di/dt =100A/µs	-	10	-	nC		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} EAS condition: TJ=25 $^{\circ}\text{C}$, VDD=15V, VG=4.5V, RG=25 Ω , L=0.5mH, IAS=21A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms