Министерство науки и высшего образования Российской федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МФТИ, Физтех)

КАФЕДРА ТВЕРДОТЕЛЬНОЙ ЭЛЕКТРОНИКИ

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

ОПРЕДЕЛЕНИЕ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ ПОЛУПРОВОДНИКОВ ПО СПЕКТРАЛЬНОЙ ЗАВИСИМОСТИ СОБСТВЕННОЙ ФОТОПРОВОДИМОСТИ

Работу выполнили	И.Д. Бессонов
	Е.С. Иванова
	Е.О. Коробкина
	А.А. Макоткин
	И.С. Потапова
	(подпись, дата)
Работу принял, оценка	
- 300 C, P-1111100, 0 C, 0 C, 10	(подпись, дата, оценка)

Содержание

1.	Аннотация	2
2.	Теоретическая часть	2
3.	Экспериментальная часть 3.1. Экспериментальная установка 3.2. Ход работы 3.3. Кремний	4
4.	Выводы	5
5 .	Ответы на вопросы	5
6.	Список литературы	12

1. Аннотация

Цель работы: ознакомиться с основами теории собственной фотопроводимости полупроводников, определить ширину запрещённой зоны кремния по спектральной зависимости собственной фотопроводимости и найти скорость поверхностной рекомбинации.

2. Теоретическая часть

При воздействии на полупроводник излучения с энергией кванта $h\nu$, превышающей ширину запрещённой зоны E_g в зоне проводимости, и соотвественно в валентной зоне возникают неравновесные электроны и дырки. Их появление связано с переходами электронов из валентной зоны проводимости. В результате увеличивается проводимость кристалла. Это явление называется собственной фотопроводимостью.

В непрямозонных полупроводниках типа германия и кремния минимум зоны проводимости и максимум валентной зоны расположены в различных точках зоны Бриллюэна. В этом случае оптический переход электрона из вершины валентной зоны в минимум зоны проводимости возможен лишь при участии третьей частицы — фонона. В соответствии с законом сохранения импульса квазиимпульс такого фонона $q_{\Phi} \approx \hbar k_{\rm B}$, а энергия $\hbar \omega$ должна удовлетворять закону сохранения энергии:

$$h\nu = E_g \pm \hbar\omega_q + \hbar^2 (k_n - k_c)^2 / 2m_n + \hbar^2 k_p^2 / 2m_p$$
 (1)

где k_n и k_p — начальные волновые числа электрона и дырки, а k_c — конечное волновое число электрона.

Таким образом, край основной полосы поглощения в полупроводниках типа кремния и германия определяется непрямыми оптическими переходами, сопровождающимися поглощением и испусканием фононов. При этом для разрешённых переходов, которые доминируют в полупроводниках такого типа, коэффициент поглощения:

$$K = C \left[\frac{(h\nu - E_g + \hbar\omega_q)^2}{\exp\frac{\hbar\omega_q}{kT} - 1} + \frac{(h\nu - E_g - \hbar\omega_q)^2}{1 - \exp\frac{\hbar\omega_q}{kT}} \right]$$
(2)

При больших энергиях квантов $h\nu > (E_g + \hbar\omega_q)$ начинают преобладать переходы с эмиссией фононов и зависимость $K^{1/2}$ от $h\nu$ должна аппроксимироваться прямой, пересекающей ось энергии в точке $h\nu_1 = E_g + \hbar\omega_q$.

При рассмотрении случая сильного поглощения излечения в образце (оптически толстый образец), то есть при d/K << 1, где d — толщина образца, скорость генерации электронно-дырочных пар экспоненциально уменьшается от поверхности вглубь образца:

$$g(x) \approx K(1 - R)N_0 \exp{-Kx} \tag{3}$$

где R – коэффициент отражения света, а N_0 – поток квантов на единицу поверхности.

Неоднородная германия электронов и дырок в направлении освещения приводит к появлению диффузионно-дрейфовых потоков носителей заряда: быстро диффундирующие носители (электроны) опережают медленные (дырки), что приводит к возникновению электрического поля, ускоряющего медленные носители и замедляющего быстрые и к появлению дрейфовых составляющих потоков. При этом изменение проводимости $\Delta\Sigma$ существенным образом зависит от граничных условий на поверхности образца:

$$\Delta \Sigma \sim N_0 \left(1 + \frac{S}{D} \frac{1}{K} \right) \tag{4}$$

где S — скорость поверхностной рекомбинации, D — коэффициент амбиполярной диффузии.

3. Экспериментальная часть

3.1. Экспериментальная установка

Для изменения фотоответа полупроводника $\Delta\Sigma$ образец включается последовательно с нагрузочным сопротивлением и источником постоянного напряжения. При освещении проводимость образца возрастает, происходит перераспределение напряжение между образцом и нагрузкой. В результате падение напряжения U на образце при малом относительном увеличении проводимости уменьшается на величину

$$\Delta U = \varepsilon \frac{R_H \cdot R_0^2}{(R_H + R_0)^2} \Delta \Sigma \tag{5}$$

где ε — постоянное напряжение, R_H и R_0 — сопротивление нагрузки и образца, Σ — проводимость.

Для повышения чувствительности измерения обычно проводят при периодическом прерывании светового потока. При этом соотношение (5) характеризует амплитуду отрицательных импульсов напряжения на концах образца. Для исследования интересующих нас зависимостей $\Delta\Sigma/N_0$ от энергии кванта $h\nu$ наряду с ΔU необходимо знать спектральное распределение интенсивности источника излучения $N_0(h\nu)$.

Рис. 1: Схема экспериментальной установки. 1 – осветитель, 2 – блок питания осветителя, 3 – линзы, 4 – механический модулятор излучения, 5 – монохроматор, 6 – блок питания образца, 7 – схема включения образца, 8 – усилитель

3.2. Ход работы

3.3. Кремний

Включаем лампу накаливания и фокусируем излучение монохроматора на образец Si. Подаём постоянное смещение U на образец от источника напряжения. Вращая барабан длин волн, снимаем зависимость сигнала фотопроводимости ΔU от длины волны излучения. С помощью графика спектрального распределения интенсивности лампы составляем таблицу $\Delta U/I_0$ от делений барабана. С помощью градуировочной кривой переводим деления барабана в энергии кванта $h\nu$. Получаем зависимость $h\nu\Delta U/I_0$, после чего строим зависимость $\sqrt{h\nu\Delta U}/I_0$.

Рис. 2: Зависимость $h\nu\Delta U/I_0$ от $\hbar\omega$ для Si.

Рис. 3: Зависимость $\sqrt{h\nu\Delta U}/I_0$ от $\hbar\omega$ для Si.

Аппроксимируя линейный участок графика до оси энергии, получаем величину $E_g+\hbar\omega_{ph}$ как точку пересечения прямой с осью. Учитывая энергию фонона $\hbar\omega_{ph}=50$ мэВ, находим ширину запрещённой зоны кремния $E_g\approx 1100$ мэВ.

4. Выводы

5. Ответы на вопросы

1) Что такое скорость оптической генерации? Её размерность?

$$g(x) = \frac{dn}{dt} = \left[\frac{1}{M^3c}\right]$$
 — скорость создания пар электрон+дырка в данном объеме вещества.

2) Разъяснить понятие «оптически тонкий образец».

Понятие «оптически тонкий образец» означает, что свет, проходя через такой образец, практически не изменяет свою интенсивность, то есть слабо поглощается. Пусть k — коэффициент поглощения в веществе, из которого сделан образец, d — его толщина, тогда условие оптически тонкого образца записывается в виде: $kd \ll 1$.

3) Получить выражение для скорости оптической генерации в случае, когда образец можно считать оптически тонким.

Считаем, что потери идут только на возбуждение электрона, тогда:

$$g(x) = \frac{j_{\Phi}kSdx}{Sdx}e^{-kx} + j_{\Phi}ke^{-k(d-x)}e^{-kd}R + j_{\Phi}ke^{-kx}e^{-2kd}R^2 + \dots = j_{\Phi}k(e^{-kx} + Re^{-k(d-x)})\sum_{n=0}^{\infty}(Re^{-kd})^{2n}$$

где первое слагаемое - это отражение от прямой волны, второе - от отразившейся один раз волны, третье - от отразившейся два раза волны и так далее. Причем R - коэффициент отражения, e^{-kd} - ослабление интенсивности света при прохождении через образец, j_{Φ} - число фотонов в прогонке. Применяя формулу для суммы геометрической прогрессии, получаем:

$$g(x) = \frac{j_{\Phi}k}{1 - (Re^{-kd})^2} (e^{-kx} + Re^{-k(d-x)})$$

Считаем, что $j_{\Phi} = \frac{I_0(1-R)}{h\nu}$, где I_0 - интенсивность падающего света, а $h\nu$ - энергия одного фотона. Условие оптически тонкого образца: $kd \ll 1$, тогда $e^{-kd} = 1 - kd$. В итоге:

$$g(x) = \frac{I_0 k(1-R)}{h\nu(1-R^2(1-kd)^2)}(1-R) = \frac{I_0 k(1+R)}{h\nu(1-R^2)}(1-R) = \frac{I_0 k}{h\nu}.$$

4) Как зависит фотопроводимость от коэффициента поглощения при энергиях света, когда образец можно считать оптически тонким? Оптически толстым?

В оптически толстом образце Kd>>1 и

$$g(x) = kN_0(1 - R)e^{-kx} (6)$$

Тогда система уравнений непрерывности примет вид:

$$kN_0(1-R)e^{-kx} = \frac{\Delta n}{\tau_n} = \frac{\Delta p}{\tau_n} \tag{7}$$

Экспонента убывает сильнее, тогда решив уравнения, можно сказать, что изменение проводимости образца $\Delta \sum \approx \frac{1}{K}$

Для оптически тонкого образца $\Delta \sum \approx K$

5) Рассчитать коэффициент пропорциональности между энергией кванта света в эВ и соответствующей длиной волны в мкм.

$$E = h\nu = \frac{hc}{\lambda} \tag{8}$$

Значение hc и есть коэффициент пропорциональности между энергией и длиной волны.

$$hc = 1.05 \cdot 10^{-24} \cdot 2\pi \cdot 2 \cdot 10^{10} = 19.8 \cdot 10^{-17} \text{ spr*cm} = 19.8 \cdot 10^{-17} \cdot 6.24 \cdot 10^{11} \text{ sB*cm}$$
 (9)

Окончательно,

$$hc = 12.4 \cdot 10^{-5} \cdot 10^4 \text{ 9B*mkm} = 1.24 \text{ 9B*mkm}$$
 (10)

6) Ширина зоны прямозонного полупроводника 0,8 эВ. Чтобы определить длину волны, при которой можно наблюдать собственную фотопроводимость в прямозонном полупроводнике, воспользуемся соотношением между шириной запрещённой зоны E_g и длиной волны λ света:

$$\lambda = \frac{hc}{E_a}.$$

Подставив значения, найдем длину волны, при которой можно наблюдать собственную фотопроводимость:

$$\lambda = \frac{(4.135667696 \times 10^{-15} \, \text{9B} \cdot \text{c}) \cdot (3 \times 10^8 \, \text{m/c})}{0.8 \, \text{9B}} \approx 1.55 \, \text{mkm}.$$

7) Темновое сопротивление фоторезистора составляет 40 кОм. Для получения максимального сигнала на фоторезисторе необходимо согласовать нагрузочное сопротивление с темновым сопротивлением фоторезистора, что следует из **теоремы о максимальной мощности:** максимальная мощность передаётся в нагрузку, когда сопротивление нагрузки равно внутреннему сопротивлению источника.

Мощность, выделяемая на нагрузке, определяется формулой:

$$P = I^2 R_{\text{Harp}},$$

где I — ток в цепи, который зависит от напряжения источника и общего сопротивления (фоторезистор + нагрузка):

$$I = \frac{U}{R_{\text{темн}} + R_{\text{нагр}}},$$

Таким образом, при $R_{\text{нагр}} = R_{\text{темн}} = 40 \text{ кОм}$ достигается баланс между током и напряжением, что обеспечивает максимальный сигнал (максимум мощности).

8) Чтобы найти на какое расстояние успеют продиффудировать избыточные электроны в Si, если время жизни носителей составляет $\tau=10^{-4}\,\mathrm{c}$, воспользуемся уравнением диффузии:

$$L = \sqrt{D\tau}$$

где L — диффузионное расстояние и D — коэффициент диффузии электронов, Для кремния при комнатной температуре (300 K) коэффициент диффузии электронов:

$$D \approx 36 \, \mathrm{cm}^2/\mathrm{c}$$

поскольку

$$D = \mu V_T$$
,

где $\mu=1400\,{\rm cm^2/B\cdot c}$ — подвижность электронов, а $V_T=\frac{kT}{q}\approx 0.0259\,{\rm B}$ — тепловое напряжение. Подставляем значения в формулу:

$$L = \sqrt{D\tau} = \sqrt{(36 \times 10^{-4} \,\mathrm{m}^2/\mathrm{c}) \cdot (10^{-4} \,\mathrm{c})} = 600 \,\mathrm{mkm}.$$

Если температура или другие параметры отличаются от стандартных, коэффициент диффузии D будет другим, и результат изменится.

9) На Рис. 4 показаны спектральные зависимости фотопроводимости CdS и CdSe. Пунктирные и сплошные линии соответствуют разным температурам.

Для CdS и CdSе ширина запрещённой зоны определяет длину волны, при которой наблюдается максимальная фотопроводимость. Таким образом, при низких температурах пик фотопроводимости соответствует E_g , а при высоких температурах пик сглаживается из-за тепловой генерации носителей.

Сплошные линии на графике соответствуют низким температурам, где фотопроводимость более выражена и определяется в основном поглощением света. Пунктирные линии соответствуют высоким температурам, где тепловые эффекты сглаживают спектральную зависимость. Это связано с физикой фотопроводимости и влиянием температуры на полупроводниковые материалы.

10) Нарисуйте качественно зависимость сигнала фотопроводимости кремниевого фоторезистора от энергии кванта. Энергия фонона ≈ 50 мэВ.

Кремний (Si) является непрямозонным полупроводником с шириной запрещённой зоны:

$$E_g \approx 1.12\,\mathrm{эB} \quad (\mathrm{при}\ T \approx 300\,\mathrm{K}).$$

Непрямой характер перехода означает, что при переходе электрона из валентной зоны в зону проводимости необходимо компенсировать разность волновых векторов (импульсов) с помощью фонона.

Фонон с энергией

$$E_{ph} \approx 50 \, \text{мэВ} \quad (0.05 \, \text{эВ})$$

может либо излучаться (эмиссия), либо поглощаться при межзонном переходе.

Поглощение фонона даёт порог

$$E_{\min 1} = E_g - E_{ph},$$

однако такая схема требует, чтобы в кристалле был «готовый» фонон соответствующей энергии; при комнатной температуре этот процесс статистически менее вероятен.

Испускание (эмиссия) фонона даёт порог

$$E_{\min 2} = E_q + E_{ph},$$

и этот процесс обычно даёт основной вклад в фотопроводимость при $E\gtrsim E_g.$

Таким образом, два характерных порога в спектре поглощения (и, соответственно, во включении фотопроводимости) при косвенных переходах обычно появляются примерно в областях:

$$E_g - E_{ph}$$
 и $E_g + E_{ph}$.

В реальном кремнии это около 1.07 эВ и 1.17 эВ. Но более интенсивный рост фотопроводимости всё же наблюдается чуть выше $E_q + E_{ph}$.

Можно заметить, что:

- При энергиях ниже $E_g E_{ph}$ фотопроводимость практически равна нулю, так как даже с учётом поглощения/эмиссии фонона фотогенерация электроннодырочных пар маловероятна.
- При дальнейшем росте $h\nu$ (энергии фотона) фотопроводимость возрастает, достигая максимума в области, немного превышающей $E_g + E_{ph}$.
- При очень больших энергиях (намного выше E_g) кривая может вновь снижаться за счёт:
 - увеличения поверхностной рекомбинации (фотоносители генерируются близко к поверхности и быстро рекомбинируют);
 - дополнительных процессов рассеяния, нелинейных эффектов и т.д.

Итоговый качественный вид кривой:

- «Старт» около $E_g E_{ph}$;
- Основной рост вблизи $E_g + E_{ph}$;
- Пик (или плато) чуть выше $E_g + E_{ph}$;
- Убывание на больших энергиях.

Для качественного воспроизведения указанной формы удобно взять простую «кусковую» или «параболическо-гауссовскую» модель. Ниже приведён один из вариантов.

Обозначим:

$$E_1 = E_g - E_{ph}$$
 (нижний порог), $E_2 = E_g + E_{ph}$ (основной порог).

Введём некую модельную функцию $\sigma_{ph}(E)$, задающую сигнал фотопроводимости:

$$\sigma_{ph}(E) = \begin{cases} 0, & E < E_1, \\ A (E - E_1)^2, & E_1 \le E < E_2, \\ A (E_2 - E_1)^2 \exp\left[-\frac{(E - E_2)}{\Gamma}\right], & E \ge E_2. \end{cases}$$

При $E < E_1$ фотопроводимость равна нулю. Между E_1 и E_2 она плавно растёт по закону $(E-E_1)^2$. После E_2 мы ввели экспоненциальное убывание с некоторой «шириной» Γ . Такое убывание моделирует возрастание потерь на рекомбинацию при слишком больших энергиях.

Коэффициент A задаёт «масштаб» по вертикали. Параметр Γ регулирует, насколько резко будет падать кривая после максимума. (Рис 5.)

11) Как зависит фотопроводимость U/N при $kd \ll 1$ от $h\nu$ в прямозонных полупроводниках? В прямозонных полупроводниках для энергий фотонов, близких к ширине запрещённой зоны E_g , коэффициент поглощения имеет вид:

$$\alpha(h\nu) = K_{d1}(h\nu - E_g)^n,$$

Рис. 5

где K_{d1} — константа, зависящая от материала, а показатель степени n определяется характером оптического перехода.

Разрешённые переходы:

При разрешённых переходах оптический момент ненулевой, а плотность состояний приводит к зависимости

$$\alpha(h\nu) \sim (h\nu - E_g)^{1/2}$$
.

При условии, что фотопроводимость пропорциональна количеству поглощённых фотонов, получаем:

$$\frac{U}{N} \sim \alpha(h\nu) \sim (h\nu - E_g)^{1/2}.$$

Запрещённые переходы:

При запрещённых переходах оптический момент равен нулю при прямом переходе, и переход возможен только с участием фононов или вследствие нарушения правил отбора, что приводит к дополнительному энергетическому множителю:

$$\alpha(h\nu) \sim (h\nu - E_g)^{3/2}$$
.

Таким образом,

$$\frac{U}{N} \sim (h\nu - E_g)^{3/2}.$$

Подытожим, зависимость фотопроводимости от энергии фотона выглядит следующим образом:

$$\frac{U}{N} \sim \begin{cases} (h\nu - E_g)^{1/2}, & \text{при разрешённых переходах,} \\ (h\nu - E_g)^{3/2}, & \text{при запрещённых переходах.} \end{cases}$$

Эта зависимость вытекает из учёта плотности состояний и правил отбора для оптических переходов в прямозонных полупроводниках

12) На Рис. 6 приведены результаты измерения сигнала U фотопроводимости ($\Phi\Pi$) образца CdSe в зависимости от энергии $h\nu$ падающего на образец света. Этот $\Pi\Pi$ – прямозонный. Оцените ширину запрещенной зоны CdSe.

Рис. 6

- 13) Рассчитать удельное сопротивление кремния, данные в таблице в конце описания работы.
 - 1. Определение концентрации носителей

Концентрация носителей определяется по формуле:

$$n_i = \sqrt{N_c N_v} \exp\left(-\frac{E_g}{2k_B T}\right),$$

где:

- $N_c = 2.8 \times 10^{19} \,\mathrm{cm}^{-3}$ эффективная плотность состояний в зоне проводимости,
- $N_v = 1.02 \times 10^{19} \, \mathrm{cm}^{-3} \mathrm{эффективная}$ плотность состояний в валентной зоне,
- $E_g = 1.11$ эВ ширина запрещённой зоны,
- $k_B = 8.617 \times 10^{-5} \, \mathrm{эB/K} \mathrm{постоянная}$ Больцмана,
- $T = 300 \,\mathrm{K}$ абсолютная температура.

Подставляем данные:

$$n_i = \sqrt{(2.8 \times 10^{19})(1.02 \times 10^{19})} \exp\left(-\frac{1.11}{2 \cdot 8.617 \times 10^{-5} \cdot 300}\right).$$

Сначала вычислим предфактор:

$$\sqrt{N_c N_v} = \sqrt{2.8 \times 10^{19} \cdot 1.02 \times 10^{19}} \approx \sqrt{2.856 \times 10^{38}} \approx 1.69 \times 10^{19} \,\mathrm{cm}^{-3}$$
.

Вычисляем показатель экспоненты:

$$\frac{E_g}{2k_BT} = \frac{1.11}{2 \cdot 8.617 \times 10^{-5} \cdot 300} \approx \frac{1.11}{0.0517} \approx 21.45.$$

Таким образом,

$$n_i \approx 1.69 \times 10^{19} \,\mathrm{cm}^{-3} \cdot \exp(-21.45) \approx 1.69 \times 10^{19} \cdot 4.8 \times 10^{-10} \approx 8.1 \times 10^9 \,\mathrm{cm}^{-3}.$$

2. Расчёт проводимости и удельного сопротивления

Проводимость внутреннего полупроводника определяется по формуле:

$$\sigma = q \, n_i \, (\mu_n + \mu_n),$$

где:

- $q = 1.602 \times 10^{-19} \,\mathrm{C}$ элементарный заряд,
- $\mu_n \approx 1350\,\mathrm{cm}^2/(\mathrm{B\cdot c})$ подвижность электронов,
- $\mu_p \approx 480 \, \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$ подвижность дырок.

Суммарная подвижность равна:

$$\mu_n + \mu_p \approx 1350 + 480 = 1830 \,\mathrm{cm}^2/(\mathrm{B} \cdot \mathrm{c}).$$

Подставляем значения:

$$\sigma \approx 1.602 \times 10^{-19} \cdot 8.1 \times 10^9 \cdot 1830 \approx 2.37 \times 10^{-6} \,\mathrm{Cm/cm}.$$

Удельное сопротивление ρ находится по соотношению:

$$\rho = \frac{1}{\sigma} \approx \frac{1}{2.37 \times 10^{-6}} \approx 4.21 \times 10^5 \,\Omega \cdot \text{cm}.$$

Таким образом, удельное сопротивление кремния при $T = 300 \, \mathrm{K}$ составляет:

$$\rho \approx 4.2 \times 10^5 \,\Omega \cdot \text{cm}.$$

14) По спектрам поглощения (см методичку) показать область прямых и непрямых переходов в Si и Ge

6. Список литературы

- Определение ширины запренщенной зоны полупроводников по спектральной зависимости фотопроводимости: лабораторная работа №3., О.И. Смирнова. Москва: $M\Phi TH$, 2021.-16 с.
- Физика полупроводников., К.В.Шалимова, М.: Энергоатомиздат, 1985. 392 с.