Machine Learning-Theory & Practice

Module 1: An Overview of Machine Learning

Lecture 3:

Theme: Performance Issues

Lecture Outline

Topic 1: Performance Perspectives

Topic 2: Sources & Types of Errors

Topic 3: Confusion Matrix

Topic 1: Performance Perspectives

Performance perspectives of stakeholders

End User

Exporter of mangoes

Low quality mangoes should not be mis-classified as high quality mangoes

Stock Trader

The prediction should closely match the real variations in stock values

Librarian

Online research papers on ML should be segregated from research papers on COVID

Online recommendation system

Predictions should evolve as customers' tastes change over time

ML System Developer

- ☐ Classification: Maximize ratio of True Positives to False Positives
- ☐ Regression: Maximize match between the *Variances* in actual stocks data and predictions
- ☐ Clustering: Maximize cohesiveness of books clustered together & maximize distance between clusters
- Real Time system: Reinforcement learning
 maximize short term rewards and long term
 rewards

System Architect's perspective

- Aim: Maximize overall system performance by reducing data acquisition time and training time
- Concern 1: How much data is required for acceptable performance?
- Concern 2: Will training time be excessive?
 - **! COMPUTATIONAL LEARNING THEORY**
- Decisions: What sources should data be collected from?
 Should the system be parallelized / distributed?

Topic 2: Sources & Types of Errors

Sources of Errors

1. NOISE
Environmental errors
Human Errors
Transmission Errors

DATA ERRORS

- -Erroneous values
- -Missing values
- -Redundant Data
- -Not desired form

2. TRAINING & TESTING ERRORS

Mean Squared Error

Consider one random data point (X_i,y_i) in sample space S
 Prediction Error due to one piece of training data is

$$e_i = \widehat{y}_i - y_i$$

Mean Prediction Error over S:

$$\bar{e} = Exp_S[e] = \frac{1}{n} \sum_{i=1,n} e_i$$

Mean Squared Error is:

$$\overline{e^2} = Exp_S[e^2] = \frac{1}{n} \sum_{i=1,n} e_i^2$$

Components of MSE - Variance and Bias Errors

The Variance in Prediction Error is:

Mean Squared Error = Variance in Error + Constant Bias Error + Noise

Simple Model

Complex Model

Topic 3: Confusion Matrix

Confusion Matrix

Ground Truths↓	Actual	Actual	Actual	Actual	
Predictions?	Alphanso	Chausa	Totapuri	Dushehri	
Predictions Predicted Alphanso	True	False	False	False	
	Positive	Positive	Positive	Positive	
Predicted	False	True	True	True	
Chausa	Negative	Negative	Negative	Negative	
Predicted	False	True	True	True	
Totapuri	Negtiative	Negative	Negative	Negative	
Predicted	False	True	True	True	
Dusheri	Negative	Negative	Negative	Negative	

Confusion Matrix

Ground Truths?	Actual Actual Alphanso Chausa		Actual Totapuri	Actual Dushehri	
Predictions↓ Predicted Alphanso	False	True	False	False	
	Positive	Positive	Positive	Positive	
Predicted	True	False	True	True	
Chausa	Negative	Negative	Negative	Negative	
Predicted	True	False	True	True	
Totapuri	Negative	Negtiative	Negative	Negative	
Predicted	True	False	True	True	
Dusheri	Negative	Negative	Negative	Negative	

Confusion Matrix parameters

Performance Metric: Accuracy

Actual True Actual False True **False Predicted Positive Positive** True FP TP False True **Predicted** Negative **Negative False** FN TN

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

Indicates aggregate performance of the system

Recall

Recall or Sensitivity or True Positive Rate or Hit Rate $=\frac{TP}{TP+FN}$

- -Profit Motive in Business: No Alphanso should be missed
- -Medical treatment: All COVID affected people should be identified during screening

Precision

- -Quality Objective in business: No Chousa should creep into a box of Alphansos to be exported.
- -Medical: People not having cancer should not be falsely diagnosed.

Specificity

Specificity or True Negative Rate =
$$\frac{TN}{TN + FP} = 1 - \frac{FP}{TN + FP} = 1 - FPR$$

- -Secondary Decision: How many non-Alphansoes can be sold in local market?
- -How many people do not test COVID +ve?

Recall and Precision Tradeoff

F1 Measure

- Harmonic Mean of Recall and Precision
- Gives a good overall balance between Recall and Precision

$$F1 = \frac{1}{\frac{1}{2}(\frac{1}{Recall} + \frac{1}{Precision})} = 2 \times \frac{Recall \times Precision}{Recall + Precision}$$

$$F1 = \frac{TP}{TP + \frac{1}{2}(FN + FP)}$$

Multiclass Average Metrics

$$Microaveraged\ Recall = rac{\sum_{i} TP}{\sum_{i} TP + \sum_{i} FN}$$

$$Microaveraged\ Precision = rac{\sum_{i} TP}{\sum_{i} TP + \sum_{i} FP}$$

Macro-averaged Metrics

Macroaveraged Recall
$$MR = \frac{1}{N} \sum_{i} \frac{TP_i}{TP_i + FN_i}$$

Macroaveraged Precision MP =
$$\frac{1}{N} \sum_{i} \frac{TP_{i}}{TP_{i} + FP_{i}}$$

Macroaveraged F1 = Harmonic Mean (MR, MP)

IMBALANCED CLASSES

Actual Classes											
		Α	В	C							
edicted Class	A	5	5 90	8 103 10 41	Class	ТР	FP	FN	Recall	Precision	
		B 1 30			Α	5	98	3	0.625	0.048	
	В		30		41	В	30	11	110	0.214	0.731
	c 2	20 25	25	47	С	25	22	18	0.581	0.532	
			20	20 25		Totals	60	131	131		
		8	140	43							

Macroaveraged Recall = 0.473 Microaveraged Recall = 60/(60+131)= 0.314

Macroaveraged Precision = 0.437

Macroaveraged F1 = $2*(0.437^{-1} + 0.473^{-1})^{-1} = 0.454$

Recap: Performance and errors

- □ Performance can be understood from the perspectives of user, software developer and system architect
- ☐ The components of Mean Squared Error are Variance error and Bias error that occur during training, and random noise
- □ Bias-Variance Tradeoff: A simple model underfits and gives bias error. A complex model overfits and gives variance error. A balanced model gives the least overall Mean Square Error

Recap: Confusion matrix

☐ Accuracy: What proportion of all cases are correctly predicted ☐ Recall: What proportion of given class are predicted correctly (+ve) ☐ Precision: What proportion of +ve predictions of a given class actually belong to that class ☐ Specificity: What proportion of another class are predicted -ve ☐ There is a tradeoff between Recall and Precision. F1 measure is harmonic mean of Recall and Precision

Recap: Microaveraged and Macroaveraged metrics

- ☐ For any Micro measure, first add the TP, TN, FP and FN for all classes, and then calculate it. The contribution of any given class is in proportion to its relative population strength.
- ☐ Macroaveraged performance metrics are averaged over all classes, with equal priority to each class.

IF YOU WANT TO CREATE ENDURING PRODUCTS, BE PREPARED FOR TRADE-OFFS....