FINAL QUIZ FOR CALCULUS II (MM)

Seq.No.:	Name:
Total points 100%	

Problem 1. Describe Fubini Theorem.(10%)

Problem 2. Suppose that

$$f(x, y) = \exp(-\frac{x^2 + y^2}{4})$$
 where $-\infty < x, y < \infty$

- a) Evaluate $\iint_{\mathbb{R}^2} f(x,y) dA$ where $\mathbb{R}^2 = \{(x,y) \mid -\infty < x, y < \infty\}$. (10%)
- b) Evaluate $\iint_{\mathbb{R}^2} x f(x, y) dA$. (10%)

Ans: a) 4π b) 0

Problem 3. Evaluate the double integral:

$$\int \int_{A} \frac{\sin y}{x} \, dA$$

where $A = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1, x \le y \le 1 \}$. (10%) Ans: fails to exist

Problem 4. Evaluate the double integrals: (30%)

- a) $\iint_A 1 dA$ where $A = \{(x, y) | 0 \le x \le 1, 1 + x \le y \le 2\}$
- b) $\int\!\int_A 1\,dA$ where $A = \{(x,y)\,|\,0\leqslant x, x^2+y^2\leqslant 4\}$
- c) $\int \int_A x \, dA$ where $A = \{(x,y) \, | \, -1 \leqslant x \leqslant 1, \, x^2 + y^2 \leqslant 4\}$

Ans: a) 1/2 b) 2π c) 0 since x is odd in A

Problem 5. Evaluate the triple integrals: (30%)

- a) $\iiint_V xyz dV \text{ where } V = \{(x, y, z) \mid 0 \leqslant x \leqslant 1, 1 + x \leqslant y \leqslant 2, 1 \leqslant z \leqslant 2\}$
- b) $\iint \int_V \frac{x}{x^2+y^2} dV$ where $V = \{(x, y, z) \mid 0 \leqslant x, x^2+y^2+z^2 \leqslant 4, x^2+y^2 \leqslant 1\}$
- c) $\iint \int_V \frac{1}{x^2 + y^2 + z^2} dV$ where $V = \{(x, y, z) \mid -1 \leqslant x \leqslant 1, x^2 + y^2 + z^2 \leqslant 4, x^2 + y^2 \leqslant z^2 \}$

Ans: a) 7/16 b) $4\int_0^{\pi/2} d\theta \int_0^1 dr \int_0^{\sqrt{4-r^2}} \frac{r \cos \theta}{r^2} \, r dz = 8 \sin^{-1} \frac{1}{2} + \sqrt{3}$ c)