Sensory Systems for Orientation

Orientation is the awareness of the position of the aircraft and of oneself in relation to a specific reference point. Disorientation is the lack of orientation, and spatial disorientation specifically refers to the lack of orientation with regard to position in space and to other objects.

Orientation is maintained through the body's sensory organs in three areas: visual, vestibular, and postural. The eyes maintain visual orientation. The motion sensing system in the inner ear maintains vestibular orientation. The nerves in the skin, joints, and muscles of the body maintain postural orientation. When healthy human beings are in their natural environment, these three systems work well. When the human body is subjected to the forces of flight, these senses can provide misleading information. It is this misleading information that causes pilots to become disoriented.

Eyes

Of all the senses, vision is most important in providing information to maintain safe flight. Even though the human eye is optimized for day vision, it is also capable of vision in very low light environments. During the day, the eye uses receptors called cones, while at night, vision is facilitated

by the use of rods. Both of these provide a level of vision optimized for the lighting conditions that they were intended. That is, cones are ineffective at night and rods are ineffective during the day.

Rods, which contain rhodopsin (called visual purple), are especially sensitive to light and increased light washes out the rhodopsin compromising the night vision. Hence, when strong light is momentarily introduced at night, vision may be totally ineffective as the rods take time to become effective again in darkness. Smoking, alcohol, oxygen deprivation, and age affect vision, especially at night. It should be noted that at night, oxygen deprivation, such as one caused from a climb to a high altitude, causes a significant reduction in vision. A return back to the lower altitude does not restore a pilot's vision in the same transitory period used at the climb altitude.

The eye also has two blind spots. The day blind spot is the location on the light sensitive retina where the optic nerve fiber bundle (which carries messages from the eye to the brain) passes through. This location has no light receptors, and a message cannot be created there to be sent to the brain. The night blind spot is due to a concentration of cones in an area surrounding the fovea on the retina. Because there are no rods in this area, direct vision on an object at night will disappear. As a result, off-center viewing and scanning at night is best for both obstacle avoidance and to maximize situational awareness (SA). (See the Pilot's Handbook of Aeronautical Knowledge and the Aeronautical Information Manual (AIM) for detailed reading.)

The brain also processes visual information based upon color, relationship of colors, and vision from objects around us. *Figure 3-1* demonstrates the visual processing of information. The brain assigns color based on many items, to include an object's surroundings. In the figure below, the orange square on the shaded side of the cube is actually the same color as the brown square in the center of the cube's top face.

Figure 3-1. *Rubik's cube graphic depicting the visual processing of information.*