Concepts of Programming Languages, Spring 2019 The Helsinki Puzzle Deadline: 22/3/2019

Project Description

Given a square grid of size N, where the horizontal rows are numbered 1 to N from top to bottom and the vertical columns are numbered 1 to N from left to right. You must place a number in each cell of the N by N grid such that :-

- Each row is unique.
- Each row is exactly equal to one of the columns, however, it must **not** be the column with the same index as the row.
- If X is the largest number you place in the grid, then you must also place 1,2,...,X-1, where the condition $X \leq N$ is satisfied.

Examples

For a 3×3 grid, you may have the following matrix

	c1	c2	c3		$\lceil c \rceil$		₂ 27
r1	2	1	2	defined by the following equalities	1		. – [
r2	2	2	1	defined by the following equalities	$\begin{vmatrix} c_2 \\ c_3 \end{vmatrix}$		$\begin{bmatrix} r_0 \\ r_1 \end{bmatrix}$
r3	1	2	2		[69	_	11]

For a 4×4 grid, you may have the following matrix

	c1	c2	c3	c4		$\lceil c1 \rceil$		_{22.4} 7
r1	1	2	3	1	defined by the following equalities	$\begin{vmatrix} c_1 \\ c_2 \end{vmatrix}$		r_3
r2	3	4	4	2		$\begin{vmatrix} c_2 \\ c_3 \end{vmatrix}$	=	To
r3	2	4	4	3				$\begin{bmatrix} TZ \\ m1 \end{bmatrix}$
r4	1	3	2	1		$\lfloor c4$	_	r1

German University in Cairo Faculty of Media Engineering and Technology Dr. Nada Sharaf

Predicates to be added

You are going to solve this puzzle purely through Prolog. This means that you are **not allowed to use any clpfd libaries**. Your solution must utilize both techniques, unification and generate-and-test. You **should implement all of the following predicates.**

grid build/2

The predicate grid_build(N,M) should succeed only if M represents a grid that is N by N such that each cell in M contains an unbound variable.

Hint: length(L,3) produces a list of 3 unbound variables.

grid gen/2

The predicate grid_gen(N,M) should succeed only if M represents a grid that is N by N such that each cell in M contains a value from the valid range 1 .. N.

num gen/3

The predicate num_gen(F,L,R) should succeed only if R represents a list of consecutive numbers starting from F until L.

Hint: numGen(1,3,R) succeeds when R = [1,2,3].

${ m check_num_grid}/1$

The predicate $check_num_grid(G)$ succeeds if G does not contain a number X unless all the numbers 1 .. X-1 are there.

acceptable permutation/2

The predicate acceptable_permutation(L,R) should succeed only if R represents an acceptable permutation of the list L.

Hint: [2,1,3] is not an acceptable permutation of the list [1,2,3] because 3 did not change it's position.

German University in Cairo Faculty of Media Engineering and Technology Dr. Nada Sharaf

acceptable distribution/1

The predicate acceptable_distribution(G) should succeed only if no row is placed in a column with the same index and no column is placed in a row with the same index.

$\frac{1}{1}$ row col $\frac{1}{1}$

The predicate row_col_match(M) should succeed only if each row is equal to a column with a different index and each column is equal to a row with a different index.

trans/2

The predicate trans(M,M1) should succeed only if M1 represents a transposed version of the matrix M.

Hint: This needs to be approached through rows and columns.

distinct rows/1

The predicate distinct_rows(M) should succeed only if M represents a matrix M where all rows are unique.

${\bf distinct_columns}/1$

The predicate distinct_columns(M) should succeed only if M represents a matrix M where all columns are unique.

helsinki/2

The predicate helsinki(N,G) should succeed only if G is a square grid of size N*N that satisfies all the helsinki puzzle properties.