NGS data formats and Quality Control

Jacqui Keane

@drjkeane drjkeane@gmail.com

Adapted from slides provided by Petr Danecek petr.danecek@sanger.ac.uk

The commands I run:

```
samtools stats file.bam > file.bam.stats
plot-bamstats -p plots/ file.bam.stats
```

The questions I want to answer:

- Do I have enough read coverage with my reads?
- Was the library creation process efficient and problem-free?
- Did the sequencing process create artefacts?

Read coverage

Read coverage / depth

- is every genomic position "covered" to a sufficient depth?
- $^{\mbox{\scriptsize I}}$ maximum average depth: (number-of-reads x read-length) / target-size
- average depth: (number-of-reads-mapped x read-length) / target-size
 the whole bacteria genome target-size = reference sequence length = 4Mbp

reference sequence

Image credit: Genome Research Limited

Useful coverage

- □ 10x ok for variants calling
- 1 30x ok for most things (variant calling, assembly)
- 100x more than enough, pipelines subsample down to this

Library prep biases: PCR duplicates

Experiments start with small amounts of DNA

a PCR amplification step is necessary for Illumina sequencing: one molecule => many identical molecules

Problem:

additional PCR-copy molecules are not informative

Solution:

- infer and mark PCR-dupliates, discount in later analysis
 - mark if reads and their mates start at the same position
- use picard MarkDuplicates or samtools markdup
- $^{\intercal}$ typical dup rates: Exomes \sim 15-20%, Genomes <5%

Base quality

Sequencing by synthesis: dephasing

- growing sequences in a cluster gradually desynchronize
- error rate increases with read length

Calculate the average quality at each position across all reads

Base quality

Base quality

25-75th percentile Median Mean

GC bias

GC- and AT-rich regions are more difficult to amplify

compare the GC content against the expected distribution (reference sequence)

GC bias

GC- and AT-rich regions are more difficult to amplify

compare the GC content against the expected distribution (reference sequence)

GC bias

GC- and AT-rich regions are more difficult to amplify

compare the GC content against the expected distribution (reference sequence)

GC content vs depth

GC content vs depth

GC content by cycle

Was the adapter sequence trimmed?

GC content by cycle

Was the adapter sequence trimmed?

Fragment size

Paired-end sequencing: the size of DNA fragments matters

Fragment size

Paired-end sequencing: the size of DNA fragments matters

FastQC/MultiQC are alternative tools for QC

fastqc *.fastq.gz
multiqc .

Other tools I use:

Other important questions I ask

- Is my sequence data the species I think it is?
- Is there any contamination in my samples?
 - Intraspecies contamination e.g. heterozygous SNPs
 - ¹ Cross-species contamination e.g. GC content, bactinspector/confindr