Name: _____ Group: ____ ID No : ____

Future Technologies Industry Cluster College of VE, RMIT University AD026 Electrical Principles EEET 2276

Tutorial # 02c

Kerchhoff's Voltage and Current Laws Voltage division in series circuits

1. For the diagram shown bellow, state the value of the current I which flows in the circuit if the V_{AB} equals to 12 V. (show all calculation)

Calculation	

Page 2 of 3

For the circuit shown in Fig 2: 2. a.

Determine the unknown voltage. (i)

(**)	D.	1	1	C .1	1	• ,	(D	1.D.\	

(ii) Determine the values of the unknown resistors (R_2 and R_3).

For the circuit shown in Fig 3: b.

Fig 3 Determine the unknown voltage.

Page 3 of 3

3. a. For the circuit shown in Fig 4:

Fig 4

b. For the circuit shown in Fig 5:

Fig 5

using the voltage divider rule, determine the voltage V.