

Minggu ke-7

Mid-Test Topik: Classification for Imputation

Ali Ridho Barakbah, Entin Martiana

Knowledge Engineering Research Group

Department of Information and Computer Engineering

Electronic Engineering Polytechnic Institute of Surabaya

Penerapan Klasifikasi untuk Imputasi

- Kita dapat menerapkan teknik klasifikasi untuk melakukan imputasi (pengisian nilai missing values dari atribut)
- Cara ini relatif lebih baik dibandingkan dengan imputasi (pengisian missing values) dengan rata-rata per class. Tapi cara ini cocok dipakai bila tidak banyak atribut yang mempunyai missing values.
- Langkah-Langkah:
 - Atribut yang mempunyai missing values diposisikan dengan sebagai class (class aslinya dijadikan atribut)
 - Data-data yang mempunyai missing values pada atribut tersebut, dijadikan sebagai sebagai test data. Data-data yang tidak ada missing values dijadikan sebagai train data.
 - Lakukan klasifikasi test data terhadap train data. Hasil klasifikasi dijadikan sebagai nilai untuk mengisi yang missing value.
 - Setelah klasifikasi selesai, semua nilai yang missing sudah terisi, gabungkan test data ke train data.
 - Kembalikan class sebagai atribut asalnya.

class

$\overline{}$	
А	

	a1	a2	a3	class
data1	4	5	7	1
data2	7	7	5	1
data3	4	4	4	2
data4	2		3	1
data5	6	1	5	2
data6	9		8	2
data7	7	3	3	2
data8	8	8	5	1
data9	4	6	8	2
data10	6	3	9	1

	a1	a3	class	a2
data1	4	7	1	5
data2	7	5	1	7
data3	4	4	2	4
data4	2	3	1	
data5	6	5	2	1
data6	9	8	2	
data7	7	3	2	3
data8	8	5	1	8
data9	4	8	2	6
data10	6	9	1	3

train data

class

	a1	a3	class	a2
data1	4	7	1	5
data2	7	5	1	7
data3	4	4	2	4
data5	6	5	2	1
data7	7	3	2	3
data8	8	5	1	8
data9	4	8	2	6
data10	6	9	1	3

test data

class

	a1	a3	class	a2
data4	2	3	1	
data6	9	8	2	

train data class

	a1	a3	class	a2
data1	4	7	1	5
data2	7	5	1	7
data3	4	4	2	4
data5	6	5	2	1
data7	7	3	2	3
data8	8	5	1	8
data9	4	8	2	6
data10	6	9	1	3

	a1	a3	class	a2
data1	4	7	1	5
data2	7	5	1	7
data3	4	4	2	4
data4	2	3	1	c1
data5	6	5	2	1
data6	9	8	2	c2
data7	7	3	2	3
data8	8	5	1	8
data9	4	8	2	6
data10	6	9	1	3

	a1	a2	a3	class
data1	4	5	7	1
data2	7	7	5	1
data3	4	4	4	2
data4	2	c1	3	1
data5	6	1	5	2
data6	9	c2	8	2
data7	7	3	3	2
data8	8	8	5	1
data9	4	6	8	2
data10	6	3	9	1

test data

	a1	a3	class	a2
data4	2	3	1	
data6	9	8	2	

test	data
LUGI	uata

Klasifikasi

	a1	a3	class	a2
data4	2	3	1	c1
data6	9	8	2	c2

class

class

UTS - #Assignment Klasifikasi untuk Imputasi

- 1. dataset ← titanic.csv
- 2. data ← ambil dataset kolom fitur (Sex, Age, Pclass, Fare, Survived).
- 3. train_data ← ambil fitur (Sex, Pclass, Fare, Survived) pada data yang Age≠null
- 4. train_label ← ambil fitur (Age) pada data yang Age≠null
- 5. **test_data** ← ambil fitur (Sex, Pclass, Fare, Survived) pada **data** yang Age=null
- train_data ← lakukan normalisasi pada train_data dengan Min-Max 0-1 (catat nilai min dan max setiap atribut)
- 7. test_data ← lakukan normalisasi pada test_data dengan Min-Max 0-1 (dengan nilai min dan max setiap atribut pada Langkah 6)
- 8. class_result ← Lakukan klasifikasi test_data terhadap train_data dengan 3-NN (output mepakai class pada train_label)
- 9. data (Age) ← lakukan pengisian missing values pada data yang Age=null dengan nilai class_result
- 10. **test_dataset** ← titanic_test.csv
- 11. train_data ← ambil fitur (Sex, Age, Pclass, Fare) dari data
- 12. train_label ← ambil fitur (Survived) dari data
- 13. test_data ← ambil test_dataset kolom fitur (Sex, Age, Pclass, Fare). Hilangkan baris data yang terdapat missing values
- 14. **test_label** ← titanic_testlabel.csv (urutan sesuai test_data no.13)
- 15. train_data ← lakukan normalisasi pada train_data dengan Min-Max 0-1 (catat nilai min dan max setiap atribut)
- 16. test_data ← lakukan normalisasi pada test_data dengan Min-Max 0-1 (dengan nilai min dan max setiap atribut pada Langkah 15)
- 17. class_result ← Lakukan klasifikasi test_data terhadap train_data dengan 3-NN (output mepakai class pada train_label)
- 18. error ← Bandingkan hasil klasifikasi class_result dengan test_label. Jika tidak sama berarti error. Hitunglah jumlah error dari seluruh class_result
- 19. error_ratio ← error dibagi jumlah test_data, dikali 100 (%)

Pengumpulan Tugas

- Buatlah coding dengan Bahasa pemrograman/tools apapun untuk semua assignment
- Buatlah laporan dalam slide ppt. Laporan terdiri dari screenshot coding dan hasil running untuk setiap assignment.
- Simpan laporan dalam file pdf dengan format penamaan: DM_UTS_NRP_namadepan.pdf
- Deadline upload: Kamis, 3 Oktober 2024 paling lambat pk. 15.30

