CS-417 COMPUTER SYSTEMS MODELING

Spring Semester 2020

Batch: 2016-17

(LECTURE # 10)

FAKHRA AFTAB LECTURER

DEPARTMENT OF COMPUTER & INFORMATION SYSTEMS ENGINEERING NED UNIVERSITY OF ENGINEERING & TECHNOLOGY

Recap of Lecture # 9

Conditional Probability

Rth Percentile Value

Problems related to Exponential Distribution

Bayes' Theorem

Chapter # 4

RELIABILITY AND AVAILABILITY MODELING

RELIABILITY

Reliability R(t) of a system is defined as the probability that the system will survive till time t.

Hence, if T is a random variable denoting system's lifetime, then

$$R(t) = P[T > t] = 1 - F_T(t)$$

It should be noted that:

- R(0) = 1 (i.e. a system is expected to be operational when it's initially put into operation)
- $\lim_{t\to\infty} R(t) = 0$ (i.e. nothing can operate forever)

MATHMATICAL EXPRESSION OF RELIABILITY

Let,

- N_0 = number of identical components under test at t = 0
- $N_s(t)$ = number of components which survived till time t
- $N_f(t)$ = number of components which failed till time t

Clearly,

$$N_s(t) + N_f(t) = N_0$$

Then, using fundamental definitions of reliability and probability, we get,

$$R(t) = \frac{N_s(t)}{N_0} = 1 - \frac{N_f(t)}{N_0}$$

Taking first derivative with respect to time,

$$R'(t) = -N'_f(t)/N_0$$

where, $N'_f(t)$ represents failure rate of components.

Recall the basic definition of reliability,

$$R(t) = 1 - F_T(t)$$

Now, taking first derivative on both sides of with respect to time, we get,

$$R'(t) = -f_X(t)$$

Reliability includes:

- correctness (ensuring the system services are as specified),
- precision (ensuring information is delivered at an appropriate level of detail),
 and
- timeliness (ensuring that information is delivered when it is required).

HAZARD RATE

Let us now calculate the conditional probability that the system will not survive an additional time duration x, given that it has already survived till time t.

$$P[T \le t + x \mid T > t] = \frac{P[t < T \le t + x]}{P[T > t]} = \frac{F_X(t + x) - F_X(t)}{R(t)}$$

If we divide this probability by x and the interval x is shrunk to zero $(x \rightarrow 0)$, we get the instantaneous failure rate or hazard rate h(t):

Calculate h(t) = ?

The cumulative hazard H(t) is given as:

If
$$X - EXP(\lambda)$$

$$h(t) = \frac{f_{\chi}(t)}{R(t)}$$

$$h(t) = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} -$$

$h(t) = \lambda$

i.e. the constant failure rate

$$H(t) = \int_{0}^{t} h(x)dx$$

$$= -\int_{0}^{t} \frac{R'(x)}{R(x)} dx$$

$$= -[lnR(x)]_{0}^{t}$$

$$= -lnR(t)$$

This gives

$$R(t) = e^{-H(t)}$$

If $T \sim \text{EXP}(\lambda)$, then

$$R(t) = e^{-\lambda t}$$

$$h(t) = \lambda$$

$$H(t) = \lambda t$$

Clearly, the hazard rate for an exponentially distributed lifetime is constant.

Task

The hazard rate of a certain component is given by:

$$h(t) = \frac{e^{t/4}}{5}$$

- 1) What are the cumulative hazard function and the reliability function of this component?
- 2) What is the probability that it survives until t = 2.

Answers

1) H(t) =
$$\frac{4}{5}$$
 ($e^{t/4} - 1$)

2) R(t) =
$$e^{-\frac{4}{5}(e^{t/4}-1)}$$

$$3) R(2) = 0.9591$$

Practice Problem

The failure rate of a certain component is $h(t) = \lambda_0 t$ where $\lambda_0 > 0$ is a constant. Determine the reliability R(t) of the component.

MORTALITY CURVE

MORTALITY CURVE

Simplicity is prerequisite for reliability!!

-Edsger Dijkstra

