Exercice 1:

1. Soit x > 0. Montrer que l'intégrale $\int_0^1 \frac{e^t}{x+t} dt$ est bien définie. Dans la suite de l'exercice, f désigne la fonction définie sur $]0, +\infty[$ par :

$$\forall x > 0, f(x) = \int_0^1 \frac{e^t}{x+t} dt$$

- 2. Soit x et y deux réels strictement positifs tels que $x \le y$. Montrer que $f(y) \le f(x)$. Qu'en déduit-on sur le sens de variation de f sur $]0, +\infty[$?
- 3. On étudie dans cette question la limite de f en $+\infty$.
 - (a) Montrer: $\forall x \in]0, +\infty[$, $0 \le f(x) \le \frac{1}{x} \int_0^1 e^t dt$.
 - (b) En déduire la limite de f en $+\infty$.
- 4. On étudie dans cette question la limite de f en 0.
 - (a) Justifier: $\forall x > 0, f(x) \ge \int_0^1 \frac{1}{x+t} dt$
 - (b) Pour tout x > 0, calculer $\int_0^1 \frac{1}{x+t} dt$ et en déduire la limite de f en 0.
- 5. (a) A l'aide d'un changement de variable, montrer que pour tout réel x strictement positif, $f(x) = e^{-x} \int_{x}^{x+1} \frac{e^{u}}{u} du$
 - (b) En déduire : $\forall x > 0$, $f(x) = e^{-x} \left(\ln \left(1 + \frac{1}{x} \right) + \int_x^{x+1} \frac{e^u 1}{u} du \right)$
 - (c) Soit φ la fonction de \mathbb{R} dans \mathbb{R} définie par : $\varphi(u) = \begin{cases} \frac{e^u 1}{u} & \text{si } u \neq 0 \\ 1 & \text{si } u = 0 \end{cases}$ Justifier que φ est continue sur \mathbb{R} . La fonction φ admet donc des primitives sur \mathbb{R} .
 - (d) Soit ψ une primitive sur \mathbb{R} de la fonction φ . Pour tout réel x strictement positif, exprimer l'intégrale $\int_x^{x+1} \frac{e^u - 1}{u} du$ en fonction de ψ et de x. En déduire que $\int_x^{x+1} \frac{e^u - 1}{u} du$ admet une limite finie quand x tend vers 0, limite qu'on ne cherchera pas à évaluer.
 - (e) En déduire un équivalent simple de f en 0.

Exercice 2:

Pour tout entier n > 0, on pose

$$u_n = \sum_{k=n}^{2n} \frac{1}{k}, v_n = \sum_{k=n}^{2n} \left(\arctan\left(\frac{1}{\sqrt{k}}\right) \right)^2 \text{ et } w_n = \sum_{k=n}^{2n} \frac{1}{k^2}.$$

- 1. Montrer que (u_n) converge et déterminer sa limite (on pourra faire le changement d'indice l = k n).
- 2. Montrer que $w_n \sim \frac{1}{n} \times \int_0^1 \frac{1}{(x+1)^2} dx$ puis en déduire un équivalent plus simple de w_n .
- 3. Soit $x \in \mathbb{R}_+^*$.
 - (a) Justifier l'existence d'un réel c_x tel que $c_x \in]0, x[$ et $\arctan(x) = \frac{x}{1+c_x^2}$.
 - (b) En déduire : $0 \le x^2 (\arctan(x))^2 \le 2x^4 + x^6$.
 - (c) On suppose ici $x \in]0,1]$. Justifier $0 \leqslant x^2 (\arctan(x))^2 \leqslant 3x^4$.
- 4. Montrer que $(u_n v_n)$ converge et déterminer sa limite. Qu'en déduit-on sur la suite (v_n) ?

Exercice 3:

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi} \sin^{2n+1}(t) dt$.

- 1. Calculer I_0 .
- 2. A l'aide du changement de variable $u = \cos t$, montrer que : $\forall n \in \mathbb{N}, I_n = \int_{-1}^{1} (1 u^2)^n du$.
- 3. (a) Démontrer : $\forall n \in \mathbb{N}^*, (2n+1)I_n = 2nI_{n-1}$
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$, $I_n = \frac{2n \times (2n-2) \times \cdots \times 2}{(2n+1) \times (2n-1) \times \cdots \times 3} \times 2$.
- 4. On se propose de montrer que (I_n) converge et de déterminer sa limite.
 - (a) Montrer:

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n \ln\left(1 + \frac{1}{2k}\right) = \ln(I_0) - \ln(I_n).$$

(b) À l'aide du théorème des accroissements finis, justifier :

$$\forall k \in \mathbb{N}^*, \ \ln(2k+1) - \ln(2k) \geqslant \frac{1}{2k+1}.$$

(c) Justifier:

$$\forall k \in \mathbb{N}^*, \ \frac{1}{2k+1} \geqslant \int_k^{k+1} \frac{1}{2x+1} dx.$$

- (d) En déduire la limite de $\left(\sum\limits_{k=1}^{n}\frac{1}{2k+1}\right)_{n\in\mathbb{N}^*}$ puis celle de $\left(\sum\limits_{k=1}^{n}\ln\left(1+\frac{1}{2k}\right)\right)_{n\in\mathbb{N}^*}$ quand n tend vers $+\infty$.
- (e) Justifier alors que (I_n) converge et déterminer sa limite.