LI S3

TD 1 Architecture des ordinateurs

Table des matières

1) Question	1
2) Question	1
) Question	
	0) Question	
	1) Question	
	2) Question	
	3) Question	
	4) Question	
1	5) Question	6

1) Question

Pourquoi a-t-on un circuit d'horloge dans une machine informatique ?

A quoi sert une carte mère, donnez les deux caractéristiques principales

Qu'est ce que le BIOS d'une carte mère?

2) Question

Expliquez cette suite de schéma

3) Question

Expliquez ce schéma, quelle est son origine?

4) Question

Expliquez ce que sont les bus dans ce schéma, rappelez leur rôle

5) Question

Expliquez les flèches dans ce schéma

6) Question

Expliquez ce schéma ci-dessous

7) Question

Transformez les nombres en passant d'une base à une autre Transformez :

- 1. 10₁₀ en binaire sur 8 bits
- 2. 0110₂ en décimal
- 3. 129₁₀ en binaire
- 4. 10110010₂ en décimal
- 5. 524_{10} en binaire
- 6. 110100110010₂ en décimal

8) Question

Transformez les nombres en passant d'une base à une autre Transformez :

- 1. 123₁₀ en hexadécimal
- 2. 111 0000 0110₂ en hexadécimal
- 3. 129₁₆ en binaire
- 4. AF0₁₆ en décimal
- 5. 524₁₆ en binaire
- 6. 1101001100100100111001100111001101112 en hexadécimal
- 7. 192.168.0.252₁₀ en hexadécimal

9) Question

Quelles sont les différences entre un kibioctet et un kilooctet ? Quelles sont les différences entre un mébioctet et un mégaoctet ?

10) Question

Avec 10 chiffres binaires, quel est le nombre maxi pouvant être codé en base 10 ? Combien de nombre peuvent être codés ?

11) Question

Pour une addition en binaire, effectuez une addition simple sur 1 bit avec en entrée 2 entrées sur 1 bit, avec toutes les valeurs possibles. Dans une ALU, il y a deux indicateurs un bit de retenue, et un bit indicateur de 0.

Faites une table avec en entrée les 2 bits, en sortie sur 1 bit le résultat et les valeurs, pour chaque cas, du bit de « carry flag » et du bit de « zero flag »

12) Question

Pour un codage de nombre négatif, on utilise la représentation « signe et valeur absolue » Quel est l'inconvénient d'opérations avec une représentation signe et valeur absolue ? Vous rappellerez le principe de cette représentation.

Par exemple $10010011_2 = -19_{10}$

13) Question

Un nombre négatif est le complément à 2 d'un nombre positif. Un complément à 2 est le complément à 1 d'un nombre puis l'ajout d'un 1 sur le bit de poids faible. Le complément à 1 d'un nombre binaire est l'inversion de tous les bits d'un nombre binaire.

Pour des entiers dans un système informatique, des « INT » sur 16 bits, utilisés dans un langage C, les nombres négatifs sont codés en complément à 2.

Trouvez -52₁₀ en binaire (codage sur 16 bits) en utilisant le complément à 2.

14) Question

En représentation en complément à 2, pourquoi y'a-t-il un nombre différent de représentation de nombres négatifs et positifs. Pour vous aider, prenez un exemple sur 8 bits.

15) Question

En utilisant l'arithmétique en complément à 2, effectuez l'addition de 118 et de -36