RISC-V SoC and Firmware Development

Lab: 05

Objective

- Get fimilarize with firmware.
- Install and configure the RISC-V toolchain on local machines to compile and run RISC-V programs.
- Convert C programs into assembly, machine code, suitable for RISC-V processors.

Firmware

- Specialized software embedded in device's hardware to control their functions.
- It acts as the intermediary between the hardware and software.
- The purpose of firmware is to configure the instructions for peripherals without changing hardware.

RISC-V toolchain

- The RISC-V toolchain(GNU) is a set of software tools used to develop, compile, and debug software applications for the RISC-V instruction set architecture (ISA), which work together to translate source code into machine code that can be executed on a RISC-V processor.
- It includes,
- **Compiler**: translates source code into assembly code
- Assembler: translates assembly code into machine code
- Linker: combines multiple object files into a single executable file
- **Debugger**: allows developers to test and debug their code

Getting Started with RISC-V Toolchain

• The purpose of using RISC-V toolchain in this project is to optimze firmware for our hardware.

Installation & Build

STEP 01:

• Follow the URL(https://github.com/stnolting/riscv-gcc-prebuilt) and download the second option.

Status	Release (tag)	Download	GCC	binutils	march	mabi	c-lib
•	rv32e-231223	download	13.2.0	2.41	rv32e	ilp32e	newlib
•	rv32i-131023	download	13.2.0	2.41	rv32i	ilp32	newlib
•	rv32i-4.0.0	download	12.1.0	2.39	rv32i	ilp32	newlib

Getting Started with RISC-V Toolchain

STEP 02:

- Create a folder where you want to install the toolchain an type
- \$ sudo mkdir /opt/riscv

STEP 03:

- Navigate to the download folder, **/opt/riscv** is the path where you want to install toolchain.
- \$ sudo tar -xzf TOOLCHAIN.tar.gz -C /opt/riscv/
- \$ export PATH=\$PATH:/opt/riscv/bin

STEP 04:

• \$ riscv32-unknown-elf-gcc -v

Converting C to Hex

- STEP 01:
- Make a file in C for adding two numbers and print

```
1 #include <stdio.h>
2
3 int main() {
4    int a = 10;
5    int b = 20;
6    int result = a + b;
7    printf("The result is: %d\n", result);
8    return 0;
9 }
```

Open the terminal and run the following command, which will generate and object file for the C file.

\$ riscv32-unknown-elf-gcc -o add add.c

Converting C to Hex

STEP 02:

\$ riscv32-unknown-elf-objcopy -O ihex add add.hex

This command will generate the hex file from the executable file generated in previous step.

Optional step:

\$ riscv32-unknown-elf-objdump -d add > add.asm

- -d: Specifies to disassemble the machine code into assembly instructions.
- add: is the executable file

Converting C to Hex

TESTIMONIAL

Author:

Abdul Muheet Ghani, Research Associate at MERL-UITU.

Under The Supervision Of:

<u>Dr.Ali Ahmed</u> (Team Lead MERL).

<u>Sponsored By:</u> Edmund from <u>Symbiotic EDA</u>. for sponsoring FPGA.

<u>Thanks:</u> <u>Lushay Lab</u> (They've provided crucial resources and guidance throughout the project)