清华大学统计学辅修课程

Linear Regression Analysis

Lecture 8Multiple Linear Regression: Example & Inference

周在莹 清华大学统计学研究中心

http://www.stat.tsinghua.edu.cn

Topic 1: Multiple Linear Regression Example

Outline

- ▶ Description of the Example
- **▶** Descriptive Summaries
- ► Investigation of Various Models
- **▶** Conclusions

Study of CS Students

- ► Too many computer science majors at university dropping out of program
- ► Want to find predictors of success to be used in the admission process
- Predictors must be available at time of entry into program

Data Available

- ► GPA after three semesters
- Overall high school math grade
- Overall high school science grade
- Overall high school English grade
- ► SAT Math
- ► SAT Verbal
- ► Gender (of interest for other reasons)

- ➤ Y is the student's grade point average (GPA) after 3 semesters
- ▶ 3 HS grades and 2 SAT scores are the explanatory variables (p = 6)
- \blacktriangleright Have n = 224 students

Descriptive Statistics

id hsm hss gpa Min. : 1.00 Min. :0.120 Min. : 2.000 Min. : 3.000 1st Qu.: 2.167 1st Qu.: 7.000 1st Qu.: 7.000 1st Qu.: 56.75 Median: 112.50 Median: 2.740 Median: 9.000 Median: 8.000 Mean :112.50 Mean :2.635 Mean :8.321 Mean :8.089 3rd Qu.:168.25 3rd Qu.:3.212 3rd Qu.:10.000 3rd Qu.:10.000 Max. :4.000 Max. :10.000 Max. :10.000 Max. :224.00 hse satm satv sex Min. : 3.000 Min. :300.0 Min. :285.0 Min. :1.000 1st Qu.: 7.000 1st Qu.:540.0 1st Qu.:440.0 1st Qu.:1.000 Median: 8.000 Median: 600.0 Median: 490.0 Median: 1.000 Mean: 8.094 Mean: 595.3 Mean: 504.5 Mean :1.353 3rd Qu.: 9.000 3rd Qu.:650.0 3rd Qu.:570.0 3rd Qu.:2.000 Max. :10.000 Max. :800.0 Max. :760.0 Max. :2.000

> summary(csdata)

清华大学统计学研究中心

清华大学统计学研究中心

Why do We Care about *X*?

- ► Good design leads to more power in statistical inference, ensures the validity of the whole process
- ▶ Potential outliers?
- ▶ Possible confounders?
- ► Caution about hidden extrapolations

Correlations

Pearson Correlation Coefficients, N=224 Prob>|r|underH0:Rho=0

	gpa	hsm	hss	hse	satm	satv
gpa	1.00000	0.43650	0.32943	0.28900	0.25171	0.11449
		<.0001	<.0001	<.0001	0.0001	0.0873
hsm	0.43650	1.00000	0.57569	0.44689	0.45351	0.22112
	<.0001		<.0001	<.0001	<.0001	0.0009
hss	0.32943	0.57569	1.00000	0.57937	0.24048	0.26170
	<.0001	<.0001		<.0001	0.0003	<.0001
hse	0.28900	0.44689	0.57937	1.00000	0.10828	0.24371
	<.0001	<.0001	<.0001		0.1060	0.0002
satm	0.25171	0.45351	0.24048	0.10828	1.00000	0.46394
	0.0001	<.0001	0.0003	0.1060		<.0001
satv	0.11449	0.22112	0.26170	0.24371	0.46394	1.00000
	0.0873	0.0009	<.0001	0.0002	<.0001	

▶ All but satv significantly correlated with gpa

Scatter Plot Matrix

- ► Allows visual check of pairwise relationships
- > pairs(csdata[, c("gpa", "hsm", "hss", "hse", "satm", "satv")])

No "strong" linear Relationships

Can see discreteness of high school scores

Use High School Grades to Predict gpa (Model #1)

- > $fit1 = lm(gpa \sim hsm + hss + hse, data=csdata)$
- > summary(fit1)
- > anova(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.58988 0.29424 2.005 0.0462 * hsm 0.16857 0.03549 4.749 3.68e-06 *** hss 0.03432 0.03756 0.914 0.3619 hse 0.04510 0.03870 1.166 0.2451

Residual standard error: 0.6998 on 220 degrees of freedom Multiple R-squared: 0.2046, Adjusted R-squared: 0.1937 F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11

Intercept Meaningful??

Analysis of Variance Table

Response: gpa

Df Sum Sq Mean Sq F value Pr(>F)
hsm 1 25.810 25.8099 52.6975 6.621e-12 ***
hss 1 1.237 1.2371 2.5258 0.1134
hse 1 0.665 0.6654 1.3585 0.2451
Residuals 220 107.750 0.4898

Significant F test but not all variable t tests significant

Fit Diagnostic Plots

Remove hss (Model #2)

- > fit2 = $lm(gpa \sim hsm + hse, data=csdata)$
- > summary(fit2)
- > anova(fit2)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.62423 0.29172 2.140 0.0335 * hsm 0.18265 0.03196 5.716 3.51e-08 *** hse 0.06067 0.03473 1.747 0.0820 .

Residual standard error: 0.6996 on 221 degrees of freedom Multiple R-squared: 0.2016, Adjusted R-squared: 0.1943 F-statistic: 27.89 on 2 and 221 DF, p-value: 1.577e-11

Slightly better MSE and adjusted R-Sq

Model #1's Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.58988 0.29424 2.005 0.0462 * hsm 0.16857 0.03549 4.749 3.68e-06 *** hss 0.03432 0.03756 0.914 0.3619 hse 0.04510 0.03870 1.166 0.2451

Residual standard error: 0.6998 on 220 degrees of freedom Multiple R-squared: 0.2046, Adjusted R-squared: 0.1937 F-statistic: 18.86 on 3 and 220 DF, p-value: 6.359e-11

Analysis of Variance Table

Response: gpa

Df Sum Sq Mean Sq F value Pr(>F)
hsm 1 25.810 25.8099 52.7369 6.443e-12 ***
hse 1 1.494 1.4936 3.0518 0.08203.

Residuals 221 108.159 0.4894

清华大学统计学研究中心 Significant F test but not all variable t tests significant

Rerun with hsm Only (Model #3)

- ightharpoonup fit3 = lm(gpa ~ hsm, data=csdata)
- summary(fit3)
- ► anova(fit3)
- plot(fit3)

Coefficients:

Residual standard error: 0.7028 on 222 degrees of freedom Multiple R-squared: 0.1905, Adjusted R-squared: 0.1869 F-statistic: 52.25 on 1 and 222 DF, p-value: 7.774e-12

Slightly worse MSE and adjusted R-Sq

清华大学统计学研究中心

Model #2's Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.62423 0.29172 2.140 0.0335 *

hsm 0.18265 0.03196 5.716 3.51e-08 ***

hse 0.06067 0.03473 1.747 0.0820.

Residual standard error: 0.6996 on 221 degrees of freedom

Multiple R-squared: 0.2016, Adjusted R-squared: 0.1943

F-statistic: 27.89 on 2 and 221 DF, p-value: 1.577e-11

Analysis of Variance Table

Response: gpa

Df Sum Sq Mean Sq F value Pr(>F)

hsm 1 25.81 25.8099 52.254 7.774e-12 ***

Residuals 222 109.65 0.4939

Significant F test and all variable t tests significant

SATs (Model #4)

- > fit4 = lm(gpa \sim satm + satv, data=csdata)
- > summary(fit4)
- > anova(fit4)
- > plot(fit4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.289e+00 3.760e-01 3.427 0.000728 ***
satm 2.283e-03 6.629e-04 3.444 0.000687 ***
satv -2.456e-05 6.185e-04 -0.040 0.968357

Residual standard error: 0.7577 on 221 degrees of freedom

Multiple R-squared: 0.06337, Adjusted R-squared: 0.05489

F-statistic: 7.476 on 2 and 221 DF, p-value: 0.0007218

Analysis of Variance Table

Response: gpa

Df Sum Sq Mean Sq F value Pr(>F)
satm 1 8.583 8.5829 14.9499 0.0001452 ***
satv 1 0.001 0.0009 0.0016 0.9683570
Residuals 221 126.879 0.5741

Significant F test but not all variable t tests significant

Much worse MSE and adjusted R-Sq

清华大学统计学研究中心

HS and SATs (Model #5)

- > $fit5 = lm(gpa \sim hsm + hss + hse + satm + satv, data=csdata)$
- > summary(fit5)
- > anova(fit5)
- > plot(fit5)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.3267187	0.3999964	0.817	0.414932
hsm	0.1459611	0.0392610	3.718	0.000256 ***
	0.0359053	0.0377984	0.950	0.343207
hse	0.0552926	0.0395687	1.397	0.163719
satm	0.0009436	0.0006857	1.376	0.170176
satv	-0.0004078	0.0005919	-0.689	0.491518

Residual standard error: 0.7 on 218 degrees of freedom Multiple R-squared: 0.2115, Adjusted R-squared:

0.1934

F-statistic: 11.69 on 5 and 218 DF, p-value: 5.058e-10

Model Comparisons

- # test for satm and satv
- > reduced1 = lm(gpa ~ hsm + hss + hse, data=csdata)
- > anova(reduced1, fit5)
- # test for hsm + hss + hse
- > reduced2 = lm(gpa ~ satm + satv, data=csdata)
- > anova(reduced2, fit5)

Cannot reject the reduced model...

No significant information lost...

We don't need SAT variables

```
Analysis of Variance Table

Model 1: gpa ~ hsm + hss + hse

Model 2: gpa ~ hsm + hss + hse + satm + satv

Res.Df RSS Df Sum of Sq F Pr(>F)

1 220 107.75

2 218 106.82 2 0.93131 0.9503 0.3882
```

```
Analysis of Variance Table
```

```
Model 1: gpa ~ satm + satv

Model 2: gpa ~ hsm + hss + hse + satm + satv

Res.Df RSS Df Sum of Sq F Pr(>F)

1 221 126.88

2 218 106.82 3 20.06 13.646 3.432e-08 ***
```

清华大学统计学研究中心

Reject the reduced model...There is significant information lost... We can't remove HS variables from model

Best Model?

► Likely the one with just HSM or the one with HSE and HSM (Model #2)

► We'll discuss model selection and comparison methods in Chapters 7 and 8

Key Ideas from Case Study

- First, look at graphical and numerical summaries one variable at a time
- ► Then, look at relationships between pairs of variables with graphical and numerical summaries
- Use plots and correlations to understand relationships
- ► The relationship between a response variable and an explanatory variable depends on what other explanatory variables are in the model
- A variable can be a significant (P-value<.05) predictor alone and not significant (P-value>.05) when other X's are in the model
- ▶ Regression coefficients, standard errors and the results of significance tests depend on what other explanatory variables are in the model

Key Ideas from Case Study

- ▶ Significance tests (*P* values) do not tell the whole story
- \triangleright Squared multiple correlations (R^2 , give the proportion of variation in the response variable explained by the explanatory variables) can give a different view
- We often express R^2 as a percent
- ▶ You can fully understand the theory in terms of $Y = X\beta + \varepsilon$
- ► However to effectively use this methodology in practice you need to understand how the data were collected, the nature of the variables, and how they relate to each other

Background Reading

▶ lec8_cs2.R contains the R commands used in this topic

Topic 2:

Inference in Multiple Regression

Outline

- ► Review Multiple Linear Regression
- ► Inference of Regression Coefficients
 - > Application to book example
- ▶ Inference of Mean
 - > Application to book example
- ▶ Inference of Future Observation
- ▶ Diagnostics and Remedies

Multiple Regression

Data

- > *Y* is the response variable
- $\succ X_1, X_2, ..., X_{p-1}$ are the p-1 explanatory variables
- $\succ Y_i, X_{i1}, X_{i2}, ..., X_{i,p-1}$ are the data for case *i* where i = 1 to *n*

► Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

- \triangleright Y_i is the value of the response variable for the case
- $\triangleright \beta_0$ is the intercept
- $\triangleright \beta_1, \beta_2, \ldots, \beta_{p-1}$ are the regression coefficients for the explanatory variables
- $\triangleright \varepsilon_i$'s are independent Normally distributed random errors with mean 0 and variance σ^2

Geometric Illustration

- ► The regression function is called a regression surface or a <u>response surface</u>
- The parameter β_1 indicates the change in the mean response $E\{Y\}$ per unit increase in X_1 when X_2 is held constant
- The first-order regression model is designed for predictor variables whose effects on the mean response are <u>additive</u> or do not <u>interact</u>
- ▶ Then the response function is a plane
- β_1 and β_2 are called <u>partial regression</u> <u>coefficients</u> because they reflect the partial effect of one predictor variable when the other predictor variable is included in the model and is held constant

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

Least Squares Solutions

$$b = (X'X)^{-1}X'Y$$

$$\hat{Y} = Xb = X(X'X)^{-1}X'Y = HY$$

$$e = Y - \hat{Y} = (I - H)Y$$

$$s^{2} = \frac{e'e}{n - p} = \frac{Y'(I - H)Y}{n - p}$$

$$s = \text{root MSE} = \sqrt{s^{2}}$$

 \blacktriangleright and e are independent, therefore, b and s^2 are independent under normal error terms

ANOVA F Test for Linear Relation

► Hypotheses:

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_{p-1} = 0$$

 $H_1: \beta_k \neq k$ for at least one k in $1, 2, \ldots, p-1$.

► Test statistic:

$$F^* = \frac{MSM}{MSE}$$

 \triangleright Sampling distribution under H_0 :

$$F^* \sim F_{p-1,n-p}$$

- \triangleright Decision rule at α
- 1. Reject H_0 if the calculated $F_0 > F_{p-1,n-p,\alpha}$
- 2. Reject H_0 if the P-value $P(F^* > F_0 | H_0) < \alpha$

Inference for Individual Coefficients

▶ Recall the sampling distribution of *b*:

$$b = (b_0, b_1, b_2, \dots, b_{p-1})' \sim N(\beta, \sigma^2 (X'X)^{-1})$$

Define

$$s^{2}(b)_{p \times p} = s^{2}(X'X)^{-1} = MSE(X'X)^{-1}$$

 \blacktriangleright For b_k :

$$s^{2}(b_{k}) = s^{2}(b)_{k,k} = MSE((X'X)^{-1})_{k,k}$$

the *k*th diagonal entry

Significance Test for β_k

► Hypotheses:

$$H_0: \beta_k = 0$$
 vs $H_1: \beta_k \neq 0$

► Test Statistic:

$$t^* = \frac{b_k}{s(b_k)}$$

Sampling distribution under

$$t^* \sim t_{df_E} = t_{n-p}$$

- ▶ Decision rules: the *P*-value and the critical value approaches as before
- ▶ This tests the significance of explanatory variable X_k given the other variables in the model

Confidence Interval for β_k

► From:

$$b_k \sim N(\beta_k, \sigma^2((X'X)^{-1})_{k,k})$$
$$\frac{(n-p)s^2}{\sigma^2} = \frac{e'e}{\sigma^2} \sim \chi_{n-p}^2$$

 b_k and $s(b_k)$ (Standard Error of b_k) are independent

▶ We have, under the model:

$$\frac{b_k - \beta_k}{s(b_k)} \sim t_{n-p}$$

▶ $100(1-\alpha)\%$ Confidence Interval for β_k

$$b_k \pm t_{\alpha/2,n-p} s(b_k)$$

Note: Proof of $\frac{e^{ie}}{\sigma^2} \sim \chi_{n-p}^2$

- Theorem: $X \sim N(\mu, I_p)$, A is symmetric, then $X'AX \sim \chi_{r, \mu'A\mu}^2 \iff A \text{ is idempotent and } \operatorname{rank}(A) = r$
- ▶ Proof of $\frac{e'e}{\sigma^2} \sim \chi_{n-p}^2$:

$$Y \sim N(X\beta, \sigma^2 I_n), : e = Y - \hat{Y} = (I - H)Y \sim N(0, \sigma^2 (I - H)),$$

$$> e^* = \frac{1}{\sigma}(I - H)^{-\frac{1}{2}}e \sim N(0, I), e = \left[\sigma(I - H)^{\frac{1}{2}}\right]e^*,$$

$$\triangleright : e'e = e^{*\prime}[\sigma^2(I-H)]e^* \sim \chi_r^2$$

where
$$r = \text{rank}(I-H) = \text{tr}(I-H) = n-p$$

Studio Example (KNNL p 236)

- ▶ Dwaine Studios, Inc. operates portrait studios in 21 cities of medium size
- ► The company is considering an expansion into other cities of medium size and wishes to investigate whether sales in a community can be predicted from the number of persons aged 16 or younger in the community and the per capita disposable personal income in the community
 - > Y: the total sale in a city
 - \triangleright X_1 : population aged 16 and under (thousands)
 - $\gt X_2$: per capita disposable income (thousands)
- ▶ The model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

Read in the Data

- > a <- file.choose() #choose "CH06FI05.txt"</pre>
- > a1 <- read.table(a)</pre>
- > colnames(a1) <- c("Targtpop", "Dispoinc", "Sales")</pre>
- > head(a1)

T	Targtpop Dispoinc Sales							
1	68.5	16.7 174.4						
2	45.2	16.8 164.4						
3	91.3	18.2 244.2						
4	47.8	16.3 154.6						
5	46.9	17.3 181.6						
6	66.1	18.2 207.56						

Regression

- ► reg1 <- lm(Sales ~ Targtpop + Dispoinc, data=a1)
- summary(reg1)
- anova(reg1)

Both variables are helpful in explaining Sales when the other is already in the model

ParameterEstimates							
	Parameter Standard Error		t Value	Pr> t			
(Intercept)	-68.85707	60.01695	-1.15	0.2663			
Targtpop	1.45456	0.21178	6.87	<.0001			
Dispoinc	9.36550	4.06396	2.30	0.0333			

ANOVA Output

Analysis of Variance Table

Response: Sales

Df Sum Sq Mean Sq F value Pr(>F)

Targtpop 1 23371.8 23371.8 192.8962 4.64e-11 ***

Dispoinc 1 643.5 643.5 5.3108 0.03332 *

Residuals 18 2180.9 121.2

Root MSE 11.00739 **R-Square** 0.917

At least one variable is helpful in predicting in Sales

Confidence Intervals

▶ Use confint() to get confidence intervals for each coefficient

```
> confint(reg1, level=0.95)
```

Output:

```
2.5 % 97.5 %
(Intercept) -194.9480130 57.233867
Targtpop 1.0096226 1.899497
Dispoinc 0.8274411 17.903560
```


What if Just Include Targtpop?

ParameterEstimates							
Variable	DF	Parameter Estimate	Standard Error	95%Confidence Limits			
Intercept	1	68.04536	9.46224	48.24066	87.85006		
Targtpop	1	1.83588	0.14641	1.52943	2.14233		

CIs for both the intercept and Targtpop change dramatically when just Targtpop as explanatory variable

► Coefficients depend on other variables in model

2.5 % 97.5 % (Intercept) -194.9480130 57.233867 Targtpop 1.0096226 1.899497 Dispoinc 0.8274411 17.903560

Estimation of Mean Response $E(Y_h)$

 $ightharpoonup X_h$ is now a vector that looks like

$$(1, X_{h1}, X_{h2}, ..., X_{h,p-1})$$

We want a point estimate and a confidence interval for the mean response $E(Y_h)$ corresponding to the set of explanatory variables X_h .

Inference Theory for $E(Y_h)$

$$\blacktriangleright \mu_h = E(Y_h) = X_{h.} \beta$$

Estimator:

$$\hat{\mu}_h = X_{h.}b = X_{h.}(X'X)^{-1}X'Y$$

▶ Sampling distribution of $\hat{\mu}_h$:

$$\hat{\mu}_h \sim N(\mu_h, \sigma^2 X_{h.}(X'X)^{-1} X'_{h.})$$

Estimated variance:

$$s^{2}(\hat{\mu}_{h}) = s^{2}X_{h}(X'X)^{-1}X'_{h}$$

▶ $100(1-\alpha)\%$ Confidence Interval for μ_h :

$$\hat{\mu}_h \pm t_{\frac{\alpha}{2},n-p} \ s \ (\hat{\mu}_h)$$

Using predict()

> conf_interval = predict(reg1, se.fit = TRUE, interval="confidence", level = 0.95)

OutputStatistics								
Obs	Targtpop	Dispoinc	Dependent Variable	Predicted Value	StdError se.fit	95%CLMean lwr upr		
1	68.5	16.7	174.4000	187.1841	3.8409	179.114	195.2536	
2	45.2	16.8	164.4000	154.2294	3.5558	146.759	161.6998	
3	91.3	18.2	244.2000	234.3963	4.5882	224.756	244.0358	
4	47.8	16.3	154.6000	153.3285	3.2331	146.536	160.1210	
5	46.9	17.3	181.6000	161.3849	4.4300	152.077	170.6921	
21	52.3	16.0	166.5000	157.0644	4.0792	148.494	165.6344	

Prediction of New Y_h

 $ightharpoonup X_h$ is still a vector of form

$$(1, X_{h1}, X_{h2}, ..., X_{h,p-1})$$

- We want a prediction of Y_h based on a set of predictor values with an interval that expresses all of the uncertainty in our prediction
- ► Uncertainty = Uncertainty from sample + New error term

Inference Theory for Y_h

- $Y_h = X_h \beta + \varepsilon$
- ▶ Predictor:

$$\hat{Y}_h = X_{h,b} = X_{h,c} (X'X)^{-1} X'Y$$

▶ Distribution of $\hat{Y}_h - Y_h$:

$$\hat{Y}_h - Y_h \sim N(0, \sigma^2 + \sigma^2 X_h, (X'X)^{-1} X_h')$$

► Estimated variance:

$$s^{2}(\hat{Y}_{h} - Y_{h}) = s^{2}[1 + X_{h}(X'X)^{-1}X'_{h}]$$

▶ $100(1-\alpha)\%$ Confidence Interval for Y_h :

$$\hat{Y}_h \pm t_{\frac{\alpha}{2},n-p} s(\hat{Y}_h - Y_h)$$

Note on $\hat{Y}_h - Y_h \sim N(0, \sigma^2 + \sigma^2 X_h, (X'X)^{-1} X'_h)$

$$Y_h - \hat{Y}_h = (X_h \beta + \varepsilon_h) - X_h \hat{\beta}$$

$$= (X_h \beta + \varepsilon_h) - X_h ((X'X)^{-1} X' (X\beta + \varepsilon))$$

$$= \varepsilon_h - X_h (X'X)^{-1} X' \varepsilon$$

 ε_h and ε are independent, $\varepsilon_h - X_h(X'X)^{-1}X'\varepsilon \sim N(0,v)$

where
$$v = Var(\varepsilon_h) + Var(X_h(X'X)^{-1}X'\varepsilon)$$

= $\sigma^2(1 + X_h(X'X)^{-1}X_h')$

Using predict()

> conf_interval = predict(reg1, se.fit = TRUE, interval="predict", level = 0.95)

OutputStatistics							
Obs	Targtpop	Dispoinc	Dependent Variable	Predicted Value	StdError se.fit	95%CLMean lwr upr	
1	68.5	16.7	174.4000	187.1841	3.8409	162.691	211.6772
2	45.2	16.8	164.4000	154.2294	3.5558	129.927	178.531
3	91.3	18.2	244.2000	234.3963	4.5882	209.342	259.450
21	52.3	16.0	166.5000	157.0644	4.0792	132.401	181.727

Diagnostics

- ▶ Look at the distribution of each variable
- ▶ Look at the relationship between pairs of variables
- ► Plot the residuals versus
 - the predicted/fitted values
 - each explanatory variable
 - time or order (if available)

Diagnostics

- ► Are the residuals approximately Normal?
 - > Look at the histogram
 - > Normal quantile plot
- ▶ Is the variance constant?
- ▶ Plot the residuals vs anything that might be related to the variance (e.g. residuals *vs* predicted values & residuals versus each *X*)

Fit Diagnostics for Sales

Remedies

- ▶ Similar remedies as simple regression
- ► Transformations such as Box-Cox
- ► Analyze with/without possible outliers
- ▶ More details to come in Chapters 9 and 10

Background Reading

- ▶ We finished Chapter 6
- ▶ Program used to generate output for confidence intervals for means and prediction intervals is lec8.R