CS228 Logic for Computer Science 2021

Lecture 11: SAT Solvers

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2021-02-04

Propositional satisfiability problem

Consider a propositional logic formula F.

Find a model m such that

$$m \models F$$
.

Example 11.1

Give a model of $p_1 \wedge (\neg p_2 \vee p_3)$

Some terminology

- Propositional variables are also referred as atoms
- ► A literal is either an atom or its negation
- A clause is a disjunction of literals.

Since \vee is associative, commutative, and absorbs multiple occurrences, a clause may be referred as a set of literals

Example 11.2

- ▶ p is an atom but ¬p is not.
- ▶ ¬p and p both are literals.
- $ightharpoonup p \lor q$ is a clause.
- \triangleright {p, \neg p, q} is the same clause.

Conjunctive normal form(CNF)

Definition 11.1

A formula is in CNF if it is a conjunction of clauses.

Since \wedge is associative, commutative, and absorbs multiple occurrences, a CNF formula may be referred as a set of clauses

Example 11.3

- ▶ ¬p and p both are in CNF.
- $(p \vee \neg q) \wedge (r \vee \neg q) \wedge \neg r \text{ in CNF.}$
- \blacktriangleright { $(p \lor \neg q), (r \lor \neg q), \neg r$ } is the same CNF formula.
- \blacktriangleright {{ $p, \neg q$ }, { $r, \neg q$ }, { $\neg r$ }} is the same CNF formula.

Exercise 11.1

Write a formal grammar for CNF

CNF input

We assume that the input formula to a SAT solver is always in CNF.

Tseitin encoding can convert each formula into a CNF without any blowup.

introduces fresh variables

Topic 11.1

DPLL (Davis-Putnam-Loveland-Logemann) method

Notation: partial model

Definition 11.2

We will call elements of Vars $\hookrightarrow \mathcal{B}$ as partial models.

Notation: state of a literal

Under partial model m,

a literal ℓ is true if $m(\ell) = 1$ and ℓ is false if $m(\ell) = 0$.

Otherwise, ℓ is unassigned.

Exercise 11.2

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

What are the states of the following literals under m?

- ▶ p₁
- ▶ p₂

- ▶ p₃
 - $\neg p_1$

Notation: state of a clause

Under partial model m,

a clause C is true if there is $\ell \in C$ such that ℓ is true and C is false if for each $\ell \in C$, ℓ is false.

Otherwise, C is unassigned.

Exercise 11.3

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

What are the states of the following clauses under m?

- $ightharpoonup p_1 \lor p_2 \lor p_3$
- $\triangleright p_1 \vee \neg p_2$

- $ightharpoonup p_1 \lor p_3$
- ▶ ∅ (empty clause)

Notation: state of a formula

Under partial model m,

CNF F is true if for each $C \in F$, C is true and F is false if there is $C \in F$ such that C is false.

Otherwise, F is unassigned.

Exercise 11.4

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

What are the states of the following formulas under m?

$$\triangleright (p_3 \vee \neg p_1) \wedge (p_1 \vee \neg p_2)$$

$$\triangleright (p_1 \lor p_2 \lor p_3) \land \neg p_1$$

$$\triangleright p_1 \vee p_3$$

Notation: unit clause and unit literal

Definition 11.3

C is a unit clause under m if a literal $\ell \in C$ is unassigned and the rest are false. ℓ is called unit literal.

Exercise 11.5

Consider partial model $m = \{p_1 \mapsto 0, p_2 \mapsto 1\}$

Are the following clauses unit under m? If yes, please identify the unit literals.

- $ightharpoonup p_1 \lor \neg p_3 \lor \neg p_2$
- $ightharpoonup p_1 \lor \neg p_3 \lor p_2$

- $ightharpoonup p_1 \lor \neg p_3 \lor p_4$
- $ightharpoonup p_1 \lor \neg p_2$

DPLL (Davis-Putnam-Loveland-Logemann) method

DPLL

- lacktriangle maintains a partial model, initially \emptyset
- assigns unassigned variables 0 or 1 randomly one after another
- ▶ sometimes forced to choose assignments due to unit literals(why?)

DPLL

Algorithm 11.1: DPLL(F)

```
Input: CNF F Output: sat/unsat return DPLL(F, \emptyset)
```

Algorithm 11.2: DPLL(F,m)

```
Input: CNF F, partial assignment m
                                                   Output: sat/unsat
if F is true under m then return sat:
                                                        Backtracking at
if F is false under m then return unsat :
                                                         conflict
if \exists unit literal p under m then
     \textbf{return} \ \ \textit{DPLL}(\textit{F},\textit{m}[\textit{p} \mapsto 1])
if \exists unit literal \neg p under m then return DPLL(F, m[p \mapsto 0]) propagation
                                                                      Decision
Choose an unassigned variable p and a random bit b \in \{0, 1\}:
    DPLL(F, m[p \mapsto b]) == sat then
     return sat
else
     return DPLL(F, m[p \mapsto 1 - b])
```

Three actions of DPLL

A DPLL run consists of three types of actions

- Decision
- ► Unit propagation
- Backtracking

Exercise 11.6

What is the worst case complexity of DPLL?

Example: decide, propagate, and backtrack in DPLL

Example 11.4

$$c_{1} = (\neg p_{1} \lor p_{2})$$

$$c_{2} = (\neg p_{1} \lor p_{3} \lor p_{5})$$

$$c_{3} = (\neg p_{2} \lor p_{4})$$

$$c_{4} = (\neg p_{3} \lor \neg p_{4})$$

$$c_{5} = (p_{1} \lor p_{5} \lor \neg p_{2})$$

$$c_{6} = (p_{2} \lor p_{3})$$

$$c_{7} = (p_{2} \lor \neg p_{3} \lor p_{7})$$

$$c_{8} = (p_{6} \lor \neg p_{5})$$

Blue: causing unit propagation Green/Blue: true clause

Exercise 11.7 Complete the DPLL run

Optimizations

DPLL allows many optimizations.

We will discuss many optimizations.

- clause learning
- 2-watched literals

First, let us look at a revolutionary optimization.

Topic 11.2

Clause learning

Clause learning

As we decide and propagate,

we may construct a data structure to

observe the run and avoid unnecessary backtracking.

Run of DPLL

Definition 11.4

We call the current partial model a run of DPLL.

Example 11.5

Borrowing from the earlier example, the following is a run that has not reached to the conflict yet.

Decision level

Definition 11.5

During a run, the decision level of a true literal is the number of decisions after which the literal was made true.

Example 11.6

Given the run, we write $\neg p_5@1$ to indicate that $\neg p_5$ was set to true after one decision.

Similarly, we write $\neg p_7$ @2 and $\neg p_6$ @1.

Implication graph

During the DPLL run, we maintain the following data structure.

Definition 11.6

Under a partial model m, the implication graph is a labeled DAG (N, E), where

- N is the set of true literals under m and a conflict node
- $lackbox{m{E}} = \{(\ell_1,\ell_2)|
 eg \ell_1 \in \mathit{causeClause}(\ell_2) \ \mathit{and} \ \ell_2
 eq
 eg \ell_1 \}$

 $causeClause(\ell) \triangleq \begin{cases} clause \ due \ to \ which \ unit \ propagation \ made \ \ell \end{cases}$ true \emptyset for the literals of the decision variables

Commentary: DAG = directed acyclic graph, conflict node denotes contradiction in the run, causeClause definition works with the conflict node.(why?)

We also annotate each node with decision level.

Example: implication graph

Example 11.7

$$c_1 = (\neg p_1 \lor p_2)$$
 $c_2 = (\neg p_1 \lor p_3 \lor p_5)$
 $c_3 = (\neg p_2 \lor p_4)$
 $c_4 = (\neg p_3 \lor \neg p_4)$
 $c_5 = (p_1 \lor p_5 \lor \neg p_2)$
 $c_6 = (p_2 \lor p_3)$
 $c_7 = (p_2 \lor \neg p_3 \lor p_7)$
 $c_8 = (p_6 \lor \neg p_5)$

Implication graph

Conflict clause

We traverse the implication graph backwards to find the set of decisions that caused the conflict.

Definition 11.7

The clause of the negations of the causing decisions is called conflict clause.

Conflict clause : $p_6 \lor \neg p_1$

Commentary: In the above example, p_6 is set to 0 by the first decision. Therefore, literal p_6 is added in the conflict clause. Not an immediately obvious idea. You may need to stare at the definition for sometime.

Clause learning

Clause learning heuristics

- add conflict clause in the input clauses and
- backtrack to the second last conflicting decision, and proceed like DPLL

Theorem 11.1

Adding conflict clause

- 1. does not change the set of satisfying assignments
- 2. implies that the conflicting partial assignment will never be tried again

Multiple clauses can satisfy the above two conditions.

Definition 11.8 (Functional definition of conflict clause)

We will say if a clause satisfies the above two conditions, it is a conflict clause.

Benefit of adding conflict clauses

- 1. Prunes away search space
- 2. Records past work of the SAT solver
- Enables very many other heuristics without much complications. We will see them shortly.

Example 11.9

In the previous example, we made decisions: $m(p_6) = 0$, $m(p_7) = 0$, and $m(p_1) = 1$

We learned a conflict clause : $p_6 \lor \neg p_1 =$ There are other clever choices for conflict clauses.

Adding this clause to the input clauses results in

- 1. $m(p_6) = 0$, $m(p_7) = 1$, and $m(p_1) = 1$ will never be tried
- 2. $m(p_6) = 0$ and $m(p_1) = 1$ will never occur simultaneously.

Topic 11.3

CDCL(conflict driven clause learning)

DPLL to CDCL

Impact of clause learning was profound.

Some call the optimized algorithm CDCL(conflict driven clause learning) instead of DPLL.

CDCL as an algorithm

Algorithm 11.3: CDCL

```
Input: CNF F
```

 $m := \emptyset$; dl := 0; $dstack := \lambda x.0$; dl stands for m := UNITPROPAGATION(m, F); decision level

▶ UNITPROPAGATION(m, F) - applies unit propagation and extends m

```
// backtracking
while F is false under m do

if dl = 0 then return unsat;
(C, dl) := \text{AnalyzeConflict}(m, F);
m.resize(dstack(dl)); F := F \cup \{C\};
m := \text{UnitPropagation}(m, F);

lear upto

// Boolean decision
if F is unassigned under m then dstack records history
```

► ANALYZECONFLICT(m, F) - returns a conflict clause learned using implication graph and a decision level upto which the solver needs to backtrack

```
dl := dl + 1; m := Decide(m, F);

m := UnitPropagation(m, F);
```

dstack(dl) := m.size():

 Decide(m, F) - chooses an unassigned variable in m and assigns a Boolean value

while F is unassigned or false under m;

return sat

of backtracking

Efficiency of SAT solvers over the years

Cactus plot:

Y-axis: time out

X-axis: Number of problems solved

Color: a competing solver

Exercise 11.8

- a. What is the negative impact of SAT competition?
- b. What are look-ahead based SAT solvers?

Impact of SAT technology

Impact is enormous.

Probably, the greatest achievement of the first decade of this century in science after sequencing of human genome

A few are listed here

- Hardware verification and design assistance
 Almost all hardware/EDA companies have their own SAT solver
- ▶ Planning: many resource allocation problems are convertible to SAT
- ► Security: analysis of crypto algorithms
- ▶ Solving hard problems, e. g., travelling salesman problem

Topic 11.4

Problems

Exercise: run CDCL

Exercise 11.9

Give a run of CDCL to completion on the CNF formula in example 11.4

Exercise: CDCL termination

Exercise 11.10

Prove that CDCL always terminates.

DPLL to Resolution*

Example 11.10

Let us suppose we run DPLL on an unsatisfiable formula. Give a linear time algorithm in terms of the number of steps in the run to generate resolution proof of unsatisfiability from the run of DPLL.

Lovasz local lemma vs. SAT solvers

Here, we assume a k-CNF formula has clauses with exactly k literals.

Theorem 11.2 (Lovasz local lemma)

If each variable in a k-CNF formula ϕ occurs less than $2^{k-2}/k$ times, ϕ is sat.

Definition 11.9

A Loèasz formula is a k-CNF formula that has all variables occurring $\frac{2^{k-2}}{k} - 1$ times, and for each variable p, p and $\neg p$ occur nearly equal number of times.

Exercise 11.11

- Write a program that generates uniformly random Lovasz formula
- Generate 10 instances for k = 3, 4, 5, ...
- Solve the instances using some sat solver
- ► Report a plot k vs. average run times

Conflict clauses

Exercise 11.12

Consider the following implication graph generated in a CDCL solver.

- a. Assign decision level to every node (write within the node)
- b. What is the conflict clause due to the implication graph?

End of Lecture 11

