What is data science?

Data is everywhere! Data science starts with data!

What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Big Data Era

- Google: every 2 days we create as much data as we did up to 2003.
- Facebook: 500+ TB of new data every day including
 - 2.5 billion items shared
 - 2.7 billon Likes
 - 300 million photos
 - 100+ PB Hadoop cluster
- Twitter: 500 million tweets per day
- Many applications for streaming data, e.g., sensors

4V

Volume

Data at Rest

Terabytes to exabytes of existing data to process

Velocity

Data in Motion

Streaming data, milliseconds to seconds to respond

Variety

Data in Many Forms

Structured, unstructured, text, multimedia

Veracity*

Data in Doubt

Uncertainty due to data inconsistency & incompleteness, ambiguities, latency, deception, model approximations

What is data science?

 Data science combines the fields of computer science, mathematics, statistics, and information systems with a focus on the generation, organization, modeling, and use of data to make scientific and business decisions.

Evolution of Sciences

- Before 1600, empirical science
- 1600-1950s, theoretical science
 - Each discipline has grown a theoretical component. Theoretical models often motivate experiments and generalize our understanding.
- 1950s-1990s, computational science
 - Over the last 50 years, most disciplines have grown a third, *computational* branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
 - Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models.
- 1990-now, data science
 - The flood of data from new scientific instruments and simulations
 - The ability to economically store and manage petabytes of data online
 - The Internet and computing Grid that makes all these archives universally accessible
 - Scientific info. management, acquisition, organization, query, and visualization tasks scale almost linearly with data volumes. Data mining is a major new challenge!
- Jim Gray and Alex Szalay, The World Wide Telescope: An Archetype for Online Science,
 Comm. ACM, 45(11): 50-54, Nov. 2002

Evolution of Database Technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- **1**980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- **2000s**
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems
- Latest
 - NoSQL, NewSQL, Column DB
 - MapReduce, Spark

Database Categorization

Evolution of Business Intelligence

- OLTP: Online Transaction Processing (DBMSs)
- OLAP: Online Analytical Processing (Data Warehousing)
- RTAP: Real-Time Analytics Processing (Big Data Architecture & technology)

Big Data Landscape

Evolution of AI

AI

AI vs. ML vs. DL

Machine Learning

Deep Learning

Basic Deep Learning Structures

Feedforward Neural

Convolutional Neural Network

Recurrent Neural Network

Generative Adversarial Network

Large Language Models

ChatGPT

Why does DL work so well?

- lots of data (Big Data)
- Very flexible models
- GPGPU (powerful machines)
- Advanced algorithms for optimization, activation, regularization
- Huge research society (vision, speech, NLP, bioimaging, etc.)

Neural Network

http://neuralnetworksanddeeplearning.com/chap1.html

Deep Neural Network

- Machine learning algorithms based on multiple levels of representation/abstraction
 - Automatically learning good features or representations
 - Not simply using human-designed representations or input features

Learning of Representations

[Andrew Ng]

Data Mining vs. ML

What do data scientists do?

- A data scientist is a person that has expert knowledge for turning observations into decisions.
- A data scientist devotes time to collecting data and answering questions of interest based on analyzing data.
 - Data scientists think about the physical processes and manmade systems that generate data and how to extract and organize the data in order to get answers.
 - Data scientists make the connection between observation and decision making by applying analytics to the data.
 - Data scientists observe and describe what happened, predict what might happen, and prescribe solutions for what to do.

Data Analyst Skills

Xintao Wu, Ph.D.

Professor and Charles D. Morgan/Acxiom Endowed Graduate Research Chair

Areas of Expertise

- Data Mining, Privacy and Security
- Fraud Detection
- Fair Machine Learning
- Causal Modeling and Inference

Contact Information

Dr. Xintao Wu Office: JB Hunt 516 Phone: (479) 575-6519 xintaowu@uark.edu

http://csce.uark.edu/~xintaowu

Sample Projects

Fairness Aware Machine Learning

oSafari – Online Social Network Fraud and Attack Research and Identification

Social Awareness and Intelligent Learning

Develop cutting-edge techniques to provide privacy preservation, fairness, safety, and robustness to a variety of data analytics and learning algorithms

Privacy Preserving Data Publication

No Guarantee for Privacy Protection

ssn	name	zip	race	 age	Sex	income	 disease
		28223	Asian	 20	М	85k	 Cancer
		28223	Asian	 30	F	70k	 Flu
		28262	Black	 20	М	120k	 Heart
		28261	White	 26	М	23k	 Cancer
			•	 •	•	•	
		28223	Asian	 20	М	110k	 Flu

69% unique on zip and birth date 87% with zip, birth date and gender

Generalization (k-anonymity, l-diversity, t-closeness) Randomization

Differential Privacy Preserving Data Mining/Collection

Differential Privacy

name	sex	age	disease	salary
Ada	F	18	cancer	25k
Bob	М	25	heart	110k
Cathy	F	20	cancer	70k
Dell	М	65	flu	65k
Ed	М	60	cancer	300k
Fred	М	24	flu	20k
George	М	22	cancer	45k
Harry	М	40	flu	95k
Irene	F	45	heart	70k

included in the database

Differential Guarantee

disease		
cancer		
heart		
cancer		
flu		
cancer		
flu		

2 + noise

Differential Privacy Preserving ML

Mechanisms to Achieve Differential Privacy

Applications of Differential Privacy

- ✓ Data Collection
- ✓ Data Streams
- ✓ Logistic Regression
- **✓** Stochastic Gradient Descents
- **✓** Recommendation
- ✓ Spectral Graph Analysis
- **✓** Causal Graph Discovery
- **✓** Embedding
- ✓ Deep Learning

Image credit: Chaudhuri & Sarwate

Heterogeneous Gaussian mechanism: preserving differential privacy in deep learning with provable robustness. IJCAI'19

DPNE: Differentially Private Network Embedding. PAKDD'18

Preserving differential privacy in convolutional deep belief networks. ML'17

Adaptive Laplace mechanism: differential privacy preservation in deep learning, ICDM'17

Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. AAAI'16

Spectral Graph Analysis for Fraud Detection

Deep Learning for Fraud Detection

Vandal detection from Wikipedia

Fraud Detection

- Core Techniques
 - Spectral graph analysis and graph emebedding
 - Multi-LSTM
 - One-class generative adversarial networks
 - Neural temporal point processes

Recent Publications

- Insider threat detection via hierarchical neural temporal point processes (NeurIPS-WTPP'19)
- SAFE: A neural survival analysis model for fraud early detection (AAAI'19)
- One-class adversarial nets for fraud detection (AAAI'19)
- Dynamic anomaly detection using vector auoregressive model (PAKDD'19)
- Spectrum-based deep neural networks for fraud detection (CIKM'17)
- Wikipedia vandal early detection: from user behavior to user embedding (ECML-PKDD'17)

Fair and Robust Learning

Generative adversarial networks

Causal learning

Online recommendation

Federated learning

Fairness Aware Learning

Support research into mitigating algorithmic discrimination, building systems that support fairness and accountability, and developing strong data ethics frameworks.

Fair Machine Learning

Classification, recommendation, ranking, resource allocation, federated learning, ...

Demographic Parity:
$$P(\eta(X) = 1 | S = 1) = P(\eta(X) = 1 | S = 0)$$

Equal Opportunity:
$$P(\eta(X) = 1 | Y = 1, S = 1) = P(\eta(X) = 1 | Y = 1, S = 0)$$

Causal Fairness

Core Techniques

- Causal model and causal graph
- Intervention and do-operator
- Path-specific effect
- Counterfactual analysis

Challenges

- Identifiability
- Interference
- Representation with different types of data

Recent Publications

- Fair multiple decision making through soft intervention (NeurIPS'20)
- Path-specific counterfactual fairness (NeurIPS'19)
- Counterfactual fairness: unidentification, bound, and algorithm (IJCAI'19)
- On convexity and bounds of fairness-aware classification (WWW'19)
- On discrimination discovery and removal in ranked data using causal graph (KDD'18)
- Achieving non-discrimination in prediction (IJCAI'18)
- Achieving non-discrimination in data release (KDD'17)

FairGAN: Fairness-aware Generative Adversarial Networks

FairGAN $P_G(X, Y | S = 0)$ The other adversarial real: $P_{data}(X, Y, S)$ game One adversarial game data fairness by ensures $P_G(X, Y|S=1)$ fake: $P_G(X, Y, S)$ ensures the generated the preventing disparate data close to the real treatment and disparate impact. data. D_2 D_1 Discriminato Discriminato $P_G(X, Y|S = 0) = P_G(X, Y|S = 1)$ $(\pmb{x},y|S) \sim P_{data}(\pmb{X},Y|S)$ $(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}|S) \sim P_G(\boldsymbol{X}, Y|S)$ Generator Fairness in Data $s \sim P(S)$ $z \sim P(Z)$ Statistical Fairness Protected attribute Noise ε -fairness Causal fairness

FairGAN: Fairness-aware Generative Adversarial Networks. BigData 2018.

FairGAN+: Achieving Fair Data Generation and Classification through Generative Adversarial Nets. BigData 2019.

Achieving Causal Fairness through Generative Adversarial Networks. IJCAI 2019.

Fair Recommendation

Challenges

- Online learning with cold-start problem
- Better regret bound via causal modeling
- Group vs. individual vs. counterfactual fairness

Achieving Counterfactual Fairness for Causal Bandit, https://arxiv.org/abs/2109.10458
Transferable Contextual Bandits with Prior Observations. PAKDD'21
Achieving User-Side Fairness in Contextual Bandits. https://arxiv.org/abs/2010.12102

Fair Federated Learning

Challenges

- Global vs. Local Fairness
- Horizontal vs. Vertical partition
- Convergence due to non-IID
- Computational vs. Communication Cost

Robust Machine Learning

Image credit to Jeremy Thomas

Challenges

- Robustness certification
- Robust machine learning based on causal representation

Achieving Robustness in ML

Under Distribution Shift

Under Adversarial Attack

Fair and Robust Classification Under Sample Selection Bias, CIKM'21 Fair Regression Under Sample Selection Bias, BigData'22 Poisoning Attacks on Fair Machine Learning, DASFAA'22 Defending Evasion Attacks via Adaptive Training, BigData'22