CUAI 딥러닝 논문 리뷰 스터디 CV 1팀

2024.11.12

발표자 : 김태환

목차

- 1. 스터디원 소개 및 만남 인증
- 2. 논문 리스트
- 3. Task
- 4. 기호 및 용어정리
- 5. DragDiffusion: 전체 프로세스
- 6. DragDiffusion: Identity-preserving Fine-tuning
- 7. DragDiffusion: Motion tracking
- 8. DragDiffusion: Reference-latent control
- 9. DragGAN과의 비교
- 10. Ablation Study

스터디원 소개 및 만남 인증

스터디원 1: 김태환

스터디원 2: 김현수

스터디원 3: 오서윤

논문 리스트

Long Short Term Memory

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

EfficientNet

DragDiffusion

DragonDiffusion

CLIP

Mask R-CNN

DETR

Task

Point-based image editing (Drag-based image)

기호 및 용어 정리

기호 및 용어 정리

 $\Omega(h_i^k,r)$: k번 업데이트된 i번째 handle point 주변 한 변이 2r인 정사각형 패치

기호 및 용어 정리

 ϵ_{θ} : Unet

 z_t : t번 노이즈가 들어간 latent

 \hat{z}_t^k : t번 노이즈가 들어가고, k번 optimize된 latent

 $F_q(\cdot)$: input의 위치 q에서의 feature

 $sg(\cdot)$: stop gradient

M: 편집할 영역의 binary mask

DragDiffusion: 전체 프로세스

DragDiffusion: Identity-preserving Fine-tuning

$$\mathcal{L}_{ft}(z, \Delta \theta) = \mathbb{E}_{\epsilon, t} \left[\| \epsilon - \epsilon_{\theta + \Delta \theta} (\alpha_t z + \sigma_t \epsilon) \|_2^2 \right],$$

DragDiffusion: Identity-preserving Fine-tuning

$$\mathcal{L}_{\mathrm{ft}}(z, \Delta \theta) = \mathbb{E}_{\epsilon, t} \left[\| \epsilon - \epsilon_{\theta + \Delta \theta} (\alpha_t z + \sigma_t \epsilon) \|_2^2 \right],$$

Motion supervision

$$\begin{split} \mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k}) &= \sum_{i=1}^{n} \sum_{q \in \Omega(h_{i}^{k}, r_{1})} \left\| F_{q+d_{i}}(\hat{z}_{t}^{k}) - \text{sg}(F_{q}(\hat{z}_{t}^{k})) \right\|_{1} \\ &+ \lambda \left\| (\hat{z}_{t-1}^{k} - \text{sg}(\hat{z}_{t-1}^{0})) \odot (\mathbb{1} - M) \right\|_{1} \end{split} \qquad \hat{z}_{t}^{k+1} = \hat{z}_{t}^{k} - \eta \cdot \frac{\partial \mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k})}{\partial \hat{z}_{t}^{k}} \end{split}$$

$$h_i^{k+1} = \underset{q \in \Omega(h_i^k, r_2)}{\arg\min} \left\| F_q(\hat{z}_t^{k+1}) - F_{h_i^0}(z_t) \right\|_1$$

Motion supervision

$$\mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k}) = \sum_{i=1}^{n} \sum_{q \in \Omega(h_{i}^{k}, r_{1})} \left\| F_{q+d_{i}}(\hat{z}_{t}^{k}) - \operatorname{sg}(F_{q}(\hat{z}_{t}^{k})) \right\|_{1} + \lambda \left\| (\hat{z}_{t-1}^{k} - \operatorname{sg}(\hat{z}_{t-1}^{0})) \odot (\mathbb{1} - M) \right\|_{1} \qquad \hat{z}_{t}^{k+1} = \hat{z}_{t}^{k} - \eta \cdot \frac{\partial \mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k})}{\partial \hat{z}_{t}^{k}}$$

$$h_i^{k+1} = \underset{q \in \Omega(h_i^k, r_2)}{\arg\min} \left\| F_q(\hat{z}_t^{k+1}) - F_{h_i^0}(z_t) \right\|_1$$

Motion supervision

$$\mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k}) = \sum_{i=1}^{n} \sum_{q \in \Omega(h_{i}^{k}, r_{1})} \left\| F_{q+d_{i}}(\hat{z}_{t}^{k}) - \text{sg}(F_{q}(\hat{z}_{t}^{k})) \right\|_{1} \\ + \lambda \left\| (\hat{z}_{t-1}^{k} - \text{sg}(\hat{z}_{t-1}^{0})) \odot (\mathbb{1} - M) \right\|_{1} \qquad \qquad \hat{z}_{t}^{k+1} = \hat{z}_{t}^{k} - \eta \cdot \frac{\partial \mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k})}{\partial \hat{z}_{t}^{k}}$$

$$h_i^{k+1} = \underset{q \in \Omega(h_i^k, r_2)}{\arg\min} \left\| F_q(\hat{z}_t^{k+1}) - F_{h_i^0}(z_t) \right\|_1$$

Motion supervision

$$\mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k}) = \sum_{i=1}^{n} \sum_{q \in \Omega(h_{i}^{k}, r_{1})} \left\| F_{q+d_{i}}(\hat{z}_{t}^{k}) - \operatorname{sg}(F_{q}(\hat{z}_{t}^{k})) \right\|_{1} + \lambda \left\| (\hat{z}_{t-1}^{k} - \operatorname{sg}(\hat{z}_{t-1}^{0})) \odot (\mathbb{1} - M) \right\|_{1}$$

$$\hat{z}_t^{k+1} = \hat{z}_t^k - \eta \cdot \frac{\partial \mathcal{L}_{\text{ms}}(\hat{z}_t^k)}{\partial \hat{z}_t^k}$$

$$h_i^{k+1} = \underset{q \in \Omega(h_i^k, r_2)}{\arg\min} \left\| F_q(\hat{z}_t^{k+1}) - F_{h_i^0}(z_t) \right\|_1$$

Motion supervision

$$\begin{split} \mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k}) &= \sum_{i=1}^{n} \sum_{q \in \Omega(h_{i}^{k}, r_{1})} \left\| F_{q+d_{i}}(\hat{z}_{t}^{k}) - \text{sg}(F_{q}(\hat{z}_{t}^{k})) \right\|_{1} \\ &+ \lambda \left\| (\hat{z}_{t-1}^{k} - \text{sg}(\hat{z}_{t-1}^{0})) \odot (\mathbb{1} - M) \right\|_{1} \\ &\qquad \qquad \hat{z}_{t}^{k+1} = \hat{z}_{t}^{k} - \eta \cdot \frac{\partial \mathcal{L}_{\text{ms}}(\hat{z}_{t}^{k})}{\partial \hat{z}_{t}^{k}} \end{split}$$

$$h_i^{k+1} = \underset{q \in \Omega(h_i^k, r_2)}{\operatorname{arg \, min}} \left\| F_q(\hat{z}_t^{k+1}) - F_{h_i^0}(z_t) \right\|_1$$

DragDiffusion: Reference-latent control

$$Attention(\hat{Q}, \hat{K}, \hat{V}) = softmax\left(\frac{\hat{Q}\hat{K}^T}{\sqrt{d_k}}\right)\hat{V} \rightarrow Attention(\hat{Q}, K, V) = softmax\left(\frac{\hat{Q}K^T}{\sqrt{d_k}}\right)V$$

DragGAN과의 비교

Figure 4. Comparisons between DRAGGAN and DRAGDIFFUSION. All results are obtained under the same user edit for fair comparisons.

Ablation Study

Figure 7. Ablation study on (a) the number of inversion step t of the diffusion latent; (b) the number of identity-preserving fine-tuning steps; (c) Block No. of UNet feature maps. Mean Distance (\downarrow) and Image Fidelity (\uparrow) are reported. Results are produced on DRAGBENCH.

Figure 6. Ablating the number of inversion step t. Effective results are obtained when $t \in [30, 40]$.

Ablation Study

Figure 9. Qualitative validation on effectiveness of identitypreserving fine-tuning and reference-latent-control.

감사합니다