

기존 계획

블루투스를 이용하여 핸드폰 앱과 연동

앱을 통해 위치 입력하기

초음파 센서를 이용하여 움직임 감지

OpenWeathermap api를 이용해 강수 정보받기

변경 계획

와이파이 모듈로 인터넷과 연결

GPS모듈로 현재 위치 확인

PIR 센서를 이용하여 움직임 감지

한국 기상정 API 사용

```
1
```

```
import requests
import serial
import time
from datetime import datetime
def get_weather_data():
   url = "http://apis.data.go.kr/1360000/VilageFcstInfoService_2.0/getUltraSrtFcst"
   now = datetime.now()
   base_date = now.strftime("%Y%m%d")
   base_time = now.strftime("%H%M")
        "serviceKey": "vZ+F7/8M6mLpZdq0kmMhiKS10ub18Fn00jArmWbiJRyLCwjMIqxWZRdeIKAvRFPEiOuuKWEL4C70l14fyT5fow==",
        "pageNo": "1",
       "dataType": "JSON",
       "base_date": base_date,
       "base_time": base_time,
   response = requests.get(url, params=params)
   return data
# 강수량 데이터 추출
def extract_precipitation_data(data):
    for item in data['response']['body']['items']['item']:
       if item['category'] == 'RN1':
          precipitation_data.append(float(item['fcstValue']))
   return precipitation_data
# 아두이노로 데이터 전송
def send_data_to_arduino(data):
   arduino = serial.Serial('/dev/ttyUSB0', 9600)
   time.sleep(2) # 시리얼 통신 안정화 대기
       if value >= 70:
          arduino.write(b'B') # 파란색 LED
       elif value >= 30:
          arduino.write(b'Y') # 노란색 LED
       time.sleep(1)
# 메인 함수
def main():
   weather_data = get_weather_data()
   precipitation_data = extract_precipitation_data(weather_data)
   send_data_to_arduino(precipitation_data)
   main()
```

진행사항

코드 작성 - 데이터 가져오기

4

```
RESTART: C:/Users
   13人
```

강수정보 없음 뜨는 시간대
PTY(강수량) 정보가 홈페이지에서 안 뜨고
낙뢰나 다른 정보가 떠서 데이터 추출이 안됨

개선 필요

```
4
```

```
#include <Adafruit_NeoPixel.h>
#define PIN
#define NUMPIXELS
#define DELAYVAL
                     100
// 시간별 강수 확률(1~12시)
int forc[12] = {0, 30, 60, 30, 60, 30, 0, 60, 30, 60, 30, 0};
// 네오픽셀 객체 생성
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
   pixels.begin();
   pixels.setBrightness(255);
   pixels.show();
uint32_t colors[3];
void loop() {
   // 색상 초기화
   initializeColors();
   // forc 배열을 순회하며 LED 색상 설정
       setLEDColor(i);
       delay(DELAYVAL);
       pixels.show();
// 색상 초기화 함수
void initializeColors() {
   colors[0] = pixels.Color(255, 255, 0); // yellow
   colors[1] = pixels.Color(0, 255, 0);  // green
   colors[2] = pixels.Color(0, 0, 255);
// LED 색상 설정 함수
void setLEDColor(int index) {
   if (forc[index] < 30) {</pre>
      color = colors[0];
   } else if (forc[index] < 60) {
      color = colors[1];
   } else {
      color = colors[2];
   pixels.setPixelColor(((index * 2) + 18) % 24, color);
   pixels.setPixelColor(((index * 2) + 18) % 24 + 1, color);
```

진행사항

코드 작성 - 강수 확률을 기반으로 LED로 표시

```
#include <Adafruit_NeoPixel.h>
#define PIN
#define NUMPIXELS
#define DELAYVAL
                     100
// 시간별 강수 확률(1~12시)
int forc[12] = {0, 30, 60, 30, 60, 30, 0, 60, 30, 60, 30, 0};
// 네오픽셀 객체 생성
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
   pixels.begin();
   pixels.setBrightness(255);
   pixels.show();
uint32 t colors[3];
void loop() {
   // 색상 초기화
   initializeColors();
   // forc 배열을 순회하며 LED 색상 설정
       setLEDColor(i);
       delay(DELAYVAL);
       pixels.show();
// 색상 초기화 함수
void initializeColors() {
   colors[0] = pixels.Color(255, 255, 0); // yellow
   colors[1] = pixels.Color(0, 255, 0);  // green
   colors[2] = pixels.Color(0, 0, 255);
// LED 색상 설정 함수
void setLEDColor(int index) {
   if (forc[index] < 30) {</pre>
      color = colors[0];
   } else if (forc[index] < 60) {
      color = colors[1];
   } else {
      color = colors[2];
   pixels.setPixelColor(((index * 2) + 18) % 24, color);
   pixels.setPixelColor(((index * 2) + 18) % 24 + 1, color);
```

진행사항

코드 작성 - 강수 확률을 기반으로 LED로 표시

30% 미만 - 노랑

60% 미만 - 초록

그외-파랑

진행사항 회로 구성

추후 계획

부품/구매 후 제작

강수 확률별 LED 색상 더 다양하게 변경

기상 데이터 코드 수정 필요

- 현재 방식은 외부 컴퓨터로 부터 시리얼 통신을 통해 기상 데이터를 가져오기 때문에, 와이파이 모듈을 통해 아두이노 보드 자체적으로 데이터를 가져오도록 한다

```
#include <ESP8266WiFi.h>
                                                                                                                       String getDate() {
#include <ESP8266HTTPClient.h>
                                                                                                                         // 현재 날짜를 "YYYYMMOD" 형식으로 반환하는 함수
#include <Arduino Ison, h>
                                                                                                                         time_t now = time(nullptr);
                                                                                                                         struct tm* timeinfo = localtime(&now);
const char* ssid = "YOUR_SSID";
                                                                                                                        char buffer[9];
strftime(buffer, 9, "%V%m%d", timeinfo);
return String(buffer);
const char* password = "YOUR_PASSWORD"; // Wi-Fi 비밀번호
const char* apiKey = "YOUR_API_KEY"; // 기상청 API 키
const char* host = "apis.data.go.kr";
const int blueLED = D1; // 파란색 LED 핀 번호
                                                                                                                       String getTime() {
const int redLED = D3; // 빨간색 LED 핀 번호
void setup() {
                                                                                                                        char buffer[5];
strftime(buffer, 5, "%HXM", timeinfo);
  Serial.begin(115200);
  WiFi.begin(ssid, password);
                                                                                                                         return String(buffer);
  pinMode(yellowLED, OUTPUT);
  pinMode(redLED, OUTPUT);
                                                                                                                       void handleWeatherData(String data) {
                                                                                                                         // JSON 데이터를 파싱하여 강수량 데이터를 추출하고 LED를 제어
  while (WiFi.status() != WL_CONNECTED) {
     Serial.println("Connecting to WiFi...");
                                                                                                                         float maxPrecipitation = 0;
for (JsonObject item : doc["response"]["body"]["items"]["item"].ascJsonArray>()) {
                                                                                                                            if (String(item["category"].as<const char*>()) == "RN1") {
                                                                                                                              float precipitation = item["fcstValue"].as<float>();
                                                                                                                              if (precipitation > maxPrecipitation) {
  maxPrecipitation = precipitation;
  if (WiFi.status() == WL_CONNECTED) {
     String url = String("http://") + host + "/1360000/VilageFcstInfoService_2.0/getUltraSrtFcst"
                  + "?serviceKey=" + apiKey
+ "&numOfRows=24&pageNo=1&dataType=JSON"
                  + "&base_date=" + getDate() + "&base_time=" + getTime()
                                                                                                                         if (maxPrecipitation >= 70) {
  digitalWrite(blueLED, HIGH);
                  + "&nx=55&ny=127";
                                                                                                                           digitalWrite(yellowLED, LOW);
     int httpCode = http.GET();
                                                                                                                         } else if (maxPrecipitation >= 30) {
    digitalWrite(blueLED, LOW);
    digitalWrite(yellowLED, HIGH);
    digitalWrite(redLED, LOW);
      Serial.println(payload);
handleWeatherData(payload);
                                                                                                                           digitalWrite(blueLED, LOW);
digitalWrite(yellowLED, LOW);
                                                                                                                           digitalWrite(redLED, LOW);
```


GPT를 통해 파이썬 -> 아두이노로 코드 수정

```
#include <ESP8266WiFi.h>
                                                                                                                 String getDate() {
#include <ESP8266HTTPClient.h>
                                                                                                                    // 현재 날짜를 "YYYYMMOD" 형식으로 반환하는 함수
#include <Arduino Ison, h>
                                                                                                                   time_t now = time(nullptr);
                                                                                                                   struct tm* timeinfo = localtime(&now);
const char* ssid = "YOUR_SSID";
const char* password = "YOUR_PASSWORD"; // Wi-Fi 비밀번호
                                                                                                                   strftime(buffer, 9, "%Y%m%d", timeinfo);
return String(buffer);
const char* apiKey = "YOUR_API_KEY"; // 기상청 API 키
const char* host = "apis.data.go.kr";
const int blueLED = D1; // 파란색 LED 핀 번호
                                                                                                                 String getTime() {
const int redLED = D3; // 빨간색 LED 핀 번호
void setup() {
                                                                                                                  char buffer[5];
strftime(buffer, 5, "%H%M", timeinfo);
  Serial.begin(115200);
  WiFi.begin(ssid, password);
                                                                                                                   return String(buffer);
  pinMode(blueLED, OUTPUT);
  pinMode(yellowLED, OUTPUT);
  pinMode(redLED, OUTPUT);
                                                                                                                 void handleWeatherData(String data) {
                                                                                                                   // JSON 데이터를 파싱하여 강수량 데이터를 추출하고 LED를 제어
  while (WiFi.status() != WL_CONNECTED) {
                                                                                                                   StaticJsonDocument<2000> doc;
     Serial.println("Connecting to WiFi...");
                                                                                                                   float maxPrecipitation = 0:
                                                                                                                      if (String(item["category"].as<const char*>()) == "RN1") {
                                                                                                                        float precipitation = item["fcstValue"].as<float>();
                                                                                                                        if (precipitation > maxPrecipitation) {
  if (WiFi.status() == WL_CONNECTED) {
     String url = String("http://") + host + "/1360000/VilageFcstInfoService_2.0/getUltraSrtFcst"
                 + "?serviceKey=" + apiKey
+ "&numOfRows=24&pageNo=1&dataType=JSON"
                 + "&base date=" + getDate() + "&base time=" + getTime()
                                                                                                                   if (maxPrecipitation >= 70) {
  digitalWrite(blueLED, HIGH);
                 + "&nx=55&ny=127";
                                                                                                                     digitalWrite(yellowLED, LOW);
                                                                                                                   } else if (maxPrecipitation >= 30) {
    digitalWrite(blueLED, LOW);
    digitalWrite(yellowLED, HIGH);
    digitalWrite(redLED, LOW);
      Serial.println(payload);
handleWeatherData(payload);
                                                                                                                   } else {
                                                                                                                     digitalWrite(blueLED, LOW);
digitalWrite(yellowLED, LOW);
                                                                                                                     digitalWrite(redLED, LOW);
  delay(60000); // 1분마다 데이터 갱신
```

추가

GPT를 통해 파이썬 -> 아두이노로 코드 수정

(테스트 안함) (가능한지 확인만 해봄)

감사합니다

완성본을 기대해주세요!