

Gene Symphony: Can Musification Capture Patterns in Expression Data?

Presented By: Goutham B (BE20B010)

Guide: Prof. Manikandan Narayanan

Committee: Prof. Karthik Raman, Prof. Nirav Bhatt

Indian Institute of Technology Madras

Introduction

What is Sonification?

- Translation of quantitative data into sound.
- Provides a new sensory channel for data analysis.

What is Musification?

An extension of Sonification, which combines scientific data with musical composition for analytical and aesthetic purposes.

- Scientific research has relied heavily on visual data representations such as graphs and heatmaps.
- Visual representations can be limiting, particularly for those with visual impairments.
 - Blind: ~3.44% of total population have severe visual Impairments (based on a study in 2018*).
 - Color blind: ~4.5% of total population.
- Challenging to interpret large volumes of information through traditional data presentation methods.
- Sonification, and by extension musification, bridges this gap by making data accessible through sound, offering a unique opportunity for alternative data analysis.

Literature Survey

Musification of DNA & Protein Sequences

- <u>Earliest Work:</u> John Dunn's Presentation on "Musical Interpretations of DNA Data"in 1989.
- Recent work by Martin et αl.(2021): Sonification techniques to analyse protein sequence data.

Martin et al.(2021) Overview of Sonification of Amino Acid Sequences & MSA.

Musification of Expression Data

Static Expression Data

M.Staege (2015) Frequency Plots.

Time-Series Expression Data

Alterovitz et al. (2022) Musical Insights.

Problem Statement

MOTIVATION

- Sonification in biology is mostly limited to sequences & structure data.
- Previous works on expression data focus on simplifying expression values across the "entire" gene set into a "single" musical representation, which may lead to data loss and overlook localized expression dynamics.
- We bridge this gap by introducing a sonification mapping algorithm and music generation techniques that represent and analyze time-series gene expression through 'clusters', offering an alternative approach to interpreting gene expression heatmaps and dendrograms.

<u>AIM</u>

"To represent an expression vector heatmap using musical outputs as a novel way of analyzing time-series gene expression clusters"

Input: A time-series gene expression vector of dimension $\mathbf{G} \times \mathbf{T}$, where \mathbf{G} is the number of genes and \mathbf{T} is the number of time points

Output: Multiple clusters (total **C**) of genes with similar expression patterns and their corresponding musical audio representations.

Methodology

1. Preprocessing: Clustering

- Hierarchical clustering using Ward's method.
- Pairwise correlation for intra-cluster similarity.

Nazarov et al. (2013) Hierarchical Clustering performed on a time-series data to get clusters

2. Mapping Algorithm

$$N' = \left(rac{V - V_{
m min}}{V_{
m max} - V_{
m min}}
ight) imes lpha + eta$$
 Gao et al. (2022)

$$N = \begin{cases} \lfloor N' \rfloor & \text{if } \{N'\} < 0.5 \\ \lceil N' \rceil & \text{if } \{N'\} \ge 0.5 \end{cases}$$

N is the MIDI note of the gene

V is the expression value of the gene

 $V_{
m min}$ $\,$ is the min expression value across all clusters

 $r_{
m max}$ is the max expression value across all clusters

 α is set based on instrument (= 87 for piano)

is a parameter which ensures notes are in the MIDI range (= 21 for piano)

MIDI: Musical Instrument Digital Interface

Methodology

3. Generating Music & Variants

- **Chords:** Each time point forms a chord with all cluster genes represented as simultaneous notes.
- Mean: Each time point is represented by a single note based on the mean expression level.
- **Delayed:** Notes within a time point are played sequentially in ascending order, creating an "arpeggio-like" pattern.

Utilizing the GarageBand Software for Music Variants Visualization

4. Data Used

Woicik et al. (2023) Evo-Devo time points.

Kaessmann Lab, Expression Pattern of BRCA1 Gene in Human.

Results

Figure 1: Expression Patterns for six top ranked clusters based on pairwise correlation.

TYPE/LABEL	"57"	"32"	"58"	"40"	"1"	"63"
CHORDS						•
MEAN						•
DELAYED		•			•	•
COMBINED	•	•		•	•	•

Figure 2: Expression Patterns for "57" containing 22 genes from the Human-Brain expression vector.

Conclusion

• Each cluster's music captures expression trends, with high-pitched notes for highly expressed genes and low-pitched notes for lowly expressed ones.

Comparative Analysis of Different Studies on Sonification in Biology

Comparative Analysis of Different studies on Sommeation in Diology									
Work	Туре	Target Audience	Purpose	Data Used	Sonification Method				
Martin <i>et al.</i> (2021)	Protein Sequences	Scientists & Visually Impaired Individuals	Alternate analysis for Protein Sequences & MSA	Multiple Protein Sequences (Insulin, Histones etc.)	Parameter Mapping Sonification (PMSon)				
Franjou <i>et al.</i> (2019)	Protein Sequences & Structures	Any Individual	Aesthetics/Design New Proteins Using Music	Protein Sequences & Structure Data	Not mentioned				
M. Staege (2015)	Static Gene Expression	Scientists & Visually Impaired Individuals	Differential Gene Expression	Expression Data for Neuroblastoma Cell Lines	Scaled Linear Mapping				
Alterovitz et al. (2022)	Time-Series Gene Expression	Hospitals & Doctors	Patient Monitoring	Expression Data for Colon Cancer Cell	Pythagorean Tuning				
OURS (2024)	Time-Series Gene Expression	Scientists & Visually Impaired Individuals	Alternate analysis for Clusters & Heatmap/Aesthetics	Evolutionary Developmental Biology (Evo-Devo)	Normalized Linear Mapping				

Future Work

- <u>Evaluation Strategies:</u> Conduct group discussions or surveys where participants interpret graphs from musical samples to assess the effectiveness of music in conveying data patterns.
- Enhanced Temporal Resolution: Use tools like Sagittarius (Woicik et αl., 2022) to extrapolate unmeasured gene expression data, improving the granularity of time-series musical representations.

• <u>Integration of Pseudotime Analysis:</u> Leverage pseudotime to map dynamic biological processes into music, reflecting temporal evolution and cellular state transitions.

• **Diverse Compositions with MusicLMs:** Employ Music Language Models to generate high-fidelity variations of musical representations, enriching perspectives and interpretability.

Key References

- Martin, E.J., Meagher, T.R. & Barker, D. Using sound to understand protein sequence data: new sonification algorithms for protein sequences and multiple sequence alignments. BMC Bioinformatics 22, 456 (2021). https://doi.org/10.1186/s12859-021-04362-7
- 2. **Staege, M.** A short treatise concerning a musical approach for the interpretation of gene expression data. Sci Rep 5, 15281 (2015). https://doi.org/10.1038/srep15281
- 3. **Alterovitz G, Yuditskaya S** (2022) Musical Gene Expression: Abstracting High-Dimensional Gene Dynamics. J Biotechnol Biomater, 12: 280. DOI: 10.4172/2155-952X.1000280
- 4. **Petr V. Nazarov, Susanne E. Reinsbach, Arnaud Muller, Nathalie Nicot, Demetra Philippidou, Laurent Vallar, Stephanie Kreis,** Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function, Nucleic Acids Research, Volume 41, Issue 5, 1 March 2013, Pages 2817–2831, https://doi.org/10.1093/nar/gks1471
- 5. **Woicik, A., Zhang, M., Chan, J. et al.** Extrapolating heterogeneous time-series gene expression data using Sagittarius. Nat Mach Intell 5, 699–713 (2023). https://doi.org/10.1038/s42256-023-00679-5
- 6. **Franjou, S. L., Milazzo, M., Yu, C. H., & Buehler, M. J.** (2019). Sounds interesting: can sonification help us design new proteins? Expert Review of Proteomics, 16(11–12), 875–879. https://doi.org/10.1080/14789450.2019.1697236
- 7. **Gao, Z., Wang, H., Feng, G., & Lv, H.** (2022). Exploring sonification mapping strategies for spatial auditory guidance in immersive virtual environments. ACM Transactions on Applied Perception, 19(3), 1–21. https://doi.org/10.1145/3528171

THANK YOU!