Méthodes quantitatives - Résumé

Section A : Les mesures de tendance centrale

	la moyenne $(\mu \ ou \ \bar{x})$	le mode (Mo)	la médiane (Md)
Pour trouver	$\mu=rac{\Sigma x_i}{N}$ (données brutes) $\mu=rac{\Sigma x_i k_i}{N} ext{(avec effectifs)}$ $\mu=\Sigma x_i f_i ext{ (avec pourcentages)}$	Variable ou caractère qui se répète le plus.	Nombre pair de données : Md = moyenne entre les deux données centrales Nombre impair de données : Md = donnée centrale Données groupées en classes : Démarche avec produit croisé
Interprétation (mots-clés)	Si tous avaient le même ils auraient	Une pluralité de (50% ou moins) ont Une majorité de (plus de 50 %) ont	Nombre pair de données : 50 % des ont moins de Nombre impair de données : Au moins 50 % des ont ou moins. Données groupées en classes : On peut estimer que 50% des ont moins de

Section B : Les mesures de position

Quartiles: 3 valeurs (Q1, Q2, Q3) pour diviser les données en 4 parties

Quintiles: 4 valeurs (V1, V2, V3, V4) pour diviser les données en 5 parties

Déciles : 9 valeurs (D₁, D₂, D₃, ..., D₉) pour diviser les données en 10 parties

Centiles: 99 valeurs (C1, C2, C3, ..., C99) pour diviser les données en 100 parties

Interprétation (mots-clés)

- « On peut estimer... » (si les données sont groupées en classes)
- Moins de...
- Voir médiane pour le nombre pair ou impair de données (si données non groupées)

Section C : Les mesures de dispersion

Étendue

$$E = x_{max} - x_{min}$$

Variance

$$\sigma^2 = \frac{\Sigma (x_i - \bar{x})^2}{N}$$

Écart type

$$\sigma = \sqrt{\sigma^2}$$

Généralement, on trouve « **la plupart** » (environ les deux tiers) des données d'une distribution entre $\mu - \sigma$ et $\mu + \sigma$.

Écart type corrigé d'un échantillon

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Section D: La cote Z

$$Z = \frac{\text{valeur - moyenne}}{\text{écart type}} = \frac{x_i - \mu}{\sigma}$$

On a établi que, dans une série de données, au maximum :

12,5 % des données ont une cote $z \ge 2$	12,5 % des données ont une cote $z \le -2$
8 % des données ont une cote $z \ge 2,5$	8 % des données ont une cote $z \le -2.5$
5,5 % des données ont une cote $z \ge 3$	5,5 % des données ont une cote $z \le -3$
4,1 % des données ont une cote $z \ge 3,5$	4,1 % des données ont une cote $z \le -3.5$