OU: a top-down look

Stochastic motion rate

Ornstein-Uhlenbeck mean

Continuous state

Brian O'Meara http://www.brianomeara.info omearabrian

Randomly: increase or decrease slightly by chance and/or

Randomly: increase or decrease slightly by chance and/or

$$dX_T =$$

Randomly: increase or decrease slightly by chance and/or

Randomly: increase or decrease slightly by chance and/or

$$dX_T = \sigma \times dW_T$$
Rate of wiggle

Randomly: increase or decrease slightly by chance and/or

$$dX_T = \sigma \times dW_T \qquad \theta$$

Randomly: increase or decrease slightly by chance and/or

Directionally: be pulled towards some value

$$dX_T = \sigma \times dW_T + (\theta - X_T)$$

Adds the entire difference

Randomly: increase or decrease slightly by chance and/or

Directionally: be pulled towards some value

$$dX_T = \sigma \times dW_T + \alpha(\theta - X_T)$$

Allows directional change less than 100% (even zero)

Randomly: increase or decrease slightly by chance and/or

Directionally: be pulled towards some value

$$dX_T = \sigma \times dW_T + \alpha(\theta - X_T)$$

Ornstein-Uhlenbeck process

$$dX_T = \sigma \times dW_T + \alpha(\theta - X_T)$$

Ornstein-Uhlenbeck process

$$oldsymbol{\sigma}_i \ oldsymbol{lpha}_i \ oldsymbol{ heta}_i$$

$$dX_{T_i} = \sigma_i \times dW_T + \alpha_i (\theta_i - X_{T_i})$$
Brownian rate OU attraction OU mean

	Single rate Brownian motion	Multiple mean Ornstein- Uhlenbeck	Multiple rate Brownian motion	Multiple everything	
σ_{i}	all equal	all equal all equal		some vary	
$\boldsymbol{\alpha}_i$	0	all equal	0	some vary	
θ_{i}	NA	some vary	NA	some vary	
	Independent contrasts (Felsenstein, 1985), ANCML (Schluter et. al, 1998)	Hansen, 1997; OUCH (Butler & King, 2004), SURFACE (Ingram & Mahler, 2012)	Brownie (O'Meara et al., 2006, Thomas et al., 2006), AUTEUR (Eastman et al. 2011)	OUwie (Beaulieu et al. 2012), bayou (Uyeda et al. 2014)	
177 1777 (0 77)					

 $dX_{T_i} = \sigma \times dW_T + \alpha \left(\theta_i - X_{T_i}\right)$ Brownian rate OU attraction OU mean

Model	Optima (mean = M)	Sigma (variance = V)	Attraction (A)
BM ₁		1	
BM_S		≥2	
OU ₁	1	1	1
OU_M	≥2	1	1
OU_{MA}	<u>≥2</u>	1	<u>≥2</u>
OU _{MV}	<u>≥</u> 2	<u>≥2</u>	1
OU _{MVA}	<u>≥2</u>	<u>≥2</u>	≥2

Figure 2. (A) Time-calibrated phylogeny of Monocotyledonae (monocots). The phylogeny is taken from a maximum likelihood analysis of 590 species based on combined analysis atpB, matK, ndhF, rbcL, and trnL-F. The major clades of monocots are labeled, and estimates of the likeliest growth form state (woody = brown; herbaceous = green) across all branches in the tree. Com + Zing represents the combined clade of Commelinales and Zingiberales. (B) The distributions of 1C DNA content among growth form, with the optimum value for woody plants (θ_W) estimated to be larger than the optimum inferred for herbaceous lineages (θ_H). However, the optimum value for woody lineages was not identifiable, which may be explained by very weak selection (α < 0.001) operating within this regime.

Table 2. The fit of alternative models of genome size evolution in monocots. The best model, based on Δ AIC and Akaike weights, was the OU_{MVA} , which estimated a separate θ , α , and σ^2 for woody and herbaceous monocot lineages.

Model	-lnL	AIC	ΔΑΙС	w_i
BM1	-227.6	459.1	156.2	< 0.01
BMS	-203.0	412.0	109.1	< 0.01
OU1	-160.0	326.1	23.2	< 0.01
OU_M	-159.2	326.5	23.6	< 0.01
OU_{MV}	-147.3	304.6	1.7	0.290
OU_{MA}	-159.2	328.5	25.6	< 0.01
OU_{MVA}	-145.3	302.9	0.0	0.678

Table 3. Parameter estimates and their associated 95% confidence interval (CI) for the OU_{MVA} model, the model that best fit the genome size data. Each CI was obtained by multiplying each approximate standard error by the critical value in the *t*-distribution where the cumulative probability is equal to 0.975 (i.e., t (0.975, ∞) = 1.96).

	Herb Estimate	95% CI	Woody Estimate	95% CI
α	3.85	$\pm \ 0.955$	< 0.001	$\pm < 0.01$
σ^2	2.51	± 0.376	0.531	± 0.281
θ	0.618	± 0.143	< 0.001	$\pm \infty$

How do we figure out painting?

How do we figure out painting?

- a priori biological hypotheses
- Reconstruct a discrete trait, use that to paint continuous regimes
- Slice by taxonomy (monocots vs other plants)
- Slice by time (pre and post KT)

Table 2: Parameters estimated for the five models comparing character displacement with alternative hypotheses

	BM	OU(1)	OU(3)	OU(4)	OU(LP)
α		0	.32	14.67	2.49
σ	.21	.21	.20	.47	.22
$\boldsymbol{\theta}_{\mathrm{o}}$	2.95	2.95	3.99	a	.86
$oldsymbol{ heta}_{ ext{small}}$		a	-1.40	2.58	2.75
$ heta_{ ext{medium}}$.18	3.11	3.24
$oldsymbol{ heta}_{ ext{large}}$			2.71	3.30	3.56
$ heta_{ ext{ancestral}}$				2.83	

Phylogenetic half life = Tree height scaling \times ln(2) / α = 30 MY \times ln(2) / 2.49 = 8.4 MY

to go halfway from log(25 mm) to log(35 mm) head lengths: 0.6 mm/MY, or 0.24% of the starting value/MY

Fig. 1. Log likelihood surface with respect to (y_0,μ) from data simulated on a 4507-taxon tree, with other parameters fixed to their ML values. The dash line $y_0e^{-\hat{\alpha}T} + \mu(1 - e^{-\hat{\alpha}T}) = 1.998$ is where the likelihood achieves its maximum.

Fig. 2. Edges are 'painted' according to their selection regime, with one optimum μ_{ℓ} for each colour. Unidentifiability case (left): every selection regime forms a connected component. Identifiability case (right): one regime (black) covers two disconnected parts in the tree.