

RPIE8 – Redes Industriais e Sistemas Supervisórios

Comunicação Serial via RS-485

O padrão RS-485 é muito utilizado para a comunicação serial de dispositivos em ambiente industrial, graças às suas principais características, que tornam esse padrão útil para realizar comunicações em topologia barramento, o que é utilizado em diversos protocolos industriais (como Modbus e Profibus DP).

Nesta atividade faremos uma pequena rede, composta de um computador e um Arduino, como mostrado no diagrama abaixo:

O Barramento RS-485 costuma ter resistores de terminação da ordem de 100 a 120 ohms. Isso se torna necessário principalmente em redes de grande comprimento (lembrando que o limite para esse padrão é de 1200m). Em redes pequenas pode não ser necessário empregar a terminação.

Para fins didáticos, utilizaremos nesta prática dois tipos de conversores diferentes: o XY-017 e o MAX-485. Ambos são disponíveis comercialmente e a principal diferença entre eles está na presença de um bit de controle para fazer o conversor entrar em modo de enviar ou receber sinais do barramento.

Parte 1: Questões Preliminares

1. A respeito do padrão RS-485, assinale corretamente as características:

Transmissão	() Balanceada	() Desbalanceada	
Referência dos Sinais	() GND	() Diferencial	
Fluxo de dados	() Half-Duplex	() Full-Duplex	
Dispositivos podem enviar e	() Sim	() Não	
receber dados ao mesmo			
tempo			
Número de equipamentos que	() apenas 2 (ponto a	() 2 ou mais	
podem se comunicar	ponto)	(barramento)	

2. O CI **MAX-485** é utilizado para realizar a interface com redes no padrão RS-485. Pesquise o datasheet deste componente e complete a tabela abaixo com a função de cada um dos pinos:

Pino	Função
RO	
RE	
DE	
DI	
GND	
VCC	
А	
В	

Parte 2: Implementação

Monte o circuito de comunicação conforme o diagrama que foi fornecido. Não se esqueça de adicionar um dispositivo de entrada, sensor de temperatura, sensor ultrassônico, ou mesmo um botão, e um dispositivo de saída, como LED, rele, motor, etc, que não estavam no diagrama.

O MAX-485 conectado ao Arduino exige que seja utilizado um bit de controle de fluxo da comunicação. Isso deverá ser acrescentado na programação para que a comunicação se estabeleça corretamente.

Elabore um protocolo simples para o acionamento do dispositivo de saída e leitura do dispositivo de entrada.

Exemplo com LED e botão:

Comando	Ação	
'L'	Liga LED	
Ϋ́	Desliga LED	
'E'	Lê conteúdo da entrada digital	
'B'	Pisca o LED	
'Bt500'	Pisca o LED com intervalo de 500ms	
'Bc10'	Pisca o LED 10 vezes	

Parte 3: Análise do sinal

Capture a forma de onda e ilustre, bit a bit, ao menos dois comandos utilizados.

Exemplo

