MATH 205A Notes

Jiantong Liu

October 3, 2022

1 Lecture 1, September 23, 2022

1.1 MOTIVATION OF THE SUBJECT

Example 1.1 (Motivating Example). • Fermat's Last Theorem. For any $n \geq 3$, the equation $x^n + y^n = z^n$ has no integer solutions. This was stated by Fermat in 1637, who solved the case for n = 4, and was eventually proven by Wiles in 1995.

Kummer (approximately 1850) proved the case for prime $n=p\geq 3$, and $\gcd(x,y,z)=1$, where $p\nmid xyz$. This is called the first case of Fermat's Last Theorem. Take $\xi_p=e^{\frac{2\pi i}{p}}$, we then study $\mathbb{Z}[\xi_p]=\{\sum_{i=0}^{p-1}a_i\xi_p^i\mid a_i\in\mathbb{Z}\}$. Suppose $\mathbb{Z}[\xi_p]$ is a UFD $(p\leq 19)$. Note that $x^p+y^p=\prod_{i=0}^{p-1}(x+\xi_p^iy)$. By our assumption, the $x+\xi_p^iy$ are all relatively prime. Their product is z^p , so each $x+\xi_p^iy$ is a pth power times a unit. They are also all congruent modulo $(1-\xi_p)$, the unique prime of $\mathbb{Z}[\xi_p]$ over (p). One obtains a contradiction using

- 1. the structure of $\mathbb{Z}[\xi_p]^{\times}$,
- 2. properties of pth powers in $\mathbb{Z}[\xi_p]$ modulo (p).

Note that for any p, $\mathbb{Z}[\xi_p]$ has unique factorization of nonzero ideals into prime ideals: Dedekind domain. It is in fact enough that no non-principal ideal has principal pth power. We say p is regular. This includes all p < 100 except 37, 59, 67. Also, Kummer did not require $p \nmid xyz$.

1.2 Integrality

Definition 1.2 (Number Field). A number field is a finite extension of \mathbb{Q} . Being a number field implies it is algebraic. An algebraic number is algebraic over \mathbb{Q} , but inside \mathbb{C} , i.e. $\mathbb{Q} \subseteq \mathbb{C}$. We like to think of \mathbb{Q} as an algebraic closure itself.²

Definition 1.3 (Ring of Integers). The ring of integers \mathcal{O}_F of a number field F is the set of all roots of monic polynomials in $\mathbb{Z}[x]$ in F. We will see later that this is indeed a ring because it is the integral closure of F.

Let B/A be an extension of commutative rings.

¹When we say modulo π , we consider $p = \pi \bar{\pi}$ in $\mathbb{Z}[\xi_3]$ for π irreducible.

²In the notes, we defined the ring of algebraic integers to be the integral closure $\bar{\mathbb{Z}}$ of \mathbb{Z} inside \mathbb{C} , and an algebraic integer is an element of $\bar{\mathbb{Z}}$

³We can define the ring of integers of a number field to be the integral closure of \mathbb{Z} over F.

Definition 1.4 (Integral Element). An element of B is integral over A if it is the root of some monic $f \in A[x]$.

Proposition 1.5. Let $\beta \in B$. The following are equivalent:

- (i) β is integral over A.
- (ii) There exists $n \ge 0$ such that $A[\beta] = \bigoplus_{i=0}^{n} A \cdot \beta^{i}$, i.e. $\{1, \beta, \dots, \beta^{n}\}$ generates $A[\beta]$ as an A-module.
- (iii) $A[\beta]$ is finitely-generated as an A-module.
- (iv) There exists a finitely-generated A-submodule M of B such that $\beta M \subseteq M$ and M is faithful as an $A[\beta]$ -module.

Proof. The proof from (i) to (ii) to (iii) to (iv) is fairly simple. We now prove (iv) implies (i). Suppose $M = \sum_{i=1}^{n} A \cdot \gamma_i \subseteq B$ has the properties in (iv), then $\beta \gamma_i = \sum_{j=1}^{n} a_{ij} \gamma_j$, where (a_{ij}) is defining $T: A^n \to A^n$, which is B-linear. Now the characteristic polynomial $c_T(x) = \det(x \cdot \mathbf{id} - T)$, so $c_T(\beta) \cdot M = 0$, and so $c_T(\beta) = 0$ as M is faithful over $A[\beta]$.

Definition 1.6 (Integral Extension). An extension B/A is integral if every $\beta \in B$ is integral over A.

Proposition 1.7. Suppose $B = A[\beta_1, \dots, \beta_k]$ is finitely-generated over A. The following are equivalent:

- (i) B/A is integral.
- (ii) Each β_i is integral over A.
- (iii) B is finitely-generated as an A-module.

Proof. Easy if one assumes that we proved "if C/B is an extension and C is a finitely-generated B-module and B is a finitely-generated A-module, then C is a finitely-generated A-module".

Corollary 1.8. If C/B and B/A are integral extensions, then so is C/A.

Proof. Suppose $\gamma \in C$. It is the root of some monic polynomial $f \in B[x]$. Let B' be an A-algebra (subring) generated by the coefficients of f. Then γ is integral over B' and B' is integral over A, and so $B'[\gamma]$ is integral over A, and so γ is integral over A.

Definition 1.9 (Integral Closure). The integral closure of A in B is the set of elements of B integral over A.

Proposition 1.10. The integral closure of A in B is a ring.

Proof. Suppose α, β are in the integral closure of A in B. Consider the ring $A[\alpha, \beta]$, then it is integral over A, but it also contains $-\alpha, \alpha + \beta, \alpha \cdot \beta$, and so we have closure.

Corollary 1.11. If F is a number field, then \mathcal{O}_F is a ring.

Note that we can define $\overline{\mathbb{Z}}$ to be the ring of algebraic integers, i.e. the integral closure of \mathbb{Z} in $\mathbb{Q} \subseteq \mathbb{C}$.

Definition 1.12 (Integrally Closed). We say A is integrally closed in B if the integral closure of A in B is A.

Definition 1.13 (Integrally Closed/Normal). We say a domain A is integrally closed if it is integrally closed in its quotient field Q(A). We use normal and integrally closed interchangably.

This gives an absolute notion of closure.

Example 1.14. \mathbb{Z} is not integrally closed. For example, suppose $\frac{c}{d} \in \mathbb{Q}$ is a reduced fraction, then $\mathbb{Z}[\frac{c}{d}]$ is not finitely generated over \mathbb{Z} if d > 1.

Proposition 1.15. Suppose A is integrally closed domain, and K = Q(A), and L/K is a field extension. If $\beta \in L$ is integral over A with minimal polynomial $f \in K[x]$, then $f \in A[x]$. Proof. See notes.

Corollary 1.16. Suppose B is an integrally closed domain, then the integral closure of A in B is integrally closed.

2 Lecture 2, September 26, 2022

Recall the following proposition from last time.

Proposition 2.1. Suppose A is integrally closed domain, and K = Q(A), and L/K is a field extension. If $\beta \in L$ is integral over A with minimal polynomial $f \in K[x]$, then $f \in A[x]$.

Proof. There exists a monic polynomial $g \in A[x]$ such that $g(\beta) = 0$. Now f as a minimal polynomial divides g in K[x]. However, all roots of g are integral over A, so all roots of f are. But f being a monic polynomial has the form $f = \prod_{i=1}^{n} (x - \alpha_i)$, where α_i 's are integral over A, so sums and products of α_i 's are also integral over A, and so all coefficients of f are integral over A, and therefore in K, so it is in A as A is normal.

Proposition 2.2. UFDs are normal, i.e. integrally closed.

Proof. See notes. \Box

Proposition 2.3. Let B/A be an integral extension of domains. Then B is a field if and only if A is a field.

Proposition 2.4. Suppose B/A is a normal domain. Then the integral closure of A in B is normal.

Proof. Let \bar{A} be the integral closure of A in B, let $\beta \in Q(\bar{A})$ be integral over \bar{A} , then $\bar{A}[\beta]$ is integral over \bar{A} and \bar{A} is integral over A, so $\bar{A}[\beta]$ is integral over A, then β is integral over A. Therefore, $\beta \in \bar{A}$.

Corollary 2.5. If F is a number field, then \mathcal{O}_F is normal.

Proposition 2.6. Let A be normal and K = Q(A), let L/K be an algebraic extension, and B be the integral closure of A in L, then Q(B) = L, and in fact, any $\beta \in L$ has the form $\frac{b}{d}$ where $b \in B$ and $d \in A \setminus \{0\}$.

Proof. Let $\beta \in L$ be the root of some monic $f = \sum_{i=0}^n a_i x^i \in K[x]$. There exists $d \in A \setminus \{0\}$ such that $df \in A[x]$. Now $d^n f(d^{-1}x) = \sum_{i=0}^n a_i d^{n-i} x^i \in A[x]$ monic, and it has $d\beta$ as a root. Now $d\beta \in B$ since it is the root of a monic polynomial in A[x].

Corollary 2.7. $Q(\mathcal{O}_F) = F$.

We now give a different interpretation of the proposition we just proved.

Remark 2.8. The proposition tells us that $B \otimes_A K \to L$ is a surjection given by $b \otimes \frac{1}{d} \mapsto \frac{b}{d}$. In fact, this is an isomorphism. (Left as an exercise.) Then the rank of B over A is just $\dim_K(B \otimes_A K) = [L : K]$.

In general, it is not obvious that this implies that B is a finitely-generated A-module, but we do get \mathcal{O}_F as a finitely-generated Abelian group.

Definition 2.9 (Square-free Integer). A square-free integer is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it.

Theorem 2.10. Let d be a square-free integer that is not 1. Then we know $\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\frac{1+\sqrt{d}}{2}], & d \equiv 1 \pmod{4} \\ \mathbb{Z}[\sqrt{d}], & d \equiv 2, 3 \pmod{4} \end{cases}$.

Proof. Note $\mathbb{Z}[\sqrt{d}] \subseteq \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$. If $\alpha = a + b\sqrt{d}$ with $a \in \mathbb{Q}$ and $b \in \mathbb{Q}^{\times}$ that are integral over \mathbb{Z} , then $f = x^2 - 2ax + a^2 - b^2d$ is its minimal polynomial in $\mathbb{Z}[x]$, then $a \in \frac{1}{2}\mathbb{Z}$. If $a \in \mathbb{Z}$, then $b^2d \in \mathbb{Z}$ and d is square-free, so $b \in \mathbb{Z}$. If $a \notin \mathbb{Z}$, $a' = 2a \in \mathbb{Z}$ and $b' = 2b \in \mathbb{Z}$ are odd. And $(a')^2 \equiv (b')^2d \pmod{4}$. Since $(a')^2, (b')^2 \equiv 1 \pmod{4}$, $d \equiv 1 \pmod{4}$. Since all elements $\frac{a'+b'\sqrt{d}}{2} \in \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$, we are done.

2.1 Dedekind Domains

Definition 2.11 (Dedekind Domain). A Dedekind domain is a Noetherian, normal domain of Krull dimension at most 1.

Remark 2.12. Krull dimension at most 1 means all nonzero prime ideals are maximal.

Example 2.13. • Fields.

• PIDs. A PID is Noetherian, and it is a UFD, so it is integrally closed. Its nonzero prime ideals are maximal, generated by its irreducible elements.

Lemma 2.14. Suppose B/A is integral. If $\mathfrak{b} \in B$ is an ideal containing a nonzero element that is not a zero divisor, then $\mathfrak{b} \cap A \neq (0)$.

Proof. Let $\beta \in B \setminus \{0\}$ not be a zero divisor. Let $f \in A[x]$ be a minimal polynomial of β , so $f(0) \neq 0$. Suppose $\beta \in \mathfrak{b}$, then $f(\beta) - f(0) \in \mathfrak{b}$, but $f(\beta) = 0$, then $f(0) \in \mathfrak{b}$, and so $f(0) \in \mathfrak{b} \cap A$.

Proposition 2.15. If $\dim(A) \leq 1$, and B/A is an integral extension of domains, then $\dim(\beta) \leq 1$.

Proof. Let P be a nonzero prime ideal of B and $\mathfrak{p}=P\cap A$ prime. Then $\mathfrak{p}\neq 0$ by the lemma, and so $F=A/\mathfrak{p}$ is a field since $\dim(A)=1$. For $\beta\in B$, let $f\in A[x]$ be monic with $f(\beta)=0$. Let $\bar{f}\in F[x]$ be its image under the reduction modulo \mathfrak{p} map, $\bar{\beta}\in B/P$ be the image of β , then $\bar{f}(\bar{\beta})=0$. Then $\bar{\beta}$ is algebraic over F, so $B/P=F[\bar{\beta}\mid \bar{\beta}\in B]$ is a field since all of them are algebraic elements. Therefore, P is maximal.

We want to show the following theorem.

Theorem. Let A be a Dedekind domain, K = Q(A), L/K is a finite extension, B is the integral closure of A in L, then B is a Dedekind domain.

This will help us prove the corollary.

Corollary. \mathcal{O}_F is a Dedekind domain.

2.2 NORM AND TRACE

Definition 2.16 (Trace Map, Norm Map). Let L/K be a finite extension of fields. For $\alpha \in L$, let $m_{\alpha}: L \to L$ denote the linear transformation of K-vector spaces defined by left multiplication by α . Then

- The trace map $Tr_{L/K}$ is defined by sending $\alpha \in L$ to the trace of m_{α} .
- The norm map $N_{L/K}$ is defined by sending $\alpha \in L$ to the determinant of m_{α} .

Proposition 2.17. Let L/K be a finite extension of fields, and let $\alpha \in L$. Let $f \in K[x]$ be the minimal polynomial of α over K, let $d = [K(\alpha) : K]$ and $s = [L : K(\alpha)]$. Suppose f factors in $\bar{K}[x]$ as $f = \prod_{i=1}^{d} (x - \alpha_i)$ for some $\alpha_1, \dots, \alpha_d \in \bar{K}$. Then the characteristic polynomial of m_{α} is f^s , and we have

$$N_{L/K}(\alpha) = \prod_{i=1}^{d} \alpha_i^s$$

and

$$Tr_{L/K}(\alpha) = s \sum_{i=1}^{d} \alpha_i.$$

Proof. See notes.

Proposition 2.18. Let L/K be a finite extension of fields, and let $m = [L:K]_i$ be its degree of inseparability. Let \mathfrak{S} denote the set of embeddings of L fixing K in a given algebraic closure of K, i.e. $K \hookrightarrow L$. Then, for $\alpha \in L$, we have

$$N_{L/K}(\alpha) = \prod_{\sigma \in \mathfrak{S}} \sigma \alpha^m$$

and

$$Tr_{L/K}(\alpha) = m \sum_{\sigma \in \mathfrak{S}} \sigma \alpha.$$

Remark 2.19. Note that the distinct conjugates of α in a fixed algebraic closure \bar{K} of K are exactly the $\tau\alpha$ for τ in the set of distinct embeddings of $K(\alpha)$ in K, and these $\tau\alpha$'s are the distinct roots of the minimal polynomial of α over K.

Proof. See notes. \Box

Corollary 2.20. Let L/K be a finite separable extension of fields. Let S denote the set of embeddings of L fixing K in a given algebraic closure of K. Then, for $\alpha \in L$, we have

$$N_{L/K}(\alpha) = \prod_{\sigma \in \mathfrak{S}} \sigma \alpha$$

and

$$Tr_{L/K}(\alpha) = \sum_{\sigma \in \mathfrak{S}} \sigma \alpha.$$

Proposition 2.21. Let M/K be a finite field extension and L be an intermediate field in the extension. Then we have

$$N_{M/K} = N_{L/K} \circ N_{M/L}$$

and

$$Tr_{M/K} = Tr_{L/K} \circ Tr_{M/L}.$$

2.3 DISCRIMINANT

Definition 2.22 (Symmetric Bilinear Form). Let V be a K-vector space. A symmetric bilinear form is a bilinear form $\psi: V \times V \to K$ which is K-linear in each variable, with symmetric if $\psi(w,v) = \psi(v,w)$ for all $v,w \in V$.

Example 2.23. $V = K^n$, $Q \in M_n(F)$, $\psi(v, w) = v^T Q w$ bilinear. It is symmetric if and only if Q is.

Another example of symmetric bilinear form is the trace form.

Example 2.24. If L/K is a finite extension of fields, then $\psi : L \times L \to K$ defined by $\psi(\alpha, \beta) = Tr_{L/K}(\alpha\beta)$ for $\alpha, \beta \in L$ is a symmetric K-bilinear form on L.

Definition 2.25. The discriminant of $\psi: V \times V \to K$ with respect to (ordered) basis (v_1, \dots, v_n) of V/K is $\det(\psi(v_i, v_j))_{i,j}$.

Lemma 2.26. If $T: V \to V$ is K-linear, then $\det(\psi(Tv_i, Tv_i)) = \det(T)^2 \det(\psi(v_i, v_i))$.

Proof. See notes.
$$\Box$$

Definition 2.27. The discriminant of a finite field extension L/K related to a basis of L as a K-vector space is the discriminant of the trace form related to that basis $\beta_1, \dots, \beta_n \in L$: $D(\beta_1, \dots, \beta_n) = \det(Tr_{L/K}(\beta_i\beta_j)_{i,j})$.

Remark 2.28. This depends on the basis you choose.

Exercise 3.1. If L/K is inseparable, then $D(\beta_1, \dots, \beta_n) = 0$.

Suppose L/K is separable and let $\sigma_1, \dots, \sigma_n : L \hookrightarrow \overline{K}$ be the distinct embeddings of L in an algebraic closure of K that fix K.

Proposition 3.2. Then $D(\beta_1, \dots, \beta_n) = \det((\sigma_i(\beta_j))_{i,j})^2$.

Proof. Note
$$Tr_{L/K}((\beta_i\beta_j)_{i,j}) = \sum_{k=1}^n \sigma_k(\beta_i)\sigma_k(\beta_j)$$
, and so $(Tr_{L/K}(\beta_i\beta_j))_{i,j} = Q^TQ$, where $Q = (\sigma_i(\beta_j))_{i,j}$.

Definition 3.3. Let $\alpha_1, \dots, \alpha_n \in L$. The Vandermonde matrix $Q(\alpha_1, \dots, \alpha_n)$ with respect to those coefficients is

$$(\alpha_i^{j-1})_{i,j} = \begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \cdots & \alpha_2^{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ 1 & \alpha_n & \cdots & \alpha_n^{n-1} \end{pmatrix}$$

Lemma 3.4. $\det(Q(\alpha_1, \dots, \alpha_n)) = \prod_{1 \le i \le j \le n} (\alpha_j - \alpha_i).$

Proof. Prove by induction. See notes.

Proposition 3.5. Suppose $L = K(\alpha)$, then $D(1, \alpha, \dots, \alpha^{n-1}) = \prod_{1 \le i \le j \le n} (\alpha_j - \alpha_i)^2 \ne 0$.

Proof. Let $\alpha_i = \sigma_i(\alpha)$ for all i. Then $D(1, \alpha, \dots, \alpha^{n-1}) = \det((\alpha_i^{j-1})_{i,j}) = \prod_{i < j} (\alpha_i - \alpha_i)^2$ by the lemma.

Example 3.6. Suppose d is square-free and not 1, and consider $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$. Now $D(1, \sqrt{d}) = (\sqrt{d} - (-\sqrt{d}))^2 = 4d$.

Corollary 3.7. Suppose f is a minimal polynomial of α , then the discriminant can be expressed as $D(1, \alpha, \dots, \alpha^{n-1}) = (-1)^{\frac{n(n-1)}{2}} N_{L/K}(f'(\alpha))$, where f' is the derivative of f.

Proof. Left as an exercise using
$$f'(\alpha_j) = \prod_{i \neq j} (\alpha_j - \alpha_i)$$
.

Corollary 3.8. $D(\beta_1, \dots, \beta_n) \neq 0$ for any ordered basis $(\beta_1, \dots, \beta_n)$ of L/K.

Now let A be a normal domain and suppose B/A is integral.

Definition 3.9. Suppose B is free of rank n over A, i.e, $B \cong A^n$ as an A-module. Let $(\beta_1, \dots, \beta_n) \in B^n$ be an ordered basis of B over A. The discriminant of B/A relative to $(\beta_1, \dots, \beta_n)$ is $D(\beta_1, \dots, \beta_n)$.

Remark 3.10. This discriminant is well-defined up to multiplication up to an element of $(A^{\times})^2$, i.e. square of a unit. Therefore, if $A = \mathbb{Z}$, the discriminant is well-defined, i.e. independence of choice.

In particular, we can define:

Definition 3.11. The discriminant disc(K) of a number field K is the discriminant of \mathcal{O}_k/\mathbb{Z} relative to some basis (but does not matter what choice we make).

Example 3.12. Suppose d is square-free and not 1 and $K = \mathbb{Q}(\sqrt{d})$, then $disc(K) = \begin{cases} d, & d \equiv 1 \pmod{4} \\ 4d, & d \equiv 2, 3 \pmod{4} \end{cases}$.

Suppose K = Q(A) and L/K is finite separable, and let B be the integral closure of A in L, with n = [L : K].

Lemma 3.13. Let $(\alpha_1, \dots, \alpha_n) \in B^n$ be an ordered basis of L as a K-vector space. (Note that it exists.) Let $\beta \in L$ be such that $Tr_{L/K}(\alpha\beta) \in A$ for all $\alpha \in B$, then $disc(\alpha_1, \dots, \alpha_n)\beta \in \sum_{i=1}^n A \cdot \alpha_i$.

Proof. We write $\beta = \sum_{i=1}^{n} a_i \alpha_i$ for some $a_i \in K$. Then $Tr_{L/K}(\alpha_i \beta) = \sum_{j=1}^{n} a_i Tr_{L/K}(\alpha_i \alpha_j) =: c_i$.

Now let
$$Q = (Tr_{L/K}(\alpha_i \alpha_j))_{i,j}$$
, so $Q \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \in A^n$. If we left multiply it by Q^* ,

the adjoint of Q, then $Q^*Q = dI_n$ for some $d \in A$. Note that by our definition we have

$$d = D(\alpha_1, \dots, \alpha_n)$$
. Therefore, $A^n \ni Q^*Q \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = d \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$, and so $da_i \in A$ for all i , which

means $d\beta \in B$.

Corollary 3.14. Let $(\alpha_1, \dots, \alpha_n) \in B^n$ be an ordered basis of L as a K-vector space. Then $\sum_{i=1}^n A\alpha_i \subseteq B \subseteq \sum_{i=1}^n Ad^{-1}\alpha_i$, with $d = D(\alpha_1, \dots, \alpha_n)$.

Remark 3.15. We squeeze B between two free A-modules of rank n.

Definition 3.16. The rank of a module M over a domain A is $rank_A(M) = \dim_K(K \otimes_A M)$.

Corollary 3.17. Suppose in addition that A is Noetherian. Then B is a finitely-generated torsion-free A-module of rank [L:K].

Proof. B is now a submodule of a free A-module, so it is finitely-generated. \Box

3.1 Fractional Ideal

Definition 3.18 (Fractional Ideal). A fractional ideal of a Noetherian domain R is a non-zero finitely-generated R-submodule of Q(R).

Proposition 3.19. Suppose in addition that A is Neotherian. Any fractional ideal of B is a finitely-generated A-module of rank n.

Proof. Suppose $\mathfrak{A} \subseteq Q(B)$ is a fractional ideal of B. If $\beta \in L^{\times}$, then $\beta : B \xrightarrow{\sim} B \cdot \beta$ that sends $x \mapsto \beta x$, so $B\beta$ has A-rank n. Take $\beta \in \mathfrak{A}$, then the rank of \mathfrak{A} over A is bounded below by the rank of B over A, which is n. By assumption, \mathfrak{A} is B-finitely generated in L, so there exists $\alpha \in A$ such that $\alpha \mathfrak{A} \subseteq B$. Now $\alpha : \mathfrak{A} \xrightarrow{\sim} \alpha \mathfrak{A} \subseteq B$, so the rank of \mathfrak{A} over A is bounded above by the rank of B over A, which is B.

Corollary 3.20. In a number field F, any fractional ideal of \mathcal{O}_F is \mathbb{Z} -free of rank $[F:\mathbb{Q}]$.

Theorem 3.21. Suppose A is a Dedekind domain, and B is the integral closure of A in a finite separable extension of Q(A). Then B is a Dedekind domain.

Proof. By corollary, B is a finitely-generated A-module, so any ideal $\mathfrak{b} \subseteq B$ is finitely-generated. Therefore, B is Noetherian as A is. Recall that $\dim(A) \leq 1$ indicates $\dim(B) \leq 1$, and we already know that A normal implies B normal, so we are done.

Corollary 3.22. \mathcal{O}_F is a Dedekind domain for any number field F.

Definition 3.23. A fractional ideal \mathfrak{A} of a domain R is a non-zero R-submodule of Q(R) such that there exists $d \in R \setminus \{0\}$ with $d\mathfrak{A} \subseteq R$.

Lemma 3.24. If R is a Noetherian domain, then a R-submodule $\mathfrak{A} \subseteq Q(R)$ is a fractional ideal if and only if it is R-finitely-generated.

Proof. Left as an exercise. \Box

Definition 3.25. $\mathfrak{A}^{-1} = \{b \in Q(R) \mid ab \in R \ \forall a \in \mathfrak{A}\}.$

Exercise 3.26. This is a fractional ideal if \mathfrak{A} is.

Now for $b \in Q(R)$, we denote (b) = Rb to be the principal fractional ideal. Then $(b)^{-1} = (b^{-1})$. Moreover, $\mathfrak{AB} = R \cdot (ab \mid a \in \mathfrak{A}, b \in \mathfrak{B})$ is also a fractional ideal. The intersection of two fractional ideals is also a fractional ideal. But in general, $\mathfrak{A} \cdot \mathfrak{A}^{-1} \neq R$.

Example 3.27. Note $(x,y) \subsetneq \mathbb{Q}[x,y]$, with $(x,y)^{-1} = \mathbb{Q}[x,y]$. But $(x,y) \cdot (x,y)^{-1} = (x,y) \neq \mathbb{Q}[x,y]$.

4 Lecture 4, September 30, 2022

Lemma 4.1. Let A be a Noetherian domain and $\mathfrak{A} \subseteq A$ is a nonzero ideal. Then

- (a) There exists $k \geq 0$ and nonzero prime ideals $\mathfrak{P}_1, \dots, \mathfrak{P}_k$ of A such that $\mathfrak{P}_1 \dots \mathfrak{P}_k \subseteq \mathfrak{A}$.
- (b) Suppose dim $(A) \leq 1$. If $\mathfrak{P}_1, \dots, \mathfrak{P}_k$ are as in (a) and \mathfrak{P} is prime with $\mathfrak{A} \subseteq \mathfrak{P}$, then $\mathfrak{P} = \mathfrak{P}_i$ for some i.
- Proof. (a) Let X be the set of non zero ideals \mathfrak{B} of A such that there does not exist primes $\mathfrak{P}'_1, \dots, \mathfrak{P}'_l$ with $\mathfrak{P}'_1 \dots \mathfrak{P}'_l \subseteq \mathfrak{B}$. Suppose $X \neq \emptyset$. Order X by the partial relation \subseteq . Any chain in X has a maximal element since A is Noetherian. Therefore, X has a maximal element \mathfrak{A} by Zorn's Lemma. In particular, \mathfrak{A} is not a prime ideal. Therefore, there exists $a, b \in A \setminus \mathfrak{A}$ such that $ab \in \mathfrak{A}$. Consider $\mathfrak{A} + (a)$ and $\mathfrak{A} + (b)$ which contain \mathfrak{A} . So both ideals are not in X, which means there exists $\mathfrak{P}_1, \dots, \mathfrak{P}_m$ and $\mathfrak{Q}_1, \dots, \mathfrak{Q}_n$ such that $\mathfrak{P}_1 \dots \mathfrak{P}_m \subseteq \mathfrak{A} + (a)$ and $\mathfrak{Q}_1 \dots \mathfrak{Q}_n \subseteq \mathfrak{A} + (b)$. Then $\mathfrak{P}_1 \dots \mathfrak{P}_m \mathfrak{Q}_1 \dots \mathfrak{Q}_n \subseteq (\mathfrak{A} + (a))(\mathfrak{A} + (b)) \subseteq \mathfrak{A}$, contradiction.
 - (b) Consider $\mathfrak{P}_1 \cdots \mathfrak{P}_k \subseteq \mathfrak{A} \subseteq \mathfrak{P}$. If $\mathfrak{P} \neq \mathfrak{P}_i$, since \mathfrak{P}_i is maximal, then there exists $b_i \in \mathfrak{P}_i$ with $b_i \notin \mathfrak{P}$. If $\mathfrak{P} \neq \mathfrak{P}_i$ for all i, then $b_1 \cdots b_k \notin \mathfrak{P}$ as \mathfrak{P} is prime. But $b_1 \cdots b_k \in \mathfrak{P}_1 \cdots \mathfrak{P}_k \subseteq \mathfrak{P}$, contradiction.

Lemma 4.2. Let A be a Dedekind domain and $\mathfrak{P} \subseteq A$ be a nonzero prime ideal. Then $\mathfrak{P} \cdot \mathfrak{P}^{-1} = A$.

Proof. Let $a \in \mathfrak{P}\setminus\{0\}$. By Lemma 4.1, we take $k \geq 1$ minimal such that $\mathfrak{P}_1 \cdots \mathfrak{P}_k \subseteq (a)$, and without loss of generality we take $\mathfrak{P}_k = \mathfrak{P}$. Let $b \in \mathfrak{P}_1 \cdots \mathfrak{P}_{k-1}$, $b \notin (a)$. Then $a^{-1}b \notin A$. But $a^{-1}b\mathfrak{P} \subseteq a^{-1}\mathfrak{P}_1 \cdots \mathfrak{P}_k \subseteq A$, so $a^{-1}b \in \mathfrak{P}^{-1}$. If $\mathfrak{P}^{-1}\mathfrak{P} = \mathfrak{P}$, then $a^{-1}b\mathfrak{P} \subseteq \mathfrak{P}$. Since \mathfrak{P} is a finitely-generated faithful A-module, then $a^{-1}b$ is integral over A. But A is integrally closed, so $a^{-1}b \in A$, contradiction, so $\mathfrak{P}^{-1}\mathfrak{P} \neq \mathfrak{P}$. Now this is an ideal bigger than \mathfrak{P} , so it has to be the whole ring since \mathfrak{P} is maximal, i.e. $\mathfrak{P}^{-1}\mathfrak{P} = A$.

Theorem 4.3. Let A be a Dedekind domain and \mathfrak{A} is a fractional ideal of A. Then there exists $k \geq 0$ and nonzero prime ideals $\mathfrak{P}_1, \dots, \mathfrak{P}_k$, and integers $r_1, \dots, r_k \neq 0$ such that $\mathfrak{A} = \mathfrak{P}_1^{r_1} \cdots \mathfrak{P}_k^{r_k}$. Moreover, this factorization is unique up to reordering. If $\mathfrak{A} \subseteq \mathfrak{A}$ as an ideal, then $r_i \geq 1$ for all i.

Proof. Suppose $\mathfrak{A} \subseteq A$ is a nonzero ideal. If $\mathfrak{A} \neq A$ $(m \neq 0)$, there exists $m \geq 1$ such that there exists nonzero ideals $\mathfrak{Q}_1, \dots, \mathfrak{Q}_m$ of A with $\mathfrak{Q}_1 \dots \mathfrak{Q}_m \subseteq \mathfrak{A}$, according to Lemma 4.1. Without loss of generality, $\mathfrak{Q}_m \supseteq \mathfrak{A}$. Then $\mathfrak{Q}_1 \dots \mathfrak{Q}_{m-1} = \mathfrak{Q}_1 \dots \mathfrak{Q}_m \mathfrak{Q}_m^{-1} \subseteq \mathfrak{A} \mathfrak{Q}_m^{-1} \subseteq A$. By induction on m, there exists primes $\mathfrak{Q}'_1, \dots, \mathfrak{Q}'_l$ of A such that $\mathfrak{Q}'_1 \dots \mathfrak{Q}'_l = \mathfrak{A} = \mathfrak{Q}_m^{-1}$. So \mathfrak{A} has a factorization into primes.

In general, suppose \mathfrak{A} is a fractional ideal. Let $d \in A \setminus \{0\}$ such that $d\mathfrak{A} \subseteq A$. Then $d\mathfrak{A} = \mathfrak{P}_1 \mathfrak{P}_k$ with some primes \mathfrak{P}_i and $(d) = \mathfrak{P}'_1 \cdots \mathfrak{P}'_l$, so $\mathfrak{A} = \mathfrak{P}_1 \cdots \mathfrak{P}_k (\mathfrak{P}'_1)^{-1} \cdots (\mathfrak{P}'_l)^{-1}$. For uniqueness, if $\mathfrak{P}_1^{r_1} \cdots \mathfrak{P}_k^{r_k} = \mathfrak{Q}_1^{s_1} \cdots \mathfrak{Q}_l^{s_l}$ with $r_i, s_j \geq 1$ for all i, j, then the right-hand-side contains \mathfrak{P}_k , so there exists \mathfrak{Q}_i (say i = l without loss of generality) such that $\mathfrak{P}_k = \mathfrak{Q}_i$ by Lemma 4.1. Then $\mathfrak{P}_1^{r_1} \cdots \mathfrak{P}_{k-1}^{r_{k-1}} \mathfrak{P}_k^{r_{k-1}} = \mathfrak{Q}_1^{s_1} \cdots \mathfrak{Q}_{l-1}^{s_{l-1}} \mathfrak{Q}_l^{s_{l-1}}$,. By induction on the sum of r_i 's $(\sum_{i=1}^r s_i)$, there are the same factorizations up to the reordering of primes.

Definition 4.4 (Divides). A nonzero ideal \mathfrak{b} of a commutative ring divides an ideal \mathfrak{a} if there exists an ideal \mathfrak{c} such that $\mathfrak{bc} = \mathfrak{a}$.

Let A be a Dedekind domain.

Corollary 4.5. Suppose $\mathfrak{A}, \mathfrak{B}$ are nonzero ideals of A.

- (a) \mathfrak{A} and \mathfrak{B} have no common divisors if and only if $\mathfrak{A} + \mathfrak{B} = A$, i.e. $gcd(\mathfrak{A}, \mathfrak{B}) = A$.
- (b) $\mathfrak{A} \subseteq \mathfrak{B}$ if and only if $\mathfrak{B} \mid \mathfrak{A}$.

Definition 4.6 (Ideal Group). The ideal group I(A) of A is the group of fractional ideals of A under \cdot .

By the theorem, I(A) is a free Abelian group on the nonzero prime ideals of A.

Definition 4.7 (Principal Ideal Group, Ideal Class Group). The principal ideal group P(A) is the subgroup of I(A) of principal fractional ideals.

The class group Cl(A) of A is I(A)/P(A).

Exercise 4.8. The class group is trivial if and only only if A is a PID.

Proposition 4.9. A Dedekind domain A is a PID if and only if it is a UFD.

Proof. Let A be a Dedekind UFD. Let $P \in I(A)$ be prime. If $a \in P \setminus \{0\}$, there exists irreducible element π in A such that $\pi \mid a$ and $\pi \in P$ since P is prime. But (π) is maximal as $\dim(A) \leq 1$, so $P = (\pi)$. Then the unque factorization of ideals implies A is a PID. \square

Definition 4.10 (Class Group). The class group Cl_F of a number field F is $Cl(\mathcal{O}_F)$. (Set $I_F = I(\mathcal{O}_F), P_F = P(\mathcal{O}_F)$). Then there is a map from $\mathfrak{A} \in I(A)$ to $[\mathfrak{A}] \in Cl(A)$.

Example 4.11. $F = \mathbb{Q}(\sqrt{-5})$ and $\mathcal{O}_F = \mathbb{Z}[\sqrt{-5}]$. Then $Cl_{\mathbb{Q}(\sqrt{-5})} \neq 0$. In fact, $[\mathfrak{A}] \neq 0$ for $\mathfrak{A} = (2, 1 + \sqrt{-5})$.

Here $N_{F/\mathbb{Q}}(2) = 4$ and $N_{F/\mathbb{Q}}(1 + \sqrt{-5}) = 6$, so if $\mathfrak{A} = (x)$, then $N_{F/\mathbb{Q}}(x) \in \{\pm 1, \pm 2\}$. But $N_{F/\mathbb{Q}}(a + b\sqrt{-5}) = a^2 + 5b^2$ forces $x = \pm 1$. Therefore, A is the whole ring. This is a contradiction, because

$$\mathbb{Z}[\sqrt{-5}]/(2,1+\sqrt{-5}) \cong \mathbb{Z}[x]/(x^2+5,2,1+x) \cong \mathbb{Z}[x]/(2,1+x) \cong \mathbb{Z}/2\mathbb{Z} = \mathbb{F}_2 \neq 0.$$

Hence, $x \neq \pm 1$, and so $(2, 1 + \sqrt{-5})$ is not principal.

Exercise 4.12. In a Dedekind domain, every ideal can be generated by two elements.

5 Lecture 5, October 3, 2022

5.1 DISCRETE VALUATION RING

Proposition 5.1. Any localization of a Dedekind domain is Dedekind.

Definition 5.2 (Discrete Valuation Ring). A discrete valuation ring (DVR) is a PID with exactly on non-zero prime ideal. The prime ideal therefore has a generator. A generator of this ideal is therefore called a uniformizer.

Proposition 5.3. Let A be a domain, then A is a DVR if and only if it is a local Dedekind domain which is not a field.

Proof. (\Rightarrow) : PID implies Dedekind.

(\Leftarrow): Let $\mathfrak{p} \neq 0$ be the unique prime ideal of A. Choose $\pi \in \mathfrak{p} - \mathfrak{p}^2$, then $(\pi) = \mathfrak{p}^n$ for some n, so n = 1, then $\mathfrak{p}^n = (\pi^n)$, so A is a PID.

Theorem 5.4. A Noetherian domain is Dedekind if and only if its localization at every nonzero prime ideal is a DVR.

Proof. (\Rightarrow) : By the proposition, it is trivial.

(\Leftarrow): Consider A where $A_{\mathfrak{p}}$ is a DVR for all $\mathfrak{p} \neq 0$. Let B be the intersection of $A_{\mathfrak{p}}$ for nonzero prime \mathfrak{p} . Let $\frac{c}{d} \in B$, $c \in A$ and $d \in A \setminus \{0\}$. Set $\mathfrak{A} = \{a \in A \mid ac \in (d)\}$. We have $\frac{c}{d} = \frac{r}{s}$ with $r \in A$ and $s \in A \setminus \mathfrak{p}$. Therefore, $sc = rd \in (d)$, then by definition $s \in \mathfrak{A}$. Then $\mathfrak{A} \not\subseteq \mathfrak{p}$ for all \mathfrak{p} , so $\mathfrak{A} = A$. But that means $1 \in \mathfrak{A}$, so $c \in (d)$, and $\frac{c}{d} \in A$. Therefore, B = A. Now each $A_{\mathfrak{p}}$ is normal, so B = A is normal. Suppose $\mathfrak{q} \neq 0$ is a prime ideal in A. Let $\mathfrak{m} \supseteq \mathfrak{q}$ be a maximal ideal. Then $\mathfrak{q}A_{\mathfrak{m}}$ is a nonzero prime ideal of the DVR $A_{\mathfrak{m}}$, but then $\mathfrak{q}A_{\mathfrak{m}} = \mathfrak{m}A_{\mathfrak{m}}$. Note $\mathfrak{q} = A \cap \mathfrak{q}A_{\mathfrak{m}}$ (exercise) as $\mathfrak{q} \subseteq \mathfrak{m}$. So $\mathfrak{q} = A \cap \mathfrak{q}A_{\mathfrak{m}} = \mathfrak{m}$. Therefore, $\dim(A) \leq 1$.

Definition 5.5 (Discrete Valuation). A discrete valuation v on a field K is a surjective function $v: K \to \mathbb{Z} \cup \{\infty\}$ such that

- 1. $v(a) = \infty$ if and only if a = 0, and
- 2. v(ab) = v(a) + v(b), and
- 3. $v(a+b) \ge \min(v(a), v(b))$ for all $a, b \in K$.

We call v(a) the valuation of a. (K, v) is called a discrete valuation field.

```
Remark 5.6. v(a+b) = \min(v(a), v(b)) if v(a) \neq v(b). v(1) = 0. v(-a) = v(a).
```

Definition 5.7 (Valuation Ring). The valuation ring of v is $\mathcal{O}_v = \{a \in K \mid v(a) \geq 0\}$.

Lemma 5.8. \mathcal{O}_v is a DVR with maximal ideal $\mathfrak{m}_v = \{a \in K \mid v(a) \geq 1\}.$

Proof. Take $\pi \in \mathcal{O}_v$ with $v(\pi) = 1$. Any $a \in \mathcal{O}_v$ with v(a) = n has $v(a\pi^{-n}) = 0$. So $u = a\pi^{-n} \in \mathcal{O}_v$ and this is a unit. Then $a = u\pi^n$. Thus, \mathcal{O}_v is a DVR with uniformizer π .

Definition 5.9 (p-adic Valuation). Let A be Dedekind with Q(A) = K and p is a prime in A. The p-adic valuation of A is $v_p : K \to \mathbb{Z} \cup \{\infty\}$ given by $(a) = p^{v_p(a)}\mathfrak{bc}^{-1}$ where $p \nmid \mathfrak{bc}$, for $a \in K^{\times}$.

Remark 5.10 (Why is this a valuation?). It suffices to check the last property. Note that for $a, b \in K^{\times}$, $(a+b) = p^{v_p(a+b)} \subseteq (a) + (b) = p^{v_p(a)} \frac{b}{\mathfrak{c}} + p^{v_p(b)} \frac{b'}{\mathfrak{c}'} = p^{\min(v_p(a), v_p(b))} \frac{b''}{\mathfrak{c}''}$. Therefore, $v_p(a+b) \ge \min(v_p(a), v_p(b))$.

Remark 5.11. Valuation ring of v_p is A_p .

Example 5.12. Let p be a prime. Then $v_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ with $v_p = v_{(p)}$ is a p-adic valuation. Now $\mathcal{P}_{v_p} = \mathbb{Z}_{(p)} = \{\frac{c}{d} \mid c, d \in \mathbb{Z}, p \nmid d\}$.

Example 5.13. Let K be a field. $v_{\infty}: K(t) \to \mathbb{Z} \cup \{\infty\}$ is given by $v_{\infty}(\frac{f}{g}) = \deg(g) - \deg(f)$ for $f, g \in K[t]$ and $g \neq 0$. Now consider $A = K[t^{-1}]$, then $v_{\infty} = v_{(t^{-1})}$. In particular, $\mathcal{O}_v = A_{(t^{-1})} = K[t^{-1}]_{(t^{-1})}$.

⁴Here we assume $deg(0) = -\infty$.

5.2 Orders

Definition 5.14 (Order). An order R in a normal domain $A \subseteq Q(R)$ is a Noetherian subring of Krull dimension at most 1.

Lemma 5.15. An integral extension B of an order R that is a domain and finitely-generated as an R-algebra is also an order.

Theorem 5.16 (Krull-Akizuki). Let A be a Noetherian domain with $\dim(A) \leq 1$ and K = Q(A). Let L/K be a finite extension and B is any subring of L containing A. Then B is Noetherian and $\dim(B) \leq 1$.

Corollary 5.17. Let A be an order and K = Q(A) and L/K is a finite extension and B is the integral closure of A in L. Then B is a Dedekind domain.

In particular, for a number field F, we know that any subring of F is finitely-generated over \mathbb{Z} if and only if it is contained in \mathcal{O}_F . So an order in \mathcal{O}_F is exactly a subring that is finitely-generated over \mathbb{Z} and has rank $[F:\mathbb{Q}]$.

Example 5.18. Let F be a number field and $F = \mathbb{Q}(\alpha)$ where $\alpha \in \mathcal{O}_F$. Then $\mathbb{Z}[\alpha] \subseteq \mathcal{O}_F$ is an order.

Definition 5.19 (Discriminant). The discriminant disc(R) of an order R in \mathcal{O}_F is its discriminant relative to a \mathbb{Z} -basis.

Remark 5.20. $disc(R) = [\mathcal{O}_F : R]^2 disc(\mathcal{O}_F)$. So if disc(R) is square-free, then $R = \mathcal{O}_F$.

Definition 5.21 (Conductor). Let R be an order with integral closure A. The conductor f_R of R is $f_R = \{a \in A \mid aA \subseteq R\}$.

Remark 5.22. f_R is the largest ideal of A contained in R, so it is also an ideal of R.

Lemma 5.23. $f_R \neq 0$ if and only if A is a finitely-generated R-module.

Proof. (\Leftarrow): Let A be finitely-generated as an R-module, so $A = \sum_{i=1}^{m} Ra_i$, then there exists $r_i \in R \setminus \{0\}$ such that $r_i a_i \in R$ (as $A \subseteq Q(R)$). Now $r_1 \cdots r_m \in f_R$, which is nonzero, and we are done.

(⇒): Consider $r \in f_R \setminus \{0\}$ and $r : AA \hookrightarrow R$ is the map $x \mapsto rx$ and $rA \cong A$ (as R-modules), so R is Notherian implies rA is finitely generated over R (since it is an ideal of R).

Lecture 6, October 5, 2022

7 Lecture 7, October 7, 2022