Thailand October Camp 2016 - Day 1 IPST

18 October 2016

Morning (3 hours)

- 1. In $\triangle ABC$, D, E, F are the midpoints of AB, BC, CA respectively. Denote by O_A, O_B, O_C the incenters of $\triangle ADF, \triangle BED, \triangle CFE$ respectively. Prove that O_AE, O_BF, O_CD intersect in one point.
- 2. Let $m, n \in \mathbb{N}$ satisfies

$$\phi(5^m - 1) = 5^n - 1.$$

Prove that $gcd(m, n) \neq 1$.

3. In $\triangle ABC$ with AB > AC, the tangent to the circumcircle at A intersect line BC at P. Q is the point on AB such that AQ = AC and A lies between B and Q. R is the point on ray AP such that AR = CP. X, Y are the midpoints of AP, CQ respectively. Prove that CR = 2XY.

Afternoon (3 hours)

4. Suppose that m, n, k are positive integers satisfying

$$3mk = (m+3)^n + 1.$$

Prove that k is odd.

- 5. Let ω_1, ω_2 be two circles with different radius, and H be the exsimilicenter of the two circles. X is a point not inside either of the circles. The tangents from X to ω_1 touches ω_1 at P, Q, and the tangents from X to ω_2 touches ω_2 at R, S. If PR passes through H and is not a common tangent line of ω_1, ω_2 , prove that QS also passes through H.
- 6. A and B plays a game, with A choosing a positive integer $n \in \{1, 2, ..., 1001\} = S$. B must guess the value of n by choosing several subsets of S, then A will tell B how many subsets n is in. B will do this three times selecting k_1, k_2 then k_3 subsets of S each. What is the least value of $k_1 + k_2 + k_3$ that guarantees that B will correctly guess the value of n whatever A chooses.

Thailand October Camp 2016 - Day 2 IPST

27 October 2016

Time: 4.5 hours

- 1. For 1.1-1.3 each problem must be written within 1 page
 - 1.1 Let f(A) denote the difference of maximum and minimum value in set A. Find the sum of f(A) when A is the subset of $\{1, 2, ..., n\}$
 - 1.2 Let a 8×8 board be all white initially. We have an operation of changing the color from black to white and white to black on any 13 or 31 rectangle. Determine whether the stage that all 64 cells are black could occur.
 - 1.3 Prove that for all positive integers m there exists a positive integer n such that the set $\{n, n+1, n+2, \ldots, 3n\}$ contains exactly m perfect squares.
- 2. Let f, g be bijections on 1, 2, 3, ..., 2016. Determine the value of

$$\sum_{i=1}^{2016} \sum_{j=1}^{2016} [f(i) - g(j)]^{2559}$$

.

3. Let f be a function on X. Prove that

$$f(X - f(X)) = f(X) - f(f(X))$$

where for a set S, the notation f(S) means $\{f(a)|a \in S\}$.

4. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, the following holds:

$$f(1)^3 + f(2)^3 + \dots + f(n)^3 = (f(1) + f(2) + \dots + f(n))^2$$
.

- 5. Prove that for all polynomials $P \in \mathbb{R}[x]$, $P(x) x|P^n(x) x$.
- 6. Find all polynomials f with real coefficients such that for all reals x, y, z such that x + y + z = 0 we have the following relation:

$$f(xy) + f(yz) + f(zx) = f(xy + yz + zx).$$

Thailand October Camp 2016 - Day 3 IPST

28 October 2016

Time: 4.5 hours

1. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$f(m+n) + f(mn-1) = f(m)f(n) + 2$$

for all $m, n \in \mathbb{Z}$.

- 2. (Serbia MO 2016 P1)
 - (i) Does there exist a positive integer $m > 2016^{2016}$ such that $\frac{2016^m m^{2016}}{m + 2016}$ is a positive integer?
 - (ii) Does there exist a positive integer $m > 2017^{2017}$ such that $\frac{2017^m m^{2017}}{m + 2017}$ is a positive integer?
- 3. Let $a, b, c \in \mathbb{R}^+$. Prove that

$$\sum_{cyc} ab \left(\frac{1}{2a+c} + \frac{1}{2b+c} \right) < \sum_{cyc} \frac{a^3 + b^3}{c^2 + ab}.$$

- 4. We color some squares of a 8 × 8 table black (and others white) such that each row has different number of black squares, and all columns have the same number of black squares. What is the maximum number of pairs of adjacent cells with different color?
- 5. Let $a, b, c \in \mathbb{R}^+$ such that a + b + c = 3. Prove that

$$\sum_{cuc} \left(\frac{a^3 + 1}{a^2 + 1} \right)^4 \ge \frac{1}{27} \left(\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \right)^4.$$

