Introduction to Aerial Robotics Lecture 4

Shaojie Shen
Associate Professor
Dept. of ECE, HKUST

23 February 2021

Outline

- Continuation on Trajectory Generation
- Path Planning

Trajectory Generation

Smooth 3D Trajectories

- Smooth trajectory is beneficial for autonomous flight
 - Smooth trajectories respect the continuous nature of aerial robots
 - The robot should not stop at turns

Smooth 3D Trajectories

- General setup
 - Start, goal positions (orientations)
 - Waypoint positions (orientations)
 - Waypoints can be found by path planning (A*, RRT*, etc)
 - Smoothness criterion
 - Generally translates into minimizing rate of change of "input"

Differential Flatness

- The states and the inputs of a quadrotor can be written as algebraic functions of four carefully selected flat outputs and their derivatives
 - Enables automated generation of trajectories
 - Any smooth trajectory in the space of flat outputs (with reasonably bounded derivatives) can be followed by the under-actuated quadrotor
 - A possible choice:

$$\circ \boldsymbol{\sigma} = [x, y, z, \psi]^T$$

– Trajectory in the space of flat outputs:

$$\circ \boldsymbol{\sigma}(t) = [T_0, T_M] \to \mathbb{R}^3 \times SO(2)$$

Polynomial Trajectories

- Flat outputs:
 - $-\boldsymbol{\sigma} = [x, y, z, \psi]^T$
- Trajectory in the space of flat outputs:
 - $-\boldsymbol{\sigma}(t) = [T_0, T_M] \to \mathbb{R}^3 \times SO(2)$
- Polynomial functions can be used to specify trajectories in the space of flat outputs
 - Easy determination of smoothness criterion with polynomial orders
 - Easy and closed form calculation of derivatives
 - Decoupled trajectory generation in three dimensions

Smooth 1D Trajectory

- Design a trajectory x(t) such that:
 - -x(0)=a
 - -x(T)=b

Smooth 1D Trajectory

• 5th order polynomial trajectory:

$$-x(t) = c_5 t^5 + c_4 t^4 + c_3 t^3 + c_2 t^2 + c_1 t + c_0$$

Boundary conditions

	Position	Velocity	Acceleration
t = 0	a	0	0
t = T	b	0	0

• Solve:

$$\begin{bmatrix} a \\ b \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ T^5 & T^4 & T^3 & T^2 & T & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 5T^4 & 4T^3 & 3T^2 & 2T & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 20T^3 & 12T^2 & 6T & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_5 \\ c_4 \\ c_3 \\ c_2 \\ c_1 \\ c_0 \end{bmatrix}$$

Smooth Multi-Segment Trajectory

- Given waypoints to a desired goal
- Smooth the corners of straight line segments
- Preferred constant velocity motion at v
- Preferred zero acceleration
- Requires special handling of short segments

Smooth 1D Trajectory

• Generate each 5^{th} order polynomial independently:

$$-x(t) = c_5 t^5 + c_4 t^4 + c_3 t^3 + c_2 t^2 + c_1 t + c_0$$

Boundary conditions

	Position	Velocity	Acceleration
t = 0	a	v_0	0
t = T	b	v_T	0

• Solve:

$$\begin{bmatrix} a \\ b \\ v_0 \\ v_T \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ T^5 & T^4 & T^3 & T^2 & T & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 5T^4 & 4T^3 & 3T^2 & 2T & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 20T^3 & 12T^2 & 6T & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_5 \\ c_4 \\ c_3 \\ c_2 \\ c_1 \\ c_0 \end{bmatrix}$$

Optimization-based Trajectory Generation

- Explicitly minimize certain derivatives in the space of flat outputs
- Quadrotor dynamics

Derivative	Translation	Rotation	Thrust
0	Position		
1	Velocity		
2	Acceleration	Rotation	
3	Jerk	Angular Velocity	
4	Snap	Angular Acceleration	Differential Thrust
5	Crackle	Angular Jerk	Change in Thrust

Optimization-based Trajectory Generation

- Explicitly minimize certain derivatives in the space of flat outputs
 - Minimum jerk: minimize angular velocity, good for visual tracking
 - Minimum snap: minimize differential thrust, saves energy

Derivative	Translation	Rotation	Thrust
0	Position		
1	Velocity		
2	Acceleration	Rotation	
3	Jerk	Angular Velocity	
4	Snap	Angular Acceleration	Differential Thrust
5	Crackle	Angular Jerk	Change in Thrust

Multi-segment minimum snap trajectory

Formulation – segment durations must be known!

$$f(t) = \begin{cases} f_1(t) \doteq \sum_{i=0}^{N} p_{1,i}(t - T_0)^i & T_0 \leq t \leq T_1 \\ f_2(t) \doteq \sum_{i=0}^{N} p_{2,i}(t - T_1)^i & T_1 \leq t \leq T_2 \end{cases}$$

$$\vdots$$

$$f_M(t) \doteq \sum_{i=0}^{N} p_{M,i}(t - T_{M-1})^i & T_{M-1} \leq t \leq T_M$$

Subject to:

Derivative constraints:
$$\begin{cases} f_j^{(k)}(T_{j-1}) &= x_{0,j}^{(k)} \\ f_j^{(k)}(T_j) &= x_{T,j}^{(k)} \end{cases}$$

Continuity constraints:
$$f_j^{(k)}(T_j) = f_{j+1}^{(k)}(T_j)$$

- Minimum degree polynomial to ensure smoothness for one-segment trajectory:
 - Minimum jerk: N = 2 * 3(jerk) 1 = 5
 - Minimum snap: N = 2 * 4(snap) 1 = 7

Cost function for one polynomial segment:

$$f(t) = \sum_{i} p_{i} t^{i}$$

$$\Rightarrow f^{(4)}(t) = \sum_{i \ge 4} i(i-1)(i-2)(i-3)t^{i-4}p_{i}$$

$$\Rightarrow \left(f^{(4)}(t)\right)^{2} = \sum_{i \ge 4, j \ge 4} i(i-1)(i-2)(i-3)j(j-1)(j-2)(j-3)t^{i+j-8}p_{i}p_{j}$$

$$\Rightarrow J(T) = \int_{0}^{T} \left(f^{4}(t)\right)^{2} dt = \sum_{i \ge 4, j \ge 4} \frac{i(i-1)(i-2)(i-3)j(j-1)(j-2)(j-3)}{i+j-7} T^{i+j-7}p_{i}p_{j}$$

$$\Rightarrow J(T) = \int_{0}^{T} \left(f^{4}(t)\right)^{2} dt = \begin{bmatrix} \vdots \\ p_{i} \\ \vdots \end{bmatrix}^{T} \begin{bmatrix} \vdots \\ (i-1)(i-2)(i-3)j(j-1)(j-2)(j-3) \\ i+j-7 \end{bmatrix} T^{i+j-7} \cdots \begin{bmatrix} \vdots \\ p_{j} \\ \vdots \end{bmatrix}$$

$$\Rightarrow J_{k}(T) = \mathbf{p}_{k}^{T} \mathbf{Q}_{k} \mathbf{p}_{k}$$
 Minimize this!

- Derivative constraint for one polynomial segment
 - Also models waypoint constraint (0^{th} order derivative)

$$f_{j}^{(k)}(T_{j}) = x_{j}^{(k)}$$

$$\Rightarrow \sum_{i \geq k} \frac{i!}{(i-k)!} T_{j}^{i-k} p_{j,i} = x_{T,j}^{(k)}$$

$$\Rightarrow \left[\cdots \quad \frac{i!}{(i-k)!} T_{j}^{i-k} \quad \cdots \right] \begin{bmatrix} \vdots \\ p_{j,i} \\ \vdots \end{bmatrix} = x_{T,j}^{(k)}$$

$$\Rightarrow \left[\cdots \quad \frac{i!}{(i-k)!} T_{j-1}^{i-k} \quad \cdots \right] \begin{bmatrix} \vdots \\ p_{j,i} \\ \vdots \end{bmatrix} = \begin{bmatrix} x_{0,j}^{(k)} \\ x_{T,j}^{(k)} \end{bmatrix}$$

$$\Rightarrow \mathbf{A}_{j} \mathbf{p}_{j} = \mathbf{d}_{j}$$

- Continuity constraint between two segments:
 - Ensures continuity between trajectory segments when no specific derivatives are given

$$f_{j}^{(k)}(T_{j}) = f_{j+1}^{(k)}(T_{j})$$

$$\Rightarrow \sum_{i \geq k} \frac{i!}{(i-k)!} T_{j}^{i-k} p_{j,i} - \sum_{l \geq k} \frac{l!}{(l-k)!} T_{j}^{l-k} p_{j+1,l} = 0$$

$$\Rightarrow \left[\cdots \quad \frac{i!}{(i-k)!} T_{j}^{i-k} \quad \cdots \quad -\frac{l!}{(l-k)!} T_{j}^{l-k} \quad \cdots \right] \begin{bmatrix} \vdots \\ p_{j,i} \\ \vdots \\ p_{j+1,l} \\ \vdots \end{bmatrix} = 0$$

$$\Rightarrow \left[\mathbf{A}_{j} \quad -\mathbf{A}_{j+1} \right] \begin{bmatrix} \mathbf{p}_{j} \\ \mathbf{p}_{j+1} \end{bmatrix} = 0$$

Constrained quadratic programming (QP) formulation:

min
$$\begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_M \end{bmatrix}^T \begin{bmatrix} \mathbf{Q}_1 \\ & \ddots \\ & \mathbf{Q}_M \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_M \end{bmatrix}$$
s. t. $\mathbf{A}_{eq} \begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_M \end{bmatrix} = \mathbf{d}_{eq}$

- Direct optimization of polynomial trajectories is numerically unstable
- A change of variable that instead optimizes segment endpoint derivatives is preferred
- We have $M_j \mathbf{p}_j = \mathbf{d}_j$, where M_j is a mapping matrix that maps polynomial coefficients to derivatives

$$J = \begin{bmatrix} \mathbf{d}_1 \\ \vdots \\ \mathbf{d}_M \end{bmatrix}^T \begin{bmatrix} \mathbf{M}_1 & & & \\ & \ddots & & \\ & & \mathbf{M}_M \end{bmatrix}^{-T} \begin{bmatrix} \mathbf{Q}_1 & & & \\ & \ddots & & \\ & & \mathbf{Q}_M \end{bmatrix} \begin{bmatrix} \mathbf{M}_1 & & & \\ & \ddots & & \\ & & \mathbf{M}_M \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{d}_1 \\ \vdots \\ \mathbf{d}_M \end{bmatrix}$$

- Use a selection matrix \mathbf{C} to separate free (\mathbf{d}_P) and constrained (\mathbf{d}_F) variables
 - Free variables : derivatives unspecified, only enforced by continuity constraints

$$J = \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix}^T \mathbf{C} \mathbf{M}^{-T} \mathbf{Q} \mathbf{M}^{-1} \mathbf{C}^T \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix} = \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix}^T \begin{bmatrix} \mathbf{R}_{FF} & \mathbf{R}_{FP} \\ \mathbf{R}_{PF} & \mathbf{R}_{PP} \end{bmatrix} \begin{bmatrix} \mathbf{d}_F \\ \mathbf{d}_P \end{bmatrix}$$

• Turned into an unconstrained quadratic programming that can be solved in closed form:

$$J = \mathbf{d}_F^T \mathbf{R}_{FF} \mathbf{d}_F + \mathbf{d}_F^T \mathbf{R}_{FP} \mathbf{d}_P + \mathbf{d}_P^T \mathbf{R}_{PF} \mathbf{d}_F + \mathbf{d}_P^T \mathbf{R}_{PP} \mathbf{d}_P$$
$$\mathbf{d}_P^* = -\mathbf{R}_{PP}^{-1} \mathbf{R}_{FP}^T \mathbf{d}_F$$

Fixed derivatives: fixed start, goal state, and intermediate positions

Free derivatives: all derivatives at intermediate

connections.

Final trajectory

Aggressive Quadrotor Part II

Daniel Mellinger and Vijay Kumar GRASP Lab, University of Pennsylvania

How to Ensure Collision-Free Trajectories?

Smooth Trajectory Generation with Guaranteed Obstacle Avoidance

Step 4. generate **dynamicallyfeasible** trajectories that fits **entirely** within the flight corridor

Step 3. inflate flight corridor

Smooth Trajectory Generation with Guaranteed Obstacle Avoidance

- Instant linear constraints:
 - Start, goal state constraint (Ap = b)
 - Transition point constraint ($\mathbf{Ap} = \mathbf{b}, \mathbf{Ap} \leq \mathbf{b}$)
 - Continuity constraint(Ap_i = Ap_{i+1})
- Interval linear constraints:
 - Boundary constraint $(\mathbf{A}(t)\mathbf{p} \leq \mathbf{b}, \forall t \in [t_l, t_r])$
 - Dynamic constraint $(\mathbf{A}(t)\mathbf{p} \leq \mathbf{b}, \forall t \in [t_l, t_r])$
 - Velocity constraints
 - Acceleration constraints

Smooth Trajectory Generation with Guaranteed Obstacle Avoidance

- Online generation of polynomial trajectories that fits entirely within the flight corridor
 - Iteratively add extrema points of the polynomial as point constraints for the QP
 - Proven safety with limited (usually very small) number of constraint points

min
$$\mathbf{p}^T \mathbf{H} \mathbf{p}$$

s.t. $\mathbf{A}_{eq} \mathbf{p} = \mathbf{b}_{eq}$
 $\mathbf{A}_{lq} \mathbf{p} \leq \mathbf{b}_{lq}$

Simulation Results

simulation	1	2	3	4
C.Richter, et al [2]	0.6246	1.0897	8.8087	99.1344
Our previous method [17]	5.8910	7.0701	7.8875	5.2311
The proposed method	0.4626	0.4186	0.3146	0.4677

[2] C. Richter, A. Bry and N. Roy, 2013 [17] J. Chen, K. Su and S. Shen, ROBIO 2015

(a) Short-distance (26 m)

(b) Short-distance (28 m)

(c) Medium-distance (46 m)

(d) Long-distance (64 m)

Online Experiment

II. Autonomous Flight in Cluttered Indoor Environments

Extension: Kinodynamic Search, Fast Collision Avoidance

Robust and Efficient Quadrotor Trajectory Generation for Fast Autonomous Flight

Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu and Shaojie Shen

香港科技大學-大疆創新科技聯合實驗室 HKUST-DJI JOINT INNOVATION LABORATORY

Extension: Temporal Optimization, Teach and Repeat

Optimal Trajectory Generation for Quadrotor Teach-and-Repeat

Fei Gao, Luqi Wang, Kaixuan Wang, William Wu, Boyu Zhou, Luxin Han and Shaojie Shen

Path Planning

Motivation

- Why we need path planning?
 - Fundamental problem in robotics finding collision-free route from A to B
- Hierarchical approach (path planning + trajectory generation)
 - Low complexity solution
 - Path planning can be more efficient since it's in a much lower dimension state space.

We already know how to fit the polynomial for given waypoints

Then how to get these collision-free waypoints? → the role of path planning

Outline

- Configuration space obstacle
- Sampling-based methods
 - Probabilistic roadmap (PRM)
 - Rapidly exploring random tree (RRT)
- Search-based methods
 - General graph search: DFS, BFS
 - A* search

Grid-based graph: use grid as vertices and grid connections as edges

Workspace Space Obstacle

- Planning in workspace
 - Robot has different shape and size
 - Collision detection requires knowing the robot geometry time consuming and hard

Configuration Space

- Robot configuration: a specification of the positions of all points of the robot
- Robot degree of freedom (DOF): The minimum number n of <u>real-valued</u> coordinates needed to represent the robot configuration
- Robot configuration space: a n-dim space containing all possible robot configurations, denoted as C-space
- Each robot pose is a point in the C-space
- Examples

	Configuration	C-space	DOF
Rigid rotation	R	SO(3)	3
Rigid motion	$g = (\boldsymbol{R}, \boldsymbol{p})$	$SE(3) = SO(3) \times \mathbb{R}^3$	6
Flat outputs	$\sigma = (\psi, p)$	$SO(2) \times \mathbb{R}^3$	4

Configuration Space Obstacle

- Planning in configuration space: C-space
 - Robot is represented by a point in C-space, e.g. position (a point in \mathbb{R}^3), pose (a point in SO(3)), etc.
 - Obstacles need to be represented in configuration space (one-time work prior to motion planning), called configuration space obstacle, or Cobstacle
 - C-space = (C-obstacle) U (C-free)
 - The path planning is finding a path between start point q_{start} and goal point q_{goal} within C-free

Workspace and Configuration Space Obstacles

- In workspace
 - Robot has shape and size (i.e. hard for motion planning)
- In configuration space: C-space
 - Robot is a point (i.e. easy for motion planning)
 - Obstacle are represented in C-space prior to motion planning
- Representing an obstacle in C-space can be extremely complicated. So approximated (but more conservative) representations are used in practice.

If we model the robot conservatively as a ball with radius δ_r , then the C-space can be constructed by inflating obstacle at all directions by δ_r .

Basic Idea

 Build a graph to characterizes the free configuration space in probabilistic manner, and then use graph search algorithm to find a path

Algorithm

- Initialize set of points with q_{start} and q_{goal}
- Randomly sample points in configuration space
- Connect nearby points if they can be reached from each other
- Find path from q_{start} to q_{goal} in the graph
- Step by step illustration as follows

• Free space and obstacle space

 Configurations are sampled by picking each coordinate at random.

C-space

Sampled configurations are tested for collision.

C-space

• The collision-free configurations are retained as milestones.

C-space

• Each milestone is linked by straight paths to its nearest neighbors.

C-space

• Eliminate collision links.

C-space

• The collision-free links are retained as local paths to form the PRM.

C-space

Connect the start and goal point to the roadmap.

C-space

 Search the roadmap for a path from start to goal point (e.g. A* algorithm).

C-space

PRM's Pros and Cons

Pros:

- Probabilistically complete: i.e., with probability one, if run for long enough the graph will contain a solution path if one exists.
- Can cope with high-dimensional system

Cons:

- Collision detection takes majority of time
- Suboptimal solution if only limited samples are given
- Build graph over C-space but no particular focus on generating a path

- Basic Idea
 - Starting from the start configuration q_{start} , build up a **tree** through generating "next configuration"
- Algorithm

```
Algorithm BuildRRT
Input: Start configuration q_{start}, number of vertices in RRT K
Output: RRT T
L1: G.init(q_{start})
L2: for \ k = 1 \ to \ K
L3: q_{rand} \leftarrow \text{RAND\_CONF}();
L4: q_{near} \leftarrow \text{NEAREST\_VERTEX}(q_{rand}, T);
L5: q_{new} \leftarrow \text{NEW\_CONF}(q_{near}, q_{rand});
L6: T.\text{add\_vertex}(q_{new}); T.\text{add\_edge}(q_{near}, q_{new})
L7: return \ G
```

• L1: T.init(q_{start}); Initialize

- L3: $q_{rand} \leftarrow RAND_CONF()$; generate a random configuration
 - $-q_{rand}$ is sampled from a uniform distribution on C-space

C-space

- L4: $q_{near} \leftarrow \text{NEAREST_VERTEX}(q_{rand}, T)$; find the nearest configuration
 - Define the proper distance

C-space

- L5: $q_{new} \leftarrow \text{NEW_CONF}(q_{near}, q_{rand})$; generate a new configuration
- L6: T.add_vertex(q_{new}); T.add_edge(q_{near} , q_{new}); add the new configuration

C-space C-space

RRT*

Basic Idea

- RRT is simple, but is prone to be probabilistic incomplete.
- Add rewire function: swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) path
- RRT* is asymptotically optimal.

[Karaman, Sertac, and Emilio Frazzoli. "Sampling-based algorithms for optimal motion planning." *The international journal of robotics research* 30.7 (2011): 846-894.]

RRT*

Algorithm

```
Algorithm 6: RRT*
 1 V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;
 2 for i = 1, ..., n do
            x_{\text{rand}} \leftarrow \texttt{SampleFree}_i;
 3
            x_{\text{nearest}} \leftarrow \text{Nearest}(G = (V, E), x_{\text{rand}});
            x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x_{\text{rand}});
            if ObtacleFree(x_{\text{nearest}}, x_{\text{new}}) then
 6
                   X_{\text{near}} \leftarrow \text{Near}(G = (V, E), x_{\text{new}}, \min\{\gamma_{\text{RRT}^*}(\log(\text{card}(V)) / \text{card}(V))^{1/d}, \eta\});
 7
                  V \leftarrow V \cup \{x_{\text{new}}\};
                   x_{\min} \leftarrow x_{\text{nearest}}; c_{\min} \leftarrow \texttt{Cost}(x_{\text{nearest}}) + c(\texttt{Line}(x_{\text{nearest}}, x_{\text{new}}));
                   foreach x_{near} \in X_{near} do
                                                                                                         // Connect along a minimum-cost path
10
                         if CollisionFree(x_{\text{near}}, x_{\text{new}}) \land \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}})) < c_{\text{min}} then
11
                            x_{\min} \leftarrow x_{\text{near}}; c_{\min} \leftarrow \texttt{Cost}(x_{\text{near}}) + c(\texttt{Line}(x_{\text{near}}, x_{\text{new}}))
12
                  E \leftarrow E \cup \{(x_{\min}, x_{\text{new}})\};
13
                  foreach x_{\text{near}} \in X_{\text{near}} do
                                                                                                                                                   // Rewire the tree
14
                         if CollisionFree(x_{\text{new}}, x_{\text{near}}) \land \text{Cost}(x_{\text{new}}) + c(\text{Line}(x_{\text{new}}, x_{\text{near}})) < \text{Cost}(x_{\text{near}})
15
                         then x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}});
                         E \leftarrow (E \setminus \{(x_{\text{parent}}, x_{\text{near}})\}) \cup \{(x_{\text{new}}, x_{\text{near}})\}
16
17 return G = (V, E);
```

RRT* vs RRT

Search-based Method

- State space graph: a mathematical representation of a search algorithm
 - For every search problem, there's a corresponding state space graph
 - Connectivity between nodes in the graph is represented by (directed or undirected) edges

Ridiculously tiny search graph for a tiny search problem

Grid-based graph: use grid as vertices and grid connections as edges

The graph generated by probabilistic roadmap (PRM)

From Graph to Search Tree

- The search always start from start state X_s
 - Searching the graph produces a search tree, this is a "what if" tree of plans and outcomes
 - Back-tracing a node in the search tree gives us a path from the start state to that node
 - For many problems we can never actually build the whole tree, too large or inefficient – we only want to reach the goal node asap.

How to Construct a Search Tree?

- Maintain a container to store all the nodes to be visited
 - Intuition: When we "discover" a node, we store it in our "memory". We can only visit one node at a time, but we can teleport to any node that we discover before.
- The container is initialized with the start state X_s
- Loop
 - Remove a node from the container according to some pre-defined score function
 - Visit a node
 - Expansion: Obtain all neighbors of the node, and push them into the container
 - Discover all its neighbors
- End Loop
- Question 1: When to end the loop?
 - Possible option: End the loop when the container is empty
- Question 2: What if the graph is cyclic?
 - When a node is removed from the container (expanded / visited), it should never be added back to the container again
- Question 3: In what way to remove the right node such that the goal state can be reached as soon as possible, which results in less expansion of the graph node.

Depth First Search (DFS)

Strategy: remove / expand the deepest node in the container

Depth First Search (DFS)

Implementation: maintain a last in first out (LIFO) container (i.e. stack)

Breadth First Search (BFS)

Strategy: remove / expand the shallowest node in the container

Breadth First Search (BFS)

Implementation: maintain a first in first out (FIFO) container (i.e. queue)

Costs on Actions

- A practical search problem has a cost "C" from a node to its neighbor
 - Length, time, energy, etc.
- When all weight are 1, BFS finds the least-cost path with minimal steps
- For general cases, how to find the least-cost path as soon as possible?

Dijkstra's Algorithm

- Strategy: expand/visit the node with cheapest accumulated cost g(n)
 - g(n): The current best estimates of the accumulated cost from the start state to node "n"
 - Update the accumulated costs g(m) for all unexpanded neighbors "m" of node "n"
 - A node that has been expanded/visited is guaranteed to have the smallest cost from the start state

Dijkstra's Algorithm

- Maintain a priority queue to store all the nodes to be expanded
- The priority queue is initialized with the start state X_s
- Assign $g(X_s)=0$, and g(n)=infinite for all other nodes in the graph
- Loop
 - If the queue is empty, return FALSE; break;
 - Remove the node "n" with the lowest g(n) from the priority queue
 - Mark node "n" as expanded
 - If the node "n" is the goal state, return TRUE; break;
 - For all unexpanded neighbors "m" of node "n"
 - \circ If g(m) = infinite
 - Push node "m" into the queue
 - $\circ \quad \text{If g(m)} > g(n) + C_{nm}$
 - $g(m)=g(n)+C_{nm}$
 - end
- End Loop

Dijkstra's Algorithm

Issues of Dijkstra's Algorithm

- The good:
 - Complete and optimal
- The bad:
 - Can only see the cost accumulated so far (i.e. the uniform cost), thus exploring next state in every "direction"
 - No information about goal location

Search Heuristics

- Overcome the shortcomings of uniform cost search by inferring the least cost to goal (i.e. goal cost)
- Designed for particular search problem
- Examples: Manhattan distance VS. Euclidean distance

A* Search: Combining Dijkstra's and a Heuristic

- Accumulated cost
 - g(n): The current best estimates of the accumulated cost from the start state to node "n"
- Heuristic
 - h(n): The estimated least cost from node n to goal state (i.e. goal cost)
- The least estimated cost from start state to goal state passing through node "n" is f(n) = g(n) + h(n)
- Strategy: expand the node with cheapest f(n) = g(n) + h(n)
 - Update the accumulated costs g(m) for all unexpanded neighbors "m"
 of node "n"
 - A node that has been expanded is guaranteed to have the smallest cost from the start state

A* Algorithm

- Maintain a priority queue to store all the nodes to be expanded
- The heuristic function h(n) for all nodes are pre-defined
- The priority queue is initialized with the start state X_s
- Assign $g(X_s)=0$, and g(n)=infinite for all other nodes in the graph
- Loop
 - Only difference comparing
 If the queue is empty, return FALSE; break; to Dijkstra's algorithm
 - Remove the node "n" with the lowest f(n) = g(n) + h(n) from the priority queue
 - Mark node "n" as expanded
 - If the node "n" is the goal state, return TRUE; break;
 - For all unexpanded neighbors "m" of node "n"
 - \circ If g(m) = infinite
 - Push node "m" into the queue
 - $\circ \quad \text{If g(m)} > g(n) + C_{nm}$
 - $g(m)=g(n)+C_{nm}$
 - end
- End Loop

A* Search Example

Is A* Optimal?

- What went wrong?
- For node A: actual least cost to goal (i.e. goal cost) < estimated least cost to goal (i.e. heuristic)
- We need the estimate to be less than actual least cost to goal (i.e. goal cost) for all nodes!

Admissible Heuristics

- A Heuristic h is admissible (optimistic) if:
 - h(n) < h*(n) for all node "n", where h*(n) is the true least cost to goal from node "n"
- If the heuristic is admissible, the A* search is optimal
- Coming up with admissible heuristics is most of what's involved in using A* in practice.
- Example:

Dijkstra's VS A*

Dijkstra's algorithm expanded in all directions

 A* expands mainly towards the goal, but does not hedge its bets to ensure optimality

Reading

 Paper Reading: "Minimum snap trajectory generation and control for quadrotors", Daniel Mellinger and Vijay Kumar.

Logistics

- Project 1, phase 1 due today (02/23)
- Project 1, phase 2 is released (02/23)
 - Due in one week: 03/02
- We will switch to mixed-mode teaching next Tuesday (03/02)
- Additional optional physical labs will be offered
 - Grading scheme remains unchanged for those who choose to stay online
 - Grading scheme will be modified for those who choose to add physical labs
 - Please complete the preference survey by this Friday (02/26)
 - Lots of fun with robots, guaranteed (with heavier workload of course) ☺