Introduction to Digital Logic EECS/CSE 31L

Final Project: Simple Processor

Prepared by: Jack Melcher Student ID: 67574625

EECS Department Henry Samueli School of Engineering University of California, Irvine

March 10, 2015

1 Block Description

The processor fetches a 32-bit set of instructions, decodes the instructions in a controller, performs the specified task, and stores the results into a register file.

The processor is made up of several components.

- Counter (assignment 4)
- Memory
- Controller
- Register File (assignment 4)
- Selector for A input
- Selector for B input
- ALU 32 (assignment 3)

2 Input/Output Port Description

Package(c31L_pack): Contains all the necessary constants used throughout all the blocks

Constant Name	Data Type	Default Value	Description
BW	INTEGER	32	Size of logic that is being used
OP_BINARY	STD_LOGIC 010010 (18) N		Number of Operations in the
			Memory
Reg_field	INTEGER	6	Determines size of register file
			and used to as its addr size
NBIT	INTEGER	6	Max bits the counter uses
Alu_function_type	std_logic_vector	3 downto 0	Used to help tie an alu operation
			to a given number
Mux_instructions	Array of	((OP-1) downto 0)	Stores all the hard coded
	std_logic_vector	(BW-1 downto 0)	instructions for the processor

Processor (The outputs are used to help display values of processor instruction results)

Port name	Port size	Port	Description
		Type	
clk	1	IN	Trigger the processor fetch and write events
Pc_enable	1	IN	Enable the counter to count
Rst_s	1	IN	Synchronous reset for the Counter and RegFile
memory_addrs	NBIT-1 downto 0	OUT	Determine which instruction is read
Instruction	BW-1 downto 0	OUT	Shows the 32 bit instruction
reg_source	BW-1 downto 0	OUT	The first value read from register file
reg_target	BW-1 downto 0	OUT	The second value read from register file
immediate	BW-1 downto 0	OUT	The immediate value from instruction
carry	1	OUT	The carry out value from ALU
output	BW-1 downto 0	OUT	Results of ALU operation

Counter

Port name	Port size Port Ty		Port Type	Description	
Clk	1		IN	Triggers the counting	
Rst_s	1		IN	Will reset the counter	to zero when active
dout	NBIT-1 downto 0		OUT	The counter's value af	ter counting
Variable Name Data Typ		e	Port size	Description	
count INTEGE		R	NBIT-1 downto 0	Aids in the counting	
					process

Memory

Port name	Port size	Port Type	Description
addr	NBIT-1 downto 0	IN	Determines which instructions are fetched
Read_data	BW-1 downto 0	OUT	The instructions that are sent to controller

Controller

Port name	Port size	Port Type	Description		
instruction	31 downto 0	IN	Instructions fetched from memory		
rt_and_imm	31 downto 0	OUT	Immediate value		
write_enable	1	OUT	Determines whether the register file can write		
rs_index	2 downto 0	OUT	Address of register source		
rt_index	1	OUT	Address of register target		
rd_index	1	OUT	Address of register destination		
b_mux_sel	31 downto 0	OUT	Instruction type to determine B input of ALU		
alu_func	alu_function_type	OUT	Operation the ALU is supposed to perform		

Register File

Port name	Port size	Port		Description		
	Type					
Clk	1	IN		Triggers the registe	r process	
Rst_s	1	IN		Will reset the regist	ers to zero	
write_enable	1 IN			Enables writing to t	he registers	
rs_index	Reg_field -1 downto 0 IN			The address of the register to be read from		
rt_index	Reg_field -1 downto 0 IN			The address of the register to be read from		
rd_index	Reg_field -1 downto 0 IN			The address of the register to be written to		
reg_source_out	BW-1 downto 0 OUT		1	The data value read from register file		
reg_target_out	BW-1 downto 0	BW-1 downto 0 OUT		The data value read from register file		
reg_dest_new	BW-1 downto 0 IN			The data value to be written to the register		
Variable Name	Data Type	Data Type 1		size	Description	
regfile	Array (0 to 2** Reg_fi	eld)	d) NBIT-1 downto 0		The registers	

Selector for A input

Port name	Port size	Port Type	Description		
reg_source	31 downto 0	IN	The data value read from register file		
immediate	31 downto 0	IN	Immediate provided by the controller		
alu_op	1	INOUT	The expected ALU operation to be performed		
instruction_type			Selects A input based on RI value		
opsel	2 downto 0	IN	The ALU operation select value		
mode	1	OUT	The ALU mode select value		
output	31 downto 0	OUT	What value is sent to A input of ALU		

Selector for B input

Port name	Port size	Port Type	Description
in0	BW-1 downto 0	IN	Register target value
in1	BW-1 downto 0	IN	Immediate value
sel	1	INOUT	Selects B input based on RI value
output	BW-1 downto 0		What value is sent to B input of ALU

ALU 32-bit

Port name	Port size	Port Type	Description	
A	31 downto 0	IN	Value of first input	
В	31 downto 0	IN	Value of second input	
Cin	1	SIGNAL	The carry in value	
opsel	2 downto 0	IN	Determine which operation to perform in units	
mode	1	OUT	Determine whether the output is from arithmetic	
			operation or logic operation	
cout	1	OUT	The carry out value	
output	31 downto 0	OUT	The output value of operation	

3 Design Schematics

Instruction Format

1 bit	6 bit	6 bit	4 bit	6 bit	9bit
Instruction	Register	Register	Function	Register	Immediate
Type (RI)	Source (rs)	Destination (rd)		Target (rt)	(Imm)
Whether ALU	Address of	The address for	Code for	Address of rt	The last 9 bits
works with	rs	which the results	ALU	and the first 6	of the
Immediate		of ALU will be	operation	bits of	Immediate
		written to		Immediate	

ALU Operations:

Function	Register Operation	Immediate Operation	Description
	(RI = '0')	(RI = '1')	
0000	NOP	NOP	No Operation
0001	rs + rt	a+ Imm	Add
0010	rs + rt '	a+ Imm '	Sub
1011	rs	Imm	Move
1100	rs +1	Imm +1	increment
1101	rs -1	Imm -1	decrement
1110	rs + rt + 1	a+ Imm +1	Add & Increment
0101	rs AND rt	a AND Imm	Bit-wise AND
0110	rs OR rt	a OR Imm	Bit-wise OR
1000	rs XOR rt	a XOR Imm	Bit-wise Exclusive OR
0111	rs '	Imm'	Compliment
1001	shl rs	shl Imm	1 Bit Shift Left

Design:

Compilation 4

Started : "Launching ISE Text Editor to edit pooriam_c31L_pack.vhd".

Console C Errors Warnings Find in Files Results

Processor

operations(12) <='0'&"000001"&"001100"&alu or&"000010"&"01011110";

-- ORI

operations(13) <='1'&"000001"&"001101"&alu_or&"100110"&"010101110"; operations(14) <-- '.XOR Operations(14) <-010'4"00001"6"00110"6alu_xor&"000010%"010101110";
-- XORI operations(15) <-'1'4"000001"8"001111"6alu_xor&"100110"6"010101110";
-- '.YORI operations(15) <-'1'4"000001"8"001111"6alu_xor&"100110"6"010101110";

read_data <= operations(to_integer(unsigned(addr)));</pre>

-- SLDI(Shift Left immediate value 1 bit)

operations(17) <='1'6"000001"6"010001"6alu_shift_logic_left6"100110"6"010101110";

> Start 📑 Design 📑 Files 🕦 Libraries 🖫 Design Summary 🖫 🖺 controller_67574625.vhd 🖫 🖺 A_input_67574625.vhd 🗷 📵 memory_67574625.vhd 🗷 📵 testbench_processor.vhd 🖫 📵 processor_67574625.vhd 🖫 📵 register_bank_67574625.vhd

operations(16) <= '0'&"

""000001"s"001111" & ALU XUA: ...
SLL(Shift Left Source 1 bit)
""000001"s"0100000" & alu shift logic_lefts"000010"s"010101110";
""LTT(Shift Left immediate value 1 bit)
""LTT(Shift Left immediate value 1 bit)

Ln 62 Col 8 VHDL

Simulate Behavioral Model

Console C Errors Warnings Find in Files Results

Process "Behavioral Check Syntax" completed successfully

Controller

Selector for A input

Selector for B input

ALU 32

Testbench

5 Elaboration

Assumptions:

Functions

- Shifting left the register source by an immediate number of times was altered to just be shift left immediate value one bit
- Because the ALU could do increment, decrement, and add & increment, these functions were given their own code and can be used

Counter

• Need only to increment and then loop back to the first instruction

Memory

- The instructions had to be hard coded into this component
- Register 1 and register 2 in the Register File are assigned values using the MOVI function and then those values are used for the remainder of the

ALU

- This didn't need any adjustments aside from the change of the cin port to a signal A input
 - Because some functions asked for the Immediate to be moved or shifted, another component was designed to handle this.
 - In order to translate the function code to the ALU opsel and mode, this component also had to handle it.

Errors and Challenges:

- Lot of errors encountered when trying to make sure all the components are wired together in the correct sequence.
- A lot of assumptions had to be throughout the course of the final project
- It took a lot of time to design the schematic for the processor because of these assumptions

Simulation Log:

Started: "Simulate Behavioral Model".

Determining files marked for global include in the design...

Running fuse...

Command Line: fuse -intstyle ise -incremental -o {C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor_isim_beh.exe} -prj

{C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor_beh.prj} work.testbench_processor {}

Running: C:\Xilinx\14.7\ISE_DS\ISE\bin\nt64\unwrapped\fuse.exe -intstyle ise -incremental -o C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor_isim_beh.exe -prj

C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor_beh.prj work.testbench_processor

ISim P.20131013 (signature 0x7708f090)

Number of CPUs detected in this system: 4

Turning on mult-threading, number of parallel sub-compilation jobs: 8

Determining compilation order of HDL files

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/assignment3_67574625_mux2to1.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/assignment3_67574625_logic_unit.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/assignment3_67574625_full_adder.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/assignment3_67574625_arithmetic_unit.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/pooriam_c31L_pack.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/assignment3_67574625_alu_1bit.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject 67574625 cpu/register bank 67574625.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/pcounter_67574625.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/memory_67574625.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/controller_67574625.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject 67574625 cpu/B input alu.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/A_input_67574625.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/assignment3_67574625_alu_32bit.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/processor_67574625.vhd" into library work

Parsing VHDL file "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor.vhd" into library work

Starting static elaboration

Completed static elaboration

Compiling package standard

Compiling package std_logic_1164

Compiling package c31l_pack

Compiling package std_logic_arith

Compiling package std_logic_unsigned

Compiling package numeric_std

Compiling architecture behavioral of entity pcounter_67574625 [\pcounter_67574625(1)\]

Compiling architecture behavioral of entity memory_67574625 [memory_67574625_default]

Compiling architecture behavioral of entity controller_67574625 [controller_67574625_default]

Compiling architecture behavioral of entity register_bank_67574625

[register bank 67574625 default]

Compiling architecture behavioral of entity a_input_67574625 [a_input_67574625_default]

Compiling architecture behavioral of entity b_input [b_input_default]

Compiling architecture behavioral of entity logic_unit [logic_unit_default]

Compiling architecture behavioral of entity arithmetic_unit [arithmetic_unit_default]

Compiling architecture behavioral of entity full_adder [full_adder_default]

Compiling architecture behavioral of entity mux2to1 [mux2to1_default]

Compiling architecture behavioral of entity alu_1bit [alu_1bit_default]

Compiling architecture behavioral of entity alu_32bit [alu_32bit_default]

Compiling architecture behavioral of entity processor_67574625 [processor_67574625_default]

Compiling architecture behavior of entity testbench_processor

Time Resolution for simulation is 1ps.

Waiting for 11 sub-compilation(s) to finish...

Compiled 33 VHDL Units

Built simulation executable C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor_isim_beh.exe

Fuse Memory Usage: 37900 KB

Fuse CPU Usage: 1200 ms

Launching ISim simulation engine GUI...

"C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor_isim_beh.exe" -intstyle ise -gui -

tclbatch isim.cmd -wdb "C:/Users/Jack/Desktop/EECS 31L/Final

Project/FinalProject_67574625_cpu/testbench_processor_isim_beh.wdb"

ISim simulation engine GUI launched successfully

Process "Simulate Behavioral Model" completed successfully

6 Waveforms

Note: At the rising edge of clock, the output shown is saved and the memory_addrs changes Full Waveform Snapshot 1

Snapshots of Waveform

RESET (Not a function)

NOP

MOVI (to give value to a register)

MOVI (to give value to a second register)

Name	Value		230 ns	232 ns	234 ns	1
୍ୟା clk	0					
Va rst_s	0					
🖟 pc_enable	1					
memory_addrs[5:0]	000010		0000	0		X
▶ 📆 instruction[31:0]	10000010000101011001001011001010	100	00010000101011	0100101100101	0	X
Teg_source[31:0]	0000000000000000011100010101110					
Teg_target[31:0]	000000000000000000000000000000000000000			000000000000000	000000	000
immediate[31:0]	0000000000000000001001011001010	000	0000000000000000	0100101100101	0	X
la carry	0					
▶ 📆 output[31:0]	0000000000000000001001011001010	000	0000000000000000	0100101100101	0	X
laclk_period	10000 ps					

MOV

Name	Value	سببل	240 ns	242 ns	244 ns	
Ū₀ clk	0					
Varst_s	0					
🖟 pc_enable	1					
▶ ■ memory_addrs[5:0]	000011		0000	11		$\supset \subset$
▶ Sinstruction[31:0]	00000010000111011000010010101110	000	00010000111011	000010010101110)	$\supset \subset$
▶ Streg_source[31:0]	0000000000000000011100010101110					
▶ Streg_target[31:0]	0000000000000000001001011001010	00000				
▶ ■ immediate[31:0]	000000000000000000000100101110				0	0000
🖟 carry	0					
▶ ■ output[31:0]	0000000000000000011100010101110	000	0000000000000000	011100010101111)	\perp X \subseteq
¹₽ clk_period	10000 ps					

ADD

Name	Value		250 ns	252 ns	254 ns	
Ū₀ clk	0					
V₀ rst_s	0					
$V_{oldsymbol{e}}$ pc_enable	1					
memory_addrs[5:0]	000100		000100			$\supset C$
instruction[31:0]	000000100010000010000100101110	00000	01000100000100	0010010101110		\propto
Teg_source[31:0]	0000000000000000011100010101110					
Teg_target[31:0]	0000000000000000001001011001010		0(000000000000000000000000000000000000000	000100	10:
immediate[31:0]	000000000000000000000100101110	00000	000000000000000	0010010101110		\propto
le carry	0					
▶ ■ output[31:0]	00000000000000000100101101111000	00000	000000000000000000000000000000000000000	0101101111000		X
⅙ clk_period	10000 ps					

ADDI

Name	Value		260 ns	262 ns	264 ns	1.
Ū₀ clk	0					
Varst_s	0					
\mathbb{T}_{a} pc_enable	1					
memory_addrs[5:0]	000101		000101			X
instruction[31:0]	10000010001010001001001010101110	10000	01000101000100	001010101110		X
reg_source[31:0]	0000000000000000011100010101110					
Teg_target[31:0]	000000000000000000000000000000000000000	0000000000		000000000	000000	000
immediate[31:0]	00000000000000000001001010101110	00000	000000000000000	001010101110		X
୍ୟା carry	0					
▶ ■ output[31:0]	00000000000000000100101101011100	00000	00000000000000100	101101011100		X
le clk_period	10000 ps					

SUB

Name	Value		270 ns	272 ns	274 ns	1
୍ୟା clk	0					
Vo rst_s	0					
🖟 pc_enable	1					
memory_addrs[5:0]	000110		000110			$X \subseteq$
instruction[31:0]	00000010001100010000010010101110	00000	01000110001000	0010010101110		$X \square$
= reg_source[31:0]	0000000000000000011100010101110					
Teg_target[31:0]	0000000000000000001001011001010	0000000000		000000000	000000	0000
immediate[31:0]	0000000000000000000000100101110	00000	000000000000000000000000000000000000000	0010010101110		$X \subseteq$
₩a carry	1					
▶ ■ output[31:0]	0000000000000000010010111100100	0000000000	0000000000000	000000100101111	00100	X =
□ clk_period	10000 ps					

SUBI

Name	Value		280 ns	282 ns	284 n	;
Ū₀ clk	0					
🖟 rst_s	0					
🖟 pc_enable	1					
memory_addrs[5:0]	000111		000111			$\supset \subset$
▶ 🔣 instruction[31:0]	10000010001110010001001010101110	10000	01000111001000	001010101110		$\supset \subset$
Teg_source[31:0]	0000000000000000011100010101110					
¶ reg_target[31:0]	000000000000000000000000000000000000000	0000000000		000000000	00000	0000
▶ 🔣 immediate[31:0]	00000000000000000001001010101110	00000	000000000000000	001010101110		$\supset \subset$
🖟 carry	1					
▶ ■ output[31:0]	0000000000000000010011000000000	00000	0000000000000001	00110000000000		\supset
□ clk_period	10000 ps					

NOT

			1290 ns	1292 ns	₁ 294 n	
Name	Value		290 115	292 115	294 11	عيا
√a clk	0					
$V_{m{a}}$ rst_s	0					
$\mathbb{T}_{\!a}$ pc_enable	1					
memory_addrs[5:0]	001000		001	1000		$\supset \subset$
instruction[31:0]	0000001001000011100001001011110	0	00001001000011	10000100101011	10	$\supset \subset$
¶ reg_source[31:0]	00000000000000000111000101110					
¶ reg_target[31:0]	0000000000000000001001011001010	00	*	000000000	00000	00000
immediate[31:0]	0000000000000000000000100101110	0	000000000000000000000000000000000000000	00000100101011	10	$\supset \subset$
🖟 carry	0					
▶ ■ output[31:0]	11111111111111111100011101010001	1	1111111111111111	11000111010100	01	$\supset \subset$
laclk_period	10000 ps					

NOTI

Name	Value	[3	300 ns	302 ns	304 ns	; _
Ū₀ clk	0					
Va rst_s	0					
$V_{oldsymbol{a}}$ pc_enable	1					
memory_addrs[5:0]	001001		001001			\supset X \subseteq
▶ I instruction[31:0]	10000010010010111001001010101110	100000	1001001011100	001010101110		$\supset \subset$
▶ 🚟 reg_source[31:0]	00000000000000000111000101110					
▶ Note: The proof is a proof of the proof o	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	1
▶ 🔣 immediate[31:0]	0000000000000000001001010101110	000000	000000000000000	001010101110		$\supset \subset$
🖟 carry	0					
▶ ■ output[31:0]	11111111111111111110110101010001	111111	111111111111111	110101010001		_X_0
la clk_period	10000 ps					

AND

Name	Value		310 ns	312 ns	314 ns	1.
୍ୟା clk	0					
Ve rst_s	0					
pc_enable	1					
memory_addrs[5:0]	001010		001010			$\supset \subset$
▶ ■ instruction[31:0]	00000010010100101000010010101110	00000	01001010010100	0010010101110		$\supset \subset$
Teg_source[31:0]	00000000000000000111000101110					
Teg_target[31:0]	0000000000000000001001011001010	11111111111	X	000000000	000000	10001
immediate[31:0]	000000000000000000000100101110	00000	000000000000000	0010010101110		$\supset \subset$
le carry	0					
▶ ■ output[31:0]	0000000000000000001000010001010	0000000000	000000000000	000000010000100	01010	\propto
□ clk_period	10000 ps					

ANDI

Name	Value		320 ns	322 ns	324 ns	1.
Ūe cik	0					
Verst_s	0					
🖟 pc_enable	1					
memory_addrs[5:0]	001011		001011			$\supset \subset$
instruction[31:0]	10000010010110101100110010101110	10000	01001011010110	0110010101110		$\supset \subset$
Teg_source[31:0]	0000000000000000011100010101110					
Teg_target[31:0]	000000000000000000000000000000000000000	0000000000	*	000000000	00000	0000
immediate[31:0]	11111111111111111001100101011110	11111	111111111111110	0110010101110		$\supset \subset$
🖟 carry	1					
output[31:0]	000000000000000000001000101110	00000	0000000000000000	0100010101110) (C
le clk_period	10000 ps					

OR

Name	Value		330 ns	332 ns	334 ns	1.
୍ୟା clk	0					
Verst_s	0					
🖟 pc_enable	1					
memory_addrs[5:0]	001100		001100			X
instruction[31:0]	00000010011000110000010010101110	00000	01001100011000	0010010101110		X
Teg_source[31:0]	0000000000000000011100010101110					
 Teg_target[31:0] 	0000000000000000001001011001010	0000000000		000000000	000000	000
immediate[31:0]	000000000000000000000100101110	00000	000000000000000000000000000000000000000	0010010101110		X
🖟 carry	1					
output[31:0]	0000000000000000011101011101110	0000000000	0000000000000	00000011101011	01110	X
¹₽ clk_period	10000 ps					

ORI

Name	Value		340 ns	342 ns	344 ns
୍ଲା clk	0				
Ve rst_s	0				
🖟 pc_enable	1				
memory_addrs[5:0]	001101		001101		
instruction[31:0]	10000010011010110100110010101110	10000	01001101011010	0110010101110	
▶ 🔜 reg_source[31:0]	0000000000000000011100010101110				
Teg_target[31:0]	000000000000000000000000000000000000000	0000000000	*	000000000	0000000000
immediate[31:0]	111111111111111111001100101011110	11111	111111111111110	0110010101110	
🖟 carry	0				
▶ ■ output[31:0]	111111111111111111111100101011110	11111	1111111111111111	110010101110	
□ clk_period	10000 ps				

XOR

Name	Value		350 ns	352 ns	354 ns	1
୍ୟା clk	0					S
Vo rst_s	0					
$\mathbb{T}_{f e}$ pc_enable	1					
memory_addrs[5:0]	001110		001110			\propto
instruction[31:0]	00000010011101000000010010101110	00000	01001110100000	0010010101110		\propto
reg_source[31:0]	000000000000000011100010101110					
Teg_target[31:0]	0000000000000000001001011001010	0000000000	X	00000000	000000	100
immediate[31:0]	000000000000000000000100101110	00000	0000000000000000	0010010101110		\propto
1 carry	0					
▶ ■ output[31:0]	0000000000000000010101001100100	0000000000	0000000000000	00000010101001	100100	\mathcal{X}
□ clk_period	10000 ps					

XORI

Name	Value	 	358 ns	360 ns	362 ns	364 n	
Ū₀ clk	0						
Varst_s	0						
$V_{oldsymbol{a}}$ pc_enable	1						
memory_addrs[5:0]	001111			001111			$\supset \subset$
▶ ■ instruction[31:0]	10000010011111000100110010101110		100000100	11111000100110	010101110		$\supset \subset$
▶ ■ reg_source[31:0]	0000000000000000011100010101110						
Teg_target[31:0]	000000000000000000000000000000000000000	00000	0000000000000	*	000000000	00000	00000
▶ 🔣 immediate[31:0]	111111111111111111001100101011110		111111111	11111111100110	010101110		$\supset \subset$
🖟 carry	: 0						
▶ ■ output[31:0]	11111111111111111111010000000000		111111111	111111111111010	000000000		$\supset \subset$
□ clk_period	10000 ps						

SLL

Name	Value		368 ns	370 ns	372 ns	374 ns	
₩ clk	0						
Vo rst_s	0						
🖟 pc_enable	1						
memory_addrs[5:0]	010000			010000			\mathbb{X}
▶ ■ instruction[31:0]	000000101000010010000100101110		000000101	00001001000010	010101110		\mathbb{X}
Teg_source[31:0]	0000000000000000011100010101110			00000	000000000000001	10001	010
reg_target[31:0]	0000000000000000001001011001010	000000	000000000000		000000000	00000	0000
▶ 📑 immediate[31:0]	000000000000000000000100101110		000000000	000000000000010	010101110		\mathbb{X}
16 carry	1						ı
▶ ■ output[31:0]	00000000000000001110001011100		000000000	00000000111000	101011100		X
laclk_period	10000 ps						

SLLI

1	Name	Value		558 ns	560 ns	562 ns	64 ns
	Ūa clk	0					
	Varst_s	0					
	🖟 pc_enable	1					
Þ	memory_addrs[5:0]	010001			010001		\square X
Þ	tinstruction[31:0]	10000010100011001100110010101110		100000101	00011001100110	010101110	\square X
Þ	· 📆 reg_source[31:0]	0000000000000000011100010101110			00000	000000000000011	00010101
Þ	· 📆 reg_target[31:0]	000000000000000000000000000000000000000	000000	000000000000	K		
Þ	- 🌃 immediate[31:0]	111111111111111111001100101011110		111111111	11111111100110	010101110	$=$ \times
	la carry	1					
Þ	- 🌃 output[31:0]	111111111111111110011001010111100		111111111	11111111001100	01011100	X_(
		10000 ps					-