1. Cvičení

Agenda

- přehled nástrojů používaných pro strojové učení
- instalace potřebných nástrojů
- ukázka práce s JupyterNotebook
- Python tutoriál
- NumPy tutoriál
- ukázka řešení lineární regrese
- úkoly

Co budeme ke strojovému čení potřebovat a používat

Python

- optimalizovaný pro práci s daty
- velké množství knihoven + kompletní ekosystém pro strojové učení

knihovny

- NumPy práce s multidimenzionálními poli, základ pro ostatní knihovny a standard v ML
- SciPy "vědecká" knihovna lineární algebra, optimalizace, apod.
- Scikit-learn základní knihovna pro strojové učení (obsahuje optimalizovanou implementaci většiny používaných algoritmů)
- Pandas práce s daty (načítání CSV, vizualizace apod.)
- Matplotlib vizualizace dat (grafy, obrázky, ...)

TensorFlow + Keras

- frameworky pro Deep Learning (hluboké neuronové sítě)
- Jupyter Notebook
 - webová aplikace pro vytváření dokumentů obsahujících python kód, vizualizace a doprovodný text

Hardware

- čím výkonnější počítač, tím méně budete čekat :)
 - o moje pracovní stanice: i7-6700K, 16 GB RAM, Nvidia GTX 1060 6GB
- pro většinu úloh, co si budeme ukazovat, však stačí běžný notebook
- pro Deep Learning (hluboké neuronové sítě) GPU Nvidia
 - nebo Amazon EC2 Deep Learning AMI
 - nebo Google Colab s GPU
 - o pro absolvování předmětu to však není nutné

Instalace nástrojů

- Python 3.8
 - o TensorFlow aktuálně nepodporuje nejnovější Python 3.9
 - https://www.python.org/downloads/release/python-387/
 - pro windows zvolit windows installer
 - zvolit Customize installation
 - vše zaškrtnout
 - Install for all users
 - Add Python to environment variables
- volitelně instalace virtualenv pro izolované python prostředí
 - instalace: pip install virtualenv
 - o vytvoření prostředí nazvaného ml: python -m virtualenv ml
 - spuštění prostředí:
 - windows: .\ml\Scripts\activate
 - linux: env/bin/activate
- knihovny
 - o instalace pomocí nástroje PIP
 - pip install jupyter matplotlib numpy pandas scipy scikit-learn
 - nebo python -m pip ... (pokud by přímo pip nefungovalo)
- Jupyter Notebook
 - spuštění: jupyter notebook (v adresáři, kde budete chtít mít pracovat)
 - o otevře se http://localhost:8888/tree (nebo otevřít v prohlížeči, pokud by se nestalo samo)

Jupyter Notebook

proč používat

- sešit, který má text, zdrojové kódy, grafy, ...
- o proměnné jsou uložené v relaci, dokud se proces nevypne
- přehledný výpis přímo pod buňku s kódem, rovnou zobrazené grafy (matplotlib) a tabulky (Pandas)
- o formátování pomocí markdownu
- nezávislost buněk na sobě
- => velmi vhodné pro rychlé prototypování a vizualizaci

hostované varianty

- Google Colab
- o další viz https://www.kdnuggets.com/2020/03/4-best-jupyter-notebook-environments-deep-learning.html

Jupyter Notebook - ukázka

- spustit příkazem jupyter notebook
- otevřít http://localhost:8888
- vytvoření sešitu
- pojmenování sešitu
- módy
 - command vs edit
 - buňka code vs markdown
 - o klávesové zkratky (A, B, DD, shift+enter, ctrl+enter, H), help -> user interface tour
- hello world
 - kód
 - graf
 - tabulka s daty

Python tutoriál

https://docs.python.org/3/tutorial/

NumPy tutoriál

- otevřít sešit 01_numpy.ipynb
- nebo https://numpy.org/doc/stable/user/absolute_beginners.html

Ukázka řešení lineární regrese pomocí strojového učení

otevřít 01_linearni_regrese.ipynb

Úkoly

1. Zprovoznit si Python, Jupyter Notebook apod. na svém počítači

- 2. Projít si Python tutoriál:
 - a. https://docs.python.org/3/tutorial/

- 3. Projít si NumPy tutoriály:
 - a. soubor 01_numpy.ipynb
 - b. https://numpy.org/doc/stable/user/absolute_beginners.html
 - c. https://numpy.org/doc/stable/user/quickstart.html