Homework1

Nathan Bick

9/13/2022

Problem 1

Geometrically describe with reasoning the following unit ball in \mathbb{R}^2 .

$$B_{\infty}^{(1)} = \{ x \in \mathbb{R}^2 \mid ||x||_{\infty} \le 1 \}$$

Response We recall the definition of the L- ∞ norm, which is $||x||_{\infty}$. If $x = (x_1, ..., x_n)$, then $||x||_{\infty} = \max\{|x_1|, ..., |x_n|\}$, the largest magnitude of any component of x.

 $B_{\infty}^{(1)}$ is the area defined by all vectors whose L- ∞ norm is less than or equal to 1.

 $||x||_{\infty} = 1$ for all (x_1, x_2) where either $|x_1| = 1$ and $|x_1| \le 1$ or $|x_1| \le 1$ and $|x_1| = 1$. This is therefore the shape of a square.

Problem 2

Prove the following triangle inequality.

$$||x + y||_2 \le ||x||_2 + ||y||_2$$

Response We recall the definition of the L-2 norm as the Euclidean distance given by $||x||_2 = (|x_1|^2 + ... + |x_n|^2)^{\frac{1}{2}}$

We introduce inner product $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$.

Then $||x+y||_2^2 = ||x||_2^2 + 2\langle x,y\rangle + ||y||_2^2 \le ||x||_2^2 + ||y||_2^2 + 2||x||_2 ||y||_2$ by Cauchy-Schwarz.

So we have $||x + y||_2^2 \le (||x||_2 + ||y||_2)^2$ which gives us $||x + y||_2 \le ||x||_2 + ||y||_2$, the triangle inequality for the L-2 norm.

So we have $||x + y|| \le ||x|| + ||y||$.

Problem 3

Prove that for any matrix $A = (a_{ij})_{m \times n}$, the matrix $A^T A$ is symmetric.

Response We know that for any matrix A, B, then $(AB)^T = B^T A^T$.

Consider
$$(A^T A)^T = A^T (A^T)^T = A^T A$$
.

We see $(A^T A)^T = A^T A$, so $A^T A$ is symmetric.