# Taxonomic Classification with MiCoP

Tutorial #8
Karanveer Singh
Dan Drzewicki

### Taxonomy

- Naming, grouping, and ranking of biological organisms
- Tree like structure
  - Layers of the tree represent taxonomic ranks
  - Genetically similar organisms are closer on the tree
    - Have an ancestor node in common
- Taxonomic ID
  - NCBI assigns a numeric ID for each node in taxonomy tree
  - Can trace back to find the lineage given an Tax ID



#### Microbial Communities

- Assemblage of interacting organisms that together form a community
- Microbial ecology
  - Studying the interactions of organisms amongst themselves and their environment
- Sequencing technology allows us to take reads from these communities
  - Question? : How do we know which organisms exist in a community?
    - Microbial community profiling (MiCoP)

### Microbial Community Profiling

- Type of taxonomic classification
  - Taxonomic ID is assigned to the reads from the community
- Profiling
  - Find out who and how many
  - Find out which organisms exist in a community as well as their abundance
    - Relative abundance how common is a species relative to others in the same community
- MiCoP
  - Method for calculating relative abundance of taxonomic levels within a community given a fasta/fastq
     file
  - Currently only works for viruses and fungi

### MiCoP Pipeline



Map reads to reference database.



Two-step process to filter and profile results.

### Reference Database and Mapping

- Reference database dependent to a large extent on the database used
  - Smaller databases
    - Lower sensitivity
    - Fast to search
  - Larger databases
    - Longer to search
    - More accurate
- Due to increasingly powerful hardware and fast mapping algs, large databases can be used realistically
- MiCoP opts to use the full NCBI RefSeq Viral and Fungal databases

# Probabilistic Assignment of Multi-Mapped Reads

- Two-stage process:
  - Uniquely mapped reads are immediately assigned
    - Trivial
  - Multi-mapped reads are probabilistically assigned
    - Proper assignment has major impact on results
  - o BWA chose which genome to assign multi-mapped reads to
  - Multi-mapped reads are assigned to a genome with probability equal to the relative uniquely-mapped read counts for each of those genomes
- < 10 uniquely-mapped reads are filtered</li>

### Relative Abundance Estimation

- Normalize read counts for each genome by the length of the genome
- Normalize the adjusted counts of each genome by the sum of the adjusted counts
  - Species abundances sum up to 100%



### Performance Metrics

TP = species present in a sample is correctly predicted

FP = predicted presence but not actually in a sample

FN = species was present but presence not predicted

- Precision
- Recall
- F1 Score
- L1 Error

  - $\begin{aligned} & \text{Accuracy of relative abundances} \\ & L1 \; Error = \sum_{i=1}^{S} |Predicted_i Actual_i| \end{aligned}$

### MiCoP-Kraken Comparison

MiCoP was evaluated using simulated data compared to a ground truth

MiCoP shows order of magnitude improvement in abundance estimation

|        | L1 Error | Precision | Recall/Sensitivity | F1-Score |
|--------|----------|-----------|--------------------|----------|
| MiCoP  | 0.00909  | 1.0       | 1.0                | 1.0      |
| Kraken | 1.15466* | 0.82222   | 0.925              | 0.87059  |

 L1 Error
 Precision
 Recall/Sensitivity
 F1-Score

 MiCoP
 0.09124
 1.0
 0.98155
 0.99069

 Kraken
 1.15834\*
 0.85147
 0.90959
 0.87957

Viral community

Fungal community

- MiCoP only capable of classifying these two communities
  - Kraken can classify "any" community
- Kraken is a read classification method, not a relative abundance estimation method
- MiCoP ultimately slower but more accurate than Kraken

# Demo

## miCoP Accuracy

| Dataset                         | Strain                       | MiCoP predicted relative abundance (%) | Actual relative abundance (%) |
|---------------------------------|------------------------------|----------------------------------------|-------------------------------|
| Low<br>Complexity<br>Virus [1]  | Olive latent virus           | 28.59                                  | 27.93                         |
|                                 | Wheat eqlid mosaic virus     | 15.11                                  | 14.59                         |
|                                 | Enterobacteria phage RB16    | 8.52                                   | 8.33                          |
|                                 | Pseudomonas phage 73         | 7.63                                   | 7.43                          |
| High<br>Complexity<br>Virus [1] | Shigella phage pSb-1         | 3.31                                   | 2.22                          |
|                                 | Propionibacterium phage P105 | 3.10                                   | 2.21                          |
|                                 | Tobacco streak virus         | 0.00                                   | 1.87                          |
|                                 | Prochlorococcus phage P-HM2  | 2.24                                   | 1.59                          |

[1] Conceicao-Neto, N., Zeller, M., Lefrere, H., De Bruyn, P., Beller, L., Deboutte, W., ... & Matthijnssens, J (2015). Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Scientific reports, 5, e16532. doi:10.1038/srep16532