الثانية علوم فيزيائية

فرض محروس رقم 1 الدورة 2

الثانوية التأهيلية ابن ماجة _ تالوين

مدة الانجاز: 2h

ذ.عبد العالى ايت الحسن ***20-2014

السنة الدراسية: 2013- 2014

وضوع الفيزياء 1:

صفحة 1/3

(6نقط)

يُّمن اجل نقل المعلومة الصوتية ذات تردد منخفض, نقوم بتحويلها الى اشارة كهربائية بواسطة ميكروفون ثم نقوم بتضمين وسع يُّتوتر الموجة الحاملة لهذه الإشارة كما يوضح الشكل اسفله:

الهدف من هذا التمرين تحقيق تضمين وسع التوتر الحامل لمعلومة صوتية التي ننمذجها بموجة جيبية تكتب على شكل: ر S(t)=S_mcos(2πf_st). ولارسال الاشارة ننجز التركيب التجريبي اسفله (شكل1).

يُعطبق مولد الترددات المنخفضة GBF1 في المدخل E1 توتر اجببيا $P(t)=P_{m}cos(2\pi f_{p}t)$ (توتر حامل)

 $m U_0=2.3V$ بالإضافة الى التوتر المستمر $m U_0$ المضبوط على القيمة m S(t) بالإضافة الى التوتر المستمر m GBF2 في المدخل m E2 توترا جيبيا يُّولمعاينة توتر الخروج (Us(t على شاشة راسم التذبذب نربط المخرج S بالمدخل Y والنقطة M بالهيكل فنحصل على الرسم يُّالممثل اسفله (شكل2).

> يُّنضبط الحساسية الرأسية على: 2V/div ونضبط الكسح على: 25ms/div 1div=1cm ≥

<mark>1</mark> ن

0.5ن

- ما إسم الجهاز المستعمل ؟ وما الهدف من إستعماله؟
- التوتر المعاين على شاشة راسم التذبذب يتناسب مع جداء التوترين (t) U (t) المطبقين عند مدخليهما E₁ و $U_s(t) = K \times U(t) \times P(t)$, E_2
- أ. ما مدلول الثابتة K وما وحدتها في النظام العلمي للوحدات ب. بين أن تعبير وسع التوتر المضمن (Um(t على الشكل $U_m(t) = A[m\cos(2\pi f_s t) + 1]$ التالي: محددا تعبیر کل من A و m
- ج. يتغير الوسع المضمن (Um(t بين قيمتين حديتين Um, min و Um, min ، حدد هاتين القيمتين
- أوجد قيمة كل من تردد التوتر المضمن f_s (الإشارة المراد إرسالها) وتردد التوتر المضمن F_P (التوتر الحامل) أوجد تعبير m نسبة التضمين بدلالة كل من $U_{m, max}$ و $U_{m, min}$ ، أحسب قيمة نسبة التضمين m ن0.5
 - أذكر شروط الحصول على تضمين جيد (شرطين) ، هل هذا التضمين جيد أم ردىء

أوجد التعبير العددي للإشارة المراد إرسالها (S(t

____ية إزال____ة تضمين الوسع:

لإستقبال الإشارة المضمنة وإزالة التضمين نستعمل التركيب الممثل في الشكل 3:

- ما هو دور الجزء الأول من التركيب ؟ علل جوابك ما هي القيمة التي يجب أن تأخدها ٢٠٥ لكي يتحقق هذا الجزء $\pi^2=10$ من الدارة الهدف المتوخى منه ؟ نأخد
- ما هو دور الجزء الثاني ؟ ما هو الشرط اللازم للحصول على
- علما أن $C=0,1~{
 m uF}$ ، حدد R القيمة المناسبة لمقاومة 0.5الدارة بين القيم التالية: 20 K ، 20 K ، 20 K ، 20 K الدارة بين القيم التالية :

10°. ما هو دور الجزء الثالث ؟ 0.25

شكل 3 الجزء الثالث الجزء الثانى

موضوع الفيزياء 2: (7.75نقط)

يهدف هذا التمرين الى دراسة سقوط حر وسقوط في مانع لكرية في مجال الثقالة... الجزآن غير مستقلين

 $r = 6,00.10^{-3} m$ ؛ $r = 6,00.10^{-3}$

 $g=10 \text{m/s}^2$. $m=4,10.10^{-3}~kg$: كتلة الكرية -

نذكر أن شدة دافعة أرخميدس تساوي شدة وزن الحجم المزاح للسائل.

الجزء الأول:

السقوط الرأسى الحر لكرية حديدية

عند اللحظة (t=0) ، نحرر بدون سرعة بدئية من موضع O يوجد على ارتفاع من سطح الأرض، كرية حديدية متجانسة كتلتها m. ندرس حركة الكرية في معلم $(0, \vec{k})$ مرتبط بالأرض (الشكل 1).

1.1. بتطبيق القانون الثاني لنيوتن، أثبت المعادلة التفاضلية التي يحققها Za أنسوب

مركز قصور الكرية في المعلم (O, \vec{k}) .

2.1. استنتج طبيعة حركة G.

ا 3.1. كتب المعادلة الزمنية $z_{G}(t)$ لحركة $z_{G}(t)$.

رون v_G مرعة G عند اللحظة v_G د الدين v_G مرعة v_G

الجزء الثاني: دراسة سقوط جسم صلب متجانس في مائع.

تُمكن دراسة سقوط جسم صلب متجانس في سائل لزج من تحديد بعض المقادير الحركية ولزوجة السائل المستعمل.

معل لاج ح

نملأ أنبوبا مدرجا بسائل لزج وشفاف كتلته الحجمية ρ ثم نُسقط فيه كرية متجانسة كتلتها m ومركز قصورها G بدون سرعة بدنية عند اللحظة t=0 ندرس حركة G بالنسبة لمعلم أرضى نعتبره غاليليا .

نمعلم موضع G عند لحظة t بالأنسوب z على محور OZ رأسي موجّه نحو الأسفل (الشكل1).

نعتبر أن موضع G منطبق مع أصل المحور \overrightarrow{Oz} عند أصل التواريخ وأن دافعة أرخميدس \overrightarrow{F} غير مهملة بالنسبة لباقي القوى المطبقة على الكرية.

t ندمذج تأثیر السائل علی الکریة أثناء الحركة بقوة احتكاك $f=-kv_G$ ، حیث v_G متجهة سرعة v_G عند لحظة و v_G معامل ثابت موجب .

 $\frac{dv_G}{dt} + A.v_G = B$ الشكل القانون الثاني لنيوتن، بيّن أن المعادلة التفاضلية لحركة G تكتب على الشكل $A.v_G = B$ الشكل على الشكل $A.v_G = B$ مردد أن المعادلة التفاضلية لحركة $A.v_G = B$ مردد أن المعادلة التفاضلية لحركة $A.v_G = B$ مردد أن الشكال $A.v_G = B$

محدّدا تعبير A بدلالة k و m وتعبير B بدلالة شدة الثقالة g و m و V حجم الكرية. M

ي تحقق أن التعبير $au_G(t) = rac{B}{A} (1 - e^{-rac{t}{ au}})$ حل للمعادلة التفاضلية ، حيث $au=rac{1}{A}$ الزمن المميز للحركة $au_G(t)$

B و A المركز قصور الكرية بدلالة A و B المركز V_{lim} المركز V_{lim}

4- نحصل بو اسطة عدة معلوماتية ملائمة على منحنى الشكل 2 ، الذي يمثل تغير السرعة v_{c} بدلالة الزمن ؛ حدد مبياتيا قيمتي V_{c} و τ . τ

0.5ن

 $Cu^{3+} + SO_4^{2-})$

 أو جد قيمة المعامل لل $k=6\pi\eta r$: يتغير المعامل k مع شعاع الكرية و معامل اللزوجة η للسائل وفق العلاقة التالية kمدد قيمة η للسائل المستعمل في هذه التجربة.

ر تكتب المعادلة التفاضلية لحركة $\frac{dv_G}{dt} = 7,57 - 5$ و كالتالي $v_G : V_G : \frac{dv_G}{dt}$ ؛ باعتماد طريقة أولير ومعطيات الجدول

ن1

Ag(s)

 $(Ag^{+} + NO_{3}^{-})$

Nat. CI

t (s)	v (m.s ⁻¹)	a (m.s ⁻²)
0	0	7,57
0,033	0,25	a_1
0,066	V ₂	5,27

يُّموضوع الكيمياء: (6.25 نقط)

عمود نحاس - فضة

ننجز التركيب التجريبي التالي ، فيشير الأمبيرمتر إلى قيمة سالبة I = - 20 mA نعطى: 1F = 9, 65 .104 C. mol-1

- أسنلة
- 1. أنقل التركيب التجريبي إلى ورقتك وبين عليه قطبية العمود ، محددا منحى التيار الكهربائي معللا جوابك ، ثم استنتج منحي مختلف حملات الشحنات
 - (الالكترونات والايونات)
 - ما دور القنطرة الأيونية؟ 0.5
 - 3. اعط نصفى معادلتي التفاعل عند كل الكترود (عند الكترود النحاس و عند الكترود الفضة) ، ثم استنتج الانود و الكاتو د معللا جو ايك؟
 - 4. استنتج المعادلة الحصيلة للتفاعل ، ثم اعط الجدول الوصفي لهذا
- ن0.5 5. علما أن للمحلولين نفس التركيز C ، عبر عن خارج التفاعل البدئي Qri للمعادلة بدلالة C
- علما أن هذا العمود يشتغل لمدة min 30 min. أحسب كمية الكهرباء الممنوحة خلال مدة الاشتغال 6,5ن
 - أحسب قيمة تقدم التفاعل x بعد تمام مدة الاشتغال 5,00
 - 8. أحسب Δ n (Cu²⁺) ف Δ n (Cu²⁺) ، بعد تمام مدة الإشتغال
- 0.5 $V=200~{
 m mL}$ و $\Delta [Ag^+]$ علما أن للمحلولين نفس الحجم $\Delta [Cu^{2+}]$ و $\Delta [Cu^{2+}]$ علما أن للمحلولين نفس الحجم

المرجو اعطاء التعابير الرياضية قبل التطبيق العددي و فقيك الله و زادك في العلم بسطة

*************************************	تنقيط	رقم
		س
موضوع الفيزيــــاء 1		
اسم الجهاز: الدارة المتكاملة المنجزة للجذاء. الهدف منه انجاز جذاء التوترين الحامل والمضمن	0.5	1
المزاح ب U_0 مدلول K :معامل مميز للدارة المتكاملة المنجزة للجذاء. وحدة K هي v^{-1} لان $[U].[U].[U]$	0.5	1- 1
تعبير وسع التوتر المضمن : $U_m(t)$: $U_m(t)$ الدينا $U_m(t)$:	1	′ٍ-ب
$=K[U_0+S_m\cos(2\pi.fs.t)]P_m\cos(2\pi.fp.t)$		
=K.P _m .U ₀ [1+ $\frac{Sm}{U_0}$ cos(2 π .fs.t)]cos(2 π .fp.t)		
$=A[1+m.cos(2\pi.fs.t)]cos(2\pi.fp.t)$		
$A=K.P_{m}.U_{0} \qquad m=\frac{sm}{u_{0}}$		
تحديد القيمتين الحديتين : Umin=1.2x2=2.4V و Umax=3.4x2V=6.8V	1ن	-ج
حساب الترددات fs و fs :	1ن	7-]
Umin=A[1-m] و $Umax=A[m+1]$ د $Umin=A[1-m]$ و $Umax=Umin$ ومنه $Umax=Umin$ $= 0.48$	0.5	
سروط الحصول على تضمين جيد : •	0.5	
 fp>fs • fp>fs أومنه التضمين ج m =0.48 <1 =200Hz>10fs=100Hz 		
$S(t)=S_{m}cos(2\pi.fs.t)$ التعبير العددي للمعلومة $S(t)=S_{m}cos(2\pi.fs.t)$ و $Sm=mxU_{0}=0.48x2.3=1.1V$ اذن التعبير المطلوب هو : $S(t)=1.1cos(20\pi.t)$	0.5	
موضوع الفيزياء 2:		
الميكانيك: الجزء الاول $ec{P}=mec{a}_G$ ومنه $m.g=m.a_{Gz}$ اذن المعادلة التفاضلية : حسب القانون الثاني لنيوتن		
$a_{Gz} = \frac{d^2z}{dt^2} = g$	0.75	1-
مستقيمي فإن حركة $a_{Gz}=g$ مستقيمي مستقيمي مستقيمة متغيرة بانتظام $a_{Gz}=g$	0.5	2-
$z(t)=1/2*g*t^2+V_0*t+Z_0$: وبالتكامل مرتين نجد أن $d^2z/dt^2=g$ وبالتكامل مرتين نجد أن $z(t)=1/2*g*t^2$ وحسب الشروط البدئية $v_0=0$ و	0.5	3-
V_0 =0 الن $a=dV/dt=g$ الان $a=dV/dt=g$ المرعة $a=dV/dt=g$ ومنه عند $t=2s$ نجد $t=2s$ المركة عند المركة عند المركة المركة عند المركة عند المركة	0.5	4-

		الميكانيك : الجزء 2
1	1	جرد القوى المطبقة على الكرية : $\vec{p} = \text{mg}\vec{k} \qquad \vec{f} = -\text{kv}_G\vec{k} \qquad \vec{F} = -\text{pVg}\vec{k}$: بتطبيق القانون الثاني لنيوتن نجد : $\vec{p} + \vec{f} + \vec{F} = \text{m}\vec{a}$ نسقط العلاقة على المحور \vec{q}
		$mg-kv_G - \rho Vg = m.a = m \frac{dVG}{dt}$
		dVG/dt + k/m = g - ho V g/m وبالتالي : dVG
		$A=rac{k}{m};$ $B=g- ho Vg/m$: بحيث: $rac{dVG}{dt}+A=B$
1 2	1	$rac{dVG}{dt} = rac{B}{A. au} e^{-t/ au}$: غوض تعبير $v_G(t)$ في المعادلة التفاضلية السابقة حيث $v_G(t)$ ومنه : $v_G(t)$ في المعادلة التفاضلية السابقة حيث $v_G(t)$ في المعادلة التفاضلية السابقة حيث $v_G(t)$ في $v_G(t)$
		$(A*\tau=1$ اي $\tau=1/A$ (حيث $V_G(t)$ اذن $V_G(t)$ حل للمعادلة التفاضلية
		$ m V_{lim}=B/A$ السرعة الحدية $ m V_{lim}=0$ تحقق $ m V_{lim}=0$ ومنه من المعادلة التفاضلية نجد أن $ m V_{lim}=lim_{t o\infty}$ ومنه من $ m V_{lim}=lim_{t o\infty}$ ومنه من المعادلة التفاضلية نجد أن $ m V_{lim}=lim_{t o\infty}$
0.5	0.5	$ au$ من المبيان : V_{lim} =1.5 m/s و V_{lim} =1.5 m/s من المبيان : K = m^*A = $m/\tau=2,05.10^{-2}(SI)$ قيمة K
1	1	Navier stoks نحدید η معامل اللزوجة للسائل (η نقرأ eta). لدینا حسب علاقة $\eta=k/6\pi r=0.18$ (SI) هومنه $k=6\pi\eta$
$\begin{array}{c c} 1 & 2 \\ 0.5 & 3 \end{array}$	0.5	طریقة أولیر : $a_1 = 7.57 - 5*0.25 = 6.32 \text{ m/s} \qquad a_1 = 7,57 - 5*v_1$ لدینا $a_1 = 7,57 - 5*v_1$
0.5	0.5	$v_2 = v_1 + a_1 * \Delta t = 0.25 + 6.32 * 0.033 = 0.46 \text{ m/s}$ ولدينا
1 7	1	ملحوظة: طريقة اولير رقمية تكرارية méthode itérative قد تكون لا نهائيةولبرمجتها نحتاج الى برانم رياضية-فيزيائية بعد وضع خوارزمية خاصة مثال هذه البرانم ou C ou C++

مر تبط بالقطب المو جب للعمو د. I < 0بما ان 1ن Cu(s) (Cu2+ SO2-) $(Ag^{+} + NO_{3}^{-})$ 0.5 دور القنطرة الايونية : تحفاظ القنطرة على الحياد الكهربائي في الكتروليتي المقصورتين (نصف العمود) بحيث تزود جهة الكاثود بأنيونات وجهة الانود بالانيونات عند الكترود النحاس : $Cu \rightarrow Cu^{2+} + 2e^{-}$ يسمى هذا الالكترود بالانـــود $Cu + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag$: المعادلة الحصيلة للتفاعل الجدول الوصفي : كمية مادة الالكترونات الحالة التقدم 2Ag Cu $2Ag^{+}$ Cu^{2+} 0.75 المتبادلة e البدئية 0 ni(Cu) ni(Ag+) ni(Cu²⁺) ni(Ag) X $ni(Cu^{2+})+X$ الوسيطة ni(Cu)ni(Ag+)-2Xni(Ag)+2Xni(Cu)ni(Cu²⁺)+ ni(Ag)+2Xm النهائية Xm ni(Ag+)-2Xm2Xm خارج التفاعـــل: $Or_i = [Cu^{2+}]/[Ag+]^2 = C/C^2 = 1/C$ 0.5 $Q = |I * \Delta t| = 20*10^{-3}*30*60=36 \,\mathrm{C}$: کمیة الکهرباء 0.5 بعد تمام اشتغال العمود : $n(e^{-})=2.X$ ومنه $Q = |I * \Delta t| = |n(e -) * F = 2X.F|$ 0.5 $X = \frac{|I*\Delta t|}{2F} = 1.86 * 10^{-4} \text{ mol}$ $\Delta n[Cu2+) = (ni(Cu2+) + X) - ni(Cu2+) = X=1.86*10^{-4} \text{ mol}$ $\Delta n[Ag+)] = (ni(Ag+) + X) - ni(Ag+)) = -2X = -3.72*10^{-4} \text{ mol}$ $\Delta[Cu2+)$] = $\frac{\Delta n(Cu2+)}{V}$ = $\frac{X}{V}$ = 9.3 * 10⁻⁴ mol/L 1 $\Delta[Ag+)] = \frac{\Delta n(Ag+)}{V} = \frac{-2X}{V} = -18.6 * 10^{-4} \text{ mol/L}$ 0.5