西安电子科技大学

试

颞

题号	_	=	Ξ	四	五	六	七	总分
分数								

注意: 闭卷考试,时间为 120 分钟,满分 100 分

2015.01.12

一、选择题(每小题3分,共12分)

- 1. 已知 f'(2) = 3,则极限 $\lim_{h \to 0} \frac{f(2-h) f(2)}{3h}$ 等于[_____].
- D. 无法确定该极限值.
- 2. 曲线 $xy+1=e^{x+y}$ 在 (0,0) 点的切线斜率为[_____].
- B. -1; C. 0;
- 3.设 f(x) 是二阶可导, f'(0) = 0 且 $\lim_{x \to 0} \frac{f''(x)}{|x|} = -1$,则[_____].
 - A. f(x) 在 x = 0 取得极大值;
- B. f(x) 在 x = 0 取得极小值;
- C. (0, f(0)) 是曲线 y = f(x) 的拐点; D. 以上三个结论都不对.
- 4. 抛物线 $y = x^2 x$ 在点 (1,0) 处的曲率为[].
 - A. $2\sqrt{2}$; B. 2; C. $\sqrt{2}$; D. $\frac{\sqrt{2}}{2}$.

二、填空题(每小题 4 分, 共 28 分)

- 5. 设 $f(x) = \lim_{n \to \infty} \frac{x^{2n-1} + ax^2 + bx}{x^{2n} + 1}$ 是连续函数,则 a + b =______.
- **6.** $\mathfrak{g}(f'(e^x)) = xe^{-x}, f(1) = 0, \quad \mathfrak{g}(f(x)) = \underline{\hspace{1cm}}$
- 7. 一直线在 xoz 坐标面上,且过原点又垂直于直线 $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-5}{1}$,该 直线的对称式方程为
- 8. 设函数 $y = 3x e^{-x}$, 它的反函数 x = x(y) 的导数 $\frac{dx}{dy} =$ ______.
- 9. 由参数方程 $\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases}$ 所确定的函数的二阶导数 $\frac{d^2 y}{dx^2} \Big|_{t=\frac{\pi}{2}} = \underline{\qquad}.$
- 10. 当 $x \to +\infty$ 时,函数 $f(x) = \frac{e^{-x^2}}{r} \int_0^x t^2 e^{t^2} dt$ 的极限为____
- 11.曲线通过点 $(e^2,3)$,且在任一点处的切线的斜率等于该点横坐标的倒数,该 曲线的方程为

三、计算题(每小题6分,共24分)

- 12. 设 $a_1, a_2, \mathbf{L}, a_n > 0$,求极限 $\lim_{x \to \infty} \left(\frac{a_1^{\frac{1}{x}} + a_2^{\frac{1}{x}} + \mathbf{L} + a_n^{\frac{1}{x}}}{n} \right)^{nx}$.
- 13. $\Re \int \frac{\sin^3 x}{2 + \cos x} dx$.
- **14.** 计算积分 $I = \int_{0}^{\pi} e^{2x} \sin^2 x dx$.
- 15. 计算曲线 $y = \ln(1-x^2)$ 上相应于 $0 \le x \le \frac{1}{2}$ 的一段弧的长度.
- 四、(10分)设 f(x) 连续,且满足 $\int_{0}^{1} f(tx) dt = f(x) x \sin x$, f(0) = 1,求 f(x) 的显 函数表达式.
- 五、(10 分)设曲线 $y = ax^2 + bx$ 当 $0 \le x \le 1$ 时, $y \ge 0$,又已知该曲线与 x 轴及直线 x = 1 所 围图形的面积为 $\frac{1}{2}$.试确定a,b 的值,使此图形绕x 轴旋转一周所得旋转体的体 积最小.
- 六、(10 分)设平面p 垂直于平面z=0,并通过从点A(1,-1,1)到直线l: $\begin{cases} y-z+1=0\\ x=0 \end{cases}$ 的垂线,求平面 p 的方程.
- 七、(6分)设 $|f(x)| \le p$,连续的 $f'(x) \ge m > 0$ $(a \le x \le b)$,证明 $\left| \int_a^b \sin f(x) dx \right| \le \frac{2}{m}$.