

- 1、线性方程组有解判定定理
- 2、线性方程组解的结构
- 3、求线性方程组的结构解
- 3、向量组的线性相关性(无关性)判定
- 4、求向量组的极大无关组并把其余向量用极大无关组线表
- 5、两个向量组等价
- 1. 设 Ax = 0 是非齐次方程组 Ax = b 对应的齐次方程组,则

- (A) 若 Ax = 0 只有零解,则 Ax = b 有唯一解;
- (B) 若 Ax = 0 有非零解,则 Ax = b 有无穷多解;
- (C) 若 Ax = b 有无穷多解,则 Ax = 0 只有零解;
- (D) 若 Ax = b 有无穷多解,则 Ax = 0 有非零解.
- 2. 设n维向量组 β_1,β_2,β_3 可由 α_1,α_2 线性表出,则

- (A) 仅当 α_1 , α_2 ,线性无关时, β_1 , β_2 , β_3 线性无关;
- (B) 仅当 α_1, α_2 线性相关时, $\beta_1, \beta_2, \beta_3$ 线性相关;
- (C) $\beta_1, \beta_2, \beta_3$ 线性无关;
- (D) $\beta_1, \beta_2, \beta_3$ 线性相关.
- 3. 设 $A \neq m \times n$ 矩阵,则齐次线性方程组Ax = 0 仅有零解的充要条件是

- (A) A 的列向量组线性无关. (B) A 的列向量组线性相关.
- (C) A 的行向量组线性无关. (D) A 的行向量组线性相关.
- 4. 设 $\alpha_1, \alpha_2, \alpha_3$ 齐次线性方程组 Ax = 0 的一个基础解系,则该方程组的基础解系 还有
 - (A) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_3$. (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 \alpha_1$.
 - (C) $\alpha_1 \alpha_2, \alpha_2 \alpha_3, \alpha_3 \alpha_1$. (D) $\alpha_1 + 2\alpha_2, 2\alpha_2 + \alpha_3, \alpha_3 \alpha_1$.
- 5. 设 $A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$, B 为 3 阶 非零矩阵,且 AB = 0,则 t =_______. -3
- 6. 设 3 元非齐次线性方程组 Ax = b 的两个解向量 η_1, η_2 满足

$$\eta_1 + 2\eta_2 = (1, 0, 1)^T$$
, $\eta_2 + \eta_1 = (2, -2, 1)^T$

且r(A) = 2. 则该方程组的通解是______. $k(-4,6,-1)^T + (3,-4,1)^T, k$ 任意

7. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,其中列向量 $\alpha_1, \alpha_2, \alpha_4$ 线性无关, $\alpha_3 = 2\alpha_1 - \alpha_2 + \alpha_4$. 则齐次线性方程组Ax = 0的一个基础解系为 .

答(2,-1,-1,1)^T

8. 设向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ k \\ -1 \end{pmatrix}$$
线性相关,则 $k = \underline{\qquad}.0$

9. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,如果 $\alpha_1+\alpha_2,k\alpha_2-\alpha_3$, $\alpha_3-\alpha_1$ 线性相关,k=1 则k=1

10. 设 $A = (\alpha_1 \ \alpha_2)$ 为 2 阶方阵, A^* 为 A 的伴随矩阵,若 $(1,1)^T$ 是线性方程组 Ax = 0 的基础解系,则 $A^*x = 0$ 的基础解系可为 . α_1 或 α_2

11 (8分) 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ -3 \\ 0 \\ 7 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -2 \\ 1 \\ -3 \\ -9 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 1 \\ -4 \\ -7 \\ 1 \end{pmatrix}$

的极大线性无关组,并将其余的向量用所求得的极大无关组线性表示.

$$\# \ [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \ \alpha_5] \rightarrow \begin{pmatrix} 1 & 1 & 2 & -2 & 1 \\ 0 & 1 & 1 & -3 & -2 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 5 \\ 0 & 1 & 1 & 0 & -8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

一个极大无关组为 α_1 , α_2 , α_4 , 4分 $\alpha_3 = \alpha_1 + \alpha_2$, 6分 $\alpha_5 = 5\alpha_1 - 8\alpha_2 - 2\alpha_4$

12 已知空间直角坐标系中三平面的方程分别为: π_1 : x+y+2z=1, π_2 : $x+\lambda y+z=2$, π_3 : $\lambda x+y+z=1+\lambda$.

(1)当 和 取何值时, 这三个平面交于一点? 交于一条直线? 没有公共交点?

(2)当它们交于一直线时, 求直线的方程.

联立三平面方程,得方程组
$$\begin{cases} x+y+2z=1\\ x+\lambda y+z=2\\ \lambda x+y+z=1+\lambda \end{cases}$$
 (1)

$$\overline{A} = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & \lambda & 1 & 2 \\ \lambda & 1 & 1 & 1+\lambda \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & \lambda - 1 & -1 & 1 \\ 0 & 0 & -2\lambda & 2 \end{pmatrix}$$

当 $\lambda \neq 0$ 且 $\lambda \neq 1$ 时, $r(A)=r(\bar{A})=3$,方程组有唯一解,从而三平面交于一点.

当 λ =0时,r(A)≠ $r(\bar{A})$,方程组无解,从而三平面无交点.

当 λ =1时, $r(A)=r(\bar{A})=2$,三平面交于一条直线.

此时
$$\bar{A} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,方程组(1)的通解为 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$,此为交线的参数方程。或

13. 设
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ b \end{pmatrix}; \beta_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \beta_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \beta_3 = \begin{pmatrix} 1 \\ 1 \\ c \end{pmatrix}.$$
 已知向量组 α_1, α_2

与向量组 β ., β ., β .等价.

(1)求向量组 β_1,β_2,β_3 的秩以及一个极大无关组,并求a,b,c.

(2)令矩阵 $A = (\alpha_1, \alpha_2), B = (\beta_1, \beta_2, \beta_3)$.求满足AX = B的矩阵X.

解:由 α_1,α_2 与 β_1,β_2,β_3 等价,及 α_1,α_2 线性无关,知 $r(\beta_1,\beta_2,\beta_3)=2$.

从而 $det(\beta_1, \beta_2, \beta_3) = 0$, 得c = 0.又 β_1, β_2 线性无关,所以是一个极大无关组。4分

因此 α_1, α_2 与 β_1, β_2 等价,故有 $r(\alpha_1, \alpha_2) = r(\alpha_1, \alpha_2, \beta_1, \beta_2)$

$$\mathbb{X}(\alpha_1,\alpha_2,\beta_1,\beta_2,\beta_3) = \begin{pmatrix} 1 & 0 & 1 & -1 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ a & b & 1 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & -1 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1-a-2b & 2+a-b-a-b \end{pmatrix},$$

8分

有
$$1-a-2b=0,2+a-b=0,-a-b=0$$
,解得 $a=-1,b=1$.

且有
$$\beta_1$$
= α_1 + $2\alpha_2$, β_2 = $-\alpha_1$ + α_2 , β_3 = α_1 + α_2 .即 $(\beta_1,\beta_2,\beta_3)$ = (α_1,α_2) $\begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$: 故所求矩阵 $X = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$.

难题:

1. 设
$$A$$
是 n 阶矩阵, b 是 n 维列向量,且 $r\begin{pmatrix} A & b \\ b^T & 0 \end{pmatrix} = r(A)$,则 (). B

(A)
$$Ax = b$$
 有无穷多个解; (B) $\begin{pmatrix} A & b \\ b^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$ 有非零解;

(C)
$$Ax = b$$
 有唯一解; (D) $\begin{pmatrix} A & b \\ b^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$ 仅有零解.

- 2. 设 A 为 5 阶方阵,且 $A^2 = 0$,则 $r(A^*) =$ ________. 0;(因 $A^2 = 0$,r(A) + r(A) <= 5,故 r(A) <= 2)
- 3. 设 A 是 n 阶 方 阵 , $\alpha_1,\alpha_2,\alpha_3$ 是 n 维 列 向 量 , 且 $\alpha_1 \neq 0, A\alpha_1 = 2\alpha_1, A\alpha_2 = \alpha_1 + 2\alpha_2, A\alpha_3 = \alpha_2 + 2\alpha_3$,证明: $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

证: 由
$$A\alpha_1$$
= $2\alpha_1$, $A\alpha_2$ = α_1 + $2\alpha_2$, $A\alpha_3$ = α_2 + $2\alpha_3$ 可得

$$(A-2I)\alpha_1 = 0, (A-2I)\alpha_2 = \alpha_1, (A-2I)\alpha_3 = \alpha_2.$$

$$k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = 0$$
, (1)

用(A-2I)乘以(1)式,可得

$$(A-2I)(k_1\alpha_1+k_2\alpha_2+k_3\alpha_3)=0$$
, $\mathbb{P} k_2\alpha_1+k_3\alpha_2=0$, (2)

用(A-2I)乘以(2)式,可得

$$(A-2I)(k_2\alpha_1 + k_3\alpha_2) = 0$$
, $\mathbb{E}[k_3\alpha_1 = 0]$, (3)

由 $\alpha_1 \neq 0$ 可得 $k_3 = 0$,将 $k_3 = 0$ 代入(2)式可得 $k_2 = 0$,将 $k_2 = k_3 = 0$ 代入(1)可得

 $k_1 = k_2 = k_3 = 0$,(3 分) 因而 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

九、(4 分) 设 $A 为 m \times n$ 实矩阵, 证明: $r(A^TA) = r(A)$.

证 若 Ax=0,则 $A^{\mathsf{T}}Ax=0$. 反之,若 $A^{\mathsf{T}}Ax=0$,则有 $x^{\mathsf{T}}A^{\mathsf{T}}Ax=0$,即 $(Ax)^{\mathsf{T}}Ax=0$,从而 Ax=0.这表明,齐次线性方程组 Ax=0与 $A^{\mathsf{T}}Ax=0$ 同解,故它 们的基础解系所含的线性无关解向量的个数相同,即 $n-\mathrm{r}(A)=n-\mathrm{r}(A^{\mathsf{T}}A)$

故 $\mathbf{r}(A) = \mathbf{r}(A^{\mathrm{T}}A)$.