Problem #1

Give an example of a function from \mathbb{Z} to \mathbb{Z} with each of the following characteristics.

- (a) onto but not one-to-one
- (b) one-to-one but not onto
- (c) both onto and one-to-one (don't use the identity function as your example)
- (d) neither one-to-one nor onto

Solution

Part (a)

$$f(x) = \begin{cases} \frac{x-2}{2} & \text{if } x \text{ is even} \\ \frac{x-3}{2} & \text{if } x \text{ is odd} \end{cases}$$

Part (b)

Let f be the function defined by $f = \{(a, 2a + 3) \mid a \in \mathbb{Z}\}.$

Part (c)

Let f be the function defined by $f = \{(a, 2 - a) \mid a \in \mathbb{Z}\}.$

Part (d)

Let f be the function defined by f(x) = 1.

Problem #2

Determine which of the following properties are true and which are false. If the property is true give a proof and if it is false give a counter example. Let $f: X \to Y$ and $A, B \subseteq X$.

- (a) If $A \subseteq B$, then $f(A) \subseteq f(B)$.
- (b) For all subsets A and B of X, $f(A \cup B) = f(A) \cup f(B)$.
- (c) For all subsets A and B of X, $f(A \cap B) = f(A) \cap f(B)$.
- (d) For a subset C of Y, $f^{-1}(\overline{C}) = \overline{f^{-1}(C)}$.

Solution

Part (a)

Select an arbitrary element $a' \in f(A)$. Then there exists some element $a \in A$ such that f(a) = a'. We know $A \subseteq B$ so $a \in B$. Then $a' \in f(B)$ which implies that $f(A) \subseteq f(B)$.

Part (b)

Select an arbitrary element $x' \in f(A \cup B)$. Then there exists an element $x \in A \cup B$ such that f(x) = x'. It is either the case that $x \in A$ or $x \in B$ which implies that $f(x) \in f(A)$ or $f(x) \in f(B)$. Thus, in either case, $f(x) \in f(A) \cup f(B)$ and $f(A \cup B) \subseteq f(A) \cup f(B)$.

Now select an arbitrary element $x \in f(A) \cup f(B)$. Then either $x \in f(A)$ or $x \in f(B)$. In the first case there exists an $a \in A$ such that f(a) = x and $a \in A \cup B$ implies that $f(A) \cup f(B) \subseteq f(A \cup B)$. In the second case there exists a $b \in B$ such that f(b) = x and $b \in A \cup B$ implies that $f(A) \cup f(B) \subseteq f(A \cup B)$. Thus $f(A \cup B) = f(A) \cup f(B)$.

Part (c)

Counterexample: Let $A = \{0, 1\}, B = \{1, 2\}$ and the function f be defined by

$$f(0) = 0, f(1) = 1, f(2) = 0$$

Part (d)

Select an arbitrary element $c' \in f^{-1}(\overline{C})$. Then c' is an element of x such that f(x) is not in C. Then c' is an element of $\overline{f^{-1}(C)}$ which is the set of all elements that map to elements of Y that aren't in C. Thus $f^{-1}(\overline{C}) \subseteq \overline{f^{-1}(C)}$.

Now select an arbitrary element c of $\overline{f^{-1}(C)}$. Then c is an element of X such that that f(c) is not an element of C. So $\overline{f^{-1}(C)} \subseteq f^{-1}(\overline{C})$.

Combining the two parts, $\overrightarrow{f^{-1}(C)} = \overrightarrow{f^{-1}(\overline{C})}$.

Problem #3

Prove or disprove the following statements.

- (a) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both 1-1 then f+g is also 1-1.
- (b) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both onto then f+g is also onto.
- (c) Let $f: \mathbb{R} \to \mathbb{R}$ and c is any nonzero real number. If f is 1-1, then $c \cdot f$ is also 1-1.
- (d) Let $f: \mathbb{R} \to \mathbb{R}$ and c is any nonzero real number. If f is onto, then $c \cdot f$ is also onto.

Solution

Part (a)

Let f be a function that maps every element in R to itself. Let g be the function that maps every element to itself except that g(0) = 2 and g(2) = 0. Both of these functions are clearly 1-1. However, (f+g)(0) = 2 = (f+g)(2). So (f+g) is not 1-1.

Part (b)

Let f be the function defined by f(x) = x and let g be the function defined by g(x) = -x. These functions are both clearly onto. However, for any $x \in \mathbb{R}$, (f+g)(x) = f(x) + g(x) = x + (-x) = 0. Thus (f+g) is not onto.

Part (c)

Let x, y be two elements of \mathbb{R} such that $(c \cdot f)(x) = (c \cdot f)(y)$. This means that

$$c \cdot f(x) = c \cdot f(y)$$

$$\implies f(x) = f(y)$$

$$\implies x = y$$

Thus $(c \cdot f)$ is 1-1.

Part (d)

Let y be an arbitrary element of \mathbb{R} such that $(c \cdot f)(x) \neq y$ for any $x \in \mathbb{R}$. Then

$$(c \cdot f)(x) \neq y$$

 $\implies c \cdot f(x) \neq y$
 $\implies f(x) \neq y/x$

However, y/x is an element of \mathbb{R} and f is onto. Then this is a contradiction and $(c \cdot f)$ must be onto.

Problem #4

Prove the following. Given any set X and given any functions $f: X \to X$, $g: X \to X$, and $h: X \to X$, if h is 1-1 and $h \circ f = h \circ g$, then f = g.

Solution

h is 1-1 so it is simple to define a left inverse h^{-1} such that $h^{-1} \circ h$ is the function that maps every element to itself. Define h^{-1} as follows. Let a_0 be an arbitrary fixed element in X. For each x in X, h^{-1} is defined by:

- (a) If there is an element y in X such that h(y) = x, then $h^{-1}(x) = y$.
- (b) If no such element y exists in X, then $h^{-1}(x) = a_0$.

Then

$$h \circ f = h \circ g$$

$$h^{-1} \circ h \circ f = h^{-1} \circ h \circ g$$

$$f = g$$

Problem #5

Let $f: X \to Y$ and $g: Y \to Z$ be functions.

- (a) If $g \circ f$ is 1-1, must f and g be 1-1 as well? Prove or give a counter example.
- (b) If $g \circ f$ is onto, must f and g be onto as well? Prove or give a counter example.

Solution

Part (a)

Assume that f is not one-to-one. This implies that there exist elements $a_1, a_2 \in A$ such that $a_1 \neq a_2$ and $f(a_1) = f(a_2)$. If this is the case then $g(f(a_1)) = g(f(a_2))$ and $(g \circ f)(a_1) = (g \circ f)(a_2)$. This contradicts the given that $(g \circ f)$ is one-to-one and thus f must also be one-to-one.

It is not necessary that g be one-to-one. For example consider the case when $X = \{0, 1\}$ and $Y = Z = \{0\}$. Then defining f(x) = 0 and g(x) = 0 means that $g \circ f$ is one-to-one but g is not one-to-one.

Part (b)

By definition $(g \circ f)$ being onto means that $\forall c \in C$ there exists an element $a \in A$ such that

$$c = (g \circ f)(a)$$

$$= g(f(a))$$
(1)

Let b be the result of f(a). It is given that $b \in B$.

Therefore for any element $c \in C$ there exists an element $b \in B$ such that g(b) = c and g is onto by definition.

It is not necessary that f be onto. Suppose that X is a proper subset of Y and that X = Z. Then letting both f and g be the identity mapping means that $g \circ f$ is onto but f is not onto.

Problem #6

Suppose that f is a function from A to B, where A and B are finite sets with |A| = |B|. Show that f is one-to-one if and only if it is onto.

Solution

From the problem statement we know that $f(A) \subseteq B$.

First assume that f is one-to-one. This means that for any x and y in A it is not the case that f(x) = f(y). Then |f(A)| = |A| = |B| which implies that f(A) = B and thus f is onto.

Now assume that f is onto. Then f(A) = B. Assume that there exist two elements $x, y \in A$ such that f(x) = f(y) and $x \neq y$. Then |f(A)| < |A|. However, this is impossible because |A| = |B|. Thus f is one-to-one.

Problem #7

Show that a set S is infinite if and only if there is a proper subset A of S such that there is a one-to-one correspondence between A and S.

Solution

Assume that S is an infinite set containing the elements s_1, s_2, \ldots . Then let A be the subset $S \setminus \{s_1\}$. A is a proper subset of S. Define a function $f: S \to A$ by $f(s_x) = s_{x+1}$. It is clear from inspection that this mapping is both 1-1 and onto. Thus it is a one-to-one correspondence.

Now assume that there is a one-to-one correspondence between A and S. If A is a finite set then its cardinality must be less than the cardinality of S. By the pigeonhole principle there can be no one to one correspondence between the two. Thus A must be infinite. It's impossible for a finite set to contain an infinite subset so S must also be infinite.

Problem #8

Let S be a subset of a universal set U. The **characteristic function** f_s of S is the function from U to the set $\{0,1\}$ such that $f_s(x) = 1$ if x belongs to S and $f_s(x) = 0$ if x does not belong to S. Let A and B be sets. Show that for all $x \in U$:

- (a) $f_{A \cap B}(x) = f_A(x) \cdot f_B(x)$
- (b) $f_{A \cup B}(x) = f_A(x) + f_B(x) f_A(x) \cdot f_B(x)$
- (c) $f_{\overline{A}}(x) = 1 f_A(x)$
- (d) $f_{A \oplus B}(x) = f_A(x) + f_B(x) 2f_A(x) \cdot f_B(x)$

Solution

Part (a)

There are three cases:

- (a) x is in A and B $1 = 1 \cdot 1$
- (b) x is in one of the two (assume A wlog) $0 = 1 \cdot 0$
- (c) x is in neither $0 = 0 \cdot 0$

Part (b)

There are three cases:

- (a) x is in A and B $1 = 1 + 1 - 1 \cdot 1$
- (b) x is in one of the two (assume A wlog) $1 = 1 + 0 1 \cdot 0$
- (c) x is in neither A nor B $0 = 0 + 0 - 0 \cdot 0$

There are two cases:

- (a) x is in A0 = 1 - 1
- (b) x is not in A1 = 1 - 0

Part (c)

There are three cases:

- (a) x is in A and B0 = 1 + 1 - 2 \cdot 1
- (b) x is in one of the two (assume A wlog) $1 = 1 + 0 2 \cdot 0$
- (c) x is in neither A nor B $0 = 0 + 0 - 0 \cdot 0$