

Announcements

- Homework
 - Video Homework due tonight
 - Webwork 15 due on Wednesday
 - Nothing due Friday. Study up!
 - Also nothing due the Monday after Spring break. Relax!
- Test 2 on Friday!
 - You get a new notecard
 - Study materials are posted
 - Same general style as Test 1
 - Will probably be on an honor system, where I will send it out and you have like 1.25 hours to complete, photograph, and email it back to me.
- Tutoring is still happening. See Campuswire for info!
- Need to ask questions or talk with me personally? Email me and we can set up a time to meet in person or via Zoom.
- Polling: rembold-class.ddns.net

Capacitor Addition

In Parallel

- Each plate of the capacitor connected to other capacitor plates
- As if all the plates were touching, forming one large plate
- Since capacitance in proportional to A, we can get the total capacitance by adding

$$C_{eq} = C_1 + C_2 + C_3 + \cdots$$

In Series

- Negative plates connected to positive plates
- \bullet Neutral \Rightarrow same charge on each
- Conservation of energy thus says

$$\mathcal{E} - \frac{Q}{C_1} - \frac{Q}{C_2} - \frac{Q}{C_3} = 0$$

Same as

$$\mathcal{E} - Q \underbrace{\left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}\right)}_{1/C_{eq}} = 0$$

What is the equivalent capacitance of the circuit shown to the right?

Understanding Check

Given the circuit to the right, what amount of charge is on the middle capacitor when the circuit reaches steady state? You are told that

$$\mathcal{E} = 5 \text{ V}$$
 $C_1 = 2 \text{ F}$ $C_2 = 4 \text{ F}$ $C_3 = 2 \text{ F}$

- A) 8C
- B) 4C
- C) 2C
- D) 0.8 C

Energy Considerations

- Would like to be able to talk about the energy stored in a capacitor in term of its capacitance
- Recall that

$$\Delta U = \frac{1}{2} \epsilon_0 E^2 (\text{volume})$$

• We can thus write:

$$\Delta U = \frac{1}{2} \epsilon_0 \left(\frac{Q}{A \epsilon_0} \right)^2 (As) = \frac{1}{2} \epsilon_0 \frac{Q^2}{A^2 \epsilon_0^2} (As)$$
$$= \frac{1}{2} \frac{Q^2 s}{\epsilon_0 A} = \frac{1}{2} \frac{(C \Delta V)^2}{C}$$
$$= \frac{1}{2} C (\Delta V)^2$$

So, about those dielectrics now...

Recall that, with the dielectric inserted, the electric field inside the capacitor is

$$E_{insulator} = \frac{E_{w/o}}{K}$$

• Then the potential difference is

$$\Delta V = E_{insulator} s = \frac{E_{w/o} s}{K} = \frac{\Delta V_{w/o}}{K}$$

• So the capacitance is

$$C = \frac{Q}{\Delta V} = \frac{Q}{\frac{\Delta V_{w/o}}{K}} = KC_{w/o}$$

• So inserting a dielectric *increases* the capacitance of our capacitor!

Suppose we have a capacitor with a capacitance of $100\,\mu\text{F}$ with a vacuum between the charged plates. We charge it to $10\,\text{V}$ and then insert a piece of glass with a dielectric constant of 8 between the plates. How much additional charge can be placed on the capacitor plates? How much more energy can the capacitor store now?

Solution: 7 mC, 35 mJ

- We've already been talking about resistance
 - In terms of:
 - electron density
 - electron mobility
 - cross-sectional area
- This is great when taking a microscopic view, but not as useful for an everyday, macroscopic perspective
- Want to start eliminating or separating out the various dependencies

Current Density

We define the current density J to be

$$J=rac{\mathrm{I}}{A}$$

with units of A/m^2 .

• In our current equation:

$$I = |q| nAuE$$

q, n and u are all basically properties of the metal

- Would be useful to wrap them all up together so we just have one lump "property" to consider
- Just realize this technically hides information from us!

Conductance

We define the conductivity (σ) of a metal to be

$$\sigma = |q|$$
nu

with units of A/V, also called Siemens (S)

A Macroscopic Take

• All told, we now can write:

$$J = \frac{I}{A} = \sigma E$$

• Over a certain length of wire, we also know that:

$$|\Delta V| = EL$$

• Combining terms:

$$\frac{I}{A} = \sigma \left(\frac{\Delta V}{L}\right)$$

$$I\left(\frac{L}{\sigma A}\right) = \Delta V$$

Join the Resistance

Resistance

We define the constants in parentheses to be the resistance:

$$R = \frac{L}{\sigma A}$$

where R has units of ohms (Ω) or V/A

- Contains all the electronic and geometric properties of the wire/resistor all wrapped up in a nice single parameter
- Easy to relate the current to the potential difference:

$$\Delta V = IR$$

We looked at several problems where we were using short copper wires. What is the resistance of a 30 cm long, 1 mm diameter copper wire? We know that, for copper, $n = 8.5 \times 10^{28} \,\mathrm{e^{-}/m^{3}}$ and $u = 4.4 \times 10^{-3} \,\mathrm{(m/s)/(N/C)}$.

Solution: $6.38 \,\mathrm{m}\Omega$

Going Zen: Ohhhmmmmm...

- Resistance is only useful to us as a mostly fixed parameter
 - Means n and u shouldn't change much depending on current
- \bullet Materials where n and u are mostly constant with current are called ohmic.
- By comparison, non-ohmic materials have their electric properties change significantly depending on current (and temperature)
- Most metals are only roughly ohmic, so long as the currents are low
- Semiconductors: seriously non-ohmic
 - n varies greatly on voltage
 - Low voltage means n is incredibly small, \Rightarrow basically zero current
 - Double the voltage and n and get huge, \Rightarrow lots of current!
 - Let's you turn on/off segments of wire depending on voltage