Codage des nombres

Codage

Représentation des nombres

Quantité
_
II
111
Ш
###

111

Codage

Représentation des nombres

Quantité	Base 10	
-	0	
	1	
II	2	
III	3	
IIII	4	
###	5	
 	6	
 	7	
 	8	
 	9	
 	10	
 	11	
 	12	
 	13	
 	14	
### ### ###	15	
 	16	
 	17	
### ### ###	18	
### ### ###	19	
### ### ###	20	

Représentation des nombres

		Autre (Base	
Quantité	Base 10	10)	Base 16
-	0)	0
	1]	
II	2	€	2 3
III	3	#	
IIII	4	&	
 	5	{	5
 	6	!	6
 	7	:	7
 	8	/	8
 	9	%	9
 	10])	A
 	11]]	В
 	12]€	C
 	13]#	D
 	14]&	E
## ## ##	15]{	F
 	16]!	10
 	17]:	11
 	18]/	12
 	19]%	13
 	20	€)	14

Codage

D'où

12 base 10]€ autre base C en base 16

Et

Base 10 12 + 4 = 16

Autre base]€ + & =]!

Base 16 C+4=10

Codage

L'arithmétique

Quantité	Base 10	Base 2	Base 8	Base 16	Autre
_	0	0	0	0)
	1	1	1	1]
II	2	10	2	2	€
Ш	3	11	3	3	#
Ш	4	100	4	4	&
###	5	101	5	5	{

Codage

La base 10

Alphabet de 10 caractères 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Pondération suivant les puissances de 10. $(239)_{10} = 2 \times 10^2 + 3 \times 10^1 + 9 \times 10^0 = 200 + 30 + 9$

10 ⁿ	104	103	102	101	100	10-1	10-2	10-3
Valeurs	10000	1000	100	10	1	0,1	0,01	0,001
239	0	0	2	3	9	0	0	0

Autre méthode de calcul 239 | 10

Exercice 1

- (1) Convertir le nombre 1515 de la base dix à la base deux = 10111101011_2 On procède par divisions successives de 1515 par 2 en gardant les restes
- (2) Convertir le nombre 732 de la base dix à la base seize (hexadécimal). = $2DC_1$

On procède par divisions successives de 732 par 16 en gardant les restes

- (3) Convertir le nombre CAFE de la base seize à la base dix = 51966_{10} On pose : $Cx16^3 + Ax16^2 + Fx16^1 + Ex16^0 = 12x4096 + 10x256 + 15x16 + 14x1$
- (4) Convertir le nombre 888 de la base neuf à la base 2.

$$888_9 = 8x9^2 + 8x9^1 + 8x9^0 = 648 + 72 + 8 = 728_{10} = 1011011000_2$$

(5) Convertir le nombre 738 de la base neuf à la base 5.

$$738_9$$
 = $7x9^2 + 3x9^1 + 8x9^0 = 567 + 27 + 8 = $602_{10} = 4402_5$$

Base 9

Base 10

$$739_{9} = 7x9^{2} + 3x9^{1} + 8x9^{0} = 602$$

Base 10

Base 5

1515
$$_{10} = 10111101011_2$$

On constate que $4 = 2^2$, $8 = 2^3$ et $16 = 2^4$

101 1110 1011 5 E B Base 16

Base 8

TD2 Les opérations de base

L'addition					
0	0	1	1		
0	1	0	1		
0	1	1	<u>10</u>		

0	1	1	0	0	1	1
1	0	1	0	1	0	1
1	1	10	0	11	1	0

La multiplication				
0	0	1	1	
0	1	0	1	
0	0	0	1	

La d	ivision		
0	0	1	1
0	1	0	1
*	0	*	1

La soustraction

Exercice 1

(6) Ecrire $X = 314_{10}$ en binaire puis en hexadécimal et en octal.

$$314_{10}$$
 = 0001 0011 1010₂ = 13A₁₆
= 100 111 010₂ = 472₈

(7) Ecrire Y = 1000101011₂ en hexadécimal en octal puis en décimal.

$$1000101011_{2} = 0010\ 0010\ 1011 = 2\ 2\ B_{16} = 001\ 000\ 101\ 011 = 1\ 0\ 5\ 3_{8} = 555_{10}$$

(8) Ecrire $Z = FAC_{16}$ en binaire, en octal puis en décimal.

FAC
$$_{16}$$
 = <1111 1010 1100> $_{2}$ = <111 110 101 100> $_{2}$ ou <7654> $_{8}$ = $F*16^{2} + A*16^{1} + C*16^{0} = 15*256 +10*16 + 12 = <4012>_{10}$

Exercice 1

(9) Quelle est la représentation binaire des entiers : 64_{10} , 77_8 , 114_{11}

$$64_{10} = 2^6 = 1000000_2$$

$$77_8 = 111 \ 111_2$$

$$114_{11} = 1x11^2 + 1x11^1 + 4x11^0 = 136_{10} = 1000\ 1000$$

Exercice 1

```
1 - Soit s le nombre en base b à convertir en base 10,
s chaine de caractère
i un nombre
b10 un nombre
Début
b10 < -0
i<-1
faire tant que (i < longueur(s))
 début
 b10 <- b10 * b + valeur numérique (s[i])
  i < -i + 1
 fin
ecrire(b10)
Fin
```

Exercice 1

```
2 - Soit n le nombre en base 10 à convertir en base b,
s chaine de caractère vide
c un caractère
r un nombre
faire tant que n>0
 début
  r <- n mod b
  n <- n div b
  c <- conversion de r en caractère du code C de b
  s <- préfixe(c,s)
 fin
```

Exercice 2

(1) Effectuez l'addition en binaire : 10011 + 10101.

1 1 1

10011

10101

101000

Exercice 2

(2) Effectuez l'addition en binaire : 1000101011 + 100111010.

11 1 1 1000101011 100111010

1101100101

Exercice 2

(3) Effectuez l'addition en base 5 : 234 + 120

0	11	/A) = CC - 1	
1	12	(4) Effectuez l'addition er	n base 16 : FACE + BABA.
2	13		
3	14		
4	15		
5	16	1 1 1	
6	17		04000
7	18	FACE	64206
8	19		47000
9	1A	BABA	47802
Α	1B	DADA	
В	1 C		
С	1D		440000
D	1E		112008
Е	1 F	1 B 5 8 8	
F	20	TDJOO	
10			

Qu'est ce qu'une variable dans un programme ?

C'est le nom que vous donnez à une zone mémoire :

- d'une certaine taille (x bits)
- avec une type de conversion (numérique ou alphabétique)

Par exemple:

```
char A; // variable de type caractère (ASCII) de 1 octet int I; // variable numérique de 4 octets unsigned char j; // variable numérique de 1 octet (8 bits)
```

Question de réflexion ?

```
unsigned char i,j,k;
i=1;
j=2;
k = j + j;
// valeur de K ,
i=128;
j=127;
k = j + j;
// valeur de K ,
```

Exercice 3

 $\begin{array}{r}
1001 \\
 & 10 \\
\hline
 & 0000 \\
 & 1001 \\
 & 10010
\end{array}$

1 1 0 1 <u>| 1 1</u> 0 0 100 1

Exercice 3

 $\begin{array}{r}
1001 \\
 & 110 \\
\hline
0000 \\
1001 \\
1001 \\
= \overline{110110}
\end{array}$

1001<u>|10</u> 00 100 1

Question de réflexion ?

```
unsigned char i,j,k;
i=1;
                           i 0000001
j=2;
                             0000010
k = j + j;
// valeur de K ,
i=128;
                           K 0000011
j=127;
k= j+j;
// valeur de K ,
```

Question de réflexion ?

```
unsigned char i,j,k;
i=1;
                                  10000000
j=2;
                                  11111111
k = i + j;
// valeur de K ,
i=128;
                             K 1 01111111
j=255;
k = i + j;
// valeur de K ,
```

N chiffres binaires --> 2^n valeurs de 0 à 2^n -1 en base 10 Exemple pour 8 bits $\rightarrow 2^8 = 256$ valeurs $\rightarrow 0$ à 255

Si on code des positifs et négatifs nous pouvons représenter 2^n nombres compris entre $-(2^n - 1)$ et $2^n - 1$

Exemple pour 8 bits $\rightarrow -2^{8-1}$ à + 2^{8-1} - $1 \rightarrow -128$ à + 127

Binaire	Signés	Non signés
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	-8	8
1001	-7	9
1010	-6	10
1011	-5	11
1100	-4	12
1101	-3	13
1110	-2	14
1111	-1	15

Mariette v

En binaire sur 32 bits	Signées en complément à deux	Valeurs non signées
000000	0	0
000001	1	1
000010	2	2
011110	2 ³¹ –2 = 2147483646	2 ³¹ –2 = 2147483646
011111	2 ³¹ –1 = 2147483647	2 ³¹ –1 = 2147483647
100000	2 ³¹ –2 ³² = - 2147483648	2 ³¹ = 2147483648
100001	$(2^{31} + 1) - 2^{32} = -2147483647$	2 ³¹ + 1 = 2147483649
111111	$(2^{31} + 2^{31} - 1) - 2^{32} = -1$	2 ³² –1 = 4294967295

00110011 + 00001010

00111101

 $51 + 10 = 61 \rightarrow OK$

00001010 - 11111001 111100010

100010001

10-249= -239 \rightarrow Faux

 $0\ 0\ 0\ 0\ 1\ 1\ 0\ 0$ $1\ 1\ 1\ 1\ 0$

100001010

 $12 - 254 = 266 \rightarrow Faux$

00001100 × 11111011

0000000

11111011

11111011

1011111000100

 $12 * 251 = 3012 \rightarrow Faux$

Variables

```
\begin{array}{lll} byte & a=1;\\ short & b=1;\\ int & c=1;\\ long & d=1;\\ int & i;\\ \end{array}
```

Debut

```
Pour (i=1;i<=35;i++)
    a=2*a; ecrire("la valeur de a est : " +a);
    b=2*b; ecrire("la valeur de b est : " +b);
    c=2*c; ecrire("la valeur de c est : " +c);
    d=2*d; ecrire("la valeur de d est : " +d);
    FinPour</pre>
```

Fin

```
a = 2
      b = 2 c = 2
                              d = 2 e = 2
                                                 f = 2
a = 4 b = 4 c = 4
                              d = 4 e = 4
                                                   f = 4
a = 8 b = 8 c = 8
                              d = 8 e = 8
                                                     f = 8
a = 16
      b = 16
             c = 16
                              d = 16 e = 16
                                                   f = 16
a = 32
      b = 32
             c = 32
                              d = 32 e = 32
                                                   f = 32
a = 64 b = 64 c = 64
                              d = 64 e = 64
                                                   f = 64
a = -128 b = 128 c = 128
                              d = 128 e = 128
                                                    f = 128
       b = 0 c = 256
                               d = 256 e = 256
                                                    f = 256
a = 0
       b = 0
             c = -32768
                              d = 32768 e = 32768 f = 32768
a = 0
a = 0
       b = 0
             c = 0
                               d = 0
                                      e = 65536
                                                     f = 65536
                              d = 0
                                     e = 1073741824  f = 1073741824
       b = 0
             c = 0
a = 0
      b = 0 c = 0
                              d = 0
                                      e = -2147483648  f = 2147483648
a = 0
a = 0
       b = 0 c = 0
                               = 0
                                      e = 0
                                                 f = 0
```

RAPPELS: signed char a; unsigned char b; unsigned short c; unsigned short d; int e; unsigned int f;

 $\label{the endown} \text{Expliquez la capture d'écran suivante, tirée du jeu de cartes en ligne $\textit{Hearthstone}: Heroes of Warcraft: \\$

Indication : Une créature qui a initialement 1073750016 points de vie meurt lorsqu'on double ses points de vie.

La nombre de vies

Le codage interne = 32 bits signés

+ 1073750016

On peut compter jusqu'à

4294967296

En doublant

Et de -2147483648 à

+2147483647

+ 2147500032

Cette valeur est > à la plus grande valeur représentable Le résultat sera une valeur négative -16383