熊猫模拟赛 3

Bear Yvonne and Cat NiroBC 熊生如逆旅,我亦是行猫

20180327

题目标题	数组	旅行	虫洞
源程序文件名	array.cpp	travel.cpp	wormhole.cpp
输入文件名	array.in	travel.in	wormhole.in
输出文件名	array.out	travel.out	wormhole.out
时间限制	2s	4s	1s
内存限制	512M	512M	512M
题目类型	传统	传统	传统

注意事项:

- 1. 编译命令: g++ -o %s %s.cpp。
- 2. C++ 标准: C++11。
- 3. 题目真的很简单。

数组 (array)

问题描述

小熊有一个长度为 N 的数组 b_i ,数组的第 i 个元素是在 $[0,a_i]$ 间均匀随机的实数。

小猫给这个数组定义了一个价值:长度为K的子区间的最小值的最大值,即

$$\max_{i=1}^{N-K+1} \{ \min_{j=i}^{i+K-1} \{b_i\} \}$$

小熊为了教育小猫好好学数学,希望小猫求出这个数组的价值的期望值。为了避免精度误差,设答案为 $ans=\frac{P}{Q}$ (答案显然是有理数),请输出满足 $0\leq ans'<998244353$ 且 $ans'\times Q\equiv P\pmod{998244353}$ 的唯一的整数 ans'。

输入格式

第一行两个正整数 N, K。

第二行 N 个整数 a_1, a_2, \ldots, a_N 。

输出格式

一行一个整数,表示 ans'。

输入样例

3 3

1 1 1

输出样例

748683265

样例解释

 $K \uparrow [0,1]$ 间均匀随机的实数的最小值的期望为 $\frac{1}{K+1}$, 所以答案为 $\frac{1}{4}$ 。

数据范围

对于所有数据,保证 $1 \le K \le N \le 100, 1 \le a_i < 998244353$ 。 以下为各个 Subtask 分别的性质:

Subtask 编号	N	K	得分
1	= 1		5
2	=2		5
3		= 1	10
4		=N	10
5	≤ 10		30
6			40

旅行 (travel)

问题描述

有一张 N 个点的无向图,一开始没有边。 小熊和小猫依次在这张图上进行 Q 次操作:

- 给定 $1 \times y$,表示小熊在 x = y 间连接了一条边。保证不会出现重边。
- 给定 2 x y,表示小猫想要从点 x 走到点 y。小猫想知道能否走通。如果不能走通,请你输出 -1,否则,请告诉小猫,想从 x 走到 y,有多少条边是必经之路。

输入格式

第一行两个整数 N,Q,表示点的个数与操作个数。 接下来 Q 行,每行三个整数 1,x,y 或 2,x,y,表示一个操作。

输出格式

对于每个2号操作,输出一行一个整数,表示答案。

输入样例

5 6

1 1 2

2 1 3

1 2 3

2 1 3

1 1 3

2 1 3

输出样例

-1

2

0

样例解释

- 1. 在 1,2 间连边。
- 2. 此时, 1,3 不联通, 输出 -1。
- 3. 在 2,3 间连边。
- 4. 此时, $1 \rightarrow 2 \rightarrow 3$ 是唯一的一条路径, 所以有 2 条必须经过的边。

- 5. 在 1,3 间连边。
- 6. 此时,可以走 $1 \rightarrow 2 \rightarrow 3$,也可以走 $1 \rightarrow 3$,所以没有边是必须经过的。

数据范围

对于所有数据,保证 $1 \le N, Q \le 10^5$ 。 对于 30% 的数据,保证所有 1 操作都在所有 2 操作之前。

虫洞 (wormhole)

问题描述

小猫想当太空猫, 爷爷奶奶可高兴了, 给她爱吃的喜之郎果冻。

位于 1 号星球的小猫拿到喜之郎果冻后,想通过星际旅行,把果冻送给远在 N 号星球的小熊。

小熊和小猫所在的星系可以看作一张 N 个点的图,小猫可以通过 M 个**单 向**的虫洞进行旅行。

第 i 个虫洞从 u_i 号星球通往 v_i 号星球,每一天,它可用的概率是 p_i 。

每一天开始的时候,所有虫洞是否可用的情况将被重置,每天虫洞是否可用的情况都是独立的。

每一天开始的时候,小猫将获知每个虫洞分别是否可用,并选择一个从当前 星球出发的可用的虫洞进行旅行,或选择在当前星球停留一天。如果选择了虫 洞进行旅行,小猫将在当天结束时到达目标星球。

小猫非常想念小熊,她想知道,如果她使用最优策略,她到达 N 号星球所需天数的期望是多少。

输入格式

第一行两个正整数 N, M,表示星球个数与虫洞个数。

接下来 M 行,第 i 行三个正整数 $u_i, v_i, 100p_i$,分别表示第 i 个虫洞的起点、重点,以及它每天可用的概率的 100 倍。

输出格式

一行一个实数,表示小猫她到达 N 号星球所需天数的期望,保留三位小数。

输入样例

3 3

1 2 50

2 3 50

1 3 40

输出样例

2.286

样例解释

考虑从 1 号星球出发的各种可能性:

- 0.4 的概率, 第三条虫洞可用, 用 1 天时间到达。
- 0.3 的概率,第三条虫洞不可用,而第一条虫洞可用,会通过第一条虫洞到达 2 号星球。

• 0.3 的概率, 无虫洞可用, 留在原地, 等待一天。

到达 2 号星球后,将等待至第二条虫洞可用后到达 3 号星球,期望等待两天。

所以,设从 1 号星球出发,到达 3 号星球,期望用时为 x 天。

$$x = (0.4 \times 0 + 0.3 \times 2 + 0.3 \times x) + 1$$

$$x = \frac{1.6}{0.7} \approx 2.286$$

数据范围

对于所有数据,保证 $1 \le N, M \le 10^5, 1 \le 100 p_i \le 99$ 。无重边,无自环,但可能有连接相同的两个星球,方向相反的虫洞。

以下为各个 Subtask 分别的性质:

Subtask 编号	N, M	是有向无环图	得分
1		Yes	20
2	=3	No	10
3	≤ 100	No	15
4	≤ 1000	No	15
5		No	40