Tax Rates, Taxes, After-Tax Amounts

- Assume that you have to pay tax on a given amount A and that the tax rate is T_c . The tax rate for the Shark Attractant project is $T_c = 21\%$. In real life, computing taxes would be more complicated. It is not uncommon, however, for a big corporation to know what its so-called effective tax rate is, and use that rate as a flat-rate proxy in such calculations.
- We have:

	Abstract	Example			
Taxable amount	Α	\$10,000			
Tax rate	T _c	21%			
Tax amount	$A \cdot T_c$	10,000 · 21% = \$2,100			
After-tax amount	$A - A \cdot T_c = A(1 - T_c)$	10,000 - 2,100 = \$7,900			

• So, if we want to compute only the after-tax amount, we can use directly the expression $A \cdot (1 - T_c)$.

Taxing Capital Asset Sales

Assume that an asset has a book value of \$700. We'll assume two scenarios: (a) it is sold for \$3,000, and (b) it is sold for \$500. The tax rate is $T_c = 21\%$.

	Book value	\$700	\$700		
	Sale price	\$3,000	\$500		
•	Taxable gain/(loss)	\$2,300	-\$200		
	Tax	$2,300 \cdot 21\% = 483	$-200 \cdot 21\% = -\$42$		
	After tax cash flow	3,000 - 483 = \$2,517	500 - (-42) = \$542		

- When the sale price is below the book value of the asset, we pay, in effect, negative tax. In other words, the "tax" boosts our cash flow.
- Warning: If the book value of an asset is not 0, then the after tax cash flow is not simply (sale price) $\cdot (1 T_c)$. The formula that applies in the general case is (sale price) $[(sale\ price) (book\ value)] \cdot T_c$ = (sale price) $\cdot (1 T_c) + (book\ value) \cdot T_c$. It may be easier, however, to just follow the logic as in the table above and not worry about the formula.
- Examples: When the sale price is \$3,000, the after-tax cash flow is: $3,000 \cdot (1-0.21) + 700 \cdot 0.21 = \$2,517$. When the sale price is 500, the after-tax cash flow is: $500 \cdot (1-0.21) + 700 \cdot 0.21 = \542 .

Shark Attractant Project

• Projected income statement:

Sales (50,000 units @ \$4/unit)	+200,000			
Variable costs (\$2.5/unit)	-125,000			
Fixed costs	-17,430			
Depreciation (\$90,000/3)	-30,000			
EBIT	27,570			
Taxes (@21%)	-5,790			
Net income	21,780			

• EBIT = (Sales) - (Costs) - (Depreciation) $Taxes = (EBIT) \cdot T_c$, where $T_c = 21\%$ is the tax rate (assumed flat) $NI = (EBIT) - (Taxes) = (EBIT) - (EBIT) \cdot T_c = (EBIT) \cdot (1 - T_c)$

OCF - Alternative Definition 1

- Earlier, we defined the Operating Cash Flow (OCF):
 OCF = (EBIT) + (Depreciation) (Taxes)
- From the analysis of the income statement, we have: $NI = (EBIT) - (Taxes) = (EBIT) - (EBIT) \cdot T_c = (EBIT) \cdot (1 - T_c)$
- We now have:

$$OCF = (EBIT) + (Depreciation) - (Taxes)$$
 $OCF = \underbrace{(EBIT) - (Taxes)}_{=NI} + (Depreciation)$

Thus OCF = NI + (Depreciation).
 Note that this version of the OCF formula starts at the bottom of the income statement.

OCF - Alternative Definition 2

- Earlier, we defined the Operating Cash Flow (OCF):
 OCF = (EBIT) + (Depreciation) (Taxes)
- From the analysis of the income statement, we have: EBIT = (Sales) - (Costs) - (Depreciation)
- We now have:

$$OCF = (EBIT) + (Depreciation) - (Taxes)$$

 $OCF = [(Sales) - (Costs) - (Depreciation)] + (Depreciation) - (Taxes)]$
 $OCF = (Sales) - (Costs) - (Taxes)$

Thus OCF = (Sales) - (Costs) - (Taxes).
 Note that this version of the OCF formula starts on quantities at the TOP of the income statement.

OCF - Alternative Definition 3

- Remember from earlier that OCF = (EBIT) + (Depreciation) (Taxes) and $Taxes = (EBIT) \cdot T_c$.
- OCF = (EBIT) + (Depreciation) (Taxes) OCF = [(EBIT) - (Taxes)] + (Depreciation) $OCF = (EBIT) \cdot (1 - T_c) + (Depreciation)$ $OCF = [(Sales) - (Costs) - (Depreciation)] \cdot (1 - T_c) + (Depreciation)$ $OCF = [(Sales) - (Costs)] \cdot (1 - T_c) + (Depreciation) \cdot T_c$
- If we did not recognize depreciation as a (non-cash) expense, we would pay taxes on the entire operation income (i.e., on sales costs). But recognizing depreciation boosts our cash flow by the amount (*Depreciation*) · T_c. Depreciation "shields" some of our operating income from taxes.
- We call this amount the value of the tax shield provided by depreciation.

Cost-Cutting Proposals

- New automation equipment will save \$22,000/year (pre-tax).
 The equipment costs \$80,000, will be depreciated linearly over 5 years. Salvage value after 5 years will be \$20,000.
- We set up a table and we start filling it up:

		Year					
		0	1	2	3	4	5
•	Operating Cash Flow						
	Net Change in Working Capital	0	0	0	0	0	0
	Capital Spending	-80,000					15,800
	Total Cash Flow						

• The after-tax salvage value in year 5 will be: ((pre-tax salvage value)-(depreciated value))×(1- T_c) = $(20,000-0)\times(1-0.21)=\$15,800$.

Cost-Cutting Proposals (2)

- Incremental linear depreciation per year
 - = 80,000/5 = \$16,000.
- Incremental operating income
 - =(incr. sales)-(incr. costs)
 - = 0-(-22,000) = \$22,000.
- Incremental EBIT
 - = (incr. operating income) (incr. depreciation)
 - = (incr. sales) (incr. costs) (incr. depreciation)
 - = 0-(-22,000)-16,000=\$6,000.
- Incremental taxes on incremental EBIT
 - $= 6,000 \times 0.21 = $1,260.$
- Incremental operating cash flow
 - = (incr. EBIT) (incr. taxes) + (incr. depreciation)
 - = 6.000 1.260 + 16.000 = \$20.740.

Cost-Cutting Proposals (3)

	Year						
	0	1	2	3	4	5	
Operating Cash Flow		20,740	20,740	20,740	20,740	20,740	
Net Change in Working Capital	0	0	0	0	0	0	
Capital Spending	-80,000					15,800	
Total Cash Flow	-80,000	20,740	20,740	20,740	20,740	36,540	

• Using a 10% discount rate, the NPV of this series of cash flows is \$8,431.47, so the project is worth undertaking.