Polyretina

Polyretina VR

Limitations

Limitations

- Limited colour space: Black and white.
- Low resolution: \sim 10,000 pixels.
- Small field of view: 45 degrees.
- Slow refresh rate: 5Hz.

Distortions

- Axon fibres.
- Desensitisation.

$$\phi(\phi_o,r) = \phi_o + b(\phi_o) \cdot (r-r_o)^{c(\phi_o)}$$

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\phi_i - \hat{\phi}_i)^2}$$

$$c = 1.9 + 1.4 \tanh \{-(\phi_o - 121)/14\}$$

$$ln\ b = \beta_s + 3.9 \tanh\{-(\phi_o - 121)/14\}$$

$$x' = x - 15$$

$$y' = y - 2(x/15)^2$$
 for $x > 0$

$$y' = y$$
 else

Second, transformation to polar coordinates (r, ϕ) :

$$r = \operatorname{sqrt}\left[(x')^2 + (y')^2 \right]$$

$$\phi = \arctan(y'/x')$$

<u>Augmented Reality Study – Complete Setup</u>

<u>Augmented Reality Study – Complete Setup</u>

Head and Eye Movement analysis

Virtual reality validation of naturalistic modulation strategies to counteract fading in retinal stimulation

Jacob Thomas Thorn¹, Naïg Aurelia Ludmilla Chenais¹, Sandrine Hinrichs¹, Marion Chatelain¹ and Diego Ghezzi^{1,2}

Virtual reality simulation of epiretinal stimulation highlights the relevance of the visual angle in prosthetic vision

Jacob Thomas Thorn¹, Enrico Migliorini¹ and Diego Ghezzi^{1,2}

A Simulation of Strategies to Counteract Phosphene Fading in Retinal Prostheses

Jacob Thorn, Naïg Chenais, Sandrine Hinrichs and Diego Ghezzi, Member, IEEE

