

Figure 1: The results on Colored-MNIST dataset, considering isotropic Gaussian prior. (First Row): $d_z=8$; (Second Row): $d_z=64$; (Third Row): estimated information leakage $I(\mathbf{S};\mathbf{Z})$ using MINE; (Fourth Row): estimated useful information $I(\mathbf{U};\mathbf{Z})$ using MINE. (First Column): utility task is digit recognition ($|\mathcal{U}|=10$), while the adversary's goal is the digit color ($|\mathcal{S}|=3$), setting $P_S(\text{Red})=P_S(\text{Green})=P_S(\text{Blue})=\frac{1}{3}$; (Second Column): utility task is digit recognition ($|\mathcal{U}|=10$), while the adversary's goal is the digit color, setting $P_S(\text{Red})=\frac{1}{2},\ P_S(\text{Green})=\frac{1}{6},\ P_S(\text{Blue})=\frac{1}{3}$; (Third Column): utility task is digit color recognition ($|\mathcal{U}|=3$), while the adversary's interest is the digit number ($|\mathcal{S}|=10$).

Figure 2: The results on CelebA dataset, considering isotropic Gaussian prior. (First Row): $d_z = 64$; (Second Row): $d_z = 128$; (Third Row): estimated information leakage I(**S**; **Z**) using MINE; (Fourth Row): estimated useful information I(**U**; **Z**) using MINE. (First Column): utility task is gender recognition ($|\mathcal{U}| = 2$), while the adversary's interest is Heavy Makeup ($|\mathcal{S}| = 2$); (Second Column): utility task is emotion (smiling) recognition ($|\mathcal{U}| = 2$), while the adversary's interest is mouth slightly open ($|\mathcal{S}| = 2$).