

ELT110 – Materiais Elétricos Prof. Rodolpho Neves Departamento de Engenharia Elétrica rodolpho.neves@ufv.br

Leis da magnetização

ELT110 - Materiais Elétricos

Aula de hoje:

- Campo magnético
- Lei de Ampère
- Lei de Faraday
- Lei de Lenz

Introdução

- André-Marie Ampère (1775-1836)
 - Natural de Lyon
 - Profissão: Professor
 - Estudou em casa, supervisionado pelo pai Jean-Jacques Ampère
 - Na Física:
 - Teoria dos Fenômenos Eletrodinâmicos
 - Formalizou os estudos de Oersted
 - Idealizou o galvanômetro
 - Inventou o primeiro telégrafo
 - Inventou o eletroimã
 - Junto com François Jean Dominique Arago

Lei de Ampère

ullet O campo magnético \overrightarrow{B} gerado por cargas em movimento é dado por:

$$\oint \vec{B} \cdot d\vec{L} = \mu_0 I$$

Introdução

- Michael Faraday (1791-1867)
 - Natural de Londres
 - Profissão: Químico e Físico
 - Estudou até o ensino fundamental
 - Cientista experimental
 - Na Química:
 - Descobriu o benzeno
 - Segunda lei da eletrólise
 - Na Física (Eletromagnetismo):
 - Conceitos de Linhas de Força
 - Bateria e arco elétrico (plasma)
 - Gaiola de Faraday
 - Motor elétrico e dínamo (gerador)

Experimento de Faraday

Lei de Faraday

• "A fem induzida V_{fem} (volts), em qualquer circuito fechado, é igual a taxa de variação no tempo do fluxo magnético enlaçado pelo circuito".

$$V_{fem} = \frac{d\Phi}{dt} [V]$$

Introdução

- Heinrich Lenz (1804-1865)
 - Natural de Tartu, Estônia
 - Profissão: Físico
 - Estudou Química e Física
 - Na Física:
 - Formulou a Lei de Lenz para corrigir a Lei de Faraday
 - Definiu a Lei de Joule para potência dissipada em um resistor
 - A letra L da indutância foi em homenagem a Lenz

Lei de Faraday

 Lei de Lenz afirma que a fem induzida age de tal forma a se opor à variação de fluxo que a induziu

$$V_{fem} = \frac{d\Phi}{dt} [V]$$

Força eletromotriz induzida

 Se o caminho fechado (circuito) for formado uma única espira:

$$V_{fem} = -\frac{d\Phi}{dt} [V]$$

 Se o caminho fechado (circuito) for tomado por N espiras:

$$V_{fem} = -N \frac{d\Phi}{dt} \text{ [V]}$$

Força eletromotriz induzida

Da eletrostática:

$$V_{fem} = \oint \mathbf{E} \cdot d\mathbf{L}$$

• Relacionando E e B:

$$V_{fem} = \oint \mathbf{E} \cdot d\mathbf{L} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

• Na presença de campos variáveis no tempo, E e B estão relacionados pela fem induzida

Força eletromotriz induzida

 A variação do fluxo pode acontecer para diferentes situações:

$$\frac{d\Phi}{dt} = \frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{S} \neq 0$$

- 1. Fluxo magnético variante (fem de transformador)
- 2. Área do enlace variando (fem de movimento)
- Os dois ao mesmo tempo (fem de transformador e de movimento)

Fem de transformador

$$V_R = V_{fem}$$

Fem de transformador

$$V_R = -V_{fem}$$

Fem de movimento

• A área $d\vec{S}$ é variável com o tempo.

Repassando

- Leis de magnetização
- Lei de Ampère
- Lei de Faraday-Lenz
- Fem de transformador
- Fem de movimento

Equações de Maxwell

Bibliografia

• Hayt, William. H. e Buck, John A. "Eletromagnetismo". São Paulo: McGraw-Hill, 2008.

ELT110 – Materiais Elétricos Prof. Rodolpho Neves Departamento de Engenharia Elétrica rodolpho.neves@ufv.br

Campus Viçosa:

Avenida Peter Henry Rolfs, s/n CEP 36570-900 Viçosa - MG - Brasil | + 55 31 3899-2200

Campus Florestal:

Rodovia LMG 818, km 6 CEP 35690-000 Florestal - MG - Brasil | + 55 31 3536-3300

Campus Rio Paranaíba:

Rodovia MC-230, Km 8 CEP 38810-000 Rio Paranaíba- MC - Brasil | + 55 34 3855-9300

www.ufv.br

