```
In [53]: import matplotlib.pyplot as plt
         import pandas as pd
         import numpy as np
         import seaborn as sns
         from scipy import stats
         import statsmodels.api as sm
         import warnings
         warnings.filterwarnings("ignore")
         # Loading the dataset
         df_thyroid = pd.read_csv('/Users/roshan/Downloads/thyroid_cancer_risk_data.c
         # Print some data
         print(df_thyroid.info())
         print(df_thyroid.head())
         # Check for missing values
         print(df_thyroid.isnull().sum())
         # Summary statistics
         print(df_thyroid.describe())
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 212691 entries, 0 to 212690 Data columns (total 17 columns):

	columns (total 17 co				
#	Column	Non-Null Count	Dtype		
0	Patient_ID	212691 non-null	int64		
1	Age	212691 non-null	int64		
2	Gender	212691 non-null	object		
3	Country	212691 non-null	object		
4	Ethnicity	212691 non-null	object		
5	Family_History	212691 non-null	object		
6	Radiation_Exposure	212691 non-null	object		
7	<pre>Iodine_Deficiency</pre>	212691 non-null	object		
8	Smoking	212691 non-null	object		
9	0besity	212691 non-null	object		
10	Diabetes	212691 non-null	object		
11	TSH_Level	212691 non-null	float64		
	T3_Level	212691 non-null			
	T4_Level	212691 non-null			
	Nodule_Size	212691 non-null			
15	Thyroid_Cancer_Risk	212691 non-null	-		
16	Diagnosis	212691 non-null	object		
	es: float64(4), int64	(2) , object(11)			
memor None	ry usage: 27.6+ MB				
Pa	atient_ID Age Gende	Country Ethni	city Family_	History \	
0	1 66 Male	e Russia Cauca	sian	No	
1	2 29 Male	e Germany Hisp	anic	No	
2	3 86 Male		sian	No	
3	4 75 Female	e India A	sian	No	
4	5 35 Female	e Germany Afr	ican	Yes	
	diation_Exposure Iodi	ne_Deficiency Smo	king Obesity	Diabetes	TSH_Level
\					
0	Yes	No	No No	No	9.37
1	Yes	No	No No	No	1.83
2	No	No	No No	No	6.26
3	No	No	No No	No	4.10
4	Yes	No	No No	No	9.10
		dule_Size Thyroid		•	
0	1.67 6.16	1.08	Low		
1	1.73 10.54	4.05	Low	Benign	
2	2.59 10.57	4.61	Low	Benign	
3	2.62 11.04	2.46	Medium	Benign	
4	2.11 10.71	2.11	High	Benign	
	ent_ID 0				
Age	0				
Gende					
Count	-				
Ethn:	icity 0				

Ethnicity Family_History 0 0 Radiation_Exposure Iodine_Deficiency 0 0 Smoking Obesity 0

```
Diabetes
                               0
        TSH Level
        T3_Level
                               0
        T4 Level
                               0
        Nodule Size
                               0
        Thyroid Cancer Risk
                               0
                               0
        Diagnosis
        dtype: int64
                 Patient ID
                                       Age
                                                TSH Level
                                                                T3 Level \
        count
               212691.00000
                             212691.000000 212691.000000 212691.000000
        mean
               106346.00000
                                 51,918497
                                                 5.045102
                                                                2.001727
        std
                61398.74739
                                 21.632815
                                                 2.860264
                                                                 0.866248
        min
                    1.00000
                                 15.000000
                                                 0.100000
                                                                0.500000
        25%
                53173.50000
                                 33.000000
                                                 2.570000
                                                                1.250000
        50%
               106346.00000
                                 52.000000
                                                 5.040000
                                                                2.000000
        75%
               159518,50000
                                 71.000000
                                                 7.520000
                                                                2.750000
        max
               212691.00000
                                 89.000000
                                                10.000000
                                                                3.500000
                    T4 Level
                                Nodule Size
        count
               212691.000000 212691.000000
                    8.246204
                                   2.503403
        mean
        std
                    2.164188
                                   1.444631
        min
                    4.500000
                                   0.000000
        25%
                    6.370000
                                   1.250000
        50%
                    8.240000
                                   2.510000
        75%
                   10.120000
                                   3.760000
        max
                   12.000000
                                   5.000000
In [13]: # Select relevant variables
         selected_vars = ["Age", "Nodule_Size", "Radiation_Exposure", "Family_History
         # Encode categorical variables
         df_thyroid_encoded = df_thyroid.copy()
         df_thyroid_encoded["Radiation_Exposure"] = df_thyroid_encoded["Radiation_Exp
         df_thyroid_encoded["Family_History"] = df_thyroid_encoded["Family_History"].
         df thyroid encoded["Diagnosis"] = df thyroid encoded["Diagnosis"].map({"Beni
         # Compute descriptive statistics
         desc_stats = df_thyroid_encoded[selected_vars].describe()
         # Compute mode for each variable
         mode_values = df_thyroid_encoded[selected_vars].mode().iloc[0]
         # Append mode row to descriptive statistics
         desc stats.loc["Mode"] = mode values
         # Print descriptive statistics
         print("### Descriptive Statistics: Mean, Mode, Spread, and Tails ###")
         print(desc stats)
```

```
### Descriptive Statistics: Mean, Mode, Spread, and Tails ###
                                Nodule Size Radiation Exposure Family History \
        count 212691.000000 212691.000000
                                                  212691.000000
                                                                  212691.000000
                   51,918497
                                   2.503403
                                                                       0.300083
        mean
                                                       0.149795
        std
                   21.632815
                                   1.444631
                                                       0.356871
                                                                       0.458295
        min
                   15.000000
                                   0.000000
                                                       0.000000
                                                                       0.000000
        25%
                   33.000000
                                   1.250000
                                                       0.000000
                                                                        0.000000
        50%
                   52.000000
                                   2.510000
                                                       0.000000
                                                                        0.000000
        75%
                   71.000000
                                   3.760000
                                                       0.000000
                                                                        1.000000
        max
                   89.000000
                                   5.000000
                                                       1.000000
                                                                        1.000000
        Mode
                   72.000000
                                   0.690000
                                                       0.000000
                                                                       0.000000
                   Diagnosis
        count 212691.000000
        mean
                    0.232708
                    0.422559
        std
        min
                    0.000000
        25%
                    0.000000
        50%
                    0.000000
        75%
                    0.000000
                    1.000000
        max
        Mode
                    0.000000
In [95]: # Define selected variables for outlier detection (excluding Radiation Expos
         selected vars for outliers = ["Age", "Nodule Size", "Family History"]
         # Define function for IQR-based outlier detection
         def detect outliers_iqr(data, column):
             Q1 = data[column].quantile(0.25)
             Q3 = data[column].quantile(0.75)
             IQR = Q3 - Q1 # Compute IQR
             lower bound = Q1 - 1.5 * IQR # Lower bound for outliers
             upper_bound = Q3 + 1.5 * IQR # Upper bound for outliers
             outliers = data[(data[column] < lower_bound) | (data[column] > upper_bou
             return Q1, Q3, IQR, lower bound, upper bound, len(outliers)
         # Compute IQR and outliers for selected variables
         igr results = {}
         for col in selected vars for outliers:
             Q1, Q3, IQR, lower_bound, upper_bound, num_outliers = detect_outliers_id
             iqr_results[col] = {
                 "Q1": Q1, "Q3": Q3, "IQR": IQR,
                 "Lower Bound": lower_bound, "Upper Bound": upper_bound,
                 "Num Outliers": num outliers
         # Convert results to a DataFrame for better visualization
         igr outlier df = pd.DataFrame(igr results).T
         # Print IQR-based Outlier Analysis
         print("\n### IQR-Based Outlier Analysis (Excluding Radiation Exposure and Di
         print(igr outlier df)
```

```
### IQR-Based Outlier Analysis (Excluding Radiation Exposure and Diagnosis)
###
                   01
                          03
                                IQR Lower Bound Upper Bound Num Outliers
Age
                33.00 71.00 38.00
                                         -24.000
                                                      128,000
                                                                        0.0
Nodule_Size
                 1.25
                              2.51
                                          -2.515
                                                        7.525
                                                                        0.0
                        3.76
Family_History
                 0.00
                        1.00
                              1.00
                                          -1.500
                                                        2.500
                                                                        0.0
```

```
In [97]: # Generate histograms
         plt.figure(figsize=(15, 10))
         colors = ["blue", "red", "green", "purple"]
         for i, var in enumerate(selected vars):
             plt.subplot(2, 3, i + 1)
             if var in ["Radiation_Exposure", "Family_History"]:
                 sns.countplot(x=df_thyroid_encoded[var], palette=[colors[i % len(col
                 plt.xlabel(f"{var} (0=No, 1=Yes)")
                 plt.ylabel("Count")
             elif var == "Diagnosis":
                 sns.countplot(x=df thyroid encoded[var], palette=["lightblue", "tan"
                 plt.xlabel("Diagnosis")
                 plt.ylabel("Count")
                 plt.xticks(ticks=[0, 1], labels=["Benign", "Malignant"])
             else: # Continuous variables (Age, Nodule Size)
                 sns.histplot(df thyroid encoded[var], bins=30, kde=True, color=color
                 plt.xlabel(var)
                 plt.ylabel("Frequency")
             plt.title(f"Histogram of {var}")
         plt.tight_layout()
         plt.show()
```


In [99]: # PMF Analysis for Nodule Size df_thyroid_encoded["Nodule_Size_Binned"] = pd.cut(df_thyroid_encoded["Nodule pmf_benign = df_thyroid_encoded[df_thyroid_encoded["Diagnosis"] == 0]["Nodule pmf_malignant = df_thyroid_encoded[df_thyroid_encoded["Diagnosis"] == 1]["Not plt.figure(figsize=(8, 5)) plt.bar(pmf_benign.index, pmf_benign, alpha=0.6, label="Benign", color="blue plt.bar(pmf_malignant.index, pmf_malignant, alpha=0.6, label="Malignant", co plt.xlabel("Nodule Size Groups") plt.ylabel("Probability Mass Function (PMF)") plt.title("PMF Comparison of Nodule Size for Benign vs. Malignant Cases") plt.legend() plt.show()


```
In [101... # CDF Analysis
    sorted_nodule_size = np.sort(df_thyroid_encoded["Nodule_Size"])
    cdf_nodule_size = np.arange(1, len(sorted_nodule_size) + 1) / len(sorted_nodule_size) + 1) / len(sorted_nodule_size)
    plt.figure(figsize=(8, 5))
    plt.plot(sorted_nodule_size, cdf_nodule_size, marker=".", linestyle="none",
    plt.xlabel("Nodule Size")
    plt.ylabel("Cumulative Probability")
    plt.title("CDF of Nodule Size")
    plt.grid(True)
    plt.show()
```



```
In [103... # Analytical Distribution: Normal Fit to Age
         # Fit a normal distribution to Age
         mu, sigma = np.mean(df_thyroid_encoded["Age"]), np.std(df_thyroid_encoded["Age"])
         # Generate normal distribution curve
         x = np.linspace(min(df_thyroid_encoded["Age"]), max(df_thyroid_encoded["Age"
         pdf = stats.norm.pdf(x, mu, sigma) * len(df_thyroid_encoded["Age"]) * np.dif
         # Plot histogram of observed Age data
         plt.figure(figsize=(10, 5))
         sns.histplot(df_thyroid_encoded["Age"], bins=30, kde=False, color="blue", al
         # Overlay the fitted normal distribution curve
         plt.plot(x, pdf, color="red", linewidth=2, label="Fitted Normal Distribution
         # Titles and labels
         plt.title("Analytical Distribution: Normal Fit to Age")
         plt.xlabel("Age")
         plt.ylabel("Frequency")
         plt.legend()
         # Show plot
         plt.show()
```



```
In [105... # scatter plots
         # Define figure size
         fig, axes = plt.subplots(1, 2, figsize=(15, 6))
         # Scatter plot for Age vs. Nodule Size
         axes[0].scatter(df_thyroid_encoded["Age"], df_thyroid_encoded["Nodule_Size"]
         axes[0].set_xlabel("Age")
         axes[0].set ylabel("Nodule Size")
         axes[0].set_title("Scatter Plot: Age vs. Nodule Size")
         # Scatter plot for Radiation Exposure vs. Nodule Size
         axes[1].scatter(df_thyroid_encoded["Radiation_Exposure"], df_thyroid_encoded
         axes[1].set_xlabel("Radiation Exposure (0=No, 1=Yes)")
         axes[1].set ylabel("Nodule Size")
         axes[1].set_title("Scatter Plot: Radiation Exposure vs. Nodule Size")
         # Adjust layout and display
         plt.tight_layout()
         plt.show()
```


print(logit model.summary())

```
In [107... # Compute Pearson Correlation Coefficient
         selected_vars = ["Age", "Nodule_Size", "Radiation_Exposure", "Family_History
         pearson corr all = df thyroid encoded[selected vars].corr(method="pearson")
         # Print Pearson Correlation Coefficient Matrix
         print("\n### Pearson Correlation Coefficient Matrix (All Selected Variables)
         print(pearson_corr_all)
        ### Pearson Correlation Coefficient Matrix (All Selected Variables) ###
                                 Age Nodule Size Radiation Exposure Family Histor
        y \
                                        -0.001489
                            1.000000
                                                             0.004007
                                                                             0.00333
        Age
        7
        Nodule Size
                           -0.001489
                                         1.000000
                                                             0.000118
                                                                            -0.00287
        Radiation Exposure 0.004007
                                                             1.000000
                                         0.000118
                                                                            -0.00079
        Family_History
                            0.003337
                                        -0.002877
                                                            -0.000795
                                                                             1.00000
        Diagnosis
                            0.000115
                                        -0.002658
                                                             0.089043
                                                                             0.14092
                            Diagnosis
                             0.000115
        Age
        Nodule_Size
                            -0.002658
        Radiation Exposure
                             0.089043
        Family_History
                             0.140921
        Diagnosis
                             1.000000
In [109... # Hypothesis Analysis Chi-Square Test for Radiation Exposure vs. Diagnosis
         contingency table = pd.crosstab(df thyroid encoded["Radiation Exposure"], df
         chi2, p, _, _ = stats.chi2_contingency(contingency table)
         print("\n --- Chi-Square Test Results --- ")
         print(f"Chi-Square Statistic: {chi2}, p-value: {p}")
         --- Chi-Square Test Results ---
        Chi-Square Statistic: 1685.7536394973827, p-value: 0.0
In [111... # Logistic Regression Analysis
         X = sm.add_constant(df_thyroid_encoded[["Age", "Nodule_Size", "Radiation_Exp
         y = df_thyroid_encoded["Diagnosis"]
         logit_model = sm.Logit(y, X).fit()
         print("\n ----Logistic Regression Summary ---")
```

> Optimization terminated successfully. Current function value: 0.529167 Iterations 5

----Logistic Regression Summary ---Logit Regression Results

=======================================					
== Dep. Variable:		gnosis			2126
91	DIagnosis		No. Observacions.		2120
Model:	Logit		Df Residuals:		2126
86					
Method: 4	MLE		Df Model:		
Date:	Sun, 02 Mar 2025		Pseudo R-squ.:		0.024
63	22.26.24		lan Idhaldhard		1 1255
Time: 05	22:26:21		Log-Likelihood:		-1.1255e+
converged:		True	LL-Null:		-1.1539e+
Covariance Type:	non	robust	LLR p-value:		0.0
=======================================	========	======	==========	:=======	========
=======		-4-1		D: 1-1	[0.025
0.975]	соет	sta er	r z	P> Z	[0.025
const	-1.5072	0 01	.7 –88 . 944	0 - 000	-1.540
-1.474	113072	0.01	.7 001544	0.000	11340
Age	-8.448e-05	0.00	00 -0.351	0.726	-0.001
0.000					
Nodule_Size	-0.0038	0.00	04	0.297	-0.011
<pre>0.003 Radiation_Exposure</pre>	0.5535	0.01	.3 41.194	0.000	0.527
0.580	0.5555	0.01	.5 41.194	0.000	0.327
Family_History	0.6953	0.01	.1 64.643	0.000	0.674