Lecture 21 Mobile Robotics - V Localization

Course logistics

- No class on Wed 11/22
- There will be quiz released tomorrow and due on 11/22 by 1pm.
- Project 5 is posted on 11/15 and will be due 11/29.
 - Start early!
- Updated Project points as we removed P6:
 - P0 5 points
 - P1-5 12 points
 - Final (Open) Project 15

Final (Open) Project timeline

Final (Open) Project timeline

- Form your groups: Use the excel sheet in the Ed post.
- Proposal Slides: (template will be provided)
 - 1-4 Slides
 - Title, Motivation, Input Output, Deliverables, Timeline, Who is doing what?
 - Where does your project stand not the 3-axes (robots, objects, tasks)?
 - Backup plan
- In-class proposal presentation (<8mins):
 - Teams will get feedback from the class
- Final video:
 - Describing the project idea and the outcome.
- Poster presentation: (template will be provided)
 - Presenting the project idea and the outcome to audience.

Final Project: 15%

- Project proposal slides + presentation: 3%
- Final project video: 6%
- Poster presentation (evaluation by judges): 6%

Continuing previous Lecture PF and localization

Particle Filter

```
Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
        ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
     for j = 1 to J do
          sample x_t^{[j]} \sim \pi(x_t)
                 w_t^{[j]} = \frac{p(x_t^{[j]})}{\pi(x_t^{[j]})}
                  \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle
5:
6:
            endfor
            for j = 1 to J do
                  draw i \in 1, \ldots, J with probability \propto w_t^{[i]}
                  add x_t^{[i]} to \mathcal{X}_t
9:
10:
             endfor
             return \mathcal{X}_t
```

Particle Filter for Localization

```
Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
        \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2: for j = 1 to J do
3: sample x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]})
              w_t^{[j]} = p(z_t \mid x_t^{[j]})
              \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle
    end for
        for j = 1 to J do
                 draw i \in 1, \ldots, J with probability \propto w_t^{[i]}
                 add x_t^{[i]} to \mathcal{X}_t
9:
10:
           endfor
           return \mathcal{X}_t
11:
```

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

Sensor Information: Importance Sampling

Robot Motion

CSCI 5551 - Fall 2023 - Section 002

Resampling

• Given: Set S of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

• Typically done *n* times with replacement to generate new sample set *S'*.

Resampling

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Motion Model Reminder

Proximity Sensor Model Reminder

Approximated Measured

O.0.075

O.0075

O.0015

Laser sensor

Sonar sensor

Using Ceiling Maps for Localization

Vision-based Localization

CSCI 5551 - Fall 2023 - Section 002

Under a Light

Measurement z:

Next to a Light

Measurement z:

Elsewhere

Measurement z:

Global Localization Using Vision

Adaptive Sampling

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Laser

What if the localization is not about the robot?

Hierarchical Policy - Goal-Directed Low-Level Controllers

"Controlling Contact-Rich Manipulation Under Partial Observability"

Florian Wirnshofer (Siemens AG)*; Philipp Sebastian Schmitt (Siemens AG); Georg von Wichert (Siemens AG); Wolfram Burgard (University of Freiburg)

RSS 2020

Zhiqiang Sui, Lingzhu Xiang, Odest Chadwicke Jenkins, Karthik Desingh, "Goal-directed Robot Manipulation through Axiomatic Scene Estimation," IJRR 2017.

Physically Plausible Scene Estimation for Manipulation in Clutter

Karthik Desingh¹, Odest Chadwicke Jenkins¹, Lionel Reveret², Zhiqiang Sui¹

> ¹University of Michigan, Ann Arbor, USA ²INRIA Rhône-Alpes, Saint Ismier, France

Karthik Desingh, Odest Chadwicke Jenkins, Lionel Reveret, Zhiqiang Sui, "Physically Plausible Scene Estimation for Manipulation in Clutter," Humanoids 2016.

Redojgntzeld sobject Povith Bebsés Raw Object Detection

Zhen Zeng, Yunwen Zhou, Odest Chadwicke Jenkins, Karthik Desingh, "Semantic Mapping with Simultaneous Object Detection and Localization," IROS 2018

Zhen Zeng, Adrian Röfer, Odest Chadwicke Jenkins, "SLiM: Semantic Linking Maps for Active Visual Object Search.," ICRA 2020

Pipeline

From RGB-D observations ...

Zhiqiang Sui, Haonan Chang, Ning Xu, Odest Chadwicke Jenkins, "Geofusion: Geometric consistency informed scene estimation in dense clutter", IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5913-5920, Oct. 2020, doi: 10.1109/LRA.2020.3010443.

Next Lecture: Mapping

