Dr. Subramani Suresh

What is an Outlier?

An outlier is a data point that is very different (much in higher or under lower) compared to the rest of the values in a dataset.

Why do outliers happen?

Natural Variation

Some values are just unusually high or low by nature.

★ Example: Most students score between 40–70 marks, but one student scores 100.

Data Entry Errors

Mistakes while recording data.

Example: Typing 500 instead of 50 for a student's marks.

Rare Events

Something unusual happens that shifts the data.

Example: Example: A shop usually sells 20–30 items daily, but on a festival day it sells 200 items.

Why are outliers important?

How to find outliers in a dataset?

The most common is using the IQR (Interquartile Range) method.

Step1 : Calculate Quartiles Q1,Q3 percentile : ex. Data = [-15,15,20,25,30,35,40,45,90]

A percentile shows the value below which a given percentage of data falls

IQR (Inter Quartile Range)

25% 25% 25% 25%

Q0 Q1 Q2 Q3 Q4

Minimum Maximum

Oth percentile 25th percentile 50th percentile 75th percentile 100th percentile

 $Q1 = \text{Value at position } P = \frac{25}{100} \times (n+1)$

2.5th position= Q1 value =20

P=(25/100)x(9+1)=

 $Q3 = ext{Value at position} \ P = rac{75}{100} imes (n+1)$

P=(75/100)x(9+1)= 7.5th position= Q3 value =**40**

n = total number of data points

If P is an integer, Q = value at the P-th position

If P is not an integer, interpolate between the two closest data points.

Step 1: Q1 percentile = 20 , Q3 percentile = 40

Step 2: Compute IQR IQR = Q3 - Q1 40 - 20 = 20

Step 3: Calculate bounds & Identify

★ Lower Bound = Q1 - 1.5 × IQR

 \Rightarrow 20 - 1.5 × 20 = - 10

Any value < Lower Bound → Lower outlier (-15 Lower outlier)

← Upper Bound = Q3 + 1.5 × IQR

$$\Rightarrow$$
 40 - 1.5 × 20 = 70

Any value > Upper Bound → Upper outlier (90 Upper outlier)

- Reason for 1.5 × IQR rule
 - The IQR (Q3 Q1) covers the middle 50% of the data.
- Multiplying by 1.5 extends this range to about 99% of a normal (bell- shaped) distribution.

Python

import numpy as np
Example dataset
data = np.array([-15, 15, 20, 25, 30, 35, 40, 45, 90])
Step 1: Calculate Q1, Q3
Q1 = np.percentile(data, 25)
Q3 = np.percentile(data, 75)
Step 2: Compute IQR
IQR = Q3 - Q1
Step 3: Calculate bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
Step 4: Find outliers
outliers = data[(data < lower_bound) | (data > uppe

Step 4: Find outliers
outliers = data[(data < lower_bound) | (data > upper_bound)]
print("Q1 (25%):", Q1)
print("Q3 (75%):", Q3)
print("QR:", IQR)

print("Lower Bound:", lower_bound)
print("Upper Bound:", upper_bound)
print("Outliers:", outliers)

Q1 (25%): 20.0 Q3 (75%): 40.0 IQR: 20.0

Lower Bound: -10.0 Upper Bound: 70.0 Outliers: [-15 90]