	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course Comp245
Question		
1.		Marks & seen/unseen
Parts		unseen ↓
(i)	(c). From tables, $\Phi^{-1}(0.025) \approx -1.96$ and $\Phi^{-1}(1-0.005) \approx 2.58$. So we have the equations	
	$90 - \mu \approx -1.96\sigma \tag{1}$ $120 - \mu \approx 2.576\sigma. \tag{2}$	
	Subtracting (1) from (2) yields	
	$4.536\sigma \approx 30 \implies \sigma \approx 6.614$ $\implies \mu \approx 102.963.$	
	(d). $F(3.4) = \sum_{y \in \mathcal{Y}; y \leq 3.4} p(y) = 0.1 + 0.2 + 0.3 = 0.6.$ (a). By the law of total probability, $P(E) = P(F)P(E F) + P(\overline{F})P(E \overline{F})$. Hence	seen ↓
	$P(E F) = \frac{P(E) - P(\overline{F})P(E \overline{F})}{P(F)} = \frac{0.5 - 0.5 \times 0.6}{0.5} = \frac{0.2}{0.5} = 0.4.$	
(iv) (v)	(e). (b). We require $\int_{x=-\infty}^{\infty} f(x)dx = 1$, so	
	$1 = \int_{x=-1}^{0} \frac{dx}{4} + c \int_{x=0}^{1} x dx = \frac{1}{2} + c \left[\frac{x^2}{2} \right]_{x=0}^{1} = \frac{1+c}{2}$ $\implies c = 1.$	
		Each 4 mar
	Setter's initials NH	Page number 1 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course Comp245
Question 2.		Marks &
Parts (i)		seen/unseen unseen ↓
	$\frac{p_{XY}(x,y)}{\begin{vmatrix} 0 & 1 & 2 \\ \hline 0 & \frac{1}{5} & \frac{1}{10} & \frac{1}{5} & \frac{1}{2} \\ \hline y & 1 & \frac{1}{8} & \frac{1}{5} & \frac{7}{40} & \frac{1}{2} \\ \hline \frac{13}{40} & \frac{3}{10} & \frac{3}{8} & 1 \\ \hline \end{aligned}$ The random variables X and Y are not independent of one another since, for example, $P(X=0)=\frac{13}{40}$ but $P(X=0 Y=0)=\frac{2}{5}$. $E(X)=\sum_{x=0}^2 x\ P(X=x)=0 \times \frac{13}{40} + 1 \times \frac{3}{10} + 2 \times \frac{3}{8} = \frac{21}{20} = 1.05.$ $E(Y)=\sum_{y=0}^1 y\ P(Y=y)=0 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2}.$	6 marks seen ↓ 2 marks 3 marks
(iv)		2 marks
	$E(XY) = \sum_{x=0}^{2} \sum_{y=0}^{1} x \ y \ p_{XY}(x,y) = \sum_{x=1}^{2} x \ p_{XY}(x,1) = 1 \times \frac{1}{5} + 2 \times \frac{7}{40} = \frac{11}{20} = 0.55.$ $Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{11}{20} - \frac{21}{20} \times \frac{1}{2} = \frac{1}{40}.$	4 marks
	Since $Cov(X,Y) > 0$, the variables are positively correlated.	2 marks 1 mark
	Setter's initials NH	Page numbe 2 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course Comp245
Question 3.		Marks & seen/unseen
	 (a) bias(T) = E[T μ] - μ. E(X̄ μ) = E(∑_{i=1}^π X_i) = ∑_{i=1}^π E(X_i) / n = ∑_{i=1}^π μ = nμ / n = μ. (b) x̄ = 495.09. (c) Under a null hypothesis H₀: μ = 500g, X̄ ~ N(500,5²/10). Let Z = (X̄ - 500)/√2.5, then Z ~ Φ under H₀ giving a 5% significance level rejection region for the observed statistic z of (-∞, -1.96) ∪ (1.96,∞). Here z = -3.1054, so we reject the null hypothesis. (a) The bias-corrected sample standard deviation s_{n-1} = 7.00261g (considerably larger than the standard deviation claimed by the supermarket). (b) Under the same null hypothesis, if T = √10(X̄ - 500)/7.00 then T ~ t₉ under H₀ giving a 5% significance level rejection region for the observed statistic t of (-∞, -2.26) ∪ (2.26,∞). Here t = -2.2173, well outside the rejection region and so now there is no evidence to reject the null hypothesis. (c) The differing outcome of the two tests suggests that the mean weights of the bags of grapes may well be 500g, but the variability of the bag weights claimed by the supermarket may be too low. 	seen ↓ 1 mark 4 marks 1 mark 5 marks 2 marks 2 marks
	Setter's initials NH	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course Comp245
Question		NA 1 2
4.		Marks & seen/unseer
Parts		seen ↓
(i)	(a) D and E mutually exclusive $\iff D \cap E = \emptyset$.	
	(b) E and F independent \iff $P(E \cap F) = P(E)P(F)$.	4 marks
	P(E F) = P(E) = 0.4 by independence of E and F.	2 marks
	$P(D \cap E) = 0$ since E and F are mutually exhibite.	1 marks
	$P(D \cup E) = P(D) + P(E) - P(D \cap E) = P(D) + P(E) - 0 = 0.3 + 0.4 - 0 = 0.7.$	3 marks
(v)	$P(E \cup F) = P(E) + P(F) - P(E \cap F) = P(E) + P(F) - P(E)P(F)$ by independence	
	of <i>E</i> and <i>F</i> . Rearranging then gives $P(F) = \frac{P(E \cup F) - P(E)}{1 - P(E)} = \frac{0.4}{0.6} = \frac{2}{3}$.	6 marks
(vi)	$\{X \ge 5\} \equiv \overline{E} \cap F.$	unseen ↓
	$P(X \ge 5) = P(\overline{E} \cap F)$. Then by the law of total probability, $P(F) = P(E \cap F) + P(\overline{E} \cap F)$, hence	1 mark
	$P(X \ge 5) = P(F) - P(E \cap F) = P(F) - P(E)P(F) = \frac{2}{3} \times (1 - 0.4) = 0.4.$	
		3 marks
	Setter's initials NH	Page numb 4 of 4