MTH 435 Date: May 25, 2018

John Waczak

Example: Torus

Let $T^2 \subset \mathbb{R}^3$ be the torus of revolution with center (0,0,0). Now let's define the antipodal map $A: T^2 \to T^2$ such that

$$(x, y, z) \mapsto (-x, -y, -z)$$

Define $K = T^2/N$ be the set of equivalence relations defined by

$$p \equiv q \in T^2 \iff q = A(p)$$

This gives us the projection map $\pi: T^2 \to K$ such that $p \mapsto [p] = \{p, A(p)\}$. Now we cover T^2 with coordinate charts $x_\alpha: U_\alpha \to T^2$ such that $x_\alpha(U_\alpha) \cap A \circ x_\alpha(U_\alpha) = \emptyset$. As before K with $\{U_\alpha, \pi \circ x_\alpha\}$ is the abstract surface called the **Klein Bottle**

Tangent Plane

So far we had defined T_pS to be $\{v \in \mathbb{R}^3 : v = \alpha'(0) \text{ for some curve in S with } \alpha(0) = p\}$. We want to free ourselves from \mathbb{R}^3 .

Define $\alpha(-\varepsilon,\varepsilon) \to \mathbb{R}^2$ be differentiable with $\alpha(0) = p$ write $\alpha'(0) = (u'(0),v'(0) = w$. Let f be differentiable, real valued function, defined in a neighborhood of p. $(f:U9(p)\to\mathbb{R})$. Restrict f to α then the directional derivative of f relative to g is given by

$$\frac{d(f \circ \alpha)}{dt}\Big|_{t=0} = \left(\frac{\partial f}{\partial u} \cdot \frac{du}{dt} + \frac{\partial f}{\partial v} \cdot \frac{dv}{dt}\right)\Big|_{t=0}$$
$$= \left\{u'(0)\frac{\partial}{\partial u_0} + v'(0)\frac{\partial}{\partial v_0}\right\}f$$

The directional derivative in direction w is an operator on differentiable functions which depends only on w.

Definition. A differentiable map $\alpha: (-\varepsilon, \varepsilon) \to S$ is called a Curve on S. Assume that $\alpha(0) = p$ and let D be the set of real-valued functions on S which are differentiable at p. The **Tangent vector** to the curve α at t = 0 is the function $\alpha'(0): D \to \mathbb{R}$ given by $\alpha'(0)[f] = \frac{d}{dt}(f \circ \alpha)\Big|_{t=0}$