

AKASH SHIL

Indian Institute of Technology Tirupati, A.P-517619, India

Contact: (+91) 8414034215 E-mail: cy23m017@iittp.ac.in

Nationality: Indian **D.O.B**: 06 / 12 / 2000

LinkedIn profile name: https://www.linkedin.com/in/akash-shil-9b5039268

RESEARCH OBJECTIVE

I am passionate about contributing to sustainable chemistry by developing eco-friendly, metal-free organic photoredox catalysts through computational methods like DFT & TDDFT. I aim to understand and enhance their photophysical and photochemical properties, aiming to create innovative solutions for efficient photocatalysis.

ACADEMIC DETAILS

Indian Institute of Technology Tirupati	2023-2025
M.Sc Chemistry (Full time)	
The ICFAI University, Tripura	2020-2023
B.Sc. Hons Chemistry (Full time)	
Udaipur English Medium Higher Secondary School	2020
12 th Tripura Board of Secondary Education	
Holy Cross (South) English Medium H.S School, Tuikarmaw	2018
10 th Tripura Board of Secondary Education	

ACADEMIC ACHIEVEMENTS

- Qualified IIT-JAM (Joint Admission Test for Master's) in Chemistry, 2023
- Gold medalist (Rank 1) for academic excellence in B.Sc. Chemistry

RESEARCH EXPERTISE

- Electronic structure calculations of ground & excited-state using DFT & TDDFT
- Optimal tuning of range-separated hybrid functional
- Predicting ground & excited-state redox potentials

RESEARCH INTERESTS

- Computational quantum chemistry
- Quantum algorithms for chemical systems
- Electronic structure theory & redox properties
- Photo-redox catalysis & excited-state dynamics
- Machine learning applications in computational chemistry
- AI-driven molecular design & reaction prediction

Developing computational methodologies:

- New DFT functionals
- New theoretical protocols

RESEARCH EXPERIENCE

Master's project:

Title: Tailored Ground and Excited-State Redox Potentials Through Halogenation and/or Extended π -Conjugation in BODIPY Dye: A Computational Perspective.

Guide: Dr. Arun K. Manna (Associate Professor, Department of Chemistry, IIT Tirupati)

Abstract: Focused on investigating redox potentials of functional BODIPY derivatives using DFT & TDDFT. The work emphasizes developing sustainable, visible-light absorbing metal-free organic photoredox catalysts.

SKILLS AND COMPETENCES

- Laboratory skills: a. Separation techniques Chromatography (Column, TLC)
 - b. Titrimetric methods Redox, Iodometry, Conductometric
 - c. Spectroscopic techniques UV-visible, Infrared, Fluorescence
- **Software skills**: a. Language Fortran, basic Python
 - b. Use of Gaussian 16, Gauss View 6, VESTA, ChemDraw, Linux and Windows 7, 8, 10 as operating systems, MS Office, LaTeX

RELEVANT COURSES

- Modern Electronic Structure Methods and Applications
- Principles of Spectroscopy
- Quantum Chemistry and Chemical Bonding
- Applications of Spectroscopy in Inorganic and Organic Chemistry
- Nanochemistry: Principles and Applications
- Computer Programming and Numerical Methods in Chemistry

REFERENCES

• Dr. Arun K. Manna

Associate Professor

Indian Institute of Technology Tirupati, E-mail: arun@iittp.ac.in

• Dr. Rajib Biswas

Associate Professor

Indian Institute of Technology Tirupati, E-mail: rajib@iittp.ac.in

Dr. Gouriprasanna Roy, HOD

Professor

Indian Institute of Technology Tirupati, E-mail: gproy@iittp.ac.in