Gaussian Graphical Models in Metabolomics

Raji Balasubramanian (UMass-Amherst) and Denise Scholtens (Northwestern Feinberg School of Medicine)

Monday, September 21, 2020

Graphical models in medicine

Data

Introduction to network analysis in R

Gaussian Graphical Models (GGM) in R

Graphical models in medicine

NETWORK MEDICINE

- **Fundamental principle**: disease module hypothesis that disease variants are connected.
- Evidence in literature: 10-fold increase in products of genes associated with a disorder when compared to expectation under random chance.
- References: Su and Clish, Metabolomics and Network Medicine, 2017; Goh, K. I., Cusick, M. E. et. al., The human disease network, 2007.

METABOLITES AS NETWORKS

Metabolites are naturally represented as networks:

- Nodes: represent individual metabolites.
- Edges (undirected): denote pairwise metabolite relationships.

EXAMPLE NETWORK

Figure 1: Maternal BMI and newborn SSF associated metabolite networks from Sandler, V., Reisetter, A. C. et. al., Diabetologia, 2017.

CORRELATION NETWORKS

- Correlation networks are established methods for constructing metabolite networks.
- Edges in correlation networks depict pairwise correlations between metabolite pairs.
- Networks are often created by thresholding on a correlation cut-off.
- Recent example from literature: A network analysis of biomarkers for Type 2 Diabetes in the Nurses Health Study.

¹Huang, T., Glass, K. et al., Diabetes, 2018.

CORRELATION NETWORKS

- Drawback: Correlations between metabolite pairs can be driven by direct and indirect relationships.
- Drivers of high correlation include shared or common enzymatic activities. ².
- Large number of non-zero pairwise correlations are usually observed.
- Absence of an edge results from satisfying a strong criterion of marginal independence between metabolite pairs.

²Su and Clish, Metabolomics and Network Medicine, 2017

³Strimmer, K., Notes on Gaussian Graphical Models.

Gaussian graphical models (GGM)

- Model: Metabolites are multivariate Gaussian with mean μ and covariance matrix Σ .
- The precision (concentration) matrix $\Omega = \Sigma^{-1}$.
- If $\Omega_{jk} = 0$, then the *i*th metabolite is independent of the *j*th metabolite, given all other variables.

GGM ESTIMATION

- Meinshausen and Buhlmann (2006): estimates $\Omega_{jk} = 0$ by fitting a lasso to each metabolite, using all others as predictors.
- $\hat{\Omega}_{jk} \neq 0$: if the estimated coefficients of metabolite i on j AND vice-versa are non-zero.
- Friedman et al. (2007): Glasso and variants for exact maximization of the penalized log-likelihood.

MODEL SELECTION

- Gaussian graphical model estimation involves a process to estimate the **optimal regularization parameter** (λ) .
- Large values of λ correspond to increasing sparsity of the resulting graph.

- Stability approach for regularization selection (StARS): uses a subsampling approach to estimate the optimal λ .
- Rotation information criterion (RIC): uses a permutation approach to estimate λ .

CORRELATION NETWORK VERSUS GGM

 Correlation network: An edge between metabolite pairs can result from both direct AND indirect relationships.

 GGM: An edge exists ONLY if the metabolite pair is dependent after accounting for all other indirect relationships.

Data

- Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study conducted during 2000 - 2006 at 15 international field centers.
- Blood samples were obtained during a 75-g oral glucose tolerance test (OGTT) between 24 and 32 weeks gestation.
- Metabolites were measured in maternal fasting and 1-h serum samples from 400 mothers in each ancestry group (Afro-Caribbean, Mexican American, Northern European, Thai).
- Mothers were sampled to span the range of maternal glucose and BMI.

Data Format:

- Column 1: ID
- Column 2: Ancestry Group
- Column 3: Fasting glucose
- Columns 4-54: 51 metabolites

Loading data ..

#PC users

```
#setwd("/cloud/project/Metabolomics R Ladies Strasbourg 2020/")
#mac users
setwd("/cloud/project/Metabolomics R Ladies Strasbourg 2020")
mydat <- read.csv(file = "Data/hapo_metabolomics_2020.csv")</pre>
print(mydat[1:3,1:10])
        id anc_gp fpg mt1_1 mt1_2 mt1_3 mt1_4
##
                                                               mt1 5
## 1 hm0001
             ag3 75.6 218.2223 76.99525 19.06366 14.23091 86.75162
## 2 hm0002 ag3 84.6 292.6314 136.41320 43.14854 17.77549 120.17344
## 3 hm0003
              ag4 79.2 361.1135 79.98370 22.15848 13.05497 74.75441
##
       mt1 7
## 1 64.00578
## 2 91.30156
## 3 83.67878
```

Three groups of metabolites:

- Prefix mt1: Amino Acids (AA)
- Prefix mt2: Acyl carnitines (AC)
- Prefix mt3: Other

Let's take a look at the numbers by **ancestry group**:

```
ag <- mydat[,2]
table(ag)</pre>
```

```
## ag1 ag2 ag3 ag4
## 400 400 400 400
```

Let's take a look at the distribution of **fasting glucose**:

```
fg <- mydat[,3]
summary(fg)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 61.20 77.40 81.00 81.63 86.40 106.20
```

Let's take a look at the distribution of **fasting glucose**:

Histogram of fg

Introduction to network analysis in R

PRELIMINARIES

• **igraph R** package: provides a way of representing graphs and various tools for working with graphs.

Preliminaries

- Let's work with a small (p=6) set of metabolites sampled from the HAPO dataset.
- As an example, we start with a simple correlation network of 6 metabolites

```
mx <- mydat[,-c(1:3)]
mx.1 <- mx[ag == "ag1", c(1,2,16,17,34,35)]
cor.1 <- round(cor(mx.1, use="pairwise.complete.obs"), digits=2)

### Create an adjacency matrix using a threshold of 0.1
adj.1 <- matrix(0, nrow(cor.1), nrow(cor.1))
adj.1[abs(cor.1) > 0.1] <- 1
colnames(adj.1) <- rownames(adj.1) <- colnames(cor.1)</pre>
```

Defining network objects in R

Let *p* denote the number of metabolites in our network.

 Adjacency matrix: p × p matrix, where i, j element is 1 if there is an edge between metabolite i and metabolite j, and 0 otherwise.

```
### Adjacency matrix
print(adj.1)
```

IGRAPH R PACKAGE

We can convert an adjacency matrix to an igraph object.

```
library(igraph)
igraph.obj <- graph.adjacency(adj.1,mode="undirected",weighted=NULL,diag=FALSE)

## Extracting nodes and edges from igraph object
V(igraph.obj)

## + 6/6 vertices, named, from b6868a8:
## [1] mt1_1 mt1_2 mt2_1 mt2_2 mt3_1 mt3_2
E(igraph.obj)

## + 5/5 edges from b6868a8 (vertex names):
## [1] mt1_1--mt1_2 mt1_1--mt2_1 mt1_1--mt2_2 mt1_2--mt3_2 mt2_1--mt2_2</pre>
```

VISUALIZING OUR NETWORK

Let's assign metabolite class to each of our nodes and an associated color.

```
### Assigning attributes to the list of nodes

V(igraph.obj)$MxClass <- c(rep("AA",2), rep("AC", 2), rep("Oth",2))
V(igraph.obj)$color <- c(rep("red", 2), rep("light blue",2), rep("green",2))
V(igraph.obj)$size <- 50
V(igraph.obj)$label.cex <- 0.75</pre>
```

VISUALIZING OUR NETWORK

Visualize the network..

Visualizing network
plot.igraph(igraph.obj,vertex.label=colnames(adj.1),layout=layout.fruchterman.reingold)

CHANGING NODE ATTRIBUTES

Let's change node size in proportion to significance of association with fasting glucose..

```
### Changing the node size to match the level
### of signficance with outcome (fasting glucose)
myfun <- function(metabolite, outcome){</pre>
    mymod <- lm(outcome ~ metabolite)</pre>
    minuslogp <- -log(summary(mymod)$coef[2,4])
    return(minuslogp)
fg1 \leftarrow fg[ag == "ag1"]
vals <- apply(mx.1, 2, myfun, fg1)</pre>
### scaling the node size
### changing the font fize
### of the vertex label
V(igraph.obj)$size <- vals*3+20
V(igraph.obj) $label.cex <- 0.6
```

VISUALIZING OUR NETWORK

Visualize the network after changing node attributes..

Visualizing network
plot.igraph(igraph.obj,vertex.label=colnames(adj.1),layout=layout.fruchterman.reingold)

GROUPING NODES

We can also visually depict metabolite classes (Amino acids, Acyl carnitines, Other) in our network ..

```
### Visualizing network with node groups
mylist <- list(c("mt1_1","mt1_2"), c("mt2_1","mt2_2"), c("mt3_1","mt3_2"))</pre>
```

GROUPING NODES

NETWORKS IN R.

There are a myriad of options available for visualizing networks. For more, see help associated with plot.igraph() in the igraph package.

```
### Other layouts (Kamada-Kawai)
### For other options -- Check ?plot.igraph

1 <- layout_with_kk(igraph.obj)
plot.igraph(igraph.obj,vertex.label=colnames(adj.1),layout=1, mark.groups=mylist)</pre>
```

Gaussian Graphical Models (GGM) in R

GGM IN R.

We illustrate estimation of the Gaussian graphical model using the R package huge.

To keep in mind:

- Missing values of metabolite levels need to be imputed prior to invoking the functions in huge.
- Each metabolite should be standardized to render them of unit variance.

PRELIMINARIES

We prepare metabolite data in ancestry group ag1 for graphical model estimation.

```
### Prepping data for GGM
### Impute missing values
### Standardize
standardizeMetabolite = function(x)
  x[x == Inf] \leftarrow NA
  x[is.na(x)] \leftarrow min(x, na.rm=T)/2
  return((x-mean(x, na.rm=T))/sd(x, na.rm=T))
mx.1 <- mx[ag == "ag1",]
mx1.s <- apply(mx.1, 2, standardizeMetabolite)</pre>
summary(apply(mx1.s,2,sd))
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 1 1 1 1
```

GGM ESTIMATION

The key functions involved are:

- huge: estimates GGM over a range of penalty parameters (can be left unspecified).
- huge.select: implements regularization parameter selection.
 Reference: T. Zhao and H. Liu (2012). The huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research.

GGM ESTIMATION

Regularization parameter selection options include:

- StARS: tends to overselects edges.
- RIC: more computationally efficient, tends to underselect edges.
- Reference: T. Zhao and H. Liu (2012). The huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research.

GGM ESTIMATION

Let's estimate the GGM network for our data...

```
library(huge)
### creates the GGM model object
mbModel <- huge(mx1.s, method="mb")</pre>
## Conducting Meinshausen & Buhlmann graph estimation (mb)....done
### Optimal parameter selection using ric
mbOptRIC = huge.select(mbModel, criterion="ric")
## Conducting rotation information criterion (ric) selection....done
## Computing the optimal graph....done
### extract the graph corresponding to optimal param
mbOptRICGraph = mbOptRIC$refit
```

GGM

Visualize our estimated GGM ..

Let's estimate the GGM network for our data..

```
myg <- graph_from_adjacency_matrix(mbOptRICGraph, mode="undirected")
### Assigning attributes to the list of nodes

V(myg)$MxClass <- c(rep("AA",15), rep("AC", 18), rep("Oth",18))
V(myg)$color <- c(rep("red", 15), rep("light blue",18), rep("green",18))
V(myg)$size <- 10
V(myg)$label.cex <- 0.5</pre>
```

GGM

Visualizing network
plot.igraph(myg,vertex.label=colnames(mx.1),layout=layout.fruchterman.reingold)

OTHER OPTIONS

- Method: can be changed to glasso; huge(.., method="glasso").
- Selecting λ: in huge.select(.., criterion="stars").
- Relaxing Gaussian assumption: using nonparanormal (npn) transformation; huge.npn() will return a transformed data matrix.

NEXT ..

Telling stories with GGMs

- Detecting communities within networks
- Differential networks
- Case studies

REFERENCES

- Su, J. and Clish, C. (2018). Metabolomics and Network Medicine, Network Medicine: Complex Systems in Human Disease and Therapeutics, Harvard University Press.
- Go, KI, Cusick, ME, Valle, D, Childs B, Vidal M, Barabási AL (2007). The human disease network, PNAS, 104(21):8685-90.
- Sandler, V., Reisetter, A. C., Bain, J.R., ..., Scholtens, D.M., Lowe, W.L.Jr (2018) Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes, Diabetologia, 60(3):518-530.
- Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso, Annals of Statistics, Vol. 34, No. 3, 1436-1462.
- Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9(3):432-441.
- Roeder, K., Lafferty, J., Wasserman, L., Zhao, T., Liu, H. (2012) The huge package for high-dimensional undirected graph estimation in R. Journal of Machine Learning Research, (13):1059–1062.

Gaussian Graphical Models in Metabolomics -Part 2

Raji Balasubramanian (UMass-Amherst) and Denise Scholtens (Northwestern Feinberg School of Medicine)

Monday September 21, 2020

- 1) Subnetworks associated with phenotype
- 2) Differential network analysis

BEYOND SIMPLE NETWORKS

- Graphical lasso identifies conditional dependence between pairs of metabolites and applies a node-and-edge graph representation of these dependencies
- While estimating conditional dependencies among metabolite pairs is interesting, for most investigations, these dependencies are not of primary interest.
- More complex questions:
 - Which subnetworks are associated with a phenotype?
 - Do networks vary across groups?

1) Subnetworks associated with phenotype

Subnetworks associated with phenotype

- Prior to network analyses, investigators often perform per-metabolite association analyses with a phenotype of interest
- How can per-metabolite and network analyses be linked?
- Some existing approaches:
 - Dittrich et al. (2008) Bioinformatics. Identifying functional modules in protein–protein interaction networks: an integrated exact approach.
 - Ben-Hamo et al. (2014) Bioinformatics. PhenoNet: identification of key networks associated with disease phenotype.
 - Soul et al. (2015) Scientific Reports. PhenomeExpress: A refined network analysis of expression datasets by inclusion of known disease phenotypes.

Subnetworks associated with phenotype

- A simple approach using graphical lasso
 - Identify a set of metabolites, \mathcal{M}_p , associated with phenotype
 - Identify additional metabolites, \mathcal{M}_c , with Pearson correlation exceeding some threshold (say 0.25) with at least one member of \mathcal{M}_p
 - Run graphical lasso on $\mathcal{M}_p \cup \mathcal{M}_c$

In case you'd like to start a new R session, let's reload the libraries and set the working directory.

```
#PC users
#setwd("/cloud/project/Desktop/Metabolomics R Ladies Strasbourg 2020/")
#mac users
setwd("/cloud/project/Metabolomics R Ladies Strasbourg 2020/")
library(igraph)
library(ggplot2)
library(iDINGO)
library(huge)
```

Now read in the data and review some simple descriptors.

```
mydat <- read.csv("Data/hapo_metabolomics_2020.csv")</pre>
rownames(mydat) <- mydat$id</pre>
dim(mydat)
## [1] 1600
             54
head(colnames(mydat))
## [1] "id"
                "anc_gp" "fpg"
                                   "mt1 1" "mt1 2" "mt1 3"
table(mydat$anc_gp)
##
## ag1 ag2 ag3 ag4
## 400 400 400 400
```

Perform simple ancestry-group specific mean imputation of missing metabolite values.

```
hapo_ag <- split(mydat,f=mydat$anc_gp)
length(hapo_ag)
## [1] 4
sapply(hapo_ag,FUN=dim)
##
       ag1 ag2 ag3 ag4
## [1,] 400 400 400 400
## [2,] 54 54 54 54
hapo_ag_m_i <- lapply(hapo_ag,
        FUN=function(x) apply(x[,grep("mt",colnames(x),value=TRUE)],
        MARGIN=2.
        FUN=function(y) ifelse(is.na(y),mean(y,na.rm=TRUE),y)))
```

Check to make sure imputation worked as planned.

```
hapo_m_i <- do.call("rbind",hapo_ag_m_i)</pre>
hapo_i <- data.frame(mydat[rownames(hapo_m_i),c("id", "anc_gp", "fpg")],
                     hapo_m_i)
tapply(mydat[, "mt3_4"], INDEX=mydat$anc_gp, FUN=mean, na.rm=TRUE)
##
        ag1
              ag2
                          ag3
                                   ag4
## 18.11342 22.06506 20.54547 19.95429
tapply(mydat[,"mt3_12"],INDEX=mydat$anc_gp,FUN=mean,na.rm=TRUE)
##
        ag1
             ag2
                          ag3
                                   ag4
## 26.41744 29.66998 29.01828 26.97278
```

Check to make sure imputation worked as planned.

```
mydat[c(1,2,3,6),c("anc_gp","mt3_4","mt3_12")]
##
         anc_gp mt3_4 mt3_12
## hm0001
            ag3 20.50824 29.37834
## hm0002 ag3
                     NA 29.51101
## hm0003 ag4 19.89055 27.85653
## hm0006
           ag4 20.04486
hapo_i[rownames(mydat)[c(1,2,3,6)],c("anc_gp","mt3_4","mt3_12")]
         anc_gp mt3_4 mt3_12
##
         ag3 20.50824 29.37834
## hm0001
         ag3 20.54547 29.51101
## hm0002
           ag4 19.89055 27.85653
## hm0003
## hm0006
            ag4 20.04486 26.97278
```

ANCESTRY-SPECIFIC NETWORKS ASSOC WITH FPG

Find subset of metabolites within each ancestry associated with fpg.

```
myfun <- function(metabolite,outcome){</pre>
    mymod <- lm(outcome~metabolite)</pre>
    minuslogp <- -log(summary(mymod)$coef[2,4])
    return(minuslogp)
hapo_i_ag <- split(hapo_i,f=hapo_i$anc_gp)
m_fpg_p_ag <- lapply(hapo_i_ag,</pre>
             FUN=function(x){
                 x_m <- x[,grep("mt",colnames(x))]</pre>
                 ans <- apply(x_m,MARGIN=2,FUN=myfun,outcome=x$fpg)
                 return(ans)
                 7)
```

Find subset of metabolites within each ancestry associated with fpg.

```
sig_m_ag <- lapply(m_fpg_p_ag,
       FUN=function(x) names(x[which(x>-log(.05))]))
sig m ag
## $ag1
## [1] "mt1 1" "mt1 2" "mt1 3" "mt1 5" "mt1 11" "mt1 12" "mt2 3" "mt2 8"
## [9] "mt2 11" "mt3 1" "mt3 2" "mt3 3" "mt3 4" "mt3 5" "mt3 10" "mt3 15"
##
## $ag2
## [1] "mt1 1" "mt1 2" "mt1 3" "mt1 5" "mt1 11" "mt1 12" "mt2 10" "mt3 4"
## [9] "mt3_6" "mt3_9" "mt3_13" "mt3_16"
##
## $ag3
## [1] "mt1 1" "mt1 2" "mt1 3" "mt1 5" "mt1 8" "mt1 11" "mt1 12" "mt1 15"
## [9] "mt2_4" "mt2_8" "mt2_13" "mt2_14" "mt3_1" "mt3_6" "mt3_10" "mt3_13"
##
## $ag4
## [1] "mt1 1" "mt1 5" "mt1 12" "mt1 15" "mt2 2" "mt2 8" "mt2 14" "mt3 5"
## [9] "mt3_12"
```

Find other metabolites correlated with significant metabolites.

```
m_cor_ag <- lapply(hapo_ag_m_i,FUN=cor,use="pairwise.complete.obs")</pre>
sig_cor_ag <- vector("list",length=4)</pre>
names(sig_cor_ag) <- names(sig_m_ag)</pre>
for (i in 1:4){
    sig_m_cor_pairs <- m_cor_ag[[i]][sig_m_ag[[i]],]</pre>
    sig_m_cor <- names(which(colSums(abs(sig_m_cor_pairs)>=.25)>0))
    sig_m_cor_vals <- hapo_ag_m_i[[i]][,sig_m_cor]</pre>
    sig_m_cor_vals_s <- apply(sig_m_cor_vals,MARGIN=2,FUN=scale)</pre>
    sig_cor_ag[[i]] <- sig_m_cor_vals_s</pre>
sapply(sig_cor_ag,FUN=dim)
##
        ag1 ag2 ag3 ag4
## [1,] 400 400 400 400
## [2,] 42 40 44 31
```

Now apply graphical lasso for these subsets of metabolites.

```
mbModel_ag <- lapply(sig_cor_ag,FUN=huge,method="mb")</pre>
## Conducting Meinshausen & Buhlmann graph estimation (mb)....done
mb_opt_ag <- lapply(mbModel_ag,FUN=huge.select,criterion="ric")</pre>
## Conducting rotation information criterion (ric) selection....done
## Computing the optimal graph....done
## Conducting rotation information criterion (ric) selection....done
## Computing the optimal graph....done
## Conducting rotation information criterion (ric) selection....done
## Computing the optimal graph....done
## Conducting rotation information criterion (ric) selection....done
## Computing the optimal graph....done
```

Generate the igraph objects.

Now plot the graphs - Ancestry group 1 (layout may vary)

```
plot(ggm_ag_g[["ag1"]],vertex.label=V(ggm_ag_g[["ag1"]])$label,
    vertex.label.cex=.5)
```


Ancestry group 2

```
plot(ggm_ag_g[["ag2"]],vertex.label=V(ggm_ag_g[["ag2"]])$label,
    vertex.label.cex=.5)
```


Ancestry group 3 - note the singleton node

```
plot(ggm_ag_g[["ag3"]],vertex.label=V(ggm_ag_g[["ag3"]])$label,
    vertex.label.cex=.5)
```


Ancestry group 4 - note the singleton node

```
plot(ggm_ag_g[["ag4"]],vertex.label=V(ggm_ag_g[["ag4"]])$label,
    vertex.label.cex=.5)
```


Drop the singletons.

- Visual inspection and biological interpretation of these networks is challenging
- Pick out pairwise relationships? Then what?
- Community detection helps tell a story
- igraph package
 - cluster_spinglass (Newman and Girvan, 2004)
 - cluster_fast_greedy
 - cluster_label_prop
 - cluster_walktrap
 - etc.

Spinglass clustering on all four graphs

ggm_ag_g_spg <- lapply(ggm_ag_g,FUN=cluster_spinglass)</pre>

Spinglass clustering - ancestry group 1

```
plot(ggm_ag_g[["ag1"]],
    vertex.label=V(ggm_ag_g[["ag1"]])$label,
    vertex.label.cex=.5,
    mark.groups=ggm_ag_g_spg[["ag1"]],
    vertex.size=ifelse(V(ggm_ag_g[["ag1"]])$label %in%
        sig_m_ag[["ag1"]],20,10))
```


Spinglass clustering - ancestry group 2

```
plot(ggm_ag_g[["ag2"]],
    vertex.label=V(ggm_ag_g[["ag2"]])$label,
    vertex.label.cex=.5,
    mark.groups=ggm_ag_g_spg[["ag2"]],
    vertex.size=ifelse(V(ggm_ag_g[["ag2"]])$label %in%
        sig_m_ag[["ag2"]],20,10))
```


EXAMPLE FROM HAPO METABOLOMICS

- Investigation of associations between maternal metabolites at 28 weeks gestation with newborn phenotypes at birth
- Examined associations within and across four ancestry groups Afro-Caribbean, European, Mexican-American, Thai
- Used a similar approach to that described here
- For graphical lasso, used residuals from a linear model for each metabolite with predictors for covariates of interest
- Kadakia et al. (2019) Diabetologia Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulimaemia across ancestries.

Example from HAPO Metabolomics

Maternal fasting metabolites associated with newborn sum of skinfolds under 2 covariate adjustment models

Figure 1: Kadakia et al. (2019)

2) Differential network analysis

DIFFERENTIAL NETWORK ANALYSIS

- Visual inspection suggests there are differences in the ancestry-specific networks we just generated
- But are the differences 'statistically significant'?
- One approach to differential network analysis:
 - iDINGO R package
 - Ha et al. Bioinformatics (2015) DINGO: differential network analysis in genomics.
 - Class et al. Bioinformatics (2018) iDINGO integrative differential network analysis in genomics with Shiny application.

- DINGO estimates a 'global' component of the network, \mathcal{G} , that represents edges that are common across groups
- DINGO also estimates 'local' group-specific components, $\mathcal{L}(x)$, that represent unique relationships in each group depending on the value of a categorical variable x.
- For two groups, group-specific edges are identified using a Differential Score:

$$\delta_{ab}^{(12)} = \frac{\hat{\phi}_{ab}^{(1)} - \hat{\phi}_{ab}^{(2)}}{s_{ab}^{B}}$$

where $\hat{\phi}_{ab}^{(1)}$ and $\hat{\phi}_{ab}^{(2)}$ are Fisher's Z transformation of the estimates of group-specific partial correlations between metabolites a and b in groups 1 and 2, and s_{ab}^B is the bootstrap estimate of the standard error.

```
Let's work with the first two ancestry groups.

hapo_2ag <- subset(hapo_i,anc_gp %in% c("ag1","ag2"))
hapo_2ag <- droplevels(hapo_2ag)
hapo_2ag_mt <- hapo_2ag[,grep("mt",colnames(hapo_2ag),value=TRUE)]
dim(hapo_2ag)

## [1] 800 54
dim(hapo_2ag_mt)

## [1] 800 51
```

The commented code below would perform the DINGO algorithm. The bootstrapping takes a long time. So we will just load an R object of the results that should be in your working directory.

```
#hapo_2ag_dn <- dingo(hapo_2ag_mt,x=hapo_2ag$anc_gp,B=50)
load("Data/hapo_2ag_dn_B50.rda")</pre>
```

Let's look at the various components of the output.

[1] 1275

```
names(hapo_2ag_dn)
    [1] "genepair" "levels.x" "R1"
##
                                              "R2"
                                                          "boot.diff"
##
    [6] "diff.score" "p.val"
                                 "rho"
                                              "P"
                                                          "0"
## [11] "Psi" "step.times"
head(hapo_2ag_dn$genepair)
## gene1 gene2
## 1 mt1_1 mt1_2
## 2 mt1_1 mt1_3
## 3 mt1_2 mt1_3
## 4 mt1_1 mt1_4
## 5 mt1_2 mt1_4
## 6 mt1_3 mt1_4
dim(hapo_2ag_dn$genepair)
```

```
More components of the output.
hapo_2ag_dn$levels.x
## [1] ag1 ag2
## Levels: ag1 ag2
length(hapo_2ag_dn$R1)
## [1] 1275
length(hapo_2ag_dn$R2)
## [1] 1275
dim(hapo_2ag_dn$boot.diff)
## [1] 1275
              50
```

```
More components of the output.

length(hapo_2ag_dn$diff.score)

## [1] 1275

length(hapo_2ag_dn$p.val)

## [1] 1275
```

Create a data frame of some of the output

Create a data frame of some of the output.

```
head(hapo_2ag_dn_df)
```

```
## 1 mt1_1 mt1_2 mt1_1:mt1_2 0.07809638 0.07832990 -0.016040253 0.9986491 ## 2 mt1_1 mt1_3 mt1_2:mt1_3 0.01951538 0.02186509 -0.135858912 0.8148208 ## 3 mt1_2 mt1_3 mt1_2:mt1_3 0.40212136 0.40158482 0.047007443 0.9039632 ## 4 mt1_1 mt1_4 mt1_1:mt1_4 -0.25814119 -0.25921713 0.092097027 0.8351067 ## 5 mt1_2 mt1_4 mt1_2:mt1_4 0.29185984 0.29178087 0.005269656 0.9683637 ## 6 mt1 3 mt1 4 mt1_3:mt1 4 -0.24110807 -0.24006858 -0.076546532 0.9051876
```

Identify extremely different scores with diff.score>5 or <-5.

```
hapo_2ag_dn_df$high_ds <- ifelse(abs(hapo_2ag_dn_df$diff.score)>5,
                                as.character(hapo_2ag_dn_df$genepair),"")
hapo 2ag dn df[which(!hapo 2ag dn df$high ds=="").]
##
       gene1 gene2
                         genepair
                                           R1
                                                      R2 diff.score p.val
## 395 mt2_2 mt2_14 mt2_2:mt2_14 0.164750400 0.3744255 -5.521262
## 397 mt2_4 mt2_14 mt2_4:mt2_14 0.010156435 -0.1238160
                                                         5.522768
## 920 mt2_2 mt3_11 mt2_2:mt3_11 0.005775354 0.5498016 -5.201985
## 932 mt2_14 mt3_11 mt2_14:mt3_11 -0.065983987 -0.7890289 5.598957
                                                                        0
##
            high_ds
## 395 mt2 2:mt2 14
## 397 mt2 4:mt2 14
## 920 mt2_2:mt3_11
## 932 mt2 14:mt3 11
```

Compare R1 and R2, colored by diff.score.

Plot of diff.score by p.val, colored by diff.score.

```
ggplot(hapo_2ag_dn_df,aes(x=diff.score,y=p.val)) +
         geom_point(aes(color=abs(diff.score)),size=3) +
         scale_color_gradient(low="lightpink",high="purple")
  1.00 -
                                                             abs(diff.score)
  0.75 -
                                                                 5
o.50 -
                                                                 3
                                                                 2
  0.25 -
  0.00 -
                            diff.score
```

Explore the global component of the dingo graph.

Explore the global component of the dingo graph.

Explore the local components of the dingo graphs.

```
hapo_2ag_dn_df$local_ag1 <- ifelse(
          (abs(hapo_2ag_dn_df$R1)>dingo_rho_thresh) &
                    (abs(hapo_2ag_dn_df$R2)<dingo_rho_thresh) &
                    (hapo_2ag_dn_df$p.val<.05),1,0)
hapo_2ag_dn_df$local_ag2 <- ifelse(
          (abs(hapo_2ag_dn_df$R2)>dingo_rho_thresh) &
                    (abs(hapo_2ag_dn_df$R1)<dingo_rho_thresh) &
                    (hapo 2ag dn df$p.val<.05),1,0)
table(hapo_2ag_dn_df$local_ag1,hapo_2ag_dn_df$local_ag2)
##
##
##
    0 1259 11
##
```

Explore the local components of the dingo graphs.

Explore the local components of the dingo graphs.

Local component for ancestry group 1

plot(local_g_ag1,vertex.label.cex=.5)

Local component for ancestry group 2

plot(local_g_ag2,vertex.label.cex=.5)

SUMMARY

- Networks are very helpful for 'story telling' in metabolomics (and other omics) settings
- Graphical lasso and related methods focus on conditional dependence
- Gives some assurance that edges aren't simply an artifact of sharing common correlations between a pair of nodes with a third node
- Focusing on subnetworks related to phenotype can place per-metabolite associations into context
- Differential network analyses based on graphical models can point to meaningful differences between groups
- Graphics take a while...be patient and use Google!

ACKNOWLEDGEMENTS

- Thanks to...
- Kate Shutta, Octavious Talbot, Alan Kuang and Nathan Gill for workshop assistance
- HAPO Metabolomics investigators (PI: William Lowe Jr. MD) for example data