Project 2: Public Private University

Machine Learning: K Means Clustering

Project build under the guidance of Professor Nitesh Karmakar

Machine Learning Mentor(KSI)

K means Clustering

- K-Means Clustering is an unsupervised machine learning algorithm.
- In contrast to traditional supervised machine learning algorithms, K-Means attempts to classify data without having first been trained with labeled data.
- Once the algorithm has been run and the groups are defined, any new data can be easily assigned to the most relevant group.

Dataset

The dataset is a CSV(comma separated value) having 777 rows × 18 columns

Attributes and its significance

- Private: A factor with levels No and Yes indicating private or public university
- Apps: Number of applications received
- Accept: Number of applications accepted
- Enroll: Number of new students enrolled
- Top10perc: Percentage new students from top 10% of high school class
- **Top25perc:** Percentage of new students from top 25% of their high school class
- **F.Undergrad:** Number of full-time undergraduates
- P.Undergrad: Number of part-time undergraduates
- Outstate: Out-of-state tuition

Attributes and its significance

- Room.Board: Room and board costs
- **Books:** Estimated book costs
- Personal: Estimated personal spending
- **PhD:** Percentage of faculty with PhDs
- **Terminal:** Percentage of faculty with a terminal degree (PhD/JD/MD/MBA/etc)
- **S.F.Ratio:** Student/faculty ratio
- **perc.alumni:** Percentage alumni who donate
- Expend: Instructional expenditure per student
- Grad.Rate: Graduation rate

Understanding the code

Understanding how to approach this Machine Learning Model

- 1. Importing Libraries
- 2. Importing Dataset and Read the data (from csv)
- 3. Identify the dependent and independent variables.
- 4. Check if the data has missing values or the data is categorical or not.
- 5. Visualize the data.
- 6. Applying K means Clustering
- 7. Model Evaluation

1. Importing Libraries

```
import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  %matplotlib inline
6 sns.set style('whitegrid')
  plt.style.use('fivethirtyeight')
  import warnings
  warnings.filterwarnings('ignore')
```

Importing Dataset

						<pre># importing csv data and view data data = pd.read_csv("College_Data", index_col=0) data</pre>												
	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
	Yes	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1	12	7041	60
	Yes	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2	16	10527	56
	Yes	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	12.9	30	8735	54
	Yes	417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7	37	19016	59
	Yes	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	11.9	2	10922	15
•	No	2197	1515	543	4	26	3089	2029	6797	3900	500	1200	60	60	21.0	14	4469	40
	Yes	1959	1805	695	24	47	2849	1107	11520	4960	600	1250	73	75	13.3	31	9189	83

14.4

5.8

18.1

Yes

Yes

10705 2453

Abilene Christian

Adrian College

Alaska Pacific

University

Worcester State College

University of Yes

Xavier University

Louisiana Yale

University York College

Pennsylvania

of

Xavier

Agnes Scott College

University Adelphi University

3. Identify the dependent and independent variables.

- We don't have any dependent variable, such problems fall into the category of unsupervised learning
- Since we don't have that frame of reference in unsupervised learning, thus the name
- No frame of reference means there is no dependent variable

4. Check if the data has missing values or the data is categorical or not.

- Dataset has no categorical values
- Check for missing/NaN/Null values and drop those columns

Concise summary of data:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 777 entries, Abilene Christian University to York College of Pennsylvania
Data columns (total 18 columns):
    Column
                 Non-Null Count Dtype
                 777 non-null
    Private
                                 object
                 777 non-null
                                 int64
     Apps
                 777 non-null
     Accept
                                 int64
    Enroll
                 777 non-null
                                 int64
     Top10perc
                 777 non-null
                                 int64
    Top25perc
                 777 non-null
                                 int64
    F.Undergrad 777 non-null
                                 int64
    P.Undergrad 777 non-null
                                 int64
    Outstate
                 777 non-null
                                 int64
                 777 non-null
     Room, Board
                                 int64
    Books
                 777 non-null
                                 int64
                 777 non-null
                                 int64
    Personal
    PhD
                 777 non-null
                                 int64
 13 Terminal
                 777 non-null
                                 int64
 14 S.F.Ratio
                 777 non-null
                                 float64
15 perc.alumni 777 non-null
                                 int64
    Expend
                 777 non-null
                                 int64
17 Grad.Rate
                 777 non-null
                                 int64
dtypes: float64(1), int64(16), object(1)
memory usage: 115.3+ KB
```

Statistical measures about the data:

		data.descri	be()						
		Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate
	count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000
	mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	855.298584	10440.6692
	std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	1522.431887	4023.01648
	min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	1.000000	2340.00000
	25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	95.000000	7320.00000
	50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	353.000000	9990.00000
	75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	967.000000	12925.0000
	max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	21836.000000	21700.0000
e()									
Room.B	oard	Books	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Ra
777.000000 4357.526384		777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.0000
		549.380952	1340.642214	72.660232	79.702703	14.089704	22.743887	9660.171171	65.46332
1096.696	416	165.105360	677.071454	16.328155	14.722359	3.958349	12.391801	5221.768440	17.17771
1780.000000		96.000000	250.000000	8.000000	24.000000	2.500000	0.000000	3186.000000	10.00000
		470.000000	850.000000	62.000000	71.000000	11.500000	13.000000	6751.000000	53.00000
3597.000	000	470.000000	000.00000						
		500.000000	1200.000000		82.000000	13.600000	21.000000	8377.000000	65.00000
3597.0000 4200.0000 5050.0000	000			75.000000	82.000000 92.000000	13.600000 16.500000	21.000000 31.000000	8377.000000 10830.000000	65.00000 78.00000

Histogram of Outstate Tuition based on the Private

Histogram of Grad.Rate based on the Private

- School with a graduation rate of higher than 100%
- Notice how there seems to be a private school with a graduation rate of higher than 100%

We need to set that school's graduation rate to 100% so it makes sense.

```
In [15]:

1 data['Grad.Rate']['Cazenovia College'] = 100

In [16]:

1 data[data['Grad.Rate'] > 100]

Private Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergrad Outstate Room.Board Books Personal
```

Now there is no school with graduation rate higher than 100%

- We can see there are no data points that fall outside 100.
- No school with graduation rate higher than 100%

6. Applying K means Clustering

```
means=kmeans.cluster_centers_
print(means)

[[1.03631389e+04 6.55089815e+03 2.56972222e+03 4.14907407e+01 7.02037037e+01 1.30619352e+04 2.46486111e+03 1.07191759e+04 4.64347222e+03 5.95212963e+02 1.71420370e+03 8.63981481e+01 9.13333333e+01 1.40277778e+01 2.00740741e+01 1.41705000e+04 6.75925926e+01]
[1.81323468e+03 1.28716592e+03 4.91044843e+02 2.53094170e+01 5.34708520e+01 2.18854858e+03 5.95458894e+02 1.03957085e+04 4.31136472e+03 5.41982063e+02 1.28033632e+03 7.04424514e+01 7.78251121e+01 1.40997010e+01 2.31748879e+01 8.93204634e+03 6.50926756e+01]]
```

7. Model Evaluation

- There is no perfect way to evaluate clustering if we don't have the labels, however, we do have the labels, so we take advantage of this to evaluate our clusters.
- Create a new column for df called 'Cluster', which is a 1 for a Private school, and a 0 for a public school.

```
In [28]:

1 data.Private.value_counts()

1 565
0 212
Name: Private, dtype: int64
```

Creating a **confusion matrix and classification report** to see how well the K means clustering worked without being given any labels.

```
from sklearn.metrics import confusion matrix, classification report, accuracy score
    print(confusion matrix(data.Private, kmeans.labels ))
    print(classification report(data.Private, kmeans.labels ))
[[ 74 138]
 [ 34 531]]
            precision
                       recall f1-score
                                       support
                0.69
                        0.35
                                 0.46
                                           212
                0.79
                        0.94
                                 0.86
                                           565
                                 0.78
                                           777
   accuracy
                0.74
                        0.64
                                 0.66
                                           777
  macro avg
weighted avg
                0.76
                         0.78
                                 0.75
                                           777
```

Accuracy: 77.86%

Thank you!

- By Mohammed Faraz Hussain
 - Terna Engineering College, Nerul
 - ID: TU3F1920077
 - Roll No.: TE-B-24