

3A Time: 3 minutes

Let p, q, and r represent the missing digits in the subtraction shown. Find the sum p + q + r.

Please fold over on line. Write answers on back

3B Time: 5 minutes

For how many positive integer values of x is the expression $\sqrt{50-x}$ also a positive integer?

3C Time: 6 minutes

Both P and (98 - P) are prime numbers. What is the least possible value of P?

3D Time: 5 minutes

Line segment \overline{AB} has endpoints A(-5,4) and B(7,13). Point C lies on \overline{AB} and is two-thirds of the way from point A to point B. Find the coordinates (x,y) of point C.

3E *Time:* 6 minutes

The symbol 3! means 3×2×1, which equals 6. Similarly, 4! means 4×3×2×1, which equals 24. Find the greatest prime factor of the sum 5! + 7!

3A

Student Name and Answer

$$p + q + r =$$

3B

Student Name and Answer

values

3C

Student Name and Answer

3D

Student Name and Answer

(,

3E

Student Name and Answer

Please fold over on line. Write answers in these boxes.

SOLUTIONS AND ANSWERS

3A

3A *Strategy*: Write the problem as an addition.

4 r 3 + <u>q 6 8</u> 8 4 p

3 + 8 ends in 1 so p = 1. 1 + r + 6 ends in 4, so r = 7. 1 + 4 + q = 8 so q = 3. Then $\mathbf{p} + \mathbf{q} + \mathbf{r} = \mathbf{11}$.

11

FOLLOW-UP: (1) Find w + y + z, if $4z \times y7 = 1w02$ [16]

3B

3B *Strategy*: *Determine possible values of the radicand.*

If $\sqrt{50-x}$ is a positive integer and x is positive, (50-x) must be a perfect square less than 50. (50-x) can be any of 49, 36, 25, 16, 9, 4, or 1 leading to x = 1, 14, 25, 34, 41, 46, or 49. There are 7 positive integer values of x for which $\sqrt{50-x}$ is a whole number.

7

Follow-Up: For how many whole number values of x is $\sqrt{108 - 3x}$ a whole number? [3]

3C

3D

3C *Strategy*: *List values of P in increasing order.*

<u>=====g</u> . ======g =								
Р	2	3	5	7	11	13	17	19
98 – P	96	95	93	91	87	85	81	79
Is 98 – P prime?	No; (÷2)	No; (÷5)	No; (÷3)	No; (÷7)	No; (÷3)	No; (÷5)	No; (÷3)	Prime

19

Therefore, the least value of P is 19.

FOLLOW-UP: Find a whole number value for N such that the value of $N^2 + N + 41$ is not prime. [The least is 40; the most readily found is 41.]

(3,10)

3D Strategy: Determine the x- and y-coordinates separately. C is 2/3 of the way from A to B. Then the x-coordinate of C is 2/3 of the way from the x-coordinate of A to the x-coordinate of B. The x (horizontal) distance from A to B is 7 - (-5) = 12 and 2/3 of 12 = 8. The x-coordinate of C is (-5) + 8 = 3.

A(-5,4) 12 >

Similarly, the *y*-coordinate of *C* is $4 + \frac{2}{3} \times (13-4) = 10$. The coordinates of point *C* are (3,10).

3E

43

3E METHOD 1: *Strategy: Factor the given expression.*

7! = $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 = 5! \times (6 \times 7)$. Then 5! + 7! = $5! + (5! \times 6 \times 7)$ = $(5! \times 1) + (5! \times 6 \times 7)$ = $5! \times (1 + 6 \times 7)$ [by the distributive property] = $(1 \times 2 \times 3 \times 4 \times 5) \times 43$. 43 is larger than any prime factor of 5!. The largest prime factor of 5! + 7! is 43.

METHOD 2: Strategy: Perform the indicated operations and then factor. 5! + 7! = 120 + 5,040 = 5,160. Start by factoring out as many small primes as you can. $5,160 = 2^3 \times 3 \times 5 \times 43$. The largest prime factor of 5! + 7! is 43.

FOLLOW-UP: Find the value of N for which $N! \times 4! = (N+1)!$ [23]

NOTE: Other Follow-UP problems related to some of the above can be found in our books "Math Olympiad Contest Problems for Elementary and Middle Schools" and "Creative Problem Solving in School Mathematics."