Proto - Dilithium ap a ZKPattempt #1: Let $R_q = \#_q[x]/\langle x^n+1\rangle$, S_n denotes the set of polynomials in R_q whose coefficients are $[-\eta, \eta]$.

```
Key GrenCommitmentResponse (c)\vec{S} \triangleq Sh\vec{\gamma} \triangleq Sh\vec{z} \leftarrow c.\vec{s} + \vec{\gamma}A \triangleq R_q^{k \times l}\vec{w} \leftarrow A\vec{\gamma}return \vec{z}\vec{t} \leftarrow A\vec{s}return \vec{w}\vec{v}pk \leftarrow lA, \vec{t})return \vec{w}return \vec{z}sk \leftarrow \vec{s}return \vec{c}return \vec{c}
Challenge
return \vec{c}
```

SIS ZKP Attempt #1

for each ZKP we need 3 properties:

Completeness: honest verifier will accept proof from an honest prover soundness: dishonest prover cannot make honest verifier accept thousand verifier) zero knowledge: the trumsript of the proof does not reveal information about the secret

Attempt #1 in <u>not sound</u> because solving $A\vec{z} = C \cdot \vec{t} + \vec{w}$ in easy where there in no constraint on \vec{z} and $A \in R_i^{k \times l}$ in wide (l > k). Solution: estimate a bound on \vec{z} then pose as constraint recall that $\vec{z} \leftarrow C \cdot \vec{s} + \vec{y}$, let $i \in \{1,2,...,l\}$ elenate the index of the polynomial and $j \in \{1,2,...,n\}$ denote the index of a coefficient, then we know $\vec{z} \cdot [j] = (C \cdot S \cdot)[j] + \gamma_i [j]$

we already know $-8_i \le \gamma_i [ij] \le 8_i$, it remains to establish bounds on $(c \cdot 5i)[ij]$.

 $C = C[0] + C[1]x + \cdots + C[n-1]x^{n-1}$ $Si = Si[0] + Si[1]x + \cdots + Si[n-1]x^{n-1}$

 $(C.Si)[j] = \sum_{0 \le a,b \le n} C[a]Si[b]$ * only partly correct since $x^n = -1 \pmod{x^{n+1}}$ so some coeffer need the mul with -1 at $b = j \mod n$

for each of j the numerican han n terms. Among them exactly \mathcal{I} of them are non-zero, und each of $Si[b] \in \mathbb{E}_{\eta, \eta}$, we we have that $(C \cdot Si)[j] \in [-\eta \mathcal{I}, \eta \mathcal{I}]$, which given the bound for \mathcal{I} .

```
Response(C)
KeyGen
              Commitment
3 K Sh
             7 4 Sx. 2 + C.3+ y
A RARAL
            W - Ay return Z
T - As
              return w
pk \leftarrow (A, T)
                         Verify(Z)
sk+3
                          assert AZ == C.T+W
             Challenge
              C < Ball(Z)
return (pk, sk)
                          and IIZIIoo = 81+12
              return c
```

SIS ZKP Attempt #2

Attempt #2 in homewhat sound now. Thin in because A in uniform random, so finding a $\mathbb{Z} \in R_q$ such that $A\mathbb{Z} = (\cdots)$ under the constraint $11\mathbb{Z} \log \mathbb{Z} = \mathbb{Z$

Attempt #2 in <u>not zero-knowledge</u>: certain values of \vec{z} can leak information of the secret key \vec{s} . Consider an extreme example where \vec{z} : \vec{z} :

Recall that $\Xi_i[j] = (CS_i)[j] + \gamma_i[j]$, we will focus on a single coefferince the coeffer of S_i and γ_i are all iid. Without knowing $\Xi_i[i]$, an adversary only known that $S_i \stackrel{\text{def}}{\leftarrow} R_{i-1}$ and $\gamma_i[j] \stackrel{\text{def}}{\leftarrow} [-S_i, S_i]$

if $zi[j] = \sigma_1 + \eta Z$, then it must be $(cSi)[j] = \eta Z$ and $\forall i[j] = \delta_1$ if $zi[j] = \delta_1 + \eta Z - 1$, then $(cSi[j]) = \eta Z$ and $\forall i[j] = \delta_1 - 1$ or $(cSi[j]) = \eta Z - 1$ and $\forall i[j] = \delta_1$

 $\text{if } Zi[j] = \delta_1 + \eta Z - 2\eta Z \text{ then } (CSi[j]) = \eta Z \text{ and } \forall i[j] = \delta_1 - 2\eta Z$ $(CSi[j]) = -\eta Z \text{ and } \forall i[j] = \delta_1$

intuitively speaking, when Zi[i] > 8,-7I, some valuer for CSi[i] are impossible become for such value, Yi[i]=Zi[i]-CSi[i] will be outside the allowed runge L-DI, DII. Iln the other hemel when Zi[j] = DI-NI, all values within [-NI, NI] we possible for CSE[j] because all corresponding /E[j] values fall within the allowed renge. The Jornal notion in expressed as Jollows: Lemma if $1/\sqrt{2} \| \infty \le \sqrt{1-\eta} \| x$, then the distribution of Si | C, Zi Proof: PLSi[C, Zi] = Lis' PLSin CSi=S' C, Zi] = Es, PLCS:=s, [C, Zi] - PLSi[C, Zi, CSi=s,] ~~ (1) conerve that: (a) P[Si[C,Z,CSi=S'] = P[Si[C,CSi=S'] pince <u>Fi cloch not give</u> extra information when C,S' are already given (b) P[s'|C,Zi] = P[s', c, Zi] = P[Zi|s', c] · P[C,s'] P[C, Zi]
P[C, Zi] P[Zils',c]. P[s'/c] PEZEICT (c) P[Zils', c] = P[Yi] = 20,+1 hince Z=S'+4 and Jooz Ze[-8+12, 8-12] and s'e[-12, 12], y in always in the allowed runge of values > the main reason that thin proof works (d) PLZilc] = \ SP[Zins'[c] = Zs, PIs'/c]. P[Zils', c] because (c) = P[Yil · Es'P[s'/c] Putting (a) ~ (d) together: P[Si[C, Zi] = [s, P[Si|si,c]. P[yi]. P[si[c] = Des P[Si|si,c]. P[si/c] = [s, P[Si, s'/c] = P[Si[C] } Silc are independent = P[Si]

now me have a complète, sound, and Zk I protocal:

```
Key GenCommitmentResponse (c)\vec{s} \neq Sh\vec{\gamma} \neq Sh\vec{z} \leftarrow c.\vec{s} + \vec{\gamma}A \neq Rg^{kxl}\vec{w} \leftarrow A\vec{\gamma}if ||\vec{z}||_{\infty} > \delta_1 - \eta \vec{x}| then\vec{t} \leftarrow A\vec{s}return \vec{w}return \vec{z}sk \leftarrow \vec{s}Challengereturn lpk, skc \leftarrow Ball(\vec{x})Verify (\vec{z})assertA\vec{z} = c.\vec{t} + \vec{w}and||\vec{z}||_{\infty} \leq \delta_1 - \eta \vec{z}|
```

Module-SIS ZKP attempt #3

Attempt #3 capturen the idea from "Fiat-Shamir w/ abort" (Lya 09): in the Σ -protocol, if the combination of $\overline{\gamma}$ and c in such that \overline{z} will leak information, then the prover simply refuse the release \overline{z} (in practice prover can make many commits, or verifier can here many challengen).

We can estimate the probability of no abort:

$$P[||\vec{z}||_{\infty} \leq \nabla_{1} - \eta \mathcal{I}] = T[i,j] P[||\vec{z}i||_{j}] | \leq \nabla_{1} - \eta \mathcal{I}]$$

$$= T[i,j] \frac{||\nabla_{1} - \eta \mathcal{I}||_{j}}{|\nabla_{1}|}$$

$$= (1 - \frac{\eta \mathcal{I}}{|\nabla_{1}|})^{L \cdot \eta}$$

Fiat-Shamir w/ Abort

take the Σ -protocol from v3 and apply Fiat-hhamir transformation (a) replace $c \triangleq Ball(x)$ with $c \leftarrow Hlw$, m) where $H: Rle \times M \rightarrow Ball$ in a huch Junction

(b) output the entire transcript $0 = (\overline{w}, C, \overline{z})$ and the highesture (c) verify by checking that $|\overline{z}||_{\infty} \leq \overline{v} - \eta z$ and that

an it in, the signature $\sigma = (\overline{w}, c, \overline{z})$ in quite large. Notice that with an honest signature, $\overline{w} = A\overline{z} - c\overline{t}$, see we can write \overline{w} in the signeture and re-derive it in the verification routine: o=(c注), w ← AZ-ct, assert c=H(w,m). It'n eary the whow that producing a forgery in equivalent to breaking pre-image

Here in the signature scheme Proto-Dilithium

Sign (sk=s, m)

y # Sign Verify (pR, m, o) KerGen SI SINA ARA THAS (C, Z) (- 0 if 117/2 then w < Ay $|SR \leftarrow S|$ $|Z \leftarrow C \cdot S + Y|$ $|\widehat{w} \leftarrow AZ - CT|$ $|SR \leftarrow (A, T)|$ if $||Z||_{\infty} > \chi_{1} - \eta \mathcal{I}$ then return $|SR \leftarrow (A, T)|$ return $|SR \leftarrow (A, T)|$ 5←(C, Z) return o

ZKPv3 + Fiat-Shamir + signature compression

Proto-Dilithium rev 2

the main elrawbuck of thin proto-Dilithium in that we want small value for η see P[abort] in low, but that make the bound $117100 \leq 81 - \eta x$ more relaxed, which cleareden security. The Dilithium team works around it by replacing the Module-SIS problem with Module-LWE.

KeyGen	Sign(sk, m)	Verify (pk, m, o)
3 x Xs	Sign(sk, m)	(c, 章) ~ o
E A Xe	$\overrightarrow{w} \leftarrow A\overrightarrow{y}$	if 112 1100 > 81-72:
A CARREL	$C \leftarrow H'(\overline{w}, m)$	return L
₹ \ A3+ e	$\vec{z} \leftarrow c\vec{s} + \vec{y}$	$\overrightarrow{w} \leftarrow A\overrightarrow{z} - c\overrightarrow{t}$
sk < s	if IZIIoo > 81-12 then	return [H(\war) = 2]
pk (A, T)	return L	
return (pk, sk)	return (C,Z)	

the naive adaptation above <u>breaks correctness</u> because $A\vec{z}'-c\vec{t}'=A(c\vec{s}'+\vec{\gamma})-c(A\vec{s}'+\vec{e}')=\vec{w}'-c\vec{e}'\neq\vec{w}'$ will not reproduce c.

Where that \vec{w} in approximately uniformly remelon in Rq while \vec{e} and thun $c\vec{e}$, has very small norm $||c\vec{e}||_{lov} \leq \eta Z$, see we can thus the high-order bits of \vec{w} : High Bits in such that High Bits $(\vec{w}) = \text{High Bits}(\vec{A}\vec{z} - c\vec{t})$

KeyGen	Sign(sk, m)	Verify (pk, m, o)
S Xs	Sign(sk, m)	(c, 章) ← o
e xe	wi ← High Bits (A)	if 112 1100 > 8,- 72:
A Rekal	$\overrightarrow{w}_i \leftarrow HighBits(A\overrightarrow{\gamma})$ $C \leftarrow H(\overrightarrow{w}, m)$	return 1
$\vec{t} \leftarrow A\vec{s} + \vec{e}$	$\vec{z} \leftarrow c\vec{s} + \vec{y}$	ŵ ← High Bits (AZ-cT)
$sk \leftarrow \vec{s}$	if 121100 > 81-12 then	w ← High Bits (AZ-ct) return [H(w, m) = 2]
$pR \leftarrow (A, \overrightarrow{t})$	return L	
return (pk, sk)	return (C,Z)	

High Bits works by elividing $\#_q$ into rounding intervals each spanning 282 where 82 in a parameter chosen to be a divisor of q-1, such as 82=(q-1)/32). Rounding in computed using Euclidean division where for $i\in\{1,2,\cdots,R\}$ and $j\in\{1,2,\cdots,n\}$:

Wili] = 282. High Bits + Low Bits where Low Bits & E-82, m, 823

Thin explanation in not reitenbying!

liven en honest message-hignesture peir $(m, \sigma = (c, \mathbb{Z}))$ one can recover the low order bith of $A\mathbb{Z} - c\mathbb{T} = \overline{W} - c\mathbb{C}$. hince $C\mathbb{C}$ has small norm $\eta\mathbb{Z} < \delta_2$, we know

 $Low(AZ-cZ) = Low(\overline{w}-c\overline{e}) = Low(\overline{w}) - c\overline{e}$

and from the definition of LowBits we know $|Low[\overline{w})| \leq \delta_2$, no we run into the same problem an in ZKPv2, where $A\overline{Z}-c\overline{T}$ may leak information about \overline{E} . Thin also means that we can apply the same "about if $IIA\overline{Z}-c\overline{T}Ilow$ gets too big" fix:

KeyGen Sign(sk, m) Verify (pk, m, o) 3 X X S 文 # Xy (c, 室) ← の e & XR if 1121100 > 8,-12 then wi ← High Bits (A7, 282) A Rekal $C \leftarrow H(\overline{w}, m)$ return L T < As+ e $\widehat{w} \leftarrow High Bits(AZ-ct, 202)$ return $[H(\widehat{w}, m) = \widehat{c}]$ $\vec{z} \leftarrow c\vec{s} + \vec{y}$ if 121100 > 81-12 then $sk \leftarrow \overline{s}$ $pR \leftarrow (A, \vec{t})$ return 1 return (pk, sk) if 11 Low Bits (Ay-ce) 1100 > 82-12 then return 1 return (C,Z)

Dilithium w/o pk comprension