Statistical Methods in Cancer Epidemiology using R

Janne Pitkäniemi

Faculty of Social Sciences, University of Tampere Finnish Cancer Registry

Lecture 2b

janne.pitkaniemi@cancer.fi

Feb, 17 2020

Basic analysis of rates

- Person-time data, hazard and incidence rates,
- ► Comparative parameters of rates and their estimation,
- Poisson regression models and comparative parameters,
- Adjustment for confounding and evaluation of modification by Poisson regression,
- Goodness-of-fit evaluation.

Main R functions covered:

- ▶ glm()
- tools for extracting results from a glm model object

Person-time data and incidence rates

Summarized data on outcome from cohort study, in which two exposure groups, as to binary risk factor X, have been followed-up over individually variable times.

Exposure to	Number of	Person-
risk factor	cases	time
yes	D_1	Y_1
no	D_0	Y_0
total	D_{+}	Y_{+}

Empirical **incidence rates** by exposure group:

$$I_1 = D_1/Y_1, \qquad I_0 = D_0/Y_0.$$

These provide estimates for the true {hazards} (or hazard rates) λ_1 and λ_0 assumed constant within exposure categories.

Hazards and their comparison

Parameters of interest:

hazard ratio

$$\rho = \frac{\lambda_1}{\lambda_0} = \frac{\text{hazard among exposed}}{\text{hazard among unexposed}}.$$

hazard difference

$$\delta = \lambda_1 - \lambda_0$$

Null hypothesis $H_0: \rho=1 \Leftrightarrow \delta=0 \Leftrightarrow$ exposure has no effect.

Estimation of hazard ratio

Point estimator of true hazard ratio ρ : empirical **incidence rate** ratio (IR)

$$\widehat{\rho} = IR = \frac{I_1}{I_0} = \frac{D_1/Y_1}{D_0/Y_0} = \frac{D_1/D_0}{Y_1/Y_0}.$$

NB. The last form is particularly useful = **exposure odds ratio** (EOR).

Standard error of log(IR), 95% {error factor} & 95% CI for ρ :

$$SEL = \sqrt{rac{1}{D_1} + rac{1}{D_0}}$$
 $EF = \exp\{1.96 imes \mathrm{SEL}\}$

$$CI = [IR/EF, IR \times EF].$$

NB. Random error depends inversely on numbers of cases.

Estimation of hazard difference

Point estimator of true hazard difference δ : empirical **incidence** rate difference (ID)

$$\hat{\delta} = ID = I_1 - I_0 = \frac{D_1}{Y_1} - \frac{D_0}{Y_0}$$

Standard error of ID, 95% error margin & 95% CI

$$\mathrm{SE} = \sqrt{\frac{I_1^2}{D_1} + \frac{I_0^2}{D_0}}$$

$$\mathrm{EM} = 1.96 \times \mathrm{SE}$$

$$CI = [ID - EM, ID + EM]$$

NB. Random error again depends inversely on no. of cases.

Example. British doctors' study (Doll & Hill 1966)

CHD mortality in males by smoking and age. \setminus Cases (D), person-years (Y), and mortality rates (I per 10^4 y).

	Smokers		N	Non-smokers		
Age(y)	D	Y	1	D	Y	1
35-44	32	52407	6	2	18790	1
45-54	104	43248	24	12	10673	11
55-64	206	28612	72	28	5710	49
65-74	186	12663	147	28	2585	108
75-84	102	5317	192	31	1462	212
Total	630	142247	44	101	39220	26

Example (cont'd).

Crude incidence rates:

$$I_1 = 630/142247 \text{ y} = 44.3 \text{ per } 10^4 \text{ y, and } I_0 = 101/39220 \text{ y} = 25.8 \text{ per } 10^4 \text{ y.}$$

Crude estimate of overall hazard ratio ρ with SE, etc.

$$\widehat{
ho} = IR = rac{44.3}{25.8} = 1.72$$

$$SEL = \sqrt{rac{1}{630} + rac{1}{101}} = \mathbf{0.1072}$$

$$EF = \exp(1.96 \times 0.1072) = \mathbf{1.23}$$

95% CI for ρ :

$$[1.72/1.23, 1.72 \times 1.23] = [1.39, 2.12]$$

Two-tailed P < 0.001.

Poisson regression model for rate ratio

▶ Random part: Number of cases in exposure group j = 0, 1

$$D_j \sim \mathsf{Poisson}(\lambda_j Y_j),$$

where $\mu_j = \lambda_j Y_j = expected number$ of cases.

Systematic part & link function: linear predictor $\alpha + \beta X_j$ with logarithmic (log) link

$$\log(\lambda_j) = \alpha + \beta X_j,$$

equivalently on the original hazard scale:

$$\lambda_j = \exp(\alpha + \beta X_j).$$

Poisson model for rate ratio (cont'd)

Interpretation,

- $ightharpoonup \alpha = \log(\lambda_0)$, log-baseline rate,
- $\beta = \log(\rho) = \log(\lambda_1/\lambda_0)$, logarithm of true hazard ratio,
- $ightharpoonup e^{eta}=
 ho=$ true hazard ratio.

Special case of generalized linear models!

Example. Crude analysis of CHD mortality in R

A ready data frame contains

- four variables:
 - ▶ age = age group a factor with 5 levels,
 - ightharpoonup smok = smoking: 1 = yes, 0 = no,
 - d = number of cases,
 - y = person-years.
- ▶ 10 observations (one for each age-smoking combination).

Example. Analysis of CHD rates (cont'd)

	age	smok	d	У	rate
1	35-44	1	32	52407	6.1
2	35-44	0	2	18790	1.1
3	45-54	1	104	43248	24.0
4	45-54	0	12	10673	11.2
5	55-64	1	206	28612	72.0
6	55-64	0	28	5710	49.0
7	65-74	1	186	12663	146.9
8	65-74	0	28	2585	108.3
9	75-84	1	102	5317	191.8
10	75-84	0	31	1462	212.0

Fitting Poisson model for crude rate ratio

Poisson model with log-link (default) for crude rates

```
Call:
glm(formula = d/y ~ smok, family = poisson(), data = bd, weights = y)
Deviance Residuals:
   Min
            10 Median
                                 Max
                            30
-16.535 -6.031 4.612 8.162 13.644
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9618 0.0995 -59.916 < 2e-16 ***
          smok
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 935.07 on 9 degrees of freedom
Residual deviance: 905.98 on 8 degrees of freedom
ATC: Inf
Number of Fisher Scoring iterations: 8
```

Fitting crude rate ratio model (cont'd)

Main results:

$$\widehat{\alpha} = -5.96 = \log(25.8/10^4 \text{ y}), \quad (SE = 0.10),$$

$$\widehat{\beta} = 0.54 = \log(1.72), \quad (SE = 0.11)$$

Function ci.lin() transforms results to ratio scale

```
Estimate StdErr exp(Est.) 2.5% 97.5% (Intercept) -5.9618 0.0995 0.0026 0.0021 0.0031 smok 0.5422 0.1072 1.7198 1.3940 2.1219
```

Compare the results with those obtained above using simple estimation & SE formulas.

Fitting crude rate ratio model (cont'd)

The Poisson model above can also be fitted as follows:

$$gIm(d \sim smok, fam = poisson(), offset = log(y))$$

Here offset refers to the logarithm of person-years y in formula for expected numbers of cases $\mu_j = \lambda_j \times Y_j$:

$$\log(\mu_j) = \log(\lambda_j Y_j) = \log(Y_j) + \log(\lambda_j) = \log(Y_j) + \alpha + \beta X_j,$$

 $log(Y_j)$ is an **offset** term in the linear predictor, meaning that it has a fixed value 1 for the regression coefficient.

Stratified analysis

Stratification of cohort data with person-time

– at each level k of covariate Z results are summarized:

Exposure to	Number of	Person-
risk factor	cases	time
yes	D_{1k}	Y_{1k}
no	D_{0k}	Y_{0k}
Total	D_{+k}	$\overline{Y_{+k}}$

Stratum-specific rates by exposure group:

$$I_{1k} = \frac{D_{1k}}{Y_{1k}}, \qquad I_{0k} = \frac{D_{0k}}{Y_{0k}}.$$

Stratum-specific comparisons

Let λ_{jk} be true rate for exposure group j (j=0,1) and stratum k $(k=0,\ldots,K)$. Let also

$$\rho_k = \frac{\lambda_{1k}}{\lambda_{0k}}, \qquad \delta_k = \lambda_{1k} - \lambda_{0k}$$

be the rate ratios and rate differences between the exposure groups in stratum k.

Two simple models assuming homogeneity:

- **b** common rate ratio: $\rho_k = \rho$ for all k,
- **•** common rate difference: $\delta_k = \delta$ for all k.

Only one of these can in principle hold. However, almost always neither homogeneity assumption is exactly true.

Example. British male doctors (cont'd)

age smok d

CHD mortality rates (per 10^4 y) and numbers of cases (D) by age and cigarette smoking.

Mortality rate differences (ID) and ratios (IR) in age strata.

y rate ID IR

```
bd$ID<-0.0
bd$ID[bd$smok==1]<-bd$rate[bd$smok==1]-bd$rate[bd$smok==0]
bd$IR<-1.0
bd$IR[bd$smok==1]<-round(bd$rate[bd$smok==1]/bd$rate[bd$smok==0],1)
bd[order(bd$age,bd$smok),]
```

```
35-44
          0 2 18790 1.1 0.0 1.0
  35-44 1 32 52407 6.1 5.0 5.5
4 45-54
          0 12 10673 11.2 0.0 1.0
3 45-54 1 104 43248 24.0 12.8 2.1
6 55-64
            28 5710 49.0 0.0 1.0
5 55-64
          1 206 28612 72.0 23.0 1.5
8 65-74
             28 2585 108.3 0.0 1.0
 65-74
          1 186 12663 146.9 38.6 1.4
10 75-84
          0 31 1462 212.0 0.0 1.0
9 75-84
          1 102 5317 191.8 -20.2 0.9
rbind(bd,c("Crude",NA, sum(bd$d), sum(bd$y),sum(bd$d)/sum(bd$y),NA,NA))
```

Example (cont'd).

-Both types of comparative parameter, rate ratios ρ_k and rate differences δ_k appear heterogenous, because

- ▶ ID increases by age at least up to 75 y,
- ► IR decreases by age.
- Part of this observed heterogeneity may be due to random variation.
- Yet, any single-parameter comparison by common rate ratio or rate difference

may not adequately capture the joint pattern of true rates.

⇒ Effect modification must be evaluated.