Computer Organization, Spring 2020

Lab 4: Single-Cycle CPU

Due: 2020/05/21

1. Goal

Based on Lab 3(Simple Single-Cycle CPU), add a memory unit(Data Memory) to implement a Complete Single-Cycle CPU.

2. HW Requirement

- (1) Please use ModelSim/ISE as you HDL simulator.
- (2) Please attach your names and student IDs as comment at the top of each file.
- (3) Refer to Lab 3 top module's name and I/O ports.

You may need to add control signals below to Decoder:

- Jump_o
- MemRead_o
- MemWrite_o
- MemtoReg_o
- (4) Basic instruction set (60%)

Instruction	Example	Meaning	Opcode	Funct3	Funct7
Load word	lw r1, 0(r2)	Load r1 from address 0+r2	0000011	010	-
Store word	sw r1, 0(r2)	Store r1 at address 0+r2	0100011	010	-
Branch on	blt r1, r2, 4	if(r1 < r2)	1100011	100	-
less than		PC += 4			
Branch on	bge r1, r2, 4	if(r1 >= r2)	1100011	101	-
greater than		PC += 4			
Jump	jal r1, 20	r1 = PC + 4	1101111	-	-
and link		PC = 20			

(5) Advanced set(20%)

Instruction	Example	Meaning	Opcode	Funct3	Funct7
Exclusive or	xori r1, r2, 10	$r1 = r2 \oplus 10$	0010011	100	-
immediate					
Jump and	jalr r0, 0(r1)	//Return from subroutine	1100111	000	-
link register		PC = r1			

(6) Report(20%)

3. Architecture Diagram

4. Testbench

CO_test_data1.txt tests the basic instructions (60 points).

CO_test_data2.txt tests the advance instructions (20 points).

The default pattern is the Test data 1.

Please edit the line 19 in the file "Instr Memory.v" to test the other cases.

Line 19: \$readmemb("CO_test_data1.txt", instruction_file);

The following are the assembly code for the test pattern:

Test data 1	Test data 2				
addi r5, r0, 1	addi r5, r0, 1				
addi r6, r0, 2	xori r6, r5, 6				
addi r7, r0, 3	jal r1, 16				
jal r1, 24	jal r1, 32				
bge r7, r5, 44	add r7, r7, r6				
addi r6, r6, 31	addi r6, r6, -1				
addi r2, r2, -12	bge r6, r5, -8				
sw r5, 0(r2)	jalr r0, r1, 0				
sw r6, 4(r2)	addi r2, r2, -4				
sw r7, 8(r2)	sw r7, 0(r2)				
addi r5, r5, 3	addi r2, r2, 4				
addi r6, r6, 3					
addi r7, r7, 3					
blt r6, r7, -36					
addi r5, r5, 31					
lw r8, 0(r2)					
lw r9, 4(r2)					
lw r10, 8(r2)					
addi r2, r2, 12					

Final result for Test data 1:

```
Data Memory =
                                                                                                                   0,
0,
0,
                                                0,
0,
                                                                 0,
0,
                                                                                  0,
0,
                                                                                                  0,
0,
                                                                                                                                     o,
o,
                                                                                                                                                     0
                                0,
Data Memory =
Data Memory =
Data Memory =
Registers
R0 =
R8 =
                     1, R9 =
0, R17 =
                                                                       3, R11 =
0, R19 =
                                              2, R10 =
0, R18 =
                                                                                                0, R12 =
0, R20 =
                                                                                                                         0, R13 =
0, R21 =
                                                                                                                                                  0, R14 =
                                                                                                                                                                            0, R15 =
                                                                                                                                                                                                     0
                                                                                                                                                  0, R22 =
R16 =
                                                                                                                                                                                R23 =
                                                                                                                                                                            0,
                                                                                                                                                                                                     0
```

Final result for Test data 2:

```
Data Memory =
                         0,
                                                    0,
0,
0,
                                                                               0,
0,
0,
                                                                                            0,
0,
0,
Data Memory =
                                       0,
                                                                                                         0,
0,
                                                                 0,
                                                                                                                       0
Data Memory =
                          0,
Registers
                                    16, R2 =
R0 =
R8 =
                 0. R1 =
                                                      128. R3 =
                                                                             0. R4 =
                                                                                                                     1. R6 =
                                                                                                 0, R5 =
                                                                                                                                         0, R7 =
                 0, R9 =
                                     0, R10 =
                                                        0, R11 =
                                                                             0, R12 =
                                                                                                 0, R13 =
                                                                                                                     0, R14 =
                                                                                                                                         0, R15 =
R16 =
                 0, R17 =
                                     0, R18 =
                                                            R19 =
                                                                             0, R20 =
                                                                                                    R21 =
                                                                                                                                            R23 =
R24 =
                 0, R25 =
                                        R26 =
                                                            R27 =
                                                                               R28 =
                                                                                                    R29 =
                                                                                                                     0, R30 =
                                                                                                                                            R31 =
```

5. Grade

- (1) Basic instructions score: 60 points.
- (2) Advance instructions score: 20 points.
- (3) Report: 20 points format is in CO_Report.docx.
- (4) Late submission: 10 percent penalty per day
- (5) No plagiarism, or you will get 0 point.

6. Hand in

- (1) Zip your folder and name it as "GID_ID1_ID2.zip" (e.g. G1_0816001_0816002.zip) before uploading to newe3. Other filenames and formats such as *.rar and *.7z are NOT accepted! Multiple submissions are accepted, and the version with the latest time stamp will be graded.
- (2) Please include ONLY Verilog source codes (*.v) and your report (*.docx or *.pdf) in the zipped folder.

7. Q&A

For any questions regarding Lab 4, please contact

張祐銘 yumingchang.cs03@g2.nctu.edu.tw

賴柏宏 bhbruce.cs07g@nctu.edu.tw

鄭俊賢 petertay1996.cs08g@nctu.edu.tw

8. References

31	30	25 24	21	20	19	15	14	12	11	8	7	6	0	
	funct7		rs2		r	s1	funct:	3		rd		opc	ode	R-type
	$_{ m imm}$	11:0]			r	s1	funct	3		rd		opc	ode	I-type
ir	nm[11:5]		rs2		r	$^{\circ}$ s1	funct:	3	ir	nm[4:0])]	opc	ode	S-type
imm[12]	[] imm[10:5]		rs2		r	s1	funct:	3	imm[4]	:1] im	m[11]	opc	ode	B-type
										·				
		$_{ m imm}$	[31:1]	2]						rd		opc	ode	U-type
imm[20]] imm[10:1]	in	m[11]		imm[1]	9:12]			rd		opc	ode	J-type

Instruction opcode	ALUOp	Operation	Funct7 field	Funct3 field	Desired ALU action	ALU control input
ld	00	load doubleword	XXXXXXX	XXX	add	0010
sd	00	store doubleword	XXXXXXX	XXX	add	0010
beq	01	branch if equal	XXXXXXX	XXX	subtract	0110
R-type	10	add	0000000	000	add	0010
R-type	10	sub	0100000	000	subtract	0110
R-type	10	and	0000000	111	AND	0000
R-type	10	or	0000000	110	OR	0001

Register	ABI Name	Description	Saver
r0	zero	Hard-wired zero	-
rl	ra	Return address	Caller
r2	sp	Stack pointer	Callee
r3	gp	Global pointer	_
r4	tp	Thread pointer	
r5	t0	Temporary/alternate link register	Caller
r6-7	t1-2	Temporaries	Caller
r8	s0/fp	Saved register/frame pointer	Callee
r9	s1	Saved register	Callee
r10-11	a0-1	Function arguments/return values	Caller
r12-17	a2 7	Function arguments	Caller
r18-27	18-27 s2-11 Saved registers		Callee
r28-31	t3-6	Temporaries	Caller

ALI	UOp			Fu	nct7 fie	eld			Funct3 field			
ALUOp1	ALUOp0	1[31]	1[30]	1[29]	1[28]	1[27]	1[26]	1[25]	I[14]	1[13]	I[12]	Operation
0	0	Х	X	X	Х	Х	Х	X	Х	X	Х	0010
X	1	X	X	Х	Х	Х	Х	Х	Х	X	X	0110
1	Х	0	0	0	0	0	0	0	0	0	0	0010
1	X	0	1	0	0	0	0	0	0	0	0	0110
1	X	0	0	0	0	0	0	0	1	1	1	0000
1	X	0	0	0	0	0	0	0	1	1	0	0001

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation).

Instruction		Memto- Reg	Reg- Write		A CONTRACTOR OF	Branch	ALUOp1	ALUOp0
R-format	0	0	1	0	0	0	1	0
ld	1	1	1	1	0	0	0	0
sd	1	X	0	0	1	0	0	0
beq	0	Х	0	0	0	1	0	1

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction.