Differential geometry: 1. homework

Submit by 29. 3. 2021 via zan.grad@fmf.uni-lj.si

Exercise 1. Let M and N be two smooth manifolds and let C(M) denote the algebra of all continuous functions $f: M \to \mathbb{R}$. Given a continuous map $g: M \to N$, we define the map $g^*: C(N) \to C(M)$ by $g^*f = f \circ g$.¹

- i) Show that $g: M \to N$ is a smooth map if and only if there holds $g^*(C^{\infty}(N)) \subset C^{\infty}(M)$.
- ii) Suppose $g: M \to N$ is a homeomorphism between smooth manifolds. Show that g is a diffeomorphism if and only if $g^*|_{C^{\infty}(N)}: C^{\infty}(N) \to C^{\infty}(M)$ is an isomorphism.

Remark. Thus, the smooth structure of a given smooth manifold is (in a certain sense) encoded in the algebra $C^{\infty}(M)$ of all smooth functions on M. Note that categorically, $C^{\infty}(-): \mathbf{Man}_{\infty} \to \mathbf{Vect}_{\mathbb{R}}$, which maps objects as $M \mapsto C^{\infty}(M)$ and morphisms as $g \mapsto g^*|_{C^{\infty}(M)}$, is a contravariant functor.

¹Addition and multiplication by scalars in C(M) are given pointwise; because of this, the map g^* is linear.

Exercise 2 (Restricting the codomain of a smooth map). Let $g: M \to N$ be a smooth map between smooth manifolds.

- i) Suppose $S \subset N$ is an immersed submanifold in N, and suppose that $g(M) \subset S$. Prove that if g is continuous as a map from M to S, then $g: M \to S$ is smooth.
- ii) Suppose $S \subset N$ is an embedded submanifold in N, and suppose $g(M) \subset S$. Prove that $g: M \to S$ is smooth.
- iii) The lemniscate is the image $L = \operatorname{im}(\phi)$ of the map $\phi \colon (-\pi, \pi) \to \mathbb{R}^2$, $\phi(t) = (\sin(2t), \sin(t))$. As we know, L is an immersed submanifold in \mathbb{R}^2 that is not an embedded submanifold. Is the map $\psi \colon \mathbb{R} \to \mathbb{R}^2$, given by $\psi(t) = (\sin(2t), \sin(t))$, smooth as a map $\psi \colon \mathbb{R} \to L$? Justify your answer.

Hint. For proving i), use the fact that any immersion is locally an embedding, a corollary of the rank theorem.

 $^{^2}S \subset N$ is an *immersed submanifold* in N, if S is a smooth manifold and the inclusion $S \hookrightarrow N$ is a smooth immersion. Note that $S \subset N$ may not have the subspace topology, so that $S \hookrightarrow N$ may not be a homeomorphism onto its image.

Exercise 3. For any $n \in \mathbb{N}$, we define the unitary group of $n \times n$ matrices as

$$U(n) = \{ A \in \operatorname{GL}(n, \mathbb{C}) \mid A^{\dagger} A = I \},$$

and also denote $\mathcal{H}_n = \{A \in \mathbb{C}^{n \times n} \mid A^{\dagger} = A\}$ as the vector space of $n \times n$ hermitian matrices.

- i) Show that I is a regular value of the smooth map $\phi \colon \mathrm{GL}(n,\mathbb{C}) \to \mathcal{H}_n$, given by $\phi(A) = A^{\dagger}A$ and conclude that $\mathrm{U}(n)$ is a smooth embedded submanifold in $\mathrm{GL}(n,\mathbb{C})$. Determine its dimension, its tangent space $T_I\mathrm{U}(n)$ at I, and show that $\mathrm{U}(n)$ is path-connected.
- ii) Show that $SU(n) = \{A \in GL(n, \mathbb{C}) \mid A^{\dagger}A = I, \det A = 1\}$ is a smooth embedded submanifold in U(n). Again, determine its dimension, its tangent space $T_ISU(n)$, and show that SU(n) is path-connected. Additionally, show that the matrices $i\sigma_x, i\sigma_y, i\sigma_z$ form a basis for the vector space $T_ISU(2)$, where

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_y = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

are the Pauli matrices.

- iii) Explain how it follows from this (and exercise 2) that U(n) and SU(n) are Lie groups.
- iv) Prove that SU(2) is diffeomorphic to S^3 .

Exercise 4. Let the map $\pi: \mathbb{R}^4 \to \mathbb{R}^3$ be given by

$$\pi(x, y, z, t) = (2xz + 2yt, 2yz - 2xt, x^2 + y^2 - z^2 - t^2).$$

- i) Show that π restricts to a map $\pi|_{S^3} : S^3 \to S^2$.
- ii) Show that π is a submersion on $\mathbb{R}^4 \setminus \{0\}$.
- iii) Show that there holds

$$T_{(x,y,z,t)}S^{3} = \operatorname{Lin}\left\{ \begin{bmatrix} -y \\ x \\ t \\ -z \end{bmatrix}, \begin{bmatrix} -z \\ -t \\ x \\ y \end{bmatrix}, \begin{bmatrix} -t \\ z \\ -y \\ x \end{bmatrix} \right\},\,$$

and use this to show that the map $\pi|_{S^3}: S^3 \to S^2$ is a submersion.

Remark. Here $\pi|_{S^3}: S^3 \to S^2$ corresponds to the famous Hopf fibration $S^3 \to \mathbb{C}P^1 = S^3/S^1$, given by

$$(z, w) \mapsto [z, w] = \{(e^{it}z, e^{it}w) \in S^3 \mid e^{it} \in S^1\}.$$

This is an example of a principal bundle – a notion central to gauge field theory in physics.