Problem set 4.4

4) a) Let Q= [] We have Q= [] and QQT = [] + I

has orthogonal columns

b) let == [0] and == [0]. a. b=0, and a and b are linearly independent.

c) We have $\vec{q_1} : \vec{r_3}$. We can define \vec{b} and \vec{c} such that they are all linearly independent. For example, $\vec{l_3}$ and \vec{c} = $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. We use Gram-Schmidt to find $\vec{\beta}$ and $\vec{\zeta}$ such that they are all eithogonal.

B= 5 (q, and 5 are already attrosonal)

 $\vec{y} = \vec{c} - \frac{\vec{b} \cdot \vec{c} \cdot \vec{b}}{\vec{b} \cdot \vec{b} \cdot \vec{b}}$ ($\vec{y} \cdot \vec{q}_i$ and \vec{c} are dready orthogonal) $= \begin{bmatrix} i \\ -i \end{bmatrix} - \underbrace{[i-10]} \begin{bmatrix} i \\ i \end{bmatrix} \begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \\ -1 \end{bmatrix}$

Now we define $\vec{q}_z = \frac{\vec{\beta}}{11\vec{\beta}11} = \frac{1}{12}\begin{bmatrix} 1\\ 0 \end{bmatrix}$ and $\vec{q}_s = \frac{\vec{\delta}}{11\vec{\beta}11} = \frac{1}{12}\begin{bmatrix} 1\\ 0 \end{bmatrix}$

6) In order for Q To be orthogonal, we need To have QQ = I are orthogonal In this case, we check (Q,Qz) TQ,Qz = Qz Q,TQ,Qz = Qz Qz Qz = I.

So if Q, and Qz are orthogonal, Q,Qz is also orthogonal

10) a) when $c_1q_1^2 + c_2q_2^2 + c_3q_3^2 = 0$, doing the dot product with q_1^2 leads To $c_1 = 0$. The dot product with q_2^2 leads To $c_2 = 0$. The dot product with q_3^2 leads To $c_3 = 0$. The dot product with q_3^2 leads To $c_3 = 0$. Thus q_1^2, q_3^2 are linearly independent.

b) Q=[q, qz qs]. Since Q is althonormal, QTQ=I.
So if Qz=0, then QTQz=065 x=0. N(Q)={0} and q1,qz,q3 are linearly independent.

= QR, then ATA: RTR = lower triangular times upres triangular A=[a b] with a=(-1, 2, 2) and b=(1, 4) We get $\vec{\alpha} = (-1, 7, 7)$ and $\vec{\beta} = \vec{b} - \frac{\vec{\alpha}^T \vec{b}}{\vec{\alpha}^T \vec{\alpha}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Therefore, $\vec{q_1} = \frac{1}{4|\vec{q_1}|} = \frac{1}{3} \begin{bmatrix} z \\ z \end{bmatrix}$ and $\vec{q_2} = \frac{3}{4|\vec{q_1}|} = \frac{1}{3} \begin{bmatrix} z \\ z \end{bmatrix}$ So $Q = \begin{bmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$ and $R = \begin{bmatrix} \vec{q_1} & \vec{q_1} & \vec{q_1} \\ 0 & \vec{q_2} & \vec{b} \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 0 & 3 \end{bmatrix}$ 24) a) 5: N(A) where A=[1 1 1-1]. We have 3 special solutions 55,=(-1,1,0,0), 552=(-1,0,1,0), 553=(1,0,0,1). So a basis for S 15 (\$ 150, 150, 150) b) 5 = N(A) = C(AT) = . A basis for 5 is c) We have 5, = 055, + 3552 + 3553 and 62=6 . So we need After elimination, we have 000-4-2 So we get 6= 12, 8= 12, 8= 12, a= 12

Problem set 5-1 3/a) False. Let A: [12] det(A) = 1. I+A = [2] det (I+A) = 5 # 1+1=2

b) True. details states

Let (PQ) = det P. det Q Let P=A and Q=BC

Then det Q = det(BC) = det B. det C

So det (ABC) = det A. det B. det C

c) False let $A = \begin{bmatrix} 0 & 0 \\ 0 & d \end{bmatrix}$ det A = ad - bc, $der(4A) = 16(ad - bc) = 4^2 der(A)$ d) False let $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. We have $AB = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, $BA = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $AB - BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $der(AB - BA) = 1 \neq 0$.

8) a) latal = latilal = 1 al = 1, so lal = 1 al -1.

b) we have |Q|=|a=|, So |Qn|=|Q|n=| a- | Yn |

28) A Foly for A Co Joseph Sand A ismort investige.

a) True. | AB| = | A1|B| 1 | A1=0, then | AB| = 0.

b) False. Let A=[0] The pivots are I and 1, bur |A|=-1

c) Falx. Ler A=[00] det A=0. Let B=[01] det B=0.

A-B=[0-1] and der (A-B) =-1

d) True . |AB| = 14|13| = 18|A| = 18A|

Problem set 5.2

121 we get
$$C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
. $C^{T} = C$, and $AC^{T} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

13) a)
$$C_1 = 0$$
 b) We can see that $C_4 = -C_2$ (and if we do C_5 , we $C_2 = -1$ see that $C_5 = -C_3$). We can say that , for $n \in \mathbb{N}_n$, $C_3 = 0$ we get $C_n = -C_{n-2}$.
$$C_4 = 1$$
 So $C_{10} = -C_8 = C_6 = -C_4 = C_2 = -1$

15) a) We have
$$E_n = a_{11} C_{11} + a_{12} C_{12} + ... + a_{1n} C_{1n}$$
 where a_{ij} are the elements in the matrix. By construction, $a_{1j} = 0$ for $j \ge 2$.

So $E_n = a_{11} C_{12} + a_{12} C_{12} \cdot ln$ a delition, $a_{1j} = a_{12} = 1$.

So $E_n = C_{11} + C_{12} \cdot ...$ Also, it is easy to see that $C_{11} = E_{n-1}$, and $C_{12} = -E_{n-2} \cdot ...$ So we get $E_n = E_{n-1} - E_{n-2}$.

18) We have
$$|B_n| = |A_n| - |A_{n-1}|$$
. We saw in Chapter 5-2) That An is the non [-1,2,-1] matrix. It's determinant is $|A_n| = n+1$.

Problem set 6.4

4)
$$|A - \lambda I| = \begin{vmatrix} -1 - \lambda & 3 \\ 2 - \lambda \end{vmatrix} = \lambda^{2} \cdot \lambda - 6 \Rightarrow \lambda_{11} = 2 \cdot \lambda_{21} = 3$$
 $A - \lambda_{11} I = \begin{bmatrix} -3 & 3 \\ 2 - 2 \end{bmatrix} \Rightarrow \begin{bmatrix} -3 & 3 \\ 0 & 0 \end{bmatrix} \Rightarrow \vec{V}_{11} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 $A - \lambda_{21} I = \begin{bmatrix} 2 & 3 \\ 2 - 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 3 \\ 0 - 0 \end{bmatrix} \Rightarrow \vec{V}_{21} = \begin{bmatrix} -3/2 \\ 1 \end{bmatrix}$
 $|A^{2} - \lambda I| = \begin{vmatrix} 7 - \lambda & -3 \\ -2 & 6 - \lambda \end{vmatrix} = \lambda^{2} - 13\lambda + 36 \Rightarrow \lambda_{12} = 4 = \lambda_{13}^{2} \lambda_{21}$
 $|A^{2} - \lambda_{12} I| = \begin{bmatrix} 3 & -3 \\ -2 & 2 \end{bmatrix} \Rightarrow \vec{V}_{12} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \vec{V}_{11}$
 $A^{2} - \lambda_{22} I = \begin{bmatrix} -2 & -3 \\ -2 & -3 \end{bmatrix} \Rightarrow \vec{V}_{22} = \begin{bmatrix} -3/2 \\ 1 \end{bmatrix} = \vec{V}_{21}$

A? has the same eigenvectors as A. When A has eigenvalues d, and be A2 has eigenvalues 1,2 and d2. In this example, d, = 2, dz=-3, so 22 4 , 12 = 9 and 12 + 12 = 13.

A-1, I = [0.2 0.2] >
$$\vec{V}_z = \alpha \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 In particular $\vec{V}_z = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$.

$$A^{\infty} - \lambda \mathbf{I} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \Rightarrow \vec{V}_1 = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

$$A^{-1} - 1_{\overline{z}} \mathbf{I} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \Rightarrow \vec{v_z} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Alon has eigenvalues di=100=1 and dz=0400 =0 So Alon is close to A (3)

13)
$$\vec{u} = (76, 76, 36, 56)$$
 $P = \begin{cases} y_{56} & y$

and 12 = 2 with its associated eigenvectors v; o and vi = [0]

$$A-\lambda, \mathbf{I} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \Rightarrow \vec{v}_i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$A - \lambda_z \mathbf{I} = \begin{bmatrix} -2 & 2 \\ 0 & 0 \end{bmatrix} \implies \mathbf{v}_z = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$$

$$A-\lambda_1T=\begin{bmatrix}1&1\\3&3\end{bmatrix}\rightarrow\begin{bmatrix}1&1\\0&0\end{bmatrix}\Rightarrow\vec{V}_1=\begin{bmatrix}1\\1\end{bmatrix}$$

11) a) True. All eigenvalues are non-zero.

$$B.AI = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \vec{v_1} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad S = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \bigwedge = \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}, \quad S^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$B-\lambda_{z}T=\begin{bmatrix}0\\0-1\end{bmatrix}=\sum_{z=0}^{\infty}\begin{bmatrix}1\\0\end{bmatrix}\left[\Lambda^{k}=\begin{bmatrix}4^{k}&0\\0&5^{k}\end{bmatrix}-5\Lambda^{k}S^{-1}=\begin{bmatrix}5^{k}&5^{k}-4^{k}\\0&4^{k}\end{bmatrix}=A^{k}$$

· 25) Contains eigenvectors with 1=1.

N(A3) contains eigenvectors with 1=0.

Google Page Rank problems

Exercise 10:

· We have (AZ)ij = E Air Akj = Air Aij - Aiz Azj + ... + Ain Anj .

So (A2) ij > 0 if and only if there is a k for which Aik Akj # 0. This means that we can go from page is to page k in one step, and from page k to page i in one step. Hence page i can be reached from page i in exactly two steps.

No want to show that $(A^0)_{ij} > 0$ of and only of page i can be leached from page j in exactly posteps. We have already shown that this is true for post of and post of and only of page i can be reached from page j in exactly queters. We will show then that this is true for at 1 Let A^1 have entires A^0_{ij} . Then, we have $(A^{90})_{ij} = \sum_{i} A^0_{ij} A^0_{ij} + \sum_{i} A^$

we have shown that $(A^{\rho})_{ij} > 0$ if and only if page i can be reached from page j in exactly p steps. If $\rho = 0$, $A^{\rho} = I$, and $I_{ij} > 0$ if and only if i = j (the page links to itself). $(I + A + A^{\rho} + ... + A_{\rho})_{ij} > 0$ means that there exists in $I < m < \rho$ such that $(A^{m})_{ij} > 0$, therefore page i can be reached from page j in m steps, with $I < m < \rho$.

from any other page in at most n-1 steps. We have also shown that if page i is reachable from page; in exactly p steps, then (AP); >0. Therefore, matrix AP has positive elements for all such i; combinations. So, EAP is the sum of the metrix with positive elements for pages reached in 0 steps, plus those reached in 1 steps, plus those reached in 1 steps, all elements of I+A+A²+...+Aⁿ⁻¹ are positive (strictly) and the matrix is positive.

• We have shown that the matrix $I + A + A^2 + ... + A^{n-1}$ is positive, so $B = \frac{1}{n} \left(I + A + A^2 + ... + A^{n-1} \right)$ is positive too (n > 0). In addition, we know by construction that all matrices $A^p(p>0)$ are column stochastic. Therefore, The sums of the columns in the matrix $I + A + A^2 + ... + A^{n-1}$ will add I = n (there are n total matrices). So $B = \frac{1}{n} \left(I + A + A^2 + ... + A^{n-1} \right)$ is column-stochastic.

Ne have $\vec{x} \in V_1(A)$ Consequently, we also have $\vec{x} \in V_1(A^2)$, $\vec{x} \in V_1(A^3)$. In general, we have $\vec{x} \in V_1(A^4)$ $(p \ge 0)$. Therefore, \vec{x} in in analy all linear combinations of $\{T, A, A^2, A^{n-1}\}$. In particular, we have $\vec{x} \in \frac{1}{n}(T + A + A^2 + ... + A^{n-1}) = B$.

In addition, we know that $\dim(V_i(B))=1$. From the previous Statement, $\dim(V_i(A)) \leqslant \dim(V_i(B))=1$. Since $\overline{X} \neq \overline{\partial}$, $\dim(V_i(A)) \geqslant 1$. Therefore, we get $\dim(V_i(A))=1$.

	100 1/2 1/2 0 1/5 1/3 0 0 0 0 1/5
4777	We get the but maties: A= 1/3 /2 0 /2 1 /5
itematic est	1/3 1/2 0 0 0 1/5
nest 2	000000
W. Janes N	a sal communication and the same uniquest over the
In Price of	We use python to find the eigenvector associated to 1=1, and we
Sala TV.	get = (0,2449, 0.0816, 0.3673, 0.1274, 0.1837, 0) Therefore, The
w witness	pages are ranked in the following way (from most important to least important) 3-1-5-4-2-6
policy (legor important) 3-1-5-4-2-6
	W [1-1-1-1-]
Cr St	We set a = 0.15, and B = 2 111111 . We get the matrix
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	[0.025 0.025 0.45 0.45 0.065 0.195]
	H= (+1-x) A + xB = 0.30833 0.025 0.025 0.025 0.025 0.035 1=1
	030833 0.45 0.025 0.45 0.875 0.135
The street of	0.3033 0.45 0.065 0.025 0.195
	0.025 0.025 0.025 0.025 0.025
	Commence of the December of the Commence of th
	The eigenvector associated to L=1 is Vn=(0.2312,0.0948,0.3402,0.1350,0.1738
	0.025). Therefore, the pages are ranked in the following way:
	3-1-5-4-2-6
	We can see that the ranking is the same for matrices Hand A.
	but page 6 had O probability of being reached in A, and has 0.025
	probability in M.
	propresent the second s
	(python file uploaded to Canvas: Ex12.py).