ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE ODSEK ZA SIGNALE I SISTEME

REŠENJA ZADATAKA

1. a)
$$a = \frac{v_p}{v_u} = \frac{g_m(R_D \parallel R_P)}{1 + g_m R_1} \approx 9.42$$
.

b)
$$R_{ul} = R_1 + \frac{1}{g_m} = 796.3\Omega$$
; $R_{izl} = R_D = 10 \text{k}\Omega$.

c)
$$V_{pm\max}^{(1)} = I_D \cdot (R_P \parallel R_D) = 2.25 \text{V}$$
 (M_1 na granici zakočenja); $V_{pm\max}^{(2)} = |V_{TP}| - (V_{DD} + I_0 R_D) = 3 \text{V}$ (M_1 na granici triodne oblasti); $V_{pm\max} = 2.25 \text{V}$.

4.

$$v_I[V] = -12V$$
, za $-12V \le v_G \le -4.5V$ (IOP-neg. zasićenje, D-ON); $v_I[V] = 2v_G[V] - 3$, za $-4.5V \le v_G \le -1.5V$ (IOP-lin. režim, D-ON); $v_I[V] = 4v_G[V]$, za $-1.5V \le v_G \le 3V$ (IOP-lin. režim, D-OFF); $v_I[V] = 12V$, za $3V \le v_G \le 12V$ (IOP-poz. zasićenje, D-OFF).