Inciso 1:

0. Qué prueba usar: Mann-Whitney-Wilcoxon.

- a. No son normales.
- b. Número de observaciones para cada observación es mayor a 7.
- c. Diferentes tamaños de muestra.
- d. Procedemos a aplicar la prueba Mann-Whitney-Wilcoxon.
- 1. Parámetro de interés: $\tilde{\mu}_1 \tilde{\mu}_2$. \rightarrow Diferencia de medianas.
- 2. Hipótesis:

$$\text{a.}\quad H_0{:}\,\tilde{\mu}_1-\tilde{\mu}_2\,\leq 0$$

b.
$$H_a$$
: $\tilde{\mu}_1 - \tilde{\mu}_2 > 0$

- 3. Significancia: $\alpha = 0.05$.
- 4. Estadístico de prueba:

		Rank	Rating	Aleación 2	Aleación 1
		12	18.3	12.6	18.3
		10	16.4	14.1	16.4
	Rank sum:	16	22.7	20.5	22.7
106.5	Aleación 1:	11	17.8	10.7	17.8
65	Aleación 2:	13	18.9	15.9	18.9
		18	25.3	19.6	25.3
8	n 1.	9	16.1	12.9	16.1
	n_1:	17	24.2	15.2	24.2
10	n_2:	3	12.6	11.8	
		5	14.1	14.7	
76	mu_w:	15	20.5		
11.25462868	ST w:	1	10.7		
	_	8	15.9		
2.709996116	z:	14	19.6		
			12.9		
0.0033642	p-value:	7	15.2		
		2	11.8		
reject	Reject:	6	14.7		

- Rechazar H_0 si $valor p \le \alpha$.
 - o valor p = 0.0033
 - \circ $\alpha = 0.05$
 - $\quad \circ \quad 0.0033 \leq 0.05 \rightarrow {\sf Verdadero.} \ {\sf Rechazar} \ H_0.$

• Con significancia de 0.05 podemos rechazar H_0 y afirmar que la mediana 1 es mayor a la mediana 2. Por lo que podemos afirmar que la aleación 1 ofrece mayor resistencia que la 2.

Inciso 2:

1. Viabilidad de la prueba: Mann-Whitney-Wilcoxon.

Estadística descriptiva:

acscript		
Clase r	matina	11
Mea	n	78
Stan	dard (2.976762
Med	ian	75
Mod	e	75
Stan	dard (8.930286
Sam	ple Va	79.75
Kurt	osis	0.312199
Skev	vness	0.741977
Rang	ge	29
Mini	mum	66
Max	imum	95
Sum		702
Cour	nt	9

Clase vexp	ertina
Mean	83.41667
Standard (2.934792
Median	84.5
Mode	84
Standard (10.16642
Sample Va	103.3561
Kurtosis	8.756936
Skewness	-2.77025
Range	39
Minimum	53
Maximum	92
Sum	1001
Count	12

- Las muestras no son normales.
- $n \geq 7$ se opta por la prueba no paramétrica Mann-Whitney-Wilcoxon.
- **2.** Parámetro de interés: $\tilde{\mu}_1 \tilde{\mu}_2$.
- **3.** Hipótesis:

a.
$$H_0$$
: $\tilde{\mu}_m - \tilde{\mu}_v \ge 0$
b. H_a : $\tilde{\mu}_m - \tilde{\mu}_v < 0$

b.
$$H_a: \tilde{\mu}_m - \tilde{\mu}_n < 0$$

- **4.** Significancia: $\alpha = 0.05$
- **5.** Estadístico de prueba:

Rating	Ranks		
73	4	Rank sum	73
87	16	Rank sum	158
79	7		
75	5.5	matinal	9
82	9	vespertina	12
66	2		
95	21	mu_w	99
75	5.5	ST_W:	14.07124728
70	3		
86	15	z:	4.192947422
81	8	p-value:	1.37677E-05
84	12		
88	17	alpha:	0.05
90	18		
85	14	Reject:	reject
84	12		
92	20		
83	10		
91	19		
53	1		
84	12		

• Criterio de rechazo: rechazar H_0 si $valor - p \leq \alpha$. $\circ valor - p = 1.37$

$$\circ$$
 valor $-p = 1.37$

$$\circ$$
 $\leq \rightarrow$

6. Conclusión:

Inciso 3:

a) Distribución de muestreo W y su gráfico.

6		Ranks	Dist de mı
12	15	1	0.333333
15	12	1	
7	15	2	0.333333
15	7	2	
7	12	3	0.333333
12	7	3	
	12 15 7 15	12 15 15 12 7 15 15 7 7 12	12 15 1 15 12 1 7 15 2 15 7 2 7 12 3

b) Media y la varianza de esa distribución.

į	Promedio	Desviación	n
	0.333333	0.333333	
	0.666667	0	
	1	0.333333	
•	2	0.816497	

c) Comprobar los resultados de μ_W y σ_W .

7	3.5		
7	3.5		
7	3.5		
7	3.5		
7	3.5		
7	3.5		
12	9.5		
12	9.5		
12	9.5		
12	9.5		
12	9.5		
12	9.5		
15	15.5		
15	15.5	n_1:	1
15	15.5	n_2:	2
15	15.5		
15	15.5	mu_w:	2
15	15.5	SD_w:	0.816497
			1

Inciso 4:

0. Qué prueba usar:

Estadístico	descript	tivo:							
Α		В		С		D		E	
Mean	62.4	Mean	57.8	Mean	70.6	Mean	56	Mean	64
Standard E	6.485368	Standard E	4.30581	Standard (3.919184	Standard E	3.082207	Standard E	2.949576
Median	68	Median	53	Median	72	Median	57	Median	65
Mode	#N/A	Mode	53	Mode	#N/A	Mode	#N/A	Mode	#N/A
Standard (14.50172	Standard (9.628084	Standard (8.763561	Standard (6.892024	Standard (6.595453
Sample Va	210.3	Sample Va	92.7	Sample Va	76.8	Sample Va	47.5	Sample Va	43.5
Kurtosis	-1.33225	Kurtosis	-0.4832	Kurtosis	-1.26272	Kurtosis	-2.39668	Kurtosis	2.697582
Skewness	-0.70331	Skewness	0.859697	Skewness	0.056312	Skewness	-0.11455	Skewness	-1.52491
Range	35	Range	24	Range	22	Range	16	Range	17
Minimum	42	Minimum	48	Minimum	60	Minimum	48	Minimum	53
Maximum	77	Maximum	72	Maximum	82	Maximum	64	Maximum	70
Sum	312	Sum	289	Sum	353	Sum	280	Sum	320
Count	5	Count	5	Count	5	Count	5	Count	5

• Múltiples poblaciones, se procede a aplicar la prueba Kruskal-Wallis.

1. Parámetro de interés: Poblaciones.

2. Hipótesis:

a. H_0 : poblaciones son iguales.

b. H_a : poblaciones no son iguales.

3. Significancia: $\alpha=0.05$

4. Estadístico de prueba:

Α	В	С	D	E	Ratings					
68	72	60	48	64	68	17.5		Rank A	70	
72	53	82	61	65	72	21		Rank B	48.5	
77	63	64	57	70	77	24		Rank C	93	
42	53	75	64	68	42	1		Rank D	40.5	
53	48	72	50	53	53	6.5	70	Rank E	73	
					72	21		A_n_1:	5	
					53	6.5		B_n_2:	5	
					63	12		C_n_3	5	
					53	6.5		D_n_4:	5	
					48	2.5	48.5	E_n_5:	5	
					60	10		n_T:	25	
					82	25		k:	5	
					64	14		Part 1:	0.018462	
					75	23		Part 2:	4574.1	
					72	21	93	Part 3:	78	
					48	2.5		H:	6.444923	
					61	11				
					57	9		significan	0.05	0.01
					64	14		chi-square	0.710723	0.297109
					50	4	40.5	p-value:	0.336588	
					64	14				
					65	16		Reject?	fail to reje	fail to reje
					70	19				
					68	17.5				
					53	6.5	73			
						65				

• Criterio de rechazo: rechazar H_0 si $valor - p \le \alpha$:

- o valor p = 0.336
- $\alpha = 0.05, 0.01$
- \circ 0.336 \leq 0.05,0.01 \rightarrow Falso. No se puede rechazar la H_0 .

5. Conclusión:

ullet Con significancia de 0.05 y 0.01 no se puede rechazar la H_0 . Por lo que no se tiene evidencia suficiente para apoyar la hipótesis que son diferentes en términos de diferencia.

Inciso 5:

0. Qué prueba usar:

1/ .:		
Estadístico	doccri	へもいりへ・
Lataulaticu	uesun	JUIVUJ.

Muestra 1		Muestra 2		Muestra 3	
Mean	9.333333	Mean	12.2	Mean	6
Standard E	1.855921	Standard (1.067708	Standard E	2.42212
Median	8.5	Median	12	Median	4
Mode	#N/A	Mode	#N/A	Mode	#N/A
Standard I	4.546061	Standard (2.387467	Standard (5.932959
Sample Va	20.66667	Sample Va	5.7	Sample Va	35.2
Kurtosis	-1.13913	Kurtosis	-1.11727	Kurtosis	2.574574
Skewness	0.461229	Skewness	-0.20575	Skewness	1.611759
Range	12	Range	6	Range	16
Minimum	4	Minimum	9	Minimum	1
Maximum	16	Maximum	15	Maximum	17
Sum	56	Sum	61	Sum	36
Count	6	Count	5	Count	6

- Múltiples poblaciones, $n \ge 5$, se procede a aplicar la prueba Kruskal-Wallis.
- 1. Parámetro de interés: Poblaciones.
- 2. Hipótesis:
 - a. H_0 : Las poblaciones son iguales.
 - b. H_a : Las poblaciones no son iguales.
- 3. Significancia: $\alpha = 0.05$
- 4. Estadístico de prueba:

Muestra 1	Muestra 2	Muestra 3			
7	11	5	n_1:	6	
4	9	1	n_2:	5	
6	12	3	n_3:	6	
10	14	8	n_T:	17	
13	15	2	k:	3	
16		17			
56	61	36	Part 1:	0.039216	
			Part 2:	1482.867	
			Part 3:	54	
			H:	4.151634	
			significan	0.05	0.01
			chi-square	0.102587	0.020101
			p-value:	0.125454	
			reject:	fail to reje	fail to rejec

- Criterio de rechazo: rechazar H_o si $valor p \le \alpha$.
 - \circ valor -p = 0.125
 - $\alpha = 0.05, 0.01$
 - $\circ \quad 0.125 \leq \ 0.05, 0.01 \rightarrow {\sf Falso}. \ {\sf No \ se \ puede \ rechazar \ } H_0.$

• Con significancia de 0.05 y 0.01 no se puede rechazar la H_0 . Por lo tanto no se puede afirmar que las tres muestras no pertenezcan a la misma población.

Inciso 6:

0. Qué prueba usar:

Estadístico descriptivo:

- Múltiples poblaciones, $n \ge 5$, se procede a aplicar Kruskal-Wallis.
- 1. Parámetro de interés: poblaciones.
- 2. Hipótesis:
 - a. H_0 : Las poblaciones son iguales.
 - b. H_a : Las poblaciones no son iguales.
- 3. Significancia: $\alpha = 0.05$
- 4. Estadístico de prueba:

		Ranking	Ratings	Cliente 3	Cliente 2	Cliente 1	Compra
62	Cliente 1:	13	28	37	26	28	1
34.5	Cliente 2:	4	19	28	20	19	2
74.5	Cliente 3:	2	13	26	11	13	3
3	k:	13	28	35	14	28	4
7	n_1:	15	29	31	22	29	5
6	n_2:	8.5	22		21	22	6
5	n_3:	6.5	21			21	7
18	n_T:	10.5	26				
		5	20				
0.035088	Part 1:	1	11				
1857.568	Part 2:	3	14				
57	Part 3:	8.5	22				
8.17782	H:	6.5	21				
		18	37				
0.05	significan	13	28				
0.102587	chi-square	10.5	26				
0.016757	p-value:	17	35				
Reject	Reject?	16	31				

- Criterio de rechazo: rechazar H_0 si $valor p \le \alpha$.
 - $\circ \quad valor p = 0.016$
 - $\alpha = 0.05$
 - $\quad \circ \quad 0.016 \leq 0.05 \rightarrow {\sf Verdadero.} \ {\sf Rechazar} \ H_0.$

• Con significancia de 0.05 se puede rechazar la H_0 y afirmar que sí hay diferencia entre los tiempos que toman los clientes.

Inciso 7:

0. Qué prueba usar: Correlación Spearman.

1. Parámetro de interés: ρ_s

2. Hipótesis:

a.
$$H_0: \rho_s = 0$$

b.
$$H_a: \rho_s \neq 0$$

3. Significancia: $\alpha = 0.05$

4. Estadístico de prueba:

Laboratori	Teoría	R_L	R_T	d sub i	d sub i ^2			
8	9	8	9	-1	1	n:	10	
3	5	3	5	-2	4	Part 1:	144	
9	10	9	10	-1	1	Part 2:	990	
2	1	2	1	1	1	r(s):	0.854545	0.854545
7	8	7	8	-1	1	mean:	0	
10	7	10	7	3	9	desvest:	0.333333	
4	3	4	3	1	1	z:	2.563636	
6	4	6	4	2	4	p-value:	0.005179	
1	2	1	2	-1	1	alpha	0.05	
5	6	5	6	-1	1	Reject?	reject	
					24			

• Rechazar H_0 si $valor - p \le \alpha$

o
$$valor - p = 0.005$$

$$\alpha = 0.05$$

○
$$0.005 \le 0.05 \rightarrow \text{Verdadero. Rechazar } H_0.$$

5. Conclusión:

• Con significancia 0.05 se puede afirmar que no hay correlación entre los datos del laboratorio y los datos de la teoría.

Inciso 8:

0. Qué prueba usar: Correlación Spearman.

1. Parámetro de interés: ρ_s

2. Hipótesis:

a.
$$H_0: \rho_s = 0$$

b.
$$H_a: \rho_s \neq 0$$

3. Significancia: $\alpha = 0.05$

4. Estadístico de prueba:

A. P.	A. HM.	R_1	R_2	d sub i	d sub i ^2	n:	12	
65	68	4	7.5	-3.5	12.25	part 1:	435	
63	66	2	3.5	-1.5	2.25	part 2:	1716	
67	68	6.5	7.5	-1	1	r(s):	0.746503	0.74026
64	65	3	1.5	1.5	2.25	mean:	0	
68	69	8.5	10	-1.5	2.25	desvest:	0.301511	
62	66	1	3.5	-2.5	6.25	z:	2.475872	
70	68	11	7.5	3.5	12.25	p-value:	0.006646	
66	65	5	1.5	3.5	12.25	alpha	0.05	
68	71	8.5	12	-3.5	12.25	reject?	reject	
67	67	6.5	5	1.5	2.25			
69	68	10	7.5	2.5	6.25			
71	70	12	11	1	1			
					72.5			

- Criterio de rechazo: rechazar H_0 si $valor p \le \alpha$:
 - \circ valor -p = 0.006
 - $\alpha = 0.05$
 - $\quad \quad 0.006 \leq 0.05 \rightarrow \text{Verdadero. Rechazar } H_0.$

• Con significancia 0.05 se puede afirmar que no hay correlación entre las alturas de los padres y las alturas de los hijos mayores.