Chapter 7: Microarchitecture

Advanced Microarchitecture

Advanced Microarchitecture

- Deep Pipelining
- Micro-operations
- Branch Prediction
- Superscalar Processors
- Out of Order Processors
- Register Renaming
- SIMD
- Multithreading
- Multiprocessors

Deep Pipelining

- 10-20 stages typical
- Number of stages limited by:
 - Pipeline hazards
 - Sequencing overhead
 - Power
 - Cost

Micro-operations

- Decompose complex instructions into series of simple instructions called *micro-operations* (*micro-ops* or μ -ops)
- At run-time, complex instructions are decoded into one or more micro-ops
- Used heavily in **CISC** (complex instruction set computer) architectures (e.g., x86)

Complex Op

lw s1, 0(s2), postincr 4 lw s1, 0(s2)

Micro-op Sequence

Without μ -ops, would need 2nd write port on the register file

Branch Prediction

- Guess whether branch will be taken
 - Backward branches are usually taken (loops)
 - Consider history to improve guess
- Good prediction reduces fraction of branches requiring a flush

Branch Prediction

- Ideal pipelined processor: CPI = 1
- Branch misprediction increases CPI
- Static branch prediction:
 - Check direction of branch (forward or backward)
 - If backward, predict taken
 - Else, predict not taken
- Dynamic branch prediction:
 - Keep history of last several hundred (or thousand)
 branches in branch target buffer, record:
 - Branch destination
 - Whether branch was taken

Dynamic Branch Prediction

- 1-bit branch predictor
- 2-bit branch predictor

Branch Prediction Example

1-Bit Branch Predictor

- Remembers whether branch was taken the last time and does the same thing
- Mispredicts first and last branch of loop

Done:

2-Bit Branch Predictor

Done:

Only mispredicts last branch of loop

Chapter 7: Microarchitecture

Superscalar & Out of Order Processors

Superscalar Processors

- Multiple copies of datapath execute multiple instructions at once
- Dependencies make it tricky to issue multiple instructions at once

Superscalar Example

Ideal IPC: 2

Actual IPC: 2

Superscalar with Dependencies

Ideal IPC: 2

Actual IPC: 6/5 = 1.2

Out of Order (OOO) Processor

- Looks ahead across multiple instructions
- Issues as many instructions as possible at once
- Issues instructions out of order (as long as no dependencies)

Dependencies:

- RAW (read after write): one instruction writes, later instruction reads a register
- WAR (write after read): one instruction reads, later instruction writes a register
- WAW (write after write): one instruction writes, later instruction writes a register

Out of Order (OOO) Processor

- Instruction level parallelism (ILP): number of instruction that can be issued simultaneously (average < 3)
- Scoreboard: table that keeps track of:
 - Instructions waiting to issue
 - Available functional units
 - Dependencies

Out of Order Processor Example

Ideal IPC: 2

Actual IPC: 6/4 = 1.5

Register Renaming

Ideal IPC: 2

Actual IPC: 6/3 = 2

SIMD

- Single Instruction Multiple Data (SIMD)
 - Single instruction acts on multiple pieces of data at once
 - Common application: graphics
 - Can apply to short arithmetic operations (also called packed arithmetic)
- For example, add eight 8-bit elements

Chapter 7: Microarchitecture

Multithreading & Multiprocessors

Advanced Architecture Techniques

Multithreading

Wordprocessor: thread for typing, spell checking, printing

Multiprocessors

Multiple processors (cores) on a single chip

Threading: Definitions

- Process: program running on a computer
 - Multiple processes can run at once: e.g., surfing
 Web, playing music, writing a paper
- Thread: part of a program
 - Each process has multiple threads: e.g., a word processor may have threads for typing, spell checking, printing

Threads in a Conventional Processor

Single-core system:

- One thread runs at once
- When one thread stalls (for example, waiting for memory):
 - Architectural state of that thread stored
 - Architectural state of waiting thread loaded into processor and it runs
 - Called context switching
- Appears to user like all threads running simultaneously

Multithreading

- Multiple copies of architectural state
- Multiple threads active at once:
 - When one thread stalls, another runs immediately
 - If one thread can't keep all execution units busy, another thread can use them
- Does not increase instruction-level parallelism (ILP) of single thread, but increases throughput

Intel calls this "hyperthreading"

Multiprocessors

- Multiple processors (cores) with a method of communication between them
- Types:
 - Homogeneous: multiple cores with shared main memory
 - Heterogeneous: separate cores for different tasks (for example, DSP and CPU in cell phone)
 - Clusters: each core has own memory system

About these Notes

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or non-commercial purposes so long as the source is attributed.