Инструкция по применению ST-LINK/V2 и ST-LINK/V2-ISOL

Введение

ST-LINK / V2 является внутрисхемным отладчиком / программатором для семейства микроконтроллеров STM8 и STM32. Однопроводный интерфейсный модуль (SWIM) и JTAG / SWD интерфейсы облегчают обмен данными с любыми STM8 или STM32 микроконтроллерами, расположенными на плате устройства.

В дополнение к тем же функциям, что и ST-LINK/V2, ST-LINK/V2-ISOL обладает цифровой изоляцией между ПК и целевой платой применения. Он также выдерживает напряжения до 1000 В RMS.

Полно скоростной интерфейс USB обеспечивает связь с ПК и:

- STM8 устройством через программное обеспечение ST Visual Development (STVD) или ST Visual Program (STVP) (они доступны от STMicroelectronics).
- STM32 устройством с помощью интегрированных сред разработки Atollic, IAR , Keil и TASKING.

Рисунок 1. ST-LINK/V2 и ST-LINK/V2-ISOL

Особенности:

- 5В питание непосредственно от USB-разъема
- Поддержка подключения Full Speed USB 2.0
- USB-кабель А Mini B
- SWIM особенности
- 1,65B до 5,5B напряжение приложений поддерживаемые интерфейсом SWIM

- -SWIM поддерживает низкоскоростные и высокоскоростные режимы
- -SWIM скорость программирования: 9,7 Кбайт / с на низкой скорости и 12,8 Кбайт / с на высокой скорости
- -SWIM кабель для подключения к приложениям через разъем стандарта ERNI, вертикальный (284697 или 214017) или горизонтальный (214012)
- -SWIM кабель для подключения к приложениям через штыревой разъем или соединительный разъем 2,54 мм
- JTAG / SWD особенности
- 1,65B до 3,6B напряжение приложений поддерживаемые интерфейсом JTAG / SWD и 5 В толерантных входах
- JTAG кабель для подключения к стандартному JTAG 20-контактному разъему с шагом 2,54 мм
- Поддержка JTAG-связи
- Поддержка SWD и SWV-связи
- Поддерживаемая функция обновления прошивки (DFU)
- Индикатор состояния, который мигает во время связи с ПК
- Высокое напряжение изоляции 1000В RMS (только для ST-LINK / V2-ISOL)
- Рабочая температура от 0 до 50 ° С

Информация для заказа

Код заказа	Краткое описание
ST-LINK/V2	Внутрисхемный отладчик / программатор
ST-LINK/V2-ISOL	Встроенный отладчик / программатор с цифровой изоляцией

Комплектация продукта

Комплект поставки включает в себя компоненты показанные на рисунке 2 (ST-LINK/V2) и рисунке 3 (ST-LINK/V2-ISOL).

- (A) USB кабель A mini B
- (B) Отладчик / программатор ST-LINK/V2 или ST-LINK/V2-ISOL
- (C) SWIM кабель
- (D) SWIM кабель с разъемом ERNI на одном конце
- (E) JTAG/SWD/SWV кабель с 20-контактным разъемом

Рисунок 2. Комплектация ST-LINK/V2

Рисунок 3. Комплектация ST-LINK/V2-ISOL

Конфигурация оборудования

ST-LINK/V2 спроектирован на базе микроконтроллера STM32F103C8, который включает в себя высокопроизводительное ядро ARM Cortex-M3.

Как показано на рисунке 4, ST-LINK/V2 обеспечивает два разъема:

- разъем STM32 для интерфейса JTAG / SWD и SWV
- разъем STM8 для интерфейса SWIM

ST-LINK/V2-ISOL обеспечивает один разъем для интерфейсов STM8 SWIM, STM32 JTAG / SWD и SWV.

Рисунок 4. Разъемы ST-LINK/V2 (слева) и ST-LINK/V2-ISOL (справа)

A = Разъем STM32 JTAG и SWD

B = Разъем SWIM STM8

C = Разъем STM8 SWIM, STM32 JTAG и SWD

D = Индикатор активности связи

Подключение к приложениям STM8

Для отладки микроконтроллеров STM8 программатор/отладчик ST-LINK/V2 можно подключить к целевой плате с помощью двух различных кабелей, в зависимости от разъема, доступного на плате приложения.

На рисунке 5 показано, как подключить ST-LINK/V2, если на плате приложения присутствует стандартный 4-контактный SWIM-разъем ERNI.

Рисунок 5. Соединение ERNI

A = Целевая плата с разъемом ERNI

B = Кабель с разъемом ERNI на одном конце

C = Разъем для подключения SWIM STM8

На рисунке 6 показано, что контакт 16 отсутствует на целевом разъеме ST-LINK/V2-ISOL. Этот недостающий контакт используется в качестве защитного ключа на разъеме кабеля, чтобы гарантировать соединение кабеля SWIM в правильном положении, используемых для обоих кабелей SWIM и JTAG.

Рисунок 6. Основные сведения о разъеме ST-LINK/V2-ISOL

На рисунке 7 показано, как подключить ST-LINK/V2, если на плате приложения имеется 4-контактный SWIM-разъем с шагом 2,54мм.

Рисунок 7. Соединение SWIM

- А = Целевая плата с 4-контактным разъемом с шагом 2,54мм
- B = Кабель с разъемом SWIM или кабель с отдельными проводами
- C = Разъем для подключения SWIM STM8

Сигналы SWIM соединения для ST-LINK/V2

В таблице 1 приведены названия сигналов, функции и сигналы целевого соединения с помощью SWIM кабеля для ST-LINK/V2.

Таблица 1. Соединение SWIM для ST-LINK/V2

№ вывода	Наименование	Функция	Целевое соединение
1	VDD	Target VCC ⁽¹⁾	MCU VCC
2	DATA	SWIM	MCU SWIM вывод
3	GND	GROUND	GND
4	RESET	RESET	MCU RESET вывод

1. Питание от платы приложения подключено к панели отладки и программирования ST-LINK/V2, чтобы обеспечить совместимость сигналов между обеими платами.

Рисунок 8. Разъем SWIM

В таблице 2 приведены названия сигналов, функции и сигналы целевого соединения с помощью SWIM кабеля для ST-LINK/V2-ISOL.

Поскольку отдельный кабельный провод SWIM имеет независимые разъемы для всех контактов на одной стороне, можно подключить ST-LINK/V2-ISOL к прикладной плате без стандартного разъема SWIM. На этом кабеле все сигналы ссылаются на определенный цвет, чтобы облегчить подключение к целевому устройству.

Таблица 2. Соединение SWIM для ST-LINK/V2-ISOL

Цвет	Наименование контакта кабеля	Функция	Целевое соединение
красный	TVCC	Target VCC ⁽¹⁾	MCU VCC
зеленый	UART-RX	неиспользуемые	Зарезервировано (2) (не подключен к
синий	UART-TX		целевой плате)
желтый	BOOT0		
оранжевый	SWIM	SWIM	MCU SWIM вывод
черный	GND	GROUND	GND
белый	SWIM-RST	RESET	MCU RESET вывод

- 1. Питание от платы приложений подключено к панели отладки и программирования ST-LINK/V2, чтобы обеспечить совместимость сигналов между обеими платами.
- 2. BOOT0, UART-TX и UART-RX зарезервированы для будущих разработок.

TVCC, SWIM, GND и SWIM-RST могут быть подключены к разъему с шагом 2,54 мм или штыревому разъему, доступному на целевой плате.

Подключение к приложениям STM32

Для отладки микроконтроллеров STM32 программатор/отладчик ST-LINK/V2 необходимо подключить к приложению, используя стандартный 20-контактный плоский кабель JTAG.

В таблице 3 приведены названия сигналов, функции и сигналы целевого соединения JTAG.

Таблица 3. Соединение JTAG для ST-LINK/V2

$N_{\underline{0}}$	ST-LINK/V2 разъем	ST-LINK/V2	Целевое	Целевое
контакта	(CN3)	функция	соединение (JTAG)	соединение (SWD)
1	VAPP	Target VCC	MCU VDD ⁽¹⁾	MCU VDD ⁽¹⁾
2				
3	TRST	JTAG TRST	JNTRST	GND ⁽²⁾
4	GND	GND	GND ⁽³⁾	GND ⁽³⁾
5	TDI	JTAG TDO	JTDI	GND ⁽²⁾
6	GND	GND	GND ⁽³⁾	GND ⁽³⁾
7	TMS_SWDIO	JTAG TMS, SW IO	JTMS	SWDIO
8	GND	GND	GND ⁽³⁾	GND ⁽³⁾
9	TCK_SWCLK	JTAG TCK, SW CLK	JTCK	SWCLK
10	GND	GND	GND ⁽³⁾	GND ⁽³⁾
11	NC	Не подключен	Не подключен	Не подключен
12	GND	GND	GND ⁽³⁾	GND ⁽³⁾
13	TDO_SWO	JTAG TDI, SWO	JTDO	TRACESWO ⁽⁴⁾
14	GND	GND	GND ⁽³⁾	GND ⁽³⁾
15	NRST	NRST	NRST	NRST
16	GND	GND	GND ⁽³⁾	GND ⁽³⁾
17	NC	Не подключен	Не подключен	Не подключен
18	GND	GND	GND ⁽³⁾	GND ⁽³⁾

19	VDD	VDD (3.3V)(5)	Не подключен	Не подключен
20	GND	GND	GND ⁽³⁾	GND ⁽³⁾

- 1. Питание от платы приложений подключено к панели отладки и программирования ST-LINK/V2, чтобы обеспечить совместимость сигналов между обеими платами.
- 2. Подключите к GND для уменьшения шума на кабеле.
- 3. По крайней мере, один из этих контактов должен быть подключен к земле для правильного поведения (рекомендуется использовать все из них).
- 4. Необязательно: для отслеживания последовательного прохода (SWV)
- 5. Доступно только для ST-LINK / V2 и не подключено к ST-LINK / V2 / OPTO.

На рисунке 9 показано, как подключить ST-LINK/V2 к целевому устройству с помощью кабеля JTAG.

C ST. LINKTY IN ST. LINKTY IN

Рисунок 9. Подключение JTAG и SWD

А = Целевая плата с разъемом JTAG

B = JTAG / SWD 20-жильный плоский кабель

C = STM32 Разъем JTAG и SWD

Конфигурация программного обеспечения

Обновление прошивки ST-LINK/V2

ST-LINK/V2 имеет встроенный механизм обновления прошивки. Поскольку прошивка развивается в течение всей жизни продукта ST-LINK/V2 (добавляя новую функциональность, исправляются ошибки, дополняется поддержка новых семейств микроконтроллеров ...), рекомендуется периодически посещать сайт www.st.com/stlinkv2, чтобы скачать новейшую версию прошивки.

Разработка приложений STM8

Обратитесь к ST toolset Pack24 Patch 1 или более поздним версиям, который включает ST Visual Develop (STVD) и ST Visual Programmer (STVP).

Разработка приложений STM32 и программирование Flash

Сторонние компиляторы, Atollic TrueSTUDIO, IAR EWARM, Keil MDK-ARM и TASKING VX-toolset поддерживают работу с ST-LINK/V2 в соответствии с версиями, приведенными в таблице 4 или в самой последней доступной версии.

Таблица 4. Сторонние инструментальные средства поддерживающие ST-LINK / V2

Разработчики IDE	Инструмент	Версия
Atollic	TrueSTUDIO	2.1
IAR	EWARM	6.20
Keil	MDK-ARM	4.20
TASKING	VX-toolset for ARM Cortex-M	4.0.1

Для работы ST-LINK/V2 требуется специальный USB драйвер. Если набор инструментов установлен автоматически, файл **stlink_winusb.inf** устанавливается в **<WINDIR>** / **inf** (где <WINDIR> обычно C: / Windows).

Если установка набора инструментов не была установлена автоматически, драйвер можно найти на www.st.com:

- 1. Зайдите на сайт <u>www.st.com</u>.
- 2. В поиска введите и найдите ST-LINK/V2.
- 3. Перейдите на вкладку Tools & Software и скачайте нужный драйвер.

Дополнительную информацию о сторонних инструментах можно найти на следующих веб-сайтах:

- www.atollic.com
- www.iar.com
- www.keil.com
- www.tasking.com

ВАЖНО!

STMicroelectronics NV и ее дочерние компании оставляют за собой право вносить изменения, исправления, модификации и улучшения ST-продуктов и документации в любое время без предварительного уведомления.