Data Integration

Vu Tuyêt Trinh

1

Outline

- **➤**Introduction
- Examples of data integration applications
- Schema heterogeneity
- Goal of data integration
- Data integration architectures
- Review of basic database concepts

Data Integration

- Databases are great?
 - Assuming you've put it all into your schema.
- Data sets are often created independently
 - Only to discover later that they need to combine their data!
 - Data in different systems, different schemata and limited interfaces to data.
- Data integration: tie together different sources, controlled by many people, under a common schema.

3

DBMS: it's all about abstraction

· Logical vs. Physical; What vs. How.

Students:

SSN	Name	Category
123-45-6789	Charles	undergrad
234-56-7890	Dan	grad

Takes:

SSN	CID
123-45-6789	CSE444
123-45-6789	CSE444
234-56-7890	CSE142

Courses:

CI	D	Name	Quarter
CS	E444	Databases	fall
CS	E541	Operating systems	winter

SELECT C.name

FROM Students S, Takes T, Courses C WHERE S.name="Mary" and

S.ssn = T.ssn and T.cid = C.cid

Outline

- ✓ Introduction: data integration as a new abstraction
- >Examples of data integration applications
- Schema heterogeneity
- Goal of data integration, why it's a hard problem
- Data integration architectures
- Review of basic database concepts

Applications of Data Integration

- Business
- Science
- Government
- The Web
- Pretty much everywhere

7

Application Area 1: Business Enterprise Databases EII Apps: CRM ERP Portals ... Legacy Databases Services and Applications 50% of all IT \$\$\$ spent here!

The Deep Web

- Millions of high quality HTML forms out there
- Each form has its own special interface
 - Hard to explore data across sites.
- Goal (for some domains):
 - A single interface into a multitude of deep-web sources.

Outline

- ✓Introduction: data integration as a new abstraction
- ✓ Examples of data integration applications
- ➤ Schema heterogeneity
- Goal of data integration, why it's a hard problem
- Data integration architectures
- Review of basic database concepts

17

Enterprise Data Integration:

FullServe Corporation

Employees Resumes

FullTimeEmp Interview Hire CV

TempEmployees

Training Services
Courses Services
Enrollments Customers

Contracts

Sales HelpLine Products Calls

Sales

EuroCard Corporation

Employees Resumes

Employees Interview

Hire

Credit Cards HelpLine

Customer Calls

CustDetail

19

Examples of Heterogeneity

FullServe EuroCard

FullTimeEmp Employees

ssn, empld, firstName
ID, firstNameMiddleInitial,
middleName, lastName
lastName

Hire Hire

empld, hireDate, recruiter ID, hireDate, recruiter

TempEmployees

ssn, hireStart, hireEnd

Find all employees (making over \$100K)

Customer Call Center

Agents should have a full view of customer when they call in.

Sales

Products Sales

Credit Cards

Customer CustDetail

Services

Services Customers Contracts

21

Other Reasons to Integrate Data

- Create a (useful) web site for tracking services
- Collaborate with third parties
 - E.g., create branded services
- Comply with government regulations
 - Find "risky" employees
- Business intelligence
 - What's really wrong with our products?

Outline

- ✓Introduction: data integration as a new abstraction
- ✓ Examples of data integration applications
- ✓ Schema heterogeneity
- ➤ Goal of data integration, why it's a hard problem
- Data integration architectures
- Review of basic database concepts

23

Goal of Data Integration

- Uniform query access to a set of data sources
- Handle:
 - Scale of sources: from tens to millions
 - Heterogeneity
 - Semi-structure

Why is it Hard?

- Systems-level reasons:
 - Managing different platforms
 - SQL across multiple systems is not so simple
 - Distributed query processing
- Logical reasons:
 - Schema (and data) heterogeneity
- 'Social' reasons:
 - Locating and capturing relevant data in the enterprise.
 - Convincing people to share (data fiefdoms)
 - Security, privacy and performance implications.

25

Data Integration Smorgasbord

Something for everyone:

- Theory of modeling data sources
- Systems aspects of data integration
- Architectural issues: e.g., P2P data sharing
- AI @ work: automated schema matching
- Web: latest on data integration & web
- Commercial products: BEA, IBM
- Semantic Web: what does it have to offer?
- New trends in DBMS: uncertainty, dataspaces

Outline

- ✓Introduction: data integration as a new abstraction
- ✓ Examples of data integration applications
- ✓ Schema heterogeneity
- ✓ Goal of data integration, why it's a hard problem
- ➤ Data integration architectures
- Review of basic database concepts

27

Virtual, Warehousing and in Between

- Virtual data integration: leave the data at the sources and access it at query time.
- Data warehousing: integrate by bringing the data into a single physical warehouse
- ❖ semantic heterogeneity
- ❖ Numerous intermediate architectures.

Woody Allen Comedies in NY

Mediated schema:

Movie: Title, director, year, genre

Actors: title, actor

Plays: movie, location, startTime **Reviews**: title, rating, description

select title, startTime
from Movie, Plays
where Movie.title=Plays.movie AND
location="New York" AND
director="Woody Allen"

33

Movie: Title, director, year, genre

Actors: title, actor

Plays: movie, location, startTime **Reviews**: title, rating, description

select title, startTime
from Movie, Plays
where Movie.title=Plays.movie AND
location="New York" AND
director="Woody Allen"

Sources S1 and S3 are relevant, sources S4 and S5 are irrelevant, and source S2 is relevant but possibly redundant.

S1 S2 S3 S5 Movies: Cinemas in NYC: Cinemas in SF: Cinemas: Reviews: name, actors, place, movie, cinema, title, location, movie, title, date director, genre start startTime startingTime grade, review

Pros and Cons of Data Warehouses

- *Need to spend time to design the physical database layout, as well as logical
 - * This actually takes a lot of effort!
- *Data is generally not up-to-date (lazy or offline refresh)
- ✓ Queries over the warehouse don't disrupt the data sources
- ✓ Can run very heavy-duty computations, including data mining and cleaning

3

37

Outline

- ✓ Introduction: data integration as a new abstraction
- ✓ Examples of data integration applications
- ✓ Schema heterogeneity
- ✓ Goal of data integration, why it's a hard problem
- ✓ Data integration architectures
- ➤ Review of basic database concepts

Basic Database Concepts

- Relational data model
- Integrity constraints
- Queries and answers
- Conjunctive queries
- Datalog

39

Relational Terminology

Relational schemas

• Tables, attributes

Relation instances

• Sets (or multi-sets) of tuples

Integrity constraints

• Keys, foreign keys, inclusion dependencies

Prodi	Table/relation name Product Attribute names					
	PName	Price	Category	Manufacturer		
	Gizmo	\$19.99	Gadgets	GizmoWorks		
Po	owergizmo	\$29.99	Gadgets	GizmoWorks		
Si	ngleTouch	\$149.99	Photography	Canon		
N	lultiTouch	\$203.99	Household	Hitachi		
Tuple	Tuples or rows					

SQL (very basic)

Interview:

candidate, date, recruiter, hireDecision, grade

EmployeePerf:

empID, name, reviewQuarter, grade, reviewer

select recruiter, candidate from Interview, EmployeePerf where recruiter=name AND grade < 2.5

Query Answers

- *Q(D)*: the set (or multi-set) of rows resulting from applying the query *Q* on the database *D*.
- Unless otherwise stated, we will consider sets rather than multi-sets.

43

SQL (w/aggregation)

EmployeePerf:

empID, name, reviewQuarter, grade, reviewer

select reviewer, Avg(grade) from **EmployeePerf** where reviewQuarter="1/2007"

Integrity Constraints (Keys)

- A key is a set of columns that uniquely determine a row in the database:
 - There do not exist two tuples, t_1 and t_2 such that $t_1 \neq t_2$ and t_1 and t_2 have the same values for the key columns.
 - (EmpID, reviewQuarter) is a key for EmployeePerf

45

Integrity Constraints (Functional Dependencies)

- A set of attribute A functionally determines a set of attributes B if: whenever, t₁ and t₂ agree on the values of A, they must also agree on the values of B.
- For example, (EmpID, reviewQuarter) functionally determine (grade).
- Note: a key dependency is a functional dependency where the key determines all the other columns.

Integrity Constraints (Foreign Keys)

- Given table **T** with key *B* and table **S** with key *A*: *A* is a foreign key of *B* in **T** if whenever a **S** has a row where the value of *A* is **v**, then **T** must have a row where the value of *B* is **v**.
- Example: the empID attribute of **EmployeePerf** is a foreign key for attribute emp of **Employee**.

47

General Integrity Constraints

Tuple generating dependencies (TGD's)

$$(\forall \overline{X}) s_1(\overline{X}_1),...,s_m(\overline{X}_m) \rightarrow (\exists \overline{Y}) \ t_1(\overline{Y}_1),...,t_1(\overline{Y}_1)$$

Equality generating dependencies (EGD's): right hand side contains only equalities.

$$(\forall \overline{X})s_1(\overline{X}_1), ..., s_m(\overline{X}_m) \rightarrow Y_1^1 = Y_2^1, ..., Y_1^k = Y_2^k$$

Exercise: express the previous constraints using general integrity constraints.

Conjunctive Queries

Q(X,T):

Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z), W < 2.5.

Joins are expressed with multiple occurrences of the same variable

select recruiter, candidate from **Interview**, **EmployeePerf** where recruiter=name AND grade < 2.5

49

Conjunctive Queries (interpreted predicates)

Q(X,T):

Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z), **W < 2.5**.

Interpreted (or comparison) predicates. Variables must also appear in regular atoms.

select recruiter, candidate from **Interview**, **EmployeePerf** where recruiter=name AND grade < 2.5

Conjunctive Queries (negated subgoals)

Q(X,T):

Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z), →OfferMade(X, date).

Safety: every head variable must appear in a positive subgoal.

51

Unions of Conjunctive Queries

Multiple rules with the same head predicate express a union

Q(R,C):-

Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z), W < 2.5.

Q(R,C):-

Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z), Manager(y), W > 3.9.

Summary

- Data integration: abstract away the fact that data comes from multiple sources in varying schemata.
- Problem occurs everywhere: it's key to business, science, Web and government.
- Goal: reduce the effort involved in integrating.
- Regardless of the architecture, heterogeneity is a key issue.
- Architectures range from warehousing to virtual integration.

53

Big Data Integration

Big Data Growth Statistics

- An internet user generates ~ 1.7 megabytes (MB) of data / second.
- 2022: ~ 97 zettabytes the estimated volume of data created worldwide
- 2023:
 - $\sim 2/3$ world population be online
 - internet users generate nearly 3 times the volume of data generated in 2019.
- 2025:
 - people will create more than 181 ZB of data. That's 181, followed by 21 zeros.
 - there will be 55.7 billion connected IoT devices. These IoT devices alone will generate almost 80 ZB by 2025.
- An internet user would need more than 180 million years to download all the data from the web.
- Nearly 80% of companies estimate that 50%-90% of their data is unstructured. Think text, video, audio, web server logs, or social media activities.

https://www.brimco.io/analytics/big-data-analytics-statistics/

