Lafe herbre 13.	25/10/2012.
[] d'flenheiten. = & for hourgin	metric }
[] = D2 - D. m Rx My, l= -d2 + g	
More genely, In fa h= hi; dri adsid	*is. (-1 0).
1) Congunation of every	
$E(t) = \frac{1}{2} \int \left(n_t^2 + \nabla_x n ^2 \right) dx \cdot cnx$ $t = cnx \cdot n(t)$	t. provided.
2). Finite Propagation Greed.	
(N ⁿ⁺¹ , h) herenzian.	
S hypersuface is called spacelike for y muit vend t 8.	ig h(v,v) <0.
las la=-dt2+q solution, S=?t=f	?(n)}
$t=0. \gamma=\left(-1,-\nabla_n f\right)$ $ \nabla_n f \leqslant 1.$	
Null geodesics ~ (s) h(v'(s), v'(s)) = 0 .

CiS.
$ = \sum_{i} \left(\frac{m_{i}^{2} + \nabla_{n}u ^{2}}{\sum_{i}} \right) \leq G \left(\frac{m_{i}^{2} + \nabla_{n}u ^{2}}{\sum_{i}} \right). $
Hence y up = V2n=0 on To => up = V2n=0.
Now suppose $S = U \sum_{k}$, all spacelike luns. Then for any such is fulning, we can apply this and No $N = 0$ or $T_0 \implies N = 0$ on T_0 .
Tf In=On Define: T= du & du - \frac{1}{2} du ^2 lu. Stress-energy fenser.
Fract: $T = (7^{jk})$, is chargence-free. Exercise (nees only $\nabla ln = 0$ and $\Omega ln = 0$).
Z = leilling Field. >> TZ 8kew (> Lzh=0).
Claim V in T(Z,V) in divergeme free.
$\left(T^{jk}Z_{k}\right); i = T^{jk}Z_{k} + T^{jk}Z_{k}; i = 0$
$X = \mathcal{Z} \perp T \left(X = V \rightarrow T(z,v) \right).$ That If of $0 = \int_{\mathcal{X}} \operatorname{div}(X) = \cdot \int_{\mathcal{X}} X \cdot v = \int_{\mathcal{X}} T(z,v) - \int_{\mathcal{X}} T(z,v)$ Refore: $2a = \mathcal{Z} \perp T \left(X = V \rightarrow T(z,v) \right).$
20 7

lavred of lillon, for 7 time liter.
(⟨T, ∀z⟩) € (Ez, z (du).
div T= Vn. Dn= Pn (f- xn).
\Rightarrow . $ \langle dvT, \overline{z} \rangle \leq C' E_{\overline{z}, \overline{z}} (du) + k_1 u ^2 + k_2 f ^2$.
$\int_{\Sigma_{1}(S)} E_{z,\gamma_{2}}(du) \leq \int_{\Sigma_{0},b(S)} E_{z,\gamma_{1}}(du).$ $+ c \int_{S} E_{z,z}(du) + u ^{2} + t ^{2}$
[hu=f:, n = 9, du = w]
$\frac{\int n ^2 \cdot \xi \cdot C \int 9 ^2 + C \int E_{2,2}(dn)}{\sum_{o,b}(s) \cdot O(s)}$
$E(s) = \int_{OCs} E_{z,z}(du).$
$E'(s) \leq \int_{\Sigma(s)} E_{z,z}(du) \cdot \leq C E(s) + F(s).$
Followed his 9, w; initial data. $ \frac{1}{2}\left(e^{Cs}E(s)\right) \leq e^{Cs}F(s) \Rightarrow e^{Cs}E(s) \leq \int_{s_0}^{s}e^{Cs}F(s) d\sigma. $
> (e ^{(s} E(s))) { e ^{-(s} F(s)). → e ^{-(s} E(s) < ∫ _s e ^{-(s} F(s)) do.

		3,V >=. (m, 1	€Ľ.	
Apri	nev >	ln∈ H ⁻² .		
				gament maked to produce the second control of the second control o

-