Homework 2: Operational Semantics for WHILE

Name: Sidharth Mishra Class: CS 252 Assigment: HW2 Due Date: 9/28/2017 11:59 PM

Sun Sep 24 2017 11:25:55 GMT-0700 (PDT)

1 Operational Semantics of WHILE using evaluation order rules

The language specification for WHILE language and Small Step operational semantics for the language are described below.

1.1 WHILE language specification

```
Expressions
e ::=
                                                                        variables/addresses
                                                                                       values
             v
                                                                                 assignment
             x := e
                                                                     sequential expressions
             e; e
             e op \mathbf{e}
                                                                          binary operations
             \mathtt{if}\ e\ \mathtt{then}\ e\ \mathtt{else}\ e
                                                                    conditional expressions
             while (e) e
                                                                          while expressions
             \mathtt{not}\ e
                                                            negation/not unary operation
             e \; {\rm and} \; e
                                                                              and operation
                                                                                or operation
             e or e
                                                                                       Values
v ::=
             i
                                                                              integer values
             b
                                                                             boolean values
            + | - | * | / | > | >= | < | <=
                                                                           Binary operators
op ::=
```

1.2 Small Step operational semantics for WHILE language

Let ' σ ' refer to the **Store** which holds the state of the different variables used in the expressions.

[SS-VALUE]	$\overline{v, \ \sigma \ ightarrow v, \ \sigma}$
[SS-VARIABLE-ACCESS-REDUCTION]	$\frac{x \in domain(\sigma) \qquad \sigma(x) = v}{x, \ \sigma \ \rightarrow \ v, \ \sigma}$
[SS-ASSIGNMENT-REDUCTION]	$\overline{x := v, \ \sigma \ \rightarrow \ v, \ \sigma[x := v]}$
[SS-ASSIGNMENT-CONTEXT]	$\frac{e, \ \sigma \rightarrow e', \ \sigma'}{x := e, \ \sigma \rightarrow x := e', \ \sigma'}$
[SS-SEQUENCE-REDUCTION]	$\overline{v;e,\;\sigma\;\; ightarrow\;e,\;\sigma}$
[SS-SEQUENCE-CONTEXT]	$\frac{e_1, \ \sigma \rightarrow e_1', \ \sigma'}{e_1; e_2, \ \sigma \rightarrow e_1'; e_2, \ \sigma'}$
[SS-OPERATION-REDUCTION]	$egin{array}{lll} rac{v &=& \mathbf{apply} \; \mathbf{op} \; v_1 \; v_2}{v_1 \; \mathbf{op} \; v_2, \; \sigma \; & ightarrow \; v, \; \sigma} \end{array}$
[SS-OPERATION-CONTEXT #2]	$\frac{e, \ \sigma \rightarrow e', \ \sigma'}{v \ \mathbf{op} \ e, \ \sigma \rightarrow v \ \mathbf{op} \ e', \ \sigma'}$
[SS-OPERATION-CONTEXT #1]	$\frac{e_1, \ \sigma \rightarrow e_1', \ \sigma'}{e_1 \ \mathbf{op} \ e_2, \ \sigma \rightarrow e_1' \ \mathbf{op} \ e_2, \ \sigma'}$
[SS-IF-TRUE-REDUCTION]	$\overline{ ext{if true then } e_1 ext{ else } e_2, \; \sigma \;\; o \;\; e_1, \; \sigma } $
[SS-IF-FALSE-REDUCTION]	$\overline{ ext{if false then } e_1 ext{ else } e_2, \; \sigma \;\; o \;\; e_2, \; \sigma}$
[SS-IF-CONTEXT]	$rac{e_1,\;\sigma\;\; ightarrow\;\;e_1',\;\sigma'}{ ext{if e_1 then e_2 else e_3, $\sigma\;\; ightarrow\;\; ext{if e_1' then e_2 else e_3, σ'}}$
[SS-WHILE-CONTEXT]	while $(e1)$ $e2,$ σ \rightarrow if $e1$ then $e2$; while $(e1)$ $e2$ else false, σ

[SS-NOT-CONTEXT]	$\overline{ ext{not } e, \ \sigma \ ightarrow } \ ext{if } e ext{ then false else true, } \overline{\sigma}$
[SS-AND-CONTEXT]	$\overline{e1} \; { m and} \; e2, \; \sigma \;\; ightarrow \; { m if} \; e1 \; { m then} \; { m if} \; e2 \; { m then} \; { m true} \; { m else} \; { m false} \; { m else} \; { m else} \; { m false} \; { m else} \; { m else$
[SS-OR-CONTEXT]	$\overline{e1} \ { m or} \ e2, \ \sigma \ o \ { m if} \ e1 \ { m then} \ { m true} \ { m else} \ { m if} \ e2 \ { m then} \ { m true} \ { m else} \ { m false}, \ \sigma$