Adversarial Active Learning for Deep Networks: a Margin Based Approach

Melanie Ducoffe and Frederic Precioso

Enrico Maria Bachiorrini

Université Côte d'Azur

March 23rd 2021

What is active learning

Challenges of active learning

• Minimize the number of annotations queried to the oracle.

Margin based active learning

Only queries samples that are close to the decision boundary.

How to find the decision boundary?

The boundary from a Machine Learning model, that would predict Label A to the left and Label B to the right.

Uncertainty Sampling: selecting unlabeled items near the decision boundary.

Adversarial examples

Instances with small, intentional feature perturbations designed to cause the model to make a false prediction.

"panda" "gibbon"
57.7% confidence 99.3% confidence


```
Algorithm 1 DFAL: DeepFool Active Learning
Require: L set of initial labeled training examples
Require: U set of initial unlabeled training examples
Require: \mathcal{H} set of hyper-parameters to train the network
Require: K the number of candidates
Require: n_{query} the number of data to query
Require: p: the L_p norm used (p=2)
Require: N: the number of data to label
  # init the training set
  k = 0
  \mathcal{L}_0 = \mathcal{L}
  \mathcal{U}_0 = \mathcal{U}
   while k<N do
     # Train the network A_k given the current labeled train-
     ing set
     A_k=training(\mathcal{H}, \mathcal{L}_k)
     # Select randomly a pool of data S_k of size K
     S_k \subseteq U_k; |S_k| = K
     for x_i \in S_k do
        #compute adversarial attacks with L_p norms
        r_i \leftarrow DeepFool(x_i, A_k; p)
     end for
     # query the labels of the n_{query}-th samples Q_k owing
     the smallest L_n norm perturbation
     index_k \leftarrow argsort(\langle r_i, r_i \rangle_p | i = 1..K)
     Q_k \leftarrow \{x_j \mid j \in index_k[0 : n_{query}]\} \cup \{x_i + r_i \mid j \in index_k[0 : n_{query}]\}
     j \in index_k[0:n_{query}]
     \mathcal{L}_{k+1} \leftarrow \mathcal{L}_k \cup \mathcal{Q}_k
     U_{k+1} \leftarrow U_k \setminus Q_k
   end while
```


	Accuracy (%)						
# annotations	100	500	800	1000	All		
DFAL	82.77	96.23	97.71	98.02	-		
BALD	51.88	91.96	93.69	94.24	-		
CEAL	71.81	94.81	96.77	97.33	-		
CORE-SET	78.86	96.52	97.53	98.03	-		
EGL	58.44	73.86	78.57	78.57	-		
uncertainty	57.96	92.52	94.84	96.41	-		
RANDOM	77.56	92.83	94.63	95.31	99.04		

(a) MNIST (LeNet5)

	Accuracy (%)					
# annotations	100	500	800	1000	All	
DFAL	84.28	96.90	97.98	98.59	-	
BALD	53.73	91.47	94.32	94.32	-	
CEAL	50.87	90.69	90.69	90.69	-	
CORE-SET	78.80	96.68	97.46	97.88	-	
EGL	37.92	91.84	93.99	93.99	-	
uncertainty	45.57	88.36	94.27	94.60	-	
RANDOM	69.79	91.96	94.05	94.46	98.98	

(b) MNIST (VGG8)

		Ac	ccuracy (%)	0 –			
# annotations	100	500	800	1000	All			
DFAL	94.62	98.50	98.98	99.10	-			
BALD	93.10	97.95	97.95	97.95	-			
CEAL	84.65	98.50	99.00	99.12	-			
CORE-SET	92.50	98.75	99.07	99.25	-			
EGL	75.07	95.47	95.47	95.47	-			
uncertainty	95.78	98.35	98.85	98.98	-			
RANDOM	95.50	98.07	98.07	98.07	99.70			

(c) Shoe-Bag (LeNet5)

(d) Shoe-Bag (VGG8)

# annotations	Accuracy (%)				
	100	500	800	1000	All
DFAL	82.56	89.63	90.72	91.09	-
BALD	72.65	87.18	88.34	88.45	-
CEAL	70.46	87.04	88.31	89.39	-
CORE-SET	79.58	88.93	90.54	90.53	-
EGL	57.48	64.05	64.05	69.85	-
uncertainty	69.24	86.89	88.54	89.09	-
RANDOM	78.09	87.03	88.98	89.42	95.4

(e) Quick-Draw (LeNet5)

		Ac	curacy (%)				
# annotations	100	500	800	1000	All			
DFAL	84.23	91.52	93.16	93.91	-			
BALD	82.00	89.94	91.92	92.87	-			
CEAL	64.45	79.66	85.73	88.65	-			
CORE-SET	66.71	89.93	92.28	92.62	-			
EGL	63.12	86.80	90.06	90.06	-			
uncertainty	52.77	88.05	89.31	91.03	-			
RANDOM	78.28	88.13	89.71	89.94	96.75			

(f) Quick-Draw (VGG8)

