

Propiedades de F_e para Cargas puntuales estáticas

- 1) F_e : dirección de la recta que une a q_1 y a q_2
- 2) F_e: atractiva signos opuestos F_e: repulsiva mismo signo
- 3) F_e es proporcional a q₁ y q₂
- 4) F_e es <u>inversamente</u> <u>proporcional al cuadrado de la</u> <u>distancia que separa las cargas</u>

$$|F_e| = k |q_1| |q_2| \frac{1}{r^2}$$

Ley de Coulomb (así nomás) K = 8,987 10 ⁹ [N m² /C²] MKS

Podemos pensar que q_2 es una "carga de prueba" con la que sondeamos los alrededores de q_1 . Para independizarnos de la influencia de q_2 , dividimos F_{12} por q_2 :

El cociente $\frac{F_{21}}{2}$ ya no depende de q₂:

a >
$$q_2$$
, > \vec{F}_{21}
a < q_2 , < \vec{F}_{21}

Así, definimos, en general, campo eléctrico E como:

 $q_0 << q_1$ (carga fuente de \vec{E}) para que no afecte la posible distribución de cargas:

$$\vec{E} \equiv \lim_{q_0 \to 0} \frac{F_e}{q_0}$$

Valores típicos de campos eléctricos

atmósfera limpia: 100 N/C

vidrio frotado: 1.000 N/C

fotocopiadora: 100.000 N/C

nube de tormenta: 100.000 N/C

chispa en aire: 5.000.000 N/C

Algunos inconvenientes del concepto de acción a distancia de la Ley de Coulomb:

- ¿Qué mecanismo es el responsable?
- ¿Qué "cosa" hay entre una carga y otra para que haya una fuerza?
- ¿Perturbación a velocidad infinita?
- ¿Principio acción y reacción?

Concepto de Campo Eléctrico:

- Propiedad del espacio que rodea a las cargas eléctricas
- Medio por el cual una carga ejerce una fuerza sobre otra carga
- Perturbación a velocidad finita: carga ↔ campo ↔ carga
- Principio acción y reacción local: carga ↔ campo ↔ carga

Variación del módulo de campo eléctrico con la distancia para una carga puntual

P: ¿Cómo se determina el campo eléctrico de varias cargas puntuales (distribución discreta de cargas)?

R: Principio de superposición

E (P)
$$q_{1} = 7 \mu C \qquad q_{2} = -5 \mu C \qquad \vec{E}(P) ?$$

Realizamos un esquema <u>vectorial</u> de los campos en P generados por q_1 y q_2 separadamente.

Realizamos la suma vectorial en forma gráfica

Calculamos el módulo de cada campo:

$$E_{1} = k \frac{|q_{1}|}{r_{1}^{2}} = 9 \times 10^{9} \frac{7 \times 10^{-6}}{(0,4)^{2}} = 4 \times 10^{5} \left[\frac{N}{C} \right] \quad E_{2} = k \frac{|q_{2}|}{r_{2}^{2}} = 9 \times 10^{9} \frac{5 \times 10^{-6}}{(0,5)^{2}} = 1.8 \times 10^{5} \left[\frac{N}{C} \right]$$

Calculamos las componentes de cada campo:

$$\vec{E}_1 = \left| \vec{E}_1 \right| \vec{j}$$

$$E_{2x} = \left| \vec{E}_2 \right| \times \cos(\theta) = \left| \vec{E}_2 \right| \times \frac{3}{5}; \quad E_{2y} = -\left| \vec{E}_2 \right| \times sen(\theta) = -\left| \vec{E}_2 \right| \times \frac{4}{5}$$

$$\vec{E}_1 = 4 \times 10^5 \ \vec{j} \quad \left[\frac{N}{C}\right]; \quad \vec{E}_2 = (1.1 \times 10^5 \ \vec{i} - 1.4 \times 10^5 \ \vec{j} \quad \left[\frac{N}{C}\right]$$

$$\therefore \quad \vec{E} = \vec{E}_1 + \vec{E}_2$$

Un ejercicio de aplicación

Caso especial de distribución discreta de cargas: el DIPOLO

Módulo del campo eléctrico sobre la mediatriz de un dipolo, en función de la distancia al eje del mismo

Otro ejercicio de aplicación para los alumnos

Calcular el campo eléctrico de un dipolo para todo punto del plano XY (Ayuda: cada una de las componentes Ex y Ey deben ser funciones de las coordenadas x e y)

Verificar el límite de dichas expresiones cuando r tiende a infinito

Dipolo de separación 2a en campo eléctrico uniforme

$$\vec{F}_{1} = |\vec{F}_{2}| = qE$$

$$\vec{F}_{1} = |\vec{F}_{2}| = qE$$

$$\vec{F}_{1} = |\vec{F}_{2}| = qE$$

$$\vec{F}_{2} = \vec{F}_{2} = \vec{F}_{2} = \vec{F}_{3} \times \vec{F}_{4}$$

$$|\vec{F}_1| = |\vec{F}_2| = qE$$

$$|\vec{\tau}_0| = F_1 \frac{2a}{2} sen(\theta) + F_2 \frac{2a}{2} sen(\theta) = \vec{\tau} = \vec{p} \times \vec{E}$$

$$= q\vec{E} 2a sen(\theta) = p E sen(\theta)$$

$$|\vec{p}| = q 2a$$
momento dipolar
$$|\vec{p}| = q 2a$$

P: ¿Cómo se determina el campo eléctrico de una distribución continua de cargas (por ejemplo, la de un cuerpo cargado)?

R: Principio de superposición (¡otra vez!)

: El CE sobre la mediatriz de una barra cargada de longitud L us:

Prob. 7 Práctica 2 Práctica 2
$$\frac{1}{2118} = \frac{1}{2118} =$$

Si
$$L \rightarrow \emptyset = D \sqrt{\frac{1}{4} + \frac{y^2}{L^2}} \rightarrow \sqrt{\frac{1}{4}} = \frac{1}{2}$$

i. $E_1 Y \rightarrow A \qquad 1 \qquad 1 \qquad = \frac{A}{2\pi \epsilon} \qquad 1 \qquad \text{una reda}$
 $A\pi\epsilon \qquad 3 \qquad \frac{1}{2} \qquad 2\pi\epsilon \qquad 3 \qquad \text{de carga}$

ig si yssl? => lejos de la barra - p, carga puntual!

Campo eléctrico sobre el eje de un anillo y un disco de radio R cargados uniformemente

CE de un anillo de carga sobre ex x Resident lineal du Conge Resident lineal du Conge de de la comp. de Por simetria: las comp. en el ef y se envison de a peres

i. $dE_x = \frac{1}{4\pi\epsilon} \frac{dq}{d^2} \cos \theta$ $\int d^2 = R^2 + z^2$ $\cos \theta = \frac{z}{d} = \frac{z}{\sqrt{R^2 + z^2}}$ is $E_{x} = \int dE_{x} = \frac{1}{4778} \left(\frac{105}{(R^{2}+x^{2})} \frac{x}{\sqrt{R^{2}+x^{2}}} \right) \sqrt{\frac{105}{R^{2}+x^{2}}}$ in kg ración $\int_{R} \frac{1}{40E} \frac{\lambda}{(R^{2}+\lambda^{2})^{3/2}} \int_{R} \frac{ds}{2\pi R} = \frac{\lambda R}{2E_{0}} \frac{\chi}{(R^{2}+2^{2})^{3/2}}$

CE sobre et ep de disco cargado

6: dens. Superficial
de carga = Q/A

de carga = Q/A

de de carga = Q/A

provechemos
Simethia pera elegir
Convenient mente dA

dEx = (enillo de radio r) = odq = 627 rdr

= $\frac{1}{4\pi\epsilon}$ $\frac{2\pi\sigma}{(r^2+z^2)^3/z}$ desde $r=\sigma-\sigma r=R$

 $E_{x} = \frac{170}{47180} \int_{0}^{R} \frac{2r dr}{(x^{2}+r^{2})^{3/2}} = \frac{5}{28} \left(1 - \frac{x}{R^{2}+x^{2}}\right)$