

UNIDAD 1: INTRODUCCIÓN A LOS ALGORITMOS Y MANEJO DE ARREGLOS

PRIMERA SEMANA

Mi vida es un algoritmo

Temario

- Concepto de algoritmo.
- Notación algorítmica. Clases, objetos y métodos. Estructuras de datos.

Es un conjunto ordenado y finito de operaciones que permite hallar la solución a un problema.

Reglas para efectuar algún cálculo, bien sea a mano o, más frecuentemente, en una máquina. Ejemplos:

- Sumas, restas, multiplicación y división
- Devocionario Anglicano
- Algoritmo de euclides

Muhammad ibn Musa al-Khwarizmi Matemático Persa del Siglo IX

- La ejecución de un algoritmo no implica una decisión subjetiva, o hacer uso de la intuición y creatividad.
 - ¿Una receta de cocina es un algoritmo?
 - ¿Procedimientos que efectúen elecciones aleatorias son algoritmos?
 - Algoritmos probabilísticos

- Cuando se utiliza un algoritmo para calcular la respuesta de un problema concreto, lo normal es suponer que las reglas nos darán, si se aplican correctamente, la respuesta correcta.
 - Sin embargo en algunas circunstancias usamos algoritmos aproximados.
 - Se especifica el error que estamos dispuestos a tolerar.
 - O también, Algoritmos heurístico o heurística.
 - No podemos controlar el error, pero si podemos estimar su magnitud.

Ejemplo de un algoritmo

Algoritmo de la multiplicación de enteros

Algoritmo para multiplicar dos números positivos

Figura 1.1. Multiplicación (a) americana (b) inglesa

Algoritmo para multiplicar dos números positivos

981	1.234	1.234
490 ′	2.468	
245	4.936	4.936
122	9.872	
61	19.744	19.74 4
30	39.488	
15	78.976	78.976
7	157.95 2	157.952
3	315.904	315.904
1	631.808	<u>631.808</u>
		1.210.554

Figura 1.2. Multiplicación à la russe

Regla:

- Dividir el valor de la columna izquierda entre 2, ignorando los restos, hasta que sea un 1
- A la vez se duplica el valor de la columna derecha
- Se suman los valores de la columna derecha siempre que su valor de la izquierda no sea par

Algoritmo para multiplicar dos números positivos

	Multi	plicar	Desplazar	Resultado
i)	09	12	4	108 · · · ·
ii)	09	34	2	306…
iii)	81	12	2	972 · ·
iv)	81	34	0	<u>2754</u>
				1210554

Figura 1.3. Multiplicación de 0981 por 1.234 mediante divide y vencerás

 Ambos números tienen el mismo número de cifras y que sea potencias de 2. Si es necesario aumentamos ceros a la izquierda.

Representación de algoritmos

Por lo general se utiliza Pseudocódigo o diagramas de flujo

Representación de algoritmos

Ejemplo 1:

- Dados tres números enteros mayores a cero, considere la operación que permita calcular el promedio de los tres, considerando el punto a favor.
- Escriba el algoritmo para dicha operación e indique las especificaciones.

Pseudocódigo

Ejemplo 1:

- Dados tres números enteros mayores a cero, considere la operación que permita calcular el promedio de los tres, considerando el punto a favor.
- Escriba el algoritmo para dicha operación e indique las especificaciones.

ESPECIFICACIONES:

Objetivo: Calcular el promedio de tres números

Entrada: n1, n2, n3

Precondición: n1 > 0, n2 > 0, n3 > 0

Salida: Prom

Postcondición: Variable Prom almacena el promedio de los números

ESTRATEGÍA

- 1) Sumar los tres números y asignarlo a una variable
- 2) Dividir la suma entre 3 y capturar la parte entera en la variable Prom
- 3) Capturamos el modulo o resto entre 3 y lo comparamos con el valor de 2
- 4) Incrementamos Prom en uno, si el resto coincide con el valor de 2

Pseudocódigo

Ejemplo 1:

- Dados tres números enteros mayores a cero, considere la operación que permita calcular el promedio de los tres, considerando el punto a favor.
- Escriba el algoritmo para dicha operación e indique las especificaciones.

Algoritmo CalcularPromedio Inicio Suma ← n1 + n2 + n3 Prom ← Suma divisionEntera 3 Si (Suma modulo 3 = 2) entonces Prom ← Prom + 1 Fsi Fin

TRAZA DEL ALGORITMO

Considere los siguientes valores:

n1 = 14, n2 = 24, y = n3 = 36

n1	n2	n3	Suma	Prom	Suma modulo 3
14	24	36	74	24	2
				25	

Implementación en Java

Ejemplo 1:

- Dados tres números enteros mayores a cero, considere la operación que permita calcular el promedio de los tres, considerando el punto a favor.
- Escriba el algoritmo para dicha operación e indique las especificaciones.

TRAZA DEL ALGORITMO

Considere los siguientes valores:

n1 = 14, n2 = 24, $y \quad n3 = 36$

n1	n2	n3	Suma	Prom	Suma modulo 3
14	24	36	74	24	2
				25	

EJEMPLO 2

Ejemplo 2:

Calcular independientemente la suma de los números pares e impares comprendidos entre 1 y n Escriba el algoritmo para esta operación e indique sus especificaciones.

ESPECIFICACIONES:

Objetivo: Calcular suma de pares e impares

Entrada: n **Precondición:** n > 0

Salida: sumaPares, sumaImpares

Postcondición: sumaPares y sumaImpares son mayores e iguales a cero

ESTRATEGÍA

Con n = 6

sumalmpares = 1 + 3 + 5 = 9

Pseudocódigo

```
Algoritmo CalcularSumasPI
Inicio
         sumaPares \leftarrow 0
         sumalmpares ← 0
         Para i = 1 hasta n
                  Si (i modulo 2 = 0) entonces
                           sumaPares ← sumaPares + i
                  Si no
                           sumalmpares ← sumalmpares + i
                  Fsi
         FPara
Fin
```


Implementación en java

```
public static int[] getOddEvenSum(int n) {
    int sumOdd = 0;
    int sumEven = 0;
    for (int i = 1; i \le n; i++) {
        if(i % 2 == 0){
                sumEven = sumEven + i;
          }else{
                sumOdd = sumOdd + i;
    //Utilizamos un array para retornar los 2 valores
    int[] ans = {sumEven, sumOdd};
    return ans;
```


Estructura de Datos

Modelo matemático que comprende elementos y funciones

Estructura de Datos

Es una forma de almacenar y organizar los datos, para facilitar el acceso y modificaciones. No hay una única estructura de datos que trabaje bien para todo propósito, es importante conocer las fortalezas y limitaciones de cada una de ellas.

Por ejemplo:

Los arreglos, las listas enlazadas, los árboles binarios, los grafos, etc.

CLASES - OBJETOS - MÉTODOS

CONCEPTO DE OBJETO

- Definición Formal (Grady Booch)
 - Un objeto es una entidad que tiene un estado, un comportamiento y una identidad.

CONCEPTO DE OBJETOS...(Estado)

- Todos los objetos tienen características, propiedades o atributos.
 - Por ejemplo, el objeto Cuenta de Ahorro tiene como atributos: Número
 Cuenta, Nombres, Dirección, Documento de Identidad.
- Los atributos normalmente son estáticos, no cambian con el tiempo;
 mientras que los valores asociados a estos atributos son dinámicos, pueden cambiar con el tiempo.
- El **estado** de un objeto está dado por los valores actuales de cada una de sus propiedades o atributos.

CONCEPTO DE OBJETOS...(Comportamiento)

- Todos los objetos interactúan unos con otros. Esto significa que ningún objeto existe de forma aislada.
 - La interacción se efectúa en función a los **servicios** que ofrece cada objeto. Un servicio es alguna función (comportamiento) que puede efectuar un objeto.

 El comportamiento es cómo actúa y reacciona un objeto, en función a la interacción que efectúa sobre otros objetos o que efectúan otros objetos sobre él.

CONCEPTO DE OBJETOS...(Identidad)

- Un objeto en el mundo real es único y se diferencia de los otros objetos incluso de la misma clase.
 - Es posible identificar entre todas las propiedades del objeto, una propiedad que lo distingue de todos los demás objetos, esta propiedad es la que identifica el objeto.

CUENTA DE AHORROS

Número Cuenta: 12345 -

Nombres: Ana Paz

Dirección: Av. Perú 123

Doc. Identidad: 23742723

No puede haber dos cuentas de ahorros con el mismo Número. En consecuencia, el Número de Cuenta identifica unívocamente al objeto

 La identidad es aquella propiedad o atributo de un objeto que los distingue de todos los demás objetos.

ENCAPSULAMIENTO

Objeto = Características + Comportamiento

Objeto = Información + Proceso

Objeto = Atributos + Métodos

- Las características y el comportamiento de un objeto es modelado en un compartimiento (cápsula) único e indivisible.
- Por encapsulamiento debemos entender que un objeto debe ser considerado como "un todo", como una unidad atómica indivisible, que engloba las características y el comportamiento del objeto.

REPRESENTACION DE UN OBJETO

CLASES

- La abstracción de clasificación nos permite percibir que los objetos de la realidad están organizados como clases o tipos de objetos, caracterizados por propiedades comunes. Todo objeto pertenece a alguna clase de objetos.
- En la POO una clase es la implementación de un tipo de objetos. La POO identifica, implementa y utiliza tipos o clases de objetos del dominio del problema.
- Una clase es como un molde que se utilizará para construir objetos.

Clase = Implementación (Atributos + Métodos)
Comunes a todos los objetos de la clase

En la POO lo que realmente se implementa son las clases y no los objetos.

Los objetos se crean o construyen ("tienen vida") en tiempo de ejecución

ACOPLAMIENTO

- En la programación estructurada los módulos se escriben muchas veces en función de otros módulos. Por ejemplo, si el módulo B depende del módulo A, entonces cualquier cambio en el módulo A implica también una modificación en el módulo B.
- Esta dependencia se conoce como acoplamiento. Un programa con muchas dependencias tiene fuerte acoplamiento (cualidad no deseada). Los buenos programas tienen pocas (o ninguna) dependencia, es decir, débil acoplamiento.
- La POO tiende al diseño e implementación de clases con débil acoplamiento

• OCULTAMIENTO DE LA INFORMACIÓN

- Es el proceso de ocultar todos los detalles internos de un objeto, y poner a disposición de los otros objetos solamente la lista de servicios que éste ofrece.
- Es ver un objeto con una vista interna y una vista externa.
- La vista interna no es visible ni accesible para otros objetos, esconde la estructura de los atributos y protege el acceso directo a ellos desde fuera del objeto. También es parte de la vista interna la implementación de los métodos, es decir el "como" están hechos.
- La vista externa es lo que ven los otros objetos, es la parte visible y accesible del objeto, está constituido por la lista de métodos del objeto, con una explicación de "que" hacen o "para que" sirven.

INTERFACES

- La interfaz es la vista externa del objeto. Es el conjunto de servicios que ofrece el objeto. Los otros objetos o el resto del programa pueden utilizar el objeto sólo mediante los servicios definidos en la interfaz.
- Se puede modificar la implementación interna de un objeto A, mientras no se cambie la interfaz del objeto A los otros objetos que interactúan con éste no se verán afectados.

IMPLEMENTACIÓN DE CLASES

• Esquema general de implementación de clases en Java, que se utilizará como patrón.

```
public class Nombre_de_la_clase
                           ATRIBUTOS ====
                           METODOS
                          Constructores
                          Propiedades
                         Otros Métodos
                                          Parte Pública
     Parte Privada
```


Referencias Bibliográficas

1. Brassard, G., Bratley, P., & Garcia-Bermejo, R. (1997). Fundamentos de algoritmia (Vol. 86). Madrid: Prentice Hall.