19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) No de publication :

2 823 224

(à n'utiliser que pour les commandes de reproduction)

21) N° d'enregistrement national :

01 04598

(51) Int Cl⁷: C 12 Q 1/68, C 12 N 5/06, 5/10, 15/12, A 61 K 31/708, 38/00, A 01 K 67/027

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 22 Date de dépôt : 04.04.01.
- (30) Priorité :

- (7) Demandeur(s): INSTITUT PASTEUR FR.
- Date de mise à la disposition du public de la demande : 11.10.02 Bulletin 02/41.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- Références à d'autres documents nationaux apparentés :
- 72 Inventeur(s): GUENET JEAN LOUIS, MASHIMO TOMOJI, SIMON CHAZOTTES DOMINIOUE, MONTA-GUTELLI XAVIER, FRENKIEL MARIE PASCALE, DESPRES PHILIPPE, DEUBEL VINCENT, BONHOMME FRANCOIS et LUCAS MARIANNE.
- 73 Titulaire(s) :
- 74 Mandataire(s): CABINET ORES.
- UTILISATION DE GENES OAS IMPLIQUES DANS LA SENSIBILITE/RESISTANCE A L'INFECTION PAR LES FLAVIVIRIDAE POUR LE CRIBLAGE DE MOLECULES ANTIVIRALES.
- Molécules d'acide nucléique comprenant les gènes de la famille 2'-5'-oligoadénylate synthétase (OAS) codant pour des protéines impliquées dans la résistance à l'infection par les Flaviviridae, leurs utilisations à des fins diagnostiques ou thérapeutiques; utilisation des produits desdits gènes pour le criblage de molécules antivirales et, pour l'évaluation de la sensibilité à l'infection par les virus de la famille des Flaviviridae, chez l'homme.

MOLECULES D'ADN COMPRENANT LES GENES OAS, LEURS APPLICATIONS ET UTILISATION DES PRODUITS DESDITS GENES

La présente invention est relative à des molécules d'acide nucléique comprenant les gènes de la famille 2'-5'-oligoadénylate synthétase (OAS) codant pour des protéines impliquées dans la résistance à l'infection par les *Flaviviridae*, leurs utilisations à des fins diagnostiques ou thérapeutiques; la présente invention est également relative à l'utilisation des produits desdits gènes pour le criblage de molécules antivirales et, pour l'évaluation de la sensibilité à l'infection par les virus de la famille des *Flaviviridae*, chez l'homme.

La famille des *Flaviviridae* regroupe les virus du genre flavivirus responsables de pathologies humaines graves telles que la dengue, la fièvre jaune, les encéphalites transmises par les tiques, l'encéphalite japonaise, l'encéphalite à West Nile et les virus des hépatites C et G. Si les flavivirus sont susceptibles de provoquer une morbidité et une mortalité importantes chez l'homme, l'infection est généralement asymptomatique et seule une fraction des individus infectés développent une maladie grave.

Les flavivirus sont des petits virus enveloppés. Leur génome est une molécule d'ARN monocaténaire de polarité positive d'environ 11 000 bases. L'ARN génomique est associé à plusieurs copies de la protéine de capside C pour former la nucléocapside; elle est entourée d'une enveloppe virale constituée d'une double couche lipidique issue des membranes du réticulum endoplasmique (RE) dans lesquelles sont ancrées la protéine d'enveloppe E et la protéine de membrane M. L'ARN génomique des flavivirus contient un unique cadre de lecture ouvert d'environ 10500 nucléotides flanqué de deux courtes régions non codantes à ses extrémités 5' et 3'. Le génome est traduit en une polyprotéine d'environ 3400 acides aminés qui est le précurseur des protéines structurales C, prM (le précurseur intracellulaire de M) et E dans sa partie N-terminale et d'au moins sept protéines non structurales (NS) de NS1 à NS5 dans sa partie C-terminale.

De nombreux facteurs semblent intervenir dans la réaction d'un sujet à une infection virale : des facteurs viraux pourraient être responsables de la sévérité de la maladie, alors que la constitution génétique de l'hôte (humain ou mammifère non-humain) contribuerait à la sensibilité ou à la résistance à l'infection.

I

Des modèles murins ont permis d'établir l'existence d'une résistance génétique à l'infection par les flavivirus. Il a été montré que certaines lignées de souris récemment dérivées de l'état sauvage et appartenant aux espèces *Mus musculus musculus* ou *Mus spretus* (Det, BSVR, BRVR, PRI, CASA/Rk et CAST/Ei) sont résistantes à l'infection par les flavivirus, alors que les lignées consanguines de laboratoire les plus courantes qui dérivent majoritairement de l'espèce *Mus musculus domesticus*, n'y résistent pas (Sangster *et al.*, J.Virol., 1993, 67 : 340-347).

La résistance est contrôlée par au moins un locus autosomal dénommé Flv, localisé sur le chromosome 5, chez la souris et trois allèles Flv, Flv et Flv^m confèrent respectivement la sensibilité, la résistance et la résistance intermédiaire à l'infection par les flavivirus. En utilisant une souche du flavivirus de l'encéphalite de la Vallée de Murray et des souris issues du croisement retour de la lignée de souris résistante C3H/RV avec les lignées de souris sensibles C3/He ou BALB/c, le locus Flv a été localisé dans une région de 0,9 cM du chromosome 5, chez la souris, entre les marqueurs D5Mit68 et D5Mit242 (G.R. Shellam et al., Rev. Sci. Tech. Off. Epiz, 1998,17:231-248.).

En dépit de l'existence de ces modèles murins de résistance génétique à l'infection par les flavivirus, aucun gène cellulaire de mammifères impliqué dans la résistance à l'infection par les *Flaviviridae* n'a encore été identifié, de manière certaine au niveau moléculaire. C'est pourquoi les Inventeurs se sont donnés pour but de pourvoir à des outils, aptes à permettre d'évaluer la sensibilité de l'hôte (humain ou mammifère non-humain) dans certaines infections virales particulièrement graves pour l'homme comme celles provoquées par les *Flaviviridae*.

En utilisant un modèle expérimental mettant en œuvre une nouvelle souche neurovirulente et neuroinvasive du virus West Nile, particulièrement virulente et dénommée ci-après souche IS-98-ST1, et des lignées de souris résistantes dérivant de géniteurs sauvages appartenant à l'espèce *Mus musculus musculus* ou *Mus spretus*, croisées en retour avec les lignées sensibles de laboratoire BALB/c ou C57BL/6, les Inventeurs ont précisé la localisation du locus *Flv* dans un intervalle de 0,2 à 0,4 cM du chromosome 5 de souris, comprenant la famille des gènes 2'-5' oligoadénylate synthétase (OAS) et ils ont montré que c'est le gène OAS qui confère la résistance à l'infection par les *Flaviviridae*. Trois isoformes de l'OAS -L1, L2 et L3- ont été

décrites chez la souris (Genbank Data Library n° X55982 [L1], X58077 [2] et M33863 [L3]). Leurs gènes présentent une forte homologie de séquence (plus de 80 %) (figure 1) avec celui de l'OAS p40/p46 humain (Genbank Data Library n° XM-007004 et XM-007005) (figure 2). On ne dispose que de peu d'informations sur les formes L1, L2 et L3 de l'OAS murin.

Le système 2-5A qui implique la famille des gènes OAS et la RNase L participe à la défense de l'hôte contre une infection virale (Castelli et al., Biomed. And Pharmacother., 1998, 52, 386-390). Le système 2-5A est une voie de dégradation des ARNs intracellulaire (pour revue, Rutherford et al., N.A.R., 1991, 9, 1917-1924). L'expression des gènes OAS est induite par les interférons (IFN). Les IFNs appartiennent à un groupe de cytokines qui induisent un état anti-viral dans beaucoup de lignées cellulaires (Goodbourn et al., J. Gene Virol., 2000, 81, 2341-2364). Les deux isoformes α/β composent les IFNs de type I: ils se fixent sur le même récepteur et provoquent des réponses similaires chez l'hôte. Les phagocytes mononucléés et les fibroblastes sont respectivement les principaux producteurs d'IFN-α et d'IFN-β mais certains types cellulaires peuvent produire les deux isoformes. L'infection virale d'une cellule hôte induit la production de l'IFN α/β qui par fixation sur les récepteurs kinases à tyrosine, présents à la surface cellulaire des cellules avoisinantes non infectées, va induire l'expression de plusieurs espèces protéiques qui seront déterminants dans les défenses anti-virales. Une perte de l'homéostasie calcique des cellules neuronales, notamment chez le rat, est aussi capable d'induire l'expression des gènes de la famille OAS (Paschen et al., Neuroscience Letters, 1999, 263, 109-112). Il a aussi été montré que la protéine C du virus de l'hépatite C active le promoteur de l'OAS p40/p46 chez l'homme (Naganuma et al., J. Virol., 2000, 74, 8744-8750).

La molécule OAS produite sous une forme latente devient active en interagissant avec une molécule d'ARN bicaténaire. L'OAS active va alors polymériser l'ATP en oligomères ppp[A2'p]nA[2-5A] qui vont interagir de façon allostérique avec la forme normalement latente de la RNase L (84 kda) pour l'activer. Le site catalytique de la RNase L est localisé dans sa région carboxy-terminale et des séquence répétées de type ankyrine, une région d'homologie aux protéines kinases et un domaine qui est prédit former un doigt de zinc sont aussi retrouvés. La ribonucléase active dégrade les ARN monocaténaires en les clivant au niveau des motifs riches en UA et UU.

Au cours d'une infection virale, la RNase L clive les ARN cellulaires de types messagers et ribosomaux comme les ARN viraux monocaténaires, bloquant ainsi la progression du cycle réplicatif du virus. La RNase L joue aussi un rôle dans la régulation de l'expression des gènes des facteurs pro-apoptotiques tels que Bax et les caspases (Castelli et al, Cell Death and Differentiation, 1998, 5, 313-320; Rush et al., J. Interferon Cytokine Res.,2000, 20, 1091-1100).

Des facteurs capables de réguler la voie OAS ont été mis en évidence. Un inhibiteur de la RNase L murine a été identifié, RNase I. Cet inhibiteur a été montré moduler la répression du gène MyoD, un facteur de transcription spécifique aux cellules musculaires (Bisbal *et al.*, Mol. Cell Biol., 2000, **20**, 4959-4969). La RNase I est aussi induite par le HIV de type 1 et participe ainsi à la diminution de la réponse antivirale de la cellule (Martinand *et al.*, J. Virol., 1999, **73**, 290-296).

Trois domaines conservés ont été identifiés dans la 2'-5'- oligo-adénylate synthétase: une boucle P suivie d'une séquence riche en asparagine dénommée boîte D et une région riche en lysine et en arginine dénommée région KR. Des mutants ponctuels de l'un de ces trois domaines de l'isoforme L1 murine (boucle P:: K67R, K67M, G62A et G63A; boîte D: D76N et D78N; domaine KR: K200R et K200M) ont une activité enzymatique très réduite ou complètement abolie (Yamamoto et al., J. Interferon Cytokine Res., 2000, 20: 337-344).

Les Inventeurs ont mis en évidence des mutations dans la séquence nucléotidique des gènes OAS chez les souris sensibles à l'infection par les *Flaviviridae*; ces mutations inactivent le gène OAS.

Les mutations suivantes, liées à la sensibilité/résistance de l'hôte à l'infection par un *Flaviviridae* ont en particulier été mises en évidence :

délétions dans la séquence codante de l'isoforme L1 des souris sensibles C57BL6 (délétion des nucléotides 100 à 102, 221-232 et 576-577 en référence à la séquence hOAS1 humaine; figures 3A, 3B et 3C).

introduction d'un codon stop prématuré (figure 3B), responsable de la production d'une protéine 2'-5' OAS tronquée inactive, délétée des résidus C-terminaux (252-364 en référence à la séquence hOAS1) (figure 4).

Au sens de la présente invention, on entend par mutation une substitution, une insertion ou une délétion d'au moins un nucléotide d'une région

codante ou non-codante.

Ces éléments ont conduit les Inventeurs à mettre au point un modèle adapté au criblage de molécules aptes à stimuler spécifiquement l'activité des gènes OAS et/ou à la détection des sujets sensibles à une infection par les virus de la famille des *Flaviviridae* et de ce fait mauvais répondeurs à un traitement à l'interféron; la mesure de l'activité 2'-5' OAS chez un individu ou un groupe d'individus représentatifs d'une population humaine permet d'évaluer le risque pour cet individu ou cette population à développer une forme grave de la maladie (forme aiguë mortelle pour les arboviroses ou forme chronique pour l'hépatite C).

En conséquence, la présente invention a pour objet un procédé de criblage de molécules aptes à stimuler un gène de la famille OAS, caractérisé en ce qu'il comprend :

- a) la mise en culture de cellules, issues d'un mammifère non-humain $Fl\sqrt{/Fl}\sqrt{}$ ou $Fl\sqrt{/Fl}\sqrt{}$
- b) l'induction de l'expression des genes OAS par addition d'interféron α ou β ou par un stress calcique, notamment par addition d'EGTA,
 - c) la mise en contact desdites cellules avec la molécule à cribler, et
- d) la mesure de l'activité d'un gène OAS, par comparaison avec un échantillon témoin.

Le dit échantillon témoin est notamment constitué par des cellules de mammifères non-humain Flv^t/Flv^t .

Selon un mode de mise en œuvre avantageux dudit procédé, ledit mammifère non humain Flv/Flv est de préférence une lignée de souris résistantes dérivant de géniteurs sauvages appartenant à l'espèce Mus musculus musculus, ou Mus spretus; elles peuvent de manière encore plus préférée être croisées en retour avec des lignées murines sensibles de laboratoire telles que BALB/c ou C57BL/6, de façon à obtenir des lignées dites congéniques.

Ces lignées pourront être utilisées dans de multiples expériences destinées à analyser les mécanismes de défense de la souris contre les infections virales à *flavivirus* et notamment pour l'analyse de la physiopathogénie de l'infection au niveau cellulaire. Elles pourront aussi servir à la mise au point de thérapeutiques d'un genre nouveau, lorsque les expériences en question nécessiteront l'utilisation de

lots homogènes d'animaux ayant tous la même constitution génétique, afin de comparer leur comportement après infection ou non. Ces animaux, qui par définition seront histocompatibles entre eux et avec l'autre congénique permettront de réaliser, si besoin est, des transferts cellulaires.

Selon un autre mode de mise en œuvre avantageux dudit procédé, ledit gène OAS est un gène autologue.

Selon un autre mode de mise en œuvre avantageux dudit procédé, ledit gène OAS est un gène hétérologue.

Selon un autre mode de mise en œuvre avantageux dudit procédé, l'activité du gène OAS peut-être mesurée par détermination :

- de la quantité de transcrits OAS par des techniques classiques qui en elles-mêmes sont connues de l'homme du métier (*Northern-blot*, RT-PCR...),
- de la quantité de protéines 2'-5'OAS produites, par des techniques classiques qui en elles-mêmes sont connues de l'homme du métier (ELISA, RIA, radioimmunoprécipitation, *Western-blot..*),
- du niveau d'activité 2'-5'OAS, par des techniques classiques qui en elles-mêmes sont connues de l'homme du métier, telles que celles décrites dans Witt et al., J. Interferon Res., 1993, 13, 17-23 ou
- des séquences des ARNm ou de l'ADN génomique, issues des gènes de la famille OAS : mise en évidence éventuelle de l'une des mutations précitées.

La présente invention a également pour objet une molécule d'acide nucléique de mammifère (humain ou non-humain), caractérisée en ce qu'elle est constituée par une séquence d'ADN génomique de 0,2 à 0,4 cM correspondant à un locus de résistance à une infection par un Flaviviridae et en ce qu'elle inclut la famille des gènes OAS sélectionnés dans le groupe constitué par les gènes OAS sauvages et les gènes OAS mutés.

Dans le cas où les gènes OAS sont des gènes sauvages, lesdits individus sont résistants à l'infection par un *Flaviviridae*, dans le cas où les gènes OAS sont des gènes mutés, ils sont, de préférence, inactivés; en conséquence, les individus porteurs desdites mutations sont sensibles à l'infection par lesdits virus.

Selon un mode de réalisation avantageux de ladite molécule, elle comprend la séquence du marqueur *D5Mit368* du chromosome 5 de souris.

La présente invention a également pour objet l'utilisation des molécules d'acides nucléiques sélectionnées dans le groupe constitué par les molécules d'acide nucléique telles que définies ci-dessus, les ADNc desdites molécules et les protéines codées par lesdites molécules pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

Selon un mode de réalisation avantageux de ladite utilisation, les dites molécules sont, de préférence, des séquences d'ADN génomique des gènes de la famille OAS, les ADNc desdites séquences et les protéines correspondantes.

La présente invention a également pour objet l'utilisation d'un vecteur recombinant comprenant une molécule d'acide nucléique telle que définie cidessus pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet l'utilisation de cellules contenant un vecteur recombinant comprenant une molécule d'acide nucléique telle que définie ci-dessus pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet l'utilisation d'un mammifère non-humain recombinant comprenant une molécule d'acide nucléique telle que définie ci-dessus pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet l'utilisation d'une molécule apte à stimuler un gène de la famille OAS, directement obtenue par le procédé de criblage tel que défini ci-dessus, pour la préparation d'un médicament antiviral, destiné à la prévention et au traitement des infections par les *Flaviviridae*.

La présente invention a également pour objet une molécule d'acide nucléique constituée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS comme médicament destiné au traitement des infections par les virus de la famille des *Flaviviridae*.

La présente invention a également pour objet une protéine codée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS

8

comme médicament destiné au traitement des infections par les virus de la famille des Flaviviridae.

La présente invention a également pour objet un procédé d'évaluation de la sensibilité d'un individu à l'infection par un virus de la famille des 5 Flaviviridae et/ou de sa réponse à un traitement par l'interféron, caractérisé en ce qu'il comprend:

- le prélèvement d'un échantillon de cellules sur ledit individu,
- la mise en culture desdites cellules,
- l'induction de l'expression des gènes OAS par addition
- d'interféron α ou β ou par un stress calcique, notamment par addition d'EGTA, et
 - la mesure de l'activité d'un des gènes OAS, par comparaison avec un échantillon de cellules, obtenues à partir d'un sujet témoin résistant à l'infection.

L'évaluation est notamment utile pour évaluer la réponse vaccinale, en vue de mettre au point des souches atténuées plus efficaces.

15 La présente invention a également pour objet des réactifs utiles pour mettre en œuvre l'un des procédés tels que définis ci-dessus : criblage, évaluation ou

Parmi ces réactifs, on peut citer :

- les amorces de séquences SEQ ID NO :5 à SEQ ID NO :22 et
- 20 - les sondes correspondant respectivement aux positions 257-707 du transcrit de l'isoforme L3 murine et aux positions 1379-1874 du transcrit de l'isoforme L2 murine (SEQ ID NO:31-32).

L'activité du gène OAS peut-être mesurée par les techniques telles que définies ci-dessus.

25 La présente invention a également pour objet des cellules eucaryotes transformées, caractérisées en ce qu'elles comprennent une molécule d'acide nucléique de mammifère (humain ou non-humain), telle que définie ci-dessus.

Lesdites cellules sont, de préférence, obtenues par recombinaison homologue à l'aide d'un vecteur approprié, conformément à la technique décrite dans la demande EP 0 419 621 ou le brevet US 5,792 632.

30

La présente invention a, également pour objet des mammifères non-humains transgéniques, caractérisés en ce qu'ils incluent au moins une copie d'une

molécule d'acide nucléique, telle que définie ci-dessus.

De manière préférée, lesdits mammifères, notamment des souris, sont obtenus par injection *in ovo* (technique classique de Brister et al.) d'une molécule d'ADN selon l'invention contenant la région OAS provenant de souris sauvages., c'est-à-dire résistantes à l'infection.

La présente invention a également pour objet des mammifères nonhumains recombinants, caractérisés en ce qu'ils sont porteurs d'au moins un allèle du gène OAS inactivé.

On obtient par exemple des souris *knock-out* pour l'ensemble des gènes OAS, par délétion desdits gènes par la technique cre-LoxP (voir Demande WO 97/06271)

Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions, qui ressortiront de la description qui va suivre, qui se réfère à des exemples de mise en œuvre de l'objet de la présente invention, ave références aux dessins annexés dans lesquels :

- la figure 1 illustre la structure de la famille des gènes OAS murins,
- la figure 2 illustre la structure de la famille des gènes OAS humains
- la figure 3 (A, B et C) représente l'alignement de la séquence nucléotidique de l'ADNc des gènes OAS des souris sensibles à l'infection par les Flaviviridae (C57BL/6) et du gène OAS1 humain,
- la figure 4 représente l'alignement de la séquence en acides aminés des isoformes L1, L2 et L3 de la 2'-5' OAS des souris sensibles à l'infection par les *Flaviviridae* (C57BL/6) et de l'isoforme p40/p46 humaine,
- les figure 5A à 5E représentent la comparaison de la séquence en acides aminés des protéines virales de la souche IS-98-ST1 et de la souche New York 1999 (NY99; Genbank AF196835),
- la figure 6 représente la cinétique de mortalité et la cinétique d'apparition des anticorps sériques spécifiques chez souris Flv*/Flv* (BALB/c) infectées par la souche IS-98-ST1 du virus West Nile,
- la figure 7 représente la cinétique de propagation de la souche IS-98-ST1 dans le système nerveux central des souris sensibles (BALB/c),

- la figure 8 représente le protocole expérimental utilisé pour préciser la localisation du locus *Flv* sur le chromosome 5 de la souris et pour établir une lignée congénique BALB/c *Flv*,
- la figure 9 représente la carte génétique du locus Flv, déterminée à partir des souris sensibles, issues du premier croisement en retour entre les lignées résistantes (MAI/Pas et MBT/Pas) et les lignées sensibles (C57BL/6 ou BALB/c). Les cases blanches représentent les allèles BALB/c ou C57Bl/6 et les cases noires représentent les allèles MAI/Pas ou MBT/Pas.
- la figure 10 représente les haplotypes autour du locus Flv déterminant la sensibilité ou la résistance aux Flaviviridae, issus du premier croisement en retour (BC1) entre les lignées résistantes (MAI/Pas et MBT/Pas) et les lignées sensibles (C57BL/6 et BALB/c). Les lignes grisées représentent les allèles (BALB/c ou C57Bl/6) et les lignes noires représentent les allèles MAI/Pas ou MBT/Pas,
- la figure 11 représente la carte génétique et la carte physique du locus Flv et la position du gène OAS dans ce locus,
- la figure 12 représente la distribution des allèles *Flv* chez les souris résistantes et sensibles issues du premier croisement en retour (BC1) entre les lignées résistantes (MAI/Pas et MBT/Pas) et les lignées sensibles (C57BL/6 et BALB/c),
- la figure 13 représente la carte physique du clone BAC RP23-39M18 de souris sensibles (C57BL/6) sur laquelle figure la position des marqueurs de type microsatellite et STS ainsi que la position des gènes OAS murins.
- 1a figure 14 représente la cinétique d'apparition des antigènes viraux dans les cellules Neuro 2a et les neurones primaires de souris sensibles (BALB/c) infectées par le virus West Nile (souche IS-98-ST1).
- la figure 15 représente la mort par nécrose des cellules Neuro 2a infectées par le virus West Nile (souche IS-98-ST1).
- la figure 16 représente l'activité antivirale de l'IFN-α sur les cellules Neuro 2a infectées par la souche IS-98-ST1 du virus West Nile.
- la figure 17 représente les amorces utilisées pour la détection des mutations dans les séquences codantes de l'isoforme L1 des gènes OAS des souris sensibles C57BL6.

Exemple 1: Matériels et méthodes

1) Souris mises en oeuvre

- lignées de souris consanguines sensibles Flv'/Flv' C57BL6 et BALB/c (Janvier).

- lignées de souris résistantes (Flv/Flv), dérivées de souris sauvages appartenant à l'espèce Mus musculus musculus, MAI/Pas (capturées en Autriche dans la région d'Illmitz) et MBT/Pas (capturées en Bulgarie dans la région de General Toshevo), Mus spretus (SEG/Pas et STF/Pas) et Mus musculus domesticus (WMP/Pas) (F. Bonhomme et al., 1996, The laboratory mouse and its wild relatives, « Genetics variants and strains of the laboratory mouse », S.R.M.F. Lyon, S.D.M. Brown, Oxford University Press, Oxford, 1577-1596).

2) Virus

a) isolement, amplification, purification et titration

Le virus West Nile (WN) a été obtenu à partir du système nerveux central d'une cigogne manifestant des troubles neuropathologiques sévères en septembre 1998, à Eilat (Israël). L'infection de cellule VERO par cet isolat est cytolytique et l'immunofluorescence indirecte avec un ascite de souris immun spécifique du virus West Nile est positive à 100 %. Le virus produit sur cellules VERO a été récolté et amplifié sur cellules de moustiques AP61 Desprès et al., *Virology*, 1993, 196, 209-219).

Le passage 1 (ou P1) du virus WN sur cellules AP61 a été récolté 3 jours après l'infection; il possède un titre de 2,5 x 10⁸ UFF/ml (Unité Formant Foyer) par la technique de titration sur cellules AP61 décrite dans Desprès et al. (*Virology*, 1993, 196, 209-219). L'inoculum P1 du virus WN sur cellules AP61 a été identifié comme la souche IS-98-ST1.

Un P2 a été obtenu, à partir de cellules AP61 infectées par la souche IS-98-ST1, P1 (titre: 6 x 10⁷ UFF/ml). L'inoculum P2 de IS-98-ST1 est utilisé pour les épreuves de sensibilité à l'infection virale chez les souris adultes.

Un inoculum viral P3 de la souche IS-98-ST1 avec un titre de 5 x 10⁷ UFF/ml a été produit sur cellules AP61. Une préparation virale hautement purifiée, obtenue selon le protocole de purification des flavivirions décrit dans Desprès et al. (*Virology*, 1993, 196, 209-219) a été obtenue à partir de 20 boites de 150 cm² de cellules AP61 récoltées 3 jours après l'infection par l'inoculum P3 du virus WN

souche IS-98-ST1 (multiplicité d'infection de 0,4). La souche IS-98-ST1 purifiée en gradient de saccharose a un titre final de 2×10^{10} UFF/ml.

Les ARNs extraits de ce virus purifié sont utilisés pour amplifier les ADNc correspondant aux protéines virales C, prM et NS1.

b) Séquençage de l'ARN viral

Le génome viral a été extrait à partir du surnageant de culture des cellules VERO infectées de l'exemple 1 à l'aide du kit "QIAamp Viral RNA" (QIAGEN), en suivant les instructions du fabricant. 6 produits RT-PCR chevauchants ont été amplifiés à partir de ces ARNs en utilisant les amorces décrites par Lanciotti et al. (Science, 199, 286:2333-). Les extrémités 5' et 3' du génome viral ont été amplifiées à l'aide d'amorces synthétisées d'après la séquence de la souche WN-NY99 (Genbank n° AF202541). Les ADNc obtenus ont été purifiés par chromatographie échangeuse d'ions et précipités dans 2 volumes d'isopropanol. Ensuite les ADNc ont été séquencés sur les deux brins en utilisant le kit "Taq Dye Deoxy Terminator Cycle Sequencing" (PERKIN ELMER CORP./APPLIED BIOSYSTEM) et les amorces espacées de 400 paires de bases sur le génome viral (Lanciotti et al., précité). Le séquençage a été réalisé avec 0,2 pmoles d'ADNc purifié et 30 pmoles d'amorces, en suivant le protocole recommandé par le fabricant. L'alignement des séquences est réalisé à l'aide du logiciel CLUSTAL W.

La séquence génomique complète de la souche IS-98-ST1 du virus West Nile correspond à la séquence SEQ ID NO :1.

L'alignement des séquences en acides aminés de la souche IS-98-ST1 et de la souche NY99, présentée à la figure 5, montre que la souche IS-98-ST1 isolée en Israël en 1998 et la souche NY-99 isolée à New York en 1999 sont très proches (divergence de moins de 0,2% au niveau des séquences en acides aminés).

Cependant, les différences observées dans la souche IS-98-ST1, respectivement dans les protéines E (A₅₁), NS1 (N₁₇), NS2A (R₁₆₄), NS2B (G₈₂, E₈₃), NS3 (P₄₉₆, E₅₂₁) et NS5 (S₅₄, N₂₈₀, A₃₇₂) sont potentiellement responsables de la neuro-virulence et des propriétés neuroinvasives observées avec cette souche et peuvent servir de marqueur de virulence du virus West Nile.

3) Cellules

Des neurones primaires, des cellules endothéliales et des astrocytes

du système nerveux central de souris sensibles homozygotes pour l'allèle Flv [Swiss ou BALB/c (Janvier)] et de souris résistantes homozygotes ou hétérozygotes pour l'allèle Flv sont isolés d'embryons de 14 jours. Les neurones primaires sont mis en culture en milieu Neuobasal (Gibco BRL) supplémenté avec 20% de facteur de différenciation B27, 20 mM de glutamine et 40 mg/l de gentamycine comme antibiotique.

Des cellules de neuroblastome murin Neuro 2a (10⁴ cellules/cm²) sont cultivées en Labtek à 8 chambres (Nunc) en milieu MEM (GIBCO BRL) supplémenté avec 10% de sérum de veau fœtal (EUROBIO) et 1% d'acides aminés non essentiels (GIBCO BRL).

Des cellules d'hépatome humain HepG2 (ATCC n° HB8065) sont cultivées dans les conditions classiques telles que décrites dans Marianneau et al., *J. Virol.*, 1996, 77, 2547-2554.

4) Produits

L'interféron α (INF α A/D) est fourni par la société Biosource (PHC4044) et l'EGTA par SIGMA.

<u>Exemple 2</u>: Les souris de lignées sauvages et de lignées consanguines de laboratoire se différencient par leur sensibilité à l'infection par la souche neuroinvasive IS-98-ST1 du virus West Nile.

1) Les lignées de souris sensibles.

Des souris BALB/c âgées de 6 semaines sont inoculées par la voie intrapéritonéale avec 100 UFF de la souche IS-98-ST1 virus West Nile (UFF:DL50 = 10), préparée comme décrit à l'exemple 1.

Ces souris meurent à 100% avec un temps moyen de mortalité de 9 ± 2 jours (figure 6).

La cinétique de propagation de la souche IS-98-ST1 dans le système nerveux central de la souris sensible (BALB/c) a été analysée à partir des extraits de cerveau des souris infectés titrés sur cellules AP61, selon la technique décrite dans Després et al. (*J. Virol.*, 1998, 72, 823-829), précité. Les résultats montrent que le virus est détecté dans le système nerveux central (SNC) murin au 5^{ème} jour de l'infection et la production virale est maximale au 7^{ème} jour (Figure 7). Au 9^{ème} jour de l'infection, le virus n'est plus détecté dans le SNC murin (Figure 7).

La réplication du virus WN dans le SNC et les organes périphériques

des souris infectées par la souche IS-98-ST1 est également détectée par immunohistologie, selon les protocoles classiques tels que décrits dans Després et al., 1998 (précité)et par hybridation *in situ*, selon les protocoles décrits à l'exemple 1.

Les anticorps sériques spécifiquement dirigés contre les protéines du virus WN sont titrés par ELISA selon le protocole décrit dans Després et al., 1993 (précité), en utilisant la souche IS-98-ST1 purifié sur gradient de saccharose telle que décrite à l'exemple 1, comme antigène. Les résultats montrent que les anticorps sériques apparaissent au 5^{ème} jour de l'infection et sont significativement détectés au 7^{ème} jour (figure 6).

2) Les souris de lignées résistantes.

Les souris des lignées SEG, WMP, STF et MAI qui dérivent de souris sauvages sont inoculées par la voie intrapéritonéale, avec 1000 UFF (100 DL50) de la souche IS-98-ST1 préparée selon le protocole décrit à l'exemple 1.

Contrairement aux souris de laboratoire qui sont sensibles à l'infection par la souche IS-98-ST1 et meurent en une dizaine de jours, ces souris dérivant de souris sauvages sont résistantes à l'inoculation de la souche IS-98-ST1 et néanmoins permissives à la réplication de la souche IS-98-ST1. En effet, l'infection virale des souris dérivant de souris sauvages est asymptomatique bien que le virus se multiplie in toto comme le démontre la production d'anticorps sériques anti-WN à hauts titres; en ELISA, les titres des sérums à la dilution 1:100 pour 10⁶ UFF de virion purifié IS-98-ST1 sont supérieurs à 1 unité de D.O. à 450 nm.

Les souris résistantes à l'infection virale sont utilisées pour la production de sérums immuns spécifiquement dirigés contre les protéines de la souche IS-98-ST1 du virus WN. Trois semaines après inoculation du virus WN, les sérums prélevés de souris résistantes (0,045 ml par souris) sont mélangés, décomplémentés 30 min à 56°C puis dilués au 1:10 dans du DPBS* (V/V) supplémenté avec 0,2% (V/V) de Sérum Albumine bovine (Life Technologies) et 0,05% (P/V) d'azide de sodium. Les sérums dilués sont répartis en 0,2 ml et conservés à -20°C. Les sérums immuns dirigés contre la souche IS-98-ST1 sont utilisés aux dilutions finales de 1:500 pour l'immuno-fluorescence indirecte et au 1:1000 pour l'immunoprécipitation des protéines virales radiomarquées.

Exemple 3: Localisation du locus Flv dans une région de 0,2 à 0,4 cM du

chromosome 5 de souris contenant le gène OAS.

1) Méthodes

a) <u>Modèle d'analyse de la résistance à l'infection par les Flaviviridae (figure 8)</u>

Des souris mâles des lignées résistantes MAI/Pas et MBT/Pas sont croisées avec des souris femelles des lignées sensibles C57BL/6 et BALB/c. Les souris mâles de la génération F1 sont croisées en retour avec des souris femelles des lignées résistantes C57BL/6 et BALB/c pour donner une génération de souris de premier de premier croisement en retour (BC1).

Des souris BC1 âgées de 5 semaines sont inoculées par voie intrapéritonéale avec la souche IS-98-ST1, préparée selon le protocole décrit à l'exemple 1, dans les conditions décrites à l'exemple 2.

Les animaux sont observés tous les jours et les taux de mortalité et de survie sont déterminés 14 jours après l'infection.

b) génotypage des allèles Flv

Les allèles Flv des individus BC1 ont été cartographiés par PCR génomique à l'aide d'amorces spécifiques de 16 microsatellites du chromosome 5 (Catalogue Research Genetics) entourant le locus Flv (figures 9-11), selon les techniques courantes de biologie moléculaire en utilisant les protocoles standards tels que ceux décrits dans Current Protocols in Molecular Biology (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA).

2) Résultats

L'analyse de la distribution des allèles Flv chez les souris BC1 sensibles et résistantes à l'infection par la souche IS-98ST1 montre qu'un allèle Flv est suffisant pour conférer la résistance à l'infection (figure 12). Les résultats montrent également que dans ce modèle il existe une corrélation parfaite entre le phénotype résistant et la présence de l'allèle Flv et une corrélation presque parfaite entre le phénotype sensible et l'absence de l'allèle Flv (figure 12).

Le génotypage des allèles $Fl\nu$ montre que le locus $FL\nu$ est localisé dans une région de 0,2 à 0,4 cM contenant le gène OAS1 (figures 9-11).

Exemple 4: Les souris sensibles à l'infection par les Flaviridae possèdent un gène OAS muté.

1) Méthodes

La séquence génomique du gène OAS des souris sensibles (C57BL/6) a été déterminée à partir de la séquence du clone BAC RP23-39M18 (figure 11) selon les techniques courantes de biologie moléculaire en utilisant les protocoles standards tels que ceux décrits dans *Current Protocols in Molecular Biology* (Frederick M. AUSUBEL, 2000, Wiley and son Inc, Library of Congress, USA).

Les ADNc de l'isoforme L1 du gène OAS murin ont été amplifiés par RT-PCR (kit Titan One Tube RT-PCR; Roche Biochemicals n° 1939 823) et séquencés par la technique de séquençage automatique (Automat) à l'aide des amorces suivantes (voir figure 17):

Exon 1

F1 (SEQ ID NO:9) et R1 (SEQ ID NO:10) : produit d'amplification de 258 pb

F1 (SEQ ID NO:9) et R2 (SEQ ID NO:11) : produit d'amplification de 396 pb

Exon 2

F2 (SEQ ID NO:12) et R3 (SEQ ID NO:13) : produit d'amplification de 297 pb

 $\mbox{F2} \quad (\mbox{SEQ} \quad \mbox{ID} \quad \mbox{NO:12}) \quad \mbox{et} \quad \mbox{R4} \quad (\mbox{SEQ} \quad \mbox{ID} \quad \mbox{NO:14}): \quad \mbox{produit} \\ \mbox{d'amplification de 515 pb} \quad \mbox{}$

Exon 3

 $\mbox{F3} \ \mbox{(SEQ ID NO:15)} \ \mbox{et} \ \mbox{R5} \ \mbox{(SEQ ID NO:16)} \ : \ \mbox{produit} \\ \mbox{d'amplification de 288 pb}$

 $\mbox{F3} \quad (\mbox{SEQ} \quad \mbox{ID} \quad \mbox{NO:15}) \quad \mbox{et} \quad \mbox{R6} \quad (\mbox{SEQ} \quad \mbox{ID} \quad \mbox{NO:17}): \quad \mbox{produit} \\ \mbox{d'amplification de 501 pb} \quad \mbox{}$

F4 (SEQ ID NO:18) et R5 (SEQ ID NO:16) : produit d'amplification de 112 pb

 $$\rm F4\ (SEQ\ ID\ NO:18)\ et\ R6\ (SEQ\ ID\ NO:17):\ produit}$ d'amplification de 325 pb

Exon 4

 $$\rm F5$$ (SEQ ID NO:19) et R7 (SEQ ID NO:20) : produit d'amplification de 244 pb

. F5 (SEQ ID NO:19) et R8 (SEQ ID NO:21): produit d'amplification de 418 pb

 $$\rm F6\ (SEQ\ ID\ NO:22)\ et\ R7\ (SEQ\ ID\ NO:20)\ :\ produit}$ d'amplification de 156 pb

F6 (SEQ ID NO:22) et R8 (SEQ ID NO:21): produit d'amplification de 340 pb

2) Résultats

L'alignement de la séquence de l'ADNc des isoformes L1, L2 et L3 du gène OAS des souris sensibles (C57BL/6) avec la séquence de l'ADNc de l'isoforme L1 humaine (figure 3A, 3B et 3C) montre que l'isoforme L1 des souris sensibles possède 3 délétions (nucléotides 100 à 102, 221-232; 576-577) et un codon stop prématuré en phase, situé en position (807-809).

L'alignement des séquences en acides aminés des isoformes des isoformes L1, L2 et L3 du gène OAS des souris sensibles (C57BL/6) avec la séquence de l'isoforme L1 humaine (figure 4) montre que l'isoforme L1 des souris sensibles correspond à une isoforme L1 tronquée de la région C-terminale, laquelle région C-terminale comprend la séquence conservée RPVILDPADPT qui est impliquée dans l'activité enzymatique de la 2'-5' OAS. De plus, l'isoforme L1 des souris C57BL/6 ne possède pas les 4 premiers acides aminés GSSG du domaine GSSGKGTTLRGRSDADLVVF qui sont impliqués dans l'activité enzymatique de la 2'-5' OAS.

Exemple 5 : Modèle cellulaire d'étude de l'activité des gènes OAS

1) <u>Infection de cultures primaires et de lignées cellulaires par la souche IS-98-ST1 du virus West Nile</u>

a) Matériels et méthodes

a₁) cultures primaires

Des neurones primaires et des astrocytes du SNC de souris sensibles homozygotes pour l'allèle *Flv'* (souris Swiss, Janvier) sont préparés selon les protocoles classiques tels que décrits à l'exemple 1. Les cellules sont infectées par la souche IS-98-ST1 à une multiplicité d'infection de 20 UFF par cellule (m.i. de 20). L'effet

cytopathique est observé en microscopie optique, la production virale est analysée par titration sur cellules AP61 comme décrit précédemment à l'exemple 1 et l'expression des antigènes viraux est analysée par radioimmunoprécipitation à l'aide d'un sérum immun de souris anti-West Nile, selon les protocoles classiques tels que décrits dans Duarte Dos Santos et al. (*Virology*, 2000, 274, 292-308).

Les résultats montrent que 80% des neurones en culture produisent les antigènes viraux :

- leur profil en gel de polyacrylamide-SDS est présenté à la figure 14A.
- la production virale est de [3,0 \pm 1,5] x 10⁶ UFF/ml après 20 h d'infection et de [7,0 \pm 0,5] x 10⁷ UFF/ml à 40 h.
- les effets cytopathiques (ECPs) de type nécrotique sont observés après 48 h d'infection virale.

En revanche, les astrocytes du SNC murin ne sont pas permissifs à la réplication du virus WN souche IS-98-ST1.

a₂) lignées cellulaires

Des cellules de neuroblastome murin Neuro 2a et des cellules d'hépatome humain HepG2, cultivées dans les conditions classiques telles que décrites dans Duarte Dos Santos et al. (précité) sont infectées à différentes multiplicité d'infection par le virus WN souche IS-98-ST1, préparé comme décrit à l'exemple 1. L'effet cytopathique est observé en microscopie optique, la production virale est analysée par titration sur cellules AP61 comme décrit précédemment à l'exemple 1 et l'expression des antigènes viraux est analysée par radioimmunoprécipitation à l'aide d'un sérum immun de souris anti-West Nile, selon les protocoles classiques tels que décrits dans Duarte Dos Santos et al., précité.

Les résultats montrent que les cellules de neuroblastome murin Neuro 2a sont permissives à la réplication de la souche IS-98-ST1 du virus WN. Une m.i. de 4 est nécessaire pour infecter 80% des cellules Neuro 2a en monocouche. La production virale est de 10⁷ UFF/ml (m.i. de 4) après 40 h d'infection et la mort cellulaire par nécrose est massive (Figure 15). La cinétique de production des antigènes majeurs prM, E et NS1 à partir de la polyprotéine virale présentée dans la figure 4B. montre que le demi-temps de formation de la glycoprotéine d'enveloppe E est

d'environ 30 min. La protéine E de la souche IS-98-ST1 semble ne posséder qu'un seul résidu N-glycanne (figure 14C).

Les résultats montrent également que les cellules d'hépatome humain HepG2 sont permissives à la réplication de la souche IS-98-ST1 du virus WN. A une m.i. de 10, la production virale est de $[2 \pm 1] \times 10^6$ UFF/ml après 48 h d'infection et les ECPs sont observés à partir de 72 h.

2) Analyse de l'effet de l'EGTA et de l'INFA sur la réplication du virus West Nile et détection de l'activité des gènes CAS

a) Matériels et cellules :

L'interféron alpha (INFα A/D) est fourni par la société Biosource (PHC4044) et l'agent chélateur EGTA par Sigma..

Les cellules Neuro 2a sont cultivées en MEM supplémenté avec 10% de sérum de veau fœtal (SVF; Eurobio) et 1% d'acides aminés non essentiels (Gibco BRL). Les neurones primaires isolés d'embryons de 14 jours de souris BALB/c sont mis en culture en milieu Neurobasal (Gibco BRL) supplémenté avec 20% de facteur de différenciation B27, 20 mM de glutamine et de la gentamycine comme antibiotique.

b) Protocoles d'infection et de traitement des cellules neuronales par l'INF-α et l'EGTA :

- Infection par la souche IS-98-ST1 du virus WN:

Les cellules Neuro 2a (10⁴ cellules/cm²) cultivées en Labtek à 8 chambres (Nunc) sont infectées avec la souche virale avec une multiplicité d'infection de 4 (cycle unique de réplication) ou 0,1 (cycle réplicatif biphasique) Unités Formant Foyer (UFF; titre viral obtenu sur cellules de moustiques AP61) par cellule dans du MEM supplémenté avec 0,2% de sérum albumine pendant 90 min à 37°C. Les cellules infectées sont incubées avec du MEM à 2% SVF.

Les neurones primaires de souris BALB/c (# 2,5 10⁵ cellules/cm²) déposés sur Labtek à 8 chambres (Nunc) sont infectés avec la souche virale avec une multiplicité d'infection de 20 UFF par cellule dans du milieu Neuobasal avec 2% SFV pendant 90 min à 37°C. Les cellules infectées sont incubées avec du milieu Neuobasal

avec 2% SFV et 20% B27.

- Traitement des cellules infectées par l'INF-a

Les tapis cellulaires sont lavés 3 fois avec du milieu non supplémenté puis traités avec 20 UI/ml (cellules Neuro 2a) ou 100 UI/ml (neurones primaires) d'INF-α qui sont additionnés dans le milieu de culture.

- Traitement des cellules infectées par l'EGTA

5

20

Les monocouches cellulaires sont lavées 3 fois avec du PBS déplété en calcium et magnésium (Gibco BRL) puis incubées dans une solution EGTA à 1 mM dans du PBS pendant 150 min à 37°C. Les cellules Neuro 2a sont ensuite incubées dans du MEM supplémenté avec 10% SVF et les neurones primaires dans du milieu Neurobasal avec 20% de B27.

- Préparation des sondes OAS murines

Les neurones primaires de souris BALB/c traités par 20 UI/ml d'INF-α pendant 12 h sont lysés par la solution de lyse du kit ATLASTM Pure Total RNA Labeling System (Clontech, # PT3231-1) et l'ARN total extrait est précipité avec 3 volumes d'éthanol 95% en présence de 0,2 M LiCl pendant 18 h à -20°C. Un aliquot de l'ARN total (0,5 μg) est utilisé comme matrice pour la synthèse par la technique RT-PCR (kit Titan One Tube RT-PCR; Roche Biochemicals n° 1939 823) des sondes OAS à l'aide des amorces OAS-1 à OAS-4 suivantes :

OAS-1: GTCAGACGCTGACCTGGTG (SEQ ID NO:5, positions 257-275; transcrit L3, [M33863])

OAS-2: AGCTTCTCCTTACACAGTTGG (SEQ ID NO:6, positions 686-707; transcrit L3, [M33863])

OAS-3: ACAGTGCAGGTGTGTGAGC (SEQ ID NO:7, positions 1379-1398; transcrit L2, [X58077])

OAS-4: TCATGTCTCAGAAAGGAAAC (SEQ ID NO:8, positions 1854-1874; transcrit L2, [X58077])

Le couple d'amorces OAS-1 et OAS-2 a été sélectionné afin d'amplifier une région de haute identité nucléotidique entre les 3 transcrits OAS (L1, L2 et L3) qui ont été identifiés chez la souris. Le couple d'amorces OAS-3 et OAS-4 a

été dessiné dans la région 5' non codante spécifique au transcrit L2. Les produits RT-PCR sont clonés à l'aide du TOPO TA cloning (Invitrogen).

Les ARN totaux de neurones primaires de souris BALB/c, non traités, traités avec l'INF-α ou l'EGTA, ou infectés par le virus WN en présence ou non de l'INF-α ou de l'EGTA seront hybridés avec les sondes OAS en Northern blot.

- Activité anti-virale de l'INF-α sur le virus West Nile

Après induction par l'IFN-α, trois transcrits des gènes OAS, L1, L2, L3 sont observés (Rutherford *et al.*, 1991). Le transcrit L3 est détecté dès 4 h post-induction, L2 est observé à 12 h post-induction et enfin L1 est observé après 18 h post-induction.

La concentration d'INF-α 20 IU/ml pour les cellules Neuro 2a n'altère pas la viabilité cellulaire sur 24 h.

Les cellules Neuro 2a infectées par le virus WN sont incubées avec l'INF-α (voir §2) d'une part dès le début de l'infection ou d'autre part après 5 h ou 10 h d'infection. Ces temps d'incubation avec l'IFN-α ont été sélectionnés en fonction d'une part des cinétiques de transcription des gènes OAS L1, L2 et L3 et d'autre part de la cinétique de réplication virale.

L'addition de l'IFN- α dès le début de l'infection virale réduit de 85% (m.i. de 4) le nombre total de cellules Neuro 2a positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. L'addition de l'IFN- α à 5 h post-infection réduit de 65% (m.i. de 4) le nombre total de cellules Neuro 2a positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. L'addition de l'IFN- α à 10 h post-infection réduit de 50% (m.i. de 4) le nombre total de cellules Neuro 2a positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection.

- Activité anti-virale de l'EGTA sur le virus West Nile

L'incubation de neurones primaires de rat dans un milieu sans calcium supplémenté avec 1 mM de l'agent chélateur EGTA pendant 150 min provoque une augmentation de 350% du niveau transcriptionnel du (ou des) membres de la famille OAS.

Le pré-traitement des neurones primaires de souris BALB/c avec 1

mM EGTA pendant 2 h 30 (voir §3) réduit de 50% le nombre total de cellules positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. Le traitement des neurones primaires de souris BALB/c avec 1 mM EGTA pendant 2 h 30 après 2 h d'infection réduit de 50% le nombre total de cellules positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection. Le traitement des neurones primaires de souris BALB/c avec 1 mM EGTA pendant 2 h 30 après 6 h d'infection réduit de 20% le nombre total de cellules positives en antigènes viraux par immunofluorescence indirecte à 24 h post-infection.

REVENDICATIONS

- l°) Procédé de criblage de molécules aptes à stimuler un gène de la famille OAS, caractérisé en ce qu'il comprend :
- a) la mise en culture de cellules, issues d'un mammifère non-humain 5. Flv'/Flv' ou Flv'/Flv',
 - b) l'induction de l'expression des gènes OAS par addition d'interféron α ou β ou par un stress calcique, notamment par addition d'EGTA,
 - c) la mise en contact des cellules avec la molécule à cribler, et
- d) la mesure de l'activité d'un gène OAS, par comparaison avec un échantillon témoin.
 - 2°) Procédé selon la revendication 1, caractérisé en ce que ledit mammifère non humain Flv'/Flv' est de préférence une lignée de souris résistantes dérivant de géniteurs sauvages appartenant à l'espèce Mus musculus musculus ou Mus spretus.
- 15 3°) Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que lesdites souris résistantes sont croisées en retour avec des lignées sensibles de laboratoire.
 - 4°) Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit gène OAS est sélectionné dans le groupe constitué par les gènes autologues et les gènes hétérologues.

20

- 5°) Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'activité du gène OAS peut-être mesurée à l'aide de l'une des méthodes suivantes : détermination de la quantité de transcrits OAS, détermination de la quantité de protéines 2'-5'OAS produites, détermination du niveau d'activité 2'-5'OAS ou détermination de la séquence des ARNm ou de l'ADN génomique issues des gènes de la famille OAS.
- 6°) Molécule d'acide nucléique de mammifère, caractérisée en ce qu'elle est constituée par une séquence d'ADN génomique de 0,2 à 0,4 cM correspondant à un *locus* de résistance à une infection par un *Flaviviridae* et en ce qu'elle inclut la famille des gènes OAS sélectionnés dans le groupe constitué par les gènes OAS sauvages et les gènes OAS mutés.

- 7°) Molécule d'acide nucléique selon la revendication 6, caractérisée en ce qu'elle comprend la séquence du marqueur *D5Mit368* du chromosome 5 de souris.
- 8°) Utilisation des molécules d'acides nucléiques sélectionnées dans le groupe constitué par les molécules d'acide nucléique selon la revendication 6 ou la revendication 7, les ADNc desdites molécules et les protéines codées par lesdites molécules pour le criblage de molécules antivirales, destinées au traitement des infections par les virus de la famille des *Flaviviridae*.
- 9°) Utilisation selon la revendication 8, caractérisée en ce que les les molécules sont des séquences d'ADN génomique des gènes de la famille OAS, les ADNc desdites séquences et les protéines correspondantes
 - 10°) Utilisation d'un vecteur recombinant comprenant une molécule d'acide nucléique selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9, pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.
 - 11°) Utilisation de cellules contenant un vecteur recombinant comprenant une molécule d'acide nucléique selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9, pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.
 - 12°) Utilisation d'un mammifère non-humain recombinant comprenant une molécule d'acide nucléique selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9, pour le criblage de molécules antivirales destinées au traitement des infections par les virus de la famille des *Flaviviridae*.
 - 13°) Molécule d'acide nucléique constituée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS comme médicament destiné au traitement des infections par les virus de la famille des *Flaviviridae*.

- 14°) Proteine codée par un ADNc ou une séquence d'ADN génomique issue d'un gène de la famille OAS comme médicament destiné au traitement des infections par les virus de la famille des *Flaviviridae*.
- 15°) Procédé d'évaluation de la sensibilité d'un individu à l'infection par un virus de la famille des *Flaviviridae* et/ou de sa réponse à un traitement par l'interféron, caractérisé en ce qu'il comprend :
 - la mise en culture de cellules à partir d'un échantillon d'un individu, et
- l'induction de l'expression des gènes OAS par addition α 0 d'interféron α 0 ou β 0 ou par un stress calcique, notamment par addition d'EGTA, et
 - la mesure de l'activité d'un des gènes OAS, par comparaison avec un échantillon de cellules, obtenues à partir d'un sujet témoin résistant à l'infection.
 - 16°) Réactifs utiles pour mettre en œuvre les procédés selon les revendications 1 à 5 ou 15, caractérisés en ce qu'ils sont sélectionnés dans le groupe constitué par les amorces de séquences SEQ ID NO:5 à 22 ainsi que les sondes correspondant respectivement aux positions 257-707 du transcrit de l'isoforme L3 murine et aux positions 1379-1874 du transcrit de l'isoforme L2 murine (SEQ ID NO:31-32).
- 17°) Cellules eucaryotes transformées, caractérisées en ce qu'elles comprennent une molécule d'acide nucléique de mammifère selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9.
- 18°) Mammifères non-humains transgéniques, caractérisés en ce qu'ils incluent au moins une copie d'une molécule d'acide nucléique, selon la revendication 6 ou la revendication 7 ou une molécule d'acide nucléique telle que définie dans les revendications 8 ou 9.
 - 19°) Mammifères non-humains recombinants, caractérisés en ce qu'ils sont porteurs d'au moins un allèle du gène OAS inactivé.

•	
:-	
٠,:	≌
- 3	<u> </u>
1.11	, ,
	a sol
.:.	ွဲတ
	ਕ
٠.	_~~
- '	61
•:	se (OAS) de la
	J
	<u> </u>
	- 01
	₹.
٠.	· O
٠.	_
**:	O.
	σ.
	Ø
	e synthétas
	ĭ
	- ;;;
	<u> </u>
•	S
	63
•	₩.
•	$\overline{}$
	2
	ényla
٠.	~~∵
	₩.
•:	oligoadér
•	ກາ
	. <u>=</u>
	7
	<u>~</u>
	43
٠.	le :
	U
	Ø
	es gènes de l'oli
	ㅁㅣ
	<u>ب</u> ي. ا
	00
	ω I
	انة
	i l

No. gene	Ganhant	PCTo do source				
	Colodilla	TOTA de soulls	ARNm	RF (taille)	ARNm ORF (taille) acides amines Exon	
OAS1(L3)	M33863	AW542285 (>42)	1.7Kpb ^b	1104 pb	104 pb 367aa 7	163, 289, 185, 233, 157, 27, 39
OAS1(년)	X58077	Al448562(>41)	2.2Kpb ^b	1104 pb	367aa 7	183, 289, 185, 233, 147, 27, 28
OAS1(L1)	X55982	BF136699(>2)	1.7Kb; 4Kb* 759 pb		4	180, 277, 185, 117
nouveau OAS1	•	AA794503+AA536864 (>4)		1086pb	361aa	6 183, 289, 197, 233, 154, 30
p540ASL	AF068835		3064 pb	1422pb		

💛 🍐 la taille de chaque ARNm est indiquée (Rutherford et al.)

La famille de l'oligoadénylate synthétase (OAS) humaine

					2/	18				
	taille de l'Exon			.:			•	S OFF AND (MOS)	(200), 283, 176, 242,148, 767,	
	TX O	Œ	Θ	Ξ	£	16	?	4	1 10	
المرازات	ciri (anic) acides amines Exon	364aa (346aa)	400ав (346аа)	687aa (683aa)	727аа (683аа)	1087aa		765pb 254aa (219aa)	1542pb 513aa (346aa)	
ORF (taille)	Ora (canne)	1095pb	1203pb	2064pb	2134pb	3264pb		76 5 pb	1542pb	
bARNm		1.6Kpb	1.8Kpb	2.8, 3.9, 4.5Kpb	3,3Kpb	7Kb		1. 8K pb	2.0Kpb	
Genbank bARNm		X02874	•	M87284	•		(AF251351)	AF063612	AF063611 2.0Kpb	
		p40	p46	69d	p71	p100		p30	b26	
gène		OAS1		OAS2		OAS3		OAS-RP p30		
9		-		က		~		1		

3/18

	3/18
Résultat C	LUSTALW

Séquence 1 : h	OAS1_X02874_ 1322 pb
Séquence 2 : L	
Séquence 3 : L	
Séquence 4 : L	1_M55982_ 902 pb
Alignement Sėquences (3:4	l olimána - Carrer - 70
Séquences (1:2) alignées Score : 79) alignées Score : 59
Séquences (2:3)	alignées Score: 97
Séquences (1:3)	alignées Score : 58
Sequences (2:4)	alignées Score: 79
Séquences (1:4)	alignées Score : 62
Groupe 1 : séqu	tences : 2 Score : 26287
Groupe 2 : sequ Groupe 3 : sequ	
Score d'aligneme	ences: 4 Score: 15936
	·
	_{IDNO:23)} CCAGGCTGGGAGACCCAGGAAGCTCCAGACTTAGCATGGAGCACGGACTCAGGAGCATC DNO:25) CCAGGCTGGGAGACCCAGGAAGCTCCAGACTTAGCATGGAGCACGGACTCAGGAGCATC
L1 M55982 (SEQI	DNO:27) ACCTGCTGGCTGCAGAGGTAAAAGCTGGACCTAGGATGGAGCAGGATCTGAGGAGCATC
hOAS1_X02874_(SEOIDNO:29) GAGGCAGTTCTGTTGCCACTCTCTCTCTCTGTCAATGATGGATCTCAGAAATACC
	* * * * * * * * * * * * * * * * * * * *
L3_M33863_	C) CCCTCC) CCCTCC)
LZ_X58077_	CAGCCTGGACGCTGGACAAGTTCATAGAGGATTACCTCCTTCCCGACACCACCTTTGGTC CAGCCTGGACGCTGGACAAGTTCATAGAGGATTACCTCCTTCCCGACACCACCTTTGGTC
L1_M55982_	CGGCCTCGAAGCTTGATAAGTTCATAGAGAACCATCTCCCGGACACCAGCTTCTGTG
hOAS1_X02874_	CAGCCAAATCTCTGGACAAGTTCATTGAAGACTATCTCTTGCCAGACACGTGTTTCCGCA
	* *** ** ** ******** ** * * *** * ****
L3_M33863_	CTGATGTCAAATCAGCCGTCAATGTCGTGTGTGTGATTTCCTGAAGGAGAGAGA
LZ_XS8077_	CTGATGTCAAATCAGCCGTCAATGTCGTGTGTGTGATTTCCTGAAGGAGAGATGCTTCCAAG
Li_M5598Z_	CTGACCTCAGAGAAGTCATAGATGCCCTGTGTGCTCTCCTGAAGGACAGATCCTTCCGGG
hCAS1_X02374_	TGCAAATCGACCATGCCATTGACATCATCTGTGGGTTCCTGAAGGAAAGGTGCTTCCGAG
L3_M33863_	GTGCTGCCCACCCAGTGAGGGTCTCCAAGGTGGTGAAGGGTGGCTCCTCAGGCAAAGGCA
L2_X58077_	GTGCTGCCCACCCAGTGAGGGTCTCCAAGGTGGTGAAGGGTGGCTCCTCAGGCAAAGGCA
L1_M55982_	GCCCCGTCCGCCGAATGAGGGCCTCTAAAGGGGGTCAAGGGGCAAAGGCA
hOAS1_X02874_	GTAGCTCCTACCCTGTGTGTGTCCAAGGTGGTAAÄGGGTGGCTCCTCAGGCAAGGGCA
	* * ** ** ** ** ** *** ****
L3_M33863	CCACACTCAAGGGCAGGTCAGACGCTGACCTGGTGGTGTTCCTTAACAATCTCACCAGCT
LZ_X58077_	CCACACTCAAGGGCAAGTCAGACGCTGACCTGGTGGTCTTCCTTAACAATCTCACCAGCT
L1_M55982_	CCGCGCTCAAGGGCAGGTCAGACGCTGACCTGGTGGTGTTCCTTAACAATCTCACCAGCT
h0AS1_X0Z874_	CCACCCTCAGAGGCCGATCTGACGCTGACCTGGTTGTCTTCCTCAGTCCTCTCACCACTT
L3_M33863_	TTGAGGATCAGTTAAACCGACGGGGAGAGTTCATCAAGGAAATTAAGAAACAGCTGTACG
L2_X58077_	TTGAGGATCAGTTAAACCGACGGGGAGAGTTCATCAAGGAAATTAAGAAACAGCTGTACG
L1_M5598Z_	TTGAGGATCAGTTAAACCAACAGGGAGTGTTGATTAAGGAAATTAAGAAACAGCTGTGCG
h0AS1_X0Z874_	TTCAGGATCAGTTAAATCGCCGGGGAGAGTTCATCCAGGAAATTAGGAGACAGCTGGAAG
	非常 非正常非常非常在不存在的 本 也 经分类价值 化物 化 化物物性物质的现在分词 化物 非不论的的现在分词
L3_M33863_	AGGTTCAGCATGAGAGACGTTTTAGAGTCAAGTTTGAGGTCCAGAGTTCATGGTGGCCCA
L2_X58077_	AGGTTCAGCATGAGAGACGTTTTAGAGTCAAGTTTGAGGTCCAGAGTTCATGGTGGCCCA
L1_M5598Z_	AGGTTCAGCATGAGAGACGTTGTGGAGTGAAGTTTGAGGTCCACAGTTTAAGGAGTCCCA
h0AS1_X0Z874_	CCTGTCAAAGAGAGAGAGCACTTTCCGTGAAGTTTGAGGTCCAGGCTCCACGCTGGGGCA
	*** * * ******* * ** ** **
L3_M33863_	ACGCCCGGTCTCTGAGCTTCAAGCTGAGCGCCCCCCATCTGCATCAGGAGGTGGAGTTTG
L2_X58077_	ACGCCCGGTCTCTGAGCTTCAAGCTGAGCGCCCCCCATCTGCATCAGGAGGTGGAGTTTG
L1_MS598Z_	ACTCCCGGGCTCTGAGCTTCAAGCTGAGCGCCCCCGACCTGCTGAAGGAGGTGAAGTTTG
h0AS1_X0Z874_	ACCCCCGTGCGCTCAGCTTCGTACTGAGTTCGCTCCAGCTCGGGGAGGGGGTGGAGTTCG
	··· ···· · · · · · · · · · · · · · · ·

4/18

L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	ATGTGCTGCCAGCCTTTGATGTCCTGGGTCATGTTAATACTTCCAGCAAGCCTGATCCCA ATGTGCTTCCAGCCTTTGATGTCCTGGGTCATGGTAGTATCAATAAGAAGCCTAATCCCT ATGTGCTGCCAGCCTATGATTTACTGGATCATCTTAACATCCTCAAGAAGCCTAACCAAC ATGTGCTGCCTGCCTTTGATGCCCTGGGTCAGTTGACTGGCAGCTATAAACCTAACCCCCC
-L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	GAATCTATGCCATCCTCATCGAGGAATGTACCTCCCTGGGGAAGGATGGCGAGTTCTCTA TAATCTACACCATCCTCATCTGGGAATGTACCTCCCTGGGGAAGGATGGCGAGTTCTCTA AATTCTACGCCAATCTCATC-AGTGGCGTACCCGCCGGGAAGGAGGGCAAGTTATCGA AAATCTATGTCAAGCTCATCGAGGAGTGCACCGACCTGCAGAAAGAGGGGGAGTTCTCCA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	CCTGCTTCACGGAGCTCCAGCGGAACTTCCTGAAGCAGCGCCCAACCAA
L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_	TCATCCGCCTGGTCAAGCACTGGTACCAACTGTGTAAGGAGAAGCTGGGGAAGCCATTGC TCATCCGCCTGGTCAAACACTGGTACCAACTGTGTAAGGAGAAGCTGGGGAAGCCACTGC TCATCCGCCTGGTCACGCACTGGTACCAACTGTGTAAGGAGAAGCTGGGGGACCCGCTGC TCATCCGCCTAGTCAAGCACTGGTACCAAAATTGTAAGAAGAGCTTGGGAAGCTGC
L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_	CTCCACAGTACGCCCTAGAGTTGCTCACTGTCTTTGCCTGGGAACAAGGGAATGGATGTT CCCCACAGTATGCCCTGGAGCTACTCACTGTCTATGCCTGGGAACAAGGGAATGGATGTA CCCCACAGTATGCCCTGGAGCTGCTCACACTCGATGCCTGGGAGTATGGGAGTCGAGTAA CACCTCAGTATGCCCTGGAGCTCCTGACGGTCTATGCTTGGGAGCGAGGGAGCATGAAAA * * * * * * * * * * * * * * * * * *
L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_	ATGAGTTCAACACAGCCCAGGGCTTCCGGACCGTCTTGGAACTGGTCATCAATTATCAGC ATGAGTTCAACACAGCCCAGGGCTTCCGGACCGTCTTGGAACTGGTCATCAATTATCAGC CTAAATTCAACACAGCCCAGGGCTTCTGAACCGTCTTGGAACTGGTCACCAAGTACAAAC CACATTTCAACACAGCCCAAGGATTTCGGACGGTCTTGGAATTAGTCATAAACTACCAGC
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	ATCTTCGAATCTACTGGACAAAGTATTATGACTTTCAACACCAGGAGGTCTCCAAATACC ATCTTCGAATCTACTGGACAAAGTATTATGACTTTCAACACAAGGAGGTCTCCAAATACC AGCTTCAAATCTACTGGACAGTGTATTATGACTTTCGACATCAAGAGGTCTCTGAATACC AACTCTGCATCTACTGGACAAAGTATTATGACTTTAAAAACCCCATTATTGAAAAGTACC
L3_M33863_ L2_X58077_ L1_M55982_ h0A51_X02874_	TGCACAGACAGCTCAGAAAAAGCCAGGCCTGTGATCCTGGACCCAGCTGACCCAACAGGGA TGCACAGACAGCTCAGAAAAAGCCAGGCCTGTGATCCTGGACCCAGCTGACCCGACAGGGA TGCACCAACAGCTCAAAAAAA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	ATGTGGCCGGTGGGAACCCAGAGGGCTGGAGGCGGTTGGCTGAAGAGGCTGATGTGTGGCATGTGTGGCATGTGGGCATGTGGGCAGGCTGGTGGGGAACCCAGAGGGCTGGAGGCGGTTGGCTGAAGAGGCTGATGTGTGGCACTTGGGTGGG
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	TATGGTACCCATGTTTTATTAAAAAGGATGGTTCCCGAGTGAGCTCCTGGGATGTGCCGA TGTGGTACCCATGTTTTATGAAAAATGATGGTTCCCGAGTGAGCTCCTGGGATGTGCCGA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	CGGTGGTTCCTGTACCTTTTGAGCAGGTAGAAGAGAACTGGACATGTATCCTGCTGTGAG CGGTGGTTCCTGTACCTTTTGAGCAGGTGGAGGAGAACTGGACATGTATCCTGCTGTGAG

5/18

L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	CACAGCAGCACCTGCCCAGGAGACTGCTGGTCAGGGGCATTTGCTGCTCTGCTGCAGGCCCACAGCAGCACCTGCCCAGGAGACTGCTGGTCAGGGGCATTTGCTGCTCTGCTGCAGGCC
	GCTTGAGACATATAGCTGGAGACCATTCTTTCCAAAGAACTTACCTCT-TGCCAAAGGCC
L3_M33863_ L2_X58077_ L1_M55982_ hOAS1_X02874_	CATGACCCAGTGAGGGAGGGCCCCACCTGGCATCAGACTCCGTGCTTCTGATGCCTGCC
	ATTTATATTCATATAGTGACAGGCTGTGCTCCATATTTTACAGTCATTTTGGTCACAA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	GCCATGTTTGACTCCTGTCCAATCACAGCCAGCCTTCCTCAACAGATTCAGAAGGAGAGG GCCATGTTTGACTCCTGTCCAATCACAGCCAGCCTTCCTCAACAGATTCAGAAGGAGGAGG
	TCGAGGGTTTCTGGAATTTTCACATCCCTTGTCCAGAATTCATTCCCCTAAGAGTAA
L3_M33863_ L2_X58077_ L1_M55982_ h0AS1_X02874_	AAAGAACACACGCTTGGTGTCCATCTGTCCACCTGTTGGAAGGTTCTGTCTG
	TAATAAATAATCTCTAACACCAAAAA
L3_M33863_ L2_X58077_ L1_M55982	TGATCAACAATAAACCACAGCAGGTGCC-GTCA TGATCAACAATAAACCACAGCAGGTGCCCGTCA
hOAS1_X02874_	

FIGURE 3C

6/18

Résultat CLUSTALW

Séquence I · l	OAS1_X02874	1 364 22	
Séquence 2 : I		367 aa	
Séquence 3 : I		367 aa	
Séquence 4 : L	1_M33962_	251 aa .	
Alignement		0 44	
Séquences (3:4		Score : 66	
Séquences (1:2		Score: 67	
Séquences (2:3		Score: 95	
Séquences (2:4		Score: 66	
Séquences (1:3		Score: 67	
Séquences (1:4) alignées	Score: 58	
Alignement			
Groupe 1 : séqu	uences : 2	Score: 6013	
Groupe 2 : séqu	iences : 3	Score: 5336	
Groupe 3 : séqu	iences : 4	Score: 3306	
Score d'alignem	ent 8114		
hOAS1_X0Z874_[SE	OIDNO:30)MEHGLRSI OIDNO:30)MEQDLRSI ONO:28)MEQDLRSI	IPAWTLDKFIEDYLLPDTTFGADVKSAVNVVCDFLKERCFQGAAHPVRVSK IPAWTLDKFIEDYLLPDTTFGADVKSAVNVVCDFLKERCFQGAAHPVRVSK TPAKSLDKFIEDYLLPDTCFRMQIDHAIDIICGFLKERCFRGSSYPVCVSK IPASKLDKFIEN-HLPDTSFCADLREVIDALCALLKDRSFRGPVRRMRASKO	W
L3_M33863_	KGGSSGKG	TTLKGRSDADLVVFLNNLTSFEDQLNRRGEFIKEIKKQLYEVQHERRFRVK	
L2_X58077_	KGGSSGKGT	TTLKGRSDADLVVFLNNLTSFEDQLNRRGEFIKEIKKQLYEVQHERRFRVK	, F
h0AS1_X0Z874_	KGGSSGKGT	TTLRGRSDADLVVFLSPLTTFQDQLNRRGEFIQEIRRQLEACQRERALSVK	-
L1_M55982_	KGKGT	TALKGRSDADLVVFLNNLTSFEDQLNQQGVLIKEIKKQLCEVQHERRCGVK	.F
	** ***	# - # - # - # - # - # - # - # - # - # -	<u>.</u>
•			
L3_M33863_	EVOSSWWPN	NARSLSFKLSAPHLHQEVEFDVLPAFDVLGHVNTSSKPDPRIYAILIEECT:	<
L2_X58077_	EVQ55WWPN.	VARSLSFKLSAPHLHOEVEFDVLPAFDVLGHGSTNKKPNPI TYTTI TWECT!	ς .
. hOAS1_X02874_	EVQAPXWGN	NPRALSFYLSSLOLGEGVEFDVLPAFDALGOLTGSYKPNPOTYVKI TEF <i>C</i> TT	3
L1_M55982_	EVHSLRSPN	SRALSFKLSAPDLLKEVKFDVLPAYDLLDHLNILKKPNOOFYANLISGVP-	
L3_M33863_	LCKDGEESTO	CETEL ARNEL MARATMI MEL TRI MICIRIA CICHI CURI ROOMA CLA TI	
L2_X58077_	LGKDGEESTO	CFTELQRNFLKQRPTKLKSLIRLVKHWYQLCKEKLGKPLPPQYALELLTVF CFTELQRNFLKQRPTKLKSLIRLVKHWYQLCKEKLGKPLPPQYALELLTVY	
h0A51_X02874_	LOKEGEESTO	CFTELQRDFLKQRPTKLKSLIRLVKHWYQNCKKKLGK-LPPQYALELLTVY	
L1_M55982_	AGKEGKI STO	CFMGLQKYFLNCRPTKLKRLIRLVTHWYQLCKEKLGDPLPPQYALELLTLD	
	*****	pa pa pa pa papana panana panan pa pana papanananan	
• •			
L3_M33863	AWEOGNGCYE	FNTAQGFRTVLELVINYQHLRIYWTKYYDFQHQEVSKYLHRQLRKARPVI	
L2_X58077_	AWEOGNGCNE	FNTAQGFRTVLELVINYQHLRIYWTKYYDFQHKEVSKYLHRQLRKARPVI	
hOAS1_X02874_	AWERGSMKTH	HENTAQGERTVLELVINYQQLCIYWTKYYDFKNPIIEKYLRRQLTKPRPVI	
L1_M55982_	AWEYGSRVTKE	FNTAOGE	
<u> </u>	*** *	*****	
L3_M33863_	LDPADPTGNVA	AGGNPEGWRRLAEEADVWLWYPCFIKKDGSRVSSWDVPTVVPVPFEQVEE	
LZ_X58077_	LUPAUPIGNVA	AGGNPEGWRRLAEEADVWLWYPCFMKNDGSRVSSWDVPTVVPVPFFNVFF	
h0AS1_X0Z874_	LDPADPTGNLG	GGGDPKGWRQLAQEAEAWLNYPCFKNWDGSPVSSWILLVRPPASSLPFIP	
L1_M55982_			
	0.22		
L3_M33863_	NWTCILL		
L2_X58077_	NWTCILL	•	
hOAS1_X02874_	APLHEA-		
L1_M55982_		•	

FIGURE 6

. machine .

FIGURE 7

Souris

Lignées consanguines de laboratoire :

BALB/c, C57BL/6, DDK, 129, C3H et DBA/1

→ sensibles à l'infection par le virus WN

Souris sauvages:

SEG/Pas (Mus spretus), MAI/Pas, MBT/Pas (Mus m. musculus)

résistantes à l'infection par le virus WN

Génération de souris de premier croisement en retour (BC1)

Virus

Injection du virus West Nile (WN) Souris âgées de 5 semaines Observation des souris pendant les 14 jours suivant l'infection

Génotypage des allèles Flv

marqueurs flanquant le locus Flv sur le chromosome 5 de la souris

Locus

D5Mit17

D5Mit139

D5Mit158

D5Mit1407

D5Mit1426

D5Mit1321

D5Mit1247

Nombre: 53 9 4 3 3

FIGURE 9

Þ

10/18

Parents de la génération de premier croisement en retour (BC1)

FIGURE 10

Total	108(55%)	(%) (45.66)	203	
Mort	0		(1) (1) (1) (1) (1) (1)	
Survivant		21	129 (66%)	
Phenotype Phenotype	 Résistant (Flv ~ / Flv *)	Sensible (1719 ')	'Fotal	

* un allèle FIV est suffisant pour conférer la résistance.

FIGURE 12

Souche IS-98-ST1 (m.i. de 4) 24 h d'infection

FIGURE 15

Contrôle

16/15

4 UFF/cell.

Contrôle

INF-ca (20 UI/ml)

0,1 UFF/cell.

Contrôle

INF-α (10 UI/ml)

FIGURE 16

17/18

> Exon 1

AGGCTTGGATGGGGAGGTACCTGTTCAGAAGCCCTAACGCCATTGGCTGCTCGGGCCTG
GATGATTTGCATATCCGCGCCCCTTCCCGGGAAATGGAAACTGAAAGTCCCATTTCTGCTT
FI (SEQIDNO:9)
CAGCCAGCCTAGGAGACACAGGACCTGCTGGCTGCAGAGGGTAAAAGCTGGACCTAGGA
TGGAGCAGGATCTGAGGAGCATCCCGGCCTCGAAGCTTGATAAGTTCATAGAGAAC
CATCTCCCGGACACCAGCTTCTGTGCTGACCTCAGAGAAGTCATAGATGCCCTGTG
TGCTCTCCTGAAGGACAGATCCTTCCGGGGCCCCGTCCGCCGAATGAGGGCCTCT
(SEQIDNO:10)
AAAGGGGTCAAGGTGAGCCTTCCTCAGCCTGAGCTGGCCGAGATGAGGTGGGACAGG
RI
ACLTTCAGAAGCCAGGCTGCAACCCTGATCCCTCCTCTTAATTCTGATCACAGCTGGCGA
TGGGTTCTTCCCCCCCAAGTCCCACATCTGTATTGGAGAAAGGAGCCTCAGCTACAGTTTAI
(SEQIDNO:11)
R2
GTTCCCCACTCCCAGGCCAGATCCCTCCATTCAGAGTCGGGGAAACTGAGGCCCAGAATGGC

18/18

> Exon 4 (terminal)

FIGURE 17 (suite)

LISTE DE SEQUENCES

<11	0> I	NSTI	TUT	PAST	EUR											
<12		oléc ppli												gèn	es	
<13	0> 2	26CA	S92F	R												
<14 <14																
<16	0> 3	2			•											
<17	0> P	aten	tIn	Ver.	2.1									•		
<21 <21	2> A	1029 DN lavi	viru	s sp												
	1 > C	DS ['] 9 7).	. (10	395)												
	0> 1 agtt	cgc (ctgt	gtga	gc t	gaca	aact	t ag	tagt	gttt	gtg	agga	tta	acaa	caatta	60
acad	cagt	gcg (agct	gttt	st t	agca	cgaa	g at	ctcg	Met				cca Pro 5		114
														atg Met		162
														ctg Leu		210
														ttc Phe		258
														tgg Trp		306
														aag Lys 85		354
														aaa Lys		402
														ctg Leu		450
gcc	agc	gta	gga	gca	gtt	acc	ctc	tct	aac	ttc	caa	ggg	aag	gtg	atg	498

Ala	Ser 120		Gly	Ala	Val	Thr 125	Leu	Ser	Asn	Phe	Gln 130		Lys	Val	Met	
	Thr										Ile				aca. Thr 150	546
						tgc Cys									tac Tyr	594
_	-	_	_					-	_			_	_	_	ggt Gly	642
	-		_	_		gac Asp			_		_				tac Tyr	690
						acc Thr 205										738
		-				aca Thr										786
_		_		_	_	agc Ser							-	-		834
	-				_	agg Arg					-	-		_	_	882
-						ggg Gly							_			930
						gtg Val 285										978
						ttc Phe										1026
						ggc Gly										1074
						gtg Val										1122
						tat Tyr										1170
						ccg Pro										1218

	360				•	365					370					
_	Ala	_		-			-	_			gtg Val		-			1266
											agc Ser					1314
											aga Arg					1362
											cat His					1410
		_							_	-	gga Gly 450	-		-	-	1458
	-		-								tac Tyr			_		1506
	-							_	-	_	cca Pro					1554
-			_				-		_		aca Thr	_	_		-	1602
-		_				-	_				cct Pro		-	-	_	1650
	-								_		atg Met 530				-	1698
											ggc Gly					1746
											gtg Val					1794
											tgt Cys					1842
											gtc Val					1890
ttc Phe	aag Lys 600	ttt Phe	ctt Leu	ggg Gly	act Thr	ccc Pro 605	gca Ala	gac Asp	aca Thr	ggt Gly	cac His 610	ggc Gly	act Thr	gtg Val	gtg Val	1938

	Glu					Gly					Cys				atc Ile 630	1986
					Leu					Pro					gtc Val	2034
				Phe					Thr					Val	ctg Leu	2082
	-	_	Ğlu					-					Val		aga Arg	2130
		Gln			aat Asn										att Ile	2178
	Lys				acc Thr 700											2226
					tgg Trp											2274
					gtc Val											2322
ctg Leu	ttc Pḥe	gga Gl.y 745	ggc Gly	atg Met	tcc Ser	tgg Trp	ata Ile 750	acg Thr	caa Gln	gga Gly	ttg Leu	ctg Leu 755	Gly ggg	gct Ala	ctc Leu	2370
					atc Ile											2418
					gga Gly 780											2466
gct Ala	gac Asp	act Thr	Gly	tgt Cys 795	gcc Ala	ata Ile	Asp	Ile	Ser	Arg	caa Gln	gag Glu	ctg Leu	aga Arg 805	tgt Cys	2514
gga Gly	aat Asn	gga Gly	gtg Val 810	ttc Phe	ata Ile	cac His	aat Asn	gat Asp 815	gtg Val	gag Glu	gct Ala	tgg Trp	atg Met 820	gac Asp	cgg Arg	2562
tac Tyr	aag Lys	tat Tyr 825	tac Tyr	cct Pro	gaa Glu	acg Thr	cca Pro 830	caa Gln	ggc Gly	cta Leu	gcc Ala	aag Lys 835	atc Ile	att Ile	cag Gln	2610
aaa Lys	gct Ala 840	cat His	aag Lys	gaa Glu	gga Gly	gtg Val 845	tgc Cys	ggt Gly	cta Leu	cga Arg	tca Ser 850	gtt Val	tcc Ser	aga Arg	ctg Leu	2658

											Leu				ttg Leu 870	2706
-					_		_	_		_	gag Glu		-			2754
_		-		-			-			_	acc Thr	-	-		_	2802
_				_	-			_	_		tta Leu		_		-	2850
											gag Glu 930					2898
											gtg Val					2946
											gtc Val					2994
											gct Ala					3042
											gaa Glu					3090
Asp					Glu					Gly	gaa Glu 1010				tgt Cys	3138
	Trp			Thr					Gly		gga Gly			Glu		3186
-	_		Ile		_		_	Ala			cga Arg	-	Asn			3234
		Pro					Gln				cca Pro	Trp				3282
	Val					Asp					act Thr 1					3330
Ser					His					Thr	cgc Arg 090					3378
agc	gga	aag	ttg	ata	aca	gat	tgg	tgc	tgc	agg	agc	tgc	acc	tta	cca	3426

Ser Gly Lys Leu Ile Thr Asp Trp Cys Cys Arg Ser Cys Thr Leu Pro 1095 1100 1105 1110	
cca ctg cgc tac caa act gac agc ggc tgt tgg tat ggt atg gag atc Pro Leu Arg Tyr Gln Thr Asp Ser Gly Cys Trp Tyr Gly Met Glu Ile 1115 1120 1125	3474
aga cca cag aga cat gat gaa aag acc ctc gtg cag tca caa gtg aat Arg Pro Gln Arg His Asp Glu Lys Thr Leu Val Gln Ser Gln Val Asn 1130 1135 1140	3522
gct tat aat gct gat atg att gac cct ttt cag ttg ggc ctt ctg gtc Ala Tyr Asn Ala Asp Met Ile Asp Pro Phe Gln Leu Gly Leu Leu Val 1145 1150 1155	3570
gtg ttc ttg gcc acc cag gag gtc ctt cgc aag agg tgg aca gcc aag Val Phe Leu Ala Thr Gln Glu Val Leu Arg Lys Arg Trp Thr Ala Lys 1160 1165 1170	3618
atc agc atg cca gct ata ctg att gct ctg cta gtc ctg gtg ttt ggg Ile Ser Met Pro Ala Ile Leu Ile Ala Leu Leu Val Leu Val Phe Gly 1175 1180 1185 1190	3666
ggc att act tac act gat gtg tta cgc tat gtc atc ttg gtg ggg gca Gly Ile Thr Tyr Thr Asp Val Leu Arg Tyr Val Ile Leu Val Gly Ala ·1195 1200 1205	3714
gct ttc gca gaa tct aat tcg gga gga gac gtg gta cac ttg gcg ctc Ala Phe Ala Glu Ser Asn Ser Gly Gly Asp Val Val His Leu Ala Leu 1210 1215 1220	3762
atg gcg acc ttc aag ata caa cca gtg ttt atg gtg gca tcg ttt ctc Met Ala Thr Phe Lys Ile Gln Pro Val Phe Met Val Ala Ser Phe Leu 1225 1230 1235	3810
aaa gcg aga tgg acc aac cag gag aac att ttg ttg atg ttg gcg gct Lys Ala Arg Trp Thr Asn Gln Glu Asn Ile Leu Leu Met Leu Ala Ala 1240 1245 1250	3858
gtt ttc ttt caa atg gct tat cac gat gcc cgc caa att ctg ctc tgg Val Phe Phe Gln Met Ala Tyr His Asp Ala Arg Gln Ile Leu Leu Trp 1255 1260 1265 1270	3906
Val Phe Phe Gln Met Ala Tyr His Asp Ala Arg Gln Ile Leu Leu Trp	3906 3954
Val Phe Phe Gln Met Ala Tyr His Asp Ala Arg Gln Ile Leu Trp 1255 1260 1265 1270 gag atc cct gat gtg ttg aat tca ctg gcg gta gct tgg atg ata ctg Glu Ile Pro Asp Val Leu Asn Ser Leu Ala Val Ala Trp Met Ile Leu	
Val Phe Phe Gln Met Ala Tyr His Asp Ala Arg Gln Ile Leu Trp 1255 1260 1265 1270 gag atc cct gat gtg ttg aat tca ctg gcg gta gct tgg atg ata ctg Glu Ile Pro Asp Val Leu Asn Ser Leu Ala Val Ala Trp Met Ile Leu 1275 1280 1285 aga gcc ata aca ttc aca acg aca tca aat gtg gtc gtc ccg ctg cta Arg Ala Ile Thr Phe Thr Thr Thr Ser Asn Val Val Val Pro Leu Leu	3954
Val Phe Phe Gln Met Ala Tyr His Asp Ala Arg Gln Ile Leu Leu Trp 1255 1260 1265 1265 1270 gag atc cct gat gtg ttg aat tca ctg gcg gta gct tgg atg ata ctg Glu Ile Pro Asp Val Leu Asn Ser Leu Ala Val Ala Trp Met Ile Leu 1275 1280 1285 aga gcc ata aca ttc aca acg aca tca aat gtg gtc gtc ccg ctg cta Arg Ala Ile Thr Phe Thr Thr Thr Ser Asn Val Val Val Pro Leu Leu 1290 1295 1300 gcc ctg cta aca ccc cgg ctg aga tgc ttg aat ctg gat gtg tac agg Ala Leu Leu Thr Pro Arg Leu Arg Cys Leu Asn Leu Asp Val Tyr Arg	3954 4002

1335					1340					1345					1350	
gcc Ala			Gly					Met					Gly		Ile	4194
.gca 1		Asp					Arg					Thr				4242
aca o	Ala					Phe					Gly					4290
gac a Asp 1					Āla					Ile						4338
gct q Ala A 1415	-			Ile					Thr	_	_			Glu	_	4386
acg o			Ile					Asp					Gly			4434
gaa a Glu <i>R</i>	_	Val	_	-			Asp	_		-		Phe	_		_	4482
aat g Asn A	Asp			-		Trp	_			_	Leu	_	_	_	_	4530
ctc g Leu A					Tyr					Ile						4578
gga t Gly F 1495				Thr					Lys					Leu		4626
gac a Asp T			Ser					Lys					Thr			4674
gtc t Val T		Arg					Gly					Tyr				4722
gcg g Ala G	ily.		_	-	-	Gly	-				Leu					4770
aaa g Lys G 15	ga Sly 60	gcc Ala	gct Ala	ttg Leu	Met	agc Ser 565	gga Gly	gag Glu	ggc Gly	Arg	ctg Leu 570	gac Asp	cca Pro	tac Tyr	tgg Trp	4818
ggc a Gly S 1575				Glu					Tyr					Lys		4866

			Trp					Glu			atg Met		Val			4914
		Lys		-	_		Val	-	_		cca Pro	Gly				4962
	Pro	_		_		Gly	_			_	gac Asp					5010
Thr					Ile					Gly	gat Asp 1650					5058
	Gly			Val					Gly		tac Tyr			Ala		5106
	-		Glu		_	-		Pro			gcc Ala		Phe	-		5154
		Leu					Ile				gat Asp	Leu				5202
-	Gly					Ile					atc Ile 1			-		5250
Asn	-	-	-	-	Thr	-			-	Pro	acc Thr 1730		-	-	_	5298
	Glu			Glu					Leu		atc Ile			Gln		5346
	-		Pro	-	_			Gly			att Ile	_	Āsp	-	-	5394
		Ala					Arg				cct Pro	His				5442
	Tyr					Met					ttc Phe 1					5490
Ser					Gly					Lys	gtc Val 810					5538
gcg Ala 1815	Ala	gca Ala	ata Ile	Phe	atg Met ' 820	aca Thr	gcc Ala	acc Thr	Pro	cca Pro 825	Gly ggc	act Thr	tca Ser	Asp	cca Pro 830	5586

ttc cca gag tcc aat tca cca att tcc gac tta cag act gag atc ccg Phe Pro Glu Ser Asn Ser Pro Ile Ser Asp Leu Gln Thr Glu Ile Pro 1835 1840 1845	5634
gat cga gct tgg aac tot gga tac gaa tgg atc aca gaa tac acc ggg Asp Arg Ala Trp Asn Ser Gly Tyr Glu Trp Ile Thr Glu Tyr Thr Gly 1850 1855 1860	5682
aag acg gtt tgg ttt gtg cct agt gtc aag atg ggg aat gag att gcc Lys Thr Val Trp Phe Val Pro Ser Val Lys Met Gly Asn Glu Ile Ala 1865 1870 1875	5730
ctt tgc cta caa cgt gct gga aag aaa gta gtc caa ttg aac aga aag Leu Cys Leu Gln Arg Ala Gly Lys Lys Val Val Gln Leu Asn Arg Lys 1880 1885 1890	5778
tcg tac gag acg gag tac cca aaa tgt aag aac gat gat tgg gac ttt Ser Tyr Glu Thr Glu Tyr Pro Lys Cys Lys Asn Asp Asp Trp Asp Phe 1895 1900 1905 1910	5826
gtt atc aca aca gac ata tct gaa atg ggg gct aac ttc aag gcg agc Val Ile Thr Thr Asp Ile Ser Glu Met Gly Ala Asn Phe Lys Ala Ser 1915 1920 1925	5874
agg gtg att gac agc cgg aag agt gtg aaa cca acc atc ata aca gaa Arg Val Ile Asp Ser Arg Lys Ser Val Lys Pro Thr Ile Ile Thr Glu 1930 1935 1940	5922
gga gaa ggg aga gtg atc ctg gga gaa cca tct gca gtg aca gct Gly Glu Gly Arg Val Ile Leu Gly Glu Pro Ser Ala Val Thr Ala Ala 1945 1950 1955	5970
agt gcc gcc cag aga cgt gga cgt atc ggt aga aat ccg tcg caa gtt Ser Ala Ala Gln Arg Arg Gly Arg Ile Gly Arg Asn Pro Ser Gln Val 1960 1965 1970	6018
ggt gat gag tac tgt tat ggg ggg cac acg aat gaa gac gac tcg aac Gly Asp Glu Tyr Cys Tyr Gly Gly His Thr Asn Glu Asp Asp Ser Asn 1975 1980 1985 1990	6066
ttc gcc cat tgg act gag gca cga atc atg ccg gac aac atc aac atg Phe Ala His Trp Thr Glu Ala Arg Ile Met Pro Asp Asn Ile Asn Met 1995 2000 2005	6114
cca aac gga ctg atc gct caa ttc tac caa cca gag cgt gag aag gta Pro Asn Gly Leu Ile Ala Gln Phe Tyr Gln Pro Glu Arg Glu Lys Val 2010 2015 2020	6162
tat acc atg gag ggg gaa tac cgg ctc aga gga gaa gag agg aaa aac Tyr Thr Met Glu Gly Glu Tyr Arg Leu Arg Gly Glu Glu Arg Lys Asn 2025 2030 2035	6210
ttt ctg gaa ctg ttg agg act gca gat ctg cca gtt tgg ctg gct tac Phe Leu Glu Leu Leu Arg Thr Ala Asp Leu Pro Val Trp Leu Ala Tyr 2040 2045 2050 ·	6258
aag gtt gca gcg gct gga gtg tca tac cac gac cgg agg tgg tgc ttt Lys Val Ala Ala Ala Gly Val Ser Tyr His Asp Arg Arg Trp Cys Phe 2055 2060 2065 2070	6306
gat ggt cct agg aca aac aca att tta gaa gac aac aac gaa gtg gaa	6354

Asp (Gly P	ro Ar	g Thi 2075		Thr	Ile	Leu	Glu 2080) Asn	Asn	Glu	2085		
gtc a Val l	atc a [le T]	cg aa nr Ly 209	s Leu	ggt Gly	gaa Glu	Arg	aag Lys 2095	Ile	ctg Leu	agg Arg	Pro	Arç 2100	Trp	ratt lle	6402
gac ç Asp A	gcc ad Ala An 210	rg Va	g tac l Tyr	tcg Ser	gat Asp	cac His 2110	cag Gln	gca Ala	cta Leu	Lys	gcg Ala 2115	Phe	aag Lys	gac Asp	6450
Phe A	gcc to Ala Se 120	eg gg er Gl	a aaa y Lys	cgt Arg	tct Ser 2125	Gln	ata Ile	Gly	Leu	att Ile 2130	gag Glu	gtt Val	ctg Leu	gga Gly	6498
aag a Lys M 2135	itg co Met Pi	et gag co Gli	g cac u His	ttc Phe 2140	atg Met	Gly	aag Lys	Thr	tgg Trp 2145	gaa Glu	gca Ala	ctt Leu	Asp	acc Thr 2150	6546
atg t Met T	ac gt Yr Va	t gto	g gcc l Ala 2155	Thr	gca Ala	gag Glu	Lys	gga Gly 2160	gga Gly	aga Arg	gct Ala	cac	aga Arg 2165	atg Met	6594
gcc c Ala L	tg ga eu Gl	ig gaa .u Gli 2170	ı Leu	cca Pro	gat Asp	Ala	ctt Leu 2175	cag Gln	aca Thr	att Ile	Ala	ttg Leu 2180	att Ile	gcc Ala	6642
tta t Leu L	tg ag eu Se 218	r Val	g atg L Met	acc Thr	Met	gga Gly 2190	gta Val	ttc Phe	ttc Phe	Leu	ctc Leu 2195	atg Met	cag Gl.n	cgg Arg	6690
aag g Lys G 22	ly Il	t gga e Gly	aag Lys	Ile	ggt Gly 2205	ttg Leu	gga Gly	ggc Gly	Ala	gtc Val 2210	ttg Leu	gga Gly	gtc Val	gcg Ala	6738
acc t Thr Pl 2215	tt tt he Ph	c tgt e Cys	Trp	atg Met 2220	gct Ala	gaa Glu	gtt Val	Pro	gga Gly 2225	acg Thr	aag Lys	atc Ile	Āla	gga Gly 2230	6786
atg ti Met Le	tg ct eu Le	u Leu	Ser 2235	ctt Leu	ctc Leu	ttg Leu	Met	att Ile 2240	gtg Val	cta Leu	att Ile	Pro	gag Glu 2245	cca Pro	6834
gag aa Glu Ly	ag ca ys Gl:	a cgt n Arg 2250	Ser	cag Gln	aca Thr	Asp	aac Asn 255	cag Gln	cta Leu	gcc Ala	Val	ttc Phe 260	ctg Leu	att Ile	6882
tgt gt Cys Va	tc ate al Me 226	t Thr	ctt Leu	gtg Val	Ser	gca Ala 270	gtg Val	gca Ala	gcc Ala	Asn	gag Glu 275	atg Met	ggt Gly	tgg Trp	6930
cta ga Leu As 228	sp Lys	g acc s Thr	aag Lys	Ser	gac Asp 285	ata Ile	agc Ser	agt Ser	Leu	ttt Phe 290	ggg Gly	caa Gln	aga Arg	att Ile	6978
gag gt Glu Va 2295	c aaq l Lys	g gag s Glu	Asn	ttc Phe 300	agc Ser	atg Met	gga Gly	Glu	ttt Phe 305	ctt (Leu :	ctg Leu	gac Asp	Leu	agg Arg 310	7026
ccg gc Pro Al	a aca a Thr	gcc Ala	tgg Trp	tca Ser	ctg Leu	tac (Tyr 1	gct Ala	gtg Val	aca a	aca o	gcg Ala	gtc Val	ctc Leu	act Thr	7074

	2315	2320	2325	
Pro Leu Leu	aag cat ttg atc Lys His Leu Ilc 330	c acg tca gat tag e Thr Ser Asp Ty 2335	e atc aac acc tca r lle Asn Thr Ser 2340	ttg 7122 Leu
acc tca ata Thr Ser Ile 2345	aac gtt cag gc Asn Val Gln Ala	a agt gca cta tto a Ser Ala Leu Pho 2350	e aca ctc gcg cga e Thr Leu Ala Arg 2355	ggc 7170 Gly
		y Val Ser Ala Le	c ctg cta gca gcc 1 Leu Leu Ala Ala 2370	
			a aca gcg gca aca L Thr Ala Ala Thr S	
ctt ttt tgc Leu Phe Cys	cac tat gcc tac His Tyr Ala Ty: 2395	e atg gtt ccc ggt Met Val Pro Gly 2400	tgg caa gct gag 7 Trp Gln Ala Glu 2405	gca 7314 Ala
Met Arg Ser			a atc atg aaa aac 7 Ile Met Lys Asn 2420	
gta gtg gat Val Val Asp 2425	ggc atc gtg gcc Gly Ile Val Ala	c acg gac gtc cca a Thr Asp Val Pro 2430	gaa tta gag cgc Glu Leu Glu Arg 2435	acc 7410 Thr
		Val Gly Gln Ile	e atg ctg atc ttg e Met Leu Ile Leu 2450	
			g aag aca gta cga . Lys Thr Val Arg . 2	
			ctt tgg gag aat Leu Trp Glu Asn 2485	
Ala Ser Ser			gga ctc tgc cac Gly Leu Cys His 2500	
			aca tgg aca ctc Thr Trp Thr Leu 2515	
_		Leu Lys Arg Gly	ggg gca aaa gga Gly Ala Lys Gly 2530	_
			cag atg aca aaa Gln Met Thr Lys 2	
			gaa gtc gat cgc Glu Val Asp Arg 2565	

gcg gca aaa cac gcc agg aaa gaa ggc aat gtc act gga ggg cat tca Ala Ala Lys His Ala Arg Lys Glu Gly Asn Val Thr Gly Gly His Ser 2570 2575 2580	7842
gtc tct agg ggc aca gca aaa ctg aga tgg ctg gtc gaa cgg agg ttt Val Ser Arg Gly Thr Ala Lys Leu Arg Trp Leu Val Glu Arg Arg Phe 2585 2590 2595	7890
ctc gaa ccg gtc gga aaa gtg att gac ctt gga tgt gga aga ggc ggt Leu Glu Pro Val Gly Lys Val Ile Asp Leu Gly Cys Gly Arg Gly Gly 2600 2605 2610	7938
tgg tgt tac tat atg gca acc caa aaa aga gtc caa gaa gtc aga ggg Trp Cys Tyr Tyr Met Ala Thr Gln Lys Arg Val Gln Glu Val Arg Gly 2615 2620 2625 2630	7986 ·
tac aca aag ggc ggt ccc gga cat gaa gag ccc caa cta gtg caa agt Tyr Thr Lys Gly Gly Pro Gly His Glu Glu Pro Gln Leu Val Gln Ser 2635 2640 2645	8034
tat gga tgg aac att gtc acc atg aag agt gga gtg gat gtg ttc tac Tyr Gly Trp Asn Ile Val Thr Met Lys Ser Gly Val Asp Val Phe Tyr 2650 2655 2660	8082
aga cct tct gag tgt tgt gac acc ctc ctt tgt gac atc gga gag tcc Arg Pro Ser Glu Cys Cys Asp Thr Leu Leu Cys Asp Ile Gly Glu Ser · 2665 2670 2675	8130
tcg tca agt gct gag gtt gaa gag cat agg acg att cgt gtc ctt gaa Ser Ser Ser Ala Glu Val Glu Glu His Arg Thr Ile Arg Val Leu Glu 2680 2685 2690	8178
atg gtt gag gac tgg ctg cac cga ggg cca agg gaa ttt tgc gtg aag Met Val Glu Asp Trp Leu His Arg Gly Pro Arg Glu Phe Cys Val Lys 2695 2700 2705 2710	8226
gtg ctc tgc ccc tac atg ccg aaa gtc ata gag aag atg gag ctg ctc Val Leu Cys Pro Tyr Met Pro Lys Val Ile Glu Lys Met Glu Leu Leu 2715 2720 2725	8274
caa cgc cgg tat ggg ggg gga ctg gtc aga aac cca ctc tca cgg aat Gln Arg Arg Tyr Gly Gly Gly Leu Val Arg Asn Pro Leu Ser Arg Asn 2730 2735 2740	8322
tcc acg cac gag atg tat tgg gtg agt cga gct tca ggc aat gtg gta Ser Thr His Glu Met Tyr Trp Val Ser Arg Ala Ser Gly Asn Val Val 2745 2750 . 2755	8370
cat toa gtg aat atg acc agc cag gtg ctc cta gga aga atg gaa aaa His Ser Val Asn Met Thr Ser Gln Val Leu Leu Gly Arg Met Glu Lys 2760 2765 2770	8418
agg acc tgg aag gga ccc caa tac gag gaa gat gta aac ttg gga agc Arg Thr Trp Lys Gly Pro Gln Tyr Glu Glu Asp Val Asn Leu Gly Ser 2775 2780 2785 2790	8466
gga acc agg gcg gtg gga aaa ccc ctg ctc aac tca gac acc agt aaa Gly Thr Arg Ala Val Gly Lys Pro Leu Leu Asn Ser Asp Thr Ser Lys 2795 2800 2805	8514

		Asn			gaa Glu		Leu					Ser				8562
	His				cac His	Pro					Asn					8610
Tyr					aca Thr					Ser						8658
gtc Val 285	Arg	ctc Leu	ctc Leu	Ser	aaa Lys 2860	cca Pro	tgg Trp	gac Asp	Thr	atc Ile 2865	acg Thr	aat Asn	gtt Val	Thr	acc Thr 2870	8706
			Thr		act Thr			Phe					Val			8754
		Val			aaa Lys		Pro					Gly				8802
	Leu				acc Thr	Asn		_			Phe	_	-	_	_	8850
Lys	_		-	_	tgc Cys		_		-	Phe		_	_			8898
-	Asn	-	-	Leu	ggt Gly 2940				Glu					Trp		8946
			Glu		gtt Val			Pro					Met			8994
		Arg		_	cat His	-	Arg		-	-		Thr	_			9042
	Met				aga Arg	Glu					Glu					9090
Lys					att Ile 3					Leu						9138
	Phe			Leu	ggt Gly 1020				Glu					Gly		9186
			Gly		ggt Gly			Gly					Lys			9234
tac	atc	ctg	cgt	gaa	gtt	ggc	acc	cgg	cct	ggg	ggc	aag	atc	tat	gct	9282

Tyr I	Ile		Arg 3050	Glu	Val	Gly		Arg 3055	Pro	Gly	Gly	-	11e 3060	_	Ala	
gat q Asp A	Asp					Asp		Arg			Arg					9330
aat o Asn O	-	-	_		Leu		_		_	Gly	-			_		9378
gcc a Ala A 3095		_		Ile					Arg			_				9426
atg o	_		Ala	_	_		_	Thr	_	_	-	-	Ile		Arg	9474
gaa g Glu A		Gln					Gln					Ala				9522
ttc a Phe T	'hr		_	_	_	Gln				_	Met	_		-		9570
gtg a Val I 31					Asp					Thr						9618
aaa g Lys V 3175				Trp					Gly					Ser		9666
atg g Met A			Ser					Val					Asp			9714
ttt g Phe A		Thr	_				Leu		-	_		Lys	-	_		9762
gac a Asp I	le					Pro					Tyr					9810
gtt c Val P: 32	ro :				Asn					Leu						9858
aga ad Arg Tl 3255				Val					Gln					Gly		9906
get eq Ala Ai			Ser :					Trp					Thr			9954
ctg go Leu Al	ct a la I	aag Lys	tct Ser '	tat (gcc Ala	cag Gln	atg Met	tgg Trp	ctg Leu	ctt Leu	ctg Leu	tac Tyr	ttc Phe	cac His	aga Arg	10002

3290 3295 3300	
aga gac ctg cgg ctc atg gcc aac gcc att tgc tcc gct gtc cct gtg Arg Asp Leu Arg Leu Met Ala Asn Ala Ile Cys Ser Ala Val Pro Val 3305 3310 3315	10050
aat tgg gtc cct acc gga aga acc acg tgg tcc atc cat gca gga gga Asn Trp Val Pro Thr Gly Arg Thr Thr Trp Ser Ile His Ala Gly Gly 3320 3325 3330	10098
gag tgg atg aca aca gag gac atg ttg gag gtc tgg aac cgt gtt tgg Glu Trp Met Thr Thr Glu Asp Met Leu Glu Val Trp Asn Arg Val Trp 3335 3340 3345 3350	10146
ata gag gag aat gaa tgg atg gaa gac aaa acc cca gtg gag aaa tgg Ile Glu Glu Asn Glu Trp Met Glu Asp Lys Thr Pro Val Glu Lys Trp 3355 3360 3365	10194
agt gac gtc cca tat tca gga aaa cga gag gac atc tgg tgt ggc agc Ser Asp Val Pro Tyr Ser Gly Lys Arg Glu Asp Ile Trp Cys Gly Ser 3370 3375 3380	10242
ctg att ggc aca aga gcc cga gcc acg tgg gca gaa aac atc cag gtg Leu Ile Gly Thr Arg Ala Arg Ala Thr Trp Ala Glu Asn Ile Gln Val 3385 3390 3395	10290
gct atc aac caa gtc aga gca atc atc gga gat gag aag tat gtg gat Ala Ile Asn Gln Val Arg Ala Ile Ile Gly Asp Glu Lys Tyr Val Asp 3400 3405 3410	10338
tac atg agt tca cta aag aga tat gaa gac aca act ttg gtt gag gac Tyr Met Ser Ser Leu Lys Arg Tyr Glu Asp Thr Thr Leu Val Glu Asp 3415 3420 3425 3430	10386
aca gta ctg tagatattta atcaattgta aatagacaat ataagtatgc Thr Val Leu	10435
ataaaagtgt agttttatag tagtatttag tggtgttagt gtaaatagtt aagaaaattt	10495
tgaggagaaa gtcaggccgg gaagttcccg ccaccggaag ttgagtagac ggtgctgcct	10555
gcgactcaac cccaggagga ctgggtgaac aaagccgcga agtgatccat gtaagccctc	10615
agaaccgtct cggaaggagg accccacatg ttgtaacttc aaagcccaat gtcagaccac	10675
getacggegt getactetge ggagagtgea gtetgegata gtgeeceagg aggaetgggt	10735
taacaaaggc aaaccaacgc cccacgcggc cctagccccg gtaatggtgt taaccagggc	10795
gaaaggacta gaggttagag gagaccccgc ggtttaaagt gcacggccca gcctgactga	10855
agetgtaggt caggggaagg actagaggtt agtggagacc ccgtgccaca aaacaccaca	10915

acaaacagc atattgacac ctgggataga ctaggagatc ttctgctctg cacaaccagc 10975

cacacggcac agtgcgccga caatggtggc tggtggtgcg agaacacagg atct

<210> 2

<211> 3433

<212> PRT

<213> Flavivirus sp.

Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg 20 25 30

Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu 35 40 45

Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala 50 60

Val Leu Asp Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His
65 70 75 80

Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala

Val Met Ile Gly Leu Ile Ala Ser Val Gly Ala Val Thr Leu Ser Asn-115 120 125

Phe Gln Gly Lys Val Met Met Thr Val Asn Ala Thr Asp Val Thr Asp 130 135 140

Val Ile Thr Ile Pro Thr Ala Ala Gly Lys Asn Leu Cys Ile Val Arg 145 150 155 160

Ala Met Asp Val Gly Tyr Met Cys Asp Asp Thr Ile Thr Tyr Glu Cys

Pro Val Leu Ser Ala Gly Asn Asp Pro Glu Asp Ile Asp Cys Trp Cys 180 185 190

Thr Lys Ser Ala Val Tyr Val Arg Tyr Gly Arg Cys Thr Lys Thr Arg 195 200 205

His Ser Arg Arg Ser Arg Arg Ser Leu Thr Val Gln Thr His Gly Glu 210 215 220

Ser Thr Leu Ala Asn Lys Lys Gly Ala Trp Met Asp Ser Thr Lys Ala 225 230 235 240

Thr Arg Tyr Leu Val Lys Thr Glu Ser Trp Ile Leu Arg Asn Pro Gly 245 250 255

Tyr Ala Leu Val Ala Ala Val Ile Gly Trp Met Leu Gly Ser Asn Thr 260 265 270

Met Gln Arg Val Val Phe Val Val Leu Leu Leu Leu Val Ala Pro Ala 275 280 285

Tyr Ser Phe Asn Cys Leu Gly Met Ser Asn Arg Asp Phe Leu Glu Gly 290 295 300

Val Ser Gly Ala Thr Trp Val Asp Leu Val Leu Glu Gly Asp Ser Cys

305					310	ı				315	i				320
Val	Thr	Ile	Met	Ser 325	_	Asp	Lys	Pro	Thr 330		e Asp	Val	. Lys	Met 335	Met
Asn	Met	Glu	Ala 340		Asn	Leu	Ala	Glu 345		. Arg	Ser	Tyr	Cys 350	_	Leu
Ala	Thr	Val 355		Asp	Leu	Ser	Thr 360		: Ala	a Ala	Cys	Pro 365		Met	Gly
Glu	Ala 370		Asn	Asp	Lys	Arg 375		Asp	Pro	Ala	Phe 380		Cys	Arg	Gln
Gly 385	Val	Val	Asp	Arg	Gly 390		Gly	Asn	Gly	Cys 395		Leu	Phe	Gly	Lys 400
Gly	Ser	Ile	Asp	Thr 405		Ala	Lys	Phe	Ala 410	_	Ser	Thr	Lys	Ala 415	Ile
Gly	Arg	Thr	Ile 420		Lys	Glu	Asn	Ile 425	-	Tyr	Glu	Val	Ala 430	Ile	Phe
Val	His	Gly 435		Thr	Thr	Val	Glu 440		His	Gly	Asn	Tyr 445	Ser	Thr	Gln
Val	Gly 450	Ala	Thr	Gln	Ala	Gly 455	Arg	Phe	Ser	Ile	Thr 460	Pro	Ala	Ala	Pro
Ser 465	Tyr	Thr	Leu	Lys	Leu 470	Gly	Glu	Tyr	Gly	Glu 475	Val	Thr	Val	Asp	Cys 480
Glu	Pro	Arg	Ser	Gly 485	Ile	Asp	Thr	Asn	Ala 490	Tyr	Tyr	Val	Met	Thr 495	Val
Gly	Thr	Lys	Thr 500	Phe	Leu	Val	His	Arg 505	Glu	Trp	Phe	Met	Asp 510	Leu	Asn
Leu	Pro	Trp 515	Ser	Ser	Ala	Gly	Ser 520	Thr	Val	Trp	Arg	Asn 525	Arg	Glu	Thr
Leu	Met 530	Glu	Phe	Glu	Glu	Pro 535	His	Ala	Thr	Lys	Gln 540	Ser	Val	Ile	Ala
Leu 545	Gl _, y	Ser	Gln	Glu	Gly 550	Ala	Leu	His	Gln	Ala 555	Leu	Ala	Gly	Ala	Ile 560
Pro	Val	Glu	Phe	Ser 565	Ser	Asn	Thr	Val	Lys 570	Leu	Thr	Ser	Gly	His 575	Leu
Lys	Cys	Arg	Val 580	Lys	Met	Glu	Lys	Leu 585	Gln	Leu	Lys	Gly	Thr 590	Thr	Tyr
Gly	Val	Cys 595	Ser	Lys	Ala	Phe	Lys 600	Phe	Leu	Gly	Thr	Pro 605	Ala	Asp	Thr
	His 610	Gly	Thr	Val	Val	Leu 615	Glu	Leu	Gln	Tyr	Thr 620	Gly	Thr	Asp	Gly
Pro 625	Cys	Lys	Val	Pro	Ile 630	Ser	Ser	Val	Ala	Ser 635	Leu	Asn	Asp		Thr 640

 Pro
 Val
 Gly
 Arg
 Leu
 Val
 Thr
 Val
 Asn
 Pro
 Phe
 Val
 Ser
 Val
 Ala
 Thr
 655
 Thr
 650
 Pho
 Pro
 Pro</th

Leu Ala Lys Ile Ile Gln Lys Ala His Lys Glu Gly Val Cys Gly Leu 835 840 845

Arg Ser Val Ser Arg Leu Glu His Gln Met Trp Glu Ala Val Lys Asp

Arg Gin Glu Leu Arg Cys Gly Asn Gly Val Phe Ile His Asn Asp Val

Glu Ala Trp Met Asp Arg Tyr Lys Tyr Tyr Pro Glu Thr Pro Gln Gly

850 855 860

Glu Leu Asn Thr Leu Leu Lys Glu Asn Gly Val Asp Leu Ser Val Val
865 870 875 880

Val Glu Lys Gln Glu Gly Met Tyr Lys Ser Ala Pro Lys Arg Leu Thr 885 890 895

Ala Thr Thr Glu Lys Leu Glu Ile Gly Trp Lys Ala Trp Gly Lys Ser 900 905 910

Ile Leu Phe Ala Pro Glu Leu Ala Asn Asn Thr Phe Val Val Asp Gly 915 920 925

Pro Glu Thr Lys Glu Cys Pro Thr Gln Asn Arg Ala Trp Asn Ser Leu 930 935 940

Glu Val Glu Asp Phe Gly Phe Gly Leu Thr Ser Thr Λ rg Met Phe Leu 945 950 955 960

- Lys Val Arg Glu Ser Asn Thr Thr Glu Cys Asp Ser Lys Ile Ile Gly 965 970 975
- Thr Ala Val Lys Asn Asn Leu Ala Ile His Ser Asp Leu Ser Tyr Trp 980 985 990
- Ile Glu Ser Arg Leu Asn Asp Thr Trp Lys Leu Glu Arg Ala Val Leu 995 1000 1005
- Gly Glu Val Lys Ser Cys Thr Trp Pro Glu Thr His Thr Leu Trp Gly 1010 1020
- Asp Gly Ile Leu Glu Ser Asp Leu Ile Ile Pro Val Thr Leu Ala Gly 025 1030 1035 1040
- Pro Arg Ser Asn His Asn Arg Arg Pro Gly Tyr Lys Thr Gln Asn Gln
 1045 1050 1055
- Gly Pro Trp Asp Glu Gly Arg Val Glu Ile Asp Phe Asp Tyr Cys Pro 1060 1065 1070
- Gly Thr Thr Val Thr Leu Ser Glu Ser Cys Gly His Arg Gly Pro Ala 1075 1080 1085
- Thr Arg Thr Thr Glu Ser Gly Lys Leu Ile Thr Asp Trp Cys Cys 1090 1095 1100
- Arg Ser Cys Thr Leu Pro Pro Leu Arg Tyr Gln Thr Asp Ser Gly Cys
 105 1110 1115 1120
- Trp Tyr Gly Met Glu Ile Arg Pro Gln Arg His Asp Glu Lys Thr Leu 1125 . 1130 1135
- Val Gln Ser Gln Val Asn Ala Tyr Asn Ala Asp Met Ile Asp Pro Phe 1140 1145 1150
- Gln Leu Gly Leu Leu Val Val Phe Leu Ala Thr Gln Glu Val Leu Arg 1155 1160 1165
- Lys Arg Trp Thr Ala Lys Ile Ser Met Pro Ala Ile Leu Ile Ala Leu 1170 1175 1180
- Leu Val Leu Val Phe Gly Gly Ile Thr Tyr Thr Asp Val Leu Arg Tyr 185 1190 1195 1200
- Val Ile Leu Val Gly Ala Ala Phe Ala Glu Ser Asn Ser Gly Gly Asp 1205 1210 1215
- Val Val His Leu Ala Leu Met Ala Thr Phe Lys Ile Gln Pro Val Phe 1220 1225 1230
- Met Val Ala Ser Phe Leu Lys Ala Arg Trp Thr Asn Gln Glu Asn Ile 1235 1240 1245
- Leu Leu Met Leu Ala Ala Val Phe Phe Gln Met Ala Tyr His Asp Ala 1250 1260
- Arg Gln Ile Leu Leu Trp Glu Ile Pro Asp Val Leu Asn Ser Leu Ala 265 1270 1275 1280
- Val Ala Trp Met Ile Leu Arg Ala Ile Thr Phe Thr Thr Thr Ser Asn

- Val Val Pro Leu Leu Ala Leu Leu Thr Pro Arg Leu Arg Cys Leu 1300 1305 · 1310
- Asn Leu Asp Val Tyr Arg Ile Leu Leu Leu Met Val Gly Ile Gly Ser 1315 1320 1325
- Leu Ile Arg Glu Lys Arg Ser Ala Ala Ala Lys Lys Gly Ala Ser 1330 1335 1340
- Leu Leu Cys Leu Ala Leu Ala Ser Thr Gly Leu Phe Asn Pro Met Ile 345 1350 1355 1360
- Leu Ala Ala Gly Leu Ile Ala Cys Asp Pro Asn Arg Lys Arg Gly Trp
 1365 1370 1375
- Pro Ala Thr Glu Val Met Thr Ala Val Gly Leu Met Phe Ala Ile Val 1380 , 1385 1390
- Gly Gly Leu Ala Glu Leu Asp Ile Asp Ser Met Ala Ile Pro Met Thr 1395 1400 1405
- Ile Ala Gly Leu Met Phe Ala Ala Phe Val Ile Ser Gly Lys Ser Thr 1410 1415 1420
- Asp Met Trp Ile Glu Arg Thr Ala Asp Ile Ser Trp Glu Ser Asp Ala 425 1430 1435 1440
- Glu Ile Thr Gly Ser Ser Glu Arg Val Asp Val Arg Leu Asp Asp Gly
 1445 1450 1455
- Glu Asn Phe Gln Leu Met Asn Asp Pro Gly Ala Pro Trp Lys Ile Trp
 1460 1465 1470
- Met Leu Arg Met Val Cys Leu Ala Ile Ser Ala Tyr Thr Pro Trp Ala 1475 1480 . 1485
- Ile Leu Pro Ser Val Val Gly Phe Trp Ile Thr Leu Gln Tyr Thr Lys 1490 1495 1500
- Arg Gly Gly Val Leu Trp Asp Thr Pro Ser Pro Lys Glu Tyr Lys Lys 505 1510 1515 1520
- Gly Asp Thr Thr Thr Gly Val Tyr Arg Ile Met Thr Arg Gly Leu Leu 1525 1530 1535
- Gly Ser Tyr Gln Ala Gly Ala Gly Val Met Val Glu Gly Val Phe His $1540 \,$ 1545 $\,$ 1550
- Thr Leu Trp His Thr Thr Lys Gly Ala Ala Leu Met Ser Gly Glu Gly 1555 1560 1565
- Arg Leu Asp Pro Tyr Trp Gly Ser Val Lys Glu Asp Arg Leu Cys Tyr 1570 1575 1580
- Gly Gly Pro Trp Lys Leu Gln His Lys Trp Asn Gly Gln Asp Glu Val 585 1590 1595 1600
- Gln Met Ile Val Val Glu Pro Gly Lys Asn Val Lys Asn Val Gln Thr 1605 1610 1615

- Lys Pro Gly Val Phe Lys Thr Pro Glu Gly Glu Ile Gly Ala Val Thr 1620 1625 1630
- Leu Asp Phe Pro Thr Gly Thr Ser Gly Ser Pro Ile Val Asp Lys Asn 1635 1640 1645
- Gly Asp Val Ile Gly Leu Tyr Gly Asn Gly Val Ile Met Pro Asn Gly 1650 1655 1660
- Ser Tyr Ile Ser Ala Ile Val Gln Gly Glu Arg Met Asp Glu Pro Ile 665 1670 1680
- Pro Ala Gly Phe Glu Pro Glu Met Leu Arg Lys Lys Gln Ile Thr Val 1685 1690 1695
- Leu Asp Leu His Pro Gly Ala Gly Lys Thr Arg Arg Ile Leu Pro Gln
 1700 1705 1710
- Ile Ile Lys Glu Ala Ile Asn Arg Arg Leu Arg Thr Ala Val Leu Ala 1715 1720 1725
- Pro Thr Arg Val Val Ala Ala Glu Met Ala Glu Ala Leu Arg Gly Leu 1730 1740
- Pro Ile Arg Tyr Gln Thr Ser Ala Val Pro Arg Glu His Asn Gly Asn 745 1750 1755 1760
- Glu Ile Val Asp Val Met Cys His Ala Thr Leu Thr His Arg Leu Met 1765 1770 1775
- Ser Pro His Arg Val Pro Asn Tyr Asn Leu Phe Val Met Asp Glu Ala 1780 1785 1790
- His Phe Thr Asp Pro Ala Ser Ile Ala Ala Arg Gly Tyr Ile Ser Thr 1795 1800 1805
- Lys Val Glu Leu Gly Glu Ala Ala Ile Phe Met Thr Ala Thr Pro 1810 1815 1820
- Pro Gly Thr Ser Asp Pro Phe Pro Glu Ser Asn Ser Pro Ile Ser Asp 825 1830 1835 1840
- Leu Gln Thr Glu Ile Pro Asp Arg Ala Trp Asn Ser Gly Tyr Glu Trp
 1845 1850 1855
- Ile Thr Glu Tyr Thr Gly Lys Thr Val Trp Phe Val Pro Ser Val Lys \$1860\$ \$1865\$ \$1870
- Met Gly Asn Glu Ile Ala Leu Cys Leu Gln Arg Ala Gly Lys Lys Val 1875 1880 1885
- Val Gln Leu Asn Arg Lys Ser Tyr Glu Thr Glu Tyr Pro Lys Cys Lys 1890 1895 1900
- Asn Asp Asp Trp Asp Phe Val Ile Thr Thr Asp Ile Ser Glu Met Gly 905 1910 1915 1920
- Ala Asn Phe Lys Ala Ser Arg Val Ile Asp Ser Arg Lys Ser Val Lys 1925 1930 1935

- Pro Thr Ile Ile Thr Glu Gly Glu Gly Arg Val Ile Leu Gly Glu Pro 1940 1945 1950
- Ser Ala Val Thr Ala Ala Ser Ala Ala Gln Arg Arg Gly Arg Ile Gly 1955 1960 1965
- Arg Asn Pro Ser Gln Val Gly Asp Glu Tyr Cys Tyr Gly Gly His Thr 1970 1975 1980
- Asn Glu Asp Asp Ser Asn Phe Ala His Trp Thr Glu Ala Arg Ile Met 985 1990 . 1995 2000
- Pro Asp Asn Ile Asn Met Pro Asn Gly Leu Ile Ala Gln Phe Tyr Gln 2005 . 2010 2015
- Pro Glu Arg Glu Lys Val Tyr Thr Met Glu Gly Glu Tyr Arg Leu Arg
 2020 2025 2030
- Gly Glu Glu Arg Lys Asn Phe Leu Glu Leu Leu Arg Thr Ala Asp Leu 2035 2040 2045
- Pro Val Trp Leu Ala Tyr Lys Val Ala Ala Ala Gly Val Ser Tyr His 2050 2055 2060
- Asp Arg Arg Trp Cys Phe Asp Gly Pro Arg Thr Asn Thr Ile Leu Glu 065 2070 2075 2080
- Asp Asn Asn Glu Val Glu Val Ile Thr Lys Leu Gly Glu Arg Lys Ile 2085 2090 2095
- Leu Arg Pro Arg Trp Ile Asp Ala Arg Val Tyr Ser Asp His Gln Ala .. 2100 2105 2110
- Leu Lys Ala Phe Lys Asp Phe Ala Ser Gly Lys Arg Ser Gln Ile Gly 2115 2120 2125
- Leu Ile Glu Val Leu Gly Lys Met Pro Glu His Phe Met Gly Lys Thr 2130 2135 2140
- Trp Glu Ala Leu Asp Thr Met Tyr Val Val Ala Thr Ala Glu Lys Gly
 145 2150 2155 2160
- Gly Arg Ala His Arg Met Ala Leu Glu Glu Leu Pro Asp Ala Leu Gln
 2165 2170 2175
- Thr Ile Ala Leu Ile Ala Leu Leu Ser Val Met Thr Met Gly Val Phe 2180 2185 2190
- Phe Leu Leu Met Gln Arg Lys Gly Ile Gly Lys Ile Gly Leu Gly Gly 2195 2200 2205
- Ala Val Leu Gly Val Ala Thr Phe Phe Cys Trp Met Ala Glu Val Pro 2210 2215 2220
- Gly Thr Lys Ile Ala Gly Met Leu Leu Ser Leu Leu Leu Met Ile 225 2230 2235 2240
- Val Leu Ile Pro Glu Pro Glu Lys Gln Arg Ser Gln Thr Asp Asn Gln \$2245\$ \$2250\$ \$2255\$
- Leu Ala Val Phe Leu Ile Cys Val Met Thr Leu Val Ser Ala Val Ala

2260 2265 2270 Ala Asn Glu Met Gly Trp Leu Asp Lys Tnr Lys Ser Asp Ile Ser Ser 2280 Leu Phe Gly Gln Arg Ile Glu Val Lys Glu Asn Phe Ser Met Gly Glu Phe Leu Leu Asp Leu Arg Pro Ala Thr Ala Trp Ser Leu Tyr Ala Val 2315 Thr Thr Ala Val Leu Thr Pro Leu Leu Lys His Leu Ile Thr Ser Asp 2330 Tyr Ile Asn Thr Ser Leu Thr Ser Ile Asn Val Gln Ala Ser Ala Leu 2345 Phe Thr Leu Ala Arg Gly Phe Pro Phe Val Asp Val Gly Val Ser Ala Leu Leu Leu Ala Ala Gly Cys Trp Gly Gln Val Thr Leu Thr Val Thr Val Thr Ala Ala Thr Leu Leu Phe Cys His Tyr Ala Tyr Met Val Pro 2390 2395 Gly Trp Gln Ala Glu Ala Met Arg Ser Ala Gln Arg Arg Thr Ala Ala 2405 2410 Gly Ile Met Lys Asn Ala Val Val Asp Gly Ile Val Ala Thr Asp Val 2425 Pro Glu Leu Glu Arg Thr Thr Pro Ile Met Gln Lys Lys Val Gly Gln Ile Met Leu Ile Leu Val Ser Leu Ala Ala Val Val Asn Pro Ser Val Lys Thr Val Arg Glu Ala Gly Ile Leu Ile Thr Ala Ala Ala Val 2470 2475 Thr Leu Trp Glu Asn Gly Ala Ser Ser Val Trp Asn Ala Thr Thr Ala 2490 Ile Gly Leu Cys His Ile Met Arg Gly Gly Trp Leu Ser Cys Leu Ser 2505 Ile Thr Trp Thr Leu Ile Lys Asn Met Glu Lys Pro Gly Leu Lys Arg Gly Gly Ala Lys Gly Arg Thr Leu Gly Glu Val Trp Lys Glu Arg Leu Asn Gln Met Thr Lys Glu Glu Phe Thr Arg Tyr Arg Lys Glu Ala Ile Ile Glu Val Asp Arg Ser Ala Ala Lys His Ala Arg Lys Glu Gly Asn 2565 2570

Val Thr Gly Gly His Ser Val Ser Arg Gly Thr Ala Lys Leu Arg Trp 2585

2590

- Leu Val Glu Arg Arg Phe Leu Glu Pro Val Gly Lys Val Ile Asp Leu 2595 2600 2605
- Gly Cys Gly Arg Gly Gly Trp Cys Tyr Tyr Met Ala Thr Gln Lys Arg 2610 2615 2620
- Val Gln Glu Val Arg Gly Tyr Thr Lys Gly Gly Pro Gly His Glu Glu 625 2630 2635 2640
- Pro Gln Leu Val Gln Ser Tyr Gly Trp Asn Ile Val Thr Met Lys Ser 2645 2650 2655
- Gly Val Asp Val Phe Tyr Arg Pro Ser Glu Cys Cys Asp Thr Leu Leu 2660 2665 2670
- Cys Asp Ile Gly Glu Ser Ser Ser Ala Glu Val Glu His Arg 2675 2680 2685
- Thr Ile Arg Val Leu Glu Met Val Glu Asp Trp Leu His Arg Gly Pro 2690 2695 2700
- Arg Glu Phe Cys Val Lys Val Leu Cys Pro Tyr Met Pro Lys Val Ile 705 2710 2715 2720
- Glu Lys Met Ġlu Leu Gln Arg Arg Tyr Gly Gly Gly Leu Val Arg $\cdot 2725$ 2730 2735
- Asn Pro Leu Ser Arg Asn Ser Thr His Glu Met Tyr Trp Val Ser Arg 2740 2745 2750
- Ala Ser Gly Asn Val Val His Ser Val Asn Met Thr Ser Gln Val Leu 2755 2760 2765
- Leu Gly Arg Met Glu Lys Arg Thr Trp Lys Gly Pro Gln Tyr Glu Glu 2770 2775 2780
- Asp Val Asn Leu Gly Ser Gly Thr Arg Ala Val Gly Lys Pro Leu Leu 785 2790 2795 2800
- Asn Ser Asp Thr Ser Lys Ile Asn Asn Arg Ile Glu Arg Leu Arg Arg 2805 2810 2815
- Glu Tyr Ser Ser Thr Trp His His Asp Glu Asn His Pro Tyr Arg Thr 2820 2825 2830
- Trp Asn Tyr His Gly Ser Tyr Asp Val Lys Pro Thr Gly Ser Ala Ser 2835 2840 2845
- Ser Leu Val Asn Gly Val Val Arg Leu Leu Ser Lys Pro Trp Asp Thr 2850 2855 2860
- Ile Thr Asn Val Thr Thr Met Ala Met Thr Asp Thr Thr Pro Phe Gly 865 2870 2875 2880
- Gln Gln Arg Val Phe Lys Glu Lys Val Asp Thr Lys Ala Pro Glu Pro 2885 2890 2895
- Pro Glu Gly Ala Lys Tyr Val Leu Asn Glu Thr Thr Asn Trp Leu Trp 2900 2905 2910

- Ala Phe Leu Ala Arg Glu Lys Arg Pro Arg Met Cys Ser Arg Glu Glu 2915 2920 2925
- Phe Ile Arg Lys Val Asn Ser Asn Ala Ala Leu Gly Ala Met Phe Glu 2930 2935 2940
- Glu Gln Asn Gln Trp Arg Ser Ala Arg Glu Ala Val Glu Asp Pro Lys 945 2950 2955 2960
- Phe Trp Glu Met Val Asp Glu Glu Arg Glu Ala His Leu Arg Gly Glu 2965 2970 2975
- Cys His Thr Cys Ile Tyr Asn Met Met Gly Lys Arg Glu Lys Lys Pro $2980 \hspace{1.5cm} 2985 \hspace{1.5cm} 2990$
- Gly Glu Phe Gly Lys Ala Lys Gly Ser Arg Ala Ile Trp Phe Met Trp 2995 3000 3005
- Leu Gly Ala Arg Phe Leu Glu Phe Glu Ala Leu Gly Phe Leu Asn Glu 3010 3015 3020
- Asp His Trp Leu Gly Arg Lys Asn Ser Gly Gly Gly Val Glu Gly Leu 025 3030 3035 3040
- Gl \hat{y} Leu Gln Lys Leu Gly Tyr Ile Leu Arg Glu Val Gly Thr Arg Pro 3045 3050 3055
- Gly Gly Lys Ile Tyr Ala Asp Asp Thr Ala Gly Trp Asp Thr Arg Ile 3060 3065 3070
- Thr Arg Ala Asp Leu Glu Asn Glu Ala Lys Val Leu Glu Leu Leu Asp 3075 3080 3085
- Gly Glu His Arg Arg Leu Ala Arg Ala Ile Ile Glu Leu Thr Tyr Arg 3090 . 3095 3100
- His Lys Val Val Lys Val Met Arg Pro Ala Ala Asp Gly Arg Thr Val
- Met Asp Val Ile Ser Arg Glu Asp Gln Arg Gly Ser Gly Gln Val Val 3125 3130 3135
- Thr Tyr Ala Leu Asn Thr Phe Thr Asn Leu Ala Val Gln Leu Val Arg 3140 3145 3150
- Met Met Glu Gly Glu Gly Val Ile Gly Pro Asp Asp Val Glu Lys Leu 3155 3160 3165
- Thr Lys Gly Lys Gly Pro Lys Val Arg Thr Trp Leu Phe Glu Asn Gly 3170 3180
- Glu Glu Arg Leu Ser Arg Met Ala Val Ser Gly Asp Asp Cys Val Val
 185 3190 3195 3200
- Lys Pro Leu Asp Asp Arg Phe Ala Thr Ser Leu His Phe Leu Asn Ala 3205 3210 3215
- Met Ser Lys Val Arg Lys Asp Ile Gln Glu Trp Lys Pro Ser Thr Gly 3220 3225 3230
- Trp Tyr Asp Trp Gln Gln Val Pro Phe Cys Ser Asn His Phe Thr Glu

3240

3245

Leu Ile Met Lys Asp Gly Arg Thr Leu Val Val Pro Cys Arg Gly Gln 3255 3260

Asp Glu Leu Val Gly Arg Ala Arg Ile Ser Pro Gly Ala Gly Trp Asn 3270 3275

Val Arg Asp Thr Ala Cys Leu Ala Lys Ser Tyr Ala Gln Met Trp Leu 3290

Leu Leu Tyr Phe His Arg Arg Asp Leu Arg Leu Met Ala Asn Ala Ile

Cys Ser Ala Val Pro Val Asn Trp Val Pro Thr Gly Arg Thr Trp 3320

Ser Ile His Ala Gly Gly Glu Trp Met Thr Thr Glu Asp Met Leu Glu 3335 3340

Val Trp Asn Arg Val Trp Ile Glu Glu Asn Glu Trp Met Glu Asp Lys 3355

Thr Pro Val Glu Lys Trp Ser Asp Val Pro Tyr Ser Gly Lys Arg Glu 3370 3365

Asp Ile Trp Cys Gly Ser Leu Ile Gly Thr Arg Ala Arg Ala Thr Trp

Ala Glu Asn Ile Gln Val Ala Ile Asn Gln Val Arg Ala Ile Ile Gly 3400

Asp Glu Lys Tyr Val Asp Tyr Met Ser Ser Leu Lys Arg Tyr Glu Asp 3415 3420 3410

Thr Thr Leu Val Glu Asp Thr Val Leu 3430

<210> 3

<211> 37

<212> ADN

<213> Séquence artificielle

<223> Description de la séquence artificielle:AMORCE OLIGONUCLEOTIDIQUE

tagcacgaag aattcgatgt ctaagaaacc aggaggg

37

<210> 4

<211> 50

<212> ADN

<213> Séquence artificielle

<223> Description de la séquence artificielle:AMORCE OLIGONUCLEOTIDIQUE

```
<400> 4
aagttagece gggttaatge teetaegetg gegateagge caateaggae
                                                                     50
 <210> 5
 <211> 19
 <212> ADN
 <213> Séquence artificielle
 <223> Description de la séquence artificielle:amorce
 <400> 5
 gtcagacgct gacctggtg
                                                                     19
 <210> 6
 <211> 21
 <212> ADN
 <213> Séquence artificielle
 <223> Description de la séquence artificielle:amorce
 <400> 6
agetteteet tacacagttg g
                                                                     21
<210> 7
<211> 19
<212> ADN
<213> Séquence artificielle
<223> Description de la séquence artificielle:amorce
<400> 7
acagtgcagg tgtgtgagc
                                                                    19
<210> 8
<211> 20
<212> ADN
<213> Séquence artificielle
<223> Description de la séquence artificielle:amorce
<400> 8
tcatgtctca gaaaggaaac
                                                                    20
<210> 9
<211> 21
<212> ADN
<213> Séquence artificielle
<223> Description de la séquence artificielle: amorce
```

<400> 9 ctggctgcag aggtaaaagc t	21
<210> 10 <211> 22 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 10	
tcaggacagg gtggagtaga gc	. 22
<210> 11 <211> 22 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 11	
gtaccggacc ctcaccctt gt	22
<210> 12 <211> 22	
<212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 12 getecateca tecaaceate ca	22
<210> 13 <211> 21	
<212> ADN	
<213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
4400> 13 gagtttgaag tgaggtgttg c	21
220> 223> Description de la séquence artificielle:amorce	
400> 14	

ttctcttgtg gatgcgttgt g	21
<210> 15 <211> 21 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle: amorce	
<400> 15 tgggtatatg cggagcgatg c	21
<210> 16 <211> 21 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 16 agtcgaacca accegetgte a	21
<210> 17 <211> 21 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 17 actacctcac acggaatcta c	21
<210> 18 <211> 21 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 18 ttctacgcca atctcatcag t	21
<210> 19 <211> 21 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 19	

acacagtgtc catctcaacc a	21
<210> 20 <211> 21 <212> ADN <213> Séquence artificielle	
<220> <223> Description de la séquence artificielle:amorce	
<400> 20 aaccactggt caaggttctg c	21
<210> 21 <211> 23 <212> ADN <213> Séquence artificielle	
<pre><220> <223> Description de la séquence artificielle:amorce</pre>	
<400> 21 'acaaccacgt ccataagtct ctg	23.
<210> 22 <211> 21 <212> ADN <213> Séquence artificielle	
<pre><220> <223> Description de la séquence artificielle:amorce</pre>	
<400> 22 gcctttctct tctcagtgta a	21
<210> 23 <211> 1412 <212> ADN <213> Mus musculus	
<220> <221> CDS <222> (36)(1139)	
<400> 23 ccaggctggg agacccagga agctccagac ttagc atg gag cac gga ctc agg Met Glu His Gly Leu Arg 1 5	53
agc atc cca gcc tgg acg ctg gac aag ttc ata gag gat tac ctc ctt Ser Ile Pro Ala Trp Thr Leu Asp Lys Phe Ile Glu Asp Tyr Leu Leu 10 15 20	101
ccc gac acc acc ttt ggt gct gat gtc aaa tca gcc gtc aat gtc gtg Pro Asp Thr Thr Phe Gly Ala Asp Val Lys Ser Ala Val Asn Val Val 25 30 35	149

					•											
		Phe			gag Glu							Ala				197
					gtg Val 60						Gly					245
	_				gac Asp		_	_								293
					cag Gln									_	-	341
					tac Tyr											389
_			-	_	agt Ser						_			_	_	437
			_	_	ccc Pro 140		-							_		485
					gtc Val											533
-		_			gcc Ala					_	_			_		581
					tct Ser											629
					acc Thr											677
cac His 215	tgg Trp	Tyr	Gln	Leu	tgt Cys 220	Lys	gag Glu	Lys	Leu	ggg Gly 225	Lys	cca Pro	ttg Leu	cct Pro	cca Pro 230	725
					ttg Leu											773
gga Gly	tgt Cys	tat Tyr	gag Glu 250	ttc Phe	aac Asn	aca Thr	gcc Ala	cag Gln 255	ggc Gly	ttc Phe	cgg Arg	acc Thr	gtc Val 260	ttg Leu	gaa Glu	821
	Val				cag Gln											869
gac	ttt	caa	cac	cag	gag	gtc	tcc	aaa	tac	ctg	cac	aga	cag	ctc	aga	917

Asp	Phe 280	Gln	His	Gln	Glu	Val 285	Ser	Lys	Tyr	Leu	His 290	-	Gln	Leu	Arg	
								cca Pro								965
								agg Arg								1013
								att Ile 335								1061
								gtt Val								1109.
					tgt Cys			ctg Leu	tga	gca	cagc	agc .	acct	gccc	ag	1159
gaga	actgo	ctg (gtcaq	gggg	ca tt	tgct	tgct	c tgo	ctgca	aggc	cca	tgac	cca (gtga	gggagg	1219
gcc	ccaco	etg (gcato	agad	et co	gtgo	cttc	t gai	gccl	gcc	agc	catg	ttt q	gacto	cctgtc	1279
caat	tcaca	agc (cagco	ette	et ca	acaç	gatto	c aga	aagga	agag	gaa	agaa	cac a	acgc	tggtg	1339
tcca	atcto	gtc (cacct	gtt	gg aa	iggtt	ctg	t ctç	gacaa	aagt	ctg	atca	aca a	ataa	accaca	1399
gcag	ggtgd	cg t	ca								٠					1412
<211 <212)> 24 > 36 > PF S> Mi	57 RT	ıscul	lus												
)> 24 Glu		Gly	Leu 5	Arg	Ser	Ile	Pro	Ala 10	Trp	Thr	Leu	Asp	Lys 15	Phe	
Ile	Glu	Asp	Tyr 20	Leu	Leu	Pro	Asp	Thr 25	Thr	Phe	Gly	Ala	Asp 30	Val	Lyś	
Ser	Ala	Val 35	Asn	Val	Val	Cys	Asp 40	Phe	Leu	Lys	Glu	Arg 45	Cys	Phe	Gln	
Gly	Ala 50	Ala	His	Pro	Val	Arg 55	Val	Ser	Lys	Val	Val 60	Lys	Gly	Gly	Ser	
Ser 65	Gly	Lys	Gly	Thr	Thr 70	Leu	Lys ·	Gly	Arg	Ser 75	Asp	Ala	Asp	Leu	Val 80	
Val	Phe	Leu	Asn	Asn 85	Leu	Thr	Ser	Phe	Glu 90	Asp	Gln	Leu	Asn	Arg 95	Arg	
Gly	Glu	Phe	Ile 100	Lys	Glu	Ile	Lys	Lys 105	Gln	Leu	Tyr	Glu	Val 110	Gln	His	

Glu Arg Arg Phe Arg Val Lys Phe Glu Val Gln Ser Ser Trp Trp Pro 120 Asn Ala Arg Ser Leu Ser Phe Lys Leu Ser Ala Pro His Leu His Gln Glu Val Glu Phe Asp Val Leu Pro Ala Phe Asp Val Leu Gly His Val 155 Asn Thr Ser Ser Lys Pro Asp Pro Arg Ile Tyr Ala Ile Leu Ile Glu 165 170 Glu Cys Thr Ser Leu Gly Lys Asp Gly Glu Phe Ser Thr Cys Phe Thr 185 Glu Leu Gln Arg Asn Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser 200 Leu Ile Arg Leu Val Lys His Trp Tyr Gln Leu Cys Lys Glu Lys Leu 215 Gly Lys Pro Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Phe Ala Trp Glu Gln Gly Asn Gly Cys Tyr Glu Phe Asn Thr Ala Gln Gly 250 Phe Arg Thr Val Leu Glu Leu Val Ile Asn Tyr Gln His Leu Arg Ile Tyr Trp Thr Lys Tyr Tyr Asp Phe Gln His Gln Glu Val Ser Lys Tyr 280 Leu His Arg Gln Leu Arg Lys Ala Arg Pro Val Ile Leu Asp Pro Ala Asp Pro Thr Gly Asn Val Ala Gly Gly Asn Pro Glu Gly Trp Arg Arg

Leu Ala Glu Glu Ala Asp Val Trp Leu Trp Tyr Pro Cys Phe Ile Lys

Lys Asp Gly Ser Arg Val Ser Ser Trp Asp Val Pro Thr Val Val Pro

Val Pro Phe Glu Gln Val Glu Glu Asn Trp Thr Cys Ile Leu Leu 355 360 365

330

<210> 25

<211> 1413 <212> ADN <213> Mus musculus <220> <221> CDS

·<222> (36)..(1139)

<400> 25

cca	ggct	ggg	agac	ccag	ga a	gctc	caga	c tt						ctc Leu 5		53
_			-	Trp	-	_	_	_	Phe			_		ctc Leu		101
			Thr											gtc Val		149
_	-	Phe	_	-		_	_				_	_		cca Pro		197
	-		_			_								acc Thr		245
														aat Asn 85		293
	_			-	-			_						aag Lys	_	341
											-	_		aga Arg	_	389
_			-	_	-						_			ctg Leu	_	437
	-		-	-			_		_					gat Asp		485
														aag Lys 165		533
														ctg Leu		581
														aac Asn		629
														gtc Val		677
cac His 215	tgg Trp	tac Tyr	caa Gln	ctg Leu	tgt Cys 220	aag Lys	gag Glu	aag Lys	ctg Leu	ggg Gly 225	aag Lys	cca Pro	ttg Leu	cct Pro	cca Pro 230	725
cag	tac	gcc	cta	gag	ttg	ctc	act	gtc	ttt	gcc	tgg	gaa	caa	ggg	aat	773

	_		_			_				_						
G1r	ı Tyr	Ala	Leu	235	Leu	Leu	Thr	· Val	240		Trp	Glu	Gln	Gly 245	Asn	
gga Gly	tgt Cys	tat Tyr	gag Glu 250	Phe	aac Asn	aca Thr	gcc Ala	Gln 255	Gly	ttc Phe	cgg Arg	acc Thr	gtc Val 260	ttg Leu	gaa Glu	821
ctg Leu	gtc Val	atc Ile 265	Asn	tat Tyr	cag Gln	cat His	ctt Leu 270	Arg	atc Ile	tac Tyr	tgg Trp	aca Thr 275	aag Lys	tat Tyr	tat Tyr	869
gac Asp	ttt Phe 280	caa Gln	cac His	cag Gln	gag Glu	gtc Val 285	tcc Ser	aaa Lys	tac Tyr	ctg Leu	cac His 290	aga Arg	cag Gln	ctc Leu	aga Arg	917
aaa Lys 295	Ala	agg Arg	cct	gtg Val	atc Ile 300	ctg Leu	gac Asp	cca Pro	gct Ala	gac Asp 305	cca Pro	aca Thr	ggg	aat Asn	gtg Val 310	965
gcc Ala	ggt Gly	GJ A aaa	aac Asn	cca Pro 315	gag Glu	ggc Gly	tgg Trp	agg Arg	cgg Arg 320	ttg Leu	gct Ala	gaa Glu	gag Glu	gct Ala 325	gat Asp	1013
gtg Val	tgg Trp	cta Leu	tgg Trp 330	tac Tyr	cca Pro	tgt Cys	ttt Phe	att Ile 335	aaa Lys	aag Lys	gat Asp	ggt Gly	tcc Ser 340	cga Arg	gtg Val	1061
agc Ser	tcc Ser	tgg Trp 345	gat Asp	gtg Val	ccg Pro	acg Thr	gtg Val 350	gtt Val	cct Pro	gta Val	cct Pro	ttt Phe 355	gag Glu	cag Gln	gta Val	1109
gaa Glu	gag Glu 360	aac Asn	tgg Trp	aca Thr	tgt Cys	atc Ile 365	ctg Leu	ctg Leu	tga	gcac	agca	gc a	cctg	ccca	g	1159
gaga	actgo	tg g	rtcag	igggc	a tt	tgct	gcto	tgc	tgca	ggc	ccat	gacc	ca g	tgag	ggagg	1219
gccc	cacc	tg g	cato	agac	t cc	gtgc	ttct	. gat	gcct	gcc	agcc	atgt	tt g	actc	ctgtc	1279
caat	caca	gc c	agcc	ttcc	t ca	acag	atto	aga	agga	gag	gaaa	gaac	ac a	cgct	tggtg	1339
tcca	tctg	tc c	acct	gttg	ıg aa	ggtt	ctgt	ctg	acaa	agt	ctga	tcaa	ca a	taaa	ccaca	1399
gcag	gtgc	cc g	tca													1413
<211 <212	> 26 > 36 > PR' > Mu	7 T	scul	us												
<400 Met 1		His :	Gly :	Leu 5	Arg :	Ser :	Ile	Pro 1	Ala 1	Irp '	Thr I	Leu A	Asp I	Lys I 15	?he	
Ile	Glu A	Asp (Tyr 1 20	Leu :	Leu 1	Pro A	Asp '	Thr :	Phr I	Phe (Gly A	la A	sp V 30	al I	ys	
Ser .	Ala V	/al / 35	Asn V	/al '	Val (Cys A	Asp 1	Phe I	Leu I	iys (Glu A	rg C 45	Cys P	he G	Sln	

Gly Ala Ala His Pro Val Arg Val Ser Lys Val Val Lys Gly Gly Ser Ser Gly Lys Gly Thr Thr Leu Lys Gly Arg Ser Asp Ala Asp Leu Val · Val Phe Leu Asn Asn Leu Thr Ser Phe Glu Asp Gln Leu Asn Arg Arg Gly Glu Phe Ile Lys Glu Ile Lys Lys Gln Leu Tyr Glu Val Gln His Glu Arg Arg Phe Arg Val Lys Phe Glu Val Gln Ser Ser Trp Trp Pro Asn Ala Arg Ser Leu Ser Phe Lys Leu Ser Ala Pro His Leu His Gln 135 Glu Val Glu Phe Asp Val Leu Pro Ala Phe Asp Val Leu Gly His Val 150 Asn Thr Ser Ser Lys Pro Asp Pro Arg Ile Tyr Ala Ile Leu Ile Glu Glu Cys Thr Ser Leu Gly Lys Asp Gly Glu Phe Ser Thr Cys Phe Thr Glu Leu Gln Arg Asn Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser Leu Ile Arg Leu Val Lys His Trp Tyr Gln Leu Cys Lys Glu Lys Leu Gly Lys Pro Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Phe 235 Ala Trp Glu Gln Gly Asn Gly Cys Tyr Glu Phe Asn Thr Ala Gln Gly 250 Phe Arg Thr Val Leu Glu Leu Val Ile Asn Tyr Gln His Leu Arg Ile 265 Tyr Trp Thr Lys Tyr Tyr Asp Phe Gln His Gln Glu Val Ser Lys Tyr Leu His Arg Gln Leu Arg Lys Ala Arg Pro Val Ile Leu Asp Pro Ala Asp Pro Thr Gly Asn Val Ala Gly Gly Asn Pro Glu Gly Trp Arg Arg Leu Ala Glu Glu Ala Asp Val Trp Leu Trp Tyr Pro Cys Phe Ile Lys Lys Asp Gly Ser Arg Val Ser Ser Trp Asp Val Pro Thr Val Val Pro 345 Val Pro Phe Glu Gln Val Glu Glu Asn Trp Thr Cys Ile Leu Leu

<210> 27 <211> 902 <212> ADN <213> Mus musculus	
<220> <221> CDS <222> (36)(791) <400> 27	
acctgctggc tgcagaggta aaagctggac ctagg atg gag cag gat ctg agg Met Glu Gln Asp Leu Arg 1 5	53
agc atc ccg gcc tcg aag ctt gat aag ttc ata gag aac cat ctc ccg Ser Ile Pro Ala Ser Lys Leu Asp Lys Phe Ile Glu Asn His Leu Pro 10 15 20	101
gac acc agc ttc tgt gct gac ctc aga gaa gtc ata gat gcc ctg tgt Asp Thr Ser Phe Cys Ala Asp Leu Arg Glu Val Ile Asp Ala Leu Cys 25 :30 35	149
gct ctc ctg aag gac aga tcc ttc cgg ggc ccc gtc cgc cga atg agg Ala Leu Leu Lys Asp Arg Ser Phe Arg Gly Pro Val Arg Arg Met Arg 40 45 50 .	197
gcc tct aaa ggg gtc aag ggc aaa ggc acc gcg ctc aag ggc agg tca Ala Ser Lys Gly Val Lys Gly Lys Gly Thr Ala Leu Lys Gly Arg Ser 55 60 . 65 70	245
gac gct gac ctg gtg gtg ttc ctt aac aat ctc acc agc ttt gag gat Asp Ala Asp Leu Val Val Phe Leu Asn Asn Leu Thr Ser Phe Glu Asp 75 80 85	293
cag tta aac caa cag gga gtg ttg att aag gaa att aag aaa cag ctg Gln Leu Asn Gln Gln Gly Val Leu Ile Lys Glu Ile Lys Lys Gln Leu 90 95 100	341
tgc gag gtt cag cat gag aga cgt tgt gga gtg aag ttt gag gtc cac Cys Glu Val Gln His Glu Arg Arg Cys Gly Val Lys Phe Glu Val His 105 110 115	389
agt tta agg agt ccc aac tcc cgg gct ctg agc ttc aag ctg agc gcc Ser Leu Arg Ser Pro Asn Ser Arg Ala Leu Ser Phe Lys Leu Ser Ala 120 125 130	437
ccc gac ctg ctg aag gag gtg aag ttt gat gtg ctg cca gcc tat gat Pro Asp Leu Leu Lys Glu Val Lys Phe Asp Val Leu Pro Ala Tyr Asp 135 140 145 150	485
tta ctg gat cat ctt aac atc ctc aag aag cct aac caa caa ttc tac Leu Leu Asp His Leu Asn Ile Leu Lys Lys Pro Asn Gln Gln Phe Tyr 155 160 165	533
gcc aat ctc atc agt ggc gta ccc gcc ggg aag gag ggc aag tta tcg Ala Asn Leu Ile Ser Gly Val Pro Ala Gly Lys Glu Gly Lys Leu Ser 170 175 180	581
atc tgc ttt atg ggg ctt cag aag tac ttc ctg aac tgt cgc cca acc Ile Cys Phe Met Gly Leu Gln Lys Tyr Phe Leu Asn Cys Arg Pro Thr	629

		18	5				19	0				19	5			
aa Ly	g ct s Le 20	u Ly	g cç s Ar	g Le	c at u Il	c cg e Ar 20	g Le	g gt u Va	c ac	g ca r Hi	c tg s Tr 21	р Ту	ıc ca 'r Gl	a ct n Le	g tgi u Cys	t 677 s
aaq Ly: 21:	s Gl	g aa u Ly	g ct s Le	g gg u Gl	g ga y As 22	p Pr	g ct o Le	g cc u Pr	c cc o Pr	a ca o Gl 22	п Ту	t gc r Al	c ct a Le	g ga u Gl	g cto u Leu 230	1
cto Lev	ac ı Th	a ct r Le	c ga u As	t gc p Al 23	a Tr	g ga p Gl	g ta u Ty	t gg r Gl	g ag y Se 24	r Ar	a gt g Va	a ac l Th	t aa r Ly	a tt s Ph 24	c aac e Asr 5	: 773
ac a	a gc	c ca a Gl	g gg n Gl 25	y Ph	c tga	a aco	egtċ	ttgg	aac	tggt	cac	caag	taca	aa		821
cag	gatte	caaa	tct	actg	gac'a	agtgt	atta	at ga	actt	tcaa	c ac	cagg	aggt	ctc	caaat	ac 881
ctg	caca	agac	agc	tcaga	aaa a	a										902
<21 <21	0> 2 1> 2 2> I 3> N	251	านระเ	ılus												
	0> 2 Glu		ı Asp	Leu 5		Ser	· Ile	Pro	Ala 10		Lys	: Lev	ı Asp	Lys	Phe	
Ile	Glu	Asn	His 20	Leu	Pro	Asp	Thr	Ser 25		Cys	Ala	Asp	Leu 30	_	r Glu	
Val	Ile	Asp 35	Ala	Leu	Cys	Ala	Leu 40		Lys	Asp	Arg	Ser 45		Arg	Gly	
Pro	Val 50	Arg	Arg	Met	Arg	Ala 55	Ser	Lys	Gly	Val	Lys 60		Lys	Gly	Thr	
Ala 65	Leu	Lys	Gly	Arg	Ser 70	Asp	Ala	Asp	Leu	Val 75		Phe	Leu	Asn	Asn 80	
Leu	Thr	Ser	Phe	Glu 85	Asp	Gln	Leu	Asn	Gln 90	Gln	Gly	Val	Leu	Ile 95	Lys	
Glu	Ile	Lys	Lys 100	Gln	Leu	Cys	Glu	Val 105	Gln	His	Glu	Arg	Arg 110	Суѕ	Gly	
Val	Lys	Phe 115	Glu	Val	His	Ser	Leu 120	Arg	Ser	Pro	Asn	Ser 125	Arg	Ala	Leu	
Ser	Phe 130	Lys	Leu	Ser	Ala	Pro 135	Asp	Leu	Leu	Lys	Glu 140	Val	Lys	Phe	Asp	
Val 145	Leu	Pro	Ala	Tyr	Asp 150	Leu	Leu	Asp	His	Leu 155	Asn	Ile	Leu	Lys	Lys 160	
Pro .	Asn	Gln	Gln	Phe 165	Tyr	Ala	Asn	Leu	Ile 170	Ser	Gly	Val	Pro	Ala 175	Gly	

Lys Glu Gly Lys Leu Ser Ile Cys Phe Met Gly Leu Gln Lys Tyr Phe

Leu Asn Cys Arg Pro Thr Lys Leu Lys Arg Leu Ile Arg Leu Val Th 195 200 205	r
His Trp Tyr Gln Leu Cys Lys Glu Lys Leu Gly Asp Pro Leu Pro Pro 210 215 220	Þ
Gln Tyr Ala Leu Glu Leu Leu Thr Leu Asp Ala Trp Glu Tyr Gly Ser 225 230 235 240	
Arg Val Thr Lys Phe Asn Thr Ala Gln Gly Phe 245 250	
<210> 29 <211> 1322 <212> ADN <213> Homo sapiens <220>	
<221> CDS <222> (34)(1128)	
<400> 29 gaggcagttc tgttgccact ctctctcctg tca atg atg gat ctc aga aat ac Met Met Asp Leu Arg Asn Th 1 5	c 54 r
cca gcc aaa tct ctg gac aag ttc att gaa gac tat ctc ttg cca gac Pro Ala Lys Ser Leu Asp Lys Phe Ile Glu Asp Tyr Leu Leu Pro Asp 10 15 20	102
acg tgt ttc cgc atg caa atc aac cat gcc att gac atc atc tgt ggg Thr Cys Phe Arg Met Gln Ile Asn His Ala Ile Asp Ile Ile Cys Gly 25 30 35	150
ttc ctg aag gaa agg tgc ttc cga ggt agc tcc tac cct gtg tgt gtg Phe Leu Lys Glu Arg Cys Phe Arg Gly Ser Ser Tyr Pro Val Cys Val 40 . 45 50 55	198
tcc aag gtg gta aag ggt ggc tcc tca ggc aag ggc acc acc ctc aga Ser Lys Val Val Lys Gly Gly Ser Ser Gly Lys Gly Thr Thr Leu Arg 60 65 70	246
ggc cga tct gac gct gac ctg gtt gtc ttc ctc agt cct ctc acc act Gly Arg Ser Asp Ala Asp Leu Val Val Phe Leu Ser Pro Leu Thr Thr 75 80 85	294
ttt cag gat cag tta aat cgc cgg gga gag ttc atc cag gaa att agg Phe Gln Asp Gln Leu Asn Arg Arg Gly Glu Phe Ile Gln Glu Ile Arg 90 95 100	342
aga cag ctg gaa gcc tgt caa aga gag aga gca ttt tcc gtg aag Ltt Arg Gln Leu Glu Ala Cys Gln Arg Glu Arg Ala Phe Ser Val Lys Phe 105 110 115	390
gag gtc cag gct cca ege tgg ggc aac eec egt geg etc age ttc gta	43,8

Glu 120	ı Val	l Gl	n Al	a Pr	o Ar 12	g Trį 5	o Gly	y As:	n Pr	o Ar 13		a Le	u Se	r Phe	e Val 135	
ctg Lev	agi Sei	t to	g ct r Le	c ca u Gl: 14	n Le	c ggg u Gly	g gaç V Glı	g ggo ı Gl	g gte y Va 14	l Gl	g tta u Pha	c gat	t gte	g cto l Leo 150	g cct u Pro)	486
gcc Ala	Phe	ga:	t gc p Ala 15	a Lei	ı Gl	t caç y Glr	tto Lev	g act Thi	c Gly	c ag y Se:	c tai	t aaa c Lys	e cci Pro) Asr	ccc Pro	534
caa Gln	ato	tai Tyi	r Va.	c aaq l Lys	g cto s Lei	c ato ı Ile	gag Glu 175	Gli	g tgo ı Cys	c acc	c gad r Asp	c cto Leu 180	Glr	g aaa n Lys	gag Glu	582
ggc Gly	gag Glu 185	Phe	tco Sei	acc Thr	tgo Cys	ttc Phe	Thr	gaa Glu	cta Lev	a caç ı Glr	g aga n Arg 195	, Asp	ttc Phe	ctg Leu	aag Lys	630
cag Gln 200	cgc Arg	Pro	acc Thr	aaç Lys	cto Lev 205	aag Lys	agc Ser	cto	ato	cgc Arg 210	j Leu	gtc Val	aag Lys	cac His	tgg Trp 215	678
tac Tyr	caa Gln	aat Asn	tgt Cys	aag Lys 220	Lys	aag Lys	ctt Leu	GJA GGG	aag Lys 225	Leu	g cca Pro	cct Pro	cag Gln	tat Tyr 230	gcc Ala	726
ctg Leu	gag Glu	ctc Leu	ctg Leu 235	Thr	gtc Val	tat Tyr	gct Ala	tgg Trp 240	gag Glu	cga Arg	ggg Gly	agc Ser	atg Met 245	aaa Lys	aca Thr	774
cat His	ttc Phe	aac Asn 250	aca Thr	gcc Ala	cag Gln	gga Gly	ttt Phe 255	cgg Arg	acg Thr	gtc Val	ttg Leu	gaa Glu 260	tta Leu	gtc Val	ata Ile	822
Asn	tac Tyr 265	cag Gln	caa Gln	ctc Leu	tgc Cys	atc Ile 270	tac Tyr	tgg Trp	aca Thr	aag Lys	tat Tyr 275	tat Tyr	gac Asp	ttt Phe	aaa Lys	870
aac Asn 280	ccc Pro	att Ile	att Ile	gaa Glu	aag Lys 285	tac Tyr	ctg Leu	aga Arg	agg Arg	cag Gln 290	ctc Leu	acg Thr	aaa Lys	ccc Pro	acg Thr 295	918
cct Pro	gtg Val	atc Ile	ctg Leu	gac Asp 300	ccg Pro	gcg Ala	gac Asp	cct Pro	aca Thr 305	gga Gly	aac Asn	ttg Leu	ggt Gly	ggt Gly 310	gga Gly	966
gac (Asp 1	cca Pro	aag Lys	cgt Arg 315	tgg Trp	agg Arg	cag Gln	Leu	gca Ala 320	caa Gln	gag Glu	gct λla	Glu	gcc Ala 325	tgg Trp	ctg Leu	1014
aat i Asn 1	ľyr	cca Pro 330	tgc Cys	ttt Phe	aag Lys	aat Asn	tgg Trp 335	gat Asp	gly ggg	tcc Ser	Pro	gtg Val 340	agc Ser	tcc Ser	tgg Trp	1062
att o Ile I	etg Leu :	ctg Leu	gtg Val	aga Arg	cct Pro	cct o Pro 7 350	gct Ala :	tcc Ser	tcc Ser	Leu	cca Pro:	ttc : Phe :	atc Ile	cct (Pro 2	gcc Ala	1110
cct c Pro I	tc d eu I	cat His	gaa Glu	gct Ala	tga	gacat	tataç	gc t	ggag	acca	t tc	tttc	caaa			1158

ri E

.

360	36	5				
gaacttacct	cttgccaaag	gccatttata	ttcatatagt	gacaggctgt	gctccatatt	1218
ttacagtcat	tttggtcaca	atcgagggtt	tctggaattt	tcacatccct	tgtccagaat	1278
tcattcccct	aagagtaata '	ataaataatc	tctaacacca	aaaa		1322
<210> 30 <211> 364 <212> PRT <213> Homo	sapiens					
400> 30		_	,			

Met Met Asp Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile

Glu Asp Tyr Leu Leu Pro Asp Thr Cys Phe Arg Met Gln Ile Asn His

Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly

Ser Ser Tyr Pro Val Cys Val Ser Lys Val Val Lys Gly Gly Ser Ser

Gly Lys Gly Thr Thr Leu Arg Gly Arg Ser Asp Ala Asp Leu Val Val

Phe Leu Ser Pro Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly

Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu Glu Ala Cys Gln Arg Glu 105

Arg Ala Phe Ser Val Lys Phe Glu Val Gln Ala Pro Arg Trp Gly Asn

Pro Arg Ala Leu Ser Phe Val Leu Ser Ser Leu Gln Leu Gly Glu Gly

Val Glu Phe Asp Val Leu Pro Ala Phe Asp Ala Leu Gly Gln Leu Thr

Gly Ser Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys Leu Ile Glu Glu

Cys Thr Asp Leu Gln Lys Glu Gly Glu Phe Ser Thr Cys Phe Thr Glu 185

Leu Gln Arg Asp Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys Ser Leu

Ile Arg Leu Val Lys His Trp Tyr Gln Asn Cys Lys Lys Leu Gly

Lys Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr Val Tyr Ala Trp 235

Glu Arg Gly Ser Met Lys Thr His Phe Asn Thr Ala Gln Gly Phe Arg

```
245
                                      250
                                                          255
 Thr Val Leu Glu Leu Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp
                                 265
 Thr Lys Tyr Tyr Asp Phe Lys Asn Pro Ile Ile Glu Lys Tyr Leu Arg
                                                  285
 Arg Gln Leu Thr Lys Pro Thr Pro Val Ile Leu Asp Pro Ala Asp Pro
                         295
 Thr Gly Asn Leu Gly Gly Gly Asp Pro Lys Arg Trp Arg Gln Leu Ala
 Gln Glu Ala Glu Ala Trp Leu Asn Tyr Pro Cys Phe Lys Asn Trp Asp
                                     330
 Gly Ser Pro Val Ser Ser Trp Ile Leu Leu Val Arg Pro Pro Ala Ser
 Ser Leu Pro Phe Ile Pro Ala Pro Leu His Glu Ala
 <210> 31
 <211> 450
 <212> ADN
 <213> Séquence artificielle
 <220>
<223> Description de la séquence artificielle:sonde
<400> 31
gtcagacgct gacctggtgg tgttccttaa caatctcacc agctttgagg atcagttaaa 60
ccgacgggga gagttcatca aggaaattaa gaaacagctg tacgaggttc agcatgagag 120
acgttttaga gtcaagtttg aggtccagag ttcatggtgg cccaacgccc ggtctctgag 180
cttcaagctg agegeeeec atetgeatea ggaggtggag tttgatgtge tgecageett 240
tgatgtcctg ggtcatgtta atacttccag caagcctgat cccagaatct atgccatcct 300
catcgaggaa tgtacctccc tggggaagga tggcgagttc tctacctgct tcacggagct 360
ccagcggaac ttcctgaagc agcgcccaac caagctgaag agtctcatcc gcctggtcaa 420
gcactggtac caactgtgta aggagaagct
<210> 32
<211> 497
<212> ADN
<213> Séquence artificielle
<220>
<223> Description de la séquence artificielle:sonde
<400> 32
acagtgcagg tgtgtgagcg tgtgtgtgcc catgacatgc gtgtgtgtct tcacggttca 60
actagatgca tttagtgagc acttactaca tatgctacat gattcagatg ttcagcagtg 120
gttagagcaa agcctaactg ctaggctttt tgatgcaagt tggattggga tccttccagg 180
tetettetta cacatacaca caagagaga ceettggttt ettetgeeca tgacccaaga 240
cagattctag coctgeceta tgacacagaa actatteeet gecacacatg gacatgaaca 300
ctgagactgt ggcctgtgct ctcaggtgcc cttgagtggc atcaacatgc aggctggggg 360
cccataggta tgatgaaaat aaaaggtacc tggaattttg acacatgtaa ctttgaaaca 420
```

gggtcattgg tagcaacgat cagctttatc acatttagtt aaatcacaat gattgtggtt 480 tcctttctga gacatga 497

RÉPUBLIQUE FRANÇAISE

2

2823224

RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche N° d'enregistrement national

FA 608784 FR 0104598

	A PROPRIETE deposees avant le commencement de NOUSTRIELLE		
DOCU	MENTS CONSIDÉRÉS COMME PERTINENTS	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
A,D	SHELLAM G R ET AL: "Genetic control of host resistance to flavivirus infection in animals." REVUE SCIENTIFIQUE ET TECHNIQUE, OFFICE INTERNATIONAL DES EPIZOOTIES, vol. 17, no. 1, avril 1998 (1998-04), pages 231-248, XP001042370		C12Q1/68 C12N5/06 C12N5/10 C12N15/12 A61K31/708 A61K38/00 A01K67/027
A	BONNEVIE-NIELSEN V ET AL: "Lymphocytic 2',5'-Oligoadenylate Synthetase Activity Increases prior to the Appearance of Neutralizing Antibodies and Immunoglobulin M and Immunoglobulin G antibodies after Primary and Secondary Immunization with Yellow Fever Vaccine." CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, vol. 2, no. 3, 1995, pages 302-306, XP001052856		
A	PAWLOTSKY J-M ET AL: "Activity of the interferon-induced 2',5'-oligoadenylate synthetase in patients with chronic hepatitis C." JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, vol. 15, no. 10, 1995, pages 857-862, XP001052852		DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7) C12Q G01N C12N A01K
A	CASTELLI J ET AL: "The 2-5A system in viral infection and apoptosis." BIOMEDICINE & PHARMACOTHERAPY, vol. 52, no. 9, octobre 1998 (1998-10), pages 386-390, XP001042331		
	Date d'achèvement de la recherche 4 février 2002	Tey	essier, B
X : par Y : par aut A : arri O : div	ATÉGORIE DES DOCUMENTS CITÉS I : théorie ou princip E : document de bre à la date de dépô iculièrement pertinent à lui seul iculièrement pertinent en combinaison avec un e de dépôt ou qu'à e document de la même catégorie re-plan technologique luration non-écrite	pe à la base de l'in evet bénéficiant d' it et qui n'a été pu une date postérié ande raisons	ivention une date antérieure blié qu'à cette date

RAPPORT DE RECHERCHE PRÉLIMINAIRE

N* d'enregistrement national

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FA 608784 FR 0104598

1	NDUSTRIELLE GEPOSES EVER 10 COMM		
DOCU	IMENTS CONSIDÉRÉS COMME PERTIN	Revendication concernée(s)	(s) Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
Х	TRUVE E ET AL: "Transgenic potate expressing mammalian 2'-5' oligoad synthetase are protected from pota X infection under field conditions BIO/TECHNOLOGY, 1 septembre 1993 (1993-09-01), potate 1993 (denylate ato virus s"	
Х	RUTHERFORD M N ET AL: "The muring synthetase locus: three distinct transcripts from two linked genes NUCLEIC ACIDS RESEARCH, vol. 19, no. 8, 1991, pages 1917-XP002189046 * le document en entier *	u	
X	DATABASE EMBL [en ligne] 9 mars 2001 (2001-03-09) "Homo sapiens 2',5'-oligoadenyla synthetase 1" Database accession no. BC000562 XP002189047 * le document en entier *	6,7,17	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
	Date d'achèvement d	•	Examinateur
4 février 2002			eyssier, B
X : par Y : par autr A : arri O : div	ticulièrement pertinent à lui seul ticulièrement pertinent en combinaison avec un e document de la même catégorie Dère-plan technologique Lutasion nou-érrite	théorie ou principe à la base d document de brevet bénéficial à la date de dépôt et qui n'a étie de dépôt ou qu'à une date pos : cité dans la demande cité pour d'autres raisons : membre de la même famille, c	nt d'une date antérieure é publié qu'à cette date férieure.