本试卷适应范围 本科一年级

南京农业大学试题纸

2014 级高等数学课程第二次分层考试

课程______ 班级_____ 学号_____ 姓名_____ 成绩_____

- 一.填空: (每题 3 分, 共 10 题)
 - (1) 函数 $y = \arctan \frac{1}{x}$ 的定义域是____.
 - (2) $\lim_{x \to a} f(x)$ 存在是 f(x) 在 x = a 处连续的 ____ 条件.
 - (3) 设m,n是正整数,则 $\frac{\lim_{x\to 0} \frac{\sin mx}{\sin nx}}{\sin nx} =$ ____.
 - (4) $= \lim_{x \to 0} \frac{(1+x)(1+2x)(1+3x)+a}{x} = 6$, = 6, = ---.
 - (5) 当 $x\to 0$ 时,函数 x^2+x^4 是 x^k 的等价无穷小,则k=____.
 - (6) 设 $f(x) = \frac{\ln x}{x-1}$, 则 x = 1 是 f(x) 的 ____ 间断点.
 - (7) 若 f(x) = x(x+1)(x+2)(x+3),则 f'(0) = .

 - (10) 设函数f(x) = (x-1)(x-2)(x-3)(x-4),则方程f'(x) = 0有____个实根.
- 二.计算: (每题5分,共8题)

(1)
$$\lim_{x \to 0} (1+2x)^{\frac{1}{x}}$$

(2)
$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x} + 2 \sin x}{x}$$

(3)
$$\lim_{x \to 0} \frac{\arctan x - x}{(1+x)\ln(1+2x^3)}$$

$$(4) \quad \lim_{x \to \infty} \frac{2x + 3\sin x}{x - \sin x}$$

- (7) 设y = y(x) 由方程 $e^{y} + xy = e$ 所确定, 求y''(0).
- (8) 求曲线 $y = e^x$ 过点(-1,0)的切线方程.
- 三. (6分) 设f(x)有连续的导数,且 $\lim_{x\to 0} \frac{\sin x}{e^{f(x)}-1} = 1$,求f(0), f'(0).

四.(6分)设f(x)在x=1处有连续导数, $f'(1)=-\frac{1}{4}$,求 $y=f(\cos^2 x)$ 的导数及 $\lim_{x\to 0}\frac{1}{x}\frac{d}{dx}f(\cos^2 2x)$.

五. (6 分)设f(x)在 $(-\infty,+\infty)$ 有一阶连续导数,且f(0)=0,f''(0)存在,

若
$$F(x) = \begin{cases} \frac{f(x)}{x} & x \neq 0 \\ f'(0) & x = 0 \end{cases}$$
 , 求 $F'(x)$ 并证明 $F'(x)$ 在 $(-\infty, +\infty)$ 内连续.

六. (6 分)已知函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1,证明:

- (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$.
- (2) 存在两个不同的点 $\eta, \zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.

七. (6 分)设 f(x) 为 n+1 阶可导函数,求证: f(x) 为 n 次多项式的充要条件是 $f^{(n+1)}(x) \equiv 0$, $f^{(n)}(x) \neq 0$.

教研室主任_____

出卷人_____