패키지 참조

문제 1

데이터 가져오기

신뢰구간 구하기

모듈화 한 기능 사용하기

신뢰구간 시각화

빵의 무게가 500g보다 작은지 검 정하기

가설 설정

빵의 평균 무게가 500보다 큰 지에 대한 검정

결론

연습문제 풀이

패키지 참조

```
from scipy import stats
from scipy.stats import t
from pandas import read_excel
from math import sqrt
from matplotlib import pyplot as plt
import seaborn as sb
import sys
import os
```

```
sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))
from helper import get_confidence_interval
```

문제 1

데이터 가져오기

```
df = read_excel("https://data.hossam.kr/E02/bread.xlsx")
df
```

패키지 참조

문제 1

데이터 가져오기

신뢰구간 구하기

모듈화 한 기능 사용하기

신뢰구간 시각화

빵의 무게가 500g보다 작은지 검 정하기

가설 설정

빵의 평균 무게가 500보다 큰 지에 대한 검정

결론

	무게
0	495
1	496
2	502
3	494
4	499
5	501
6	493
7	494
8	495
9	501
10	493
11	498
12	500
13	492
14	493
15	494
16	500
17	492

패키지 참조

문제 1

데이터 가져오기

신뢰구간 구하기

모듈화 한 기능 사용하기

신뢰구간 시각화

빵의 무게가 500g보다 작은지 검 정하기

가설 설정

빵의 평균 무게가 500보다 큰 지에 대한 검정

결론

	무게	
18	497	
19	499	
20	491	
21	492	
22	493	
23	499	
24	491	
25	496	
26	498	
27	490	
28	491	
29	492	

신뢰구간 구하기

```
# 신뢰수준
clevel = 0.95
# 샘플 사이즈
n = len(df['무게'])
```

```
연습문제 풀이
```

패키지 참조

문제 1

데이터 가져오기

신뢰구간 구하기

모듈화 한 기능 사용하기

신뢰구간 시각화

빵의 무게가 500g보다 작은지 검 정하기

가설 설정

빵의 평균 무게가 500보다 큰 지에 대한 검정

결론

```
# 자유도
dof = n - 1
# 평균
sample mean = df['무게'].mean()
# 표본 표준 편차
sample std = df['무게'].std(ddof=1)
# 표본 표준오차
sample std error = sample std / sqrt(n)
# 신뢰구간
cmin, cmax = t.interval(clevel, dof, loc=sample mean, scale=sample std \epsilon
cmin, cmax
(494.03836792675105, 496.6949654065823)
```

모듈화 한 기능 사용하기

```
cmin, cmax = get_confidence_interval(df['무게'])
cmin, cmax
```

(494.03836792675105, 496.6949654065823)

신뢰구간 시각화

패키지 참조

문제 1

데이터 가져오기

신뢰구간 구하기

모듈화 한 기능 사용하기

신뢰구간 시각화

빵의 무게가 500g보다 작은지 검 정하기

가설 설정

빵의 평균 무게가 500보다 큰 지에 대한 검정

결론

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform = 'darwin' plt.rcParams["font.size"] = 10 plt.rcParams["figure.figsize"] = (7, 4) plt.rcParams["axes.unicode_minus"] = False

sb.kdeplot(x=df['导洲']) sb.lineplot(x=[cmin, cmin], y=[0, 0.1], color='red') sb.lineplot(x=[cmax, cmax], y=[0, 0.1], color='blue') plt.show() plt.close()
```


패키지 참조

문제 1

데이터 가져오기

신뢰구간 구하기

모듈화 한 기능 사용하기

신뢰구간 시각화

빵의 무게가 500g보다 작은지 검 정하기

가설 설정

빵의 평균 무게가 500보다 큰 지에 대한 검정

결론

빵의 무게가 500g보다 작은지 검정하기

가설 설정

 $\mu =$ 빵의무게

가설	내용
귀무가설(H_0)	$\mu \geq 500$
대립가설(H_1)	$\mu < 500$

빵의 평균 무게가 500보다 큰지에 대한 검정

```
# 귀무가설 : 빵의 무게가 500보다 크지 않다.
# -> p-value가 1인 경우는 귀무가설을 기각할 근거가 없다는 의미
t, p = stats.ttest_1samp(df['무게'], 500, alternative='greater')
"t-statistic: {:f}, p-value: {:f}".format(t, p)
```

't-statistic: -7.134111, p-value: 1.000000'

빵의 무게는 500보다 크지는 않다.

귀무가설 : 빵의 무게가 500과 차이가 없다. # -> p-value가 0이라는 것은 주어진 데이터에서 검정하는 가설이 완전히 거부되어야 힌

연습문제_풀이.ipynb

```
연습문제 풀이
```

패키지 참조

문제 1

데이터 가져오기

신뢰구간 구하기

모듈화 한 기능 사용하기

신뢰구간 시각화

빵의 무게가 500g보다 작은지 검 정하기

가설 설정

빵의 평균 무게가 500보다 큰 지에 대한 검정

결론

```
t, p = stats.ttest_1samp(df['무게'], 500, alternative='two-sided')
"t-statistic: {:f}, p-value: {:f}".format(t, p)

't-statistic: -7.134111, p-value: 0.000000'

무조건 500은 아님
```

```
# 귀무가설 : 빵의 무게가 500보다 작지 않다.
t, p = stats.ttest_1samp(df['무게'], 500, alternative='less')
"t-statistic: {:f}, p-value: {:f}".format(t, p)
```

```
't-statistic: -7.134111, p-value: 0.000000'
```

무조건 500보다 작다

결론

클래임 걸어야 함