

DESBALANCE DE VOLTAJE Y CORRIENTE

Desbalance de Voltaje

- Puede causar sobrecalentamiento del motor
- Max. Desequilibrio admisible = 2%
- Definición:
- Multiplicar 100 veces la suma de las desviaciones de los tres voltajes, del promedio, dividido por el voltaje promedio

Desbalance de Voltaje (Continua)

Los tres valores obtenidos son: 221V, 230V and 227V

El Promedio de Voltaje es.

$$\frac{221 + 230 + 227}{3} = 226V$$

El Desbalance de Voltaje es:

$$\frac{100 \times [(226-221) + (230-226) + (227 226)]}{226} = 2.2\%$$

Desbalance de Voltaje (Continua)

Los Tres Valores de voltaje medidos son: (380V, 400V and 390V)

El Promedio de Voltaje es:

$$\frac{380 + 400 + 390}{3} = 390V$$

El Desbalance de Voltaje es:

$$\frac{100 \times [(390-380) + (400-390) + (390-390)]}{390} = 2.6\%$$

Desbalance de Corriente al Motor

 Desbalance de Corriente Produce Calor

TRANE®

- Exceso de Calor Destruye los Motores
- Que Causa un Desbalance de Corriente al Motor?
 - El Problema es:
 - Cables de Suministro de voltaje al motor dañados
 - Motor dañado en su embobinado

Desbalance de Corriente del Motor

- Tome como base la lectura de corriente como uno
 - A T1, B T2, C T3
- Gire las líneas del motor una posición como lectura dos
 - A T3, B T1, C T2
- Gire las líneas del motor una posición como lectura tres
 - A T2, B T3, C T1

Desbalance de Corriente del Motor

Primera Lectura

A-T1 = 50 amps

B-T2 = 45 amps

C-T3 = 40 amps

Segunda Lectura

A-T3 = 44 amps

B-T1 = 49 amps

C-T2 = 44 amps

Tercera Lectura

A-T2 = 41 amps

B-T3 = 40 amps

C-T1 = 43 amps

Suministro de Desbalance de corriente al Motor

Primera lectura A-T1 = 50 B-T2 = 45 C-T3 = 40

A-T3 = 44 B-T1 = 49 C-T2 = 44**Segunda Lectura**

A-T2 = 41 B-T3 = 40 C-T1 = 43**Tercera Lectura**

	Α	В	C	Totales	
Terminal del Motor T1	50	49	43	142	
Terminal del Motor T2	41	45	44	130	Motor >
Terminal del Motor T3	44	40	40	124	
Totales	135	134	127		

Linea de Suministro

Desbalance de Suministro de Corriente al Motor

10% 0 mas de desbalance de Corriente es demasiado

Desbalance de Corriente del **Motor**

Primera lectura A-T1 = 50 B-T2 = 45 C-T3 = 40

A-T3 = 44 B-T1 = 49 C-T2 = 44**Segunda Lectura**

Tercera Lectura

	Α	В	C	Totales
Terminal del Motor T1	50	49	43	142
Terminal del Motor T2	41	45	44	130
Terminal del Motor T3	44	40	40	124
Totales	135	134	127	

Motor >

Linea de Suministro

TRANE® Desbalance de Corriente del Motor

Problema de Desbalance del Motor = Max. total - Min. total **Promedio**

Promedio de Amperaje Horizontal =
$$142 + 130 + 124 = 132$$

10% 0 mas de desbalance de Corriente es demasiado

Probador de Rotación de 3 Fases

Indica la orientación de la fase en sentido horario o antihorario

Asegurar la instalación correcta del cableado mediante la identificación de las fases, así como la rotación de un motor para evitar daños.

Probador de Rotación de 3 Fases

Apague el interruptor de desconexión suministrado en campo que proporciona electricidad al bloque de terminales de suministro principal. "Apagado"

Conecte los cables del indicador de secuencia de fases al bloque de terminales continuación:

ROJO (fase A) a L1 AZUL (fase B) a L2 NEGRO (fase C) aL3

