CVRC Bioinformatics Workshop Series 2020

Day 2

Data Exploration, Part 1: Basic RNA-seq Data Manipulation

Florencia Schlamp, PhD

Friday, October 9th, 2020

RNA sequencing

• Goal: profile transcription in different samples

How: measuring mRNA levels of genes at point of sample collection

 Measuring technique. True power lays in how it's used (treatments, knockouts, time course, different organs/tissues, etc.)

RNA sequencing

• Sequencing methods vary (read length, coverage, price, speed, accuracy, etc.)

Data Types

Data Types

raw counts

one value per gene per sample

_	C1 [‡]	T1 ‡	C2 [‡]	T2 [‡]
ENSG0000000003	723	486	904	445
ENSG0000000005	0	0	0	0
ENSG00000000419	467	523	616	371
ENSG0000000457	347	258	364	237
ENSG0000000460	96	81	73	66
ENSG0000000938	0	0	1	0
ENSG0000000971	3413	3916	6000	4308
ENSG0000001036	2328	1714	2640	1381
ENSG0000001084	670	372	692	448

> range(raw_counts)

[1] 0 510107

Data Types

raw data needs to be adjusted to account for factors that prevent direct comparison of expression measures

one value per gene per sample

Data Types

normalized

^	C1 [‡]	T1 [‡]	C2 [‡]	T2 ‡
ENSG0000000003	757.025831	554.971221	7.679000e+02	628.241871
ENSG00000000419	488.977957	597.222116	5.232593e+02	523.770189
ENSG0000000457	363.330516	294.614352	3.091987e+02	334.591738
ENSG0000000460	100.517953	92.495203	6.200963e+01	93.177446
ENSG0000000938	0.000000	0.000000	8.494469e-01	0.000000
ENSG0000000971	3573.622628	4471.743418	5.096682e+03	6081.946027
ENSG0000001036	2437.560351	1957.244182	2.242540e+03	1949.667471
ENSG0000001084	701.531544	424.792786	5.878173e+02	632.477210

> range(norm_counts)

[1] 0.0 433308.8

Histogram of normalized counts

normalized + log transformed

^	C1 [‡]	T1 ‡	C2 [‡]	T2 [‡]
ENSG0000000003	9.566103	9.118866	9.5866522	9.297471
ENSG0000000419	8.936573	9.224537	9.0341368	9.035542
ENSG0000000457	8.509104	8.207573	8.2770488	8.390563
ENSG0000000460	6.665591	6.546820	5.9775003	6.557310
ENSG0000000938	0.000000	0.000000	0.8870939	0.000000
ENSG0000000971	11.803575	12.126944	12.3156255	12.570554
ENSG0000001036	11.251814	10.935345	11.1315611	10.929752
ENSG0000001084	9.456419	8.734008	9.2016762	9.307149

> range(norm_log_counts)

[1] 0.00000 18.72504

Histogram of log normalized counts

Rigor and reproducibility note

Files you should have / save:

Normalized counts (after data transformation)

 Normalized counts per gene per sample (information on each replicate!)

^	C1 [‡]	T1 [‡]	C2 [‡]	T2 [‡]	C3 [‡]	тз 💠	C4 [‡]	T4
ENSG0000000003	9.566103	9.118866	9.5866522	9.297471	10.0119186	9.5778244	9.825015	9.257247
ENSG0000000419	8.936573	9.224537	9.0341368	9.035542	9.0059121	9.0884190	8.875766	9.010804
ENSG0000000457	8.509104	8.207573	8.2770488	8.390563	8.1362475	8.2853502	8.538994	8.360729
ENSG0000000460	6.665591	6.546820	5.9775003	6.557310	6.7146725	6.0530697	6.853741	6.245083
ENSG0000000938	0.000000	0.000000	0.8870939	0.000000	1.4663602	0.0000000	0.000000	0.000000
ENSG0000000971	11.803575	12.126944	12.3156255	12.570554	12.4677387	12.8652019	12.467964	12.946479
ENSG0000001036	11.251814	10.935345	11.1315611	10.929752	10.8991347	10.6208872	11.256177	10.819798
ENSG0000001084	9.456419	8.734008	9.2016762	9.307149	9.6607891	9.1355797	9.709670	9.438524

Normalized counts (after data transformation)

- Quality Control
 - filter out genes with low counts

HOW?

- Histograms (distribution of counts)

Histogram of log normalized counts

Histogram of log normalized filtered counts

Normalized counts (after data transformation)

Example: improving clustering after removing genes with low counts

Only keep genes with 70 raw counts in at least one sample

(29,656 to 11,343 genes)

Next session

Day 3: "Data Exploration, Part 2: Basic RNA-seq Plots"

Friday October 23rd

Replicate A vs B

Questions?