Mecánica de fluidos

BMJIvan

17 de septiembre de 2021

1. Conceptos fundamentales

$$\begin{array}{c} {\rm T\'ecnicas\;o} \\ {\rm m\'etodos\;o\;anal\'iticos} \end{array} \left\{ \begin{array}{c} {\rm Anal\'iticos} \\ {\rm Experimentales} \\ {\rm Computacionales} \end{array} \right. \left\{ \begin{array}{c} {\rm Diferenciales} \\ {\rm Diferenciales} \end{array} \right.$$

Presión, esfuerzo normal: Genera deformaciones lineales

$$P = \lim \frac{\Delta F_n}{\Delta A} = \frac{dF_n}{dA}$$

Esfuerzo cortante: Genera deformaciones angulares

$$\tau = \lim \frac{\Delta F_t}{\Delta A} = \frac{dF_t}{dA}$$

1.1. Propiedades de los fluidos

Densidad

$$\rho = \frac{m}{v} \left[{^{kg}}/{_{m^3}}.^{lbm}/_{pie^3}, {^{slug}}/_{pie^3} \right]$$

Peso especifico

$$\gamma = \frac{W_g}{v} = \frac{mg}{v} = \rho g \left[{^N/_{m^3}, ^{lb}/_{pie^3}} \right]$$

Densidad relativa

$$sg = GE = \rho_r = \frac{\rho_{fluido}}{\rho_{H_2O\ T=4^{\circ}C}}$$

Viscosidad dinámica o absoluta

$$\mu = \frac{\tau}{d\vec{u}/dy} \ \ \frac{\text{Esfuerzo cortante}}{\text{Gradiente de velocidad}}$$

$$\mu = \frac{\tau y}{\vec{u}} \ \left[{^{N \cdot s}/m^2, ^{lb \cdot s}/pie^2} \right]$$

Viscosidad cinemática

$$u = \frac{\mu}{\rho} \left[{m^2/s,^{pie^2}/s} \right]$$

1.2. Gases ideales

Proceso adiabático: Aquel proceso en el que no se gana ni pierde calor, es decir, cuenta con un aislamiento térmico.

En proceso adiabático reversible no hay transferencia de calor y por lo tanto el proceso es isoentrópico.

Un proceso adiabático irreversible no es isoentropico.

 \forall : Volumen

$$\nu$$
: volumen especifico $\frac{\forall}{m} = \frac{1}{\rho}$

1. Ley de Boyle y Mariotte

Si
$$T = constante$$

$$P \alpha \frac{1}{\forall}$$

$$P \forall = C$$

$$P_1 \forall_1 = P_2 \forall_2$$

2. Ley de Charles

Si
$$P = constante$$

$$\forall \alpha T$$

$$\frac{\forall}{T} = C$$

$$\frac{\forall_1}{T_1} = \frac{\forall_2}{T_2}$$

3. Ley de Gay - Lussac

Si
$$\forall = constante$$

$$P \alpha T$$

$$\frac{P}{T} = C$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

4.

$$\begin{split} \frac{P\forall}{T} &= C \\ \frac{P_1 \forall_1}{T_1} &= \frac{P_2 \forall_2}{T_2} \\ \frac{P\nu}{T} &= nR_u \\ R_u &= \frac{P\forall}{Tn} \end{split}$$

Donde

$$\begin{split} P &= 1 \text{ atmósfera} \\ T &= 0^{o}C = 273,\!15K \\ n &= 1 \text{ kmol} \\ \forall &= 22,\!413m^{3} \\ R_{u} &= 8,\!314^{kJ}/_{kmol\cdot K} \\ n &= \frac{m}{M} \frac{\text{masa}}{\text{masa molar}} \\ R &= \frac{R_{u}}{M} \text{ constante del gas} \end{split}$$

Entonces

$$R_{u} = \frac{P\forall}{T^{m}/M} = \frac{MP\forall}{Tm}$$

$$m\frac{R_{u}}{M} = \frac{P\forall}{T}$$

$$\frac{P\forall}{T} = mR$$

$$P\forall = TmR$$

$$P\frac{\forall}{m} = TR$$

$$P\nu = TR$$

$$P = \frac{1}{\nu}TR = \rho TR$$

$$\frac{P}{\rho} = TR$$

1.3. Velocidad sonica o acústica y viscosidad

A partir de 1

$$dp \ \alpha \ - \frac{d\forall}{\forall} dp = -E_v \frac{d\forall}{\forall}$$

Donde E_v es el modulo de compresibilidad o modulo volumétrico. De la definición de masa

$$\begin{split} m &= \rho \forall \\ dm &= \rho dv + d\rho \forall, \ dm = 0 \\ -\rho d \forall &= d\rho \forall \\ -\frac{d \forall}{\forall} &= \frac{d\rho}{\rho} \end{split}$$

por lo tanto

$$dp = E_v \frac{d\rho}{\rho}$$

$$C = \sqrt{\frac{dp}{d\rho}} = \sqrt{\frac{E_v}{\rho}} \quad \text{Velocidad del sonido a trav\'es de l\'iquidos}$$

$$K = \frac{C_p}{C_\nu} = 1,4$$

$$R = C_p - C_\nu \quad {k_J/kg \cdot K \brack R} = .287^{kJ}/kg \cdot K$$

$$C = \sqrt{\frac{k_p}{\rho}} = \sqrt{KTR}$$

$$E_v = P \quad \text{Proceso isot\'ermico}$$

$$E_v = KP \quad \text{Proceso isoentropico}$$

Líquidos incompresibles $\rho = constante$ Líquidos compresibles $\rho \neq constante$

$$\begin{array}{ll} \text{Mach} &= \frac{\vec{v}}{C} \; \frac{\text{velocidad fluido}}{\text{velocidad de sonido}} \\ \text{Mach} &\leq ,3 \; \text{flujo de gas incompresible} \\ \text{Mach} &\geq ,3 \; \text{flujo compresible} \end{array}$$

$$\underbrace{\frac{\mu}{\rho}}_{\text{Dinámica}} = \underbrace{v}_{\text{Cinemática}}$$

 $\mu = \text{constante o 0 ideal o no viscoso}$ $\mu \neq \text{constante o 0 real o viscoso}$

Fluido de acuerdo al comportamiento de la
$$\mu$$

$$\begin{cases}
\tau & \alpha \xrightarrow{d\theta \text{ deformación}} \rightarrow \text{ley de viscosidad} \\
\text{de Newton} & \frac{d\theta}{dt} = \frac{d\vec{v}}{dy}
\end{cases}$$
No Newtoniano
$$\begin{cases} \tau & \text{no } \alpha \xrightarrow{d\theta} \rightarrow \text{Series de potencias} \\ \text{Visco-elástico} \\ \text{Vinco-elástico} \\ \text{Vinco-elástico} \end{cases}$$
On Newtoniano
$$\begin{cases} \tau & \text{no } \alpha \xrightarrow{d\theta} \rightarrow \text{Series de potencias} \\ \text{Vinco-elástico} \\ \text{Vinco-elástico} \end{cases}$$

Número de Raynolds

$$NR_E = \frac{\text{Fuerzas de inercia}}{\text{Fuerzas viscosas}} = \frac{\overbrace{\rho \vec{v} D}^{\text{Dinámica}}}{\mu} = \underbrace{\overbrace{\vec{v} D}^{\text{Cinemática}}}_{\forall}$$

Flujo viscoso
$$\begin{cases} \text{ flujo laminar} \left\{ \begin{array}{l} NR_E \leq 2000 \ \ (2300) \\ \\ \text{flujo transición} \left\{ \begin{array}{l} 2000 \leq NR_E \leq 4000 \end{array} \right. \\ \\ \text{puede ser laminar o turbulento} \\ \\ NR_E \geq 4000 \end{cases}$$

$$P_{abs} = P_{atm} \pm P_{rel} \rightarrow P_{\rm manom\acute{e}trica}$$

Mach > 1 supersónico

Mach > 5 hipersónico

Mach < 1 sursónico

Mach = 1 sónico

 $Mach \leq 1$ transónico

$$\dot{\forall} = \frac{\forall}{t} = \vec{v}A \rightarrow \text{caudal}$$

$$\rho_{gasolina} = 680 \, {}^{kg}/{}_{m^3} \ E_v = 1.3 \times 10^9 \, {}^{N}/{}_{m^2}$$

$$\rho_{Hg} = 13600 \, {}^{kg}/{}_{m^3} \ E_v = 2.85 \times 10^{10} \, {}^{N}/{}_{m^2}$$

$$\rho_{H_2O \ mar} = 1030 \, {}^{kg}/{}_{m^3} \ E_v = 2.34 \times 10^9 \, {}^{N}/{}_{m^2}$$

1.4. Esfuerzo cortante

$$\tau \alpha \frac{du}{dt} = \frac{\vec{v}}{dy}$$

$$\tau = \mu \frac{d\vec{v}}{dy}$$

$$\tau \int_0^h dy = \mu \int_0^{\vec{v}}$$

$$\tau h = \mu \vec{v}$$

$$\tau = \mu \frac{\vec{v}}{h}$$

$$\tau = \lim_{\Delta A \to 0} \frac{\Delta F_t}{\Delta A} = \frac{dF_t}{dA}$$

$$\tau = \frac{F_t}{A}$$

Donde F_v es la fuerza viscosa o tangente

$$\mu \frac{\vec{v}}{h} = \frac{F_v}{A}$$
$$F_v = \frac{\mu \vec{v}A}{h}$$

caso 1:

$$A = \pi dL$$

$$h = \frac{D - d}{2}$$

$$F_v = \frac{2\pi dL\vec{v}\mu}{D - d}$$

caso 2:

$$F_v = W \sin \theta$$
$$h = \frac{\mu \vec{v} A}{W \sin \theta}$$

*tablas líquidos y gases: mecánica de fluidos Pottev

1.5. Tensión o esfuerzo superficial

$$\sigma_s = \frac{F_{\text{tensión}}}{l} \left[\frac{W}{m}, \frac{lb}{pie} \right]$$

$$\sum F_y = 0$$

$$F_{rsy} - Wg = 0$$

$$\sigma_s \pi D \cos \theta - \rho \forall g = 0$$

$$\sigma_s \pi D \cos \theta - \rho g \frac{\pi D^2}{4} h = 0$$

$$\sigma_s \cos \theta = \frac{\rho g D h}{4}$$

$$h = \frac{4\sigma_s \cos \theta}{\rho g D}$$

2. Estática de fluidos

2.1. Derivada y series de Taylor

La pendiente de una recta con base de una función

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$= \frac{f(x_1 + h) - f(x_1)}{h}$$

La pendiente de la recta tangente en el punto x, o derivada ocurre cuando

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$$

Los coeficientes de $(a+b)^n$ se pueden escribir como

$$1, \frac{n}{1}, \frac{n(n-1)}{1 \cdot 2}, \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}, \cdots$$

El cambio de la altura de una función se puede escribir como

$$\Delta f(x) = f(x+r) - f(x)$$

El valor de la altura final es

$$f(x+r) = f(x) + \Delta f(x)$$

Se aplica lo misma operación una segunda vez

$$\begin{split} \Delta^2 f(x) &= \Delta(\Delta f(x)) \\ &= \Delta(f(x+r) - f(x)) \\ &= f(x+r+r) - f(x+r) - \Delta f(x), \text{ se sustituye } f(x+r) \\ &= f(x+2r) - 2\Delta f(x) - f(x) \end{split}$$

El valor de la altura final es

$$f(x+2r) = f(x) + 2\Delta f(x) + \Delta^2 f(x)$$

Se vuelve a repetir

$$\begin{split} \Delta^3 f(x) &= \Delta(\Delta^2 f(x)) \\ &= f(x+3r) - f(x+2r) - 2\Delta^2 f(x) - \Delta f(x), \text{ se sustituye } f(x+2r) \\ &= f(x+3r) - f(x) - 2\Delta f(x) - \Delta^2 f(x) - 2\Delta f(x) - \Delta f(x) \\ &= f(x+3r) - f(x) - 3\Delta f(x) - 3\Delta^2 f(x) \end{split}$$

El valor de la altura es

$$f(x+3r) = f(x) + 3\Delta f(x) + 3\Delta^2 f(x) + \Delta^3 f(x)$$

Por lo tanto

$$f(x+nr) = f(x) + \frac{n}{1}\Delta f(x) + \frac{n(n-1)}{1\cdot 2}\Delta^2 f(x) + \dots + \frac{n(n-1)\cdots 1}{1\cdot 2\cdots n}\Delta^n f(x)$$

Haciendo h=nr, y multiplicando por 1

$$f(x+nr) = f(x) + \frac{nr}{1} \frac{\Delta f(x)}{r} + \frac{n(n-1)r^2}{1 \cdot 2} \frac{\Delta^2 f(x)}{r^2} + \dots + \frac{(n(n-1)\cdots 1)r^n}{1 \cdot 2 \cdots n} \frac{\Delta^n f(x)}{r^n}$$

Haciendo $n\to\infty$ hace que $r\to 0$

$$f(x+rn) = f(x+h) = f(x) + hf(x)' + h^2 \frac{f(x)''}{2!} + \cdots$$

2.2. Principio de Pascal

presión

$$P = \frac{F}{A} \left[1Pa = 1^{N} / {m^{2}}, {^{lb}} / {pie^{2}}, {^{lb}} / {pulg^{2}} \right]$$

Presión atmosférica

$$Pa \left[1 \ atm = 760 \ mmHg = 16,7^{lb}/_{pulg^2} = 101,325kPa \right]$$

Presión relativa

$$P_{rel}$$

Presión absoluta

$$P_{abs} = P_{atm} \pm P_{rel}$$

$$\sum F_y = ma_y$$

$$P_y \Delta z \Delta x - P \Delta s \Delta x \sin \theta = \rho \frac{\Delta z \Delta y \Delta x}{2} a_y$$

$$\sum F_z = ma_z$$

$$P_z \Delta y \Delta x - P \Delta s \Delta x \cos \theta - \rho g \frac{\Delta z \Delta y \Delta x}{2} = \rho \frac{\Delta z \Delta y \Delta x}{2} a_z$$

Pero de la figura se puede ver que

$$\Delta z = \Delta s \sin \theta$$

$$\Delta y = \Delta s \cos \theta$$

entonces

$$P_y - P = \rho \frac{\Delta y}{2} a_y$$

$$P_z - P = \frac{\rho}{2} (g + a_z) \Delta z$$

Si
$$\Delta y \rightarrow 0,\, \Delta z \rightarrow 0,\, \mathbf{y} \,\, \frac{d\vec{v}}{dy} = 0$$

$$p_y - P = 0$$
$$P_z - P = 0$$
$$P = P_z = P_y$$

Transmisor de fuerza. Si la presión de un punto es igual a otro

$$P_1 = P_2$$

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Transmisor de presión

$$P_1 A_1 = P_2 A_2$$

si
$$\Delta z = 1$$

$$P = P_x = P_y = P_z$$

2.3. Variación de la presión de un fluido en reposo

$$\begin{aligned} W &= dmg \\ &= \rho g d \forall \\ &= \rho g dx dy dz \end{aligned}$$

$$f(x + \Delta x) = F(X) + \frac{\partial f(x)}{\partial x} \cdot \Delta x + \frac{\partial^2 f(x)}{\partial x^2} \cdot \frac{\Delta x}{2!} + \cdots$$
$$f(x + \delta x) \approx f(x) + \frac{\partial f(x)}{\partial x} \Delta x$$
$$f(x - \delta x) \approx f(x) - \frac{\partial f(x)}{\partial x} \Delta x$$

$$(CD) \ P(y + \frac{dy}{2}) = P + \frac{\partial P}{\partial y} \frac{dy}{2}$$

$$(CI) \ P(y - \frac{dy}{2}) = P - \frac{\partial P}{\partial y} \frac{dy}{2}$$

$$dFsy = dfy(+) - dfy(-)$$

$$= [(P + \frac{\partial P}{\partial y} \frac{dy}{2}) - (P - \frac{\partial P}{\partial y} \frac{dy}{2})]dxdz$$

$$= -\frac{\partial P}{\partial y} dxdydz \quad (1)$$

$$Fsz = -\frac{\partial P}{\partial z} dxdydz \quad (2)$$

$$Fsx = -\frac{\partial P}{\partial x} dxdydz \quad (3)$$

$$dF_B = \rho gdxdydz \quad (4)$$

Fuerza másica: fuerza que actúa sobre la masa de un fluido.

$$\begin{split} d\vec{F_T} &= m\vec{a} \\ d\vec{F_s} + d\vec{F_B} &= m\vec{a} \\ d\vec{F_{sx}} + d\vec{F_{sy}} + d\vec{F_{sy}} + \rho g dx dy dz &= m\vec{a} \\ (-\frac{\partial P}{\partial z} - \frac{\partial P}{\partial y} - \frac{\partial P}{\partial x} + \rho g) dx dy dz &= \rho dx dy dz \vec{a} \\ \underbrace{-\vec{\nabla} P + \rho \vec{g} = \rho \vec{a}}_{\text{Ecuación de cantidad de movimiento}} \end{split}$$

$$\underbrace{-\vec{\nabla}P+\rho\vec{g}=0}_{\text{Ecuación vectorial de hidrostática}}$$

$$-\frac{\partial P}{\partial x} + \rho g_x = 0$$
$$-\frac{\partial P}{\partial y} + \rho g_y = 0$$
$$-\frac{\partial P}{\partial z} + \rho g_z = 0$$

Si
$$g_x = g_y = 0$$
 y $g_z = -g$

$$-\frac{\partial P}{\partial z} = \rho g$$

$$\frac{\partial P}{\partial z} = -\rho g$$

$$\partial P = -\rho g \partial z$$

$$\int_{P}^{0} dP = -\rho g \int_{-h}^{0} dz$$

$$-P = -\rho g(+h)$$

$$P = \rho g h$$

2.4. Fuerzas sobre superficies planas y curvas

2.4.1. Fuerza resultante de una distribución de fuerzas hidrostáticas

considerando

$$dF_R = PdA$$

$$\frac{dP}{dh} = \rho g$$

$$P = P_o + \rho gh$$

$$h = y \sin \theta$$

$$dF_R = (P_o + \rho gh)dA \ P_o = 0$$

$$= \rho ghdA$$

$$\int_0^{F_R} = \rho g \sin \theta \int ydA$$

$$F_R = \rho g \sin \theta y_{cg}A$$

$$\underbrace{\int_A y_c dA = y_{cg}A}_{\text{Primer momento de área}}$$

2.4.2. Localización de la fuerza resultante

$$dM_x = dF_R \cdot y$$

$$= \rho g y \sin \theta y dA$$

$$= \rho g y^2 \sin \theta dA$$

$$M_{Rx} = \rho g \sin \theta I_{xx}$$

$$F_R y_{cp} = \rho g \sin \theta I_{xx}$$

$$y_{cp} = \frac{\rho g \sin \theta I_{xx}}{\rho g \sin \theta y_{cg} A} = \frac{I_{cg} + y_{cg}^2 A}{y_{cg} A} = \frac{I_{cg}}{y_{cg} A} + y_{cg}$$

$$\underbrace{\int y^2 dA = I_{xx} = I_{cg} + y_{cg}^2 A}_{\text{Segundo momento de área}}$$

Ejemplo

$$F_{H} = F_{x2} - F_{x1} = 0$$

$$F_{x2} = F_{x1}$$

$$F_{V} = 2F_{y} + 2W_{L}$$

$$F_x = \rho g(h_1 + \frac{r}{2})(rb)$$

$$F_y = \rho g h_1(rb)$$

$$W = mg$$

$$= \rho \forall g = \rho g(R^2b - \frac{\pi r^2b}{4})$$

2.5. Principio de Arquímedes

$$F_B = F_i - F_s$$

$$= \rho g(h + y)A - \rho ghA$$

$$= \rho gyA$$

$$= \rho g \forall$$

 \mathcal{F}_B : Fuerza de flotabilidad o Boyante

 \forall : Volumen desplazado

3. Cinemática de fluidos

3.1. Formas para describir el movimiento de un fluido

3.1.1. Enfoque de Lagrange

Identifica una pequeña masa de fluido en un flujo y describe el movimiento todo el tiempo.

Descripción del movimiento donde las partículas de masa individuales son observadas como función del tiempo.

3.1.2. Enfoque de Euler

Se define un volumen finito llamado volumen de control \forall_c a través del cual una masa fluye hacia dentro o hacia afuera.

Se definen variables de campo, como función del espacio y tiempo dentro del \forall_c

3.2. Campos de presión y aceleración

3.2.1. Campo de aceleración

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

$$\vec{v} = u\vec{i} + \nu\vec{j} + w\vec{k}$$

3.2.2. Campo de presión

$$\begin{split} \vec{v} &= (x, y, z, t) \\ \vec{v} &= \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + \frac{\partial v}{\partial z} dz + \frac{\partial v}{\partial t} dt \end{split}$$

3.3. Ecuación de Euler y Navier-Stokes

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial \vec{v}}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial \vec{v}}{\partial z} \cdot \frac{dz}{dt} + \frac{\partial \vec{v}}{\partial t} \cdot \frac{dt}{dt}$$

$$= u\frac{\partial \vec{v}}{\partial x} + \nu\frac{\partial \vec{v}}{\partial y} + w\frac{\partial \vec{v}}{\partial y} + \frac{\partial \vec{v}}{\partial t}$$

$$= \frac{D\vec{v}}{Dt} = \underbrace{\frac{\partial \vec{v}}{\partial t}}_{\text{Parte local}} + \underbrace{u\frac{\partial \vec{v}}{\partial x} + \nu\frac{\partial \vec{v}}{\partial y} + w\frac{\partial \vec{v}}{\partial y}}_{\text{Parte conectiva}}$$

Donde

$$\begin{split} \vec{\nabla} &= (\frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial x} \vec{j} + \frac{\partial}{\partial x} \vec{k}) \\ \frac{D}{Dt} &= \frac{d}{dt} = \frac{\partial}{\partial t} \ldots + (\vec{v} \cdot \vec{\nabla} \cdot) \ldots \end{split}$$

$$\begin{split} \frac{\partial}{\partial t} &= \frac{d}{dt} = 0 \quad \Big\{ \text{Estable o permanente} \\ \frac{\partial}{\partial t} &= \frac{d}{dt} \neq 0 \quad \Big\{ \text{No estable ni permanente, en transición} \end{split}$$

Ecuación de Euler: para compresible e incompresible. A partir de la ecuación de cantidad de movimiento sin esfuerzos cortantes.

$$\begin{aligned} -\vec{\nabla} \cdot P + \rho \vec{g} &= \rho \vec{a} \\ &= \rho \frac{D \vec{v}}{D t} \\ &= \rho (\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla} \cdot \vec{v})) \end{aligned}$$

$$= \frac{-\vec{\nabla} \cdot P}{\rho} + \underbrace{\vec{g}}_{\text{Guerzas de gravedad debido a fuerzas másicas}}_{\text{uperficie o contacto}} = \underbrace{\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \cdot \vec{v}}_{\text{Fuerzas de inercidebido a la aceleración}}$$

Ecuación de Navier-Stokes: Solo para incompresibles

$$\begin{split} -\vec{\nabla} \cdot P + \rho \vec{g} + \underbrace{\mu \cdot \nabla^2 \vec{v}}_{\text{Fuerzas viscosas}} &= \rho \vec{a} = \rho \frac{D\vec{v}}{Dt} \\ -\frac{\partial P}{\partial x} + \rho g_x &= \rho a_x \ g_y = 0 \\ -\frac{\partial P}{\partial y} + \rho g_y &= \rho a_y \ g_y = \\ -\frac{\partial P}{\partial z} + \rho g_z &= \rho a_z \end{split}$$

3.4. Ecuación de Bernoulli

Presión $\vec{\nabla} \cdot P$ fuerzas superficie Fuerza $\rho \vec{g}$ fuerzas cuerpo Aceleración $\rho \frac{D \vec{v}}{D t}$ fuerzas inercia Viscosidad $\mu \nabla^2 \vec{v}$ fuerzas fricción

$$\vec{a}_s = f(s,t)$$

$$= \frac{D\vec{v}}{Dt} = \frac{d\vec{v}}{dt} = \frac{\partial v}{\partial t} + \vec{v} \frac{d\vec{v}}{ds}$$

$$\frac{1}{2} \frac{dv^2}{dv} = v$$

$$\frac{1}{2} dv^2 = v dv$$

$$d\vec{F}_{Ts} = dm \ \vec{a}_s$$

$$d\vec{F}_s + d\vec{F}_B = dm \ \vec{a}_s$$

$$PdA - (P + dp)dA - dm \ g \sin \theta = dm \ \frac{D\vec{v}}{Dt}$$

$$-dpdA - \rho ds dAg \sin \theta = \rho ds dA \frac{D\vec{v}}{Dt}$$

$$-dp - \rho dsg \sin \theta = \rho ds (\frac{\partial v}{\partial t} + \vec{v} \frac{d\vec{v}}{ds}), \quad \frac{\partial v}{\partial t} = 0$$

$$-\frac{dp}{\rho} - dzg = \vec{v} d\vec{v}$$

$$\int (\frac{dp}{\rho} + g dz + \frac{1}{2} d(\vec{v})^2) = 0$$

$$\frac{P}{\rho} + \frac{1}{2} (\vec{v})^2 + gz = \text{constante}$$

$$\frac{P_1}{\rho} + \frac{1}{2} (\vec{v}_1)^2 + gz_1 = \frac{P_2}{\rho} + \frac{1}{2} (\vec{v}_2) + gz_2$$

$$\frac{P_1}{\rho} + \frac{1}{2} (\vec{v}_1)^2 + gz_1 = e_{mec}$$
energía mecánica

3.4.1. Por cargas o longitud

$$\frac{P}{\rho g} + \frac{1}{2g}(\vec{v})^2 + z = constante = \text{carga total}$$

$$\underbrace{\frac{P_1}{\rho g}}_{\text{Carga}} + \underbrace{\frac{1}{2g}(\vec{v}_1)^2}_{\text{Carga}} + \underbrace{\frac{z_1}{\text{Carga}}}_{\substack{\text{elevación} \\ \text{o altura}}} = \frac{P_2}{\rho g} + \frac{1}{2g}(\vec{v}_2)^2 + z_2$$

3.4.2. Por presión

$$\begin{split} P + \frac{\rho}{2} (\vec{v})^2 + \rho gz &= constante = \text{Presión total} \\ \underbrace{P_1}_{\substack{\text{Presión relativa o estática}}} + \underbrace{\frac{\rho}{2} (\vec{v}_1)^2}_{\substack{\text{Presión dinámica}}} + \underbrace{\frac{\rho g z_1}{Presión}}_{\substack{\text{hidrostática}}} = P_2 + \frac{\rho}{2} (\vec{v}_2)^2 + \rho g z_2 \end{split}$$

Ejemplo

número	cinética	potencial	presión
1	muy pequeña	cero	grande
2	grande	pequeña	cero
3	cero	grande	cero

3.5. Ecuación de Bernoulli: termodinámica

e.c: energía cinética e.p: energía potencial

$$\begin{split} \delta Q &= \Delta U + \delta w \\ \delta Q &= Q_{ent} - Q_{sal} \\ \delta W &= w_{ent} - W_{ent} \end{split}$$

$$\begin{split} \delta Q + \delta W &= m(\Delta u + \Delta P_v + \Delta e.c + \Delta e.p) \\ \delta q + \delta w &= \Delta u + \Delta P_v + \Delta e.c + \Delta e.p \\ \underbrace{\Delta P_v + \Delta e.c + \Delta cp = 0}_{\text{Ecuación de Bernoulli}} \end{split}$$

3.6. Caudal

$$\begin{split} \dot{m} &= \frac{m}{\Delta t} \ \left[{}^{kg}/{}_{s}, {}^{lbm}/{}_{s}, {}^{slug}/{}_{s}, \right] \\ \dot{\forall} &= \frac{\forall}{\Delta} \ \left[{}^{m^{3}}/{}_{s}, {}^{lt}/{}_{s}, {}^{pie^{3}}/{}_{s}, gpm \right] \end{split}$$

$$\dot{m} = \int_{A} \rho \vec{v}_{n} dA$$

$$\dot{\forall} = \int_{A} \vec{v}_{n} dA$$

$$\underbrace{\vec{v}}_{\text{velocidad}} = \frac{1}{A} \int_{A} \vec{u}_{n} dA$$
 velocidad media o promedio

$$D = 2r$$

$$r = \frac{D}{2}$$

$$A = \pi r^{2}$$

$$= \pi \frac{D^{2}}{4}$$

$$\begin{split} \dot{\forall}_A &= \dot{\forall}_B \\ \vec{v}_A A_A &= \vec{v}_B A_B \\ \vec{v}_B &= \vec{V}_A \frac{A_A}{A_B} \\ &= \vec{v}_A \Big(\frac{D_A}{D_B}\Big)^2 \end{split}$$

3.7. Ecuación de Torricelli

Velocidad terminal o máxima de caída libre

$$\vec{v} = \sqrt{2gz}$$