Lecture - 9

Cylindrical coordinate System

How to specify a point P in space? (r, θ, z)

- \checkmark z is the Height from the XY-plane
- ✓ Coordinate of the foot of the point in XY plane. $x = r \cos \theta$

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

Polar coordinate unit vectors $(\hat{r}, \hat{\theta})$ + additional unit vector in the z -direction.

$\Box \hat{r}$, $\hat{\theta}$ and \hat{z} are unit vectors along increasing direction of coordinates r, θ and z.

Line element:

$$\overrightarrow{dl} = dr\hat{r} + rd\theta\hat{\theta} + dz\hat{z}$$

Surface element with fix r:

$$\overrightarrow{dA} = rd\theta dz\hat{r}$$

Reverse transformation

$$r = (x^2 + y^2)^{1/2}$$
$$\theta = \tan^{-1} \frac{y}{x}$$
$$z = z$$

Volume element: $dv = rdrd\theta dz$

Spherical coordinate System

Note that point (r, θ, φ) is at the intersection of three surfaces

- \square A sphere where r =Constant
- \square A cone about z=axis with θ =constant.
- \square A half plane containing z-axis and φ = constant

Be careful, notations are different. r and θ are not planer coordinate.

Spherical coordinate System

Transformation relations

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

Hence

$$r = (x^{2} + y^{2} + z^{2})^{1/2}$$

$$\theta = \tan^{-1} \frac{(x^{2} + y^{2})^{1/2}}{z}$$

$$\varphi = \tan^{-1} \frac{z}{x}$$

 $\vec{r} = r \sin \theta \cos \varphi \,\hat{x} + r \sin \theta \sin \varphi \,\hat{y} + r \cos \theta \,\hat{z}$

Line element:
$$d\mathbf{l} = dr\hat{\mathbf{r}} + rd\theta\hat{\theta} + r\sin\theta d\phi\hat{\phi}$$

Voume element: $dV = dl_r dl_\theta dl_\phi = r^2 \sin \theta dr d\theta d\phi$

Surface element for fix r: $d\mathbf{A} = r^2 \sin\theta d\theta d\phi \hat{r}$

Well, We are done with the necessary mathematical concepts!

Ok, Now in to Physics!