UNIVERSITE MOHAMMED V - AGDAL

FACULTE DES SCIENCES

RABAT

FILIÈRE SMPC, S2, CHIMIE GÉNÉRALE II, RÉACTION CHIMIQUE

A. ZRINEH & A. EL YAHYAOUI

CHAPITRE I : REACTIONS ACIDE-BASE EN SOLUTIONS AQUEUSES

I-COUPLES ACIDE-BASE

- 1- Evolution des notions d'acide et de base
- a) Théorie d'Arrhénius

Définition: un acide (base) est un corps qui se dissocie dans l'eau en donnant des ions H' (OH).

acide HA:

H₂O HA ≒

 $H^+ + A^-$

base BOH

BOH ≒

 $B^* + OH^*$

b) Théorie de Lewis

Définition : Un acide (base) est un composé chimique qui présente une lacune et accepteur d'électrons (doublet électronique disponible : donneur d'électrons).

acide

base

de Lewis de Lewis

c) Théorie de Bronsted

Remarque : cette théorie est très importante pour le calcul des pH et elle est valable pour tous les solvants.

2 - Acides et bases selon Bronsted

Définition : Un acide (base) est un composé capable de céder (capter) un proton

(CH3COOH/ CH3COO) et (NIL / NH3) sont deux couples acide-base.

a) Réaction acide - base

Les protons (H') n'existent pas à l'état libre. Pour qu'un acide puisse céder des protons, il faut en sa présence une base susceptible de les fixer.

$$A_{I} \Leftrightarrow B_{I} - \text{proton}$$
 demi-réaction $B_{II} + \text{proton} \Leftrightarrow A_{II}$

$$A_{I} + B_{II} \Leftrightarrow B_{I} + A_{II} \qquad \text{Réaction globale}$$

- b) <u>Caractère ampholyte de l'eau</u>
- Comportement basique de H2O

Ex:
$$CH_3COOH + H_2O$$
 \Rightarrow $CH_3COO^- - H_3O^+$

$$A_1 \quad B_{11} \qquad B_1 \qquad A_{17}$$

Les couples acide-base sont :

- Comportement acide de H2O

Ex:
$$NH_3 + H_2O$$
 \Rightarrow $NH_4^+ + OH^-$

B₁ A_{11} B_{12} B_{13}

Les couples acide-base sont : NH4"/NH2 et H2O/OH

L'eau peut jouer le rôle d'un acide ou d'une base, elle présente donc un caractère ampholyte (deux rôles).

Puisque l'eau est ampholyte, on peut envisager la réaction entre deux molécules H₂O.

$$H_2O + H_2O$$
 \leftrightarrows $OI\Gamma + II_3O^-$
 $A_1 \quad B_{II}$ $B_1 \quad A_{II}$

L'application de la loi d'action de masse à cet équilibre donne :

$$Keq = \frac{[H_3O^*][OH^*]}{[H_2O]^2}$$

 $K_{eq,298} = 3,24.10^{-18}$ (conductimétrie)

Ces deux relations permettent de définir de définir et calculer le produit ionique Ke de l'eau par :

$$K_c = K_{eq} [H_2O]^2 = [H_3O^{\uparrow}] [OH^{\uparrow}] = 10^{-14}$$
 à 298 K

$$[H_2O] = 1000/18 = 55,5 \text{ mol } L^{-1}$$

llitre de H_2O pèse 1000g \rightarrow (1000/18) mol

$$M_{\rm HzO} = 18$$
 g/mol

$$K_{*} = [H_{3}O^{4}] [OH^{2}] - 10^{-14}$$

Ka: produit ionique de l'eau

c) Concentration en ions H₂O⁺, notion de pH.

Dans l'étude quantitative des ions acide H_3O^+ et basique OH, <u>l'eau</u> est choisic comme <u>référence</u>. On parle d'électroneutralité ([H_3O^+] = [OH]).

- életroneutralité
$$\rightarrow$$
 [H₂O⁺]=[OH⁻]

$$Ke = [H3O+][OH] \rightarrow [H2O+] = [OH-]$$

$$= 10^{-14}$$

$$= 10^{-7} \text{mol}/$$

Le milieu est dit neutre.

On définit le pH par : $pH = -log_{10} [H_3O^+]$

$$-[H_3O^+] = 10^{-7} \text{mol/L} \rightarrow pH = 7 \rightarrow \text{milieu } \underline{\text{neutre}}$$

-
$$[H_3O^{\dagger}] > 10^{-7} \text{mol/L} \rightarrow pH < 7 \rightarrow \text{milieu acide}$$

-
$$[H_3O^+] < 10^{-7} \text{mol/L} \rightarrow \underline{pH > 7} \rightarrow \text{milieu basique}$$

On définit aussi le pOH par : pOH = $-\log_{10}[OH]$, sachant que $[H_3O^+][OH]=10^{-14}$

On peut écrire :
$$-\log_{10} [H_3O^{\dagger}] - \log_{10} [OH^{\bullet}] = -\log_{10} 10^{-14}$$

d) Force des acides et des bases en solution aqueuse.

1- Hydrolyse

Acide +
$$H_2O$$
 \Rightarrow Base + H_3O^+

Réactions d'hydrolyse

Base + H_2O \Rightarrow Acide + OH^-

Toutes les réactions acide-base dans l'eau se font en fonction de leurs forces par rapport aux couples H₃O⁺/H₂O et H₂O/OH qui constituent les limites de mesure de pH (0-14) (voir plus loin).

Université Mohammed V - Agdal - Faculté des Sciences, Rabot Filière SMPC, S2, Chimie Générale II, Réaction Chimique, Réactions Acide-Base, 2011-2012

2- Force d'un acide

Soit la réaction :

Acide +
$$H_2O \implies Base + H_3O^+$$

$$K_{eq} = \frac{[Base] [H_3O^{\dagger}]}{[Acide] [H_2O]} \rightarrow Ka = K_{eq} [H_2O] = \frac{[Base] [H_3O^{\dagger}]}{[Acide]}$$

Ka : constante d'acidité

$$pKa = -\log_{10}Ka$$

L'acide est d'autant plus <u>fort</u> que sa constante d'acidité Ka est plus <u>forte</u> (son <u>pKa</u> plus <u>faible</u>) et inversement.

Exemples:

Tous les acides qui ont des pKa finis sont plus faibles que l'acide <u>H₃O</u>.

Certains acides sont plus forts que H₃O⁺ (HCl, HNO₃, HClO_{4...}), ils sont totalement dissociés dans l'eau.

Ex:
$$HClO_4 + H_2O \rightarrow ClO_4^- + H_3O^+$$
 Réaction totale

3) Force d'une base

Soit la réaction :

Pour tout couple acide – base A/B on a:
$$pK_a + pK_b = 14$$
Une base est d'autant plus forte que son pK_b est plus faible $(K_b$ forte) et que le pK_a de son acide conjugué est plus fort $(K_a$ faible).

Dans le cas des bases plus fortes que OH $(NaOH, KOH,)$, la réaction dans l'eau est totale.

On peut classer les couples acide-base selon les valeurs de leurs pKa par rapport

à celles des couples H₃O⁺/H₂O et H₂O/OH⁻ de l'eau et établir l'échelle suivante :

Ex: NaOH +H₂O \rightarrow Na⁺, H₂O + OH⁻

4) Echelle des pK.

[Acide] Ke

[Base] $[H_3O^{\dagger}]$

Ke

Ka

réaction totale.

[Acide] [OH]

 $K_e = K_a$. K_b $pK_e = 14 = pK_a + pK_b$

[Base]

 $K_b =$

- Application à la prévision des réactions :

Considérons deux couples acide-base

$$A_1/B_1$$
 et A_2/B_2

$$A_1 + H_2O \iff B_1 + H_3O^{-} \quad Ka_1 = \frac{[B_1][H_3O^{+}]}{[A_1]}$$

X

Université Mohammed V - Agdal - Faculté des Sciences, Rabot Filière SMPC, 52, Chimie Générale II, Réaction Chimique, Réactions Acide-Base, 2011-2012

$$A_2 + H_2O \implies B_2 + H_3O^+ \qquad Ka_2 = \frac{[B_2][H_3O^+]}{[A_2]}$$

Soit la réaction globale :

$$A_1 + B_2 \stackrel{i}{\rightleftharpoons} B_1 + A_2 \qquad K = \frac{[B_1][A_2]}{[A_1][B_2]} = \frac{Ka_1}{Ka_2}$$

$$pK = pK_{a1} - pK_{a2} \qquad \Longrightarrow \qquad K = 10^{(pKa2 - pKa1)}$$

* si: $pKa_1 < pKa_2 \Leftrightarrow A_1$ plus fort que A_2 et B_2 plus forte que B_1 , la réaction globale se fait dans le sens (1)

$$pK < 0 \rightarrow K > 1$$

*si: $pKa_1 > pKa_2 \Leftrightarrow A_1$ plus faible que A_2 et B_2 plus faible que B_1 La réaction globale se fait dans le sens (2)

$$pK > 0 \rightarrow K < 1$$

e) Effet nivelant ou différenciant d'un solvant

Dans l'eau, les acides plus forts que H₃O⁺ et les bases plus fortes que OH sont totalement dissociés et ne peuvent pas être classés. Dans ce cas l'eau est dite solvant nivelant.

Pou pouvoir classer ces composés il faut choisir : }

 pour les acides <u>forts</u>, un solvant plus acide (moins basique) que l'eau permet de freiner la réaction et la rendre équilibrée. Ex: CH3COOH est plus acide (moins basique) que l'eau.

Si on le choisit comme solvant, on pourra envisager comme pour l'eau, la réaction d'auto-ionisation suivante :

$$CH_3COOH + CH_3COOH \leftrightarrows CH_2COO' + CH_3COOH_2^+$$

$$A_1 \qquad B_{II} \qquad B_1 \qquad A_{II}$$

et les couples acide-base analogues à ceux de l'eau seront :

La dissociation d'un acide HA (fort dans l'eau) se fait dans l'acide acétique par exemple selon l'équilibre :

$$HA + CH_2COOH \Rightarrow A' + CH_3COOH_2$$

 $A_I \cdot B_{II} \cdot B_I \cdot A_{II}$

Avec
$$K_A$$
 =
$$\frac{[A^*][CH_3COOH_2^*]}{[HA]}$$
 (valeur finie)

La détermination des K_A des différents acides (forts dans l'eau) permet de les classer dans l'acide acétique.

Ex : HClO₄ > H₂SO₄ > HCl > HNO₃
Dans ce cas l'acide acétique est dit solvant différenciant.

 Pour les bases <u>fortes</u> un solvant plus basique (moins acide) que l'eau permet d'établir des équilibres.

Ex: NH₃ (plus basique que H₂O)

$$NH_3 + NH_3 \Rightarrow NH_2 + NH_4^+$$

 $A_1 \quad B_{11} \quad B_1 \quad A_{17}$

est considéré comme solvant différenciant pour les bases (fortes dans l'eau).

II- RELATIONS QUANTITATIVES, pH DES SOLUTIONS D'ACIDES, DE BASES ET DE SELS:

1- pH d'une solution aqueuse d'un acide (base) fort (e) :

a- Cas d'un acide fort

$$HA + H_2O \rightarrow A^- + H_3O^+$$
E.I C 0 0 E.I; état initial
E.F 0 C C E.F; état final

Pour déterminer le pH ([H₃O⁺]), il faut systématiquement reproduire des données telles que :

- Inventaire des espèces présentes (E.P.); A', H₃O⁺, OH'.
- Produit ionique de l'eau (P.L): (1) K_e = [H₃O⁻] [OH]
- Conservation de masse (C.M.): (2) [A'] = C
- Electroneutralité (E.N.): (3) [H₃O⁻] = [A⁻] +[OH⁻]

(1) et (2) dans (3)
$$\rightarrow$$
 [H₃O⁺] = C + K_e/[H₃O⁺] (1)

$$[H_3O^+]^2 - C[H_3O^+] - K_e = 0$$

- Résolution :

1.
$$[H_3O^+] = \frac{C + \sqrt{C^2 + 4ke}}{2}$$

2- Approximations

$$[OH^-] \ll [H_3O^+] \sim ([H_3O^+] > 3.10^{-7}M, pH < 6.5)$$
 Si $C > 3.10^{-7}M$

(I) devient
$$[H_3O^+] \approx [A^-] = C$$

$$pH = -\log C$$

Application :

$$pH = 6.80$$
 juste
 $pH = 7.00$ faux

b- Cas d'une base forte

$$B + H_2O \rightarrow BH^+ + OH^ 2H_2O \leftrightarrows H_3O^+ + OH^-$$

EI C 0 0 .

(1)
$$Ke = [H_3O^+] [OH^-]$$

(2) $[BH^+] = C$
(3) $[OH^-] = [BH^+] + [H_3O^+]$
[OH] = $C + K_*/[OH^-]$

$$[OH^{-}]^{2} - C[OH^{-}] - K_{e} = O$$

a - Résolution

1- [OH] =
$$\frac{C + \sqrt{C^2 + 4ke}}{2}$$
 \rightarrow [H₃O⁺] = $\frac{2K_e}{C + \sqrt{C^2 + 4ke}}$

β- Approximations

$$[H_3O^+] \ll [OH]$$
 ([OH] > 3.10⁻⁷ c'est à dire pH > 7.5) si C > 3.10⁻⁷M

(II)
$$\rightarrow$$
 [OH] \approx C \rightarrow pOH = -log C pH = 14 + log C

2- pH d'une solution aqueuse d'un acide (base) faible.

a- Acide faible

$$HA + H_2O = A^- + H_3O^+$$
 $2H_2O = OH + H_5O^+$
E.I. $C = 0 = 0$
E.F. $C(1-\alpha) = C\alpha$

E.P: HA, A, H₃O, OH.

$$Ka = \frac{[A'] [H_3O^{\dagger}]}{[HA]} \rightarrow [A'] = Ka \frac{[HA]}{[H_3O^{\dagger}]}$$
 (1)

C.M.:
$$[A'] + [HA] = C$$
 \rightarrow $[HA] = C - [A']$ (2)

P.I:
$$Ke = [H_3O^+][OH^-] \rightarrow [OH^-] = \frac{}{[H_3O^+]}$$
 (3)

Ke

E.N.:
$$[H_3O^{\dagger}] = [A^{\dagger}] + [OH^{\dagger}]$$
 (4)

(2) dans (1)
$$\rightarrow [A] = \frac{KaC}{Ka + [H_3O^{\dagger}]}$$
 (1')

(1') et (3) dans (4)
$$\rightarrow \left[[H_3O^+] = \frac{KaC}{Ka + [H_3O^+]} + \frac{Ke}{[H_3O^-]} \right]$$
 (III)

$$[H_3O^+]^3 + Ka [H_3O^+]^2 - (KaC - Ke)[H_3O^+] - KaKe = 0$$

α- Résolution : généralement difficile

β- Approximations:

$$[OH] \iff [H_2O^{\dagger}] \longrightarrow [H_2O^{\dagger}] = \frac{KaC}{Ka + [H_3O^{\dagger}]}$$

On obtient alors: $[\Pi_3O^{\dagger}]^2 + Ka[H_3O^{\dagger}] - KaC = 0$

$$[H_3O^+] = \frac{-K\dot{a} \div \sqrt{Ka^2 + 4KaC}}{2}$$

$$-[OH] << [H_3O^+] \quad \text{et } [A-] << [HA] \quad (\alpha \le 0.05)$$

$$(4) \text{ devient} \qquad (2) \text{ devient}$$

$$[H_3O^+] = [A^-] \qquad [HA] = C$$

(1) devient
$$\rightarrow [H_2O^+] = \frac{\text{KaC}}{[H_2O^+]} \rightarrow [H_3O^+]^2 = \text{kaC}$$

$$pH = \frac{1}{2} pKa - \frac{1}{2} \log c$$

17

Dans le cas où $[OH^*] << [H_3O^*]$, on peut également résoudre le problème en fonction de α ou I.

$$\left[H_3O^+\right] = \frac{-\mathrm{Ka} + \sqrt{\mathrm{Ka}^2 + 4\mathrm{KaC}}}{2} = \mathrm{C}\alpha \qquad (a)$$

$$\alpha = \frac{-I + \sqrt{I^2 + 4I}}{2}$$

$$(\alpha) = f(I), \quad I = \frac{Ka}{C}$$

$$\int_{-\infty}^{\infty} 1 \le 0.1 \quad \text{ou } \alpha \le 0.27$$

$$I^2 \ll 4I \Rightarrow I^2 + 4I \approx 4I \Rightarrow \alpha = \sqrt{I} - 1/2$$
 (b)

$$[H_3O^+] = C \alpha = \sqrt{KaC} - \frac{Ka}{2} \rightarrow pH = -\log(\sqrt{KaC} - \frac{Ka}{2})$$

* I
$$\leq 0.0025$$
 ou $\alpha \leq 0.05$

$$I << \sqrt{I} \rightarrow$$
 (b) devient

$$\alpha = \sqrt{I}$$

$$[H_3O^*] = C \alpha = \sqrt{KaC} \qquad \Rightarrow \qquad \boxed{pH = \frac{1}{2} pKa - \frac{1}{2} \log C}$$

0,0025 0,1 I = Ka/C 0,05 0,27

$$\alpha = \sqrt{I}$$
 (e)
pH = 1/2 (pKa-log C)

$$\alpha = \sqrt{I} - I/2$$
 (b) $pH = -\log(\sqrt{KaC} - \frac{Ka}{2})$

$$1 > 0.1$$
 ou $\alpha > 0.27$ (a) $pH = -\log(\frac{-Ka + \sqrt{Ka^2 + 4KaC}}{2})$

b- base faible

$$B + H_2O \Rightarrow BH^+ + OH^ C = 0 = 0$$
 $C(1-\alpha) = C\alpha$
 $C\alpha = C\alpha$
 $C\alpha = C\alpha$

$$Kb = \frac{[OH^*] [BH^*]}{[B]} (1) Ke = [H_3O] [OH^*] (2)$$

$$[B] + [BH^{+}] = C(3)$$
 $[OH^{-}] = [BH^{-}] + [H_{3}O^{+}] (4)$

(1), (2) et (3) dans (4)
$$\rightarrow [OH'] = \frac{C K_b}{[OH'] + K_b} \div \frac{K_c}{[OH']}$$
 (IV)

On remplace [OH] par $\frac{\text{Ke}}{\text{[H}_3\text{O}^+]}$ et Kb par Ke/Ka

$$\frac{\text{Ke}}{\text{[H3O+]}} = \frac{\text{C [H3O+]}}{\text{Ka + [H3O+]}} + \text{[H3O+]}$$
(IV')

α - Résolution : → Généralement compliquée

 β – Approximations

$$\frac{\text{Ke}}{[\text{H}_3\text{O}^+]} = \frac{\text{C} [\text{H}_3\text{O}^+]}{\text{Ka} + [\text{H}_3\text{O}^+]} = \frac{\text{C}[\text{H}_3\text{O}^+]^2 - \text{Ke}[\text{H}_3\text{O}^+] - \text{Ke}[\text{Ka} = 0]}{\text{C}[\text{H}_3\text{O}^+]^2 - \text{Ke}[\text{H}_3\text{O}^+] - \text{Ke}[\text{Ka} = 0]}$$

[OH] =
$$\frac{-K_b + \sqrt{K_b^2 + 4K_bC}}{2}$$
, [H₃O⁺] = $\frac{Ke + \sqrt{Ke^2 + 4KakeC}}{2C}$

2-
$$[H_3O^+] \ll [OH]$$
 et $[BH^+] \ll [B]$ ($\alpha \le 0.05$)
(4) devient (3) devient

(1) devient
$$K_b = \frac{[OH^*]^2}{C}$$
 \rightarrow $pOH = 1/2 pK_b - 1/2 log C$

$$pH = 14 - pOH = 14 - 1/2 (14 - pKa) + 1/2 log C = 7 + 1/2 pKa + 1/2 log C$$

Pour travailler en fonction de I et α , on applique les formules établies dans le cas de l'acide faible en remplaçant Ka pour K_b , $[H_3O^*]$ par $[OH^*]$ et pH par pOH.

$$[H_3O^*] << [OH] \rightarrow [OH] = \frac{-K_b + \sqrt{K_b^2 + 4K_oC}}{2} = C\alpha$$

$$\alpha = \frac{-I + \sqrt{I^2 + 4I}}{2}$$
 et $pH = 14 + \log(\frac{-K_b + \sqrt{K_b^2 + 4K_bC}}{2})$

$$\alpha = f(I)$$
 et $I = K_b/C$

-

* $1 \le 0.1$ ou $\alpha \le 0.27$

[OH] =
$$(\sqrt{K_bC} - \frac{K_b}{2})$$
 pOH = $-\log(\sqrt{K_bC} - \frac{K_b}{2})$

$$pH = 14 + \log (\sqrt{K_b C} - \frac{K_b}{2})$$

* $I \le 0,0025$ ou $\alpha \le 0.05$

[OH] =
$$\sqrt{K_bC}$$
 \rightarrow pOH = 1/2 p K₅ - ½ log C
pH = 7 + 1/2 pKa + 1/2 log C

3- pH d'une solution aqueuse d'un sel.

a) Sel d'acide fort et de base forte (sel neutre)

Na* et Cl" ne présentent aucun caractère acide-base, la solution est neutre pH = 7

b) Sel d'acide fort et de base faible (sel acide)

$$NH_4CI$$
 \longrightarrow $NH_4^+ + CI^-$: dissociation $NH_4^- + H_2O \implies NH_3 + H_3O^+$; hydrolyse

Université Mohammed V - Agdal - Faculté des Sciences, Rabat Filière SMPC, 52, Chimie Générale II Réaction Chimique, Réactions Aciae-Base, 2011-2012

Le pH est celui de l'acide faible NH.

c) Sel d'acide faible et de base forte (sel basique)

$$CH_3COON_3$$
 \longrightarrow $CH_3COO' + Na^+$
 $CH_3COO' + H_2O \leftrightarrows CH_3COOH + OH$

Le pH est celui de la base faible :

PH =
$$7 + 1/2$$
 pKa + $1/2 \log C$

d) Sel d'acide faible et de base faible

$$K_{b1} = \frac{[CH_3COOT]}{[CH_3COOT]} \rightarrow K_{a1} = \frac{[H_3OT][CH_3COOT]}{[CH_3COOH]}$$
(1)

$$NH_4^+ + H_2O = NH_3 + H_3O^+ \rightarrow K_{a2} = \frac{[NH_3] [H_2O^+]}{[NH_4^+]}$$
 (2)

C o.

Equation globale :

$$C(1-\alpha)$$
 $C(1-\alpha)$ $C(\alpha)$

Les relations (1) et (2) permettent d'écrire :

$$[H_3O^{\uparrow}] = K_{41} \frac{[CH_3COOH]}{[CH_3COO^{\uparrow}]} = K_{42} \frac{[NH_4^{\uparrow}]}{[NH_3]}$$

Ca

$$pH = pK_{a1} + log \frac{[CH_3COO']}{[CH_3COOH]} = pK_{a2} + log \frac{[NH_2]}{[NH_4^+]}$$

$$pH = 1/2 (pK_{a1} + pK_{a2}) + 1/2 log \frac{[CH_3COO'] [NH_3]}{[CH_3COOH] [NH_4^+]}$$

$$et \qquad pH = 1/2 (pK_{a1} + pK_{a2}) + 1/2 log \frac{[CH_3COOH] [NH_4^+]}{[CH_3COOH] [NH_4^+]}$$

$$et \qquad pH = 1/2 (pK_{a1} + pK_{a2})$$

$$[CH_3COOH] = [NH_3]$$

Le pH est indépendant de la concentration C du sel.

4) pH d'une solution d'ampholyte (HCO, , HSO,)

acide:
$$HCO_3^* + H_2O = CO_3^{2^*} + H_3O^+$$

$$K_{a1} = \frac{[CO_3^*][H_3O^*]}{[HCO_3]}$$
base: $HCO_3^* + H_2O = H_2CO_3 + OH$

$$K_{a2} = \frac{[HCO_3][H_3O^+]}{[II_2CO_3]}$$
Réaction globale: $2HCO_3^* = CO^{2^*}_3 + H_2CO_3$.
$$K_{a1}.K_{a2} = \frac{[CO^{2^*}_3][H_3O^+]^2}{[H_2CO_3]} = [H_3O^+]^2 \text{ car } [CO_3^{2^*}] = [H_2CO_3]$$

 $pH = 1/2 (pK_{ej} + pK_{a2})$

Le pH est indépendant de C.

5) pH d'une solution contenant un acide faible et sa base conjuguée : « solution tampon ».

$$\begin{array}{c} \text{CH}_3\text{COO} + \text{H}_2\text{O} \; \leftrightarrows \; \text{CH}_3\text{COO} + \text{H}_3\text{O}' \\ \text{CH}_3\text{COO} + \text{H}_2\text{O} \; \leftrightarrows \; \text{CH}_3\text{COO} + \text{OH}' \end{array} \right\} \quad \begin{array}{c} \text{[CH}_3\text{COO} \mid [\text{H}_3\text{O} \uparrow] \\ \text{[CH}_3\text{COOH} \mid \text{COOH}] \\ \end{array}$$

C.M.:
$$[CH_3COOH] + [CH_3COOT] = C_a + C_b$$
 (2)

E.N.:
$$[H_3O^+] + [Na^+] = [CH_3COO^-] + [OH^-]$$
 (3)
 $[Na^+] = C_b$ (4)

Approximation: l'acide et la base sont faibles, on peut négliger [H₃O⁺] et [OH] devant C_a et C_b.

(3)
$$\rightarrow [H_bO^+] + [Na^+] = [CH_3COO^-] + [OH^-] \rightarrow [CH_3COO^-] = C_b$$

(1)
$$\rightarrow$$
 Ka = [H₃O⁺] C_b/C_a \rightarrow
$$pH = pK_a + \log C_b/C_a$$
Relation d'HENDERSON

Cas particulier:

Lorsque $C_8 = C_0$, $pH = pK_8$, la solution est dite tampon. Son pH varie très peu si on lui ajoute de petites quantités d'acide ou de base ou si on la dilue. Ex : $(NH_3 \text{ et } NH_4Cl)$ et $(N_8H_2PO_4 \text{ et } Na_2HPO_4)$

6) pH d'un mélange de deux acides

a) mélange de deux acides (bases) fort(e)s.

$$HA_1(C_1)$$
; $HA_2(C_2)$
 $B_1OH(C_1)$, $B_2OH(C_2)$

$$HA_1 + H_2O \rightarrow A_1^- + H_2O^-$$

 $HA_2 + H_2O \rightarrow A_2^- + H_3O^+$

Université Mohanmed V - Agdal - Foculté des Sciences, Rabat Filière SMPC, S2, Chimie Générale II, Réaction Chimique, Réactions Acide-Base, 2011-2012

E.N.:
$$[H_3O^{\dagger}] = [A_1] + [A_2] + [OH] \approx C_1 + C_2$$

$$pH = -\log (C_1 + C_2)$$

Bases fortes
$$\rightarrow$$
 pH = 14 + log (C₁ + C₂)

b) mélange d'acide fort (HA1(C1)) et d'acide faible (HA2 (C2))

$$HA_1 + H_2O \rightarrow A_1 + H_2O^+$$

$$HA_2 + H_2O = A_2 + H_3O^+$$
 $C_2(1-\alpha) = C_2\alpha = C_2\alpha$
 $K_a = \frac{[H_3O][H_2]}{[HA_2]}$
(1)

E.N.:
$$[H_3O^+] = [OH^*] + [A_2] + [A_3] = C_2\alpha + C_1$$
 (2)
négligeable

$$K_{a} = \frac{C_{1} \alpha [H_{3}O^{+}]}{C_{2}(1-\alpha)}$$
 $\rightarrow \alpha = \frac{Ka}{Ka + [H_{3}O^{+}]}$

$$(2) \rightarrow [H_3O^{\dagger}] = \frac{C_2 \text{ Ka}}{\text{Ka} + [H_3O^{\dagger}]} \div C_1$$

- Résolution :
$$[H_3O^+]^2 + (Ka - C_1)[H_3O^+] - C_2Ka - C_1Ka = 0$$

$$[H_3O^+] = \frac{-(k_a - C_1) + \sqrt{(k_a - C_1)^2 + 4K_a(C_1 + C_2)}}{2}$$

- Approximations:

*Si
$$C_1 >> \alpha C_2 \rightarrow [H_3O^+] \approx C_1 \rightarrow pH = -\log C_1$$

L'acide fort impose le pH

* Si
$$C_1 << \alpha C_2 \rightarrow [H_3O^+] \approx \frac{C_2Ka}{Ka + [H_3O^+]}$$

$$[H_3O^+] = \frac{-Ka + \sqrt{Ka^2 + 4KaC_2}}{2}$$

c) Solution d'un diacide

$$H_2A + H_2O \implies HA^- + H_3O^+$$
 $Ka_1 = \frac{[HA^-][H_3O^+]}{[H_2A]}$
 $Ka_2 = \frac{[A^2][H_3O^+]}{[HA^-]}$
 $Ka_2 = \frac{[A^2][H_3O^+]}{[HA^-]}$
 $Ka_3 = \frac{[A^2][H_3O^+]}{[HA^-]}$

A partir des relations (1) et (2), on peut établir le diagramme de prédominance des espèces H₂A, HA et A².

[A²-]

(1)
$$\rightarrow$$
 pH = pka₁ + log
[HA'] et (2) \rightarrow pH = pka₂ + log [HA']

si
$$pH = pKa_1 \rightarrow [H_2A] = [HA']$$

 $pH < pKa_1 \rightarrow [H_2A] > [HA']$
 $pH > pKa_1 \rightarrow [H_2A] < [HA']$

Le même raisonnement au voisinage de pka2 permet de tracer ce diagramme :

On peut écrire :

C.M.:
$$C = [H_2A] + [HA^T] + [A^{2r}]$$
 (3)

E.N.:
$$[H_3O^{\dagger}] = [OH^{\bullet}] + [HA^{\bullet}] + 2[A^{2\bullet}]$$
 (4)

Quand on a H_2A , $[OH^*] \le [H_3O^*]$; $[A^2] \le [H_2A] + [HA^*]$ car H_2A et HA^* sont très faibles :

(1) et (3)
$$\rightarrow$$
 [HA'] = [H₃O'] $\approx \frac{CKa_1}{Ka_1 + [H_3O^+]}$

$$[H_3O^+] = \frac{-Ka_1 + \sqrt{Ka_1^2 + 4Ka_1C}}{2}$$

Remarque : Indicateur coloré et propriétés acide-base

Un indicateur coloré est un couple acide - base (Hln/In-) tel que :

$$Ki = \frac{[H_3O^{+}][In^{-}]}{[HIn]}$$

$$[H_3O^{+}] = Ki = \frac{[HIn]}{[In^{-}]}$$

La couleur de HIn est différente de celle de In.

Exemple ; héliantine pKi = 3,7

HIn rouge	zone de virage orange	In jaune	
2,	7 3,7 4,7		pH

III- TITRAGE ACIDO-BASIQUE

Dosage d'un acide faible CH₃COOH par une base forte NaOH..

CH₃COOH (Na, Va) avec Na = pCa p = 1NaOH (Nb, Vb) avec Nb = pCb p = 1

Tracé de la courbe de neutralisation $pH = f(V_{NsOH}) = f(Vb)$:

* Expression des nombres de moles d'équivalents : (CH₃COO , Na⁺) + CH₃COOH + NaOH H₂O NaVa Vb = 00 0 1000 x = 00<Vb<Ve NaVa - NbVbNOVO 0 1000 1000 0 < x < 1 $V_b = V_c$ NbVe 0 0 1000 $\mathbf{x} = 1$ Nb(Vb-Ve) $V_b > V_c$ 0 NoVe 1000 1000 * Expression des concentrations : CH₃COOH + NaOH (CH₂COO ', Na⁺) + H₂O $\frac{NbVe}{Va} = Ca = Na$ Vb = 00 0 x = 00<Vb<Ve NaVa - NbVb NbVb 0 Va+Vb 0<x<1 $C' = \frac{NbVe}{Va + Ve}$ $V_b = V_c$ 0 0 x = 1 $C'' = \frac{Nb(Vb - Ve)}{Va + Vb}$ NbVe $V_b > V_c$ 0 Va+Ve x>1

On définit l'avancement de la réaction par son taux d'équivalence :

$$x = N_b V_b / N_a V_a$$

nombre de mol. d'équiv, nécessaire à la neutralisation.

$$\frac{N_a V_a}{1000} = \frac{N_b V_e}{1000}$$

Done
$$x = \frac{N_b V_b}{N_a V_a} = \frac{N_b V_b}{N_b V_c} = \frac{V_b}{V_c}$$

- Analyse de la courbe $pH = f(V_{NaOH}) = f(Vb)$:
 - a) au début du titrage, avant l'introduction de la base : V_b O ; x = O.

On a:
$$CH_3COOH + H_2O \implies CH_3COO' + H_3O^+$$
.

CH₃COOH + H₂O

b) Avant le point d'équivalence O < Vb < Ve, O < x < 1.</p>

On a: CH₃COOH + NaOH
$$\rightarrow$$
 CH₃COO , Na + H₂O

On a:
$$CH_3COO11$$

 $(NaVa - N_b V_b)/1000$ O $N_b V_b/1000$

Nous avons donc un mélange d'acide faible et de sa base conjuguée et le pH est donné par :

$$pH = pKa + log = \frac{[CH_3COO^*]}{[CH_3COOH]}$$

Université Mohammed V - Agdal - Faculté des Sciences, Rabat Filière SMPC, S2, Chim e Générale II, Réaction Chimique, Réactions Acide-Base, 2011-2012

$$[CH3COO] = \frac{N_bV_b}{V_a+V_b} \quad \text{et} \quad [CH3COOH] = \frac{N_aV_a - N_bV_b}{V_a+V_b}$$

$$pH = pKa + log \frac{N_b V_b}{N_a V_a - N_b V_b} = pKa + log \frac{x}{1-x}$$

à la demi—neutralisation :
$$V_b = V_c/2$$

$$N_b V_b = \frac{N_b V_e}{2} = \frac{N_a V_a}{2}$$
 $x = \frac{N_b V_b}{N_a V_a} = \frac{1}{2}$

$$[CH3COOH] = [CH3COO'] = \frac{N_{\epsilon}V_{a}}{2(V_{a}+V_{e/2})} = \frac{N_{a}V_{a}}{2V_{a}+V_{e}}$$

le pH est celui d'une solution tampon

$$pH = pKa$$

-Pouvoir tampon

$$\begin{cases} \tau = \frac{1}{dpH/dC_b} \\ \tau = \frac{1}{dpH/dV_b} \\ \tau = \frac{1}{dpH/dx} \end{cases}$$

Avant la neutralisation (pour $0 \le x \le 1$), on a :

$$pH = pKa + log x / (1-x)$$

2,3 $pH = 2,3 pKa + Log x / (1-x)$
2,3 $dpH / dx = 1/(1-x)x$

31

$$\tau = \frac{1}{dpH/dx} = 2.3 (1-x) x$$

$$\tau = 0$$
 (minimal) pour $x = 0$ et $x = 1$

 τ est maximal si $d\tau/dx = 0 \rightarrow x = 1/2$

Cette valeur correspond au point T sur la courbe (solution tampon : [CH₃COOH] = [CH₃COOT])

c) Au point d'équivalence V_b = V_e; x = 1

On a:

$$\frac{N_{a}V_{a}}{1000} = \frac{N_{b}V_{b}}{1000}$$

Le pH est celui de la base faible CH, COO.

$$PH = 7 + 1/2 pKa + 1/2 log C$$

$$C' = \frac{N_a V_a}{V_a + V_a} = \frac{N_b V_e}{V_a + V_e}$$

d)Après le point d'équivalence V_b > V_e ; x > 1

Le pH est celui de la base forte NaOH

$$pH = 14 + \log C^{**}$$

$$C^{"} = \frac{N_b V_b - N_a V_a}{V_a + V_b} = \frac{N_b (V_b - V_e)}{V_a + V_b}$$

Université Mohammed V-Agdal Faculté des Sciences Département De Chimie Rabat

Support de cours

FILERES : SCIENCE DE LA MATIERE PHYSIQUE- SCIENCE DE LA MATIERE CHIMIE (SMPC)

Semestre 2

Module : Chimie Générale II

Elément: Equilibres chimiques (Chapitre II- Réactions de Complexation; Chapitre III- Réactions de Précipitation; Chapitre IV- Réactions d'oxydo-réduction)

Réactions de Complexation

I- Généralités et définitions

1- Complexe

Un complexe est une espèce chimique $(M_q L_n)$ dans laquelle en a un cution métallique (M^{s^n}) lié à un ω plusieurs anions ou molécules neutres (L).

- Le cation métallique (M') est appelé atome contral.
- Les anions ou molécules (L) sont appelés ligands ou coordinats

Si q=1, on a des complexes de type ML_n: Complexes menomères.

Exemple de ligands:

- Molécules minérales : CO ; H₂0; NH₂....
- Anions minéraies: Cl., Br.: CN : HsPO1....
- Exemples:

$$Zn(OH)_4^{2^+}$$
; Ag(NH₃)₄¹⁺
L: Anion (OH⁺) ou Molécule (NH₃)
M: Zn^{2^+} ou Ag⁺

Exemple de complexes ML,

Complexe atoriodenta: Ag(NH₂)* n=1

Complexe bidenté : FeChi n=2

n > 3Complexe polydenté : FeCia

La réaction qui conduit à la formation du complexe est dite réactions de Complexation.

Exemple

$$Ag^{+} + 2NH_{3} \leftrightarrow Ag(NH_{3})_{2}^{1}$$

 $Zn^{2+} + 4OH^{-} \leftrightarrow Zn(OH)_{4}^{2-}$

2- Constante de Stabilité ou de formation

La constante d'équilibre (K) qui correspond à la formation du complexe (sens 1) est dite Constante de Stabilité ou de formation qu'on note (β).

$$Ag^{*} + 2NH_{3} - \xrightarrow{\downarrow_{3}} Ag(NH_{3})_{2}^{2}$$

$$Zn^{2*} + 4OH^{*} \xrightarrow{\downarrow_{3}} IZn(OH)_{*}^{2}$$

$$\begin{bmatrix} \operatorname{Ag}^* + 2\operatorname{NH}_3 & - \xrightarrow{\bullet_3} \operatorname{Ag}(\operatorname{NH}_3)_2^* \\ \operatorname{Zn}^{2\bullet} + 4\operatorname{OH}^* & \xrightarrow{\bullet_3} \operatorname{Tzn}(\operatorname{OH})_4^{2\bullet} \end{bmatrix} \qquad \begin{bmatrix} K_2 = \underbrace{\left[\operatorname{Ag}(\operatorname{NH}_3)_2^*\right]}_{\left[\operatorname{Ag}^* \left[\operatorname{NH}_3\right]^2} & ; \quad K_4 = \underbrace{\left[\operatorname{Zn}(\operatorname{OH})_4^{2\bullet}\right]}_{\left[\operatorname{Zn}^{2\bullet}\right]\operatorname{OH}^*\right]_4^*} \end{bmatrix}$$

$$(K_4)_4 = \frac{1}{\beta_4} = \frac{\left[2\kappa^{2+} \left[OH^{-}\right]^4\right]}{\left[2n(OH^{-})_4^{2-}\right]}$$

Exemple

La constante d'hydrolyse, de l'ion Zn2+ qui correspond à la réaction suivante :

$$Zn^{2*} + 3H_2O \xrightarrow{} 1Zn(OH)_1^- + 3H_2^+$$

étant égale à K4=10²⁸⁴, calculer B(Zn(OH)5).

Réponse

Il faut d'abord trouver la relation entre la constante de stabilité du complexe $Zn(OH)_1$, qui n'est autre dans ce cas que K_* et la constante de formation $\beta_*(Zn(OH)_1)$.

Pour cela on écrit les deux réactions qui correspondent à la formation de Zn(OH)₃, est dont le ligand est H₂O ou OH.

$$Zn^{2+} + 3OH^{--2} \leftrightarrow^{1} Zn(OH)_{3}^{-}$$
 β_{4}
 $3(H_{2}O \rightarrow H^{+} + OH^{-})$ $K = K_{x}^{4}$
 $Zn^{2-} + 3H_{2}O^{-2} \leftrightarrow^{1} Zn(OH)_{3}^{-} + 3H^{+}$ $K_{4} = 10^{-24/4}$

On remarque que $K_4 = \beta_L K_c^4$, d'où:

$$\beta_4 = K_4 K_4^{-4} - 10^{-28.4} 10^{26} = 10^{-27.5}$$

3. Constante de Dissociation

La constante de dissociation (K₄) correspond à la dissociation (sens 2) du complexe.

$$(K_d)_2 = \frac{1}{\beta_2} = \frac{[Ag^*]NH_1^2}{[Ag(NH_1)_2^*]}$$
 ;

$$(K_d)_4 = \frac{1}{\beta_4} = \frac{\left[Zn^{2*} \int OH^{-\frac{1}{4}} \left[Zn(OH)_4^{2*}\right]\right]}{\left[Zn(OH)_4^{2*}\right]}$$

Par analogie avec les acides et bases qui sont caractérisés par leurs pK, ou pKb, les complexes sont aussi caractérisés par leurs pK₀.

$$p(K_d)_1 = -\log(K_d)_2 = -\log(\frac{1}{K_1}) = \log K_2$$

d'où on a en général $pK_d = \log K_1$

Lorsque la constante d'équilibre K est élevée, la constante de dissociation K_d est faible.

Le complexe est <u>peu dissocié</u>. On dit alors que le complexe est <u>stable</u>.

II- Complexes Successifs

1- Constantes de dissociation partielles et globales

Lorsque avec un seul type de ligand (L), M^{4*} peut former plusieurs complexes ML_n (n>1) ou des complexes polydentés on dit qu'on n des complexes successifs.

Les constantes de stabilité et de dissociation de ces complexes sont liées.

Exemple

$$\begin{split} & Cu^{-} + NH_{3} \leftrightarrow Cu(NH_{3})^{+} \qquad K_{1d} = \frac{1}{K_{1}} = \frac{\left[NH_{3}\right]\left[Cu^{4}\right]}{\left[Cu(NH_{3})^{+}\right]^{+}} = 10^{-6.2} \\ & Cu(NH_{3})^{+} + NH_{4} \leftrightarrow Cu(NH_{3})_{2}^{+} \quad , \quad K_{2d} = \frac{1}{K_{2}} = \frac{\left[Cu(NH_{3})^{+}\right]NH_{3}}{\left[Cu(NH_{3})_{2}^{+}\right]} = 10^{-6.7} \\ & Cu^{+} + 2NH_{3} \leftrightarrow Cu(NH_{3})_{2}^{+} \quad K_{3d} = \frac{1}{\beta_{3}} = \frac{\left[Cu^{-}\right]NH_{3}\right]^{2}}{\left[Cu(NH_{3})_{2}^{+}\right]} = 10^{-10.9} \\ & K_{3d} = \frac{\left[Cu^{-}\right]NH_{3}\right]^{2}}{\left[Cu(NH_{3})_{2}^{+}\right]} = K_{12}.K_{2d} = \frac{\left[NH_{3}\left[Cu^{+}\right]}{\left[Cu(NH_{3})^{+}\right]}x\frac{\left[Cu(NH_{3})^{+}\right]NH_{3}}{\left[Cu(NH_{3})_{2}^{+}\right]} \\ & K_{3d} = 10^{-10.9} \end{split}$$

Les constantes Kid et Kid sont dites constantes de dissociation successives ou partielles.

La constante K3: est dite constante de dissociation globale.

N.B.

- La constante de formation (β_1) est égale à l'inverse de la constante (K_{24a}) de dissociation globale
- K_2 ne peut être considéré comme une constante de formation (β), parce que la réaction inverse n'est pas une réaction de dissociation totale.

2- Constantes de formation conditionnelles

Elles sont dites aussi constantes apparentes et sont des quotients de concentrations et non des constantes thermodynamiques.

La constante de formation est :
$$\beta = \frac{[ML]}{[M][L]}$$

La constante de formation conditionnelle est :
$$K = \frac{[ML]}{[M^*]L'}$$

$$[M^*]: Concentration totale de M non lié à 1.$$

$$[L']: Concentration totale de L non lié à M$$

K = constante de formation (ou de stabilité) conditionnelle.

III- Domaine de prédominance

Lorsqu'on ajoute NH₃ à une solution de Cu*, on peut former dans certaines conditions, les deux complexes suivants :

$$Cu(NII_3)^*$$
 et $Cu(NII_3)_3^*$

La concentration de Cu⁺, Cu(NH₃)⁺ et de Cu(NH₃) 2⁺ dépend de [NH₃].

$$\begin{split} K_{1d}\left(Cu(NH_3)^*\right) &= \begin{bmatrix} Cu^* \left[NH_3\right] \\ \left[Cu(NH_3)^*\right] \Rightarrow \\ \begin{bmatrix} Cu(NH_3)^* \right] &\Rightarrow \\ \begin{bmatrix} Cu(NH_3)^* \right] &\Rightarrow \begin{bmatrix} NH_3 \right] \succ K_{3d} \text{ alors} : \left[Cu(NH_3)^*\right] \succ \left[Cu^*\right] \\ \text{on dit que} \left[Cu(NH_3)^*\right] &\Rightarrow \left[NH_3\right] \succ K_{3d} \text{ alors} : \left[Cu(NH_3)^*\right] \succ \left[Cu(NH_3)^*\right] \\ \hline \left[NH_3\right] &- \begin{bmatrix} Cu(NH_3)^* \\ \left[Cu(NH_3)^*\right] &\Rightarrow \left[NH_3\right] \succ K_{3d} \text{ alors} : \left[Cu(NH_3)^*\right] \succ \left[Cu(NH_3)^*\right] \\ \text{on dit que} \left[Cu(NH_3)^*\right] &\Rightarrow \left[NH_3\right] \succ K_{3d} \text{ alors} : \left[Cu(NH_3)^*\right] \succ \left[Cu(NH_3)^*\right] \end{split}$$

On peut done tracer le diagramme de prédominance suivant:

0
$$Cu^{+}$$
 K_{16} $Cu(NH_{3})^{+}$ K_{20} $Cu(NH_{3})^{+}_{2}$ $[NH_{3}]$

Remarque Le complexe Cu(NH₃)*2 prédomine pour des valeurs de [NH₃] élevées

IV- Prévision des réactions

1-Cas d'un seul atome central et plusieurs ligands

Exemple: Fe3+ en présence de l'et Br

Lorsque les ligands l' et Br'sont présents à des concentrations identiques, Fe¹⁴ réagit avec l'anion qui conduit à la formation du complexe le plus stable.

Deux réactions sont possibles:

$$Fe^{3}' + Br' \longrightarrow FeBr^{2}' pK_{d1} = -0,15$$
 $Fe^{3}' + Br' \longrightarrow Fel^{2}' pK_{d2} = 2,85$

C'est le complexe le plus stable (peu dissocié, pKd le plus élevé) qui est formé : Fel²⁺ pKd2 = 2,85

2- Cas d'un ligand et de deux cations

Ce cas est analogue au précédent. On a formation du complexe le plus stable.

Exemple: Br' en présence de Fe3+ et de Cu2+

$$pKd(CuBr^{+}) = -0.07$$
, $pKd(FeBr^{2+}) = -0.15$

C'est FeBr2+ qui se forme:

$$FeBr^{2+} + Cu^{2+-2} \longrightarrow {}^{1} FeBr^{2+} + Fe^{3+}$$

La réaction se fait dans le sens 1.

Pour libérer Fe(III) qui est initialement complexé sous forme de FeBr²⁺, on ajoute Cu²⁺ qui est plus actif vis-à-vis de Br que Fe²⁺.

I- Produit de solubilité

La dissolution d'un solide est décrite par:

Ce phénomène se fait généralement, en deux étapes:

- 1- dissolution du solide par formation du complexe aqueux AgCl(aq)
- 2-dissociation du complexe aqueux AgCl(aq) formé.

La constante de l'équilibre (1) notée Ks est donnée par l'expression:

Ks = [Ag'] [Cl]

Remarque:

- Cette constante est dite produit de solubilité. Elle est sans dimension et dépend uniquement de la température.
- L'équilibre (1) est une réaction qui fait intervenir une dissolution suivie d'une dissociation du complexe AgCl_{equeux} entre une phase solide et une autre liquide
- Dans la majorité des cas, le complexe est peu stable, et de ce fait le phénomène de "dissolution" du solide depend essentiellement de la l'étape de dissolution du complexe.

$$\begin{split} K_s &= \left[\mathbf{Ag^+} \mathbf{Cl^-} \right] \\ &= \left[\mathbf{AgCl_{aq}} \right] \mathbf{\frac{\left[\mathbf{Ag^+} \mathbf{Cl^-} \right]}{\left[\mathbf{AgCl_{aq}} \right]}} = K_1.K_2 \end{split}$$

$$K_s = [Ag^+][Cl^-] = 1.8.10^{-10}$$

Chapitre III - Réaction de Précipitation

Solution Saturée: C'est une solution dans laquelle il y'a un excès de solide.

II- Solubilité

II- 1. Définition

C'est la quantité maximale du solide qui peut être dissonte dans un litre de solution. Elle s'exprime en g/L (solubilité massique) ou en male/L (solubilité molaire qu'on note s). C'est cette dernière unité qui est utilisée dans les calculs thermodynamiques.

La solubilité dépend de la température et de la nature du solide.

Exemple

Dans 1 L d'eau pure, on peut dissoudre :

- 5570 g (27 males) de AgClO (solide).
- 0,0018g (1,3.10⁵ mole) de AgCl (solide).

On dit que AgClOs est plus soluble que AgCl.

II-2. Exemples de calcul de Ks et de s.

a- Calcul de Ks à partir de s.

Exemple

Déterminer le produit de solubilité Ks, de AgCI(s), sachant que la quantité maximale de ce solide qui peut être dissoute dans 1 litre d'eau pure est égole à 2 mg. La masse molaire de AgCI est $M_{AgCI} = 143g/mole$.

	AgCl, solide \leftrightarrow	Ag + + Cl
Etat initial	excès	0 0
Avancement	- s	+ s + s
Equilibre	excès - s	S 5

$$K_x = [Ag^+]C1^-] = s^2$$

$$\Rightarrow s = \frac{m}{M_{AgC}} = \frac{2.10^{-2}}{143} = 1.34.10^{-5} M$$

$$\Rightarrow K_x = s^2 = (1,34.10^{-5})^2 = 1,79.10^{-10}$$

b- Calcul de la solubilité s, à partir de Ks.

Exemple 1. Calculer la solubilité de BaSO4(s) dans l'eau pure. On donne Ks(BaSO4,s)-16 10

BaSO ₄ , solide	e 🔷	/ Ba	$^{2+} + SO_4^{=}$
excès (10	0	0
-s	2	+ s	+ s
exces-s	-	S	- S
	excès - s	- s	excès 0 +s

$$K_s = Ba^{2+} SO_4^{2+} = s^2$$

$$\Rightarrow 2\log s = \log K_s = -10 \Rightarrow \log s = -5 \Leftrightarrow s = 10^{-5}M$$

Exemple 2

Calculer la solubilité de $Cu(OH)_2(s)$ dans l'eau pure, sachant que $K_s(Cu(OH)_2)=2,2.16^{20}$.

	$Cu(OH)_2$, solide \leftrightarrow	Cu ²⁺	+ 20H
Etat initial	excès -	0	0
Avancement	- S	+ 5	+ 25
Equilibre	excés-s	s	25

Chapitre III - Réaction de Précipitation

$$K_s = [Cu^{2s}][OH]^2 = (s)(2s)^2 = 4s^3$$

 $\Rightarrow \log K_s = \log 4 - 3\log s = -19.66$
 $\Rightarrow 3\log s = -20.66 \Rightarrow \log s = -6.75$
 $s = 1.8.10^{-7} M$

III- Réaction de précipitation

III- 1- Conditions thermodynamiques de précipitation

La précipitation est la réaction inverse de la dissolution. Elle peut avoir l'eu torsqu'il y a présence simultanée d'anion(s) et de cation(s).

Exemple : Précipitation de Ag* et Cl.

une solution aqueuse contient Ag^* et Cl^* à des concentrations initiales désignées respectivement par $[Ag^*]_{\theta}$) et $[Cl^*]_{\theta}$ Quelles sont les conditions thermodynamiques de formation du précipité $AgCl^*(s)$ dans ce cas? On donne $Ks(AgCl,s)=2.0.10^{10}$.

	Ag-	+ CI	3 to 1	AgCI,
Etat initial	2	b	111	0
Avancement	-x	- X	60	x
Equilibre	a - x	b-x		Ĵ

Attention !!

x est le nombre de moles de Ag' et de CI <u>précipités</u> sous forme de AgCl (précipité). Par conséquent îl est ég<mark>al dans ce cas, au nombre de moles de AgCl formées.</mark>

Il ne faut pas <u>confondre</u> x avec la <u>solubilité</u> s, qui est égale aux nombres de moles de AgCl(solide) <u>dissous</u>.

Dans les conditions initiales le système peut être dans un état de non équilibre. Ces conditions sont caractérisées par le rapport ionique Q_s .

$$Q_{i} = [Ag^{\dagger}]_{i}[CI]_{i}$$

On a:

$$\Delta G_l = \Delta G_l^0 + RTLnK$$

avec K=1/Qs avant l'équilibre et K=1/Ks à l'équilibre

A l'équilibre on a:
$$\Delta G_1 = \Delta G_1^0 + RTLnK = 0$$
 et $1/K - Ks - [Ag^*]$ [Cl]

$$\Delta G_{l}^{0} = -RTLnK = RTLnKs$$

Chapitre III - Réaction de Précipitation

Pour qu'il y ait formation du précipité AgCl, il fout que la réaction soit spontanée dans le sens 1.

 $\Delta G_1 \leq 0 \Longrightarrow \Delta G_1^0 + RTLnK \leq 0 \Longrightarrow RTLnK \leq -\Delta G_1^0$ Dans ce cas on ut

$$RTLnK \le -\Delta G_t^0 = -RTLnKS$$

$$K=1/Qs \implies -RTLnQs \le -RTLnKs \iff RTLnIQs \ge RTLnKs \implies$$

 $Qs \ge Ks$

oux cas sont possibles;

- Qs ≥ Ks ou [Ag⁺]₀ [Cl⁻]₀ ≥ Ks; an a précipitation</sub> de AgCl.
- Qs ≤ Ks ou [Ag⁺]₀ [Cl⁺]₀ < Ks ; on n'a pas précipitation de AgCl.

Conclusion

Relation entre K_t et Q_s	Nature de la Solution	Rěsultat
$Q_x < K_s$	Nan saturée	Le solide est totalement dissaus
$Q_i = K_i$	Saturés	Le solide ne peut plus se dissoudre.
$Q_s > K_s$	Swsaturés	Excés de solide: On a precipitation des ions jusqu'à ce que la relation $Q_{sp} = K_{sp} soit vérifiée.$

III- 2-Composition d'une solution après précipitation

Exemple

On considère une solution de Sr^{14} (0,9514) et de F (0.66M). Déterminer la quantité de $SrF_2(s)$ formée, et les concentrations $(Sr^{2+}]$ et $\{F\}$. Donnée : $Ks(SrF_2,s)$ -3, 10^{-9} .

On calcule Qs

$$Sr^{2+} + 2F^{-2} \leftrightarrow^{1} SrF_{2,1}$$

Chapitre III - Réactions de Précipitation

On constate que Q,>K, => La solution est donc Saturée.

Par conséquent on a précipitation de SrF2(s).

Remarque

L'expression de Ks ou Qs doit correspondre toujours à la dissolution même si la réaction considérée est une précipitation :

$$\mathcal{Q}_r = \left[Sr^{2+}\right]_0 \left[F^-\right]_0^2 \qquad \text{ou} \qquad K_{-r} = \left[Sr^{-2+}\right] \left[F^-\right]^2$$

	Sr ²⁺ +	2F	2↔	Sr.F.
Etatinitial	a = 0.05	b=0.06		
Avancement	- X	-2x	100	0
Equilibre	a-x	b-2x		+x
Réactiffimitant	$(X_{max})_1 = 0.05$	X = 0,03		, x
Equilibre		TIAX = 0,03	A	x = 0.03
-,	0,05-0,03=0,02	6	V	0,03

$$K_x = [Sr^{2*}]F^{-}]^2 = (a - X)(b - 2X)^2$$

Cette équation n'admet pas de racine mathématique simple. C'est pour cela qu'on procède par approximation.

- Ks est très faible ce qui signifie que la dissolution de SrF₂(s) est aussi très faible. La réaction inverse, qui est la précipitation est par conséquent importante.
- La réaction est totale dans le sens de la précipitation (sens!).
- F ou Sr²⁺ disparait totalement: Réactif limitant ou §max
- On calcule X_{max} et on ne conserve que la valeur la plus faible.

 $X_{max} = 0.03$. L'ion F'est le réactif limitant. De ce fait la valeur de [F] qui est très faible et égale à s qu'il faut calculer.

[F] = $\varepsilon = ????$ Et [Sr²⁺]= 0,02M.

Ks =
$$[Sr^{2+}][F^{-}]^{2}$$

⇒ $[F^{-}]^{2} = \frac{Ks}{[Sr^{2-}]} = \frac{3.10^{-9}}{0.02} = 15.10^{-8}$
⇒ $[F^{-}] \approx 3.8.10^{-4} \text{ M}$

101- 3- Effet de l'ion Common

Un sel devient moins soluble lorsqu'il est dissous dans une solution qui contient l'un de ses

AgCl est très peu soluble. Mais il le devient encore plus, s'il est dissous dans une solution qui contient initialement des ions Ag et/ou Cl'.

Exemple: dissolution de $\operatorname{AgCl}(s)$ dans une solution aqueuse qui contient Ag^+ et/ou CF .

Calculer la solubilité s, de AgCl(s) dans une solution de KCl (0,1M).

$$A \operatorname{gCl}(s) \xrightarrow{2} \longleftrightarrow_{1} A \operatorname{g}^{+} + CI$$
Etat initial exces $0 = 0,1$
Avancement $-s' + s' + s'$
Equilibre exces $-s' = s = 0,1+s'$

$$Ks = [Ag'][Cl] = S'(S'+0,1)$$

$$\Rightarrow (S')^2 + 0,1 S'-K_s = 0 \quad Ks = 2.10^{10}$$

$$\Rightarrow S' = \frac{-0.1 + \sqrt{(0.1)^2 + 4K_s}}{2} = \frac{-0.1 + \sqrt{(0.1)^2 + 4x2.10^{-10}}}{2}$$

$$\Rightarrow S' = 1,95.10^{-9}M$$

Méthode Approximative

$$Ks = \begin{bmatrix} Ag^{+} \end{bmatrix} Cl^{-} \end{bmatrix}$$

$$Ks = \text{Constante} \Rightarrow \text{Si} \quad \begin{bmatrix} Cl^{-} \end{bmatrix}_{0} \uparrow \text{ alors } \begin{bmatrix} Ag^{+} \end{bmatrix} = S' \downarrow$$

$$\Rightarrow S' \prec S \text{ or } S = 1,4.10^{-5} \text{ M est inférieur à } 0,1$$

$$\Rightarrow S' \prec \prec 0,1 \text{ d'où : } S' + 0,1 \approx 0,1$$

$$\Rightarrow Ks = S'(0,1+S') \approx S'*0,1 \text{ d'où } s' = \frac{Ks}{0,1} = 2.10^{-9}$$

III- 4-Effet d'un agent complexant

Si l'un des ions qui provient du solide dissous en solution est complexé par un ligand donné, la solubilité de ce solide augmente.

Exemple

Calculer la solubilité de AgCl(s) dans une solution NH_3 (1M). On considère qu'il y a formation essentielle, dans ce cas, du complexe $Ag(NH_3)_2^-$.

Données: $Ks(AgCl,s)=2.10^{-10}$; $\beta(Ag(NH_3)_2^+=1.5.10^7)$.

Les réactions qui interviennent dans ce cas sont :

La réaction globale de dissolution tenant compte de la réaction de complexation s'écrit :

$$AgCl(s) \rightarrow 2NH_{3} \xrightarrow{2} \leftrightarrow_{1} Ag(NH_{3})_{2}^{+} + Cl^{-}$$
Etat initial excés I 0 0 0
Avancement s' -2s' +s' +s'
Equilibre excés -s' 1-2s' s' s'
$$K'_{s}(AgCl_{s}, NH_{3}) - K_{s}(AgCl_{s}) \cdot \beta(Ag(NH_{3})_{2}^{+}$$

On remarque que le produit de solubilité associé à la réaction de dissolution en présence de NH3 est devenu Ks(AgCls, NH3) qui est:

$$K_*(AgCls, NH_3) = K_*(AgCls).\beta(Ag(NH_3)_1^*)$$

Plus la valeur de la constante β est grande, plus la constante K_s(AgCl_s, NH₃) est élevée, et plus la dissolution de AgCl est importante.

$$K_{s}(AgCls, NH_{3}) = \frac{Ag(NH_{3})_{2}^{+} Cl^{-}}{[NH_{3}]^{2}} =$$

$$= \left[Ag^{+} \left[Cl^{-}\right] \frac{Ag(NH_{3})_{2}^{+}}{[Ag^{+}][NH_{3}]^{2}} \right]$$

$$K_{s}(AgCls, NH_{3}) = K_{s}(AgCls, s) \cdot \beta (Ag(NH_{3})_{2}^{+}) =$$

$$= 2 \cdot 10^{-10} \cdot 1,5 \cdot 10^{7} = 3 \cdot 10^{-3}$$

$$\Rightarrow \frac{(s')^{2}}{(1 - 2s')^{2}} = K_{s}(AgCls, NH_{3})$$

$$\Rightarrow \frac{(s')}{(1 - 2s')} = \sqrt{K_{s}(AgCls, NH_{3})} = 0,055M; \quad s' = 0,045M$$

M- 5. Effet du pH

La solubilité d'un solide dépend du pH dans le cas où les ions qui proviennent de la dissolution de ce solide, ont des propriétés acido-basiques non négligeables. Ceci est généralement le cas où les anions sont des groupents hydroxyles (OH') ou des bases conjuguées (A') des acides faibles (HA).

Exemple

Calculer la solubilité s, et le pH d'une solution saturée de $Mg(OH)_1$. $Ks(Mg(OH)_2,s) = 1,2,10^{-12}$.

La réaction de dissolution est :

E.	Mg(OH) ₂	$^{2}\leftrightarrow_{1}$ Mg^{2+} +	2 <i>O</i> H
Etat initial	excés	0	ε
Avancement	- S	+ 8	+ 2s
Equilibre	excés - S	S	2s

Chapitre III - Réaction de Précipitation

$$K_s(Mg(OH)_2, s) = [Mg^{2+}]OH^{-\frac{1}{2}} = s.(2s)^2$$

= $4s^3 \Rightarrow 4s^3 = 1, 2.10^{-11} \Leftrightarrow 4s^3 = 12.10^{-12}$
 $\Rightarrow s^3 = 3.10^{-12} \Rightarrow s = 1,44.10^{-4}$

Le pH de cette solution est tel que :

$$[OH\cdot]=2s \Rightarrow pOH=-log(OH\cdot)=-log2s=3.5$$
, d'où $pH=10.5$.

Ks=[Mg2+][OH]2

À température constante, Ks= Cte.

Si [OH] ?, alors | Mg2+]= \$ S.

- Lorsque [OH] augmente (pH augmente), [Mg²⁺] diminue et s diminue aussi.
- Lorsque le pH diminue ([OH] diminue), [Mg²⁺] augmente et s augmente aussi..

Réactions d'oxydo-réduction

1- Généralités

I-1- Définitions

1-a. Oxydant et Réducteur

Un oxydant (Réducteur) est une espèce chimique qui fixe (cède) des électrons. Lorsqu'un oxydant fixe des électrons il est réduit. Inversement lorsqu'un réducteur cède des électrons, il est oxydé.

Exemples:

Les Couples (Zn2+ /Zn) et (H+/H2) sent dits couples rédox ou oxRed

Réaction d'oxydo-réduction entre les deux couples:

C'est la charge que prendrait l'atome dans une molécule si toutes les liaisons chimiques sont compues. Il est un nombre entier et on le désigne par les chiffres romains pour qu'il ne soit pas confondu avec la charge électrique de l'atome.

Exemples

(X, désigne le degré d'oxydation de l'ion i)

FeCl₃
$$\longrightarrow$$
 Fe³⁺ + 3Cl⁻
 \uparrow \uparrow
 $X_{Ft}=+III$ $X_{I}=-1$

Règles:

- 1. Dons une molécule, la somme des degrés d'oxydation (X) est égale à la charge de cette molécule.
- 2. Le degré d'oxydation de H est égal à +i sauf dans LiH où X_u=-i
- 3. Le degré d'oxydation de O est égal à -II sauf dans H_2O_3 où X_3 =-I

· Exemples

On considére la réaction de dissociation survante

soit z la charge de la molécule (KI) ou de l'ion (K'ou l') , on a :

$$z=0 \Rightarrow X_k + X_l = 0 \Rightarrow X_k - X_l = +1$$

$$z=-1 \Rightarrow X_{E_{\ell}}-2X_{C_{\ell}}=-1 \Rightarrow X_{E_{\ell}}-+II : 2X_{C_{\ell}}=-II$$

L'atome Cl est un halogénure, son degré d'oxydation est souvent égal à d

$$Cl_2$$
, $z=0$ \Rightarrow $2X_{Cl}=0$ et $X_{Cl}=0$

Remarque

Dans une molécule, un élément peut avoir plusieurs degrés oxydation.

$$Fe_3O_4$$
, $z=0 \Rightarrow 3X_{re} +4X_{0}=0$ of $3X_{Fe}=-4X_{0}=-VIII(X_{0}=-II)$

$$X_{R} = \frac{8}{3}$$

Le degré d'oxydation du Fer n'est pas un entier !! Cette valeur n'est en fait qu'une moyenne des degrés d'oxydation des 3 atomes de Fe. En effet X_{Fe} est compris entre +H et +HI.

$$\frac{6}{3} \le X_{Fe} \le \frac{9}{3}$$

Le fer existe sous forme de Fe(II) et de Fe(III). Dans Fe₃O₄ on a 2Fe(III) et

Régle 4.

Si \u00f3 est le nombre d'électrons périphériques d'un atome on a:

Si X≥0 (l'atome est un réducteur), alors 0≤ X ≤0
 Si X ≤ 0 (l'atome est un oxydant), alors 0≥ X ≥ 0-8.

Par conséquent, pour un atome dont le nombre d'électrons périphérique est o, le degré d'oxydation X, est tel que :

$$\sigma - 8 \le X \le \sigma$$

Exemple

C1: $3s^2 3p^5$, $\sigma = 7 \Rightarrow 7.8 \le X_{c1} \le 7 \Rightarrow -1 \le X_{c1} \le +VII$

Le degré d'oxydation du chlore est donc compris entre -1 et +VII.

En effet Cl peut exister sous neuf degrés d'oxydation qui sont:

2.b. Application: Calcul du degré d'oxydation 2.a. Composés inorganiques

Calculer le degré d'oxydation des atomes H, Mn et P, dans les composés suivants:

$$2X_{H} + X_{e} = 0$$
 $2X_{H} = -X_{e} = -\{-11\}$; $X_{H} = +1$

KMnO4:

$$2X_K + X_{Min} + 4X_{\mathcal{E}} = 0; 2(+1) + X_{Min} + 4(-1) = 0 ; X_{Min} = (+VI)$$

$$+2X_{H} + 2X_{C} = 0$$
 $X_{C} = -2X_{H} = -2(+1); X_{C} = -1$

<u>Remarque</u>: L'oxygène (élément le plus électronégatif après le fluor) a un $X_0 = -I$ sauf dans la molécule F-O $(X_0 = +I)$ ou dans $O_2(X_0 = 0)$.

PCI,

Lors de la rupture de la liaison chimique P-Cl, l'atome P étant plus électropositif que l'atome O, va céder son électron (électron qui assure la liaison P-Cl) à ce dernier.

Bilan électronique :

Phosphore

Eta: initial : Sélectrons Après rupture : 2 électrons

Chlore

Etat initial : 7électrons Après rupture : 8 électrons

Le degré d'oxydation des atomes de phosphore et de chiere sont :

2. b. Composés organiques

Dans les composés organiques, le carbone peut avoir plusieurs degrés d'oxydation.

Exemple d'application

Acide acétique : CH₃COOH (C₂H₄O₃)

$$2X_C+4-4=0 \Rightarrow 2X_C=0$$

Dans ce cas aussi, le degré d'oxydation du carbone n'est qu'une moyenne de deux degrés d'oxydation qui sont dans cette molécule de signes opposés. Le schéma de Lewis de la molécule CH₂COOH permet de retrouver le degré d'oxydation de chacun des deux atomes de carbone de cette molécule

Le schéma de Lewis de cette molécule est:

On sait que Xo>Xo>Xu, la rupture des liaisons chimiques conduit donc à l'état électronique suivant :

$$X_{c}=4-7=-III$$
 $X_{c}=4-1=+III$ $X_{c}=4-1=+III$ $X_{c}=4-1=+III$ $X_{c}=6-8=-II$

O= electron perdu

1-2. Comment équilibrer une réaction d'oxydo-réduction ?

- 1. Scrire les équations de demi-réaction radox mises en jeu pour chaque élément.
- 2. Calculer le Douré d'Oxydation (DO) de l'exydant et du réducteur et déterminer le nombre d'électrous échangés.
- Équilibrer le nombre d'électrons échangés
- 4. Écrire la réaction globale, et équilibrer les charges puis les atomes.

Les charges sont équilibrées par les ions H' en milieu acide et par les ions OH En milieu basique.

Exemple

Équilibrer la réaction suivante en milieu acide :

$$Cr_2O_7^{2} + \Gamma = 2Cr^{2} + I_3^{-}$$

Couple 1: $Cr_2O_7^{2} / Cr^{3}$:

 $Cr_2O_7^{2} + 6e^{-} \longrightarrow 2Cr^{3} = 2X_{cc} + 7(-II) = -2$

Réduction

Pour simplifier, on adopte les chiffres romains pour les vaieurs des degrés d'oxydation.

$$2X_{Cr} = +12 \xrightarrow{\qquad \qquad } 2X = +6$$
Couple 2: \(\text{T} / \text{I}_5\):
$$| +2e | \\ 3X_i = | 11 | \text{TII} \quad 3X_i = 1$$

$$\begin{array}{cccc} \mathbf{Cr_2O_7}^{2\cdot} + 6 \ \mathbf{e}^{\cdot} & \leftrightarrow & \mathbf{2Cr^3}^{\cdot} \\ \mathbf{(3\Gamma} & \leftrightarrow & \mathbf{I_3'} + 2 \ \mathbf{e}^{\cdot}) \times 3 & \leftrightarrow & \\ \hline \mathbf{Cr_2O_7}^{2\cdot} + 9\Gamma & \leftrightarrow & \mathbf{2Cr^2}^{+} + 3 \mathbf{I_3} \end{array}$$

Equilibre des charges en milieu acide

$$Cr_2O_7^{2-} + 9\Gamma + 14H \leftrightarrow 2Cr^{31} + 3I_3 + 7H_2O$$

Pour équilibrer les charges en milien basique : en ajoute OH à droite et à gauche de la réaction obtenue en milieu acide (le nombre de OH à ajouter est égal au nombre d'ions H* présents en milieu acide).

$$Cr_2O_7^{2-} + 9I + \boxed{9I + \boxed{9I + 2I + 3I_3 + 7I_2O}}$$
 $Cr_2O_7^{2-} + 9I + \boxed{9I + 3I_3 + 7I_2O}$

II- Réaction électrochimique

C'est une réaction d'oxydo-réduction dont l'échange d'électrons, se fait par l'intermédiaire d'un fil conducteur. Elle peut se faire dans les deux sens. Elle est donc réversible.

1- Électrode rédox-Potentiel rédox

1. a- Électrode de première espèce

C'est un métal au contact de l'un de ses ions en solution.

Exemple

Une lame de cuivre (Cu) plongée dans une solution de Cu²⁻. Elle est symbolisée par Cu²⁻/Cu.

La réaction électrochimique qui a lieu dans ce cas est

$$Cu^{2*} + 2e^* \leftrightarrow$$

$$E=E(Cu2+\lambda Cu)$$

La réaction électrochimique qui a lieu dans ce cas est:

$$Cu^{2+} + 2e^{-} \leftrightarrow Cu \Delta G = 2FE$$

E est le potentiel de l'électrode on le note F=E(cu2+/cu) et F=Faraday= 96500C

AG est dans ce cas égal au travail électrique

$$d$$
'où : $W_{electrique} = \Delta G = -2FAE$

Dans les conditions standards on a $\Delta G'' = 2F\Delta E''$

Cette réaction électrochimique peut se foire dans les deux sens:

- Sens spontané. Il correspond à ΔG<0
- Sens non apontané. Il correspond à ΔG> 0

Remarque

Les réactions rédox sont généralement ;

- spontanées dans le sens de la réduction. On a dans ce cas :

ΔG<0 avec ΔG=-n FΔE. Avec κ le nombre de moles d'électrons échangés.

Le système électrochimique fournit le travail (électrique). En thermodynamique, il est équivalent à un généraleur. On note aussi que ce cas est similaire à une attraction électrostatique entre une charge (+) et une charge (-).

non spontanées dans le sens de l'oxydation:

$$\Delta G = +n F\Delta E$$
 et $\Delta G > 0$

Le système consomme dans ce cas de l'énergie. Il est équivalent à un moteur. Ce cas est comparable à une ionisation, en négligeant la solvatation des ions.

Parfois on écrit cette relation sous forme AG= $\Delta n \Gamma \Delta E$, Δn étant la différence des électrons dans les demi-réactions d'oxydo-réduction. Lors de de la réduction $\Delta n < 0$, dans le cas de l'oxydation $\Delta n > 0$.

1-b- Électrode de seconde espèce

Il s'agit d'un métal (sous forme de lame) recouvert de l'un de ses sels peu soluble, plungé dans une solution qui contient l'anion de co sel.

Exemple

Relation entre E(Agreed) et E(Agrees, O)

Cette relation est une conséquence de la relation entre AG, et AG,

On a
$$\Delta G_3 = \Delta G_2 + \Delta G_2 = \Delta G_2$$
 puisque $\Delta G_1 = 0$, $\Delta G_2 = -FE(_{Ag+/Ag}) = \Delta G_3 = -1FE(_{AgCL/Ag})$

d'où:

$$E(A_{\mathbf{g}(s)}/A_{\mathbf{g}+}) = E(A_{\mathbf{g}Cl(s)}/A_{\mathbf{g}(s),Cl-})$$

1-e- Électrode de traisième espèce

Elle est dite aussi électrode ionique; l'oxydant et le réducteur sont sous forme ionique (Fe¹⁺, Fe²⁺). L'éphange des électrons avec une autre électrode se fait par l'intermédiaire d'un métal inerte qui est un fil de platine Pt. En pratique on utilise une tige en carbone solide.

Exemple

Electrode: Pt(s) | Fe3+ , Fe2+

Elle est constituée d'un fil de platine qui plonge dans une solution (H'ou Cl') Cette solution est en équilibre avec un gaz constitué par l'un des ions présent dans la solution.

Exemples: (H_2, H^1) , (Cl_2, Cl_3) , (O_2, H_2O)

Cette électrode est considérée de première espèce.

Exemple: Pt $| H_2/g \rangle | H^*$

III- Conditions standard- Potentiel zéro

1- Conditions standard

Les conditions standard correspondent à:

- La température ambiante: 20-25°C
- La pression atmosphérique: P=latm.
- Concentrations égales à 1M

2- Potentiel standard- Loi de Nernst

Le potentiel standard, E°, est le potentiel qui correspond aux conditions standard.

Relation de Nernst

La lois de Nernst donne la relation R=f(E2). Elle est une conséquence de la loi thermodynamique :

$$\Delta G = \Delta G^{\circ} + RTLnQ$$

Q est le quotient de réaction. À l'équilibre on a Q=K (constante d'équilibre)

Si considère la demi-réaction:

$$Fe^{3+} + 3e^{-} \longrightarrow Fe$$

on a
$$\Delta G = -3FE(Fe^{3+}, Fe)$$
; $\Delta G^{\circ} = -3FE^{\circ}(Fe^{3+}, Fe)$,

IF=Faraday=Charge électrique d'une mole d'électrons = 96.500Coulombs

$$\Delta G = -3FE(Fe^{3+}, Fe) = \Delta G^{\circ} + RTLnQ$$

$$Q = \frac{1}{[Fe^{3+}]}$$
 (Fe solide est en excès)

$$\Delta G = -3FE(Fe^{3+}, Fe) = -3FE^{\circ} + RTLn \frac{1}{[Fe^{3+}]}$$

$$\Rightarrow E = E^{\circ} - \frac{RT}{3F} Ln \frac{1}{[Fe^{3+}]}$$

$$E = E^{\circ} + \frac{RT}{3F} Ln[Fe^{3+}] \leftarrow Oxydant$$

Si on considère la demi-réaction suivante :

$$Sn^{2+} \leftrightarrow Sn^{4+} + 2e^{-}$$

En chimie aqueuse on utilise souvent le logarithme à base 10 (log10), d'où :

$$\frac{RT}{F} LnX = 2.3 \frac{RT}{F} log X; \quad 2.3 \frac{RT}{F} = 0.06 \quad (LnX = 2.3 log X)$$

$$\Rightarrow \frac{RT}{F} LnX = 0.06 log X$$

D'une façon générale on a pour une réaction redox de type:

$$a Ox^{y+} ne^{z+} \longrightarrow b Re^{z+}$$

$$E = E^{\circ} + \frac{RT}{nF} Ln \frac{[Ox]^{a}}{[Re]^{b}} = E^{\circ} + \frac{0,06}{n} log \frac{[Ox]^{a}}{[Re]^{b}};$$

c'est la loi de Nernst.

Remarque :

- L'avantage de la loi de Nernst est qu'elle permet de retrouver le potentiel standard E°, à partir du potentiel E.
- Les réactions redox sont généralement :

Spontanées dans le sens de la réduction

∆G< 0

 $-nF\Delta E \le 0$ et $\Delta E \ge 0$

Non Spontanées dans le sens de l'oxydation

4G> 0

 $-nF\Delta E \ge 0$ et $\Delta E \le 0$

3- Potentiel zéro-Échelle à Hydrogène

Le potentiel d'une électrode (A) ne peut pas être mesuré directement. On ne peut mesurer que la différence de potentiel (U) de cette électrode associée à une autre électrode (B).

On a U=EA-EB

U n'est donc égal EA à que dans le cas où EB=0 Volt.

Pour attribuer des valeurs arbitraires aux potentiels des différentes électrodes, Nemst a adopté un potentiel zéro arbitraire, qui est E° de l'électrode à hydrogène dans les conditions standard. Cette électrode est dite aussi fflectrode Normale à Hydrogène (ENH) ou Electrode Standard à Hydrogène (ESH). On la note:

$$P_1/(H^+1M; H_2(g) pH_2 = 1atm)$$

Dans certains cas, il est plus commode d'utiliser une autre électrode de référence que celle à hydrogène telles par exemple :

Electrode au calonnel, saturée en KCl (ECS):

Hg / (Hg2Cl2 (solide)/ CI) E (par rapport à ESH)=0,25V

Électrode de référence à Oxygène, (ERO):

Pt / (O₂(gaz)/ H₂O(liquide). E (par rapport à ESH)=1,23V

IV- Les piles électrochimiques

1791: Galvani a montré que l'énergie électrique peut être obtenue à partir des transformations chimiques.

1800: Volta a mis au point la pile Zine - Cuivre.

1- Pile Daniell

Elle est constituée d'une :

- Lame de cuivre plongée dans une solution de sulfate de Cu.
- Lame de zinc plongée dans une solution de sulfate de Zn.

Lotsque la pile débite, il y a du cuivre qui se dépose sur l'électrode de Cu, et la lame de Zn est

Pour assurer l'électroneutralité dans les électrodes, les ions se déplacent dans le pont sain.

- Les cations K+, migrent vers la cathode
- Les anions , NO1, migrent vers l'anode
- Réaction bilan:

$$Cu^{2+} + Zn \leftrightarrow Cu + Zn^{2+} \Delta G = -2F\Delta E; \Delta E = E_{C_0} - E_{Zn}$$

La pile est symbolisée par ; (-) Zn/Zn²⁺ // Cu/Cy²⁺(+).

Cette convention n'est pas toujours respectée, du fait que la polarité de l'électrode peut changer, en

La différence de potentiel, U, entre les deux électrodes $U=E_{Cu}-E_{zn}=1$, IV. U est la force électromotrice. On la note f.e.m. et elle est toujours positive.

Δ G= Travail autre que thermodynamique fourni contre les forces de variation de volume et de pression $\Delta(PV)$. Il est dans le cas des piles électrochimiques égal au travail électrique,

2- Polarité des électrodes

La polarité des électrodes revient à déterminer l'anode et la cathode ou le pole positif et le pole négatif.

$$7m \leftrightarrow Zn^{2+} + 2e^{-} \Delta G_1 = -2F\Delta E_{2n}$$
: C'est l'anode = lieu d'oxydation

$$Cu^{2+} + 2e^{-} \leftrightarrow Cu$$
 $\Delta G_z=-2F\Delta E_{Cu} : C'est la cathode-lieu de réduction$

$$\Delta G_{Total} = \Delta G_1 + \Delta G_2 = -2F(E_{Cu} - E_{an}) = -2F\Delta E$$

La réaction dans la pile Daniel étant spontanée dans le sens de l'oxydation de Zn, on a par

conséquent :
$$\Delta G_{\text{Total}} < 0, \text{ d'où } \Delta E > 0 \text{ et } E_{\text{Cu}} \cdot E_{\text{zn}} > 0$$
 $E_{\text{cu}} > E_{\text{zn}}$

Conclusion:

- 1) Ecarhode Eanode : La cathode est le pôle positif, alors que l'anode est le pôle négatif.
- Puisque la réaction spontanée se fait vers la droite, Cu²⁺ est un alors un Oxydant plus fort que Zn2+. On peut donc en conclure qu'à l'oxydant le plus fort correspond le potentiel le plus

La réaction globale de la pile Daniell peut aussi se faire dans le sens non spontané, (△G>0), si on fournit de l'énergie (électrique) au système:

$$Zn^{2*} + Cu \leftrightarrow Zn + Cu^{2*}$$

Réduction : Cathode

3- Loi de faraday (1832)-Électrolyse

3-a- Généralités

Le principe de l'électrolyse consiste à appliquer un courant électrique continu par l'intermédiaire de deux électrodes, à une solution aqueuse d'un électrolyte.

Remarque

C'est le générateur qui impose le sens du courant.

Le courant extérieur circule donc, du potentiel le plus élevé (borne +) Vers le potentiel le moins élevé

3-b- Électrolyse

Exemple: Electrolyse d'une solution de Ag(NO3) en milieu neutre

Anode: Perte des e

Cathode: Fixation des e

Oxydation -

Réduction

Phénomènes aux électrodes :

- A La cathode (+) : dépôt d'argent

- A l'anode (-): dégagement de l'oxygène

- Réactions chimiques

- Cathode (borne -) : on a une réduction:

- Anode (borne +): On a une oxydation.

La réaction bilan qui a lieu doit être la plus spontanée possible et son ΔG le plus faible possible.

Puisque $\Delta G = -nF\Delta E = -nF(E_c-E_a)$ alors ΔE est le plus élevé possible.

- à la cathode réduction de l'oxydant le plus fort (qui a E le plus élevé).
- à l'anode oxydation du réducteur le plus fort (qui a E le plus faible).

Les réactions de réduction possibles dans ce cas sont :

$$Ag^+ + 1e^- \longrightarrow Ag$$

$$E^{\circ}(Ag^{+}/Ag) = +0.80 \text{ V}$$

$$2 H_2O + 2e^- \longrightarrow H_2 + 2 OH^-$$
 (2)

$$E^{\circ}(H_2O / H_2,OH^{-}) = -0.83 \text{ V}$$

 $E^{\circ}(Ag^{+}/Ag)>E^{\circ}(H_{2}O/H_{2},OH^{-})$

C'est la réaction (1) qui a lieu dans ce cas. (l'oxydant le plus fort, Ag⁺, qui est réduit). On a donc Dépôt de Ag à la cathode

Le milieu étant neutre la demi-réaction d'oxydation suivante ne peut pas intervenir de façon importante dans ces conditions:

NO₃'+4 H⁺+3e' -NO+2 H₂O

 $E^{\circ}(NO_3^-, H^+/NO) = + 0.96V$

A l'anode Scule la réaction d'oxydation suivante est possible:

$$2 H_2O \longrightarrow 4 H^+ + 4e^- + O_2$$

 $E^{\circ}(O_2, H+/H_2O) = +1.23 \text{ V}$

Réaction bilan:

2.b- Étude quantitative

D'après la réaction:

Le dépôt d'une mole (ou 103g=M_{Ag}) de Ag nécessite la réduction d'une mole de Ag et donc la fixation de I mole d'électrons (IF= Ne =6,0210²³x1,610⁻¹⁹C= 96.500C).

Par conséquent pour réduire y moles de Ag* (dépôt de n moles de Ag) il faut fournir une quantité d'électricité Q :

$$Q=yF$$

Puis qu'on Q= it, alors la quantité de matière déposée ou dissoute aux électrodes est proportionnelle à l'intensité du courant i et à durée d'électrolyse t,

Relation entre m, i et t

$$Q = yF = \frac{m}{M} * F = iI \Rightarrow$$

$$m = \frac{i.t.M}{F}$$

Dans le cas général :

On a:

$$m = \frac{i.t.M}{n.F}$$

C'est la loi de Faraday.

N.B. Selon PUPAC (International Union of Pure and Applied Chemistry); La cathode est le lieu de la Réduction

-L'amode est le lieu d'oxydation

4. Relation entre la fem et la constante d'équilibre

La fem de la pile Daniell est égale à 1,1V. Calculer la constante d'équilibre de la réaction de cette pile.

$$Cu^{2+} + Zn$$
 \longleftarrow $Cu + Zn^{2+}$

A l'équilibre on a:

$$\Delta G = \Delta G^{\circ} + RTLnK = 0$$
, $d'où - 2F\Delta E = -2F\Delta E^{\circ} + RTLnK = 0$

Par conséquent la fem, ΔE, est égale à 0V et E,=E,.

R=298°K; R=8,314J; F=96.500C et

D'où RTLnK=-ΔG°=- 2FΔE°

K=4,68.1036

Remarque

Plus ΔE° est élevé plus la réaction est spontanée et la constante d'équilibre K est grande.

IV- Prévision des Réactions d'Oxydoréduction

1. Constante d'équilibre

On se propose de calculer la constante d'équilibre de la réaction qui intervient lorsqu'on mélange l'oxydant MnO, et le réducteur Fe2+.

Couple 1 : MnO_4^{-1}/Mn^{24} $E_1^{\circ}=1.51V$

Couple 2 : Fe^{2+}/Fe^{2+} $E_2^{\bullet}=0.77V$

E1°>E2°

On peut donc considérer le couple1 comme Cathode et le couple2 comme anode.

$$MnO_4 + 5e^* \rightarrow$$

$$Mn^{2+} \Delta G_c^1 = -5FE_1^0$$

$$Fe^{2+} \rightarrow Fe^{1-} + 1e^{-} \Delta G_0^2 = +FE_2^0$$

$$MnO_4 + 5 Fe^{2t} \rightarrow Mn^{2t} + 5 Fe^{2t}$$

$$\Delta G_0^{\text{retails}} = \Delta G_0^1 + \Delta G_0^2 \approx -5F(E_1^0 - E_2^0) = -5F\Delta E^0$$

$$\begin{split} E_{\text{cabbode}} &= E_1^0 + \frac{RT}{5P} Ln \frac{\left[MnO_4^-\right]}{\left[Mn^2\right]} \\ E_{\text{angle}} &= E_2^0 + \frac{RT}{F} Ln \frac{\left[Fe^{3+}\right]}{\left[Fe^{2+}\right]}; \end{split}$$

à l'équilibre
$$\Delta E = E_{controle} - E_{acode} = 0$$
 d'où $E_{controle} - E_{acode}$ et

$$E_{1}^{0} + \frac{RT}{5F} Ln \frac{[MnO_{c}^{2}]}{[Mn^{2^{*}}]} = E_{2}^{0} + \frac{RT}{F} Ln \frac{[Fe^{2^{*}}]}{[Fe^{2^{*}}]} \Leftrightarrow E_{1}^{0} - E_{2}^{0} + \frac{RT}{5F} (Ln \frac{[MnO_{c}]}{[Mn^{2^{*}}]} - \frac{RT}{5F} Ln (\frac{[Fe^{2^{*}}]}{[Fe^{2^{*}}]})^{5}) = 0$$

$$E_{1}^{0} - E_{2}^{0} + \frac{RT}{5F} \left(Ln \frac{MnO_{4}^{-}}{Mn^{2+}} \right) \cdot \frac{Fe^{2a}}{[Fe^{3-}]^{0}} \right) = 0 \Rightarrow E_{1}^{0} - E_{2}^{0} + \frac{RT}{5F} Ln \frac{1}{K} = 0 \Leftrightarrow E_{1}^{0} - E_{2}^{0} = -\Delta E^{0} - \frac{RT}{5F} Ln \frac{1}{K}$$

$$d^{\circ}o\hat{a}$$
 $5\Delta E^{\circ} = \frac{RT}{F} LnK \Rightarrow 5\Delta E^{\circ} = 0.06 \log K \Rightarrow \log K = \frac{5\Delta E^{\circ}}{0.06}$

$$\log K = \frac{5 \text{AE}^0}{0.06} = 61.67$$

La constante d'équilibre est très élevée, la réaction est spontance dans le sens de la réduction de MuO₄

Prévision qualitative et règle y

D'après les calculs précédents on remarque qu'on peut prévoir le sens des équilibres d'oxydoréduction à partir des valeurs des potentiels standard.

3- Variation du potentiel avec le pH

Le potentiel rédox qui mesure le pouvoir oxydant et réducteur d'un couple peut dépendre de l'acidité de la solution aqueuse dans les deux cas suivants:

- Si les ions H₃O⁺ ou OH⁻ interviennent dans les demi réactions redox, dans l'équilibre de charge.
- Si on a une hydrolyse ou précipitation du cation du couple d'oxydoréduction ou précipitation.

Exemple

$$MnO_2(solide) + 2e^- + 4H_3O^+ \leftrightarrow Mn^{2+} + 6H_2O$$

$$E = E_{Mno_{2}/Mn^{2}}^{0} + \frac{0.06}{2} \log \left[\frac{H}{Mn^{2}} \right]$$

$$= E_{Mno_{2}/Mn^{2}}^{0} + \frac{0.06}{2} 4.\log \left[\frac{H}{H} \right] + \frac{0.06}{2} \log \left[\frac{1}{Mn^{2}} \right]$$

$$= E_{Mno_{2}/Mn^{2}}^{0} - 0.12pH + \frac{0.06}{2} \log \left[\frac{1}{Mn^{2}} \right]$$

$$= E_{apparent}^{0} - 0.12pH + \frac{0.06}{2} \log \left[\frac{1}{Mn^{2}} \right]$$

$$= E_{apparent}^{0} - 0.12pH + \frac{0.06}{2} \log \left[\frac{1}{Mn^{2}} \right]$$

$$= E_{apparent}^{0} = E_{Mno_{2}/Mn^{2}}^{0} - 0.12pH = Potential \text{ apparent de Mno}_{2}(s)/Mn^{2}$$

Généralement le potentiel apparent est le potentiel qu'on peut déterminer expérimentalement.

On constate E(MnO₂/Mn²⁺) varie avec le pH. Le coefficient directeur est égal à -0,12.

Il faut faire attention à ce que toute augmentation de pH entraîne une diminution de E, sans toutefois que ceci ne conduit à une précipitation de Mn²⁺.

Cas particulier de l'effet de pH : Réaction d' Hydrolyse

Exemple

Si on ajoute OH à une solution de Ag+, on peut avoir une précipitation de Ag(OH) selon :

$$Ag^+ + OH^- \rightarrow AgOH_J$$

 $K_s(AgOH,s) = [Ag^*][CI]$

AgOH_J
$$\rightarrow$$
 Ag⁺ +OH⁻ $\Delta G_1^0 = -RTLnK = -RTLnK$,
Ag⁺ +1e⁻ \rightarrow Ag $\Delta G_2^0 = FE_{Ag^+/Ag}^0$

la demi - réaction d'oxydoréduction devient

$$\begin{split} \text{AgOH}_{\perp} + \text{le}^{\cdot} &\rightarrow \text{Ag} \qquad \Delta G^{0}_{\text{Total}} = FE^{0}_{AgOH/Ag} \\ \Rightarrow \Delta G^{0}_{\text{total}} = \Delta G^{0}_{1} + \Delta G^{0}_{2} \Rightarrow FE^{0}_{AgOH/Ag} = -RTLnK_{s} + FE^{0}_{Ag+iAg} \\ E^{0}_{AgOH/Ag} = E^{0}_{Ag+iAg} - \frac{RT}{F}LnK_{s} = E^{0}_{Ag+iAg} - 0.06\log K_{s} \end{split}$$

$$E_{AgOH/Ag}^{0} = E_{Ag+Ag}^{0} + 0.06 pK_{s} = E_{apparent}^{0}$$

On constate que le potentiel apparent dépend de la valeur de pK_s. Plus cette valeur est élevée (K_s faible) plus E°_{apparent} est élevé, et plus forte est la force du système oxydant.