<u>Problem - 01: [Must Use: Function + Recursion + Loop]</u>

Chef has a string S with length N. He needs to find the number of indices i (1 <= i <= N-1) such that the i-th character of this string is a consonant and the i+1 th character is a vowel. However, he is busy, so he asks for your help.

Note: The letters 'a', 'e', 'i', 'o', 'u' are vowels; all other lowercase English letters are consonants.

<u>Input</u>

- The first line of the input contains a single integer T denoting the number of test cases. The
 description of T test cases follows.
- The first line of each test case contains a single integer *N*.
- The second line contains a single string *S* with length *N*.

Output

For each test case, print a single line containing one integer - the number of occurrences of a vowel immediately after a consonant.

Input	Output
3	3
6	1
bazeci	0
3	
abu	
1	
0	

Explanation:

Example case 1: The vowel 'a' follows the consonant 'b', 'e' follows 'z', and 'i' follows 'c', so the answer is 3.

Example case 2: The only vowel 'u' follows 'b', so the answer is 1.

<u>Problem - 02: [Must Use: Function + Recursion + Loop]</u>

Given an array A of size N, check if there exist any pair of the index.

Input

- The first line of the input contains a single integer T denoting the number of test cases.
- The first line of each test case contains integer N.
- The second line of each test case contains N space-separated integers Ai.

Output

For each test case, print a single line containing the answer "Yes" or "No" (without quotes).

Input	Output
2	Yes
4	No
1 2 1 3	
5	
5 4 1 2 3	

Explanation

Example case 1: A1 and A3 both have value 1.

Example case 2: All values are pairwise distinct.