

复合逻辑门(一)

与旅门的何表示? 与旅门具有哪些逻辑功能? 或旅门的何表示? 或旅门具有哪些逻辑功能?

一、与非门

(b) 图形符号

逻辑函数表达式

与非门真值表

输 人		AB	输 出		
A	В	AB	$Y = \overline{A \cdot B}$		
0	0	0	1		
0	1	0			
1	0	0	1		
1	1	1	0		

与非门逻辑功能: "有0出1,全1出0"。

二、或非门

(b) 图形符号

逻辑函数表达式

$$Y = \overline{A + B}$$

或非门真值表

输 人		A . D	输 出		
A	В	A + B	$Y = \overline{A + B}$		
0	0	0	1		
0	1	1	0		
1	0	1	0		
1	1	1	0		

或非门逻辑功能: "有1出0,全0出1"。

【例】根据如图所示的A、B输入信号波形,分别画出与非门输出 Y_1 、或非门输出 Y_2 的波形。

【分析】 根据输入波形的变化将输入波形划分为 $t_1 \sim t_5$ 五个时间段。

与非门逻辑功能: "有0出1,全1出0"。 或非门逻辑功能: "有1出0,全0出1"。

复合逻辑门(一)

一、与非门

逻辑函数表达式: $Y = \overline{A \cdot B}$

逻辑功能: "有0出1,全1出0"

与非门图形符号

或非门图形符号

二、或非门

逻辑函数表达式: $Y = \overline{A + B}$

逻辑功能: "有1出0,全0出1"

谢谢!

复合逻辑门(二)

与或非门的何表示?与或非门具有哪些逻辑功能?

异或门贴何表示? 异或门具有哪些逻辑功能?

三、与或非门

(b) 图形符号

逻辑函数表达式

$$Y = \overline{AB + CD}$$

与或非门真值表

b	输	人		输出		输	人		输出
A	B	$\begin{bmatrix} c \end{bmatrix}$	D	Y	A	B	C	D	Y
0	0	0	0	1	1	0	0	0	1
0	0	0	1	1	1	0	0	1	1
0	0	1	0	1	1	0	1	0	1
0	0	1	1	0	1	0	1	1	0
0	1	0	0	1	1	1	0	0	0
0	1	0	1	1	1	1	0	1	0
0	1	1	0	1	1	1	1	0	0
0	1	1	1	0	1	1	1	1	0

与或非门逻辑功能: "一组全1出0,各组有0出1"。

四、异或门

(a) 逻辑结构

逻辑函数表达式

$$Y = \overline{AB} + A\overline{B}$$

(b) 图形符号

异或门真值表

输	人	输出
\boldsymbol{A}	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

异或门逻辑功能: "同出0,异出1"。

在数字电路中,异或门可以作为<mark>判断两个输入信号是否</mark> 相同的门电路。

$$Y = A \oplus B$$

【例】根据如图所示的A、B输入信号波形,画出异或门输出Y的波形。

【分析】 根据输入波形的变化将输入波形划分为 $t_1 \sim t_5$ 五个时间段。

【解】

异或门逻辑功能: "同出0,异出1"。

复合逻辑门(二)

三、与或非门

逻辑函数表达式: $Y = \overline{AB + CD}$

逻辑功能: "一组全1出0,各组有0出1"

异或门图形符号

四、异或门

逻辑函数表达式: $Y = \overline{AB} + A\overline{B}$ Y

$$Y = A \oplus B$$

逻辑功能: "同出0,异出1"

谢谢!

TTL集成门电路

集成逻辑门电路,简称集成门电路,是把构成门电路的元器件和连线制作在一块半导体芯片上,再封装起来而构成的。

按内部所采用器件的不同,集成门电路分为TTL和CMOS集成门电路两大类。

常见的TTL集成门电路有哪些?此何识读TTL 集成门电路的引脚?

此何测试TTL集成门电路的逻辑功能? 此何使用TTL集成门电路? TTL集成门电路内部输入、输出级都采用三极管,也称三极管—三极管逻辑门电路,简称TTL电路。

TTL集成门电路具有运行速度较高、带负载能力较强、工作电压低、工作电流较大的特点。

TTL集成门电路,主要有:

74(标准中速)、74H(高速)、74S(超高速肖特基)、74LS(低功耗肖特基)和74AS(先进的肖特基)等系列,74LS系列为现代主要应用产品。

TTL集成门电路通常采用双列直插式外形封装。

双列直插式TTL集成门电路

TTL集成门电路,根据功能不同,有8~24个引脚。

引脚识读的基本方法是:

一般用<mark>四口</mark>(或圆点)作识别标记。其引脚排列方式是:从标记开始,沿<mark>逆时针</mark>方向自下而上依次为引脚1、2、······

TTL集成门电路引脚排列

正电源

四2输入与非门

双4输入与非门

74LS00:4个与非门,每个与非门有2个输入端。

接地

74LS20:2个与非门,每个与非门有4个输入端。

TTL集成门电路的逻辑功能测试

74LS00的逻辑功能测试原理图

TTL集成门电路使用技巧

- 1.TTL集成门电路的功耗较大,电源电压必须保证在4.75~5.25V,建议使用稳压电源供电。
- 2. TTL集成门电路若有不使用的多余输入端可以悬空,相当于高电平。但实际使用中抗干扰能力差,一般不建议采用。与门和与非门的多余输入端应接至固定的高电平,或门和或非门的多余输入端应接地。
- 3.TTL集成门电路的输入端不能直接与高于5.5V或低于一0.5V的低内阻电源连接,否则可能 会损坏器件。
- 4.TTL集成门电路的输出端不允许与正电源或地短接,必须通过电阻与正电源或地连接。

TTL集成门电路

一、常用系列

TTL集成门电路内部输入、输出级都采用三极管,也称三极管—三极管逻辑门电路,简称TTL电路。

74(标准中速)、74H(高速)、74S(超高速肖特基)、74LS(低功耗肖特基)和74AS(先进的肖特基)等系列。

二、引脚识读

通常采用双列直插式外形封装。

从标记开始,沿逆时针方向自下而上依次为引脚1、2、……

三、功能测试 74LS00

四、使用技巧 4点

谢谢!

CMOS集成门电路

常见的CMOS集成门电路有哪些?此何识读 CMOS集成门电路的引脚?

此何使用CMOS集成门电路?

CMOS集成门电路是由PMOS场效晶体管和NMOS场效晶体管组成的互补电路。

1.4000系列

国际通用标准系列,是20世纪80年代CMOS代表产品之一,其特点是电路功耗很小,价格低,但工作速度较低。品种繁多,功能齐全,现仍被广泛应用。

2.40H系列

工作速度较快,但品种较少,引脚功能与同序号的74系列TTL集成门电路相同。

3.74HC系列

目前CMOS产品中应用最广泛的品种之一,性能比较优越,功耗低,工作速度快,引脚功能与同序号的74系列TTL集成门电路相同。

CMOS集成门电路通常采用双列直插式外形封装。

引脚识读方法与TTL集成门电路相同。

双列直插式CMOS集成门电路

正电源

四2输入与非门

CC4011:4个与非门,每个与非门有2个输入端。

CC4002:2个或非门,每个或非门有4个输入端。

双4输入或非门

CC4002引脚排列

CMOS集成门电路使用技巧

- 1.CMOS集成门电路功耗低,4000系列的产品电源电压在4.75~18V范围内均可正常工作,建议使用10V电源电压供电。
- 2. CMOS集成门电路若有不使用的多余输入端不能悬空。与门和与非门的多余输入端应将其接至固定的高电平,或门和或非门的多余输入端应将其接地。
 - 3. CMOS集成门电路在存放、组装和调试时,要有一定的防静电措施。
- 4. CMOS集成门电路的输出端不允许与正电源或地短接, 必须通过电阻与正电源或地连接。

CMOS 和TTL集成门电路比较

- 1. CMOS集成门电路的工作速度比TTL集成门电路低,带负载的能力比TTL集成门电路强。
- 2. CMOS集成门电路的电源电压允许范围较大,抗干扰能力比TTL集成门电路强。
- 3. CMOS集成门电路的功耗比TTL集成门电路小得多。一般只有几微瓦,中规模集成电路的功耗也不会超过100μW。
 - 4. CMOS集成门电路的集成度比TTL集成门电路高。

集成门电路的选用

- 1.若要求功耗低、抗干扰能力强,则应选用CMOS集成门电路。其中4000 系列一般用于工作频率 1 MHz 以下、驱动能力要求不高的场合; 74HC系列常用于工作频率 20 MHz 以下、要求较强驱动能力的场合。
- 2.若对功耗和抗干扰能力要求一般,可选用TTL集成门电路。目前多用 74LS 系列,它的功耗较小,工作频率一般可至 20 MHz;如工作频率较高,可选用 CT74ALS 系列,其工作频率一般可至 50 MHz。

CMOS集成门电路

一、常用系列

CMOS集成门电路是由PMOS场效晶体管和NMOS场效晶体管组成的互补电路。 4000系列、40H系列、74HC系列。

二、引脚识读

通常采用双列直插式外形封装。

引脚识读方法与TTL集成门电路相同。

三、使用技巧

4点

四、集成门电路选用

- 1.若要求功耗低、抗干扰能力强,则应选用CMOS门电路。
- 2.若对功耗和抗干扰能力要求一般,可选用TTL门电路。

谢谢!

逻辑代数的运算法则

逻辑代数又称布尔代数。逻辑代数与普通代数有着不同概念,逻辑代数表示的不是数的大小之间的关系,而是逻辑的关系,它仅有0、1两种状态。

逻辑代数有哪些基本公式和常用公式呢?

一、基本公式

1.变量与常量的关系

01律

与运算公式

或运算公式

 $A \cdot 0 = 0$

A+0=A

 $A \cdot 1 = A$

A+1=1

2.与普通代数相似的定律

与运算公式

或运算公式

交换律

 $A \cdot B = B \cdot A$

A+B=B+A

结合律

 $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

A+(B+C)=(A+B)+C

分配律

 $A \cdot (B + C) = A \cdot B + A \cdot C$

 $A+(B\cdot C)=(A+B)(A+C)$

3.逻辑代数特有的定律

与运算公式

或运算公式

互补律

$$A \cdot \overline{A} = 0$$

$$A + \overline{A} = 1$$

重叠律(同一律)

$$A \cdot A = A$$

$$A + A = A$$

反演律(摩根定律)

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

非非律(还原律)

$$\overline{A} = A$$

以上定律的证明,最直接的办法就是通过<mark>真值表</mark>证明。若等式两边逻辑函数的 <u>真值表相同</u>,则等式成立。

真值表证明摩根定律

输 人		输出	
A	В	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

结论:

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

二、常用公式

公式1
$$A\underline{B} + A\overline{B} = A$$
 合并互为反变量的因子

【证明】
$$AB + A\overline{B} = A (\underline{B} + \overline{B})$$

= $A \cdot 1$

$$=A$$

互补律

01律

公式2
$$A + AB = A$$
 吸收多余项

【证明】
$$A + AB = A (1 + \overline{B})$$

 $= A$

01律

二、常用公式

公式3
$$A + \overline{AB} = A + B$$
 消去含有另一项的反变量的因子
【证明】 $A + \overline{AB} = A + \overline{AB} + \overline{AB}$ 公式2

$$A + AD = A + AD + AD$$

$$= A + (A + A) B$$

$$= A + B$$

$$= A + B$$
互补律

公式4
$$\underline{AB} + \underline{AC} + \underline{BC} = AB + \overline{AC}$$
 吸收多余项

【证明】
$$AB + \overline{AC} + BC = AB + \overline{AC} + (\underline{A} + \overline{\underline{A}})$$
 BC 互补律
$$= \underline{AB} + \overline{AC} + \underline{ABC} + \overline{ABC}$$
 分配律
$$= \underline{AB} + \overline{AC}$$
 公式2

逻辑代数的运算法则

一、基本公式

1.变量与常量的关系 $A \cdot 0 = 0$ A+0=A

$$A \cdot 1 = A$$
 $A + 1 = 1$

01律

二、常用公式

1.AB + AB = A

2.A + AB = A

3.A + AB = A + B

AAB + AC + BC = AB + AC

2.与普通代数相似的定律

 $A \cdot B = B \cdot A$ 交換律

$$A+B=B+A$$

 $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ 结合律

A+(B+C)=(A+B)+C

分配律 $A \cdot (B+C) = A \cdot B + A \cdot C$

 $A+(B\cdot C)=(A+B)(A+C)$

3.逻辑代数特有的定律

互补律

$$A \cdot \overline{A} = 0$$
 $A + A = 1$

重叠律(同一律)

$$A \cdot A = A$$
 $A + A = A$

反演律(摩根定律) $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

非非律(还原律) A = A

谢谢!

逻辑函数的公式化简

逻辑函数化简的意义是什么?

逻辑函数公式化简的方法有哪些?

一、化简的意义

1.逻辑函数表达式的不同形式

异或门
$$Y = A\overline{B} + \overline{A}B = A \oplus B$$

 $Y = A\overline{B} + \overline{A}B$ 与或表达式
 $= \overline{AB} + \overline{AB}$ 与或非-非表达式
 $= \overline{AB} \cdot \overline{AB}$ 与非-与非表达式
 $= \overline{(A+B) \cdot (A+B)}$ 或与非表达式
 $= \overline{AB} + \overline{AB}$ 与或非表达式
 $= \overline{AB} + \overline{AB}$ 与或非表达式
 $= \overline{AB} + \overline{AB}$ 与或非表达式
 $= \overline{AB} + \overline{AB}$ 与或非表达式

每一个逻辑函数式都对应 着一个具体电路。在具体实现 电路时,往往根据现有的元器 件(集成门电路)选择相应的 逻辑表达式。

一、化简的意义

2.逻辑函数化简的意义

在数字电路中,是由逻辑门电路来实现一定的逻辑功能,逻辑函数的化简就意味着实现该功能的电路简化,能用较少的门电路实现相同的逻辑功能,不仅可以<mark>降低成本</mark>,而且还可<mark>提高</mark>电路工作的可靠性。

每一种表达形式的最简标准都不同,与或式的最简标准为:

- (1) 表达式中所含的或项数最少。
- (2) 每个或项所含的变量数最少。

1.并项法

利用公式 AB + AB = A , 把两项合并为一项,并消去一个因子。

【例1】化简逻辑函数 $Y = ABC + AB\overline{C}$

【解】
$$Y = ABC + AB\overline{C}$$

= $AB (C + \overline{C})$
= AB

2.吸收法

利用公式A+AB=A, 吸收多余项AB。

【例2】化简逻辑函数 $Y = A\overline{C} + A\overline{B}\overline{C}D$

【解】
$$Y = A\overline{C} + A\overline{B}\overline{C}D$$

= $A\overline{C}(1 + \overline{B}D)$
= $A\overline{C}$

3.消去法

利用公式 $A + \overline{AB} = A + B$, 消去 \overline{AB} 项中的多余因子 \overline{A} .

【例3】化简逻辑函数 $Y = AB + \overline{AC} + \overline{BC}$

【解】
$$Y = AB + \overline{AC} + \overline{BC}$$

 $= AB + (\overline{A} + \overline{B}) C$
 $= \underline{AB} + (\overline{AB}) C$
 $= AB + C$

4.配项法

利用公式 $A+\overline{A}=1$,给适当项配项,并进一步化简。

【例4】化简逻辑函数 $Y = A\overline{B} + \overline{B}C + B\overline{C} + \overline{A}B$

【解】
$$Y = A\overline{B} + \overline{B}C + B\overline{C} + \overline{A}B$$

 $= A\overline{B} + (A + \overline{A})\overline{B}C + B\overline{C} + \overline{A}B \quad (C + \overline{C})$
 $= A\overline{B} + A\overline{B}C + \overline{A}BC + B\overline{C} + \overline{A}BC + \overline{A}BC$
 $= A\overline{B} + B\overline{C} + \overline{A}C \quad (\overline{B} + B)$
 $= A\overline{B} + B\overline{C} + \overline{A}C$

逻辑函数的公式化简

一、化简的意义

- 1.逻辑函数表达式的不同形式
- 2.逻辑函数化简的意义

用较少的门电路实现相同的逻辑功能,不仅可以降低成本,而且还可提高电路工作的可靠性。

二、公式化简的方法

- 1.并项法
- 2.吸收法
- 3.消去法
- 4.配项法

谢谢!