Chapter 11

The Dual Space and Duality

In this chapter all vector spaces are defined over an arbitrary field K. For the sake of concreteness, the reader may safely assume that $K = \mathbb{R}$.

11.1 The Dual Space E^* and Linear Forms

In Section 3.9 we defined linear forms, the dual space $E^* = \text{Hom}(E, K)$ of a vector space E, and showed the existence of dual bases for vector spaces of finite dimension.

In this chapter we take a deeper look at the connection between a space E and its dual space E^* . As we will see shortly, every linear map $f: E \to F$ gives rise to a linear map $f^{\top}: F^* \to E^*$, and it turns out that in a suitable basis, the matrix of f^{\top} is the transpose of the matrix of f. Thus, the notion of dual space provides a conceptual explanation of the phenomena associated with transposition.

But it does more, because it allows us to view a linear equation as an element of the dual space E^* , and thus to view subspaces of E as solutions of sets of linear equations and vice-versa. The relationship between subspaces and sets of linear forms is the essence of duality, a term which is often used loosely, but can be made precise as a bijection between the set of subspaces of a given vector space E and the set of subspaces of its dual E^* . In this correspondence, a subspace V of E yields the subspace V^0 of E^* consisting of all linear forms that vanish on V (that is, have the value zero for all input in V).

Consider the following set of two "linear equations" in \mathbb{R}^3 ,

$$x - y + z = 0$$
$$x - y - z = 0,$$

and let us find out what is their set V of common solutions $(x, y, z) \in \mathbb{R}^3$. By subtracting the second equation from the first, we get 2z = 0, and by adding the two equations, we find