

SEQUENCE LISTING

<110> MUTABILIS

<120> COMPRISING OF POLYPEPTIDES SPECIFIC TO PATHOGENIC STRAINS AND THEIR USE AS VACCINES AND IN IMMUNOTHERAPY

<130> 1721-126

<140> 10/594 461

<141> March 29, 2005

<160> 160

<170> PatentIn version 3.1

<210> 1

<211> 163

<212> PRT

<213> Escherichia coli

<400> 1

Met Lys Leu Lys Ala Ile Ile Leu Ala Thr Gly Leu Ile Asn Cys Ile
1 5 10 15

Val Phe Ser Ala Gln Ala Val Asp Thr Thr Ile Thr Val Thr Gly Asn
20 25 30

Val Leu Gln Arg Thr Cys Asn Val Pro Gly Asn Val Asp Val Ser Leu
35 40 45

Gly Asn Leu Tyr Val Ser Asp Phe Pro Asn Ala Gly Ser Gly Ser Pro
50 55 60

Trp Val Asn Phe Asp Leu Ser Leu Thr Gly Cys Gln Asn Met Asn Thr
65 70 75 80

Val Arg Ala Thr Phe Ser Gly Thr Ala Asp Gly Gln Thr Tyr Tyr Ala
85 90 95

Asn Thr Gly Asn Ala Gly Gly Ile Lys Ile Glu Ile Gln Asp Arg Asp
100 105 110

Gly Ser Asn Ala Ser Tyr His Asn Gly Met Phe Lys Thr Leu Asn Val
115 120 125

Gln Asn Asn Asn Ala Thr Phe Asn Leu Lys Ala Arg Ala Val Ser Lys
130 135 140

Gly Gln Val Thr Pro Gly Asn Ile Ser Ser Val Ile Thr Val Thr Tyr
145 150 155 160

Thr Tyr Ala

<210> 2
<211> 673
<212> PRT
<213> Escherichia coli

<400> 2

Met Lys Met Thr Arg Leu Tyr Pro Leu Ala Leu Gly Gly Leu Leu Leu
1 5 10 15

Pro Ala Ile Ala Asn Ala Gln Thr Ser Gln Gln Asp Glu Ser Thr Leu
20 25 30

Val Val Thr Ala Ser Lys Gln Ser Ser Arg Ser Ala Ser Ala Asn Asn
35 40 45

Val Ser Ser Thr Val Val Ser Ala Pro Glu Leu Ser Asp Ala Gly Val
50 55 60

Thr Ala Ser Asp Lys Leu Pro Arg Val Leu Pro Gly Leu Asn Ile Glu
65 70 75 80

Asn Ser Gly Asn Met Leu Phe Ser Thr Ile Ser Leu Arg Gly Val Ser
85 90 95

Ser Ala Gln Asp Phe Tyr Asn Pro Ala Val Thr Leu Tyr Val Asp Gly
100 105 110

Val Pro Gln Leu Ser Thr Asn Thr Ile Gln Ala Leu Thr Asp Val Gln
115 120 125

Ser Val Glu Leu Leu Arg Gly Pro Gln Gly Thr Leu Tyr Gly Lys Ser
130 135 140

Ala Gln Gly Gly Ile Ile Asn Ile Val Thr Gln Gln Pro Asp Ser Thr
145 150 155 160

Pro Arg Gly Tyr Ile Glu Gly Gly Val Ser Ser Arg Asp Ser Tyr Arg
165 170 175

Ser Lys Phe Asn Leu Ser Gly Pro Ile Gln Asp Gly Leu Leu Tyr Gly
180 185 190

Ser Val Thr Leu Leu Arg Gln Val Asp Asp Gly Asp Met Ile Asn Pro
195 200 205

Ala Thr Gly Ser Asp Asp Leu Gly Gly Thr Arg Ala Ser Ile Gly Asn
210 215 220

Val Lys Leu Arg Leu Ala Pro Asp Asp Gln Pro Trp Glu Met Gly Phe
225 230 235 240

Ala Ala Ser Arg Glu Cys Thr Arg Ala Thr Gln Asp Ala Tyr Val Gly
245 250 255

Trp Asn Asp Ile Lys Gly Arg Lys Leu Ser Ile Ser Asp Gly Ser Pro
260 265 270

Asp Pro Tyr Met Arg Arg Cys Thr Asp Ser Gln Thr Leu Ser Gly Lys
275 280 285

Tyr Thr Thr Asp Asp Trp Val Phe Asn Leu Ile Ser Ala Trp Gln Gln
290 295 300

Gln His Tyr Ser Arg Thr Phe Pro Ser Gly Ser Leu Ile Val Asn Met
305 310 315 320

Ser Gln Arg Trp Asn Gln Asp Val Gln Glu Leu Arg Ala Ala Thr Leu
325 330 335

Gly Asp Ala Arg Thr Val Asp Met Val Phe Gly Leu Tyr Arg Gln Asn
340 345 350

Thr Arg Glu Lys Leu Asn Ser Ala Tyr Asp Met Pro Thr Met Pro Tyr
355 360 365

Leu Ser Ser Thr Gly Tyr Thr Thr Ala Glu Thr Leu Ala Ala Tyr Ser
370 375 380

Asp Leu Thr Trp His Leu Thr Asp Arg Phe Asp Ile Gly Gly Val

385 390 395 400
Arg Phe Ser His Asp Lys Ser Ser Thr Gln Tyr His Gly Ser Met Leu
405 410 415

Gly Asn Pro Phe Gly Asp Gln Gly Lys Ser Asn Asp Asp Gln Val Leu
420 425 430

Gly Gln Leu Ser Ala Gly Tyr Met Leu Thr Asp Asp Trp Arg Val Tyr
435 440 445

Thr Arg Val Ala Gln Gly Tyr Lys Pro Ser Gly Tyr Asn Ile Val Pro
450 455 460

Thr Ala Gly Leu Asp Ala Lys Pro Phe Val Ala Glu Lys Ser Ile Asn
465 470 475 480

Tyr Glu Leu Gly Thr Arg Tyr Glu Thr Ala Asp Val Thr Leu Gln Ala
485 490 495

Ala Thr Phe Tyr Thr His Thr Lys Asp Met Gln Leu Tyr Ser Gly Pro
500 505 510

Val Gly Met Gln Thr Leu Ser Asn Ala Gly Lys Ala Asp Ala Thr Gly
515 520 525

Val Glu Leu Glu Ala Lys Trp Arg Phe Ala Pro Gly Trp Ser Trp Asp
530 535 540

Ile Asn Gly Asn Val Ile Arg Ser Glu Phe Thr Asn Asp Ser Glu Leu
545 550 555 560

Tyr His Gly Asn Arg Val Pro Phe Val Pro Arg Tyr Gly Ala Gly Ser
565 570 575

Ser Val Asn Gly Val Ile Asp Thr Arg Tyr Gly Ala Leu Met Pro Arg
580 585 590

Leu Ala Val Asn Leu Val Gly Pro His Tyr Phe Asp Gly Asp Asn Gln
595 600 605

Leu Arg Gln Gly Thr Tyr Ala Thr Leu Asp Ser Ser Leu Gly Trp Gln
610 615 620

Ala Thr Glu Arg Met Asn Ile Ser Val Tyr Val Asp Asn Leu Phe Asp
625 630 635 640

Arg Arg Tyr Arg Thr Tyr Gly Tyr Met Asn Gly Ser Ser Ala Val Ala
645 650 655

Gln Val Asn Met Gly Arg Thr Val Gly Ile Asn Thr Arg Ile Asp Phe
660 665 670

Phe

<210> 3

<211> 246

<212> PRT

<213> Escherichia coli

<400> 3

Met Asn Lys Val Phe Val Val Ser Val Val Ala Ala Ala Cys Val Phe
1 5 10 15

Ala Val Asn Ala Gly Ala Lys Glu Gly Lys Ser Gly Phe Tyr Leu Thr
20 25 30

Gly Lys Ala Gly Ala Ser Val Met Ser Leu Ser Asp Gln Arg Phe Leu
35 40 45

Ser Gly Asp Glu Glu Thr Ser Lys Tyr Lys Gly Gly Asp Asp His
50 55 60

Asp Thr Val Phe Ser Gly Gly Ile Ala Val Gly Tyr Asp Phe Tyr Pro
65 70 75 80

Gln Phe Ser Ile Pro Val Arg Thr Glu Leu Glu Phe Tyr Ala Arg Gly
85 90 95

Lys Ala Asp Ser Lys Tyr Asn Val Asp Lys Asp Ser Trp Ser Gly Gly
100 105 110

Tyr Trp Arg Asp Asp Leu Lys Asn Glu Val Ser Val Asn Thr Leu Met
115 120 125

Leu Asn Ala Tyr Tyr Asp Phe Arg Asn Asp Ser Ala Phe Thr Pro Trp
130 135 140

Val Ser Ala Gly Ile Gly Tyr Ala Arg Ile His Gln Lys Thr Thr Gly
145 150 155 160

Ile Ser Thr Trp Asp Tyr Glu Tyr Gly Ser Ser Gly Arg Glu Ser Leu
165 170 175

Ser Arg Ser Gly Ser Ala Asp Asn Phe Ala Trp Ser Leu Gly Ala Gly
180 185 190

Val Arg Tyr Asp Val Thr Pro Asp Ile Ala Leu Asp Leu Ser Tyr Arg
195 200 205

Tyr Leu Asp Ala Gly Asp Ser Ser Val Ser Tyr Lys Asp Glu Trp Gly
210 215 220

Asp Lys Tyr Lys Ser Glu Val Asp Val Lys Ser His Asp Ile Met Leu
225 230 235 240

Gly Met Thr Tyr Asn Phe
245

<210> 4

<211> 166

<212> PRT

<213> Escherichia coli

<400> 4

Met Lys Leu Lys Ala Ile Ile Leu Ala Thr Gly Leu Ile Asn Cys Ile
1 5 10 15

Ala Phe Ser Ala Gln Ala Val Asp Thr Thr Ile Thr Val Thr Gly Arg
20 25 30

Val Leu Pro Arg Thr Cys Thr Ile Gly Asn Gly Gly Asn Pro Asn Ala
35 40 45

Thr Val Val Leu Asp Asn Ala Tyr Thr Ser Asp Leu Ile Ala Ala Asn
50 55 60

Ser Thr Ser Gln Trp Lys Asn Phe Ser Leu Thr Leu Thr Asn Cys Gln
65 70 75 80

Asn Val Asn Asn Val Thr Ser Phe Gly Gly Thr Ala Glu Asn Thr Asn
85 90 95

Tyr Tyr Arg Asn Thr Gly Asp Ala Thr Asn Ile Met Val Glu Leu Gln
100 105 110

Glu Gln Gly Asn Gly Asn Thr Pro Leu Lys Val Gly Ser Thr Lys Val
115 120 125

Val Thr Val Ser Asn Gly Gln Ala Thr Phe Asn Leu Lys Val Arg Ala
130 135 140

Val Ser Lys Gly Asn Ala Gly Ala Gly Ser Ile Asn Ser Gln Ile Thr
145 150 155 160

Val Thr Tyr Thr Tyr Ala
165

<210> 5
<211> 1295
<212> PRT
<213> Escherichia coli

<400> 5

Met Asn Lys Ile Tyr Ser Leu Lys Tyr Ser Ala Ala Thr Gly Gly Leu
1 5 10 15

Ile Ala Val Ser Glu Leu Ala Lys Arg Val Ser Gly Lys Thr Asn Arg
20 25 30

Lys Leu Val Ala Thr Met Leu Ser Leu Ala Val Ala Gly Thr Val Asn
35 40 45

Ala Ala Asn Ile Asp Ile Ser Asn Val Trp Ala Arg Asp Tyr Leu Asp
50 55 60

Leu Ala Gln Asn Lys Gly Ile Phe Gln Pro Gly Ala Thr Asp Val Thr
65 70 75 80

Ile Thr Leu Lys Asn Gly Asp Lys Phe Ser Phe His Asn Leu Ser Ile
85 90 95

Pro Asp Phe Ser Gly Ala Ala Ala Ser Gly Ala Ala Thr Ala Ile Gly
100 105 110

Gly Ser Tyr Ser Val Thr Val Ala His Asn Lys Lys Asn Pro Gln Ala
115 120 125

Ala Glu Thr Gln Val Tyr Ala Gln Ser Ser Tyr Arg Val Val Asp Arg
130 135 140

Arg Asn Ser Asn Asp Phe Glu Ile Gln Arg Leu Asn Lys Phe Val Val
145 150 155 160

Glu Thr Val Gly Ala Thr Pro Ala Glu Thr Asn Pro Thr Thr Tyr Ser
165 170 175

Asp Ala Leu Glu Arg Tyr Gly Ile Val Thr Ser Asp Gly Ser Lys Lys
180 185 190

Ile Ile Gly Phe Arg Ala Gly Ser Gly Gly Thr Ser Phe Ile Asn Gly
195 200 205

Glu Ser Lys Ile Ser Thr Asn Ser Ala Tyr Ser His Asp Leu Leu Ser
210 215 220

Ala Ser Leu Phe Glu Val Thr Gln Trp Asp Ser Tyr Gly Met Met Ile
225 230 235 240

Tyr Lys Asn Asp Lys Thr Phe Arg Asn Leu Glu Ile Phe Gly Asp Ser
245 250 255

Gly Ser Gly Ala Tyr Leu Tyr Asp Asn Lys Leu Glu Lys Trp Val Leu
260 265 270

Val Gly Thr Thr His Gly Ile Ala Ser Val Asn Gly Asp Gln Leu Thr
275 280 285

Trp Ile Thr Lys Tyr Asn Asp Lys Leu Val Ser Glu Leu Lys Asp Thr
290 295 300

Tyr Ser His Lys Ile Asn Leu Asn Gly Asn Asn Val Thr Ile Lys Asn
305 310 315 320

Thr Asp Ile Thr Leu His Gln Asn Asn Ala Asp Thr Thr Gly Thr Gln
325 330 335

Glu Lys Ile Thr Lys Asp Lys Asp Ile Val Phe Thr Asn Gly Gly Asp

340

345

350

Val Leu Phe Lys Asp Asn Leu Asp Phe Gly Ser Gly Gly Ile Ile Phe
355 360 365

Asp Glu Gly His Glu Tyr Asn Ile Asn Gly Gln Gly Phe Thr Phe Lys
370 375 380

Gly Ala Gly Ile Asp Ile Gly Lys Glu Ser Ile Val Asn Trp Asn Ala
385 390 395 400

Leu Tyr Ser Ser Asp Asp Val Leu His Lys Ile Gly Pro Gly Thr Leu
405 410 415

Asn Val Gln Lys Lys Gln Gly Ala Asn Ile Lys Ile Gly Glu Gly Asn
420 425 430

Val Ile Leu Asn Glu Glu Gly Thr Phe Asn Asn Ile Tyr Leu Ala Ser
435 440 445

Gly Asn Gly Lys Val Ile Leu Asn Lys Asp Asn Ser Leu Gly Asn Asp
450 455 460

Gln Tyr Ala Gly Ile Phe Phe Thr Lys Arg Gly Gly Thr Leu Asp Leu
465 470 475 480

Asn Gly His Asn Gln Thr Phe Thr Arg Ile Ala Ala Thr Asp Asp Gly
485 490 495

Thr Thr Ile Thr Asn Ser Asp Thr Thr Lys Glu Ala Val Leu Ala Ile
500 505 510

Asn Asn Glu Asp Ser Tyr Ile Tyr His Gly Asn Ile Asn Gly Asn Ile
515 520 525

Lys Leu Thr His Asn Ile Asn Ser Gln Asp Lys Lys Thr Asn Ala Lys
530 535 540

Leu Ile Leu Asp Gly Ser Val Asn Thr Lys Asn Asp Val Glu Val Ser
545 550 555 560

Asn Ala Ser Leu Thr Met Gln Gly His Ala Thr Glu His Ala Ile Phe
565 570 575

Arg Ser Ser Ala Asn His Cys Ser Leu Val Phe Leu Cys Gly Thr Asp
580 585 590

Trp Val Thr Val Leu Lys Glu Thr Glu Ser Ser Tyr Asn Lys Lys Phe
595 600 605

Asn Ser Asp Tyr Lys Ser Asn Asn Gln Gln Thr Ser Phe Asp Gln Pro
610 615 620

Asp Trp Lys Thr Gly Val Phe Lys Phe Asp Thr Leu His Leu Asn Asn
625 630 635 640

Ala Asp Phe Ser Ile Ser Arg Asn Ala Asn Val Glu Gly Asn Ile Ser
645 650 655

Ala Asn Lys Ser Ala Ile Thr Ile Gly Asp Lys Asn Val Tyr Ile Asp
660 665 670

Asn Leu Ala Gly Lys Asn Ile Thr Asn Asn Gly Phe Asp Phe Lys Gln
675 680 685

Thr Ile Ser Thr Asn Leu Ser Ile Gly Glu Thr Lys Phe Thr Gly Gly
690 695 700

Ile Thr Ala His Asn Ser Gln Ile Ala Ile Gly Asp Gln Ala Val Val
705 710 715 720

Thr Leu Asn Gly Ala Thr Phe Leu Asp Asn Thr Pro Ile Ser Ile Asp
725 730 735

Lys Gly Ala Lys Val Ile Ala Gln Asn Ser Met Phe Thr Thr Lys Gly
740 745 750

Ile Asp Ile Ser Gly Glu Leu Thr Met Met Gly Ile Pro Glu Gln Asn
755 760 765

Ser Lys Thr Val Thr Pro Gly Leu His Tyr Ala Ala Asp Gly Phe Arg
770 775 780

Leu Ser Gly Gly Asn Ala Asn Phe Ile Ala Arg Asn Met Ala Ser Val
785 790 795 800

Thr Gly Asn Ile Tyr Ala Asp Asp Ala Ala Thr Ile Thr Leu Gly Gln
805 810 815

Pro Glu Thr Glu Thr Pro Thr Ile Ser Ser Ala Tyr Gln Ala Trp Ala
820 825 830

Glu Thr Leu Leu Tyr Gly Phe Asp Thr Ala Tyr Arg Gly Ala Ile Thr
835 840 845

Ala Pro Lys Ala Thr Val Ser Met Asn Asn Ala Ile Trp His Leu Asn
850 855 860

Ser Gln Ser Ser Ile Asn Arg Leu Glu Thr Lys Asp Ser Met Val Arg
865 870 875 880

Phe Thr Gly Asp Asn Gly Lys Phe Thr Thr Leu Thr Val Asn Asn Leu
885 890 895

Thr Ile Asp Asp Ser Ala Phe Val Leu Arg Ala Asn Leu Ala Gln Ala
900 905 910

Asp Gln Leu Val Val Asn Lys Ser Leu Ser Gly Lys Asn Asn Leu Leu
915 920 925

Leu Val Asp Phe Ile Glu Lys Asn Gly Asn Ser Asn Gly Leu Asn Ile
930 935 940

Asp Leu Val Ser Ala Pro Lys Gly Thr Ala Val Asp Val Phe Lys Ala
945 950 955 960

Thr Thr Arg Ser Ile Gly Phe Ser Asp Val Thr Pro Val Ile Glu Gln
965 970 975

Lys Asn Asp Thr Asp Lys Ala Thr Trp Thr Leu Ile Gly Tyr Lys Ser
980 985 990

Val Ala Asn Ala Asp Ala Ala Lys Lys Ala Thr Leu Leu Met Ser Gly
995 1000 1005

Gly Tyr Lys Ala Phe Leu Ala Glu Val Asn Asn Leu Asn Lys Arg
1010 1015 1020

Met Gly Asp Leu Arg Asp Ile Asn Gly Glu Ser Gly Ala Trp Ala
1025 1030 1035

Arg Ile Ile Ser Gly Thr Gly Ser Ala Gly Gly Phe Ser Asp
1040 1045 1050

Asn Tyr Thr His Val Gln Val Gly Ala Asp Asn Lys His Glu Leu
1055 1060 1065

Asp Gly Leu Asp Leu Phe Thr Gly Val Thr Met Thr Tyr Thr Asp
1070 1075 1080

Ser His Ala Gly Ser Asp Ala Phe Ser Gly Glu Thr Lys Ser Val
1085 1090 1095

Gly Ala Gly Leu Tyr Ala Ser Ala Met Phe Glu Ser Gly Ala Tyr
1100 1105 1110

Ile Asp Leu Ile Gly Lys Tyr Val His His Asp Asn Glu Tyr Thr
1115 1120 1125

Ala Thr Phe Ala Gly Leu Gly Thr Arg Asp Tyr Ser Ser His Ser
1130 1135 1140

Trp Tyr Ala Gly Ala Glu Val Gly Tyr Arg Tyr His Val Thr Asp
1145 1150 1155

Ser Ala Trp Ile Glu Pro Gln Ala Glu Leu Val Tyr Gly Ala Val
1160 1165 1170

Ser Gly Lys Gln Phe Ser Trp Lys Asp Gln Gly Met Asn Leu Thr
1175 1180 1185

Met Lys Asp Lys Asp Phe Asn Pro Leu Ile Gly Arg Thr Gly Val
1190 1195 1200

Asp Val Gly Lys Ser Phe Ser Gly Lys Asp Trp Lys Val Thr Ala
1205 1210 1215

Arg Ala Gly Leu Gly Tyr Gln Phe Asp Leu Phe Ala Asn Gly Glu
1220 1225 1230

Thr Val Leu Arg Asp Ala Ser Gly Glu Lys Arg Ile Lys Gly Glu
1235 1240 1245

Lys Asp Gly Arg Met Leu Met Asn Val Gly Leu Asn Ala Glu Ile
1250 1255 1260

Arg Asp Asn Leu Arg Phe Gly Leu Glu Phe Glu Lys Ser Ala Phe
1265 1270 1275

Gly Lys Tyr Asn Val Asp Asn Ala Ile Asn Ala Asn Phe Arg Tyr
1280 1285 1290

Ser Phe
1295

<210> 6
<211> 142
<212> PRT
<213> Escherichia coli

<400> 6

Met Ile Asn Ile Pro Ser Pro Thr Ala Val Val Met Ala Leu Val Ala
1 5 10 15

Ile Ser Thr Leu Pro Ser Pro Ser Arg Val Lys Leu Met Pro Tyr Pro
20 25 30

Pro Arg Ala His Asn Thr Thr Gly Leu Leu Pro Val Arg Glu Ile Cys
35 40 45

Phe Pro His His Gly Asp Asp Gly Arg Asn Ser Ile Glu Pro Ser Ile
50 55 60

Ser Arg Ala Ala His Thr Asp Arg Leu Arg Phe Val Cys Met Thr Arg
65 70 75 80

Thr Gly Ser Thr Thr Ser Arg Pro Phe Cys Pro Ile Pro Arg Ser Pro
85 90 95

Ala Leu Asn Ala Ser Gly Gln Gln Asp Ser Gly Phe Trp Gly Val Ser
100 105 110

Ser Ile Pro Gly Asp Ile Leu Met Phe Gln Leu His Val Leu Ile Val
115 120 125

Phe Ile Cys Lys Ile Asn Leu Ser Asp Asn Asn Ile Ser Tyr
130 135 140

<210> 7
<211> 318
<212> PRT
<213> Escherichia coli

<400> 7

Met Tyr Ala Arg Glu Tyr Arg Ser Thr Arg Pro His Lys Ala Ile Phe
1 5 10 15

Phe His Leu Ser Cys Leu Thr Leu Ile Cys Ser Ala Gln Val Tyr Ala
20 25 30

Lys Pro Asp Met Arg Pro Leu Gly Pro Asn Ile Ala Asp Lys Gly Ser
35 40 45

Val Phe Tyr His Phe Ser Ala Thr Ser Phe Asp Ser Val Asp Gly Thr
50 55 60

Arg His Tyr Arg Val Trp Thr Ala Val Pro Asn Thr Thr Ala Pro Ala
65 70 75 80

Ser Gly Tyr Pro Ile Leu Tyr Met Leu Asp Gly Asn Ala Val Met Asp
85 90 95

Arg Leu Asp Asp Glu Leu Leu Lys Gln Leu Ser Glu Lys Thr Pro Pro
100 105 110

Val Ile Val Ala Val Gly Tyr Gln Thr Asn Leu Pro Phe Asp Leu Asn
115 120 125

Ser Arg Ala Tyr Asp Tyr Thr Pro Ala Ala Glu Ser Arg Lys Thr Asp
130 135 140

Leu His Ser Gly Arg Phe Ser Arg Lys Ser Gly Gly Ser Asn Asn Phe
145 150 155 160

Arg Gln Leu Leu Glu Thr Arg Ile Ala Pro Lys Val Glu Gln Gly Leu
165 170 175

Asn Ile Asp Arg Gln Arg Arg Gly Leu Trp Gly His Ser Tyr Gly Gly
180 185 190

Leu Phe Val Leu Asp Ser Trp Leu Ser Ser Ser Tyr Phe Arg Ser Tyr
195 200 205

Tyr Ser Ala Ser Pro Ser Leu Gly Arg Gly Tyr Asp Ala Leu Leu Ser
210 215 220

Arg Val Thr Ala Val Glu Pro Leu Gln Phe Cys Thr Lys His Leu Ala
225 230 235 240

Ile Met Glu Gly Ser Ala Thr Gln Gly Asp Asn Arg Glu Thr His Ala
245 250 255

Val Gly Val Leu Ser Lys Ile His Thr Thr Leu Thr Ile Leu Lys Asp
260 265 270

Lys Gly Val Asn Ala Val Phe Trp Asp Phe Pro Asn Leu Gly His Gly
275 280 285

Pro Met Phe Asn Ala Ser Phe Arg Gln Ala Leu Leu Asp Ile Ser Gly
290 295 300

Glu Asn Ala Asn Tyr Thr Ala Gly Cys His Glu Leu Ser His
305 310 315

<210> 8
<211> 725
<212> PRT
<213> Escherichia coli

<400> 8

Met Arg Ile Asn Lys Ile Leu Trp Ser Leu Thr Val Leu Leu Val Gly
1 5 10 15

Leu Asn Ser Gln Val Ser Val Ala Lys Tyr Ser Asp Asp Asn Asp
20 25 30

Glu Thr Leu Val Val Glu Ala Thr Ala Glu Gln Val Leu Lys Gln Gln
35 40 45

Pro Gly Val Ser Val Ile Thr Ser Glu Asp Ile Lys Lys Thr Pro Pro
50 55 60

Val Asn Asp Leu Ser Asp Ile Ile Arg Lys Met Pro Gly Val Asn Leu
65 70 75 80

Thr Gly Asn Ser Ala Ser Gly Thr Arg Gly Asn Asn Arg Gln Ile Asp
85 90 95

Ile Arg Gly Met Gly Pro Glu Asn Thr Leu Ile Leu Ile Asp Gly Val
100 105 110

Pro Val Thr Ser Arg Asn Ser Val Arg Tyr Ser Trp Arg Gly Glu Arg

115 120 125

Asp Thr Arg Gly Asp Thr Asn Trp Val Pro Pro Glu Gln Val Glu Arg
130 135 140

Ile Glu Val Ile Arg Gly Pro Ala Ala Ala Arg Tyr Gly Ser Gly Ala
145 150 155 160

Ala Gly Gly Val Val Asn Ile Ile Thr Lys Arg Pro Thr Asn Asp Trp
165 170 175

His Gly Ser Leu Ser Leu Tyr Thr Asn Gln Pro Glu Ser Ser Glu Glu
180 185 190

Gly Ala Thr Arg Arg Ala Asn Phe Ser Leu Ser Gly Pro Leu Ala Gly
195 200 205

Asp Ala Leu Thr Thr Arg Leu Tyr Gly Asn Leu Asn Lys Thr Asp Ala
210 215 220

Asp Ser Trp Asp Ile Asn Ser Pro Val Gly Thr Lys Asn Ala Ala Gly
225 230 235 240

His Glu Gly Val Arg Asn Lys Asp Ile Asn Gly Val Val Ser Trp Lys
245 250 255

Leu Asn Pro Gln Gln Ile Leu Asp Phe Glu Val Gly Tyr Ser Arg Gln
260 265 270

Gly Asn Ile Tyr Ala Gly Asp Thr Gln Asn Ser Ser Ser Ala Val
275 280 285

Thr Glu Ser Leu Ala Lys Ser Gly Lys Glu Thr Asn Arg Leu Tyr Arg
290 295 300

Gln Asn Tyr Gly Ile Thr His Asn Gly Ile Trp Asp Trp Gly Gln Ser
305 310 315 320

Arg Phe Gly Val Tyr Tyr Glu Lys Thr Asn Asn Thr Arg Met Asn Glu
325 330 335

Gly Leu Ser Gly Gly Glu Gly Arg Ile Leu Ala Gly Glu Lys Phe
340 345 350

Thr Thr Asn Arg Leu Ser Ser Trp Arg Thr Ser Gly Glu Leu Asn Ile
355 360 365

Pro Leu Asn Val Met Val Asp Gln Thr Leu Thr Val Gly Ala Glu Trp
370 375 380

Asn Arg Asp Lys Leu Asp Asp Pro Ser Ser Thr Ser Leu Thr Val Asn
385 390 395 400

Asp Arg Asp Ile Ser Gly Ile Ser Gly Ser Ala Ala Asp Arg Ser Ser
405 410 415

Lys Asn His Ser Gln Ile Ser Ala Leu Tyr Ile Glu Asp Asn Ile Glu
420 425 430

Pro Val Pro Gly Thr Asn Ile Ile Pro Gly Leu Arg Phe Asp Tyr Leu
435 440 445

Ser Asp Ser Gly Gly Asn Phe Ser Pro Ser Leu Asn Leu Ser Gln Glu
450 455 460

Leu Gly Asp Tyr Phe Lys Val Lys Ala Gly Val Ala Arg Thr Phe Lys
465 470 475 480

Ala Pro Asn Leu Tyr Gln Ser Ser Glu Gly Tyr Leu Leu Tyr Ser Lys
485 490 495

Gly Asn Gly Cys Pro Lys Asp Ile Thr Ser Gly Gly Cys Tyr Leu Ile
500 505 510

Gly Asn Lys Asp Leu Asp Pro Glu Ile Ser Val Asn Lys Glu Ile Gly
515 520 525

Leu Glu Phe Thr Trp Glu Asp Tyr His Ala Ser Val Thr Tyr Phe Arg
530 535 540

Asn Asp Tyr Gln Asn Lys Ile Val Ala Gly Asp Asn Val Ile Gly Gln
545 550 555 560

Thr Ala Ser Gly Ala Tyr Ile Leu Lys Trp Gln Asn Gly Gly Lys Ala
565 570 575

Leu Val Asp Gly Ile Glu Ala Ser Met Ser Phe Pro Leu Val Lys Glu
580 585 590

Arg Leu Asn Trp Asn Thr Asn Ala Thr Trp Met Ile Thr Ser Glu Gln
595 600 605

Lys Asp Thr Gly Asn Pro Leu Ser Val Ile Pro Lys Tyr Thr Ile Asn
610 615 620

Asn Ser Leu Asn Trp Thr Ile Thr Gln Ala Phe Ser Ala Ser Phe Asn
625 630 635 640

Trp Thr Leu Tyr Gly Arg Gln Lys Pro Arg Thr His Ala Glu Thr Arg
645 650 655

Ser Glu Asp Thr Gly Gly Leu Ser Gly Lys Glu Leu Gly Ala Tyr Ser
660 665 670

Leu Val Gly Thr Asn Phe Asn Tyr Asp Ile Asn Lys Asn Leu Arg Leu
675 680 685

Asn Val Gly Val Ser Asn Ile Leu Asn Lys Gln Ile Phe Arg Ser Ser
690 695 700

Glu Gly Ala Asn Thr Tyr Asn Glu Pro Gly Arg Ala Tyr Tyr Ala Gly
705 710 715 720

Val Thr Ala Ser Phe
725

<210> 9
<211> 1014
<212> PRT
<213> Escherichia coli

<400> 9

Met Gly Asn Gln Trp Gln Gln Lys Tyr Leu Leu Glu Tyr Asn Glu Leu
1 5 10 15

Val Ser Asn Phe Pro Ser Pro Glu Arg Val Val Ser Asp Tyr Ile Lys
20 25 30

Asn Cys Phe Lys Thr Asp Leu Pro Trp Phe Ser Arg Ile Asp Pro Asp
35 40 45

Asn Ala Tyr Phe Ile Cys Phe Ser Gln Asn Arg Ser Asn Ser Arg Ser
50 55 60

Tyr Thr Gly Trp Asp His Leu Gly Lys Tyr Lys Thr Glu Val Leu Thr
65 70 75 80

Leu Thr Gln Ala Ala Leu Ile Asn Ile Gly Tyr Arg Phe Asp Val Phe
85 90 95

Asp Asp Ala Asn Ser Ser Thr Gly Ile Tyr Lys Thr Lys Ser Ala Asp
100 105 110

Val Phe Asn Glu Glu Asn Glu Glu Lys Met Leu Pro Ser Glu Tyr Leu
115 120 125

His Phe Leu Gln Lys Cys Asp Phe Ala Gly Val Tyr Gly Lys Thr Leu
130 135 140

Ser Asp Tyr Trp Ser Lys Tyr Tyr Asp Lys Phe Lys Leu Leu Leu Lys
145 150 155 160

Asn Tyr Tyr Ile Ser Ser Ala Leu Tyr Leu Tyr Lys Asn Gly Glu Leu
165 170 175

Asp Glu Arg Glu Tyr Asn Phe Ser Met Asn Ala Leu Asn Arg Ser Asp
180 185 190

Asn Ile Ser Leu Leu Phe Phe Asp Ile Tyr Gly Tyr Tyr Ala Ser Asp
195 200 205

Ile Phe Val Ala Lys Asn Asn Asp Lys Val Met Leu Phe Ile Pro Gly
210 215 220

Ala Lys Lys Pro Phe Leu Phe Lys Lys Asn Ile Ala Asp Leu Arg Leu
225 230 235 240

Thr Leu Lys Glu Leu Ile Lys Asp Ser Asp Asn Lys Gln Leu Leu Ser
245 250 255

Gln His Phe Ser Leu Tyr Ser Arg Gln Asp Gly Val Ser Tyr Ala Gly
260 265 270

Val Asn Ser Val Leu His Ala Ile Glu Asn Asp Gly Asn Phe Asn Glu
275 280 285

Ser Tyr Phe Leu Tyr Ser Asn Lys Thr Leu Ser Asn Lys Asp Val Phe
290 295 300

Asp Ala Ile Ala Ile Ser Val Lys Lys Arg Ser Phe Ser Asp Gly Asp
305 310 315 320

Ile Val Ile Lys Ser Asn Ser Glu Ala Gln Arg Asp Tyr Ala Leu Thr
325 330 335

Ile Leu Gln Thr Ile Leu Ser Met Thr Pro Ile Phe Asp Ile Val Val
340 345 350

Pro Glu Val Ser Val Pro Leu Gly Leu Gly Ile Ile Thr Ser Ser Met
355 360 365

Gly Ile Ser Phe Asp Gln Leu Ile Asn Gly Asp Thr Tyr Glu Glu Arg
370 375 380

Arg Ser Ala Ile Pro Gly Leu Ala Thr Asn Ala Val Leu Leu Gly Leu
385 390 395 400

Ser Phe Ala Ile Pro Leu Leu Ile Ser Lys Ala Gly Ile Asn Gln Glu
405 410 415

Val Leu Ser Ser Val Ile Asn Asn Glu Gly Arg Thr Leu Asn Glu Thr
420 425 430

Asn Ile Asp Ile Phe Leu Lys Glu Tyr Gly Ile Ala Glu Asp Ser Ile
435 440 445

Ser Ser Thr Asn Leu Leu Asp Val Lys Leu Lys Ser Ser Gly Gln His
450 455 460

Val Asn Ile Val Lys Leu Ser Asp Glu Asp Asn Gln Ile Val Ala Val
465 470 475 480

Lys Gly Ser Ser Leu Ser Gly Ile Tyr Tyr Glu Val Asp Ile Glu Thr
485 490 495

Gly Tyr Glu Ile Leu Ser Arg Arg Ile Tyr Arg Thr Glu Tyr Asn Asn
500 505 510

Glu Ile Leu Trp Thr Arg Gly Gly Leu Lys Gly Gln Pro Phe
515 520 525

Asp Phe Glu Ser Leu Asn Ile Pro Val Phe Phe Lys Asp Glu Pro Tyr
530 535 540

Ser Ala Val Thr Gly Ser Pro Leu Ser Phe Ile Asn Asp Asp Ser Ser
545 550 555 560

Leu Leu Tyr Pro Asp Thr Asn Pro Lys Leu Pro Gln Pro Thr Ser Glu
565 570 575

Met Asp Ile Val Asn Tyr Val Lys Gly Ser Gly Ser Phe Gly Asp Arg
580 585 590

Phe Val Thr Leu Met Arg Gly Ala Thr Glu Glu Ala Trp Asn Ile
595 600 605

Ala Ser Tyr His Thr Ala Gly Gly Ser Thr Glu Glu Leu His Glu Ile
610 615 620

Leu Leu Gly Gln Gly Pro Gln Ser Ser Leu Gly Phe Thr Glu Tyr Thr
625 630 635 640

Ser Asn Val Asn Ser Ala Asp Ala Ala Ser Arg Arg His Phe Leu Val

645 650 655

Val Ile Lys Val His Val Lys Tyr Ile Thr Asn Asn Asn Val Ser Tyr
660 665 670

Val Asn His Trp Ala Ile Pro Asp Glu Ala Pro Val Glu Val Leu Ala
675 680 685

Val Val Asp Arg Arg Phe Asn Phe Pro Glu Pro Ser Thr Pro Pro Asp
690 695 700

Ile Ser Thr Ile Arg Lys Leu Leu Ser Leu Arg Tyr Phe Lys Glu Ser
705 710 715 720

Ile Glu Ser Thr Ser Lys Ser Asn Phe Gln Lys Leu Ser Arg Gly Asn
725 730 735

Ile Asp Val Leu Lys Gly Arg Gly Ser Ile Ser Ser Thr Arg Gln Arg
740 745 750

Ala Ile Tyr Pro Tyr Phe Glu Ala Ala Asn Ala Asp Glu Gln Gln Pro
755 760 765

Leu Phe Phe Tyr Ile Lys Lys Asp Arg Phe Asp Asn His Gly Tyr Asp
770 775 780

Gln Tyr Phe Tyr Asp Asn Thr Val Gly Leu Asn Gly Ile Pro Thr Leu
785 790 795 800

Asn Thr Tyr Thr Gly Glu Ile Pro Ser Asp Ser Ser Ser Leu Gly Ser
805 810 815

Thr Tyr Trp Lys Lys Tyr Asn Leu Thr Asn Glu Thr Ser Ile Ile Arg
820 825 830

Val Ser Asn Ser Ala Arg Gly Ala Asn Gly Ile Lys Ile Ala Leu Glu
835 840 845

Glu Val Gln Glu Gly Lys Pro Val Ile Ile Thr Ser Gly Asn Leu Ser
850 855 860

Gly Cys Thr Thr Ile Val Ala Arg Lys Glu Gly Tyr Ile Tyr Lys Val
865 870 875 880

His Thr Gly Thr Lys Ser Leu Ala Gly Phe Thr Ser Thr Thr Gly
885 890 895

Val Lys Lys Ala Val Glu Val Leu Glu Leu Leu Thr Lys Glu Pro Ile
900 905 910

Pro Arg Val Glu Gly Ile Met Ser Asn Asp Phe Leu Val Asp Tyr Leu
915 920 925

Ser Glu Asn Phe Glu Asp Ser Leu Ile Thr Tyr Ser Ser Ser Glu Lys
930 935 940

Lys Pro Asp Ser Gln Ile Thr Ile Ile Arg Asp Asn Val Ser Val Phe
945 950 955 960

Pro Tyr Phe Leu Asp Asn Ile Pro Glu His Gly Phe Gly Thr Ser Ala
965 970 975

Thr Val Leu Val Arg Val Asp Gly Asn Val Val Val Arg Ser Leu Ser
980 985 990

Glu Ser Tyr Ser Leu Asn Ala Asp Ala Ser Glu Ile Ser Val Leu Lys
995 1000 1005

Val Phe Ser Lys Lys Phe
1010

<210> 10
<211> 454
<212> PRT
<213> Escherichia coli

<400> 10

Met Val Asp Met Ile Asn Glu Ser Ala Arg Gln Thr Pro Val Ile Ala
1 5 10 15

Gln Thr Asp Val Leu Val Ile Gly Gly Gly Pro Ala Gly Leu Ser Ala
20 25 30

Ala Ile Ala Ala Gly Arg Leu Gly Ala Arg Thr Met Ile Val Glu Arg
35 40 45

Tyr Gly Ser Leu Gly Gly Val Leu Thr Gln Val Gly Val Glu Ser Phe
50 55 60

Ala Trp Tyr Arg His Pro Gly Thr Glu Asp Cys Glu Gly Ile Cys Arg
65 70 75 80

Glu Tyr Glu Gly Arg Ala Arg Ala Leu Gly Phe Thr Arg Pro Glu Pro
85 90 95

Gln Ser Ile Ser Glu Val Ile Asp Thr Glu Gly Phe Lys Val Val Ala
100 105 110

Asp Gln Met Ile Thr Glu Ser Gly Val Glu Pro Leu Tyr His Ser Trp
115 120 125

Val Val Asp Val Ile Lys Asp Gly Asp Thr Leu Cys Gly Val Ile Val
130 135 140

Glu Asn Lys Ser Gly Arg Gly Ala Ile Leu Ala Lys Arg Ile Val Asp
145 150 155 160

Cys Thr Gly Asp Ala Asp Ile Ala Ala Arg Ala Gly Ala Pro Trp Thr
165 170 175

Lys Arg Ser Lys Asp Gln Leu Met Gly Val Thr Val Met Phe Ser Cys
180 185 190

Ala Gly Val Asp Val Ala Arg Phe Asn Arg Phe Val Ala Glu Glu Leu
195 200 205

Lys Pro Thr Tyr Ala Asp Trp Gly Lys Asn Trp Thr Ile Gln Thr Thr
210 215 220

Gly Lys Glu Asp Pro Met Phe Ser Pro Tyr Met Glu Asp Ile Phe Thr
225 230 235 240

Arg Ala Gln Gln Asp Gly Val Ile Pro Gly Asp Ala Gln Ala Ile Ala
245 250 255

Gly Thr Trp Ser Thr Phe Ser Glu Ser Gly Glu Ala Phe Gln Met Asn
260 265 270

Met Val Tyr Ala Phe Gly Phe Asp Cys Thr Asp Val Phe Asp Leu Thr

275

280

285

Lys Ala Glu Ile Ala Gly Arg Gln Gln Ala Leu Trp Ala Ile Asp Ala
290 295 300

Leu Arg His Tyr Val Pro Gly Phe Glu Asn Val Arg Leu Arg Asn Phe
305 310 315 320

Gly Ala Thr Leu Gly Thr Arg Glu Ser Arg Leu Ile Glu Gly Glu Ile
325 330 335

Arg Ile Ala Asp Asp Tyr Val Leu Asn Gln Gly Arg Cys Ser Asp Ser
340 345 350

Val Gly Ile Phe Pro Glu Phe Ile Asp Gly Ser Gly Tyr Leu Ile Leu
355 360 365

Pro Thr Thr Gly Arg Phe Phe Gln Ile Pro Tyr Gly Cys Leu Val Pro
370 375 380

Gln Lys Val Glu Asn Leu Leu Val Ala Gly Arg Cys Ile Ser Ala Gly
385 390 395 400

Val Val Ala His Thr Ser Met Arg Asn Met Met Cys Cys Ala Val Thr
405 410 415

Gly Glu Ala Ala Gly Thr Ala Ala Val Val Ser Leu Gln Gln Asn Cys
420 425 430

Thr Val Arg Gln Val Ala Ile Pro Asp Leu Gln Asn Thr Leu Gln Gln
435 440 445

Gln Gly Val Arg Leu Ala
450

<210> 11
<211> 253
<212> PRT
<213> Escherichia coli

<400> 11

Met Ser Ala Lys Arg Arg Leu Leu Ile Ala Cys Thr Leu Ile Thr Ala
1 5 10 15

Ile Tyr His Phe Pro Ala Tyr Ser Ser Leu Glu Tyr Lys Gly Thr Phe
20 25 30

Gly Ser Ile Asn Ala Gly Tyr Ala Asp Trp Asn Ser Gly Phe Val Asn
35 40 45

Thr His Arg Gly Glu Val Trp Lys Val Thr Ala Asp Phe Gly Val Asn
50 55 60

Phe Lys Glu Ala Glu Phe Tyr Ser Phe Tyr Glu Ser Asn Val Leu Asn
65 70 75 80

His Ala Val Ala Gly Arg Asn His Thr Val Ser Ala Met Thr His Val
85 90 95

Arg Leu Phe Asp Ser Asp Met Thr Phe Phe Gly Lys Ile Tyr Gly Gln
100 105 110

Trp Asp Asn Ser Trp Gly Asp Asp Leu Asp Met Phe Tyr Gly Phe Gly
115 120 125

Tyr Leu Gly Trp Asn Gly Glu Trp Gly Phe Phe Lys Pro Tyr Ile Gly
130 135 140

Leu His Asn Gln Ser Gly Asp Tyr Val Ser Ala Lys Tyr Gly Gln Thr
145 150 155 160

Asn Gly Trp Asn Gly Tyr Val Val Gly Trp Thr Ala Val Leu Pro Phe
165 170 175

Thr Leu Phe Asp Glu Lys Phe Val Leu Ser Asn Trp Asn Glu Ile Glu
180 185 190

Leu Asp Arg Asn Asp Ala Tyr Thr Glu Gln Gln Phe Gly Arg Asn Gly
195 200 205

Leu Asn Gly Gly Leu Thr Ile Ala Trp Lys Phe Tyr Pro Arg Trp Lys
210 215 220

Ala Ser Val Thr Trp Arg Tyr Phe Asp Asn Lys Leu Gly Tyr Asp Gly
225 230 235 240

Phe Gly Asp Gln Met Ile Tyr Met Leu Gly Tyr Asp Phe
245 250

<210> 12
<211> 492
<212> PRT
<213> Escherichia coli

<400> 12

Met Ala Ser Leu Ile Gly Leu Ala Val Cys Thr Gly Asn Ala Phe Ser
1 5 10 15

Pro Ala Leu Ala Ala Glu Ala Lys Gln Pro Asn Leu Val Ile Ile Met
20 25 30

Ala Asp Asp Leu Gly Tyr Gly Asp Leu Ala Thr Tyr Gly His Gln Ile
35 40 45

Val Lys Thr Pro Asn Ile Asp Arg Leu Ala Gln Glu Gly Val Lys Phe
50 55 60

Thr Asp Tyr Tyr Ala Pro Ala Pro Leu Ser Ser Pro Ser Arg Ala Gly
65 70 75 80

Leu Leu Thr Gly Arg Met Pro Phe Arg Thr Gly Ile Arg Ser Trp Ile
85 90 95

Pro Ser Gly Lys Asp Val Ala Leu Gly Arg Asn Glu Leu Thr Ile Ala
100 105 110

Asn Leu Leu Lys Ala Gln Gly Tyr Asp Thr Ala Met Met Gly Lys Leu
115 120 125

His Leu Asn Ala Gly Gly Asp Arg Thr Asp Gln Pro Gln Ala Gln Asp
130 135 140

Met Gly Phe Asp Tyr Ser Leu Ala Asn Thr Ala Gly Phe Val Thr Asp
145 150 155 160

Ala Thr Leu Asp Asn Ala Lys Glu Arg Pro Arg Tyr Gly Met Val Tyr
165 170 175

Pro Thr Gly Trp Leu Arg Asn Gly Gln Pro Thr Pro Arg Ala Asp Lys
180 185 190

Met Ser Gly Glu Tyr Val Ser Ser Glu Val Val Asn Trp Leu Asp Asn
195 200 205

Lys Lys Asp Ser Lys Pro Phe Phe Leu Tyr Val Ala Phe Thr Glu Val
210 215 220

His Ser Pro Leu Ala Ser Pro Lys Lys Tyr Leu Asp Met Tyr Ser Gln
225 230 235 240

Tyr Met Ser Ala Tyr Gln Lys Gln His Pro Asp Leu Phe Tyr Gly Asp
245 250 255

Trp Ala Asp Lys Pro Trp Arg Gly Val Gly Glu Tyr Tyr Ala Asn Ile
260 265 270

Ser Tyr Leu Asp Ala Gln Val Gly Lys Val Leu Asp Lys Ile Lys Ala
275 280 285

Met Gly Glu Glu Asp Asn Thr Ile Val Ile Phe Thr Ser Asp Asn Gly
290 295 300

Pro Val Thr Arg Glu Ala Arg Lys Val Tyr Glu Leu Asn Leu Ala Gly
305 310 315 320

Glu Thr Asp Gly Leu Arg Gly Arg Lys Asp Asn Leu Trp Glu Gly Gly
325 330 335

Ile Arg Val Pro Ala Ile Ile Lys Tyr Gly Lys His Leu Pro Gln Gly
340 345 350

Met Val Ser Asp Thr Pro Val Tyr Gly Leu Asp Trp Met Pro Thr Leu
355 360 365

Ala Lys Met Met Asn Phe Lys Leu Pro Thr Asp Arg Thr Phe Asp Gly
370 375 380

Glu Ser Leu Val Pro Val Leu Glu Gln Lys Ala Leu Lys Arg Glu Lys
385 390 395 400

Pro Leu Ile Phe Gly Ile Asp Met Pro Phe Gln Asp Asp Pro Thr Asp
405 410 415

Glu Trp Ala Ile Arg Asp Gly Asp Trp Lys Met Ile Ile Asp Arg Asn
420 425 430

Asn Lys Pro Lys Tyr Leu Tyr Asn Leu Lys Ser Asp Arg Tyr Glu Thr
435 440 445

Leu Asn Leu Ile Gly Lys Lys Pro Asp Ile Glu Lys Gln Met Tyr Gly
450 455 460

Lys Phe Leu Lys Tyr Lys Thr Asp Ile Asp Asn Asp Ser Leu Met Lys
465 470 475 480

Ala Arg Gly Asp Lys Pro Glu Ala Val Thr Trp Gly
485 490

<210> 13

<211> 345

<212> PRT

<213> Escherichia coli

<400> 13

Leu Ile Ser Leu Ser Phe Ile Pro Val Met Ser Ala Leu Pro Gly Pro
1 5 10 15

Ile Ala Lys Gly Phe Arg Asn Glu Arg Gly Phe Val Thr Thr Thr Ile
20 25 30

Cys Ala Met Gly Glu Leu Leu Ala Glu Phe Leu Ser Arg Asn Pro His
35 40 45

Gln Lys Phe Thr Gln Pro Gly Glu Phe Ile Gly Pro Phe Pro Ser Gly
50 55 60

Ala Pro Ala Ile Phe Ala Ala Gln Val Ala Lys Leu Ser His Arg Ala
65 70 75 80

Ile Phe Phe Gly Cys Val Gly Asn Asp Asp Phe Ala Arg Leu Ile Ile
85 90 95

Glu Arg Leu Arg His Glu Gly Val Ile Thr Asp Gly Ile His Val Met
100 105 110

Asn Asn Ala Val Thr Gly Thr Ala Phe Val Ser Tyr Gln Asn Pro Gln
115 120 125

Gln Arg Asp Phe Val Phe Asn Ile Pro Asn Ser Ala Cys Gly Leu Phe
130 135 140

Thr Ala Glu His Ile Asp Lys Asp Leu Leu Lys Gln Cys Asn His Leu
145 150 155 160

His Ile Val Gly Ser Ser Leu Phe Ser Phe Arg Met Ile Asp Val Met
165 170 175

Arg Lys Ala Ile Thr Thr Ile Lys Ser Ala Gly Gly Thr Val Ser Phe
180 185 190

Asp Pro Asn Ile Arg Lys Glu Met Leu Ser Ile Pro Glu Met Ala Gln
195 200 205

Ala Leu Asp Tyr Leu Ile Glu Tyr Thr Asp Ile Phe Ile Pro Ser Glu
210 215 220

Ser Glu Leu Pro Phe Phe Ala Arg His Lys Asn Leu Ser Glu Glu Gln
225 230 235 240

Ile Val Ser Asp Leu Leu His Gly Gly Val Lys His Val Ala Ile Lys
245 250 255

Arg Ala Gln Arg Gly Ala Ser Tyr Tyr Lys Leu Lys Asn Gly Thr Leu
260 265 270

His Ala Gln His Val Ala Gly His Asp Ile Glu Ile Ile Asp Pro Thr
275 280 285

Gly Ala Gly Asp Cys Phe Gly Ala Thr Phe Ile Thr Leu Phe Leu Ser
290 295 300

Gly Phe Pro Ala His Lys Ala Leu Gln Tyr Ala Asn Ala Ser Gly Ala
305 310 315 320

Leu Ala Val Met Arg Gln Gly Pro Met Glu Gly Ile Ser Ser Leu Ala
325 330 335

Asp Ile Glu Asp Phe Leu Gln Gln His

340

345

<210> 14
<211> 192
<212> PRT
<213> Escherichia coli

<400> 14

Met Tyr Met Pro Gly Lys Gln Met Leu Cys Cys Ile Leu Ile Ser Ile
1 5 10 15

Ile Ser Glu Gly Asp Met Lys Ile Phe Ile Ser Leu Phe Leu Phe Ile
20 25 30

Ile Ser Thr Asn Ser Phe Ala Asp Asp Ile Thr His Ala Gly Val Val
35 40 45

Arg Ile Glu Gly Leu Ile Thr Glu Lys Thr Cys Ile Ile Ser Asp Glu
50 55 60

Ser Lys Asn Phe Thr Val Asn Met Pro Asp Val Pro Ser Ser Ser Val
65 70 75 80

Arg Ser Ala Gly Asp Val Thr Glu Lys Val Tyr Phe Ser Ile Thr Leu
85 90 95

Thr Arg Cys Gly Ser Asp Val Gly Asn Ala Tyr Ile Lys Phe Thr Gly
100 105 110

Asn Thr Val Ser Glu Asp Ala Ser Leu Tyr Lys Leu Glu Asp Gly Ser
115 120 125

Val Glu Gly Leu Ala Leu Thr Ile Phe Asp Lys Asn Lys Gly Ser Ile
130 135 140

Ser Asn Asp Val Lys Ser Met Val Phe Ser Leu Thr Ser Ser Val Asp
145 150 155 160

Asn Ile Leu His Phe Phe Ala Ala Tyr Lys Ala Leu Lys Asn Asn Val
165 170 175

Gln Pro Gly Asp Ala Asn Ala Ser Val Ser Phe Ile Val Thr Tyr Asp
180 185 190

<210> 15
<211> 201
<212> PRT
<213> Escherichia coli

<400> 15

Met Ile Lys Phe Arg Leu Tyr Ile Pro Pro Val Ile Leu Gly Phe Val
1 5 10 15

Ile Val Pro Leu Leu Val Trp Pro Thr Val Ile Ala Leu Ala Val Leu
20 25 30

Ile Phe Thr Leu Thr Phe Leu Ala Glu Ile Ile Phe Ser Phe Pro Leu
35 40 45

Leu Val Val Arg Ile Ser Leu Gln Glu Leu Gln Leu Glu Leu Leu Val
50 55 60

Val Tyr Ala Leu Phe Phe Ser Val Met Gly Gly Ile Gly Trp Gln Phe
65 70 75 80

Ser Arg Arg Thr Pro Pro Glu Leu Lys Asn Arg Leu His Cys Trp Leu
85 90 95

Val Phe Ser Pro Val Tyr Phe Trp Leu Ile Leu Ser Asn Phe Ile Leu
100 105 110

Tyr Ile Ser Pro Glu Lys Ser Ala Leu Leu Glu Asn Ile Arg Asn Phe
115 120 125

Phe Leu Thr Phe Val Trp Leu Pro Leu Asn Phe Ser Pro Phe Trp Pro
130 135 140

Gln Pro Trp Thr Asp Phe Val Gly Pro Ile Ser Ala Gln Leu Gly Phe
145 150 155 160

Ala Leu Gly Tyr Tyr Cys Gln Trp Arg Ser Lys Asn Arg Ser His Arg
165 170 175

Lys Lys Trp Gly Asp Trp Val Thr Cys Leu Ser Leu Ala Ile Leu Ala
180 185 190

Leu Gly Pro Leu Phe Asn Tyr Leu Gln

195

200

<210> 16
<211> 234
<212> PRT
<213> Escherichia coli

<400> 16

Met Lys Phe Asn Leu Ser Asn Leu Ser Ala Val Leu Leu Ala Ser Gly
1 5 10 15

Met Leu Met Ser Thr Ala Val Thr Ala Ala Pro Gly Asp Ala Thr Gln
20 25 30

Phe Gly Gly Ala Asp Thr Asp Trp Ser Thr Val Asp Tyr Pro Arg Leu
35 40 45

Thr Asp Met Asp Asp Asn Val Asp Ser Met Gly Gly Lys Ile Arg Phe
50 55 60

Thr Gly Arg Val Val Lys Ala Thr Cys Lys Val Ala Thr Asp Ser Lys
65 70 75 80

Gln Ile Glu Val Val Leu Pro Val Val Pro Ser Asn Leu Phe Thr Gly
85 90 95

Ile Asp Val Glu Ala Gln Gly Ala Ser Asn Gln Thr Asp Phe Asn Ile
100 105 110

Asn Leu Thr Glu Cys Ser Asn Thr Asp Asp Gln Lys Ile Glu Phe Arg
115 120 125

Phe Thr Gly Thr Ala Asp Ser Ala Asn Lys Thr Leu Ala Asn Glu Val
130 135 140

Glu Gly Ser Thr Asp Ala Asp Asn Ser Gly Asn Ala Gly Ala Thr Gly
145 150 155 160

Val Gly Ile Arg Ile Tyr Ser Lys Gly Thr Thr Asn Asn Gly Leu Ile
165 170 175

Asn Leu Asn Thr Thr Ala Ala Glu Gly Ser Ala Ser Thr Ala Ala Tyr
180 185 190

Thr Ile Pro Gly Asn Ala Thr Thr His Asp Phe Ser Ala Ala Phe Thr
195 200 205

Ala Gly Tyr Ala Gln Asn Gly Ser Thr Val Ala Pro Gly Val Val Lys
210 215 220

Ser Thr Ala Ser Phe Val Val Leu Tyr Glu
225 230

<210> 17
<211> 336
<212> PRT
<213> Escherichia coli

<400> 17

Met Arg Ile His Thr Tyr Trp Tyr Arg Arg Tyr Phe Ile Leu Leu Ile
1 5 10 15

Ile Ile Phe Ser Asn Val Leu Ser Ser Ile Ala Asn Ala Glu Asp Met
20 25 30

Gly Arg Glu Arg Ala Tyr Cys Tyr Pro Gly Ser Pro Ser Asn Asn Thr
35 40 45

Thr Pro Ala Ser Phe Ser Tyr Asn Phe Gly Thr Ile Val Val Ser Asp
50 55 60

Val Asn Lys Asn Ala Pro Gly Thr Val Leu Pro Ser Gln Ile Trp Lys
65 70 75 80

Val Gly Thr Tyr Lys Ala Tyr Cys Asn Ser Leu Asp Asp Tyr Glu Ile
85 90 95

Tyr Phe Ser Ala Val Ser Gly Ile Asp Pro Ser Gly Ala Ser Gly Asp
100 105 110

His Gln Gly Ser Asp Val Phe Ile Pro Leu Thr His Glu Ile Ser Val
115 120 125

Ser Thr His Ile Lys Leu Tyr Asn Gln Asn Gly Thr Met Thr Asp Lys
130 135 140

Ile Val Pro Phe Glu Asn Tyr Asn Thr Asn Tyr Pro Gly Asp Arg Ser

145 150 155 160

Lys Pro Ser Asn Trp Ala Ser Gly Thr Glu Gly Tyr Ile Lys Ile Arg
165 170 175

Ile Asp Lys Lys Ile Ile Ser Asp Val Ser Leu Ser Asn Val Leu Leu
180 185 190

Val Ser Leu Tyr Val Ser Gln Ile Pro Thr Glu His Gly Pro Ile Pro
195 200 205

Val Phe Asn Ala Tyr Ile Gly Asn Leu Asn Ile Gln Val Pro Gln Gly
210 215 220

Cys Thr Ile Asn Glu Gly Thr Ser Phe Thr Val Asn Met Pro Asp Val
225 230 235 240

Trp Ala Ser Glu Leu Ser Arg Ala Gly Ala Gly Ala Lys Pro Ala Gly
245 250 255

Val Thr Pro Val Ala Thr Thr Ile Pro Ile Asn Cys Thr Asn Lys Asp
260 265 270

Thr Asp Ala Val Met Thr Leu Val Phe Asp Gly Asn Ile Ser Ala Thr
275 280 285

Arg Asp Thr Asn Gly Lys Gln Ser Ile Ile Gln Ala Gln Asp Asn Pro
290 295 300

Asp Val Gly Ile Met Ile Met Asp Ser Gln Gln Asn Ser Val Asp Leu
305 310 315 320

Asn Ala Leu Ala Thr Ser Val Gly Val Pro Phe Arg Leu Val Glu Asn
325 330 335

<210> 18

<211> 864

<212> PRT

<213> Escherichia coli

<400> 18

Met Asn Leu Lys Leu Lys Arg Cys Glu Tyr Trp Met Ala Ala Gln Lys
1 5 10 15

Gln Met Lys Arg Val Val Pro Leu Leu Leu Val Ile Met Pro Ala Cys
20 25 30

Ser Ile Ala Gly Met Arg Phe Asn Pro Ala Phe Leu Ser Gly Asp Thr
35 40 45

Glu Ala Val Ala Asp Leu Ser Arg Phe Glu Lys Gly Met Thr Tyr Leu
50 55 60

Pro Gly Ser Tyr Glu Val Glu Val Trp Val Asn Asp Ser Pro Leu Leu
65 70 75 80

Ser Arg Thr Val Thr Phe Lys Ala Asp Asp Glu Asn Gln Leu Ile Pro
85 90 95

Cys Leu Ser Leu Ala Asp Leu Leu Ser Leu Gly Ile Asn Lys Asn Ala
100 105 110

Leu Pro Glu Gln Ala Leu Ala Ser Ser Glu Asn Ser Cys Leu Asp Leu
115 120 125

Arg Ile Trp Phe Pro Asp Val His Tyr Met Pro Glu Leu Asp Ala Gln
130 135 140

Arg Leu Lys Leu Thr Phe Pro Gln Ala Ile Ile Lys Arg Asp Ala Arg
145 150 155 160

Gly Tyr Ile Pro Pro Glu Gln Trp Asp Asn Gly Ile Thr Ala Phe Leu
165 170 175

Leu Asn Tyr Asp Phe Ser Gly Asn Asn Asp Arg Gly Asp Tyr Ser Ser
180 185 190

Asn Asn Tyr Tyr Leu Asn Leu Arg Ala Gly Ile Asn Ile Gly Ala Trp
195 200 205

Arg Phe Arg Asp Tyr Ser Thr Trp Ser Arg Gly Ser Asn Ser Ala Gly
210 215 220

Lys Leu Glu His Ile Ser Ser Thr Leu Gln Arg Val Ile Ile Pro Phe
225 230 235 240

Arg Ser Glu Leu Thr Leu Gly Asp Thr Trp Ser Ser Ser Asp Val Phe
245 250 255

Asp Ser Val Ser Ile Arg Gly Ile Lys Leu Glu Ser Asp Glu Asn Met
260 265 270

Leu Pro Asp Ser Gln Ser Gly Phe Ala Pro Thr Val Arg Gly Ile Ala
275 280 285

Lys Ser Arg Ala Gln Val Thr Ile Lys Gln Asn Gly Tyr Val Ile Tyr
290 295 300

Gln Thr Tyr Met Pro Pro Gly Pro Phe Glu Ile Ser Asp Leu Asn Pro
305 310 315 320

Thr Ser Ser Ala Gly Asp Leu Glu Val Thr Ile Lys Glu Ser Asp Asn
325 330 335

Ser Glu Thr Val Tyr Thr Val Pro Tyr Ala Ala Val Pro Ile Leu Gln
340 345 350

Arg Glu Gly His Leu Lys Tyr Ser Thr Thr Val Gly Gln Tyr Arg Ser
355 360 365

Asn Ser Tyr Asn Gln Lys Ser Pro Tyr Val Phe Gln Gly Glu Leu Ile
370 375 380

Trp Gly Leu Pro Trp Asp Ile Thr Ala Tyr Gly Gly Ala Gln Phe Ser
385 390 395 400

Glu Asp Tyr Arg Ala Leu Ala Leu Gly Leu Gly Leu Asn Leu Gly Val
405 410 415

Phe Gly Ala Thr Ser Phe Asp Val Thr Gln Ala Asn Ser Ser Leu Val
420 425 430

Asp Gly Ser Lys His Gln Gly Gln Ser Tyr Arg Phe Leu Tyr Ser Lys
435 440 445

Ser Leu Val Gln Thr Gly Thr Ala Phe His Ile Ile Gly Tyr Arg Tyr
450 455 460

Ser Thr Gln Gly Phe Tyr Thr Leu Ser Asp Thr Thr Tyr Gln Gln Met

465 470 475 480
Ser Gly Thr Val Val Asp Pro Lys Thr Leu Asp Asp Lys Asp Tyr Val
 485 490 495

Tyr Asn Trp Asn Asp Phe Tyr Asn Leu Arg Tyr Ser Lys Arg Gly Lys
 500 505 510

Phe Gln Ala Ser Val Ser Gln Pro Phe Gly Asn Tyr Gly Ser Met Tyr
 515 520 525

Leu Ser Ala Ser Gln Gln Thr Tyr Trp Asn Thr Asp Lys Lys Asp Ser
 530 535 540

Leu Tyr Gln Val Gly Tyr Asn Thr Ser Ile Lys Gly Ile Tyr Leu Asn
 545 550 555 560

Val Ala Trp Asn Tyr Ser Lys Ser Pro Gly Thr Asn Ala Asp Lys Ile
 565 570 575

Val Ser Leu Asn Val Ser Leu Pro Ile Ser Asn Trp Leu Ser Ser Thr
 580 585 590

Asn Asp Gly Arg Ser Ser Ser Asn Ala Met Thr Ala Thr Tyr Gly Tyr
 595 600 605

Ser Gln Asp Asn His Gly Gln Val Asn Gln Tyr Thr Gly Val Ser Gly
 610 615 620

Ser Leu Leu Glu Gln His Asn Leu Ser Tyr Asn Ile Gln His Gly Phe
 625 630 635 640

Ala Asn Gln Asp Asn Ser Ser Ser Gly Ser Val Gly Val Asn Tyr Arg
 645 650 655

Gly Ala Tyr Gly Ser Leu Asn Ser Ala Tyr Ser Tyr Asp Asn Glu Gly
 660 665 670

Asn Gln Gln Ile Asn Tyr Gly Ile Ser Gly Ala Leu Val Val His Glu
 675 680 685

Asn Gly Leu Thr Leu Ser Gln Pro Leu Gly Glu Thr Asn Val Leu Ile
 690 695 700

Lys Ala Pro Gly Ala Asn Asn Val Asp Val Gln Arg Gly Thr Gly Ile
705 710 715 720

Ser Thr Asp Trp Arg Gly Tyr Ala Val Val Pro Tyr Ala Thr Glu Tyr
725 730 735

Arg Arg Asn Asn Ile Ser Leu Asp Pro Met Ser Met Asn Met His Thr
740 745 750

Glu Leu Asp Ile Thr Ser Thr Glu Val Ile Pro Gly Lys Gly Ala Leu
755 760 765

Val Arg Ala Glu Phe Ala Ala His Ile Gly Ile Arg Gly Leu Phe Thr
770 775 780

Val Arg Tyr Arg Asn Lys Ser Val Pro Phe Gly Ala Thr Ala Ser Ala
785 790 795 800

Gln Ile Lys Asn Ser Ser Gln Ile Thr Gly Ile Val Gly Asp Asn Gly
805 810 815

Gln Leu Tyr Leu Ser Gly Leu Pro Leu Glu Gly Val Ile Asn Ile Gln
820 825 830

Trp Gly Asp Gly Val Gln Gln Lys Cys Gln Ala Asn Tyr Lys Leu Pro
835 840 845

Glu Thr Glu Leu Asp Asn Pro Val Ser Tyr Ala Thr Leu Glu Cys Arg
850 855 860

<210> 19

<211> 169

<212> PRT

<213> Escherichia coli

<400> 19

Met Gly Ala Ile Tyr Val Lys Arg Leu Ile Leu Ser Val Ala Leu Ile
1 5 10 15

Ile Pro Ile Ala Ser Asn Ala Ser Asp Ala Leu Asn Gln Pro Ser Ser
20 25 30

Ser Leu Asn Asp Gly Val Glu Thr Phe Phe Ile Ser Cys Phe Asp Met
35 40 45

Pro Gln Glu Thr Thr Asp Met Asp Ala Cys Gln Arg Val Gln Leu
50 55 60

Ala Gln Val Ser Trp Val Lys Asn Lys Tyr Ser Val Ala Ala Leu Asn
65 70 75 80

Arg Leu Lys Gln Asp Asn Lys Asp Asp Pro Gln Arg Leu Gln Glu Leu
85 90 95

Thr Ala Ser Phe Asn Ala Glu Ser Glu Ala Trp Thr Glu Leu Ile Glu
100 105 110

Lys Ala Ser Lys Ser Val Gln Val Asp Tyr Val Gly Gly Thr Ile Ala
115 120 125

Gly Thr Ala Val Ala Ser Arg Gln Ile Gly Leu Leu Glu Leu Gln Ser
130 135 140

His Asp Ile Trp Glu His Trp Leu Arg Ser Arg Gly Leu Asn Ser Ser
145 150 155 160

Ser Phe Ala Arg Thr Lys Val Gln Ile
165

<210> 20
<211> 713
<212> PRT
<213> Escherichia coli

<400> 20

Met Ala Met Phe Thr Pro Ser Phe Ser Gly Leu Lys Gly Arg Ala Leu
1 5 10 15

Phe Ser Leu Leu Phe Ala Ala Pro Met Ile His Ala Thr Asp Ser Val
20 25 30

Thr Thr Lys Asp Gly Glu Thr Ile Thr Val Thr Ala Asp Ala Asn Thr
35 40 45

Ala Thr Glu Ala Thr Asp Gly Tyr Gln Pro Leu Ser Thr Ser Thr Ala
50 55 60

Thr Leu Thr Asp Met Pro Met Leu Asp Ile Pro Gln Val Val Asn Thr
65 70 75 80

Val Ser Asp Gln Val Leu Glu Asn Gln Asn Ala Thr Thr Leu Asp Glu
85 90 95

Ala Leu Tyr Asn Val Ser Asn Val Val Gln Thr Asn Thr Leu Gly Gly
100 105 110

Thr Gln Asp Ala Phe Val Arg Arg Gly Phe Gly Ala Asn Arg Asp Gly
115 120 125

Ser Ile Met Thr Asn Gly Leu Arg Thr Val Leu Pro Arg Ser Phe Asn
130 135 140

Ala Ala Thr Glu Arg Val Glu Val Leu Lys Gly Pro Ala Ser Thr Leu
145 150 155 160

Tyr Gly Ile Leu Asp Pro Gly Gly Leu Ile Asn Val Val Thr Lys Arg
165 170 175

Pro Glu Lys Thr Phe His Gly Ser Val Ser Ala Thr Ser Ser Ser Phe
180 185 190

Gly Gly Gly Thr Gly Gln Leu Asp Ile Thr Gly Pro Ile Glu Gly Thr
195 200 205

Gln Leu Ala Tyr Arg Leu Thr Gly Glu Val Gln Asp Glu Asp Tyr Trp
210 215 220 240

Arg Asn Phe Gly Lys Glu Arg Ser Thr Phe Ile Ala Pro Ser Leu Thr
225 230 235 240

Trp Phe Gly Asp Asn Ala Thr Val Thr Met Leu Tyr Ser His Arg Asp
245 250 255

Tyr Lys Thr Pro Phe Asp Arg Gly Thr Ile Phe Asp Leu Thr Thr Lys
260 265 270

Gln Pro Val Asn Val Asp Arg Lys Ile Arg Phe Asp Glu Pro Phe Asn
275 280 285

Ile Thr Asp Gly Gln Ser Asp Leu Ala Gln Leu Asn Ala Glu Tyr His
290 295 300

Leu Asn Ser Gln Trp Thr Ala Arg Phe Asp Tyr Ser Tyr Ser Gln Asp
305 310 315 320

Lys Tyr Ser Asp Asn Gln Ala Arg Val Thr Ala Tyr Asp Ala Thr Thr
325 330 335

Gly Thr Leu Thr Arg Arg Val Asp Ala Thr Gln Gly Ser Thr Gln Arg
340 345 350

Met His Ala Thr Arg Ala Asp Leu Gln Gly Asn Val Asp Ile Ala Gly
355 360 365

Phe Tyr Asn Glu Ile Leu Gly Gly Val Ser Tyr Glu Tyr Tyr Asp Leu
370 375 380

Leu Arg Thr Asp Met Ile Arg Cys Lys Lys Ala Lys Asp Phe Asn Ile
385 390 395 400

Tyr Asn Pro Val Tyr Gly Asn Thr Ser Lys Cys Thr Thr Val Ser Ala
405 410 415

Ser Asp Ser Asp Gln Thr Ile Lys Gln Glu Asn Tyr Ser Ala Tyr Ala
420 425 430

Gln Asp Ala Leu Tyr Leu Thr Asp Asn Trp Ile Ala Val Ala Gly Ile
435 440 445

Arg Tyr Gln Tyr Tyr Thr Gln Tyr Ala Gly Lys Gly Arg Pro Phe Asn
450 455 460

Val Asn Thr Asp Ser Arg Asp Glu Gln Trp Thr Pro Lys Leu Gly Leu
465 470 475 480

Val Tyr Lys Leu Thr Pro Ser Val Ser Leu Phe Ala Asn Tyr Ser Gln
485 490 495

Thr Phe Met Pro Gln Ser Ser Ile Ala Ser Tyr Ile Gly Asp Leu Pro

500 505 510

Pro Glu Ser Ser Asn Ala Tyr Glu Val Gly Ala Lys Phe Glu Leu Phe
515 520 525

Asp Gly Ile Thr Ala Asp Ile Ala Leu Phe Asp Ile His Lys Arg Asn
530 535 540

Val Leu Tyr Thr Glu Ser Ile Gly Asp Glu Thr Ile Ala Lys Thr Ala
545 550 555 560

Gly Arg Val Arg Ser Arg Gly Val Glu Val Asp Leu Ala Gly Ala Leu
565 570 575

Thr Glu Asn Ile Asn Ile Ile Ala Ser Tyr Gly Tyr Thr Asp Ala Lys
580 585 590

Val Leu Glu Asp Pro Asp Tyr Ala Gly Lys Pro Leu Pro Asn Val Pro
595 600 605

Arg His Thr Gly Ser Leu Phe Leu Thr Tyr Asp Ile His Asn Met Pro
610 615 620

Gly Asn Asn Thr Leu Thr Phe Gly Gly Gly His Gly Val Ser Arg
625 630 635 640

Arg Ser Ala Thr Asn Gly Ala Asp Tyr Tyr Leu Pro Gly Tyr Phe Val
645 650 655

Ala Asp Ala Phe Ala Ala Tyr Lys Met Lys Leu Gln Tyr Pro Val Thr
660 665 670

Leu Gln Leu Asn Val Lys Asn Leu Phe Asp Lys Thr Tyr Tyr Thr Ser
675 680 685

Ser Ile Ala Thr Asn Asn Leu Gly Asn Gln Ile Gly Asp Pro Arg Glu
690 695 700

Val Gln Phe Thr Val Lys Met Glu Phe
705 710

<210> 21

<211> 606

<212> PRT

<213> Escherichia coli

<400> 21

Met Lys Ile Ser Trp Asn Tyr Ile Phe Lys Asn Lys Trp Arg Phe His
1 5 10 15

Ile Thr Ser Ile Ser Leu Phe Leu Ile Met Leu Ala Val Ser Ile Ala
20 25 30

Phe Leu His Leu Arg Phe Asn Thr Leu Ser Ser Thr Asp Lys Met Arg
35 40 45

Leu Glu Met Tyr Lys Ser Thr Leu Tyr Ser Thr Ile Glu Gln Phe Tyr
50 55 60

Val Leu Pro Tyr Met Leu Ser Thr Asp His Ile Ile Arg Gln Ala Val
65 70 75 80

Ile Thr Pro Asp Asp Met Thr Ser Ser Glu Leu Asn Gln Arg Ile Ala
85 90 95

His Phe Asn Thr Gln Leu Lys Thr Ala Ala Ile Phe Ile Leu Asp Thr
100 105 110

Gln Gly Lys Ala Ile Ala Ser Ser Asn Trp Gln Asp Pro Gly Ser Tyr
115 120 125

Val Gly Gln Asn Tyr Ser Tyr Arg Pro Tyr Tyr Lys His Ala Met Ser
130 135 140

Gly Leu Asn Gly Arg Phe Tyr Gly Ile Gly Ser Thr Thr Asn Thr Pro
145 150 155 160

Gly Phe Phe Leu Ser Thr Ser Ile Lys Asp Lys Gly Lys Ile Val Gly
165 170 175

Val Val Val Val Lys Ile Ser Leu Asn Glu Ile Glu Lys Ala Trp Ala
180 185 190

Glu Gly Pro Glu Asn Ile Ile Val Asn Asp Glu His Gly Ile Ile Phe
195 200 205

Leu Ser Ser Lys Ser Pro Trp Arg Met Arg Thr Leu Gln Pro Leu Pro
210 215 220

Val Gln Ala Lys Gln Lys Leu Gln Ser Thr Arg Gln Tyr Ser Leu Asp
225 230 235 240

Asn Leu Leu Pro Ala Asp Tyr Tyr Pro Cys Tyr Thr Val Ser Asn Phe
245 250 255

Thr Phe Leu Lys Asp Lys Lys Glu Gln Leu Cys Leu Phe Pro Gln Tyr
260 265 270

Tyr Thr Gln Gln Ile Ala Ile Pro Glu Phe Asn Trp Lys Met Thr Ile
275 280 285

Met Val Pro Leu Asp Asn Leu Tyr Trp Ser Trp Ala Ile Ser Leu Val
290 295 300

Ile Thr Leu Ile Ile Tyr Leu Leu Phe Leu Leu Phe Ile Lys Tyr Trp
305 310 315 320

Arg Met Arg Ser His Ala Gln Gln Leu Leu Thr Leu Ala Asn Glu Thr
325 330 335

Leu Glu Lys Gln Val Lys Glu Arg Thr Ser Ala Leu Glu Leu Ile Asn
340 345 350

Gln Lys Leu Ile Gln Glu Ile Lys Glu Arg Ser Gln Ala Glu Gln Val
355 360 365

Leu Gln Ile Thr Arg Ser Glu Leu Ala Glu Ser Ser Lys Leu Ala Ala
370 375 380

Leu Gly Gln Met Ala Thr Glu Ile Ala His Glu Gln Asn Gln Pro Leu
385 390 395 400

Ala Ala Ile His Ala Leu Thr Asp Asn Ala Arg Thr Met Leu Lys Lys
405 410 415

Glu Met Tyr Pro Gln Val Glu Gln Asn Leu Lys His Ile Ile Ser Val
420 425 430

Ile Glu Arg Met Thr Gln Leu Ile Ser Glu Leu Lys Ala Phe Ala Ser
435 440 445

Arg His Arg Val Pro Lys Gly Ser Ala Asp Val Ile Lys Val Met Tyr
450 455 460

Ser Ala Val Ala Leu Leu Asn His Ser Met Glu Lys Asn Asn Ile Glu
465 470 475 480

Arg Arg Ile Lys Ala Pro Ser Met Pro Leu Phe Val Asn Cys Asp Glu
485 490 495

Leu Gly Leu Glu Gln Ile Phe Ser Asn Leu Ile Ser Asn Ala Leu Asp
500 505 510

Ser Met Glu Gly Ser Ser Tyr Lys Arg Leu Asp Ile Ala Ile Arg Gln
515 520 525

Ala Asn Asn Lys Val Ile Ile Thr Ile Lys Asp Ser Gly Gly Gly Phe
530 535 540

Ala Pro Glu Val Val Asp Arg Ile Phe Glu Pro Phe Phe Thr Thr Lys
545 550 555 560

Arg Arg Gly Met Gly Leu Gly Leu Ala Ile Val Ser Glu Ile Val Arg
565 570 575

Asn Ser Asn Gly Ala Leu His Ala Ser Asn His Pro Glu Gly Gly Ala
580 585 590

Val Met Thr Leu Thr Trp Pro Glu Trp Gly Glu Glu His Glu
595 600 605

<210> 22

<211> 101

<212> PRT

<213> Escherichia coli

<400> 22

Val Leu Thr Pro Gln His Leu Arg Cys Val Leu Thr Cys Ser Asp Leu
1 5 10 15

Leu Thr Leu Leu Ser Gly Thr Val Met Ser Gln Met Pro Leu Tyr Phe

20 25 30

Leu Asn Thr Gln Lys Lys Leu Thr Ala His Tyr Glu Trp Leu Gln Ile
35 40 45

Asn Leu Thr Asp Thr Tyr Glu Leu Val Lys Arg Leu Met Pro Ile Pro
50 55 60

Ser Leu Asp Val Val Lys Val Gly Lys Leu Val Leu Pro Glu Lys
65 70 75 80

Gly His His Gly Phe Tyr Pro Glu Ala Gly Val Val Tyr Arg Thr Val
85 90 95

Ala Pro Glu Asn Pro
100

<210> 23
<211> 263
<212> PRT
<213> Escherichia coli

<400> 23

Met Met Lys Asn Thr Gly Tyr Ile Leu Ala Leu Cys Leu Thr Ala Ser
1 5 10 15

Gly His Val Leu Ala His Asp Val Trp Ile Thr Gly Lys Gln Ala Glu
20 25 30

Asn Asn Val Thr Ala Glu Ile Gly Tyr Gly His Asn Phe Pro Ser Lys
35 40 45

Gly Thr Ile Pro Asp Arg Arg Asp Phe Phe Glu Asn Pro Arg Leu Tyr
50 55 60

Asn Gly Lys Glu Thr Ile Thr Leu Lys Pro Ala Ser Thr Asp Tyr Val
65 70 75 80

Tyr Lys Thr Glu Ser Ala Ser Lys Asp Asn Gly Tyr Val Leu Ser Thr
85 90 95

Tyr Met Lys Pro Gly Tyr Trp Ser Arg Thr Ser Ser Gly Trp Lys Pro
100 105 110

Val Ser Arg Glu Gly Arg Asn Asp Val Ala Tyr Cys Glu Phe Val Thr
115 120 125

Lys Tyr Ala Lys Ser Phe Ile Pro Gly Glu Gln Gln Met Pro Ala Gln
130 135 140

Leu Tyr Gln Ser Pro Thr Gly His Glu Leu Glu Ile Ile Pro Leu Ser
145 150 155 160

Asp Ile Ser Arg Phe Ser Glu Asn Val Lys Leu Lys Val Leu Tyr Lys
165 170 175

Thr Ser Pro Leu Ala Gly Ala Ile Met Glu Leu Asp Ser Val Ser Tyr
180 185 190

Leu Thr Ser Ser Arg His Thr His Ala Val Glu His Lys His Pro Val
195 200 205

His Lys Ala Glu Leu Thr Phe Val Thr Asn Glu Asp Gly Ile Val Thr
210 215 220

Val Pro Ser Leu His Ile Gly Gln Trp Leu Ala Lys Val Gln Asn Lys
225 230 235 240

Lys Ser Phe Gln Asp Lys Ser Leu Cys Asp Glu Thr Val Asp Val Ala
245 250 255

Thr Leu Ser Phe Ser Arg Asn
260

<210> 24

<211> 378

<212> PRT

<213> Escherichia coli

<400> 24

Met Gly Lys Ile Lys Tyr Trp Leu Ile Val Gly Phe Ile Ile Leu Phe
1 5 10 15

Ala Ile Phe Tyr Ile Ala Ile Ser Asp Arg Asp Ser Thr Leu Ser Arg
20 25 30

Leu Lys Ser Ala Gly Glu Asn Gly Asp Val Glu Ala Gln Tyr Ala Leu
35 40 45

Gly Leu Met Tyr Leu Tyr Gly Glu Ile Leu Asp Val Asp Tyr Gln Gln
50 55 60

Ala Lys Ile Trp Tyr Glu Lys Ala Ala Asp Gln Asn Asp Pro Arg Ala
65 70 75 80

Gln Ala Lys Leu Gly Val Met Tyr Ala Asn Gly Leu Gly Val Asn Gln
85 90 95

Asp Tyr Gln Gln Ser Lys Leu Trp Tyr Glu Lys Ala Ala Ala Gln Asn
100 105 110

Asp Val Asp Ala Gln Phe Leu Leu Gly Glu Met Tyr Asp Asp Gly Leu
115 120 125

Gly Val Ser Gln Asp Tyr Gln His Ala Lys Met Trp Tyr Glu Lys Ala
130 135 140

Ala Ala Gln Asn Asp Glu Arg Ala Gln Val Asn Leu Ala Val Leu Tyr
145 150 155 160

Ala Lys Gly Asn Gly Val Glu Gln Asp Tyr Arg Gln Ala Lys Ser Trp
165 170 175

Tyr Glu Lys Ala Ala Ala Gln Asn Ser Pro Asp Ala Gln Phe Ala Leu
180 185 190

Gly Ile Leu Tyr Ala Asn Ala Asn Gly Val Glu Gln Asp Tyr Gln Gln
195 200 205

Ala Lys Asp Trp Tyr Glu Lys Ala Ala Glu Gln Asn Phe Ala Asn Ala
210 215 220

Gln Phe Asn Leu Gly Met Leu Tyr Tyr Lys Gly Glu Gly Val Lys Gln
225 230 235 240

Asn Phe Arg Gln Ala Arg Glu Trp Phe Glu Lys Ala Ala Ser Gln Asn
245 250 255

Gln Pro Asn Ala Gln Tyr Asn Leu Gly Gln Ile Tyr Tyr Tyr Gly Gln

260 265 270

Gly Val Thr Gln Ser Tyr Arg Gln Ala Lys Asp Trp Phe Glu Lys Ala
275 280 285

Ala Glu Lys Gly His Val Asp Ala Gln Tyr Asn Leu Gly Val Ile Tyr
290 295 300

Glu Asn Gly Glu Gly Val Ser Gln Asn Tyr Gln Gln Ala Lys Ala Trp
305 310 315 320

Tyr Glu Lys Ala Ala Ser Gln Asn Asp Ala Gln Ala Gln Phe Glu Leu
325 330 335

Gly Val Met Asn Glu Leu Gly Gln Gly Glu Ser Ile Asp Leu Lys Gln
340 345 350

Ala Arg His Tyr Tyr Glu Arg Ser Cys Asn Asn Gly Leu Lys Lys Gly
355 360 365

Cys Glu Arg Leu Lys Glu Leu Leu Tyr Lys
370 375

<210> 25

<211> 654

<212> PRT

<213> Escherichia coli

<400> 25

Met Asn Val Ile Arg Thr Val Ile Cys Thr Leu Ile Ile Leu Pro Val
1 5 10 15

Gly Leu Gln Ala Ala Thr Ser His Ser Ser Met Val Lys Asp Thr Ile
20 25 30

Thr Ile Val Ala Thr Gly Asn Gln Asn Thr Val Phe Glu Thr Pro Ser
35 40 45

Met Val Ser Val Val Thr Asn Asp Thr Pro Trp Ser Gln Asn Ala Val
50 55 60

Thr Ser Ala Gly Met Leu Lys Gly Val Ala Gly Leu Ser Gln Thr Gly
65 70 75 80

Ala Gly Arg Thr Asn Gly Gln Thr Phe Asn Leu Arg Gly Tyr Asp Lys
85 90 95

Ser Gly Val Leu Val Leu Val Asp Gly Val Arg Gln Leu Ser Asp Met
100 105 110

Ala Lys Ser Ser Gly Thr Tyr Leu Asp Pro Ala Leu Val Lys Arg Ile
115 120 125

Glu Val Val Arg Gly Pro Asn Ser Ser Leu Tyr Gly Ser Gly Gly Leu
130 135 140

Gly Gly Val Val Asp Phe Arg Thr Ala Asp Ala Ala Asp Phe Leu Pro
145 150 155 160

Pro Gly Glu Thr Asn Gly Leu Ser Leu Trp Gly Asn Ile Ala Ser Gly
165 170 175

Asp His Ser Thr Gly Ser Gly Leu Thr Trp Phe Gly Lys Thr Gly Lys
180 185 190

Thr Asp Ala Leu Leu Ser Val Ile Met Arg Lys Arg Gly Asn Ile Tyr
195 200 205

Gln Ser Asp Gly Glu His Ala Pro Asn Lys Glu Lys Pro Ala Ala Leu
210 215 220

Phe Ala Lys Gly Ser Val Gly Ile Thr Asp Ser Asn Lys Ala Gly Ala
225 230 235 240

Ser Leu Arg Leu Tyr Arg Asn Asn Thr Thr Glu Pro Gly Asn Ser Thr
245 250 255

Gln Thr His Gly Asp Ser Gly Leu Arg Asp Arg Lys Thr Val Gln Asn
260 265 270

Asp Val Gln Phe Trp Tyr Gln Tyr Ala Pro Val Asp Asn Ser Leu Ile
275 280 285

Asn Val Lys Ser Thr Leu Tyr Leu Ser Asp Ile Thr Ile Lys Thr Asn
290 295 300

Gly His Asn Lys Thr Ala Glu Trp Arg Asn Asn Arg Thr Ser Gly Val
305 310 315 320

Asn Val Val Asn Arg Ser His Thr Leu Ile Phe Pro Gly Ala His Gln
325 330 335

Leu Ser Tyr Gly Ala Glu Tyr Tyr Arg Gln Gln Gln Lys Pro Glu Gly
340 345 350

Ser Ala Thr Leu Tyr Pro Glu Gly Asn Ile Asp Phe Thr Ser Leu Tyr
355 360 365

Phe Gln Asp Glu Met Thr Met Lys Ser Tyr Pro Val Asn Ile Ile Val
370 375 380

Gly Ser Arg Tyr Asp Arg Tyr Lys Ser Phe Asn Pro Arg Ala Gly Glu
385 390 395 400

Leu Lys Ala Glu Arg Leu Ser Pro Arg Ala Ala Ile Ser Val Ser Pro
405 410 415

Thr Asp Trp Leu Met Met Tyr Gly Ser Ile Ser Ser Ala Phe Arg Ala
420 425 430

Pro Thr Met Ala Glu Met Tyr Arg Asp Asp Val His Phe Tyr Arg Lys
435 440 445

Gly Lys Pro Asn Tyr Trp Val Pro Asn Leu Asn Leu Lys Pro Glu Asn
450 455 460

Asn Ile Thr Arg Glu Ile Gly Ala Gly Ile Gln Leu Asp Gly Leu Leu
465 470 475 480

Thr Asp Asn Asp Arg Leu Gln Leu Lys Gly Gly Tyr Phe Gly Thr Asp
485 490 495

Ala Arg Asn Tyr Ile Ala Thr Arg Val Asp Met Lys Arg Met Arg Ser
500 505 510

Tyr Ser Tyr Asn Val Ser Arg Ala Arg Ile Trp Gly Trp Asp Met Gln
515 520 525

Gly Asn Tyr Gln Ser Asp Tyr Val Asp Trp Met Leu Ser Tyr Asn Arg
530 535 540

Thr Glu Ser Met Asp Ala Ser Ser Arg Glu Trp Leu Gly Ser Gly Asn
545 550 555 560

Pro Asp Thr Leu Ile Ser Asp Ile Ser Ile Pro Val Gly His Arg Gly
565 570 575

Val Tyr Ala Gly Trp Arg Ala Glu Leu Ser Ala Ser Ala Thr His Val
580 585 590

Lys Lys Gly Asp Pro His Gln Ala Gly Tyr Thr Ile His Ser Phe Ser
595 600 605

Leu Ser Tyr Lys Pro Val Ser Val Lys Gly Phe Glu Ala Ser Val Thr
610 615 620

Leu Asp Asn Ala Phe Asn Lys Leu Ala Met Asn Gly Lys Gly Val Pro
625 630 635 640

Leu Ser Gly Arg Thr Val Ser Leu Tyr Thr Arg Tyr Gln Trp
645 650

<210> 26

<211> 1376

<212> PRT

<213> Escherichia coli

<400> 26

Met Asn Lys Ile Tyr Ala Leu Lys Tyr Cys Tyr Ile Thr Asn Thr Val
1 5 10 15

Lys Val Val Ser Glu Leu Ala Arg Arg Val Cys Lys Gly Ser Thr Arg
20 25 30

Arg Gly Lys Arg Leu Ser Val Leu Thr Ser Leu Ala Leu Ser Ala Leu
35 40 45

Leu Pro Thr Val Ala Gly Ala Ser Thr Val Gly Gly Asn Asn Pro Tyr
50 55 60

Gln Thr Tyr Arg Asp Phe Ala Glu Asn Lys Gly Gln Phe Gln Ala Gly
65 70 75 80

Ala Thr Asn Ile Pro Ile Phe Asn Asn Lys Gly Glu Leu Val Gly His
85 90 95

Leu Asp Lys Ala Pro Met Val Asp Phe Ser Ser Val Asn Val Ser Ser
100 105 110

Asn Pro Gly Val Ala Thr Leu Ile Asn Pro Gln Tyr Ile Ala Ser Val
115 120 125

Lys His Asn Lys Gly Tyr Gln Ser Val Ser Phe Gly Asp Gly Gln Asn
130 135 140

Ser Tyr His Ile Val Asp Arg Asn Glu His Ser Ser Ser Asp Leu His
145 150 155 160

Thr Pro Arg Leu Asp Lys Leu Val Thr Glu Val Ala Pro Ala Thr Val
165 170 175

Thr Ser Ser Ser Thr Ala Asp Ile Leu Asn Pro Ser Lys Tyr Ser Ala
180 185 190

Phe Tyr Arg Ala Gly Ser Gly Ser Gln Tyr Ile Gln Asp Ser Gln Gly
195 200 205

Lys Arg His Trp Val Thr Gly Gly Tyr Gly Tyr Leu Thr Gly Gly Ile
210 215 220

Leu Pro Thr Ser Phe Phe Tyr His Gly Ser Asp Gly Ile Gln Leu Tyr
225 230 235 240

Met Gly Gly Asn Ile His Asp His Ser Ile Leu Pro Ser Phe Gly Glu
245 250 255

Ala Gly Asp Ser Gly Ser Pro Leu Phe Gly Trp Asn Thr Ala Lys Gly
260 265 270

Gln Trp Glu Leu Val Gly Val Tyr Ser Gly Val Gly Gly Thr Asn
275 280 285

Leu Ile Tyr Ser Leu Ile Pro Gln Ser Phe Leu Ser Gln Ile Tyr Ser
290 295 300

Glu Asp Asn Asp Ala Pro Val Phe Phe Asn Ala Ser Ser Gly Ala Pro
305 310 315 320

Leu Gln Trp Lys Phe Asp Ser Ser Thr Gly Thr Gly Ser Leu Lys Gln
325 330 335

Gly Ser Asp Glu Tyr Ala Met His Gly Gln Lys Gly Ser Asp Leu Asn
340 345 350

Ala Gly Lys Asn Leu Thr Phe Leu Gly His Asn Gly Gln Ile Asp Leu
355 360 365

Glu Asn Ser Val Thr Gln Gly Ala Gly Ser Leu Thr Phe Thr Asp Asp
370 375 380

Tyr Thr Val Thr Thr Ser Asn Gly Ser Thr Trp Thr Gly Ala Gly Ile
385 390 395 400

Ile Val Asp Lys Asp Ala Ser Val Asn Trp Gln Val Asn Gly Val Lys
405 410 415

Gly Asp Asn Leu His Lys Ile Gly Glu Gly Thr Leu Val Val Gln Gly
420 425 430

Thr Gly Val Asn Glu Gly Gly Leu Lys Val Gly Asp Gly Thr Val Val
435 440 445

Leu Asn Gln Gln Ala Asp Ser Ser Gly His Val Gln Ala Phe Ser Ser
450 455 460

Val Asn Ile Ala Ser Gly Arg Pro Thr Val Val Leu Ala Asp Asn Gln
465 470 475 480

Gln Val Asn Pro Asp Asn Ile Ser Trp Gly Tyr Arg Gly Gly Val Leu
485 490 495

Asp Val Asn Gly Asn Asp Leu Thr Phe His Lys Leu Asn Ala Ala Asp
500 505 510

Tyr Gly Ala Thr Leu Gly Asn Ser Ser Asp Lys Thr Ala Asn Ile Thr
515 520 525

Leu Asp Tyr Gln Thr Arg Pro Ala Asp Val Lys Val Asn Glu Trp Ser
530 535 540

Ser Ser Asn Arg Gly Thr Val Gly Ser Leu Tyr Ile Tyr Asn Asn Pro
545 550 555 560

Tyr Thr His Thr Val Asp Tyr Phe Ile Leu Lys Thr Ser Ser Tyr Gly
565 570 575

Trp Phe Pro Thr Gly Gln Val Ser Asn Glu His Trp Glu Tyr Val Gly
580 585 590

His Asp Gln Asn Ser Ala Gln Ala Leu Leu Ala Asn Arg Ile Asn Asn
595 600 605

Lys Gly Tyr Leu Tyr His Gly Lys Leu Leu Gly Asn Ile Asn Phe Ser
610 615 620

Asn Lys Ala Thr Pro Gly Thr Thr Gly Ala Leu Val Met Asp Gly Ser
625 630 635 640

Ala Asn Met Ser Gly Thr Phe Thr Gln Glu Asn Gly Arg Leu Thr Ile
645 650 655

Gln Gly His Pro Val Ile His Ala Ser Thr Ser Gln Ser Ile Ala Asn
660 665 670

Thr Val Ser Ser Leu Gly Asp Asn Ser Val Leu Thr Gln Pro Thr Ser
675 680 685

Phe Thr Gln Asp Asp Trp Glu Asn Arg Thr Phe Ser Phe Gly Ser Leu
690 695 700

Val Leu Lys Asp Thr Asp Phe Gly Leu Gly Arg Asn Ala Thr Leu Asn
705 710 715 720

Thr Thr Ile Gln Ala Asp Asn Ser Ser Val Thr Leu Gly Asp Ser Arg
725 730 735

Val Phe Ile Asp Lys Lys Asp Gly Gln Gly Thr Ala Phe Thr Leu Glu
740 745 750

Glu Gly Thr Ser Val Ala Thr Lys Asp Ala Asp Lys Ser Val Phe Asn

755

760

765

Gly Thr Val Asn Leu Asp Asn Gln Ser Val Leu Asn Ile Asn Glu Ile
770 775 780

Phe Asn Gly Gly Ile Gln Ala Asn Asn Ser Thr Val Asn Ile Ser Ser
785 790 795 800

Asp Ser Ala Val Leu Glu Asn Ser Thr Leu Thr Ser Thr Ala Leu Asn
805 810 815

Leu Asn Lys Gly Ala Asn Val Leu Ala Ser Gln Ser Phe Val Ser Asp
820 825 830

Gly Pro Val Asn Ile Ser Asp Ala Thr Leu Ser Leu Asn Ser Arg Pro
835 840 845

Asp Glu Val Ser His Thr Leu Leu Pro Val Tyr Asp Tyr Ala Gly Ser
850 855 860

Trp Asn Leu Lys Gly Asp Asp Ala Arg Leu Asn Val Gly Pro Tyr Ser
865 870 875 880

Met Leu Ser Gly Asn Ile Asn Val Gln Asp Lys Gly Thr Val Thr Leu
885 890 895

Gly Gly Glu Gly Glu Leu Ser Pro Asp Leu Thr Leu Gln Asn Gln Met
900 905 910

Leu Tyr Ser Leu Phe Asn Gly Tyr Arg Asn Thr Trp Ser Gly Ser Leu
915 920 925

Asn Ala Pro Asp Ala Thr Val Ser Met Thr Asp Thr Gln Trp Ser Met
930 935 940

Asn Gly Asn Ser Thr Ala Gly Asn Met Lys Leu Asn Arg Thr Ile Val
945 950 955 960

Gly Phe Asn Gly Gly Thr Ser Ser Phe Thr Thr Leu Thr Thr Asp Asn
965 970 975

Leu Asp Ala Val Gln Ser Ala Phe Val Met Arg Thr Asp Leu Asn Lys
980 985 990

Ala Asp Lys Leu Val Ile Asn Lys Ser Ala Thr Gly His Asp Asn Ser
995 1000 1005

Ile Trp Val Asn Phe Leu Lys Lys Pro Ser Asp Lys Asp Thr Leu
1010 1015 1020

Asp Ile Pro Leu Val Ser Ala Pro Glu Ala Thr Ala Asp Asn Leu
1025 1030 1035

Phe Arg Ala Ser Thr Arg Val Val Gly Phe Ser Asp Val Thr Pro
1040 1045 1050

Thr Leu Ser Val Arg Lys Glu Asp Gly Lys Lys Glu Trp Val Leu
1055 1060 1065

Asp Gly Tyr Gln Val Ala Arg Asn Asp Gly Gln Gly Lys Ala Ala
1070 1075 1080

Ala Thr Phe Met His Ile Ser Tyr Asn Asn Phe Ile Thr Glu Val
1085 1090 1095

Asn Asn Leu Asn Lys Arg Met Gly Asp Leu Arg Asp Ile Asn Gly
1100 1105 1110

Glu Ala Gly Thr Trp Val Arg Leu Leu Asn Gly Ser Gly Ser Ala
1115 1120 1125

Asp Gly Gly Phe Thr Asp His Tyr Thr Leu Leu Gln Met Gly Ala
1130 1135 1140

Asp Arg Lys His Glu Leu Gly Ser Met Asp Leu Phe Thr Gly Val
1145 1150 1155

Met Ala Thr Tyr Thr Asp Thr Asp Ala Ser Ala Gly Leu Tyr Ser
1160 1165 1170

Gly Lys Thr Lys Ser Trp Gly Gly Gly Phe Tyr Ala Ser Gly Leu
1175 1180 1185

Phe Arg Ser Gly Ala Tyr Phe Asp Leu Ile Ala Lys Tyr Ile His
1190 1195 1200

Asn Glu Asn Lys Tyr Asp Leu Asn Phe Ala Gly Ala Gly Lys Gln
1205 1210 1215

Asn Phe Arg Ser His Ser Leu Tyr Ala Gly Ala Glu Val Gly Tyr
1220 1225 1230

Arg Tyr His Leu Thr Asp Thr Thr Phe Val Glu Pro Gln Ala Glu
1235 1240 1245

Leu Val Trp Gly Arg Leu Gln Gly Gln Thr Phe Asn Trp Asn Asp
1250 1255 1260

Ser Gly Met Asp Val Ser Met Arg Arg Asn Ser Val Asn Pro Leu
1265 1270 1275

Val Gly Arg Thr Gly Val Val Ser Gly Lys Thr Phe Ser Gly Lys
1280 1285 1290

Asp Trp Ser Leu Thr Ala Arg Ala Gly Leu His Tyr Glu Phe Asp
1295 1300 1305

Leu Thr Asp Ser Ala Asp Val His Leu Lys Asp Ala Ala Gly Glu
1310 1315 1320

His Gln Ile Asn Gly Arg Lys Asp Gly Arg Met Leu Tyr Gly Val
1325 1330 1335

Gly Leu Asn Ala Arg Phe Gly Asp Asn Thr Arg Leu Gly Leu Glu
1340 1345 1350

Val Glu Arg Ser Ala Phe Gly Lys Tyr Asn Thr Asp Asp Ala Ile
1355 1360 1365

Asn Ala Asn Ile Arg Tyr Ser Phe
1370 1375

<210> 27

<211> 349

<212> PRT

<213> Escherichia coli

<400> 27

Met Ile Thr Leu Phe Arg Leu Leu Ala Ile Leu Cys Leu Phe Phe Asn

1 5 10 15

Val Ser Ala Phe Ala Val Asp Cys Tyr Gln Asp Gly Tyr Arg Gly Thr
20 25 30

Thr Leu Ile Asn Gly Asp Leu Pro Thr Phe Lys Ile Pro Glu Asn Ala
35 40 45

Gln Pro Gly Gln Lys Ile Trp Glu Ser Gly Asp Ile Asn Ile Thr Val
50 55 60

Tyr Cys Asp Asn Ala Pro Gly Trp Ser Ser Asn Asn Pro Ser Glu Asn
65 70 75 80

Val Tyr Ala Trp Ile Lys Leu Pro Gln Ile Asn Ser Ala Asp Met Leu
85 90 95

Asn Asn Pro Tyr Leu Thr Phe Gly Val Thr Tyr Asn Gly Val Asp Tyr
100 105 110

Glu Gly Thr Asn Glu Lys Ile Asp Thr His Ala Cys Leu Asp Lys Tyr
115 120 125

Glu Gln Tyr Tyr Asn Gly Tyr Tyr His Asp Pro Val Cys Asn Gly Ser
130 135 140

Thr Leu Gln Lys Asn Val Thr Phe Asn Ala His Phe Arg Val Tyr Val
145 150 155 160

Lys Phe Lys Ser Arg Pro Ala Gly Asp Gln Thr Val Asn Phe Gly Thr
165 170 175

Val Asn Val Leu Gln Phe Asp Gly Glu Gly Gly Ala Asn Met Ala Pro
180 185 190

Asn Ala Lys Asn Leu Arg Tyr Ala Ile Thr Gly Leu Asp Asn Ile Ser
195 200 205

Phe Leu Asp Cys Ser Val Asp Val Arg Ile Ser Pro Glu Ser Gln Ile
210 215 220

Val Asn Phe Gly Gln Ile Ala Ala Asn Ser Ile Ala Thr Phe Pro Pro
225 230 235 240

Lys Ala Ala Phe Ser Val Ser Thr Ile Lys Asp Ile Ala Ser Asp Cys
245 250 255

Thr Glu Gln Phe Asp Val Ala Thr Ser Phe Phe Thr Ser Asp Thr Leu
260 265 270

Tyr Asp Asn Thr His Leu Glu Ile Gly Asn Gly Leu Leu Met Arg Ile
275 280 285

Thr Asp Gln Lys Thr Gln Glu Asp Ile Lys Phe Asn Gln Phe Lys Leu
290 295 300

Phe Ser Thr Tyr Ile Pro Gly Gln Ser Ala Ala Met Ala Thr Arg Asp
305 310 315 320

Tyr Gln Ala Glu Leu Thr Gln Lys Pro Gly Glu Pro Leu Val Tyr Gly
325 330 335

Pro Phe Gln Lys Asp Leu Ile Val Lys Ile Asn Tyr His
340 345

<210> 28

<211> 840

<212> PRT

<213> Escherichia coli

<400> 28

Met Asn Asn Lys Asn Thr Phe Ser Arg Asp Lys Leu Ser His Ala Ile
1 5 10 15

Lys Asn Ala Leu Ser Gly Val Val Cys Ser Leu Leu Phe Val Leu Pro
20 25 30

Val His Ala Val Glu Phe Asn Val Asp Met Ile Asp Ala Glu Asp Arg
35 40 45

Glu Asn Ile Asp Ile Ser Arg Phe Glu Lys Lys Gly Tyr Ile Pro Pro
50 55 60

Gly Arg Tyr Leu Val Arg Val Gln Ile Asn Lys Asn Met Leu Pro Gln
65 70 75 80

Thr Leu Ile Leu Glu Trp Val Lys Ala Asp Asn Glu Ser Gly Ser Leu
85 90 95

Leu Cys Leu Thr Lys Glu Asn Leu Thr Asn Phe Gly Leu Asn Thr Glu
100 105 110

Phe Ile Glu Ser Leu Gln Asn Ile Ala Gly Ser Glu Cys Leu Asp Leu
115 120 125

Ser Gln Arg Gln Glu Leu Thr Thr Arg Leu Asp Lys Ala Thr Met Ile
130 135 140

Leu Ser Leu Ser Val Pro Gln Ala Trp Leu Lys Tyr Gln Ala Thr Asn
145 150 155 160

Trp Thr Pro Pro Glu Phe Trp Asp Thr Gly Ile Thr Gly Phe Ile Leu
165 170 175

Asp Tyr Asn Val Tyr Ala Ser Gln Tyr Ala Pro His His Gly Asp Ser
180 185 190

Thr Gln Asn Val Ser Ser Tyr Gly Thr Leu Gly Phe Asn Leu Gly Ala
195 200 205

Trp Arg Leu Arg Ser Asp Tyr Gln Tyr Asn Gln Asn Phe Ala Asp Gly
210 215 220

Arg Ser Val Asn Arg Asp Ser Glu Phe Ala Arg Thr Tyr Leu Phe Arg
225 230 235 240

Pro Ile Pro Ser Trp Ser Ser Lys Phe Thr Met Gly Gln Tyr Asp Leu
245 250 255

Ser Ser Asn Leu Tyr Asp Thr Phe His Phe Thr Gly Ala Ser Leu Glu
260 265 270

Ser Asp Glu Ser Met Leu Pro Pro Asp Leu Gln Gly Tyr Ala Pro Gln
275 280 285

Ile Thr Gly Ile Ala Gln Thr Asn Ala Lys Val Thr Val Ala Gln Asn
290 295 300

Gly Arg Val Leu Tyr Gln Thr Thr Val Ala Pro Gly Pro Phe Thr Ile

305	310	315	320
Ser Asp Leu Gly Gln Ser Phe Gln Gly Gln Leu Asp Val Thr Val Glu			
325	330	335	
Glu Glu Asp Gly Arg Thr Ser Thr Phe Gln Val Gly Ser Ala Ser Ile			
340	345	350	
Pro Tyr Leu Thr Arg Lys Gly Gln Val Arg Tyr Lys Thr Ser Leu Gly			
355	360	365	
Lys Pro Thr Ser Val Gly His Asn Asp Ile Asn Asn Pro Phe Phe Trp			
370	375	380	
Thr Ala Glu Ala Ser Trp Gly Trp Leu Asn Asn Val Ser Leu Tyr Gly			
385	390	395	400
Gly Gly Met Phe Thr Ala Asp Asp Tyr Gln Ala Ile Thr Thr Gly Ile			
405	410	415	
Gly Phe Asn Leu Asn Gln Phe Gly Ser Leu Ser Phe Asp Val Thr Gly			
420	425	430	
Ala Asp Ala Ser Leu Gln Gln Asn Ser Gly Asn Leu Arg Gly Tyr			
435	440	445	
Ser Tyr Arg Phe Asn Tyr Ala Lys His Phe Glu Ser Thr Gly Ser Gln			
450	455	460	
Ile Thr Phe Ala Gly Tyr Arg Phe Ser Asp Lys Asp Tyr Val Ser Met			
465	470	475	480
Ser Glu Tyr Leu Ser Ser Arg Asn Gly Asp Glu Ser Ile Asp Asn Glu			
485	490	495	
Lys Glu Ser Tyr Val Ile Ser Leu Asn Gln Tyr Phe Glu Thr Leu Glu			
500	505	510	
Leu Asn Ser Tyr Leu Asn Val Thr Arg Asn Thr Tyr Trp Asp Ser Ala			
515	520	525	
Ser Asn Thr Asn Tyr Ser Val Ser Val Ser Lys Asn Phe Asp Ile Gly			
530	535	540	

Asp Phe Lys Gly Ile Ser Ala Ser Leu Ala Val Ser Arg Ile Arg Trp
545 550 555 560

Asp Asp Asp Glu Glu Asn Gln Tyr Tyr Phe Ser Phe Ser Leu Pro Leu
565 570 575

Gln Gln Asn Arg Asn Ile Ser Tyr Ser Met Gln Arg Thr Gly Ser Ser
580 585 590

Asn Thr Ser Gln Met Ile Ser Trp Tyr Asp Ser Ser Asp Arg Asn Asn
595 600 605

Ile Trp Asn Ile Ser Ala Ser Ala Thr Asp Asp Asn Ile Arg Asp Gly
610 615 620

Glu Pro Thr Leu Arg Gly Ser Tyr Gln His Tyr Ser Pro Trp Gly Arg
625 630 635 640

Leu Asn Ile Asn Gly Ser Val Gln Pro Asn Gln Tyr Asn Ser Val Thr
645 650 655

Ala Gly Trp Tyr Gly Ser Leu Thr Ala Thr Arg His Gly Val Ala Leu
660 665 670

His Asp Tyr Ser Tyr Gly Asp Asn Ala Arg Met Met Val Asp Thr Asp
675 680 685

Gly Ile Ser Gly Ile Glu Ile Asn Ser Asn Arg Thr Val Thr Asn Gly
690 695 700

Leu Gly Ile Ala Val Ile Pro Ser Leu Ser Asn Tyr Thr Thr Ser Met
705 710 715 720

Leu Arg Val Asn Asn Asn Asp Leu Pro Glu Gly Val Asp Val Glu Asn
725 730 735

Ser Val Ile Arg Thr Thr Leu Thr Gln Gly Ala Ile Gly Tyr Ala Lys
740 745 750

Leu Asn Ala Thr Thr Gly Tyr Gln Ile Val Gly Val Ile Arg Gln Glu
755 760 765

Asn Gly Arg Phe Pro Pro Leu Gly Val Asn Val Thr Asp Lys Ala Thr
770 775 780

Gly Lys Asp Val Gly Leu Val Ala Glu Asp Gly Phe Val Tyr Leu Ser
785 790 795 800

Gly Ile Gln Glu Asn Ser Ile Leu His Leu Thr Trp Gly Asp Asn Thr
805 810 815

Cys Glu Val Thr Pro Pro Asn Gln Ser Asn Ile Ser Glu Ser Ala Ile
820 825 830

Ile Leu Pro Cys Lys Thr Val Lys
835 840

<210> 29

<211> 169

<212> PRT

<213> Escherichia coli

<400> 29

Leu Met Asn Thr Lys Gln Ser Val Ala Gln Leu Ala Val Pro His Arg
1 5 10 15

Lys Arg Leu Ser Ser Thr Met Val Val Ala Leu Leu Leu Cys Val Val
20 25 30

Ala Gly Ala Val Met Ile Asn Ala Ala Asp Phe Pro Ala Thr Ala Ile
35 40 45

Glu Thr Asp Pro Gly Ala Ser Ala Phe Pro Thr Phe Tyr Ala Cys Ala
50 55 60

Leu Ile Val Leu Ala Val Leu Leu Val Ile Arg Asp Leu Leu Gln Ala
65 70 75 80

Lys Pro Ala Ser Cys Ala Asn Ala Gln Glu Lys Pro Ala Phe Arg Lys
85 90 95

Thr Ala Thr Gly Ile Ala Ala Thr Ala Phe Tyr Ile Val Ala Met Ser
100 105 110

Tyr Cys Gly Tyr Leu Ile Thr Thr Pro Val Phe Leu Ile Val Ile Met

115

120

125

Thr Leu Met Gly Tyr Arg Arg Trp Val Leu Thr Pro Gly Ile Ala Leu
130 135 140

Leu Leu Thr Ala Ile Leu Trp Leu Leu Phe Val Glu Ala Leu Gln Val
145 150 155 160

Pro Leu Pro Val Gly Thr Phe Phe Glu
165

<210> 30

<211> 311

<212> PRT

<213> Escherichia coli

<400> 30

Met Val Leu Leu Ala Gly Ala Ala Leu Ser Ile Ala Pro Val Gln Ala
1 5 10 15

Ala Ser Tyr Pro Thr Lys Gln Ile Glu Leu Val Val Pro Tyr Ala Ala
20 25 30

Gly Gly Gly Thr Asp Leu Val Ala Arg Ala Phe Ala Asp Ala Ala Lys
35 40 45

Asn His Leu Pro Val Ser Ile Gly Val Ile Asn Lys Pro Gly Gly Gly
50 55 60

Gly Ala Ile Gly Leu Ser Glu Ile Ala Ala Ala Arg Pro Asn Gly Tyr
65 70 75 80

Lys Ile Gly Leu Gly Thr Val Glu Leu Thr Thr Leu Pro Ser Leu Gly
85 90 95

Met Val Arg Phe Lys Thr Ser Asp Phe Lys Pro Ile Ala Arg Leu Asn
100 105 110

Ala Asp Pro Ala Ala Ile Thr Val Arg Ala Asp Ala Pro Trp Asn Ser
115 120 125

Tyr Glu Glu Phe Met Ala Tyr Ser Lys Ala Asn Pro Gly Lys Val Arg
130 135 140

Ile Gly Asn Ser Gly Thr Gly Ala Ile Trp His Leu Ala Ala Ala Ala
145 150 155 160

Leu Glu Asp Lys Thr Gly Thr Lys Phe Ser His Val Pro Tyr Asp Gly
165 170 175

Ala Ala Pro Ala Ile Thr Gly Leu Leu Gly Gly His Ile Glu Ala Val
180 185 190

Ser Val Ser Pro Gly Glu Val Ile Asn His Val Asn Gly Gly Lys Leu
195 200 205

Lys Thr Leu Val Val Met Ala Asp Glu Arg Met Lys Thr Met Pro Asp
210 215 220

Val Pro Thr Leu Lys Glu Lys Gly Val Asp Leu Ser Ile Gly Thr Trp
225 230 235 240

Arg Gly Leu Ile Val Ser Gln Lys Thr Pro Gln Asp Val Val Asp Val
245 250 255

Leu Ala Lys Ala Ala Lys Glu Thr Ala Glu Glu Pro Ala Phe Gln Asp
260 265 270

Ala Leu Gln Lys Leu Asn Leu Asn Tyr Ala Trp Leu Asp Ala Ala Ser
275 280 285

Phe Gln Thr Gln Ile Ser Glu Gln Glu Lys Tyr Phe Asp Glu Leu Leu
290 295 300

Thr Arg Leu Gly Leu Lys Lys
305 310

<210> 31

<211> 722

<212> PRT

<213> Escherichia coli

<400> 31

Met Leu Arg Trp Lys Arg Cys Ile Ile Leu Thr Phe Ile Ser Gly Ala
1 5 10 15

Ala Phe Ala Ala Pro Glu Ile Asn Val Lys Gln Asn Glu Ser Leu Pro

20 25 30

Asp Leu Gly Ser Gln Ala Ala Gln Gln Asp Glu Gln Thr Asn Lys Gly
35 40 45

Lys Ser Leu Lys Glu Arg Gly Ala Asp Tyr Val Ile Asn Ser Ala Thr
50 55 60

Gln Gly Phe Glu Asn Leu Thr Pro Glu Ala Leu Glu Ser Gln Ala Arg
65 70 75 80

Ser Tyr Leu Gln Ser Gln Ile Thr Ser Thr Ala Gln Ser Tyr Ile Glu
85 90 95

Asp Thr Leu Ser Pro Tyr Gly Lys Val Arg Leu Asn Leu Ser Ile Gly
100 105 110

Gln Gly Gly Asp Leu Asp Gly Ser Ser Ile Asp Tyr Phe Val Pro Trp
115 120 125

Tyr Asp Asn Gln Thr Thr Val Tyr Phe Ser Gln Phe Ser Ala Gln Arg
130 135 140

Lys Glu Asp Arg Thr Ile Gly Asn Ile Gly Leu Gly Val Arg Tyr Asn
145 150 155 160

Phe Asp Lys Tyr Leu Leu Gly Gly Asn Ile Phe Tyr Asp Tyr Asp Phe
165 170 175

Thr Arg Gly His Arg Arg Leu Gly Leu Gly Ala Glu Ala Trp Thr Asp
180 185 190

Tyr Leu Lys Phe Ser Gly Asn Tyr Tyr His Pro Leu Ser Asp Trp Lys
195 200 205

Asp Ser Glu Asp Phe Asp Phe Tyr Glu Glu Arg Pro Ala Arg Gly Trp
210 215 220

Asp Ile Arg Ala Glu Val Trp Leu Pro Ser Tyr Pro Gln Leu Gly Gly
225 230 235 240

Lys Ile Val Phe Glu Gln Tyr Tyr Gly Asp Glu Val Ala Leu Phe Gly
245 250 255

Thr Asp Asn Leu Glu Lys Asp Pro Tyr Ala Val Thr Leu Gly Leu Asn
260 265 270

Tyr Gln Pro Val Pro Leu Leu Thr Val Gly Thr Asp Tyr Lys Ala Gly
275 280 285

Thr Gly Asp Asn Ser Asp Val Ser Ile Asn Ala Thr Leu Asn Tyr Gln
290 295 300

Phe Gly Val Pro Leu Lys Asp Gln Leu Asp Ser Asp Lys Val Lys Ala
305 310 315 320

Ala His Ser Leu Met Gly Ser Arg Leu Asp Phe Val Glu Arg Asn Asn
325 330 335

Phe Ile Val Leu Glu Tyr Lys Glu Lys Asp Pro Leu Asp Val Thr Leu
340 345 350

Trp Leu Lys Ala Asp Ala Thr Asn Glu His Pro Glu Cys Val Ile Lys
355 360 365

Asp Thr Pro Glu Ala Ala Val Gly Leu Glu Lys Cys Lys Trp Thr Ile
370 375 380

Asn Ala Leu Ile Asn His His Tyr Lys Ile Val Ala Ala Ser Trp Gln
385 390 395 400

Ala Lys Asn Asn Ala Ala Arg Thr Leu Val Met Pro Val Ile Lys Glu
405 410 415

Asn Thr Leu Thr Glu Gly Asn Asn Asn His Trp Asn Leu Val Leu Pro
420 425 430

Ala Trp Gln Tyr Ser Ser Asp Gln Ala Glu Gln Glu Lys Leu Asn Thr
435 440 445

Trp Arg Val Arg Leu Ala Leu Glu Asp Glu Lys Gly Asn Arg Gln Asn
450 455 460

Ser Gly Val Val Glu Ile Thr Val Gln Gln Asp Arg Lys Ile Glu Leu
465 470 475 480

Ile Val Asn Asn Ile Ala Asn Pro Glu Glu Asn Asn His Ser His His Glu
485 490 495

Ala Ser Ala Gln Ala Asp Gly Val Asp Gly Val Val Met Asp Leu Asp
500 505 510

Val Thr Asp Ser Phe Gly Asp Asn Thr Asp Arg Asn Gly Asp Ala Leu
515 520 525

Pro Glu Asp Asn Leu Thr Pro Gln Leu Tyr Asp Ala Gln Asp Lys Arg
530 535 540

Val Thr Leu Thr Asn Lys Pro Cys Ser Thr Asp Asn Pro Cys Val Phe
545 550 555 560

Ile Ala Lys Gln Asp Lys Glu Lys Gly Thr Val Thr Leu Ser Ser Thr
565 570 575

Leu Pro Gly Thr Tyr Arg Trp Lys Ala Lys Ala Ala Pro Tyr Asp Asp
580 585 590

Ser Asn Tyr Val Asp Val Thr Phe Leu Gly Ala Glu Ile Gly Gly Leu
595 600 605

Asn Ala Phe Ile Tyr Arg Val Gly Ala Ala Lys Pro Ser Asn Leu Ile
610 615 620

Gly Lys Asp Lys Glu Pro Leu Pro Ser Thr Thr Phe Ile Asp Leu Phe
625 630 635 640

Tyr Gly Ala Thr Thr Ile Lys Thr Val Ser Ser Ser Arg Ser Lys Asn
645 650 655

Leu Thr Lys Arg Trp Cys Ser Thr Thr Ser Gly Asn Leu Pro Ala
660 665 670

Arg Ala Ser Met Val Ser Gly Cys Thr Gly Glu His Ser Asn Glu Asp
675 680 685

Ile Val Ile Pro Ala Thr Asn Arg Glu Ala Ala Gln Thr Tyr Gly Ala
690 695 700

Gln Ala Gly Asp Gly Leu Gln Gly Tyr Gly Leu Arg Val Leu Tyr Thr
705 710 715 720

Lys Lys

<210> 32
<211> 319
<212> PRT
<213> Escherichia coli

<400> 32

Met Lys Gln Asp Lys Arg Arg Gly Leu Thr Arg Ile Ala Leu Ala Leu
1 5 10 15

Ala Leu Ala Gly Tyr Cys Val Ala Pro Val Ala Leu Ala Glu Asp Ser
20 25 30

Ala Trp Val Asp Ser Gly Glu Thr Asn Ile Phe Gln Gly Thr Ile Pro
35 40 45

Trp Leu Tyr Ser Glu Gly Gly Ser Ala Thr Thr Asp Ala Asp Arg Val
50 55 60

Thr Leu Thr Ser Asp Leu Lys Gly Ala Arg Pro Gln Gly Met Lys Arg
65 70 75 80

Thr Ser Val Phe Thr Arg Val Ile Asn Ile Gly Asp Thr Glu Gly Asp
85 90 95

Val Asp Leu Gly Gly Leu Gly Asp Asn Ala Lys Thr Ile Asp Thr Ile
100 105 110

Arg Trp Met Ser Tyr Lys Asp Ala Gln Gly Gly Asp Pro Lys Glu Leu
115 120 125

Ala Thr Lys Val Thr Ser Tyr Thr Leu Thr Asp Ala Asp Arg Gly Arg
130 135 140

Tyr Ile Gly Ile Glu Ile Thr Pro Thr Thr Gln Thr Gly Thr Pro Asn
145 150 155 160

Val Gly Thr Ala Leu His Leu Tyr Asp Val Ser Thr Ala Ser Gly Gly
165 170 175

Gly Ser Asp Ser Asp Asn Val Ala Pro Gly Pro Val Val Asn Gln Asn
180 185 190

Leu Lys Val Ala Ile Phe Val Asp Gly Thr Ser Ile Asn Leu Ile Asn
195 200 205

Gly Ser Thr Pro Ile Glu Leu Gly Lys Thr Tyr Val Ala Lys Leu Tyr
210 215 220

Ser Asp Glu Asn Lys Asn Gly Lys Phe Asp Ala Gly Thr Asp Ala Asp
225 230 235 240

Val Thr Ala Asn Tyr Asp Phe Arg Trp Val Leu Ser Gly Ser Ser Gln
245 250 255

Gln Leu Gly Thr Ser Gly Gly Ile Val Asn Ser Ser Phe Asp Asn Asn
260 265 270

Asn Leu Val Ile Pro Ala Thr Asn Asp Glu Ala Arg Thr Asn Leu Asn
275 280 285

Gly Pro Ala Arg Asp Gly Lys Glu Ala Leu Ser Ile Pro Thr Asn Gly
290 295 300

Asp Gly Val Gln Gly Tyr Lys Leu His Ile Ile Tyr Lys His Lys
305 310 315

<210> 33
<211> 629
<212> PRT
<213> Escherichia coli

<400> 33

Met Lys Lys Val Leu Thr Leu Ser Leu Leu Ala Leu Cys Val Ser His
1 5 10 15

Ser Ala Val Ala Ala Asn Tyr Thr Phe Asn Asn Asp Asn Ile Ala Leu
20 25 30

Ser Phe Asp Asp Thr Asn Ser Thr Ile Val Leu Lys Asp Arg Arg Thr
35 40 45

Asn His Pro Ile Thr Pro Gln Glu Leu Phe Phe Leu Thr Leu Pro Asp
50 55 60

Glu Thr Lys Ile His Thr Ala Asp Phe Lys Ile Lys His Ile Lys Lys
65 70 75 80

Gln Asp Asn Ala Ile Val Ile Asp Phe Thr Arg Pro Asp Phe Asn Val
85 90 95

Thr Val Gln Leu Asn Leu Val Lys Gly Lys Tyr Ala Ser Ile Asp Tyr
100 105 110

Thr Ile Ala Ala Val Gly Gln Pro Arg Asp Val Ala Lys Ile Thr Phe
115 120 125

Phe Pro Thr Lys Lys Gln Phe Gln Ala Pro Tyr Val Asp Gly Ala Ile
130 135 140

Thr Ser Ser Pro Ile Ile Ala Asp Ser Phe Phe Ile Leu Pro Asn Lys
145 150 155 160

Pro Ile Val Asn Thr Tyr Ala Tyr Glu Ala Thr Thr Asn Leu Asn Val
165 170 175

Glu Leu Lys Thr Pro Ile Gln Pro Glu Thr Pro Val Ser Phe Thr Thr
180 185 190

Trp Phe Gly Thr Phe Pro Glu Thr Ser Gln Leu Arg Arg Ser Val Asn
195 200 205

Gln Phe Ile Asn Ala Val Arg Pro Arg Pro Tyr Lys Pro Tyr Leu His
210 215 220

Tyr Asn Ser Trp Met Asp Ile Gly Phe Phe Thr Pro Tyr Thr Glu Gln
225 230 235 240

Asp Val Leu Gly Arg Met Asp Glu Trp Asn Lys Glu Phe Ile Ser Gly
245 250 255

Arg Gly Val Ala Leu Asp Ala Phe Leu Leu Asp Asp Gly Trp Asp Asp
260 265 270

Leu Thr Gly Arg Trp Leu Phe Gly Pro Ala Phe Ser Asn Gly Phe Ser

275

280

285

Lys Val Arg Glu Lys Ala Asp Ser Leu His Ser Ser Val Gly Leu Trp
290 295 300

Leu Ser Pro Trp Gly Gly Tyr Asn Lys Pro Gln Arg Arg Ser Arg Phe
305 310 315 320

Ala Cys Lys Arg Val Trp Val Arg Asn Arg Gly Arg Gln Ala Gly Ala
325 330 335

Phe Gly Ser Glu Leu Leu Lys Asn Phe Asn Glu Gln Ile Ile Asn Leu
340 345 350

Ile Lys Asn Glu His Ile Thr Ser Phe Lys Leu Asp Gly Met Gly Asn
355 360 365

Ala Ser Ser His Ile Lys Gly Ser Pro Phe Ala Ser Asp Phe Asp Ala
370 375 380

Ser Ile Ala Leu Leu His Asn Met Arg Arg Ala Asn Pro Asn Leu Phe
385 390 395 400

Ile Asn Leu Thr Thr Gly Thr Asn Ala Ser Pro Ser Trp Leu Phe Tyr
405 410 415

Ala Asp Ser Ile Trp Arg Gln Gly Asp Asp Ile Asn Leu Tyr Gly Pro
420 425 430

Gly Thr Pro Val Gln Gln Trp Ile Thr Tyr Arg Asp Ala Glu Thr Tyr
435 440 445

Arg Ser Ile Val Arg Lys Gly Pro Leu Phe Pro Leu Asn Ser Leu Met
450 455 460

Tyr His Gly Ile Val Ser Ala Glu Asn Ala Tyr Tyr Gly Leu Glu Lys
465 470 475 480

Val Gln Thr Asp Ser Asp Phe Ala Asp Gln Val Trp Ser Tyr Phe Ala
485 490 495

Thr Gly Thr Gln Leu Gln Glu Leu Tyr Ile Thr Pro Ser Met Leu Asn
500 505 510

Lys Val Lys Trp Asp Thr Leu Ala Lys Ala Ala Lys Trp Ser Lys Glu
515 520 525

Asn Ala Ser Val Leu Val Asp Thr His Trp Ile Gly Gly Asp Pro Thr
530 535 540

Ala Leu Ala Val Tyr Gly Trp Ala Ser Trp Ser Lys Asp Lys Ala Ile
545 550 555 560

Leu Gly Leu Arg Asn Pro Ser Asp Lys Pro Gln Thr Tyr Tyr Leu Asp
565 570 575

Leu Ala Lys Asp Phe Glu Ile Pro Ala Gly Asn Ala Ala Gln Phe Ser
580 585 590

Leu Lys Ala Val Tyr Gly Ser Asn Lys Thr Val Pro Val Glu Tyr Lys
595 600 605

Asn Ala Thr Val Ile Thr Leu Gln Pro Leu Glu Thr Leu Val Phe Glu
610 615 620

Ala Val Thr Ile Asn
625

<210> 34
<211> 1778
<212> PRT
<213> Escherichia coli

<400> 34

Met Asn Lys Ile Phe Lys Val Ile Trp Asn Pro Ala Thr Gly Ser Tyr
1 5 10 15

Thr Val Ala Ser Glu Thr Ala Lys Ser Arg Gly Lys Lys Ser Gly Arg
20 25 30

Ser Lys Leu Leu Ile Ser Ala Leu Val Ala Gly Gly Leu Leu Ser Ser
35 40 45

Phe Gly Ala Ser Ala Asp Asn Tyr Thr Gly Gln Pro Thr Asp Tyr Gly
50 55 60

Asp Gly Ser Ala Gly Asp Gly Trp Val Ala Ile Gly Lys Gly Ala Lys
65 70 75 80

Ala Asn Thr Phe Met Asn Thr Ser Gly Ala Ser Thr Ala Leu Gly Tyr
85 90 95

Asp Ala Ile Ala Glu Gly Glu Tyr Ser Ser Ala Ile Gly Ser Lys Thr
100 105 110

Leu Ala Thr Gly Gly Ala Ser Met Ala Phe Gly Val Ser Ala Lys Ala
115 120 125

Met Gly Asp Arg Ser Val Ala Leu Gly Ala Ser Ser Val Ala Asn Gly
130 135 140

Asp Arg Ser Met Ala Phe Gly Arg Tyr Ala Lys Thr Asn Gly Phe Thr
145 150 155 160

Ser Leu Ala Ile Gly Asp Ser Ser Leu Ala Asp Gly Glu Lys Thr Ile
165 170 175

Ala Leu Gly Asn Thr Ala Lys Ala Tyr Glu Ile Met Ser Ile Ala Leu
180 185 190

Gly Asp Asn Ala Asn Ala Ser Lys Glu Tyr Ala Met Ala Leu Gly Ala
195 200 205

Ser Ser Lys Ala Gly Gly Ala Asp Ser Leu Ala Phe Gly Arg Lys Ser
210 215 220

Thr Ala Asn Ser Thr Gly Ser Leu Ala Ile Gly Ala Asp Ser Ser Ser
225 230 235 240

Ser Asn Asp Asn Ala Ile Ala Ile Gly Asn Lys Thr Gln Ala Leu Gly
245 250 255

Val Asn Ser Met Ala Leu Gly Asn Ala Ser Gln Ala Ser Gly Glu Ser
260 265 270

Ser Ile Ala Leu Gly Asn Thr Ser Glu Ala Ser Glu Gln Asn Ala Ile
275 280 285

Ala Leu Gly Gln Gly Ser Ile Ala Ser Lys Val Asn Ser Ile Ala Leu
290 295 300

Gly Ser Asn Ser Leu Ser Ser Gly Glu Asn Ala Ile Ala Leu Gly Glu
305 310 315 320

Gly Ser Ala Ala Gly Gly Ser Asn Ser Leu Ala Phe Gly Ser Gln Ser
325 330 335

Arg Ala Asn Gly Asn Asp Ser Val Ala Ile Gly Val Gly Ala Ala Ala
340 345 350

Ala Thr Asp Asn Ser Val Ala Ile Gly Ala Gly Ser Thr Thr Asp Ala
355 360 365

Ser Asn Thr Val Ser Val Gly Asn Ser Ala Thr Lys Arg Lys Ile Val
370 375 380

Asn Met Ala Ala Gly Ala Ile Ser Asn Thr Ser Thr Asp Ala Ile Asn
385 390 395 400

Gly Ser Gln Leu Tyr Thr Ile Ser Asp Ser Val Ala Lys Arg Leu Gly
405 410 415

Gly Gly Ala Thr Val Gly Ser Asp Gly Thr Val Thr Ala Val Ser Tyr
420 425 430

Ala Leu Arg Ser Gly Thr Tyr Asn Asn Val Gly Asp Ala Leu Ser Gly
435 440 445

Ile Asp Asn Asn Thr Leu Gln Trp Asn Lys Thr Ala Gly Ala Phe Ser
450 455 460

Ala Asn His Gly Ala Asn Ala Thr Asn Lys Ile Thr Asn Val Ala Lys
465 470 475 480

Gly Thr Val Ser Ala Thr Ser Thr Asp Val Val Asn Gly Ser Gln Leu
485 490 495

Tyr Asp Leu Gln Gln Asp Ala Leu Leu Trp Asn Gly Thr Ala Phe Ser
500 505 510

Ala Ala His Gly Thr Glu Ala Thr Ser Lys Ile Thr Asn Val Thr Ala

515

520

525

Gly Asn Leu Thr Ala Gly Ser Thr Asp Ala Val Asn Gly Ser Gln Leu
530 535 540

Lys Thr Thr Asn Asp Asn Val Thr Thr Asn Thr Thr Asn Ile Ala Thr
545 550 555 560

Asn Thr Thr Asn Ile Thr Asn Leu Thr Asp Ala Val Asn Gly Leu Gly
565 570 575

Asp Asp Ser Leu Leu Trp Asn Lys Ala Ala Gly Ala Phe Ser Ala Ala
580 585 590

His Gly Thr Glu Ala Thr Ser Lys Ile Thr Asn Val Thr Ala Gly Asn
595 600 605

Leu Thr Ala Gly Ser Thr Asp Ala Val Asn Gly Ser Gln Leu Lys Thr
610 615 620

Thr Asn Asp Asn Val Thr Thr Asn Thr Thr Asn Ile Ala Thr Asn Thr
625 630 635 640

Thr Asn Ile Thr Asn Leu Thr Asp Ala Val Asn Gly Leu Gly Asp Asp
645 650 655

Ser Leu Leu Trp Asn Lys Thr Ala Gly Ala Phe Ser Ala Ala His Gly
660 665 670

Thr Asp Ala Thr Ser Lys Ile Thr Asn Val Thr Ala Gly Asn Leu Thr
675 680 685

Ala Gly Ser Thr Asp Ala Val Asn Gly Ser Gln Leu Lys Thr Thr Asn
690 695 700

Asp Asn Val Thr Thr Asn Thr Thr Asn Ile Ala Thr Asn Thr Thr Asn
705 710 715 720

Ile Thr Asn Leu Thr Asp Ala Val Asn Gly Leu Gly Asp Asp Ser Leu
725 730 735

Leu Trp Asn Lys Thr Ala Gly Ala Phe Ser Ala Ala His Gly Thr Asp
740 745 750

Ala Thr Ser Lys Ile Thr Asn Val Lys Ala Gly Asp Leu Thr Ala Gly
755 760 765

Ser Thr Asp Ala Val Asn Gly Ser Gln Leu Lys Thr Thr Asn Asp Asn
770 775 780

Val Ser Thr Asn Thr Thr Asn Ile Thr Asn Leu Thr Asp Ala Val Asn
785 790 795 800

Gly Leu Gly Asp Asp Ser Leu Leu Trp Asn Lys Thr Ala Gly Ala Phe
805 810 815

Ser Ala Ala His Gly Thr Asp Ala Thr Ser Lys Ile Thr Asn Val Lys
820 825 830

Ala Gly Asp Leu Thr Ala Gly Ser Thr Asp Ala Val Asn Gly Ser Gln
835 840 845

Leu Lys Thr Thr Asn Asp Asn Val Ser Thr Asn Thr Thr Asn Ile Thr
850 855 860

Asn Leu Thr Asp Ser Val Gly Asp Leu Lys Asp Asp Ser Leu Leu Trp
865 870 875 880

Asn Lys Ala Ala Gly Ala Phe Ser Ala Ala His Gly Thr Glu Ala Thr
885 890 895

Ser Lys Ile Thr Asn Leu Leu Ala Gly Lys Ile Ser Ser Asn Ser Thr
900 905 910

Asp Ala Ile Asn Gly Ser Gln Leu Tyr Gly Val Ala Asp Ser Phe Thr
915 920 925

Ser Tyr Leu Gly Gly Gly Ala Asp Ile Ser Asp Thr Gly Val Leu Ser
930 935 940

Gly Pro Thr Tyr Thr Ile Gly Gly Thr Asp Tyr Thr Asn Val Gly Asp
945 950 955 960

Ala Leu Ala Ala Ile Asn Thr Ser Phe Ser Thr Ser Leu Gly Asp Ala
965 970 975

Leu Leu Trp Asp Ala Thr Ala Gly Lys Phe Ser Ala Lys His Gly Ile
980 985 990

Asn Asn Ala Pro Ser Val Ile Thr Asp Val Ala Asn Gly Ala Val Ser
995 1000 1005

Ser Thr Ser Ser Asp Ala Ile Asn Gly Ser Gln Leu Tyr Gly Val
1010 1015 1020

Ser Asp Tyr Ile Ala Asp Ala Leu Gly Gly Asn Ala Val Val Asn
1025 1030 1035

Thr Asp Gly Ser Ile Thr Thr Pro Thr Tyr Ala Ile Ala Gly Gly
1040 1045 1050

Ser Tyr Asn Asn Val Gly Asp Ala Leu Glu Ala Ile Asp Thr Thr
1055 1060 1065

Leu Asp Asp Ala Leu Leu Trp Asp Thr Thr Ala Asn Gly Gly Asn
1070 1075 1080

Gly Ala Phe Ser Ala Ala His Gly Lys Asp Lys Thr Ala Ser Val
1085 1090 1095

Ile Thr Asn Val Ala Asn Gly Ala Val Ser Ala Thr Ser Asn Asp
1100 1105 1110

Ala Ile Asn Gly Ser Gln Leu Tyr Ser Thr Asn Lys Tyr Ile Ala
1115 1120 1125

Asp Ala Leu Gly Gly Asp Ala Glu Val Asn Ala Asp Gly Thr Ile
1130 1135 1140

Thr Ala Pro Thr Tyr Thr Ile Ala Asn Thr Asp Tyr Asn Asn Val
1145 1150 1155

Gly Glu Ala Leu Asp Ala Leu Asp Asn Asn Ala Leu Leu Trp Asp
1160 1165 1170

Glu Asp Ala Gly Ala Tyr Asn Ala Ser His Asp Gly Asn Ala Ser
1175 1180 1185

Lys Ile Thr Asn Val Ala Ala Gly Asp Leu Ser Thr Thr Ser Thr
1190 1195 1200

Asp Ala Val Asn Gly Ser Gln Leu Asn Ala Thr Asn Ile Leu Val
1205 1210 1215

Thr Gln Asn Ser Gln Met Ile Asn Gln Leu Ala Gly Asn Thr Ser
1220 1225 1230

Glu Thr Tyr Ile Glu Glu Asn Gly Ala Gly Ile Asn Tyr Val Arg
1235 1240 1245

Thr Asn Asp Ser Gly Leu Ala Phe Asn Asp Ala Ser Ala Ser Gly
1250 1255 1260

Ile Gly Ala Thr Ala Val Gly Tyr Asn Ala Val Ala Ser His Ala
1265 1270 1275

Ser Ser Val Ala Ile Gly Gln Asp Ser Ile Ser Glu Val Asp Thr
1280 1285 1290

Gly Ile Ala Leu Gly Ser Ser Ser Val Ser Ser Arg Val Ile Val
1295 1300 1305

Lys Gly Thr Arg Asn Thr Ser Val Ser Glu Glu Gly Val Val Ile
1310 1315 1320

Gly Tyr Asp Thr Thr Asp Gly Glu Leu Leu Gly Ala Leu Ser Ile
1325 1330 1335

Gly Asp Asp Gly Lys Tyr Arg Gln Ile Ile Asn Val Ala Asp Gly
1340 1345 1350

Ser Glu Ala His Asp Ala Val Thr Val Arg Gln Leu Gln Asn Ala
1355 1360 1365

Ile Gly Ala Val Ala Thr Thr Pro Thr Lys Tyr Tyr His Ala Asn
1370 1375 1380

Ser Thr Ala Glu Asp Ser Leu Ala Val Gly Glu Asp Ser Leu Ala
1385 1390 1395

Met Gly Ala Lys Thr Ile Val Asn Gly Asn Ala Gly Ile Gly Ile
1400 1405 1410

Gly Leu Asn Thr Leu Val Leu Ala Asp Ala Ile Asn Gly Ile Ala
1415 1420 1425

Ile Gly Ser Asn Ala Arg Ala Asn His Ala Asp Ser Ile Ala Met
1430 1435 1440

Gly Asn Gly Ser Gln Thr Thr Arg Gly Ala Gln Thr Asn Tyr Thr
1445 1450 1455

Ala Tyr Asn Met Asp Ala Pro Gln Asn Ser Val Gly Glu Phe Ser
1460 1465 1470

Val Gly Ser Glu Asp Gly Gln Arg Gln Ile Thr Asn Val Ala Ala
1475 1480 1485

Gly Ser Ala Asp Thr Asp Ala Val Asn Val Gly Gln Leu Lys Val
1490 1495 1500

Thr Asp Ala Gln Val Ser Gln Asn Thr Gln Ser Ile Thr Asn Leu
1505 1510 1515

Asn Thr Gln Val Thr Asn Leu Asp Thr Arg Val Thr Asn Ile Glu
1520 1525 1530

Asn Gly Ile Gly Asp Ile Val Thr Thr Gly Ser Thr Lys Tyr Phe
1535 1540 1545

Lys Thr Asn Thr Asp Gly Ala Asp Ala Asn Ala Gln Gly Lys Asp
1550 1555 1560

Ser Val Ala Ile Gly Ser Gly Ser Ile Ala Ala Ala Asp Asn Ser
1565 1570 1575

Val Ala Leu Gly Thr Gly Ser Val Ala Asp Glu Glu Asn Thr Ile
1580 1585 1590

Ser Val Gly Ser Ser Thr Asn Gln Arg Arg Ile Thr Asn Val Ala
1595 1600 1605

Ala Gly Val Asn Ala Thr Asp Ala Val Asn Val Ser Gln Leu Lys
1610 1615 1620

Ser Ser Glu Ala Gly Gly Val Arg Tyr Asp Thr Lys Ala Asp Gly
1625 1630 1635

Ser Ile Asp Tyr Ser Asn Ile Thr Leu Gly Gly Asn Ser Gly
1640 1645 1650

Thr Thr Arg Ile Ser Asn Val Ser Ala Gly Val Asn Asn Asn Asp
1655 1660 1665

Ala Val Asn Tyr Ala Gln Leu Lys Gln Ser Val Gln Glu Thr Lys
1670 1675 1680

Gln Tyr Thr Asp Gln Arg Met Val Glu Met Asp Asn Lys Leu Ser
1685 1690 1695

Lys Thr Glu Ser Lys Leu Ser Gly Gly Ile Ala Ser Ala Met Ala
1700 1705 1710

Met Thr Gly Leu Pro Gln Ala Tyr Thr Pro Gly Ala Ser Met Ala
1715 1720 1725

Ser Ile Gly Gly Gly Thr Tyr Asn Gly Glu Ser Ala Val Ala Leu
1730 1735 1740

Gly Val Ser Met Val Ser Ala Asn Gly Arg Trp Val Tyr Lys Leu
1745 1750 1755

Gln Gly Ser Thr Asn Ser Gln Gly Glu Tyr Ser Ala Ala Leu Gly
1760 1765 1770

Ala Gly Ile Gln Trp
1775

<210> 35

<211> 227

<212> PRT

<213> Escherichia coli

<400> 35

Met Asn Leu Lys Lys Thr Leu Leu Ser Val Leu Met Ile Leu Gln Leu

1 5 10 15

Cys Leu Leu Val Gly Cys Asp Tyr Ile Glu Lys Ala Ser Lys Val Asp
20 25 30

Asp Leu Val Thr Gln Gln Glu Leu Gln Lys Ser Lys Ile Glu Ala Leu
35 40 45

Glu Lys Gln Gln Glu Leu Asp Lys Arg Lys Ile Glu His Phe Glu Lys
50 55 60

Gln Gln Thr Thr Ile Ile Asn Ser Thr Lys Thr Leu Ala Gly Val Val
65 70 75 80

Lys Ala Val Lys Asn Lys Gln Asp Glu Phe Val Phe Thr Glu Phe Asn
85 90 95

Pro Ala Gln Thr Gln Tyr Phe Ile Leu Asn Asn Gly Ser Val Gly Leu
100 105 110

Ala Gly Lys Ile Leu Ser Ile Asp Ala Val Glu Asn Gly Ser Val Ile
115 120 125

Arg Ile Ser Leu Val Asn Leu Leu Ser Val Pro Val Ser Asn Met Gly
130 135 140

Phe Tyr Ala Thr Trp Gly Gly Glu Lys Pro Thr Asp Ile Asn Ala Leu
145 150 155 160

Ala Lys Trp Gln Gln Leu Leu Phe Ser Thr Ala Met Asn Ser Ser Leu
165 170 175

Lys Leu Leu Pro Gly Gln Trp Gln Asp Ile Asn Leu Thr Leu Lys Gly
180 185 190

Val Ser Pro Asn Asn Leu Lys Tyr Leu Lys Leu Ala Ile Asn Met Ala
195 200 205

Asn Ile Gln Phe Asp Arg Leu Gln Pro Ala Glu Ser Pro Gln Arg Lys
210 215 220

Asn Lys Lys
225

<210> 36
<211> 1109
<212> PRT
<213> Escherichia coli

<400> 36

Met Lys Arg Val Val Arg Leu Leu Gly Val Gly Leu Leu Leu Leu Val
1 5 10 15

Val Leu Leu Leu Ile Leu Phe Val Leu Ala Gln Thr Thr Pro Leu Ile
20 25 30

Ser Ala Gln Asp Glu His Ala Val Trp Leu Arg Leu Leu Ile Thr Ala
35 40 45

Ile Val Ile Cys Leu Leu Ser Met Cys Ile Phe Phe Leu Phe Ser Phe
50 55 60

Arg Gln Asn Glu Ala Ser Thr Ile Ser Leu Tyr Ala Gln Pro Thr Asp
65 70 75 80

Ile Lys Glu Ile Asn Thr Glu Gln Pro Asn Tyr Ala Ser Leu Leu Thr
85 90 95

Ile Tyr Leu Arg Asp Arg Tyr Gly Pro Phe Trp Arg Arg Lys Val Arg
100 105 110

Leu Leu Leu Val Thr Gly Glu Pro Glu Gln Ala Glu Ala Ile Ala Pro
115 120 125

Gly Leu Thr Gly Gln His Trp Leu Glu Gly Asp His Thr Val Leu Ile
130 135 140

Tyr Gly Gly Arg Pro Thr Ala Glu Pro Asp Val Thr Leu Leu Thr Ala
145 150 155 160

Leu Lys Lys Leu Arg Arg Ser Arg Pro Leu Asp Gly Ile Ile Trp Ala
165 170 175

Leu Thr Glu Glu Gln Ser Arg Gln Thr Ala Gln Leu Asp Lys Gly Trp
180 185 190

Arg Gly Leu Ile Asn Gly Gly Lys Arg Leu Gly Phe Gln Ala Pro Leu

195 200 205
Tyr Leu Trp Gln Val Cys Asp Asp Gly Asp Tyr Gln Thr Gly Arg Pro
210 215 220

Leu Gln Ser Val Gly Cys Leu Leu Pro Glu Arg Cys Thr Pro Glu Gln
225 230 240

Leu Ala Val Met Leu Glu Ala Ala Asp Gly Thr Gly His Val Ala
245 250 255

Ala Thr Asp Arg Tyr Arg Met Phe Ser Ala Ala Ser Gly Ser Tyr Pro
260 265 270

Cys Arg Ala Gly Tyr Cys Ser Leu Ala Asp Arg Pro Glu Thr Ala Ala
275 280 285

Gly Arg Arg Arg Ile Phe Phe Pro Ala Pro Ala Arg Pro Asp Val Gln
290 295 300

Pro Ala Ala Cys Arg Arg Ala Gly Gly Gln His Leu Met Gln Trp Leu
305 310 320

Pro Ser Pro Val Trp Ala Gly Val Thr Val Ile Thr Arg Ala Gly Ala
325 330 335

Arg Trp Val Phe Leu Trp Leu Arg Thr Ala Leu Met Ser Ala Val Cys
340 345 350

Val Leu Val Ile Trp Gly Ala Gly Met Thr Thr Ser Phe Phe Ala Asn
355 360 365

Arg Ala Leu Val Gln Glu Thr Gly Ile Gln Thr Ala Arg Ala Leu Asp
370 375 380

Thr Arg Leu Pro Leu Ala Glu Gln Leu Val Ala Leu His Thr Leu Gln
385 390 395 400

Gly Glu Leu Glu Arg Leu Gln Tyr Arg Ile Arg Glu Gly Ala Pro Trp
405 410 415

Tyr Gln Arg Phe Gly Leu Glu Arg Asn Gln Gln Leu Leu Ala Ala Ala
420 425 430

Phe Pro Gly Tyr Ala Gln Ala Ala Asn Arg Leu Val Arg Asp Val Ala
435 440 445

Val Asp His Leu Gln Gln Gln Leu Asn Ala Phe Val Ala Leu Pro Pro
450 455 460

Asn Ser Pro Gln Arg Thr Ala Thr Gly Glu Gln Arg Tyr Lys Gln Leu
465 470 475 480

Lys Ala Leu Leu Met Thr Ser Arg Pro Glu Lys Ala Asp Ala Ala Phe
485 490 495

Phe Ser Thr Thr Leu Met Ala Asp Gly Leu Arg Tyr Glu Asn Ile Pro
500 505 510

Glu Gly Val Arg Gln Ser Val Leu Pro Ser Leu Leu Thr Phe Trp Thr
515 520 525

Ala Asn Leu Pro Glu His Pro Gln Trp Lys Thr Ser Pro Pro Pro Glu
530 535 540

Leu Thr Gly Ala Val Arg Lys Ile Leu Leu Arg Gln Ile Gly Val Arg
545 550 555 560

Asn Ala Glu Asn Thr Leu Tyr Gln Asn Val Leu Gln Gln Val Ser Arg
565 570 575

Asn Tyr Ala Asp Met Thr Leu Ala Asp Met Thr Gly Asp Thr Leu Thr
580 585 590

Glu Ser Leu Phe Ser Thr Glu Gln Thr Val Pro Gly Met Phe Thr Arg
595 600 605

Gln Ala Trp Glu Gly Gln Val Arg Glu Ala Ile Glu Gln Val Val Thr
610 615 620

Ala Arg Arg Glu Glu Ile Asp Trp Val Leu Ser Asp Arg Gln Gln Asp
625 630 635 640

Thr Ser Ala Asp Ile Ser Pro Asp Thr Leu Arg Asn Arg Leu Thr Ser
645 650 655

Arg Tyr Phe Thr Asp Phe Ala Gly Ser Trp Leu Ala Phe Leu Asn Ser
660 665 670

Ile His Trp Lys Lys Glu Asp Ser Leu Ser Gly Ile Leu Asp Gln Leu
675 680 685

Thr Leu Met Ala Asp Ala Arg Gln Ser Pro Leu Ile Ala Leu Thr Asp
690 695 700

Thr Leu Ala Trp Gln Ala Ala Thr Gly Arg Glu Asn Arg Gly Leu Ser
705 710 715 720

Asp Ser Leu Ala Lys Ser Ala Gln Glu Leu Phe Asn Gly Lys Glu Lys
725 730 735

Thr Pro Gln Gln Ser Arg Glu Gly Asp Asp Val Pro Val Gly Pro Leu
740 745 750

Asp Lys Thr Phe Thr Pro Leu Leu Arg Leu Leu Gly Asp Lys Ala Gly
755 760 765

Gly Gly Asp Ser Gln Leu Ser Leu Gln Thr Tyr Leu Thr Arg Val Thr
770 775 780

Arg Val Arg Leu Lys Leu Gln Gln Val Thr Asn Ala Pro Asp Pro Gln
785 790 795 800

Glu Met Thr Gln Gln Leu Ala Gln Thr Val Leu Gln Gly Lys Thr Val
805 810 815

Asp Leu Thr Asp Thr Arg Asp Tyr Gly Arg Leu Ile Ala Ala Ser Leu
820 825 830

Gly Glu Glu Trp Ser Gly Phe Gly Gln Ala Leu Phe Val Arg Pro Val
835 840 845

Glu Gln Ser Trp Arg Gln Val Leu Thr Pro Ala Ala Asp Ser Leu Asn
850 855 860

Arg Gln Trp Gln Arg Ala Ile Val Ser His Trp Asn Gln Asp Phe Ala
865 870 875 880

Gly Arg Tyr Pro Phe Lys Ala Ser Gln Asn Asp Ala Ser Leu Pro Leu

885 890 895

Leu Ala Gln Tyr Leu Arg Asp Asp Gly Arg Ile Asn Leu Phe Ile Ala
900 905 910

Ala Asn Leu Ser Gly Val Leu Lys Arg Glu Gly Arg Tyr Trp Val Ala
915 920 925

Asp Ala Met Asn Thr Gln Gly Leu Thr Val Asn Pro Asp Phe Ile Arg
930 935 940

Ala Leu Asn Arg Leu Arg Asp Val Ala Asp Thr Ala Phe Ala Ser Gly
945 950 955 960

Asp Ala Gly Ile His Phe Glu Leu Arg Ala Lys Pro Ala Arg Asp Val
965 970 975

Met Lys Thr His Leu Val Ile Asp Gly Gln Glu Leu Glu Tyr Phe Asn
980 985 990

Gln Lys Glu Arg Trp Gln Arg Phe Asn Trp Pro Asp Glu Gln Trp Gln
995 1000 1005

Pro Gly Ala Ser Leu Ser Trp Thr Ser Thr Gln Ala Met Glu Arg
1010 1015 1020

Ile Leu Ala Asp Tyr Arg Gly Ser Trp Ser Leu Ile Arg Leu Leu
1025 1030 1035

Glu Gln Ala Gln Val Thr Pro Val Asp Ser Ser Thr Phe Lys Val
1040 1045 1050

Val Trp Lys Ala Gln Asp Gly Leu Pro Leu Asn Tyr Leu Leu Arg
1055 1060 1065

Val Glu Gln Gly Lys Gly Pro Leu Ala Leu Leu Glu Leu Lys Asn
1070 1075 1080

Phe Arg Leu Pro Gly Gln Val Phe Leu Thr Gly Lys Ser Met Lys
1085 1090 1095

Asp Val Glu Glu Tyr Gly Glu Asp Ala Asp Glu
1100 1105

<210> 37
<211> 178
<212> PRT
<213> Escherichia coli

<400> 37

Met Phe Pro Ile Arg Phe Lys Arg Pro Ala Leu Leu Cys Met Ala Met
1 5 10 15

Leu Thr Val Val Leu Ser Gly Cys Gly Leu Ile Gln Lys Val Val Asp
20 25 30

Glu Ser Lys Ser Val Ala Ser Ala Val Phe Tyr Lys Gln Ile Lys Ile
35 40 45

Leu His Leu Asp Phe Phe Ser Arg Ser Ala Leu Asn Thr Asp Ala Glu
50 55 60

Asp Thr Pro Leu Ser Thr Met Val His Val Trp Gln Leu Lys Thr Arg
65 70 75 80

Glu Asp Phe Asp Lys Ala Asp Tyr Asp Thr Leu Phe Met Gln Glu Glu
85 90 95

Lys Thr Leu Glu Lys Asp Val Leu Ala Lys His Thr Val Trp Val Lys
100 105 110

Pro Glu Gly Thr Ala Ser Leu Asn Val Pro Leu Asp Lys Glu Thr Gln
115 120 125

Phe Val Ala Ile Ile Gly Gln Phe Tyr His Pro Asp Glu Lys Ser Asp
130 135 140

Ser Trp Arg Leu Val Ile Lys Arg Asp Glu Leu Glu Ala Asp Lys Pro
145 150 155 160

Arg Ser Ile Glu Leu Met Arg Ser Asp Leu Arg Leu Leu Pro Leu Lys
165 170 175

Asp Lys

<210> 38
<211> 280
<212> PRT
<213> Escherichia coli

<400> 38

Met Ile Ser Gly Gly Asn Met Leu Lys Glu Trp Met Ile Phe Thr Cys
1 5 10 15

Ser Leu Leu Thr Leu Ala Gly Ala Ser Leu Pro Leu Ser Gly Cys Ile
20 25 30

Ser Arg Gly Gln Glu Ser Ile Ser Glu Gly Ala Ala Phe Gly Ala Gly
35 40 45

Ile Leu Arg Glu Pro Gly Ala Thr Lys Lys Ala Asp Thr Lys Asp Leu
50 55 60

Asn Val Pro Pro Pro Val Tyr Gly Pro Pro Gln Val Ile Phe Arg Ile
65 70 75 80

Asp Asp Asn Arg Tyr Phe Thr Leu Glu Asn Tyr Thr His Cys Glu Asn
85 90 95

Gly Gln Thr Phe Tyr Asn Asn Lys Ala Lys Asn Ile His Val Lys Ile
100 105 110

Leu Asp Ala Ser Gly Tyr Leu Phe Lys Gly Arg Leu Phe Trp Leu Ser
115 120 125

Thr Arg Asp Asp Phe Leu Ala Phe Pro Ala Thr Leu Asn Thr Arg His
130 135 140

Ala Ser Cys Met Gly Ser Asn Lys Gly Cys Met Asn Ala Val Ile Val
145 150 155 160

Thr Thr Asp Gly Gly Lys Arg Arg Ser Gly Val Pro Tyr Gly Ser Tyr
165 170 175

Thr Gln Asn Pro Thr Gly Ala Thr Arg Asp Tyr Asp Met Leu Val Met
180 185 190

Asn Asp Gly Phe Tyr Leu Leu Arg Tyr Arg Gly Gly Gln Gly Arg Phe
195 200 205

Ser Pro Val Ile Leu Arg Trp Ile Leu Ser Thr Glu Asp Ser Ser Gly
210 215 220

Val Val Arg Ser Glu Asp Ala Tyr Glu Leu Phe Arg Pro Gly Glu Glu
225 230 235 240

Val Pro Ser Thr Gly Phe Tyr Lys Ile Asp Leu Ser Arg Phe Tyr Pro
245 250 255

Lys Asn Asn Val Met Glu Met Gln Cys Asp Arg Thr Leu Glu Pro Val
260 265 270

Gln Pro Ser Glu Ser Lys Ile Gln
275 280

<210> 39

<211> 501

<212> PRT

<213> Escherichia coli

<400> 39

Met Glu His Val Ser Ile Lys Thr Leu Tyr His Leu Leu Cys Cys Met
1 5 10 15

Leu Leu Phe Ile Ser Ala Met Cys Ala Leu Ala Gln Glu His Glu Pro
20 25 30

Ile Gly Ala Gln Asp Glu Arg Leu Ser Thr Leu Ile His Gln Arg Met
35 40 45

Gln Glu Ala Lys Val Pro Ala Leu Ser Val Ser Val Thr Ile Lys Gly
50 55 60

Val Arg Gln Arg Phe Val Tyr Gly Val Ala Asp Val Ala Ser Gln Lys
65 70 75 80

Ala Asn Thr Leu Asp Thr Val Tyr Glu Leu Gly Ser Met Ser Lys Ala
85 90 95

Phe Thr Gly Leu Val Val Gln Ile Leu Ile Gln Glu Gly Arg Leu Arg
100 105 110

Gln Gly Asp Asp Ile Ile Thr Tyr Leu Pro Glu Met Arg Leu Asn Tyr
115 120 125

Gln Gly Lys Pro Ala Ser Leu Thr Val Ala Asp Phe Leu Tyr His Thr
130 135 140

Ser Gly Leu Pro Phe Ser Thr Leu Ala Arg Leu Glu Asn Pro Met Pro
145 150 155 160

Gly Ser Ala Val Ala Gln Gln Leu Arg Asn Glu Asn Leu Leu Phe Ala
165 170 175

Pro Gly Ala Lys Phe Ser Tyr Ala Ser Ala Asn Tyr Asp Val Leu Gly
180 185 190

Ala Val Ile Glu Asn Val Thr Gly Lys Thr Phe Thr Glu Val Ile Ala
195 200 205

Glu Arg Leu Thr Gln Pro Leu Gly Met Ser Ala Thr Val Ala Val Lys
210 215 220

Gly Asp Glu Ile Ile Val Asn Lys Ala Ser Gly Tyr Lys Leu Gly Phe
225 230 235 240

Gly Lys Pro Val Leu Phe His Ala Pro Leu Ala Arg Asn His Val Pro
245 250 255

Ala Ala Tyr Ile His Ser Thr Leu Pro Asp Met Glu Ile Trp Ile Asp
260 265 270

Ala Trp Leu His Arg Lys Ala Leu Pro Ala Thr Leu Arg Glu Ala Met
275 280 285

Ser Asn Ser Trp Arg Gly Asn Ser Asp Val Pro Leu Ala Ala Asp Asn
290 295 300

Arg Ile Leu Tyr Ala Ser Gly Trp Phe Ile Asp Gln Asn Gln Gly Pro
305 310 315 320

Tyr Ile Ser His Gly Gly Gln Asn Pro Asn Phe Ser Ser Cys Ile Ala
325 330 335

Leu Arg Pro Asp Gln Gln Ile Gly Ile Val Ala Leu Ala Asn Met Asn

340 345 350

Ser Asn Leu Ile Leu Gln Leu Cys Ala Asp Ile Asp Asn Tyr Leu Arg
355 360 365

Ile Gly Lys Tyr Ala Asp Gly Ala Gly Asp Ala Ile Thr Ala Thr Asp
370 375 380

Thr Leu Phe Val Tyr Leu Thr Leu Leu Leu Cys Phe Trp Gly Ala Val
385 390 395 400

Val Val Val Arg Gly Ala Phe Arg Val Tyr Arg Ala Thr Ala His Gly
405 410 415

Pro Gly Lys Gln Gln Arg Leu Arg Leu Arg Val Arg Asp Tyr Ile Ile
420 425 430

Ala Leu Ala Val Pro Gly Leu Val Ala Ala Met Leu Tyr Val Ala Pro
435 440 445

Gly Ile Leu Ser Pro Gly Leu Asp Trp Arg Phe Ile Leu Val Trp Gly
450 455 460

Pro Ser Ser Val Leu Ala Ile Pro Phe Gly Ile Ile Leu Leu Ala Phe
465 470 475 480

Val Leu Thr Leu Asn His Gln Ile Lys Arg Ile Leu Leu His Asn Lys
485 490 495

Glu Trp Asp Asp Glu
500

<210> 40
<211> 682
<212> PRT
<213> Escherichia coli

<400> 40

Met Lys Asn Lys Tyr Ile Ile Ala Pro Gly Ile Ala Val Met Cys Ser
1 5 10 15

Ala Val Ile Ser Ser Gly Tyr Ala Ser Ser Asp Lys Lys Glu Asp Thr
20 25 30

Leu Val Val Thr Ala Ser Gly Phe Thr Gln Gln Leu Arg Asn Ala Pro
35 40 45

Ala Ser Val Ser Val Ile Thr Ser Glu Gln Leu Gln Lys Lys Pro Val
50 55 60

Ser Asp Leu Val Asp Ala Val Lys Asp Val Glu Gly Ile Ser Ile Thr
65 70 75 80

Gly Gly Asn Glu Lys Pro Asp Ile Ser Ile Arg Gly Leu Ser Gly Asp
85 90 95

Tyr Thr Leu Ile Leu Val Asp Gly Arg Arg Gln Ser Gly Arg Glu Ser
100 105 110

Arg Pro Asn Gly Ser Gly Gly Phe Glu Ala Gly Phe Ile Pro Pro Val
115 120 125

Glu Ala Ile Glu Arg Ile Glu Val Ile Arg Gly Pro Met Ser Ser Leu
130 135 140

Tyr Gly Ser Asp Ala Ile Gly Gly Val Ile Asn Ile Ile Thr Lys Pro
145 150 155 160

Val Asn Asn Gln Thr Trp Asp Gly Val Leu Gly Leu Gly Gly Ile Ile
165 170 175

Gln Glu His Gly Lys Phe Gly Asn Ser Thr Thr Asn Asp Phe Tyr Leu
180 185 190

Ser Gly Pro Leu Ile Lys Asp Lys Leu Gly Leu Gln Leu Tyr Gly Gly
195 200 205

Met Asn Tyr Arg Lys Glu Asp Ser Ile Ser Gln Gly Thr Pro Ala Lys
210 215 220

Asp Asn Lys Asn Ile Thr Ala Thr Leu Gln Phe Thr Pro Thr Glu Ser
225 230 235 240

Gln Lys Phe Val Phe Glu Tyr Gly Lys Asn Asn Gln Val His Thr Leu
245 250 255

Thr Pro Gly Glu Ser Leu Asp Ala Trp Thr Met Arg Gly Asn Leu Lys
260 265 270

Gln Pro Asn Ser Lys Arg Glu Thr His Asn Ser Arg Ser His Trp Val
275 280 285

Ala Ala Trp Asn Ala Gln Gly Glu Ile Leu His Pro Glu Ile Ala Val
290 295 300

Tyr Gln Glu Lys Val Ile Arg Glu Val Lys Ser Gly Lys Lys Asp Lys
305 310 315 320

Tyr Asn His Trp Asp Leu Asn Tyr Glu Ser Arg Lys Pro Glu Ile Thr
325 330 335

Asn Thr Ile Ile Asp Ala Lys Val Thr Ala Phe Leu Pro Glu Asn Val
340 345 350

Leu Thr Ile Gly Gly Gln Phe Gln His Ala Glu Leu Arg Asp Asp Ser
355 360 365

Ala Thr Gly Lys Lys Thr Thr Glu Thr Gln Ser Val Ser Ile Lys Gln
370 375 380

Lys Ala Val Phe Ile Glu Asn Glu Tyr Ala Ala Thr Asp Ser Leu Ala
385 390 395 400

Leu Thr Gly Gly Leu Arg Leu Asp Asn His Glu Ile Tyr Gly Ser Tyr
405 410 415

Trp Asn Pro Arg Leu Tyr Ala Val Tyr Asn Leu Thr Asp Asn Leu Thr
420 425 430

Leu Lys Gly Gly Ile Ala Lys Ala Phe Arg Ala Pro Ser Ile Arg Glu
435 440 445

Val Ser Pro Gly Phe Gly Thr Leu Thr Gln Gly Gly Ala Ser Ile Met
450 455 460

Tyr Gly Asn Arg Asp Leu Lys Pro Glu Thr Ser Val Thr Glu Glu Ile
465 470 475 480

Gly Ile Ile Tyr Ser Asn Asp Ser Gly Phe Ser Ala Ser Ala Thr Leu

485

490

495

Phe Asn Thr Asp Phe Lys Asn Lys Leu Thr Ser Tyr Asp Ile Gly Thr
500 505 510

Lys Asp Pro Val Thr Gly Leu Asn Thr Phe Ile Tyr Asp Asn Val Gly
515 520 525

Glu Ala Asn Ile Arg Gly Val Glu Leu Ala Thr Gln Ile Pro Val Tyr
530 535 540

Asp Lys Trp His Val Ser Ala Asn Tyr Thr Phe Thr Asp Ser Arg Arg
545 550 555 560

Lys Ser Asp Asp Glu Ser Leu Asn Gly Lys Ser Leu Lys Gly Glu Pro
565 570 575

Leu Glu Arg Thr Pro Arg His Ala Ala Asn Ala Lys Leu Glu Trp Asp
580 585 590

Tyr Thr Gln Asp Ile Thr Phe Tyr Ser Ser Leu Asn Tyr Thr Gly Lys
595 600 605

Gln Ile Trp Ala Ala Gln Arg Asn Gly Ala Lys Val Pro Arg Val Arg
610 615 620

Asn Gly Phe Thr Ser Met Asp Ile Gly Leu Asn Tyr Gln Ile Leu Pro
625 630 635 640

Asp Thr Leu Ile Asn Phe Ala Val Leu Asn Val Thr Asp Arg Lys Ser
645 650 655

Glu Asp Ile Asp Thr Ile Asp Gly Asn Trp Gln Val Asp Glu Gly Arg
660 665 670

Arg Tyr Trp Ala Asn Val Arg Val Ser Phe
675 680

<210> 41
<211> 164
<212> PRT
<213> Escherichia coli

<400> 41

Met Gly Phe Arg Lys Thr Ile Ile Thr Ser Val Gly Leu Ile Phe Ile
1 5 10 15

Ser Phe Ser Phe Val Ala Lys Cys Ser Gln Leu Lys Asn Leu Asn Asn
20 25 30

Tyr Ser Val Met Leu Cys Gly Lys Val Ser Asn Asn Ile Leu Asp Asp
35 40 45

Ile Gly Gly Tyr Lys Glu Arg Asn Ile Leu Met Leu Arg Ala Ile Lys
50 55 60

Lys Ile Ile Ile Met Thr Ile Val Asn Ile Ile Phe Phe Tyr Ser Phe
65 70 75 80

Gln Ser Thr Ala Asp Glu Met Val Leu Ile Lys Lys Tyr Gly Phe Gly
85 90 95

Leu Glu Arg Asp Ile Lys Gly Arg Pro Leu Ile Tyr Pro Ile Glu Asn
100 105 110

Tyr Asp Glu Cys Lys Lys Cys Asn His Met Asn Tyr Ile Ala Asp
115 120 125

Val Asn Ala Gln Leu Ala Met Ser Lys Lys Asn Asn Arg Ile Phe Ala
130 135 140

Asn Ile Thr Phe Thr Asn Asn Ser Ser Thr Thr Tyr Phe Phe Leu Asn
145 150 155 160

Ile Ile Tyr Leu

<210> 42
<211> 218
<212> PRT
<213> Escherichia coli

<400> 42

Met Asn Gln Ile Lys Asp Asn Lys Val Ile Met Lys Ile Lys Asn Leu
1 5 10 15

Ile Ser Val Ile Leu Leu Ser Gly Gly Ile Met Gly Thr Gly Leu Tyr

20

25

30

Ser Ser Asp Asn His Gln Lys Ile Arg Ser Arg Phe Asn Ile Gln Glu
35 40 45

Ser Tyr Cys Ala Ile Lys Thr Asn Gly Val Leu Gly Phe Ser Asn Arg
50 55 60

Lys Asp Val Leu Arg Glu Asn Gly Asp Ser Thr Gly Thr Thr Ser Ser
65 70 75 80

Ser Thr Asn Ala Met Met Leu Met Glu Asn Gly Glu Asn Glu Ile Ser
85 90 95

Leu Glu Ile Gly Ala Leu Arg Trp Phe Ser Asp Lys Pro Ala Ser Thr
100 105 110

Glu Glu Arg Gly His Phe Ser Gln Lys Ala Gly Cys Ser Leu Asp Leu
115 120 125

Val Arg Phe Val Lys Gln Glu Glu Thr Ile Leu Ser Ser Ile Lys Val
130 135 140

Thr Ile Asn Gln Gln Gly Ile Pro Glu Ala Gln Pro Asp Ser Met His
145 150 155 160

Pro Val Ile Arg Lys Glu Ile Leu Ala Glu Gln Ala Glu Pro Gly Phe
165 170 175

Ile Asp Pro Asp Tyr Phe Asn Glu Thr Tyr Phe Pro Lys Gly Met Lys
180 185 190

Val Tyr Gln Phe Thr Gln Lys Val Ser Val Ala Gly Leu Pro Asp Gly
195 200 205

Pro Gly Arg Ser Thr Pro Phe Thr Gly Ala
210 215

<210> 43

<211> 2732

<212> PRT

<213> Escherichia coli

<400> 43

Met His Gln Pro Pro Val Arg Phe Thr Tyr Arg Leu Leu Ser Tyr Leu
1 5 10 15

Val Ser Ala Ile Ile Ala Gly Gln Pro Leu Leu Pro Ala Val Gly Ala
20 25 30

Val Ile Thr Pro Gln Asn Gly Ala Gly Met Asp Lys Ala Ala Asn Gly
35 40 45

Val Pro Val Val Asn Ile Ala Thr Pro Asn Gly Ala Gly Ile Ser His
50 55 60

Asn Arg Phe Thr Asp Tyr Asn Val Gly Lys Glu Gly Leu Ile Leu Asn
65 70 75 80

Asn Ala Thr Gly Lys Leu Asn Pro Thr Gln Leu Gly Gly Leu Ile Gln
85 90 95

Asn Asn Pro Asn Leu Lys Ala Gly Gly Glu Ala Lys Gly Ile Ile Asn
100 105 110

Glu Val Thr Gly Gly Lys Arg Ser Leu Leu Gln Gly Tyr Thr Glu Val
115 120 125

Ala Gly Lys Ala Ala Asn Val Met Val Ala Asn Pro Tyr Gly Ile Thr
130 135 140

Cys Asp Gly Cys Gly Phe Ile Asn Thr Pro His Ala Thr Leu Thr Thr
145 150 155 160

Gly Lys Pro Val Met Asn Ala Asp Gly Ser Leu Gln Ala Leu Glu Val
165 170 175

Thr Glu Gly Ser Ile Thr Ile Asn Gly Ala Gly Leu Asp Gly Thr Arg
180 185 190

Ser Asp Ala Val Ser Ile Ile Ala Arg Ala Thr Glu Val Asn Ala Ala
195 200 205

Leu His Ala Lys Asp Leu Thr Val Thr Ala Gly Ala Asn Arg Val Thr
210 215 220

Ala Asp Gly Arg Val Arg Ala Leu Lys Gly Glu Gly Asp Val Pro Lys
225 230 235 240

Val Ala Val Asp Thr Gly Ala Leu Gly Gly Met Tyr Ala Arg Arg Ile
245 250 255

His Leu Thr Ser Thr Glu Ser Gly Val Gly Val Asn Leu Gly Asn Leu
260 265 270

Tyr Ala Arg Asp Gly Asp Ile Thr Leu Asp Ala Ser Gly Arg Leu Thr
275 280 285

Val Asn Asn Ser Leu Ala Thr Gly Ala Val Thr Ala Lys Gly Gln Gly
290 295 300

Val Thr Leu Thr Gly Asp His Lys Ala Gly Gly Asn Leu Ser Val Ser
305 310 315 320

Ser Arg Arg Asp Ile Val Leu Ser Asn Gly Thr Leu Asn Ser Asp Lys
325 330 335

Asp Leu Ser Leu Thr Ala Gly Gly Arg Ile Thr Gln Gln Asn Glu Lys
340 345 350

Leu Thr Ala Gly Arg Asp Val Thr Leu Ala Ala Lys Asn Ile Thr Gln
355 360 365

Asp Thr Ala Ser Gln Ile Asn Ala Ala Arg Asp Ile Val Thr Val Ala
370 375 380

Ser Asp Thr Leu Thr Thr Gln Gly Gln Ile Thr Ala Gly Gln Asn Leu
385 390 395 400

Thr Ala Ser Ala Thr Thr Leu Thr Gln Asp Gly Ile Leu Leu Ala Lys
405 410 415

Ser His Ala Gly Leu Asn Ala Gly Thr Leu Asn Asn Ser Gly Ala Val
420 425 430

Gln Gly Ala Thr Leu Thr Leu Gly Ser Thr Thr Leu Ser Asn Ser Gly
435 440 445

Ser Leu Leu Ser Gly Gly Pro Leu Thr Met Asn Thr Arg Asp Phe Thr

450 455 460
Gln Ser Gly Arg Thr Gly Ala Lys Gly Lys Val Asp Ile Met Ala Ser
465 470 475 480

Gly Lys Leu Thr Ser Thr Gly Leu Leu Val Thr Met His Leu Val Leu
485 490 495

Lys Ala Gln Asp Val Thr Gln Asn Gly Val Leu Ser Gly Gly Lys Gly
500 505 510

Leu Thr Val Ser Ala Thr Ser Ser Gly Lys Lys Ser Val Thr His Ser
515 520 525

Asp Ala Ala Met Thr Leu Asn Val Thr Thr Val Ala Leu Asp Gly Glu
530 535 540

Thr Ser Ala Gly Asp Thr Leu Arg Val Gln Ala Asp Lys Leu Ser Thr
545 550 555 560

Ala Ala Gly Ala Gln Leu Gln Ser Gly Lys Asn Leu Ser Ile Asn Ala
565 570 575

Arg Asp Ala Arg Leu Ala Gly Thr Gln Ala Ala Gln Gln Thr Met Val
580 585 590

Val Asn Ala Ser Glu Lys Leu Thr His Ser Gly Lys Ser Ser Ala Pro
595 600 605

Ser Leu Ser Leu Ser Ala Pro Glu Leu Thr Ser Ser Gly Val Leu Val
610 615 620

Gly Ser Ala Leu Asn Thr Gln Ser Gln Thr Leu Thr Asn Ser Gly Leu
625 630 635 640

Leu Gln Gly Glu Ala Ser Leu Thr Val Asn Thr Gln Arg Leu Asp Asn
645 650 655

Gln Gln Asn Gly Thr Leu Tyr Ser Ala Ala Asp Leu Thr Leu Asp Ile
660 665 670

Pro Asp Ile Arg Asn Ser Gly Leu Ile Thr Gly Asp Asn Gly Leu Met

675

680

685

Leu Asn Ala Val Ser Leu Ser Asn Pro Gly Lys Ile Ile Ala Asp Thr
690 695 700

Leu Ser Val Arg Ala Thr Thr Leu Asp Gly Asp Gly Leu Leu Gln Gly
705 710 715 720

Ala Gly Ala Leu Ala Leu Ala Gly Asp Thr Leu Ser Gln Gly Ser His
725 730 735

Gly Arg Trp Leu Thr Ala Asp Asp Leu Ser Leu Arg Gly Lys Thr Leu
740 745 750

Asn Thr Ala Gly Thr Thr Gln Gly Gln Asn Ile Thr Val Gln Ala Asp
755 760 765

Arg Trp Ala Asn Ser Gly Ser Val Leu Ala Thr Gly Asn Leu Thr Ala
770 775 780

Ser Ala Thr Gly Gln Leu Thr Ser Thr Gly Asp Ile Met Ser Gln Gly
785 790 795 800

Asp Thr Thr Leu Lys Ala Ala Thr Thr Asp Asn Arg Gly Ser Leu Leu
805 810 815

Ser Ala Gly Thr Leu Ser Leu Asp Gly Asn Ser Leu Asp Asn Arg Gly
820 825 830

Thr Val Gln Gly Asn His Val Thr Ile Arg Gln Asn Ser Val Thr Asn
835 840 845

Ser Gly Thr Leu Thr Gly Ile Ala Ala Leu Thr Leu Ala Ala Arg Met
850 855 860

Ala Ser Pro Gln Pro Ala Leu Met Asn Asn Gly Gly Ser Leu Leu Thr
865 870 875 880

Ser Gly Asp Leu Thr Ile Thr Ala Gly Ser Ile Thr Ser Ser Gly His
885 890 895

Trp Gln Gly Lys Arg Val Leu Ile Thr Ala Asp Ser Leu Ala Asn Ser
900 905 910

Gly Ala Ile Gln Ala Ala Asp Ser Leu Thr Ala Arg Leu Thr Gly Glu
915 920 925

Leu Val Ser Thr Ala Gly Ser Lys Val Thr Ser Asn Gly Glu Met Ala
930 935 940

Leu Ser Ala Leu Asn Leu Ser Asn Ser Gly Gln Trp Ile Ala Lys Asn
945 950 955 960

Leu Thr Leu Lys Ala Asn Ser Leu Thr Ser Ala Gly Asp Ile Thr Gly
965 970 975

Val Asp Thr Leu Thr Leu Thr Val Asn Gln Thr Leu Asn Asn Gln Ala
980 985 990

Asn Gly Lys Leu Leu Ser Ala Gly Val Leu Thr Leu Lys Ala Asp Ser
995 1000 1005

Val Thr Asn Asp Gly Gln Leu Gln Gly Asn Val Thr Thr Ile Thr
1010 1015 1020

Ala Gly Gln Leu Thr Asn Gly Gly His Leu Gln Gly Glu Thr Leu
1025 1030 1035

Thr Leu Thr Ala Ser Gly Gly Val Asn Asn Arg Ser Gly Gly Val
1040 1045 1050

Leu Met Ser Arg Asn Ala Leu Asn Val Ser Thr Ala Thr Leu Ser
1055 1060 1065

Asn Gln Ser Thr Ile Gln Gly Gly Gly Val Ser Leu Asn Ala
1070 1075 1080

Thr Asp Arg Leu Gln Asn Asp Gly Lys Ile Leu Ser Gly Ser Asn
1085 1090 1095

Leu Thr Leu Thr Ala Gln Val Leu Ala Asn Thr Gly Ser Gly Leu
1100 1105 1110

Val Gln Ala Ala Thr Leu Leu Leu Asp Val Val Asn Thr Val Asn
1115 1120 1125

Gly Gly Arg Val Leu Ala Thr Gly Ser Asp Val Lys Gly Thr Thr
1130 1135 1140

Leu Asn Asn Thr Gly Thr Leu Gln Gly Ala Thr Leu Val Asn Tyr
1145 1150 1155

His Thr Phe Ser Ser Gly Thr Leu Leu Gly Thr Ser Gly Leu Gly
1160 1165 1170

Val Lys Gly Ser Ser Leu Leu Gln Asn Gly Thr Gly Arg Leu Tyr
1175 1180 1185

Ser Ala Gly Asn Leu Leu Leu Asp Ala Gln Asp Phe Ser Gly Gln
1190 1195 1200

Gly Gln Val Val Ala Thr Gly Asp Val Thr Leu Lys Leu Ile Ala
1205 1210 1215

Ala Leu Thr Asn His Gly Thr Leu Ala Ala Gly Lys Thr Leu Ser
1220 1225 1230

Val Thr Ser Gln Asn Ala Ile Thr Asn Gly Gly Val Met Gln Gly
1235 1240 1245

Asp Ala Met Val Leu Gly Ala Gly Glu Ala Phe Thr Asn Asn Gly
1250 1255 1260

Leu Thr Ala Gly Lys Gly Asn Ser Val Phe Ser Ala Gln Arg Leu
1265 1270 1275

Phe Leu Asn Ala Pro Gly Ser Leu Gln Gly Gly Asp Val Ser
1280 1285 1290

Leu Asn Ser Arg Ser Asp Ile Thr Ile Ser Gly Phe Thr Gly Thr
1295 1300 1305

Ala Gly Ser Leu Thr Met Asn Val Ala Gly Thr Leu Leu Asn Ser
1310 1315 1320

Ala Leu Ile Tyr Ala Gly Asn Asn Leu Lys Leu Phe Thr Asp Arg
1325 1330 1335

Leu His Asn Gln His Gly Asp Ile Leu Ala Gly Asn Ser Leu Trp
1340 1345 1350

Val Gln Lys Asp Ala Ser Gly Gly Ala Asn Thr Glu Ile Ile Asn
1355 1360 1365

Asn Ser Gly Asn Ile Glu Thr His Gln Gly Asp Ile Val Val Arg
1370 1375 1380

Thr Gly His Leu Leu Asn Gln Arg Glu Gly Phe Ser Ala Thr Thr
1385 1390 1395

Thr Thr Arg Thr Asn Pro Ser Ser Ile Gln Gly Met Gly Asn Ala
1400 1405 1410

Leu Val Asp Ile Pro Leu Ser Leu Leu Pro Asp Gly Ser Tyr Gly
1415 1420 1425

Tyr Phe Thr Arg Glu Val Glu Asn Gln His Gly Thr Pro Cys Asn
1430 1435 1440

Gly His Gly Ala Cys Asn Ile Thr Met Asp Thr Leu Tyr Tyr Tyr
1445 1450 1455

Ala Pro Phe Ala Asp Ser Ala Thr Gln Arg Phe Leu Ser Ser Gln
1460 1465 1470

Asn Ile Thr Thr Val Thr Gly Ala Asp Asn Pro Ala Gly Arg Ile
1475 1480 1485

Ala Ser Gly Arg Asn Leu Ser Ala Glu Ala Glu Arg Leu Glu Asn
1490 1495 1500

Arg Ala Ser Phe Ile Leu Ala Asn Gly Asp Ile Ala Leu Ser Gly
1505 1510 1515

Arg Glu Leu Ser Asn Gln Ser Trp Gln Thr Gly Thr Glu Asn Glu
1520 1525 1530

Tyr Leu Val Tyr Arg Tyr Asp Pro Lys Thr Phe Tyr Gly Ser Tyr
1535 1540 1545

Ala Thr Gly Ser Leu Asp Lys Leu Pro Leu Leu Ser Pro Glu Phe
1550 1555 1560

Glu Asn Asn Thr Ile Arg Phe Ser Leu Asp Gly Arg Glu Lys Asp
1565 1570 1575

Tyr Thr Pro Gly Lys Thr Tyr Tyr Ser Val Ile Gln Ala Gly Gly
1580 1585 1590

Asp Val Lys Thr Arg Phe Thr Ser Ser Ile Asn Asn Gly Thr Thr
1595 1600 1605

Thr Ala His Ala Gly Ser Val Ser Pro Val Val Ser Ala Pro Val
1610 1615 1620

Leu Asn Thr Leu Ser Gln Gln Thr Gly Gly Asp Ser Leu Thr Gln
1625 1630 1635

Thr Ala Leu Gln Gln Tyr Glu Pro Val Val Val Gly Ser Pro Gln
1640 1645 1650

Trp His Asp Glu Leu Ala Gly Ala Leu Lys Asn Ile Ala Gly Gly
1655 1660 1665

Ser Pro Leu Thr Gly Gln Thr Gly Ile Ser Asp Asp Trp Pro Leu
1670 1675 1680

Pro Ser Gly Asn Asn Gly Tyr Leu Val Pro Ser Thr Asp Pro Asp
1685 1690 1695

Ser Pro Tyr Leu Ile Thr Val Asn Pro Lys Leu Asp Gly Leu Gly
1700 1705 1710

Gln Val Asp Ser His Leu Phe Ala Gly Leu Tyr Glu Leu Leu Gly
1715 1720 1725

Ala Lys Pro Gly Gln Ala Pro Arg Glu Thr Ala Pro Ser Tyr Thr
1730 1735 1740

Asp Glu Lys Gln Phe Leu Gly Ser Ser Tyr Phe Leu Asp Arg Leu
1745 1750 1755

Gly Leu Lys Pro Glu Lys Asp Tyr Arg Phe Leu Gly Asp Ala Val
1760 1765 1770

Phe Asp Thr Arg Tyr Val Ser Asn Ala Val Leu Ser Arg Thr Gly
1775 1780 1785

Ser Arg Tyr Leu Asn Gly Leu Gly Ser Asp Thr Glu Gln Met Arg
1790 1795 1800

Tyr Leu Met Asp Asn Ala Ala Arg Gln Gln Lys Gly Leu Gly Leu
1805 1810 1815

Glu Phe Gly Val Ala Leu Thr Ala Glu Gln Ile Ala Gln Leu Asp
1820 1825 1830

Gly Ser Ile Leu Trp Trp Glu Ser Val Thr Ile Asn Gly Gln Thr
1835 1840 1845

Val Met Val Pro Lys Leu Tyr Leu Ser Pro Glu Asp Ile Thr Leu
1850 1855 1860

His Asn Gly Ser Val Ile Ser Gly Asn Asn Val Gln Leu Ala Gly
1865 1870 1875

Gly Asn Ile Thr Asn Ser Gly Gly Ser Ile Asn Ala Gln Asn Asp
1880 1885 1890

Leu Ser Leu Asp Ser Ser Gly Tyr Ile Asp Asn Leu Asn Ala Gly
1895 1900 1905

Leu Ile Ser Ala Gly Gly Ser Leu Asp Leu Ser Ala Ile Gly Asp
1910 1915 1920

Ile Ser Asn Ile Ser Ser Val Ile Ser Gly Lys Thr Val Gln Leu
1925 1930 1935

Glu Ser Val Ser Gly Asn Ile Ser Asn Ile Thr Arg Arg Gln Gln
1940 1945 1950

Trp Asn Ala Gly Ser Asp Ser Gln Tyr Gly Gly Val His Leu Ser
1955 1960 1965

Gly Thr Asp Thr Gly Pro Val Ala Thr Ile Lys Gly Thr Asp Ser
1970 1975 1980

Leu Ser Leu Asp Ala Gly Lys Asn Ile Asp Ile Thr Gly Ala Thr
1985 1990 1995

Val Ser Ser Gly Gly Asp Leu Gly Met Ser Ala Gly Asn Asp Ile
2000 2005 2010

Asn Ile Ala Ala Asn Leu Ile Ser Gly Ser Lys Ser Gln Ser Gly
2015 2020 2025

Phe Trp His Thr Asp Asp Asn Ser Ser Ser Ser Thr Thr Ser Gln
2030 2035 2040

Gly Ser Ser Ile Ser Ala Gly Gly Asn Leu Ala Met Ala Ala Gly
2045 2050 2055

His Asn Leu Asp Val Thr Ala Ser Ser Val Ser Ala Gly His Ser
2060 2065 2070

Ala Leu Leu Ser Cys Arg Ser Arg Pro Ser Leu Glu Cys Ser Gln
2075 2080 2085

Gly Lys Ala Lys Thr Ser Arg Asn Gly Arg Ser Glu Ser His Glu
2090 2095 2100

Ser His Ala Ala Val Ser Thr Val Thr Ala Gly Asp Asn Phe Leu
2105 2110 2115

Leu Val Ala Gly Arg Asp Ile Ala Ser Gln Ala Ala Gly Met Ala
2120 2125 2130

Ala Glu Asn Asn Val Val Ile Arg Gly Gly Arg Asp Val Asn Leu
2135 2140 2145

Val Ala Glu Ser Ala Gly Ala Gly Asp Ser Tyr Thr Ser Lys Lys
2150 2155 2160

Lys Lys Glu Ile Asn Glu Thr Val Arg Gln Gln Gly Thr Glu Ile
2165 2170 2175

Ala Ser Gly Gly Asp Thr Thr Val Asn Ala Gly Arg Asp Ile Thr

2180 2185 2190
Ala Val Ala Ser Ser Val Thr Ala Thr Gly Asn Ile Ser Val Asn
2195 2200 2205

Ala Gly Arg Asp Val Ala Leu Thr Thr Ala Thr Glu Ser Asp Tyr
2210 2215 2220

His Tyr Leu Glu Thr Lys Lys Ser Gly Gly Phe Leu Ser Lys
2225 2230 2235

Lys Thr Thr Arg Thr Ile Ser Glu Asp Ser Ala Thr Arg Glu Ala
2240 2245 2250

Gly Ser Leu Leu Ser Gly Asn Arg Val Thr Val Asn Ala Gly Asp
2255 2260 2265

Asn Leu Thr Val Glu Gly Ser Asp Val Val Ala Asp Arg Asp Val
2270 2275 2280

Ser Leu Ala Ala Gly Asn His Val Asp Val Leu Ala Ala Thr Ser
2285 2290 2295

Thr Asp Thr Ser Trp Arg Phe Lys Glu Thr Lys Lys Ser Gly Leu
2300 2305 2310

Met Gly Thr Gly Gly Ile Gly Phe Thr Ile Gly Ser Ser Lys Thr
2315 2320 2325

Thr His Asp Arg Arg Glu Ala Gly Thr Thr Gln Ser Gln Ser Ala
2330 2335 2340

Ser Thr Ile Gly Ser Thr Ala Gly Asn Val Ser Ile Thr Ala Gly
2345 2350 2355

Lys Gln Ala His Ile Ser Gly Ser Asp Val Ile Ala Asn Arg Asp
2360 2365 2370

Ile Ser Ile Thr Gly Asp Ser Val Val Val Asp Pro Gly His Asp
2375 2380 2385

Arg Arg Thr Val Asp Glu Lys Phe Glu Gln Lys Lys Ser Gly Leu
2390 2395 2400

Thr Val Ala Leu Ser Gly Thr Val Gly Ser Ala Ile Asn Asn Ala
2405 2410 2415

Val Thr Ser Ala Gln Glu Thr Lys Glu Ser Ser Asp Ser Arg Leu
2420 2425 2430

Lys Ala Leu Gln Ala Thr Lys Thr Ala Leu Ser Gly Val Gln Ala
2435 2440 2445

Gly Gln Ala Ala Thr Met Ala Ser Ala Thr Gly Asp Pro Asn Ala
2450 2455 2460

Gly Val Ser Leu Ser Leu Thr Thr Gln Lys Ser Lys Ser Gln Gln
2465 2470 2475

His Ser Glu Ser Asp Thr Val Ser Gly Ser Thr Leu Asn Ala Gly
2480 2485 2490

Asn Asn Leu Ser Val Val Ala Thr Gly Lys Asn Arg Gly Asp Asn
2495 2500 2505

Arg Gly Asp Ile Val Ile Ala Gly Ser Gln Leu Lys Ala Gly Gly
2510 2515 2520

Asn Thr Ser Leu Asp Ala Ala Asn Asp Ile Leu Leu Ser Gly Ala
2525 2530 2535

Ala Asn Thr Gln Lys Thr Thr Gly Arg Asn Ser Ser Ser Gly Gly
2540 2545 2550

Gly Val Gly Val Ser Ile Gly Ala Gly Lys Gly Ala Gly Ile Ser
2555 2560 2565

Ala Phe Ala Ser Val Asn Ala Ala Lys Gly Arg Glu Lys Gly Asn
2570 2575 2580

Gly Thr Thr Thr Asp Lys Thr Val Thr Ile Asn Ser Gly Arg Asp
2585 2590 2595

Thr Val Leu Asn Gly Ala Gln Val Asn Gly Asn Arg Ile Ile Ala
2600 2605 2610

Asp Val Gly His Asp Leu Leu Ile Ser Ser Gln Gln Asp Thr Ser

2615

2620

2625

Lys Tyr Asp Ser Lys Gln Thr Ser Val Ala Ala Gly Gly Ser Phe
2630 2635 2640

Thr Phe Gly Ser Met Thr Gly Ser Gly Tyr Ile Ala Ala Ser Arg
2645 2650 2655

Asp Lys Met Lys Ser Arg Phe Asp Ser Val Ala Glu Gln Thr Gly
2660 2665 2670

Met Phe Ala Arg Val Met Val Ala Ser Thr Ser Gln Trp Val Asn
2675 2680 2685

Ile Pro Asn Trp Met Val Arg Ser Leu Pro His Cys His Thr Gly
2690 2695 2700

Glu Lys Pro Pro Gly Tyr Arg Thr Leu Gly Leu Val Thr Leu Gln
2705 2710 2715

Arg Ser Gly Ile Ile Lys Ser Ser His Arg Trp Asn Gln Ser
2720 2725 2730

<210> 44

<211> 321

<212> PRT

<213> Escherichia coli

<400> 44

Met Met Leu Lys Lys Thr Ile Phe Ile Leu Thr Leu Phe Ser Gly Asn
1 5 10 15

Val Ile Ala Ala Thr Val Glu Leu Gly Phe Glu Asn Glu Gln Tyr Asn
20 25 30

Tyr Ala Tyr Arg Ser Ala Asp Val Phe Met Pro Tyr Ile Lys Ser Asn
35 40 45

Phe Asn Pro Val Thr Asp Ser Ala Leu Asn Val Ser Leu Thr Tyr Met
50 55 60

Tyr Gln Asp Gln Tyr Gly Lys Lys His Lys Lys Thr Ser Glu Asp Arg
65 70 75 80

Phe Lys Thr Asn Arg Asp Arg Ile Glu Leu Tyr Leu Lys Gly Tyr Thr
85 90 95

Leu Asn Arg Gly Ala Tyr Ser Phe Ser Pro Ser Ala Gly Phe Arg Tyr
100 105 110

Glu Ser Trp Asp Val Asn Tyr Asp Asn Pro Lys Lys Gln Asp Lys Trp
115 120 125

Lys Leu Glu Leu Arg Phe Tyr Pro Asn Met Thr Tyr Lys Leu Asn Asp
130 135 140

Gln Leu Ser Leu Tyr Met Asn Gly Phe Val Ala Pro Val Phe Phe Lys
145 150 155 160

Thr Gln Gln Glu Ser Arg Lys Asp Asn Asn Tyr Val Lys Gly Lys Leu
165 170 175

Gly Ala Lys Arg Tyr Asn Asn Asp Tyr Tyr Gln Glu Leu Gln Ile Leu
180 185 190

Gly Val Arg Tyr Lys Phe Asn Asn Asp Asn Thr Leu Trp Ala Ser Val
195 200 205

Tyr Asn Glu Arg Lys Tyr Asn Gln His Ser Ser Lys Tyr Asp Arg Trp
210 215 220

Gln Leu Arg Gly Gly Tyr Asp Phe Lys Val Thr Glu Glu Phe Val Leu
225 230 235 240

Ser Pro Phe Ile Arg Tyr Asp Leu Ser Tyr Arg Glu Lys Asn Leu Glu
245 250 255

Ser Thr Ser Asn Asn Gly Leu Ser Lys Asn Asn Lys Glu Ile Arg Thr
260 265 270

Gly Ala Ser Phe Ser Tyr Lys Ile Ile Pro Ser Val Lys Leu Val Gly
275 280 285

Glu Ile Tyr Arg Gln Thr Thr Asn Ile Glu Asn Tyr Tyr Gly Glu His
290 295 300

Ser Glu Asp Lys Asn Arg Met Phe Tyr Lys Leu Gly Ile Asn Lys Thr
305 310 315 320

Phe

<210> 45
<211> 587
<212> PRT
<213> Escherichia coli

<400> 45

Met Gln His Arg Gln Lys Asn Ile Leu Thr Lys Thr Ser Leu Leu Ser
1 5 10 15

Arg Ala Leu Ser Val Pro Cys Cys Asp Met Phe Arg Arg Gly Ser Pro
20 25 30

Trp Ile Cys Tyr Leu Ser Leu Ser Val Phe Ser Gly Cys Phe Ile Pro
35 40 45

Ala Phe Ser Ser Pro Ala Ala Met Leu Ser Pro Gly Asp Arg Ser Ala
50 55 60

Ile Gln Gln Gln Gln Gln Leu Leu Asp Glu Asn Gln Arg Gln Arg
65 70 75 80

Asp Ala Leu Glu Arg Pro Leu Thr Ile Thr Pro Ser Pro Glu Thr Ser
85 90 95

Ala Gly Thr Glu Gly Pro Cys Phe Thr Val Ser Ser Ile Val Val Ser
100 105 110

Gly Ala Thr Arg Leu Thr Ser Ala Glu Thr Asp Arg Leu Val Pro Trp
115 120 125

Val Asn Gln Cys Leu Asn Ile Thr Gly Leu Thr Ala Val Thr Asp Ala
130 135 140

Val Thr Asp Gly Tyr Ile Arg Arg Gly Tyr Ile Thr Ser Arg Ala Phe
145 150 155 160

Leu Thr Glu Gln Asp Leu Ser Gly Gly Val Leu His Ile Thr Val Met
165 170 175

Glu Gly Arg Leu Gln Gln Ile Arg Ala Glu Gly Ala Asp Leu Pro Ala
180 185 190

Arg Thr Leu Lys Met Val Phe Pro Gly Met Glu Gly Lys Val Leu Asn
195 200 205

Leu Arg Asp Ile Glu Gln Gly Met Glu Gln Ile Asn Arg Leu Arg Thr
210 215 220

Glu Pro Val Gln Ile Glu Ile Ser Pro Gly Asp Arg Glu Gly Trp Ser
225 230 235 240

Val Val Thr Leu Thr Ala Leu Pro Glu Trp Pro Val Thr Gly Ser Val
245 250 255

Gly Ile Asp Asn Ser Gly Gln Lys Ser Thr Gly Thr Gly Gln Leu Asn
260 265 270

Gly Val Leu Ser Phe Asn Asn Pro Leu Gly Leu Ala Asp Asn Trp Phe
275 280 285

Val Ser Gly Gly Arg Ser Ser Asp Phe Ser Val Ser His Asp Ala Arg
290 295 300

Asn Phe Ala Ala Gly Val Ser Leu Pro Tyr Gly Tyr Thr Leu Val Asp
305 310 315 320

Tyr Thr Tyr Ser Trp Ser Asp Tyr Leu Ser Thr Ile Asp Asn Arg Gly
325 330 335

Trp Arg Trp Arg Ser Thr Gly Asp Leu Gln Thr His Arg Leu Gly Leu
340 345 350

Ser His Val Leu Phe Arg Asn Gly Asp Met Lys Thr Ala Leu Thr Gly
355 360 365

Gly Leu Gln His Arg Ile Ile His Asn Tyr Leu Asp Asp Val Leu Leu
370 375 380

Gln Gly Ser Ser Arg Lys Leu Thr Ser Phe Ser Val Gly Leu Asn His

385 390 395 400

Thr His Lys Phe Leu Gly Gly Val Gly Thr Leu Asn Pro Val Phe Thr
405 410 415

Arg Gly Met Pro Trp Phe Gly Ala Glu Ser Asp His Gly Lys Arg Gly
420 425 430

Asp Leu Pro Val Asn Gln Phe Arg Lys Trp Ser Val Ser Ala Ser Phe
435 440 445

Gln Arg Pro Val Thr Asp Arg Val Trp Trp Leu Thr Ser Ala Tyr Ala
450 455 460

Gln Trp Ser Pro Asp Arg Leu His Gly Val Glu Gln Leu Ser Leu Gly
465 470 475 480

Gly Glu Ser Ser Val Arg Gly Phe Lys Asp Gln Tyr Ile Ser Gly Asn
485 490 495

Asn Gly Gly Tyr Leu Arg Asn Glu Leu Ser Trp Ser Leu Phe Ser Leu
500 505 510

Pro Tyr Val Gly Thr Val Arg Ala Val Ala Ala Leu Asp Gly Gly Trp
515 520 525

Leu His Ser Asp Ser Asp Asp Pro Tyr Ser Ser Gly Thr Leu Trp Gly
530 535 540

Ala Ala Ala Gly Leu Ser Thr Thr Ser Gly His Val Ser Gly Ser Phe
545 550 560

Thr Ala Gly Leu Pro Leu Val Tyr Pro Asp Trp Leu Ala Pro Asp His
565 570 575

Leu Thr Val Tyr Trp Arg Val Ala Val Ala Phe
580 585

<210> 46

<211> 744

<212> PRT

<213> Escherichia coli

<400> 46

Met Asn Lys His Thr Leu Leu Leu Thr Val Leu Phe Leu Asn Leu Ile
1 5 10 15

Cys Thr Pro Val Phe Ala Gln Asn Trp Gln Val Ala Thr Phe Gly Gln
20 25 30

Ser Thr Asp Leu Asn Phe Ser Ser Leu Ile Asp Ser Ala Lys Ile Gly
35 40 45

Arg Asn Asn Ala Trp Leu Ala Gly Asn Asn Asn Phe Leu Glu Ala Gly
50 55 60

Lys Phe Tyr Thr Leu Pro Thr Asp Phe Phe Ile Glu Ser Arg Gly Gly
65 70 75 80

Lys Ile Ala Asn Ser His Asp Gly Met Thr Val Phe Tyr Thr Ile Val
85 90 95

Pro Val Thr Gln Thr Phe Arg Leu Glu Ala Asp Leu Thr Leu Glu Gln
100 105 110

Ile Gly Pro Glu Val Asn Gly Lys Ser Pro Ala Gly Gln Glu Gly Ala
115 120 125

Gly Leu Phe Val Arg Asp Ile Ile Gly Pro Gln Arg Gln Glu Pro Gln
130 135 140

Ser Ala Gly Thr Glu Glu Tyr Pro Gln Ala Ser Asn Ile Leu Met Asn
145 150 155 160

Ala Phe Ile Thr Gln Asn Lys Lys Asn Asp Asn Leu Val Gln Ile Thr
165 170 175

Ser Ile Val Arg Glu Gly Val Ile Lys Thr Trp Gly Asn Glu Gly Ile
180 185 190

Thr Ile Lys Lys Gln Pro Ile Ile Glu Asn Ile Asn Phe Thr Gln Lys
195 200 205

Arg Asn Ile His Met Thr Ile Glu Arg Leu Pro Glu Lys Phe Ile Leu
210 215 220

Thr Ala Phe Asp Thr Asp Arg Lys Glu Asn Gln Ser Trp Gln Phe Ser
225 230 235 240

Asp Tyr Ser Gly Phe Met Asn Gln Leu Asp Asn Asn Ser Leu Ala Ile
245 250 255

Gly Phe Phe Ala Ala Arg Asn Ala Lys Leu Arg Val Lys Asn Ala Ser
260 265 270

Phe Lys Pro Gly Lys Pro Leu Val Asp Tyr Lys Gln Leu Thr Ser Arg
275 280 285

Gln Phe Ser Arg Val Arg His Lys Ala Pro Glu Leu Phe Leu Ala Ser
290 295 300

Pro Gln Ser Val Val Arg Asn Ser Thr Thr Leu Gln Phe Leu Ala Asn
305 310 315 320

Gln Ala Gly Ile Val Ser Ile Asp Asn Asp Lys Gln Thr Lys Gln Val
325 330 335

Gln Ala Gly Glu Leu Val Gln Phe Pro Val Thr Leu Gln Lys Lys His
340 345 350

Asn Asp Phe Thr Val Asn Phe Asn Val Asp Gly Asn Ile Ser Lys Lys
355 360 365

Ala Ile Arg Ile Glu Gln Val Lys Ser Asn Leu Thr Asp Pro Tyr Glu
370 375 380

Ile Tyr Val Cys Ser Asp Cys Arg Gln Gly Ala Arg Gly Ser Lys Asn
385 390 395 400

Asp Pro Val Asp Leu Gln Thr Ala Val Lys Phe Val Ala Pro Gly Gly
405 410 415

Asn Ile Tyr Leu Asn Asp Gly Gln Tyr His Gly Ile Thr Leu Asp Arg
420 425 430

Glu Leu Ser Gly Ile Pro Gly Lys Tyr Lys Thr Ile Ser Ala Ile Asn
435 440 445

Pro His Lys Ala Ile Phe Ile Asn Lys Thr Phe Asn Leu Asp Ala Ser
450 455 460

Tyr Trp His Leu Lys Ser Val Val Phe Asp Gly Asn Val Asp Asn Gly
465 470 475 480

Asn Asn Lys Pro Ala Tyr Leu Arg Ile Ala Gly Ser Tyr Asn Ile Ile
485 490 495

Glu His Val Ile Ala Arg Asn Asn Asp Asp Thr Gly Ile Ser Ile Ser
500 505 510

Ala Lys Asp Lys Asn Arg Phe Phe Trp Pro Ala His Asn Leu Val Leu
515 520 525

Asn Ser Asp Ser Tyr Asn Asn Leu Asp Leu Ser Gly Ile Asn Ala Asp
530 535 540

Gly Phe Ala Ala Lys Leu Gly Val Gly Pro Gly Asn Ile Phe Arg Gly
545 550 555 560

Cys Ile Ala His Asn Asn Ala Asp Asp Gly Trp Asp Leu Phe Asn Lys
565 570 575

Ile Glu Asp Gly Pro Asn Ala Ser Val Thr Ile Glu Asn Ser Val Ala
580 585 590

Tyr Glu Asn Gly Leu Pro Tyr Asn Lys Ala Asp Ile Leu Lys Gly Ser
595 600 605

Ile Gly Asn Gly Gly Glu Gly Gln Pro Ser Lys Ser Gln Val Ile Asn
610 615 620

Ser Ile Ala Ile Asn Asn Asn Met Asp Gly Phe Thr Asp Asn Phe Asn
625 630 635 640

Thr Gly Ser Leu Ile Val Arg Asn Asn Ile Ala Met Asn Asn Ala Arg
645 650 655

Tyr Asn Tyr Ile Leu Arg Thr Asn Pro Tyr Lys Phe Pro Ser Ser Ile
660 665 670

Leu Phe Asp Asn Asn Tyr Ser Ile Arg Asp Asp Trp Glu Asn Lys Ile
675 680 685

Lys Asp Phe Leu Gly Asp Thr Val Asn Ser Val Asn Tyr Lys Leu Leu
690 695 700

Val Ser His Glu Thr Gly Pro Val Gln Lys Asp Leu Phe Phe Thr Arg
705 710 715 720

Asp Asp Ser Gly Asn Ile Ile Tyr Pro Asp Phe Phe Leu Asn Ile Ile
725 730 735

Asn Lys Phe Asn Glx Thr Met Pro
740

<210> 47
<211> 136
<212> PRT
<213> Escherichia coli

<400> 47

Met Lys Thr Phe Ile Lys Thr Leu Leu Val Ala Val Thr Ile Leu Phe
1 5 10 15

Ser Val Phe Ala Thr Ala Lys Gln Val Lys Leu Pro Asn Asn Ile Lys
20 25 30

Tyr Val Asn Thr Thr Glu Ala Phe Ser Cys Thr Glu Ile Asp Gly Met
35 40 45

Asn Cys Gln Thr Lys Asn Pro Phe Asn Tyr Lys Asp Asn Ser Tyr Val
50 55 60

Phe Val Leu Glu Arg Gly Gly Ala Trp Cys Tyr Asp Tyr Thr Val Ser
65 70 75 80

Val Leu Asn Leu Lys Thr Gly Lys Ala Gln Met Leu Glu Tyr Lys Asp
85 90 95

Asn Gln Leu Cys Ser Gly Ser Asn Lys Pro Phe Phe Glu Ile Lys Asn
100 105 110

Gly Val Pro Thr Val Gly Val Ile Asp Thr Ser Gly Lys Pro Val Val
115 120 125

Val Ala Leu Asp Lys Leu Lys Thr
130 135

<210> 48
<211> 225
<212> PRT
<213> Escherichia coli

<400> 48

Met Gln Leu Pro Val Lys Leu Leu Met Ser Leu Ile Ser Leu Val Ser
1 5 10 15

Val Ile Ala Arg Ala Gly Lys Tyr Lys Asn Tyr Ile Arg Asp Glu Ile
20 25 30

Lys Tyr Trp Arg Tyr Thr Ser Tyr Lys Gly Gly Glu Phe Pro Glu Gly
35 40 45

Phe Thr Asp Glu Lys Phe Ser Ser Ala Ile Tyr Asn Gly Arg Ile Phe
50 55 60

Thr Met Lys Arg Leu His Thr Leu Met Leu Phe Leu Ala Val Leu Phe
65 70 75 80

Thr Gly Phe Asn Val Glu Ala Ala Ser Val Lys Gln Ala Leu Ser Cys
85 90 95

Asp Pro Asn Ala Arg Ala Glu Gln Pro Gly Ala Cys Pro Thr Thr Tyr
100 105 110

Glu Leu Tyr Glu Gly Asp Ala Ala Tyr Lys Ala Ala Leu Asp Lys Ala
115 120 125

Leu Lys Pro Val Gly Leu Ser Gly Met Phe Gly Lys Gly Gly Tyr Met
130 135 140

Asp Gly Pro Gly Gly Asn Val Thr Pro Val Thr Ile Asn Gly Thr Val
145 150 155 160

Trp Leu Gln Gly Asp Gly Cys Lys Ala Asn Thr Cys Gly Trp Asp Phe
165 170 175

Ile Val Thr Leu Tyr Asn Pro Lys Thr His Glu Val Val Gly Tyr Arg
180 185 190

Tyr Phe Gly Leu Asp Asp Pro Ala Tyr Leu Val Trp Phe Gly Glu Ile
195 200 205

Gly Val His Glu Phe Ala Tyr Leu Val Lys Asn Tyr Val Ala Ala Val
210 215 220

Asn
225

<210> 49
<211> 721
<212> PRT
<213> Escherichia coli

<400> 49

Met Lys Thr Gln Ile Thr Phe Ala Ala Leu Leu Pro Ala Leu Ala Ser
1 5 10 15

Phe Ile Pro Leu His Ala His Ala Ser Ser Thr Ser Glu Asp Glu Met
20 25 30

Ile Val Thr Gly Asn Thr Ala Ala Asp Thr Thr Asp Ser Ala Ala Gly
35 40 45

Ala Gly Phe Lys Thr Asn Asp Ile Asp Val Gly Pro Leu Gly Thr Lys
50 55 60

Ser Trp Ile Glu Thr Pro Tyr Ser Ser Thr Thr Val Thr Lys Glu Met
65 70 75 80

Ile Glu Asn Gln Gln Ala Gln Ser Val Ser Glu Met Leu Lys Tyr Ser
85 90 95

Pro Ser Thr Gln Met Gln Ala Arg Gly Gly Met Asp Val Gly Arg Pro
100 105 110

Gln Ser Arg Gly Met Gln Gly Ser Val Val Ala Asn Ser Arg Leu Asp
115 120 125

Gly Leu Asn Ile Val Ser Thr Thr Ala Phe Pro Val Glu Met Leu Glu
130 135 140

Arg Met Asp Val Leu Asn Ser Leu Thr Gly Ala Leu Tyr Gly Pro Ala
145 150 155 160

Ser Pro Ala Gly Gln Phe Asn Phe Val Ala Lys Arg Pro Thr Glu Glu
165 170 175

Thr Leu Arg Lys Val Thr Leu Gly Tyr Gln Ser Arg Ser Ala Phe Thr
180 185 190

Gly His Ala Asp Leu Gly Gly His Phe Asp Glu Asn Lys Arg Phe Gly
195 200 205

Tyr Arg Val Asn Leu Leu Asp Gln Glu Gly Glu Asn Val Asp Asp
210 215 220

Ser Thr Leu Arg Arg Lys Leu Val Ser Val Ala Leu Asp Trp Asn Ile
225 230 235 240

Gln Pro Gly Thr Gln Leu Gln Leu Asp Ala Ser His Tyr Glu Phe Ile
245 250 255

Gln Lys Gly Tyr Val Gly Ser Phe Asn Tyr Gly Pro Asn Val Lys Leu
260 265 270

Pro Ser Ala Pro Asn Pro Lys Asp Lys Asn Leu Ala Leu Ser Thr Ala
275 280 285

Gly Asn Asp Leu Thr Thr Asp Thr Ile Ser Thr Arg Leu Ile His Tyr
290 295 300

Phe Asn Asp Asp Trp Ser Met Asn Ala Gly Val Gly Trp Gln Gln Ala
305 310 315 320

Asp Arg Ala Met Arg Ser Val Ser Ser Lys Ile Leu Asn Asn Gln Gly
325 330 335

Asp Ile Ser Arg Ser Met Lys Asp Ser Thr Ala Ala Gly Arg Phe Arg
340 345 350

Val Leu Ser Asn Thr Ala Gly Leu Asn Gly His Ile Asp Thr Gly Ser
355 360 365

Ile Gly His Asp Leu Ser Leu Ser Thr Thr Gly Tyr Val Trp Ser Leu
370 375 380

Tyr Ser Ala Lys Gly Thr Gly Ser Ser Tyr Ser Trp Gly Thr Thr Asn
385 390 395 400

Met Tyr His Pro Asp Ala Ile Asp Glu Gln Gly Asp Gly Lys Ile Arg
405 410 415

Thr Gly Gly Pro Arg Tyr Arg Ser Ser Val Asn Thr Gln Gln Ser Val
420 425 430

Thr Leu Gly Asp Thr Val Thr Phe Thr Pro Gln Trp Ser Ala Met Phe
435 440 445

Tyr Leu Ser Gln Ser Trp Leu Gln Thr Lys Asn Tyr Asp Lys His Gly
450 455 460

Asn Gln Thr Asn Gln Val Asp Glu Asn Gly Leu Ser Pro Asn Ala Ala
465 470 475 480

Leu Met Tyr Lys Ile Thr Pro Asn Thr Met Ala Tyr Val Ser Tyr Ala
485 490 495

Asp Ser Leu Glu Gln Gly Thr Ala Pro Thr Asp Glu Ser Val Lys
500 505 510

Asn Ala Gly Gln Thr Leu Asn Pro Tyr Arg Ser Lys Gln Tyr Glu Val
515 520 525

Gly Leu Lys Ser Asp Ile Gly Glu Met Asn Leu Gly Ala Ala Leu Phe
530 535 540

Arg Leu Glu Arg Pro Phe Ala Tyr Leu Asp Thr Asp Asn Val Tyr Lys
545 550 555 560

Glu Gln Gly Asn Gln Val Asn Asn Gly Leu Glu Leu Thr Ala Ala Gly
565 570 575

Asn Val Trp Gln Gly Leu Asn Ile Tyr Ser Gly Val Thr Phe Leu Asp
580 585 590

Pro Lys Leu Lys Asp Thr Ala Asn Ala Ser Thr Ser Asn Lys Gln Val
595 600 605

Val Gly Val Pro Lys Val Gln Ala Asn Leu Leu Ala Glu Tyr Ser Leu
610 615 620

Pro Ser Ile Pro Glu Trp Val Tyr Ser Ala Asn Val His Tyr Thr Gly
625 630 635 640

Lys Arg Ala Ala Asn Asp Thr Asn Thr Ser Tyr Ala Ser Ser Tyr Thr
645 650 655

Thr Trp Asp Leu Gly Thr Arg Tyr Thr Thr Lys Val Ser Asn Val Pro
660 665 670

Thr Thr Phe Arg Val Val Val Asn Asn Val Phe Asp Lys His Tyr Trp
675 680 685

Ala Ser Ile Phe Pro Ser Gly Thr Asp Gly Asp Asn Gly Ser Pro Ser
690 695 700

Ala Phe Ile Gly Gly Arg Glu Val Arg Ala Ser Val Thr Phe Asp
705 710 715 720

Phe

<210> 50
<211> 669
<212> PRT
<213> Escherichia coli

<400> 50

Met Lys Asn Ile Thr Leu Trp Gln Arg Leu Arg Gln Val Ser Ile Ser
1 5 10 15

Thr Ser Leu Arg Cys Ala Phe Leu Met Gly Ala Leu Leu Thr Leu Ile
20 25 30

Val Ser Ser Val Ser Leu Tyr Ser Trp His Glu Gln Ser Ser Gln Ile
35 40 45

Arg Tyr Ser Leu Asp Lys Tyr Phe Pro Arg Ile His Ser Ala Phe Leu

50 55 60

Ile Glu Gly Asn Leu Asn Leu Val Val Asp Gln Leu Asn Glu Phe Leu
65 70 75 80

Gln Ala Pro Asn Thr Thr Val Arg Leu Gln Leu Arg Thr Gln Ile Ile
85 90 95

Gln His Leu Asp Thr Ile Glu Arg Leu Ser Arg Gly Leu Ser Ser Arg
100 105 110

Glu Arg Gln Gln Leu Thr Val Ile Leu Gln Asp Ser Arg Ser Leu Leu
115 120 125

Ser Glu Leu Asp Arg Ala Leu Tyr Asn Met Phe Leu Leu Arg Glu Lys
130 135 140

Val Ser Glu Leu Ser Ala Arg Ile Asp Trp Leu His Asp Asp Phe Thr
145 150 155 160

Thr Glu Leu Asn Ser Leu Val Gln Asp Phe Thr Trp Gln Gln Gly Thr
165 170 175

Leu Leu Asp Gln Ile Ala Ser Arg Gln Gly Asp Thr Ala Gln Tyr Leu
180 185 190

Lys Arg Ser Arg Glu Val Gln Asn Glu Gln Gln Val Tyr Thr Leu
195 200 205

Ala Arg Ile Glu Asn Gln Ile Val Asp Asp Leu Arg Asp Arg Leu Asn
210 215 220

Glu Leu Lys Ser Gly Arg Asp Asp Asp Ile Gln Val Glu Thr His Leu
225 230 235 240

Arg Tyr Phe Glu Asn Leu Lys Lys Thr Ala Asp Glu Asn Ile Arg Met
245 250 255

Leu Asp Asp Trp Pro Gly Thr Ile Thr Leu Arg Gln Thr Ile Asp Glu
260 265 270

Leu Leu Asp Met Gly Ile Val Lys Asn Lys Met Pro Asp Thr Met Arg
275 280 285

Glu Tyr Val Ala Ala Gln Lys Ala Leu Glu Asp Ala Ser Arg Thr Arg
290 295 300

Glu Ala Thr Gln Gly Arg Phe Arg Thr Leu Leu Glu Ala Gln Leu Gly
305 310 315 320

Ser Thr His Gln Gln Met Gln Met Phe Asn Gln Arg Met Glu Gln Ile
325 330 335

Val His Val Ser Gly Gly Leu Ile Leu Val Ala Thr Ala Leu Ala Leu
340 345 350

Leu Leu Ala Trp Val Phe Asn His Tyr Phe Ile Arg Ser Arg Leu Val
355 360 365

Lys Arg Phe Thr Leu Leu Asn Gln Ala Val Val Gln Ile Gly Leu Gly
370 375 380

Gly Thr Glu Thr Thr Ile Pro Val Tyr Gly Asn Asp Glu Leu Gly Arg
385 390 395 400

Ile Ala Gly Leu Leu Arg His Thr Leu Gly Gln Leu Asn Val Gln Lys
405 410 415

Gln Gln Leu Glu Gln Glu Ile Thr Asp Arg Lys Val Ile Glu Ala Asp
420 425 430

Leu Arg Ala Thr Gln Asp Glu Leu Ile Gln Thr Ala Lys Leu Ala Val
435 440 445

Val Gly Gln Thr Met Thr Thr Leu Ala His Glu Ile Asn Gln Pro Leu
450 455 460

Asn Ala Leu Ser Met Tyr Leu Phe Thr Ala Arg Arg Ala Ile Glu Gln
465 470 475 480

Thr Gln Lys Glu Gln Ala Ser Met Met Leu Gly Lys Ala Glu Gly Val
485 490 495

Ile Ser Arg Ile Asp Ala Ile Ile Arg Ser Leu Arg Gln Phe Thr Arg
500 505 510

Arg Ala Glu Leu Glu Thr Ser Leu His Ala Val Asp Leu Ala Gln Met
515 520 525

Phe Ser Ala Ala Trp Glu Leu Leu Ala Met Arg His Arg Ser Leu Gln
530 535 540

Ala Thr Leu Val Leu Pro Gln Gly Thr Ala Thr Val Ser Gly Asp Glu
545 550 555 560

Val Arg Thr Gln Gln Val Leu Val Asn Val Leu Ala Asn Ala Leu Asp
565 570 575

Val Cys Gly Gln Gly Ala Val Ile Thr Val Asn Trp Gln Met Gln Gly
580 585 590

Lys Thr Leu Asn Val Phe Ile Gly Asp Asn Gly Pro Gly Trp Pro Glu
595 600 605

Ala Leu Leu Pro Ser Leu Leu Lys Pro Phe Thr Thr Ser Lys Glu Val
610 615 620

Gly Leu Gly Ile Gly Leu Ser Ile Cys Val Ser Leu Met Glu Gln Met
625 630 635 640

Lys Gly Glu Leu Arg Leu Ala Ser Thr Met Thr Arg Asn Ala Cys Val
645 650 655

Val Leu Gln Phe Arg Leu Thr Asp Val Glu Asp Ala Lys
660 665

<210> 51
<211> 753
<212> PRT
<213> Escherichia coli

<400> 51

Met Asn Val Ile Lys Leu Ala Ile Gly Ser Gly Ile Leu Leu Leu Ser
1 5 10 15

Cys Gly Ala Tyr Ser Gln Ser Ile Ser Glu Lys Thr Asn Ser Asp Lys
20 25 30

Lys Gly Ala Ala Glu Phe Ser Pro Leu Ser Val Ser Val Gly Lys Thr

35

40

45

Thr Ser Glu Gln Glu Ala Leu Glu Lys Thr Gly Ala Thr Ser Ser Arg
50 55 60

Thr Thr Asp Lys Asn Leu Gln Ser Leu Asp Ala Thr Val Arg Ser Met
65 70 75 80

Pro Gly Thr Tyr Thr Gln Ile Asp Pro Gly Gln Gly Ala Ile Ser Val
85 90 95

Asn Ile Arg Gly Met Ser Gly Phe Gly Arg Val Asn Thr Met Val Asp
100 105 110

Gly Ile Thr Gln Ser Phe Tyr Gly Thr Ser Thr Ser Gly Thr Thr Thr
115 120 125

His Gly Ser Thr Asn Asn Met Ala Gly Val Leu Ile Asp Pro Asn Leu
130 135 140

Leu Val Ala Val Asp Val Thr Arg Gly Asp Ser Ser Gly Ser Glu Gly
145 150 155 160

Ile Asn Ala Leu Ala Gly Ser Ala Asn Met Arg Thr Ile Gly Val Asp
165 170 175

Asp Val Ile Phe Asn Gly Asn Thr Tyr Gly Leu Arg Ser Arg Phe Ser
180 185 190

Val Gly Ser Asn Gly Leu Gly Arg Ser Gly Met Ile Ala Leu Gly Gly
195 200 205

Lys Ser Asp Ala Phe Thr Asp Thr Gly Ser Ile Gly Val Met Ala Ala
210 215 220

Val Ser Gly Ser Ser Val Tyr Ser Asn Phe Ser Asn Gly Ser Gly Ile
225 230 235 240

Asn Ser Lys Glu Phe Gly Tyr Asp Lys Tyr Met Lys Gln Asn Pro Lys
245 250 255

Ser Gln Leu Tyr Lys Met Asp Ile Arg Pro Asp Glu Phe Asn Ser Phe
260 265 270

Glu Leu Ser Ala Arg Thr Tyr Glu Asn Lys Phe Thr Arg Arg Asp Ile
275 280 285

Thr Ser Asp Asp Tyr Tyr Ile Lys Tyr His Tyr Thr Pro Phe Ser Glu
290 295 300

Leu Ile Asp Phe Asn Val Thr Ala Ser Thr Ser Arg Gly Asn Gln Lys
305 310 315 320

Tyr Arg Asp Gly Ser Leu Tyr Thr Phe Tyr Lys Thr Ser Ala Gln Asn
325 330 335

Arg Ser Asp Ala Leu Asp Ile Asn Asn Thr Ser Arg Phe Thr Val Ala
340 345 350

Asp Asn Asp Leu Glu Phe Met Leu Gly Ser Lys Leu Met Arg Thr Arg
355 360 365

Tyr Asp Arg Thr Ile His Ser Ala Ala Gly Asp Pro Lys Ala Asn Gln
370 375 380

Glu Ser Ile Glu Asn Asn Pro Phe Ala Pro Ser Gly Gln Gln Asp Ile
385 390 395 400

Ser Ala Leu Tyr Thr Gly Leu Lys Val Thr Arg Gly Ile Trp Glu Ala
405 410 415

Asp Phe Asn Leu Asn Tyr Thr Arg Asn Arg Ile Thr Gly Tyr Lys Pro
420 425 430

Ala Cys Asp Ser Arg Val Ile Cys Val Pro Gln Gly Ser Tyr Asp Ile
435 440 445

Asp Asp Lys Glu Gly Gly Phe Asn Pro Ser Val Gln Leu Ser Ala Gln
450 455 460

Val Thr Pro Trp Leu Gln Pro Phe Ile Gly Tyr Ser Lys Ser Met Arg
465 470 475 480

Ala Pro Asn Ile Gln Glu Met Phe Phe Ser Asn Ser Gly Gly Ala Ser
485 490 495

Met Asn Pro Phe Leu Lys Pro Glu Arg Ala Glu Thr Trp Gln Ala Gly

500 505 510

Phe Asn Ile Asp Thr Arg Asp Leu Leu Val Glu Gln Asp Ala Leu Arg
515 520 525

Phe Lys Ala Leu Ala Tyr Arg Ser Arg Ile Gln Asn Tyr Ile Tyr Ser
530 535 540

Glu Ser Tyr Leu Val Cys Ser Gly Gly Arg Lys Cys Ser Leu Pro Glu
545 550 555 560

Val Ile Gly Asn Gly Trp Glu Gly Ile Ser Asp Glu Tyr Ser Asp Asn
565 570 575

Met Tyr Ile Tyr Val Asn Ser Ala Ser Asp Val Ile Ala Lys Gly Phe
580 585 590

Glu Leu Glu Met Asp Tyr Asp Ala Gly Phe Ala Phe Gly Arg Leu Ser
595 600 605

Phe Ser Gln Gln Gln Thr Asp Gln Pro Thr Ser Ile Ala Ser Thr His
610 615 620

Phe Gly Ala Gly Asp Ile Thr Glu Leu Pro Arg Lys Tyr Met Thr Leu
625 630 635 640

Asp Thr Gly Val Arg Phe Phe Asp Asn Ala Leu Thr Leu Gly Thr Ile
645 650 655

Ile Lys Tyr Thr Gly Lys Ala Arg Arg Leu Ser Pro Asp Phe Glu Gln
660 665 670

Asp Glu His Thr Gly Ala Ile Ile Lys Gln Asp Leu Pro Gln Ile Pro
675 680 685

Thr Ile Ile Asp Leu Tyr Gly Thr Tyr Glu Tyr Asn Arg Asn Leu Thr
690 695 700

Leu Lys Leu Ser Val Gln Asn Leu Met Asn Arg Asp Tyr Ser Glu Ala
705 710 715 720

Leu Asn Lys Leu Asn Met Met Pro Gly Leu Gly Asp Glu Thr His Pro

725 730 735

Ala Asn Ser Ala Arg Gly Arg Thr Trp Ile Phe Gly Gly Asp Ile Arg
740 745 750

Phe

<210> 52
<211> 133
<212> PRT
<213> Escherichia coli

<400> 52

Met Ser Ser Lys Thr Lys Cys Trp Leu Trp Met Leu Leu Val Ile Leu
1 5 10 15

Ser Glu Thr Ser Ala Thr Ser Thr Leu Lys Met Phe Asp Asn Ser Glu
20 25 30

Gly Met Thr Lys Thr Leu Leu Leu Ala Leu Ile Val Val Leu Tyr Cys
35 40 45

Ile Cys Tyr Tyr Ser Leu Ser Arg Ala Val Lys Asp Ile Pro Val Gly
50 55 60

Leu Ala Tyr Ala Thr Trp Ser Gly Thr Gly Ile Leu Met Val Ser Thr
65 70 75 80

Leu Gly Ile Leu Phe Tyr Gly Gln His Pro Asp Thr Ala Ala Ile Ile
85 90 95

Gly Met Val Ile Ile Ala Ser Gly Ile Ile Ile Met Asn Leu Phe Ser
100 105 110

Lys Met Gly Ser Glu Glu Ala Glu Glu Thr Pro Val Thr Asn Leu Asp
115 120 125

Lys Lys Ile Ala Asn
130

<210> 53
<211> 286
<212> PRT

<213> Escherichia coli

<400> 53

Met Tyr Ile Lys Lys His Trp Ile Ala Leu Ser Ile Leu Leu Ile Pro
1 5 10 15

Cys Ile Gly Asn Ala Gln Glu Ile Lys Ile Asp Glu Ser Trp Leu His
20 25 30

Gln Ser Leu Asn Val Ile Gly Arg Thr Asp Ser Arg Phe Gly Pro Arg
35 40 45

Leu Thr Asn Asp Leu Tyr Pro Glu Tyr Thr Val Ala Gly Arg Lys Asp
50 55 60

Trp Phe Asp Phe Tyr Gly Tyr Val Asp Leu Pro Lys Phe Phe Gly Val
65 70 75 80

Gly Ser His Tyr Asp Val Gly Ile Trp Asp Glu Gly Ser Pro Leu Phe
85 90 95

Thr Glu Ile Glu Pro Arg Phe Ser Ile Asp Lys Leu Thr Gly Leu Asn
100 105 110

Leu Ala Phe Gly Pro Phe Lys Glu Trp Phe Ile Ala Asn Asn Tyr Val
115 120 125

Tyr Asp Met Gly Asp Asn Gln Ser Ser Arg Gln Ser Thr Trp Tyr Met
130 135 140

Gly Leu Gly Thr Asp Ile Asp Thr Gly Leu Pro Ile Lys Leu Ser Ala
145 150 155 160

Asn Ile Tyr Ala Lys Tyr Gln Trp Gln Asn Tyr Gly Ala Ala Asn Glu
165 170 175

Asn Glu Trp Asp Gly Tyr Arg Phe Lys Ile Lys Tyr Ser Ile Pro Leu
180 185 190

Thr Asn Leu Phe Gly Gly Arg Leu Val Tyr Asn Ser Phe Thr Asn Phe
195 200 205

Asp Phe Gly Ser Asp Leu Ala Asp Lys Ser His Asn Asn Lys Arg Thr

210 215 220

Ser Asn Ala Ile Ala Ser Ser His Ile Leu Ser Leu Leu Tyr Glu His
225 230 235 240

Trp Lys Phe Ala Phe Thr Leu Arg Tyr Phe His Asn Gly Gly Gln Trp
245 250 255

Asn Ala Gly Glu Lys Val Asn Phe Gly Asp Gly Pro Phe Glu Leu Lys
260 265 270

Asn Thr Gly Trp Gly Thr Tyr Thr Thr Ile Gly Tyr Gln Phe
275 280 285

<210> 54
<211> 172
<212> PRT
<213> Escherichia coli

<400> 54

Met Arg Ile Ala Pro Arg Thr Phe Phe Ala Ile Ser Ala Leu Ala Phe
1 5 10 15

Ile Val Ala Ser Gly Phe Ser Phe Trp Arg Leu Ser Pro Ala Glu Asn
20 25 30

Thr Gly Ile Met Ser Cys Ser Thr Lys Gly Ile Met Arg Phe Glu Asn
35 40 45

Met Glu Lys Glu Asn Val Asn Gly Asn Ile His Phe Asn Phe Gly Ser
50 55 60

Gln Gly Lys Gly Ser Met Val Leu Glu Gly Tyr Thr Asp Ser Ala Ala
65 70 75 80

Gly Trp Leu Tyr Leu Gln Arg Tyr Val Lys Phe Thr Tyr Thr Ser Lys
85 90 95

Arg Val Ser Ala Thr Glu Arg His Tyr Arg Ile Ser Gln Trp Glu Ser
100 105 110

Ser Ala Ser Ser Ile Asp Glu Ser Pro Asp Val Ile Phe Asp Tyr Phe
115 120 125

Met Arg Glu Met Ser Asp Ser His Asp Gly Leu Phe Leu Asn Ala Gln
130 135 140

Lys Leu Asn Asp Lys Ala Ile Leu Leu Ser Ser Ile Asn Ser Pro Leu
145 150 155 160

Trp Ile Cys Thr Leu Lys Ser Gly Ser Lys Leu Asp
165 170

<210> 55
<211> 182
<212> PRT
<213> Escherichia coli

<400> 55

Met Lys Ile Lys Val Ile Ala Leu Ala Thr Phe Val Ser Ala Val Phe
1 5 10 15

Ala Gly Ser Ala Met Ala Tyr Asp Gly Thr Ile Thr Phe Thr Gly Lys
20 25 30

Val Val Ala Gln Thr Cys Thr Val Asn Thr Ser Asp Lys Asp Leu Ala
35 40 45

Val Thr Leu Pro Thr Val Ala Thr Ser Ser Leu Lys Asp Asn Ala Ala
50 55 60

Thr Ser Gly Leu Thr Pro Phe Ala Ile Arg Leu Thr Gly Cys Ala Thr
65 70 75 80

Gly Met Asn Ser Ala Gln Asn Val Lys Ala Tyr Phe Glu Pro Ser Ser
85 90 95

Asn Ile Asp Leu Ala Thr His Asn Leu Lys Asn Thr Ala Thr Pro Thr
100 105 110

Lys Ala Asp Asn Val Gln Ile Gln Leu Leu Asn Ser Asn Gly Thr Ser
115 120 125

Thr Ile Leu Leu Gly Glu Ala Asp Asn Gly Gln Asp Val Gln Ser Glu
130 135 140

Thr Ile Gly Ser Asp Gly Ser Ala Thr Leu Arg Tyr Met Ala Gln Tyr
145 150 155 160

Tyr Ala Thr Gly Gln Ser Thr Ala Gly Asp Val Lys Ala Thr Val His
165 170 175

Tyr Thr Ile Ala Tyr Glu
180

<210> 56
<211> 359
<212> PRT
<213> Escherichia coli

<400> 56

Met Lys Arg Ile Phe Phe Ile Pro Leu Phe Leu Ile Leu Leu Pro Lys
1 5 10 15

Leu Ala Val Ala Gly Pro Asp Asp Tyr Val Pro Ser Gln Ile Ala Val
20 25 30

Asn Thr Ser Thr Leu Pro Gly Val Val Ile Gly Pro Ala Asp Ala His
35 40 45

Thr Tyr Pro Arg Val Ile Gly Glu Leu Ala Gly Thr Ser Asn Gln Tyr
50 55 60

Val Phe Asn Gly Gly Ala Ile Ala Leu Met Arg Gly Lys Phe Thr Pro
65 70 75 80

Ala Leu Pro Lys Ile Gly Ser Ile Thr Val Tyr Phe Pro Ser Arg Lys
85 90 95

Gln Arg Asp Ser Ser Asp Phe Asp Ile Tyr Asp Ile Gly Val Ser Gly
100 105 110

Leu Gly Ile Ile Ile Gly Met Ala Gly Tyr Trp Pro Ala Thr Pro Leu
115 120 125

Val Pro Ile Asn Ser Ser Gly Ile Tyr Ile Asp Pro Val Gly Ala Asn
130 135 140

Thr Asn Pro Asn Thr Tyr Asn Gly Ala Thr Ala Ser Phe Gly Ala Arg
145 150 155 160

Leu Phe Val Ala Phe Val Ala Thr Gly Arg Leu Pro Asn Gly Tyr Ile
165 170 175

Thr Ile Pro Thr Arg Gln Leu Gly Thr Ile Leu Leu Glu Ala Lys Arg
180 185 190

Thr Ser Leu Asn Asn Lys Gly Leu Thr Ala Pro Val Met Leu Asn Gly
195 200 205

Gly Arg Ile Gln Val Gln Ser Gln Thr Cys Thr Met Gly Gln Lys Asn
210 215 220

Tyr Val Val Pro Leu Asn Thr Val Tyr Gln Ser Gln Phe Thr Ser Leu
225 230 235 240

Tyr Lys Glu Ile Gln Gly Lys Ile Asp Ile His Leu Gln Cys Pro
245 250 255

Asp Gly Ile Asp Val Tyr Ala Thr Leu Thr Asp Ala Ser Gln Pro Val
260 265 270

Asn Arg Thr Asp Ile Leu Thr Leu Ser Ser Glu Ser Thr Ala Lys Gly
275 280 285

Phe Gly Ile Arg Leu Tyr Lys Asp Ser Asp Val Thr Ala Ile Ser Tyr
290 295 300

Gly Glu Asp Ser Pro Val Lys Gly Asn Gly Ser Gln Trp His Phe Ser
305 310 315 320

Asp Tyr Arg Gly Glu Val Asn Pro His Ile Asn Leu Arg Ala Asn Tyr
325 330 335

Ile Lys Ile Ala Asp Ala Thr Thr Pro Gly Ser Val Lys Ala Ile Ala
340 345 350

Thr Ile Thr Phe Ser Tyr Gln
355

<210> 57
<211> 844
<212> PRT

<213> Escherichia coli

<400> 57

Met Asn Ala Asn Asn Leu Ser Cys Leu Ile Tyr Cys Arg Cys Ser Leu
1 5 10 15

Leu Leu Phe Ala Ala Leu Gly Leu Thr Val Thr Asn His Ser Phe Ala
20 25 30

Ala Glu Glu Ala Glu Phe Asp Ser Glu Phe Leu His Leu Asp Lys Gly
35 40 45

Ile Asn Ala Ile Asp Ile Arg Arg Phe Ser His Gly Asn Pro Val Pro
50 55 60

Glu Gly Arg Tyr Tyr Ser Asp Ile Tyr Val Asn Asn Val Trp Lys Gly
65 70 75 80

Lys Ala Asp Leu Gln Tyr Leu Arg Thr Ala Asn Thr Gly Ala Pro Thr
85 90 95

Leu Cys Leu Thr Pro Glu Leu Leu Ser Leu Ile Asp Leu Val Lys Asp
100 105 110

Thr Met Ser Gly Asn Thr Ser Cys Phe Pro Ala Ser Thr Gly Leu Ser
115 120 125

Ser Ala Arg Ile Asn Phe Asp Leu Ser Thr Leu Arg Leu Asn Ile Glu
130 135 140

Ile Pro Gln Ala Leu Leu Asn Thr Arg Pro Arg Gly Tyr Ile Ser Pro
145 150 155 160

Ala Gln Trp Gln Ser Gly Val Pro Ala Ala Phe Ile Asn Tyr Asp Ala
165 170 175

Asn Tyr Tyr Gln Tyr Ser Ser Ser Gly Thr Ser Asn Glu Gln Thr Tyr
180 185 190

Leu Gly Leu Lys Ala Gly Phe Asn Leu Trp Gly Trp Ala Leu Arg His
195 200 205

Arg Gly Ser Glu Ser Trp Asn Asn Ser Tyr Pro Ala Gly Tyr Gln Asn

210 215 220

Ile Glu Thr Ser Ile Met His Asp Leu Ala Pro Leu Arg Ala Gln Phe
225 230 235 240

Thr Leu Gly Asp Phe Tyr Thr Asn Gly Glu Leu Met Asp Ser Leu Ser
245 250 255

Leu Arg Gly Val Arg Leu Ala Ser Asp Glu Arg Met Leu Pro Gly Ser
260 265 270

Leu Arg Gly Tyr Ala Pro Ala Val Arg Gly Ile Ala Asn Ser Asn Ala
275 280 285

Lys Val Thr Ile Tyr Gln Asn Ala His Ile Leu Tyr Glu Thr Thr Val
290 295 300

Pro Ala Gly Pro Phe Val Ile Asn Asp Leu Tyr Pro Ser Gly Tyr Ala
305 310 315 320

Gly Asp Leu Leu Val Lys Ile Thr Glu Ser Asn Gly Gln Thr Arg Met
325 330 335

Phe Thr Val Pro Phe Ala Ala Val Ala Gln Leu Ile Arg Pro Gly Phe
340 345 350

Ser Arg Trp Gln Met Ser Val Gly Lys Tyr Arg Tyr Ala Asn Lys Thr
355 360 365

Tyr Asn Asp Leu Ile Ala Gln Gly Thr Tyr Gln Tyr Gly Leu Thr Asn
370 375 380

Asp Ile Thr Leu Asn Ser Gly Leu Thr Thr Ala Ser Gly Tyr Thr Ala
385 390 395 400

Gly Leu Ala Gly Leu Ala Phe Asn Thr Pro Leu Gly Ala Ile Ala Ser
405 410 415

Asp Ile Thr Leu Ser Arg Thr Ala Phe Arg Tyr Ser Gly Val Thr Arg
420 425 430

Lys Gly Tyr Ser Leu His Ser Ser Tyr Ser Ile Asn Ile Pro Ala Ser
435 440 445

Asn Thr Asn Ile Thr Leu Ala Ala Tyr Arg Tyr Ser Ser Lys Asp Phe
450 455 460

Tyr His Leu Lys Asp Ala Leu Ser Ala Asn His Asn Ala Phe Ile Asp
465 470 475 480

Asp Val Ser Val Lys Ser Thr Ala Phe Tyr Arg Pro Arg Asn Gln Phe
485 490 495

Gln Ile Ser Ile Asn Gln Glu Leu Gly Glu Lys Trp Gly Gly Met Tyr
500 505 510

Leu Thr Gly Thr Thr Tyr Asn Tyr Trp Gly His Lys Gly Ser Arg Asn
515 520 525

Glu Tyr Gln Ile Gly Tyr Ser Asn Phe Trp Lys Gln Leu Gly Tyr Gln
530 535 540

Ile Gly Leu Ser Gln Ser Arg Asp Asn Glu Gln Gln Arg Arg Asp Asp
545 550 555 560

Arg Phe Tyr Ile Asn Phe Thr Leu Pro Leu Gly Gly Ser Val Gln Ser
565 570 575

Pro Val Phe Ser Thr Val Leu Asn Tyr Ser Lys Glu Glu Lys Asn Ser
580 585 590

Ile Gln Thr Ser Ile Ser Gly Thr Gly Gly Glu Asp Asn Gln Phe Ser
595 600 605

Tyr Gly Ile Ser Gly Asn Ser Gln Glu Asn Gly Pro Ser Gly Tyr Ala
610 615 620

Met Asn Gly Gly Tyr Arg Ser Pro Tyr Val Asn Ile Thr Thr Thr Val
625 630 635 640

Gly His Asp Thr Gln Asn Asn Gln Arg Ser Phe Gly Ala Ser Gly
645 650 655

Ala Val Val Ala His Pro Tyr Gly Val Thr Leu Ser Asn Asp Leu Ser
660 665 670

Asp Thr Phe Ala Ile Ile His Ala Glu Gly Ala Gln Gly Ala Val Ile
675 680 685

Asn Asn Ala Ser Gly Ser Arg Leu Asp Phe Trp Gly Asn Gly Val Val
690 695 700

Pro Tyr Val Thr Pro Tyr Glu Lys Asn Gln Ile Ser Ile Asp Pro Ser
705 710 715 720

Asn Leu Asp Leu Asn Val Glu Leu Ser Ala Thr Glu Gln Glu Ile Ile
725 730 735

Pro Arg Ala Asn Ser Ala Thr Leu Val Lys Phe Asp Thr Lys Thr Gly
740 745 750

Arg Ser Leu Leu Phe Asp Ile Arg Met Ser Thr Gly Asn Pro Pro Pro
755 760 765

Met Ala Ser Glu Val Leu Asp Glu His Gly Gln Leu Ala Gly Tyr Val
770 775 780

Ala Gln Ala Gly Lys Val Phe Thr Arg Gly Leu Pro Glu Lys Gly His
785 790 795 800

Leu Ser Val Val Trp Gly Pro Asp Asn Lys Asp Arg Cys Ser Phe Val
805 810 815

Tyr His Val Ala His Asn Lys Asp Asp Met Gln Ser Gln Leu Val Pro
820 825 830

Val Leu Cys Ile Gln His Pro Asn Gln Glu Lys Thr
835 840

<210> 58

<211> 277

<212> PRT

<213> Escherichia coli

<400> 58

Met Val Lys Cys His Thr Leu Ile Asn Arg Arg Asn Lys Cys Leu Leu
1 5 10 15

Ile Val Phe Ile Val Leu Ile Gly Trp Ile Ile Phe Arg Pro Lys Ala

20 25 30

Tyr Thr Tyr Ser Leu Asn Asp Lys Glu Lys Glu Met Leu Ile Met Leu
35 40 45

Ser Gln His Pro Glu Thr Arg Tyr Phe Gly Phe Tyr Ser Ile Glu Leu
50 55 60

Pro Ala Asp Tyr Lys Pro Thr Gly Met Val Met Phe Ile Gln Gly Ser
65 70 75 80

Ala Met Ile Pro Val Glu Thr Lys Leu Gln Tyr Tyr Pro Pro Phe Leu
85 90 95

Gln Tyr Met Thr Arg Tyr Glu Ala Glu Leu Lys Asn Thr Ser Ala Leu
100 105 110

Asp Pro Leu Asp Thr Pro Tyr Leu Lys Gln Val His Pro Leu Ser Pro
115 120 125

Pro Met Asn Gly Val Ile Phe Glu Arg Met Lys Ala Lys Tyr Thr Pro
130 135 140

Asp Phe Ala Arg Val Leu Asp Ala Trp Lys Trp Glu Asn Gly Val Thr
145 150 155 160

Phe Ser Val Lys Ile Glu Ala Lys Asp Gly Arg Ala Thr Arg Tyr Asp
165 170 175

Gly Ile Ser Lys Ile Ala Glu Tyr Ser Tyr Gly Tyr Asn Ile Pro Glu
180 185 190

Lys Lys Val Gln Leu Leu Thr Ile Leu Ser Gly Leu Gln Pro Arg Ala
195 200 205

Asp Asn Gln Pro Pro Ser Glu Asn Lys Leu Ala Ile Gln Tyr Ala Gln
210 215 220

Val Asp Ala Ser Leu Leu Gly Glu Tyr Glu Leu Ser Val Asp Tyr Lys
225 230 235 240

Asn Ser Asn Asn Ile Lys Ile Ser Leu Gln Thr Asp Asn Asn Ser Tyr
245 250 255

Ile Asp Ser Leu Leu Asp Ile Arg Tyr Pro Ser Asn Gly Asn Arg Ala
260 265 270

Trp Tyr Asn Ser Ile
275

<210> 59
<211> 366
<212> PRT
<213> Escherichia coli

<400> 59

Met Leu Pro Glu Pro Val Tyr Arg Arg Trp Ile Ile Leu Leu Ile Ser
1 5 10 15

Met Leu Thr Val Gly Thr Leu Phe Ile Leu Ser Val Trp Asn Ser Ala
20 25 30

Thr Tyr Trp Asp Ile Phe Ile Tyr Gly Val Leu Pro Met Leu Phe Leu
35 40 45

Trp Leu Cys Leu Phe Gly Ile Ala Leu Asn Lys Tyr Glu Gln Ser Val
50 55 60

Ala Ala Cys Ile Ser Trp Glu Ser Glu Arg Gln Gln Val Lys Gln Leu
65 70 75 80

Trp Gln His Trp Ser Gln Lys Gln Leu Ala Ile Val Gly Asn Val Leu
85 90 95

Phe Thr Pro Glu Glu Lys Gly Met Ser Val Leu Leu Gly Pro Gln Glu
100 105 110

Glu Ile Pro Ala Tyr Pro Lys Lys Ala Arg Pro Leu Phe Ser Ala Ser
115 120 125

Arg Tyr Ser Leu Ser Ser Ile Phe His Asp Ile His Gln Gln Leu Thr
130 135 140

Gln Gln Phe Pro Asp Tyr Arg His Tyr Leu His Thr Ile Tyr Val Leu
145 150 155 160

Gln Pro Glu Lys Trp Arg Gly Glu Thr Val Arg Gln Ala Ile Phe His
165 170 175

Gln Trp Asp Leu Val Pro Glu Arg Thr Asn Thr Leu Asn Gln Ile Gln
180 185 190

Ser Leu Tyr Asp Glu Arg Phe Asp Gly Leu Ile Leu Val Val Cys Leu
195 200 205

Gln Asn Trp Pro Glu Asn Lys Pro Glu Asp Thr Ser Glu Leu Val Ser
210 215 220

Ala Gln Leu Ile Ser Ser Ser Phe Val Arg Gln His Gln Ile Pro
225 230 235 240

Val Ile Ala Gly Leu Gly Arg Val Met Pro Leu Glu Pro Glu Glu Leu
245 250 255

Glu His Asn Leu Asp Val Leu Phe Glu Tyr Asn Gln Leu Asp Asn Lys
260 265 270

Gln Leu Gln His Val Trp Val Ser Gly Leu Asp Glu Gly Thr Ile Glu
275 280 285

Asn Leu Met Gln Tyr Ala Glu Gln His Gln Trp Ser Leu Pro Lys Lys
290 295 300

Arg Pro Leu His Met Ile Asp His Ser Phe Gly Pro Thr Gly Glu Phe
305 310 315 320

Ile Phe Pro Val Ser Leu Ala Met Leu Ser Glu Ala Ala Lys Glu Thr
325 330 335

Glu Gln Asn His Leu Ile Ile Tyr Gln Ser Ala Gln Tyr Ala Gln Lys
340 345 350

Lys Ser Leu Cys Leu Ile Thr Arg Lys Leu Tyr Leu Arg Thr
355 360 365

<210> 60

<211> 260

<212> PRT

<213> Escherichia coli

<400> 60

Met Leu Asn Arg Lys Leu Asn Ile Arg Leu Arg His Ser Leu Asn Ser
1 5 10 15

His Cys Ile Pro Ser Ile Ile Asn Asn Thr Val Arg Ser Phe Gln
20 25 30

Arg Ser Val Met Asn Thr Arg Ala Leu Phe Pro Leu Leu Phe Thr Val
35 40 45

Ala Ser Phe Ser Ala Ser Ala Gly Asn Trp Ala Val Lys Asn Gly Trp
50 55 60

Cys Gln Thr Met Thr Glu Asp Gly Gln Ala Leu Val Met Leu Lys Asn
65 70 75 80

Gly Thr Ile Gly Ile Thr Gly Leu Met Gln Gly Cys Pro Asn Gly Val
85 90 95

Gln Thr Leu Leu Gly Ser Arg Ile Ser Ile Asn Gly Asn Leu Ile Pro
100 105 110

Thr Ser Gln Met Cys Asn Gln Gln Thr Gly Phe Arg Ala Val Glu Val
115 120 125

Glu Ile Gly Gln Ala Pro Glu Met Val Lys Lys Ala Val His Ser Ile
130 135 140

Ala Glu Arg Asp Val Ser Val Leu Gln Ala Phe Gly Val Arg Met Glu
145 150 155 160

Phe Thr Arg Gly Asp Met Leu Lys Val Cys Pro Lys Phe Val Thr Ser
165 170 175

Leu Ala Gly Phe Ser Pro Lys Gln Thr Thr Thr Ile Asn Lys Asp Ser
180 185 190

Val Leu Gln Ala Ala Arg Gln Ala Tyr Ala Arg Glu Tyr Asp Glu Glu
195 200 205

Thr Thr Glu Thr Ala Asp Phe Gly Ser Tyr Glu Val Lys Gly Asn Lys
210 215 220

Val Glu Phe Glu Val Phe Asn Pro Glu Asp Arg Ala Tyr Asp Lys Val
225 230 235 240

Thr Val Thr Val Gly Ala Asp Gly Asn Ala Thr Gly Ala Ser Val Glu
245 250 255

Phe Ile Gly Lys
260

<210> 61
<211> 385
<212> PRT
<213> Escherichia coli

<400> 61

Val Val Ile Ile Asn Ser Thr Ile Leu Ser Gly Ala Gly Ala Ile Pro
1 5 10 15

Ser Leu Thr Ser Leu Leu Pro Asp Ile Arg Lys Met Leu Leu Val Thr
20 25 30

Asp Arg Asn Ile Ala Gln Leu Asp Gly Val Gln Gln Ile Arg Ala Leu
35 40 45

Leu Glu Lys His Cys Pro Gln Val Asn Val Ile Asp Asn Val Pro Ala
50 55 60

Glu Pro Thr His His Asp Val Arg Gln Leu Met Asp Ala Pro Gly Asp
65 70 75 80

Ala Ser Phe Asp Val Val Val Gly Ile Gly Gly Ser Val Leu Asp
85 90 95

Val Ala Lys Leu Leu Ser Val Leu Cys His Pro Gln Ser Pro Gly Leu
100 105 110

Asp Ala Leu Leu Ala Gly Glu Lys Pro Thr Gln Arg Val Gln Ser Trp
115 120 125

Leu Ile Pro Thr Thr Ala Gly Thr Gly Ser Glu Ala Thr Pro Asn Ala
130 135 140

Ile Leu Ala Ile Pro Glu Gln Ser Thr Lys Val Gly Ile Ile Ser Gln
145 150 155 160

Val Leu Leu Pro Asp Tyr Val Ala Leu Phe Pro Glu Leu Thr Thr Ser
165 170 175

Met Pro Ala His Ile Ala Ala Ser Thr Gly Ile Asp Ala Leu Cys His
180 185 190

Leu Leu Glu Cys Phe Thr Ala Thr Val Ala Asn Pro Val Ser Asp Asn
195 200 205

Ala Ala Leu Thr Gly Leu Ser Lys Leu Phe Arg His Ile Gln Pro Ala
210 215 220

Val Asn Asp Pro Gln Asp Leu Arg Ala Lys Leu Glu Met Leu Trp Ala
225 230 235 240

Ser Tyr Tyr Gly Gly Val Ala Ile Thr His Ala Gly Thr His Leu Val
245 250 255

His Ala Leu Ser Tyr Pro Leu Gly Gly Lys Tyr His Leu Pro His Gly
260 265 270

Val Ala Asn Ala Ile Leu Leu Ala Pro Cys Met Ala Phe Val Arg Pro
275 280 285

Trp Ala Val Glu Lys Phe Ala Arg Val Trp Asp Cys Ile Pro Asp Ala
290 295 300

Glu Thr Ala Leu Ser Ala Glu Glu Lys Ser His Ala Leu Val Thr Trp
305 310 315 320

Leu Gln Ala Leu Val Asn Gln Leu Lys Leu Pro Asn Asn Leu Ala Ala
325 330 335

Leu Gly Val Pro Pro Glu Asp Ile Ala Ser Leu Ser Glu Ala Ala Leu
340 345 350

Asn Val Lys Arg Leu Met Asn Asn Val Pro Cys Gln Ile Asp Leu Gln
355 360 365

Asp Val Gln Ala Ile Tyr Gln Thr Leu Phe Pro Gln His Pro Phe Lys
370 375 380

Glu
385

<210> 62
<211> 105
<212> PRT
<213> Escherichia coli

<400> 62

Met Asn Ile Arg Lys Leu Phe Cys Pro Gly Asn Thr Pro Arg Ile Leu
1 5 10 15

Leu Phe Leu Phe Phe Val Val Ser Ala Ile Thr Thr Ile Ala Cys
20 25 30

Gly Tyr Thr Glu Lys Asn Ala Thr Gly Asn Val Leu Leu Leu Phe Leu
35 40 45

Leu Leu Leu Leu Ala His Arg Asn Thr Leu Thr Ser Ile Thr Ala Leu
50 55 60

Leu Phe Leu Phe Cys Cys Ala Leu Tyr Ala Pro Ala Gly Met Thr Tyr
65 70 75 80

Gly Lys Ile Asn Asn Ser Phe Ile Val Ala Leu Leu Gln Thr Thr
85 90 95

Asp Glu Ala Ala Glu Phe Thr Gly Met
100 105

<210> 63
<211> 147
<212> PRT
<213> Escherichia coli

<400> 63

Met Asn Ile Gln Ala Ile Lys Glu Met Val Asn Leu Ile Cys Ser Phe
1 5 10 15

Leu Phe Ile Phe Phe Leu Ser Ser Ala Phe Val Ser Phe Gly Cys Tyr
20 25 30

Ala Ile Tyr Glu Leu Phe Leu Trp Asn Asp Ile Ile Val Tyr Ser Trp
35 40 45

Gly Tyr Ile Leu Ile Val Phe Leu Pro Phe Thr Leu Tyr Val Met Ser
50 55 60

Phe Glu Ile Leu Phe Phe Ala Ile Ser Gly Arg Arg Leu Ser Lys Val
65 70 75 80

Thr Met Val Arg Leu Trp Leu Ile Ile Lys Ile Ile Ile Ala Phe Ser
85 90 95

Ile Cys Ala Val Leu Ile Phe Ser Ser Ile Tyr Lys Lys Glu Leu Leu
100 105 110

Ser Arg Asn Tyr Ile Ala Cys Ser Gly Ile Pro Ser Gly Trp Met Pro
115 120 125

Gly Leu Ala Thr Lys Tyr Val Lys Glu Lys Ser Leu Cys Glu Lys Asn
130 135 140

Gly Asn Asn
145

<210> 64
<211> 178
<212> PRT
<213> Escherichia coli

<400> 64

Met Phe Pro Ile Arg Phe Lys Arg Pro Ala Leu Leu Cys Met Ala Met
1 5 10 15

Leu Thr Val Val Leu Ser Gly Cys Gly Leu Ile Gln Lys Val Val Asp
20 25 30

Glu Ser Lys Ser Val Ala Ser Ala Val Phe Tyr Lys Gln Ile Lys Ile
35 40 45

Leu His Leu Asp Phe Phe Ser Arg Ser Ala Leu Asn Thr Asp Ala Glu
50 55 60

Asp Thr Pro Leu Ser Thr Met Val His Val Trp Gln Leu Lys Thr Arg
65 70 75 80

Glu Asp Phe Asp Lys Ala Asp Tyr Asp Thr Leu Phe Met Gln Glu Glu
85 90 95

Lys Thr Leu Glu Lys Asp Val Leu Ala Lys His Thr Val Trp Val Lys
100 105 110

Pro Glu Gly Thr Ala Ser Leu Asn Val Pro Leu Asp Lys Glu Thr Gln
115 120 125

Phe Val Ala Ile Ile Gly Gln Phe Tyr His Pro Asp Glu Lys Ser Asp
130 135 140

Ser Trp Arg Leu Val Ile Lys Arg Asp Glu Leu Glu Ala Asp Lys Pro
145 150 155 160

Arg Ser Ile Glu Leu Met Arg Ser Asp Leu Arg Leu Leu Pro Leu Lys
165 170 175

Asp Lys

<210> 65

<211> 209

<212> PRT

<213> Escherichia coli

<400> 65

Met Phe Leu Lys Arg Lys Trp Tyr Tyr Ala Val Thr Thr Ser Val Val
1 5 10 15

Ile Thr Leu Cys Gly Gly Tyr Tyr Met Tyr Arg Gln Glu Tyr Gln
20 25 30

Met Val Val Thr Val Pro Thr Ala Asp Ala Asn Asp Pro Asn Trp Pro
35 40 45

Asn Lys Arg Ile Gln Phe Asp Thr Ser Glu Trp Leu Gln Gln Leu Gln
50 55 60

Tyr Ile Lys Ile Asp Asp His Tyr Ile Leu Asn Thr Gln Tyr Thr Pro
65 70 75 80

Ile Ala Asn Leu Asp Asp Phe Gly Ile Thr Leu Lys Leu Gln Asn Ala
85 90 95

Leu Asn Gly Ser Asp Lys Arg Leu Pro Ala Leu Tyr Gly Leu Ala Glu
100 105 110

Met Asp Ala Gln Lys Phe Lys Asp Leu Met Arg Gly Lys Ile Lys Cys
115 120 125

Glu Tyr Leu Arg Thr Thr Phe Asp Ala Glu Thr Leu Lys Pro Val Asn
130 135 140

Asp Tyr Phe Leu Ile Ser Phe Thr Tyr Lys Asp Lys Trp Tyr Glu Phe
145 150 155 160

Glu Thr Glu Arg Lys Ile Ser Lys Thr Ser Asp Asp Gly Tyr Phe Leu
165 170 175

Trp Ala Phe Asp Asn Thr Val His Glu Ala Gly Tyr Trp His Asn Thr
180 185 190

Asp Pro Ala Ala Tyr Ser Tyr Arg Asp Tyr Gln Asn Gly Lys Ala Val
195 200 205

Lys

<210> 66
<211> 424
<212> PRT
<213> Escherichia coli

<400> 66

Met Asp Ile Trp Arg Gly His Ser Phe Leu Met Thr Ile Ser Ala Arg
1 5 10 15

Phe Arg Gln Tyr Val Phe Ser Leu Met Ser Ile Leu Leu Gln Glu Arg
20 25 30

Lys Met Asn Ile Phe Thr Leu Ser Lys Ala Pro Leu Tyr Leu Leu Ile

35

40

45

Ser Leu Phe Leu Pro Thr Met Ala Met Ala Ile Asp Pro Pro Glu Arg
50 55 60

Glu Leu Ser Arg Phe Ala Leu Lys Thr Asn Tyr Leu Gln Ser Pro Asp
65 70 75 80

Glu Gly Val Tyr Glu Leu Ala Phe Asp Asn Ala Ser Lys Lys Val Phe
85 90 95

Ala Ala Val Thr Asp Arg Val Asn Arg Glu Ala Asn Lys Gly Tyr Leu
100 105 110

Tyr Ser Phe Asn Ser Asp Ser Leu Lys Val Glu Asn Lys Tyr Thr Met
115 120 125

Pro Tyr Arg Ala Phe Ser Leu Ala Ile Asn Gln Asp Lys His Gln Leu
130 135 140

Tyr Ile Gly His Thr Gln Ser Ala Ser Leu Arg Ile Ser Met Phe Asp
145 150 155 160

Thr Pro Thr Gly Lys Leu Val Arg Thr Ser Asp Arg Leu Ser Phe Lys
165 170 175

Ala Ala Asn Ala Ala Asp Ser Arg Phe Glu His Phe Arg His Met Val
180 185 190

Tyr Ser Gln Asp Ser Asp Thr Leu Phe Val Ser Tyr Ser Asn Met Leu
195 200 205

Lys Thr Ala Glu Gly Met Lys Pro Leu His Lys Leu Leu Met Leu Asp
210 215 220

Gly Thr Thr Leu Ala Leu Lys Gly Glu Val Lys Asp Ala Tyr Lys Gly
225 230 235 240

Thr Ala Tyr Gly Leu Thr Met Asp Glu Lys Thr Gln Lys Ile Tyr Val
245 250 255

Gly Gly Arg Asp Tyr Ile Asn Glu Ile Asp Ala Lys Asn Gln Thr Leu

260 265 270

Leu Arg Thr Ile Pro Leu Lys Asp Pro Arg Pro Gln Ile Thr Ser Val
275 280 285

Gln Asn Leu Ala Val Asp Ser Ala Ser Asp Arg Ala Phe Val Val Val
290 295 300

Phe Asp His Asp Asp Arg Ser Gly Thr Lys Asp Gly Leu Tyr Ile Phe
305 310 315 320

Asp Leu Arg Asp Gly Lys Gln Leu Gly Tyr Val His Thr Gly Ala Gly
325 330 335

Ala Asn Ala Val Lys Tyr Asn Pro Lys Tyr Asn Glu Leu Tyr Val Thr
340 345 350

Asn Phe Thr Ser Gly Thr Ile Ser Val Val Asp Ala Thr Lys Tyr Ser
355 360 365

Ile Thr Arg Glu Phe Asn Met Pro Val Tyr Pro Asn Gln Met Val Leu
370 375 380

Ser Asp Asp Met Asp Thr Leu Tyr Ile Gly Ile Lys Glu Gly Phe Asn
385 390 395 400

Arg Asp Trp Asp Pro Asp Val Phe Val Glu Gly Ala Lys Glu Arg Ile
405 410 415

Leu Ser Ile Asp Leu Lys Lys Ser
420

<210> 67
<211> 489
<212> DNA
<213> Escherichia coli

<400> 67

atgaaactga aagctattat attggccacc ggtcttatta actgtattgt atttcagca 60
caggcagtgg atacgacgat tactgtgacg ggtaatgttt tgcaaagaac atgtaatgta 120
ccagggaatg tggatgttc ttgggtaat ctgtatgtat cagactttcc caatgcagga 180
agtggatctc catgggttaa tttgatctg tctctcaccg gatgccagaa tatgaatact 240

gttcgggcaa catttagtgg tactgcggat gggcagacat actatgcga tacaggaaat 300
gctggcggtt tcaagattga aattcaggac agggatggaa gtaatgcac atatcacaat 360
ggtatgttca agacgcttaa tgtacaaaat aataatgcaa ccttaatct taaagccgt 420
gcagtgagta aaggccaggt tactcctgga aatatcagtt ctgttataac cgtcacctat 480
acctatgct 489

<210> 68
<211> 2019
<212> DNA
<213> Escherichia coli

<400> 68

ataaaaatga cacggctta tcctctggcc ttggggggat tattgctccc cgccattgct 60
aatgccaga ct当地acagca agacgaaagc acgctggtgg ttaccgcccag taaacaatct 120
tcccgctcggtt catcagccaa caacgtctcg tctactgttg tcagcgcgcc ggaattaagc 180
gacgcccggcg tcaccgccag cgacaaactc cccagagtct tgcccggctt caatattgaa 240
aatagcggca acatgctttt ttgcacgatc tcgctacgcg gcgtctctc agcgcaggac 300
ttctataacc cc当地cggtcac cctgtatgtc gatggcgtcc ctcagctttc caccaacacc 360
atccaggcgc ttaccgatgt gcaaagcgtg gagttgctgc gaggcccaca gggAACgtta 420
tatggcaaaa gcgctcaggg cgggatcatc aacatcgtca cccagcagcc ggacagcact 480
ccgcccggctt atattgaagg cggcgtcagt agcccgaca gttatcgaag taagttcaac 540
ctgagcggcc ccattcagga tggcctgctg tacggcagcg tcaccctgtt acgcccaggat 600
gatgacggcg acatgattaa ccccgcgacg ggaaggatcg acttagggcg caccccgccc 660
agcatagggaa atgtgaaact gcgtctggcg cc当地gacatc agccctggaa aatggcttt 720
gccgcctcac gc当地atgtac cc当地gcccacc caggacgcct atgtggatg gaatgatatt 780
aaggggccgtt agctgtcgat cagcgatggt tcaccagacc cgtacatgcg gc当地gtcact 840
gacagccaga cc当地gagtggtt gaaatacacc accgatgact gggtttcaa cctgatcagc 900
gc当地ggcagc agcagcatta ttgcgcacc ttcccttccg gttcgtaat cgtcaatatg 960
tctcagcgtt ggaatcagga tgtgcaggag ctgcgcgtt caaccctggg cgtgcgcgtt 1020
accgttgata tggtgttgg gctgtaccgg cagaacaccc gcgagaagtt aaattcagcc 1080
tacgacatgc cgacaatgcc ttatttaagc agtaccggctt ataccaccgc tgaaacgctg 1140

gcccataca	gtgacacctgac	ctggcattta	accgatcggtt	ttgatatcggtt	cggccggcgtt	1200
cgcttctcg	atgataaaatc	cagtacacaa	tatcacggca	gcatgctcggtt	caaccgg	1260
ggcggaccagg	gtaagagcaa	tgacgatca	gtgctcgggc	agctatccgc	aggctatatg	1320
ctgaccgatg	actggagagt	gtatacccg	gtagcccagg	gatataaaacc	ttccgggtac	1380
aacatcg	ctactgcggg	tcttgatgcc	aaaccgttcg	tcgcccggaaa	atccatcaac	1440
tatgaactt	gcacccgcta	cgaaaccgct	gacgtcacgc	tgcaagccgc	gacgttttat	1500
accacaccca	aagacatgca	gctttactct	ggcccggtcg	ggatgcagac	attaagcaat	1560
gcgggtaaag	ccgacgcccac	cggcggttag	cttgaagcga	agtggcggtt	tgccggcaggc	1620
tggcatggg	atatcaatgg	caacgtgatc	cgttccgaat	tcaccaatga	cagtgagttt	1680
tatcacggta	accgggtgcc	gttcgtacca	cgttatggcg	cgggaagcag	cgtgaacggc	1740
gtgattgata	cgcgctatgg	cgcactgatg	ccccgactgg	cggtaatct	ggtcggcccg	1800
cattatttcg	atggcgacaa	ccagttgcgg	caaggcacct	atgccaccct	ggacagcagc	1860
ctgggctggc	aggcgactga	acggatgaac	atttccgtct	atgtcgataa	cctgttcgac	1920
cgtcg	gtacctatgg	ctacatgaac	ggcagcagcg	ccgtcgccca	ggtcaatatg	1980
ggtcgcacccg	tcggtatcaa	tacgcgaatt	gatttcttc			2019

<210> 69
 <211> 738
 <212> DNA
 <213> Escherichia coli

 <400> 69

atgaataagg	tttttgttgt	ttcagtggtg	gccgcaggcct	gtgtatggc	agtaaatgca	60
ggagcaaagg	aaggtaaaag	cgttttat	ctgaccggta	aagccgggtcg	ctctgtgatg	120
tcactttcag	accagcg	cctgtcagga	gatgaggaag	aaacatcaa	gtataaaggc	180
ggcgatgacc	atgatacggt	attcagtggc	ggtattgcgg	tcggttatga	tttttatccg	240
cagttcagta	ttccgggtcg	tacagaactg	gagtttacg	ctcgtggaaa	agctgattcg	300
aagtataacg	tagataaaga	cagctggtca	ggtggtaact	ggcgtgatga	cctgaagaat	360
gaggtgtcag	tcaacacact	aatgctgaat	gcgtactatg	acttccggaa	tgacagcgca	420
ttcacaccat	gggtatccgc	agggattggc	tacgcccggaa	ttcaccagaa	aacaaccgg	480
atcagtacct	gggattatga	gtacggaagc	agtggcg	aatcggttgc	acgttcaggc	540
tctgctgaca	acttcgc	gagccttggc	gcgggtgtcc	gctatgacgt	aacccggat	600

atcgctctgg acctcagcta tcgcttatctt gatgcaggtg acagcagtgt gagttacaag 660
gacgagtgaaaata taagtcagaa gttgatgtta aaagtcatga catcatgctt 720
ggtatgactt ataacttc 738

<210> 70
<211> 498
<212> DNA
<213> Escherichia coli

<400> 70

atgaaaactga aagctattat attggccacc ggtcttatta actgtattgc attttcagca 60
caggcagtgg atacgacgat tactgttaca gggagggat tgccacgtac ctgtaccatt 120
ggtaatggag gaaacccaaa cgccaccgtt gttttggata acgcttacac ttctgacctg 180
atagcagcca acagcacctc tcagtggaaa aattttcgt tgacattgac gaattgtcag 240
aatgtaaaca atgttacttc atttggtggaa accgcagaaa atacaaattt ttacagaaat 300
acaggggatg ctactaatat catggtttagt ctacaggaac aaggtaatgg taatacccc 360
ttgaaagttg gttcaacaaa agttgttaca gtgagcaatg ggcaggcgac attcaatctt 420
aaagtccgtg ccgtaagcaa aggtaatgct ggtgcggaa gtattaattc acaaattact 480
gtcacctata cctatgctg 498

<210> 71
<211> 3885
<212> DNA
<213> Escherichia coli

<400> 71

atgaataaaaa tatactccct taaatatagt gctgccactg gcggactcat tgctgtttct 60
gaatttagcga aaagagtttc tggtaaaaca aaccgaaaac ttgttagcaac aatgttgtct 120
ctggctgttg ccggtacagt aaatgcagca aatattgata tatcaaattgt atgggcgaga 180
gactatcttgc atcttgacaca aaataaaggat attttccagc ccggagcaac agacgtaaca 240
atcaactttaa aaaacggaga taaattctct ttccataatc tctcaattcc ggattttct 300
ggtgtcagcag cgagtggcgc agctaccgca ataggaggtt cttatagtg tactgttgca 360
cataacaaaa agaaccctca ggccgcagaa acccaggtt acgctcagtc ttcttacagg 420
gttggatgaca gaagaaattc caatgatttt gagattcaga ggttaaataa atttggatgtg 480

gaaacagtag gtgccacccc ggcagagacc aaccctacaa catattctga tgcattagaa 540
cgctacggta tagtcacttc tgacggttca aaaaaaatca taggtttcg tgctggctct 600
ggaggaacat catttattaa tggtaatcc aaaatctcaa caaattcagc atatagccat 660
gatctgttaa gtgctagtct atttgaggtc acccaatggg actcatacgg catgatgatt 720
tataaaaatg ataaaaacatt tcgtaatctt gaaatattcg gagacagcgg ctctggagca 780
tacttatatg ataacaaact agaaaaatgg gtattagtcg gaacaaccca tggattgcc 840
agcgtaatg gtgaccaact gacatggata acaaataca atgataaact ggtagtgag 900
ttaaaagata cctatagtca taaaataaat ctgaatggca ataatgtaac cattaaaaac 960
acagatataa cattacacca aaacaatgca gataccactg gtactcaaga aaaaataact 1020
aaagacaaag atattgtgtt cacaaatggg ggagatgtcc tggtaagga taatttggat 1080
tttggtagcg gtggattat cttgacgaa ggccatgaat ataacataaa cggtcaggga 1140
tttacattta aaggagcagg aattgatatac ggaaaagaaa gcattgtaaa ctggaatgca 1200
ttgtattcca gtgatgatgt ttacacaaa ataggccccg gtactctgaa tggtaaaaaa 1260
aaacaggggg caaatataaa gataggtgaa ggaaatgtta ttcttaatga agaaggaaca 1320
tttaacaata tataccttgc aagcggaaat ggtaaggtaa tactaaataa agataattcc 1380
cttggcaatg atcaatatgc gggatattt ttactaac acgtgggtac gctagattta 1440
aatggacaca atcagacttt tactagaatt gccgcccactg acgtggaaac aacaataact 1500
aactcagata caacgaaaga agccgttctg gcaatcaata acgaagactc ctacatat 1560
catggaaaca taaatggcaa tataaaacta acgcacaata ttaattctca ggataagaaa 1620
actaatgcaa aattaattct ggatggtagt gtcaacacaa aaaatgtgt tgaagtcagt 1680
aatgccagtc ttaccatgca agccatgca acagagcatg caatattcag aagctcagcg 1740
aatcattgct ccctggatt tctttgtgga acggactggg tcaccgttt gaaagaaaaca 1800
gagagttcat ataataaaaa attcaattct gattacaaaa gtaataatca gcagaccta 1860
tttgcattcgc ctgactggaa aaccggggtg tttaaatttg atacattaca cctgaacaat 1920
gctgacttt caatatcagc caatgccaat gttgaaggaa atatatcagc aaataaatca 1980
gctatcacaa tcggcgataa aaatgtttac attgataatc ttgcaggaa aaatattact 2040
aataatggtt ttgacttcaa acaaactatc agtactaatc tatccatagg agaaactaaa 2100
tttacaggtg gcatcactgc acataacagc caaatagcca taggtgatca agctgttagtt 2160
acacttaatg gtgcaacctt tctggataat actcctataa gtatagataa aggagcaaaa 2220

gttatagcac aaaattccat gttcacaaca aaaggatttg atatctccgg tgaactgact 2280
atgatggaa tccctgaaca gaatagtaaa actgtaacgc cgggtctcca ctacgctgct 2340
gatggattca ggctgagtgg tgaaaatgca aatttcattt ccagaaatat ggcacatctgtc 2400
accggaaata tttatgctga ttagtcagca accattactc tgggacagcc tgaaactgaa 2460
acaccgacta tatcgctgc ttatcaggca tggcagaga ctctttgtt tggctttgat 2520
accgcttatac gaggcgcaat aacagcccccc aaagctacag ttagcatgaa taatgcgatc 2580
tggcatctaa atagccagtc atcaattaat cgtctagaaa caaaagacag tatggtcgt 2640
tttactggtg ataatggaa gtttacaacc cttacagtga acaaccttac tataatgac 2700
agtgcatttg tgctgcgtgc aaatctggcc caagcagatc agcttggatgtaaataatcg 2760
ttgtctggta aaaacaacct tctgttagtc gacttcattt agaaaaatgg aaacagcaac 2820
ggactgaata tcgatctggc cagcgcacca aaaggaactg cagtagatgt cttaaagct 2880
acgactcgga gtattggctt cagtgtatgtt acaccggta tcgagcaaaa gaacgataca 2940
gacaaagcaa catggactct gatcgctat aaatctgtgg ccaacgccga tgcggctaaa 3000
aaggcaacat tactgtatgtc aggccgctat aaagccttcc ttgctgaggt caacaacctt 3060
aacaacatgtt tgggtgatct gcgtgacatt aacgggtgatgtt ccgggtcatg ggcccgaatc 3120
attagcggaa ccgggtctgc cggcggtgaa ttcagtgaca actacaccca cggtcaggatc 3180
ggtgcggata acaaacatgtt actcgatggc cttgacctct tcaccgggtt gaccatgacc 3240
tataccgaca gccatgcagg cagtgtatgtt ttcagtgatgtt aaacgaagtc tgtgggtgcc 3300
ggtctctatg cctctgccat gtttggatcc ggagcatata tcgacctcat cgtaagtac 3360
gttcaccatg acaacgagta taccgcaact ttcgccggcc ttggcaccag agactacagc 3420
tcccactcct ggtatgccgg tgccggatgtc ggttaccgtt accatgttac tgactctgtca 3480
tggattgagc cgcaggcgga acttggatgtt ggtgctgtat ccggaaaca gtttcctgg 3540
aaggaccagg gaatgaacctt caccatgtt gataaggact ttaatccgtt gattggcggt 3600
accgggtttt atgtgggtaa atccttctcc ggttaccgtt accatgttac tgactctgtca 3660
ggccttggctt accagttga cctgtttgcc aacgggtttt ccgtactgtcg tgatgcgtcc 3720
ggtgagaaac gtatcaaagg tgaaaaagac ggtcgatgtc tcatgttac tggtctcaac 3780
gccgaaatttgcgataatct tcgcttcggg cttgagttt agaaatcggtt atttggtaaa 3840
tacaacgtgg ataacgcgtt caacgccaac ttccgttact ctttc 3885

<210>	72	
<211>	426	
<212>	DNA	
<213>	Escherichia coli	
<400>	72	
atgattaata ttcccagtcc caccgctgtt gttatggcgc tggtagccat cagcacgctt	60	
cccagcccta gcaggtaaa gcttatgccca tattcctccca gagcccacaa caccacaggt	120	
ttactgccag tacggaaat ttgcttccc caccacgggg acgatggcag aaacagcatt	180	
gagccaagca tcagcagggc agccccataca gacagactca gatttgcgttatgaccaga	240	
acagggagca caaccagcag accgttctgc ccgataccga gaagcccgcc actgaacgca	300	
agtggccagc aggacagtgg tttttggggc gtatcttcga tcccaggtga cattttatg	360	
tttcaactcc atgtatataat tgtgtttatt tgtaaaatattatctga caataaacatt	420	
tcttat	426	
<210>	73	
<211>	954	
<212>	DNA	
<213>	Escherichia coli	
<400>	73	
atgtatgccc gcgagtatcg ctcaacacgc ccgcataaaag cgattttctt tcattttct	60	
tgcctcaccc ttatctgttag tgcgcaagtt tatgcaagc cggatatgcg gccactgggg	120	
ccgaatatag ccgataaaagg ctccgtgttt taccatttca ggcacccaccc ttgcactct	180	
gtcgatggca cacgccatta tcgggtatgg acggccgtgc cgaataacaac cgcacccggca	240	
tcgggttacc cgattttata tatgcttgac ggtaacgcag ttatggaccg cctggatgac	300	
gaactgctca aacaattgtc agaaaaaaaaca ccgcaggatga tcgtggctgt cgggtatcag	360	
accaacctcc ctttcgatct caacagcagg gcttacgact atacgcccagc agcagaaagc	420	
agaaaaacag atctccactc agggcgttt agccgttaaga gtgggtggcag caacaacttc	480	
cggcaggttac tggaaacgcg tattgccccca aaagtggAAC agggactgaa tatcgatcgg	540	
caacgcccgcg gcttatgggg gcactcctac ggcggcctct tcgtgctgga ttccctggctg	600	
tcctcctctt acttccggtc gtactacagc gccagccgt cgttggcag agtttatgtat	660	
gcttgctaa gccgcgttac ggcgggtttag cctctgcaat tctgcaccaa acacccggcg	720	
ataatggaaag gctcggcgcac acagggtgat aaccggaaa cgcacatgcgt cgggggtgctg	780	

tcgaaaattc ataccaccct cactatactg aaagataaaag gcgtcaatgc cgtattttgg	840
gatttccccca acctgggaca cgggcccgtatg ttcaatgcct cctttcgcca ggcactgtta	900
gatatcagtgtgaaacgc aaattacaca gcaggttgc atgagttaag ccac	954

<210> 74
<211> 2175
<212> DNA
<213> Escherichia coli

<400> 74

atgagaattt acaaaaatcct ctggtcgcta actgtgctcc tagttgggtt gaatagccag	60
gtatcagtag ccaaataactc cgacgatgtat aatgacgaga ctctgggtt ggaagccacc	120
gctgagcagg tattaaaaca gcagccgggc gtgtcggtt ttaccagcga ggatattaaa	180
aagacccctc cggtaaacga cctttcagat attattcgta aaatgcctgg tgttaatctt	240
accggcaata gcgcctcggg cacacgcggt aataaccgcc agatcgatat tcgtggtatg	300
gggcccggaaa acacctaattttaattttagt ggtgtaccgg tgacgtcacf taactccgtg	360
cgttatacgat ggcgtgggaa gcgtgatacc cgcggtgaca ccaactgggt gccaccggaa	420
caggttgagc gtattgaagt gatccgcggc cctgcggcgg cgcgctacgg ttcgggggcc	480
gccgggggggg tggtgaacat cattaccaaa cgtcccacca acgactggca cggttcgctg	540
tcgttataca ccaaccagcc ggaaagttagc gaagagggcg ctacgcgtcg cgccaatttc	600
agccttagtg ggcctctggc tggtgatgct cttaccacgc gtttgtatgg taacctgaat	660
aaaacggatg ctgacagtttggatattat tctccggcgt gtacgaaaaaa cgcagccggg	720
catgaagggg tacgtaacaa agatattaac ggcgttgtct cgtggaaatt aaatccgcag	780
cagattctcg atttcgaagt cgatatacg cgcggggaa atatctatgc gggcgatagc	840
cagaacagtt cttccagtgc agttaccgaa agcctggcaa aatccggcaa agagacgaac	900
cgcctgtacc gacagaattt tggcattacg cataatggta tctggactg gggacaaagt	960
cgctttgggtt tttattacga gaaaaccaat aataccgcata tgaatgaagg attatccggc	1020
ggtgtgaag gacgtatggtggatggaa aagtttacga ccaatgcct gagttcctgg	1080
cgaaccagcg gtgagctaa tattcctttg aatgtgatgg ttgatcaaac gctgaccgtt	1140
ggtgtcagat ggaaccgcga taagctcgat gatccttcctt ctaccagcct gacggtaat	1200
gacagagata tcagcggtat ttctggctct gctgccgatc gcagcagtaa aaatcattct	1260

caaatacg	cgctgtat	tgaagataac	attgagccgg	ttcctggcac	gaatatcatt	1320	
ccccggc	cctgc	gcttgatta	tctcagcgac	tccggcggga	acttcagccc	cagtctgaat	1380
cttgc	cagg	aattgggcga	ttatttcaaa	gtcaaagcag	gggttgc	ccccaaacc	1440
cccccaaa	acc	tgtatcaatc	cagtgaaggc	tatctgctct	actcgaaagg	aatggctgt	1500
ccaaaagata	ttacatcagg	cgggtgctac	ctgatcgta	ataaagatct	cgatccggaa	1560	
atcagcgtca	ataaagaat	tggactggag	ttcacctggg	aagattacca	cgcaagtgt	1620	
acctacttcc	gcaatgatta	ccagaataag	atcgtggccg	gggataacgt	tatcggcaa	1680	
accgcttcag	g	cgcatatat	cctcaagtgg	cagaatggcg	gaaagctct	ggtggacggt	1740
atcgaagcca	gtatgtctt	cccactggtg	aaagagcgtc	tgaactggaa	taccaatgcc	1800	
acatggatga	tcacttcgga	gcaaaaagac	accggtaatc	ctctgtcggt	catccgaaa	1860	
tatactatca	ataactcgct	taactggacc	atcacccagg	cgtttctgc	cagcttcaac	1920	
tggacgttat	atggcagaca	aaaaccgcgt	actcatgcgg	aaaccgcag	tgaagatact	1980	
ggcggtctgt	caggtaaaga	gctggcgct	tattcactgg	tggggacgaa	cttcaattac	2040	
gatattaata	aaaatctgcg	tcttaatgtc	ggcgtcagta	atatcctcaa	taaacagatc	2100	
ttccgatctt	ctgaagggc	gaatacctat	aacgagccag	gccgggctta	ttatgccgga	2160	
gttaccgc	at	cattc				2175	

<210> 75
 <211> 3042
 <212> DNA
 <213> Escherichia coli

<400> 75

atgggtaacc	aatggcaaca	aaaatatctt	cttgagtaca	atgagtttgt	atcaaattc	60
ccttcacctg	aaagagttgt	cagcgattac	attaagaatt	gttttaaaac	tgacttgccg	120
tggtttagtc	ggattgatcc	tgataatgct	tatttcatct	gcttttctca	aaaccggagt	180
aatagcagat	cttatactgg	atgggatcat	cttggaaat	ataaaacaga	agtactgaca	240
ctcactcaag	ccgctttat	taatatttgt	tatcgaaaa	atgttttga	tgatgcaa	300
tcaagcacag	gaatttataa	aacaaagagt	gcagatgtgt	ttaacgaaga	aaatgaagaa	360
aaaatgctcc	cgtcgaaata	cctgcatttt	ttacaaaagt	gtgattttgc	aggtgtttat	420
ggaaaaactc	tgtcagatta	ctggtcgaaa	tactatgata	aatttaagct	tttactaaaa	480
aatttattata	tttcttctgc	tttgtatctt	tataaaaatg	gagagcttga	tgagcgtgaa	540

tataatttct ccatgaacgc cttaaatcgc agtgataata tatcactatt attcttgat 600
atttatggat attacgcac tgatattttt gtagccaaaa ataatgataa ggtaatgctt 660
ttcattcctg gtgcaaaaaa acctttta ttcaagaaga atatcgctga tttgcggctt 720
acccttaaag aacttattaa ggatagtgac aacaacaat tactttcca acatttca 780
ttatatagtc gtcaagatgg agtttcctat gcaggagtaa attctgttct acatgcaata 840
gaaaatgatg gtaattttaa tgagtcttac tttctgtatt ccaataagac acttagcaat 900
aaagatgtt ttgatgctat agctatttct gttaaagaaac gcagtttcag tcatggat 960
atcggtataa aatcaaacag tgaagctcaa cgagactatg ctctgactat actccagacg 1020
attttatcaa tgacccctat atttgatatac gtagtcccg aggtatctgt tccgcttgaa 1080
ctgggatta ttacttccag tatgggatc agtttgatc aactgattaa tggtgatact 1140
tatgaagaac gtcgttctgc tatacctggt ttggcgacaa atgcagtatt gcttggctg 1200
tctttgcaa ttccactctt gattagtaag gcaggaataa accaggaggt acttagcagc 1260
gttataaata atgagggcag gactctgaat gaaacaaata tcgatataatt tttgaaggaa 1320
tatggaattt ctgaagatag tatattccta actaatttgt tagacgtt aa gcttaaaagt 1380
tccgggcagc atgtcaatat tgtaaagctt agtgatgaag ataatcaa at tgcgtgt 1440
aaaggagtt ctctgagcgg catctactat gaagtggaca ttgaaacagg atatgagatt 1500
ttatcccgaat gaatttatcg taccgaatat aataatgaaa ttctctggac tcgaggttgt 1560
ggtctaaaag gggggcagcc atttgatttt gaaagtctca atattcctgt attttttaaa 1620
gatgaaccct attctgcagt gaccggatct ccgttatcat ttattatga tgacagctca 1680
cttttatatc ctgatacataa cccaaaatta ccgcaaccaa cgtcagaaat ggttattgtt 1740
aattatgtta agggttctgg aagctttgg gatagattt gtaactttgtt gagaggagct 1800
actgaggaag aagcatggaa tattgcctct tatcatacgg ctggggaaag tacagaagaa 1860
ttacacgaaa ttttggtagg tcagggccca cagtcaagct taggtttac tgaatatacc 1920
tcaaatgtta acagtgcaga tgcagcaagc agacgacact ttctggtagt tataaaagt 1980
cacgtaaaat atatcaccaa taataatgtt tcataatgtt atcattggc aattcctgat 2040
gaagccccgg ttgaagtact ggctgtggtt gacaggagat ttaatttcc tgagccatca 2100
acgcctcctg atatataaac catacgtaaa ttgttatctc tacgatattt taaagaaagt 2160
atcgaaagca cctccaaatc taactttcag aaattaagtc gcggtaatat tcatggctt 2220

aaaggacggg	gaagtatttc	atcgacacgt	cagcgtgcaa	tctatccgta	ttttgaagcc	2280
gctaatgctg	atgagcaaca	acctctcttt	ttctacatca	aaaaagatcg	ctttgataac	2340
catggctatg	atcagtattt	ctatgataat	acagtggggc	taaatggtat	tccaacattg	2400
aacacctata	ctggggaaat	tccatcagac	tcatttcac	tcggctcaac	ttatttggaa	2460
aagtataatc	ttactaatga	aacaaggata	attcggtgt	caaattctgc	tcgtggggcg	2520
aatggtatta	aaatagcact	tgaggaagtc	caggaggta	aaccagtaat	cattacaagc	2580
ggaaatctaa	gtgggtgtac	gacaattgtt	gcccgaaaag	aaggatatat	ttataaggtt	2640
catactggta	caacaaaatc	tttggctgga	tttaccagta	ctaccgggtt	gaaaaaaagca	2700
gttgaagttac	ttgagctact	tacaaaagaa	ccaataccctc	gcgtggaggg	aataatgagc	2760
aatgatttct	tagtcgatta	tctgtcgaa	aattttgaag	attcattaat	aacttactca	2820
tcatctgaaa	aaaaaccaga	tagtcaaatac	actattattc	gtgataatgt	ttctgttttc	2880
ccttacttcc	ttgataatat	acctgaacat	ggcttggta	catcggcgac	tgtactggtg	2940
agagtggacg	gcaatgttgt	cgttaaggct	ctgtctgaga	gttattctct	gaatgcagat	3000
gcctccgaaa	tatcggtatt	gaaggtattt	tcaaaaaaat	tt		3042

<210> 76
 <211> 1362
 <212> DNA
 <213> Escherichia coli

<400>	76					
atggtggaca	tgattaatga	aagtgcacgg	caaacgccag	tcattgcaca	aacggacgtt	60
ctggttatcg	ggggcggtcc	ggcaggatta	tccgctgcca	ttgcggcagg	gcggtaggt	120
gccagaacca	tgattgttga	gcgctacggg	tcgctaggcg	gcgtatttgc	gcaggtcggt	180
gtagaaagtt	ttgcctggta	tcgtcatccg	gggacggaag	attgtgaagg	gatctgtcg	240
gagtatgaag	gccgcgcacg	agcgctgggt	ttcacacgac	cagaacctca	gtcaatttgc	300
gaagttatag	atactgaagg	atttaaagtt	gtcgccgatc	agatgattac	ggaatctggc	360
gtttagccgt	tatatcactc	ctgggttgt	gacgtgatca	aggacgggg	tacgttatgc	420
ggtgttatcg	tcgagaataa	atcaggtcga	ggggcaattc	tggcgaaaag	aatcgatcgat	480
tgcacgggg	atgctgat	tgccgctcg	gcaggcgac	cctggacgaa	acggagcaag	540
gaccaactga	tggcgac	cgtgatgtt	agttgcgcag	gtgttgcgt	ggcacgttt	600
aaccgtttt	ttgcggaaaga	acttaagccg	acctacgcgg	attggggcaa	aaactggacg	660

attcaaacca	cggtaaaaga	agacccgatg	tttagccgt	atatggagga	tatTTTacc	720
cgcgcgcaac	aggatggtgt	gattccaggt	gacgcccagg	cgattgccgg	aacctggtcg	780
acctttctg	aaagcggtga	ggcttccag	atgaatatgg	tgtacgcctt	tggTTTgac	840
tgtaccgatg	tcttcgattt	aaccaaagct	gagattgccg	gaaggcagca	agcattatgg	900
gcaattgacg	cactacgcca	ctatgttccg	ggcttgaaa	atgtacggtt	acgcaatttt	960
gggccacgc	tggggacgac	tgaatcacgg	cttattgagg	ggaaatacg	tattgctgat	1020
gattacgtcc	ttaatcaggg	gcgttggtcg	gacagtgtag	ggattttccc	ggaattttatt	1080
gatggttccg	gttatctcat	tttgc当地	accgggcgtt	tcttcagat	cccttatgg	1140
tgtctggtgc	cgcaaaaagt	ggagaacctt	ttggcgccg	gtcgctgtat	ttccgcaggc	1200
gtagttgcac	atacttctat	gcgtaacatg	atgtgttgc	cggttaccgg	tgaggccgca	1260
ggtaactgccc	ccgtggttc	gctacagcaa	aattgcaccg	tgcgtcaggt	tgctatccct	1320
gatttgcaaa	acacgctgca	acagcaggc	gttcgtctgg	ca		1362

<210> 77
<211> 759
<212> DNA
<213> Escherichia coli

<400> 77						
atgtctgcca	aaagacgact	tcttattgcg	tgtacccat	taacagctat	ctatcatttt	60
cctgcattatt	cttcattttaga	atataaagga	acctttggtt	caataaatgc	gggttatgca	120
gactggaaaca	gtggatttgc	aaacactcac	cgtggtaag	tatggaaagt	gactgcggat	180
tttggggtaa	attttaaaga	agcagaattt	tactcatttt	atgaaagtaa	tgtactcaat	240
catgctgttag	cagggagaaa	tcatacggtt	tcagcaatga	cgcatagtcag	actcttgac	300
tctgatatga	cattcttgg	caaaatttat	ggccaatggg	ataactcatg	gggtgacgat	360
ctggacatgt	tttatggatt	cggcaccc	ggctggaacg	gcgagtgcccc	cttttttaaa	420
ccgtatattg	gattgcataa	tcaatctgg	gactacgtat	cagctaaata	tggtaaacgc	480
aatggttgga	atggttatgt	tgttggctgg	acagcagtat	taccatttac	gttatttgac	540
gaaaaatttg	tttatctaa	ctggaatgaa	atagaactgg	acaggaacga	tgcttacacg	600
gagcagcaat	ttggccggaa	cgggttaaat	ggcggttaaa	ctattgcctg	gaagttctat	660
cctcgctgga	aagcaagtgt	gacgtggcgt	tatttcgata	ataagctggg	ctacgatggc	720

tttggcgatc aaatgattta tatgcttggt tatgatttc 759

<210> 78

<211> 1476

<212> DNA

<213> Escherichia coli

<400> 78

atggccagtt	tgatcggcct	tgca	gagttgc	acaggaaatg	cttttagtcc	tgccttagcc	60										
gcagaggcta	aacaaccaa	tttagtcatt	attatggcg	atgatttagg	ttatggcgat		120										
ttagcaacat	atggtcatca	gatcgtaaaa	acacctaata	tcgacaggct	tgc	cccaggaa	180										
ggggtcaa	at	ttactgacta	ctatgcccc	gctcctttaa	gttcac	cgttcc	acgcgcagg	240									
ctattaaccg	gccggatg	cc	at	ttcgact	ggaattcg	ct	atggattcc	ttcaggcaaa	300								
gatgttg	cct	tagggcgtaa	cgaactcac	g	ttgcta	atc	tactcaa	agc	gcaagggtac	360							
gacacggcaa	tgatggtaa	gctgc	atct	cg	gatcg	cac	cgatcagcc	ca	420								
caagcacaag	at	atgggctt	tgattactca	ctgg	ctaata	cggcgg	gcttaccgac	480									
gccacg	ctgg	at	aacgctaa	agaacgccc	cgtt	atggca	tggttaccc	gacagg	ctgg	540							
ctacgtaatg	ggcaacc	ac	tccacgagcc	gataaaatg	gcgg	tgagta	tgtcagttc	g	600								
gaagt	cgtca	actgg	ctgga	taacaaaaa	gacag	caagc	ctttcttc	ctatgttgc	660								
tttaccg	aa	g	tgcatag	ccc	cctgg	cttc	cccaaaaa	at	ac	ctcgacat	gtactcaca	720					
tat	atg	g	cg	tatcagaa	gcag	catc	cct	ttt	at	ttt	atggcgact	ggcagaca	780				
ccctgg	cg	tg	gt	gggg	at	attatg	cc	aatatc	ag	ct	tggatgc	acagg	840				
aaagt	gct	gg	at	aaaatcaa	agc	gatgg	gt	agaagata	acaca	atc	gt	tattttacc	900				
agt	gata	ac	gt	ccggtaa	gcgt	gaagc	cg	caaagt	gt	atg	actgaa	tttggcagg	960				
gaaacggat	g	attac	gcgg	tcg	caagg	at	aac	ctt	gg	tt	cc	tcgtgttcca	1020				
gccattatt	a	at	atgg	taa	acat	ctac	c	agg	aa	t	ttc	agatac	accg	1080			
gg	tctgg	act	gat	gc	tac	ttt	at	at	at	at	at	ttt	atggcact	1140			
act	ttc	cgat	g	t	gat	cg	ct	tt	at	at	at	at	ttt	atggcact	1200		
ccattaattt	tc	ggg	at	ttg	at	g	cc	at	tt	at	tt	at	ttt	atggcact	1260		
cgt	at	gg	at	gg	at	tt	at	tt	at	tt	at	tt	at	ttt	atggcact	1320	
ctgaaatctg	at	cg	ttat	g	aa	act	taa	at	ct	at	cg	ta	aaa	accaga	tatt	aaaaaa	1380
cagatgtat	g	taa	gtt	ttt	aa	aa	at	aa	at	aa	at	aa	at	ttt	atggcact	1440	

gccagaggta ataaaccaga agcggtgacc tggggc 1476

<210> 79

<211> 954

<212> DNA

<213> Escherichia coli

<400> 79

gtgacaacaa ctatctgcgc tatggcgaa ttgctggccg agttttgtc ccgcaaccca 60
catcaaaaat tcactcagcc tggggagttt atcgggccat ttcccagcgg tgccgcagca 120
attttgctg ctcaggtggc aaaactgtcc catcggcca tcttctttgg atgtgttggt 180
aatgatgatt ttgcccact cattatagag cgtctccgtc atgaagggtgt cattaccgt 240
gggatccatg ttatgaacaa tgccgtcaca ggtacggcgt tcgtgagttt tcaaaatccc 300
cagcagcggg atttcgtctt taatatccct aacagcgcct gcggtttgtt tactgccag 360
cacattgata aggatctgct taaacagtgt aaccatctgc atattgtggg ctcatcggt 420
ttctcatttc gcatgatcga tgtcatgcgt aaagcaataa cgacgatcaa atcggctggc 480
ggcaccgttt ct当地cgatcc caatattcgc aaagagatgc tgagcattcc tgaaatggcg 540
caggctctcg attatttgat tgaatatacg gatattttta tccccagcga aagcgaactc 600
cctttcttcg cgcgtcacaa aaatctgtca gaggaacaga ttgttagcga tcttctccac 660
ggcggcgtaa aacatgtggc gataaaacgc gcccagcgtg gggccagcta ttacaagctt 720
aaaaacggta cattacacgc ccagcatgtt gcaggtcacf atatcgaaat tatcgatcca 780
acgggtgcag gcgactgctt tggcgcaacg tttatcactc ttttcttatac cggtttcccg 840
gcacacaagg cgctgcaata tgcaaattgcc agcggcgcgc tcgcccgtaaat gcggcaaggt 900
ccgatggaag ggatatcctc actggcagac attgaagact ttttgcagca gcac 954

<210> 80

<211> 513

<212> DNA

<213> Escherichia coli

<400> 80

atgaagatat tcatttagttt atttttgttt ataatatcaa caaattcttt tgctgatgat 60
atcaactcatg ccggagtggt tcgtattgaa gggtaatta ccgaaaaaac ctgcattatt 120
tctgatgagt caaaaaattt tacagttaat atgccagacg tacccagtag ttcggtaagg 180

agtgcagggg atgttactga aaaggtttat tttccataa cgttaaccg ctgtggtagt 240
gatgttggca acgcgtatat aaagtttacc ggcaatacag tttctgaaga tgccagttt 300
tataagctgg aagatggctc gtagagggg cttgcactt cgattttga taagaacaaa 360
ggcagtatta gtaatgatgt taaaagcatg gtttttcac ttacatcatc agttgataat 420
atattgcatt ttttgcggc ttacaaagca ttaaaaaata atgtccaacc aggggatgca 480
aatgcgtcag tatcgtttat tgtcacctat gat 513

<210> 81
<211> 603
<212> DNA
<213> Escherichia coli

<400> 81

atgattaaat tccggcttta tattccccct gtaattctcg gttttgttat cgtaccattt 60
ttggtatggc cgacggttat tgccttagcc gtacttataat tcacgttaac tttctggcg 120
gaaataataat tctcctttcc gctcctgggtt gtgcgtattt ctcttcagga attacaactt 180
gagttattgg ttgtatatgc acttttttc agtgaatgg gtggcatcg ttggcaattc 240
tcccgagaa cgcctcctga attaaaaaac aggctacatt gctggctggt ctttctccg 300
gtctatttct ggttaattct ctcgaatttc attcttataat ttctccaga gaaatcagcg 360
ttgctggaaa atatccgaaa tttcttctg acatttgtct ggcttccccct gaattttcc 420
ccttttggc cgcagccgtg gactgatttt gtcggccga ttagtgccta gcttggttt 480
gcgttggat attattgcca gtggcgtagc aaaaatagaa gccataggaa gaagtggggc 540
gattgggtaa cgtgcttaag ttggcgatt ttagctctgg ggccgttatt caattattta 600
caa 603

<210> 82
<211> 702
<212> DNA
<213> Escherichia coli

<400> 82

atgaaattca atttatctaa tttatccgca gtattactgg catcaggtat gctgatgtct 60
actgcggtaa ccgcagcacc cggcgatgca acacaatttg gtggggcgga tactgactgg 120
agcaccgttg attatcccag gctcactgat atggatgaca acgttgattc aatggggggg 180
aaaatccgct ttactggccg ttagtgaaa gctacctgta aggtcgcaac cgattcaaaa 240

cagattgaag ttgtcctgcc ggttgcgc tccaacctt tcactggat cgacgtaga 300
gcacaggggg cgagcaacca gaccgatttc aatattaatc tgaccgaatg tagcaata 360
gatgatcaga aaattgagtt ccgtttacc ggtactgcag atagcgctaa taaaacgctc 420
gctaacgaag tagaaggatc aacggatgct gacaacagcg gcaatgcggg ggcgactggt 480
gttagggattc gaatttactc caaaggtagc acgaataatg gtctgattaa cctgaataacc 540
actgcggcag agggtagcgc ctccaccgccc gcttatacaa ttccaggaaa tgctacgacc 600
catgatttca gcgcggcctt tactgcaggt tatgctaaa acggtagcac tggcacc 660
ggtgttagtta agtcaacagc aagtttggtt gtgctgtacg ag 702

<210> 83
<211> 1008
<212> DNA
<213> Escherichia coli

<400> 83

atgcgtatac atacttattt gatatagaaga tatttcattt tattgattat tatattttca 60
aatgttcttt cttctattgc taatgctgaa gatatggggc gagaacgtgc atattgttat 120
ccgggttcac cgagtaataa tactacgcct gcatttttt cttataattt tggtactata 180
gtggtttctg atgtcaacaa aaatgcgcct ggcactgtat tgccatcaca aatctgaaag 240
gttggAACCT ataaggctt ttgttaattct cttgtatgatt atgaaattta cttcagtgt 300
gtctctggaa tagatccgtc tggtgccagt ggtgatcatc aaggagtgta tgtattttt 360
ccactcaccc atgaaatatc tgtctctact catataaaac ttataatca aatggcaca 420
atgacagata aaatttgcc attcgaaaat tataatacca attatccggg ggacagaagc 480
aaaccatcta attgggcattc agtactgaa ggatataatc aaatcaggat tgataaaaaaa 540
attatatctg atgtttcatt aagtaacgta ttattgggtt cattatatgt cagccagatc 600
cctaccgaac atggtcctat ccctgtcttt aatgcctaca taggaaactt aaatattcag 660
gttccgcaag gttgcactat taatgagggt acgagttta ctgttaatat gccggatgt 720
tggccagtg aattgagccg ggctggtgcc ggagcgaagc ccgctgggt tactcctgt 780
gcaacaacta ttccgattaa ttgtacgaat aaagatacag atgcggtaat gacgttggta 840
ttcgacggta acatttccgc cacacgtat accaatggga aacaaagtat tattcaggca 900
caagataatc ctgatgttg tattatgatt atggatagtc agcaaaactc cgtagattta 960

aatgccctgg	caacatcagt	aggcggtccg	ttcagattgg	tggaaaac	1008
<210>	84				
<211>	2592				
<212>	DNA				
<213>	Escherichia coli				
<400>	84				
atgaacctaa	agctaaaaag	atgcgaatat	tggatggcgg	cacaaaagca	60
gttgtgccgc	ttcttcgtt	tattatgcct	gcatgttcaa	tcgcggaaat	120
cctgcttttc	tgtcggttga	tactgaagct	gttgctgact	tatcccgtt	180
atgacttatac	ttcctggtag	ctatgaagtc	gaagtttggg	tcaatgattc	240
tctcgtactg	taactttaa	agcagacgt	gagaatcaac	tgattccctg	300
gctgacttat	taagccttgg	aattaacaaa	aatgcgtgc	cagagcaggc	360
tctgaaaata	gttgccttga	tttgcgtatc	tggttcccg	atgtgcatta	420
ctggatgcac	agagacttaa	actgacctt	ccacaggcga	taataaaacg	480
ggatataattc	caccagaaca	gtgggataac	ggtattacag	ctttttgct	540
ttttctggta	ataacgatcg	tggtgattac	tcttcaaata	actattattt	600
gctgggatca	atattggtgc	atggcgtttt	cgcgattatt	caacctggag	660
aattcagcag	gtaaaactgga	gcatatcagt	agtacgttgc	agcgcgttat	720
agaagtgaat	taacgctagg	agatacatgg	tcatcatcag	atgtttcga	780
attcgtggca	taaaactgga	atctgacgaa	aatatgttgc	ccgatagtca	840
gctccccacgg	tgcgcgaaat	tgcgaaaagt	cgcgcgtcagg	taacaatcaa	900
tatgtcattt	atcaaaccta	tatgccgccc	ggaccgtttg	agattagcga	960
acatcatctg	cgggagatct	ggaagttacc	atcaaagagt	ctgataattc	1020
tataccgtac	cttatgccgc	tgtccccatc	ctgcaacgag	aaggtcattt	1080
actacggttg	gccaatatcg	aagcaatagc	tataaccaga	aaagtcctta	1140
gggaaattaa	tttggggttt	accctggat	attacggctt	atggtggggc	1200
gaggattacc	ggcggtggc	gctcgccctt	ggcctgaatc	tgggtgtatt	1260
tcgtttgatg	ttactcaggc	taacagttcg	tttgcgttgc	ggagcaaaca	1320
tcttatcggt	ttctttattc	caaatcgta	gttcagacag	gaacagcatt	1380

ggctatcggtt	attcaaccca	gggcttttac	actttaagtg	atacgacata	ccaacaaatg	1440
tcagggactg	ttgttgatcc	aaaaacgtta	gatgataaag	attacgttta	taactggaat	1500
gattttata	acttgcgtta	tagcaaacgt	ggaaaatttc	aggctagtgt	atcgcaacct	1560
ttcggtaact	acgggtctat	gtatttatcg	gctagtcagc	aaacatactg	gaataactgat	1620
aaaaaaagatt	ctttatacca	agttggttat	aacaccagta	ttaagggtat	ctatctaaat	1680
gttgcgtgga	attacagtaa	atcaccaggg	acaaatgcgg	ataaaattgt	ctcgctaaat	1740
gtctcattac	ctataagtaa	ttggttatct	tccacgaatg	atgggcgcctc	atcatcgaat	1800
gccatgactg	caacgtatgg	ttatagtcag	gataaccacg	gacaggtaaa	ccaatatacg	1860
gggttatctg	gttctctgtt	ggagcagcat	aatctcagtt	ataacataca	acatggtttt	1920
gctaattcagg	ataatagcag	tagtggttct	gttgggttta	attatcgtgg	ggcatatgg	1980
tccttgaatt	ccgcctacag	ttacgataat	gaaggttaatc	aacaatataaa	ctatggcatc	2040
agtggtgctc	ttgttgtaca	tgaaaatgg	cttacgttga	gtcaaccatt	aggtgaaact	2100
aatgtttga	taaaagcgcc	tggagcgaat	aatgtggatg	ttcagcgggg	gacaggaata	2160
tccactgact	ggcgtggata	tgcagttgtt	ccttatgcaa	cagaatatag	acgtaataat	2220
atttcattag	atcctatgtc	aatgaatatg	catactgaac	tggatatcac	ttccactgaa	2280
gttattccgg	gaaaaggtgc	gttagttcgt	gcagagtttgc	ctgctcatat	cggatttcgt	2340
ggtttgtca	cagttcgtta	tcgtaataaaa	tcagtcctat	tcggtgctac	agccagcgct	2400
cagattaaaa	acagtagtca	aattaccggg	attgtcggcg	ataatggaca	actttatctc	2460
tcaggattgc	ctttagaagg	tgttattaaat	atccagtggg	gagacgggtgt	tcagcaaaaa	2520
tgtcaggcta	attacaagct	ccctgaaaca	gaactggata	atcctgttag	ctatgcaact	2580
ctggagtgcc	gc					2592

<210> 85
 <211> 507
 <212> DNA
 <213> Escherichia coli

<400>	85					
atgggagcga	tttatgttaa	acgtttgatt	ctgtcggtag	cactgataat	accgatagca	60
tccaatgctt	ctgatgctt	gaaccagccg	agcagtagtc	taaatgatgg	tgtttagact	120
ttttttat	cctgcttga	tatgcctcag	gaaacaacta	ctgatatgga	cgcttgcag	180
agagttcagt	tagctcaggt	tagttgggtt	aagaataagt	attcggtgcc	cgcctgaat	240

cgtttcaaac aagacaacaa ggatgatcca cagcgtctgc aggaattaac tgcttcttt 300
aacgcggaaa gtgaagcttg gacagaatta attgagaaag cgtcaaagtc cgtccagggt 360
gattatgttag gaggaactat agctggcact gcagttgcac cacgtcaaat tggctttctg 420
gaattacaat cccacgatat ctgggagcac tggctacgat ctcgaggact caactcctcc 480
tctttgcca gaaccaaagt tcaaatac 507

<210> 86
<211> 2139
<212> DNA
<213> Escherichia coli

<400> 86

atggctatgt tcacacccatc attctcagga ctcaaaggc gggcgcttt ttcactgctt 60
tttgcggcac cgatgattca tgcaacagac tctgttaacga ccaaagatgg cgaaacaatc 120
actgttacag cagatgcaaa taccgcaact gaggcaaccg atggttatca acctctgagc 180
acctccacgg cgacatataac cgatatgccg atgctggata tcccgccagg ggtcaatacg 240
gttagcgatc aggttctgga aaaccagaat gcgacaacgc tggatgaggc gctttataac 300
gtcagtaacg tggcacagac caatacatta ggcgggactc aggatgctt tgtacgccgt 360
gggtttggcg caaaccggga tggctccatc atgaccaacg gtctgcgaac cgtacttcc 420
cgtagttca acgcccac ac agagcgtgtg gaagtgcata aaggccccgc ctccacgctg 480
tatggcattc tcgatcctgg cgactgatt aacgtcgtga ccaagcgccc ggaaaaaaaca 540
ttccatgggtt cggtttcagc cacccctcc agtttggtg gcggcactgg gcaacttgat 600
atcacaggc ccattgaagg cactcagctg gcgtatcgcc ttaccgggaa agtgcaggat 660
gaagattact ggcgaaactt cgtaaagag cgcagtagat ttattgcccc gtcactcacc 720
tggtttggtg ataatgcaac agtaaccatg ctctattccc atcgggacta taaaactcca 780
ttcgatcgtg gaacgatttt cgaccttacg acgaaacagc ccgtaaacgt tgatcgaaaa 840
atacgttttgc acgaaccgtt taatattaca gatggtcagt ccgatctggc gcaactcaac 900
gcagaatatac atctcaatag ccagtggaca ggcgcgtttg attacagcta cagccaggat 960
aaatacagcg ataatcaggc gcgtgttacc gcgtatgatg caacgacagg aacactgaca 1020
cggcgtgttgc atgcaactca gggatctacc cagcgtatgc atgctactcg tgcggatctg 1080
caaggaaatg ttgatattgc cggattctat aatgagattc tgggtgggt gtcataatgaa 1140

tattatgatc ttctgcgtac agatatgatt cgctgtaaaa aagctaaaga tttcaatata	1200
tacaaccctg tttatggtaa taccagcaaa tgtacaacgg tttcggcgat ggacagcgat	1260
cagacgatca aacaggagaa ctactcagct tatgcacagg acgcgctcta tctgaccgat	1320
aactggattg ccgtcgccgg gatccgctat cagtattaca cgcaatatgc gggtaaaggc	1380
cgtccttta atgtcaatac tgacagccgc gatgaacaat ggacgccccaa actggggta	1440
gtctacaaac tgacgccatc ggtatcctta tttgccaatt attcgcaaac atttatgccg	1500
cagtcgtcaa ttgccagcta cattggcgat cttccaccag aatcatctaa tgcttacgaa	1560
gtcggggcaa aattcgagct attcgatggt atcaccgcag atattgcgt gtttgatatc	1620
cataaacgta atgtgttgc taccgaaaat attgggtatg aaaccatcgc caaaacggca	1680
ggccgcgttc gttcaagagg ggtagaagtc gacccgtcg gaggcattaac tgaaaacatt	1740
aatatcattg ccagctacgg ctataccgat gcaaagggttc tggaaagatcc tgattatgca	1800
ggaaaccat tgccgaatgt tcctcgat accgggtcg tattcctgac ctatgatatt	1860
cataacatgc caggcaataa cacactgacg tttggcggtg gcggacatgg tgtaagccgt	1920
cgttcggcaa ccaatgggc tgactattat ctgcctggct atttcgttgc cgatgccttc	1980
gccgcataca aaatgaaatt gcagtatccg gtcactctgc aattaaacgt caaaaacctg	2040
tttgataaaa cgtattacac ctcttccatc gccacaataa atctggcaa ccagattggc	2100
gatccgcgtg aagtgcattt cacggtaaaa atgaaattt	2139

<210> 87
 <211> 1818
 <212> DNA
 <213> Escherichia coli

<400> 87	
atggaaatat cgtgaaatta tatatttaag aacaaatggc gatttcacat tacaagcatt	60
tcacttttc ttatcatgct cgcggtttca atcgctttt tgcacttgcg ttttaatacc	120
ttgtccagta ccgataaaat gcggcttgaa atgtataagt ccacattata ttccaccatc	180
gagcaatttt atgttttacc ctatatgctc tcaacagacc atatcatccg tcaggcggt	240
attacgcctg acgatatgac gtccagcgaa ctcaatcaac gaattgcaca tttcaatact	300
caactcaaaa ccgcagcaat atttattctg gatacccaag gtaaggccat cgcttctagc	360
aactggcagg accccggcag ctatgttaggg caaaattata gctatcgccc ctattataaa	420
cacgcccattt ctggcttaaa tggacgcttt tacggattt gtagcactac gaatacacccg	480

ggattcttcc tctctacaag tataaaagat aaaggaaaaa ttgtcggtgt tgttagtagta	540
aaaataagtc ttaatgaaat tgaaaaagca tgggccgaag gtcctgaaaa tattatcgtg	600
aatgatgaac atgggattat atttttaagt tcaaattcgc catggcgaat gcgaacactg	660
caaccgttac ctgttcaggc aaaacaaaaa ctacaatcta cccgccaata tagtctcgac	720
aatctttac cgccggatta ttatccctgt tataccgtga gcaattttac tttcctgaaa	780
gataaaaaag aacaactctg ttatttccc caatattata cgcaacaaat agccattcca	840
gaatttaact ggaaaatgac aattatggtc cccttagata acctgtactg gtcatggct	900
atttcgttag tcattacact aattatttac ctgctgttt tgttatttat taaatactgg	960
agaatgcgat ctcatgcaca acaattatta acacttgcga atgaaacatt agaaaaacag	1020
gttaaagagc gtacatctgc cctggaattt atcaatcaa aattaataca ggagataaaa	1080
gagcgcagtc aagctgaaca agtattacaa attacgcgta gtgaactggc agagtcagc	1140
aaactggcgg cgcttgaca gatggcaacc gaaattgccc atgaacaaaa tcaaccgtta	1200
gccgccattc acgcacttac tgataacgcg cgtactatgc taaaaaaaaa gatgtatccg	1260
cagttgaac agaatctgaa acatattatt tcagtgattt agcggatgac gcagctcatt	1320
tccgaactta aagcatttgc ctcgcgccat cgcgtaccta aaggttctgc cgatgtcatc	1380
aaagtgtatgt atagcggcgt ggcgttactt aatcacagca tggagaaaaa taacatttag	1440
cgacgaataa aagccccatc catgccgtta tttgtcaatt gcgtgagct cggcttgaa	1500
cagatattca gtaatttaat tagcaacgc ttagattcta tggaaaggtag ctcttacaaa	1560
cgactggata tcgcccattcg ccaggcaaat aacaaagtta ttattaccat taaagacagc	1620
ggtgtgcggtt ttgcacctga agttgtcgat cgcatattt aaccatttt taccactaaa	1680
cgttagaggaa tggggttggg actggcaata gtcagcgaaa ttgtccgaaa ttgcacggc	1740
gcactccacg ccagtaatca tcctgaaggc ggcgcagta tgacattaac ctggcctgaa	1800
tggggagaag aacatgaa	1818

<210> 88
 <211> 303
 <212> DNA
 <213> Escherichia coli
 <400> 88

gtgcttacac cacaacattt acgttgttg ttaacatgta gcgatttact gacttttg 60
agtggtaccg ttatgtctca aatgcccctc tattttctta atacccaaaa gaaactcact 120
gctcactatg aatggcttca aatcaacctg actgataacct acgaactagt taaaaggtt 180
atgccgattc ctcaactgga cgtgggggtt aaagtaggg aacttgcct cccggagaaa 240
ggccatcatg gttttaccc tgaagctgga gttgtctata gaacagtagc tccagaaaat 300
cca 303

<210> 89
<211> 789
<212> DNA
<213> Escherichia coli

<400> 89

atgataaaaa atacaggcta tatcttagct ctttgtctga cagcatcggg gcatgtccta 60
gcccatgatg tctggattac aggtaaacag gcagagaaca acgttaccgc agagattgg 120
tatggtcata atttccctc aaaggggaca attcctgaca gaagggattt cttgaaaat 180
ccccggctt ataacggaa agagacaata acactgaagc cagcgtccac ggattatgtc 240
tataaaactg agtctgcaag caaagataat gttacgttc tgtcaacgta tatgaaaccg 300
ggatactggc cgagaacctc gtcaggatgg aaaccggta gcccggaggg cagaaatgat 360
gtggcttact gtgaatttgc cactaaatat gcaaatctt ttattcctgg tgaacagcag 420
atgccagcac aactctatca gtctccaaca gggcatgagc ttgaaatcat tccgttatcc 480
gatataagtc gttcagtga aaatgtgaag ctgaaatgtc tgtataaaac gtcccgctc 540
gccggagcta tcatggagct tgactcggtc agttatctga catcatcccg tcatactcat 600
gcagttgagc acaaacatcc tggtcataaa gcagaactca ctttgcataac taatgaggat 660
ggtatcgtca cagtagtttc tcttcataatc ggacagtggc tggcgaaagt ccaaataag 720
aaaagtttc aggacaaaag cctgtgtat gaaactgtcg atgtggcaac cttaagcttc 780
tcccgaaaat 789

<210> 90
<211> 1134
<212> DNA
<213> Escherichia coli

<400> 90

atggaaaaaa taaaatattt gctaatagta ggatttatta tacttttgc gatttttac 60

attgctatta	gtgacagggta	ttctacgctt	tcttaggttga	aatcagcagg	tgaaaacgga	120
gatgtagaag	ctcagtatgc	tttggggctc	atgtatttgt	atggagaaat	tctggatgtt	180
gattatcagc	aggcaaagat	ttggtatgaa	aaagccgctg	acccaaatga	tcccgctgct	240
caggccaaac	tcggtgtat	gtatgcaaat	ggtctcgccc	taaatcagga	ttatcagcaa	300
tcaaaattat	ggtatgaaaa	ggcggctgct	caaaatgatg	ttgatgcgc	attttgctt	360
ggggagatgt	atgacgatgg	tctcgcccc	agccaagact	accagcatgc	aaagatgtgg	420
tataaaaaag	cggctgctca	aaatgatgag	cgtgctcagg	tcaatctcgc	tgttctatac	480
gcaaaggta	atgggtttga	acaggattat	cgacaggcca	aaagctggta	tgaaaaggct	540
gcagctcaaa	atagtcctga	tgcgcagttc	gctctggaa	ttctgtatgc	caatgctaatt	600
ggttagagc	aggactatca	gcaggcaaaa	gactggatg	agaaagcagc	agaacaaaaat	660
ttcgccatg	ctcagttaa	tcttggatg	ctcttattaca	aaggtgaggg	tgttaaaca	720
aactttcggc	aagccagaga	atggtttga	aaagccgcat	ctcaaaatca	gccgaatgcc	780
caatataatt	tagtcagat	ttattactac	ggtcagggtg	tgactcagag	ctatcgacag	840
gcgaaagact	ggttgaaaa	agcggcagag	aaaggtcatg	tcgatgctca	atataatctc	900
ggtgtaatat	acgaaaatgg	tgaagggtgt	agtcagaact	atcaacaggc	aaaggcttgg	960
tataaaaagg	cagcctcaca	aaatgatgct	caggcgcagt	tcgaacttgg	cgttatgaat	1020
gaactgggtc	agggtgaaag	catagacctg	aaacaagcaa	gacattacta	tgagcggta	1080
tgtaataatg	ggcttaagaa	aggttgtaa	cggtaaaag	agttattata	caaa	1134

<210> 91
 <211> 1962
 <212> DNA
 <213> Escherichia coli

<400> 91

atgaatgtaa	tcagaactgt	catttgtaca	ttaattatac	ttccgggtgg	attacaggca	60
gcgaccagtc	attcttctat	ggttaaagat	acaatcacca	ttgtcgccac	aggaaatcag	120
aacacggat	ttgaaacgcc	gtcgatggtc	agtgtcgtca	cgaatgacac	accgtggagt	180
cagaatgcgg	ttacatcgcc	cggcatgctg	aaaggtgttg	ccggtctcag	ccagactgg	240
gcaggacgga	ccaatggca	gaccttaat	ttacgcggct	atgacaaaaag	cgggtactt	300
gttcttggat	acggcggtcg	ccaactcagt	gacatggcaa	aaagcagtgg	cacttatctg	360

gatccggcac tcgtcaaacg tatcgaagtt gtccgcggc caaactccag tctgtacggc	420
agtggcgccc tgggaggtgt agtggacttc agaactgccg atgcagcaga ttttcttccc	480
ccccgagaga caaacggttt aagtctgtgg ggaaatatcg ccagtggta ccacagcaca	540
ggctcgggc tcacctggtt tggtaaaact ggaaaaacag atgcgctcct ttctgtcatt	600
atgcgtaaaa gaggtatat ctatcaaagt gatggtgagc acgcaccta caaggaaaaa	660
cctgcagccc tggttgcgaa aggctctgtc ggtataacag acagtaacaa agcaggtgcc	720
agcttgcgtc tctaccggaa taacaccact gaaccggca attccactca gacacatgg	780
gacagcggcc tgcgtgacag aaaaacagta caaaatgacg tacagttctg gtaccagtac	840
gctcctgtgg ataacagcct catcaatgta aagtcaacgt tataatctcg tgatatcact	900
atcaagacaa acggtcacaa caaaacggca gaatggagaa acaacagaac ctccgggttt	960
aatgttgtca acaggagtca tactctgatt tttccggag cccatcagg aagttatggc	1020
gctgaatatt accgtcagca gcagaagcca gaaggctctg ccacactata tccggaagga	1080
aacattgact ttacatcggt gtatttccag gatgaaatga caatgaaaag ctaccgggtt	1140
aacattatcg tcggttcccg ctatgaccgg tacaagagct tcaatccccg tgccggagaa	1200
ctgaaagccg aacgcctgtc cccaagggcg gcgatttcag tctcaccgac agactggctg	1260
atgatgtacg gctccatatc ctctgcattc cgagcggcca caatggcaga aatgtacagg	1320
gatgatgtac atttttaccg caaggtaaa cccaattact gggttcctaa ccttaatctg	1380
aaaccagaaa ataacatcac ccgtgagatt ggcgcaggta ttcaactgga tggcctgctt	1440
acagacaatg accggctgca gtaaaaggc ggatatttcg gaacggatgc cagaaactat	1500
attgccacac gcgtggatat gaaacggatg cgttcttatt cttataatgt atccgggccc	1560
cgtatctgg gatggatat gcaggtaat taccagtctg attatgtta ctggatgctt	1620
tcttataacc ggacggaaag tatggatgcc agcagcagg aatggctgg ctccggcaat	1680
cctgacacac ttatcagtga catcagcata cctgtggc atagaggcgt ttatgccgga	1740
tggcgtgctg aactttcagc atcagccacg catgtaaaa aaggcgatcc ccatcaggct	1800
ggttatacca tacattcctt ttcaactgtct tataagcctg taagtgttaa aggcttgag	1860
gcgtcagtaa ctctggataa tgccttcaac aagcttgcca tgaatggcaa aggtgtgccg	1920
cttcaggca gaactgtcag tctttataacc cgttatcagt gg	1962

<210> 92
<211> 4128

<212> DNA

<213> Escherichia coli

<400> 92

atgaataaaa tatacgtct aaaatattgt tatattacta acacagtaaa ggttgtctct	60
gaactagccc gaagggtatg taaaggagt acccgagag gaaaaagact ttcatgtactt	120
acctctctgg cactatctgc attactccca accgttgctg gtgcataaac ggttggtggc	180
aacaatcctt accagacata ccgcgacttt gcagaaaaca aagggcagtt tcaggctggc	240
gcaacaaaaca ttccatatttt taataataaa ggggaattag taggacatct tgataaagcg	300
cccatggttg attttagcag tgtgaatgta agctcaaatac ccggcggtgc aacattaatt	360
aacccgcaat atatagccag tgaaaacat aataaaggat atcagagcgt cagttcggt	420
gatggtcaga acagttacca tattgtggat cgtaatgaac acagttcatc tgatctccac	480
acaccaagac ttgataagct cgtaactgag gttgctccgg ctaccgtaac cagctcatca	540
acagctgata tattgaaccc ttcaaaatac tcggcattct acagggctgg ttccggaaagt	600
cagtatattc aggatagtca gggtaagcga cattggtaa caggtggta tggtatctg	660
acaggaggaa tactccgac atcattctt tattcacggct cagacggcat tcagctgtat	720
atggggggca acatacatga tcatagcatc ctgcctctt ttggagaggc cggcgacagt	780
ggttctccat tatttggtcg gaatacggcc aaaggcagt gggactggt cgggtttac	840
tcgggagtag gaggggggac caatttgata tattctcta ttccctcagag ttttctctca	900
cagatctatt cagaggataa tgacgctccc gtctttta atgcctcatc cggcccccc	960
ctgcaatgga aatttgacag cagcacccgc actggctctc tgaaacaggg ttccgatgaa	1020
tatgccatgc acgggcaaaa agttctgac ctgaacgcag gtaaaaatct gacattcctg	1080
ggacataatg gtcagattga cctggaaaac tctgtcacgc agggtgccgg ttcaactgaca	1140
tttactgatg actacactgt caccactca aacggaagta cctggaccgg ggccggatt	1200
attgtggaca aggtgcctc cgttaactgg caggttaatg gtgtgaaagg tgacaacctg	1260
cataaaatcg gcgaaggAAC cctgggtgtc cagggAACCG gtgttaatga gggccggctg	1320
aaagtccggg atgggaccgt tgcctcaat cagcaggctg acagttcagg acacggtcag	1380
gcattcagta gcgtgaatat tgccagcggc cgcccgacag tcgtgctggc agacaaccag	1440
caggttaatc cggacaatat atcctggggc taccgggggg gggttctgga tggtaacggg	1500
aatgacactga catttcataa gctgaatgcc gccgattatg gcgcaactct cggttaacagc	1560

agtgataaaa cggttaatat cactctggat tatcagacgc gtccggcaga cgtaaaagtt 1620
aatgaatggt catcatcaaa caggggaaca gtagggtcat tatataattta taataatccc 1680
tataactcata ccgtcgatta ttttatcctg aaaacaagta gttatggctg gttccctacc 1740
ggtcaggta gtaacgagca ctggaaatat gtcggacatg accagaacag tgcacaggca 1800
ctgcttgcaa acagaattaa taataaaggg tatctgtatc atggcaagtt gctggaaat 1860
attaaatttct caaataaaagc aaccccggtt acaaccggcg cattggttat ggacggctca 1920
gcgaatatgt ccgtacatt tactcagaa aacggtcgtc tgaccattca gggccacccg 1980
gttatccatg cttcaacgta tcagagtatt gcaaatacag tctcgctct gggcgacaat 2040
tccgttctga cacagccac ctcatttaca caggatgact gggagaacag gacggtcagc 2100
tttggttcgc tcgtgttaaa agatacagac tttggtctgg gccgcaatgc cacactgaac 2160
acaaccatcc aggcagataa ctccagcgta acgctggcg acagtcgggt atttatcgac 2220
aaaaaaagatg gccagggAAC agcatttacc cttgaagaag gcacatctgt tgcaactaaa 2280
gatgcagata aaagcgtctt caacggcacc gtcaacctgg ataatcagtc agtgcgtaat 2340
atcaatgaga tattcaatgg cgaatacag gcgaacaaca gtaccgtaa tatctcctca 2400
gacagtgccg ttctggagaa ctcaacgctg accagtaccg ccctgaatct gaacaaggga 2460
gcaaatgttc tggccagtca gagttttgtt tctgacggtc cggtaatat ttctgatgcc 2520
accctgagtc tgaacagccg tcctgatgag gtatctcaca cactttacc tgtatacgtat 2580
tatgccgggtt catggAACCT gaaggagac gatgcccGCC tgaacgtggg gccgtacagt 2640
atgttgtcag gtaatatcaa tggcaggat aaaggactg tcaccctcg aggaaagg 2700
gaactgagtc ctgacctgac tcttcagaat cagatgttgt acagcctgtt taacgggtac 2760
cgcaataacct ggagcggag cctgaatgca ccggatGCC ccgtcagcat gacagacacc 2820
cagtggtcga tgaacgaaa ctccacggca ggaaatatga aacttaaccg gacaatagtc 2880
ggtttttaacg gggAACATC atcggtcacg acactgacaa cagataatct ggacgcgggtt 2940
cagtcagcat ttgtcatgca tacagacctt aacaaggcag acaaactggt gataaacaag 3000
tcggcaacag gtcacgacaa cagcatctgg gttaacttcc tgaaaaaaacc ctctgacaag 3060
gacacgcttg atattccact ggtcagcgca cctgaagcga cagctgataa tctggtcagg 3120
gcatcaacac ggggttgccc attcagtgtat gtcaccccca cccttagtgt cagaaaagag 3180
gacggggaaaa aagagtgggt cctcgatggt taccaggttg cacgtaacga cggccagggt 3240
aaggctgccg ccacattcat gcacatcagc tataacaact tcacactga agttaacaac 3300

ctgaacaaac	gcatggcga	tttgaggat	attaacggcg	aagccgtac	gtgggtgcgt	3360
ctgctgaacg	gttccggctc	tgctgatggc	ggttcactg	accactatac	cctgctgcag	3420
atggggctg	accgtaagca	cgaactggga	agtatggacc	tgttaccgg	cgtgatggcc	3480
acctacactg	acacagatgc	gtcagcaggc	ctgtacagcg	gtaaaacaaa	atcatgggt	3540
ggtgtttct	atgccagtgg	tctgttccgg	tccggcgctt	actttgattt	gattGCCaaa	3600
tatattcaca	atgaaaacaa	atatgacctg	aactttgccg	gagctggtaa	acagaacttc	3660
cgcagccatt	cactgtatgc	aggtgcagaa	gtcggatacc	gttatcatct	gacagatacg	3720
acgtttgttgc	aacctcaggc	ggaactggtc	tggggaaagac	tgcagggcca	aacatttaac	3780
tggaacgaca	gtggaatgga	tgtctcaatg	cgtcgtaaca	gcgttaatcc	tctggtaggc	3840
agaaccggcg	ttgtttccgg	taaaaccttc	agtggtaagg	actggagttct	gacagcccgt	3900
gccggcctgc	attatgagtt	cgatctgacg	gacagtgcgt	acgttcaccc	gaaggatgca	3960
gcgggagaac	atcagattaa	tggcagaaaa	gacggtcgta	tgctttacgg	tgtggggta	4020
aatgcccggt	ttggcgacaa	tacgcgtctg	gggctggaag	ttgaacgctc	tgcattcggt	4080
aaatacaaca	cagatgatgc	gataaacgct	aatattcggtt	attcattc		4128

<210> 93
 <211> 1047
 <212> DNA
 <213> Escherichia coli

<400>	93					
atgattacac	ttttcgact	actggcgatt	ctttgccttt	tttttaacgt	ttcagctttt	60
gctgttgatt	gctatcagga	tgggtacaga	ggaacaaccc	tcataaatgg	agatttacca	120
acgttcaaaa	ttccagagaa	tgcgcaccc	ggcaaaaaaa	tttgggagag	cgagatatt	180
aatatcacag	tttattgtga	caatgcacca	ggatggtaa	gtaataaccc	atcagaaaaat	240
gtctatgcct	ggatcaaatt	gccccaata	aatagtgcgt	atatgtgaa	taatccgtat	300
ttaacatttgc	gcgtgactta	taatggtgta	gattatgaag	ggacaaatga	aaaaattgtat	360
actcatgcgt	gcctggataa	atatacaca	tactataatg	ggtattatca	tgaccctgta	420
tgcaatggca	gcactcttca	aaaaaatgtt	acatttaacg	cccatttcg	cgtctatgtt	480
aaattcaaaa	gccgccccggc	aggagatcag	acggttaact	ttggcacagt	caacgtgctg	540
caattcgacg	gtgaaggcgg	ggcgaacatg	gcccccaacg	cgaaaaattt	acgctatgcg	600

attacggggt tagataatat ttcattcctt gactgttagtg tcgacgtccg catttccccg	660
gaaagtcaga tagtcaattt tgggcagatc gctgcgaatt ccattgcaac tttcccaccg	720
aaggcagcat tcagcggttc taccataaaa gacattgcgt ctgattgtac cgaacagttt	780
gatgttgc当地 ccagtttctt tacttcagat acattatatg acaatacgca tctggaaata	840
ggtaacggct tgctcatgct aattactgtat caaaaaacgc aagaagatataaaatttac	900
cagttcaaat tattnatgtac ttatattccc ggtcagatgt cgccatggc aaccgcgtat	960
taccaggccg aattaaccca aaaacctggt gaaccactcg tctatggccc atttcagaaa	1020
gacctgatag ttaaaaatcaa ctaccac	1047

<210> 94
<211> 2520
<212> DNA
<213> Escherichia coli

<400> 94

atgaacaataaaaacacgtt ttcccggtt aagttatccc atgcaattaa aaatgccctg	60
tctggcggtt tttgtttccct actcttcgtt ttgccagtcc acgccgtaga attcaacgtc	120
gatatgatttacgcagaaga ccgtgagaat atcgacatct ctcgtttga gaaaaaaggc	180
tatatcccccttctggtagata cctcggttcgt gtgcaaataa ataaaaatataatgttgcacaa	240
acgttaatac tggaatgggt aaaagccgtt aatgaaatgt gttcggttact ctgcttaacc	300
aaagaaaaatt tgactaattt cggcttaat acggaattta ttgaatcatt gcaaaacata	360
gctggcagcg aatgtctcgat ttaagccaa cgtcaggagt taacgacacg acttgataaa	420
gctacgtga tattatcgct aagtgttccc caggcatggt taaaataccaa ggcaacaaac	480
tggacgcccac cagagtttggatggccatccgtt atcaccgggt ttatccttgc ttacaacgtg	540
tacgccagcc agtatgcccc acatcacggaa gacagcaccc aaaacgtcag ctcctatgg	600
acgttaggct ttaacctcggtt cgcgtggcgc ttacgttagtgcg attaccaata taatcagaat	660
tttgctgatg gacgctcggtt aaaccgcgac agcgaatttg cgccgttactt tctgtttcg	720
cctatcccccttctgggttcgtc aaaattcact atggggcagt acgacctgag ctccaaatctt	780
tacgataaccttccactttac tggcgcatcg ctggaaatgtt atgaaagcat gctgccgcca	840
gatttacagg gttatgcgcc acaaattacc ggcgtggcgc agaccaacgc gaaagtaact	900
gtggcacaaa atgggtcggtt actttatcaa accactgtcg cgccaggccc ttttactatt	960
tctgatttgg ggcaatcggtt tcaggggcag ctggatgtca cagtgaaaga agaagatggc	1020

cgcaccagca	ccttccaggt	tggctccgca	tccattccct	attnaaccgg	taaaggggcaa	1080
gtgcgctata	aaacgtcact	ggaaaaaccgg	acatccgtcg	ggcataacga	tatcaataat	1140
cccttttct	ggacggcgga	agcctcctgg	ggctggctga	acaatgtgtc	gttgtatgg	1200
ggtggcatgt	tcaccgctga	tgattatcag	gctatcacta	ccggatttgg	ctttaacctt	1260
aaccaattcg	gttcgcttc	ttttgatgtc	actggaggcag	acgcgtctt	acagcaacaa	1320
aatagcggca	atctgcgtgg	ttacagctat	cgcttcaact	atgcaaagca	tttcaatcg	1380
acaggcagtc	agattacctt	cgcgggttat	cgcttctcag	ataaagatta	cgtgtcgatg	1440
agttagtacc	tcagctcgcg	taatggcgat	gagtcaatcg	ataatgaaaa	agagagttat	1500
gtcatttcct	tgaaccagta	cttgaaacg	ctggaattaa	actcttatct	caacgttaca	1560
cgcaataactt	attgggacag	cgccagcaat	accaactact	ccgtatctgt	aagcaaaaac	1620
tttgatattg	gcgatttcaa	aggtatatct	gcatcgctgg	cagtaagtcg	aatccgctgg	1680
gatgacgacg	aagagaatca	atattacttc	tctttctctc	taccttaca	acaaaaccgc	1740
aacatctcct	acagtagtgc	gcgaacggga	agcagtaata	cttcgcagat	gatttcctgg	1800
tacgattcat	cagatcgcaa	caatatctgg	aatatttcag	cgtcggcaac	ggacgacaat	1860
atacgtgatg	gcgaaccaac	actgcgcggc	agctaccagc	actattcgcc	gtggggacgc	1920
ctgaacatta	atggcagtgt	acagccgaat	cagtacaatt	ctgttaccgc	aggctggtag	1980
ggttcactta	ccgctacacg	tcatggtgtc	gcccttcacg	attatacgta	tggcgataac	2040
gcccgcatga	tggtcgatac	cgatggcatc	tccggcattg	aaatcaactc	taaccgtacc	2100
gttaccaacg	ggctgggcat	cggcggtata	ccttcgttat	cgaactacac	cacctccatg	2160
ttgcgggtga	acaataacga	tctgccagaa	ggtgtcgatg	tcgaaaactc	ggttattcgt	2220
actacgctca	cccagggtgc	catcggtcac	gcaaaactga	atgccaccac	cggataccaa	2280
atcgtcggcg	ttattcgtca	ggaaaatggc	cgcttcctc	cactaggtgt	aatgtcacg	2340
gataaagcga	caggtaaaga	tgtgggcctg	gtagcggaaag	atggcttcgt	ttatctcagc	2400
ggtattcagg	aaaacagttat	tctgcattta	acctgggtg	ataatacctg	tgaagtcacg	2460
ccgccaaacc	aaagtaacat	tagtggaaagc	gcgataattt	tacttgtaa	aacagtcaaa	2520

<210> 95
<211> 507
<212> DNA
<213> Escherichia coli

<400> 95
ttgatgaaca caaaacagtc tggcgctcaa ctcgcgtac cgaccgcaa ggccttca 60
tcaacgatgg tggcgctgt gtactttgt gtgggtgctg ggcgggtat gattaatgcc 120
gctgatttc cagcaactgc cattgaaacg gatcccggtg caagtgcctt ccctaccc 180
tatgcctgtg ccctgattgt gctcgctgtc ttgctggta tacgcgatct tttgcaggca 240
aaaccagcct cttgcgc当地 cgcacaggaa aaaccggcat tcaggaaaac agcaacagga 300
attgcggcaa ccgcgttta tattgtggcg atgagctact gcggttatct cattactact 360
cctgtttcc tcatcgcat tatgacgttg atggctaca ggcatgggt actcacaccg 420
ggtattgcgc tgctgttaac ggcaatcctc tggcgctgt ttgtcgaagc gttacaggtg 480
ccattgcctg tcggcacatt ttgcgaa 507

<210> 96
<211> 933
<212> DNA
<213> Escherichia coli

<400> 96
atggtaatcc ttgcaggcgc tgccctcagc attgcgcctg tacaggcagc ctccatccc 60
accaaacaga tcgagtttgt cggtccctac gctgccccggag ggcgtacggat tctgggtgcc 120
cgtgccttgc ctgatgcgc当地 caaaaaccat ttaccgtca gcatcggttat tatcaataaa 180
cctggcgag ggcgtgtat cggcctgagt gaaatcgccg ctgcccggcc taacggttac 240
aaaattgggt taggcacgggat tgaactgacc accctccca gcctcgaaat ggtgcgttt 300
aaaaccagcg actttaaacc cattgcccgt ctgaatgcgg atccggctgc tatcacagtc 360
cgtgcgc当地 cgccgtggaa tagctatgaa gaatttatgg cttactccaa agcgaatccc 420
ggaaaagtac gcattggtaa ctcaggcacc ggagctatct ggcatctggc ggcagctgca 480
ctggaagaca aaacgggc当地 aaagtttct catgtccgt atgacggcgc当地 agccctggcc 540
attacaggcc tggcgccgg gcatattgaa ggcgtttccg taagcccagg agaagttatc 600
aaccatgtga atggcgccaa gctgaagaca ctggtagtga tggcgatga gcaatgaaa 660
accatgcctg acgtcccgac gttaaaagag aaaggcggttgc atctctccat cggcacctgg 720
cgccggcctga ttgtgtcgca aaaaacgccc当地 caggatgtgg tggatgttct ggcaaaggca 780
gcaaaagaga cggctgaaga gcctgcattc caggatgcac tgcaaaagtt gaatctcaac 840
tatgcatggc ttgacgctgc cagcttccag acccaaatca gcaacagga aaagtacttt 900

gacgagttgc tgactcgccct	gggcctgaaa aaa	933
<210>	97	
<211>	2166	
<212>	DNA	
<213>	Escherichia coli	
<400>	97	
atgctgcgat ggaaacgctg tattattcta acatttatct	ctggtgctgc tttcgccggcg	60
ccagagataa atgttaagca aaacgaatcg ttacctgatt tagtagcca	ggcagcacaa	120
caggatgaac aaaccaacaa gggtaaatcg ctgaaagagc gcggagccga	ttacgtcatc	180
aactccgcca cgcaagggtt tgaaaacttg acccctgagg cgctggaatc	tcaggccaga	240
agctatctgc aaagtcaa at cacctcaacc gcacaatctt atattgaaga	cacactctct	300
ccctacggta aggtccgtt gaacctctcc attggtcagg gcggcgatct	ggatggcagt	360
tccatcgatt attttgttcc ctgg tacgt aatcaa acca ctgtttattt	cagccattt	420
tctgcgcaac gaaaagaaga tcgtacgatc gggaaatattg gccttggggt	aaggataat	480
tttgataaaat atctattggg tgaaatata ttttatgatt atgactttac	ccgtggacat	540
cgcgcgtttag gtttaggcgc cgaagcctgg acggattatt taaaattctc	aggcaactat	600
tatcacccac tttctgactg gaaagactct gaagattcg acttttatga	agaacgccct	660
gccccgggtt gggatattcg tgccgaagtc tggcacctt cttatccgca	actggggggc	720
aaaattgtct tcgagaata ttacggcgat gaagtgc ccc ttttggtac	ggataatttgc	780
gagaaagatc cctacgcggt aacgcttggc ctgaattatc aaccagtgc	gttactgaca	840
gttgggacgg actataaagc ggggaccggc gataacagtg atgtcagcat	taatgccact	900
cttaattatc agttcggcgt tccgctaaaa gatcaattgg atagcgataa	agtgaaagcg	960
gcgcactcgc tcatggcag ccgtcttgc ttcgttgagc gtaataactt	tattgttctg	1020
gaatacaaaag aaaaagatcc gcttgatgtc accctgtggt tgaaagcg	tgccaccaac	1080
gaggcaccctg agtgcgtcat taaggacact cccgaagcgg ccgtcggtct	ggaaaaatgt	1140
aagtggacca ttaacgcact catatatcat cattacaaaa tcgttgcggc	ctcctggcag	1200
gcgaaaaaca atgcccccgc cacgctggtg atgcccgtta tcaaagagaa	tactctgaca	1260
gagggttaaca ataaccactg gaacctggtg ctgcctgcct ggcagtgac	ttccgatcaa	1320
gccgaacaag aaaaactcaa tacctggcga gtacgtctgg cgctggaaga	tgaaaaggc	1380
aaccgacaga actctggcgt ggtggaaatc accgttcagc aggaccgtaa	aatagagttg	1440

attgttaata acatcgcaa cccagaagag aacaaccaca gccacgaagc cagcgacag	1500
gcagatggcg ttgatggtgt agtgatggat ctcgatgtaa ccgacagctt tggcgataac	1560
accgaccgca acggcgatgc gttgccggaa gataaccta cgccctcagct ttacgacgca	1620
caggacaaac gagtgacgat aaccaacaag ccctgctcga ccgataaaccctt ctgcgtttt	1680
attgccaaac aagataaaaga aaagggcact gtcaccctct ccagtacctt acctggcacc	1740
tatcgctgga aagcaaaagc cgcccccctac gatgacagta actatgtgga tgtcactttc	1800
ctcgccccag aaattgggtgg gctaaatgct tttatctatc gtgtggggc ggctaaacc	1860
agcaacctga tagttaaaga taaagaaccg ttgccgtcaa caacatttat cgatttgtt	1920
tatggcgca caacaataaa gacgggtct tccagcaggt cgaaaaacctt gacgaagaga	1980
tggcagta cgactacaag tggaattta ccggcaagag catcaatgtt aagtgggtgc	2040
acaggcgaac actccaatga ggacattgtg attccggcca ctaaccgtga agcggcgaa	2100
acctatggcg cacaagcggg agatggcttg caggatacg gtttacgcgt gctgtataacc	2160
aaaaaaa	2166

<210> 98
 <211> 957
 <212> DNA
 <213> Escherichia coli

<400> 98	
atgaaggcagg ataaaagacg cggctctgacc cggatcgcat tagcgctggc actggcaggt	60
tattgtgtgg cacctgtggc gctggctgaa gacagcgctt gggtcgacag cggtgaaacc	120
aatattttcc aggggaccat tccgtggctc tattcggaaag ggggaagtgc tacgacagat	180
gccgaccgtg taacgttgac ttctgatcta aaaggcgctc gcccgcagg catgaaacgg	240
acaagcgaaa ttactcggtt gataaatattt ggtgataccg aaggcgacgt ggatcttgg	300
ggattggcgc ataacgcgaa aactatcgat actatccgtt ggatgagcta caaggatgcg	360
cagggggggg atccaaaaga gctggcaacg aaggtgacca gttacactct taccgatgcc	420
gaccgtggc gctatatcg tattgaaattt acgccaacca cgcagacccg tacgccaac	480
gtcgggactg cgctgcattt ttatgacgtt tctactgcca gcggcggcgg aagcgacagc	540
gataacgttg caccggggcc ggtggtaac cagaaccta aagtgcctt ctttgcgtt	600
ggtaccagta tcaacccat caacggtagc acaccaatcg aacttggcaa aacctacgtg	660

gccaaactgt actcgatga gaacaaaaat ggcaagttt atgcgggtac cgatgctgac	720
gtcaccgcca attatgactt ccgttggta ctttctggca gcagccaaca gcttggcact	780
tcgggtggca tcgttaactc aagcttcgat aataacaatt tggtcatccc tgcgaccaac	840
gacgaagcca gaaccaacct taacggccct gcgcgcgatg gaaaagaggc actttccatc	900
ccgaccaacg gcgacggggt acagggttac aaacttcaca ttatttacaa acacaaa	957

<210> 99
<211> 1887
<212> DNA
<213> Escherichia coli

<400> 99

atgaagaaaag tgctcactct ctcactactg gctctgttg tgtctcatag tgcagtagca	60
gcaaactata cgttcaataa cgataatatt gccctctcg ttgtatgatac aaactcgacg	120
attgtgctga aggaccgtag aactaaccat ccgatcacac cacaggaatt gttcttctg	180
acactaccgg atgagacaaa aatccacacc gcagattca aatcaagca cataaaaaaaaa	240
caggacaatg cgattgtcat cgactttacg cgcccgatt ttaacgtaac agtgcagttg	300
aaccttgtga agggaaaata tgccagcatc gactacacta ttgccgccgt tggcaacca	360
cgagacgtcg ccaagattac ctcttcccg accaaaaaac agtttcaggc tccttacgta	420
gacggcgcaa tcactagctc accgatcatt gcggactcgt tctttatcct gccgaataaa	480
ccgatcgta atacctacgc ctatgaagca acaaccaatc tcaacgtaga actaaaaact	540
ccaattcagc cagagacgcc ggttagctt accacctggg tcggtacttt cccggaaacc	600
agccagttgc gacgcagtgt gaaccagttt attaatgccg tacgtccacg tccgtacaag	660
ccttatttgc attacaacag ttggatggat atcggcttt tcactccgta caccgaacag	720
gatgttctgg gacgcattgga cgaatggAAC aaggaattca ttagcggccg cggagtgccg	780
ttagacgctt ttctgctgga cgatggctgg gacgatctta ccggacgctg gttatttggc	840
ccggcattca gcaacggttt tagcaaagta cgagagaaag ccgatagcct gcacagctcc	900
gttggctat ggcttcacc gtgggggggt tacaataagc cgcagcgacg ttgcgtttc	960
gcatgcaaaa gagtatgggt tcgaaaccgt ggacggcaag ctggcgctt cggagcgaa	1020
ctactaaaaa acttcaatga gcagatcatt aatcttatca aaaatgaaca cattacctcg	1080
tttaaactcg acggaatggg gaacgccagt tcacatataa aggtagccc gttgcctcg	1140
gattttgatg cgtcaatagc tctgctgcac aatatgcgcA gagcaaaccc gaatctattt	1200

atcaacctga	ccaccggcac	caacgccagc	ccgtcctgggt	tgttctatgc	tgattctatc	1260
tggcgtcagg	gggatgatat	aaacctgtat	ggccccggca	cgccggtgca	gcagtggata	1320
acatatcgtg	atgccgagac	ataccgctct	attgtacgta	aaggcccgt	attcccgctg	1380
aactcgctga	tgtaccacgg	gatagtcagc	gccgagaatg	cctattacgg	gttagagaag	1440
gtgcaaacgg	acagcgactt	tgccgatca	gtctggagct	acttcgcgac	cggcacccag	1500
ctgcaggagc	tgtatattac	cccgccatg	ctgaacaagg	tgaagtggga	tacgctggcg	1560
aaggctgcaa	aatggtcgaa	ggaaaatgcc	agcgtgctgg	ttgataaccca	ctggattggc	1620
ggcgacccaa	cggcgcttgc	cgtgtacggc	tgggcacccct	ggagcaaaga	caaagccatt	1680
ctcggttgc	gcaacccatc	ggataagcca	cagaccta	atctggattt	ggcgaaggat	1740
ttcgaaatac	cggcagaaaa	cgcggcgca	tttagtctga	aagcggtata	cggcagcaat	1800
aaaacagtgc	ccgttgagta	taaaaacgcg	acggtgatta	cgttgcagcc	gctggaaacg	1860
ctggtgtttg	aggcggtgac	cattaac				1887

<210> 100
 <211> 5334
 <212> DNA
 <213> Escherichia coli

<400> 100						
atgaacaaaa	tattaaagt	tatctggaa	ccggcaacag	gcagttacac	cgttgccagc	60
gaaacggcga	agagccgtgg	taaaaaaaagc	gggcgcagta	agctgttaat	ttctgcactg	120
gttgcgggtg	ggttgttg	tcgtttggg	gcaagtgcag	ataattacac	tggcagcc	180
actgattatg	gcgatggctc	agcaggtgac	ggctgggtt	ctatcgtaa	agggcaaaa	240
gcaaatacct	ttatgaacac	tagtggcg	agtacagctt	taggatatga	cgcgatagcc	300
gaaggtgagt	acagttctgc	catcggtca	aaaaccctt	caactggtgg	agcatccatg	360
gcgttcgggg	ttagtgc	aaaatgggt	gacagaagt	tcgcgttagg	tgcatcgta	420
gtagcaaatg	gcgatcg	ttttt	ggtcgttacg	caaagacgaa	tggtttaca	480
tctcttgcta	ttggggactc	ctcccttgcc	gatggtaaa	aaactattgc	gttaggaaat	540
acggctaaag	cttacgaaat	tatgagcatc	gccctcggt	ataatgc	tgcgtcaaaa	600
gagtatgcaa	tggcgctggg	agcaagt	aaagctggcg	gtgctgatag	cctcgcattc	660
ggcagaaaaat	ctacagctaa	tagcactggc	tcactggca	taggtgctga	cagtagcagt	720

tcgaacgata acgccatcgc gatagggAAC aaaACGCAAG ccctgggAGT gaattcgATG 780
GCCCTGGGTa atgcaagtca ggcattctggc gaatccAGTA ttgcattAGG taacaccAGT 840
gaagCCAGCG aacaaaATGC gattgcgcTG gggcaaggTA gcattgcaAG caaAGtGAAC 900
tcaatcgCgt tggGAAGtaA cagtttGTCC tcgggAGAGA atGCCatcGC attgggAGAG 960
ggtagtgCCG ctggtgGCAG caacAGCCTT gctttcgGTa GCCAGTCCAG ggcaaACGGC 1020
aatgattctg tcGCCatcGG tGtagggGCT gcAGcAGcGA ccGacaATTc tGtcGctATC 1080
ggcgcaggat cgaccacAGA tgcaAGcaAT acggTTcAG ttggcaACAG cgcaACAAA 1140
cgcaAAATTG ttaatatGGC tgctggtgCC ataAGcaACA ccAGtAccGA tgccatcaAC 1200
ggctcacAGC tttatacGT cagtGATTcA gtcGCCAAGC gactcggAGG aggCGCTACT 1260
gtAGGcAGCG atggcACCGt AACCGcAGTA agctacGCGT tgagaAGcGG aacCTATAAT 1320
aacgtgggtG atgctctGTC aggaatcGAc aataataccc tacaatggAA taaaACCcG 1380
ggggcgttca gCGCCAATCA cggtGCAAAT gCCACCAACA aaATcACTAA tGttGCTAAA 1440
ggtaCggTTt ctgcaACCAG caccGATGTA gtAAACGGt CTCAATTGTA cgaccTGCAG 1500
caggatGtC tGttGtGGAA cggcacAGCA ttcAGtGCCG cacACGGcAC cgaAGCCACC 1560
agcaAAATCA ctaacGtCAC CGtGGCAAC ctGACTGCCG GcAGcACTGA CGCCGTTAAC 1620
ggctctcAGC tcaAAACCAC caacGACAAC gtGACGACCA acACCACCAA catGCCACT 1680
aacACCACCA atATcACCAA CCTGACTGAC GCTGTTAACG GTCTCGGTGA CGACTCCCTG 1740
ctgtGGAACA aAGcAGCTGG CGCATTcAGC gCCGCGCACG GcACCcGAAGC caccAGCAA 1800
atCACCAACG tcACCGCTGG caACCTGACT gCCGGTAGcA ctGACGCCGT taACGGCTCC 1860
cAGctCAAAA ccACCAACGA caACGTGACG accAACACCA ccaACATcGC cACTAACACC 1920
accaATATCA ccaACCTGAC tgACGCTGTT AACGGTCTCG GtGACGACTC CCTGCTGTGG 1980
aacaAAACAG ctggcgcATT cagcGCCGCG cacGGcACTG acGCCACCAg CAAGATCACC 2040
aacGtCACCg ctggcAACCT GACTGCCGGC AGCActGACG CCGTTAACGG CTCCAGCTC 2100
aaaACCACCA acGACAACGT gacGACCAAC ACCACCAACA tcGCCACTAA cACCACCAAT 2160
atCACCAACC tgACTGACGC tGTTAACGGT CTCGGTGACG ACTCCCTGt GTGGAACAAA 2220
acAGctGGCG cATTcAGcGC CGCGCACGGC ACTGACGCCA CCAGCAAGAT cacCAATGTC 2280
aaAGCCGGTG acCTGACAGC tGGCAGCAct GACGCCGTa ACGGCTCTCA GCTCAAAACC 2340
accaACGATA acGTGTcGAC caACACCACCA AACATCACCA ACCTGACTGA CGCTGTtAAC 2400

ggtctcggtg acgactccct gctgtggaac aaaacagctg gcgcattcag cgccgctcac 2460
ggcaactgacg ccaccagcaa gatcaccaat gtcaaagccg gtgacctgac agctggcagc 2520
actgacgccc ttaacggctc ccagctcaaa accaccaacg ataacgtgtc gaccaacacc 2580
accaacatca ctaacctgac ggattccgtt ggcgacctta aggacgattc tctgctgtgg 2640
aacaaagcgg ctggcgcat cagcgcccg cacggtaccg aagctaccag caagatcacc 2700
aacttactgg ctggcaagat atcttctaac agcactgatg ccattaatgg ctcacaactt 2760
tatggcgttag cgatttcatt tacgtcatat cttgggttg gtgctgatat cagcgatacg 2820
ggtgttattaa gtgggccaac ctacactatt ggtggtactg actacactaa cgtcggtgat 2880
gctctggcag ccattaacac atcatttacg acatcactcg gcgacgcct actttggat 2940
gcaaccgcag gcaaattcag cgccaaacac ggcattaata atgctcccag tgtaatcact 3000
gatgttgcaa acggtgcaat ctcgtccacc agcagcgacg ccattaacgg ttcacaactt 3060
tatggtgtta gtgactacat tgccgatgct ctgggggaa atgctgttgt gaacactgac 3120
ggcagtatca ctacaccaac ttatgccatc gctggggca gttacaacaa cgtcggtgac 3180
gcgcgttgaag cgatcgatac cacgctggat gatgctctgc tgtggatac aacagccaaat 3240
ggcggttaacg gtgcatttag cgccgctcac gggaaagata aaactgcccag tgtaatcact 3300
aacgtcgcta acggtgcaat ctcgtccacc agcaacgatg ccattaatgg ctcacagctc 3360
tatagcacta ataagtacat cgctgatgctg ctgggttgt atgcagaagt caacgctgac 3420
ggtactatca ctgcaccgac ttacaccatt gcaaataccg attacaacaa cgtcggtgaa 3480
gccctggatg cgctcgataa taacgcgtg ctgtggatg aagacgcagg tgcctacaac 3540
gccagccatg atggcaatgc cagcaaaatc accaacgttg cggctggta tctctccaca 3600
accagtacccg atgctgttaa cggttcccag ttaaacgcaa ccaatattct ggttacgcaa 3660
aatagccaaa tgattaacca gcttgcttgtt aacactagcg aaacctacat cgaggaaaac 3720
ggtgcggtta ttaactatgt acgtaccaac gacagcggtt tagcgttcaa cgatgccagc 3780
gcttcaggta ttggcgctac agctgttaggt tataacgcag ttgcctctca tgccagcagt 3840
gtagccatcg gtcaggacag catcagcgaa gttgatacgg gtatcgctct gggtagcagt 3900
tccgtttcca gccgtgtaat agttaaaggg actcgtaaca ccagcgtatc ggaagaagg 3960
gttgtgattt gttatgacac cacggatggc gaactgcttg ggcgttgc gattggatgat 4020
gacggtaaat atcgtaaat catcaacgatc gcggatggtt ctgaagccca tgatcggtc 4080
actgttcgccc agttgcaaaa cgccattggt gcagtcgcaa ccacaccaac caaatactat 4140

cacgccaact	caacggctga	agactcactg	gcagtcggtg	aagactcgct	ggcaatgggc	4200
gcgaaaacca	tcgttaatgg	taatgcgggt	attggtatcg	gcctgaacac	gctggttctg	4260
gctgatgcga	tcaacggtat	tgctatcggt	tctaacgcac	gcgcaaatac	tgccgacagc	4320
attgcaatgg	gtaatggttc	tcagactacc	cgtggtgcbc	agaccaacta	cactgcctac	4380
aacatggatg	caccgcagaa	ctctgtgggt	gagttctctg	tcggcagtga	agacggtaa	4440
cgtcagatca	ccaacgtcgc	agcaggttcg	gcggataccg	atgcggtaa	cgtgggtcag	4500
ttgaaagtaa	cggacgcgca	ggtttcccag	aataccaga	gcattactaa	cctgaacact	4560
caggtcacta	atctggatac	tcgcgtgacc	aatatcgaaa	acggcattgg	cgtatcgta	4620
accaccggta	gcactaagta	cttcaagacc	aacaccgatg	gcfgcagatgc	caacgcgcag	4680
ggttaaagaca	gtgttgcgat	tgttctgg	tccattgctg	ccgctgacaa	cagcgtcgca	4740
ctgggcacgg	gttccgtagc	agacgaagaa	aacaccatct	ctgtgggttc	ttctaccaac	4800
cagcgtcgta	tcaccaacgt	tgctgccgg	gttaatgcca	ccgatgcgg	taacgttcg	4860
caactgaagt	cttctgaagc	aggcggcg	cgctacgaca	ccaaagctga	tggctctatc	4920
gactacagca	acatcactct	cggtggcggc	aatagcgta	cgactcgcat	cagcaacg	4980
tctgctggcg	tgaacaacaa	cgacgcagt	aactatgcgc	agttgaagca	aagtgtgcag	5040
gaaacgaagc	aatacaccga	tcagcgcatt	gttgagatgg	ataacaaact	gtccaaaact	5100
gaaagcaagc	tgagtggtgg	tatcgcttct	gcaatggcaa	tgaccggct	gccgcaggct	5160
tacacgcccgg	gtgccagcat	ggcctctatt	ggtggcgta	cttacaacgg	tgaatcggt	5220
gttgcttag	gtgtgtcgat	ggtgagcgcc	aatggtcgtt	gggtctacaa	attacaaggt	5280
agtaccaata	gccagggta	atactccgccc	gcactcggt	ccggtattca	gtgg	5334

<210> 101
 <211> 681
 <212> DNA
 <213> Escherichia coli

<400> 101

atgaacctaa	agaaaaacact	gttaagcg	ttaatgat	tgcac	tttgc	cttattggta	60
gggtgtgact	atattgaaaa	agcgagtaag	gtcgacgatc	tcgttacaca	gcaagagtt	120	
caaaaaagca	aaattgaggc	gcttgaaaaa	caacaagaac	tcgacaagcg	caagatagaa	180	
cactttgaaa	aacaacaaac	taccatcata	aacagtagca	aaacgctcgc	tggtgtgg	240	

aaggcagtta	aaaacaaaca	ggacgaattt	gtcttacag	aatttaaccc	ggcacaaacc	300
caataacttta	ttttaataa	cggctctgtt	ggttgccag	ggaaaatact	gtctattgac	360
gcagtagaaa	acggcagtgt	tattcgatt	tcactggta	acttattaag	tgtccctgta	420
tcaaatatgg	gtttctacgc	aacatggggg	ggagaaaaac	ccaccgacat	caacgcatta	480
gcaaaatggc	agcaattgct	attagtacc	gcaatgaact	cctccctgaa	attattacca	540
ggtcaatggc	aagacattaa	tttgacgcta	aaagggtgtct	cgcccaacaa	cctcaaataat	600
ctgaaattag	ccatcaacat	ggcaaataatt	cagttcgacc	gtcttcaacc	tgctgaatct	660
ccacagcggaa	aaaacaaaaaa	a				681

<210> 102
<211> 3327
<212> DNA
<213> Escherichia coli

<400> 102

atgaaaagag	tttgtcgctct	tttgggtgtg	gggttactgc	tccttgttgt	gttgggtgctc	60
attttgtttg	ttctggctca	gaccacacccg	ctgatatcag	cacaggatga	gcatgctgtc	120
tggtttcgtc	tgttgataac	agcgattgtg	atctgtttgc	taagtatgtg	catattttc	180
ctctttctt	tccggcagaa	cgaagcctcg	acgatatcac	tatacgctca	accgactgat	240
ataaaaggaaa	taaatacggaa	gcagccgaac	tatgcatcac	tgctgacgat	atatttacgc	300
gaccgctacg	gtccgttctg	gccccgtaaa	gtccgcctgc	tgctgggtgac	cggcgagcct	360
gaacaggcag	aagccatcgc	gccggggctg	accggcaac	actggctgga	aggcgaccac	420
acggtgctga	tatatggcgg	caggccaaca	gcggagcctg	atgtcacact	gctgaccgccc	480
ttaaaaaaac	tgcgcccag	ccgtccgctg	gacggcatca	tctgggcgt	gacagaagaa	540
cagagccccc	agacagcgca	actcgacaaa	ggctggcgcg	gactgataaa	cggcggtaaag	600
cgactcggtt	ttcaggctcc	actctatttg	tggcaggtct	gtgacgacgg	tgattatcag	660
accggacgccc	ccctgcaaag	cgtcggtcgc	ctgctgccgg	aacgctgtac	cccggaaacaa	720
ctggctgtaa	tgctggaagc	agccgctgac	ggaacagggc	atgtcgacgc	tactgaccga	780
taccgcacgt	tttctgctgc	gtctggctca	tacccttgc	gagcggggta	ttgctcactg	840
gcagaccgtc	ctgaaaccgc	tgctggcagg	cggcgcat	tctccctgc	gcctgcccgg	900
cctgatgttc	agcccgccgc	ttgcccgcgt	gccggaggcc	agcacctcat	gcagtggctg	960
ccgtcaccgg	tctggcgccc	cgtgacggtg	ataacgcgcg	cggcgacacg	gtgggtttc	1020

ctgtggctgc gtaccgcact gatgtccgct gtctcggtgc tggatatacg gggggccgga 1080
atgacgacct cggttcttcgc caaccgcgct cttgttcagg aaaccggtat ccagacggca 1140
cgtgcgcttg atacccgcct gccgctggca gaacaactgg tggcgctgca taccctgcag 1200
ggcgaactgg aacgcctgca atatcgatc cgcaagggtg cgccgtggta tcagcggttt 1260
ggccttgaac gtaaccaaca actgctcgcc gccgcttttc ccggctatgc gcaggcggca 1320
aacccggctgg tgccgcacgt ggccgttgac catctgcaac agcaactgaa cgcccttgtc 1380
gccctgccc ccaacagtcc tcagcgtaacc gccaccggta aacaacgcta taagcagctt 1440
aaggcattgc tcatgacttc ccgccccggaa aaggccgacg ctgcctttt cagtagaccg 1500
ctgatggcgg acggctcgctc ctacgagaat atcccgaaag gtgtgcggca gagcgtgttg 1560
ccgtcaactgc tgaccttctg gacggcgaac ctgccccggaa accccgcagtg gaaaacatcg 1620
ccgcccaccgg aactgaccgg cgcaatgcgt aaaatcctgc tgccgcagat tggtgtgcgt 1680
aatgccgaaa acaccctcta ccagaacgtg ctgcaacagg tgtcccgcaa ctacgcccgt 1740
atgacgctgg cggacatgac cggggataacc ctcaccgaat ctctttcag tacggAACAG 1800
acgggtccgg ggatgttcac ccgtcaggcg tggaaaggac aggtcaggaa agccatcgag 1860
caggtggta cggcgccggcg cgaggaaatc gactgggtac tcagcgaccg ccagcaggat 1920
acccctgcgg atatctcgcc ggatacgctg cgtaaccgtc tcacccatcg ctactttacc 1980
gactttggcg gaagctggct ggcgttctc aacagcattc actggaaaaaa ggaagactcg 2040
ctctccggca ttctcgacca gctgacactg atggccgatc cccgtcagtc gccactgatt 2100
gcgcgtacgg acaccctcgc gtggcaggcg gcgcacaggca gggaaaaccg tggctgtca 2160
gactcgctgg cgaaatcgac acagggactg tttaacggca aggagaaaac gccgcagcaa 2220
tcccgtgaag gtgacgacgt gcctgtcggg ccgtggata aaacccatcg cccgctgctg 2280
cggttgcgtgg gcgataaggc cggaggcggc gacagccagc tgagtctaca gacccatcg 2340
acccgcgtca cccgcgtcgc cctcaaactg caacaggtga ccaacgcccc cgacccgcag 2400
gagatgaccc aacaactggc gcagacggtc ttacagggtaa acccggttgc cctcaccgac 2460
acccgcgtact acggacggtt aatcgccgccc agtctggcg aagaatggag tggcttcgg 2520
caggcgctgt tcgttcgccc ggtagagcag tcgtggcggc aggtgctgac gcctgcggcg 2580
gacagcctga accgcctgt gcagcggcg attgtcagcc actggaaatca ggacttcgct 2640
ggccgctatc cggttcaaagc ctcacagaac gatgcctccc tccccctgtc ggccgcgtac 2700

ctgcgcgatg acggcgcat caacctgttt atgcgcgcca accttccgg cgtgctgaaa	2760
cgagagggcc gctactgggt ggctgacgcc atgaacacgc aggggctgac ggtcaatccg	2820
gactttatcc gcgcctgaa ccgcctgcgc gacgtggccg ataccgcctt tgccagcggc	2880
gatgccggga tacatttga actgcggca aaaccggcgc gtgacgtat gaagacgcat	2940
ctggtgattg acgggcagga gctgaaatat ttcaaccaga aagaacgctg gcagcgaaaa	3000
aactggccgg atgaacagtg gcaacccggc gcatcgctaa gctggaccag cacacaggcg	3060
atggagcgca tactggcgga ttaccggggaa agctggagtc ttattcgccct gctgaaacag	3120
gcgcaggtga cgccggtgaa cagcagcacc tttaaggtgg tgtggaaagc gcaggacggc	3180
ctgccgctga attacctgct acgggttgaa caggtaaag ggccgctggc gctgctggag	3240
ctgaaaaact tccgcctgccc gggacagggtg tttctgaccg gaaaaagtat gaaggatgtg	3300
gaagagtgatg gggaaagacgc cgatgag	3327

<210> 103
<211> 534
<212> DNA
<213> Escherichia coli

<400> 103

atgtttccta ttcgttttaa acgtccggcg ttgctctgta tggcgatgct gacggttgtt	60
ctgagtggct gcggcctgat tcagaaagtgt gtggatgaat cgaaaagcgt ggcctcagcc	120
gttttctaca aacaaatcaa aatactgcat ctcgatttct tctcccgca cgccctgaat	180
acggatgcgg aagatacgcc gctttccacg atggtgcatg tctggcaact gaaaacccgc	240
gaagattttg acaaggcgga ttacgacacc ctgttatgc aggaagagaa gacgctggag	300
aaggacgtac tggcaaaaca caccgtctgg gtaaaaccgg aaggcacggc atccctgaat	360
gtgccgctgg ataaagagac gcagttgtc gccattattgt ggcagttta tcaccctgat	420
gaaaaaaagcg acagctggcg tctggtgatc aaaaggacg aactggaggc cgacaagccg	480
cgctcgattg aactgatgag aagcgacctg cgactgctgc ctctcaagga taaa	534

<210> 104
<211> 840
<212> DNA
<213> Escherichia coli

<400> 104

atgatttcag gggaaatat gttgaaagaa tggatgatata ttacgtgcag tttatttgact	60
--	----

ctggctgggg cgtcaactgcc cctcagtggc tgtatttcca gaggccagga gtctatatcc 120
gaaggggcggt catttggggc agggatcctg cgcaaccgg gagcaacaaa aaaagccgac 180
acgaaagacc tcaatgtgcc accaccgggt tatggtccgc cgcatgtat atttcgcatt 240
gatgacaacc gctatttcac gctagaaaaat tataccact gcgagaacgg gcagacgttt 300
tataataata aagcaaaaaa cattcatgtt aaaatattag acgcttcagg gtatttattt 360
aaaggccgct tattctgggt atcaacgcgt gatgatttc tggccttcc tgccacgtta 420
aataccagac acgcttcctg tatgggtcg aataaaggct gtatgaatgc ggtcattgtc 480
actaccgatg gtggaaaaag acgcagtggt gtgcatacg gcagttatac ccagaatccg 540
accggtgcca cgagggatta tgacatgctg gtgatgaatg acggcttcta cctgcttaga 600
tatcgaaaaa gacagggcag atttagtccg gtgataactt gatggattct cagtaactgaa 660
gatagctctg gtgttgtgcg ttcaagaat gcttatgaat tggccgtcc cggagaagag 720
gtaccctcca ccggttttta taaaatcgac ctgtcacgtt ttatccccaa aaacaacgtt 780
atggaaatgc agtgtgacag gacgctggag ccagttcaac cttagagag taaaattcaa 840

<210> 105
<211> 1503
<212> DNA
<213> Escherichia coli

<400> 105

atggaacacg ttagcattaa aacattatac catctcctgt gctgtatgtc gcttttattt 60
tccgctatgt gcgcggcgc gcaagaacat gagcctatcg gggcgcaaga tgagcgctg 120
tcgacattaa ttccaccaacg gatgcaggag gccaaaggcc cagcccttcc cgtaagtgt 180
accattaagg gggtacgtca gcgatttgct tacgggttg ccgatgtggc tagtcagaaa 240
gcgaataactc tagacacagt ttacgagctg ggatcgatga gtaaggcgtt taccggactt 300
gtggtgcaaa tactgattca ggaaggcaga ctccggcaag gggatgatcat cattacctat 360
ctggccggaaa tgcgcgttgc ttatcaggaa aaacctgctt ccctgaccgt ggctgatttc 420
ctttatcata catcaggatt gccttttca acactggctc ggctggaaaa ccctatgcct 480
gggagcgctg tggcacagca actgcgcac gagaatctgc tggccgcgg ggggtgcgaag 540
tttagctatg cctccgcac ttatgatgtg ttggccgcgg tgattgaaaa tgtgacggaa 600
aaaaccttta cagaggtcat tgcggAACGA ctcacgcagc cgctggcat gtcggcgact 660

gtggcagtta	agggggatga	gattattgtc	aacaaggcaa	gcggctataa	actggattc	720
ggcaaaccgg	ttctgtttca	tgcgcctctg	gcccgaaacc	atgttcctgc	cgcctatatac	780
catagcactc	tgcctgatat	gaaaatatgg	atagacgcct	ggttgcacag	aaaggctttg	840
ccggcaacgc	tgcgtgaggc	gatgagtaac	agttggcgtg	gtaatagtga	tgttccgctt	900
gccgcagaca	atcgatcct	ctatgccagc	ggttggttta	tcgaccagaa	tcaaggccct	960
tacatcagtc	acggtgccc	aatccaaac	tttcttctt	gcattgcgtt	gcgaccggat	1020
cacgagattg	gcattgtgc	gctggcaa	atgaattcga	atctgatact	acagcttgc	1080
gcggatatcg	ataattatct	gcgcattggc	aaatatgctg	acggcgctgg	tgatgaatt	1140
acagccaccg	ataccctttt	cgtctaccc	acgttggc	tgtgttttg	ggggcggtg	1200
gttgttagtgc	gcggtgctt	ccgtgttat	cgcgcaacgg	cgcatggccc	tggaaaacag	1260
cagaggttac	gtttacgcgt	acgtgactat	atcatgcct	tggcggttcc	tgggctcgtg	1320
gccgccatgc	tctatgtcgc	accgggtata	ctatctccag	gacttgactg	gcgttttac	1380
ttggatggg	gtccatcgag	cgtgtggcg	ataccgtcg	gaattatcct	gttagcttc	1440
gttctgacat	taaatcatca	aattaaacga	attctattac	acaacaagga	gtgggacgat	1500
gag						1503

<210> 106
<211> 2046
<212> DNA
<213> Escherichia coli

<400> 106

atgaagaaca	aatatatcat	tgctccgggc	attgccgtga	tgtgttctgc	agttatatac	60
tcaaggttatg	ccagttctga	taaaaaagaa	gatacgctt	tgttactgc	ctccgggttc	120
actcagcagc	tcagaaatgc	cccgccagt	gtctcagtca	ttacttcaga	acaactgcaa	180
aaaaaacgg	tttcagatct	ggtcgatgca	gtaaaagatg	ttgaagggat	tagtacact	240
ggtggaaatg	aaaaaccga	tatcagtata	cgtggctaa	gtggcgatta	cacgctgatt	300
ctggcgtatg	gacgacgtca	gagcggtcg	gaatccagac	caaacggcag	cggcggttt	360
gaagccggat	ttatccctcc	tgtggaagca	attgaacgca	ttgaagtgtat	ccgtggccct	420
atgtcttccc	tgtatggttc	tgtgccatc	ggaggggtca	ttaatatcat	aaccaaacc	480
gttaataacc	aaacatggga	tggcgtactt	ggacttgggg	ggattattca	ggaacatgg	540
aaatttggta	actcaaccac	aaatgacttc	tatctgtcag	gcccattgat	taaggataaa	600

cttggtcttc agctataatgg aggaatgaac tatcgcaagg aagatagtat ctctcaggga 660
acaccggcaa aagataataa gaatataacg gcaacgctcc agtttactcc gactgaaagc 720
cagaagtttgc tttttgaata tgaaaaaaat aaccaggtgc atacattaac acctggtgag 780
tctctcgatg cctggactat gcggggaaat cttaaacaac caaacagtaa aagagaaacg 840
cataattcac gtagtcactg ggttagcagca tggaaatgccc agggcgaaat actgcaccc 900
gaaattgctg tttatcagga gaaagttatt cgtgaggtta aatcaggtaa aaaagataaa 960
tataatcatt gggatcttaa ttacgagtca agaaaaccgg aaataaccaa cacaatcata 1020
gatgcaaaag tgacggcatt tctgccggaa aatgtactga ccatcggagg tcaatttcag 1080
catgcagagc tccgtgatga ctcagccacg ggtaaaaaaaaa cgacagaaac acagtctgtt 1140
tcaattaaac agaaagctgt ttttatagaa aatgaatatg cagcaacgga ttctctcgcc 1200
ctgactggag gactgcgtct cgataatcat gaaatctatg gcagttactg gaatccaaga 1260
ttgtacgctg tttataacct gaccgataat ctcacactca aaaaaaaaaat cgcaaaagca 1320
tttcgggctc cttcaattcg tgaggtgagt cctggatttg gaacactgac gcagggtggt 1380
gcctctatta tgtatgaaa cagggacctg aaacccgaga ccagtgtaac cgaagagatc 1440
ggtattattt atagtaatga tagtggttt tcggcgagcg cgacgctgtt taatactgat 1500
tttaaaaata agttgaccag ttacgatata ggtacaaaag atccagtcac cgggttaaac 1560
acttttattt atgataatgt aggtgaggca aatatcagag gggtggagct tgcaactcag 1620
attcctgtgt atgataaatg gcatgtatct gcaaactata catttactga ctctcgctga 1680
aaaagtgtatg acgaaagtct caatggcaag tcgctgaaag gggAACCTCT ggaaagaact 1740
cccagacatg cagccaatgc aaaactggaa tgggattaca ctcaggatata tacattttat 1800
tcatctctga attatacggg aaaacaaatc tggcagcac aaagaaatgg tgctaagggtt 1860
cccccggttc gtaatggatt cacatctatg gatattggtc taaattacca gattctgcca 1920
gacacgctga ttaatttgc cggtcttaac gtcacagaca gaaagagcga ggatatcgat 1980
accattgatg gtaactggca ggtcgatgaa ggacggcggtt attgggctaa tgtaagagta 2040
tccttc 2046

<210> 107
<211> 492
<212> DNA
<213> Escherichia coli

<400> 107

atggggttta gaaaaacaat aatcaacttcg gtaggttga tatttatttc attctctttt	60
gtggcaaagt gctctcaact caaaaatttg aataattact cagtgatgct ttgtggaaaa	120
gtgtcaaata atatcctgga tgatattggt ggttataaag aaagaaatat attaatgctg	180
cgagctataa aaaaaatcat aataatgaca atcgtaaata ttatattttt ctattccttt	240
caatcgactg cgatgaaat gggttaataa aaaaaatacg gggttggct tgagagagat	300
atcaaaggaa ggccatataat ttatcctatc gaaaattatg atgagtgtaa gaaaaaatgc	360
aatcatatga attatatagc ggatgtcaat gctcaattag ctatgagtaa aaaaaataac	420
aggattttg ctaacataac cttaactaac aatagctcta ccacgtattt ttttctaaat	480
attatctacc ta	492

<210> 108

<211> 654

<212> DNA

<213> Escherichia coli

<400> 108

atgaatcaa tttaagataa taaggttaatt atgaaaataa aaaatttaat atcagtcatt	60
ttactatcag gaggtattat gggactgga ttgtactcga gcgataacca tcaaaaatc	120
cgcagcaggt ttaatataca ggaatcatat tgtgccatta agactaatgg tgccttgg	180
ttcagcaacc gaaaggatgt attgcgagaa aatggtgatt caaccggAAC caccagttcc	240
agcactaatg ccatgatgct gatggaaaat ggtgaaaatg aaatcagtct ggagattgg	300
gcgttaaggt gggttctga taaacctgcc agtaccgaag aacgaggca tttctccaa	360
aaagcagggt gcagtctgga ttgggtcgt tttgttaagc aggaagaaac catactttct	420
tcgataaagg tgaccatcaa ccagcaggaa atacctgaag cgccggcaga cagcatgc	480
cctgttatcc gaaaagagat tctggctgag caggcagaac ccggatttat tgatccagac	540
tatTTTaatg aaacttattt cccgaaaggg atgaaggtgt atcaatttac acaaaaggc	600
tcggcggcgg ggcttcctga tggcctgga cgccgtacgc ctttaccgg agca	654

<210> 109

<211> 8198

<212> DNA

<213> Escherichia coli

<400> 109

atgcatcagc ctcccgttcg cttcaattac cgccctgctga gttaccttgtt cagtgcgatt 60
atcgccgggc agccgttgtt accggctgtg ggggccgtca tcaccccaca aaacggggcc 120
ggaatggata aagcggcaa a tggtgtgccg gtcgtgaaca ttgccacgcc gaacggggcc 180
gggatttcgc ataaccggtt tacggattac aacgtcggga aggaaggct gattctcaat 240
aatgccaccg gtaagcttaa tccgacgcag cttggtgac tgatacagaa taacccgaac 300
ctgaaagcgg gcggggaaagc gaagggtatc atcaacgaag tgaccggcg taagcgttca 360
ctgctgcagg gctatacgg a gtggccggc aaagcggcga atgtgatggt tgccaacccg 420
tatggtatca cctgtgacgg ctgtggcttt atcaacacgc cgcacgcgac gctcaccacg 480
ggcaaacctg tcatgtatgc cgacggcagc ctgcaggcgc tggaggtgac tgaaggcagt 540
atcaccatca atggcgcggg cctggacggc acccggagcg atgcccgtatc cattattgcc 600
cgtgcaacgg aagtgaatgc cgccgttcat gcgaaggatt taactgtcac tgcaggcgct 660
aacctgtaa ctgcagatgg tcgtgtcaga gccctgaagg gcgaaaggta tgcgtccaaa 720
gttgcgcgtt ataccggcgc tctcggtgga atgtacgcca ggcgtattca tctgacctcc 780
actgaaagtg gtgtcgggt taatcttgtt aacctttatg cccgcgtatgg cgatatcacc 840
ctggatgcca gcggcagact gactgtcaac aacagtctcg ccacgggggc cgtcactgca 900
aaaggcgtagg gcgtcacctt aaccggcgc acataaagcgg gaggttaccc gacgtcagc 960
agccggagag atatcggtt cagcaatggc acgcttaaca gcgcacaaggc cctcagcctg 1020
accggccggcg gcagaatcac tcaacagaat gaaaaactga ctgcccggccg ggatgtacg 1080
cttgcgcgca aaaacatcac acaggatacc gccagccaga ttaacgcggc ccgcgtatc 1140
gtgactgtcg ccagtgacac gctgacaaca cagggacaga taaccgcggc gcagaatctc 1200
acggccagcg ccaccacgct gacgcaggac ggaatattgc tggcgaaaag tcatgcggg 1260
ctcaatgcgcg gtacgctgaa taacagtggc gccgttcagg gagctaccct gacgctcggc 1320
agtacaacgc tcagcaacag tggctccctg ctcagtgccg gtcccctgac catgaatacc 1380
cgcgacttta cccagagcgg ccgcactggc gcgaaggcga aagtggatcatgcccgt 1440
ggaaaaactga ccagtacagg tttgctgggt acgatgcact tggtgctgaa ggcgcaggat 1500
gtgacacaga acggtgtgct gtccggcggc aaaggcgtga cggcgtatgc gacgagctcc 1560
ggtaaaaaat cggtcacccca cagcgatgct gcgtacgc tgaatgtgac aacagtggcg 1620
ctggacgggg aaaccagtgc cggtgacacc ctccgggttc aggcagacaa actgagttacc 1680

gcagcggcg cacaacttca gagcggcaaa aatctcagca tcaacgccag agatgcacgt 1740
cttgcaggta cgccaggcagc acaacagacc atggtgtga acgccagtga aaagctcacc 1800
cacagcggga aaagcagtgc cccgtcgctc agcctcagtg cgccggaact gaccagcgc 1860
ggcgtacttg ttggttccgc cctgaataca cagtcacaga ccctgaccaa cagcggtctg 1920
ttgcaggggg aggccctcact caccgttaac acacagaggc ttgataatca gcagaacggc 1980
acgctgtaca gtgctgcaga cctgacgctg gatataccgg acatccgcaa cagcggtctt 2040
atcaccggtg ataatggttt aatgttaaat gctgtctccc tcagcaatcc gggaaaaatc 2100
atcgctgaca cgctgagcgt cagggcgacc acgctggatg gtgacggcct gttgcagggc 2160
gccggtgac tggcgcttgc tggcgacacc ctctcacagg gtagtcacgg acgctggctg 2220

acggcggacg acctctccct ccggggcaaa acactgaata ccgcaggac cacgcaggga 2280
cagaatatca ccgtgcaggc ggacagatgg gcgaacagtg gttccgtgct ggcaaccgg 2340
aaccttactg ctccggcaac cggtcagttg accagtaccg gcgatatacat gagccagggt 2400
gacaccacgc tgaaagcagc caccacggac aaccggggca gtctgcttc ggccggcacg 2460
ctctcccttg atggaaattc actggataac cgcggcactg tccagggtaa ccatgtcacg 2520
attcgccaga acagtgtcac caacagtggc acgctcaccg ggatcgccgc actgacgctt 2580
gccgccccgtta tggcatcccc tcaacctgcg ctgatgaata acggaggttc attgctgacc 2640
agcggcgatc tgacaatcac cgcaaggcgtt attaccagtt ccggacactg gcagggcaaa 2700
cggtgctga tcaccgcaga cagtctggca aacagcgggg cgatccaggc ggctgacagc 2760
ctgactgcac gtctgacggg tgagctcgtc agcacagcgg gcagcaaagt cacctcgaac 2820
ggtgaatgg cgctcagtgc actgaattta agcaacagcg gacaatggat tgcaaaaaat 2880
ctgaccctga aggcgaactc actgaccagt gcgggtgaca tcaccggtgt ggatactctc 2940
acgctcacgg tgaatcagac gctgaacaat caggcgaacg gaaaactgct cagtgcaggt 3000

gtgctgacgc tgaaggcaga cagtgtcaca aacgacgggc aattacaggg aaatgtcacc 3060
accatcacgg caggacaact cacaacggc gggcatctgc agggcgaaac gctgacgctg 3120
acagcctccg gtggcgtgaa caaccgttcc ggtgggttcc tgatgagccg gaatgcactg 3180
aatgtcagta ctgcgaccct gagtaaccag agcacgatac agggtggagg cggggttcc 3240
ctgaacgcca cagaccgtct gcagaacgac ggcaaaatcc tctccggcag taacctcacg 3300

ctgacggcgc aggtgctggc gaacaccggc agcggactgg tacaggctgc caccctgctg 3360
ctggatgtgg tgaatactgt caacggcggc cgctacttg ccaccggcag tgacgttaaa 3420
ggaaccacgc tgaataatac cggtacgctt caggggtgcga ctctggtaa ttaccacaca 3480
ttcagcagcg gtaccctgct gggAACCTCC gggcttggcg tcaagggcag ttcactgctg 3540
caaaatggta cagggccgct gtacagtgcg ggcaacctgc tgcttgacgc tcaggacttc 3600
agtggtcagg ggcaggtggt ggcACCCGGT gatgtcacac tgaaactgat tgctgccctc 3660
acgaatcatg gtaccctggc cgcaggaaa acccttccg tcacgtcgc aaatgccatc 3720
accaacggcg gtgtcatgca gggtgatgcc atggtgctcg gtgccggaga ggcattcacc 3780
aacaatggac tgactgccgg taaaggcaac agtgtttca gcgcacagcg tctttccctt 3840
aacgcaccgg gttcacttca gggcggtggc gatgtgagtc tgaacagccg gagtgatata 3900
accatcagtg gtttaccgg cacggcaggc agtctgacaa tgaatgtggc cggtaccctg 3960
ctgaacagtg cgctgattta tgcggggaaat aacctgaagc tgttacaga ccgtctgcat 4020
aaccagcatg gtgatatacct ggcggcaac agtctgtggg tacagaagga tgctccggc 4080
ggtgcaaaca cagagattat caataattcc gggaatattt agacgcatac gggcgatatt 4140
gttgtaagaa ccgggcatct tctgaaccag cgggagggat tttctgccac aacaacaacc 4200
cggaactaacc cctcatccat tcagggaaatg ggaaatgctc tgggtgatat tccccttcc 4260
cttcttcctg acggcagcta tggctatttc acccgtaag ttgaaaatca gcacggtagc 4320
ccctgcaacg ggcacggggc atgcaatatac acaatggata cgctttatta ttacgcggc 4380
tttgctgaca gtgccacaca gcgcTTTCTC agcagccaga acatcacaac agtaaccgg 4440
gctgataatc cggcaggccg cattgcgtca gggcgtaatc tttctgctga ggctgaacga 4500
ctggaaaacc gggcgtcatt tatcctggcg aatggggata tcgcactctc gggcagagag 4560
ttaagcaatc agagctggca gacggggaca gagaatgaat atctggata ccgctacgac 4620
ccgaaaacgt tttacggtag ctatgcaaca ggctctctgg ataaactgcc cctgctgtca 4680
ccggaatttg aaaacaatac catcagattt tcactggatg gccggggaaaa agattacacg 4740
cccggttaaga cgtattattc cgttattcag gcgggggggg atgttaagac ccgttttacc 4800
agcagtatca ataacggAAC aaccactgca catgcaggta gtgtcagtcc ggtggctct 4860
gcacctgtac tgaatacgTT aagtcaGAG ACCGGCGGAG acagtctgac acagacagcg 4920
ctgcagcagt atgagccggt ggtgggtggc tctccGAAT ggcacgatga actggcaggt 4980
gccctgaaaa atattGCCGG agttcgcca ctgaccggc agaccggat cagtatgac 5040

tggccactgc cttccggcaa caatggatac ctgggtccgt ccacggaccc ggacagtccg 5100
tatctgatta cggtaaccc gaaactggat ggtctcgac aggtggacag ccatttgttt 5160
gccggactgt atgagcttct tggagcgaag ccgggtcagg cgccacgtga aacggctccg 5220
tcgtataccg atgaaaaaca gtttctggc tcatcgatt ttcttgaccg cctcggctg 5280
aaaccggaaa aagattatcg tttcctgggg gatgcggtct ttgataccg gtatgtcagt 5340
aacgcggtgc tgagccggac gggttcacgt tatctaaccg gactgggttc agacacggaa 5400
cagatgcggat atctgatgga taacgcggcc agacaacaga aaggactggg attagagttt 5460
ggtgtggcgc tgacagctga acagattgct cagcttgacg gcagcatact gtggtggag 5520
tcagtcacca tcaacggaca aacagtcatg gtcccggaaac tgtatctgtc gccggaaagat 5580
atcacccctgc ataacggcag cggttatcagc gggaaacaacg tgcaacttgc gggccggaaat 5640
atcaccaaca gcggcggcag catcaacgca cagaacgacc tctcgctcga cagttccggc 5700
tatatcgaca acctgaatgc ggggctgata agcgccggcg gtagcctgga cctgagcgcc 5760
atcggggata tcagcaatat cagctcagtc atcagcggtaa acccgtaa actggaaagc 5820
gtgagtggca acatcagcaa tatcaccgg cgtcagcaat ggaatgcggg cagtgacagc 5880
caatatggtg gtgtgcacatc cagcggtacg gacaccggc cggttgcgcac cattaaaggc 5940
actgattcac tttcgctgga tgcagggaaa aacattgata ttaccggggc aacggtctcg 6000
tccgggtggag accttggaaat gtctgcgggt aatgatatac acattgccc aaacctgata 6060
agtgggagca aaagtcatgc cggtttctgg cacactgatg acaacagtgc atcatccacc 6120
acctcacagg gcagcagcat cagcgccggc ggtAACCTGG cgatggctgc aggccataat 6180
ctggatgtca cggcatcctc tggttctgcc gggcacagcg ccctgcttgc ttgcaggta 6240
cgacctagtc ttgaatgcag tcagggaaaaa gcaaaaaacaa gtcgcaacgg caggtcagaa 6300
agtcatgaaa gccacgcagc tgtgtccacg gtgcacagcg ggcataactt cctccttgc 6360
gccccgtcgat atattgccag tcaggctgccc ggtatggctg cggaaaataa cgtggtcac 6420
cggggcggac gtgatgtgaa cctgggtggca gagtctgccc ggcgcaggcga cagctatacg 6480
tcgaagaaaaa agaaagagat taacgagaca gtccgtcagc agggAACCGA aatcgccagc 6540
ggtgtgtgaca ccaccgtcaa cgcaggacgg gatatcaccg ctgttgcgtc atccgttacc 6600
gcaaccggca atatcagcgt gaatgccggt cgtgtatgttgc ccctgaccac ggcgcacagaa 6660
agtgactatac actatctgga aacgaagaaa aaaagcgag gttttctcag taagaaaaacc 6720

accgcacca tcagtgagga cagtgccacc cgtgaagcag gctccctgct gtcggggAAC	6780
cgcgtgaccg ttaacgccgg tgataaacctg acggtagagg gttcgatgtt ggtggctgAC	6840
cggatgtgt cactggccgg gggtaaccat gttgatgttc ttgctgccac cagtagat	6900
acgtcctggc gctttaagga aacgaagaaa tccggctgta tgggtaccgg cggtattggT	6960
ttcaccattg gcagcagtaa gacaacgcac gaccggcgCG aggCCGGGAC aacgcAGAGT	7020
cagagtGCCA gcaccatcgG ctccactGCC ggtaatgtCA gtattaccGC gggcaaACAG	7080
gctcatatca gcggttcgGA tgtgattcgG aaccggata tcagcattac cggtacAGT	7140
gtggtggttg acccggggca tgaccgtcgt actgtggacg aaaaatttga gcagaagaaa	7200
agcgggctga cggttgcCT ttccggcacG gtgggcAGT ccatcaataa tgcggttacc	7260
agtgcacagg agacgaagga gagcagtGac agccgtctGA aagccctGCA ggccacAAAG	7320
acagcgctgt ctggtgtGCA ggccggacAG gctgcgacAA tggctccGC aaccggGTac	7380
ccgaatgcgg gagtcagCCT gtcgctcAcc acccagaaAT cgaaatcaca acaacattct	7440
gaaagtgaca cagtatccgg cagtagctG aatgcggGA ataatctGTC tgTTgtcgca	7500
accggcaAAA acaggggcga taaccgcggA gatattgtGA ttgcaggaAG ccagcttaAG	7560
gccggtggtA acacaagcct ggatgcccG AATgatattc tgTTgagtgg cgccgcaAAAC	7620
acacaaaaAA caacgggcAG gaacagcAGC agtggcggtG gcgtgggtGT cagtagcGGT	7680
gcaggtaaAG gtgcccgtat cagcgccTTT gccagcgtTA atgcggcaAA aggcaGGGAG	7740
aaaggtaACG gtactactAC cgacAAACC gtcaccatCA acagtggTCG ggatacggTA	7800
ctgaacggTG ctcaggtCAA cgcaacAGG attatcgCCG atgtggGCCA cgacctgCTG	7860
ataaggcAGCC agcaggACAC cagtaagtAC gacagtaAAAC agaccAGCgt ggctgcccGC	7920
ggcagTTTA ccttggtc catgaccGGC tcaggttACA tcgctgcCTC ccggataAG	7980
atgaagAGCC gcttgactC cgTTgctgAA caaaccggAA tgTTgcccG ggtgatggT	8040
gcttcgacat cacagtgggt aaacataACCC aactggatgg tgcggtcATT gcctcactGC	8100
cacaccggAG aaaaaccACC tggtatACGG acgctgggtT tagtgacttt acaacgaAGC	8160
gggattataA agtcaagtCA caggtggAA cagtctGA	8198

<210> 110
<211> 963
<212> DNA
<213> Escherichia coli

<400> 110

atgatgttga	agaaaacgat	atttatatta	acgttattct	ctggcaacgt	aattgctgca	60
actgtagaat	taggtttga	aaatgagcaa	tataattatg	cttacgttc	tgcagatgtc	120
ttcatgccgt	atattaagag	taatttcaac	cctgttactg	attctgctt	aatgtgtca	180
ctcacctata	tgtatcagga	tcaatatggg	aaaaaacata	aaaaaacatc	tgaggacaga	240
tttaaaacca	atcgcgatcg	catagagctc	tatcttaaag	gttatactt	aaatagggga	300
gcatattctt	tttctccttc	cgcaggtttc	cgttatgagt	catggatgt	aaactacgt	360
aatccgaaaa	agcaggataa	gtggaaactg	gaactacgct	tttattcctaa	tatgacttat	420
aaactcaatg	accagtaaag	cctatatatg	aatggtttg	ttgcccctgt	atttttaaa	480
acacaacaag	agtcgagaaa	agataacaat	tatgtaaagg	gtaagttagg	ggcgaaacgt	540
tataacaacg	attattatca	ggaactccag	attctgggtg	tcagatataa	atttaataat	600
gataatacgc	tctggcattc	agtctataat	gaaagaaaat	ataatcaaca	ttcctcaaaa	660
tatgatcgct	ggcaattgcg	tggaggctat	gattttaaag	ttacagagga	gtttgtttg	720
agtccattca	taagatatga	cctctcttat	agagaaaaaa	acctcgaaag	cacaagtaat	780
aatggtttat	caaaaaataa	taaagaaatt	cgaactggag	ccagctttc	ctataaaatt	840
atcccttctg	taaaactggt	aggagaaata	tacaggcaa	caaccaacat	tgaaaactat	900
tatggagagc	attctgaaga	caaaaaccgc	atgttctaca	aacttggtat	aaacaaaaca	960
ttt						963

<210> 111
 <211> 1761
 <212> DNA
 <213> Escherichia coli

<400>	111					
atgcagcacc	ggcagaaaaa	cattctgacg	aaaacgtccc	ttttatcccg	tgcgttgtct	60
gtccccctgtt	gtgatatgtt	ccggcgccgc	tctccgtgga	tatgctatct	ctccctctcc	120
gtttttctg	gttgtttcat	ccccgcattt	tcgtctccgg	cagccatgct	gtctccgggt	180
gaccgcagtg	caattcagca	gcaacagcag	cagttgctgg	atgaaaacca	gcgtcagcgt	240
gatgcgctgg	agcgcccgct	gaccatcacg	ccgtctccgg	aaacgtctgc	cggtactgaa	300
ggtccctgct	ttacggtgtc	aagcattgtt	gtcagtgggg	ccacccgact	gacgtctgca	360
gaaaccgaca	gactggtgcc	gtgggtgaat	cagtgtctga	atatcacggg	gctgaccgcg	420

gtcacggatg ccgtgacgga cgcttatata cgccgggat atatcaccag cgggcctt	480
ctgacagagc aggaccttc agggggcgta ctgcacataa cggcatgga aggaggctg	540
cagcaaattcc gggcggagg cgctgacctt cctgcccga ccctgaagat ggtttcccg	600
ggaatggagg ggaaggttct gaacctgcgg gatattgagc agggatgga gcagattaat	660
cgtctgcgta cggagccggt acagattgaa atatcgcccg gtgaccgtga gggatggtcg	720
gtggtgacac tgacggcatt gccggaatgg cctgtcacag ggagcgtggg catgacaac	780
agcgggcaga agagtaccgg tacggggcag ttaaatggtg tccttcctt taataatcct	840
ctggggctgg ctgacaactg gttgtcagc gggggacgga gcagtgactt ttcggtgtca	900
catgatgcga ggaatttgc cgccgggtgc agtctgccgt atggctatac cctgggtggat	960
tacacgtatt catggagtga ctacctcagc accattgata accggggctg gcgggtggcgt	1020
tccacgggag acctgcagac tcaccggctg ggactgtcgc atgtcctgtt ccgtaacggg	1080
gacatgaaga cagcaactgac cggaggtctg cagcaccgca ttattcacaat ttatctggat	1140
gatgttctgc ttcaaggcag cagccgtaaa ctcacttcat tttctgtcgg gctgaatcac	1200
accacacaagt ttctgggggg ggtcggaaaca ctgaatccgg tattcacacg gggatgccc	1260
tggttcggcg cagaaagcga ccacggaaa aggggagacc tgcccgtaaa tcagttccgg	1320
aaatggtcgg tgagtgccag tttcagcgc cccgtcacgg acagggtgtg gtggctgacc	1380
agcgcttatg cccagtggtc accggaccgt cttcatggtg tggaaacaact gagcctcggg	1440
ggtgagagtt cagtgctgg cttaaggat cagtatatct cggtaataa cggcggttat	1500
ctgcggaatg agctgtcctg gtctctgttc tccctgccat atgtggaaac tgtccgtgca	1560
gtggctgcac tggacggcgg ctggctgcac tctgacagcg atgaccgtta ctcgtccggc	1620
acgctgtggg gtgctgctgc cgggctcagc accaccagtg gccatgttc cgggtcggtc	1680
actgcccggac tgcctctggc ttacccggac tggctgccc ctgaccatct cacggttac	1740
tggcgcgttg ccgtcgcgtt t	1761

<210> 112
 <211> 2220
 <212> DNA
 <213> Escherichia coli

<400> 112

atgaataagc acacactatt actgactgtt cttttctga atttgatttg tactccgtt	60
tttgctcaaa actggcaggt ggcgacgttt ggtcagtcta cggatctcaa ctttcatcg	120

ctgatagatt cgccaagat cgacggaaat aatgcctggc ttgcaggaaa caataatttt 180
cttgaagctg gaaaattta cacttacca acagattttt ttattgaaag ccgtggggga 240
aaaattgcta actcccatga cgttatgacc gtctttata ctattgttcc ggtaactcag 300
acattccgac tggaggctga tttgacatta gaacagattg gtccggaggt gaatggaaaa 360
tcaccagcg 9 gacaggaggg agctggattt tttgtcagag atattatcg 9 tcctcagcga 420
caggaacctc agtcagctgg aacagaagaa tatccccagg cctctaataat attgatgaat 480
gcctttatta cacagaataa aaagaatgat aacttagtac agattactc aattgttcgt 540
gaaggagtaa taaaaacatg ggtaatgaa ggtattacaa ttaagaaaca gccgatcatt 600
gagaatataa actttacgca aaaaagaaat attcatatga cgatcgagcg actaccagag 660
aagttcatcc tgaccgctt tgataaccgat cgtaaagaaa atcagtcatg gcaattttct 720
gattactcag gctttatgaa tcaactggat aataatagtt tagctattgg ttttttgcc 780
gcacgaaatg cgaaactaag ggtgaaaaat gcatcattta aaccgggcaa gccactggtt 840
gattacaaac aattaacttc acgtcaattc agtcgtgtcc ggcataaagc ccctgaactt 900
tttcttgctt cacctaattc cggtgtaaga aactcaacaa ctcttcaatt tttggccat 960
caggctggaa tagtcagtat tgataatgat aagcagacta agcaggtgca ggcgggtgaa 1020
ctggtagt 9 ttccagttac tttgcaaaaaaa aaacataatg acttcaccgt caactttaac 1080
gtttagtggaa atatatcaaa aaaagctata cgcatagagc aggttaaattc aaacctgact 1140
gatccttatg agattacgt atgttagttagt tgtcgacagg gggccagagg cagaaaaat 1200
gaccctgttag atttacagac agccgtaaaaa tttgtcgac ccggcggtaa tatatacctt 1260
aacgatggtc aatatcatgg aattaccta gatcgaaat taagtggaaat acctggcaag 1320
tataaaacaa tttctgccat taatccacat aaagccattt ttataaacaa gacattcaat 1380
ctggatgcaa gttactggca tctaaaatcc gtggctttt acggcaatgt ggataatgg 1440
aataataaac cagcatattt gcgtatagct ggtagctata atattattga gcatgtgata 1500
gccagaaata atgatgatac gggaaatttct atttcagcga aagataaaaaa ccgtttttc 1560
tggccagctc ataacttagt tttaaactca gattcatata ataatcttga tttatccgg 1620
attaatgccg atggtttgc tgcaaaatggat ggtgtcgac cggaaacat ttttcgagga 1680
tgcattgcac ataataatgc agatgatggt tggacctat ttaacaaaat tgaagatgg 1740
ccaaatgcat ctgttactat tgagaattct gtgcctatg aaaatggcct gccatacaat 1800

aaagcggata	tcctaaaagg	gagtattggc	aatggcggtg	aaggtcaacc	cagtaaatca	1860
caagttatta	attccattgc	tattaataat	aatatggatg	gattcactga	taattttaat	1920
actgggtcat	tgatagttag	aaataatata	gcaatgaaca	atgcacgcta	taatttatatt	1980
ttaagaacta	acccatataa	attcccatca	tctatcctt	ttgataataa	ttattcaatc	2040
agagatgatt	gggaaaataa	aataaaagac	ttcttaggtg	atacagttaa	cagtgtgaat	2100
tataaattgc	ttgtttcaca	tcaaacagga	ccggcacaaa	aagatttatt	tttcacacga	2160
gatgatagtg	gaaatattat	ctatcctgat	tttttctta	atatcattaa	taaatttaat	2220

<210> 113
<211> 408
<212> DNA
<213> Escherichia coli

<400> 113

atgaaaactt	ttatcaaacc	tttactcggt	gctgtaacta	ttctgttctc	tgtttcgct	60
acggcgaaac	aagtaaaact	gccaaacaac	atcaaatacg	ttaatactac	agaggcggtt	120
tcctgtactg	agattgacgg	tatgaattgc	cagacgaaga	atccgtttaa	ctataaagat	180
aacagctatg	tttcgtgct	tgaacgtgg	ggtgcctgg	gttacgacta	cactgtctcg	240
gtacttaacc	tgaaaaccgg	gaaagcacag	atgctgaat	acaaagacaa	ccagctgtgc	300
tcaggttagca	acaaaccggt	cttcgaaatc	aaaaatggcg	taccgacggt	aggagtcatc	360
gacacatccg	gaaaacctgt	cgttggcgt	ctggacaaac	ttaaaacc		408

<210> 114
<211> 675
<212> DNA
<213> Escherichia coli

<400> 114

atgcaattac	ctgttaaagtt	attaatgagc	cttataatctc	tggtcagcgt	tattgcacgt	60
gccgggaaat	ataaaaatta	catccggat	gaaataaaat	actggcgata	tacatcatac	120
aagggggggg	aatttccgga	agtttcaact	gatgagaaat	tttccagcgc	catttacaac	180
ggaagaatat	ttacaatgaa	acgtttacat	accctgatgt	tatttctggc	ggttctgttt	240
actggcttta	acgtggaagc	agcgagcgtg	aaacaagcgc	ttagctgcga	cccaaacgcc	300
cgggctgaac	aacctggagc	gtgtccaaca	acgtacgagt	tgtacgaagg	tgacgctgcc	360
tacaaagctg	cgcttgacaa	agcattaaaa	ccggcggac	tgagcggcat	gttcggtaaa	420

ggcggtata tggatggccc tggcggaaac gtaacgccag taaccattaa cggtacagt 480
tggctccagg gcgacggttg caaagccaat acctgcggct gggactttat cgtaacactc 540
tataacccaa aaacccatga agtcgttggc taccgctact ttggtttaga tgaccggcc 600
tacctggttt ggtcggcga aattggcgtg catgaattcg cgtatcttgt gaaaaactac 660
gtagctgcgg ttaac 675

<210> 115
<211> 2163
<212> DNA
<213> Escherichia coli

<400> 115

atggaaaactc aaataacttt cgctgcgctt ttgccagcat tagcgtcttt cataccgctt 60
catgctcatg cctcgctcac ttctgaagat gaaatgattt tcacggcaa caccggcc 120
gacaccacccg attctgccgc cggtgccggt ttcaaaacga acgatataga tgtcggcc 180
ctggAACGA aatcctggat cgaaacacca tattccagca ccactgttac taaagagatg 240
attggAAAATC agcaggcgca aagcgtcagc gagatgctga aatactctcc cagtacgcaa 300
atgcaggcgc gcgggtgaaat ggatgtcggg cgtccgcaaa gtcggggat gcagggcagc 360
gtgggtggcca acagccgtct ggacgggctg aatatcgttt caacaaccgc gttccggtg 420
gaaatgcttg agcgcatgga tgtgcttaac agtttgcaccg gcgcgctgta cggccggcg 480
agccccagcag ggcagttaa tttcgtggcg aagcgcggaa ccgaagagac gctgcgtaaa 540
gtgacgctgg gctatcaaag ccgcagtgcg tttaccggcc atgcccgtatct gggtgccat 600
tttgcgtggaaa acaaacggtt tggctatcgc gtgaacctgc ttgatcagga aggggaaggc 660
aatgtggatg acagcacgct gcgtcgcaaa ctcgttccg ttgcgctcgta ctggaatatt 720
cagccgggca ctcagctaca gctcgacgccc agccattacg aatttatcca gaaaggctat 780
gtcggttagct ttaactatgg gccgaacgtc aaactgcccgt ctgcggccaa tccgaaggac 840
aaaaatctgg cgctcagcac tgccggcaac gacctcacta ccgataccat cagcactcgc 900
ctgatccact actttaacga cgactggtcc atgaacgctg gcgtgggctg gcagcaggct 960
gaccgcgcga tgcgtagtgt ttccagtaaa atactcaaca atcagggcga tatctctcg 1020
tcgatgaagg attccaccgc tgccggacgt tttcgcgtcc tgagcaacac cgccgggctg 1080
aatggtcata ttgataccgg ctctatcgcc cacgatctgt cactttctac cacgggatat 1140

gtctggtcgc	tttatagtgc	caaaggaaca	ggttccagct	atagctgggg	tacaacaaat	1200
atgtatcacc	cggatgcgat	agatgagcag	ggcgatggca	aatccgcac	cggcgggccc	1260
cgataccgct	ccagcgtaaa	tactcagcag	agcgttacgc	tcggcgatac	ggtgacattt	1320
acgccgcagt	ggtcggcaat	gttctatctc	agccagagct	ggctgcagac	taaaaactac	1380
gataaggcacf	gtaatcaaac	gaaccaggtt	gatgaaaatg	gtttaagtcc	gaacgcccgc	1440
ctgatgtata	aaattacccc	taacacaatg	gcctacgtta	gctatgccga	ttcgctggag	1500
cagggcggta	ccgcaccgac	ggatgagagc	gtaaaaaatg	ccggtaaac	gctaaacccg	1560
tatcgccagca	agcagtatga	agtggggcta	aaatcgaca	tcggcgagat	gaatctaggc	1620
gccgcgttgt	tccgactgga	acgtccgtt	gcctatcttg	atacggataa	cgtgtataaa	1680
gagcagggtta	accaggttaa	caacggcctt	gagtaaccg	ctgcccggaa	tgtgtggcag	1740
gggctgaata	tttacagcgg	cgtgacccitc	ctcgacccga	aactgaaaga	tacggcgaat	1800
gcctcaacca	gcaataaaca	ggttgcggc	gtgccaaag	tgcaggccaa	tctgttggcg	1860
gaatacagtt	tgccgtccat	accggaatgg	gtttacagcg	ctaacgtcca	ttatacgggc	1920
aaacgcgcgg	cgaacgatac	caacacctct	tacgcccagca	gctataaccac	atgggatttg	1980
ggaacgcgtt	acaccacgaa	agtgagcaac	gtcccaacca	ctttccgcgt	ggtggtaaac	2040
aacgtgtttg	ataaacatta	ctgggcttct	atcttccat	cgggtaccga	tggcgataac	2100
ggttccccaa	gtgcgttat	cggcggcggc	cgcgaagtgc	gtgcattccgt	caccttcgat	2160
ttc						2163

<210> 116
 <211> 2007
 <212> DNA
 <213> Escherichia coli

<400>	116					
ataaaaaaca	taacgctgtg	gcagcgttta	agacaggtca	gtatcagtac	cagcttacgt	60
tgcgcatttc	tgatggggc	acttctgacc	ctgattgtca	gtatgtcag	tctgtattca	120
tggcatgaac	aaagctcaca	aattcgttac	tcgctggata	agtattttcc	ccgtattcac	180
tctgctttcc	ttattgaagg	gaacctgaat	ctgggttag	accagctaaa	tgaatttttg	240
caggctccca	acaccacggt	gcgattgcaa	cttcgtaccc	agattattca	gcatctcgac	300
accatagaac	ggcttagtag	gggactgtca	tcccggAAC	gccaacaact	gacggcatt	360
ttgcaggaca	gtcgatcact	gttatccgag	ttggatcgtg	cgctttacaa	catgtttta	420

ctacgggaaa	aggtagtga	gctatcagcg	cgattgact	gttacacga	tgattttact	480
accgagctta	attcttagt	gcaggatttc	acctggcagc	agggAACGCT	gctggatcaa	540
atcgccccc	gacagggcga	tacggcgaa	tacctgaagc	gatctcgta	agtcaaat	600
gaacagcagc	aggttatac	cctggcacgc	attgaaaatc	agattgtga	cgatctgcgt	660
gacagactca	atgagctaa	atcaggacgt	gatgacgaca	tacaggtgga	aactcatctc	720
cgttattttg	aaaatctgaa	aaaaacggca	gatgaaaata	tacgtatgct	ggatgactgg	780
cctggcacca	ttaccctgag	gcagaccatc	gatgaattgc	tggatatggg	aatcgtaaaa	840
aacaaaatgc	cggatacgat	gcgtgaatat	gtcgccgccc	aaaaagcctt	agaggatgcc	900
agtcgcacca	gggaagcgac	acagggtcgc	ttcagaacgt	tactggaagc	gcagcttggc	960
agtactcatc	aacaaatgca	gatgttaat	caacgaatgg	aacaaattgt	tcacgttagc	1020
ggtggctga	tcctggtggc	gacagcactg	gcgttactgc	ttgcatgggt	attcaaccat	1080
tatTTtatcc	gctcacggtt	ggtgaaacgc	tttaccctac	tgaatcaggc	cgttgtgcaa	1140
attggtctgg	gaggcacgga	aacgactatt	ccagttatg	ggaatgatga	actggggaga	1200
attgcaggat	tattaccca	tactctcggc	caactcaatg	tgcaaaaaca	gcaacttgaa	1260
caagaaatta	ccgatcgtaa	ggtgatagaa	gccgatctgc	gtgccaccca	ggacgaactg	1320
attcagacag	caaagtggc	ggtagtcggg	caaacgatga	ccacgctggc	ccacgagatc	1380
aatcagccgc	taaatgcgct	gtcaatgtat	ctgttacag	cccgagggc	cattgaacag	1440
accagaaaag	aacaggccag	catgatgctt	ggtaaagccg	aagggtgtat	tagtcgtatt	1500
gacgccatta	tccgttact	acggcagttt	accggcgcg	ccgaactgga	aacatcactc	1560
catgccgtt	attagcaca	gatgttcagt	gcggcctggg	aacttctggc	catcgctcat	1620
cgctctctgc	aagctacgct	tgttctgccc	caaggtagcag	ccacagtttc	aggtgatgag	1680
gtcagaaccc	agcaggtact	ggttaacgta	ctggcgaatg	cgcttgcgtgt	ttgtggcaa	1740
ggcgctgtca	ttaccgttaa	ctggcaaata	caggtaaaa	cgctgaacgt	attcattggc	1800
gataatggcc	cgggctggcc	tgaggcattt	ttgccttcgt	tattgaagcc	gtttaccacc	1860
agtaaagaag	taggactggg	tattggtctt	tcaatttgt	tgtcggtat	ggagcaaatg	1920
aaagggaaat	tgcggctggc	atcaacgatg	accaggaatg	cctgtgtgg	actgcaattc	1980
agactaacgg	atgtggaaaga	tgctaag				2007

<211> 2259
 <212> DNA
 <213> Escherichia coli
 <400> 117

atgaacgtta	taaaaactggc	tatcggtctca	ggcatatttat	tgctcagctg	cggtgcttac	60
tcacaatcca	tcagtaaaaaa	aactaattcc	gacaaaaaaag	gagcggcaga	attcagtccg	120
ctcagcgttt	ctgtcggaa	gacgaccagt	gagcaggaag	ctctcgagaa	aacaggcgcg	180
accagttccc	ggacaacgga	caaaaacctg	caatcaattg	acgcaacagt	gcgttagtatg	240
cctggactt	atactcaaat	agatcctggt	cagggagcaa	tcagtgtgaa	tattcgaggc	300
atgagcggat	ttggtcgtgt	aaacactatg	gtcgatggta	ttacccagag	tttttacgga	360
acctctacct	ccggaacaac	gacgcatggt	tcaactaaca	atatggctgg	cgtacttata	420
gatcctaact	tactggtagc	agttgatgtt	acacgcggtg	acagcagtgg	ctctgaaggg	480
atcaacgccc	ttgccggtag	tgcaaatatg	cgtactattg	gcgttgacga	tgtaatattt	540
aacggtaata	catatggcct	tcgttcacgt	ttctctgtcg	gtagtaatgg	gctgggacgc	600
agcggaatga	tcgcccgg	tggaaaaagc	gacgctttta	cggatacggg	aagcattggc	660
gttatggctg	ctgtgagcgg	cagttctgtg	tactctaatt	tctcaaatgg	ttctggaatt	720
aacagcaaag	agtttggta	tgataaatat	atgaagcaga	accccaaatc	ccaactgtat	780
aaaatggata	tcagaccaga	cgaatttaac	agcttcgaac	ttccgctcg	aacctatgaa	840
aataaattta	cacgtcgtga	tataaccagt	gacgactatt	acattaaata	tcattacacc	900
cctttttctg	aattaattga	cttaacgta	acggccagta	ccagtcgcgg	taatcaaag	960
tatcgtgatg	gctcgctgta	tactttctac	aaaacctcg	cgcaaaatcg	ttctgacgog	1020
ctggatatca	acaataccag	ccgggttca	gtcgccgaca	atgacctgga	gtttatgctg	1080
ggcagcaaac	tgatgcgtac	ccgctatgac	cgaccattc	actcagcggc	ggcgacccg	1140
aaagcgaatc	aggaatcgat	cgagaacaat	cggttcgcac	cctccggcca	gcaggatatt	1200
tcagcgctgt	ataccgggct	gaaggttacg	cgcggcatct	gggaggcaga	tttcaatctc	1260
aactacacac	gtaacaggat	cacagggtac	aagccgcct	gcgattcacg	cgttatctgc	1320
gtgccacagg	gtagctacga	tattgacgat	aaagagggtg	gcttcaaccc	ttcagttcag	1380
ctttctgctc	aggtaaacacc	atggcttcag	ccgttcattg	gctacagcaa	atccatgcgc	1440
cccccgaaaca	tccaggagat	gttcttctct	aattcaggag	gcgcatccat	gaaccattc	1500
ctgaagcctg	aacgtcaga	aacctggcag	gcgggttta	acattgatac	cagagattta	1560

ctggtcgaac	aggatgccct	gcgccttaag	gctctggcgt	accgcagca	gatccagaac	1620	
tacatctaca	gcgagtc	tta	tctggttgt	tctggaggc	gtaaatgc	1680	
gtgattggca	atggctgg	g	ggcattagc	gatgaata	c	1740	
gttaactcg	caagcgac	gt	tatcgcaa	ag ggctc	gaa	1800	
ggtttgctt	ttggccg	act	ctcttc	cagc	gcaaaa	1860	
gccagcaccc	actttggc	gc	agggatata	accgaa	ctgc	1920	
gatactgg	ttcgctt	ct	cgataac	cg	ttgacc	tc	1980
ggcaagg	gtcg	cct	gtc	gc	ctgat	ttt	2040
aaacaggatt	tgccgc	ag	ccaa	acgatt	atcgat	ct	2100
cgcaac	c	a	c	t	gtactt	ta	2160
ctgaata	agc	tca	acat	gtat	g	ccaccc	2220
cgtggc	agaa	cat	ggat	t	ggcgggg	ac	2259

<210> 118
<211> 399
<212> DNA
<213> Escherichia coli

<400> 118

atgtcttcga	aaacaaaatg	ctggctatgg	atgttactgg	tcatc	c	tttc	tga	aaac	ctct	60									
gcaacatcca	cact	aaaaat	gttcgata	ac	agt	gagg	gg	tgac	aaaaac	ac	gct	gtc	gtc	120					
gcccta	atcg	tcgt	actgt	ta	ttgc	at	ttgt	tac	tac	tcg	ttc	ac	gggc	ag	taaa	agat	180		
atccccgtt	g	tctgg	ctt	ca	gccc	acat	gg	tcc	gg	tact	g	gc	at	ttt	gat	g	tttca	acc	240
cttgggattt	tat	tttac	gg	tca	acac	cccg	gat	acc	gccc	cc	att	tatt	gg	tat	ggt	cat	c	300	
atagcc	agcg	gtat	ttat	cat	tat	gaat	ctg	tt	ctca	aaaa	tgg	cagt	ga	agg	cg	gaa	ag	360	
gaaa	actcc	ag	tt	acca	ac	ct	cg	ata	aaaa	aa	atcg	cta	ac	399					

<210> 119
<211> 858
<212> DNA
<213> Escherichia coli

<400> 119

atgttatataa	aaa	aggc	actg	gat	agct	tt	tcc	att	tat	ta	at	ac	ctt	g	catt	ggaa	ac	60
-------------	-----	------	------	-----	------	----	-----	-----	-----	----	----	----	-----	---	------	------	----	----

gctcaggaaa ttaaaattga taaaaagctgg ttacatcaaa gcttgaatgt cattggtcgc 120
acagactctc gctttggccc aagactgact aacgacctct accctgaata tacttagca 180
ggaagaaaag actgggttga ttttatggt tatgttgatc taccgaaatt ctggcg 240
ggcagtcact atgatgttgg gatctggat gagggctcac cactattac ggaaatagaa 300
cctcggtttt ccattgacaa attgaccgga ttaaatcttgcg 360
tggttcattt caaacaacta tgtctatgtatc accagtcatc ccggcaaagt 420
acatggtata tggggcttgg tacagatatc gacacgggtc taccaattaa gcttctgcc 480
aatatatacg ccaagtatca gtggcaaaac tatggtgccg ctaatgaaaaa tgaatggac 540
ggatatcgat tcaaaataaa atatagcatc cctcttacaa atttattcgg aggacgattt 600
gtatacaata gtttactaa ctgttgcattt ggctccgatc ttgcggacaa gtcacacaat 660
aataaacgaa ccagtaatgc tattgcttca agccatatcc tttcccttct atatgaacac 720
tggaaatttgcattt acgttattttt cacaacggtg gacaatggaa tgcgggagag 780
aaggtaact tcggagatgg tccatttgcattt aaaaaaaaaa caggatgggg aacctataact 840
actattggtt atcaattt 858

<210> 120
<211> 516
<212> DNA
<213> Escherichia coli

<400> 120
atgagaatcg caccgcgtac cttcttgct atttccgccc tggcgtttat tgtcgcctcc 60
ggattttagtt tctggcggtt gtccctgct gaaaatacag ggattatgag ttgttcaaca 120
aaaggcatca tgcgtttga gaatatggaa aaggagaacg ttaacggtaa tattcacttt 180
aactttggca gccaggtaa agttcgatg gtgctgaag gctacacgga ctctgccc 240
ggctggctgt acctgcaacg ctatgtcaaa tttacctata ccagtaaacg tgttccgccc 300
acggaacgccc attaccgcat cagccagtgg gaatccagcg cctcatcgat agatgaatca 360
ccagatgtga ttttgacta ctgttgcgt gaaatgtctg acagccatga cgggctgttc 420
ctcaacgccc agaagctgaa cgataaagcg atttgctca gttctattaa ttcaccgctt 480
tggatctgtatcccttaaattc tggcagcaaa ttagac 516

<210> 121
<211> 546

<212> DNA
<213> Escherichia coli
<400> 121

atgaaaataa aagttatagc atggctaca tttgttctg ctgtgttgc tggttcagct	60
atggcctatg acggaacaat tacgttacc ggtaaagttg tagctcagac ctgcacagtt	120
aatacaagcg acaaagactt agcagtaact ttaccactg ttgccacttc atctctaaaa	180
gacaatgctg ctacgtcagg gctgacaccc tttgccattc gtttaactgg ttgtgcaact	240
ggtatgaata gtgctcagaa tgttaaagcg tacttgagc cttcaagtaa cattgactta	300
gctacacata atttaaaaaa tactgctact ccaactaaag cgataatgt acagattcag	360
ttgctaaata gtaatggaac ttcaactatt cttttgggg aagcggataa tgggcaagat	420
gtccagtcgt agacaatcgg atctgatgga agtgcacat tgcgttatat ggcccaagtat	480
tatgcaacag gacaatctac cgcaaggat gtaaaagcga cggccattt taccattgcc	540
tacgaa	546

<210> 122
<211> 1077
<212> DNA
<213> Escherichia coli
<400> 122

atgaaaagaa tctttttcat accattgttt ttaatttac tccctaagct ggccgttagcg	60
ggtccggatg attatgtgcc ttgcagata gcggtaata catccacatt gccaggtgtt	120
gtgattggtc ctgctgatgc ccatacctat ccccggtga taggagagct ggcggaaaca	180
agtaaccagt atgttttaa tggcggtgcc atcgctctga tgcgtggaaa gtttacaccc	240
gcactgccta aaattggaag tattacggta tactttccat caaggaaaca gcgtgattca	300
tctgattttg atatctatga tattggtgta tccggactgg gtattattat tggcatggcg	360
ggctattggc ccgcaacgcc tctggcccccc ataaatagct caggtatata tattgaccct	420
gtaggtgcca atacaaccc caatacttat aacggtgca cagcaagctt cggagctcgt	480
ttgtttgttgc aacggaaaga ttacccaatg gatatataac aataccacc	540
aggcagcttgcgtt gttttttttt gtttggaaagca aaacgtacaa gtttaataaa taaaggactg	600
acagcacctg ttatgttaaa tggggcgc attcaggtac agagtcagac atgtaccatg	660
ggccaaaaaaaaa actatgtggt gccattaaat accgtatatac aatcacagtt cacatcttg	720

tataaagaaa tacagggagg taaaattgac atacacctac aatgcccgga tggaattgat	780
gtttatgcta cattgacaga tgcacacag ccagtgaaca gaacagatat attgaccctta	840
agcagtgaat ccactgaaa aggattggc atcaggctat ataaagacag tgcgtact	900
gccatcagct atggtaaga ctccccgtg aaaggaaatg gcagtcaatg gcacttctcc	960
gattacaggg gagaggtaaa tccacatatac aatttaagag ccaattataat aaaaattgct	1020
gatgcaacta cacctggaag tgtgaaggct attgcaacta ttactttctc atatcaa	1077

<210> 123
<211> 2532
<212> DNA
<213> Escherichia coli

<400> 123

atgaacgcta ataatctgtc atgcctgatt tactgtcggt gttctcttct gcttttgct	60
gcattagggt taacagtaac aaaccattca tttgctgctg aagaggctga gtttgattct	120
gagttttgc atttggataa agggataaat gctattgata tccggcgctt tagtcatgg	180
aaccctgtgc ctgagggcag gtattattct gatattttag ttaataatgt atggaagggg	240
aaggctgatt tgcagtattt acgtactgcc aataccggtg ctccgacgtt atgcctgacg	300
cctgagctgc tttcattgtat tgatttagtc aaagatacta tgtcgggaaa cacccctgc	360
tttccggcgt caacagggct ttcttcagcc agaattaatt ttgacttatac gactttaagg	420
ttgaatatcg aaatccctca ggcactgctg aatacacgtc caagaggata tattttccct	480
gctcagtggc aaagtgggtgt tcctgcagca tttataaact atgatgctaa ctattaccag	540
tatagctctt ccgggacgag taacgaacag acttatctgg gattaaagc tggattcaat	600
tttgtgggat gggcttgcg ccaccgtggc agtgagagct ggaataatag ctatcctgcc	660
ggatatacgt aatataaaac aagtataatg catgaccttg ccccatttag agcacaattc	720
acattagggg attttatac gaatggtgag ctaatggata gcctcagtt gcggggagtc	780
aggtagcat cgatgaaac aatgttaccc ggctctttac gtggctatgc tcctgctgtc	840
cggggatag ctaacagtaa tgctaaagta accattatac aaaatgctca tatcctctat	900
gaaacgacgg tgccagccgg accatttgtc atcaatgatt tatatcccag tggatatgct	960
ggtagaccttc tcgttaagat aacagagtct aatggccaga cacgaatgtt cacggttcct	1020
tttgcggccg ttgctcaact cattcgtccc ggatttagtc gctggcaat gtcagtggaa	1080
aagtatcggtt atgcgaataa aacatataat gatttaatag cacaaggcac ctatcaatac	1140

ggcctgacga atgatattac tttaaacagt ggtcttacca cagtttcagg atatacagcg	1200
gggttagctg gcctggcctt taataccct ctgggtgcta tagcatctga cattacattg	1260
tccagaacag cattcaggta ttccggtgta acgcgtaaag gttatagtct gcactcaagt	1320
tatagcatca atattccagc ctcaaacaca aatataactc tggcggctta tcgttattca	1380
tcaaaagatt tttatcatct gaaggatgcg ctatcagcta atcacaacgc gtttattgat	1440
gatgtttctg taaaaagtac agcgtttat cgtcccagga atcaattcca gattcaatc	1500
aaccaggaat taggtgaaaa atggggtggg atgtatttaa caggaacaac ctataattac	1560
tggggacata aaggaagtcg taatgaatac cagattgggt acagcaactt ctggaaacaa	1620
ctcggctatc aaattggatt gtctcagtca agagataatg agcaacaacg ccgtgatgac	1680
agattttata ttaattttac tctccctctg ggaggaagtg ttcaaagccc ggtttttcc	1740
actgtttaa attatagcaa agaagagaaa aatagtattc agacatcaat tagtgtact	1800
ggcggggagg ataatcagtt ctcttatggt atttcaggaa acagccagga aaacgggcct	1860
tccggttagt caatgaatgg gggttatcgt tcaccttagt taaatataac cacaacagtc	1920
ggccatgata ctcagaataa taatcaaagg tcattggtg cgtcgggagc ggtggtcga	1980
caccctatg gagtgacatt gagtaatgac ctgagtgata ctttgccat tatccatgct	2040
gaaggagctc agggggctgt catcaataat gcctctggta gtcgtctgga ttttgggga	2100
aatggtgttg ttccttatgt tacaccctat gagaaaaatc aaattagcat cgatccctcc	2160
aatttagatt tgaatgttga attatcggcg acggagcagg aaatcattcc tcgtgctaatt	2220
agcgccacgt tagtgaatt tgacactaaa acaggaagaa gtctgttatt tgatattcgt	2280
atgtctactg gcaatcccc tccaatggct tctgaagttc tggatgaaca tggacagttg	2340
gccggatatg tcgctcaggc cggaaggta tttaccaggg gactccctga aaaaggtcat	2400
ctcagcgttg tatggggacc agataataaa gacagatgtt catttgtata tcatgttgca	2460
cacaataaaag atgatatgca atctcagctc gttcctgttc tgtgtataaca gcaccctaatt	2520
cagaaaaaaa ca	2532

<210> 124
 <211> 831
 <212> DNA
 <213> Escherichia coli
 <400> 124

atggtaaaat gtcatactct gattaaccgt agaaataaaat gtctgctgat tgttttata 60
gtccttattt gatggattat attcagacct aaagcatata cttattcact aaatgataaa 120
gaaaaagaga tgctcataat gttatcacaa catcctgaaa ctccgtactt tggattttat 180
tccatagaac ttccggctga ttacaaacca acaggaatgg ttatgttcat acaaggatcg 240
gcgatgatcc ctgtagaaac aaagctacaa tattatcctc cttttctgca atatatgaca 300
cgatatgagg cagaactaaa aaacacctca gcattagatc cactggatac gccttatttg 360
aagcaagttc acccactaag tccacctatg aatggagtca ttttgaacg aatgaaagcg 420
aaatacaccc cagatttgc acgagtattt gatgcatttga aatggaaaaa tggcgttacg 480
ttttcagtaa aaatagaagc taaagatggt agagcaaccc gctatgtatgg aatttagtaag 540
attgccgaat acagttatgg atataatatt ccagaaaaaa aagtacagtt acttactatt 600
ctttcaggac tacaacctcg tgcagataac caacccccat cagaaaataa attggcgata 660
caatatgcac aggttgcgc ttcaactactt ggagagtatg aattatctgt agattataaa 720
aatagcaata atattaaaat aagtttgcag acggataata atagttatat tgactcatta 780
tttagatataa gatatccgag taatggaaac agagcatggt ataactctat a 831

<210> 125
<211> 1098
<212> DNA
<213> Escherichia coli

<400> 125

atgctacctg agcctgttta tcgacgctgg attatattat taatatctat gttaacagtt 60
ggtaactctgt ttatatttac ggtctggaaat tctgcgacat actgggatat ttttatttt 120
ggcgttctgc caatgctgtt tctttggcta tgtttgttgc gtattgcgtt gaacaaatat 180
gaacaatccg ttgcagccctg tataagttgg gagtctgaaa gacaacaagt taaacaactc 240
tggcaacact ggagccaaaa acaactggca atagttggga atgttcttt tacaccggaa 300
gaaaaaggca tgagtgtttt actggggcca caggaagaga tccctgcata tcctaaaaag 360
gcacgaccgt tattctctgc atcccgatatt tctcttcgtt ctatattcca tgatattcac 420
cagcaactga cacaacaatt tcctgattat cgatcattatc tacatactat ctacgttata 480
cagcctgaga aatggcgtgg agaaaccgtg agacaggcta tttccatca atggactta 540
gtacctgaac ggaccaatac tcttaatcaa atccagtctc tttatgtga aagatttgac 600
ggtctaattc tggttgtttg tttacaaaac tggccggaga ataaacctga agatacgagt 660

gaactggtat cagcacagct tatctcctca tcgtcatttg tacggcagca ccagataccc 720
gttattgctg gtctggggcg tgtaatgccca ttagaaccgg aggagttgga gcataatctg 780
gatgtgttat ttgaatataa ccaattggat aacaaacaac tacagcatgt ctgggtctct 840
ggtttagatg agggAACGAT agaaaACCTT atgcagtatg ctgaacaaca tcaatggtca 900
cttcctaaaa aacggccctt acacatgatt gatcattcct ttggccctac aggagagttt 960
attttcctg tctctctggc aatgctgtca gaggctgcca aagaaactga acaaaatcat 1020
ttaattatct atcagtcagc acagtatgct cagaaaaaga gcctttgcct gattaccgg 1080
aagctttatt taaggaca 1098

<210> 126
<211> 780
<212> DNA
<213> Escherichia coli

<400> 126

atgttgaaca gaaaactaaa tatacggtca cgtcattccc tgaacagtca ctgcataacct 60
tccatcatta tcaataacac cgtacgttca tttcagaggt cagtcatgaa taccagagct 120
ctttttcccc tgctgttcac tgtggcatca ttctccgcct ccggccggcaa ctgggctgtc 180
aaaaacggct ggtgtcagac catgacggaa gatggtcagg cgctggtaat gctaaaaaat 240
ggcacgattg gtattaccgg cctgatgcag ggtatcccga atggtgtaca gacgctcctg 300
ggcagccgta tcagtattaa cgtaaacctg atccccacat cacaatgtg taatcagcag 360
acgggattca gggctgtga ggtggaaatc ggacaggcgc cgaaatggt caaaaaagcc 420
gttcactcca tagcagagcg tcatgtgtcc gttttacagg catttggtgt acgaatggaa 480
ttcaccccgcg gtgatatgct gaaggtctgt ccgaaatttg tcacatcact tgccggttt 540
tccccgaaac agacgaccac tattaataaa gattccgtcc tgcaggctgc ccggcaggca 600
tacgccccggg aatatgacga gaaaacaaca gaaaccgctg attttggctc ttacgaagta 660
aaaggcaata aggttgagtt tgaagtattc aatcctgaag accgtgcgtc cgacaaagtg 720
accgtcacgg ttgggtgtga cgtaatgcc accggcgcca gcgttgaatt tatcgaaaa 780

<210> 127
<211> 1155
<212> DNA
<213> Escherichia coli

<400> 127

gtggtaatta tcaatagcac gatactgagc ggccgcaggcg ctatcccttc cctgacgtcg	60
ctcttacccg acatcagaaa aatgctgctg gtcactgacc gtaatattgc gcagctcgac	120
ggtgtgcagc agattcgcgc cttactggaa aagcactgcc cgccaggtaa cgttatcgat	180
aatgtgcccg cagagccac gcatcatgat gtgcgccagc taatggatgc ccctggcgat	240
gcctctttg atgtggtggt cgggatcggc ggtggcagcg tggatgtt ggcgaagctg	300
ctatcggtgc tttgcacatcc acaatcaccg gggctggatg cgctgcttgc gggtaaaaaa	360
ccgactcagc gggtgcaatc atggttgatt cctacaaccg ccggAACCGG ctcagaagcc	420
acggcgaatg cgattctggc aatccctgag caaacacga aggtgggtat tatttcccag	480
gtgctgttac cagactatgt ggcgttttc ccggAACTGA ccaccAGCAT gcccgcgc	540
attgcggcgt ccacggcat tggatgtctt tgccacttac tggagtgttt taccgcgacc	600
gtggcaaatc cggtcagcga taacgcggcg ctgactgggt taagtaaact ttccggcac	660
attcaacccg ccgtgaacga tcctcaggat ctgcgcgcaa aactggaaat gctgtggcg	720
tcttactatg gcggcgttagc gataacccat gcgggcacgc atctcggttca tgcgcgttcc	780
tacccgttag gtggcaaata tcatctgccc catggcgatc cgaatgcctt cttgtggcg	840
ccgtgcgtgg cggtttgttcg cccctggcg gtcgagaaat ttgcccgggt ctgggattgc	900
attcccgatg cggaaACCGC cctgagcgcg gaagaaaaat ctcatgcctt ggtgacctgg	960
ttacaggcat tagtcaatca actcaagcta cccaaacaaatc tcgcggctct cggcgatcc	1020
ccagaggata ttgcctctct gagcgaggcg gcactgaacg tgaagcgcct tatgaacaat	1080
gtgccgtgcc aaattgatct acaggacgta caggccattt accaaacact gttccgc当地	1140
catccattta aggag	1155

<210> 128

<211> 315

<212> DNA

<213> Escherichia coli

<400> 128

atgaatatca gaaaactgtt ttgtccggga aacacccccc ggattttattt gtttttattt	60
ttttttgtt tttctgcaat aaccacaattt gcatgcggat acactgagaa gaatgcaaca	120
ggaaatgtgc tgcttctgtt tctccttctg ctcctgcac acagaaatac ctcacatcc	180
attacagcgc tgttatatttct gttctgttgc acactgtatg cgcctgc当地	240

ggtaaaatca acaacagttt tattgtcgcg ttgttcaga ccacaactga tgaggcagcg 300
gagtttaccg ggatg 315

<210> 129
<211> 441
<212> DNA
<213> Escherichia coli

<400> 129

atgaatattc aggcaataaa agaaatggta aatttaattt gtagttttt atttatattc 60
tttctgtcct cggctttgt ttctttggg tttatgcta tttatgaatt gttttatgg 120
aatgatatta ttgtatatacg ctggggatat atattaattt tcttttacc tttcacatta 180
tatgtaatgt cgtttgagat ttgtttttt gctatttagtg ggacgatt gtctaaagta 240
acaatggtgc gccttgggtt gataattaaa attattattt ctttctctat ttgcgcagt 300
ttgattttt cttcaattta caaaaaagaa ttattatcta gaaattatat tgctttagt 360
ggtatccgt ctgggtggat gccgggtctg gcaacgaaat acgttaaaga aaaatcatta 420
tgcggaaaaaa atggcaataa t 441

<210> 130
<211> 534
<212> DNA
<213> Escherichia coli

<400> 130

atgttccta ttcgtttaa acgtccggcg ttgctctgta tggcgatgct gacggttgtt 60
ctgagtggct gcgggctgat tcagaaagtgtt gtggatgaat cggaaagcgt ggcctcagcc 120
gttttctaca aacaaatcaa aatactgcat ctcgatttct tctcccgac cgcctgaat 180
acggatgcgg aagatacgcc gctttccacg atggcgtatg tctggcaact gaaaacccgc 240
gaagatttttgc acaaggcggta tacgacacc ctgtttatgc aggaagagaa gacgctggag 300
aaggacgtac tggcaaaaca caccgtctgg gtaaaacccgg aaggcacggc atccctgaat 360
gtgccgctgg ataaagagac gcagtttgtc gccattatttgc ggcagtttta tcaccctgtat 420
gaaaaaaagcg acagctggcg tctgggtatc aaaaggacg aactggaggc cgacaagccg 480
cgctcgatttgc aactgtatgag aagcgacccgt cgactgctgc ctctcaagggtaaaa 534

<210> 131

<211> 627
<212> DNA
<213> Escherichia coli

<400> 131

atgttcttaa aaagaaaatg gtattacgca gtgacgacat ctgtcgcat tactttgtgt 60
ggtgaggat attatatgt a caggcaagaa tatca gatgg ttgtcactgt accaactgct 120
gacgcgaacg atcccaactg gccaataaa aggatacagt ttgataccag cgaatggcta 180
cagcaacttc aatataattaa aatagatgtat cattatataat tgaatactca atatactcca 240
attgctaatt tggatgactt tggttattaca ttaaaattac agaacgcatt aaatgggtcg 300
gataaaagac ttcctgcact atatggcctt gctgagatgg atgctcagaa atttaaagac 360
ctgatgcgcg gtaaaattaa atgtgaatat ctgaggacga catttgcatttgc ggaaacatta 420
aaggctgtca atgattattt ccttatttct tttacttata aagataagt gtatgaattt 480
gagacagaaaa gaaaaatatc taaaacaagt gatgatgggt atttttgtg ggcatttgat 540
aatactgtcc acgaagcagg ctattggcat aacacagatc cggctgcgtt ttcctataga 600
gattaccaga atggtaaggc tgtgaaa 627

<210> 132
<211> 1272
<212> DNA
<213> Escherichia coli

<400> 132

atggatattt ggcggggaca ttcgtttctg atgacaattt ccgcttaggtt cagacaatac 60
gttttctctc ttatgtcaat ttatttgcag gaacgaaaaa tgaatatttt cactttatcc 120
aaagcaccgc tataacctgtt aatttcacta ttttaccca cgatggccat ggctatcgat 180
ccacctgaac gcgaacttgc gcgatttgcc ctgaaaacga attacctca gtcccctgat 240
gaaggcgtct atgaactggc gtttgcataat gccagtaaaa aggtgtttgc agcagtcacc 300
gatcgtgtaa atcgtgaagc caataaaggc tatctgtatt cgtttaattc agattcgctg 360
aaagtcgaaa ataaatacac gatgccatac cggcatttt cgctggcgtt aaatcaggat 420
aaacatcagc tctatatacgac acacacccag tcagcgtccc tgcgtatcag tatgtttgac 480
accccaacccg gcaaactggt aagaaccagc gacaggttaa gttttaaagc ggcaaacgct 540
gcagattcgc gtttgcataat atggtttaca gccaggattc cgataaccctg 600
tttgtgagtt atagcaatat gctgaaaacg gccgagggca tgaagcctct gcataagctg 660

ttaatgctcg acgggacgac gcttgcctta aaaggcgagg ttaaggatgc ttacaaaggt 720
acagcgtatg gtctgacgat gnatgaaaaa acacagaaaaa tctacgttgg cggaagagat 780
tacatcaacg aaattgatgc gaaaaatcag acgctgctgc gtaccatccc gttgaaagat 840
ccgagaccac aaatcacaag tgtgcagaat ctggcgttgg actccgcttc tgaccgtgcc 900
tttgtggtgg tattcgacca tgacgatcgt tccggtacaa aagatggact ctatatttt 960
gacttacgctg acggtaaaca gcttggctat gtgcacacag gagccggagc taacgcggtg 1020
aaatacaatc cgaatataa cgaactgtat gtcaccaact tcactagcgg caccatcagc 1080
gtagtggatg ccaccaaata cagcatcacc cgtgaattta acatgcccgt ctacccaaac 1140
cagatggtgt tgcggacga tatggatacc cttaacattt gcatcaaaga aggcttaac 1200
cgcgattggg atcctgatgt gtttggaa ggagctaaag aacgtattct gagcattgat 1260
ttgaaaaagt cg 1272

<210> 133
<211> 163
<212> PRT
<213> Escherichia coli

<400> 133

Met Ala Ile Pro Ala Tyr Leu Trp Leu Lys Asp Asp Gly Gly Ala Asp
1 5 10 15

Ile Lys Gly Ser Val Asp Val Gln Gly Arg Glu Gly Ser Ile Glu Val
20 25 30

Val Ala Leu Asp His Asp Val Tyr Ile Pro Thr Asp Asn Asn Thr Gly
35 40 45

Lys Leu Thr Gly Thr Arg Thr His Lys Pro Phe Thr Phe Thr Lys Glu
50 55 60

Ile Asp Ala Ser Ser Pro Tyr Leu Tyr Lys Ala Val Thr Thr Gly Gln
65 70 75 80

Thr Leu Lys Thr Ala Glu Phe Lys Phe Tyr Arg Ile Asn Asp Ala Gly
85 90 95

Gln Glu Val Glu Tyr Phe Asn Ile Thr Leu Asp Asn Val Lys Leu Val
100 105 110

Arg Val Ala Pro Leu Met His Asp Ile Lys Asp Pro Ser Arg Glu Lys
115 120 125

His Asn His Leu Glu Arg Ile Glu Phe Arg Tyr Glu Lys Ile Thr Trp
130 135 140

Thr Tyr Lys Asp Gly Asn Ile Ile His Ser Asp Ser Trp Asn Glu Arg
145 150 155 160

Pro Ser Ala

<210> 134

<211> 550

<212> PRT

<213> Escherichia coli

<400> 134

Val Arg Asn Thr Leu Lys Gln Ala Ile Val Leu Trp Gly Met Val Leu
1 5 10 15

Leu Leu Val Leu Trp Ser Val Phe Ile Ser Pro Ser Gly Val Leu Arg
20 25 30

Trp Ala Gly Ala Ala Ala Ile Val Leu Ala Val Ala Ala Leu Leu Ile
35 40 45

Tyr Arg Arg Arg Gln Ala Trp Thr Glu Met Thr Gly Asp Ala Gly Leu
50 55 60

Ser Ser Leu Pro Pro Glu Thr Tyr Arg Gln Pro Val Val Leu Val Cys
65 70 75 80

Gly Gly Leu Ser Ala His Leu Ser Thr Asp Ser Pro Val Arg Gln Val
85 90 95

Ser Glu Gly Leu Tyr Leu His Val Pro Asp Glu Glu Gln Leu Val Ala
100 105 110

Gln Val Glu Arg Leu Leu Thr Leu Arg Pro Ala Trp Ala Ser Gln Leu
115 120 125

Ala Val Ala Tyr Thr Ile Met Pro Gly Ile His Arg Asp Val Ala Val
130 135 140

Leu Ala Gly Arg Leu Arg Arg Phe Ala His Ser Met Ala Thr Val Arg
145 150 155 160

Arg Arg Ala Gly Val Asn Val Pro Trp Leu Leu Trp Ser Gly Leu Ser
165 170 175

Gly Ser Pro Leu Pro Glu Arg Ala Ser Ser Pro Trp Phe Ile Cys Thr
180 185 190

Gly Gly Glu Val Gln Val Ala Thr Ser Thr Glu Thr Thr Met Pro Ala
195 200 205

Gln Trp Ile Ala Gln Ser Gly Val Gln Glu Arg Ser Gln Arg Leu Cys
210 215 220

Tyr Leu Leu Lys Ala Glu Ser Leu Met Gln Trp Leu Asn Leu Asn Val
225 230 235 240

Leu Thr Ala Leu Asn Gly Pro Glu Ala Lys Cys Pro Pro Leu Ala Met
245 250 255

Thr Val Gly Leu Val Pro Ser Leu Pro Ala Val Asp Asn Asn Leu Trp
260 265 270

Gln Leu Trp Ile Thr Ala Arg Thr Gly Leu Thr Pro Asp Ile Ala Asp
275 280 285

Thr Gly Thr Asp Asp Ala Leu Pro Phe Pro Asp Ala Leu Leu Arg Gln
290 295 300

Leu Pro Arg Gln Ser Gly Phe Thr Pro Leu Arg Arg Ala Cys Val Thr
305 310 315 320

Met Leu Gly Val Thr Thr Val Ala Gly Ile Ala Ala Leu Cys Leu Ser
325 330 335

Ala Thr Ala Asn Arg Gln Leu Leu Arg Gln Val Gly Asp Asp Leu His
340 345 350

Arg Phe Tyr Ala Val Pro Val Glu Glu Phe Ile Thr Lys Ala Arg His
355 360 365

Leu Ser Val Leu Lys Asp Asp Ala Thr Met Leu Asp Gly Tyr Tyr Arg
370 375 380

Glu Gly Glu Pro Leu Arg Leu Gly Leu Gly Leu Tyr Pro Gly Glu Arg
385 390 395 400

Ile Arg Gln Pro Val Leu Arg Ala Ile Arg Asp Trp Arg Pro Pro Glu
405 410 415

Gln Lys Met Glu Val Thr Ala Ser Leu Gln Val Gln Thr Val Arg Leu
420 425 430

Asp Ser Met Ser Leu Phe Asp Val Gly Gln Ala Arg Leu Lys Asp Gly
435 440 445

Ser Thr Lys Val Leu Val Asp Ala Leu Val Asn Ile Arg Ala Lys Pro
450 455 460

Gly Trp Leu Ile Leu Val Ala Gly Tyr Thr Asp Ala Thr Gly Asp Glu
465 470 475 480

Lys Ser Asn Gln Gln Leu Ser Leu Arg Arg Ala Glu Ala Val Arg Asn
485 490 495

Trp Met Leu Gln Thr Ser Asp Ile Pro Ala Thr Cys Phe Ala Val Gln
500 505 510

Gly Leu Gly Glu Ser Gln Pro Ala Ala Thr Asn Asp Thr Pro Gln Gly
515 520 525

Arg Ala Val Asn Arg Arg Val Glu Ile Ser Leu Val Pro Arg Ser Asp
530 535 540

Ala Cys Gln Asp Val Lys
545 550

<210> 135

<211> 194

<212> PRT

<213> Escherichia coli

<400> 135

Met Ile Lys Ser Thr Phe Trp Arg Ala Leu Ala Leu Thr Ala Thr Leu
1 5 10 15

Ile Leu Thr Gly Cys Ser His Ser Gln Pro Glu Gln Glu Gly Arg Pro
20 25 30

Gln Ala Trp Leu Gln Pro Gly Thr Leu Ile Thr Leu Pro Ala Pro Gly
35 40 45

Ile Ser Pro Ala Val Asn Ser Gln Gln Leu Leu Thr Gly Ser Phe Asn
50 55 60

Gly Lys Thr Gln Ser Leu Leu Val Met Leu Asn Ala Glu Asp Gln Lys
65 70 75 80

Ile Thr Leu Ala Gly Leu Ser Ser Val Gly Ile Arg Leu Phe Leu Val
85 90 95

Thr Tyr Asp Ala Lys Gly Leu Arg Ala Glu Gln Ser Ile Val Val Pro
100 105 110

Gln Leu Pro Pro Ala Ser Gln Val Leu Ala Asp Val Met Leu Ser His
115 120 125

Trp Pro Ile Ser Ala Trp Gln Pro Gln Leu Pro Thr Gly Trp Thr Leu
130 135 140

Arg Asp Asn Gly Asp Lys Arg Glu Leu Arg Asn Ala Ser Gly Lys Leu
145 150 155 160

Val Thr Glu Ile Thr Tyr Leu Asn Arg Gln Gly Lys Arg Val Pro Ile
165 170 175

Ser Ile Glu Gln His Val Phe Lys Tyr His Ile Thr Ile Gln Tyr Leu
180 185 190

Gly Asp

<210> 136

<211> 129

<212> PRT

<213> Escherichia coli

<400> 136

Met Lys Arg Tyr Ile Lys Trp Phe Ala Ile Thr Ile Phe Ile Ser Met
1 5 10 15

Leu Ser Ala Cys Val Arg Thr Ala Pro Val Gln Gln Ile Ser Thr Thr
20 25 30

Val Ser Val Gly His Thr Gln Glu Gln Val Lys Asn Ala Ile Leu Lys
35 40 45

Ala Gly Ala Gln Arg Lys Trp Ile Met Thr Gln Val Ser Pro Gly Val
50 55 60

Ile Lys Ala Arg Tyr Gln Thr Arg Asn His Val Ala Glu Val Arg Ile
65 70 75 80

Thr Tyr Thr Ala Thr Tyr Tyr Asn Ile Lys Tyr Asp Ser Ser Leu Asn
85 90 95

Leu Gln Ala Ser Asp Gly Lys Ile His Lys Asn Tyr Asn Arg Trp Val
100 105 110

Arg Asn Leu Asp Lys Asp Ile Gln Val Asn Leu Ser Thr Gly Ala Thr
115 120 125

Leu

<210> 137

<211> 415

<212> PRT

<213> Escherichia coli

<400> 137

Met Lys Arg Lys His Leu Leu Leu Leu Leu Phe Ser Phe Ser Thr
1 5 10 15

Asn Ser Ala Pro Leu Tyr Ser Leu Ile Arg Glu Ala Val Met His Asp
20 25 30

Pro Ile Val Met Glu Ala Arg Ala Glu Leu Thr Ser Ala Gln Ser Arg
35 40 45

Ile Glu Gln Ala Ser Ser Ala His Trp Pro Val Val Thr Ala Thr Gly
50 55 60

Ser Lys Leu Leu Ser Gln Ser His Arg Tyr Ser Tyr Asp Tyr Asp Thr
65 70 75 80

Glu Asp Ile Leu Pro Gly Ile Arg Gly Glu Val Asn Ile Phe Ala Ser
85 90 95

Gly Ala Ile Glu Ala Asp Val Arg Arg Ser Glu Ser Glu Ala Glu Tyr
100 105 110

Tyr His Tyr Lys Met Glu Glu Thr Lys Glu Glu Thr Ile His Ser Phe
115 120 125

Val Ser Leu Tyr Leu Asp Ala Leu Arg Glu Lys Gln Ser Ile Ala Val
130 135 140

Leu Glu Gln Ser Leu Ser Arg His Asn Ala Ile Leu Asn Asp Leu Asn
145 150 155 160

Thr Ile Ser Ile His Asp Thr Gly Arg Glu Ser Glu Leu Val Gln Ala
165 170 175

Glu Ala Arg Arg Leu Met Val Arg Gln Gln Ile Asn Ser Arg Ser Arg
180 185 190

Val Leu Lys Thr Thr Leu Gly Lys Leu Ser Thr Trp Thr Lys Asn Pro
195 200 205

Val Thr Glu Ala Asp Leu Glu Asn Pro Phe Ser Arg Met Thr Glu Ala
210 215 220

Lys Leu Leu Thr Asp Phe Thr Gln Ala Pro Gln Lys Gly Asn Pro Ser
225 230 235 240

Trp Leu Ala Ser Gln Ala Asp Val Glu Ser Lys Lys Ala Ala Leu Lys
245 250 255

Ala Gln Glu Leu Ala Arg Tyr Pro Arg Val Asp Leu Thr Gly Ser Val

260 265 270

Thr Arg Asp Asp Gln Gln Ile Gly Val Asn Leu Ser Trp Asp Leu Phe
275 280 285

Asn Arg Asn Ala Ser Tyr Gly Val Thr Glu Lys Ala Ala Gln Ile Val
290 295 300

Ala Ala Thr Gly Arg Leu Asp Ser Val Ala Arg Met Ile Asp Glu Thr
305 310 315 320

Gly Arg Leu Ser Leu Ile Thr Val Arg Gln Ser Arg Gly Glu Met Glu
325 330 335

Thr Leu Arg Arg Gln Glu Gln Ala Ser Ala Arg Val Val Asp Phe Tyr
340 345 350

Arg Leu Gln Phe Gln Val Ala Arg Lys Thr Leu Ile Glu Leu Leu Asn
355 360 365

Ala Glu Asn Glu Leu Tyr Ser Val Gly Leu Ser Arg Val Gln Thr Glu
370 375 380

Asp Gln Met Leu His Gly Met Leu Asp Tyr Leu Tyr Ser Gln Gly Met
385 390 395 400

Leu Leu Lys Trp Ser Gly Val Asn Leu Ser Gly Glu Glu Lys
405 410 415

<210> 138
<211> 201
<212> PRT
<213> Escherichia coli

<400> 138

Met Lys Phe Leu Pro Leu Leu Ala Leu Leu Ile Ser Pro Phe Val Ser
1 5 10 15

Ala Leu Thr Leu Asp Asp Leu Gln Gln Arg Phe Thr Glu Gln Pro Val
20 25 30

Ile Arg Ala His Phe Asp Gln Thr Arg Thr Ile Lys Asp Leu Pro Gln
35 40 45

Pro Leu Arg Ser Gln Gly Gln Met Leu Ile Ala Arg Asp Gln Gly Leu
50 55 60

Leu Trp Asp Gln Thr Ser Pro Phe Pro Met Gln Leu Leu Leu Asp Asp
65 70 75 80

Lys Arg Met Val Gln Val Ile Asn Gly Gln Pro Pro Gln Ile Ile Thr
85 90 95

Ala Glu Asn Asn Pro Gln Met Phe Gln Phe Asn His Leu Leu Arg Ala
100 105 110

Leu Phe Gln Ala Asp Arg Lys Val Leu Glu Gln Asn Phe Arg Val Glu
115 120 125

Phe Ala Asp Lys Gly Glu Gly Arg Trp Thr Leu Arg Leu Thr Pro Thr
130 135 140

Thr Thr Pro Leu Asp Lys Ile Phe Asn Thr Ile Asp Leu Ala Gly Lys
145 150 155 160

Thr Tyr Leu Glu Ser Ile Gln Leu Asn Asp Lys Gln Gly Asp Arg Thr
165 170 175

Asp Ile Ala Leu Thr Gln His Gln Leu Thr Pro Ala Gln Leu Thr Asp
180 185 190

Asp Glu His Gln Arg Phe Ala Ala Gln
195 200

<210> 139
<211> 770
<212> PRT
<213> Escherichia coli

<400> 139

Met Glu Asn Phe Phe Met Lys Asn Ser Lys Val Phe Tyr Arg Ser Ala
1 5 10 15

Leu Ala Thr Ala Ile Val Met Ala Leu Ser Ala Pro Ala Phe Ala Thr
20 25 30

Asp Ser Thr Val Ser Thr Asp Pro Val Thr Leu Asn Thr Glu Lys Thr
35 40 45

Thr Leu Asp Gln Asp Val Val Ile Asn Gly Asp Asn Lys Ile Thr Ala
50 55 60

Val Thr Ile Glu Thr Ser Asp Ser Asp Lys Asp Leu Asn Val Thr Phe
65 70 75 80

Gly Gly His Asp Ile Thr Ala Ala Ser Thr Val Asn Gln Asp Phe Val
85 90 95

Glu Gly Val Lys Val Ser Gly Asn Lys Asn Val Val Ile Asn Ala Thr
100 105 110

Asp Ser Thr Ile Thr Ala Gln Gly Glu Gly Thr Tyr Val Arg Thr Ala
115 120 125

Met Val Ile Asp Ser Thr Gly Asp Val Val Val Asn Gly Gly Asn Phe
130 135 140

Val Ala Lys Asn Glu Lys Gly Ser Ala Thr Gly Ile Ser Leu Glu Ala
145 150 155 160

Thr Thr Gly Asn Asn Leu Thr Leu Asn Gly Thr Thr Ile Asn Ala Gln
165 170 175

Gly Asn Lys Ser Tyr Ser Asn Gly Ser Thr Ala Ile Phe Ala Gln Lys
180 185 190

Gly Asn Leu Leu Gln Gly Phe Asp Gly Asp Ala Thr Asp Asn Ile Thr
195 200 205

Leu Ala Asp Ser Asn Ile Ile Asn Gly Gly Ile Glu Thr Ile Val Thr
210 215 220

Ala Gly Asn Lys Thr Gly Ile His Thr Val Asn Leu Asn Ile Lys Asp
225 230 235 240

Gly Ser Val Ile Gly Ala Ala Asn Asn Lys Gln Thr Ile Tyr Ala Ser
245 250 255

Ala Ser Ala Gln Gly Ala Gly Ser Ala Thr Gln Asn Leu Asn Leu Ser
260 265 270

Val Ala Asp Ser Thr Ile Tyr Ser Asp Val Leu Ala Leu Ser Glu Ser
275 280 285

Glu Asn Ser Ala Ser Thr Thr Asn Val Asn Met Asn Val Ala Arg
290 295 300

Ser Tyr Trp Glu Gly Asn Ala Tyr Thr Phe Asn Ser Gly Asp Lys Ala
305 310 315 320

Gly Ser Asp Leu Asp Ile Asn Leu Ser Asp Ser Ser Val Trp Lys Gly
325 330 335

Lys Val Ser Gly Ala Gly Asp Ala Ser Val Ser Leu Gln Asn Gly Ser
340 345 350

Val Trp Asn Val Thr Gly Ser Ser Thr Val Asp Ala Leu Ala Val Lys
355 360 365

Asp Ser Thr Val Asn Ile Thr Lys Ala Thr Val Asn Thr Gly Thr Phe
370 375 380

Ala Ser Gln Asn Gly Thr Leu Ile Val Asp Ala Ser Ser Glu Asn Thr
385 390 395 400

Leu Asp Ile Ser Gly Lys Ala Ser Gly Asp Leu Arg Val Tyr Ser Ala
405 410 415

Gly Ser Leu Asp Leu Ile Asn Glu Gln Thr Ala Phe Ile Ser Thr Gly
420 425 430

Lys Asp Ser Thr Leu Lys Ala Thr Gly Thr Thr Glu Gly Gly Leu Tyr
435 440 445

Gln Tyr Asp Leu Thr Gln Gly Ala Asp Gly Asn Phe Tyr Phe Val Lys
450 455 460

Asn Thr His Lys Ala Ser Asn Ala Ser Ser Val Ile Gln Ala Met Ala
465 470 475 480

Ala Ala Pro Ala Asn Val Ala Asn Leu Gln Ala Asp Thr Leu Ser Ala

485 490 495

Arg Gln Asp Ala Val Arg Leu Ser Glu Asn Asp Lys Gly Gly Val Trp
500 505 510

Ile Gln Tyr Phe Gly Gly Lys Gln Lys His Thr Thr Ala Gly Asn Ala

515 520 525

Ser Tyr Asp Leu Asp Val Asn Gly Val Met Leu Gly Gly Asp Thr Arg
530 535 540

Phe Met Thr Glu Asp Gly Ser Trp Leu Ala Gly Val Ala Met Ser Ser
545 550 555 560

Ala Lys Gly Asp Met Thr Thr Met Gln Ser Lys Gly Asp Thr Glu Gly
565 570 575

Tyr Ser Phe His Ala Tyr Leu Ser Arg Gln Tyr Asn Asn Gly Ile Phe
580 585 590

Ile Asp Thr Ala Ala Gln Phe Gly His Tyr Ser Asn Thr Ala Asp Val
595 600 605

Arg Leu Met Asn Gly Gly Thr Ile Lys Ala Asp Phe Asn Thr Asn
610 615 620

Gly Phe Gly Ala Met Val Lys Gly Gly Tyr Thr Trp Lys Asp Gly Asn
625 630 635 640

Gly Leu Phe Ile Gln Pro Tyr Ala Lys Leu Ser Ala Leu Thr Leu Glu
645 650 655

Gly Val Asp Tyr Gln Leu Asn Gly Val Asp Val His Ser Asp Ser Tyr
660 665 670

Asn Ser Val Leu Gly Glu Ala Gly Thr Arg Val Gly Tyr Asp Phe Ala
675 680 685

Val Gly Asn Ala Thr Val Lys Pro Tyr Leu Asn Leu Ala Ala Leu Asn
690 695 700

Glu Phe Ser Asp Gly Asn Lys Val Arg Leu Gly Asp Glu Ser Val Asn
705 710 715 720

Ala Ser Ile Asp Gly Ala Ala Phe Arg Val Gly Ala Gly Val Gln Ala
725 730 735

Asp Ile Thr Lys Asn Met Gly Ala Tyr Ala Ser Leu Asp Tyr Thr Lys
740 745 750

Gly Asp Asp Ile Glu Asn Pro Leu Gln Gly Val Val Gly Ile Asn Val
755 760 765

Thr Trp
770

<210> 140

<211> 660

<212> PRT

<213> Escherichia coli

<400> 140

Met Ser Arg Pro Gln Phe Thr Ser Leu Arg Leu Ser Leu Leu Ala Leu
1 5 10 15

Ala Val Ser Ala Thr Leu Pro Thr Phe Ala Phe Ala Thr Glu Thr Met
20 25 30

Thr Val Thr Ala Thr Gly Asn Ala Arg Ser Ser Phe Glu Ala Pro Met
35 40 45

Met Val Ser Val Ile Asp Thr Ser Ala Pro Glu Asn Gln Thr Ala Thr
50 55 60

Ser Ala Thr Asp Leu Leu Arg His Val Pro Gly Ile Thr Leu Asp Gly
65 70 75 80

Thr Gly Arg Thr Asn Gly Gln Asp Val Asn Met Arg Gly Tyr Asp His
85 90 95

Arg Gly Val Leu Val Leu Val Asp Gly Val Arg Gln Gly Thr Asp Thr
100 105 110

Gly His Leu Asn Gly Thr Phe Leu Asp Pro Ala Leu Ile Lys Arg Val
115 120 125

Glu Ile Val Arg Gly Pro Ser Ala Leu Leu Tyr Gly Ser Gly Ala Leu
130 135 140

Gly Gly Val Ile Ser Tyr Asp Thr Val Asp Ala Lys Asp Leu Leu Gln
145 150 155 160

Glu Gly Gln Ser Ser Gly Phe Arg Val Phe Gly Thr Gly Gly Thr Gly
165 170 175

Asp His Ser Leu Gly Leu Gly Ala Ser Ala Phe Gly Arg Thr Glu Asn
180 185 190

Leu Asp Gly Ile Val Ala Trp Ser Ser Arg Asp Arg Gly Asp Leu Arg
195 200 205

Gln Ser Asn Gly Glu Thr Ala Pro Asn Asp Glu Ser Ile Asn Asn Met
210 215 220

Leu Ala Lys Gly Thr Trp Gln Ile Asp Ser Ala Gln Ser Leu Ser Gly
225 230 235 240

Leu Val Arg Tyr Tyr Asn Asn Asp Ala Arg Glu Pro Lys Asn Pro Gln
245 250 255

Thr Val Glu Ala Ser Asp Ser Ser Asn Pro Met Val Asp Arg Ser Thr
260 265 270

Ile Gln Arg Asp Ala Gln Leu Ser Tyr Lys Leu Ala Pro Gln Gly Asn
275 280 285

Asp Trp Leu Asn Ala Asp Ala Lys Ile Tyr Trp Ser Glu Val Arg Ile
290 295 300

Asn Ala Gln Asn Thr Gly Ser Ser Gly Glu Tyr Arg Glu Gln Ile Thr
305 310 315 320

Lys Gly Ala Arg Leu Glu Asn Arg Ser Thr Leu Phe Ala Asp Ser Phe
325 330 335

Ala Ser His Leu Leu Thr Tyr Gly Glu Tyr Tyr Arg Gln Glu Gln
340 345 350

His Pro Gly Gly Ala Thr Thr Gly Phe Pro Gln Ala Lys Ile Asp Phe
355 360 365

Ser Ser Gly Trp Leu Gln Asp Glu Ile Thr Leu Arg Asp Leu Pro Ile
370 375 380

Thr Leu Leu Gly Gly Thr Arg Tyr Asp Ser Tyr Arg Gly Ser Ser Asp
385 390 395 400

Gly Tyr Lys Asp Val Asp Ala Asp Lys Trp Ser Ser Arg Ala Gly Met
405 410 415

Thr Ile Asn Pro Thr Asn Trp Leu Met Leu Phe Gly Ser Tyr Ala Gln
420 425 430

Ala Phe Arg Ala Pro Thr Met Gly Glu Met Tyr Asn Asp Ser Lys His
435 440 445

Phe Ser Ile Gly Arg Phe Tyr Thr Asn Tyr Trp Val Pro Asn Pro Asn
450 455 460

Leu Arg Pro Glu Thr Asn Glu Thr Gln Glu Tyr Gly Phe Gly Leu Arg
465 470 475 480

Phe Asp Asp Leu Met Leu Ser Asn Asp Ala Leu Glu Phe Lys Ala Ser
485 490 495

Tyr Phe Asp Thr Lys Ala Lys Asp Tyr Ile Ser Thr Thr Val Asp Phe
500 505 510

Ala Ala Ala Thr Thr Met Ser Tyr Asn Val Pro Asn Ala Lys Ile Trp
515 520 525

Gly Trp Asp Val Met Thr Lys Tyr Thr Thr Asp Leu Phe Ser Leu Asp
530 535 540

Val Ala Tyr Asn Arg Thr Arg Gly Lys Asp Thr Asp Thr Gly Glu Tyr
545 550 555 560

Ile Ser Ser Ile Asn Pro Asp Thr Val Thr Ser Thr Leu Asn Ile Pro
565 570 575

Ile Ala His Ser Gly Phe Ser Val Gly Trp Val Gly Thr Phe Ala Asp
580 585 590

Arg Ser Thr His Ile Ser Ser Tyr Ser Lys Gln Pro Gly Tyr Gly
595 600 605

Val Asn Asp Phe Tyr Val Ser Tyr Gln Gly Gln Gln Ala Leu Lys Gly
610 615 620

Met Thr Thr Thr Leu Val Leu Gly Asn Ala Phe Asp Lys Glu Tyr Trp
625 630 635 640

Ser Pro Gln Gly Ile Pro Gln Asp Gly Arg Asn Gly Lys Ile Phe Val
645 650 655

Ser Tyr Gln Trp
660

<210> 141
<211> 719
<212> PRT
<213> Escherichia coli

<400> 141

Met Arg Asp Glu Met Leu Tyr Asn Ile Pro Cys Arg Ile Tyr Ile Leu
1 5 10 15

Ser Thr Leu Ser Leu Cys Ile Ser Gly Ile Val Ser Thr Ala Thr Ala
20 25 30

Thr Ser Ser Glu Thr Lys Ile Ser Asn Glu Glu Thr Leu Val Val Thr
35 40 45

Thr Asn Arg Ser Ala Ser Asn Leu Trp Glu Ser Pro Ala Thr Ile Gln
50 55 60

Val Ile Asp Gln Gln Thr Leu Gln Asn Ser Thr Asn Ala Ser Ile Ala
65 70 75 80

Asp Asn Leu Gln Asp Ile Pro Gly Val Glu Ile Thr Asp Asn Ser Leu
85 90 95

Ala Gly Arg Lys Gln Ile Arg Ile Arg Gly Glu Ala Ser Ser Arg Val

100 105 110
Leu Ile Leu Ile Asp Gly Gln Glu Val Thr Tyr Gln Arg Ala Gly Asp
115 120 125

Asn Tyr Gly Val Gly Leu Leu Ile Asp Glu Ser Ala Leu Glu Arg Val
130 135 140

Glu Val Val Lys Gly Pro Tyr Ser Val Leu Tyr Gly Ser Gln Ala Ile
145 150 160

Gly Gly Ile Val Asn Phe Ile Thr Lys Lys Gly Gly Asp Lys Leu Ala
165 170 175

Ser Gly Val Val Lys Ala Val Tyr Asn Ser Ala Thr Ala Gly Trp Glu
180 185 190

Glu Ser Ile Ala Val Gln Gly Ser Ile Gly Gly Phe Asp Tyr Arg Ile
195 200 205

Asn Gly Ser Tyr Ser Asp Gln Gly Asn Arg Asp Thr Pro Asp Gly Arg
210 215 220

Leu Pro Asn Thr Asn Tyr Arg Asn Asn Ser Gln Gly Val Trp Leu Gly
225 230 240

Tyr Asn Ser Gly Asn His Arg Phe Gly Leu Ser Leu Asp Arg Tyr Arg
245 250 255

Leu Ala Thr Gln Thr Tyr Tyr Glu Asp Pro Asp Gly Ser Tyr Glu Ala
260 265 270

Phe Ser Val Lys Ile Pro Lys Leu Glu Arg Glu Lys Val Gly Val Phe
275 280 285

Tyr Asp Thr Asp Val Asp Gly Asp Tyr Leu Lys Lys Ile His Phe Asp
290 295 300

Ala Tyr Glu Gln Thr Ile Gln Arg Gln Phe Ala Asn Glu Val Lys Thr
305 310 320

Thr Gln Pro Val Pro Ser Pro Met Ile Gln Ala Leu Thr Val His Asn
325 330 335

Lys Thr Asp Thr His Asp Lys Gln Tyr Thr Gln Ala Val Thr Leu Gln
340 345 350

Ser His Phe Ser Leu Pro Ala Asn Asn Glu Leu Val Thr Gly Ala Gln
355 360 365

Tyr Lys Gln Asp Arg Val Ser Gln Arg Ser Gly Gly Met Thr Ser Ser
370 375 380

Lys Ser Leu Thr Gly Phe Ile Asn Lys Glu Thr Arg Thr Arg Ser Tyr
385 390 395 400

Tyr Glu Ser Glu Gln Ser Thr Val Ser Leu Phe Ala Gln Asn Asp Trp
405 410 415

Arg Phe Ala Asp His Trp Thr Trp Thr Met Gly Val Arg Gln Tyr Trp
420 425 430

Leu Ser Ser Lys Leu Thr Arg Gly Asp Gly Val Ser Tyr Thr Ala Gly
435 440 445

Ile Ile Ser Asp Thr Ser Leu Ala Arg Glu Ser Ala Ser Asp His Glu
450 455 460

Met Val Thr Ser Thr Ser Leu Arg Tyr Ser Gly Phe Asp Asn Leu Glu
465 470 475 480

Leu Arg Ala Ala Phe Ala Gln Gly Tyr Val Phe Pro Thr Leu Ser Gln
485 490 495

Leu Phe Met Gln Thr Ser Ala Gly Gly Ser Val Thr Tyr Gly Asn Pro
500 505 510

Asp Leu Lys Ala Glu His Ser Asn Asn Phe Glu Leu Gly Ala Arg Tyr
515 520 525

Asn Gly Asn Thr Trp Leu Ile Asp Ser Ala Val Tyr Tyr Ser Glu Ala
530 535 540

Lys Asp Tyr Ile Ala Ser Leu Ile Cys Asp Gly Ser Ile Val Cys Asn
545 550 555 560

Gly Asn Thr Asn Ser Ser Arg Ser Ser Tyr Tyr Tyr Tyr Asp Asn Ile
565 570 575

Asp Arg Ala Lys Thr Trp Gly Leu Glu Ile Ser Ala Glu Tyr Asn Gly
580 585 590

Trp Val Phe Ser Pro Tyr Ile Ser Gly Asn Leu Ile Arg Arg Gln Tyr
595 600 605

Glu Thr Ser Thr Leu Lys Thr Thr Asn Thr Gly Glu Pro Ala Ile Asn
610 615 620

Gly Arg Ile Gly Leu Lys His Thr Leu Val Met Gly Gln Ala Asn Ile
625 630 635 640

Ile Ser Asp Val Phe Ile Arg Ala Ala Ser Ser Ala Lys Asp Asp Ser
645 650 655

Asn Gly Thr Glu Thr Asn Val Pro Gly Trp Ala Thr Leu Asn Phe Ala
660 665 670

Val Asn Thr Glu Phe Gly Asn Glu Asp Gln Ser Arg Ile Asn Leu Ala
675 680 685

Leu Asn Asn Leu Thr Asp Lys Arg Tyr Arg Thr Ala His Glu Thr Ile
690 695 700

Pro Ala Ala Gly Phe Asn Ala Ala Ile Gly Phe Val Trp Asn Phe
705 710 715

<210> 142

<211> 199

<212> PRT

<213> Escherichia coli

<400> 142

Met Arg Lys Val Cys Ala Val Ile Leu Ser Ala Ala Ile Cys Leu Ser
1 5 10 15

Val Ser Gly Ala Pro Ala Trp Ala Ser Glu His Gln Ser Thr Leu Ser
20 25 30

Ala Gly Tyr Leu His Ala Arg Thr Asn Ala Pro Gly Ser Asp Asn Leu
35 40 45

Asn Gly Ile Asn Val Lys Tyr Arg Tyr Glu Phe Thr Asp Ala Leu Gly
50 55 60

Leu Ile Thr Ser Phe Ser Tyr Ala Asn Ala Glu Asp Glu Gln Lys Thr
65 70 75 80

His Tyr Ser Asp Thr Arg Trp His Glu Asp Ser Val Arg Asn Arg Trp
85 90 95

Phe Ser Val Met Ala Gly Pro Ser Val Arg Val Asn Glu Trp Phe Ser
100 105 110

Ala Tyr Ser Met Ala Gly Val Ala Tyr Ser Arg Val Ser Thr Phe Ser
115 120 125

Gly Asp Tyr Leu Arg Val Thr Asp Asn Lys Gly Lys Thr His Asp Val
130 135 140

Leu Thr Gly Ser Asp Asp Gly Arg His Ser Asn Thr Ser Leu Ala Trp
145 150 155 160

Gly Ala Gly Val Gln Phe Asn Pro Thr Glu Ser Val Thr Ile Asp Leu
165 170 175

Ala Tyr Glu Gly Ser Gly Asp Trp Arg Thr Asp Ala Phe Ile
180 185 190

Val Gly Ile Gly Tyr Arg Phe
195

<210> 143

<211> 456

<212> PRT

<213> Escherichia coli

<400> 143

Met Lys Lys Ser Thr Leu Ser Leu Ala Ile Gly Leu Leu Leu Ala Cys
1 5 10 15

Ser Thr Gly Met Ala Lys Thr Gln His Leu Thr Leu Glu Gln Arg Leu

20

25

30

Glu Ala Ala Glu Met Arg Ala Ala Lys Ala Glu Gly Gln Val Lys Gln
35 40 45

Leu Gln Thr Gln Gln Ala Ala Glu Ile Arg Glu Ile Lys Thr Ala Gln
50 55 60

Gly Asn Thr Pro Val Asn Gly Gln Ser Thr Thr Glu Ser Glu Lys Lys
65 70 75 80

Asn Ala Thr Pro Pro Asn Leu Leu Ser Gly Tyr Gly Asp Leu Lys
85 90 95

Ile Tyr Gly Asp Val Glu Phe Asn Met Asp Ala Glu Ser Asn His Gly
100 105 110

Leu Leu Ala Met Thr Asn Ala Asp Val Asn Ser Asp Pro Thr Asn Glu
115 120 125

Trp Asn Leu Asn Gly Arg Ile Leu Leu Gly Phe Asp Gly Met Arg Lys
130 135 140

Leu Asp Asn Gly Tyr Phe Ala Gly Phe Ser Ala Gln Pro Leu Gly Asp
145 150 155 160

Met His Gly Ser Val Asn Ile Asp Asp Ala Val Phe Phe Phe Gly Lys
165 170 175

Glu Asn Asp Trp Lys Val Lys Val Gly Arg Phe Glu Ala Tyr Asp Met
180 185 190

Phe Pro Leu Asn Gln Asp Thr Phe Val Glu His Ser Gly Asn Thr Ala
195 200 205

Asn Asp Leu Tyr Asp Asp Gly Ser Gly Tyr Ile Tyr Met Met Lys Glu
210 215 220

Gly Arg Gly Arg Ser Asn Ala Gly Gly Asn Phe Leu Val Ser Lys Gln
225 230 235 240

Leu Asp Asn Trp Tyr Phe Glu Leu Asn Thr Leu Leu Glu Asp Gly Thr
245 250 255

Ser Leu Tyr Asn Asp Gly Asn Tyr His Gly Arg Asp Met Glu Gln Gln
260 265 270

Lys Asn Val Ala Tyr Leu Arg Pro Val Ile Ala Trp Ser Pro Thr Glu
275 280 285

Glu Phe Thr Val Ser Ala Ala Met Glu Ala Asn Val Val Asn Asn Ala
290 295 300

Tyr Gly Tyr Thr Asp Ser Lys Gly Asn Phe Val Asp Gln Ser Asp Arg
305 310 315 320

Thr Gly Tyr Gly Met Ser Met Thr Trp Asn Gly Leu Lys Thr Asp Pro
325 330 335

Glu Asn Gly Ile Val Val Asn Leu Asn Thr Ala Tyr Leu Asp Ala Asn
340 345 350

Asn Glu Lys Asp Phe Thr Ala Gly Ile Asn Ala Leu Trp Lys Arg Phe
355 360 365

Glu Leu Gly Tyr Ile Tyr Ala His Asn Lys Ile Asp Glu Phe Ser Gly
370 375 380

Val Val Cys Asp Asn Asp Cys Trp Ile Asp Asp Glu Gly Thr Tyr Asn
385 390 395 400

Ile His Thr Ile His Ala Ser Tyr Gln Phe Ala Asn Val Met Asp Met
405 410 415

Glu Asn Phe Asn Ile Tyr Leu Gly Thr Tyr Tyr Ser Ile Leu Asp Ser
420 425 430

Asp Gly Asp Lys Ile His Gly Asp Asp Ser Asp Asp Arg Tyr Gly Ala
435 440 445

Arg Val Arg Phe Lys Tyr Phe Phe
450 455

<210> 144

<211> 174

<212> PRT

<213> Escherichia coli

<400> 144

Met Asn Gly Lys Ala Phe Leu Ala Cys Val Leu Met Ser Val Val Leu
1 5 10 15

Thr Gly Cys Glu Thr Ala Lys Lys Ile Ser Gln Val Ile Arg Asn Pro
20 25 30

Asp Ile Gln Val Gly Lys Leu Met Asp Gln Ser Thr Glu Leu Thr Val
35 40 45

Thr Leu Leu Thr Glu Pro Asp Ser Asn Leu Thr Ala Asp Gly Glu Ala
50 55 60

Ala Pro Val Asp Val Gln Leu Val Tyr Leu Ser Asp Asp Ser Lys Phe
65 70 75 80

His Ala Ala Asp Tyr Asp Gln Val Ala Thr Thr Ala Leu Pro Asp Val
85 90 95

Leu Gly Lys Asn Tyr Ile Asp His Gln Asp Phe Asn Leu Leu Pro Asp
100 105 110

Thr Val Lys Thr Leu Pro Pro Ile Lys Leu Asp Glu Lys Thr Gly Tyr
115 120 125

Ile Gly Val Ile Ala Tyr Phe Ser Asp Asp Gln Ala Thr Glu Trp Lys
130 135 140

Gln Ile Glu Ser Val Glu Ser Ile Gly His His Tyr Arg Leu Leu Val
145 150 155 160

His Ile Arg Ala Ser Ala Ile Glu Met Lys Lys Glu Glu Asn
165 170

<210> 145

<211> 1144

<212> PRT

<213> Escherichia coli

<400> 145

Leu Thr Leu Ala Trp Ile Phe Leu Leu Val Trp Ile Trp Trp Gln Gly
1 5 10 15

Pro Lys Trp Thr Leu Tyr Glu Gln His Trp Leu Ala Pro Leu Ala Asn
20 25 30

Arg Trp Leu Ala Thr Ala Val Trp Gly Leu Ile Ala Leu Val Trp Leu
35 40 45

Thr Trp Arg Val Met Lys Arg Leu Gln Lys Leu Glu Lys Gln Gln Lys
50 55 60

Gln Gln Arg Glu Glu Lys Asp Pro Leu Thr Val Glu Leu His Arg
65 70 75 80

Gln Gln Gln Tyr Leu Asp His Trp Leu Leu Arg Leu Arg Arg His Leu
85 90 95

Asp Asn Arg Arg Tyr Leu Trp Gln Leu Pro Trp Tyr Met Val Ile Gly
100 105 110

Pro Ala Gly Ser Gly Lys Ser Thr Leu Leu Arg Glu Gly Phe Pro Ser
115 120 125

Asp Ile Val Tyr Thr Pro Glu Ser Ile Arg Gly Val Glu Tyr His Pro
130 135 140

Leu Ile Thr Pro Arg Val Gly Asn Gln Ala Val Ile Phe Asp Val Asp
145 150 155 160

Gly Val Leu Thr Thr Pro Gly Gly Asp Asp Leu Leu Arg Arg Arg Leu
165 170 175

Arg Glu His Trp Leu Gly Trp Leu Met Gln Thr Arg Ala Arg Gln Pro
180 185 190

Leu Asn Gly Leu Ile Leu Thr Leu Asp Leu Pro Asp Leu Leu Thr Ala
195 200 205

Asp Lys Ser Arg Arg Glu Thr Leu Val Gln Asn Leu Arg Gln Gln Leu
210 215 220

Gln Glu Ile Arg Gln Ser Leu His Cys Arg Leu Pro Val Tyr Val Val

225 230 235 240

Leu Thr Arg Leu Asp Leu Leu Asn Gly Phe Ala Ala Leu Phe His Ser
245 250 255

Leu Asp Lys Lys Asp Arg Asp Ala Ile Leu Gly Val Thr Phe Thr Arg
260 265 270

Arg Ala His Glu Ser Asp Gly Trp Arg Ser Glu Leu Gly Ala Phe Trp
275 280 285

Gln Thr Trp Val Gln Gln Val Asn Leu Ala Leu Ser Asp Leu Val Leu
290 295 300

Ala Gln Thr Gly Ala Ala Pro Arg Ser Ala Val Phe Ser Phe Ser Arg
305 310 315 320

Gln Met Gln Gly Thr Gly Glu Ile Val Thr Ala Leu Leu Ala Ala Leu
325 330 335

Leu Asp Gly Glu Asn Met Asp Val Met Leu Arg Gly Val Trp Leu Thr
340 345 350

Ser Ser Leu Gln Arg Gly Gln Val Asp Asp Ile Phe Thr Gln Ser Ala
355 360 365

Ala Arg Gln Tyr Gly Leu Gly Asn Ser Ser Leu Ala Thr Trp Pro Leu
370 375 380

Val Glu Thr Thr Pro Tyr Phe Thr Arg Arg Leu Phe Pro Glu Val Leu
385 390 395 400

Leu Ala Glu Pro Asn Leu Ala Gly Glu Asn Ser Val Trp Leu Asn Ser
405 410 415

Ser Arg Arg Arg Leu Thr Ala Phe Ser Thr Cys Gly Ala Ala Leu Ala
420 425 430

Ala Leu Met Val Gly Ser Trp His His Tyr Tyr Asn Gln Asn Trp Gln
435 440 445

Ser Gly Val Asn Val Leu Ala Gln Ala Lys Ala Phe Met Asp Val Pro
450 455 460

Pro Pro Gln Gly Thr Asp Glu Phe Gly Asn Leu Gln Leu Pro Leu Leu
465 470 475 480

Asn Pro Val Arg Asp Ala Thr Leu Ala Tyr Gly Asp Tyr Arg Asp His
485 490 495

Gly Phe Leu Ala Asp Met Gly Leu Tyr Gln Gly Ala Arg Val Gly Pro
500 505 510

Tyr Val Glu Gln Thr Tyr Ile Gln Leu Leu Glu Gln Arg Tyr Leu Pro
515 520 525

Ser Leu Met Asn Gly Leu Ile Arg Asp Leu Asn Ile Ala Pro Pro Glu
530 535 540

Ser Glu Glu Lys Leu Ala Val Leu Arg Val Val Arg Met Met Glu Asp
545 550 555 560

Lys Ser Gly Arg Asn Asn Glu Ala Val Lys Gln Tyr Met Ala Arg Arg
565 570 575

Trp Ser Asn Glu Phe His Gly Gln Arg Asp Ile Gln Ala Gln Leu Met
580 585 590

Val His Leu Asp Tyr Ala Leu Glu His Thr Asp Trp His Ala Gln Arg
595 600 605

Gln Ser Ser Asp Ser Asp Ala Val Ser Arg Trp Thr Pro Tyr Asp Lys
610 615 620

Pro Ile Ile Asn Ala Gln Gln Glu Leu Ser Lys Leu Pro Ile Tyr Gln
625 630 635 640

Arg Val Tyr Gln Thr Leu Arg Thr Lys Ala Leu Ser Val Leu Pro Ala
645 650 655

Asp Leu Asn Leu Arg Asp Gln Val Gly Pro Thr Phe Asp Asn Val Phe
660 665 670

Val Ala Gly Asn Asp Glu Lys Leu Val Ile Pro Gln Phe Leu Thr Arg
675 680 685

Tyr Gly Leu Gln Ser Tyr Phe Val Lys Gln Arg Glu Gly Leu Val Glu
690 695 700

Leu Thr Ala Leu Asp Ser Trp Val Leu Asn Leu Thr Gln Ser Val Ala
705 710 715 720

Tyr Ser Glu Ala Asp Arg Glu Glu Ile Gln Arg His Ile Thr Glu Gln
725 730 735

Tyr Ile Ser Asp Tyr Thr Ala Thr Trp Arg Ala Gly Met Asp Asn Leu
740 745 750

Asn Val Arg Asp Tyr Glu Ala Met Ser Ala Leu Thr Asp Ala Leu Glu
755 760 765

Gln Ile Ile Ser Gly Asp Gln Pro Phe Gln Arg Ala Leu Thr Ala Leu
770 775 780

Arg Asp Asn Thr His Ala Leu Thr Leu Ser Gly Lys Leu Asp Asp Lys
785 790 795 800

Ala Arg Glu Ala Ala Ile Asn Glu Met Asp Tyr Arg Leu Leu Ser Arg
805 810 815

Leu Gly His Glu Phe Ala Pro Glu Asn Ser Ala Leu Glu Glu Gln Lys
820 825 830

Asp Lys Ala Ser Thr Leu Gln Ala Val Tyr Gln Gln Leu Thr Glu Leu
835 840 845

His Arg Tyr Leu Leu Ala Ile Gln Asn Ser Pro Val Pro Gly Lys Ser
850 855 860

Ala Leu Lys Ala Val Gln Leu Arg Leu Asp Gln Asn Ser Ser Asp Pro
865 870 875 880

Ile Phe Ala Thr Arg Gln Met Ala Lys Thr Leu Pro Ala Pro Leu Asn
885 890 895

Arg Trp Val Gly Lys Leu Ala Asp Gln Ala Trp His Val Val Met Val
900 905 910

Glu Ala Val Arg Tyr Met Glu Val Asp Trp Arg Asp Asn Val Val Lys
915 920 925

Pro Phe Asn Glu Gln Leu Ala Asp Asn Tyr Pro Phe Asn Pro Arg Ala
930 935 940

Thr Gln Asp Ala Ser Leu Asp Ser Phe Glu Arg Phe Phe Lys Pro Asp
945 950 955 960

Gly Ile Leu Asp Asn Phe Tyr Lys Asn Asn Leu Arg Leu Phe Leu Glu
965 970 975

Asn Asp Leu Thr Phe Gly Asp Asp Gly Arg Val Leu Ile Arg Glu Asp
980 985 990

Ile Arg Gln Gln Leu Asp Thr Ala Gln Lys Ile Arg Asp Ile Phe Phe
995 1000 1005

Ser Gln Gln Asn Gly Leu Gly Ala Gln Phe Ala Val Glu Thr Val
1010 1015 1020

Ser Leu Ser Gly Asn Lys Arg Arg Ser Val Leu Asn Leu Asp Gly
1025 1030 1035

Gln Leu Val Asp Tyr Ser Gln Gly Arg Asn Tyr Thr Ala His Leu
1040 1045 1050

Val Trp Pro Asn Asn Met Arg Glu Gly Asn Glu Ser Lys Leu Thr
1055 1060 1065

Leu Ile Gly Thr Ser Gly Arg Ala Pro Arg Ser Ile Ala Phe Ser
1070 1075 1080

Gly Pro Trp Ala Gln Phe Arg Leu Phe Gly Ala Gly Gln Leu Thr
1085 1090 1095

Asn Val Thr Ser Asp Thr Phe Asn Val Arg Phe Asn Val Asp Gly
1100 1105 1110

Gly Ala Met Val Tyr Gln Val His Val Asp Thr Glu Asp Asn Pro
1115 1120 1125

Phe Thr Gly Gly Leu Phe Ser Leu Phe Arg Leu Pro Asp Thr Leu

1130

1135

1140

Tyr

<210> 146
<211> 489
<212> DNA
<213> Escherichia coli

<400> 146

atggcttattc ctgcttatct ctggctgaaa gatgacggcg ggcggatataaaagggttcc 60
gtggacgttc aggggcgcga aggttagcatc gaagtgggtgg cgctggatca cgatgtgtac 120
atcccgaccg acaataaacac cggcaaactg accggtaacc gtactcacaa gcctttacg 180
tttacccaaag aaatcgatgc gtccagcccc tatctctaca aagctgtgac caccggacag 240
accctgaaaaa cggcagaatt taagtttac cgcatcaacg atgccggtca ggaagtggag 300
tacttcaaca tcacgcttga taacgtcaag ctggtcagag tcgctccgct tatgcacgac 360
atcaaggatc cttccagaga gaagcataac cacctggaac gtattgagtt ccgctacgag 420
aaaatcacct ggacttacaa agacggcaac atcattcatt ccgactcgtaaatgagcgt 480
ccttccgccc 489

<210> 147
<211> 1650
<212> DNA
<213> Escherichia coli

<400> 147

gtgaggaaca cgctgaaaca ggcacatcgta ctgtgggaa tgggttact gctggtgctg 60
tggtcagtgt ttatcagtcc gtctggcgta ctgagatggg ccggcgccgc ggctatcg 120
ctggcggttg ccgcgttgtt gatttatcgg cgcaggcagg cgtggacgga gatgaccggc 180
gatgccgggt tgtcatcgct gccgcccggaa acctaccgac agccggtagt gctggctgt 240
ggcggctgtt cggcgcacccgtt ccactgac agccgggtcc gccaggtttc agaaggcgt 300
tatctgcattt ttcctgtatga agaacagctt gtggcgccagg tggagcgatt gctgaccctt 360
cgcccgccgtt gggcatcgca gcttggcgta cggtatacca tcatgcccgg catacaccgg 420
gatgtggcggtt ttctggccgg acggctgcga cgggtcgccc acagtatggc gacggcggt 480
cgtcggcgat gctaaacgtt cccctggctt ctctggagcg ggctgtccgg ctcggcgat 540

ccgaaagag	cgagttcacc	gtggtttata	tgtaccggcg	gcgaagttca	ggtagcaaca	600
tccacagaga	ccaccatgcc	cgcgcagtgg	attgcacaat	ccggcgtaca	ggagcgcagt	660
cagcgactct	gttacctgct	gaaagctgaa	agcctgatgc	agtggctgaa	tcttaatgtg	720
ctgacggcac	tgaacggccc	ggaggcgaaa	tgtccaccac	tggcgatgac	cgtgggctg	780
gtccccctcg	tgcctgcggt	ggataacaac	ctgtggcagt	tgtggatcac	cgcagaacc	840
ggcctgacgc	cggatatcgc	ggacaccggc	acagacgatg	cgctgccatt	cccgatgcc	900
ctgttacggc	agttgccg	tcagtcggc	tttacccgc	tgcgacgagc	ctgcgtgacc	960
atgctggcg	tcaccaccgt	ggcggtatc	gccgcgtgt	gcctgtcagc	cacggcaa	1020
cgcagttat	tacggcaggt	cggtgacgt	ctgcaccgg	tttatgccgt	cccggtggag	1080
gaatttatca	ccaaagcccg	tcacctgtcg	gtgctgaaag	acgatgac	catgctcgat	1140
gggttattacc	gggaaggaga	accctgcgc	ctcggtctgg	ggttatacc	cggcaacgc	1200
atccgccagc	cggtattacg	cgcattcgc	gactggcg	cgcctgaaca	aaaaatggag	1260
gtgacggctt	cgttcaggt	tcagaccgt	cgtctgaca	gtatgtcg	gttgacgtc	1320
ggacaggccc	gcctgaaaga	cggctcgaca	aaagtgtgg	tggacgact	ggtgaacatc	1380
cggcaaaac	cggctggct	gatcctgt	gccggatata	ccgatgcc	cggcgatgaa	1440
aaaagcaatc	agcagttatc	gctgcggcg	gccgaagcgg	tgcgcaact	gatgctcgag	1500
accagcgaca	tcccggccac	ctgtttg	gtacagggac	tggcgagag	ccagcctgc	1560
gacaccaacg	acacgcccaca	ggccgggca	gtcaaccggc	gtgtcgaaat	cagtcttgtt	1620
ccgcgttctg	acgcctgtca	ggacgtgaaa				1650

<210> 148
<211> 582
<212> DNA
<213> Escherichia coli

<400> 148						
atgatcaa	ccacattctg	gcgagcgctc	gccctgacc	ctacgctt	cctcactgg	60
tgtagccact	cgcaaccg	acaggaaggc	cgcggcagg	cgtggctg	acctgg	120
ctcatcacgc	tgcctgcg	gggattca	ccgcagt	attcc	cagca	180
ggcagctca	acggcaaa	ccagtctctg	ctagtgt	ttaatg	ccgaa	240
atcaccc	ttgcggcgt	gtcggtcgg	attcg	cctgt	ttctgg	300

aaagggctac gcgccgagca atccatcgac gtcccacagt taccgccccgc aagtcaggta 360
ctggctgacg ttagtgcgtcg ccactggcccg attagcgcct ggcaaccgca acttcccaca 420
ggctggacgc ttgcgcacaa cggcgacaaa cgcgagctgc gtaacgcccag cggcaaactg 480
gtcacggaaa tcacccatct gaatcgccag ggaaaacgcg tgccaatcag cattgaggcag 540
catgtcttta aataccacat caccattcaa tacttaggtg ac 582

<210> 149
<211> 387
<212> DNA
<213> Escherichia coli

<400> 149

atgaaacgtt atataaaatg gtttgccatc acaatttta tcagtatgtt gagtgccctgt 60
gtccgtacgg ccccagtgcgca acagataagc accactgtca gtgtgggtca tactcaggag 120
caggttaaaa atgcattttt gaaagcaggt ggcgcagcgca agtggattat gacgcaagtg 180
tccccctggag ttattaaagc tcgctatcaa acacgaaatc acgttgcaga ggttcgtatt 240
acatatacag ctacctacta taacatcaaa tatgacagta gcctgaatct gcaggcttct 300
gatggaaaaaa ttcataaaaaa ctataaccgc tgggtgcgta acctggataa agatatacag 360
gttaacttat ctacaggagc aacgtta 387

<210> 150
<211> 1245
<212> DNA
<213> Escherichia coli

<400> 150

atgaagcgta aacatttgtt attattatttgg ttgtttcat tttccactaa cagtgcgcct 60
ctttactcct taattaggga ggcagttatg cacgatccca tagtaatggaa agcccgccg 120
gagtttaactt cggcacaatc ccgcatacgag caggcaagct ctgcacatttgc cccagttgtc 180
acagctacag gaagtaaact cctttcacaa agtcaccgtt attcctacga ttatgacact 240
gaagatattt tacccggtat tcgtggtgaa gtgaatatat ttgcttcagg ggctattgag 300
gcggatgtgc gtcggagtga gtcagaagcc gaatattatc attataaaat ggaagaaaca 360
aaagaggaaa caattcactc ttttgttca ttatatcttgc atgcactcag ggaaaaacaa 420
tccattgcgg tacttgaaca gagcctttcc cggcataacg caattcttgc tgacctgaat 480
accatcgatc ttcatgatac cggcgccgag tctgagcttg ttcaggccga agccagaagg 540

ttgatggttc ggcagcagat aaattctagg agcagagtac ttaaaaccac gctggaaaa	600
ctgtccactt ggacaaaaaaaaa tccggtaacc gaagctgatc ttgaaaatcc tttttctagg	660
atgacagagg ccaaatttatt aactgattt acacaggctc cacagaaagg taaccgtcg	720
tggcttgcca gccaaagctga tggtagatg aaaaaagcg cactgaaagc acaggagctt	780
gccccgtacc ctcgggtgga tttaacgggg tctgttaaccc gggatgacca gcagataggg	840
gtcaatctgt ctggggacct cttaaccgt aatgccagtt atgggtttac agaaaaagct	900
gcccggattat ctctgataac agtcagacaa agtcgagggg aaatggaaac gctcagacgt	960
caggaacagg ctccagccag agttgtggac ttttatcgac ttcatgtttca ggtggcaaga	1020
aaaaacactga ttgaattact gaatgctgaa aacgaactgt acagtgtcg actctcccg	1080
gttcagacgg aggatcagat gctccacggt atgctggatt atctgtattc ccaggaaatg	1140
ctcctgaaat ggagcggagt gaatctttct ggtgaagaag aaaaa	1200
	1245

<210> 151
<211> 603
<212> DNA
<213> Escherichia coli

<400> 151

atgaaatttt taccgctgct ggcgctgctg attagccgt ttgtgagcgc cctgaccctg	60
gacgatcttc agcaacgctt taccgaacaa ccgggtgatcc gcgcgcattt tgatcaaacc	120
cggtcgat aagatctgcc gcagccgctg cgatctcagg gtcagatgtt gatgcggcgc	180
gaccaggggt tattgtggga tcaaacctca ccgttccca tgcagctatt gctggatgat	240
aaacgcatgg tgcaggtgat caacggtcag ccgcgcaaa tcatcacgac agaaaaacaac	300
ccgcagatgt tccagttaa ccacctgctg cgccgcgtgt tccaggccga tcgcaaagtg	360
ctggaacaaa acttccgcgt cgaatttgct gacaaaggcg aaggccgctg gacgctgcgc	420
ctgacgcccga ccaccacgcc gctggataaa attttcaaca ccatcgatct cgccggaaa	480
acctatctgg agagcattca acttaatgtt aaacagggcg atcgcacccga tattgcttt	540
acccaacatc aactgacgcc agcgcaactg accgatgacg aacaccaacg ttttgcgc	600
cag	603

<210> 152

<211>	2295	
<212>	DNA	
<213>	Escherichia coli	
<400>	152	
	atgaaaaaca gtaaggatt ttacgcagc gcattagcga cagctattgt tatggcttt	60
	tctgcaccag cattcgctac tgatagcacg gtatcaactg atccggttac gctgaataca	120
	gagaagacga ctctggatca agatgttgtt attaacggtg ataacaagat tacagccgt	180
	acaattgaaa cgtcagattc agataaagac cttaatgtta cttttggcgg tcacgatatt	240
	accgcccgtcat caacggtaaa ccaagatttc gttgaaggtg taaaagtttag tggtaacaaa	300
	aatgttgtga ttaatgctac agactccacc atcacagctc aaggtgaagg cacctatgtc	360
	cggactgcaa tggtcattga ttcaactggc gatgttgtt ttaatggcgg taatttcg	420
	gcaaaaaatg aaaaaggtag tgcgacaggg atatctctgg aagcgaccac gggaaataat	480
	ttaacgctca atggtacaac cataaatgct caaggtata agagttacag caacggctct	540
	acggcaattt ttgctcaaaa gggtaatttg ttgcagggtt ttgacggtgta tgcaaccgac	600
	aacatcaccc ttgctgactc aaatattatt aatggcggga ttgaaacaat agttactgcc	660
	gggaataaga cgggaattca tacagtcaac ctgaatatta agatggctc agtaattggg	720
	gcggctaata ataaacaaac aatttatgcc tctgcttcgg cacaaggcgc agttcagca	780
	acgcaaaatt taaatttgc ttttgctgat tcaaccatct actctgatgt cctggccctt	840
	tctgaaagcg agaattcagc cagtaccaca acaaatgtaa atatgaacgt tgcccgctct	900
	tactggaaag gtaatgctta taccttcaat agcggcgata aagcgggttag tgatctggat	960
	ataaatcttt ccgatagttc agtctggaaa ggcaaagttt caggggcagg agatgccagt	1020
	gtatctctgc aaaacgggtc tgtctggaaat gttacgggtt cctcaactgt tgatgctctg	1080
	gcagtaaaag acagtacggt taatatcagc aaggctacag tcaatactgg cacgttgct	1140
	tctcaaaacg gcactctgat ttttgatgcc tcttctgaaa acactctgg tatcagcggt	1200
	aaagcgagcg gtgacttgcg ttttacagt gcgggttcat tggatcttat caatgaacaa	1260
	acggcattta tttctaccgg caaagacagc actctaaaag ccacaggcac aacggaaggt	1320
	ggtctgtatc aatatgacct gacacagggc gctgatggta acttttattt cgtaaaaaac	1380
	acgcataaaag catccaacgc cagctccgtg attcaggcaa tggcagctgc tccggctaac	1440
	gtcgctaattc tgcaggctga cacgctctcc gcccgtcagg atgctgtccg tctgagcgaa	1500

aatgacaagg	gtggcgatg	gattcagttac	tttggcgta	aacagaaaaca	taccaccg	cg	1560					
ggaaatgc	at	cctatgac	ctt	ggatgtaaat	ggtgtaatgc	tgggtgg	tga	tacccg	c	1620		
atgactgaag	at	ggtagctg	gt	ctggccgg	gtggcgatgt	ctt	ctgcgaa	agg	tgacatg	1680		
actaccatgc	ag	agcaaaagg	tg	acactgaa	ggttacagct	tccacg	cgtt	cctgag	ccgc	1740		
cagtataaca	ac	ggttatctt	cattgata	act	gtgcacagt	ttgg	tca	cacta	caga	caacac	1800	
gcagatgttc	gc	cgtatgaa	tgg	ggcggt	accatcaa	ag	ctgactt	aa	cac	ccaatgg	1860	
tttggtgcg	ta	ggtaaagg	cg	gttacaca	tggaaagac	gt	aatgg	cct	gtt	tattc	1920	
ccatatgcca	aa	ctgtctgc	tctgactctg	ga	agggtgt	gg	attatca	act	caac	ggcgt	1980	
gacgttcatt	ct	gacagcta	taactctgt	ct	gggtgagg	cc	ggta	cac	gg	gtt	2040	
gacttcgctg	tgg	gcaacgc	gaccgtt	aaa	ccttatct	ga	atctgg	ccgc	act	gaac	gaa	2100
ttctctgatg	gca	acaaagt	ccgtctgg	gt	gaggtct	tg	tcaatg	ccag	catt	gac	gg	2160
gcagcattcc	gc	gtgggtgc	agg	gtacaa	gctgat	atc	aaaaacat	ggg	agg	cat	at	2220
gcaagcctt	g	actacac	aa	agg	tgac	at	tgagaacc	cg	ctac	agg	ttgt	2280
atcaatgtga	c	c	c	tgg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	2295

<210> 153
 <211> 1980
 <212> DNA
 <213> Escherichia coli

<400> 153

atgtcacgtc	cg	caatttac	ctcg	ttgcgt	tt	gagttt	gt	ggctt	ttggc	tgtt	tctg	cc	60					
accttgccaa	cgtt	gctt	ttt	tgc	tact	gaa	accat	gacc	gt	acgg	caac	gggg	aatg	ca	120			
cgtagttcct	tc	gaag	cg	cc	tat	gat	gg	tc	ac	gttat	cg	ac	ttt	ccgc	tc	180		
caaactgcta	ctt	cag	cc	ac	tg	at	ttt	gt	cg	tat	gtt	cc	ttt	ttt	ttt	240		
accggacgaa	cc	aaac	cg	gt	ca	gg	at	gt	gg	ct	at	cg	gg	cg	gt	ctg	300	
gttcttgtcg	at	gg	gt	tt	cg	cc	agg	ga	ac	gat	cc	aa	ttt	ttt	ttt	ttt	360	
gatccggcgc	tg	at	ca	ag	cg	t	tt	g	gg	ac	tt	ca	gg	cc	at	gc	420	
agtggcgcgc	tgg	gt	gg	gg	at	tc	c	tc	at	cg	at	ca	aa	aa	aa	aa	480	
gaaggacaaa	gc	ag	tg	gt	ttt	tc	gt	gt	ttt	gg	ac	gg	gg	gg	cc	at	ac	540
ggattaggcg	cg	ag	cg	cg	ttt	tg	gg	cg	aa	act	gt	ttt	ttt	ttt	ttt	ttt	ttt	600

agtcgcgatc	ggggtgattt	acgccagagc	aatggtgaaa	ccgcgcggaa	tgacgagtcc	660
attaataaca	tgctggcgaa	aggcacctgg	caaattgatt	cagcccagtc	tctgagcggt	720
ttagtgcgtt	actacaacaa	cgacgcgcgt	gaaccaaaaa	atccgcagac	cgttgaagct	780
tctgatagca	gcaaccgat	ggtcgatcgt	tcaacaattc	aacgcgatgc	gcagcttct	840
tataaactcg	ccccgcaggg	taacgactgg	ttaaatgcag	atgcaaaaat	ttactggtcg	900
gaagtccgta	ttaatgcgca	aaacacgggg	agttcaggcg	agtatcgtga	acagataaca	960
aaaggagcaa	ggctggagaa	ccgttccact	ctattgccc	acagttcgc	ttctcactta	1020
ctgacatatg	gcggtgagta	ttatcgtcag	gaacaacatc	cgggtggcgc	gacgacggc	1080
ttcccgcaag	caaaaatcga	tttagtctct	ggttggctac	aagatgagat	caccttacgc	1140
gatctgccga	ttaccctgct	tggcggAAC	cgctatgaca	gttatcgccg	tagcagcgc	1200
ggctacaaag	atgttgcgtc	cgacaaatgg	tcatctcg	cggggatgac	tatcaacccg	1260
accaactggc	tgatgttatt	tggctcatat	gctcaggcat	tccgcgcccc	gacgatggc	1320
gaaatgtata	acgattctaa	acacttctcg	attggtcgt	tctataccaa	ctattggtg	1380
ccaaacccga	acttacgtcc	ggaaactaac	gaaactcagg	agtacggtt	tgggctgcgt	1440
tttgcgtacc	tgatgttgc	caatgatgct	ctggaattta	aagccagcta	ctttgatacc	1500
aaagcgaaag	attatatctc	cacgaccgtc	gatttcgcgg	cggcgcacaac	tatgtcgtat	1560
aacgtcccga	acgccaaat	ctggggctgg	gatgtgatga	cgaatatac	cactgatctg	1620
tttagccttg	atgtggctta	taaccgtacc	cgcggcaaag	acaccgatac	cggggatat	1680
atctccagca	ttaacccgga	taccgttacc	agtaccctga	atattccgat	cgctcacagc	1740
ggcttctctg	ttgggtgggt	cgtacgttt	gccgatcgct	caacacatat	cagcagcgc	1800
tacagcaaac	aacctggcta	tggtgtgaat	gatttctacg	tcagttatca	agggcagcag	1860
gcgcctcaaag	gcatgaccac	tactctggta	ttggcaacg	ccttcgataa	agagtaactgg	1920
tcggccgaag	gcatcccaca	ggatggtcgt	aacggaaaaa	tttcgtgag	ttatcaatgg	1980

<210> 154
 <211> 2157
 <212> DNA
 <213> Escherichia coli

<400> 154

atgagggatg	aaatgttata	taatataacct	tgtcgaaattt	atatccttc	cactctgtca	60
ttatgcattt	ctgggatagt	ttctactgca	accgcaactt	cttcagaaac	aaaaatcagc	120

aacgaagaga cgctcgctgt gaccacgaat cgttcgcaaa gcaacctttg ggaaagcccg 180
gcgactatac aggttattga ccaacaaaca ttgcagaact ccaccaatgc ctccatagcc 240
gataatttgc aggacatccc cgagtagag ataacagaca actccttgc aggccgtaaa 300
caaatccgca ttctggcga agcatcctcc cgtgtttaa ttctcattga tggtcaggag 360
gtaacttatac agcgcgccgg agataattat ggtgtggac tggtataga tgagtctgctg 420
ctggagcgtg ttgaggttgtt gaaaggtcca tattccgtac tgtacggttc acaggcaatt 480
ggcggatttg ttaacttcat aaccaaaaaag ggaggtgaca aacttgcattc tggagttgtg 540
aaagctgttt ataattccgc aacagcaggc tggaaagaat caatcgccgt ccagggagc 600
atcggtggat ttgattatcg catcaacggt agttattctg atcagggcaa tcgtgatacg 660
ccggatggac gtctgccgaa taccaactat cgtaacaata gtcagggtgt atgggtgggt 720
tataactccg gaaaccatcg tttggcctc tcgcttgatc gctacagact cgccgacgcaa 780
acttactatg aggatccaga cgaaagctat gaggcattt gtgtcaaaat acctaaactt 840
gaacgagaga aagttgggtt attctatgac acagacgtgg acggtgacta tctaaaaaaaa 900
attcatttcg acgcgttatga gcagaccatc cagccaaat ttgccaacga agtaaaaacg 960
acacagcctg ttcccagtcc gatgattcag gctctgaccg ttcataacaa gactgacacc 1020
catgataagc aatacactca ggcgtcaca ttgcagagtc actttcgct gcctgctaatt 1080
aatgaacttg ttaccgggtgc acagtacaaa caagacaggg tcagccaaag gtccgggtgc 1140
atgacctaagc gcaaattctt gaccggcttc attaataagg aaacacgaac tcgctcctat 1200
tatgagtcag agcaaagtac agtctcacta ttgcacaaa atgactggcg attcgccgat 1260
cactggacat ggacaatggg agttcgccaa tactggctt cttcaaaagg gacgcgtgg 1320
gacggagttt catataccgc agcattata agcgtacact ctctgcccag agagtctgctg 1380
agtgtacacg aaatggtaac atctacaagc ctgcgttatt caggtttcga taacttggag 1440
ttacgcgtt cggtcgccaa aggctacgtt tttcccacac tctcccgatc ttttatgcag 1500
acatctgcgg gcggcagtgt cacatacggg aatcctgatc ttaaggctga acactccaaat 1560
aactttgaat taggtgcacg atataatggt aatacgtggc tgattgacag cgcaatgg 1620
tactcagaag ctaaagatta tattgcaagt ctgatctgtt atggcagtat agtttgcatt 1680
ggtaacacca actcctcccg tagtagctac tattattatg acaatattga tcggccaaa 1740
acatggggac tggaaataag cgccgtat aatggctggg ttttcgtcc atatatcgt 1800

ggcaatttaa ttcgtcgca atatgaaact tcaacattaa aaacaactaa tacaggagaa 1860
ccagcgataa acggacgtat agggctgaaa catactcttgc tgatgggtca ggccaacata 1920
atctctgatg ttttatttcg tgctgcctct agtgcaaaag atgacagtaa cggtaccgaa 1980
acaaatgttc cgggctggc cactctcaac tttgcagtaa atacagaatt cggtaacgag 2040
gatcagtccc ggattaacct agcactcaat aacctgacag acaaacgcta ccgtacagca 2100
catgaaacta ttccctgcagc aggttttaat gcagctatag gtttgtatg gaatttc 2157

<210> 155
<211> 600
<212> DNA
<213> Escherichia coli

<400> 155

atgcgtaaag tttgtgcagt cattttgtcc gcagccatct gtctgtccgt atccgggtcg 60
cctgcattggc cgtctgaaca tcagtcacaca ctgagcgcgg ggtatcttca tgcccgtag 120
aacgctccccg gcagcgataa tctgaacggg attaacgtga aataccgtta tgagtttacg 180
gacgcgctgg ggctgattac gtccttcagt tatgccaatg ctgaggatga gcaaaaaacg 240
cactacagcg atacccgctg gcatgaagat tccgtgcgt accgctgggt cagcgtatg 300
gcggggccgt ctgtacgcgt gaatgaatgg ttcagcgcgt attcgatggc gggtgtggct 360
tacagccgtg tgtcgacttt ctccggggat tatctccgcg taactgacaa caagggaaa 420
acgcacgatg tgctgaccgg aagtgtatgac ggtcgccaca gcaacacgtc tctggcgtgg 480
ggggctggcg tgcagttaa cccgaccgaa tccgtgacca ttgaccttgc ttatgaaggt 540
tccggtagtg gcgactggcg aacggatgca tttattgttg gtatcggata ccgtttctga 600

<210> 156
<211> 1368
<212> DNA
<213> Escherichia coli

<400> 156

atgaaaaaat cgacatttac tttagccatc ggtttattat tggcatgtatg taccggatg 60
gcaaaaacac agcatttaac gctggaacaa cgcctggaag cggcagaaat gcgggcagca 120
aaagcagagg ggcaggatcaa acagcttcag acacaacaag ccgcccagat ccgcgaaatt 180
aaaaccgcac agggcaacac gccggtaaac ggtcaatcaa cgacggagtc agagaagaaa 240
aacgccaccc cgcctaattct cctgctttca gggatggcg attaaaaat ctacggtgac 300

gtagaattta atatggatgc ggaaagtaat catggcctgc tggcaatgac caacgctgat	360
gtgaatagcg atcccactaa tgaatggaat ctcaatggtc gtattctgtt aggtttgtat	420
ggtatgcgaa aactggataa tggctatttc gctgggttct ccgcacaacc gctggggat	480
atgcacggtt cagtaaatat cgatgatgct gtttcttct ttggcaaaga aaacgactgg	540
aaggtaaag taggccgttt tgaagcctac gatatgttcc cgctgaatca ggataccctt	600
gttgaacatt ccggtaatac tgcaacgat ctatgtacg atggcagcgg ttatatctat	660
atgatgaaag agggccgcgg acgttctaac gctggcgta atttcctcgt cagcaaacaa	720
ctcgataact ggtattttga attaaacacg ttactggaag acgaaacatc tttatataac	780
gacggtaatt atcatggacg cgatatggaa cagcagaaaa atgttgctta tctgcgtccg	840
gtaattgcct ggtcgccgac ggaagaattc accgttccg cagcgatgga agcgaatgtg	900
gtaaataatg cttatggta taccgatagc aaggtaatt ttgtcgatca gtccgatcgt	960
accggttatg gcatgagtat gacctggaaat ggcctgaaaa ccgatccgaa aaatggcatc	1020
gtggtaatc ttaataccgc ctattnatg gctaataatg aaaaagattt cacggcaggg	1080
attaacgcgc tggaaacg ttcgagctg gtttatct atgcacataa taagattgt	1140
gaattnatgt gcgtggtttg tgataacgat tgctggattt atgatgaagg aacatacaac	1200
attcacacca ttcatgcgtc ttatcgttc gctaatgtga tggatatgga gaactttaat	1260
atttacctcg gcacgttata ctccattctg gatagcgacg gcgataagat acacggcgac	1320
gatagtgtatg accgttacgg cgacgcgtt cgcttaaat acttcttc	1368

<210> 157
<211> 522
<212> DNA
<213> Escherichia coli

<400> 157

atgaacggca aacgcgttct ggcctgcgtt ctgatgagcg tcgtattaaac tggctgtgaa	60
acagcgaaaa aaatcagcca ggtgatccgc aatccggata ttcaggtcgg aaagctgatg	120
gatcagtcaa ccgagctgac cgtcacgctg ctgaccgagc cggacagcaa cctgacggcg	180
gatggcgaag ccgcgcgggt ggtatgtccag ttggtttac tgagcgacga ctcaaaattc	240
catgccgccg actacgacca ggttgccacc accgcgctgc ccgacgtgt gggaaaaaac	300
tatatcgatc accaggactt caacctgttg ccggataccg taaaaacact gcccggatc	360

aagttggatg agaaaaccgg ttatatcggt gtcattgcct attttcaga cgaccaggcc	420
acagaatgga aacaaattga gtcggtagaa agtatcgcc accactatcg cctgctggtg	480
catatccgcg ccagtgcgt tgagatgaaa aaagaggaaa ac	522
<210> 158	
<211> 3432	
<212> DNA	
<213> Escherichia coli	
<400> 158	
ctgacgctgg catggatttt tctgctggtg tggatctggt ggcagggtcc aaaatggacg	60
ctctatgagc agcactggct ggctccgctg gcaaaccgct ggctggcgac cgccgtctgg	120
ggacttatcg ctctggctcg gctcacctgg cgggtgatga agcgtctgca aaagctggaa	180
aaacacgaca aacagcagcg ggaggaagaa aaagatccgt tgaccgtgga actccaccgc	240
cagcagcaat atctggatca ctggctgctg cgcctgcgcc gccatctgga taaccgcgt	300
tatctgtggc agttgcccgtg gtatatggtc attggctctg cggtagcgg caaaagcacg	360
ctgctgcgcg agggcttcc gtctgacatt gtttacacgc cgaaagcat ccgggtgtg	420
gaataccacc cgctgatcac accgcgagtg ggcaaccagg cgtaatttt cgatgttgac	480
ggcgtactga ccactcccg cggggatgat ctgctccgcc gccgcctgca cgaacactgg	540
ctgggctggc tcatgcaaac gcgcgtcgc cagccgtca acggctttat cctgacgctc	600
gatcttcccg atctgctgac ggcggataaa tcccggctg agacactggt acaaaatttg	660
cgcaccaac ttcaggagat ccgtcagagc ctgcactgcc gtctgcccgt ttacgtggtg	720
ctgacacggc tggatctgct gaacggctt gccgcgtgt tccattcact ggataaaaaaa	780
gaccgcgtg cgatcctcg cgtaacatt accccgcgcg cccatgaaag tgacggctgg	840
cgcaccaac tggggcttt ctggcagacg tgggtacaac aggtgaacct ggacgtgtcg	900
gatctgggtgc tcgcaccaac cgggtctgct cccgcagcg ctgtgttcag cttctccgt	960
cagatgcagg gaacaggaga aatcgtcacc gcactgctcg ccgcattgt ggacgggtgag	1020
aacatggatg taatgctgctg tggcgctctgg ctcacatcct cgctacagcg tggccaggtg	1080
gatgatattt tcacgcagtc cgccgccccgc cagtacggac tggtaacag ctcgctggca	1140
acctggcctc tggtgagac gacgcccgtat tttactcgcc gcctttccc ggaagtcctg	1200
ctggctgagc cgaacctggc gggtgaaaac agcgtctggc tgaacagctc ccggcgcagg	1260

ctgaccgcct tttccacctg tggcgccga ctggcggcat tgatggtcgg aagctggcac 1320
cattattaca atcagaactg gcagtctggc gttaacgtac tggcacaagg taaagcctt 1380
atggacgtac caccacccga gggAACGGAT gaattcggca atctgcaatt gccattgctt 1440
aacccggatc gcgatgccac cctggcctat ggtgattatc gcgatcacgg tttctggcg 1500
gatatggat tgtaccaggg cgccccgcgtt gggccgtatg tggagcaaac ctacattcag 1560
cttcttgagc agcgatatct cccctcgatc atgaacggcc tgatccggga tctaaacatt 1620
gccccggccag agagcgaaga aaagctcgct gtgctgcgcg tagtgcgcata gatgaaagac 1680
aaaagtggc gcaacaacga ggcggtaaaaa cagtacatgg cacggcgctg gagcaatgaa 1740
tttcacggcc agcgatcat tcaggcgca ctgatggtgc atctggacta tgcgctggag 1800
cacaccgact ggcacgcgcg cgcggaaaggc agcgacagcg atgctgtcag ccgcgtggacc 1860
ccctatgata aaccgatcat taatgcgcag caggaactga gcaagctgcc catataccag 1920
cgtgtctacc agaccctgacg caccggaaatca ttaagcgtgt tgcccgccga tttgaatttg 1980
cgcgaccagg ttggcccac ctgcacaac gtgttcgtcg ccggtaatga tgaaaaactg 2040
gtgatcccgc agttccctac ccgctatggc ctgcaagct atttgtcaa acagcgtgag 2100
ggcctcggtt agctgaccgc gctggattcg tgggtactga acctgacgcg aagcgtcgcc 2160
tacagcgagg ccgaccgtga agagatccag cgccatatac ccgaacagta catcagtgc 2220
tataccgcca cctggcgtgc cggaaatggat aacctaaccg tccgtgacta tgaggccatg 2280
tcggcgctga ccgacgcgcg ggagcagatt atcagcgccg atcagccatt ccagcgtgcg 2340
ctgacggcgcc tgcgcgataa tacccacgcg ctgacgctct ccggcaaaact ggtgataag 2400
gcgagggaag cggcgataaa tgagatggat taccgcgtt tatcccgct gggcatgag 2460
ttcgcaccgg aaaacagcgc actggaggag caaaaggaca aggcgagtac gctacaggcc 2520
gtgtaccagc aactgaccga gctgcaccgt tacctgctgg cgatccagaa ctcggcagtg 2580
ccggggaaat cggcgctgaa agcagtacag ctacggctgg atcaaaacag cagcgatcca 2640
atcttcgcca cccgtcagat ggcaaaaacc ctgcctgcgc ctcttaaccg ctggtaggt 2700
aagctcgccg atcaggcctg gcatgtggtg atggtggaaat ccgttcgtt catgaaatg 2760
gactggcgccg acaatgttgtt gaaacccttc aacgagcagc ttgcccataa ctatccgtt 2820
aatcccgccg ccacacagga tgcctcactg gattcggtt aacgtttctt taaaccggat 2880
ggcattctgg acaatttcta caagaacaac ctgcgcgtt tccttgaaaa cgatctgacc 2940

tttggcgacg acggcagagt gtaaatccgt gaagatatacc ggcagcaact ggataccgct	3000
cagaaaatcc ggcacatctt cttcagccag cagaacgggc tggcgcaca gtttgcgtg	3060
gaaaccgtat cgcttcgg caataagcgg cgcagcgtac ttaacctgga cggccagtt	3120
gtggactaca gccaggacg caactacacc gcccattctgg tctggccgaa caacatgcgt	3180
gaaggcaatg aaagcaagct gacgctgatt ggcaccagcg gcagagcacc ggcagttac	3240
gcgttcagtg gaccgtggc gcagttccgc ctgttcggcg cggccagtt gaccaatgtg	3300
accagtgaca cctttaacgt gcgcatttaac gtggacggcg ggcataatgtt ttaccaggt	3360
catgtggata ccgaagataa cccgttcacc ggccgtctgt tcagcctgtt ccgtttaccg	3420
gatacgttgt at	3432

<210> 159

<211> 725

<212> PRT

<213> Escherichia coli

<400> 159

Met Arg Ile Asn Lys Ile Leu Trp Ser Leu Thr Val Leu Leu Val Gly			
1	5	10	15

Leu Asn Ser Gln Val Ser Val Ala Lys Tyr Ser Asp Asp Asp Asn Asp		
20	25	30

Glu Thr Leu Val Val Glu Ala Thr Ala Glu Gln Val Leu Lys Gln Gln		
35	40	45

Pro Gly Val Ser Val Ile Thr Ser Glu Asp Ile Lys Lys Thr Pro Pro		
50	55	60

Val Asn Asp Leu Ser Asp Ile Ile Arg Lys Met Pro Gly Val Asn Leu			
65	70	75	80

Thr Gly Asn Ser Ala Ser Gly Thr Arg Gly Asn Asn Arg Gln Ile Asp		
85	90	95

Ile Arg Gly Met Gly Pro Glu Asn Thr Leu Ile Leu Ile Asp Gly Val		
100	105	110

Pro Val Thr Ser Arg Asn Ser Val Arg Tyr Ser Trp Arg Gly Glu Arg		
115	120	125

Asp Thr Arg Gly Asp Thr Asn Trp Val Pro Pro Glu Gln Val Glu Arg
130 135 140

Ile Glu Val Ile Arg Gly Pro Ala Ala Ala Arg Tyr Gly Ser Gly Ala
145 150 155 160

Ala Gly Gly Val Val Asn Ile Ile Thr Lys Arg Pro Thr Asn Asp Trp
165 170 175

His Gly Ser Leu Ser Leu Tyr Thr Asn Gln Pro Glu Ser Ser Glu Glu
180 185 190

Gly Ala Thr Arg Arg Ala Asn Phe Ser Leu Ser Gly Pro Leu Ala Gly
195 200 205

Asp Ala Leu Thr Thr Arg Leu Tyr Gly Asn Leu Asn Lys Thr Asp Ala
210 215 220

Asp Ser Trp Asp Ile Asn Ser Pro Val Gly Thr Lys Asn Ala Ala Gly
225 230 235 240

His Glu Gly Val Arg Asn Lys Asp Ile Asn Gly Val Val Ser Trp Lys
245 250 255

Leu Asn Pro Gln Gln Ile Leu Asp Phe Glu Val Gly Tyr Ser Arg Gln
260 265 270

Gly Asn Ile Tyr Ala Gly Asp Thr Gln Asn Ser Ser Ser Ala Val
275 280 285

Thr Glu Ser Leu Ala Lys Ser Gly Lys Glu Thr Asn Arg Leu Tyr Arg
290 295 300

Gln Asn Tyr Gly Ile Thr His Asn Gly Ile Trp Asp Trp Gly Gln Ser
305 310 315 320

Arg Phe Gly Val Tyr Tyr Glu Lys Thr Asn Asn Thr Arg Met Asn Glu
325 330 335

Gly Leu Ser Gly Gly Glu Gly Arg Ile Leu Ala Gly Glu Lys Phe
340 345 350

Thr Thr Asn Arg Leu Ser Ser Trp Arg Thr Ser Gly Glu Leu Asn Ile
355 360 365

Pro Leu Asn Val Met Val Asp Gln Thr Leu Thr Val Gly Ala Glu Trp
370 375 380

Asn Arg Asp Lys Leu Asp Asp Pro Ser Ser Thr Ser Leu Thr Val Asn
385 390 395 400

Asp Arg Asp Ile Ser Gly Ile Ser Gly Ser Ala Ala Asp Arg Ser Ser
405 410 415

Lys Asn His Ser Gln Ile Ser Ala Leu Tyr Ile Glu Asp Asn Ile Glu
420 425 430

Pro Val Pro Gly Thr Asn Ile Ile Pro Gly Leu Arg Phe Asp Tyr Leu
435 440 445

Ser Asp Ser Gly Gly Asn Phe Ser Pro Ser Leu Asn Leu Ser Gln Glu
450 455 460

Leu Gly Asp Tyr Phe Lys Val Lys Ala Gly Val Ala Arg Thr Phe Lys
465 470 475 480

Ala Pro Asn Leu Tyr Gln Ser Ser Glu Gly Tyr Leu Leu Tyr Ser Lys
485 490 495

Gly Asn Gly Cys Pro Lys Asp Ile Thr Ser Gly Gly Cys Tyr Leu Ile
500 505 510

Gly Asn Lys Asp Leu Asp Pro Glu Ile Ser Val Asn Lys Glu Ile Gly
515 520 525

Leu Glu Phe Thr Trp Glu Asp Tyr His Ala Ser Val Thr Tyr Phe Arg
530 535 540

Asn Asp Tyr Gln Asn Lys Ile Val Ala Gly Asp Asn Val Ile Gly Gln
545 550 555 560

Thr Ala Ser Gly Ala Tyr Ile Leu Lys Trp Gln Asn Gly Gly Lys Ala
565 570 575

Leu Val Asp Gly Ile Glu Ala Ser Met Ser Phe Pro Leu Val Lys Glu
580 585 590

Arg Leu Asn Trp Asn Thr Asn Ala Thr Trp Met Ile Thr Ser Glu Gln
595 600 605

Lys Asp Thr Gly Asn Pro Leu Ser Val Ile Pro Lys Tyr Thr Ile Asn
610 615 620

Asn Ser Leu Asn Trp Thr Ile Thr Gln Ala Phe Ser Ala Ser Phe Asn
625 630 635 640

Trp Thr Leu Tyr Gly Arg Gln Lys Pro Arg Thr His Ala Glu Thr Arg
645 650 655

Ser Glu Asp Thr Gly Gly Leu Ser Gly Lys Glu Leu Gly Ala Tyr Ser
660 665 670

Leu Val Gly Thr Asn Phe Asn Tyr Asp Ile Asn Lys Asn Leu Arg Leu
675 680 685

Asn Val Gly Val Ser Asn Ile Leu Asn Lys Gln Ile Phe Arg Ser Ser
690 695 700

Glu Gly Ala Asn Thr Tyr Asn Glu Pro Gly Arg Ala Tyr Tyr Ala Gly
705 710 715 720

Val Thr Ala Ser Phe
725

<210> 160

<211> 2175

<212> DNA

<213> Escherichia coli

<400> 160

atgagaatta acaaaaatcct ctggtcgcta actgtgctcc tagttgggtt gaatagccag 60
gtatcagtag ccaaatactc cgacgatgat aatgacgaga ctctggtgtt ggaagccacc 120
gctgagcagg tattaaaaca gcagccgggc gtgtcggtta ttaccagcga ggatattaaa 180
aagaccctc cggttaaacga cctttcagat attattcgta aaatgcctgg tgttaatctt 240
accggcaata gcgcctcggg cacacgcggg aataaccgcc agatcgatat tcgtggatg 300

ggcccgaaaa acacctaattttaattgtat ggtgtaccgg tgacgtcaca taactccgtg 360
cgttatacgctt ggcgtgggg gcgtgatacc cgcggtgaca ccaactgggt gccaccggaa 420
caggtttagcgtt gtttgaagt gatccgcggc cctgcggcgg cgcgctacgg ttcgggggcc 480
gccgggggggg tggtgaacat cattacaaa cgtcccacca acgactggca cggttcgctg 540
tcgttataca ccaaccagcc ggaaagttagc gaagagggcg ctacgcgtcg cgccaatttc 600
agccttagtg ggcctctggc tggtgatgctt accacacgc gtttgtatgg taacctgaat 660
aaaacggatg ctgacagttt ggtatattaat tctccggtcg gtacgaaaaaa cgccagccggg 720
catgaagggg tacgtAACAA agatattaac ggcgttgct cgtgaaatt aaatccgcag 780
cagattctcg atttcgaagt cgatatacg cgccaggaa atatctatgc gggcgatacg 840
cagaacagtt ctccagtcg agttaccgaa agcctggcaa aatccggcaa agagacgaac 900
cgccctgtacc gacagaatta tggcattacg cataatggta tctggactg gggacaaagt 960
cgctttggtg ttattacga gaaaaccaat aataccgcataatggta tgaatgaagg attatccggc 1020
ggtggtaag gacgtatTTT agcgggtgaa aagtttacga ccaatcgccct gagttcctgg 1080
cgaaccagcg gtgagcttaa tattccttg aatgtgatgg ttgatcaaac gctgaccgtt 1140
ggtgcagagt ggaaccgcga taagctcgat gatccttcctt ctaccagcct gacggtaat 1200
gacagagata tcagcggtat ttctggctct gctgcggatc gcagcagtaa aaatcattct 1260
caaatcagtgcgttat tgaagataac attgagccgg ttccctggcac gaatatcatt 1320
cccgccctgc gctttgatta tctcagcgac tccggcggga acttcagcccc cagtctgaat 1380
ctttcgccagg aattgggcga ttatttcaaa gtcaaagcag gggttgcccc aacctttaaa 1440
gccccaaacc tgtatcaatc cagtgaaggc tatctgctct actcgaaagg caatggctgt 1500
ccaaaagata ttacatcagg cgggtgctac ctgatcggtataaagatct cgatccggaa 1560
atcagcgtaataaagaaat tggactggag ttcacctggg aagattacca cgcaagtgtg 1620
acctacttcc gcaatgatta ccagaataag atcgtggccg gggataacgt tatcggccaa 1680
accgcttcag ggcataatc cctcaagtgg cagaatggcg gggaaagctct ggtggacgg 1740
atcgaagcca gtatgtcttt cccactggtg aaagagcgatc tgaactggaa taccaatgcc 1800
acatggatga tcacttcgga gcaaaaagac accggtaatc ctctgtcggt catccggaaa 1860
tataactatca ataactcgct taactggacc atcaccagg cgtttctgc cagcttcaac 1920
tggacgttat atggcagaca aaaaccgcgt actcatgcgg aaacccgcag tgaagatact 1980
ggcggtctgt caggtaaaga gctggcgct tattcactgg tggggacgaa cttcaattac 2040

gatattaata aaaatctgcg tcttaatgtc ggcgtcagta atatcctcaa taaacagatc 2100
ttccgatctt ctgaaggggc gaataacctat aacgagccag gccgggctta ttatgccgga 2160

gttaccgcat cattc 2175

130