BCH 571 Bioinformatics for Life Scientists

Lab 8

In class, I presented the ImprovedBreakPointReversalSort algorithm:

```
ImprovedBreakpointReversalSort(\pi) while b(\pi) > 0 if \pi has a decreasing strip choose p(i,j) such that b(\pi \cdot p(i,j)) is minimized else choose p(i,j) that flips an increasing strip output p(i,j) \pi \leftarrow \pi \cdot p(i,j) output \pi return
```

where π is a permutation, $\rho(i,j)$ is a reversal, and $b(\pi)$ is the number of breakpoints in π . Remember that π is augmented with a 0 at the start and n+1 at the end.

Part 1:

The step "choose $\rho(i,j)$ such that $b(\pi \cdot \rho(i,j))$ is minimized" is not detailed. Write a function (called minimizebreakpoint) that returns a tuple of i and j for which $b(\pi \cdot \rho(i,j))$ is minimized. The input is π , which should be provide as a list.

It will be convenient to write a function that determines the number of breakpoints (called breakpoints), given π , and a function that determines $\pi \cdot \rho(i,j)$ (called reversal), given π , i, and j.

Part 2:

With minimizebreakpoint in hand, ImprovedBreakpointReversalSort is straight-forward to implement. Implement ImprovedBreakpointReversalSort with input π , a list.

It will be convenient to write a function (called hasdecreasing strip) that returns a Boolean that indicates TRUE if there is a decreasing strip in π .

Try running with $\pi = (0.876134259)$ (where π is already augmented with 0 and 9=n+1.).