Computational Thinking 2024/25 Logic Coursework

Barnaby Martin

You should submit two files, each through a different Gradescope portal. One should be a PDF document containing your answers to all the theoretical/mathematical questions, and the other a single Python file with your code. Please name the Python file according to your username (e.g. mpll19.py).

The coding part of the coursework will be to write a SAT-solver in Python. Note that you will be restricted in some of your choices for data structures and function names. The data structure for a literal will be an integer, where a negative integer indicates the negation of the variable denoted by the corresponding positive integer. The data structure for partial assignment should be a list of literals. The data structure for a clause set should be a list of lists of literals.

- Answer the following questions about complete sets of logical connectives, in each case justifying your answer.
 - (i). Show $\{\neg, \rightarrow\}$ is a complete set of connectives. [3 marks.]
 - (ii). Show $\{\rightarrow,0\}$ is a complete set of connectives (where 0 is the constant false). [3 marks.]
 - (ii). Is $\{NAND, \wedge\}$ a complete set of connectives? [3 marks.]
 - (iv). Is $\{\land, \lor\}$ a complete set of connectives? [3 marks.]
- 2. Convert $(((p \rightarrow q) \rightarrow r) \rightarrow (s \rightarrow t))$ to
 - (i). Conjunctive Normal Form (CNF) [4 marks.]
 - (ii). Disjunctive Normal Form (DNF) [4 marks.]

[8 marks]

- 3. What is the purpose of Tseitin's Algorithm? Apply Tseitin's Algorithm to turn the propositional formula $(((x_1 \land x_2 \land x_3) \rightarrow (y_1 \land y_2 \land y_3)) \lor z)$ to CNF. [8 marks]
- 4. State with justification if each of the following sentences of predicate logic is logically valid. [8 marks]
 - (i.) $(\forall x \exists y \forall z \ E(x,y) \land E(y,z)) \rightarrow (\forall x \forall z \exists y \ E(x,y) \land E(y,z))$ [2 marks].
 - (ii.) $(\forall x \exists y \exists u \forall v \ E(x,y) \land E(u,v)) \rightarrow (\exists u \forall v \forall x \exists y \ E(x,y) \land E(u,v))$ [2 marks].
 - (iii.) $(\forall x \exists y \forall z \ R(x,y,z)) \rightarrow (\exists x \forall y \exists z \ R(x,y,z))$ [2 marks].
 - (iv.) $((\forall x \forall y \exists z (E(x,y) \land E(y,z))) \rightarrow (\forall x \forall y \forall z (E(x,y) \lor E(y,z))))$ [2 marks].
- 5. Evaluate the given sentence on the respective relation E over domain $\{0,1,2\}$ [8 marks]
 - (i.) $\forall x \forall y \forall z \exists w (E(x, w) \land E(y, w) \land E(z, w))$ [1 mark].
 - (ii.) $\exists x \forall y \forall z \exists w (E(x, w) \land E(y, w) \land E(z, w))$ [1 mark].
 - (iii.) $\forall y \exists x \forall z \exists w (E(x, w) \land E(y, w) \land E(z, w))$ [1 mark].
 - (iv.) $\exists x \exists y \exists z \forall w (E(x, w) \land E(y, w) \land E(z, w))$ [1 mark].

```
\forall x_1 \exists x_2 \forall y_1 \exists y_2 \forall z_1 \exists z_2 \forall z \exists y
(v.) E(x_1, x_2) \wedge E(x_2, w) \wedge E(y_1, y_2) \wedge E(y_2, w) \wedge E(z_1, z_2) \wedge E(z_2, w) \wedge E(z, w)
[2 marks]. \forall x_1 \exists x_2 \forall y_1 \exists y_2 \forall z_1 \forall z \exists z_2 \exists y
(vi.) E(x_1, x_2) \wedge E(x_2, w) \wedge E(y_1, y_2) \wedge E(y_2, w) \wedge E(z_1, z_2) \wedge E(z_2, w) \wedge E(z, w)
[2 marks].
```

- 6. Write a Python function load_dimacs, that takes a file in DIMACS format as input and returns the clause set as a list of lists. For example the file containing the lines: "p cnf 3 2", "1 -2 0" and "-1 3 0" would become [[1, -2], [-1, 3]]. [6 marks]
- 7. Write a Python function $simple_sat_solve$, that takes a single argument clause_set as a list of lists and solves the satisfiability of the clause set by running through all truth assignments. In case the clause set is satisfiable it should output a full satisfying assignment as a list of literals; in the case the clause set is unstatisfiable the function should output False. For example on the input [1, -2], [-1, 3] the function might return [1, 3]. [10 marks]
- 8. Write a recursive Python function branching_sat_solve that takes two arguments clause_set and partial_assignment as input and returns either a full satisfying assignment, if the clause_set is satisfiable under the partial assignment, or False if it is not. You should assume clause_set is a list of lists representing the clause set and partial_assignment is a list of literals. The function should solve the satisfiability of the clause set by branching on the two truth assignments for a given variable. When the function is run with an empty partial assignment it should act as a SAT-solver. [10 marks]
- 9. Write a Python function unit_propagate that takes a single argument clause_set as input and which outputs a new clause set after iteratively applying unit propagation until it cannot be applied further. [10 marks]
- 10. Write a recursive Python function <code>dpll_sat_solve</code> that takes two arguments <code>clause_set</code> and <code>partial_assignment</code> as input and solves the satisfiability of the clause set under the partial assignment by applying unit propagation before branching on the two truth assignments for a given variable (this is the famous DPLL algorithm but without pure literal elimination). In case the clause set is satisfiable under the partial assignment it should output a full satisfying assignment; if it is not satisfiable the function should return <code>False</code>. When the function is run with an empty partial assignment it should act as a SAT-solver. [10 marks]
- 11. The final 10 marks of the coursework will be allocated according to the speed of your functions unit_propagate and dpll_sat_solve running on some benchmark instances. If your code is faster than mine, you receive 10 marks; within a factor of 2, 8 marks; within a factor of 3, 6 marks; within a factor of 4, 4 marks; within a factor of 5, 2 marks. [10 marks]

Total marks: 100