Multi-agent learning

Prediction, postdiction, and calibration

Gerard Vreeswijk, Intelligent Systems Group, Computer Science Department, Faculty of Sciences, Utrecht University, The Netherlands.

Friday 6th October, 2017

Author: Gerard Vreeswijk. Slides last modified on October 6^{th} , 2017 at 10:32

1.

Author: Gerard Vreeswijk. Slides last modified on October 6th, 2017 at 10:32

1. Outcome space Z. (Finite.)

1. Outcome space Z. (Finite.)

2.

Author: Gerard Vreeswijk. Slides last modified on October 6th, 2017 at 10:32

- 1. Outcome space Z. (Finite.)
- 2. A discrete-time stochastic process $(z^t)_{t\in\mathbb{N}}$ with values in Z.

- 1. Outcome space Z. (Finite.)
- 2. A discrete-time stochastic process $(z^t)_{t\in\mathbb{N}}$ with values in Z.

3.

- 1. Outcome space Z. (Finite.)
- 2. A discrete-time stochastic process $(z^t)_{t\in\mathbb{N}}$ with values in Z.
- 3. History: $h^t = (z^1, z^2, \dots, z^t)$. Set of all histories of length t: H_t . Set of all histories:

$$H =_{Def} \cup_{t \in \mathbb{N}} H_t.$$

- 1. Outcome space Z. (Finite.)
- 2. A discrete-time stochastic process $(z^t)_{t\in\mathbb{N}}$ with values in Z.
- 3. History: $h^t = (z^1, z^2, \dots, z^t)$. Set of all histories of length t: H_t . Set of all histories:

$$H =_{Def} \cup_{t \in \mathbb{N}} H_t$$
.

4. Realisation: $\omega = (z^1, z^2, \dots)$. Set of all realisations: Ω .

- 1. Outcome space Z. (Finite.)
- 2. A discrete-time stochastic process $(z^t)_{t\in\mathbb{N}}$ with values in Z.
- 3. History: $h^t = (z^1, z^2, \dots, z^t)$. Set of all histories of length t: H_t . Set of all histories:

$$H =_{Def} \cup_{t \in \mathbb{N}} H_t$$
.

- 4. Realisation: $\omega = (z^1, z^2, \dots)$. Set of all realisations: Ω .
- 5. Actual probability of realisation (by nature): $q: H \to \Delta(Z)$:

 $q(z \mid h)$ = the actual probability that z occurs after h

- 1. Outcome space Z. (Finite.)
- 2. A discrete-time stochastic process $(z^t)_{t\in\mathbb{N}}$ with values in Z.
- 3. History: $h^t = (z^1, z^2, \dots, z^t)$. Set of all histories of length t: H_t . Set of all histories:

$$H =_{Def} \cup_{t \in \mathbb{N}} H_t$$
.

- 4. Realisation: $\omega = (z^1, z^2, \dots)$. Set of all realisations: Ω .
- 5. Actual probability of realisation (by nature): $q: H \to \Delta(Z)$:

 $q(z \mid h)$ = the actual probability that z occurs after h

6. Forecast rule (by agent): $p: H \to \Delta(Z)$:

 $p(z \mid h)$ = the predicted probability that z occurs after h

A realisation ω generates

A realisation ω generates

1. A sequence of realisation probabilities q_1, q_2, \ldots

A realisation ω generates

- 1. A sequence of realisation probabilities q_1, q_2, \ldots
- 2. A sequence of predictions $p_1, p_2, ...$

A realisation ω generates

- 1. A sequence of realisation probabilities q_1, q_2, \ldots
- 2. A sequence of predictions p_1, p_2, \ldots

Definition (Good predictor).

$$\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \|p^i - q^i\|^2 = 0 \text{ almost surely}$$

A realisation ω generates

- 1. A sequence of realisation probabilities q_1, q_2, \ldots
- 2. A sequence of predictions p_1, p_2, \ldots

Definition (Good predictor).

$$\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \|p^i - q^i\|^2 = 0 \text{ almost surely}$$

For example, if |Z| = 3 then $||p^i - q^i||^2$ might be

$$\left\| \begin{pmatrix} 0.2 \\ 0.1 \\ 0.7 \end{pmatrix} - \begin{pmatrix} 0.3 \\ 0.1 \\ 1.0 \end{pmatrix} \right\|^2 = \left\| \begin{pmatrix} 0.1 \\ 0.0 \\ 0.3 \end{pmatrix} \right\|^2 = 0.1^2 + 0.0^2 + 0.3^2 = 0.01 + 0.09 = 0.1$$

Discussion:

Discussion:

Requiring that

$$\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \|p^i - q^i\|^2 = 0 \text{ almost surely}$$

is too forgiving.

Discussion:

Requiring that

$$\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \|p^i - q^i\|^2 = 0 \text{ almost surely}$$

is too forgiving.

This is because a low average does not exclude large intervals of forecasting errors.

Discussion:

Requiring that

$$\lim_{t\to\infty} \frac{1}{t} \sum_{i=1}^{t} \|p^i - q^i\|^2 = 0 \text{ almost surely}$$

is too forgiving.

This is because a low average does not exclude large intervals of forecasting errors.

■ Having

$$\lim_{t\to\infty} \|p^t - q^t\| = 0 \text{ almost surely}$$

is desirable. Later, it turns out this requirement is too demanding.

Author: Gerard Vreeswijk. Slides last modified on October 6^{th} , 2017 at 10:32

Let $\omega = (z_1, z_2, \dots)$ be a realisation of events.

- Let $\omega = (z_1, z_2, ...)$ be a realisation of events.
- Define

 $n^{t}(p) =_{Def}$ the number of times that p is forecast

- Let $\omega = (z_1, z_2, ...)$ be a realisation of events.
- Define

 $n^{t}(p) =_{Def}$ the number of times that p is forecast

Define

 $\phi^t(p) =_{Def}$ the empirical distribution when p was forecast

- Let $\omega = (z_1, z_2, ...)$ be a realisation of events.
- Define

 $n^{t}(p) =_{Def}$ the number of times that p is forecast

Define

 $\phi^t(p) =_{Def}$ the empirical distribution when p was forecast

In both definitions the quantities $n^t(p)$ and $\phi^t(p)$ depend on ω but in the notation this is suppressed.

- Let $\omega = (z_1, z_2, ...)$ be a realisation of events.
- Define

 $n^{t}(p) =_{Def}$ the number of times that p is forecast

Define

 $\phi^{t}(p) =_{Def}$ the empirical distribution when p was forecast

In both definitions the quantities $n^t(p)$ and $\phi^t(p)$ depend on ω but in the notation this is suppressed.

Define

$$C^{t}(\omega) =_{Def} \sum_{p \in \Delta(Z)} \frac{n^{t}(p)}{t} \|\phi^{t}(p) - p\|^{2}$$

Definition (Calibration).

■ Let $\epsilon > 0$. The forecasts p_1, p_2, \ldots are said to be calibrated on ω if

$$\lim_{t\to\infty}C^t(\omega)=0.$$

Definition (Calibration).

■ Let $\epsilon > 0$. The forecasts p_1, p_2, \ldots are said to be calibrated on ω if

$$\lim_{t\to\infty}C^t(\omega)=0.$$

and ϵ -calibrated on ω if

$$\lim_{t\to\infty}C^t(\omega)\leq\epsilon.$$

Definition (Calibration).

■ Let $\epsilon > 0$. The forecasts p_1, p_2, \ldots are said to be calibrated on ω if

$$\lim_{t\to\infty}C^t(\omega)=0.$$

and ϵ -calibrated on ω if

$$\lim_{t\to\infty}C^t(\omega)\leq\epsilon.$$

A forecast rule f is said to be calibrated (ϵ -calibrated) if the above equality (inequality) holds for all realisations.

Definition (Calibration).

■ Let $\epsilon > 0$. The forecasts p_1, p_2, \ldots are said to be calibrated on ω if

$$\lim_{t\to\infty}C^t(\omega)=0.$$

and ϵ -calibrated on ω if

$$\lim_{t\to\infty}C^t(\omega)\leq\epsilon.$$

A forecast rule f is said to be calibrated (ϵ -calibrated) if the above equality (inequality) holds for all realisations.

Pessimistic result (Oakes, 1985): For every forecasting rule f there exists a realisation ω and an $\epsilon > 0$ such that f does not ϵ -calibrate.

Author: Gerard Vreeswijk. Slides last modified on October 6th, 2017 at 10:32

1. Let $0 < \epsilon < 1/4$.

- 1. Let $0 < \epsilon < 1/4$.
- 2. Take outcome space $Z = \{0, 1\}$.

- 1. Let $0 < \epsilon < 1/4$.
- 2. Take outcome space $Z = \{0, 1\}$.
- 3. A (deterministic) forecast at time t is real number $p^t \in [0, 1]$.

- 1. Let $0 < \epsilon < 1/4$.
- 2. Take outcome space $Z = \{0, 1\}$.
- 3. A (deterministic) forecast at time t is real number $p^t \in [0, 1]$.
- 4. Construct a worst case realisation $\omega = z^1, z^2, z^3, \dots$ as follows:

Impossibility of e-calibration in deterministic forecasting

- 1. Let $0 < \epsilon < 1/4$.
- 2. Take outcome space $Z = \{0, 1\}$.
- 3. A (deterministic) forecast at time t is real number $p^t \in [0, 1]$.
- 4. Construct a worst case realisation $\omega = z^1, z^2, z^3, \ldots$ as follows:
 - Realise 1 at t+1 if $p^t \leq 1/2$.

Impossibility of e-calibration in deterministic forecasting

- 1. Let $0 < \epsilon < 1/4$.
- 2. Take outcome space $Z = \{0, 1\}$.
- 3. A (deterministic) forecast at time t is real number $p^t \in [0, 1]$.
- 4. Construct a worst case realisation $\omega = z^1, z^2, z^3, \dots$ as follows:
 - Realise 1 at t+1 if $p^t \leq 1/2$.
 - Realise 0 at t + 1, otherwise.

Impossibility of e-calibration in deterministic forecasting

- 1. Let $0 < \epsilon < 1/4$.
- 2. Take outcome space $Z = \{0, 1\}$.
- 3. A (deterministic) forecast at time t is real number $p^t \in [0, 1]$.
- 4. Construct a worst case realisation $\omega = z^1, z^2, z^3, \dots$ as follows:
 - Realise 1 at t+1 if $p^t \leq 1/2$.
 - Realise 0 at t + 1, otherwise.

Now

$$C^{t}(\omega) = \sum_{p \in \Delta(Z)} \frac{n^{t}(p)}{t} \|\phi^{t}(p) - p\|^{2}$$

$$= \sum_{p \geq 1/2} \frac{n^{t}(p)}{t} \|0 - p\|^{2} + \sum_{p < 1/2} \frac{n^{t}(p)}{t} \|1 - p\|^{2}$$

$$\geq \lambda \|\frac{1}{2}\|^{2} + (1 - \lambda)\|\frac{1}{2}\|^{2} = \lambda \frac{1}{4} + (1 - \lambda)\frac{1}{4} = \frac{1}{4} > \epsilon.$$

Author: Gerard Vreeswijk. Slides last modified on October 6th, 2017 at 10:32

1. A finite outcome space **Z**.

- 1. A finite outcome space Z.
- 2. A random forecasting rule is a function

$$F: H \to \Delta(Z)$$

- 1. A finite outcome space Z.
- 2. A random forecasting rule is a function

$$F: H \to \Delta(Z)$$

3. Let e^z be the representation of z in $\{0,1\}^{|Z|}$.

- 1. A finite outcome space Z.
- 2. A random forecasting rule is a function

$$F: H \to \Delta(Z)$$

- 3. Let e^z be the representation of z in $\{0,1\}^{|Z|}$.
- 4. If $\omega = z^1, z^2, \ldots$ is a realisation, and p^1, p^2, \ldots a sequence of forecasts, then F is calibrated on ω if the average of

$$\frac{1}{2} \| p^t - e^t \|^2$$

goes to zero.

- 1. A finite outcome space Z.
- 2. A random forecasting rule is a function

$$F: H \to \Delta(Z)$$

- 3. Let e^z be the representation of z in $\{0,1\}^{|Z|}$.
- 4. If $\omega = z^1, z^2, \ldots$ is a realisation, and p^1, p^2, \ldots a sequence of forecasts, then F is calibrated on ω if the average of

$$\frac{1}{2}\|p^t - e^t\|^2$$

goes to zero.

5. *F* is calibrated if the average error goes to zero for every realisation almost surely.

Theorem. (Foster and Vohra, 1997-98). Given any finite set Z and any $\epsilon > 0$, there exist random forecasting rules that are ϵ -calibrated for all sequences on Z.

1. Create an ϵ -covering Δ_{ϵ} of $\Delta(Z)$. This is a finite subset of $\Delta(Z)$ such that for every $p \in \Delta(Z)$ we have $d(p, \Delta_{\epsilon}) \leq \epsilon$.

- 1. Create an ϵ -covering Δ_{ϵ} of $\Delta(Z)$. This is a finite subset of $\Delta(Z)$ such that for every $p \in \Delta(Z)$ we have $d(p, \Delta_{\epsilon}) \leq \epsilon$.
- 2. Row actions: all forecasts from Δ_{ϵ} .

- 1. Create an ϵ -covering Δ_{ϵ} of $\Delta(Z)$. This is a finite subset of $\Delta(Z)$ such that for every $p \in \Delta(Z)$ we have $d(p, \Delta_{\epsilon}) \leq \epsilon$.
- 2. Row actions: all forecasts from Δ_{ϵ} .
- 3. Column actions: elements from Z represented as elements of $e^z \in \{0,1\}^{|Z|}$.

- 1. Create an ϵ -covering Δ_{ϵ} of $\Delta(Z)$. This is a finite subset of $\Delta(Z)$ such that for every $p \in \Delta(Z)$ we have $d(p, \Delta_{\epsilon}) \leq \epsilon$.
- 2. Row actions: all forecasts from Δ_{ϵ} .
- 3. Column actions: elements from Z represented as elements of $e^z \in \{0,1\}^{|Z|}$.
- 4. Utility for row:

$$u(p,e^z) =_{Def} - ||p - e^z||^2.$$

Theorem. (Foster and Vohra, 1997-98). Given any finite set Z and any $\epsilon > 0$, there exist random forecasting rules that are ϵ -calibrated for all sequences on Z.

- 1. Create an ϵ -covering Δ_{ϵ} of $\Delta(Z)$. This is a finite subset of $\Delta(Z)$ such that for every $p \in \Delta(Z)$ we have $d(p, \Delta_{\epsilon}) \leq \epsilon$.
- 2. Row actions: all forecasts from Δ_{ϵ} .
- 3. Column actions: elements from Z represented as elements of $e^z \in \{0,1\}^{|Z|}$.
- 4. Utility for row:

$$u(p,e^z) =_{Def} - ||p - e^z||^2.$$

5. Minimise conditional regret.

Let $\omega = z_1, z_2, z_3, \ldots$ be a realisation. Consider a forecast $p^* \in \Delta_{\epsilon}$.

- Let $\omega = z_1, z_2, z_3, \ldots$ be a realisation. Consider a forecast $p^* \in \Delta_{\epsilon}$.
- Because of conditional regret-minimisation, the mean square error w.r.t. p^* :

$$\frac{1}{n^t(p^*)} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| p^* - e^z \|^2$$

is minimal with respect to alternative forecasts.

- Let $\omega = z_1, z_2, z_3, \ldots$ be a realisation. Consider a forecast $p^* \in \Delta_{\epsilon}$.
- Because of conditional regret-minimisation, the mean square error w.r.t. p^* :

$$\frac{1}{n^t(p^*)} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| p^* - e^z \|^2$$

is minimal with respect to alternative forecasts.

■ Let $\phi(p^*) =_{Def} \lim_{t\to\infty} \phi^t(p^*)$. Then the absolute minimum is

$$\frac{1}{n^{t}(p^{*})} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| \phi(p^{*}) - e^{z} \|^{2}$$

- Let $\omega = z_1, z_2, z_3, \ldots$ be a realisation. Consider a forecast $p^* \in \Delta_{\epsilon}$.
- Because of conditional regret-minimisation, the mean square error w.r.t. p^* :

$$\frac{1}{n^t(p^*)} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| p^* - e^z \|^2$$

is minimal with respect to alternative forecasts.

■ Let $\phi(p^*) =_{Def} \lim_{t\to\infty} \phi^t(p^*)$. Then the absolute minimum is

$$\frac{1}{n^{t}(p^{*})} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| \phi(p^{*}) - e^{z} \|^{2}$$

■ Choose $p' \in \Delta_{\epsilon}$ with $\|p' - \phi(p^*)\| \leq \epsilon$.

- Let $\omega = z_1, z_2, z_3, \ldots$ be a realisation. Consider a forecast $p^* \in \Delta_{\epsilon}$.
- Because of conditional regret-minimisation, the mean square error w.r.t. p^* :

$$\frac{1}{n^t(p^*)} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| p^* - e^z \|^2$$

is minimal with respect to alternative forecasts.

■ Let $\phi(p^*) =_{Def} \lim_{t\to\infty} \phi^t(p^*)$. Then the absolute minimum is

$$\frac{1}{n^{t}(p^{*})} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| \phi(p^{*}) - e^{z} \|^{2}$$

- Choose $p' \in \Delta_{\epsilon}$ with $\|p' \phi(p^*)\| \leq \epsilon$.
- $||p'-p^*||$ is small because the difference in conditional regrets is small.

- Let $\omega = z_1, z_2, z_3, \ldots$ be a realisation. Consider a forecast $p^* \in \Delta_{\epsilon}$.
- Because of conditional regret-minimisation, the mean square error w.r.t. p^* :

$$\frac{1}{n^t(p^*)} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| p^* - e^z \|^2$$

is minimal with respect to alternative forecasts.

■ Let $\phi(p^*) =_{Def} \lim_{t\to\infty} \phi^t(p^*)$. Then the absolute minimum is

$$\frac{1}{n^{t}(p^{*})} \lim_{t \to \infty} \sum_{t \to \infty} \frac{1}{2} \| \phi(p^{*}) - e^{z} \|^{2}$$

- Choose $p' \in \Delta_{\epsilon}$ with $\|p' \phi(p^*)\| \leq \epsilon$.
- $\|p' p^*\|$ is small because the difference in conditional regrets is small. It follows that $\|\phi(p^*) p^*\|$ is small. (Triangle inequality.)

Author: Gerard Vreeswijk. Slides last modified on October 6^{th} , 2017 at 10:32

■ Suppose a binary outcome space $Z = \{0, 1\}$.

- Suppose a binary outcome space $Z = \{0, 1\}$.
- Let $\Delta_{\epsilon} = \{\epsilon, 2\epsilon, 3\epsilon, \dots, (N-1)\epsilon\}$, for some $N \geq 3$.

- Suppose a binary outcome space $Z = \{0,1\}$.
- Let $\Delta_{\epsilon} = \{\epsilon, 2\epsilon, 3\epsilon, \dots, (N-1)\epsilon\}$, for some $N \geq 3$.
- A forecast is any $p^t \in \Delta_{\epsilon}$, representing $P\{z^t = 1\}$.

- Suppose a binary outcome space $Z = \{0,1\}$.
- Let $\Delta_{\epsilon} = \{\epsilon, 2\epsilon, 3\epsilon, \dots, (N-1)\epsilon\}$, for some $N \geq 3$.
- A forecast is any $p^t \in \Delta_{\epsilon}$, representing $P\{z^t = 1\}$.
- Let $\phi^t(p)$ the empirical frequency of 1's at times p was predicted.

- Suppose a binary outcome space $Z = \{0, 1\}$.
- Let $\Delta_{\epsilon} = \{\epsilon, 2\epsilon, 3\epsilon, \dots, (N-1)\epsilon\}$, for some $N \geq 3$.
- A forecast is any $p^t \in \Delta_{\epsilon}$, representing $P\{z^t = 1\}$.
- Let $\phi^t(p)$ the empirical frequency of 1's at times p was predicted.
- The empirical frequency is updated geometrically:

$$\phi^{t+1}(p) =_{Def} (1 - \lambda)\phi^{t}(p) + \lambda z^{t}.$$

- Suppose a binary outcome space $Z = \{0,1\}$.
- Let $\Delta_{\epsilon} = \{\epsilon, 2\epsilon, 3\epsilon, \dots, (N-1)\epsilon\}$, for some $N \geq 3$.
- A forecast is any $p^t \in \Delta_{\epsilon}$, representing $P\{z^t = 1\}$.
- Let $\phi^t(p)$ the empirical frequency of 1's at times p was predicted.
- The empirical frequency is updated geometrically:

$$\phi^{t+1}(p) =_{Def} (1 - \lambda)\phi^{t}(p) + \lambda z^{t}.$$

A predictor p is said to be good at t if $|p - \phi^t(p)| \le \epsilon$.

- Suppose a binary outcome space $Z = \{0, 1\}$.
- Let $\Delta_{\epsilon} = \{\epsilon, 2\epsilon, 3\epsilon, \dots, (N-1)\epsilon\}$, for some $N \geq 3$.
- A forecast is any $p^t \in \Delta_{\epsilon}$, representing $P\{z^t = 1\}$.
- Let $\phi^t(p)$ the empirical frequency of 1's at times p was predicted.
- The empirical frequency is updated geometrically:

$$\phi^{t+1}(p) =_{Def} (1 - \lambda)\phi^{t}(p) + \lambda z^{t}.$$

- A predictor p is said to be good at t if $|p \phi^t(p)| \le \epsilon$.
- \blacksquare A pair $(p, p + \epsilon)$ is said to be skew at t if

$$\phi^t(p) > p + \epsilon$$
 and $\phi^t(p + \epsilon) < p$.

- Suppose a binary outcome space $Z = \{0,1\}$.
- Let $\Delta_{\epsilon} = \{\epsilon, 2\epsilon, 3\epsilon, \dots, (N-1)\epsilon\}$, for some $N \geq 3$.
- A forecast is any $p^t \in \Delta_{\epsilon}$, representing $P\{z^t = 1\}$.
- Let $\phi^t(p)$ the empirical frequency of 1's at times p was predicted.
- The empirical frequency is updated geometrically:

$$\phi^{t+1}(p) =_{Def} (1 - \lambda)\phi^{t}(p) + \lambda z^{t}.$$

- A predictor p is said to be good at t if $|p \phi^t(p)| \le \epsilon$.
- A pair $(p, p + \epsilon)$ is said to be skew at t if

$$\phi^t(p) > p + \epsilon$$
 and $\phi^t(p + \epsilon) < p$.

If all predictors are bad, there must be a skew pair. (Check!)

Algorithm:

Algorithm:

Initialise $\phi^0(p)$ to a random number in [0,1], for example 1/2.

To let p start at "the right place", setting $\phi^0(p) =_{Def} p$ is also good.

Loop:

Algorithm:

Initialise $\phi^0(p)$ to a random number in [0,1], for example 1/2.

To let p start at "the right place", setting $\phi^0(p) =_{Def} p$ is also good.

Loop:

1. If there is a good forecaster p, use it and update $\phi^t(p)$.

Algorithm:

Initialise $\phi^0(p)$ to a random number in [0,1], for example 1/2.

To let p start at "the right place", setting $\phi^0(p) =_{Def} p$ is also good.

Loop:

- 1. If there is a good forecaster p, use it and update $\phi^t(p)$.
- 2. Else, pick a skew pair and forecast with either one of them (choose randomly).

Original algorithm in SLaiL

1. For each forecaster compute empirical mean (rather than geometric empirical mean).

Original algorithm in SLaiL

- 1. For each forecaster compute empirical mean (rather than geometric empirical mean).
- 2. If there is no good forecaster, pick a skew pair $(p, p + \epsilon)$

Original algorithm in SLaiL

- 1. For each forecaster compute empirical mean (rather than geometric empirical mean).
- 2. If there is no good forecaster, pick a skew pair $(p, p + \epsilon)$
- 3. Make action vector orthogonal to error vector:

$$\underbrace{\begin{pmatrix} b^t \\ a^t \end{pmatrix}}_{\text{Actions}} \perp \underbrace{\begin{pmatrix} a^t \\ -b^t \end{pmatrix}}_{\text{Error}}$$

Now forecast with odds b^t : a^t , i.e., with p a $b^t/(a^t+b^t)$ of the times.

