1. Gradient Descent

(a) Derive gradient descent update rule for each θ_i with learning rate α .

$$\frac{\partial \mathcal{C}}{\partial \theta_i} = a_i(\theta_i - r_i)$$

$$\theta_i^{(t+1)} = \theta_i^{(t)} - \alpha \frac{\partial \mathcal{C}}{\partial \theta_i^{(t)}}$$

$$= (1 - \alpha a_i)\theta_i^{(t)} + \alpha a_i r_i$$

(b) Rewrite update rule in terms of error $e_i^{(t)} = \theta_i^{(t)} - r_i$

$$e_i^{(t+1)} = (1 - \alpha a_i)\theta_i^{(t)} + \alpha a_i r_i - r_i$$

$$= (1 - \alpha a_i)\theta_i^{(t)} - (1 - \alpha a_i)r_i$$

$$= (1 - \alpha a_i)(\theta_i^{(t)} - r_i)$$

$$= (1 - \alpha a_i)e_i^{(t)}$$

(c) Solve recurrence to obtain explicit formula for $e_i^{(t)}$ in terms of initial error $e_i^{(0)}$

$$e_i^{(t)} = (1 - \alpha a_i)^t e_i^{(0)}$$

Error decays over time if $1 - \alpha a_i < 1$, i.e. $\alpha > 0$ and similarly error grows over time if $\alpha < 0$

(d) Write an explicit formula for the cost $\mathcal{C}(\boldsymbol{\theta}^{(t)})$ as a function of initial value $\boldsymbol{\theta}^{(0)}$

$$C(\boldsymbol{\theta}^{(t)}) = \frac{1}{2} \sum_{i=1}^{N} a_i \left(e_i^{(t)} \right)^2 = \frac{1}{2} \sum_{i=1}^{N} a_i \left((1 - \alpha a_i)^t e_i^{(0)} \right)^2 = \frac{1}{2} \sum_{i=1}^{N} a_i \left(1 - \alpha a_i \right)^{2t} \left(\theta_i^{(0)} - r_i \right)^2$$

As $t \to \infty$, the term $(1 - \alpha a_i)^{2t}$ starts to dominate.

2. Dropout

(a) Find expressions for $\mathbb{E}\{y\}$ and $var\{y\}$ for a given **x** and **w** By linearity of expectation and variance for independent random variables

$$\mathbb{E}\left\{y\right\} = \sum_{j} w_{j} x_{j} \mathbb{E}\left\{m_{j}\right\} = \frac{1}{2} \sum_{j} w_{j} x_{j} = \frac{1}{2} \mathbf{w}^{T} \mathbf{x}$$
$$var\left\{y\right\} = \sum_{j} w_{j} x_{j} var\left\{m_{j}\right\} = \frac{1}{4} \sum_{j} w_{j} x_{j} = \frac{1}{4} \mathbf{w}^{T} \mathbf{x}$$

(b) Determine \tilde{w}_j as as a function of w_j such that $\mathbb{E}\{y\} = \tilde{y} = \sum_j \tilde{w}_j x_j$, where \tilde{y} is a deterministic prediction

$$\frac{1}{2} \sum_{j} w_j x_j = \mathbb{E} \left\{ y \right\} = \sum_{j} \tilde{w}_j x_j$$

So we have $\tilde{w}_j = \frac{1}{2}w_j$

(c) Show cost can be rewritten to another form

$$\mathcal{E} = \frac{1}{2N} \sum_{i=1}^{N} \mathbb{E} \left\{ (y^{(i)} - t^{(i)})^{2} \right\}$$

$$= \frac{1}{2N} \sum_{i=1}^{N} \mathbb{E} \left\{ y^{(i)2} \right\} - 2t \mathbb{E} \left\{ y^{(i)} \right\} + t^{(i)2}$$

$$= \frac{1}{2N} \sum_{i=1}^{N} var \left\{ y^{(i)} \right\} + \left(\mathbb{E} \left\{ y^{(i)} \right\} \right)^{2} - 2t \mathbb{E} \left\{ y^{(i)} \right\} + t^{(i)2}$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\mathbb{E} \left\{ y \right\}^{(i)} - t^{(i)})^{2} + \frac{1}{4} \sum_{j} \tilde{w}_{j} x_{j}$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\tilde{y}^{(i)} - t^{(i)})^{2} + \mathcal{R}(\tilde{w}_{1}, \dots, \tilde{w}_{D})$$

where

$$\mathcal{R}(\tilde{w}_1,\cdots,\tilde{w}_D) = \frac{1}{4} \sum_j \tilde{w}_j x_j$$