

Институт интеллектуальных кибернетических систем

РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ АВТОНОМНЫМ РОБОТОМ-ГАЗОНОКОСИЛКОЙ

Исполнитель: Студент группы Б18-513 Гречин А.А.

Руководитель: Ассистент интеллектуальной лаборатории робототехники, кафедры 12, ИИКС, НИЯУ МИФИ Гриднев А.А.

Цели и задачи

• Цель работы: разработка системы управления для роботагазонокосильщика, которая бы позволила добиться удобства эксплуатации и эффективности работы устройства аналогичным современным роботам-пылесосам.

Задачи:

- о Проведение обзора основных существующих в настоящий момент подходов к навигации беспилотных наземных роботов;
- Изучение особенностей работы систем управления и их возможностей, предоставляемых пользователю, среди представленных на рынке систем роботов-газонокосильщиков;
- о Определение принципа позиционирования робота на местности;
- Определение алгоритма обхода территории;
- Разработка системы управления;
- Реализация разработанной системы управления;
- Тестирование работы системы управления.

Введение в предметную область

Требования к системе управления

использующая ограничительный кабель (Flymo 1200R)	Использующая датчики влажности (Ambrogio L60)	Использующая GPS RTK (Ardomower)	
	В зависимости от конфигурации участка		
\checkmark		\checkmark	
		✓ 🦓	
	ограничительный кабель	(Flymo 1200R) влажности (Ambrogio L60) В зависимости от	

Выбор метода локализации

Рассмотренные методы:

- 1. Датчик влажности
- 2. GPS
- 3. GPS RTK
- 4. Радиомаяки
- 5. Видеокамера
- 6. Одометрия
- 7. Лидар

Был выбран GPS RTK

Выбор алгоритма обхода территории

	Computation time [s]	Path length [m]	Rotations [rad]	Traveling time [s]	Coverage [%]	Appeal
without furniture						200.000
Boustrophedon	1.8 (±0.8)	$101.6 \ (\pm 166.2)$	53.5 (±64.5)	440.7 (±651.1)	98.4 (±3.9)	1.219 (±0.130)
Grid TSP	$28.5 \ (\pm 251.6)$	95.9 (± 143.7)	$102.4 (\pm 171.1)$	$515.2 \ (\pm 780.8)$	$97.8 (\pm 4.1)$	$0.671 \ (\pm 0.392)$
Neural Network	$4.0 \ (\pm 31.4)$	$158.4 \ (\pm 353.0)$	$83.7 (\pm 152.7)$	$687.8 \ (\pm 1414.8)$	$96.4 (\pm 5.7)$	$0.108 (\pm 1.752)$
Grid Local Energy	1.5 (± 0.1)	93.9 (\pm 138.2)	$81.7 (\pm 147.8)$	$469.0 \ (\pm 719.2)$	$96.3 (\pm 4.7)$	$0.876 (\pm 0.360)$
Contour Line	$2.0~(\pm 0.6)$	$98.5 (\pm 150.7)$	$65.8 \ (\pm 83.2)$	$454.2 \ (\pm 636.9)$	98.7 (±4.8)	$0.877 (\pm 0.136)$
Convex SPP	$26.0 \ (\pm 215.3)$	94.7 (± 141.4)	99.3 (± 156.6)	505.2 (±745.3)	$98.4 (\pm 4.0)$	$1.078 \ (\pm 0.308)$
with furniture						
Boustrophedon	3.4 (±4.1)	$127.5 \ (\pm 198.0)$	115.6 (±119.5)	$645.8 \ (\pm 856.1)$	94.6 (±5.5)	0.715 (±0.382)
Grid TSP	$41.6~(\pm 259.0)$	95.2 (± 145.0)	$168.5 (\pm 197.5)$	$639.3 (\pm 849.1)$	$94.4 (\pm 5.5)$	$0.416 \ (\pm 0.308)$
Neural Network	$4.0 \ (\pm 32.0)$	$215.8 \ (\pm 380.9)$	$171.6 (\pm 204.1)$	$1046.7 (\pm 1606.7)$	$92.9 (\pm 6.9)$	$-1.049 (\pm 2.624)$
Grid Local Energy	1.5 (± 0.1)	$91.9 (\pm 139.7)$	$138.7 (\pm 175.2)$	571.3 (±788.8)	$92.5 (\pm 5.9)$	$0.694 (\pm 0.289)$
Contour Line	$3.3 (\pm 8.8)$	$110.6 (\pm 159.8)$	$164.8 \ (\pm 161.6)$	$683.3 \ (\pm 797.6)$	95.5 (± 6.2)	$0.414 (\pm 0.287)$
Convex SPP	$39.5 (\pm 230.9)$	91.1 (\pm 140.9)	$157.2 (\pm 182.5)$	$603.9 (\pm 807.7)$	94.7 (± 5.5)	$0.657 (\pm 0.254)$
planned in maps wit	hout furniture, executed i	n furnished maps				
Boustrophedon	1.8 (±0.8)	$105.1 \ (\pm 169.3)$	96.6 (±87.7)	534.7 (±700.1)	95.6 (±5.5)	0.780 (±0.402)
Grid TSP	$28.5 \ (\pm 251.6)$	99.4 (± 146.9)	$138.4 (\pm 180.4)$	595.6 (±820.5)	$94.9 (\pm 5.6)$	$0.423 \ (\pm 0.339)$
Neural Network	$4.0 \ (\pm 31.4)$	$167.8 \ (\pm 360.9)$	$143.8 \ (\pm 195.8)$	$834.1 \ (\pm 1517.2)$	$93.9 (\pm 6.8)$	$-0.228 (\pm 1.794)$
Grid Local Energy	1.5 (± 0.1)	97.5 (± 142.0)	$121.9 (\pm 157.6)$	557.8 (±762.5)	$93.4 (\pm 6.1)$	$0.628 \ (\pm 0.306)$
Contour Line	$2.0 \ (\pm 0.6)$	95.9 (± 151.2)	82.5 (±89.9)	477.2 (±652.3)	$85.6 (\pm 10.5)$	$0.692 (\pm 0.192)$
Convex SPP	$26.0 \ (\pm 215.3)$	$98.5 (\pm 144.7)$	133.4 (±165.7)	583.1 (±784.9)	$95.5 (\pm 5.6)$	$0.744 (\pm 0.284)$

Требования к конфигурации робота

Датчики, необходимые для работы робота:

- 1. Датчик столкновений
- 2. Датчик отрыва от поверхности
- 3. Датчик определения местоположения GPS RTK
- 4. Лидар
- 5. Одометрия

Разработка системы управления

Схема алгоритма работы в режиме "Настройка"

Создание карт кошения и движения

Выбор средств реализации

Тестирование и отладка

Была проведена проверка работы системы управления в следующих условиях:

- 1. Работа робота в каждом из режимов во время моделирования;
- 2. Прерывание работы режимов и их смена;
- 3. Блокировка и разблокировка робота во время работы в различных режимах;
- 4. Задание базовой точки и движение к ней;
- 5. Задание зон различных цветов;
- 6. Формирование карты движения и карты кошения из установленных зон;
- 7. Работа в режиме кошения на тестовой сцене;
- 8. Поступление сигнала о низком заряде батареи при работе в различных режимах.

Доля покрытия территории: 80%

Заключение

- Проведен обзор особенностей работы и эксплуатации роботов—газонокосильщиков, рассмотрены существующие подходы к позиционированию на местности, алгоритмы обхода и системы управления, их реализующие;
- Определены алгоритмы обхода и принцип позиционирования на местности для разрабатываемой системы управления;
- Разработана система управления, удовлетворяющая условию удобной и эффективной эксплуатации;
- Произведена реализация системы управления;
- Проведено тестирование работы системы управления в виртуальной среде моделирования;
- Проведены замеры некоторых параметров системы, проанализированы результаты тестирования и непосредственно разработанная система управления.
- Определен план дальнейших работ над системой.