Lecture 8 - Tagging

Goals

- 1. Generative Tagging
 - a. Parameterization
 - b. Estimation
 - c. Inference
- 2. Discriminative tagging
 - a. Max Entropy
 - b. Simple RNN
 - c. Bidirectional RNN

Generative Tagging

- Sentence: I love white dogs
- Tags: Pr, Vb Adj, N
- Baseline: most frequent tag already gets 90%+ accuracy
- We are given
 - \circ $S = w_1, \dots, w_n$
 - $\circ \quad T = y_1, \dots, y_n$
- Parameterization
 - $P(S,T) = p(w_1, ..., w_n, y_1, ..., y_n) =$ $\prod p(w_i|w_1, ..., w_n, y_1, ..., y_i) p(y_i|w_1, ..., w_n, y_1, ..., y_{i-1})$
- Markov Assumption
 - $P(S,T) = \prod p(w_i|y_i)p(y_i|y_{i-1})$
 - $p(w_i|y_i)$ called the emission probability
 - $p(y_i|y_{i-1})$ called the transition probability
 - Number of parameters: $VT + T^2$
- Estimation
 - MLE of transition probability: $p(Vb|Pr) = \frac{count(Pr,Vb)}{count(Pr)}$
 - MLE of emission probability: $p(I|Pr) = \frac{count(I,Pr)}{count(Pr)}$
 - o Remember there are smoothing issues
 - Want to use EM...but
- Inference Problem
 - We are looking for $T^* = argmax_T(P(S,T))$
 - Assume $p(t_i|t_{i-1})$ and $p(w_i|t_i)$ are given
 - Solution: Viterbi Algorithm
 - Let *n* be the length of the sequence
 - $\blacksquare \quad \pi[i,t] \rightarrow$
 - $\max \log(probability \ of \ a \ sequence \ that \ ends \ at \ position \ i \ with \ tag \ t)$
 - Goal: $\max_{t \in T} \pi[n, t]$
 - Base Case: $\pi[0,*] = \log(1), \pi[0,t] = \log(0) = -\infty$

Recursive Case

•
$$\pi[i,t] = \max_{t_{prev}} \pi[i_{prev}, t_{prev}] + \log(p(t|t_{prev})) + \log(p(i|t))$$

- Complexity: $O(nT^2)$
- Now we can do estimation with EM
 - Take a random guess of the parameters, and compute the MLE efficiently with the Viterbi algorithm
 - o Bad results with random initialization
 - o Can get good results with good initialization

Discriminative Tagging

- Now we estimate

$$o \quad p(T|S) = p(y_1, ..., y_n | w_1, ..., w_n) = \prod_i p(y_i | w_1, ..., w_n, y_1, ..., y_{i-1})$$

- Max Entropy

$$o \quad p(y|w) = \frac{1}{z(\theta,w)} e^{\theta f(y,w)}$$

• Indicator function f(y, w) of features $1 \dots K$

• i.e.
$$f_1(y, w) = \begin{cases} 1, & \text{if } y = noun, w \text{ is capitalized} \\ 0, & \text{o. } w. \end{cases}$$

- NN Structure for Max Entropy
 - Final layer: softmax, each unit represents $p(y_t = k|w)$
 - Vector representing indicator function for y, w