

提升產品瑕疵分類準確率報告

項次	報告內容	頁次
壹	專案執行動機與目標	1~4
貳	瑕疵辨識現狀做法與AI比較	5~7
參	AI導入成果(以玻纖布為例)	8~26
肆	各產品執行進度與後續推動項目	27~29
伍	附件	30~41

2019年1月4日

壹、專案執行動機與目標

專案動機與目標

▶ 動機說明:

- 南亞公司因產品特性及製程需要,成品或半成品採用「自動光學檢測設備」 (Automated Optical Inspection; AOI)進行瑕疵檢測,確保外觀品質。
- 現狀瑕疵檢測,準確率仍有很大改善空間,期運用人工智慧圖像辨識技術, 提升檢測效能,減少檢驗人力。

◎目標設定:

■ 導入AI取代原有辨識功能,準確率由七成提升至九成,檢驗人力負荷減少30%。

(註): AOI是高速度、高精度的光學影像檢測系統,運用「機器視覺」代替人類眼睛、大腦、手部動作,在配有視覺感測的設備中, 檢測產品缺陷、判斷並挑選產品。

AOI的兩種檢測模式

模式1-瑕疵的檢出

- 識別產品是否為良品(產品是OK或NG的判斷)。
 - □ 漏檢:將瑕疵品判定為正常品稱「漏檢」。
 - □ 過檢:將正常品判定為瑕疵品稱「過檢」。
- 過檢會增加複檢人力,漏檢會造成客訴,兩者須愈低愈好!

AOI辨識能力評估指標

指標1

識別產品是否為良品

檢出率

- 意義:評估AOI可檢測出瑕疵的能力
- 計算: AOI檢出數(D) × 100%

瑕疵總數(C+D)

- □ 漏檢率 = 1 檢出率
- 過檢率 = B / (B + D) × 100%

0		AOI判	別結果
	樣本數	正常品	瑕疵品
實際	正常品	真正常 A	過檢 B
情況	瑕疵品	漏檢 C	真異常 D

指標2

識別產品的瑕疵類別

- 意義:用以計算有多少比例的瑕疵 可被正確分類。
- 計算:

正確分類數目/全部數目×100% $= (A + D) / (A + B + C + D) \times 100\%$

		AOI判	別結果
	樣本數	瑕疵一	瑕疵二
實際	瑕疵一	A	В
情況	瑕疵二	C	D

貳、瑕疵辨識現狀做法與AI比較

現狀與AI辨識流程

現狀與AI辨識比較

V.S

現狀辨識做法

- 設備商透過光學技術萃取圖像特徵 (如灰階對比、長、寬、面積…等)。
- 人員依各類瑕疵圖像特徵的差異建立 比對規則。
- 流程雖自動化但辨識率未達預期。

AI辨識做法

- 僅需以瑕疵圖像作為模型輸入資料。
- 特徵萃取及瑕疵分類規則直接透過AI 演算法自我學習,毋須人工設定。
- 技術發展漸成熟,國際影像辨識競賽, 已近人眼辨識等級。

參、AI導入成果(以玻纖布為例)

現狀瑕疵檢測問題

問題點1

辨識準確度不足

誤判率高

- 設備商瑕疵判定主要以圖像灰階 及相關特徵差異為原則。
- 雖有基本辨識能力但仍無法滿足 現場要求,誤判率高,類別判定 易產生錯誤。

『將緯結誤判為異物』

精細度不夠

- 設備商瑕疵分類只分8類,分別為 經向、緯向、毛羽、污類、異物、 小毛羽、緯結與瑕疵。
- 因瑕疵分類不夠嚴謹精細,導致 須再由人工複判重新標記。

瑕疵	
P: (65,221	8.845)
S:2.371,2	.746
C:0.00	M.G:56
A:1.281	A.G:49
L:42.00	CCD:201

『無法判別者僅以"瑕疵"歸類』

現狀瑕疵檢測問題

問題點2

倚賴人力進行複檢

■ 人力負荷:處理機人員透過AOI瑕疵圖檔逐張判定以確保品質。

■ 耗時費工:須再由AOI判圖專人複判確認是否繳庫或送檢。

作業流程:

AI辨識導入流程

■ 依玻纖布實際生產狀況,有兩檢測站,共歸納為19類瑕疵型態(含正常)。

PRODUCTION LINE

資料收集

1

資料前處理

統一圖像尺寸大小

- 因拍攝角度、對焦情況、產品 位置不同,實際產生的圖檔大 小會不盡一致。
- 為配合圖像辨識演算法的使用 規定,需先將圖像尺寸統一。

2

圖像數值標準化

- 圖像數值除以255(最大灰階值), 使其範圍壓縮至0~1之間。
- 文獻建議執行標準化可讓模型 訓練更穩定及提高成功機率。

(標準化前)

50	100	65	92
79	93	116	158
86	81	90	200
95	77	150	178

(標準化後)

0.19	0.39	0.25	0.36
0.30	0.36	0.45	0.62
0.33	0.31	0.35	0.78
0.37	0.30	0.58	0.69
	0.30	0.30	0.30 0.36 0.45 0.33 0.31 0.35

13

資料前處理

圖像資料集切割

- 將資料切分成三部份,分別為訓練集、驗證集與測試集,三者常以 80%、10%、10%比例切分且無交集。
 - 1.訓練集(Training Set):用於訓練模型。
 - 2. 驗證集(Validation Set):用於模型訓練時同步驗證準確率。
 - 3.測試集(Testing Set):用於模型訓練完成後測試評估準確率。

訓練集: 好比提供學生學習的文本,就像課本,從中記取知識。

驗證集: 好比小考考題,就該階段所學,再考一次相似內容,初判學習效果。

測試集: 好比大考考題,以完全陌生的題型,盲測模型真正實力。

卷積神經網路(CNN)典型架構圖

AI圖像辨識主流方法:採用"卷積神經網路(Convolution Neural Network; CNN)" 特徵萃取 輸入 分類 輸出 Input **Feature Extraction** Classifier Output 輸入層 池化層 池化層 平坦層 全連接層 激活函數(Softmax) 激活函數(ReLU) 激活函數(ReLU) INPUT 多元分類機率轉換 0.06 0.05 0.04 0.03 0.02 0.01 卷積層(Convolution):圖像與特徵權重矩陣乘加 最終層激活函數設為Softmax,使輸出 激活函數(ReLU):過濾雜訊,以保留主要特徵值 結果為各類別機率,總和為一,擇其 數值最高者,為模型預測結果。 池化層(MaxPooling):強化特徵及降低資料維度

第一階段訓練(起步期)

- 爾內專人收集各類瑕疵圖像並做類別標記,**第一階段收集約3,000張圖片**, 分成19種瑕疵類型(包含布面正常無瑕疵狀態)。
- 2 以訓練集80%、驗證集10%、測試集10%比例切分資料,<u>並嘗試自行疊合基本型CNN架構來測試初步成效</u>。

模型訓練成果:訓練集準確率達87%,驗證集85%,測試集83%! (已優於設備商既有準確率水準,但仍有改善空間)

模型訓練 資料收集 資料前處理 模型訓練 模型驗證 上線運行

第一階段心得與改善方向

<u>心得小結</u>:第一階段基本型CNN已獲得初步成效,代表此法適用於本專案, 惟準確率尚未達預定目標,故繼續研擬改善方案。

改善方法1 增加樣本數量

■ 第一階段僅以3,000多筆圖像進行訓練,數量仍顯不足,應收集更多樣本來提高 資料代表性,使模型學習更完整資訊。

改善方法2 運用圖像增量術

■ 部分瑕疵因發生頻率低,收集不易,為避免造成人力負荷及時程延宕,在確保 瑕疵特徵不變質的前提下,運用圖像增量技術增加樣本數量。

改善方法3 採用進階模型

■ 隨技術之進步,陸續有學者發明更進階的CNN模型架構,且於國際影像辨識競賽 得到更優異的表現,參考其精髓導入於本專案。

第二階段訓練(優化期)

1 增加樣本數量

廠區專人提供更多圖像,各類型瑕疵數量增加至1,000張,整體數量增至19,000。

2 運用圖像增量術

圖像增量術乃對原始圖像進行「旋轉、翻轉、縮放、平移、色相調整」等操作。

注意

使用圖像增量技術須符合瑕疵特性!

說明:玻纖布瑕疵有區分經向瑕疵與緯向 瑕疵,不宜使用旋轉方式,否則瑕疵特徵 將不復保存。

18

第二階段訓練(優化期)

3 採用進階模型

- 典型CNN以順序式逐層堆疊區塊來傳遞資訊
- 進化版模型打破此框架,融入更多優化機制

典型 架構

Input Image

Relu層

卷

積

全連接層

Softmax層

→ Flower → Cup → Car

→ Tree

19

進化型 架構

Inception區塊

特點:導入集成式方法,<u>將不同大小卷積</u> 結構平行展開,可萃取出更多特徵。

ResNet區塊

特點:加入Skip Pass,學習過程更有彈性,自動決定區塊重要性。

第二階段心得

- <u>經過第二階段調整,準確率大幅提升!</u> (訓練集99%,驗證集96%,測試集94%)
- 測試各種進階模型時,發現部分模型產生過度配適 現象,故重點須找到真正良好配適的模型。(下表)

	低度配適 Underfitting	良好配適 Appropriate-Fitting	過度配適 Overfitting
說明	模型複雜度不足,無法充分描述資料的分佈。	模型有正確且具通則性的規則,可有效解釋與預測資料的表徵。	模型過度複雜,僅在訓練資料 表現完美,但無法適用於一般 真實情境。
圖例	Values	Values	Values

第二階段改善方向

效能再優化:準確率目標已達成,惟考量後續上線運行須配合實際產速狀況, 模型愈複雜雖準確率提高但處理時效變差,故須於「<u>準確率和</u> 執行效率之間尋找較佳平衡點」。

改善方法1 嘗試輕量化模型

- 第二階段採用的模型層數較深、架構較複雜,耗用運算資源多。
- 學者提出結構較輕量化的模型,適用於手持裝置,擬嘗試導入測試效果。

改善方法2 運用GPU處理效能

- AI 運算的重大突破有賴於GPU效能的提升。
- 不論模型訓練階段及地端電腦上線運行階段,採用GPU相關軟體套件開發, 皆可大幅加速運算效率。

第三階段訓練(成熟期)

1 嘗試輕量化模型

- 學者提出「MobileNet」模型架構,改良卷 積層的運算方式,降低計算複雜度。
- 文獻已有實證,此法運算效率明顯優於前述 複雜模型。
- 本案實際以MobileNet測試,程式執行效率 大幅提升五倍以上,準確率亦無顯著降低。

■ AI程式開發採用GPU函式庫,效能大幅提升。

模型訓練成果:訓練集準確率達99%,驗證集96%,測試集94%! (準確率及效率可兼顧,選定為最終版上線模型)

模型驗證 資料收集 資料前處理 模型訓練 模型驗證 上線運行

最終版模型測試結果

檢出率:100% 分類準確率:94.5%

											AI判	別結果									
Label	正常	大毛羽	小毛羽	折痕	污類	異物	斷經	經污	經破1	經破2	緯污	緯破1	緯破2	製圏緯1	鬆圈緯2	緯結	跳纱	緯向細紗	經向細紗	合計	横向統計
正常	107	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	107	100.00%
大毛羽	0	77	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89	86. 52%
小毛羽	0	31	115	8	0	0	0	0	1	0	0	4	0	0	0	0	0	0	0	151	76. 16%
折痕	0	0	0	53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	53	100.00%
污類	0	0	0	0	93	Π	0	0	0	0	0	0	0	0	0	0	0	0	0	104	89. 42%
異物	0	0	0	0	4	121	0	2	0	0	0	0	1	0	0	0	0	1	0	129	93. 80%
斷經	0	0	0	0	0	0	241	0	0	0	0	0	0	0	0	0	0	0	0	241	100.00%
經污	0	0	0	0	4	7	0	123	0	0	0	0	0	0	0	0	0	0	0	134	91.79%
經破1	0	0	0	0	0	0	0	8	109	2	0	0	0	0	0	0	0	0	0	111	98. 20%
經破2	0	0	0	0	0	0	0	0	4	27	0	0	0	0	0	0	0	0	0	31	87.10%
緯污	0	0	0	0	1	2	0	0	0	0	147	0	0	0	0	0	0	0	0	150	98.00%
緯破1	0	0	0	0	0	0	0	0	0	0	0	33	0	0	0	0	0	0	0	33	100.00%
緯破2	0	0	0	1	0	1	0	0	0	0	0	0	220	0	3		角線代		0	227	96. 92%
製圏 緯]	0	0	0	0	0	0	0	0	0	0	0	1	0	26	0	正	確的數	量。	0	27	96. 30%
製圏緯2	0	0	0	0	0	1	0	0	0	0	0	0	5	U	223	U	0	0	0	229	97. 38%
緯結	0	0	0	4	代表實	察是	(圏緯)	2,	0	0	0	0	0	0	0	16	0	0	0	16	100.00%
跳纱	0	0	0		ZAI判I				0	0	0	0	0	0	0	0	15	8	0	15	100.00%
緯向細約	0	0	0	U	U	U	U	U	0	0	0	0	0	0	0	0	0	2	0	2	100.00%
經向細約	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	15	100.00%
合計	107	108	127	54	102	143	241	125	114	29	147	38	226	26	226	18	15	3	15	1864	
直向統言	100.00%	71. 30%	90. 55%	98. 15%	91.18%	84. 62%	100.00%	98. 40%	95. 61%	93.10%	100.00%	86. 84%	97. 35%	100.00%	98. 67%	88. 89%	100.00%	66. 67%	100.00%		94. 58%

上線運行 資料收集 資料前處理 模型訓練 模型驗證 上線運行

2018年9月上線

- 1. 由AOI資訊查詢站擷取瑕疵 圖像檔供AI模組銜接。
- 2. 製程電腦安裝軟體並將辨識程式置入其中運行。
- 3. AI判別結果回寫至製程監控 系統網頁。

模型可靠度評估

■ 上線初期AI判讀結果由專人確認正確性,並將複判結果填入人工判讀欄位,若發現 準確率嚴重偏離,重新訓練模型。

項目	布甏	長度	瑕疵類	新瑕疵類	類說明	圖片檔案	人工判讀
1	82632831	75	6	2	小毛羽	82632831 201808152125 75 69482 6.bmp	2 更新
2	82632831	89	6	2	小毛羽	82632831 201808152128 89 69592 6.bmp	2 更新
3	82632831	201	6	2	小毛羽	82632831 201808152129 201 69594 6.bmp	2 更新

25

上線測試比對結果

上線運行

共比對12捆布,平均準確率94.9%

西山	声珊坳	大路	四六编制		AI判定結果	
項次	處理機	布號	布號 瑕疵總數		誤判率	準確率
1		82843823	260	5	1.9	98. 1
2		82842943	307	27	8.8	91. 2
3	OFOE	82830412	181	12	6.6	93.4
4	QF05	83021812	168	9	5. 4	94.6
5		83031513	224	16	7. 1	92.9
6		83031942	141	3	2.1	97. 9
西山	南田州	去毕	四方纳州		AI判定結果	
項次	處理機	布號	瑕疵總數	誤判張數	誤判率	準確率
1		82827223	399	12	3. 0	97. 0
2		82831012	211	14	6.6	93. 4
3	QF06	82843932	213	9	4.3	95. 7
4		83034061	217	11	5. 1	94. 9
5		82941023	163	5	3. 1	96. 9
6		82922633	223	15	6. 7	93. 3

AI導入前後效益比較

门 導入後 導入前 ■以檢出瑕疵為主要功能, ■上線實測準確率可達94%。 準確率提升 分類準確率僅70~80%。 ■ 準確率達一定水準,自動 ■瑕疵分類粗略,誤判率高, 人員效率提升 須人工複判確定能否繳庫。 依分類結果送驗或繳庫。 ■導入前平均收率約98.5%。 ■導入後平均收率約98.7%。 產品收率提升 ■去年度AI應用尚未導入, ■今年度各項AI改善推動後, 客訴案件減少 客訴案件11件。 客訴案件降為6件。

★推動成效

提升 1 準確程度 2 品質管理

降低

- 1 誤判機率
- 2 檢驗負荷

肆、各產品執行進度與後續推動項目

各產品執行進度

進度	產品別	設備廠商	瑕疵 類別	訓練數量	準確率	現況描述
已上線	電子部 玻纖布	捷將	19類	約18,000張	94% 上線 準確率	目前線上穩定實測中,持續與現場討論AI分 類優化與合理性,建立自動送檢系統並串接 生產履歷分析中。
模	<u>電子部</u> 銅箔基板	捷將	12類	約14,000張	96% 測試 準確率	已增設機櫃式主機,且新增AI分類程式,準備上線實測。
型上線	塑三部 珠光紙	瑋旻	7類	約7,000張	96% 測試 準確率	因設備商系統老舊,與自行開發模型程式不 相容,因此另購置新電腦與舊有系統串聯。
中	塑一部 PP合成紙	瑋旻	15類	約27,000張	96% 訓練 準確率	線上測試進行中且持續優化模型,規劃將判別結果串連RTPMS系統,與生產履歷進行整合
模型	聚酯膜部 聚酯膜 離型膜	德國信科	7類	約4,000張	99% 訓練 準確率	製膜二廠與離型膜廠已分別提供訓練樣本。 目前兩廠訓練模型初步建構完成,後續待兩 廠提供測試資料即可進行模型驗證。
三訓練中	<u>南電</u> PPS板	魚寶	70~80類	約4萬	70% 訓練 準確率	設備廠商奧寶為解決檢測速度,已有RMIV(遠端多重影像複判)系統租售,對發展AI無合作意願,因此南電資訊處自行修改現有拍照機台,外掛自動拍照程式,以利後續開發AI圖像辨識模型。

28

後續推動項目

圖像辨識橫向展開

■ 横向展開至膠布、硬布、PVC膠膜、CPP膜、銅箔等其他產品,確保檢測品質。

串接生產資料分析

- 依瑕疵分類結果或品質資訊串接前段生產資料,進而追溯改善製程問題。
 - □ 由瑕疵檢測資料串接生產履歷資料。
 - □ 生產製程資料利用數據分析追查異常可能發生原因。
 - □ 修復調整製程條件,減少異常發生。

伍、附 件

附件	內容	頁次
_	台灣廠區自動光學檢測盤點情況	30~33
=	各產品瑕疵分類	34~41

一、台灣廠區自動光學檢測盤點情況(1/3)

事業部	產品別	使用 製程段	自動光學 檢測 設備廠商	自動光學檢測設備數	作業項目	作業頻率	作業 自動化 程度	影像格式 輸出	檢測精度	檢測速度
	基材	含浸製程 線上檢查	捷將科技	20台 (已建置)	基材表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	50µm以上	30M/min
	銅箔基板	裁剪製程 後檢段	捷將科技	9台 (已建置5台 建置中4台)	銅箔基板 表面瑕疵檢 測	全檢	全自動作業	可輸出 影像格式	50µm以上	10M/min
電子部	玻纖布	處理機 製程後 中檢段	捷將科技	13台 (已建置12台 建置中1台)	玻纖布表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	167µm以上	50M/min
	LCD	ITO濺鍍段	捷將科技	1台 (已建置)	玻璃表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	30µm以上	6sec/pcs
	銅箔	處理段	瑋旻科技	21台 (已建置)	銅箔表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	5µm以上	20sec/pcs
聚酯膜部	聚酯膜 (製膜一廠)	延伸引取 段(前中 段檢查)	日本FUTEC 微覺視 德國信科	6台 (已建置)	聚酯膜表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	50~225µm 以上	100~400M/min
	離型膜 (離型膜廠)	塗佈機 一二三線	日本FUTEC 德國信科	1台 (已建置)	離型膜表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	50~225μm 以上	120~150M/min
	聚酯膜 (製膜二廠)	薄膜製程 T/U段	德國信科	2台 (已建置)	聚酯膜表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	100µm以上	225M/min

一、台灣廠區自動光學檢測盤點情況(2/3)

事業部	產品別	使用製程段	自動光學檢 測 設備廠商	自動光學檢測設備數	作業項目	作業頻率	作業 自動化 程度	影像格式 輸出	檢測精度	檢測速度
塑	硬質膠布	PP. PVC. M-PET	瑋旻科技 微覺視	16台 (已建置8台 建置中8台)	膠布表面 瑕疵檢測	全檢	全自動作業	可輸出 影像格式	50~150µm以上	50~80M/min (依產速設定)
部	PVC膠布	製程後 中檢段 膠布機捲取 段	源浩科技 鑫旌睿科技 微覺視科技	10台 (已建置7台 建置中3台)	PVC膠布 表面瑕疵檢測	全檢	全自動作業	可輸出 影像格式	0.1mm以上	50~80M/min (依產速設定)
	PVC硬管 小口徑	押出製程 中檢段	捷將科技 瑋旻科技	7台 (已建置1台 建置中6台)	PVC硬管小口徑 表面瑕疵檢測	全檢	全自動作業	可輸出 影像格式	50µm以上	20M/min
塑三部	PVC硬管 小口徑	押出製程後檢段	日照科技	1台 (建置中)	PVC硬管小口徑 成品尺寸量測	抽檢	需人工作業	可輸出 影像格式	標準厚度 ±0.1mm	3min/pcs
	透明板	押出製程中檢段	微覺視	5台 (已建置)	透明板 表面瑕疵檢測	全檢	全自動作業	可輸出 影像格式	100µm以上	20M/min
南亞	南亞公司小計 共112台(已建置89台,建置中23台)									
必成 公司	玻纖絲	熔紡製程 紡絲段	陽程科技	3台 (建置中)	紡位斷絲監控	全檢	全自動作業	可輸出 影像格式	2.2 µm以上	5sec/pcs (毎5秒照一次)

一、台灣廠區自動光學檢測盤點情況(3/3)

事業部	產品別	使用製程段	自動光學 檢測 設備廠商	自動光學檢 測設備數	作業項目	作業頻率	作業 自動化 程度	影像格式 輸出	檢測精度	檢測速度
	PCB (一廠)	ET測試機 後 成檢段	由田 AFVI外觀 檢查機	60台 (已建置)	電路板表面 瑕疵檢測	全檢	全自動作業	無輸出 影像格式	CO:3µm以上 SO:5µm以上	2~4.5 sec/pcs
	PPS (二廠)	蝕刻後AOI	ORBOTECH AOI 光學 檢查機	43台 (已建置)	電路板表面 線路瑕疵檢 測	全檢抽檢	全自動作業	無輸出 影像格式	10µm以上	90sec/pcs
	PPS (二廠)	ET測試機 後 成檢段	由田 AFVI外觀 檢查機	21台 (已建置)	電路板表面 瑕疵檢測	全檢	全自動作業	無輸出 影像格式	CO:3µm以上 SO:5µm以上	3-4.5 sec/pcs
南亞 電路板	覆晶載板 (五廠)	触刻後 品質檢驗	GIGAVIS AOI 光學 檢查機	9台 (已建置)	半成品品質 檢驗	全檢 抽檢	全自動作業	無輸出 影像格式	1.7µm以上	150~180 sec/pcs
	製具課底片區	底片、 光罩	宇柏林 底片檢查 機	5台 (已建置)	底片及光罩 瑕疵檢測	全檢	需人工作業	無輸出 影像格式	5µm以上	300sec/pcs
	製具課鋼版區	鋼版	宇柏林 鋼板檢查 機	1台 (已建置)	鋼版瑕疵檢 測	全檢	需人工作業	無輸出 影像格式	10µm以上	900sec/pcs
	ABFS (六廠)	QE製程後 AOI	GIGAVIS AOI 光學 檢查機	7台 (已建置)	銅面線路 缺損檢測	全檢抽檢	需人工作業	可輸出 影像格式	2.5µm以上	150sec/pcs
南電公	南電公司小計 共146台(已建置)									
全公	全公司合計 共261台(已建置235台,建置中26台)									

二、電子部玻纖布瑕疵分類,不含正常共18類(1/8)

種類	大毛羽	小毛羽	折痕	污類	異物	斷經
圖例)					
種類	經污	經破1	經破2	緯污	緯破1	緯破2
圖例					- 0	
種類	鬆圈緯1	鬆圈緯2	緯結	跳紗	緯向細紗	經向細紗
圖例	0					

二、電子部銅箔基板瑕疵分類,共12類(2/8)

二、聚酯膜部聚酯膜瑕疵分類,共7類(3/8)

種類	凹凸點	膠狀物	線狀膠狀物	油汙
圖例		*		*
種類	誤檢出	白粉	刮傷	
圖例				

二、聚酯膜部離型膜瑕疵分類,共7類(4/8)

種類	大暗點	中暗點	小暗點	塗佈異物斑
圖例				6
種類	凹凸點	塗面不均	白斑	
圖例				

二、塑膠一部PP合成紙瑕疵分類,共12類(5/8)

種類	水漬	失料	竹刀痕	螺紋
圖例				
種類	油汙	破孔	蚊蟲	黏痕
圖例				
種類	黑線條	黑點		纖維
圖例				

二、塑膠三部珠光紙瑕疵分類,共7類(6/8)

種類	黑點雜質	蚊蟲	油汙	析出
圖例		*	J	
種類	透光	斜紋	晃動	
圖例				

二、南亞電路板PP載板瑕疵分類,特徵較明顯共27類(7/8)

種類	正常	線路短路	線路斷路	銅殘留	夾膜殘銅
圖例)(S)	
種類	線路刮撞傷	對位不良	蝕刻不全	渗鍍	孔位偏移
圖例					
種類	線路缺口	Pad破損	顯影刮撞傷	線路變細	凹陷
圖例					

二、南亞電路板PP載板瑕疵分類,特徵較明顯共27類(8/8)

種類	結瘤short	渗鍍-乾膜剝離	線路分層	內層紅筆報廢	異物抗鍍
圖例					
種類	外層前刮傷	填孔不良	乾膜殘留	棕化不良	壓合/基材氣泡
圖例			1000 1000 1000		
種類	異物抗咬蝕	底銅抗咬蝕			
圖例					