Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 10 - Optimization Foundations Applied to Regression
Formulations

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization, Support Vector Regression
- 4 How to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Constrained convex problems

Q. How to solve such constrained problems?

A. Canonical example:

Constrained Convex Problems

• If \mathbf{w}^* is on the boundary of g_1 , *i.e.*, if $g_1(\mathbf{w}^*) = 0$,

$$\nabla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*)$$
 for some $\lambda \geq 0$

- Intuition: If the above didn't hold, then we would have $\nabla f(\mathbf{w}^*) = \lambda_1 \nabla g_1(\mathbf{w}^*) + \lambda_2 \nabla_{\perp} g_1(\mathbf{w}^*)$, where, by moving in direction¹ $\pm \nabla_{\perp} g_1(\mathbf{w}^*)$ (or $-\nabla g_1(\mathbf{w}^*)$), we remain on boundary $g_1(\mathbf{w}^*) = 0$, (or within $g_1(\mathbf{w}^*) \leq 0$) while decreasing the value of f, which is not possible at the point of optimality.
- Thus, at the point of optimality², for some $\lambda \geq 0$,

Fither
$$g_1(\mathbf{w}^*) < 0$$
 & $\nabla f(\mathbf{w}^*) = 0$ ($\lambda = 0$)

$$Or \frac{g_1(\mathbf{w}^*) = 0}{2}$$
 & $\nabla f(\mathbf{w}^*) = -\lambda \nabla g_1(\mathbf{w}^*)$

$$\frac{1}{2} \nabla_{\perp} g_1(\mathbf{w}^*) \text{ is the direction orthogonal to } \nabla g_1(\mathbf{w}^*)$$
 Comp. Slack ness

²Section 4.4, pg-72: cs725/notes/BasicsOfConvexOptimization.pdf

Explaining the Figure

Figure 2: Two conditions under which a minimum can occur: a) When the minimum is on the constraint function boundary, in which case the gradients are in opposite directions; b) When point of minimum is inside the constraint space (shown in yellow shade), in which case $\nabla f(\mathbf{w}^*) = \mathbf{0}$.

More Explanation and Lagrange Function

- The first condition occurs when minima lies on the boundary of function g. In this case, gradient vectors corresponding to the functions f and g, at \mathbf{w}^* , point in opposite directions barring multiplication by a real constant.
- Second condition represents the case that point of minimum lies inside the constraint space. This space is shown shaded in Figure 1. Clearly, for this case, $\nabla f(\mathbf{w}) = \mathbf{0}$.
- An Alternative Representation: $\nabla L(\mathbf{w}, \lambda) = 0$ for some $\lambda \geq 0$ where

$$\frac{L(\mathbf{w},\lambda) = f(\mathbf{w}) + (\lambda \mathbf{g}(\mathbf{w}))\lambda \in \mathbb{R}}{\text{constraint}}$$

is called the lagrange function which has objective function augmented by weighted sum of constraint functions

Duality and KKT conditions

For a convex objective and constraint function, the minima, \mathbf{w}^* , can satisfy one of the following two conditions:

$$oldsymbol{0} \ g(\mathbf{w}^*) = oldsymbol{0} \ ext{and} \
abla f(\mathbf{w}^*) = -\lambda
abla \mathbf{g}(\mathbf{w}^*)$$

Duality and KKT conditions

- Here, we wish to penalize higher magnitude coefficients, hence, we wish $g(\mathbf{w})$ to be negative while minimizing the lagrangian. In order to maintain such direction, we must have $\lambda \geq 0$. Also, for solution \mathbf{w} to be feasible, $\nabla g(\mathbf{w}) \leq \mathbf{0}$.
- Due to complementary slackness condition, we further have $\lambda g(\mathbf{w}) = \mathbf{0}$, which roughly suggests that the lagrange multiplier is zero unless constraint is active at the minimum point. As \mathbf{w} minimizes the lagrangian $L(\mathbf{w}, \lambda)$, gradient must vanish at this point and hence we have $\nabla f(\mathbf{w}) + \lambda \nabla \mathbf{g}(\mathbf{w}) = \mathbf{0}$

KKT Conditions, Duality, SVR Dual

 The general optimization problem we consider with (convex) inequality and (linear) equality constraints is:

Illustrate through
$$\stackrel{\text{min } f(\mathbf{w})}{\sim}$$

Quadratic for (SVR)
 $||A w - b||_2^2$

 The general optimization problem we consider with (convex) inequality and (linear) equality constraints is:

min $f(\mathbf{w})$

ullet Here, $oldsymbol{w} \in \mathbb{R}^n$ and the domain is the intersection of all functions. Lagrangian is:

Minimize
$$L$$
 $\{L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w}) \}$

Intuition (Necessary at opt)

Renalty associated with each inequality

Of the penalty associated with each inequality

 $g_i(\mathbf{w}) \leq 0$
 $g_i(\mathbf{w}) \leq 0$

Figure we need

Since we need

 $f(\mathbf{w}) = \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$

Since we need

 $g_i(\mathbf{w}) \leq 0$
 $f(\mathbf{w}) = \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$
 $g_i(\mathbf{w}) \leq 0$
 $g_i(\mathbf{w}) \leq 0$
 $f(\mathbf{w}) = \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) = \sum_{i=1}^{m} \mu_i h_j(\mathbf{w}) = 0$
 $f(\mathbf{w}) = 0$, sign of M_i does not matter $h_i(\mathbf{w}) = 0$

Karush Kuhn Tucker

• Here, $\mathbf{w} \in \mathbb{R}^n$ and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

• KKT **necessary** conditions for all differentiable functions (i.e. f, g_i, h_i) with optimality points $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$ are:

optimality points
$$\hat{\mathbf{w}}$$
 and $(\hat{\lambda}, \hat{\mu})$ are:

 $\nabla f(\hat{\mathbf{w}}) + \sum_{i=1}^{m} \hat{\lambda}_{i} \nabla g_{i}(\hat{\mathbf{w}}) + \sum_{j=1}^{p} \hat{\mu}_{j} \nabla h_{j}(\hat{\mathbf{w}}) = 0$
 $g_{i}(\hat{\mathbf{w}}) \leq 0; 1 \leq i \leq m \rightarrow \text{positivity}$
 $\hat{\lambda}_{i} \geq 0; 1 \leq i \leq m \rightarrow \text{positivity}$
 $\hat{\lambda}_{i}g_{i}(\hat{\mathbf{w}}) = 0; 1 \leq i \leq m \rightarrow \text{comp slackness}$
 $h_{j}(\hat{\mathbf{w}}) = 0; 1 \leq j \leq p \rightarrow \text{eq (original)}$

• Here, $\mathbf{w} \in \mathbb{R}^n$ and the domain is the intersection of all functions. Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

 $h_j \leq 0$ 3 both $-h_j \leq 0$ 3 convertine a_j • KKT **necessary** conditions for all differentiable functions (i.e. f, g_i, h_i) with optimality points $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$ are:

•
$$\nabla f(\hat{\mathbf{w}}) + \sum_{i=1}^{m} \hat{\lambda}_i \nabla g_i(\hat{\mathbf{w}}) + \sum_{j=1}^{p} \hat{\mu}_j \nabla h_j(\hat{\mathbf{w}}) = 0$$

- $g_i(\hat{\mathbf{w}}) \le 0; 1 \le i \le m$
- $\hat{\lambda_i} \geq 0$; $1 \leq i \leq m$
- $\hat{\lambda}_i g_i(\hat{\mathbf{w}}) = 0: 1 < i < m$
- $h_i(\hat{\mathbf{w}}) = 0; 1 \le i \le p$
- When \underline{f} and $\underline{g_i}, \forall i \in [1, m]$ are convex and $h_i, \forall j \in [1, p]$ are affine, KKT conditions are also **sufficient** for optimality at $\hat{\mathbf{w}}$ and $(\hat{\lambda}, \hat{\mu})$

Lagrangian Duality and KKT conditions

• With $\mathbf{w} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$, Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

Lagrange dual function is minimum of Lagrangian over w.

Lagrange dual runction is infinition of Lagrangian over with
$$f(\omega) = 0$$

Lagrange dual runction is infinition of Lagrangian over with $f(\omega) = 0$
 $f($

Lagrangian Duality and KKT conditions

• With $\mathbf{w} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m$, $\mu \in \mathbb{R}^p$, Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

• Lagrange dual function is minimum of Lagrangian over w.

$$L^*(\lambda,\mu) = \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$$

• The Dual Optimization Problem is to maximize Lagrange dual function $L^*(\lambda, \mu)$

over
$$(\lambda, \mu)$$
 λ , $M = argmax L'(\lambda, M) = Rush the Hyperplane as upward as possible$

Lagrangian Duality and KKT conditions

• With $\mathbf{w} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$, Lagrangian is:

$$L(\mathbf{w}, \lambda, \mu) = f(\mathbf{w}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{w}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{w})$$

Lagrange dual function is minimum of Lagrangian over w.

$$L^*(\lambda,\mu) = \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$$

The Dual Optimization Problem is to maximize Lagrange dual function $L^*(\lambda,\mu)$ over (λ,μ) argmax $L^*(\lambda,\mu) = \underset{\lambda,\mu}{\operatorname{argmax}} \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$ from $L(\mathbf{w},\lambda,\mu)$ argmax $L^*(\lambda,\mu) = \underset{\lambda,\mu}{\operatorname{argmax}} \min_{\mathbf{w}} L(\mathbf{w},\lambda,\mu)$ from $L(\mathbf{w},\lambda,\mu)$ from $L(\mathbf{w},\lambda,\mu)$ and $L(\mathbf{w},\lambda,\mu)$ from $L(\mathbf{w}$

Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function $L^*(\lambda, \mu)$ over (λ, μ) is also therefore a lower bound

Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function $L^*(\lambda,\mu)$ over (λ,μ) is also therefore a lower bound

$$\max_{\lambda,\mu} \, L^*(\lambda,\mu) = \max_{\lambda,\mu} \, \min_{\mathbf{w}} \, L(\mathbf{w},\lambda,\mu) \leq L(\mathbf{w},\lambda,\mu)$$

- **Duality Gap:** The gap between primal and dual solutions. In the KKT conditions, $\hat{\mathbf{w}}$ correspond to primal optimal and $(\hat{\lambda}, \hat{\mu})$ to dual optimal points \Rightarrow Duality gap is $f(\hat{\mathbf{w}}) L^*(\hat{\lambda}, \hat{\mu})$
- Duality gap characterizes suboptimality of the solution and can be approximated by $f(\mathbf{w}) L^*(\lambda, \mu)$ for any feasible \mathbf{w} and corresponding λ and μ

If
$$\hat{\lambda}$$
, \hat{u} , $\hat{\omega}$ is sain to KKT condition then

$$f(\hat{\omega}) - L^*(\hat{\lambda}, \hat{u}) \text{ is gap.}$$

$$= 0 \text{ under convexity} \text{ mosting}$$

Extra: Lagrangian Duality and KKT conditions

- The dual function yields lower bound for minimizer of the primal formulation.
- Max of dual function $L^*(\lambda,\mu)$ over (λ,μ) is also therefore a lower bound

$$\max_{\lambda,\mu} \, L^*(\lambda,\mu) = \max_{\lambda,\mu} \, \min_{\mathbf{w}} \, L(\mathbf{w},\lambda,\mu) \leq L(\mathbf{w},\lambda,\mu)$$

- **Duality Gap:** The gap between primal and dual solutions. In the KKT conditions, $\hat{\mathbf{w}}$ correspond to primal optimal and $(\hat{\lambda}, \hat{\mu})$ to dual optimal points \Rightarrow Duality gap is $f(\hat{\mathbf{w}}) L^*(\hat{\lambda}, \hat{\mu})$
- Duality gap characterizes suboptimality of the solution and can be approximated by $f(\mathbf{w}) L^*(\lambda, \mu)$ for any feasible \mathbf{w} and corresponding λ and μ
- When functions f and $g_i, \forall i \in [1, m]$ are convex and $h_j, \forall j \in [1, p]$ are affine, Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient for points to be both primal and dual optimal with zero duality gap.

Elaboration on equivalence

of penalized & constrained

forms of ridge regression (continued from page 14)

Equivalent Forms of Ridge Regression

• Consider the formulation in which we limit the weights of the coefficients by putting a constraint on size of the L2 norm of the weight vector:

$$\mathsf{argmin}_{\mathbf{w}}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) \ \|\mathbf{w}\|_2^2 \leq \xi$$

- The objective function, namely $f(\mathbf{w}) = (\mathbf{\Phi}\mathbf{w} \mathbf{y})^{\mathsf{T}}(\mathbf{\Phi}\mathbf{w} \mathbf{y})$ is strictly convex. The constraint function, $g(\mathbf{w}) = \|\mathbf{w}\|_2^2 \xi$, is also convex.
- For convex $g(\mathbf{w})$, the set $\{\mathbf{w}|\mathbf{g}(\mathbf{w}) \leq \mathbf{0}\}$, is also convex. (Why?)

Equivalent Forms of Ridge Regression

• To minimize the error function subject to constraint $|\mathbf{w}| \leq \xi$, we apply KKT conditions at the point of optimality \mathbf{w}^*

$$abla_{\mathbf{w}^*}(f(\mathbf{w}) + \lambda \mathbf{g}(\mathbf{w})) = \mathbf{0}$$

(the first KKT condition). Here, $f(\mathbf{w}) = (\Phi \mathbf{w} - \mathbf{y})^T (\Phi \mathbf{w} - \mathbf{y})$ and, $g(\mathbf{w}) = ||\mathbf{w}||^2 - \xi$.

Solving we get,

$$\mathbf{w}^* = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y}$$

From the second KKT condition we get,

$$\|\mathbf{w}^*\|^2 \le \xi$$

From the third KKT condition,

$$\lambda \geq 0$$

From the fourth condition

$$\lambda \|\mathbf{w}^*\|^2 = \lambda \xi$$

Equivalent Forms of Ridge Regression

• Values of ${\bf w}$ and λ that satisfy all these equations would yield an optimal solution. That is, if

$$\|\mathbf{w}^*\| = \|(\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}\| \le \xi$$

then $\lambda=0$ is the solution. Else, for some sufficiently large value, λ will be the solution to

$$\|\mathbf{w}^*\| = \|(\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y}\| = \xi$$

Bound on λ in the regularized least square solution

Consider,

$$(\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y} = \mathbf{w}^*$$

We multiply $(\Phi^T \Phi + \lambda I)$ on both sides and obtain,

$$\|(\Phi^T\Phi)\mathbf{w}^* + (\lambda \mathbf{I})\mathbf{w}^*\| = \|\mathbf{\Phi}^\mathsf{T}\mathbf{y}\|$$

Using the triangle inequality we obtain,

$$\|(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi})\mathbf{w}^{*}\| + (\lambda)\|\mathbf{w}^{*}\| \geq \|(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi})\mathbf{w}^{*} + (\lambda\mathbf{I})\mathbf{w}^{*}\| = \|\boldsymbol{\Phi}^{T}\mathbf{y}\|$$

• By the Cauchy Shwarz inequality, $\|(\Phi^T \Phi) \mathbf{w}^*\| \le \alpha \|\mathbf{w}^*\|$ for some $\alpha = \|(\Phi^T \Phi)\|$. Substituting in the previous equation,

$$(\alpha + \lambda) \|\mathbf{w}^*\| \ge \|\mathbf{\Phi}^\mathsf{T}\mathbf{y}\|$$

i.e.

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^T \mathbf{y}\|}{\|\mathbf{w}^*\|} - \alpha$$

Note that when $\|\mathbf{w}^*\| \to \mathbf{0}, \lambda \to \infty$. (Any intuition?) Using $\|\mathbf{w}^*\|^2 \le \xi$ we get,

Bound on λ in the regularized least square solution

 $\|(\Phi^T\Phi)\mathbf{w}^*\| \le \alpha \|\mathbf{w}^*\|$ for some α for finite $|(\Phi^T\Phi)\mathbf{w}^*\|$. Substituting in the previous equation,

$$(\alpha + \lambda) \|\mathbf{w}^*\| \ge \|\mathbf{\Phi}^T \mathbf{y}\|$$

i.e.

$$\lambda \ge \frac{\|\Phi^T \mathbf{y}\|}{\|\mathbf{w}^*\|} - \alpha$$

Note that when $\|\mathbf{w}^*\| \to 0, \lambda \to \infty$. (Any intuition?) Using $\|\mathbf{w}^*\|^2 \le \xi$ we get,

$$\lambda \ge \frac{\|\boldsymbol{\Phi}^T \mathbf{y}\|}{\sqrt{\xi}} - \alpha$$

This is not the exact solution of λ but the bound proves the existence of λ for some ξ and Φ .

The Resultant alternative objective function

Substituting $g(\mathbf{w}) = \|\mathbf{w}\|^2 - \xi$, in the first KKT equation considered earlier:

$$\nabla_{\mathbf{w}^*}(f(\mathbf{w}) + \lambda \cdot (\|\mathbf{w}\|^2 - \xi)) = \mathbf{0}$$

This is equivalent to solving

$$\min(\parallel \Phi \mathbf{w} - \mathbf{y} \parallel^2 + \lambda \parallel \mathbf{w} \parallel^2)$$

for the same choice of λ . This form of **regularized** ridge regression is the **penalized** ridge regression.