# Better Move Ordering in Combinatorial Games via Learnable Heuristics in a 1D Clobber Solver

Akash Saravanan (<u>asaravan@ualberta.ca</u>) Debraj Ray (<u>debraj1@ualberta.ca</u>)



- Introduction
- Baseline Assignment 2 Solver
- Deep Learning using CNN
  - Architecture
  - Fundamentals of training
  - Inference Accuracy
  - Results
- Deep Reinforcement Learning
  - Overview
  - Training
  - Results & Evaluation
  - Advantages & Limitations
- Future Work
- Conclusion

# Why Move Ordering through Learnable Heuristics?

- Choosing a great move quickly can preclude a lot of searching effort.
- This is especially true if we can find a good move near the top levels of the game tree.
- Heuristics are good for this purpose, but finding an effective heuristic (manually) is challenging.
- Subgame database and endgame database are very helpful, but they don't scale due to the huge state space of larger boards.
- Machine learning approaches can do a really good job
- Machine learning models are just a few kbs

# Two different learning approaches explored for 1D clobber

#### Two Approaches:

- Deep Learning using a CNN
- Deep Reinforcement Learning

- Introduction
- Baseline Assignment 2 Solver
- Deep Learning using CNN
  - Architecture
  - Fundamentals of training
  - Inference Accuracy
  - Results
- Deep Reinforcement Learning
  - Overview
  - Training
  - Results & Evaluation
  - Advantages & Limitations
- Future Work
- Conclusion

### Baseline

- Clobber Solver from Assignment 2
- Uses a basic move ordering
- Plays moves in R games first, L games last and other subgames in the decreasing order of size.
- Experiments showed that such a move ordering is at least better than random move ordering

- Introduction
- Baseline Assignment 2 Solver
- Deep Learning using CNN
  - Architecture
  - Fundamentals of training
  - Inference Accuracy
  - Results
- Deep Reinforcement Learning
  - Overview
  - Training
  - Results & Evaluation
  - Advantages & Limitations
- Future Work
- Conclusion

# **CNN - Architecture**



# Fundamentals of Training

- Two CNNs black and white to predict win/lose probability of black and white respectively
- Training on small boards of size less than 17 (with paddings and shiftings)
- Trained on 800,000 synthetic samples
- Target labels generated using A2 clobber solver
- Re-training of trained model on larger boards (with controlled sparsity)
- Re-training with 600,000 synthetic samples.
- Max size of board is fixed at 40.

# Inference Accuracy

| Board Size | CNN-Black (% accuracy) | CNN-White (% accuracy) |
|------------|------------------------|------------------------|
|            |                        |                        |
| 20         | 85.6                   | 88.6                   |
|            |                        |                        |
| 25         | 81                     | 83.4                   |
|            |                        |                        |
| 30         | 80.78                  | 79.11                  |
|            |                        |                        |
| 35         | 79.66                  | 72.78                  |
|            |                        |                        |

# Results of deploying CNN in the 1D clobber solver

| Board                | Size | First Player | CNN-ordering                                   | Baseline-ordering      |  |
|----------------------|------|--------------|------------------------------------------------|------------------------|--|
| (WB) <sup>15</sup>   | 30   | В            | B 19-20 14.68 304944                           | B 9-8 33.15 698817     |  |
| (WB) <sup>15</sup> W | 31   | w            | B None 82.12 1604209                           | B None 161.75 3347088  |  |
| (WB) <sup>15</sup> W | 31   | В            | B 23-22 10.50 218937                           | B 5-4 73.95 1532934    |  |
| (BW) <sup>16</sup>   | 32   | w            | W 29-30 46.45 916989                           | W 21-22 84.38 1721429  |  |
| (WB) <sup>16</sup>   | 32   | w            | W 12-13 48.34 954372                           | W 12-13 117.33 2388654 |  |
| (BW) <sup>17</sup>   | 34   | w            | W 31-32 197.94 3715242                         | W 21-22 507.67 9820176 |  |
| (BW) <sup>17</sup>   | 34   | В            | B 22-23 229.40 4390859                         | B 18-17 329.96 6435019 |  |
| (WB) <sup>17</sup>   | 34   | В            | B 23-24 180.76 3336638                         | B 21-22 514.61 9820176 |  |
| (BW) <sup>18</sup>   | 36   | В            | B 22-23 808.145 10291762 B 18-17 1199.84 22390 |                        |  |

- Introduction
- Baseline Assignment 2 Solver
- Deep Learning using CNN
  - Architecture
  - Fundamentals of training
  - Inference Accuracy
  - Results

#### - Deep Reinforcement Learning

- Overview
- Training
- Results & Evaluation
- Advantages & Limitations
- Future Work
- Conclusion

# RL Approach: Overview



#### Markov Decision Process:

- States: Current board position + current player. Example: (BWWBW, B)
- Actions: Move played. Example: (0->1) [.BWBW]
- Next States: Board Position + current player after opponent move. Example: (.W.BW, B)
- Reward: +1 if first player win; -1 if second player win;
  -1/(100 \* board\_size) otherwise

# RL Approach: Training

#### Model:

- o Double Deep Q-Network (DDQN), soft target updates, experience replay, action mask. [5,6]
- Policy: Exponentially Decaying Epsilon Greedy Policy.
- Model: Deep CNN (4 CNN + 2 Linear layers; ReLU + Dropout after each layer).

#### Environment:

- o Initial Board: (BW)<sup>N</sup>, (WB)<sup>N</sup>, (BBW)<sup>N</sup>, (WWB)<sup>N</sup>, [B/W]<sup>N</sup>, [B/W/.]<sup>N</sup>
- Starting Player: B or W.

#### Training:

- Board Size: 40; Train vs random player\* for 1,000,000 Episodes (games).
- Validation: Winrate vs Random Player.
- Adam Optimizer; Batch Size: 64; Learning Rate: 0.0001;

# RL Approach: Evaluation & Results

| Board                | Player | Size No Move Baseline Move Ordering |         |         |         | CNN Move<br>Ordering |         | RL Move<br>Ordering |         |        |
|----------------------|--------|-------------------------------------|---------|---------|---------|----------------------|---------|---------------------|---------|--------|
|                      |        |                                     | Time    | Nodes   | Time    | Nodes                | Time    | Nodes               | Time    | Nodes  |
| (BW) <sup>13</sup>   | W      | 26                                  | 25.2852 | 204774  | 9.46971 | 78215                | 4.41373 | 32887               | 4.38826 | 25444  |
| (BBW) <sup>9</sup>   | В      | 27                                  | 3.67418 | 18083   | 1.33008 | 7844                 | 1.29797 | 7844                | 1.28726 | 5709   |
| (WB) <sup>14</sup> W | В      | 29                                  | 980.000 | 5889300 | 205.293 | 1270778              | 122.388 | 526587              | 115.612 | 439652 |
| (BW) <sup>15</sup> B | W      | 31                                  | 980.000 | 5963465 | 281.934 | 1532934              | 100.456 | 537206              | 86.1686 | 300876 |

# RL Approach: Advantages & Limitations

#### Advantages:

- O(1) for inference. In practice, 0.0000965s per call.
- Excellent performance when it works.
- Size: 178 KB
- Limitations:
  - Doesn't always work well.
    - Sometimes worse than our baseline.
    - This could be resolved by further training.
      - We train on just 1 million boards; there are 3<sup>40</sup> possible boards for board size 40.
    - The DQN algorithm we used while effective, is not the state of the art. Options exist.

| Model         | Winrate vs Random |  |  |  |
|---------------|-------------------|--|--|--|
| Board Size 15 | 62.998            |  |  |  |
| Board Size 20 | 60.513            |  |  |  |
| Board Size 25 | 51.144            |  |  |  |
| Board Size 30 | 51.119            |  |  |  |
| Board Size 40 | 52.200            |  |  |  |

- Introduction
- Baseline Assignment 2 Solver
- Deep Learning using CNN
  - Architecture
  - Fundamentals of training
  - Inference Accuracy
  - Results
- Deep Reinforcement Learning
  - Overview
  - Training
  - Results & Evaluation
  - Advantages & Limitations
- Future Work
- Conclusion

# **Extensions/Future Work**

- Expanding to 2D Clobber or Impartial 1D Clobber.
- Solving 1D Clobber for (BW)<sup>n</sup> where n>19.
  - $(BW)^{19}$  was confirmed to be a 1st player win. [~1 hour with the CNN]<sup>[1]</sup>
- Deep Learning using a CNN:
  - o Combining CNN with MCTS.
- Deep Reinforcement Learning:
  - Stronger opponents: Self-play [In Progress!], Existing players (with bounds on time).
  - Experiment with different model architectures & RL algorithms (AlphaGo uses MCTS+RL).

- Introduction
- Baseline Assignment 2 Solver
- Deep Learning using CNN
  - Architecture
  - Fundamentals of training
  - Inference Accuracy
  - Results
- Deep Reinforcement Learning
  - Overview
  - Training
  - Results & Evaluation
  - Advantages & Limitations
- Future Work
- Conclusion

## Conclusions

- Do our learnable heuristics result in better move ordering?
  - o Yes!
- Is it always better?
  - o No.
- Can it be improved?
  - o Yes!
- Are learnable heuristics a good choice for further work on move ordering?
  - Yes!

### References

- [1] Albert, Michael & Grossman, J.P. & Nowakowski, Richard & Wolfe, David. (2005) An introduction to Clobber. Integers (Vol 5-2).
- [2] Teddy Etoeharnowo. (2017) Neural Networks for Clobber. Bachelor's thesis, Leiden Institute of Advanced Computer Science.
- [3] Jeroen Claessen. (2011) Combinatorial Game Theory in Clobber. Master's thesis, Maastricht University.
- [4] Griebel, Janis and Uiterwijk, Jos. (2016) Combining Combinatorial Game Theory with an α-β Solver for Clobber: Theory and Experiments. BNCAI.
- [5] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.A. (2013). Playing Atari with Deep Reinforcement Learning. *NIPS Deep Learning Workshop*.
- [6] Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double q-learning. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 30, No. 1).
- [7] Chen, Zhenhua & Wang, Chuhua & Laturia, Parth & Crandall, David & Blanco, Saúl. (2021 How to play Notakto: Can reinforcement learning achieve optimal play on combinatorial games? AAAI Reinforcement Learning and Games 2021.
- [8] Ruiyang Xu and Karl Lieberherr. (2019) Learning Self-Game-Play Agents for Combinatorial Optimization Problems. AAMAS '19 Proceedings. Page 2276–2278.