LLM INTERACTION SIMULATOR **BY MASSIMO STEFAN**

INDEX

- 1. Background on LLMs
- 2. The problem
- 3. Our solution
- 4. Structure and Framework
- 5. Case Study: The Prison Experiment Simulation

BACKGROUND ON LARGE LANGUAGE MODELS (LLMS)

Definition:

LLMs are AI models trained on vast amount of text data to understand and generate human-like text

- * Agentic capabilities:
- **Autonomous Agents**: LLMs can be programmed to act as autonomous agents, making decisions and carrying out tasks without direct human intervention.
- **Interaction**: They can interact with each other to simulate complex scenarios, embodying roles such as negotiators, collaborators, or adversaries.
- Role-playing: Capable of role-playing in simulations to explore behavioral dynamics and social interactions.

THE PROBLEM: LACK OF A SOCIAL SCIENCE SIMULATION FRAMEWORK

Ourrent state:

- **Isolated Models**: LLMs often function independently without interaction with other models.
- **Limited Contextual Simulations**: Few tools exist to simulate complex social interactions using multiple LLMs.

🟋 Challenges:

- **Social Science Research**: Needs dynamic, interactive frameworks to study behaviors and interactions
- **Scalability**: Difficulty in scaling simulations with multiple agents and complex scenarios
- **Customization**: Lack of adaptable frameworks to customize roles and interaction parameters

OUR SOLUTION: LLM INTERACTION SIMULATOR

Features:

- CLI Interface
- Integration with Ollama
- Configurable LLM Settings: Can configure temperature, top_p and top_k
- **Scalable**: Can handle multiple agents and complex interaction scenarios.
- **Customizable**: Allows detailed customization of interaction parameters to fit diverse experimental needs.

- Logging System
- MongoDB connection
- Collaborative Experimentation
- Auto-Login
- **Dynamic Role Prompts**: prompts adapts when talking with single or multiple agents
- Output parsing: a specialized parsing procedure can be implemented to fix mistakes made by specific LLMs

THE FRAMEWORK

© Goal:

simulate and analyze interactions between different Large Language Models (LLMs) acting as autonomous agents in varied scenarios.

- Core components:
- Agent definition: Mechanism for defining agent roles and attributes
- Interaction Engine: Manages the dynamics of interactions between agents
- Customization Module: Allows setting of parameters for varied scenarios

HYPERPARAMETERS

HYPERPARAMETERS

- Starting message
- LLMs (model + temperature + top_k + top_p)
- Roles
 - Private sections
 - Shared sections
 - Placeholders
- Summarizer sections
- Global placeholders
- Favorite (\(\frac{1}{2} \)
- Note
- Creator
- Creation date

HYPERPARAMETERS

- Speaker selection method (round_robin, auto, random)
- LLM (model + temperature + top_k + top_p)
- Days
- Agent combination
 Example: 2 guards VS 1 prisoner
- Maximum # of messages
- Favorite (👷)
- Note
- Creator
- Creation date

PERFORMING NEW CONVERSATIONS

When setting up a new conversation, users are guided to configure:

- the iterations (how many for each degree of freedom)
- the LLMs
 - Example: mistral and llama3
- the maximum number of messages between the agents
- the number of days
 - Note: if n>1, can also perform with 1, 2, ..., n days
- the agent combination
 - Note: if at least one role have the # of agents > 1, can also perform with all the possible combinations
 - Example: with 2 guards and 2 prisoners it'll perform 1v1, 1v2, 2v1, 2v2
- the **speaker selection method** (round_robin, auto, random)

PROMPTS STRUCTURE

PROMPTS STRUCTURE

Starting message

PROMPTS STRUCTURE

Language Daily summary by the Summarizer

WHATABOUT THE EVALUATION PROCEDURE?

THANK YOU Massimo Stefan