#### TRAFFIC SIGNAL CLASSIFIER PROJECT

### **Data Set Summary & Exploration:**

\* The size of training set : 34799

\* The size of the validation set : 4400

\* The size of test set is : 12630

\* The shape of a traffic sign image is : 32x32 (Colored Image)

\* The number of unique classes/labels in the data set is : 43

# **Visualisation of the Image:**



### **Design and Test a Model Architecture**

#### PREPROCESSING THE IMAGE:

1. Conversion to gray scale using opency:

The images in the training set is converted from RGB to single channeled Grayscale image. So that we can reduce the input data size.

2. Normalisation:

The image are normalized using the formula pixel = (pixel/225)-0.5.

Normalisation was done to convert the input in the range of (-0.5 to 0.5) so that gradient descent flow will be easier.

#### Architecture of the model:

#### LeNet Architecture C3: feature maps C1: feature maps INPUT 6@28x28 16@10x10 S2: feature maps S4: f. maps C5: layer F6: layer OUTPUT 6@14x14 10 GAUSSIAN **FULL** CONNECTIONS CONVOLUTIONS CONNECTION SUBSAMPLING CONVOLUTIONS SUBSAMPLING

The LeNet architecture is straight forward and small — it can even run on the  $\mbox{CPU}$  .

It consists of 5 layers two convolutional layers , two fully connected layers and a final classifier.

**Layer 1: Convolutional.** The output shape 32x32x6.

**Pooling.** The output shape 14x14x6.

**Layer 2: Convolutional.** The output shape 10x10x16.

**Activation.** ELU activation.

**Pooling.** The output shape should be 5x5x16.

**Flatten.** Flatten the output shape of the final pooling layer .

**Layer 3: Fully Connected.** 120 outputs.

**Activation.** ELU activation.

**Dropout**: Keep\_prob = 0.4

**Layer 4: Fully Connected.** 84 outputs.

Activation. ELU activation

**Dropout**: Keep prob =0.4

**Layer 5: Fully Connected (Logits).** 43 outputs.

#### **Training Parameters:**

Epoch : 20 Batch Size : 128 Learning Rate : 0.001

**Optimizer Used** : AdamOptimizer (tf.train.AdamOptimizer).

minimize() object in the AdamOptimizer is used to apply gradient descent

and update the architecture variables.

**Weights** : Weights are initialized as a normal distribution of mean 0 and standard

deviation that depends on the input of the each layer.

**Biases**: Biases are initialised as zeros

#### **Training:**

**1.** First the training epoch was set to 10 and the batch size was set to 64 and the validation accuracy is monitored for every epoch.

- 2. Based on the training accuracy of each epoch dropout keep\_prob and other hyperparameters are adjusted .
- 3. The validation accuracy is tested for the batch sizes of 128,64,32 and learning rates 0f 0.001,0.001 and 0.0001 and the optimum value was selected.
- 4. Epoch size is choosen as 30 to get the maximum validation accuracy and the batch size is chosen as 128.
  - 5. Finally i reached the validation accuracy of 0.952.

## **Test Accuracy of the Model:**

Test Accuracy = 0.932.

# **Testing of Images taken from the web:**



Label of the image: Speed limit (70km/h)

Size of the image : 36x36

This image would be difficult to classify because its brightness is too low.



Label of the image : Turn left ahead

Size of the image : 135x120

This is blurred so it would to difficult to classify.



Label of the image: Yield Size of the image: 59x54 The brightness of the image is too high. So it may be difficult to classify.



In this image the STOP board is tilted at some angle a part of the STOP board is shadowed.



Label of the image: Speed Limit (50km/h)

Size of the image : 88x82

As this image is not clear it would be difficult to classify.

# **Prediction of the Model:**

If the model predicts all the five images taken from the web correctly then the accuracy is 100% .

| No of images predicted correctly | Accuracy in percentage |
|----------------------------------|------------------------|
| 5                                | 100                    |
| 4                                | 80                     |
| 3                                | 60                     |
| 2                                | 40                     |
| 1                                | 20                     |

### The Prediction is

```
(4, b'Speed limit (70km/h)')
(28, b'Children crossing')
(25, b'Road work')
(8, b'Speed limit (120km/h')
(2, b'Speed limit (50km/h)')
```

The Accuracy of the model tested at random images from web is :80