# Lista 1 - Modelagem de problemas lineares

## Exercício 1.

Júlio começou a estudar no ICMC e já percebeu que só estudar e não se divertir faz dele um bobalhão. Assim, ele quer partilhar seu tempo de aproximadamente 10 horas por dia entre estudo e diversão. Ele estima que divertir é duas vezes mais interessante que estudar e, além disso, ele quer estudar pelo menos o mesmo tempo que dedica para diversão. Entretanto, Júlio percebeu que, para realizar todas as suas atividades, não poderá se divertir mais que 4 horas por dia. Como ele deve distribuir o tempo para maximizar seu prazer em termos de estudo e diversão?

## Exercício 2.

Uma empresa de rádio de São Carlos constatou que o programa Parada Internacional, com 20 minutos de música e 1 minuto de propaganda chama a atenção de 30.000 ouvintes, enquanto o programa Top Tunes, com 10 minutos de música e 1 minuto de propaganda chama a atenção de 10.000 ouvintes. No decorrer de uma semana, o patrocinador insiste no uso de no mínimo 5 minutos para sua propaganda e que não há verba para mais de 80 minutos de música. Quantas vezes por semana cada programa deve ser levado ao ar visando ter o número máximo de ouvintes?

#### Exercício 3.

Um fabricante produz copos e garrafas. Para isso, ele pode utilizar dois processos  $P_1$  e  $P_2$ . A produção de copos leva 30 minutos usando o processo  $P_1$  e 20 minutos usando o processo  $P_2$ . A produção de garrafas leva 35 minutos com o processo  $P_1$  e 40 com o processo  $P_2$ . Devido à mão-de-obra disponível, só se pode utilizar, por semana, 40 horas do processo  $P_1$  e 30 horas do processo  $P_2$ . Modele o problema de se organizar a produção de forma a ter um estoque máximo conjunto de copos e garrafas ao fim de uma semana.

## Exercício 4.

Considere um conjunto de líquidos coloridos de diversas cores e um conjunto de recipientes. Cada cor tem uma pontuação associada  $\{c_1, c_2, \ldots, c_N\}$  por mililitro utilizado e cada recipiente tem uma capacidade volumétrica  $\{v_1, v_2, \ldots, v_M\}$ . Escreva um modelo de programação linear para escolher o volume de cada cor a ser posto em cada recipiente para maximizar a pontuação ganha. Suponha que há  $l_i$  mililitros disponíveis do líquido com cor i e que não há problemas em misturar os líquidos.

#### Exercício 5.

Considere o problema  $min\{c_1x_1+c_2x_2 : Ax \leq b\}$  cuja região factível é dada pela figura a seguir.



(a) Determine a matrix A e o vetor b.

- (b) Supondo que  $c_1 \neq 0$  e  $c_2 \neq 0$ , escolha quatro pares  $(c_1, c_2)$  para obter quatro soluções ótimas diferentes. Indique o ponto  $(x_1, x_2)$  e o valor da solução ótima para cada par  $(c_1, c_2)$ .
- (c) Refaça o exercício para o problema  $max\{c_1x_1 + c_2x_2 : Ax \leq b\}$ .

### Exercício 6.

Dois de seus amigos possuem, cada um, R\$ 10.000 para investir. O primeiro deseja escolher entre dois investimentos A e B e o segundo entre os investimentos C e D. Alguns destes investimentos possuem limites mínimos e/ou máximos de quantia a ser investida. Estas informações e o rendimento anual de cada investimento são apresentados na tabela a seguir.

| Investimento | Min   | Max           | Rendimento |
|--------------|-------|---------------|------------|
| $\mathbf{A}$ | 0     | não há limite | 9,0%       |
| ${f B}$      | 1.000 | 5.000         | 11,0%      |
| ${f C}$      | 500   | não há limite | $10,\!5\%$ |
| D            | 0     | 3.000         | 11.5%      |

- (a) Modele o problema de decisão do primeiro amigo,  $z_1 = max\{c^Tx : Ax \leq b\}$ .
- (b) Modele o problema de decisão do segundo amigo,  $z_2 = max\{c^Tx : Cx \leq d\}$ .
- (c) Desenhe a região factível dos dois problemas. Qual a solução ótima,  $z_1$  e  $z_2$ , de cada um deles?
- (d) Você também possui R\$ 10.000 e deseja escolher em qual das quatro opções investir. Em outras palavras, você deseja resolver o problema  $z_3 = max\{c^Tx : Ax \le b, Cx \le d\}$ . Qual a relação entre  $z_1, z_2$  e  $z_3$ ?

#### Exercício 7.

Suponha que para construir uma casa popular por mês uma construtura necessite de 2 pedreiros, 4 serventes e 1 carpinteiro. Para se construir um apartamento no mesmo intervalo de tempo, a mesma construtora necessita de 3 pedreiros, 8 serventes e 3 carpinteiros. A construtora possui um efetivo total de 30 pedreiros, 70 serventes e 20 carpinteiros contratados. A construtora obtém um lucro de R\$3.000,00 na venda de cada casa popular e de R\$5.000,00 na venda de cada apartamento e toda produção da construtora é vendida. Qual é a quantidade ótima de casas populares e apartamentos que a construtora deve construir para que está obtenha lucro máximo.

# Exercício 8.

Um vendedor de frutas pode transportar 800 caixas de frutas para sua região de vendas. Ele já transporta 200 caixas de laranjas a 20 u.m de lucro por caixa por mês. Ele necessita transportar pelo menos 100 caixas de pêssegos a 10 u.m. de lucro por caixa, e no máximo 200 caixas de tangerinas a 30 u.m. de lucro por caixa. De que forma deverá ele carregar o caminhão para obter o lucro máximo?

# Exercício 9.

Paula deseja balancear os alimentos que consume de forma a obter uma dieta alimentar que forneça diariamente toda a energia, proteína e cálcio que necessita. Seu médico recomendou que ela se alimente de forma a obter diariamente no mínimo 2000 kcal de energia, 65g de proteína e 800 mg de cálcio. O Valor nutritivo e o preço (por porção) de cada alimento a ser considerado na dieta é dado na tabela abaixo. Quanto de cada alimento Paula deve consumir para obter uma dieta que atenda a recomendação médica e que tenha o menor custo possível?

| Tipo de        | Tamanho            | Energia | Proteína | Cálcio | Preço por porção | Limite máximo |
|----------------|--------------------|---------|----------|--------|------------------|---------------|
| ${f alimento}$ | da porção          | (Kcal)  | (g)      | (mg)   | (centavos)       | de porção     |
| Arroz          | 100 g              | 170     | 3        | 12     | 14               | 1             |
| Ovos           | 2 un               | 160     | 13       | 54     | 13               | 2             |
| Leite          | 273  ml            | 160     | 8        | 285    | 9                | 2             |
| Feijão         | $260 \mathrm{\ g}$ | 337     | 22       | 86     | 19               | 3             |

# Exercício 10.

Uma pessoa precisa de 10, 12 e 12 unidades dos produtos químicos A, B e C, respectivamente, para o seu jardim. Um produto líquido contém 5, 2 e 1 unidade de A, B e C, respectivamente, por vidro; um produto em pó contém 1, 2 e 4 unidades de A, B e C, respectivamente, por caixa. Se o produto líquido custa R\$3,00 por vidro e o produto em pó custa R\$2,00 por caixa. Determine o modelo de programação linear para definir quantos vidros e quantas caixas a pessoa deve comprar para minimizar o custo e satisfazer as necessidades?