Lösungen zu Übungszettel 7

Jendrik Stelzner

6. Januar 2016

Aufgabe 2.

Es sei $S \subseteq K$ eine L-Basis von K und $B \subseteq V$ eine K-Basis von V. Wir zeigen, dass

$$\mathcal{C} := \{ \mu b \mid (\mu, b) \in \mathcal{S} \times \mathcal{B} \}$$

eine L-Basis von V ist, wobei die Elemente μb mit $(\mu, b) \in \mathcal{S} \times \mathcal{B}$ paarweise verschieden sind.

Wir zeigen zunächst, dass $\mathcal C$ ein L-Erzeugendensystem von V ist; hierfür fixieren wir zunächst ein $v \in V$. Da \mathcal{B} ist ein K-Erzeugendensystem von V ist, gibt es $\lambda_b \in K$ mit $b \in \mathcal{B}$, so dass $\lambda_b = 0$ für fast alle $b \in B$ und $v = \sum_{b \in \mathcal{B}} \lambda_b b$.

Da $\mathcal S$ ein L-Erzeugendensystem von K ist, gibt es nun für jedes $b\in\mathcal B$ Koeffizienten $c_\mu^b\in L$

mit $\mu \in \mathcal{S}$, so dass $c_{\mu}^b = 0$ für fast alle $\mu \in L$ und $\lambda_b = \sum_{\mu \in \mathcal{S}} c_{\mu}^b \mu$. Ist dabei $b \in \mathcal{B}$ mit $\lambda_b = 0$, so ist dabei $c_{\mu}^b = 0$ für alle $\mu \in L$, da \mathcal{S} auch linear unabhängig über L ist. Somit ist $c_{\mu}^{b}=0$ für fast alle $(\mu,b)\in\mathcal{S}\times\mathcal{B}$. Da

$$v = \sum_{b \in \mathcal{B}} \lambda_b b = \sum_{b \in \mathcal{B}} \sum_{\mu \in \mathcal{S}} c_{\mu}^b \mu b = \sum_{(\mu, b) \in \mathcal{S} \times \mathcal{B}} c_{\mu}^b \mu b$$

ist somit $v \in \mathcal{L}_L(\mathcal{C})$. Also ist \mathcal{C} ein L-Erzeugendensystem von V.

Sind andererseits $c_{\mu}^b \in L$ mit $(\mu, b) \in \mathcal{S} \times \mathcal{B}$, so dass $c_{\mu}^b = 0$ für fast alle $(\mu, b) \in \mathcal{S} \times \mathcal{B}$ und $0 = \sum_{(\mu,b) \in \mathcal{S} \times \mathcal{B}} c^b_{\mu} \, \mu b$, so ist

$$0 = \sum_{(\mu,b) \in \mathcal{S} \times \mathcal{B}} c^b_{\mu} \, \mu b = \sum_{b \in \mathcal{B}} \sum_{\mu \in \mathcal{S}} c^b_{\mu} \, \mu b = \sum_{b \in \mathcal{B}} \left(\sum_{\mu \in \mathcal{S}} c^b_{\mu} \mu \right) b.$$

Da $\mathcal B$ linear unabhängig über K ist, folgt hieraus, dass $\sum_{\mu\in\mathcal S} c_\mu^b \mu = 0$ für alle $b\in\mathcal B$. Da $\mathcal S$ linear unabhängig über L ist, ist bereits $c_{\mu}^b=0$ für alle $(\mu,b)\in\mathcal{S}\times\mathcal{B}$. Also ist \mathcal{C} auch linear unabhängig über L und die Elemente μb mit $(\mu, b) \in \mathcal{S} \times \mathcal{B}$ sind paarweise verschieden.

Somit ist \mathcal{C} ein L-Basis von V und

$$\#\mathcal{C} = \#(\mathcal{S} \times \mathcal{B}) = (\#\mathcal{S}) \cdot (\#\mathcal{B}).$$

Da $\dim_L(K) = \#\mathcal{S}$, $\dim_K(V) = \#\mathcal{B}$ und $\dim_L(V) = \#\mathcal{C}$ folgt daraus, dass

$$\dim_L(V) = \dim_L(K) \cdot \dim_K(V).$$

Man bemerke, dass $\dim_K(V)>0$ da $V\neq 0$, und dass $\dim_L(K)>0$ da $K\neq 0$. Daher $\dim_L(V)<\infty$ genau dann, wenn $\dim_L(K)<\infty$ und $\dim_K(V)<\infty$.

Aufgabe 3.

Für alle $w_1, w_2 \in W$ ist

$$\begin{split} f^{-1}(w_1+w_2) &= f^{-1}(f(f^{-1}(w_1)) + f(f^{-1}(w_2))) \\ &= f^{-1}(f(f^{-1}(w_1) + f^{-1}(w_2))) = f^{-1}(w_1) + f^{-1}(w_2), \end{split}$$

und für alle $\lambda \in K$ und $w \in W$ ist

$$f^{-1}(\lambda w) = f^{-1}(\lambda f(f^{-1}(w))) = f^{-1}(f(\lambda f^{-1}(w))) = \lambda f^{-1}(w).$$

Also ist auch f^{-1} linear.

Aufgabe 4.

Für eine lineare Abbildung $f\colon V\to W$ zeigen wir die Äquivalenz der folgenden Aussagen:

- (i) Für jedes Erzeugendensystem S von V ist f(S) ein Erzeugendensystem von W.
- (ii) Es gibt eine Teilmenge $S \subseteq V$, so dass f(S) ein Erzeugendensystem von W ist.
- (iii) f ist surjektiv.
- ((i) \implies (ii)) Dies ergibt sich direkt daraus, dass man das Erzeugendensystem S=V betrachtet.
 - ((ii) \implies (iii)) Da f(S) ein Erzeugendensystem von W ist, gilt $\mathcal{L}(f(S)) = W$. Also ist

$$W = \mathcal{L}(f(S)) = f(\mathcal{L}(S)) \subset f(V) \subset W,$$

also bereits f(V) = W. Somit ist f surjektiv.

((iii) \implies (i)) Dafsurjektiv ist, ist f(V)=W. Ist $S\subseteq V$ ein Erzeugendensystem, so gilt deshalb

$$\mathcal{L}(f(S)) = f(\mathcal{L}(S)) = f(V) = W.$$

Also ist f(S) ein Erzeugendensystem von W.

Das zeigt die Äquivalenz der Aussagen. Gilt nun eine (und damit alle) dieser Aussagen und ist $\mathcal{B}\subseteq V$ eine Basis, so ist $f(\mathcal{B})\subseteq W$ nach (i) ein Erzeugendensystem von W. Also ist dann

$$\dim V = |\mathcal{B}| > |f(\mathcal{B})| > \dim W.$$

Aufgabe 5.

Es sei

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix},$$

und für alle $1 \leq j \leq n$ sei

$$a_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

der j-te Spaltenvektor von A.

i).

Die Matrix \tilde{A} entstehe aus A durch elementare Zeilenumformungen und sei in Zeilenstufenform.

Dass die Zeilen von A linear unabhängig sind, ist äquivalent dazu, dass die \tilde{A} keine Nullzeilen enthält.

Da \tilde{A} in Zeilenstufenform ist, enthält \tilde{A} genau dann keine Nullzeilen, wenn das lineare Gleichungssystem $\tilde{A}x=y$ für alle $y\in K^m$ eine Lösung hat

Da \tilde{A} durch A aus elementaren Zeilenumformungen hervorgeht, hat das lineare Gleichungssystem $\tilde{A}x=y$ genau dann für jedes $y\in K^m$ eine Lösung, wenn das lineare Gleichungssystem Ax=y für alle $y\in K^m$ ein Lösung hat (diese Lösungen müssen allerdings nicht notwendigerweise gleich sein).

Dass das lineare Gleichungssystem Ax=y für jedes $y\in K^m$ eine Lösung hat, bedeutet aber nichts anderes, als dass die Abbildung $A\cdot -$ surjektiv ist.

Also sind die Zeilen von A genau dann linear unabhängig, falls $A \cdot -$ surjektiv ist.

ii).

Für alle $\lambda_1, \ldots, \lambda_n \in K$ ist

$$A \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 a_{11} + \cdots + \lambda_n a_{1n} \\ \vdots \\ \lambda_1 a_{m1} + \cdots + \lambda_n a_{mn} \end{pmatrix}$$
$$= \lambda_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \cdots + \lambda_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = \lambda_1 a_1 + \cdots + \lambda_n a_n.$$

Dass $\lambda_1a_1+\cdots+\lambda_na_n=0$ eine Linearkombination der Spaltenvektoren a_1,\ldots,a_n ist, ist also äquivalent dazu, dass

$$A \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = 0.$$

Also sind die Spalten von Agenau dann linear unabhängig, wenn $\ker(A)=0,$ also Ainjektiv ist