Semi-Supervised Learning

Gabriel e Thiago

Definição - Supervisionado

- Entrada de dados tem rótulo conhecido
- Algoritmos utilizam rótulos conhecidos e mais parâmetros para criar regras
- Regras definidas s\u00e3o utilizadas para definir valores para dados desconhecidos

Definição - Supervisionado

Definição - Não supervisionado

- Entrada de dados n\u00e3o tem r\u00f3tulo conhecido
- Algoritmos utilizam apenas parâmetros conhecidos para definir regras
- É possível diferenciar dados utilizados mas não definir o seu rótulo

Definição - Não supervisionado

Definição - Semi Supervisionado

- Trabalha com dados rotulados e não rotulados
- Regras podem ser traçadas de acordo com os dados rotulados
- Dados não rotulados ajudam a melhorar acurácia

Definição - Semi Supervisionado

- Generative Models
- Low Density Separation
- Graph Based Methods

Definição - Semi Supervisionado

Histórico

- Self Training 1960s
- Transductive Inference Vapnik 1970s
- Natural Language related 1990s
- "Semi-Supervised" para classificação 1992 Mertz et al SMART2

Histórico - Exemplos

- Co-Learning
- COP Kmeans
- Seeded-K-means
- Usado em áreas com vasta quantidade de dados não rotulado
 - Imagens
 - Texto de websites
 - Sequencias Proteicas
 - Linguagem natural

COP Kmeans - Introdução

- Clusterização de dados rotulados e não rotulados
- É uma variante do algoritmo Kmeans
- Usa relações já conhecidas entre dados para criação de clusters

COP Kmeans - Algoritmo

COP-k-means (data set D, must-link constraints $Con_{\pm} \in D \times D$, cannot-link constraints $Con_{\pm} \in D \times D$)

- 1: Let C_1, \ldots, C_k be the initial cluster centers.
- 2: For each point d_i in D, assign it to the closest cluster C_i such that VIOLATE-CONSTRAINTS(d_i , C_i , $Con_{=}$, Con_{\neq}) is false.
- 3: If no such cluster exists, fail and return.
- 4: For each cluster C_i, update its center by averaging all of the points d_i that have been assigned to it.
- 5: Iterate between step 2 and step 4 until convergence.
- Return C₁, . . . , C_k.

VIOLATE-CONSTRAINTS(d, C, Con₌, Con_≠)

- 7: For each $(d, d_m) \in Con_=$: If $d_m \notin C$, return true.
- 8: For each $(d, d_c) \in Con_=$: If $d_c \in C$, return true.
- 9: Otherwise, return false.

COP Kmeans - Implementação

```
## Rotina principal
centroids, clusters = create clusters()
must link, not link = create retrictions(dataset)
max iter = 100
for iter in range(max iter):
  clusters = reset clusters(clusters)
  ## Assign Clusters
  for i in range(len(dataset)):
    d = dataset[i]
    cluster_idx = get_closest_cluster_index(centroids, d, i, must_link, not_link)
    if cluster idx is None:
      print("ERROR: Falhou")
      break
    if i not in clusters[cluster idx]:
      clusters[cluster idx].append(i)
  ## Recalculate Centroids
  for cluster idx in range(len(clusters)):
    cluster_data = get_cluster_data(cluster_idx)
    centroids[cluster idx] = np.mean(cluster data[:,0:4], axis=0)
```

COP Kmeans - Resultados

Link

https://github.com/Suniaster/COP-Kmeans/blob/main/FSI_COP_Kmeans.ipynb

Referências

Semi Supervised Learning - Adaptive Computation and Machine Learning - Olivier Chapelle, Bernhard Schölkopf e Alexander Zien - 2006

Aprendizado de máquina semi-supervisionado: proposta de um algoritmo para rotular exemplos a partir de poucos exemplos rotulados - Marcelo Kaminski Sanches - 2003