Pre-Lab 7:

Characterization and DC Biasing of the BJT

Name: Wan-Yu Liao

ECEN 325 Section 514

TA: Mandela

Date: October 18, 2019

Calculations

(1)

NPN Resistive DC Biasing Circuit

$$R_{c} = 1.5 \text{ k.} \Omega$$
 $V_{RE} = 2.222V$
 $V_{2} = 2.922V$
 $R_{E} = 2.2 \text{ k.} \Omega$
 $R_{B1} = 1.95 \text{ k.} \Omega$
 $R_{R2} = 2.7 \text{ k.} \Omega$

$$R_{C} = \frac{V_{CC} - V_{C}}{I_{C}} = \frac{5 - 3.5}{1m} = 1.5 \text{ k.}\Omega$$

$$I_{E} \approx I_{C} = 1 \text{ mA}$$

$$V_{RE} + V_{CE} = 3.5 \text{ V} \quad (Assume \ V_{CE} = 1.278 \text{ V})$$

$$V_{RE} = 2.222 \text{ V}$$

$$R_{E} = \frac{V_{RE}}{I_{E}} = \frac{2.222 \text{ V}}{1m} = 2.2 \text{ k.}\Omega$$

$$V_{2} - V_{RE} = 0.7 \text{ V} \Rightarrow V_{2} = 2.922 \text{ V}$$

$$5 \cdot \frac{R_{B2}}{R_{B1} + R_{B2}} = 2.922 \Rightarrow \frac{R_{B2}}{R_{B1} + R_{B2}} = \frac{2.922}{5}$$

$$R_{B2} = 2.7 \text{ k.}\Omega = R_{B1} = 1.95 \text{ k.}\Omega = 3.3 \text{ k} || 4.7 \text{ k}$$

PNP Resistive DC Biasing Circuit

PNP	
I_C	1mA
V_C	1.5 <i>V</i>
V_{EC}	$\geq 1V$
V_{RE}	≥ 1 <i>V</i>
V_{CC}	5 <i>V</i>
V_{EE}	0
β	100
V_T	25 <i>mV</i>
I _{supply}	$\leq 2mA$

$$R_{c} = 1.5 \text{K}\Omega$$

$$V_{RE} = 2.2 \text{V}$$

$$V_{2} = 2.9 \text{V}$$

$$R_{E} = 2.2 \text{K}\Omega$$

$$R_{B1} = 1.8 \text{K}\Omega$$

$$R_{B2} = 2.47 \text{K}\Omega$$

$$R_{c} = \frac{V_{c}}{I_{c}} = \frac{1.5}{Im} = 1.5 \text{ k.} \Omega$$

$$I_{E} \approx I_{c} = I_{m}A$$

$$V_{RE} = 5 - 1.3 - 1.5 = 2.2 \text{ V} \quad (Assume V_{EC} = 1.3 \text{ V})$$

$$5 - V_{2} = 2.1 \text{ V} \implies V_{2} = 2.9 \text{ V}$$

$$R_{E} = \frac{2.2}{Im} = 2.2 \text{ K.} \Omega$$

$$5 \cdot \frac{R_{B1}}{R_{B2} + R_{B1}} = 2 \cdot |$$

NPN DC Biasing Circuit

PNP DC Biasing Circuit

PNP	
I_C	2 <i>mA</i>
V_C	1.5 <i>V</i>
V_{EC}	$\geq 1V$
V_{x}	≥ 1.5 <i>V</i>
V_{CC}	5 <i>V</i>
V _{EE}	0
β	100
V_T	25 <i>mV</i>
I _{supply}	≤ 5 <i>mA</i>

$$R_1 = 1.5k$$

$$R_{C} = \frac{1.5}{2m} = 0.75 \text{ K}$$

$$5 \cdot \frac{R_1}{R_1 + R_2} = 3V$$
 (Assume $Vy = 2V$)

$$R_3 = \frac{5 - (3 + 0.1)}{2m} = 650 \Omega$$

Simulations

(1)

Figure 1: Schematic of NPN BJT characterization circuit for Fig. 2 ▲

Figure 2: Simulation plot of NPN BJT characterization circuit using DC sweep of V1 from 0 to 5V, while V2 = 5V

Figure 3: Excel plot for collector current (IC) of an NPN BJT as a function of Vbe ▲

Figure 4: Simulation plot of NPN BJT characterization circuit using DC sweep of V2 from 0 to 5V, while V1=2V

Figure 5: Excel plot for collector current (IC) of an NPN BJT as a function of Vce ▲

Figure 6: Schematic of NPN BJT characterization circuit for Fig. 4 \(\triangle \)

Figure 7: Simulation plot of PNP BJT characterization circuit using DC sweep of V1 from -5 to 0V, while $V2 = -5V \blacktriangle$

Figure 8: Excel plot for collector current (IC) of an PNP BJT as a function of Veb

Figure 9: Simulation plot of PNP BJT characterization circuit using DC sweep of V2 from -5 to 0V, while $V1 = -2V \blacktriangle$

Figure 10: Excel plot for collector current (IC) of an PNP BJT as a function of Vec ▲

Figure 11: Schematic and interactive simulation for I_C , V_C , V_{RE} , and V_2 for NPN Resistive DC biasing circuit in Fig. 6(a) \blacktriangle

 $I_C \!= 1.01 \text{ mA, } V_C \!= 3.49 \text{ V, } V_{RE} \!= 2.23 \text{ V, } V_2 \!= 2.89 \text{ V}$

Figure 12: Schematic and interactive simulation for I_C , V_C , V_{RE} , and V_2 for PNP Resistive DC biasing circuit in Fig. 6(b) \blacktriangle

 $I_C = 0.986 \text{ mA}, V_C = 1.48 \text{ V}, V_{RE} = 2.82 \text{ V}, V_2 = 2.11 \text{ V}$

Figure 13: Schematic and interactive simulation for I_C , V_C , V_2 , V_x , and V_y for NPN DC biasing circuit using current source in Fig. 7(a) and Fig. 7(b) \blacktriangle

$$I_C = 1.90 \ mA, \ V_C = 3.58 \ V, \ V_2 = 3.22 \ V, \ V_x = 2.54 \ V, \ V_y = 2.99 \ V$$

Figure 14: Schematic and interactive simulation for I_C , V_C , V_2 , V_x , and V_y for NPN DC biasing circuit using current source in Fig. 8(a) and Fig. 8(b) \blacktriangle

$$I_C \! = 1.93 \text{ mA}, \ V_C \! = 1.45 \ V, \ V_2 \! = 3.19 \ V, \ V_x \! = 2.54 \ V, \ V_y \! = 1.99 \ V$$