

Affluence with Yelp Data

By: Bernard Kurka, Thomas Ludlow, Brittany Allen NYC DSI 6 Project 4 1/18/2019

Problem Overview

• How can we develop a tool leveraging more agile data sources (like Yelp) that will help us measure local economic activity?

Existing Methods

 Traditional wealth estimation is based on demographic characteristics (e.g. income or county business activity (CBP))

 Reporting lag with government surveys and statistics

- Yelp's filters and results page
- Using Yelp's Fusion API we collected the first 100 "best match", results by all categories

4 7 Avenue ₩

Data Snapshot

zipcode	pr_1 (\$)	pr_2 (\$\$)	pr_3 (\$\$\$)	pr_4 (\$\$\$\$)
10179	15	38	28	13
10012	31	63	0	О
10019	13	54	17	8
11235	28	57	7	4

Feature Engineering

- Weighted price counts
 - \circ i.e. for $pr_2=6$ $pr_2w=12$
- Sum of all weighted price counts
 - o pr_totw = pr_1w + pr_2w + pr_3w + pr_4w
- Price and Review counts standardized

Grid Search Results

- K Means Clustering
 - o inits = ["k-means", "random"],
 - n_init = range(10,20)
 - n_clusters = range(4,10)
- Agglomerative Clustering
- Hierarchical Clustering
 - o linkage_method = ['complete', 'centroid'..]
 - o affinity = ['euclidean', 'l1', 'manhattan',...]

Clustering Algorithms

- Interpreting the grid results
 - Hierarchy high silhouette score, low clusters counts
 - Agglomerative good cluster counts, low silhouette score
 - K Means balanced results

Data_frame	model	inertia	silhouette	Numb_clusters	Cluster_counts
All_features	hierarchy	0.000000	0.532652	4	[270, 4, 3, 1]
All_features	Agglomerative	0.000000	0.383370	4	[100, 81, 68, 29]
scaled_pr_mult_wtot	kmeans	308.753798	0.430094	4	[82, 80, 71, 45]

K Means Best K

K Means Clustering

Features variable names: s for Standarized, w for weighted, tot for total								
pr_1s pr_2ws pr_3ws pr_4ws pr_to			pr_totws					
Parameters								
n_clusters=4	algorithm="auto"	init='random'	random_state=42					

Price Distribution: \$, \$\$

- \$ (red)
 - Limited activity across all ranges (\$, \$\$, \$\$\$,
- \$\$ (orange)
 - Moderate activity in \$ and \$\$
 - Limited activity in \$\$\$ and \$\$\$\$

Price Distribution: \$\$\$, \$\$\$\$

- \$\$\$ (green)
 - Highest activity in \$\$
 - Increased activity in \$\$\$ and \$\$\$\$
- \$\$\$\$ (blue)
 - Highest activity in \$\$\$ and \$\$\$\$
 - High activity in \$\$

Mean for All NYC Zips: \$, \$\$, \$\$\$, \$\$\$\$

- \$ (red)
- \$\$ (orange)
- \$\$\$ (green)
- \$\$\$\$ (blue)

Recommendations

- Feed other models with cluster results
 - This information can be useful as an economic rating variable in a predictive model
- Pay to use the Yelp Fusion VIP API
 - Will allow for commercial-scale queries
- Beware of ZIP query results
 - Yelp returned out of state results for some NYC-based zipcodes
 - o e.g. 10015 returned results in Tucson, AZ

- Gathering and testing more data
 - Beyond the top 100, best match results
- Expanding class functionality
 - Enable collection of new training data
 - Automate model optimization
- Scaling the model
 - Train on other large metropolitan areas and check consistency of results

Questions?

How to find/contact us

- Bernard Kurka
 - o <u>linkedin.com/in/bernardkurka</u>
 - bkexcel2014@gmail.com
- Thomas Ludlow
 - o <u>linkedin.com/in/thomas-w-ludlow-jr-4568a1b</u>
 - tludlow@gmail.com
- Brittany Allen
 - <u>linkedin.com/in/brittadjacent</u>
 - thebrittallen@gmail.com