

División y conquista: Teorema maestro - Ejemplos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Teorema maestro

Sean

 $a \ge 1$ y $b \ge 1$ constantes,

f(n) una función,

T(n) = aT(n/b) + f(n) una recurrencia con T(0)=cte

Entonces

1) Si
$$f(n) = O(n^{\log_b a - e})$$
 , $e > 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$

2) Si
$$f(n) = \Theta(n^{\log_b a})$$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

3) Si
$$f(n) = \Omega(n^{\log_b a + e})$$
 , $e > 0 \Rightarrow T(n) = \Theta(f(n))$

$$Y af(n/b) \le cf(n), c<1 y n>>$$

$$T(n) = 9 T(n/3) + n$$

$$a = 9$$
 $b = 3$ $f(n) = n$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

$$n \stackrel{?}{=} \Theta(n^{\log_3 9}) \stackrel{?}{=} \Theta(n^2)$$

Caso 1:
$$f(n) = O(n^{\log_b a - e})$$
, $e > 0 \Rightarrow T(n) = O(n^{\log_b a})$
 $n = O(n^{\log_3 9 - e}) = O(n^{2 - e})$ Si $e = 1 \Rightarrow n = O(n^{2 - 1}) = O(n)$

$$\Rightarrow T(n) = \Theta(n^2)$$

$$T(n) = T(2n/3) + 1$$

$$a=1$$
 $b=3/2$ $f(n)=1$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$

$$1 \stackrel{?}{=} \Theta(n^{\log_{3/2} 1}) \stackrel{?}{=} \Theta(n^0)$$

$$\Rightarrow T(n) = \Theta(n^{\log_{3/2} 1} * \log n)$$

 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

$$\Rightarrow T(n) = \Theta(\log n)$$

$$T(n) = 3 T(n/4) + n log n$$

$$a=3$$
 $b=4$ $f(n) = n log n$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} * \log n)$

$$n\log n \stackrel{?}{=} \Theta(n^{\log_4 3}) \stackrel{?}{=} \Theta(n^{0,793})$$

Caso 1:
$$f(n) = O(n^{\log_b a - e})$$
, $e > 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$

$$n \log n \stackrel{?}{=} O(n^{0.793-e}) \stackrel{?}{=} O(n^{2-e})$$

Ejemplo 3 (cont.)

$$T(n) = 3 T(n/4) + n \log n$$

$$a=3$$
 $b=4$ $f(n) = n log n$

Probamos

Caso 3:
$$f(n) = \Omega(n^{\log_b a + e})$$
, $e > 0 \Rightarrow T(n) = \Theta(f(n))$

$$n \log n \stackrel{?}{=} \Omega(n^{0.793+e})$$
 Si e= 0,1 $\rightarrow n \log n = \Omega(n^{0.893})$

$$\exists c < 1, n >> /a * f(n/b) \leq c * f(n)$$

$$3(n/4*\log(n/4)) \le c*n*\log n$$

Si c=3/4
$$\Rightarrow$$
 3/4 $n * \log(n/4) \le$ 3/4 $n * \log n$

$$\Rightarrow T(n) = \Theta(nlog n)$$

$$T(n) = 2T(n/2) + n \log n$$

$$a=2$$
 $b=2$ $f(n) = n log n$

Probamos

Caso 2:
$$f(n) = \Theta(n^{\log_b a})$$

Caso 1:
$$f(n) = O(n^{\log_b a - e})$$
, e>0

Caso 3:
$$f(n) = \Omega(n^{\log_b a + e})$$
 , e>0

$$n \log n = \Theta(n)$$

$$n\log n = O(n^{1-e})$$

$$n\log n = \Omega(n^{1+e})$$

No se puede!

Presentación realizada en Abril de 2020