Johns Hopkins Engineering 625.464 Computational Statistics

Choice of Kernel and Multidimensional Estimators

Module 11 Lecture 11E

Choice of Kernel

$$f(x) = \frac{1}{nh} \frac{2}{2} K\left(\frac{x-x_i}{h}\right)$$

Epanechnikov showed that if we minimize the AMISE wir. E. K we obtain a minimum when

K(2)=5=1(1-22) if 1=1(1)

K(2)=5=0.00

Kernel Choice Example

Possible Kernels

Name	K(z)	R(K)	$\delta(K)$	RE
Normal	$\exp\{-z^2/2\}/\sqrt{2\pi}$	$1/(2\sqrt{\pi})$	$(1/(2\sqrt{\pi}))^{1/5}$	1.051
	1	1 2	$\left(\frac{9}{2}\right)^{1/5}$	1.076
Uniform	2 /3 \ . 2	3	151/5	1.000
Epanechnikov	$\left(\frac{3}{4}\right)(1-z^2)$	5	241/5	1.014
Triangle	1- z	3	and the set of the second	
Biweight	$\left(\frac{15}{16}\right)(1-z^2)^2$	5 7	351/5	1.006
Diweight		350	$\left(\frac{9450}{143}\right)^{1/5}$	1.013
Triweight	$\left(\frac{35}{32}\right)(1-z^2)^3$	350 429	(143 /	

if using a kernel other than the normal you need to multiply K(2) by 151413

Rescaling

Suppose he and he are opt. (AMISE) for sym; mean 0, pos variance LEK then $h_K = \frac{S(K)}{S(L)}$ where $S(K) = \left(\frac{P(K)}{T_X^4}\right)^{\frac{1}{2}}$ $h_L = h_K(f(L))$

Multivariate Methods

Suppose we wish to est. I based an iid samples $X_i = (X_i, X_{ii}, X_{ij}, X_{ij}, X_{ij})^T$ La p dim random variable.

Method (1): Histogram

Multivariate Methods

Mithod (2): Kornel Est. Andruct Kornel $\hat{f}(x) = \frac{1}{h} \sum_{i=1}^{p} \frac{1}{h_i} K\left(\frac{x_i - x_{i,j}}{h_i}\right)$ where K(Z) is a univariate Kernet and his oure fixed bandwidths for each i=1 ... if fixed bandwram. $h_i = \left(\frac{4}{h(p+1)}\right)^{n} \text{ is est disadle along ith alo$

Multivariate Methods

nuthod (3): Nearest Neighbor. $f(x) = \frac{K}{n \sqrt{p d \kappa(x)}}$ $K = \frac{V}{N}$ $K = \frac{V}{N}$ when - de(X) = Eudid distance from x-to the Kth nearest dos. point.

- Vp is the volume of the umt sphere

- Vp is the volume of the umt sphere

in p dim. Vp = TT 1/2 (P/2+1) Whou -p-dim of the data

Problems estimating in higher dimensions

Want to est. p-variate normal w/optimal rel. m-s.e = .0289 17,400 112,000,000 2,190,000,000,000