Introdução ao Scilab

Prof. Jeferson Souza, MSc. (thejefecomp) thejefecomp@neartword.com

O que é o Scilab?

Definição

O Scilab é um ambiente de computação científica que possibilita o desenvolvimento de soluções para resolver problemas técnicos e/ou científicos. Com o Scilab é possível desenvolver programas (i.e. software) com uma linguagem de programação própria, realizar análise numérica e simulações computacionais, bem como gerar gráficos a partir das referidas análises e simulações feitas. Exemplos de ambientes similares incluem o Matlab e o Octave.

O que Será Visto Neste Material?

Esse material introduz...

O uso do Scilab para resolver problemas de cunho técnico e/ou científico, com enfoque na apresentação da sua linguagem de programação integrada e de alto nível.

O Ambiente do Scilab

O ambiente do Scilab

A ferramenta Scilab possui um ambiente de desenvolvimento que possibilita diversas formas de utilização, desde o uso de uma interface gráfica [opção mais comum] até o uso de dois modos console distintos [e.g. presentes na versão 6.0.2 utilizada como base deste material].

Interface Gráfica de Utilização

Descrição

A interface gráfica de utilização [usualmente] inicia-se com cinco componentes distintos agrupados em uma janela única: o navegador de arquivos, o console, o navegador de variáveis, o histórico de comandos, e o painel de notícias.

Interface Gráfica de Utilização

Interface gráfica de utilização do Scilab.

Navegador de Arquivos da Interface Gráfica do Scilab.

Navegação e Seleção

O navegador de arquivos permite que o utilizador navegue no sistema de arquivos de seu computador diretamente na interface gráfica do Scilab. O Navegador de arquivos, além de oferecer a função de navegação, também possibilita que o utilizador selecione o arquivo de interesse, e com um simples toque no botão direito do *mouse* sobre o arquivo, carregue-o no seu ambiente, execute-o, ou abrao para visualização/edição de seu conteúdo, tal como ilustrado na figura da próxima transparência.

Seleção de Arquivo no Navegador de Arquivos do Scilab.

Busca de Arquivos

Além das funcionalidades de navegação e seleção de arquivos, o navegador de arquivos também permite a realização de buscas por meio de expressões, as quais podem ser, inclusive, expressões regulares. Portanto é possível buscar e filtrar a visualização de diretórios e arquivos no navegador de arquivos, a facilitar a tarefa de encontrar o diretório/arquivo desejado.

Busca e Filtro de Arquivos no Navegador de Arquivos do Scilab.

Console

Descrição

O console é o componente do Scilab responsável pela execução dos programas, a permitir o seu carregamento, sua execução, e a obtenção de resultados.

Console

Console da Interface Gráfica do Scilab.

Navegador de Variáveis

Descrição

O navegador de variáveis permite a manipulação das variáveis já utilizadas por algum programa executado/carregado pelo Scilab, a possibilitar a visualização e edição de seu valor, sua exclusão, e o desenho de gráficos por meio de simples cliques no *mouse*.

Navegador de Variáveis

Navegador de Variáveis da Interface Gráfica do Scilab.

Histórico de Comandos

Descrição

O histórico de comandos permite a visualização de todos os comandos já executados no console do Scilab, a permitir editar, copiar, e limpar seu conteúdo.

15/49

Histórico de Comandos

```
Command History

▼ // -- 26/02/2020 15:14:35 -- //
    operand01 = 10
    operand02 = 20
    resultado = operand01 + operand02
```

Histórico de Comandos da Interface Gráfica do Scilab.

Painel de Notícias

Descrição

O painel de notícias possibilita a visualização de notícias associadas com o Scilab diretamente em sua interface gráfica.

Painel de Notícias

Painel de Notícias da Interface Gráfica do Scilab.

A Linguagem de Programação Scilab

A programar com Scilab

O Scilab possui uma linguagem de programação de alto nível que possibilita o desenvolvimento de algoritmos, de forma muito similar ao processo de desensolvimento com outras linguagem de programação tal como o C.

Introdução

Convenções Adotadas Para o Desenvolvimento de **Programas**

Durante a disciplina serão adotadas as seguintes convenções para o desenvolvimento de programas:

- 1. Descrever suscintamente em um comentário [e.g. uma linha] a finalidade do programa desenvolvido;
- 2. Utilizar nomes sugestivos para os arquivos que armazenam os códigos desenvolvidos;
- 3. Utilizar nomes de variáveis que sejam sugestivos, consoante seu contexto e utilização; Exemplo: operador ao invés de lua;

Convenções Adotadas Para o Desenvolvimento de Programas (Continuação)

- 4. Começar o nome de variáveis SEMPRE com uma letra minúscula, a utilizar o *CamelCase* na sua nomeação. Exemplo: valorDaOperacao;
- Escrever o nome de constantes SEMPRE com todas as letras maiúsculas, com as diferentes palavras separadas pelo caractere underscore (_). Exemplo: TAMANHO_LIMITE;
- 6. Utilizar nomes de funções que sejam sugestivos, consoante seu contexto e utilização; Exemplo: soma ao invés de aa;

Convenções Adotadas Para o Desenvolvimento de Programas (Continuação)

- 7. Começar o nome de funções SEMPRE com uma letra minúscula, a utilizar o *CamelCase* na sua nomeação. Exemplo: somaInteiro;
- 8. Declarar o corpo das funções sempre no início do programa;
- Descrever suscintamente em um comentário [e.g. uma linha] o funcionamento de partes mais complexas do programa.
- 10. Não copiar a solução do coleguinha sem a perceber por completo. Neste caso, a cópia deixa de fazer sentido :-D.

A Linguagem de Programação Scilab

Scilab usa cálculo matricial

Apesar de ser imperceptível, todos os cálculos realizados no Scilab são matriciais. Por isso a facilidade de trabalhar com vetores e matrizes. Números singulares são representados por meio de matrizes de dimensão 1×1 .

A Linguagem de Programação Scilab

Scilab usa cálculo matricial

Apesar de ser imperceptível, todos os cálculos realizados no Scilab são matriciais. Por isso a facilidade de trabalhar com vetores e matrizes. Números singulares são representados por meio de matrizes de dimensão 1 x 1.

Excelente para cálculo numérico

O fato de ter suporte nativo a vetores e matrices faz do Scilab um ambiente muito interessante para o desenvolvimento de projetos com atividades intensivas de cálculo numérico.

Nome de variável

O nome de uma variável pode começar com uma letra ou com um dos seguintes caracteres especiais: %, #, !, \$, ?, e o underscore (_). Os demais caracteres podem ser alfanuméricos ou um dos caracteres especiais #, !, \$, ?, _.

Tamanho e distinção entre maiúsculas e minúsculas

Nomes de variáveis podem ter qualquer tamanho mas somente os primeiros 24 caracteres são considerados. Os nomes de variável são case-sensitive, o que significa que o Scilab distingue variáveis com letras maiúsculas e minúsculas.

Variáveis iniciadas com o caracter especial %

Variáveis iniciadas com caracter especial % usualmente representam constantes internas do Scilab ou funções que sobrecarregam operadores.

Exemplos:

%pi \\representa o valor do $\pi=3.1415...$

 $%\inf \rightharpoonup (\infty).$

Representação da entrada padrão [teclado] e da saída padrão [console]

No Scilab o acesso a entrada padrão, o qual permite ao utilizador fornecer dados por meio do teclado, é representado por %io(1); enquanto que o acesso a saída padrão, o qual permite a exibição de mensagens na janela do console, é representado por %io(2).

Declaração de variáveis

No Scilab a declaração de uma variável acontece no momento de sua primeira atribuição de valor. Não é necessário [tal como no C] declarar o tipo de variável antes de sua utilização.

Exemplos

$$\longrightarrow$$
 nota = 8.5

→ mensagem = "Porqueosol parecedistante?"

Declaração de variáveis

No Scilab a declaração de uma variável acontece no momento de sua primeira atribuição de valor. Não é necessário [tal como no C] declarar o tipo de variável antes de sua utilização.

Exemplos

 \longrightarrow nota = 8.5

 \longrightarrow mensagem = "Porqueosol parecedistante?"

Pegadinha...:-D

"Por que o sol parece distante?" [Ficou mais fácil ler a frase? :-D]

O uso do ponto e vírgula [;]

O uso do ponto e vírgula [;]

O uso do ponto e vírgula [;] na terminação de operações indica ao Scilab que o resultado da operação não deve ser exibido. Entretanto, o ponto e vírgula [;] também pode ser utilizado na representação de matrizes, a indicar elementos de uma nova linha.

Meu Primeiro Programa em Scilab

Console

Para escrever nosso primeiro programa em Scilab, abra a interface gráfica, vá ao console, e digite o seguinte comando:

→ disp("Olá Mundo!")

Meu Primeiro Programa em Scilab

No Editor de Texto [e.g. SciNotes]

Para escrever nosso primeiro programa em Scilab por meio de um editor de texto, abra o seu editor de texto favorito [e.g. SciNotes], siga as convenções, e inclua o seguinte comando:

disp("Olá Mundo!")

Salve o arquivo com a extensão .sce e execute-o no Scilab.

Operadores Aritméticos

O Scilab possui uma lista de operadores aritméticos para utilização. São eles:

+	Adição
-	Subtração
*	Multiplicação de matriz
.*	Multiplicação de vetor
.*.	Multiplicação de Kronecker
	Divisão
_	Divisão esquerda de matriz

Introdução

Operadores Aritméticos - Continuação

./	Divisão de vetor
.\	Divisão esquerda de vetor
./.	Divisão de Kronecker
.\.	Divisão esquerda de Knonecker
^ ou **	Exponenciação de matriz
.^	Exponenciação de vetor
,	Transposição de matriz complexa
. ′	Transposição de vetor

Operadores de Comparação

Os operadores de comparação do Scilab são os seguintes:

Menor que
Maior que
Menor ou igual a
Maior ou igual a
Igual a
Diferente de
E Lógico
OU Lógico

Estruturas de Controle

O Scilab possui as seguintes estruturas de controle:

break	Força o término de um laço
case	Inicia uma cláusula em um bloco select
elseif	Inicia um bloco condicional alternativo a um
	bloco if
else	Inicia uma alternativa em ambos os blocos
	if e select
end	Termina os blocos for, if, select, e while
errcatch	Possibilita o tratamento de erros
for	Inicia um laço usualmente com repetições
	pré-estabelecidas

Estruturas de Controle - Continuação

if	Inicia um bloco condicional que pode conter
	múltiplas alternativas
select	Inicia um bloco de seleção que pode conter
	múltiplas alternativas
while	,
	que uma condição seja satisfeita

Estrutura Condicional - if

```
Estrutura condicional if
if < condicao1 > then
  <comandos>
elseif < condicao2>
  <comandos>
elseif < condicaon >
  <comandos>
else
  <comandos>
end
```

Estrutura Condicional - if

```
Exemplos
if x < 10 then
  disp('O numero é menor do que 10')
end
if nota >= 7 then
  disp('O aluno foi aprovado')
else
  disp('O aluno foi para exame')
end
```

Introdução

Estrutura de Seleção - select

Estrutura de seleção select

```
select <expressão>
  case <condição1> then <comandos>
  case <condição2> then <comandos>
  case <condiçãon> then <comandos>
  else <comandos>
else <comandos>
end
```

A <expressão> precisa ser igual a <condição> de seleção especificada.

Estrutura de Seleção - select

```
Exemplo
select opcao
  case 1 then disp('aluno aprovado')
  case 2 then disp('aluno reprovado')
  else disp('opcao inexistente')
end
```

Estrutura de Repetição - for

Estrutura de repetição for

```
for <variável>=<inicio>:<fim>
```

<comandos>

end

Estrutura de Repetição - for

Exemplo

soma = 0

for i=1:5

soma = soma + 10

end

Introdução

Estrutura de Repetição - while

Estrutura de repetição while

```
while < condição >
  <comandos>
```

end

Estrutura de Repetição - while

Exemplo

soma = 0

while soma < 200

soma = soma + 10

end

Leitura do teclado

A leitura dos valores provenientes do teclado pode ser feito por meio da função *input()*.

Função input()

input(<mensagem>,<indicador_de_caracter>)

Onde:

<mensagem> indica a mensagem que será inserida para que o utilizador informe a entrada;

<indicador_de_caracter> é opcional e indica que a entrada é uma cadeia de caracteres.

Leitura do teclado - Exemplo

Exemplos de utilização

```
\longrightarrow nota1 = input('Informe a nota: ')
```

 \longrightarrow nome = input('Informe o nome: ', 's')

Escrita no console

A escrita no console pode ser realizada por meio de diferentes funções tais como a função disp() e a função mprintf().

Função disp()

```
disp(<argumento1>, <argumento2>, ..., <argumenton>)
```

Onde <argumenton> representa uma variável ou uma mensagem cujos valores serão exibidos no console.

Escrita no console

Função disp()

disp(<argumento1>, <argumento2>, ..., <argumenton>)

Onde <argumenton> representa uma variável ou uma mensagem cujos valores serão exibidos no console.

Exemplos de utilização

- \longrightarrow *disp*(nota1)
- \longrightarrow *disp*('O nome eh: ', nome) \hookrightarrow *disp*(nome, 'O nome eh: ') *
- * Os argumentos são exibidos em ordem inversa, ou seja, da direita para a esquerda.

Escrita no console

Função mprintf()

mprintf(<formato>, <variável1>, <variável2>, <variáveln>)

Onde:

Introdução

<formato> representa o formato de exibição no console;

<variável1...n> representa a variável cujo valor formatado será exibido no console.

Escrita no console - Formato

%ni	exibe números inteiros com tamanho n
%n.df	números de ponto flutuante com d casas
	decimais e tamanho n
%n.de	exibe número em notação exponencial com
	d casas decimais e tamanho n
%n.dg	exibe o formato mais curto entre os formatos
	%n.df e %n.de
%ns	exibe uma cadeia de caracteres com
	tamanho n

Introdução

Ecrita no console - Exemplos Função mprintf()

Exemplos de utilização da função mprintf()

```
→ mprintf('O valor é: %3i', valor)
```

```
\longrightarrow mprintf('A nota é: %3.2f', nota)
```

Bibliografia

SCILAB ENTERPRISES "Scilab Online Help". 2019.

Disponível em: https:

//help.scilab.org/docs/6.0.2/en_US/index.html.

Acesso em: 03 Jun. 2021.

Gomez, C. and Scilab Enterprises. "Scilab for very beginners", 2013.

Rietsch, E. "An Introduction to Scilab from a Matlab User's Point of View". version 2.6-1.0. 2001-2002.

