Modelo de demanda para simuladores interactivos de Cadenas de Suministro.

28 de Agosto 2012, JAIIO - SII

Ing. Lourdes Perea Muñoz (Universidad Austral- CONICET)

Dr. Víctor Herrero (Universidad Austral)

Dr. Alejandro Clausse (UNCPBA- CONICET)

Introducción

Paradigma Moderno

- •CS vs. CS
- Ventajacompetitiva
- •Entorno dinámico

Habilidades Gerenciales

- •Visión Sistémica: Empresa y CS.
- EquiposInterdisciplinarios
- •Compartir Información

Universidades: Desafío

- •Complementar Métodos Tradicionales
- •Simulación:
 - •Dinamismo
 - •Habilidades integradas

- •Beer Game : MIT (1960s)
- •SIMPLE (Simulation of Production and Logistics Environments): Y. Chang & W. Chen- National Chiao Tung University (2009)
- •The Supply Chain Game: S. Chopra & F. Afeche Kellogg School of Management at Northwestern University (2005)
- •Trading Agent Competition: R. Arunachalam & Sadeh -Swedish Institute of Computer Science (2003)
- •DLSim (Simulador Logístico Distribuido): V. Herrero & A. Clausse-UNCPBA (2007)

Nombre	Descripción	Objetivo	Restricciones	Vinculación CS				
Beer Game	CS: Detallista, Mayorista, Distribuidor y Fabricante	Atender Pedidos Minimizar Costos Logísticos	Costos de mantenimiento Inventarios. Penalización por órdenes pendientes	Ineficiencia en las cadenas por falta de visión sistémica: Efecto Látigo				
SIMPLE	Producción y Distribución en una CS: Flexible	Minimizar Costos Logísticos y de Producción	Costos: Inventarios, Tercerización, Producción. Penalización por órdenes nendientes	-Visión sistémica -Integración de funciones: Gestión de Inventarios, Gestión de Capacidad, Determinación de preciosIntercambio de Información				
Pedido Pedido Pedido Pedido Fábrica Detallista Mayorista Distribuidor Fábrica Consumidor Cajas de Cajas de Cajas de								

25/09/2012

cervezas

cervezas

Plazo

entrega

externo

cervezas

Plazo

entrega

cervezas

Plazo

entrega

	Nombre	Descripción	Objetivo	Restricciones	Vinculación CS
Nucleity	The SCG	Expansión de una red de suministro. Balanceo de oferta y demanda	Maximizar Ganancias	Costos: Inventario, Transporte, Costos de instalación de nuevos almacenes Tiempos: diferentes lead times; tiempos de instalación de capacidad	-Pronóstico de demanda -Gestión de Inventarios -Planificación y programación de la producción -Diseño de red y logística -Habilidades integrada.
	TAC	Ensambladores de PC, que deben ganar pedidos de los clientes y coordinar eficientemente su aprovisionamiento	Maximizar Ganancias	Disponibilidad de componentes, lead times de producción, capacidad de almacenamiento y costos asociados.	Problemas de competencia entre cadenas sujetas a: fluctuaciones del mercado, contingencias operacionales, cambios de estrategia. Investigación solucución automatizadas

Simulación de la demanda

- ↑ Demanda de la cadena: determinística/ estocástica/ serie predeterminada.
- ↑ Impuesta por el instructor. No alterada por la performance de la cadena.
- ↑ Las estrategias adoptadas sólo tienen influencia sobre los costos/ganancia. No sobre la demanda percibida.
- ↑ TAC: hay competencia por la demanda. Pero la performance de la cadena no afecta las ventas futuras.

Modelos de demanda encontrados: Juegos de Simulación de Negocios (Gold & Pray, 1990)

DLSim: Simulador Logistico Distribuido

> orientado a soporte de cursos universitarios y entrenamiento "in-company"

Escenario en serie

Estacion interactiva: Almacen

- Gestión de Inventarios
 /Aprovisionamiento
- Administración del depósito
- Decisiones de transporte

□ PANEL DE CONTROL

Stock

- Stock de seguridad
- Tamaño de lote
- Estimación de demanda durante el lead-time

Zonas

- Asignación aleatoria
- Por lista de prioridades
- Transporte
- Ganancia

Estacion interactiva: Almacen

MONITOREO

- Stock instantáneo
- Ocupación de cada zona
- Productos en espera
- Tiempo promedio de servicio
- Costos y ganancia
- Nivel de servicio

Estacion interactiva: Almacen

Estación Interactiva: OZP

- PANEL DE CONTROL
 - Operarios
 - Cantidad
 - Asignacion a pedidos
 - Prioridad Entrega
 - ☐ FIFO
 - FDFO
 - Sobreprecio

- Gestión de Capacidad: MO
- Asignación de prioridades
- Determinación de Precio

Estación Interactiva: OZP

MONITOREO

- Pedidos (tasa y estados)
- Operarios (nivel de ocupación)
- Performance operativa
 - Tiempo promedio de entrega
 - Deadline promedio
- Performance económica
 - Costo y ganancia acumulada

Estación Interactiva: OZP

Escenario en paralelo

Escenario Paralelo - Modelo de demanda

Modelo de Demanda Propuesto

1. Precio del mercado como la Media Armónica del precio de todos los proveedores.

Pes.
$$\bar{P} = \#ret / \sum_{i=1}^{\#ret} (1|\bar{p_i}) \qquad (1)$$

2. Demanda media del mercado corregida por variación de precios.

$$\mu_n = \mu_{n-1} - k\Delta \overline{P} \tag{2}$$

3. Preferencia de los clientes en función de precio y performance histórica de servicio de cada retailer.

$$w_{i} = \begin{cases} Pref_{i} = \left(1 - \frac{P_{i}}{P_{max}}\right) * \left(1 - \frac{\bar{\tau}_{i}}{\tau_{max}}\right) & siPref_{i} > 0 \\ 0 & ; & siPref_{i} \leq 0 \end{cases}$$

$$(3)$$

4. Participación del mercado de cada proveedor (Market Share (MS)):

$$MSi = \frac{W_i}{\sum_{i=1}^{\#ret} W_i} \tag{4}$$

• Parámetros Importantes: Precio Máximo ; Lead Time Máximo

Modelo de preferencia

Modelo de generación de demanda

2. Demanda media del mercado corregida por variación de precios

$$\mu_n = \mu_{n-1} - k\Delta \overline{P}$$

$$k = (\mu_{max} - \mu_0)/P_0$$

Modelo de Demanda Propuesto - Validación

1. Media Armónica para el precio promedio

$$\bar{P} = \#ret / \sum_{i=1}^{\#ret} (1|P_i) \qquad \text{Gold &Pray (1990)}$$

Modelo de Demanda Propuesto - Validación

Resultados

- Modelo de demanda Cadenas en competencia
- •Representativo de las leyes de mercado y la percepción de valor del cliente
- •Cambio de foco en el objetivo del juego y más representativo de la realidad.
- •Entrenado: decidir la mejor estrategia comercial teniendo en cuenta impacto en costos y performance logística + mercado que gana.
- •Permite la retroalimentación de las cadenas en competencia. Introduce dinamismo.
- •El modelo de demanda es fácil de implementar computacionalmente

Trabajo Futuro

- -Comparación con otros modelos planteados
- -Validación con múltiples cadenas en competencia
- -Validación con más de 1 producto
- -Beer Game: estrategias testeadas en competencia

Muchas Gracias

Iperea@austral.edu.ar