

GPU ACCELERATED DEEP LEARNING WITH CUDNN

Larry Brown Ph.D.

March 2015

AGENDA

- 1 Introducing cuDNN and GPUs
- 2 Deep Learning Context
- 3 cuDNN V2
- 4 Using cuDNN

Introducing cuDNN and GPUs

HOW GPU ACCELERATION WORKS

WHAT IS CUDNN?

cuDNN is a library of primitives for deep learning

Applications

Programming Languages

Libraries

OpenACC Directives

Maximum Flexibility

"Drop-in"
Acceleration

Easily Accelerate Applications

ANALOGY TO HPC

cuDNN is a library of primitives for deep learning

Application

Fluid Dynamics Computational Physics

BLAS standard interface

Various CPU BLAS implementations

cuBLAS/NVBLAS

Intel CPUs

IBM Power

Tesla Titan

TK1 TX1

DEEP LEARNING WITH CUDNN

cuDNN is a library of primitives for deep learning

ANNOUNCING CUDNN V2

cuDNN V2 is focused on ...

Performance and,

Features

... for the deep learning practitioner!

Optimized for current and future GPUs

Deep Learning Context

ACCELERATING MACHINE LEARNING

"Machine Learning" is in some sense a rebranding of Al.

The focus is now on more specific, often perceptual tasks, and there are many successes.

Today, some of the world's largest internet companies, as well as the foremost research institutions, are using GPUs for machine learning.

MACHINE LEARNING USE CASES

...machine learning is pervasive

Image Classification, Object Detection, Localization

Face Recognition

Speech & Natural Language Processing

Medical Imaging & Interpretation

Seismic Imaging & Interpretation

Recommendation

WHY IS DEEP LEARNING HOT NOW?

THREE DRIVING FACTORS...

1 - Big Data Availability

facebook

350 millions images uploaded per day

Walmart 2.5 Petabytes of customer data hourly

100 hours of video uploaded every minute

2 - New ML Techniques

Deep Neural Networks

3 - Compute Density

GPUs

ML systems extract value from Big Data

DIFFERENT MODALITIES...SAME APPROACH

DEEP LEARNING ADVANTAGES

Deep Learning

- Don't have to figure out the features ahead of time!
- Use same neural net approach for many different problems.
- Fault tolerant.
- Scales well.

Support Vector Machine

Linear classifier

Regression

Decision Trees

Bayesian

Clustering

Association Rules

WHAT IS DEEP LEARNING?

Today's Largest Networks

~10 layers
1B parameters
10M images
~30 Exaflops
~30 GPU days

Human brain has trillions of parameters - only 1,000 more.

CLASSIFICATION WITH DNNs

Training (Development)

Inference (Production)

WHY ARE GPUS GREAT FOR DEEP LEARNING?

	Neural Networks	GPUs
Inherently Parallel	√	✓
Matrix Operations	\checkmark	\checkmark
FLOPS	√	\checkmark

- GPUs deliver --
 - same or better prediction accuracy
 - faster results
 - smaller footprint
 - lower power

[Lee, Ranganath & Ng, 2007]

CONVOLUTIONAL NEURAL NETWORKS

- Biologically inspired.
- Neuron only connected to a small region of neurons in layer below it called the filter or receptive field.
- A given layer can have many convolutional filters/kernels.
 Each filter has the same weights across the whole layer.
- Bottom layers are convolutional, top layers are fully connected.
- Generally trained via supervised learning.

CONVOLUTIONAL NET EXAMPLES

Y. LeCun et al. 1989-1998: Handwritten digit reading

A. Krizhevsky, G. Hinton et al. 2012: Imagenet classification winner

CNNS DOMINATE IN PERCEPTUAL TASKS

- Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
- OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
- Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)
- Asian handwriting recognition [2013] ICDAR competition (IDSIA)
- Pedestrian Detection [2013]: INRIA datasets and others (NYU)
- Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
- Human Action Recognition [2011] Hollywood II dataset (Stanford)
- Object Recognition [2012] ImageNet competition (Toronto)
- Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona datasets (NYU)
- Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
- Speech Recognition [2012] Acoustic modeling (IBM and Google)
- Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

GPUs - THE PLATFORM FOR MACHINE LEARNING

Image Recognition Challenge

1.2M training images • 1000 object categories

Hosted by

IMAGENET

GPUS MAKE DEEP LEARNING ACCESSIBLE

Deep learning with COTS HPC systems

A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, B. Catanzaro

ICML 2013

"Now You Can Build Google's \$1M Artificial Brain on the Cheap"

WIRED

CUDNN DESIGN GOALS

- Basic Deep Learning Subroutines
 - Allow user to write a DNN application without any custom CUDA code
- Flexible Layout
 - Handle any data layout
- Memory Performance tradeoff
 - Good performance with minimal memory use, great performance with more memory use

CUDNN ROUTINES

- Convolutions 80-90% of the execution time
- Pooling Spatial smoothing

Activation - Pointwise non-linear function

CONVOLUTIONS - THE MAIN WORKLOAD

- Very compute intensive, but with a large parameter space
 - 1 Minibatch Size
- 2 Input feature maps
- 3 Image Height
- 4 Image Width
- 5 Output feature maps

- 6 Kernel Height
- 7 Kernel Width
- 8 Top zero padding
- 9 Side zero padding
- 10 Vertical stride
- 11 Horizontal stride
- Layout and configuration variations
- Other cuDNN routines have straightforward implementations

CUDNN V2 - PERFORMANCE

CPU is 16 core Haswell E5-2698 at 2.3 GHz, with 3.6 GHz Turbo GPU is NVIDIA Titan X

CUDNN V2 FLEXIBILITY

Can now specify a strategy the library will use to select the best convolution algorithm:

```
PREFER_FASTEST
```

NO WORKSPACE

SPECIFY WORKSPACE LIMIT

...or specify an algorithm directly...

GEMM

IMPLICIT_GEMM

IMPLICIT PRECOMP GEMM

DIRECT

CUDNN V2 NEW FEATURES

Other key new features:

- Support for 3D datasets. Community feedback desired!
- OS X support
- Zero-padding of borders in pooling routines
- Parameter scaling
- Improved support for arbitrary strides
- Support for upcoming Tegra X1 via JIT compilation

See Release Notes for details...

CUDNN V2 API CHANGES

Important - API Has Changed

- > Several of the new improvements required changes to the cuDNN API.
- Applications previously using cuDNN V1 are likely to need minor modifications.
- > Note Im2Col function is currently exposed public function...but will be removed.

The cuDNN team genuinely appreciates all feedback from the Deep learning community.

The team carefully considers any API change.

cuDNN is still young...API changes expected to become rare in the future.

Using cuDNN

CUDNN EASY TO ENABLE

Caffe

- Install cuDNN on your system
- Download CAFFE
- > In CAFFE Makefile.config
 - > uncomment USE_CUDNN := 1
- Install CAFFE as usual
- Use CAFFE as usual.

- Install cuDNN on your system
- Install Torch as usual
- > Install cudnn.torch module
- Use cudnn module in Torch instead of regular nn module.
- cudnn module is API compatable
 with standard nn module.
 Replace nn with cudnn

DIGITS

Interactive Deep Learning GPU Training System

Data Scientists & Researchers:

- Quickly design the best deep neural network (DNN) for your data
- Visually monitor DNN training quality in real-time
- Manage training of many DNNs in parallel on multi-GPU systems

developer.nvidia.com/digits

Main Console

one, or create your own

DIGITS Workflow

Create your database

Configure your model

Start training

DIGITS

Visualize DNN performance in real time Compare networks

Classification

