Éléments de Logique Opérations sur les propositions

MPSI 2

1 Codage et valeurs logiques

Soit A une proposition. On lui associe une valeur logique (Vrai ou Faux) ou binaire (0 ou 1)

Soient A et B. Si A et B ont la même valeur logique, on note $A \sqcup B$

Soient a et b deux codages binaires.

- Négation de a: $\neg a = 1 a$
- " $a \lor b$ ", "a ou b", "a sup b"

a	b	$(a \lor b)$	
1	1	1	•
1	0	1	$a \lor b = a + b - a b$
0	0 1 0	1	
0	0	0	

• " $a \wedge b$ ", "a et b", "a inf b"

a	b	$(a \wedge b)$	
1	1	1	-
1 0	0	0	$a \wedge b = a b$
0	1	0	
0	0	0	

2 Opérations élémentaires sur les propositions

Soient A et B deux propositions de codage binaire a et b. On a alors:

• Négation de A: c'est la proposition dont le codage binaire est $\neg a$.

$$\begin{array}{c|c} A & \neg A \\ \hline 1 & 0 \\ 0 & 1 \end{array}$$

 \bullet Disjonction: "A ou B " est la proposition codée par " $a\vee b$ ".

A	$\mid B \mid$	$A \cup B$
1	1	1
1	0	1
0	1	1
0	0	0
		ı

- \bullet "A ou B" est Vraie si A est Vraie ou si B est Vraie.
- \bullet "A ou B" est Fausse ssi "A et B" est Fausse.

3 Autres opérations

• La conjonction

Definition 3.0.1

"A et B" est la proposition " \neg ($\neg A$ ou $\neg B$)"

	A	B	$(A \cap B)$	
-	1	1	1	
	1	0	0	• " A et E
	0	1	0	
	0	0	0	

 \bullet "A et B" est codée par " $a \wedge b$ "

• L'implication

Definition 3.0.2

" $A \Rightarrow B$ " est la proposition " $\neg A$ ou B"

$$\begin{array}{c|cccc} A & B & (A \Rightarrow B) \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array}$$

- \bullet Si A est Fausse, $A\Rightarrow B$ est Vraie par définition.
- \bullet Si A est Vraie, il fa Ut démontrer que B est Vraie.
- La contraposé: " $A \Rightarrow B$ " et " $\neg B \Rightarrow \neg A$ " ont la même valeur logique. Démonstration triviale.
- l'équivalence

Definition 3.0.3

" $A \Leftrightarrow B$ " est la proposition " $(A \Rightarrow B)$ et $(B \Rightarrow A)$ "

$$\begin{array}{c|c|c|c} A & B & (A \Leftrightarrow B) \\ \hline 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}$$

Remarques:

- 1/ Négation de "ou" et "et":
 - $-\neg(a\ ou\ b) \sqcap \neg A\ et\ \neg B$
 - $-\neg(a\ et\ b) \ H \neg A\ ou\ \neg B$
- 2/ Négation de l'implication: $\neg(A \Rightarrow B) \vdash A \ et \ \neg B$