Urban Sound Classifier

By Spencer Goble

Background

- Our editors currently spend an average of 12 hours per film classifying field recordings
- The goal is to cut down this time to less than 1 hour of sound organization/classification per film
- Can we make use of machine learning to classify sounds for us?

What

- Our editors manually classify and organize field recordings
- On average we collect 1000 sounds per film
- This process involves listening to, naming, and grouping every single sound
- This time could be better spent in the editing process

But How!?

Expedite our process with brilliant...

Deep Learning techniques!

With an improved process we can cut time spent from 12 hours to...

1 hour per film!

Approach

Gather		Classify		Deploy	
*	Our process of collecting field recordings will remain the same	*	By training a Neural Network to recognize sounds, we can use deep learning to categorize them for us	*	Once the algorithm has assigned a sound to a particular class, we need a minimal amount of labelling and quality assurance to be performed
*	We will collect ~1000 sounds per film	*	We will 'show' the computer samples of sound and it will tell us what kind of sound it is	*	by an editor After some brief organization the sounds will be ready to deploy

Sound As Data

- We have a standardized process for recording our sounds which assures consistency across our vast libraries of audio
- We will need to generate a .csv file that contains a list of all the sound names/ID's
- This .csv file will be read into an IDE and Python is the language used to execute the entire process
- Once we load the .csv file, we can scan through our folder of sounds and load them into our IDE

Feature Extraction

- Librosa is an expansive toolkit for digitally processing audio
- Using Librosa, we can extract characteristics from our sounds
- These characteristics are arrays of numbers that represent the actual frequencies and amplitudes of the audio sample
- One of the most common features to extract is the Mel-Frequency Cepstrum

Modeling

- We will use a toolkit called Keras to design our Neural Network
- The audio features get fed into the network and it learns what each sound 'looks' like

- Once it knows the profile of each sound it can group similar ones together
- Below is the architecture of a Convolutional Neural Network

Conclusions

- Our film editors are spending far too much time manually classifying sounds
- There is highly effective technology available for automating a huge portion of this process
- By employing Deep Learning to classify sounds for us, we free up 11 hours of time per film!

Additional Documents

White Paper:

https://github.com/LiftedAquatic/Urban-Sound-Classifier/blob/main/White%20Paper.pdf

Project Repository:

https://github.com/LiftedAquatic/Urban-Sound-Classifier

Original Data:

https://urbansounddataset.weebly.com/urbansound8k.html