

MANHATTAN VS TORONTO: WHERE SHOULD I TRAVEL TO?

Coursera Capstone Project By Christopher Luu

THE PROBLEM

- Ever wondered whether to travel to America or Canada?
- *How about exploring their two main cities of New York or Toronto?
- This analysis presents an analysis on Manhattan (Borough of New York) and a subset of Toronto providing interested travellers a suggestion for their next destination!

BACKGROUND

- The two major cities of New York and Toronto are both tempting and exciting places to be
- Deciding on only one of the two provides an ultimatum and that is an opportunity foregone until you save enough money to travel again
- By understanding the most common venues at these cities, an meaningful decision can be concluded ensuring you made the right decision for travel

DATA USED

- Manhattan data available from: https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DS0701EN-SkillsNetwork/labs/newyork_data.json
- Toronto data available from: https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M
- Geospatial data available from: https://cocl.us/Geospatial_data

DATA USED

- The data sourced on previous slide was wrangled, cleaned and formatted to the tables on the right
- Both present the following features:
- Borough
- Neighbourhood
- Latitude
- Longitude
- Both wrangled data sets are suitable for clustering in conjunction with Foursquare Location Data

	Postal Code	Borough	Neighbourhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494

	Borough	Neighborhood	Latitude	Longitude
0	Manhattan	Marble Hill	40.876551	-73.910660
1	Manhattan	Chinatown	40.715618	-73.994279
2	Manhattan	Washington Heights	40.851903	-73.936900
3	Manhattan	Inwood	40.867684	-73.921210
4	Manhattan	Hamilton Heights	40.823604	-73.949688

METHODOLOGY

- 1. Source Data
- 2. Data Wrangling
- 3. Mapping Initial Data with Folium
- 4. Foursquare API
- 5. Clustering with K-means
- 6. Mapping Clusters
- 7. Analysis
- 8. Conclusion

METHODOLOGY

- Key data wrangling was on Toronto data
- Analysing data of similar shapes more standardised for comparison
- ❖ Tables on right show process of combining East, West, Central and Downtown Toronto Borough into 1 main borough – Toronto Main
- Toronto Main: 1 Borough, 39 Neighbourhoods
- Manhattan: 1 Borough, 40 Neighbourhoods
- Data wrangling and processing successful

```
In [138]: test = merged_table['Borough'].unique()
Out[138]: array(['North York', 'Downtown Toronto', 'Etobicoke', 'Scarborough',
                  'East York', 'York', 'East Toronto', 'West Toronto',
                  'Central Toronto', 'Mississauga'], dtype=object)
In [139]: #identifying best borough to use
           for i in test:
               a = merged table[merged table['Borough']==i]
               print('The dataframe {} has {} boroughs and {} neighborhoods.'.format(i,l
          The dataframe North York has 1 boroughs and 24 neighborhoods.
          The dataframe Downtown Toronto has 1 boroughs and 19 neighborhoods.
          The dataframe Etobicoke has 1 boroughs and 12 neighborhoods.
          The dataframe Scarborough has 1 boroughs and 17 neighborhoods.
          The dataframe East York has 1 boroughs and 5 neighborhoods.
          The dataframe York has 1 boroughs and 5 neighborhoods.
          The dataframe East Toronto has 1 boroughs and 5 neighborhoods.
          The dataframe West Toronto has 1 boroughs and 6 neighborhoods.
          The dataframe Central Toronto has 1 boroughs and 9 neighborhoods.
          The dataframe Mississauga has 1 boroughs and 1 neighborhoods.
```

	Postal Code	Borough	Neighbourhood	Latitude	Longitude
0	M5A	Toronto Main	Regent Park, Harbourfront	43.654260	-79.360636
1	M7A	Toronto Main	Queen's Park, Ontario Provincial Government	43.662301	-79.389494
2	M5B	Toronto Main	Garden District, Ryerson	43.657162	-79.378937
3	M5C	Toronto Main	St. James Town	43.651494	-79.375418
4	M5E	Toronto Main	Berczy Park	43.644771	-79.373306
5	M5G	Toronto Main	Central Bay Street	43.657952	-79.387383

RESULTS

- Top image shows pre-clustered Manhattan data
- Bottom image shows post-clustered Manhattan data
- 3 Clusters
 - 1. Red (Cluster 0)
- 2. Purple (Cluster 1)
- 3. Green (Cluster 2)
- \diamond Number of clusters K = 3, 3 Clusters generated

RESULTS

- Top image shows pre-clustered Toronto data
- Bottom image shows post-clustered Toronto data
- 1 Clusters
 - 1. Red (Cluster 0)
- \diamond Number of clusters K = 3, 1 Clusters generated
- Not enough diversity in venue data

RESULTS

Manhattan Cluster 0

Park 1

Name: 1th Most Common Venue

Manhattan Cluster 1

Italian Restaurant	8	
Coffee Shop	6	
Bar	3	
Café	2	
Gym / Fitness Center	1	
Hotel	1	
Theater	1	
Gym	1	
American Restaurant	1	
Park	1	
Clothing Store	1	
Art Gallery	1	
Korean Restaurant	1	
Chinese Restaurant	1	
Plaza	1	
Name: 1th Most Common	Venue	

- 1 St Most Common
 Venue per
 neighbourhood counted
 by frequency of
 apperance
- Food shops high frequency in Manhattan
- Spa only in Toronto

Manhattan Cluster 2

Park 3
Café 2
Coffee Shop 2
Pizza Place 1
Mexican Restaurant 1
Name: 1th Most Common Venue

Toronto Cluster 0

Venue CategorySpa 19 Name: 1st Most Common Venue,

DISCUSSSION

- Not enough diversity in Toronto data to warrant more clusters
- *Larger data set would give more accurate comparison between the two cities
- Current analysis suggests:
- 1. Food loving travellers go to Manhattan.
 - More diversity in food venues per 500m radius from each neighbourhood
- Relaxation travellers go to Toronto
- Spa venues most common amongst the neighbourhoods.
- High saturation may imply high demand

CONCLUSION

- K-Means clustering performed on Manhattan and Toronto in conjunction with Foursquare location data
- Food travellers recommended to Manhattan
- Relaxation travellers recommended to Toronto
- Dataset used not extensive enough to recommend anything further
- For improved suggestions, more in-depth analysis required for future work including more venues and locations.