Introduction to Cost and Schedule Management

In this module, we will focus on topics surrounding cost and scheduling. After reviewing cost and scheduling from a management perspective, we will continue to explore project scheduling further by looking at Rolling Wave planning. In the last section of the module, we will discuss cost and scheduling management techniques.

Two critical functions of a Software Project Manager are staying on top of the ever-fluctuating cost and schedule of a project. We will begin by looking at methods or tools used to manage the cost and schedule and we will discuss industry standards in these areas.

Scope of Cost and Schedule Management

A Cost and Schedule Management System (CSMS) is an integrated management control structure used to manage programs that includes planning, accounting, budgeting, scheduling, work authorization, and analysis. CSMS is widely used especially on government programs but it is becoming increasingly widespread on commercial programs. Earned Value Management (EVM) is a project management method for assessing project performance and progress in an unbiased fashion. At the Department of Defense (DoD) and other Federal agencies, EVM is often referred to as the Cost/Schedule Control Systems Criteria (C/SCSC). In 1999, the United States Office of Management and Budget (OMB) began to require EVM use across all government agencies for internally managed projects and for contractors. Contractors' internal systems must meet the US government criteria to be considered acceptable by government procuring agencies.

Project Management Institute (PMI) is one of the world's largest professional membership associations. Its standards are targeted at projects, programs, people, organizations, and the profession. PMI publishes <u>A Guide to the Project Management Body of Knowledge</u> (PMBOK Guide), an industry standard, and certifies individuals as Project Management Professional (PMP).

The goal of software cost and schedule management is to ensure that quality software products are produced within the cost and schedule constraints of the program. Cost and schedule management can apply to all projects: large or small, government or commercial, risky or risk free. The amount of rigor will vary from project to project. For example, on a government program, your contract will likely require cost and schedule management, but on a commercial program, it may not be mandatory. The contract may direct specific practices to follow. If practices are not identified, the Program Software Manager must tailor practices to the program/project and obtain concurrence from the Program Manager and the Software Department Manager to ensure solid communication among the teams. The Program Software Manager is responsible for implementing the cost and schedule management program.

The benefits of cost and schedule management are improved planning, clearly defined roles and responsibilities for team members, improved problem traceability should issues arise, the ability to affect the future, early warning of potential problems, and more accurate estimates at completion (EAC).

Management Reviews

Management reviews are conducted throughout the development effort to monitor cost and schedule progress. You should become familiar with two management reviews.

The **Cost and Schedule Status Review** is conducted monthly for each open Work Authorization Delegation or Document (WAD), the document that permits the tasks to be executed. The WAD Manager, the Program Manager, and the Financial Analyst must attend the meeting. The Cost Account Schedule

(CAS), which includes a detailed schedule of the current project, is examined and credit is given for task completion. A comparison is made between the work performed, work scheduled, and actual costs to determine the schedule and cost variances. This is the measure of program performance

The *WAD Review* is also conducted monthly. Here the Engineering Manager chooses which selected programs will be evaluated for that month based on program priority, criticality, or issues. This review addresses the current schedule, problems, solutions, and plans for the future. The Engineering Director, Program Manager, Software Project Manager, and the Lead Systems/Software Engineering attend the WAD Review.

The Software Manager's responsibilities for the group's activities and at these reviews include maintaining cognizance of the status of the work accomplished and hours expended for all of his/her WADs and Work Package Tasks (WPTs), the activities listed in the WAD. This can be accomplished with weekly status reports, weekly status meetings, reviewing the financial reports (such as the Program Cost Status Report and the Program Hours Worked Report), continuously monitoring risk items, assessing issues often by using the Quality Assurance team (an independent entity), and keeping the Department Manager informed of progress at least weekly.

Cost and Schedule Management Techniques

Definitions

Within the organization, personnel have certain roles that include how they must interact with each other. The graphic below illustrates this point using CAM and others interacting with the WAD.

The image below depicts some of the many processes that must be followed to help ensure successful outcomes.

The 27 cost and schedule management terms are divided into four (4) categories as follows:

Roles	Documentation	Process	Other
Cost Account Manager (CAM)	Cost Account Plan (CAP)	Actual Cost	Direct Labor
Financial Analyst	Cost Account Schedule (CAS)	Actual Cost of Work Performed (ACWP)	Fiscal Year
WAD Manager	Department Cost Status Report	Budgeted Cost of Work Performed (BCWP)	Fringe
WAD Originator		Budgeted Cost of Work Scheduled (BCWS)	General and Administrative (G&A)
WAD Recipient	Funds Expenditure Report	Cost Variance	Indirect Labor
	Program Cost Status Report	Earned Value	Overhead
	Program Hours Status Report	Rolling Wave	
	Variance Report	Schedule Variance	
	Work Authorization Delegation or	Work Accomplished	

Roles	Documentation	Process	Other
	Document (WAD)		
	Work Breakdown Structure (WBS)	Work Allocated	
	Work Package Task (WPT)	Work Budgeted	
		Work Performed	
		Work Planned	
		Work Scheduled	

See Definitions at the bottom of Course Modules for definitions of these terms.

The Program Manager is the WAD originator and the supervisor is called the WAD recipient, the Cost Account Manager (CAM), or the WAD manager. Determining the status of the development team's work gives you the Earned Value or Work Performed.

Programs create a Work Breakdown Structure (WBS) or discrete work elements organized in a way that helps define the total work scope of the project as shown in the graphic below.

When the Software Manager receives a WAD, he/she assigns the WBS elements or Work Package Tasks (WPTs) to individuals to perform.

Aligning the WAD, CAP, and CAS

The WAD contains the tasks—generally—broken out by each phase of the project lifecycle. The Cost Account Schedule (CAS) is used to schedule milestones for each WPT over a near term period of time (typically 6 months). Each WPT is allocated hours in the schedule for each month it is performed.

The Cost Account Plan (CAP) is used to show how the contract hours (not yet allocated to CAS) are allocated over the remaining months of the schedule. The CAS & CAP are used together to monitor the amount of work performed (earned value) against work scheduled for each Work Package Task (WPT)

defined in the CAS. The WPTs defined in the CAS must match the task description in the WAD. The definition of WPTs is critical to the software cost & schedule management process. The following graphic shows how hours on the WAD reflect on the CAP and CAS when applied.

Earned Value Management (EVM)

A cost and schedule management implementation is used to analyze.

schedule variance = earned value (or work performed) less work scheduled

and

cost variance = earned value (or work performed) less actual cost.

CSMS requires the use of Cost Account Plans (CAPs) and Cost Account Schedules (CASs). It is typically applied to development programs that have less than 10% level-of-effort (LOE) tasking.

LOE is defined as support type activities such as management or clerical activities with no definite or deliverable products. The budget is evenly distributed over period of performance so the activity is never ahead of or behind schedule—that is, the earned value is based on passage of time.

To monitor cost and schedule, formal meetings are held periodically (generally monthly) with the financial analyst, CAM, and Program Manager to compare the amount of work performed (claimed by the CAM) with the amount scheduled (identified in the CAS and CAP) and actual cost of work performed (obtained from employee time cards).

Five Earned Value Methods

Earned Value is the same as Accomplishment or Work Performed.

The CAM selects the earned value method and budgets the work to be done for each allocated WAD WPT. There are five widely used earned value methods.

The next item contains a video that provides a brief overview of each of the five most common methods.

Cost and Schedule Variance

As the project progresses, CAMs monitor progress by comparing earned value (or work performed) with the plan (or budget from CAS) and with actual cost (time cards & accounting system) to determine schedule and cost variance. This is done monthly for the preceding month and cumulatively for the schedule to date. Significant variances (top 10 variances or those exceeding some percentage, often 10%) are analyzed and documented in a cost or schedule variance report. The variance report includes what caused the problem, the corrective action planning, and the impact on the project.

Cost Variance is defined as the earned value minus the actual costs as illustrated below.

Cost variance = Earned value - Actual cost

Actual cost consists of direct labor, fringe benefits, overhead, and general and administrative (G&A) costs as shown here.

Actual Cost of the Product is:	Example
Direct Labor	\$30.00/hr
Fringe (benefits) 40%	\$12.00/hr
Labor and Fringe Subtotal	\$42.00/hr
Overhead (office space, utilities, etc.) 50%	\$21.00/hr
Labor, fringe, and overhead Subtotal	\$63.00/hr
General & Administrative costs (G&A) 10%	\$6.30/hr

Actual Cost of the Product is:	Example
Overall Total Billing Rate	\$69.30/hr

Projects may allow different combinations of direct labor, fringe benefits, overhead, and/or G&A costs to be charged to the customers and companies will vary in the percentage charged for fringe benefits, overhead and G&A costs.

Schedule Variance is defined as the earned value minus the budget, as shown here.

Effect of Cost and Schedule Combinations

The purpose of these tools, methods, and standards is to help you, as the project manager, keep account of your project's status. Being ahead or behind in cost or schedule impacts the project and can have a ripple effect on future tasks and the entire project. The chart below shows the various combinations.

	Cost variance positive (under running cost)	Cost variance negative (over running cost)
Schedule variance negative (behind schedule)	Behind schedule but under running cost Maybe not so bad	Behind schedule and over running cost Manager's nightmare!
Schedule variance positive (ahead of schedule)	Ahead of schedule and under running cost Manager's delight!	Over running cost but ahead of schedule Maybe not so bad

Earned Value Management

Earned Value Management Definitions

Cost Account Schedule and Cost Account Plan

Cost Variance

Cost variance = Earned value - Actual cost

Schedule Variance

Schedule variance = Earned value - Budget

	Cost variance positive (under running cost)	Cost variance negative (over running cost)
Schedule variance negative (behind schedule)	Behind schedule but under running cost Maybe not so bad	Behind schedule and over running cost Manager's nightmare!
Schedule variance positive (ahead of schedule)	Ahead of schedule and under running cost Manager's delight!	Over running cost but ahead of schedule Maybe not so bad

Earned Value Management

0/100

<u>Pla</u>	<u>nning</u>	<u>Sta</u>	atus	
<u></u> Start		$\frac{1}{9/12}$ Start	Complete	25
Milestone	Budget	Milestone	Budget	Earned Value
1	0	1	0	0
2	500	2	500	500
Total	500	Total	500	500

- No Budget allocated to start milestone
- Total budget allocated to completion milestone
- All work claimed only when task is complete
- Spans one accounting month

Percent Start / Percent Complete

Planning (<u>50%/50%)</u>	<u>Sta</u>	<u>tus</u>	
<u></u>		<u>√1</u> 10/18 Start		
Milestone	Budget	Milestone	Budget	Earned Value
1	500	1	500	500
2	_500	2	500	0
Total	1000	Total	1000	500

- Examples of weights: 25/75, 30/70, 50/50
- Budget is allocated to start milestone
- Budget is allocated to completion milestone
- Spans two accounting months

Percent Complete

- Status of work depends on manager's assessment of amount complete
- End of January, CAM claims work is 25% done (150 hours)
- End of February, CAM claims only another 10% (60 hours)

Milestone Weights

- Weight associated with each milestone is earned when milestone is complete
- At least on milestone per month

Milestone Weights with Percent Complete

- Similar to milestone weights method
- Added feature allows CAM to claim percent complete activities in months without milestones
- Milestones are required at least every two months

Characteristics of Good Milestones

- Product or event
- Must be within the authority of the CAM
- Clear, objective criteria for measuring accomplishment
- Quantified whenever possible
- Directly related to the work package (Work Authorization Delegation (WAD) and Statement of Work (SOW))

Level of Effort

- Support activities e.g., management, clerical
- No definite or deliverable products
- Budget is evenly distributed over the period of performance
- Earned value is based on the passage of time, thus never ahead or behind schedule

Milestones by Work Package and Phase

For the nine (9) phases defined, here are the 42 recommended work package tasks and 146 recommended milestones for each phase.

Phase	Work Package Task	Milestones
1 - System Requirements Analysis	1 - SW engineering support for the SSS	1 – SSS Internal draft
		2 – Revision for preliminary SSS
	2 - SRR preparation & participation	3 – Prepare draft SRR data package
		4 – Internal review of draft SRR data package
		5 - SRR data pkg revised for CDRL submission
		6 – Conduct SRR
		7 – Respond to SRR action items
2 – System Design	3 - SW engineering support for the final SSS	8 – Start SSS updates
		9 – Complete SSS updates
	4 - SW engineering support for the SSDD	10 – Prepare draft SSDD input
		11 – Internal review of draft SSDD input
		12 – SSDD revised for CDRL submission
	5 - Software Architecture Definition	13 – Produce System Context Diagram
		14 – Define CSCI external interfaces
		15 – Generate external events list
		16 – State/mode allocation to CSCI capabilities
		17 – Determine CSCI capability IF
		18 – Establish CSCI SW development file
	6 - Preliminary SW requirements spec	19 – Prepare preliminary SRS input
		20 – Internal review of SRS input
		21 – Completion of preliminary SRS input

Phase	Work Package Task	Milestones
	7 - Preliminary SRS Production/delivery	22 – Integrate SRS inputs
		23 – Internal review of preliminary SRS
		24 – Publish preliminary SRS
		25 – Prepare preliminary IRS inputs
		26 – Internal review of preliminary IRS
		27 – Complete preliminary IRS input
	8 - Preliminary IRS Production & Delivery	28 – Integrate preliminary IRS inputs
		29 – Internal review of preliminary IRS
		30 – Publish Preliminary IRS
	9 - Software Development Plan	31 – Prepare SDP
		32 – Internal review of SDP
		33 – Publication of the SDP
	10 - System Design Review	34 – Prepare draft SDR material
		35 – Internal review of draft SDR material
		36 – Completion of SDR material
		37 – Publish SDR package
		38 – Conduct SDR
		39 – Work off SDR action items
3 - Software Rqmts Analysis	11 - Establish CSCI domains	40 – Create CSCI context diagram
		41 – Generate CSCI external events list
		42 – Generate CSCI state transition diagram
	12 - Conduct Software rqmts analysis	43 – Produce complete CSCI logical model
		44 – Complete requirements traceability matrix
	13 - Generate database model	45 – Produce complete database model

Phase	Work Package Task	Milestones
		46 – Complete requirements traceability
	14 - Finalize Software requirements	47 – Generate data dictionary
		48 – Produce complete transformation spec
	15 - Final SRS production & delivery	49 – Integrate SRS inputs
		50 - Internal review of final SRS
		51 – Publish final SRS
		52 – Integrate final IRS inputs
		53 – Internal review of final IRS
		54 – Publish final IRS
	16 - SSR preparation & conduct	55 – Prepare SSR materials
		56 – Internal review of SSR materials
		57 – Conduct the SSR
4 – Software Preliminary Design	17 - Define Computer Software Components	58 – Determine CSCI/CSC hierarchy
		59 – Produce CSC-level structure charts
		60 – Internal review of CSC structure charts
		61 – Establish CSC SW Development Files
	18 - External interface definition	62 – Identify message types
		63 – Define data fields that compose each msg
		64 – Internal review of message types
		65 – Complete message type definitions
	19 - Human machine interface definition	66 – Identify screens & displays
		67 – Internal review of screens & displays
		68 – Complete screen & display

Phase	Work Package Task	Milestones
		definitions
	20 - Preliminary Software Design Document (SDD) production & delivery	69 – Integrate design inputs into prelim SDD
		70 – Internal review of preliminary SDD
		71 – Publish preliminary SDD
	21 - Preliminary IF Design Document (IDD) Production & delivery	72 – Integrate design inputs into prelim IDD
		73 – Internal review of preliminary IDD
		74 – Publish preliminary IDD
	22 - Draft Software Test Plan	75 – Produce draft STP
		76 – Internal review of draft STP
	23 - Establish CSC I&T Test requirements	77 – Start CSC I&T test requirements
		78 – Complete CSC I&T test requirements
	24 - PDR preparation & conduct	79 – Prepare PDR material
		80 – Internal review of PDR material
		81 – Conduct PDR dry run
		82 – Conduct PDR
		83 – Respond to PDR action items
5 – Software Detailed Design	25 - Complete design	84 – Complete CSU level structure charts
		85 – Internal review of CSU structure
		86 - Complete PDL for each CSU
		87 – Internal review of CSU design
		88 – Establish CSU SW Development Files
	26 - Final SDD production & delivery	89 – Start integration of SDD inputs
		90 – Complete integration of SDD input

Phase	Work Package Task	Milestones
		91 – Internal review of SDD
		92 – Publication of SDD
	27 - Final IDD production & delivery	93 – Start integration of final IDD inputs
		94 – Complete integration of final IDD inputs
		95 – Internal review of IDD
		96 – Publication of final IDD
	28 – Software test documentation	97 – Integrate final inputs for the STP
		98 – Internal review of final STP
		99 – Publication of final STP
		100 – Produce draft STDs
		101 – Internal review of draft STDs
	29 – CSC I&T planning	102 – Establish CSC test responsibilities
		103 – Produce CSC test cases
		104 – Produce CSC test schedules
	30 – CSU test planning	105 – Establish CSU test responsibilities
		106 – Produce CSU test cases
		107 – Produce CSU test schedules
	31 – CDR preparation & conduct	108 – Prepare CDR material
		109 – Internal review of CDR material
		110 – Conduct CDR dry run
		111 – Conduct CDR
		112 – Respond to CDR action items
6 – Coding & CSU testing	32 – CSU code & CSU testing	113 – Code CSUs
		114 – Produce Unit test plan for CSU
		115 – Produce code inspection

Phase	Work Package Task	Milestones		
		package		
		116 – Conduct code inspection		
		117 – Perform CSU testing		
		118 – Produce Unit test inspection package		
		119 – Conduct Unit test inspection		
		120 – Submit CSU material for config mgmt		
	33 – CSCI integration plan	121 – Start CSCI integration plan		
		122 – Complete CSCI integration plan		
	34 – CSC test procedures	123 – Start CSC I&T procedures		
		124 – Complete CSC I&T procedures		
7 – CSC I&T	35 – Functional string testing	125 – Build string executable		
		126 – Start string testing		
		127 – Complete string testing		
		128 – Resolve problems & retest as required		
		129 – Document string test results for the TRR		
	36 – SW Test descriptions/procedures	130 – Start SW test descriptions & procedures		
		131 – Complete test descriptions & procedures		
	37 – Test readiness review preparation and conduct	132 – Integrate string test data into TRR pkg		
		133 – Conduct the TRR		
		134 – Respond to TRR action items		
		135 – Enter CSCI code into product baseline		
8 – CSCI Testing	38 – CSCI testing support	136 – None (LOE task)		
	39 – FCA/PCA support	137 – None (LOE task)		
	40 – Product baseline documentation	138 – Update/produce documents (SDD, IDD, SPS, VDD)		
		139 – Internal review of documents		

Phase	Work Package Task	Milestones	
		140 – Correct per review and submit to CM	
	41 – O&M Documentation Support	141 – Start documentation (User's Manual, Maintenance Manual)	
		142 – Complete draft	
		143 – Internal review of draft	
		144 – Update draft based on comment review	
		145 – Produce documents and submit to CM	
9 – System I&T	42 – System I&T	146 – None (LOE task)	

Rolling Wave Planning

Rolling Wave Planning is a method of carefully budgeting to ensure the success of cost and schedule management. Long-term activities are difficult to plan since there are many variables. Thus, we plan in rolling waves or "just in time planning." Project plans are initially defined at a high level. As development progresses, detailed planning for each phase is performed. The detailed planning for the next phase of the life cycle is completed just before the start of that phase aptly named "just in time planning." This ensures maximum accuracy in budget planning.

Methods of Applying Rolling Wave Planning for Software Engineering Projects

Now that WAD and Rolling Wave have been introduced to you, we will begin exploring methods of applying them.

Establish the WADs for Each Phase in the Lifecycle

This approach takes advantage of the natural phase subdivisions and corresponding intermediate milestones of the software project and provides the best, objective work in progress measure. The image below depicts the WAD Lifecycle.

Each WAD defines the tasks to be performed and the budget allocation. If the WAD covers a period greater than some designated period, usually six (6) months, a Cost Account Plan (CAP), or high-level schedule is defined. The CAP allocates the hours for the tasks defined in the WAD and shows how contract hours are allocated over the entire time covered by the WAD. The CAS is a detailed schedule of the work to occur within the next few (usually six) months.

The WAD originator (Program Manager), Financial Analyst, and WAD manager, typically the software supervisor, agree to and sign the WAD.

Perform the CAP to Cost Account Schedule (CAS) Conversion

Budget allotments allocated in the CAP are distributed among detailed work packages defined in the CAS (the detailed schedule) for the upcoming phase.

Budgets from multiple planning packages may be combined and redistributed and the work packages may be re-planned. This activity occurs as close to the next software phase as possible, but not later than 30 days before, and takes into account the most current program information. To achieve a sufficient level of accuracy, the planning cycle for each phase must not begin too early.

A change to the total budget allocated to the planning packages and work packages require a formal WAD revision.

The WAD Manager performs this formal process with Program Management and the Financial Analyst's oversight.

Develop Detailed Plans for Each Phase

The traditional software development process model provides the basis for consistent phase and milestone definitions required to define the work packages for each CAS.

Suggested Lifecycle Phases

- System Requirements Analysis
- System Design
- Software Requirements Analysis
- Preliminary Design
- Detailed Design
- Code and Computer Software Unit (CSU) Testing
- CSU Integration and Testing (I&T)
- Computer Software Configuration Item (CSCI) Testing
- System Integration and Testing

You may combine phases as required by your customer or tailor as appropriate.

Define the Progress Points or Milestones by Phase

Each software development phase has well-defined activities and measurable progress points that can be used to monitor, measure, and document progress.

Refer to the Milestones by Phase document for descriptions of the nine (9) phases, 42 recommended work package tasks, and 146 recommended milestones for each phase.

Milestones by Work Package and Phase (PDF attached to the same item as this PDF in Blackboard).

Rolling Wave Planning Example

Suppose the Program Manager / System Engineering Manager funds the Software Engineering Organization to support System Requirements Analysis phase. This activity is scheduled for four (4) months, September 1 through December 31. The software organization is required to provide two senior software engineers (one of which is the supervisor) at the start of the task and jump to four total software engineers at the start of the second month.

The available hours/month on the task is specified as 150 hours/month. This figure is derived as follows:

Hours in the year (52 weeks x 40 hours/week)	2080	
Less average Vacation hours / person (100 hours/year) 1980	1980	
Less average Holiday hours / person (80 hours/year) 1900	1900	
Less average Sick leave hours / person (100 hours/year) 1800	1800	
1800 hours = 12 months (m) x 150 hours/month (h/m)		

The software manager has a WAD which contains 2100 hours and can be defined as follows: 2100 h = [2 senior software engineers x (4 m x 150 h/m)] + [2 more software engineers x (3 m x 150 h/m)] Or 2100 h = [1 m x (2 senior software engineers x 150 h/m)] + [3 m x (4 software engineers x 150 h/m)] With this information, the software supervisor develops the following CAS:

Cost Account Schedule				
Cost Account Schedule	Month 1	Month 2	Month 3	Month 4
Work Package Tasks & Milestones	March	April	May	June
1. Software engineering support for SSS				
1.1 SSS Internal draft	200			
1.2 Revision for preliminary SSS	100/			
2. SRR preparation & participation				
2.1 Prepare draft SRR data package		450		
2.2 Internal review of draft SRR data pkg		<u></u>		
2.3 SRR data pkg revised for CDRL submit			500	
2.4 Conduct SRR (3 days)			△100/	
2.5 Respond to SRR action items				600 /
Total:	300	600	600	600