

Medan Elektromagnetik

HUKUM COULOMB

DAN

INTENSITAS MEDAN LISTRIK

Coulomb stated that the force between two very small objects separated in a vacuum or free space by a distance, which is large compared to their size, is proportional to the charge on each and inversely proportional to the square of the distance between them, or

$$F = k \frac{Q_1 Q_2}{R^2}$$

$$k = \frac{1}{4\pi\epsilon_0}$$

$$k = \frac{1}{4\pi\epsilon_0}$$
 $\epsilon_0 = 8.854 \times 10^{-12} \doteq \frac{1}{36\pi} 10^{-9} \text{ F/m}$

$$F = \frac{Q_1 Q_2}{4\pi \epsilon_0 R^2}$$

Figure 2.1 If Q_1 and Q_2 have like signs, the vector force F_2 on Q_2 is in the same direction as the vector \mathbf{R}_{12} .

The vector form of Coulomb's law is

$$\mathbf{F}_2 = \frac{Q_1 Q_2}{4\pi \epsilon_0 R_{12}^2} \mathbf{a}_{12}$$

where $\mathbf{a}_{12} = \mathbf{a}$ unit vector in the direction of R_{12} , or

$$\mathbf{a}_{12} = \frac{\mathbf{R}_{12}}{|\mathbf{R}_{12}|} = \frac{\mathbf{R}_{12}}{R_{12}} = \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|}$$

$$\mathbf{F}_1 = -\mathbf{F}_2 = \frac{Q_1 Q_2}{4\pi \epsilon_0 R_{12}^2} \mathbf{a}_{21} = -\frac{Q_1 Q_2}{4\pi \epsilon_0 R_{12}^2} \mathbf{a}_{12}$$

EXAMPLE 2.1

We illustrate the use of the vector form of Coulomb's law by locating a charge of $Q_1 = 3 \times 10^{-4}$ C at M(1, 2, 3) and a charge of $Q_2 = -10^{-4}$ C at N(2, 0, 5) in a vacuum. We desire the force exerted on Q_2 by Q_1 .

EXAMPLE 2.1

We illustrate the use of the vector form of Coulomb's law by locating a charge of $Q_1 = 3 \times 10^{-4}$ C at M(1, 2, 3) and a charge of $Q_2 = -10^{-4}$ C at N(2, 0, 5) in a vacuum. We desire the force exerted on Q_2 by Q_1 .

Solution.

The vector \mathbf{R}_{12} is

$$\mathbf{R}_{12} = \mathbf{r}_2 - \mathbf{r}_1 = (2-1)\mathbf{a}_x + (0-2)\mathbf{a}_y + (5-3)\mathbf{a}_z = \mathbf{a}_x - 2\mathbf{a}_y + 2\mathbf{a}_z$$

$$|\mathbf{R}_{12}| = 3$$
 $\mathbf{a}_{12} = \frac{1}{3}(\mathbf{a}_x - 2\mathbf{a}_y + 2\mathbf{a}_z)$

$$\mathbf{F}_2 = \frac{3 \times 10^{-4} (-10^{-4})}{4\pi (1/36\pi) 10^{-9} \times 3^2} \left(\frac{\mathbf{a}_x - 2\mathbf{a}_y + 2\mathbf{a}_z}{3} \right)$$

$$= -30 \left(\frac{\mathbf{a}_x - 2\mathbf{a}_y + 2\mathbf{a}_z}{3} \right) \, \mathbf{N}$$

$$\mathbf{F}_2 = -10\mathbf{a}_x + 20\mathbf{a}_y - 20\mathbf{a}_z$$

If we now consider one charge fixed in position, say Q_1 , and move a second charge slowly around, we note that there exists everywhere a force on this second charge; in other words, this second charge is displaying the existence of a force *field* that is associated with charge, Q_1 . Call this second charge a test charge Q_t . The force on it is given by Coulomb's law,

$$\mathbf{F}_t = \frac{Q_1 Q_t}{4\pi \epsilon_0 R_{1t}^2} \mathbf{a}_{1t}$$

Writing this force as a force per unit charge gives the *electric field intensity*, \mathbf{E}_1 arising from Q_1 :

$$\mathbf{E}_1 = \frac{\mathbf{F}_t}{Q_1} = \frac{Q_1}{4\pi\epsilon_0 R_{1t}^2} \,\mathbf{a}_{1t}$$

 $= \frac{Q[(x-x')\mathbf{a}_x + (y-y')\mathbf{a}_y + (z-z')\mathbf{a}_z]}{4\pi\epsilon_0[(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}}$

$$\mathbf{E}(\mathbf{r}) = \sum_{m=1}^{n} \frac{Q_m}{4\pi \epsilon_0 |\mathbf{r} - \mathbf{r}_m|^2} \mathbf{a}_m$$

EXAMPLE 2.2

In order to illustrate the application of (11), we find \mathbf{E} at P(1, 1, 1) caused by four identical 3-nC (nanocoulomb) charges located at $P_1(1, 1, 0)$, $P_2(-1, 1, 0)$, $P_3(-1, -1, 0)$, and $P_4(1, -1, 0)$, as shown in Figure 2.4.

EXAMPLE 2.2

$$\mathbf{r} - \mathbf{r}_1 = \mathbf{a}_z$$

 $\mathbf{r} - \mathbf{r}_2 = 2\mathbf{a}_x + \mathbf{a}_z$
 $\mathbf{r} - \mathbf{r}_3 = 2\mathbf{a}_x + 2\mathbf{a}_y + \mathbf{a}_z$
 $\mathbf{r} - \mathbf{r}_4 = 2\mathbf{a}_y + \mathbf{a}_z$

$$|\mathbf{r} - \mathbf{r}_1| = 1, |\mathbf{r} - \mathbf{r}_2| = \sqrt{5},$$

$$|\mathbf{r} - \mathbf{r}_3| = 3$$
, and $|\mathbf{r} - \mathbf{r}_4| = \sqrt{5}$.

$$Q/4\pi\epsilon_0 = 3 \times 10^{-9}/(4\pi \times 8.854 \times 10^{-12}) = 26.96 \text{ V}$$

$$r_4 = a_x - a_y$$

$$\mathbf{E} = 26.96 \left[\frac{\mathbf{a}_z}{1} \frac{1}{1^2} + \frac{2\mathbf{a}_x + \mathbf{a}_z}{\sqrt{5}} \frac{1}{(\sqrt{5})^2} + \frac{2\mathbf{a}_x + 2\mathbf{a}_y + \mathbf{a}_z}{3} \frac{1}{3^2} + \frac{2\mathbf{a}_y + \mathbf{a}_z}{\sqrt{5}} \frac{1}{(\sqrt{5})^2} \right]$$

$$\mathbf{E} = 6.82\mathbf{a}_x + 6.82\mathbf{a}_y + 32.8\mathbf{a}_z \text{ V/m}$$

Muatan Volume

denote volume charge density by ρ_{ν}

The small amount of charge ΔQ in a small volume $\Delta \nu$ is $\Delta Q = \rho_{\nu} \Delta \nu$

$$\rho_{\nu} = \lim_{\Delta\nu \to 0} \frac{\Delta Q}{\Delta\nu}$$

$$Q = \int_{\text{vol}} \rho_{\nu} d\nu$$

Muatan Volume

EXAMPLE 2.3

$$\rho_{\nu} = -5 \times 10^{-6} e^{-10^5 \rho z} \text{ C/m}^2$$

$$Q = \int_{0.02}^{0.04} \int_{0}^{2\pi} \int_{0}^{0.01} -5 \times 10^{-6} e^{-10^{5} \rho z} \rho \, d\rho \, d\phi \, dz$$

$$Q = \int_{0.02}^{0.04} \int_{0}^{0.01} -10^{-5} \pi e^{-10^{5} \rho z} \rho \, d\rho \, dz$$

$$Q = \int_0^{0.01} \left(\frac{-10^{-5}\pi}{-10^5 \rho} e^{-10^5 \rho z} \rho \, d\rho \right)_{z=0.02}^{z=0.04}$$

$$= \int_0^{0.01} -10^{-5} \pi (e^{-2000\rho} - e^{-4000\rho}) d\rho$$

Muatan & Medan Volume

EXAMPLE 2.3

$$\rho_{\nu} = -5 \times 10^{-6} e^{-10^5 \rho z} \text{ C/m}^2$$

$$Q = \int_{0.02}^{0.04} \int_{0}^{2\pi} \int_{0}^{0.01} -5 \times 10^{-6} e^{-10^{5} \rho z} \rho \, d\rho \, d\phi \, dz$$

$$Q = \int_{0.02}^{0.04} \int_{0}^{0.01} -10^{-5} \pi e^{-10^{5} \rho z} \rho \, d\rho \, dz$$

$$Q = \int_0^{0.01} \left(\frac{-10^{-5}\pi}{-10^5 \rho} e^{-10^5 \rho z} \rho \, d\rho \right)_{z=0.02}^{z=0.04}$$

$$= \int_0^{0.01} -10^{-5} \pi (e^{-2000\rho} - e^{-4000\rho}) d\rho$$

$$Q = -10^{-10}\pi \left(\frac{1}{2000} - \frac{1}{4000} \right)$$

$$=\frac{-\pi}{40}=0.0785 \text{ pC}$$

$$\Delta \mathbf{E}(\mathbf{r}) = \frac{\Delta Q}{4\pi \epsilon_0 |\mathbf{r} - \mathbf{r}'|^2} \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$
$$= \frac{\rho_{\nu} \Delta \nu}{4\pi \epsilon_0 |\mathbf{r} - \mathbf{r}'|^2} \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

$$\mathbf{E}(\mathbf{r}) = \int_{\text{vol}} \frac{\rho_{\nu}(\mathbf{r}') \, d\nu'}{4\pi \, \epsilon_0 |\mathbf{r} - \mathbf{r}'|^2} \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

Latihan Soal

D2.2. A charge of $-0.3 \,\mu\text{C}$ is located at A(25, -30, 15) (in cm), and a second charge of $0.5 \,\mu\text{C}$ is at B(-10, 8, 12) cm. Find **E** at: (*a*) the origin; (*b*) P(15, 20, 50) cm.

Ans. $92.3\mathbf{a}_x - 77.6\mathbf{a}_y - 94.2\mathbf{a}_z \text{ kV/m}; 11.9\mathbf{a}_x - 0.519\mathbf{a}_y + 12.4\mathbf{a}_z \text{ kV/m}$

D2.4. Calculate the total charge within each of the indicated volumes: (*a*) $0.1 \le |x|, |y|, |z| \le 0.2$: $\rho_{\nu} = \frac{1}{x^3 y^3 z^3}$; (*b*) $0 \le \rho \le 0.1, 0 \le \phi \le \pi, 2 \le z \le 4$; $\rho_{\nu} = \rho^2 z^2 \sin 0.6 \phi$; (*c*) universe: $\rho_{\nu} = e^{-2r}/r^2$.

Ans. 0; 1.018 mC; 6.28 C

