text-CNN模型相关

笔记本: 自然语言处理 创建时间: 2018/10/4 15:36

2018/10/4 15:56 bevourselfwb@163.com

原始论文: 2014 EMNLP Convolutional neural networks for sentence classification 作者: Yoon Kim, New York University, yhk255@nyu.edu

更新时间:

Keras实现:

https://github.com/hongweijun811/wjgit/blob/master/text cnn demo.py

http://www.tensorflownews.com/2018/04/06/%E4%BD%BF%E7%94%A8keras%E8%BF%9I cnn%E5%A4%84%E7%90%86%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80/

博客: http://www.wildml.com/2015/12/implementing-a-cnn-for-textclassification-in-tensorflow/

Tensorflow实现: https://github.com/rxt2012kc/cnn-text-classification-tf

链接: https://aclanthology.coli.uni-saarland.de/papers/D14-1181/d14-1181

主要工作:实现了四个利用CNN进行句子层面的文本分类工作,分别是CNN-rand、 CNN-static、CNN-non-static、CNN-multichannel。

创新点:

- 1、实验采用预先训练好的词向量;
- 2、对CNN网络结构做了改动,能够同时使用task-specific and static vectors

背景信息:深度学习模型在计算机视觉(2012)和语音识别(2013)方面取得了喜人的成 绩。在NLP领域好几篇研究都是用语言模型来学习word vector representation的, 2003 2011 2013的三篇论文。CNN在语义解析semantic parsing、搜索查询检索 search query retrieval、句子建模sentence modeling 方面被证明很有效(2014)。 使用了预训练的word2vector--用一千亿的Google News训练出的word vectors,适用 于大部分分类任务。可以从这里下载(https://code.google.com/p/word2vec/)

实验设计:数据集说明

Data	c	l	N	V	$ V_{pre} $	Test
MR	2	20	10662	18765	16448	CV
SST-1	5	18	11855	17836	16262	2210
SST-2	2	19	9613	16185	14838	1821
Subj	2	23	10000	21323	17913	CV
TREC	6	10	5952	9592	9125	500
CR	2	19	3775	5340	5046	\mathbf{CV}
MPQA	2	3	10606	6246	6083	\mathbf{CV}

Table 1: Summary statistics for the datasets after tokenization. c: Number of target classes. l: Average sentence length. N: Dataset size. |V|: Vocabulary size. $|V_{pre}|$: Number of words present in the set of pre-trained word vectors. Test: Test set size (CV means there was no standard train/test split and thus 10-fold CV was used).

模型实验结果对比

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012). RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN: Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regression on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial

case study: 用典型的例子来说明模型确实有效

	Most Sim	ost Similar Words for		
	Static Channel	Non-static Channel		
	good	terrible		
bad	terrible	horrible		
	horrible	lousy		
	lousy	stupid		
	great	nice		
good	bad	decent		
	terrific	solid		
	decent	terrific		
	os	not		
n't	ca	never		
n ı	ireland	nothing		
	wo	neither		
	2,500	2,500		
,	entire	lush		
•	terrific decent os ca ireland wo 2,500	beautiful		
	changer	terrific		
	decasia	but		
,	abysmally	dragon		
	demise	a		
	valiant	and		

Table 3: Top 4 neighboring words—based on cosine similarity—for vectors in the static channel (left) and fine-tuned vectors in the non-static channel (right) from the multichannel model on the SST-2 dataset after training.

实验方法:控制变量法,列出变量有哪些,如何控制其他条件保持一致

实验结果:

- 1、CNN-rand: 所有的词向量都是随机初始化的,在随机训练过程中作为参数进行调整;
- 2、CNN-static: 所有的词向量都是预先通过word2vector训练好的(未知词汇则采用随机初始化的方法),并且在实验过程中保持不变,只调整其他参数;
- 3、CNN-non-static:使用预先训练的词向量并在训练过程中调整;
- 4、CNN-multichannel:采用两组词向量,每组词向量作为一个通道,每组滤波器都同时作用在两个通道上,但反向传播时只更新其中一个通道,另一个保持不变。

专业词汇: euclidean distance欧几里得距离, cosine distance余弦距离, the elementwise multiplication operator点乘,逐个元素乘积之和, benchmark 一种规则, baseline基线 参照, 比如当前f1-score是0.90, 那么以这个为基准进行优化提升