Содержание

В	екторные пространства	2
1	Векторное пространство. Подпространство. Линейная оболочка системы векторов. Линейно (не)зависимые системы векторов. Конечномерные линейные пространства 1.1 Векторное пространство	2 2 2 2 2 2
2	Базис и размерность конечномерного линейного пространства, корректность ее определения (лемма Штайница). Дополнение линейно независимой системы векторов до базиса. Координаты вектора в базисе, запись операций над векторами через координаты. Изменение координат вектора при замене базиса (матрица перехода) 2.1 Базис и размерность конечномерного линейного пространства, корректность ее определения (лемма Штайница) 2.2 Дополнение линейно независимой системы векторов до базиса 2.3 Координаты вектора в базисе, запись операций над векторами через координаты 2.4 Изменение координат вектора при замене базиса (матрица перехода)	3 3 3 3
3	 Сумма и пересечение подпространств. Линейно независимые подпространства, прямая сумма подпространств, её характеризации, прямое дополнение подпространства, проекция на подпространство вдоль прямого дополнения. Связь размерностей суммы и пересечения подпространств (формула Грассмана). Понятие факторпространства, его базис и размерность 3.1 Сумма и пересечение подпространств 3.2 Линейно независимые подпространства, прямая сумма подпространств, её характеризации, прямое дополнение подпространства, проекция на подпространство вдоль прямого дополнения 3.3 Связь размерностей суммы и пересечения подпространств 3.4 Понятие факторпространства, его базис и размерность 	4 4 5 5
4	Понятие аффинного пространства, связь между аффинным и векторным пространством	5
Л	инейные отображения	5
5	Линейные отображения и линейные преобразования векторных пространств (линейные операторы). Операции над линейными отображениями, линейное пространство линейных отображений. Алгебра линейных операторов. Изоморфизмы 5.1 Линейные отображения и линейные преобразования векторных пространств (линейные операторы) 5.2 Операции над линейными отображениями, линейное пространство линейных отображений 5.3 Алгебра линейных операторов 5.4 Изоморфизмы	6 6 7 7

Векторные пространства

1 Векторное пространство. Подпространство. Линейная оболочка системы векторов. Линейно (не)зависимые системы векторов. Конечномерные линейные пространства

1.1 Векторное пространство

Опр Унарная, бинараная операция на множестве над полем Ставит в соответсвие элементу (элементам) из множества другой элемент из множества

Опр *Векторное пространство над полем* Помимо унарности и бинарности, по 4 аксиомы сложения и умножения

1.2 Подпространство

Опр Подпространство Требуются лишь унарность и бинарность

1.3 Линейная оболочка системы векторов

Опр *Линейная оболочка* Все векторы, которые линейно выражаются через минимальную систему, покрывающую пространство

1.4 Линейно (не)зависимые системы векторов

Опр Линейная комбинация Сумма векторов с коэффциентами из поля

Опр Линейно (не) зависимая система векторов Нетривиальная линейная комбинация (не) равна нулю

1.5 Конечномерные линейные пространства

Опр *Ранг* (*не*)*пустой системы векторов* Любой набор векторов, чьё число большее чем ранг, будет линейно зависим. Ранг пустой считаем нулевым

Опр *Размерность* Более употребительное название для ранга в случае работы с подпространсвом

Опр (Бес)конечномерные линейные пространства Если их размерность (бес)конечна

 $\Pi 1$ Любой вектор системы векторов ранга r раскладывается по r л.н.з векторам

- 1. Возьмём вектора из линейной оболочки и добавим к ним произвольный вектор системы *а.* Эта система будет л.з. из определения ранга
- 2. Тогда найдутся коэффициента для нетривиальной линейной комбинации, притом коэффициент перед $\lambda_a \neq 0$ (иначе линейная оболочка была бы зависима)
- 3. Из линейной комбинации выразим a, поделив все вектора на λ_a

 ${\bf Л2}$ Если вектор b принадлежит линейной оболочке a_1,\dots,a_k других векторов, то он не влияет на её ранг

- 1. От противного: пусть \exists л.н.з система из r+1 векторов (она будет содержать b, иначе w с определением ранга)
- 2. Итак, пусть система b, a_1, \ldots, a_r л.н.з. Тогда система a_1, \ldots, a_r тоже будет л.н.з. Так их r штук, то все вектора a_1, \ldots, a_k будут выражаться через a_1, \ldots, a_r
- 3. Если мы заменим a_1,\dots,a_k на их выражения через a_1,\dots,a_r , то получится, что b выражается по ним, что w л.н.з b,a_1,\dots,a_r

Th *Основная теорема о рангах* Ранг подсистемы и системы совпадает $\Leftrightarrow \forall$ вектор системы раскладывается по линейной обололочке подсистемы

 \Rightarrow : мгновенно следует из Л1 В моей формулировке \Leftarrow :

- 1. От противного: пусть \exists л.н.з система из r+1 векторов
- 2. Её ранг будет не меньше ранга её и любого количества л.н.з векторов из подсистемы

3. С другой стороны, многократно применяя $\Pi 2$, получим что её ранг не превышает ранга подсистемы, w

Следствие 1 Для любой подсистемы векторного пространства ранг равен размерности линейной оболочки

Следствие 2 Если размерности вложенных подпространств совпадают, то они равны

- 2 Базис и размерность конечномерного линейного пространства, корректность ее определения (лемма Штайница). Дополнение линейно независимой системы векторов до базиса. Координаты вектора в базисе, запись операций над векторами через координаты. Изменение координат вектора при замене базиса (матрица перехода)
- 2.1 Базис и размерность конечномерного линейного пространства, корректность ее определения (лемма Штайница)

Опр *Базис* Система л.н.з векторов, являющаяся линейной оболочкой

Лемма Штайница Пусть система векторов a_1, \dots, a_n порождает пространство V, а система векторов b_1, \dots, b_m л.н.з. Тогда $n \geq m$

- 1. Возьмём b_1 . Он будет выражаться через a_1, \ldots, a_n по определению линейной оболочки. БОО первый коэффициент в его разложении по a_1, \ldots, a_n ненулевой (иначе мы их переупорядочим)
- 2. Выразим из этого разложения a_1 . Тогда $V = < b_1, a_2, \ldots, a_n >$. Так, действуя по индукции, заменим все вектора a_i
- 3. В случае n < m получим противоречие с л.н.з. b_1, \ldots, b_m (потому что всего n векторов порождают пространство). Таким образом $n \ge m$, притом недостающие до линейно оболочки вектора можно взять из a_1, \ldots, a_n

2.2 Дополнение линейно независимой системы векторов до базиса

Утв Систему л.н.з векторов можно дополнить до базиса

- 1. Ранг подсистемы меньше ранга системы, поэтому выполняется обратное к основной теореме о рангах утверждение $(\exists \overline{x})$, не лежащей в л.н.з подсистеме)
- 2. Если мы добавим \overline{x} к подсистеме и она станет зависимой, то в нетривиальной линейной комбинации равен нулю либо новый коэффициент (w с л.н.з исходной подсистемы), либо какой-то из старых (тогда \overline{x} выражается через векторы линейной оболочки и принадлежит ей)
- 3. Продолжая процесс и далее, дополним систему до базиса

2.3 Координаты вектора в базисе, запись операций над векторами через координаты

Опр *Координаты вектора в базисе* Коэффициенты в разложении по базису

При сложении векторов и домножении на число, координаты изменяются покомпонентно

2.4 Изменение координат вектора при замене базиса (матрица перехода)

Опр Mampuųa nepexoda Матрица координатных столбцов новых базисных векторов относительного старых

Th S чья-то матрица перехода $\Leftrightarrow S$ невырождена

Это следует из того, что координатные столбцы X_k векторов a_k линейно независимы $\Leftrightarrow a_k$ л.н. з $(\lambda^k a_k = 0 \Leftrightarrow \lambda^k X_k = 0)$. Поэтому столбцы матрица невырождена (её столбцы л.н. з) \Leftrightarrow векторы л.н.з

Th Если вектор имеет в базисах e, e' координатные столбцы X, X', то X = SX'

Достаточно расписать один вектор в обоих базисах и сравнить записи

Утв Если $\exists e, e', e''; e' = eC, e'' = e'D$, то e'' = eCD

Последовательно подставляем матрицы перехода

3 Сумма и пересечение подпространств. Линейно независимые подпространства, прямая сумма подпространств, её характеризации, прямое дополнение подпространства, проекция на подпространство вдоль прямого дополнения. Связь размерностей суммы и пересечения подпространств (формула Грассмана). Понятие факторпространства, его базис и размерность

3.1 Сумма и пересечение подпространств

Опр *Пересечение подпространств* Множество элементов, которые являются их обычным теоретикомножественным пересечением как подмножеств

Опр Сумма подмножеств по Минковскому Множество-сумма векторов всех векторов a_i из каждого $A_i \subset V$, то есть каждый вектор из суммы раскладывается по векторам из всех пространств

Для суммы Минковского выполняется коммутативность и ассоциативность

Утв Сумма линейных оболочек есть линейная оболочка объединения

Каждый элемент суммы есть линейная оболочка какого-то подпространства, поэтому если мы сложим все линейные оболочки по Минковскому, то получим линейную оболочку объединения (совокупности)

Следствие Сумма конечного числа подпространств есть подпространство

Потому как сумма есть минимальное по включению подпространство, содержащее в себе каждое из пространств

Утв Размерность суммы не превосходит суммы размерностей

Это следует из того, что размерность равна рангу, а для рангов ранг объединения не превосходит суммы рангов (доказывается от противного)

3.2 Линейно независимые подпространства, прямая сумма подпространств, её характеризации, прямое дополнение подпространства, проекция на подпространство вдоль прямого дополнения

Опр *Прямая (внешняя) сумма* Декартово произвдение (a_1, \ldots, a_n)

Сложение и умножение на скаляр определены для внешней суммы покомпонентно

Опр *Прямая (внутренняя) сумма* Сумма, вектора a_i в разложении которой из каждого $A_i \subset V$ определены однозначно

Например, всё пространство разлагается в прямую сумму своих базисных векторов

Через $\overline{U_i}$ обозначим сумму всех рассматриваемых пространств, за исключением $U_i:U_1+\cdots+U_{i-1}+U_{i+1}+U_n$

Тһ.1 Первый критерий прямой суммы

Сумма подпространств прямая $\Leftrightarrow U_i \cup \overline{U_i}$

- \Rightarrow : от противного. Пусть БОО условие не выполнено для U_1 . Тогда там есть нулевой вектор, который принадлежит U_i и раскладывается по остальным пространствам. Тогда у нас существует два представления нулевого вектора (одного тривиальное, другое новое), w с прямостью суммы
- \Rightarrow : от противного. Пусть существует два различных разложения v по a_i и b_i . БОО хотя бы $a_1 \neq b_1$, поэтому если возьмём их разность, то с одной стороны она $\in U_1$, а с другой —
- $\in \overline{U_i}$, то есть пересечение не тривиально, w

Тһ.2 Второй критерий прямой суммы

Для конечномерных подпространств следующие условия эквивалентны:

- 1. Сумма $U = \oplus U_i$ прямая
- 2. Система из $\sum_i \dim U_i$ векторов из объединения базисов есть базис в U
- 3. dim $U = \sum_{i} n_i$
- $2 \Leftrightarrow 3$: по следствию основной теоремы о рангах $\dim U = rge = rg \cup_i e^i$, поэтому

$$\dim U = \sum_{i} \dim U_{i} \Leftrightarrow rge = \sum_{i} \dim U_{i} \Leftrightarrow e$$

• 1 \Rightarrow 2 : от противного. Пусть e л.н.з система. Запишем нетривиальную линейную комбинацию всей суммы. Так как хотя бы одна компонента нетривиальная, то БОО $l_1 \neq 0$. Тогда эта комбинация одновременно принадлежит и U_1 , и $\overline{U_1}$, по той же идее, что и в Th.1, это w

• $2 \Rightarrow 1$: от противного. По обратной идее предыдущего пункта воспользуемся Th.1, получим ненулевое пересечение, распишем вектор оттуда (нетривиальная л.к.) и получим w с л.н.з e

Опр *Прямое дополнение подпространства* Недостающий член в прямой сумме до всего пространства

В случае двух подпространств, они входят в определение симметрично

 ${f Y}{f T}{f B}$ Сумма размерностей подпространства и любоего его прямого дополнения равна размерности всего пространства V

 ${f Y}$ тв ${f Y}$ любого подпространства конечномерного простраснтва V существует прямое дополнение

Для нахождения дополнения достаточно выбрать базис в подпространстве и дополнить его до базиса в пространстве. Тогда по Th.2 эта система и будет прямым дополнением

Если $a = a_1 + a_2$, то a_1 называется проекцией a на U_1 вдоль (параллельно) U_2

3.3 Связь размерностей суммы и пересечения подпространств

Смотреть в рукописном конспекте

3.4 Понятие факторпространства, его базис и размерность

Опр Φ акторространство Φ актор-множество (множество всех классов эквивалентности для заданного отношения эквивалентности) $a \sim b \Leftrightarrow b - a \in U$

Элементы факторпространства есть смежные классы вида a+U

$$(a+U) + (b+U) = (a+b) + U$$
$$\lambda(a+U) = \lambda a + U$$

Если W - прямое дополнение U, то существует естественный изоморфизм $W \to V/U(a \mapsto a + U)$. Он является ограничением на W линейного отображения $\pi: V \to V/U, \pi(v) = v + U$ и называется канонической проекцией. Действительно, из определения прямого дополнения следует единственность $u \in U: v = u + w$. Применим π и получим v + U = w + U, что влечёт биективность π

Отсюда следует, что дополнение произвольного базиса в U до базиса в V после применения к ней π будет базисом в V/U, притом $\dim V/U = \dim V - \dim U$, что следует из теоремы о сумме размерностей ядра и образа

4 Понятие аффинного пространства, связь между аффинным и векторным пространством

Опр $A\phi$ инное пространство Отображение из точек-векторов в точки (откладывание от точки векторы)

Афинное пространство удовлетворяет трём аксиомам (ассоциативность, существование нуля и единственность " дополнения"). Также справедливо "правило треугольника"

Тh О замене координат

Если существует две ДСК и S – матрица перехода от старой к новой, γ – координатный столбец начала координат новой системы в старой, то справедливо $X = SX^{'} + \gamma$

Достаточно рассмотреть произвольный вектор как сумму сдвигов в ноль и в точку, перейти к базису и координатным столбцам, вспомнить определение матрицы перехода и сократить базис

Линейные отображения

5 Линейные отображения и линейные преобразования векторных пространств (линейные операторы). Операции над линейными отображениями, линейное пространство линейных отображений. Алгебра линейных операторов. Изоморфизмы

5.1 Линейные отображения и линейные преобразования векторных пространств (линейные операторы)

Опр Линейное отображение Отображение, удовлетворяющее двум аксиомам

Отсюда следуют конечная линейность, отображение нулевого и противоположного вектора

Множество всех линейных отображений обозначается как L(V, W). В случае W = V линейное отображение называют линейным преобразованием (оператором)

Опр Линейная функция (функционал) Случай $\dim W = 1(W = \mathbb{K})$

Утв Под действием линйного отображения л.з система остаётся л.з

Достаточно записать нетривиальную линейную комбинацию и взять её образ, используя уже известные аксиомы

Утв Ранг системы под действием линейного отображения не возрастает

Это следует из определения ранга и противного к предыдущему утверждению. В силу равенства ранга и размерности в конечномерном случае, получаем аналогичное неравенство для размерностей

Утв Образ подпространства

Образ линейной оболочки есть линеная оболочка образов

Действительно, если записать определение линейной оболочки (множество всех линейных комбинаций) и подействовать отображением, то получится требуемое. В частном случае, если взять базис (его линейная оболочка есть всё пространство), то образ пространства есть линейная оболочка линейная оболочка образов базисных векторов

Опр Линейное вложение Инъективное линейное отображение

Утв В случае линейного вложения л.н.з. система остаётся л.н.з.

Действительно, если записать л.к. образов и "вынести φ за скобки", то в силу инъективности получим, л.к. исходных векторов. В силу её линейной независимости, эта л.к. тривиальна, как и л.к. образов В частном случае, если взять базис, то получим равенства рангов U и $\varphi(U)$, как и размерностей

Th Если взять базис e_i в V и произвольные векторы c_i в W, то $\exists! \varphi : \varphi(e_i) = c_i$. Дополнительно, φ инъективно c_i л.н.з.

- 1. Для начала докажем единственность. Зафиксируем произвольный вектор a пространства, разложим его по базису и рассмотрим $\varphi(a)$, имеющего единственные коэффициенты. В силу произвольности a теорема справедлива
- 2. Для доказательства существования, достаточно взять два произвольных вектора из пространства, подействовать на них отображением (с учётом $\varphi(e_i)=c_i$), затем проверить аксиомы линейного отображения
- 3. ⇒: следует из предыдущего утверждения
- 4. \Leftarrow : от противного, с использованием определения инъективности, разложения a-b по базису и $\varphi(e_i)=c_i$

5.2 Операции над линейными отображениями, линейное пространство линейных отображений

Опр *Сумма отображений* Такое отображение, что ...

Опр Произведение отображения на скаляр Такое отображение, что ...

В комплексном случае скаляр заменяется на комплексно-сопряжённый.

Нетрудно проверить, что оба нововведённых отображения линейны. Также проверкой доказывается ассоциативность, дистрибутивность и линейность в случае композиции отображений

5.3 Алгебра линейных операторов

Так как на множестве L(V,V) определены операции сложения, умножения на скаляр и умножения, то L(V,V) имеет структуру ассоциативной алгебры (непустое множество (носитель) с заданным на нём набором операций и отношений (сигнатурой)). Ассоциативная потому как заданы операции ассоциативного умножения, то есть $\forall k,l \in \mathbb{F}$ и $\forall a,b,c \in A$ справедливо

- 1. a(b+c) = ab + ac
- 2. (a+b)c = ac + bc
- 3. (k+l)a = ka + la
- 4. k(a+b) = ka + kb
- 5. k(la) = (kl)a
- 6. k(ab) = (ka)b = a(kb)
- 7. 1a = a, где 1 единица кольца \mathbb{K}

Опр Аннулирующий многочлен для оператора $P(\varphi) = 0$

Опр Минимальный многочлен Аннулирующий многочлен с минимальной степенью

Утв Пусть μ — минимальный многочлен оператора φ ,а $P \in \mathbb{F}$ — произвольный. Тогда P аннулирует

 $\varphi \Leftrightarrow f : \mu$ в кольце многочленов над $\mathbb F$

- 1. Разделим P на μ с остатком и подставим в полученное равенство φ
- 2. Воспользуемся условием и получим $P(\varphi) = 0 \Leftrightarrow r(\varphi) = 0$
- 3. В таком случае остаток должен быть аннулирующим для φ , то есть его степень меньше степени минимального многочлена, поэтому w не возникает только в случае $r\equiv 0$
- 4. Таким образом, эквивалентность доказана

Отсюда следует, что минимальный многочлен единственен с точностью до умножения на константу

5.4 Изоморфизмы

Опр Изоморфизм Линейное биективное отображение

Опр Изоморфные векторные пространства Между ними существует изоморфизм

Утв Обратный к изоморфизму изоморфизм

- 1. Биективность следует из тождеств для обратных функций
- 2. Далее берутся векторы из образа и на них проверяются аксиомы линейного отображения
- 3. Итого, обратный к изоморфизму изоморфизм по определению

Th *Классификация конечномерных векторных пространств* Пространства изоморфны \Rightarrow их размерности совпадают

- ⇒: из изоморфности следует инъективность, а для инъективных отображений равенство доказано ранее
- 2. ←: построим изоморфизм между элементами каждого пространствами и их координатными столбцами в них по фиксированному базису. Ранее было доказано, что такое разложение единственно. Достаточно обратить какое-то из отображений (по предыдущему утверждению оно тоже будет изоморфизмом). Итого, мы получили композицию изоморфизмов, то есть изоморфизм

Th Если конечномерные пространства $U, V : \dim U = \dim V; e_i$ — базис в $U, \varphi \in L(U,V)$. Тогда следующие условия эквивалентны:

- 1. φ изоморфизм
- $2. \varphi$ инъективен
- $3. \varphi$ сюръективен

4. $\varphi(e_i)$ есть базис в V

- $1 \Rightarrow 2$: по определению
- $2\Rightarrow 3$: из инъективности следует $\dim(\varphi(U))=\dim U \to \varphi(V)\cong U \to \varphi$ сюръективно
- $3 \Rightarrow 4$: это следует из свойства линейной оболочки образов базисных векторов, связи размерности и ранга, определения ранга и базиса
- $4 \Rightarrow 1$: по критерию инъективности, в силу л.н.з. $\varphi(e_i), \varphi$ будет инъективно, а из свойства линейной оболочки следует сюръективность φ