Report No.: DRTFCC1710-0230

FCC ID: **SS4PT550**IC: **22515-PT550**

9 kHz ~ 25 GHz Data (Modulation : π/4DQPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.21	V	Z	PK	44.45	0.70	N/A	N/A	45.15	74.00	28.85
2389.21	V	Z	AV	44.45	0.70	-24.79	N/A	20.36	54.00	33.64
4803.92	V	Z	PK	46.94	4.77	N/A	N/A	51.71	74.00	22.29
4803.92	V	Z	AV	46.94	4.77	-24.79	N/A	26.92	54.00	27.08

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4882.02	V	Z	PK	46.73	5.11	N/A	N/A	51.84	74.00	22.16
4882.02	V	Z	AV	46.73	5.11	-24.79	N/A	27.05	54.00	26.95

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.71	V	Z	PK	48.92	0.94	N/A	N/A	49.86	74.00	24.14
2483.71	V	Z	AV	48.92	0.94	-24.79	N/A	25.07	54.00	28.93
4959.46	V	Z	PK	45.88	5.34	N/A	N/A	51.22	74.00	22.78
4959.46	V	Z	AV	45.88	5.34	-24.79	N/A	26.43	54.00	27.57

■ Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = $20 \log($ applied distance / required distance) = $20 \log(1 \text{ m / 3 m }) = -9.54 \text{ dB}$ When distance factor is "N/A", the distance is 3 m and distance factor is not applied.
- 3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)
 - Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms
 - 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2
 - The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms
 - D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB
- 4. Sample Calculation.

 $\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} \quad / \quad \text{Result} = \text{Reading} + \text{T.F} + \text{D.C.F} \quad / \quad \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} \quad \text{AF} = \text{Antenna Factor,} \quad \text{CL} = \text{Cable Loss,} \quad \text{AG} = \text{Amplifier Gain.} \end{aligned}$

Report No.: DRTFCC1710-0230

FCC ID: **SS4PT550**

IC: 22515-PT550

9 kHz ~ 25 GHz Data (Modulation : 8DPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.10	V	Z	PK	44.04	0.70	N/A	N/A	44.74	74.00	29.26
2389.10	V	Z	AV	44.04	0.70	-24.79	N/A	19.95	54.00	34.05
4803.67	V	Z	PK	45.66	4.77	N/A	N/A	50.43	74.00	23.57
4803.67	V	Z	AV	45.66	4.77	-24.79	N/A	25.64	54.00	28.36

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4881.66	V	Z	PK	46.45	5.11	N/A	N/A	51.56	74.00	22.44
4881.66	V	Z	AV	46.45	5.11	-24.79	N/A	26.77	54.00	27.23

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.59	V	Z	PK	46.53	0.94	N/A	N/A	47.47	74.00	26.53
2483.59	V	Z	AV	46.53	0.94	-24.79	N/A	22.68	54.00	31.32
4960.07	V	Z	PK	46.75	5.34	N/A	N/A	52.09	74.00	21.91
4960.07	V	Z	AV	46.75	5.34	-24.79	N/A	27.30	54.00	26.70

■ Note.

- 1. The radiated emissions were investigated up to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.
- 2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = $20 \log($ applied distance / required distance) = $20 \log(1 \text{ m / 3 m}) = \frac{-9.54 \text{ dB}}{400 \text{ distance factor}}$ When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

- 3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)
 - Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms
 - 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2
 - The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms
 - D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB
- 4. Sample Calculation.

 $Margin = Limit - Result \quad / \quad Result = Reading + T.F + D.C.F \quad / \quad T.F = AF + CL - AG$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

7.4.2. Conducted Spurious Emissions

Low Band-edge <u>Lowest Channel & Modulation : GFSK</u>

Low Band-edge <u>Hopping mode & Modulation : GFSK</u>

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Lowest Channel & Modulation : GFSK</u>

Conducted Spurious Emissions <u>Lowest Channel & Modulation : GFSK</u>

Reference for limit

Middle Channel & Modulation : GFSK

Conducted Spurious Emissions <u>Middle Channel & Modulation : GFSK</u>

Conducted Spurious Emissions <u>Middle Channel & Modulation : GFSK</u>

Report No.: DRTFCC1710-0230

High Band-edge

Highest Channel & Modulation : GFSK

High Band-edge

Hopping mode & Modulation : GFSK

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Highest Channel & Modulation : GFSK</u>

Report No.: DRTFCC1710-0230

Low Band-edge

Lowest Channel & Modulation : π/4DQPSK

Report No.: DRTFCC1710-0230

Low Band-edge

Hopping mode & Modulation : π/4DQPSK

Conducted Spurious Emissions <u>Lowest Channel & Modulation : π/4DQPSK</u>

Report No.: DRTFCC1710-0230

Report No.: DRTFCC1710-0230

Reference for limit

Middle Channel & Modulation : π/4DQPSK

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Middle Channel & Modulation : π/4DQPSK</u>

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Middle Channel & Modulation : π/4DQPSK</u>

High Band-edge

Highest Channel & Modulation : π/4DQPSK

Report No.: DRTFCC1710-0230

High Band-edge

Hopping mode & Modulation: π/4DQPSK

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Highest Channel & Modulation : π/4DQPSK</u>

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Highest Channel & Modulation : π/4DQPSK</u>

Low Band-edge

Lowest Channel & Modulation: 8DPSK

Report No.: DRTFCC1710-0230

Low Band-edge

Hopping mode & Modulation: 8DPSK

Conducted Spurious Emissions <u>Lowest Channel & Modulation : 8DPSK</u>

Report No.: DRTFCC1710-0230

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Lowest Channel & Modulation : 8DPSK</u>

Reference for limit

Middle Channel & Modulation: 8DPSK

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Middle Channel & Modulation : 8DPSK</u>

Conducted Spurious Emissions <u>Middle Channel & Modulation : 8DPSK</u>

Report No.: DRTFCC1710-0230

High Band-edge

Highest Channel & Modulation: 8DPSK

Report No.: DRTFCC1710-0230

High Band-edge

Hopping mode & Modulation: 8DPSK

Report No.: DRTFCC1710-0230

Conducted Spurious Emissions <u>Highest Channel & Modulation : 8DPSK</u>

Conducted Spurious Emissions <u>Highest Channel & Modulation : 8DPSK</u>

Report No.: DRTFCC1710-0230

FCC ID: **SS4PT550**IC: **22515-PT550**

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

8.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Fraguency Pange (MUz)	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

8.3 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4 Test Results

AC Line Conducted Emissions (Graph) = Modulation : <u>8DPSK</u>

Results of Conducted Emission

FCC ID: SS4PT550

TDt&C Report No.: DRTFCC1710-0230 IC: 22515-PT550

AC Line Conducted Emissions (List) = Modulation : $\underline{8DPSK}$

Results of Conducted Emission

Date 2017-08-23 DTNC

Order No. Model No. Serial No. Test Condition

Bluetooth EDR

Referrence No. Power Supply Temp/Humi. Operator

DC 9V 23 °C / 43 %

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	~	QP CAV		RESULT QP CAV [dBuV] [dBuV]	QP	CAV		PHASE
1	0.15801	26.45 16.46	9.89	36.34 26.35	65.57	55.57	29.23.29.22	N
2		24.2013.88	9.90	34.10 23.78	63.69	53.69	29.59 29.91	N
3		22.95 14.39	9.90	32.85 24.29			29.75 28.31	N
4	0.28885	23.86 17.62	9.90	33.76 27.52			26.80 23.04	N
5	0.39618	23.60 16.94		33.50 26.84		47.93	24.43 21.09	N
6	0.44399	23.28 16.72	9.90	33.18 26.62	56.99	46.99	23.81 20.37	N
7	0.49288	23.24 16.79	9.90	33.14 26.69	56.12	46.12	22.9819.43	N
8	3.37400	18.45 7.74	9.99	28.44 17.73	56.00	46.00	27.5628.27	N
9	3.54960	18.32 7.22	10.00	28.32 17.22	56.00	46.00	27.68 28.78	N
10	3.62680	17.19 6.37	10.01	27.20 16.38	56.00	46.00	28.80 29.62	N
11	22.59840	28.05 23.55	10.31	38.3633.86	60.00	50.00	21.64 16.14	N
12	23.51400	27.98 23.49	10.31	38.29 33.80	60.00	50.00	21.71 16.20	N
13	0.15612	26.53 16.36	9.89	36.42 26.25	65.67	55.67	29.25 29.42	L1
14	0.18357	24.25 14.01	9.90	34.15 23.91	64.32	54.32	30.1730.41	L1
15	0.19215	25.62 17.82	9.90	35.52 27.72	63.94	53.94	28.42 26.22	L1
16	0.19850	24.5713.45	9.90	34.47 23.35	63.67	53.67	29.2030.32	L1
17	0.28858	23.47 17.24	9.90	33.37 27.14	210 700	50.57	27.20 23.43	L1
18	0.31133	21.62 15.25	9.90	31.52 25.15	59.93	49.93	28.41 24.78	L1
19		23.0016.26	9.90	32.90 26.16		46.53	23.63 20.37	L1
20	2.37160	18.52 11.95	5 AVEVA	28.47 21.90		150000 B00000	27.53 24.10	L1
21				29.05 23.11			26.95 22.89	L1
22		20.75 16.32	10.06	30.81 26.38	60.00	50.00	29.19 23.62	L1
23				31.40 26.77			28.60 23.23	L1
24	19.17480	25.17 20.14	10.27	35.44 30.41	60.00	50.00	24.5619.59	L1

Report No.: DRTFCC1710-0230

FCC ID: **SS4PT550**

IC: 22515-PT550

9. Antenna Requirement

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

Conclusion: Comply

The antenna is attached on the device by means of unique coupling method (Spring Tension). Therefore this E.U.T Complies with the requirement of §15.203

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

10. Occupied Bandwidth (99 %)

10.1 Test Setup

Refer to the APPENDIX I.

10.2 Limit

Limit: Not Applicable

10.3 Test Procedure

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately $3 \times RBW$.

Spectrum analyzer plots are included on the following pages.

10.4 Test Results

Modulation	Tested Channel	Test Results (MHz)
	Lowest	0.880
<u>GFSK</u>	Middle	0.880
	Highest	0.878
	Lowest	1.171
<u>π/4DQPSK</u>	Middle	1.171
	Highest	1.170
	Lowest	1.176
<u>8DPSK</u>	Middle	1.176
	Highest	1.178

Note: The test plot is same with the 20 dB BW test plots. Please refer to the 20 dB BW plots.

Occupied Bandwidth (99 %)

Lowest Channel & GFSK

Occupied Bandwidth (99 %)

Middle Channel & GFSK

Occupied Bandwidth (99 %)

Highest Channel & GFSK

Occupied Bandwidth (99 %)

Lowest Channel & π/4 DQPSK

Occupied Bandwidth (99 %)

Middle Channel & π/4 DQPSK

Occupied Bandwidth (99 %)

Highest Channel & π/4 DQPSK

Report No.: DRTFCC1710-0230

Occupied Bandwidth (99 %)

Lowest Channel & 8DPSK

Occupied Bandwidth (99 %)

Middle Channel & 8DPSK

Occupied Bandwidth (99 %)

Highest Channel & 8DPSK

APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	6.07	15	9.88
1	6.75	20	10.85
2.402 & 2.440 & 2.480	7.50	25	11.25
5	8.30	-	-
10	9.03	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Power splitter

APPENDIX II

Unwanted Emissions (Radiated) Test Plot

GFSK & Lowest & Z & Ver

GFSK & Highest & Z & Ver

π/4DQPSK & Lowest & Z & Ver

Detector Mode: PK

Report No.: DRTFCC1710-0230

$\pi/4DQPSK$ & Highest & Z & Ver

Detector Mode: PK

8DPSK & Lowest & Z & Ver

Detector Mode : PK

8DPSK & Highest & Z & Ver

Detector Mode: PK

GFSK & Middle & Z & Ver

$\pi/4DQPSK$ & Middle & Z & Ver

8DPSK & Highest & Z & Ver

