Deep Generative Models Lecture 3

Roman Isachenko

Moscow Institute of Physics and Technology

2020

Generative models zoo

Latent variable models

MLE problem

$$\theta^* = \arg\max_{\theta} p(\mathbf{X}|\theta) = \arg\max_{\theta} \prod_{i=1}^n p(\mathbf{x}_i|\theta) = \arg\max_{\theta} \sum_{i=1}^n \log p(\mathbf{x}_i|\theta).$$

Challenge

 $p(\mathbf{x}|\boldsymbol{\theta})$ could be intractable.

Extend probabilistic model

Introduce latent variable **z** for each sample **x**

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) + \log p(\mathbf{z}).$$

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \theta) p(\mathbf{z}) d\mathbf{z}.$$

Incomplete likelihood

MLE problem

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(\mathbf{X}, \mathbf{Z}|m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i|m{ heta}) = \ &= rg\max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i|m{ heta}). \end{aligned}$$

Since **Z** is unknown, maximize **incomplete likelihood**.

MILE problem

$$egin{aligned} oldsymbol{ heta}^* &= rg \max_{oldsymbol{ heta}} \log p(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \log \int p(\mathbf{X}|\mathbf{Z},oldsymbol{ heta}) d\mathbf{Z} = \ &= rg \max_{oldsymbol{ heta}} \log \int p(\mathbf{X}|\mathbf{Z},oldsymbol{ heta}) p(\mathbf{Z}) d\mathbf{Z}. \end{aligned}$$

Variational lower bound

$$\begin{split} \log p(\mathbf{X}|\boldsymbol{\theta}) &= \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})} = \\ &= \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})} d\mathbf{Z} = \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})q(\mathbf{Z})} d\mathbf{Z} = \\ &= \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} d\mathbf{Z} + \int q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})} d\mathbf{Z} = \\ &= \mathcal{L}(q, \boldsymbol{\theta}) + KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})) \geq \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

Kullback-Leibler divergence

- $ightharpoonup KL(q||p) \geq 0;$
- $ightharpoonup KL(q||p) = 0 \Leftrightarrow q \equiv p.$

Variational lower bound

ELBO

$$\log p(\mathbf{X}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{ heta} p(\mathbf{X}|oldsymbol{ heta}) \quad o \quad \max_{q, heta} \mathcal{L}(q,oldsymbol{ heta}).$$

EM-algorithm

- lnitialize θ^* :
- E-step

$$q(\mathbf{Z}) = rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{Z}|\mathbf{X}, oldsymbol{ heta}^*);$$

M-step

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{ heta}} \mathcal{L}(q,oldsymbol{ heta});$$

► Repeat E-step and M-step until convergence. 🍪 🔞 🔞 🐧 🔞 💆

Amortized variational inference

E-step

$$q(\mathbf{Z}) = \operatorname*{arg\,max}_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = \operatorname*{arg\,min}_{q} \mathit{KL}(q||p) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*).$$

could be intractable.

Idea

Restrict the family of all possible distributions $q(\mathbf{z})$ to the particular parametric class conditioned of sample: $q(\mathbf{z}|\mathbf{x}, \phi)$.

Variational EM-algorithm

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \eta
abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{\phi}_k, oldsymbol{ heta})|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q,\theta) + KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X},\theta)) \geq \mathcal{L}(q,\theta).$$

► E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} + \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}_k, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}},$$

where θ – parameters of likelihood $p(\mathbf{x}|\mathbf{z},\theta)$.

Now all we have to do is to obtain two gradients $\nabla_{\phi} \mathcal{L}(\phi, \theta)$, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$.

Difficulty: number of samples n.

ELBO gradient (M-step, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \log p(\mathbf{X}|\mathbf{Z}, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{Z}|\mathbf{X}, \phi)||p(\mathbf{Z}))
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

Optimization w.r.t. θ : mini-batching (1) + Monte-Carlo estimation (2)

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}) = \sum_{i=1}^{n} \int q(\mathbf{z}_{i}|\mathbf{x}_{i}, \boldsymbol{\phi}) \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}_{i}|\mathbf{z}_{i}, \boldsymbol{\theta}) d\mathbf{z}_{i}$$

$$\stackrel{(1)}{\approx} n \int q(\mathbf{z}_{i}|\mathbf{x}_{i}, \boldsymbol{\phi}) \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}_{i}|\mathbf{z}_{i}, \boldsymbol{\theta}) d\mathbf{z}_{i}, \quad i \sim U[1, n]$$

$$\stackrel{(2)}{\approx} n \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}_{i}|\mathbf{z}_{i}^{*}, \boldsymbol{\theta}), \quad \mathbf{z}_{i}^{*} \sim q(\mathbf{z}_{i}|\mathbf{x}_{i}, \boldsymbol{\phi}).$$

Monte-Carlo estimation (2):

$$\int q(\mathbf{z})f(\mathbf{z})d\mathbf{z}pprox f(\mathbf{z}^*), ext{where } \mathbf{z}^*\sim q(\mathbf{z}).$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \log p(\mathbf{X}|\mathbf{Z}, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{Z}|\mathbf{X}, \phi)||p(\mathbf{Z}))
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use Monte-Carlo estimation:

$$abla_{m{\phi}} \mathcal{L}(m{\phi}, m{ heta}) = \int
abla_{m{\phi}} q(\mathbf{Z}|\mathbf{X}, m{\phi}) \log p(\mathbf{X}|\mathbf{Z}, m{ heta}) d\mathbf{Z} -
abla_{m{\phi}} KL$$

Log-derivative trick

$$abla_{\xi} q(\eta|\xi) = q(\eta|\xi) \left(rac{
abla_{\xi} q(\eta|\xi)}{q(\eta|\xi)}
ight) = q(\eta|\xi)
abla_{\xi} \log q(\eta|\xi).$$

$$abla_{m{\phi}} q(\mathbf{Z}|\mathbf{X}, m{\phi}) = q(\mathbf{Z}|\mathbf{X}, m{\phi})
abla_{m{\phi}} \log q(\mathbf{Z}|\mathbf{X}, m{\phi}).$$

ELBO gradient (E-step, $\nabla_{\phi}\mathcal{L}(\phi, \theta)$)

$$egin{aligned}
abla_{\phi}\mathcal{L}(\phi, heta) &= \int
abla_{\phi}q(\mathbf{Z}|\mathbf{X}, \phi) \log p(\mathbf{X}|\mathbf{Z}, heta) d\mathbf{Z} -
abla_{\phi}KL = \\ &= \int q(\mathbf{Z}|\mathbf{X}, \phi) ig[
abla_{\phi} \log q(\mathbf{Z}|\mathbf{X}, \phi) \log p(\mathbf{X}|\mathbf{Z}, heta)ig] d\mathbf{Z} -
abla_{\phi}KL \end{aligned}$$

After applying log-reparametrization trick, we are able to use Monte-Carlo estimation:

$$abla_{\phi} \mathcal{L}(\phi, m{ heta}) pprox n
abla_{\phi} \log q(\mathbf{z}_i^* | \mathbf{x}_i, \phi) \log p(\mathbf{x}_i | \mathbf{z}_i^*, m{ heta}) -
abla_{\phi} KL,
onumber \ \mathbf{z}_i^* \sim q(\mathbf{z}_i | \mathbf{x}_i, \phi).$$

Problem

Unstable solution with huge variance.

Solution

Reparametrization trick

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

Reparametrization trick

$$f(\xi) = \int q(\eta|\xi)h(\eta)d\eta$$

Let $\eta = h(g(\xi, \epsilon))$, where g is a deterministic function, ϵ is a random variable with a density function $r(\epsilon)$.

$$abla_{\xi} \int q(\eta|\xi)h(\eta)d\eta =
abla_{\xi} \int r(\epsilon)h(g(\xi,\epsilon))d\epsilon
\approx
abla_{\xi}h(g(\xi,\epsilon^*)), \quad \epsilon^* \sim r(\epsilon).$$

Example

$$q(\eta|\xi) = \mathcal{N}(\eta|\mu, \sigma^2), \quad r(\epsilon) = \mathcal{N}(\epsilon|0, 1), \quad \eta = \sigma \cdot \epsilon + \mu, \quad \xi = [\mu, \sigma].$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{Z}|\mathbf{X}, \phi) \log p(\mathbf{X}|\mathbf{Z}, \theta) d\mathbf{Z} - \nabla_{\phi} KL$$

$$\approx n \nabla_{\phi} \int r(\epsilon) \log p(\mathbf{x}_{i}|g(\mathbf{x}_{i}, \epsilon, \phi), \theta) d\epsilon - \nabla_{\phi} KL$$

$$\approx n \nabla_{\phi} \log p(\mathbf{x}_{i}|g(\mathbf{x}_{i}, \epsilon^{*}, \phi), \theta) - \nabla_{\phi} KL, \quad \epsilon^{*} \sim r(\epsilon).$$

Variational assumption

$$egin{aligned} q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi}) &= \mathcal{N}(oldsymbol{\mu}(\mathbf{x}), oldsymbol{\Sigma}(\mathbf{x})). \ \mathbf{z} &= g(\mathbf{x}, oldsymbol{\epsilon}, oldsymbol{\phi}) &= \sqrt{oldsymbol{\Sigma}(\mathbf{x})} \cdot oldsymbol{\epsilon} + oldsymbol{\mu}(\mathbf{x}). \end{aligned}$$

 $\nabla_{\phi} KL(q(\mathbf{Z}|\mathbf{X},\phi)||p(\mathbf{Z}))$ has an analytical solution.

Variational autoencoder (VAE)

Final algorithm

- ▶ pick $i \sim U[1, n]$;
- ightharpoonup compute stochastic gradient w.r.t. ϕ

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = n \nabla_{\phi} \log p(\mathbf{x}_{i} | g(\mathbf{x}_{i}, \epsilon^{*}, \phi), \theta) - \\ - \nabla_{\phi} KL(q(\mathbf{z}_{i} | \mathbf{x}_{i}, \phi) || p(\mathbf{z}_{i})), \quad \epsilon^{*} \sim r(\epsilon);$$

ightharpoonup compute stochastic gradient w.r.t. heta

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}) = n \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}_i | \mathbf{z}_i^*, \boldsymbol{\theta}), \quad \mathbf{z}_i^* \sim q(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\phi});$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp).

Variational autoencoder (VAE)

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Variational Autoencoder

Variational Autoencoder

Generation objects by sampling the latent space $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$

Bayesian framework

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables;
- ▶ t unobserved variables (latent variables/parameters);
- $p(\mathbf{x}|\mathbf{t})$ likelihood;
- \triangleright $p(\mathbf{x})$ evidence;
- \triangleright $p(\mathbf{t})$ prior;
- $ightharpoonup p(\mathbf{t}|\mathbf{x})$ posterior.

Variational Lower Bound

We are given the set of objects $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^n$. The goal is to perform bayesian inference on the latent variables $\mathbf{T} = \{\mathbf{t}_i\}_{i=1}^n$.

Empirical Lower BOund (ELBO)

$$\begin{split} \log p(\mathbf{X}) &= \log \frac{p(\mathbf{X}, \mathbf{T})}{p(\mathbf{T}|\mathbf{X})} = \\ &= \int q(\mathbf{T}) \log \frac{p(\mathbf{X}, \mathbf{T})}{p(\mathbf{T}|\mathbf{X})} d\mathbf{T} = \int q(\mathbf{T}) \log \frac{p(\mathbf{X}, \mathbf{T})q(\mathbf{T})}{p(\mathbf{T}|\mathbf{X})q(\mathbf{T})} d\mathbf{T} = \\ &= \int q(\mathbf{T}) \log \frac{p(\mathbf{X}, \mathbf{T})}{q(\mathbf{T})} d\mathbf{T} + \int q(\mathbf{T}) \log \frac{q(\mathbf{T})}{p(\mathbf{T}|\mathbf{X})} d\mathbf{T} = \\ &= \mathcal{L}(q) + \mathcal{K} \mathcal{L}(q(\mathbf{T})||p(\mathbf{T}|\mathbf{X})) \geq \mathcal{L}(q). \end{split}$$

Independence assumption

$$q(\mathsf{T}) = \prod_{i=1}^k q_i(\mathsf{T}_i), \quad \mathsf{T} = [\mathsf{T}_1, \dots, \mathsf{T}_k], \quad \mathsf{T}_j = \{\mathsf{t}_{ij}\}_{i=1}^n.$$

Block coordinate optimization of ELBO for $q_i(\mathbf{T}_i)$

$$\mathcal{L}(q) = \int q(\mathbf{T}) \log \frac{p(\mathbf{X}, \mathbf{T})}{q(\mathbf{T})} d\mathbf{T} = \int \prod_{i=1}^{k} q_i(\mathbf{T}_i) \log \frac{p(\mathbf{X}, \mathbf{T})}{\prod_{i=1}^{k} q_i(\mathbf{T}_i)} \prod_{i=1}^{k} d\mathbf{T}_i =$$

$$= \int \prod_{i=1}^{k} q_i \log p(\mathbf{X}, \mathbf{T}) \prod_{i=1}^{k} d\mathbf{T}_i - \sum_{i=1}^{k} \int \prod_{j=1}^{k} q_j \log q_i \prod_{i=1}^{k} d\mathbf{T}_i =$$

$$= \int q_j \left[\int \log p(\mathbf{X}, \mathbf{T}) \prod_{i \neq j} q_i d\mathbf{T}_i \right] d\mathbf{T}_j -$$

$$- \int q_j \log q_j d\mathbf{T}_j + \operatorname{const}(q_j) \to \max_{q_j} q_j + \operatorname{const}(q_j) \to \max_{q_j} q_j + \operatorname{const}(q_j) + \operatorname{const}(q_j)$$

Block coordinate optimization of ELBO for $q_j(\mathbf{T}_j)$

$$\begin{split} \mathcal{L}(q) &= \int q_j \left[\int \log p(\mathbf{X}, \mathbf{T}) \prod_{i \neq j} q_i d\mathbf{T}_i \right] d\mathbf{T}_j - \int q_j \log q_j d\mathbf{T}_j + \operatorname{const}(q_j) = \\ &= \int q_j \log \hat{p}(\mathbf{X}, \mathbf{T}_j) d\mathbf{T}_j - \int q_j \log q_j d\mathbf{T}_j + \operatorname{const}(q_j) \to \max_{q_j}, \\ & \text{where } \log \hat{p}(\mathbf{X}, \mathbf{T}_j) = \mathbb{E}_{i \neq j} \log p(\mathbf{X}, \mathbf{T}) + \operatorname{const}(q_j) \\ & \mathbb{E}_{i \neq j} \log p(\mathbf{X}, \mathbf{T}) = \int \log p(\mathbf{X}, \mathbf{T}) \prod_{i \neq j} q_i d\mathbf{T}_i. \end{split}$$

$$\mathcal{L}(q) = \int q_j(\mathbf{T}_j) \log \hat{p}(\mathbf{X}, \mathbf{T}_j) d\mathbf{T}_j - \int q_j(\mathbf{T}_j) \log q_j(\mathbf{T}_j) d\mathbf{T}_j + \operatorname{const}(q_j) =$$

$$\int q_j(\mathbf{T}_j) \log \frac{\hat{p}(\mathbf{X}, \mathbf{T}_j)}{q_j(\mathbf{T}_j)} d\mathbf{T}_j + \operatorname{const}(q_j) =$$

$$= \mathcal{K}L(q_j(\mathbf{T}_j)||\hat{p}(\mathbf{X}, \mathbf{T}_j)) + \operatorname{const}(q_j) \to \max_{q_j}.$$

Independence assumption

$$q(\mathsf{T}) = \prod_{i=1}^{\kappa} q_i(\mathsf{T}_i), \quad \mathsf{T} = [\mathsf{T}_1, \dots, \mathsf{T}_k], \quad \mathsf{T}_j = \{\mathsf{t}_{ij}\}_{i=1}^n.$$

ELBO

$$\mathcal{L}(q) = \mathit{KL}(q_j(\mathsf{T}_j) || \hat{
ho}(\mathsf{X}, \mathsf{T}_j)) + \mathsf{const}(q_j)
ightarrow \max_{q_j}.$$

Solution

$$q_j(\mathbf{T}_j) = \hat{p}(\mathbf{X}, \mathbf{T}_j)$$

 $\log \hat{p}(\mathbf{X}, \mathbf{T}_j) = \mathbb{E}_{i
eq j} \log p(\mathbf{X}, \mathbf{T}) + \mathrm{const}$
 $\log q_j(\mathbf{T}_j) = \mathbb{E}_{i
eq j} \log p(\mathbf{X}, \mathbf{T}) + \mathrm{const}$

ELBO

$$\mathcal{L}(q) = \mathit{KL}(q_j(\mathbf{T}_j) || \hat{p}(\mathbf{X}, \mathbf{T}_j)) + \mathsf{const}(q_j) o \max_{q_j}.$$

Solution

$$\log q_j(\mathsf{T}_j) = \mathbb{E}_{i \neq j} \log p(\mathsf{X}, \mathsf{T}) + \mathrm{const}$$

Let assume the following factorization: $\mathbf{T} = [\mathbf{T}_1, \mathbf{T}_2] = [\mathbf{Z}, \boldsymbol{\theta}]$, and restrict the class of probability distribution for $\boldsymbol{\theta}$ to Dirac delta functions:

$$q_2 = q(\mathsf{T}_2) = q(\theta) = \delta(\theta - \theta_0).$$

Under the restrictions the exact solution for q_2 is not reached.

General solution

$$\log q_j(\mathsf{T}_j) = \mathbb{E}_{i \neq j} \log p(\mathsf{X}, \mathsf{T}) + \text{const}$$

Solution for $q_1 = q(\mathbf{Z})$

$$\begin{split} \log q(\mathbf{Z}) &= \int q(\boldsymbol{\theta}) \log p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta}) d\boldsymbol{\theta} + \mathrm{const} = \\ &= \int \delta(\boldsymbol{\theta} - \boldsymbol{\theta}_0) \log p(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta}) d\boldsymbol{\theta} + \mathrm{const} = \\ &= p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}_0) + \mathrm{const}. \end{split}$$

EM-algorithm (E-step)

$$q(\mathbf{Z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*).$$

ELBO

$$\mathcal{L}(q) = \mathit{KL}(q_j(\mathsf{T}_j) || \hat{
ho}(\mathsf{X}, \mathsf{T}_j)) + \mathsf{const}(q_j)
ightarrow \max_{q_j}.$$

ELBO maximization w.r.t. $q_2 \equiv \theta_0$

$$\begin{split} \mathcal{L}(q_2) &= \mathit{KL}(q(\theta)||\hat{\rho}(\mathbf{X},\theta)) + \mathsf{const}(\theta_0) \\ &= \int q(\theta) \log \frac{\hat{\rho}(\mathbf{X},\theta)}{q(\theta)} d\theta + \mathsf{const}(\theta_0) \\ &= \int q(\theta) \log \hat{\rho}(\mathbf{X},\theta) d\theta - \int q(\theta) \log q(\theta) d\theta + \mathsf{const}(\theta_0) \\ &= \int \delta(\theta - \theta_0) \log \hat{\rho}(\mathbf{X},\theta) d\theta - \int \delta \log \delta d\theta + \mathsf{const}(\theta_0) \\ &= \int \delta(\theta - \theta_0) \log \hat{\rho}(\mathbf{X},\theta) d\theta + \mathsf{const}(\theta_0) \end{split}$$

ELBO maximization w.r.t. $q_2 \equiv \theta_0$

$$\mathcal{L}(q_2) = \int \delta(m{ heta} - m{ heta}_0) \log \hat{p}(\mathbf{X}, m{ heta}) dm{ heta} + \mathrm{const}(m{ heta}_0) = \hat{p}(\mathbf{X}, m{ heta}^0).$$

$$\log \hat{p}(\mathbf{X}, \mathbf{T}_j) = \mathbb{E}_{i \neq j} \log p(\mathbf{X}, \mathbf{T}) + \text{const}$$

$$egin{aligned} \log \hat{p}(\mathbf{X}, oldsymbol{ heta}) &= \mathbb{E}_{q_1} \log p(\mathbf{X}, \mathbf{Z}, oldsymbol{ heta}) + ext{const} \ &= \int q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z} | oldsymbol{ heta}) d\mathbf{Z} + \log p(oldsymbol{ heta}) + ext{const} \end{aligned}$$

EM-algorithm (M-step)

$$\mathcal{L}(q, oldsymbol{ heta}) = \int q(\mathbf{Z}) \log rac{p(\mathbf{X}, \mathbf{Z} | oldsymbol{ heta})}{q(\mathbf{Z})} d\mathbf{Z}
ightarrow \max_{oldsymbol{ heta}}$$

Solution

$$\log q_j(\mathsf{T}_j) = \mathbb{E}_{i \neq j} \log p(\mathsf{X}, \mathsf{T}) + \mathrm{const}$$

EM algorithm

- ▶ Initialize θ^* ;
- E-step

$$q(\mathbf{Z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*);$$

M-step

$$\theta^* = \arg\max_{oldsymbol{ heta}} \mathcal{L}(q, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

Summary

- Latent variable models introduce latent variables to the initial probabilistic model to make distribution $p(\mathbf{x}|\theta)$ tractable.
- To solve the MLE problem LVM optimizes variational lower bound.
- ► EM-algorithm is an iterative algorithm which allows to optimize the variational lower bound.
- ► VAE model is a LVM, encoder is a variational distribution, decoder is a likelihood model.
- Mean field approximation is a general form of variational inference (EM-algorithm is just a special case).