Конечные поля (поля Галуа)

В разд. 3 приведены определения математических моделей с одним классом объектов — групп, колец и полей (в частности — полей Γ алуа).

Можно показать, что числовое конечное поле (поле с конечным числом элементов) существует только при операциях сложения и умножения по модулю p, где p — простое число. Такие поля называются числовыми конечными полями Галуа и обозначаются GF(p) или F(p).

Примеры.

- 1. Построить конечные поля F(2), F(3), F(7). Для решения этих примеров указать все элементы множества U, найти нейтральные и обратные элементы для групп по сложению и умножению с соответствующим модулем.
 - 2. Показать, что не существует полей F(6), F(12), F(15).

Поля Галуа можно построить в совершенно другой форме, а именно как поля многочленов по модулю некоторого неприводимого многочлена над числовым полем F(p). В этом случае порядок поля (число его элементов) равен p^h , где p – простое, h – целое.

Пусть F(p) – числовое поле Галуа порядка p. Рассмотрим множество многочленов вида

$$f(X) = a_0 + a_1 X + a_2 X^2 + ... + a_k X^k,$$

где $a_i \in F(p)$, i=0,1,2,3...,k, т. е. коэффициенты принимают значения из F(p), операции сложения и умножения чисел выполняются по mod p. Если $a_k \neq 0$, то многочлен f(X) имеет степень k. Множество всех многочленов, имеющих степень k и меньше, будем обозначать $F^{(k)}[X]$.

Введем операции сложения и умножения многочленов над полем F(p) следующим образом. Пусть

$$f(X) = \sum f_i X^i \bowtie g(X) = \sum g_i X^i.$$

Тогда

$$f(X) + g(X) = \sum_{i} (f_i + g_i) X^i; \ f(X) \cdot g(X) = \sum_{i} \left(\sum_{j=0}^{i} f_i g_{i-j} \right) X^i.$$

Например: пусть

$$f(X) = f_0 + f_1 X; g(X) = g_0 + g_1 X + g_2 X^2.$$

Тогда

$$\begin{split} f(X) + g(X) &= (f_0 + g_0) + (f_1 + g_1)X + g_2X^2; \\ f(X) \cdot g(X) &= (f_0 g_0) + (f_0 g_1 + f_1 g_0)X + (f_1 g_1 + f_0 g_2)X^2 + f_1 g_2X^3. \end{split}$$

Отсюда видно, что при сложении степень результирующего многочлена равна максимальной степени слагаемых, а при умножении – сумме степеней перемножаемых многочленов.

Упражнения.

Сложить и перемножить следующие пары многочленов:

a)
$$f(X) = f_0 + f_1 X + f_2 X^2$$
; $g(X) = g_0 + g_1 X + g_3 X^3$;

b)
$$f(X) = f_1 X + f_2 X^2 + f_5 X^5$$
; $g(X) = g_0 + g_1 X^1 + g_4 X^4$;

c)
$$f(X) = f_1 X + f_2 X^2 + X^5$$
; $g(X) = g_0 + g_1 X^3 + g_2 X^4$.

А теперь сделайте то же самое, если указано **конечное** числовое поле (модуль):

d)
$$f(X) = 2X + 3X^2 + X^5$$
; $g(X) = 4 + 2X^3 + X^4$, $p = 7$;

e)
$$f(X) = 3X + 2X^2 + 2X^5$$
; $g(X) = 2 + 4X^1 + 3X^4$, $p = 5$.

Если рассматривать многочлены всех возможных степеней F(X), то с такими операциями сложения и умножения множество многочленов образует кольцо.

Для любых двух многочленов f(X) и g(X) существуют, и притом единственные, многочлены a(X) и r(X), такие, что f(X) = a(X)g(X) + r(X), где степень g > степени r. Переходя к сравнениям многочленов, получаем

$$f(X) \equiv r(X) \bmod (g(X)). \tag{6.2}$$

Деление многочленов производится так же, как и деление целых чисел. Следует только учитывать, что все операции выполняются в поле F(p). Например, разделим многочлен $g(X) = 1 + X + X^2$ на f(X) = 1 + X в поле F(2):

$$\frac{(1+X+X^2)(1+X)}{X+X^2}X$$
1

В результате получим $(1+X+X^2)$: (1+X)=X, при этом в остатке будет 1. Для деления удобнее записывать многочлены в обратном порядке, начиная со старшей степени. При вычислении в поле F(2) операция сложения имеет специальное обозначение « \oplus » и называется «сложение по модулю 2».

Упражнения.

Найти остатки от деления многочленов:

- а) $X^5 \oplus X^2 \oplus X$ на $X^3 \oplus X^2 \oplus X \oplus 1$ в поле F(2) (0)
- b) $2X^4 + X^2 + 2$ на $X^3 + 2X^2 + 2X + 1$ в поле F(3) (2 X^2)

Если в (6.2) остаток r(X) = 0, то говорят, что g(X) делит f(X). Если в F(X) нет ни одного многочлена степени, большей 0, который бы делил f(X) без остатка, за исключением скалярных кратных f(X), т. е. многочленов вида bf(X), где $b \in F(p)$, то многочлен f(X) называется $henpuso\partial u-$ мым.

Найдем неприводимые многочлены некоторых малых степеней.

Имеется два многочлена первой степени: $X\oplus 1$ и X. По определению, они оба считаются неприводимыми.

Многочлен второй степени вида $X^2 \oplus aX \oplus b$ будет неприводимым над полем F(2), если он не будет делиться ни на какой неприводимый многочлен первой степени, т. е. ни на $X \oplus 1$, ни на X. А это означает, что он не должен иметь корней в поле F(2). Таким образом: $F(0) = b \neq 0$, $F(1) = 1 \oplus a \oplus b \neq 0$. Откуда получаем, что a = 1, b = 1, а сам неприводимый многочлен 2-го порядка имеет вид $X^2 \oplus X \oplus 1$.

Многочлен третьей степени имеет общий вид $X^3 \oplus aX^2 \oplus bX \oplus c$. Он будет неприводимым в поле F(2), если не будет делиться ни на один из неприводимых многочленов первой степени (проверять делимость на многочлен второй степени не требуется). Таким образом, должны выполняться условия: F(0) = c = 1, $F(1) = 1 \oplus a \oplus b \oplus 1 = 1$. Следовательно, либо a, либо b должны равняться 1, но не оба вместе, поэтому существуют два неприводимых многочлена третьей степени: $X^3 \oplus X^2 \oplus 1$ и $X^3 \oplus X \oplus 1$.

Приведем табл. 6.1 всех неприводимых многочленов над полем F(2), степень которых не превышает 4.

Возьмем один из неприводимых многочленов степени 2 над числовым полем F(2), например $X^2 \oplus X \oplus 1$. При делении на этот многочлен все многочлены будут давать остатки (вычеты по модулю этого непри-

водимого многочлена). Приведем все виды остатков: $\{(0), (1), (X), (X \oplus 1)\}$. Каждый из этих остатков образует класс вычетов по модулю неприводимого многочлена, а их совокупность с операциями сложения и умножения по модулю неприводимого многочлена образует поле. Порядок этого поля (число элементов) в общем случае может быть равен p^h , где p — про-

Таблица 6.1

Неприводимые
многочлены в поле
F(2)
$X\oplus 1;X$
$X^2 \oplus X \oplus 1$
$X^3 \oplus X^2 \oplus 1; X^3 \oplus X \oplus 1$
$X^4 \oplus X^3 \oplus X^2 \oplus X \oplus 1;$ $X^4 \oplus X \oplus 1; X^4 \oplus X^3 \oplus 1$

стое, h – целое. В приведенном примере p=2, h=2 и порядок поля равен 4.

Упражнение.

Постройте поля Галуа $F(2^3)$, $F(2^4)$ для пяти полиномов (многочленов), взятых из табл. 6.1.

Элемент поля α , такой, что $F(\alpha) = 0$, называется корнем многочлена f(X). В этом случае говорят, что уравнение f(X) имеет корень в поле F(p).

Упражнения.

а) Найдите корни многочлена $X^2 + X + 1$ в полях F(2), F(3), F(5), F(7).

Покажем, как это сделать для поля F(5). В уравнение

$$X^2 + X + 1 = 0 ag{6.3}$$

будем последовательно подставлять значения элементов поля: 0, 1, 2, 3, 4. В результате получим:

$$0^{2} + 0 + 1 \equiv 1 \mod 5$$
;
 $1^{2} + 1 + 1 \equiv 3 \mod 5$;
 $2^{2} + 2 + 1 \equiv 2 \mod 5$;
 $3^{2} + 3 + 1 \equiv 3 \mod 5$;
 $4^{2} + 4 + 1 \equiv 1 \mod 5$.

т. е. этот многочлен не имеет корней в поле F(5). Однако он имеет корни в поле F(7). Действительно, при X=2 и $X^2=4$ левая часть уравнения (6.3) обращается в 0.

b) Найдите корни многочлена $X^4 + X^3 + 1$ в тех же полях, что и в примере 1.

Конечное поле $F(p^h)$ содержит p^h элементов. Основное поле F(p), ко-торое является подполем поля $F(p^h)$, содержит p элементов (0, 1, 2, 3, ..., p-1) и 2 операции: $\oplus \mod p$ и $\otimes \mod p$.

Элемент α называется алгебраическим степени h над полем F(p), если и только если α удовлетворяет в F(p) уравнению P(x) = 0, где P(x) —многочлен степени h, но не удовлетворяет никакому уравнению с многочленом меньшей степени. Это влечет неприводимость многочлена P(x).

Все p^h элементов поля $F(p^h)$ могут быть представлены в виде $\sum c_j \alpha^i$, ще $0 \le c_j \le p-1$; $0 \le i \le h-1$. При вычислениях степень α^s , где $s \ge h$, заменяется на меньшую в соответствии с уравнением $P(\alpha) = 0$.

Пусть, например, p=3, h=2 и α удовлетворяет уравнению $x^2-x-1=0$. Элементы поля $F(3^2)$ можно выразить как $0, 1, 2, \alpha, \alpha+1, \alpha+2, 2\alpha, 2\alpha+1, 2\alpha+2$.

В вычислениях понижение степеней производится с использованием равенства $\alpha^2=\alpha+1$. Например: $(2\alpha+1)(\alpha+2)=2\alpha^2+\alpha+4\alpha+2=2(\alpha+1)+5\alpha+2=7\alpha+4=\alpha+1$.

Элемент $\beta \neq 0$ поля $F(p^h)$ называется образующей $F^*(p^h)$ мультипликативной группы ненулевых элементов поля $F(p^h)$, если степени $\beta^i, i=1,2,3,...,p^h-1$ пробегают все ненулевые элементы поля $F(p^h)$. Образующая может рассматриваться как основание \log . Такие логарифмы называются дискретными логарифмами. Рассмотрим, например, все 8 степеней (кроме нулевой) корня α в приведенном выше примере и запишем результат в виде таблицы:

i	1	2	3	4	5	6	7	8
α^i	α	$\alpha + 1$	$2\alpha + 1$	2	2α	$2\alpha + 2$	$\alpha + 2$	1

Из таблицы видно, что α является образующей. Эта таблица может быть представлена как таблица дискретных логарифмов. Для этого в верхней строке запишем упорядоченные элементы поля, а в нижней – значения степеней образующего элемента, при которых получаем данный элемент поля:

y	1	2	α	$\alpha + 1$	$\alpha + 2$	2α	$2\alpha + 1$	$2\alpha + 2$
$\log_{\alpha} y$	8	4	1	2	7	5	3	6

Считается, что вычисление дискретных логарифмов является трудной задачей, как и задача факторизации (разложения на множители), что является существенным в криптосистемах с открытым распределением ключей. Таблица логарифмов может использоваться для выполнения умножения и деления элементов поля. Заметим, что операции выполняются по модулю p^h-1 , в данном примере — по модулю $3^2-1=8$.

Для примера: $\log ((\alpha+2)(2\alpha+1)) = \log(\alpha+2) + \log(2\alpha+1) = 7+3 = 10 \equiv 2 \mod 8$. Что соответствует элементу $\alpha+1$. $\log ((\alpha+1)/(2\alpha+2)) = 2-6 = -4 \equiv 4 \mod 8$, что соответствует элементу 2.

Можно проверить, что кроме элемента α образующими β также являются элементы $2\alpha+1$, $\alpha+2$ и 2α . Если $s=p^h-1$ есть наименьшая положительная степень, удовлетворяющая уравнению $\beta^s=1$, то β является образующей. Поэтому число образующих элементов поля равно $\phi(p^h-1)$, где ϕ — функция Эйлера. Для нашего примера $\phi(8)=4$.

Упражнения.

Найдите количество образующих элементов для полей Галуа: $F(3^4), F(5^2), F(7^2), F(11^5), F(13^4)$.

Рассмотрим поле Галуа $F(p^h)$ при p>2 и h — целом. Исключим из элементов поля нулевой элемент, а оставшееся множество обозначим $F^*(p^h)$.