Instituto Te	cnológico de Costa Rica		
Escuela de l	Ingeniería Electrónica		
EL-2207 Elementos Activos		Total de Puntos:	40
Profesores:	Dr. Juan José Montero Rodríguez	Puntos obtenidos:	
	Dr. Alfonso Chacón Rodríguez	1 unios obicindos.	
	M.Sc. Aníbal Ruiz Barquero	Porcentaje:	
	M.Sc. Daniel Kohkemper Granados	Nota:	
I Semestre 2020		11000.	
Primer Ex	amen Parcial		
20 de julio	2020		
Nombres:			

Carné:

Instrucciones Generales:

- Resuelva el examen en forma ordenada y clara.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe encerrar en recuadro su respuesta final con lapicero.
- El uso de lapicero rojo **no** está permitido.
- No se permite el uso de calculadora programable.
- Únicamente se atenderán dudas de forma.
- Cada enunciado de problema debe ser el encabezado de cada solución y todas las soluciones deben conformarse en un solo documento .pdf subido antes de vencer el periodo de examen al Tec-Digital.
- El examen es una prueba individual a realizar en el hogar, el plagio será fuertemente castigado.
- El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.
- La prueba es para realizar en un periodo de duración de 24 horas. Deberá entregarse a más tardar a las 13:00 horas del martes 21 de julio de 2020.

Problema 1	de 10	

	de 10
Problema 3	de 10
Problema 4	de 10

Firma: ____

Problemas 40 Pts

Problema 1. Capacitor MOS

10 pts

Se tiene un capacitor MOS con las siguientes características: t_{ox} =0,1 μ m, T=300 K, N_D =10 15 cm⁻³. Suponiendo que los contactos son ideales, y que la tensión de banda plana para este dispositivo es nula (V_{FB} = 0), encuentre:

1. El potencial eléctrico en el sustrato (ϕ_n) .

1 pts

- 2. El ancho de la zona de vaciamiento en micrómetros cuando el potencial de superficie de la interfaz entre el silicio y el óxido, $\phi(x=0)=\phi_S$, es igual al inverso del potencial en el sustrato. Es decir, cuando $\phi_S=-\phi_n$.
- 3. La magnitud del campo eléctrico \vec{E}_S en la superficie (x=0), en voltios sobre centímetro, cuando $\phi_S = -\phi_n$.
- 4. $V_{GB}=V_T$ cuando $\phi_S=-\phi_n$.

3 pts

Problema 2. Polarización y efecto de cuerpo

10 pts

El transistor de la figura 1 está polarizado por divisor de tensión. Sin embargo, en esta tecnología no se cuenta con un proceso de doble tina, por lo que el sustrato debe estar conectado necesariamente a tierra.

Si el transistor presenta efecto de sustrato, determine la tensión de umbral V_{TH} y el punto de operación del circuito (calcule I_D y V_{GS}).

Los parámetros de la tecnología se resumen en la siguiente tabla:

Parámetro	Valor	Parámetro	Valor
K'_n	$170 \ \mu A/V^2$	V_{DD}	3.3~V
W/L	10/0.35	R_D	$4.7~\mathrm{k}\Omega$
V_{TH0}	0.46 V	R_S	100Ω
γ	$0.58\ V^{1/2}$	R_1	$650~\mathrm{k}\Omega$
ϕ_B	0.44 V	R_2	$250~\mathrm{k}\Omega$
λ	0		

Figura 1: Circuito para el problema 2.

Calcule primero el punto de operación sin efecto de sustrato (6 pts) y luego recalcule el punto de operación considerando el ajuste en la tensión V_{TH} de acuerdo con la tensión en el source (4 pts).

Problema 3. Aplicación analógica en pequeña señal y regiones de operación del MOSFET 10 pts Considere el circuito de la siguiente figura 2. Los transistores M_1 y M_2 son de canal N y los transistores M_3 y M_4 son de canal P.

$$K'_{n} = \mu_{n}C'_{OX} = 120 \ \mu\text{A/V}^{2}$$
 $K'_{p} = \mu_{p}C'_{OX} = 40 \ \mu\text{A/V}^{2}$
 $\text{L1} = \text{L2} = \text{L3} = \text{L4} = 2 \ \mu\text{m}$
 $\text{W1} = \text{W2} = 10 \ \mu\text{m}$
 $\text{W3} = \text{W4} = 30 \ \mu\text{m}$
 $V_{TH_{N}} = 820 \ \text{mV}$
 $V_{TH_{P}} = -920 \ \text{mV}$
 $V_{GS_{N}} = 1.108 \ \text{V} \ \text{(Sin efecto de cuerpo)}$
 $V_{GS_{P}} = -1.208 \ \text{V} \ \text{(Sin efecto de cuerpo)}$
 $V_{DD} = 5 \ \text{V}$

Figura 2: Circuito para el problema 3.

Determine:

1. Para para
$$M_1$$
 y M_2 , las tensiones V_{GS_1} , V_{GS_2} , V_{S_1} y V_{S_2} .

2. Para para
$$M_3$$
 y M_4 , las tensiones V_{DS_3} , V_{DS_4} , V_{D_3} y V_{D_4} .

3. Para para
$$M_1$$
, M_2 , M_3 y M_4 , las respectivas regiones de operación. 1 pts

4. Para para
$$M_3$$
 y M_4 , las respectivas resistencias de canal. 1 pts

5. Mediante pequeña señal, una expresión completa para $v_{gs_1} - v_{gs_2}$ (en términos de i_{d_X} y g_{m_X}), $i_{D_1} = I_{D_1} + i_{d_1}$ e $i_{D_2} = I_{D_2} + i_{d_2}$. Recuerden el uso de superposición y cómo deben considerarse las fuentes de tensión y de corriente en CC en el análisis de pequeña señal.

[4 pts]

Problema 4. Aplicación digital del MOSFET

 $10 \mathrm{\ pts}$

El circuito de la figura 3 está implementado con lógica AOI (AND-OR-Invert) y realiza la operación NOR de un par de AND de dos entradas, en donde $Y = \overline{(A \cdot B) + (C \cdot D)}$.

Figura 3: Circuito para el problema 4.

- 1. Plantee la tabla de verdad del circuito. Identifique cuáles transistores están encendidos y cuáles apagados para cada vector de datos (ABCD) de entrada posible, y el valor resultante de Y.

 [3 pts]
- 2. De la tabla de verdad obtenida, determine la combinación o combinaciones mínimas que son necesarias para obtener un cero lógico a la salida del circuito.
- 3. Dibuje el diagrama del circuito donde se sustituyen los transistores por el modelo digital del MOSFET. Simplifique al máximo los componentes que lo permitan. 3 pts
- 4. Despreciando las capacitancias en los nodos intermedios, y considerando solo las conectadas al nodo Y, escriba una expresión para:

 [3 pts]
 - \bullet $t_{pLH},$ cuando $A=C=0,\,B=D=1$
 - t_{pHL} , cuando $A=B=1,\,C=D=0$
 - t_{pLH} , cuando A = B = C = D = 0
 - t_{pHL} , cuando A = B = C = D = 1