Nome Número	
-------------	--

COMPUTAÇÃO GRÁFICA E INTERFACES

Ano letivo 2016/2017 - Test 1 - 2016.11.03

Notice

The backsides are considered as draft area. If you place an answer there, don't forget to mention it on the front side.

Do not remove the staple! Duration: **1H30**!

1. (3/20)

Mark the following sentences with T(True) or F(False). Each wrong answer will deduct 50% of its score. In the WebGL visualization pipeline:

In the end, the fragment shader may not even be executed at all when we ask to draw a triangle,	
for instance.	
The javascript application sends pixels to the pipeline and the GPU is responsible for painting	
them through the execution of a fragment shader.	
We can associate values (colours, normal vectors, etc.) to the individual primitives that are	
produced by the application.	
A fragment shader can receive arbitrary data that is not the output produced by a vertex shader.	
An application always uses the data type vec4 to assign coordinates to the vertices.	
We can change a GLSL program (vertex + fragment shader) in the middle of a primitive.	
Uniform variables correspond to values that the application sends to the vertex shader	
exclusively.	
varying variables contain values known by the javascript application.	
The output of a vertex shader is completely defined by the user without any imposition of	
producing any specific type of output.	
The output of a fragment shader always needs to contain the colour of the pixel, unless the	
fragment is discarded.	

2. (3/20)

The following shaders are part of the same GLSL program.

a) complete the code by filling the blanks:

b) In your opinion, what could be the meaning/usage of the variable vfoo:

Pág. 2,	/4	Nome			Número
The rig define simult	en of a taght side do in Wo	is further divided orld Coordinates or to the top righ	l into two equally (WC) by its limi nt and bottom rig	sized areas, one on top of ts $x_{min} \le x \le x_{max}$ e $y_{min} \le x \le x_{max}$	dicated to text presentation. of the other. A 2D window, $x \le y_{max}$, is to be mapped, splay, without clipping or available areas.
a)		n't need to perf			whas an aspect ratio of 4:3? oly present the respective
b)	form of		sition of elementa		viewport, presented in the rmations (T, S or R), to be
	M =				
c)			ssary geometric tr ce) in the viewport		e user a picking operation
	$M_{pick} =$				
d)	_	mations for each	-		e new window to viewport compositions as identical as
	M_{topright}	=			
	$M_{bottomri}$	ght =			

4. (3/20) Consider the elementary geometric transformations studied, to be used in the form: p'=M.p.
a) for each of the following sequences of 3D transformations, provide only one equivalent compositions , prioritized in the following manner: (1st) a simpler composition; (2nd) alternative composition; (3rd) the initial composition (otherwise).
1. S(1,3,4).S(2,5,1).T(1,0,0)
2. R _x (20°).R _x (-30°).T(2,2,2).R _x (50°)
3. S(2,3,3)R _x (20°)R _y (30)S(1,3,1)
4. T(2,5,1).R _x (270°).S(1,2,2).R _x (90°)
b) consider a line in 2D defined by the equation $y=mx+b$, where m the slope and $(0,b)$ a point on the line. We wish to offer a $mirror(m,b)$ operation to the programmer that will reflect objects using the given line as the axis of symmetry. Provide a composition of elementary geometric transformations in 2D that will achieve the intended effect. Please instantiate all the parameters of your solution.
$M_{mirror} =$
5. (4/20)

Número _____

Pág. 3/4

a) Consider a point P in 3D, with homogeneous coordinates (2,-2,4,1). Fill the table below with the **3D** coordinates of the images (and not the 2D coordinates on the projection plane) of the points after each of the stated projections:

Front view	Top view	Left view	Right view

b) Consider the following additional points, also in homogeneous coordinates, Q=(2,-2,0,1), R=(3,-2,0,1) and S=(6,0,0,3). Fill the table below with the length and orientation (angle formed with the horizontal) for each of the presented line segments, after an oblique projection with the following parameters: l=0.4, $\alpha=30^{\circ}$:

Line Segment	Length	Orientation
PQ		
QR		
QS		
RS		Don't fill this space.

	5.4/4 f in the pr	Nome rojection referred in		what could you		Número	
t	-	tion lines and the pr	-	_	•		
6. (3/20)						
Con	sider the	methods studied for	r hidden surface	removal:			
a)		h an advantage and stify your opinion!	a disadvantage	of using the bac	k face culling	method instead	of the z-
b)		g that the scene to l ific rendering order				small polygons,	is there