DIOPTRE SPHÉRIQUE

<u>Définition</u>: Un dioptre sphérique est une surface sphérique réfringente, séparant deux milieux homogènes et transparents d'indice différents.

Concave: $\overline{SC} < 0$

Convexe : $\overline{SC} > 0$

n > n'

Dans l'approximation de Gauss H et S sont confondus

Formule (ou relation) de conjugaison du DS avec <u>origine au sommet</u>

$$\frac{\mathbf{n}}{\overline{SA}} - \frac{\mathbf{n'}}{\overline{SA'}} = \frac{\mathbf{n} - \mathbf{n'}}{\overline{SC}}$$

$$A \xrightarrow{DS(S,C)} A'$$

$$n/n'$$

Formule de conjugaison avec origine au centre

$$\frac{\mathbf{n'}}{\overline{\mathbf{CA}}} - \frac{\mathbf{n}}{\overline{\mathbf{CS}}} = \frac{\mathbf{n'} - \mathbf{n}}{\overline{\mathbf{CS}}}$$

$$A \xrightarrow{DS(S,C)} A'$$

L'image du centre C

$$C \xrightarrow{DS(S,C)} C$$

Par Calcul

$$A \xrightarrow{DS(S,C)} A'$$

$$n/n'$$

$$\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$$

$$A = C A' = ?$$

$$\frac{n}{\overline{SC}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$$

$$\overline{SA'} = \overline{SC} A' = C$$

$$C \xrightarrow{DS(S,C)} C$$

Foyers principaux objet F et image F' du DS. Distances focales objet f et image et f' du DS. $\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$

$$\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$$

$$A \xrightarrow{DS(S,C)} A'$$

$$F \xrightarrow{SF} - \frac{n'}{\infty} = \frac{n - n'}{\overline{SC}}$$

$$f = \overline{SF} = \frac{n}{n - n'} \overline{SC}$$

$$f' = \overline{SF'} = \frac{n'}{n' - n} \overline{SC}$$

$$f' = n_S \text{ et } n = n_e$$

$$f' = n_S \text{ et } n = n_e$$

$$f' = n_S \text{ et } n = n_e$$

$$f' = n_S \text{ et } n = n_e$$

$$f' = n_S \text{ et } n = n_e$$

$$f' = n_S \text{ et } n = n_e$$

$$f' = n_S \text{ et } n = n_e$$

$$f' = n_S \text{ et } n = n_e$$

Les deux foyers sont toujours de part et d'autre du somme S du dioptre

$$V = \frac{n_S}{f'} = -\frac{n_e}{f}$$

Vergence du DS
$$V = \frac{n_{S}}{f'} = -\frac{n_{e}}{f} \qquad \qquad V = \frac{n'}{f'} = -\frac{n}{f} = \frac{n'-n}{\overline{SC}}$$

L'unité de la vergence est le m^{-1} ou dioptrie (symbole δ).

Si (n' - n) et \overline{SC} sont de même signe

$$V > 0 (f' > 0; f < 0)$$
 Dioptre convergent

Si (n' - n) et \overline{SC} sont de signes contraires

Dioptre divergent

Dioptres convergents

$$V = \frac{n'}{f'} = -\frac{n}{f} = \frac{n' - n}{\overline{SC}}$$

(n' - n) et \overline{SC} sont de même signe

$$\overline{SC} < 0 \ et \ n' - n < 0 \ \rightarrow V > 0 \ , f' > 0 \ et f \ < 0$$

F et F' sont réels

Dioptre convergent

Convexe n < n'

$$\overline{SC} > 0 \ et \ n' - n > 0 \ \rightarrow V > 0, f' > 0 \ et f < 0$$

F et F' sont réels

Dioptre convergent

Un dioptre est convergent si les foyers sont réels et son centre C est situé dans le milieu le plus réfringent.

Dioptres divergents

$$V = \frac{n'}{f'} = -\frac{n}{f} = \frac{n' - n}{\overline{SC}}$$

(n' - n) et \overline{SC} sont de signes contraires

$$\overline{SC} < 0 \ et \ n' - n > 0 \ \rightarrow V < 0, f' < 0 \ et f > 0$$

F et F' sont virtuels

Dioptre divergent

$$\overline{SC} > 0$$
 et $n' - n < 0 \rightarrow V < 0, f' < 0$ et $f > 0$

F et F' sont virtuels

Dioptre divergent

Un dioptre est divergent si les foyers sont virtuels et son centre C est situé dans le milieu le moins réfringent.

Le plan perpendiculaire à l'axe optique en F est le plan focal objet.

Le plan perpendiculaire à l'axe optique en F' est le plan focal image.

Grandissement linéaire du DS

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

$$\tan i = \frac{\overline{AB}}{\overline{SA}} \sim i$$

$$\tan i' = \frac{\overline{A'B'}}{\overline{SA'}} \sim i'$$

$$n i = n' i' \iff n \frac{\overline{AB}}{\overline{SA}} = n' \frac{\overline{A'B'}}{\overline{SA'}} \implies \gamma = \frac{\overline{A'B'}}{\overline{AB}} = n' \frac{\overline{A'B'}}{\overline{A'B'}} = n' \frac{\overline{A'B'}}{\overline{A'B'}}$$

Grandissement linéaire du DS avec origine au Sommet

Appliquons le théorème de Thalès aux triangles : (CAB) et (CA'B')

$$\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$$

$$\gamma = \frac{\overline{CA'}}{\overline{CA}}$$

Grandissement linéaire du DS avec origine au Centre

Construction de l'image d'un objet AB(Réel)

Dioptre convergent

■ Utilisation de 3 rayons particuliers (2 rayons suffisent)

Tout rayon // à l'axe optique émerge du (DS) en passant par F'.

Tout rayon passant par le centre C du dioptre n'est pas dévié.

Tout rayon passant par F ressort du (DS) // à l'axe optique

Construction de l'image d'un objet AB (Réel) Dioptre Sphérique divergent

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{n}{n'} \frac{\overline{SA'}}{\overline{SA}} = \frac{\overline{CA'}}{\overline{CA}}$$

$$\overline{SI'} = \overline{A'B'}$$
 $\overline{SI} = \overline{AB}$

$$\left(\begin{array}{c}
\overline{FS} \\
\overline{FA}
\end{array}\right) = \frac{\overline{A'B'}}{\overline{AB}}$$

$$\left(\frac{\overline{F'A'}}{\overline{F'S}}\right) = \frac{\overline{A'B'}}{\overline{AB}}$$

$$\overline{FA}.\overline{F'A'} = \overline{FS}.\overline{F'S} = \overline{SF}.\overline{SF'} = f.f'$$

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{F'A'}}{\overline{F'S}} = \frac{\overline{FS}}{\overline{FA}} = -\frac{\overline{F'A'}}{f'} = -\frac{f}{\overline{FA}}$$

Formules de Newton

Les miroirs sphériques (MS)

<u>Définition</u>: C'est une surface sphérique (calotte) réfléchissante défini par son axe optique, son centre et son sommet S. On distingue deux types de miroirs sphériques.

Relations de conjugaison pour un MS

Dans l'approximation de Gauss H et S sont confondus

Formule de conjugaison

avec origine au sommet

$$\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}$$

Formule de conjugaison

avec origine au centre

$$\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CS}}$$

$$C \xrightarrow{MS(S,C)} C$$

Grandissement linéaire

Grandissement linéaire avec <u>origine au sommet</u>

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}}$$

Grandissement linéaire avec <u>origine au centre</u>

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$$

$$\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$$

 \mathbf{n}

$$_{v} = \frac{\overline{CA'}}{}$$

C: centre
$$A \xrightarrow{MS(S,C)} A'$$

$$\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}} \qquad \gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}}$$

$$\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CS}} \qquad \gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$$

Les relations de conjugaison et de grandissement d'un MS se déduisent de celles d'un DS en posant : n' = -n

n/ SA

$$\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}$$

* Foyer objet (F)

$$\begin{array}{ccc}
A & \xrightarrow{MS(S,C)} & A' \\
F & & \infty
\end{array}$$

$$\frac{1}{\overline{SF}} = \frac{2}{\overline{SC}} \implies \overline{SF} = \frac{\overline{SC}}{2}$$

Le foyer objet est au milieu de SC

$$f = \overline{SF} = \frac{\overline{SC}}{2}$$

f: distance focale objet du MS

❖ Foyer image (F')

$$A \xrightarrow{MS(S,C)} A'$$

$$\infty \qquad F'$$

$$\frac{1}{SF'} = \frac{2}{SC} \qquad \Longrightarrow \overline{SF'} = \frac{\overline{SC}}{2}$$

Le foyer image est au milieu de SC

$$f' = \overline{SF'} = \frac{\overline{SC}}{2} \qquad \qquad f = f'$$

f': distance focale image du MS

Construction de l'image d'un objet

Règles de construction :

- * Tout rayon passant par le centre du miroir se réfléchit sur lui même;
- ♣ Tout rayon parallèle à l'axe optique est réfléchi en passant par le foyer F' \(\text{\text{\text{\text{\text{\text{e}}}}}\) F du miroir ;
- * Tout rayon qui passe par le foyer F, est réfléchi parallèlement à l'axe optique.

Formules de conjugaison et Grandissements linéaire γ avec origine aux Foyers pour un MS Formules de Newton

$$\frac{\overline{F'A'}}{\overline{F'S}} = \frac{\overline{A'B'}}{\overline{AB}} \quad \text{et} \quad \frac{\overline{FS}}{\overline{FA}} = \frac{\overline{A'B'}}{\overline{AB}}$$

$$\overline{FA} \overline{F'A'} = \overline{SF} \overline{SF'} = f^2 = f'^2$$

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} \qquad \qquad \gamma = -\frac{\overline{F'A'}}{\overline{SF'}} = -\frac{\overline{SF}}{\overline{FA}}$$

•
$$\gamma = -\frac{\overline{F'A'}}{f'} = -\frac{f}{\overline{FA}}$$

Vergence d'un miroir sphérique

Si le miroir est baigné dans l'air assimilé au vide d'indice 1

$$n_s$$
=-1 et n_e =1

$$V = \frac{n_s}{f'} = -\frac{n_e}{f} = \frac{-1}{f'} = -\frac{1}{f'} = -\frac{1}{f}$$

$$f = f'$$
 Pour le MS

La vergence du miroir sphérique :

$$V = -\frac{1}{\overline{SF'}} = -\frac{1}{\overline{SF}} = -\frac{2}{\overline{SC}}$$

L'unité S.I de vergence est le m⁻¹ ou dioptrie (δ).

• Un miroir concave (\overline{SC} < 0) est convergent (V > 0),

