Logic Tutorial 2

David Pomerenke

linktr.ee/davidpomerenke

Overview

- ► 16:00 What's it all good for?
- ▶ 16:10 Recap
- ► 16:20 **Q&A**
- ▶ 16:50 Quiz
- ▶ 17:00 **Q&A**
- ▶ 18:00 Feierabend

What's it all good for? – Studies

Bachelor

- Reasoning techniques
- ► Logic for AI (elective)
- Prolog (elective)

Master

- ► Foundations of Agents
- Master projects

Logic master Amsterdam, Munich

What's it all good for? – Studies

Programming paradigms

- ▶ **Imperative:** C, Java, Python, Javascript
- ► Functional: Elm, Scala, Haskell, Racket
- ► Relational: Prolog

What's it all good for? – Studies

penguin(Tweety) penguin(x) ~> ¬flies(x)	— ¬flies(Tweety)		
penguin(Tweety) penguin(x)> bird(x) hird(x) -> flies(x)	- flies(Tweety)		

What's it all good for? – Industry

- Expert systems, decision support systems
 - Law: Neota Logic, Bryter, LegalOS, KnowledgeTools
- **...**

What's it all good for? – Research

Symbolic AI [Explainable AI] (vs neural AI)

- Probabilistic logic programming
- Neural logic programming
- Relational machine learning
 - Inductive logic programming
- Neuro-symbolic learning
- Answer set programming
- **...**

What's it all good for? – Summer schools

Law and logic

Logic, language and information

Logic and formal epistemology

Contemporary logic, rationality and information

Probability and logic

Mathematical philosophy for female students

More extensive list by UvA

Square of opposition

Semantic Tableau

Natural deduction

Natural deduction

 $(\varphi)_u^x$ $\forall x \varphi$

provided that no variable in toccurs bounded in φ

for u a special symbol not used anywhere else in the proof

\mathbf{E}_{\forall}

 \mathbf{I}_{\forall}

 $(\varphi)_t^x$ $\exists x \varphi$

for u a special symbol not used anywhere in the proof

provided that no variable in toccurs bounded in 4

\mathbf{E}_{\exists}

 I_{\exists}

$$t_1 = t_2, \varphi$$

$$\varphi_{[t_1/t_2]}$$

$$t_1 = t_2, \varphi$$

$$\varphi_{[t_2/t_1]}$$

t = t

for any term t.

where $\varphi_{[t_1/t_2]}$ is the result of replacing, in φ , some ocurrences of t_2 by t1, provided that

- t₂ contains only variables that occurr freely in \(\varphi \), and t₁ contains only variables that do not get bounded after replacement.

 \mathbf{E}_{-}

Q&A

excalidraw

Q&A - "Moving in" the negation

¬∀ x: ¬E y: Rxy

E x: 77E y: Rxy

Ex. Ey. Rxy

 $\neg E \times P(x)$ $A \times \neg P(x)$

Q&A - Syllogism

Q&A - (Counter)examples in a semantic tableau

Q&A - Proving validity, invalidity, satisfiability in a semantic tableau

proving that p is valid: all branches close -> valid		O 6			
open branch -> counterexample to the validity					
proving that p is invalid: all branches close -> invalid	٩	0			
open branch -> counterexample to the invalidity = example for the satisfiability					

Q&A - Order of rule application in semantic tableaux

- 1. eliminate operators $\wedge \vee -> \neg$
- 2. eliminate existence
- 3. eliminate all quantifiers

$$Ax: Dx \wedge Ix_i$$
 $Ex: Ix \vee Cx$ o $Ax: Dx \wedge Ix_i$ $Ia \vee Ca$ o $Da \wedge Ia, Ia \vee Ca$ o

Q&A - Natural deduction

TEX: Px = Ax: TPx

ı	TEX: PX	
2 3 4	P(u) Ex: Px	assumption E-introduction (3)
5	introduction ¬P(u)	¬introduction (1, 4)
6	Ax: ¬Px	4-introduction (4, 5)

Q&A - Examples for the natural deduction rules for predicate logic

Quiz

► Tahook

Feedback

Anonymous feedback form:

► linktr.ee/davidpomerenke