COURS. MATHEMATIQUES APPLIQUEES.OPTIMISATION DES FONCTIONS

Département Mathématiques.

PRESENTATION Dr. André Souleye Diabang

14 février 2023

Plan

- 1. Optimisation sans contrainte (Libre)
 - 1. Optimisation d'une fonction d'une variable réelle
 - 2. Optimisation d'une fonction de deux variables.

Plan

- 1. Optimisation sans contrainte (Libre)
 - 1. Optimisation d'une fonction d'une variable réelle
 - 2. Optimisation d'une fonction de deux variables.

On s'intéresse ici à la recherche de minimum ou de maximum d'une fonction réelle f. Lorsque l'on cherche x vérifiant Minimiser f(x), $x \in I$, ou Maximiser f(x), $x \in I$ on dit que l'on a un problème d'optimisation. La fonction f est souvent appelée fonction objectif.

Maximum et minimum

Soit f une fonction définie sur I et a un point de I.

Maximum et minimum

Soit f une fonction définie sur I et a un point de I.

(1) On dit que f admet un maximum local (resp. minimum local) en a s'il existe un intervalle ouvert J contenant a tel que $J \subset I$ et pour tout $x \in J$ on $a : f(x) \le f(a)$ (resp.

$$f(x) \ge f(a)$$

Maximum et minimum

Soit f une fonction définie sur l et a un point de l.

- (1) On dit que f admet un maximum local (resp. minimum local) en a s'il existe un intervalle ouvert J contenant a tel que $J \subset I$ et pour tout $x \in J$ on $a : f(x) \le f(a)$ (resp.
- $f(x) \geq f(a)$
- (2) On dit que f admet un maximum global (resp. minimum global) en a pour tout $x \in I$ on $a : f(x) \le f(a)$ (resp. $f(x) \ge f(a)$)

Maximum et minimum

Soit f une fonction définie sur l et a un point de l.

- (1) On dit que f admet un maximum local (resp. minimum local) en a s'il existe un intervalle ouvert J contenant a tel que $J \subset I$ et pour tout $x \in J$ on a : f(x) < f(a) (resp.
- f(x) > f(a)
- (2) On dit que f admet un maximum global (resp. minimum global) en a pour tout $x \in I$ on a : f(x) < f(a) (resp. f(x) > f(a)
- (3) On dit que f admet un extremum en a si et seulement si f admet un minimum ou un maximum en a

Remarque

Un extremum global est un extremum local.

Théorème

Soit f une fonction dérivable sur un intervalle fermé borné I = [a, b]. Alors f admet un maximum et un minimum global sur cet intervalle I.

Théorème

Si f est une fonction dérivable sur un ouvert l et si f admet en un point x_0 de I un extremum, alors nécessairement $f'(x_0) = 0.$

Théorème

Si f est une fonction dérivable sur un ouvert I et si f admet en un point x_0 de I un extremum, alors nécessairement $f'(x_0) = 0$.

Remarques

ISM 7

Théorème

Si f est une fonction dérivable sur un ouvert I et si f admet en un point x_0 de I un extremum, alors nécessairement $f'(x_0) = 0$.

Remarques

-R1. La réciproque de ce théorème est fausse.

Contre-exemple : La fonction cube (en zéro, la dérivée s'annule mais ce n'est pas un extremum.)

7

Théorème

Si f est une fonction dérivable sur un ouvert I et si f admet en un point x_0 de I un extremum, alors nécessairement $f'(x_0) = 0$.

Remarques

-R1. La réciproque de ce théorème est fausse.

Contre-exemple : La fonction cube (en zéro, la dérivée s'annule mais ce n'est pas un extremum.)

- -R2. Si $f'(x_0) = 0$ pour un point x_0 de l'ouvert, on dit que x_0 est un point critique (ou stationnaire) de f. Le théorème précédent dit que les extremums sur l'ouvert l'sont à chercher parmi les points critiques.
- R3. Si on doit optimiser f sur [a, b] fermé, on optimise f sur [a, b] ouvert puis on regarde ce qui se passe en a et en b.

7

Optimisation d'une fonction d'une variable réelle
 Optimisation d'une fonction de deux variables.

Conditions du second ordre.

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x_0 un point critique de f. Alors :

Conditions du second ordre.

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x_0 un point critique de f. Alors :

– Si $f''(x_0) > 0$, f présente en x_0 un minimum local.

_

Conditions du second ordre.

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x_0 un point critique de f. Alors :

- Si $f''(x_0) > 0$, f présente en x_0 un minimum local.
- Si $f''(x_0) < 0$, f présente en x_0 un maximum local.

Conditions du second ordre.

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x_0 un point critique de f. Alors :

- Si $f''(x_0) > 0$, f présente en x_0 un minimum local.
- Si $f''(x_0) < 0$, f présente en x_0 un maximum local.
- Si $f''(x_0) = 0$, on ne peut rien dire.

Exercices

Exercice 01

Soit f la fonction définie par $f(x) = x^3 - 12x + 3$.

- 1. Déterminer le domaine de définition de f.
- 2. Calculer les dérivées première et seconde de f.
- 3. Construire le tableau de variations de f.
- 4. Les extrema de f sont-ils globaux?

Exercices

Exercice 02

Le coût d'un produit varie selon la vitesse de production x, il se traduit par : $C(x) = x^2 - 6x + 10$. Déterminer le niveau de production donnant un coût minimal.

10

Exercices

Exercice 03

Soit f la fonction définie par $f(x) = \frac{1+x^2}{x}$.

- 1. Déterminer le domaine de définition de f
- 2. Calculer les dérivées première et seconde de f.
- 3. Construire le tableau de variations de f.
- 4. Les extrema de f sont-ils globaux?

Fonction de deux variables.

Définition

Une fonction à deux variables est une application $f:]a, b[\times]c, d[\longrightarrow \mathbb{R}; (x, y) \longmapsto f(x, y)$

Exemples.

La fonctions $f(x, y) = x^3 + 2x^2y + xy^3 - 4y^2$ est une fonction à deux variables définie sur \mathbb{R}^2 tout entier

La fonction $g(x, y) = \sqrt{x + 2y - 1}$.

Calculer f(0,1), f(-3,2), g(0,1) et g(1,0).

Fonction de deux variables.

Point critique

Soit f une fonction dérivable par rapport à chacune de ses variables. On a :

Si le point (x_0, y_0) est un extrémum de f, alors

$$\frac{\partial f}{\partial x}(x_0,y_0) = \frac{\partial f}{\partial y}(x_0,y_0) = 0$$

Lorsque les 2 dérivées partielles sont nulles en (x_0, y_0) , on dit que (x_0, y_0) est un poinr critique.

Gradient d'une fonction

Soit f une fonction à deux variables continument dérivable 2 fois par rapport à chacune de ses variables.

Le gradient de f en (x_0, y_0) est

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Gradient d'une fonction

Soit f une fonction à deux variables continument dérivable 2 fois par rapport à chacune de ses variables.

Le gradient de f en (x_0, y_0) est

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

On note usuellement:

$$r = \frac{\partial^2 f}{\partial^2 x}(x_0, y_0), t = \frac{\partial^2 f}{\partial^2 y}(x_0, y_0), s = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0),$$

Gradient d'une fonction

Soit f une fonction à deux variables continument dérivable 2 fois par rapport à chacune de ses variables.

Le gradient de f en (x_0, y_0) est

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

On note usuellement:

$$r = \frac{\partial^2 f}{\partial^2 x}(x_0, y_0), \ t = \frac{\partial^2 f}{\partial^2 y}(x_0, y_0), \ s = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0),$$

Matrice Hessienne d'une fonction f

On appelle matrice hessienne de f en (x_0, y_0) , la matrice :

$$Hf(x_0, y_0) = \begin{pmatrix} r & s \\ s & t \end{pmatrix}.$$

Remarque

On a

$$\frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = \frac{\partial}{\partial y}(\frac{\partial f}{\partial x})$$

Le résultat d'une dérivation à l'ordre 2 ne dépend pas de l'ordre dans lequel se fait la dérivation par rapport aux 2 variables considérées. (Théorème de Schwarz).

Remarque

On a

$$\frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = \frac{\partial}{\partial y}(\frac{\partial f}{\partial x})$$

Le résultat d'une dérivation à l'ordre 2 ne dépend pas de l'ordre dans lequel se fait la dérivation par rapport aux 2 variables considérées. (Théorème de Schwarz).

Propriété

Si $\nabla f(x_0, y_0) = (0, 0)$, alors (x_0, y_0) est une point critique.

Propriété

Si $\nabla f(x_0, y_0) = (0, 0)$, alors (x_0, y_0) est une point critique. De plus :

Propriété

Si $\nabla f(x_0, y_0) = (0, 0)$, alors (x_0, y_0) est une point critique.

De plus :

Si $det(Hf(x_0, y_0)) > 0$ et r > 0, alors le point (x_0, y_0) est un minimum local.

Propriété

Si $\nabla f(x_0, y_0) = (0, 0)$, alors (x_0, y_0) est une point critique.

De plus:

Si $det(Hf(x_0, y_0)) > 0$ et r > 0, alors le point (x_0, y_0) est un minimum local.

Si $det(Hf(x_0, y_0)) > 0$ et r < 0, alors le point (x_0, y_0) est un maximum local.

Propriété

Si $\nabla f(x_0, y_0) = (0, 0)$, alors (x_0, y_0) est une point critique.

De plus:

Si $det(Hf(x_0, y_0)) > 0$ et r > 0, alors le point (x_0, y_0) est un minimum local.

Si $det(Hf(x_0, y_0)) > 0$ et r < 0, alors le point (x_0, y_0) est un maximum local.

Si $det(Hf(x_0, y_0)) < 0$, alors le point (x_0, y_0) est un point "selle" ou "col".

Propriété

Si $\nabla f(x_0, y_0) = (0, 0)$, alors (x_0, y_0) est une point critique.

De plus:

Si $det(Hf(x_0, y_0)) > 0$ et r > 0, alors le point (x_0, y_0) est un minimum local.

Si $det(Hf(x_0, y_0)) > 0$ et r < 0, alors le point (x_0, y_0) est un maximum local.

Si $det(Hf(x_0, y_0)) < 0$, alors le point (x_0, y_0) est un point "selle" ou "col".

Si $det(Hf(x_0, y_0)) = 0$, alors On ne peut pas conclure.

Exemple

Optimiser les fonctions suivantes :

$$f(x, y) = x^2 - 10x + 25 + y^2 - 4y + 4$$
.

Exemple

Optimiser les fonctions suivantes :

$$f(x,y) = x^2 - 10x + 25 + y^2 - 4y + 4.$$

$$g(x,y) = 2x^2 + 6y^2 - 5x + 4y.$$

Exemple

Optimiser les fonctions suivantes :

$$f(x,y) = x^2 - 10x + 25 + y^2 - 4y + 4.$$

$$g(x,y) = 2x^2 + 6y^2 - 5x + 4y.$$

$$h(x, y) = xy^2 + 2x^2 + y^2$$
.

17