True/False Questions [8 pts]

1. If L is Turing-acceptable language; then \overline{L} is not Turing-acceptable.					
2. Halting problem is decidable.					
3. Every two tapes Turing machine has an equivalent single tape Turing machine.					
4. Universal Turing Machine are re-programmable.					
5. All regular languages are Turing-decidable.					
6. NP-Complete class includes all problems that can be solved only by exponential time algorithms.					
7. The only way for a Turing machine to reject a string is to halt on a non-accepting state.	False				
8. Every non-deterministic Turing machine has an equivalent deterministic Turing machine.	True				

Exercise 2:

Describe what are the languages accepted by the following Turing machines. Note: in figures below, ""\" means the blank symbol.

Solution:

(a).
$$L(M) = 0*10(1+0)*$$

(b).
$$L(M) = (a+b)^*aa(a+b)^*$$

Exercise 4:

Examine the formal definition of a Turing machine to answer the following questions, and explain your reasoning.

- (a). Can a Turing machine ever write the blank symbol on its tape?
- (b). Can the tape alphabet Γ be the same as the input alphabet Σ ?
- (c). Can a Turing machine contain just a single state?

Solution:

- (a). Yes. The tape alphabet Γ contains the blank symbol \bot .
- (b). No. Σ never contains \bot , but Γ always contains \bot . So they cannot be equal.
- (c). No. Any Turing machine must contain two distinct states $q_{\text{accept}}, q_{\text{reject}}$.

(a) Draw the corresponding Turing machine.

- (b) Is the string 0111 accepted by M:
 - (A) Yes (B) No
- (c) Is the string 0110 accepted by M:
 - (A) Yes (B) No
- (d) The language accepted by M:
 - (A) cannot be described by a regular expression.
 - \bullet B can be described by the regular expression 01^* .
 - \bigcirc can be described by the regular expression $(0110)^+$.
 - (D) None

(i) (j)	det	Furing n	B nachi	ring m	achine	2.						hine,	L can	not be	recog	gnized	oy a	5/1
CSO	C 339	9						Page	2 of 6									
(k)	Mu	ltidimer True		al Turi False	ng ma	chine o	can be	replac	ed by	a dete	rminis	tic Tui	ring n	nachine				
(1)	In'	Turing r	nachi	nes, th	e acce	ept sta	te is al	lways o	differen	it from	the re	eject s	tate.	(A) T	rue	B F	alse	
		٠						٠										
		٠				٠									•		٠	
					٠		٠	٠				٠		٠	•	٠		٠
		٠		٠							٠				•			
		٠			٠												٠	
				•		٠					•							
		٠			٠	٠		٠							٠			
		٠	٠					٠					٠	٠	•	٠		
		٠	•		٠		٠	٠			٠			٠				٠
				٠						•	٠						•	
		٠	٠		٠		٠	٠			٠				٠		٠	٠

•

Turing Machines And Languages

Language Or Functions	Turing Machine
L= a*	$ \begin{array}{c} a \to a, R \\ \downarrow \\ \downarrow \\ q_0 \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$
$L(M) = \{a^n b^n : n \ge 1\}$	$y \rightarrow y, R$ q_4 $y \rightarrow y, R$ q_5 $y \rightarrow y, R$ q_6 q_7 $y \rightarrow y, R$ q_9 q_7 q_7 q_7 q_8 q_9
f(x, y) = x + y	$1 \rightarrow 1, R \qquad 1 \rightarrow 1, L$ $\downarrow q_0 \qquad 0 \rightarrow 1, R \qquad q_1 \qquad \Diamond \rightarrow \Diamond, L \qquad q_2 \qquad 1 \rightarrow 0, L \qquad q_3$ $\downarrow Q_4 \qquad \Diamond \rightarrow \Diamond, R$
f(x) = 2x	$1 \rightarrow \$, R \qquad 1 \rightarrow 1, L \qquad 1 \rightarrow 1, R$ $\rightarrow q_0 \qquad \Diamond \rightarrow \Diamond, L \qquad q_1 \qquad \$ \rightarrow 1, R \qquad q_2$ $\Diamond \rightarrow \Diamond, R \qquad \qquad \Diamond \rightarrow 1, L$
$f(x,y) = \begin{cases} x+y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$	x, y Adder $x + y$ $x \le y$ Eraser $x = 0$

Formal Definitions

1. Transition function:

$$\begin{array}{c}
q_1 & \xrightarrow{a \to b, R} & q_2 \\
\delta(q_1, a) = (q_2, b, R)
\end{array}$$

2. Turing Machine:

3. Instantaneous description:

4. Accepted Language by Turing Machine

$$L(M) = \{w : q_0 \ w \succ x_1 \ q_f \ x_2\}$$
5. Computing Functions with Turing Machines

$$q_0 w \stackrel{*}{\succ} q_f f(w)$$

for all $w \in D$ Domain

Turing's thesis (1930):

Any computation carried out by mechanical means can be performed by a Turing Machine

Algorithm:

An algorithm for a problem is a Turing Machine which solves the problem

Turing machines with:

- Stay-Option
- 2 Semi-Infinite Tape Off-Line
- 4 Multitape
- 5 Multidimensional
- Nondeterministic

Different Turing Machine Classes

Same Power of two classes means:

Both classes accept the same set of languages

for any machine M1 of first class there is a machine M2 of second class such that: L(M1) = L(M2) and vice-versa

