Chapitre 15 - TD - 23 mars 2020

Exercice 18:

Montrer que φ et ψ sont linéaires et déterminer leurs noyau et image. Étudier l'application $\varphi \circ \psi$ (rang, noyau, image).

Pour PEIR2 [x], P'-(x-2) P est un jolyname. et deg (P) ≤ deg (P)-1 ≤ 1 et deg (x-2) P= deg (x-2) + deg (n) ≤ 3 danc GCPI E RZ TXT. Soit (PLIB) EIR2 SX7 et X EIR a calcule P(P1+P2)= for l'méarité de la dérination: Q(P1+P2)= De mê one $Q(XP_1) = (XP_1)' - (x-2)(xP_1)$ $= x(P_1' - (x-2)P_1) = x(P_1)$ Alors Q ed l'méaire. Coloul préliminaine. Sort PEIRz [x] qu'an é ail-P=a X2+b X+c avec a15, c rèels. Et on calcule $(\mathcal{C}(P) - 2a \times +b -(4-2)(a \times^{2}+b \times +c) = -a \times^{3}+(2a-b) \times^{2}+(2b-c+2a) \times +(b+2c) \times +(b+2c$ PE Ker \mathcal{C} = $\mathcal{$ Remagne. Pest injective.

Exercice 19:

Soit $A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$ et f l'application de $\mathcal{M}_2(\mathbb{R})$ définie par f(M) = AM. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$. Déterminer le noyau et l'image de f.

Exercice 9:

Soit $F = \left\{ \begin{pmatrix} a & 2a+b \\ -b & -a \end{pmatrix} \middle| (a,b) \in \mathbb{R}^2 \right\}$ et $G = \left\{ \begin{pmatrix} a & 3a+b \\ -b & -2a+b \end{pmatrix} \middle| (a,b) \in \mathbb{R}^2 \right\}$.

Montrer que F et G sont deux sey supplémentaires de $\mathcal{M}_2(\mathbb{R})$. Déterminer une base de F et une

base de *G*.

Soir $n \in M_2(|R|)$. $n \in F = 3 = 3(a,b)(-1)(a^2)$. M = (a + 2a + b) = a(a + b) = a(a + b)donc F = Vect ((12), (01)) done Fest un sinde Melle) De même, G = Vcd (13), (01)) et Gest en ser Sut MEN2(IR) avec M= (2 4) avec (214,3, t) E1R4 on cheche M= CF et No EG telles que 17= 17=+ Mo garencertos chercher (a, b, an, b,) E1/2 4 tels que $M = \begin{pmatrix} xy \\ 3 = \end{pmatrix} = \alpha \begin{pmatrix} 12 \\ 0-1 \end{pmatrix} + b \begin{pmatrix} 04 \\ -10 \end{pmatrix} + 0 \begin{pmatrix} 13 \\ 0-2 \end{pmatrix} + b \begin{pmatrix} 01 \\ -11 \end{pmatrix}$ le système na par d'équation de Cenjairbré le Lonc d'a des solutions alas a, b, cir, b, enstent danc DF et D6 envient: Et toute matica Mde Mette) Le cut N= TF+No avec NFEF Donc Te (1/2) = F+6

Le système précédent à 4 protret 4 incomes dancil

a une unique solution alors a branton sour uniques à PG-101

donc TFATC sont uniques ce qui prouve que la FPG-101

somme est d'acte FBG = De (1/2) et donc Fet Gront rouglé mentaires dans De (1/2).

Exercice 13:

Dans l'espace $E = \mathbb{R}^4$, on pose $\overrightarrow{u}_1 = (1,0,0,0)$, $\overrightarrow{u}_2 = (1,1,0,0)$, $\overrightarrow{u}_3 = (1,1,1,0)$ et $\overrightarrow{u}_4 = (1,1,1,1)$. Puis on définit $F = \text{Vect}(\overrightarrow{u}_1, \overrightarrow{u}_2)$ et $G = \text{Vect}(\overrightarrow{u}_3, \overrightarrow{u}_4)$.

Déterminer des équations de F et G. Montrer que F et G sont des sev supplémentaires de E. Déterminer l'expression analytique de la projection vectorielle p sur F parallèlement à G.

Exercice 10:

Soit E l'espace des fonctions réelles à valeurs réelles. Soit a,b deux réels. On définit :

$$F = \{ f \in E | \forall x \in \mathbb{R}, f(x) = f(2a - x) \} \text{ et } G = \{ f \in E | \forall x \in \mathbb{R}, f(x) = 2b - f(2a - x) \}$$

Montrer que G est un sous-espace vectoriel de E si et seulement si b=0. Montrer que F et G sont supplémentaires dans E.

Exercice 21:

Soit E un espace vectoriel et $u \in \mathcal{L}(E)$ tel que $u^2 - 3u + 2id_E = 0$.

- 1. Montrer que u est un automorphisme et calculer u^{-1} .
- 2. Montrer que $\forall x \in E, u(x) 2x \in \text{Ker}(u id_E)$ et $u(x) x \in \text{Ker}(u 2id_E)$.
- 3. Montrer que $\operatorname{Ker}(u-id_E)$ et $\operatorname{Ker}(u-2id_E)$ sont supplémentaires dans E.

Exercice xx:

Exercice xx:

