Binomial Heap

Chris Chávez

Universidad Nacional de San Agustín - Escuela Profesional de Ciencias de la Computación

October 14, 2015

Binomial Heap

- El Binomial Heap es una extensión del Binary Heap que proporciona una operación unión más rápida y ejciciente, además de fusionar esta operación con otras acciones previstas por el Binary Heap.
- El Binomial Heap es una colección de árboles Binomiales.

Binomial Tree

- Un árbol Binomial de orden 0 tiene 1 nodo.
- Un árbol Binomial de orden k se puede construir recusivamente mediante la unión de dos árboles binomiales de orden k-1. Poniendo uno como hijo más a la izquierda del otro.

Características

- Tiene exactamente 2^k nodos.
- Tiene una altura k.
- Hay exactamente $\binom{k}{i}$ nodos en la altura i, donde i = 0,1,...,k.
- La raiz tiene grado k y los hijos son árboles binomiales con orden k-1, k-2,...0 de izquierda a derecha.

Binomial Heap

- Un Binomial Heap es un conjunto de árboles Binomiales, donde cada árbol Binomial sigue las propiedades de un Min Heap (o max Heap).
- Sólo puede haber a lo sumo un arbol binomial de cualquier orden.

Representación binaria de un número con Binomial Heaps

Un Binomial Heap con $\bf n$ nodos tiene el número de árboles binomiales igual al número de bits $\bf 1$ en la representación binaria del número $\bf n$. También podemos relacionar el orden de estos árboles binomiales con las posiciones de dichos bits. Con esta relacion se puede concluir que:

$$B \leq [\ln n] + 1$$

Donde ${\bf B}$ es el número de árboles binomiales y ${\bf n}$ es el número de nodos del binomial Heap.

Enlaces

- El método típico de la implementación de los enlaces entre nodos es tener punteros a un padre, hermano e hijo. Un nodo no tiene enlace directo con todos sus hijos, sino que va a su primer hijo y luego itera a través de cada hermano.
- Las raices de los árboles binomiales se conenctan mediante un puntero a siguiente; como una lista simplemente enlazada.

Union

- El primer paso es hacer un merge simple entre los dos Heaps en forma creciente.
- Después del merge, nosotros necesitamos asegurarnos de que no exista más de un Binomial Tree del mismo orden. Para esto, necesitamos convinar los Binomial Trees del mismo orden.
- Recorremos la lista poniendo tres punteros, prev_x, x y next_x. Se pueden dar 4 casos:
 - **1** Si los grados de x y next_x no son iguales, entonces avanzamos.
 - Si los grados de next_x y su siguiente son iguales, entonces avanzamos.
 - 3 Si la clave de x es menor o igual a la clave de next_x, entonces volver a next_x hijo de x; y que el hermano de next_x sea el primer hijo de x.
 - 4 Si la clave de x es mayor, entonces volver a x hijo de next_x; y que el hermano de x sea el primer hijo de next_x.

Union

