E-Commerce Churn Case Study

Author: Tom Mathews

Overview

- 1. Import necessary modules
- 2. Start Spark Session with required configuration

Data Ingestion

- 1. Read the inputdata and created Spark dataframes for each of the above datasets.
- 2. Checked the data structure.

Data Exploration

1. 5 most popular products sold?

```
+----+
|product_id|count|
+-----+
| 1004856|28944|
| 1004767|21806|
| 1004833|12697|
| 1005115|12543|
| 4804056|12381|
```

2. 5 most popular brands

+	
brand	count
null	6113008
samsung	5282775
apple	4122554
xiaomi	3083763
huawei	1111205
lucente	655861
+	 +

The most popular single brand is "Samsung" but the by count the most popular would be the other brands.

3. Number of unique users

```
+-----+
|count(DISTINCT user_id)|
+-----+
| 3022290|
```

4. The most active user on the platform

```
+-----+
| user_id|count|
+-----+
|512475445| 7436|
|512365995| 4013|
|526731152| 2912|
|512505687| 2894|
|513021392| 2862|
+-----+
```

5. Average and Maximum price for smartphones purchased by the customers

```
+-----+

| price_avg|price_max|

+-----+

|471.9470819575878| 2110.45|

+-----+
```

6. Event-type funnel distribution

+	+
day_of_week	count
+	+
1	5855995
6	5829660
3	6801885
5	6380367
4	6652532
7	5606796
2	5321529
+	+

7. Traffic on different days of the week

Feature Engineering

Missing Values

İ	event_time	event_t	ype	product_:	id d	category_i	d		brand	price	user_id	user_session	day_of_week
	0.0		0.0		.0	0. 0.	- 1	1.3515609E7 31.8398	6113008.0 14.4009	!	!		!

The first row is the count and the second row is the percentage as compared to the total number of values.

- Removed all duplicate rows where all columns are the same.
- category_code: We can mark all missing category codes as "unavailable".
- brands: Later in the code, we'll be first checking if we can find the missing brand from other records or mark it as "others".

Additional Columns

- 1. Generating 2 columns from category code
- 2. Activities in a session by the user
- 3. View count for a product by the user
- 4. View count for the secondary category by the user
- 5. Average shopping expense for a product category
- 6. Session count for a user
- 7. Generating the hour variable

Modifications

- Binning the column hour to 4 bins.
- Reduction in brands for analysis: Top 20 + 'others'
- Generating 'is_purchased' variable
- · Remove duplicate rows
- Remove redundant columns

Model Engineering

Transform the above cleaned data and then run the following steps.

- StringIndexer for categorical columns that have string values.
- OneHotEncoder for all numerical categorical columns and the string indexed columns.
- VectorAssembler for numerical columns and all the one hot encoded columns.

Save the transformed dataframe to a parquet file so that we can use the same for each of the different models.

Logistic Regression

Best Parameters after HyperParameter Tuning

- regParam = 0.001
- maxIter = 15
- threshold = 0.5

Decision Tree

Best Parameters after HyperParameter Tuning

maxDepth = 20

- maxBins = 128
- impurity = gini

Random Forest

Best Parameters after HyperParameter Tuning

- numTrees = 30
- maxDepth = 9
- maxBins = 64
- impurity = entropy

Model Performance and Inferences

Logistic Regression

Model: LogisticRegression

Confusion Matrix [[29471. 76855.] [21230. 142849.]]

False Positive Rate: 0.12938889193620146

Precision : 0.6501884353493792 Recall : 0.8706111080637985 F1-Score : 0.3753621988575213 Accuracy : 0.637266322738115

Decision Tree

Model: DecisionTree Confusion Matrix [[80641. 25685.] [122783. 41296.]]

False Positive Rate: 0.7483163598022904
Precision: 0.6165330466848807
Recall: 0.2516836401977096
F1-Score: 0.5206844229217111
Accuracy: 0.4509421053604778

Random Forest

Model: RandomForest Confusion Matrix [[41047. 65279.] [50927. 113152.]]

False Positive Rate: 0.3103809750181315
Precision: 0.6341498954778038
Recall: 0.6896190249818684
F1-Score: 0.4139889056984367
Accuracy: 0.5702520293633624

	Name	ConfusionMatrix	FalsePositiveRate	Precision	Recall	F1-Score	Accuracy
0	LogisticRegression	[[29471.0, 76855.0], [21230.0, 142849.0]]	0.129389	0.650188	0.870611	0.375362	0.637266
1	DecisionTree	[[80641.0, 25685.0], [122783.0, 41296.0]]	0.748316	0.616533	0.251684	0.520684	0.450942
2	RandomForest	[[41047.0, 65279.0], [50927.0, 113152.0]]	0.310381	0.63415	0.689619	0.413989	0.570252

Feature Importance

Logistic Regression

	feature_index	feature_name	coef	mean	std	std_coef	feature_importance
0	76	user_product_count	0.069376	8.327858	11.987979	0.831679	0.831679
1	78	category_secondary_count	-0.006947	33.429711	59.136615	-0.410850	0.410850
2	79	session_count	0.002625	70.474443	108.726912	0.285459	0.285459
3	55	brand_stridx_ohe_xiaomi	-0.400531	0.113412	0.317096	-0.127007	0.127007
4	54	brand_stridx_ohe_others	-0.311619	0.181774	0.385658	-0.120178	0.120178
75	47	category_code_secondary_stridx_ohe_tshirt	-0.430444	0.000021	0.004550	-0.001958	0.001958
76	60	brand_stridx_ohe_acer	-0.018840	0.010155	0.100261	-0.001889	0.001889
77	49	category_code_secondary_stridx_ohe_cultivator	-0.073110	0.000010	0.003091	-0.000226	0.000226
78	40	category_code_secondary_stridx_ohe_trainer	-0.009815	0.000384	0.019585	-0.000192	0.000192
79	41	category_code_secondary_stridx_ohe_ironing_board	0.008253	0.000416	0.020382	0.000168	0.000168

Decision Tree

	FeatureNum	FeatureName	FeatureImportance
0	6	session_count	0.168214
1	7	category_code_primary_stridx_ohe_electronics	0.168214
2	3	user_product_count	0.152178
3	5	category_secondary_count	0.147429
4	2	total_activities_count	0.127708
5	1	day_of_week	0.122082
6	4	average_price	0.099803
7	21	category_code_secondary_stridx_ohe_unavailable	0.025748
8	79	hours_ohe_2	0.015651
9	78	hours_ohe_1	0.014460
10	0	price	0.013018
11	60	brand_stridx_ohe_apple	0.011905
12	63	brand_stridx_ohe_huawei	0.011212
13	62	brand_stridx_ohe_xiaomi	0.007774
14	8	category_code_primary_stridx_ohe_unavailable	0.006899
15	9	category_code_primary_stridx_ohe_appliances	0.005326
16	64	brand_stridx_ohe_oppo	0.004740
17	10	category_code_primary_stridx_ohe_computers	0.004708
18	61	brand_stridx_ohe_others	0.004395
19	65	brand_stridx_ohe_lg	0.003474

Random Forest

	FeatureNum	FeatureName	FeatureImportance
0	3	user_product_count	0.328183
1	2	total_activities_count	0.220038
2	6	session_count	0.117040
3	7	category_code_primary_stridx_ohe_electronics	0.117040
4	5	category_secondary_count	0.052541
5	8	category_code_primary_stridx_ohe_unavailable	0.036847
6	4	average_price	0.036380
7	1	day_of_week	0.035777
8	62	brand_stridx_ohe_xiaomi	0.034705
9	21	category_code_secondary_stridx_ohe_unavailable	0.031552
10	9	category_code_primary_stridx_ohe_appliances	0.022174
11	60	brand_stridx_ohe_apple	0.020196
12	61	brand_stridx_ohe_others	0.013736
13	63	brand_stridx_ohe_huawei	0.011203
14	23	category_code_secondary_stridx_ohe_audio	0.005478
15	79	hours_ohe_2	0.004456
16	22	category_code_secondary_stridx_ohe_kitchen	0.004449
17	10	category_code_primary_stridx_ohe_computers	0.003646
18	25	category_code_secondary_stridx_ohe_environment	0.002362
19	78	hours_ohe_1	0.001879

Inferences

- From the statistics we can see that for our three models, Logistic Regression seems to have performed the best with about 63.73% accuracy whereas Random Forest and Decision Tree performed comparatively bad with 57.02% & 45.09% accuracy respectively.
- From feature importance of all three models, we can see that total_activites_count, session_count, user_product_count are few very important features.