Degradation and Biosynthesis of Nucleotides

98061@tongji.edu.cn

13816619408

• 办公室: 医学楼辅楼405

outline

- Nucleotide Degradation
 - Purine (嘌呤)
 - Pyrimidine (嘧啶)
- ➤ Nucleotide (核苷酸) Biosynthesis
 - Purine (嘌呤) Biosynthesis and regulation
 - de novo
 - Purine Salvage
 - Pyrimidine (嘧啶) biosynthesis
 - Deoxyribonucleotide (脱氧核苷酸) Biosynthesis

Purine Degradation

Purine catabolism leads to uric acid 核苷酸酶 核苷酶 ^{尿酸}

Nucleotidases, nucleosidases → ribose + Pi + bases

黄嘌呤氧化酶

鸟嘌呤脱氨酶

- Xanthine oxidase, guanine deaminase → xanthine
- Xanthine oxidase converts xanthine → uric acid

 xanthine oxidase can oxidize two different sites on the purine ring

Purine Degredation

Xanthine Oxidase and Gout (痛风)

- Impaired excretion or overproduction of uric acid
- Allopurinol (hypoxanthine analog) binds to Xanthine

The purine nucleoside cycle for anaplerotic TCA intermediates

in skeletal muscle

Immunodeficiency Diseases Associated with Purine Degradation

- ② Defect in adenosine deaminase 腺苷脱氨酶
 - Removes –NH₂ from adenosine
- SCID- severe immunodeficiency
- Defect in both B-cells and T-cells
- Extremely susceptible to infection
- Bubble Boy Disease

Therapies for SCID

©Bone marrow transplant- adenosine

deaminase

©2016.5 Strimvelis-

首页

药企

药店

医院

综合资

专栏

两票制

分级诊

GSK基因疗法Strimvelis获英国NHS批准 治疗 "泡泡宝宝"

原创

来源: 新浪医药新闻 201

A+ A-

近日,英国国家医疗服务系统(NHS)在英国国立健康与临床优化研究所(NICE)做出推荐批准基因疗法Strimvelis用于"泡泡宝宝综合征"治疗之后,决定将该基因疗法纳入到国家医疗系统,即使这款药物的治疗费用将高达53万英镑。

2016年5月,**GSK制药**的Strimvelis被欧盟批准用于治疗腺苷脱氨酶(ADA)缺乏性重度联合免疫缺陷症(ADA-SCID)儿科患者。ADA-SCID是一种非常罕见的疾病,在欧洲该疾病大约每年会影响15位患儿的健康,患有该疾病的新生儿不具备健康、健全的免疫系统功能,来自父母机体中错误的基因会影响患儿机体ADA蛋白的产生,而该蛋白是产生淋巴细胞所必需的,患者对日常感染失去抵抗力,必须生活在无菌环境中,所以该病又称之为"泡泡宝宝综合征"。

Pyrimidine Degradation

Final: amino acid, NH₃, CO₂

Pyrimidine Degradation

Synthesis Pathways

- ★ Two means of synthesis for purines & pyrimidines
 - de novo
 - Salvage (recycle from pre-existing nucleotides)

Two types of pathways lead to nucleotides

核苷酸

▶ De novo begins with metabolic precursors: ribose
5-phosphate (HMP), AAs, CO₂, NH₃.

Salvage pathways recycle the free bases and nucleosides from nucleic acid breakdown.

purine synthesis (de novo)

John Buchanan (1948) "traced" the sources of all nine atoms of purine ring

Atoms derived from:

- Asp
- Glycine
- GIn
- CO₂
- N¹⁰-CHO-Tetrahydrofolate

Aspartate N_1 C_6 C_5 N_7 C_8 N_{10} -formyl-THF N_{10} -formyl-THF Glutamine (amide-N)

- ★ Also requires
 - 4 ATPs

Purines are synthesized on the Ribose ring

The purine ring is built on a ribose-5-P foundation

- ribose-5-P must be activated → PRPP
- PRPP is the limiting substance for purine synthesis
- ➤ PRPP is a branch point so next step is the committed step- Gln PRPP amidotransferase (酰胺转移酶)
- \triangleright Note that this step changes C-1 configuration ($\alpha \rightarrow \beta$)

Many Steps Require an Activated Ribose Sugar (PRPP)

5-Phospho-α-D-ribosyl 1-pyrophosphate (PRPP)

Formation of Phosphoribosylamine

磷酸-核糖胺

Purine Biosynthesis (de novo)

The synthesis of AMP and GMP from IMP

purine synthesis (Salvage Pathway)

1. Hypoxanthine (次黄嘌呤) and guanine recombine with PRPP to form nucleotides in the HGPRT (Hypoxanthine-Guanine-Phospho-Ribosyl-Transferase) reaction

2. Adenine + PRPP → AMP

APRTase

(腺嘌呤磷酸核糖转移酶)

purine synthesis (Salvage Pathway)

1. Adenin + PRPP
$$\stackrel{APRT}{\longleftarrow}$$
 AMP + PP

APRT = Adenin-Phosphoribosyl Transferase

Lack of HGPRT to cause self-destruction face disease

Lesch-Nyhan Syndrome

- Absence of HGPRTase
- X-linked boys
- Characterized by:
 - Increased uric acid
 - Spasticity (痉挛)
 - Neurological defects
 - Aggressive behavior
 - Self-mutilation (自残)

自咬嘴唇,手指面致残。痉挛,手足舞蹈样徐动,生长发育迟缓,智力低下。 自毁容貌综合征

purine nucleotide biosynthesis

Pyrimidines synthesis (de novo)

- ★ Synthesized from:
 - Gln
 - $-CO_2$
 - Asp
 - Requires ATP
- ★ Pyrimidine rings are synthesized **independent** of the ribose and transferred to the PRPP (ribose)
- ★ Generated as UMP

Pyrimidine Biosynthesis (de novo)

Pyrimidine Biosynthesis (de novo)

- Step 1: Carbamoyl phosphate for pyrimidine synthesis is made by 氨甲酰-P carbamoyl phosphate synthetase II (CPSII)
 - In CP
 - HCO₃-, Gln, 2ATP
 - carbamoyl phosphate represents an 'activated ' carbamoyl group

The carbamoyl phosphate synthetase II (CPS-II) reaction

Hereditary Orotic Aciduria

乳清酸尿

- - Defect in *de novo* synthesis of pyrimidines
 - Characterized by excretion of orotic acid
 - Severe anemia (贫血) and growth retardation
- Extremely rare (15 cases worldwide)
- Treated by feeding UMP

Why does UMP Cure Orotic Aciduria?

乳清酸尿

UTP feedback inhibition (Less

orotate)

38

Pyrimidine Salvage

- ★ Can be salvaged by reactions with PRPP Pyrimidine phosphoribosyltransferase
- ★ Nucleoside kinase

Biosynthesis: Purine vs Pyrimidine

Burine

- Synthesized on PRPP
- 2. Regulated by GTP/ATP
- 3. Generates IMP
- 4. Requires Energy

Pyrimidine

- Synthesized then added to PRPP
- 2. Regulated by UTP
- 3. Generates UMP
- 4. Requires Energy

Overview of nucleotide biosynthesis

Beyond AMP, GMP and UMP

Purine Biosynthesis

Pyrimidine Biosynthesis

But other forms of these nucleotides are needed

Synthesis of UTP/CTP

Synthesis of ATP/GTP

ATP serves as the phosphoryl donor for synthesis of the other nucleoside triphosphates
AMP kinase

Adenylate kinase: AMP + ATP -> 2 ADP

- > ADP -> ATP by oxidative phosphorylation
- GDP and GTP

GMP kinase

Guanylate kinase: GMP + ATP → GDP + ADP

GDP kinase

Nucleoside diphosphate kinase: GDP + ATP → GTP + ADP

Conversion of Ribonucleotides to Deoxyribonucleotides

> Reduction at 2'-OH by

ribonucleotide reductase

(Fe cofactor)

The (-S-S-)/(-SH HS-) oxidation-reduction cycle involving ribonucleotide reductase, thioredoxin, thioredoxin reductase, and NADPH

Synthesis of Thymine Nucleotides

dTMP are made from dUMP (can from dUDP, dCDP)

- Thymidylate synthase (胸苷酸合酶) methylates dUMP at 5position to make dTMP
- \triangleright N⁵,N¹⁰-CH₂-FH₄ is 1-C donor

dUMP→ dTMP

5-FU in cancer chemotherapy

Thymidylate synthase leads to methylation of dUMP → dTMP.

49

inhibitors of purine biosynthesis

Folates/VB9 Chemical structure

Folate Deficiency in Human

- Neural tube defects embryos
- Immune deficiency and neurological disorders infants
- Megaloblastic anemia and diarrhea infants and adults
 巨幼细胞性贫血
 痢疾
- Increased risk of cancer and cardiovascular diseases adult

有核红细胞

有核红细胞即幼稚红细胞,正常成人外周血中不能见到,在各种溶血性贫血,尤其是急性溶血时可见,也可见于急性失血性贫血、巨幼细胞性贫血、红白血病、骨髓纤维化症髓外造血及骨髓转移癌等。

Antifolates for cancer

- In 1940s, no specific treatment for children acute leukemia
- ➤ In 1945, aminopterin (4-amino folic acid, 氨蝶呤) was synthesized
- ➤ In 1948, Children's Hospital in Boston aminopterin in children acute leukemia
- ➤ In 1949, methotrexate (甲氨蝶呤) was clinically introduced to replace aminopterin due to lesser toxicity (2nd generation)
- ➤ In 2004, pemetrexed (培美曲塞) was approved for malignant pleural mesothelioma in combination with cisplatin by FDA (3rd generation)

Anti-folates

Folic acid (Synthesized, Oxidized)

2-Amino, 4-amino analogs of folic acid

R = H Aminopterin 1st generation

R = CH₃ Amethopterin (methotrexate) 2nd generation

Folates Are Required for Nucleic Acid Synthesis and Methylation Reactions

Methylation of CpG island in DNA

DNA methylation pattern

Summary

- → > 90% of purines are salvaged
- ☆ Most de novo synthesis in liver, highly regulated
- ☆ Cross regulation of purine and pyrimidine nucleotide biosynthesis assures balanced levels of these metabolites
- ☆ Disruption of salvage or catabolism leads to disease

问题

- 1细胞内嘌呤和嘧啶降解的终产物是什么?
- 2 嘌呤核苷酸和嘧啶核苷酸如何从头合成? 各 原子来源是什么?
- 3与嘌呤从头合成和补救途径相关疾病的发病机理。