МЕЖГОСУДАРСТВЕННЫЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32453— 2013

Глобальная навигационная спутниковая система СИСТЕМЫ КООРДИНАТ

Методы преобразований координат определяемых точек

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-технический центр современных навигационных технологий» «Интернавигация» (ОАО «НТЦ «Интернавигация»)
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 Принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. № 44)

За принятие проголосовали:

Краткое наименование страны	Код страны по	Сокращенное наименование национального органа
по МК (ИСО 3166) 004—97	МК (ИСО 3166) 004—97	по стандартизации
Беларусь Казахстан Киргизия Россия Таджикистан	Y K K R T	Госстандарт Республики Беларусь Госстандарт Республики Казахстан Кыргызстандарт Росстандарт Таджикстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 15 апреля 2014 г. № 354-ст межгосударственный стандарт ГОСТ 32453—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2014 г.
 - 5 Стандарт подготовлен на основе применения ГОСТ Р 51794—2008
 - 6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	. 1
2 Термины и определения	. 1
3 Сокращения и обозначения	. 2
4 Системы геодезических параметров	. 2
5 Методы преобразований координат определяемых точек	4
Приложение А (обязательное) Параметры преобразования между системой координат ПЗ-90.02 и референцными системами координат Российской Федерации	1 C
Приложение Б (обязательное) Параметры преобразования между системой координат ПЗ-90 и референцными системами координат Российской Федерации	11
Приложение В (обязательное) Параметры преобразования между системой координат ПЗ-90.02 и системой координат WGS-84	12
Приложение Г (обязательное) Параметры преобразования между системой координат ПЗ-90 и системой координат WGS-84	13
Приложение Д (обязательное) Параметры преобразования между системой координат ПЗ-90.02 и системой координат ПЗ-90	14
Библиография	15

межгосударственный стандарт

Глобальная навигационная спутниковая система СИСТЕМЫ КООРДИНАТ

Методы преобразований координат определяемых точек

Global navigation satellite system. Coordinate systems. Methods of transformations for coordinates of determinated points

Дата введения — 2014—07—01

1 Область применения

Настоящий стандарт распространяется на системы координат, входящие в состав систем геодезических параметров «Параметры Земли 1990 года» и референцные системы координат Российской Федерации.

Настоящий стандарт устанавливает методы преобразований координат и их приращений из одной системы в другую, а также порядок использования параметров преобразования систем координат при выполнении геодезических, навигационных, картографических работ с применением аппаратуры потребителей глобальных навигационных спутниковых систем.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 2.1 большая полуось эллипсоида а: Параметр, характеризующий размер эллипсоида.
- 2.2 **геоид:** Эквипотенциальная поверхность, совпадающая с поверхностью Мирового океана в состоянии полного покоя и равновесия и продолженная под материками.
 - 2.3 геодезическая высота: Высота точки над поверхностью отсчетного эллипсоида.
- 2.4 геодезическая долгота: Двугранный угол между плоскостями геодезического меридиана данной точки и начального геодезического меридиана.
- 2.5 **геодезическая широта:** Угол между нормалью к поверхности отсчетного эллипсоида, проходящей через заданную точку, и плоскостью его экватора.
- 2.6 гравитационное поле Земли; ГПЗ: Поле силы тяжести на поверхности Земли и во внешнем пространстве, обусловленное силой притяжения Земли и центробежной силой, возникающей в результате суточного вращения Земли.
- 2.7 квазигеоид: Математическая поверхность, близкая к геоиду, и являющаяся отсчетной для установления системы нормальных высот.
- 2.8 космическая геодезическая сеть; КГС: Сеть геодезических пунктов, закрепляющих геоцентрическую систему координат, положение которых на земной поверхности определено по наблюдениям искусственных спутников Земли.
- 2.9 модель гравитационного поля Земли: Математическое описание характеристик гравитаци-онного поля Земли.
- 2.10 нормальная высота: Высота точки над квазигеоидом, определенная методом геометрического нивелирования.
- 2.11 нормальное гравитационное поле Земли: Модель гравитационного поля Земли, представляемое нормальным потенциалом силы тяжести.
- 2.12 общеземной эллипсоид; ОЗЭ: Эллипсоид вращения, поверхность которого наиболее близка к геоиду в целом, применяемый для обработки геодезических измерений на всей поверхности Земли в общеземной (геоцентрической) системе координат.

ΓΟCT 32453—2013

- 2.13 отсчетный эллипсоид: Эллипсоид вращения, принятый для обработки геодезических измерений и установления системы геодезических координат.
- 2.14 **планетарная модель гравитационного поля Земли:** Модель гравитационного поля Земли, отражающая гравитационные особенности Земли в целом.
- 2.15 плоскость астрономического меридиана: Плоскость, проходящая через отвесную линию в данной точке и параллельная оси вращения Земли.
- 2.16 плоскость геодезического меридиана: Плоскость, проходящая через нормаль к поверхности отсчетного эллипсоида в данной точке и параллельная его малой оси.
 - 2.17 плоскость начального меридиана: Плоскость меридиана, от которого ведется счет долгот.
- 2.18 плоские прямоугольные координаты: Плоские координаты ортогональной системы координат на плоскости, на которой отображена по определенному математическому закону поверхность отсчетного эллипсоида.
 - 2.19 сжатие эллипсоида α: Параметр, характеризующий форму эллипсоида.
- 2.20 система геодезических координат: Система параметров, два из которых (геодезическая широта и геодезическая долгота) характеризуют направление нормали к поверхности отсчетного эллипсоида в данной точке пространства относительно плоскостей его экватора и начального меридиана, а третий (геодезическая высота) представляет собой высоту точки над поверхностью отсчетного эллипсоида.
- 2.21 система геодезических параметров Земли: Совокупность параметров и точностных характеристик фундаментальных геодезических постоянных, общеземного эллипсоида, планетарной модели гравитационного поля Земли, геоцентрической системы координат и параметров ее связи с другими системами координат.
- 2.22 фундаментальные геодезические постоянные: Взаимосогласованные геодезические постоянные, однозначно определяющие параметры общеземного эллипсоида и нормальное гравитационное поле Земли.
- 2.23 **эквипотенциальная поверхность:** Поверхность, в каждой точке которой потенциал имеет одно и то же значение.
- 2.24 элементы трансформирования систем координат: Элементы, с помощью которых выполняется преобразование координат из одной системы координат в другую.

3 Сокращения и обозначения

В настоящем стандарте применены следующие сокращения и обозначения:

ГГС — государственная геодезическая сеть;

ГЛОНАСС — глобальная навигационная спутниковая система Российской Федерации;

ГНСС — глобальная навигационная спутниковая система;

ГПЗ — гравитационное поле Земли;

ОЗЭ — общеземной эллипсоид;

П3-90 — Параметры Земли 1990 года — система геодезических параметров Российской Федерации;

СК — система координат;

GPS — Глобальная навигационная спутниковая система Соединенных Штатов Америки;

OXYZ, OX, OY, OZ — оси пространственной прямоугольной системы координат:

а_{пз-90} — большая полуось общеземного эллипсоида в системе ПЗ-90;

a_{WGS-84} — большая полуось общеземного эллипсоида в системе WGS-84;

а_{Кр} — большая полуось эллипсоида Красовского;

α_{П3-90} — сжатие общеземного эллипсоида в системе П3-90;

 $\alpha_{\text{WGS-84}}$ — сжатие общеземного эллипсоида в системе WGS-84;

α_{Кр} — сжатие эллипсоида Красовского;

WGS-84 — Мировая геодезическая система.

4 Системы геодезических параметров

4.1 Система геодезических параметров «Параметры Земли 1990 года»

- 4.1.1 Система геодезических параметров ПЗ-90 включает в себя:
- фундаментальные геодезические постоянные;
- параметры ОЗЭ;
- систему координат ПЗ-90, закрепляемую координатами пунктов космической геодезической сети;

- характеристики модели ГПЗ;
- параметры элементов трансформирования геоцентрической системы координат ПЗ-90 в национальные референцные системы координат России и геоцентрическую систему координат WGS-84.

Параметры элементов трансформирования между системой координат ПЗ-90 и референцными системами координат России и порядок их использования при преобразовании систем координат приведены в приложениях A, Б.

Примечание — Числовые значения элементов трансформирования между системами координат ПЗ-90 [1] и ПЗ-90.02 [2], а также порядок их использования при преобразовании систем координат приведены в приложении Д.

- 4.1.2 Теоретическое определение системы координат ПЗ основывается на следующих положениях:
- а) начало системы координат расположено в центре масс Земли;
- б) ось Z направлена в Международное условное начало;
- в) ось X лежит в плоскости начального астрономического меридиана, установленного Международным бюро времени;
 - г) ось У дополняет систему до правой системы координат.
- 4.1.3 Положения точек в системе ПЗ могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр ОЗЭ совпадает с началом системы координат ПЗ, ось вращения эллипсоида — с осью Z, а плоскость начального меридиана — с плоскостью XOZ.

Примечание — За отсчетную поверхность в системах геодезических параметров ПЗ-90 и ПЗ-90.02 принят общеземной эллипсоид с большой полуосью $a_{\Pi 3}$ = 6378136 м и сжатием $\alpha_{\Pi 3}$ = 1/298,25784.

4.2 Система геодезических параметров «Мировая геодезическая система»

- 4.2.1 Система параметров WGS-84 включает в себя:
- фундаментальные геодезические постоянные;
- систему координат WGS-84, закрепляемую координатами пунктов космической геодезической сети;
 - параметры ОЗЭ;
 - характеристики модели ГПЗ;
- параметры элементов трансформирования между геоцентрической системой координат WGS-84 в различные национальные системы координат.

Параметры элементов трансформирования между геоцентрическими системами координат ПЗ-90 и WGS-84, а также порядок использования элементов трансформирования приведены в приложениях В и Г.

П р и м е ч а н и е — В настоящее время действует четвертая версия системы координат WGS-84, обозначаемая как WGS-84(G1150). В приведенных обозначениях версий системы координат WGS-84 литера «G» означает «GPS», а «730», «873» и «1150» указывают на номер GPS-недели, соответствующей дате, к которой отнесены эти версии системы координат WGS-84.

- 4.2.2 Теоретическое определение системы координат WGS основывается на следующих положениях:
 - а) начало системы координат расположено в центре масс Земли;
 - б) ось Z направлена в Международное условное начало;
- в) ось X лежит в плоскости начального астрономического меридиана, установленного Международным бюро времени;
 - г) ось У дополняет систему до правой системы координат.

Положения точек в системе WGS-84 могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр эллипсоида совпадает с началом системы координат WGS, ось вращения эллипсоида совпадает с осью Z, а плоскость начального меридиана — с плоскостью XOZ.

Примечание — За отсчетную поверхность в WGS принят общеземной эллипсоид с большой полуосью $a_{\text{WGS-84}} = 6378137$ м и сжатием $\alpha_{\text{WGS}} = 1/298,257223563$.

4.3 Референцные системы координат Российской Федерации

Координатная основа Российской Федерации представлена референцной системой координат, реализованной в виде ГГС, закрепляющей систему координат на территории страны, и государственной нивелирной сети, распространяющей на всю территорию страны систему нормальных высот (Балтийская система), исходным началом которой является нуль Кронштадтского футштока.

Положения определяемых точек относительно координатной основы могут быть получены в виде пространственных прямоугольных или геодезических координат либо в виде плоских прямоугольных координат и высот.

Геодезические координаты в референцной системе координат Российской Федерации относятся к эллипсоиду Красовского, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр эллипсоида Красовского совпадает с началом референцной системы координат, ось вращения эллипсоида параллельна оси вращения Земли, а плоскость нулевого меридиана определяет положение начала счета долгот.

За отсчетную поверхность в СК-42 и СК-95 [3] принят эллипсоид Красовского с большой полуосью $a_{\rm Kp}$ = 6378245 м и сжатием $\alpha_{\rm Kp}$ = 1/298,3.

5 Методы преобразований координат определяемых точек

5.1 Преобразование геодезических координат в прямоугольные пространственные координаты и обратно

5.1.1 Преобразование геодезических координат в прямоугольные пространственные координаты осуществляют по формулам:

$$X = (N + H)\cos B \cos L$$

$$Y = (N + H)\cos B \sin L$$

$$Z = [(1 - e^{2})N + H]\sin B$$
(1)

где X, Y, Z — прямоугольные пространственные координаты точки;

B, L — геодезические широта и долгота точки соответственно, рад;

H — геодезическая высота точки, м;

N — радиус кривизны первого вертикала, м;

е — эксцентриситет эллипсоида.

Значения радиуса кривизны первого вертикала и квадрата эксцентриситета эллипсоида вычисляют, соответственно, по формулам:

$$N = \frac{a}{\sqrt{1 - e^2 \sin^2 B}},$$

$$e^2 = 2\alpha - \alpha^2,$$
(2)

$$e^2 = 2\alpha - \alpha^2, \tag{3}$$

где *а* — большая полуось эллипсоида, м;

 α — сжатие эллипсоида.

5.1.2 Для преобразования пространственных прямоугольных координат в геодезические необходимо проведение итераций при вычислении геодезической широты.

Для этого используют следующий алгоритм:

1) вычисляют вспомогательную величину D по формуле

$$D = \sqrt{X^2 + Y^2}; \tag{4}$$

- 2) анализируют значение *D:*
- а) если D = 0, то

$$B = \frac{\pi Z}{2|Z|},\tag{5}$$

L=0

$$H = Z \sin B - a \sqrt{1 - e^2 \sin^2 B};$$
 (6)

б) если $D \neq 0$, то при

$$Y < 0, X > 0,$$
 To $L = 2\pi - L_a$;
 $Y < 0, X < 0,$ To $L = \pi + L_a$;
 $Y > 0, X < 0,$ To $L = \pi - L_a$;
 $Y > 0, X > 0,$ To $L = L_a$;
 $Y = 0, X > 0,$ To $L = 0$;
 $Y = 0, X < 0,$ To $L = \pi$.

где
$$L_a = \left| \arcsin\left(\frac{Y}{D}\right) \right|;$$
 (8)

- 3) анализируют значение Z:
- а) если Z = 0, то

$$B = 0$$
; $H = D - a$; (9)

- б) во всех других случаях вычисления выполняют следующим образом:
- находят вспомогательные величины r, c, p по формулам:

$$r = \sqrt{X^2 + Y^2 + Z^2},$$
 (10)

$$c = \arcsin\left(\frac{Z}{r}\right),\tag{11}$$

$$p = \frac{e^2 a}{2r};\tag{12}$$

- реализуют итеративный процесс, используя вспомогательные величины s_1 и s_2 :

$$s_1 = 0,$$
 (13)

$$b = c + s_1, \tag{14}$$

$$s_2 = \arcsin\left(\frac{p\sin(2b)}{\sqrt{1 - e^2\sin^2 b}}\right),\tag{15}$$

$$d = |s_2 - s_1|, \tag{16}$$

если значение d, определяемое по формуле (16), меньше установленного значения допуска, то

$$B = b, ag{17}$$

$$H = D\cos B + Z\sin B - a\sqrt{1 - e^2\sin^2 B};$$
 (18)

если значение d равно или более установленного значения допуска, то

$$s_1 = s_2 \tag{19}$$

и вычисления повторяют, начиная с формулы (14).

 $5.1.3\,$ При преобразованиях координат в качестве допуска прекращения итеративного процесса принимают значение $(10^{-4})^n$. В этом случае погрешность вычисления геодезической высоты не превышает $0,003\,\mathrm{M}$.

5.2 Преобразование пространственных прямоугольных координат

Пользователям ГНСС ГЛОНАСС и GPS необходимо выполнять преобразования координат из системы ПЗ-90 в систему WGS-84 и обратно, а также из ПЗ-90 и WGS-84 в референцные системы координат Российской Федерации. Указанные преобразования координат выполняют, используя семь элементов трансформирования, точность которых определяет точность преобразований.

Параметры элементов трансформирования между системами координат ПЗ-90 и WGS-84 приведены в приложениях В, Г.

Преобразование координат из системы WGS-84 в координаты референцных систем Российской Федерации осуществляют последовательным преобразованием координат сначала в систему ПЗ-90, а затем — в координаты референцных систем.

FOCT 32453—2013

Преобразование пространственных прямоугольных координат выполняют по формуле

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\mathsf{B}} = (1+m) \begin{pmatrix} 1 & +\omega_{\mathsf{Z}} & -\omega_{\mathsf{y}} \\ -\omega_{\mathsf{Z}} & 1 & +\omega_{\mathsf{x}} \\ +\omega_{\mathsf{y}} & -\omega_{\mathsf{x}} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\mathsf{A}} + \begin{pmatrix} \Delta \mathsf{x} \\ \Delta \mathsf{y} \\ \Delta \mathsf{z} \end{pmatrix}, \tag{20}$$

где Δx , Δy , Δz — линейные элементы трансформирования систем координат при переходе из системы Aв систему Б, м;

 $\omega_{\!\raisebox{-1pt}{χ}},\,\omega_{\!\raisebox{-1pt}{ζ}}-\,\omega_{\!\raisebox{-1pt}{ζ}}$ угловые элементы трансформирования систем координат при переходе из системы A в систему Б, рад;

m- масштабный элемент трансформирования систем координат при переходе из системы А в систему Б.

Обратное преобразование прямоугольных координат выполняют по формуле

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{A} = (1-m) \begin{pmatrix} 1 & -\omega_{z} & +\omega_{y} \\ +\omega_{z} & 1 & -\omega_{x} \\ -\omega_{y} & +\omega_{x} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{B} + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}.$$
(21)

5.3 Преобразование геодезических координат

Преобразование геодезических координат из системы А в систему Б выполняют по формулам:

$$B_{\mathsf{B}} = B_{\mathsf{A}} + \Delta B$$

$$L_{\mathsf{B}} = L_{\mathsf{A}} + \Delta L$$

$$H_{\mathsf{B}} = H_{\mathsf{A}} + \Delta H$$

$$(22)$$

где *B, L* — геодезические широта и долгота, выраженные в единицах плоского угла;

H — геодезическая высота, м;

 ΔB , ΔL , ΔH — поправки к геодезическим координатам точки.

Поправки к геодезическим координатам определяют по следующим формулам:

$$\Delta B = \frac{\rho}{(M+H)} \left[\frac{N}{a} e^{2} \sin B \cos B \Delta a + \left(\frac{N^{2}}{a^{2}} + 1 \right) N \sin B \cos B \frac{\Delta e^{2}}{2} - \left((\Delta x \cos L + \Delta y \sin L) \sin B + \Delta z \cos B \right] - \left((\Delta x \cos L + \Delta y \sin L) \sin B + (\Delta x \cos B) - \rho m e^{2} \sin B \cos B; \right)$$

$$\Delta L = \frac{\rho}{(N+H)\cos B} \left((-\Delta x \sin L + \Delta y \cos L) + tgB(1-e^{2})(\omega_{x} \cos L + \omega_{y} \sin L) - \omega_{z}; \right)$$

$$\Delta H = -\frac{a}{N} \Delta a + N \sin^{2} B \frac{\Delta e^{2}}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B -$$

$$-Ne^{2} \sin B \cos B \left(\frac{\omega_{x}}{\rho} \sin L - \frac{\omega_{y}}{\rho} \cos L \right) + \left(\frac{a^{2}}{N} + H \right) m,$$

$$(23)$$

где ΔB , ΔL — поправки к геодезическим широте, долготе, ...";

 ΔH — поправка к геодезической высоте, м;

B, L — геодезические широта и долгота, рад;

H — геодезическая высота, м;

 Δx , Δy , Δz — линейные элементы трансформирования систем координат при переходе из системы $\sf A$ в систему Б, м;

систему Б, ...";

m — масштабный элемент трансформирования систем координат при переходе из системы А в систему Б;

$$\Delta a = a_{\mathsf{B}} - a_{\mathsf{A}};$$

$$\Delta e^2 = e_{\mathsf{B}}^2 - e_{\mathsf{A}}^2;$$

$$a=\frac{a_{\mathsf{B}}+a_{\mathsf{A}}}{2};$$

$$e^2 = \frac{e_b^2 - e_A^2}{2}$$
;

M — радиус кривизны меридианного сечения ($M = a(1 - e^2)(1 - e^2\sin^2 B)^{-\frac{3}{2}}$);

N — радиус кривизны первого вертикала ($N = a(1 - e^2 \sin^2 B)^{-\frac{1}{2}}$);

 $a_{\mathsf{B}},\,a_{\mathsf{A}}$ — большие полуоси эллипсоидов в системах координат B и A соответственно;

 $e_{\mathsf{b}}^2, e_{\mathsf{A}}^2$ — квадраты эксцентриситетов эллипсоидов в системах координат b и A соответственно;

 ρ — число угловых секунд в 1 радиане (ρ = 206264, 806").

При преобразовании геодезических координат из системы A в систему Б в формуле (22) используют значения геодезических координат в системе A, а при обратном преобразовании — в системе Б, и знак поправок ΔB , ΔL , ΔH в формуле (22) меняют на противоположный.

Формулы (23) обеспечивают вычисление поправок к геодезическим координатам с погрешностью, не превышающей 0,3 м (в линейной мере). Для достижения погрешности не более 0,001 м выполняют вторую итерацию, т. е. учитывают значения поправок к геодезическим координатам по формулам (22) и повторно выполняют вычисления по формулам (23).

При этом

$$B = \frac{B_{A} + (B_{A} + \Delta B)}{2},$$

$$L = \frac{L_{A} + (L_{A} + \Delta L)}{2},$$

$$H = \frac{H_{A} + (H_{A} + \Delta H)}{2}.$$
(24)

Формулы (22), (23) и точностные характеристики преобразований по этим формулам справедливы до широт 89°.

5.4 Преобразование геодезических координат в плоские прямоугольные координаты и обратно

5.4.1 Для получения плоских прямоугольных координат в принятой на территории Российской Федерации проекции Гаусса—Крюгера используют геодезические координаты на эллипсоиде Красовского.

Плоские прямоугольные координаты с погрешностью не более 0,001 м вычисляют по формулам

 $x = 6367558,496 8 B - \sin 2B (16002,890 0 + 66,9607 \sin^2 B + 0,3515 \sin^4 B - 10,0000 + 66,9607 \sin^2 B + 0,0000 + 0$

 $-l^2$ (1594561, 25 + 5336,535 sin²B + 26,790 sin⁴B + 0,149 sin⁶B + l^2 (672483,4 - 811219,9 sin²B + 5420,0 sin⁴B - 10,6 sin⁶ B + (25)

 $+ l^2 (278194 - 830174 \sin^2 B + 572434 \sin^4 B - 16010 \sin^6 B +$

+ l^2 (109500 - 574700 sin²B + 863700 sin⁴B - 398600 sin⁶B))));

 $y = (5 + 10 n) 10^5 + l \cos B (6378245 + 21346, 1415 \sin^2 B + 107, 1590 \sin^4 B + 108)$

 $+ 0.5977 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17, 98 \sin^4 B - 11, 99 \sin^6 B + (26)$

- $+ l^2 (270806 1523417 \sin^2 B + 1327645 \sin^4 B 21701 \sin^6 B + l^2 (270806 1523417 \sin^2 B)$
- + l^2 (79690 866190 sin²B + 1730360 sin⁴B 945460 sin⁶B))),
- где *x, y* плоские прямоугольные координаты (абцисса и ордината) определяемой точки в проекции Гаусса —Крюгера, м;
 - В геодезическая широта определяемой точки, рад;
 - l расстояние от определяемой точки до осевого меридиана зоны, выраженное в радианной мере и вычисляемое по формуле

$$l = \{L - [3 + 6 (n - 1)]\}/57,29577951,$$
(27)

где L — геодезическая долгота определяемой точки, ...°;

n— номер шестиградусной зоны в проекции Гаусса—Крюгера, вычисляемый по формуле

$$n = E[(6 + L)/6],$$
 (28)

Е[...] — целая часть выражения, заключенного в квадратные скобки.

5.4.2 Преобразование плоских прямоугольных координат в проекции Гаусса-Крюгера на эллипсоиде Красовского в геодезические координаты осуществляют по формулам

$$B = B_0 + \Delta B; \tag{29}$$

$$L = 6(n - 0.5)/57,29577951 + l,$$
(30)

где B, L — геодезические широта и долгота определяемой точки, рад;

 B_0 — геодезическая широта точки, абцисса которой равна абциссе x определяемой точки, а ордината равна нулю, рад;

n— номер шестиградусной зоны в проекции Гаусса—Крюгера, вычисляемый по формуле

$$n = E[y \cdot 10^{-6}],$$
 (31)

Е[...] — целая часть выражения, заключенного в квадратные скобки;

у — ордината определяемой точки в проекции Гаусса—Крюгера, м.

Значения B_0 , ΔB и l вычисляют по следующим формулам

$$B_0 = \beta + \sin 2\beta(0,00252588685 - 0,000 01491860 \sin^2\beta + 0,000000 904 \sin^4\beta);$$
 (32)

 $\Delta B = -z_0^2 \sin 2B_0(0.251684631 - 0.003369263 \sin^2 B_0 + 0.000011 \cdot 276 \sin^4 B_0 - 0.0003369263 \sin^2 B_0$

$$-z_0^2(0,105\ 00614 - 0,04559916\sin^2B_0 + 0,00228901\sin^4B_0 - 0,00002987\sin^6B_0 - z_0^2(0,042858 - 0,025318\sin^2B_0 + 0,014346\sin^4B_0 - (33)^2$$

 $-0.001264 \sin^6 B_0 - z_0^2 (0.01672 - 0.00630 \sin^2 B_0 + 0.01188 \sin^4 B_0 - z_0^2 (0.01672 - 0.00630 \sin^2 B_0 + 0.01188 \sin^4 B_0 - z_0^2 (0.01672 - 0.00630 \sin^2 B_0)$

 $-0,00328\sin^6B_0))));$

$$-z_0^2$$
(0,16778975 + 0,16273586 $\sin^2\!B_0$ $-$ 0,00052490 $\sin^4\!B_0$ $-$ 0,000 00846 $\sin^6\!B_0$ $-$

$$-z_0^2(0.0420025 + 0.1487407 \sin^2 B_0 + 0.0059420 \sin^4 B_0 - 0.0000150 \sin^6 B_0 - 0.0000150 \sin^6 B_0$$

 $-z_0^2(0.01225 + 0.09477 \sin^2 B_0 + 0.03282 \sin^4 B_0 - 0.00034 \sin^6 B_0 - 0.00034 \cos^6 B_0 - 0.00034 \cos^2$

$$-z_0^2(0.0038 + 0.0524 \sin^2 B_0 + 0.0482 \sin^4 B_0 + 0.0032 \sin^6 B_0)))))$$

где β — вспомогательная величина, вычисляемая по формуле

$$\beta = x/6 \ 367558,4968;$$
 (35)

z₀ — вспомогательная величина, вычисляемая по формуле

$$z_0 = (y - (10 \ n + 5) \cdot 10^5)/(6378245\cos B_0);$$
 (36)

x, y — абцисса и ордината определяемой точки в проекции Гаусса — Крюгера, м.

Погрешность преобразования координат по формулам (25), (26) и (32)—(36) составляет не более 0,001 м.

5.5 Преобразование приращений пространственных прямоугольных координат из системы в систему

Преобразование приращений пространственных прямоугольных координат из системы координат А в систему Б осуществляют по формуле

$$\begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix}_{\mathsf{B}} = (1+m) \begin{pmatrix}
1 & +\omega_{z} & -\omega_{y} \\
-\omega_{z} & 1 & +\omega_{x} \\
+\omega_{y} & -\omega_{x} & 1
\end{pmatrix} \begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix}_{\mathsf{A}}.$$
(37)

Обратное преобразование приращений пространственных прямоугольных координат из системы Б в систему А выполняют по формуле

$$\begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix}_{A} = (1-m) \begin{pmatrix}
1 & -\omega_{z} & +\omega_{y} \\
+\omega_{z} & 1 & -\omega_{x} \\
-\omega_{y} & +\omega_{x} & 1
\end{pmatrix} \begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix}_{B}.$$
(38)

В формулах (37) и (38) угловые элементы трансформирования w_X , w_Y , w_Z выражены в радианах.

5.6 Связь между геодезической и нормальной высотами

Геодезическая и нормальная высоты связаны соотношением:

$$H = H^{\gamma} + \zeta, \tag{39}$$

где H — геодезическая высота определяемой точки, м;

 H^{γ} — нормальная высота определяемой точки, м;

 ζ — высота квазигеоида над эллипсоидом в определяемой точке, м.

Высоты квазигеоида над отсчетным эллипсоидом систем геодезических параметров ПЗ и WGS вычисляют по моделям ГПЗ, являющимися составной частью систем геодезических параметров.

При перевычислении высот квазигеоида из системы координат А в систему координат Б используют формулу

$$\zeta_{\mathbf{5}} = \zeta_{\mathbf{A}} + \Delta H, \tag{40}$$

где $\zeta_{\!\scriptscriptstyle B}$ — высота квазигеоида над ОЗЭ, м;

ζ — высота квазигеоида над эллипсоидом Красовского, м;

 $\Delta \dot{H}$ — поправка к геодезической высоте, вычисляемая по формуле (23), м.

Приложение А (обязательное)

Параметры преобразования между системой координат ПЗ-90.02 и референцными системами координат Российской Федерации

А.1 Преобразование координат из референцной системы координат 1942 года в систему координат ПЗ-90.02

$$\Delta x = +23,93 \text{ m}; \qquad \omega_{\rm x} = 0"; \\ \Delta y = -141,03 \text{ m}; \qquad \omega_{\rm y} = -0,35"; \\ \Delta z = -79,98 \text{ m}; \qquad \omega_{\rm z} = -0,79"; \\ m = -0,22 \cdot 10^{-6}; \\ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\Pi 3-90.02} = (1 + (-0,22) \cdot 10^{-6}) \cdot \begin{pmatrix} 1 & -3,8300 \cdot 10^{-6} & +1,6968 \cdot 10^{-6} \\ +3,8300 \cdot 10^{-6} & 1 & 0 \\ -1,6968 \cdot 10^{-6} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\rm CK-42} + \begin{pmatrix} +23,93 \\ -141,03 \\ -79,98 \end{pmatrix}.$$

А.2 Преобразование координат из системы координат ПЗ-90.02 в референцную систему координат 1942 года

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\text{CK-42}} = (1 - (-0.22) \cdot 10^{-6}) \cdot \begin{pmatrix} 1 & +3.8300 \cdot 10^{-6} & -1.6968 \cdot 10^{-6} \\ -3.8300 \cdot 10^{-6} & 1 & 0 \\ +1.6968 \cdot 10^{-6} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\Pi 3-90.02} \begin{bmatrix} +23.93 \\ -141.03 \\ -79.98 \end{bmatrix}.$$

А.3 Преобразование координат из референцной системы координат 1995 года в систему координат ПЗ-90.02

$$\Delta x = +24,83 \text{ M}; \qquad \omega_{\rm X} = 0,00\%; \\ \Delta y = -130,97 \text{ M}; \qquad \omega_{\rm y} = 0,00\%; \\ \Delta z = -81,74 \text{ M}; \qquad \omega_{\rm z} = -0,13\%; \\ m = (-0,22) \cdot 10^{-6}; \\ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\Pi 3-90.02} = (1+(-0,22) \cdot 10^{-6}) \cdot \begin{pmatrix} 1 & -0,6302 \cdot 10^{-6} & 0 \\ +0,6302 \cdot 10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{\rm CK-95} + \begin{pmatrix} +24,83 \\ -130,97 \\ -81,74 \end{pmatrix}.$$

А.4 Преобразование координат из системы координат ПЗ-90.02 в референцную систему координат 1995 года

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-95}} = (1 - (-0.22) \cdot 10^{-6}) \cdot \begin{bmatrix} 1 & +0.6302 \cdot 10^{-6} & 0 \\ -0.6302 \cdot 10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.02} \begin{bmatrix} +24.83 \\ -130.97 \\ -81.74 \end{bmatrix}.$$

Приложение Б (обязательное)

Параметры преобразования между системой координат ПЗ-90 и референцными системами координат Российской Федерации

Б.1 Преобразование координат из референцной системы координат 1942 года в систему координат ПЗ-90

$$\Delta x = +25 \text{ M}; \qquad \omega_{\rm X} = 0";$$

$$\Delta y = -141 \text{ M}; \qquad \omega_{\rm y} = -0.35";$$

$$\Delta z = -80 \text{ M}; \qquad \omega_{\rm Z} = -0.66";$$

$$m = 0;$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} = \begin{bmatrix} 1 & -3.1998 \cdot 10^{-6} & +1.6968 \cdot 10^{-6} \\ +3.1998 \cdot 10^{-6} & 1 & 0 \\ -1.6968 \cdot 10^{-6} & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\rm CK-42} + \begin{bmatrix} +25 \\ -141 \\ -80 \end{bmatrix}.$$

Б.2 Преобразование координат из системы координат ПЗ-90 в референцную систему координат 1942 года

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{CK-42} = \begin{bmatrix} 1 & +3,1998 \cdot 10^{-6} & -1,6968 \cdot 10^{-6} \\ +3,1998 \cdot 10^{-6} & 1 & 0 \\ -1,6968 \cdot 10^{-6} & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} = \begin{bmatrix} +25 \\ -141 \\ -80 \end{bmatrix}.$$

Б.3 Преобразование координат из референцной системы координат 1995 года в систему координат ПЗ-90

$$\Delta x = +25,90 \text{ M};$$

$$\Delta y = -130,94 \text{ M};$$

$$\Delta z = -81,76 \text{ M};$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-95}} + \begin{bmatrix} +25,90 \\ -130,94 \\ -81,76 \end{bmatrix}.$$

Б.4 Преобразование координат из системы координат ПЗ-90 в референцную систему координат 1995 года

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} - \begin{bmatrix} +25,90 \\ -130,94 \end{bmatrix}.$$

 $\begin{bmatrix} Z \end{bmatrix}_{CK-95} = \begin{bmatrix} Z \end{bmatrix}_{\Pi 3-90} = \begin{bmatrix} -81,76 \end{bmatrix}$

Приложение В (обязательное)

Параметры преобразования между системой координат ПЗ-90.02 и системой координат WGS-84

В.1 Преобразование координат из системы координат ПЗ-90.02 в систему координат WGS-84

$$\Delta x = -0.36 \text{ M};$$
 $\omega_{x} = 0;$ $\Delta y = +0.08 \text{ M};$ $\omega_{y} = 0;$ $\Delta z = +0.18 \text{ M};$ $\omega_{z} = 0;$ $m = 0;$
$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{WGS-84(G1150)}} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.02} + \begin{bmatrix} -0.36 \\ +0.08 \\ +0.18 \end{bmatrix}.$$

В.2 Преобразование координат из системы координат WGS-84 в систему координат ПЗ-90.02 референцную систему координат 1995 года

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.02} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS-84(G1150)} - \begin{bmatrix} -0,36 \\ +0,08 \\ +0,18 \end{bmatrix}.$$

Приложение Г (обязательное)

Параметры преобразования между системой координат ПЗ-90 и системой координат WGS-84

Г.1 Преобразование координат из системы координат ПЗ-90 в систему координат WGS-84

$$\Delta x = -1,10 \text{ M}; \qquad \omega_{x} = 0;$$

$$\Delta y = -0,30 \text{ M}; \qquad \omega_{y} = 0;$$

$$\Delta z = -0,90 \text{ M}; \qquad \omega_{z} = -0,20" \pm 0,01";$$

$$m = (-0,12) \cdot 10^{-6};$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{WGS-84}} = (1-0,12 \cdot 10^{-6}) \cdot \begin{bmatrix} 1 & -0,9696 \cdot 10^{-6} & 0 \\ -0,9696 \cdot 10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} + \begin{bmatrix} -1,10 \\ -0,30 \\ -0,90 \end{bmatrix}.$$

Г.2 Преобразование координат из системы координат WGS-84 в систему координат ПЗ-90

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} = (1+0.12\cdot10^{-6}) \cdot \begin{bmatrix} 1 & +0.9696\cdot10^{-6} & 0 \\ -0.9696\cdot10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{WGS-84} - \begin{bmatrix} -1.10 \\ -0.30 \\ -0.90 \end{bmatrix}.$$

Приложение Д (обязательное)

Параметры преобразования между системой координат ПЗ-90.02 и системой координат ПЗ-90

Д.1 Преобразование координат из системы координат ПЗ-90.02 в систему координат ПЗ-90

$$\Delta x = +1,07 \text{ M}; \qquad \omega_{\rm X} = 0;$$

$$\Delta y = +0,03 \text{ M}; \qquad \omega_{\rm y} = 0;$$

$$\Delta z = -0,02 \text{ M}; \qquad \omega_{\rm z} = +0,13";$$

$$m = (+0,22) \cdot 10^{-6};$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} = (1+0,22 \cdot 10^{-6}) \cdot \begin{bmatrix} 1 & +0,6302 \cdot 10^{-6} & 0 \\ -0,6302 \cdot 10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.02} + \begin{bmatrix} +1,07 \\ +0,03 \\ -0,02 \end{bmatrix}.$$

Д.2 Преобразование координат из системы координат ПЗ-90 в систему координат ПЗ-90.02

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.02} = (1-0.22 \cdot 10^{-6}) \cdot \begin{bmatrix} 1 & -0.6302 \cdot 10^{-6} & 0 \\ +0.6302 \cdot 10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} - \begin{bmatrix} +1.07 \\ +0.03 \\ -0.02 \end{bmatrix}.$$

Библиография

- [1] Постановление Правительства Российской Федерации от 28.07.2000 г. № 568 «Об установлении единых государственных систем координат»
- [2] Распоряжение Правительства Российской Федерации от 20.06.2007 г. № 797-р «Об использовании уточненной версии государственной геоцентрической системы координат «Параметры Земли 1990 года» (ПЗ-90.02)»

УДК 629.783:[528.2+528.344+523.34.13]:006.354

MKC 07.040

Ключевые слова: приемная аппаратура глобальной навигационной спутниковой системы, системы координат, определение координат местоположения

Редактор *E.C. Котлярова*Технический редактор *В.Н. Прусакова*Корректор *Ю.М. Прокофьева*Компьютерная верстка *Л.А. Круговой*

Сдано в набор 17.07.2014. Подписано в печать 03.09.2014. Формат $60 \times 84 \frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 2,32. Уч.-изд. л. 1,75. Тираж 43 экз. Зак. 3657.