CSCB63 – Design and Analysis of Data Structures

Akshay Arun Bapat¹

¹based on notes by Anya Tafliovich, Anna Bretscher and Albert Lai

Strongly connected component (SCC)

Strongly connected component (SCC): maximal subset of vertices reachable from each other.

Three strongly connected components: $\{e, o\}$, $\{f, g, h, k\}$, $\{m\}$.

Transposed graph

Transpose of $G(G^T)$ means a graph with the same vertices as G and the edges are the reverse of G's.

Why is it called "transpose"? matrix representation is transpose

 G^{T} has the same strongly connected components as G's. How much time to compute adjacency lists of G^{T} : O(|V| + |E|)

Computing SCCs: idea

- 1. DFS on *G*
 - visit all vertices
 - store all finish times
 - accumulate vertices in reverse finish-time order
- 2. Compute adjacency lists of $G^{\rm T}$
- 3. DFS on G^{T}
 - use the above order to pick start/restart vertices
- 4. Each tree found has the vertices of one strongly connected component.

Total time: O(|V| + |E|)

Computing SCCs: example

Computing SCCs: DFS(*G*)

```
0. mark all vertices white
1. time := 0
2. R := []
3. for each vertex v:
4. if v is white:
5. DFS-visit(v)
6. DFS-visit(u):
7. mark u gray
8. for each v in adjacency list of u:
       if v is white:
9.
10.
         DFS-visit(v)
11. mark u black
12. finish-time(u) := ++time
13. insert u at the front of R
```

Computing SCCs: DFS(G^{T})

```
0. mark all vertices white
1. for each vertex v in R's order:
2. if v is white:
3.
       SCC := []
4. DFS-visit2(v)
5. output/record SCC
6. DFS-visit2(u):
7. add u to SCC
8. mark u gray
9. for each v in u's adjacency list in G^T:
10.
      if v is white:
11.
        DFS-visit2(v)
12. mark u black
```

Computing SCC: proof

Prove: each depth-first tree found in DFS(G^T) is a SCC.

Let C and C' be distinct SCC's of G. Define $max_finish(C) = \max\{finish_time(u) \mid u \in C\}$.

Proof steps:

- If some vertex $u \in C$ has an edge in G to some $v \in C'$, then $max_finish(C') > max_finish(C')$.
 - C discovered earlier: will go from C into C' (via (u, v) or otherwise), then finish C', then back to finish C.
 - C' discovered earlier: C' finished without visiting C because no path from C' to C: Why no such path?
- In G^{T} , if some vertex $v \in C'$ has an edge to some $u \in C$, then $max_finish(C') > max_finish(C')$.

Computing SCC: proof

Proof steps (continued):

- In G^{T} , if some vertex $v \in C'$ has an edge to some $u \in C$, then $max_finish(C') > max_finish(C')$.
- If $max_finish(C) > max_finish(C')$, then in G^{T} no edge from C to C'.
- DFS(G^T):
 - start vertex $s \in C$ with largest $max_finish(C)$ of all SCCs
 - visit all vertices reachable from s
 - G^T has no edge from C to another SCC C'
 - never visit another SCC C'
 - then select another start vertex $s_2 \in C_2$ with largest $max_finish(C)$ of all SCCs except for C
 - . . .

Complete proof: textbook / exercise: by induction on the number of depth-first trees found.