A.1 Topologische Grundlagen

Seien (M, O_M) und (N, O_N) zwei Hausdorffräume.

(a) Sei (K, O_K) ein kompakter Raum. Zeigen Sie, dass eine abgeschlossene Menge $A \subset K$ auch kompakt ist.

Sei eine beliebige offene Überdeckung von A gegeben. Dann ist

(b) Gilt dies auch für beliebige offene Teilmengen?

In \mathbb{R} ist eine offenes Intervall nicht kompakt, zum Beispiel (0,1) ist eine offene Teilmenge einer kompakten Menge, zum Beispiel [0,1], die mit der üblichen Topologie ein kompakter topologischer Raum ist.

(c) Zeigen Sie, dass in der Teilraumtopologie Unterräume von M Hausdorffräume sind.

Aufgrund der Teilraumtopologie sind Unterräume U auch topologische Räume. Bleibt zu zeigen, dass in Unterräumen auch die Hausdorffeigenschaft erfüllt ist. Nehmen wir also zwei Punkte $x,y\in U$. Diese besitzen, da $U\subset M$ ein Hausdorffraum ist zwei offene Umgebungen $V_x,V_y\in O_M$, so dass gilt: $V_x\cap V_y=\emptyset$ (disjunkt). Nun definieren wir $U_x,U_y\subset U$ als $U_x=V_x\cap U_y$, also der Schnitt mit U_x . Diese sind in der Teilraumtopologie $U_x,U_y\in O_U=\{A\cap U|A\in O_M\}$, da $V_x,V_y\in O_M$. Außerdem sind sie disjunkt, da $U_x\cap U_y=V_x\cap U\cap V_y\cap U=V_x\cap V_y=\emptyset$ nach Vorraussetzung. Damit sind diese Punkte durch disjunkte offene Umgebungen getrennt.

(d) Sei $f: M \to N$ stetig und $K \subset M$ überdeckungskompakt. Dann ist $f(K) \subset N$ ebenfalls ü-kompakt. Sei eine offene Überdeckung von f(K) gegeben:

$$f(K) \subset \bigcup_{i \in I} A_i \subset N$$

Dann ist folgendes auch eine offene Überdeckung, da f stetig:

$$K \subset \bigcup_{i \in I} f^{-1}(A_i) \subset M$$

Dann existiert eine endliche Teilüberdeckung (K überdeckungskompakt)

$$K \subset \bigcup_{i=1}^{n} f^{-1}(A_i) \subset M$$

Das Bild davon ist dann eine endliche Teilüberdeckung von f(K):

$$f(K) \subset \bigcup_{i=1}^{n} A_i \subset N$$

A.2 Einsteinsche Summenkonvention

- (a) Formulieren Sie mit der Summenkonvention die folgenden Begriffe der Linearen Algebra:
- (1) Standardskalarprodukt des \mathbb{R}^n

$$v \cdot w = v_i w^i = \sum_{i=1}^n v_i w_i$$

(2) Matrix-Vektor-Produkt

$$b = Av$$
 $b^{i} = A^{i}_{j}v^{j} = \sum_{i=1}^{n} A^{i}_{j}v^{j}$

(3) Matrizenmultiplikation

$$C = AB$$
 $C_{k}^{i} = A_{j}^{i}B_{k}^{j} = \sum_{i=1}^{n} A_{j}^{i}B_{k}^{j}$

(4) Spur einer Matrix

$$Tr(A) = A^{j}_{j} = \sum_{i=1}^{n} A^{j}_{j}$$

(5) Transponieren einer Matrix

$$B = A^T$$
 $B^i_j = A^j_i$

(b) Das Levi-Civita-Symbol

Wir nehmen an:

$$x = (x^1, x^2, x^3)$$
 $y = (y^1, y^2, y^3)$ $z = (z^1, z^2, z^3)$

Behauptung: Es wird das Kreuzprodukt $z = x \times y$ berechnet.

Begründung: Komponentenweise nachrechnen:

$$z^{1} = \sum_{i=1}^{3} \sum_{j=1}^{3} \epsilon_{ij}^{1} x^{i} y^{j}$$

$$= \sum_{i=1}^{3} \left(\epsilon_{i2}^{1} x^{i} y^{2} + \epsilon_{i3}^{1} x^{i} y^{3} \right)$$

$$= \epsilon_{32}^{1} x^{3} y^{2} + \epsilon_{23}^{1} x^{2} y^{3}$$

$$= x^{2} y^{3} - x^{3} y^{2}$$

Analog für die anderen Komponenten (zyklische Vertauschung der Indizes)

$$z = (x^2y^3 - x^3y^2, x^3y^1 - x^1y^3, x^1y^2 - x^2y^1)$$

(c) Beweisen Sie für $f, g \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}^n)$, dass

$$\frac{d}{dt} \langle f(t), g(t) \rangle = \left\langle \frac{d}{dt} f(t), g(t) \right\rangle + \left\langle f(t), \frac{d}{dt} g(t) \right\rangle$$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle f\left(t\right), g\left(t\right) \right\rangle &= \frac{\mathrm{d}}{\mathrm{d}t} f^{i}\left(t\right) g^{i}\left(t\right) \\ &= \sum_{i=1}^{n} \frac{\mathrm{d}}{\mathrm{d}t} f^{i}\left(t\right) g^{i}\left(t\right) \\ &= \sum_{i=1}^{n} \frac{\mathrm{d}f^{i}\left(t\right)}{\mathrm{d}t} g^{i}\left(t\right) + f^{i}\left(t\right) \frac{\mathrm{d}g^{i}\left(t\right)}{\mathrm{d}t} \\ &= \sum_{i=1}^{n} \frac{\mathrm{d}f^{i}\left(t\right)}{\mathrm{d}t} g^{i}\left(t\right) + \sum_{i=1}^{n} \frac{\mathrm{d}g^{i}\left(t\right)}{\mathrm{d}t} f^{i}\left(t\right) \\ &= \left\langle \frac{\mathrm{d}}{\mathrm{d}t} f\left(t\right), g\left(t\right) \right\rangle + \left\langle f\left(t\right), \frac{\mathrm{d}}{\mathrm{d}t} g\left(t\right) \right\rangle \end{split}$$

A.3 Einige Karten

(a) Sei $U \subset \mathbb{R}^n$ eine beliebige offene Menge in der Standardtopologie. Statten Sie nun U mit einer n-dimensionalen Karte aus.

$$f: \mathbb{R}^n \to \mathbb{R}^n : x \mapsto x$$

Ist eine Karte von *U*.

- (b) Ist diese Konstruktion auch für beliebige abgeschlossene Mengen des \mathbb{R}^n möglich? Nein wahrscheinlich nicht. Gegenbeispiel
- (c) Stereographische Projektion der S^n Karte. Weitere Karten für 2(n+1) Hemisphären $U_{i,\pm}$ für $i=1,\ldots,n+1$. Alle Hemisphären für Überdeckung? Kartenwechsel $\to \mathscr{C}^1$ -Atlas?