- Supervised	learning	: fix	t predict
Unsupervised			t transform

- Rl has no specific obj, but to max reward

- RL is abalance of collecting data and keep an accurat measurement of significances explore & explore & exploit

- Three strategies for explore & exploit

- Epsilon - greedy

· Psendo code: Imitial high value 0 >> true mean p = random() if peeps:

do voindom actions

do the current best action j which has highest mean among all possible action update action

— NCB]

· Chernott-bound:

1 (1x-1136) ≤ 2 exp (-2€2/V)

 $=> X_{ucB-j} = \overline{X_j} + /2\frac{\ln N}{N_j}$

N is total # of actions used so fav Nj is # of time action j is used This encourage taking actions that hoven's been taken many times.

» Pseudo code:

for n in range (N): $j = \operatorname{argmax} \left[\operatorname{actions.mean} + \int_{2}^{\infty} \frac{\ln n}{n_{\operatorname{action}}} \right]$

do action j applate action j

- Baysian / Thopson sampling

• $X_{i} \sim N(N, \sigma_{N_{i}})$, Assume each action is Gaussian max $P(\theta | X)$, use data X to guide us to find best θ in parameter space $P(\theta | X) = P(X | \theta) \cdot P(\theta)$

posterior = likelihood X prior

different to posterior & prior in ML, which is

 $P(y|x) = P(x|y) \cdot P(x)$

max P(9/X): MA/>
max 7>(X/y): ML

· Speaint pair of 72(x10), P(0) are needed

• $X \sim N(M, \lambda)$, $M \sim N(M_0, \lambda_0^{-1})$ $\lambda = \lambda_0 + \ell N$

M= Mulotezxn Notell

Randomness controls sampling More times on action is taken, the more it will converge to true start · Pseudo code Initialize M=0, lo=1, l=1 tor n in range(N): take a sample from each artion sample = $\frac{N(0-1)}{\lambda} + M$ find the max of thuse sample update: $\lambda = \lambda + \ell n$

· Non stationary Bagesian

- Components of RL
 - · Agent: thing that plays the game
 - · Environment: things agent interact with
 - · State: specific env agent senses
 - · Action: things agent can do to effect the starte
 - · Renard: consequences of changing state

 how good the action is

 just a number

 instantanuous
 - · Sct), Act) -> R(4+1), S(++1)
 - · Terminal state: when to finish, bad & good
 - · Unstable system => infinit states => hard to deal
- Renards:
 - · Needs to define how to give renards
 - · Tell agent what you nant to achieve, not how to achieve.
 - · Value function: assign value to current state to veflect future.

- · Assign correct credit to past actions we care about which "path" to get reward too
- · Value: possible future remands

 Value func: E[all future rewards | S(t)]

 $V_{(S_t)} \leftarrow V_{(S_t)} + \alpha \left(V_{(S_{t+1})} - V_{(S_t)} \right)$

- · We explore to update Value functions ///
- Playing the game more, more likely ne get to true probability
- · Order is important!
- . If V(Star) < V(St), update does bely