Distributed Systems

Cloud Virtualisation

The von Neumann Architecture

- All general purpose computers are now based on the key concepts of the von Neumann architecture:
 - A single read-write memory for data and instructions
 - The memory is addressable by location in a way which does not depend on the contents of the location
 - Execution proceeds using instructions from consecutive locations unless an instruction modifies this sequentiality explicitly
- The von Neumann bottleneck: a single channel for both instructions and data
- Harvard Architecture: separate memories double the bandwidth of the simple von Neumann architecture

The von Neumann and Harvard Architectures

Figure 3: The Harvard architecture

Figure 2: The von Neumann architecture

Figure 4: A modified Harvard architecture

Computer Components

- CPU
 - Datapath
 - Control
- Memory (hierarchy)
 - Main Memory
 - Secondary memory
 - Cache
- I/O devices
- Buses (external and internal to CPU)

Instruction Execution: The Fetch-Decode-Execute Cycles

- The CPU executes instructions in a series of small steps:
 - **Fetch** the next instruction from memory in the *Instruction Register (IR)*
 - Change the *Program Counter (PC)* to point to the following instruction
 - Determine the type of fetched instruction
 - If the instruction uses a word in memory, determine where it is
 - Fetch the word, if needed, into the CPU
 - Execute the instruction
 - Go to step 1

Multi-Level Approach

Contemporary Typical Multilevel Machines

- Digital Logic design. Gate level
- Micro-architecture Level
 - Programming Model (Registers)
 - Datapath & Control
- Instruction Set Architecture Level-ISA
 - Instruction types and formats
 - Addressing

Virtualisation Reference Model

Virtualisation and Cloud

Motivation for virtualisation

- Originated from hardware virtualisation
- Performance
- Computing capacity
- Resource utilisation
- Lack of space server consolidation
- Greening initiatives
- Admin costs

Datacenter and Server Cost Distribution

Managed Execution

VM-driven Infrastructure vs Clouddriven Infrastructure

- User driven Provisioning, instead of admin driven
- Public Scalability Can not scale beyond organizational hardware
- Pay for what you use (unless private cloud), invest in infrastructure
- Resilience and uptime guarantees (unless private cloud),
 VM is as resilient as internal infrastructure
- If organization loses network connectivity cloud infrastructure is lost internal VM driven infrastructure stay online for use.

Levels of Virtualisation

Execution Virtualisation: A machine reference model

- Virtualising an execution environment at different levels of the computing stack requires a reference model that defines the interfaces between the levels of abstractions which hide implementations details
- Virtualisation techniques replace one of the layers and intercept the calls that are directed toward it
- Required: emulation of interfaces and clear interaction with the underlying layer

Execution Virtualisation

- Instruction set exposed by the hardware is divided into different security classes
 - non-privileged: not accessing shared resources
 - Privileged: used under specific restrictions, mostly used for sensitive operations
 - Behaviour-sensitive: expose privileged state
 - Control-sensitive: modify privileged state
- Execution can be in
 - Supervisor mode (kernel)
 - User mode (non privileged)

Hardware level Virtualisation – reference model

Hardware
 virtualisation:
 provides an abstract
 execution
 environment on top
 of which a guest
 operating system can
 be run

Hypervisors

- Type I (or native virtual machine): run directly on top of the hardware interact directly with ISA
- Type II (or hosted virtual machine)

Hypervisors

- Equivalence
- Resource control: VMM should be in complete control
- **Efficiency**: a statistically dominant fraction of machine instructions should be executed without intervention from the VMM
- This is determined by the layout of the ISA of the host

Hypervisors

• **Theorem 1.** For Any conventional 3rd generation computer, a VMM may be constructed if the set of the sensitive instructions for that computer is a subset of the set of privileged instructions

- **Theorem 2**. A conventional 3rd generation computer is recursively virtualizable if:
 - It is virtualizable and
 - A VMM without any timing dependencies can be constructed for it
- **Theorem 3**. A hybrid VMM can be constructed for any conventional 3rd generation machine in which the set of user-sensitive instructions is a subset of the set of privileged instructions

Hardware Virtualisation techniques

- Hardware-Assisted Virtualisation: run a guest operating system in complete isolation (Intel VT, AMD V)
- Full Virtualisation: run OS on top of a virtual machine
 - Key challenge: interception of privileged instructions
- Paravirtualisation: nontransparent, supports thin VMM. Guests need to be modified. Simplicity
- Partial Virtualisation: partial emulation of host, does not allow the execution of the guest OS in complete isolation. Not all features of OS are supported

Disadvantages

- Performance degradation
- Inefficiency and degraded user experience
- Security threats (e.g. phishing)

Xen: Paravirtualisation

VMware: full virtualisation

VMware: Desktop Environment

- Type II Hypervisor
- VMware Workstation (windows), VMware Fusion (Mac)

VMware: Server Environment

- Type I Hypervisor
- Vmware GSX Server

VMware: Server Environment

- Type I Hypervisor
- Vmware ESX Server

VMware: Cloud Solution stack

Microsoft Hyper V

