### NASA/TM-2000-209891, Vol. 2



## **Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)**

Forrest G. Hall and Jeffrey A. Newcomer, Editors

## Volume 2

## **BOREAS AFM-2 King Air 1994 Aircraft Flux and Moving Window Data**

R.D. Kelly

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

#### The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION.
   English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov/STI-homepage.html
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
   NASA Access Help Desk
   NASA Center for AeroSpace Information
   7121 Standard Drive
   Hanover, MD 21076-1320

## NASA/TM-2000-209891, Vol. 2



## Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jeffrey A. Newcomer, Editors

### Volume 2

# BOREAS AFM-2 King Air 1994 Aircraft Flux and Moving Window Data

Robert D. Kelly, University of Wyoming

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

|                                       |                 | 1                                      |
|---------------------------------------|-----------------|----------------------------------------|
|                                       |                 |                                        |
|                                       |                 |                                        |
|                                       | Available from: |                                        |
| NASA Center for AeroSpace Information |                 | National Technical Information Service |
| 7121 Standard Drive                   |                 | 5285 Port Royal Road                   |
| Hanover, MD 21076-1320                |                 | Springfield, VA 22161                  |
| Price Code: A17                       |                 | Price Code: A10                        |
|                                       |                 |                                        |
|                                       |                 |                                        |

## BOREAS AFM-2 King Air 1994 Aircraft Flux and Moving Window Data

Robert D. Kelly

#### **Summary**

The BOREAS AFM-2 team collected pass-by-pass fluxes (and many other statistics) for a large number of level (constant altitude), straight-line passes used in a variety of flight patterns. The data were collected by the University of Wyoming King Air in 1994 BOREAS IFCs 1-3. Most of these data were collected at 60-70 m above ground level, but a significant number of passes were also flown at various levels in the planetary boundary layer, up to about the inversion height. This documentation concerns only the data from the straight and level passes that are presented as original (over the NSA and SSA) and moving window values (over the Transect). Another archive of King Air data is also available, containing data from all the soundings flown by the King Air 1994 IFCs 1-3. The data are stored in tabular ASCII files.

Note that although there are less than 100 records in any data file, there are over 170 columns of data. Most spreadsheet software should be able to handle up to 256 columns of data.

#### **Table of Contents**

- 1) Data Set Overview
- 2) Investigator(s)
- 3) Theory of Measurements
- 4) Equipment
- 5) Data Acquisition Methods
- 6) Observations
- 7) Data Description
- 8) Data Organization
- 9) Data Manipulations
- 10) Errors
- 11) Notes
- 12) Application of the Data Set
- 13) Future Modifications and Plans
- 14) Software
- 15) Data Access
- 16) Output Products and Availability
- 17) References
- 18) Glossary of Terms
- 19) List of Acronyms
- 20) Document Information

#### 1. Data Set Overview

#### 1.1 Data Set Identification

BOREAS AFM-02 King Air 1994 Aircraft Flux and Moving Window Data

#### 1.2 Data Set Introduction

The King Air was flown in a variety of flight patterns in the BOReal Ecosystem-Atmosphere Study (BOREAS) during 1994, but predominantly in various sequences of straight, constant-altitude passes for measurement of fluxes and flux profiles in the boundary layer above the BOREAS experiment sites. This document describes the contents of these "flux" archives, which also include statistical summaries of a large number of navigational, dynamic, and thermodynamic parameters.

The fluxes and statistics archived here are for passes or segments of passes between predefined waypoints, as part of various flight patterns (see Section 5). The shortest times for the regular flux data passes/segments are about 2 min, for which the spatial resolution is about 10 km. Included in these regular data are those from the grid patterns and the Candle Lake runs. The passes for the grid patterns (GS, GN) are 32 km in length. The Candle Lake (CS) runs were divided into two segments, one over the relatively homogeneous Old Aspen (OA) area surrounding the OA flux tower (east end of CL run), and the other over the area at the west end of the run dominated by black spruce. The moving window data for each long leg of the regional transects (RT) was segmented into 180-second segments, each overlapping the adjoining two segments by 50%.

#### 1.3 Objective/Purpose

The Wyoming King Air is one of four flux aircraft flown in BOREAS. The primary objectives of its operation were to measure fluxes of sensible heat, latent heat (moisture), momentum, and carbon dioxide in the boundary layer. In addition, atmospheric dynamic, thermodynamic, and radiation data were collected, along with the standard aircraft parameters of position, altitude, heading, etc. These data will be used for estimates of surface fluxes, boundary layer budgets, and error analysis of flux measurements, and will be integrated with smaller and larger scale measurements from the project.

#### 1.4 Summary of Parameters

The following is a list of variables for each "flux pass" by the King Air. Section 7 defines the variables and their origins in detail. Note: Those variables flagged (\*\*) were not measured by the King Air.

#### **VARIABLES:**

- BOREAS aircraft i.d.
- Date
- BOREAS mission designator
- Mission number of day
- Pass number
- Segment number
- Run start time, GMT
- Starting latitude
- Starting longitude
- Starting BORIS grid E
- Starting BORIS grid N
- Run end time, GMT
- Ending latitude
- Ending longitude
- Ending BORIS grid E
- Ending BORIS grid N
- Aircraft heading
- Mean pressure altitude
- Mean radar altitude
- Mean wind direction
- Mean wind speed
- Air temperature
- Potential temperature
- Mixing ratio, H<sub>2</sub>0
- U, westerly wind component
- V, southerly wind component
- Static pressure
- Surface radiative temperature \*\*
- Downwelling total radiation
- Upwelling total radiation

- Downwelling longwave radiation
- Upwelling longwave radiation
- Net radiation \*\*
- Upwelling PAR \*\*
- Downwelling PAR \*\*
- Auxiliary radiation sensor \*\*
- Greenness index \*\*
- CO<sub>2</sub> concentration as mole CO<sub>2</sub> per mole dry air (also referred to as CO<sub>2</sub> molar mixing ratio. If it were given as just CO<sub>2</sub> mixing ratio, the units would be mass CO<sub>2</sub> per mass dry air).
- Ozone concentration \*\*
- Methane concentration \*\*
- Satellite simulator channels 1-4 \*\*

#### Standard deviations of the following:

- Air temperature
- Potential temperature
- Mixing ratio, H<sub>2</sub>0
- U, westerly wind component
- V, southerly wind component
- Static pressure
- Surface radiative temperature \*\*
- Downwelling total radiation
- Upwelling total radiation
- Downwelling longwave radiation
- Upwelling longwave radiation
- Net radiation \*\*
- Upwelling PAR \*\*
- Downwelling PAR \*\*
- Auxiliary radiation sensor \*\*
- Greenness index \*\*
- CO<sub>2</sub> concentration (mole CO<sub>2</sub> per mole dry air)
- Ozone concentration \*\*
- Methane concentration \*\*
- Satellite simulator, channels 1-4 \*\*

#### Linear trends of the following:

- Trend in air temp.
- Trend in potential temp.
- Trend in mixing ratio
- Trend in u
- Trend in v
- Trend in static pressure
- Trend in surface radiation temperature \*\*
- Trend in downwelling total radiation \*\*
- Trend in upwelling total radiation \*\*
- Trend in downwelling longwave radiation \*\*
- Trend in upwelling longwave radiation \*\*
- Trend in greenness index \*\*
- Trend in CO<sub>2</sub> concentration
- Trend in O<sub>3</sub> concentration \*\*
- Trend in CH<sub>4</sub> concentration \*\*

## In various categories to follow, the following variables are referred to as the flux variables:

- Vertical gust, w
- Westerly wind component, u
- Southerly wind component, v
- Along wind component
- Crosswind component
- Potential temperature
- H<sub>2</sub>0 mixing ratio (mass H<sub>2</sub>O per mass dry air)
- CO<sub>2</sub> mixing ratio (mass CO<sub>2</sub> per mass dry air)
- O<sub>3</sub> concentration \*\*
- CH<sub>4</sub> concentration \*\*

## In various categories to follow, these variable pairs are referred to as the flux variable pairs:

- w, u
- w, v
- w, alongwind comp.
- w, crosswind comp.
- w, potential temp
- w, H<sub>2</sub>O mixing ratio (mass H<sub>2</sub>O per mass dry air)
- w, CO<sub>2</sub> mixing ratio (mass CO<sub>2</sub> per mass dry air)
- w, O<sub>3</sub> concentration \*\*
- w, CH<sub>4</sub> concentration \*\*
- Potential temperature, H<sub>2</sub>O mixing ratio

#### List of fluxes:

- Momentum flux, south component
- Momentum flux, west component
- Momentum flux along mean wind
- Momentum flux across
- Sensible heat flux, H
- Latent heat flux, LE
- CO<sub>2</sub> flux
- Ozone flux \*\*
- Ozone deposition velocity \*\*
- Methane flux \*\*
- Standard deviations for the raw flux variables
- Skewness for the raw flux variables
- Kurtosis for the raw flux variables
- Correlation coefficients for the raw flux variable pairs
- Fluxes using the raw data
- Constants used in the flux calculations (such as specific heats, latent heat)
- Standard deviations for the linearly detrended flux variables
- Skewness for the linearly detrended flux variables
- Kurtosis for the linearly detrended flux variables
- Correlation coefficients for the linearly detrended flux variable pairs
- Fluxes using the linearly detrended data

#### 1.5 Discussion

The King Air was flown in all three BOREAS 1994 Intensive Field Campaigns (IFCs). The archived data were collected during straight and level flight lines over the BOREAS study areas and on regional runs between Southern Study Area (SSA) and Northern Study Area (NSA). A variety of flight patterns were used, including grids, L- patterns, profiling stacks, and soundings, which are described in more detail in Section 7. Two separate sets of data have been submitted to the BOREAS Information System (BORIS) archive: 1-second resolution listings of various variables from the soundings, and fluxes and statistics from the level flux runs. Variables in the latter category include pass-length averages and other statistics; momentum and scalar fluxes; and supporting meteorological, radiometric, and aircraft positional data. The high-rate data from which all these variables were computed were not submitted to BORIS. If required, they may be acquired from the University of Wyoming directly.

#### 1.6 Related Data Sets

Related data sets include the 1994 King Air sounding data for BOREAS and the flux and/or sounding archives from the other three flux aircraft:

BOREAS AFM-01 NOAA/ATDD Long-EZ Aircraft Flux Data over the SSA BOREAS AFM-02 Wyoming King Air 1994 Aircraft Sounding Data BOREAS AFM-03 NCAR Electra 1994 Aircraft Flux and Moving Window Data BOREAS AFM-03 NCAR Electra 1994 Aircraft Sounding Data BOREAS AFM-04 Twin Otter Aircraft Flux Data BOREAS AFM-04 Twin Otter Aircraft Sounding Data

#### 2. Investigator(s)

#### 2.1 Investigator(s) Name and Title

Dr. Robert D. Kelly, Associate Professor Dept. of Atmospheric Science University of Wyoming P.O. Box 3038 Laramie, WY 82071-3038

#### 2.2 Title of Investigation

Airborne Investigation of Biosphere-Atmosphere Interactions over the Boreal Forest

#### 2.3 Contact Information

#### Contact 1:

Robert D. Kelly Dept. of Atmospheric Sciences University of Wyoming P.O. Box 3038 Univ. Station Laramie, WY 82071-3038 (307) 766-4955 (307) 766-2635 (fax) Contact 2:
Jeffrey Newcomer
Raytheon ITSS
NASA GSFC
Greenbelt, MD 20071
(301) 286-7858
(301) 286-0239 (fax)
Jeffrey.Newcomer@gsfc.nasa.gov

#### 3. Theory of Measurements

A series of introductory monographs addressing the theory and practice of measuring atmospheric variables from a moving, aircraft platform may be found in Lenschow, 1986. An introduction to the general topic of eddy correlation fluxes may be found in Stull, 1988.

The aircraft uses gust sensors to measure the 3-D air motion relative to the aircraft and a combination of an inertial platform, accelerometers, and (more recently) satellite-based global positioning system (GPS) to measure the motion of the aircraft relative to Earth. These data are combined to determine aircraft position and the Earth-relative 3-D winds. Scalar quantities, including static pressure, temperature, water vapor mixing ratio, and CO<sub>2</sub> mixing ratio are also measured with fast-response, aircraft-mounted sensors. For each straight, level pass by the aircraft, the local means or trends are removed from each of the wind components and the scalar values, leaving the gust components u', v', w', T', r', etc., with which the eddy correlation fluxes are calculated.

#### 4. Equipment

#### 4.1 Sensor/Instrument Description

Table 4.1. University of Wyoming King Air Instruments

| Variable Hi-rate temperature                                                                                                                                                   | Instrument Rosemount housing, fast-response                                                                                                                                                                           | Accuracy<br>0.50 C                                                                                                              | Resolution<br>0.01 C                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dewpoint temperature Water vapor mix ratio CO <sub>2</sub> mix ratio Magnetic heading Static pressure Static pressure Geometric Altitude                                       | thermistor (design by Friehe, UCI) Cambridge Model 1373C LICOR 6262 IR spectrometer LICOR 6262 IR spectrometer King KPI553/Sperry C14-43 Rosemount 1201FA1B1A Rosemount 1501 Stewart Warner APN159                    | 1.0 C, >0 C<br>1% of reading<br>+/-1ppm at .01 ppm<br>1 degree<br>0.5 mb<br>0.5 mb<br>1% reading                                | 0.006 C<br>0.001 g/kg<br>350 ppm<br>0.02 degree<br>0.06 mb<br>0.003 mb<br>0.24 ft                                                                                   |
| Geometric Altitude                                                                                                                                                             | King KPA 405                                                                                                                                                                                                          | 3% <500 ft                                                                                                                      | 0.48 ft                                                                                                                                                             |
| Total pressure Azimuth VOR Distance DME Latitude/longtitude Latitude/longtitude Ground velocity Vertical velocity Pitch/roll Platform heading Flow angle Vertical acceleration | Rosemount 831CPX King KNR615 VOR King KNR705A DME Tremble 2000 GPS Honeywell Laseref SM Rosemount 858AJ/831CPX Humphrey SA0905021 | 6% > 500 ft 2 mb 1 degree 0.2 nautical miles 100 m 0.8 nm/hr drift 13.5 ft/s 0.5 ft/s 0.05 degree 0.2 degree 0.2 degree 0.002 g | 0.005 mb<br>0.02 degree<br>0.1 nautical mile<br>0.000172 degree<br>0.000172 degree<br>0.0039 kts<br>0.03215 ft/min<br>0.000172 degree<br>0.00375 degree<br>0.0001 g |

| Rate of climb                                                                | Rosemount 1241A4BCDE                                 | 1%, <15000 ft 2%, >25000 ft                              | 0.004 m/s                                                                    |
|------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|
| Engine torque<br>Liquid Water Content<br>Liquid Water Content<br>Cloud drops | In-house CSIRO hot wire<br>Bacharach LWH<br>PMS FSSP | 0.2 g/m <sup>3</sup><br>0.2 g/m <sup>3</sup><br>3 micron | 0.2 ft-lbf<br>0.0003 g/m <sup>3</sup><br>0.0002 g/m <sup>3</sup><br>3 micron |
| Radiation: Upwelling Shortwave (0.3-3 microns)                               | Eppley Pyranometer                                   | 5 W/m <sup>2</sup>                                       | 1 W/m <sup>2</sup>                                                           |
| Downwelling Shortwave                                                        | Eppley Pyranometer                                   | 5 W/m <sup>2</sup>                                       | 1 W/m <sup>2</sup>                                                           |
| (0.3-3 microns) Upwelling IR (4-50 microns)                                  | Eppley Pyrgeometer                                   | 15 W/m <sup>2</sup>                                      | 1 W/m <sup>2</sup>                                                           |
| Downwelling IR (4-50 microns)                                                | Eppley Pyrgeometer                                   | 15 W/m <sup>2</sup>                                      | 1 W/m <sup>2</sup>                                                           |

#### 4.1.1 Collection Environment

The data were collected during each day's flights over a vertical and horizontal range with varying atmospheric conditions.

#### 4.1.2 Source/Platform

Platform: Beechcraft Super King Air model 200T, twin-turboprop aircraft.

#### 4.1.3 Source/Platform Mission Objectives

See Section 1.4.

#### 4.1.4 Key Variables

See Sections 1.4, 1.5, and 7.3.

#### 4.1.5 Principles of Operation

See Section 3.

#### 4.1.6 Sensor/Instrument Measurement Geometry

The gust probe was mounted at the end of the aircraft nose boom, so that the gust probe tip was about 2 m ahead of the nose of the aircraft. The inertial reference system (IRS) and accelerometers were mounted close to the main wing spar (close to aircraft c.g.). A fast-response (Friehe-type) temperature probe was mounted below the nose of the aircraft, 1.29 m aft from the gust probe tip. Water vapor and CO<sub>2</sub> measurements were obtained with a LI-COR 6262 infrared absorption spectrometer. Air was drawn from the airstream above the aircraft cabin into a 12.7-mm i.d. tube that faced forward, about 0.3 m above the fuselage skin and 4.06 m aft of the gust probe tip. Airflow in the tube was maintained with a high-capacity vacuum pump at 60-70 SLPM (about 9 m/s), for Reynolds number about 50,000 (fully developed turbulent flow). At 1.52 m from the inlet, air was drawn from the center of the tube into the LI-COR through a short 6.4-mm i.d. tube, again by vacuum pump, at an average flow rate of 6-8 SLPM (also fully turbulent). As verified by flying the aircraft through a power-plant plume, there was a time delay of 0.3 s between the gust probe data and the LI-COR data. This delay was removed in the software at the time of data processing. The LI-COR 6262 was operated in absolute mode, in which the closed-path absorption in the sample chamber was simultaneously compared to the closed-path absorption in the reference chamber. Air in the reference chamber was circulated continuously through scrubbers that remove both water and CO2, and was circulated at a flow rate of 2 SLPM. A Cambridge chilled-mirror dewpoint hygrometer mounted inside the cabin drew air from the vacuum pump-driven sample tube. All cloud and precipitation probes (PMS and liquid water content) were mounted near the wing tips, on both wings.

#### 4.1.7 Manufacturer of Sensor/Instrument

See Table 4.1.

#### 4.2 Calibration

Instruments were subject to calibration as follows:

- Air temperature: Used manufacturer's one-time calibration for Rosemount model 102, then compared Friehe-type probe against Rosemount.
- Water vapor concentration: Before each flight, the LI-COR H<sub>2</sub>O channel was calibrated by flushing the chamber with a beam-filling gas of known H<sub>2</sub>O concentration, generated with a LI-COR Model 610 Dew-Point generator, with accuracy +/-0.03 °C.
- CO<sub>2</sub> concentration: Before each flight, the LI-COR CO<sub>2</sub> channel was calibrated by flushing the chamber with a gas of known CO<sub>2</sub> concentration (Source: Scott Specialty, Longmont, Colo., concentration 403.5 ppm, accurate to 4%).
- Static pressure and gust differential pressures: The gust probe differential pressure sensors (for up-down and left-right angle of flow measurements) and absolute pressure sensor (gust probe total pressure) were calibrated at the beginning of each IFC, using the Rosemount 1501 (accurate to 0.5 mb).

#### 4.2.1 Specifications

See Table 4.1.

#### 4.2.1.1 Tolerance

None given.

#### 4.2.2 Frequency of Calibration

See Section 4.2.

#### 4.2.3 Other Calibration Information

None given.

### 5. Data Acquisition Methods

The straight-line, constant altitude passes used for the flux calculations were all part of several different flight patterns used throughout the 1994 BOREAS campaigns. What follows here is a brief description of those patterns, including the short, two-letter identifier used for communications, labeling data files, etc.

#### Navigation waypoints used for flying the patterns:

```
Long.
Pt. Lat.
  53° 32.0'N 106° 34.0'W
Α
  53° 37.8'N 106° 11.4'W (same as Prince Albert National Park (PANP)-OA)
  53° 55.6'N 104° 59.7'W
  54° 07.0'N 104° 13.5'W
  54° 41.7'N 103° 47.5'W
K
  54° 57.3'N 101° 58.0'W
L
M 55° 54.8'N 99° 07.5'W
  55° 53.2'N 98° 00.0'W
0
  60° 30.0'N 98° 00.0'W
Q 60° 30.0'N 95° 30.0'W
R 59° 00.0'N 95° 30.0'W
CH 58° 44.5'N 94° 04.0'W (Churchill airport)
  53° 34.7'N 106° 23.8'W
а
b 53° 42.8'N 105° 52.0'W
c 53° 55.0'N 105° 04.0'W
d 53° 59.0'N 104° 47.2'W
  53° 59.8'N 104° 43.5'W
g 53° 32.0'N 104° 27.6'W
h 53° 56.8'N 105° 20.5'W
  54° 03.7'N 104° 45.5'W
i
  53° 43.8'N 104° 34.0'W
   53° 35.8'N 106° 18.0'W
m 54° 05.2'N 104° 50.5'W
n 53° 32.2'N 104° 19.5'W
s 53° 17.0'N 105° 43.0'W
  53° 38.0'N 105° 43.0'W
t
  53° 17.0'N 105° 32.0'W
v 53° 43.0'N 105° 17.0'W
Centers of north and south KA grids:
North 55° 52.5'N 98° 31.5'W
South 53° 51.5'N 104° 48.6'W
Other locations:
NOAA radar 55° 56.0'N 98° 36.8'W
```

#### 6. Observations

### 6.1 Data Notes

None given.

#### 6.2 Field Notes

None given.

#### 7. Data Description

#### 7.1 Spatial Characteristics

Defined by flight pattern, leg length, etc. These values are contained in each archived set of numbers for each pass or segment.

#### 7.1.1 Spatial Coverage

The majority of the data were collected over the BOREAS SSA and NSA.

The North American Datum of 1983 (NAD83) corner coordinates of the SSA are:

|           | Latitude  | Longitude  |
|-----------|-----------|------------|
|           |           |            |
| Northwest | 54.321° N | 106.228° W |
| Northeast | 54.225° N | 104.237° W |
| Southwest | 53.515° N | 106.321° W |
| Southeast | 53.420° N | 104.368° W |

The NAD83 corner coordinates of the NSA are:

|           | Latitude     |   | Longitude |   |  |
|-----------|--------------|---|-----------|---|--|
|           | <del>-</del> |   |           |   |  |
| Northwest | 56.249°      | N | 98.825°   | W |  |
| Northeast | 56.083°      | N | 97.234°   | W |  |
| Southwest | 55.542°      | N | 99.045°   | W |  |
| Southeast | 55.379°      | N | 97.489°   | W |  |

#### 7.1.2 Spatial Coverage Map

Data were collected over the northern and southern study areas of BOREAS, and along a transect between them.

#### 7.1.3 Spatial Resolution

The fluxes and statistics archived here are for passes or segments of passes between predefined waypoints, as part of various flight patterns (see Section 5). The shortest times for such passes/segments are about 2 min, i.e., about 10 km. Thus, the spatial resolution is about 10 km or greater. For the grid patterns (GS, GN), the passes are each 32 km in length. The Candle Lake (CS) runs were divided into two segments, one over the relatively homogeneous OA area surrounding the OA flux tower (east end of CL run), and the other over the area at the west end of the run dominated by black spruce. Each long leg of the regional transects (RT) was segmented into 180-second segments, each overlapping the adjoining two segments by 50%.

#### 7.1.4 Projection

Not applicable.

#### 7.1.5 Grid Description

Not applicable.

#### 7.2 Temporal Characteristics

7.2.1 Temporal Coverage
Times of data collection are given in the table below. See Section 5 for flight pattern descriptions.

Summary of UW King Air research flights for BOREAS 1994

| Date   | Start | End  | Hrs | Weather                           | Description and comments                                                                               |
|--------|-------|------|-----|-----------------------------------|--------------------------------------------------------------------------------------------------------|
| 940525 | 1745  | 2000 | 2.9 | 5-10% sct cu                      | CS, 2 rts a-h, 300 agl FS, first a-h with FE                                                           |
| 940526 | 1646  | 1905 | 3.0 | ci, small % cu                    | GS, full rt, 300 agl                                                                                   |
| 940531 | 1645  | 1929 | 3.6 | cu incr 10-40% sharp jump Zi      | FS, 300 agl with FT PS, using W,E ends FK grid at 200 agl, 2500 and 3400 msl FS, a-d, 300 agl, with FE |
| 940601 | 630   | 1802 | 2.4 | H, ci, cist sct cu < 1%           | LS, j-i-h-i-j, 200 agl CS, one rt d-a-d, 200 agl                                                       |
| 940604 | 1616  | 1919 | 3.8 | clr then cu incr rapidly, end ovc | CS, mult passes 200 agl, 3000 msl FS, d-a, 200 agl, with FL                                            |
| 940606 | 1546  | 1809 | 3.1 | cu < 5%                           | LS, mult h-i-j, 200 agl-2900 msl                                                                       |
| 940607 | 1447  | 1649 | 4.8 | clr entire pattern                | RT, a-h-k-l-m, 200 agl                                                                                 |
|        | 1649  | 1904 |     | clr entire pattern                | GN, full rt, all 300 agl, EW lines                                                                     |
| 940608 | 1520  | 1742 | 2.9 | cir                               | LN, mult t-o at 200 agl, 2100 msl FN, m-o, 300 agl with FT                                             |
| 940610 | 1642  | 1901 | 3.0 | set ci, K all sky                 | GN, full rt, 200 agl, NS lines                                                                         |
| 940611 | 1646  | 1844 | 2.6 | K, cu to 80%, RW-                 | RT, o-m-l-k-h-a, 200 agl                                                                               |
| 940720 | 1656  | 2044 | 4.4 | H, K, cu 10-50%                   | CS, a-d, 300 agl to 4800 msl (co-ord with FE) FS, two a-d, 300 agl with FE                             |
| 940721 | 1652  | 1905 | 3.0 | clr?                              | GS, full rt, 200 agl, NS lines FS, one run SW of grid with FT                                          |
| 940723 | 1528  | 1800 | 3.2 | clr, incr to 20% cu               | CS, mult a-d at 200 agl, 3500 msl                                                                      |
| 940724 | 1655  | 1943 | 3.4 | clr over site                     | GS, full rt, 200 agl, EW lines                                                                         |
| 940725 | 1519  | 1753 | 3.2 | clr                               | CS, mult a-d at 200 agl, 3000 msl                                                                      |
| 940726 | 1628  | 1832 | 2.7 | K, ci                             | RT, a-h-k-l-m-o, 200 agl                                                                               |
| 940727 | 1609  | 1909 | 4.3 | K, altocu, cu                     | GN, full rt 200 agl, NS lines TN (mult) at radar, 500-1000 agl                                         |
| 940728 | 1620  | 1810 | 2.6 | K, ci                             | HN(GN) time-centered m-o, 200 agl, 1800 and 2700 msl                                                   |
| 940731 | 1550  | 1859 | 3.7 | K, clr above                      | GN                                                                                                     |

| Date   | Start | End  | Hrs | Weather               | Description and comments                                                        |
|--------|-------|------|-----|-----------------------|---------------------------------------------------------------------------------|
| 940831 | 1720  | 1938 | 2.9 | K, cu <1 to 40%       | GN, full rt, 200 agl, EW lines                                                  |
| 940901 | 1550  | 1717 | 1.9 | clr above K           | FN, rt 200 agl, with FT FN, rt 200 agl, diff TAS than FT LN, o-m-o-m-o, 200 agl |
| 940903 | 1548  | 1811 | 3.0 | ci, K, cu 0-10%       | GN, full rt, 200 agl, EW lines                                                  |
| 940906 | 1605  | 1833 | 2.9 | cu 20-80%             | GN, full rt, 200 agl, NS lines                                                  |
| 940908 | 1606  | 1823 | 2.8 | acu, ci, cist, ci ove | RT, o-m-l-k-h-a, 200 agl                                                        |
| 940909 | 1940  | 2131 | 2.7 | ci, cist thinning     | CS, mult 200 agl-2600 msl, with FE FS, 300 agl, with FE                         |
| 940912 | 1735  | 2004 | 3.6 | cu incr 0-30%         | CS, 3 rts, all 200 agl Test = 3 rt over OA area of CS                           |
| 940913 | 1645  | 1905 | 3.4 | clr, then cist and ci | GS, full rt, 200 agl, EW lines Test = wind "L" at 8500 msl                      |
| 940916 | 1653  | 1914 | 4.8 | clr                   | GS, full rt, NS lines, 200 agl                                                  |
|        | 1925  | 2053 |     | clr then <5% cu       | CS, d-a mult lvls, with FE FS, second a-d with FE, 600 agl                      |
| 940917 | 1712  | 1902 | 2.4 | clr, thin ci to W     | FS, one end=a, 200 agl, with FT CS, a-d, two rts, 200 agl                       |

#### Abbreviations used in weather notes in table:

cu cumulus
st status
ci cirrus
sct scattered

Zi inversion height above ground

H haze K smoke

cist cirrostratus

clr clear
ovc overcast

RW- light rain showers

acu altocumulus

#### Abbreviations in flight descriptions:

rt round trip

agl above ground level (in feet)
msl above mean sea level (in feet)

mult multiple

TAS true airspeed

lvl level

wind "L" "L" with one leg parallel to wind direction, flown as at least one round trip

#### 7.2.2 Temporal Coverage Map

See Section 7.2.1.

#### 7.2.3 Temporal Resolution

See Section 7.2.1. Also, each archived data entry contains the start and end times for the pass/segment being summarized.

#### 7.3 Data Characteristics

#### 7.3.1 Parameter/Variable

The parameters contained in the aircraft flux data over the NSA and SSA and moving window data from the Transect files on the CD-ROM are:

Column Name \_\_\_\_\_\_ SPATIAL COVERAGE RUN START DATE RUN START TIME RUN END DATE RUN END TIME FLUX MISSION DESIGNATOR FLUX MISSION NUM FLUX PASS NUM FLUX SEGMENT NUM START LATITUDE START LONGITUDE END LATITUDE END LONGITUDE START BOREAS X START BOREAS Y END BOREAS X END BOREAS Y HEADING MEAN PRESS ALTITUDE MEAN RADAR ALTITUDE MEAN WIND DIR MEAN WIND SPEED MEAN AIR TEMP MEAN POTNTL TEMP MEAN H20 MIX RATIO MEAN U COMPNT WIND VELOC MEAN\_V\_COMPNT\_WIND\_VELOC MEAN\_STATIC\_PRESS MEAN SURF RAD TEMP MEAN DOWN TOTAL RAD MEAN UP TOTAL RAD MEAN DOWN LONGWAVE RAD MEAN UP LONGWAVE RAD MEAN NET RAD MEAN UP PPFD MEAN DOWN PPFD MEAN AUX\_RAD MEAN GREEN INDEX MEAN CO2 CONC

MEAN 03 CONC MEAN CH4 CONC MEAN SAT SIM CH1 MEAN\_SAT\_SIM\_CH2 MEAN SAT SIM CH3 MEAN SAT SIM CH4 SDEV AIR TEMP SDEV POTNTL TEMP SDEV H20 MIX RATIO SDEV\_U\_COMPNT\_WIND\_VELOC SDEV V COMPNT WIND VELOC SDEV STATIC PRESS SDEV SURF RAD TEMP SDEV DOWN TOTAL RAD SDEV UP TOTAL RAD SDEV DOWN LONGWAVE RAD SDEV UP LONGWAVE RAD SDEV NET RAD SDEV\_UP\_PPFD SDEV DOWN PPFD SDEV AUX RAD SDEV\_GREEN\_INDEX SDEV CO2 CONC SDEV\_03\_CONC SDEV CH4 CONC SDEV SAT SIM CH1 SDEV\_SAT\_SIM\_CH2 SDEV SAT SIM CH3 SDEV SAT SIM CH4 TREND AIR TEMP TREND POTNTL TEMP TREND H20 MIX RATIO TREND U COMPNT WIND VELOC TREND V COMPNT WIND VELOC TREND STATIC PRESS TREND SURF RAD TEMP TREND DOWN TOTAL RAD TREND\_UP\_TOTAL\_RAD TREND DOWN LONGWAVE RAD TREND UP LONGWAVE RAD TREND GREEN INDEX TREND CO2 CONC TREND 03 CONC TREND CH4 CONC SDEV\_VERT\_GUST\_RAW SDEV U COMPNT WIND VELOC RAW SDEV V COMPNT WIND VELOC RAW SDEV\_ALONG\_WIND RAW SDEV CROSS WIND RAW SDEV\_POTNTL\_TEMP\_RAW SDEV H20 MIX RATIO RAW SDEV CO2 MIX RATIO RAW SDEV\_O3\_CONC\_RAW SDEV CH4 CONC RAW

SKEW VERT GUST RAW SKEW U COMPNT WIND VELOC RAW SKEW V COMPNT WIND\_VELOC\_RAW SKEW ALONG WIND RAW SKEW\_CROSS\_WIND RAW SKEW POTNTL TEMP\_RAW SKEW H20\_MIX\_RATIO\_RAW SKEW CO2 MIX RATIO SKEW O3 CONC RAW SKEW CH4 CONC RAW KURT VERT GUST RAW KURT U COMPNT\_WIND\_VELOC\_RAW KURT V COMPNT WIND\_VELOC\_RAW KURT ALONG\_WIND\_RAW KURT CROSS\_WIND\_RAW KURT POTNTL TEMP RAW KURT H20 MIX RATIO RAW KURT CO2 MIX RATIO RAW KURT 03 CONC RAW KURT\_CH4\_CONC\_RAW CORC VERT U\_WIND\_COMPNT\_RAW CORC VERT V WIND COMPNT\_RAW CORC VERT ALONG WIND RAW CORC VERT CROSS WIND\_RAW CORC VERT POTNTL TEMP RAW CORC\_VERT\_H2O\_MIX\_RATIO\_RAW CORC VERT CO2 MIX RATIO RAW CORC VERT 03 CONC RAW CORC VERT CH4 CONC\_RAW CORC\_POTNTL\_H2O\_MIX\_RATIO\_RAW MMNTM FLUX\_V\_WIND\_COMPNT\_RAW MMNTM FLUX\_U\_WIND\_COMPNT\_RAW MMNTM FLUX ALONG MEAN\_WIND\_RAW MMNTM\_FLUX\_CROSS\_MEAN\_WIND\_RAW SENSIBLE HEAT FLUX RAW LATENT HEAT\_FLUX\_RAW CO2 FLUX RAW O3 FLUX RAW O3 DEPOSITION VELOC\_RAW CH4 FLUX RAW AIR DENSITY CONSTANT SPECIFIC HEAT CONSTANT LATENT HEAT VAP CONSTANT DRY AIR GAS CONSTANT SDEV VERT GUST DET SDEV\_U\_COMPNT\_WIND\_VELOC\_DET SDEV V COMPNT WIND VELOC DET SDEV ALONG WIND\_DET SDEV CROSS\_WIND\_DET SDEV POTNTL TEMP\_DET SDEV H20 MIX RATIO DET SDEV CO2 MIX RATIO SDEV 03 CONC DET SDEV\_CH4\_CONC\_DET

SKEW\_VERT\_GUST\_DET SKEW U COMPNT WIND VELOC DET SKEW V COMPNT WIND VELOC DET SKEW ALONG WIND DET SKEW\_CROSS WIND DET SKEW POTNTL TEMP DET SKEW H20 MIX RATIO DET SKEW CO2 MIX RATIO DET SKEW 03 CONC DET SKEW\_CH4\_CONC\_DET KURT VERT GUST DET KURT\_U\_COMPNT WIND VELOC DET KURT V COMPNT WIND VELOC DET KURT ALONG WIND DET KURT CROSS WIND DET KURT POTNTL TEMP DET KURT H20 MIX RATIO DET KURT\_CO2\_MIX RATIO DET KURT O3 CONC DET KURT\_CH4\_CONC DET CORC VERT U WIND COMPNT DET CORC\_VERT V WIND COMPNT DET CORC VERT ALONG WIND DET CORC VERT CROSS WIND DET CORC\_VERT\_POTNTL\_TEMP\_DET CORC VERT H20 MIX RATIO DET CORC\_VERT CO2 MIX RATIO DET CORC\_VERT\_O3\_CONC DET CORC VERT CH4 CONC DET CORC\_POINTL H20 MIX RATIO DET MMNTM FLUX U WIND COMPNT DET MMNTM FLUX V WIND COMPNT DET MMNTM\_FLUX\_ALONG\_MEAN\_WIND\_DET MMNTM\_FLUX CROSS MEAN WIND DET SENSIBLE\_HEAT\_FLUX DET LATENT\_HEAT\_FLUX\_DET CO2 FLUX DET O3 FLUX DET O3\_DEPOSITION VELOC DET CH4 FLUX DET CRTFCN CODE REVISION DATE

7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the aircraft flux data over the NSA and SSA and moving window data from the Transect files on the CD-ROM are:

| Column Name             | Description                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPATIAL_COVERAGE        | The general term used to denote the spatial area over which the data were collected.                                                                                                                                                                                                                                                                                 |
| RUN_START_DATE          | The date in GMT at the beginning of the segment (or pass if not segmented) in the form DD-MON-YY.                                                                                                                                                                                                                                                                    |
| RUN_START_TIME          | The time in GMT at the beginning of the segment (or pass if not segmented).                                                                                                                                                                                                                                                                                          |
| RUN_END_DATE            | The date in GMT at the end of the segment (or pass if not segmented) in the form DD-MON-YY.                                                                                                                                                                                                                                                                          |
| RUN_END_TIME            | The time in GMT at the end of the segment (or pass if not segmented).                                                                                                                                                                                                                                                                                                |
| FLUX_MISSION_DESIGNATOR | The two-letter mission identifier used to identify the type of mission being flown, where GS or GN=grids and stacks, CS=Candle Lake runs, TS or TN=site-specific runs, RT=transects, LS or LN=mini- or meso-transects, PS or PN=Budget Box pattern, HS or HN=stacks and tees, FS or FN=flights of two for intercomparison, ZS=low-level routes, and XX=not standard. |
| FLUX_MISSION_NUM        | The sequential number for all missions flown on a given day starting at 1.                                                                                                                                                                                                                                                                                           |
| FLUX_PASS_NUM           | The sequential pass number within a mission starting at 1.                                                                                                                                                                                                                                                                                                           |
| FLUX_SEGMENT_NUM        | The segment number within the current pass starting at 1 or given as 0 if pass is not segmented.                                                                                                                                                                                                                                                                     |
| START_LATITUDE          | The NAD83 based latitude coordinate at the start of the measurement set.                                                                                                                                                                                                                                                                                             |
| START_LONGITUDE         | The NAD83 based longitude coordinate at the start of the measurement set.                                                                                                                                                                                                                                                                                            |
| END_LATITUDE            | The NAD83 based latitude coordinate at the end of the measurement set.                                                                                                                                                                                                                                                                                               |
| END_LONGITUDE           | The NAD83 based longitude coordinate at the end of the measurement set.                                                                                                                                                                                                                                                                                              |
| START_BOREAS_X          | The x component of the BOREAS grid coordinate at the start of the measurement set.                                                                                                                                                                                                                                                                                   |
| START_BOREAS_Y          | The y component of the BOREAS grid coordinate at the start of the measurement set.                                                                                                                                                                                                                                                                                   |
| END_BOREAS_X            | The $x$ component of the BOREAS grid coordinate at the end of the measurement set.                                                                                                                                                                                                                                                                                   |
| END_BOREAS_Y            | The y component of the BOREAS grid coordinate at the end of the measurement set.                                                                                                                                                                                                                                                                                     |
| HEADING                 | The aircraft heading.                                                                                                                                                                                                                                                                                                                                                |
| MEAN PRESS_ALTITUDE     | The mean pressure altitude.                                                                                                                                                                                                                                                                                                                                          |
| MEAN_RADAR_ALTITUDE     | The mean radar altitude.                                                                                                                                                                                                                                                                                                                                             |
| MEAN_WIND_DIR           | The mean direction from which the wind was traveling, increasing in a clockwise direction from the north for the given time over the period defined by the start and end dates.                                                                                                                                                                                      |

MEAN WIND SPEED The mean wind speed for the given time over the period defined by the start and end dates. MEAN\_AIR TEMP The mean air temperature. MEAN POTNTL TEMP The mean potential temperature. MEAN\_H2O\_MIX\_RATIO MEAN\_H2O\_MIX\_RATIO The mean water vapor mixing ratio.

MEAN\_U\_COMPNT\_WIND\_VELOC The mean westerly vector component of the wind speed and wind direction. MEAN\_V\_COMPNT\_WIND\_VELOC The mean southerly vector component of the wind speed and wind direction. The mean static pressure.
The mean surface radiative temperature.
The mean downwelling total radiation. MEAN STATIC PRESS MEAN SURF RAD\_TEMP MEAN DOWN TOTAL RAD The mean upwelling total radiation. MEAN UP TOTAL RAD The mean downward longwave radiation. MEAN\_DOWN\_LONGWAVE\_RAD MEAN UP\_LONGWAVE\_RAD The mean upwelling longwave radiation. MEAN NET RAD The mean net radiation. MEAN UP PPFD The mean upward photosynthetic photon flux density. MEAN DOWN PPFD The mean downward photosynthetic photon flux density. MEAN AUX RAD The mean measurement from the auxiliary radiation sensor. MEAN GREEN INDEX The mean greenness index. The mean carbon dioxide concentration.
The mean ozone concentration.
The mean methane concentration.
The mean channel 1 satellite simulator.
The mean channel 2 satellite simulator.
The mean channel 3 satellite simulator.
The mean channel 4 satellite simulator.
The standard deviation of the air temperature.
The standard deviation of potential temperature.
The standard deviation of the water vapor mixing ratio. MEAN CO2 CONC The mean carbon dioxide concentration. MEAN 03 CONC MEAN CH4 CONC MEAN SAT SIM CH1 MEAN SAT SIM CH2 MEAN\_SAT\_SIM\_CH3 MEAN\_SAT\_SIM\_CH4 SDEV AIR TEMP SDEV POTNTL TEMP SDEV\_H2O\_MIX\_RATIO ratio.  ${\tt SDEV\_U\_COMPNT\_WIND\_VELOC} \qquad \qquad {\tt The standard deviation of the westerly vector}$ component of the wind speed and wind direction. The standard deviation of the southerly vector component of the wind speed and wind direction. SDEV\_V\_COMPNT\_WIND\_VELOC SDEV\_STATIC PRESS The standard deviation of the static pressure. The standard deviation of the surface radiative SDEV SURF RAD TEMP temperature. SDEV DOWN TOTAL RAD The standard deviation of downwelling total radiation. SDEV\_UP\_TOTAL RAD The standard deviation of upwelling total radiation. SDEV\_DOWN LONGWAVE RAD The standard deviation of the downward longwave radiation. SDEV\_UP\_LONGWAVE RAD The standard deviation of upwelling longwave radiation. SDEV NET RAD The standard deviation of the mean net radiation. SDEV\_UP PPFD The standard deviation of the upward photosynthetic photon flux density. SDEV DOWN PPFD The standard deviation of the downward

photosynthetic photon flux density.

The standard deviation of the measurements from SDEV AUX RAD the auxiliary radiation sensor. The standard deviation of greenness index. SDEV GREEN INDEX The standard deviation of the CO2 concentration. SDEV CO2 CONC The standard deviation of the ozone SDEV 03 CONC concentration. The standard deviation of CH4 concentration. SDEV CH4 CONC The standard deviation of the channel 1 SDEV SAT SIM CH1 satellite simulator values. The standard deviation of channel 2 satellite SDEV SAT SIM CH2 simulator values. The standard deviation of channel 3 satellite SDEV SAT SIM\_CH3 simulator values. The standard deviation of channel 4 satellite SDEV SAT SIM\_CH4 simulator values. The trend in air temperature. TREND AIR TEMP TREND\_POINTL\_TEMP
The trend in potential temperature.

TREND\_H2O\_MIX\_RATIO
TREND\_U\_COMPNT\_WIND\_VELOC
The trend in the westerly vector component of the wind speed and wind direction. TREND V COMPNT\_WIND\_VELOC The trend in the southerly vector component of the wind speed and wind direction. The trend in static pressure.

The trend in surface radiative temperature.

The trend in the downwelling total radiation. TREND STATIC\_PRESS TREND SURF RAD TEMP TREND DOWN TOTAL RAD The trend in the upwelling total radiation. TREND UP TOTAL RAD The trend in the downwelling longwave radiation.
The trend in the upwelling longwave radiation.
The trend in the greenness index. TREND DOWN LONGWAVE RAD TREND UP LONGWAVE RAD TREND GREEN INDEX The trend in the carbon dioxide concentration. TREND CO2\_CONC The trend in the ozone concentration. TREND 03 CONC The trend in the methane concentration. TREND CH4 CONC The standard deviation of the raw vertical gust. SDEV VERT GUST RAW  ${\tt SDEV\_U\_COMPNT\_WIND\_VELOC\_RAW} \qquad {\tt The standard deviation of the raw westerly wind}$ component. The standard deviation of the raw southerly wind SDEV V COMPNT WIND VELOC\_RAW component. The standard deviation of the raw along wind SDEV ALONG WIND\_RAW component. The standard deviation of the raw cross wind SDEV CROSS WIND RAW component. The standard deviation of the raw potential SDEV POTNTL TEMP RAW temperature. The standard deviation of the raw water vapor SDEV\_H2O\_MIX\_RATIO\_RAW mixing ratio. The standard deviation of the raw carbon dioxide mixing ratio. SDEV CO2 MIX RATIO\_RAW The standard deviation of the raw ozone SDEV 03 CONC\_RAW concentration. The standard deviation of the raw methane SDEV CH4 CONC\_RAW concentration. The skewness of the raw vertical gust. SKEW VERT GUST RAW SKEW U COMPNT WIND VELOC RAW The skewness of the raw westerly wind component. SKEW\_V\_COMPNT\_WIND\_VELOC\_RAW The skewness of the raw southerly wind component.

SKEW ALONG WIND RAW The skewness of the raw along wind component. SKEW CROSS WIND RAW The skewness of the raw cross wind component. SKEW\_POTNTL TEMP RAW The skewness of the raw potential temperature. SKEW H2O MIX RATIO RAW The skewness of the raw water vapor mixing ratio. SKEW CO2 MIX RATIO The skewness of the raw carbon dioxide mixing SKEW 03 CONC RAW The skewness of the raw ozone concentration. SKEW CH4 CONC RAW The skewness of the raw methane concentration. KURT\_VERT GUST RAW The kurtosis of the raw vertical gust. KURT\_U\_COMPNT\_WIND\_VELOC\_RAW The kurtosis of the raw westerly wind component. KURT\_V\_COMPNT\_WIND\_VELOC\_RAW The kurtosis of the raw southerly wind component. KURT ALONG WIND RAW The kurtosis of the raw along wind component. KURT CROSS WIND RAW The kurtosis of the raw cross wind component. KURT POTNTL TEMP RAW The kurtosis of the raw potential temperature. KURT H20 MIX RATIO RAW The kurtosis of the raw water vapor mixing ratio. KURT\_CO2\_MIX\_RATIO\_RAW The kurtosis of the raw carbon dioxide mixing ratio. KURT 03 CONC RAW The kurtosis of the raw ozone concentration. KURT CH4 CONC RAW The kurtosis of the raw methane concentration. CORC\_VERT\_U WIND COMPNT RAW The correlation coefficient of the raw vertical gust/westerly wind component pair. CORC\_VERT V WIND COMPNT RAW The correlation coefficient of the raw vertical gust/southerly wind component pair. CORC VERT ALONG WIND RAW The correlation coefficient of the raw vertical gust/along wind component pair. CORC VERT CROSS WIND RAW The correlation coefficient of the raw vertical gust/cross wind component pair. CORC VERT POTNTL TEMP RAW The correlation coefficient of the raw vertical gust/potential temperature pair. CORC\_VERT H20 MIX RATIO RAW The correlation coefficient of the raw vertical gust/water vapor mixing ratio pair. CORC\_VERT CO2 MIX RATIO RAW The correlation coefficient of the raw vertical gust/carbon dioxide mixing ratio pair. CORC VERT 03 CONC RAW The correlation coefficient of the raw vertical gust/ozone concentration pair. CORC VERT\_CH4\_CONC\_RAW The correlation coefficient of the vertical gust /methane concentration pair. CORC\_POINTL\_H2O\_MIX RATIO RAW The correlation coefficient of the raw potential temperature/water vapor mixing ratio pair. MMNTM FLUX V WIND COMPNT RAW The momentum flux using the raw southerly wind component. MMNTM FLUX U WIND COMPNT RAW The momentum flux using the raw westerly wind component. MMNTM\_FLUX ALONG\_MEAN\_WIND RAW The momentum flux using the raw along mean wind component. MMNTM\_FLUX CROSS\_MEAN\_WIND RAW The momentum flux using the raw across mean wind component. SENSIBLE HEAT FLUX RAW The raw sensible heat flux. LATENT HEAT FLUX RAW The raw latent heat flux. CO2\_FLUX\_RAW The raw carbon dioxide flux. 03 FLUX RAW The raw ozone flux. O3 DEPOSITION VELOC RAW The raw ozone deposition velocity. CH4 FLUX RAW The raw methane flux. AIR DENSITY CONSTANT The constant used for air density in the flux

|                              | leuletiens                                                    |
|------------------------------|---------------------------------------------------------------|
|                              | calculations. The constant used for specific heat at constant |
| SPECIFIC_HEAT_CONSTANT       |                                                               |
|                              | pressure in the flux calculations.                            |
| LATENT_HEAT_VAP_CONSTANT     | The constant used for latent heat of                          |
|                              | vaporization in the flux calculations.                        |
| DRY_AIR_GAS_CONSTANT         | The dry air gas constant used in the flux                     |
|                              | calculations.                                                 |
| SDEV_VERT_GUST_DET           | The standard deviation of the detrended vertical              |
| <del>-</del>                 | gust.                                                         |
| SDEV_U_COMPNT_WIND_VELOC_DET | The standard deviation of the detrended westerly              |
|                              | wind component.                                               |
| SDEV_V_COMPNT_WIND_VELOC_DET | The standard deviation of the detrended                       |
| pp=1,_1_com:111pp            | southerly wind component.                                     |
| SDEV ALONG_WIND_DET          | The standard deviation of the detrended along                 |
| SDEV_ALONG_WIND_DET          | wind component.                                               |
| CORU COCCE HEND DEM          | The standard deviation of the detrended cross                 |
| SDEV_CROSS_WIND_DET          | wind component.                                               |
|                              | The standard deviation of the detrended                       |
| SDEV_POTNTL_TEMP_DET         |                                                               |
|                              | potential temperature.                                        |
| SDEV_H2O_MIX_RATIO_DET       | The standard deviation of the detrended water                 |
|                              | vapor mixing ratio.                                           |
| SDEV_CO2_MIX_RATIO           | The standard deviation of the detrended carbon                |
|                              | dioxide mixing ratio.                                         |
| SDEV_03_CONC_DET             | The standard deviation of the detrended ozone                 |
|                              | concentration.                                                |
| SDEV_CH4_CONC_DET            | The standard deviation of the detrended methane               |
| <u> </u>                     | concentration.                                                |
| SKEW_VERT_GUST_DET           | The skewness of the detrended vertical gust.                  |
| SKEW_U_COMPNT_WIND_VELOC_DET | The skewness of the detrended westerly wind                   |
|                              | component.                                                    |
| SKEW_V_COMPNT_WIND_VELOC_DET | The skewness of the detrended southerly wind                  |
| DKBW_V_COMPHY_MIND_MBC_TEE   | component.                                                    |
| SKEW_ALONG_WIND_DET          | The skewness of the detrended along wind                      |
| SKEW_ALONG_WIND_DD1          | component.                                                    |
| CALM CDOCC MIND DEA          | The skewness of the detrended cross wind                      |
| SKEW_CROSS_WIND_DET          | component.                                                    |
| OWDEL DOWNEL MEMO DEM        | The skewness of the detrended potential                       |
| SKEW_POTNTL_TEMP_DET         |                                                               |
|                              | temperature. The skewness of the detrended water vapor mixing |
| SKEW_H2O_MIX_RATIO_DET       |                                                               |
|                              | ratio. The skewness of the detrended carbon dioxide           |
| SKEW_CO2_MIX_RATIO_DET       |                                                               |
|                              | mixing ratio.                                                 |
| SKEW_O3_CONC_DET             | The skewness of the detrended ozone                           |
|                              | concentration.                                                |
| SKEW_CH4_CONC_DET            | The skewness of the detrended methane                         |
|                              | concentration.                                                |
| KURT_VERT_GUST_DET           | The kurtosis of the detrended vertical gust.                  |
| KURT_U_COMPNT_WIND_VELOC_DET | The kurtosis of the detrended westerly wind                   |
|                              | component.                                                    |
| KURT_V_COMPNT_WIND_VELOC_DET | The kurtosis of the detrended southerly wind                  |
|                              | component.                                                    |
| KURT ALONG_WIND_DET          | The kurtosis of the detrended along wind                      |
|                              | component.                                                    |
| KURT_CROSS_WIND_DET          | The kurtosis of the detrended cross wind                      |
| <u> </u>                     |                                                               |

component. KURT\_POTNTL TEMP DET The kurtosis of the detrended potential temperature. KURT H20 MIX RATIO DET The kurtosis of the detrended water vapor mixing ratio. KURT CO2 MIX RATIO DET The kurtosis of the detrended carbon dioxide mixing ratio. KURT 03 CONC DET The kurtosis of the detrended ozone concentration. KURT\_CH4 CONC DET The kurtosis of the detrended methane concentration. CORC VERT U WIND COMPNT DET The correlation coefficient of the detrended vertical gust/westerly wind component pair. CORC VERT V WIND COMPNT DET The correlation coefficient of the detrended vertical gust/southerly wind component pair. CORC VERT ALONG WIND DET The correlation coefficient of the detrended vertical gust/along wind component pair. CORC\_VERT\_CROSS WIND DET The correlation coefficient of the detrended vertical gust/cross wind component pair. CORC\_VERT POTNTL TEMP DET The correlation coefficient of the detrended vertical gust/potential temperature pair. CORC VERT H20 MIX RATIO DET The correlation coefficient of the detrended vertical gust/water vapor mixing ratio pair. CORC VERT\_CO2 MIX RATIO DET The correlation coefficient of the detrended vertical gust/carbon dioxide mixing ratio pair. CORC VERT 03 CONC DET The correlation coefficient of the detrended vertical gust/ozone concentration pair. CORC VERT CH4 CONC DET The correlation coefficient of the detrended vertical gust/methane concentration pair. CORC POTNTL H20 MIX RATIO DET The correlation coefficient of the detrended potential temperature/water vapor mixing ratio pair. MMNTM FLUX U WIND COMPNT DET The momentum flux using the detrended westerly wind component. MMNTM FLUX V WIND COMPNT DET The momentum flux using the detrended southerly wind component. MMNTM\_FLUX\_ALONG\_MEAN\_WIND\_DET The momentum flux using the detrended along mean wind component. MMNTM\_FLUX CROSS MEAN WIND\_DET The momentum flux using the detrended across mean wind component. SENSIBLE HEAT FLUX DET The detrended sensible heat flux. LATENT HEAT FLUX DET The detrended latent heat flux. CO2 FLUX DET The detrended carbon dioxide flux. O3 FLUX DET The detrended ozone flux. The detrended ozone deposition velocity. O3 DEPOSITION VELOC DET CH4 FLUX DET The detrended methane flux. CRTFCN CODE The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-??? (CPI but questionable). REVISION DATE The most recent date when the information in the referenced data base table record was revised.

#### 7.3.3 Unit of Measurement

The measurement units for the parameters contained in the aircraft flux data over the NSA and SSA and moving window data from the Transect files on the CD-ROM are:

```
Column Name
                                                            Units
 [none]
[DD-MON-YY]

RUN_END_DATE [DD-MON-YY]

RUN_END_TIME [DD-MON-YY]

RUN_END_TIME [HHMMSS GMT]

FLUX_MISSION_DESIGNATOR [none]

FLUX_MISSION_NUM [uni+]^

FLUX_PASS_NUM

FLUX_SEGMENT_NUM

START_LATITUE

START
   _____
  START_LONGITUDE
                                  [degrees]
[degrees]
  END LATITUDE
  END LONGITUDE
                                   [degrees]
  START BOREAS X
                                   [kilometers]
  START BOREAS Y
                                   [kilometers]
                                   [kilometers]
  END BOREAS X
END BOREAS Y
                                   [kilometers]
  MEAN_DOWN_PPFD
MEAN_AUX_RAD
                                   [microEinsteins][meter^-2][second^-1]
                                   [microEinsteins][meter^-2][second^-1]
                                   [Watts][meter^-2]
  [micromoles CO2][mole air^-1
[nanomoles O3][mole air^-1]
[nanomoles CH4][mole air^-1]
[unitless]
  MEAN_CO2_CONC
                                    [micromoles CO2] [mole air^-1]
  MEAN 03 CONC
  MEAN CH4 CONC
  MEAN_SAT_SIM_CH1
MEAN_SAT_SIM_CH2
                                   [unitless]
  MEAN_SAT_SIM_CH3
MEAN_SAT_SIM_CH4
                                    [unitless]
                                    [unitless]
  SDEV AIR TEMP
                                   [degrees Celsius]
  SDEV_AIR_IEMP [degrees Celsius]
SDEV_POTNTL_TEMP [degrees Kelvin]
SDEV_H2O_MIX_RATIO [grams of water vapor][kilogram dry air^-1]
```

```
SDEV U COMPNT WIND VELOC
                                 [meters][second^-1]
  SDEV V COMPNT WIND VELOC
                                 [meters][second^-1]
  SDEV STATIC PRESS
                                 [kiloPascals]
  SDEV SURF RAD TEMP
                                [degrees Celsius]
  SDEV DOWN TOTAL RAD
                                [Watts][meter^-2]
  SDEV UP TOTAL RAD
                                [Watts][meter^-2]
  SDEV DOWN LONGWAVE RAD
                                [Watts][meter^-2]
  SDEV_UP_LONGWAVE_RAD
                                [Watts][meter^-2]
  SDEV NET RAD
                                [Watts][meter^-2]
  SDEV UP PPFD
                                [microEinsteins] [meter^-2] [second^-1]
  SDEV DOWN PPFD
                                 [microEinsteins] [meter^-2] [second^-1]
  SDEV_AUX RAD
                                 [unitless]
  SDEV_GREEN INDEX
                                [unitless]
  SDEV CO2 CONC
                                [micromoles CO2][mole air^-1]
  SDEV 03 CONC
                                [nanomoles 03][mole air^-1]
  SDEV_CH4_CONC
                                [nanomoles CH4][mole air^-1]
  SDEV SAT SIM CH1
                                [unitless]
                                [unitless]
  SDEV SAT SIM CH2
  SDEV SAT SIM CH3
                                [unitless]
  SDEV SAT SIM_CH4
                                [unitless]
  TREND AIR TEMP
                                [degrees Celsius][meter^-1]
  TREND POTNTL TEMP
                                [degrees Kelvin][meter^-1]
  TREND H20 MIX RATIO
                                [grams of water vapor][kilogram dry air^-1]
                                [mete r^-1]
  TREND U COMPNT WIND VELOC
                                [second^-1]
  TREND V COMPNT WIND VELOC
                                 [second^-1]
  TREND STATIC PRESS
                                 [kiloPascals][meter^-1]
  TREND_SURF RAD TEMP
                                [degrees Celsius][meter^-1]
  TREND DOWN TOTAL RAD
                                [Watts][meter^-3]
  TREND UP TOTAL RAD
                                [Watts][meter^-3]
  TREND DOWN LONGWAVE RAD
                                [Watts][meter^-3]
  TREND UP LONGWAVE RAD
                                 [Watts][meter^-3]
  TREND_GREEN_INDEX
                                 [meter^-1]
                                [micromoles CO2][mole air^-1][meter^-1]
  TREND CO2 CONC
  TREND 03 CONC
                                [nanomoles O3][mole air^-1][meter^-1]
  TREND CH4_CONC
                                [nanomoles CH4][mole air^-1][meter^-1]
  SDEV VERT GUST RAW
                                 [meters][second^-1]
  SDEV_U_COMPNT_WIND_VELOC_RAW [meters][second^-1]
  SDEV V COMPNT WIND VELOC RAW [meters][second^-1]
  SDEV ALONG WIND RAW
                                [meters][second^-1]
  SDEV CROSS WIND RAW
                                [meters][second^-1]
  SDEV POTNTL TEMP RAW
                                 [degrees Kelvin]
  SDEV H20 MIX RATIO RAW
                                 [grams of water vapor][kilogram dry air^-1]
  SDEV CO2 MIX RATIO RAW
                                [unitless]
                                 [nanomoles O3][mole air^-1]
  SDEV 03 CONC RAW
  SDEV CH4 CONC RAW
                                 [nanomoles CH4][mole air^-1]
  SKEW VERT GUST RAW
                                 [meters][second^-1]
  SKEW U COMPNT WIND VELOC RAW [meters][second^-1]
  SKEW V COMPNT WIND VELOC RAW [meters][second^-1]
  SKEW_ALONG WIND RAW
                                [meters][second^-1]
  SKEW CROSS WIND RAW
                                [meters][second^-1]
SKEW POTNTL TEMP RAW
                                [degrees Kelvin]
  SKEW H20 MIX RATIO RAW
                                 [grams of water vapor][kilogram dry air^-1]
  SKEW CO2 MIX_RATIO
                                 [unitless]
```

```
[nanomoles O3][mole air^-1]
SKEW 03 CONC RAW
                                [nanomoles CH4] [mole air^-1]
SKEW_CH4 CONC RAW
                                [meters] [second^-1]
KURT VERT GUST RAW
                                [meters] [second^-1]
KURT U COMPNT WIND VELOC_RAW
                                [meters][second^-1]
KURT_V_COMPNT WIND VELOC RAW
KURT ALONG WIND RAW
                                [meters] [second^-1]
                                [meters] [second^-1]
KURT CROSS WIND RAW
KURT POTNTL TEMP RAW
                                [degrees Kelvin]
                                [grams of water vapor][kilogram dry air^-1]
KURT H20 MIX RATIO RAW
KURT_CO2_MIX_RATIO_RAW
                                [unitless]
                                [nanomoles O3][mole air^-1]
KURT 03 CONC RAW
                                [nanomoles CH4][mole air^-1]
KURT CH4 CONC RAW
CORC VERT U_WIND_COMPNT_RAW
                                [meters^2][second^-2]
                                [meters^2][second^-2]
CORC VERT V WIND COMPNT_RAW
                                [meters^2] [second^-2]
CORC VERT ALONG_WIND_RAW
                                [meters^2] [secord^-2]
CORC VERT CROSS WIND RAW
                                [degrees Kelvin][meters][second^-1]
CORC VERT POTNTL TEMP RAW
                                [grams of water vapor][meters]
CORC VERT H20 MIX RATIO RAW
                                [kilogram dry air^ -1][second^-1]
CORC VERT_CO2_MIX_RATIO_RAW
                                [unitless]
                                [nanomoles 03][meters][mole air^-1][second^-1]
CORC VERT 03 CONC_RAW
                                [nanomoles CH4][meters][mole air^-1][second^-1]
CORC VERT CH4 CONC RAW
                               [grams of water vapor][degrees Kelvin]
CORC_POTNTL_H2O_MIX_RATIO_RAW
                                [kilogram dry air^-1]
                                [Newtons] [meter^-2]
MMNTM FLUX V WIND COMPNT_RAW
MMNTM FLUX U WIND COMPNT RAW
                                [Newtons] [meter^-2]
MMNTM FLUX ALONG_MEAN WIND_RAW [Newtons] [meter^-2]
MMNTM FLUX_CROSS MEAN_WIND_RAW [Newtons] [meter^-2]
                                [Watts][meter^-2]
SENSIBLE HEAT_FLUX_RAW
                                [Watts] [meter^-2]
LATENT HEAT FLUX RAW
                                [micromoles CO2][meter^-2][second^-1]
CO2 FLUX RAW
                                [nanomoles 03][meter^-2][second^-1]
O3 FLUX RAW
                                [millimeters][second^-1]
O3 DEPOSITION VELOC RAW
                                [nanomoles CH4][meter^-2][second^-1]
CH4 FLUX RAW
                                [kilograms][meter^-3]
AIR_DENSITY_CONSTANT
                                [Joules][kilogram^-1][degree Kelvin^-1]
SPECIFIC HEAT CONSTANT
                                [Joules] [kilogram^-1]
LATENT HEAT VAP_CONSTANT
                                [Joules][kilogram^-1][degree Kelvin^-1]
DRY AIR GAS CONSTANT
SDEV_VERT_GUST_DET
                                [meters] [second^-1]
SDEV U COMPNT WIND VELOC DET
                                [meters][second^-1]
                                [meters] [second^-1]
SDEV V COMPNT WIND VELOC DET
SDEV ALONG WIND DET
                                [meters] [second^-1]
                                 [meters][second^-1]
SDEV CROSS_WIND_DET
SDEV_POTNTL_TEMP_DET
                                 [degrees Kelvin]
                                 [grams of water vapor][kilogram dry air^-1]
SDEV H20 MIX RATIO DET
                                 [unitless]
SDEV CO2 MIX RATIO
                                 [nanomoles 03][mole air^-1]
SDEV 03_CONC_DET
                                 [nanomoles CH4][mole air^-1]
SDEV_CH4_CONC DET
                                 [meters][second^-1]
SKEW VERT GUST DET
                                 [meters][second^-1]
SKEW U COMPNT WIND VELOC_DET
SKEW V COMPNT WIND VELOC DET
                                 [meters][second^-1]
SKEW ALONG_WIND_DET
                                 [meters][second^-1]
SKEW_CROSS_WIND_DET
                                 [meters] [second^-1]
SKEW POTNTL_TEMP_DET
                                 [degrees Kelvin]
```

```
SKEW H20 MIX RATIO DET
                                [grams of water vapor][kilogram dry air^-1]
SKEW CO2 MIX RATIO DET
                                [unitless]
SKEW 03 CONC DET
                                [nanomoles 03][mole air^-1]
SKEW CH4 CONC DET
                                [nanomoles CH4][mole air^-1]
KURT VERT GUST DET
                                [meters][second^-1]
KURT U COMPNT WIND VELOC DET
                                [meters][second^-1]
KURT V COMPNT WIND VELOC DET
                                [meters][second^-1]
KURT_ALONG_WIND_DET
                                [meters][second^-1]
KURT CROSS WIND DET
                                [meters][second^-1]
KURT POTNTL TEMP DET
                                [degrees Kelvin]
KURT H20 MIX RATIO DET
                                [grams of water vapor][kilogram dry air^-1]
KURT CO2 MIX RATIO DET
                               [unitless]
KURT 03 CONC DET
                                [nanomoles 03][mole air^-1]
KURT CH4 CONC DET
                                [nanomoles CH4][mole air^-1]
CORC_VERT U WIND COMPNT DET
                                [meters^2][second^-2]
CORC_VERT_V_WIND_COMPNT_DET
                                [meters^2] [second^-2]
CORC VERT ALONG WIND DET
                                [meters^2] [second^-2]
CORC VERT CROSS WIND DET
                                [meters^2][second^-2]
CORC VERT POTNTL TEMP DET
                                [degrees Kelvin][meters][second^-1]
CORC VERT H20 MIX RATIO DET
                                [grams of water vapor] [meters]
                                [kilogram dry air^-1][second^-1]
CORC_VERT CO2 MIX RATIO DET
                                [unitless]
CORC VERT O3 CONC DET
                                [nanomoles 03][meters][mole air^-1][second^-1]
CORC VERT CH4 CONC DET
                                [nanomoles CH4][meters][mole air^-1][second^-1]
CORC POTNTL_H2O MIX_RATIO DET [grams of water vapor][degrees Kelvin]
                                [kilogram dry air^-1]
MMNTM FLUX U WIND COMPNT DET
                               [Newtons] [meter^-2]
MMNTM FLUX V WIND COMPNT DET
                               [Newtons] [meter^-2]
MMNTM FLUX ALONG MEAN WIND DET [Newtons][meter^-2]
MMNTM FLUX CROSS MEAN_WIND_DET [Newtons][meter^-2]
SENSIBLE HEAT FLUX DET
                               [Watts] [meter^-2]
LATENT HEAT FLUX DET
                               [Watts][meter^-2]
CO2 FLUX DET
                               [micromoles CO2][meter^-2][second^-1]
O3 FLUX DET
                               [nanomoles O3][meter^-2][second^-1]
O3 DEPOSITION VELOC DET
                               [millimeters][second^-1]
CH4 FLUX DET
                               [nanomoles CH4] [meter^-2] [second^-1]
CRTFCN CODE
                               [none]
REVISION DATE
                               [DD-MON-YY]
```

#### 7.3.4 Data Source

The sources of the parameter values contained in both the aircraft flux data over the NSA and SSA and moving window data from the Transect on the CD-ROM are:

| Column Name              | Data Source                               |
|--------------------------|-------------------------------------------|
| SPATIAL_COVERAGE         | [Supplied by BORIS]                       |
| RUN START_DATE           | [Supplied by AFM-02]                      |
| RUN START_TIME           | [Supplied by AFM-02]                      |
| RUN END DATE             | [Supplied by AFM-02]                      |
| RUN END TIME             | [Supplied by AFM-02]                      |
| FLUX MISSION_DESIGNATOR  | [Supplied by AFM-02]                      |
| FLUX MISSION_NUM         | [Supplied by AFM-02]                      |
| FLUX PASS_NUM            | [Supplied by AFM-02]                      |
| FLUX_SEGMENT_NUM         | [Supplied by AFM-02]                      |
| START LATITUDE           | [Supplied by AFM-02]                      |
| START LONGITUDE          | [Supplied by AFM-02]                      |
| END LATITUDE             | [Supplied by AFM-02]                      |
| END LONGITUDE            | [Supplied by AFM-02]                      |
| START BOREAS_X           | [Supplied by AFM-02]                      |
| START_BOREAS_Y           | [Supplied by AFM-02]                      |
| END BOREAS X             | [Supplied by AFM-02]                      |
| END_BOREAS_Y             | [Supplied by AFM-02]                      |
| HEADING                  | [Supplied by AFM-02]                      |
| MEAN PRESS ALTITUDE      | [Supplied by AFM-02]                      |
| MEAN RADAR ALTITUDE      | [Supplied by AFM-02]                      |
| MEAN WIND DIR            | [Supplied by AFM-02]                      |
| MEAN WIND_SPEED          | [Supplied by AFM-02]                      |
| MEAN AIR_TEMP            | [Supplied by AFM-02]                      |
| MEAN POTNTL_TEMP         | [Supplied by AFM-02]                      |
| MEAN H20 MIX RATIO       | [Supplied by AFM-02]                      |
| MEAN U COMPNT_WIND_VELOC | [Supplied by AFM-02]                      |
| MEAN_V_COMPNT_WIND_VELOC | [Supplied by AFM-02]                      |
| MEAN STATIC_PRESS        | [Supplied by AFM-02]                      |
| MEAN SURF RAD_TEMP       | [Supplied by AFM-02]                      |
| MEAN DOWN TOTAL_RAD      | [Supplied by AFM-02]                      |
| MEAN_UP_TOTAL_RAD        | [Supplied by AFM-02]                      |
| MEAN_DOWN_LONGWAVE_RAD   | [Supplied by AFM-02]                      |
| MEAN_UP_LONGWAVE_RAD     | [Supplied by AFM-02]                      |
| MEAN_NET_RAD             | [Supplied by AFM-02]                      |
| MEAN_UP_PPFD             | [Supplied by AFM-02]                      |
| MEAN_DOWN_PPFD           | [Supplied by AFM-02]                      |
| MEAN_AUX_RAD             | [Supplied by AFM-02]                      |
| MEAN_GREEN_INDEX         | [Supplied by AFM-02]                      |
| MEAN_CO2_CONC            | [Supplied by AFM-02]                      |
| MEAN_03_CONC             | [Supplied by AFM-02]                      |
| MEAN_CH4_CONC            | [Supplied by AFM-02]                      |
| MEAN_SAT_SIM_CH1         | [Supplied by AFM-02]                      |
| MEAN_SAT_SIM_CH2         | [Supplied by AFM-02]                      |
| MEAN_SAT_SIM_CH3         | [Supplied by AFM-02]                      |
| MEAN_SAT_SIM_CH4         | [Supplied by AFM-02]                      |
| SDEV_AIR_TEMP            | [Supplied by AFM-02]                      |
| SDEV_POTNTL_TEMP         | [Supplied by AFM-02] [Supplied by AFM-02] |
| SDEV_H2O_MIX_RATIO       | (Supprised by Arm 02)                     |

```
SDEV U COMPNT WIND VELOC
                                  [Supplied by AFM-02]
   SDEV V COMPNT WIND VELOC
                                  [Supplied by AFM-02]
  SDEV STATIC PRESS
                                  [Supplied by AFM-02]
  SDEV SURF RAD TEMP
                                 [Supplied by AFM-02]
  SDEV DOWN TOTAL RAD
                                  [Supplied by AFM-02]
  SDEV UP TOTAL RAD
                                 [Supplied by AFM-02]
  SDEV DOWN LONGWAVE RAD
                                 [Supplied by AFM-02]
  SDEV UP LONGWAVE RAD
                                 [Supplied by AFM-02]
  SDEV NET RAD
                                 [Supplied by AFM-02]
  SDEV UP PPFD
                                  [Supplied by AFM-02]
  SDEV DOWN PPFD
                                 [Supplied by AFM-02]
  SDEV_AUX RAD
                                 [Supplied by AFM-02]
  SDEV GREEN INDEX
                                [Supplied by AFM-02]
  SDEV CO2 CONC
                                 [Supplied by AFM-02]
  SDEV_O3_CONC
                                 [Supplied by AFM-02]
  SDEV CH4 CONC
                                [Supplied by AFM-02]
  SDEV SAT SIM CH1
                               [Supplied by AFM-02] [Supplied by AFM-02]
  SDEV SAT SIM CH2
  SDEV SAT SIM CH3
                                [Supplied by AFM-02]
  SDEV SAT SIM CH4
                                [Supplied by AFM-02]
  TREND AIR TEMP
                                [Supplied by AFM-02]
  TREND POTNTL TEMP
                                [Supplied by AFM-02]
  TREND H20 MIX RATIO
                                [Supplied by AFM-02]
  TREND U COMPNT WIND VELOC
                                 [Supplied by AFM-02]
  TREND V COMPNT WIND VELOC
                                [Supplied by AFM-02]
  TREND STATIC PRESS
                                [Supplied by AFM-02]
  TREND SURF RAD TEMP
                                [Supplied by AFM-02]
  TREND DOWN TOTAL RAD
                                [Supplied by AFM-02]
  TREND UP TOTAL RAD
                                 [Supplied by AFM-02]
  TREND DOWN LONGWAVE RAD
                                [Supplied by AFM-02]
  TREND UP LONGWAVE RAD
                                [Supplied by AFM-02]
  TREND GREEN INDEX
                                [Supplied by AFM-02]
  TREND CO2 CONC
                                [Supplied by AFM-02]
  TREND 03 CONC
                                 [Supplied by AFM-02]
  TREND CH4 CONC
                                 [Supplied by AFM-02]
  SDEV VERT GUST RAW
                                 [Supplied by AFM-02]
  SDEV U COMPNT WIND VELOC RAW
                                [Supplied by AFM-02]
  SDEV_V_COMPNT_WIND_VELOC_RAW [Supplied by AFM-02]
  SDEV ALONG WIND_RAW
                                 [Supplied by AFM-02]
  SDEV_CROSS_WIND RAW
                                 [Supplied by AFM-02]
  SDEV_POTNTL TEMP RAW
                                [Supplied by AFM-02]
  SDEV_H2O_MIX_RATIO RAW
                                [Supplied by AFM-02]
  SDEV CO2 MIX RATIO RAW
                                [Supplied by AFM-02]
  SDEV 03 CONC RAW
                                 [Supplied by AFM-02]
  SDEV CH4 CONC RAW
                                 [Supplied by AFM-02]
  SKEW VERT GUST RAW
                                 [Supplied by AFM-02]
  SKEW_U_COMPNT WIND VELOC RAW
                                 [Supplied by AFM-02]
 SKEW V COMPNT WIND_VELOC RAW
                                [Supplied by AFM-02]
 SKEW ALONG WIND RAW
                                 [Supplied by AFM-02]
 SKEW_CROSS WIND RAW
                                 [Supplied by AFM-02]
 SKEW POTNTL TEMP RAW
                                [Supplied by AFM-02]
- SKEW_H2O MIX RATIO RAW
                                [Supplied by AFM-02]
 SKEW CO2 MIX RATIO
                                [Supplied by AFM-02]
 SKEW 03 CONC RAW
                                [Supplied by AFM-02]
```

| SKEW_CH4_CONC_RAW              | [Supplied by |           |
|--------------------------------|--------------|-----------|
| KURT_VERT_GUST_RAW             | [Supplied by |           |
| KURT_U_COMPNT_WIND_VELOC_RAW   | [Supplied by |           |
| KURT_V_COMPNT_WIND_VELOC_RAW   | [Supplied by |           |
| KURT_ALONG_WIND_RAW            | [Supplied by |           |
| KURT_CROSS_WIND_RAW            | [Supplied by |           |
| KURT_POTNTL_TEMP_RAW           | [Supplied by |           |
| KURT_H2O_MIX_RATIO_RAW         | [Supplied by |           |
| KURT_CO2_MIX_RATIO_RAW         | [Supplied by |           |
| KURT_03_CONC_RAW               | [Supplied by |           |
| KURT_CH4_CONC_RAW              | [Supplied by |           |
| CORC_VERT_U_WIND_COMPNT_RAW    | [Supplied by |           |
| CORC_VERT_V_WIND_COMPNT_RAW    | [Supplied by |           |
| CORC_VERT_ALONG_WIND_RAW       | [Supplied by |           |
| CORC_VERT_CROSS_WIND_RAW       | [Supplied by | AFM-02]   |
| CORC_VERT_POTNTL_TEMP_RAW      | [Supplied by |           |
| CORC_VERT_H2O_MIX_RATIO_RAW    | [Supplied by |           |
| CORC_VERT_CO2_MIX_RATIO_RAW    | [Supplied by |           |
| CORC_VERT_O3_CONC_RAW          | [Supplied by | AFM-02]   |
| CORC_VERT_CH4_CONC_RAW         | [Supplied by |           |
| CORC_POTNTL_H2O_MIX_RATIO_RAW  | [Supplied by |           |
| MMNTM_FLUX_V_WIND_COMPNT_RAW   | [Supplied by |           |
| MMNTM_FLUX_U_WIND_COMPNT_RAW   | [Supplied by |           |
| MMNTM_FLUX_ALONG_MEAN_WIND_RAW | [Supplied by |           |
| MMNTM_FLUX_CROSS_MEAN_WIND_RAW | [Supplied by |           |
| SENSIBLE_HEAT_FLUX_RAW         | [Supplied by |           |
| LATENT_HEAT_FLUX_RAW           | [Supplied by |           |
| CO2_FLUX_RAW                   | [Supplied by |           |
| O3_FLUX_RAW                    | [Supplied by |           |
| O3_DEPOSITION_VELOC_RAW        | [Supplied by |           |
| CH4_FLUX_RAW                   | [Supplied by |           |
| AIR_DENSITY_CONSTANT           | [Supplied by |           |
| SPECIFIC_HEAT_CONSTANT         | [Supplied by |           |
| LATENT_HEAT_VAP_CONSTANT       | [Supplied by |           |
| DRY_AIR_GAS_CONSTANT           | [Supplied by |           |
| SDEV_VERT_GUST_DET             | [Supplied by |           |
| SDEV_U_COMPNT_WIND_VELOC_DET   | [Supplied by |           |
| SDEV_V_COMPNT_WIND_VELOC_DET   | [Supplied by |           |
| SDEV_ALONG_WIND_DET            | [Supplied by |           |
| SDEV_CROSS_WIND_DET            | [Supplied by |           |
| SDEV_POTNTL_TEMP_DET           | [Supplied by |           |
| SDEV_H2O_MIX_RATIO_DET         | [Supplied by |           |
| SDEV_CO2_MIX_RATIO             | [Supplied by |           |
| SDEV_O3_CONC_DET               | [Supplied by |           |
| SDEV_CH4_CONC_DET              | [Supplied by |           |
| SKEW_VERT_GUST_DET             | [Supplied by |           |
| SKEW_U_COMPNT_WIND_VELOC_DET   | [Supplied by |           |
| SKEW_V_COMPNT_WIND_VELOC_DET   | [Supplied by |           |
| SKEW_ALONG_WIND_DET            | [Supplied by |           |
| SKEW_CROSS_WIND_DET            | [Supplied by |           |
| SKEW_POTNTL_TEMP_DET           | [Supplied by |           |
| SKEW_H2O_MIX_RATIO_DET         | [Supplied by |           |
| SKEW_CO2_MIX_RATIO_DET         | [Supplied by |           |
| SKEW_O3_CONC_DET               | [Supplied by | y AFM-UZ] |

```
SKEW CH4 CONC DET
                                 [Supplied by AFM-02]
KURT_VERT GUST DET
                                 [Supplied by AFM-02]
KURT U COMPNT WIND VELOC DET
                                [Supplied by AFM-02]
KURT_V_COMPNT WIND VELOC DET
                                [Supplied by AFM-02]
KURT ALONG WIND DET
                                [Supplied by AFM-02]
KURT CROSS WIND_DET
                                [Supplied by AFM-02]
KURT_POTNTL TEMP DET
                                [Supplied by AFM-02]
KURT_H2O_MIX_RATIO DET
                                [Supplied by AFM-02]
KURT_CO2_MIX RATIO DET
                                [Supplied by AFM-02]
KURT_O3 CONC DET
                                [Supplied by AFM-02]
KURT CH4_CONC_DET
                                [Supplied by AFM-02]
CORC VERT U WIND COMPNT DET
                                [Supplied by AFM-02]
CORC_VERT_V_WIND_COMPNT DET
                                [Supplied by AFM-02]
CORC VERT ALONG WIND DET
                                [Supplied by AFM-02]
CORC_VERT CROSS WIND DET
                                [Supplied by AFM-02]
CORC_VERT POTNTL TEMP DET
                                [Supplied by AFM-02]
CORC VERT H20 MIX RATIO DET
                                [Supplied by AFM-02]
CORC_VERT_CO2 MIX RATIO DET
                                [Supplied by AFM-02]
CORC VERT_O3 CONC DET
                                [Supplied by AFM-02]
CORC VERT CH4 CONC DET
                                [Supplied by AFM-02]
CORC_POTNTL_H2O_MIX_RATIO_DET
                                [Supplied by AFM-02]
MMNTM_FLUX U WIND COMPNT DET
                                [Supplied by AFM-02]
MMNTM_FLUX_V_WIND COMPNT DET
                                [Supplied by AFM-02]
MMNTM_FLUX_ALONG_MEAN_WIND_DET [Supplied by AFM-02]
MMNTM_FLUX_CROSS_MEAN WIND DET [Supplied by AFM-02]
SENSIBLE HEAT FLUX DET
                                [Supplied by AFM-02]
LATENT_HEAT FLUX DET
                                [Supplied by AFM-02]
CO2 FLUX DET
                                [Supplied by AFM-02]
O3 FLUX DET
                                [Supplied by AFM-02]
O3 DEPOSITION VELOC DET
                                [Supplied by AFM-02]
CH4 FLUX DET
                                [Supplied by AFM-02]
CRTFCN CODE
                                [Supplied by BORIS]
REVISION DATE
                                [Supplied by BORIS]
```

7.3.5 Data Range

The following table gives information about the parameter values found in the aircraft flux data files on the CD-ROM.

| Column Name                    | Minimum<br>Data<br>Value | Maximum<br>Data<br>Value | Data | Data | Limit        | Not<br>Cllctd |
|--------------------------------|--------------------------|--------------------------|------|------|--------------|---------------|
|                                |                          |                          |      |      |              |               |
| SPATIAL_COVERAGE               | N/A                      | N/A                      | None |      | None         | None<br>None  |
| RUN_START_DATE                 | 25-MAY-94                | 17-SEP-94                | None | None | None         |               |
|                                | 151842                   | 211915                   | None | None | None         |               |
| RUN END_DATE                   | 25-MAY-94                | 17-SEP-94                | None |      | None         |               |
|                                | 153123                   | 213106                   | None |      | None         |               |
| FLUX MISSION_                  | CS                       | PS                       | None | None | None         | None          |
| DESIGNATOR                     |                          |                          |      |      |              | None          |
| FLUX MISSION_NUM               | 1                        | 3                        | None | None | None         | None          |
| FLUX PASS_NUM                  | 1                        | 20                       | None | None | None         | None          |
| FLUX SEGMENT_NUM               | 0                        | 0                        | None | None | None         | None          |
| START_LATITUDE                 | 53.54388                 |                          |      | None | None         | None          |
| START LONGITUDE                | -106.401                 |                          |      | None | None         | None          |
| END LATITUDE                   | 53.56771                 | 56.0234                  | None | None | None         | None          |
| END LONGITUDE                  | -106.394                 | -97.9957                 | None | None | None         | None          |
| cminom BORRAS X                | 304.18                   | 810.3                    | None | None | None         | None          |
| START_BOREAS_Y<br>END_BOREAS_X | 293.16                   | 630.89                   | None | None | None         | None          |
| END BOREAS X                   | 304.59                   | 807.95                   | None | None | None         | None          |
| END_BOREAS_Y                   | 295.77                   | 631.28                   | None | None | None         | None          |
| HEADING                        | 1.2                      | 359.9                    | None | None | None         | None          |
|                                | 220.1                    | 1551.4                   | None | None | None         | None          |
| MEAN RADAR ALTITUDE            | 57.4                     | 762.7                    | None | None | None         | None          |
| MEAN_WIND_DIR                  | 1.4                      | 356.9                    | None |      | None         | None          |
| MEAN_WIND_SPEED                | 1.38                     | 12.85                    | None |      | None         | None          |
| MEAN_AIR_TEMP                  | 10.85                    | 25.88                    | None |      | None         | None          |
| MEAN_POTNTL_TEMP               | 287.13                   | 302.88                   | None |      | None         | None          |
| MEAN_H2O_MIX_RATIO             | 3.4                      | 11.22                    | None |      | None         | None          |
| MEAN U COMPNT WIND             | -7.86                    | 11.82                    | None | None | None         | None          |
| VELOC                          |                          |                          |      |      | 37           | Nono          |
| MEAN_V_COMPNT_WIND_            | -7.48                    | 9.05                     | None | None | None         | None          |
| VELOC                          |                          |                          |      | • •  | NT = == 0    | None          |
| MEAN STATIC_PRESS              | 84.02                    | 98.71                    | None | None | None         | None<br>None  |
| MEAN SURF RAD TEMP             |                          |                          | -999 | None | None         |               |
| MEAN_DOWN_TOTAL_RAD            | 173.9                    | 927.3                    | None | None | None         |               |
| MEAN_UP_TOTAL_RAD              |                          | 110.1                    | None | None | None         | None          |
| MEAN DOWN LONGWAVE             |                          |                          | -999 | None | None         | None          |
| RAD                            |                          |                          | 0.00 | N7   | None         | None          |
| MEAN_UP_LONGWAVE_RAI           | )                        |                          | -999 | None | None         | None          |
| MEAN_NET_RAD                   |                          |                          | -999 | None | None         | None          |
| MEAN_UP_PPFD                   |                          |                          | -999 | None | None         | None          |
| MEAN_DOWN_PPFD                 |                          |                          | -999 | None | None         | None          |
| MEAN_AUX_RAD                   | 1                        | 1                        | None | None | None         | None          |
| MEAN_GREEN_INDEX               |                          |                          | -999 | None | None         | None          |
| MEAN_CO2_CONC                  | 339.8                    | 363.8                    | None | None | None         | None          |
| MEAN_03_CONC                   |                          |                          | -999 | None | None         | None          |
| MEAN_CH4_CONC                  |                          |                          | -999 | None | None<br>None | None          |
| MEAN_SAT_SIM_CH1               |                          |                          | -999 | None | 140110       |               |

| MEAN_SAT_SIM_CH2              |                    |          | -999  | None | None | None         |
|-------------------------------|--------------------|----------|-------|------|------|--------------|
| MEAN_SAT_SIM_CH3              |                    |          | -999  | None | None | None         |
| MEAN_SAT_SIM_CH4              |                    |          | -999  | None | None | None         |
| SDEV_AIR_TEMP                 | .11                | . 82     | None  | None | None | None         |
| SDEV_POTNTL_TEMP              | . 12               | . 82     | None  | None | None | None         |
| SDEV_H2O_MIX_RATIO            | . 07               | . 78     | None  | None | None | None         |
| SDEV_U_COMPNT_WIND_<br>VELOC  | . 68               | 2.3      | None  | None | None | None         |
|                               | 7.0                |          |       |      |      |              |
| SDEV_V_COMPNT_WIND_<br>VELOC  | . 73               | 2.3      | None  | None | None | None         |
| SDEV_STATIC_PRESS             | . 02               | 0.0      |       |      |      |              |
| SDEV_SURF_RAD_TEMP            | . 02               | . 98     | None  | None | None | None         |
| SDEV_DOWN TOTAL RAD           | 9                  | 204.0    | -999  | None | None | None         |
| SDEV_UP_TOTAL_RAD             | 2.3                | 384.9    | None  | None | None | None         |
| SDEV_DOWN_LONGWAVE            | 2.3                | 43.5     | None  | None | None | None         |
| RAD                           |                    |          | -999  | None | None | None         |
| SDEV_UP_LONGWAVE RAD          | `                  |          |       |      |      |              |
| SDEV_OF_LONGWAVE_RAD          | )                  |          | -999  | None | None | None         |
| SDEV_UP_PPFD                  |                    |          | -999  | None | None | None         |
| <del>-</del>                  |                    |          | -999  | None | None | None         |
| SDEV_DOWN_PPFD                | 7                  | _        | -999  | None | None | None         |
| SDEV_AUX_RAD                  | 1                  | 1        | None  | None | None | None         |
| SDEV_GREEN_INDEX              | 2                  |          | -999  | None | None | None         |
| SDEV_CO2_CONC                 | . 3                | 4.3      | None  | None | None | None         |
| SDEV_03_CONC                  |                    |          | -999  | None | None | None         |
| SDEV_CH4_CONC                 |                    |          | -999  | None | None | None         |
| SDEV_SAT_SIM_CH1              |                    |          | -999  | None | None | None         |
| SDEV_SAT_SIM_CH2              |                    |          | -999  | None | None | None         |
| SDEV_SAT_SIM_CH3              |                    |          | -999  | None | None | None         |
| SDEV_SAT_SIM_CH4              |                    |          | -999  | None | None | None         |
| TREND_AIR_TEMP                |                    | .0000763 | None  | None | None | None         |
| TREND_POTNTL_TEMP             |                    | .0000644 | None  | None | None | None         |
| TREND_H2O_MIX_RATIO           |                    | .0000462 | None  | None | None | None         |
| TREND_U_COMPNT_WIND_          | 000188             | .000143  | None  | None | None | None         |
| VELOC                         |                    |          |       |      |      |              |
| TREND_V_COMPNT_WIND_<br>VELOC | <del>-</del> .0002 | .000116  | None  | None | None | None         |
| TREND_STATIC_PRESS            | 0000462            | .0000761 | None  | None | None | Mono         |
| TREND_SURF_RAD TEMP           | 1                  | 1        | None  | None | None | None         |
| TREND_DOWN_TOTAL RAD          | 0251               | .017     | None  | None | None | None         |
| TREND_UP_TOTAL RAD            | 0023               | .00162   | None  | None | None | None<br>None |
| TREND_DOWN_LONGWAVE           |                    |          | -999  | None | None | None         |
| RAD                           |                    |          | 333   | none | None | None         |
| TREND_UP_LONGWAVE             |                    |          | -999  | None | None | Mono         |
| RAD                           |                    |          | , , , | None | None | None         |
| TREND_GREEN_INDEX             | 1                  | 1        | None  | None | None | Mana         |
| TREND_CO2 CONC                | 000263             | .000403  | None  | None | None | None         |
| TREND_03 CONC                 | 1                  | 1        | None  | None | None | None         |
| TREND CH4 CONC                | 1                  | 1        | None  | None | None | None         |
| ODE:                          | . 45               | 1.81     | None  |      | None | None         |
| SDEV_U_COMPNT WIND            | . 68               | 2.3      | None  | None | None | None         |
| VELOC_RAW                     |                    |          | HOHE  | None | None | None         |
| SDEV_V_COMPNT_WIND_           | .73                | 2.3      | None  | None | None | None         |
| VELOC_RAW                     | 7.0                | 0.05     |       |      |      |              |
| SDEV_ALONG_WIND_RAW           | . 78               | 2.26     | None  | None | None | None         |

| SDEV CROSS_WIND_RAW  | . 68             | 2.28  | None         | None   | None   | None   |
|----------------------|------------------|-------|--------------|--------|--------|--------|
| SDEV POTNTL TEMP_RAW | .12              | .82   | None         | None   | None   | None   |
| SDEV H20 MIX RATIO   | .07              | . 78  | None         | None   | None   | None   |
| RAW                  |                  |       |              |        |        |        |
| SDEV CO2 MIX_RATIO_  | . 3              | 4.3   | None         | None   | None   | None   |
| RAW                  |                  |       |              |        |        |        |
| SDEV 03 CONC_RAW     |                  |       | -999         | None   | None   | None   |
|                      |                  |       | -999         | None   | None   | None   |
| SDEV_CH4_CONC_RAW    | .09              | 1.05  | None         | None   | None   | None   |
| SKEW_VERT_GUST_RAW   |                  | 1.02  | None         | None   | None   | None   |
| SKEW_U_COMPNT_WIND_  | 86               | 1.02  | 1,0110       |        |        |        |
| VELOC_RAW            | 6.5              | .7    | None         | None   | None   | None   |
| SKEW_V_COMPNT_WIND_  | 65               | • 1   |              |        |        |        |
| VELOC_RAW            | 0.0              | .76   | None         | None   | None   | None   |
| SKEW_ALONG_WIND_RAW  | 82               |       | None         | None   | None   | None   |
| SKEW_CROSS_WIND_RAW  | 93               | . 62  |              | None   | None   | None   |
| SKEW_POTNTL_TEMP_RAW | 95               | 1.51  | None         |        |        | None   |
| SKEW_H2O_MIX_RATIO_  | -3.46            | 1.12  | None         | None   | None   | NOTIE  |
| RAW                  |                  |       |              | • •    | Nana   | None   |
| SKEW CO2 MIX RATIO   | -1.56            | 2.09  | None         | None   | None   | None   |
| SKEW 03 CONC RAW     |                  |       | -999         | None   | None   | None   |
| SKEW CH4 CONC_RAW    |                  |       | -999         | None   | None   | None   |
| KURT_VERT_GUST_RAW   | 2.51             | 6.53  | None         | None   | None   | None   |
| KURT_U_COMPNT_WIND_  | 2.1              | 5.24  | None         | None   | None   | None   |
| VELOC RAW            |                  |       |              |        |        |        |
| <del></del>          | 2.06             | 3.86  | None         | None   | None   | None   |
| KURT_V_COMPNT_WIND_  | 2.00             |       |              |        |        |        |
| VELOC_RAW            | 2.06             | 4.5   | None         | None   | None   | None   |
| KURT_ALONG_WIND_RAW  |                  | 4.72  | None         | None   | None   | None   |
| KURT_CROSS_WIND_RAW  | 2.12             |       | None         | None   | None   | None   |
| KURT_POTNTL_TEMP_RAW |                  | 7.06  | None         | None   | None   | None   |
| KURT_H2O_MIX_RATIO_  | 1.83             | 16.99 | None         | NOTIC  | 110110 |        |
| RAW                  |                  | 11 05 | None         | None   | None   | None   |
| KURT_CO2_MIX_RATIO_  | 1.53             | 11.96 | None         | None   | None   | 1,0110 |
| RAW                  |                  |       | 0.00         | M      | Nono   | None   |
| KURT 03_CONC_RAW     |                  |       | -999         | None   | None   |        |
| KURT CH4 CONC_RAW    |                  |       | -999         | None   | None   | None   |
| CORC VERT U WIND_    | 47               | . 43  | None         | None   | None   | None   |
| COMPNT RAW           |                  |       |              |        |        |        |
| CORC VERT V WIND     | 41               | .45   | None         | None   | None   | None   |
| COMPNT RAW           |                  |       |              |        |        |        |
| CORC VERT ALONG_WIND | 47               | .09   | None         | None   | None   | None   |
| RAW                  | _                |       |              |        |        |        |
| CORC_VERT_CROSS_WIND | 17               | .25   | None         | None   | None   | None   |
| RAW                  | _                |       |              |        |        |        |
| CORC VERT POTNTL_    | <del>-</del> .15 | . 61  | None         | None   | None   | None   |
| TEMP RAW             |                  |       |              |        |        |        |
| CORC VERT H20 MIX    | .02              | .52   | None         | None   | None   | None   |
|                      | .02              | ,     |              |        |        |        |
| RATIO_RAW            | 46               | .18   | None         | None   | None   | None   |
| CORC_VERT_CO2_MIX_   | 40               | . 10  |              |        |        |        |
| RATIO_RAW            |                  |       | -999         | None   | None   | None   |
| CORC_VERT_03_CONC_   |                  |       | ,,,          | 1,0110 |        |        |
| RAW                  |                  |       | -999         | None   | None   | None   |
| CORC_VERT_CH4_CONC_  |                  |       | <del>-</del> | None   | 140116 | 1,0110 |
| RAW                  |                  | 0.1   | N7 ~ ~ ~     | Mono   | None   | None   |
| CORC_POTNTL_H2O_MIX_ | 85               | . 81  | None         | None   | MOHE   | NOIL   |
|                      |                  |       |              |        |        |        |

| RATIO_RAW                            |         |               |        |      |        |        |
|--------------------------------------|---------|---------------|--------|------|--------|--------|
| MMNTM_FLUX_V_WIND_<br>COMPNT RAW     | -1.2803 | . 8603        | None   | None | None   | None   |
| MMNTM_FLUX_U_WIND_<br>COMPNT RAW     | -1.1843 | 1.0847        | None   | None | None   | None   |
| MMNTM_FLUX_ALONG_<br>MEAN_WIND_RAW   | -1.3963 | .1887         | None   | None | None   | None   |
| MMNTM_FLUX_CROSS_                    | 3462    | .7368         | None   | None | None   | None   |
| MEAN_WIND_RAW<br>SENSIBLE_HEAT_FLUX_ | -44.6   | 319.2         | None   | None | 27     |        |
| RAW                                  |         | 519. <b>2</b> | None   | None | None   | None   |
| LATENT_HEAT_FLUX_RAW                 | 1 29.1  | 744.6         | None   | None | None   | None   |
| CO2_FLUX_RAW                         | -15.593 | 6.369         | None   | None | None   | None   |
| O3_FLUX_RAW                          |         |               | -999   |      | None   | None   |
| O3_DEPOSITION_VELOC_                 |         |               | -999   | None | None   | None   |
| RAW                                  |         |               |        |      |        | 1,0776 |
| CH4_FLUX_RAW                         |         |               | -999   | None | None   | None   |
| AIR_DENSITY_CONSTANT                 | 1.025   | 1.199         | None   | None | None   | None   |
| SPECIFIC_HEAT_<br>CONSTANT           | 1010.7  | 1025.1        | None   | None | None   | None   |
| LATENT_HEAT_VAP_                     | 2440248 | 2473379       | None   | None | None   | None   |
| CONSTANT                             |         |               |        |      |        |        |
| DRY_AIR_GAS_CONSTANT                 |         | 287.04        | None   | None | None   | None   |
| SDEV_VERT_GUST_DET                   |         | 1.81          | None   | None | None   | None   |
| SDEV_U_COMPNT_WIND_                  | . 56    | 2.22          | None   | None | None   | None   |
| VELOC_DET                            |         |               |        |      |        |        |
| SDEV_V_COMPNT_WIND_                  | . 57    | 2.29          | None   | None | None   | None   |
| VELOC_DET                            |         |               |        |      |        |        |
| SDEV_ALONG_WIND_DET                  |         | 2.13          | None   | None | None   | None   |
| SDEV_CROSS_WIND_DET                  | . 57    | 2.27          | None   | None | None   | None   |
| SDEV_POTNTL_TEMP_DET                 | .06     | . 54          | None   | None | None   | None   |
| SDEV_H2O_MIX_RATIO_                  | .07     | .76           | None   | None | None   | None   |
| DET                                  |         |               |        |      |        |        |
| SDEV_CO2_MIX_RATIO                   | . 2     | 4.1           | None   | None | None   | None   |
| SDEV_O3_CONC_DET                     |         |               | -999   | None | None   | None   |
| SDEV_CH4_CONC_DET                    | 999.9   | 999.9         | None   | None | None   | None   |
|                                      | .09     | 1.13          | None   | None | None   | None   |
| SKEW_U_COMPNT_WIND_                  | 89      | 1.09          | None   | None | None   | None   |
| VELOC_DET                            |         |               |        |      |        |        |
| SKEW_V_COMPNT_WIND_<br>VELOC_DET     | 54      | . 79          | None   | None | None   | None   |
| SKEW_ALONG_WIND_DET                  | 82      | . 6           | None   | None | None   | None   |
| SKEW_CROSS_WIND_DET                  | -1.01   | .71           | None   | None | None   | None   |
| SKEW_POTNTL_TEMP_DET                 | 79      | 1.95          | None   | None | None   | None   |
| SKEW_H2O_MIX_RATIO_                  | -2.74   | . 98          | None   | None | None   | None   |
| DET                                  |         |               |        |      | 110110 | None   |
| SKEW_CO2_MIX_RATIO_<br>DET           | -1.56   | 2.06          | None   | None | None   | None   |
| SKEW_O3_CONC_DET                     |         |               | -999   | None | None   | None   |
| SKEW_CH4_CONC DET                    | 999.99  | 999.99        | None   | None | None   | None   |
|                                      | 2.52    | 6.49          | None   | None | None   | None   |
|                                      | 2.18    | 5.36          | None   | None | None   | None   |
| VELOC_DET                            |         |               | 1,0110 | HOME | None   | MOHE   |
| KURT_V_COMPNT_WIND_                  | 2.07    | 4.35          | None   | None | None   | None   |

| VELOC_DET           KURT_ALONG_WIND_DET 1.99         5.31         None         None <td< th=""></td<> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KURT_CROSS_WIND_DET 2.08 5.05 None None None None KURT_POTNTL_TEMP_DET 1.6 9.82 None None None None KURT_H2O_MIX_RATIO_ 1.98 13.2 None None None None None DET  KURT_CO2_MIX_RATIO_ 1.65 11.96 None None None None None DET  KURT_O3_CONC_DET -999 None None None None KURT_CH4_CONC_DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KURT_POTNTL_TEMP_DET 1.6 9.82 None None None None None KURT_H2O_MIX_RATIO_ 1.98 13.2 None None None None None DET  KURT_CO2_MIX_RATIO_ 1.65 11.96 None None None None None None KURT_O3_CONC_DET  KURT_O3_CONC_DET -999 None None None None None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| KURT_H2O_MIX_RATIO_ 1.98 13.2 None None None None None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DET  KURT_CO2_MIX_RATIO_ 1.65 11.96 None None None None  DET  KURT_O3_CONC_DET  KURT_CH4_CONC_DET  NONE None None None None None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| KURT_CO2_MIX_RATIO_ 1.65 11.96 None None None None None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KURT_CO2_MIX_RATIO_ 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KURT_O3_CONC_DET       -999 None None None         KURT_CH4_CONC_DET       -999 None None None None None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KURT_O3_CONC_DET -999 None None None KURT_CH4_CONC_DET -999 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KURT_CH4_CONC_DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CORC VERT U WIND47 .46 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| COMPNT DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CORC VERT_V_WIND43 .45 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| COMPNT DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CORC_VERT_ALONG_WIND48 .08 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORC_VERT_CROSS_WIND16 .26 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CORC_VERT_POTNTL18 .63 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMO_VIIM_FOITHING_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TEMP_DET  CORC VERT H20 MIX .01 .58 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONG_VENT_1120_11210_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RATIO_DET  CORC VERT CO2 MIX48 .15 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CORC_VERI_COZ_MIX40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RATIO_DET -999 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CORC_VERT_O3_CONC_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DET  -999 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CORC_VERT_CH4_CONC_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DET  CODE DOWNEY 120 MIV - 83 82 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CORC_POTNTL_H2O_MIX_ ~.83 .82 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RATIO_DET  1 2042 8537 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MMNTM_FLUX_U_WIND1.2942 .8537 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| COMPNT_DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MMNTM_FLUX_V_WIND1.2026 1.1114 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| COMPNT_DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MMNTM FLUX_ALONG1.3942 .1698 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MEAN WIND DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MMNTM FLUX CROSS3097 .7129 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MEAN WIND DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SENSIBLE_HEAT_FLUX49.8 316 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LATENT_HEAT_FLUX_DET 13.3 679.7 None None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CO2 FLUX DET -15.007 4.238 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O3 FLUX DET -999 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O3_FEGN_DET O3_DEPOSITION_VELOC999 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DET CH4 FLUX DET 999.99 999.99 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH4 FLOX DET 999.99 None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CRIFCH CODE CFI OF THE OC Mone None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| REVISION_DATE 12-JUN-96 12-JUN-96 None None None None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# The following table gives information about the parameter values found in the moving window data files on the CD-ROM.

|                                                  | Minimum<br>Data | Maximum<br>Data | Missng<br>Data |              | Below<br>Detect | Data<br>Not  |
|--------------------------------------------------|-----------------|-----------------|----------------|--------------|-----------------|--------------|
| Column Name                                      | Value           | Value           | Value          | Value        | Limit           | Cllctd       |
| SPATIAL_COVERAGE                                 |                 | <br>N/A         | None           |              | None            | None         |
| RUN_START_DATE                                   | 07-JUN-94       | 08-SEP-94       | None           |              | None            | None         |
| RUN_START_TIME                                   | 144730          | 182900          |                | None         | None            | None         |
| RUN_END_DATE                                     | 07-JUN-94       | 08-SEP-94       | None           | None         | None            | None         |
| RUN_END_TIME                                     | 145030          | 183200          |                | None         | None            | None         |
| FLUX_MISSION_                                    | RT              | RT              | None           | None         | None            | None         |
| DESIGNATOR                                       |                 |                 |                | 1,0110       | 140116          | none         |
| FLUX_MISSION NUM                                 | 1               | 1               | None           | None         | None            | None         |
| FLUX PASS NUM                                    | 1               | 5               | None           | None         | None            | None         |
| FLUX_SEGMENT_NUM                                 | 1               | 29              | None           | None         | None            | None         |
| START_LATITUDE                                   |                 |                 | None           | None         | None            |              |
| START_LONGITUDE                                  |                 |                 | None           | None         | None            | None         |
| END_LATITUDE                                     | 53.5905         |                 |                | None         | None            | None         |
| END_LONGITUDE                                    | -106.343        |                 |                | None         | None            |              |
| START_BOREAS_X                                   | 303.11          | 800.14          |                |              |                 |              |
| START BOREAS Y                                   | 296.34          | 618.33          |                |              | None            |              |
| END BOREAS X                                     | 307.88          | 807.33          |                | None         | None            |              |
| START_BOREAS_Y END_BOREAS_X END_BOREAS_Y HEADING | 298.48          | 619.74          |                | None         | None            |              |
| HEADING -                                        | 23              | 282.4           |                |              | None            | None         |
| MEAN_PRESS_ALTITUDE                              |                 | 691             | None           |              | None            |              |
| MEAN RADAR ALTITUDE                              |                 | 106             |                |              | None            |              |
| MEAN WIND DIR                                    |                 | 339.9           | None           |              | None            | None         |
| MEAN WIND SPEED                                  |                 | 8.19            | None           |              | None            | None         |
| MEAN_AIR_TEMP                                    |                 | 24.25           |                |              | None            | None         |
| MEAN_POTNTL_TEMP                                 |                 | 299.61          | None           |              | None            | None         |
| MEAN_H2O MIX RATIO                               |                 | 9.34            | None<br>None   |              | None            | None         |
| MEAN_U_COMPNT_WIND_                              |                 | 3.59            | None           | None<br>None | None<br>None    | None<br>None |
| VELOC                                            |                 |                 |                |              |                 |              |
| MEAN_V_COMPNT_WIND_<br>VELOC                     | -4.96           | 7.14            | None           | None         | None            | None         |
| MEAN_STATIC_PRESS                                | 93.29           | 98.19           | None           | None         | None            | None         |
| MEAN_SURF_RAD_TEMP                               |                 |                 | -999           | None         | None            | None         |
| MEAN_DOWN_TOTAL RAD                              | 427.3           | 802.4           | None           | None         | None            | None         |
| MEAN_UP_TOTAL_RAD                                | 40.5            | 106.1           | None           | None         | None            | None         |
| MEAN_DOWN_LONGWAVE_                              |                 |                 | -999           | None         | None            | None         |
| MEAN_UP_LONGWAVE RAD                             |                 |                 | 0.00           |              |                 |              |
| MEAN NET RAD                                     |                 |                 | -999           | None         | None            | None         |
| MEAN UP PPFD                                     |                 |                 | -999           | None         | None            | None         |
| MEAN DOWN PPFD                                   |                 |                 | -999           | None         | None            | None         |
| MEAN AUX RAD                                     | 1               | 1               | -999           | None         | None            | None         |
| MEAN_GREEN INDEX                                 | 1               | 1               | None           | None         | None            | None         |
| MEAN_CO2_CONC                                    | 336.6           | 357 5           | -999           | None         | None            | None         |
| MEAN 03 CONC                                     | 550.0           | 357.5           | None           | None         | None            | None         |
| MEAN CH4 CONC                                    |                 |                 | -999           | None         | None            | None         |
| MEAN_SAT SIM CH1                                 |                 |                 |                | None         | None            | None         |
| MEAN SAT SIM CH2                                 |                 |                 |                |              |                 | None         |
| DIII_UIIZ                                        |                 |                 | -999           | None         | None            | None         |

| CIN CIN              |         |          | -999         | None   | None    | None |
|----------------------|---------|----------|--------------|--------|---------|------|
| MEAN_SAT_SIM_CH3     |         |          | -999         | None   | None    | None |
| MEAN_SAT_SIM_CH4     | 1.0     | . 98     | None         | None   | None    | None |
| SDEV_AIR_TEMP        | .13     | 1.07     | None         | None   | None    | None |
| SDEV_POTNTL_TEMP     | . 14    | .67      | None         | None   | None    | None |
| SDEV_H2O_MIX_RATIO   | . 05    | 1.83     | None         | None   | None    | None |
| SDEV_U_COMPNT_WIND_  | . 63    | 1.05     | 1.0          |        |         |      |
| VELOC                | 60      | 1.87     | None         | None   | None    | None |
| SDEV_V_COMPNT_WIND_  | . 68    | 1.07     | 1,01.0       |        |         |      |
| VELOC                | ٥٣      | A A      | None         | None   | None    | None |
| SDEV_STATIC_PRESS    | . 05    | . 4 4    | -999         | None   | None    | None |
| SDEV_SURF_RAD_TEMP   | 10 7    | 124.7    | None         | None   | None    | None |
| SDEV_DOWN_TOTAL_RAD  | 10.7    |          | None         | None   | None    | None |
| SDEV_UP_TOTAL_RAD    | 3.9     | 27.5     | -999         | None   | None    | None |
| SDEV_DOWN_LONGWAVE_  |         |          | 222          | 1,0110 |         |      |
| RAD                  |         |          | -999         | None   | None    | None |
| SDEV_UP_LONGWAVE_RAD |         |          | -999         | None   | None    | None |
| SDEV_NET_RAD         |         |          | -999         | None   | None    | None |
| SDEV_UP_PPFD         |         |          | -999         | None   | None    | None |
| SDEV_DOWN_PPFD       |         | 1        | None         | None   | None    | None |
| SDEV_AUX_RAD         | 1       | 1        | -999         | None   | None    | None |
| SDEV_GREEN_INDEX     | _       | ć        | None         | None   | None    | None |
| SDEV_CO2_CONC        | . 3     | 6        | -999         | None   | None    | None |
| SDEV_O3_CONC         |         |          | -999         | None   | None    | None |
| SDEV_CH4_CONC        |         |          | -999         | None   | None    | None |
| SDEV_SAT_SIM_CH1     |         |          | -999<br>-999 | None   | None    | None |
| SDEV_SAT_SIM_CH2     |         |          | -999         | None   | None    | None |
| SDEV_SAT_SIM_CH3     |         |          | -999         | None   | None    | None |
| SDEV_SAT_SIM_CH4     |         | 00000    |              | None   | None    | None |
| TREND_AIR_TEMP       | 000132  | .000208  | None         | None   | None    | None |
| TREND_POTNTL_TEMP    | 00017   | .000225  | None         | None   | None    | None |
| TREND_H2O_MIX_RATIO  | 0000734 | .0000762 | None         | None   | None    | None |
| TREND_U_COMPNT_WIND_ | 00023   | .0003    | None         | NOTIC  | 1,0110  |      |
| VELOC                |         | 0.000.01 | None         | None   | None    | None |
| TREND_V_COMPNT_WIND_ | 000348  | .000281  | None         | NOTIC  | 140116  | 1.0  |
| VELOC                |         | 0000741  | Nono         | None   | None    | None |
| TREND_STATIC_PRESS   | 0000643 | .0000741 | None         | None   | None    | None |
| TREND_SURF_RAD_TEMP  | 1       | 1        | None         | None   | None    | None |
| TREND_DOWN_TOTAL_RAD | 0114    | .0209    | None         | None   | None    | None |
| TREND_UP_TOTAL_RAD   | 00497   | .00417   | None<br>-999 | None   | None    | None |
| TREND_DOWN_LONGWAVE_ | -       |          | - 555        | None   | 1,01.0  |      |
| RAD                  |         |          | -999         | None   | None    | None |
| TREND_UP_LONGWAVE_   |         |          | - 9 9 9      | None   | 1.0     |      |
| RAD                  | _       | 1        | None         | None   | None    | None |
| TREND_GREEN_INDEX    | 1       | 1        | None         | None   | None    | None |
| TREND_CO2_CONC       | 00138   | .000687  | None         | None   | None    | None |
| TREND_O3_CONC        | 1       | 1        |              | None   | None    | None |
| TREND_CH4_CONC       | 1       | 1        | None         | None   | None    | None |
| SDEV_VERT_GUST_RAW   | . 4     | 1.2      | None<br>None | None   | None    | None |
| SDEV_U_COMPNT_WIND_  | . 63    | 1.83     | None         | None   | 1.01.0  |      |
| VELOC_RAW            |         | 3 07     | None         | None   | None    | None |
| SDEV_V_COMPNT_WIND_  | . 68    | 1.87     | NOHE         | HOHE   | .,,,,,, |      |
| VELOC_RAW            |         | 1 7      | None         | None   | None    | None |
| SDEV_ALONG_WIND_RAW  | . 6     | 1.7      | None         | None   | None    | None |
| SDEV_CROSS_WIND_RAW  | . 62    | 1.93     | 140116       |        |         |      |

| SUEM DOWNER WEND DA        | F.1 1 4       |       |      |      |      |      |
|----------------------------|---------------|-------|------|------|------|------|
| SDEV_POTNTL_TEMP_RA        |               | 1.07  | None | None | None | None |
| SDEV_H2O_MIX_RATIO_<br>RAW | .05           | . 67  | None | None | None | None |
|                            | 2             |       |      |      |      |      |
| SDEV_CO2_MIX_RATIO_<br>RAW | . 3           | 6     | None | None | None | None |
|                            |               |       |      |      |      |      |
| SDEV_O3_CONC_RAW           |               |       | -999 | None | None | None |
| SDEV_CH4_CONC_RAW          | 0.3           |       | -999 | None | None | None |
| SKEW_VERT_GUST_RAW         | . 03          | 1.55  | None | None | None | None |
| SKEW_U_COMPNT_WIND_        | 87            | 1.11  | None | None | None | None |
| VELOC_RAW                  | 1 50          |       |      |      |      |      |
| SKEW_V_COMPNT_WIND_        | <b>-</b> 1.52 | . 87  | None | None | None | None |
| VELOC_RAW                  | 1 20          |       |      |      |      |      |
| SKEW_ALONG_WIND_RAW        |               | . 42  | None | None | None | None |
| SKEW_CROSS_WIND_RAW        |               | .83   | None | None | None | None |
| SKEW_POTNTL_TEMP_RAW       |               | 1.97  | None | None | None | None |
| SKEW_H2O_MIX_RATIO_        | -1.04         | 1.5   | None | None | None | None |
| RAW                        |               |       |      |      |      |      |
| SKEW_CO2_MIX_RATIO         | -1.83         | 3.34  | None | None | None | None |
| SKEW_O3_CONC_RAW           |               |       | -999 | None | None | None |
| SKEW_CH4_CONC_RAW          |               |       | -999 | None | None | None |
| KURT_VERT_GUST_RAW         | 2.51          | 10.55 | None | None | None | None |
| KURT_U_COMPNT_WIND_        | 1.73          | 4.71  | None | None | None | None |
| VELOC_RAW                  |               |       |      |      |      |      |
| KURT_V_COMPNT_WIND_        | 1.99          | 5.28  | None | None | None | None |
| VELOC_RAW                  |               |       |      |      |      |      |
| KURT_ALONG_WIND_RAW        | 1.85          | 5.36  | None | None | None | None |
| KURT_CROSS_WIND_RAW        | 1.99          | 4.48  | None | None | None | None |
| KURT_POTNTL_TEMP_RAW       |               | 30.63 | None | None | None | None |
| KURT_H2O_MIX_RATIO_        | 1.57          | 8.46  | None | None | None | None |
| RAW                        |               |       |      |      |      |      |
| KURT_CO2_MIX_RATIO_        | 1.59          | 36.21 | None | None | None | None |
| RAW                        |               |       |      |      |      |      |
| KURT_03_CONC_RAW           |               |       | -999 | None | None | None |
| KURT_CH4_CONC_RAW          |               |       | -999 | None | None | None |
| CORC_VERT_U_WIND_          | <b>-</b> . 4  | . 48  | None | None | None | None |
| COMPNT_RAW                 |               |       |      |      |      |      |
| CORC_VERT_V_WIND_          | 45            | . 34  | None | None | None | None |
| COMPNT_RAW                 |               |       |      |      |      |      |
| CORC_VERT_ALONG_WIND       | 55            | . 1   | None | None | None | None |
| RAW                        |               |       |      |      |      |      |
| CORC_VERT_CROSS_WIND_      | 19            | . 2   | None | None | None | None |
| RAW                        |               |       |      |      |      |      |
| CORC_VERT_POINTL_          | 03            | . 64  | None | None | None | None |
| TEMP_RAW                   |               |       |      |      |      |      |
| CORC_VERT_H2O_MIX_         | .02           | . 59  | None | None | None | None |
| RATIO_RAW                  |               |       |      |      |      |      |
| CORC_VERT_CO2_MIX_         | 51            | .06   | None | None | None | None |
| RATIO_RAW                  |               |       |      |      |      |      |
| CORC_VERT_O3_CONC_         |               |       | -999 | None | None | None |
| RAW                        |               |       |      |      |      |      |
| CORC_VERT_CH4_CONC_        |               |       | -999 | None | None | None |
| RAW                        | 6.5           |       |      |      |      |      |
| CORC_POINTL_H2O_MIX_       | 65            | . 9   | None | None | None | None |
| RATIO_RAW                  |               |       |      |      |      |      |

| MMNTM_FLUX_V_WIND_              | 4309    | .7251   | None | None       | None   | None   |
|---------------------------------|---------|---------|------|------------|--------|--------|
| COMPNT_RAW MMNTM_FLUX_U_WIND_   | 7727    | . 6204  | None | None       | None   | None   |
| COMPNT_RAW MMNTM_FLUX_ALONG_    | 925     | .1891   | None | None       | None   | None   |
| MEAN_WIND_RAW MMNTM_FLUX_CROSS_ | 311     | .2071   | None | None       | None   | None   |
| MEAN_WIND_RAW                   | . 311   |         | N    | None       | None   | None   |
| SENSIBLE_HEAT_FLUX_<br>RAW      | -7.1    | 255.8   | None | None       | None   |        |
| LATENT_HEAT_FLUX_RAW            | 14.5    | 435     | None | None       | None   | None   |
| CO2 FLUX_RAW                    | -23.756 | 7.29    | None | None       | None   | None   |
| O3 FLUX_RAW                     | 2011    |         | -999 | None       | None   | None   |
|                                 |         |         | -999 | None       | None   | None   |
| O3_DEPOSITION_VELOC_            |         |         |      |            |        |        |
| RAW                             |         |         | -999 | None       | None   | None   |
| CH4_FLUX_RAW                    |         | 1 201   | None | None       | None   | None   |
| AIR_DENSITY_CONSTANT            |         | 1.201   |      | None       | None   | None   |
| SPECIFIC_HEAT_                  | 1011.1  | 1021.7  | None | None       | None   | 1.01.0 |
| CONSTANT                        |         |         |      | <b>3</b> 7 | None   | Mono   |
| LATENT_HEAT_VAP_<br>CONSTANT    | 2443673 | 2475066 | None | None       | None   | None   |
| DRY_AIR_GAS_CONSTANT            | 287.04  | 287.04  | None | None       | None   | None   |
| SDEV_VERT_GUST_DET              | . 4     | 1.2     | None | None       | None   | None   |
| SDEV_U_COMPNT_WIND_             | . 61    | 1.77    | None | None       | None   | None   |
| VELOC_DET SDEV_V_COMPNT_WIND_   | . 58    | 1.82    | None | None       | None   | None   |
| VELOC_DET                       |         | _       |      | Mana       | None   | None   |
| SDEV ALONG_WIND_DET             | . 48    | 1.7     | None | None       | None   |        |
| SDEV CROSS_WIND_DET             | . 62    | 1.76    | None | None       | None   | None   |
| SDEV POTNTL_TEMP_DET            | .12     | .51     | None | None       | None   | None   |
| SDEV_H2O_MIX_RATIO_ DET         | . 05    | . 67    | None | None       | None   | None   |
| SDEV CO2 MIX_RATIO              | . 3     | 2       | None | None       | None   | None   |
| SDEV_COZ_MIX_MITTO              |         |         | -999 | None       | None   | None   |
|                                 | 999.9   | 999.9   | None | None       | None   | None   |
| SDEV_CH4_CONC_DET               | .04     | 1.04    | None | None       | None   | None   |
| SKEW_VERT_GUST_DET              | 53      | 1.02    | None | None       | None   | None   |
| SKEW_U_COMPNT_WIND_             | 55      | 1.02    |      |            |        |        |
| VELOC_DET                       | 0.6     | 70      | None | None       | None   | None   |
| SKEW_V_COMPNT_WIND_             | 96      | .79     | None | 110110     |        |        |
| VELOC_DET                       |         | 2.2     | None | None       | None   | None   |
| SKEW_ALONG_WIND_DET             |         | . 33    | None |            | None   | None   |
| SKEW_CROSS_WIND_DET             | 64      | . 93    | None | None       |        | None   |
| SKEW_POTNTL_TEMP_DET            | -3.08   | 1.96    | None | None       | None   |        |
| SKEW_H2O_MIX_RATIO_ DET         | -1      | 2.01    | None | None       | None   | None   |
| SKEW_CO2_MIX_RATIO_             | -1.82   | 3.74 .  | None | None       | None   | None   |
| DET                             |         |         | -999 | None       | None   | None   |
| SKEW_O3_CONC_DET                | 000 00  | 999.99  | None | None       | None   | None   |
| SKEW_CH4_CONC_DET               | 999.99  |         | None | None       | None   | None   |
| KURT_VERT_GUST_DET              | 2.52    | 10.37   | None | None       | None   | None   |
| KURT_U_COMPNT_WIND_             | 2.01    | 4.71    | MOHE | None       | 1,0110 |        |
| VELOC_DET                       |         | F 0.4   | None | None       | None   | None   |
| KURT_V_COMPNT_WIND_             | 1.85    | 5.84    | None | None       | NOTIC  | 1,0110 |
| VELOC_DET                       |         |         |      |            |        |        |
|                                 |         |         |      |            |        |        |

| KURT_ALONG WIND DET        | 2 12      | T 4.6     |        |        |            |       |
|----------------------------|-----------|-----------|--------|--------|------------|-------|
| KURT_CROSS_WIND_DET        |           | 5.46      | None   | None   | None       | None  |
| KURT_POTNTL_TEMP_DE        |           | 4.45      | None   | None   | None       | None  |
|                            |           | 55.43     | None   | None   | None       | None  |
| KURT_H2O_MIX_RATIO_<br>DET | 1.96      | 9.35      | None   | None   | None       | None  |
|                            |           |           |        |        |            |       |
| KURT_CO2_MIX_RATIO_        | 1.6       | 40.06     | None   | None   | None       | None  |
| DET                        |           |           |        |        |            |       |
| KURT_03_CONC_DET           |           |           | -999   | None   | None       | None  |
| KURT_CH4_CONC_DET          |           |           | -999   | None   | None       | None  |
| CORC_VERT_U_WIND_          | 39        | . 48      | None   | None   | None       | None  |
| COMPNT_DET                 |           |           |        |        |            |       |
|                            | 46        | . 35      | None   | None   | None       | None  |
| COMPNT_DET                 |           |           |        | 110110 | HOHE       | MOHE  |
| CORC_VERT_ALONG_WIND       | 56        | . 04      | None   | None   | None       | Mana  |
| DET                        | _         |           | None   | None   | none       | None  |
| CORC_VERT_CROSS_WIND       | 16        | .19       | None   | Mone   | <b>N</b> 7 |       |
| DET                        |           | . 1 3     | None   | None   | None       | None  |
| CORC_VERT POINTL           | .01       | . 65      | NI     | .,     |            |       |
| TEMP DET                   | .01       | . 05      | None   | None   | None       | None  |
|                            | . 04      | <i>C</i>  |        |        |            |       |
| RATIO DET                  | .04       | . 6       | None   | None   | None       | None  |
|                            | Г 1       | 0.6       |        |        |            |       |
| CORC_VERT_CO2_MIX_         | 51        | .06       | None   | None   | None       | None  |
| RATIO_DET                  |           |           |        |        |            |       |
| CORC_VERT_03_CONC_         |           |           | -999   | None   | None       | None  |
| DET                        |           |           |        |        |            |       |
| CORC_VERT_CH4_CONC_        |           |           | -999   | None   | None       | None  |
| DET                        |           |           |        |        |            |       |
| CORC_POTNTL_H2O_MIX_       | 74        | . 92      | None   | None   | None       | None  |
| RATIO_DET                  |           |           |        |        |            |       |
| MMNTM_FLUX_U_WIND_         | 3971      | .7054     | None   | None   | None       | None  |
| COMPNT_DET                 |           |           |        |        |            |       |
| MMNTM_FLUX_V_WIND_         | 7781      | .6219     | None   | None   | None       | None  |
| COMPNT_DET                 |           |           |        |        | 1.01.0     | None  |
| MMNTM_FLUX_ALONG_          | 9214      | .0209     | None   | None   | None       | None  |
| MEAN_WIND_DET              |           |           | 1.0116 | None   | None       | моне  |
| MMNTM_FLUX_CROSS_          | 2782      | .2095     | None   | None   | None       | Man - |
| MEAN_WIND_DET              |           | .2030     | None   | none   | None       | None  |
| SENSIBLE_HEAT_FLUX_        | 1.4       | 253.7     | Mone   | 11     |            |       |
| DET                        |           | 255.7     | None   | None   | None       | None  |
| LATENT_HEAT_FLUX_DET       | 23 1      | 117 6     |        |        |            |       |
| CO2_FLUX_DET               | -15.428   | 447.6     | None   | None   | None       | None  |
| O3_FLUX_DET                | -13.420   | 2.122     | None   | None   | None       | None  |
| O3_DEPOSITION VELOC        |           |           | -999   | None   | None       | None  |
| DET DEFOSITION_VELOC_      |           |           | -999   | None   | None       | None  |
|                            | 000 00    |           |        |        |            |       |
| CH4_FLUX_DET               | 999.99    | 999.99    | None   | None   | None       | None  |
| CRTFCN_CODE                | CPI       | CPI       | None   | None   | None       | None  |
| REVISION_DATE              | 12-JUN-96 | 12-JUN-96 | None   | None   | None       | None  |
|                            |           |           |        |        |            |       |

Minimum Data Value -- The minimum value found in the column.

Maximum Data Value -- The maximum value found in the column.

Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.

Unrel Data Value -- The value that indicates unreliable data. This is used

to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.

Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.

Data Not Cllctd

-- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value. N/A -- Indicates that the value is not applicable to the respective column. None -- Indicates that no values of that sort were found in the column. 

7.4 Sample Data Record

The following are wrapped versions of data record from a sample aircraft flux data file on the CD-ROM:

SPATIAL\_COVERAGE, RUN\_START\_DATE, RUN\_START\_TIME, RUN\_END\_DATE, RUN\_END\_TIME, FLUX\_MISSION\_DESIGNATOR, FLUX\_MISSION\_NUM, FLUX\_PASS\_NUM, FLUX\_SEGMENT\_NUM, START\_LATITUDE, START\_LONGITUDE, END\_LATITUDE, END\_LONGITUDE, START\_BOREAS\_X, START\_BOREAS\_Y, END\_BOREAS\_X, END\_BOREAS\_Y, HEADING, MEAN\_PRESS\_ALTITUDE, MEAN\_RADAR\_ALTITUDE, MEAN\_WIND\_DIR, MEAN\_WIND\_SPEED, MEAN\_AIR\_TEMP, MEAN\_POINTL\_TEMP, MEAN\_H2O\_MIX\_RATIO, MEAN\_U\_COMPNT\_WIND\_VELOC, MEAN\_V\_COMPNT\_WIND\_VELOC, MEAN\_STATIC\_PRESS, MEAN\_SURF\_RAD\_TEMP, MEAN\_DOWN\_TOTAL\_RAD, MEAN\_UP\_TOTAL\_RAD, MEAN\_DOWN\_LONGWAVE\_RAD, MEAN\_UP\_LONGWAVE\_RAD, MEAN\_NET\_RAD, MEAN\_UP\_PPFD, MEAN\_DOWN\_PPFD, MEAN\_AUX\_RAD, MEAN\_GREEN\_INDEX, MEAN\_CO2\_CONC, MEAN\_O3\_CONC, MEAN\_CH4\_CONC, MEAN\_SAT\_SIM\_CH1, MEAN\_SAT\_SIM\_CH2, MEAN\_SAT\_SIM\_CH3, MEAN\_SAT\_SIM\_CH4, SDEV\_AIR\_TEMP, SDEV\_POTNTL\_TEMP, SDEV\_H2O\_MIX\_RATIO, SDEV\_U\_COMPNT\_WIND\_VELOC, SDEV\_V\_COMPNT\_WIND\_VELOC, SDEV\_STATIC\_PRESS, SDEV\_SURF\_RAD\_TEMP, SDEV\_DOWN\_TOTAL\_RAD, SDEV\_UP\_TOTAL\_RAD, SDEV\_DOWN\_LONGWAVE\_RAD, SDEV\_UP\_LONGWAVE\_RAD, SDEV\_NET\_RAD, SDEV\_UP\_PPFD, SDEV\_DOWN\_PPFD, SDEV\_AUX\_RAD, SDEV\_GREEN\_INDEX, SDEV\_CO2\_CONC, SDEV\_O3\_CONC, SDEV\_CH4\_CONC, SDEV\_SAT\_SIM\_CH1, SDEV\_SAT\_SIM\_CH2, SDEV\_SAT\_SIM\_CH3, SDEV\_SAT\_SIM\_CH4, TREND\_AIR\_TEMP, TREND\_POINTL\_TEMP, TREND\_H2O\_MIX\_RATIO, TREND\_U\_COMPNT\_WIND\_VELOC, TREND\_V\_COMPNT\_WIND\_VELOC, TREND\_STATIC\_PRESS, TREND\_SURF\_RAD\_TEMP, TREND\_DOWN\_TOTAL\_RAD, TREND\_UP\_TOTAL\_RAD, TREND\_DOWN\_LONGWAVE\_RAD, TREND\_UP\_LONGWAVE\_RAD, TREND\_GREEN\_INDEX, TREND\_CO2\_CONC, TREND\_O3\_CONC, TREND\_CH4\_CONC, SDEV\_VERT\_GUST\_RAW, SDEV\_U\_COMPNT\_WIND\_VELOC\_RAW, SDEV\_V\_COMPNT\_WIND\_VELOC\_RAW, SDEV\_ALONG\_WIND\_RAW, SDEV\_CROSS\_WIND\_RAW, SDEV\_POINTL\_TEMP\_RAW, SDEV\_H2O\_MIX\_RATIO\_RAW, SDEV\_CO2\_MIX\_RATIO\_RAW, SDEV\_O3\_CONC\_RAW, SDEV\_CH4\_CONC\_RAW, SKEW\_VERT\_GUST\_RAW, SKEW\_U\_COMPNT\_WIND\_VELOC\_RAW, SKEW\_V\_COMPNT\_WIND\_VELOC\_RAW, SKEW\_ALONG\_WIND\_RAW, SKEW\_CROSS\_WIND\_RAW, SKEW\_POTNTL\_TEMP\_RAW, SKEW\_H2O\_MIX\_RATIO\_RAW, SKEW\_CO2\_MIX\_RATIO, SKEW\_O3\_CONC\_RAW, SKEW\_CH4\_CONC\_RAW, KURT\_VERT\_GUST\_RAW, KURT\_U\_COMPNT\_WIND\_VELOC\_RAW, KURT\_V\_COMPNT\_WIND\_VELOC\_RAW, KURT\_ALONG\_WIND\_RAW,

```
KURT_CROSS_WIND_RAW, KURT_POTNTL_TEMP RAW, KURT H2O MIX RATIO RAW,
      KURT_CO2_MIX RATIO RAW, KURT O3 CONC RAW, KURT CH4 CONC RAW,
      CORC_VERT_U_WIND_COMPNT_RAW, CORC_VERT_V_WIND_COMPNT_RAW,
      CORC_VERT_ALONG_WIND_RAW, CORC_VERT_CROSS_WIND_RAW, CORC_VERT_POINTL_TEMP_RAW,
      CORC_VERT_H2O_MIX_RATIO_RAW, CORC_VERT_CO2_MIX_RATIO_RAW, CORC_VERT_O3 CONC RAW,
      CORC_VERT_CH4_CONC_RAW,CORC_POTNTL_H2O_MIX_RATIO_RAW,
     MMNTM FLUX_V WIND COMPNT RAW, MMNTM FLUX U WIND COMPNT RAW,
     MMNTM_FLUX_ALONG_MEAN_WIND_RAW, MMNTM_FLUX_CROSS MEAN WIND RAW,
     SENSIBLE_HEAT_FLUX_RAW, LATENT_HEAT_FLUX_RAW, CO2 FLUX_RAW, O3 FLUX_RAW,
     O3_DEPOSITION_VELOC_RAW, CH4_FLUX_RAW, AIR_DENSITY_CONSTANT,
     SPECIFIC_HEAT_CONSTANT, LATENT_HEAT_VAP_CONSTANT, DRY_AIR_GAS_CONSTANT,
     SDEV_VERT_GUST_DET, SDEV_U_COMPNT_WIND_VELOC_DET, SDEV_V_COMPNT_WIND_VELOC_DET,
     SDEV ALONG WIND_DET, SDEV_CROSS_WIND_DET, SDEV_POTNTL_TEMP_DET,
     SDEV_H2O_MIX_RATIO_DET, SDEV_CO2_MIX_RATIO, SDEV_O3_CONC_DET, SDEV_CH4_CONC_DET,
    SKEW_VERT_GUST_DET, SKEW_U_COMPNT_WIND_VELOC_DET, SKEW_V_COMPNT_WIND_VELOC_DET,
    SKEW_ALONG_WIND_DET, SKEW_CROSS_WIND_DET, SKEW_POTNTL_TEMP_DET,
    SKEW_H2O_MIX_RATIO_DET, SKEW CO2_MIX_RATIO DET, SKEW O3 CONC DET,
    SKEW_CH4_CONC_DET, KURT_VERT_GUST_DET, KURT_U_COMPNT_WIND_VELOC_DET,
    KURT_V_COMPNT_WIND_VELOC_DET, KURT_ALONG_WIND_DET, KURT_CROSS_WIND_DET,
   KURT_POTNTL_TEMP_DET, KURT_H2O_MIX_RATIO_DET, KURT_CO2_MIX_RATIO_DET,
   KURT O3 CONC DET, KURT CH4 CONC DET, CORC VERT U WIND COMPNT DET,
   CORC_VERT_V_WIND_COMPNT_DET, CORC_VERT_ALONG_WIND_DET, CORC_VERT_CROSS_WIND_DET,
    CORC VERT POINTL TEMP DET, CORC VERT H20 MIX RATIO DET,
   CORC_VERT_CO2_MIX_RATIO_DET, CORC_VERT_O3_CONC_DET, CORC_VERT_CH4_CONC_DET,
   CORC_POTNTL_H2O_MIX_RATIO_DET, MMNTM_FLUX_U_WIND_COMPNT_DET,
  MMNTM_FLUX_V_WIND_COMPNT_DET, MMNTM_FLUX_ALONG_MEAN_WIND_DET,
  MMNTM_FLUX_CROSS_MEAN_WIND_DET, SENSIBLE_HEAT_FLUX_DET, LATENT_HEAT_FLUX_DET,
  CO2_FLUX_DET,O3_FLUX_DET,O3_DEPOSITION_VELOC_DET,CH4_FLUX_DET,CRTFCN_CODE,
  REVISION DATE
  'SSA',01-JUN-94,171221,01-JUN-94,171812,'CS',2,1,0,53.97977,-104.784,53.88426,
  -105.195, 406.88, 349.72, 380.92, 336.8, 244.5, 555.2, 68.7, 137.4, 5.85, 18.27, 295.88, 349.72, 380.92, 336.8, 349.72, 380.92, 336.8, 349.72, 380.92, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.92, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.8, 349.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.72, 380.
  4.02, -3.64, 4.07, 94.83, -999.0, 843.6, 79.4, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0,
  -999.0,33.2,11.4,-999.0,-999.0,-999.0,-999.0,1.0,-999.0,.3,-999.0,
  -.00000367,1.0,.000905,-.0000915,-999.0,-999.0,1.0,.000013,1.0,1.0,1.12,1.84,
 2.19, 2.02, 2.03, .32, .12, .3, -999.0, -999.0, .33, -.09, .03, .18, .34, .89, .15, -.14,
 -999.0, -999.0, 3.55, 3.08, 2.36, 2.5, 3.4, 3.28, 2.91, 3.51, -999.0, -999.0, .16, -.13, -.2, \\
 -.02, .43, .34, -.09, -999.0, -999.0, .55, .3822, -.3476, -.5139, -.0533, 180.1, 126.0,
 -1.152, -999.0, -999.0, -999.0, 1.133, 1011.8, 2457548, 287.04, 1.12, 1.82, 2.04, 1.87, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 1.82, 
 2.0, .32, .1, .3, -999.0, 999.9, .33, -.24, .27, .48, .19, .92, .27, -.27, -999.0, 999.99,
 3.56, 3.25, 2.76, 3.2, 3.06, 3.3, 3.09, 3.82, -999.0, -999.0, .17, -.15, -.23, -.01, .43,
 .41, -.11, -999.0, -999.0, .69, .3939, -.3844, -.5491, -.0375, 179.0, 132.8, -1.324,
 -999.0, -999.0, 999.99, 'CPI', 12-JUN-96
 'SSA',01-JUN-94,172232,01-JUN-94,173527,'CS',2,2,0,53.80465,-105.5,53.58083,
 -106.394, 361.68, 326.33, 304.59, 297.18, 242.0, 550.5, 71.5, 141.2, 7.38, 18.31, 295.87, \\
 4.09, -4.33, 5.52, 94.89, -999.0, 817.7, 94.2, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.
-999.0,355.1,-999.0,-999.0,-999.0,-999.0,-999.0,.39,.38,.27,2.08,2.3,.3,
-999.0, 106.9, 22.2, -999.0, -999.0, -999.0, -999.0, -999.0, 1.0, -999.0, .8, -999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0, .999.0
-.0000114, -.0000133, 1.0, .00212, .000552, -999.0, -999.0, 1.0, -.0000124, 1.0, 1.0, -.0000124, 1.0, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.0000124, -.00000124, -.0000124, -.0000124, -.00000124, -.0000124, -.00000124, -.0
1.32, 2.08, 2.3, 2.13, 2.25, .38, .27, .8, -999.0, -999.0, .48, -.1, -.1, -.15, .04, .59, .01,
.49,-999.0,-999.0,3.44,2.81,2.54,2.65,2.85,2.83,2.99,3.38,-999.0,-999.0,.18,
-.24, -.32, .02, .38, .25, -.12, -999.0, -999.0, .22, .5635, -.8401, -1.0088, .0744, 220.5,
```

```
248.7, -4.654, -999.0, -999.0, -999.0, 1.133, 1012.0, 2457025, 287.04, 1.32, 1.95, 2.29, 2.11, 2.13, .37, .27, .7, -999.0, 999.9, .46, .05, -.11, -.2, .04, .6, 0.0, .52, -999.0, 999.99, 3.42, 3.0, 2.54, 2.69, 2.9, 2.97, 2.95, 3.22, -999.0, -999.0, .21, -.24, -.33, .01, .38, .24, -.11, -999.0, -999.0, .2, .6142, -.8254, -1.0285, .0254, 213.3, 244.2, -4.102, -999.0, -999.0, 999.99, 'CPI', 12-JUN-96
```

# The following are wrapped versions of data record from a sample moving window data file on the CD-ROM:

```
SPATIAL COVERAGE, RUN START DATE, RUN START TIME, RUN_END_DATE, RUN_END_TIME,
FLUX MISSION_DESIGNATOR, FLUX_MISSION_NUM, FLUX_PASS_NUM, FLUX_SEGMENT_NUM,
START LATITUDE, START LONGITUDE, END LATITUDE, END LONGITUDE, START BOREAS_X,
START BOREAS Y, END BOREAS X, END BOREAS Y, HEADING, MEAN PRESS ALTITUDE,
MEAN RADAR ALTITUDE, MEAN WIND DIR, MEAN WIND SPEED, MEAN AIR TEMP,
MEAN POTNTL TEMP, MEAN H2O MIX RATIO, MEAN U COMPNT WIND VELOC,
MEAN V COMPNT WIND VELOC, MEAN_STATIC_PRESS, MEAN_SURF_RAD_TEMP,
MEAN_DOWN_TOTAL_RAD, MEAN_UP_TOTAL_RAD, MEAN_DOWN_LONGWAVE RAD,
MEAN_UP_LONGWAVE_RAD, MEAN_NET_RAD, MEAN_UP PPFD, MEAN_DOWN_PPFD,
MEAN AUX RAD, MEAN_GREEN_INDEX, MEAN CO2_CONC, MEAN_O3_CONC, MEAN_CH4_CONC,
MEAN SAT SIM_CH1, MEAN SAT SIM CH2, MEAN SAT SIM_CH3, MEAN SAT SIM_CH4,
SDEV AIR TEMP, SDEV POTNTL TEMP, SDEV H20 MIX RATIO, SDEV_U_COMPNT_WIND_VELOC,
SDEV V COMPNT_WIND_VELOC, SDEV STATIC_PRESS, SDEV_SURF_RAD_TEMP,
SDEV DOWN TOTAL RAD, SDEV UP TOTAL RAD, SDEV DOWN LONGWAVE RAD,
SDEV UP LONGWAVE RAD, SDEV NET RAD, SDEV UP PPFD, SDEV DOWN PPFD,
SDEV_AUX_RAD, SDEV_GREEN_INDEX, SDEV CO2 CONC, SDEV O3 CONC,
SDEV CH4_CONC, SDEV_SAT_SIM_CH1, SDEV_SAT_SIM_CH2, SDEV_SAT_SIM_CH3,
SDEV SAT SIM CH4, TREND AIR TEMP, TREND POTNTL TEMP, TREND H2O MIX RATIO,
TREND U_COMPNT_WIND_VELOC, TREND_V_COMPNT_WIND_VELOC, TREND_STATIC_PRESS,
TREND_SURF_RAD_TEMP, TREND_DOWN_TOTAL_RAD, TREND_UP_TOTAL_RAD,
TREND DOWN_LONGWAVE_RAD, TREND_UP_LONGWAVE_RAD, TREND_GREEN_INDEX,
TREND CO2 CONC, TREND O3_CONC, TREND_CH4_CONC, SDEV_VERT_GUST_RAW,
SDEV U_COMPNT WIND_VELOC RAW, SDEV V COMPNT_WIND VELOC RAW,
SDEV_ALONG_WIND_RAW, SDEV_CROSS_WIND_RAW, SDEV_POINTL_TEMP_RAW,
SDEV H20 MIX RATIO RAW, SDEV CO2 MIX RATIO RAW, SDEV O3 CONC RAW,
SDEV_CH4_CONC_RAW, SKEW_VERT_GUST_RAW, SKEW_U_COMPNT_WIND_VELOC_RAW,
SKEW_V_COMPNT_WIND_VELOC_RAW, SKEW_ALONG_WIND_RAW, SKEW_CROSS_WIND_RAW,
SKEW POTNTL TEMP RAW, SKEW H20 MIX RATIO RAW, SKEW CO2 MIX RATIO,
SKEW_O3_CONC_RAW, SKEW_CH4 CONC RAW, KURT VERT GUST RAW,
KURT U_COMPNT_WIND_VELOC_RAW, KURT_V_COMPNT_WIND_VELOC_RAW,
KURT ALONG WIND RAW, KURT CROSS WIND RAW, KURT POTNTL TEMP RAW,
KURT_H2O_MIX_RATIO_RAW, KURT_CO2_MIX_RATIO_RAW, KURT_O3_CONC_RAW,
KURT_CH4_CONC_RAW, CORC_VERT_U_WIND_COMPNT_RAW, CORC_VERT_V_WIND_COMPNT_RAW,
CORC_VERT_ALONG_WIND_RAW, CORC_VERT_CROSS_WIND_RAW,
CORC_VERT_POINTL_TEMP_RAW, CORC_VERT_H2O_MIX_RATIO_RAW,
CORC VERT CO2 MIX RATIO RAW, CORC_VERT_O3 CONC_RAW, CORC_VERT_CH4_CONC_RAW,
CORC POINTL H20 MIX RATIO RAW, MMNIM FLUX_V_WIND_COMPNI_RAW,
MMNTM FLUX U WIND COMPNT RAW, MMNTM_FLUX ALONG MEAN_WIND_RAW,
MMNTM FLUX CROSS MEAN WIND RAW, SENSIBLE HEAT FLUX RAW, LATENT HEAT FLUX RAW,
CO2 FLUX RAW, O3 FLUX RAW, O3 DEPOSITION VELOC_RAW, CH4_FLUX_RAW,
AIR DENSITY CONSTANT, SPECIFIC HEAT CONSTANT, LATENT HEAT VAP CONSTANT,
DRY_AIR_GAS_CONSTANT,SDEV_VERT_GUST_DET,SDEV_U_COMPNT_WIND_VELOC_DET,
SDEV V COMPNT WIND VELOC DET, SDEV ALONG_WIND_DET, SDEV_CROSS_WIND_DET,
SDEV POTNTL TEMP DET, SDEV_H2O_MIX_RATIO_DET, SDEV_CO2_MIX_RATIO,
```

```
SDEV 03 CONC DET, SDEV CH4 CONC DET, SKEW VERT GUST DET,
 SKEW U COMPNT WIND VELOC DET, SKEW_V_COMPNT_WIND_VELOC_DET,
 SKEW_ALONG_WIND_DET, SKEW_CROSS_WIND_DET, SKEW_POTNTL_TEMP_DET,
SKEW_H2O_MIX_RATIO_DET, SKEW_CO2 MIX RATIO DET, SKEW O3 CONC DET,
SKEW CH4 CONC DET, KURT VERT GUST DET, KURT U COMPNT WIND VELOC DET,
KURT V COMPNT WIND VELOC DET, KURT ALONG WIND DET, KURT CROSS WIND DET,
KURT_POTNTL_TEMP_DET, KURT H2O_MIX_RATIO_DET, KURT CO2 MIX RATIO DET,
KURT_O3_CONC_DET, KURT_CH4_CONC_DET, CORC_VERT_U_WIND_COMPNT_DET,
CORC_VERT_V_WIND_COMPNT_DET, CORC_VERT_ALONG WIND_DET,
CORC_VERT CROSS WIND DET, CORC_VERT POTNTL_TEMP DET,
CORC VERT H20 MIX RATIO DET, CORC_VERT CO2 MIX_RATIO DET,
CORC VERT 03 CONC DET, CORC VERT CH4 CONC DET, CORC POTNTL H20 MIX RATIO DET,
MMNTM_FLUX U WIND_COMPNT_DET, MMNTM_FLUX V WIND_COMPNT DET,
MMNTM_FLUX_ALONG MEAN WIND DET, MMNTM FLUX CROSS MEAN WIND DET.
SENSIBLE HEAT FLUX DET, LATENT HEAT FLUX DET, CO2 FLUX DET, O3 FLUX DET,
O3 DEPOSITION VELOC DET, CH4 FLUX DET, CRTFCN_CODE, REVISION_DATE
'TRANSECT', 07-JUN-94, 144730, 07-JUN-94, 145030, 'RT', 1, 1, 1, 53.61739, -106.26,
53.66932, -106.068, 313.15, 301.84, 325.43, 308.49, 69.1, 609.2, 84.3, 113.2, 6.44,
12.33,290.38,5.18,-5.8,2.49,94.22,-999.0,509.2,79.8,-999.0,-999.0,-999.0,-999.0,
-999.0,1.0,-999.0,354.5,-999.0,-999.0,-999.0,-999.0,-999.0,-999.0,.22,.22,.1,
1.55, 1.3, .21, -999.0, 20.7, 16.0, -999.0, -999.0, -999.0, -999.0, -999.0, 1.0, -999.0, .7,
-999.0, -999.0, -999.0, -999.0, -999.0, .0000303, -.00000885, -.0000032,
-.0000148,.0000133,.000045,1.0,.00157,-.000158,-999.0,-999.0,1.0,-.0000000153,
1.0, 1.0, .96, 1.55, 1.3, 1.59, 1.24, .22, .1, .7, -999.0, -999.0, .08, .15, -.23, -.21, .03,
-.09,.27, -.29, -999.0, -999.0, 3.46, 2.5, 2.58, 2.6, 2.95, 2.34, 2.39, 2.5, -999.0, -999.0,
.26, -.2, -.29, .06, .22, .41, -.34, -999.0, -999.0, .56, .4348, -.2829, -.5112, .0883, 54.9,
116.6, -9.341, -999.0, -999.0, -999.0, 1.147, 1014.0, 2469927, 287.04, .96, 1.55, 1.3, 1.59,
1.24, .22, .1, .7, -999.0, 999.9, .09, .14, -.23, -.19, .03, -.02, .34, -.29, -999.0, 999.99,
3.47,2.5,2.59,2.62,2.97,2.43,2.41,2.5,-999.0,-999.0,.26,-.2,-.3,.07,.23,.42,
-.34, -999.0, -999.0, .55, .4383, -.286, -.5156, .0897, 57.0, 118.5, -9.341, -999.0, -999.0,
999.99, 'CPI', 12-JUN-96
'TRANSECT', 07-JUN-94, 144900, 07-JUN-94, 145200, 'RT', 1, 1, 2, 53.64304, -106.163,
53.69291, -105.968, 319.38, 305.13, 331.85, 311.59, 70.2, 588.6, 83.8, 115.2, 6.48, 12.59,
290.44,5.17,-5.76,2.72,94.45,-999.0,519.8,83.8,-999.0,-999.0,-999.0,-999.0,
-999.0, 1.0, -999.0, 354.2, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, .31, .26,
.1,1.43,1.23,.15,-999.0,18.4,18.4,-999.0,-999.0,-999.0,-999.0,-999.0,-999.0,
.8,-999.0,-999.0,-999.0,-999.0,-999.0,.0000599,.0000405,-.00000338,
.0000488,.000055,.0000231,1.0,-.000517,.00121,-999.0,-999.0,1.0,-.000106,
1.0, 1.0, .99, 1.43, 1.23, 1.48, 1.16, .26, .1, .8, -999.0, -999.0, .31, .18, -.25, -.3, .11,
.02, .35, -.16, -999.0, -999.0, 3.2, 2.4, 2.97, 2.53, 3.39, 2.35, 2.41, 2.47, -999.0, -999.0,
.29, -.24, -.34, .08, .29, .46, -.39, -999.0, -999.0, .46, .4658, -.3372, -.5652, .1063,
86.2,132.4,-12.2,-999.0,-999.0,1.148,1014.0,2469291,287.04,.98,1.41,
1.21, 1.48, 1.13, .2, .1, .7, -999.0, 999.9, .28, .2, -.24, -.31, .08, .38, .21, -.46, -999.0,
999.99,3.17,2.39,2.87,2.55,3.34,2.33,2.29,2.53,-999.0,-999.0,.28,-.26,-.34,.1,
.34, .48, -.43, -999.0, -999.0, .72, .4538, -.3508, -.5601, .1238, 76.1, 134.5, -11.297,
-999.0, -999.0, 999.99, 'CPI', 12-JUN-96
```

# 8. Data Organization

8.1 Data Granularity

The smallest orderable data set available is one file of flux runs during a day. Note that although there are less than 100 records in any data file, there are over 170 columns of data. Most spreadsheet software should be able to handle up to 256 columns of data.

8.2 Data Format(s)

The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

# 9. Data Manipulations

#### 9.1 Formulae

Constants used in flux calculations:

The specific heat of air (Cp) is calculated as a function of the average water vapor mixing ratio, ignoring the pressure-dependent isobaric residual (Smithsonian Meteorological Tables, p. 339). In equation form, Cp=Cp0+b\*rbar, where Cp0=1004.42 J/kgK, b=1845.98, and rbar is the average water vapor mixing ratio, in units of g/g of kg/kg.

The latent heat of vaporization, Lv, is calculated as a function of the average temperature, Tbar, as Lv=Lv0 + c\*Tbar, where Lv0=3.15209e06 J/kg, and c=-2382.9 for Tbar in Kelvin. These values were obtained by a least-squares fit to values tabulated in the Smithsonian Meteorological Tables, p. 343).

Formulas used for the various eddy covariance fluxes:

In these expressions, the angle brackets <> denote an average over the length of the time series.

Sensible heat flux:

Sensible heat flux, H, calculated as H=(density of moist air)\*(Specific heat of air at constant pressure)\*<w'\*theta'>. Here w is the vertical air motion component (updraft), and theta is the air potential temperature. Resulting units: W/m<sup>2</sup>.

Latent heat flux:

Latent heat flux, E, calculated as E=(density of moist air)\*Lv\*<w'r'>, where r is the water vapor mixing ratio. Resulting units: W/m<sup>2</sup>.

Carbon dioxide flux:

Carbon dioxide flux, A, calculated as A=(density of dry air)\*<w'C'>, where C is the CO<sub>2</sub> concentration expressed as mixing ratio (mass CO<sub>2</sub> per mass dry air). The units from this calculation would be mass CO<sub>2</sub>/m<sup>2</sup> s. By BORIS convention, however, the archived units are converted to micromole CO<sub>2</sub>/m<sup>2</sup>/s.

#### Momentum fluxes:

The various vertical fluxes of horizontal momentum are calculated as (density of moist air)\*<w'vel'>, giving units of kg/ms², where vel is u, v, unat, or vnat. Here, (u,v) is the horizontal wind vector in east-west and north-south coordinates, while (unat,vnat) is the vector of along- and cross-wind components of the horizontal wind, with unat parallel to the pass-average wind direction.

# 9.1.1 Derivation Techniques and Algorithms Not applicable.

### 9.2 Data Processing Sequence

9.2.1 Processing Steps

As listed in Section 7.3, there are two basic categories of numbers (statistics and fluxes) in the archived values for each pass. The first category (groups 3, 4, and 6-10) are statistics and fluxes based on the "raw" data, i.e., on the time series data as they were recorded and processed. The second category (groups 12-16) are "detrended." In these cases the linear trends were removed by calculating an equal-weight least-squares line fit (y=mx+b) for each variable, then subtracting that line from the original series. Group 5 contains the linear trends (the slopes, or m values) from those least-squares fits. The fluxes for the first category ("raw") are based on the covariance values w's', where w'=w-wmean, s=s'-smean, wmean is the simple arithmetic average of w, and smean is the simple arithmetic average of the scalar s. The second category "detrended" fluxes are based on w's' where w'=w-(fitted line for w) and s'=s-(fitted line for s).

### 9.2.2 Processing Changes

None.

### 9.3 Calculations

See Section 9.1.

# 9.3.1 Special Corrections/Adjustments

Time lag between CO<sub>2</sub>/H<sub>2</sub>O measurements and gust probe: Due to the geometry of the instrument locations (see Section 4.1.6), there is a significant lag between measurements by the LI-COR device (water vapor and carbon dioxide) and the 3-D winds. Based on instrument placement, external airflow velocities, and internal (sampling tubes) flow velocities, the lag was predicted to be 0.3 sec. In contrast, the distance between the gust probe tip and the Friehe temperature probe causes negligible lag between the temperature and wind measurements. Thus, the lag between the temperature and LI-COR measurements should be equivalent to that between the wind and LI-COR measurements. The predicted temperature-LI-COR lag (0.3 sec) was verified by flying the plane several times through the plume from a local power plant, at distances close enough to the source that changes in temperature, water vapor, and CO<sub>2</sub> were very abrupt at the plume edges. Thus, prior to any other calculations, the LI-COR data are shifted 0.3 sec, to bring those data in sync with the remainder of the data.

## 9.3.2 Calculated Variables

See lists of variables in Sections 1.4, 7.1, and 7.3.

## 9.4 Graphs and Plots

Not applicable.

#### 10. Errors

### 10.1 Sources of Error

As with any time-series measurements, there are uncertainties in the values of the resulting measured and derived quantities simply due to the limits of the sampling techniques. Each archived flux and statistic is a single sample, or single realization, of the measurement, and thus has a higher level of uncertainty than if multiple measurements were possible.

Sampling limits:

As detailed by Lenschow and Stankov (1986, J. Atmos. Sci., 43, 1198-1209), substantial uncertainties are present in single-pass measurements of fluxes. Even to reduce such uncertainties below the 10% range, for example, would require a single aircraft pass to be very long (distance), in fact, so long that other uncertainties would result from 1) having the BL characteristics change with time and 2) having the flight track pass over changing surface characteristics. The most direct technique available with aircraft to address this problem is to make repeated, shorter passes along the same track or at least along similar tracks. The fluxes and statistics from the individual passes may then be combined to at least reduce the standard error of each measurement. This strategy was incorporated into many of the King Air flight patterns.

#### Instrument limits:

See Section 11.2.

10.2 Quality Assessment

An extensive intercomparison of the BOREAS flux aircraft is given in Dobosy et al., 1994. In that text, King Air measurements, including means and variances of all the flux variables, as well as the fluxes themselves, are compared with corresponding values from the Canadian NRC Twin Otter and the NCAR Electra, for multiple wing-to-wing passes at various times during the 1994 experiment. As of this writing, these comparisons are the best available assessments of the overall data quality for the King Air, at least in comparison with similarly instrumented platforms.

# 10.2.1 Data Validation by Source

None given.

### 10.2.2 Confidence Level/Accuracy Judgment None given.

### 10.2.3 Measurement Error for Parameters None given.

### 10.2.4 Additional Quality Assessments None given.

## 10.2.5 Data Verification by Data Center

Data were examined for general consistency and clarity.

### 11. Notes

### 11.1 Limitations of the Data

For each pass or segment of a pass, the statistics and fluxes are archived for time series with simple arithmetic means removed and then again for time series with simple linear trends removed. The first set ("demeaned") thus represents the original, raw data with no filtering applied. The second set (detrended) also represents unfiltered data, having only the linear trends removed. In order to apply more complicated, nonlinear detrending or filtering methods, the original data must be obtained.

### 11.2 Known Problems with the Data

Vertical velocity measurements: Spectral density plots of vertical velocity (w) generally show a fairly well defined inertial subrange, with -5/3 slope out to about 9 Hz, at which point the effects of the anti-aliasing low-pass filter are evident. Many of the w spectral plots do, however, show a slight "bulge" above the -5/3 line in the range 0.1-1 Hz. As of this writing (09-Jul-1996) we believe this is an artifact of the postflight calculations. Examples of these spectra can be seen in Dobosy et al., 1997.

High-rate  $H_2\bar{O}$  measurements (LI-COR 6262): The LI-COR 6262 response is described by the manufacturer as being a 90% response to step-function changes in concentration in 0.1 s. The combination of this characteristic, any along-flow mixing in the sample tubes, and the anti-aliasing filter are evident in the spectral density plots for  $H_2\bar{O}$  mixing ratio. These plots generally show an inertial subrange (slope -5/3) out to about 2 Hz, at which point the response drops sharply. At 2 Hz, the SNR is usually about 20 dB. Implications of this response for the flux calculations are that the  $H_2\bar{O}$  fluxes are being resolved only to about 2 Hz (about 40 m for typical research airspeeds).

 $CO_2$  measurements (LI-COR 6262): The response characteristics for  $CO_2$  are generally the same as for  $H_2O$ , except that the SNR at 2 Hz is usually 10 dB or less. As with  $CO_2$ , these figures imply that the  $CO_2$  fluxes are being resolved only to about 2 Hz (about 40 m for typical research airspeeds).

### 11.3 Usage Guidance

Note that although there are less than 100 records in any data file, there are over 170 columns of data. Most spreadsheet software should be able to handle up to 256 columns of data.

### 11.4 Other Relevant Information

None given.

# 12. Application of the Data Set

These data can be used to obtain study area and regional scale estimates of the various fluxes.

# 13. Future Modifications and Plans

None given.

#### 14. Software

# 14.1 Software Description Not applicable.

# 14.2 Software Access Not applicable.

#### 15. Data Access

The King Air 1994 aircraft flux and moving window data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

### 15.1 Contact Information

For BOREAS data and documentation please contact:

**ORNL DAAC User Services** Oak Ridge National Laboratory P.O. Box 2008 MS-6407 Oak Ridge, TN 37831-6407 Phone: (423) 241-3952

Fax: (423) 574-4665

E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

### 15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics http://www-eosdis.ornl.gov/ [Internet Link].

## 15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

### 15.4 Data Center Status/Plans

The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

# 16. Output Products and Availability

### 16.1 Tape Products

Not applicable.

### 16.2 Film Products

Not applicable.

### 16.3 Other Products

These data are available on the BOREAS CD-ROM series.

### 17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation See references listed in Section 17.2.

17.2 Journal Articles and Study Reports

Baijards, S.A.M. and R.D. Kelly. 1996. Conditional sampling applied to BOREAS aircraft data. Preprints, 22nd Conf. on Agric. and Forest Meteor., 28 Jan. - 2 Feb. 1996, Atlanta, GA.

Baijards, S.A.M., S.O. Ogunjemiyo, R.D. Kelly, and P.H. Schuepp. 1996. Preliminary analysis of dual aircraft boundary layer grid flux. Submitted to Journal of Geophysical Research.

Betts, A.K., R.L. Desjardins, and J.I. MacPherson. 1989. Boundary layer heat and moisture budgets. Spring 1989 meeting of Amer. Geophys. Union, May 7-11, 1989, Baltimore.

Betts, A.K., R.L. Desjardins, and J.I. MacPherson. 1990. Boundary layer heat and moisture budgets from FIFE. AMS Symposium on First ISLSCP Field Experiment (FIFE), 70th AMS Annual Meeting, Feb. 5-9, 1990, Anaheim, CA.

Dobosy, R.J., T.L. Crawford, J.I. MacPherson, R.L. Desjardins, R.D. Kelly, S.P. Oncley, and D.H. Lenschow. 1997. Intercomparison among four flux aircraft at BOREAS in 1994. Journal of Geophysical Research 102(D24): 29,101-29,111.

Kelly, R.D., J.I. MacPherson, R.J. Dobosy, and T.L. Crawford. 1996. BOREAS 1994 intercomparison among three flux aircraft. Preprints, 22nd Conf. On Agric. and Forest Meteor., 28 Jan. - 2 Feb. 1996, Atlanta, GA.

Lenschow, D.H., ed. 1986. Probing the Atmospheric Boundary Layer. Amer. Meteor. Soc., Boston.

Lenschow, D.H. and B.B. Stankov. 1986. Length scales in the convective boundary-layer. Journal Of The Atmospheric Sciences 43: (12) 1198-1209.

McDermott, M.L. and R.D. Kelly. 1995. Fluxes over a heterogeneous forest., Preprints 11th Symposium on Bound. Layers and Turbulence, Charlotte, NC, 27-31 March, 1995.

McDermott, M.L. and R.D. Kelly. 1996. Variation of boundary layer fluxes with heterogeneous surface vegetation and seasonal change. Submitted to Journal of Geophysical Research.

Newcomer, J., D. Landis, S. Conrad, S. Curd, K. Huemmrich, D. Knapp, A. Morrell, J. Nickeson, A. Papagno, D. Rinker, R. Strub, T. Twine, F. Hall, and P. Sellers, eds. 2000. Collected Data of The Boreal Ecosystem-Atmosphere Study. NASA. CD-ROM.

Sellers, P. and F. Hall. 1994. Boreal Ecosystem-Atmosphere Study: Experiment Plan. Version 1994-3.0, NASA BOREAS Report (EXPLAN 94).

Sellers, P. and F. Hall. 1996. Boreal Ecosystem-Atmosphere Study: Experiment Plan. Version 1996-2.0, NASA BOREAS Report (EXPLAN 96).

Sellers, P., F. Hall, and K.F. Huemmrich. 1996. Boreal Ecosystem-Atmosphere Study: 1994 Operations. NASA BOREAS Report (OPS DOC 94).

Sellers, P., F. Hall, and K.F. Huemmrich. 1997. Boreal Ecosystem-Atmosphere Study: 1996 Operations. NASA BOREAS Report (OPS DOC 96).

Sellers, P., F. Hall, H. Margolis, B. Kelly, D. Baldocchi, G. den Hartog, J. Cihlar, M.G. Ryan, B. Goodison, P. Crill, K.J. Ranson, D. Lettenmaier, and D.E. Wickland. 1995. The boreal ecosystem-atmosphere study (BOREAS): an overview and early results from the 1994 field year. Bulletin of the American Meteorological Society. 76(9):1549-1577.

Sellers, P.J., F.G. Hall, R.D. Kelly, A. Black, D. Baldocchi, J. Berry, M. Ryan, K.J. Ranson, P.M. Crill, D.P. Lettenmaier, H. Margolis, J. Cihlar, J. Newcomer, D. Fitzjarrald, P.G. Jarvis, S.T. Gower, D. Halliwell, D. Williams, B. Goodison, D.E. Wickland, and F.E. Guertin. 1997. BOREAS in 1997: Experiment Overview, Scientific Results and Future Directions. Journal of Geophysical Research 102(D24): 28,731-28,770.

Stull, R.B. 1988. An Introduction to Boundary Layer Meteorology. Kluwer Acad. Pub., Boston.

# 17.3 Archive/DBMS Usage Documentation None given.

# 18. Glossary of Terms and abbreviations

Abbreviations used in weather notes:

```
cumulus
       status
st
Сİ
       cirrus
      scattered
sct
       inversion height above ground
Ζi
Н
       smoke
cist
        cirrostratus
       clear
clr
       overcast
OVC
       light rain showers
RW-
acu
      altocumulus
```

Abbreviations in flight descriptions:

```
rt round trip
agl above ground level (in feet)
msl above mean sea level (in feet)
mult multiple
TAS true airspeed
lvl level
wind "L" "L" with one leg parallel to wind direction, flown as at least one round trip
```

### 19. List of Acronyms

AFM - Airborne Fluxes and Meteorology

ASCII - American Standard Code for Information Interchange

BL - atmospheric Boundary Layer

BOREAS - BOReal Ecosystem-Atmosphere Study

BORIS - BOREAS Information System

CD-ROM - Compact Disk - Read-Only Memory
DAAC - Distributed Active Archive Center

EOS - Earth Observing System

EOSDIS - EOS Data and Information System GIS - Geographic Information System

GMT - Greenwich Mean Time

GPS - Global Positioning System
GSFC - Goddard Space Flight Center
HTML - HyperText Markup Language
IFC - Intensive Field Campaign
IRS - Intertial Reference System

IRS - Intertial Reference System
NAD83 - North American Datum of 1983

NASA - National Aeronautics and Space Administration

NCAR - National Center for Atmospheric Research

NRC - National Research Council, Canada

NSA - Northern Study Area

OA - Old Aspen

ORNL - Oak Ridge National Laboratory PANP - Prince Albert National Park

PAR - Photosynthetically Active Radiation

RT - Regional Transect SSA - Southern Study Area

TF - Tower Flux

URL - Uniform Resource Locator

### 20. Document Information

#### 20.1 Document Revision Date

Written: 16-Jul-1996 Last Updated: 07-Sep-1999

#### 20.2 Document Review Date(s)

BORIS Review: 08-Feb-1999

Science Review:

#### 20.3 Document ID

20.4 Citation

When using these data, please contact one of the individuals listed in Section 2.3 as well as citing relevant papers in Section 17.2.

If using data from the BOREAS CD-ROM series, also reference the data as:

Kelly, R.D., "Airborne Investigation of Biosphere-Atmosphere Interactions over the Boreal Forest." In Collected Data of The Boreal Ecosystem-Atmosphere Study. Eds. J. Newcomer, D. Landis, S. Conrad, S. Curd, K. Huemmrich, D. Knapp, A. Morrell, J. Nickeson, A. Papagno, D. Rinker, R. Strub, T. Twine, F. Hall, and P. Sellers. CD-ROM. NASA, 2000.

Also, cite the BOREAS CD-ROM set as:

Newcomer, J., D. Landis, S. Conrad, S. Curd, K. Huemmrich, D. Knapp, A. Morrell, J. Nickeson, A. Papagno, D. Rinker, R. Strub, T. Twine, F. Hall, and P. Sellers, eds. Collected Data of The Boreal Ecosystem-Atmosphere Study. NASA. CD-ROM. NASA, 2000.

20.5 Document Curator

20.6 Document URL

# REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

| collection of information, including suggestions for r<br>Davis Highway, Sulte 1204, Arlington, VA 22202-43 | advaine this boards - to life of                        | omation. Send comments ref | eviewing instructions, searching existing data sources larding this burden estimate or any other aspect of this or information Operations and Reports, 1215 Jeffersor Project (0704-0188) Washington D. 20506. |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T. AGENCY USE UNLY (Leave blank)                                                                            | 2. REPORT DATE June 2000                                | 3. REPORT TYPE AN          | ID DATES COVERED<br>lemorandum                                                                                                                                                                                 |
| 4. TITLE AND SUBTITLE Technical Report Series on the Bo BOREAS AFM-2 King Air 1994 6. AUTHOR(S)             | oreal Ecosystem-Atmospher<br>4 Aircraft Flux and Moving | e Study (BOREAS)           | 5. FUNDING NUMBERS 923                                                                                                                                                                                         |
| Robert D. Kelly Forrest G. Hall and Jeffrey A.                                                              |                                                         |                            | RTOP: 923-462-33-01                                                                                                                                                                                            |
| 7. PERFORMING ORGANIZATION NAME Goddard Space Flight Center Greenbelt, Maryland 20771                       | E(S) AND ADDRESS (ES)                                   |                            | 8. PEFORMING ORGANIZATION REPORT NUMBER 2000-03136-0                                                                                                                                                           |
| 9. SPONSORING / MONITORING AGER<br>National Aeronautics and Space<br>Washington, DC 20546-0001              |                                                         | (ES)                       | 10. SPONSORING / MONITORING<br>AGENCY REPORT NUMBER<br>TM-2000-209891<br>Vol. 2                                                                                                                                |
| 11. SUPPLEMENTARY NOTES  R. D. Kelly: University of Wy                                                      | oming; J.A. Newcomer:                                   | Raytheon ITSS              |                                                                                                                                                                                                                |
| Unclassified—Unlimited Subject Category: 43 Report available from the NASA 7121 Standard Drive, Hanover, M  | Center for AeroSpace Info                               | ormation,<br>-0390.        | 12b. DISTRIBUTION CODE                                                                                                                                                                                         |
| 13. ABSTRACT (Maximum 200 words)                                                                            |                                                         |                            |                                                                                                                                                                                                                |

The BOREAS AFM-2 team collected pass-by-pass fluxes (and many other statistics) for a large number of level (constant altitude), straight-line passes used in a variety of flight patterns. The data were collected by the University of Wyoming King Air in 1994 BOREAS IFCs 1-3. Most of these data were collected at 60-70 m above ground level, but a significant number of passes were also flown at various levels in the planetary boundary layer, up to about the inversion height. This documentation concerns only the data from the straight and level passes that are presented as original (over the NSA and SSA) and moving window values (over the Transect). Another archive of King Air data is also available, containing data from all the soundings flown by the King Air 1994 IFCs 1-3. The data are stored in tabular ASCII files.

| 14. SUBJECT TERMS BOREAS, airborne flux            | 15. NUMBER OF PAGES 53 16. PRICE CODE                 |                                                      |                               |
|----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------|
| 17. SECURITY CLASSIFICATION OF REPORT Unclassified | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified | 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified | 20. LIMITATION OF ABSTRACT UL |