MONOPOLY

Week 3

(Chapter 25, except Appendix)

Monopoly

Board Game developed during the Great Depression

- 22 streets in Atlantic City (New Jersey), divided into 8 color groups; player must own all of a color group to build hotels
- 4 railways, player collects \$25 rent if she owns one station, \$50 for two, \$100 for three and \$200 for all four
- 2 utilities, rent is four times the dice value if one utility is owned, but ten times if both are owned

What is a monopoly?

	Perfect Competition	Monopoly
Industry structure	Fragmented; No firm has significant market share	Concentrated; One firm dominates
Pricing	Price takers	Price maker
Barriers to entry	No	Significant
Herfindahl index	0	1

Herfindhal index

$$H = \sum_{i=1}^{N} s_i^2$$

- Industry of N firms; s_i: market share of firm i
- Measures market concentration: 0 (most competitive) to 1 (no competition)
- United States Department of Justice's Horizontal Merger Guideline:
 - H below 0.15: unconcentrated market
 - H between 0.15 to 0.25: moderate concentration
 - H above 0.25: high concentration
 - Singapore's retail petrol market: 0.31 (in 2011)
- Equivalent to <u>Simpson diversity index</u> in ecology and <u>inverse participation ratio</u> (IPR) in physics

Consider the following monopoly

Only airline serving the only airport in Island Baro Baro

$$Q = 50 - \frac{P}{40,000}$$

Total cost

$$TC = 10,000Q^2 + 50,000$$

Hence marginal cost

$$MC = \frac{dTC}{dQ} = 20,000Q$$

Total Revenue and Marginal Revenue

The demand for air travel is

$$Q = 50 - \frac{P}{40,000}$$

• The inverse demand function is therefore

$$P = 2,000,000 - 40,000Q$$

• Thus we can write down TR in terms of Q: TR = PQ = (2,000,000 - 40,000Q)Q

• Thus,

$$MR = \frac{dTR}{dQ} = 2,000,000 - 80,000Q$$

MR for Linear Demand Curve

More generally, the (linear) demand curve is

$$Q = a - bP$$

The inverse demand curve is

$$P = \frac{a}{b} - \frac{Q}{b}$$

The total revenue is

$$TR = PQ = (\frac{a}{b} - \frac{Q}{b})Q$$

The marginal revenue is

$$MR = \frac{a}{b} - \frac{2Q}{b}$$
 (linear)

MR for Linear Demand Curve

Profit maximizing condition: MR=MC

- If MR>MC,
 - Increasing Q increases TR faster than TC
 - If you sell a bit more, your profit will increase
 - You have not gone far enough
- If *MR*<*MC*,
 - Increasing Q increases TC faster than TR
 - If you sell a bit less, your profit will increase
 - You have gone too far

Profit maximizing condition: *MR*=*MC*

(Back to example)

• To maximize profit, airline should set MR = MC

$$\implies 2,000,000 - 80,000Q = 20,000Q$$

The optimal number of trips is

$$Q = 20$$

The optimal price of a trip is

$$P = 2,000,000 - 40,000 \times 20 = 1,200,000$$

Optimal P and Q

(1) What if demand increases?

(2) What if marginal cost increases?

(3) What if demand becomes more elastic?

Price Elasticity of Demand

Inverse Elasticity Pricing Rule

Relationship between price elasticity of demand and optimal price can be quantified

$$\frac{P^* - MC^*}{P^*} = -\frac{1}{\epsilon^*}$$

- P^* is the profit-maximizing price
- MC* is the marginal cost at the profit-maximizing output
- ϵ^* is the price elasticity of demand at the profit-maximizing output

Deriving the Rule

$$TR = PQ$$

$$dTR = PdQ + QdP$$

$$\frac{P^* - MC^*}{P^*} = -\frac{1}{\epsilon^*}$$

Market Power

- Generally, a monopolist's profit maximizing price is above the level of marginal cost at the profit maximizing quantity
- Generally, a monopolist's price markup $(P^* MC^*)$ is strictly positive
- If a firm has some control over price, it has *market power*
 - In perfectly competitive market, no firm has market power
- Even if a firm is not a monopolist, it may still have market power (next lecture)

Lerner Index

- $\frac{P^* MC^*}{P^*}$ is known as the Lerner index of market power
- In perfectly competitive market, every firm has a Lerner index of 0
- A firm with market power has a Lerner index above 0 and below 1

Welfare of Monopoly

CS and PS under Perfect Competition

Monopoly vs. Perfect Competition

Monopoly Deadweight Loss

- DWL: Difference between the total surplus if the market were perfectly competitive and the total surplus attained in monopoly market
- Arises because a monopolist produces less quantity and sets higher price than perfectly competitive market

Monopoly vs. Perfect Competition

	Perfect Competition	Monopoly
Equilibrium price	Lower (P=MC)	Higher (P>MC)
Equilibrium quantity	Higher	Lower
Consumer surplus	Higher	Lower
Producer surplus	Lower	Higher consumers and
Total surplus	Higher	Lower

Barriers to Entry

- Why do monopoly markets exist?
 - In perfectly competitive market, if existing firms are making profit, new entrants will enter the market and drive the profit down
- Monopoly markets have barriers to entry
 - i.e., Factors that allow an existing firm to earn positive profit while making it unprofitable for newcomers to enter the industry

Types of Barriers to Entry

Legal

Patents prevent entry of generic drug companies

Strategic

Incumbent firms actively take steps to deter entry

- Marketing
- Limit pricing
 - Incumbent firm charges a lower price before entry occurs
- Predatory pricing
 - Firm with deep pockets lowers price to drive rivals out of market

Structural

- Positive network externality
- Natural monopoly

Natural Monopoly

- A market is a *natural monopoly* if the total cost a single firm would incur is less than the combined total cost that two or more firms would incur if they divide the output among them
- Economies of scale
 - High fixed cost/Low MC
 - ATC decreasing
- Demand is small (relative to cost structure)
 - TV stations in Singapore

Natural Monopoly

Inefficiency of a Natural Monopoly

Regulating a Natural Monopoly

Solution 1: Legislate P=MC

- Why not command that a natural monopoly produce the efficient amount of output (P=MC)?
- Then the deadweight loss will be zero?

Regulating a Natural Monopoly

A Profits Tax Levied on a Monopoly

Solution 2: Levy a Profits Tax

• A profits tax levied at rate t reduces profit from $\pi(Q^*_{pretax})$ to $(1-t)\cdot\pi(Q^*_{posttax})$

- Profits tax is non-distortionary tax (i.e., $Q^*_{pretax} = Q^*_{posttax}$)
- It does not create new distortions, but neither does it fix existing distortions

An Example: (a) No tax

• Suppose inverse demand function is P = 100 - Q, and total cost is given by C = 10Q

• So the monopolist's profit function is $\pi = TR - TC = PQ - 10Q = (100 - Q)Q - 10Q$

To max profit, set

$$\frac{d\pi}{dQ} = 0$$

$$100 - 2Q - 10 = 0$$

$$Q = 45, P = 55, \pi = 2025$$

An Example: (b) Profit tax

- Suppose government set a 10% tax on the monopolist's profits.
- So the monopolist's profit function is $\pi_{nostrax} = 0.9\pi$

$$= 0.9(TR - TC) = 0.9(PQ - 10Q) = 0.9(100 - Q)Q - 9Q$$

• To max profit, set $\frac{d\pi_{_{posttax}}}{dQ}=0$ 90-1.8Q-9=0 $Q=45, P=55, \pi=1822.5$

• Equilibrium output and price unchanged because 90-1.8Q-9=0.9(100-2Q-10)=0

has the same solution as 100-2Q-10=0

Quantity Tax Levied on a Monopolist

Solution 3: Levy a Quantity Tax

- A quantity tax of \$t per unit of output raises the marginal cost of production by \$t
- So the tax reduces the profit-maximizing output level, causes the market price to rise, and input demands to fall
- The quantity tax is distortionary

Same Example: (c) Quantity tax

Suppose government set a tax of \$10 on each unit sold

• Now the monopolist's profit function is $\pi' = TR - TC - Tax = PQ - 10Q - 10Q = (100 - Q)Q - 20Q$

• To max profit, set
$$\frac{d\pi'}{dQ} = 0$$

$$100 - 2Q - 20 = 0$$

$$Q = 40, P = 60, \pi = 1600$$

 Equilibrium output and price changed because the quantity tax discourages the monopolist from selling more

Quantity Tax Levied on a Monopolist

Competition Policy in Singapore

- Competition Commission Singapore (CCS) oversees anti-competitive activities
- Competition Act (effective since 2004) is the law in Singapore that protects consumers and businesses from anti-competitive activities
 - Abuse of dominance
 - Anti-competitive agreements
 - Merger

Abuse of Dominance

- Being a dominant player is fine
- Anti-competitive activities that protects/enhances one's dominant position are illegal
 - deter other competitors from entering the market
 - intend to drive competitors out of the market
- Examples
 - Exclusive dealing
 - Aggressive pricing

Price Discrimination

(Firm may increase its profit further by charging different prices for its good)

- 1st-degree
 - Each output unit is sold at a different price
 - Prices differ across buyers
- 2nd-degree
 - Price paid by a buyer varies with quantity purchased
 - All buyers face the same price schedule
 - Example: bulk discount
- 3rd-degree
 - Firm offers different prices to different groups
 - All buyers in the same group face the same price schedule
 - Example: senior citizen/student discounts

Uniform Pricing

Under uniform pricing, Tyke will not consume

Welfare Under Uniform Pricing

First-Degree Price Discrimination

- Firm sells 33 units (at different prices) in total, instead of 20
- Tyke will consume

Third-Degree Price Discrimination

- Suppose Wiley sells textbook Microeconomics in two markets, US and Outside US
- Demand
 - Demand in US is Q=6000-20P
 - Demand outside US is Q=8000-80P
- Cost
 - Wiley's marginal cost is MC=10 in both markets
 - No fixed cost

Demand in US vs. outside US

Profit-Maximizing Price in Each Market

Profit-Maximizing Price in US

$$MR = 300 - Q/10$$

$$300 - Q/10 = 10 \Rightarrow Q = 2900$$

Profit-maximizing price

$$P = 300 - 2900/20 = 155$$

Profit in US

$$TR - TC = 155 \times 2900 - 10 \times 2900 = 420,500$$

Profit-Maximizing Price outside US

Outside US,

$$MR = 100 - Q/40$$

• Setting MR=MC,

$$100 - Q/40 = 10 \Rightarrow Q = 3600$$

Profit-maximizing price

$$P = 100 - 3600/80 = 55$$

Profit outside US

$$TR - TC = 55 \times 3600 - 10 \times 3600 = 162,000$$

What if Wiley can only charge one price?

$$Q = Q_{US} + Q_{exUS} \implies Q = (6000 - 20P) + (8000 - 80P)$$

 $\implies P = 140 - \frac{Q}{100}$

Profit-maximizing Uniform Price

$$140 - Q/50 = 10 \Rightarrow Q = 6,500$$

• The profit-maximizing uniform price is

$$P = 140 - 6500/100 = 75$$

Wiley's profit is

$$TR - TC = 75 \times 6500 - 10 \times 6500 = 422,500$$

- US consumers buy
- International consumers buy

$$6000 - 20 \times 75 = 4500$$

$$8000 - 80 \times 75 = 2000$$

Comparison

	Uniform Pricing	Third-Degree Price Discrimination
Optimal price	75	155 (US) 55 (Outside US)
Profit	422,500	582,500
Quantity sold in US	4500	2900
Quantity sold outside US	2000	3600