

COGNITIVE COMPUTATIONAL NEUROSCIENCE Kriegeskorte & Douglas (2018) Nature Neuroscience

October 8, 2018 | Journal Club | Julia Sprenger | INM-6

Cognitive psychology

 study of mental processes such as 'attention, language use, memory, perception, problem solving, creativity, and thinking'

Cognitive psychology

 study of mental processes such as 'attention, language use, memory, perception, problem solving, creativity, and thinking'

Allen Newell (1973)

- 'You can't play 20 questions with nature and win'
- Hypothesis testing needs to be complemented by the construction of comprehensive task-performing computational models

Cognitive psychology

 study of mental processes such as 'attention, language use, memory, perception, problem solving, creativity, and thinking'

Allen Newell (1973)

- 'You can't play 20 questions with nature and win'
- Hypothesis testing needs to be complemented by the construction of comprehensive task-performing computational models

Richard Feynman (1988)

'What I cannot create, I do not understand'

Cognitive psychology

 study of mental processes such as 'attention, language use, memory, perception, problem solving, creativity, and thinking'

Allen Newell (1973)

- 'You can't play 20 questions with nature and win'
- Hypothesis testing needs to be complemented by the construction of comprehensive task-performing computational models

Richard Feynman (1988)

'What I cannot create, I do not understand'

Cognitive Science (1980)

introduction of task-performing computational models (symbolic cognitive architectures, neural networks based on behavioural data)

Cognitive Neuroscience

- relate cognitive theories to the (human) brain using functional brain imaging
- mapping of cognitive functions to brain regions using
 - EEG (1875)
 - MEG (1968)
 - PET (1961)
 - fMRI (1990)

Advances in Cognitive Neuroscience

- face-selective regions in human
- spacial clustering of face neurons in non-human primates

Modern Imaging Techniques

- a brain map does not reveal the computational mechanism
- but constrains for theory
- data-driven analysis provides only limited insights

Different Approaches

Cognitive sciences

- interdisciplinary, scientific study of the mind and its processes²
- how humans learn & think

Different Approaches

Cognitive sciences

- interdisciplinary, scientific study of the mind and its processes²
- how humans learn & think

Computational Neuroscience

how brains adapt and compute

Different Approaches

Cognitive sciences

- interdisciplinary, scientific study of the mind and its processes²
- how humans learn & think

Computational Neuroscience

how brains adapt and compute

Artificial Intelligence

how to generate intelligent behaviour

Disciplines

Recent advances

Cognitive Science

- top-down approach
- Bayesian cognitive models (optimal combination of prior knowledge with sensory evidence)
- unified perspective on probabilistic empirical inference

Computational Neuroscience

- bottom-up approach
- mathematical models of elementary computational components and their implementation with biological neurons
 - sensory coding, normalization, working memory, evidence accumulation and decision mechanisms, and motor control

Artificial Intelligence

- demonstrates how component functions can be combined to create intelligent behaviour
- machine learning, deep neural networks

Overarching Challenge build solid bridges between theory and experiment

- Models of connectivity and dynamics
 - correlation among response time series →'functional connectivity'
 - anatomical connectivity
 - graph theoretical analysis of connectivity measures
 - generative modeling of dynamics →effective connectivity
 - Dynamic Causal Modeling
 - Granger Causality
 - Transfer Entropy
 - can be applied within individuals (different states) and across individuals (disorders)

- Models of connectivity and dynamics
 - correlation among response time series →'functional connectivity'
 - anatomical connectivity
 - graph theoretical analysis of connectivity measures
 - generative modeling of dynamics →effective connectivity
 - Dynamic Causal Modeling
 - Granger Causality
 - Transfer Entropy
 - can be applied within individuals (different states) and across individuals (disorders)
- Decoding models
 - 'what information is present in each brain region' (eg. stimulus orientation or type, face identity, belief related decisions)
 - does not specify the representational format
 - linearly decodable →explicit information
 - advanced decoding: reconstruction

- Models of connectivity and dynamics
 - correlation among response time series →'functional connectivity'
 - anatomical connectivity
 - graph theoretical analysis of connectivity measures
 - generative modeling of dynamics →effective connectivity
 - Dynamic Causal Modeling
 - Granger Causality
 - Transfer Entropy
 - can be applied within individuals (different states) and across individuals (disorders)
- Decoding models
 - 'what information is present in each brain region' (eg. stimulus orientation or type, face identity, belief related decisions)
 - does not specify the representational format
 - linearly decodable → explicit information
 - advanced decoding: reconstruction
- Representational models
 - comprehensive predictions about the representational space
 - encoding models
 - pattern component models (PCM)
 - representational similarity analysis (RSA)
 - often based on description of stimuli

- Models of connectivity and dynamics
 - correlation among response time series →'functional connectivity'
 - anatomical connectivity
 - graph theoretical analysis of connectivity measures
 - generative modeling of dynamics →effective connectivity
 - Dynamic Causal Modeling
 - Granger Causality
 - Transfer Entropy
 - acan be applied within individuals (different states) and across individuals (disorders)
- Decoding models
 - 'what information is present in each brain region' (eg. stimulus orientation or type, face identity, belief related decisions)
 - does not specify the representational format
 - linearly decodable → explicit information
 - advanced decoding: reconstruction
- Representational models
 - comprehensive predictions about the representational space
 - encoding models
 - pattern component models (PCM)
 - representational similarity analysis (RSA)
 - often based on description of stimuli

These models do **not** reveal the computational mechanisms of information processing under ting some cognitive function october 8, 2018 slide 7

Interlude: The many meanings of model

- data-analysis models (statistical description of measured variables)
- box-and-arrow models (information processing)
- oracle model (relies on information without describing the extraction from input)
- brain-computational model (mimics brain information processing, eg sensory encoding)
- **...**

The Space of Process Models

From Theory to Experiment

- Neural network models
 - provide a common language for building task-performing models that meet combined criteria from all three disciplines

Slide 10

- acan be constructed as biologically plausible systems (feed forward, recurrent, ...)
- supervised and unsupervised learning
- requires large parametric complexity to capture world knowledge for intelligent behaviour
- over-fitting problem →evaluation in terms of generalization performance
- example of visual pathways: visual hierarchy is also formed in deep neural networks

From Theory to Experiment

- Neural network models
 - provide a common language for building task-performing models that meet combined criteria from all three disciplines
 - can be constructed as biologically plausible systems (feed forward, recurrent, ...)
 - supervised and unsupervised learning
 - requires large parametric complexity to capture world knowledge for intelligent behaviour
 - over-fitting problem →evaluation in terms of generalization performance
 - example of visual pathways: visual hierarchy is also formed in deep neural networks
- Cognitive models
 - high level description of cognitive processes without biological details
 - production systems
 - sequence of cognitive actions based on 'if ... then ...' rules
 - reinforcement learning
 - learning to maximize long-term cumulative reward through interaction with environment eg. by value functions or policies
 - requires balance between exploitation and exploration
 - model-free control: learning by trial and error
 - model-based control: enables intelligent action in novel situations
 - episodic control: storage of past experiences
 - Bayesian models
 - provides optimal behaviour under given data and priors
- .challenging to learn a generative model from sensory data and computation of posterior

Why do cognitive science, computational neuroscience and Al need each other?

- Cognitive science
 - needs computational neuroscience to discover algorithms of information processing
 - needs brain data to provide constrains for complex models
 - progresses in close interaction with AI
- Computational Neuroscience
 - needs cognitive science to challenge it to engage higher-level cognition
 - needs machine learning / Al to provide theoretical and technological basis for modeling functions with biologically plausible dynamical components
- Artificial Intelligence
 - needs cognitive science to guide the engineering of intelligence (eg. benchmarks for tasks)
 - needs computational neuroscience for algorithmic inspiration
 - main challenge: integration of computational and statistical efficiency

Looking Ahead

The brain seamlessly merges bottom-up discriminative and top-down generative computations in perceptual inference, and model-free and model-based control.

- bottom up and top down
 - most important funding initiatives for bottom-up approach: Human Brain Project (synthesize neuroscience data in biologically detailed dynamic models), US Brain Initiative (measurement and manipulation of brain activity)
 - better understanding in the context of a prior theory
- Marr's levels (1982)
 - computational theory
 - representation and algorithm
 - neurobiological implementation
- →convergence of the three disciplines on algorithms and representations
- example: child seeing escalator
 - neural networks: recognition of visual elements
 - bayesian nonparametric models: concept formation from single experience
- power discrepancy: efficient statistical and computational implementation in the brain based on 20
 Watt

→need for collaborations between labs with complementary expertise & open science culture JÜLI

Member of the Helmholtz Association October 8, 2018 Slide 12

Interaction Among Sharable Components

Tasks

- provide controlled environment for behaviour
- OpenAl's Gym, Universe, DeepMind's lab
- interactions with virtual stimuli, natural environment as games, mass participation

Models

- task-performing computational models
- initially only performing specific task, but must ultimately generalize across tasks

Data

- behavioural data during task performance
- structural & functional brain data

Tests

- comparison between computational models and brain data (within a specific task)
- conceptual challenge of level of comparison

Challenges

design shareable tasks and provide human behavioral data set to set bar for AI model performance

share brain activity data to constrain models and quantitative compare to models

