Yoga Pose
Classification
and Fake Pose
Generation

Tejas Prashanth

Sumanth V Rao

Data Collection

- A dataset consisting of 2964 images of four different yoga poses is built
 - Tree pose (Vrikshasana)
 - Mountain pose (Tadasana)
 - Warrior pose (Virabhadrasana)
 - Plank pose (Kumbhakasana)

<u>Link to dataset</u>

High level Block diagram - Pose classification and Generation

Raw Image

Body Points Identification

Processed Image

VAE model

November 27th, 2019

Pose Classification

Pose

Generation

Key point detection using OpenPose

- Trained on the COCO dataset and a foot dataset
- Capable of detecting 25 keypoints
 - 19 body key points
 - 6 foot key points

Yoga Pose Classification

LSTM model

Link to cell with LSTM Code

- Loss function: CategoricalCross Entropy
- Optimizer: Adam

Model	Accuracy	Validation Accuracy
LSTM model	92.24%	92.90%

November 27th, 2019

Fake Pose Generation

Variational AutoEncoder

- Latent dimensions: 8
- Input: Flattened array of X and Y coordinates
- Trained for 2 classes of input

$$Loss = -30 * \sum_{i}^{m} (y_i \ln a_i + (1 - y_i) \ln(1 - a_i)) - 0.5 * ((\ln \sigma^2) + 1 - \nu^2 - \sigma^2)$$

Variational AutoEncoder - Architecture

(b) TSNE plot for latent space of warrior + tree pose

(a) TSNE plot for latent space of Mountain + plank pose

Variational AutoEncoder - Results

Link to cell

Data	Loss	Validation Loss	KL Loss
Mountain + Plank poses	18.50	18.58	0.395
Warrior + Tree poses	18.81	18.79	0.33

Table 1: Performance of 2 class flattened model

Algorithm 1: Latent space Interpolation

Encoder(Input features);

Obtain centroid for 2 different classes of input, say Z_a and Z_b . This will correspond to two different yoga poses;

Find the difference vector between the centroids, say Z_{diff} ;

Generate new samples in latent space using $Z_{new} = Z_b + \alpha * Z_{diff}$ (0 < \alpha < 1);

 $Decoder(Z_{new});$

Warrior Pose (Virabhadrasana)

Tree Pose (Vrikshasana)

Intermediate/Fake Pose

Transition GIF from Plankpose to Mountain pose

Transition GIF from Warrior pose to Tree pose

Pose Generation for four classes of input

Poor quality latent space

Codebase: https://github.com/tej-prash/yoga-pose-classification-system

Detailed Report: https://drive.google.com/file/d/1G3OAHLZMwPKEZZLB8-

EPNqTczv8oK9IV/view?usp=sharing