Research Hypothesis: A Computational Construction of Algebraic Cycles via the Abel-Jacobi Map**

Core Hypothesis: It is possible to computationally construct and verify the image of a non-trivial algebraic cycle of high codimension on an abelian variety under the Abel-Jacobi map, using a refined methodology that combines symbolic computation (SageMath, Magma) and high-precision numerical analysis (Arb). This process will provide an explicit, verifiable case study that advances the constructive approach to the Hodge Conjecture.

Primary Research Question: Can we algorithmically compute the Abel-Jacobi image of the cycle \(Z = \{P_1\} \times E_2 \times \{P_3\} \) on the abelian threefold \(X = E_1 \times E_2 \times E_3 \times

Theoretical Framework and Justification

This research is situated within the framework of **refined Abel-Jacobi maps and normal functions**. The Abel-Jacobi map provides a bridge between algebraic cycles (geometric objects) and complex tori (analytic objects). For a homologically trivial algebraic cycle \(Z \) of codimension \(p \) on a smooth projective variety \(X \), the Abel-Jacobi map \(\text{AJ}^p \) sends \(Z \) to a point in the intermediate Jacobian \(J^p(X) \), a complex torus.

The hypothesis is justified by:

- 1. **Historical Precedent:** The map is a generalization of the Abel-Jacobi theorem for algebraic curves, a cornerstone of algebraic geometry.
- 2. **Abelian Variety Structure:** The choice of \(X \) as a product of elliptic curves simplifies the homology and cohomology computations, making the problem computationally tractable while remaining non-trivial (codimension 2 on a threefold).

3. **Constructive Pathway:** Successfully implementing this map computationally is a critical step towards the larger goal of constructing algebraic cycles from Hodge classes.

Methodological Plan: Phases and Subtasks

The hypothesis will be tested through a two-phase computational strategy:

- **Phase 0: Pilot Study on an Elliptic Curve (Codimension 1)**
- * **Objective:** To de-risk the project by validating the entire software toolchain and developing numerical integration templates on a well-understood problem.
- * **Method:** Implement the Abel-Jacobi map for a degree-zero divisor (D = (P) (O)) on a single elliptic curve (E). This involves:
- 1. Computing the period lattice \(\Lambda \) by integrating the holomorphic 1-form over a basis of $(H_1(E, \mathbb{Z}))$.
- - 3. Verifying that \(\\text{AJ}(D)\\in \Lambda \)\ to high precision.
- * **Success Criteria: ** Reproduction of the classical result with >100 digits of precision.
- **Phase 1: Core Computation on the Abelian Threefold (Codimension 2)**
- * **Subtask 1: Define \(X \) and \(Z \).** Define non-isomorphic elliptic curves \(E_1, E_2, E_3 \) in SageMath/Magma. Construct \(X \) as their product and define the algebraic cycle \(Z = $\{P_1\} \times E_2 \times \{P_3\} \$.
- * **Subtask 2: Compute \(J^2(X) \).**

 - 2. Compute a basis for the integer homology group $\ (H_2(X, \mathbf{Z})).$

- 3. Numerically compute the period integrals of the 2-forms over the 2-cycles to form the period matrix \(\Omega \), defining the intermediate Jacobian \(J^2(X) = \mathbb{C}^g / \Delta \right).
- * **Subtask 3: Compute \(\\text{AJ}(Z)\\).** This is the core technical challenge.
- 1. **Construct a 3-chain \(\Sigma \)** such that \(\partial \Sigma = Z Z_0 \), leveraging the group law of \(X \). The chosen construction is \(\Sigma = \gamma_{P_1 \to 0} \times E_2 \times \gamma_{P_3 \to 0} \), where \(\gamma \) are paths on the respective elliptic curves.
- 2. **Perform high-precision numerical integration** of the holomorphic 2-forms over \(\sigma \). This will employ a multi-faceted strategy to ensure stability:
 - * **Adaptive Cubature:** Using Arb's arbitrary-precision adaptive integration routines.
- * **Iterated Integrals:** Exploiting the product structure to break the triple integral into manageable parts.
- * **Singularity Handling:** Monitoring the Jacobian of the parameterization and preemptively subdividing the domain or applying coordinate transformations to avoid numerical instability.
- * **Precision & Validation:** Running computations at multiple precision levels and using alternative parameterizations to cross-verify results.
- * **Subtask 4: Verification.**
- 1. **Lattice Agreement:** Reduce the computed image vector \(\text{AJ}(Z) \) modulo the period lattice \(\Lambda \). The result must be numerically zero within a tolerance of \(10^{-90} \).
- 2. **Torsion Verification:** If (Z) is constructed to be homologically trivial, test if $(N \cdot \text{Lost}(AJ)(Z))$ is a lattice point for some integer (N), confirming it is a torsion point.
- 3. **Reproducibility:** All code and parameters will be published to allow independent verification.

A successful verification of the hypothesis will be determined by:

- 1. **Numerical Proof:** The final, reduced vector of $(\text{AJ}(Z) \)$ modulo (Ambda) is numerically indistinguishable from zero $((\text{Ambda }) \)$.
- 2. **Torsion Property: ** The image is confirmed to be a torsion point in \(J^2(X) \).
- 3. **Stability and Reproducibility:** Results are stable under perturbation and can be reproduced independently using the provided code and documentation.
- 4. **Expert Endorsement:** The methodology and interpretation withstand peer review by experts in computational algebraic geometry.

Significance: Success would provide a concrete, reproducible computational protocol for studying algebraic cycles in high codimension, directly addressing the "construction problem" and providing a powerful tool for exploring cases related to the Hodge Conjecture. Failure would still yield valuable insights, highlighting specific computational or theoretical obstacles in higher codimension, and would result in a detailed public postmortem to guide future research.

This hypothesis represents a rigorous, step-by-step plan to move from theoretical discussion to practical, verifiable computation at the frontier of algebraic geometry.