Abstract Algebra Homework 3

Joe Loser

February 7, 2016

This problem set includes problems from sections 3.4: namely, problems 32, 33, 45, 46 and 48.

32) Show that if G is a finite group of even order, then there is an $a \in G$ such that a is not the identity and $a^2 = e$.

Proof: Define $S \subseteq G$ by

$$S := \{ a \in G : a \neq a^{-1} \}.$$

Notice that S is a *proper* subset of G since $e \notin S$. Since $(a^{-1})^{-1} = a$ for all $a \in G$, we see that $a \in S$ if and only if $a^{-1} \in S$. This is valid since a group is closed under inverses. So, we can pair up the elements of S each with their respective inverses:

$$S = \{a_1, a_1^{-1}, a_2, a_2^{-1}, ..., a_n, a_n^{-1}\}.$$
 (*)

Thus, we see that S has an even number of elements: |S| = 2n. Suppose |G| = 2m by hypothesis. Then, n < m and the number of elements $a \in G$ satisfying the condition that $a = a^{-1}$ is

$$2m - 2n = 2(m - n).$$

In particular, notice that an even number of elements in G are equal to their own inverses and are paired together in the ordering of (*). Hence, since $e = e^{-1}$, there must be at least one other element $a \in G$ such that $a = a^{-1}$.

33) Let G be a group and suppose that $(ab)^2=a^2b^2$ for all $a,b\in G$. Prove that G is an abelian group.

<u>Proof</u>: We know that a group G is abelian if $\forall a,b \in G \ a*b=b*a$. Let $a,b \in G$. Then we have that $(ab)^2=(ab)(ab)=(aabb)$. Using left and right cancellation we see that ab=ba.

Thus, we have shown that G is an abelian group.

45) Prove that the intersection of two subgroups of a group G is also a subgroup of G.

<u>Proof</u>: Let G be a group and let $H_1 < G$ and $H_2 < G$ be subgroups of G. We want to show $H_1 \cap H_2 < G$. To show this, we want to satisfy the three conditions of the Subgroup Test (Proposition G4 in class).

We know that $e \in H_1$ and $e \in H_2$ since H_1 and H_2 are subgroups. So, $e \in H_1 \cap H_2$. In turn, this also shows that $H_1 \cap H_2$ is not empty.

Next, let $h \in H_1 \cap H_2$. Clearly $h \in H_1$ then. Since H_1 is a subgroup, then $h^{-1} \in H_1$. Similarly, $h \in H_2$ and since H_2 is a subgroup, $h^{-1} \in H_2$. Thus, $h^{-1} \in H_1 \cap H_2$.

Lastly, by definition, H_1 and H_2 are closed under the binary operation of G. Let $k,k'\in H_1\cap H_2$. Then $k\in H_1$ and $k'\in H_1$. Since H_1 is a subgroup, $kk'\in H_1$. Similarly, $k\in H_2$ and $k'\in H_2$. Since H_2 is also a subgroup, $kk'\in H_2$. Hence, $kk'\in H_1\cap H_2$.

We have shown that $H_1 \cap H_2$ contains the identity, inverses, and is closed under multiplication. Hence, it is a subgroup.

46) Prove or disprove: If H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G.

<u>Proof</u>: Let H < G and K < G be subgroups of a group G. The union $H \cup K$ need not be a subgroup of G. We will prove this by giving a simple counterexample.

Consider \mathbb{Z}_6 , the cyclic group of order 6. We will look at two of its subgroups: namely those generated from 2 and 3 and show that the union of these two subgroups is not a subgroup. These two subgroups are $\{[0],[2],[4]\}$ and $\{[0],[3]\}$, i.e. \mathbb{Z}_2 and \mathbb{Z}_3 . Then, $H \cup K = \{[0],[2],[3],[4]\}$ which is not a subgroup since it is not closed under addition. In particular, notice that $2 \in \mathbb{Z}_2$ and $3 \in \mathbb{Z}_3$ and hence are both in the union. However, their sum 5 = 2 + 3 is not an element of $H \cup K$ because 5 is neither a multiple of 2 or 3.

Since we have shown a counterexample that the union of two subgroups of a group G need not yield a subgroup, we are done.

48) Let G be a group and $g \in G$. Show that

$$Z(G) = \{ x \in G : gx = xg \ \forall g \in G \}.$$

is a subgroup of G. This subgroup is called the **center** of G.

<u>Proof</u>: For all $g \in G$ we have that eg = ge = e. Thus $e \in Z(G)$ which means Z(G) is non-empty.

Let $a,b\in Z(G).$ Then for all $g\in G$ we have ag=ga and bg=gb so that

$$(ab)g = a(bg)$$

$$= a(gb)$$

$$= (ag)b$$

$$= (ga)b$$

$$= g(ab)$$

Therefore, $ab \in Z(G)$.

Lastly, let $c \in Z(G)$ and since $g \in G$, then cg = gc. We want to show that Z(G) contains inverses. So, multiply both sides by c^{-1} twice. This is allowed since Z(G) is a subgroup and hence contains inverses.

$$c^{-1}(cg)c^{-1} = c^{-1}(gc)c^{-1}$$
$$(c^{-1}c)gc^{-1} = c^{-1}g(cc^{-1})$$
$$egc^{-1} = c^{-1}ge$$
$$gc^{-1} = c^{-1}g$$

Therefore, $c^{-1} \in Z(G)$ since we took c to be an arbitrary element of Z(G).

Thus, Z(G) is a subgroup.