Multilayer perceptron

Victor Kitov

v v kit ov@yandex ru

Table of Contents

- Architecture
- Sufficient number of layers
- Activation functions
- Optimization
- Comments

History

 Neural networks originally appeared as an attempt to model human brain

- Human brain consists of multiple interconnected neuron cells
 - cerebral cortex (the largest part) is estimated to contain 15–33 billion neurons
 - communication is performed by sending electrical and electro-chemical signals
 - signals are transmitted through axons long thin parts of neurons.

Simple model of a neuron

- Neuron get's activated in the half-space, defined by $w_0 + w_1 x^1 + w_2 x^2 + ... + w_D x^D \ge 0$.
- Each node is called a neuron
- Each edge is associated a weight
- w_0 stands for bias

Multilayer perceptron architecture¹

- Hierarchically nested set of neurons.
- Each node has its own weights.

This is structure of **multilayer perceptron** - acyclic directed graph.

¹Propose neural networks estimating OR,AND,XOR functions on boolean inputs.

Layers

- Structure of neural network:
 - 1-input layer
 - 2-hidden layers
 - 3-output layer

Definition details

- Label each neuron with integer j.
- Denote: I_j input to neuron j, O_j output of neuron j
- Output of neuron j: $O_j = \varphi(I_j)$.
- Input to neuron j: $I_j = \sum_{k \in inc(j)} w_{kj} O_k + w_{0j}$,
 - w_{0j} is the bias term
 - inc(j) is a set of neurons with outging edges incoming to neuron j.
 - further we will assume that at each layer there is a vertex with constant output $O_{const} \equiv 1$, so we can simplify notation

$$I_j = \sum_{k \in inc(j)} w_{kj} O_k$$

Output generation

• Forward propagation is a process of successive calculations of neuron outputs for given features.

Table of Contents

- Architecture
- Sufficient number of layers
- 3 Activation functions
- Optimization
- Comments

Number of layers selection

- Consider indicator activations.
- # layers selection for classification:
 - single layer network selects arbitrary half-spaces
 - 2-layer network selects arbitrary convex polyhedron (by intersection of 1-layer outputs)
 - therefore it can approximate arbitrary convex sets
 - 3-layer network selects (by union of 2-layer outputs) arbitrary finite sets of polyhedra
- So 3 layered NN can approximate all regular² sets!

²With well-defined volume - Borel measurable.

Number of layers selection

- Consider indicator & identity (linear) activations.
- # layers selection for regression:
 - single layer can approximate arbitrary linear function
 - 2-layer network can model indicator function of arbitrary convex polyhedron
 - 3-layer network can uniformly approximate arbitrary continuous function (as sum weighted sum of indicators convex polyhedra)
- So 3 layered NN can approximate all regular³ dependencies!

³Function should be Borel measurable.

Number of layers selection

Sufficient amount of layers

Any continuous function on a compact space can be uniformly approximated by 2-layer neural network with linear output and any (without polynomial) activation functions.

- In practice #layers=2 is enough, but may require too many neurons.
- So often it is more convenient to use more layers with less total amount of neurons
 - less parameters=>less overfitting.

Table of Contents

- Architecture
- Sufficient number of layers
- 3 Activation functions
- 4 Optimization
- Comments

Continuous activations

- Pitfall of I[]: it causes step-wise constant outputs, weight optimization methods become inapplicable.
- We can replace $\mathbb{I}[w^T x + w_0 \ge 0]$ with smooth activation $\varphi(w^T x + w_0)$

Typical activation functions

- sigmoid: $\sigma(x) = \frac{1}{1+e^{-x}}$
 - 1-layer neural network with sigmoidal activation is equivalent to logistic regression
- hyperbolic tangent: tangh(x) = $\frac{e^x e^{-x}}{e^x + e^{-x}}$
 - more computationally efficient: $SoftSign(x) = \frac{x}{1+|x|}$

Activation functions

Activation functions are smooth approximations of step functions:

 $\sigma(\mathsf{a}\mathsf{x})$ limits to 0/1-step function as $\mathsf{a} o \infty$

 $\mathsf{tangh}(\mathsf{a}\mathsf{x})$ limits to -1/1-step function as $\mathsf{a} \to \infty$

Activation functions

- Rectified linear unit (ReLU): $\varphi(x) = x\mathbb{I}[x \ge 0]$
- SoftPlus: $\varphi(x) = \ln(1 + e^x)$
- Leaky ReLU: $\varphi(x) = \begin{cases} x, & x \ge 0 \\ 0.01x, & x < 0 \end{cases}$
- Parametric ReLU (PReLU): $\varphi(x|\alpha) = \begin{cases} x, & x \geq 0 \\ \alpha x, & x < 0 \end{cases}$
- Exponential LU (ELU): $\varphi(x) = \begin{cases} x, & x \geq 0 \\ \alpha(e^x 1), & x < 0 \end{cases}$

ReLU visualization

Activation functions

MaxOut:
$$\varphi(x) = \max\{w_1^T x + b_1, w_2^T x + b_2\}$$

Gaussian: $\varphi(x|\mu, \sigma^2) = \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2}\right)$

Recommendations:

- do not use sigmoid (saturates, non-centered output)
- start from ReLU
- if many "dead" neurons use leaky ReLU, PReLU, ELU, etc.

Activations at output layer

- Regression: $\varphi(I) = I$
- Classification:
 - binary: $y \in \{+1, -1\}$

$$p(y = +1|x) = \frac{1}{1 + e^{-I}}$$

• multiclass: $y \in 1, 2, ...C$

$$\varphi(O_1,...O_C) = p(y = j|x) = \frac{e^{O_j}}{\sum_{k=1}^C e^{O_k}}, j = 1, 2, ...C$$

where $O_1, ... O_C$ are outputs of output layer.

Table of Contents

- Architecture
- Sufficient number of layers
- Activation functions
- 4 Optimization
 - Loss functions
 - Optimization
- Comments

Multilayer perceptron - Victor Kitov
Optimization
Loss functions

- Optimization
 - Loss functions
 - Optimization

Regression

• Scalar regression $y \in \mathbb{R}$:

$$MSE(x, y) = (\widehat{y}(\mathbf{x}) - y)^2$$

• Vector regression $\mathbf{y} \in \mathbb{R}^K$:

$$MSE(x, y) = \|\widehat{\mathbf{y}}(\mathbf{x}) - \mathbf{y}\|_2^2$$

• Total loss: summed loss over objects of the training set.

Classification (class probabities output)

• Two classes $y \in \{0, 1\}$:

$$NLL(x, y) = -\ln p(y = 1|x)^{y} [1 - p(y = 1|x)]^{1-y}$$

• C classes $y \in \{1, 2, ... C\}$:

$$NLL(x, y) = - \ln \prod_{c=1}^{C} p(y = c|x)^{y_c}, \qquad y_c = \mathbb{I}\{y = c\}$$

• Total loss: summed loss over objects of the training set.

Classification (class scores output)

• Two classes $(y \in \{-1, 1\})$:

$$hinge(x, y) = [O_{-y}(x) + 1 - O_{y}(x)]_{+}$$

• C classes $(y \in \{1, 2, ... C\})$:

$$hinge_1(x, y) = \left[\max_{c \neq y} O_c + 1 - O_y\right]_+$$
 $hinge_2(x, y) = \sum_{c \neq y} \left[O_c + 1 - O_y\right]_+$

• Total loss: summed loss over objects of the training set.

Multilayer perceptron - Victor Kitov
Optimization
Optimization

- Optimization
 - Loss functions
 - Optimization

Neural network optimization

- Denote $\mathcal{L}(\widehat{y}, y)$ the loss function, $W = \#[\text{weights in the network}], \eta$ step size.
- We may optimize neural network using SGD:

```
initialize randomly w # small values for sigmoid and tangh while not (stop condition): sample random object (x_i, y_i) w := w - \eta \nabla_w \mathcal{L}(w, x_i, y_i)
```

- Standardization of features makes GD & SGD converge faster
- Other optimization methods are more efficient (SGD+momentum, Adam)

Learning rate selection is important

Important to decrease learning rate on plateaus!

SGD with momentum

```
initialize randomly w # small values for sigmoid and tangh while not (stop condition): sample random object (x_i, y_i) \Delta w := \alpha \Delta w + (1 - \alpha) \nabla_w \mathcal{L}(w, x_i, y_i) \text{ # alpha is typically 0.9.} w := w - \eta \Delta w
```

- Converges faster, because
 - gradient is based on several observations instead of one
 - gradient directions aggregation averages ininformative trembling:

Optimization

Gradient calculation

• Direct $\nabla \mathcal{L}(w)$ calculation, using

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\mathcal{L}(w + \varepsilon_i) - \mathcal{L}(w)}{\varepsilon} + O(\varepsilon)$$
 (1)

or better

$$\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\mathcal{L}(w + \varepsilon_i) - \mathcal{L}(w - \varepsilon_i)}{2\varepsilon} + O(\varepsilon^2)$$
 (2)

has complexity $O(W^2)$

- need to calculate W derivatives
- complexity for each derivative: 2W

Backpropagation algorithm needs only O(W) to evaluate all derivatives.

Definitions

- ullet j neuron number, having non-linearity $arphi_{j}\left(\cdot
 ight)$
- I_i input to neuron j, $O_i = \varphi_i(I_i)$ output of neuron j
- $I_j = \sum_{k \in inc(j)} w_{kj} O_k$
- out(j) set of neurons having incoming connection from neuron j.
 - bias omitted for simplicity

Definitions

- Denote w_{ii} be the weight of edge, connecting i-th and j-th neuron.
- Define $\delta_j = \frac{\partial \mathcal{L}}{\partial I_i} = \frac{\partial \mathcal{L}}{\partial O_i} \frac{\partial O_j}{\partial I_i}$
- Since \mathcal{L} depends on w_{ii} through the following functional relationship $\mathcal{L}(w_{ii}) \equiv \mathcal{L}(O_i(I_i(w_{ii})))$, using the chain rule we obtain:

$$\frac{\partial \mathcal{L}}{\partial w_{ij}} = \frac{\partial \mathcal{L}}{\partial I_j} \frac{\partial I_j}{\partial w_{ij}} = \delta_j O_i$$

because $rac{\partial I_j}{\partial w_{ii}} = rac{\partial}{\partial w_{ii}} \left(\sum_{k \in inc(j)} w_{kj} O_k
ight) = O_i$, where inc(j) is a set of all neurons with outgoing edges to neuron j.

• $\frac{\partial \mathcal{L}}{\partial I_i} = \frac{\partial \mathcal{L}}{\partial O_i} \frac{\partial O_j}{\partial I_i} = \frac{\partial \mathcal{L}}{\partial O_i} \varphi'(I_j)$, where φ is the activation function.

Backpropagation steps 1,2

- 1) If $layer(j) = L_{max}$ (lies in the output layer) $\frac{\partial \mathcal{L}}{\partial O_j}$ is calculated directly.
 - ullet e.g. for $\mathcal{L}=rac{1}{2}\sum_{i\in OL}(O_i-y_i)^2$: $rac{\partial \mathcal{L}}{\partial O_j}=O_j-y_j$
- 2) $\frac{\partial \mathcal{L}}{\partial I_j}$ is calculated from $\frac{\partial \mathcal{L}}{\partial O_j}$:

$$\frac{\partial \mathcal{L}}{\partial I_j} = \frac{\partial \mathcal{L}(O_j)}{\partial I_j} = \frac{\partial \mathcal{L}}{\partial O_j} \frac{\partial O_j}{\partial I_j} = \frac{\partial \mathcal{L}}{\partial O_j} \varphi_j'(I_j)$$

Backpropagation steps 3,4

3) $\frac{\partial \mathcal{L}}{\partial O_i}$ is calculated from $\frac{\partial \mathcal{L}}{\partial I_i}$ of next layer:

$$\frac{\partial \mathcal{L}}{\partial O_{j}} = \frac{\partial \mathcal{L}\left(\left\{I_{s}\right\}_{s \in out(j)}\right)}{\partial O_{j}} = \sum_{s \in out(j)} \frac{\partial \mathcal{L}}{\partial I_{s}} \frac{\partial I_{s}}{O_{j}} = \sum_{s \in out(j)} \frac{\partial \mathcal{L}}{\partial I_{s}} w_{js}$$

4) Using $\frac{\partial \mathcal{L}}{\partial I_j}$ we can calculate $\frac{\partial \mathcal{L}}{\partial w_{ij}}$ (given that $i \in inc(j)$):

$$\frac{\partial \mathcal{L}}{\partial w_{ij}} = \frac{\partial \mathcal{L}(I_j)}{\partial w_{ij}} = \frac{\partial \mathcal{L}}{\partial w_{ij}} \frac{\partial I_j}{\partial w_{ij}} = \frac{\partial \mathcal{L}}{\partial I_j} \frac{\partial}{\partial w_{ij}} \left(\sum_{k \in inc(j)} w_{kj} O_k \right) = \frac{\partial \mathcal{L}}{\partial I_j} O_i$$

Backpropagation algorithm

```
FORWARD PASS: memorize I_j,\,O_j for all neurons. BACKWARD PASS: evaluate \frac{\partial \mathcal{L}}{\partial O_j} for all neurons of output layer, using (1). evaluate \frac{\partial \mathcal{L}}{\partial I_j} for all neurons of output layer, using (2). for layer L in L_{max}-1,L_{max}-2,...1: evaluate \frac{\partial \mathcal{L}}{\partial w_{ij}} for all j of layer L+1 and all i\in inc(j), using (4). evaluate \frac{\partial \mathcal{L}}{\partial O_j} for all neurons of layer L, using (3). evaluate \frac{\partial \mathcal{L}}{\partial I_j} for all neurons of layer L, using (2).
```

Comments

- Must know $\varphi_j(\cdot)$ and $\varphi_i'(\cdot)$.
- As we may calculate $\frac{\partial \mathcal{L}}{\partial O_j} \, \forall j$, we may estimate $\frac{\partial \mathcal{L}}{\partial x^d}$ because $x^d = d$ -th output of input layer.
 - May be used for fine-tuning input to have desired properties
 - e.g. style transfer
 - control optimization, having minimal loss (oil production optimization)
- Backpropagation correctness is checked by comparing results with (1), (2).

Complexity

- Denote W = #[connections in the network].
- Computational complexity: O(W)
 - due to steps (3) and (4).
- Memory complexity: O(W), need to store:
 - I_j , O_j for all neurons.
 - w_{ij} for all connected neuron pairs.

How many objects to consider?

- Batch mode: estimate loss on all objects
 - works only for small N
- Minibatch mode: estimate loss on K random objects
 - K << N, works on big data
 - sampling: rolling window of width K over shuffled training set
 - minibatch size \propto parallelization ability of CPU or GPU (better).

Table of Contents

- Architecture
- Sufficient number of layers
- Activation functions
- Optimization
- Comments

Multilayer perceptron as ensemble method

All network is optimized, in contrast:

- boosting keeps previous trees fixed
- stacking keeps base learners fixed.

Overfitting is more severe - need regularization.

Multiple local optima problem

- Optimization problem for neural nets is **non-convex**.
- Different optima will correspond to:
 - different starting parameter values
 - different training samples
- So we may solve task many times for different conditions and then
 - select best model
 - alternatively: average different obtained models to get ensemble.

Regularization in NNs

- Constrain model complexity directly
 - constrain number of neurons
 - constrain number of layers
 - impose constraints on weights
- Take a flexible model
 - use early stopping during iterative evaluation (by controlling validation error)
 - add L2/L1 regularization:

$$\tilde{\mathcal{L}}(w) = \mathcal{L}(w) + \lambda \sum_{i} w_i^2$$

ullet λ may be different for each layer.

Conclusion

- Advantages of neural networks:
 - can model accurately complex non-linear relationships
 - easily parallelizable
- Disadvantages of neural networks:
 - hardly interpretable ("black-box" algorithm)
 - optimization requires skill
 - too many parameters
 - may converge slowly
 - may converge to inefficient local minimum far from global one
- Everything in optimization affects final result:
 - starting conditions, optimization algorithm, learning rate size and its decrease schedule.