

Elektronika

Auditorne vježbe 7

TRANZISTORI

- Bipolarni tranzistor
 - Ustrojstvo, struje i osnovni parametri
 - Earlyjev efekt
 - Ebers-Mollov model
- Unipolarni tranzistor
 - Spojni unipolarni tranzistor (JFET)
 - Unipolarni tranzistor s izoliranim vratima (MOSFET)

Bipolarni tranzistor

- Bipolar Junction Transistor (BJT)
- Aktivni elektroni ki element
- Aktivno djelovanje à primjena u sklopovima poja ala, sklopke
- "Bipolarni" rad tranzistora zasniva se na struji elektrona i šupljina.
- Ustrojstvo à dvostruki pn spoj: pnp ili npn
- Tri poluvodi ka sloja:
 - Emiter (E)
 - Baza (B)
 - Kolektor (C)

Ustrojstvo BJT-a

Osnovni mehanizmi rada BJT-a

- Utiskivanje (injekcija) manjinskih nosilaca iz emitera
- Prijenos (tranzit) manjinskih nosilaca kroz bazu
- Sakupljanje (kolekcija) manjinskih nosilaca na kolektoru.

Podru ja rada BJT-a

- Normalno aktivno podru je: (forward-active)
 - Spoj E-B je polariziran propusno, C-B nepropusno
- Inverzno aktivno podru je: (reverse-active)
 - E-B je nepropusno, a C-B propusno polariziran
- Podru je zasi enja: (saturation)
 - E-B i C-B su propusno polarizirani
- Podru je zapiranja: (cutoff,
 - E-B i C-B su nepropusno polarizirani

Logi ka 1

Logi ka 0

BJT kao poja alo

- Normalno aktivno podru je
- Tranzistorski efekt bipolarno me udjelovanje dvaju pn spojeva

 Promjenom napona na spoju E-B mijenja se struja kroz spoj B-C

Struje normalno polariziranog BJT-a

• Stvarni smjerovi struja:

Osnovna strujna jednadžba:

$$I_E = I_B + I_C$$

Osnovni parametri tranzistora

Djelotvornost emitera –

$$\gamma = \frac{I_{pE}}{I_E}$$
 (pnp) $\gamma = \frac{I_{nE}}{I_E}$ (npn)

• Prijenosni faktor baze –
$$\beta^* = \frac{I_{pC}}{I_{pE}} \quad \text{(pnp)}$$

$$\beta^* = \frac{I_{nC}}{I_{nE}} \quad \text{(npn)}$$

• Strujno poja anje u spoju ZB -
$$\alpha = \frac{I_{pC}}{I_E} \quad \text{(pnp)} \qquad \alpha = \frac{I_{nC}}{I_E} \quad \text{(npn)}$$

Zadatak 15.

• Silicijski pnp tranzistor radi u normalnom aktivnom podru ju i radi sa strujom emitera $I_E=10$ mA. Odrediti struje I_B i I_C i njihove sastavnice, ako je zadano: =0,981, *=0,9994, T=300 K, I_{CBO} 0.

Zadatak 16.

Silicijski npn tranzistor radi u normalnom aktivnom podru ju. Na sobnoj temperaturi pri struji baze I_B=90 μA faktor strujnog poja anja iznosi =0,982, struja I_{CBO}=9,82 nA, a =0,984. Odrediti sve ostale struje i njihove sastavnice.

Djelotvornost emitera

Iz Shockleyjeve jednadžbe:

$$\gamma = \left[1 + \frac{D_{pE} \cdot N_{AB} \cdot L_{nB} \cdot th(w_B/L_{nB})}{D_{nB} \cdot N_{DE} \cdot L_{pE} \cdot th(w_E/L_{pE})}\right]^{-1}$$

• Ako je emiter široka, a baza uska strana:
$$\gamma = \left[1 + \frac{D_{nE} \cdot N_{DB} \cdot w_B}{D_{pB} \cdot N_{AE} \cdot L_{nE}}\right]^{-1} \text{ (pnp)}$$

$$\gamma = \left[1 + \frac{D_{pE} \cdot N_{AB} \cdot w_B}{D_{nB} \cdot N_{DE} \cdot L_{pE}}\right]^{-1} \tag{npn}$$

Zadatak 17.

 Izra unati djelotvornost emitera silicijskog npn tranzistora ako gusto a primjese u emiteru iznosi N_{DE}=10¹⁷ cm⁻³, a u bazi N_{AB}=10¹⁵ cm⁻³. Širina baze je w_B=1 μm, T=300 K. Pretpostavka je da je emiter široka, a baza uska strana.

Prijenosni faktor baze

- Pretpostavka: baza je uska strana!
- à nužan uvjet za tranzistorski efekt

$$\beta^* = \frac{1}{1 + \frac{w_B^2}{2 \cdot L_{nB}^2}} \approx 1 - \frac{1}{2} \left(\frac{w_B}{L_{nB}}\right)^2$$

Zadatak 18.

Baza silicijskog pnp tranzistora ima gusto u donora N_{DB}=5,5·10¹⁵ cm⁻³, a njena tehnološka širina iznosi w_{B0}=2 μm. Gusto a akceptora u emiteru iznosi N_{AE}=10¹⁷ cm⁻³, a u kolektoru N_{AC}=10¹⁶ cm⁻³. Ako su naponi U_{EB}=0,51 V i U_{CB}=-2 V, izra unati prijenosni faktor baze * pri T=300 K.