0.1 Vandermode 行列式相关

本节我们用 $V_n(x_1, x_2, \dots, x_n)$ 表示 n 阶 Vandermonde 行列式.

定义 0.1

对 $1 \le i \le n, V_n^{(i)}(x_1, x_2, \dots, x_n)$ 表示删除 $V_n(x_1, x_2, \dots, x_n)$ 的第 i 行 $(x_1^{i-1}, x_2^{i-1}, \dots, x_n^{i-1})$ 之后新添第 n 行 $(x_1^n, x_1^n, \dots, x_n^n)$ 所得 n 阶行列式.

定义 0.2

$$\Delta_n(x_1,x_2,\cdots,x_n)$$
 表示将 $V_n(x_1,x_2,\cdots,x_n)$ 的第 n 行换成 $(x_1^{n+1},x_2^{n+1},\cdots,x_n^{n+1})$ 所得 n 阶行列式.

例题 0.1 设初等对称多项式

$$\sigma_j = \sum_{1 \le k_1 < k_2 < \dots < k_j \le n} x_{k_1} x_{k_2} \cdots x_{k_j}, j = 1, 2, \dots, n,$$
(1)

我们有

$$V_n^{(i)}(x_1, x_2, \dots, x_n) = \sigma_{n-i+1} V_n(x_1, x_2, \dots, x_n), i = 1, 2, \dots, n.$$
(2)

证明 (加边法) 不妨设 $x_i, 1 \le i \le n$ 互不相同. 设

$$D_n(x) \triangleq \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ -x & x_1 & x_2 & \cdots & x_n \\ (-x)^2 & x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (-x)^n & x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix}.$$

由行列式性质我们知道 D_n 是 n 次多项式且有 n 个根 $-x_1, -x_2, \cdots, -x_n$. 于是我们有

$$D_n(x) = c(x + x_1)(x + x_2) \cdots (x + x_n). \tag{3}$$

把 $D_n(x)$ 按第一列展开得

$$D_n(x) = \sum_{i=1}^n V_n^{(i)}(x_1, x_2, \dots, x_n) x^{i-1} + V_n(x_1, x_2, \dots, x_n) x^n.$$
 (4)

于是比较(3)式和(4)式最高次项系数, 我们有 $c = V_n(x_1, x_2, \dots, x_n)$. 定义 $\sigma_0 = 1$, 利用根和系数的关系 (Vieta 定理), 结合(3)式和(4)式得

$$D_n(x) = \sum_{i=1}^{n+1} \sigma_{n-i+1} V_n(x_1, x_2, \dots, x_n) x^{i-1} = \sum_{i=1}^n V_n^{(i)}(x_1, x_2, \dots, x_n) x^{i-1} + V_n(x_1, x_2, \dots, x_n) x^n,$$

比较上式等号两边 $x^i(1 \le i \le n)$ 的系数就能得到(2).

例题 0.2 证明:

$$\Delta_n(x_1, x_2, \cdots, x_n) = \left(\sum_{k=1}^n x_k^2 + \sum_{1 \le i < j \le n} x_i x_j\right) V_n(x_1, x_2, \cdots, x_n)$$
 (5)

证明 不妨设 $x_i, 1 \le i \le n$ 互不相同。设 n+1 次多项式

$$P_{n+1}(x) \triangleq \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ -x & x_1 & x_2 & \cdots & x_n \\ (-x)^2 & x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (-x)^{n-1} & x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ (-x)^{n+1} & x_1^{n+1} & x_2^{n+1} & \cdots & x_n^{n+1} \end{vmatrix}$$

注意到有n个根 $-x_1,-x_2,\cdots,-x_n$ 。我们用 $-x_{n+1}$ 表示 P_{n+1} 第n+1个根。于是我们有

$$P_{n+1}(x) = c(x+x_1)(x+x_2)\cdots(x+x_n)(x+x_{n+1}).$$
(6)

将 $P_{n+1}(x)$ 按第一列展开得

$$P_{n+1}(x) = -V_n(x_1, x_2, \dots, x_n)x^{n+1} + \Delta_n(x_1, x_2, \dots, x_n)x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0$$
(7)

其中 a_{n-2}, \dots, a_0 是某些与 x_j 有关的 n 阶行列式。比较(6)和(7)式的系数可知 $c = -V_n(x_1, x_2, \dots, x_n)$. 于是结合(6)式, 并利用 Vieta 定理得

$$P_{n+1}(x) = -V_n(x_1, x_2, \dots, x_n)(x^{n+1} + \delta_1 x^n + \delta_2 x^{n-1} + \dots + \delta_{n-1})$$
(8)

这里 δ_j 类似(1)式定义是 $x_1, x_2, \dots, x_n, x_{n+1}$ 的初等对称多项式。比较(7)(8)式的 x^{n-1} 系数可得 $\Delta_n(x_1, x_2, \dots, x_n) = -\delta_2 V_n(x_1, x_2, \dots, x_n)$ 。因为 $P_{n+1}(x)$ 没有 x^n 的项,所以

$$\delta_1 = x_1 + x_2 + \dots + x_{n+1} = 0 \Rightarrow x_{n+1} = -(x_1 + x_2 + \dots + x_n)$$
.

从而

$$\delta_2 = \sum_{1 \le i < j \le n+1} x_i x_j = \sum_{1 \le i < j \le n} x_i x_j + x_{n+1} \sum_{i=1}^n x_i$$

$$= \sum_{1 \le i < j \le n} x_i x_j - (x_1 + x_2 + \dots + x_n) \sum_{i=1}^n x_i$$

$$= \sum_{1 \le i < j \le n} x_i x_j - \left(\sum_{i=1}^n x_i\right)^2 = -\sum_{i=1}^n x_i^2 - \sum_{1 \le i < j \le n} x_i x_j.$$

现在就有(5)成立。

命题 0.1

设 $A=(a_{ij})_{n\times n}, f_i(x)=a_{i1}+a_{i2}x+\cdots+a_{in}x^{n-1}(i=1,2,\cdots,n)$,证明:对任何复数 x_1,x_2,\cdots,x_n ,都有

$$\begin{vmatrix} f_1(x_1) & f_1(x_2) & \cdots & f_1(x_n) \\ f_2(x_1) & f_2(x_2) & \cdots & f_2(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ f_n(x_1) & f_n(x_2) & \cdots & f_n(x_n) \end{vmatrix} = |A| \cdot V_n(x_1, x_2, \dots, x_n)$$

这里 $V_n(x_1, x_2, \dots, x_n)$ 表示 x_1, x_2, \dots, x_n 的 Vandermonde 行列式。

证明 直接由矩阵乘法观察知显然。

例题 0.3 计算

$$\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 \\
x_1+1 & x_2+1 & x_3+1 & \cdots & x_n+1 \\
x_1^2+x_1 & x_2^2+x_2 & x_3^2+x_3 & \cdots & x_n^2+x_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-1}+x_1^{n-2} & x_2^{n-1}+x_2^{n-2} & x_3^{n-1}+x_3^{n-2} & \cdots & x_n^{n-1}+x_n^{n-2}
\end{vmatrix}$$

证明 由命题 0.1 我们知道

$$\begin{vmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ x_1+1 & x_2+1 & x_3+1 & \cdots & x_n+1 \\ x_1^2+x_1 & x_2^2+x_2 & x_3^2+x_3 & \cdots & x_n^2+x_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1}+x_1^{n-2} & x_2^{n-1}+x_2^{n-2} & x_3^{n-1}+x_3^{n-2} & \cdots & x_n^{n-1}+x_n^{n-2} \end{vmatrix} = V_n(x_1,x_2,\cdots,x_n) \cdot \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 1 \end{vmatrix}$$

$$= \prod_{1 \leq i < j \leq n} (x_j - x_i) \cdot \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 1 \end{vmatrix} = \prod_{1 \leq i < j \leq n} (x_j - x_i).$$