C.3 GEANT4 PHYSICS MODELS INVOLVED IN SIMULATIONS

The list of available physical processes and corresponding options employed in the ELI-GANT-TN and ELI-GANT-GN array full simulations are numerous and extremely flexible.

A dedicated "Messsenger" class was written in order to select various physics lists and options. This class allows users to change some of the problem properties without changing or recompiling the source code. Thus, physics processes desired to be used in simulations can be selected with the help of several macro-commands given in "SetPhysics.mac" macro-command file that is called by the main "commands" macro-command file, or they can be given directly in the GEANT4 terminal at command prompt in the initial phase (before "/run/initialize" macro-command).

The directory and sub-directory of the macro-commands responsible selecting physics models is "/eli/phys/SelectPhysics". This command has to be followed by a keyword which selects the desired physics package. These keywords can be classified in several groups depending on their usage. For example a first group of macro-commands is dedicated to the selection of electromagnetic physics only. This constructor can be chosen independently from the hadronic physics. In Table 1, the list with available options for the EM physics with a short description is presented. Of course, only one of these options can be chosen at once for a particular simulation.

emstandard_opt0	The default EM constructor		
	Designed for high energy physics (HEP) CMS focused. It		
emstandard_opt1	includes some modifications for electron and positron transport		
_	with respect to the default EM physics.		
	Also designed for HEP physics (LHCb focused). Comparing to		
emstandard_opt2	the option1, the cuts are disabled and a different angular		
	generator for bremsstrahlung process is used.		
	Designed for any applications required higher accuracy of		
emstandard_opt3	electrons, hadrons and ion tracking without magnetic field.		
	It is based on option3 constructor, but adds corresponding		
EmPenelope	Penelope models for photoelectric, Compton, pair creation,		
	Rayleigh, ionization and bremsstrahlung processes.		
	It is basically the same with previous option, but user has direct		
	access to each Penelope model in order to activate/deactivate or		
Emparal and use	change options. These changes have to be done by user in		
EmPenelope_usr	specially written corresponding class		
	eliPhysListEmPenelope_usr, but the code have to be		
	recompiled after.		
	Still based on option3 constructor, but adds corresponding		
EmLivermore	Livermore models for photoelectric, Compton, pair creation,		
	ionization and bremsstrahlung processes.		
	The same as previous option, but user has complete access to		
EmLivermore_usr	the used models through the		
_	eliPhysListEmLivermore_usr class.		

	Still based on option3 constructor, but adds corresponding		
EmLivermorePolarized	Livermore models for photoelectric, Compton, pair creation,		
	Rayleigh, ionization and bremsstrahlung processes taking into		
	account also the polarization effects.		
	The same as previous option, but user has complete access to		
EmLivermorePolarized usr	the used models through the		
_	eliPhysListEmLivermorePolarized_usr class.		

Table C.11 List of macro-commands used to select electromagnetic physics.

Among the above options, we can distinguish three particular ones, ending with "_usr" suffix. For these options, specially dedicated classes are called, where user has direct access to activate/deactivate or change options for several processes treated in the corresponding model that are involved in the simulation. In Table C.12 are listed the model classes that can be accessed by user within "_usr" macro-commands in order to build custom electromagnetic physics.

Another set of macro-commands that can be called independently and separately from the ones from the first group, are designated to set the models for hadronic interactions. They are listed in Table C.13. Only one of these options can be chosen at once in order to specify the desired hadronic to be used in simulation.

	Fritiof precompound (>10 GeV)		
FTFP_BERT	+ Bertini (<10 GeV) models		
FTF BIC	Fritiof(>10 GeV)		
FIF_BIC	+ Binary Cascade (<10 GeV) models		
LHEP	Low and High energy parameterization model (fastest)		
OCC DIC	Quark gluon string (>20 GeV)		
QGS_BIC	+ Binary Cascade (<10 GeV) models		
QGSP	Quark gluon string precompound model (>20 GeV)		
	Quark gluon string precompound (>20 GeV)		
QGSP_FTFP_BERT	+ Fritiof precompound (>10 GeV)		
	+ Bertini (<10 GeV) models		
QGSC_BERT	Quark gluon string CHIPS (>8 GeV) models		
QGSP BERT	Quark gluon string precompound (>20 GeV)		
ZG21_BEK1	+Bertini cascade (<10 GeV) models.		
QGSP BERT HP	Same as previous but with high precision neutron model		
QOST_BERT_III	for neutrons below 20 MeV.		
QGSP BIC	Quark gluon string precompound (>20 GeV)		
	+Binary Cascade (<10 GeV) models		
QGSP BIC HP	Same as previous but with high precision neutron model		
	for neutrons below 20 MeV.		
Hadron_usr	Custom defined hadronic physics		

Table C.13 List of macro-commands used to select hadronic physics.

Particle		GEANT4 process class name	Model class name			
			Penelope	Livermore	Livermore polarized	
۶		G4PhotoElectricEffect	G4Penelope PhotoElectricModel	G4Livermore PhotoElectricModel		
		G4ComptonScattering	G4Penelope	G4Livermore		
		G4GammaConversion	ComptonModel G4Penelope GammaConversionModel	ComptonModel G4Livermore GammaConversionModel		
		G4RayleighScattering	G4Penelope RayleighModel	G4Livermore RayleighModel	G4LivermorePolarized RayleighModel	
	e_	G4eIonisation	G4Penelope IonisationModel	G4Livermore IonisationModel	- 1	
e ⁺		G4eBremsstrahlung	G4Penelope BremsstrahlungModel	G4Livermore BremsstrahlungModel		
		G4eplusAnnihilation	G4Penelope AnnihilationModel			
		G4Polarized PhotoElectricEffect			G4LivermorePolarized PhotoElectricModel	
٨		G4PolarizedCompton			G4LivermorePolarized ComptonModel	
		G4PolarizedGammaConversion			G4LivermorePolarized GammaConversionModel	
+ a	1	G4ePolarizedIonisation			G4Livermore IonisationModel	
e e	.	G4ePolarizedBremsstrahlung			G4Livermore BremsstrahlungModel	

 Table C.12 List of model classes accessible with "_usr" macro-commands.

In general, these models designated to describe the hadronic interaction are designated to be used in high energy physics. In our particular case of simulating GANT-TN and GANT-GN arrays we are more interested in describing with high accuracy hadronic interactions (especially for neutrons at) low energies (<20 MeV). Thus, the most indicated options from those enumerated in Table C.13, are QGSP_BERT_HP and QGSP_BIC_HP because they involve the data driven high precision neutron package (NeutronHP) to transport neutrons below 20 MeV down to thermal energies. These packages rely on tabulated cross sections existing as files in G4NDL format.

These files are part of GEANT4 data library and are obtained from ENDF database, but translated into G4NDL format. Unfortunately, the standard GEANT4 data library does not contain the entire data contained in ENDF databases. For example, cross section for 3 He(n,p) 3 H, essential for 3 He counters, was missing. For this reason, the G4NDL library was updated with the latest data existing in ENDF-B/VII.0 database, found on IAEA site due to the useful work of E. Mendoza and D. Cano-Ott. Of course, on the IAEA site are also present in G4NDL format other databases (JEFF (EU), JENDL (Japan), BROND/ROSFOND (Russia), CENDL (China)...).

	Process	Energy	GEANT4 model	Dataset
El	Elastic	<4eV	NeutronHPThermalScattering	G4NeutronHPThermal ScatteringData
		<20 MeV	NeutronHPElastic	G4NeutronHPElasticD ata
		>20 MeV	G4LElastic	-
	Inelastic	<20 MeV	G4NeutronHPInelastic	G4NeutronHPInelasti
uc				cData
neutron		>20 MeV	G4BinaryCascade	_
ne		>10 GeV	G4TheoFSGenerator QGSP	
	Fission	<20 MeV G4NeutronHPFission	CANautron HDF ission	G4NeutronHPFissionD
			ata	
		>20 MeV	G4LFission	_
	Capture	<20 MeV G4NeutronHPCapture	G4NeutronHPCaptureD	
		\20 MCV	Mev Ganeucionnicapeure	ata
		>20MeV	G4LCapture	_
n	Elastic	>0 MeV	G4LElastic	_
proton	Inelastic	<10 GeV	G4BinaryCascade	-
d	meiastic		G4TheoFSGenerator QGSP	_

Table C.14 List of the GEANT4 classes for neutrons and protons used in "Hadron usr".

But it is well known fact that the moderation of neutrons with kinetic energies below 4 eV in polyethylene moderator (one of the most important components of GANT-TN array) should be considered in a special way. In this low-energy region the scattering of neutrons on the hydrogen nuclei in polyethylene cannot be treated as scattering on free protons due to the possible excitation of vibrational modes in polyethylene molecules. Such collective motion of molecules significantly change the thermal neutron scattering characteristics in polyethylene, so dedicated thermal scattering dataset and model should be included for neutron energies less than 4 eV to allow the correct treatment of neutron moderation and capture processes in the elements of GANT setups.

Thus, below 4 eV, the "*Thermal Scattering*" package was added to the standard G4NDL database. This package accurately accounts for the low energy neutron interactions with matter, and consider the structure of the material/molecules (crystaline liquid...).

Due to the above enumerated reasons, a dedicated class for hadronic interactions was written, and can be called with the keyword "Hadron_usr". A summary with all included models on different energy ranges for distinct processes possible for neutrons and protons are given in Table C.14.

In usual simulations, it is recommended to use one macro-command from the first group to set the electromagnetic physics, and one macro-command from the second group that sets the hadronic physics. However, if user does not use any macro-command, the default physics will be used, meaning *option1* for electromagnetic processes and no hadronic interactions will be considered.

Other two keywords (ExtraEmPhys and ExtraEmPhys_usr) can be used in order to activate photonuclear and electronuclear reactions.

Keyword RadDecay_usr can activate radioactive decay of non-stable isotopes. In addition, internal conversion, atomic rearrangement and atomic de-excitation through fluorescence, Auger electrons and PIXE are enabled.

Finally a third group of macro-commands are designated to activate both electromagnetic and hadron physics. They are standalone commands and cannot be used in combination with any of the macro-commands enumerated in the first two groups. We just enumerate the keywords (their name is self-explanatory): FTFP_BERT_EMV, FTFP_BERT_EMX, LHEP_EMV, QBBC, QGSP_BERT_EMV, QGSP_BERT_EMX, QGSP_BIC_EMY.

In the same file of macro-commands, we can set cuts for every particle individually, but also for all of them, or separately for detectors and target regions, using the keywords setGammaCut, setElectronCut, setPositronCut, setProtonCut, setNeutronCut, setCuts, TargetCuts, DetectorCuts followed by a number and a length unit accepted by GEANT system of units.