Homework #8

Eric Tao Math 235: Homework #8

November 11, 2022

2.1

Problem 4.6.21. Assume that $E \subseteq \mathbb{R}^d$ is measurable. Let $f: E \to \overline{F}$ be a measurable function. Define the distribution function of f as follows:

$$\omega(t) = |\{|f| > t\}|, t \ge 0$$

By definition, ω is a non-negative, extended real-valued function. Prove the following:

- (a) ω is monotone decreasing on $[0, \infty)$.
- (b) ω is right-continuous, that is, $\lim_{s\to t^+} \omega(s) = \omega(t)$ for every $t \geq 0$.
- (c) If f is integrable, then $\lim_{s\to t^-} \omega(s) = |\{|f| \ge t\}|$.
- (d) $\int_0^\infty \omega(t)dt = \int_E |f(x)|dx$
- (e) f is integrable $\iff \omega$ is integrable.
- (f) If f is integrable, then $\lim_{n\to\infty} n\omega(n) = 0 = \lim_{n\to\infty} \frac{1}{n}\omega(\frac{1}{n})$.

Solution. (a)

We notice that for any $t' \ge t$, that by definition, $\{|f| > t'\} \subseteq \{|f| > t\}$. Then, by the monotonicity of the Lebesgue measure, we have that $|\{|f| > t'\}| \le |\{|f| > t\}| \implies f(t') \le f(t)$. Since this is true for all $t' \ge t$, we have that ω is monotone decreasing.

(b)

Let $\{a_n\}_{n\in\mathbb{N}}$ be any sequence of positive numbers where $a_n\to 0$. Take a monotone subsequence $\{a_{n_k}\}$ such that $a_{n_{k+1}}< a_{n_k}$ for all k. Then, consider the sequence of measurable sets $A_{a_{n_k}}=\{|f|>t+a_{n_k}\}$. This is a sequence of measurable sets, with the property that $A_{a_{n_{k+1}}}\subseteq A_{a_{n_k}}$ since we took the monotone subsequence. Then, by convergence from below, we have that $\lim_{n_k\to 0}|A_{a_{n_k}}|=\cup_{n_k}A_{a_{n_k}}=\{|f|>t\}$. Now, we only need to check that this is convergent in the full sequence. First suppose that $|\{|f|>t\}|=\infty$. Then, we have that this must diverge for a_n , because since we know $|A_{a_{n_k}}|\to\infty$ monotonically, and $a_n\to 0$, for any $M\in\mathbb{R}$, we take N_{k_0} such that for all $n_k>N_{k_0}, |A_{a_{n_k}}|\geq M$. Then, we pick N such that for all i>N, $a_i< a_{N_{k_0}}$, by the convergence of a_n . Then, we know that since this is monotone, $|A_{a_{n_i}}|\geq |A_{a_{N_{k_0}}}|\geq M$.

Now, suppose $|\{|f|>t\}|<\infty$. Then, we can choose N_{k_0} such that $|\{|f|>t\}|-|A_{a_{N_{k_0}}}|<\epsilon$. We may choose N such that $a_j< A_{N_{k_0}}$ by the convergence of the a_n for all j>N. Then, we have by the monotonicity, that $|\{|f|>t\}|\geq |A_{a_j}|\geq |A_{a_{N_{k_0}}}| \Longrightarrow |\{|f|>t\}|-|A_{a_j}|<\epsilon$.

(c)

First, we see that if $|E| < \infty$, then we can use continuity from above. Otherwise, suppose $|E| = \infty$. First, for t = 0, since we use left-continuous, but ω only defined for $t \geq 0$, the only permissible sequence is the constant sequence, and of course $|\{|f| > 0\}| = |\{|f| > 0\}|$. Then, for any t > 0, we see that $|\{|f| > t\}| < \infty$ as suppose not, then we know that |f| > t the constant function on a set of infinite measure, so $\int_E |f| = \infty$,

a contradiction. As such, regardless, we may use continuity from above since we are guaranteed that the sets have finite measure.

Now, then, let $\{b_n\}$ be any sequence of non-negative numbers such that $b_n \to t$, where t > 0. We use the same construction as (b), where we find a monotone sequence $b_{n_k} \to t$, which extends to a nested sequence of sets $\{|f| > b_{n_0}\} \supseteq \{|f| > b_{n_1}\}$ We call these sets $B_{b_{n_k}}$. Then, since we are assured that this is eventually constant, since eventually, at least one $b_{n_k} > 0$, we apply continuity from above to find that $\lim_{n_k \to \infty} |B_{b_{n_k}}| = |\cap B_{b_{n_k}}|$. But, we have that $\cap B_{b_{n_k}} = \cap \{|f| > b_{n_k}\} = \{|f| \ge t\}$ because $b_{n_k} \to t$ from the left. Finally, in the same vein as (b), we use the convergence of $b_n \to t$ from the left as well as the monotonicity of ω to get that the whole thing converges.

(d)

Consider the integral, over $E \times \mathbb{R}^+$, that is, the non-negative real numbers, of $\chi_{\Gamma_{|f|}}$, where $\Gamma_{|f|}$ is the region under the graph of |f| without the boundary defined in previous work $\{(x,t): x \in E, t < |f(t)|\}$ where |f(t)| can be infinite. Clearly, this is measurable, being a characteristic function of a measurable set, where we know the graph is measurable because of a previous homework 4.2.17, (b) and (a), since the boundary has measure 0. Then, we apply Tonelli's theorem:

$$\int_{\mathbb{R}^+} \left(\int_E \chi_{\Gamma_{|f|}} dx \right) dt = \int_E \left(\int_{\mathbb{R}^+} \chi_{\Gamma_{|f|}} dt \right) dx$$

Here, we notice that fixing t, $\int_E \chi_{\Gamma_{|f|}} dx = |\{|f| > t\}| = \omega(t)$, since at any fixed t_0 , the points in the graph consist of the (x,t_0) such that $|f(x)| > t_0$. On the other side, we have that $\int_{\mathbb{R}^+} \chi_{\Gamma_{|f|}} dt = |f(x)|$ since if we fix an x_0 , then the points in the graph are just (x_0,t) such that $0 \le t < |f(x_0)| \implies t \in [0,|f(x_0)|)$, and $|[0,|f(x_0)|)| = |f(x_0)|$ for every $x_0 \in E$.

Then, substituting back into Tonelli's:

$$\int_{\mathbb{R}^+} \left(\int_E \chi_{\Gamma_{|f|}} dx \right) dt = \int_E \left(\int_{\mathbb{R}^+} \chi_{\Gamma_{|f|}} dt \right) dx \implies \int_{\mathbb{R}^+} \omega(t) dt = \int_E |f(x)| dx$$

as desired.

(e)

We have the following:

$$f$$
 integrable $\iff \lim_{E} f < \infty \iff \int_{0}^{\infty} \omega < \infty \iff \omega$ integrable

where we use the result from (d).

(f)

Suppose not. Take the sequence $a_n \to \infty$. Then, we have that for all $n \geq N$ for some $N \in \mathbb{N}$, $a_n\omega(a_n) \geq \epsilon$ for some $\epsilon > 0$, where we use the fact that ω is non-negative to conclude $a_n\omega(a_n) \geq 0$ and monotone decreasing to conclude that it must have a minimum value. But then, we see that $\omega(a_n) \geq \epsilon/a_n$ for all $n \geq N$. This implies then, that on the set $[a_N, \infty]$, that $\omega(a_N)$ is larger than the constant function ϵ/a_N . But then, since ω is non-negative, we have that $\int_{[0,\infty]} \omega \geq \int_{[a_N,\infty]} \omega \geq \epsilon/a_N |[a_N,\infty]| = \infty$ a contradiction, since we know that by part (d), the integral of ω aligns with the integral of |f|. Then, $a_n\omega(a_n) \to 0$, and since the choice of a_n was arbitrary, this must be true for any sequence ω . The same argument works for the second half of the equality, since if we look at $1/b_n\omega(1/b_n) \geq \epsilon \Longrightarrow \omega(1/b_n) \geq b_n\epsilon$, so we have that on $[1/b_N, \infty]$, $\omega \geq b_N\epsilon$, which has a divergent integral.

Problem 4.6.27. Let $f \in L^1(\mathbb{R}), g \in L^{\infty}(\mathbb{R})$. Prove the following:

- (a) The integral that defines (f * g)(x) exists for every $x \in \mathbb{R}$.
- (b) f * q is continuous on \mathbb{R} .
- (c) f * g is bounded on \mathbb{R} , and $||f * g||_{\infty} \leq ||f||_1 ||g||_{\infty}$.

Solution. (a)

Recall that for any x, we define $(f*g)(x)=\int_{\mathbb{R}}f(y)g(x-y)dy$. Since we know that $f^+,f^-\leq |f|$ by definition, it suffices then to show that $\int_{\mathbb{R}}|f(y)g(x-y)|dy<\infty$. Since $g\in L^\infty(\mathbb{R})$, we can say that $|g|\leq \|g\|_{\infty}$ a.e. But then, we have that $|f(y)g(x-y)|\leq \|g\|_{\infty}|f(y)|$ for almost every $y\in\mathbb{R}$. So, we have that:

$$\int_{\mathbb{R}} |f(y)g(x-y)| dy \le \int_{\mathbb{R}} ||g||_{\infty} |f(y)| dy \le ||g||_{\infty} ||f||_{1} < \infty$$

Thus, (f * g)(x) exists for all $x \in \mathbb{R}$.

(b)

By theorem 4.5.8, we can find a function $h \in L^1(\mathbb{R})$ such that $h \in C_c(\mathbb{R})$ and $\|f - h\|_1 < \epsilon$, for any $\epsilon > 0$. We also notice that $\int_{\mathbb{R}} |h(y)g(x-y)| dy \le \int_{\mathbb{R}} |h(y)| \|g\|_{\infty} dy = \|g\|_{\infty} \|h\|_1$ where we don't know if h is L^1 yet, so this could be infinite. But, by the reverse triangle inequality, we have that $\|f\|_1 - \|h\|_1 \le \|f - h\|_1 < \epsilon < \infty$, and since $\|f\|_1 < \infty$, so too must be $\|h\|_1$. Thus, h(y)g(x-y) is integrable.

Further, we notice that the convolution is commutative, since we can take the translation $z=x-y \implies y=x-z$, as then $(f*g)(x)=\int_{\mathbb{R}}f(y)g(x-y)dy=\int_{\mathbb{R}}f(x-z)g(z)dz=(g*f)(x)$.

Now h be an arbitrary continuous function with compact support, we can say that h is uniformly continuous. Further, since h is compactly support, let S be the support of h, then we can say that $S + S \subseteq [-n, n]$ for some n, since compact sets are bounded in \mathbb{R} . Then, we can say $|S + S| < \infty$, where |S + S| is the same as 4.6.28. Let $\eta > 0$. Then, we may choose $\delta(x) > 0$ such that $d(x, y) < \delta \implies d(h(x), h(y)) < \eta/|S + S|||g||_{\infty}$. Now, let $x, x' \in \mathbb{R}$ such that $d(x, x') < \delta$. Then, we have that, by the commutativity of the convolution, that

$$|(h * g)(x) - (h * g)(x')| = \left| \int_{\mathbb{R}} h(x - y)g(y)dy - \int_{\mathbb{R}} h(x' - y)g(y) \right| = \left| \int_{\mathbb{R}} g(y)[h(x - y) - h(x' - y)] \right| \le \int_{\mathbb{R}} |g(y)||h(x - y) - h(x' - y)| \le ||g||_{\infty} \int_{\mathbb{R}} |h(x - y) - h(x' - y)|$$

However, we have that $d(x-y,x'-y)=|(x-y)-(x'-y)|=|x-x'|=d(x,x')<\delta$, so we have that:

$$||g||_{\infty} \int_{\mathbb{R}} |h(x-y) - h(x'-y)| \le ||g||_{\infty} \int_{\mathbb{S}+\mathbb{S}} |h(x-y) - h(x'-y)| \le ||g||_{\infty} \frac{\eta}{|S+S|||g||_{\infty}} |S+S| = \eta$$

Thus, we have that (h * g) is continuous, actually, uniformly continuous. Now, consider:

$$|(f*g)(x) - (f*g)(x')| = \left| \int_{\mathbb{R}} f(x-y)g(y)dy - \int_{\mathbb{R}} f(x'-y)g(y)dy \right| = \left| \int_{\mathbb{R}} f(x-y)g(y)dy - \int_{\mathbb{R}} h(x-y)g(y) + \int_{\mathbb{R}} h(x-y)g(y) + \int_{\mathbb{R}} h(x'-y)g(y) - \int_{\mathbb{R}} h(x'-y)g(y) - \int_{\mathbb{R}} f(x'-y)g(y)dy \right|$$

Using the triangle inequality, we break the sum up into:

$$\left| \int_{\mathbb{R}} f(x-y)g(y)dy - \int_{\mathbb{R}} h(x-y)g(y) \right| \le \|g\|_{\infty} \|f-h\|_{1}$$

$$\left| \int_{\mathbb{R}} h(x-y)g(y)dy - \int_{\mathbb{R}} h'(x-y)g(y) \right| \le \|g\|_{\infty} \int_{\mathbb{R}} |h(x-y) - h'(x-y)|$$

$$\left| \int_{\mathbb{R}} h(x'-y)g(y)dy - \int_{\mathbb{R}} f(x'-y)g(y) \right| \le \|g\|_{\infty} \|h-f\|_{1}$$

Then, since we can control h such that $||f - h||_1 = ||h - f||_1 < \epsilon/3||g||_{\infty}$ due to the statement of the theorem, and we can control d(x,x') such that $d(x,x') < \delta \implies \int_{\mathbb{R}} |h(x-y) - h'(x-y)| < \epsilon/3||g||_{\infty}$ due to the continuity on h if $h \in C_c(\mathbb{R})$, we can control the whole sum to be less than ϵ .

(c)

Well, I somehow did this to show (a), because we know that

$$|f*g| = \left| \int_{\mathbb{R}} f(y)g(x-y)dy \right| \le \int_{\mathbb{R}} |f(y)g(x-y)|dy \le \int_{\mathbb{R}} ||g||_{\infty} ||f(y)|dy \le ||g||_{\infty} ||f||_{1} < \infty$$

Problem 4.6.28. (a) Show that if $f, g \in C_c(\mathbb{R})$, then $f * g \in C_c(\mathbb{R})$ and

$$\operatorname{supp}(f * g) \subseteq \operatorname{supp}(f) + \operatorname{supp}(g) = \{f + g : x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)\}\$$

Conclude that $C_c(\mathbb{R})$ is closed under convolution.

(b) Is $C_c^1(\mathbb{R})$ closed under convolution?

Solution. \Box

Problem 4.6.29. Let $E \subseteq \mathbb{R}$ be a measurable subset with $0 < |E| < \infty$.

- (a) Prove that the convolution $\chi_E * \chi_{-E}$ is continuous.
- (b) Prove the Steinhaus Theorem: The set $E E = \{x y : x, y \in E\}$ contains an open interval centered at the origin.
 - (c) Show that $\lim_{t\to 0} |E\cap (E+t)| = |E|, \lim_{t\to \pm \infty} |E\cap (E+t)| = 0.$

Solution. (a)

By 4.6.27 (b), since χ_{-E} is an indicator function, it is bounded on \mathbb{R} , in particular, by 1, so $\chi_{-E} \in L^{\infty}(\mathbb{R})$ and $\chi_{E} \in L^{1}(\mathbb{R})$ since $\int_{\mathbb{R}} \chi_{E} = |E| < \infty$, their convolution is continuous.

(b)

First, consider $\chi_E * \chi_{-E}(0)$. By definition, this is exactly $\int_{\mathbb{R}} \chi_E(y) \chi_{-E}(-y) dy$, which we notice is exactly 1 on $y \in E$, and 0 otherwise. Then, this integral evaluates to |E| > 0. Now, consider the interval (|E|/2, 3|E|/2). This is an open set, and from part (a), we know that the inverse image of this interval is open by continuity. Further, we just showed that $\chi_E * \chi_{-E}(0) = |E| \in (|E|/2, 3|E|/2)$, so $0 \in (\chi_E * \chi_{-E})^{-1}(|E|/2, 3|E|/2)$. Then, because this is open, there exists an open ball, i.e. an open interval around 0. (c)

2.2

Problem 5.1.5. Prove that the Cantor-Lebesgue function is Hölder continuous for $0 < \alpha \le \log_3 2$. In particular, notice that it is not Lipschitz.

Solution. \Box

Problem 5.1.7. Let C be the Cantor set, let ϕ be the Cantor-Lebesgue function, and define $g(x) = \phi(x) + x$ for $x \in [0, 1]$.

- (a) Prove that $g:[0,1]\to [0,2]$ is continous, strictly increasing, and a bijection. Further, its inverse $h=g^{-1}:[0,2]\to [0,1]$ is also a continuous, strictly increasing, bijection.
 - (b) Show that g(C) is a closed subset of [0,2] and that |g(C)|=1.

(c) Since $g(C)$ has positive me	asure, it follows that	there exists $N \subseteq$	g(C) such that	N is not Lebesgue
measurable. Show that $A = h(N)$	is a Lebesgue measu	rable subset of [0	[0, 1].	

asurable. Show that A = h(N) is a Lebesgue measurable subset of [0, 1]. (d) Set $f = \chi_A$. Prove that $f \circ h$ is not a Lebesgue measurable function.

 \Box