```
# Import necessary packages and load `winequality_edited.csv`
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
```

import requests
import pandas as pd
import io

url = 'https://raw.githubusercontent.com/PragadishTRS/WINE_QUALITY_ANALYSIS/main/wine_quality.csv'
response = requests.get(url)

data = pd.read_csv(io.StringIO(response.text))

data.head(1144)

→		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	Id	
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	0	
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5	1	
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5	2	
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6	3	
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	4	
	1138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6	1592	
	1139	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.82	9.5	6	1593	
	1140	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5	1594	
	1141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6	1595	
	1142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5	1597	

Next steps:

Generate code with data

View recommended plots

Import necessary packages and load `winequality_edited.csv`
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline

Assuming 'wine_data' is the DataFrame from your previous cell
wine_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1143 non-null	float64
1	volatile acidity	1143 non-null	float64
2	citric acid	1143 non-null	float64
3	residual sugar	1143 non-null	float64
4	chlorides	1143 non-null	float64
5	free sulfur dioxide	1143 non-null	float64
6	total sulfur dioxide	1143 non-null	float64
7	density	1143 non-null	float64
8	рН	1143 non-null	float64
9	sulphates	1143 non-null	float64
10	alcohol	1143 non-null	float64
11	quality	1143 non-null	int64
12	Id	1143 non-null	int64

dtypes: float64(11), int64(2)
memory usage: 116.2 KB

```
# Use query to select each group and get its mean quality
# Assuming 'wine_data' is the DataFrame from your previous cell
median = wine_data['alcohol'].median()
low = wine_data.query('alcohol < {}'.format(median))
high = wine_data.query('alcohol >= {}'.format(median))

mean_quality_low = low['quality'].mean()
mean_quality_high = high['quality'].mean()

# Create a bar chart with proper labels
locations = [1, 2]
heights = [mean_quality_low, mean_quality_high]
labels = ['Low', 'High']
plt.bar(locations, heights, tick_label=labels)
plt.title('Average Quality Ratings by Alcohol Content')
plt.xlabel('Alcohol Content')
plt.ylabel('Average Quality Rating');
```


Alcohol Content

Low

```
# Use query to select each group and get its mean quality
median_sugar = wine_data['residual sugar'].median() # Corrected column name
low_sugar = wine_data.query('`residual sugar` < {}'.format(median_sugar)) # Use backticks for column name with spaces
high_sugar = wine_data.query('`residual sugar` >= {}'.format(median_sugar))
low_sugar_mean_quality = low_sugar['quality'].mean()
low_sugar_mean_quality
high_sugar_mean_quality = high_sugar['quality'].mean()
high_sugar_mean_quality
→ 5.682804674457429
# Create a bar chart with proper labels
locations_sugar = [1,2]
points = [low_sugar_mean_quality, high_sugar_mean_quality]
labels sugar = ['Low', 'High']
plt.bar(locations_sugar, points, tick_label=labels_sugar)
plt.title('Wine Quality for Sugar Content')
plt.xlabel('Sugar Content')
plt.ylabel('Mean Quality Rating');
```

High

Use groupby to get the mean quality for each acidity level
wine_data.describe() # Assuming 'wine_data' is the DataFrame you want to describe

→		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	t d:
	count	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.0
	mean	8.311111	0.531339	0.268364	2.532152	0.086933	15.615486	45.9
	std	1.747595	0.179633	0.196686	1.355917	0.047267	10.250486	32.7
	min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
	25%	7.100000	0.392500	0.090000	1.900000	0.070000	7.000000	21.0
	50%	7.900000	0.520000	0.250000	2.200000	0.079000	13.000000	37.0
	75%	9.100000	0.640000	0.420000	2.600000	0.090000	21.000000	61.(
	4							•

import pandas as pd

Assuming 'wine_data' is your DataFrame, replace 'df' with 'wine_data'
wine_data['acidity_levels'] = pd.cut(wine_data['pH'], bin_edges, labels=bin_names)

 $\label{thm:column} \mbox{\ensuremath{\mbox{\sc H}}\xspace} \mbox{\ensuremath{\mbox{\mbox{\sc H}}\xspace} \mbox{\ensuremath{\mbox{\sc H}}\xspace} \mbox{\ensuremath{\$

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulph
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	
	3	11 2	በ 28	0 56	1 0	በ በ75	17 N	60 N	ก จุดุลก	3 16	
	∢										>

 $\ensuremath{\mathtt{\#}}$ Find the mean quality of each acidity level with groupby

quality_acidity_mean = []

 $\label{lem:quality_acidity_mean} {\tt quality_acidity_mean} = {\tt wine_data.groupby('acidity_levels').mean()['quality']} \ {\tt \# Use 'wine_data' instead of 'df' quality_acidity_mean}$

→ acidity_levels

High 5.735849
Moderately High 5.666667
Medium 5.704180
Low 5.609195
Name: quality, dtype: float64

```
acidity_mean = wine_data.groupby('acidity_levels').mean()['pH']

# Create a bar chart with proper labels
locations_pH = [1,2,3,4]

#points = [low_sugar_mean_quality, high_sugar_mean_quality]

#plt.bar(locations_sugar, points, tick_label=labels_sugar)

plt.bar(locations_pH,quality_acidity_mean, tick_label=bin_names)

plt.title('Acidity vs Quality')

plt.xlabel('Acidity')

plt.ylabel('Quality');
```



```
colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'white']
plt.scatter(x=acidity_mean, y=quality_acidity_mean, color=[colors[i%len(colors)] for i in range(len(acidity_mean))])
plt.xlabel('Average Acidity')
plt.ylabel('Average Quality')
plt.title('Quality vs Acidity')
plt.show()
```



```
quality_acidity_mean
```

```
⇒ acidity_levels
High 5.735849
```

Moderately High 5.666667
Medium 5.704180
Low 5.609195
Name: quality, dtype: float64

import matplotlib.pyplot as plt
plt.plot([5.7833,5.7845, 5.8508, 5.8595])
plt.ylabel('Quality Mean for Acidity')
plt.xlabel('Acidity Levels')
plt.show();

