Amendments to th Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1.	(Currently amended) Apparatus for the delivery of ions generated at atmospheric
2		pressure to a mass spectrometer having a vacuum system with an entrance
3		opening, the apparatus comprising

- (a) means for generating an ion generator that generates an ionization cloud containing charged particles ions at atmospheric pressure,
- (b) an entrance opening in the wall of the vacuum system of the mass
 spectrometer.
- 8 (c) an ion migration drift tube between the ionization cloud generator and the entrance opening, the drift tube receiving the ionization cloud,
- 10 (d) means for producing (c) a field-generating apparatus that produces a potential
 11 gradient inside the ion migration drift tube that draws ions of the ionization cloud
 12 toward the entrance opening, and
- (e) means to generate (d) a gas port through which a counterstream of gas inside
 may be introduced to the ion migration drift tube in a direction opposite to a
 direction of ion travel.
- (Currently amended) Apparatus according to Claim 1 wherein means for
 electrospraying generate the ionization cloud by spraying the ion generator
 comprises an electrospray apparatus with a spray capillary that sprays a solution
 containing analyte molecules.
- 1 3. (*Original*) Apparatus according to Claim 2 wherein a pneumatic gas device supports the spraying.
- 4. (*Currently amended*) Apparatus according to Claim 2 wherein further comprising an arrangement of electrodes and power supplies that produce a strong electric field in front of the spray capillary.

- 5. (*Currently amended*) Apparatus according to Claim 1 wherein the ion generator comprises a pulse laser that forms an ionization cloud by laser desorption.
- 6. (Currently amended) Apparatus according to Claim 1 wherein a gas supply
 device admixes further comprising a ionization gas input path through which
 gaseous substances may be admixed to the ionization cloud prior to its entry into
 the drift tube.
- 7. (*Currently amended*) Apparatus according to Claim 1 wherein further comprising a needle for producing corona discharge is arranged in the vicinity of the ionization cloud.
- 1 8. (*Currently amended*) Apparatus according to Claim 1 wherein further comprising a UV lamp for photoionization is arranged in the vicinity of the ionization cloud.
- 1 9. (*Currently amended*) Apparatus according to Claim 1 wherein further comprising an electron source is arranged in the vicinity of the ionization cloud.
- 1 10. (*Original*) Apparatus according to Claim 9 wherein the electron source contains a foil emitting beta radiation.
- 1 11. (*Currently amended*) Apparatus according to Claim 1 wherein a gas supply
 introduces the protective or drying the gas port introduces gas into the drift tube
 near the entrance opening of the mass spectrometer.
- 1 12. (*Currently amended*) Apparatus according to Claim 11 wherein a heating device
 2 heats the drying gas introduced through the gas port is heated before introduction
 3 into the drift tube.
- 1 13. (*Currently amended*) Apparatus according to Claim 1 wherein the wall of the ion migration drift tube is provided with comprises a large number plurality of electrodes to that produce the potential gradient in the drift tube.

- 1 14. (*Currently amended*) Apparatus according to Claim 1 wherein the ion migration drift tube is made from or coated with comprises a resistance material.
- 1 15. (*Currently amended*) Apparatus according to Claim 1 wherein the ion migration drift tube has a conical or trumpet shape where the with a wider opening is being directed towards the ionization cloud ion generator.
- 1 16. (*Currently amended*) Apparatus according to Claim 1 wherein the <u>an</u> opening of 2 the ion migration drift tube to the spray chamber facing the ion generator is 3 covered by a grid which bulges outwards.
- 1 17. (*Currently amended*) Apparatus according to Claim 1 wherein the entrance
 2 opening belongs to is part of a transfer capillary, and wherein the an outer shape
 3 of the a tip of the transfer capillary is curved with a small radius of the inscribed
 4 vertex circle convex.
- 1 18. (*Currently amended*) Apparatus according to Claim 1 wherein the entrance 2 opening has a smoothed, slightly funnel-shaped or trompet-shaped form 3 approximates a funnel shape.
- 19. (Currently amended) Apparatus according to Claim 1 wherein a device further
 comprising a ionization gas input path through which a hot drying gas and
 charged particles may be admixes particles to the hot drying gas admixed to the
 ionization cloud, the particles having a charge that allows them being able to
 neutralize some of the ions in the spray chamber or later in the drift tube.
- 1 20. (*Currently amended*) Apparatus according to Claim 1 wherein the ion migration drift tube is meander, spiral or helix shaped or is bent in some other shape has a curved shape.
- 1 21. (Currently amended) Apparatus according to Claim 1 wherein the ion migration
 2 drift tube is a first drift tube, and wherein the apparatus further comprises
 3 additional drift tubes such that the several ion migration drift tubes are connected
 4 to one another; either straight or arranged at an angle to each other.

- 1 22. (Currently amended) Apparatus according to Claim 1 wherein the entrance grid
 2 ef the ion migration drift tube comprises an entrance grid that consists of a
 3 pattern of wires with switchable voltage supplies connected to the wires to either
 4 allow or hinder ions to enter control ion entry into the ion migration drift tube.
- 1 23. (*Currently amended*) Method for feeding ions at atmospheric pressure to a mass spectrometer, the method comprising the following steps:
- (a) forming an ionization cloud containing charged particles at atmospheric
 pressure,
- (b) guiding the charged particles by their ion mobility through an ion migration drift
 tube with <u>an</u> inner potential gradient to the <u>an</u> entrance opening of the mass
 spectrometer, and
- (c) blowing clean protective gas or drying gas into the ion migration drift tube at the side of <u>from adjacent</u> the entrance opening.
- 1 24. (*Original*) Method according to Claim 23 wherein the ionization cloud is created by spraying a solution containing dissolved analyte from a spray capillary.
- 1 25. (*Original*) Method according to Claim 24 wherein the spraying is pneumatically supported by a spray gas.
- 1 26. (Currently amended) Method according to Claim 24 wherein further comprising
 2 drawing charged droplets into the ionization cloud using a strong electric field in
 3 front of the spray capillary draws charged droplets into the ionization cloud.
- 1 27. (*Original*) Method according to Claim 23 wherein the ionization cloud is created by bombardment of a sample with light from a pulsed laser.
- 1 28. (*Currently amended*) Method according to Claim 23 wherein further comprising admixing other gaseous substances are admixed to the ionization cloud.
- 1 29. (*Currently amended*) Method according to Claim 23 wherein <u>further comprising</u>
 2 providing a corona discharge <u>that</u> produces primary ions in the vicinity of the
 3 ionization cloud which lead to chemical ionization of the analyte molecules via a
 4 chain of ion-molecule reactions.

- 1 30. (*Currently amended*) Method according to Claim 23 wherein further comprising using a UV lamp contributes to for ionizing the substances in the ionization cloud.
- 1 31. (*Currently amended*) Method according to Claim 23 wherein further comprising using an electron source contributes to for ionizing the substances in the ionization cloud.
- 1 32. (*Currently amended*) Method according to Claim 31 wherein a foil emitting beta radiation is used as an-the electron source.
- 1 33. (Currently amended) Method according to Claim 23 wherein the protective or
 2 drying gas is introduced into the drift tube in the neighborhood of the entrance
 3 opening of the mass spectrometer and flows through the drift tube in the direction
 4 of the ionization cloud in a direction opposite the travel direction of the charged
 5 particles.
- 1 34. (*Currently amended*) Method according to Claim 33 wherein the protective or drying gas is heated before being introduced into the drift tube.
- 1 35. (*Currently amended*) Method according to Claim 23 wherein <u>further comprising</u>
 2 <u>admixing</u> charged particles are admixed to the hot drying gas, whereby the
 3 particles neutralize some of the ions which are formed in the spray-chamber or
 4 later in the drift tube.
- 1 36. (Currently amended) Method according to Claim 35 wherein the further
 2 comprising irradiating an area around the entrance opening is radiated with UV
 3 radiation releasing to release photoelectrons from the head of the transfer
 4 capillary which lead to neutralization of the that neutralize ions in the outer region
 5 of the ion trail.
- 1 37. (*Currently amended*) Method according to Claim 23 wherein the charged
 2 particles are generated or admitted into the drift tube as pulses, <u>and wherein</u> the
 3 drift tube thus operates as <u>an</u> ion mobility spectrometer, and wherein the mass
 4 spectrometer measures ion of different mobilities separately.