Project 2.1: Data Cleanup

Business and Data Understanding

1. What decisions needs to be made?

Pawdacity is a leading pet store chain in Wyoming with 13 stores throughout the state. This year, Pawdacity would like to expand and open a 14th store. The aim of this project is to recommend the city for Pawdacity's newest store, based on predicted yearly sales.

2. What data is needed to inform those decisions?

p2-2010-pawdacity-monthly-sales.csv, p2-partially-parsed-wy-web-scrape.csv, p2-wy-453910-naics-data.csv.

We need to work out what data from the above files will be necessary to predict where our next store should be.

We will need to extract the following columns of data from the above files:

City
2010 Census Population
Total Pawdacity Sales
Households with under 18
Land Area
Population Density
Total Families

Building the Training Set

Column	Sum	Average
Census Population	213,862	19,442
Total Pawdacity Sales	3,773,304	3,43,027.64
Households with Under 18	34,064	3,096.73
Land Area	33,071	3,006.49
Population Density	63	5.71
Total Families	62,653	5,695.71

Dealing with Outliers

Below are scatterplots of each potential predictor variable against Pawdacity sales:

Scatterplot of Total_Families versus Padacity_Sales

catterplot of Household_with_Under_18 versus Padacity_

Scatterplot of Population_Density versus Padacity_Sale

Scatterplot of Land_Area versus Padacity_Sales

Scatterplot of Census_Population versus Padacity_Sale

By applying the IQR method of finding out the Upper Fence for each variable and identifying the outliers:

Census_Population_I	Padacity_Sales_IQ	Household_with_Under_1		Population_Density_	Total_Families_IQ
QR	R	8_IQR	Land_Area_IQR	IQR	R
18144.50	86832.00	2710.00	1643.19	5.67	4457.40
Census_Population_	Padacity_Sales_U	Household_with_Under_1	Land_Area_Up	Population_Density_	Total_Families_U
Upper_Fence	pper_Fence	8_Upper_Fence	per_Fence	Upper_Fence	pper_Fence
53278.25	443232.00	8102.00	5969.69	15.90	14066.90

This provides us with the following potential outliers: Cheyenne City for Census Population, Land Area, Population Density, and Pawdacity Sales; Rock Springs for Land Area; Pawdacity sales for Gillette.

I feel confident in dismissing Rock Springs as it seems to follow the general downward trend of the line that fits the data points.

With Cheyenne City, the outlier behavior can be explained by the fact that they have 2 stores (which contributes to the excess), and that this behavior is spread across multiple variables. So, the excess sales is justifiable.

The same is not true for Gillette. They have 2 stores as well, but only its sales show outlier behavior, the rest being well within the expected range. There doesn't seem to be a good enough reason for this, and hence I would remove this city from the dataset for further analysis.