Задача А. Простое двоичное дерево поиска

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Реализуйте просто двоичное дерево поиска.

Формат входных данных

Входной файл содержит описание операций с деревом, их количество не превышает 100. В каждой строке находится одна из следующих операций:

- insert x добавить в дерево ключ x. Если ключ x есть в дереве, то ничего делать не надо;
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо;
- \bullet exists x если ключ x есть в дереве выведите «true», если нет «false»;
- $\mathbf{next}\ x$ выведите минимальный элемент в дереве, строго больший x, или « \mathbf{none} » если такого нет;
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет.

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходных данных

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

стандартный ввод	стандартный вывод
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	
delete 5	
next 4	
prev 4	

Задача В. Сбалансированное двоичное дерево поиска

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Реализуйте сбалансированное двоичное дерево поиска.

Формат входных данных

Входной файл содержит описание операций с деревом, их количество не превышает 10^5 . В каждой строке находится одна из следующих операций:

- insert x добавить в дерево ключ x. Если ключ x есть в дереве, то ничего делать не надо;
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо;
- \bullet exists x если ключ x есть в дереве выведите «true», если нет «false»;
- $\mathbf{next}\ x$ выведите минимальный элемент в дереве, строго больший x, или « \mathbf{none} » если такого нет;
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none» если такого нет.

В дерево помещаются и извлекаются только целые числа, не превышающие по модулю 10^9 .

Формат выходных данных

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

стандартный ввод	стандартный вывод
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	
delete 5	
next 4	
prev 4	

Задача С. Переместить в начало

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 6 секунд Ограничение по памяти: 512 мегабайт

Вам дан массив $a_1 = 1, a_2 = 2, \ldots, a_n = n$ и последовальность операций: переместить элементы с l_i по r_i в начало массива. Например, для массива 2,3,6,1,5,4, после операции (2,4) новый порядок будет 3,6,1,2,5,4. А после применения операции (3,4) порядок элементов в массиве будет 1,2,3,6,5,4.

Выведите порядок элементов в массиве после выполнения всех операций.

Формат входных данных

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число элементов в массиве и число операций. Следующие m строк содержат операции в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходных данных

Выведите n целых чисел — порядок элементов в массиве после применения всех операций.

стандартный ввод	стандартный вывод
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	

Задача D. K-й максимум

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество команд $(n \le 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \le 10^9)$. Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходных данных

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

стандартный ввод	стандартный вывод
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Задача Е. Декартово дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам даны пары чисел (a_i, b_i) . Необходимо построить декартово дерево, такое что i-я вершина имеет ключи (a_i, b_i) , вершины с ключом a_i образуют бинарное дерево поиска, а вершины с ключом b_i образуют кучу.

Формат входных данных

В первой строке записано число N — количество пар. Далее следует N ($1 \le N \le 300\,000$) пар (a_i,b_i) . Для всех пар $|a_i|,|b_i|\le 1\,000\,000$. $a_i\ne a_j$ и $b_i\ne b_j$ для всех $i\ne j$.

Формат выходных данных

Если декартово дерево с таким набором ключей построить возможно, выведите в первой строке «YES», в противном случае выведите «NO». В случае ответа «YES» выведите N строк, каждая из которых должна описывать вершину. Описание вершины состоит из трёх чисел: номера предка, номера левого сына и номера правого сына. Если у вершины отсутствует предок или какой либо из сыновей, выведите на его месте число 0.

Если подходящих деревьев несколько, выведите любое.

стандартный ввод	стандартный вывод
7	YES
5 4	2 3 6
2 2	0 5 1
3 9	1 0 7
0 5	5 0 0
1 3	2 4 0
6 6	1 0 0
4 11	3 0 0

Задача F. Добавление ключей

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вы работаете в компании Макрохард и вас попросили реализовать структуру данных, которая будет хранить множество целых ключей.

Будем считать, что ключи хранятся в бесконечном массиве A, проиндексированном с 1, исходно все его ячейки пусты. Структура данных должна поддерживать следующую операцию:

Insert(L, K), где L — позиция в массиве, а K — некоторое положительное целое число. Операция должна выполняться следующим образом:

- Если ячейка A[L] пуста, присвоить $A[L] \leftarrow K$.
- Если A[L] непуста, выполнить Insert(L+1, A[L]) и затем присвоить $A[L] \leftarrow K$.

По заданным N целым числам L_1, L_2, \ldots, L_N выведите массив после выполнения последовательности операций:

 $Insert(L_1, 1) Insert(L_2, 2) \dots Insert(L_N, N)$

Формат входных данных

Первая строка входного файла содержит числа N — количество операций Insert, которое следует выполнить и M — максимальную позицию, которая используется в операциях Insert ($1 \le N \le 131\,072$, $1 \le M \le 131\,072$).

Следующая строка содержит N целых чисел L_i , которые описывают операции Insert, которые следует выполнить $(1 \leq L_i \leq M)$.

Формат выходных данных

Выведите содержимое массива после выполнения всех сделанных операций Insert. На первой строке выведите W — номер максимальной непустой ячейки в массиве. Затем выведите W целых чисел — $A[1], A[2], \ldots, A[W]$. Выводите нули для пустых ячеек.

стандартный ввод	стандартный вывод
5 4	6
3 3 4 1 3	4 0 5 2 3 1

Задача G. И снова сумма

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- $\operatorname{sum}(l,r)$ вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l \leqslant x \leqslant r$.

Формат входных данных

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос $\mathrm{sum}(l,r)$.

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция add($(i + y) \mod 10^9$).

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходных данных

Для каждого запроса выведите одно число — ответ на запрос.

стандартный ввод	стандартный вывод
6	3
+ 1	7
+ 3	
+ 3	
? 2 4	
+ 1	
? 2 4	