$$\nabla^2 0 = 0$$
 here

$$\nabla^{2}\phi = 6$$
Seek soln of
$$\phi = 0$$

$$\phi = A_{1} + A_{2} + B_{2}$$

$$\phi = A_{1} + A_{2} + B_{2} + B_{3}$$

$$\varphi = A_1 + A_2 + A_2 + A_3 + A_4 + A_4 + A_5 + A_5 + A_6 +$$

$$Z=X>1$$
, have $\theta_1=\theta_2=0$

For

$$-14\times4[: \Theta_1=0, \Theta_2=\overline{1}]$$

$$\phi = A_1(0) + A_2 \pi = 1$$

$$A_2 = \frac{1}{\pi}$$

For
$$Z=X < -1$$
: $\Theta_1 = \Theta_2 = \pi$
 $\phi = O = A_1 \Theta_1 + \frac{1}{\pi} \Theta_2$

$$O = A_1 \pi + \frac{1}{\pi} \pi$$

$$A_1 = -\frac{1}{\pi}$$

Therefore,

$$\phi = \frac{1}{\pi} \left[Arg(z-1) - Arg(z+1) \right]$$

$$= \frac{1}{\pi} \left[\theta_2 - \theta_1 \right]$$

Beautiful Geometry Hidelen in the Formula?

The isotherus lostr like

Contours of constant of are ares of circles through ±1.

Ex: When \$= 1/2, then

by $\theta_2 - \theta_1$ wherever we move this point we have an angle of 17/2. Geometry theorem

Note: not discussing 3.5 Should still book at it!

Complex Integration (Chapter 4)

In Calculus, we had

$$\int_{a}^{b} f(x) dx \qquad \frac{1}{a + bx} = \frac{1}{b}$$

Let 7 = oriented piecewise smooth curve in the complex

Define
$$\int_{\mathcal{T}} f(z) dz$$
 } kinda like a line integral

The pick some point
$$Z_k$$
 and compute f , f is given

Take
$$\sum_{k=1}^{N} f(z_k) \Delta z_k = \int_{\gamma} f(z) dz$$
 proven

The limiting complex # is called the integral of f(z) along J. "Contour Integral"; $\partial =$ "contour"

The definition is not too useful for calculations. But it does give us an important <u>estimate</u>.

The ML bound

The ML bound

where
$$M = \max |f(z)|$$
 $Z \in Y$

and $L = length of $Y$$

$$\leq M \gtrsim |\Delta z_k| \leq ML$$

Since $|f(z_k)| \leq M$

Properties of $\int f(z) dz$

•
$$\int_{-\gamma}^{\gamma} f(z) dz = -\int_{\gamma}^{\gamma} f(z) dz$$

•
$$\int_{\gamma_1 + \gamma_2} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz$$

To <u>Calculate</u>, we need a <u>Fundamental</u> Theorem (connects integrals to derivitives)

In Real variables, this says $\int_{a}^{b} f(x) dx = F(b) - F(a); \text{ where } F' = f$

Some complex integrals reduce to this case. Example: find $\int_{\mathcal{T}_i} \overline{z} dz$ where $\int_{\mathcal{T}_i} y = x^2 \operatorname{parable}_{x}$ $f(z) = \overline{z} = Complex conjugate$ T, = arc of parabola from (0,0) to (1,i) Write parabola in parametric form as xlt)=t ylt)=t² 05t41 $z = x + iy = t + it^2$ $z = x - iy = t - it^2$ dz = dt + i2t dtZdz = (t-it2)(dt+izedt)

 $\int_{T_1} z dz = \int_{0}^{1} (t - it^2)(1 + 2it) dt$ Note the real range of integration.

 $= \int_{0}^{1} (t - it^{2} + 7it^{2} + 7t^{3}) dt$ = $\frac{t^2}{2} + \frac{it^3}{3} + \frac{2t^4}{4} \Big|_0^1 = \frac{1+\frac{1}{3}i}{1+\frac{1}{3}i} \Big|_{0}^{1}$ Note: $\frac{z}{2}$ is not analytic $\frac{z}{4}$ therefore no path independence!

Ex:
$$\mathcal{T}_2$$
 = straight line from $(0,0)$ to $(1,1)$

$$X(t) = t$$

$$y(t) = t$$

$$\overline{z} = t - it$$

$$dz = dt(1 - i)$$

$$\begin{pmatrix} 1 \\ 4 \\ 1 + 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1$$

$$\int_{0}^{1} (t-it)(1-i)dt = 1 + i = 1$$