Today topics:

The motivation of Neural networks:

- Feature Learning
- Dataset Split
- idea Label
- Learning vs Testing
- Machine Learning Framework

Where to go from edges?

Why is this hard?

You see this:

Why is this hard?

You see this:

But the camera sees this:

194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	75	65
20	43	69	75	56	41	51	73	55	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
72	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

Pixel-based representation

9/16/2021

Pixel-based representation

Pixel-based representation

9/16/2021

What we want

What we want

Classical feature extraction algorithms:

- HoG
- SIFT
- •

There is a wide range of algorithms that do so for us

Coming up with features is often difficult, timeconsuming, and requires expert knowledge.

"Bag-of-Words" (BoW) Histograms

Today

Feature engineering Expert knowledge

-> Feature learning
Data

Image classification - ImageNet

- Images for each category of WordNet
- 1000 classes
- 14M images
- 100K test

Dataset split

- Train classifier

- Measure error
- -Tune model hyperparameters

Random train/validate splits = cross validation

Testing Images

- Secret labels
- Measure error

Learning phases Labels **Images** Training Image Trained Training **Features** classifier

Testing

19

9/16/2021 CAP5415 - Lecture 5 Slide credit: D. Hoiem and L. Lazebnik

Learning phases

Training

Testing

Slide credit: D. Hoiem and L. Lazebnik

20

Recognition task and supervision

What are all the possible supervision ('label') types to consider?

Contains a motorbike

Recognition task and supervision

What are all the possible supervision ('label') types to consider?

Contains a motorbike

Recognition task and supervision

What are all the possible supervision ('label') types to consider?

Contains a motorbike

Spectrum of supervision

Learning phases

Training

Testing

CAP5415 - Lecture 5 Slide credit: D. Hoiem and L. Lazebnik

The machine learning framework

 Apply a prediction function to a feature representation of the image to get the desired output:

9/16/2021 CAP5415 - Lecture 5 Slide credit: L. Lazebnik 30

The machine learning framework

Training: Given a *training set* of labeled examples:

$$\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$$

Estimate the prediction function f by minimizing the prediction error on the training set.

Testing: Apply f to an unseen test example x_u and output the predicted value $y_u = f(x_u)$ to classify x_u .

9/16/2021 CAP5415 - Lecture 5

how the supervising algorithm works:

Source: CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241