Soal dan Solusi UTS Teori Bilangan 2023

Wildan Bagus Wicaksono

МАТЕМАТІКА 2022

Question 1

Menggunakan prinsip induksi dan sifat keterbagian, buktikan bahwa $4^{n+1} + 5^{2n-1}$ habis dibagi 21 untuk setiap bilangan asli n.

Penyelesaian.

Misalkan $p(n): 21 \mid 4^{n+1} + 5^{2n-1}$. Untuk n=1, maka $4^2 + 5^1 = 21 \implies 21 \mid 4^2 + 5^1$ sehingga p(1) benar. Asumsikan untuk suatu n=k, p(k) benar, yakni $21 \mid 4^{k+1} + 5^{2k-1}$. Untuk n=k+1,

$$\begin{aligned} 4^{k+2} + 5^{2k+1} &= 4^{k+1} \cdot 4 + 5^{2k-1} \cdot 25 \\ &= 4^{k+1} \cdot 4 + 5^{2k-1} (21+4) \\ &= 4^{k+1} \cdot 4 + 21 \cdot 5^{2k-1} + 4 \cdot 5^{2k-1} \\ &= 4 \left(4^{k+1} + 5^{2k-1} \right) + 21 \cdot 5^{2k-1}. \end{aligned}$$

Karena 21 | $4^{k+1} + 5^{2k-1} \implies 21$ | $4\left(4^{k+1} + 5^{2k-1}\right)$ dan 21 | $21 \cdot 5^{2k-1}$, maka 21 | $4\left(4^{k+1} + 5^{2k-1}\right) + 21 \cdot 5^{2k-1}$ sehingga p(k+1) benar. Menurut induksi, terbukti bahwa 21 | $4^{n+1} + 5^{2n-1}$ untuk setiap bilangan asli n.

Question 2

Dengan menggunakan algoritma euclide, tentukan nilai fpb(-2022, 1856).

Penyelesaian.

Perhatikan bahwa

$$-2022 = 1856(-2) + 1690$$
$$1856 = 1690(1) + 166$$
$$169 = 166(10) + 30$$
$$166 = 30(5) + 16$$
$$30 = 16(1) + 14$$
$$16 = 14(1) + \boxed{2}$$
$$14 = 2(7) + 0.$$

Jadi, fpb(-2022, 1856) = 2.

Question 3

Tentukan sisa dari $2013^{2015^{2017}}$ ketika dibagi 7.

Penyelesaian.

Karena 2013 $\equiv 4 \pmod{7}$, maka 2013^{2015²⁰¹⁷} $\equiv 4^{2015^{2017}} \pmod{7}$. Tinjau bahwa $4^3 \equiv 64 \equiv 1 \pmod{7} \implies 4^3 \equiv 1 \pmod{7}$, maka

$$4^{2015^{2017}} \equiv 4^{2015^{2017} \pmod{3}} \pmod{7}.$$

Perhatikan pula 2015 $\equiv -1 \pmod{3} \implies 2015^{2017} \equiv (-1)^{2017} \equiv -1 \equiv 2 \pmod{3}$ dan diperoleh $2015^{2017} \equiv 2 \pmod{3}$. Jadi,

$$2013^{2015^{2017}} \equiv 4^{2015^{2017}} \equiv 4^2 \equiv 16 \equiv 2 \pmod{7}.$$

Jadi, sisanya adalah 2.

3

Question 4

Seekor bebek jantan berharga 5 koin, bebek betina 3 koin dan 1 koin dapat ditukar dengan 3 anak bebek. Ambrodol memiliki 100 koin dan ingin menghabiskannya untuk membeli 100 ekor bebek. Tentukan semua kemungkinan banyaknya bebek jantan, bebek betina, dan anak bebek yang diperoleh Ambrodol.

Penyelesaian.

Misalkan j dan b breturut-turut menyatakan banyak bebek yang dibeli Ambrodol di mana $j, b \in \mathbb{N}_0$. Karena 1 koin ditukar dengan 3 anak bebek, maka banyak anak bebek adalah 3n di mana $n \in \mathbb{N}_0$. Diperoleh sistem persamaan b+j+3n=100 dan 5j+3b+n=100. Kurangkan kedua persamaan memperoleh

$$4j + 2b - 2n = 0 \iff n = 2j + b.$$

Kita punya $100 = 5j + 3b + n = 7j + 4b \implies 100 = 7j + 4b$. Tinjau modulo 4,

$$100 \equiv 7j + 4b \pmod{4} \iff 0 \equiv (-1)j + 0b \pmod{4} \iff 0 \equiv -j \pmod{4} \iff j \equiv 0 \pmod{4}.$$

Misalkan $j=4j_0$ di mana $j_0 \in \mathbb{N}_0$. Maka $100=7j+4b=28j_0+4b \implies 25=7j_0+b \iff b=25-7j_0$. Sehingga kemungkinan nilai dari j_0 adalah $j_0 \in \{0,1,2,3\}$. Tinjau $n=2j+b=8j_0+b$.

- Jika $j_0 = 0$, maka b = 25 dan diperoleh $n = 8j_0 + b = 25$. Jadi, (b, j, 3n) = (25, 0, 75) yang artinya Ambrodol mendapatkan 25 bebek betina dan 75 anak bebek.
- Jika $j_0 = 1$, maka b = 18 dan diperoleh $n = 8j_0 + b = 26$. Jadi, (b, j, 3n) = (18, 4, 78) yang artinya Ambrodol mendapatkan 18 bebek betina, 4 bebek jantan, dan 78 anak bebek.
- Jika $j_0 = 2$, maka b = 11 dan diperoleh $n = 8j_0 + b = 27$. Jadi, (b, j, 3n) = (11, 8, 81) yang artinya Ambrodol mendapatkan 11 bebek betina, 8 bebek jantan, dan 81 anak bebek.
- Jika $j_0 = 3$, maka b = 4 dan diperoleh $n = 8j_0 + b = 28$. Jadi, (b, j, 3n) = (4, 3, 84) yang artinya Ambrodol mendapatkan 4 bebek betina, 3 bebek jantan, dan 84 anak bebek.

▼