ОСНОВЫ ОБРАБОТКИ ИЗОБРАЖЕНИЙ. Лекция 2.

Преподаватель: Сибирцева Елена elsibirtseva@gmail.com

Обработка изображений семейство методов и задач, где входной и выходной информацией являются изображения

3A4EM O5PA5ATbIBATb?

Зачем обрабатывать?

- Улучшение изображения для восприятия человеком
 цель чтобы стало «лучше» с субъективной точки зрения человека
- Улучшение изображения для восприятия компьютером
 цель упрощение последующего распознавания
- Fun (спецэффекты)
 цель получить эстетическое удовольствие от красивого эффекта

За что отрывают руки фотографам?

Проблемы

Темное или слабоконтрастное

Неправильные цвета

Нерезкое

Неравномерно освещённое

Гистограмма изображения

 Гистограмма – это график распределения яркостей на изображении. На горизонтальной оси - шкала яркостей тонов от белого до черного, на вертикальной оси - число пикселей заданной яркости.

Яркость

BRIGHTNESS

- Яркость световая характеристика тел. Отношение силы света, излучаемого поверхностью, к площади ее проекции на плоскости, перпендикулярной оси наблюдения.
- **Яркость** (для самых маленьких) количество белого цвета на изображении. Чем выше яркость, тем светлее становится изображение.

Контрастность

CONTRAST

- Контрастность различимость предмета наблюдения от окружающего его фона (монохроматическое излучение); цветовая контрастность — разновидность оптической контрастности, связанная с разницей цветовых оттенков.
- Контрастность (для самых маленьких) разница между разными, расположенными рядом цветами. Чем выше контрастность, тем более резко мы наблюдаем переход от одного цвета к другому (иногда контрастность срабатывает как повышение резкости).

Вопрос: шумоподавление...

О Дано: камера, застывшая сцена, освещение постоянно. Как подавить шум?

Типы шумов

Импульсный

Соль и перец

Гауссов

Решение: медианный фильтр

Медианный фильтр

original

average

added noise

median

Что такое изображение?

• Можно представить изображение (gray scale) как функцию, f, от \mathbb{R}^2 к \mathbb{R} :

-f(x,y) – **интенсивность** в координате (x,y)

snoop

3D view

 – Цифровое изображение дискретное отображение данной функции

Преобразование изображений

 Как и с любой другой функцией, к изображению можно применять различные операторы

$$g(x,y) = f(x,y) + 20$$

$$g(x,y) = f(-x,y)$$

Но для изображений используется также специальный оператор «свертка»

Фильтрация изображений

 Суть: изменить пиксели изображения, на основе некой функции, зависящей от локальных соседей каждого пикселя

Исходное изображение

Отфильтрованное изображение

Source: L. Zhang

Линейная фильтрация

- О Простейшие фильтры: линейные (кросс-корелляция, свертка)
 - Суть: заменить каждый пиксель взвешенной суммой его соседей
- Работа линейного фильтра определяется его ядром

Исходное изображение

Ядро

Отфильтрованное изображение

Свертка

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

Это называется оператором свертки:

$$G = H * F$$

Основные свойства линейных фильров

Линейность:

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```

Инвариантность к сдвигу: одинаковое поведение, независимо от позиции пикселя

```
filter(shift(f)) = shift(filter(f))
```

Любой линейный и инвариантный к сдвигу оператор может быть представлен как **свертка**

Нужно больше свойств!

- Коммутативность: a * b = b * a
 - Conceptually no difference between filter and signal
 - O But particular filtering implementations might break this equality
- Ассоциативность: а * (b * c) = (a * b) * с
 - Often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - O This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Дистрибутивность: а * (b + c) = (a * b) + (a * c)
- Идентичность: импульс е = [0, 0, 1, 0, 0],
 a * e = a

Пример: box filter

$$g[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0	0
	0
0 0 0 00 00 00 00	
	0
0 0 0 90 90 90 90 0	0
0 0 0 90 90 90 90 0	0
0 0 0 90 0 90 90 0	0
0 0 0 90 90 90 90 0	0
0 0 0 0 0 0 0 0	0
0 0 90 0 0 0 0 0 0	0
0 0 0 0 0 0 0 0 0	0

0	10	20	30	30			
					?		
			50				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Линейные фильтры: примеры

Source: D. Lowe

Линейные фильтры: примеры

Source: D. Lowe

By 1 pixel

Линейные фильтры: примеры

Линейные фильтры: примеры

Original

Sharpening filter (accentuates edges)

Source: D. Lowe

Sharpening

before

after

Размытие с box filter

Ядро Гауссиана

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Гауссовы фильтры

Среднее vs. Гауссов фильтр

Гауссов фильтр

- Убирает высоко-частотные компонетнты из изображения (low-pass filter)
- Свертка с самим собой новый Гауссиан

— Если дважды пробежаться сверткой с Гассовым ядром шириной σ , то это то же самое, что применить свертку один раз с шириной $\sigma\sqrt{2}$

Резкость, one more time

• Что съедает blur?

Почему бы это не добавить снова?

Source: S. Lazebnik

Sharpen filter

Фильтр резкости

"Optical" Convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

В следующих сериях...

Фильтры — это просто!

Bitches be like

