Relation 1: Student(<u>ID</u>, Name, Major, Year, Email)

Functional Dependencies:

ID → Name, Major, Year, Email (ID is PK) Email → ID, Name, Major, Year (Email is unique)

All functional dependencies have a candidate key as LHS, Student is in BCNF

Relation 2: Professor(ID, Name, Email, DeptID)

Functional Dependencies:

ID → Name, Email, DeptID (ID is PK) Email → ID, Name, DeptID (Email is unique)

All functional dependencies have a candidate key as LHS, Professor is in BCNF

Relation 3: Class(ID, Name, Semester, Year, ProfessorID)

Functional Dependencies:

ID → Name, Semester, Year, ProfessorID (ID is PK)

All functional dependencies have a candidate key as LHS, Class is in BCNF

Relation 4: Group(<u>ID</u>, Name, ClassID)

Functional Dependencies:

ID → Name, ClassID (ID is PK)

All functional dependencies have a candidate key as LHS, Group is in BCNF

Relation 5: Enrollment(StudentID, ClassID)

PK is (StudentID, ClassID), Enrollment is in BCNF

Relation 6: TeamMember(StudentID, GroupID, ClassID)

Functional Dependencies:

GroupID → ClassID (because each group belongs to one class)

PK is (<u>StudentID</u>, <u>GroupID</u>, <u>ClassID</u>), GroupID (the LHS of GroupID \rightarrow ClassID) is not a superkey, so **TeamMember is not in BCNF**

Democomposition:

 $\label{eq:condition} \textbf{TeamMember}(\underline{StudentID},\,\underline{GroupID}) \text{ - } (StudentID,\,GroupID) \text{ is the PK}\\ \text{and}$

Group(GroupID, ClassID) - already exists

TeamMember(StudentID, GroupID, ClassID) becomes TeamMember(StudentID, GroupID)