

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC512 Elementos de Lógica Digital

Álgebra de Boole

Prof.Dr. Danilo Spatti

São Carlos - 2020

Introdução (I)

- George Boole desenvolveu sua álgebra a partir de duas grandezas: Verdadeiro e Falso, estabelecendo dois princípios fundamentais à lógica booleana:
 - Princípio da não contradição: "Uma proposição não pode ser, simultaneamente, verdadeira e falsa".
 - Princípio do terceiro excluído: "Uma proposição só pode tomar um dos dois valores possíveis – ou é verdadeira ou é falsa – não sendo possível terceira hipótese".

- Sistema matemático utilizado para se desenvolver circuitos lógicos.
- Os sistemas digitais utilizam-se de sinais binários (1 ou 0) para representar passagem ou não de corrente elétrica.
- Empregada para síntese de circuitos digitais a partir de funções lógicas.

 A Álgebra de Boole pode ser desenvolvida a partir de símbolos pré-definidos, tabela de funcionamento (verdade) e equações lógicas.

 As ditas operações lógicas primitivas são formadas por AND, OR e NOT, sendo as demais derivadas a partir destas.

SSC512

- Resulta em verdadeira se, e somente se, todas as proposições forem verdadeiras.
- A operação AND (E) é dita conjunção ou também produto lógico e é representada pela conectiva "." (ponto).

$$S(a,b) = a \cdot b$$

- Resulta em falsa se, e somente se, todas as proposições forem falsas.
- A operação OR (OU) é dita disjunção ou também adição lógica e é representada pela conectiva "+" (soma).

$$S(a,b) = a + b \qquad \begin{array}{c} 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline \end{array}$$

- **Lógica Digital**
- Resulta em falsa se a proposição for verdadeira e verdadeira se a proposição for falsa.
- A operação NOT (NÃO) é representada pela "barra" acima da proposição.

$$S(a) = \bar{a}$$

 A operação NAND é a operação inversa da operação AND.

$$S(a,b) = \overline{a \cdot b}$$

NAND	
l	

a	b	$a \cdot b$	a	b	$a \cdot b$
0	0	0	0	0	1
0	1	0	0	1	1
1	0	0	1	0	1
1	1		1	1	0

 A operação NOR é a operação inversa da operação OR.

$$S(a,b) = \overline{a+b}$$

NOR	
\Box	> -

a	b	a+b	a	b	$\overline{a+b}$
0	0	0	0	0	1
0	1	1	0	1	0
1	0	1	1	0	0
1	1		1	1	0

 A operação XOR (OU EXCLUSIVO) somente retorna verdadeiro quando as proposições são diferentes.

$$S(a,b) = a \oplus b$$

Lógica Digital

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

11

Lógica Digital

$$1.0 \cdot 0 = 0$$

$$2.1 + 1 = 1$$

$$3.1 \cdot 1 = 1$$

$$4.0 + 0 = 0$$

$$5.1 \cdot 0 = 0 \cdot 1 = 0$$

$$6.1 + 0 = 0 + 1 = 1$$

7. Se
$$x = 0$$
; $\bar{x} = 1$

8. Se
$$x = 1$$
; $\bar{x} = 0$

12

$$1. x \cdot 0 = 0$$

$$2. x + 1 = 1$$

$$3. x \cdot 1 = x$$

$$4. x + 0 = x$$

$$5. x \cdot x = x$$

$$6. x + x = x$$

$$7. x \cdot \bar{x} = 0$$

8.
$$x + \bar{x} = 1$$

Propriedades e Identidades (I)

Comutativa

a)
$$a + b = b + a$$

b) $a \cdot b = b \cdot a$

Associativa

a)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

b) $a + (b + c) = (a + b) + c$

Propriedades e Identidades (II)

Distributiva

a)
$$a \cdot (b + c) = a \cdot b + a \cdot c$$

b) $(a \cdot b) + c = (a + c) \cdot (b + c)$

Absorção

a)
$$a + (a \cdot b) = a$$

b) $a \cdot (a + b) = a$

Propriedades e Identidades (III)

Combinação

a)
$$(a \cdot b) + (a \cdot \overline{b}) = a$$

b) $(a + b) \cdot (a + \overline{b}) = a$

16

Lógica Digital

Teorema de DeMorgan (I)

a)
$$(\overline{x+y}) = \bar{x} \cdot \bar{y}$$

b)
$$(\overline{x \cdot y}) = \overline{x} + \overline{y}$$

Teorema de DeMorgan (II)

Lógica Digital

$$(\overline{x+y}) = \bar{x} \cdot \bar{y}$$

x y	x + y	$\overline{x+y}$	$\overline{\boldsymbol{x}}$	\overline{y}	$\overline{x}\cdot \overline{y}$
0 0	0	1	1	1	1
0 1	1	0	1	0	0
1 0	1	0	0	1	0
1 1		0	0	0	0

Teorema de DeMorgan (III)

$$(\overline{x \cdot y}) = \overline{x} + \overline{y}$$

x y	$x \cdot y$	$\overline{x \cdot y}$	$\overline{\boldsymbol{\mathcal{X}}}$	\overline{y}	$\overline{x} + \overline{y}$
0 0	0	1	1	1	1
0 1	0	1	1	0	1
1 0	0	1	0	1	1
1 1		0	0	0	0

- Grupo de circuitos integrados que implementam as operações lógicas.
- São empregados para síntese de sistemas digitais.
- Sistemas digitais reais são mais complexos que a utilização de um único operador lógico.

Encapsulamentos mais comuns.

QFP de 48 pinos (asa de gaivota)

para montagem em superfície

Características (III)

Escala de integração.

Complexidade	Portas por Chip
Baixa Escala de Integração (SSI)	Menos do que 12
Média Escala de Integração (MSI)	Entre 12 e 99
Alta Escala de Integração (LSI)	Entre 100 e 9.999
Muito Alta Escala de Integração (VLSI)	Entre 10.000 e 99.999
Ultra Alta Escala de Integração (ULSI)	Entre 100.000 e 999.999
Escala de Integração Giga (GSI)	A partir de 1.000.000

7400: 4 NAND de duas entradas.

7402: 4 NOR de duas entradas.

7404: 6 inversores.

7408: 4 AND de duas entradas.

Modelos (II)

7410: 3 NAND de três entradas.

7411: 3 AND de três entradas.

7420: 2 NAND de quatro entradas.

7427: 3 NOR de três entradas.

Modelos (III)

7430: 1 NAND de oito entradas.

7432: 4 OR de duas entradas.

7486: 4 XOR de duas entradas.

74266: 4 XNOR de duas entradas.

Obter a Expressão Algébrica dos Circuitos

Desenhe o Circuito Que Representa as Expressões

a)
$$(A \cdot B \cdot C) + (A + B) \cdot C$$

b)
$$(\overline{A} + \overline{B}) + (\overline{C} \cdot B)$$

Monte a Tabela Verdade

a)
$$S = (A + B) \cdot (\overline{B \cdot A})$$

b)
$$S = \overline{A} \cdot (\overline{B} + C)$$

spatti@icmc.usp.br

