upGrad

Data Management and Relational Modelling

Session 5 | Use Case Example

When is Data Normalization required?

Consider an Example

A food delivery company has provided the restaurant menu on its app and offers delivery services to its customers.

Once an order is received by the restaurant, a delivery employee is selected to deliver the order.

It has defined various attributes that are used by the company to store information.

We are given the attributes, and we have to design the logical layer of our database.

Consider All These Attributes

Attributes
Order ID
Order Date
Restaurant Name
Restaurant Address
Restaurant Phone Number
Restaurant Type

Attributes
Restaurant Category
Restaurant Membership
Customer Name
Customer Phone Number
Customer Address
Item Purchased

Cont'd...

Consider All These Attributes

Attributes
Item Quantity
Item Type
Item Category
Customer Membership
Coupon Applied
Price Paid

Attributes
Payment Mode
Delivery Employee Name
Vehicle Number
Pickup Time
Delivered Time
Total Delivery Time

Why Does This Data Need to Be Modelled?

Order ID	Or	der Date	Rest Nam	aurant ne		estaurant ddress		urant e Number		estaurant pe	Restaurant Category	Restai Memb	urant Pership
		Sout Food	th indian	plot 5, 976 mumbai		9768	546320 South Indian		outh Indian	Veg	Plan Premium		
Customer Name		Customer Phone Number		Customer Address		Customer Membersh	ip	Item Purchased		Item Quantity	Item Type		Item Category
Virat		97654382	10	plot 10, mumbai		Plan premi	um	idli, dosa		5, 2	South Indiar South Indiar	•	Veg, Veg

Coupon	Price	Payment	Delivery Employee	Vehicle	Pickup Time	Delivered	Total Delivery
Applied	Paid	Mode	Name	Number		Time	Time
COUPON12	200	Cash	Rohit	VEH1234	5:30 pm	6:00 pm	30 mins

The Main Entities

Customer					
Customer ID					
Name					
Phone Number					
Customer Address					
City					
State					
Customer Membership					
Customer Membership Price					

Restaurant
Restaurant ID
Name
Туре
Category
Address
City
State

Delivery Employee
Delivery Employee ID
Name
Vehicle Number
Date of joining
Membership Plan
Membership Plan Details

The Item Entity

Weak Entity

Strong Entity

Restaurant
Restaurant ID
Name
Туре
Category
Address
City
State

Customer and Item Entities

The relation between the customer and item tables is many-to-many. To implement a many-to-many relation, there will be one more entity 'order' that has a many-to-one relation with customer table as well as order table.

Order **Customer ID** Restaurant ID Item ID **Delivery Employee ID Coupon Applied Price Paid Total Delivery Time**

There is no composite key in this table to uniquely identify every record.

If there is an attribute order ID for each order, there can be a composite key.

One order can have two items. This will cause the order ID to be the same for two rows. Thus, it cannot act as a primary key.

Order					
Order ID					
Customer ID					
Restaurant ID					
Item ID					
Delivery Employee ID					
Coupon Applied					
Price Paid					
Total Delivery Time					

Order ID	Customer ID	Restaurant ID	Item ID	Delivery Employee ID	Coupon Applied	Price Paid	Total Delivery Time
50	C101	R112	2, 3	D12	C100, C200	120, 130	50 mins

Order ID	Customer ID	Restaurant ID	Item ID	Delivery Employee ID	Coupon Applied	Price Paid	Total Delivery Time
50	C101	R112	2	D12	C100	120	50 mins
50	C101	R112	3	D12	C200	130	50 mins

Order
Order ID
Customer ID
Restaurant ID
Item ID
Delivery Employee ID
Coupon Applied
Price Paid
Total Delivery Time

Order
Order ID
Customer ID
Restaurant ID
Delivery Employee ID
Total Delivery Time

Order Item
Order ID
Item ID
Coupon Applied
Price Paid

The order table is separated into two different tables to remove any partial dependency.

If there is a composite key in the table, partial dependencies may exist. If there is only one primary key, there cannot be any partial dependencies.

-							
(C	4	0	m		м
	u	3	u	U	m	$\overline{}$	н

Customer ID

Name

Phone Number

Customer Address

City

State

Customer Membership

Customer Membership Price

Delivery Employee

Delivery Employee ID

Name

Vehicle Number

Date of Joining

Membership Plan

Membership Plan Details

Restaurant

Restaurant ID

Name

Type

Category

Address

City

State

Item
Item ID
Restaurant ID
Item Name
Item Price
Item Description
Item Type
Item Category

Item entity is a weak entity. It depends on the primary key of restaurant entity to uniquely identify each record in the item table.

Restaurant ID is the foreign key to the restaurant table. Item Id and restaurant ID form the composite key for the table. All the non-prime attributes fully functionally dependent on prime attributes.

Transitive Dependencies in Customer Entity

Customer **Customer ID** Name **Phone Number Customer Address** City **State Customer Membership Customer Membership Price**

Customer ID -> Customer Membership -> Customer Membership Price

Customer ID -> City -> State

Transitive Dependencies in Customer Entity

Transitive Dependencies in Restaurant Entity

Restaurant
Restaurant ID
Name
Туре
Category
Address
City
State

Restaurant ID -> City -> State

Restaurant ID -> Type -> Type
Details
Restaurant ID -> Category ->
Category Details

Transitive Dependencies in Restaurant Entity

Transitive Dependencies in Delivery Employee Entity

Delivery	Employee

Delivery Employee ID

Name

Vehicle Number

Date of Joining

Membership Plan

Membership Plan Details

Delivery Employee ID -> Membership Plan -> Membership Details

Transitive Dependencies in Delivery Employee Entity

Transitive Dependencies in Item Entity

Item
Item ID
Restaurant ID
Item Name
Item Price
Item Description
Item Type
Item Category

Item ID -> Type -> Type Details
Item ID -> Category -> Category
Details

Transitive Dependencies in Item Entity

Transitive Dependencies in Order Entity

All Entities

Thank you