

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

2022-06-01	Ese
2022-05-31	Conside
2022-05-30	Que
2022-05-27	Ques Per qua
2022-05-26	Affinch
2022-05-25	Deve va
2022-05-24	
2022-05-23	da cui <i>l</i>
2022-05-20	• La
2022-05-19	• ch
2022-05-18	Ques
2022-05-17	Siano 2
2022-05-16	Determ
2022-05-13	
2022-05-13 2022-05-12	
	e nulla
2022-05-12	e nulla Analoga

2022 00 10	
2022-05-12	
2022-05-11	e nu
2022-05-10	Ana
2022-05-09	
2022-05-06	e nı
2022-05-05	Ora
2022-05-04	F_X
2022-05-03	
2022-05-02	Qι
2022-04-29	Qua
2022-04-28	Si o
2022-04-27	Qui
2022-04-26	
2022-04-22	Per
2022-04-21	
2022-04-20	
2022-04-19	
2022-04-15	
2022-04-14	
2022-04-13	
2022-04-12	
2022-04-11	
2022-04-08	
2022-04-07	
2022-04-06	
2022-04-05	
2022-04-04	
2022-04-01	
2022-03-31	

2022-03-30

2022-03-29

2022-03-28

2022-03-24

ercizio del 2022-05-05 creato per luigi.miazzo

deriamo la seguente funzione, $f(x,y) = k \cdot (7x + 10y)$ per $(x,y) \in [0,1] imes [0,1]$ e nulla altrove.

esiti e soluzioni

sito 1

uale valore di k, f(x,y) è una densità di probabilità?

hè f(x,y) sia una densità di probabilità, deve valere $f(x,y) \geq 0$ per ogni $x,y \in \mathbb{R}^2$ e il suo integrale su \mathbb{R}^2 deve essere uguale a 1. Dobbiamo quindi determinare k per cui entrambe queste proprietà sono verificate.

$$1=\int\int_{\mathbb{R}^2}k\cdot(7x+10y)dxdy=k\cdot\int_0^1\int_0^1(7x+10y)dxdy=k\cdot\left(\frac{7+10}{2}\right),$$

 $k=rac{2}{7+10}$.

- La risposta corretta è: 0.1176471
- La risposta inserita è: 2/17
- che corrisponde a 0.1176471

sito 2

X,Y variabili aleatorie con la densità congiunta $f_{X,Y}(x,y)=f(x,y)$ determinata nel quesito 1. Indichiamo con $f_X(f_Y)$ la densità marginale di X(Y) e con $F_X(F_Y)$ la rispettiva funzione di distribuzione (o ripartizione).

to valgono $F_X(0.2)$ e $F_Y(0.65)$? Inserire i due valori come vettore $\,$ c(valore1, valore2) $\,$.

miniamo la densità marginale di X. Per $x \in [0,1]$:

$$egin{align} f_X(x) &= \int_{\mathbb{R}} f_{X,Y}(x,y) dy = rac{2}{7+10} \int_0^1 (7x+10y) dy \ &= rac{2}{7+10} \left(7x+rac{10}{2}
ight), \end{aligned}$$

altrove.

gamente, per $y \in [0,1]$

$$f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx = rac{2}{7+10} \cdot \left(rac{7}{2} + 10y
ight)$$

ulla altrove.

a, non ci resta che calcolare i rispettivi integrali $F_X(0.2)=\int_{-\infty}^{0.2}f_X(x)dx$ e $F_Y(0.65)=\int_{-\infty}^{0.2}f_y(y)dy$.

 $F_{X}(0.2) = rac{2}{7+10} \Big(7rac{0.2^2}{2} + rac{100.2}{2} \Big) = 0.1341176$ e analoamente $F_{Y}(0.65) = 0.5161765$

La risposta inserita è: c(0.1341176, 0.5161764)

uesito 3

ial è il valore atteso di XY+0.334?

osservi che, dato il vettore aleatorio bivariato (X,Y), possiamo scrivere Z=g(X,Y)=XY e il valore atteso $\mathbb{E}(Z)=\mathbb{E}(g(X,Y))=\int g(x,y)f(x,y)dx\ dy$. Dopodiché prestate attenzione alla domanda!

me prima cosa, osserviamo che per linearità E[0.334+XY]=0.334+E[XY]. Possiamo quindi calcolarci E[XY] e andarlo poi a sommare a 0.334.

i abbiamo un vettore aleatorio (X,Y) e Z=g(X,Y)=XY per cui il valore atteso è

$$E[Z] = \int \int_{\mathbb{R}^2} g(x,y) \cdot f_{X,Y}(x,y) dx dy = rac{2}{7+10} \cdot \int_0^1 \int_0^1 xy \cdot (7x+10y) dx dy \qquad = rac{2}{7+10} \cdot \left(rac{7+10}{6}
ight) = rac{1}{3}.$$

r concludere, come detto, basta aggiungere al valore ottenuto 0.334.

- La risposta corretta è: 0.6673333
- La risposta inserita è: 0.6673333
- che corrisponde a 0.5161764