

Ciencia de la Computación

Álgebra Abstracta Docente LUIS FERNANDO DIAS BASURCO

Ejercicios de codificación y decodificación Entregado el 23/11/2024

Cuela Rodríguez Alonzo Estéfano

Semestre III 2024-2

"El alumno declara haber realizado el presente trabajo de acuerdo a las normas de la Universidad Católica San Pablo"

Ejercicios de Codificación y Decodificación

- 1. Sea C un conjunto de palabras codificadas, donde $C \in \mathbb{Z}_2^7$. Se dan dos datos de los tres términos e (patrón de error), r (palabra recibida) y c (palabra codificada). Determine el tercer término
 - a. c = 1010110, r = 10111111
 - b. e = 01011111, r = 00001111
 - c. c = 1010110, e = 0101101

- 2. Un canal simétrico binario tiene probabilidad p=0.05 de transmisión incorrecta. Si se transmite la palabra codificada c=011011101. ¿cuál es la probabilidad de que
 - a. Recibamos 011111101
 - b. Recibamos 111011100
 - c. Ocurra un solo error
 - d. Ocurra un error doble

C=0110 11101 Recibernos o 110,11101 probabilidad de error emparamos ono mal y omino 1 to do been 0111 11101] Hay terror en la ciarta pos 05 prob de enex (c.as) (0.05) (0.05) 10,0332 b) Recibamos 111011100 (0.05) (0.05) (0.05) =0.00175/ C) Oculta un elvor Sabemes que c: que mo, (8) (0,05) (6 95) (9) (0.05) (0 95) , 1.25

- 3. Sea $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^9$ la función de codificación para el código de repetición triple (9,3)
 - a. Si $D: \mathbb{Z}_2^9 \to \mathbb{Z}_2^3$ es la función de decodificación correspondiente, aplique D para decodificar las palabras recibidas: (i) 111101100; (ii) 000100011; (iii) 010011111
 - b. Encuentre tres palabras recibidas diferentes r para las que D(r) = 000
 - c. Para w = 101, ¿cuánto vale $|D^{-1}(w)|$

w2101 à Cuánto vale D'(w)?

- 4. El código de cinco repeticiones (5m,m) tiene la función de codificación $E\colon Z_2^m\to Z_2^{5m}$, donde E(w)=wwwww. La decodificación con $D\colon Z_2^{5m}\to Z_2^m$ se realiza mediante la regla de la mayoría
 - a. Si p=0.05 y m=3 ¿cuál es la probabilidad de la transmisión y decodificación correcta de la señal w=000
 - b. Responda la parte a. para el mensaje 110 en vez de 000
 - c. Para m=2 decodifique la palabra recibida r=0111001001

- d. Si m=2, encuentre 3 palabras recibidas r tales que D(r)=00
- e. Si m=2, y $D\colon\! Z_2^{10}\to Z_2^2$ ¿cuánto vale $|D^{-1}(w)|$ para w=01

- 5. Si $W = \mathbb{Z}_2^2$, sea $E: W \to \mathbb{Z}_2^6$ dado por E(w) = www,
 - a. Enumere los elementos de S(101010,1) y S(111111,1)
 - b. Decodifique las palabras recibidas
 - 110101
 - 101011
 - 001111
 - 110000

5. W= 21/2, sea E.W > 26/2

a. Enumerales elementos de 5 (101010,1) y

S(11111,1)

Como el radio es l'entonces so la prode
haber Merror

(6) +1 = 7 pars S(101010,1)

para S(111111,1) = como usa "y"
entonces = 72 49/2

b) Decodificar 26/2 22/2

-11/0101 > 21

-101011 > 11

-10000 > 20

6. Si $x \in \mathbb{Z}_2^{10}$, determine |S(x,1)|, |S(x,2)|

- 7. Sea $E: \mathbb{Z}_2^5 \to \mathbb{Z}_2^{25}$ una función de decodificación en que la distancia mínima entre las palabras codificadas es 9
 - a. ¿Cuál es el valor de k tal que podamos detectar errores de peso ≤k?
 - b. Si queremos corregir errores de peso n, ¿cuál es el valor máximo de n?

7. Sea E= Z² -> Z² , la distancia minima es q

a) d'Cual es el valor de K tal que podamos detector errores de peso ZK?

K+1=9

K-81

b) & Si que remes corregio errores de peson, d'Cual es el valor de n.

2n+1=9
2n28
2n28
2n244

- 8. Para cada una de las siguientes funciones de decodificación, encuentre la distancia mínima entre las palabras codificadas. Analice la capacidad de detección y corrección de errores de cada código
 - a. $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$
 - $00 \rightarrow 00001$
 - $01 \to 01010$
 - $10 \rightarrow 10100$
 - $11 \rightarrow 11111$
 - b. $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^{10}$
 - $00 \rightarrow 00000\ 00000$
 - $01 \rightarrow 00000 \ 11111$
 - $10 \rightarrow 11111 \ 00000$
 - 11 → 11111 11111

8. Encontrar la distancia minima, entre detección de errores y corresción de errores en

a) E:
$$\mathbb{H}^2 \to \mathbb{H}^2$$

e, 00 > 0000 i d(e, e2) = 3

er 0 : > 0000 d(e, p3) = 3

er 0 : > 0000 d(e2, e3) = 4

ey 11 -> 11111 d(e2, eu) = 3

d(e3, e4) = 3

k= 2 detección de errores

7 k+1=3

k= 2 detección de errores

7 k+1=3

corrección de errores

9. Use la matriz de paridad definida por las ecuaciones

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \end{bmatrix} = H \cdot (E(w))^t = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Para decodificar las siguientes palabras recibidas si se sabe que $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$

- a) 111101
- b) 110101
- c) 001111
- d) 100100

10. Encuentre las matrices generadoras y de verificación de paridad para el esquema de codificación con verificación de paridad simple (9,8).

Para cualquier $w=w_1w_2\dots w_8\in Z_2^8$, $E\colon\! Z_2^8\to Z_2^9$, $E(w)=w_1w_2\dots w_8w_9$ donde $w_9=\sum_{i=1}^8 w_i$ (suma módulo 2)

