

Кейс: расчет NPV и IRR методом Монте-Карло

проф. кафедры Эконометрики и математической экономики ЭМИТ РАНХиГС д.т.н. Шилин Кирилл Юрьевич

РАНХиГС каб. 419/3

email: kshilin@ranepa.ru

Исходные данные

		1 год	2 год	3 год
Цена упаковки		6,00 \$	6,05 \$	6,10 \$
Объем продаж		802 000,00	967 000,00	1 132 000,00
Выручка		4 812 000,00 \$	5 850 350,00 \$	6 905 200,00 \$
Себестоимость	0,55	2 646 600,00 \$	3 217 692,50 \$	3 797 860,00 \$
Валовая прибыль		2 165 400,00 \$	2 632 657,50 \$	3 107 340,00 \$
Операционные издержки	0,15	324 810,00 \$	394 898,63 \$	466 101,00 \$
Чистый доход до налогооблажения		1 840 590,00 \$	2 237 758,88 \$	2 641 239,00 \$
Налоги	0,32	588 989,00 \$	716 083,00 \$	845 197,00 \$
Чистый доход	-3 400 000	1 251 601,00 \$	1 521 675,88 \$	1 796 042,00 \$
NPV(10%)	344 796			
IRR	15,00 %			

Чистая приведённая стоимость

$$NPV = \sum_{t=0}^{N} \frac{CF_t}{(1+i)^t} = -IC + \sum_{t=1}^{N} \frac{CF_t}{(1+i)^t}$$

Внутренняя норма доходности

$$NPV = -IC + \sum_{t=1}^{N} \frac{CF_t}{(1+IRR)^t} = 0$$

Нормальный закон (normal)

Функция распределения CDF - cumulative distribution function $F(x) = \frac{1}{2} \left[1 + \mathrm{erf} \left(\frac{x - \mu}{\sqrt{2\sigma^2}} \right) \right]$

Усечение распределения (truncated)

РАНХиГС экономический

Треугольное распределение (triangular)

$$\begin{cases} 0 & x < a, \\ \frac{2(x-a)}{(b-a)(c-a)} & a \le x < c, \\ \frac{2}{b-a} & x = c, \\ \frac{2(b-x)}{(b-a)(b-c)} & c < x \le b, \\ 0 & b < x. \end{cases}$$

Равномерное (uniform) и Логонормальное (lognormal)

Кое что из теории: квантили и перцентили

Кое что из теории: мода, медиана и т.п.

Давайте подумаем:

- 1. Что в нашей задаче важнее как показатель мода, медиана или мат. ожидание?
- 2. Что в данной задаче будет лучше все оптимизировать?

		1 год	2 год	3 год
Цена упаковки		6,00 \$	6,05 \$	6,10 \$
Объем продаж		802 000,00	967 000,00	1 132 000,00
Выручка		4 812 000,00 \$	5 850 350,00 \$	6 905 200,00 \$
Себестоимость	0,55	2 646 600,00 \$	3 217 692,50 \$	3 797 860,00 \$
Валовая прибыль		2 165 400,00 \$	2 632 657,50 \$	3 107 340,00 \$
Операционные издержки	0,15	324 810,00 \$	394 898,63 \$	466 101,00 \$
Чистый доход до налогооблажения		1 840 590,00 \$	2 237 758,88 \$	2 641 239,00 \$
Налоги	0,32	588 989,00 \$	716 083,00 \$	845 197,00 \$
Чистый доход	-3 400 000	1 251 601,00 \$	1 521 675,88 \$	1 796 042,00 \$
NPV(10%)	344 796			
IRR	15,00 %			

		1 год	2 год	3 год
Цена упаковки (треуг. закон)		6 (5.9-6.1)	6.05 (5.95-6.15)	6.1 (6.0-6.2)
Объем продаж (нормал.)		802±25	967±30	1132±25
Себестоимость(треуг)	0.55(0.5-0.65)			
Опер. издержки (нормал.)	0.15±0.02			

Чистая приведённая стоимость

$$NPV = \sum_{t=0}^{N} \frac{CF_t}{(1+i)^t} = -IC + \sum_{t=1}^{N} \frac{CF_t}{(1+i)^t}$$

Внутренняя норма доходности

$$NPV = -IC + \sum_{t=1}^{N} \frac{CF_t}{(1 + IRR)^t} = 0$$

Какой я хочу увидеть результат

мат.ожидание npv: 229990.86916794642 мат.ожидание irr: 0.1354376219112691

npv перцентили {10: 20065.779139753246, 50: 232839.58558596228, 90: 435554.29550912953} irr перцентили {10: 0.10317575539244138, 50: 0.13609659529774298, 90: 0.16679404174833015}

Важные вопросы к обсуждению

- 1. Какой дизайн решения даст самую большую скорость?
- 2. Как проверить расчет?
- 3. Как проверить расчет со случайными числами?

Давайте решим еще задачку ...

13

Давайте решим еще задачку ...

Ресторан на фешенебельном морском курорте использует плавники свежевыловленных акул для приготовления деликатесных блюд.

Стоимость плавников, закупаемых у рыбаков \$7.5 за 1 кг.

Деликатесные блюда в ресторане продаюися по цене \$12 за 1 кг.

Если плавники, закупаемые утром, не заказаны посетителями ресторана сегодня, они замораживаются и продаются по цене \$6 за кг местной фирме, выпускающей корм для экзотических птиц.

Менеджер ресторана фиксирует ежедневно и потребление акульих плавников, и неудовлетворенный спрос.

Собранные им данные показывают, что в этом сезоне в среднем спрос на блюда из плавников близок к 60 кг в день. Стандартное отклонение спроса - 10 кг. Судя по всему, спрос распределен приблизительно нормально.

- 1. Как вам кажется какая стратегия по покупкам минимизирует ваши риски?
- 2. Сколько плавников нужно ежедневно покупать у рыбаков, чтобы максимизировать прибыль?
- 3. Какова будет мода, медиана, средняя, 10 и 90 перцентиль ежедневной прибыль при вашем оптимальном заказе (естественно оптимальность зависит от вашей стратегии)?