Explicitly Restarted Arnoldi's Method for Monte Carlo Nuclear Criticality Calculations

Jeremy Lloyd Conlin

August 17, 2009

Acknowledgements

- James Hollowy
- Bill Martin, Ed Larsen, Martin Strauss
- Scott and Geri Conlin
- Annie, Brigham, Lily, Emma
- Trisha Conlin

Boltzmann Transport Equation:

$$\Omega \cdot \nabla \psi(\mathbf{r}, \Omega) + \Sigma_t \psi(\mathbf{r}, \Omega) = \frac{\Sigma_s}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega + \frac{1}{k} \frac{\nu \Sigma_f}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega,$$

Boltzmann Transport Equation:

$$\Omega \cdot \nabla \psi(\mathbf{r}, \Omega) + \Sigma_t \psi(\mathbf{r}, \Omega) = \frac{\Sigma_s}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega + \frac{1}{k} \frac{\nu \Sigma_f}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega,$$

Operator Form:

$$(\mathsf{L} + \mathsf{C} - \mathsf{S})\psi = rac{1}{k}\mathsf{F}\psi$$
 $\mathsf{T}\psi = rac{1}{k}\mathsf{F}\psi$

Boltzmann Transport Equation:

$$\Omega \cdot \nabla \psi(\mathbf{r}, \Omega) + \Sigma_t \psi(\mathbf{r}, \Omega) = \frac{\Sigma_s}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega + \frac{1}{k} \frac{\nu \Sigma_f}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega,$$

Operator Form:

$$(\mathsf{L} + \mathsf{C} - \mathsf{S})\psi = rac{1}{k}\mathsf{F}\psi$$
 $\mathsf{T}\psi = rac{1}{k}\mathsf{F}\psi$

Define:

$$oldsymbol{v} \equiv {\sf F} \psi \ {\cal A} \equiv {\sf F} \, {\sf T}^-$$

Boltzmann Transport Equation:

$$\Omega \cdot \nabla \psi(\mathbf{r}, \Omega) + \Sigma_t \psi(\mathbf{r}, \Omega) = \frac{\Sigma_s}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega + \frac{1}{k} \frac{\nu \Sigma_f}{4\pi} \int \psi(\mathbf{r}, \Omega) \ d\Omega,$$

Operator Form:

$$(\mathbf{L} + \mathbf{C} - \mathbf{S})\psi = \frac{1}{k}\mathbf{F}\psi$$

$$\mathbf{T}\psi = \frac{1}{k}\mathbf{F}\psi$$

Define:

$$egin{aligned} \mathbf{v} &\equiv \mathbf{F} \psi \ \mathcal{A} &\equiv \mathbf{F} \, \mathbf{T}^{-1} \end{aligned}$$

$$Av = kv$$

Krylov Subspace Methods

Estimate eigenpairs from Krylov subspace:

$$\mathcal{K}_{\textit{m}}(\mathcal{A}, \textit{v}) \equiv \mathsf{span}\left\{\textit{v}, \mathcal{A}\textit{v}, \mathcal{A}^2\textit{v}, \dots, \mathcal{A}^{\textit{m}-1}\textit{v}
ight\}$$

Subspace constructed iteratively

$$v_i = Av_{i-1},$$
 for $i = 1, 2, ..., m-1$

Krylov subspace

$$\mathcal{K}_m(\mathcal{A}, \mathbf{v}) \equiv \operatorname{span} \left\{ \mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{m-1} \right\}$$

ullet Explicit form of ${\cal A}$ not required

Monte Carlo Application of Transport-Fission Operator ${\cal A}$

To apply A to v_{i-1} :

- **1** Sample neutron from v_{i-1}
- 2 Transport neutron
- Record positions of fission neutrons
- Repeat...

Fission Source:

$$v \equiv \mathbf{F}\psi$$

$$v_i = Av_{i-1}$$

Transport-fission Operator:

$$\mathcal{A} \equiv \mathsf{F} \, \mathsf{T}^{-1}$$

$$\mathcal{A} = \mathsf{F} \left(\mathsf{L} + \mathsf{C} - \mathsf{S} \right)^{-1}$$

Krylov Subspace Method: Power Method

Straightforward Krylov subspace method

$$v_i = \frac{1}{k_{i-1}} \mathcal{A} v_{i-1}$$
$$k_i = k_{i-1} \frac{\int \mathcal{A} v_{i-1}}{\int v_{i-1}}$$

- k_i and v_i converge to fundamental eigenpair as i becomes large
- Eigenvalue convergence proportional to dominance ratio

$$\mathsf{DR} = \lambda_1/\lambda_0$$

Monte Carlo Statistics

- Iterations before power method converges are discarded
 - Inactive iterations
- Iterations after convergence are Active iterations
- Calculate mean and variance of eigenvalue estimates

$$\overline{\lambda} \equiv \frac{1}{N} \sum_{n=1}^{N} \lambda_n$$

$$\sigma_{\overline{\lambda}}^{2} \equiv \frac{1}{N-1} \left(\frac{1}{N} \sum_{n=1}^{N} \left(\lambda_{n} - \overline{\lambda} \right)^{2} \right)$$

 \bullet $\sigma_{\overline{\lambda}}$ is a measure of statistical uncertainty of $\overline{\lambda}$

Arnoldi's Method—Alternative to Power Method

Power method has been used for more than 50 years

- Straightforward implementation
- Fundamental eigenvalue and eigenvector
- Only one Krylov basis vector is stored and used
- Slow convergence

Arnoldi's Method—Alternative to Power Method

Power method has been used for more than 50 years

- Straightforward implementation
- Fundamental eigenvalue and eigenvector
- Only one Krylov basis vector is stored and used
- Slow convergence

Arnoldi's method:

- Application of A same as in Power method
- Multiple eigenpairs
- All Krylov basis vectors are stored and used.
- Faster convergence

Arnoldi's Method

Krylov Subspace

$$\mathcal{K}_m(\mathcal{A}, v) \equiv \operatorname{span}\left\{v, \mathcal{A}v, \mathcal{A}^2v, \dots, \mathcal{A}^{m-1}v\right\}$$

$$\mathcal{K}_m(\mathcal{A}, v) \equiv \operatorname{span}\left\{v_0, v_1, v_2, \dots, v_{m-1}\right\}$$

- Krylov subspace built iteratively
- Vectors are orthogonalized and normalized
- Normalized basis vectors (v_i) are called Arnoldi vectors
- All Arnoldi vectors are stored and used

Arnoldi Method Iteration

Arnoldi Iteration

$$v_1 = \frac{v}{\|v\|_2}$$

$$\tilde{v}_2 = \mathcal{A}v_1$$

$$\tilde{v}_2 = \mathcal{A}v_1 - h_{1,1}v_1$$

$$v_2 = \frac{\tilde{v}_2}{h_{2,1}}$$

Arnoldi Method Iteration

Arnoldi Iteration

$$v_1 = \frac{v}{\|v\|_2}$$
 $\tilde{v}_2 = \mathcal{A}v_1$
 $\tilde{v}_2 = \mathcal{A}v_1 - h_{1,1}v_1$
 $v_2 = \frac{\tilde{v}_2}{h_{2,1}}$

At m-th iteration

$$\tilde{v}_{m+1} = Av_m - \sum_{j=1}^m h_{jm}v_j$$

$$v_{m+1} = \frac{\tilde{v}_{m+1}}{h_{m,m+1}}$$

$$h_{jm} = \langle Av_m, v_j \rangle$$

Arnoldi Factorization

$$\mathcal{A}V_m = V_m H_m + v_{m+1} h_{m+1,m} e_m^T$$

- Columns of V_m are Arnoldi vectors
- Elements of H_m are h_{jm}
- H_m is the projection of A onto Krylov subspace
- $H_m \in \mathbb{R}^{m \times m}$, upper-Hessenberg matrix
- m is small, easy to calculate eigenpair of H_m , (μ_i, x_i)

Finding Ritz Pairs from Arnoldi Factorization

• (μ_i, x_i) is an eigenpair of H_m

$$\mathcal{A}V_{m} = V_{m}H_{m} + v_{m+1}h_{m+1,m}e_{m}^{T}$$
 $\mathcal{A}V_{m}x_{i} = V_{m}(H_{m}x_{i}) + v_{m+1}h_{m+1,m}e_{m}^{T}x_{i}$
 $\mathcal{A}V_{m}x_{i} = V_{m}(\mu_{i}x_{i}) + v_{m+1}h_{m+1,m}e_{m}^{T}x_{i}$
 $\mathcal{A}y_{i} = \mu_{i}y_{i} + v_{m+1}h_{m+1,m}e_{m}^{T}x_{i}$

- $y_i = V_m x_i$
- (μ_i, y_i) is a *Ritz pair* or approximated eigenpair of A
- Residual:

$$|r_i| = ||Ay_i - \mu y_i|| = |h_{m+1,m}| |e_m x_i|.$$

Explicitly Restarted Arnoldi's Method

- Begin with estimate of desired eigenvector
- \bullet Calculate eigenpairs of H_m after a fixed number of iterations
- Restart Arnoldi with desired eigenvectors as new starting vector
- Several iterations make up one Arnoldi restart

Monte Carlo Arnoldi's Method

- ullet ${\cal A}$ is applied exactly as it is applied in power method
- Eigenvalues and eigenvectors estimated at end of every restart
- Mean and variance of estimates can be calculated
- Can do inactive restarts (but don't need to!)
- Orthogonalization will create negative Arnoldi vectors
 - Negative fission source
- Need to define inner product between two fission sources

Negative Sources

To sample from negative fission source, normalize

$$\int |v(x)| dx = q$$

$$p(x) = \frac{|v(x)|}{q}$$

- p(x) dx is probability of picking a point in dx about x
- Neutron is given weight

$$\omega = \begin{cases} 1, & v(x_s) > 0 \\ -1, & v(x_s) < 1. \end{cases}$$

Spatial Discretization

Orthonormalization requires inner product between fission sources:

$$h_{jk} = \langle v_j, v_k \rangle = \int v_j(x) v_k(x) dx$$

Discretize fission source

$$v_{\Pi}(x) = \sum_{b=1}^{B} a_b \Pi_b(x)$$

$$\Pi_b(x) = egin{cases} \left(rac{1}{\Delta x_b}
ight)^{1/2}, & x_b \leq x < x_{b+1} \\ 0, & ext{otherwise} \end{cases}$$

Inner Product of Fission Sources

Discretization:

$$v_{\Pi}(x) = \sum_{b=1}^{B} a_b \Pi_b(x)$$

Arnoldi vector representation:

$$v_{\Pi} = \begin{bmatrix} a_1, a_2, \dots, a_B \end{bmatrix}^T$$

• Inner product of discretized fission sources:

$$h_{jk} = \langle v_{\Pi}^{(j)}, v_{\Pi}^{(k)} \rangle = \sum_{b=1}^{B} a_{b}^{(j)} a_{b}^{(k)}$$

Sampling from Discretized Source

- $v_{\Pi}(x)$ is a first order accurate approximation of fission source
- To sample from $v_{\Pi}(x)$, normalize

$$q = \sum_{b=1}^{B} |a_b|$$

$$p_b = |a_b|/q$$

- p_b is probability of sampling from bin b
- Bin b is sampled uniformly to determine neutron position

Numerical Results

- Homogeneous slab
- $\nu \Sigma_f = 1.0$, $\Sigma_a = 0.2$, $\Sigma_s = 0.8$, $\Sigma_t = 1.0$
- 0.2, 2.0, 20 mfp thick
- Geometry and cross sections match published results
- Parameters:
 - 1×10^5 particles per iteration
 - 25 inactive, 100 active Arnoldi restarts, 10 iterations per restart
 - 250 inactive, 1000 active power iterations
 - 50 spatial bins (0.2 mfp), 75 spatial bins (2.0, 20 mfp)

Numerical Results

Width (DR)	Method	Eigenvalue	Standard Deviation	Reference
0.2 (0.2400)	Power Arnoldi	0.329979 0.33008	$6.3 \times 10^{-5} \\ 1.8 \times 10^{-4}$	0.330000
2.0 (0.4015)	Power Arnoldi	2.09593 2.09652	2.7×10^{-4} 6.9×10^{-4}	2.09599
20 (0.9079)	Power Arnoldi	4.82734 4.8290	$\begin{array}{c} 6.3 \times 10^{-4} \\ 1.5 \times 10^{-3} \end{array}$	4.82780

Eigenvalue Convergence

Fundamental Eigenvector

Multiple Eigenvectors

Width (mfp)	Method	Standard Deviation	FOM	Time (sec)
0.2	Power Arnoldi	$6.3 \times 10^{-5} \\ 1.8 \times 10^{-4}$	1.7×10^6 3.3×10^5	149.0 95.3
2.0	Power Arnoldi	$2.7 \times 10^{-4} \\ 6.9 \times 10^{-4}$	5.5×10^4 9.8×10^3	258.1 212.5
20	Power Arnoldi	$\begin{array}{c} 6.3 \times 10^{-4} \\ 1.5 \times 10^{-3} \end{array}$	5.4×10^3 1.1×10^3	463.0 378.5

Figure of Merit

$$\mathsf{FOM} \equiv \frac{1}{\sigma^2 T}$$

Figure of Merit

$$\mathsf{FOM} \equiv \frac{1}{\sigma^2 T}$$

Variance

$$\sigma^2 \equiv \frac{1}{N-1} \left(\frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2 \right)$$

Spread

$$s \equiv \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2$$

Figure of Merit

$$\mathsf{FOM} \equiv \frac{1}{\sigma^2 T}$$

Variance

$$\sigma^2 \equiv \frac{1}{N-1} \left(\frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2 \right)$$

Spread

$$s \equiv \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2$$

	0.2 mfp	2.0 mfp	20 mfp
Power	0.0020	0.0084	0.0201
Arnoldi	0.0018	0.0069	0.0153

Spread of eigenvalue estimates

Discretization Error

26

Spatial Approximations

Spatial Approximations

Spatial Approximations

First Order Accurate

$$v_{\Pi}(x) = \sum_{b=1}^{B} a_b \Pi_b(x)$$

$$\Pi_b(x) = \left(\frac{1}{\Delta x_b}\right)^{1/2}$$

$$v_{\Pi} = \begin{bmatrix} a_1, a_2, \dots, a_B \end{bmatrix}^T$$

Second Order Accurate

$$v_{\mathcal{L}}(x) = \sum_{b=1}^{B} \mathcal{L}_b(x, \alpha_b, \beta_b)$$

$$\mathcal{L}_b(x, \alpha_b, \beta_b) = \alpha_b + \beta_b x$$

$$\mathbf{v}_{\mathcal{L}} = \left[\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_n, \beta_B\right]^T$$

- 20 mfp homogeneous thick
- $\nu \Sigma_f = 1.0$, $\Sigma_a = 0.2$, $\Sigma_s = 0.8$, $\Sigma_t = 1.0$
- 1×10^6 particles per iteration
- 50 inactive, 100 active Arnoldi restarts, 10 iterations per restart
- First and second order accurate spatial approximations
- 10-150 spatial bins

Spatial Discretization—FOM

Spatial Discretization—Eigenvectors

Spatial Discretization—Eigenvectors

Spatial Discretization—Conclusions

- Spatially discretizing can cause an error in the eigenvalue estimate
- Second order accurate approximation:
 - Reduces error
 - Reduces standard deviation
 - Increases figure of merit
 - Improves eigenvector estimate

Relaxed Arnoldi

Residual

$$|r_m| = ||Ay - \mu y|| = |h_{m+1,m}| |e_m x_i|.$$

Relaxed Arnoldi

Residual

$$|r_m| = ||\mathcal{A}y - \mu y|| = |h_{m+1,m}| |e_m x_i|.$$

Bouras and Frayssé:

- Can relax application of A
- Maintain convergence of Arnoldi's method
- Save computational expense

Relaxing Monte Carlo Arnoldi

Relax Monte Carlo = Run fewer particles

- As residual decreases:
 - Relaxation increases
 - Number of particles tracked decreases
- Relaxation controlled by parameter η

Number of particles tracked

$$N_k = f N_0$$

$$f = \begin{cases} \left(\|r_{k-1}\| / \eta \right)^2, & \|r_{k-1}\| < \eta \\ 1, & \|r_{k-1}\| \ge \eta \end{cases}$$

- $\nu \Sigma_f = 1.0$, $\Sigma_a = 0.2$, $\Sigma_s = 0.8$, $\Sigma_t = 1.0$
- 50 mfp thick slab (DR = 0.9924)
- 100 inactive restarts
- η ranges from 1E8–1.0
- ullet Total number of particles is the same for all values of η

Convergence in Monte Carlo Criticality Calculations

- ullet Eigenvalue estimate converges proportional to dominance ratio λ_1/λ_0
- Fission source converges more slowly
- Shannon entropy

$$H\left(S(x)\right) \equiv -\sum_{b=1}^{B} S_b \log \left(S_b\right)$$
 $S_b = \int_{x_b}^{x_{b+1}} \left|v(x)\right| dx$

Homogeneous Geometry

- 50 mfp thick
- $\nu \Sigma_f = 1.0$, $\Sigma_a = 0.2$, $\Sigma_s = 0.8$, $\Sigma_t = 1.0$
- 5×10⁵ particles per iteration
- 75 spatial bins (first order accurate)
- Source solely in left most bin

Homogeneous Geometry

Power Method

Arnoldi's Method

Heterogeneous Geometry

Parameters:

- 1×10⁵ particles per iteration
- 10 iterations per Arnoldi restart
- 300 spatial bins (first order accurate)
- Source solely in left most bin
- Symmetric
- Asymmetric

Asymmetric Heterogeneous Geometry

Power Method

Arnoldi's Method

Shannon Entropy

Symmetric Heterogeneous Geometry

Power Method

Arnoldi's Method

Shannon Entropy

• Arnoldi's method can be used in Monte Carlo Criticality Calculations

- Arnoldi's method can be used in Monte Carlo Criticality Calculations
- Arnoldi's method can estimate multiple eigenvalues

- Arnoldi's method can be used in Monte Carlo Criticality Calculations
- Arnoldi's method can estimate multiple eigenvalues
- Fission source is discretized
 - Discretization causes error in eigenvalue estimate
 - Second order accurate approximation reduces error and standard deviation

- Arnoldi's method can be used in Monte Carlo Criticality Calculations
- Arnoldi's method can estimate multiple eigenvalues
- Fission source is discretized
 - Discretization causes error in eigenvalue estimate
 - Second order accurate approximation reduces error and standard deviation
- Relaxing Arnoldi's method can increase the figure of merit

- Arnoldi's method can be used in Monte Carlo Criticality Calculations
- Arnoldi's method can estimate multiple eigenvalues
- Fission source is discretized
 - Discretization causes error in eigenvalue estimate
 - Second order accurate approximation reduces error and standard deviation
- Relaxing Arnoldi's method can increase the figure of merit
 - But you must be careful

- Arnoldi's method can be used in Monte Carlo Criticality Calculations
- Arnoldi's method can estimate multiple eigenvalues
- Fission source is discretized
 - Discretization causes error in eigenvalue estimate
 - Second order accurate approximation reduces error and standard deviation
- Relaxing Arnoldi's method can increase the figure of merit
 - But you must be careful
- Arnoldi's method converges in just a few iterations
 - Eigenvalue estimate
 - Fission source

Future Work

- Multi-dimensional and real-world problems
- Implicit restarts
- Calculating eigenvalue estimates at every iteration
- Condensing Arnoldi's method

Implicitly Restarted Arnoldi's Method

Danny Sorensen:

- Arnoldi's method can be implicitly restarted
- Implicit restarts trade iterations of the QR algorithm for Arnoldi iterations—much faster
- More robust restarts
- Mathematically equivalent to explicit restarts

Calculating Eigenvalue Estimates at Every Iteration

- $\sigma^2 \propto 1/N$
- Can increase N in Arnoldi's method by estimating eigenvalue after every iteration

Calculating Eigenvalue Estimates at Every Iteration

- $\sigma^2 \propto 1/N$
- Can increase N in Arnoldi's method by estimating eigenvalue after every iteration

	λ_0	σ	FOM
Arnoldi*	4.82806	6.3×10^{-4}	6.6×10^{3}
Power	4.82734	6.3×10^{-4}	5.4×10^{3}
Arnoldi	4.8290	1.5×10^{-3}	1.1×10^{3}

Condensing Arnoldi's Method

- Arnoldi's method does not need many iterations to converge
- Why not condense all particles tracked to just a few iterations?

Condensing Arnoldi's Method

Extra Slides

Spatial Approximations

First Order Accurate

$$v_{\Pi}(x) = \sum_{b=1}^{B} a_b \Pi_b(x)$$

$$\Pi_b(x) = \left(\frac{1}{\Delta x_b}\right)^{1/2}$$

Second Order Accurate

$$v_{\mathcal{L}}(x) = \sum_{b=1}^{B} \mathcal{L}_b(x, \alpha_b, \beta_b)$$

$$\mathcal{L}_b(x, \alpha_b, \beta_b) = \alpha_b + \beta_b x$$

Spatial Approximations

First Order Accurate

$$v_{\Pi} = \begin{bmatrix} a_1, a_2, \dots, a_B \end{bmatrix}^T$$

$$h_{jk} = \langle v_{\Pi}^{(j)}, v_{\Pi}^{(k)} \rangle = \sum_{b=1}^{B} a_b^{(j)} a_b^{(k)}$$

Second Order Accurate

$$v_{\mathcal{L}} = \left[\alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_n, \beta_B\right]^T$$

$$h_{jk} = \langle \mathbf{v}_{\Pi}^{(j)}, \mathbf{v}_{\Pi}^{(k)} \rangle = \sum_{b=1}^{B} \left(\alpha_b^{(j)} \alpha_b^{(k)} + \beta_b^{(j)} \beta_b^{(k)} \right)$$

Sampling from $v_{\mathcal{L}}(x)$

• To sample from $v_{\mathcal{L}}(x)$, normalize

$$q_b = \int |\mathcal{L}_b(x, \alpha_b, \beta_b)| dx$$

$$Q = \sum_{b=1}^B q_b$$

$$p_b = q_b/Q$$

$$p = \frac{1}{Q} [p_1, \dots, p_B]$$

- p_b is probability of sampling from bin b
- Bin b is sampled to determine neutron position from PDF

$$p_b(x) = \frac{1}{q_b} \left| \mathcal{L}_b(x, \alpha_b, \beta_b) \right|$$