Japanese Patent Application Publication No.51-29032

Particulars:

Title: Optical Doppler Radar Apparatus

Inventor: Naganou Munehiko et. al

Assignee: Mitsubishi Denki Kabushiki Kaisha

Filing Date in Japan: February 5, 1966

Application Number: No.45-6564

Claim 1: An optical Doppler radar apparatus having a light
source portion, wherein

said light source portion comprises a gun oscillator element (1) and an insection laser diode (3) combined with each other,

and wherein the laser output from said insection laser diode (3) is modulated by a micro wave output from said gun oscillator element (1) by applying a pulse current to both of said gun oscillator element (1) and said laser diode (3).

<u>Effect</u>: According to the above structure, an optical radar apparatus of high performance, small sized and low-cost can be obtained.

(i) I nt . Cl2. (701 89/68)

69日本分類 107 D 1

19日本国特許庁

①特許出願公告

昭51-29032

特 許 公 報 44公告 昭和51年(1976) 8月23日

庁内整理番号

発明の数 1

(全 5 頁)

1

🕯 光ドプラレーダ装置

判 昭45-6564 審.

2044 願 昭41-6612

❷出 願 昭41(1966)2月5日

個発 明 者 長能宗彦

尼崎市南清水字中野80三菱電機

株式会社中央研究所内

同 須崎渉

同所

⑪出 願 人 三菱電機株式会社

東京都千代田区丸の内2の2の3

個代 理 人 弁理士 萬野信一

図面の簡単な説明

発明の詳細な説明〉

第1図はインゼクションレーザの代表的な特性 を示す図、第2図はガン効果を用いた発振器の代 表的な特性を示す図、第3図はインゼクションレ ーザ光のマイクロ波変調の原理図、第4図はこの 発明のレーザに使用する光源の変調過程を示す図、20 等の特長を有するものである。 第5 図はこの発明に使用する光源部を示す略線図、 第6図はこの発明の一実施例を示す系統図である。 なお図中同一符号は相当部分を示すものとする。

以前から考え方が存在していたが、特に最近コヒ ーレントなレーザ光が得られるようになつて以来 種々の試みがなされて来た。例えばレーザ光を利 用した光レーダについて考えると、ルピーレーザ やガラスレーザなどの固体レーザを用いたレーダ 30 シヨンレーザに流れる電流」を、縦軸にレーザ光 は強力なパルス光を得ることができるため、光の 反射から目標までの距離を求めることが実際行な われている。しかしこれは種々の欠点がある。即 ちレーザのポンピングのためにフラツシユランプ が大形になる。又レーザ発振そのものはスパイク

状なのでレーダとして使用するのには具合が悪く

従ってQスイツチ等で単一のパルスを得る必要が ある。さらに、この形のものでは繰返しが早く出 来ず、Qスイツチングを行なうとマイクロ波変調 がかけにくく、たとえかげ得たとしても変調度を 5 大きくとれず、出力がある程度犠牲になる。さら **に又、レーザには発振用キャピテイを構成する鏡** など機械的、構造的に取扱いや調整に細心の注意 を要するものを特つている等幾多の欠点があつた。 --方、ヘリウム・ネオンやアルゴン等の気体*レ*ー 10 ザでもパルス発振を行なわせてレーダ光源として 利用できるが、これまた上述したような欠点があ り、レーダとして不利であつた。

2

これに対してインゼクションレーザ(Injection Laser) は発光はフラツシユランプ等を使 15 用せず素子に電流を流すだけでよく、発光効率が 高く(約数10%)、素子自身がレーザ用キヤビ テイを構成しているため小形となり且つ取扱いは 容易で、時間応答性が早く、パルス幅、パルス繰 返しも自由に選べ、変調をかけるのも容易である

むの発明は上述のインゼクションレーザ(これ は半導体レーザ、PN接合レーザ、接合レーザ、 ダイオードレーザともいう。の利点を生かし、こ のレーザから得られる レーザ光パルスを例えば n 光を利用したレーダそのものについてはかなり 25 型 GaAs からなるガン素子 (Gunn 案子) に よつてマイクロ波変調をかけたものを光源とした 光レーダに関するものである。

先ずインゼクションレーザの特性について考え ると、これは第1図に示すように横軸にインゼク 強度Iをとり、絶対温度Tをパラメータにとると、 レーザダイオードからの光は閾値Jt;,Jt。を 超えるとコヒーレントになり、出力も10倍~ 10 倍になる。一方ガン素子を用いたマイクロ波発振 を必要とし、発光効率が低く(約1%)、電源等 35 器の代表的特性を第2図について説明すると、第 2図で横軸にガン素子にかかる電圧V、縦軸にマ イクロ波発振出力Wをとつている。電圧範囲

Vr<V CVoではガン素子の厚さで定まる周波数 の出力が得られる。従つて、空胴中にガン案子を 取付け、適当な電圧を加えると一定周波数のマイ クロ波(数百~数千MC)が得られる。従って、 インゼクションレーザと、ガン素子による発振器 5 とを組み合わせ、第3図に示すように横軸をマイ クロ波入力で振ると、レーザ光強度はそのマイク 口波によつて変調を受けることになる。即ち第4 図a,b,cに示すように横軸に時間tをとると、 レーザダイオードに矩形波パルス電流を流せば第 10 4図aのようなレーザ光パルスが得られ、一方上 記矩形波 パルス 電流と同じ電流を ガン索子に加え ると第4図bに示されたようなマイクロ波が得ら

本発明のレーダには上述したレーザ光パルスを 光源とするもので、その光源部の具体例を第5図 について説明する。第5図aはガン素子1を第1 のマイクロ波空胴 2 に納め、又 レーザダイオード 胴2,4を結合部5で結合すると共に、パルサー 6,7からの矩形波電流を上記ガン案子1及びレ ーザダイオード 3 に同時に加えるようにしたもの で、レーザ光 8はレーザダイオード 3から得られ

れる。従つて両者を組み合わせれば第4図 cに示

されたようなレーザ光パルスが得られる。

第5図b及びcはガン素子1とレーザダイオー ド3とを同一のマイクロ波空胴9内に納め、同一 パルサー10からの電流により駆動するもので、 第5図bはガン素子1とレーザダイオード3とを 並列にしたもの、第5図cは直列にしたものを示30 している。

第6図は上記光源部を備えた光レーダの一例を 示すもので、10はパルサー、11は光源部、 12は送信光学系13、受信光学系14を有する 光学系、15は受信検出器、16は表示部、1735安定度が良ければ精度よく測定できることを示し は制御部である。

今このレーダによりマイクロ波変調を受けたレ ーザ光パルスが目標に向つて発射されたとすると、 このパルスの繰返し周波数 fr (PPS)とし、 光速度をCとすれば、光パルスが戻るまでの時間 40 τ、目標までの距離 Sとの間には次の関係が成立 する。

$$S = \frac{C\tau}{2} - C \cdot \frac{n}{2f_T}$$

但しnはて中に発射されるパルス数である。 t を時間測定器で測定するか、nを数えるかにより

Sを求めることができ、精度 ASは

 $AS = \frac{CA\tau}{2} = C\frac{An}{2f\tau}$ となる。 ACは時間測 定誤差、 d n (= 1)はパルス数の測定誤差であ る。次に目標が相対速度 vで動いているものとす る。光の周波数、vマイクロ波の周波数をfmとす ると、ドブラ効果による周波数偏移は、マイクロ 波変調がかかつていない場合と、いる場合はそれ ぞれ次のような周波数成分をもつ。

(a)
$$\delta \nu = \frac{2 v}{C} \nu$$

(b)
$$\delta \nu^+ = \frac{2 v}{C} (\nu + f m)$$
, $\delta \nu = \frac{2 v}{C} \nu$,

$$\delta \nu = \frac{2 v}{C} (\nu - f m)$$

ここで、 $\delta \nu^+$, $\delta \nu$, $\delta \nu^-$ はそれぞれ変調に よる上側帯波成分、基本波成分、下側帯波成分で 3を第2のマイクロ波空胴4に納め、これら両空 20 ある。レーザ光がスペクトル幅4vを持つている とすると、マイクロ波変調がされていないと、検 出可能であるためには δ ν > Δ ν でなくてはなら

> $\frac{V}{C} > \frac{A \nu}{2 \nu}$ となり vは大きくないと検出 されないし、又精度も悪い。しかし、周波数 f m でレーザ光が強度変調されていると、受信信号周 波数成分には、fm, $fm \pm \delta \nu^+$, $fm \pm \delta \nu$, fm+ δνーがあり、それらの間のピートとして、 例えば次の周波数成分のものが得られる。

 $2 f m + \delta v^{+} - \delta v^{-} = 2 f m + \frac{4 v}{C} f m =$ 2f m ($1+\frac{2}{C}$) この式には ν も $d\nu$ も含まれ ていない。即ち光の周波数やスペクトル巾に関係 なくマイクロ波周波数と速度だけによつて検出周 波数成分が定まり、又速度vが小さくてもfmの ている。一般にインゼクションレーザはスペクト ル幅が大きいのでそのままでは光ドプラレーダへ の応用は困難であつたが、変調をかけることによ り実現できるものである。

以上のように、この発明はガン素子とレーザダ イオードとを組み合わせたものを光レーダ光源部 としているためレーザ光パルスを変調するのに電 **気入力として電気パルスだけを加えればよく、励** 振に際しての制御が比較的簡単に行なえる上、 直

5

桜マイクロ波をレーザダイオード入力として結合 できるから効率が良く、変調周波数や変調レベル はガン発振素子を適当に選び電気パルス入力を調 整することによつて自由に調整し得るものである。

又変調用マイクロ波をレーザダイオードに加え 5 る場合、ガン発振器によらず通常のクライストロ ン発振器等を用いると高周波器等を用いると高周 波伝送線が必要となり大形となるが、この発明に よれば極めて小形に構成し得るものである。

価に提供するものである。

砂特許請求の範囲

ガン発振索子とインゼクションレーザダイオ

6

ードとを結合し、両者にパルス電流を加えて上記 インセクションレーザダイオードから生ずるレー ザ出力を上記ガン発振素子から生ずるマイクロ波 出力によつて変調するようにしたものを光源部と したことを特徴とする光ドプラレーダ装置。

66引用文献

公 昭32-7997 従つてこの発明によれば高性能の光レーダを安 10 電子技術 1965年11月号 第17~18頁 TERMAN "Electronic and Radio Engineering 1955 McGRAN Hill Book Co. INC 第1036~1037頁

