Partial Differential Equations - MSO203B

Assignment 2 - Basics and 1st Order PDE

Tutorial Problems

- 1. Classify the following based on their linearity/semilinearity/quasilinearity and fully nonlinearity.
 - $u_x + u_y = 1$
 - $\bullet \ u_x + xu_y = u^2$
 - $\bullet \ u_x + uu_y = 0$
 - $\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0 \text{ for } 1$
 - $\det(D^2u) = 1$
- 2. Solve the following PDE:
 - $u_{xx} = u$
 - $\bullet \ u_{xy} + u_x = 0$
- 3. Show that for smooth functions u, v in a smooth, bounded domain one has the following

$$\int_{\Omega} (u\Delta v - v\Delta u) \ dx = \int_{\partial\Omega} (u\frac{\partial v}{\partial \gamma} - v\frac{\partial u}{\partial \gamma}) \ dS$$

where γ is the unit outward normal vector.

- 4. Verify that $u(x,t) = x^2 + t^2$ solves the wave equation given by $u_{tt} = u_{xx}$.
- 5. Show that the solutions z(x,y) of $yz_x = xz_y$ represents surface of revolution.

- 6. Show that the family of spheres $x^2 + y^2 + (z c)^2 = r^2$ satisfies the first order PDE: $xz_y yz_x = 0$ where c is a constant.
- 7. Find the general solution of the Euler equation $xu_x + yu_y = nu$ where $n \in \mathbb{N}$.
- 8. Find the general solution of the linear equation $x^2u_x + y^2u_y = (x+y)u$.
- 9. Find the solution of the equation $(x+y)uu_x + (x-y)uu_y = x^2 + y^2$ with the Cauchy data u=0 on the line y=2x.
- 10. Use $v = \log(u)$ to reduce the problem $x^2u_x^2 + y^2u_y^2 = u^2$ and then solve it using v = f(x) + g(y) where f, g smooth and arbitrary.

END