Carlos A. Aznarán Laos Franss Cruz Ordoñez Junior Micha Velasque Gabriel Quiróz Gómez Davis S. García Fernández

## Relación de recurrencia

Ecuaciones en diferencias y análisis en escalas de tiempo

1 de junio del 2019

Facultad de Ciencias

Universidad Nacional de Ingeniería

| La presente monografía está dedicada a mis<br>profesores y estudiantes de la Facultad de Ciencias. |
|----------------------------------------------------------------------------------------------------|
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |

## Prólogo

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Rímac, mayo 2019

El profesor del curso

### **Prefacio**

Uno de los temas más importantes dentro del *Análisis Matemático* son las sucesiones, es decir, funciones cuyo dominio y contradominio es el conjunto de los números naturales  $\mathbb N$  y el de los números reales  $\mathbb R$ , respectivamente. En el presente trabajo nos enfocaremos en nada menos que las "relaciones de recurrencia", donde cualquier término se determina en función de al menos uno de los términos precedentes, un ejemplo famoso es la *sucesión de Fibonacci*. Esta sucesión fue descrita por *Leonardo de Pisa*<sup>1</sup> como la solución a un problema de cría de conejos:

"Cierta persona cría una pareja de conejos juntos en un lugar cerrado y desea saber cuántos nacimientos durante un año han acontecido a partir del par inicial, de acuerdo a su naturaleza, cada pareja necesita un mes para envejecer y cada mes posterior procrea otra pareja".

Viendo esto, hemos concebido un modelo matemático basado en sucesiones recursivas, dando su definición, algunos otros ejemplos, su relación con las ecuaciones en diferencias y otras aplicaciones como resolver sistemas de ecuaciones lineales empleando nuestros conocimientos adquiridos en el curso de Análisis Real de la carrera de Matemática en la Universidad Nacional de Ingeniería.

Rímac, Carlos Aznarán Laos junio 2019 Franss Cruz Ordoñez

<sup>&</sup>lt;sup>1</sup> Fibonacci

## Agradecimientos

Nos gustaría expresar el agradecimiento especial al maestro Manuel Toribio Cangana, así como a nuestro profesor Benito Ostos, que nos brindó la excelente oportunidad de elaborar esta monografía sobre el tema *relaciones de recurrencia*, quien también nos ayudó en la organización del mismo. Estamos muy agradecidos con ellos. En segundo lugar, también nos gustaría agradecer a nuestros padres y amigos que nos ayudaron a terminar este proyecto en un tiempo limitado.

Estamos haciendo este proyecto no solo por las notas sino también para expandir nuestro conocimiento.

## Contenido

### Parte I Fundamentos

| 1                           | Intr    | oducción                                                                 | 3  |  |  |  |  |
|-----------------------------|---------|--------------------------------------------------------------------------|----|--|--|--|--|
| 1.1 Relación de Recurrencia |         |                                                                          |    |  |  |  |  |
|                             |         | 1.1.1 Ecuaciones en diferencias                                          | 5  |  |  |  |  |
|                             |         | 1.1.2 Algunos modelos de recurrencias lineales                           | 6  |  |  |  |  |
|                             |         | 1.1.3 Problemas                                                          | 6  |  |  |  |  |
|                             | 1.2     | Recurrencias Lineales con coeficientes constantes                        | 9  |  |  |  |  |
|                             | 1.3     | Relación de recurrencia lineal con homogénea con coeficientes constantes | 10 |  |  |  |  |
|                             | 1.4     | Ejemplos definidos por ecuaciones de recurrencia                         | 15 |  |  |  |  |
|                             | 1.5     | Resolución de ecuaciones de recurrencia lineal de primer orden           | 20 |  |  |  |  |
|                             |         | 1.5.1 Las torres de Hanoi                                                | 20 |  |  |  |  |
|                             |         | 1.5.2 Los tres piratas naufragados                                       | 20 |  |  |  |  |
|                             |         | 1.5.3 Interés compuesto                                                  | 21 |  |  |  |  |
|                             | 1.6     | Resolución de ecuaciones de recurrencia lineal de segundo orden          | 22 |  |  |  |  |
| Pai                         | rte II  | Realización numérica                                                     |    |  |  |  |  |
| 2                           | Mét     | odo de Euler                                                             | 30 |  |  |  |  |
|                             | 2.1     |                                                                          | 30 |  |  |  |  |
| Pai                         | rte III | Aplicaciones                                                             |    |  |  |  |  |
| 3                           | Bifu    | rcación de la ecuación logística                                         | 32 |  |  |  |  |
|                             | 3.1     | Ecuación diferencial ordinaria lineal                                    | 32 |  |  |  |  |
|                             | 3.2     | Introducción                                                             | 33 |  |  |  |  |
|                             | 3.3     | Diferenciación                                                           | 34 |  |  |  |  |
| Glo                         | osario  |                                                                          | 37 |  |  |  |  |
| Índ                         | lice    |                                                                          | 38 |  |  |  |  |

## Acrónimos

CAS Sistema Computarizado Algebraico RE Relación de recurrencia

## Parte I Fundamentos

En la primera parte de la monografía presentaremos los conceptos fundamentales para modelar y simular los problemas de las ecuaciones en diferencias, a veces, mal llamado *relaciones de recurrencias*. En el capítulo 1 presentaremos los modelos fundamentales y las ecuaciones en diferencias. Discutiremos la relación de *Ackermann* 

## Capítulo 1

### Introducción

**Resumen** En este capítulo introducimos un tipo de funciones llamadas que pueden ser usados para aproximar otras funciones más generales

#### 1.1 Relación de Recurrencia

En esta sección presentamos a nuestros lectores las nociones básicas subyacentes de las relaciones de recurrencia, así como varios ejemplos de tales relaciones.

Una relación de recurrencia es una familia numerable de ecuaciones que definen sucesiones en modo recursivo. Aquellas sucesiones que así surgen se llaman *soluciones de la recurrencia*, dependiendo de uno o más valores iniciales: cada término que sigue al valor inicial en tales sucesiones es definida como una función de los términos anteriores.

**Definición 1.1 (Relación de recurrencia)** Una **relación de recurrencia** en las incógnitas  $x_i$ ,  $i \in \mathbb{N}$ , es una familia de ecuaciones

$$x_n = f_n(x_0, \dots, x_{n-1}), \quad n \ge r,$$

donde  $r \in \mathbb{N}_{\geq 1}$ , y  $(f_n)_{n \geq r}$  son funciones

$$f_n: D_n \to \mathbb{R}, \quad D_n \subseteq \mathbb{R}^n, \quad \text{o} \quad f_n: D_n \to \mathbb{C}, \quad D_n \subseteq \mathbb{C}^n.$$

Dependiendo del caso, las llamaremos **recurrencias reales** o **recurrencias complejas**. Las incógnitas  $x_0, \ldots, x_{r-1}$  son llamadas **libres**. El número r es el *orden de la relación*.

Al reemplazar n por n+r, la relación de recurrencia de orden r

$$x_n = f_n(x_0, \dots, x_{n-1}), \quad n \ge r,$$

puede también escribirse como

$$x_{n+r} = f_{n+r}(x_0, \dots, x_{n+r-1}), \quad n \ge 0.$$

**Definición 1.2 (Solución de una recurrencia)** Una sucesión  $(a_n)_{n\in\mathbb{N}}$  es una **solución** de la relación de recurrencia de orden r

$$x_n = f_n(x_0, \dots, x_{n-1}), \quad n \ge r,$$
 (1.1)

1.1 Relación de Recurrencia

con  $f_n: D_n \to \mathbb{R}, D_n \in \mathbb{R}^n$ , si

$$(a_0, \ldots, a_{n-1}) \in D_n, \quad a_n = f_n(a_0, a_1, \ldots, a_{n-1}) \quad \forall n \ge r.$$

La sucesión  $(a_0, \ldots, a_{n-1})$  de valores asignados para las r incógnitas libres es llamado la r-sucesión de **valor inicial** o de las **condiciones iniciales** de la solución. Definimos la **solución general real** (respectivamente **compleja**) de la sucesión como la familia de todas las soluciones con elementos que están en  $\mathbb{R}$  (respectivamente en  $\mathbb{C}$ ).

#### Relación de recurrencia de orden 1

Considere la relación de recurrencia de primer orden definida por

$$x_n = \frac{1}{x_{n-1} - 1}, \quad n \ge 1.$$

La 1-sucesión (2) no es una sucesión de valor inicial de una solución, en efecto, 2 pertenece al dominio de  $f_0(x) = \frac{1}{x-1}$ , pero  $(2, f_0(2)) = (2, 1)$  no pertenece al dominio de  $f_1(x_0, x_1) = \frac{1}{x-1}$ . Por otra parte, la 1-sucesión (3) es en efecto la sucesión de valor inicial de la solución (sucesión)

$$(a_n)_n := (3, 1/2, -2, -1/3, -3/4, -4/7, -7/11, \ldots).$$

Note que para  $n \ge 2$  uno tiene  $a_n < 0$  y así  $a_{n+1} = \frac{1}{a_{n-1}} < 0$  es distinto de 1.

En muchas ocasiones una relación de recurrencia de orden r involucra solo los últimos r términos y es de la forma

$$x_n = g_n(x_{n-r}, \dots, x_{n-1}), \quad n \ge r,$$

donde  $(g_n)_{n\geq r}$  son las funciones definidas en un subconjunto  $E_n$  de  $\mathbb{R}^r$  o  $\mathbb{C}^r$ . Este último es de hecho una relación de recurrencia: es suficiente para establecer  $f_n$   $(x_0,\ldots,x_{n-1}) \coloneqq g_n$   $(x_{n-r},\ldots,x_{n-1})$  para  $(x_0,\ldots,x_{n-1}) \in D_n := \mathbb{R}^{n-r} \times E_n$  (o  $\mathbb{C}^{n-r} \times E_n$ ) a fin de cumplir los requerimientos de la definición

Una relación de recurrencia es una ecuación que expresa cada término de una sucesión en función de los términos precedentes. Una relación de recurrencia presenta la siguiente forma:

$$u_n = \varphi(n, u_{n-1}), \forall n > 0,$$

donde

$$\varphi: \mathbb{N} \times X \to x$$

1.1 Relación de Recurrencia

es una función donde X es un conjunto al que deben pertenecer los elementos de una sucesión. Para cualquier  $u_0 \in X$ , esto define una sucesión única con  $u_0$  como su primer elemento, llamado el valor inicial.

5

Es fácil modificar la definición para obtener sucesiones a partir del término del índice 1 o superior. Esto define la relación de recurrencia de primer orden. Una relación de recurrencia de orden k tiene la forma:

$$u_n = \varphi(n, u_{n-1}, u_{n-2}, \dots, u_{n-k}), \forall n \geq k,$$

donde

$$\varphi \colon \mathbb{N} \times X^k \to X$$

Es una función que involucra k elementos consecutivos de la sucesión. En este caso, se necesitan k valores iniciales para definir una sucesión.

#### 1.1.1 Ecuaciones en diferencias

Una ecuación en diferencias es una expresión de la forma:

$$G(n, f(n), f(n+1), \dots, f(n+k)) = 0, \forall n \in \mathbb{Z}$$

donde f es una función definida en  $\mathbb{Z}$ .

Si después de simplificar esta expresión quedan los términos  $f(n + k_1)$  y  $f(n + k_2)$  como el mayor y el menor, respectivamente. Se dice que la ecuación es de orden  $k = k_1 - k_2$ .

#### Ecuación en diferencias de orden 3

La ecuación:

$$5f(n+4) - 4f(n+2) + f(n+1) + (n-2)^3 = 0 ag{1.2}$$

es de orden 4 - 1 = 3.

Una ecuación en diferencias de orden k se dice que es lineal si puede expresarse de la forma:

$$p_0(n) f(n+k) + p_1(n) f(0+k-1) + \dots + p_k(n) f(n) = g(n),$$

donde los coeficientes  $p_i$  son funciones definidas en  $\mathbb{Z}$ .

El caso más sencillo es cuando los coeficientes son constantes  $p_i(n) = a_i$ :

$$a_0 f(n+k) + a_1 f(n+k-1) + \cdots + a_k f(n) = g(n).$$

La ecuación en diferencias se dice que es *homogénea* en el caso que g(n) = 0, y completa en el caso contrario.

1.1 Relación de Recurrencia 6

#### 1.1.2 Algunos modelos de recurrencias lineales

Ahora damos una serie de ejemplos que ilustran cómo reducir la solución de un problema en el que la búsqueda de las soluciones de una relación de recurrencia apropiada.

#### La escalera

Un niño decide escalar una escalera con  $n \ge 1$  de tal manera que cada paso que él despeja uno o dos de los pasos de la escalera Encuentre la relación de recurrencia que sirva para calcular el número de diferentes maneras posibles de escalar la escalera.

Usamos la variable desconocida  $x_n$  para denotar el número de maneras en las cuales el niño puede escalar la escalera de  $n \ge 1$  pasos. Es fácil de observar que  $x_1 = 1$  y  $x_2 = 2$  (dos pasos cada uno de longitud uno, o un paso de longitud dos escalones). Ahora sea  $n \ge 3$ : si con el primer paso el niño mueve solo el primer escalón; existen claramente  $x_{n-1}$  posibles maneras de escalar los que quedan. Si en cambio con el primer lugar, se suben dos peldaños de escalera.

#### 1.1.3 Problemas

**Ejercicio 1.1** Supongamos que  $E_n$  es definido recursivamente en  $\mathbb{Z}^+$  por

$$E_0 = 0, E_1 = 2, y, E_{n+1} = 2n\{E_n + E_{n-1}\}$$
 para  $n \ge 1$ .

Determine el valor de  $E_{10}$ .

#### Solución 1.1

**Ejercicio 1.2** Supongamos que la función f es definida recursivamente en  $\mathbb{Z}^+$  por

$$f(n) := \begin{cases} 1 & \text{si } n = 2^k \text{ para algún } k \in \mathbb{N}. \\ f(n/2) & \text{si } n \text{ es par pero no una potencia de } 2. \\ f(3n+1) & \text{si } n \text{ es impar.} \end{cases}$$

Entonces

$$f(3) = f(10)$$
 porque 3 es impar  
=  $f(5)$  porque  $10 = 2 \times 5$   
=  $f(16)$  porque 5 es impar  
= 1 porque  $16 = 2^4$ .

- (a) Mostrar que f(11) también es igual a 1.
- (b) Mostrar que f(9), f(14), y f(25) son todos iguales a f(11) y, por lo tanto, todos iguales a 1.
- (c) Escriba un programa para hallar f(27).

¿Crees que esta función siempre dará el valor de 1, sin importar con qué n comiences? Busque la "Conjetura de Collatz" o el "Problema del granizo".

#### Solución 1.2

**Ejercicio 1.3** Podríamos definir una *desajuste* como una *n*-permutación S de  $\{1,\ldots,n\}$ donde cada  $S_j \neq j$  y luego definir  $D_n$  como el número de desajustes de  $\{1, \ldots, n\}$ . Entonces  $D_n$  es la única sucesión que satisface la ecuación de recurrencia

$$D_n = (n-1)\{D_{n-1} + D_{n-2}\} \text{ para } n = 3, 4, 5, \dots$$
 (1.3)

con las condiciones iniciales  $D_1 = 0$  y  $D_2 = 1$ .

- (a) Mostrar que  $D_2 = (2)(D_1) + (-1)^2$ .
- (b) Use la inducción matemática para probar que para todo entero  $n \ge 2$ ,

$$D_n = (n)(D_{n-1}) + (-1)^n$$
.

#### Solución 1.3

Ejercicio 1.4 Use la inducción matemática y la ecuación (1.3) para probar que

$$\forall n \in \mathbb{Z}^+: D_n = n! \sum_{i=0}^n \frac{(-1)^j}{j!}.$$

#### Solución 1.4

Ejercicio 1.5 Supongamos que (o busque estos dos resultados de cálculo)

A. 
$$\forall x \in \mathbb{R}: e^x = \sum_{j=0}^{\infty} \frac{x^j}{j!}$$
, y entonces  $e^{-1} = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!}$ ,

A. 
$$\forall x \in \mathbb{R}: e^x = \sum_{j=0}^{\infty} \frac{x^j}{j!}$$
, y entonces  $e^{-1} = \sum_{j=0}^{\infty} \frac{(-1)^j}{j!}$ ,  
B.  $\forall n \in \mathbb{Z}^+: e^{-1} = \sum_{j=0}^n \frac{(-1)^j}{j!} + E_n$  donde  $|E_n| < \left| \frac{(-1)^{n+1}}{(n+1)!} \right| = \frac{1}{(n+1)!}$ .

(a) Use el resultado de la pregunta anterior para mostrar

$$\frac{n!}{e} = D_n + n!E_n \text{ donde } |n!E_n| < \frac{n!}{(n+1)!} = \frac{1}{n+1} \le \frac{1}{2}.$$

(b) Explique por qué  $D_n - \frac{1}{2} \le \frac{n!}{e} \le D_n + \frac{1}{2}$ .

(c) 
$$\operatorname{Es}\left\lceil \frac{n!}{e}\right\rceil = D_n?$$

#### Solución 1.5

Ejercicio 1.6 La función de Ackermann a veces es definida recursivamente en una forma ligeramente diferente

Regla (1) B(0, n) = n + 1 para n = 0, 1, 2, ...,

Reglb (2) 
$$B(m, 0) = B(m - 1, 1)$$
 para  $m = 1, 2, 3, ..., y$ 

Reglc (3) B(m,n) = B(m-1, B(m,n-1)) cuando ambos m y n son positivos.

- 1. Use inducción matemática para probar  $\forall n \in \mathbb{N}$ : B(1, n) = n + 2.
- 2. Use inducción matemática para probar  $\forall n \in \mathbb{N}$ : B(2, n) = 3 + 2n.
- 3. Use inducción matemática para probar  $\forall n \in \mathbb{N}$ :  $B(3, n) = 2^{3+n} 3$ .
- 4. Use inducción matemática para probar  $\forall n \in \mathbb{N}$ : B(4, n) =.

#### Solución 1.6

**Ejercicio 1.7** Supongamos que A es un conjunto de 2n objetos. Sea  $P_n$  el número de diferentes maneras que los objetos en A pueden ser "emparejados" (el número de diferentes particiones de A en 2–subconjuntos). Supongamos que  $n \in \mathbb{Z}^+$ . Si n = 2, entonces A tiene cuatro elementos,  $A = \{x_1, x_2, x_3, x_4\}$ . Los tres posibles emparejamientos son:

- 1.  $x_1 \cos x_2 y x_3 \cos x_4$ ,
- 2.  $x_2 \cos x_3 y x_2 \cos x_4$ ,
- 3.  $x_3 \cos x_4 y x_2 \cos x_3$ .

Así  $P_2 = 3$ .

(a) Mostrar que si n=3 y  $A=\{x_1,x_2,x_3,x_4,x_5,x_6\}$ , existen 15 posibles emparejamientos enumerándolos a todos:

a. 
$$x_1 \cos x_2 y x_3 \cos x_4 y x_5 \cos x_6$$
.  
b. ...

Así  $P_3 = 15$ .

- (b) Mostrar que  $P_n$  debe satisfacer la RE  $P_n = (2n-1)P_{n-1}$  para  $\forall n \geq 2$ .
- (c) Use esta ecuación de recurrencia y la inducción matemática para probar

$$P_n = \frac{(2n)!}{2^n \times n!} = \text{para } \forall n \ge 1.$$

(d) Mostrar que  $y_n = \frac{n(n-1)}{2} + c$  para n > 0 es una solución de la relación de recurrencia

$$y_{n+1} = y_n + n.$$

#### Solución 1.7

Ejercicio 1.8 Suponga que una sucesión es definida por:

$$f(0) = 5$$
 y  $f(n + 1) = 2 \times f(n) + 1$  para  $n = 0, 1, 2, ...$ 

- (a) Encuentre el valor de f(10).
- (b) Probar que la sucesión ni es una sucesión aritmética ni es una sucesión geométrica.

#### Solución 1.8

Ejercicio 1.9 (a) Encuentre la solución general de la ecuación de recurrencia

$$S_n = 3S_{n-1} - 10$$
 para  $n = 1, 2, ...$ 

- (b) Determine la solución particular donde  $S_0 = 15$ .
- (c) Use la fórmula en (((a))) para evaluar  $S_6$  y verifique su respuesta usando la ecuación de recurrencia en sí.

#### Solución 1.9

**Ejercicio 1.10** Suponga que  $s_0 = 60$  y  $s_{n+1} = (1/5)s_n - 8$  para n = 0, 1, ...

- (a) Encuentre  $s_1$ ,  $s_2$ , y  $s_3$ .
- (b) Resuelva la relación de recurrencia para dar una fórmula para  $s_n$ .
- (c) ¿Es esa sucesión convergente? Si es así, ¿cuál es el límite?

(d) ¿La serie correspondiente converge? Si es así, ¿cuál es el límite?

#### Solución 1.10

**Ejercicio 1.11** Suponga que  $s_0 = 75$  y  $s_{n+1} = (1/3)s_n - 6$  para n = 0, 1, ...

- (a) Encuentre  $s_1$ ,  $s_2$ , y  $s_3$ .
- (b) Resuelva la relación de recurrencia para dar una fórmula para  $s_n$ .
- (c) ¿Es esa sucesión convergente? Si es así, ¿cuál es el límite?
- (d) ¿La serie correspondiente converge? Si es así, ¿cuál es límite?

#### Solución 1.11

**Ejercicio 1.12** (a) Mostrar que  $f_n = A \times 3^n + B \times 2^n$  satisface la ecuación de recurrencia

$$f_n = 5f_{n-1} - 6f_{n-2}$$
 para  $n \ge 2$ .

(b) Encuentre la solución particular (valores para A y B) para que

$$f_0 = 4 \text{ y } f_1 = 17.$$

#### Solución 1.12

#### 1.2 Recurrencias Lineales con coeficientes constantes

Una relación de recurrencia lineal de orden r con coeficientes constantes es una recurrencia del tipo:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \forall n \ge r,$$
 (1.4)

donde  $c_0, c_1, \ldots, c_r$  son constantes reales o complejas, con  $c_0$  y  $c_r$  ambos diferentes de cero y  $(h_n)_{n\geq r}$  es una sucesión de números reales o complejos llamado sucesión de términos no homogéneos de la recurrencia. La recurrencia es llamada homogénea si la sucesión de términos no homogéneos es una sucesión nula, no homogénea si  $h\neq 0$  para algún n. La relación de recurrencia:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0, \forall n \ge r, \tag{1.5}$$

es llamada la recurrencia homogénea asociada, o la parte homogénea de la recurrencia (1.4). Como nosotros ya hemos notado, la recurrencia:

$$c_0x_n + c_1x_{n-1} + \cdots + c_rx_{n-r} = h_n, \forall n \ge r,$$

puede ser escrito equivalentemente como

$$c_0 x_{n+r} + c_1 x_{n+(r-1)} + \dots + c_r x_n = h_{n+r}, \forall n \ge 0.$$

Se puede utilizar cualquiera de las formas presentadas.

Observación 1.1 Cada r-secuencia de valores asignados a las r incógnitas desconocidas de la relación de recurrencia

$$c_0x_n + c_1x_{n-1} + \cdots + c_rx_{n-r} = h_n, \forall n \geq r,$$

determina de forma única una solución. Al resolver una relación de recurrencia lineal, el siguiente principio es fundamental importancia.

**Proposición 1.1 (Principio de superposición)** Sean  $(u_n)_n$ ,  $(V_n)_n$  respectivamente las soluciones de las relaciones de recurrencia lineal.

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \quad n \ge r$$

y

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = k_n, \quad n \ge r,$$

con partes homogéneas iguales y secuencias de términos no homogéneos  $(h_n)_n$  y  $(k_n)_n$ . Para cualquier par de constantes A y B, la sucesión  $(Av_n + Bv_n)_n$  es una solución de la relación de recurrencia.

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = Ah_n + Bk_n.$$

La solución general de la relación de recurrencia

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = h_n, \quad n > r.$$
 (1.6)

#### Prueba

1. Uno tiene fácilmente

$$c_0(Au_n + Bv_n) + c_1(Au_{n-1} + Bv_{n-1}) + \dots + c_r(Au_{n-r} + Bv_{n-r}) =$$

$$= A(c_0u_n + c_1u_{n-1} + \dots + c_ru_{n-r}) + B(c_0v_n + c_1v_{n-i} + \dots + c_rv_{n-r})$$

$$= Ah_n + Bk_n.$$

2. Sea  $(u_n)_n$  una solución particular de (1.6). Por el punto previo nosotros conocemos que  $(v_n)_n = (u_n)_n + (v_n - u_n)_n$  es una solución de (1.6) si y solo si  $v_n - u_n$  es una solución de la recurrencia homogénea asociada. Por lo tanto cada solución de (1.6) es obtenida añadiendo una solución de la recurrencia homogénea asociada para  $(u_n)_n$ .  $\square$ 

# 1.3 Relación de recurrencia lineal con homogénea con coeficientes constantes

La sucesión nula es una solución de cualquier relación de recurrencia lineal. La estructura de la solución general de una relación de recurrencia lineal homogénea corresponde a la estructura de la solución general de un sistema de ecuaciones lineales homogéneas.

**Proposición 1.2 (Teorema principal)** Considere la relación de recurrencia lineal homogénea de orden r:

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0, \quad n \ge r \quad (c_0 c_r \ne 0)$$
 (1.7)

1. Cualquier combinación lineal de soluciones de (1.7) es de nuevo una solución de (1.7).

 Existe r soluciones de (1.7) tal que cualquier otra solución de (1.7) puede ser expresado únicamente como su combinación lineal.

#### Prueba

- 1. Esto sigue inmediatamente por el "Principio de Superposición".
- 2. Para todo  $i \in \{0, \dots, r-1\}$  sea  $(u_n^i)_n$  la solución de (1.7) con r-sucesión de valores iniciales iguales a 0 para índices  $j \neq i$ , iguales a 1 en índices i, es decir:

$$u_i^i = 0 \text{ si } j \neq i, \quad u_i^i = 1 \quad j \in \{0, \dots, r-1\}.$$

Consideramos ahora alguna solución  $(a_n)_n$  de (1.7); la combinación lineal

$$a_0(u_n^0)_n + a_1(u_n^1)_n + \cdots + a_{r-1}(u_n^{r-1})_n,$$

es una solución de (1.7) con secuencia de datos iniciales  $(a_0, \ldots, a_{r-1})$ . Ya que la sucesión de valores iniciales determinan la solución de una relación de recurrencia, uno tiene

$$(a_n)_n = a_0 (u_n^0)_n + a_1 (u_n^1)_n + \dots + a_{r-1} (u_n^{r-1})_n.$$

**Definición 1.3 (Polinomio característico)** Definimos el *polinomio característico* de una relación de recurrencia con coeficientes constantes de orden *r* de la siguiente manera:

$$c_0x_n + c_1x_{n-1} + \dots + c_rx_{n-r} = h_n, \quad n \ge r (c_0c_r \ne 0),$$

para el polinomio de grado r:

$$P(X) := c_0 X^r + c_1 X^{r-1} + \dots + c_r.$$

Cada polinomio de grado r tiene exactamente r raíces complejas contando con su multiplicidad. Vemos ahora que la sucesión de las potencias naturales de una determinada raíz del polinomio característico de una relación de recurrencia lineal es una solución de la correspondiente relación homogénea.

**Proposición 1.3 (Raíz del polinomio característico)** Sea  $\lambda \in \mathbb{C}$ . La sucesión  $(\lambda^n)_n$  de las potencias de  $\lambda$  es una solución de la relación de recurrencia lineal homogénea

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0, \quad n \le r \quad (c_0 c_r \ne 0),$$
 (1.8)

 $sii \lambda$  es una raíz de este polinomio característico.

**Prueba** Dado que  $c_r \neq 0$ , las raíces del polinomio característico deben ser necesariamente no nulas. Sustituyendo los valores de la sucesión  $(\lambda^n)_n$  en la recurrencia, uno tiene

$$c_0 x_n + c_1 x_{n-1} + \dots + c_r x_{n-r} = 0,$$

y dividiendo por  $\lambda^{n-r} \neq 0$ 

$$c_0\lambda^r + c_1\lambda^{r-1} + \dots + c_r = 0.$$

Por lo tanto, la sucesión  $(\lambda^n)_n$  es una solución de (1.8) sii  $\lambda$  es una raíz del polinomio  $c_0X^r+c_1X^{r-1}+\cdots+c_r$ .

En general, no es fácil encontrar las raíces de un polinomio de grado mayor que dos, aunque uno puede siempre usar un adecuado CAS. El siguiente criterio simple, sin embargo, muestra cómo encontrar las raíces racionales de un polinomio con coeficientes enteros.

**Proposición 1.4 (Las raíces racionales de un polinomio con coeficientes enteros**) Sea  $P(X) = c_0 X^r + c_1 X^{r-1} + \cdots + c_r$  un polinomio con coeficientes enteros  $c_0 \dots c_r \in \mathbb{Z}$ , con  $c_0 \neq 0$ . Si la fracción  $\frac{a}{b}$  con  $a, b \in \mathbb{Z}$  con mod = 1 es una raíz de P(X), luego  $a \mid c_r$  y  $b \mid c_0$ . En particular, si  $c_0 = \pm 1$  las raíces racionales del polinomio P(X) son enteros que dividen a  $c_r$ .

**Prueba** Dado  $c_0 \left(\frac{a}{b}\right)^r + c_1 \left(\frac{a}{b}\right)^{r-1} + \dots + c_{r-1} \left(\frac{a}{b}\right) + c_r = 0$ , multiplicado por  $b^r$  obtenemos:

$$c_0 a^r + c_1 a^{r-1} b + \dots + c_{r-1} a b^{r-1} + c_r b^r = 0.$$

Como  $a \mid c_0 a^r + c_1 a^{r-1} b + \dots + c_{r-1} a b^{r-1}$ , luego tiene que dividir también  $c_r b^r$ , y por lo tanto, al no tener a y b factores comunes,  $a \mid c_r$ . Análogamente  $b \mid c_0 a^r$  y por lo tanto divide a  $c_0$ .

#### Polinomio característico

La recurrencia homogénea de segundo orden:

$$x_n = 2x_{n-1} - 2x_{n-2}, \quad n \ge 2,$$

tiene polinomio característico  $X^2 - 2X + 2$  cuyas raíces son  $\lambda_1 = 1 - i$  y  $\lambda_2 = 1 + i$ . Las sucesiones  $((1-i)^n)_n$  y  $((1+i)^n)_n$  son las soluciones bases de la recurrencia. La solución general compleja de la recurrencia es:

$$x_n = A_1(1-i)^n + A_2(1+i)^n, \quad n \ge 0,$$

con la variante de  $A_1$  y  $A_2$  entre los números complejos. Veamos la solución real general. Uno tiene:

$$\lambda_1 = 1 - i = \sqrt{2} \left( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = \sqrt{2} \left( \cos \left( \frac{\pi}{4} \right) - i \sin \left( \frac{\pi}{4} \right) \right)$$

У

$$\lambda_2 = 1 + i = \overline{\lambda_1} = \sqrt{2} \left( \cos \left( \frac{\pi}{4} \right) - i \operatorname{sen} \left( \frac{\pi}{4} \right) \right).$$

Luego, las sucesiones  $\left(2^{n/2}\cos\left(\frac{n\pi}{4}\right)\right)_n$  y  $\left(2^{n/2}\sin\left(\frac{n\pi}{4}\right)\right)_n$  son las soluciones base reales de la recurrencia. Por lo tanto, la solución general real de la recurrencia es:

$$x_n = A_1 2^{n/2} \cos\left(\frac{n\pi}{4}\right) + A_2 2^{n/2} \sin\left(\frac{n\pi}{4}\right), \quad n \ge 0,$$

con la variación de  $A_1$  y  $A_2$  entre los números reales.

Afirmación Afirmo que el Lema de Zorn es cierto.

Prueba

| Caso 1.1           |  |  |
|--------------------|--|--|
|                    |  |  |
| Conjetura 1.1      |  |  |
| Corolario 1.1      |  |  |
| Definición 1.4     |  |  |
| Quispe             |  |  |
| Quality (          |  |  |
|                    |  |  |
| Lema 1.1           |  |  |
| Nota 1.1           |  |  |
| Problema 1.1       |  |  |
| Propiedad 1.1      |  |  |
| Proposición 1.5    |  |  |
|                    |  |  |
| ? Bryan            |  |  |
|                    |  |  |
| Observación 1.2    |  |  |
|                    |  |  |
| Teorema 1.1        |  |  |
| Enfatizar párrafos |  |  |
| •                  |  |  |
|                    |  |  |
|                    |  |  |
| ? ¿Qué hora es?    |  |  |
|                    |  |  |
|                    |  |  |
| > Importante       |  |  |
| A                  |  |  |
|                    |  |  |
| ! Atención         |  |  |
| . Attitudi         |  |  |

| .3 Relación de recurrencia lineal con homogénea con coeficientes constantes |  |  |  |
|-----------------------------------------------------------------------------|--|--|--|
|                                                                             |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
| Consejos                                                                    |  |  |  |
| Conscjos                                                                    |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
| Enfatizar párrafos completos                                                |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
| Información de fondo                                                        |  |  |  |
| inioi macion de fondo                                                       |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
| Texto legal                                                                 |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |
|                                                                             |  |  |  |

Resolver una ecuación de recurrencia significa encontrar una sucesión que satisfaga las ecuaciones de recurrencias. Encontrar una "solución general" significa hallar una fórmula que describa todas las soluciones posibles (todas las sucesiones posibles que satisfacen la ecuación). Veamos el siguiente ejemplo:

Considere que  $T_n$  satisface la siguiente ecuación para todo  $n \in \mathbb{N}, n > 1$ :

$$T_n = 2T_{n-1} + 1.$$

La ecuación de recurrencia  $T_n$  indica cómo continúa la sucesión pero no nos dice como empieza tal.

- Si  $T_1 = 1$ , se tiene T = (1, 7, 3, 15, 31, ...).
- Si  $T_2 = 1$ , se tiene T = (2, 5, 11, 23, 47, ...).
- Si  $T_4 = 1$ , se tiene T = (4, 9, 19, 39, 79, ...). Si  $T_{-1} = 1$ , se tiene T = (-1, -1, -1, 1 1, -1, ...).

¿Existe alguna fórmula para cada una de estas sucesiones? ¿Existe una fórmula en términos de n y  $T_1$  que describa todos los términos de la sucesión? ¿Existe una posible solución para  $T_n$ ? Para poder responder este tipo de problemas, veamos un poco más de ecuaciones con recurrencia.

### 1.4 Ejemplos definidos por ecuaciones de recurrencia

Imagina una fiesta donde las parejas llegan juntas, pero al final de la noche, cada persona se va con una nueva pareja. Para cada  $n \in P$ , digamos que  $D_n$  es el número de diferentes formas en que las parejas pueden ser "trastornadas", es decir, reorganizadas en parejas, por lo que ni uno está emparejado con la persona con la que llegaron.

Para los valores:

 $D_1 = 0$  // una pareja no puede ser transtornada.

 $D_2 = 1 // \exists$  una y solo una manera de transtornar una pareja.

 $D_3 = 2$  // si las parejas llegan como Aa, Bb, Cc, entonces A estaría emparejado con bo c. Si A esta emparejado con b, C debe estar emparejado con a(y no c) y B con c. Si A esta emparejado con c, B no debe estar emparejado con a(y no b) y C con b.

¿Qué tan grandes son  $D_4$ ,  $D_5$  y  $D_{10}$ ? ¿Cómo podemos calcularlos? ¿Existe alguna expresión cerrada para obtener todos los términos de la?

Vamos a desarrollar una estrategia para contar los desajustes cuando  $n \leq 4$ . Supongamos que hay n mujeres  $A_1, A_2, A_3, \ldots, A_n$ , y cada  $A_j$  llega con el hombre  $a_j$ .

La mujer  $A_1$  puede ser "re-emparejada" con cualquiera de los n-1 hombres restantes  $a_2$  o  $a_3$  o ... o  $a_n$ . Digamos que está emparejada con  $a_k$ , donde  $2 \le k \le n$  y ahora consideremos  $a'_k$  pareja original de la mujer  $A_k$ : ella podría tomar  $a_1$  o ella podría rechazar  $a_1$  y tomar a alguien más.

Si  $A_1$  es pareja con  $a_k$  y  $A_k$  es pareja con  $a_1$ , entonces n-2 parejas dejaron para transtornar, y eso puede hacerse exactamente de  $D_{n-2}$  maneras diferente.

Ahora para cada uno de los n-1 hombres que  $A_1$  podría elegir, hay  $\{D_{n-2} + D_{n-1}\}$  diferentes formas de completar el trastorno. Por lo tanto, cuando  $n \ge 4$  tenemos:

$$D_n = (n-1) \{ D_{n-2} + D_{n-1} \}$$

Usando la ecuación (1.4) las evaluaciones para 1 y 2 verifican la igualdad, ahora evaluemos  $D_n$  para cualquier valor de n, con  $n \in \mathbb{N}$ 

$$D_3 = (3-1)\{D_2 + D_1\} = 2(1+8) = 2$$

$$D_4 = (4-1)\{D_3 + D_2\} = 3(2+1) = 9$$

$$D_5 = (5-1)\{D_4 + D_3\} = 4(9+2) = 44$$

$$D_6 = (6-1)\{D_5 + D_4\} = 5(44+9) = 265$$

$$D_7 = (7-1)\{D_6 + D_5\} = 6(265+44) = 1854$$

$$D_8 = (8-1)\{D_7 + D_6\} = 7(1854+265) = 14833$$

$$D_9 = (9-1)\{D_8 + D_7\} = 8(14833+1854) = 133496$$

$$D_{10} = (10-1)\{D_9 + D_8\} = 9(133496+14833) = 1334961$$

La sucesión en P definido por  $S_n = A \times n!$  donde A es un número real satisface la ecuación de recurrencia (1.4). Si  $n \ge 3$  se tiene:

$$(n-1) \{S_{n-2} + S_{n-1}\} = (n-1) \{A(n-2)! + A(n-1)!\}$$

$$= (n-1)A(n-2)! \{1 + (n-1)\}$$

$$= A(n-1)(n-2)! \{n\}$$

$$= A \times n!$$

$$= S_n.$$

¿Es válida la fórmula para n=1 o n=2? ¿Existe algún número real tal que  $D_n=A(n!)$  cuando n=1 o n=2? No, porque si  $0=D_1=A(1!)$ , entonces A debe ser igual a 0, y si  $1=D_2=A(2!)$ , se tiene que A debería tomar el valor de  $\frac{1}{2}$ . Sin embargo, podemos usar esta fórmula para probar que  $D_n$  es acotado.

**Teorema 1.2** Para todo  $n \ge 2$ ,  $\left(\frac{1}{3}\right) n! \le D_n \le \left(\frac{1}{2}\right) n!$ .

#### Números de Ackermann

En la década de 1920's, el lógico y matemático alemán, Wilhelm Ackermann (18961962), inventó una función muy curiosa,  $A: P \times P \rightarrow P$  que define recursivamente usando "tres reglas":

```
Regla 1 A(1,n) = 2 para n = 1, 2, ...
Reglb 2 A(m,1) = 2m para m = 2, 3, ...
Reglc 3 Cuando m > 1 y n > 1 se tiene A(m,n) = A(A(m-1,n), n-1).
```

Entonces

$$A(2,2) = A(A(2-1,2), 2-1)//regla 3$$
  
=  $A(A(1,2), 1)$   
=  $A(2,1)//regla 1$   
=  $2(2)//regla 2$   
=  $4$ .

además

$$A(2,3) = A(A(2-1,3), 3-1)//regla 3$$
  
=  $A(A(1,3), 2)$   
=  $A(2,2)//regla1$   
= 4.

De hecho

$$si\ A(2,k) = 4, //paraalgunk \ge 2$$

entonces

$$A(2, k + 1) = A(A(2 - 1, k + 1), (k + 1) - 1) / / regla 3$$
  
=  $A(A(1, k + 1), k)$   
=  $A(2, k) / / regla 1$   
=  $4. / / nuestro supuesto$ 

Así, tenemos por inducción matemática:

$$A(2,n)=4, \forall n\geq 1.$$

Hasta ahora la tabla de los números de Ackermann se ve así:

| A   | n=1 | n=2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-----|-----|-----|---|---|---|---|---|---|---|
| m=1 | 2   | 2   | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| m=2 | 4   | 4   | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 3   | 6   |     |   |   |   |   |   |   |   |
| 4   | 8   |     |   |   |   |   |   |   |   |
| 5   | 10  |     |   |   |   |   |   |   |   |

Observamos que la segunda fila es de puro 4s. ¿Pero cómo es la segunda columna?

Si

$$A(k,2) = 2^k // paraalgunosk \ge 2$$

se tiene

= 
$$A(A([k+1], 2-1)//regla3$$
  
=  $A(A(k, 2), 1)$   
=  $A(2^k, 1)//nuestrosupuesto$   
=  $2(2^k)//regla 2$   
=  $2^{k+1}$ .

además

$$A(2,3) = A(A(2-1,3), 3-1)//regla 3$$
  
=  $A(A(1,3), 2)$   
=  $A(2,2)//regla 1$   
= 4.

Asi se tiene:

$$A(m,2) = 2^m \forall m \ge 1.$$

Ahora, ¿como son los otros valores?

$$A(3,3) = A(A(3-1),3), 3-1)//Regla\ 3$$
  
 $= A(A(2,3),2)$   
 $= A(4,2)//Segunda\ fila$   
 $= 2^4//segunda\ columna$   
 $= 16.$   
 $A(4,3) = A(A(4-1),3), 3-1//Regla\ 3$   
 $= A(A(3,3),2)$   
 $= A(16,2)//Encima$   
 $= 2^{16}//Segundacolumna$   
 $= 65536.$   
 $A(3,4) = A(A(3-1),3), 4-1//Regla\ 3$   
 $= A(A(2,4),3)$   
 $= A(4,3)//Segundafila$   
 $= 65536.$ 

¿Cual es el valor de A(4,4)? ¿Podría ejecutar un programa recursivo simple para evaluar A(4,4)?

$$A(5,3) = A(A(5-1),3), 3 - 1//Regla 3$$
  
=  $A(A(4,3),2)$   
=  $A(65536,2)$   
=  $2^{65536}.//Segunda columna$   
=  $n(ngrandeaprox20000digitosenbase10.)$ 

hasta ahora tenemos:

| A   | n=1 | n=2 | 3           | 4     | 5 | 6 | 7 | 8 | 9 |
|-----|-----|-----|-------------|-------|---|---|---|---|---|
| m=1 | 2   | 2   | 2           | 2     | 2 | 2 | 2 | 2 | 2 |
| m=2 | 4   | 4   | 4           | 4     | 4 | 4 | 4 | 4 | 4 |
| 3   | 6   | 8   | 16          | 65536 | ? |   |   |   |   |
| 4   | 8   | 16  | 65536       | ?     |   |   |   |   |   |
| 5   | 10  | 32  | $2^{65536}$ |       |   |   |   |   |   |

 $\ensuremath{\mathcal{C}}$  Cómo continúa la tercera columna? Sea 2  $\uparrow$  denota el valor de "Torre" de k2's, definida recursivamente por

$$2 \uparrow 1 = 2$$
 y para  $k \ge 1, 2 \uparrow [k+1] = 2^{2 \uparrow k}$ .

Pero este es un número tan grande que nunca podría escribirse en dígitos decimales, incluso utilizando todo el papel del mundo, Su valor nunca podría ser calculado. Ahora nos preguntamos ¿Los números Ackermann son "computables"? Por otro lado, supongamos que las sucesiones que encontramos, incluso aquellas definidas por ecuaciones de recurrencia, serán fáciles para entender y tratar.

#### 1.5 Resolución de ecuaciones de recurrencia lineal de primer orden

#### 1.5.1 Las torres de Hanoi

La ecuación de recurrencia para el número de movimientos en las Torres de Hanoi es una ecuación de recurrencia lineal de primer orden:

$$T_n = 2T_{n-1} + 1.$$

Sea a=2 y c=1, entonces  $\frac{c}{1-a}=\frac{1}{1-2}=-1$ , y cualquier secuencia T que satisfaga este RE está dado por la fórmula

$$T_n = 2^n [I - (-1)] + (-1)$$
  
 $T_n = 2^n [I + 1] - 1$ 

Asumiendo que T tiene el dominio  $\mathbb N$  y que denota  $T_0$  por I, vimos al principio de este capítulo varias soluciones particulares:

```
Si I = 0, entonces T = (0, 1, 3, 7, 15, 31, ...) T_n = 2^n[0+1] - 1 = 2^n - 1.
```

Si 
$$I = 2$$
, entonces  $T = (4, 9, 19, 39, 79, 159, ...)  $T_n = 2^n[2+1] - 1 = 3 \times 2^n - 1$ .$ 

Si 
$$I = 4$$
, entonces  $T = (2, 5, 11, 23, 47, 95, ...)$   $T_n = 2^n [4+1] - 1 = 5 \times 2^n - 1$ .

Si 
$$I = -1$$
, entonces  $T = (-1, -1, -1, -1, -1, ...)$   $T_n = 2^n [-1 + 1] - 1 = -1$ .

#### 1.5.2 Los tres piratas naufragados

Un barco pirata es naufragado en una tormenta en la noche. Tres de los piratas sobreviven y se encuentran en una playa la mañana después de la tormenta. Aceptan cooperar para asegurar su supervivencia. Ellos divisan a un mono en la selva cerca de la playa y pasan todo ese primer día recogiendo una gran pila de cocos y luego se van a dormir exhaustos. Pero ellos son piratas. El primero duerme bien, preocupado por su parte de los cocos; despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones, y se va a dormir profundamente. El segundo pirata duerme bien, preocupado por su parte de los cocos; se despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones, y se va a dormir profundamente.

El tercero también duerme bien, preocupado por su parte de los cocos; despierta, divide la pila en 3 montones iguales, pero encuentra uno sobrante que arroja en el arbusto para el mono, entierra su tercero en la arena, amontona los otros dos montones juntos, y se va a dormir profundamente.

A la mañana siguiente, todos se despiertan y ven una pila algo más pequeña de cocos que se dividen en 3 montones iguales, pero encontrar uno sobrante que tiran en el arbusto para el mono. ¿Cuántos cocos recolectaron el primer día?

Sea  $S_j$  el tamaño de la pila después del pirata  $j^{4h}$  y sea  $S_0$  el número que recogieron en el primer día. Entonces

 $S_0 = 3x + 1$  para algún número entero x y  $S_1 = 2x$ ,  $S_1 = 3y + 1$  para algún número entero y y  $S_2 = 2y$ ,

 $S_2 = 3z + 1$  para algún número enteroz y  $S_3 = 2z$ ,

у

 $S_3 = 3w + 1$  para algún número entero w.

¿Hay una ecuación de recurrencia aquí?

$$S_1 = 2x$$
 donde  $x = (S_0 - 1)/3$ , entonces  $S_1 = (2/3)S_0 - (2/3)$   
 $S_2 = 2y$  donde  $y = (S_1 - 1)/3$ , entonces  $S_2 = (2/3)S_1 - (2/3)$   
 $S_3 = 2z$  donde  $z = (S_2 - 1)/3$ , entonces  $S_3 = (2/3)S_2 - (2/3)$ .

La ecuación de recurrencia satisfecha por los primeros  $S_i$ s es

$$S_{i+1} = (2/3)S_i - (2/3).$$
 (1.9)

Si ahora tenemos  $S_4 = (2/3)S_3 - (2/3)$ , entonces  $S_4 = 2[S_3 - 1]/3 = 2w$  para algún número entero w. Queremos saber qué valor (o valores) de  $S_0$  producirá un número entero par para  $S_4$  cuando aplicamos el RE (1). En (1), a = 2/3 y c = -2/3, entonces c/(1-a) = -2, y así la solución general de (1) es

$$S_n = \left(\frac{2}{3}\right)^n [S_0 + 2] - 2.$$

Por lo tanto,  $S_4 = (2/3)^4 [S_0 + 2] - 2 = (16/81)[S_0 + 2] - 2$ .

S<sub>4</sub> será un número entero

 $\Leftrightarrow S_4 + 2$  es (un aún) el número entero

 $\Leftrightarrow$  81 | [ $S_0$  + 2]

 $\Leftrightarrow [S_0 + 2] = 81k$  para algún número entero k

 $\Leftrightarrow S_0 = 81k - 2$  para algún número entero k.

 $S_0$  debe ser un número entero positivo, pero hay un número infinito de respuestas posibles:

$$79 \lor 160 \lor 241 \lor 322 \lor \cdots$$

Necesitamos más información para determinar  $S_0$ . Si nos hubieran dicho que el primer día los piratas recolectaron entre 200 y 300 cocos, ahora podríamos decir "el número que recogieron el primer día fue exactamente 241".

#### 1.5.3 Interés compuesto

Supongamos que se le ofrecen dos planes de ahorro para la jubilación. En el plan A, empiezas con \$1,000, y cada año (en el aniversario del plan), te pagan un 11% de interés simple, y agregas \$1,000. En el plan B, empiezas con \$100, y cada mes, te pagan unaduodécima parte del 10% de interés simple (anual), y agregas \$100. ¿Qué plan será más grande después de 40 años?. ¿Podemos aplicar una ecuación de recurrencia? Considere el plan A y deje que  $S_n$  denote el número de dólares en el plan después de (exactamente) n

años de operación. Entonces  $S_0 = \$1,000 \text{ y}$ 

$$S_{n+1} = S_n + \text{ interés sobre } S_n + \$1000$$
  
 $S_{n+1} = S_n + 11\% \text{ de } S_n + \$1000$   
 $S_{n+1} = S_n(1 + 0.11) + \$1000.$ 

En esta RE, a=1.11, c=1000, entonces  $\frac{c}{1-a}=\frac{1000}{-0.11}$  y

$$S_n = (1.11)^n \left[ 1000 - \frac{1000}{-0.11} \right] + \frac{1000}{+0.11}$$
$$S_n = (1.11)^n \left[ \frac{1110}{+0.11} \right] - \frac{1000}{+0.11}$$

Por lo tanto,

$$S_{40} = (1.11)^{40}(10090.090909...) - (-9090.909090...)$$
  
 $S_{40} = (65.000867...)(10090.090909...) - (9090.909090...)$   
 $S_{40} = 655917.842... - (9090.909090...)$   
 $S_{40} \approx $646826.$ 

¿Puede ser cierto? Pusiste \$40,000 y sacaste mayor que \$600,000 en intereses. Ahora considere el plan B y sea  $T_n$  denota el número de dólares en el plan después de (exactamente) n meses de funcionamiento. Entonces  $T_0 = $100$  y

$$T_{n+1} = T_n + \text{ interés sobre } T_n + \$100$$
  
 $T_{n+1} = T_n + (1/2) \text{ de } 10\% \text{ de } T_n + \$100$   
 $T_{n+1} = T_n [1 + 0.1/12] \$100$ 

En esta RE, a = 12.1/12, c = 100, entonces  $\frac{c}{1-a} = \frac{100}{-0.1/12} = -12000$  y

$$T_n = (12.1/12)^n [100 + 12000] - 12000$$

De ahí, después  $40 \times 12$  meses,

$$T_{480} = (12.1/12)^{480}(12100) - (12000)$$

$$T_{480} = (1.008333...)^{480}(12100) - (12000)$$

$$T_{480} = (53.700663...)(12100) - (12000)$$

$$T_{480} = 649778.0234... - (12000)$$

$$T_{480} \approx $637778.$$

Por lo tanto, el plan  ${\cal A}$  tiene un valor ligeramente mayor después de 40 años.

### 1.6 Resolución de ecuaciones de recurrencia lineal de segundo orden

Una ecuación de la recurrencia lineal de segundo orden relaciona entradas consecutivas en una secuencia por una ecuación de la forma

$$S_{n+2} = aS_{n+1} + bS_n + c \quad \forall n \text{ en el dominio de } S.$$
 (1.10)

Pero vamos a asumir que el dominio de S es IN. Supongamos también que  $ab \neq 0$ , de lo contrario,  $S_n = c$  para  $\forall n \in \{2...\}$ , y las soluciones para (2) no son muy interesantes.

¿Qué es de ellos? El primer orden RE son solo un caso especial de segundo orden REs cuando b = 0.

Cuando c = 0, se dice que la RE es homogénea (todos los términos se ven igualuna constante veces una entrada de secuencia).

Cuando c = 0, se dice que la RE es homogénea (todos los términos se ven igual una constante veces una entrada de secuencia).

El Fibonacci RE es homogénea.

Vamos a restringir también nuestra atención (por el momento) a una ecuación de segundo orden lineal, la recurrencia homogénea

$$S_{n+2} = aS_{n+1} + bS_n \text{ para } \forall n \in \mathbb{N}. \tag{1.11}$$

Tal como hicimos para la ecuación de la recurrencia de Fibonacci, supongamos que hay una secuencia geométrica,  $S_n=r^n$ , que satisface (3) Si lo hubiera, entonces  $r^{n+2}=ar^{n+1}+br^n$  para  $\forall\,n\in\mathbb{N}$ .

Cuando  $n = 0, r^2 = ar + b$ .

La "ecuación característica" de (3) es  $x^2 - ax - b = 0$ , que tiene "raíces" r = $\frac{-(-a)\pm\sqrt{(-a)^2-4(1)(-b)}}{2(1)} = \frac{a\pm\sqrt{a^2+4b}}{2}.$ 

Sea 
$$\Delta = \sqrt{a^2 + 4b}$$
,  $r_1 = \frac{a + \Delta}{2}$ ,  $y r_2 = \frac{a - \Delta}{2}$ .

Entonces  $r_1 + r_2 = a$ ,  $r_1 x r_2 = -b$ , y  $r_1 - r_2 = \Delta$ .

¿estos son derechos? La letra mayúscula griega delta denota la "diferencia" en las raíces. Tanto  $r_1$  como  $r_2$  satisfacen la ecuación  $x^2 = ax + b$ , y son las únicas soluciones.

Si  $S_{n+2} = 10S_{n+1} - 21S_n$  para  $\forall n \in \mathbb{N}$ , la ecuación característica es  $x^2 - 10x + 21 = 0$ o (x-7)(x-3) = 0 donde, a = 10, b = -21,  $a^2 + 4b = 100 - 84 = 16$ ,  $\Delta = 4$ , entonces  $r_1 = 7$  y  $r_2 = 3$ .

Si  $S_{n+2}=3S_{n+1}-2S_n$  para  $\forall n\in\mathbb{N}$ , la ecuación característica es  $x^2-3x+2=0$  o (x-2)(x-1) = 0 donde,  $a = 3, b = -2, a^2 + 4b = 9 - 8 = 1, \Delta = 1$ , entonces  $r_1 = 2$  $y r_2 = 1$ .

Si  $S_{n+2}=2S_{n+1}-S_n$  para  $\forall n\in\mathbb{N}$ , la ecuación característica es  $x^2-2x+1=0$  o (x-1)(x-1) = 0 donde,  $a = 2, b = -1, a^2 + 4b = 4 - 4 = 0, \Delta = 0$ , entonces  $r_1 = 1$ y  $r_2 = 1$ . ¿Pero qué hay de una fórmula que da la solución general?

**Teorema 1.3** La solución general de la RE homogénea (3) es

$$S_n = A(r_1)^n + B(r_2)^n$$
,  $si \, r_1 \neq r_2$   $si\Delta \neq 0$   
 $S_n = A(r)^n + Bn(r)^n$ ,  $si \, r_1 = r_2 = r$   $si \Delta = 0$ 

**Prueba** Supongamos que T es cualquier solución particular de la RE homogénea. Nos ocupamos de los dos casos por separado.

Caso 1 Si  $\Delta \neq 0$ , entonces las dos raíces son distintas (pero pueden ser números "complejos"). Encontraremos valores para A y B, luego probaremos que  $T_n = A(r_1)^n + B(r_2)^n$  para  $\forall n \in \mathbb{N}$ . Mostraremos que  $A(r_1)^n + B(r_2)^n$  inicia correctamente para valores especialmente elegidos de A y B, y luego mostraremos que  $A(r_1)^n + B(r_2)^n$  continúa correctamente. Vamos a resolver las ecuaciones (para A y B) que garantizaría  $T_n = A(r_1)^n + B(r_2)^n$ , entonces n = 0 y n = 1. Si

$$T_0 = A(r_1)^0 + B(r_2)^0 = A + B$$
(1.12)

У

$$T_1 = A(r_1)^1 + B(r_2)^1 = A(r_1) + B(r_2)$$
 (1.13)

entonces  $(r_1)T_0 = A(r_1) + B(r_1)$ //multiplicamos (1) por  $r_1$  y  $T_1 = A(r_1) + B(r_2)$ // (2) otra vez restamos, obtenemos  $(r_1)T_0 - T_1 = B(r_1 - r_2) = B\Delta$ // $r_1 - r_2 = \Delta \neq 0$  entonces  $B = \frac{(r_1)T_0 - T_1}{\Delta}$ . Tenemos,  $A = T_0 - B = \frac{\Delta T_0}{\Delta} - \frac{(r_1)T_0 - T_1}{\Delta} = \frac{-(r_2)T_0 + T_1}{\Delta}$ . No importa cómo comience la sucesión T (no importa cuáles sean los valores para  $T_0$  y  $T_1$ ). Hay números únicos A y B tales que  $T_n = A(r_1)^n + B(r_2)^n$  para n = 0 y 1. Continuando la prueba por la inducción matemática que  $T_n = A(r_1)^n + B(r_2)^n$  para  $\forall n \in \mathbb{N}$ .

Paso 1 Si n=0 o n=1, entonces  $T_n=A(r_1)^n+B(r_2)^n$ , por nuestra "opción" A y B. Pbso 2 Asuma que  $\exists k \geq 1$  tal que si  $0 \leq n \leq k$ , entonces  $T_n=A(r_1)^n+B(r_2)^n$ . Pcso 3 Si n=k+1, entonces  $n\geq 2$  entonces, porque T satisface la RE homogénea (3).

$$\begin{split} T_{k+1} &= aT_k + bT_{k-1} \\ T_{k+1} &= a\left[A(r_1)^k + B(r_2)^k\right] + b\left[A(r_1)^{k-1} + B(r_2)^{k-1}\right] \text{por el paso 2} \\ T_{k+1} &= \left[aA(r_1)^k + bA(r_1)^{k-1}\right] + \left[aB(r_2)^k + bB(r_2)^{k-1}\right] \\ T_{k+1} &= A(r_1)^{k-1}[a(r_1) + b] + B(r_2)^{k-1}[a(r_2) + n] \\ T_{k+1} &= A(r_1)^{k+1} + B(r_2)^{k+1} \end{split}$$

Así, si  $r_1 \neq r_2$ ,  $T_n = A(r_1)^n + B(r_2)^n$  para  $\forall n \in \mathbb{N}$ .

Si  $S_{n+2} = 10S_{n+1} - 21S_n$  para  $\forall n \in \mathbb{N}$ , entonces  $r_1 = 7$  y  $r_2 = 3$ . Tenemos, la solución general de la RE es  $S_n = A7^n + B3^n$ .

Si  $S_{n+2} = 3S_{n+1} - 2S_n$  para  $\forall n \in \mathbb{N}$ , entonces  $r_1 = 2$  y  $r_2 = 1$ . Tenemos, la solución general de la RE es  $S_n = A2^n + B1^n = A2^n + B$ .

Cbso 2 Si  $\Delta=0$ , entonces las raíces son (ambos) iguales a r donde r=a/2. También,  $b=-a^2/4=-r^2$ . Si a eran 0, entonces b=0, pero asumimos que no tanto a y b son 0. De ahí,  $r\neq 0$ . Vamos a resolver las ecuaciones (para A y B) que garantizarían  $T_n=A(r)^n+nB(r)^n$  cuando n=0 y n=1. Si

$$T_0 = A(r)^0 + 0B(r)^0 = A (1.14)$$

y

$$T_1 = A(r)^1 + 1B(r)^1 = Ar + Br (1.15)$$

entonces  $A=T_0$  y  $B=(T_1-Ar)/r$ . No importa cómo comience la sucesión T (no importa cuáles sean los valores para  $T_0$  y  $T_1$ ). Hay números únicos A y B tales que  $T_n=A(r)^n+B(r)^n$  para n=0 y 1. Continuando la prueba por la inducción matemática que  $T_n=A(r)^n+B(r)^n$  para  $\forall n\in\mathbb{N}$ .

Paso 1 Si n = 0 o n = 1, entonces  $T_n = A(r)^n + B(r)^n$ , por nuestra "opción" A y B.

Pbso 2 Asuma que  $\exists k \geq 1$  tal que si  $0 \leq n \leq k$ , entonces  $T_n = A(r)^n + B(r)^n$ .

Pcso 3 Si n = k + 1, entonces  $n \ge 2$  entonces, porque T satisface la RE homogénea (3).

$$\begin{split} T_{k+1} &= aT_k + bT_{k-1} \\ T_{k+1} &= a[A(r)^k + kB(r)^k] + b[A(r)^{k-1} + (k-1)B(r)^{k-1}]// \text{ por el paso 2} \\ T_{k+1} &= [aAr^k + bAr^{k-1}] + [akBr^k + b(k-1)Br^{k-1}] \\ T_{k+1} &= Ar^{k-1}[ar+b] + Br^{k-1}[akr+b(k-1)] \\ T_{k+1} &= Ar^{k-1}[r^2] + Br^{k-1}[k(r^2) + r^2]//r^2 = ar+b \\ T_{k+1} &= Ar^{k+1} + Br^{k-1}[k(r^2) + r^2]//-b = r^2 \\ T_{k+1} &= Ar^{k+1} + (k+1)Br^{k+1} \end{split}$$

Así, si 
$$r_1 = r_2 = r$$
,  $T_n = A(r)^n + nB(r)^n$  para  $\forall n \in \mathbb{N}$ .

### **Ejercicios**

**1.1** Sucesión contractiva Una sucesión  $\{x_n\}$  se dice que **contractiva** si  $\exists$  alguna constante c,  $0 < c < 1 \ni \forall n \in \mathbb{N}$ ,  $|x_{n+2} - x_{n+1}| \le c|x_{n+1} - x_n|$ . Pruebe que una sucesión contractiva debe ser una sucesión de Cauchy, y por lo tanto converge.

#### Solución 1.13

**1.2** Media aritmética recursiva Sea  $a \neq b$  números reales arbitrarios, y defina la sucesión  $\{x_n\}$  por

$$x_1 = a, x_2 = b, \ y \ \forall \ n \in \mathbb{N}, x_{n+2} = \frac{x_{n+1} + x_n}{2}.$$

Esto es, cada nuevo término está iniciando con el tercero que es el promedio de los dos términos previos.

- 1. Pruebe que  $\{x_n\}$  converge probando que este es una sucesión constructiva.
- 2. Pruebe que  $\forall n \in \mathbb{N}, x_{n+1} + \frac{1}{2}x_n = b + \frac{1}{2}a$ .
- 3. Use 2 y el álgebra de límites para encontrar que  $\lim_{n\to\infty} x_n$ . ¿Está sorprendido por la respuesta? Note que si usted intercambia a y b la respuesta podría ser diferente.

#### Solución 1.14

**1.3** Media aritmética ponderada recursiva Sean  $a \neq b$  dos números reales arbitrarios, sea 0 < t < 1, y defina la sucesión  $\{x_n\}$  por

$$x_1 = a, x_2 = b, \ z \ \forall \ n \in \mathbb{N}, x_{n+2} = tx_n + (1-t)x_{n+1}.$$

Esto es, cada nuevo término que inicia con el tercero que es el promedio ponderado de los términos previos. Geométricamente,  $x_{n+2}$  es un punto en el intervalo entre  $x_n$  y  $x_{n+1}$  que corta el intervalo en dos segmentos cuyas longitudes están en la proporción t a 1-t. Pruebe que  $\{x_n\}$  es contractiva, y encuentre su límite.

#### Solución 1.15

**1.4** Aplicación contractiva Sean a < b e I = [a,b]. Una función  $f: I \to I$  se dice que es una **contracción** si  $\exists c \ni 0 < c < 1$  y  $\forall x, y \in I, |f(x) - f(y)| \le c|x - y|$ . Pruebe que una aplicación contractiva debe tener por lo menos un "punto fijo",  $x \in I \ni f(x) = x$ . También pruebe que f no puede tener más de un punto fijo en I.

#### Solución 1.16

- **1.5** Números de Fibonacci La sucesión de Fibonacci consiste de los números de Fibonacci,  $1, 1, 2, 3, 5, 8, 13, 21, \ldots$ , y está definido recursivamente por  $f_1 = 1$ ,  $f_2 = 1$ , y  $\forall n \geq 2$ ,  $f_{n+2} = f_{n+1} + f_n$ . Cada nuevo término después del segundo es la suma de los dos términos previos. Muchos resultados interesantes han sido probados acerca de los números de Fibonacci—lo suficiente para llenar un libro entero. Deberemos concentrarnos aquí con la sucesión de proporciones de los sucesivos números de Fibonacci. Empezamos definiendo la sucesión por  $r_n = \frac{f_{n+1}}{f_n}$ .
  - 1. Desarrolle una tabla que muestre los primeros diez términos de  $\{r_n\}$ . En la basa de esta tabla, conjeture las respuestas a las siguientes preguntas.  $\{r_n\}$  es convergente?  $\{E\}$ Es monótona?  $\{E\}$ Eventualmente monótona?  $\{E\}$ Puede encontrar una subsucesión estrictamente creciente?  $\{E\}$ Una subsucesión estrictamente decreciente? (No se requieren demostraciones).

- 2. Pruebe que  $\forall n \in \mathbb{N}, r_{n+1} = 1 + \frac{1}{r_n}$ .
- 3. Pruebe que  $\forall n \geq 2, \frac{3}{2} < r_n < 2.$
- 4. Pruebe que  $\{r_n\}$  es "contractiva", y por lo tanto es una sucesión de Cauchy.
- 5. Encuentre  $\lim_{n\to\infty} r_n$ . [Tome nota de este límite; este reaparecerá.]
- 6. La ecuación cuadrática x² x 1 = 0 tiene dos soluciones, α = (1+√5)/2 y β = (1-√5)/2.
  Muestre que α + β = 1, α² = α + 1, y β² = β + 1, y desde estos hechos muestre que ∀ n ∈ N, α<sup>n+2</sup> = α<sup>n+1</sup> + α<sup>n</sup> y β<sup>n+2</sup> = β<sup>n+1</sup> + β<sup>n</sup>.
  7. ∀ n ∈ N, defina u<sub>n</sub> = (α<sup>n</sup> β<sup>n</sup>)/(α β), donde α y β están definidos en 6. Pruebe que u₁ = 1,
- $u_2 = 1$ , y  $\forall n \ge 2$ ,  $u_{n+2} = u_{n+1} + u_n$ . Por lo tanto,  $\{u_n\}$  debe ser la sucesión de Fibonacci. Tenemos encontrado una fórmula para los números de Fibonacci:  $f_n = u_n$ .
- 8. **Significado geométrico** de  $\alpha$ . Considere un rectángulo cuyo ancho  $\alpha$  y largo a+b son así proporcionados que cuando un cuadrado de lado a es removido, como se muestra aquí, el rectángulo restante tiene ancho y longitud en la misma proporción. Esto es,  $\frac{a+b}{a} = \frac{a}{b}$ .

Los matemáticos de la Grecia clásica llamaron esta proporción  $R = \frac{a}{b}$  la "**Proporción** áurea" y cualquier rectángulo con lados en la proporción un "rectángulo áureo". Ellos consideraron esto como la más estéticamente agradable de todos los rectángulos, y se usó esto frecuentemente en su arte y arquitectura. Pruebe algebraicamente que  $R=\alpha$ , definida en 6 arriba.

- 9. Pruebe que  $\forall n \geq 2, \forall n \geq 2, f_{n+1}f_{n-1} (f_n)^2 = (-1)^n$ . 10. Pruebe que  $\forall n \in \mathbb{N}, r_{n+1} r_n = \frac{(-1)^{n+1}}{f_n f_{n+1}}$ .
- 11. Use 10 para probar que  $\{r_{2n}\}$  es estrictamente decreciente y  $\{r_{2n+1}\}$  es estrictamente creciente.

#### Solución 1.17

**1.6** Sea  $a \ge 1$ . Defina la sucesión  $\{x_n\}$  por  $x_1 = a$ , y  $x_{n+1} = a + \frac{1}{x_m}$ . Pruebe que  $\forall n \geq 2, a + \frac{1}{2a} \leq x_n \leq 2a$ , y use este resultado para probar que  $x_n$  es contractiva. Encuentre  $\lim_{n \to \infty} x_n$ .

### Solución 1.18

**1.7** Sea a > 1. Defina la sucesión  $\{x_n\}$  por  $x_1 = a$  y  $x_n = \frac{1}{a + x_n}$ . Pruebe que  $\forall n \in \mathbb{N}$ ,  $\frac{1}{2a} \le x_n \le a$ , y use este resultado para probar que  $\{x_n\}$  es contractiva. Encuentre el  $\lim_{n\to\infty} x_n$ . Compare este límite con el ejercicio anterior.

### Solución 1.19

## Parte II Realización numérica

La segunda parte de la monografía se dedica a las realizaciones prácticas de problemas. Combinaremos las consideraciones teóricas sobre diferentes modelos y ecuaciones con las técnicas. Al principio presentamos modelos alternativos para problemas de interacción. En el capítulo 3 estudiamos la formulación variacional. Este modelo debe ser considerado como la técnica más avanzada. Damos detalles en la construcción de . Segundo, la formulación es introducida en el capítulo 4. Este nuevo enfoque alternativo es adecuado para problemas con. Nuevamente, presentamos las herramientas necesarias de discretización y simulación. El capítulo 5 se ocupa de las herramientas para la solución de los problemas algebraicos que surgen de la discretización. En ambos casos, tenemos que lidiar con problemas muy grandes, no lineales. Finalmente, el capítulo 6 introduce el concepto de tiempo de escala para la reducción de la dimensión de los esquemas discretos que nos permitirá reducir significativamente la complejidad de los sistemas.

## Capítulo 2 Método de Euler

**Resumen** En este capítulo introducimos un tipo de funciones llamadas que pueden ser usados para aproximar otras funciones más generales

### 2.1 Ecuación diferencial ordinaria lineal

# Parte III Aplicaciones

## Capítulo 3 Bifurcación de la ecuación logística

Resumen Muchas aplicaciones involucran problemas inversos. En esta sección,

### 3.1 Ecuación diferencial ordinaria lineal



 $\textbf{Fig. 3.1} \ \ \textbf{A} \ \textbf{plot} \ \textbf{created} \ \textbf{with} \ \textbf{PythonTeX}$ 

3.2 Introducción 33

En este capítulo introducimos algunos conceptos básicos concernientes al cálculo en una escala de tiempo. Una *escala de tiempo* es un subconjunto arbitrario no vacío de los números reales. Así,

$$\mathbb{R}$$
,  $\mathbb{Z}$ ,  $\mathbb{N}$ ,  $\mathbb{N}_0$ ,

es decir, los números reales, los enteros, los números naturales, y los enteros no negativos son ejemplos de escala de tiempo, como son

$$[0,1] \cup [2,3]$$
,  $[0,1] \cup \mathbb{N}$ , el conjunto de Cantor,

mientras que

$$\mathbb{Q}$$
,  $\mathbb{R} \setminus \mathbb{Q}$ ,  $\mathbb{C}$ ,  $(0,1)$ ,

los números racionales, los números irracionales, los números complejos y el intervalo abierto entro 0 y 1, no son escalas de tiempo. A lo largo de esta monografía denotaremos una escala de tiempo por el símbolo  $\mathbb{T}$ . Asumiremos que una escala de tiempo  $\mathbb{T}$  tiene la topología que hereda de los números reales con la topología estándar.

El cálculo de escala de tiempo fue iniciado por Stefan Hilger, a fin de crear una teoría que pueda unificar el análisis discreto y continuo. En efecto, abajo en la sección 1.2 introduciremos la derivada delta  $f^{\Delta}$  para una función f definida sobre  $\mathbb{T}$ , y resulta que

- 1.  $f^{\Delta} = f'$  es la derivada usual si  $\mathbb{T} = \mathbb{R}$  y
- 2.  $f^{\Delta} = \Delta f$  es el operador diferencia posterior usual si  $\mathbb{T} = \mathbb{Z}$ .

En esta sección introducimos las nociones básicas conectadas a las escalas de tiempo. Empezamos definiendo los operadores salto posterior y anterior.

#### 3.2 Introducción

**Definición 3.1 (Escala de tiempo)** Sea  $\mathbb T$  una escala de tiempo. Para  $t \in \mathbb T$  definimos el operador salto posterior  $\sigma: \mathbb T \to \mathbb T$  por

$$\sigma(t) := \inf \{ s \in \mathbb{T} : s > t \}$$
 para cualquier  $t \in \mathbb{T}$ ,

mientras que el *operador salto anterior*  $\rho: \mathbb{T} \to \mathbb{T}$  es definido por

$$\rho(t) := \sup \{ s \in \mathbb{T} : s < t \}$$
 para cualquier  $t \in \mathbb{T}$ .

En esta definición agregamos el inf  $\emptyset = \sup \mathbb{T}$ , es decir,  $\sigma(M) = M$  si T tiene un máximo M y el sup  $\emptyset = \inf \mathbb{T}$ , es decir,  $\rho(m) = m$  si  $\mathbb{T}$  tiene un mínimo m. Si  $\sigma(t) > t$ , diremos que t es dispersa a la derecha, mientras que si  $\rho(t) < t$  diremos que t es dispersa a la izquierda. Puntos que son dispersos a la derecha y dispersos a la izquierda en el mismo tiempo son llamados aislados. También, si  $t < \sup \mathbb{T} \ y \ \sigma(t) = t$ , entonces t es llamado denso a la izquierda. Los puntos que son denso derecha y denso izquierda se llaman densos. Si t tiene un máximo disperso a la derecha t0, entonces definimos t1 t2 t3, caso contrario t3. Finalmente, la función t4 t5 t7 t7 t8, es definida por

$$\mu(t) := \sigma(t) - t$$
 para cualquier  $t \in \mathbb{T}$ .

3.3 Diferenciación 34

#### 3.3 Diferenciación

Ahora consideremos una función  $f: \mathbb{T} \to \mathbb{R}$  y definir el llamado delta derivada (o Hilger) de f en un punto  $t \in \mathbb{T}^{\kappa}$ .

**Definición 3.2** (**Delta diferenciable**) Asuma que  $f: \mathbb{T} \to \mathbb{R}$  es una función y sea  $t \in \mathbb{T}^{\kappa}$ . Entonces definimos el número  $f^{\Delta}(t)$  (siempre que este exista) con la propiedad que dado cualquier  $\varepsilon > 0$ , existe una vecindad U de t (es decir,  $U = (t - \delta) \cap \mathbb{T}$  para algún  $\delta > 0$ ) tal que

$$|f(\sigma(t))| - f(s) - f^{\Delta}(t)(\sigma(t) - s)| \le \varepsilon |\sigma(t) - s|$$
 para cualquier  $s \in U$ .

Llamamos  $f^{\Delta}(t)$  la derivada delta (o Hilger) de f en t. Es más, diremos que f es delta (o Hilger) diferenciable (o en breve: diferenciable) en  $\mathbb{T}^{\kappa}$  siempre que  $f^{\Delta}(t)$  exista para cualquier  $t \in \mathbb{T}^{\kappa}$ . La función  $f^{\Delta} \colon \mathbb{T}^{\kappa} \to \mathbb{R}$  es entonces llamada la derivada (delta) de f sobre  $\mathbb{T}^{\kappa}$ .

Algunas relaciones sencillas y útiles en relación con la derivada delta se dan a continuación.

**Teorema 3.1** Asuma que  $f: \mathbb{T} \to \mathbb{R}$  es una función y sea  $t \in \mathbb{T}^k$ . Entonces tenemos lo siguiente:

- 1. Si f es diferenciable en  $\mathbb{T}$ , entonces f es continua en t.
- 2. Si f es continua en t y t es dispersa a la derecha, entonces f es diferenciable en t con

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)}.$$

3. Si t es densa a la derecha, entonces f es diferenciable en t sii el límite

$$\lim_{s \to t} \frac{f(t) - f(s)}{t - s}$$

existe como un número finito. En este caso

$$f^{\Delta}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s}.$$

4. Si f es diferenciable en t, entonces

$$f(\sigma(t)) = f(t) + \mu(t) f^{\Delta}(t).$$

**Ejercicio 3.1** Muestre que si  $\mathbb{T} = q^{\mathbb{N}_0} := \{q^n : n \in \mathbb{N}_0\}, q > 1$ , entonces

$$(\log t)^{\Delta} = \frac{\log q}{q-1} \cdot \frac{1}{t}.$$

Nuevamente consideremos los dos casos  $\mathbb{T} = \mathbb{R}$  y  $\mathbb{T} = \mathbb{Z}$ .

1. Si  $\mathbb{T}=\mathbb{R}$ , entonces el Teorema 1.3 resulta que  $f\colon\mathbb{R}\to\mathbb{R}$  es delta diferenciable en  $t\in\mathbb{R}$  sii

3.3 Diferenciación 35

$$f'(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s}$$
 existe,

es decir, sii f es diferenciable (en el sentido clásico) en t. En este caso tenemos entonces

$$f^{\Delta}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s} = f'(t)$$

por el Teorema 1.3 (iii).

2. Si  $\mathbb{T}=\mathbb{Z}$ , entonces el Teorema 1.3 (ii) resulta que  $f:\mathbb{Z}\to\mathbb{R}$  es delta diferenciable en  $t\in\mathbb{Z}$  con

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)} = \frac{f(t+1) - f(t)}{1} = f(t+1) - f(t) = \Delta f(t),$$

donde  $\Delta$  es el *operador diferencia posterior* usual definida por la última ecuación de arriba.

A continuación, nos gustaría poder encontrar las derivadas de sumas, productos, y cocientes de funciones diferenciables. Esto es posible de acuerdo con el siguiente teorema:

**Teorema 3.2** Asuma que  $f, g: \mathbb{T} \to \mathbb{R}$  son diferenciables en  $t \in \mathbb{T}^{\kappa}$ . Entonces

1. La suma de  $f + g: \mathbb{T} \to \mathbb{R}$  es diferenciable en a con

$$(f+g)^{\Delta}(t) = f^{\Delta}(t) + g^{\Delta}(t)$$

#### Referencias bibliográficas

- [1] Ravi Agarwal et al. "Dynamic equations on time scales: a survey". In: *Journal of Computational and Applied Mathematics* 141.1 (2002). Dynamic Equations on Time Scales, pp. 1–26. ISSN: 0377-0427.
- [2] Charles Denlinger. Elements of real analysis. Jones & Bartlett Learning, 2011.
- [3] Tom Jenkyns and Ben Stephenson. *Fundamentals of Discrete Math for Computer Science: A Problem-Solving Primer*. Second. Undergraduate Topics in Computer Science. Springer International Publishing AG, part of Springer Nature, 2018. ISBN: 978-3-319-70150-9.
- [4] Carlo Mariconda and Alberto Tonolo. *Discrete calculus. Methods for counting*. Vol. 103. UNITEXT La Matematica per il 3+2. Springer International Publishing, 2016. ISBN: 978-3-319-03037-1. DOI: 10.1007/978-3-319-03038-8.

## Glosario

Use the template *glossary.tex* together with the Springer document class SVMono (monograph-type books) or SVMult (edited books) to style your glossary in the Springer layout.

**término del glosario** Write here the description of the glossary term. Write here the description of the glossary term. Write here the description of the glossary term.

**glossary term** Write here the description of the glossary term. Write here the description of the glossary term. Write here the description of the glossary term.

## Índice

Ackermann Relación de recurrencia función, 7 compleja, 3 número, 16 definición, 3 orden, 3 Ecuación en diferencias polinomio característico, 11 definición, 5 raíz, 11 homogénea, 5 real, 3 lineal, 5 solución, 3 Ecuación logística, 32 glossary, 37 Sucesión contractiva, 26 Interés compuesto, 21 media aritmética, 26 media aritmética ponderada, 26 Método de Euler, 30 Principio de superposición, 10 Torres de Hanoi, 20