Number Theory for Public Key Crypto

Luke Anderson

luke@lukeanderson.com.au

8th April 2016

University Of Sydney

Overview

- 1. Crypto-Bulletin
- 2. Number Theory
- 2.1 Background

Integers Modulo N

Multiplicative Groups

Generated Sequences

Inverses

- 2.2 Computing in finite fields
- 2.3 Diffie-Hellman
- 2.4 Attacks on DLP
- 2.5 Use RFC3526

CRYPTO-BULLETIN

Crypto-Bulletin

"It's a real wake-up call": The hack that downed power for 80,000

Pentagon launches first bug bounty program

http://www.itnews.com.au/news/its-a-real-wake-up-call-the-hack-that-downed-power-for-80000-417886

http://www.itnews.com.au/news/pentagon-launches-first-bug-bounty-program-417671

Sources: Trump Hotels Breached Again

 $\verb|http://krebsonsecurity.com/2016/04/sources-trump-hotels-breached-again/|$

Google plugs 15 critical security holes in Android update

http://www.itnews.com.au/news/google-plugs-15-critical-security-holes-in-android-update-417760

Number Theory

Intro to number theory

We will have a very brief introduction to number theory to help us understand:

- Why Diffie-Hellman is hard.
 And hence why the discrete logarithm problem is hard.
- Understand how asymmetric cryptography works e.g. RSA, Elliptic curve

The core concept in number theoretic cryptography is:

Find a number theoretic problem that's incredibly difficult to solve if you don't have a key piece of information

Notation:

 \mathbb{Z} – The set of all integers

p, q – are always prime numbers

Background: Integers Modulo N

The integers modulo n, denoted \mathbb{Z}_n , is the set of integers $[0,1,2,\cdots,n-1]$. Addition, subtraction and multiplication are done modulo n.

Example:

$$\mathbb{Z}_{12} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]$$

$$(6+6) \mod 12 = 12 \mod 12 = 0$$

 $(5-9) \mod 12 = -4 \mod 12 = 8$
 $(11 \times 5) \mod 12 = 60 \mod 12 = 7$

Background: Multiplicative Groups

Multiplicative Group of \mathbb{Z}_n

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}$$

any element a from \mathbb{Z}_n such that the greatest common divisor is one

 \mathbb{Z}_n^* has two interesting properties that we use in cryptography:

Inverses

Each element $a \in \mathbb{Z}_n^*$ has an inverse a^{-1} such that: $a \times a^{-1} = 1 \mod n$

Generated sequence

The size of \mathbb{Z}_n^* is called Euler's phi/totient function:

$$\phi(n) = \mathbb{Z}_n^*$$

This represents the longest non-repeating sequence you can generate using $a^x \mod n$ for any $(a, x) \in \mathbb{Z}_n$.

Background: Multiplicative Groups

For example:

$$\mathbb{Z}_{21} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]$$

 $\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}$

This removes 0 and any elements that share a divisor with n.

WANT TO CALCULATE \mathbb{Z}_n^* IN PYTHON?

```
from fractions import gcd
z = [x for x in range(21) if gcd(21,x) == 1]
phi = len(z)
```

Produces:

- \bigcirc z = [1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]
- phi = 12

Background: Generated Sequences in \mathbb{Z}_n^*

If all elements in \mathbb{Z}_n^* can be obtained via g using:

$$g^{x} \mod n$$

Where $x \in \mathbb{Z}$ (i.e. any integer)

Then we state that:

g is a **generator** for \mathbb{Z}_n^*

$$\mathbb{Z}_{n}^{*} = [1, g, g^{2}, g^{3}, \cdots, g^{\phi(n)-1}]$$

The length of the maximum sequence for \mathbb{Z}_n^* is given by $\phi(n)$.

- \bigcirc If \mathbb{Z}_p^* , where p is prime, then $\phi(p)=p-1$
- \bigcirc If \mathbb{Z}_n^* , where n = pq (a composite prime), then:

$$\phi(n) = \phi(p)\phi(q) = (p-1)(q-1)$$

Note: the length of the sequence is maximal for \mathbb{Z}_p^*

Background: Generated Sequences in \mathbb{Z}_n^*

 $\mathbb{Z}_7^* \neq [1, 2, 4]$

Nope

Let $g \in \mathbb{Z}_n^*$. If the order of g is $\phi(n)$, then g is a generator of \mathbb{Z}_n^* . i.e. g can produce all the elements in \mathbb{Z}_n^* by $g^{\mathsf{x}} \mod n$

Is $g=2$ a generator for \mathbb{Z}_7^* ?		Is $g=2$ a generator for \mathbb{Z}_{5}^{*} ?		Is $g=4$ a generator for \mathbb{Z}_{5}^{*} ?	
$2^1=2\bmod 7$	=2	$2^1=2\bmod 5$	=2	$4^1=4\bmod 5$	=4
$2^2=4\bmod 7$	=4	$2^2=4\bmod 5$	=4	$4^2=16\bmod 5$	=1
$2^3=8\bmod 7$	=1	$2^3=8\bmod 5$	=3	$4^3=64 \bmod 5$	=4
$2^4=16\bmod 7$	=2	$2^4=16\bmod 5$	= 1	$4^4=256\bmod 5$	=1
$2^5=32\bmod 7$	=4	$2^5=32\bmod 5$	=2	$4^5=1024\bmod 5$	=4
$2^6=64\bmod 7$	=1	$2^6=64\bmod 5$	=4	$4^6=4096\bmod 5$	=1
$2^7=256\bmod 7$	=2	$2^7=256 \bmod 5$	=3	$4^7=16384 \bmod 5$	=4

 $\mathbb{Z}_5^* = [1, 2, 3, 4]$

 $\mathbb{Z}_{5}^{*} \neq [1,4]$

Nope

Inverses in \mathbb{Z}_n^*

Each element $a \in \mathbb{Z}_n^*$ has an inverse a^{-1} such that $a \times a^{-1} = 1 \mod n$.

Each element $a \in \mathbb{Z}_n^*$, except for 0, is *invertable*.

Simple inversion algorithm¹

For \mathbb{Z}_p^* , where p is prime:

$$x^{-1} = x^{\phi(n)-1} = x^{(p-1)-1} = x^{p-2} \mod p$$

For \mathbb{Z}_n^* , where n = pq:

$$x^{-1} = x^{\phi(p)\phi(q)-1} = x^{(p-1)(q-1)-1} \mod n$$

¹from Fermat's little theorem

Example inversion in \mathbb{Z}_n^*

Example:

Given p=7, q=3, and $n=pq=7\times 3=21$ We select x=11 out of \mathbb{Z}_{21}^* and want to invert it.

$$x^{-1} = x^{(p-1)(q-1)-1} \mod n$$

= $11^{(6\times 2)-1} \mod 21$
= $11^{11} \mod 21$
= 2

In Python:

$$p,q,n = 7,3,p*q$$

 $xinv = pow(x, (p-1)*(q-1)-1, n)$

Check that
$$x \cdot x^{-1} \mod n = 1$$

 $11 \times 2 \mod 21 = 22 \mod 21 = 1$

Computing in \mathbb{Z}_p^*

Let's create \mathbb{Z}_p^* – The multiplicative group modulo p (where p is prime):

Things that are easy:

- Generate a random number
- Add and multiply
- \bigcirc Compute $g^r \mod p$
- Inverting an element
- Solving a linear system
- \bigcirc Solving polynomial equation of degree d

Things that are hard:

○ The Discrete Log Problem (DLP)

If g is a generator of \mathbb{Z}_p^* :

Given $x \in \mathbb{Z}_p^*$, find r such that $x = g^r mod p$.

Diffie-Hellman Key Exchange

Let g be the generator of \mathbb{Z}_p^* .

Discrete Log Problem (DLP):

Given $x \in \mathbb{Z}_p^*$, find r such that $x = g^r mod p$.

Diffie Hellman Problem (DHP):

Given
$$g, x, y \in \mathbb{Z}_p^*$$
, find g^{xy} given g^x and g^y .

An algorithm to solve DLP would also solve DHP.

Note: We assume that DLP and DHP are computationally "hard" but have no proofs. Tomorrow an "easy" solution could theoretically be discovered.

Diffie-Hellman Key Exchange

What makes Diffie-Hellman hard to solve?

- O Randomly select a private key *a* for Alice and a private key *b* for Bob.
- \bigcirc Alice and Bob exchange their public keys g^a and g^b .
- O Alice and Bob perform the easy computation $(g^a)^b$ and $(g^b)^a$ for a shared secret.
- Attacker is left attempting to solve DLP or DHP.

Attacks on the Discrete Log Problem (DLP)

Obvious attack: exhaustive search

Problem: Linear in the scale of \mathbb{Z}_p (i.e. O(n)). \mathbb{Z}_p increases exponentially when extending bit size.

Various methods are more efficient and can calculate in $O(\sqrt{n})$:

- Baby-step giant-step (square root) algorithm
 A time-memory trade-off of the exhaustive search method
- O Pollard's rho model
- Pohlig-Hellman algorithm

For sufficiently large values of n, these methods are **not currently practical**.

There does exist an efficient quantum algorithm for solving DLP however.

Selecting g and p for Diffie-Hellman

You can select them yourself, but using RFC standards² is preferred.

A set of Modular Exponential (MODP) groups are defined in RFCs. This means that instead of exchanging g and p each time, you simply state: "RFC3526 1536-bit", and both parties know the parameters to use.

If g and p are chosen well, then the security is in the random choice of a and b.

²https://www.ietf.org/rfc/rfc3526.txt