

Module 2

Part 1 - Combinational Logic Design

Overview

- This Part is intended as a tutorial for those students who do not have digital design background
- This may be viewed as necessary
- Material is drawn from Digital Design and Computer Architecture by David and Sarah Harris – Readings provided by e-Reserve

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Circuits

- Nodes
 - o Inputs: A, B, C
 - o Outputs: Y, Z
 - o Internal: n1
- Circuit elements
 - o E1, E2, E3
 - o Each a circuit

Types of Logic Circuits

Combinational Logic

- Memoryless
- Outputs determined by current values of inputs

Sequential Logic

- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

·

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

$$\begin{array}{c|c}
A & \\
B & \\
C_{in}
\end{array}$$
 $\begin{array}{c}
C \\
C_{out}
\end{array}$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Some Definitions

- Complement: variable with a bar over it
 A, B, C
- Literal: variable or its complement
 A, A, B, B, C, C
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables
 ABC, ABC, ABC
- Maxterm: sum that includes all input variables (A+B+C), (A+B+C), (A+B+C)

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	$\overline{A}\;B$	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) =$$

11

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
A	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) =$$

12

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

					minterm
_	A	В	Y	minterm	name
	0	0	0	$\overline{A} \ \overline{B}$	m_0
	0	1	1	Ā B	m_1
	1	0	0	\overline{AB}	m_2
	1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{A}B + AB = \Sigma(1, 3)$$

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

			, , , , , , , , , , , , , , , , , , ,	maxtérm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
(1)	0	0	A + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(A + \overline{B}) = \Pi(0, 2)$$

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - o If it's not open (O) or
 - If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

0	С	Ε
0	0	
0	1	
1	0	
1	1	

A

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0		O C
0	1		<u> </u>
1	0		0 <u>C</u>
1	1		ОС

• POS – product-of-sums

0	С	Y	maxterm	
0	0		O + C	
0	1		$O + \overline{C}$	
1	0		O + C	
1	1		$\overline{O} + \overline{C}$	

SOP & POS Form

• SOP – sum-of-products

0	С	Ε	minterm
0	0	0	O C
0	1	0	O C
$\overline{1}$	0	1	$O\overline{C}$
1	1	0	ОС

$$Y = O\overline{C}$$
$$= \Sigma(2)$$

• POS – product-of-sums

0	С	E	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

$$Y = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

= $\Pi(0, 1, 3)$

Topics from Harris Text

- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

19

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Identity Theorem

- B 1 = B
- B + 0 = B

21

T1: Identity Theorem

•
$$B \cdot 1 = B$$

•
$$B + 0 = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

T2: Null Element Theorem

• B •
$$0 = 0$$

•
$$B + 1 = 1$$

$$\begin{bmatrix} B & - \\ 0 & - \end{bmatrix} = 0$$

$$\begin{array}{c|c}
B \\
1 \end{array} \longrightarrow \begin{array}{c|c}
 & 1 \end{array}$$

T3: Idempotency Theorem

- $B \cdot B = B$
- B + B = B

•
$$B \cdot B = B$$

•
$$B + B = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 $=$ B

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 $=$ B

T4: Identity Theorem

•
$$\overrightarrow{B} = B$$

T4: Identity Theorem

•
$$\overrightarrow{B} = B$$

$$B \longrightarrow B \longrightarrow$$

T5: Complement Theorem

- $B \cdot \overline{B} = 0$
- $B + \overline{B} = 1$

29

T5: Complement Theorem

•
$$B • B = 0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 $=$ 0 $=$

$$\frac{B}{B} \longrightarrow 1$$

Boolean Theorems Summary

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Vars

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$	T12′	$ \overline{B_0} + \overline{B_1} + \overline{B_2} \dots \\ = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Example 1:

•
$$Y = AB + \overline{A}B$$

Example 1:

•
$$Y = AB + \overline{AB}$$

= $B(A + \overline{A}) T8$
= $B(1)$ $T5'$
= B $T1$

Example 2:

•
$$Y = A(AB + ABC)$$

Example 2:

•
$$Y = A(AB + ABC)$$

= $A(AB(1 + C))$ T8
= $A(AB(1))$ T2'
= $A(AB)$ T1
= $(AA)B$ T7
= AB T3

DeMorgan's Theorem

•
$$Y = AB = A + B$$

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

Bubble Pushing

Backward:

- Body changes
- Adds bubbles to inputs

Forward:

- Body changes
- Adds bubble to output

Bubble Pushing

• What is the Boolean expression for this circuit?

39

Bubble Pushing

• What is the Boolean expression for this circuit?

$$Y = AB + CD$$

40

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

 $Y = \overline{A}\overline{B}C + \overline{D}$

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$

47

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

49

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Multiple Output Circuits

• Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_{1}	A_{o}	Y_3	Y_2	Y ₁	Y_0
0	0	0	0				
	0	0	1				
0	0	1	0				
0	0	1 1 0	1				
0	1	0	0				
0 0 0 0	1	0	1 0 1 0				
0	1	1	0				
0	1	1	1 0				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1					
1	1	0	1 0				
1	1	0	1				
1 1	1	1	1 0 1				
1	1	1	1				

Multiple Output Circuits

• Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y ₁	Y_0
0	0	A_{1} 0 0 1 0 0 1 0 0 1 1 0 0 1 1	A_0 0 1 0 1 0 1 0 1 0 1 0 1	0	Y ₂ 0 0 0 1 1 1 0 0 0 0 0 0 0	0	Y _o 0 1 0 0 0 0 0 0 0 0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	$egin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$	1	0	000000011111111	0	0 0 1 1 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

Priority Circuit Hardware

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y_1	\mathbf{Y}_{o}
0		0	0	0	0	0	0
0	0	0 0 1 1 0 0 1 1 0 0 1	1	00000001111111	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1	0 0 0 0 1 1 1 0 0 0 1 1 1 1	1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	1	Y ₂ 0 0 0 1 1 1 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y ₁	\mathbf{Y}_{o}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	0 0 0 1 1 1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 1 1 1	0 0 1 0 0 1 0 0 1 1 0 0 1	01010101010	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 1 1 1 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	Y ₀ 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A_3	A_2	A_{1}	A_o	Y ₃ 0 0 0 0 1	Y_2	Y ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	X	1	0	0	0

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Warnings:
 - Contention usually indicates a bug.
 - X is used for "don't care" and contention look at the context to tell them apart

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Floating Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating

Tristate Buffer

A —	Y

E	Α	Y
0	0	Z
0	1	Ζ
1	0	0
1	1	1

57

Tristate Busses

Floating nodes are used in tristate busses

- Many different drivers
- Exactly one is active at once

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- $\bullet PA + PA = P$

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Υ \	В			
C	00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{A}\overline{B}$$

61

3-Input K-Map

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
Ο	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

$$Y = \overline{A}B + BC$$

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

K-Map Definitions

- Complement: variable with a bar over it
 - \bar{A} , \bar{B} , \bar{C}
- Literal: variable or its complement

$$A, \bar{A}, B, \bar{B}, C, \bar{C}$$

Implicant: product of literals

 Prime implicant: implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

4-Input K-Map

A	В	С	D	Y
0	0	0	0	1
0	0	0		1 0
0	0	1	0	
0	0	1	1 0 1 0	1 1 0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1		0	1	1
1	0 0	1	0	1
1	0	1	1	0
1		0	0	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1 1	0	1 0 1 0 1 0 1 0	1 1 1 1 0 0 0
1	1	1	0	0
1	1	1	1	0

Y CD A	B 00	01	11	10
00				
01				
11				
10				

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0	0	1	1 0	1
0	0	1	1	1 1 0
0	1	1 0	1 0	0
0	1	0	1	1
0	1	1	1 0 1 0	1 1 1 1 0 0 0
0	1 1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1 1	1 0 1 0 1	0
1	1	0	0	0
1	1 1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1	1	0	0
1	1	1	1	0

Υ				
CD A	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

A	В	С	D	Y
0	0		0	1
0	0	0		0
0	0	1	0	1
0	0	0 0 1 1 0	1 0 1 0	1
0	1	0	0	0
0		0		1
0	1 1 1	1	1 0 1 0 1 0 1 0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0 0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1 1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	1	0 1 0 0 1 1 0 0 1	0	
1	1	1	1	0

,			
00	01	11	10
1	0	0	1
0	1	0	1
1	1	0	0
1	1	0	1
	1	00 01 1 0 0 1	00 01 11 1 0 0 0 1 0 1 1 0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0 0	0	0	1	0
0	0	1	0	
0	0	1	1 0	1 1 0 X 1
0	1	0	0	0
0 0 0	1	0	1	X
0	1 1 0	1	0	1
0	1	1	1	1
1	0	0	1 0	1
1	0	0	1 0	1 1
1	0	1	0	X
1	0	1	1 0	X X X X
1 1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Y CD A	B 00	01	11	10
00				
01				
11				
10				

A	В	C	D	Y
0	0	0	0	1
0	0	0	1	0
	0	1	0	
0 0 0 0	0	1	0 1 0	1 1 0
0	1	0	0	0
0	1	0		Χ
0	1	1	1 0 1	1
0 0 1 1	1	1	1	1
1	0	0	0	1
1	0	0		1
	0 0	1	1 0	Х
1 1 1 1	0	1	1 0	X
1	1	0		Х
1	1	0	1	X
1	1	1	0	X 1 1 1 X X X X X
1	1	1	1	X

Y				
CDA	B 00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	X	Х

K-Maps with Don't Cares

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	
0	0	1	1	1
0	1	0	0 1 0	0
0	1	0	1	X
0	1	1	1 0 1	1
0 0 0 0 0 0 0	1	1 1 0	1	1
1	1 0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1 1 1 1	0	1	0 1 0	X
1	1	0	0	X
1	1	0	1 0	X
1	1	1	0	1 0 X 1 1 1 X X X X X
1	1	1	1	X

$$Y = A + \overline{B}\overline{D} + C$$

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Combinational Building Blocks

- Multiplexers
- Decoders

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

2:1 Mux

	S	D_1	D_0	Υ	S	Y
_	0	0	0	0	0	D_0
	0	0	1	1	1	D_1°
	0	1	0	0		'
	0	1	1	1		
	1	0	0	0		
	1	0	1	0		
	1	1	0	1		
	1	1	1	1		

Multiplexer Implementations

Logic gates

Sum-of-products form

$$Y = D_0 \overline{S} + D_1 S$$

Tristates

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

Logic Using Multiplexers

Using the mux as a lookup table

$$Y = AB$$

Logic using Multiplexers

• Reducing the size of the mux

Decoders

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at

once

A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder Implementation

Logic Using Decoders

OR minterms

80

Topics from Harris Text

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Timing

- Delay between input change and output changing
- How to build fast circuits?

82

Propagation & Contamination Delay

• **Propagation delay:** $t_{pd} = \max$ delay from input to output

• Contamination delay: $t_{cd} = \min$ delay from input to

output

Propagation & Contamination Delay

- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reasons why t_{pd} and t_{cd} may be different:
 - Different rising and falling delays
 - Multiple inputs and outputs, some of which are faster than others
 - Circuits slow down when hot and speed up when cold

Critical (Long) & Short Paths

Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$

Short Path: $t_{cd} = t_{cd_AND}$

Glitches

• When a single input change causes multiple output changes

Glitch Example

• What happens when A = 0, C = 1, B falls?

Glitch Example (cont.)

Fixing the Glitch

Why Understand Glitches?

- Glitches don't cause problems because of synchronous design conventions (see Chapter 3 of Harris)
- It's important to **recognize** a glitch: in simulations or on oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

Coming Up Next

- Part 2 Sequential Design
- Part 3 System Verilog
- Part 4 VHDL
- Part 5 Verilog