

الوحدة 1: اليات تحويل الطاقة الضوئية الى طاقة كيميائية كامنة (93 سؤال و جواب)

- 1- أذكر شروط التركيب الضوئي بصفة عامة
 - ج- الضوء, اليخضور, الماء, غاز الفحم
- 2- على ماذا يدل تواجد النشاء في الصانعة الخضراء عند تعريضها للضوء ؟
 - ج- يدل على حدوث عملية التركيب الضوئي و مقرها الصانعة الخضراء
 - 3-تعرف على المظاهر الخارجية التي تدل على حدوث التركيب الضوئي
 - ج- انطلاق الأكسجين, استهلاك غاز الفحم, تركيب المادة العضوية
 - 4- حدد مقر عملية التركيب الضوئي
 - ج- الصانعة الخضراء
 - 5- حدد نواتج التركيب الضوئي
 - ج- النشاء, الأكسجين
 - 6-كيف يتم الكشف عن النشاء ؟
 - ج- باستعمال ماء اليود
 - 7- عرف التركيب الضوئي
- ج- هو ألية تسمح بتحويل الطاقة الضوئية إلى طاقة كميائية تخزن في شكل جزيئات عضوية مثل النشاء
 - 8-كيف يتم فحص الصانعات الخضراء ؟
 - ج- بواسطة المجهر الالكتروني
 - 9- قدم في فقرة وصفا للصانعة الخضراء
- ج- هي عضيات عدسية الشكل ذات بنية حجيرية أي مقسمة للحجرات (الفراغ بين الغشاءين, الحشوة و تجويف التيلاكوثيد),
- و هي محاطة بغلاف مكون من غشاءين أحدهما خارجي و الأخر داخلي يوجد بينهما فراغ, يحيط الغشــــــاء الداخلي بحيز يسمى الحشوة الذي يحتوي على صفائح حشوية متوضعة طوليا و غرانا هي عبـارة عـن عدد من التيلاكوئيدات متوضعة فوق بعضها البعض بالتوازي و على الصفيحة الحشوية بالإضافة إلى وجود ريبوزومات مادة وراثية, حبيبات دهنية و نشاء
 - 10- فسر اختلاف وظيفة غشاء التيلاكوئيد عن وظيفة الحشوة
 - ج- يفسر باختلاف التركيب الكيموحيوي
 - -11- أذكر المكونات الكيميائية للأغشية التيلاكوئيد
 - ج- الأنظمة الضوئية, نواقل الالكترونات, أنزيم الكرية المذنبة
 - 12- أذكر المكونات الكيميائية للحشوة
 - ج- المواد الايضية الوسطية, المرافقات الإنزيمية, أنزيمات لتركيب الجزيئات العضوية, المرافقات الإنزيمية
 - 13- قدم في فقرة وصفا للغشاء التيلاكوئيد
- ج- تتوضع مكونات الغشاء التيلاكوئيد ضمن الطبقة الفوسفوليبيدية المضاعفة على شكل أنظمة ضوئية, نواقل الالكترونات, وكرية مذنبة حيث يتوضع النظام الضوئي (2), و الكرية المذنبة و تتوضع النواقل الالكترونية (1-2-3) بين النظامين الضوئيين (1) و (2) و يتوضع النظام الضوئي (1) بين النواقل الالكترونية وتتوضع النواقل الالكترونية (4-5) بين النظام الضوئية و النواقل الالكترونية المذنبة و تتوضع الكرية المذنبة بعد الأنظمة الضوئية و النواقل الالكترونية

14- حدد بنية النظام الضوئي

ج- معقدات بروتينية (**بروتين ضمني**) تحتوي على عدد كبير من السلاسل البيبتيدية و على عدد كبير من الصبغات اليخضو الجزرين تكون متوزعة بانتظام

15- حدد طبيعة تفاعلات التركيب الضوئي

ج- أكسدة – إرجاعيه

16- حدد مقر التحلل الضوئي للهاء

ج- التجويف الداخلي للتيلاكوئيـــد

17- حدد دور الأنظمة الضوئية

ج- اقتناص الطاقة الضوئية و تحويلها إلى الكترونات غنية بالطاقة

18- حدد دور النواقل الالكترونية

ج- نقل الالكترونات إلى المستقبل النهائي للإلكترونيات

19- حدد دور الكرية المذنبة

ج- تركيب طاقة كيميائية على شكل جزيئات الـ ATP

-20 حدد مقر الأكسدة (التركيب الضوئي) و شروطها

ج- التيلاكوئيد و شروطها هي الضوء و اليخضور

21- حدد مقر عملية الإرجاع (التركيب الضوئي) و شروطه

ج- الحشوة و شروطه توفر غاز الفحم

-22 تحدث عملية التركيب الضوئي في مرحلتين أذكرهما حدد مقرهما و طبيعة التفاعلات في جدول

	المقر	طبيعة التفاعل
المرحلة الكيموضوئية	التيلاكوئيد	أكسدة
المرحلة الكيموحيوية	الحشوة	إرجاع

. 23-كيف تنطلق المرحلة الكيموضوئية؟

ج- عند سقوط فوتونات ضوئية على أصبغة هوائية ضمن النظام الضوئي

24- قدم تصنيف للأصبغة الأنظمة الضوئية من حيث الدور

ج-

مركز التفاعل	الهوائيات (الاصبغة الهوائية)
و هو زوج خاص من أصبغة اليخضــور أ دورها تلقي	تمثل العدد الأكبر من الاصبغة أكثر من 99% تقوم بدور
الطاقة من الهوائيات و تحرير زوج من الالكترونات	استقبال الفوتونات الضوئية و ينتمي معظمها إلى اليخضور أ - ب
غنية بالطاقة (تفاعل أكسدة)	و جزء صغير منها إلى أشـباه الجزرين

25 - حدد شروط عمل التيلاكوئيد (انطلاق الأكسجين)

ج- الضوء, مستقبل الكتروني (حالة مؤكسدة),ADP-Pi

26- حدد تأثير كمية المستقبل الالكتروني على كمية الأكسجين المنطلقة

ج-كلما تزداد كمية المستقبل الالكتروني تزداد معه كمية الأكسجين المنطلقة

-27 حدد نوع تفاعل المستقبل الالكتروني في حالة التحلل الضوئي للماء

ج- تفاعل إرجاع

28- حدد تأثير كل من ADP-Pi على انطلاق الأُكسجين

ج- محفزات للانطلاق الأكسجين

29- حدد مصدر الأكسجين المنطلق

ج- من التحلل الضوئي للماء و ليس من CO₂

30- حدد مصدر الالكترونات اللازمة لإرجاع المستقبل النهائي للالكترونات

ج- من التحلل الضوئي للماء

31- تعرف على مكونات السلسلة التركيبية الضوئية

ج- الأنظمة الضوئية (1) و (2) و النواقل الالكترونية الغشائية

32- حدد طريقة انتقال الالكترونات في السلسلة التركيبية الضوئية

ج- تنتقل وفق الاتجاه التلقائي من كمون أكسدة و إرجاع منخفض إلى كمون أكسدة و إرجــــاع مرتفع مع تحرير طاقة أي انخفاض المســـتوى الطاقوى للإلكترون

33- حدد طريقة انتقال الالكترونات في النظام الضوئي (عند أكسدة النظام الضوئي)

ج- عكس الاتجاه التلقائي من كمون أكسدة و إرجاع مرتفع إلى كمون أكسدة و إرجاع منخفض مع اكتساب طاقة مصدرها الفوتونات الضوئية أي ارتفاع المستوى الطاقوي للإلكترون

34- حدد الفرق الأساسي بين النظام الضوئي و اليخضــور الخام (التجريبي)

ج- تكون الاصبغة في النظام الضوئي منتظمة و في اليخضور الخام تكون مبعثرة

35- ماذا يحدث عند أكتساب فوتونات من طرف اليخضور في الأنظمة الضوئية (الحالة الطبيعية), بين ذلك في فقرة

ج- عند أكتساب طاقة ضوئية من طرف أصبغة النظام الضوئي يحدث نقل للطاقة بطريقتين حســـب دور الصبغتين :

أ- الاصبغة الهوائية : بعد تهيج صبغة هوائية ضمن النظام الضوئي تنتقل الطاقة المكتسبة إلى صبغة أخرى مجاورة ضمن النظام الضوئي بالرنين و يعود الإلكترون إلى مداره الأصلي أي انتقال الطاقة دون انتقال الالكترون حيث تتكرر هذه العملية بين عدد من الاصبغة الهوائية

36-كم يفقد مركز التفاعل من إلكترون غني بالطاقة (تفاعل أكسدة) مع التعليل ؟

ج- يفقد 2 إلكترون غنية بالطاقة لوجود زوج من اليخضور (أ) كل واحد يفقد إلكترونا غني بالطاقة

37- علل تسمية مركز التفاعل

ج- لحدوث تفاعل أكسدة بفقد 2 الكترون غنية بالطاقة

38- حدد رمز النظام الضوئي, أصبغة مركز التفاعل , أصبغة الهوائيات

النظام الضوئي مركز التفاعل الهوائيات P1-P2-Pn P680 — P700 PSII - PSI

29- قارن انتقال الطاقة و الالكترون في النظام السطوئي (الاصبغة الهوائية و أصبغة مركز التفاعل)

ج-

أصبغة مركز التفاعل	الاصبغة الهوائية
انتقال الطاقة و الالكترون معا (الأكسدة)	انتقال الطاقة دون انتقال الالكترون (الرنين)

40- حدد مصدر الالكترونات اللازمة لإرجاع كاشف هيل

ج- مصدرها من التحلل الضوئي للماء

41- ماذا توضح تجربة هيل ؟

ج- مصدر الالكترونات اللازمة لإرجاع الأنظمة الضوئية و المستقبل الالكتروني من التحلل الضوئي للماء

42-كيف تكون حالة الانظمة الضوئية في الظلام ؟

ج- في حالة غير محيجة

43- إلى ماذا يؤدي تهيج النظامين الضوئيين في النهاية ؟

ج- يؤدي إلى فقد الكترونات غنية بالطاقة

4- متى يستعيد النظام الضوئي (2) القدرة على تحرير الكترونات من جديد عندما يصبح في حالة مؤكسدة ؟

ج- تعويض النظام الضوئي (2) بالإلكترونات التي مصدرها الماء (**التحلل الضوئي**)

45- حدد وظيفة النظام الضوئي

ج- تحويل الطاقة الضوئية المقتنصة إلى الكترونات غنية بالطاقة

-46- هل بنية النظام الضوئي (2) تسمح له القيام بالوظيفة إضافية عن النظام الضوئي (1) علل

ج- نعم و تتمثل وظيفة النظام الضوئي (2) في تحليل الماء ضوئيا لوجود جزء بروتيني يعمل كأنزيم للتحلل الضوئي للماء

47- متى يستعيد النظام الضوئي (1) القدرة على تحرير الكترونات من جديد عندما يصبح في حالة مؤكسدة ؟

ج- تعويض النظام الضوئي (1) بالإلكترونات التي مصدرها أكسدة النظام الضوئي (2)

48- عند تثبيط انتقال الالكترونات من النظام الضوئي (2) إلى النظام الضوئي (1) ماذا تتوقع ؟

ج- عدم انطلاق الأكسجين (عدم أكسدة الماء) و عدم تثبيت CO₂

9- حدد مصير الالكترونات المحررة من أكسدة النظام الضوئي (1)

ج- إرجاع المستقبل النهائي للإلكترونات ⁺NADP

50- علل فقد الالكترونات من طرف الأنظمة الضوئية

ج- لتهيجها بعد اكتسابها فوتونات

51- فسر الفرق في الكمون بين النواقل الالكترونية الغشائية

ج- بتحرير طاقة من انتقال الالكترونات

-25 ماذا تتوقع عند تخريب غشاء التيلاكوئيد بمادة مخربة فيما يخص الطاقة الضوئية المقتنصة ؟

ج- تضيع على شكل حرارة

53- حدد الفرق الأساسي في ألية النقل بين الناقل T1-T2

 ϵ

T	2	T1
ونات لتجويف التيلاكوئيد	نقل الكترونات و ضخ بروتو	نقل الكترونات

54- ماهي الطاقة اللازمة لتنشيط الكرية المذنبة على الفسفرة بتشكبل الـ ATP

ج- الطاقة الكيموأسموزية و التي مصدرها عبور البروتونات عبر الكرية المذنبة بظاهرة الميز

55- حدد العلاقة الموجودة بين درجة حموضة الوسط و تركيز البروتونات

ج- علاقة عكسية

56- إليك الجدول التالي, أكمل فيما يخص الظواهر الحادثة في التيلاكوئيد (المرحلة الكيموضوئية)

ج- توفير جميع الشروط التجريبية

الظلام ز3- ز4	الإضاءة ز1-ز3	الظلام ز₀- ز₁	
خروج ثم انعدام الحركة	حركة في الاتجاهين	منعدمة	حركة البروتونات
الرجوع إلى التــساوي	الداخلي أعلى تركيز	متساوي	تركيز البروتونات في الوسطين
Ŋ	نعم	Ŋ	انطلاق الأكسجين
لفترة ثم يتوقف التركيب	نعم	Ŋ	ترکیب الـ ATP
	رجاع النواقل الالكترونية الغشائية	ز1-ز2 : التحلل الضوئي للماء و إ	الإضاءة ز1- ز3
		ز2-ز3: الفسفرة الضوئية	الظواهر الحادثة

57- حدد مقر, نواتج و شروط حدوث المرحلة الكيموضوئية

			ج-
النواتج	الشروط	المقر	
O_2 – NADPHH † - ATP	الضوء ,NADP+ - ADP-Pi, ماء	التيلاكوئيد	

58- حدد مقر ارجاع المستقبل النهائي للالكترونات الماء

ج- في الحشوة

-59- حدد مقر تركيب الطاقة الكيميائية أثناء حدوث المرحلة الكيموضوئية

ج- في الحشوة

60- حدد بنية الكرية المذنبة و ما علاقته بوظيفتها ؟

$\mathbf{F_1}$			F_0		
ترکیب ATP	الطاقة	بالتالي تحرير	وتونات	عبور البر	ممر
	•	زيم	شيط الأن	وأسموزية لتذ	الكيمو

ع. 61- قدم تعريفا للمرحلة الكيموضوئيـــــة

ج- تحويل الطاقة الضوئية إلى طاقة كيميائية

62- قدم تعريفا للمرحلة الكيموحــــــيوية

ج- تخزينَ الطاقة الكيميائية في روابط المادة العضوية (طاقة كيميائية كامنة)

-63 حدد شروط تشكل الـ ATP (المرحلة الكيموضوئية)

ج- سلامة الكرية المذنبة, سلامة غشاء التلاكوئيد, وجود فرق في التركيز من حيث البروتونات بين الوسطين الداخلي ADP-Pi, و الخارجي حيث يكون الوسط الداخلي حامضي و الخارجي قاعدي

64- بين فقرة ألية تركيب الـATP

ج- إن تراكم البروتونات التي تم إدخالها بواسطة احد النـــواقل الالكترونية الغشائية و تلك التي نتجت من التحلل الضوئي للماء يؤدي إلى تكوين فرق في التركيز من حيث البروتونات عبر غشـــاء التيلاكوئيد و الذي يكون عاليا في جمة التجويف و منخفضا في جمة الحشوة, لا يمكن للبروتونات النفوذ مرة أخرى إلى الحشوة إلا عن طريق الكرية المذنبة التي توفر معبرا للخروج البروتونات حيــث يؤدي الخروج من أعلى تركيز (التجويف) إلى أقل تركيز (الحشوة) بظاهرة الميز إلى تنشيط الكرية المذنبة بالتالي حدوث الفسفرة الضوئية

65- وضح سبب اجراء تجربة ياغندروف في الظلام

ج- منع أكسدة الماء ضوئيا بالتالي التحكم في درجة حموضة الوسطين الداخلي و الخارجي

66- بين كيف يستعيد النظام الضوئي (2) الالكترونات التي فقدها

ج- بتعويضه بالإلكترونات الناتجة من التحلل الضوئي للماء

-67- أذكر الناتجين الهامين للمرحلة الكيموضوئية

ATP-NADPHH⁺ -7

68- وضح كيف تحدث ظاهرة التفلور

ج- فقد الطاقة الضوئية المقتنصة من طرف اليخضور على شكل حرارة و ضوء

- - حدد مقر المرحلة الكيموحيوية, شروطها و نواتجها

النواتج	الشروط	المقر
سكر - ADP-Pi-NADP	CO ₂ -RDP-ATP-NADPHH [†]	الحشوة

ج- تحديد و معرفة المركبات العضوية الناتجة من إدماج غاز الفحم المشع و هذا باستعمال التصوير الاشعاعي الذاتي

71- علل الهدف من استعمال الكحول المغلي (تجربة كالفن)

ج- قتل الطحلب بإيقاف التفاعلات (تخريب الإنزيمات) من أجل استخلاص المركبات العضوية الناتـــجة من إدماج غاز الفحم و هذا في أزمنة محددة و أيضا إزالة اليخضور (الكحول مذيب عضوي)

72- حدد الفائدة من استعمال تقنية الكروماتوغرافيا ذات البعدين

ج- فصل المركبات العضوية الناتجة من إدماج غاز الفحم

73- على ماذا يدل ظهور الإشعاع في مركبات أخرى إذا طالت التجربة ؟

ج- على تحول مركبات عضوية الى أخرى و على الترتيب الزمني لتشكلها

74- علل الهدف من حقن CO₂ المشع في عدة مستويات من الأنبوبة الشفافة

ج- اختيار نقطة الحقن و تدفق المضخّة يسمح بتغير مدة تعريض الطحالب للغاز الفحم من عدة ثـــوان إلى عدة دقائق مما يسمح بإظهار مختلف المركبات العضوية المتشكلة و تسلسلها

75- حدد المراحل الأساسية لتفاعلات حلقة كالفن و ما هي شروط كل مرحلة ؟

l

الشروط	المراحل
CO ₂ - RUDIP	تثبيت غاز الفحم
ATP – NADPHH ⁺	إرجاع الـAPG
ATP	تجديد الـRUDIP

ج-76- حدد المراحل الأساسية للمرحلة الكيموضوئيـــــة

ج- التحلل الضوئي للماء, أكسدة الانظــــمة الضوئية, انتقال الالكترونات, الفسفرة الضوئية, إرجاع المستقبل النهائي

ج- باستعال CO₂ المشع, و طرق فصل كيميائية أهمها التسجيل اللوني ذو البعدين, التصوير الإشعاعي الذاتي

78- ما هو أول مركب يتثبت عليه CO₂ ؟

RUDIP-7

OO₂ تعرف على أول مركب يظهر بعد إدماج

APG -ج

80- يمكن تقسيم حلقة كالفن إلى مرحلتين, حددهما

ج- الأولى: يتم فيها إنتاج السكر الثلاثي لإنتاج السكر, الثانية: استعمال السكر الثلاثي لتجديد ريبولوز ثنائي فوسفات RDP

81- أكمل مايلي : عند تعريض تيلاكوئيدات للضوء

	انطلاق الاكسجين	تثبيت غاز الفحم	التفسير
DCMU	Ŋ	Ŋ	عدم التحلل الضوئي للماء و عدم توفر نواتج المرحلة
			الكيموضوئية
DCMU + DPIP	نعم	Z	التحلل الضوئي للماء و عدم توفـــــر نواتج المرحلة
			الكيموضوئية
معطي + DCMU الكترونات	Y	نعم	عدم التحلل الضوئي للماء و توفـــــر نواتج المرحلة
الكترونات			الكيموضوئية

82- حدد العلاقة الموجودة بين طرح الاكسجين, الطاقة الكيميائية المتشكلة و حركة البروتونات (التيلاكوئيد)

ج- تيلاكوئيدات معرضة للضوء و موضوعة في الظلام:

	خروج البروتونات انعدام حركة البروتونات						ت في الاتجا							
عدم	و	الطاقة	تركيب	عدم	توقف	و	زمنية	لمدة	الطاقة	ترکیب	و انطلاق	الكيميائية	الطاقة	ترکیب
		جين	ق الاكس	انطلا				عين	الاكسج	انطلاق		نرار	ىين باستې	الاكسج

83- أكمل الجدول التالي

	توفر ضوء و غاز الفحم	توفر الضوء	توفر غاز الفحم
APG	ثبات الكمية	انخفاض الكمية	ارتفاع الكمية (ت راكم)
RDP	ثبات الكمية	ارتفاع الكمية (تراكم)	انخفاض الكمية
التفسير	توازن ديناميكي	تراکم دون تجدید	تراکم دون تجدید

84- استنتج العلاقة الموجودة بين الــ RUDP-APG

ج- علاقة تجديدية باستمرار

ج- علاقة تكامل وظيفي و بصورة منظمة و الهدف منها الحصول على طاقة كيميائية كامنـــة في المــادة العضوية (**النشأ**), حيث توفر المرحلة الكيموضوئية العناصر الضرورية لتثبيت غاز الفحم و تركيب المادة العضوية و توفر بدورها المرحلة الكيموحيوية العناصر الضرورية لاكتساب الكترونات ضوئية

86- حدد العلاقة بن كمية الطاقة للفوتون و طول موجته

ج- علاقة عكسية

ج- فوتون واحد لضوء أخضر يملك طاقة اكبر من فوتون واحد لضوء أحمر

8- ماذا يحدث على مستوى الالكترونات عندما تمتص جزيئة اليخضور الفوتونات الضوئية ؟

ج- تتهيج جزيئة اليخضور حيث تنتقل الالكترونات من مستوى طاقوي منخفض الى مستوى طاقوي مرتفع

89- بين الحالة الأساسية للإلكترونات في جزيئة اليخضور في الضوء و الظلام

ج- في الظلام يكون في حالة أصلية بينما في الضوء يكون متهيج (ينتقل الى مدار أعلى)

90- ما هي الطاقة المباشرة المستعملة لتحويل الـADP الى الـ ATP ؟

ج- الطاقة الكيموأسموزية (طاقة البروتونات التي عبرت الكرية المذنبة)

91- ما هي الجزيئة التي تستقبل الالكترونات مؤقتا و التي لها دور في تركيب السكريات (حلقة كالفن) ؟

NADP⁺ -7

92- ما هو السكر الناتج في حلقة كالفن ؟

ج- الفوسفوغليسير ألدهيد (سكر ثلاثي) و يستعمل لتركيب سكر سداسي

93- هل مركب الفوسفوغليسيرألدهيد PGAL غير ثابت, علل ؟

ج- نعم, جزء منه يعتبر كهادة أيض وسطية يتم تركيبه و تحويله

الوحدة 2 : اليات تحويل الطاقة الكيميائية الكامنة الى طاقة قابلة للاستعال المباشر ATP (78 سؤال و جواب)

1- حدد مقر عملية التنفس (الأكسدة التنفسية)

ج- الميتوكندري

2- حدد شروط حدوث ظاهرة التنفس

ج- غلوكوز, الأكسجين, الماء

3- حدد نواتج ظاهرة التنفس

ج- CO₂, طاقة

4- تعرف على المظاهر الخارجية التي تدل على حدوث ظاهرة التنفس

ج- استهلاك الأكسجين و طرح غاز الفحم

5-كم تقدر الطاقة الكامنة لجزيئة الغلوكوز ؟

ج- 2860 كيلوجول

6-كم تقدر الطاقة المنتجة (القابلة للاستعمال المباشر) من عملية التنفس ؟

ج- 1159 كيلوجول

7-كم تقدر الطاقة الضائعة على شكل حرارة ؟

ج- 1701 كيلوجول

8- قارن بين مظهر الميتوكندري في الوسط الهوائي و الوسط اللاهوائي

ج- في الوسط الهوائي تكون الميتوكندري بحجم كبير نامية (ذات أعراف **نامية**) و بأعـداد كبيرة (**نشطة**), في الوسط اللاهوائي تكون الميتوكندري بحجم صغير **غير نامية** و بأعداد قليلة (**غير نشطة**)

9- علل أكسدة الكواشف الملونة كأخضر جانوس عند إضافتها إلى وسط يحــــتوي على ميتوكندري موجودة في وسط هوائي , فسر ذلك

ج- تعلل بتغير اللون حيث يظهر أخضر جانوس باللون الأخضر و يفسر ذلك بحدوث عملية أكســدة و هذا باســـټلاك الميتوكندري 🖸

10- حدد العلاقة الموجودة بين الميتوكندري و تهوية وسط الزرع

ج- تهوية وسط الزرع الغرض منه توفير الأكسجين اللازم لنشاط الميتوكندري

11- قدم في فقرة وصفا لبنية الميتوكندري

ج- هي عضيات ذات بينة حجيرية مقسمة إلى حجرتين و هما الفراغ بين الغشائين و المادة الأساسيـة تتخذ شكل بيضوي يتراوح قطرها بين 0.1 و 0.5 ميكرون و طولها بين 0.5 و 2 ميكرون, يحيط بالميتوكندري غلاف مكون من غشاءين بينهما فراغ و يحتوي الغشاء الداخلي