B.M.S. COLLEGE OF ENGINEERING BENGALURU

Autonomous Institute, Affiliated to VTU

Lab Record

Artificial Intelligence

Submitted in partial fulfillment for the 5th Semester Laboratory

Bachelor of Technology in Computer Science and Engineering

Submitted by:

Palle Padmavathi 1BM21CS125

Department of Computer Science and Engineering B.M.S. College of Engineering Bull Temple Road, Basavanagudi, Bangalore 560 019 November 2023-March 2024

B.M.S. COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the Artificial Intelligence (22CS5PCAIN) laboratory has been carried out by Palle Padmavathi(1BM21CS125) during the 5th Semester November 2023-March 2024.

Signature of the Faculty Incharge:

Saritha A.N Assistant Professor Department of Computer Science and Engineering B.M.S. College of Engineering, Bangalore

Table of Contents

Sl.	Experiment Title	Page No.
No.		
1	Tic Tac Toe	1
2	8 Puzzle Breadth First Search Algorithm	6
3	8 Puzzle Iterative Deepening Search Algorithm	8
4	8 Puzzle A* Search Algorithm	10
5	Vacuum Cleaner	14
6	Knowledge Base Entailment	17
7	Knowledge Base Resolution	18
8	Unification	21
9	FOL to CNF	25
10	Forward Reasoning	28

```
1. Implement Tic –Tac –Toe Game
```

```
tic=[]
import random
def board(tic):
  for i in range(0,9,3):
    print("+"+"-"*29+"+")
    print("|"+" "*9+"|"+" "*9+"|"+" "*9+"|")
    print("|"+" "*3,tic[0+i]," "*3+"|"+" "*3,tic[1+i]," "*3+"|"+" "*3,tic[2+i],"
"*3+"|")
    print("|"+" "*9+"|"+" "*9+"|"+" "*9+"|")
  print("+"+"-"*29+"+")
def update_comp():
  global tic,num
  for i in range(9):
    if tic[i]==i+1:
       num=i+1
       tic[num-1]='X'
       if winner(num-1)==False:
         #reverse the change
         tic[num-1]=num
       else:
         return
  for i in range(9):
    if tic[i]==i+1:
       num=i+1
       tic[num-1]='O'
       if winner(num-1)==True:
         tic[num-1]='X'
         return
       else:
         tic[num-1]=num
  num=random.randint(1,9)
  while num not in tic:
    num=random.randint(1,9)
  else:
    tic[num-1]='X'
def update_user():
```

global tic,num

```
num=int(input("enter a number on the board :"))
  while num not in tic:
    num=int(input("enter a number on the board :"))
  else:
    tic[num-1]='O'
def winner(num):
  if tic[0]==tic[4] and tic[4]==tic[8] or tic[2]==tic[4] and tic[4]==tic[6]:
    return True
  if tic[num]==tic[num-3] and tic[num-3]==tic[num-6]:
    return True
  if tic[num//3*3] = tic[num//3*3+1] and tic[num//3*3+1] = tic[num//3*3+2]:
    return True
  return False
try:
  for i in range(1,10):
    tic.append(i)
  count=0
  #print(tic)
  board(tic)
  while count!=9:
    if count%2==0:
       print("computer's turn :")
       update_comp()
       board(tic)
       count+=1
    else:
       print("Your turn :")
       update_user()
       board(tic)
       count+=1
    if count>=5:
       if winner(num-1):
         print("winner is ",tic[num-1])
         break
       else:
         continue
except:
  print("\nerror\n")
```

1 1		 3
4	5	6
7	8	9
computer's	turn :	
1 1	2] 3
 4	5	 6
x	8	9
Your turn : enter a num		e board :2
1 1	0	 3
4	5	6
x	8	9

1	i o]
 4 	 5 	 X
x	 8 	 9
+ Your turn enter a nu	: mber on the	e board :
1	 0 	 3
 4	 0 	x
 x 	Q1	9
+ computer's +	turn :	
1	 0 	 3
 4 		 x
 X		9

enter a number on the board :9

X

```
2. 8 Puzzle Breadth First Search Algorithm
   def bfs(src,target):
      queue=[]
      queue.append(src)
      exp=[]
      while len(queue)>0:
        source=queue.pop(0)
        #print("queue",queue)
        exp.append(source)
        print(source[0],"|,source[1],"|',source[2])
        print(source[3],'|',source[4],'|',source[5])
        print(source[6], '|', source[7], '|', source[8])
        print("____")
        if source==target:
           print("Success")
           return
        poss_moves_to_do=[]
        poss_moves_to_do=possible_moves(source,exp)
        #print("possible moves",poss_moves_to_do)
        for move in poss_moves_to_do:
           if move not in exp and move not in queue:
            #print("move",move)
            queue.append(move)
   def possible_moves(state, visited_states):
      b=state.index(0)
      #direction array
      d=[]
      if b not in [0,1,2]:
        d.append('u')
      if b not in [6,7,8]:
        d.append('d')
      if b not in [0,3,6]:
        d.append('l')
      if b not in [2,5,8]:
        d.append('r')
      pos_moves_it_can=[]
      for i in d:
        pos_moves_it_can.append(gen(state,i,b))
```

```
return [move_it_can for move_it_can in pos_moves_it_can if move_it_can not in
visited_states]
def gen(state,m,b):
  temp=state.copy()
  if m=='d':
    temp[b+3],temp[b]=temp[b],temp[b+3]
  if m=='u':
    temp[b-3],temp[b]=temp[b],temp[b-3]
    temp[b-1],temp[b]=temp[b],temp[b-1]
  if m=='r':
    temp[b+1],temp[b]=temp[b],temp[b+1]
  return temp
src=[1,2,3,4,5,6,0,7,8]
target=[1,2,3,4,5,6,7,8,0]
bfs(src,target)
```

```
1 | 2 | 3
4 | 5 | 6
0 | 7 | 8
1 | 2 | 3
0 | 5 | 6
4 | 7 | 8
1 | 2 | 3
4 | 5 | 6
7 | 0 | 8
0 | 2 | 3
1 | 5 | 6
4 | 7 | 8
1 | 2 | 3
5 0 6
4 | 7 | 8
1 | 2 | 3
4 | 0 | 6
7 | 5 | 8
1 2 3
4 | 5 | 6
7 | 8 | 0
Success
```

```
3. 8 Puzzle Iterative Deepening Search Algorithm
   def id_dfs(puzzle, goal, get_moves):
      import itertools
   #get_moves -> possible_moves
      def dfs(route, depth):
         if depth == 0:
           return
         if route[-1] == goal:
           return route
         for move in get_moves(route[-1]):
           if move not in route:
              next_route = dfs(route + [move], depth - 1)
              if next_route:
                return next_route
      for depth in itertools.count():
         route = dfs([puzzle], depth)
         if route:
           return route
   def possible_moves(state):
      b = state.index(0) \# ) indicates White space -> so b has index of it.
      d = [] # direction
      if b not in [0, 1, 2]:
         d.append('u')
      if b not in [6, 7, 8]:
         d.append('d')
      if b not in [0, 3, 6]:
         d.append('l')
      if b not in [2, 5, 8]:
         d.append('r')
      pos_moves = []
      for i in d:
         pos_moves.append(generate(state, i, b))
      return pos_moves
   def generate(state, m, b):
      temp = state.copy()
```

```
if m == 'd':
     temp[b + 3], temp[b] = temp[b], temp[b + 3]
  if m == 'u':
     temp[b - 3], temp[b] = temp[b], temp[b - 3]
  if m == 'l':
     temp[b - 1], temp[b] = temp[b], temp[b - 1]
  if m == 'r':
     temp[b + 1], temp[b] = temp[b], temp[b + 1]
  return temp
# calling ID-DFS
initial = [1, 2, 3, 0, 4, 6, 7, 5, 8]
goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]
route = id_dfs(initial, goal, possible_moves)
if route:
  print("Success!! It is possible to solve 8 Puzzle problem")
  print("Path:", route)
else:
  print("Failed to find a solution")
Output:
 Success!! It is possible to solve 8 Puzzle problem
 Path: [[1, 2, 3, 0, 4, 6, 7, 5, 8], [1, 2, 3, 4, 0, 6, 7, 5, 8], [1, 2, 3, 4, 5, 6, 7, 0, 8], [1, 2, 3, 4, 5, 6, 7, 8, 0]]
```

```
4. 8 Puzzle A* search algorithm
   class Node:
      def__init_(self,data,level,fval):
        """ Initialize the node with the data, level of the node and the calculated fvalue
        self.data = data
        self.level = level
        self.fval = fval
      def generate child(self):
         """ Generate child nodes from the given node by moving the blank space
           either in the four directions {up,down,left,right} """
        x,y = self.find(self.data,'_')
        """ val_list contains position values for moving the blank space in either of
           the 4 directions [up,down,left,right] respectively. """
        val_list = [[x,y-1],[x,y+1],[x-1,y],[x+1,y]]
        children = []
        for i in val list:
           child = self.shuffle(self.data,x,y,i[0],i[1])
           if child is not None:
              child_node = Node(child,self.level+1,0)
              children.append(child_node)
        return children
      def shuffle(self,puz,x1,y1,x2,y2):
        """ Move the blank space in the given direction and if the position value are out
           of limits the return None """
        if x2 \ge 0 and x2 < len(self.data) and y2 \ge 0 and y2 < len(self.data):
           temp_puz = []
           temp_puz = self.copy(puz)
           temp = temp_puz[x2][y2]
           temp_puz[x2][y2] = temp_puz[x1][y1]
           temp_puz[x1][y1] = temp
           return temp_puz
        else:
           return None
      def copy(self,root):
        """ Copy function to create a similar matrix of the given node"""
        temp = []
        for i in root:
           t = []
           for j in i:
```

```
t.append(j)
       temp.append(t)
     return temp
  def find(self,puz,x):
     """ Specifically used to find the position of the blank space """
     for i in range(0,len(self.data)):
       for j in range(0,len(self.data)):
          if puz[i][j] == x:
             return i,j
class Puzzle:
  def__init_(self,size):
     """ Initialize the puzzle size by the specified size, open and closed lists to empty
     self.n = size
     self.open = []
     self.closed = []
  def accept(self):
     """ Accepts the puzzle from the user """
     puz = []
     for i in range(0,self.n):
       temp = input().split(" ")
       puz.append(temp)
     return puz
  def f(self,start,goal):
     """ Heuristic Function to calculate hueristic value f(x) = h(x) + g(x) """
     return self.h(start.data,goal)+start.level
  def h(self,start,goal):
     """ Calculates the different between the given puzzles """
     temp = 0
     for i in range(0,self.n):
       for j in range(0,self.n):
          if start[i][j] != goal[i][j] and start[i][j] != '_':
     return temp
  def process(self):
     """ Accept Start and Goal Puzzle state"""
```

```
print("Enter the start state matrix \n")
     start = self.accept()
     print("Enter the goal state matrix \n")
     goal = self.accept()
     start = Node(start, 0, 0)
     start.fval = self.f(start,goal)
     """ Put the start node in the open list"""
     self.open.append(start)
     print("\n\n")
     while True:
        cur = self.open[0]
        print("")
        print(" | ")
        print(" | ")
        print(" \ \ \ \ \ \ \ \ \ \ )
        for i in cur.data:
          for j in i:
             print(j,end=" ")
          print("")
        """ If the difference between current and goal node is 0 we have reached the
goal node"""
        if(self.h(cur.data,goal) == 0):
          break
        for i in cur.generate_child():
          i.fval = self.f(i,goal)
          self.open.append(i)
        self.closed.append(cur)
        del self.open[0]
        """ sort the opne list based on f value """
        self.open.sort(key = lambda x:x.fval,reverse=False)
puz = Puzzle(3)
puz.process()
```

Enter the start state matrix

1 2 3 4 5 6

_ 7 8

Enter the goal state matrix

1 2 3

4 5 6

7 8 _

1 2 3

4 5 6

_ 7 8

1 2 3

4 5 6

7 _ 8

1 2 3

4 5 6

78_

```
5. Vacuum Cleaner
   def vacuum_world():
      # 0 indicates Clean and 1 indicates Dirty
      goal_state = {'A': '0', 'B': '0'}
      cost = 0
      location_input = input("Enter Location of Vacuum")
      status_input = input("Enter status of " + location_input)
      status_input_complement = input("Enter status of other room")
      if location_input == 'A':
        # Location A is Dirty.
        print("Vacuum is placed in Location A")
        if status_input == '1':
           print("Location A is Dirty.")
           # suck the dirt and mark it as clean
                                  #cost for suck
           cost += 1
           print("Cost for CLEANING A " + str(cost))
           print("Location A has been Cleaned.")
           if status_input_complement == '1':
             # if B is Dirty
             print("Location
                                               Dirty.")
             print("Moving right to the Location B. ")
             cost += 1
                                     #cost for moving right
             print("COST for moving RIGHT" + str(cost))
             # suck the dirt and mark it as clean
             cost += 1
                                     #cost for suck
             print("COST for SUCK " + str(cost))
             print("Location B has been Cleaned. ")
           else:
             print("No action" + str(cost))
             # suck and mark clean
             print("Location B is already clean.")
        if status_input == '0':
           print("Location A is already clean ")
           if status_input_complement == '1':# if B is Dirty
             print("Location B is Dirty.")
             print("Moving RIGHT to the Location B. ")
                                     #cost for moving right
             print("COST for moving RIGHT " + str(cost))
             # suck the dirt and mark it as clean
```

```
cost += 1
                               #cost for suck
       print("Cost for SUCK" + str(cost))
       print("Location B has been Cleaned. ")
       print("No action " + str(cost))
       print(cost)
       # suck and mark clean
       print("Location B is already clean.")
else:
  print("Vacuum is placed in location B")
  # Location B is Dirty.
  if status_input == '1':
     print("Location B is Dirty.")
     # suck the dirt and mark it as clean
     cost += 1 \# cost for suck
     print("COST for CLEANING " + str(cost))
     print("Location B has been Cleaned.")
     if status_input_complement == '1':
       # if A is Dirty
       print("Location A is Dirty.")
       print("Moving LEFT to the Location A. ")
       cost += 1 # cost for moving right
       print("COST for moving LEFT" + str(cost))
       # suck the dirt and mark it as clean
       cost += 1 \# cost for suck
       print("COST for SUCK " + str(cost))
       print("Location A has been Cleaned.")
  else:
     print(cost)
     # suck and mark clean
     print("Location B is already clean.")
     if status_input_complement == '1': # if A is Dirty
       print("Location A is Dirty.")
       print("Moving LEFT to the Location A. ")
       cost += 1 # cost for moving right
       print("COST for moving LEFT " + str(cost))
       # suck the dirt and mark it as clean
       cost += 1 \# cost for suck
       print("Cost for SUCK " + str(cost))
       print("Location A has been Cleaned. ")
```

```
else:
    print("No action " + str(cost))
    # suck and mark clean
    print("Location A is already clean.")

# done cleaning
print("GOAL STATE: ")
print(goal_state)
print("Performance Measurement: " + str(cost))

print("0 indicates clean and 1 indicates dirty")
vacuum_world()
```

0 indicates clean and 1 indicates dirty Enter Location of Vacuumb Enter status of b1 Enter status of other room1 Vacuum is placed in location B Location B is Dirty. COST for CLEANING 1 Location B has been Cleaned. Location A is Dirty. Moving LEFT to the Location A. COST for moving LEFT2 COST for SUCK 3 Location A has been Cleaned. GOAL STATE: {'A': '0', 'B': '0'} Performance Measurement: 3

```
6. Create a knowledge base using prepositional logic and show that the given query
   entails the knowledge base or not.
   from sympy import symbols, And, Not, Implies, satisfiable
   def create_knowledge_base():
      # Define propositional symbols
      p = symbols('p')
      q = symbols('q')
      r = symbols('r')
      # Define knowledge base using logical statements
      knowledge\_base = And(
        Implies(p, q),
                          # If p then q
        Implies(q, r),
                         # If q then r
        Not(r)
                        # Not r
      )
      return knowledge_base
   def query_entails(knowledge_base, query):
      # Check if the knowledge base entails the query
      entailment = satisfiable(And(knowledge_base, Not(query)))
      # If there is no satisfying assignment, then the query is entailed
      return not entailment
   if name == " main ":
      # Create the knowledge base
      kb = create\_knowledge\_base()
      # Define a query
      query = symbols('p')
      # Check if the query entails the knowledge base
      result = query_entails(kb, query)
      # Display the results
      print("Knowledge Base:", kb)
      print("Query:", query)
      print("Query entails Knowledge Base:", result)
   Output:
    Knowledge Base: ~r & (Implies(p, q)) & (Implies(q, r))
    Query entails Knowledge Base: False
```

7. Create a knowledge base using prepositional logic and prove the given query using resolution

```
import re
def main(rules, goal):
  rules = rules.split(' ')
  steps = resolve(rules, goal)
  print('\nStep\t|Clause\t|Derivation\t')
  print('-' * 30)
  i = 1
  for step in steps:
     print(f' {i}.\t| {step}\t| {steps[step]}\t')
     i += 1
def negate(term):
  return f' \sim \{\text{term}\}' \text{ if } \text{term}[0] != '\sim' \text{ else } \text{term}[1]
def reverse(clause):
  if len(clause) > 2:
     t = split_terms(clause)
     return f'\{t[1]\}v\{t[0]\}'
  return ""
def split_terms(rule):
  exp = '(\sim *[PQRS])'
  terms = re.findall(exp, rule)
  return terms
split_terms('~PvR')
def contradiction(goal, clause):
  contradictions = [f'\{goal\}v\{negate(goal)\}', f'\{negate(goal)\}v\{goal\}']
  return clause in contradictions or reverse(clause) in contradictions
def resolve(rules, goal):
  temp = rules.copy()
  temp += [negate(goal)]
  steps = dict()
  for rule in temp:
     steps[rule] = 'Given.'
  steps[negate(goal)] = 'Negated conclusion.'
  i = 0
  while i < len(temp):
      n = len(temp)
     j = (i + 1) \% n
```

```
clauses = []
     while i != i:
        terms1 = split_terms(temp[i])
        terms2 = split\_terms(temp[j])
        for c in terms1:
          if negate(c) in terms2:
             t1 = [t \text{ for } t \text{ in terms } 1 \text{ if } t != c]
             t2 = [t \text{ for } t \text{ in terms } 2 \text{ if } t != negate(c)]
             gen = t1 + t2
             if len(gen) == 2:
                if gen[0] != negate(gen[1]):
                   clauses += [f'{gen[0]}v{gen[1]}']
                else:
                   if contradiction(goal,f'{gen[0]}v{gen[1]}'):
                     temp.append(f'\{gen[0]\}v\{gen[1]\}')
                     steps["] = f"Resolved \{temp[i]\} and \{temp[j]\} to \{temp[-1]\},
which is in turn null. \
                     \nA contradiction is found when {negate(goal)} is assumed as
true. Hence, {goal} is true."
                     return steps
             elif len(gen) == 1:
                clauses += [f'\{gen[0]\}']
             else:
                if contradiction(goal,f'{terms1[0]}v{terms2[0]}'):
                   temp.append(f'{terms1[0]}v{terms2[0]}')
                   steps["] = f"Resolved \{temp[i]\} and \{temp[j]\} to \{temp[-1]\}, which
is in turn null. \
                   \nA contradiction is found when {negate(goal)} is assumed as true.
Hence, {goal} is true."
                   return steps
        for clause in clauses:
          if clause not in temp and clause != reverse(clause) and reverse(clause) not in
temp:
             temp.append(clause)
             steps[clause] = f'Resolved from {temp[i]} and {temp[j]}.'
       j = (j + 1) \% n
     i += 1
  return steps
```

_

rules = 'PvQ PvR ~PvR RvS Rv~Q ~Sv~Q' # (P=>Q)=>Q, (P=>P)=>R, $(R=>S)=>\sim(S=>Q)$ main(rules, 'R')

```
Step | Clause | Derivation
        | PvQ | Given.
 1.
       | PvR | Given.
 2.
        | ~PvR | Given.
 3.
        RvS
               | Given.
 4.
        | Rv~Q | Given.
 5.
 6.
        | ~Sv~Q | Given.
 7.
               | Negated conclusion.
        ~R
        | QvR | Resolved from PvQ and ~PvR.
 8.
        | Pv~S | Resolved from PvQ and ~Sv~Q.
 9.
        P
               | Resolved from PvR and ~R.
 10.
       | ~P
               Resolved from ~PvR and ~R.
 11.
       | Rv~S | Resolved from ~PvR and Pv~S.
 12.
               Resolved from ~PvR and P.
 13.
        R
               | Resolved from RvS and ~R.
 14.
        5
        | ~Q | Resolved from Rv~Q and ~R.
 15.
               Resolved from ~R and QvR.
 16.
        | ~S | Resolved from ~R and Rv~S.
 17.
               Resolved ~R and R to ~RvR, which is in turn null.
18.
A contradiction is found when ~R is assumed as true. Hence, R is true.
```

```
8. Implement unification in first order logic
   import re
   def getAttributes(expression):
      expression = expression.split("(")[1:]
      expression = "(".join(expression)
      expression = expression[:-1]
      expression = re.split("(?<!\(.),(?!.\))", expression)
      return expression
   def getInitialPredicate(expression):
      return expression.split("(")[0]
   def isConstant(char):
      return char.isupper() and len(char) == 1
   def isVariable(char):
      return char.islower() and len(char) == 1
   def replaceAttributes(exp, old, new):
      attributes = getAttributes(exp)
      for index, val in enumerate(attributes):
        if val == old:
           attributes[index] = new
      predicate = getInitialPredicate(exp)
      return predicate + "(" + ",".join(attributes) + ")"
   def apply(exp, substitutions):
      for substitution in substitutions:
        new, old = substitution
        exp = replaceAttributes(exp, old, new)
      return exp
   def checkOccurs(var, exp):
      if exp.find(var) == -1:
        return False
      return True
   def getFirstPart(expression):
      attributes = getAttributes(expression)
      return attributes[0]
   def getRemainingPart(expression):
      predicate = getInitialPredicate(expression)
```

```
attributes = getAttributes(expression)
  newExpression = predicate + "(" + ",".join(attributes[1:]) + ")"
  return newExpression
def unify(exp1, exp2):
  if exp1 == exp2:
     return []
  if isConstant(exp1) and isConstant(exp2):
     if exp1 != exp2:
       return False
  if isConstant(exp1):
     return [(exp1, exp2)]
  if isConstant(exp2):
     return [(exp2, exp1)]
  if isVariable(exp1):
     if checkOccurs(exp1, exp2):
       return False
     else:
       return [(exp2, exp1)]
  if isVariable(exp2):
     if checkOccurs(exp2, exp1):
       return False
     else:
       return [(exp1, exp2)]
  if getInitialPredicate(exp1) != getInitialPredicate(exp2):
     print("Predicates do not match. Cannot be unified")
     return False
  attributeCount1 = len(getAttributes(exp1))
  attributeCount2 = len(getAttributes(exp2))
  if attributeCount1 != attributeCount2:
     return False
  head1 = getFirstPart(exp1)
  head2 = getFirstPart(exp2)
  initialSubstitution = unify(head1, head2)
  if not initialSubstitution:
     return False
  if attributeCount1 == 1:
```

return initialSubstitution

```
tail1 = getRemainingPart(exp1)
tail2 = getRemainingPart(exp2)

if initialSubstitution != []:
    tail1 = apply(tail1, initialSubstitution)
    tail2 = apply(tail2, initialSubstitution)

remainingSubstitution = unify(tail1, tail2)
if not remainingSubstitution:
    return False

initialSubstitution.extend(remainingSubstitution)
return initialSubstitution
```

```
[9] exp1 = "knows(x)"
    exp2 = "knows(Richard)"
    substitutions = unify(exp1, exp2)
    print("Substitutions:")
    print(substitutions)

Substitutions:
    [('Richard', 'x')]

[7] exp1 = "knows(A,x)"
    exp2 = "k(y,mother(y))"
    substitutions = unify(exp1, exp2)
    print("Substitutions:")
    print(substitutions)

Predicates do not match. Cannot be unified
Substitutions:
False
```

```
exp1 = "knows(A,x)"
exp2 = "knows(y,mother(y))"
substitutions = unify(exp1, exp2)
print("Substitutions:")
print(substitutions)
Substitutions:
[('A', 'y'), ('mother(y)', 'x')]
exp1 = "knows(A,x)"
exp2 = "knows(y)"
substitutions = unify(exp1, exp2)
print("Substitutions:")
print(substitutions)
Substitutions:
```

False

9. Convert a given first order logic statement into Conjunctive Normal Form (CNF).

```
def getAttributes(string):
  expr = '([^{\wedge})] + '
  matches = re.findall(expr, string)
  return [m for m in str(matches) if m.isalpha()]
def getPredicates(string):
  expr = '[a-z\sim]+\backslash([A-Za-z,]+\backslash)'
  return re.findall(expr, string)
def DeMorgan(sentence):
  string = ".join(list(sentence).copy())
  string = string.replace('~~',")
  flag = '[' in string
  string = string.replace('~[',")
  string = string.strip(']')
  for predicate in getPredicates(string):
     string = string.replace(predicate, f'~{predicate}')
  s = list(string)
  for i, c in enumerate(string):
     if c == '|':
        s[i] = '&'
     elif c == '&':
        s[i] = '|'
  string = ".join(s)
  string = string.replace('~~',")
  return f'[{string}]' if flag else string
def Skolemization(sentence):
  SKOLEM_CONSTANTS = [f'(chr(c))') for c in range(ord('A'), ord('Z')+1)]
  statement = ".join(list(sentence).copy())
  matches = re.findall('[\forall \exists].', statement)
  for match in matches[::-1]:
     statement = statement.replace(match, ")
     statements = re.findall('\[[^]]+\]]', statement)
     for s in statements:
        statement = statement.replace(s, s[1:-1])
     for predicate in getPredicates(statement):
        attributes = getAttributes(predicate)
        if ".join(attributes).islower():
          statement = statement.replace(match[1],SKOLEM_CONSTANTS.pop(0))
        else:
          aL = [a for a in attributes if a.islower()]
```

```
aU = [a for a in attributes if not a.islower()][0]
           statement = statement.replace(aU,
f'{SKOLEM_CONSTANTS.pop(0)}({aL[0] if len(aL) else match[1]})')
  return statement
import re
def fol_to_cnf(fol):
  statement = fol.replace("<=>", "_")
  while ' 'in statement:
     i = statement.index(' ')
     new_statement = '[' + statement[:i] + '=>' + statement[i+1:] + ']&['+
statement[i+1:] + '=>' + statement[:i] + ']'
     statement = new\_statement
  statement = statement.replace("=>", "-")
  expr = ' ([ ( [ ^ ] ] + ) ) '
  statements = re.findall(expr, statement)
  for i, s in enumerate(statements):
     if '[' in s and ']' not in s:
        statements[i] += ']'
  for s in statements:
     statement = statement.replace(s, fol_to_cnf(s))
  while '-' in statement:
     i = statement.index('-')
     br = statement.index('[') if '[' in statement else 0
     new_statement = '\sim' + statement[br:i] + '|' + statement[i+1:]
     statement = statement[:br] + new_statement if br > 0 else new_statement
  while '~∀' in statement:
     i = statement.index(' \sim \forall')
     statement = list(statement)
     statement[i], statement[i+1], statement[i+2] = \exists, statement[i+2], '~'
     statement = ".join(statement)
  while '~∃' in statement:
     i = statement.index('\sim \exists')
     s = list(statement)
     s[i], s[i+1], s[i+2] = \forall ', s[i+2], '\sim'
     statement = ".join(s)
  statement = statement.replace('\sim[\forall','[\sim\forall')]
  statement = statement.replace('\sim[\exists','[\sim\exists')]
  expr = '(\sim [\forall |\exists].)'
  statements = re.findall(expr, statement)
  for s in statements:
     statement = statement.replace(s, fol_to_cnf(s))
```

```
expr = '~\[[^]]+\]'
statements = re.findall(expr, statement)
for s in statements:
    statement = statement.replace(s, DeMorgan(s))
return statement
```

```
print(Skolemization(fol_to_cnf("animal(y)<=>loves(x,y)")))
print(Skolemization(fol_to_cnf("∀x[∀y[animal(y)=>loves(x,y)]]=>[∃z[loves(z,x)]]")))
print(fol_to_cnf("[american(x)&weapon(y)&sells(x,y,z)&hostile(z)]=>criminal(x)"))
```

10. Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning.

```
import re
def isVariable(x):
  return len(x) == 1 and x.islower() and x.isalpha()
def getAttributes(string):
  expr = '\backslash ([^{\wedge})] + \backslash)'
  matches = re.findall(expr, string)
  return matches
def getPredicates(string):
  \exp r = '([a-z^{-}]+)([^{\&}]+)'
  return re.findall(expr, string)
class Fact:
  def__init_(self, expression):
     self.expression = expression
     predicate, params = self.splitExpression(expression)
     self.predicate = predicate
     self.params = params
     self.result = any(self.getConstants())
  def splitExpression(self, expression):
     predicate = getPredicates(expression)[0]
     params = getAttributes(expression)[0].strip('()').split(',')
     return [predicate, params]
  def getResult(self):
     return self.result
  def getConstants(self):
     return [None if isVariable(c) else c for c in self.params]
  def getVariables(self):
     return [v if isVariable(v) else None for v in self.params]
  def substitute(self, constants):
     c = constants.copy()
     f = f''\{self.predicate\}(\{','.join([constants.pop(0) if isVariable(p) else p for p in \})\}
self.params])})"
     return Fact(f)
```

```
class Implication:
  def___init_(self, expression):
     self.expression = expression
     l = expression.split('=>')
     self.lhs = [Fact(f) for f in l[0].split('&')]
     self.rhs = Fact(l[1])
  def evaluate(self, facts):
     constants = \{\}
     new_lhs = []
     for fact in facts:
        for val in self.lhs:
          if val.predicate == fact.predicate:
             for i, v in enumerate(val.getVariables()):
               if v:
                  constants[v] = fact.getConstants()[i]
             new_lhs.append(fact)
     predicate, attributes = getPredicates(self.rhs.expression)[0],
str(getAttributes(self.rhs.expression)[0])
     for key in constants:
        if constants[key]:
          attributes = attributes.replace(key, constants[key])
     expr = f'{predicate}{attributes}'
     return Fact(expr) if len(new_lhs) and all([f.getResult() for f in new_lhs]) else
None
class KB:
  def__init_(self):
     self.facts = set()
     self.implications = set()
  def tell(self, e):
     if '=>' in e:
        self.implications.add(Implication(e))
        self.facts.add(Fact(e))
     for i in self.implications:
        res = i.evaluate(self.facts)
        if res:
          self.facts.add(res)
  def query(self, e):
     facts = set([f.expression for f in self.facts])
     i = 1
```

```
print(f'Querying {e}:')
     for f in facts:
       if Fact(f).predicate == Fact(e).predicate:
          print(f'\setminus t\{i\}, \{f\}')
          i += 1
  def display(self):
     print("All facts: ")
     for i, f in enumerate(set([f.expression for f in self.facts])):
       print(f'\setminus t\{i+1\}, \{f\}')
Output:
 kb = KB()
 kb.tell('missile(x)=>weapon(x)')
 kb.tell('missile(M1)')
 kb.tell('enemy(x,America)=>hostile(x)')
 kb.tell('american(West)')
 kb.tell('enemy(Nono, America)')
 kb.tell('owns(Nono,M1)')
 kb.tell('missile(x)&owns(Nono,x)=>sells(West,x,Nono)')
 kb.tell('american(x)&weapon(y)&sells(x,y,z)&hostile(z)=>criminal(x)')
 kb.query('criminal(x)')
 kb.display()
 Querying criminal(x):

    criminal(West)

 All facts:
          1. enemy(Nono, America)
          hostile(Nono)
          sells(West,M1,Nono)
          4. criminal(West)
          5. owns(Nono,M1)
          6. weapon(M1)
          american(West)
          missile(M1)
 kb_{-} = KB()
 kb_.tell('king(x)&greedy(x)=>evil(x)')
 kb .tell('king(John)')
 kb_.tell('greedy(John)')
 kb_.tell('king(Richard)')
 kb_.query('evil(x)')
 Querying evil(x):
          1. evil(John)
```