Cpt S 422: Software Engineering Principles II Black-box testing – Part 4

Dr. Venera Arnaoudova

Black-box testing methods

- ✓ Equivalence Class Partitioning
- ✓ Boundary-Value Analysis
- ✓ Category-Partition
- ✓ Decision tables
- ✓ Cause-Effect Graphs
- Logic Functions

Logic Functions Testing

Definitions

- □ A *predicate* is an expression that evaluates to a boolean value
- □ Predicates may contain boolean variables, non-boolean variables that are compared with the comparator operators {>, <, =, ...}, and function calls (return boolean value)</p>
- ☐ The internal predicate structure is created by *logical operators* {not, and, or, ...}
- □ A clause is a predicate that does not contain any of the logical operators, e.g., (a<b)</p>
- □ Predicates may be written in different, logically equivalent ways (Boolean algebra)

Definitions (cont.)

- □ A logic function maps from n boolean input variables (clauses) to 1 boolean output variable
- □ To make expressions easier to read we will use adjacency for the and operator, + for the or operator, and a ~ for the negation operator.
- Example: Enable or disable the ignition of a boiler based on four input variables
 - ➤ NormalPressure (A): pressure within safe operating limit?
 - > CallForHeat (B): ambient temperature below set point?
 - DamperShut (C): exhaust duct is closed?
 - ManualMode (D): manual operation selected?
- \square Logic Function: $Z = A(B^{\sim}C+D)$

Boiler Truth Table I

 $Z = A(B \sim C + D)$

Input Vector Number	Normal Pressure	CallForHeat	DamperShut	ManualMode	Ignition
	Α	В	С	D	Z
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0

Boiler Truth Table II

 $Z = A(B \sim C + D)$

Input Vector Number	Normal Pressure	CallForHeat	DamperShut	ManualMode	Ignition
	A	В	С	D	Z
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

Total of 16 variants!

Elements of Boolean Expressions

- □ Boolean space: The n-dimensional space formed by the input variables
- Product term or conjunctive clause: String of clauses related by the and operator
- □ Sum-of-products or disjunctive normal form (DNF): Product terms related by the or operator
- □ *Implicant*: Each term of a sum-of-products expression sufficient condition to fulfill for *True* output of that expression
- □ Prime implicants: An implicant such that no subset (proper subterm) is also an implicant
- □ Logic minimization: Deriving compact (irredundant) but equivalent boolean expressions, using boolean algebra

Boiler Example

- \square Logic function: Z=A(B $^{\sim}$ C+D)
- □ Sum-of-Product Form (DNF): $Z=A(B^{C}+D)=AB^{C}+AD$
- □ Implicants: AB~C, AD
- □ Prime implicant:
 - ➤ AB~C = TTFx = {TTFT, TTFF},
 - AD=TxxT={TFFT, TFTT, TTFT, TTTT}
 - Both terms are prime implicants

From Graph to Logic Function

- Once a cause-effect graph is reviewed and considered correct, we want to derive a logic function for the purpose of deriving test requirements (in the form of a decision table)
- One function (predicate, truth table) exists for each effect (output variable)
- □ If several effects are present, then the resulting decision table is a composite of several truth tables that happen to share decision / input variables and actions/effects
- Easier to derive a function for each effect separately
- Derive a boolean function from the graph in a systematic way

Example

Generate a Logic Function

- Generate an initial function
 - > Start from effect node
 - Backtrack through the graph
 - Substitute higher level clauses with lower level clauses and boolean expressions, until you reach cause nodes
- ☐ Transform into minimal, DNF form
 - Use boolean algebra laws to reduce boolean expressions
 - Re-express in sum-of-products form (disjunctive normal form)
 - > There exist algorithms to do that automatically

Reminder: Laws of Boolean Algebra

- Associative
 - \rightarrow (A+B)+C = A+(B+C), (AB)C = A(BC)
- □ Distributive
 - \rightarrow A+(BC) = (A+B)(A+C), A(B+C) = AB+AC
- □ De Morgan's laws
 - > ~(A+B)=~A~B, ~(AB)=~A+~B
- □ Absorption
 - \triangleright A + AB = A
 - \rightarrow A(A+B) = A
 - \rightarrow A+($^{\sim}$ AB) = A+B, A($^{\sim}$ A+B) = AB
 - \rightarrow AB+AC+B $^{\sim}$ C = AC+B $^{\sim}$ C

Example

- \Box Z = PR (effect)
- \square P = A + $^{\sim}$ Q (intermediate)
- \square Q = BC (intermediate)
- \square R = D + $^{\sim}$ E + S (intermediate)
- \Box S = F + G + H (intermediate)
- \Box Z = (A + \sim (BC)) (D + \sim E + (F+G+H)) (substitution)
- \Box Z=(A+ $^{\circ}$ B+ $^{\circ}$ C)(D+ $^{\circ}$ E+F+G+H) (De Morgan's law)
- $Z = AD + A^E + AF + AG + AH + ^BD + ^B^E + ^BF + ^BG + ^BH + ^CD + ^C^E + ^CF + ^CG + ^CH$ (Distributive law is used to obtain sum-of-products)

Fault Model for Logic-based Testing

- Expression Negation Fault (ENF): The logic function is implemented as its negation
- Clause Negation Fault (CNF): A clause in a particular term is replaced by its negation
- Term Omission Fault (TOF): A particular term in the logic function is omitted.
- Operator Reference Fault (ORF): A binary operator or in the logic function is implemented as and or vice-versa
- Clause Omission Fault (COF): A clause in a particular term of the logic function is omitted
- □ Clause Insertion Fault (CIF): A clause not appearing in a particular term of a logic function is inserted in that term
- Clause Reference Fault (CRF): A clause in a particular term of a logic function is replaced by another clause not appearing in the term

Basic Test Criteria

- ☐ The goal is to test an implementation and make sure it is consistent with its specification, as modeled by the logic function (or graph)
- ☐ There exist a number of test coverage criteria that do not assume a disjunctive normal form for predicates:
 - Predicate coverage
 - Clause coverage
 - Combinatorial coverage
 - (in)active clause coverage
- □ Notation: P is set of predicates, C is set of clauses in P, Cp is the set of clauses in predicate p

Predicate Coverage (PC)

- □ Predicate Coverage: For each $p \in P$, we have two test requirements (TR): p evaluates to true, and p evaluates to false.
- □ For p=A(B~C+D) two test that satisfy Predicate Coverage are (1) (A=true, B=false, C=true, D=true) where p evaluates to true, (2) (A=false, B=false, C=true, D=true) where p evaluates to false
- Problem: Individual clauses are not exercised

Clause Coverage (CC)

- □ Clause Coverage: For each $c \in C$, we have two test requirements: c evaluates to true, and c evaluates to false.
- □ For p=(A+B)C, two tests that satisfy Clause Coverage: (1) (A=true, B=true, C=false), (2) (A=false, B=false, C=true)
- □ Note: Clause coverage does not <u>subsume</u> predicate coverage or vice-versa (in the previous example p evaluates to false in both cases)
- □ <u>Definition</u>: A test criterion C1 subsumes C2 if and only if every test set that satisfies C1 will also satisfy C2.

Example

- \Box Z = A+B
- \Box t1 = (A = true; B = true) => Z
- \Box t2 = (A = true; B = false) => Z
- \Box t3 = (A = false; B = true) => Z
- \Box t4 = (A = false; B = false) => $^{\sim}$ Z
- □ T1 = {t1; t2}: it satisfies neither Clause Coverage (A is never false) nor Predicate Coverage (Z is never false).
- ☐ T2 = {t2; t3}: satisfies Clause Coverage, but not Predicate Coverage (Z is never false).
- □ T3 = {t2; t4}: satisfies Predicate Coverage, but not Clause Coverage (because B is never true).
- ☐ T4 = {t1; t4}: is the only pair that satisfies both Clause Coverage and Predicate Coverage.

Combinatorial Coverage (CoC)

- We would certainly like a coverage criterion that tests individual clauses and that also tests the predicate
- □ Combinatorial coverage: For each $p \in P$, we have test requirements for clauses in Cp to evaluate each possible combination of truth values
- □ Subsumes predicate coverage
- □ There are 2^{|Cp|} possible assignments of truth values
- Problem: Impractical for predicates with more than a few clauses

Masking Effects

- □ When we introduce tests at the clause level, we want to have an effect on the predicate
- □ Logical expressions (clauses) can mask each others
- □ In the predicate AB, if B = false, B can be said to mask A, because no matter what value A has, AB will still be false.
- We need to consider circumstances under which a clause affects the value of a predicate, to detect possible implementation failures

Determination

- Determination: Given a clause c_i in predicate p, called the major clause, we say that c_i determines p if the remaining minor clauses $c_j \in p$, j <> i have values so that changing the truth value of c_i changes the truth value of p.
- We would like to test each clause under circumstances where it determines the predicate
- □ Test set T4={t1,t4} in previous slide satisfied both predicate and clause coverage but it neither tests A nor B effectively.
 - \geq Z = A+B
 - > t1 = (A = true; B = true) => Z
 - \triangleright t4 = (A = false; B = false) => \sim Z

Active Clause Coverage (ACC)

- □ Active Clause Coverage: For each $p \in P$ and each major clause $c_i \in Cp$, choose minor clauses c_i , j <> i so that c_i determines p. We have two test requirements for each c_i : c_i evaluates to true and c_i evaluates to false.
- ☐ For example, for Z=A+B we have:
 - For clause A, A determines Z if and only if B is false: {(A = true; B = false), (A = false; B = false)}
 - For clause B, B determines Z if and only if A is false: {(A = false; B = true), (A = false; B = false)}
 - We end up with a total of three tests: {(A = true; B = false), (A = false; B = false), (A = false; B = true)}
- □ The most important questions are whether (1) ACC should subsume PC, (2) the minor clauses c_i need to have the same values when the major clause c_i is true as when c_i is false.

Correlated ACC (CACC)

- □ For each $p \in P$ and each major clause $c_i \in Cp$, choose minor clauses c_i , j <> i so that c_i determines p. There are two test requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j must cause p to be true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true) <> p(c_i = false)$.
- □ CACC is subsumed by combinatorial clause coverage and subsumes clause/predicate coverage

CACC - Example

- \Box P = A(B+C)
- What does it take so that A determines the value of P?

A	В	C	A(B+C)
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
F	Т	Т	F
F	Т	F	F
F	F	Т	F

■ We satisfy CACC for A with for example:

> T1 = {(A = true, B = true, C = false), (A = false, B = false, C = true)}

Restricted ACC (RACC)

- For each $p \in P$ and each major clause $c_i \in Cp$, choose minor clauses c_j , j <> i so that c_i determines p. There are two test requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_j(c_i = false)$ for all c_j .
- □ RACC makes it easier than CACC to determine the cause of the problem, if one is detected: major clause
- □ But is it common in specification to have constraints between clauses, making RACC impossible to achieve in some cases.

RACC - Example

- \Box P=A(B+C)
- ☐ We satisfy RACC for A with for example:

A	В	С	A(B+C)
Т	Т	Т	Т
F	Т	Т	F

□ But also with:

A	В	C	A(B+C)
Т	Т	F	Т
F	Т	F	F

□ But also with:

A	В	C	A(B+C)
Т	F	Т	Т
F	F	Т	F