CausalVLBench: Benchmarking Visual Causal Reasoning in Large Vision-Language Models

Aneesh Komanduri, Karuna Bhaila, and Xintao Wu Department of Electrical Engineering and Computer Science University of Arkansas

Motivation

- Large vision-language models (LVLMs) have shown remarkable ability in various tasks including object detection and visual question answering
- There have been several studies showing that LLMs and VLMs struggle in complex reasoning tasks and tend to "hallucinate"
- However, there has been little work exploring VLM reasoning from the lens of formal **causality**
- Pearl's Ladder of Causation:
 Observation (seeing), Intervention
 (doing), Counterfactual (imagining)

Can large vision-language models perform formal visual causal reasoning as defined by Pearl's ladder of causation?

Lack of counterfactual reasoning

Task Overview & Datasets

Task 1 - Causal Structure Inference: We want the VLM to infer the causal structure among high-level concept variables appearing in images

Task 2 - Intervention Target Prediction: Given a pair of images, we want the VLM to infer which variable was the source of all changes

Task 3 - Counterfactual Prediction: We want the VLM to infer counterfactual outcomes given a set of factual observations and a retrospective query

CausalVLBench Framework

Task 1: Causal Structure Inference

- **Given**: an input image V (standard) or a pair of images $V = \{V_{\text{before}}, V_{\text{after}}\}$ (interleaved), set of causal variables Z, and LVLM M_{θ}
- Goal: Infer the causal graph G = (Z, E) where E is the set of directed edges such that $(Z_i \to Z_i) \in E$ indicates that Z_i is a direct cause of Z_i
- Construct adjacency matrix $\hat{A}_{ij} = \mathbb{I}[\hat{Y}_{ij}] \in \{0, 1\}$, Edge set: $E = \{(Z_i, Z_i) \in Z \times Z \mid \hat{A}_{ij} = 1\}$
- **Prompting:** For each pair (Z_i, Z_j) where $i \neq j$, construct input prompt as:

Prompt: $\langle V \rangle \langle task | description \rangle \langle description | of causal variables \rangle$ Does Z_i directly cause Z_i to change?

VLM output: Yes (No)

• Evaluation: Average Structural Hamming Distance (SHD) and accuracy for single and paired image settings

Task 2: Intervention Target Prediction

- Given: a pair of images $V = \{V_{\text{before}}, V_{\text{after}}\}$, a set of causal variables Z, causal graph G, and LVLM M_{θ}
- **Goal**: Given a pair of images, infer the *source intervention* that caused the change between the two images
- Prompting:

Prompt: $\langle V_{\text{before}}, V_{\text{after}} \rangle \langle task \ description \rangle \langle description \ of \ causal \ variables \ Z \ and \ their \ relationships \ G \rangle$ From the first to the second image, which variable changes first?"

VLM output: <*predicted source intervention variable*>

• Evaluation: Average accuracy of predicted source intervention for zero and few shot settings

Task 3: Counterfactual Prediction

- **Given**: an input image V, a set of causal variables Z, causal graph G, initial variable assignments, and LVLM M_{θ}
- Goal: Given an input image and initial variable assignments, infer the values of all variables had an intervention occurred
- Prompting:

Prompt: $\langle V \rangle \langle task \ description \rangle \langle description \ of \ causal \ variables$ Z and their relationships $G \rangle \langle factual \ state \ of \ all \ variables$ $Z_1, Z_2, ..., Z_n \rangle \langle targeted \ intervention \ \mathbf{do}(Z_i = z_i^*)) \rangle$

VLM output: <counterfactual values of all variables>

• Evaluation: Average accuracy of predicted counterfactual values for zero and few shot settings

Experimental Evaluation

	Naturally occurring								Induced				
	Pendulum					Water	Flow		Causal Circuit				
Model	Standard		Inte	Interleaved		Standard		Interleaved		Standard		Interleaved	
	SHD	Acc	SHD	Acc	SHD	Acc	SHD	Acc	SHD	Acc	SHD	Acc	
LLaVA-OneVision-7B	$1.2_{0.01}$	89.90.06	1.70.02	85.20.14	$2.8_{0.01}$	76.30.09	$3.0_{0.00}$	$75.0_{0.00}$	$4.4_{0.03}$	62.4 _{0.24}	$3.2_{0.01}$	73.40.10	
Qwen-VL-Chat-9B	$1.0_{0.00}$	$83.1_{0.02}$	$0.9_{0.01}$	$87.9_{0.16}$	$2.0_{0.01}$	$74.7_{0.12}$	$2.9_{0.01}$	$68.1_{0.03}$	$3.0_{0.01}$	$74.5_{0.12}$	$2.9_{0.02}$	$75.7_{0.20}$	
IDEFICS2-8B	$0.8_{0.01}$	$93.0_{0.07}$	$0.2_{0.00}$	$98.1_{0.04}$	$1.0_{0.00}$	$91.5_{0.02}$	$3.0_{0.00}$	$75.0_{0.00}$	$5.0_{0.00}$	$\overline{57.7_{0.08}}$	$5.0_{0.00}$	$\overline{58.7_{0.02}}$	
Deepseek-VL2-Small	$\overline{4.0_{0.00}}$			$\overline{69.1_{0.12}}$									
OpenFlamingo-9B	$4.0_{0.00}$		$4.0_{0.00}$	$67.6_{0.00}$	$3.0_{0.00}$	$75.0_{0.00}$	$3.0_{0.00}$	$75.0_{0.00}$	$5.0_{0.00}$	$58.3_{0.00}$	$5.0_{0.00}$	$58.3_{0.00}$	
Otter-9B	$5.0_{0.00}$	$50.0_{0.00}$	$4.9_{0.01}$	$49.6_{0.12}$	$4.0_{0.00}$	$50.2_{0.00}$	$5.0_{0.00}$	$50.0_{0.03}$	$5.2_{0.02}$	$51.4_{0.18}$	$3.7_{0.00}$	$62.4_{0.20}$	
Deepseek-VL2-27B	$4.0_{0.0}$	$66.7_{0.0}$	$4.0_{0.00}$	$66.7_{0.00}$	$3.0_{0.00}$	$75.0_{0.00}$	$3.0_{0.00}$	$75.0_{0.00}$	$5.0_{0.00}$	$58.3_{0.00}$	$5.0_{0.00}$	$58.3_{0.00}$	
Qwen2.5-VL-Instruct-32B	$0.0_{0.00}$	$100.0_{0.00}$	$0.0_{0.0}$	$100.0_{0.0}$	$2.9_{0.01}$	$\underline{75.1_{0.04}}$	$2.3_{0.0}$	$80.1_{0.1}$	$2.9_{0.03}$	$75.5_{0.28}$	$4.6_{0.0}$	$62.1_{0.1}$	
Gemini-2.0-Flash	0.000.0	100.000	0.70.0	$94.4_{0.0}$	1.000.0	91.60.0	$2.3_{0.0}$	80.70.0	$3.2_{0.0}$	$73.2_{0.0}$	2.80.0	76.90.0	

Key Observations

- Models predict more accurately for datasets based on naturally occurring causal systems
- > Paired image setting tends to degrade model's ability to infer the causal structure
- > Qwen2.5VL and Gemini-2.0-Flash perform best across all datasets
- > IDEFICS and QwenVL-Chat show promising performance for Pendulum and Flow

	Pendulum				Water Flow				Causal Circuit			
Model	ZS		FS		ZS	FS			ZS	FS		
	0	2	4	8	0	2	4	8	0	2	4	8
LLaVA-OneVision-7B	$26.2_{1.5}$	$27.5_{1.9}$	$26.3_{1.0}$	$27.1_{0.9}$	$43.1_{0.8}$	$34.1_{2.3}$	$34.1_{1.2}$	$32.7_{1.2}$	$39.4_{0.5}$	$35.0_{0.4}$	$36.1_{0.5}$	$35.9_{0.4}$
Qwen-VL-Chat-9B	$24.9_{0.5}$	$24.8_{1.0}$	$24.3_{1.4}$	$\overline{24.7_{1.6}}$	$37.8_{0.6}$	$33.1_{1.2}$	$32.9_{0.8}$	$32.1_{0.8}$	$10.4_{0.9}$	$31.0_{0.4}$	$\overline{31.8_{1.6}}$	$\overline{33.0_{2.3}}$
IDEFICS2-8B	$29.0_{0.4}$	$24.2_{1.9}$	$24.8_{0.9}$	$24.3_{1.1}$	$34.8_{2.1}$	$35.4_{1.8}$	$33.3_{0.3}$	$33.5_{0.8}$	$10.2_{0.4}$	$30.3_{1.2}$	$31.4_{0.9}$	$29.7_{0.5}$
Deepseek-VL2-Small-2.8B	$25.5_{1.1}$	$24.4_{0.4}$	$24.0_{0.3}$	$0.0_{0.0}$	$35.8_{0.6}$	$34.4_{0.2}$	$34.3_{0.7}$	$0.0_{0.0}$	$72.9_{1.1}$	$28.1_{1.5}$	$0.2_{0.1}$	$0.0_{0.0}$
OpenFlamingo-9B	$24.8_{0.5}$	$24.7_{0.7}$	$23.7_{1.1}$	$25.2_{0.6}$	$34.2_{1.7}$	$34.5_{1.4}$	$33.0_{1.1}$	$33.1_{0.8}$	$9.8_{0.6}$	$31.6_{1.5}$	$31.9_{2.3}$	$32.3_{1.1}$
Otter-9B	$26.6_{1.9}$	$25.3_{0.3}$	$26.9_{0.4}$	$23.0_{1.2}$	$32.8_{1.1}$	$34.1_{1.0}$	$30.0_{0.9}$	$31.9_{0.9}$	$9.1_{0.7}$	$25.2_{1.4}$	$23.4_{1.4}$	$24.3_{1.4}$
Deepseek-VL2-27B	$31.9_{0.0}$	$30.4_{0.0}$	$24.1_{0.0}$	-	$44.4_{0.0}$	$36.6_{0.0}$	$31.4_{0.0}$	_	$66.1_{0.0}$	$43.7_{0.0}$	$30.3_{0.0}$	-
Qwen2.5-VL-Instruct-32B	$44.3_{0.5}$	$29.5_{0.3}$	$\underline{27.4_{2.0}}$	$26.2_{1.2}$	$\overline{48.4_{0.7}}$	$\underline{37.2_{1.3}}$	$\underline{37.3_{0.7}}$	$\underline{36.6_{0.6}}$	$\overline{32.1_{1.5}}$	$32.5_{0.9}$	$32.0_{1.2}$	$34.6_{0.8}$
Gemini-2.0-Flash	$39.4_{0.0}$	$45.2_{0.0}$	$45.3_{0.0}$	$47.4_{0.0}$	$37.6_{0.0}$	$46.5_{0.0}$	$52.4_{0.0}$	55.70.0	$10.5_{0.0}$	$43.1_{0.0}$	$55.1_{0.0}$	$66.1_{0.0}$

Key Observations

- ➤ Overall, the best performing models are DeepseekVL2, Qwen2.5VL, and Gemini-2.0-Flash
- > Gemini demonstrates the most clear upward trend as number of shots is increased
- > Deepseek performs well on the more complex Causal Circuit dataset
- Most open-weight models perform quite poorly in this reasoning task

Key Observations

- Most models attain better results when interventions are on variables with no descendants, but struggle with accurately propagating causal effects to descendants
- ➤ LLaVA-OneVision-7B,
 Deepseek-VL2, Qwen2.5-VL,
 and Gemini-2.0-Flash show the
 best performance across
 datasets
- For variables with at least one descendant, we see a clear improvement as we increase the number of demonstrations