EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

09153735

PUBLICATION DATE

10-06-97

APPLICATION DATE

01-12-95

APPLICATION NUMBER

07313801

APPLICANT:

SHARP CORP;

INVENTOR:

EKUMA SHUNJI;

INT.CL.

H01Q 19/17 H01Q 13/02 H04N 7/20

TITLE

LNB WITH TWO-INPUT FEED HORN

ABSTRACT :

PROBLEM TO BE SOLVED: To easily perform the reception of different satellite broadcasting with a single low noise block down converter (LNB).

SOLUTION: 1st and 2nd feed horn are provided for receiving linearly or circularly polarized waves, and a feed horn 2 for circularly polarized wave reception is provided with a phase shifter 1 for converting circularly polarized waves to linearly polarized waves and deriving left turn and right turn signals. Then, a feed horn 4 for linearly polarized wave reception is provided with an electronic polarizer 2 for selectively deriving either horizontally polarized signals or vertically polarized signals corresponding to a pulse signal superimposed on a power supply voltage. Besides, the selection of left turn signal and right turn signal is performed corresponding to a power supply voltage value and the selection of these horizontally polarized signal and vertically polarized signal is performed corresponding to the characteristics of pulse signal as mentioned above.

COPYRIGHT: (C)1997,JPO

BEST AVAILABLE COPY

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-153735

(43)公開日 平成9年(1997)6月10日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ		技術表示箇所
H01Q	19/17			H01Q	19/17	
	13/02			•	13/02	
H04N	7/20			H04N	7/20	

		審査請求	未請求 請求項の数5 OL (全 13 頁)
(21)出願番号	特觀平 7-313801	(71)出願人	000005049
(22)出顧日	平成7年(1995)12月1日		シャープ株式会社 大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	
		(72) 塔腊辛	ャープ株式会社内 在限 伊二
		(12)76971	大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
		(74)代理人	弁理士 佐野 静 夫
•			·

(54) 【発明の名称】 2入力フィードホーン付きLNB

(57)【要約】

【課題】異なる衛星放送の受信を単一のLNBで簡単に 行わせるようにする。

【解決手段】直線偏波受信用或いは円偏波受信用の第1 および第2のフィードホーンを設け、円偏波受信用のフ ィードホーンには円偏波を直線偏波に変換して左旋信号 及び右旋信号を導出させるフェイズシフターを設け、直 線偏波受信用のフィードホーンには電源電圧に重畳され るパルス信号により水平偏波信号か垂直偏波信号を選択 的に導出する電子式ポーラライザーを設け、上記左旋信 号と右旋信号の選択は電源電圧値により行い、上記水平 偏波信号と垂直偏波信号の選択は上記パルス信号の特性 により行うようにする。

20

あり、円偏波信号を直線偏波に変換するもので、円偏波 受信用LNB123ではフィードホーン125の中に内 蔵される。126は直線偏波受信用LNB124のフィ ードホーンである。ここでLは左旋偏波、Rは右旋偏波 を示している。

[0008]

【発明が解決しようとする課題】上記の従来技術におい ては、受信しようとする放送衛星が2個の場合、各放送 衛星に対応して設けたフィードホーン毎に独立のLNB を設け、各LNBの出力をケーブルで伝送するので、ア ウトドアシステムとインドアシステムを結ぶケーブルは 2本必要になり、また2本のケーブルより送られて来る 信号を切り換える入力切換器112が必要になる。

【0009】しかも、2個のLNBの取り付け角度を自 由に調整できるようにするため取付角度調整装置が必要 であった。従って、アンテナユニットとして複雑、高価 なものになり、また各地域で屋外に設置されたアンテナ ユニットのLNBの取付角度を調整せねばならないため アンテナ工事が面倒で複雑なものになるという問題があ った。

【0010】本発明は、上記の問題点に鑑み、現在米 国、カナダにて主流になりつつある入力周波数が11. 7 GHzから12. 7 GHzのFSS, BSS両用のアンテナユニッ トをコンパクトな形状で実現すると共に部品点数を削減 して量産性と信頼性の向上を図り、コストパフォーマン ス性に富んだしかも取り付け工事の簡単なアンテナユニ ットを提供することを目的とする。

[0011]

【課題を解決するための手段】本発明は上記の目的を達 成するため、第1及び第2のフィードホーンを備えた2 入力フィードホーン付き LNBにおいて第1のフィード ホーンを直偏波受信用フィードホーンとし、該直線偏波 受信用フィードホーン内には、供給される電流によって 入射する直線偏波信号の偏波面を任意の角度だけ回転さ せる機能を持った電子式ポーラライザーを設け、上記第 2のフィードホーンを円偏波受信用フィードホーンと. し、該円偏波受信用フィードホーン内には、円偏波信号 を直線偏波信号に変換するフェイズシフターを設けた構 成にする。

【0012】また、本発明は、第1及び第2のフィード 40 ホーンを備えた2入力フィードホーン付きLNBにおい 3 て、上記第1及び第2のフィードホーンを共に直線偏波 受信用フィードホーンとし、上記第1及び第2の両フィ - ドホーン内には、供給される電流によって入射する直 線偏波信号の偏波面を任意の角度だけ回転させる機能を 持った電子式ポーラライザーを設けた構成にする。

【0013】本発明の2入力フィードホーン付きLNB において、第1及び第2のフィードホーンで受信した受 信信号をそれぞれ中間周波数に変換する第1及び第2の 受信用フィードホーン内に設けた電子式ポーラライザー の電流量を制御する電流制御回路と、直線偏波信号の受 信時に電源回路に重畳されるパルス信号の有無とデュー ティ比を検出し、検出したデューティ比に応じて上記電 流制御回路の出力電流量の指令を行うと共に、上記パル ス信号を検出したとき、直線偏波信号の受信回路に設け られた上記ローカル発振器を選択的に作動させるパルス 検出器を設けた構成にすることができる。

【0014】また、本発明の2入力フィードホーン付き LNBにおいて、円偏波受信用フィードホーンから出力 される左旋信号及び右旋信号増幅用の第1及び第2の L NAと、LNBへの供給電圧値を予め定めた基準電圧と 比較して、上記第1及び第2のLNAを選択的に作動さ せる制御信号を導出するコンパレータを設けた構成にす ることができる。

【0015】また、本発明の2入力フィードホーン付き LNBにおいて、第1及び第2の直線偏波受信用フィー ドホーンからの出力信号にそれぞれ対応し、受信しよう とする信号に対応して選択的に動作する第1及び第2の LNAを設け、該第1及び第2のLNAの出力以降の回 路を一系統にまとめた構成にすることができる。

【0016】次に本発明の作用を説明する。直線偏波受 信用フィードホーンと円偏波受信用フィードホーンを設 けたものでは、直線偏波受信用フィードホーンに電子式 ポーラライザーを設けているため、この受信信号の偏波 面の角度を当該ポーラライザーへ供給する電流を微調整 (スキューと呼ぶ) することで正確に調整することがで きる。従ってLNBを地域によって傾けて取り付けるな どの調整をアンテナ設置工事時に行わなくともさまざま な地域にて水平かつ垂直偏波信号を最適な状態で受信す ることが可能となる (請求項1)。

【0017】また、2入力フィードホーンを共に直線偏 波受信用フィードホーンにしたものでは、各直線偏波受 信用フィードホーンは上記の直線偏波受信用フィードホ ーンと同じ作用をすることができ、同じ周波数帯の直線 偏波信号を出す異なった衛星から到来する信号をそれぞ れ最適な状態で受信できるアンテナユニットを提供する ことができる(請求項2)。

【0018】また、電源回路に重畳されている所定のパ ルス幅、デューティ比、及び波髙値を持ったパルス信号 により、直線偏波か円偏波の受信を選択したり、円偏波 の左旋信号か右旋信号を選択したり直線偏波の垂直、水 平偏波信号を選択したり、更には受信地域におけるスキ ュー機能を持たせることができる(請求項3、4)。

【0019】また、2入力フィードホーンを共に直線偏 波受信用フィードホーンにして、両フィードホーンで受 信した信号を供給電圧と予め定めた基準電圧との比較で 選択的に導出し、それ以降の回路を一系統にしているの で、異なった衛星からの直線偏波をさまざまな地域で最 混合器と、第1及び第2のローカル発振器と、直線偏波 50 適に受信できる回路を簡単な構成にして安価に提供する 10

20

うなパルス信号を重畳し、このパルス信号の有無とデュ ーティ比をパルス検出器23で検出し、この検出出力に 基づいて、電流制御回路24の電流量を制御して、フィ ードホーン4に設けた電子式ポーラライザー2に供給す べき電流をコントロールすることによって行われる。

【0033】即ち、上記電子式ポーラライザー2は、電 流制御回路24より供給される電流量に応じて、選択す る偏波面の回転角を任意に決定する機能を持つので、電 流量制御回路24より電子式ポーラライザー2に供給す る電流量を制御することによって、任意の偏波面の傾き を持った水平、垂直偏波信号を選択することが可能にな

【0034】尚、このとき、パルス検出回路23から、 パルスの有無の判定信号も出力され、この出力信号によ り、FSSの衛星からの信号を受信するためのローカル 発振器18 (FSS受信用発振周波数10.75GHz) の電源がオンされ、他方のローカル発振器13の電源は オフされる。また、上記パルス検出回路23により、上 記パルスがないと判断された場合には、上記とは逆にロ ーカル発振器13がオンし、ローカル発振器18がオフ 状態になる。

【0035】このようにして、電子式ポーラライザー2 により選択された信号は、LNA15に入力され、適切 なレベルの信号に低雑音増幅された後、所望の周波数帯 を通過させイメージ周波数帯の信号を除去するBPF1 6を介し、混合器17に供給される。

【0036】混合器17では、上記パルス検出器23の 出力により予め電源電圧が供給されたローカル発振器1 8からの発振信号が混合され、950MHzから1450M Hzの中間周波数帯域の信号に周波数変換される。そして- 30 適切な雑音特性と利得特性を持つようにIFプリアンプ 19で増幅された後、上記 I Fコンバイナー20に供給 され、該IFコンバイナー20で、上記IFプリアンプ 14からの別の衛星の信号と結合し、IFアンプ21で 増幅して出力端22より出力信号として導出する。

【0037】上記図2に示すLNBのブロック図におい て、BSS衛星からの信号を受信するフィードホーン3 内には円偏波を直線偏波に変換するためのフェーズシフ ター1が装着されている。このフェーズシフター1は4 分の1波長位相器と呼ばれるものであるが、本実施形態・40 ではフィードホーン3内に適切な長さと幅と高さを持っ た金属からなる突起で構成しており、フィードホーン3 がダイカスト成形で製作されていることを利用して、こ の突起もフィードホーン3のダイカスト成形と同時に製 作して寸法精度の向上と余分な部品の廃止を実現してい

【0038】上記フィードホーン3による左旋偏波信号 と右旋偏波信号の選択は、フィードホーン3からの信号 が最初に入力する1段あるいは2段のHEMT (High E 増幅器であるLNA6のバイアス回路への電流供給をオ ン、オフすることによって実現している。

【0039】すなわちLNB5に供給される電源電圧値 が予め定めた基準の電圧値(例えば動作電圧範囲が12 Vから20 Vであれば15 Vあたりを基準電圧とする) より高い電圧が供給される場合は、左旋偏波信号を選択 し、逆に基準電圧値より低い電圧が供給される場合は、 右旋偏波信号を選択する。この制御はコンパレータ(電 圧比較器) 9を用いて実現しており既存のリニア I C で 構成できる。

【0040】上述のようにして選択された信号は、BP F11に供給される。このBPF11は選択された周波 数帯域に対するイメージ周波数帯域の信号を除去するた めに設けられた2分の1波長インターディジタルフィル・ タと呼ばれるもので、マイクロストリップ線路の回路基 板の銅箔パターンの幅や長さを理論的に設定することに よって構成することができる。そして、このBPF11 を通過した信号は、混合器12で、ローカル発振器13 からの発振周波数が11.25MHzの信号と混合され、 950MHzから1450MHzの中間周波帯の信号に変換さ れる。

【0041】混合器12で変換されたIF帯域の信号は IFプリアンプ14で適切なレベルの信号に増幅された 後、IFコンバイナー20に供給される。このIFコン バイナー20は、いわゆるパワーコンバイナーと呼ばれ 2つの入力からの信号を一つの出力に導くもので、2つ の入力と1つの出力の各端子におけるインピーダンス整 合と、各端子間のアイソレーション特性を良好にするた めに設けられている。

【0042】すなわち一つの入力の信号が、もう一つの 入力の信号の影響をできるだけ受けないようにする効果 を狙ったものである。その後、最終段の I F アンプ21 に供給されて、中間周波増幅が行われ、適切なレベルに 増幅されると共に、出力端子とのインピーダンス整合が ここでとられたのち出力端子22からIF信号として出 カされる。

【0043】一方、フィードホーン4に設けた電子式ポ ーラライザー2は、図4に示した Revolution Angle 対 Polarizer Current 特性を満足するもので、この電子. 式ポーラライザー2の電流制御は、図3に示したパルス をLNB5の出力同軸ケーブルに重畳した電流により行 う。また、この電子式ポーラライザー2はフェライトの ファラディー効果を利用したもので小型で信頼性の高い ものがすでに実現されている。

【0044】上記図3に示したパルス波形は従来からあ る機械式のポーラライザーを使用する場合に規定されて いるものと同一規格であり、このパルス波形のデューテ ィ比を変化させることで水平偏波と垂直偏波をそれぞれ 選択すると共に、当該パルスのデューティ比を微調整す lectoron Mobility Transistor) 素子で構成した低雑音 50 ることにより、各地域における直線偏波の偏波面の傾き

に合わせた形で受信できるいわゆるスキュー効果の機能 を持っている。

【0045】図3に示したパルスを検出し、電子式ポーラライザー2に適切な電流を供給するためには、パルス検出回路23と電流制御回路24が必要であるが、これらは、既存のリニア回路用トランジスタやオペアンプやリニアICで実現できる。また、パルス検出回路23は、BSS mu の円偏波信号を受信することを選択するために、BSS mu の発振周波数が11.25 MHzの信号を発生させるローカル発振器13の電源をオンにし、FSS mu の電源をオンにし、FSS mu の電源をオンにする。上記パルスがあるときは、FSS衛星の直線偏波を受信することを選択するため、ローカル発振器13の電源をオフにし、ローカル発振器13の電源をオフにし、ローカル発振器13の電源をオフにし、ローカル発振器13の電源をオフにする。

【0046】図5は本発明の第2の実施形態であり、図2に示す第1の実施形態に対応する部分は同一符号を付し説明を省略する。図5において、4-1は、電子式ポーラライザー2-1を備えた直線偏波用のフィードホー20ン、15-1及び30はLNA、31はBPF、32は混合器、33はFSS用の発振周波数が10.75MHzの信号を発生させるローカル発振器、33はIFプリアンプである。

【0047】この第2の実施形態は、衛星から到来する信号が共に直線偏波である場合のもので、その周波数帯域も11.7GHzから12.2GHzであるが、2つの異なった衛星(静止軌道が異なる)から直線偏波が到来するため、2つの電子式ポーラライザー2及び2-1のスキューの程度を変える必要がある、そのため2つの入力フィードホーン4及び4-1にはそれぞれ電子式ポーラライザーを別々に設ける必要がある。

【0048】この電子式ポーラライザー2及び2-1の制御は、前述の第1の実施形態の場合と同じく、パルス検出回路23と電流制御回路24によって行われるが、どちらの衛星の信号を選択するかは前述のLNB5の供給電圧値が基準電圧より大きいか小さいかを判定するコンパレータ9を設けて、それぞれのフィードホーン4及び4-1からの信号が入力されるそれぞれの初段のLNA15及び15-1のバイアス回路への電源供給をオン、オフすることによって実施する。この場合初段のLNA以外の回路はすべて共通化でき2台のLNBを使用した場合に比べ大幅な部品点数の削減が可能である。

[0049]

【発明の効果】以上のように、本発明によれば、1本の同軸ケーブルで2個のフィードホーンの信号の選択と水平・垂直偏波信号の選択と右旋・左旋偏波信号の選択および水平・垂直偏波信号のスキュー動作を行わせることができ、工事の簡単なアンテナユニットを提供することができる。

10

【0050】また、アンテナユニットとインドアシステムの間に2つの衛星からの信号の選択用入力切替器が不必要となると共にLNBをアンテナに取り付ける機構が簡単になり、コストパフォーマンス性に富んだアンテナユニットを提供することができ、2台のLNBを用いた従来のものに比べ部品点数の削減が図れ、量産性かつ信頼性の向上を図ることができる。

【0051】また、直線偏波受信用フィードホーンを2 個設け、供給電圧を予め定めた基準電圧と比較して一方 10 のフィードホーンからの信号を選択的に取り出し、それ 以降の回路を一系統にしたものでは、2台のLNBを用 いたものに比べ部品点数を大幅に削減し、安価で量産性 および信頼性の向上を図ることができる。

【図面の簡単な説明】

【図1】本発明の構成を示す傾視図である。

【図2】本発明の第1の実施形態のブロック図である。

【図3】本発明に用いる電子式ポーラライザーを制御するためのパルス信号の波形図である。

【図4】本発明に用いる電子式ポーラライザーの特性図である。

【図5】本発明の第2の実施形態のブロック図である。

【図 6 】従来の衛星放送受信システムのブロック図であ ろ

【図7】異なった衛星からの信号を受信する従来の衛星 放送受信システムのブロック図である。

【図8】直線偏波を受信する場合のLNBとアンテナと 受信信号の概念図である。

【図9】従来例(図8)により異なる衛星放送信号を受信する場合の概念図である。

30 【図10】2個の独立したNLBにより異なる放送の信号を受信する場合の概念図である。

【図11】図10の動作説明図である。

【符号の説明】

- 1 フェイズシフター
- 2 電子式ポーラライザー
- 3 円偏波受信用フィードホーン
- 4 直線偏波受信用フィードホーン
- 5 LNB
- 6 LNA
- 0 7 LNA
 - 8 電源
 - 9 コンパレータ
 - 12 混合器
 - 13 ローカル発振器
 - 17 混合器
 - 18 ローカル発振器
 - 23 パルス検出器
 - 24 電流制御回路
 - 2-1 電子式ポーラライザー
- 50 4-1 直線偏波受信用フィードホーン

11

15-1 LNA 32 混合器 33 ローカル発振器

【図4】

【図3】

【図7】

福星放送受信システム (米国 FSS&BSS)

【図9】

【図11】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS		
MAGE CUT OFF AT TOP, BOTTOM OR SIDES		
FADED TEXT OR DRAWING	, t	ŧ
BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUAI	LITY	•
OTHER:		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.