钢丝杨氏模量——实验报告

PB22151743 崔士强

2023年6月14日

1 实验目的

用拉伸法测量钢丝的杨氏模量.

2 实验原理及装置

杨氏模量为钢丝应力与应变之比,即:

$$E = \frac{FL}{S\Delta L}$$

考虑到钢丝形变 ΔL 较小,难以测出,因此利用光学放大法放大.

图 1: 光杠杆示意图

图 2: 光路图

光杠杆结构如图 1 所示。杠杆支脚与被测物接触,当被测物发生微小形变时支脚发生移动,平面镜角度随之变化。光路图如图 2 所示,当角度变化 θ 时,入射光角度变化 2θ ,而这里的 θ 很小,因此有:

$$\theta \approx \tan \theta = \frac{\Delta L}{l}$$

$$2\theta \approx \tan 2\theta = \frac{b}{d}$$

结合上面给出的 E 的表达式可以得到:

$$E = \frac{8DLF}{\pi d^2 lb}$$

此处使用望远镜观测平面镜成像,望远镜处竖直放置一标尺,用于测量 b,实验装置如图 3.

图 3: 实验装置示意图

因此需要测量的物理量有:钢丝长度 L,钢丝直径 d,光杠杆臂长 l,标尺示数变化 b,作用力 F,标尺到平面镜距离 D。而从上面的表达式可以看出,F 与 b 存在线性关系:

$$b = \frac{8DL}{\pi d^2 l E} F$$

测出若干组 b 和 F 的值,便能通过线性拟合得到的斜率计算出杨氏模量 E.

3 实验数据及计算

数据如下表

测量次数	d/mm	L/cm	D/cm	l/cm
1	0.295	138.33	99.78	7.15
2	0.298	138.56	99.90	7.17
3	0.296	138.60	99.86	7.16
4	0.296			
5	0.299			
6	0.298			

表 1: d, L, D, l 的测量值

此处螺旋测微器零误差为 -0.025mm, 已对 d 做修正.

	7	1 ′	
\underline{i}	b_i	$b_{i}^{'}$	
0	0.00	0.02	
1	1.30	1.43	
2	2.68	2.85	
3	4.00	4.20	
4	5.45	5.68	
5	6.88	6.91	
6	8.28	8.29	
7	9.68		

表 2: b_i 及 $b_i^{'}$ 的测量值

每个砝码重 500g,取 $g=9.8\mathrm{m/s^2}$,可得到如下结果:

砝码总质量 m/g	F/N	b/cm
0	0	0.01
500	4.9	1.365
1000	9.8	2.765
1500	14.7	4.1
2000	19.6	5.565
2500	24.5	6.895
3000	29.4	8.285
3500	34.3	9.68

表 3: F 与 b 的值

图 4: 线性拟合图像

图 4 给出了 b 与 F 的线性拟合图像,拟合得到的斜率与截距为:

$$M = 0.28218 \text{cm/N}$$

 $b = -0.00625 \text{cm}$

相关系数

$$r = \frac{\overline{Fb} - \overline{F} \cdot \overline{b}}{\sqrt{\left(\overline{F^2} - \overline{F}^2\right)\left(\overline{b^2} - \overline{b}^2\right)}} = 0.99997481$$

斜率的展伸不确定度

$$U_M = t_P \cdot |M| \cdot \sqrt{\frac{\left(\frac{1}{r^2} - 1\right)}{n - 2}} = 0.0020034 \,\mathrm{cm/N}, P = 0.95$$

截距的展伸不确定度

$$U_b = U_M \cdot \sqrt{\overline{F^2}} = 0.041065 \,\mathrm{cm}, P = 0.95$$

下面对所测得的其他物理量进行处理

1. 钢丝直径 d

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = 0.297 \,\text{mm}$$

$$\sigma_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(d_i - \overline{d} \right)^2} = 0.0015492 \,\text{mm}$$

$$\Delta_{B,d} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} = \sqrt{0.004^2 + 0.005^2} \,\text{mm} = 0.0064031 \,\text{mm}$$

$$U_{d,P} = \sqrt{\left(t_P \frac{\sigma_d}{\sqrt{n}} \right)^2 + \left(k_P \frac{\Delta_{B,d}}{C} \right)^2} = 4.4881 \times 10^{-3} \,\text{mm}, P = 0.95$$

2. 钢丝长度 L

$$\overline{L} = \frac{1}{n} \sum_{i=1}^{n} L_i = 138.5 \, \mathrm{cm}$$

$$\sigma_L = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(L_i - \overline{L} \right)^2} = 0.14572 \, \mathrm{cm}$$

$$\Delta_{B,L} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} = 0.13 \, \mathrm{cm}$$

$$U_{L,P} = \sqrt{\left(t_P \frac{\sigma_L}{\sqrt{n}} \right)^2 + \left(k_P \frac{\Delta_{B,L}}{C} \right)^2} = 0.37159 \, \mathrm{cm}, P = 0.95$$

3. 标尺到平面镜距离 D

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i = 99.847 \,\text{cm}$$

$$\sigma_D = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(D_i - \overline{D}\right)^2} = 0.061101 \,\text{cm}$$

$$\Delta_{B,D} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} = 0.13 \,\text{cm}$$

$$U_{D,P} = \sqrt{\left(t_P \frac{\sigma_D}{\sqrt{n}}\right)^2 + \left(k_P \frac{\Delta_{B,D}}{C}\right)^2} = 0.17385 \,\text{cm}, P = 0.95$$

4. 光杠杆臂长 l

$$\bar{l} = \frac{1}{n} \sum_{i=1}^{n} l_i = \frac{7.15 + 7.17 + 7.16}{3} \text{ cm} = 7.16 \text{ cm}$$

$$\sigma_l = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(l_i - \bar{l}\right)^2} = 0.01 \text{ cm}$$

$$\Delta_{B,l} = \sqrt{\Delta_{app}^2 + \Delta_{est}^2} = 0.13 \text{ cm}$$

$$U_{l,P} = \sqrt{\left(t_P \frac{\sigma_l}{\sqrt{n}}\right)^2 + \left(k_P \frac{\Delta_{B,l}}{C}\right)^2} = 0.088487 \text{ cm}, P = 0.95$$

最终可以得到:

$$E = \frac{8DL}{\pi d^2 l M} = 1.9759 \times 10^{11} \, \mathrm{Pa}$$

展伸不确定度

$$U_{E,P} = \sqrt{\left(\frac{\partial E}{\partial D}U_{D,P}\right)^2 + \left(\frac{\partial E}{\partial L}U_{L,P}\right)^2 + \left(\frac{\partial E}{\partial d}U_{d,P}\right)^2 + \left(\frac{\partial E}{\partial l}U_{l,P}\right)^2 + \left(\frac{\partial E}{\partial M}U_{M,P}\right)^2}$$

$$= 6.6325 \times 10^5 \,\text{N/cm}^2, P = 0.95$$

杨氏模量的测量值为

$$E = (1.98 \pm 0.07) \times 10^7 \,\mathrm{N/cm^2}$$

相对不确定度为 3.535%, 符合实验要求.

4 思考题

- 1. 提高放大率可以使现象更明显,减小因读数产生的误差,但是放大率过大可能会导致超 出标尺量程的情况
- 2. 长度量的测量与这个长度的大小有关。*d* 非常小,只能使用螺旋测微器,如果使用其他 仪器会导致相对误差过大其余量较大,可以使用钢卷尺。