Computer Organization & Architecture

Chapter 9 Review – Integer Representation

Zhang Yang 张杨 cszyang@scut.edu.cn Autumn 2021

Content of this lecture

- Signed Integers
- Signed-Magnitude Representation
- Signed One's Complement Representation
- Signed Two's Complement Representation
- Conclusions
- Converting between Different Bit Lengths
- Summary
- Exercise

Signed Integers

An *n*-bit integer

$$B = b_{n-1} \dots b_1 b_0$$

- \square where $b_i = 0$ or 1 for $0 \le i \le n-1$
- \square represents an unsigned integer value 0 ~ 2ⁿ-1

$$V(B) = b_{n-1} * 2^{n-1} + ... + b_1 * 2^1 + b_0 * 2^0$$

- Need to represent both positive and negative numbers
 - □ Signed-Magnitude representation
 - □ Signed One's Complement representation
 - □ Signed Two's Complement representation

м

Signed-Magnitude Representation (1)

- For an *n*-bit integer
 - The <u>sign part</u> is a 1-bit value that is 0 for positive numbers, and 1 for negative numbers
 - □ The magnitude part is an (n-1)-bit value that holds the absolute value of the number

Signed-Magnitude Representation (2)

An n-bit integer

$$B = b_{n-1} ... b_1 b_0$$

- \Box $b_{n-1} = 0$, B is a positive number
- \Box $b_{n-1} = 1$, B is a negative number

Example

- \Box +18₁₀ = $\underline{0}$ 0010010
- \Box 18₁₀ = <u>1</u>0010010
- \Box + O_{10} = $\underline{O}0000000$
- \Box O_{10} = $\underline{1}0000000$

re.

Signed-Magnitude Representation (3)

- Representation Range
 - In general, if an n-bit sequence of binary digits $b_{n-1}...b_1b_0$ is interpreted as an signed integer B, its value is

$$V(B) = \begin{cases} \sum_{i=0}^{n-2} 2^{i}b_{i} & \text{if } b_{n-1} = 0 \\ -\sum_{i=0}^{n-2} 2^{i}b_{i} & \text{if } b_{n-1} = 1 \end{cases}$$

$$-(2^{n-1}-1) \leq V(B) \leq 2^{n-1}-1$$

Signed-Magnitude Representation (4)

Drawbacks

- Addition and subtraction require a consideration of both the signs of the numbers and their relative magnitudes to carry out the required operation.
- There are two representations of 0.
 - +0 = 00000000
 - -0 = 10000000

Signed One's Complement Representation (1)

- For an n-bit integer
 - The <u>sign part</u> is a 1-bit value that is 0 for positive numbers, and 1 for negative numbers
 - □ The magnitude part is an (n-1)-bit value
 - Positive numbers: equivalent to the magnitude part of a signed-magnitude integer
 - Negative numbers: represented as the bitwise complement of its absolute value

Signed One's Complement Representation (2)

- Bitwise complement
 - Take the Boolean complement of each bit of the number. That is, set each 1 to 0 and each 0 to 1
- Example
 - \square +18 = $\underline{0}$ 0010010
 - \Box 18 = 11101101
 - \Box + 0 = 00000000
 - \Box 0 = 11111111

Signed Two's Complement Representation (1)

- For an *n*-bit integer
 - The <u>sign part</u> is a 1-bit value that is 0 for positive numbers, and 1 for negative numbers
 - □ The magnitude part is an (n-1)-bit value
 - Positive numbers: equivalent to the magnitude part of a signed-magnitude integer
 - Negative numbers: represented as the bitwise complement of its absolute value +1

Signed Two's Complement Representation (2)

Example

- \Box +18 = 00010010
- \Box 18 = 11101110
- \Box + 0 = $\underline{0}$ 0000000
- -0 = 00000000

Signed Two's Complement Representation (3)

- Representation Range
 - □ The general case $B = b_{n-1}...b_1b_0$

$$V(B) = \begin{cases} \sum_{i=0}^{n-2} 2^{i}b_{i} & B \ge 0 \\ -2^{n-1}b_{n-1} + \sum_{i=0}^{n-2} 2^{i}b_{i} & B < 0 \end{cases}$$

$$= -2^{n-1}b_{n-1} + \sum_{i=0}^{n-2} 2^i b_i$$
 (for both positive and negative numbers)

$$-2^{n-1} \leq V(B) \leq 2^{n-1}-1$$

signed two's complement

Conclusions(1)

- In all three systems, the leftmost bit is 0 for positive numbers and 1 for negative numbers.
- Positive values have identical representations in all systems, but negative values have different representations.
- The 2's-complement of a number is obtained by adding 1 to the 1's-complement of that number.

Conclusions(2)

- The Sign and Magnitude system is the simplest representation, but it is also the most awkward for addition and subtraction operations.
- The 2's-complement system is the most efficient method for performing addition and subtraction operations.

Converting between Different Bit Lengths (1)

- Sign and Magnitude Numbers
 - Move the sign bit to the new left-most position and fill in with zeros.
 - □ Example

```
-+18 = 00010010 (8 \text{ bits})
```

$$-18 = \underline{10010010}$$
 (8 bits)

Converting between Different Bit Lengths (2)

- Converting between Different Bit Lengths (ctd.)
 - □ Signed Two's Complement Numbers
 - Example

```
□ +18 = 00010010 (8 \text{ bits})
□ +18 = 0000000000010010 (16 \text{ bits})
□ -18 = 11101110 (8 \text{ bits})
□ -32568
```

Sign Extension

Move the sign bit to the new left-most position and fill in with copies of the sign bit. For positive numbers, fill in with zeros, and for negative numbers, fill in with ones.

Converting between Different Bit Lengths (3)

Example

$$\Box -18 = \underline{1}1101110 (8 \text{ bits})$$

Summary (1)

- 知识点: Integer Representation
 - Signed-magnitude
 - Signed one's complement
 - Signed two's complement
- 掌握程度
 - □ 给定一个真值(用正负号来分别表示正数、负数,这样的数称真值),正确转换出原码、反码、补码。
 - □ 负数原码转换成真值
 - □ 负数补码转换成真值

Summary (2)

- ■掌握程度
 - □给定一个真值和机器码制,会计算表示范围。
 - □负数原码和补码互相转换:符号不变,数值部分求反加1。
 - □负数原码和反码之间互相转换:符号不变,数值 部分求反。

Exercise (1)

- 1. _____ is the most efficient method for performing addition and subtraction operations.
 - □ A. Signed-Magnitude Representation
 - □ B. Signed 1's Complement Representation
 - □ C. Signed 2's Complement Representation
 - □ D. None of the above

Exercise (2)

- 2. The range of an 8-bit signed 2's complement integer is _____.
 - □ A. [-256,+256]
 - □ B. [-256,+255]
 - □ C. [-128,+128]
 - □ D. [-128,+127]

Exercise (3)

3. Given the 8-bit binary number: 10011101. What decimal number does this represent if the computer uses signed-magnitude representation?

- □ A. +29
- □B. 29
- □C. +99
- □ D. 99

Exercise (4)

4. Given the 8-bit binary number: 10011101. What decimal number does this represent if the computer uses signed two's complement representation?

- □ A. +29
- □B. 29
- □C. +99
- □D. 99