Домашняя работа №5

по дисциплине "Дифференциальная геометрия и топология"

Винницкая Дина Сергеевна

Группа: Б9122-02.03.01сцт

1 Задание

Найти Int(0,1) в топологии Зарисского.

Пусть:

$$X = \mathbb{R}$$

T= все множества, являющиеся дополнениями конечных подмножеств, или пустое множество

Решение:

Рассмотрим множество:

$$A = \mathbb{R} \setminus ((-\infty, 0] \cup [1, +\infty))$$

Предположим, что существует такая точка $x \in A$, что найдётся её окрестность $U_x \subset Int(A)$, где $U_x = \mathbb{R} \setminus V$, при этом V — конечное множество.

$$V = \mathbb{R} \setminus U_x$$
$$\mathbb{R} \setminus A \subset V$$
$$V \supset \mathbb{R} \setminus A = (-\infty, 0] \cup [1, +\infty)$$

Следовательно, V оказывается бесконечным, что противоречит предположению о его конечности. Таким образом, предположение оказалось неверным. Следовательно, $Int(0,1)=\emptyset$.

2 Задание

B \mathbb{R} , $\mathcal{T}_{\text{канонич}}$: найти $Cl([0,1]), Cl(\mathbb{Q}), Cl(\mathbb{R} \setminus \mathbb{Q}), Cl(\{a\})$ в ξ :

$$\xi = \begin{pmatrix} X = \{a, b, c, d\} \\ T_X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b\}\} \end{pmatrix}$$

Решение

Замыканием множества A называется совокупность всех его точек прикосновения, и обозначается как $Cl_x(A)$.

$$Cl_x(A) = \{x \in X \mid \forall U_x \quad U_x \cap A \neq \emptyset\}$$
 $Cl(A) = \bigcap F_i, \quad F_i$ – замкнуто и $F_i \supset A$

Каноническая топология на \mathbb{R} определяется как топология, в основе которой лежат открытые интервалы, то есть:

$$U\in\mathcal{T}\iff U=\emptyset$$
 или $\forall x\in U\,\exists V:V=\{x\,|\,|x-x_0| $\mathbb{R}\setminus A=(-\infty,0)\cup(1;+\infty)$ - открытое$

 $\Rightarrow [0,1]$ — замкнутое, и является наименьшим замкнутым множеством, содержащим A

$$Cl([0,1]) = [0,1]$$

Замыкание $Cl(\mathbb{Q})$

 $\forall x \in \mathbb{R} \ \forall U_x$ в каждой окрестности существуют рациональные точки Следовательно, любая точка \mathbb{R} – точка прикосновения множества \mathbb{Q}

$$Cl(\mathbb{Q}) = \mathbb{R}$$

Замыкание $Cl(\mathbb{R} \setminus \mathbb{Q})$

 $\forall x \in (\mathbb{R} \setminus \mathbb{Q}) \, \forall \, U_x$, в каждой окрестности существуют рациональные точки Следовательно, любая точка множества \mathbb{R} – точка прикосновения множества $\mathbb{R} \setminus \mathbb{Q}$

$$Cl(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$$

Замыкание $Cl(\{a\})$

$$\{a, c, d\} = X \setminus \{d\}$$

$$Cl(\{a\}) = \{a, c, d\}$$

Задание

Показать, что множество A замкнуто тогда и только тогда, когда его граница A содержится в самом множестве A, то есть:

$$A$$
 замкнуто \iff $\partial A \subseteq A$

Решение

Граница $A = \partial A$

Необходимость

A — замкнутое множество $\Rightarrow X\setminus A\in T\Rightarrow \forall x\in X\setminus A\,\exists U_x=X\setminus A:U_x\cap A=\emptyset\Rightarrow x$ не является граничной точкой для $A\;\forall x\in X\setminus A\Rightarrow \partial A\subseteq A$

Достаточность

$$\partial A\subseteq A\Rightarrow\exists x\in A: \forall U_x,\,U_x\cap A\neq\emptyset\,\lor\,U_x\cap V\neq\emptyset,\,V=X\setminus A$$
 Поскольку $\partial A\nsubseteq V,$ то $\forall x\in V\,\exists U_x\subseteq V,$ так что $U_x\cap A=\emptyset$ Следовательно, $Cl(A)=A$ Так как Cl — замкнуто, то и A — замкнутое