§8 Turan's Theorem & Extremal Graphs

BY YUEJIAN MO

April 30, 2018

How many edges must a simple graph on n vertices have to gurantee the graph to have a triangle? or what's the maximum # of edges of a simple graph on n vertices s.t. there is no Δ ?

Theorem: Let G be a simple graph on n vertices. If G has no Δ , then

$$e \leqslant \lfloor \frac{n^2}{4} \rfloor$$

In other words. if $e(G) > \lfloor \frac{n^2}{4} \rfloor + 1$, G must have a Δ .

Proof.

Method from book:

We given vertex i a weight $z_i \ge 0$, number from 1 to n, such that $\sum z_i = 1$, and we wish maximize $S := \sum z_i z_j$, where the sum is taken over all edges $\{i,j\}$. Suppose that vertex k and vertex l are not joined. Let the neighbors of k have total weight x, and those of l total weight y, where x > y. Since $(z_k + \varepsilon)x + (z_l - \varepsilon)y \ge z_k x + z_l y$, we do not decrease the value of S if we shift some of the weight of vertex l to the vertex k. It follows that S is maximal if all of the weight is concentrated on some complete subgraph of S, i.e. on one edge! Therefore $S \le \frac{1}{4}$. On the other hand, taking all z_i equal to n^{-1} would yield a value of $n^{-2}|E|$ for S. Therefore $|E| \le \frac{1}{4}n^2$

(1) Any
$$xy \in E(G)$$
, \Box

Theorem: The indpendence number of a simple graph G= The size of a largest coclique(or indep set) in G.

Proof. Let α = the independent number of G, and let A be a coclique of size α , $\beta = V(G) \setminus A$ Claim: $\forall x \in V(G), d(x < \alpha)$

Claim: $\forall e \in E(G)$, at least one end of e in β

$$\begin{aligned} & \operatorname{count} \left\{ (e,x) \middle| \begin{array}{l} e \in E(G) \\ e \in \beta \\ x \text{ is incident with } e \end{array} \right\} \\ & e(G) = |E(G)| \leqslant \sum_{e \in E(G)} (1 \text{ or } 2) = \sum_{x \in \beta} d\left(x\right) \leqslant \alpha \left|\beta\right| \leqslant \left(\frac{\alpha + \left|\beta\right|}{2}\right)^2 = \left(\frac{n}{2}\right)^2 = \frac{n^2}{4} \end{aligned} \qquad \square$$

Notes: The difference of Maximal and Maximum. Let (X, \leq) be a partially ordered set, then

Maximal An element $m \in X$ is maximal, if $m \le x$ for any $x \in X$ then x = m. [2] Maximum An element $M \in X$ is a maximum, if $x \le M$ for every $x \in X$.

Figure 1. The difference between maximum and maximal[3]

Extremal graphs: ex(H, n) = the largest number of edges in a simple graph on n vertrices which doesn't contain H as a subgraph.

In general, an extremal graph is the largest graph of order n which does not contain a given graph G as a subgraph. Turan studied extremal graphs that do not contain a complete graphs K_p as a subgraph.[1]

exclude

Turan's theorem: If a simpel G on n vertice contains no copy of K_{v+1} , then it has at most $\left(1-\frac{1}{r}\right)\frac{n^2}{2}$ edges.

$$e(G) = e(A) + e(B) + e(A, B)$$

Proof. Use strong induction on n = r.

Assumet that the thm is true for graph on <n vetieces

Let G be a graph on n vercties without K_{r+1} with maximum # of edges,

Claim: G has a copy(subset) of K_r (otherwise we could add edges to G so that G has a K_r and still has no K_{r+1} .

Let A be the set of vertices of this
$$K_r$$
, let $\beta = V(G) \setminus A.(???)$

Complete

Y= partitie graphs, $K_{n_1,n_2,...,n_r}$

$$n_1 + n_2 + \ldots + n_r = n$$

$$\#\text{of edges} = \sum_{1 \leqslant i \leqslant j \leqslant r} n_o n_j$$

$$|n_i - n_j| \leqslant 1, \forall i \neq j$$

The girth of a graph G = the size of a smallest cycle(polygon P_n) in G. (If G has no cycles then we say that girth of G is ∞ , such as forest). Here are different state of girth:

- Girth $\geqslant 3 \Leftrightarrow G$ is simple
- Girth $\geqslant 4 \Leftrightarrow G$ is simple and no Δ
- Girth $\geqslant 5 \Leftrightarrow$

Theorem 4.2. If a graph G on n vertices has more than $\frac{1}{2}n\sqrt{n-1}$ edges, then G has girth ≤ 4 . That is, G is not simple or contains a P_3 or a P_4 (a triangle or a quadrilateral).

Proof. $\forall x \in V(G)$,

Claim 1: no two of $y_1, y_2, ..., y_n$ are adjacent

Claim 2: no vertex other than x can be adjacent to more than one of $y_1, y_2, ..., y_d$

$$(\deg(y_1) - 1) + (\deg(y_2) - 1) + \dots + (\deg(y_d) - 1) + d + 1 \le n$$

Then

$$\frac{1}{n}(2|E(G)|)^2 = \frac{1}{n} \left(\sum_{y \in V(G)} \deg(y) \right)^2 \leqslant \sum_{y \in V(G)} \deg(y)^2 = \sum_{x \in V(G)} \sum_{y \text{ adjacent to } x} \deg(y) \leqslant n(n-1)$$

$$\frac{1}{n} + 4E(G)^2 = n(n-1)??$$

- i. $n = 1 + d^2$, d: a positive interger
- ii. The grith is regular(The equality in c-s inqualigty holds four situation)
- iii. no $\Delta(\text{girth} \ge 5)$
- iv. $\forall x, y, xy \in E(G) \exists !z, xz, yz \in E(G)$

Figure 2. Note (Under understanding)

A=the adjectcy matrix of G

$$(A^2)_{xy}$$
 = the #of walks of lenth 2 between x and d

$$Vx \in V(G), \sum_{y \sim x} \deg(y) \leq -1$$

$$A^2 = dI, +0.A_{+1(J-I-A)}$$

$$AJ\,{=}\,dJ$$

eigenvalues s of A

- (1) For adj martix A odf G trhe eighenvals are real $\exists \alpha$ basis of \mathbb{R}^n consosting eigenvector of A.
- (2) A d-regualr gra; phn G has d as an eigenval . In fact d is the larigest eigencal. The mulitip of d as an eigenval = #connected comps of G

i.
$$1+f+g=n=1+d^2$$

ii.
$$d + f_r + g = 0$$

iii.

iv.

$$d + f_r + g = 0$$

References

- $\bullet \hspace{0.3cm} \textbf{[1].} \hspace{0.1cm} \textbf{http://mathworld.wolfram.com/ExtremalGraph.html} \\$
- [2]. http://www.math3ma.com/mathema/2015/4/20/maximal-not-maximum
- [3]. https://www.zhihu.com/question/22319675