

Motivation

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the most general substitution of terms for variables.

Why?

- ▶ Applying rules in Isabelle: working out what ?P, ?Q, ?x are
- ▶ Heavily used in automated first-order theorem proving to postpone decisions during proof search: PROLOG, tableau provers, resolution provers
- Also used in most type inference algorithms (Haskell, OCaml, SML, Scala, ...)

Matching

Problem
Given pattern and target find a substitution such that:

 $pattern[substitution] \equiv target$

where = means that the terms are identical.

Example 2.9.

$$(s(X) + Y)[0/X, s(0)/Y] \equiv (s(0) + s(0))$$

How we do find an adequate substitution? We view matching as equation solving.

A First Look at Unification - SYNTACTIC MATCHING

Unification: finding a common instance of two terms

Informally: we want to make two terms identical by finding the most general substitution of terms for variables.

٨.7.

Example

Can we make these pairs of terms equal by finding a common instance (assuming X, Y are variables and a, b are constants)?

Cannot assign	f(X, b) and $f(a, Y)$	Yes:([a/X,b/Y])	instance: $f(a, b)$
a to X and b to X at the same time	f(X,X) and $f(a,b)$	No	
cer -me same nime	f(X,X) and $f(Y,g(Y))$	No	

Only (meta-)variables (X, Y, Z, ...) can be replaced by other terms.

Matching (continued)

Discover a substition by decomposing the equation to be solved along the term trees:

$$(s(X) + Y) \equiv (s(0) + s(0))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

Some Abbreviations

Term	Meaning	
ť	$t_1,, t_n (t \ge 1)$	
$\bigwedge_i t_i$	$t_1 \wedge \wedge t_n$	
vars(t)	the set of free variables in t	
Vars	the set of (all) free variables	

$$vars(f(X, Y, g(a, Z, X))) = \{X, Y, Z\}$$

$$vars(f(a, b, c)) = \{\}$$

cannot match Transformation Rules for Matching (Examples) Decompose $s(X) \equiv s(0) \land Y \equiv s(0)$ $s(X) + y \equiv s(0)$ Cannot match s ≠ Conflict fail $(X+Y\equiv s(0)+0)\wedge (Y\equiv 0)$ Eliminate $(X+0 \equiv s(0)+0) \land (Y \equiv 0)$ $X \equiv 0 \land (s(0) + 0 \equiv s(0) + 0)$ Delete There are NO VARIABLES! $X \equiv 0$

Matching as Equation Solving

→ Start with the pattern and target standardised apart:

$$vars(pattern) \cap vars(target) = \{\}$$

Goal is to solve for vars(pattern) in equation $pattern \equiv target$.

→ Strategy is to use transformation rules:

$$pattern \equiv target$$

$$\downarrow$$

$$\vdots$$

$$\downarrow$$

$$X_1 \equiv t_1 \wedge ... \wedge X_n \equiv t_n$$

Resulting substitution is $[t_1/X_1, ..., t_n/X_n]$.

→ Transformations end in failure if no match is possible.

Transformation Rules for Matching

Assumptions: s and t are arbitrary terms and are standardised apart.

Name	Before	After	Condition
Decompose	$P \wedge f(\overrightarrow{s}) \equiv f(\overrightarrow{t})$	$P \wedge \bigwedge_i s_i \equiv t_i$	
Conflict	$P \wedge f(\overrightarrow{s}) \equiv g(\overrightarrow{t})$	fail	f≠g
Eliminate	$P \wedge X \equiv t$	$P[t/X] \wedge X \equiv t$	$X \in vars(P)$
Delete	$P \wedge t \equiv t$	P	

- → Algorithm terminates when no further rules apply and fail has not occurred.
- → The algorithm terminates with a match iff there is one.
- \rightarrow The algorithm may terminate without a match: e.g., $X \equiv a \land b \equiv Y$

Unification

more powerful than what we see earlier

Unification is two-way matching (there is no distinction between pattern and target).

term₁ [substitution] = term₂ [substitution]

Example

What substitution makes (s(X) + s(0)) and (s(0) + Y) identical?

$$\theta = [0/X, s(0)/Y]$$

We need to add extra rules to the matching algorithm:

$$(s(X) + s(0)) \equiv (s(0) + Y)$$

$$\downarrow \qquad \qquad Decompose$$

$$s(X) \equiv s(0) \land s(0) \equiv Y$$

$$X \equiv 0 \land s(0) \equiv Y$$

$$X \equiv 0 \land Y \equiv s(0)$$
Switch

Unification Algorithm

Assumptions: s and t are arbitrary terms and $Vars = vars(s) \cup vars(t)$.

	Name	Before	After	Condition
	Decompose	$P \wedge f(\vec{s}) \equiv f(\vec{t})$	$P \wedge \bigwedge_i s_i \equiv t_i$	
	Conflict	$P \wedge f(\overrightarrow{s}) \equiv g(\overrightarrow{t})$	fail	f≢g
NEW V	Switch	$P \wedge s \equiv X$	$P \wedge X \equiv s$	$X \in Vars$ $s \notin Vars$
	Delete	$P \wedge s \equiv s$	P	
	Eliminate	$P \wedge X \equiv s$	$P[s/X] \wedge X \equiv s$	$X \in vars(P)$ $X \not\in vars(s)$ $s \not\in Vars$
NEW V	Occurs Check	$P \wedge X \equiv s$	fail	$X \in vars(s)$ $s \notin Vars$
NEW	Coalesce	$P \wedge X \equiv Y$	$P[Y/X] \wedge X \equiv Y$	$X, Y \in vars(P)$ $X \not\equiv Y$

- Conditions ensure that at most one rule applies to each conjunct
- Algorithm terminates with success when no further rules apply.

New Transformation Rules

Composition of Unifiers (Substitutions)

Definition

If ϕ and θ are substitutions then their composition $\phi \circ \theta$ is also a substitution which, for any term t, satisfies the following property:

$$t[\phi \circ \theta] \equiv (t[\phi])[\theta]$$

Examples:

 $[a/x] \circ [b/y] = [a/x, b/y]$ replace y with b $[g(y)/x] \circ [b/y] = [g(b)/x, b/y]$ $[a/x] \circ [b/x] = [a/x]$ 0.9.

no need to unle this anymore, as there'll be no more x left after [a/x] Equality of substitutions: $\phi = \theta$ if $x[\phi] = x[\theta]$ for any variable x.

- ▶ Properties: $(\phi \circ \theta) \circ \sigma = \phi \circ (\theta \circ \sigma) | \phi \circ [] = \phi \text{ and } [] \circ \phi = \phi.$
- Composition is needed to define the notion of a most general unifier.

whatever other substitutions you find, whenever you apply this substitution, then you will get this $\phi = \theta \circ \psi$ if exist

Properties of the Unification Algorithm

- ► The algorithm will find a unifier, if it exists.
- It returns the most general unifier (mgu) θ . Definition Given any two terms s and t, θ is their mgu if:

$$s[\theta] \equiv t[\theta] \land \forall \phi. \ s[\phi] \equiv t[\phi] \rightarrow \exists \psi. \ \phi = \theta \circ \psi.$$

Consider g(g(X)) and g(Y). Is [g(3)/Y, 3/X] a unifier? Is it the mgu? g(g(3)) g(g(3))

- mgu is unique up to alphabetic variance;
- ▶ the algorithm can easily be extended to simultaneous unification on *n* expressions.

The substitution [g(3)/Y, 3/X] is a unifier but NOT the mgu. If we replace Y with g(X), it'll be more general than replacing it w/ g(3).

Unification Algorithm for Commutativity

Name	Before	After	Condition
Decompose	$P \wedge f(\overrightarrow{r}) = f(\overrightarrow{r})$	$P \wedge \bigwedge_i s_i = t_i$	
Conflict	$P \wedge f(\overrightarrow{s}) = g(\overrightarrow{t})$	fail	$f \neq g$
Switch	$P \wedge s = X$	$P \wedge X = s$	$X \in Vars$ $s \notin Vars$
Delete	$P \wedge s = s$	P	
Eliminate	$P \wedge X = s$	$P[s/X] \wedge X = s$	$X \in vars(P)$ $X \not\in vars(s)$ $s \not\in Vars$
Check	$P \wedge X = s$	fail	$X \in vars(s)$ $s \notin Vars$
Coalesce	$P \wedge X = Y$	$P[Y/X] \wedge X = Y$	$X, Y \in vars(P)$ $X \neq Y$
Mutate	$P \wedge f(s_1, t_1) = f(s_2, t_2)$	$P \wedge s_1 = t_2 \wedge t_1 = s_2$	f is commutative

Decompose and Mutate rules overlap.

NEW

Building-in Axioms

General Scheme:

$$(Ax_1 \cup Ax_2) + unif \Longrightarrow Ax_1 + unif_{Ax_2}$$
.

Some axioms of the theory become built into unification.

Commutative-Unification

$$X+2=Y+3$$

$$\downarrow \qquad \text{We no longer use} \equiv \text{but} = Y=2 \land X=3$$

How do we deal with this?

We can add a new transformation rule (Mutate rule).

Most General Unifiers

For ordinary unification, the mgu is unique, but what happens when new rules are built-into the unification algorithm?

Multiple mgus: Commutative unification

$$X + Y = a + b \longrightarrow \left\{ \begin{array}{l} X = a \land Y = b \\ X = b \land Y = a \end{array} \right. \quad \underline{\text{Both are equally general.}}$$

Infinitely many mgus: Associative unification X + (Y + Z) = (X + Y) + Z.

$$X + a = a + X \longrightarrow \begin{cases} X = a \\ X = a + a \\ X = a + a + a \end{cases}$$
 All independent (not unifiable).

No mgus: Build in f(0, X) = X and g(f(X, Y)) = g(Y):

$$g(X) = g(a) \longrightarrow \begin{cases} X = a \\ X = f(Y_1, a) \\ X = f(Y_1, f(Y_2, a)) \end{cases} \xrightarrow{\text{Many unifiers}} g(X) = g(A) \longrightarrow \begin{cases} X = a \\ X = f(Y_1, a) \\ X = f(Y_1, f(Y_2, a)) \end{cases}$$

Types of Unification

Types of Unification

- 1) Unitary A single unique mgu, or none (predicate logic).
- 2) Finitary Finite number of mgus (predicate logic with commutativity).
- 3) Infinitary Possibly infinite number of mgus (predicate logic with associativity).
- Nullary No mgus exist, although unifiers may exist.
- 5) Undecidable Unification not decidable no algorithm.

Summary

- ▶ Unification (Bundy Ch. 17.1 17.4)
 - ▶ Algorithms for matching and unification.
 - ► Unification as equation solving.
 - ► Transformation rules for equation solving.
 - ▶ Building-in axioms.(E-Unification/Semantic Unification)
 - ▶ Most general unifiers and classification.
- ▶ Next time: Proof by rewriting

Axioms	Туре	Decidable
nil	unitary	yes
commutative	finitary	yes
associative	infinitary	yes
assoc. + dist.	infinitary	yes
lambda calculus	infinitary	no
λ -calculus pattern fragment	unitary	yes