(Duality in linear programming) الثنوية أو الترافق في البرمجة الخطية الخطية البرنامج الأولى (الأصلى) و الثنوي (المرافق)

الشكل القانونى (a)

يعطى الشكل القانوني للبرنامج الخطى الأولى في حالة تعظيم على الشكل التالي:

$$\max z_1 = \sum_{j=1}^n c_j x_j$$
(P)
$$\begin{cases} \sum_{j=1}^n a_{ij} x_j \le b_i, & i = 1, ..., m \\ x_j \ge 0, & j = 1, ..., n \end{cases}$$
(1)

بالتعريف المرافق للبرنامج الخطي الأولي السابق يعطى على الشكل القانوني التالي:

$$\min z_2 = \sum_{i=1}^m b_i y_i$$
(D)
$$\begin{cases} \sum_{i=1}^m a_{ij} y_j \ge c_j, & j = 1,...,n \\ y_i \ge 0, & i = 1,...,m \end{cases}$$
(2)

و في الشكل المصفوفي يمكن كتابة الأولى و المرافق على الشكل التالى:

$$\max \{z_1 = c^t x / Ax \le b, x \in R_+^n\}$$
 (المسألة الأولية) (1)

$$\min \left\{ z_2 = b^t y / A^t y \ge c, y \in R_+^m \right\} \quad \text{(iban) (2)}$$

الشكل العام (b)

$$\max z_{1} = \sum_{j=1}^{n} c_{j} x_{j}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, & i = 1, ..., h \leq m \\ \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, & i = h+1, ..., m \\ x_{j} \geq 0, & j = 1, ..., k \leq n \\ x_{j}, unrestricted in sign & j = k+1, ..., n \end{cases}$$

$$\min z_{2} = \sum_{i=1}^{m} b_{i} y_{i}$$

$$\left\{ \sum_{i=1}^{m} a_{ij} y_{j} \geq c_{j}, \quad j = 1, ..., k \leq n \right.$$

$$\left\{ \sum_{i=1}^{m} a_{ij} y_{j} = c_{j}, \quad j = k+1, ..., n \right.$$

$$\left\{ y_{i} \geq 0, \quad i = 1, ..., h \leq m \right.$$

$$\left\{ y_{i}, \quad unrestricted \ in \ sign \quad i = h+1, ..., m \right.$$

أولي(مرافق)	مرافق (أولي)
تعظیم	تقلیل
معاملات تابع الهدف	قيم الجانب الأيمن للقيود
قيم الجانب الأيمن للقيود	معاملات تابع الهدف
العمود j من معاملات القيود	السطر j من معاملات القيود
السطر i من معاملات القيود	العمود i من معاملات القيود
(j) المتغير ≥ 0	(<i>ا</i> لقيد)≥
المتغير j غير المقيد	(<i>ا</i> لقيد ()
0 ≤ (المتغير j)	(j القيد) ≤
(i القيد) ≤	(المتغير i) ≥ (
(القيد () =	المتغير i غير مقيد
< (القيد) ≥	(i المتغير) ≤ (

للحصول على البرنامج المرافق للأولي في حالة تعظيم يتم التحويل من اليسار إلى اليمين. و للحصول على المرافق للأولى في حالة تقليل يتم التحويل من اليمين إلى اليسار

بعض العلاقات الهامة بين البرنامج الأولي (P) و البرنامج الثنوي أو المرافق (D)

- 1. الحالات الثلاث التالية متنافية مثنى مثنى
- أ. إذا كان الأولي (P) غير ممكن (أو ليس له حل)، فإن المرافق (D) إما أن يكون ممكن (له حل) و قيمة تابع
 الهدف غير محدودة أو أن يكون غير ممكن (ليس له حل)
- ب. إذا كان الأولي (P) ممكن (له حل) و قيمة تابع الهدف غير محدودة، فإن المرافق (D) غير ممكن (ليس له حل)
- ت. إذا كان الأولي (P) ممكن (له حل) و قيمة تابع الهدف محدودة، فإن المرافق (D) ممكن (له حل) و قيمة تابع الهدف محدودة
- 2. (الترافق الضعيف). إذا كانت المتجهة x حل ممكن في حالة تعظيم لـلأولي (P) و المتجهة y حل ممكن للمرافق (P) عند (P) عند قيمة تابع الهدف للأولي (P) عند (D) عند قيمة تابع الهدف للأولي (P) عند ($z_2 = b^t y$) و عند المتجهة $z_1 = c^t x$) عند المتجهة $z_1 = c^t x$) عند المتجهة $z_1 = c^t x$

$$z_1 = c^t x \leq b^t y = z_2$$

3. (الترافق القوي). إذا كانت المتجهة x^* حل مثالي للأولي (P) و المتجهة y^* حل مثالي للمرافق (D)، عندئذ قيمة تابع الهدف للمرافق (P) عند المتجهة قيمة تابع الهدف للمرافق (D) عند المتجهة قيمة تابع الهدف للأولي (P) عند المتجهة $(z_2^* = b'y^*)$ تساوي قيمة تابع الهدف للأولي (P) عند المتجهة $(z_1^* = c'x^*)$ أي

$$z_1^* = c^t x^* = b^t y^* = z_2^*$$

4. (المتامية أو التكاملية). إذا كانت المتجهة x^* حل مثالي للأولي (P) و المتجهة y^* حل مثالي للمرافق (D)، و كان $x^* = b - Ax^* \ge 0$ كان $x^* = b - Ax^* \ge 0$ المتحولات الفائضة للمرافق (E) فإن شروط التتامية هي

$$x_{j}^{*}u_{j}^{*}=0$$
 $(j=1,...,n)$
 $y_{i}^{*}t_{i}^{*}=0$ $(i=1,...,m)$

و كنتيجة لذلك يمكن أن نكتب التالي

أولي		مرافق
المتحولات البنيوية	$x_{j}^{*} = 0 \Leftarrow u_{j}^{*} > 0$ $x_{j}^{*} > 0 \Rightarrow u_{j}^{*} = 0$	المتحو لات الفائضة
$x_{j}^{*}\left(j=1,,n\right)$		$u_j^* (j=1,,n)$
المتحولات الفضفاضة	$t_{j}^{*} = 0 \leftarrow y_{j}^{*} > 0$ $t_{j}^{*} > 0 \Rightarrow y_{j}^{*} = 0$	المتحولات البنيوية
$t_i^* (i = 1,, m)$	$t_{j}^{*} > 0 \Longrightarrow y_{j}^{*} = 0$	$y_{i}^{*}(i=1,,m)$

الترافق أو الثنوية (أمثلة)

P.

$$\max z_{1} = x_{1} + 3x_{2}$$

$$st \qquad x_{1} + x_{2} \le 14$$

$$-2x_{1} + 3x_{2} \le 12$$

$$2x_{1} - x_{2} \le 12$$

$$x_{1}, x_{2} \ge 0$$

D.

$$\min z_{2} = 14y_{1} + 12y_{2} + 12y_{3}$$

$$st \qquad y_{1} - 2y_{2} + 2y_{3} \ge 1$$

$$y_{1} + 3y_{2} - y_{3} \ge 3$$

$$y_{1}, y_{2}, y_{3} \ge 0$$

P.

$$\min z_{1} = -x_{1} + x_{2}$$

$$st 2x_{1} - x_{2} \ge -2$$

$$x_{1} - x_{2} \le 2$$

$$x_{1} + x_{2} \le 5$$

$$x_{1}, x_{2} \ge 0$$

$$\downarrow \downarrow$$

 $\min z_1 = -x_1 + x_2$

$$\begin{array}{ll}
st & 2x_1 - x_2 \ge -2 \\
 & -x_1 + x_2 \ge -2 \\
 & -x_1 - x_2 \ge -5 \\
 & x_1, x_2 \ge 0
\end{array}$$

 $\max z_2 = -2y_1 - 2y_2 - 5y_3$

st
$$2y_1 - y_2 - y_3 \le -1$$

 $-y_1 + y_2 - y_3 \le 1$
 $y_1, y_2, y_3 \ge 0$

P.

$$\max z_{1} = 5x_{1} + 7x_{2}$$

$$st \qquad x_{1} + x_{2} \ge 6$$

$$x_{1} \ge 4$$

$$x_{2} \le 3$$

$$x_{1}, x_{2} \ge 0$$

$$x_{1}, x_{2} \ge 0$$

$$\downarrow \downarrow$$

$$\max z_{1} = 5x_{1} + 7x_{2}$$

$$st \qquad -x_{1} - x_{2} \le -6$$

$$-x_{1} \le -4$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

 $\min z_2 = -6y_1 - 4y_2 + 3y_3$

$$st \qquad -y_1 - y_2 \ge 5$$

$$-y_{1} + y_{3} \ge 7$$
$$y_{1}, y_{2}, y_{3} \ge 0$$

D.

$$\min z_{1} = -x_{1} + x_{2}$$

$$st 2x_{1} - x_{2} \ge -2$$

$$x_{1} - 2x_{2} \le -8$$

$$x_{1} + x_{2} \le 5$$

$$x_{1}, x_{2} \ge 0$$

$$\downarrow \downarrow$$

$$\min z_1 = -x_1 + x_2$$

$$\begin{array}{ll}
st & 2x_1 - x_2 \ge -2 \\
 & -x_1 + 2x_2 \ge 8 \\
 & -x_1 - x_2 \ge -5 \\
 & x_1, x_2 \ge 0
\end{array}$$

$$\max z_2 = -2y_1 + 8y_2 - 5y_3$$

st
$$2y_1 - y_2 - y_3 \le -1$$

 $-y_1 + 2y_2 - y_3 \le 1$
 $y_1, y_2, y_3 \ge 0$

P.

$$\min z_1 = -x_1 + 2x_2$$

$$st \qquad 5x_1 + 3x_2 \ge -30$$

$$x_1 - x_2 \le 2$$

$$x_1 \ge 0$$

$$x_2 \quad w.r.s$$

$$\downarrow \downarrow$$

$$\min z_1 = -x_1 + 2x_2$$

$$5x_1 + 3x_2 \ge -30$$

$$-x_1 + x_2 \ge -2$$

$$x_1 \ge 0$$

$$x_2 \quad w.r.s$$

$$\max z_2 = -30y_1 - 2y_2$$

$$5y_1 - y_2 \le -1$$
$$3y_1 + y_2 = 2$$

D.
$$y_1, y_2 \ge 0$$

أو يتم بتغير المتحولات

$$x_2 = x_2 - x_2, \quad x_2, x_2 \ge 0$$

لندخل هذا المتحول في البرنامج الأولى نجد أن

$$\min z_{1} = -x_{1} + 2x_{2}^{'} - 2x_{2}^{"}$$

$$st \qquad 5x_{1} + 3x_{2}^{'} - 3x_{2}^{"} \ge -30$$

$$-x_{1} + x_{2}^{'} - x_{2}^{"} \ge -2$$

$$x_{1}, x_{2}^{'}, x_{2}^{"} \ge 0$$

 $y_1, y_2 \ge 0$

P.

$$\min z_{1} = -x_{1} + 2x_{2}$$

$$st 5x_{1} + 3x_{2} \ge -30$$

$$-x_{1} + x_{2} \ge -2$$

$$x_{1}, x_{2} \le 0$$

بتحويل المتغيرات على الشكل التالي

$$x_1 = -x_1, x_2 = -x_2, \quad x_2, x_2 \ge 0$$

و بادخال هذه المتحولات في البرنامج الأولي نجد أن

P.

$$\min z_{1} = x_{1}^{'} - 2x_{2}^{'}$$

$$st \qquad -5x_{1}^{'} - 3x_{2}^{'} \ge -30$$

$$x_{1}^{'} - x_{2}^{'} \ge -2$$

$$x_{1}^{'}, x_{2}^{'} \ge 0$$

$$\max z_{2} = -30y_{1} - 2y_{2}$$

$$st \qquad -5y_{1} + y_{2} \le 1$$

$$-3y_{1} - y_{2} \le -2$$

$$y_{1}, y_{2} \ge 0$$

P.

$$\min z_{1} = -x_{1} + 2x_{2}$$

$$st 5x_{1} + 3x_{2} \ge -30$$

$$-x_{1} + x_{2} = -2$$

$$x_{1} \ge 0$$

$$x_{2} w.r.s$$

بتغير المتحول

$$x_2 = x_2' - x_2'', \quad x_2', x_2'' \ge 0$$

و بكتابة المساواه على الشكل التالي

$$-x_1 + x_2 \ge -2$$

$$-x_1 + x_2 \le -2$$

بادخال هذه المتغيرات في البرنامج الأولى نجد

P.

$$\min z_{1} = -x_{1} + 2x_{2}^{'} - 2x_{2}^{"}$$

$$st \qquad 5x_{1} + 3x_{2}^{'} - 3x_{2}^{"} \ge -30$$

$$-x_{1} + x_{2}^{'} - x_{2}^{"} \ge -2$$

$$x_{1} - x_{2}^{'} + x_{2}^{"} \ge 2$$

$$x_{1}, x_{2}^{'}, x_{2}^{"} \ge 0$$

$$\max z_{2} = -30y_{1} - 2y_{2} + 2y_{2}^{"}$$

$$st \qquad 5y_{1} - y_{2} + y_{2}^{"} \le -1$$

$$3y_{1} + y_{2}^{"} - y_{2}^{"} \le 2$$

$$-3y_{1} - y_{2}^{"} + y_{2}^{"} \le -2$$

$$y_{1}, y_{2}^{"}, y_{2}^{"} \ge 0$$

D.

و بتغير المتحولات في البرنامج المرافق نجد أن

$$y_2 = y_2' - y_2'' \quad y_2', y_2'' \ge 0$$

$$\max z_{2} = -30y_{1} - 2y_{2}$$

$$st 5y_{1} - y_{2} \le -1$$

$$3y_{1} + y_{2} = 2$$

$$y_{1} \ge 0$$

$$y_{2} w.r.s$$

مثال 1. حل البرنامج الخطى الأولى التالي

P.

$$\max z_{1} = x_{1} + 3x_{2}$$

$$st \qquad x_{1} + x_{2} \le 14$$

$$-2x_{1} + 3x_{2} \le 12$$

$$2x_{1} - x_{2} \le 12$$

$$x_{1}, x_{2} \ge 0$$

D.

$$\min z_{2} = 14y_{1} + 12y_{2} + 12y_{3}$$

$$st \qquad y_{1} - 2y_{2} + 2y_{3} \ge 1$$

$$y_{1} + 3y_{2} - y_{3} \ge 3$$

$$y_{1}, y_{2}, y_{3} \ge 0$$

$$\min z_{2} = 14y_{1} + 12y_{2} + 12y_{3}$$

$$st \qquad y_{1} - 2y_{2} + 2y_{3} - u_{1} = 1$$

$$y_{1} + 3y_{2} - y_{3} - u_{2} = 3$$

$$y_{1}, y_{2}, y_{3}, u_{1}, u_{2} \ge 0$$

من أجل البرنامج المرافق لايوجد حل ممكن للبدء لذلك سوف نستخدم طريقة المرحلتين

المرحلة الأولى (a

		min		0	0	0	0	0	1	1
	В	C_B	b	y_1	y ₂	y 3	u_1	u_2	v_1	v_2
•	$-v_1$	1	1	1	-2	2	-1	0	1	0
	v 2	1	3	1	3	-1	0	-1	0	1
			4	2 🛊	1	1	-1	-1	0	0

		min		0	0	0	0	0	1	1
	В	C_B	b	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	\boldsymbol{u}_1	u_2	v_1	v_2
	<i>y</i> ₁	0	1	1	-2	2	-1	0	/	0
•	- v ₂	1	2	0	5	-3	1	-1	/	1
			2	0	5 🛊	-3	1	-1	/	0
		min		0	0	0	0	0	1	1
	В	C_B	b	y_1	<i>y</i> ₂	y 3	u_1	u_2	v_1	v_2
	<i>y</i> ₁	0	9/5	1	0	4/5	-3/5	-2/5	/	/
	y 2	0	2/5	0	1	-3/5	1/5	-1/5	/	/
			0	Λ	Ω	Λ	Λ	0	/	/

المرحلة الثانية (b

	min		14	12	12	0	0
B	$c_{\scriptscriptstyle B}$	b	y_1	y 2	y 3	u_1	u_2
<i>y</i> ₁	14	9/5	1	0	4/5	-3/5	-2/5
y 2	12	2/5	0	1	-3/5	1/5	-1/5
		30	0	0	-8	-6	-8

الحل المثالي هو

$$y_1 = \frac{9}{5}, y_2 = \frac{2}{5}, y_3 = 0, u_1 = \frac{9}{5}, y_1 = \frac{9}{5}$$

$$z_2 = 30$$

مثال 2. حل البرنامج الخطي التالي

$$\max z_{2} = -2y_{1} - 2y_{2} - 5y_{3}$$

$$st \qquad 2y_{1} - y_{2} - y_{3} + u_{1} = -1$$

$$-y_{1} + y_{2} - y_{3} + u_{2} = 1$$

$$y_{1}, y_{2}, y_{3}, u_{1}, u_{2} \ge 0$$

المرحلة الأولى (a

		max		0	0	0	0	0	-1
	В	C_B	b	y_1	y 2	y 3	u_1	u_2	v
•	- v	-1	1	-2	1	1	-1	0	1
	u_2	0	1	-1	1	-1	0	1	0
·			1	-2	1 🛊	1	-1	0	0

	max		0	0	0	0	0	-1
B	C_B	b	y_1	y 2	y 3	\boldsymbol{u}_1	u_2	ν
y 2	0	1	-2	1	1	-1	0	/
u_2	0	0	1	0	-2	1	1	/
	0			0	0	0	0	/

المرحلة الثانية (b

	max		-2	-2	-5	0	0
B	$c_{\scriptscriptstyle B}$	b	y_1	y 2	<i>y</i> ₃	u_1	u_2
<i>y</i> ₂	-2	1	-2	1	1	-1	0
u_2	0	0	1	0	-2	1	1
2			-6	0	-3	-2	0

الحل المثالي هو

$$y_1 = 0, y_2 = 1, y_3 = 0, u_1 = 0, y_1 = 0$$

 $z_2 = -2$

مثال 3. حل البرنامج الخطي التالي

$$\min z_{2} = -6y_{1} - 4y_{2} + 3y_{3}$$

$$st - y_{1} - y_{2} - u_{1} = 5$$

$$- y_{1} + y_{3} - u_{2} = 7$$

$$y_{1}, y_{2}, y_{3}, u_{1}, u_{2} \ge 0$$

	min		0	0	0	0	0	1
B	C_B	b	y_1	y 2	y 3	u_1	u_2	v
v	1	5	-1	-1	0	-1	0	1
<i>y</i> ₃	0	7	-1	0	1	0	-1	0
5			-	-1	0	-1	0	0

من المستحيل وضع المتحول الصنعي (v) خارج القاعدة ، لذلك هذا البرنامج الخطي لايملك حل ممكن و البرنامج الأولي v يقبل حل محدود أو منته

مثال 4. حل البرنامج الخطي التالي

$$\max z_2 = -2y_1 + 8y_2 - 5y_3$$

$$st \qquad 2y_1 - y_2 - y_3 + u_1 = -1$$

$$-y_1 + 2y_2 - y_3 + u_2 = 1$$

$$y_1, y_2, y_3, u_1, u_2 \ge 0$$

a) المرحلة الأولى

		max		0	0	0	0	0	-1
	В	C_B	b	y_1	<i>y</i> ₂	<i>y</i> ₃	u_1	u_2	v
	v	-1	1	-2	1	1	-1	0	1
•	- <i>u</i> ₂	0	1	-1	2	-1	0	1	0
			1	-2	1 🛊	1	-1	0	0
		•	•			•	•	•	

		max		0	0	0	0	0	-1
	В	$c_{\scriptscriptstyle B}$	b	y_1	y 2	y 3	u_1	u_2	v
•	- v	-1	1/2	-3/2	0	3/2	-1	-1/2	1
	y 2	0	1/2	-1/2	1	-1/2	0	1/2	0
			1/2	-3/2	0	3/2 ♠	-1	-1/2	0
		max		0	0	0	0	0	-1
	\boldsymbol{B}	C_B	b	y_1	y 2	<i>y</i> ₃	u_1	u_2	v
ì	y 3	0	1/3	-1	0	1	-2/3	-1/3	/
	y 2	0	2/3	-1	1	0	-1/3	1/3	/
			0	0	0	0	0	0	/

المرحلة الثانية (b

	max		-2	8	-5	0	0
B	$c_{\scriptscriptstyle B}$	b	y_1	<i>y</i> ₂	y 3	u_1	u_2
<i>y</i> ₃	-5	1/3	-1	0	1	-2/3	-1/3
y 2	8	2/3	-1	1	0	-1/3	1/3
		-11/3	1	0	0	-2/3	-13/3

يوجد العدد (1) من السطر c_j-z_j موجب و جميع الأعدادي سالبة (1;-1)، إذا يمكن الاستنتاج بأن الحل المثالي للبرنامج الخطي غير منته $z_2=\infty$ ، إذا البرنامج الأولي لا يقبل حل ممكن

العلاقة بين الأولي و المرافق (الثنوي) (أمثلة)

مثال 1. لنأخذ البرنامج الخطى الأولى التالي

P.

$$\max z_{1} = x_{1} + 3x_{2}$$

$$st \qquad x_{1} + x_{2} \le 14$$

$$-2x_{1} + 3x_{2} \le 12$$

$$2x_{1} - x_{2} \le 12$$

$$x_{1}, x_{2} \ge 0$$

لندخل المتحولات الفضفاضة نجد أن

$$\max z_1 = x_1 + 3x_2$$

$$st \qquad x_1 + x_2 + t_1 = 14$$

$$-2x_1 + 3x_2 + t_2 = 12$$

$$2x_1 - x_2 + t_3 = 12$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

رأينا سابقاً بأن جدول السمبلكس النهائي للمسألة (P) يعطى كما يلى

المتحولات الفضفاضة (الفائضة) لـP المتحولات البنيوية لـ P

				Λ			
max				3	0		$\supset 0$
В	C_B	b	x_1	x_2	t_1	t_2	t_3
x_1	1	6	1	0	3/5	-1/5	0
x_2	3	8	0	1	2/5	1/5	0
t_3	0	8	0	0	-4/5	3/5	1
		-30	0	0	-9/5	-2/5	0
		$-z_1$ or	$-u_1$	$-u_2$	- y ₁	- y ₂	- y ₃
		- Z ₂					

المتحولات البنيوية لـ D المتحولات الفضفاضة (الفائضة) لـD

من هذا الجدول نستنتج مايلي

الحل المثالي لـلأولى (P) هو

$$x_1 = 6, x_2 = 8, t_1 = t_2 = 0, t_3 = 8$$
 $z_1 = 30$

الحل المثالي للثنوي (D) هو

$$y_1 = \frac{9}{5}, y_2 = \frac{2}{5}, y_3 = 0, u_1 = 0, u_2 = 0$$
 $y_2 = 30$

 $\min z_2 = 14y_1 + 12y_2 + 12y_3$ $st y_1 - 2y_2 + 2y_3 \ge 1$ $y_1 + 3y_2 - y_3 \ge 3$

 $y_1, y_2, y_3 \ge 0$

لندخل المتحولات الفائضة نجد أن

$$\min z_2 = 14y_1 + 12y_2 + 12y_3$$

$$st \qquad y_1 - 2y_2 + 2y_3 - u_1 = 1$$

$$y_1 + 3y_2 - y_3 - u_2 = 3$$

$$y_1, y_2, y_3, u_1, u_2 \ge 0$$

جدول السمبلكس النهائي للمسألة (D) يعطى كما يلي

المتحولات البنيوية لـ D

المتحولات الفضفاضة (الفائضة) لـD

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
v_2 v_2 u_1 u_2
V 2 V 3
0 4/5 -3/5 -2/5
1 -3/5 1/5 -1/5
0 -8 -6 -8
$-t_2$ $-t_3$ $-x_1$ $-x_2$

γ المتحولات البنيوية لـP المتحولات الفضفاضة (الفائضة) لـ P

من هذا الجدول نستنتج التالي

الحل المثالي للمرافق (D) هو

$$y_1 = \frac{9}{5}, y_2 = \frac{2}{5}, y_3 = 0, u_1 = 0, u_2 = 0$$
 $z_2 = 30$

الحل المثالي للأولي (P) هو

$$x_1 = 6, x_2 = 8, t_1 = t_2 = 0, t_3 = 8$$
 و $z_1 = 30$

مثال 2. لنأخذ البرنامج الخطي الأولي التالي

P.

$$\min z = -x_1 + x_2$$

$$st 2x_1 - x_2 \ge -2$$

$$x_1 - x_2 \le 2$$

$$x_1 + x_2 \le 5$$

$$x_1, x_2 \ge 0$$

$$\min z = -x_1 + x_2 + 0t_1 + 0t_2 + 0t_3$$

$$st -2x_1 + x_2 + t_1 = 2$$

$$x_1 - x_2 + t_2 = 2$$

$$x_1 + x_2 + t_3 = 5$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

جدول السمبلكس النهائي الأول لـ (P) هو

min			-1	1	0	0	0
В	C_B	b	x_1	x_2	t_1	t_2	t_3
t_1	0	6	0	-1	1	2	0
x_1	-1	2	1	-1	0	1	0
t_3	0	3	0	2	0	-1	1
-2		0	0	0	-1	0	

من هذا الجدول نجد

الحل المثالي للأولي (P) هو

$$x_1 = 2, x_2 = 0, t_1 = 6, t_2 = 0, t_3 = 3$$
 $z_1 = -2$

الحل المثالي للمرافق (D) هو

$$y_1 = 0, y_2 = 1, y_3 = 0, u_1 = 0, u_2 = 0$$
 $z_2 = -2$

جدول السمبلكس النهائي الثاني لـ (P) هو

min			-1	1	0	0	0
В	C_B	b	x_1	x_2	t_1	t_2	t_3
t_1	0	15/2	0	0	1	3/2	1/2
x_1	-1	7/2	1	0	0	1/2	1/2
x_2	1	3/2	0	1	0	-1/2	1/2
-2			0	0	0	-1	0

من هذا الجدول نجد

الحل المثالي للأولي (P) هو

$$x_1 = 3.5, x_2 = 1.5, t_1 = 7.5, t_2 = 0, t_3 = 0$$
 $z_1 = -2$

الحل المثالي للمرافق (D) هو

$$y_1 = 0, y_2 = 1, y_3 = 0, u_1 = 0, u_2 = 0$$
 $z_2 = -2$

D.

$$\max z_2 = -2y_1 - 2y_2 - 5y_3$$

$$st \qquad 2y_1 - y_2 - y_3 + u_1 = -1$$

$$-y_1 + y_2 - y_3 + u_2 = 1$$

$$y_1, y_2, y_3, u_1, u_2 \ge 0$$

جدول السمبلكس النهائي لـ (D)

max			-2	-2	-5	0	0
B	C_B	b	<i>y</i> ₁	y 2	y 3	u_1	u_2
<i>y</i> ₂	-2	1	-2	1	1	-1	0
u_2	0	0	1	0	-2	1	1
	•	2	-6	0	-3	-2	0

من هذا الجدول نجد

الحل المثالي للمرافق (D) هو

$$y_1 = 0, y_2 = 1, y_3 = 0, u_1 = 0, u_2 = 0$$
 و $z_2 = -2$

الحل المثالي للأولي (P) هو

$$x_1 = 2, x_2 = 0, t_1 = 6, t_2 = 0, t_3 = 3$$
 $z_1 = -2$