#### Stroke Prediction

6304062630016 กฤษญา โมรา $^1$ , 6304062630091 ณัชชา วิเศษสุทธิ์ $^2$ , 6304062630229 ปวีณอร สำลี $^3$ 

#### บทคัดย่อ

ในปัจจุบันโรคหลอดเลือดสมอง (Stroke) เป็นสาเหตุการเสียชีวิตอันดับ 2 ของโลก และยังมีแนวโน้มที่จะเพิ่ม มากขึ้นทุกปี โรคหลอดเลือดสมองหรือที่เรียกกันว่า อัมพฤกษ์ อัมพาต หรือทางการแพทย์เรียกว่า STROKE เป็นโรคที่มี ความรุนแรงสูงถึงขั้นเสียชีวิต และแม้ว่าจะไม่เสียชีวิตแต่ทำให้เกิดความพิการระยะยาว ต้องอาศัยความช่วยเหลือจากผู้อื่น ตลอดชีวิต เกิดความสูญเสียทางเศรษฐกิจและสังคม

การสังเกตลักษณะของอาการและการวินิจฉัยโรคจึงสำคัญมาก และเนื่องด้วยในปัจจุบันการรักษาสามารถเข้าถึง ได้ง่ายกว่าสมัยก่อน แต่วงการแพทย์ยังขาดแคลนบุคลากร ทำให้แพทย์บางท่านต้องทำงานอย่างหนักเพื่อรักษาชีวิตผู้คน คงดีกว่าหากมีตัวช่วยแบ่งเบาการทำงานนั้นให้เบาบางลง จึงเกิดอัลกอริทึมที่ใช้โมเดลในการช่วยทำนายว่าผู้ป่วยท่านใดมี ความเสี่ยงที่จะเป็นโรคหลอดเลือดสมอง(Stroke) บ้าง ก็จะช่วยในการวินิจฉัยโรคในเบื้องต้นเพื่อคัดกรองผู้ป่วย

คำหลัก: Stroke , Hypertension , Heart Disease , Age , BMI

### 1. ที่มาและความสำคัญ

ตามสถิติที่ world health organization(WHO) ได้ระบุไว้ โรคหลอดเลือดสมอง (Stroke) เป็นสาเหตุของการ เสียชีวิตอันดับ 2 ของโลก มากถึง 11% ของการเสียชีวิตทั้งหมด และอันดับ 3 ของความพิการ ประมาณ 2 ใน 3 ของ ผู้ป่วยโรคนี้เกิดขึ้นในประเทศที่น้อยพัฒนาหรือกำลังพัฒนา ซึ่งปัจจุบันถือเป็นสาเหตุการเสียชีวิตอันดับ 1 ในเพศหญิง เนื้อ สมองของผู้ป่วยจะถูกทำลาย สูญเสียการทำหน้าที่จนเกิดอาการของอัมพฤกษ์ อัมพาต หรือร้ายแรงถึงขั้นเสียชีวิตได้ อาการสมองขาดเลือดจะเกิดแบบเฉียบพลัน มีอาการชาที่ใบหน้า ปากเบี้ยว พูดไม่ชัด แขนหรือขาอ่อนแรงข้างใดข้างหนึ่ง หรือทั้งสองข้าง เคลื่อนไหวไม่ได้หรือเคลื่อนไหวลำบาก เดินเซ ปวดศีรษะมาก ตามัวมองเห็นไม่ชัด โดยอาการเกิดขึ้นอย่าง ทันทีทันใด นอกจากความพิการทางกายแล้ว ยังมีผลต่อความคิด การวางแผน ความจำ ทำให้เกิดความจำเสื่อมในระยะ ต่อมา ซึ่งมักถูกมองข้ามไปในผู้ป่วยส่วนใหญ่

ดังนั้นจะเห็นว่าโรคหลอดเลือดสมองเป็นปัญหาสำคัญของประเทศ จำเป็นต้องมีแนวทางการรักษาหรือการ ป้องกันไม่ให้เกิดโรคหลอดเลือดสมอง (Stroke) กับประชนชน โดยอาจปรับเปลี่ยนพฤติกรรมการบริโภคหรือออกกำลัง กาย หมั่นดูแลสุขภาพ และเข้ารับการตรวจสุขภาพประจำปี ซึ่งหากมีโมเดลมาช่วยในการวินิจฉัยโรค ก็จะทำให้การ วินิจฉัยนั้นรวดเร็วและมีประสิทธิภาพมากขึ้น สามารถเข้ารักษาได้ทันท่วงที และเป็นการช่วยแบ่งเบาการทำงานของ บุคลากรทางการแพทย์เพื่อให้สามารถเตรียมการรักษาได้มีอย่างประสิทธิภาพมาก และช่วยลดแนวโน้มของผู้ป่วยโรค หลอดเลือดสมอง (Stroke) ลงมา

### 2. วิธีการ

- 2.1 โหลด Dataset มาจาก Kaggle แล้วนำเข้ามา ใน Azure โดยมีชื่อไฟล์ว่า healthcare-datasetstroke-data.csv
- 2.2 ทำการ Clean Data โดยใช้ Execute Python Script
  - 2.3 แบ่งกลุ่มข้อมูลโดยใช้ Edit Metadata
  - 2.3 ทำให้ข้อมูลสมดุลกัน โดยใช้ SMOTE



- 2.4 เลือกโมเดล Two-Class Logistic Regression เพื่อใช้ในการทำนายข้อมูล
- 2.5 Split Data แบ่งเป็น Train 80% และ Test 20%
  - 2.6 Train Model
- 2.7 ดูว่าโมเดลทำนายเป็นอย่างไร โดยใช้ Score Model
- 2.8 Evaluate Model เพื่อวัดประสิทธิภาพของ โมเดล



2.9 Convent to CSV เพื่อนำข้อมูลที่ผ่านการ Train แล้วไปใช้ประโยชน์ต่อไป

#### 3. การออกแบบการทดลอง

# 3.1 ชุดข้อมูลที่ใช้

ใช้ Dataset จาก Kaggle โดยมีชื่อไฟล์ว่า healthcare-dataset-stroke-data.csv

## โดยจะมีชื่อคอลัมน์ดังนี้

- id
- heart disease
- ever married stroke
- gender
- work type
- age
- Residence type
- hypertension avg glucose level
- bmi
- smoking status



|               | olumns<br>2  |                   |                |                   |          |                    |        |
|---------------|--------------|-------------------|----------------|-------------------|----------|--------------------|--------|
| heart_disease | ever_married | work_type         | Residence_type | avg_glucose_level | bmi      | smoking_status     | stroke |
| ١.            | la di        | l                 | H .            | ll                | <u> </u> | llu                | Ι.     |
| 1             | Yes          | Private           | Urban          | 228.69            | 36.6     | formerly<br>smoked | 1      |
| 0             | Yes          | Self-<br>employed | Rural          | 202.21            | N/A      | never<br>smoked    | 1      |
| 1             | Yes          | Private           | Rural          | 105.92            | 32.5     | never<br>smoked    | 1      |
| 0             | Yes          | Private           | Urban          | 171.23            | 34.4     | smokes             | 1      |
| 0             | Yes          | Self-<br>employed | Rural          | 174.12            | 24       | never<br>smoked    | 1      |
| 0             | Yes          | Private           | Urban          | 186.21            | 29       | formerly<br>smoked | 1      |
| 1             | Yes          | Private           | Rural          | 70.09             | 27.4     | never<br>smoked    | 1      |
| 0             | No           | Private           | Urban          | 94.39             | 22.8     | never<br>smoked    | 1      |
| 0             | Yes          | Private           | Rural          | 76.15             | N/A      | Unknown            | 1      |

# 3.2 วิธีการวัดความถูกต้อง



จะดูจาก ROC Curve ถ้ามีความโค้งที่เข้าใกล้ แกน Y มากเท่าไหร่แสดงว่ามีความถูกต้องสูง ส่วน AUC , Accuracy , Precision Recall , F1 Score จะดูจาก ผลลัพธ์ที่ได้จากการคำนวณ

#### 4. ผลการทดลอง

นำไฟล์ CSV ที่ได้จากการ Train โมเดลเพื่อ นำไปวาดกราฟดูผลลัพธ์ที่ได้ เพื่อวิเคราะห์ความ เกี่ยวข้อง , แนวโน้มและการเปรียบเทียบข้อมูล



เปรียบเทียบว่าเพศใดเป็นโรค Stroke มากกว่า กัน พบว่าโรค Stroke จะพบในผู้หญิงมากกว่าผู้ชาย



เปรียบเทียบว่าคนไข้ที่เป็น Stroke กับคนไข้ที่ ไม่เป็น Stroke พบว่าคนไข้ที่ไม่เป็น Stroke มีจำนวน เยอะกว่า



เปรียบเทียบว่าคนไข้ที่เป็น Stroke มี สถานะการสูบบุหรี่แบบใด พบว่าคนส่วนใหญ่ที่เป็น Stroke มีสถานะสูบบุหรี่เป็น never smoked

| Stroke    | คนใข้ทั้งหมด | hypertension | avg_bmi | heart_disease | avg_glucose_level |
|-----------|--------------|--------------|---------|---------------|-------------------|
| No Storke | 965          | 88           | 28.00   | 38            | 104.35            |
| Storke    | 555          | 63           | 25.15   | 11            | 129.94            |
| ผลรวม     | 1520         | 151          | 26.96   | 49            | 113.69            |

เปรียบเทียบให้เห็นว่าผู้ป่วยที่เป็น Stroke เป็น Hypertension , Heart disease กี่คน และมีช่วง ค่าเฉลี่ยของ BMI และ Glucose เท่าใด

| 555                   | <b>574</b>           |
|-----------------------|----------------------|
| ค่าจริง Storke        | ท่านาย Storke        |
| 965                   | 946                  |
| ค่าจริงไม่เป็น Stroke | ท่านายไม่เป็น Storke |

เปรียบเทียบค่าจริงของ Stroke กับค่าที่โมเดล เราทำนายออกมา

### 5. สรุปผลการทดลอง



ROC Curve เป็นอีกตัวที่วัดประสิทธิภาพว่า โมเดลเราแยกกลุ่มของคนที่เป็น Stroke กับคนที่ไม่เป็น Stroke ได้ดีมากแค่ไหน ซึ่ง ROC Curve ที่ได้จากการ Train โมเดลมีพื้นที่ใต้กราฟที่เยอะและลักษณะการโค้ง แบบนี้มันแปลว่าผลลัพธ์ที่ได้ค่อนข้างดี แสดงว่ามี True Positive Rate ยิ่งเข้าใกล้แกน Y แปลว่าโมเดลจำแนก ได้ดี มีความแม่นยำสูง

AUC เป็นตัวบอกว่ามีพื้นที่ใต้กราฟเท่าไหร่ ซึ่ง ถ้ามีค่าเป็น 1 คือค่าในอุดมคติ ยิ่งมีค่าเข้าใกล้ 1 ก็ แปลว่าโมเดลทำนายได้ถูกต้องเยอะมากเท่านั้น ซึ่ง โมเดลนี้ทำ AUC ได้สูงถึง 0.924

Accuracy: คือค่าความแม่นยำรวมของทั้ง โมเดล ซึ่งได้ 0.859

Precision: ค่าความแม่นยำ เกิดจากการนำ ค่า TP มาเทียบกับ FP ซึ่งได้ 0.796

Recall: ค่าความถูกต้อง เกิดจากการนำค่า TP มาเทียบกับ FN ซึ่งได้ 0.823

F1 Score: ค่าเฉลี่ยของ Precision และ Recall ซึ่งได้ 0.810

การที่ได้ผลลัพธ์เหล่านี้ในค่าที่สูงแปลว่าโมเดล มีความสามารถในการทำนายสูง อาจกล่าวได้ว่าเป็น โมเดล ที่ดี และช่วยเพิ่มประสิทธิภาพให้กับการ วินิจฉัยโรคได้ ลดการทำงานที่หนักเกินไปของบุคลากร ทางการแพทย์และใช้โมเดลเข้ามามีบทบาทในการช่วย ประเมินผู้ที่มีแนวโน้มการเป็นโรค Stroke ได้ในเบื้องต้น เพื่อการรักษาที่ทันท่วงทีและลดแนวโน้มของผู้ป่วยที่ เป็นโรค Stroke

## 6. เอกสารอ้างอิง

https://www.kaggle.com/datasets/fedesoriano/ stroke-prediction-dataset

https://www.prd.go.th/th/content/category/detail/id/9/iid/130588