	${f L}$	T	P	\mathbf{C}
II Year - I Semester				
	4	0	0	3

DIGITAL LOGIC DESIGN

OBJECTIVE:

- To introduce the basic tools for design with combinational and sequential digital logic and state machines.
- To learn simple digital circuits in preparation for computer engineering.

UNIT- I: Digital Systems and Binary Numbers

Digital Systems, Binary Numbers, Binary Numbers, Octal and Hexadecimal Numbers, Complements of Numbers, Complements of Numbers, Signed Binary Numbers, Arithmetic addition and subtraction

UNIT -II: Concept of Boolean algebra

Basic Theorems and Properties of Boolean algebra, Boolean Functions, Canonical and Standard Forms, Minterms and Maxterms,

UNIT-III: Gate level Minimization

Map Method, Two-Variable K-Map, Three-Variable K-Map, Four Variable K-Maps. Products of Sum Simplification, Sum of Products Simplification, Don't – Care Conditions, NAND and NOR Implementation, Exclusive OR Function

UNIT- IV: Combinational Logic

Introduction, Analysis Procedure, Design Procedure, Binary Adder–Subtractor, Decimal Adder, Binary Multiplier, Decoders, Encoders, Multiplexers, HDL Models of Combinational Circuits

UNIT- V: Synchronous Sequential Logic

Introduction to Sequential Circuits, Storage Elements: Latches, Storage Elements: Flip Flops, Analysis of Clocked **Sequential** Circuits, Mealy and Moore Models of Finite State Machines

UNIT -VI: Registers and Counters

Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring Counter, Johnson Counter, Ripple Counter

OUTCOMES:

A student who successfully fulfills the course requirements will have demonstrated:

- An ability to define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.
- An ability to understand the different switching algebra theorems and apply them for logic functions.
- An ability to define the Karnaugh map for a few variables and perform an algorithmic reduction of logic functions.
- An ability to define the other minimization methods for any number of variables Variable Entered Mapping (VEM) and Quine-MeCluskey (QM) Techniques and perform an algorithmic reduction of logic functions.

TEXT BOOKS:

- 1. Digital Design, 5/e, M.Morris Mano, Michael D Ciletti, PEA.
- 2. Fundamentals of Logic Design, 5/e, Roth, Cengage.

REFERENCE BOOKS:

- 1. Digital Logic and Computer Design, M.Morris Mano, PEA.
- 2. Digital Logic Design, Leach, Malvino, Saha, TMH.
- 3. Modern Digital Electronics, R.P. Jain, TMH.