

INTEGRAL EXTREME POINTS

BY

ARTHUR F. VEINOTT, JR. and GEORGE B. DANTZIG

TECHNICAL REPORT NO. 67-7 NOVEMBER 1967

OPERATIONS RESEARCH HOUSE

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Declinica
Information Springheld Va. 2215

Stanford University CALIFORNIA

This document has been approved for public resease and sale; its distribution is unlimited.

INTEGRAL EXTREME POINTS

by

Arthur F. Veinott, Jr. and George B. Dantzig

Technical Report No. 67-7

November, 1967

Operations Research House Stanford University Stanford, California

Research partially supported by National Science Foundation Grant GK-1420; Office of Naval Research, Contract ONR-N-00014-67-A-0112-0011; U.S. Atomic Energy Commission, Contract No. AT(04-3)-326 PA #18; and National Science Foundation Grant GP 6431. Reproduction in whole or in part for any purpose of the United States Government is permitted.

discipation in value 24

INTEGRAL EXTREME POINTS*

by

Arthur F. Veinott, Jr. and George B. Dantzig** Stanford University

Let A be a given integral matrix and let $X(A,b) = \{x:Ax = b, x \ge 0\}$ and $X*(A,b) = \{x:Ax \le b, x \ge 0\}$. If A has r rows, all linearly independent, a subset of the columns of A is called a basis if its rank is r. In this event, an obvious sufficient condition for the extreme points of X(A,b) to be integral for all integral b is that the determinant of each basis equals +1 or -1. The purpose of this note is to give a short proof that this condition is necessary and to obtain thereby a substantially simpler proof of an important result of Hoffman and Kruskal (1956, p. 225). Their result is that if A is an integral matrix, then the extreme points of X*(A,b) are integral for all integral b if and only if A is unimodular (i.e., each minor of A equals 0, +1, or -1).

Theorem.

If A is an integral matrix having linearly independent rows, the following are equivalent.

^{*}We are indebted to R. Chandrasekaran and a referee for pointing out an error in an earlier version of this paper.

^{**}This research was supported by National Science Foundation Grants GK-1420 and GP 6431; Office of Naval Research Contract ONR-N-00014-67-A-0112-0011; and U.S. Atomic Energy Commission Contract No. AT(04-3)-326 PA #18. Reproduction in whole or in part for any purpose of the Unites States Government is permitted.

- 1° The determinant of every basis equals +1 or -1.
- The extreme points of X(A,b) are integral for all integral b.
- 3° Every basis has an integral inverse.

Proof.

 1° => 2° . (We repeat the standard proof of this for completeness.) Suppose b is integral. Let x be an extreme point of X(A,b), B an associated basis, and x_B the corresponding components of x (the remaining components of x vanish). Since $Bx_B = b$ and $det B = \pm 1$, by Cramer's rule x_B is integral.

 $2^{\circ} => 3^{\circ}$. Let B be a basis. Let y be any integral vector for which $z = y + B^{-1}1_{i} \ge 0$ where 1_{i} denotes the i^{th} unit column vector. Then $Bz = By + 1_{i} = b$ is integral and z contains the nonvanishing components of an extreme point of X(A,b) so z is integral by hypothesis. Thus $z-y = B^{-1}1_{i}$, the i^{th} column of B^{-1} , is integral. Since this is so for all i, B^{-1} is integral.

 $3^{\circ} \Rightarrow 1^{\circ}$. Let B be a basis. By hypothesis B and B^{-1} are integral, so det B and det B^{-1} are nonvanishing integers such that $(\det B)(\det B^{-1}) = 1$. Hence det $B = \det B^{-1} = \pm 1$.

Corollary. (Hoffman and Kruskal)

If A is an integral matrix, the following are equivalent.

- l* A is unimodular.
- 2* The extreme points of X*(A,b) are integral for all integral b.

3* Every nonsingular submatrix of A has an integral inverse.

Proof.

Let A' = (A,I) have r rows; these are linearly independent. Upon replacing A by A' in the theorem, one sees that the statements 1° , 2° , 3° about A' are equivalent to the corresponding assertions in the corollary about A. For example, 1* follows readily from 1° for if C is any nonsingular submatrix of A of rank r-k, then a basis B in A' can be found, after permuting rows, of the form

$$B = \begin{pmatrix} c, & 0 \\ b, & I_k \end{pmatrix}$$

where I_k is a k x k identity matrix. Then det B = det C, so that det B = ± 1 if and only if det C = ± 1 .

Remark. We can obtain other corollaries by noting that if any one of the matrices A, A^T , -A, (A,A), or (A,I) is unimodular, then so are all the others. To illustrate, consider the set $X^*(M,b)$ as defined earlier with

$$M = \begin{pmatrix} A \\ -A \\ I \end{pmatrix} \text{ and } b = \begin{pmatrix} \overline{b} \\ -\underline{b} \\ c \end{pmatrix}$$

where A and b are integral. This set is identical with the set $X^*(A,b)$ defined by

$$X^{**}(A,b) = \{x:\underline{b} \le Ax \le \overline{b}, \ 0 \le x \le c\}.$$

Notice that M is unimodular if and only if A is unimodular. Thus we may replace X*(A,b) in 2* by X**(A,b) to obtain another result given in Hoffman and Kruskal (1956, p. 225).

Reference

HOFFMAN, A.J., and J.B. KRUSKAL, (1956), "Integral Boundary Points of Convex Polyhedra", Chapter 13, in H.W. Kuhn and A.W. Tucker (eds.),

Linear Inequalities and Related Systems, Princeton University Press,

Princeton, N.J.

	-	
11	lassif	
OHC	145511	L t'Cl

Security Classification

DOCUMENT CO.	WEDOL D. T				
(Security classification of title body of abstract and index	NTROL DATA - R&I		he overall report is classified)		
ORIGINATING ACTIVITY (Corporate author) Department of Operations Research		2ª REPO	AT SECURITY CLASSIFICATION		
Stanford University		Unclassified			
STANFORD, California 94305		26 6800			
3 REPORT TITLE					
Integral Extreme Points					
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)					
Technical Report					
\$ AUTHOR(S) (Last name, first name, initial)					
VEINOTT, Arthur F., Jr. and DANTZIG,	George B.				
6 REPORT DATE	74 TOTAL NO. OF PA	GES	78. NO OF REFS		
November 25th, 1967	4		1		
N-00014-67-A-0112-0011	SA ORIGINATOR'S RE	PORT NUM	BER(S)		
b. PROJECT NO.	Technical Re	port #6	7-7		
NR-047-064					
с.	Sh. OTHER REPORT N	10(S) (Any	other numbers that may be assigned		
d					
10 A VAIL ABILITY/LIMITATION NOTICES					
Distribution of this document is unlim	ited				
11 SUPPLEMENTARY NOTES			vity Logistics and		
	Mathematical Statistics Branch, Mathematical Sciences Division, Office of				
	Naval Research, WASHINGTON, D.C. 20306				
13 ABSTRACT					
It is shown that if A is an integral			-		
then the extreme points of the set of	nonnegative sol	utions	to Ax = b are		
integral for all integral b if and o	nly if the dete	rminant	of every basis matrix		
is \pm 1. This provides a short proof	of the Hoffman-	Kruskal	theorem characterizing		
unimodular matrices, i.e., matrices in	which the deter	rminant	of each nonsingular		
submatrix is ± 1. Their theorem is t	hat if A is i	ntegral	then A is		
unimodular if and only if the extreme					
		et of m	omiegative solutions		
to Ax ≤ b are integral for all integ	ral b.				

DD .508M. 1473

Unclassified
Security Classification

UI	IC	Las	21	1 1	eu
Security	C	lass	ifie	cat	ion

4. KEY WORDS	LIN	KA	LINK B		LINKC	
	ROLE	WT	ROLE	WT	ROLE	WT
Integer programming					7	
Extreme points						
Unimodular matrices						
Linear inequalities						
		-				
	Integer programming Extreme points	Integer programming Extreme points Unimodular matrices				

INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with apprepriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page sount should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.