Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Organización Computacional Ing. Juan Carlos Maeda Juárez

Auxiliar: Carlos Rangel

PRÁCTICA NO. 1 SIMULACIÓN DE UN VISUALIZADOR DE 7 SEGMENTOS (DISPLAY)

Integrantes Grupo No. 5

Carnet	Estudiante
201602404	Kevin Estuardo Secaida Molina
202000173	Christian Alessander Blanco González
202101499	Denis Augusto Coronado Calderón
202106484	Wendi Paulina Vicente Pérez

INTRODUCCIÓN

En el presente documento se aplican los conocimientos teóricos aprendidos en la clase magistral y laboratorio para la creación de un visualizador de 7 segmentos simulado en un software de automatización de diseño electrónico y en un programa de modelado 3D.

Para la práctica simulada el trabajo fue divido entre los integrantes para la creación de los circuitos combinacionales que consisten en una serie de compuertas lógicas como AND, OR, NOT. También se puso en práctica la optimización de funciones booleanas por medio de mapas de Karnaugh.

FUNCIONES BOOLEANAS

Una función booleana es una función cuyo dominio son las palabras conformadas por los valores binarios 0 o 1 siendo falso o verdadero respectivamente.

Para cada segmento sus funciones booleanas son las siguientes:

Segmento A:

Segmento B:

$$W'Y'Z' + WX'Y'Z + WYZ'$$

Segmento C:

$$W'X'Y'Z' + W'X'YZ + W'XY'Z' + WX'YZ' + WX'YZ' + WX'YZ$$

Segmento D:

$$(W+X'+Y+Z')(W+X'+Y'+Z)(W+X'+Y'+Z')(W'+X'+Y+Z)(W'+X'+Y'+Z)(W'+X'+Y'+Z')$$

Segmento E:

$$W'+X'+'Y'+Z'$$

Segmento F:

Segmento G:

$$(W+X+Y'+Z)(W+X'+Y+Z')(W+X'+Y'+Z')(W'+X+Y+Z)(W'+X'+Y'+Z)(W'+X'+Y'+Z')$$

Segmento Punto:

WXYZ

MAPAS DE KARNAUGH

Es un diagrama utilizado para la simplificación de funciones algebraicas Booleanas.

Para cada segmento se utilizaron los siguientes diagramas:

Segmento A:

WX/YZ	0,0	0,1	1,1	1,0
0,0	0	1	0	1
0,1	0	0	0	1
1,1	0	1	0	0
1,0	1	1	0	0

A = WX'Y' + WY'Z + X'Y'Z + W'YZ'

Segmento B:

WX/YZ	0,0	0,1	1,1	1,0
0,0	1	0	0	0
0,1	1	0	0	0
1,1	0	0	0	1
1,0	0	1	0	1

 $B = \overline{W'Y'Z' + WX'Y'Z + WYZ'}$

Segmento C:

WX/YZ	0,0	0,1	1,1	1,0
0,0	1	0	1	0
0,1	1	0	0	0
1,1	0	0	0	0
1,0	0	1	1	1

C = W'Y'Z' + X'YZ + WX'Z + WX'Y

Segmento D:

WX/YZ	0,0	0,1	1,1	1,0
0,0	1	1	1	1
0,1	1	0	0	0
1,1	0	1	0	0
1,0	1	1	1	1

$$D = (X'+Y')(W'+X'+Z)(W+X'+Z')$$

Segmento E:

WX/YZ	0,0	0,1	1,1	1,0
0,0	1	1	1	1
0,1	1	1	1	1
1,1	1	1	0	1
1,0	1	1	1	1

$$E=W'+X'+'Y'+Z'$$

Segmento F:

F = WX'Y'Z' + W'Y'Z + XY'Z + W'YZ' + W'XY

Segmento G:

$$G=(W'+X+Y+Z)(W+X+Y'+Z)(W+X'+Z')(W'+X'+Y')$$

Segmento Punto:

WX/YZ	0,0	0,1	1,1	1,0
0,0	0	0	0	0
0,1	0	0	0	0
1,1	0	0	1	0
1,0	0	0	0	0

Punto=WXYZ

DIAGRAMAS DEL DISEÑO DEL CIRCUITO

Segmento A:

Segmento B:

Segmento C:

Segmento D:

Segmento E:

Segmento F:

Segmento G:

Segmento Punto:

Segmento E Tinkercad

Segmento B Tinkercad

Segmento D Tinkercad

EQUIPO UTILIZADO EN TINKERCAD

Cantidad	Descripción
3	3 baterías, AA, sin batería de 1.5V
3	Interruptor DIP SPST x 4
8	Resistencia de 200Ω
32	Transistores NPN
18	Resistencias de 1kΩ
3	Led Rojo
21	Resistencias de 10 kΩ
2	Resistencia de 500 Ω
1	Puerta OR cuádruple
1	Inversor Hexagonal

EQUIPO UTILIZADO EN PROTEUS

Cantidad	Descripción		
22	LED GREEN		
5	LED AGUA		
90	Resistencias de 10kΩ		
6	Resistencias de 500 Ω		
14	Resistencias de 1kΩ		
12	Puertas OR		
6	Puertas AND		
30	Generadores DC		
60	Terminales de entrada		
8	Terminales de salida		
1	Interruptor DIP SPST x 4		
1	Corrientes Directa		
1	Voltímetro		
32	Terminales hacia tierra		

APORTE INDIVIDUAL DE CADA INTEGRANTE

CARNET	APORTE
201602404	Función booleana de los segmentos A y C y sus circuitos correspondientes. Segmento E por compuertas Lógicas TTL en Tinkercad.
202000173	 Función booleana de los segmentos PUNTO y B y sus circuitos correspondientes. Segmento D por transistores en Tinkercad.
202101499	 Función booleana de los segmentos F y E y sus circuitos correspondientes. Segmento B por transistores en Tinkercad.
202106484	 Función booleana de los segmentos G y D y sus circuitos correspondientes. Documentación.

CONCLUSIONES

- Con el uso de mapas de Karnaugh se puede llegar a la mínima expresión de una función booleana a partir de la tabla de verdad creada.
- Por medio del programa Proteus se logró poner en práctica la creación de circuitos de forma simulada y obtener los resultados correspondientes de las funciones booleanas creadas.
- Con la implementación correcta del equipo que Tinkercad nos ofrece se pueden diseñar modelos en 3D de circuitos electrónicos de forma segura y eficaz.

ANEXOS

- https://www.tinkercad.com/things/8SE3fylszq1-copy-of-fantabulousgaaris/editel?sharecode=UpFeyXdmZmzyVv28UiRluu-X5znu_Sf9g4glqU3_5o
- https://www.tinkercad.com/things/8zjkXL0Unai-fantabulousgaaris/editel?sharecode=JNCAQublfNBDqUYbCdYk573f_wi0o_720PAwMM Ej3hQ