Chess Image Recognition Using Traditional

Computer Vision Techniques and Neural Networks

Zhe Luan, Tianyi Zhao

Tandon School of Engineering, New York University, NY

TANDON SCHOOL OF ENGINEERING

Introduction

- Chessboard coordinates building: Grayscale \rightarrow Gaussian blur \rightarrow Hough transform \rightarrow K-means clustering \rightarrow Intersection.
- Chess piece classification: Separate the original image into multiple segments. Then try different vision networks such as VGG16, VGG19, ResNet and YOLO.
- Integrate the two steps and transform the original chessboard with pieces into digital positions.

Experiments

Figure 2: Grayscale and Gaussian blur.

Figure 3: Canny edge detection.

Figure 4: Hough transform.

Figure 5: Clustering and intersections

Fig 5: Final coordinates of a chessboard image.

Results

Fig 6: Performance comparing VGG16 and VGG19.

		Predicted classes												
		black bisho p		black knigh t			black rook	empt y	white bisho p	white king	white knigh t	white pawn	white quee n	white rook
7	black bisho p	18	0	1	0	0	0	0	0	0	0	0	0	1
	black king	1	17	0	0	1	1	0	0	0	0	0	0	C
	black knigh t	1	1	16	0	0	2	0	0	0	0	0	0	С
	black pawn	4	0	0	16	0	0	0	0	0	0	0	0	c
	black quee n	5	0	0	0	14	0	0	0	0	0	0	0	1
	black rook	2	0	1	0	0	17	0	0	0	0	0	0	С
Acut al Class es	empt y	0	0	0	0	0	0	19	0	0	1	0	0	c
	white bisho p	0	0	0	0	0	0	0	17	0	0	1	0	2
	white king	0	0	0	0	0	0	0	2	12	0	0	4	2
	white knigh t	0	0	0	0	0	0	0	1	0	14	1	0	4
	white pawn	0	0	0	0	0	0	0	2	0	0	18	0	0
	white quee n	0	0	0	0	0	0	0	0	0	0	0	19	1
	white rook	0	0	0	0	0	0	0	0	0	0	1	1	18

Fig 7: The confusion matrix of the predictions on the validation data.

Reference

- 1. ChessVision: Chess Board and Piece Recognition. Jialin Ding. Stanford University.
- 2. Chess Piece Recognition Using Oriented Chamfer Matching with a Comparison to CNN. Youye Xie, Gongguo Tang, William Hoff.
- Determining Chess Game State From an Image. Georg Wölflein, Ognjen Arandjelovi'c.