CSci 127: Introduction to Computer Science

Finished the lecture preview?

hunter.cuny.edu/csci

Guest Speakers

- Today we will start with guest speakers from computer science clubs at Hunter
- Instead of the usual lecture slip, you will fill out a survey to get credit for today's lecture (link on Blackboard under Course Materials)

CSci 127 (Hunter) Lecture 5 September 26 2023 2 / 24

- Basic pattern: img[rows, columns, channels] with: start:stop:step.
- Assuming the libraries are imported, what do the following code fragments produce:

```
► img = np.ones((10,10,3))
img[0:10,0:5,0:2] = 0
```

CSci 127 (Hunter) Lecture 5 September 26 2023 3 / 24

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:
 - ▶ img = np.ones((10,10,3))
 img[0:10,0:5,0:2] = 0

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
num = int(input('Enter size '))
img = np.ones( (num,num,3) )
img[::2,:,1:] = 0
```

4 / 24

CSci 127 (Hunter) Lecture 5 September 26 2023

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
num = int(input('Enter size '))
img = np.ones( (num,num,3) )
img[::2,:,1:] = 0
```


- Basic pattern: img[rows, columns, channels] with: start:stop:step.
- Assuming the libraries are imported, what do the following code fragments produce:

```
▶ img = np.zeros((8,8,3))
img[::2,1::2,0] = 1
```

CSci 127 (Hunter) Lecture 5 September 26 2023 5 / 24

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:
 - ▶ img = np.zeros((8,8,3))
 img[::2,1::2,0] = 1

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

CSci 127 (Hunter)

Decisions

Fig: Operation of if...else statement

Side Note: Reading Flow Charts

(xkcd/518)

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

or

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

Logical Operators

and

in1		in2	returns:	
False	and	False	False	
False	and	True	False	
True	and	False	False	
True	and	True	True	
or				
in1		in2	returns:	

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

not

	in1	returns:
not	False	True
not	True	False

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

Circuit Demo

 $({\sf Demo\ with\ circuitverse})$

Challenge

Predict when these expressions are true:

• in1 or not in1:

• not(in1 or in2):

• (in1 and in2) and in3:

14 / 24

Circuit Demo

(Demo with circuitverse)

15 / 24

Challenge

Draw a circuit that corresponds to each logical expression:

- in1 or in2
- (in1 or in2) and (in1 or in3)
- o (not(in1 and not in2)) or (in1 and (in2 and in3))

CSci 127 (Hunter)

Circuit Demo

(Demo with circuitverse)

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

• Logic \rightarrow Circuits \rightarrow Numbers

CSci 127 (Hunter) Lecture 5 September 26 2023 19 / 24

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:

CSci 127 (Hunter) Lecture 5 September 26 2023 19 / 24

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False

CSci 127 (Hunter) Lecture 5 September 26 2023 19/24

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)

CSci 127 (Hunter) Lecture 5 September 26 2023 19 / 24

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)
 - **▶** 1 / 0

CSci 127 (Hunter) Lecture 5 September 26 2023 19 / 24

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)
 - **▶** 1 / 0
- Computers store numbers using the Binary system (base 2)

19 / 24

CSci 127 (Hunter) Lecture 5 September 26 2023

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)
 - ▶ 1 / 0
- Computers store numbers using the Binary system (base 2)
- A bit (binary digit) being 1 (on) or 0 (off)

CSci 127 (Hunter) Lecture 5

19 / 24

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

 \bullet Two digits: 0 and 1

CSci 127 (Hunter) Lecture 5 September 26 2023 20 / 24

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two

CSci 127 (Hunter) Lecture 5 September 26 2023 20 / 24

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ► Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)

CSci 127 (Hunter) Lecture 5 September 26 2023 20 / 24

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ▶ Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ► Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ► Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not

Binary Numbers

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ► Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not
 - ▶ In the "twos" position we either have a 2 or not

Binary Numbers

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ► Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not
 - ▶ In the "twos" position we either have a 2 or not
 - ▶ In the "fours" position we either have a 4 or not ...

Binary Numbers

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ▶ Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not
 - ▶ In the "twos" position we either have a 2 or not
 - ▶ In the "fours" position we either have a 4 or not ...
- Example:

$$11001_{base2} = 16 + 8 + 1 = 25_{base10}$$

CSci 127 (Hunter) Lecture 5 September 26 2023 20 / 24

Recap

• In Python, we introduced:

Recap

- In Python, we introduced:
 - Decisions
 - ► Logical Expressions
 - ► Circuits
 - ► Binary Numbers

Final Exam

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ► repeat.
- Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter) Lecture 5

22 / 24

Before next lecture, don't forget to:

Work on this week's Online Lab

CSci 127 (Hunter) Lecture 5 September 26 2023 23 / 24

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North

23 / 24

CSci 127 (Hunter) Lecture 5 September 26 2023

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review in lab 1001G Hunter North

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review in lab 1001G Hunter North
- Submit this week's 5 programming assignments

23 / 24

CSci 127 (Hunter) Lecture 5

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review in lab 1001G Hunter North
- Submit this week's 5 programming assignments
- If you need help, schedule an appointment for Tutoring in lab 1001G 11am-5pm

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review in lab 1001G Hunter North
- Submit this week's 5 programming assignments
- If you need help, schedule an appointment for Tutoring in lab 1001G 11am-5pm
- Take the Lecture Preview on Blackboard on Monday (or no later than 10am on Tuesday)

Lecture Slips & Writing Boards

- Hand your lecture slip to a UTA.
- Return writing boards as you leave.

CSci 127 (Hunter) Lecture 5

24 / 24