

Master's Thesis

A mediator system for querying heterogeneous data in robotic applications

Rubanraj Ravichandran

Submitted to Hochschule Bonn-Rhein-Sieg,

Department of Computer Science
in partial fullfilment of the requirements for the degree
of Master of Science in Autonomous Systems

Supervised by

Prof. Dr. Erwin Prassler
Prof. Dr. Manfred Kaul
Nico Huebel
Sebastian Blumenthal

k has not previously been submitted unless otherwise stated, entirely my
 Rubanraj Ravichandran

Abstract

Your abstract

Acknowledgements

Thanks to

Contents

1	Intr	roduction	1			
	1.1	Motivation	2			
	1.2	Challenges and Difficulties	3			
		1.2.1	3			
		1.2.2	4			
		1.2.3	4			
	1.3	Problem Statement	4			
		1.3.1	4			
		1.3.2	7			
		1.3.3	7			
2	State of the Art					
	2.1		9			
	2.2	Limitations of previous work	9			
3	Methodology 1					
	3.1	Setup	11			
	3.2	Experimental Design	11			
4	Solution 13					
	4.1	Proposed algorithm	13			
	4.2	Implementation details	13			
5	Eva	lluation	15			
6	Results					
	6.1	Use case 1	17			

	6.2	Use case 2	17			
	6.3	Use case 3	17			
7	Cor	nclusions	19			
	7.1	Contributions	19			
	7.2	Lessons learned	19			
	7.3	Future work	19			
\mathbf{A}	ppen	dix A Design Details	21			
\mathbf{A}	ppen	dix B Parameters	23			
\mathbf{R}_{i}	References					

List of Figures

List of Tables

Introduction

Robots generate a large amount of data from different types of sensors attached to it and also from its hardware components. In our previous research work [5], we have conducted an extensive qualitative and quantitative analysis to find better databases and architectures that effectively store these data and consume it for further operations. Results from our previous work show that a single database is not suitable for every robotic scenario. For example, in terms of handling large BLOB data, MongoDB stored them faster but reading the data was slower compared to CouchDB [5]. Also, to complete a given task robot depends on multiple sources of information from internal sensors, as well as external sources for example world model, kinematic model, etc..

Adoption of multiple databases for robotic applications requires a unique way of mediation to view multiple databases as a single federated database. Mediator approach helps to integrate data from different sources and produce an only result back to robots. Mediator abstracts the information of how data is being stored in various data sources from a robot and allows robotic applications stream data to mediator independent of databases used in the back-end.

To Map the data generated by robots with multiple databases, the mediator system requires a proper data model predefined in the context of robotic applications. Modeling robot produced data helps to generalize the structure of data and defining relations between different entities (e.g., tasks, sensors, robots, location) in a robotic application scenario. If we have a well defined robotic data models, then the mediator

will get the ability to mutate or query data from different data sources. Also, it is essential that any robotic use-cases should be able to extend these data models.

As mentioned in these papers [1, 4, 2, 3, 3, 6], mediators are being used to integrate data from different data sources, and few architectures support single data model (e.g., SQL), and others recommend for different data models (e.g., SQL, NoSQL, document store, etc..). Also, they differ from query languages, ease of implementation, components used in their architecture. This project mainly focuses on defining semantic based models for sensor data to make it more interoperable with other systems or even in multi-robot systems, and implementing a mediator system which acts as a middle-ware between robots and databases.

1.1 Motivation

Streamlining the data produced from different sensors in robotic applications is a tedious task, and there are no specific standards to organize the data in terms of making relations between the entities and also giving context to the data. It will be even more complicated when we have a multi-robot platform and sharing data between them, and backing up the data into a database for fault diagnosis.

Currently, in the ROPOD* project, there is a single black box component has been developed to simulate the robot test cases. During the simulation black box stores the data produced by the sensors as dumps into a single MongoDB instance locally.

The first problem here is since the sensor data stored as dumps which makes the consumer's inability to make queries against the data.

And the second problem is missing contexts and the entity-relationship model. For example, if a consumer tries to query the data from dumps, it will be unsure that which sensor produced this data from which robot/black-box at which location and time, and who triggered this test case. What we mean "missing context" is if humans read the data they will understand what's the meaning of each parameter, but if a different robot/black-box tries to consume the data produced by other robots, then the context about the data should be shared somewhere globally.

The final problem is, what if we have a situation where multi-robots tries to share data or human controller wants to do fault-diagnosis on data shared on multi-robots.

These significant issues inspired us to find a unique mediation technique to address the problems mentioned above.

Note: A consumer can be either humans or machines.

1.2 Challenges and Difficulties

1.2.1 ...

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero.

Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

1.2.2 ...

1.2.3 ...

1.3 Problem Statement

1.3.1 ...

Etiam pede massa, dapibus vitae, rhoncus in, placerat posuere, odio. Vestibulum luctus commodo lacus. Morbi lacus dui, tempor sed, euismod eget, condimentum at, tortor. Phasellus aliquet odio ac lacus tempor faucibus. Praesent sed sem. Praesent iaculis. Cras rhoncus tellus sed justo ullamcorper sagittis. Donec quis orci. Sed ut tortor quis tellus euismod tincidunt. Suspendisse congue nisl eu elit. Aliquam tortor diam, tempus id, tristique eget, sodales vel, nulla. Praesent tellus mi, condimentum sed, viverra at, consectetuer quis, lectus. In auctor vehicula orci. Sed pede sapien, euismod in, suscipit in, pharetra placerat, metus. Vivamus commodo dui non odio. Donec et felis.

Etiam suscipit aliquam arcu. Aliquam sit amet est ac purus bibendum congue. Sed in eros. Morbi non orci. Pellentesque mattis lacinia elit. Fusce molestie velit in ligula. Nullam et orci vitae nibh vulputate auctor. Aliquam eget purus. Nulla auctor wisi sed ipsum. Morbi porttitor tellus ac enim. Fusce ornare. Proin ipsum enim,

tincidunt in, ornare venenatis, molestie a, augue. Donec vel pede in lacus sagittis porta. Sed hendrerit ipsum quis nisl. Suspendisse quis massa ac nibh pretium cursus. Sed sodales. Nam eu neque quis pede dignissim ornare. Maecenas eu purus ac urna tincidunt congue.

Donec et nisl id sapien blandit mattis. Aenean dictum odio sit amet risus. Morbi purus. Nulla a est sit amet purus venenatis iaculis. Vivamus viverra purus vel magna. Donec in justo sed odio malesuada dapibus. Nunc ultrices aliquam nunc. Vivamus facilisis pellentesque velit. Nulla nunc velit, vulputate dapibus, vulputate id, mattis ac, justo. Nam mattis elit dapibus purus. Quisque enim risus, congue non, elementum ut, mattis quis, sem. Quisque elit.

Maecenas non massa. Vestibulum pharetra nulla at lorem. Duis quis quam id lacus dapibus interdum. Nulla lorem. Donec ut ante quis dolor bibendum condimentum. Etiam egestas tortor vitae lacus. Praesent cursus. Mauris bibendum pede at elit. Morbi et felis a lectus interdum facilisis. Sed suscipit gravida turpis. Nulla at lectus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Praesent nonummy luctus nibh. Proin turpis nunc, congue eu, egestas ut, fringilla at, tellus. In hac habitasse platea dictumst.

Vivamus eu tellus sed tellus consequat suscipit. Nam orci orci, malesuada id, gravida nec, ultricies vitae, erat. Donec risus turpis, luctus sit amet, interdum quis, porta sed, ipsum. Suspendisse condimentum, tortor at egestas posuere, neque metus tempor orci, et tincidunt urna nunc a purus. Sed facilisis blandit tellus. Nunc risus sem, suscipit nec, eleifend quis, cursus quis, libero. Curabitur et dolor. Sed vitae sem. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Maecenas ante. Duis ullamcorper enim. Donec tristique enim eu leo. Nullam molestie elit eu dolor. Nullam bibendum, turpis vitae tristique gravida, quam sapien tempor lectus, quis pretium tellus purus ac quam. Nulla facilisi.

Duis aliquet dui in est. Donec eget est. Nunc lectus odio, varius at, fermentum in, accumsan non, enim. Aliquam erat volutpat. Proin sit amet nulla ut eros consectetuer cursus. Phasellus dapibus aliquam justo. Nunc laoreet. Donec consequat placerat magna. Duis pretium tincidunt justo. Sed sollicitudin vestibulum quam. Nam quis ligula. Vivamus at metus. Etiam imperdiet imperdiet pede. Aenean turpis. Fusce augue velit, scelerisque sollicitudin, dictum vitae, tempor et, pede. Donec wisi sapien, feugiat in, fermentum ut, sollicitudin adipiscing, metus.

Donec vel nibh ut felis consectetuer laoreet. Donec pede. Sed id quam id wisi laoreet suscipit. Nulla lectus dolor, aliquam ac, fringilla eget, mollis ut, orci. In pellentesque justo in ligula. Maecenas turpis. Donec eleifend leo at felis tincidunt consequat. Aenean turpis metus, malesuada sed, condimentum sit amet, auctor a, wisi. Pellentesque sapien elit, bibendum ac, posuere et, congue eu, felis. Vestibulum mattis libero quis metus scelerisque ultrices. Sed purus.

Donec molestie, magna ut luctus ultrices, tellus arcu nonummy velit, sit amet pulvinar elit justo et mauris. In pede. Maecenas euismod elit eu erat. Aliquam augue wisi, facilisis congue, suscipit in, adipiscing et, ante. In justo. Cras lobortis neque ac ipsum. Nunc fermentum massa at ante. Donec orci tortor, egestas sit amet, ultrices eget, venenatis eget, mi. Maecenas vehicula leo semper est. Mauris vel metus. Aliquam erat volutpat. In rhoncus sapien ac tellus. Pellentesque ligula.

Cras dapibus, augue quis scelerisque ultricies, felis dolor placerat sem, id porta velit odio eu elit. Aenean interdum nibh sed wisi. Praesent sollicitudin vulputate dui. Praesent iaculis viverra augue. Quisque in libero. Aenean gravida lorem vitae sem ullamcorper cursus. Nunc adipiscing rutrum ante. Nunc ipsum massa, faucibus sit amet, viverra vel, elementum semper, orci. Cras eros sem, vulputate et, tincidunt id, ultrices eget, magna. Nulla varius ornare odio. Donec accumsan mauris sit amet augue. Sed ligula lacus, laoreet non, aliquam sit amet, iaculis tempor, lorem. Suspendisse eros. Nam porta, leo sed congue tempor, felis est ultrices eros, id mattis velit felis non metus. Curabitur vitae elit non mauris varius pretium. Aenean lacus sem, tincidunt ut, consequat quis, porta vitae, turpis. Nullam laoreet fermentum urna. Proin iaculis lectus.

Sed mattis, erat sit amet gravida malesuada, elit augue egestas diam, tempus scelerisque nunc nisl vitae libero. Sed consequat feugiat massa. Nunc porta, eros in eleifend varius, erat leo rutrum dui, non convallis lectus orci ut nibh. Sed lorem massa, nonummy quis, egestas id, condimentum at, nisl. Maecenas at nibh. Aliquam et augue at nunc pellentesque ullamcorper. Duis nisl nibh, laoreet suscipit, convallis ut, rutrum id, enim. Phasellus odio. Nulla nulla elit, molestie non, scelerisque at, vestibulum eu, nulla. Ut odio nisl, facilisis id, mollis et, scelerisque nec, enim. Aenean sem leo, pellentesque sit amet, scelerisque sit amet, vehicula pellentesque, sapien.

- 1.3.2 ...
- 1.3.3 ...

State of the Art

2.1

Use as many sections as you need in your related work to group content into logical groups

Don't forget to correctly cite your sources [?].

2.2 Limitations of previous work

Methodology

How you are planning to test/compare/evaluate your research. Criteria used.

- 3.1 Setup
- 3.2 Experimental Design

4

Solution

Your main contributions go here

- 4.1 Proposed algorithm
- 4.2 Implementation details

5

Evaluation

Implementation and measurements.

Results

6.1 Use case 1

Describe results and analyse them

- 6.2 Use case 2
- 6.3 Use case 3

Conclusions

- 7.1 Contributions
- 7.2 Lessons learned
- 7.3 Future work

A

Design Details

Your first appendix

 \mathbf{B}

Parameters

Your second chapter appendix

References

- [1] Rafi Ahmed, Philippe DeSmedt, Weimin Du, William Kent, Mohammad A. Ketabchi, Witold A Litwin, Abbas Rafii, and M-C Shan. The pegasus heterogeneous multidatabase system. *Computer*, 24(12):19–27, 1991.
- [2] Yigal Arens, Chun-Nan Hsu, and Craig A Knoblock. Query processing in the sims information mediator.
- [3] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. The tsimmis project: Integration of heterogenous information sources. 1994.
- [4] Gustav Fahl, Tore Risch, and Martin Sköld. Amos-an architecture for active mediators. 1993.
- [5] Rubanraj Ravichandran, Nico Huebel, Sebastian Blumenthal, and Erwin Prassler. A workbench for quantitative comparison of databases in multi-robot applications. 2018.
- [6] Kurt Shoens, Allen Luniewski, Peter Schwarz, Jim Stamos, and Joachim Thomas. The rufus system: Information organization for semi-structured data.