Artificial Intelligence for Economics (AI60003)

Quiz 1 (Set 2)	Full Marks: 20	12 th September, 2023
Name:		Roll:

Q1. Suppose I take up the following positions in the market:

• Sell 2 -
$$P_{40}$$
 (S_t , T) PUTs. 240 (60) 40
• Buy 2 - P_{60} (S_t , T) PUTs. 40160 $120-200$
• Buy 3 - C_{80} (S_t , T) CALLs. 60180 0
• Sell 1 - C_{120} (S_t , T) CALL. 80100 $320-240$
• Sell 2 - C_{160} (S_t , T) CALLs. 160 $220-120$

i.e I have a portfolio $C^* = -2 P_{50} (S_t, T) + 2 P_{70} (S_t, T) + 3 C_{90} (S_t, T) - C_{110} (S_t, T) - 2 C_{120} (S_t, T)$

How will my payoff at expiration date look like as a function of the value of the underlying asset on [10 marks] the expiration date?

Q2. Your earnings for your first T years of service are [x(1), x(2), x(T)]. Each year, you consume a part of these earnings (C(1), C(2), ... C(T)), and save the rest (S(1), S(T)). The interest rate on your savings is 5% per annum. The utility function for your consumption is $U(t) = C(t)/t^2$ (where t is the number of years elapsed from the start).

- How will you plan your consumptions/savings, such that your savings after 5 years (including interest) are at least 50% of the earnings?
- If you don't have that constraint on the savings but want to maximize it along with the consumption utility, how will you find an optimal solution?

[Please formulate the problems and indicate how they can be solved]

Suppose you save a random fraction of your saving each year, i.e. S(t)=v(t)*x(t) where v(t)iii) is chosen uniformly between 0.2 and 0.5. What is your expected utility value and expected savings (including interest) after 3 years?

[4+3+3=10 marks]