Steering Behaviours – Part 1

Seeking, Fleeing and Wandering

Steering Behaviours

- Steering Behaviours are a well known method of locomotion for artificial autonomous agents
 - Modular, simple and reactive

- First proposed by Craig Reynolds
 - "Flocks, herds and schools: A distributed behavioral model" (SIGGRAPH 1987)
 - Used in games, film and simulation

Steering Behaviours

- Autonomous Agents for games purposes are A.I. entities that:
 - Have a position, velocity and heading
 - Can sense the environment around them
- Steering Behaviours are a way of calculating a force to apply to the agent's velocity
 - There are many different behaviours that each apply a force in different ways:
 - Seek, Flee, Pursue, Evade, Arrive, Wander, Avoid and many more
- We will spend time investigating the common behaviours

Seek Behaviour

- Perhaps the simplest behaviour, Seek calculates a force to drive an autonomous agent towards a target
 - We calculate a vector from the agent to its target
 - We then scale the vector by our maximum velocity (scalar)
 - Finally we subtract the agent's current velocity (vector) from the vector to obtain the force require to change the agent's direction towards its target
- Example:

V = normalise(P2 – P1) x maxVelocity Force = V – CurrentVelocity

Seek Behaviour

 Once we have calculated the Force for the Steering Behaviours we simply apply that Force to the agent's velocity and update the agent's position with this new velocity

> Velocity += Force * deltaTime Position += Velocity * deltaTime Heading = normalise(Velocity)

Flee Behaviour

- Flee is the exact opposite to Seek
 - Instead of a vector towards the target we calculate a vector away from the target

• Example:

```
V = normalise(P1 - P2)
    x maxVelocity
Force = V - CurrentVelocity
```


Untargeted Motion

- Seek and Flee are great behaviours that can be used for various situations
 - Fish fleeing a Shark
 - A soccer player seeking the ball
- But not all behaviours need to have a specified target
 - Fish aren't always fleeing a shark!
 - People may wander aimlessly through a shopping mall

Wander Behaviour

- Wander is a behaviour that tries to mimic random movement
 - Such as a fish swimming in a tank, or an ant walking
- Wander works by seeking towards a randomised target on the edge of a sphere located in front of the agent
 - We need four variables:
 - Wander Radius of the sphere
 - Wander Distance of the sphere in front of the agent
 - A Wander Jitter amount used to randomise the target
 - The previous frame's Wander Target to start with

Wander Behaviour

- The process is:
 - Start with a random target on the edge of the sphere with a set radius around the agent
 - Add a randomised vector to the target, with a magnitude specified by a **jitter** amount
 - Bring the target back to the radius of the sphere by normalising it and scaling by the radius
 - Add the agent's heading, multiplied by an distance, to the target
- We then simply use the target for a Seek behaviour

Wander Behaviour

- The result of the wander behaviour is that the agent seeks to a constantly moving target in front of it
 - The bigger the sphere's radius / closer it is to the agent, the more the agent turns
 - The smaller the sphere / further in front of the agent, the less the agent turns
 - The larger the jitter amount the more erratic the agent turns

Summary

- Steering Behaviours are a way to give autonomous agents locomotion
- Behaviours can be turned on and off
 - Agent Wanders
 - If agent close to enemy then Flee
 - If agent close to food then Seek
- In the next topic we will look at more behaviours
 - We will also look at ways to combine behaviours to run simultaneously

