Internet Security Protocols

Panko Chapter 9 p349 - 354, Chapter 3 p129-133 also these slides (adapted from 2015 slides) and the standards

Panko and Panko Business Data Networks and Security, 10th Edition, Global Edition

Overview

- Why Internet security
- Layered view of network security
- Application Layer: Electronic mail security (PGP, S/MIME), Web Payments, HTTPS
- Transport Layer: SSL (Secure Socket Layer) and TLS (Transport Layer Security)
- Internet Layer: IPSec and VPNs
- Data link and physical layer security not here
 - Provided by telephony/ Ethernet/ wifi standards

2

Why Internet Security

- More and more business activities are conducted over the Internet.
- More and more computers are connected to the Internet.
- More hackers (easy access to the Internet with lower cost).

Application Layer Security

- Electronic mail security PGP (pretty good privacy)
 - Initially developed by Philip R. Zimmermann in 1991.
 - · Uses a public key cipher to encrypt a session key.
 - · Uses a secret key cipher with the session for data
 - Uses a public key ring and a private key ring for key management.
 - · Users can choose to have confidentiality only, authentication only, or both.

PGP Cryptographic Functions

Explanation of symbols used in the next three figures

- M plain message
- · EP public-key encryption
- K_e session kev used in
- DP public-key decryption
- conventional (symmetric key) encryption
- FC conventional
- (symmetric) encryption DC conventional
- · KRa private key of user A
- (symmetric) decryption
- KU_a public key of user A H hash function
 - Il concatenation
 - Z compression using ZIP

Data Processes

PGP for Confidentiality only

PGP for Authentication (+non-repudiation) only

PGP for Confidentiality and Authentication

Application Layer Security

- Electronic mail security S/MIME (Secure Multi-Purpose Internet Mail Extensions) v3.2 RFC5751 2010
- Security enhanced version of MIME Internet email content type standard.
- · Targeting an industry standard; built in to most email clients.
- Compared with PGP, format more fixed (less flexibility).
- Utilizes X.509 protocol for key management.
- ▶ S/MIME versus PGP
 - PGP is a protocol on top of normal email applications (SMTP), while S/MIME is security enhanced version of normal MIME.
 - PGP is designed to be more flexible, while S/MIME tends to be more standard.
 - PGP uses its own PKI while S/MIME uses X.509 as its PKI.

Application Layer Security: HTTPS

- HTTPS is essentially HTTP over the Transport Layer security protocol called SSL/TLS
- Appears as a scheme in a URL
- Uses port 443, not 8
- One-way: authentication of server + twoway confidentiality
- ▶ HTTP is being phased out to be replaced by ►

13

HSTS: HTTP Strict Transport Security RFC 6797

- The "SSL stripping attack" works by a man-in-the-middle transparently converting a secure HTTPS connection into a plain HTTP connection.
- The host declares "Strict-Transport-Security" in HTTP header response.
- 2. HTTP Strict Transport Security Policy Effects

The effects of the HSTS Policy, as applied by a conformant UA in interactions with a web resource host wielding such policy (known as an HSTS Host), are summarized as follows:

- UAs transform insecure URI references to an HSTS Host into secure URI references before dereferencing them.
- The UA terminates any secure transport connection attempts upon any and all secure transport errors or warnings.

https://tools.ietf.org/html/rfc6797

14

Migration: Update Insecure Requests

- W3C Candidate Rec October 2015
- > HSTS is too strong for an upgrade path
- Aims to encourage move to HTTPS without needing to rewrite all the site's URLs
- Unlike HSTS, serves secure resources to clients that support upgrades, while insecure resources work for clients that don't.
- Defines response header field
 - · Content-Security-Policy: upgrade-insecure-requests
- Like HSTS, Browser is supposed to rewrite http URLs in response page to https URLs.

Application Layer: W3C Web Payments

- Want the payment process to be managed in the browser so the client chooses the payment provider (e.g. their own bank) rather than the server
- Published first working drafts last week
 - Payment Request API
 - Payment Method Identifiers
 - Basic Card Payment
 - No security yet....

16

Transport Layer Security-- TLS

- TLS 1.2 RFC 5246 2008
 - Netscape specified Secure Socket Layer (SSL) protocol; broadly adopted.
- Modified by Internet Engineering Task Force (IETF) as an Internet Standard, called Transport Layer Security (TLS).
 Commonly called "SSL"
- TSL services
- Data encryption
- message integrity
- server authentication
- client authentication

18

3.14 SSL/TLS Host-to-Host VPN

Cryptographically protected transmission path
Like having your own private network to connect the hosts

Copyright@ 2015 Pearson Education, Ltd.

TLS Sub-protocols

- Essentially two sub-protocols, used in every session:
 - TLS Record Protocol, provides security services for various higher layer protocols.
 - TLS Handshake Protocol, making connections to remote machine.
- Other associated sub-protocols, invoked during SSL connection, and may not be used in every session:
 - TLS Alert Protocol, notifying errors.
 - TLS Change Cipher Spec Protocol, changing session key.

20

TLS Handshake

- > The client sends the server its TSL version no, cipher settings and other data
- > The server sends the client similar info and its certificate.
- The client uses the server certificate to authenticate the server. If it can't, the problem is made known to the user.
- The client generates a random symmetric key and encrypts using the server's public key. Sends to server. Sends client authentication info, if required.
- The server may try to authenticate the client (if required). Client and server independently use the pre-master secret to generate a master secret. Client sends a 'change cipher spec' message to the server. Sends a 'finished' message encrypted with the new cipher.
- The server responds with a 'change cipher spec' and 'finished' message as well.
- The TSL Handshake is complete.

Heartbleed Security Attack, April 2014

- Security bug in OpenSSL cryptography library, a widely used implementation of the Transport Layer Security (TLS) protocol.
- Arose from improper input validation (due to a missing bounds check or buffer overrun)

By Leena Snidate / Codenomicon http://heartbleed.com/heartbleed.svg, CC0, https://commons.wikimedia.org/wiindex.php?curid=3208928

IP Layer Security

- IPSec RFC 2401 2005 dominates IP layer security protocols.
- Provides general purpose security services.
- Both encryption and authentication can be provided.
- Important use in VPNs

Site-to-Site

VPN

There are two types of VPN:
Remote access VPNs

connect a remote user

to a corporate site.

IPsec VPNs

9.8: VPNs

- Governed by the IPsec protocols
- Operate at the internet layer
- Protect transport header, application content, and at least some IP header content.
- Protection is transparent. Upper-level content does not even know that it is being protected

9.9: IPsec in Transport and Tunnel Modes

- IPsec has two modes (ways) of operating:
 - Transport mode
 - Tunnel mode
- ▶ Both are IPsec
- Each mode has strengths and weaknesses

9.11 IPsec vs. SSL/TLS VPNs SSL/TLS Characteristics of IPsec Standards IETF (created **IETF** Organization by Netscape as SSL, renamed TLS by the IETF) Layer Layer 3 Layer 4 Built into Browsers, Yes No Webservers, and Mail Servers, So Protects These Applications at Little or No Cost 9-37

'es (also protects ransport- ayer header	No (Only SSL/TLS- aware
ind some of	applications such as web and e-mail) Host-to-Host
	lost-to-Host lemote Site

9.11 IPsec vs. SSL/TLS VPNs

Characteristic	IPsec	SSL/TLS
Strength of Security	Excellent	Good
Security can be Managed Centrally	Yes	No

Why IPsec is Not Enough

New. Not in the book.

- IPsec provides security to application content transparently
- Makes protection automatic
- However, this means that the application cannot tell if it is being protected
- So the application designer often requires SSL/TLS in order to be sure

Next Week

- Wireless Networks Ch 6 and Ch7
- TCP/IP revisited Ch 8 & Ch 9
- Following week
 - Ethernet Ch 5
 - Guest Lectures and Review

