TEMA 1:

Circuitos Acondicionadores de Señal. Amplificador de Instrumentación

¿Qué parte veremos del sistema de medida?

Índice

- 0.- ¿Cómo conectar el sensor/transductor al acondicionador o instrumento de medida?
- 1.- Amplificador Diferencial.
- 2.- Amplificador de Instrumentación.
- 3.- Errores en el Amplificador de Instrumentación.

¿Cómo conectar el sensor/transductor al acondicionador o instr. de medida?

Recursos para el estudio en Moodle:

- Transparencias: Referencia de una señal
- Vídeo: Referencia de una señal.

Índice

- 0.- ¿Cómo conectar el sensor/transductor al acondicionador o instrumento de medida?
- 1.- Amplificador Diferencial
- 2.- Amplificador de Instrumentación
- 3.- Errores en el Amplificador de Instrumentación

Ideal y real

AMPLIFICADOR DIFERENCIAL

... se emplea para amplificar señales de tipo diferencial.

Ejemplo de señal de tipo diferencial

Ejemplo de señal de tipo diferencial: Salida de un puente de medida

Figure 6-43. A classic bridge circuit for low power applications.

Ejemplo de señal de tipo diferencial *Medida de la corriente por una línea*

Figure 6-42. Motor control application.

También empleados para medir señales débiles en presencia de ruido

Ejemplo: Ruido en pistas que unen masas alejadas

Amp. No diferencial: $A_V = v_O/v_{IN}$

$$\begin{bmatrix} v_O = A_V \cdot v_{IN} \\ v_{IN} = v_S + v_{n_masa} \end{bmatrix}$$

$$v_{o} = A_{V} \cdot v_{S} + A_{V} \cdot v_{n_masa}$$

$$iProblema!$$

Término no deseado. Ruido añadido

También empleados para medir señales débiles en presencia de ruido

Ejemplo: Ruido en pistas que unen masas alejadas. *Una solución*

Amp. Diferencial:
$$A_V = v_O/v_{IN} = v_O/(v_{IN+} - v_{IN-})$$

$$v_{O} = A_{V} \cdot v_{IN}$$
 $v_{IN} = (v_{IN+} - v_{IN-})$
 $v_{IN+} = v_{S} + v_{S-} + v_{n_masa}$
 $v_{IN-} = v_{S-} + v_{n_masa}$

$$v_0 = A_V \cdot (v_S + v_{S-} + v_{n_masa} - v_{S-} - v_{n_masa})$$

$$v_O = A_V \cdot v_S$$

¡Sólo se amplifica la señal deseada!

También empleados para medir señales débiles en presencia de ruido

Ejemplo: Ruido en pistas que unen masas alejadas. *Otra solución*

Amp. No diferencial:

$$A_V = v_O/v_{IN}$$

$$\begin{vmatrix} v_O = A_V \cdot v_{IN} \\ v_{IN} = v_S \end{vmatrix} \qquad v_O = A_V \cdot v_S$$

También empleados para *medir señales débiles en presencia de ruido*Otro ejemplo: Ruido en tomas de tierra alejadas

Amp. No diferencial: $A_V = v_O/v_{IN}$

$$egin{aligned} v_O &= A_V \cdot v_{IN} \ v_{IN} &= v_S + v_{n_gnd} \end{aligned}
brace$$

$$v_{o} = A_{V} \cdot v_{S} + A_{V} \cdot v_{n_gnd}$$

$$iProblema!$$

Término no deseado. Ruido añadido

También empleados para *medir señales débiles en presencia de ruido*Ejemplo: Ruido en tomas de tierra alejadas. *Una solución*

Amp. Diferencial: $A_V = v_O/v_{IN} = v_O/(v_{IN+} - v_{IN-})$

$$v_{O} = A_{V} \cdot v_{IN}$$
 $v_{IN} = (v_{IN+} - v_{IN-})$
 $v_{IN+} = v_{S} + v_{S-} + v_{n_gnd}$
 $v_{IN-} = v_{S-} + v_{n_gnd}$

$$v_0 = A_V \cdot (v_S + v_{S-} + v_{n_gnd} - v_{S-} - v_{n_gnd})$$
 $v_0 = A_V \cdot v_S$ [Sólo se amplifica la señal deseada!

Señal diferencial y en modo común

Señal diferencial:

$$V_d = V_1 - V_2$$

Por desgracia a todos los amplificadores que responden a una V_d así definida, también les afecta la parte común de ambas señales V_1 y V_2 ... denominada la **señal en modo común V_c:**

$$V_c = \frac{V_1 + V_2}{2}$$

Para estudiar la respuesta de los circuitos ante ambas señales utilizaremos el siguiente modelo

Otro ejemplo de señal de tipo diferencial *Circuito para electrocardiograma*

Figure 6-46. An example of an ECG schematic.

Análisis del Amplificador Diferencial. Circuito

Su función ideal es: $V_o = f(V_d)$

Amplificador Diferencial: Análisis

Para estudiar su comportamiento ante señal diferencial y señal común, modelamos V_1 y V_2 mediante los generadores de tensión diferencial: V_d y tensión común: V_c .

$$\begin{cases} V_d = V_1 - V_2 \\ V_c = \frac{V_1 + V_2}{2} \end{cases} \qquad \begin{cases} V_1 = V_c + \frac{V_d}{2} \\ V_2 = V_c - \frac{V_d}{2} \end{cases}$$

Amplificador Diferencial: Análisis al modo diferencial

Ideal

¿Ganancia de tensión diferencial? $A_d = \frac{v_{od}}{v_d}$

Amplificador Diferencial: Análisis al modo diferencial

¿Resistencia de entrada a la señal diferencial?

$$R_{ed} = \frac{v_d}{i_d}$$

Amplificador Diferencial: Análisis al modo común

¿Ganancia de tensión común?
$$A_c = \frac{v_{oo}}{v_{oo}}$$

Amplificador Diferencial: Análisis al modo común

¿Resistencia de entrada a la señal común? $R_{ec} = \frac{v_c}{i_c}$

Amplificador Diferencial: Análisis (resumen)

P. superposición:

$$Vo = V_1 \cdot \frac{R_4}{R_3 + R_4} \cdot \left(1 + \frac{R_2}{R_1}\right) - V_2 \cdot \frac{R_2}{R_1}$$

$$V_1 = V_C + \frac{V_C}{2}$$

$$V_2 = V_C - \frac{V_C}{2}$$

$$V_{o} = \left(\frac{R_{4}}{R_{3} + R_{4}} \cdot \left(1 + \frac{R_{2}}{R_{1}}\right) + \frac{R_{2}}{R_{1}}\right) \frac{1}{2} \cdot V_{d} + \left(\frac{R_{4}}{R_{3} + R_{4}} \cdot \left(1 + \frac{R_{2}}{R_{1}}\right) - \frac{R_{2}}{R_{1}}\right) \cdot V_{c}$$

$$A_{d}$$

Para que
$$V_O \neq f(V_C)$$

$$\frac{R_4}{R_3 + R_4} \cdot \left(1 + \frac{R_2}{R_1}\right) - \frac{R_2}{R_1} = 0 \quad \Rightarrow \quad \frac{R_4}{R_3} = \frac{R_2}{R_1}$$

Amplificador diferencial real

Para medir cuánto se acerca al ideal se define la Relación de Rechazo al Modo Común:

$$CMRR = 20 \log \frac{A_d}{A_c} [dB]$$
 ó $CMR = \frac{A_d}{A_c}$

Ejemplo

Para el siguiente circuito, obtenga la tensión de error a la salida del amplificador diferencial debida a $v_{n_gnd}=1~V$ y al parámetro CMRR=80~dB del amplificador diferencial que tiene una ganancia (diferencial) de valor 100~[V/V]. Exprese el resultado en % del valor ideal de la tensión a la salida del amplificador cuando la tensión ofrecida por el transductor es de $v_S=50~mV$.

Amplificador Diferencial Real

- \geq ¿Qué parámetros contribuyen a hacer que $V_o = f(V_c)$?:
 - ☐ La tolerancia de las resistencias.
 - ☐ El CMRR del amplificador operacional.
- > Veamos su repercusión aplicando el teorema de superposición...

AD real: tolerancias de los resistores

Tengamos en cuenta la tolerancia ε de sólo un resistor

 R_1 R_2 (1- ϵ) v_c v_d v_d $R_3=R_1$ $R_4=R_2$

¿Valor del *CMR_R*?

Vimos que:

$$V_{o} = \left(\frac{R_{4}}{R_{3} + R_{4}} \cdot \left(1 + \frac{R_{2}}{R_{1}}\right) + \frac{R_{2}}{R_{1}}\right) \frac{1}{2} \cdot V_{d} + \left(\frac{R_{4}}{R_{3} + R_{4}} \cdot \left(1 + \frac{R_{2}}{R_{1}}\right) - \frac{R_{2}}{R_{1}}\right) \cdot V_{c}$$

$$A_{d} \qquad \qquad A_{c}$$

$$V_{o} = \frac{R_{2}}{R_{1}} \cdot \left(1 - \frac{R_{1} + 2 \cdot R_{2}}{R_{1} + R_{2}} \cdot \frac{\varepsilon}{2}\right) \cdot V_{d} + \frac{R_{2} \cdot \varepsilon}{R_{1} + R_{2}} \cdot V_{c}$$

$$A_{d} \qquad A_{c}$$

AD real: tolerancias de los resistores

Pero... ¿a qué resultado se llega si tenemos en cuenta la tolerancia de otro cualquiera de los resistores?

Se obtiene el mismo resultado:

$$CMR_{tol\ un\ resistor} \cong \frac{\left(1 + (R_2/R_1)\right)}{\varepsilon}$$

¿Qué valor tendría el CMR_R del amplificador diferencial si consideramos la misma tolerancia en los cuatro resistores?

AD real: tenemos en cuenta ahora el CMRR del AO

Con:

$$V_{os} = \frac{\frac{v_p + v_n}{2}}{CMR_{AO}} = \frac{v_{cAO}}{CMR_{AO}}$$

¿Valor de CMR_{AD} ?

AD real: considerando CMR_R y CMR_{AO}

¿ Valor de CMR_{AD} ?

$$v_o = A_D \times v_d + A_D \frac{v_c}{CMR_R} + A_D \frac{v_c}{CMR_{AO}}$$

$$v_o = A_d \times v_d + \left(A_d \frac{1}{CMR_R} + A_d \frac{1}{CMR_{AO}}\right) \times v_c$$

$$A_c$$

$$CMR_{AD} = \frac{A_d}{A_c} = \frac{1}{\frac{1}{CMR_R} + \frac{1}{CMR_{AO}}} = CMR_R ||CMR_{AO}||$$

$$CMR_R = \frac{\left(1 + (R_2/R_1)\right)}{4\varepsilon}$$

¡Cuidado!, sólo en unidades lineales

Ejemplo

$$R_1 = 10 \ k\Omega \ @ \ 1\%$$
 $R_2 = 100 \ k\Omega \ @ \ 1\%$ $R_1 \gg R$

¿ Qué valor tendrá v_o ?

Algunas conclusiones del Amplificador Diferencial real

Idealmente el A.D. responde únicamente a la componente diferencial de la tensión de entrada.

Las desigualdades de los componentes hacen que el amplificador responda también a la tensión en modo común.

El CMRR mide cuánto se aproxima el amplificador al modelo ideal.

Cuanto mayor sea la A_D mayor será el CMRR.

Amplificadores diferenciales comerciales

Fabricante	Dispositivo	V _{OS} μV	TCV _{os} μν/°C	CMRR (dB)	PSRR (dB)	N.L. (%)	E G (%)	Vcc (V)
Analog Dev.	AD626	50	1	90	80	0,045	0,2	±6
Maxim	MAX4198	30	0,5	90	115	0,0003	0,01	±3,75
Burr Brown	INA105	50 (RTO)	5	90		0,0002	0,005	±15
Burr Brown	INA106	50 (RTO)	0,2	100		0,0002	0,01	±15
Burr Brown	INA117	120 (RTO)	8,5	80	90	0,0002	0,01	±15

Algunas limitaciones del Amp. Diferencial

Efecto de carga del amplificador Ze ↓↓

Ejercicio

Se tiene un sistema de medida, de la tensión de una de las celdas de una batería (Fig. 1). En la Fig. 2 se muestra la etapa de entrada (un A.D.) del acondicionador. Estimar el error, en tanto por ciento, que se espera a la salida del A.D., teniendo en cuenta sólo la ganancia en modo común del mismo.

Datos: $R_1 = 100 \ k\Omega \ @ 5 \%$ $R_2 = 200 \ k\Omega \ @ 5 \%$ $CMRR_{AO} = 60 \ dB$

Índice

- 0.- ¿Cómo conectar el sensor/transductor al acondicionador o instrumento de medida?
- 1.- Amplificador Diferencial
- 2.- Amplificador de Instrumentación
- 3.- Errores en el Amplificador de Instrumentación

Ideal y real

AMPLIFICADOR DE INSTRUMENTACIÓN

... también se emplea para amplificar señales de tipo diferencial.

Del A. Diferencial al A. de Instrumentación Ideal

Aumento de la impedancia de entrada e igualdad de la impedancia "vista" desde cada una de las entradas.

Figure 2-2. A subtractor circuit with input buffering.

Del A. Diferencial al A. de Instrumentación Ideal

Seguimos la mejora, añadiendo ganancia a la etapa de entrada.

Figure 2-3. A buffered subtractor circuit with buffer amplifiers operating with gain.

El cambio propuesto aumenta la ganancia diferencial, pero a la vez, también amplifica la ganancia al modo común.

Del A. Diferencial al A. de Instrumentación Ideal

Solución final: El A.I. formado por tres AO's.

Figure 2-4. The classic 3-op amp in-amp circuit.

Amplificador de Instrumentación Ideal

A. Instrumentación: Análisis al modo diferencial

¿Ganancia de tensión diferencial? $A_D = \frac{v_{od}}{v_d}$

A. Instrumentación: Análisis al modo común

¿Ganancia de tensión común? $A_C = \frac{v_0}{v_0}$

Amplificador de Instrumentación Ideal

- La etapa 1 proporciona A_D ajustable con R_G
- R_G suele ser un resistor añadido, externo al C.I. Por ejemplo, un potenciómetro.
- La etapa 1 proporciona impedancia de entrada muy alta.
- La etapa 2 puede aportar una A_D fija adicional.
- La etapa 2 proporciona una impedancia de salida muy baja.

$$A_{d1} = \left(1 + \frac{2 \cdot R_3}{R_G}\right) \qquad A_{d2} = \frac{R_2}{R_1} \longrightarrow$$

$$A_{c1} = 1$$
 $A_{c2} = 0$ \longrightarrow

$$A_d = A_{d1} \cdot A_{d2} = \left(1 + \frac{2 \cdot R_3}{R_G}\right) \frac{R_2}{R_1}$$

$$A_c = A_{c1} \cdot A_{c2} = 0$$

Una limitación del A.I.: valor máximo de V_c

- ☐ Queremos amplificar V_d=5mV
- Para ello escogemos A_D=1000
- ☐ Alimentamos con ± 15 V
- ☐ Ponemos toda la ganancia en la primera etapa

¿Funciona con cualquier valor de V_c?

V_d	V _c	V_1	V_2	V _A	V _B	V _o
5 mV	1 V					
5 mV	10 V					
5 mV	20 V					

Una limitación del A.I.: valor máximo de V_c

- ☐ Queremos amplificar V_d=5mV
- Para ello escogemos A_D=1000
- ☐ Alimentamos con ± 15 V
- ☐ Ponemos toda la ganancia en la primera etapa

¿Funciona con cualquier valor de V_c?

V_d	V _c	V_1	V ₂	V _A	V_B	V _o
5 mV	1 V	1,0025 V	997,5 mV	3,5 V	-1,5 V	5 V
5 mV	10 V	10,0025 V	9,9975 V	12,5 V	7,5 V	5 V
5 mV	20 V	20,0025 V	19,9975 V	22,5 V	17,5 V	5 V

Otra limitación del A.I.: valor del CMR_{AI}

... es muy elevado, pero ¿qué relación tiene con el CMR de la etapa 1 y 2?

A.I.: influencia del reparto de la ganancia

$$V_{Bmax} = -\frac{V_{dmax}}{2}A_{d1} + V_{cmax} = -\text{Ouput Voltage Swing}$$

$$V_{Amax} = \frac{V_{dmax}}{2} A_{d1} + V_{cmax} = \text{Ouput Voltage Swing}$$

$$|V_{cmax}| = |Ouput\ Voltage\ Swing| - |\frac{V_{dmax}}{2}A_{d1}|$$

$$CMRR_{AI} = CMRR_1 + CMRR_{AD}$$

$$CMR_1 = A_{d1} \rightarrow CMRR_1 = 20logA_{d1}$$

$$CMR_{AD} \cong \frac{\left(1 + (R_2/R_1)\right)}{4 \times Tol} \rightarrow CMRR_{AD} \cong 20log \frac{\left(1 + (R_2/R_1)\right)}{4 \times Tol}$$

A_d	100			
Tol resist.	5			
$V_{d(max)}$	0,10			
Vcc	15			
A_{d1}	100	10	1,0	
A_{d2}	1	10	100	
CMRR ₁				
CMRR ₂				
CMRR				
V _{o(max)}				
$V_{c(max)}$				

A.I.: influencia del reparto de la ganancia

$$V_{Bmax} = -\frac{V_{dmax}}{2}A_{d1} + V_{cmax} = -\text{Ouput Voltage Swing}$$

$$V_{Amax} = \frac{V_{dmax}}{2} A_{d1} + V_{cmax} = \text{Ouput Voltage Swing}$$

$$|V_{cmax}| = |Ouput\ Voltage\ Swing| - |\frac{V_{dmax}}{2}A_{d1}|$$

$$CMRR_{AI} = CMRR_1 + CMRR_{AD}$$

$$CMR_1 = A_{d1} \rightarrow CMRR_1 = 20logA_{d1}$$

$$CMR_{AD} \cong \frac{\left(1 + (R_2/R_1)\right)}{4 \times Tol} \rightarrow CMRR_{AD} \cong 20log \frac{\left(1 + (R_2/R_1)\right)}{4 \times Tol}$$

A_d	100				
Tol resist.	5				
$V_{d(max)}$	0,10				
Vcc	15				
A_{d1}	100	10	1,0		
A_{d2}	1	10	100		
CMRR ₁	40 dB	20 dB	0 dB		
CMRR ₂	20 dB	34,8 dB	54 dB		
CMRR	60 dB	54,8 dB	54 dB		
V _{o(max)}	11 V	12,64 V	12,98 V		
$V_{c(max)}$	10 V	14,5 V	14,95 V		

Ejemplo de A.I. comercial (AMPO2)

A.I.: terminales SENSE y REFERENCE

Si el terminal *REFERENCE* está conectado a masa:

$$V_{OUT} = (V_{+IN} - V_{-IN}) \cdot A_D$$

A.I.: terminales SENSE y REFERENCE

Si el terminal *REFERENCE* NO está conectado a masa:

$$V_{OUT} = (V_{+IN} - V_{-IN}) \cdot A_D + V_{REFERENCE}$$

A.I. terminales SENSE y REFERENCE: ejemplo de uso

CASO A

A.I. terminales SENSE y REFERENCE: ejemplo de uso

CASO B

A.I. terminales SENSE y REFERENCE: ejemplo de uso

CASO C

A. Instrumentación: Aplicaciones

- Medida de tensiones diferenciales
 - ☐ Puentes de medida.
 - ☐ Biopotenciales.
 - ☐ Etc.

≥ Eliminación de bucles de masa

