CNN for CV Al for CV Group 2019

Contents:

- I. Image Segmentation
 - A. FCN
 - B. UNet/ENet
 - C. Mask RCNN
 - D. Developments
- II. Image Style Transfer
 - E. Image Style Transfer: Perceptual Loss
 - F. Feature Mimicking/Distillation
- III. Other Applications
 - G. Others

A. <u>FCN</u> [2015, Jonathan]:

• 3 Trends:

A. <u>FCN</u> [2015, Jonathan]:

• Effects:

B. U-Net / E-Net:

B1. <u>U-Net</u> [2015, Olaf]

- B. U-Net / E-Net:
 - **B1.** U-Net [2015, Olaf]
 - Tile Strategy:
 - Use padding in mirroring way
 - To due with boarders
 - Just use valid parts
 - U-like Structure
 - Combine lower & higher info
 - > Remove FC layers

B. U-Net / E-Net:

B1. <u>U-Net</u> [2015, Olaf]

• Effects:

B. U-Net / E-Net:

B2. <u>E-Net</u> [2016, Adam]

Structure:

		,
Name	Type	Output size
initial		$16 \times 256 \times 256$
bottleneck1.0	downsampling	$64 \times 128 \times 128$
4× bottleneck1.x		$64 \times 128 \times 128$
bottleneck2.0	downsampling	$128 \times 64 \times 64$
bottleneck2.1		$128 \times 64 \times 64$
bottleneck2.2	dilated 2	$128 \times 64 \times 64$
bottleneck2.3	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.4	dilated 4	$128 \times 64 \times 64$
bottleneck2.5		$128 \times 64 \times 64$
bottleneck2.6	dilated 8	$128 \times 64 \times 64$
bottleneck2.7	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.8	dilated 16	$128\times64\times64$
Repeat section 2	2, without bottlened	:k2.0
bottleneck4.0	upsampling	$64 \times 128 \times 128$
bottleneck4.1		$64 \times 128 \times 128$
bottleneck4.2		$64 \times 128 \times 128$
bottleneck5.0	upsampling	$16 \times 256 \times 256$
bottleneck5.1		$16 \times 256 \times 256$
fullconv		$C \times 512 \times 512$

- B. U-Net / E-Net:
 - B2. E-Net [2016, Adam]
 - Features:
 - > Real Time: Altered bottleneck / Asymmetric conv
 - > Unbalanced Encoder & Decoder
 - Dilated conv

Name	Type	Output size
initial		$16 \times 256 \times 256$
bottleneck 1.0	downsampling	$64 \times 128 \times 128$
4× bottleneck1.x		$64 \times 128 \times 128$
bottleneck2.0	downsampling	$128 \times 64 \times 64$
bottleneck2.1		$128 \times 64 \times 64$
bottleneck2.2	dilated 2	$128 \times 64 \times 64$
bottleneck2.3	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.4	dilated 4	$128 \times 64 \times 64$
bottleneck2.5		$128 \times 64 \times 64$
bottleneck2.6	dilated 8	$128 \times 64 \times 64$
bottleneck2.7	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.8	dilated 16	$128\times64\times64$
Repeat section 2,	without bottlened	:k2.0
bottleneck4.0	upsampling	$64 \times 128 \times 128$
bottleneck4.1		$64 \times 128 \times 128$
bottleneck4.2		$64 \times 128 \times 128$
bottleneck5.0	upsampling	$16 \times 256 \times 256$
bottleneck5.1		$16 \times 256 \times 256$
fullconv		$C \times 512 \times 512$

C. Mask-RCNN [2017, He]:

C. Mask-RCNN [2017, He]:

- Features:
 - Use FPN as backbone
 - > Add FCN for each proposal as mask branch
 - > ROI Align
 - > Classify, mask and detect separately / FCN: classify with mask together
 - \triangleright 5 fps

C. Mask-RCNN [2017, He]:

D. Developments:

- > FCN
- **▶** Upsampling method: Deconv —> Interpolation
- > FCN with CRF / other traditional methods
- Dilated conv
- **Backbone dev: VGG, Resnet, ...**
- > Pyramid
- ➤ Multi-stage: ICNet [Cascade]
- > Semi/non-supervised learning [A paper]

E. Image Style Transfer

E1. 1st Trial [2015, Gatys]

Arguments:

- Images can be represented by contents and styles
- The higher a layer is, the more semantic info we'll get;
 The lower a layer is, the more loca info we'll get.
- We can transfer an image's style by minimizing the loss of their styles and contents.

E. Image Style Transfer

E1. 1st Trial [2015, Gatys]

Questions:

- > How to represent contents?
- ➤ How to represent styles?
- How to minimizing the gap?
- How to combine content / style?

E. Image Style Transfer

E1. 1st Trial [2015, Gatys]

- 1 Vgg. Same network.
- ② Higher layer, ampler content info.
- 3 Content loss
- 4 Style representation: Gram Matrix

- 5 Different weights for different styles of different layers
- 6 Style loss
- **Objective** Combine contents and styles
- 8 Generated from white noise

E. Image Style Transfer E1. 1st Trial [2015, Gatys]

E. Image Style Transfer

E2. Make It Faster! [2016, Perceptual Loss, Justin]

- E. Image Style Transfer
 - E2. Make It Faster! [2016, Perceptual Loss, Justin]
 - Import aspects:
 - Perceptual Loss! Perceptual Loss! Perceptual Loss!
 - Variation Regularization

$$\hat{y} = \arg\min_{y} \lambda_c \ell_{feat}^{\phi, j}(y, y_c) + \lambda_s \ell_{style}^{\phi, J}(y, y_s) + \lambda_{TV} \ell_{TV}(y)$$

Functional network + Loss network

E. Image Style Transfer

E2. Make It Faster! [2016, Perceptual Loss, Justin]

• Tips:

> L1 / L2 / Perceptual / Gradient loss in Image Transferring

L1: Good for details but bad for color

L2: Good for color but bad for details

Perceptual: Good for everything. Common in super resolution Gradient: Can decrease chessboard pattern tremendously

• Thinking:

Assume your task is to improve the rate of face recognition under bad light condition.

What can you do?

F. Feature mimicking / Model distillation

• Aim:

- Distill knowledge from bigger models
- ➤ Use the distilled knowledge to guide the learning of smaller models
- Use smaller models to mimic the effect of bigger models

Papers:

- Distilling the Knowledge in a Neural Network [2015, Hinton]
- > FitNets: Hints for Thin Deep Nets [2015, Remero, Bengio]
- Mimicking Very Efficient Network for Object Detection [2017, Quanquan Li]

b. Generate soft target by

using trained model

a. Train big model(s)

F. Feature mimicking / Model distillation

c. Train small model guided

by big model

d. Predict by using small model

G. Others

► Image Enhancement [2018]

Channel split;

Exposure combination;

High/Low frequency split

G. Others

Reflection Removal [2018]

$$I = B + R$$

G. Others

> Super Resolution

