Taylor Series, Derivative Approximation, and Numerical Cancellation

- 1 lecture
- References:
 - Overton, Chapter 11
 - Cheney & Kincaid, Sections 1.1, 1.4, 4.3

The Mean Value Theorem

The mean value theorem (MVT):

Let f(x) be differentiable. For **some** z in [x, x + h]:

$$f'(z) = \frac{f(x+h) - f(x)}{h}.$$

This is intuitively clear from:

The Mean Value Theorem

We can **rewrite** the MV formula as:

$$f(x+h) = f(x) + hf'(z).$$

A generalization if f is **twice** differentiable is

$$f(x + h) = f(x) + hf'(x) + \frac{h^2}{2}f''(z),$$

for some z in [x, x + h].

The Taylor Series

Taylor Theorem:

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} + E_{n+1}$$

where the error (remainder)

$$E_{n+1} = \frac{f^{(n+1)}(z)}{(n+1)!}h^{n+1}, \quad z \in [x, x+h]$$

The Taylor Series

Taylor Theorem:

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} + E_{n+1}$$

where the error (remainder)

$$E_{n+1} = \frac{f^{(n+1)}(z)}{(n+1)!}h^{n+1}, \quad z \in [x, x+h]$$

Taylor series.

$$f(x+h) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!} h^k, \quad |h| < R$$

The RHS is assumed to converge with radius of convergence R.

The Taylor Series

Example: For $f(x) = \sin x$,

$$\sin(x+h) = \sin(x) + \sin'(x)h + \frac{\sin''(x)}{2!}h^{2} + \frac{\sin'''(x)}{3!}h^{3} + \frac{\sin''''(x)}{4!}h^{4} + \cdots, |h| < \infty$$

Letting x = 0, we get

$$\sin(h) = h - \frac{1}{3!} h^3 + \frac{1}{5!} h^5 - \cdots,$$

since **even** derivatives of $\sin x$ are zero at x=0, and **odd** ones are ± 1 .

X.-W. Chang 5/17

Numerical Approximation to f'(x)

If h is **small**, f'(x) is nearly the **slope** of the line through (x, f(x)) and (x + h, f(x + h)). We write $f'(x) \approx \frac{f(x + h) - f(x)}{h}, \quad \text{forward difference}.$

X.-W. Chang 6/17

Numerical Approximation to f'(x)

If h is **small**, f'(x) is nearly the **slope** of the line through (x, f(x)) and (x + h, f(x + h)). We write $f'(x) \approx \frac{f(x + h) - f(x)}{h}, \quad \text{forward difference}.$

How good is this approximation?

X.-W. Chang 6/17

Numerical Approximation to f'(x)

If h is **small**, f'(x) is nearly the **slope** of the line through (x, f(x)) and (x + h, f(x + h)). We write

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
, forward difference.

How good is this approximation?

By the Taylor Theorem:

$$f(x + h) = f(x) + hf'(x) + \frac{h^2}{2}f''(z).$$

Then

$$\frac{f(x+h) - f(x)}{h} - f'(x) = \frac{h}{2}f''(z),$$

which is called the **discretization error**, the difference between what we want and our approximation, using the **discretization** size h. We say the discretization error is O(h).

X.-W. Chang 6/

Computing the Approximation to f'(x)

Approximate the <u>derivative</u> of $f(x) = \sin(x)$ at x = 1. Compute the **exact** discretization errors for $h = 10^{-1}, \dots, 10^{-20}$. int main() {int n; double x,h,approx,exact,error; x = 1.0; h = 1.0; n = 0; printf("\n h exact approx error"); while(n<20) { n++; h = h/10; /* $h=10^{-(-n)}$ */ approx = (sin(x+h)-sin(x))/h; /*app.deriv.*/ exact = cos(x); /*exact derivative */ error = approx - exact; /*disczn error */ printf("...\n",h,approx,exact,error);

Convergence of Approximation

h	approx	exact	error
1.0e-03	5.398815e-01	5.403023e-01	-4.208255e-04
1.0e-04	5.402602e-01	5.403023e-01	-4.207445e-05
1.0e-05	5.402981e-01	5.403023e-01	-4.207362e-06
1.0e-06	5.403019e-01	5.403023e-01	-4.207468e-07
1.0e-07	5.403023e-01	5.403023e-01	-4.182769e-08
1.0e-08	5.403023e-01	5.403023e-01	-1.407212e-08
1.0e-09	5.403024e-01	5.403023e-01	5.254127e-08
1.0e-10	5.403022e-01	5.403023e-01	-5.848104e-08
1.0e-11	5.403011e-01	5.403023e-01	-1.168704e-06
1.0e-12	5.403455e-01	5.403023e-01	4.324022e-05
1.0e-13	5.395684e-01	5.403023e-01	-7.339159e-04
1.0e-14	5.329071e-01	5.403023e-01	-7.395254e-03
1.0e-15	5.551115e-01	5.403023e-01	1.480921e-02
1.0e-16	0.000000e+00	5.403023e-01	-5.403023e-01

Convergence of Approximation, ctd

- When h changes from 10^{-3} to 10^{-8} , the approximation gets **better**, and when h is reduced by 10, the **discretization error** is reduced by ~ 10 , so the error **is** O(h).
- When $h = 10^{-9}$, the approximation starts to get worse!
- When h changes from 10^{-9} to 10^{-16} , the approximation gets worse and worse.
- When $h = 10^{-16}$, approx becomes 0.

Q: Why ??

X.-W. Chang 9/17

Explanation of Accuracy Loss

• If x=1, and $h \leq \frac{1}{2}\epsilon \approx 1.1 \times 10^{-16}$, x+h has the same numerical value as x, so f(x+h) and f(x) cancel to give 0 and the quantity approx has no digits of precision.

X.-W. Chang 10/17

Explanation of Accuracy Loss

- If x=1, and $h \leq \frac{1}{2}\epsilon \approx 1.1 \times 10^{-16}$, x+h has the same numerical value as x, so f(x+h) and f(x) cancel to give 0 and the quantity approx has no digits of precision.
- When h is a **little** bigger than $\epsilon/2$, the values **partially** cancel. For example, suppose that the <u>first 10 digits</u> of $\sin(x+h)$ and $\sin(x)$ are the same. Then, even though $\sin(x+h)$ and $\sin(x)$ are accurate to 16 digits, the **difference** has only 6 accurate digits.

X.-W. Chang 10/17

Explanation of Accuracy Loss

- If x=1, and $h \leq \frac{1}{2}\epsilon \approx 1.1 \times 10^{-16}$, x+h has the same numerical value as x, so f(x+h) and f(x) cancel to give 0 and the quantity approx has no digits of precision.
- When h is a **little** bigger than $\epsilon/2$, the values **partially** cancel. For example, suppose that the <u>first 10 digits</u> of $\sin(x+h)$ and $\sin(x)$ are the same. Then, even though $\sin(x+h)$ and $\sin(x)$ are accurate to 16 digits, the difference has only 6 accurate digits.
- In summary, using h too big means a big discretization error, while using h too small means a big cancellation error.

For the function $f(x) = \sin(x)$, at x = 1, the best choice of h is about 10^{-8} , or $\sim \sqrt{\epsilon}$.

X.-W. Chang 10/17

Numerical Cancellation

The cancellation phenomenon occurs when we do a subtraction of two **nearly equal** numbers and it is one of the main causes for deterioration in accuracy.

X.-W. Chang 11/17

Numerical Cancellation

The cancellation phenomenon occurs when we do a subtraction of two **nearly equal** numbers and it is one of the main causes for deterioration in accuracy.

Theoretical Analysis

In a computation, usually operands have some errors.

Instead of the correct values x and y, the computer works with two perturbed floating point numbers:

$$\hat{x} = x(1 + \delta_1), \qquad \hat{y} = y(1 + \delta_2),$$

where the errors δ_1 and δ_2 may be due to previous computations, physical experiments and/or rounding.

Suppose we want to compute x - y. But we can only compute $\hat{x} - \hat{y}$. The computed value of $\hat{x} - \hat{y}$ is

$$(\hat{x} - \hat{y})(1 + \delta_3), \quad |\delta_3| < \epsilon$$

X.-W. Chang 11/17

Numerical Cancellation Error

Is $(\hat{x} - \hat{y})(1 + \delta_3)$ a good approximation to x - y?

The relative error:

$$\left| \frac{(\hat{x} - \hat{y})(1 + \delta_3) - (x - y)}{x - y} \right| \\
= \left| \frac{x(1 + \delta_1)(1 + \delta_3) - y(1 + \delta_2)(1 + \delta_3) - (x - y)}{x - y} \right| \\
= \left| \delta_3 + \frac{x}{x - y} \delta_1 + \frac{x}{x - y} \delta_1 \delta_3 + \frac{y}{x - y} \delta_2 + \frac{y}{x - y} \delta_2 \delta_3 \right|.$$

This suggests that when

$$|x - y| \ll |x|, |y|,$$

it is very likely that the relative error is very large even if $|\delta_1|$ and $|\delta_2|$ are very small and $\delta_3=0$.

In numerical computating, avoid numerical cancellation if possible.

X.-W. Chang 12/1

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a},$$

Given a=1, b=-10000, c=1, the exact solutions are True solutions (accurate up to the last digits)

$$x_1 = 9999.999899999998, \quad x_2 = 0.00010000000100000002$$

In single precision, the formulas give

$$x_1 = 10,000.0$$
, very good, $x_2 = 0$, completely wrong

X.-W. Chang 13/17

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a},$$

Given a=1, b=-10000, c=1, the exact solutions are True solutions (accurate up to the last digits)

$$x_1 = 9999.999899999998, \quad x_2 = 0.00010000000100000002$$

In single precision, the formulas give

$$x_1 = 10,000.0$$
, very good, $x_2 = 0$, completely wrong

Reason: $\sqrt{b^2 - 4ac} \approx -b$, there is a numerical cancellation in computing $-b - \sqrt{b^2 - 4ac}$.

X.-W. Chang 13/17

How to avoid the problem?

X.-W. Chang 14/17

How to avoid the problem?

Idea: Rationalization

$$x_{2} = \frac{(-b - \sqrt{b^{2} - 4ac})(-b + \sqrt{b^{2} - 4ac})}{2a(-b + \sqrt{b^{2} - 4ac})}$$

$$= \frac{2c}{-b + \sqrt{b^{2} - 4ac}}$$

$$= \frac{c}{ax_{1}}$$

Using the above formula, the computed $x_2 = 10^{-4}$, much more accurate.

X.-W. Chang 14/17

More Accurate Numerical Differentiation

As h decreases, the line through (x - h, f(x - h)) and (x + h, f(x + h)) gives a **better approximation** to the **slope of the tangent** to f at x than the line through (x, f(x)) and (x + h, f(x + h)).

X.-W. Chang 15/17

Central Difference Approximation

This observation leads to the approximation:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

the central difference formula.

X.-W. Chang 16/17

Analyzing Central Difference Formula

From the **Taylor Theorem**:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(z_1),$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(z_2),$$

with z_1 between x and x + h and z_2 between x and x - h.

Analyzing Central Difference Formula

From the **Taylor Theorem**:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(z_1),$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(z_2),$$

with z_1 between x and x + h and z_2 between x and x - h.

Subtracting the 2nd from the 1st:

$$\frac{f(x+h)-f(x-h)}{2h}=f'(x)+\frac{h^2}{12}(f'''(z_1)+f'''(z_2))$$

Discretization error $\frac{h^2}{12}(f'''(z_1) + f'''(z_2))$ is $O(h^2)$ instead of O(h).

X.-W. Chang 17/17