1. Let function f be defined by the polynomial below:

$$f(x) = -2x^4 - 3x^3 + 5x^2 - 9x + 8$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
- f(x) •	$ -2x^4 + 3x^3 + 5x^2 + 9x + 8 $	
f(−x) •	$ 2x^4 - 3x^3 - 5x^2 - 9x - 8 $	
-f(-x) •	$ 2x^4 + 3x^3 - 5x^2 + 9x - 8 $	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	5	2	6
2	8	4	1
3	7	6	2
4	3	9	7
5	6	8	3
6	4	7	8
7	9	1	5
8	2	3	4
9	1	5	9

3. Evaluate f(3).

4. Evaluate $g^{-1}(9)$.

5. Assuming h is an **odd** function, evaluate h(-8).

6. Assuming f is an **even** function, evaluate f(-6).

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 - x$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x}{4} - 3$$

a. Evaluate f(60).

b. Evaluate $f^{-1}(7)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(8).

b. Evaluate $b^{-1}(2)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	-3			
-1	9			
0	0			
1	9			
2	-3			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?