chapter 5

서포트 벡터 머신

서포트 벡터 머신 support vector machine (SVM)은 매우 강력하고 선형이나 비선형 분류, 회귀, 이상치 탐색에도 사용할 수 있는 다목적 머신러닝 모델

→복잡한 분류 문제에 잘 들어맞으며 작거나 중간 크기의 데이터셋에 적합합니다.

초평면 : 클래스를 구분하는 결정 경계 (n-1차원을 가짐)

마진 margin : 초평면에 가장 가까운 훈련 샘플 사이의 거리

서포트 벡터 support vector : 초평면에 가장 가까운 몇 개의 샘플 포인트

5.1 선형 SVM 분류

오른쪽 그래프의 실선 : SVM 분류기의 결정경계, 두 개의 클래스를 나누고 있을 뿐만 아니라 제일 가까운 훈련 샘플로부터 가능한 한 멀리 떨어져 있다. → 클래스 사이에 가장 폭이 넓은 도로를 찾는 것

→ **라진 마진 분류** large margin classification 라고 한다.

왼쪽 : 수직축의 스케일 > 수평축의 스케일 → 가장 넓은 도로가 거의 수평에 가까움 (도로의 간격을 수직으로 맞추려고 할 것이기 때문)

오른쪽 : 특성의 스케일을 조절하여 결정 경계가 훨씬 좋아진다.

5.1.1. 소프트 마진 분류

하드 마진 분류 hard margin classification : 모든 샘플이 도로 바깥쪽에 올바르게 분류됨

문제점: 데이터가 선형적으로 구분되어야 제대로 작동, 이상치에 민감

왼쪽 그래프 : 데이터셋에 이상치가 하나 있어 하드 마진을 찾을 수 없다.

오른쪽 그래프 : [그림 5-1]의 결정 경계와 매우 다르고 일반화가 잘 될 것 같지 않음

소프트 마진 분류 soft margin classification

도로의 폭을 가능한 한 넓게 유지하는 것과 **마진 오류** margin violation (샘플이 도로 중간이나 반대쪽에 있는 경우) 사이에 적절한 균형을 잡는다.

Scikit-Learn의 SVM 모델의 하이퍼 파라미터 C

C: Regularization parameter. The strength of the regularization is inversely proportional to C.

C를 낮게 설정 : 넓은 마진, 마진 오류가 많지만 일반화가 더 잘됨, 규제가 커짐

C를 높게 설정 : 좁은 마진, 적은 마진 오류, 규제가 낮아짐

→ SVM모델이 과대적합이라면 C를 감소시켜 모델을 규제할 수 있다.

5.2 비선형 SVM 분류

다항 특성과 같은 특성을 더 추가하여 비선형 데이터셋을 다룬다. → 선형적으로 구분되는 데이터셋이 만들어짐

[그림 5-5]

왼쪽 그래프 : 하나의 특성 x_1 만을 가진 간단한 데이터셋 \rightarrow 선형적으로 구분이 안 된다.

오른쪽 그래프 : 두 번째 특성 $x_2=(x_1)^2$ 을 추가하여 만들어진 2차원 데이터셋 \rightarrow 선형적으로 구분 가능

5.2.1 다항식 커널

SVC(kernel='poly')

다항식 특성을 추가하는 것은 간단하고 모든 머신러닝 알고리즘에서 잘 작동하지만

낮은 차수의 다항식 : 매우 복잡한 데이터셋을 잘 표현하지 못함

높은 차수의 다항식 : 굉장히 많은 특성을 추가 → 모델을 느리게만듬

커널 트릭 kernel trick

실제로는 특성을 추가하지 않으면서 다항식 특성을 많이 추가한 것과 같은 결과를 얻을 수 있음 → 사실 어떤 특성도 추가하지 않기 때문에 엄청난 수의 특성 조합이 생기지 않음

왼쪽 그래프 : 3차 다항식 커널을 사용한 SVM 분류기

오른쪽 그래프: 10차 다항식 커널을 사용한 SVM 분류기

→ 모델이 과대적합 : 차수를 줄임 | 모델이 과소적합 : 차수를 늘려야 함

매개변수 r(coef0): 모델이 높은 차수와 낮은 차수에 얼마나 영향을 받을지 조절한다.

다항식 커널 $K(\boldsymbol{a}, \boldsymbol{b}) = (\gamma \boldsymbol{a}^T \boldsymbol{b} + r)^d$

위 식을 보다시피 다항식 커널은 차수가 높아질수록 1보다 작은 값과 1보다 큰 값의 차이가 크게 벌어지므로 r을 적절한 값으로 지정하면 고차항의 영향을 줄일 수 있다.

5.2.2 유사도 특성

SVC(kernel='rbf')

각 샘플이 특정 **랜드마크** landmark와 얼마나 닮았는지 측정하는 **유사도 함수** similarity function로 계산한 특성을 추가하는 것.

[그림 5-8]

ex)

앞의 [그림 5-5]의 왼쪽 그래프를 나타내는 1차원 데이터셋에 두 개의 랜드마크 $x_1 = -2$ 와 $x_1 = 1$ 을 추가한다. 그리고 $\gamma = 0.3$ 인 가우시안 **방사 기저 함수** radial basis function (RBF)를 유사도 함수로 정의한다.

가우시안 RBF
$$\phi_{\gamma}(\pmb{x},l) = exp(-\gamma \|\pmb{x}-l\|^2) = e^{(-\gamma \|\pmb{x}-l\|^2)}$$

l: 랜드마크 지점, γ : 0보다 커야 하며 값이 작을수록 폭이 넓은 종 모양

→ 방사 기저 함수의 값 : 0(랜드마크에서 멀리 떨어짐)부터 1(랜드마크와 같은 위치)까지 변화하며 종 모양으로 나타남

 $x_1=1$ 샘플을 살펴 보았을 때 첫번째, 두번째 랜드마크에서 각각 1, 2만큼 떨어져 있으므로 새로 만든 특성은 $x_2=exp(-0.3\times 1^2)\approx 0.74,\; x_3=exp(-0.3\times 2^2)\approx 0.30$ 이다. 오른쪽 그래프는 변환된 데이터셋을 보여준다 \rightarrow 이제 선형적으로 구분 가능, 멀리 떨어진 샘플들이 0에 가깝게 나타나게 된다.

랜드마크 선택

간단한 방법 : 데이터셋에 있는 모든 샘플 위치에 랜드마크를 설정하는 것, 이렇게 하면 차원이 매우 커지고 따라서 변환된 훈련 세트가 선형적으로 구분될 가능성이 높다.

단점 : 훈련 세트에 있는 n개의 특성을 가진 m개의 샘플이 m개의 특성을 가진 m개의 샘플로 변환된다는 것이다. (원본 특성은 제외한다고 가정) 훈련 세트가 매우 클 경우 동일한 크기의 아주 많은 특성이 만들어짐.

5.2.3 가우시안 RBF 커널

추가 특성을 모두 계산하려면 연산 비용이 많이 드는데, 이때 커널 트릭을 이용하여 유사도 특성을 많이 추가하는 것과 같은 비슷한 결과를 얻을 수 있다.

gamma(y) 증가 → 종 모양 그래프가 좁아져서. 각 샘플의 영향 범위가 작아짐, 결정 경계가 조금 더 불규칙해지고 각 샘플을 따라 구불구불하게 휘어진다.

gamma(y) 감소 \rightarrow 넓은 종 모양 그래프를 만들며 샘플이 넓은 범위에 걸쳐 영향을 주므로 결정 경계가 더 부드러워짐

 \rightarrow 하이퍼 파라미터 γ 가 규제의 역할을 한다. (하이퍼 파라미터 C와 비슷하다)

모델이 과대적합 $\rightarrow \gamma$ 를 감소시켜야 한다.

모델이 과소적합 → γ 를 증가시켜야 한다.

어떤 커널을 사용할까

선형 커널을 먼저 시도한다. 특히 훈련 세트가 아주 크거나 특성 수가 많은 경우

훈련 세트가 너무 크지 않다면 가우시안 RBF 커널도 시도해보면 좋다. → 대부분의 경우 잘 들어맞음.

그 외 시간, 성능이 충분하다면 다른 커널을 좀 더 시도해볼 수 있다.

5.2.4 계산복잡도

파이썬 클래스	시간 복잡도	외부 메모리 학습 지원	스케일 조정의 필요성	커널 트릭
LinearSVC	$O(m \times n)$	아니오	예	아니오
SGDClassifier	$O(m \times n)$	예	예	아니오
SVC	$O(m^2 \times n) \sim O(m^3 \times n)$	아니오	예	예

정밀도를 높이면 알고리즘의 수행 시간이 길어진다. 이는 허용오차 하이퍼파라미터 ϵ 으로 조절한다.

LinearSVC : 선형 SVM을 위한 최적화 알고리즘을 구현한 liblinear 라이브러리를 기반으로 한다. 커널 트릭을 지원하지 않지만 훈련 샘플과 특성 수에 거의 선형적으로 늘어난다. 정밀도를 높이면 수행 시간이 길어짐. \rightarrow 허용오차 하이퍼파라미터 ε 으로 조절 (매개변수 tol=0.0001) SVC: 커널 트릭 알고리즘을 구현한 libsym 라이브러리를 기반으로 한다.

시간 복잡도가 $O(m^2 \times n) \sim O(m^3 \times n)$ 로 복잡하지만 작거나 중간 규모의 훈련 세트에 이 알고리즘이 잘 맞는다. 특성의 개수에는, 특히 **희소 특성** sparse features (각 샘플에 0이 아닌 특성이 몇 개 없는 경우) 인 경우에는 잘 확장된다. \rightarrow 알고리즘의 성능이 샘플이 가진 0이 아닌 특성의 평균 수에 거의 비례

5.3 SVM 회귀

일정한 마진 오류 안에서 두 클래스 간의 도로 폭이 가능한 한 최대가 되도록 하는 대신, SVM 회귀는 제한된 마진 오류(=도로 밖의 샘플) 안에서 도로 안에 가능한 한 많은 샘플이 들어가도록 학습한다. 도로의 폭은 하이퍼파라미터 ε 으로 조절한다.(\neq 허용오차의 하이퍼 파라미터 ε)

무작위로 생성한 선형 데이터셋에 훈련시킨 두 개의 선형 SVM 회귀 모델을 보여준다.

왼쪽 : 마진을 크게 $(\varepsilon=1.5)$ 하여 만듬 오른쪽 : 마진을 작게 $(\varepsilon=0.5)$ 하여 만듬

마진 안에서는 훈련 샘플이 추가되어도 모델의 예측에는 영향이 없다 ightarrow ϵ 에 민감하지 않다 ϵ -insensitive

• : Support Vector

 ε – insensitive loss

[그림 5-11]: 임의의 2차방정식 형태의 훈련 세트에 2차 다항 커널을 사용한 SVM 회귀

비선형 회귀 작업을 처리하려면 커널 SVM 모델을 사용한다.

[그림 5-11]

왼쪽 그래프 : 규제가 거의 없다.(=아주 큰 C) 오른쪽 그래프 : 규제가 훨씬 많음(=작은 C)

LinearSVR : 필요한 시간이 훈련 세트의 크기에 비례해서 선형적으로 늘어남(=LinearSVC)

SVR : 훈련 세트가 커지면 훨씬 느려짐(=SVC)