Introdução

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

13 de junho de 2021

Conclusão

1 Introdução

Introdução

- 2 Memórias Transacionais
- 3 Escalonadores
- 4 Arquiteturas
- 5 LTMS
- **6** Experimentos
- Resultados
- 8 Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Memórias Transacionais Escalonadores

s Arquiteturas

Experimentos

Conclusão

Introdução

Motivação

- Programação Paralela;
- Memórias Transacionais;
- Escalonadores de Transações; e
- Arquiteturas NUMA.

Escalonadores

Arquiteturas

Experimentos

Conclusão

Introdução

Objetivos

- Projetar um escalonador de STM modular que considera a arquitetura utilizada, intitulado LTMS;
- Prototipar o escalonador LTMS, utilizando a biblioteca de STM TinySTM; e
- Análisar de desempenho do LTMS comparado a TinySTM utilizando o conjunto de benchmarks STAMP.

Escalonadores

Memórias Transacionais

Características

Introdução

- Fornece abstração de código;
- Reuso de código; e
- Ausência de deadlocks.

Transações

- Atomicidade;
- Consistência; e
- Isolamento.

Conclusão

Memórias Transacionais

Problemas

Introdução

- Somente reinicia a transação conflitante;
- Não evita que conflitos futuros aconteçam; e

Escalonadores

Em ambientes de alta contenção, tende a perder desempenho.

Escalonadores

Arquiteturas

LTMS

Experimentos

Introdução

Escalonadores de Transações

- Buscam reduzir os números de conflitos;
- Utilizam diferentes Heurísticas de escalonamento; e
- Serializa as transações conflitantes.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Conclusão

Escalonadores

Introdução

Classificação das técnicas

- Baseado em Heurística:
 - Feedback:
 - Predição;
 - · Reativo: e
 - Heurística Mista.
- Baseado em Modelo:
 - Aprendizado de Máquina;
 - Modelo Analítico: e
 - Modelo Misto.

Conclusão

Escalonadores

Introdução

Trabalhos Relacionados

Tabela: Algoritmos e técnicas de escalonamento

Escalonador	Técnica
ATS	Feedback
Probe	Feedback
F2C2	Feedback
Shrink	Predição
SCA	Predição
CAR-STM	Reativo
RelSTM	Reativo
LUTS	Heurística Mista
ProVIT	Heurística Mista
SAC-STM	Aprendizado de Máquina
CSR-STM	Modelo Analítico
MCATS	Modelo Analítico
AML	Modelo Misto

Escalonadores

Experimentos

Conclusão

Escalonadores

Introdução

Trabalhos Relacionados

Tabela: Algoritmos que estamos trabalhando

Escalonador	Técnica
Probe	Feedback
F2C2	Feedback
Shrink	Predição
MCATS	Modelo Analítico

Escalonadores Arquiteturas

Conclusão

Arquiteturas

UMA

Introdução

- Uniform Memory access;
- Possui um único barramento de acesso à memória; e
- Único custo de acesso à memória.

NUMA

- Non-uniform Memory access;
- Possui mais de um barramento de acesso à memória; e
- O custo de acesso à memória é diferente conforme o núcleo utilizado.

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos Resultados Conclusão

LTMS

Introdução

Estágios

- Inicialização do sistema;
- Coleta de dados em tempo de execução; e
- Migração de Threads.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Defesa de Mestrado

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos Resultados Conclusão

LTMS

Introdução

Escalonador

• imagem

Conclusão

LTMS - Estágio 1

Introdução

Inicialização do sistema

- · Criação de filas; e
- Distribuição das threads.

Heurísticas de Distribuição

- Sequential; e
- Chunks.

Introdução

Escalonadores Arquiteturas

LTMS

Conclusão

LTMS - Heurísticas

Figura: Heurística Sequential

Memórias Transacionais Escalonadores **Arquiteturas** LTMS Experimentos Resultados

LTMS- Heurísticas

Introdução

Figura: Heurística Chunks

16

Conclusão

Escalonadores

Arquiteturas

LTMS

Experimentos

Conclusão

Introdução

Coleta de dados em tempo de execução

- Aborts e Commits;
- Matriz de Comunicação; e
- Matriz de Endereços.

Experimentos

Conclusão

Introdução

Matriz de Comunicação

- Quantidade de comunicação entre pares de threads;
- Eventos de Comunicação; e
- 1 evento a cada 100 acessos.

Experimentos

Conclusão

LTMS - Matrizes

Introdução

Matriz de Endereços

- Endereço mais acessado entre pares de threads;
- Tabela Hash;
- Endereços de memória; e
- Quantidade de acessos recebidos.

Escalonadores Arquiteturas

Conclusão

LTMS - Estágio 3

Introdução

Migração de Threads

- Abort;
- Identificação; e
- Heurísticas de migração.

Conclusão

LTMS - Filas e Threads

Introdução

Identificação das filas e threads

- Identificação das threads conflitantes; e
- Matriz de comunicação.

Escalonadores

Conclusão

LTMS - Heurísticas

Threshold

Introdução

- Nível de contenção (Abort/Commit);
- Maior contenção;
- Menor contenção; e
- Limiar de 0.8 (80% de contenção).

22

Escalonadores

LTMS

Conclusão

LTMS - Heurísticas

Latency

Introdução

- Matriz de endereços;
- Nodos NUMA;
- Bancos de memória; e
- Latencia.

Escalonadores

Conclusão

Experimentos

Introdução

Aplicação

- TinySTM 1.0.5; e
- STMAP 0.9.10.

Arquitetura

- Intel Xeon E5-4650;
- 96 núcleos e 192 threads:
- 468Gb de memória RAM.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Escalonadores

Conclusão

Experimentos

Testes

Introdução

- Cenários de threads:
 - 1, 2, 4, 8, 16, 32, 64, 128, 256, e 512;
- Heurísticas de Distribuição-Migração:
 - Sequential-Threshold;
 - · Chunks-Threshold:
 - · Sequential-Latency;
 - Chunks-Latency;
- TinySTM; e
- Baterias de 30 execuções.

25

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Escalonadores

Arquiteturas

Experimentos

Conclusão

Introdução

Benchmarks

- Bayes;
- Intruder;
- Kmeans; e
- Labyrinth, Vacation, Yada.

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos Resultados

Tempo de execução

Introdução

27

Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Introdução

Escalonadores

Experimentos

Conclusão

Tempo de execução

Introdução

Conclusão

Tempo de execução

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos **Resultados** Conclusão

Aborts

Introdução

Aborts

gráficos

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Conclusão

Conclusão

Introdução

Analise

- Aplicações com conjunto pequeno de leitura e escrita;
- Transação com tempo longo, médio, ou baixo;
- Contenção alta, média ou baixa;
- Redução de 96% no tempo de execução; e
- Redução de 99% na ocorrencia de aborts.

31

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Conclusão

Conclusão

Introdução

Trabalhos futuros

- Novas Heurísticas de distribuição;
- Heurísticas de migração híbrida; e
- Impacto energético dos escalonadores de STM.

Introdução

Escalonadores

Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

13 de junho de 2021

