PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-186990

(43) Date of publication of application: 09.07.1999

(51)Int.CI.

H04J 13/04 H04B 7/26

(21)Application number: 09-349609

(71)Applicant: NTT MOBIL COMMUN NETWORK

INC

(22)Date of filing:

18.12.1997

(72)Inventor: ABETA SADAYUKI

SAWAHASHI MAMORU **ADACHI FUMIYUKI**

(54) CDMA DEMODULATOR AND ITS METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a CDMA transmission system, method and demodulator that conducts highly accurate transmission channel fluctuation estimation/compensation by applying weighted mean processing to each symbol of plurality of pilot blocks, while varying a weight coefficient. SOLUTION: Slots from a [n-(K-1)]-th (where n is a non-negative integer, while K is a positive integer) to (n+K)-th slot of a received data series of an information symbol period subject to inverse spreading processing are stored in a memory 110. A slot circuit detection section 120 detects the position of a pilot symbol, a pilot symbol averaging section 130 estimates a channel for each pilot block. A plurality pilot block channel estimating part 150 applies weighted sum to the channel estimate values by 2K sets of pilot blocks while varying a weight coefficient for each symbol to average the values.

LEGAL STATUS

[Date of request for examination]

08.03.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

3441638

[Date of registration]

20.06.2003

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-186990

(43)公開日 平成11年(1999)7月9日

(51) Int.Cl.6	識別記号	FΙ	
H 0 4 J 13/04		H 0 4 J 13/00	G
H 0 4 B 7/26		H 0 4 B 7/26	С

審査請求 未請求 請求項の数4 OL (全 8 頁)

(21)出願番号	特顧平9-349609	(71)出願人 392026693	(71)出顧人	
		エヌ・ティ・ティ移動通信網株式	エヌ	
(22)出顧日	平成9年(1997)12月18日	東京都港区虎ノ門二丁目10番1号		
		(72)発明者 安部田 貞行	(72)発明者	
		東京都港区虎ノ門二丁目10番1号		エヌ・
		ティ・ティ移動通信網株式会社内		
		(72)発明者 佐和橋 衛	(72)発明者	
		東京都港区虎ノ門二丁目10番1号		エヌ・
		ティ・ティ移動通信網株式会社内		
		(72)発明者 安達 文幸	(72)発明者	
		東京都港区虎ノ門二丁目10番1号		エヌ・
		ティ・ティ移動通信網株式会社内	,	
		(74)代理人 弁理士 谷 義一 (外3名)	(74)代理人	

(54) 【発明の名称】 CDMA復調装置および方法

(57)【要約】

【課題】 複数のパイロット・ブロックをシンボル毎に 重み係数を変えて重み付け平均化することにより、より 高精度な伝送路変動推定・補償を行うCDMA伝送シス テム、方法および復調装置を提供する。

【解決手段】 逆拡散した情報シンボル周期の受信デー タ系列のn-(K-1)番目(CCで、nは非負整数, Kは正整数)のスロットからn+K番目までのスロット をメモリ110に蓄積する。スロット同期検出部120 でパイロット・シンボル位置の検出を行い、パイロット ・シンボル平均化部130により各パイロットブロック 毎のチャネルを推定する。複数パイロット・ブロック・ チャネル推定部150で、2K個の各パイロット・プロ ックでのチャネル推定値をシンボル毎に重み係数を変え て、重み付け加算することにより、平均化して求める。

【特許請求の範囲】

【請求項1】 直接拡散方式のCDMAを用いた復調装 置において、

複数の情報シンボル中に、複数のパイロット・シンボル を有するパイロット・ブロックを含むスロットの系列に 対して、{n-(K-1)}番目のスロットのパイロッ ト・ブロックから(n+K)番目のスロットのパイロッ ト・ブロックまで2 K個のパイロット・ブロックを蓄積 する記憶手段と(ととで、n:非負整数、k:正整

前記2K個の各パイロット・ブロックについて、前記複 数のパイロット・シンボルにおける複数の受信チャネル を各パイロット・ブロック内で平均化して各パイロット ・ブロック毎のチャネル推定値を求めるパイロット・シ ンボル平均化手段と、

前記パイロット・シンボル平均化手段により求められた 各パイロット・ブロック毎のチャネル推定値を前記2K 個のパイロット・ブロックにわたり重み付き平均化し て、n番目のスロットの各情報シンボルに対するチャネ ル推定値を求める複数パイロット・ブロック・チャネル 20 推定手段と、

前記複数パイロット・ブロック・チャネル推定手段によ り求められたチャネル推定値を用いてn番目のスロット の各情報シンボルのチャネル変動を補償するチャネル変 動補償手段とを備えたことを特徴とするCDMA復調装 置。

【請求項2】 請求項1記載のCDMA復調装置におい て、前記複数パイロット・ブロック・チャネル推定手段 は、前記n番目のスロット内の各情報シンボルの位置に 応じて重み付け値を更新することを特徴とするCDMA 30 復調装置。

【請求項3】 直接拡散方式のCDMAを用いた復調方 法において

複数の情報シンボル中に、複数のバイロット・シンボル を有するパイロット・ブロックを含むスロットの系列に 対して、{n-(K-1)}番目のスロットのパイロッ ト・ブロックから(n+K)番目のスロットのパイロッ ト・ブロックまで2K個のパイロット・ブロックを蓄積 する記憶ステップと(ことで、n:非負整数、k:正整

前記2 K 個の各パイロット・ブロックについて、前記複 数のパイロット・シンボルにおける複数の受信チャネル を各パイロット・ブロック内で平均化して各パイロット ・ブロック毎のチャネル推定値を求めるパイロット・シ ンボル平均化ステップと、

前記パイロット・シンボル平均化ステップにより求めら れた各パイロット・ブロック毎のチャネル推定値を前記 2 K個のパイロット・ブロックにわたり重み付き平均化 して、n番目のスロットの各情報シンボルに対するチャ ル推定ステップと、

前記複数パイロット・ブロック・チャネル推定ステップ により求められたチャネル推定値を用いてn番目のスロ ットの各情報シンボルのチャネル変動を補償するチャネ ル変動補償ステップとを備えたことを特徴とするCDM A復調方法。

【請求項4】 請求項3記載のCDMA復調方法におい て、前記複数パイロット・ブロック・チャネル推定方法 は、前記n番目のスロット内の各情報シンボルの位置に 10 応じて重み付け値を更新することを特徴とするCDMA 復調方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、髙速フェージング 環境におけるデータ伝送を行うCDMA復調装置および 方法に関する。

[0002]

【従来の技術】移動通信環境下においては、移動局と基 地局との相対位置の変動に伴うレイリーフェージングに 起因した通信チャネルの振幅変動、位相変動が生じる。 そのため、従来、情報信号を搬送波位相で伝送する位相 変調方法においては、送信側では送信しようとする情報 シンボルやデータを差動符号化して、この情報シンボル の前後のシンボルの相対位相に情報を載せておき、受信 側では遅延検波を行なうことにより情報シンボルを識 別、判定する方法が一般的であった。

【0003】しかし、遅延検波では前述のように送信す る情報シンボルやデータを差動符号化するため、無線区 間での1ビット誤りが情報シンボルやデータの2ビット 誤りになってしまうことになる。同期検波であっても、 例えば2相位相変調方式(BPSK変調)で比較する と、同じ信号電力対雑音電力比(SNR)では受信誤り 率は3dB劣化する。一方、受信信号の位相を各情報シ ンボル毎に絶対位相で認識判定する絶対同期検波は高効 率な受信特性であるが、レイリーフェージング環境下に おいて受信絶対位相を判定することは困難であるという 問題があった。

【0004】「陸上移動通信用16QAMのフェージン グ歪み補償(三瓶:電子情報通信学会論文誌 Vol. J 72-B-II No. 1, pp. 7-15 1989 年1月」では、上述の問題に対して、情報シンボル間に 一定周期で挿入された位相既知のパイロットシンボルを 用いてフェージング歪みを推定し補償する方法が提案さ れている。この方法においては、通信チャネルに情報シ ンボル数のシンボル毎に送信位相既知のパイロット・シ ンボルを1シンボル挿入し、とのパイロット・シンボル の受信位相を基に伝送路推定を行う。該当する情報シン ボル区間の前後のパイロット・シンボルでの各通信者の 各バスの受信信号の振幅、位相測定を行い、この測定値 ネル推定値を求める複数バイロット・ブロック・チャネ 50 を内挿することにより、情報シンボル区間の伝送路変動

20

を推定し、補償する。

【0005】とれに対して、「電子情報通信学会信学技 法 A・P97-104」では、より多くのスロットの パイロット・シンボルを用いてチャネル推定を行うこと により、チャネル推定精度を向上させる方式が提案され ている。

【0006】図3は、上記文献による従来のCDMA復 調方法の動作原理を示す。

【0007】図3において、パイロット・シンボル平均 化部出力310は、2K個の各パイロット・ブロックに 10 ついて、複数のパイロット・シンボルでの受信チャネル を各パイロット・ブロック内で平均化して各パイロット ・ブロック毎のチャネル推定値を求めた結果の出力であ る。パイロット・ブロック毎に平均化された各複素フェ ージング包絡線推定値は £ 1 (n+K) (30 $0), \ldots, \xi 1 (n+1) (305), \xi 1 (n)$ (310)、 *ξ*1 (n-(K-1)) (315) で示 す。各パイロット・ブロックは遅延部320、...、 325、330、335、...、340を介して順次 以下の乗算器と接続されている。乗算器38 0, . . . , 385, 390, 395, 396, 397 は、各々重み付け、αk(350)、α2(355)、 $\alpha 1 (360), \alpha 0 (65), \alpha - 1 (37)$ 0)、...、α-K+1 (375)を用いて乗算され る。その結果を加算器 398 で加算して $\xi1$ (n) (3) 99) を求め、保存部400を介して £1 (m、n) (405)が得られる。 *ξ*1(m、n)(405)は、 n番目のスロットのm番目のシンボルに対するチャネル 推定値を示す。

【0008】図4は、従来のチャネル推定法を示す。 【0009】図4において、パイロット・シンボルを用 いて求めたチャネル推定値は、横軸を同相成分410、 縦軸を直交成分420とする座標上の点425、43 5、440、445、455、460で示される。点4 35、440、445は1スロット間で同じ推定値を採 用した場合を示す。高速フェージング時の受信包絡線変 動450は、変動が大であることを示す。逆に低速フェ ージング時の受信包絡線変動460は、変動が小である ことを示す。図4に示される従来例では、熱雑音、干渉 信号に対してチャネル推定度を向上させるために、該当 40 するスロットの前後複数シンボルを重み付け平均化して おり、各スロット内の変動は小さいものとして、1スロ ット内の全てのシンボルに対して、同じチャネル推定値 を用いていた。

[0010]

【発明が解決しようとする課題】しかし、上述の従来例 では各スロット内の変動は小さいものとして、1スロッ ト内の全ての情報シンボルに対して、同じチャネル推定 値を用いてチャネル推定を行っているので、伝播路の変 動に対して高度な推定を行うことが困難であるという問 50 重み付き平均化して、n番目のスロットの各情報シンボ

題があった。

【0011】そこで、本発明の目的は、上記問題を解決 するためになされたものであり、スロットの前後にある 複数のスロットのパイロット・プロックを、スロットの 情報シンボル毎に重み係数を変えて重み付け平均化する ことにより、より髙精度な伝送路変動推定・補償を行う CDMA復調装置および方法を提供することにある。 [0012]

【課題を解決するための手段】請求項1記載の発明は、 直接拡散方式のCDMAを用いた復調装置において、複 数の情報シンボル中に、複数のパイロット・シンボルを 有するパイロット・ブロックを含むスロットの系列に対 して、 {n-(K-1)} 番目のスロットのパイロット ブロックから(n+K)番目のスロットのパイロット ブロックまで2K個のパイロット・ブロックを蓄積す る記憶手段と(ととで、n:非負整数、k:正整数)、 前記2K個の各パイロット・ブロックについて、前記複 数のパイロット・シンボルにおける複数の受信チャネル を各パイロット・ブロック内で平均化して各パイロット ・ブロック毎のチャネル推定値を求めるパイロット・シ ンボル平均化手段と、前記パイロット・シンボル平均化 手段により求められた各パイロット・ブロック毎のチャ ネル推定値を前記2 K個のパイロット・ブロックにわた り重み付き平均化して、n番目のスロットの各情報シン ボルに対するチャネル推定値を求める複数パイロット・ ブロック・チャネル推定手段と、前記複数パイロット・ ブロック・チャネル推定手段により求められたチャネル 推定値を用いてn番目のスロットの各情報シンボルのチ ャネル変動を補償するチャネル変動補償手段とを備えて 30 いる。

【0013】請求項2記載の発明は、請求項1におい て、前記複数パイロット・ブロック・チャネル推定手段 は、前記n番目のスロット内の各情報シンボルの位置に 応じて重み付け値を更新することができる。

【0014】請求項3記載の発明は、直接拡散方式のC DMAを用いた復調方法において、複数の情報シンボル 中に、複数のパイロット・シンボルを有するパイロット ブロックを含むスロットの系列に対して、 {n-(K) -1)}番目のスロットのパイロット・ブロックから (n+K)番目のスロットのパイロット・ブロックまで 2 K個のパイロット・ブロックを蓄積する記憶ステップ と(ここで、n:非負整数、k:正整数)、前記2K個 の各パイロット・ブロックについて、前記複数のパイロ ット・シンボルにおける複数の受信チャネルを各パイロ ット・ブロック内で平均化して各パイロット・ブロック 毎のチャネル推定値を求めるパイロット・シンボル平均 化ステップと、前記パイロット・シンボル平均化ステッ プにより求められた各パイロット・ブロック毎のチャネ ル推定値を前記2 K 個のパイロット・ブロックにわたり

ルに対するチャネル推定値を求める複数パイロット・ブ ロック・チャネル推定ステップと、前記複数パイロット ・ブロック・チャネル推定ステップにより求められたチ ャネル推定値を用いてn番目のスロットの各情報シンボ ルのチャネル変動を補償するチャネル変動補償ステップ とを備えている。

【0015】請求項4記載の発明は、請求項3におい て、前記複数パイロット・ブロック・チャネル推定方法 は、前記n番目のスロット内の各情報シンボルの位置に 応じて重み付け値を更新することができる。

[0016]

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態を詳細に説明する。

【0017】図1は、本発明のCDMA(Code Divisio n Multiple Access : 符号分割多重) 復調器の一実施の 形態を示す。

【0018】図1において、マッチト・フィルタ100 は受信データ系列を各ユーザの各マルチパスの受信タイ ミングに応じた拡散符号レブリカを用いて逆拡散する。 逆拡散した情報シンボル周期の受信データ系列のn-(K-1)番目(CCで、nは非負整数, Kは正整数) のスロットからn+K番目までのスロットをメモリ11 0に蓄積する。メモリ110には、各スロットのパイロ ット・ブロックのみを蓄積することもできる。メモリ1 10から順次各スロットのパイロット・ブロックを取り 出して、スロット同期検出部120でパイロット・シン ボル位置の検出を行う。このタイミング情報を用いて、 パイロット・シンボル平均化部130により各パイロッ ト・ブロック内の数シンボルのパイロット・シンボルで の受信チャネルを平均化して各パイロットブロック毎の 30 チャネルを推定する。この各パイロット・ブロックでの 推定チャネル情報を遅延部140でタイミングをそろ え、複数パイロット・ブロック・チャネル推定部150 で、2 K 個の各バイロット・ブロックでのチャネル推定 値をシンボル毎に重み係数を変えて、重み付け加算する ことにより、平均化して求める。このチャネル推定値の 複素共役(図1では*で示す)とメモリ110からのデ ータとの積を乗算器170でとり、各情報シンボルのフ ェージング位相変動を補償し、位相変動補償後の信号を RAKE合成部180で同相合成する。一方、各送信電 40 力制御データについては、各パイロット・ブロックでの チャネル推定値(遅延回路140からの出力)を、その まま送信電力制御シンボルのチャネル推定値として送信 電力制御御データ位相変動補償・判定部160へ入力し て、フェージング位相送信電力制御変動を補償し、デー タ判定する。

【0019】図2は、本発明のCDMA復調器の動作原

【0020】図2において、パイロット・シンボル平均 化部出力201は、図1のパイロット・シンボル平均化 50 200, 205, 210, 215, 299, 300, 3

部130の出力に対応するものであり、2K個の各パイ ロット・ブロックについて、複数のパイロット・シンボ ルでの受信チャネルを各パイロット・ブロック内で平均 化して各パイロット・ブロック毎のチャネル推定値を求 めた結果の出力である。パイロット・ブロック毎に平均 化された各複素フェージング包絡線推定値は ξ l (n +K) (200), ... $\xi 1 (n+1) (205)$, ξ $1 (n) (210), \xi 1 (n-(K-1)) (21$ 5)で示す。各パイロット・ブロックは遅延部22

10 0, . . . , 225, 230, 235, . . . , 240 を介して順次以下の乗算器と接続されている。乗算器2 80, . . . , 285, 290, 295, 296, 29 7は、各々重み付け、 am, k (250)、 am, 2 (255), αm , 1(260), αm , 0(26)5), αm , -1 (270), ..., αm , -K+1(275)を用いて乗算される。その結果を加算器29 8で加算して ξ 1(m, n)(299)が得られる。 ξ 1 (m、n) (299)は、n番目のスロットのm番目 のシンボルに対するチャネル推定値を示す。図3の従来 20 例の ξ 1 (m、n) (405) と異なり、m番目のシン ボルに対応した重みで乗算されている。

[0021]

【発明の効果】以上説明したように、本発明のCDMA 復調装置および方法によれば、複数のパイロット・ブロ ックをシンボル毎に重み係数を変えて重み付け平均化す ることにより、より高精度な伝送路変動推定・補償を行 うCDMA復調装置および方法を行うことが可能であ

【図面の簡単な説明】

【図1】本発明のCDMA復調装置の一実施の形態の構 成を示す図である。

【図2】本発明のCDMA復調装置の動作原理を示す図

【図3】従来の、スロット内のシンボルに対して同じチ ャネル推定を用いるCDMA復調器の動作原理を示す図

【図4】フェージングに起因するチャネル推定を説明す る図である。

【符号の説明】

- 100 マッチトフィルタ
 - 110 メモリ
 - 120 スロット同期検出部
 - 130 パイロット・シンボル平均化部
 - 140 遅延部
 - 150 複素パイロット・ブロック・チャネル推定部
 - 160 送信電力制御データ位相変動補償・判定部
 - 170 乗算部
 - 180 RAKE合成部
 - 400 保存部

7

05,310,315,399,405複素フェージ*50,355,360,365,370,375,39ング包格線推定値9,405重み

250, 255, 260, 265, 270, 275, 3*

【図1】

【図2】

【図3】

【図4】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

AFADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.