Efektívne algoritmy a zložitosť, 1-AIN-105

Vyučujú:

Vladimír Boža, M-25, boza@fmph.uniba.sk Andrej Baláž, M-25, andrej.balaz@fmph.uniba.sk

Web: http://compbio.fmph.uniba.sk/vyuka/eaz

Google Classroom: https://classroom.google.com kód i33mvm4

Literatúra:

Brassard, Bratley: Fundamentals of Algorithmics, Prentice Hall 1995

Pardubská: Vybrané kapitoly z teoretickej informatiky (1)

Bentley: Programming Pearls, ACM Press 1999

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT Press

2009

Oznamy a diskusia na Google Classroom

https://classroom.google.com kód i33mvm4

- Vaša povinnosť sledovať oznamy!!!
- Cieľ: odpoveď na vaše otázky v najkratšom možnom čase
- Odpovedajú učitelia, študenti
- Všetky otázky sú verejné \Rightarrow žiadne detaily vlastných riešení (resp. až po termíne odovzdania danej úlohy)
- Link aj na web stránke predmetu

O com je tento predmet?

- Pre daný problém, úlohou je nájsť efektívny algoritmus, ktorý tento problém rieši.
- Rozpoznať, kedy efektívny algoritmus neexistuje.

Osnova predmetu:

- Úvod, výpočtová zložitosť
- Techniky tvorby efektívnych algoritmov (greedy algoritmy, dynamické programovanie, rozdeľuj a panuj)
- NP-ťažké problémy
- Nevypočítateľ né problémy

V magisterskom štúdiu:

- Ako sa vysporiadať s problémami, o ktorých vieme že sú ťažké?
- Pokročilé techniky tvorby algoritmov a analýzy (aproximačné, pravdepodobnostné algoritmy)

Hodnotenie predmetu

- 30%: Domáce úlohy (cca každé dva týždne)
 (vr. jedného programátorského príkladu)
- 20%: Midterm (koncom októbra / začiatkom novembra)
- 50%: Písomná skúška
- zo skúšky je potrebné získať aspoň 50% bodov
- 90+ = A, 80+ = B, 70+ = C, 60+ = D, 50+ = E

Opisovanie

- Budeme kruto trestať:
 - -100% príslušného bodového hodnotenia
 - disciplinárna komisia
- Podporujeme diskusiu o domácich úlohách, ale:
 - Nerobte si poznámky
 - Počkajte niekoľko hodín, kým začnete spisovať vlastné riešenie

Bentleyho problém: Riešenie 1

```
max:=0;
for i:=1 to n do
  for j:=i to n do
    // compute sum of subarray A[i]..A[j]
    sum:=0;
  for k:=i to j do
    sum:=sum+A[k];
    // compare to maximum
    if sum>max then max:=sum;
```

Bentleyho problém: Riešenie 2a

```
max:=0;
for i:=1 to n do
   sum:=0;
for j:=i to n do
   sum:=sum+A[j];
   // sum is now sum of subarray A[i]..A[j]
   // compare to maximum
   if sum>max then max:=sum;
```

Bentleyho problém: Riešenie 2b

```
// precompute B[i]=A[1]+...+A[i]
B[0] := 0;
for i:=1 to n do
   B[i] := B[i-1] + A[i];
\max:=0;
for i:=1 to n do
  for j:=i to n do
    // compare to maximum
    if B[j]-B[i-1]>max then
      \max :=B[j]-B[i-1];
```

Bentleyho problém: Riešenie 4a

```
maxsol:=0; tail:=0;
for i:=1 to n do
  tail:=max(tail+A[i],0);
  maxsol:=max(maxsol,tail);
```

Bentleyho problém: Riesenie 4b

```
max:=0; prefix:=0; min_prefix:=0;
for i:=1 to n do
    prefix:=prefix+A[i];
    min_prefix=min(min_prefix,prefix);
    max:=max(max,prefix-min_prefix);
```

Čas potrebný na riešenie problému veľkosti...

	Sol.4	Sol.3	Sol.2	Sol.1	Sol.0
	O(n)	$O(n \log n)$	$O(n^2)$	$O(n^3)$	$O(2^n)$
10	arepsilon	arepsilon	arepsilon	arepsilon	arepsilon
50	arepsilon	arepsilon	arepsilon	arepsilon	2 weeks
100	arepsilon	arepsilon	arepsilon	arepsilon	2800 univ.
1000	arepsilon	arepsilon	0.02s	4.5s	
10000	arepsilon	0.01s	2.1s	75m	
100000	0.04s	0.12s	3.5m	52d	
1 mil.	0.42s	1.4s	5.8h	142yr	
10 mil.	4.2s	16.1s	24.3d	140000yr	

Najväčšia veľkosť problému, ktorý zvládneme vyriešiť za...

	Sol.4	Sol.3	Sol.2	Sol.1	Sol.0
	O(n)	$O(n \log n)$	$O(n^2)$	$O(n^3)$	$O(2^n)$
1s	2.3 mil.	740000	6900	610	33
1m	140 mil.	34 mil.	53000	2400	39
1d	200 bil.	35 bil.	2 mil.	26000	49

O koľko viac času potrebujeme, ak sa n zvýši...

	Sol.4	Sol.3	Sol.2	Sol.1	
	O(n)	$O(n \log n)$	$O(n^2)$	$O(n^3)$	$O(2^n)$
+1	_	_		_	$\times 2$
$\times 2$	$\times 2$	$\times 2+$	$\times 4$	×8	

Efektívne algoritmy a zložitosť, 1-AIN-105

Vyučujú:

Tomáš Vinař, M-163, tomas.vinar@fmph.uniba.sk Andrej Baláž, M-25, andrej.balaz@fmph.uniba.sk

Web: http://compbio.fmph.uniba.sk/vyuka/eaz

Google Classroom: https://classroom.google.com kód i33mvm4

Literatúra:

Brassard, Bratley: Fundamentals of Algorithmics, Prentice Hall 1995

Pardubská: Vybrané kapitoly z teoretickej informatiky (1)

Bentley: Programming Pearls, ACM Press 1999

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT Press

2009