CHAPTER 3

Multiple Regression

3.3 Comparing Two Regression Lines

3.3 Comparing Two Regression Lines:

In chapter 1, we consider a simple linear regression model to summarize the relationship between two quantitative variables. Suppose now that we want to investigate whether such a relationship changes between groups determine by some categorical variable.

➤ Is the relationship between price and mileage different for Porsche offered sale at physical car lots compared to those for sale on the internet.

Indicator Variable (Dummy Variable, Binary Variable): An indicator variable uses two values, usually 0 and 1, to indicate whether a data case does (1) or does not (0) belong to a specific category.

Examples:

$$Gender = egin{cases} 0 & if & male \\ 1 & if & female \end{cases}$$

$$Surgery = \begin{cases} 0 & if & no \\ 1 & if & yes \end{cases}$$

How should indicator variable be interpreted in a regression model?

Assume that, we have two explanatory variables in the multiple linear regression model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \in$$

where X_1 is a quantitative variable and X_2 is an indicator variable.

$$X_2 = \begin{cases} 0 \\ 1 \end{cases}$$

 \triangleright The group $X_2 = 0$ is called the baseline

When $X_2 = 0$, the linear regression model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2(0) + \epsilon$$

= $\beta_0 + \beta_1 X_1 + \epsilon$

When $X_2 = 1$, the linear regression model is

Example 1: (Kids growth)

The dataset *Kids198.csv* comes from a 1977 anthropometric study of body measurements for 198 children (8 -18 months), it represents the age (in months), weight (in pounds), height (in inches), sex, and race.

1. Graph the scatterplot of the weight (response) vs. age.

3. Fit the regression model for weight and age.

Parameter Estimates						
Variable	t Value	Pr > t				
Intercept	1	-17.01281	7.05798	-2.41	0.0169	
Age	1	0.76414	0.04359	17.53	<.0001	

Root MSE	20.68077	R-Square	0.6106
Dependent Mean	104.01010	Adj R-Sq	0.6086
Coeff Var	19.88343		

The simple regression model is:

$$\widehat{Weight} = -17.01 + 0.76 \, Age$$

4. Graph the scatterplot of the weight vs. age by gender.

```
proc sgplot data=kids198;
  title 'Age vs. Weight';
  scatter x=age y=weight / group=Sex;
run;
```


5. Graph the scatterplot with the regression line of the weight vs. age for boys (0) and girls (1).

```
proc sgplot data=kids198;
  title 'Age vs. Weight';
  reg x=age y=weight / group=Sex;
run;
```


6. Use "proc sort" to arrange your dataset according to the gender.

Note: The new dataset will sort the rows into two groups, males above and females below.

```
proc sort data = kids198 out = kids198_new;
by sex;
run;
```

Sample of the original dataset: Sample of the new dataset:

Obs	Height	Weight	Age	Sex	Race
1	67.8	166	210	0	1
2	63	93	144	1	0
3	50.1	54	119	0	0
4	55.7	69	130	1	0
5	63.2	115	157	0	0

Obs	Height	Weight	Age	Sex	Race
1	67.8	166	210	0	1
2	50.1	54	119	0	0
3	63.2	115	157	0	0
4	48.8	52	102	0	0
5	61.3	89	155	0	0

7. Fit the regression model for weight and age by sex.

i. For boys (0):

The REG Procedure Model: MODEL1 Dependent Variable: Weight

Sex=0

Number of Observations Read	96
Number of Observations Used	96

Parameter Estimates					
Variable DF Parameter Standard Error t Value					Pr > t
Intercept	1	-33.69254	10.87366	-3.10	0.0026
Age	1	0.90871	0.06635	13.70	<.0001

Root MSE	20.84733	R-Square	0.6662
Dependent Mean	112.35417	Adj R-Sq	0.6626
Coeff Var	18.55501		

The simple linear regression model for boys is:

$$\widehat{Weight} = -33.7 + 0.91 \, Age$$

ii. For girls (1):

The REG Procedure
Model: MODEL1
Dependent Variable: Weight

Sex=1

Number of Observations Read 102

Number of Observations Used 102

Parameter Estimates						
Variable DF Parameter Standard Error t Value Pr					Pr > t	
Intercept	1	-1.84197	7.90251	-0.23	0.8162	
Age	1	0.62749	0.04937	12.71	<.0001	

Root MSE	17.48150	R-Square	0.6176
Dependent Mean	96.15686	Adj R-Sq	0.6138
Coeff Var	18.18019		

The simple linear regression model for girls is:

$$Weight = -1.84 + 0.62 Age$$

8. Fit the regression model for weight, age, and sex.

Note: First we need to create a new variable which is called the **interaction** between the age and sex.

Note: the dataset should be sorted before creating the interaction variable.

```
data kids198_new_1;
set kids198_new;
age_sex = age * sex;
run;
```

Obs	Height	Weight	Age	Sex	Race	age_sex
1	67.8	166	210	0	1	0
2	50.1	54	119	0	0	0
3	63.2	115	157	0	0	0
4	48.8	52	102	0	0	0
5	61.3	89	155	0	0	0

8. Fit the regression model for weight, age, and sex.

Parameter Estimates						
Variable DF Parameter Standard Error t Value Pr >						
Intercept	1	-33.69254	10.00727	-3.37	0.0009	
Age	1	0.90871	0.06106	14.88	<.0001	
Sex	1	31.85057	13.24269	2.41	0.0171	
age_sex	1	-0.28122	0.08164	-3.44	0.0007	

Root MSE	19.18625	R-Square	0.6683
Dependent Mean	104.01010	Adj R-Sq	0.6631
Coeff Var	18.44652		

> All of the predictors variables were significant.

The multiple linear regression (full) model is:

$$Weight = -33.7 + 0.9 Age + 31.9 Sex - 0.3 Age * Sex$$

The multiple linear regression model is:

$$\widehat{Weight} = -33.7 + 0.9 Age + 31.9 Sex - 0.3 Age * Sex$$

Boys model (Sex = 0):

$$\widehat{Weight} = -33.7 + 0.9 \, Age + 31.9 \, (0) - 0.3 \, Age * (0)$$

$$\widehat{Weight} = -33.7 + 0.9 \, Age$$

Girls model (Sex = 1):

$$\widehat{Weight} = -33.7 + 0.9 \, Age + 31.9 \, (1) - 0.3 \, Age * (1)$$

$$\widehat{Weight} = (-33.7 + 31.9) + (0.9 - 0.3) Age$$

$$\widehat{Weight} = -1.8 + 0.6 Age$$

9. Check the regression assumptions.

10. Using the multiple regression model, how much the predicted weight for a boy at age 210 months.

$$\widehat{Weight} = -33.7 + 0.9 Age + 31.9 Sex - 0.3 Age * Sex$$

$$= 33.69254 + 0.90871(210) + 31.85057(0)$$

$$-0.28122(210)*(0)$$

$$\widehat{Weight} = 157.1 lb$$

Obs	Height	Weight	Age	Sex	Race	age_sex	Predicted	Residual	
1	67.8	166	210	0	1	0	157.137	8.8635	

11. Using the multiple regression model, how much the predicted weight for a girl at age 144 months.

$$\widehat{Weight} = -33.7 + 0.9 Age + 31.9 Sex - 0.3 Age * Sex$$

$$= -33.69254 + 0.90871(144) + 31.85057(1)$$

$$-0.28122(144)*(1)$$

$$\widehat{Weight} = 88.5 lb$$

Obs	Height	Weight	Age	Sex	Race	age_sex	Predicted	Residual	
97	63	93	144	1	0	144	88.516	4.4837	

Reading Assignment

Read section 3.3

