Solution to Exercise 1: Matrix Computation

Given the $n \times k$ matrix **A** and the $k \times n$ matrix **B**:

1. Use an example to show that $AB \neq BA$ even if n = k.

Solution:

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, then we have $\mathbf{AB} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, and $\mathbf{BA} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. Obviously we have $\mathbf{AB} \neq \mathbf{BA}$.

2. When $n \neq k$, do we have $trace(\mathbf{AB}) = trace(\mathbf{BA})$? Prove your conclusion.

Solution:

by definition

$$trace(AB) = (AB)_{11} + (AB)_{22} + \dots + (AB)_{nn}$$

 $= a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1k}b_{k1}$
 $+ a_{21}b_{12} + a_{22}b_{22} + \dots + a_{2k}b_{k2}$
 $+ \vdots$
 $+ a_{n1}b_{1n} + a_{n2}b_{2n} + \dots + a_{nk}b_{kn}$

if you view the sum according to the columns, then you see that it is the trace(BA). therefore,

$$trace(AB) = trace(BA).$$

3. What is the relationship between eigenvalues of **AB** and eigenvalues of **BA**? What is the relationship between eigenvectors of **AB** and eigenvectors of **BA**?

Solution:

Suppose that λ and x are the eigenvalue and eigenvector of matrix (**AB**), then by definition we have (**AB**)x = λ x. Then we have **B**(**AB**)x = **B** λ x, which indicates that (**BA**)**B**x = λ **B**x, i.e., λ is also the eigenvalue of matrix (**BA**), and the corresponding eigenvector is **B**x.