the positive electrode of the capacitor $(C_1; C_{1p})$ of the associated branch, and the grid of each transistor $(M_1; M_{1p})$ is connected to the positive electrode of the capacitor $(C_1; C_{1p})$ and to the source of the transistor in the opposite branch, and in that the negative electrodes of the capacitors $(C_1; C_{1p})$ are respectively connected to two clock signals $(\Phi_1; \Phi_2)$ in phase opposition.

- \mathcal{B} : (currently amended) A converter according to claim 3 or claim[[4]], characterized in that the capacitors (C_i ; C_{ip}) of the two branches (B_1 ; B_2) of the voltage multiplier stage have their positive electrodes respectively connected to the outputs of two switches (K_i ; K_{ip}) via two nodes (V_i ; V_{ip}), and their negative electrodes connected to respective clock signals (Φ_i), in that an input of each switch (K_i ; K_{ip}) is connected to the output of the preceding stage, and in that the clock signal (Φ_i) corresponds either to the signal (Φ_1) if $\{[i]\}$ (i) is odd for the first branch (B_1) and to the signal (Φ_2) if $\{[i]\}$ (i) is even for the first branch (B_1), or to the signal (Φ_2) if $\{[i]\}$ (i) is odd for the second branch (B_2) and to (Φ_1) if $\{[i]\}$ (i) is even for the second branch (B_2).
- 6. (currently amended) A converter according to any preceding claim $\underline{1}$, characterized in that the control circuit (CC_i) of the voltage multiplier circuit (CM_i) of the first branch (B₁) is an inverter circuit (I_i) which is powered between the voltage (V_{i-1}) from the voltage multiplier circuit of the preceding stage in the first branch (B₁), and the voltage (V_{ip}) from the voltage multiplier circuit of the same stage in the second branch (B₂), and in that the inverter (I_i) is controlled either by the voltage (V_{c(i-1)}) of the preceding voltage multiplier circuit of the first branch (B₁) or by the voltage (V_i) from the voltage multiplier circuit (CM_i) of the first branch (B₁).
- 7. (currently amended) A converter according to any preceding claim $\underline{1}$, characterized in that the control circuit (CC_{ip}) of the voltage multiplier circuit (CM_{ip}) of the second branch (B_2) is an inverter circuit (I_{ip}) which is powered between the output voltage ($V_{(i-1)p}$) of the voltage multiplier circuit ($CM_{(i-1)p}$) of the preceding stage of the second branch (B_2) and the output voltage (V_i) of the voltage multiplier

IN THE CLAIMS:

Please amend claims as follows.

- 1. (original) A voltage/voltage converter for integrated circuits, the converter presenting a symmetrical multistage structure and comprising at least one input stage constituted by a clock booster circuit (CB) of symmetrical structure which delivers two output voltages, a voltage multiplier circuit of symmetrical structure comprising two voltage multiplier circuits (CM_i; CM_{ip}) respectively connected in two branches (B₁; B₂) of the converter and having the output voltages of the input stage applied respectively thereto, and an output stage (S) constituted by a multiplexer circuit (MX) having the two output voltages from the voltage multiplier stage applied thereto, the converter being characterized in that each voltage multiplier circuit (CM_i; CM_{ip}) is controlled by a control circuit (CC_i; CC_{ip}), and in that each voltage multiplier circuit (CM_i; CM_{ip}) supplies voltages needed both for the operation of its own control circuit and for the operation of the control circuit of the other voltage multiplier circuit of the same stage.
- 2. (original) A converter according to claim 1, characterized in that the clock booster circuit (CB) serves to add a DC component to a clock signal, and in that the clock booster circuit (CB) comprises two similar circuits receiving respective clock signals $(\Phi_1; \Phi_2)$ of opposite phase.
- 3. (currently amended) A converter according to claim 1 or claim-2, characterized in that each voltage multiplier circuit (CM_i; CM_{ip}) comprises a capacitor (C_i; C_{ip}) and a switch (K_i; K_{ip}) for controlling charging of the capacitor and transfer of its charge to the voltage multiplier circuit of the following stage.
- (currently amended) A converter according to any preceding claim 1, characterized in that it has a positive output, in that the clock booster circuit (CB) forming the input stage has a positive output and comprises two NMOS transistors and two capacitors, in that the drain of each transistor (M₁; M_{1p}) is connected to a power supply terminal (V_{dd}), the source of each transistor (M₁; M_{1p}) is connected to