Thermal Physics Notes

Shashwat Chakraborty (200260049)

$$\begin{array}{c} U_{i}\left(N_{i,1}P_{i,1}V_{i,\cdots}\right) \\ & \longrightarrow \\ &$$

Contents

1 Introduction 1

1 Introduction

Reference book: Herbert B. Callen - Thermodynamics and Thermostatistics - https://drive.google.com/file/d/11ygKClITZgF4yU05_UyhQ4CKt7QYX9wQ/view?usp=sharing
Let's get started!

- Laws of thermodynamics apply to macroscopic objects/collections of particles → systems with many interactions
- For Newton's Laws, you need the positions, velocities and the model/type of interparticle forces present in order to predict the evolution of the system.
- Macroscopic systems → General Laws → Universal in nature (applicable to a wide variety of systems)
- These laws are not fundamental \rightarrow Emerge from microscopic laws \rightarrow But they make the analysis of macroscopic properties simple
- Example: Consider a box with N ideal gas particles \rightarrow We need 6N coordinates, i.e., 3-spatial coordinates and 3-velocity components for each particle \rightarrow Law: $\vec{F}_i = m_i \vec{a_i}$ (3 second-order differential equations).

Let's try to find what coordinates describe macroscopic systems \rightarrow Thermodynamic variable

Consider a 1-D lattice (say a metal rod) with separation between adjacent particles = a. The particles are held together so they are vibrating about their mean position. Plot the displacement of i^{th} particle Δx_i against i. As N (total number of particle) is very large we can look ath the scenario wherein $N \to \infty$, i.e., the particle number-axis becomes

approximately continuous. We will see "collective behaviour" because there motions are connected. At a later time, the curve shifts forward \rightarrow analogy: wave that is propagating forward.

$$k = \frac{2\pi}{\lambda}$$

 $\omega(k)$: dispersion relation

Modes:

- 1. Slow mode:
 - (a) Small k modes
 - (b) Large λ modes
 - (c) Small ω modes

"Long distance modes" $\rightarrow \lambda >> a$

- 2. Fast mode:
 - (a) Large k modes
 - (b) Small λ modes
 - (c) Large ω modes oscillate rapidly
 - "Short distance modes" $\rightarrow \lambda \approx a$
- # When we observe time average, the high frequency modes are unobservable \to "Things that don't change over long time interval are macroscopic observables". Take the limits $\lambda \to \infty$ and $T \to \infty$, the states that emerge are called "Thermodynamic States".
- # When we take into account the extremely large wavelength modes, we see that particles on one side move in a certain direction (say left) and particles on the other side move in the opposite direction (right). Overall effect: Length of the rod appears to be increasing \to Macroscopic effect \to Length of rod: macroscopic variable \to Volume of solid: thermodynamic coordinate

Three normal modes of oscillation in a nine-atom model system. The wave lengths of the three modes are four, eight and sixteen interatomic distances. The dotted curves are a transverse representation of the longitudinal displacements.

- Some examples of macroscopic variables:
 - 1. Electrostatics: Macroscopic variable \rightarrow Net charge (Q)
 - 2. Magnetostatics: Macroscopic value \rightarrow net magnetic dipole moment $(\vec{\mu})$
- ullet Speciality of thermodynamics o Takes into account "hidden coordinates". Tells us energy is distributed among the modes which are invisible to us at a macroscopic level!