Problem Set 9

Deliverable: Submit your responses as a single, readable PDF file on the collab site before **6:29pm** on **Wednesday, 23 November**.

Collaboration Policy - Read Carefully

The collaboration policy is identical to that for PS7: you should work in groups of *one* to *four* students of your choice with no restrictions, and follow the rest of the collaboration policy from PS3.

Preparation

This problem set focuses on infinite sets — Chapter 8 of the MCS book, and Class 18, Class 19, Class 21 and Class 22.

Directions

Solve all 8 problems. Your answers should be clear, consise, and convincing.

Countable Sets

For each set defined below, prove that the set described is *countable*.

- 1. *Evens* = $\{2n \mid n \in \mathbb{N}\}$
- 2. $\mathbb{N} \cup \{\pi, \tau\}$ (where π is the ratio of a circle's circumference to its diameter and τ is the ratio of a circle's circumference to its radius)
- 3. The set of all finite state machines, $M = (S, G, q_0)$ where S is a finite set, and $G \subseteq S \times S$ and $q_0 \in S$ are otherwise unrestricted.

cs2102: Problem Set 9

Possibly Countable Sets

For each set defined below, determine if the set is *countable* or *uncountable* and support your answer with a convincing proof.

- 4. The set of all *stree* objects, defined by:
 - Base object: **null** is an *stree*.
 - Constructor: for any *stree* objects q_1, q_2 , combine (q_1, q_2) is an *stree*.
- 5. $\mathbb{R} \mathbb{Q}$.
- 6. (*) The set of all *infinite* state machines, $M = (S, G, q_0)$ where $S = \mathbb{N}$, and $G \subseteq S \times S$ and $q_0 \in S$ are otherwise unrestricted.

Properties of Infinite Sets

- 7. (MCS Problem 8.11, with typesetting problem fixed)
 - (a) Prove that if a nonempty set, C, is countable, then there is a *total* surjective function,

$$f: \mathbb{N} \to C$$
.

- (b) Conversely, supposed that \mathbb{N} surj D, that is, there is a not necessarily total surjective function, $f: \mathbb{N} \to D$. Prove that D is countable.
- 8. MCS Problem 8.17.