Задачи

 $\mbox{\bf Трамвай}$ $s_0;v_{{m max}}-?$ Найдём зависимоть скорости от расстояния: за $\mathrm{d} t$ - dv=adt. Так как $dt=rac{ds}{v}$, то $vdv=(a_0$ bs) ds. Проинтегрируем и получим: $\int_0^v v dv = \int_0^s (a_0 - bs) ds$; $\frac{v^2}{2} = a_0 s - \frac{bs^2}{2}$; $v = \sqrt{(2a_0 - bs)s}$. При v = 0; $s_0 = \frac{2a_0}{b}$. v_{max} при $\frac{dv}{ds} = 0 = > \frac{1}{2} \frac{2a_0 - 2bs}{\sqrt{2a_0 s - bs^2}} = 0$.

Тогда s $=\frac{a_0}{b}=\frac{s_0}{2}$. Подставим его в v, которое будет max. $v_{max} = \sqrt{2a_0 \frac{a_0}{b} - b \frac{a_0^2}{b^2}} = \frac{a_0}{\sqrt{b}}$

2 Задачи

Блок, нерастяжимая нить

а1-? Выбираем положительное направление оси X вверх, тогда основное уравнение динамики в про-тической связью: $a_1=a_0+a',\ a_2=a_0-a'$ (a' ускорение груза 1 относ блока). Решаем: $m_1(a_0 + a') +$ $m_1 g = m_2 (a_0 - a') + m_2 g; \ a' = \frac{(m_1 - m_2)}{m_1 + m_2} (g - a_0);$ $a_1 = a_0 + a' = \frac{2m_2a_0 + (m_1 - m_2)g}{m_1 + m_2}$

3 Задачи

v-? Рассмотрим прыжок человека и импульс системы в от прыжка, до преземления невключительно. $(M+m)\overline{v_0}=M\overline{v}+m(\overline{u}+\overline{v})=(M+m)\overline{v}+m\overline{u};$ $\overline{v}=\overline{v_0}$ r_0 — r_0 $M)\overline{v'};\ (m+M)\overline{v_0}+\frac{mM}{m+M}\overline{u}=(m+M)\overline{v'};\ \overline{v'}=\overline{v_0}+$ $\frac{mM}{(m+M)^2}\overline{u}$

Задачи

Космический $\Delta\alpha-?\ dm < 0 (\text{масса ракеты уменьшается}).\ (m+dm)(\overline{v}+d\overline{v})-dm(\overline{u}+\overline{v}+d\overline{v})=m\overline{v}(\overline{u}$ - скорость газа относ корабля). После раскрытия скобок: $md\overline{v}-dm\overline{u}=0$. $d\overline{v}=\frac{dm}{m}\overline{u}=>dv=v_0d\alpha=-\frac{dm}{m}u.\ v=const=v_0.\ \int_0^{\Delta\alpha}d\alpha=-\frac{u}{v_0}\int_{m_0}^{m}\frac{dm}{m}.\ \Delta\alpha=\frac{u}{v_0}ln(\frac{m_0}{m})$

Задачи

Шарик $\begin{array}{l} x_{max} -? \; {\rm E} = {\rm const.} \; T_1 + (u_1)_{mg} + (u_1)_{kx} = (u_2)_{mg} + \\ (u_2)_{kx} + T_2 \cdot T_1 = 0; (u_1)_{kx} = 0; (u_2)_{mg} = 0; T_2 = 0. \\ mgx_m = \frac{kx_m^2}{2} \cdot x_m = \frac{2mg}{k} \end{array}$

a-? Продифференцируем дважды уравнение траектории по времени: $y^{\cdot} = 2kxx^{\cdot}; \ y^{\cdot \cdot} = 2k(x^{\cdot 2} + xx^{\cdot \cdot}).$ В точке x = 0 величина $|x^{\cdot}| = v$: $a = (y^{\cdot \cdot})_{x=0} = 2kv^2$.

Брусок массы т1

 F_{p_1} F_{p_2} F_{p_3} F_{p_4} F_{p_5} F_{p_7} $F_{$ t_0 -? Ссновное уравнение динамики для бруска будет иметь вид: $m_1a_1=F_{tr},\ m_2a_2=F-F_{tr}$. При росте F растёт F_{tr} и имеет предел $F_{trmax}=\mu m_1g$ и при его достижении доска начнёт выскальзывать: $a_2\geq a_1.\ (a_t-\mu m_1g)/m_2\geq \mu_2g$ (где равенство достиг при $t=t_0$), тогда $t_0=(m_1+\frac{a_1}{2})$

два человека v-? Рассмотрим первый случай, когда один человек спрыгивает с тележки: $(m+M)\overline{v}+m(\overline{u}+\overline{v});$ $\overline{v} = -\frac{m\overline{u}}{M+2m} \; (\overline{v}$ - скорость тележки после прыжм т 2 m ка первого человека) Следующий случай, когда второй человек спрыгивает: $(m + M)(-\frac{m\overline{u}}{M+2m}) =$ $M\overline{v'}+m(\overline{u}+v')=(m+M)\overline{v'}+m\overline{u}(v'-\text{ско-рость тележки после прыжка второго человека).} (m+M)\overline{v'}=-m\overline{u}(\frac{m+M}{M+2m}+1)=-m\overline{u'}\frac{2M+3m}{(M+2m)}; \ v'=$ $-\frac{m\overline{u}(2M+3m)}{(M+2m)(M+m)}$

Железнодорожная из бункера v(t)-? $d\overline{v}=\overline{F}dt.$ $(m+dm)(\overline{v}+d\overline{v}-m\overline{v}=\overline{F}dt).$ После раскрытия скобок получим: $d(m\overline{v})=\overline{F}dt.$ $\Delta m\overline{v}=$ $\overline{F}dt$. При t=0, v(0)=0. $m\overline{v}=\overline{F}t$ - > $\overline{v}=\frac{\overline{F}t}{\overline{m}}=$

Небольшое тело $A_F-?$ $\Delta E=A.$ $F=-2m\overline{g}(1-ay).$ $\Delta E=E_2-E_1=0$ подъёма s = y-0). $A_F(\frac{1}{2a}) = 2mg\frac{1}{2a} - mga\frac{1}{4a^2} =$ $\frac{mg}{g} - \frac{mg}{4g} = \frac{3}{4} \frac{mg}{2g}$. $\Delta u = mg \frac{1}{2g} = \frac{mg}{2g}$

Точка по окружности радиуса г a-? По усл: $\frac{dv}{dt}=\frac{-v2}{r};\; dt=\frac{ds}{v};\; \frac{dv}{v}=\frac{-ds}{r}.$ $\int_{v_0}^v \frac{dv}{v}=-\int_0^s \frac{ds}{r}=> \ln \frac{v}{v_0}=-\frac{s}{r}=> v=s$ $v_0e^{-rac{S}{r}}$ (s/r). В данном случае $|a_{ au}|=a_n=>a=$ $\sqrt{2}a_n = \sqrt{2}\frac{v^2}{r} = \sqrt{2}(v_0^2/r)e^{-2s/r}$

Наклонная плоскость

|a|-? |a|-? |a| $rac{3}{4}\,m_1g$ < m_1g - тело m_2 движется вверх, F_{tr} направлена противоположно. $m_1\colon m_1\overline{g}+\overline{T}=m_1\overline{a_1};$ m_2 : $\overline{T} + m_2 \overline{g} + F_{tr} = m_2 \overline{a_2}$; $\overline{a_1}|_{x_1} = \overline{a_2}|_{x_2} = a$ $\int m_1 a = m_1 g - T$ $\begin{cases} m_1 a = m_1 g - 1 \\ m_2 a = T - m_2 g s i n \alpha - \mu m_2 g c o s \alpha \\ ; (m_1 + m_2) a = m_1 g - m_2 g (s i n \alpha + \mu c o s \alpha); a = 0 \end{cases}$ $\frac{m_1 + m_2/\alpha - 10}{m_2 - (\sin\alpha + \mu\cos\alpha)} \cdot g = 0.05g$ $\frac{m_1}{m_2} + 1$

шайбы* $T-? \text{ Рассмотрим ситуацию в ИСО: } T_1 = T_2 = m_1 \frac{v_1^2}{r_1} = m_2 \frac{v_2^2}{r_2} = a_{n1} = a_{n2}. \ r_1 + r_2 = l; \ r_1 m_1 = r_2 m_2 \ | \ r_1 = \frac{m_2}{m_1 + m_2} l; \ r_2 = \frac{m_1}{m_1 + m_2} l \text{ Рассмотрим с-систему: } \overline{P_0} = 0; \ m_1 v_1 = m_2 v_2; \ \frac{v_1}{v_2} = \frac{m_2}{m_1} | v_1 = v_c; \ v_c + v_2 = v; \ v_1 + v_2 = v \ | \ v_1 = \frac{m_2}{m_1 + m_2} v;$ $v_2 = \frac{m_1}{m_1 + m_2} v \ | \ T = \frac{m(\frac{m_2}{m_1 + m_2} v)^2}{(\frac{m_2}{m_1 + m_2}) l} = \frac{m_1 m_2}{m_1 + m_2} \frac{v^2}{l}.$ R-? $R=\frac{v_2^2m_2}{T}=(\frac{m_1+m_2}{m_1})l$

Железнодорожная нагружена песком

Железнодорожная нагружена песком v(t)-? до: m,\overline{v} . после: $(m+dm)(\overline{v}+d\overline{v})$ - тележка. $(-dm)\overline{v}$ - песок в ЛСО. $d\overline{p}=\overline{F}dt.$ $(m+dm)(\overline{v}+d\overline{v})+(-dm)\overline{v}-m\overline{v}=\overline{F}dt.$ После раскрытия скобок: $md\overline{v}=\overline{F}dt.$ m(t)dv=Fdt. $dv=\overline{F}dt$ $\frac{Fdt}{m_0 - \mu t} = \frac{F}{-\mu} \int_0^t d(\ln(m_0 - \mu t)). \ v(t) = -\frac{F}{\mu} \ln(m_0 - \mu t)$ $\mu t)|_{m_0}^{m_0 - \mu t} = \frac{F}{\mu} ln(\frac{m_0}{m_0 - \mu t})$

Три одинаковые $1)v-?2)A_K-?\ \phi = k\frac{q}{a} + k\frac{q}{a} = 2k\frac{q}{a}.\ \ \text{В поле конс.}$ Кулоновской силы. $u_1=3k\frac{q^2}{a}$ (потенциальная). $u_1=2$ $\frac{1}{2} \sum_{i!=j} \phi_{ij} q_i = \frac{1}{2} 2k \frac{q^2}{a} \cdot 3 = 3 \frac{kq^2}{a}. E-const. E_1 =$
$$\begin{split} E_2 \cdot & u_1 = u_2 + T_2; \ T_1 = 0 \cdot -> 3k \frac{q^2}{a} = 3k \frac{q^2}{r} + \frac{mv^2}{2} \cdot 3. \\ T_2 &= \frac{mv^2}{2} + \frac{mv^2}{2} + \frac{mv^2}{2} \cdot mv^2 = 2kq^2(\frac{1}{a} - \frac{1}{r}). \\ v &= \sqrt{\frac{2kq^2(r-a)}{mra}}. \ A_K = \frac{u_1}{3} = \frac{kq^2}{a} \end{split}$$