## YAKEN 2.0

FOR NEET 2023



Lecture - 07

Solutions







## TOPICS TO BE COVERED











## **Qsd.** Osmotic pressure of solution is $\pi_1$ when 50% solute (CuCl) dissociate. Suppose solute (CuCl) 100% dissociate than osmotic pressure is





$$\frac{3}{4}\pi_{1} \quad (e) \quad \frac{4}{3}\pi_{1}$$

$$\frac{\pi_{1}}{2}$$

$$i_{2} = 1 + (n-1) < x$$

$$= 1 + (2-1) \times 1$$

$$= 1 + 1 = 2$$



#### Qsd. 7.1 mole NaCl dissolve in 0.2m KCl solution than select incorrect statements





 $\Delta T_b$  increases



 $\Delta T_f$  decreases



T<sub>f</sub> of sol<sup>n</sup> decreases

50sec



 $T_b$  of sol<sup>n</sup> increases

$$\Delta T_b = i \, K_b \, m$$

$$\rightarrow \Delta T_b \propto i \, m$$

$$\rightarrow (T_b)_{Ab} \propto i \, m$$







## I deal and Non-ideal solution



#### Binary solution

#### ideal solution

- Follows Rapultislaw

$$-\cdot P_{T} = P_{O}^{A} X_{A} + P_{O}^{B} X_{B}$$

Non-ideal solution

- does not follows Rapult's law







Experimental value of total v.p. of solution is 540 mm of the

9f partial v.p. of liquid - A and B respectively 200 mm and = 200+300=500 300 mm of Hy select correct statements

(a) Non-ideal soll form (b) ideal sol form

(c) solyhon shows positive deviation (d) A's'c' are correct

(PT) = PA+PB - ideal Exp. R.L (PT) FXP PA+PB - Nonided

(PT) EXP (PT) EXP (PA+PB)
Possitive

Possitive







| Properties                             |                            | Non-idea sol?             |                              |
|----------------------------------------|----------------------------|---------------------------|------------------------------|
|                                        | ideal solution             | positive deviation        | Negstive deviction W         |
| (3) Intraction (force) (V.P. & Force)  | A - A = B - B = A - B      | $A-A=B-B \rightarrow A-B$ | $A - A = B - B \qquad A - B$ |
| (4) Volume change<br>(DV) on<br>mixing | $\rightarrow \Delta V = 0$ | DV = +Ve, DV>0            | DU=-ve, DU CO                |
| (5) Enthaby Change<br>of 1017. ( DH)   | $\rightarrow \Delta H = 0$ | (DH) non=+ve              | (DH) = -ve, (DH) som CO      |
| 2                                      |                            |                           |                              |

| Properties                                                             |                     | Non-idea sol?             |                    | D |
|------------------------------------------------------------------------|---------------------|---------------------------|--------------------|---|
|                                                                        | ideal solution      | positive deviation        | Negative deviation | W |
| (6) Entropy change of soll (DSNote)                                    | $(\Delta S) = + Vc$ | $(\Delta s)_{noin} = +ve$ | (DS) = +ve         |   |
| Moter Enhapy always increases When No of light or gas or solid mix -ed |                     |                           |                    |   |
| (7) hibbs free Energy change (Ab)                                      | → Dh=-ve            | Δh=-ve                    | Dh=-Ve             | 1 |
|                                                                        |                     |                           |                    | + |

(a) 
$$\Delta U$$
,  $\Delta H$ ,  $\Delta P \left( (P_T)_{E \times P} - (P_T)_{R \cdot L} \right) = Jais a naam \Rightarrow sign$ 





ideal sol (1) 
$$5f = 5f = 5f$$

Non (+ve) (2)  $5f = 5f$  >  $4f \rightarrow 6$ 

ideal (+ve) (3)  $5f = 5f$   $4f \rightarrow 6$ 

Force-Kam  $4f \rightarrow 6$ 

(b) yaela  $4f \rightarrow 6$ 

(b) yaela  $4f \rightarrow 6$ 

(b) yaela





ideal 
$$\rightarrow \Delta V = \text{change in Vol.} = V_f - V_i$$
  
= 3-(2+1) = 3-3=0  
Negative-1 A=2L B=1L, (P-B)=2.9L  
 $\Delta V = 2.9-(3) = -0.1$ 



$$\Rightarrow \Delta H_{sofn} = deni - releane$$

$$\Delta H_{sofn} = (H_1 + H_2) - H_3$$

bond break = Energy deni hogi

bond form = Energy release hobihasi

ideal 
$$\text{NoI}^{n} = A - A = B - B = 2A - B$$

+10 +10 -10 x 2

+20 -20





Experimental value of total 10.p. of solution is 540mm of Hg.

9f partial 10.p. of liquid - A and B respectively 200mm and =

300mm of Hg. select correct graphical Represent of above soln.





$$\begin{aligned}
(P_T) &= 540mm \\
P_A+P_B &= 200+300 = 500mm \\
(P_T) &\nearrow P_A+P_B
\end{aligned}$$



Q. Which one of the following is incorrect for ideal solution?







$$\bigotimes H_{max} = 0$$



$$\otimes U_{\text{mix}} = 0$$



$$\bigotimes P = P_{obs} - P_{calculated by Raoult's law} = 0$$







Q. Formation of a solution from two components can be considered as:

[CBSE AIPMT 2003]

I. Pure solvent  $\rightarrow$  separated solvent molecules,  $AH_1 = +ve$ 

II. Pure solute  $\rightarrow$  separated solute molecules,  $\ddot{A}$  H<sub>2</sub> = +ve

III. Separated solvent and solute molecules  $\rightarrow$  solution,  $\Delta H_3 \rightarrow - \vee e$ Solution so formed will be ideal, if



$$\mathbf{A}\mathbf{H}_{sol.} = \mathbf{A}\mathbf{H}_1 - \mathbf{A}\mathbf{H}_2 - \mathbf{A}\mathbf{H}_3$$



$$\ddot{\mathbf{A}}\mathbf{H}_{sol} = \ddot{\mathbf{A}}\mathbf{H}_3 - \ddot{\mathbf{A}}\mathbf{H}_1 - \ddot{\mathbf{A}}\mathbf{H}_2$$



$$\ddot{\mathbf{A}}\mathbf{H}_{sol} = \ddot{\mathbf{A}}\mathbf{H}_1 + \ddot{\mathbf{A}}\mathbf{H}_2 + \ddot{\mathbf{A}}\mathbf{H}_3$$



$$\Delta_{\text{sol}}^{H} = \Delta H_1 + \Delta H_2 - \Delta H_3$$
With sign





Q. Which one is not equal to zero for an ideal solution?



(CBSE AIPMt 2015)



$$\ddot{A}H_{mix} = 0$$



 $\Delta V_{\text{mix}} = 0$ 



$$\ddot{\Delta}S_{mix} = +ve$$



$$\ddot{A}P = P_{observed - P_{Raoult}} = o$$













have no volume change on mixing  $\rightarrow \Delta V = 0$ 



have no enthalpy change on mixing  $\rightarrow \Delta H = 0$ 



have both the above characteristics



have high solubility





Csp=

ideal sol! => solution of intraction (force) aure solute and solvent Ke

Intraction yaeli ek jaise has to ideal sol! hoga

(yaeli ek jaise molecule milte ho)

Positive deviation = yadi solute aux solvent Ko milne se intraction (force)

Kam ho raha hai

NCERT,

Note - Ho me kuchh Bhi milne pr non-ideal sol hata

Note - yadi wo Ho me ionise ho raha hai - negative

yadi ionise nahi horaha ha = positive deviati

W)

#### Negative deviation

yadi solute aux solvent ko milne se intrachon jada ho raha hai -> Negative deviation











(6H14+(7H16 -) Hydro-Hydro







C<sub>6</sub>H<sub>6</sub> and C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub> - ideal



C2H5Cl and C2H5I - idea



C<sub>6</sub>H<sub>5</sub>Cl and C<sub>6</sub>H<sub>5</sub>Br – idea



THE



(d) 
$$CH_3 - CH_3 - Br + CH_3 - CH_3$$

$$P + P$$

$$+ CH_3 - CH_3$$

#### list-2

P→ C,



### HOME WORK







# THANK YOU

