



## Forschungsfrage

# "Gibt es eine Korrelation zwischen der Positivitäts-Rate und der Anzahl abgeschlossener Tests in Deutschland zur Corona-Zeit?"

- dazu Datensatz: Archive of historical data on the testing volume for COVID-19 vom European Centre for Disease Prevention and Control
- Positivitäts-Rate = 100 x Anzahl neuer positiver Fälle/Anzahl abgeschlossener Tests pro Woche
  - zeigt besser, wie viele Leute wirklich krank sind
- In einer perfekten Welt:
  - es gibt genug Tests und Menschen testen sich dann, wenn sie sich krank fühlen
  - -> eine Korrelation sollte vorhanden sein
- Frage: War das in der Realität auch so?



## Data Lifecycle



German Federation for Biological Data



United States Geological Survey



## Data Lifecycle (meine Version)



#### Plan

- Forschungsfrage -> Anforderungen an Daten
- Data Management Plan
  - basierend auf Horizon Europe Template (auch empfohlen durch Uni Jena)
  - klärt viele Fragen bezüglich des Lifecycles
    - Datenbeschreibung
    - FAIR sicherstellen
    - Kosten
    - Datensicherheit und ethische Fragen
  - hilft dabei, nichts zu vergessen
  - besonders sinnvoll in großen Projekten
  - "living document"
    - manche Fragen können erst im Lauf des Projektes geklärt werden



### Discover

- verschiedene Quellen bereits gegeben
- Datensatz vom "European Centre for Disease" Prevention and Control" gefunden
- Beim Suchen verschiedene Dinge überprüfen:
  - Inhalt
  - Qualität (erster Eindruck)
  - Größe des Datasets
  - Provenance
  - sensitive Daten?
  - Verfügbarkeit / Lizenz
    - ECDC soll zitiert werden







#### Assure

- Qualitätsmerkmale überprüfen
  - Completeness: 100%, keine Woche fehlt, keine NaN-Einträge
  - Uniqueness: 100%, keine Wochen mehrfach im Dataset
  - Timeliness: historische Daten, kurz nach Ende des Erfassungszeitraums veröffentlicht
  - Validity: alle Datenpunkte haben korrekten Typ nach Import als Dataframe
  - Accuracy: schwer zu sagen, einfache plots sehen sinnvoll aus, Quelle ist verlässlich
  - Consistency: nur ein Datensatz genutzt -> dieser ist konsistent
- einige Preprocessing Schritte bereits benötigt zur Überprüfung



### Process

- Filtern der Daten in Deutschland auf level "national"
- Herausfiltern von unnötigen Spalten
- Herausfiltern von NaN-values
- Spalte year\_week: string("2020-W35")
  - unpraktisch für statistische Analyse
  - o daher Aufsplitten in 3 Spalten:
    - year
    - week
    - time
  - Spalte time = year + week/53
    - ermöglicht vergleichbare Daten (z.B. 2020.04 < 2020.36)
- Erstellen einer neuen Datei mit vorverarbeiteten Daten



### Describe

- Beschreibung der Verarbeitungsschritte
  - festgehalten in jupyter notebook
    - markdown + code
  - somit sogar reproduzierbar
  - dafür nötig: Abhängigkeiten beschreiben
    - Programmiersprache, Packages + Versionen, Installationsanleitung
- Beschreiben der Daten -> Metadaten
  - festgehalten in markdown-file und xml file
  - somit human- und machine-readable
  - Inhalt:
    - Kurzbeschreibung, Autor, Spalten, Zeitraum, Typ, Veröffentlichungsdatum, Identifier, Contributor, Nutzungsrechte, ...





























# "Gibt es eine Korrelation zwischen der Positivitäts-Rate und der Anzahl abgeschlossener Tests in Deutschland zur Corona-Zeit?"

- Korrelation besteht in manchen Zeiträumen
- besonders Ende 2020 und 2021 das ganze Jahr über
- in anderen Zeiträumen kaum vorhanden
  - Gründe: fehlende Tests, keine kostenlosen Tests
- verschiedene Ereignisse / politische Beschlüsse spiegeln sich in Daten wieder



#### Publish and Preserve

- Ziel: Erfüllung der FAIR-Kriterien
- Findable, Accessible, Interoperable, Reusable
- Findable:
  - alles hochgeladen in öffentlichem GitHub Repository
  - GitHub sollte im Index verschiedener Suchmaschinen erfasst sein
    - zusätzlich möglich: Anfragen nach Indexing
  - alle Dateien im Repo haben einzigartige Identifier
  - maschinenlesbare Metadaten sind vorhanden
    - enthalten wichtige keywords
  - Synchronisation mit Research Data Repository (Zenodo)
    - Identifier auf Zenodo sind persistent!



#### Publish and Preserve

- Accessible:
  - GitHub/Zenodo sind vertrauenswürdig + sehr verbreitet
  - Herunterladen:
    - automatisch: git + ssh / https, GitHub for command line
    - manuell von Website
- Interoperable:
  - Daten als csv abgespeichert
    - sehr verbreitet, von vielen Tools unterstützt
  - Spaltennamen sind selbsterklärend und oft verwendet
  - maschinenlesbare Metadaten erstellt mit "dublin core generator"
    - -> verwenden somit typisches Vokabular + Format
  - Abhängigkeiten des Codes + Installation beschrieben



#### Publish and Preserve

- Reusable
  - Nutzung von Jupyter Notebooks f
    ür Preprocessing
    - reproduzierbar
    - nachvollziehbar
  - MIT non-copyleft license f
    ür Code, CC BY license f
    ür Daten
    - erlaubt (weitensgehend) freie Wiederverwendung
  - Datengualität ist hoch
  - Datensatz wird sich nicht mehr ändern
    - -> Repository wird archiviert



## Data Lifecycle



COMPIT-DOCER

Vielen Dank für ihre Aufmerksamkeit!