

Conectando App Inventor y Echidna por BlueTooth

ÍNDICE

- 1. Qué queremos hacer
- 2. App Inventor
- 3. Programación IDE Arduino
- 4. Módulo BT
- 5. Conexión BT- Teléfono móvil
- 6. Propuesta de trabajo

Reflexionamos:

- ¿Podemos controlar nuestra Echidna desde el teléfono móvil?
- ¿Cómo se te ocurre que lo podemos hacer? ¿Qué podemos usar para que se comuniquen?

1- QUÉ QUEREMOS HACER

Controlar Echidna desde el teléfono móvil mediante bluetooth, encendiendo y apagando un LED a través de un botón que crearemos en la aplicación.

Qué pasos tenemos que dar

- 1. Programar aplicación dispositivo móvil en App Inventor
- 2. Realizar código en el IDE de Arduino y cargar código Echidna
- 3. Conectar BT a Echidna
- 4. Cargar la App en el teléfono
- 5. Conectar BT móvil con BT de Echidna

2- APP INVENTOR

- Plataforma para el desarrollo de aplicaciones móviles del Instituto Tecnológico de Massachusetts
- Open-source y totalmente gratuita
- Objetivo: Democratizar el desarrollo de apps
- Basada en programación mediante bloques

Acceso a APP Inventor

Iniciar sesión
Ir a mit.edu

Correo electrónico o teléfono

¿Has olvidado tu correo electrónico?

Crear cuenta

Siguiente

G Iniciar sesión con Google

https://appinventor.mit.edu/

Autenticación basada en Google

Gestión de proyectos

Crear un nuevo proyecto

Pasos crear aplicación

- 1. Diseñar la apariencia visual y los componentes que necesitará nuestra aplicación.
- 2. Definir el comportamiento mediante bloques (programación dirigida por eventos).
- 3. Podremos alternar entre ambas pantallas, diseño/bloques en cualquier momento y revisar los cambios "al vuelo" usando MIT AI2 Companion

MIT AI2 Companion

Permite probar la app mientras la desarrollamos

Probar/ instalar aplicación

MIT AI2 Companion nos permite ver cambios "en vivo" mientras desarrollamos.

Si deseamos instalarla necesitamos generar el fichero APK y abrirlo en nuestro dispositivo

Instalar un APK en Android sin estar publicado en Google Play requerirá habilitar desde "Ajustes" del dispositivo, "Seguridad", la opción de "Orígenes desconocidos".

Vista Diseño

Diseño de la aplicación

Añadimos:

- 1. Componente ClienteBluetooth
- 2. Etiqueta para mostrar cuando BT está conectado/desconectado
- 3. Selector de lista para conectar
- 4. Botón para desconectar BT
- 5. BT Salir de la aplicación
- 6. Botón encendido apagado

Vista Bloques

Programación: configuración BT


```
BtnDesconect . Clic
cuando
                                                                                    BtnSalir . Clic
                                                                            cuando
         ejecutar
                                                                                      cerrar la aplicación
                                                                            ejecutar
                                              BlueTooth desconectado
               Etiqueta2 -
                           Texto -
                                    como
       Selectordelista1 .AntesDeSelección
         poner Selectordelista1 . Elementos
                                                      ClienteBluetooth1 -
                                                                          DireccionesYNombres •
ejecutar
                                              como
       Selectordelista1 . Después De Selección
ejecutar
         evaluar pero ignorar el resultado
                                       llamar ClienteBluetooth1 -
                                                                 .Conectar
                                                                            Selectordelista1
                                                                 dirección
                                                                                              Selección
                       ClienteBluetooth1
         0
                                           Conectado
                                                         BlueTooth Conectado
         entonces
                   poner Etiqueta2 . Texto
                                              como
                   poner Etiqueta2
                                                         Error de conexion BlueTooth
         sino
                                     . Texto
                                              como
```

Programación botón LED


```
inicializar global ledStatus como
                                falso •
        BtnLed . Clic
cuando
ejecutar
         Si Si
                          tomar global ledStatus
                                                        falso -
                    llamar ClienteBluetooth1 ▼ .EnviarTexto
         entonces
                                                           " H "
                                                   texto
                    poner global ledStatus a
                                               cierto
                    poner BtnLed . ColorDeFondo .
                                                     como
                         BtnLed Texto
                                                      LED ON
                                             como
                         ClienteBluetooth1 .EnviarTexto
         sino
                                                   texto
                    poner global ledStatus - a
                                              falso -
                    poner BtnLed . ColorDeFondo .
                                                     como
                   poner BtnLed . Texto como
```

3- CÓDIGO ARDUINO


```
// pines del LED RGB
const int ledRPin = 9; // establece el pin del LED rojo
const int ledGPin = 5; // establece el pin del LED verde
const int ledBPin = 6; // establece el pin del LED azul
int incomingByte; // variable para leer los bytes de entrada
void setup() {
 // inicializamos la comunicación serie
  Serial.begin(9600);
 // establece los pines del LED RGB como salidas
  pinMode(ledRPin, OUTPUT);
  pinMode(ledGPin, OUTPUT);
  pinMode(ledBPin, OUTPUT);
```

CÓDIGO ARDUINO


```
void loop() {
 // comprobamos si hay datos de entrada
 if (Serial.available() > 0) {
   // lectura del byte mas antiguo del buffer serial
    incomingByte = Serial.read();
   // si el byte es H (ASCII 72) enciende el LED
    if (incomingByte == 'H') {
      digitalWrite(ledRPin, HIGH);
      digitalWrite(ledGPin, HIGH);
      digitalWrite(ledBPin, HIGH);
    // si el byte es L (ASCII 76) apaga el LED
    if (incomingByte == 'L') {
      digitalWrite(ledRPin, LOW);
      digitalWrite(ledGPin, LOW);
      digitalWrite(ledBPin, LOW);
```

Subimos código Arduino

Subir

```
Arduino Archivo Editar Programa
                                    Herramientas Avuda
                                     Auto Formato
                                                                   XT
                                     Archivo de programa.
                                     Reparar codificación & Recargar.
                                                                  企業M
 PhysicalPixel §
                                     Monitor Serie
                                      Serial Plotter
                                                                  企業L
 7 void setup() {
                                     WiFi101 Firmware Updater
    // inicializamos la comunic
                                      Placa: "Arduino Nano"
    Serial.begin(9600);
                                      Procesador: "ATmega328P"
    // establece los pines del
                                     Puerto: "/dev/cu.wchusbserial410"
pinMode(ledRPin, OUTPUT);
                                     Obtén información de la placa
    pinMode(ledGPin, OUTPUT);
                                     Programador: "Arduino as ISP"
    pinMode(ledBPin, OUTPUT);
                                     Quemar Bootloader
14 }
15
16 void loop() {
    // comprobamos si hay datos de entrada
   if (Serial.available() > 0) {
      // lectura del byte mas antiquo del buffer serial
      incomingByte = Serial.read();
      // si el byte es H (ASCII 72) enciende el LED
21
22
      if (incomingByte == 'H') {
         digitalWrite(ledRPin, HIGH);
         digitalWrite(ledGPin, HIGH);
24
25
         digitalWrite(ledBPin, HIGH);
26
```

Arduino Nano, ATmega328P en /dev/cu.wchusbserial410

Seleccionamos la placa y el puerto al que se conecta Echidna

4- MÓDULO BT

- Podemos usar BT HC06/ HC05
- Usamos BT como esclavo
- Conectamos:
 - Rx Echidna- Tx BT
 - Tx Echidna- Rx BT

Una vez conectado el BT no podemos programar la placa

5 COMUNICAR APP BT ECHIDNA

Se trata de vincular el dispositivo BT al teléfono móvil y abrir la app y comprobar que se conecta al BT para enviar información y encender el LED

Vinculación BT con teléfono

- 1. Activar bluetooth del teléfono móvil y buscar dispositivos.
- 2. Vincular con *NOMBRE*, e introducir la clave: 1234.

Abrir App y vincular

- Abrir APP.
- 2. Presionar Conectar
- 3. De la lista de dispositivos seleccionar Nombre BT, nos debe aparecer el mensaje BlueTooth Conectado"
- 4. Encender y apagar el LED con pulsador de la APP.

MAC BlueTooth

Nombre BT

PRACTICAMOS:

Reproduce el sistema planteado, siguiendo los pasos explicados:

- 1. Programar aplicación dispositivo móvil en App Inventor
- 2. Subir código con en el IDE de Arduino en Echidna
- 3. Conectar BT a Echidna
- 4. Cargar la App en el teléfono
- 5. Conectar BT móvil con BT de Echidna

PRACTICAMOS: Para continuar

 Añadir reconocimiento de voz proporcionado por MIT App Inventor para encender/apagar el led utilizando un botón en nuestra app


```
cuando Botón4 .Clic
         llamar ReconocimientoDeVoz1 ▼ .ObtenerTexto
ejecutar
cuando ReconocimientoDeVoz1 .DespuésDeObtenerTexto
            partial
 Resultado
        ejecutar
                                      tomar Resultado - = -
                        minúscula -
                                                               encender
                  Llamar gestionarEncendidoLed -
         si no, si
                                      tomar Resultado - = -
                         minúscula -
         entonces Llamar gestionarEncendidoLed
```

En los componentes dedicados a *Medios* encontraremos ReconocimientoDeVoz que nos permitirá hablar y controlar el led

LICENCIA Y CRÉDITOS

Esta guía se distribuye bajo licencia Reconocimiento- Compartirlgual Creative commons 4.0

Las diapositivas han sido modificadas a partir de una obra de Jose Pujol y Jose Luis Núñez creadas para el curso "Controlando Arduino desde el teléfono móvil" para el CEP de Sevilla y han sido creadas a partir de material elaborado para el curso "Tech Project: Arduino en el aula" que fue realizado por Jose Antonio Vacas y Jose Pujol en colaboración con Avante s.l.

