Venn diagrams Technical details and regression checks

Jonathan Swinton

19th June, 2007

- Try CR for weight=0
- Plot faces for Chow-Ruskey
- General set membership
- implement not showing dark matter eg Fig 1
- Different choices of first and second sets for AWFE
- · Add in the equatorial sets for AWFE
- AWFE-book like figures
- naming of weights for triangles
- likesquares argument for triangles
- likesquares argument for 4-squares
- · central dark matter
- Comment on triangles
- Comment on AWFE return geometry
- · calculate three circle areas correctly
- text boxes
- use grob objects/printing properly
- "Exact" slot mess
- proper data handling:
- · choose order;
- cope with missing data including missing zero intersection;
- Define weights via names
- · graphical parameters
- discuss Chow-Ruskey zero=nonsimple

Venn objects

For a running example, we use sets named after months, whose elements are the letters of their names.

```
> setList <- strsplit(month.name, split = "")</pre>
> names(setList) <- month.name</pre>
> VN3 <- VennFromSets(setList[1:3])</pre>
> V2 <- VN3[, c("January", "February"),
> V4 <- VennFromSets(setList[1:4])</pre>
> V4f <- V4
> V4f@IndicatorWeight[, ".Weight"] <- 1</pre>
> setList <- strsplit(month.name, split = "")</pre>
> names(setList) <- month.name</pre>
> VN3 <- VennFromSets(setList[1:3])</pre>
> V2 <- VN3[, c("January", "February"),
> V3.big <- Venn(SetNames = month.name[1:3],
      Weight = 2^{(1:8)}
> V2.big <- V3.big[, c(1:2)]
> Vempty <- VennFromSets(setList[c(4,
      5, 7)])
> Vempty2 <- VennFromSets(setList[c(4,</pre>
      5, 11)])
> Vempty3 <- VennFromSets(setList[c(4,</pre>
      5, 6)])
```

2 Two circles

2.1 Two circles

We rely on the relationships

$$\begin{array}{rcl} d_1 & = & (d^2 - r_2^2 + r_1^2)/(2d) \\ d_2 & = & d - d_1 \\ y & = & (1/(2d))\sqrt{4d^2r^{12} - (d^2 - r^{22} + r^{12})^2} \end{array}$$

2.2 Weighted 2-set Venn diagrams for 2 Sets

2.2.1 Circles

It is always possible to get an exactly area-weighted solution for two circles as shown in Figure 1.

00 10 01 11 NA 67.98454 135.95841 271.95839

- [1] Area Weight
- [3] IndicatorString Density
- <0 rows> (or 0-length row.names)

Figure 1: Weighted 2d Venn

2.3 2-set Euler diagrams

2.3.1 Circles

00 10 01 11 NA 0.1353743 3.1339495 3.8635058

Figure 2: Effect of the Euler and ${\tt doWeights}$ flags.

Figure 3: As before for a different set of weights

Figure 4: As before for a different set of weights

3 Two squares

3.0.2 Weights

3.0.3 Squares

Weighted Euler

Unweighted Euler

3.1 Two squares

4 Three circles

> plot(Vcombo, doWeights = FALSE)

Figure 5: A three-circle Venn diagram

4.0.1 Weights

There is no general way of creating area-proportional 3-circle diagrams. The package makes an attempt to produce approximate ones.

```
    000
    100
    010
    110

    2161.42418
    4050.03149
    397.85795
    595.97496

    001
    101
    011
    111

    522.89901
    69.82813
    181.87792
    139.65626
```

- [1] Area Weight
- [3] IndicatorString Density
- <0 rows> (or 0-length row.names)

Figure 6: 3D Venn diagram. All of the areas are correct to within 10%

TODO check areas

4.1 Three circles

If not uniform, we have to compute the centroids by quadrature

5 Three Triangles

The triangular Venn diagram on 3-sets lends itself nicely to an area-proportional drawing under some contrainsts on the weights

- [1] Area Weight
- [3] IndicatorString Density
- <0 rows> (or 0-length row.names)

Figure 7: Triangular Venn with external universe

5.1 Triangular Venn diagrams

Has intersection shapes so would be easy to define faces but we don't. No nodes either.

5.1.1 Triangles

```
000 100 010
1.776357e-15 2.000000e+00 3.000000e+00
110 001 101
2.000000e+00 3.000000e+00 0.000000e+00
011 111
0.000000e+00 2.000000e+00
```


Figure 8: 3d Venn triangular with one empty intersection

Figure 9: 3d Venn triangular with two empty intersection

Given a triangle ABC of area Δ and some nonnegative weights $w_a + w_b + w_c < 1$ we want to set s_c , s_a and s_b so that the areas of each of the apical triangles are Δ proportional to w_a , w_b and w_c . This means

$$s_c(1-s_b)bc\sin A = 2w_a\Delta \tag{1}$$

$$s_a(1-s_c)ca\sin B = 2w_b\Delta$$
(2)

$$s_b(1-s_a)ab\sin C = 2w_c\Delta \tag{3}$$

So

$$s_c(1-s_b) = w_a (4)$$

$$s_a(1-s_c) = w_b (5)$$

$$s_b(1-s_a) = w_c (6)$$

$$s_b = 1 - w_a/s_c \tag{7}$$

$$s_a = w_b/(1-s_c) (8)$$

$$s_a = w_b/(1-s_c)$$
 (8)
 $(s_c - w_a)(1 - s_c - w_b) = s_c(1 - s_c)w_c$ (9)

$$s_c^2(1-w_c) + s_c(w_b + w_c - w_a - 1) + w_a(1-w_b) = 0$$
(10)

Iff

$$4w_a w_b w_c < (1 - (w_a + w_b + w_c))^2 \tag{11}$$

this has two real solutions between w_a and $1 - w_b$.

[1] TRUE

5.2 Three triangles

6 Three Squares

This is a version of the algorithm suggested by [1]. TODO likesquares

- [1] Area Weight
- [3] IndicatorString Density
- <0 rows> (or 0-length row.names)

Figure 10: Weighted 3-set Venn diagram based on the algorithm of [1]

6.1 Three squares

7 Four squares

7.1 Unweighted 4-set Venn diagrams

Figure 11: Four variants on the four-squares

7.2 Four squares

```
$`p1|p2`
lines[GRID.lines.2938]
$`p1|p7`
lines[GRID.lines.2939]
$`p2|p3`
lines[GRID.lines.2940]
$`p2|p11`
lines[GRID.lines.2941]
$`p3|p4`
lines[GRID.lines.2942]
$`p3|p11`
lines[GRID.lines.2943]
$`p4|p5`
lines[GRID.lines.2944]
$`p4|p9`
lines[GRID.lines.2945]
$`p5|p6`
lines[GRID.lines.2946]
$`p5|p13`
lines[GRID.lines.2947]
$`p6|p1`
lines[GRID.lines.2948]
$`p6|p13`
lines[GRID.lines.2949]
$`p7|p8`
lines[GRID.lines.2950]
$`p7|p12`
lines[GRID.lines.2951]
$`p8|p4`
lines[GRID.lines.2952]
$`p8|p12`
lines[GRID.lines.2953]
$`p9|p10`
lines[GRID.lines.2954]
$`p9|p14`
lines[GRID.lines.2955]
```

\$`p10|p1`

¢`n10|n11'

lines[GRID.lines.2956]

25

\$`p2|p3` lines[GRID.lines.3028] \$`p2|p11` lines[GRID.lines.3029] \$`p3|p4` lines[GRID.lines.3030] \$`p3|p11` lines[GRID.lines.3031] \$`p4|p5` lines[GRID.lines.3032] \$`p4|p9` lines[GRID.lines.3033] \$`p5|p6` lines[GRID.lines.3034] \$`p5|p13` lines[GRID.lines.3035] \$`p6|p1` lines[GRID.lines.3036] \$`p6|p13` lines[GRID.lines.3037] \$`p7|p8`

lines[GRID.lines.3038]

lines[GRID.lines.3039]

lines[GRID.lines.3040]

lines[GRID.lines.3041]

lines[GRID.lines.3042]

lines[GRID.lines.3043]

\$`p7|p12`

\$`p8|p4`

\$`p8|p12`

\$`p9|p10`

\$`p9|p14`

\$`p10|p14`

\$`p1|p2`

\$`p1|p7`

lines[GRID.lines.3026]

lines[GRID.lines.3027]

26

\$`p10|p1`
lines[GRID.lines.3044]

lines[GRID.lines.3045]

8 Four Ellipses

Ellipses don't have faces or nodes, and can't have weights sent.

9 AWFE for more than four sets

Figure 12: Edwards constructions for five and six sets

10 3, 4 and 5 set Edwards-Venn diagrams


```
> V4 <- VennFromSets(setList[1:4])
> V4f <- V4
> V4f@IndicatorWeight[, ".Weight"] <- 1
> setList <- strsplit(month.name, split = "")
> names(setList) <- month.name
> VN3 <- VennFromSets(setList[1:3])
> V2 <- VN3[, c("January", "February"),
+ ]</pre>
```

11 Chow-Ruskey

See [2, 1].

11.1 Chow-Ruskey diagrams for 3 sets

The general Chow-Ruskey algorithm can be implemented in principle for an arbitrary number of sets provided the weight of the common intersection is nonzero.

- [1] Area Weight
- [3] IndicatorString Density
- <0 rows> (or 0-length row.names)

Figure 13: Chow-Ruskey weighted 3-set diagram

- [1] Area Weight
 [3] IndicatorString Density
 <0 rows> (or 0-length row.names)

- [1] Area Weight
- [3] IndicatorString Density
 <0 rows> (or 0-length row.names)

Figure 14: Chow-Ruskey CR3f

Chow-Ruskey diagrams for 4 sets 11.2

- [1] Area Weight
 [3] IndicatorString Density
 <0 rows> (or 0-length row.names)

Figure 15: Chow-Ruskey weighted 4-set diagram

- [1] Area Weight
- [3] IndicatorString Density
- <0 rows> (or 0-length row.names)

Figure 16: Chow-Ruskey weighted 4-set diagram

The area of the sector $0r_1r_2$ is $\frac{1}{2}r_1r_2\sin\phi$. The area of $0r_1s_2$ is $\frac{1}{2}(r_1(r_2+\delta)\sin\phi)$ and so the area of $r_1r_2s_2$ is $\frac{1}{2}(r_1\delta \sin \phi)$.

The area of $r_2r_2s_2s_3$ is $\frac{1}{2}[(r_3+\delta)(r_2+\delta)-r_3r_2)\sin\phi=\frac{1}{2}[(r_3+r_2)\delta+\delta^2]\sin\phi$. The total area of the outer shape is

$$A = \frac{1}{2}(\sin\phi) \left[(r_1 + r_n)\delta + \sum_{k=2}^{n-2} [(r_{k+1} + r_k)\delta + \delta^2] \right]$$
 (12)

$$= \frac{1}{2}(\sin\phi)\left[(r_1+r_n)\delta+(n-2)\delta^2+\delta\sum_{k=2}^{n-2}[(r_{k+1}+r_k)]\right]$$
(13)

$$= \frac{1}{2}(\sin\phi)\left[(r_1+r_2+2r_3+\ldots+2r_{n-2}+r_{n-1}+r_n)\delta+(n-3)\delta^2\right]$$
 (14)

so

$$0 = c_a \delta^2 + c_b \delta + c_c$$

$$c_a = n - 3$$

$$c_b = r_1 + r_2 + 2r_3 + \dots + 2r_{n-2} + r_{n-1} + r_n$$
(15)
(16)

$$c_a = n-3 \tag{16}$$

$$c_b = r_1 + r_2 + 2r_3 + \dots + 2r_{n-2} + r_{n-1} + r_n$$
 (17)

$$c_c = -A/\frac{1}{2}\sin\phi \tag{18}$$

This is implemented in the compute.delta function. If all the rs are the same then $c_b = [2(n-3)+4]r = (2n-2)r$.

- [1] Area Weight
- [3] IndicatorString Density
- <0 rows> (or 0-length row.names)

Figure 17: Chow-Ruskey 4

Figure 18: Garish fill

12 Euler diagrams

12.1 3-set Euler diagrams

12.1.1 Circles

There is currently no effect of setting doEuler=TRUE for three circles.

NULL

There are about 40 distinct ways in which patterns of zero intersections can occur.

Figure 19: Weighted 3d Venn with an empty intersection

Figure 20: Weighted 3d Venn with two empty intersections

Figure 21: Weighted 3d Venn with three empty intersections

12.1.2 Other examples of circles

Figure 22: TODO Big weighted 3d Venn fails

12.2 4-set Euler diagrams

12.2.1 Chow-Ruskey diagrams

1100	0100	1000	0000
2.000000	3.000240	2.000073	18.238486
1110	0110	1010	0010
1.000000	0.000000	0.000000	3.000000
1101	0101	1001	0001
0.000000	0.000000	0.000000	4.000000
1111	0111	1011	0011
1.000000	0.000000	0.000000	0.000000

13 Error checking

These should fail

```
> print(try(Venn(NumberOfSets = 3, Weight = 1:7)))
[1] "Error in Venn(NumberOfSets = 3, Weight = 1:7) : \n Weight length does not match numb
attr(,"class")
[1] "try-error"
> print(try(V3[1, ]))
[1] "Error in V3[1, ] : Can't subset on rows\n"
attr(,"class")
[1] "try-error"
    Requesting a 2D plot for a 3D set produces a warning.
    Empty objects work

NULL
NULL
character(0)
```

14 This document

Author	Jonathan Swinton
CVS id of this document	Id: Vennville.Rnw,v 1.6 2007/06/19 21:53:47 js229 Exp.
Generated on	19 th June, 2007
R version	R version 2.6.0 Under development (unstable) (2007-06-11 r41912)

References

- [1] Stirling Chow and Frank Ruskey. Drawing area-proportional Venn and Euler diagrams. In Giuseppe Liotta, editor, *Graph Drawing*, volume 2912 of *Lecture Notes in Computer Science*, pages 466–477. Springer, 2003.
- [2] Stirling Chow and Frank Ruskey. Towards a general solution to drawing areaproportional Euler diagrams. *Electr. Notes Theor. Comput. Sci.*, 134:3–18, 2005.