

```
<unnamed>
       name:
              O:\Fall 2021\U of A\MET HW\Final Project\Adopo Jeffries Final log.smcl
        loa:
   log type:
              smcl
   opened on: 17 Dec 2021, 09:28:22
2 . /* READ ME
 > University of Arkansas, Fayetteville, Arkansas
 > Walton Graduate School of Business
 > ECON 5783, Applied Microeconometrics
 > For: Course Project
 > Written by: Daryl Adopo & Robby Jeffries
 > Date: 17 December 2021
 > */
3
 .
4
5
6
7.
8 . **#
 . // -
9
                   ----- (0) Installing packages and
 > graph schemes
10.
11. local install = 1 // Change this to 1 to download packages/schemes for this project
13. if `install' == 1 {
           ssc install rdrobust, replace // Includes many useful commands for RDD
14.
 checking rdrobust consistency and verifying not already installed...
 installing into C:\Users\rejeffri\ado\plus\...
 installation complete.
           ssc install estout, replace // For storing and outputting results
  checking estout consistency and verifying not already installed...
  installing into C:\Users\rejeffri\ado\plus\...
 installation complete.
           net install rddensity, from("https://raw.githubusercontent.com/rdpackages/rd
 > density/master/stata") replace
  checking rddensity consistency and verifying not already installed...
 installing into C:\Users\rejeffri\ado\plus\...
 installation complete.
           net install lpdensity, from("https://raw.githubusercontent.com/nppackages/lp
 > density/master/stata") replace
  checking lpdensity consistency and verifying not already installed...
 installing into C:\Users\rejeffri\ado\plus\...
 installation complete.
           net install rdpower, from ("https://raw.githubusercontent.com/rdpackages/rdpo
 > wer/master/stata") replace
 checking rdpower consistency and verifying not already installed...
 installing into C:\Users\rejeffri\ado\plus\...
 installation complete.
19.
20.
21.
                    /* Note on Schemes: The default graphing options in STATA are ugly.
                           A user-developed package called schemepack includes many mor
 > e
                           visually appealing schemes. The code below installs that pac
 > kage
                            and sets the scheme to one I like, but you should check out
 > the
 >
                            github page and pick one for yourself
 >
                           https://github.com/asjadnaqvi/Stata-schemes */
```

```
22.
23.
         ssc install schemepack, replace // Appealing graph schemes (optional)
 checking schemepack consistency and verifying not already installed...
 installing into C:\Users\rejeffri\ado\plus\...
 installation complete.
24.
         set scheme white tableau // Add ", perm" after this command to lock change i
 > n
25. }
26.
> *****
28.
29.
30.
31.
32. **#
33. // ----- (1) Loading data and initia
 > l exploration
34. import delimited using "O:\Fall 2021\U of A\MET HW\Final Project\county census vax.c
 > sv", clear
 (encoding automatically selected: ISO-8859-1)
 (14 vars, 3,038 obs)
36. // NOTE: Our COVID data is from one day, 11/16/2020.
37.38. * First thing to do is get a sense of our variables
39. summarize _all, sep(0)
```

Variable	Obs	Mean	Std. dev.	Min	Max
year state state_po county_name perc partyy datex	3,038 0 0 0 0 0	2016	0	2016	2016
death_rate case_rate datey	3,038 3,038 0	.0007086 .0391432	.0011324 .0456962	.000721	.0260361 1.145119
<pre>completene~t administer~p series_com~v</pre>	3,038 3,038 0	.8142446 .3655382	.2877802 .2209842	0	. 988 . 999
series_com~t	3,038	.3523756	.1734873	0	. 999

```
40.
```

perc: contains nonnumeric characters; replaced as double (1 missing value generated)

43.

47.

^{41. *} Convert string to float

^{42.} destring perc, replace force

^{44. //} Often RDDs are motivated by a simple scatterplot with the running variable on the > x-axis and outcome on the y. 45. // Try making such a scatter plot here.

^{46.} twoway scatter case_rate perc, xline(0.5) // Make a simple scatterplot

```
48. label variable perc "Percent Republican"
49. gen bin = floor(perc*100) // Creating bins of each percentage
  (1 missing value generated)
50. replace bin = bin + 1 if bin >= 0 // Personal preference not to have a 0 bin
  (3,037 real changes made)
51. bysort bin: egen avg deaths = mean(death rate) // Average death rate by bin
52. twoway scatter avg deaths bin, xline(50) // Make a simple scatterplot
54. *******************************
 > *****
55.
56.
57.
58.
59.
60. **#
61. // -----
                    ----- (2) Testing for gaming, heap
 > ing and power
62. * We need to check for a few issues that might undermine the continuity assumption.
63. * Firstly, do we see evidence that people "gamed" the cutoff to try to get on one si
64. bysort bin: egen count = count(bin)
65. twoway bar count bin, xline(50)
66.
67.
68. * Testing for gaming of the cutoff
69. rddensity perc, c(0.5) plot ///
> cirl_opt(color(blue%0)) cirr_opt(color(red%0)) /// left and right confidence interva
 > esll_opt(color(blue%0)) eslr_opt(color(red%0)) /// left and right line
 > histT_opt(color(blue%30) barwidth(.009)) /// left histogram > histr_opt(color(red%30) barwidth(.007)) // right histogram
 Computing data-driven bandwidth selectors.
```

Point estimates and standard errors have been adjusted for repeated observations. (Use option nomasspoints to suppress this adjustment.)

RD Manipulation test using local polynomial density estimation.

c = 0.500	Left of c	Right of c
Number of obs	586	2451
Eff. Number of obs	286	425
Order est. (p)	2	2
Order bias (q)	3	3
BW est. (h)	0.090	0.090

9	be	nb	m.	ır	11	u	u	u	1	ı	n	n	k	С)	\in	٤.	1	r			(C)]	E			C)]	b) :	S		=																			3	3 ():	3	7	,
1	el	de	d)(0	С	0	С)) (C	ł	(=	,	1	L																	=		ι	1	u	r	Ω	1		r	•	e	2		s	t	t.	r	i	Ĺ	et	:	9	ċ	l
9	me	m		Ī	V	N	N	N	V	Ī			r	Υ	l	\in	9	t	t		h.	L	С) (b									=																			C	20	ı	nÌ	b	,
9	ne	n	r	2	€.	Э	е	Э)		r	_	ľ	n	1	\in	2]	1															=								•	t	=	1	r		i	ē	1	n	ç	Jι	1]	٤	1	r	:
n	m	C	Ε	E	2	\mathcal{C}	C	\mathcal{C}	7	.]	F	C			į	n	n	\in	3		t	.]	r.	L	0	Ċ	ł							=												j	ě	a	c	3	k	ŀ	cI	i	_1	Ē	e	è
1 =	e le le		e m	de m	de m rn	de m rn	de m rn	de m rn	de m rn	de m rn	le m	e m	n		1	1))	t	t	.]	h.	L	c) (b				o]	b		S		= = =		υ	1	נו	r	מ				=	1	r	-	i	ē	a :	n	٥	J.	20	or La	e n]	k	

Running variable: perc.

Method	Т	P> T
Robust	-1.9588	0.0501

P-values of binomial tests. (H0: prob = .5)

Window Length / 2	<c< th=""><th>>=c</th><th>P> T </th></c<>	>=c	P> T
0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.030	12 24 36 44 55 60 72 85 100	8 18 29 36 43 52 64 74 80 88	0.5034 0.4408 0.4570 0.4340 0.2664 0.5085 0.5485 0.4278 0.1565
			1

70. 71. 72.

73. * Testing for statistical power (benchmark of 0.8)74. rdpow case_rate perc, c(0.5) // What effect size are we powered to detect?

Right of ${f c}$	Left of c	Cutoff c = .5
2451 358 0.079 1	586 255 0.079 1	Number of obs Eff. Number of obs BW loc. poly. (h) Order loc. poly. (p)
0.079 358	0.079 255	Sampling BW New sample

Number of obs = Number of off BW type = mserd "-mal = Triangular 3037 VCE method = NN Derivative = 0 Derivative tau = **0.010** HA:

Outcome: case rate. Running variable: perc.

Power against:	H0: tau= 0.000	0.2*tau = 0.002	0.5*tau = 0.005	0.8*tau = 0.008	tau = 0.010
Robust bias-corrected	0.050	0.070	0.182	0.387	0.552

```
75.
76.
77.
> *****
79.
80.
81.
82.
83.
84. **#
85. // ----- (3a) Estimation via OLS and i
 > nterpretation
86. gen treat = perc > 0.5 // Define a treatment variable
87. label variable treat "Treatment"
88.
89. * Generate new variables for regressions
```

```
90. gen perc std = perc - 0.5 // normalize the percent around 0
  (1 missing value generated)
91. gen treat perc = treat * perc std // interaction term
 (1 missing value generated)
92. gen perc_std2 = perc_std * perc_std // for quadratic regression
  (1 missing value generated)
93. gen treat_perc2 = treat_perc * perc_std2 // for quadratic regression
 (1 \text{ missing value generated})
94. gen bins = round(perc std, 0.01) // Creating bins of each percentage
  (1 missing value generated)
95. replace bins = bins + .01 if bins >= 0 // Personal preference not to have a 0 bin
  (2,471 real changes made)
96. bysort bins: egen avg deaths2 = mean(death rate) // Average death rate by bin
97. bysort bins: egen avg cases = mean(case rate) // Average death rate by bin
98. bysort bins: egen avg vax = mean(series complete 18pluspop pct) // Average death rat
 > e by bin
99.
100 * Label Variables
101 la var death_rate "Death Rate"
102 la var case rate "Case Rate"
103 la var series_complete_18pluspop_pct "Vax Rate 18+"
104 la var perc std "% Republican Linear"
105 la var treat perc "Treatment x % Rep."
106 la var perc std2 "% Rep. Quadratic"
107 la var treat_perc2 "Treat x % Rep. Sqrd."
108
109 * Regressions on death rate
110 eststo reg_d1: qui areg death_rate treat perc_std, robust absorb(state) // linear re
 > gression without interaction term
111 eststo reg_d2: qui areg death_rate treat perc_std treat_perc, robust absorb(state) /
 > / linear regression with interaction term
112 eststo reg d3: qui areg death rate treat perc std perc std2 treat perc treat perc2,
 > robust absorb(state) // quadratic regression
114 * Regressions on case rate
115 eststo reg c1: qui areg case rate treat perc std, robust absorb(state) // linear reg
 > ression without interaction term
116 eststo reg c2: qui areg case rate treat perc std treat perc, robust absorb(state) //
 > linear regression with interaction term
```

- 117 eststo reg c3: qui areg case rate treat perc std perc std2 treat perc treat perc2, r > obust absorb(state) // quadratic regression
- 119 * Regressions on vaccination rate
- 121 eststo reg_v2: qui areg series_complete_18pluspop_pct treat perc_std treat_perc, rob > ust absorb(state) // linear regression with interaction term

124 * Generate table with both linear and quadratic regressions 125 esttab reg_d*, se label

	(1)	(2)	(3)
	Death Rate	Death Rate	Death Rate
Treatment	-0.000179**	-0.0000597	0.0000134
	(0.0000623)	(0.0000538)	(0.0000803)
% Republican Linear	-0.000715**	-0.00257**	-0.00690*
	(0.000226)	(0.000945)	(0.00300)
Treatment x % Rep.		0.00240* (0.000982)	0.00942* (0.00416)
% Rep. Quadratic			-0.0136* (0.00696)
Treat x % Rep. Sqrd.			0.0195 (0.0119)
Constant	0.000949***	0.000725***	0.000523***
	(0.0000798)	(0.0000516)	(0.000117)
Observations	3037	3037	3037

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

126 esttab reg c*, se label

	(1) Case Rate	(2) Case Rate	(3) Case Rate
Treatment	-0.00490* (0.00237)	-0.000694 (0.00172)	0.00376 (0.00303)
% Republican Linear	-0.0310*** (0.00888)	-0.0962* (0.0397)	-0.321* (0.129)
Treatment $x \% \text{ Rep.}$		0.0845* (0.0411)	0.441* (0.179)
% Rep. Quadratic			-0.707* (0.297)
Treat x % Rep. Sqrd.			1.064* (0.503)

3.

4.

5. 6.

7. }

tempvar i gen i = `h'*10

drop i

eststo regd1_`i'

```
0.0472***
                                             0.0394***
                                                             0.0289***
  Constant
                          (0.00334)
                                           (0.00158)
                                                           (0.00477)
  Observations
                               3037
                                               3037
                                                                3037
  Standard errors in parentheses
  * p<0.05, ** p<0.01, *** p<0.001
127 esttab reg v*, se label
                                                 (2)
                                (1)
                                                                 (3)
                       Vax Rate 18+
                                       Vax Rate 18+
                                                       Vax Rate 18+
                                                            0.00764
                                            0.00644
  Treatment
                             0.0132
                          (0.00749)
                                           (0.00838)
                                                           (0.00950)
                             -0.312***
                                             -0.207***
  % Republican Linear
                                                             -0.262
                           (0.0213)
                                            (0.0590)
                                                             (0.154)
  Treatment x % Rep.
                                             -0.135*
                                                             -0.0501
                                            (0.0636)
                                                             (0.239)
  % Rep. Quadratic
                                                              -0.172
                                                             (0.484)
  Treat x % Rep. Sqrd.
                                                               0.268
                                                             (0.825)
                                              0.396***
                              0.384***
  Constant
                                                               0.394***
                          (0.00494)
                                           (0.00743)
                                                           (0.00931)
  Observations
                               3037
                                               3037
                                                                3037
  Standard errors in parentheses
  * p<0.05, ** p<0.01, *** p<0.001
128
129
130
131
132
133 **#
134 // -----
                ----- (4) BANDWIDTH TEST on RUNNING
    VARIABLE
135
136
137
138 est clear // clear any existing estimations
139
140
141
142 * Death Rate Bandwidth - Linear Fit
143 forvalues h = 0.4(-0.1)0.1 {
    2.
              qui areg death rate treat perc std treat perc if abs(perc std) <= `h', ro
  > bust absorb(state) // linear regression without interaction term
```

144 esttab regd1 *, keep(treat) ti("Death Rates Across Multiple Bandwidths - Linear Fit" >) mtitles("+-40%" "+-30%" "+-20%" "+-10%") se label

Death Rates Across Multiple Bandwidths - Linear Fit

```
(1)
                                                    (2)
                                                                      (3)
                                                                                        (4)
                               +-40%
                                                  +-30%
                                                                    +-20%
                                                                                      +-10%
                          -0.0000561
                                             0.0000525
                                                                0.000124
                                                                                -0.0000430
Treatment
                         (0.0000550)
                                           (0.0000780)
                                                              (0.000147)
                                                                               (0.0000704)
                                                                     1705
                                                                                        792
Observations
                                3020
                                                   2662
```

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

145

146 * Death Rate Bandwidth - Quadratic Fit

147 forvalues h = 0.4(-0.1)0.1 { 2. qui areg death_rate treat perc_std perc_std2 treat_perc treat_perc2 if ab > s(perc_std) <= `h', robust absorb(state) 7/ linear regression without interaction te

> rm 3. tempvar i gen i = h'*104. eststo regd2_`i' 5. 6. drop i 7. }

148 esttab regd2 *, keep(treat) ti("Death Rates Across Multiple Bandwidths - Quadratic F > it") mtitles ("+-40%" "+-30%" "+-20%" "+-10%") se label

Death Rates Across Multiple Bandwidths - Quadratic Fit

	(1)	(2)	(3)	(4)
	+-40%	+-30%	+-20%	+-10%
Treatment	0.0000524	0.0000372	-0.000149	0.0000309
	(0.0000846)	(0.0000933)	(0.0000888)	(0.0000956)
Observations	3020	2662	1705	792

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

155 * Case Rate Bandwidth - Linear Fit

156 forvalues h = 0.4(-0.1)0.1 {

qui areg case rate treat perc std treat perc if abs(perc std) <= `h', rob > ust absorb(state) // linear regression without interaction term

3. tempvar i $gen^{i} = h'*10$ 4. eststo regc1_`i' 5. 6. drop i 7. }

157 esttab regc1 *, keep(treat) ti("Case Rates Across Multiple Bandwidths - Linear Fit") > mtitles(" $+-\overline{4}$ 0%" "+-30%" "+-20%" "+-10%") se label

Case Rates Across Multiple Bandwidths - Linear Fit

	(1)	(2)	(3)	(4)
	+-40%	+-30%	+-20%	+-10%
Treatment	-0.000554	0.00464	0.00733	0.00216
	(0.00178)	(0.00295)	(0.00614)	(0.00200)
Observations	3020	2662	1705	792

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

158

159 * Case Rate Bandwidth - Quadratic Fit

160 forvalues h = 0.4(-0.1)0.1 {

2. qui areg case rate treat perc std perc std2 treat perc treat perc2 if abs > (perc_std) <= `h', robust absorb(state) 7/ linear regression without interaction ter > m

3. tempvar i $qen^{i} = h'*10$ 4. 5. eststo regc2_`i' 6. drop i 7. }

161 esttab regc2 *, keep(treat) ti("Case Rates Across Multiple Bandwidths - Quadratic Fi > t") mtitles($\overline{"}+-40$ %" "+-30%" "+-20%" "+-10%") se label

Case Rates Across Multiple Bandwidths - Quadratic Fit

	(1)	(2)	(3)	(4)
	+-40%	+-30%	+-20%	+-10%
Treatment	0.00506	0.00443	-0.00226	0.00217
	(0.00324)	(0.00363)	(0.00319)	(0.00254)
Observations	3020	2662	1705	792

Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001

166 167 * Vaccination Rate Bandwidth - Linear Fit

168 forvalues h = 0.4(-0.1)0.1 {

qui areg series_complete_18pluspop_pct treat perc_std treat_perc if abs(p 2. > erc std) <= `h', robust absorb(state) // linear regression without interaction term 3. tempvar i
gen i = `h'*10 4. 5. eststo regv1_`i' 6. drop i 7. }

169 esttab regv1 *, keep(treat) ti("Vaccination Rates Across Multiple Bandwidths - Linea > r Fit") mtitles("+-40%" "+-30%" "+-20%" "+-10%") se label

Vaccination Rates Across Multiple Bandwidths - Linear Fit

	(1)	(2)	(3)	(4)
	+-40%	+-30%	+-20%	+-10%
Treatment	0.00610	0.00754	0.00725	-0.0113
	(0.00845)	(0.00894)	(0.0104)	(0.0152)
Observations	3020	2662	1705	792

```
Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001
```

170

171 * Vaccination Rate Bandwidth - Quadratic Fit

172 forvalues h = 0.4(-0.1)0.1 {

2. qui areg series_complete_18pluspop_pct treat perc std perc_std2 treat_per
> c treat_perc2 if abs(perc_std) <= `h', robust absorb(state) 7/ linear_regression_wit
> hout interaction_term

3. tempvar i
4. gen i = `h'*10
5. eststo regv2_`i'
6. drop i
7.}

173 esttab regv2_*, keep(treat) ti("Vaccination Rates Across Multiple Bandwidths - Quadr > atic Fit") mtitles("+-40%" "+-30%" "+-20%" "+-10%") se label

Vaccination Rates Across Multiple Bandwidths - Quadratic Fit

	(1)	(2)	(3)	(4)
	+-40%	+-30%	+-20%	+-10%
Treatment	0.0082 4	0.0111	0.00152	-0.00295
	(0.00960)	(0.0106)	(0.0130)	(0.0196)
Observations	3020	2662	1705	792

```
Standard errors in parentheses * p<0.05, ** p<0.01, *** p<0.001
```

```
174
175
> *****
177
178
179
180
181 **#
182 // ----- (5) Sharp RDD Visualizations
183
184 // Figure of Linear Regression -- Death Rate
185
           #delimit ;
 delimiter now ;
           twoway (lfit death_rate perc_std if perc_std<0,clcolor(gs4) lpattern(dash))</pre>
186
           (lfit death_rate perc_std if perc_std>=0,clcolor(gs4) lpattern(dash))
 >
 > (scatter avg_deaths2 bins, msize(medsmall) msymbol(circle) mfcolor(white) ml
> color(black) mlwidth(thin) xline(0, lcolor(cranberry) lpattern(dash))),
           ytitle("Death Rate as of 11/16/2020", size(medsmall) margin(small)) ylabel(,
 > labsize(medsmall) format(%10.7e)) xtitle("Distance to cutoff", size(medsmall) margi
> n(small)) xlabel( -.50(.1).50, labsize(medsmall))
           graphreqion(fcolor(white) lcolor(white)) legend(order(2 "Linear fit" 3 "Perc
 > entage bin") size(medlarge)) plotregion(lcolor(black) lwidth(thin));
```

187 #delimit cr delimiter now cr

188 graph export "O:\Fall 2021\U of A\MET HW\Final Project\Figures, with Vax\Lin

> earRegDeath.png", width(1000) replace
file O:\Fall 2021\U of A\MET HW\Final Project\Figures, with Vax\LinearRegDeath.png cannot be modified or erased; likely cause is read-only directory or file <u>r(608);</u>

end of do-file

r(608);

189 do "\uem.walton.uark.edu\UEMProfiles_Lab $\rejeffri\RedirectedFolders\Documents\STD2$ > 520 000000.tmp"

190 log close

name: <unnamed>

O:\Fall 2021\U of A\MET HW\Final Project\Adopo_Jeffries_Final_log.smcl log:

log type: smcl

closed on: 17 Dec 2021, 09:29:14