Fizika 1

Zadaci za samostalan rad 10

Kod rješavanja zadataka koristite se sljedećim numeričkim vrijednostima:

- gravitacijska konstanta: $\gamma = 6,67 \cdot 10^{-11} \ Nm^2kg^{-2}$
- masa Zemlje: $M_Z = 5,98 \cdot 10^{24} \ kg$
- polumjer Zemlje: $R_Z = 6,371 \cdot 10^6 \text{ m}$
- $iznos\ ubrzanja\ slobodnog\ pada:\ g=9,81\ ms^{-2}$
- jakost gravitacijskog polja na površini Zemlje: $g = 9,8268 \text{ ms}^{-2}$
- 10.1. Na pravcu koji povezuje zvijezdu A i zvijezdu B, koja ima pet puta manju masu od zvijezde A, postoji točka u kojoj bi na svemirski brod djelovale po iznosu iste privlačne sile od zvijezde A i od zvijezde B. Na kojoj udaljenosti od zvijezde A je ta točka, ako je udaljenost među zvijezdama $9.46 \cdot 10^{12} \ m$?

Rješenje: $r = 6.537 \cdot 10^{12} \ m$

 $\bf 10.2.$ Jakost gravitacijskog polja na površini Marsa je 3,71 ms^{-2} . Izračunajte srednju gustoću Marsa pod pretpostavkom da je Mars homogena kugla polumjera 3389 km.

Rješenje: $\rho = 3918,2 \ kgm^{-3}$

10.3. Koliki je period satelita koji kruži 300 km iznad Zemljine površine?

Rješenje: $T=90\ min$ i 20,7 s

10.4. Izračunajte iznos centrifugalne sile uslijed rotacije Zemlje na tijelo mase $80\ kg$ koje se nalazi na površini Zemlje na 45° zemljopisne širine. Koliko puta je taj iznos manji od iznosa gravitacijske sile kojom Zemlja djeluje na to isto tijelo?

Rješenje: $F_{cf} = 1,906 N$, iznos centrifugalne sile je 412 puta manji od iznosa gravitacijske sile

10.5. Koliki je period satelita koji se po kružnoj putanji oko Zemlje giba

brzinom iznosa 5.5 kmh^{-1} ?

Rješenje: $T = 4h \ 11min \ 3.3s$

10.6. Koliki je iznos brzine satelita koji se giba po kružnoj putanji oko Zemlje s periodom vrtnje $T=150\ min?$

Rješenje: $v = 6.53 \text{ kmh}^{-1}$

10.7. Na kojoj visini iznad Zemljine površine kruži satelit kojem za obilazak kružne putanje treba 3 sata i 20 minuta?

Rješenje: 4960,2 km

10.8. Promjer Jupitera iznosi 22,4 polumjera Zemlje, a masa Jupitera je 317,8 puta veća od Zemljine. Koliko iznosi jakost gravitacijskog polja na "površini" Jupitera?

Rješenje: $g_J = 24,89 \ ms^{-1}$

10.9. Na kojoj visini je iznos jakosti gravitacijskog polja jednak jednoj šesnaestini iznosa jakosti gravitacijskog polja na površini Zemlje $(g_0/25)$?

Rješenje: $h = 4R_Z$