PH103 (Physics-I)

QUIZ-ONE (December 13, 3033)

ROLL:

NAME

- 1. Consider a particle of mass m that feels only an angular force, such that $\vec{F}=m\dot{r}\dot{\theta}.$ Then,
 - (a) $\dot{r} = \sqrt{A + Bln(r)}$, where, A and B are constants determined by initial conditions.
 - (b) $\vec{\tau} = A(1+\frac{\tau}{\tau}),$ where, A and τ are constants determined by initial conditions.
 - (c) $\dot{r} = A e^{B\theta}$, where, A and B are constants determined by initial conditions.
 - (d) $\dot{r} = 0$, always.
- A ball is thrown at speed v from zero height on level ground. Area under the trajectory is maximum when the ball is thrown at an angle (with the horizontal) of:
 - (n) In
 - (b) \frac{1}{3} m
 - (c) \frac{1}{4}\pi
 - (d) 1 m
- 3. A ball is thrown straight upward so that it reaches a height h. It falls down and bounces repeatedly. After each bounce, it returns to a certain fraction 0.4 of its previous height. The average speed for the motion (tillthe ball reaches rest) is:
 - (a) $\frac{2}{3}\sqrt{gh/2}$
 - (b) $\frac{3}{4}\sqrt{gh/2}$
 - (c) $\frac{4}{5}\sqrt{gh/2}$
 - (d) $\frac{5}{6}\sqrt{gh/2}$
- 4. If $x_1(t)$ and $x_2(t)$ are solutions to $\bar{x}^2 = bx$, then $x_1(t) + x_2(t)$ is also a solution:

- (b) FALSE
- 5. A particle of mass m moves under the influence of the potential $V(x)=\frac{a}{x^2}-\frac{b}{x}$ (where, a>0 and b>0). The frequency (ω) of small oscillations around the equilibrium point is:
 - (a) $\sqrt{\frac{\hbar^2}{8ma}}$
 - (b) $\sqrt{\frac{b^3}{8ma^2}}$
 - (c) $\sqrt{\frac{b^4}{8ma^3}}$
 - (d) $\sqrt{\frac{b^3}{8ma^4}}$
- A damped harmonic oscillator starting from rest has amplitude 4 cm after 100 oscillations. The first amplitude is 40 cm and its period is 2.3 s. The relaxation time is close to:
 - (a) 90.9s
 - (b) 99.9₅
 - (c) 109.9s
 - (d) 119.9s
- 7. A particle of mass $2 \, \text{kg}$ oscillates along the x-axis according to the equation: $x = 0.2 sin(5t \frac{\pi}{6})$, where x is in meters and t is in seconds. The particle is acted upon by the maximum force when:
 - (a) the particle is at its mean position.
 - (b) the particle is at any of the extreme positions.
 - (c) the particle is halfway between the mean position and any of the extreme positions.
 - (d) none of the above.
- 8. The potential energy of a diatomic molecule (comprising two atoms separated by a distance r) is given by: $U(r) = \frac{A}{r^a} \frac{B}{r^b}$, where, A, B, a and b are positive constants such that a > b. If r_0 is the equilibrium separation of the two atoms, the dissociation energy for such a diatomic molecule is given by:
 - (a) $\frac{B}{r_0^b}(1-\frac{b}{a})$.
 - (b) $\frac{\tilde{A}}{r_0^a}(1-\frac{b}{a})$.
 - (c) $\frac{B}{r_0^a}(1-\frac{b}{a})$.
 - (d) $\frac{A}{r_0^b}(1-\frac{b}{a})$.