(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-103596

(43)公開日 平成8年(1996)4月23日

(51) Int.Cl.6

識別記号 庁内整理番号 FΙ

技術表示箇所

D06F 43/00

Z 7504-3B

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出願番号	特願平6-239914	(71)出願人	000006208 三菱軍工業株式会社	
(22)出願日	平成6年(1994)10月4日	(72)発明者	一変量 1 果休八去社 東京都千代田区丸の内二丁目 5 番 1 号 椿 泰廣	
			名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内	
		(72)発明者	宮入 嘉夫 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内	
		(72)発明者	服部 敏夫 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋研究所内	
		(74)代理人	弁理士 長瀬 成城 (外1名)	

(54) 【発明の名称】 繊維材料の乾燥方法

(57)【要約】

【目的】 衣料等の繊維材料の熱風乾燥時間の短縮を図 る。

【構成】 主として水によって濡れた衣料102等の繊 維材料を大気圧以下に減圧された密閉された処理槽10 0内に置き、水より高沸点の低潜熱液体 (パーフルオロ カーン等)106処理槽100内に導入して、前記繊維 材料に接触させ、減圧下で決まる水の沸点以上の温度に 前記液体106を昇温することにより、同繊維材料中の 水分を沸騰蒸発させ、同繊維材料中の水分を追い出した 後、同繊維材料中に残留する液体をダンパ201、ファ ン202、エアクーラ203、ダンパ204、エアヒー タ205、ダンパ206、処置槽100のサイクルで循 環させ、衣料102中に残留するパーフルオロカーボン 液を蒸発させて衣料102を乾燥する。

10

1

【特許請求の範囲】

【請求項1】 主として水によって濡れた衣料、紙等の 繊維材料を大気圧以下に減圧された密閉容器中に置き、 水より高沸点を有する低潜熱液体を同密閉容器内に導入 して前記繊維材料に接触させ、減圧下で決まる水の沸点 以上の温度に前記液体を昇温することにより、同繊維材 料中の水分を沸騰蒸発させ、同繊維材料中の水分を追い 出した後、同繊維材料中に残留する同液体を加熱手段に より蒸発させて乾燥することを特徴とする繊維材料の乾 燥方法。

【請求項2】 請求項1記載の繊維材料の乾燥方法にお いて、水より高沸点を有する液体として、パークロロエ チレン、n-デカン等の一般の石油系溶剤、沸点100 ℃以上のパーフルオロカーボン、ハイドロフルオロカー ボンを使用することを特徴とする繊維材料の乾燥方法。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は衣料、紙等の繊維材料中 の水分を適正量まで除去する乾燥方法に関するものであ る。

[0002]

【従来の技術】従来の繊維材料の乾燥技術、即ち熱風に よって乾燥する技術の熱風の流れを図面に基づいて説明 すると、図3は従来のドラム式衣料乾燥機の回転ドラム 回りの熱風の流れを示すモデル図である。 図3において 301はドラム、304はスチームジャケット等のから 成るエアヒータ、302は衣料、307は熱風309を 吸込ダクト305から吸込み、乾燥槽300、排気ダク ト306を経由して排気口308から排出するためのブ ロアである。この方式ではドラム301の上方に設けら れた吸込ダクト305からエアヒータ304を通過した 熱風309が吸引され、ドラム301の外周壁に沿って 流れながら同ドラム301の多孔部を通ってドラム30 1内に入り、衣料302と接触した後、ドラム301下 部の排気口308からブロア307を経由して排出され る。この間ドラム301内の衣料302は、ドラム30 1の内周壁に取付けられているビータ303により、ド ラム301の回転に伴って持ち上げられて熱風309中 に浮遊し、乾燥が進行する。

[0003]

【発明が解決しようとする課題】以上の如く図3により 従来の最も広く実用化されているドラム式衣料乾燥機を 例に説明したが、本例のような熱風乾燥機では、乾燥に 要する時間が長く、工業用途で開発されているもので も、30~45分、家庭用に最近普及が著しい衣料乾燥 機では1~1.5時間の乾燥のための時間を要してい る。乾燥時間は、熱風温度を高くすればするほど短くな るが、衣料保護(繊維材料保護)のために、乾燥の初期 においても熱風温度が150℃以上にはできず、乾燥末 期には100℃以下とする必要がある。また温度に敏感 な衣料材料 (アクリル等)では、さらに温度を下げる必 要があり、その分乾燥時間が長くなり、これが生産性向 上の阻害要因となっていた。本発明は前記従来の熱風乾 燥の最大の欠点である長い工程時間を根本的に解決しよ

2

[0004]

うとするものである。

【課題を解決するための手段】このため本発明は、主と して水によって濡れた衣料、紙等の繊維材料を大気圧以 下に減圧された密閉容器中に置き、水より高沸点を有す る低潜熱液体を同密閉容器内に導入して前記繊維材料に 接触させ、減圧下で決まる水の沸点以上の温度に前記液 体を昇温することにより、同繊維材料中の水分を沸騰蒸 発させ、同繊維材料中の水分を追い出した後、同繊維材 料中に残留する同液体を加熱手段により蒸発させて乾燥 するようにしてなるものであり、また水より高沸点を有 する液体として、パークロロエチレン、n-デカン等の 一般の石油系溶剤、沸点100℃以上のパーフルオロカ ーボン、ハイドロフルオロカーボンを使用するようにし てなるもので、これを課題解決のための手段とするもの 20 である。

[0005]

【作用】水より高沸点を有し、かつ蒸発潜熱が水に比べ て著しく小さい (低潜熱液体)液体を、同密閉容器内に 導入して水によって濡れた衣料、紙等の繊維材料に接触 させ、減圧下で決まる沸点以上の温度に同液体を昇温す ることにより、同繊維材料中の水分を極めて短時間で沸 騰蒸発させて除去した後、同繊維材料中に残留する潜熱 が極めて小さい液体を熱風によって蒸発させ短時間で乾 燥する。

[0006]

50

【実施例】以下本発明を図面の実施例について説明する と、図1は衣料を対象とした本発明の実施例を示す。図 1において100は衣料102を乾燥処理するための処 理槽で、内部に図示しないモータ等によって回転駆動さ れるドラム101が組み込まれている。ドラム101に は回転時衣料102を持ち上げるためのビータ115が 付属しており、その壁面には多孔板が使用されていて液 体、ガス体が通過し易い構造となっている。 処理槽10 0の下部は、フィルタ104を内装したフィルタケース 103と連通しており、処理槽100の上部は、ファン 202、エアクーラ(コンデンサ)203、エアヒータ 205から成る第1エアダクトA及び活性炭槽210を 経由する第2エアダクトBと接続されている。また処理 槽100の下には水より沸点の高いパーフルオロカーボ ン液106を収納している溶剤タンク105があり、ポ ンプ108を介して処理槽100へパーフルオロカーボ ン液106を汲み上げ、フィルタケース103を経由し て溶剤タンク105に戻す構造となっている。

【0007】更に溶剤タンク105及び処理槽100の 下部には、パーフルオロカーボン液を昇温するためのヒ ータ114が内挿されている。また前記活性炭槽210には、吸着物を脱着するためのエアヒータ213、エアクーラ(コンデンサ)216、ファン212から成る脱着回路が付属しており、脱着物(本実施例ではパーフルオロカーボン液)は水分離器208を経由して溶剤タンク105へ回収されるようになっている。またフィルタケース103の上部には、真空ポンプ113によって処理槽100内の空気を排出するための排気配管112が開口している。

【0008】次に以上の如く構成された実施例について 作用を説明する。先ず洗濯、すすぎ、脱水を終了した衣 料102(含水率は乾燥衣料重量基準で通常60~70 %)を、処理槽100に図示しないドア部を経て投入 し、ドアを閉める。次に真空ポンプ113により処理槽 100及びフィルタケース103の空気を排出し、20 ~30mmHgレベルまで減圧して真空ポンプ113を停止 する。このときダンパ201,206及び外気取入ダン パ219は閉となっている。またヒータ107によって 適正な温度(100℃以下)に加温されたパーフルオロ カーボン液106が、溶剤タンク105からバルブ10 9を経由し、ポンプ108によって処理槽100に汲み 上げられる。次にドラム101がゆっくり回転し、衣料 102はビータ115によって持ち上げられて落下する 工程を繰り返す。この過程で衣料102中に残留する水 分は沸点(減圧下での)以上に加温され、急激に沸騰蒸 発して衣料102から離脱する。

【0009】衣料102から離脱した水分は、水蒸気と なってパーフルオロカーボン液106の蒸気と共に処理 槽100の気相部に蓄積するが、これに先立ってダンパ 201,206を開として、ファン202、エアクーラ 203、ダンパ204、エアヒータ205の第1エアダ クトAと、処理槽100でガスを循環することにより、 水蒸気及び余剰のパーフルオロカーボン液106の蒸気 は、エアクーラ203によって凝縮回収される。この凝 縮したパーフルオロカーボン液は水分離器208に流入 して分離され、分離された水は系外に排出され、パーフ ルオロカーボン液106は溶剤タンク105に回収され る。そして規定時間後に外気取入ダンパ219を開き、 処置槽100内をほぼ大気圧と等しくした後、同ダンパ 219を閉じる。次にバルブ111を開いて処理槽10 0内のパーフルオロカーボン液106を溶剤タンク10 5に戻す。

【0010】次にドラム101を高速回転させ、衣料102中のパーフルオロカーボン液106を遠心分離で極力除去する。分離された液は、バルブ111を経由して溶剤タンク105に戻す。次にドラム101をゆっくり

4

回転させ、エアを第1エアダクトA、即ちダンパ20 1、ファン202、エアクーラ203、ダンパ204、 エアヒータ205、ダンパ206、処理槽100のサイ クルで循環させ、衣料102中に残留するパーフルオロ カーボン液106を蒸発させて衣料102を乾燥する。 ここで衣料102から蒸発したパーフルオロカーボン液 106の蒸気は、エアクーラ203で凝縮回収され水分 離器208を経由して溶剤タンク105に戻る。またエ アクーラ203での凝縮回収量が低下してきたら、続い 10 て活性炭槽210経由の第2エアダクトBに切替え、処 理槽100内及び衣料102中に僅かに残留するパーフ ルオロカーボン液106の蒸気を吸着回収する。次に図 示いないドアを開け、乾燥された衣料102を取り出 す。また活性炭槽210に吸着されたパーフルオロカー ボン液106の蒸気は、前記各工程の間に、エアヒータ 213、エアクーラ216、ファン212から成る脱着 回路によって脱着され、水分離器208を経由して溶剤 タンク105へ回収される。

【0011】以上本発明の全工程を、パーフルオロカーボン液を用いる衣料乾燥機を例にして詳述したが、本発明は衣料の乾燥のみに限定されるものではなく、各種の布状、ひも状繊維材料、紙材料等に広く適用できるものである。また前記本発明の実施例では、水より沸点の高い物質としてパーフルオロカーボン液を選定したが、これ以外にも多くの溶剤が利用できる。例えば、パークロロエチレン、nーデカン等の一般の石油系溶剤、沸点100℃以上の代替フロンHFC(ハイドロフルオロカーボン)等がある。しかしどの溶剤を選定するにしろ、系内を例えば20~50mmHgに減圧して水の沸点を下げ、その時の水の沸点より高い溶剤を共存させる方式であれば、本発明の技術的範疇に属することになる。

[0012]

【発明の効果】以上詳細に説明した如く本発明によると、水より沸点が高い低潜熱液体(潜熱が水の1/10~1/30の溶剤)を併用することにより、従来の熱風乾燥法に比べて乾燥時間が1/2~1/3に短縮されると共に、熱風の弊害の1つである高温度による繊維材料の損傷も皆無となる。図2は衣料中に残留する水又は溶剤の重量の減少スピードから乾燥速度を比較したものであるが、本発明の前処理工程である「真空引き」「溶剤導入による水分沸騰蒸発」「排液」等の所謂前処理工程時間を含めても、本発明の乾燥時間は従来の乾燥法に比べて格段に速いことが分かる。なお表1はパーフルオロカーボン液と水の代表的な物性比較を示す。

【表1】

6

5

液 種	沸点℃	潜熱 kcal/kg	比熱	比重
パーフルオロカーン *	155	1 7	0. 25	1. 87
水	100	5 3 9	1	1

*住友3Mタイプ FC-40

【図面の簡単な説明】

【図1】本発明の実施例に係る衣料乾燥機のシステム図 10 107,114 ヒータ である。

【図2】本発明の効果を示す衣料乾燥速度の比較図であ

【図3】従来の衣料乾燥機における熱風による乾燥工程 を示す説明図である。

【符号の説明】

100 処理槽

101 ドラム

102 衣料

103 フィルタケース

104 フィルタ

105 溶剤タンク

*106 パーフルオロカーボン液

108 ポンプ(液体)

113 真空ポンプ

202 ファン

203 エアクーラ

204 ダンパ

205 エアヒータ

208 水分離器

210 活性炭槽

212 ファン

20 213 エアヒータ

216 エアクーラ

【図1】

【図2】

PAT-NO: JP408103596A

DOCUMENT-IDENTIFIER: JP 08103596 A

TITLE: DRYING METHOD FOR TEXTILE

MATERIALS

PUBN-DATE: April 23, 1996

INVENTOR-INFORMATION:

NAME COUNTRY

TSUBAKI, YASUHIRO

MIYAIRI, YOSHIO

HATTORI, TOSHIO

ASSIGNEE-INFORMATION:

NAME COUNTRY

MITSUBISHI HEAVY IND LTD N/A

APPL-NO: JP06239914

APPL-DATE: October 4, 1994

INT-CL (IPC): D06F043/00

ABSTRACT:

PURPOSE: To shorten the time of a drying process for textile materials by introducing a liquid having a boiling point higher than that of water and latent heat of vaporization smaller than that of water into a closed vessel to touch clothing wet with water, and raising the

temperature of the liquid to a temperature above the boiling point under decompression.

CONSTITUTION: Clothing 102 which has been already washed, rinsed and spun is put into a processing tank 100 and the door is closed. Subsequently, the interiors of the processing tank 100 and a filter case 103 are decompressed to a designated level by a vacuum pump 113. A perfluorocarbon solution 106 heated by a heater 107 is drawn up into the processing tank 100 by a pump 108. A drum 101 is slowly rotated to lift up the clothing 102 by a beater, drop and stir the same. In the meantime, moisture remaining in the clothing 102 is heated above the boiling point and quickly boiled and evaporated to be separated from the clothing 102. Steam and the vapor of the perfluorocarbon solution 103 are stored in the gas phase part of the processing tank 100, and discharged by opening dampers 201, 206.

COPYRIGHT: (C) 1996, JPO