

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 3

Дискретное преобразование Фурье (Лекция 2)

ДПФ как дискретная фильтрация

□ Прямое ДПФ можно записать так:

$$\dot{X}(n) = \sum_{k=0}^{N-1} x(k) \exp\left(j2\pi \frac{n}{N}(N-k)\right)$$

Это свертка сигнала с импульсной характеристикой вида

$$h_n(k) = \exp\left(j2\pi \frac{n}{N}k\right), \qquad k = 0, 1, ..., N-1$$

ДПФ как дискретная фильтрация

□ Функция передачи и АЧХ эквивалентного фильтра

$$H_n(z) = \frac{1 - z^{-N}}{1 - e^{j\omega_n} z^{-1}} \qquad \left| \dot{K}_n(\omega) \right| = \frac{\left| \sin\left(\frac{N}{2}(\omega - \omega_n)\right) \right|}{\left| \sin\left(\frac{1}{2}(\omega - \omega_n)\right) \right|}$$

Частота, соответствующая n-му спектральному отсчету: $\omega_n = \frac{2\pi}{N}n$

ДПФ: АЧХ эквивалентных фильтров

Реализация эквивалентного фильтра: алгоритм Герцеля (Hoertzel)

- □ Обрабатываем сигнал блоками
 - Можно удалить z^{-N} в числителе
- □ Искусственно переходим к фильтру второго порядка
 - При обработке вещественного сигнала это снижает число операций

$$H_n(z) = \frac{1}{1 - e^{j\omega_n} z^{-1}} = \frac{1 - e^{-j\omega_n} z^{-1}}{1 - 2\cos(\omega_n) z^{-1} + z^{-2}}$$

Реализация эквивалентного фильтра: алгоритм Герцеля

В процессе поступления отсчетов работает только *рекурсивная* часть фильтра

Число вещественных операций:

- *N* + 2 умножений
- 2N + 1 сложение

Дискретная фильтрация с помощью ДПФ

- □ Перемножение ДПФ соответствует круговой свертке последовательностей
- Дискретная фильтрация соответствует линейной свертке последовательностей
- Нужно представить линейную свертку с помощью круговой
 - Этого можно добиться путем дополнения сворачиваемых последовательностей нулями

Линейная свертка последовательностей

Исходные сигналы

 x_1 : 1 2 4 8

*x*₂: 2 3 4 5

Вычисление линейной свертки

$$y(0) = 1 \times 2 = 2$$

$$y(1) = 1 \times 3 + 2 \times 2 = 7$$

$$y(2) = 1 \times 4 + 2 \times 3 + 4 \times 2 = 18$$

$$y(3) = 1 \times 5 + 2 \times 4 + 4 \times 3 + 8 \times 2 = 41$$

Вычисление линейной свертки с помощью круговой свертки

Исходные сигналы

Вычисление круговой свертки

Секционирование свертки

- □ Метод перекрытия с суммированием (overlap-add)
 - Входной сигнал разбивается на неперекрывающиеся блоки
 - Каждый блок фильтруется, в результате его длина увеличивается на N_h-1 отсчетов (N_h длина импульсной характеристики)
 - □ Нужно рассчитать оба переходных процесса
 - При фильтрации с помощью ДПФ нужно дополнение нулями
 - Выходные блоки объединяются, при этом крайние $N_h 1$ отсчетов перекрываются и суммируются

Секционирование свертки

- Метод перекрытия с накоплением (overlap-save)
 - Входной сигнал разбивается на блоки, перекрывающиеся на $N_h 1$ отсчетов
 - Каждый блок фильтруется
 - □ Не нужно рассчитывать финальный переходный процесс
 - При фильтрации с помощью ДПФ не нужно дополнение нулями
 - У выходных блоков *отбрасываются* «хвосты» длиной $N_b 1$ отсчетов с *левой* стороны
 - Выходные блоки объединяются без перекрытия

Растекание спектра (трактовка через периодическое продолжение сигнала)

Растекание спектра (трактовка через дополнение нулями)

Весовые функции (окна)

 \square Для уменьшения растекания спектра сигнал умножается на спадающую к краям весовую функцию (окно) w(k)

$$\dot{X}_{w}(n) = \sum_{k=0}^{N-1} x(k)w(k)e^{-j\frac{2\pi nk}{N}}$$

□ В результате уменьшаются боковые лепестки эквивалентных ДПФ-фильтров за счет расширения главного лепестка

Влияние окна на результат вычисления ДПФ

Широко распространенные окна

- \square Прямоугольное: w(k) = 1, k = 0, 1, ..., N-1
 - Боковые лепестки –13,2 дБ
 - Ширина главного лепестка 0,8828
- □ Ханна:

$$w(k) = 0, 5 - 0, 5 \cos\left(\frac{2\pi k}{N - 1}\right)$$

- Боковые лепестки –31,5 дБ
- Ширина главного лепестка 1,4844
- □ Хэмминга:

$$w(k) = 0,54 - 0,46 \cos\left(\frac{2\pi k}{N - 1}\right)$$

- Боковые лепестки —41,8 дБ
- Ширина главного лепестка 1,3242

Широко распространенные окна

□ Окно Кайзера:

$$\frac{\left|I_0\left(\beta\sqrt{1-\left(\frac{2k-(N-1)}{N-1}\right)^2}\right)\right|}{\left|I_0(\beta)\right|}$$

- \square При $\beta = 4$
 - Боковые лепестки –31,3 дБ
 - Ширина главного лепестка 1,2227
- □ При β = 9
 - Боковые лепестки –65,9 дБ
 - Ширина главного лепестка 1,7187

Широко распространенные окна

□ Соотношение между шириной главного лепестка и уровнем боковых лепестков

