NIĞDE ÖMER HALİSDEMİR ÜNİVERSİTESİ NİĞDE TEKNİK BİLİMLER MESLEK YÜKSEKOKULU SINAV TUTANAĞI

DERS KODU:

MKT2002-1

DERS ADI:

BİLGİSAYARLI KONTROL SİSTEMLERİ

DERS SORUMLUSU: Arş.Gör. MEHMET CANEVI

GÖZETMEN:

Öğr.Gör. HALİL BURAK DEMİR

MZA

TARIH: 03.07.2025

SAAT:

15.00

SALON: 101

Sınava Girmeyen Öğrenci Sayısı : . 12

Sınava Giren Öğrenci Sayısı:5

S.N.	ÖĞRENCI NO	ADI SOYADI		MASA	IMZA	GIRMEDI
1	232456022	MEHMET ÛNLÛ		8)	
2	232406006	ALPEREN KAÇGAN	Au 30	9		Ge Ge
3	232406015	HÜSEYİN ÖZTÜRK		(10)—		7
4	222406036	MEHMET MERT ALAOSMAN		11-		~
5	232406018	GÖRKEM ÇELİK	10	12	May	
6	232406301	ESMA CEYLAN		(13)—		\propto
7	232456010	HASAN ALTAY		14		\propto
8	222456018	SERHAT TURMUŞ		(15)		\propto
9	222456302	TARIK ŞAHİN		(16)		
10	222406021	ERSÎN KIZILALAN		(T)		\prec
11	232456014	ÖMÜR ALDAŞ	70	18	Austral"	
12	232406030	ABIDIN ERTAN		19		9
13	232406017	ÇAĞRI KOÇAK		(20)-		X
14	232456028	VOLKAN TORUN		(21)	-	9
15	232406004	HATICE KAR 2. Kapit	70	22	1	
16	232456301	YASIN BATMAZ	70	23	4 Batris	
17	232406023	ALÍ ALCI		24)	0
	- Long -					

	DIEGISATATES ROTTE	OL SISTEMBER	
Ders Kodu:	MKT2002	Tarih:	
Sınav Türü:	Bütünleme Sınavı	Saat:	
Dönemi:	2024-2025	Süre:	50dk

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:	15	15	15	15	10	20

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.
- Yuvarlamalar 2 hane yapılacaktır. $1.99456 \approx 1.99$ olarak alınacaktır.
- S1. (20p) Aşımı %25.38 yapacak ζ değerini hesaplayınız.

$$\begin{array}{lll}
R6 = 25.38 & -0.6625 = 5^{2} \text{ Tr}^{2} \\
C = 0.3940 = -\pi G = 7 - 62 \\
In = -0.931 & -0.6625 & -$$

S2. (20p) Aşımı %25.38 yerleşme zamanını $t_s=1\,s$ yapacak ω_n değerini hesaplayınız.

$$Ts = 15$$
 $G \approx 0.24$
 $1 = \frac{4}{0.24 \times mn} = \frac{1 \times mn = 4}{1 \times mn = 16.6 \text{ rad(sn)}}$

S2+29 Wns + Wn = 0
$$S^{2}+2.(5.24)(16.6)(16.6)^{2}$$

$$S^{2}+2.(5.24)(16.6)(16.6)^{2}$$

$$S^{2}+2.(5.24)(16.6)(16.6)(16.6)^{2}$$

$$S^{2}+2.(5.24)(16.6)(16.$$

$$G(s) = \frac{1}{s+0.2} \tag{1}$$

ve PI kontrolör

$$F(s) = k_p + \frac{k_i}{s} \tag{2}$$

olmak üzere, birim geri besleme bağlantısı için oluşacak kapalı çevrim transfer fonksiyonunu elde ediniz.

$$G(s) = \frac{1}{5+0.2}$$

$$T(s) = \frac{1}{5+0.2}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T(s) = \frac{1}{5+25}$$

$$T($$

$$5^{3}+25^{2}+kps+ki=0$$

$$5^{3}+25^{2}+kps+ki=0$$

$$5^{3}+25^{2}+kps+ki=0$$

$$5^{3}+25^{2}+kps+ki=0$$

$$5^{3}+25^{2}+kps+ki=0$$

$$5^{3}+25^{2}+kps+ki=0$$

$$5^{3}+25^{2}+kps+ki=0$$

Ad Soyad: Halice LAR

Öğrenci No: 232406004

MEKATRONİK BÖLÜMÜ BİLGİSAVABLI KONTROL SİSTEMLERİ

	BILGISAYARLI KU	N I ROD SISTEMBER
Ders Kodu:	MKT2002	Tarih:
Sınav Türü:	Bütünleme Sınavı	Saat:
Dönemi:	2024-2025	Süre: 50dk
Donom.	20212020	

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:						

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.
- Yuvarlamalar 2 hane yapılacaktır. $1.99456 \approx 1.99$ olarak alınacaktır.
- S1. (20p) Aşımı %25.38 yapacak ζ değerini hesaplayınız.

$$0.6625 = \zeta^{2} (3.8686 + 0.6625)$$

$$0.6625 = \zeta^{2} (40.5321) \Rightarrow \zeta^{2} = \frac{0.6625}{10.5321} = \frac{0.0625}{10.5321} = \frac{0.0625}{10.062} = \frac{0.0062}{10.062} = \frac{0.0062}{10$$

S2. (20p) Aşımı %25.38 yerleşme zamanını $t_s=1\,s$ yapacak ω_n değerini hesaplayınız.

		•	

	BILGISAYARLI KONTRO)L SISTEMBER	
Dans Vaday	MKT2002	Tarih:	was the state of
Ders Kodu:		Saat:	
Sınav Türü:	Bütünleme Sınavı	Süre:	50dk
Dönemi:	2024-2025	Sure.	

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:	0.0	10	10	20	10	20

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.
- Yuvarlamalar 2 hane yapılacaktır. $1.99456 \approx 1.99$ olarak alınacaktır.
- S1. (20p) Aşımı %25.38 yapacak ζ değerini hesaplayınız.

$$0.2538 = e\left(-\frac{\pi \dot{5}}{\sqrt{1-\dot{5}^{2}}}\right)$$

$$L_{\Lambda}(0.2538) = -\frac{\pi \dot{5}}{\sqrt{1-\dot{5}^{2}}} \Rightarrow -1.371 = -\frac{\pi \dot{5}}{\sqrt{1-\dot{5}^{2}}}$$

$$1.371 = \frac{\pi \dot{5}}{\sqrt{1-\dot{5}^{2}}}$$

$$1.371 = \sqrt{1-\dot{5}^{2}} = \pi \dot{5}$$

$$\dot{S} = 0.47$$

S2. (20p) Aşımı %25.38 yerleşme zamanını
 $t_s=1\,s$ yapacak ω_n değerini hesaplayınız.

$$\frac{L_{S} = \frac{L_{S}}{0.43 \text{ mn}}}{0.43 \text{ mn}} = \frac{L_{S}}{0.43 \text{ mn}}$$

$$W_{N} = \frac{1}{0.44} = \frac{N}{2.325 \text{ Red/S}}$$

$$5^{2} + 2^{3} wn5 + wn^{2}$$

 $5^{2} + 0,165 + 5,4049$

$$G(s) = \frac{1}{s + 0.2} \tag{1}$$

ve PI kontrolör

$$F(s) = k_p + \frac{k_i}{s} \tag{2}$$

olmak üzere, birim geri besleme bağlantısı için oluşacak kapalı çevrim transfer fonksiyonunu elde ediniz.

$$T = \frac{F(s).6(s)}{1+F(s).6(s)}$$

$$T = \frac{\frac{(ps+k!)}{5} \cdot \frac{1}{5+0.2}}{\frac{(ps+k!)}{5} \cdot \frac{1}{5+0.2}}$$

$$\frac{\frac{(ps+k!)}{5} \cdot \frac{1}{5+0.2}}{\frac{(ps+k!)}{5(5+0.2)}}$$

$$\frac{\frac{(ps+k!)}{5(5+0.2)} \cdot \frac{1}{5^2+5+0.2}}{\frac{(ps+k!)}{5(5+0.2)} \cdot \frac{(ps+k!)}{5^2+5+0.2}}$$

$$T = \frac{(ps+k!)}{5(5+0.2)} \cdot \frac{5(5+0.2)}{5^2+5+0.2} \cdot \frac{1}{5^2+5+0.2}$$

$$(S^{2}+2SwnS+wn^{2})(S+P)$$

$$S(5^{2}+2SwnS+wn^{2})+P(S^{2}+2SwnS+wn^{2})$$

$$S(5^{2}+0.1285+5.4049)+P(S^{2}+0.1285+5.4049)$$

$$S^{3}+0.1285^{2}+5.40495+PS^{2}+0.12885+5.4049$$

$$S^{3}+0.1284P)S^{2}+(0.128P+5.4049)S+5.4049P$$

$$O.128+P=1 P.128P+5.4049=1+P S.4049P=1+$$

	BİLGİSAYAR	LI KONTROL SISTE	MLERI	03.07,2025
			Tarin:	03.07.12
Ders Kodu:	MKT2002		Saat:	15.00
Sınav Türü:	Bütünleme Sınavı		Süre:	50dk
Dönemi:	2024-2025			

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:	W.	. 6	10	1	1	10

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.
- Yuvarlamalar 2 hane yapılacaktır. $1.99456 \approx 1.99$ olarak alınacaktır.
- S1. (20p) Aşımı %25.38 yapacak ζ değerini hesaplayınız.

S2. (20p) Aşımı %25.38 yerleşme zamanını
 $t_s=1\,s$ yapacak ω_n değerini hesaplayınız.

$$T_{S} = F_{(S)}G_{(S)}$$
 $1 = F_{(S)}G_{(S)}$ $1 + F_{(S)}G_{(S)}$ $1 + F_{(S)}G_{(S)}$

$$G(s) = \frac{1}{s + 0.2} \tag{1}$$

ve PI kontrolör

$$F(s) = k_p + \frac{k_i}{s} \tag{2}$$

olmak üzere, birim geri besleme bağlantısı için oluşacak kapalı çevrim transfer fonksiyonunu elde ediniz.

		Did Gibitini		
Г	Ders Kodu:	MKT2002	Tarih:	03/07/2025
T	Sınav Türü:	Bütünleme Sınavı	Saat:	15.00
	Dönemi:	2024-2025	Süre:	50dk

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:	15	15	15	20	15	- 20

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.
- Yuvarlamalar 2 hane yapılacaktır. $1.99456 \approx 1.99$ olarak alınacaktır.
- S1. (20p) Aşımı %25.38 yapacak ζ değerini hesaplayınız.

$$S = \frac{-\ln(0.2538)}{\sqrt{\pi^2 + (\ln(0.2538))^2}} = \frac{1.37}{\sqrt{9.85 + (-2.74)}} = \frac{1.37}{\sqrt{7.11}}$$

$$= \frac{1.37}{2.66} \approx 0.50$$

S2. (20p) Aşımı %25.38 yerleşme zamanını $t_s=1\,s$ yapacak ω_n değerini hesaplayınız.

$$S^{2}+2 \leq \omega_{1}^{2} + \omega_{2}^{2} = S^{2}+2 (0.50)(4)S + (4)^{2} = S^{2}+4S+16$$

= $S^{2}+4S+16$

$$G(s) = \frac{1}{s + 0.2} \tag{1}$$

ve PI kontrolör

$$F(s) = k_p + \frac{k_i}{s} \tag{2}$$

olmak üzere, birim geri besleme bağlantısı için oluşacak kapalı çevrim transfer fonksiyonunu elde ediniz.

$$F(S) = kp + \frac{kr}{S}$$

$$F(S) = kp + \frac{kr}{S} = \frac{kps + kr}{S}$$

$$F(S) = kp + \frac{kr}{S} = \frac{kps + kr}{S}$$

$$F(S) = (kps + kr) \cdot (\frac{1}{S + 0.2}) = \frac{kps + kr}{S(S + 0.2)}$$

$$T(S) = F(S) G(S) = \frac{kps + kr}{S(S + 0.2)}$$

$$1 + F(S) G(S) = \frac{kps + kr}{S(S + 0.2)}$$

$$T(S) = \frac{kps + kr}{S^2 + 0.2s + kps} + \frac{kps + kr}{S^2 + (42 + kp)s + kr}$$

S. (20) It is interest sagaryatax genitic tasarray in z.
$$k_p = 1$$
, $k_1 = 1$

$$\begin{array}{c}
s^2 + 4s + 16 \\
s^2 + (0, 2 + kp) + k\tau \\
0.2 + kp = 4 \implies k_{p=3.8} \\
k\tau = 16
\end{array}$$

Ders Kodu: MKT2002		Tarih:	
Sınav Türü:	Bütünleme Sınavı	Saat:	
Dönemi:	2024-2025	Süre:	50dk

Soru:	1	2	3	4	5	Toplam
Puan:	20	20	20	20	20	100
Not:	NO	110	10	20	10	100

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.
- Yuvarlamalar 2 hane yapılacaktır. $1.99456 \approx 1.99$ olarak alınacaktır.
- S1. (20p) Aşımı %25.38 yapacak ζ değerini hesaplayınız.

$$\begin{cases} 1 = \frac{3}{3} & 3 = \frac{3}{0.7w_0} \\ 0.7w_0 & 0.7w_0 = 1 \end{cases}$$

$$w_0 = \frac{1}{0.7} = 1.43$$

$$w_0 = 1.43 \text{ rad/s}$$

S2. (20p) Aşımı %25.38 yerleşme zamanını
 $t_s=1\,s$ yapacak ω_n değerini hesaplayınız.

$$1 = \frac{3}{0.7} = \frac{0.7 w_n - 3}{w_n - \frac{3}{0.7}} = 4.29$$

$$G(s) = \frac{1}{s + 0.2} \tag{1}$$

ve PI kontrolör

$$F(s) = k_p + \frac{k_i}{s} \tag{2}$$

olmak üzere, birim geri besleme bağlantısı için oluşacak kapalı çevrim transfer fonksiyonunu elde ediniz.

$$T_{S=} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} \\ \frac{1}{5} = \frac{1}{5} \end{cases} = \begin{cases} \frac{1}{5} + \frac{1}{5} + \frac{1}{5} \end{cases} = \frac{1}{5} + \frac{1}{5} = \frac{1}{5} \end{cases} = \frac{1}{5} + \frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$$

$$S^{2} + (0,2+kp) + ki = S^{2} + 2.002 + 2.04$$

$$0,2 + kp = 2.002$$

$$kp = 2.002 - 0,2 = 1.802$$

$$Scall trindan$$

$$ki = 2.04$$