LABORATOR #6

- **EX#1** Fie $n \in \mathbb{N}$ şi $p \in [0,1]$. Creaţi un fişier în Python® prin care să se genereze un număr aleator X distribuit binomial Bin(n,p)
 - (a) simulând aruncarea unui zar măsluit cu fețele 0, 1, 2, ..., n, unde probabilitatea să se obțină fața $k \in \{0, 1, 2, ..., n\}$ este $C_n^k p^k (1-p)^{n-k}$;
 - (b) $X = \sum_{i=1}^{n} X_i$, unde X_i sunt numere generate aleator și independent cu distribuție Bernoulli(p), unde fiecare $X_i \in \{0,1\}$ este generat simulând aruncarea unei monede măsluite cu probabilitate de succes p;
 - (c) folosind algoritmul de generare din Python[®].

Creați un fișier în Python® prin care

- (d) să se realizeze N simulări pentru fiecare dintre cazurile (a), (b), respectiv (c);
- (e) să se afișeze histrogramele corespunzătoare simulărilor realizate la (d) (pentru fiecare dintre cazurile (a), (b), respectiv (c));
- (f) să se afișeze graficul ponderilor $p_k := C_n^k p^k (1-p)^{n-k}, \ k = \overline{0,n};$
- (g) să se estimeze numeric media şi varianţa variabilei aleatoare distribuită binomial Bin(n,p) folosind simulările de la (d) (pentru fiecare dintre cazurile (a), (b), respectiv (c));
- **EX#2** La o companie se prezintă anual la interviu de angajare un număr de n indivizi. Probabilitatea ca un individ să fie angajat este p. Creați un fișier în Python[®] prin care să se determine probabilitatea ca într-un an să fie angajați cel puțin k indivizi, $k \leq n$.
- **EX#3** Propuneți un fenomen (exemplu real-life) modelat de o distribuție binomială Bin(n, p). Creați un fișier în Python® prin care să se determine probabilitatea unui eveniment de interes (în funcție de fenomenul propus).
- **EX#4** Fie $p \in [0, 1]$. Creați un fișier în Python® prin care să se genereze un număr aleator X distribuit geometric Geom(p)
 - (a) $X = \left\lceil \frac{\ln U}{\ln (1-p)} \right\rceil$, unde U este un număr generat aleator uniform în [0,1];
 - (b) folosind algoritmul de generare din Python®.

Creați un fișier în $\mathsf{Python}^{\circledR}$ prin care

- (c) să se realizeze N simulări pentru fiecare dintre cazurile (a), respectiv (b);
- (d) să se afișeze histrogramele corespunzătoare simulărilor realizate la (c) (pentru fiecare dintre cazurile (a), respectiv (b));

- (e) să se afișeze graficul ponderilor $p_k := (1-p)^{k-1}p, \ k = \overline{1,n}$ pentru un $n \in \mathbb{N}$ suficient de mare;
- (f) să se estimeze numeric media şi varianța variabilei aleatoare distribuită geometric Geom(p) folosind simulările de la (c) (pentru fiecare dintre cazurile (a), respectiv (b));
- **EX#5** Un pacient așteaptă un donator compatibil. Probabilitatea ca un donator să fie compatibil este p. Creați un fișier în Python[®] prin care să se determine probabilitatea ca pacientul să fie incompatibil cu cel puțin k donatori (primii k).
- **EX#6** Propuneți un fenomen (exemplu real-life) modelat de o distribuție geometrică Geom(p). Creați un fișier în Python[®] prin care să se determine probabilitatea unui eveniment de interes (în funcție de fenomenul propus).

 $\begin{tabular}{ll} \bf Indicații \ Python @: & numpy, numpy.random, scipy.stats, matplotlib.pyplot, matplotlib.pyplot.hist \\ \end{tabular}$