CENG 306 Biçimsel Diller ve Otomatlar Formal Languages and Automata

PUSH DOWN AUTOMATA PUMPING LEMMA for PDA

Hazırlayan: M.Ali Akçayol - Gazi Üniversitesi

Bilgisayar Mühendisligi Bölümü

Konular

Context-Free and Non-Context-Free Languages

- Context-free dillerin (CFL) üretilmesi için context-free grammar (CFG) kullanılmaktadır.
- CFL tanınması için PDA makineleri kullanılmaktadır.
- Bir CFG tarafından üretilen dili tanıyan PDA oluşturulabilir.
- Bir dilin CFL veya non-CFL olduğunu belirlemek için yöntemler vardır.
- Aynı Regular dillerde (RL) olduğu gibi
 - Closure properties ve
 - Pumping Lemma for CFL

iki farklı yöntem olarak kullanılabilir.

Theorem: Context-free diller **union**, **concatenation ve Kleene star** işlemleri altında kapalıdır.

Proof: $G_1 = (V_1, \sum_1, R_1, S_1)$ ve $G_2 = (V_2, \sum_2, R_2, S_2)$ iki farklı grammar olsun. Bu iki grammar için nonterminal kümeleri disjoint (ayrışık) olsun. $(V_1 - \sum_1) \cap (V_2 - \sum_2) = \bigcirc$

Union

S yeni bir sembol ve $G = (V, \sum, R, S)$ olsun öyle ki

$$V=V_1\cup V_2\cup \{S\} \qquad \sum = \sum_1 \cup \sum_2 \qquad R=R_1\cup R_2\cup \{S\to S_1,S\to S_2\} \qquad olsun. \quad Amaç$$

$$L(G)=L(G_1)\cup L(G_2)$$

olduğunu göstermektir. Herhangi bir w string'i için ($S \to S_1, S \to S_2$ olduğundan) $S \Rightarrow_G^* w$ olur eger sadece ve sadece $S_1 \Rightarrow_G^* w$ veya $S_2 \Rightarrow_G^* w$ ise

Nonterminaller kümeleri disjoint oldugu için ilk kuralla S_1 veya S_2 'ye geçildikten sonra diğerine tekrar dönülmez.

Proof: (devam)

Concatenation

S yeni bir sembol ve G = (V, L, R, S) olsun öyle ki

$$V = V_1 \cup V_2 \cup \{S\}$$
, $L = L_1 \cup L_2$, $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}$ olsun.

Bu şekilde tanımlanan bir grammar ile $L(G_1)L(G_2)$ dili oluşturulabilir.

Birinci grammar'deki non-terminaller (S_1 içindeki) terminallere dönüştürüldükten sonra ikinci grammar'deki non-terminaller (S_2 içindeki) terminallere dönüştürülür.

Proof: (devam)

Kleene star

S yeni bir sembol ve G = (V, L, R, S) olsun öyle ki

 $V = (V_1 \cup \{S\}, L = L_1, R = R_1 \cup \{S \rightarrow e, S \rightarrow SS_1\}$ olsun.

Bu şekilde tanımlanan bir grammar ile $L(G_1)^*$ dili oluşturulabilir.

 $S \rightarrow SS_1$ kuralının tekrarı ile dildeki kuralın ($S \rightarrow S_1$) tekrarı istenen sayıda yapılabilir.

Tanımlar:

 $G = (V, \sum, R, S)$ bir context-free grammar olsun.

G'nin fanout değeri: $\emptyset(G)$ olarak gösterilir ve R kurallar kümesinde sağ kısmı en uzun olan kuralın sağ kısmındaki sembol sayısıdır.

Tanımlar:

 $G = (V, \sum, R, S)$ bir context-free grammar olsun.

G'nin fanout değeri: $\emptyset(G)$ olarak gösterilir ve R kurallar kümesinde sağ kısmı en uzun olan kuralın sağ kısmındaki sembol sayısıdır.

Bir parse tree üzerinde path (yol): root node ile yaprak node arasında farklı node'lardan geçilerek elde edilen sıradır.

Tanımlar:

 $G = (V, \sum, R, S)$ bir context-free grammar olsun.

G'nin fanout değeri: $\emptyset(G)$ olarak gösterilir ve R kurallar kümesinde sağ kısmı en uzun olan kuralın sağ kısmındaki sembol sayısıdır.

Bir parse tree üzerinde path (yol): root node ile yaprak node arasında farklı node'lardan geçilerek elde edilen sıradır.

Yolun length (uzunluk) değeri: Yol üzerindeki düğümler arası çizgi sayısıdır.

Tanımlar:

 $G = (V, \Sigma, R, S)$ bir context-free grammar olsun.

G'nin fanout değeri: $\emptyset(G)$ olarak gösterilir ve R kurallar kümesinde **sağ kısmı en uzun** olan kuralın sağ kısmındaki sembol sayısıdır.

Bir parse tree üzerinde path (yol): root node ile yaprak node arasında farklı node'lardan geçilerek elde edilen sıradır.

Yolun length (uzunluk) değeri: Yol üzerindeki düğümler arası çizgi sayısıdır.

Bir parse tree için height: en uzun path (yol) için length değeridir.

Context-Free and Non-Context Free

Languages

Lemma: G grammar'ine ait $\emptyset(G)$ fanout değerine ve h height degerine sahip bir parse tree'nin ürettigi string'in length değeri (uzunluk) en çok $\emptyset(G)^h$ olabilir.

Proof: h = 1 için parse tree grammar içinde bir kuraldır (2.durum). Ençok $\emptyset(G)^h = \emptyset(G)$ uzunlugunda string üretilir. ($S \rightarrow abc$ (fanout = 3), $S \rightarrow abcabcabc$ (fanout = 9)

•h >= 1 olan her h degeri için yeni bir root oluşur ve h-1 yüksekliğindeki parse tree'leri birbirine bağlar.

•h+1 için yüksekliği en çok h olan en fazla $\emptyset(G)$ adet parse tree birbirine bağlanır (3.durum). Her parse tree, $\emptyset(G)^h$ uzunluğunda string oluşturur ve toplam en çok $\varphi(G)^{h+1}$ uzunluğunda string oluşur.

$$R_1 = (A \rightarrow ababa, A \rightarrow aba, ...),$$

$$R_2 = (S \rightarrow AAA, A \rightarrow ababa, ...)$$

Pumping Theorem: $G = (V, \Sigma, R, S)$ bir CFG olsun. Uzunluğu $\emptyset(G)^{|V-\Sigma|}$ den büyük her $w \in$

L(G) string'i $\mathbf{w} = \mathbf{u}\mathbf{v}\mathbf{x}\mathbf{y}\mathbf{z}$ şeklinde yazılabilir. Tüm n > = 0 değerleri için \mathbf{v} veya \mathbf{y} den birisi boş olmamak kaydıyla $\mathbf{u}\mathbf{v}^n\mathbf{x}\mathbf{y}^n\mathbf{z} \in L(G)$ olur. Bunu sağlamayan non-context-free dildir.

Örnek: $L = \{a^nb^nc^n : n >= 0\}$ dili non-context-free'dir. Bir CFG $G = (V, \sum, R, S)$ için L = L(G) oldugunu düşünelim. $w = a^nb^nc^n$ dile ait olmalıdır ve w = uvxyz şeklinde gösterilebilmelidir.

Burada v veya y' den en az birisi boş olamaz ve tüm $n \ge 0$ için uv $^n xy^n z \in L(G)$ olmalıdır:

- •Eger vy string'i a, b ve c'lerin üçünü de içerirse v ve y'den birisi en az ikisini (ab, bc) içerir. uv^2xy^2z string'i a,b,c 'lerin sırasını bozar. b'lerden sonra a veya c'lerden sonra b gelir.
- •Eger vy string'i a, b ve c'lerin bir kısmını içerirse uv²xy²z string'i eşit olmayan sayıda a, b ve c'ler üretir.

Theorem: Context-free diller **complementation** ve **intersection** için kapalı degildir.

Proof: $\{a^nb^nc^m: m, n \geq 0\}$ ile $\{a^mb^nc^n: m, n \geq 0\}$ dilleri context-free'dir.

Bu iki dilin kesişimi ise

 $\{a^nb^nc^n: n \ge 0\}$ olur. Bu dil non-context-free'dir.

Öyle ise Intersection için kapalı değildir.

 $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ olduğu için eğer complementation için kapalı olsaydı kesişim içinde kapalı olurdu. (Birleşim altında CFL'nin kapalı olduğunu biliyoruz.)

Örnek Sorular

Aşağıdaki ispatta aⁿb²ⁿaⁿ dilinin bağlamdan bağımsız olduğunun kanıtını yanlış yapan nedir?

- (1) Hem $\{a^nb^n : n \ge 0\}$ hem de $\{b^na^n : n \ge 0\}$ Bağlamdan bağımsızdır.
 - (2) $a^nb^{2n}a^n = \{a^nb^n\}.\{b^na^n\}$ yazılabilir.
- (3) Bağlamdan bağımsız diller **kaynaştırma** altında kapalılık özelliğine sahip olduğundan, aⁿb²ⁿaⁿ **bağlamdan bağımsızdır**.

•

iki dili birleştirdiğimizde, hala ayrı değişkenlerle iki ayrı dil tanımımız var. Yani iki n farklıdır.

• $a^nb^{2n}a^n = \{a^nb^n\}.\{b^na^n\}$ doğru fakat

 $L=\{a^nb^{2n}a^n, n\geq 0\}=L1.L2$ öyle ki

L1= $\{a^nb^n, n \ge 0\}$

L2= {b^ma^m, m≥ 0} olarak düşünmek lazım. (n sadece bir gösterilim.)

Örnek Sorular

 $L = \{a^nb^ma^n : n \ge m\}$ context-free midir? PL ile gösteriniz.

Pumping Theorem for CFG: $G = (V, \sum, R, S)$ bir CFG olsun. Uzunluğu $\emptyset(G)^{|V-\sum|}$ den büyük her $w \in L(G)$ string'i w = uvxyz şeklinde yazılabilir. Tüm n >= 0 değerleri için v veya v den birisi boş olmamak kaydıyla v0 veya v0 olur. Bunu sağlamayan noncontext-free dildir.

 $w = a^k b^k a^k$ seçtiğimizde:

Ne v ne de y'nin a ve b bölgelerini geçemeyeceğini biliyoruz, çünkü eğer bunlardan biri olursa, o zaman pumping ile, a ve b sıraları bozulur. Bu nedenle, her birinin w'nin üç bölgesinden (a'nın ilk grubu, b'ler ve a'nın ikinci grubu) olduğu durumları dikkate almamız gerekir.

- (1, 1) a'ların ilk grubu artık ikinci grupla eşleşmeyecektir.
- (2, 2) Eğer b'ye pumping yaparsak, bir noktada a'dan daha fazla b olacaktır ve buna izin verilmez.
- (3, 3) (1, 1) 'e benzer
- (1, 2) a'ları bölge 1'e ya (ya da her ikisini) pompalamalıyız, yani iki bölge eşleşmeyecek ya da, eğer y boş değilse, b'lere pompalayacağız ama sonunda a'dan daha fazla b olacaktır.
- (2,3)(1,2) 'ye benzer
- (1, 3) | vxy | ≤ M, bu yüzden vxy b'nin orta bölgesini kapatamaz.

Pumping Theorem for CFG: $G = (V, \Sigma, R, S)$ bir CFG olsun. Uzunluğu $\emptyset(G)^{|V-\Sigma|}$ den büyük her $w \in L(G)$ string'i w = uvxyz şeklinde yazılabilir. Tüm n >= 0 değerleri için v veya v den birisi boş olmamak kaydıyla v0 veya v0 olur. Bunu sağlamayan noncontext-free dildir.

Örnek Sorular

 $L = \{xx^Ryy^Rzz^R : x, y, z \in \{a, b\}^*\}$ bağlamdan bağımsız mıdır?

• $\{xx^R: x \in \{a, b\}^*\}$ CFL olduğunu biliyoruz.

CFL concatenation altında kapalı.

Öyleyse L = $\{xx^Ryy^Rzz^R : x, y, z \in \{a, b\}^*\}$ CFL'dir.

Ama bunu doğrudan L için bir dilbilgisi vererek de yapabiliriz:

 $S \rightarrow AAA$

 $A \rightarrow aAa$

 $A \rightarrow bAb$

 $3 \leftarrow A$

Ödev

Problemleri çözünüz 3.5.2c (sayfa 148)

Problemleri çözünüz 3.5.5a (sayfa 148)

Problemleri çözünüz 3.5.14a, 3.5.14c (sayfa 149)