

Alignment Monitoring

Jim Pivarski

Texas A&M University

23 March, 2007

1. DQM-based monitoring upstream of alignment process

Sanity checks in AlignmentProducer

3. Geometry validation: have the chambers moved?

4. Validation in reconstructed data: does the resolution improve?

- 1. DQM-based monitoring upstream of alignment process
 - Monitors pre-loaded alignment (whatever is in HLT)
 - Compares with reference/reports an error if something's wrong
 - Most urgent: needs to be in CSA07 (not yet started)
- Sanity checks in AlignmentProducer

3. Geometry validation: have the chambers moved?

4. Validation in reconstructed data: does the resolution improve?

- 1. DQM-based monitoring upstream of alignment process
 - Monitors pre-loaded alignment (whatever is in HLT)
 - Compares with reference/reports an error if something's wrong
 - Most urgent: needs to be in CSA07 (not yet started)
- Sanity checks in AlignmentProducer
 - ► Coverage, convergence, iterative improvement in residuals
 - ▶ Needs to be in AlignmentProducer's loop to book new histograms with each iteration
- 3. Geometry validation: have the chambers moved?

4. Validation in reconstructed data: does the resolution improve?

- 1. DQM-based monitoring upstream of alignment process
 - Monitors pre-loaded alignment (whatever is in HLT)
 - Compares with reference/reports an error if something's wrong
 - Most urgent: needs to be in CSA07 (not yet started)
- Sanity checks in AlignmentProducer
 - ► Coverage, convergence, iterative improvement in residuals
 - ▶ Needs to be in AlignmentProducer's loop to book new histograms with each iteration
- 3. Geometry validation: have the chambers moved?
 - Reads multiple geometries to look at differences/time dependence
 - Does not loop over tracks; reads geometries only
- 4. Validation in reconstructed data: does the resolution improve?

- 1. DQM-based monitoring upstream of alignment process
 - Monitors pre-loaded alignment (whatever is in HLT)
 - Compares with reference/reports an error if something's wrong
 - Most urgent: needs to be in CSA07 (not yet started)
- 2. Sanity checks in AlignmentProducer
 - ► Coverage, convergence, iterative improvement in residuals
 - Needs to be in AlignmentProducer's loop to book new histograms with each iteration
- 3. Geometry validation: have the chambers moved?
 - Reads multiple geometries to look at differences/time dependence
 - Does not loop over tracks; reads geometries only
- 4. Validation in reconstructed data: does the resolution improve?
 - ► Confirms alignment in data (e.g. we installed the right geometry)
 - Same functionality as 1: compare to reference, same plots(?)

Where these fit into the big picture

▶ Histogram-filling modules attach to existing event streams; they don't require new loops

Plots that can be attached to any track loop (1, 2, and 4)

- $\blacktriangleright J/\psi$, Υ , Z dimuon mass spectrum
- ▶ p_T for selected events
- ▶ Residuals versus everything $(R, \phi, Z, \text{chamber-by-chamber?})$
- Overlap plots for physically overlapping chambers

residual_{chamber 1} - residual_{chamber 2}

(track cancels, effectively a "ruler" curved by the \vec{B} field)

Plots specifically for AlignmentProducer iterations

- ▶ Is the procedure converging (HIP mostly)?
- Are we missing any chambers (all algos)?
- Histograms need to know which iteration we're on

If there's enough memory in the budget...

 r_x vs x, y for every DT/CSC, and r_y vs y for every CSC

Geometry Validation (early development)

Reads two geometries and takes their difference: $\Delta \vec{p}$

vs. R

vs. ϕ

vs. Z

Geometry Validation (early development)

Reads two geometries and takes their difference: $\Delta \vec{p}$

vs. R

vs. ϕ

vs. *Z*

(CSC)

Validation in Reconstructed Data

- 1D/2D Plots for SA & GB physics objects; pT.
- resolution, invariant mass.... vs & & m
- Access to simulation hits and comparison
- Residuals (a, Ra, Z) for individual DT & CSC hitted chambers, summary plot for DT & CSC....
- Easy configuration:

module myAnalyzer = MuonGeometryAnalyzer { untracked string DataType = "RealData" untracked string DataType = "SimData"

> untracked bool doSAplots = true untracked string StandAloneTrackCollectionLabel = "standAloneMuons" untracked bool doGBplots = true

untracked string GlobalMuonTrackCollectionLabel = "globalMuons" untracked bool doResplots = true

untracked string RecHits4DDTCollectionLabel = "dt4DSegments" untracked string RecHits2DCSCCollectionLabel = "cscSegments"

untracked string rootFileName = "MuonGeometryAnalyzer.root"

Validation in Reconstructed Data

Who will do what?

1. DQM-based monitoring

2. Sanity checks in AlignmentProducer

4. Validation with reconstructed tracks

3. Geometry Validation

Dmitry Yakorev, Jim Pivarski

Javier Fernandez

lavier Fernandez?

Jim Pivarski?

Discussion?