

inet 192,168,178,30/24 brd 192,168,178,255 scope global inet6 2001;16b8;319e;6600;45fd;3d3d;4170;4e32/64

Andreas Grupp
Andreas.Grupp@zsl-rstue.de

Carina Haag haag.c@lanz.schule

Tobias Heine tobias.heine@springer-schule.de

Uwe Thiessat uwe.thiessat@gbs-sha.de

Protokolle des Network Layers

- Network Layer stellt Endgeräten / Hosts Dienste zur Verfügung, um Daten über Netzwerke auszutauschen.
- Primär gibt es zwei Network Layer Protokolle:

 Weitere Protokolle sind Routingprotokolle, z.B. OSPF (Open Shortest Path First) oder das Nachrichtenprotokoll ICMP (Internet Control Message Protocol).

Network Layer - OSI-Layer 3 → Vier Haupt-Tätigkeiten

- Adressierung von Endgeräten / Hosts mit eindeutige Adressen:
 IP-Adressen
- **Encapsulation** zu versendender Daten des "*Transport Layers*" zu einem "*Paket*" durch Voranstellen eines IP-Headers, u.a. mit Quell- und Ziel-IP
- Routing (Weiterleitung) des Pakets in andere Netzwerke durch Layer-3-Geräte – Router – auf Basis der Ziel-IP im IP-Header
- De-Encapsulation des Pakets auf Ziel-Host und Weitergabe der enthaltenen Daten an Layer 4

Grundeigenschaften von IP

- Verbindungslos / Connectionless
 - Vor dem Versand eines Pakets wird keine Verbindung zum Ziel aufgebaut, das Paket geht einfach so auf die Reise (Merkmal: Absender weiß nicht, ob das Paket angekommen ist)
- "Stets bemüht" (aber unzuverlässig) / Best Effort (unreliable)
 Paket-Auslieferung wird nicht gewährleistet bzw. garantiert
- Unabhängig vom Medium / Media Independent
 Betrieb bzw. Verhalten von IP ist unabhängig vom eigentlichen
 Netztyp / Netzmedium das die Daten transportiert

Sprechen wir mal Klartext: Einsatz von IP bedeutet ...

- Keinerlei Verbindungskontrolle
- Keine Rückbestätigung des Empfängers
- Pakete eventuell in falscher Reihenfolge
- Eventuell defekte, fehlende Pakete
- Keine Fehlerkorrektur, z. B. erneutes Versenden des Pakets

- Zuverlässigkeit rein über höhere Layer
- Netz-Medium wird im Layer 2 berücksichtigt
- Layer 2 → Layer 3: Maximum Transmission Unit (MTU)
- IP-Header wird unterwegs (meist) nicht verändert oder verworfen

Quiz 8.1.7

IPv4 Header

Warum IPv6?

- Zu wenige IPv4-Adressen (4 Milliarden / billions)
 - → IPv6 hat 10³⁶ (340 Sextillionen / undecillions)
- IPv4-Routing-Tabellen sind sehr groß und werden mit steigender Anzahl von Servern immer größer – RAM!
 - → IPv6-Routing-Tabellen können kleiner sein
- Durch NAT ist die IPv4 Ende-zu-Ende-Verbindung nicht möglich
 - → großer IPv6-Adressraum benötigt kein NAT
- IPv6 hat einfacheren IP-Header
- IPv6 bietet von Haus aus Authentifizierung, Datenintegrität, Verschlüsselung (IPSec)

IPv6 Header

Legend

- Name and position changed in IPv6

- New field in IPv6

Quiz 8.3.6

Zu unterscheiden → Lokale vs. Remote-Verbindung

- → Loopback,
- → "Lokaler Zielhost" oder
- → "Remote Zielhost"?

Entscheidung auf Basis von IP-Adresse und Netzmaske. Versand entsprechend der Routing-Tabelle des Hosts.

PC₂

Gekürzte Windows-Routing-Tabelle für IPv4

oder "route pr			(R) PRO/1000 MT De	======== e 99 0aIntel	
, , , , , , , , , , , , , , , , , , ,		+ace 1	are Loopback Inter 	SOTTW:	
					Pv4-Routentabelle
				============	 ktive Routen:
	trik	Schnittstelle Me	Gatewa	Netzwerkmaske	Netzwerkziel
	25	192.168.178.44	192.168.178.1	0.0.0.0	0.0.0.0
	331	127.0.0.1	Auf Verbindung	255.0.0.0	127.0.0.0
Localhost-Bereich	331	127.0.0.1	Auf Verbindung	255.255.255.255	127.0.0.1
Eodainost-Defete	331	127.0.0.1	Auf Verbindung	255.255.255.255	127.255.255.255
Doroich für	281	192.168.178.44	Auf Verbindung	255.255.255.0	192.168.178.0
Bereich für	281	192.168.178.44	Auf Verbindung	255.255.255.255	192.168.178.44
lokales Netz	281	192.168.178.44	Auf Verbindung	255.255.255.255	192.168.178.255
Multicast-Bereich	331	127.0.0.1	Auf Verbindung	240.0.0.0	224.0.0.0
widiticast-bereich	281	192.168.178.44	Auf Verbindung	240.0.0.0	224.0.0.0
	331	127.0.0.1	Auf Verbindung	255.255.255.255	255.255.255.255
Broadcast-Bereic			Auf Verbindung	255.255.255.255	255.255.255.255

Metrik: Entspricht "Kosten" der jeweiligen Route. Kleiner Wert somit besser!

Router – Weiterleitungsentscheidung

е
Next Hop or Exit Interface
G0/0/0
G0/0/1
via R2
via R2

R1 ...

- (1) ... empfängt ein Paket und entkapselt L2-Header + Trailer.
- (2) ... ermittelt die Ziel-IPv4-Adresse und sucht in der Routing-Tabelle nach der besten Route (best match).
- (3)... kapselt das Paket in einen neuen L2-Header und Trailer. Anschließend wird das Paket an den R2 als "next hop" weitergeleitet.

Routing-Tabellen

Aus der Sicht von R1 sind zwei Netze direkt angeschlossen und ein Netz ist nur über R2 erreichbar (→ entferntes / remote Netz).

Remote-Netze können dynamisch mit Hilfe von dynamischen Routing-Protokollen erlernt werden oder müssen manuell in die Routing-Tabelle eingetragen werden (statisches Routing).

Direkt angeschlossene Netze werden **automatisch** in die Routing-Tabelle eingetragen.

Statisches Routing

- Falls es eine Änderung in der Netzwerk-Topologie gibt oder Links ausfallen, muss der Administrator die statische Route neu konfigurieren.
- Statische Routen sind für kleine Netzwerke geeignet.
- In der Regel werden statische Routen in Kombination mit dynamischen Routing-Protokollen verwendet, z.B. Default Routen im Netzwerk verteilen.

Dynamisches Routing

Router tauschen Routing-Informationen aus und lernen automatisch entfernte Netze.

- Ermittelt Remote-Netze
- Aktualisiert Routing-Informationen
- Wählt den besten Pfad zum Zielnetzwerk
- Versucht einen neuen Pfad zu suchen, wenn ein Pfad nicht mehr verfügbar ist

Routing-Tabelle Router "R1" → show ip route


```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is 209.165.200.226 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.226, GigabitEthernet0/0/1
      10.0.0.0/24 is subnetted, 1 subnets
0
         10.1.1.0 [110/2] via 209.165.200.226, 00:02:45, GigabitEthernet0/0/1
      192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.10.0/24 is directly connected, GigabitEthernet0/0/0
         192.168.10.1/32 is directly connected, GigabitEthernet0/0/0
      209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
         209.165.200.224/30 is directly connected, GigabitEthernet0/0/1
         209.165.200.225/32 is directly connected, GigabitEthernet0/0/1
R1#
```

Quiz 8.5.7

Modulabschluss

- Lernziel-Zusammenfassung 8.6.1
- Modul-Quiz 8.6.2

Fragen ...

