

Tarea 2

25 de septiembre de 2020

 $2^{\underline{0}}$ semestre 2020 - Profesores G. Diéguez - F. Suárez

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 14 de septiembre a través del buzón habilitado en el sitio del curso (Canvas). Se habilitara un buzon distinto para cada pregunta para facilitar la correcion.
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada problema debe entregarse en un archivo independiente de las demás preguntas.
 - Los archivos que debe entregar son un archivo PDF por cada pregunta a su solución con nombre numalumno-P1.pdf y numalumno-P2.pdf, junto con un zip con nombre numalumno-P1.zip y numalumno-P2.zip, conteniendo el archivo numalumno-P1.tex y numalumno-P2.tex, respectivamente, que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1 - Lógica proposicional

Dado $\alpha, \beta \in L(P)$, considere el siguiente conectivo binario:

$$\sigma(\alpha \sim \beta) = \begin{cases} 1 & \text{si } \sigma(\alpha) = 0 \text{ y } \sigma(\beta) = 0 \\ 0 & \text{en otro caso} \end{cases}$$

- a) ξ Es \sim conmutativo? Demuestre.
- b) ¿Es \sim asociativo? Demuestre.
- c) ¿Es \sim funcionalmente completo? Demuestre.

Solución

a) Para que \sim sea conmutativo se debe cumplir que $\sigma(\alpha \sim \beta) = \sigma(\beta \sim \alpha)$ para todo $\alpha, \beta \in L(P)$. Tenemos los siguientes 4 casos:

•
$$\sigma(\alpha) = 0 \text{ y } \sigma(\beta) = 0$$

$$\sigma(\alpha \sim \beta) = 1$$

$$\sigma(\beta \sim \alpha) = 1$$

•
$$\sigma(\alpha) = 1 \text{ y } \sigma(\beta) = 0$$

$$\sigma(\alpha \sim \beta) = 0$$

$$\sigma(\beta \sim \alpha) = 0$$

•
$$\underline{\sigma(\alpha) = 0 \text{ y } \sigma(\beta) = 1}$$

$$\sigma(\alpha \sim \beta) = 0$$

$$\sigma(\beta \sim \alpha) = 0$$

•
$$\sigma(\alpha) = 1 \text{ y } \sigma(\beta) = 1$$

$$\sigma(\alpha \sim \beta) = 0$$

$$\sigma(\beta \sim \alpha) = 0$$

Concluimos entonces que el conectivo \sim es conmutativo.

b) Para que \sim sea asociativo, se debe cumplir que $(\alpha \sim \beta) \sim \gamma \equiv \alpha \sim (\beta \sim \gamma)$ para todo $\alpha, \beta, \gamma \in L(P)$.

Sean $\alpha, \beta, \gamma \in L(P)$ y una valuación σ tales que $\sigma(\alpha)=0, \ \sigma(\beta)=0$ y $\sigma(\gamma)=1.$ Tenemos que

$$\sigma(\alpha \sim \beta) = 1$$
 y entonces $\sigma((\alpha \sim \beta) \sim \gamma) = 0$

$$\sigma(\beta \sim \gamma) = 0$$
 y entonces $\sigma(\alpha \sim (\beta \sim \gamma)) = 1$

Es claro entonces que el conectivo \sim no es asociativo, pues encontramos un contraejemplo.

c) Como sabemos que $C = \{\neg, \lor\}$ es funcionalmente completo, demostraremos por inducción que toda fórmula construida usando sólo los conectivos anteriores es lógicamente equivalente a otra fórmula que solo usa \sim . Con esto, quedaría demostrado que $C' = \{\sim\}$ es funcionalmente completo.

BI: Si $\varphi = p$, con $p \in P$, la propiedad se cumple trivialmente.

HI: Supongamos que $\varphi, \psi \in L(P)$, que sólo usan conectivos en C, son tales que $\varphi \equiv \varphi'$ y $\psi \equiv \psi'$, donde φ', ψ' sólo usan conectivos en C'.

TI: Consideraremos una fórmula θ construida con los pasos inductivos para los operadores en C:

i) $\theta = \neg \varphi \stackrel{HI}{\equiv} \neg \varphi'$. Ahora debemos encontrar una fórmula equivalente que sólo use \sim . Es fácil notar que $\neg \varphi' \equiv \varphi' \sim \varphi'$:

φ'	$\neg \varphi'$	$\varphi' \sim \varphi'$
0	1	1
1	0	0

y por lo tanto $\theta = \neg \varphi \stackrel{HI}{\equiv} \neg \varphi' \equiv \varphi' \sim \varphi'$, y como φ' sólo usa conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

$$ii) \ \theta = \varphi \lor \psi \stackrel{HI}{\equiv} \varphi' \lor \psi'$$

Debemos encontrar una equivalencia para la disyunción. Notemos que el conectivo \sim es equivalente a la negación de una disyunción, pues solo es verdadero cuando ambas fórmulas son falsas. Entonces, como

$$\alpha \sim \beta \equiv \neg(\alpha \vee \beta)$$

tenemos que

$$\neg(\alpha \sim \beta) \equiv \alpha \vee \beta$$

y aplicando el caso anterior tenemos que

$$(\alpha \sim \beta) \sim (\alpha \sim \beta) \equiv \alpha \vee \beta$$

Podemos verificar el razonamiento anterior en la siguiente tabla de verdad:

α	β	$\alpha \vee \beta$	$(\alpha \sim \beta)$	$(\alpha \sim \beta) \sim (\alpha \sim \beta)$
0	0	0	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	0	1

Entonces, $\theta = \varphi \lor \psi \stackrel{HI}{\equiv} \varphi' \lor \psi' \equiv (\varphi' \sim \psi') \sim (\varphi' \sim \psi')$, y como φ', ψ' sólo usan conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

Concluimos que $C'=\{\sim\}$ es funcionalmente completo.

Pauta (6 pts.)

- \blacksquare 2 ptos. Demostrar que \sim es conmutativo.
- \bullet 2 ptos. Demostrar que \sim no es asociativo.
- \blacksquare 2 ptos. Demostrar que \sim es funcionalmente completo.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2 - Lógica de predicados

Considere las siguientes fórmulas:

- $\varphi_2 = \forall x, y \ R(x, y) \to R(y, x)$
- $\varphi_3 = \forall x, y, z \ (R(x,y) \land R(y,z)) \rightarrow R(x,z)$
- $\varphi_4 = \forall x, y, z \ (R(x, y) \land R(y, z)) \rightarrow R(z, x)$

Demuestre que para toda interpretación \mathcal{I} , se cumple que:

$$\mathcal{I} \vDash \varphi_1 \land \varphi_2 \land \varphi_3$$
 si y solo si $\mathcal{I} \vDash \varphi_1 \land \varphi_4$

Solución

 (\Rightarrow) Sea \mathcal{I} una interpretación arbitraria tal que

$$\mathcal{I} \models \varphi_1 \land \varphi_2 \land \varphi_3$$

Debemos demostrar que

$$\mathcal{I} \models \varphi_1 \land \varphi_4$$

Sean $a, b, c \in Dom(\mathcal{I})$ tal que $\mathcal{I} \models R(a, b) \land R(b, c)$. Buscamos mostrar que $\mathcal{I} \models R(c, a)$. Como $\mathcal{I} \models \varphi_3$, obtenemos que $\mathcal{I} \models R(a, c)$. Luego, como $\mathcal{I} \models \varphi_2$ tendremos que también se cumple que $\mathcal{I} \models R(c, a)$. Finalmente, como a, b y c son arbitrarios, la propiedad se debe cumplir para todos los elementos del dominio, y concluimos que $\mathcal{I} \models \varphi_4$.

 (\Leftarrow) Sea \mathcal{I} una interpretación arbitraria tal que

$$\mathcal{I} \models \varphi_1 \land \varphi_4$$

Debemos demostrar que

$$\mathcal{I} \models \varphi_1 \land \varphi_2 \land \varphi_3$$

Lo demostraremos por separado para φ_2 y φ_3 :

i) Sean $a, b \in Dom(\mathcal{I})$ tales que $\mathcal{I} \models R(a, b)$. Buscamos demostrar que $\mathcal{I} \models R(b, a)$. Como sabemos que $\mathcal{I} \models \varphi_1$, tenemos que $\mathcal{I} \models R(b, b)$, y por ende $\mathcal{I} \models R(a, b) \land R(b, b)$. Además, como $\mathcal{I} \models \varphi_4$, obtenemos que $\mathcal{I} \models R(b, a)$. Por lo tanto, como $a \ y \ b$ son arbitrarios, la propiedad se cumple para todo el dominio, y concluimos que $\mathcal{I} \models \varphi_2$.

ii) Sean $a, b, c \in Dom(\mathcal{I})$ tales que $\mathcal{I} \models R(a, b) \land R(b, c)$. Debemos demostrar que $\mathcal{I} \models R(a, c)$. Dado que $\mathcal{I} \models \varphi_4$, obtenemos que $\mathcal{I} \models R(c, a)$. Además, por la demostración anterior sabemos que $\mathcal{I} \models \varphi_2$, y entonces $\mathcal{I} \models R(a, c)$. Luego, como a, b y c son arbitrarios, la propiedad se cumple para todo el dominio, y concluimos que $\mathcal{I} \models \varphi_3$.

Finalmente, dado que \mathcal{I} satisface a φ_1 , φ_2 y φ_3 , obtenemos que

$$\mathcal{I} \models \varphi_1 \land \varphi_2 \land \varphi_3$$

Como demostramos (\Rightarrow) y (\Leftarrow) concluimos que

$$\mathcal{I} \models \varphi_1 \land \varphi_2 \land \varphi_3$$
 si y sólo si $\mathcal{I} \models \varphi_1 \land \varphi_4$

y como \mathcal{I} es arbitraria, podemos concluir que ambas fórmulas son lógicamente equivalentes.

Pauta (6 pts.)

- 3 ptos. implicancia de izquierda a derecha.
- 3 ptos. implicancia de derecha a izquierda.

Puntajes parciales y soluciones alternativas a criterio del corrector.