

RECONNAISSANCE DE GESTES

Minority report

Iron man

Plan

- Objectifs
- □ Technique libstroke
- □ Technique \$1
- □ Rubine
- DTW

Objectifs

- Reconnaître des gestes réalisés par l'utilisateur pour les associer à des commandes
- On se limite aux gestes un seul trait (unistroke)

Unistroke - Graffiti (Palm OS)

Technique de reconnaissance de gestes élémentaires: libstroke (1997)

- □ Librairie disponible dans FVWM http://etla.net/libstroke/
- Les gestes sont décrits par des séquences de chiffres

# Strokes								
#	num	buttor	context	mod.	action			
Stroke	14789	2	Α	N	Exec exec xlock -mode blank&			
Stroke	258	2	Α	N	Exec exec xterm&			
Stroke	563214789	2	Α	N	Exec exec exmh&			
Stroke	7415963	2	Α	N	Exec exec netscape&			
Stroke	741236987	2	Α	N	Destroy			
Stroke	1478963	2	Α	N	Popup "Apps"			
Stroke	74123	2	Α	N	Module "winlist" FvwmWinList			
Stroke	74159	2	Α	N	Move			
Stroke	852	2	Α	N	Menu "Apps" Nop			

1	2	3
4	5	6
7	8	9

Libstroke: algorithme

- 1) détermination de la boite englobante (bounding box)
 à partir de min_x, max_x, min_y, max_y
- 2) division de la boite en 9 cellules
- 3) étiquetage des points
- 4) factorisation
- 5) comparaison aux motifs enregistrés

Extension Firefox: Mouse Gestures Redox

Techniques de reconnaissance

- Classifieurs statistiques (Rubine, DTW)
- Modèles de Markov cachés
- Réseaux de neurones
- Méthodes ad-hoc (libstroke, \$1)

Techniques de reconnaissance

- □ \$1 recognizer
- Méthode simple à implémenter et donnant des taux de reconnaissance comparables à Rubine et DTW
- 1 seul exemple suffit
- Technique publiée dans l'article de recherche
 "Gestures without Librairies, Toolkits or Training: A
 \$1 Recognizer for User Interface Prototypes" à la conférence User Interface Sofware and Technology
 (UIST) en 2007 (écrit par Wobbrock, Wilson et Li)

\$1 recognizer

Algorithme

- 1) L'utilisateur réalise un geste
 - Le geste est représenté par une liste ordonnée de points
- 2) Ce geste est comparé à un ensemble de gestes de référence (templates) en utilisant une mesure de distance euclidienne
- 3) Le geste reconnu est celui pour lequel cette distance est minimale

Problèmes posés

Le nombre de points pour définir un geste va dépendre de la vitesse d'exécution, de la fréquence d'échantillonnage du périphérique...

Problèmes posés

- Un geste peut être réalisé à différentes positions sur l'interface,
- Suivant différentes orientations

4 étapes

- 1) Ré-échantillonnage du geste pour être invariant à la fréquence d'acquisition et la vitesse d'exécution du geste
- 2) Ré-orientation du geste pour être invariant à l'orientation suivant laquelle il est exécuté
- 3) Mise à l'échelle et translation pour être invariant à l'échelle de réalisation du geste et la position à laquelle il est exécuté
- 4) Reconnaissance du geste

1 ère étape: Ré-échantillonnage

- Le geste est défini par M points ordonnés
- On veut N points ordonnés équidistants les uns des autres

2^e étape: Rotation « indicative »

- □ 1) Calcul du centre du geste (centroïde)
- 2) Calcul de l'angle entre le centroïde, le premier point et l'horizontale
- 3) Rotation des points en utilisant cet angle

3^e étape: mise à l'échelle et translation

- Mise à l'échelle non uniforme: on ramène le geste à un carré de référence
- 1) détermination de la boîte englobante du geste (bounding box)
 - Détermination de min_x, max_x, min_y, max_y
- □ 2) Mise à l'échelle
- □ 3) Translation à l'origine

4^e étape: reconnaissance

Un geste candidat C est comparé à chacun des gestes enregistrés (templates) T_i pour calculer la distance moyenne d_i entre les points correspondants

$$d_{i} = \frac{\sum_{k=1}^{N} \sqrt{(C[k]_{x} - T_{i}[k]_{x})^{2} + (C[k]_{y} - T_{i}[k]_{y})^{2}}}{N}$$

- Le template avec la distance moyenne la plus faible est le résultat de la reconnaissance
- La distance est tranformée en score entre 0 et 1

$$score = 1 - \frac{d_i^*}{\frac{1}{2}\sqrt{size^2 + size^2}}$$

Limitations

- Pas possible de distinguer un carré d'un rectangle, une ellipse d'un cercle, une flèche vers le bas d'une flèche vers le haut
- Pas possible de reconnaître des gestes « 1D »

Classifieur statistique

- Rubine
- Reconnaissance de gestes ne comportant qu'un seul tracé (unistroke)
- Traitement statistique de caractéristiques

Dean Rubine. 1991. Specifying gestures by example. In *Proceedings of the 18th annual conference on Computer graphics and interactive techniques* (SIGGRAPH '91). ACM, New York, NY, USA, 329-337. DOI=10.1145/122718.122753 http://doi.acm.org/10.1145/122718.122753

Rubine

- □ Liste de points en entrée
 - Traitement des points pour éliminer les points trop proches: tout point dont la distance est inférieure à 3 pixels du point précédent est supprimé
 - Calcul d'un vecteur de caractéristiques statistiques
 - Comparaison aux différents gestes de référence. Le geste avec le score le plus grand est renvoyé.
 - Détection des gestes ambigus

Caractéristiques

Initialisation

- Calcul des statistiques moyennes pour chaque caratéristique de chaque geste
- Calcul de la matrice de covariance moyenne de tous les gestes
- Objectif: trouver les coefficients pondérateurs des caractéristiques statistiques qui permettent de maximiser le score des gestes de chaque classe

Reconnaissance

- Calcul des caractéristiques du geste candidat
- Calcul d'une probabilité de correspondance pour chaque geste de référence
- Le geste avec la probabilité la plus importante est choisi

Dynamic Time Warping

- DTW
- Déformation temporelle dynamique
- Déterminer pour chaque élément d'une séquence, le meilleur élément correspondant dans l'autre séquence relativement à un certain voisinage et à une certaine métrique
- Complexité polynomiale

Applications

- □ Vidéo, audio, graphique...
- Toutes données qui peuvent être transformées en représentation linéaire en fonction du temps (séries temporelles)
- Echantillons ordonnés par une étiquette de temps
- Reconnaissance vocale
- Reconnaissance de gestes off-line et on-line
- alignement de protéines...

- □ Séquence de référence $R = [r_1, r_2, ..., r_n]$
- □ Séquence de test $T = [t_1, t_2, ..., t_m]$
- □ Si m=n alors on peut calculer la distance entre les deux signaux de la façon suivante (pas forcément idéal):

$$D = \sum_{i=1}^{n} distance(r_i, t_i)$$

- Possibilité de calculer la distance euclidienne ou d'utiliser une autre métrique (fonction qui donne un réel)
- □ Plus possible d'utiliser cette méthode dès que n ≠ m
- Attention: les échantillons des séquences doivent être équidistants en temps

- DTW réalise d'abord un alignement non linéaire en recherchant parmi tous les alignements possibles, celui qui minimise une fonction de coût cumulé
- "(Time Warping): Dilation ou compression des séquences pour obtenir le meilleur alignement possible

Détermination du chemin $W = [w_1, w_2, ..., w_k]$ de longueur minimale $\sum_{i=1}^k distance(w_i)$

- Conditions aux frontières
 - \square w₁ = (r₁, t₁)
 - \square $w_k = (r_n, t_m)$
- Contraintes locales
 - Monotonicité pour respecter le séquencement des points
 - Eviter les sauts dans le temps
 - Pour tout couple (r_i, t_j), le choix des prédécesseurs est limité à
 (r_{i-1},t_j), (r_i,t_{j-1}), (r_{i-1},t_{i-1})
- Exhaustivité
 - Chaque élément de R doit être mis en relation avec au moins un élément de T et vice-versa
 - \square max(m, n) \leq k \leq m + n 1

- Programmation dynamique
- Fonction d'optimisation:
 - □ Soit D(i,j) la longueur du chemin entre (r_1, t_1) et (r_i, t_j)
- Récursion:
 - $D(i,j) = dist(r_i,t_i) + min(D(i-1,j), D(i-1,j-1), D(i, j-1))$
 - \square condition initiale: $D(1,1) = dist(r_0,t_0)$
- Distance minimale entre les deux séquences
 - D(n,m)

Mise en application

- Construction d'une matrice D de dimensions n x m dans laquelle chaque élément (i,j) contient D(i,j)
- Remplissage de D(1,1) avec la condition initiale
- Utilisation de la formule récursive pour remplir la matrice ligne par ligne ou colonne par colonne
- Cas particuliers première ligne et première colonne
- Distance minimale donnée par l'élément D(n,m)
- La distance minimale peut être normalisée par la longueur du chemin

Algorithme

```
n \leftarrow |X|
m \leftarrow |Y|
dtw[] \leftarrow new[n \times m]
dtw(0,0) \leftarrow 0
for i = 1; i < n; j + + do
  dtw(i,0) \leftarrow dtw(i-1,0) + c(i,0)
end for
for j = 1; j < m; j + + do
  dtw(0,j) \leftarrow dtw(0,j-1) + c(0,j)
end for
for i = 1; i \le n; i + + do
  for j = 1; j \le m; j + + do
     dtw(i,j) \leftarrow c(i,j) + \min \{dtw(i-1,j); dtw(i,j-1); dtw(i-1,j-1)\}
  end for
end for
return dtw
```

Chemin de déformation

Chemin de déformation

- A chaque calcul de D(i,j), sauvegarde du prédécesseur qui minimise la distance
- Parcours des prédécesseurs en partant de D(n,m)

Complexité

- Complexité: O(m*n)
- Optimisation en limitant la région de recherche

Optimisation

- La zone supérieure gauche et la zone inférieure droite ne sont pas calculées
- Les distances locales associées sont mises à une valeur très élevée afin que le chemin n'y passe pas

Optimisation

Optimisation

- □ Mise à l'échelle
 - Réduire les tailles de R et T

Singularités

 Une singularité apparaît quand un point d'une séquence est associé à de nombreux points de l'autre séquence sans raison valable

Singularités: technique de fenêtrage

- Ajout de contraintes dans les alignements possibles
- □ Technique de fenêtrage
 - Donne une borne supérieure à la singularité

```
for i = 1; i \le n; i + do for j = max(1,i-w); j \le min (m,i+w); j++ do for j = 1; j \le m; j + do dtw(i,j) \leftarrow c(i,j) + min \{dtw(i-1,j); dtw(i,j-1); dtw(i-1,j-1)\} end for end for
```

Singularités: slope weighting

- Pondérer les déplacements suivant les directions:
 - \square D(i,j) = dist(r_i,t_j) + min(X*D(i-1,j), D(i-1,j-1), X*D(i, j-1))
 - □ X>1
- □ Force l'alignement suivant la diagonale

Singularités: Step patterns

- $D(i,j) = dist(r_i,t_i) + min(D(i-1,j-2), D(i-1,j-1), D(i-2, j-1))$
- □ Force le déplacement suivant la diagonale

Singularités

- Problème: ces contraintes peuvent empêcher d'obtenir l'alignement correct
- Comment définir les différents paramètres des techniques de levée des singularités (taille de fenêtre, coefficients de pondération, motifs)?

DDTW: Derivative Dynamic Time Warping


```
@INPROCEEDINGS{Keogh01derivativedynamic,
author = {Eamonn J. Keogh and Michael J. Pazzani},
title = {Derivative Dynamic Time Warping},
booktitle = {In First SIAM International Conference on Data Mining (SDM'2001},
year = {2001}
```

DDTW: Derivative Dynamic Time Warping

Utilisation de la dérivée des données des séquences

$$D_x[q] = \frac{(q_i - q_{i-1}) + ((q_{i+1} - q_{i-1})/2)}{2}$$

Calcul du carré de la différence des dérivées

DDTW: Derivative Dynamic Time Warping

Recherche de motifs

Reconnaissance de gestes

- Pré-traitement des gestes de référence et du geste réalisé par l'utilisateur
 - mise à l'échelle, changement origine, rotation...
- Alignement avec chacun des gestes
- Le geste de référence pour lequel la distance entre les deux séquences est la plus faible est considéré comme reconnu

Affine invariant DTW

- Problème: identifier dans une séquence un objet qui subit une transformation affine
- Choix de la fonction de coût?

Affine invariant DTW

Optimization Algorithm of AI-DTW:

Initialize

The warping path $w^{(1)} = DTW_PATH(T, R)$.

Iteration number k=1

While not convergence

$$k = k+1;$$

Update the transformation matrix by:

$$A^{(k)} = \underset{A}{\operatorname{arg\,min}} \{ \sum_{i=1}^{n} \left\| t_i - r_{w^{(k-1)}(i)} A \right\|^2 \} .$$

Update the warping path by:

$$w^{(k)} = DTW_PATH(T, RA^{(k)}).$$

End While

Multi-Dimensional Dynamic Time Warping

- Comment appliquer DTW quand plusieurs grandeurs sont mesurées à chaque instant?
- Modification de la fonction de distance:
 - Chaque dimension est normalisée avec une moyenne de 0 et une variance de 1
 - Calcul de la somme des valeurs absolues des différences suivant chaque dimension

Multi-Dimensional Dynamic Time Warping

Mutli-Dimensional Dynamic Time Warping

Possibilité d'utiliser les signaux et leur dérivée

question

