Modelling Electricity Prices Using Regime Switching Models

Angus Lewis
Supervised by
Prof. Nigel Bean & Dr. Giang Nguyen

4 D > 4 P > 4 B > 4 B >

Electricity Spot Markets - Market participants

Generators

Wind

Gas Turbine

Gas-fired

Buyers

Steelworks

Retailers

Electricity Spot Markets - Market Operator

Electricity Spot Markets - Generators

Base load generation

- Short-term supply: fixed
- ► Low cost ~ \$30 to \$45/MWh

Peak demand generation

- Short-term supply: variable
- ► High cost ~ \$120 to \$185/MWh

Gas-fired

Gas Turbine

Electricity Spot Markets

• December 1st, 2am - \$13,766.58/MWh - Interconnector failure

Why we model prices

- Market participants face significant market risk
 - Cannot pass on to residential consumers
- Derivative contracts used to hedge risk
 - Valuation requires a model of the spot price

Modelling

Model prices as the sum of two pieces

$$p_t = f_t + X_t$$

- $ightharpoonup f_t$: Long term seasonal component (wavelet decomposition)
- $\triangleright X_t$: Stochastic component

Stochastic component

Regime switching models

- base regime
- spike regime

 R_t : regime process at time t, R_t , $t \in \mathbb{Z}_+$: Markov chain

$$P = egin{pmatrix} p_{b,b} & p_{b,s} \ p_{s,b} & p_{s,s} \end{pmatrix}$$

Stochastic component

 X_t : stochastic component

$$X_t = \begin{cases} B_t & \text{in the base regime, } R_t = \text{base} \\ S_t & \text{in the spike regime, } R_t = \text{spike} \end{cases}$$

 $m{\mathcal{B}}_t$: AR(1). $m{\mathcal{B}}_t = c + \phi m{\mathcal{B}}_{t-1} + \sigma_{B} m{arepsilon}_t,$ $m{arepsilon}_t \sim m{\mathcal{N}}(0,1)$

• S_t : i.i.d. LogNormal (μ, σ_s) .

Parameter Estimation

- Don't know the function log L(θ|x),
 x: Observed price data
- ▶ Regime process, *R*_t, is unobserved
- Some prices are unobserved

Expectation-Maximisation for regime switching models

- **x**, observed prices.
- ► Regimes, R.
- ▶ Missing prices, **Y**.
- 1. Initialise a guess of $\hat{\theta}$, θ_0 , set n=0
- 2. Given the current value of the sequence, θ_n , calculate

$$Q(\theta; \theta_n) = \mathbb{E}_{\mathbf{Y}, \mathbf{R}}[\ell(\mathbf{x}, \mathbf{Y}, \mathbf{R}|\theta)|\theta_n, \mathbf{x}]$$

$$= \int_{\mathcal{Y}} \sum_{\mathbf{R}} \ell(\mathbf{x}, \mathbf{Y}, \mathbf{R}|\theta) p(\mathbf{Y}, \mathbf{R}|\theta_n, \mathbf{x}) d\mathbf{Y}.$$

3. Set n = n + 1 and

$$\theta_{n+1} = \max_{\theta \in \theta} Q(\theta; \theta_n),$$

return to Step 2.

Approximations

- Janczura and Weron [3] infer missing data.
 - Replace **Y** with $\bar{\mathbf{y}} = \mathbb{E}_{\mathsf{R}}[\mathbf{Y}|\boldsymbol{\theta}_n]$.

$$Q(\boldsymbol{\theta};\boldsymbol{\theta}_n) = \sum_{\mathbf{R}} \ell(\mathbf{x}, \overline{\mathbf{y}}, \mathbf{R}|\boldsymbol{\theta}) p(\mathbf{R}|\mathbf{x}, \boldsymbol{\theta}_n)$$

- ▶ This method works well numerically, but no theoretical results.
- ▶ Further approximations are still needed to evaluate $p(\mathbf{R}|\mathbf{x}, \theta_n)$.

Expectation-Maximisation algorithm output

- $\hat{\boldsymbol{\theta}} = (\hat{\rho}_{b,b}, \hat{\rho}_{s,s}, \hat{c}, \hat{\phi}, \hat{\sigma}_B, \hat{\mu}, \hat{\sigma}_S)$: Maximum likelihood estimate of the parameters
- ▶ Approximation of $P(R_t|\mathbf{x})$ 'Smoothed inferences'
 - ► The probability with which the observation x_t belongs to a regime (soft classification of states)

Parameter Estimation - Bayesian

Problem: Find the posterior $P(\theta|\mathbf{x}) \propto L(\theta|\mathbf{x})P(\theta)$.

Instead, find the posterior

$$P(\theta, \mathbf{R}|\mathbf{x}) \propto L(\theta, \mathbf{R}|\mathbf{x})P(\theta, \mathbf{R}) = P(\mathbf{x}|\theta, \mathbf{R})P(\theta, \mathbf{R}).$$

- Note we no longer need the unobserved prices, Y
- Expectation-Maximisation gives soft classification data
- ▶ The Bayesian approach proposes a hard classification of data

Markov Chain Monte Carlo

Construct Markov Chain with stationary distribution

$$\pi = P(\theta, \mathbf{R}|\mathbf{x}).$$

- ▶ Problem: Find $P(p_{b,b}, p_{s,s}, c, \phi, \sigma_B, \mu, \sigma_S, \mathbf{R}|\mathbf{x})$. i.e. explore $\Theta \times \{0, 1\}^T$.
 - Θ is the parameter space.
 - ▶ *T* is the number of data points.

Hybrid Metropolis-Hastings/Gibbs Sampler

- 1. Initialise and set n = 0.
- 2. Gibbs sampler: $p_{b,b}, p_{s,s}, \mathbf{R}$.
 - Conditional proposal can be derived.
- 3. MH algorithm: $c, \phi, \sigma_B, \mu, \sigma_S$.
- 4. Set n = n + 1, go to 2.

Parameter Estimation

$$X_t = egin{cases} B_t & ext{when } R_t = ext{base}, \ S_t & ext{when } R_t = ext{spike}, \ B_t \colon \mathsf{AR}(1), \ B_t = c + \phi B_{t-1} + \sigma_B arepsilon_t, \ S_t \sim ext{i.i.d Normal}(\mu, \sigma_s). \end{cases}$$

Table: Simulated data

	True parameters	MCMC mean	J&W (EM-like)
$P_{b,b}$	0.95	0.962	0.963
$P_{s,s}$	0.9	0.890	0.894
С	10	10.20	9.758
ϕ	0.2	0.183	0.219
σ_B	1	1.067	1.053
μ	16	15.98	15.97
σ_{s}	1	1.210	1.192

Parameter Estimation

$$egin{aligned} X_t &= egin{cases} B_t & ext{ when } R_t = ext{base}, \ S_t & ext{ when } R_t = ext{spike}, \ B_t &: ext{AR}(1), \ B_t &= c + \phi B_{t-1} + \sigma_B arepsilon_t, \ S_t &\sim ext{i.i.d Normal}(\mu, \sigma_s). \end{aligned}$$

Table: European Energy Exchange

	MCMC mean	J&W (EM-like)
$P_{b,b}$	0.9663	0.9773
$P_{s,s}$	0.5618	0.7878
С	0.5645	0.6036
ϕ	0.7189	0.7080
σ_{B}	14.63	15.15
μ	22.07	19.72
σ_{s}	1049	880.6

Summary

- Introduced the spot market
- Introduced regime switching models
- Expectation-Maximisation
 - Cannot be applied directly
 - Approximations used, EM-like algorithm
- Bayesian Inference
 - Does not suffer the same problems
 - MCMC methods: approximate posterior distributions

Future Work

- Model Comparison
- Spike frequency dependent on exogenous variables
 - Temperature
 - Season
 - Generation methods available (e.g. wind, gas, coal)
- ▶ Janczura & Weron [2]: Regime switching is time dependent. Becker *et al.* [1]: Base regime is not auto regressive.
 - Combine these models

References

Joanna Janczura and Rafał Weron.

An empirical comparison of alternate regime-switching models for electricity spot prices.

Energy Economics, 32(5):1059–1073, 2010.

Joanna Janczura and Rafał Weron.

Efficient estimation of Markov regime-switching models: An application to electricity spot prices.

AStA Advances in Statistical Analysis, 96(3):385–407, 2012.

Chang-Jin Kim.

Dynamic linear models with Markov-switching.

Journal of Econometrics, 60(1-2):1–22, January-February 1994.

