Laboratorium 1, Zadanie 7

Filip Dziurdzia

06 Marzec 2023

1 Specyfikacja sprzętowa

Jednostka: MacBook Pro 2020

System operacyjny: macOS Ventura 13.0

Procesor: Apple M1

Architektura procesora: ARM

Pamięć RAM: 8GB

2 Środowisko

Zadanie rozwiązałem przy użyciu języka **Python 3.9.13** oraz dwóch bibliotek pomocniczych - **time** i **numpy**. Biblioteka **time** jest zawarta w paczce podstawowych bibliotek instalowanych wraz z językiem. Wykorzystana została ona do pomiaru długości czasu działania programu. Biblioteka **numpy** została zainstalowana na własną rękę korzystając z menedżera paczek Python Conda. Python w postawowej wersji nie jest statycznie typizowany i posiada tylko jeden rodzaj typu zmiennej zmiennoprzecinkowej. Biblioteka pozwala nam na zaimplementowanie typów float, double oraz long double.

3 Zadany problem

Dana jest zależność rekurencyjna $3x_{k-1}-10x_k+3x_{k+1}=0$. Wartości początkowe $x_0=1,x_1=1/3$. Wyznaczyć wartości x_k i x_{k+1} dla k=45. Następnie korzystając z wyznaczonych wartości x_k i x_{k+1} obliczyć x_1 i x_0 , wykonując rekurencję w tył. Porównać wyznaczone wartości x_1 i x_0 z dokładnymi wartościami początkowymi 1 i 1/3. Wykonać obliczenia dla różnej precyzji zmiennych (float, double, long double). Skomentować różnice. Co będzie, jeśli wszędzie liczbę 3 zastąpimy przez liczbę 2 lub 20, lub 30?

Omówienie teoretyczne 4

Przekształcamy równanie rekurencyjne

$$3x_{k-1} - 10x_k + 3k_{k+1} = 0 (1)$$

$$x_{k+1} = \frac{10}{3}x_k - x_{k-1} \tag{2}$$

$$x_0 = 1 \tag{3}$$

$$x_1 = \frac{1}{3} \tag{4}$$

$$x_2 = \frac{10}{3} \cdot x_1 - x_0 = \frac{10}{3} \cdot \frac{1}{3} - 1 = \frac{1}{9}$$
 (5)

$$x_3 = \frac{10}{3} \cdot x_2 - x_1 = \frac{10}{3} \cdot \frac{1}{9} - \frac{1}{3} = \frac{1}{27}$$
 (6)

Widzimy zatem, że wzór jawny na k-ty wyraz przy zadanych $x_0 = 1$ i $x_1 = 1/3$ ma postać

$$x_k = \frac{1}{3^k} \tag{7}$$

Ta wiedza sprzyda nam się do weryfikacji poprawności wyników i potencjalnej analizy niedokładności wyników.

5 Wyniki

Wstęp

Poniżej zamieściłem wyniki programu zarówno w postaci informacji zwrotnej z terminalu, jak i tabeli. Program został wykonany dla wartości parametru k=45.

Wyniki programu

Funckja: rekurencjaPrzod

Typ: <class 'numpy.float32'>

Czas wykonania: 0.0004298686981201172 Wartość: [148609730000.0, 445829200000.0]

Funckja: rekurencjaTyl

Typ: <class 'numpy.float32'>

Czas wykonania: 0.00024318695068359375 Wartość: [5.0429345e+23, 1.6809781e+23]

Funckja: rekurencjaPrzod Typ: <class 'numpy.float64'>

Czas wykonania: 5.984306335449219e-05

Wartość: [-13312.59789030802, -39937.79367092405]

Funckja: rekurencjaTyl

Typ: <class 'numpy.float64'>

Czas wykonania: 5.91278076171875e-05

Wartość: [-2389977427.261684, -796659142.4205614]

Funckja: rekurencjaPrzod
Typ: <class 'numpy.float128'>

Czas wykonania: 0.00013208389282226562

Wartość: [-12717.465660928486034, -38152.396982785458103]

Funckja: rekurencjaTyl

Typ: <class 'numpy.float128'>
Czas wykonania: 0.0001220703125

Wartość: [396709.4230040512679, 132236.47433468375597]

Wyniki w tabelach

Precyzja zmiennych	x_{44}	x_{45}	Czas wykonania
float	$1.5 \cdot 10^{10}$	$4.5 \cdot 10^{11}$	$4.3 \cdot 10^{-4} \text{ s}$
double	$-1.3 \cdot 10^4$	$-4.0 \cdot 10^{4}$	$6.0 \cdot 10^{-5} \text{ s}$
long double	$-1.3 \cdot 10^4$	$-3.8 \cdot 10^4$	$1.3 \cdot 10^{-4} \text{ s}$

Tabela 1: Wyniki dla rekurencji w przód przy parametrze k=45

Precyzja zmiennych	x_0	x_1	Czas wykonania
float	$5.0 \cdot 10^{23}$	$1.7 \cdot 10^{23}$	$2.4 \cdot 10^{-4} \text{ s}$
double	$-2.4 \cdot 10^9$	$-8.0 \cdot 10^{8}$	$6.0 \cdot 10^{-5} \text{ s}$
long double	$-1.3 \cdot 10^4$	$-3.8 \cdot 10^4$	$1.3 \cdot 10^{-4} \text{ s}$

Tabela 2: Wyniki dla rekurencji w tył przy parametrze k=45

Wnioski dla k = 45

Jak widzimy, wyniki otrzymane dla każdego rodzaju precyzji zmiennych kompletnie nie przypominają oczekiwanych rezultatów. Przy k=45, liczba $(1/3)^{45}$ jest rzędu 10^{-22} i przepełnia nasze zmienne powodując bezsensowne rezultaty. Aby zaobserwować wyniki, z których możemy zaobserwować niedokładności w zapisie liczb zmiennoprzecinkowych, przeprowadziłem obliczenia dla parametru k=35.

6 Wyniki dla k = 35

Poniżej zamieściłem wyniki działania programu dla parametru k=35.

Wyniki programu

```
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float32'>
Czas wykonania: 0.0003058910369873047
Wartość: [2516718.5, 7550155.5]
-----
Funckja: rekurencjaTyl
Typ: <class 'numpy.float32'>
Czas wykonania: 0.0001881122589111328
Wartość: [150198080000000.0, 50066027000000.0]
-----
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float64'>
Czas wykonania: 4.8160552978515625e-05
Wartość: [-0.22545001423068997, -0.6763500426920701]
_____
Funckja: rekurencjaTyl
Typ: <class 'numpy.float64'>
Czas wykonania: 4.673004150390625e-05
Wartość: [1.0808332968748744, 0.36027776562495806]
_____
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float128'>
Czas wykonania: 0.00010395050048828125
Wartość: [-0.21537139766852076224, -0.6461141930055624466]
_____
Funckja: rekurencjaTyl
Typ: <class 'numpy.float128'>
Czas wykonania: 9.870529174804688e-05
Wartość: [1.0000042468023278289, 0.33333474893410924186]
```

Wyniki w tabelach

Precyzja zmiennych	x_{44}	x_{45}	Czas wykonania
float	$2.5 \cdot 10^{6}$	$7.6 \cdot 10^{6}$	$3.1 \cdot 10^{-4} \text{ s}$
double	-0.23	-0.68	$4.8 \cdot 10^{-5} \text{ s}$
long double	-0.22	-0.65	$1.0 \cdot 10^{-4} \text{ s}$

Tabela 3: Wyniki dla rekurencji w przód przy parametrze k=35

Precyzja zmiennych	x_0	x_1	Czas wykonania
float	$1.5 \cdot 10^{14}$	$5.0 \cdot 10^{13}$	$1.9 \cdot 10^{-4} \text{ s}$
double	1.0808333	0.3602777	$4.7 \cdot 10^{-5} \text{ s}$
long double	1.0000042	0.3333347	$9.9 \cdot 10^{-5} \text{ s}$

Tabela 4: Wyniki dla rekurencji w tył przy parametrze k=35

Wnioski dla k = 35

Pomimo ponownego przepełnienia zmiennych podczas rekurencji w przód, dla precyzji **double** i **long double**, możemy zauważyć wartości zbliżone do początkowych dla rekurencji w tył. Błąd znacząco maleje wraz ze wzrostem prezycji i dla typu **long double** jest on rzędu 10^{-6} . Wartości dla typu **float** możemy zignorować.

7 Alternatywne przypadki

Zamiana liczby 3 w równaniu rekurencyjnym na liczbę 2, 20 lub 30 znacząco wpłynie na otrzymywane wyniki. Zakładamy takie same wartości początkowe tj. $x_0 = 1$ oraz $x_1 = 1/3$.

Liczba 2

Zamieniając liczby 3 w równaniu na liczbę 2, x_k rosłoby wraz z parametrem k. Ponieważ dokładność dla dużych liczb jest większa niż dla liczb zmierzających do 0, to nasze zmienne przepełniłyby się dopiero dla większych parametrów k.

Liczba 20

Liczba 20 sprawia, że x_k "skacze"
po przybliżonym przedziale (0.01, 1), dzięki czemu nie musimy się martwić o przepełnienie naszych zmiennych. Dopuszczalne są naprawdę duże wartości parametru k.

Liczba 30

Dla liczby 30, równanie zachowuje się podobnie, jak dla liczby 20, jednak zakres po którym skaczą wartości jest większy i zbudowany wokół 0, dlatego pojawiają się wartości ujemne.

8 Alternatywne przypadki - poprawki

Tym razem zaaplikuję zmianę liczby 3 zarówno w równaniu rekurencyjnym jak i w wartościach początkowych.

Liczba 2

Równanie rekurencyjne ma obecnie postać $2x_{k-1}-10x_k+2x_{k+1}=0$, a wartości początkowe to kolejno $x_0=1$ oraz $x_1=1/2$. Dla tych parametrów wejściowych, wyniki bardzo szybko rosną i przepełniają nasze zmienne nawet szybciej niż oryginalny przypadek. Poniżej zamieszczam wyniki dla ostatnich parametrów k, dla których poszczególne precyzje zwracały zbliżone do poprawnych wyniki.

```
float, k = 12
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float32'>
Czas wykonania: 6.985664367675781e-05
Wartość: [1941724.5, 9303361.0]
Funckja: rekurencjaTyl
Typ: <class 'numpy.float32'>
Czas wykonania: 7.009506225585938e-05
Wartość: [1.0, 0.5]
double, k = 24
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float64'>
Czas wykonania: 3.266334533691406e-05
Wartość: [284193908462644.5, 1361654819944321.0]
_____
Funckja: rekurencjaTyl
Typ: <class 'numpy.float64'>
Czas wykonania: 3.218650817871094e-05
Wartość: [1.0, 0.5]
long double, k = 29
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float128'>
Czas wykonania: 8.916854858398438e-05
Wartość: [7.175895063161167535e+17, 3.4381778810900903205e+18]
-----
Funckja: rekurencjaTyl
Typ: <class 'numpy.float128'>
```

Czas wykonania: 7.700920104980469e-05

Wartość: [1.0, 0.5]

Liczba 20

Równanie rekurencyjne ma obecnie postać $20x_{k-1} - 10x_k + 20x_{k+1} = 0$, a wartości początkowe to kolejno $x_0 = 1$ oraz $x_1 = 1/20$. Poniżej zamieściłem wyniki dla k = 988, czyli największego k, dla którego nie przepełniał się stos rekurencyjny.

```
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float32'>
Czas wykonania: 0.006880044937133789
Wartość: [0.8624741, -0.31365472]
_____
Funckja: rekurencjaTyl
Typ: <class 'numpy.float32'>
Czas wykonania: 0.005496025085449219
Wartość: [1.0000006, 0.05000025]
_____
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float64'>
Czas wykonania: 0.0025148391723632812
Wartość: [0.8624737785477901, -0.31365492044498333]
_____
Funckja: rekurencjaTyl
Typ: <class 'numpy.float64'>
Czas wykonania: 0.001276254653930664
Wartość: [0.999999999999988, 0.049999999999997]
_____
Funckja: rekurencjaPrzod
Typ: <class 'numpy.float128'>
Czas wykonania: 0.0025980472564697266
Wartość: [0.8624737785477914661, -0.313654920444983752]
_____
Funckja: rekurencjaTyl
Typ: <class 'numpy.float128'>
Czas wykonania: 0.0025479793548583984
Wartość: [0.99999999999999771, 0.050000000000000000218]
```

Przeprowadzając doświadczenia dla wielu wartości $k \in (5,988)$, dochodzę do wniosku, iż zwiększanie paramteru k nie wpływa znacząco na zachowanie się programu, ponieważ wartości kolejnych elementów równania rekurencyjnego znajdują się w przybliżonym przedziale $x_k \in (-1,1)$, przy czym nie zbliżają się one znacząco do 0. Jak możemy zauważyć, rodzaj precyzji zmiennych, wpływał jedynie na dokładność wyników rekurencji wstecz. Nie zaobserwowałem zjawiska

przepełnienia zmiennej, a niedokładności nawet dla najmniejszej precyzji float są rzędu tylko 10^{-7} .

Liczba 30

Równanie rekurencyjne ma obecnie postać $30x_{k-1}-10x_k+30x_{k+1}=0$, a wartości początkowe to kolejno $x_0=1$ oraz $x_1=1/30$. Nasze zadanie dla liczby 30 zachowuje się bardzo podobnie do poprzedniego przypadku. Ponownie, wszystkie precyzje zmiennych zwracają bliskie prawdzie wyniki przy ostatnim k nieprzepełniającym stosu rekurencyjnego. Jedyną zauważalną różnicą jest fakt, że w tym przypadku, kolejne elementy x_k nie schodzą poniżej 0 i skaczą po przybliżonym zakresie $x_k \in (0,1)$. Niedokładności są tego samego rzędu co w poprzednim przypadku.

9 Kod źródłowy

```
# Importy
    import numpy as np
    import time
    # Stałe
    # Wartości początkowe
   x_0 = 1
    x_1:np.longdouble = 1/3
10
    # Wspłóczynniki w zależności rekurencyjnej
11
    a = 3
12
    b = -10
13
    c = 3
14
    d = 0
15
16
    # Wartość parametru k
17
    k = 45
19
    # Typy zmiennych
20
    types = [np.single, np.double, np.longdouble]
21
22
    # Funkcje
23
24
    def lab1(x_k_1, x_k, k, k_max, type):
25
        for type in types:
26
27
             # Rekurencja w przód
28
            start = time.time()
29
```

```
result1 = rekurencjaPrzod(x_k_1, x_k, k, k_max, type)
30
           end = time.time()
31
           print("Funckja: ", rekurencjaPrzod.__name__)
32
           print("Typ: ", type)
           print("Czas wykonania: ", end - start)
34
           print("Wartość: ", result1)
           print("----")
36
           # Rekurencja w tył
38
           start = time.time()
           result2 = rekurencjaTyl(result1[0], result1[1], k_max, type)
40
           end = time.time()
41
           print("Funckja: ", rekurencjaTyl.__name__)
42
           print("Typ: ", type)
43
           print("Czas wykonania: ", end - start)
           print("Wartość: ", result2)
45
           print("----")
46
47
   # Funkcja do rekurencji w przód
   def rekurencjaPrzod(x_k_1, x_k, k, k_max, type) -> type[2]:
49
       result = type((-b*x_k - a*x_k_1)/c)
       if k == k_max:
51
           return [x_k, result]
       else:
53
           return rekurencjaPrzod(x_k, result, k+1, k_max, type)
54
55
   # Funkcja do rekurencji w tył
   def rekurencjaTyl(x_k_1, x_k, k, type) -> type[2]:
57
       result = type((-b*x_k - c*x_k_1)/a)
58
       if k == 1:
59
           return [result, x_k_1]
60
       else:
61
           return rekurencjaTyl(result, x_k_1, k-1, type)
62
63
64
   # Wywołanie głównej funkcji
   lab1(x_0, x_1, 1, k, types[1])
```