WHAT IS CLAIMED IS:

1	1. In an integrated circuit multichannel packet transfer device, an apparatus
2	for transferring a plurality of data packets, comprising:
3	a first interface circuit for receiving packet data on a first channel;
4	a memory;
5	a packet manager circuit coupled between the first interface circuit and the
6	memory to receive data on the first channel from the first interface circuit, wherein the
7	packet manager circuit is configured to write at least a first data packet fragment to the
8	memory under control of a first descriptor, and is configured to write at least a second
9	data packet fragment to the memory under control of a second descriptor;
10	a timer for generating a first time-out signal at a predetermined time after the first
11	descriptor is ready for transfer; and
12	a controller for controlling descriptor write back operations to memory in either
13	read-modify-write mode or write-invalidate mode, wherein the controller writes a
14	plurality of descriptors together to memory in a single write-invalidate operation if the
15	plurality of descriptors is ready for transfer before the first time-out signal is generated.
1	2. The apparatus recited in claim 1, wherein the controller writes the plurality
2	of descriptors separately to memory as a sequence of read-modify-write operations if the
3	plurality of descriptors is not ready for transfer before the first time-out signal is
4	generated.
1	3. The apparatus recited in claim 1, wherein the timer comprises
2	a multi-bit counter,
3	a multiplexer having one select line, one output and multiple inputs, with
4	each input coupled to a corresponding bit of the multi-bit counter,
5	a timer control register coupled to the select line of the multiplexer, and
6	a first pulse generator coupled to the multiplexer output for generating the
7	first time-out signals,

8	wherein the multiplexer selects one of the bits in the multi-bit counter for output
9	to the pulse generator in response to the timer control register to generate the first time-
10	out signal.
1	4. The apparatus recited in claim 1, where the memory comprises a cache
2	memory having a line width of 2N, and the first and second descriptors each have a width
3	of N.
1	5. The apparatus recited in claim 1, where the memory comprises a system
2	memory and a cache memory, such that the packet manager writes data packets or
3	descriptors to the system memory or cache memory.
1	6. The apparatus recited in claim 1, further comprising a register for storing a
2	minimum descriptor count, whereby the controller writes a plurality of descriptors
3	together to memory in a single write-invalidate operation only if the plurality of
4	descriptors that are ready for transfer meets or exceeds the minimum descriptor count.
1	7. The apparatus recited in claim 1, where the timer comprises a memory
2	device for programmably storing a timer setting to selectively determine the
3	predetermined time at which the first time-out signal is generated.
1	8. The apparatus recited in claim 1, comprising:
2	a second interface circuit for transmitting packet data on a second channel;
3	an packet manager output circuit coupled between the memory and the second
4	interface circuit to transmit data from the memory on the second channel, wherein the
5	packet manager output circuit is configured to write output data packets to the second
6	interface circuit under control of a plurality of output descriptors;
7	a timer for generating a second time-out signal a predetermined time after a first
8	output descriptor is ready for transfer; and
9	a output controller for controlling output descriptor write back operations to

memory in either read-modify-write mode or write-invalidate mode, wherein the output controller writes a plurality of output descriptors together to memory in a single write-

10

11

- invalidate operation if the plurality of output descriptors is ready for transfer before the second time-out signal is generated.
- 1 9. The apparatus recited in claim 8, wherein the output controller writes the 2 plurality of output descriptors separately to memory as a sequence of read-modify-write 3 operations if the plurality of output descriptors is not ready for transfer before the second 4 time-out signal is generated.
- 1 10. A data transfer controller for managing the direct memory transfer of data 2 on a first channel by releasing one or more descriptors associated with said first channel, 3 where said data transfer controller is coupled to receive a time-out pulse for the first 4 channel and is configured to delay release of said one or more descriptors until after 5 receiving the time-out pulse for the first channel.
- 1 11. The data transfer controller recited in claim 10, wherein a plurality of 2 descriptors received before the time-output pulse is generated are released together with a 3 write-invalidate command.
 - 12. The data transfer controller recited in claim 10, wherein a plurality of descriptors are released sequentially with read-modify-write commands when only one of the plurality of descriptors is received before the time-output pulse is generated.

1

2

3

1

2

3

- 13. The data transfer controller recited in claim 10, comprising a timer for generating a time-out pulse at a predetermined time interval after a first of the plurality of descriptors is received.
- 1 14. The data transfer controller recited in claim 13, wherein the predetermined 2 time interval may be programmably selected from a plurality of timer interval values.
- 1 15. The data transfer controller recited in claim 10, comprising a packet 2 manager input circuit for transferring a plurality of packets to memory under control of 3 said one or more descriptors.

1	16. The data transfer controller recited in claim 10, comprising a packet
2	manager output circuit for transferring a plurality of packets from memory under control
3	of said one or more descriptors.
1	17. A method comprising:
1	• •
2	receiving a first packet fragment in an interface circuit;
3	receiving a second packet fragment in the interface circuit;
4	transmitting the first and second packet fragments from the interface circuit to a
5	memory under control of the first and second descriptors, respectively;
6	setting a timer to expire a predetermined time interval after the first descriptor for
7	the first packet fragment is released; and
8	writing the first and second descriptors back to memory together as a write-
9	invalidate command if the second descriptor is released before expiration of the timer.
1	18. The method recited in claim 17, further comprising writing the first and
2	second descriptors back to memory separately as a sequence of read-modify-write
3	commands if the second descriptor is not released before expiration of the timer.
1	19. The method recited in claim 17, wherein the first and second descriptors
2	are written back to a cache memory having a line width of 2N, and the first and second
3	descriptors each have a width of N.
1	20. The method of claim 19, wherein the first and second descriptors are
2	written back to a cache memory having a line width of 32B, and the first and second
3	descriptors each have a width of 16B.