Моделирование когнитивных функций человека

Панов Александр, ИСА РАН

Лаб.0-2 «Интеллектуальные динамические системы»

Когнитивная наука: психология и нейрофизиология

- Лат. cognitio познание, шире наука о том, как мыслит человек (высшие животные).
- Подходы bottom-up и top-down: от нейрона к сознанию и от сознания к восприятию.
- Конференции по когнитивным наукам:
 - International Conference on Cognitive Science– ICCS, MKKH,
 - International Conference on Cognitive Science and Psychology – ICCSP,
 - Annual Cognitive Science Conference CogSci,
 - Annual International Conference on Biologically Inspired Cognitive Architectures – BICA.

Изучение мозга и картирование когнитивных функций

Whole brain 1508.91 ± 299.14 g 170.68 ± 13.86 B cells 86.06 ± 8.12 B neurons Cerebral cortex (GM+WM) 84.61 ± 9.83 B non-neur 1232.93 ± 233.68 g 0.99 non-neur/neurons 77.18 ± 7.72 B cells 16.34 ± 2.17 B neurons 60.84 ± 7.02 B non-neur 3.76 non-neur/neurons Cerebellum 154.02 ± 19.29 g 85.08 ± 6.92 B cells Rest of brain 69.03 ± 6.65 B neurons 117.66 ± 45.42 g 16.04 ± 2.17 B non-neur 8.42 ± 1.50 B cells 0.23 non-neur/neurons I 0.69 ± 0.12 B neurons 7.73 ± 1.45 B non-neur 11.35 non-neur/neurons

 Проекты: Brainome (USA), Human
 Brain Project (EU), Одаренный мозг (Россия).

- Нейровизуализация: компьютерная томография, диффузная оптическая томография, (функциональная) магнитнорезонансная томография, магнитоэнцефалография, позитронно-эмиссионная томография.
- Пространственное (100 нейронов) и временное (1c) разрешение.

Экспериментальное исследование когнитивных функций

- Сенсорно-перцептивные процессы: локализация, айтрекинг, маскировка, «иконическая» память.
- Контроль действий: произвольное и не произвольное внимание, слепота к изменениям.
- Память: узнавание, воспроизведение, рабочая память.
- Представление знаний: категоризация, имплицитное знание.
- Коммуникация: развитие навыков речи и чтения, коммуникативные ситуации.
- Мышление: индукция, аналогия, прогноз, решение задач, эвристики, творчество.

Когнитивная наука и искусственный интеллект

- Простое и эффективное решение простых задач.
- Нерешенные вопросы: интеллектуальное управление, целеполагание, ситуационное планирование и распределение ролей в коллективе.

Модели высших когнитивных

функций человека

- Управляющие системы когнитивные архитектуры: 4D/RCS.
- Коннекционистские модели нейронные сети, байесовские сети.
- Компьютерное когнитивное моделирование.
- Задача построить модель когнитивных функций человека, согласующуюся с описаниями данных функций в общей психологии и опирающуюся на данные о строении мозга человека.
- Проверка модели синтез поведения и симуляция активности мозга.

Культурно-историческая теория Выготского

Теория происхождения и развития высших психических функций.

- Социальная среда главный источник развития личности.
- Овладение культурой, способами поведения и мышления.
- Развитие когнитивных функций происходит в первую очередь через использование ребенком «психологических орудий», путем овладения системой знаков-символов, таких как язык, письмо, счет.
- Внешняя деятельность, когда культурные средства имеют предметный вид, по мере отработки сворачивается (интериоризуется) во внутренний план.
- На первом этапе внешней деятельность ребенок все делает в сотрудничестве со взрослыми, «зона ближайшего развития».
- Развитие не ровно-постепенный, а стадиальные процесс.

Знак как орудие психической деятельности

- Знак это искусственно созданный человеком стимул, средство для управления своим поведение и поведением других.
- История развития человечества это история развития знака: чем более развита система знаков в поколении, тем более развиты высшие психические функции.
- Знаки: наскальный рисунок, приметы, жесты, речь, ноты и т.д.

Теория деятельности Леонтьева

 Сознание – набор высших психических (когнитивных) функций, развитых в процессе культурноисторического развития за счет знакового опосредования и отделения предмета действия от предмета потребности (пример – кузнец).

- Деятельность это совокупность действий, направленных на достижение целей.
- Деятельность предметна и направляется мотивом – предметом потребности.
 - Цель представление о желаемом результате.
- Цель, данная в определенных условиях, называется задачей.
- Действия человека предметны, контролируемы и образуют иерархию, их цели носят не только биологический, но и социальный характер.
- Операция способ выполнения действия в зависимости от условий, автоматические навыки.

Структура знака

- Знак информационная единица, представляющая класс явлений (объектов или процессов), обобщенных под одним именем и эквивалентных для субъекта с точки зрения:
 - значения выработанного в процессе культурноисторического развития набора общепринятых действий,
 - образа процедуры обнаружения среди других явлений (процесса категоризации),
 - личностного смысла действий, применимых субъектом в случае данного явления.
 - Несвязанные общим именем компоненты называются соответственно функциональным значением, перцептом и биологическим смыслом компоненты протознака.

Основные принципы работы коры

головного мозга

Маунткасл, Эдельман, Хокинс:

- неокортекс хранит последовательности паттернов,
- неокортекс воспроизводит паттерны автоассоциативно,
- неокортекс хранит паттерны в инвариантной форме,
- неокортекс хранит паттерны иерархически.

Слои и колонки неокортекса

Распознающий блок. Основные

составляющие

Распознающий блок R_i^j уровня j с индексом i:

- измеряет (распознает) некоторый набор признаков,
- измерение сопоставление признаку вероятности того, удается ли измерить (собрать) признак из составляющих его низкоуровневых входных признаков,
- входной вектор вектор вероятностей присутствия низкоуровневых признаков,
- обладает состоянием и характерным временем разрешения.

• Ориентированный ярусный граф $G_R = (V, E)$:

- каждая вершина v, принадлежащую j -ому ярусу графа G_R соответствует распознающим блоком R_i^j уровня j,
- ребро $e=(v,u)\in E$ иерархическая связь между соответствующим вершине v дочерним блоком $R_{i_1}^{j_1}$ и соответствующим вершине u блоком-родителем $R_{i_2}^{j_2}$.

Признак f_k:

- \Box $f_k \dashv R_i^j$ признак f_k измеряется распознающим блоком R_i^j ,
- \Box F_i^{*j} множество всех измеряемых распознающим блоком R_i^j признаков,
- \Box $F_i^{\ j}$ совокупность входных признаков распознающего блока $R_i^{\ j}$.

Распознающий блок. Основные

составляющие

- Функция измерения $\hat{f}(x_1, ..., x_q) = x^*$:
 - □ $x^* \in (0,1)$ вероятность присутствия измеряемого признака f^* ,
 - $x_1, \dots, x_q \in (0,1)$ вероятности присутствия признаков из множества входных признаков F_i^j .
- Набор матрица предсказания $\mathcal{Z}_k = \{Z_1^k, ..., Z_m^k\}$ признака f_k :
 - размерность $q \times h$, где h время разрешения распознающего блока R_i^j , q мощность множества входных признаков F_i^j ,
 - $ar{z}_u^r = \left(z_{u1}^k, ..., z_{uq}^k\right)$ столбец матрицы Z_r^k вектор предсказаний присутствия входных признаков из множества F_i^j в момент времени au + u, при этом $z_{uv}^k \in \{0,1\}$.
- T_i^j множество локальных моментов времени для распознающего блока R_i^j
- Вектор ожиданий $\hat{x}_i^j(t)$:
 - предсказывает входные признаки в следующий момент времени,
 - передается в дочерние распознающие блоки обратная связь.

Распознающий блок как динамическая система

■ В начальный момент времени τ распознающий блок R_i^j получает на вход вектор длины l ожиданий

$$\hat{x}_i^{j+1}(\tau) = \frac{1}{N} \sum_{k \in K^{j+1}} \hat{x}_k^{j+1}(\tau)$$

N — количество родительских блоков, K^{j+1} — множество индексов родительских относительно R_i^j распознающих блоков.

- В каждый момент времени $t \in T_i^j$ распознающий блок R_i^j
 - получает на вход вектор длины l вероятностей присутствия $\bar{x}_i^j(t)$ входных признаков из множества F_i^j ,
 - вычисляет выходной вектор длины l вероятностей $\bar{x}_i^{*j}(t)$ присутствия измеряемых признаков из множества F_i^{*j} ,
 - вычисляет вектор длины q ожиданий $\hat{x}_i^j(t)$ присутствия входных признаков в следующий момент времени.

Распознающий блок

Распознающий блок как динамическая

система

- X_i^{*j} множество возможных мгновенных значений выходных векторов распознающего блока R_i^j ,
- X_i^j множество возможных мгновенных значений векторов вероятностей присутствия входных признаков,
- $\omega: T \to X_i^j$ входное воздействие и $\gamma: T \to X_i^{*j}$ выходная величина в смысле теории динамических систем,
- $\varphi(t; \tau, \hat{x}_i^{j+1}, \omega) = \hat{x}_i^j$ функция переходов для которой множество \hat{X}_i^j интерпретируется как множество состояний распознающего блока R_i^j ,
- $\eta: T \times \hat{X}_i^j \to X_i^{*j}$ выходное отображение, определяющее выходные вектора $\bar{x}_i^{*j}(t) = \eta\left(t, \hat{x}_i^j(t)\right)$.

Динамика распознающего блока R_i^J

Пороговый алгоритм \mathfrak{A}_{th} вычисления функции переходов $\varphi(\tau+1;\tau,\hat{x}_i^{j+1},\omega)$ и выходного отображения $\eta\left(\tau+1,\hat{x}_i^j(\tau+1)\right)$:

- **В**ход: начальный момент времени τ , вектор ожиданий $\hat{x}_i^{j+1}(\tau)$, момент времени $t = \tau + 1$, входное воздействие $\omega(t) = \bar{x}_i^j$, множество активных функций измерения $\hat{F}^* = \emptyset$, множество активных матриц предсказания $Z^* = \emptyset$.
- Шаг 1 (предварительный выбор функций измерения). Для каждого компонента \hat{x}_k^{j+1} вектора $\hat{x}_i^{j+1} = (\hat{x}_1^{j+1}, \hat{x}_2^{j+1}, ..., \hat{x}_l^{j+1})$ проверяем: если $\hat{x}_k^{j+1} \geq c_1$, где $c_1 \in (0,1)$ некоторая константа, то помещаем соответствующую функцию измерения $\hat{f}_k \in \hat{F}_i^j$ в множество активных функций измерения \hat{F}^* : $\hat{F}^* = \hat{F}^* \cup \{\hat{f}_k\}$.
- <u>Шаг 2 (выбор подходящих матриц предсказания).</u> Для каждой функции измерения $\hat{f_k} \in \hat{F}^*$ помещаем в множество подходящих матриц предсказания Z^* такие матрицы предсказания Z_r^k из соответствующего функции измерения множества Z_k , что $\frac{\left\|\bar{z}_1^r \bar{x}_i^j\right\|}{\left\|\bar{z}_1^r\right\| + \left\|\bar{x}_i^j\right\|} < c_2$, где $c_2 \in (0,1)$ некоторая константа, $\|\bar{x}\| = \sum_i |x_i|$ норма вектора.

Динамика распознающего блока R_i^J

• <u>Шаг 3 (вычисление вектора ожиданий).</u> Каждую компоненту \hat{x}_s^j вектора ожиданий $\hat{x}_i^j = (\hat{x}_1^j, \hat{x}_2^j, ..., \hat{x}_q^j)$ вычисляем по формуле среднего от взвешенных предсказаний каждой матрицы из множества Z^* :

$$\hat{x}_{s}^{j} = \frac{1}{|Z^{*}|} \sum_{\hat{f}_{v} \in \hat{F}^{*}} \hat{x}_{v}^{j+1} \cdot z_{2k}^{r}$$

где $|Z^*|$ означает мощность множества подходящих матриц предсказания Z^* , \bar{z}_2^r — 2-й столбец входящей в множество Z^* матрицы предсказаний Z_r^v признака f_v .

- <u>Шаг 4 (вычисление выходного отображения).</u> В момент времени $\tau+1$ каждая компонента x_s^{*j} вектора $\bar{x}_i^{*j} = (x_1^{*j}, ..., x_l^{*j})$ равна нормированному количеству матриц предсказания из множества $|Z^*|$, соответствующих функции измерения \hat{f}_s .
- Выход: вектор ожиданий \widehat{x}_i^j и вектор измеряемых признаков \bar{x}_i^{*j} .

- В том случае, когда иерархия распознающих блоков $\left\{R_i^j\right\}$ содержит все необходимые функции измерения, процесс распознавания представляет собой процесс подъема по иерархии накапливающегося с течением времени результата до такого уровня, на котором будет присутствовать успешно предсказываемый набор признаков.
- При фиксированном моменте времени $t \ R_i^j$ является оператором распознавания $R_i^j (\hat{x}_i^{j+1}, \mathcal{Z}_i^j, \bar{x}_i^j) = \bar{x}_i^{*j}$, далее кратко $R(\hat{x}, \mathcal{Z}, \bar{x}) = \bar{x}^*$.
- Задача $Q(\hat{x}, \bar{x}, \alpha_1, ..., \alpha_l)$ состоит в построении оператора, вычисляющего по поступившему вектору ожиданий \hat{x} и входному вектору \bar{x} значения $\alpha_1, ..., \alpha_l \in \{0,1\}$ присутствия признаков $f_1^*, ..., f_l^*$. Искомый алгоритм \mathcal{A}^* переводит набор (\hat{x}, \bar{x}) в вектор $\bar{\alpha} = (\alpha_1, ..., \alpha_l)$, который называется информационным вектором входного вектора \bar{x} .
- $\{\mathcal{A}\}$ множество алгоритмов: $\mathcal{A}(\hat{x},\bar{x})=\bar{\beta}$, если $\beta_i\in\{0,1\}$, то β_i значение величины α_i , вычисленное алгоритмом \mathcal{A} , если $\beta_i=\Delta$, то алгоритм \mathcal{A} не вычислил значение α_i .

- Алгоритм \mathcal{A} называется корректным для задачи Q, если выполнено равенство $\mathcal{A}(\hat{x},\bar{x})=\bar{\alpha}.$
- <u>Утв. 1.</u> Каждый алгоритм $\mathcal{A} \in \{\mathcal{A}\}$ представим как последовательность выполнения алгоритмов R и C, где $R(\hat{x}, \bar{x}) = \bar{x}^*$, \bar{x}^* вектор действительных чисел, $C(\bar{x}^*) = \bar{\beta}$, $\beta_i \in \{0,1,\Delta\}$.
- Множество алгоритмов $\{\mathcal{A}\}$ порождает множества $\{R\}$ и $\{C\}$, в качестве операторов из множества $\{R\}$ будем рассматривать операторы $R(\hat{x}, \mathcal{Z}, \bar{x})$.
- Решающее правило C^* называется корректным на множестве входных векторов X, если для всякого вектора \bar{x} из X существует хотя бы один числовой вектор \bar{x}^* такой, что $C^*(\bar{x}^*) = \bar{\alpha}$, где $\bar{\alpha}$ информационный вектор входного вектора \bar{x} .
- В множестве операторов $\{R\}$ вводятся операции умножения на скаляр, сложения и умножения: $r' \cdot R'$ (1), R' + R'' (2), $R' \cdot R''$ (3).
- <u>Утв. 2.</u> Замыкание $L\{R\}$ множества $\{R\}$ относительно операций (1) и (2) является векторным пространством.

- Если множество векторов $\{R(\hat{x},\bar{x})\}$, где R пробегает некоторое множество операторов распознавания \mathcal{R} , содержит базис в пространстве числовых векторов длины l, то задача $Q(\hat{x},\bar{x},\bar{\alpha})$ называется полной относительно \mathcal{R} .
- Утв. 3. Если множество задач {Q} состоит лишь из задач, полных относительно R, то линейное замыкание L{R ⋅ C*} (C* - произвольное фиксированное корректное решающее правило, R пробегает множество R) является корректным относительно {Q}.
- След. 1. Пусть {A} совокупность некорректных алгоритмов, {R} соответствующее множество операторов распознавания, C* фиксированное корректное решающее правило. Тогда L{A} = L{R · C*} является корректным относительно множества задач {Q}, если {Q} состоит из задач, полных относительно {R}.
- Будем рассматривать только такие задачи $Q(\hat{x}, \bar{x}, \bar{\alpha})$, для которых удовлетворяется следующее условие: $\exists k$ такое, что x_k является k –ым элементом вектора \bar{x} и $x_k > c_1$.

- Теорема 1. Линейное замыкание $L\{\mathcal{A}\}$ семейства алгоритмов $\{\mathcal{A}\}=\{R\cdot C^*\}$ с произвольным корректным решающим правилом C^* и операторами распознавания R, определенным пороговым алгоритмом \mathfrak{A}_{th} , является корректным на $\{Q\}$.
- Схема доказательства:
 - в силу утв. З достаточно доказать, что произвольная задача $Q \in \{Q\}$ является полной относительно $\{R\}$,
 - \square доказательство полноты Q состоит в прямом построении операторов R_i^{ε} , i=1,2,...,l из $L\{R\}$, переводящих пару $(\hat{x},\bar{x}),\,\hat{x}=(\hat{x}_1,...,\hat{x}_l),\,\bar{x}=(x_1,...,x_q)$ в числовой вектор $\bar{x}_i^*=(x_{i1}^*,...,x_{il}^*)$, в котором $x_{ii}^*=1$, а $\left|x_{ij}^*\right|<\varepsilon$ при $j\neq i$,
 - \Box построение проводится для любого сколь угодно малого ε .
- Интерпретация возможна такая настройка распознающего блока R_i, что он будет правильно классифицировать поступающие с нижнего уровня иерархии результаты.
- По индукции доказательство корректности всей иерархии распознающих блоков.

Распознающий блок как протознак

- $f_1 \sqsubset f_2$ признак f_2 измеряется по признаку f_1 , в том случае, если $f_1 \dashv R_1^j, f_2 \dashv R_2^{j+1}, R_2^{j+1}$ родительский блок по отношению к R_1^j и в множестве матриц предсказания \mathcal{Z}_2 признака f_2 существует как минимум одна матрица Z_r^2 , содержащая некоторый столбец \bar{z}_u^r с элементом $z_{uv}^r \neq 0$, где v индекс признака f_1 во входном векторе вероятностей для распознающего блока R_2^{j+1} .
- Признаки f_c «причина» и f_e «следствие», измеряемые одним распознающим блоком R_0^1 .
- Процедурные признаки признаки, которые измеряются распознающими блоками, выступающими родительскими по отношению к блоку R₀¹, остальные признаки – объектные.
- Для любого процедурного признака выполняются следующие естественные условия:
 - причина всегда предшествует следствию,
 - причина всегда влечет за собой следствие и
 - □ все причины всегда отделены от своих следствий.

Распознающий блок как протознак

• Матрицу предсказания \mathbb{Z}_r^p процедурного признака f_p всегда можно представить в следующем виде:

$$Z_r^p = \left(\bar{z}_1^{r,c}, \dots, \bar{z}_{j_1}^{r,c}, \bar{z}_{j_1+1}^{r,e}, \dots, \bar{z}_{i_1}^{r,e}, \dots, \bar{z}_{i_{k-1}+1}^{r,c}, \dots, \bar{z}_{j_k}^{r,c}, \bar{z}_{j_k+1}^{r,e}, \dots, \bar{z}_{i_k}^{r,e} \right)$$
 $\bar{z}_j^{r,c}$ — столбцы причин, $\bar{z}_i^{r,e}$ — столбцы следствий, k - актностью процедурного признака.

- Любой одноактный процедурный признак f_p, измеряемый распознающим блоком R_i^j, можно представить в виде правила r_p = (F_C(f_p), F_A(f_p), F_D(f_p)), в котором:
 - $F_{\mathcal{C}}(f_p) \subseteq F_i^j$ множество признаков условий правила, в которое входят те признаки, для которых соответствующие элементы столбца причин больше c_1 ;
 - $F_A(f_p) \subseteq F_i^j$ множество добавляемых правилом признаков, в которое входят те признаки, для которых соответствующие элементы столбца причин меньше c_1 , а элементы столбца следствий больше;
 - $F_D(f_p) \subseteq F_i^j$ множество удаляемых правилом признаков, в которое входят те признаки, для которых соответствующие элементы столбца причин больше c_1 , а элементы столбца следствий меньше.

Распознающий блок как протознак

- Если f_1 объектный признак, то подмножество $\tilde{p}(f_1)$ множества $\{f_k\}$ таких признаков, что $\forall f_i \in \tilde{p}(f_1)$ $f_i \sqsubset f_1$, называется перцептом объектного признака f_1 .
- Метрика на множестве перцептов \tilde{P} :

$$\rho_p(\tilde{p}(f_1), \tilde{p}(f_2)) = \min_{Z_r^1 \in \mathcal{Z}_1} \min_{Z_s^2 \in \mathcal{Z}_2} \frac{1}{q} \sum_{\bar{z}_u^r \in Z_r^1, \bar{z}_u^s \in Z_s^2} \frac{\|\bar{z}_u^r - \bar{z}_u^s\|}{\|\bar{z}_u^r\| + \|\bar{z}_u^s\|}$$

 $(f_1 \ {\sf u} \ f_2 \ {\sf u}$ змеряются одним и тем же распознающим блоком $R_i^j).$

- Если f_1 объектный признак, f_2 процедурный, $f_1 \sqsubset f_2$ и в столбце \bar{z}_u^r с элементом $z_{uv}^r \neq 0$, где v индекс признака f_1 во входном векторе вероятностей для признака f_2 , элемент z_{uc}^r , соответствующий признаку f_c , также не равен 0, то пара $\langle f_2, v \rangle$ называется функциональным значением объектного признака f_1 .
- Выделение в множестве признаков, признаков, описывающих внутреннее состояние субъекта, ведет к определению личностного смысла.

Когнитивные функции. Образование

нового знака

- У субъекта имеется опыт наблюдения, представимый в виде отношения Ψ_p^m : $\widetilde{p}\Psi_p^m\widetilde{m}$, или $\Psi_p^m(\widetilde{p})=\widetilde{m}$, в том случае, если $\widetilde{p}\in\widetilde{P}$ является перцептом некоторого признака f, и если $\widetilde{m}\in\widetilde{M}$ является функциональным значением того же признака f.
- Шаг 1. Из культурно-исторической среды выдается пара «имя значение», т.е. указаны процедурный признак f_p и имя n.
- <u>Шаг 2.</u> Субъект формирует на основе имеющегося опыты перцепт $\tilde{p}^{(0)}$ и на основе отношения Ψ_p^m функциональное значение $\tilde{m}^{(0)}$.
- $\underline{\text{Шаг 3.}}$ Если $\widetilde{m}^{(0)}$ не достаточно близок к \widetilde{m} , то шаг 2 повторяется до получения достаточно близкого функционального значения $\widetilde{m}^{(i)}$ или исчерпания подходящих признаков.
- <u>Шаг 4.</u> В случае успешного формирования перцепта, происходит доопределение отношения Ψ_p^m парой (\tilde{p}, \tilde{m}) , где \tilde{p} предел последовательности $\langle \tilde{p}^{(0)}, \tilde{p}^{(1)}, ... \rangle$.
- <u>Шаг 5.</u> На основе прецедентов действия субъекта с опосредуемым объектом формируется личностный смысл.

Когнитивные функции. Образование

нового знака

Схема формирования перцепта $\widetilde{p}^{(i)}$ и функционального значения $\widetilde{m}^{(i)}$ (алгоритм \mathfrak{A}_{pm}) в случае одноактного процедурного признака f_p :

- начальное значение $\tilde{p}^{(i)} = F_{\mathcal{C}}(f_p)$ при i = 0,
- включаем в множество $M^{(i)}$ функциональные значения, составляющие пару, принадлежащую отношению Ψ^m_p , с признаками из $\tilde{p}^{(i)}$,
- если в множестве $M^{(i)}$ есть пара противоречивых функциональных значений (для признаков которых не выполняется условие параллельности: $F_D(f_1^p) \cap F_A(f_2^p) = \emptyset$ и $F_D(f_2^p) \cap F_A(f_1^p) = \emptyset$), то исключаем такое функциональное значение, для которого множество $F_A \cap F_A(f_p)$ меньше по мощности,
- матрица $Z^{(i)}$ для процедурного признака функционального значения $\widetilde{m}^{(i)}$ составляется из столбцов матриц предсказаний признаков из $M^{(i)}$.

Теорема 2. Последовательность функциональных значений $\langle \widetilde{m}^{(0)}, \widetilde{m}^{(1)}, ... \rangle$, которая строится с помощью алгоритма \mathfrak{A}_{pm} для функционального значения \widetilde{m} , сходится к \widetilde{m} .

Когнитивные функции. Самоорганизация на множестве знаков

- Отношения на множестве образов: эквивалентности, включения, сходства, противопоставления, операция обобщения.
- Отношения на множестве личностных смыслов: поглощения, противопоставления, агглютинации, операция обобщения.
- Отношения на множестве значений: эквивалентности, сходства, ситуационное, сценарное, операция обобщения.
- Картины мира субъекта по преобладающему компоненту
- $H = \langle H_P, H_A, H_M \rangle$ семиотическая сеть, где
 - \Box $H_P = \langle 2^P, \Re_P \rangle$ семантическая сеть на образах,
 - \Box $H_A = \langle 2^A, \Re_A \rangle$ семантическая сеть на личностных смыслах,
 - \Box $H_M = \langle 2^M, \mathfrak{R}_M \rangle$ семантическая сеть на значениях.

Когнитивные функции. Целеполагание

• Знак s_1 обладает личностным смыслом a_1 , таким, что интерпретирующее его действие в множестве добавляемых признаков p_{add} содержит множество признаков p^* знака s^* .

- p_2 максимальное по мощности множество признаков знака s_2 , являющееся подмножеством p_{cond} .
- \bar{p}_2 объединение признаков образа p_2 знака s_2 с каким-либо признаком (одним или несколькими) из множества $p_{cond} \setminus p_2$ (расширенный образ).
- Соответствующий экземпляру значения μ₃ личностный смысл α₃ интерпретируется таким действием, что в множество признаков его эффекта включено множество признаков образа p₃ самого знака s₃.
- Сценарий $M(s_3, \mu_3)$ совпадает с каким-либо элементарным сценарием $M(s_2, \mu_2')$
- Личностный смысла a_2 , соответствует значению μ_2' знака s_2 .

Когнитивные функции. Пример целеполагания.

Практическое применение. Моделирование внимания

- Задача быстрого поиска с учетом контекста,
 применение в навигационных системах и мобильных роботах (соревнования «найди чайник на кухне»).
- Вектор ожиданий передаваемый родительским распознающим блоком R_i дочерним блоком является управляющим воздействием, ускоряющим процесс распознавания в дочернем блоке.
- Постановка задачи аналогична постановке задачи в теории идентификации модели.

Практическое применение. Коллективные действия

- Представление о другом участнике коллектива – модель «другого».
- Обобщение действий от условий их совершения.
- Распознавание действий.
- Обучение действиям по наблюдению за другими участниками коллектива.
- Представления о цели и способностях других участников коллектива.

Практическое применение. Прогнозирование поведения

 Поведение психолога-консультанта, предсказание значения ресурса

Спасибо за внимание!

Моделирование когнитивных функций человека Панов Александр, ИСА РАН, лаб. 0-2, <u>pan@isa.ru</u>