

Graph analysis

Semyon Grigorev

Saint Petersburg State University

April 28, 2022

Research areas

- High-performance graph analysis
 - Formal languages constrained path querying
 - ► High-level languages for high-performance computing
- Path problems with constraints
 - Formal languages constrained path querying
 - High-level languages for high-performance computing
- Graph databases
 - Formal languages constrained path querying
 - ► High-level languages for high-performance computing

Team

- Semyon Grigorev (Lead)
 - ▶ PhD (2016)
 - Associate professor (2016, SPbSU)
 - s.v.grigoriev@spbu.ru
- Ekaterina Shemetova
 - ▶ PhD student
 - Path problems with constraints
- Rustam Azimov
 - PhD student
 - Linear algebra based graph analysis

- ▶ High-performance graph analysis
- Graph databases
- dblp: https://dblp.org/pid/181/9903.html

- Fine-grained complexity
- Dynamic graph problems

- GraphBLAS API
- Algebraic path problem

Team: Master Students

- Alexandra Istomina
 - Master student
 - ► Fine-grained complexity
- Vladimir Kutuev
 - Master student
 - Linear algebra based graph analysis
- Julia Susanina
 - Master student
 - Linear algebra based graph analysis

- ▶ Path problems with constraints
- Algebraic path problem

- GraphBLAS API
- Parallel programming

- Probabilistic graph analysis
- GPGPU programming

High-Performance Graph Analysis

- Linear algebra based algorithms for graph analysis
 - ► Parallel algorithms on CPU and GPGPU
 - ► Sparse linear algebra for graph analysis
 - ▶ GraphBLAS API¹

High-Performance Graph Analysis

- Linear algebra based algorithms for graph analysis
 - Parallel algorithms on CPU and GPGPU
 - Sparse linear algebra for graph analysis
 - GraphBLAS API¹
- Research directions
 - GraphBLAS-based algorithms design, implementation and evaluation
 - Portable multi-GPGPU implementation of GraphBALS-like API
 - GraphBLAS API analysis

¹https://graphblas.org/

Path Problems With Constraints: Algebraic Path Problems

- Semiring-like structures to specify constraints on paths
 - ► Reachability boolean semiring
 - ▶ Shortest paths tropical semiring
 - **.** . . .

Path Problems With Constraints: Algebraic Path Problems

- Semiring-like structures to specify constraints on paths
 - Reachability boolean semiring
 - ▶ Shortest paths tropical semiring
- Linear algebra friendly algorithms
 - ► Transitive closure using matrix-matrix multiplication
 - APSP using matrix-matrix multiplication
 - ▶ BFS-like traversals using matrix-vector multiplication

Path Problems With Constraints: Algebraic Path Problems

- Semiring-like structures to specify constraints on paths
 - Reachability boolean semiring
 - ▶ Shortest paths tropical semiring
 - **.** . . .
- Linear algebra friendly algorithms
 - ► Transitive closure using matrix-matrix multiplication
 - ► APSP using matrix-matrix multiplication
 - ▶ BFS-like traversals using matrix-vector multiplication
 - **.** . . .
- Compositionality
 - Having two semirings one can create a new one
 - Single solution for similar problems
 - ★ Generic solution
 - ★ Configurable solution

- Particular case of algebraic path problem
 - ► Multiplication is not associative
 - ▶ Multiplication is not commutative

- Particular case of algebraic path problem
 - Multiplication is not associative
 - Multiplication is not commutative
 - **.** . . .
- Examples
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)

- Particular case of algebraic path problem
 - Multiplication is not associative
 - Multiplication is not commutative
 - •
- Examples
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
- Applications
 - Graph analysis
 - Interprocedural static code analysis
 - Graph database querying

- Particular case of algebraic path problem
 - Multiplication is not associative
 - Multiplication is not commutative
 - **>** ...
- Examples
 - Regular path querying (RPQ)
 - Context-free path querying (CFPQ)
- Applications
 - Graph analysis
 - Interprocedural static code analysis
 - Graph database querying
- Research directions
 - New algorithms development
 - ► Complexity analysis
 - ► New classes of languages investigation
 - ▶ High performance algorithms implementation and evaluation

Our Results

- Tools
 - ► Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
 - ► SPbLA: library of GPGPU-powered sparse boolean linear algebra operations

Our Results

- Tools
 - Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
 - ▶ SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
 - CFPQ_PyAlgo: set of GraphBLAS-based FLPQ algorithms
 - ▶ LDBC Graphalytics extension for evaluation of formal language constrained path querying

Our Results

Tools

- Spla: sparse linear algebra framework for multi-GPU computations based on OpenCL
- ▶ SPbLA: library of GPGPU-powered sparse boolean linear algebra operations
- CFPQ_PyAlgo: set of GraphBLAS-based FLPQ algorithms
- ▶ LDBC Graphalytics extension for evaluation of formal language constrained path querying
- GLL4Graph: CFPQ for Neo4j
- CFPQ for RedisGraph
- Papers (> 10)
 - SPbLA: The Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations (GrAPL@IPDPS)
 - Evaluation of the context-free path querying algorithm based on matrix multiplication (GRADES-NDA@SIGMOD)
 - ▶ Multiple-Source Context-Free Path Querying in Terms of Linear Algebra (EDBT, Core A)
 - Context-free path querying by matrix multiplication (GRADES-NDA@SIGMOD)

Possible Ways for Collaboration

- Algebraic Path Problem framework applicability for network analysis
 - ▶ Which constraints can be specified in terms of semirings?
 - **★** Length minimality
 - * Nodes to visit
 - *
 - Is it flexible enough?
- High-performance network analysis
 - GraphBLAS-based solution
 - Algorithms development and analysis
 - ► Algorithms implementation and evaluation