Q&A Time

Scatters: Ramer, R. Bout, V. (2016). A sprwy of the applications of test meloig in francial damae. Basel S. F. Fux. A. Dav. A. d. Serbert, V. A. (2018). The Solid Probabilistic rescuting: *Press in the service of 2016 for an 40th Application. Piller range, R. A., S. stampaya, G. (2006). The Solid Probabilistic Rescriptor, R. A., S. stampaya, G. (2006). The Solid Probabilistic Rescriptor, R. A., S. stampaya, G. (2006). The Solid Probabilistic Rescriptor, R. A., S. stampaya, G. (2006). The Solid Probabilistic Rescriptor, R. A., S. stampaya, G. (2006). The Solid Probabilistic Solid Rescriptor, R. S. Solid Rescriptor, R. Solid Rescriptor, R. S. Solid Rescriptor, R. Solid Rescr

O&A Time

Enhancement of the system

- · Integrate Diverse Data Sources
- · Utilize Advanced Machine Learning and AI Techniques
- · Improve Data Preprocessing Techniques
- · Incorporate Adaptive Learning and Model Retraining

Recommendation systems in Finance

Chepara Mykhailo **Fakulty of Informatics and Infromation** Technologies

Issues with the system

- · Overfitting to Historical Data
- · Data Quality and Availability Issues
- Model Complexity and Interpretability
- · Scalability and Computational Demands

- Model Complexity
- Size and Type of Data
- Computational Resources
- Data Preprocessing and Feature Engineering
- · Training Approach

System deployment conditions

· High-Quality Data · Robust Preprocessing · Well-Selected Features · Effective Algorithms and Models Minimal Noise

Thank you for your attention

Recommendation system

- worldwide in almost every scope of human
- · In Finance recommendation systems recommend stock market offers.
- · Offers are chosen based off of predicted

Recommendation systems in Finance

Chepara Mykhailo
Fakulty of Informatics and Infromation
Technologies

Recommendation system

- Recommendation systems are used worldwide in almost every scope of human interaction.
- In Finance recommendation systems recommend stock market offers.
- Offers are chosen based off of predicted values

Architecure of a simple system

System deployment conditions

- High-Quality Data
- Robust Preprocessing
- Well-Selected Features
- Effective Algorithms and Models
- Minimal Noise

Time for "training"

- Model Complexity
- Size and Type of Data
- Computational Resources
- Data Preprocessing and Feature Engineering
- Training Approach

Training time according to model	
Model Type	Training Duration
Simple Models	Seconds to minutes
Tree-based Models	Minutes to hours
Basic Neural Networks	Hours
Advanced Neural Networks	Hours to days
Ensemble Models	Hours to days
Get the data • Created with Datawrapper	

Issues with the system

- Overfitting to Historical Data
- Data Quality and Availability Issues
- Model Complexity and Interpretability
- Scalability and Computational Demands

Enhancement of the system

- Integrate Diverse Data Sources
- Utilize Advanced Machine Learning and AI Techniques
- Improve Data Preprocessing Techniques
- Incorporate Adaptive Learning and Model Retraining

Sources:

Kumar, R. & Ravi, V. (2016). A survey of the applications of text mining in financial domain.

Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. (2018).

Jiang, Z., Li, Z., & Shi, G. (2016). Gneiting, T., & Katzfuss, M. (2014). "Probabilistic forecasting." Annual Review of Statistics and Its Application.

Mittermayer, M.-A., & Knolmayer, G. F. (2006).

Molnar, C. (2019). Interpretable Machine Learning.

Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015).

Li, X., Xie, H., Wang, R., Wang, Y., Deng, X., & Luo, Z. (2014).

Zhang, Y., & Pan, X. (2016). "Using alternative data sources in financial modeling." Journal of Financial Data Science. Dean, J., & Ghemawat, S. (2004). "MapReduce: Simplified data processing on large clusters." OSDI.

Hochreiter, S., & Schmidhuber, J. (1997). "Long short-term memory." Neural Computation. Chandrashekar, G., & Sahin, F. (2014). "A survey on feature selection methods." Computers & Electrical Engineering.

Breiman, L. (1996). "Bagging predictors." Machine Learning.

Zhang, S., & Lee, W. Y. (2019). "Data preprocessing techniques for time series." Journal of Time Series Analysis.

Sharpe, W. F. (1966). "Mutual fund performance." The Journal of Business.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014)

Lundberg, S. M., & Lee, S.-I. (2017). "A unified approach to interpreting model predictions." Advances in Neural Information Processing Systems.

Q&A Time

Thank you for your attention