Examen la analiză matematică 1 an I, sem. I - seria 10 22.01.2021

Numele şi prenumele

Grupa

Punctaj seminar

Subiectul 1. a) Fie $A = \left\{1 - \frac{1}{2n}: n \in \mathbb{N}^*\right\} \cup (9, 12]$ o submulțime a mulțimii numerelor reale \mathbb{R} . Determinati interiorul, aderența, mulțimea punctelor de acumulare și frontiera mulțimii A. Decideți dacă mulțimea A este compactă sau conexă. Justificați!

b) Calculați:

$$\lim_{n \to \infty} \left(\frac{1}{n+1 - \frac{1}{\sqrt{1}}} + \frac{1}{n+2 - \frac{1}{\sqrt{2}}} + \dots + \frac{1}{n+n - \frac{1}{\sqrt{n}}} \right).$$

Subiectul 2. a) Studiați convergența seriei

$$\sum_{n=1}^{\infty} \frac{4 \cdot 8 \cdot 12 \dots \cdot (4n)}{6 \cdot 11 \cdot 16 \dots \cdot (5n+1)} x^{2n}$$

în funcție de valorile parametrului $x \in (0, \infty)$.

b) Studiaţi convergenţa şirului $\left(\frac{2^{n}\cdot 4\cdot 8\cdot 12\cdot ...\cdot (4n)}{5^{n}\cdot 6\cdot 11\cdot 16....\cdot (5n+1)}\right)_{n>0}$ şi calculaţi limita sa (în caz că aceasta există).

Subiectul 3. Considerăm funcția $f:[0,\infty)\longrightarrow \mathbb{R}$,

$$f(x) = \begin{cases} x \cos(\frac{1}{x}) + \frac{\ln(x^2 + x + 1)}{2x}, & \text{dacă } x \in (0, \infty), \\ \frac{1}{2}, & \text{dacă } x = 0. \end{cases}$$

- i) Studiați continuitatea și derivabilitatea funcției f.
- ii) Studiați uniform continuitatea funcției f.

Subiectul 4. Considerăm șirul de funcții $f_n:[0,\infty)\longrightarrow \mathbb{R}$,

$$f_n(x) = \frac{xe^{2x+1}}{x^2 + n^2},$$

pentru orice $x \in [0, \infty)$ și $n \in \mathbb{N}^*$.

Studiați convergența simplă și uniformă a șirului $(f_n)_{n\geq 1}$.

Subjectul 5. Fie $f_n, g_n : [0,1] \longrightarrow \mathbb{R}$ funcții definite prin

$$f_n(x) = \int_0^1 |x^n - t^n| \, dt,$$
pentru orice $x \in [0,1], \ n \in \mathbb{N} \ \ \text{şi}$

¹Toate subiectele sunt obligatorii. Toate răspunsurile trebuie justificate. Timp de lucru 2h. Fiecare subiect valoreaza 10 puncte (1 punct din oficiu). Nota pe lucrare este media aritmetică a notelor pe subiecte. Succes!

$$g_n(x) = \begin{cases} f_n(x), & \text{dacă} \ x \in [0, 1] \cap \mathbb{Q}, \\ x - x^2, & \text{dacă} \ x \in [0, 1] \setminus \mathbb{Q}. \end{cases}$$

i) Determinați

$$\inf_{x \in [0,1]} f_n(x)$$
 şi $\sup_{x \in [0,1]} f_n(x)$.

ii) Determinați numărul $n \in \mathbb{N}$ pentru care funcția g_n are cel puțin un punct în care este derivabilă.