Assignment – 2

Data Visualization and Pre-processing

Assignment Date	22 September 2022	
Student Name	Mr. T. Logavarthan	
Student Roll Number	142219106048	
Maximum Marks	2 Marks	

TASKS:

- 1. Download the dataset
- 2. Load the dataset

- 3. Perform Below Visualizations.
 - Univariate Analysis

Bi-Variate Analysis

• Multivariate Analysis

4. Perform descriptive statistics on the dataset

```
✓ () data
  D.
          RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
          1 15634602 Hargrave 619 France Female 42 2 0.00
                                                                        1 1 1
                                                                                                        101348.88
                                            Spain Female 41
                                                              1 83807.86
                            Onio 502
                                           France Female 42
      2
                  15619304
                                                             8 159660.80
                                                                                                                   1
                                                                                                         113931.57
       3
                  15701354
                            Boni
                                      699
                                            France Female 39
                                                             1 0.00
                                                                               2
                                                                                       0
                                                                                                         93826.63
                                                                                                                   0
               5 15737888 Mitchell 850
                                           Spain Female 43 2 125510.82
                                                                                                         79084.10
             9996 15606229 Obijiaku 771
                                           France Male 39 5 0.00
      9995
                                                                                                         96270.64
      9996
                                      516
                                                             10 57369.61
             9997
                 15569892 Johnstone
                                           France Male 35
                                                                                                         101699.77
             9998 15584532 Liu 709 France Female 36 7 0.00
                                      772 Germany Male 42
      9999 10000 15628319 Walker 792 France Female 28 4 130142.79
                                                                                                         38190.78 0
     10000 rows x 14 columns
```

Standard Deviation = 10.49

#To find statistics of all numerical Datas round(data.describe(),2)

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.0
mean	5000.50	15690940.57	650.53	38.92	5.01	76485.89	1.53	0.71	0.52	100090.24	0.2
std	2886.90	71936.19	96.65	10.49	2.89	62397.41	0.58	0.46	0.50	57510.49	0.4
min	1.00	15565701.00	350.00	18.00	0.00	0.00	1.00	0.00	0.00	11.58	0.0
25%	2500.75	15628528.25	584.00	32.00	3.00	0.00	1.00	0.00	0.00	51002.11	0.0
50%	5000.50	15690738.00	652.00	37.00	5.00	97198.54	1.00	1.00	1.00	100193.92	0.0
75%	7500.25	15753233.75	718.00	44.00	7.00	127644.24	2.00	1.00	1.00	149388.25	0.0
max	10000.00	15815690.00	850.00	92.00	10.00	250898.09	4.00	1.00	1.00	199992.48	1.0

```
[32] data.loc[data['EstimatedSalary']>60000]
         RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
         1 15634602 Hargrave 619 France Female 42 2 0.00 1 1 1 1 101348.88
              2 15647311 Hill
                                    608
                                         Spain Female 41
                                                         1 83807.86
                                                                                                112542.58
     2 3 15619304 Onio 502 France Female 42 8 159660.80
                                                                                               113931.57
             4 15701354
                          Boni 699 France Female 39 1 0.00
                                                                        2
                                                                                                93826.63
      3
      4 5 15737888 Mitchell 850 Spain Female 43 2 125510.82
     9992 9993 15657105 Chukwualuka 726 Spain Male 36 2 0.00
            9995 15719294 Wood
     9994
                                  800 France Female 29
                                                       2
                                                                                                167773.55
     9995 9996 15606229 Obijiaku 771 France Male 39 5 0.00
                                                                                       0 96270.64
            9997 15569892 Johnstone
                                                                                                101699.77
     9996
                                   516 France Male 35 10 57369.61
                                                                                                         0
           9999 15682355 Sabbatini 772 Germany Male 42 3 75075.31
                                                                                                92888.52
     9998
```

/ [34] data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
7.57			
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtyp	es: float64(2), i	nt64(9), object(3)

5. Handle the Missing values.

memory usage: 1.1+ MB

```
/ [36] data.isnull().sum()
      RowNumber
                  0
      CustomerId
                      0
      Surname
      CreditScore
      Geography
      Gender
      Age
                     0
      Tenure
      Balance
      NumOfProducts 0
      HasCrCard 0
IsActiveMember 0
      EstimatedSalary 0
      Exited
      dtype: int64
```

6. Find the outliers and replace the outliers

```
y [39] out = data.quantile(q =(0.25,0.75))
          out

             RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 🎉
        0.25 2500.75 15628528.25 584.0 32.0 3.0 0.00 1.0 0.0 0.0 51002.1100 0.0
       0.75 7500.25 15753233.75 718.0 44.0 7.0 127644.24
                                                                            2.0
                                                                                      1.0
                                                                                                    1.0 149388.2475 0.0
[41] iq = out.loc[0.75]-out.loc[0.25]
       RowNumber
                          4999.5000

        RowNumber
        4999.5000

        CustomerId
        124705.5000

        CreditScore
        134.0000

        Age
        12.0000

        Tenure
        4.0000

        Balance
        127644.2400

        NumOfProducts
        1.0000

      NumOfProducts 1.0000
HasCrCard 1.0000
IsActiveMember 1.0000
EstimatedSalary 98386.1375
Exited
       Exited
dtype: float64
[42] lower = out.loc[0.25]-1.5*iq
             lower
             RowNumber
                                        -4.998500e+03
            CustomerId 1.544147e+07
CreditScore 3.830000e+02
Age 1.400000e+01
            Tenure -3.000000e+00
Balance -1.914664e+05
NumOfProducts -5.000000e+00
HasCrCard -1.500000e+00
IsActiveMember -1.500000e+00
             EstimatedSalary -9.657710e+04
                                          0.000000e+00
             Exited
             dtype: float64
    [43] upper = out.loc[0.75]+1.5*iq
              upper
              RowNumber
                                                1.499950e+04
                                               1.594029e+07
              CustomerId
                                              9.190000e+02
              CreditScore
              Age
                                                6.200000e+01
                                               1.300000e+01
              Tenure
              Balance
                                               3.191106e+05
                                              3.500000e+00
              NumOfProducts
              HasCrCard
                                                2.500000e+00
              IsActiveMember
                                               2.500000e+00
              EstimatedSalary
                                               2.969675e+05
              Exited
                                                 0.000000e+00
              dtype: float64
```

data.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWa """Entry point for launching an IPython kernel.

5.000500e+03 RowNumber CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 5.012800e+00 Tenure Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01

dtype: float64

```
(45] data['Age'] = np.where(data['Age']>87,40,data['Age'])
data['Tenure'] = np.where(data['Tenure']>87,31,data['Tenure'])
```

sns.boxplot(data['Tenure'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni
FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7ff5c603a050>

7. Check for Categorical columns and perform encoding.

8. Split the data into dependent and independent variables.

	RowNumber	CustomerId	Surname
0	1	15634602	Hargrave
1	2	15647311	Hill
2	3	15619304	Onio
3	4	15701354	Boni
4	5	15737888	Mitchell
	200	2.20	000
995	9996	15606229	Obijiaku
996	9997	15569892	Johnstone
997	9998	15584532	Liu
998	9999	15682355	Sabbatini
999	10000	15628319	Walker

10000 rows x 3 columns

C>

```
[56] # Independent
      y = data['Exited']
      y
      0
             1
      1
             0
      2
             1
      3
             0
      4
             0
      9995
             0
      9996
             0
      9997
             1
      9998
             1
      9999
             0
      Name: Exited, Length: 10000, dtype: int64
  9. Scale the independent variables

[58] x= data_main.drop(columns=['Surname'],axis=1)
[59] names = x.columns
✓ [60] names
      'EstimatedSalary', 'Exited', 'Geography_France', 'Geography_Germany',
            'Geography_Spain'],
           dtype='object')
[61] from sklearn.preprocessing import scale
  x = scale (x)
  array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.99720391,
              -0.57873591, -0.57380915],
             [-1.7315312 , -0.60653412, -0.44003595, ..., -1.00280393,
              -0.57873591, 1.74273971],
             [-1.73118479, -0.99588476, -1.53679418, ..., 0.99720391,
              -0.57873591, -0.57380915],
             [ 1.73118479, -1.47928179, 0.60498839, ..., 0.99720391,
              -0.57873591, -0.57380915],
             [ 1.7315312 , -0.11935577, 1.25683526, ..., -1.00280393,
               1.72790383, -0.57380915],
             [ 1.73187761, -0.87055909, 1.46377078, ..., 0.99720391,
              -0.57873591, -0.57380915]])
```

(63) x = pd.DataFrame(x,columns=names)

10. Split the data into training and testing

COLAB LINK:

 $https://colab.research.google.com/drive/1v5GSQB_R4UiRDTSUiZZweKCYpPN2nblT\#scrollTo=eyzUNIQQvCza$