谓词转换器的相容性*>

陈仪香 孙莉萍

(上海师范大学数学科学学院 上海200234)

摘 要 本文在 Dijkstra 的卫式语言的基础上,定义了一种特殊的语言,称为弱随机卫式语言,并讨论了该语言所决定的谓词特换器的相容性。

关键调 谓词特换器的相容性,弱随机卫式语言,不确定算子

1 引言

Dijkstra 在他的"Discipline of programming"[1]一书中提出了谓词转换器的概念。他 把程序看成是一台机器,谓词看成这台机器在 工作前后应满足的条件,工作前满足的条件称 为前置条件,工作后满足的条件称为后继条 件,在纯 Hoare 逻辑中,这种条件的基本式为 {P}S{R},其中 P 是前置条件,S 是机器,R 是 后继条件,其表明 P 是充分条件,它保证了当 S 执行完毕后,有后继条件 R 成立。Dijkstra 推 进了一步,要求 R 是充要的。因此 P 可由 S 和 R 唯一确定,记为 wp(S,R),它是前置条件称 为最弱前置条件。最弱的意思是说,若有另一 谓词 P'作为前置条件时也能使 S 的执行终止 并满足后继条件 R,则定有 P'→P。这样 wp (S,)可看成是程序 S 的语义,它是谓词到谓词 的函数,故程序S又称为谓词转换器。

本文第一作者在文[2]中讨论了谓词转换器的相容性,引入了相容谓词转换器,建立了它的拓扑语义,本文在 Dijkstra 的卫式语言的基础上,定义了一种特殊的语言,称为弱随机卫式语言,表明用该语言写成的程序都是相容的,即其谓词转换器是相容的。

2 谓词转换器的相容性

Dijkstra 利用最弱前置条件 wp(S,)定义

了如下三个衡量程序设计语言合理与否的条件,称为健康条件:

 H_1 :对于任意 S 有:

 $wp(S,F)\approx F$.

这就是说任何一种语言的任何一种语句,都不能由某个初始状态出发达到正常终止,而没有计算结果,所以又称做奇迹排除律.

 H_2 :对于任意 S 和任意两个后继条件 P 和 Q 有:

 $P \rightarrow Q$,

则有:

 $wp(S,P)\rightarrow wp(S,Q)$.

H₃:对于任意S和任意两个后继条件P和Q有:

 $(wp(S,P) \land wp(S,Q)) = wp(S,P \land Q)$. 由健康条件可以推出下面的性质:

 H_4 :对于任意 S 和任意两个后继条件 P 和 Q 有:

(wp(S,P) V wp(S,Q))→wp(S,P VQ).

周巢尘在文[4]中举例表明一般情况下
wp(S,P VQ)/→(wp(S,P,) V wp(S,P) V wp
(S,Q)),其例如下.

 $S \equiv if \sim <(x,0) \rightarrow 1 \Rightarrow x \square \sim <(0,x) \rightarrow 0$ $\Rightarrow x fi 则$

 $wp(S,x=1) \equiv (x \geqslant 0 \rightarrow T) \land (x \leqslant 0 \rightarrow F) \equiv 0$ $x \geqslant 0$

 $wp(S,x=0)\equiv(x\geqslant 0\rightarrow F) \land (x\leqslant 0\rightarrow T)\equiv$

^{*)}本文得到国家自然科学基金(69873034),上海市曙光计划(99SG46),以及上海市高等学校青年发展基金(98QN)共同资助。 陈仪香 教授,博士,博士后,研究方向:论城理论及其在程序设计语言中的应用.孙莉萍 硕士研究生,专业:应用数学,研究方向:计算机科学中的数学问题。

x < 0,

而

wp(S,x=1 ∀x=0)≡T 所以

 $wp(S, x=1 \lor x=0) \not\longrightarrow wp(S, x=1) \lor wp(S, x=0).$

若 S 在每时刻可能的结果只有一个,即程序执行图是一线性列,则

 H'_{A} :对于确定 S 和任意两个后继条件 P 和 Q 有:

 $(wp(S,P) \lor wp(S,Q)) = wp(S,P \lor Q).$

我们关注的语言是不确定性语言,即每个时刻的可能结果不只一个,程序执行图是一树,Dijkatra引入的卫式语言是这种不确定性语言的核心,我们将在下节中讨论。

定义1 设 P,Q 是两个谓词,若有 P \wedge Q = F,则称 P 与 Q 为不相交的,其并称为不兼容并,记为 P \cup Q。

定义2 任意机器 S, 若对于任意的 P 和 Q, 只要 P 与 Q 不相交, 就有

wp(S,PЦQ)=(wp(S,P)∪ wp(S,Q)), 则称机器 S 是相容的。

3 弱随机卫式语言

Dijkstra 在文[1]中引入了描述不确定性程序的卫式语言,现叙述在此,这是用 BNF 定义卫式语言语法:

(repetitive construct)::=do (guarded command set)
 od

(guarded command set)::= (guarded command) { □
 (guarded command)}

其中口是卫式命令语言中使用的非确定 算子,Dijkstra 的卫式语言的不确定性是由这个算子产生的。如 $B_1 \rightarrow SL_1 \square B_2 \rightarrow SL_2$,当 B_1 和 B_2 均取值为真时, SL_1 , SL_2 都可执行,其可能的结果用 $SL_1(\sigma)$ 和 $SL_2(\sigma)$ 来表示。即使 SL_1 , SL_2 仅能产生一个结果,程序 $ifB_1 \rightarrow SL_1 \square B_2 \rightarrow SL_2$ fi 也可能拥有两个结果,因此若程序在执 行时选择任一结果作为下一步的执行前提,就会产生程序执行的随机性和不确定性。特别当 SL₁, SL₂产生的结果相互矛盾时,则由于不同的选择会导致完全不同和相反的结果。因此我们应限制这种随机性或不确定性。于是我们要求每个时刻 SL₁的结果集和 SL₂的结果集是相交的,即 SL₁和 SL₂会产生部分相同的结果,这些部分相同的结果具有 SL₁和 SL₂的共性,因此它们作为下一步执行前提的侯选人是恰当的。为此我们引入下面的概念以及一类卫式语言。

定义3 若 $B_1 \rightarrow SL_1 \square B_2 \rightarrow SL_2 \square \cdots \square B_n \rightarrow SL_n$ 中的不确定算子 \square , 对每一时刻 σ , 只要 B_1 (σ) 与 $B_2(\sigma)$ 取真值, 就有 $S_1(\sigma) \cap S_2(\sigma) \neq 0$, 则称不确定算子 \square 是弱随机的。

定义4 不确定算子目是弱随机的,此卫 式语言就称为弱随机卫式语言。

定理5 用弱随机卫式语言写成的程序是相容的。

下面就此语言的各个命令进行证明。首先做一个说明:当在状态 σ 有谓词 P 成立,则记为 $\sigma \models P$

1)对于"skip"和"abort"命令,相容性可由 定义直接得出。

wp $(skip, P \sqcup Q) = P \sqcup Q = wp(skip, P) \sqcup wp(skip, Q)$

 $wp(abort, P \sqcup Q) = F = F \sqcup F$

=wp(abort,P) \sqcup wp(abort,Q)

2)对于复合结构,有

 $wp(S_1;S_2,P \sqcup Q=wp(S_1,wp(S_2,P \sqcup Q)))$

 $= wp(S_1, wp(S_2, P) \sqcup wp(S_2, Q)) = wp$

 $(S_1, wp(S_2, P)) \sqcup wp(S_1, wp(S_2, Q))$

 $= wp(S_1; S_2, P) \sqcup wp(S_1; S_2, Q)$

3)对于选择结构

令"IF"是如下的命令

 $ifB_1 \rightarrow SL_1 \square B_2 \rightarrow SL_2 \square \cdots \square B_n \rightarrow SL_n fi$

则

 $wp(IF,P \sqcup Q) = wp(IF,P) \sqcup wp(IF,Q)$ 证明:σ为任一状态,且 $\sigma \models wp(IF,P \sqcup Q) = BB \land (B_1 \rightarrow wp(SL_1,$ $P \sqcup Q)) \wedge \cdots \wedge (B_n \rightarrow wp(SL_n, P \sqcup Q))$ 则 σ 一定满足 k 个"guard" B_i ,即 $B_{ii}(\sigma) = T_i B_{ij}$ $(\sigma) = T, \cdots B_{i_{\bullet}}(\sigma) = T$ 故 $\sigma \models BB \land wp(SL_{i_k}, P \cup Q) \land \cdots \land wp(SL_{i_k}, P)$ ∪ **Q**) =BB $\land [wp(SL_{i_1}, P) \sqcup wp(SL_{i_1}, Q)] \land \cdots \land$ $wp[(SL_{i_k},P) \sqcup wp(SL_{i_k},Q)]$ $\equiv BB \land wp(SL_{i_1}, P) \land wp(SL_{i_2}, P) \land \cdots \land wp$ (SL_{i,}, P) ⊔ ··· $\sqcup (\cdots wp(SL_{i_k}, P) \land wp(SL_{i_k}, Q) \cdots) \sqcup \cdots$ \sqcup (BB \land wp (SL_i, Q) \land wp (SL_i, Q) \land ··· $\wedge wp(SL_{i_{k}},Q)$ 上式中的第二式是由 SLi,,SLi,,…,SLi,满足相 容性得到的. 下面说明对于任意的 s 和 t,s≠t,σ | BB Λwp(SLi,,P)Λwp(SLi,,Q)否则若 $\sigma \models BB \land wp(SL_i, P) \land wp(SL_i, Q)$ 则 $SL_i \sigma \models Q SL_i \sigma \models P$ 而 $SL_i \circ \bigcap SL_i \circ \neq 0$, 所以存在σ'∈SLiσ∩SLiσ, $\sigma' \models Q \quad \sigma' \models P$ 郜 σ'⊨PΛQ 这与P,Q不相交矛盾。故有 $\sigma \not\models BB \land wp(SL_i, P) \land wp(SL_i, Q))$ 此时 $\sigma \models (BB \land wp(SL_{i_1}, P) \land wp(SL_{i_2}, P) \land \cdots \land wp$ $(SL_{i_k}, P)) \sqcup (BB \land wp(SL_{i_k}, Q) \land wp(SL_{i_k}, Q)) \sqcup (BB \land wp($ $Q) \wedge \cdots \wedge wp(SL_{i_k},Q)$ $\models wp(IF,P) \sqcup wp(IF,Q)$ 而另一方面自然成立,故有 $wp(IF,P \sqcup Q) = wp(IF,P) \sqcup wp(IF,Q)$ 4)对于循环结构 令"DO"是如下的命令 $doB_1 \rightarrow SL_1 \square B_2 \rightarrow SL_2 \square \cdots \square B_n \rightarrow SL_n od$

饲样也有 wp(DO,P U Q) ≔wp(DO,P)

证明:由定义 $wp(DO,P \sqcup Q) = (\exists k,k \geqslant 0, H_k(P \sqcup$ Q)) $H_k(P \sqcup Q) = wp(IF, H_{k-1}(P \sqcup Q)) \vee H_o$ (P U Q) 下证 $\forall k \geqslant 0 \quad H_k(P \sqcup Q) = H_k(P) \sqcup H_k(Q)$ 当 k=0时 $H_0(P \sqcup Q) = (P \sqcup Q) \land \sim (\exists j:1 \leq j \leq n:B_j)$ $= [P \land \sim (\exists j: 1 \leq j \leq n: B_i)] \cup [Q$ $\wedge \sim (\exists j: 1 \leq j \leq n: B_j)]$ $=H_0(P) \sqcup H_0(Q)$ 假设当k=n-1时等式成立,则当k=n时 $H_n(P \sqcup Q) = wp(IF, H_{n-1}(P \sqcup Q)) \vee H_0(P$ U **Q**) $= wp(IF, H_{n-1}(P) \cup FH_{n-1}(Q))$ **VH₀(P ⊔ Q)** $= wp(IF, H_{n-1}(P)) \sqcup wp(IF,$ $H_{\bullet-1}(Q)) \vee H_{\bullet}(P) \sqcup H_{\bullet}(Q)$ $=H_{\bullet}(P) \sqcup H_{\bullet}(Q)$ 因此, $w_{P}(DO,P \sqcup Q) = (\exists k,k \geqslant 0, H_{k}(P \sqcup$ Q)) $= (\exists k, k \geqslant 0, H_k(P))$

(DO,Q)讨论 由上面的讨论可以看出,我们所引 入的弱随机卫式语言具有这样的特点:它具有 不确定性和随机性,但在具体执行过程中,每 一步都可产生一些"好"的结果,这样结果具有 一定的共性,选这些结果中的任何一个作为下 一步执行的输入状态是令人满意和可接受的, 因此这样的程序在随机性方面是相当好的,它 介于确定程序和随机程序之间,是可操作和实 现的。我们将在另文中研究弱随机语言的论域 处理方法.

 \sqcup (\exists k, k \geqslant 0, H_k

 $= wp(DO, P) \sqcup wp$

(Q))

参考文献

Dijkstra E W. A Discipline of programming, Prentice, Prentice-Hall, 1976

陈仪香. 谓词转换器的拓扑语义. 数学进展(已接受)

屈延文. 形式语义学基础与形式说明. 科学出版社,1998 周巢尘.形式语义学引论.制南出版社,1985

5 陆妆岭, 计算机语言的形式语义, 北京:科学出版社, 1990

· 184 ·

 \sqcup wp(DO,Q)