

Bridging the Gap: Decentralized Grassroots Networks for Disaster Relief and Education

Dan Bachar

Tuesday 25th February, 2025

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich

• Lacking internet infrastructure in disaster zones

- Lacking internet infrastructure in disaster zones
- Censorship restricts Self-organized, egalitarian and democratic communication

- Lacking internet infrastructure in disaster zones
- Censorship restricts Self-organized, egalitarian and democratic communication
- Keep schedule for children despite chaos

- Lacking internet infrastructure in disaster zones
- Censorship restricts Self-organized, egalitarian and democratic communication
- Keep schedule for children despite chaos
- Provide a way to communicate with loved ones

- Lacking internet infrastructure in disaster zones
- Censorship restricts Self-organized, egalitarian and democratic communication
- Keep schedule for children despite chaos
- Provide a way to communicate with loved ones

Figure 1: Client-Server

Figure 2: Distributed Grassroots Network

· Wireless mesh networks

- · Wireless mesh networks
- Grassroots networking (SPANs, multi-hop, p2p)

- · Wireless mesh networks
- Grassroots networking (SPANs, multi-hop, p2p)
- OLSR, B.A.T.M.A.N, Babel

- · Wireless mesh networks
- Grassroots networking (SPANs, multi-hop, p2p)
- OLSR, B.A.T.M.A.N, Babel
- CRDTs

- Wireless mesh networks
- Grassroots networking (SPANs, multi-hop, p2p)
- OLSR, B.A.T.M.A.N, Babel
- CRDTs
- Cordial dissemination

Author	Year	Title
Project SPAN	2017	Smart Phone Ad-hoc networking

Author	Year	Title
Project SPAN Project Briar	2017 2018	Smart Phone Ad-hoc networking Briar

Author	Year	Title
Project SPAN	2017	Smart Phone Ad-hoc networking
Project Briar	2018	Briar
M.R. Albrecht, J. Blasco, R.B. Jensen, L. Mareková	2021	Mesh Messaging

Author	Year	Title
Project SPAN	2017	Smart Phone Ad-hoc networking
Project Briar	2018	Briar
M.R. Albrecht, J. Blasco, R.B. Jensen, L. Mareková	2021	Mesh Messaging
P.S. Almeida, E. Shapiro	2024	The Blocklace

Author	Year	Title
Project SPAN	2017	Smart Phone Ad-hoc networking
Project Briar	2018	Briar
M.R. Albrecht, J. Blasco, R.B. Jensen, L. Mareková	2021	Mesh Messaging
P.S. Almeida, E. Shapiro	2024	The Blocklace
E. Shapiro	2024	Grassrots Systems: Concept, Ex Applications

Author	Year	Title
Project SPAN	2017	Smart Phone Ad-hoc networking
Project Briar	2018	Briar
M.R. Albrecht, J. Blasco, R.B. Jensen, L. Mareková	2021	Mesh Messaging
P.S. Almeida, E. Shapiro	2024	The Blocklace
E. Shapiro	2024	Grassrots Systems: Concept, Ex Applications
I. Keidar, O. Naor, E. Shapiro	2022	Cordial Miners

1. Use SPAN to realize grassroots distributed system based on mobile hotspots

- 1. Use SPAN to realize grassroots distributed system based on mobile hotspots
- 2. Communicate with network peers

- 1. Use SPAN to realize grassroots distributed system based on mobile hotspots
- 2. Communicate with network peers
- 3. Access content from peers within the network

- 1. Use SPAN to realize grassroots distributed system based on mobile hotspots
- 2. Communicate with network peers
- 3. Access content from peers within the network
- 4. Optionally, enable external connectivity when available

Research Questions

 RQ1 How do blocklace-based CRDTs degrade on (offline) wireless mesh networks as a function of peer density?

Research Questions

- RQ1 How do blocklace-based CRDTs degrade on (offline) wireless mesh networks as a function of peer density?
- 2. RQ2 What are the key factors that influence the goodput of a grassroots social network implemented using the blocklace?

Architecture

Key components

- Protocol Smartphone-compatible mesh protocol (optionally supported by both iOS and Android)
- Content Distribution Propagate content and routing info using cordial dissemination, enabling self-healing and (valid) data recovery
- **UI**: tools to access network peers (optional)

Methodology

- Protocols Use networking testbed to test ad-hoc wireless protocols
- Storage Use Blocklace-supported storage to store network information and content
- Prototyping Develop a prototype app to set up and test the mesh network
- Testing Test in a controlled environment, conduct field tests
- Evaluation Measure latency, throughput, reliability, node discovery time and power comsumption

Vision

Create infrastructure for grassroots, information-centric networking

Vision

- · Create infrastructure for grassroots, information-centric networking
- Enable large-scale offline communication

Vision

- Create infrastructure for grassroots, information-centric networking
- Enable large-scale offline communication
- Facilitate access to education contents in areas without centralized infrastructure

That's it!

Questions?