2 פתרון תרגיל מספר 12 אינפי

שם: מיכאל גרינבאום, **ת.ז:** 211747639

2019 בינואר 2019

 $(-\infty,\infty)$ ו וב(a,b), במ"ש במ"ש התכנסות ובדיקת התכנסות התכנסות ובלי, תחומי התכנסות איל:

תחילה נחשב את f, יהי $x\in\mathbb{R}$, נשים לב כי

$$\lim_{n\to\infty}\sqrt[n]{\left|\frac{e^n\cdot x}{n^n}\right|}=\lim_{n\to\infty}\sqrt[n]{|x|}\cdot\sqrt[n]{\left|\left(\frac{e}{n}\right)^n\right|}=\lim_{n\to\infty}\frac{e}{n}=0$$

 $x\in\mathbb{R}$ לכן ממבחן השורש הטור $\sumrac{e^n\cdot x}{n^n}=x\cdot\sum\left(rac{e}{n}
ight)^n$ מתכנס ולכן ממבחן לכן גוברי אורש ההתכנסות הוא $I=\mathbb{R}$ אור תחום ההתכנסות הוא $f_k\left(x
ight)=\sum_{n=1}^krac{e^n\cdot x}{n^n}$, $f\left(x
ight)=\sum_{n=1}^krac{e^n\cdot x}{n^n}$

$$f_k\left(x
ight)=\sum_{n=1}^{k}rac{e^n\cdot x}{n^n}$$
 , $f\left(x
ight)=\sumrac{e^n\cdot x}{n^n}$ גדיר

נשים לב כי $x \in (a,b)$, יהי יהי במ"ש בקטע במ"ש. i

$$\sum \left| \frac{e^n \cdot x}{n^n} \right| \le \sum \left| \frac{e^n}{n^n} \right| \cdot \max \left\{ \left| a \right|, \left| b \right| \right\}$$

ראינו כי הטור $\{|a|\,,|b|\} \cdot \max\{|a|\,,|b|\}$ בהחלט ולכן מתכנס, $(a,b) = \sum_{n} \frac{e^n \cdot x}{n^n} \cdot \max\{|a|\,,|b|\}$ וויירשטראס הטור הטור $\sum_{n} \frac{e^n \cdot x}{n^n}$ לא במ"ש בקטע $\sum_{n} \frac{e^n \cdot x}{n^n}$, ווi. עתה נראה כי הטור $\sum_{n} \frac{e^n \cdot x}{n^n}$ לא במ"ש בקטע $\forall x \in (-\infty,\infty)$, $\forall N < k < m \in \mathbb{N}$ מתקיים לכן מקריטריון קושי $\exists N \in \mathbb{N}$

$$\left| f_k\left(x \right) - f_m\left(x \right) \right| < 1$$

נבחר
$$x=rac{(N+2)^{N+2}}{e^{N+2}}$$
 , $k=N+1, m=N+2$ נשים לב כי

$$|f_n(x) - f_m(x)| = \left| \sum_{k=n+1}^m \frac{e^n \cdot x}{n^n} \right| = \left| \sum_{k=N+2}^{N+2} \frac{e^n \cdot x}{n^n} \right| = \frac{e^{N+2}}{(N+2)^{N+2}} \cdot \frac{(N+2)^{N+2}}{e^{N+2}} = 1 < 1$$

 $(-\infty,\infty)$ סתירה, כלומר הטור $\sum rac{e^n \cdot x}{n^n}$ לא במ"ש בקטע

$$(-\infty,\infty)$$
בו $[a,b]$ ב"ט במ"ט במ"ט בדיקת בדיקת בדיקת , $\sum \ln\left(1+rac{x^2}{n^2}
ight)$ (ב) הוכחה:

תחילה נשים לב כי

$$y \ge 0 \Leftrightarrow y+1 \ge 1 \Leftrightarrow \frac{1}{1+y} \le 1 \Leftrightarrow \ln\left(1+y\right) = \int_0^y \frac{1}{1+y} dy \le \int_0^y 1 = y$$

עתה יהי $x\in\mathbb{R}$, נשים לב

$$\sum \left|\ln\left(1+\frac{x^2}{n^2}\right)\right| = \sum \ln\left(1+\frac{x^2}{n^2}\right) \leq \sum \frac{x^2}{n^2} = x^2 \cdot \sum \frac{1}{n^2} = \left|x^2\right| \cdot \sum \left|\frac{1}{n^2}\right|$$

(ברור שהוא מתכנס). $x^2 \cdot \sum \frac{1}{n^2}$ הטור עם הההשוואה לכן ממבחן $x\in\mathbb{R}$ נסיק כי $\sum\ln\left(1+rac{x^2}{n^2}
ight)$ מתכנס בהחלט ולכן מתכנס לכל קושר $\int\ln\left(1+rac{x^2}{n^2}
ight)$ כלומר תחום ההתכנסות הוא $f_k\left(x
ight)=\ln\left(1+rac{x^2}{n^2}
ight)$, $f\left(x
ight)=\ln\left(1+rac{x^2}{n^2}
ight)$ נגדיר

$$f_{k}\left(x
ight)=\ln\left(1+rac{x^{2}}{n^{2}}
ight)$$
 ,f $\left(x
ight)=\ln\left(1+rac{x^{2}}{n^{2}}
ight)$ גדיר

נשים לב כי $x \in [a,b]$, יהי ,
[a,b] עתה במ"ש במ"ש .i

$$\sum \left| \ln \left(1 + \frac{x^2}{n^2} \right) \right| \le \sum \left| \ln \left(1 + \frac{\max \left\{ \left| a \right|, \left| b \right| \right\}^2}{n^2} \right) \right| \le \left| \max \left\{ \left| a \right|, \left| b \right| \right\}^2 \right| \cdot \sum \left| \frac{1}{n^2} \right|$$

, בהחלט ולכן בהחלט בהחלט $\left|\max\left\{\left|a\right|,\left|b\right|\right\}^{2}\right|\cdot\sum\left|\frac{1}{n^{2}}\right|$ בהחלט ראינו כי ראינו

[a,b]ולכן מקריטריון M ויירשטראס הטור $\left|\ln\left(1+rac{x^2}{n^2}
ight)
ight|$ מתכנס במ"ש ב

, $(-\infty,\infty)$ עתה נראה כי הטור $\sum \ln\left(1+rac{x^2}{n^2}
ight)$ לא במ"ש בקטע .ii $\forall x\in(-\infty,\infty) \ , \forall N< k< m\in\mathbb{N}$ כך ש $\exists N\in\mathbb{N}$ מתקיים לכן מקריטריון קושי

$$\left| f_k \left(x \right) - f_m \left(x \right) \right| < \ln \left(2 \right)$$

נבחר $x=(N+2)^2$,k=N+1, m=N+2 נשים לב כי

$$|f_n(x) - f_m(x)| = \left| \sum_{k=n+1}^m \ln\left(1 + \frac{x^2}{n^2}\right) \right| = \left| \sum_{k=N+2}^{N+2} \ln\left(1 + \frac{x^2}{n^2}\right) \right| = \ln\left(1 + \frac{(N+2)^2}{(N+2)^2}\right) = \ln\left(2\right) < \ln\left(2\right)$$

 $(-\infty,\infty)$ סתירה, כלומר הטור $\sum \ln\left(1+rac{x^2}{n^2}
ight)$ לא במ"ש בקטע

מ.ש.ל.ב.☺

2. פתרון:

R הוא גם $\sum_{n=1}^{\infty} n \cdot a_n \cdot x^{n-1}$ של ההתכנסות ההיוס אנ"ל: (א)

נשים לב כי

$$\sum_{n=1}^{\infty} n \cdot a_n \cdot x^{n-1} = \sum_{n=0}^{\infty} (n+1) \cdot a_{n+1} \cdot x^n$$

, $R=\left(\limsup \sqrt[n]{b_n}\right)^{-1}$ הוא התכנסות של התכנסות של הוא כי רדיוס ההתכנסות אוא בי $\sum b_n x^n$ הוא הוא כלומר נסמן את רדיוס ההתכנסות של הוא $\sum_{n=0}^\infty a_n\cdot x^n$ הוא התכנסות את רדיוס ההתכנסות של הוא אוא בי בי $\sum_{n=1}^\infty n\cdot a_n\cdot x^{n-1}$ הוא הוא נסמן את רדיוס ההתכנסות של הוא בי אוא הוא בי בי אוא הוא בי אוא בי אוא הוא בי אוא בי אוא

$$R' = \left(\limsup \sqrt[n]{(n+1) \cdot a_{n+1}}\right)^{-1} = \lim_{n \to \infty} \sqrt[n]{n+1} \cdot \left(\limsup \sqrt[n]{a_{n+1}}\right)^{-1}$$
$$= 1 \cdot \left(\limsup \sqrt[n]{a_n}\right)^{-1} = 1 \cdot R = R$$

כלומר R'=R כנדרש

@.ש.ל.א.©

R בו $\sum_{n=0}^{\infty}\frac{a_n}{n}\cdot x^{n+1}$ של ההתכנסות הוכחה: הוכחה: נשים לב כי

$$\sum_{n=0}^{\infty} \frac{a_n}{n} \cdot x^{n+1} = \sum_{n=1}^{\infty} \frac{a_{n+1}}{n+1} \cdot x^n$$

, $R=\left(\limsup\sqrt[n]{b_n}\right)^{-1}$ הוא התכנסות של התכנסות של האינו כי רדיוס ההתכנסות של הוא הא $\sum b_nx^n$ הוא האתכנסות כל האינו כי רדיוס ההתכנסות של הארבי ב' $\sum_{n=0}^\infty \frac{a_n}{n}\cdot x^{n+1}$ הוא ההתכנסות את רדיוס ההתכנסות של הארבי ב' $\sum_{n=0}^\infty \frac{a_n}{n}\cdot x^{n+1}$

$$R' = \left(\limsup_{n \to \infty} \sqrt[n]{\frac{a_{n+1}}{n+1}}\right)^{-1} = \left(\lim_{n \to \infty} \sqrt[n]{\frac{1}{n+1}}\right)^{-1} \cdot \left(\limsup_{n \to \infty} \sqrt[n]{a_{n+1}}\right)^{-1}$$
$$= 1 \cdot \left(\limsup_{n \to \infty} \sqrt[n]{a_{n+1}}\right)^{-1} = 1 \cdot R = R$$

כלומר R'=R כנדרש

מ.ש.ל.ב.☺

. פתרון:

(א) אייל: רדיוס ההתכנסות של $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ ותחום ההתכנסות הנקודתית הוכחה: נשים לב כי

$$\sum_{n=0}^{\infty} \left| \frac{x^{2n}}{(2n)!} \right| \le \sum_{n=0}^{\infty} \left| \frac{x^n}{n!} \right| = e^{|x|}$$

, $\sum_{n=0}^\infty \left|\frac{x^n}{n!}\right|$ אמבחן ההשוואה עם הטור מתכנס לכל מתכנס לכל מתכנס לכל $x\in\mathbb{R}$ מתכנס לכל $\sum_{n=0}^\infty \left|\frac{x^{2n}}{(2n)!}\right|$ אולכן הטור $\sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}$ מתכנס בהחלט לכל $x\in\mathbb{R}$ ותחום ההתכנסות הוא $I=\mathbb{R}$

מ.ש.ל.א.☺

(ב) **צ"ל:** רדיוס ההתכנסות של $\sum_{n=0}^{\infty} \frac{3^n + 4^n}{5^n + 6^n} x^n$ ותחום ההתכנסות הנקודתית הוכחה:

נשים לב כי $R=rac{1}{\limsup \sqrt[q]{a_n}}$ וגם נשים לב כי

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{3^n + 4^n}{5^n + 6^n}} = \lim_{n \to \infty} \sqrt[n]{\frac{\left(\frac{3}{6}\right)^n + \left(\frac{4}{6}\right)^n}{\left(\frac{5}{6}\right)^n + \left(\frac{6}{6}\right)^n}} = \lim_{n \to \infty} \sqrt[n]{\frac{\left(\frac{3}{6}\right)^n + \left(\frac{4}{6}\right)^n}{\left(\frac{5}{6}\right)^n + 1}}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{\left(\frac{3}{6}\right)^n + \left(\frac{4}{6}\right)^n}}{\sqrt[n]{\left(\frac{5}{6}\right)^n + 1}} = \frac{\lim_{n \to \infty} \sqrt[n]{\left(\frac{3}{6}\right)^n + \left(\frac{4}{6}\right)^n}}{1} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{3}{6}\right)^n + \left(\frac{4}{6}\right)^n}$$

$$= \lim_{n \to \infty} \left(\frac{4}{6}\right) \sqrt[n]{1 + \left(\frac{3}{6}\right)^n \cdot \left(\frac{6}{4}\right)^n} = \frac{2}{3} \cdot \lim_{n \to \infty} \sqrt[n]{1 + \left(\frac{3}{4}\right)^n} = \frac{2}{3}$$

לכן

$$\limsup \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n} = \frac{2}{3}$$

$$R = \frac{1}{\limsup \sqrt[n]{a_n}} = \frac{1}{\frac{2}{3}} = \frac{3}{2}$$

עתה נחשב קצוות

$$\begin{split} \sum_{n=0}^{\infty} \frac{3^n + 4^n}{5^n + 6^n} \cdot \left(\frac{3}{2}\right)^n &= \sum_{n=0}^{\infty} \frac{9^n + 12^n}{10^n + 12^n} = \sum_{n=0}^{\infty} \frac{\left(\frac{3}{4}\right)^n + 1}{\left(\frac{5}{6}\right)^n + 1} \stackrel{\lim_{n \to \infty}}{=} \frac{\left(\frac{3}{4}\right)^n + 1}{\left(\frac{5}{6}\right)^n + 1} \neq 0}{\operatorname{doesn't \ converge}} \\ \sum_{n=0}^{\infty} \frac{3^n + 4^n}{5^n + 6^n} \cdot \left(-\frac{3}{2}\right)^n &= \sum_{n=0}^{\infty} \left(-1\right)^n \cdot \frac{9^n + 12^n}{10^n + 12^n} \\ &= \sum_{n=0}^{\infty} \left(-1\right)^n \cdot \frac{\left(\frac{3}{4}\right)^n + 1}{\left(\frac{5}{6}\right)^n + 1} \stackrel{\lim_{n \to \infty} (-1)^n \cdot \frac{\left(\frac{3}{4}\right)^n + 1}{\left(\frac{5}{6}\right)^n + 1} \neq 0}{\operatorname{doesn't \ converge}} \end{split}$$

, $x=rac{3}{2},rac{-3}{2}$ כלומר הטור לא $\sum_{n=0}^{\infty}rac{3^n+4^n}{5^n+6^n}\cdot x^n$ כלומר החום ההתכנסות הנקודתית הוא לכן תחום ההתכנסות הנקודתית הוא

מ.ש.ל.ב.ּ ⊙

(ג) אייל: רדיוס ההתכנסות של $\sum_{n=0}^{\infty} \frac{3^{n^2}+4^n}{5^n+6^n} x^n$ של ההתכנסות הנקודתית הוכחה:

הוכחה: נשים לב כי $R=rac{1}{\lim\sup \sqrt[n]{a_n}}$ וגם נשים לב כי

$$\begin{split} \lim_{n \to \infty} \sqrt[n]{a_n} &= \lim_{n \to \infty} \sqrt[n]{\frac{3^{n^2} + 4^n}{5^n + 6^n}} = \lim_{n \to \infty} \sqrt[n]{3^{n^2}} \cdot \sqrt[n]{\frac{1 + 4 \cdot \frac{1}{3^{n^2}}}{5^n + 6^n}} = \\ &= \lim_{n \to \infty} \sqrt[n]{3^{n^2}} \cdot \frac{\lim_{n \to \infty} \sqrt[n]{1 + 4 \cdot \frac{1}{3^{n^2}}}}{\lim_{n \to \infty} \sqrt[n]{5^n + 6^n}} \geq \lim_{n \to \infty} \sqrt[n]{3^{n^2}} \cdot \frac{1}{\lim_{n \to \infty} \sqrt[n]{5^n + 5^n}} \\ &= \lim_{n \to \infty} \sqrt[n]{3^{n^2}} \cdot \frac{1}{5} = \infty \\ &\Rightarrow \lim_{n \to \infty} \sqrt[n]{a_n} = \infty \end{split}$$

לכן

$$\limsup_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n} = \infty$$

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}} = \frac{1}{\infty} = 0$$

 $\left[0,0\right] =I$ ותחום ההתכנסות הוא R=0

מ.ש.ל.ג.☺

(ד) **צ"ל:** רדיוס ההתכנסות של $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^{2n+1}$ ותחום ההתכנסות הנקודתית **הוכחה:** נשים לב כי

$$a_n = \frac{-1}{1}, 0, \frac{1}{2}, 0, \frac{-1}{3}, 0, \frac{1}{4}, 0, \frac{-1}{5}, 0, \dots$$

לכן

$$\lim_{n \to \infty} \sqrt[2n]{a_{2n}} = \lim_{n \to \infty} \sqrt[2n]{0} = 0$$

$$\lim_{n \to \infty} \sqrt[4n+3]{a_{4n+3}} = \lim_{n \to \infty} \sqrt[4n+3]{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\sqrt[4n+3]{n}} = 1$$

$$\lim_{n \to \infty} \sqrt[4n+1]{a_{4n+1}} = \lim_{n \to \infty} \sqrt[4n+1]{\frac{-1}{n}} \le \lim_{n \to \infty} \sqrt[n]{\frac{1}{n}} = 1$$

לכן

$$\limsup_{n \to \infty} \sqrt[n]{a_n} = \sup \left\{ 0, 1, \lim_{n \to \infty} \sqrt[4n+1]{a_{4n+1}} \right\} = 1$$

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}} = \frac{1}{1} = 1$$

עתה נחשב קצוות, נחשב קצוות, נשים לב כי $\sum_{n=1}^\infty \frac{(-1)^n}{n} \cdot 1^{2n+1} = \sum_{n=1}^\infty \frac{(-1)^n}{n}$ מתכנס כי הוא טור לייבניץ, נשים לב כי $\sum_{n=1}^\infty \frac{(-1)^n}{n} \cdot (-1)^{2n+1} = -\sum_{n=1}^\infty \frac{(-1)^n}{n}$ מתכנס כי הוא טור לייבניץ, לכן R=1 ותחום ההתכנסות הוא R=1

תחום ההתכנסות של $\sum_{n=1}^{\infty} 5^{n \cdot \ln(n)} x^{2n+1}$ של ההתכנסות הנקודתית (ה) אייל: רדיוס ההתכנסות של

נשים לב כי $R=rac{1}{\limsup \sqrt[n]{a_n}}$ וגם נשים לב כי

$$\lim_{n \to \infty} \sqrt[2n+1]{a_{2n+1}} = \lim_{n \to \infty} \sqrt[2n+1]{5^{n \cdot \ln(n)}} = \lim_{n \to \infty} 5^{\frac{n \cdot \ln(n)}{2n+1}} = \lim_{n \to \infty} 5^{\frac{\ln(n)}{2+\frac{1}{n}}} \ge \lim_{n \to \infty} 5^{\frac{\ln(n)}{2}} = \infty$$

$$\lim_{n \to \infty} \sqrt[2n]{a_{2n}} = \lim_{n \to \infty} \sqrt[2n]{0} = 0$$

לכן

$$\limsup \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n} = \sup \{\infty, 0\} = \infty$$

$$R = \frac{1}{\limsup \sqrt[n]{a_n}} = \frac{1}{\infty} = 0$$

 $\left[0,0
ight]=I$ לכן הוא התחום ההתכנסות ותחום R=0

מ.ש.ל.ה.©

תיתום ההתכנסות של ההתכנסות של אול: רדיוס ההתכנסות של החרכנסות של אול: רדיוס ההתכנסות של אולים ותחום ההתכנסות של החרכנסות של אולים ותחום ההתכנסות של החרכנסות של החרכנסות הנקודתית

נשים לב כי $R=rac{1}{\limsup \sqrt[R]{a_n}}$ וגם נשים לב כי

$$\lim_{n \to \infty} \sqrt[n^2]{a_{n^2}} = \lim_{n \to \infty} \sqrt[n^2]{a^n} = \lim_{n \to \infty} a^{\frac{n}{n^2}} = \lim_{n \to \infty} a^{\frac{1}{n}} = \begin{cases} 0 & a = 0\\ 1 & a > 0\\ -1 & a < 0 \end{cases}$$

, כמעט תמיד, אחרת $\lim_{k \to \infty} \lim_{n \to \infty} \frac{1}{n_k} = 0$ כמעט תמיד אז כמעט תמיד מתכנסת, אם היא $a_{n_k} = a_{l^2}$ סדרה מתכנסת, אם היא

$$\lim_{k \to \infty} a_{n_k} = \lim_{n \to \infty} \sqrt[n_k]{a_{n_k}} = \begin{cases} 0 & a = 0 \\ 1 & a > 0 \\ |-1| & a < 0 \end{cases}$$

לכן

$$\limsup \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n} = \begin{cases} 0 & a = 0 \\ 1 & a \neq 0 \end{cases}$$

$$R = \frac{1}{\limsup \sqrt[n]{a_n}} = \begin{cases} \infty & a = 0 \\ 1 & a \neq 0 \end{cases}$$

לכן אם a=0 אחרת a=0 ותחום ההתכנסות הוא a=0 אחרת $a\neq 0$ אחרת $a\neq 0$ לכן אם $a\neq 0$ אחרת $a\neq 0$ אחרת $a\neq 0$ למים לב כי כי הטור a=0 בa=0 לב כי כי הטור a=0 בa=0 בa=0 לב כי כי הטור a=0 בa=0 לב כי כי הטור a=0 בa=0 לומר אם a=0 אז a=0 אותחום ההתכנסות הוא a=0 או a=0 או a=0 או ההתכנסות הוא a=0 אחרת a=0 ותחום ההתכנסות הוא a=0 ההתכנסות הוא a=0 אחרת a=0 ותחום ההתכנסות הוא a=0 אחרת a=0 ותחום ההתכנסות הוא a=0

₪.ט.ל.ו.

ותחום ההתכנסות של הביוס אניים אותחום $\sum_{n=1}^{\infty}a^{n^2}\cdot x^n$ של ההתכנסות הנקודתית (ז) אייל: ההתכנסות ההתכנסות הנקחה:

נשים לב כי $R=rac{1}{\limsup \sqrt[n]{a_n}}$ וגם נשים לב כי

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a^{n^2}|} = \lim_{n \to \infty} \left| a^{\frac{n^2}{n}} \right| = \lim_{n \to \infty} |a^n| = \begin{cases} 0 & -1 < a < 1 \\ \infty & |a| > 1 \\ 1 & a = 1, -1 \end{cases}$$

לכן

$$\limsup \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{a_n} = \begin{cases} 0 & -1 < a < 1 \\ \infty & |a| > 1 \\ 1 & a = 1, -1 \end{cases}$$

$$R = \frac{1}{\limsup \sqrt[n]{a_n}} = \begin{cases} \infty & -1 < a < 1 \\ 0 & |a| > 1 \\ 1 & a = 1, -1 \end{cases}$$

לכן אם [0,0]=I ותחום ההתכנסות הוא $R=\infty$, $a\in(-1,1)$ אם [0,0]=I אז [0,0]=I ותחום ההתכנסות הוא [0,0]=I אחרת [0,0]=I נשים לב כי עבור [0,0]=I מתקיים [0,0]=I

$$\lim_{n \to \infty} a^{n^2} \cdot x^n = 1, -1 \neq 0$$

לכן התנאי ההכרחי להתכנסות לא מתקיים, כלומר $\sum a^{n^2} \cdot x^n$ לכן לכן להתכנסות לא ותחום ההתכנסות R=1 ,a=-1,1 לכן עבור R=1 ,a=-1,1 מ.ש.ל.ז. \odot

4. צ"ל: טור חזקות שתחום ההתכנסות הוא x=1,-1 ובx=1,-1 מתכנס בתנאי הוכחה: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^{2n}$ נבחר

$$\lim_{n \to \infty} \sqrt[2n]{|a_{2n}|} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{(-1)^n}{n}\right|} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} = 1$$

$$\lim_{n \to \infty} \sqrt[2n+1]{|a_{2n+1}|} = \lim_{n \to \infty} \sqrt[2n+1]{0} = 0$$

$$\Rightarrow \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \sup\{0, 1\} = 1$$

$$\Rightarrow R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} = 1$$

לכן רדיוס ההתכנסות הוא 1, נשים לב כי $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} \cdot 1^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n} \cdot 1^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n} \cdot (-1)^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ נשים לב כי $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} \cdot (-1)^n$, כלומר תחום ההתכנסות הוא $\sum_{n=0}^{\infty} \left| \frac{(-1)^n}{n} \cdot 1^{2n} \right| = \sum_{n=0}^{\infty} \left| \frac{(-1)^n}{n} \cdot (-1)^{2n} \right| = \sum_{n=0}^{\infty} \frac{1}{n}$ לא מתכנס כי הוא הטור ההרמוני, לכן ב $\sum_{n=0}^{\infty} \frac{1}{n} \cdot (-1)^n$ הטור מתכנס בתנאי, כנדרש

מ.ש.ל.☺

.5. פתרון:

 $R_3 \ge \min \{R_1, R_2\}$ (א) צ"ל:

הוכחה:

 $|x| \leq R_1, R_2$ נסמן $x \in (-R,R)$ יהי, $R = \min\{R_1,R_2\}$ נסמן לכן $\sum a_n \cdot x^n, \sum b_n \cdot x^n$ לכן לכו מתכונת הלינאריות מתקיים

$$\sum a_n x^n + \sum b_n x^n = \sum [a_n x^n + b_n x^n] = \sum (a_n + b_n) x^n$$

, א $x\in (-R,R)$ מתכנס, כלומר הראנו כי $\sum \left(a_n+b_n\right)x^n$ מתכנס , $\forall x \in (-R,R)$ וכי חנאי המקיים המקסימלי המקטות הוא ההתכנסות ההתכנסות (כי רדיוס ההתכנסות הוא הקטע המקסימלי ו כלומר

$$R_3 \ge R = \min\{R_1, R_2\}$$

@.ש.ל.א.©

 $R_3 = \min\{R_1, R_2\}$ (ב)

 $R_1 < R_2$ נניח בלי הגבלת הכלליות כי

 $R_3 \leq \min\left\{R_1,R_2
ight\} = R_1$ ועתה נראה כי ועתה $R_3 \geq \min\left\{R_1,R_2
ight\} = R_1$ בסעיף א ראינו כי מתבדר, מתקיים כי $\sum \left(a_n+b_n\right)x^n$ כך מתקיים כי אוראה ער כך על כך על כך אינ מתבדר כי אוראה כי ליא מתבדר כי אוראה אוראה כי יהי $\sum b_n x^n$ מתבדר וגם $\sum a_n x^n$ מתכנסות התכנסות רדיוס התכנסות אזי מהגדרת אזי מהגדרת הדיוס התכנסות

תכנס, $\sum (a_n+b_n)\,x^n$ נניח בשלילה כי $\sum (a_n+b_n)\,x^n$ מתכנס, $\sum a_nx^n=\sum (a_n+b_n)\,x^n-\sum b_nx^n$ אזי הטור

לכן $\sum \overline{(a_n+b_n)}\,x^n$ מתבדר

, $R < x < \min\left\{R_2, R_3
ight\}$ קיים $R_3 > R_1$ אחרת אחרת, $R_3 \leq R_1$ עתה נסיק כי

לכן לפי הגדרת הרדיוס $\sum \left(a_n+b_n\right)x^n$ מתכנס סתירה לכך שהראנו כי $\sum \left(a_n+b_n\right)x^n$ מתבדר עבור ערך זה, לכן כלומר $R_3 \leq \min\{R_1, R_2\}$

$$R_3 \le \min\{R_1, R_2\}, R_3 \ge \min\{R_1, R_2\} \Rightarrow R_3 = \min\{R_1, R_2\}$$

מ.ש.ל.ב.©

 $R_3 > \min\{R_1, R_2\}$ (x)

הוכחה:

נבחר $a_n=-1,b_n=1$, גבחר $a_n=-1,b_n=1$, הוא $a_n=-1,b_n=1$, הוא $a_n=-1,b_n=1$, בהרצאה ראינו כי רדיוס ההתכנסות של התכנסות של $a_n=-1,b_n=1$ מתכנס בכל $a_n=-1,b_n=1$, הוא $a_n=-1,b_n=1$, לכן בהרצאה ראינו כי רדיוס ההתכנסות של $a_n=-1,b_n=1$ מתכנס בכל a_n+b_n , לכן גשים לב כי $a_n=-1,b_n=1$ מתכנס בכל a_n+b_n , משים לב כי $a_n=-1,b_n=1$ מתכנס בכל a_n+b_n , און לבי

$$\infty = R_3 > \min\{R_1, R_2\} = 1$$

מ.ש.ל.ג.©

6. פתרוו:

(א) צ"ל:

 $\lim\inf\left(-a_n\right) = -\lim\sup\left(a_n\right)$

:สกวาส

 $,-a_n$ נסמן בAאת קבוצת הגבולות החלקיים של a_n ום של החלקיים של האת נסמן ב $-s\in B$ אזי , $-a_{n_k}\to -s$ אזי , $a_{n_k}\to s$ הדרה שדרה אזי קיימת האזי קיימת תת סדרה , $a_{n_k}\to -s$ אזי קיימת תת סדרה $s\in A$ אזי קיימת תת סדרה , $a_{n_k}\to -s$ אזי קיימת תת סדרה , $B=\{-s\mid s\in A\}$ כלומר כלומר

 $\lim\inf\left(-a_n\right)\stackrel{\text{def}}{=}\inf B=\inf\left\{-s\mid s\in A\right\}=-\sup\left\{s\mid s\in A\right\}=-\sup A\stackrel{\text{def}}{=}-\lim\sup\left(a_n\right)$

מ.ש.ל.א.©

(ロ) と"け:

 $\lim_{n \to \infty} c_n = 0 \Leftrightarrow \limsup |c_n| = 0$

הוכחה:

, $|c_n|$, של (החלקיים של הגבולות החלקיים של האון, נניח כי $c_n=0$, נניח כי $c_n=0$, אזי קיימת האון, ממשפט הירושה מתקיים כי $c_{n_k}\to 0$, אזי קיימת של האון, ממשפט הירושה מתקיים כי s=0, לכן מאריתמטיקה של גבולות מתקיים כי s=0, לכן $c_{n_k}=0$, לכן מאריתמטיקה של גבולות מתקיים כי s=0, לכן האריתמטיקה של גבולות מתקיים כי s=0

$$\limsup |c_n| \stackrel{\text{def}}{=} \sup S = \sup \{0\} = 0$$

 $\lim_{n \to \infty} c_n = 0$ כלומר כמעט תמיד, כמעט $-\varepsilon < c_n < \varepsilon$

מ.ש.ל.ב.☺

(ג) צ"ל: $a_n < L$ באופן שכיח

הוכחה:

נחלק למקרים:

- אט באופן אז מתכונת הבול חלקי, לכל $a_n< s+arepsilon$, אם החוף, אז מתכונת גבול חלקי, לכל האופן שכיח, גבור ונבחר $a_n< s+1=L$, אזי L=s+1, ונבחר arepsilon=1, ונבחר האופן שכיח, כנדרש
 - הגבול ,מהגדרת אם ,
 $a_{n_k} \to -\infty$ סדרה תת קיימת אז ,
 $\liminf a_n = -\infty$.ii

$$(\exists K \in \mathbb{N}) (\forall k \in \mathbb{N}) (K < k \to a_{n_k} < 1)$$

נבחר L=1 מתחת ל1 אינסוף פעמים), כנדרש שכיח (כי יש תת סדרה שיורדת מתחת ל $a_{n_k} < 1 = L$

מ.ש.ל.ג.©

 $\limsup (\alpha_n a_n) = \limsup (a_n)$ (ד) צ"ל:

הוכחה:

נסמן בS את קבוצת הגבולות החלקיים של α_na_n ובT את קבוצת הגבולות החלקיים של מ a_na_n וב $a_{nk}\to s$ אזי קיימת תת סדרה אזי קיימת תת סדרה אזי קיימת מתקיים כי $a_{nk}\to s$ לכן הירושה מתקיים כי $\alpha_{nk}\to s$, לכן ב $a_{nk}\to s$, כלומר $a_{nk}\to s$ כלומר $a_{nk}\to s$

, $\alpha_{n_k}\cdot a_{n_k}\to s$ יהי קיימת אזי קיימת , $s\in S$ יהי נשים לב שמשפט הירושה מתקיים כי $\alpha_{n_k}\to 1$, לכן

$$\lim_{k\to\infty}a_{n_k}=\lim_{k\to\infty}\frac{\alpha_{n_k}\cdot a_{n_k}}{\alpha_{n_k}}=\frac{s}{1}=s$$

כלומר T=S, כלומר לכן כלומר $S\in T$, ומתקיים

 $\lim \sup (\alpha_n a_n) \stackrel{\text{def}}{=} \sup S = \sup T \stackrel{\text{def}}{=} \lim \sup (a_n)$

מ.ש.ל.ד.☺

7. פתרון:

מתכנסות a_n, b_n מתכנסות סדרת אינדקסים כך ש"ל: קיימת

:הוכחה:

 $a_{n_k} o L_1$ מהיות מדרה מדרה חסומה, ממשפט בולצנו ויירשטראס קיימת תת סדרה מתכנסת ונסמן a_n מהיות משים לב כי b_n חסומה כי היא תת סדרה של b_n שהיא סדרה חסומה, ממשפט בולצנו ויירשטראס קיימת תת סדרה מתכנסת ונסמן b_{n_k} מהיות b_{n_k} סדרה חסומה, ממשפט בולצנו ויירשטראס קיימת תת סדרה מתכנסת ונסמן $a_{n_k} o L_1$ נשים לב כי $a_{n_k} o L_1$ תת סדרה של $a_{n_k} o L_1$ ממשפט הירושה מתקיים כי $a_{n_k} o L_1$ כלומר כלומר כלומר $a_{n_k} o L_1$

מ.ש.ל.א.©

(ב) צ"ל:

 $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n)$

הוכחה:

נסמן בA את קבוצת הגבולות החלקיים של , b_n נסמן בB את קבוצת הגבולות החלקיים של , b_n נסמן בB את קבוצת הגבולות החלקיים של , a_n+b_n נסמן בC את קבוצת הגבולות החלקיים של , $a_{nk}+b_{nk}\to s$ האזי קיימת תת סדרה $a_{nk}+b_{nk}\to s$ חסומות, נשים לב כי , $a_{nk}+b_{nk},b_{nk}$ חסומות כי , $a_{nk}+b_{nk},b_{nk}$ חסומות, לכן מסעיף א עבור הסדרות $a_{nk}+b_{nk},b_{nk}$ קיימת סדרת אינדקסים ששניהם מתכנסים, ונסמן $a_{nk}+b_{nk_l},b_{nk_l}\to s$ ונסמן $a_{nk_l}+b_{nk_l},b_{nk_l}\to s$ תת סדרה של , $a_{nk_l}+b_{nk_l}$ לכן ממשפט הירושה $a_{nk_l}+b_{nk_l}$ לכן נשים לב כי , $a_{nk_l}+b_{nk_l}$ תת סדרה של , $a_{nk_l}+b_{nk_l}$ לכן ממשפט הירושה $a_{nk_l}+b_{nk_l}$

$$\lim_{l\to\infty}a_{n_{k_l}}=\lim_{l\to\infty}\left[a_{n_{k_l}}+b_{n_{k_l}}-b_{n_{k_l}}\right]=s-b$$
כלומר $b\in B,s-b\in A$ נשים לב כי $s-b+b=s$ נשים לב כי $c\subseteq\{a+b\mid a\in A,b\in B\}$ כלומר הראנו כי

$$\lim \inf a_n + \lim \inf b_n \stackrel{\text{def}}{=} \inf A + \inf B$$

$$\leq \inf \{ a + b \mid a \in A, b \in B \} \leq \inf C \stackrel{\text{def}}{=} \lim \inf (a_n + b_n)$$

$$\Rightarrow \lim \inf a_n + \lim \inf b_n \leq \lim \inf (a_n + b_n)$$

מ.ש.ל.ב.☺