Solutions to Exercises 1

Exercise 1 (Sheffer Stroke). Any logical constant and connector can be simulated with Sheffer strokes. In fact:

$$\neg \varphi \qquad \equiv \varphi \uparrow \varphi
1 \equiv \varphi \uparrow \neg \varphi \qquad \equiv \varphi \uparrow (\varphi \uparrow \varphi)
0 \equiv \neg 1 \qquad \equiv (\varphi \uparrow (\varphi \uparrow \varphi)) \uparrow (\varphi \uparrow (\varphi \uparrow \varphi))
\varphi_0 \land \varphi_1 \equiv \neg (\varphi_0 \uparrow \varphi_1) \equiv (\varphi_0 \uparrow \varphi_1) \uparrow (\varphi_0 \uparrow \varphi_1)
\varphi_0 \lor \varphi_1 \equiv (\neg \varphi_0 \uparrow \neg \varphi_1) \equiv ((\varphi_0 \uparrow \varphi_0) \uparrow (\varphi_1 \uparrow \varphi_1))
\varphi_0 \to \varphi_1 \equiv \neg \varphi_0 \lor \varphi_1 \qquad \equiv (((\varphi_0 \uparrow \varphi_0) \uparrow (\varphi_0 \uparrow \varphi_0)) \uparrow (\varphi_1 \uparrow \varphi_1))$$

Exercise 2 (Decision Procedure for SAT). First we rewrite the formulas using only the allowed symbols:

1.
$$((a \to b) \to a) \to a \equiv \neg(\neg(\neg a \lor b) \lor a) \lor a$$

2.
$$\neg(a \land b) \rightarrow (\neg a \lor \neg b) \equiv \neg \neg(a \land b) \lor (\neg a \lor \neg b)$$

3.
$$((\neg a \to b) \land (a \to b)) \to b \equiv \neg((\neg \neg a \lor b) \land (\neg a \lor b)) \lor b$$

Then we derive $\neg F \vdash 0$ (we collapse sequences of SIMP):

1.

$$\frac{\neg(\neg(\neg(\neg a \lor b) \lor a) \lor a) \neg(\neg(\neg(\neg a \lor b) \lor a) \lor a)}{(\neg(\neg(\neg(\neg 0 \lor b) \lor 0) \lor 0)) \lor (\neg(\neg(\neg(\neg 1 \lor b) \lor 1) \lor 1))} \frac{\text{CA (on a)}}{\text{SIMP}} \frac{0 \lor (\neg(\neg(\neg b \lor 1) \lor 1))}{\neg(\neg(\neg b \lor 1) \lor 1)} \text{SIMP}$$

Note that, if we are being pedantic, we cannot simplify further as the simplification rules only cover cases where a literal is on the left.

$$\frac{\frac{\neg(\neg(\neg b \lor 1) \lor 1) \quad \neg(\neg(\neg b \lor 1) \lor 1)}{(\neg(\neg(\neg 0 \lor 1) \lor 1)) \lor (\neg(\neg(\neg 1 \lor 1) \lor 1))}}{\frac{0 \lor 0}{0}} SIMP}{CA \text{ (on b)}}$$

2.

$$\frac{\neg (\neg \neg (a \land b) \lor (\neg a \lor \neg b)) \neg (\neg \neg (a \land b) \lor (\neg a \lor \neg b))}{(\neg (\neg \neg (0 \land b) \lor (\neg 0 \lor \neg b))) \lor (\neg (\neg \neg (1 \land b) \lor (\neg 1 \lor \neg b)))} \frac{\text{CA (on a)}}{\text{SIMP}}$$

$$\frac{0 \lor (\neg (\neg \neg b \lor \neg b))}{\neg (\neg \neg b \lor \neg b)} \text{SIMP}$$

$$\frac{\frac{\neg (\neg \neg b \lor \neg b) \quad \neg (\neg \neg b \lor \neg b)}{(\neg (\neg \neg 0 \lor \neg 0)) \lor (\neg (\neg \neg 1 \lor \neg 1))}}{0} CA \text{ (on b)}$$

3.

$$\frac{\neg (\neg ((\neg \neg a \lor b) \land (\neg a \lor b)) \lor b) \neg (\neg ((\neg \neg a \lor b) \land (\neg a \lor b)) \lor b)}{(\neg (\neg ((\neg \neg a \lor b)) \lor b)) \lor (\neg (\neg ((\neg \neg 1 \lor b) \land (\neg 1 \lor b)) \lor b))} \underbrace{\text{CA (on a)}}_{\text{SIMP}}$$

$$\frac{\neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b)}{\neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b)} \underbrace{\text{CA (on b)}}_{\text{SIMP}}$$

$$\frac{\neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b) \neg (\neg (b \land 1) \lor b) \lor \neg (\neg b \lor b)}{(\neg (\neg (0 \land 1) \lor 0) \lor \neg (\neg (0 \lor 0)) \lor (\neg (\neg (1 \land 1) \lor 1) \lor \neg (\neg (1 \lor 1)))} \underbrace{\text{CA (on b)}}_{\text{SIMP}}$$

Exercise 3 (if-then-else).

1. Let's first express f1 and f2 as propositional formulas. **if** x **then** y **else** z means that when x is true then y is true and when x is not true z is true. In propositional logic this becomes $(x \to y) \land (\neg x \to z)$. By repeating the process and reducing them to CNF, we get the following formulas for f1 and f2:

$$f1(a, b, c) \equiv ((a \lor b) \to (((b \land \neg a) \to (b \land c)) \land (\neg(b \land \neg a) \to (\neg b \land c)))) \land (\neg(a \lor b) \to c)$$

$$\equiv (\neg(a \lor b) \lor ((\neg(b \land \neg a) \lor (b \land c)) \land ((b \land \neg a) \lor (\neg b \land c)))) \land ((a \lor b) \lor c)$$

$$\equiv (\neg a \lor \neg b) \land c$$

f2(a, b, c)
$$\equiv$$
 $(c \rightarrow (a \rightarrow \neg b) \land (\neg a \rightarrow 1)) \land (\neg c \rightarrow 0)$
 $\equiv (\neg c \lor (\neg a \lor \neg b) \land (a \lor 1)) \land (c \lor 0)$
 $\equiv (\neg a \lor \neg b) \land c$

which proves that they do always produce the same output. One could also have computed the truth tables of each formula and check that they were equal.

2. Since $a \uparrow b \equiv \text{if (if a then b else false) then false else true, and any formula can be written with Sheffer strokes, any formula can also be written only using if then else.$

By noting that $\varphi \equiv \text{if } a$ then $\varphi[a := 1]$ else $\varphi[a := 0]$ where $a \in FV(\varphi)$ and by applying the identity recursively we can express any formula with **if then else** with only one variable in the condition. The proof goes by induction on the number of variables in the formula, and by noting that if φ has n variables and $a \in FV(\varphi)$, then $\varphi[a := 0]$ and $\varphi[a := 1]$ contain only n - 1 variables.

Exercise 4 (Propositional Tautologies). Remember that for any formulas P, Q, and R, the formula $P \to Q \to R$ is parsed as $P \to (Q \to R)$ and is equivalent to $(P \land Q) \to R$.

- 1. If $P \wedge Q$ is true, then so is Q.
- 2. We consider two cases. If $P \to Q$ holds, then we are done, otherwise we have $P \land \neg Q$, and we are done as well.
- 3. Counterexample: $P = \top$, $Q = \bot$, $R = \bot$.
- 4. Counterexample: $P = \top$, $Q = \top$, $R = \bot$.
- 5. If R and $\neg R$ are true, then we have a contradiction and Q is true as well.
- 6. A formula always implies itself: $(P \to Q) \to (P \to Q)$.
- 7. (Peirce's law) We consider two cases. If P is true, then the whole formula is true. Otherwise, $(P \to Q)$ is true, meaning the implication $((P \to Q) \to P)$ is false. This makes the whole formula true as well.
- 8. Counterexample: $P = \top$, $Q = \bot$.
- 9. Assume $(\neg Q \to \neg P)$ and P are true. Assume now (by contradiction) that Q is false. Then, we would have that P is false, which is a contradiction. Therefore Q is true and so is the whole formula.
- 10. Counterexample: $P = \top$, $Q = \top$, $R = \bot$.
- 11. Assume the three disjunctions are true. We want to show that P is true as well. Consider the first two disjunctions (the third one is not needed). In either of them, if the left-hand-side (P) is true, then we are done. Otherwise, it means their right-hand-sides Q and $\neg Q$ are both true, which is a contradiction.
- 12. Counterexample: $P = \top$, $Q = \bot$.
- 13. Assume $\neg(P \land Q)$ and P are both true. If Q is true as well, then, we have $P \land Q$ is true, which is a contradiction. Therefore Q is false, which is what we needed to prove.

1 Transition Systems and Invariants

Exercise 5 (Special Invariants).

1. S is an inductive invariant. It is the largest among all invariants.

Solution: We have $S \subseteq S$, $I \subseteq S$, and for every $s, s' \in S$ and $a \in A$ such that $(s, a, s') \in r$, $s' \in S$. Therefore, S is an inductive invariant.

Moreover, S is the largest among all invariants because any invariant needs to be a subset of S.

2. Reach(M) is an inductive invariant.

Solution: First, we have $Reach(M) \subseteq S$ and $I \subseteq Reach(M)$.

Then, we want to show that for all $s, s' \in S$ and $a \in A$ such that $(s, a, s') \in r$, if $s \in Reach(M)$, then $s' \in Reach(M)$

Let $s, s' \in S$ and $a \in A$ such that $(s, a, s') \in r$. Assume $s \in Reach(M)$. By definition of Reach, there exists a trace $(s_0, a_0, s_1, \ldots, a_n, s_n) \in Traces(M)$ such that $s_n = s$. By definition of Traces, we also have $(s_0, a_0, s_1, \ldots, a_n, s, a, s') \in Traces(M)$, which proves that $s' \in Reach(M)$.

3. Reach(M) is the smallest of all possible invariants.

Solution: By definition, any invariant is a superset of Reach(M).

Exercise 6 (Closure of Invariants).

1. union

Solution: Let P_1 and P_2 be two invariants, i.e. $Reach(M) \subseteq P_1$, and $Reach(M) \subseteq P_2$. We have $Reach(M) \subseteq P_1 \cup P_2$, therefore $P_1 \cup P_2$ is also an invariant.

2. intersection

Solution: Let P_1 and P_2 be two invariants, i.e. $Reach(M) \subseteq P_1$, and $Reach(M) \subseteq P_2$. We have $Reach(M) \subseteq P_1 \cap P_2$, because every state in Reach(M) belongs to both P_1 and P_2 by assumption. Therefore $P_1 \cap P_2$ is also an invariant.

3. complement with respect to S

Solution: Let P be an invariant, i.e. $Reach(M) \subseteq P$. We don't necessarily have $S \setminus Reach(M) \subseteq P$. For instance, we can make a machine where $Reach(M) = \emptyset$ (no initial states), with S a non-empty set of states, and define $P = \emptyset$.

4. operation $f: 2^S \to 2^S$ defined by $f(X) = Reach(M) \cup (S \setminus X)$

Solution: For any set X (not just invariants), we have $Reach(M) \subseteq f(X)$, therefore f(X) is an invariant.

Answer the same questions about all *inductive invariants* of M.

1. union

Solution: Let P_1 and P_2 be two inductive invariants. We show that $P_1 \cup P_2$ is also an inductive invariant.

First, we have $I \subseteq P_1 \cup P_2$ (because e.g. $I \subseteq P_1$).

Second, let $s, s' \in S$ and $a \in A$ such that $(s, a, s') \in r$. Assume $s \in P_1 \cup P_2$. We consider two cases. If $s \in P_1$, we use the fact that P_1 is an inductive invariant to conclude that $s' \in P_1$, and therefore $s' \in P_1 \cup P_2$. The second case is similar.

2. intersection

Solution: Let P_1 and P_2 be two inductive invariants. We show that $P_1 \cap P_2$ is also an inductive invariant.

First, we have $I \subseteq P_1 \cap P_2$ (because elements of I are both in P_1 and in P_2).

Second, let $s, s' \in S$ and $a \in A$ such that $(s, a, s') \in r$. Assume $s \in P_1 \cap P_2$, i.e. $s \in P_1$, and $s \in P_2$. Since P_1 is an inductive invariant, we deduce that $s' \in P_1$, and similarly since P_2 is an inductive invariant, we deduce that $s' \in P_2$. Therefore $s' \in P_1 \cap P_2$.

3. complement with respect to S

Solution: Same counter-example as above.

4. operation $f: 2^S \to 2^S$ defined by $f(X) = Reach(M) \cup (S \setminus X)$

Solution: When X is an inductive invariant, f(X) is not necessarily an inductive invariant. Consider a machine with two states $S = \{s_1, s_2\}$ and no initial state. Let there be a transition from s_1 to s_2 (with some letter), and no other transitions. The set $X = \{s_2\}$ is an inductive invariant. However, $f(X) = \{s_1\}$ is not (because of the transition from s_1 to s_2).

2 Relations

Exercise 7 (Relation Identities). In the solutions, some equivalences are easier to read from bottom to top (and some from top to bottom).

1.
$$(X \bullet r_1) \bullet r_2 = X \bullet (r_1 \circ r_2)$$

Solution: Let $z \in A$. We have:

$$z \in (X \bullet r_1) \bullet r_2 \Leftrightarrow \exists y \in X \bullet r_1. \ (y, z) \in r_2$$
$$\Leftrightarrow \exists y \in A. \ y \in X \bullet r_1 \land (y, z) \in r_2$$
$$\Leftrightarrow \exists y \in A. \ \exists x \in X. \ (x, y) \in r_1 \land (y, z) \in r_2$$
$$\Leftrightarrow \exists x \in X. \ \exists y \in A. \ (x, y) \in r_1 \land (y, z) \in r_2$$
$$\Leftrightarrow \exists x \in X. \ (x, z) \in r_1 \circ r_2$$
$$\Leftrightarrow z \in X \bullet (r_1 \circ r_2)$$

2. $(r \cup s) \circ t = (r \circ t) \cup (s \circ t)$

Solution: Let $x, z \in A$. We have:

$$(x,z) \in (r \cup s) \circ t \Leftrightarrow \exists y \in A. \ (x,y) \in r \cup s \land (y,z) \in t \\ \Leftrightarrow \exists y \in A. \ ((x,y) \in r \lor (x,y) \in s) \land (y,z) \in t \\ \Leftrightarrow \exists y \in A. \ ((x,y) \in r \land (y,z) \in t) \lor ((x,y) \in s \land (y,z) \in t) \\ \Leftrightarrow (\exists y \in A. \ (x,y) \in r \land (y,z) \in t) \lor (\exists y \in A. \ (x,y) \in s \land (y,z) \in t) \\ \Leftrightarrow (x,z) \in r \circ t \lor (x,z) \in s \circ t \\ \Leftrightarrow (x,z) \in (r \circ t) \cup (s \circ t)$$

3. $(r \cap s) \circ t = (r \circ t) \cap (s \circ t)$

Solution: A counterexample:

$$r = \{(0,1)\}, s = \{(0,2)\} \text{ and } t = \{(1,0),(2,0)\}.$$

We have $(r \cap s) \circ t = \emptyset$, while $(r \circ t) \cap (s \circ t) = \{(0,0)\}.$

4.
$$(r_1 \circ r_2)^{-1} = (r_2^{-1} \circ r_1^{-1})$$

Solution: Let $x, z \in A$. We have:

$$(z,x) \in (r_1 \circ r_2)^{-1} \Leftrightarrow (x,z) \in r_1 \circ r_2$$

$$\Leftrightarrow \exists y \in A. \ (x,y) \in r_1 \land (y,z) \in r_2$$

$$\Leftrightarrow \exists y \in A. \ (y,x) \in r_1^{-1} \land (z,y) \in r_2^{-1}$$

$$\Leftrightarrow \exists y \in A. \ (z,y) \in r_2^{-1} \land (y,x) \in r_1^{-1}$$

$$\Leftrightarrow (z,x) \in r_2^{-1} \circ r_1^{-1}$$

5.
$$X \bullet r = ran(\Delta_X \circ r)$$

Solution: Let $y \in A$. We have:

$$y \in X \bullet r \Leftrightarrow \exists x \in X. \ (x,y) \in r$$

$$\Leftrightarrow \exists x \in A. \ x \in X \land (x',y) \in r$$

$$\Leftrightarrow \exists x \in A. \ \exists x' \in A. \ x = x' \land x \in X \land (x',y) \in r$$

$$\Leftrightarrow \exists x \in A. \ \exists x' \in A. \ (x,x') \in \Delta_X \land (x',y) \in r$$

$$\Leftrightarrow \exists x \in A. \ (x,y) \in \Delta_X \circ r$$

$$\Leftrightarrow y \in ran(\Delta_X \circ r)$$

6. If $r_1 \subseteq r'_1$ then $r_1 \circ r_2 \subseteq r'_1 \circ r_2$ and $r_2 \circ r_1 \subseteq r_2 \circ r'_1$.

Solution: Let $x, z \in A$. We have:

$$(x,z) \in r_1 \circ r_2 \Leftrightarrow \exists y \in A. \ (x,y) \in r_1 \land (y,z) \in r_2$$

 $\Rightarrow \exists y \in A. \ (x,y) \in r'_1 \land (y,z) \in r_2 \text{ because } r_1 \subseteq r'_1$
 $\Leftrightarrow (x,z) \in r'_1 \circ r_2$

Also,

$$(x,z) \in r_2 \circ r_1 \Leftrightarrow \exists y \in A. \ (x,y) \in r_2 \land (y,z) \in r_1$$

 $\Rightarrow \exists y \in A. \ (x,y) \in r_2 \land (y,z) \in r'_1 \text{ because } r_1 \subseteq r'_1$
 $\Leftrightarrow (x,z) \in r_2 \circ r'_1$

7. If $r_1 \subseteq r_1'$ then $r_1 \cup r_2 \subseteq r_1' \cup r_2$ and $r_2 \cup r_1 \subseteq r_2 \cup r_1'$.

Solution: Let $x, y \in A$. We have:

$$(x,y) \in r_1 \cup r_2 \Leftrightarrow (x,y) \in r_1 \lor (x,y) \in r_2$$

 $\Rightarrow (x,y) \in r'_1 \lor (x,y) \in r_2 \text{ because } r_1 \subseteq r'_1$
 $\Leftrightarrow (x,y) \in r'_1 \cup r_2$

Also,

$$(x,y) \in r_2 \cup r_1 \Leftrightarrow (x,y) \in r_2 \lor (x,y) \in r_1$$

 $\Rightarrow (x,y) \in r_2 \lor (x,y) \in r'_1 \text{ because } r_1 \subseteq r'_1$
 $\Leftrightarrow (x,y) \in r_2 \cup r'_1$

Exercise 8 (Transitive relations).

$$r \circ r \subseteq r \Leftrightarrow \forall x, z \in A. \ (x, z) \in r \Rightarrow (x, z) \in r$$

$$\Leftrightarrow \forall x, z \in A. \ (\exists y \in A. (x, y) \in r \land (y, z) \in r) \Rightarrow (x, z) \in r$$

$$\Leftrightarrow \forall x, z \in A. \ \forall y \in A. \ ((x, y) \in r \land (y, z) \in r) \Rightarrow (x, z) \in r$$

$$\Leftrightarrow \forall x, y, z \in A. \ ((x, y) \in r \land (y, z) \in r) \Rightarrow (x, z) \in r$$

$$\Leftrightarrow r \text{ is transitive}$$

Exercise 9 (Symmetric relations). First, since the composition of two symmetric relations is symmetric, we can show by induction on $n \geq 0$ that for any symmetric relation r, r^n is symmetric.

Second, taking the union of symmetric relations gives a symmetric relation, which means that for any symmetric relation r, r^* is also symmetric (using the previous point).

We can establish that $r \cup r^{-1}$ is a symmetric relation, and using the second point, that $(r \cup r^{-1})^*$ is also symmetric.

Finally, let $x, t \in A$. We have:

$$(x,t) \in r^{-1} \circ (r \cup r^{-1})^* \circ r \Leftrightarrow \exists y \in A. \ \exists z \in A. \ (x,y) \in r^{-1} \land (y,z) \in (r \cup r^{-1})^* \land (z,t) \in r$$
$$\Leftrightarrow \exists z \in A. \ \exists y \in A. \ (t,z) \in r^{-1} \land (z,y) \in (r \cup r^{-1})^* \land (y,x) \in r$$
$$\Leftrightarrow (t,x) \in r^{-1} \circ (r \cup r^{-1})^* \circ r$$

To go from the first to the second line, we use the fact that $(r \cup r^{-1})^*$ is symmetric.

Exercise 10 (Transitive closure).

(i) $(r \cup r^{-1})^*$ is an equivalence relation,

Solution: We have three things to prove:

- 1. (Reflexivity) Let $x \in A$. We have $(x,x) \in (r \cup r^{-1})^*$ because $\triangle_A \subseteq (r \cup r^{-1})^*$.
- 2. (Symmetry) As seen in the previous section, $(r \cup r^{-1})^*$ is symmetric.
- 3. (Transitive) Let $(x,y) \in (r \cup r^{-1})^*$ and $(y,z) \in (r \cup r^{-1})^*$. By definition, there exist $n,m \geq 0$ such that $(x,y) \in (r \cup r^{-1})^n$ and $(y,z) \in (r \cup r^{-1})^m$. Therefore $(x,z) \in (r \cup r^{-1})^n \circ (r \cup r^{-1})^m = (r \cup r^{-1})^{n+m}$. This shows that $(x,z) \in (r \cup r^{-1})^*$.
- (ii) if s is an equivalence relation containing r, then $(r \cup r^{-1})^* \subseteq s$.

Solution: Let s be an equivalence relation containing r. We prove by induction over $n \in \mathbb{N}$ that $(r \cup r^{-1})^n \subseteq s$.

- 1. (Case n=0) $(r \cup r^{-1})^0 = \Delta_A \subseteq s$ because s is reflexive.
- 2. (Case n=n'+1) Assume by induction that $(r \cup r^{-1})^{n'} \subseteq s$. We know that $r \subseteq s$, and that s is symmetric, therefore $r^{-1} \subseteq s$. Thus, we also have: $r \cup r^{-1} \subseteq s$. Finally, we have $(r \cup r^{-1})^n = (r \cup r^{-1})^{n'} \circ (r \cup r^{-1}) \subseteq s \circ s \subseteq s$ (because s is transitive), which concludes the proof.

3 Finite State Machines with Boolean Variables

Exercise 11 (Finite State Machines with Boolean Variables). No. We can establish the following inductive invariant of the configurations of the FSM:

$$P = \{((x,y),m) \mid (x \ge 1 \Rightarrow m(B)) \land$$

$$(y \ge 1 \Rightarrow m(A)) \land$$

$$((x,y) = (3,2) \Rightarrow m(C)) \land$$

$$((x,y) = (2,3) \Rightarrow \neg m(C) \land$$

$$(x,y) \ne (3,3)\}$$