

- 최단 경로 알고리즘 (가장 짧은 경로를 찾는 알고리즘)
- 가중치가 음수로 처리할 수 없음 (가중치의 합이 최소가 되는 방식) Bellman-ford
- 네비게이션 관련 문제나 미로 탐색, OSPF에 활용되는 알고리즘

#Heap #Priority Queue #Graph #Greedy

Heap

- 최대값 또는 최소값을 빨리 찾아야할 때 사용하며 이진 트리로 이루어진 자료구조
- O(logN)의 시간 복잡도

Max Heap

Priority Queue

Priority Queue

• 어떠한 특정에 조건에 따라 우선순위가 높은 요소를 추출하는 자료구조

- 1. 출발 노드를 설정합니다.
- 2. 최단 거리를 저장하는 테이블을 초기화 합니다.
- 3. 방문하지 않은 노드(인접 노드) 중 가장 짧은 노드를 선택합니다.
- 4. 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 테이블을 갱신합니다.

- 인접리스트를 담을 수 있는 가중치 그래프
- 우선 순위 큐
- 최단 거리를 저장하는 배열

1.시작노드선정&테이블초기화

• 출발노드를 지정하고 이에 관한 거리들을 대입합니다.

Q (0, 집)		
----------	--	--

건물	집	미용실	마트	카페	식당	은행	학교
거리	INF						

- PriorityQueue
- heapq

2.시작노드를거리배열에갱신

• 출발노드를 지정하고 이에 관한 거리들을 대입합니다.

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	10	9	INF	INF	INF

- PriorityQueue
- heapq

(5,미용실)

(3,마) (11,은)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	10	9	INF	INF	INF

VS 5 + 3 VS 5 + 11

(5,미용실)

(3,마) (11,은)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	INF	16	INF

Q (8,마) (9,카) (10,마) (16, 원	은)
-----------------------------	----

(8,마트)

(3,식)	(7, ₹})	(10,은)
-------	----------------	--------

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	INF	16	INF

VS VS VS 8+7 8+3 8+10

(8,마트)

(3,식) (7,카) (10,은)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	16	INF

VS 8+7 VS 8+10

(9,카페)

(7,은행) (12,학교)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	16	21

VS 8+7 VS VS 9+7 9+12

Q	(10,□⊦)	(11,식)	(16,은)	(21,학)			
---	---------	--------	--------	--------	--	--	--

(10,마트)

(3,식) (7,카) (10,은)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	16	21

VS VS VS 10+7 10+3 10+10

Q	(11,식)	(16,은)	(21,학)				
---	--------	--------	--------	--	--	--	--

(3,식당)

(4,은행)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	16	21

VS 11+4

(3,식당)

(4,은행)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	21

Q (15,은) (16,은) (21,학)

(15,은행)

(2,학교)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	21

VS 15+2

(16,은행)

(2,학교)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	17

Q	(16,은)	(17,학)	(21,학)				
---	--------	--------	--------	--	--	--	--

(15,은행)

(2,힉교)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	17

VS 16+2

Q	(17,학)	(21,학)					
---	--------	--------	--	--	--	--	--

(17,학교)

(2,은행)

(12,카페)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	17

VS 17+12

VS 17+2

Q	(21,학)			

(21,학교)

(2,은행)

(12,카페)

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	17

VS 21+12

VS 21+2

Q				

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	17

만약,여기서 친구들을 만나기로 했는데 집부터 거리가 10 이내에서 만나야 한다면?

건물	집	미용실	마트	카페	식당	은행	학교
거리	O	5	8	9	11	15	17

만약,여기서 친구들을 만나기로 했는데 집부터 거리가 10 이내에서 만나야 한다면?

만약,여기서 배달을 하기로 했는데 해당 마을부터 거리가 K 이내에서 받을 수 있다면?

人性基在压

- 각 노드마다 방문하면서 인접한 간선들을 모두 검사합니다.
- 간선을 검사할 때마다 노드 및 거리가 추가되는 과정이 있습니다. (Heap)
 - 이때 E는 V2보다 항상 작으므로 아무리 늦어도 logV!

$O(E) + O(E \log V) = O(E \log V)$

• 특정 지점까지 가는 최단 거리 찾기

• 간선 방향을 뒤집고 다익스트라 알고리즘을 사용합니다.

• 플로이드 워셜 알고리즘

- 단일 노드가 아닌 모든 노드에 대한 최단 거리를 구하는 알고리즘
- 3중 반복문을 사용
- $D_{ab} = min(D_{ab}, D_{ak} + D_{kb})$
- 다이나믹 프로그래밍 활용

A* 알고리즘

- 평가함수를 통해 추정 거리를 계산하는 알고리즘
- 평가함수 = D출발현재 + D현재도착
- DFS, BFS를 사용

• 크루스칼 알고리즘

• 최단 경로가 아니라 최소 비용을 찾는 알고리즘

관련 코드를 참고하세요.

- JS: https://velog.io/@jangws/22.-다익스트라Dijkstra-알고리즘
- Py: https://dustinlab.gitbook.io/python/algorithm/greedy/dijkstra
- Process Video: https://www.youtube.com/watch?v=XXzsUST5KSl
- Reference: https://www.youtube.com/watch?v=tZu4x5825Ll