MATH 217 (Fall 2021)

Honors Advanced Calculus, I

Solutions #2

1. For any set S, its power set $\mathfrak{P}(S)$ is defined to be the set consisting of all subsets of S. Show that there is no surjective map from S to $\mathfrak{P}(S)$. (Hint: Assume that there is a surjective map $f: S \to \mathfrak{P}(S)$ and consider the set $\{x \in S : x \notin f(x)\}$.)

Solution: Assume there is a surjective map $f: S \to \mathfrak{P}(S)$, and let

$$T := \{ s \in S : s \notin f(s) \} \in \mathfrak{P}(S).$$

Since f is surjective, there must be $s \in S$ such that T = f(s). By the definition of T, we have

$$s \in T \iff s \notin f(s) = T$$

which is nonsense. Hence, there can be no surjective map $f: S \to \mathfrak{P}(S)$.

- 2. Which of the following sets are convex:
 - (i) $\{(x,y) \in \mathbb{R}^2 : x > y\};$
 - (ii) $\{x \in \mathbb{R}^N : ||x|| > 2\};$
 - (iii) $\mathbb{R} \setminus \mathbb{Q}$;
 - (iv) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z \ge 2021\}$?

Justify your answers.

Solution: In each of the following, let C be the set under consideration.

(a) Let $(x_1, y_1), (x_2, y_2) \in C$, and let $t \in [0, 1]$. It is clear that $t(x_1, y_1) + (1 - t)(x_2, y_2) \in C$ if t = 0 or t = 1. We may thus suppose without loss of generality that $t \in (0, 1)$. We have

$$x_1 > y_1 \qquad \text{and} \qquad x_2 > y_2.$$

Multiplying these inequalities with t and 1-t, respectively, we obtain

$$tx_1 > ty_2$$
 and $(1-t)x_2 > (1-t)y_2$.

Adding these two inequalities, eventually yields

$$tx_1 + (1-t)x_2 > ty_1 + (1-t)y_2$$

so that $t(x_1, y_1) + (1 - t)(x_2, y_2) \in C$. Hence, C is convex.

(b) Let $x \in C$. Then ||-x|| = ||x|| > 2, so that $-x \in C$ as well. Since

$$0 = \frac{1}{2}x + \frac{1}{2}(-x) \notin C,$$

the set C cannot be convex.

- (c) Let $x, y \in C$, and suppose, without loss of generality, that x < y. As we have seen in class, there is $q \in (x, y) \cap \mathbb{Q}$. Set $t := \frac{y-q}{y-x}$, so that $t \in [0, 1]$ and q = tx + (1-t)y. Hence, C is not convex.
- (d) Let $(x_1, y_1, z_1), (x_2, y_2, z_2) \in C$, and let $t \in [0, 1]$. Then

$$x_i + y_i + z_i \ge 2020$$

folds for j = 1, 2 and therefore

$$t(x_1 + y_1 + z_1) \ge t \, 2020$$
 and $(1-t)(x_2 + y_2 + z_2) \ge (1-t)2020$.

Adding these two inequalities yields

$$t(x_1 + y_1 + z_1) + (1 - t)(x_2 + y_2 + z_2) > 2020.$$

Hence, C is convex.

3. Let \mathcal{C} be a family of convex sets in \mathbb{R}^N . Show that $\bigcap_{C \in \mathcal{C}} C$ is again convex. Is $\bigcup_{C \in \mathcal{C}} C$ necessarily convex?

Solution: Let $x, y \in \bigcap_{C \in \mathcal{C}} C$, i.e., $x, y \in C$ for each $C \in \mathcal{C}$. Let $t \in [0, 1]$. Since each $C \in \mathcal{C}$ is convex, we have $tx + (1 - t)y \in C$ for each $C \in \mathcal{C}$. Hence, $tx + (1 - t)y \in \bigcap_{C \in \mathcal{C}} C$. Consequently, $\bigcap_{C \in \mathcal{C}} C$ is convex.

Let $x, y \in \mathbb{R}^N$ be such that $x \neq y$, and set $\mathcal{C} = \{\{x\}, \{y\}\}\}$. Then $\{x\}$ and $\{y\}$ are convex, but $\frac{1}{2}x + \frac{1}{2}y \notin \{x\} \cup \{y\}$.

4. Show that \mathbb{Z} is closed in \mathbb{R} , but not open, and that $\mathbb{Q} \subset \mathbb{R}$ is neither open nor closed.

Solution: Let $x \in \mathbb{R} \setminus \mathbb{Z}$, and let $\lfloor x \rfloor$ be the largest integer less than or equal to x, e.g., $\lfloor 2 \rfloor = 2$, $\lfloor \pi \rfloor = 3$, or $\lfloor -\frac{9}{5} \rfloor = -5$. It follows that $\lfloor x \rfloor < x < \lfloor x \rfloor + 1$ (as $x \notin \mathbb{Z}$, the equalities must be strict). Set

$$\epsilon := \min\{x - \lfloor x \rfloor, \lfloor x \rfloor + 1 - x\},$$

so that

$$(x - \epsilon, x + \epsilon) \subset (|x|, |x| + 1).$$

It follows that $(x - \epsilon, x + \epsilon) \cap \mathbb{Z} = \emptyset$. Hence, $\mathbb{R} \setminus \mathbb{Z}$ is open, and \mathbb{Z} is closed.

Assume that \mathbb{Q} is open. Then, for any $q \in \mathbb{Q}$, there is $\epsilon > 0$ such that $(q - \epsilon, q + \epsilon) \subset \mathbb{Q}$. Choose $n \in \mathbb{N}$ so large that $\frac{\sqrt{13}}{n} < \epsilon$; it follows that $q + \frac{\sqrt{13}}{n} \in (q - \epsilon, q + \epsilon)$, but $q + \frac{\sqrt{13}}{n} \notin \mathbb{Q}$, which is a contradiction.

Assume that \mathbb{Q} is closed, i.e., $\mathbb{R} \setminus \mathbb{Q}$ is open. Then, for any $x \in \mathbb{R} \setminus \mathbb{Q}$, there is $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset \mathbb{R} \setminus \mathbb{Q}$. In class, however, it was shown that there is a rational number between $x - \epsilon$ and $x + \epsilon$. Hence, $\mathbb{R} \setminus \mathbb{Q}$ cannot be open, so that \mathbb{Q} is not closed.

5. Let $\varnothing \neq S \subset \mathbb{R}^N$ be arbitrary, and let $\varnothing \neq U \subset \mathbb{R}^N$ be open. Show that

$$S+U:=\{x+y:x\in S,\,y\in U\}$$

is open.

Solution: Let $x \in S$, and define

$$x + U := \{x + y : y \in U\}.$$

We claim that x + U is open. Let $\tilde{x} \in x + U$, so that $\tilde{x} - x \in U$. Let $\epsilon > 0$ be such that $B_{\epsilon}(\tilde{x} - x) \subset U$, and let $\tilde{y} \in \mathbb{R}^N$ be such that $\|\tilde{x} - \tilde{y}\| < \epsilon$. It follows that

$$\|(\tilde{y} - x) - (\tilde{x} - x)\| = \|\tilde{y} - \tilde{x}\| < \epsilon,$$

i.e., $\tilde{y} - x \in B_{\epsilon}(\tilde{x} - x) \subset U$ and thus $\tilde{y} \in x + U$. Hence, x + U is open.

Since

$$S + U := \bigcup_{x \in S} (x + U),$$

it is clear that S + U is also open.

 6^* For $x = (x_1, \dots, x_N) \in \mathbb{R}^N$, set

$$||x||_1 := |x_1| + \dots + |x_N|$$
 and $||x||_{\infty} := \max\{|x_1|, \dots, |x_N|\}.$

- (a) Show that the following are true for $j=1,\infty,\,x,y\in\mathbb{R}^N$ and $\lambda\in\mathbb{R}$:
 - (i) $||x||_j \ge 0$ and $||x||_j = 0$ if and only if x = 0;
 - (ii) $\|\lambda x\|_j = |\lambda| \|x\|_j$;
 - (iii) $||x + y||_i \le ||x||_i + ||y||_i$.
- (b) For N=2, sketch the sets of those x for which $||x||_1 \leq 1$, $||x|| \leq 1$, and $||x||_{\infty} \leq 1$.
- (c) Show that

$$||x||_1 \le \sqrt{N}||x|| \le N \, ||x||_{\infty}$$

for all $x \in \mathbb{R}^N$.

Solution:

- (a) The verification of (a) is routine (just use the corresponding properties of the absolute value on \mathbb{R}).
- (b) Your sketch should look like this:

(c) Let $x=(x_1,\ldots,x_N)\in\mathbb{R}^N$, and let $y=(1,\ldots,1)$. The Cauchy–Schwarz Inequality then yields that

$$||x||_1 = \sum_{j=1}^N |x_j y_j| \le ||x|| ||y|| = \sqrt{N} ||x||.$$

Moreover, we have

$$||x|| = \sqrt{\sum_{j=1}^{N} x_j^2} \le \sqrt{\sum_{j=1}^{N} ||x||_{\infty}^2} = \sqrt{N} ||x||_{\infty}.$$