then a particular solution of Eq. (16) is

$$Y(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds,$$
 (28)

where t_0 is any conveniently chosen point in I. The general solution is

$$y = c_1 y_1(t) + c_2 y_2(t) + Y(t), (29)$$

as prescribed by Theorem 3.5.2.

By examining the expression (28) and reviewing the process by which we derived it, we can see that there may be two major difficulties in using the method of variation of parameters. As we have mentioned earlier, one is the determination of $y_1(t)$ and $y_2(t)$, a fundamental set of solutions of the homogeneous equation (18), when the coefficients in that equation are not constants. The other possible difficulty lies in the evaluation of the integrals appearing in Eq. (28). This depends entirely on the nature of the functions y_1 , y_2 , and g. In using Eq. (28), be sure that the differential equation is exactly in the form (16); otherwise, the nonhomogeneous term g(t) will not be correctly identified.

A major advantage of the method of variation of parameters is that Eq. (28) provides an expression for the particular solution Y(t) in terms of an arbitrary forcing function g(t). This expression is a good starting point if you wish to investigate the effect of variations in the forcing function, or if you wish to analyze the response of a system to a number of different forcing functions.

PROBLEMS

In each of Problems 1 through 4, use the method of variation of parameters to find a particular solution of the given differential equation. Then check your answer by using the method of undetermined coefficients.

1.
$$y'' - 5y' + 6y = 2e^t$$

2.
$$y'' - y' - 2y = 2e^{-t}$$

3.
$$v'' + 2v' + v = 3e^{-t}$$

4.
$$4y'' - 4y' + y = 16e^{t/2}$$

In each of Problems 5 through 12, find the general solution of the given differential equation. In Problems 11 and 12, g is an arbitrary continuous function.

5.
$$y'' + y = \tan t$$
, $0 < t < \pi/2$

6.
$$y'' + 9y = 9 \sec^2 3t$$
, $0 < t < \pi/6$

7.
$$y'' + 4y' + 4y = t^{-2}e^{-2t}$$
. $t > 0$

8.
$$y'' + 4y = 3\csc 2t$$
, $0 < t < \pi/2$

7.
$$y'' + 4y' + 4y = t^{-2}e^{-2t}$$
, $t > 0$
8. $y'' + 4y = 3\csc 2t$, $0 < t < \pi/2$
9. $4y'' + y = 2\sec(t/2)$, $-\pi < t < \pi$
10. $y'' - 2y' + y = e^t/(1 + t^2)$

10.
$$y'' - 2y' + y = e^t/(1+t^2)$$

11.
$$y'' - 5y' + 6y = g(t)$$

12.
$$y'' + 4y = g(t)$$

In each of Problems 13 through 20, verify that the given functions y_1 and y_2 satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation. In Problems 19 and 20, g is an arbitrary continuous function.

13.
$$t^2y'' - 2y = 3t^2 - 1$$
, $t > 0$; $y_1(t) = t^2$, $y_2(t) = t^{-1}$

14.
$$t^2y'' - t(t+2)y' + (t+2)y = 2t^3$$
, $t > 0$; $y_1(t) = t$, $y_2(t) = te^t$

15.
$$ty'' - (1+t)y' + y = t^2e^{2t}$$
, $t > 0$; $y_1(t) = 1 + t$, $y_2(t) = e^t$

16.
$$(1-t)y'' + ty' - y = 2(t-1)^2 e^{-t}$$
, $0 < t < 1$; $y_1(t) = e^t$, $y_2(t) = t$

17.
$$x^2y'' - 3xy' + 4y = x^2 \ln x$$
, $x > 0$; $y_1(x) = x^2$, $y_2(x) = x^2 \ln x$

18.
$$x^2y'' + xy' + (x^2 - 0.25)y = 3x^{3/2}\sin x$$
, $x > 0$;
 $y_1(x) = x^{-1/2}\sin x$, $y_2(x) = x^{-1/2}\cos x$

19.
$$(1-x)y'' + xy' - y = g(x)$$
, $0 < x < 1$; $y_1(x) = e^x$, $y_2(x) = x$

20.
$$x^2y'' + xy' + (x^2 - 0.25)y = g(x)$$
, $x > 0$; $y_1(x) = x^{-1/2}\sin x$, $y_2(x) = x^{-1/2}\cos x$

21. Show that the solution of the initial value problem

$$L[y] = y'' + p(t)y' + q(t)y = g(t), y(t_0) = y_0, y'(t_0) = y'_0$$
 (i)

can be written as y = u(t) + v(t), where u and v are solutions of the two initial value problems

$$L[u] = 0,$$
 $u(t_0) = y_0, \quad u'(t_0) = y'_0,$ (ii)

$$L[v] = g(t), v(t_0) = 0, v'(t_0) = 0,$$
 (iii)

respectively. In other words, the nonhomogeneities in the differential equation and in the initial conditions can be dealt with separately. Observe that u is easy to find if a fundamental set of solutions of L[u] = 0 is known.

22. By choosing the lower limit of integration in Eq. (28) in the text as the initial point t_0 , show that Y(t) becomes

$$Y(t) = \int_{t_0}^t \frac{y_1(s)y_2(t) - y_1(t)y_2(s)}{y_1(s)y_2'(s) - y_1'(s)y_2(s)} g(s) ds.$$

Show that Y(t) is a solution of the initial value problem

$$L[y] = g(t),$$
 $y(t_0) = 0,$ $y'(t_0) = 0.$

Thus Y can be identified with v in Problem 21.

23. (a) Use the result of Problem 22 to show that the solution of the initial value problem

$$y'' + y = g(t),$$
 $y(t_0) = 0,$ $y'(t_0) = 0$ (i)

is

$$y = \int_{t_0}^t \sin(t - s)g(s) ds.$$
 (ii)

(b) Use the result of Problem 21 to find the solution of the initial value problem

$$y'' + y = g(t),$$
 $y(0) = y_0,$ $y'(0) = y'_0.$

24. Use the result of Problem 22 to find the solution of the initial value problem

$$L[v] = (D-a)(D-b)v = g(t),$$
 $v(t_0) = 0,$ $v'(t_0) = 0,$

where a and b are real numbers with $a \neq b$.

25. Use the result of Problem 22 to find the solution of the initial value problem

$$L[y] = [D^2 - 2\lambda D + (\lambda^2 + \mu^2)]y = g(t), \quad y(t_0) = 0, \quad y'(t_0) = 0.$$

Note that the roots of the characteristic equation are $\lambda \pm i\mu$.

26. Use the result of Problem 22 to find the solution of the initial value problem

$$L[y] = (D - a)^2 y = g(t),$$
 $y(t_0) = 0,$ $y'(t_0) = 0,$

where a is any real number.

27. By combining the results of Problems 24 through 26, show that the solution of the initial value problem

$$L[y] = (D^2 + bD + c)y = g(t),$$
 $y(t_0) = 0,$ $y'(t_0) = 0,$

where b and c are constants, has the form

$$y = \phi(t) = \int_{t_0}^{t} K(t - s)g(s) ds.$$
 (i)

The function K depends only on the solutions y_1 and y_2 of the corresponding homogeneous equation and is independent of the nonhomogeneous term. Once K is determined, all nonhomogeneous problems involving the same differential operator L are reduced to the evaluation of an integral. Note also that although K depends on both t and s, only the combination t-s appears, so K is actually a function of a single variable. When we think of g(t) as the input to the problem and of $\phi(t)$ as the output, it follows from Eq. (i) that the output depends on the input over the entire interval from the initial point t_0 to the current value t. The integral in Eq. (i) is called the **convolution** of K and g, and K is referred to as the **kernel**.

28. The method of reduction of order (Section 3.4) can also be used for the nonhomogeneous equation

$$y'' + p(t)y' + q(t)y = g(t),$$
 (i)

provided one solution y_1 of the corresponding homogeneous equation is known. Let $y = v(t)y_1(t)$ and show that y satisfies Eq. (i) if v is a solution of

$$y_1(t)v'' + [2y_1'(t) + p(t)y_1(t)]v' = g(t).$$
 (ii)

Equation (ii) is a first order linear equation for v'. By solving this equation, integrating the result, and then multiplying by $y_1(t)$, you can find the general solution of Eq. (i).

In each of Problems 29 through 32, use the method outlined in Problem 28 to solve the given differential equation.

- 29. $t^2y'' 2ty' + 2y = 4t^2$, t > 0; $y_1(t) = t$
- 30. $t^2v'' + 7tv' + 5v = t$, t > 0; $v_1(t) = t^{-1}$
- 31. $ty'' (1+t)y' + y = t^2e^{2t}$, t > 0; $y_1(t) = 1+t$ (see Problem 15)
- 32. $(1-t)y'' + ty' y = 2(t-1)^2 e^{-t}$, 0 < t < 1; $y_1(t) = e^t$ (see Problem 16)

3.7 Mechanical and Electrical Vibrations

One of the reasons why second order linear equations with constant coefficients are worth studying is that they serve as mathematical models of some important physical processes. Two important areas of application are the fields of mechanical and electrical oscillations. For example, the motion of a mass on a vibrating spring, the torsional oscillations of a shaft with a flywheel, the flow of electric current in a simple series circuit, and many other physical problems are all described by the solution of an initial value problem of the form

$$ay'' + by' + cy = g(t),$$
 $y(0) = y_0,$ $y'(0) = y'_0.$ (1)

This illustrates a fundamental relationship between mathematics and physics: many physical problems may have the same mathematical model. Thus, once we know