Supporting Information:

Velocity Map Imaging Spectroscopy of C₂H⁻ and C₂D⁻: a benchmark study of vibronic coupling interactions

Benjamin A. Laws,*,†,‡ Zachariah D. Levey,† Andrei M. Sanov,¶ John F. Stanton,§ Timothy W. Schmidt,† and Stephen T. Gibson‡

†School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia

‡Research School of Physics, The Australian National University, Canberra ACT 2601, Australia

¶Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721,

United States

§Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

E-mail: b.laws@unsw.edu.au

Contents

1 C₂H⁻ Spectral Assignments

S-1

1 C₂H⁻ Spectral Assignments

Spectral assignments for all peaks resolved in the photoelectron spectra of C_2H^- from this work are presented in Table S1. Peaks are labelled with respect to the photoelectron spectrum of C_2H^-

at 300 nm in Figure $\ref{eq:continuous}$. The experimental binding energy of each transition is given, alongside the anisotropy (+/-), the corresponding vibronic symmetry, the calculated energy from Ref. $\ref{eq:continuous}$. Assignments are given as $\tilde{X}(v_1,v_2,v_3)\tilde{A}(v_1,v_2,v_3)$ where superscripts represent hot-band transitions.

Additional mass spectra are presented in Fig. ??, to highlight the role of the CH radical in the formation of phenalenyl. Fig. ??(a) and (b) show the mass spectrum (on and off resonance) when neat Ar gas is passed through the high voltage discharge. from a 1% mixture of CH₄ in Ar gas passed through the HV discharge. The bottom plots, Fig. ?? (c) and (d) show the resulting mass spectrum when a 1% mixture of CH₄ in Ar gas is used instead. A clear increase in both the resonant and non-resonant signal is observed when CH₄ is included in the gas mixture, confirming that the CH radicals formed in the discharge are involved in the formation of phenalenyl.

Table S1: Peak positions (cm $^{-1}$), and assignments for the C_2H^- photoelectron spectra from this work. The sign of the anisotropy parameter is shown for each transition, along with it's vibronic symmetry, and the calculated position from Ref.?

Peak	eBE (cm ⁻¹)	$v ({\rm cm}^{-1})$	β	Symmetry	$A_{SO}^{\ a}$	$v_{\rm calc}^{\ \ b}$	Assignment	
							$ ilde{X}$	\tilde{A}
<u> </u>	23 591	-231	+	Σ^+			2_{2}^{2}	_
	23 685	-137	+	Σ^+			2^{1}_{1}	_
	23 823	0	+	Σ^+	_	0	0_{0}^{0}	_
	24 184	361	_	Π	-0.35^{c}	371	2_0^1	_
	24 630	807	+	Σ^+	_	794	2_0^2	_
	25 663	1840	+	Σ^+	_	1838	3_0^1	_
	25 916	2093	_	Π	-1.02^d	2096	$2_0^1 3^1 0$	_
	25 993	2170	_	Π	-0.66	2166	2_0^5	_
	26 362	2539	+	Σ^+		2536	$2^203_0^1$	_
	26 757	2934	_	Π	-1.52^{e}	2933	$2_0^3 3^1 0$	_
	26 929	3106	_	Π	-0.52	3104	2_0^7	_
	27 175	3352	+	Σ^+	_	3371	2^43^1	_
a	27 430	3607	_	Π	-7.22^f	3604	$2_0^1 3_0^2 / 1_0^1 2_0^1$	0_{0}^{0}
b	27 515	3692	_	Π	-5.41^{g}	3690	$1_0^1 2_0^1 / 2_0^1 3_0^2$	0_{0}^{0}
c	27 612	3788	_	Π	-2.51	3790	$2_0^5 3_0^1$	$0_0^0 \\ 0_0^0 \\ 0_0^0$
d	27 851	4028	_	Π	-2.22	4011	$2_0^9/2_0^53_0^1$	0_{0}^{0}
e	27 941	4118	_	Π	-3.28	4093	2_0^9	0_0°
f	28 200	4377	+	Σ^+		4375	$2^603_0^1$	
g	28 349	4526	+	Σ^+	_	4524	2_0^{10}	-000
h	28 423	4600	_	Π		4593	$2^{3}3^{2}$	0_{0}^{0}
i	28 562	4739	_	Π		4702	2^73^1	$2^{1}0$
j	28 714	4891	_	Π		4879	2^73^1	_
k	28 834	5011	_	Π		5004	2^{11}	_
1	29 049	5226	_	Π		5222	$2_0^1 3_0^3$	3_0^1
m*	29 227	5404	+	Σ^+	_	5406	2^{12}	2_0^1
n	29 283	5460	_	Π		5445	$2_0^5 3_0^2$	3_0^1
O	29 465	5642	_	Π		5630	$2_0^9 3_0^1$	3_0^1
p	29 740	5917	_	Π		5914	2^{13}	_
q	29 844	6021	+	Σ^+		6054	$2^6 3^2 / 2^2 3^3$	_
r	30 021	6198	_	\prod		6200	$2^{3}3^{3}$	2^{2}
S	30 086	6263	_	Π		6266	$1^{1}2^{7}$	_

^{*} transition only partially resolved in photoelectron spectrum.

^a from infra-red measurements of Refs.? and?, onless otherwise indicated.

^b from calculations of Ref.?

^c Ref.?

^d Ref.?

^e Ref.?

f Ref.?

g Ref.?