Appello – 17 giugno 2021

Parte 1 – Durata: 50 minuti

1) Una carica positiva è distribuita uniformemente con densità volumetrica $\rho > 0$ in una sfera di raggio R_1 . La distribuzione di carica è circondata da un guscio sferico conduttore neutro di raggio interno R_2 e raggio esterno R_3 , come mostrato in figura.

- a) Si ricavi il campo elettrico (*modulo, direzione e verso*) in tutto lo spazio.
- b) Si determini il valore del potenziale elettrostatico V a distanza R_2 dal centro della sfera, avendo posto a zero il valore del potenziale all'infinito.
- c) Si discuta come cambia il risultato del punto a) nel caso in cui il conduttore venga collegato a massa.
- **2)** Una spira circolare di raggio R_1 è attraversata da una corrente di intensità I_1 .
- a) Si determini il campo magnetico \mathbf{B} (\underline{modulo} , $\underline{direzione\ e\ verso}$) nel suo centro.

Una seconda spira di raggio R_2 , concentrica con la spira di raggio R_1 e percorsa da una corrente di intensità I_2 , può ruotare attorno a un diametro della spira di raggio R_1 . Le due spire sono inizialmente complanari e le correnti I_1 e I_2 sono concordi [vedi figura (a)].

c) Si determini il lavoro \mathcal{L} da compiere per ruotare di 180° la spira [vedi figura (b)].

[Si consideri il campo prodotto dalla spira di raggio R_1 come uniforme su tutta l'area della spira di raggio R_2 .

$$R_1 = 10 \text{ cm}, R_2 = 1 \text{ cm}, I_1 = 10 \text{ A}, I_2 = 10 \text{ A}, \mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}.$$

Nota:

Si invitano gli studenti a:

- Scrivere in stampatello NOME, COGNOME e CODICE PERSONA e FIRMARE ogni foglio;
- DESCRIVERE brevemente il procedimento che si intende seguire nello svolgimento;
- MOTIVARE e COMMENTARE adequatamente ogni risultato.