Red-Black Trees

data RBColour = Red | Black data RBTree = RBLeaf

There is a judgment 2 Hem

for this data RBTree = RBLeaf

RBNode RBColour Item RBTree RBTree

Equivalent inference rules:

Red RBColour

Black Recolour

assuming all of this ...

RB Leaf RBTree

c RScolour 2 Item te RBTree tr RBTree (RBNode c x t, tr) RBTree

We can conclude this

Inference rules for proper red-black trees: Exercise!

(perhaps consider introducing another judgment alongside t OK)

	Ambiguity and Syntax				
Judgments mutually defined.	Non-simultaneous inductive definition of Bool:				
	Bool	Bool	Bool	Bool	
	derived pole ways.	Bool	Bool		
Every exp	ression has				
xactly 1	Unambiguous indi	uctive definition v	vith precedence –	1 > ^ > V:	
xactly 1	5	uctive definition v	vith precedence –	1 > ^ > V:	
xactly 1	5	uctive definition v	vith precedence –	> \ > \ :	

	Induction S. M. S. M. S. M. S. M.	tuck? 2 strategies:
	$\frac{s \mathbf{M}}{\varepsilon \mathbf{M}} M_E = \frac{s \mathbf{M}}{(s) \mathbf{M}} M_N = \frac{s_1 \mathbf{M}}{s_1 s_2 \mathbf{M}} M_J$	O Prove a lemma
	$\frac{s \mathbf{L}}{\varepsilon \mathbf{L}} L_E = \frac{s \mathbf{L}}{(s) \mathbf{N}} N_N = \frac{s_1 \mathbf{N} - s_2 \mathbf{L}}{s_1 s_2 \mathbf{L}} L_J $	(2) Generalise your
		(i.e. what you're p
Prove that	if slorsN then sM	0
TI OVE THEE		
P Roce Core	Fruits we dot six N	tou SM h. M.
Base case	: From LE, we get S=E. N	iow, e in ag int
 Inductive 	case: From LJ, we get S=	SIS where SIN
and S. L.	Assume that	
	· · · · · · · · · · · · · · · · · · ·	0.00
	S. M S. M .H2	Orange Stuff 1
_	S, M S ₂ M 1112	doable with o
Then		proof goal! W
		being too spec
	S, M S ₂ M 1.H ₂	· ·
	M _T	So couldn't assu
	5, S ₂ M	anything about
· Inductive	case: From NN, we have	S = (s').
Dam aini aa	details: exercise! Should be	Stonicht Course
Kemcuning	details: exercise! Should be	on any more and a
•		

[Corollay: both sets of rules define the same set!]