- A network of pages
 - very large
 - links carry information
- Keyword-based query
 - queries are underspecified
 - average 1-2 keywords

K. Selcuk Candan (CSE515)

K. Selcuk Candan (CSE515)

 Approach 2: integrate IR techniques with structure/link analysis

K. Selcuk Candan (CSE515)

 Approach 2: integrate IR techniques with structure/link analysis

(a) Connectivity	(b) Co-citation	(c) Social filtering	(d) Transitivity
Doc1 — Doc2 Doc1 — Doc2 Doc1 — Doc2	X Doc1	X Doc1	X Doc1

HITS algorithm

- Good pages are categorized into two types
 - Hubs: point to many pages of high quality
 - Authorities: pages of high quality

Hubs and authorities

K. Selcuk Candan (CSE515)

Hubs and authorities

- •Good hubs should point to good authorities
- •Good authorities must be pointed by good hubs.

K. Selcuk Candan (CSE515)

Topic distilation by iterative mutual reinforcement

Topic distilation by iterative mutual reinforcement

K. Selcuk Candan (CSE515)

Use IR to find the candidate pages

- Use IR to find the candidate pages
- Expand to include all pages which link or are linked by this core set

- Use IR to find the candidate pages
- Expand to include all pages which link or are linked by this core set
- Compute authority and hub values for all pages (iterate!!)

$$a(i) = \sum_{j \in in(i)} h(j) \qquad h(i) = \sum_{j \in out(i)} a(j)$$

Matrix notation

$$\overrightarrow{a} = E^T \overrightarrow{h}$$

$$\stackrel{\rightarrow}{h} = \stackrel{\rightarrow}{E} \stackrel{\rightarrow}{a}$$

...reminder

- Eigenvalue and eigenvector
- Given a matrix E, let c (scalar) and x (vector) be such that

...authorities

$$\stackrel{\rightarrow}{a} = E^T \stackrel{\rightarrow}{h}$$

...authorities

...hubs

HITS is similar to LSI, but on (source, destination) rather than (term,document) matrix

K. Selcuk Candan (CSE515)

- Random Surfer
 - Jumps from page to page with uniform probability
 - Occasionally jump to a random page with small probability (1-β)
 - If no out page, then jump to any page with equal probability

- Random Surfer (N pages)
 - Jumps from page to page with uniform probability
 - Occasionally jump to a random page with small probability (1-β)
 - If no out page, then jump to any page with equal probability

$$\mathbf{Z} = (1 - \beta) \begin{bmatrix} \frac{1}{N} \end{bmatrix}_{N \times N} + \beta \mathbf{M}$$
Transition
$$\mathbf{M}_{ji} = \begin{cases} \frac{1}{|out(i)|} & \text{if there is an edge from i to j} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{M}_{k} = \begin{cases} \frac{1}{|out(i)|} & \text{otherwise} \end{cases}$$

- Random Surfer (N pages)
 - Jumps from page to page with uniform probability
 - Occasionally jump to a random page with small probability (1-β)
 - If no out page, then jump to any page with equal probability

$$P(j) = \frac{1-\beta}{N} + \beta \sum_{i \in in(j)} \frac{P(i)}{out(i)}$$
 Probability that the surfer is at page j

- Random Surfer (N pages)
 - Jumps from page to page with uniform probability
 - Occasionally jump to a random page with small probability (1-β)
 - If no out page, then jump to any page with equal probability

$$R(u) = \frac{1}{c} \sum_{v \in B_u} \frac{R(v)}{N_v}$$

K. Selcuk Candan (CSE515)

- At any time-step the random surfer
 - jumps (teleports) to any other node with probability β
 - jumps to its direct neighbors with total probability 1-β

$$\vec{\pi} = (1 - \beta)\mathbf{T}_G \times \vec{\pi} + \beta \vec{s},$$

$$\vec{s} = \frac{1}{n}$$

 T_G is the transition matrix, n is the number of nodes in graph

PageRank and Content

- Query independent
 - Query score has to be combined with PageRank score

Web Mining

- How do we answer the question
 - Given a set of seed URLs, find a list of Web pages, which reflect the association among these seeds.

Seeds..

K. Selcuk Candan (CSE515)

Options

- Pure content: does not consider structure
- Authority, hub:
 - Does not capture distance
 - Does not capture "seed" document
 - Does not account for page contents

What information do we have?

- Page contents
 - How related is a page to the seeds?
- Distance
 - How close is a page to the seeds?
- Connectivity
 - How many paths are there between the seeds and the given page.

How do we merge these?

First suggestion:

$$rep(v) = \sum_{p \in paths(A,B,v)} \frac{score(p)}{length(p)},$$

How do we merge these?

First suggestion:

$$rep(v) = \sum_{p \in paths(A,B,v)} \frac{score(p)}{length(p)},$$

- Problem:
 - Expensive to compute (exponential in the worst case)
 - Path length grows linearly, #of paths grows exponentially

How do we merge these?

- Problem:
 - Expensive to compute (exponential in the worst case)
 - Path length grows linearly, #of paths grows exponentially

Solution?

• Find a way to merge these three criteria implicitly.

Solution?

- Find a way to merge these three criteria implicitly.
- Given
 - S={s1,..sn} of seed pages
 - the Web as a directed graph, G(V,E)
 - a connected undirected neighborhood graph, N, containing the seeds

find

 R, a set of pages that best reflect the association among the pages in S.

Personalized PageRank

Personalized PageRank

- PageRank:
 - At any time-step the random surfer
 - jumps (teleports) to any other node with probability β
 - jumps to its direct neighbors with total probability 1-β

$$\vec{\pi} = (1 - \beta)\mathbf{T}_G \times \vec{\pi} + \beta \vec{s},$$

$$\vec{s} = \frac{1}{n}$$

 T_G is the transition matrix, n is the number of nodes in graph

Background –Personalized PageRank

- Personalized PageRank:
 - user's interest
 - modifying the teleportation vector

$$\vec{\pi} = (1 - \beta)\mathbf{T}_G \times \vec{\pi} + \beta \vec{s},$$

• \vec{s} is a non-uniform preference vector specific to a user and gives "personalized views" of the web.

$$\forall v_i \in S$$
 $\vec{s}[i] = \frac{1}{\|S\|}$ S is seed set $\|S\|$ is size of seed set