1 Potential Fields

In this problem you will use potential fields to get a motion plan for the 2-DoF environment shown above. Here the drone's position is $\theta = [x, y]^T$.

1.1 (15 points)

Implement the potential fields approach:

- Set $\theta_{start} = [0, 0]^T$ and $\theta_{goal} = [1, 1]^T$
- The first obstacle has center $c_1 = [0.2, 0.5]^T$ and radius $r_1 = 0.125$
- The second obstacle has center $c_2 = [0.7, 0.5]^T$ and radius $r_2 = 0.225$
- Hint: Start with a low learning rate α in your gradient descent algorithm. The result shown below was obtained with $\alpha = 0.01$.

The motion plan must reach a final position within 0.1 units of the goal. Turn in your code and a plot of the result using **Publish** in Matlab. Visualize the obstacles in your plot: your solution should look like the example below.

clear

```
close all
% Start and goal environments
theta_start= [0; 0];
theta_goal = [1; 1];
% Obstacle parameters
obs_c21= [0.2; 0.5];
obs_r21= 0.125;
obs c22=[0.7; 0.5];
obs_r22= 0.225;
% Visualizing the environment
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(obs c21', obs r21, 'Color', [0.5, 0.5, 0.5]);
viscircles(obs_c22', obs_r22, 'Color', [0.5, 0.5, 0.5]);
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
%variables
alpha= 0.01;
epsilon = 0.1;
delta= 0.01;
% initial trajectory
theta(:,1) = theta_start;
t=1;
del_Unet=1;
while norm(del Unet)> epsilon
    del_Ux= U_theta(theta(:,t) + [delta;0]);
    del_Uy= U_theta(theta(:,t)+ [0;delta]);
    del_U= U_theta(theta(:,t));
    del_Unet=[del_Ux-del_U; del_Uy-del_U]/delta;
    theta(:,t+1)= theta(:,t)- alpha*del_Unet;
    t=t+1;
end
    0
```

```
0 0 0 0 0 0 0
```



```
function U = U_theta(theta)
  beta=2;
  gamma=1;
  theta_goal = [1; 1];
  obs_c21= [0.2; 0.5];
  obs_r21= 0.125;
  obs_c22= [0.7; 0.5];
```

1.2 (10 points)

Modify the position of the obstacles so that a valid plan from θ_{start} to θ_{goal} exists but the potential fields planner fails (i.e., gets stuck). Turn in a **plot** that shows the obstacles and the failed motion plan. **Explain** why potential fields fail in your environment.

```
clear
close all
% Start and goal environments
theta_start= [0; 0];
theta_goal = [1; 1];
% Modified obstacle positions and sizes
obs_c21 = [0.3; 0.5]; % Shifted first obstacle closer to the second
obs_c22 = [0.6; 0.5]; % Shifted second obstacle closer to the first
obs_r22 = 0.25;
                  % Slightly increased radius
% Visualize the environment
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(obs c21', obs r21, 'Color', [0.5, 0.5, 0.5]);
viscircles(obs_c22', obs_r22, 'Color', [0.5, 0.5, 0.5]);
plot(0, 0, 'ko', 'MarkerFaceColor', 'k');
plot(1, 1, 'ko', 'MarkerFaceColor', 'k');
% Setting the variables
alpha= 0.01;
epsilon = 0.1;
delta= 0.01;
% Initial trajectory
theta(:,1) = theta_start;
t=1;
del_Unet=1;
while norm(del_Unet)> epsilon
   del_Ux= U_theta(theta(:,t) + [delta;0]);
   del_Uy= U_theta(theta(:,t)+ [0;delta]);
   del_U= U_theta(theta(:,t));
   del_Unet=[del_Ux-del_U; del_Uy-del_U]/delta;
   theta(:,t+1)= theta(:,t)- alpha*del_Unet;
   t=t+1;
```

```
0
    0
    0
   0.0300
    0
    0
    0
    0
    0
    0
    0
   0.0235
   0.0135
   0.0028
   0.0058
   0.0016
   0.0471
   0.0589
   0.0118
    0
    0
    0
    0
    0
    0
   0.0293
   0.0172
   0.0047
   0.0017
   0.0238
    0
   0.0051
   0.0015
    0
   0.0499
   0.0338
   0.0138
   0.0034
    0
   0.0124
   0.0128
   1.1985e-04
grid on
hold on
axis equal
plot(theta(1,:), theta(2,:), 'o-',...
     'Color', [1, 0.5, 0], 'LineWidth', 2);
```

0 0


```
function U = U_theta(theta)
    beta=2;
    gamma=1;
    theta_goal = [1; 1];
    % Modified obstacle positions and sizes
    obs_c21 = [0.3; 0.5]; % Update obstacle parameters
    obs_r21 = 0.15;
    obs_c22 = [0.6; 0.5];
    obs_r22 = 0.25;
    Urep1=0;
    Urep2=0;
    Uatt=0.5*beta*norm(theta_goal-theta)^2;
    if norm(obs_c21-theta)<= obs_r21</pre>
        Urep1=0.5* gamma*((1/norm(obs_c21-theta))- (1/obs_r21))^2;
    end
    if norm(obs_c22-theta)<= obs_r22</pre>
        Urep2= 0.5*gamma*((1/norm(obs_c22-theta))- (1/obs_r22))^2;
    end
```

```
Urep= Urep1+ Urep2;
  disp(Urep);
  U= Uatt + Urep;
end
```

In this modification, the obstacles are placed closer to each other, potentially creating a narrow corridor that the drone might not be able to navigate due to the combined repulsive forces. This setup can result in the planner getting stuck in a **local minimum**, where the drone is unable to progress towards the goal. Thus, we place a local minimim in between the start and goal. Gradient descent can only climb "down" so if **it's surrounded by high gradients**, it can't escape.

2 Trajectory Optimization

In this problem you will use trajectory optimization to perform motion planning in 2-DoF environments. As before, the mobile robot's position is $\theta = [x, y]^T$.

2.1 (15 points)

Implement the trajectory optimization algorithm. Your code should be able to work with an arbitrary number of waypoints and circular obstacles. Set the initial trajectory ξ^0 as:

```
% Problem 2.1
clear
close all
% Start and Goal orientations
theta_start = [0;0];
theta_goal = [1;1];
% Initial trajectory variables
n = 2; % No. of joints / 2-D trajectory
k = 10; % No. of waypoints
% Obstacle Parameters - add obstacles as needed
% Each row: [center_x, center_y, radius]
obstacles = [
    0.55, 0.5, 0.3; % First obstacle
    % Add more obstacles here, e.g., [x, y, r]
1;
xi_0 = [linspace(theta_start(1), theta_goal(1), k);
        linspace(theta_start(2), theta_goal(2), k)];
xi_0_vec = reshape(xi_0, [], 1);
% Equality constraints for start and goal positions
A = [eye(n), zeros(n,n*(k-1));...
     zeros(n,n*(k-1)), eye(n) ];
B = [theta_start;theta_goal];
% Nonlinear optimization
options = optimoptions('fmincon','Display','iter',...
    'Algorithm','sqp','MaxFunctionEvaluations',1e4);
xi_star_vec = fmincon(@(xi) cost(xi, obstacles), xi_0_vec, ...
    [], [], A, B, [], [], @(xi) nonlcon(xi, obstacles), options);
```

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
0	21	2.406330e+03	2.442e-01	1.000e+00	step 0.000e+00	optimality 9.306e+04
1	65	1.363684e+03	2.844e-03	2.737e-04	2.567e+01	1.033e+02
2	88	1.336296e+03	0.000e+00	4.900e-01	3.312e+01	4.955e+01
3	110	9.947275e+02	0.000e+00	7.000e-01	2.670e+01	3.330e+01
4	132	9.093469e+02	0.000e+00	7.000e-01	2.865e+01	2.909e+01
5	154	7.748821e+02	0.000e+00	7.000e-01	2.120e+01	4.364e+01
6	176	5.391986e+02	0.000e+00	7.000e-01	1.920e+01	3.179e+01
7	198	3.956808e+02	0.000e+00	7.000e-01	1.285e+01	2.076e+01
8	220	3.798429e+02	0.000e+00	7.000e-01	9.370e+00	1.782e+01
9	242	3.623666e+02	0.000e+00	7.000e-01	7.150e+00	2.639e+01
10	264	3.412506e+02	0.000e+00	7.000e-01	7.378e+00	3.076e+01
11	285	3.304941e+02	0.000e+00	1.000e+00	5.843e+00	2.229e+01
12	308	3.226864e+02	0.000e+00	4.900e-01	2.806e+00	2.048e+01
13	330	3.175471e+02	0.000e+00	7.000e-01	2.991e+00	2.423e+01
14	353	3.159786e+02	0.000e+00	4.900e-01	1.581e+00	2.583e+01
15	374	3.159722e+02	0.000e+00	1.000e+00	1.960e+00	2.443e+01
16	396	3.149716e+02	0.000e+00	7.000e-01	1.337e+00	2.346e+01
17	417	3.141597e+02	0.000e+00	1.000e+00	1.608e+00	2.410e+01
18	438	3.135818e+02	0.000e+00	1.000e+00	1.145e+00	2.481e+01
19	459	3.129914e+02	0.000e+00	1.000e+00	8.481e-01	2.418e+01
20	480	3.126799e+02	0.000e+00	1.000e+00	3.258e-01	2.413e+01
21	501	3.120199e+02	0.000e+00	1.000e+00	5.074e-01	2.420e+01
22	522	3.100772e+02	0.000e+00	1.000e+00	1.502e+00	2.412e+01
23	543	3.065493e+02	0.000e+00	1.000e+00	2.335e+00	2.396e+01
24	564	2.990809e+02	0.000e+00	1.000e+00	3.968e+00	2.342e+01
25	585	2.838973e+02	0.000e+00	1.000e+00	5.688e+00	2.213e+01
26	606	2.538013e+02	0.000e+00	1.000e+00	7.847e+00	1.958e+01
27	627	1.982382e+02	0.000e+00	1.000e+00	1.033e+01	1.472e+01
28 29	648 669	1.150687e+02	0.000e+00	1.000e+00	1.392e+01	7.462e+00
Iter	Func-count	3.811974e+01 Fval	0.000e+00 Feasibility	1.000e+00 Step Length	1.616e+01 Norm of	7.956e+00 First-order
T CEL	runc-count	LAGT	reasibility	Step Length		optimality
30	690	5.580687e+00	0.000e+00	1.000e+00	step 1.185e+01	4.798e+00
31	711	6.208616e-01	0.000e+00	1.000e+00	3.783e+00	1.222e+00
32	732	3.138023e-01	0.000c+00	1.000c+00	6.718e-01	3.266e-01
33	753	2.879849e-01	0.000e+00	1.000e+00	2.517e-01	1.548e-01
34	774	2.784429e-01	0.000e+00	1.000e+00	1.505e-01	5.104e-02
35	795	2.750657e-01	0.000e+00	1.000e+00	6.938e-02	1.499e-02
36	816	2.742908e-01	0.000e+00	1.000e+00	1.253e-02	3.333e-03
37	837	2.742592e-01	0.000e+00	1.000e+00	9.383e-04	3.245e-04
38	858	2.742592e-01	0.000e+00	1.000e+00	2.124e-04	4.465e-05
39	879	2.742592e-01	0.000e+00	1.000e+00	2.595e-05	1.755e-05
40	903	2.742592e-01	0.000e+00	3.430e-01	9.282e-06	1.054e-05
41	924	2.742592e-01	0.000e+00	1.000e+00	9.153e-06	2.044e-06
42	945	2.742592e-01	0.000e+00	1.000e+00	5.645e-11	3.949e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

```
xi_star = reshape(xi_star_vec,2,[]);

% Plotting
figure
grid on
hold on
```

```
axis([0, 1, 0, 1])
axis equal
% Plot Obstacles
for i = 1:size(obstacles, 1)
    viscircles(obstacles(i, 1:2), obstacles(i, 3), 'Color', [0.5, 0.5, 0.5]);
end
plot(theta_start(1), theta_start(2), 'ko', 'MarkerFaceColor', 'k')
plot(theta_goal(1), theta_goal(2), 'ko', 'MarkerFaceColor', 'k')
% Plot Result
plot(xi_star(1,:), xi_star(2,:), 'o-', 'Color', [1, 0.5, 0], 'LineWidth', 3);
```


% Cost function to minimize

```
function C = cost(xi, obstacles)
    gamma = 20;
    xi = reshape(xi, 2, []);
    C = 0;

for idx = 2:length(xi)
    Urep = 0;
    for obs_idx = 1:size(obstacles, 1)
        r = obstacles(obs_idx, 3);
        center = obstacles(obs_idx, 1:2)';

    if norm(center - xi(:, idx)) <= r</pre>
```

```
Urep = Urep + 0.5 * gamma * ((1 / norm(center - xi(:, idx))) - (1 / norm(center - xi(:, idx)))) - (1 / norm(center - xi(:, idx))))
r))^2;
              end
         end
         C = C + norm(xi(:, idx) - xi(:, idx - 1))^2 + Urep;
    end
end
% Nonlinear constraints (optional)
function [c, ceq] = nonlcon(xi, obstacles)
    xi = reshape(xi, 2, []);
    c = [];
    for idx = 1:length(xi)
         for obs_idx = 1:size(obstacles, 1)
              r = obstacles(obs_idx, 3);
             center = obstacles(obs_idx, 1:2)';
             dist = norm(xi(:, idx) - center);
             % Add a constraint for each obstacle
             c = [c; r - dist];
         end
    end
    ceq = [];
end
```

2.2 (15 points)

Use your code to find a desired trajectory for the following environments. In each environment $\theta_{start} = [0, 0]^T$ and $\theta_{goal} = [1, 1]^T$.

• Environment 1. One obstacle with center $c_1 = [0.55, 0.5]^T$ and radius $r_1 = 0.3$. Your trajectory should have k = 10 waypoints.

```
% Problem 2.2 - Environment 1
clear
clc
close all
% Start and Goal orientations
theta_start = [0;0];
theta_goal = [1;1];
% Initial trajectory variables
n = 2; % No. of joints / 2-D trajectory.
k = 10; % No. of waypoints
% Obstacle 1 Paramters
r1 = 0.3;
center1 = [0.55;0.5];
xi 0 = zeros(n, k);
xi_0_vec = reshape(xi_0, [],1);
% Equality constraints for start and goal positions
A = [eye(n), zeros(n,n*(k-1));...
    zeros(n,n*(k-1)), eye(n) ];
B = [theta_start;theta_goal];
% Nonlinear optimization
options = optimoptions('fmincon', 'Display', 'iter',...
    'Algorithm', 'sqp', 'MaxFunctionEvaluations', 1e4);
xi_star_vec = fmincon(@(xi) cost(xi), xi_0_vec, ...
    [], [], A, B, [], [], options);
```

Iter	Func-count	Fval	Feasibility	Step Length	Norm of step	First-order optimality
0	21	0.000000e+00	1.000e+00	1.000e+00	0.000e+00	2.980e-08
1	46	1.152960e-01	7.599e-01	2.401e-01	3.396e-01	4.802e-01
2	74	1.288167e-01	6.973e-01	8.235e-02	1.177e-01	3.858e-01
3	107	1.301925e-01	6.877e-01	1.384e-02	2.070e-02	3.824e-01
4	144	1.304400e-01	6.854e-01	3.323e-03	5.499e-03	9.620e-01
5	167	7.032032e+01	3.495e-01	4.900e-01	8.867e-01	1.115e+03

6	189	6.352294e+01	1.049e-01	7.000e-01	9.000e-01	1.427e+03
7	227	4.385346e+01	1.046e-01	2.326e-03	4.696e+00	1.425e+01
8	251	2.747094e+01	6.873e-02	3.430e-01	4.806e+00	8.959e+00
9	273	3.029506e+01	2.062e-02	7.000e-01	3.580e+00	1.101e+01
					3.772e+00	
10	294	2.194269e+01	0.000e+00	1.000e+00		5.910e+00
11	317	1.691520e+01	0.000e+00	4.900e-01	2.460e+00	6.687e+00
12	338	1.556209e+01	0.000e+00	1.000e+00	2.682e+00	5.474e+00
13	361	1.373612e+01	0.000e+00	4.900e-01	1.497e+00	5.272e+00
14	382	1.356662e+01	0.000e+00	1.000e+00	2.439e+00	5.988e+00
15	404	1.202932e+01	0.000e+00	7.000e-01	1.448e+00	4.338e+00
16	426	1.090450e+01	0.000e+00	7.000e-01	1.709e+00	4.760e+00
17	448	1.017564e+01	0.000e+00	7.000e-01	9.125e-01	4.769e+00
18	470	1.000271e+01	0.000e+00	7.000e-01	1.152e+00	4.435e+00
19	491	9.682184e+00	0.000e+00	1.000e+00	9.631e-01	4.145e+00
20	512	9.261388e+00	0.000e+00	1.000e+00	1.187e+00	4.791e+00
21	533	8.374244e+00	0.000e+00	1.000e+00	8.414e-01	3.774e+00
22	554	7.824443e+00	0.000e+00	1.000e+00	8.498e-01	4.208e+00
23	575	6.749018e+00	0.000e+00	1.000e+00	3.605e-01	3.726e+00
24	596	3.307992e+00	0.000e+00	1.000e+00	1.625e+00	2.179e+00
25						
	619	2.037926e+00	0.000e+00	4.900e-01	8.710e-01	1.745e+00
26	646	1.927091e+00	0.000e+00	1.176e-01	2.098e-01	2.848e+01
27	671	1.130807e+00	0.000e+00	2.401e-01	1.517e+00	1.308e+00
28	692	9.908110e-01	0.000e+00	1.000e+00	5.148e-01	9.454e-01
29	713	9.585879e-01	0.000e+00	1.000e+00	1.772e-01	8.913e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
			•		step	optimality
30	734	9.504782e-01	0.000e+00	1.000e+00	1.254e-01	8.607e-01
31	755	9.433863e-01	0.000e+00	1.000e+00	1.697e-01	8.485e-01
32	776	9.404222e-01	0.000c+00	1.000c+00	7.222e-02	8.553e-01
33	797	9.358837e-01	0.000e+00	1.000e+00	7.918e-02	8.530e-01
34	818	9.277798e-01	0.000e+00	1.000e+00	8.573e-02	8.466e-01
35	839	9.090249e-01	0.000e+00	1.000e+00	1.152e-01	8.383e-01
36	860	8.698169e-01	0.000e+00	1.000e+00	1.282e-01	8.426e-01
37	881	8.003106e-01	0.000e+00	1.000e+00	1.655e-01	8.889e-01
38	908	7.894592e-01	0.000e+00	1.176e-01	3.813e-02	2.749e+00
39	933	7.491688e-01	0.000e+00	2.401e-01	7.171e-01	1.287e+00
40	954	7.010403e-01	0.000e+00	1.000e+00	2.195e-01	1.167e+00
41	975	6.955670e-01	0.000e+00	1.000e+00	8.705e-02	1.187e+00
42	996	6.935455e-01	0.000e+00	1.000e+00	6.847e-02	1.211e+00
43	1017	6.917963e-01	0.000e+00	1.000e+00	4.121e-02	1.224e+00
44	1038	6.852306e-01	0.000e+00	1.000e+00	1.035e-01	1.249e+00
45	1059	6.715092e-01	0.000e+00	1.000e+00	1.428e-01	1.267e+00
46	1082	6.552153e-01	0.000e+00	4.900e-01	1.079e-01	2.159e+00
47	1110	6.443417e-01	0.000e+00	8.235e-02	8.074e-02	4.873e+00
48	1140	6.384926e-01	0.000e+00	4.035e-02	3.996e-02	3.916e+00
49	1166	6.086512e-01	0.000e+00	1.681e-01	2.875e-01	9.759e-01
50	1190	5.959004e-01	0.000e+00	3.430e-01	8.505e-02	4.651e+00
51	1215	5.695792e-01	0.000e+00	2.401e-01	4.264e-01	9.988e-01
					8.067e-01	3.296e+00
52	1239	5.585371e-01	0.000e+00	3.430e-01		
53	1261	5.568165e-01	0.000e+00	7.000e-01	1.470e-01	9.637e-01
54	1282	5.536087e-01	0.000e+00	1.000e+00	8.744e-02	9.644e-01
55	1303	5.513904e-01	0.000e+00	1.000e+00	5.739e-03	9.545e-01
56	1325	5.475078e-01	0.000e+00	7.000e-01	2.264e-02	1.724e+00
57	1347	5.473799e-01	0.000e+00	7.000e-01	1.692e-02	9.367e-01
58	1368	5.462014e-01	0.000e+00	1.000e+00	7.459e-03	9.319e-01
59	1391	5.452781e-01	0.000e+00	4.900e-01	1.038e-02	1.244e+00
Iter		Fval	Feasibility	Step Length	Norm of	First-order
Trei.	Func-count	LAGT	reasinitity	areh reuktu		
					step	optimality
60	1412	5.444957e-01	0.000e+00	1.000e+00	4.100e-03	9.236e-01
61	1433	5.440097e-01	0.000e+00	1.000e+00	2.957e-03	5.819e-01
62	1454	5.427847e-01	0.000e+00	1.000e+00	1.278e-02	9.597e-01
63	1475	5.393796e-01	0.000e+00	1.000e+00	2.612e-02	1.160e+00
64	1497	5.346344e-01	0.000e+00	7.000e-01	2.626e-01	1.009e+00
65	1518	5.237382e-01	0.000e+00	1.000e+00	7.361e-02	9.201e-01

66	1539	5.160012e-01	0.000e+00	1.000e+00	7.879e-02	7.991e-01
67	1560	5.147708e-01	0.000e+00	1.000e+00	2.968e-02	7.754e-01
68	1581	5.138298e-01	0.000e+00	1.000e+00	2.674e-02	7.667e-01
69	1602	5.123361e-01	0.000e+00	1.000e+00	2.860e-02	7.607e-01
70	1623	5.086079e-01	0.000e+00	1.000e+00	4.696e-02	7.511e-01
71	1644	5.020822e-01	0.000e+00	1.000e+00	5.351e-02	7.389e-01
72	1665	4.937955e-01	0.000e+00	1.000e+00	5.043e-02	7.277e-01
73	1686	4.880069e-01	0.000e+00	1.000e+00	5.624e-02	7.249e-01
74	1714	4.879379e-01	0.000e+00	8.235e-02	4.223e-03	3.960e-01
75	1735	4.872819e-01	0.000e+00	1.000e+00	1.427e-01	8.078e-01
75 76	1756	4.833876e-01	0.000e+00	1.000e+00	6.588e-02	7.718e-01
77	1777	4.807187e-01	0.000e+00	1.000e+00	2.329e-02	7.585e-01
78	1798	4.693274e-01	0.000e+00	1.000e+00	6.169e-02	7.276e-01
79	1819	4.540552e-01	0.000e+00	1.000e+00	7.595e-02	7.175e-01
80	1840	4.370382e-01	0.000e+00	1.000e+00	1.362e-01	7.455e-01
81	1861	4.295554e-01	0.000e+00	1.000e+00	1.159e-01	7.910e-01
82	1882	4.277897e-01	0.000e+00	1.000e+00	4.723e-02	8.142e-01
83	1903	4.269821e-01	0.000e+00	1.000e+00	1.677e-02	8.208e-01
84	1924	4.254267e-01	0.000e+00	1.000e+00	2.820e-02	1.690e+00
85	1955	4.246377e-01	0.000e+00	2.825e-02	7.490e-02	8.281e-01
86	1976	4.203536e-01	0.000e+00	1.000e+00	3.101e-02	8.080e-01
87	1997	4.076927e-01	0.000e+00	1.000e+00	5.220e-02	7.196e-01
88	2018	3.892482e-01	0.000e+00	1.000e+00	5.975e-02	5.503e-01
89	2045	3.861608e-01	0.000e+00	1.176e-01	1.255e-02	6.638e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
90	2066	3.805247e-01	0.000e+00	1.000e+00	3.173e-01	5.479e-01
91	2087	3.719592e-01	0.000e+00	1.000e+00	1.127e-01	3.873e-01
92	2108	3.688493e-01	0.000e+00	1.000e+00	2.377e-02	4.061e-01
93	2131	3.640324e-01	0.000e+00	4.900e-01	2.813e-02	1.781e+00
94	2152	3.596278e-01	0.000e+00	1.000e+00	8.230e-02	3.523e-01
95	2173	3.541344e-01	0.000e+00	1.000e+00	2.486e-02	3.749e-01
96	2194	3.387311e-01	0.000e+00	1.000e+00	7.866e-02	4.607e-01
97	2217	3.383436e-01	0.000e+00	4.900e-01	1.616e-02	1.962e+00
98	2247	3.352298e-01	0.000e+00	4.035e-02	4.854e-02	4.237e-01
99	2275	3.351512e-01	0.000e+00	8.235e-02	3.908e-03	4.631e-01
100	2296	3.339114e-01	0.000e+00	1.000e+00	3.917e-02	3.386e-01
101	2317	3.332994e-01	0.000e+00	1.000e+00	1.145e-02	3.456e-01
102	2338	3.324295e-01	0.000e+00	1.000e+00	1.086e-02	3.693e-01
103	2359	3.302767e-01	0.000e+00	1.000e+00	2.633e-02	8.111e-01
104	2380	3.271194e-01	0.000e+00	1.000e+00	3.328e-02	4.405e-01
105	2406	3.261397e-01	0.000e+00	1.681e-01	9.718e-03	4.383e-01
106	2435	3.261058e-01	0.000e+00	5.765e-02	2.029e-03	5.912e-01
107	2457	3.259175e-01	0.000e+00	7.000e-01	6.255e-02	4.027e-01
108	2478	3.251367e-01	0.000e+00	1.000e+00	3.110e-02	4.119e-01
109	2499	3.249058e-01	0.000c+00	1.000e+00	5.306e-03	4.112e-01
110	2520	3.238941e-01	0.000c+00	1.000c+00	5.840e-03	9.391e-01
111	2541	3.207431e-01	0.000e+00	1.000e+00	1.757e-02	2.578e+00
112	2562	3.145294e-01	0.000e+00	1.000e+00	4.801e-02	4.253e+00
					1.771e-02	
113 114	2588 2612	3.134487e-01 3.131258e-01	0.000e+00 0.000e+00	1.681e-01 3.430e-01		4.142e+00
					3.409e-01	2.479e-01
115	2633	2.963018e-01	0.000e+00	1.000e+00	1.948e-01	1.884e-01
116	2654	2.952003e-01	0.000e+00	1.000e+00	1.063e-02	1.580e-01
117	2675	2.935469e-01	0.000e+00	1.000e+00	1.779e-02	1.203e+00
118	2696	2.909305e-01	0.000e+00	1.000e+00	4.284e-02	2.521e-01
119	2717	2.873025e-01	0.000e+00	1.000e+00	4.136e-02	2.433e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
		0.00			step	optimality
120	2741	2.836733e-01	0.000e+00	3.430e-01	4.304e-02	9.319e-01
121	2766	2.833367e-01	0.000e+00	2.401e-01	1.165e-02	2.861e+00
122	2787	2.802654e-01	0.000e+00	1.000e+00	5.053e-02	2.243e-01
123	2808	2.779226e-01	0.000e+00	1.000e+00	2.259e-02	2.397e-01
124	2829	2.746141e-01	0.000e+00	1.000e+00	5.180e-02	2.895e-01
125	2850	2.736594e-01	0.000e+00	1.000e+00	1.906e-02	3.004e-01

126	2874	2.734645e-01	0.000e+00	3.430e-01	9.272e-03	1.259e+00
127	2897	2.733963e-01	0.000e+00	4.900e-01	9.023e-03	1.287e+00
128	2918	2.728705e-01	0.000e+00	1.000e+00	3.618e-02	2.783e-01
129	2939	2.717773e-01	0.000e+00	1.000e+00	1.907e-02	2.780e-01
130	2960	2.709023e-01	0.000e+00	1.000e+00	1.607e-02	2.726e-01
131	2981	2.697157e-01	0.000e+00	1.000e+00	2.034e-02	2.720e-01 2.622e-01
132	3002	2.682152e-01	0.000e+00	1.000e+00	2.705e-02	2.309e-01
133	3023	2.673176e-01	0.000e+00	1.000e+00	1.822e-02	2.075e-01
134	3044	2.669710e-01	0.000e+00	1.000e+00	8.992e-03	1.979e-01
135	3065	2.668130e-01	0.000e+00	1.000e+00	8.502e-03	1.947e-01
136	3086	2.667051e-01	0.000e+00	1.000e+00	8.663e-03	1.935e-01
137	3107	2.665770e-01	0.000e+00	1.000e+00	1.032e-02	1.921e-01
138	3128	2.663609e-01	0.000e+00	1.000e+00	1.465e-02	1.897e-01
139	3149	2.659549e-01	0.000e+00	1.000e+00	2.301e-02	1.846e-01
140	3170	2.653537e-01	0.000e+00	1.000e+00	2.929e-02	1.765e-01
141	3191	2.648231e-01	0.000e+00	1.000e+00	2.134e-02	1.687e-01
142	3212	2.645959e-01	0.000e+00	1.000e+00	8.264e-03	1.660e-01
143	3233	2.645226e-01	0.000e+00	1.000e+00	7.392e-03	1.662e-01
144	3254	2.644462e-01	0.000e+00	1.000e+00	7.004e-03	1.665e-01
145	3275	2.642458e-01	0.000e+00	1.000e+00	1.210e-02	1.658e-01
146	3296	2.637635e-01	0.000e+00	1.000e+00	1.826e-02	1.616e-01
147	3317	2.626155e-01	0.000e+00	1.000e+00	2.701e-02	1.471e-01
148	3342	2.625048e-01	0.000e+00	2.401e-01	7.894e-03	1.243e+00
149	3363	2.596185e-01	0.000e+00	1.000e+00	5.284e-02	1.580e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
150	3384	2.578974e-01	0.000e+00	1.000e+00	3.636e-02	1.526e-01
151	3405	2.568010e-01	0.000e+00	1.000e+00	4.611e-02	1.244e-01
152	3426	2.566945e-01	0.000e+00	1.000e+00	1.861e-03	1.227e-01
153	3447	2.561382e-01	0.000e+00	1.000e+00	9.197e-03	1.247e-01
154	3471	2.558216e-01	0.000e+00	3.430e-01	1.086e-02	1.405e-01
155	3501	2.557915e-01	0.000e+00	4.035e-02	1.484e-03	6.151e-02
156	3522	2.557530e-01	0.000e+00	1.000e+00	5.983e-03	1.431e-01
157	3546	2.557466e-01	0.000e+00	3.430e-01	7.618e-04	1.739e-01
158	3567	2.557343e-01	0.000e+00	1.000e+00	5.574e-04	6.748e-02
159	3588	2.557282e-01	0.000e+00	1.000e+00	5.965e-04	6.540e-02
160	3609	2.557145e-01	0.000e+00	1.000e+00	1.657e-03	3.191e-01
161	3630	2.556839e-01	0.000e+00	1.000e+00	4.008e-04	1.009e-01
162	3651	2.556182e-01	0.000e+00	1.000e+00	1.952e-03	9.462e-02
163	3672	2.553050e-01	0.000e+00	1.000e+00	1.519e-02	1.226e-01
164	3693	2.551542e-01	0.000e+00	1.000e+00	1.859e-02	1.406e-01
165	3714	2.551199e-01	0.000e+00	1.000e+00	2.668e-03	1.431e-01
166	3735	2.549032e-01	0.000e+00	1.000e+00	8.075e-03	1.496e-01
167	3761	2.548681e-01	0.000e+00	1.681e-01	5.699e-03	6.169e-01
168	3782	2.546574e-01	0.000e+00	1.000e+00	2.589e-02	1.717e-01
169	3803	2.546060e-01	0.000e+00	1.000e+00	2.955e-03	1.684e-01
170	3827	2.545243e-01	0.000e+00	3.430e-01	1.765e-03	2.165e-01
171	3848	2.544476e-01	0.000e+00	1.000e+00	1.119e-02	1.719e-01
172	3876	2.544463e-01	0.000e+00	8.235e-02	1.210e-03	1.726e-01
173	3897	2.543965e-01	0.000e+00	1.000e+00	5.062e-03	8.554e-02
174	3918	2.543899e-01	0.000e+00	1.000e+00	2.104e-03	8.597e-02
175	3939	2.543781e-01	0.000e+00	1.000e+00	3.085e-03	8.177e-02
176	3963	2.543771e-01	0.000e+00	3.430e-01	2.838e-04	8.784e-02
177	3984	2.543693e-01	0.000e+00	1.000e+00	5.284e-04	7.969e-02
178	4005	2.543265e-01	0.000e+00	1.000e+00	2.922e-03	6.589e-02
179	4026	2.542294e-01	0.000e+00	1.000e+00	1.270e-02	1.482e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
1001	runc-counc	IVal	reasibility	Step Length		
100	4047	2 541010 - 01	0.00000	1 000-100	step	optimality
180	4047	2.541919e-01	0.000e+00	1.000e+00	3.827e-03	1.470e-01
181	4068	2.541886e-01	0.000e+00	1.000e+00	5.721e-03	2.946e-01
182	4089	2.541509e-01	0.000e+00	1.000e+00	5.629e-03	8.869e-02
183	4110	2.541473e-01	0.000e+00	1.000e+00	6.916e-04	2.065e-02
184	4131	2.541458e-01	0.000e+00	1.000e+00	1.293e-03	1.744e-02
185	4152	2.541446e-01	0.000e+00	1.000e+00	2.045e-03	1.077e-02

```
2.541446e-01
                                                                   3.078e-04
                                                                                  8.010e-03
186
            4173
                                      0.000e+00
                                                     1.000e+00
 187
            4194
                    2.541445e-01
                                      0.000e+00
                                                     1.000e+00
                                                                                  7.914e-03
                                                                   1.272e-04
 188
            4215
                    2.541444e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   2.027e-04
                                                                                  7.708e-03
 189
            4236
                    2.541441e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   2.305e-04
                                                                                  1.536e-02
            4257
                    2.541434e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   2.922e-04
                                                                                  2.660e-02
 190
            4278
                    2.541420e-01
                                                     1.000e+00
                                                                   5.916e-04
                                                                                  4.001e-02
 191
                                      0.000e+00
 192
            4299
                    2.541392e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   1.436e-03
                                                                                  4.939e-02
193
            4320
                    2.541350e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   2.849e-03
                                                                                  3.459e-02
            4341
                    2.541324e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   2.519e-03
                                                                                  1.703e-02
 194
 195
            4362
                    2.541318e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   6.746e-04
                                                                                  2.440e-03
                                                                                  1.544e-03
 196
            4383
                    2.541318e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   1.737e-04
                                                                                  1.443e-03
 197
            4404
                    2.541317e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   6.917e-05
            4425
                                      0.000e+00
                                                     1.000e+00
                                                                   6.871e-05
                                                                                  1.472e-03
 198
                    2.541317e-01
 199
            4446
                    2.541317e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   5.670e-05
                                                                                  1.485e-03
 200
            4467
                    2.541317e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   9.671e-05
                                                                                  3.055e-03
 201
            4488
                    2.541317e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   1.470e-04
                                                                                  6.135e-03
            4509
                                      0.000e+00
                                                     1.000e+00
                                                                   2.496e-04
                                                                                  1.114e-02
 202
                    2.541316e-01
 203
            4530
                    2.541315e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   4.059e-04
                                                                                  1.849e-02
 204
            4551
                    2.541311e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   6.239e-04
                                                                                  2.735e-02
                                      0.000e+00
                                                                   7.938e-04
                                                                                  3.151e-02
 205
            4572
                    2.541305e-01
                                                     1.000e+00
 206
            4593
                    2.541300e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   6.649e-04
                                                                                  2.061e-02
                                      0.000e+00
                                                                   2.496e-04
 207
            4614
                    2.541298e-01
                                                     1.000e+00
                                                                                  5.262e-03
 208
                    2.541298e-01
                                      0.000e+00
                                                     1.000e+00
                                                                                  4.221e-04
            4635
                                                                   1.267e-04
 209
            4656
                    2.541298e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   4.468e-05
                                                                                  4.099e-05
Iter
     Func-count
                             Fval
                                    Feasibility
                                                  Step Length
                                                                     Norm of
                                                                                First-order
                                                                        step
                                                                                 optimality
 210
            4677
                    2.541298e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   5.090e-06
                                                                                  6.840e-06
 211
            4698
                    2.541298e-01
                                      0.000e+00
                                                     1.000e+00
                                                                   5.339e-07
                                                                                  7.413e-07
```

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

% Cost function to minimize

```
function C = cost(xi)

gamma = 20;
xi = reshape(xi,2,[]);
C = 0;
r1 = 0.3;
center1 = [0.55;0.5];

for idx = 2:length(xi)
    Urep1 = 0;

    if (norm(center1 - xi(:,idx)) <=r1)
        Urep1 = 0.5*gamma*((1/(norm(center1-xi(:,idx)))) - (1/r1))^2;
end

    C = Urep1 + C + norm(xi(:,idx) - xi(:,idx-1))^2;
end
end</pre>
```

• Environment 2. One obstacle with center $c_1 = [0.5, 0.3]^T$ and radius $r_1 = 0.3$. A second obstacle with center $c_2 = [0.5, 0.7]^T$ and radius $r_2 = 0.2$. Set k = 15.

```
% Problem 2.2 - Environment 2
clear
clc
close all
% Start and Goal orientations
theta start = [0;0];
theta_goal = [1;1];
% Initial trajectory variables
n = 2; % No. of joints/ 2-D trajectory
k = 15; % No. of waypoints
% Obstacles 1 and 2 parameters
% First obstacle's radius and center
r1 = 0.3;
center1 = [0.5;0.3];
% Second obstacle's radius and center
r2 = 0.2;
center2 = [0.5;0.7];
xi_0 = zeros(n, k); % Initial trajectory
xi_0_vec = reshape(xi_0, [],1); % Reshape for the need of optimization
% Equality constraints for start and goal positions
A = [eye(n), zeros(n,n*(k-1));...
    zeros(n,n*(k-1)), eye(n) ];
B = [theta_start;theta_goal];
% Nonlinear optimization
options = optimoptions('fmincon', 'Display', 'iter',...
    'Algorithm', 'sqp', 'MaxFunctionEvaluations', 1e5);
xi_star_vec = fmincon(@(xi) cost(xi), xi_0_vec, ...
    [], [], A, B, [], [], options);
```

Iter	Func-count	Fval	Feasibility	Step Length	Norm of step	First-order optimality
0	31	0.000000e+00	1.000e+00	1.000e+00	0.000e+00	2.980e-08
1	63	9.800000e-01	3.000e-01	7.000e-01	9.899e-01	1.400e+00
2	98	8.002409e-01	2.280e-01	2.401e-01	2.482e-01	9.038e-01
3	137	7.199803e-01	2.148e-01	5.765e-02	9.956e-02	8.320e-01
4	182	7.226496e-01	2.134e-01	6.782e-03	1.237e-02	9.556e+00
5	217	7.506090e-01	1.621e-01	2.401e-01	2.927e-01	1.365e+00
6	249	1.018032e+00	4.864e-02	7.000e-01	4.074e-01	1.564e+00
7	280	1.138203e+00	0.000e+00	1.000e+00	3.986e-01	1.730e+00
8	312	1.089659e+00	0.000e+00	7.000e-01	2.766e-01	1.834e+00

9	344	1.079187e+00	0.000e+00	7.000e-01	2.754e-01	1.854e+00
10	376	1.052501e+00	0.000e+00	7.000e-01	2.114e-01	1.807e+00
11	408	1.043898e+00	0.000e+00	7.000e-01	2.289e-01	1.780e+00
12	440	1.028618e+00	0.000e+00	7.000e-01	1.743e-01	1.801e+00
13	472	1.020757e+00	0.000e+00	7.000e-01	1.715e-01	1.835e+00
14	504	1.011666e+00	0.000c+00	7.000c 01 7.000e-01	1.428e-01	1.841e+00
15						
	536	1.004509e+00	0.000e+00	7.000e-01	1.374e-01	1.823e+00
16	568	9.966581e-01	0.000e+00	7.000e-01	1.285e-01	1.810e+00
17	600	9.919059e-01	0.000e+00	7.000e-01	1.211e-01	1.815e+00
18	631	9.858665e-01	0.000e+00	1.000e+00	1.539e-01	1.835e+00
19	663	9.830327e-01	0.000e+00	7.000e-01	1.089e-01	1.837e+00
20	694	9.781328e-01	0.000e+00	1.000e+00	1.752e-01	1.821e+00
21	726	9.742403e-01	0.000e+00	7.000e-01	1.055e-01	1.815e+00
22	757	9.724051e-01	0.000e+00	1.000e+00	1.769e-01	1.819e+00
23	789	9.673708e-01	0.000e+00	7.000e-01	9.615e-02	1.823e+00
24	821	9.595208e-01	0.000e+00	7.000e-01	1.198e-01	1.821e+00
25	854	9.563263e-01	0.000e+00	4.900e-01	6.450e-02	1.814e+00
26	885	9.513725e-01	0.000e+00	1.000e+00	9.931e-02	1.795e+00
27	917	9.480460e-01	0.000c+00	7.000e-01	1.100e-01	1.805e+00
	948	9.342793e-01				
28			0.000e+00	1.000e+00	8.007e-02	1.781e+00
29	979	9.147575e-01	0.000e+00	1.000e+00	1.640e-01	1.760e+00
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
30	1010	8.703939e-01	0.000e+00	1.000e+00	1.240e-01	1.688e+00
31	1041	5.931631e-01	0.000e+00	1.000e+00	9.008e-01	1.050e+00
32	1072	3.789344e-01	0.000e+00	1.000e+00	4.611e-01	4.962e-01
33	1103	2.277291e-01	0.000e+00	1.000e+00	5.351e-01	4.549e-01
34	1142	2.233931e-01	0.000e+00	5.765e-02	3.391e-02	4.374e-01
35	1188	2.229087e-01	0.000e+00	4.748e-03	4.052e-03	4.357e-01
36	1239	2.228200e-01	0.000e+00	7.979e-04	7.422e-04	7.010e-01
37	1277	2.055736e-01	0.000e+00	8.235e-02	1.342e-01	4.193e-01
38	1318	2.038573e-01	0.000e+00	2.825e-02	1.480e-02	4.079e-01
39	1365	2.036490e-01	0.000e+00	3.323e-03	1.862e-03	6.813e-01
40	1401	1.854562e-01	0.000c+00	1.681e-01	2.114e-01	3.726e-01
41	1436	1.832160e-01	0.000e+00	2.401e-01	4.553e-02	2.842e-01
42	1474	1.827084e-01	0.000e+00	8.235e-02	1.335e-02	2.659e+00
43	1507	1.817833e-01	0.000e+00	4.900e-01	1.972e-01	1.547e-01
44	1538	1.804912e-01	0.000e+00	1.000e+00	1.031e-01	9.838e-02
45	1569	1.803867e-01	0.000e+00	1.000e+00	2.001e-02	9.918e-02
46	1600	1.803473e-01	0.000e+00	1.000e+00	9.368e-03	9.832e-02
47	1631	1.803048e-01	0.000e+00	1.000e+00	1.253e-02	9.659e-02
48	1662	1.802746e-01	0.000e+00	1.000e+00	8.701e-03	9.570e-02
49	1693	1.802186e-01	0.000e+00	1.000e+00	1.266e-02	9.483e-02
50	1724	1.801193e-01	0.000e+00	1.000e+00	1.535e-02	9.400e-02
51	1757	1.799917e-01	0.000e+00	4.900e-01	1.123e-02	9.362e-02
52	1798	1.799672e-01	0.000e+00	2.825e-02	1.294e-03	9.356e-02
53	1849	1.799666e-01	0.000e+00	7.979e-04	6.799e-05	3.372e-01
54	1880	1.798228e-01	0.000e+00	1.000e+00	2.163e-02	8.773e-02
55	1911	1.797841e-01	0.000e+00	1.000e+00	7.388e-03	8.821e-02
56	1942	1.797247e-01	0.000e+00	1.000e+00	1.442e-02	8.959e-02
57	1973	1.796623e-01	0.000e+00	1.000e+00	1.241e-02	8.891e-02
58	2006	1.796177e-01	0.000e+00	4.900e-01	8.990e-03	1.876e+00
59	2038	1.794735e-01	0.000e+00	7.000e-01	1.324e-02	7.945e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
60	2080	1.794734e-01	0.000e+00	1.977e-02	1.191e-04	5.677e-01
61	2111	1.791900e-01	0.000e+00	1.000e+00	5.752e-02	9.683e-02
62	2142	1.790400e-01	0.000e+00	1.000e+00	1.711e-02	9.231e-02
63	2173	1.789940e-01	0.000e+00	1.000e+00	8.847e-03	9.332e-02
64	2204	1.789830e-01	0.000e+00	1.000e+00	5.372e-03	9.513e-02
65	2235	1.789815e-01	0.000e+00	1.000e+00	1.631e-03	9.579e-02
66	2266	1.789795e-01	0.000e+00	1.000e+00	2.037e-03	9.637e-02
67	2297	1.789761e-01	0.000e+00	1.000e+00	2.926e-03	9.669e-02
68	2328	1.789710e-01	0.000e+00	1.000e+00	3.262e-03	9.637e-02
				,		

69	2359	1.789644e-01	0.000e+00	1.000e+00	2.564e-03	9.531e-02
70	2390	1.789550e-01	0.000e+00	1.000e+00	1.785e-03	9.368e-02
71	2421	1.789368e-01	0.000e+00	1.000e+00	1.912e-03	9.134e-02
72	2453	1.789046e-01	0.000e+00	7.000e-01	2.268e-03	8.888e-02
73	2492	1.788959e-01	0.000e+00	5.765e-02	4.112e-04	8.851e-02
74	2523	1.788547e-01	0.000e+00	1.000e+00	5.176e-03	9.274e-02
75	2554	1.787689e-01	0.000c+00	1.000c+00	1.478e-02	1.072e-01
75 76	2585	1.787344e-01	0.000e+00	1.000e+00	4.417e-03	1.072e-01 1.085e-01
76 77					2.791e-03	1.092e-01
	2618	1.787120e-01	0.000e+00 0.000e+00	4.900e-01		
78	2661	1.787114e-01		1.384e-02	8.841e-05	1.344e-01
79	2692	1.787000e-01	0.000e+00	1.000e+00	6.772e-03	1.137e-01
80	2723	1.786974e-01	0.000e+00	1.000e+00	1.293e-03	1.133e-01
81	2754	1.786934e-01	0.000e+00	1.000e+00	3.006e-03	1.130e-01
82	2785	1.786918e-01	0.000e+00	1.000e+00	7.728e-04	1.131e-01
83	2816	1.786837e-01	0.000e+00	1.000e+00	2.772e-03	1.137e-01
84	2852	1.786837e-01	0.000e+00	1.681e-01	5.390e-04	5.479e-01
85	2883	1.786762e-01	0.000e+00	1.000e+00	7.154e-03	1.186e-01
86	2914	1.786727e-01	0.000e+00	1.000e+00	2.540e-03	1.176e-01
87	2945	1.786698e-01	0.000e+00	1.000e+00	1.535e-03	1.175e-01
88	2976	1.786664e-01	0.000e+00	1.000e+00	1.358e-03	1.179e-01
89	3007	1.786642e-01	0.000e+00	1.000e+00	2.966e-03	1.197e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
90	3038	1.786601e-01	0.000e+00	1.000e+00	1.511e-03	1.204e-01
91	3069	1.786412e-01	0.000e+00	1.000e+00	5.900e-03	1.224e-01
92	3101	1.786387e-01	0.000e+00	7.000e-01	3.069e-03	1.262e+00
93	3140	1.786268e-01	0.000e+00	5.765e-02	3.013e-03	6.111e-01
94	3176	1.786218e-01	0.000e+00	1.681e-01	7.839e-03	1.259e-01
95	3208	1.786156e-01	0.000e+00	7.000e-01	7.944e-03	1.255e-01
96	3239	1.786097e-01	0.000e+00	1.000e+00	4.440e-03	1.268e-01
97	3272	1.786082e-01	0.000e+00	4.900e-01	2.958e-04	9.989e-02
98	3303	1.785898e-01	0.000e+00	1.000e+00	9.269e-03	1.235e-01
99	3337	1.785837e-01	0.000e+00	3.430e-01	3.634e-04	5.462e-01
100	3368	1.785660e-01	0.000e+00	1.000e+00	7.365e-03	1.202e-01
101	3399	1.785615e-01	0.000c+00	1.000c+00	5.067e-04	1.198e-01
102	3432	1.785604e-01	0.000e+00	4.900e-01	2.372e-04	1.223e+00
103	3463	1.785488e-01	0.000e+00	1.000e+00	3.800e-03	1.176e-01
104	3494	1.785420e-01	0.000e+00	1.000e+00	9.335e-04	1.173e-01
105	3534	1.785428e-01	0.000e+00	4.035e-02	6.529e-05	2.537e-01
		1.785389e-01	0.000e+00	1.000e+00	1.683e-03	
106	3565				5.339e-04	1.161e-01 1.156e-01
107	3596	1.785364e-01	0.000e+00	1.000e+00		
108	3627	1.785351e-01	0.000e+00	1.000e+00	2.267e-03	6.912e-01
109	3660	1.785336e-01	0.000e+00	4.900e-01	2.902e-03	1.118e-01
110	3691	1.785324e-01	0.000e+00	1.000e+00	1.904e-03	2.978e-01
111	3722	1.785312e-01	0.000e+00	1.000e+00	3.062e-04	2.775e-01
112	3753	1.785254e-01	0.000e+00	1.000e+00	6.357e-04	2.315e-01
113	3786	1.785218e-01	0.000e+00	4.900e-01	9.409e-04	2.259e-01
114	3820	1.785211e-01	0.000e+00	3.430e-01	1.777e-03	3.480e-01
115	3855	1.785173e-01	0.000e+00	2.401e-01	7.096e-03	1.069e-01
116	3886	1.785105e-01	0.000e+00	1.000e+00	4.216e-03	5.723e-02
117	3917	1.785093e-01	0.000e+00	1.000e+00	1.031e-03	1.459e-01
118	3948	1.785081e-01	0.000e+00	1.000e+00	2.599e-03	1.020e-01
119	3979	1.785061e-01	0.000e+00	1.000e+00	2.940e-04	2.377e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
120	4010	1.785015e-01	0.000e+00	1.000e+00	1.086e-03	4.306e-01
121	4041	1.784939e-01	0.000e+00	1.000e+00	4.044e-03	4.585e-01
122	4073	1.784921e-01	0.000e+00	7.000e-01	1.240e-03	3.167e-01
123	4104	1.784877e-01	0.000e+00	1.000e+00	2.766e-03	9.626e-02
124	4136	1.784868e-01	0.000e+00	7.000e-01	1.600e-03	1.886e-01
125	4167	1.784836e-01	0.000e+00	1.000e+00	7.805e-04	8.586e-02
126	4198	1.784821e-01	0.000e+00	1.000e+00	1.020e-03	1.273e-01
127	4229	1.784806e-01	0.000e+00	1.000e+00	5.044e-04	1.729e-01
128	4260	1.784784e-01	0.000e+00	1.000e+00	6.838e-04	1.797e-01
		·				

129	4291	1.784770e-01	0.000e+00	1.000e+00	5.871e-04	1.386e-01
130	4322	1.784742e-01	0.000e+00	1.000e+00	1.606e-03	1.789e-01
131	4355	1.784715e-01	0.000e+00	4.900e-01	1.395e-03	1.854e-01
132	4386	1.784672e-01	0.000e+00	1.000e+00	1.302e-02	1.012e-01
133	4417	1.784660e-01	0.000e+00	1.000e+00	6.964e-03	8.129e-01
134	4448	1.784573e-01	0.000e+00	1.000e+00	1.915e-03	9.941e-02
135	4479	1.784547e-01	0.000e+00	1.000e+00	7.216e-04	9.854e-02
136	4510	1.784464e-01	0.000e+00	1.000e+00	2.769e-03	9.508e-02
137	4541	1.784445e-01	0.000e+00	1.000e+00	1.642e-03	9.365e-02
138	4572	1.784438e-01	0.000e+00	1.000e+00	5.629e-04	9.348e-02
139	4607	1.784436e-01	0.000c+00	2.401e-01	3.941e-04	1.589e-01
140	4638	1.784425e-01	0.000c+00	1.000e+00	2.191e-03	9.449e-02
141	4669	1.784421e-01	0.000e+00	1.000e+00	2.131e-03 2.986e-04	7.536e-02
142	4701	1.784417e-01	0.000e+00	7.000e-01	1.226e-03	1.116e-01
143	4732	1.784416e-01	0.000e+00	1.000e+00	4.521e-04	7.697e-02
144	4763	1.784414e-01	0.000e+00	1.000e+00	4.053e-04	7.674e-02
145	4794	1.784413e-01	0.000e+00	1.000e+00	5.853e-04	7.664e-02
146	4825	1.784411e-01	0.000e+00	1.000e+00	6.187e-04	7.668e-02
147	4856	1.784408e-01	0.000e+00	1.000e+00	1.023e-03	7.703e-02
148	4887	1.784400e-01	0.000e+00	1.000e+00	1.417e-03	1.792e-01
149	4923	1.784397e-01	0.000e+00	1.681e-01	1.306e-03	7.804e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
150	4954	1.784389e-01	0.000e+00	1.000e+00	6.984e-04	7.865e-02
151	4987	1.784382e-01	0.000e+00	4.900e-01	9.229e-04	1.698e-01
152	5019	1.784378e-01	0.000e+00	7.000e-01	8.783e-04	2.696e-01
153	5051	1.784375e-01	0.000e+00	7.000e-01	8.143e-04	7.880e-02
154	5082	1.784370e-01	0.000e+00	1.000e+00	6.939e-05	9.530e-02
155	5114	1.784368e-01	0.000e+00	7.000e-01	4.508e-04	2.242e-01
156	5145	1.784359e-01	0.000e+00	1.000e+00	5.426e-04	1.330e-01
157	5176	1.784351e-01	0.000e+00	1.000e+00	1.836e-04	1.355e-01
158	5208	1.784349e-01	0.000e+00	7.000e-01	7.194e-04	4.977e-01
159	5239	1.784336e-01	0.000e+00	1.000e+00	8.940e-04	7.721e-02
160	5270	1.784331e-01	0.000e+00	1.000e+00	3.600e-04	7.683e-02
161	5301	1.784327e-01	0.000e+00	1.000e+00	1.869e-03	3.072e-01
162	5332	1.784324e-01	0.000e+00	1.000e+00	1.359e-03	7.642e-02
163	5363	1.784321e-01	0.000e+00	1.000e+00	1.893e-04	7.628e-02
164	5396	1.784318e-01	0.000e+00	4.900e-01	4.625e-04	1.555e-01
165	5428	1.784317e-01	0.000e+00	7.000e-01	1.970e-04	8.584e-02
166	5459	1.784316e-01	0.000e+00	1.000e+00	6.438e-05	8.045e-02
167	5490	1.784313e-01	0.000e+00	1.000e+00	2.210e-04	6.865e-02
168	5521	1.784310e-01	0.000e+00	1.000e+00	3.357e-04	8.496e-02
169	5552	1.784308e-01	0.000e+00	1.000e+00	3.018e-04	4.520e-02
170	5583	1.784308e-01	0.000e+00	1.000e+00	1.104e-04	1.069e-02
171	5614	1.784308e-01	0.000e+00	1.000e+00	6.445e-05	1.023e-02
172	5645	1.784308e-01	0.000e+00	1.000e+00	3.526e-05	1.968e-02
173	5676	1.784308e-01	0.000e+00	1.000e+00	6.005e-05	3.041e-02
174	5707	1.784307e-01	0.000e+00	1.000e+00	1.120e-04	4.075e-02
175	5738	1.784306e-01	0.000e+00	1.000e+00	2.646e-04	5.397e-02
176	5770	1.784304e-01	0.000e+00	7.000e-01	3.326e-04	6.895e-02
177	5806	1.784303e-01	0.000e+00	1.681e-01	1.301e-04	7.343e-02
178	5844	1.784302e-01	0.000e+00	8.235e-02	9.353e-05	1.664e+02
179	5877	1.784302e-01	0.000e+00	4.900e-01	1.835e-04	5.130e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
			•	. 0	step	optimality
180	5908	1.784301e-01	0.000e+00	1.000e+00	8.481e-05	3.530e-02
181	5939	1.784299e-01	0.000e+00	1.000e+00	2.327e-04	2.686e-02
182	5970	1.784298e-01	0.000e+00	1.000e+00	1.107e-04	3.972e-02
183	6001	1.784295e-01	0.000e+00	1.000e+00	3.499e-04	4.317e-02
184	6032	1.784290e-01	0.000e+00	1.000e+00	4.855e-04	4.875e-02
185	6063	1.784286e-01	0.000e+00	1.000e+00	5.053e-04	2.512e-02
186	6094	1.784285e-01	0.000e+00	1.000e+00	3.133e-04	7.506e-03
187	6125	1.784285e-01	0.000c+00	1.000c+00	6.455e-05	4.900e-03
188	6156	1.784285e-01	0.000c+00	1.000c+00	1.822e-05	4.962e-03
-00	010	, 0.2050 01	0.0000100	1.0000.00	1.0220 03	

```
189 6187 1.784285e-01 0.000e+00 1.000e+00 3.097e-06 4.811e-03
190 6218 1.784285e-01 0.000e+00 1.000e+00 2.655e-07 4.752e-03
```

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

```
xi_star = reshape(xi_star_vec,2,[]); % final optimized trajectory
% Plot obstacles
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(center1', r1, 'Color', [0.5, 0.5, 0.5]);
viscircles(center2', r2, 'Color', [0.5, 0.5, 0.5]);
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
% Plot result
grid on
hold on
axis equal
plot(xi_star(1,:), xi_star(2,:), 'o-',...
    'Color', [1, 0.5, 0], 'LineWidth', 3);
```


% Cost function to minimize

```
function C = cost(xi)
    gamma=20;
    xi = reshape(xi, 2, []);
    C = 0;
    r1 = 0.3;
    center1 = [0.5;0.3];
    r2 = 0.2;
    center2 = [0.5;0.7];
   Urep1 = 0;
   Urep2 = 0;
   for idx = 2:length(xi)
        % First obstacle
        if (norm(center1 - xi(:,idx)) <= r1)</pre>
            Urep1 = 0.5*gamma*((1/(norm(center1 - xi(:,idx)))) - (1/r1))^2;
        end
        % Second obstacle
        if (norm(center2 - xi(:,idx)) <= r2)</pre>
            Urep2 = 0.5*gamma*((1/(norm(center2 - xi(:,idx)))) - (1/r2))^2;
        end
```

```
% Total cost
    C = C + norm(xi(:,idx) - xi(:,idx-1))^2 + Urep1 + Urep2;
end
end
```

• Environment 3. One obstacle with center $c_1 = [0.2, 0.35]^T$ and radius $r_1 = 0.2$. A second obstacle with center $c_2 = [0.5, 0.3]^T$ and radius $r_2 = 0.2$. A third obstacle with center $c_3 = [0.7, 0.5]^T$ and radius $r_3 = 0.2$. Set k = 20.

```
% Problem 2.2 - Environment 3
clear
clc
close all
% Start and Goal orientations
theta_start = [0;0];
theta_goal = [1;1];
% Initial trajectory variables
n = 2; % No. of joints / 2-D trajectory.
k = 20; % No. of waypoints
% Obstacle paramters
% First obstacle center and radius
r1 = 0.2;
center1 = [0.2; 0.35];
% Second obstacle center and radius
r2 = 0.2;
center2 = [0.5;0.3];
% Third obstacle center and radius
r3 = 0.2;
center3 = [0.7;0.5];
xi_0 = zeros(n, k); % Initial trajectory
xi_0_vec = reshape(xi_0, [],1); % Reshape for the requirement of optimization
% Equality constraints for start and goal positions
A = [eye(n), zeros(n,n*(k-1));...
    zeros(n,n*(k-1)), eye(n) ];
B = [theta_start;theta_goal];
% Nonlinear optimization
options = optimoptions('fmincon', 'Display', 'iter',...
    'Algorithm', 'sqp', 'MaxFunctionEvaluations', 1e5);
xi_star_vec = fmincon(@(xi) cost(xi), xi_0_vec, ...
    [], [], A, B, [], [], options);
```

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	41	0.000000e+00	1.000e+00	1.000e+00	0.000e+00	2.980e-08
1	83	9.800000e-01	3.000e-01	7.000e-01	9.899e-01	1.400e+00
2	128	1.032368e+00	2.280e-01	2.401e-01	2.482e-01	7.826e+01
3	172	1.166409e+00	1.498e-01	3.430e-01	5.044e-01	1.723e+00

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	1635 1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299 2362 2415 2458 2499 2540 2586 2633	5.430207e-01 5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01 2.961624e-01 2.716860e-01 2.311177e-01 2.180983e-01 2.151691e-01 2.139996e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	3.430e-01 5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02 4.900e-01 1.000e+00 1.000e+00 1.681e-01 1.176e-01	1.642e-01 4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01 8.322e-03 2.817e-01 3.884e-01 1.136e-01 4.525e-02 7.905e-03 9.096e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 3.449e+01 3.449e+01 3.494e-01 3.815e-01 4.276e-01 1.413e+00 4.462e-01
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299 2362 2415 2458 2499 2540	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01 2.961624e-01 2.716860e-01 2.311177e-01 2.180983e-01 2.151691e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02 3.910e-04 1.384e-02 4.900e-01 1.000e+00	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01 8.322e-03 2.817e-01 3.884e-01 1.136e-01 4.525e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 3.449e+01 3.089e+01 7.151e-01 3.494e-01 3.815e-01 4.276e-01
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299 2362 2415 2458 2499 2540	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01 2.961624e-01 2.716860e-01 2.311177e-01 2.180983e-01 2.151691e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02 3.910e-04 1.384e-02 4.900e-01 1.000e+00	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01 8.322e-03 2.817e-01 3.884e-01 1.136e-01 4.525e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 3.449e+01 3.089e+01 7.151e-01 3.494e-01 3.815e-01 4.276e-01
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299 2362 2415 2458 2499	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01 2.961624e-01 2.716860e-01 2.311177e-01 2.180983e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02 3.910e-04 1.384e-02 4.900e-01 1.000e+00	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01 8.322e-03 2.817e-01 3.884e-01 1.136e-01	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 1.708e+01 3.449e+01 3.089e+01 7.151e-01 3.494e-01 3.815e-01
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299 2362 2415 2458	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01 2.961624e-01 2.716860e-01 2.311177e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02 4.900e-01	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01 8.322e-03 2.817e-01 3.884e-01	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 1.708e+01 3.449e+01 3.089e+01 7.151e-01 3.494e-01
39 40 41 42 43 44 45 46 47 48 49 50 51	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299 2362 2415	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01 2.961624e-01 2.716860e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02 3.910e-04 1.384e-02	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01 8.322e-03 2.817e-01	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 1.708e+01 3.449e+01 3.089e+01 7.151e-01
39 40 41 42 43 44 45 46 47 48 49 50	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299 2362	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01 2.961624e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02 3.910e-04	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01 8.322e-03	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 1.708e+01 3.449e+01 3.089e+01
39 40 41 42 43 44 45 46 47 48 49 50	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246 2299	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01 2.964518e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04 1.384e-02	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02 1.952e-01	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01 3.449e+01
39 40 41 42 43 44 45 46 47 48	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183 2246	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.056068e-01 3.047742e-01 2.982285e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03 3.910e-04	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02 3.296e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01
39 40 41 42 43 44 45 46 47 48	1684 1739 1798 1850 1904 1956 2014 2072 2124 2183	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.102756e-01 3.056068e-01 3.047742e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03 1.977e-02 1.628e-03	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01 3.668e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01 1.991e+01
39 40 41 42 43 44 45 46 47	1684 1739 1798 1850 1904 1956 2014 2072 2124	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.102756e-01 3.056068e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02 1.758e-01	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01 2.652e+01
39 40 41 42 43 44 45 46	1684 1739 1798 1850 1904 1956 2014	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01 3.102756e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03 2.326e-03	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02 6.295e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00 1.444e+01
39 40 41 42 43 44 45	1684 1739 1798 1850 1904 1956 2014	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00
39 40 41 42 43 44 45	1684 1739 1798 1850 1904 1956 2014	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01 3.262540e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02 2.326e-03	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02 2.342e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00 8.597e+00
39 40 41 42 43 44	1684 1739 1798 1850 1904 1956	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01 3.294927e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03 1.977e-02	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01 1.462e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01 3.819e+00
39 40 41 42 43	1684 1739 1798 1850 1904	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01 3.332649e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02 9.689e-03	4.499e-02 7.576e-03 4.094e-02 1.309e-01 2.581e-01	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01 7.195e-01
39 40 41 42	1684 1739 1798 1850	5.169726e-01 5.158960e-01 4.922219e-01 4.250983e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03 1.977e-02	4.499e-02 7.576e-03 4.094e-02 1.309e-01	1.100e+00 1.106e+00 6.695e+00 5.018e+00 1.010e+01
39 40 41	1684 1739 1798	5.169726e-01 5.158960e-01 4.922219e-01	0.000e+00 0.000e+00 0.000e+00	5.765e-02 6.782e-03 1.628e-03	4.499e-02 7.576e-03 4.094e-02	1.100e+00 1.106e+00 6.695e+00 5.018e+00
39 40	1684 1739	5.169726e-01 5.158960e-01	0.000e+00 0.000e+00	5.765e-02 6.782e-03	4.499e-02 7.576e-03	1.100e+00 1.106e+00 6.695e+00
39	1684	5.169726e-01	0.000e+00	5.765e-02	4.499e-02	1.100e+00 1.106e+00
						1.100e+00
	1635	5.430207e-01	0.000∈+00	3.430e-01	1.642e-01	
38						
37	1591	6.280434e-01	0.000e+00	7.000e-01	3.896e-01	1.144e+00
36	1549	6.825512e-01	0.000e+00	7.000e-01	3.061e-01	1.285e+00
35	1507	7.715599e-01	0.000e+00	7.000e-01	3.329e-01	1.484e+00
34	1465	8.288351e-01	0.000e+00	1.000e+00	3.872e-01	1.570e+00
33	1424	8.810792e-01	0.000e+00	1.000e+00	3.333e-01	1.531e+00
32	1383	8.837833e-01	0.000e+00	1.000e+00	2.895e-01	1.536e+00
31	1342	9.044437e-01	0.000e+00	1.000e+00	2.130e-01	1.651e+00
30	1301	9.143387e-01	0.000e+00	7.000e-01	1.930e-01	1.740e+00
					step	optimality
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
29	1259	9.297930e-01	0.000e+00	7.000e-01	1.926e-01	1.737e+00
28	1217	9.526427e-01	0.000e+00	7.000e-01	1.988e-01	1.695e+00
27	1175	9.762593e-01	0.000e+00	1.000e+00	2.605e-01	1.703e+00
26	1134	9.857902e-01	0.000e+00	7.000e-01	3.486e-01	1.807e+00
25	1092	9.978490e-01	0.000e+00	1.000e+00	5.106e-01	1.891e+00
24	1051	1.023951e+00	0.000e+00	7.000e-01	3.545e-01	1.915e+00
23	1009	1.037429e+00	0.000e+00	1.000e+00	2.775e-01	1.899e+00
22	968	1.051276e+00	0.000e+00	1.000e+00	2.396e-01	1.902e+00
21	927	1.078630e+00	0.000e+00	7.000e-01	2.332e-01	2.003e+00
20	885	1.100406e+00	0.000e+00	7.000e-01	2.269e-01	2.049e+00
19	843	1.133690e+00	0.000e+00	1.000e+00	2.867e-01	1.975e+00
18	802	1.137807e+00	0.000e+00	1.000e+00	2.874e-01	1.898e+00
17	761	1.141037e+00	0.000e+00	1.000e+00	2.279e-01	1.987e+00
16	720	1.149073e+00	0.000e+00	7.000e-01	1.842e-01	2.085e+00
15	678	1.157015e+00	0.000e+00	7.000e-01	1.828e-01	2.083e+00
14	636	1.170593e+00	0.000c+00	7.000c 01 7.000e-01	1.538e-01	2.003e+00
13	594	1.182451e+00	0.000e+00	7.000e-01	1.626e-01	1.956e+00
12	552	1.192803e+00	0.000e+00	7.000e-01	1.652e-01	2.025e+00
11	510	1.207887e+00	0.000e+00	7.000e-01	1.934e-01	2.127e+00
10	468	1.225647e+00	0.000e+00	1.000e+00	2.516e-01	2.114e+00
9	427	1.229228e+00	0.000e+00	4.900e-01	1.654e-01	1.974e+00
8	384	1.247338e+00	0.000e+00	4.900e-01	2.602e-01	1.940e+00
7	341	1.312863e+00	0.000e+00	7.000e-01	2.971e-01	2.083e+00
6	299	1.408923e+00	0.000e+00	7.000e-01	4.916e-01	2.230e+00
	257	1.427121e+00	0.000e+00	1.000e+00	4.865e-01	2.040e+00
- 5	216	1.238832e+00	9.840e-02	3.430e-01	5.114e-01	1.584e+00
4 5		4 220022 .00	0 040 00	2 420 04	F 444 04	

86 87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	3958 3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574 4615 4656 4697 4738 4780 4821	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01 1.795151e-01 1.789950e-01 1.784290e-01 1.74766e-01 1.762277e-01 1.746588e-01	Feasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	Norm of step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02 1.646e-02 1.034e-02 4.905e-02 8.391e-03 3.181e-02 1.212e-01	First-order optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.317e-01 2.326e-01 2.320e-01 2.294e-01 2.209e-01 2.072e-01 1.478e+00 2.090e-01 2.065e-01 6.370e+00 1.723e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574 4615 4656 4697 4738 4780	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01 1.795151e-01 1.789950e-01 1.784290e-01 1.74766e-01 1.762277e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02 1.646e-02 1.034e-02 4.905e-02 8.391e-03 3.181e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.320e-01 2.294e-01 2.294e-01 2.209e-01 2.142e-01 2.090e-01 2.072e-01 1.478e+00 2.090e-01 2.065e-01 6.370e+00
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574 4615 4656 4697 4738	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01 1.795151e-01 1.789950e-01 1.784290e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02 1.646e-02 1.034e-02 4.905e-02 8.391e-03	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.320e-01 2.294e-01 2.261e-01 2.209e-01 2.142e-01 2.072e-01 1.478e+00 2.090e-01 2.065e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574 4615 4656 4697	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01 1.795151e-01 1.789950e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02 1.646e-02 1.034e-02 4.905e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.320e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01 2.142e-01 2.090e-01 1.478e+00 2.090e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574 4615 4656 4697	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01 1.795151e-01 1.789950e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02 1.646e-02 1.034e-02 4.905e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.320e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01 2.142e-01 2.090e-01 1.478e+00 2.090e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574 4615 4656	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01 1.795151e-01 1.789950e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02 1.646e-02 1.034e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.32e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01 2.142e-01 2.090e-01 2.072e-01 1.478e+00
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574 4615	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01 1.795151e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02 1.646e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01 2.142e-01 2.090e-01 2.072e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101 102 103	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533 4574	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01 1.801095e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02 4.479e-02 3.807e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01 2.142e-01 2.090e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100 101	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492 4533	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01 1.808944e-01	Peasibility 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02 4.479e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01 2.142e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01	0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02 3.145e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99 100	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451 4492	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.829963e-01 1.829963e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01 1.816840e-01	0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01 2.294e-01 2.261e-01 2.209e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98 99	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410 4451	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.831891e-01 1.829963e-01 1.828049e-01 1.827039e-01 1.826070e-01 1.824815e-01 1.822053e-01	0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03 1.769e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01 2.294e-01 2.261e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369 4410	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.831891e-01 1.829963e-01 1.828049e-01 1.827039e-01 1.826070e-01 1.824815e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03 8.579e-03	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01 2.294e-01
87 88 89 Iter 90 91 92 93 94 95 96 97 98	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328 4369	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.831891e-01 1.829963e-01 1.828049e-01 1.827039e-01 1.826070e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03 6.538e-03	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01 2.310e-01
87 88 89 Iter 90 91 92 93 94 95 96 97	3999 Func-count 4040 4081 4123 4164 4205 4246 4287 4328	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.831891e-01 1.829963e-01 1.828049e-01 1.827039e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03 5.615e-03	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01 2.322e-01
87 88 89 Iter 90 91 92 93 94 95 96	3999 Func-count 4040 4081 4123 4164 4205 4246 4287	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.831891e-01 1.829963e-01 1.828049e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03 9.791e-03	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01 2.326e-01
87 88 89 Iter 90 91 92 93 94 95	3999 Func-count 4040 4081 4123 4164 4205 4246	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.831891e-01 1.829963e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02 9.062e-03	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01 2.317e-01
87 88 89 Iter 90 91 92 93 94	3999 Func-count 4040 4081 4123 4164 4205	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01 1.831891e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02 4.166e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01 2.302e-01
87 88 89 Iter 90 91 92 93	3999 Func-count 4040 4081 4123 4164	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01
87 88 89 Iter 90 91 92 93	3999 Func-count 4040 4081 4123 4164	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01 1.846451e-01	0.000e+00 0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01 1.000e+00	step 1.749e-02 2.920e-02 2.494e-02 6.708e-02	optimality 2.501e-01 2.483e-01 2.624e+00 2.185e-01
87 88 89 Iter 90 91 92	3999 Func-count 4040 4081 4123	1.886308e-01 Fval 1.877134e-01 1.863029e-01 1.851641e-01	0.000e+00 0.000e+00 0.000e+00	1.000e+00 1.000e+00 7.000e-01	step 1.749e-02 2.920e-02 2.494e-02	optimality 2.501e-01 2.483e-01 2.624e+00
87 88 89 Iter 90 91	3999 Func-count 4040 4081	1.886308e-01 Fval 1.877134e-01 1.863029e-01	Feasibility 0.000e+00 0.000e+00	Step Length 1.000e+00 1.000e+00	step 1.749e-02 2.920e-02	optimality 2.501e-01 2.483e-01
87 88 89 Iter 90	3999 Func-count 4040	1.886308e-01 Fval 1.877134e-01	Feasibility 0.000e+00	Step Length 1.000e+00	step 1.749e-02	optimality 2.501e-01
87 88 89 Iter 90	3999 Func-count 4040	1.886308e-01 Fval 1.877134e-01	Feasibility 0.000e+00	Step Length	step 1.749e-02	optimality 2.501e-01
87 88 89 Iter	3999 Func-count	1.886308e-01 Fval	Feasibility	Step Length	step	optimality
87 88 89	3999	1.886308e-01				
87 88 89	3999	1.886308e-01			Norm of	
87 88						
87	3958		0.000e+00	1.000e+00	1.316e-02	2.487e-01
		1.892330e-01	0.000e+00	1.000e+00	9.181e-03	2.433e-01
86	3917	1.895965e-01	0.000e+00	1.000e+00	2.252e-02	2.353e-01
	3876	1.904790e-01	0.000e+00	1.000e+00	5.582e-03	2.084e-01
85	3835	1.907505e-01	0.000e+00	1.000e+00	2.459e-02	2.018e-01
84	3794	1.921475e-01	0.000e+00	1.000e+00	9.998e-03	1.922e-01
83	3753	1.930827e-01	0.000e+00	1.000e+00	2.379e-02	1.941e-01
82	3712	1.947855e-01	0.000e+00	7.000e-01	1.618e-02	4.566e+00
81	3670	1.947995e-01	0.000e+00	1.000e+00	1.100e-02	2.131e-01
80	3629	1.952796e-01	0.000e+00	1.000e+00	1.801e-02	2.167e-01
79	3588	1.961426e-01	0.000e+00	1.000e+00	7.325e-03	2.265e-01
78	3547	1.966637e-01	0.000e+00	1.000e+00	3.367e-02	2.338e-01
77	3506	1.975034e-01	0.000e+00	4.900e-01	2.519e-02	1.976e+00
76	3463	1.980505e-01	0.000e+00	1.000e+00	1.918e-02	3.669e+00
75	3422	1.981057e-01	0.000e+00	1.000e+00	1.525e-02	3.003e+00
73	3381	1.984363e-01	0.000e+00	1.000e+00	3.180e-03	2.520e-01
73	3340	1.986879e-01	0.000e+00	1.000e+00	1.508e-02	2.533e-01
72	3299	1.989130e-01	0.000e+00	7.000e-01	2.308e-02	2.623e+00
71	3257	1.992216e-01	0.000e+00	1.000e+00	1.564e-02	2.715e-01
70	3216	2.001322e-01	0.000e+00	1.000e+00	6.030e-02	2.985e-01
69	3175	2.035218e-01	0.000e+00	3.430e-01	2.567e-02	2.889e-01
68	3131	2.035357e-01	0.000e+00	1.384e-02	6.002e-03	2.316e+00
67	3078	2.036215e-01	0.000e+00	2.825e-02	5.226e-02	2.976e+00
66	3027	2.047079e-01	0.000e+00	8.235e-02	1.721e-02	4.702e+00
65	2979	2.048284e-01	0.000e+00	1.000e+00	5.170e-02	7.691e-01
64	2938	2.092965e-01	0.000e+00	1.000e+00	3.863e-02	4.237e-01
<i>C</i> 1	2020	2 002065 01	0.0000.00	1 0000 . 00	2 062- 02	4 227- 01

124	5446	1.592708e-01	0.000e+00	1.000e+00	4.131e-02	4.542e-01
125	5487	1.565081e-01	0.000e+00	1.000e+00	1.948e-02	3.188e-01
126	5528	1.508531e-01	0.000e+00	1.000e+00	9.086e-02	4.580e+00
127	5569	1.498331e-01	0.000e+00	1.000e+00	1.943e-02	1.005e-01
128	5610	1.496818e-01	0.000e+00	1.000e+00	7.420e-03	9.608e-02
129	5651	1.495678e-01	0.000e+00	1.000e+00	6.632e-03	9.156e-02
130	5692	1.494120e-01	0.000e+00	1.000e+00	7.546e-03	8.746e-02
131	5737	1.493882e-01	0.000e+00	2.401e-01	4.539e-03	1.147e+00
132	5778	1.492917e-01	0.000e+00	1.000e+00	4.431e-03	8.898e-02
133	5819	1.492052e-01	0.000e+00	1.000e+00	4.085e-03	9.106e-02
134	5860	1.489393e-01	0.000c+00	1.000c+00	1.675e-02	9.775e-02
135	5901	1.487239e-01	0.000e+00	1.000e+00	1.427e-02	1.007e-01
		1.487239E-01 1.482010e-01				
136	5942		0.000e+00	1.000e+00	3.342e-02	1.023e-01
137	5983	1.476912e-01	0.000e+00	1.000e+00	3.714e-02	9.777e-02
138	6024	1.473994e-01	0.000e+00	1.000e+00	2.076e-02	8.976e-02
139	6065	1.472971e-01	0.000e+00	1.000e+00	7.228e-03	8.687e-02
140	6106	1.472564e-01	0.000e+00	1.000e+00	5.343e-03	8.721e-02
141	6147	1.472140e-01	0.000e+00	1.000e+00	5.220e-03	8.741e-02
142	6188	1.471456e-01	0.000e+00	1.000e+00	5.655e-03	8.757e-02
143	6229	1.470070e-01	0.000e+00	1.000e+00	7.323e-03	8.775e-02
144	6270	1.466989e-01	0.000e+00	1.000e+00	1.124e-02	8.808e-02
145	6311	1.460374e-01	0.000e+00	1.000e+00	1.959e-02	8.880e-02
146	6352	1.448720e-01	0.000e+00	1.000e+00	3.362e-02	9.021e-02
147	6393	1.435530e-01	0.000e+00	1.000e+00	4.362e-02	9.203e-02
148	6434	1.428449e-01	0.000e+00	1.000e+00	3.117e-02	9.303e-02
149	6475	1.426962e-01	0.000e+00	1.000e+00	1.174e-02	9.295e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
150	6516	1.426730e-01	0.000e+00	1.000e+00	4.298e-03	9.268e-02
151	6557	1.426483e-01	0.000e+00	1.000e+00	3.498e-03	9.227e-02
152	6598	1.425765e-01	0.000e+00	1.000e+00	6.540e-03	9.103e-02
153	6639	1.424109e-01	0.000e+00	1.000e+00	9.650e-03	8.807e-02
154	6680	1.420268e-01	0.000e+00	1.000e+00	1.538e-02	8.101e-02
155	6724	1.417335e-01	0.000e+00	3.430e-01	7.874e-03	7.635e-02
156	6767	1.410427e-01	0.000e+00	4.900e-01	2.409e-02	9.778e-01
157	6808	1.406825e-01	0.000e+00	1.000e+00	3.057e-02	7.193e-02
158	6849	1.403376e-01	0.000e+00	1.000e+00	1.522e-02	7.987e-02
159	6893	1.402265e-01	0.000e+00	3.430e-01	5.763e-03	1.356e-01
160	6942	1.402189e-01	0.000e+00	5.765e-02	1.427e-03	4.558e-01
161	6993	1.401938e-01	0.000e+00	2.825e-02	2.195e-02	8.818e-02
162	7034	1.400913e-01	0.000c+00	1.000e+00	1.071e-02	8.519e-02
163	7075	1.400109e-01	0.000c+00	1.000e+00	7.792e-03	8.299e-02
164	7123	1.400105e-01	0.000e+00	8.235e-02	9.677e-04	3.476e-01
165	7167	1.399779e-01	0.000e+00	3.430e-01	2.348e-03	2.133e-01
		1.399779e-01 1.399772e-01		4.035e-01	4.003e-04	
166	7217		0.000e+00			2.448e-01
167	7258	1.399685e-01	0.000e+00	1.000e+00	1.983e-03	8.297e-02
168	7299	1.399633e-01	0.000e+00	1.000e+00	8.201e-04	8.323e-02
169	7340	1.399351e-01	0.000e+00	1.000e+00	2.152e-03	8.359e-02
170	7381	1.398554e-01	0.000e+00	1.000e+00	7.338e-03	1.184e+00
171	7422	1.396612e-01	0.000e+00	1.000e+00	1.130e-02	7.566e-01
172	7471	1.396216e-01	0.000e+00	5.765e-02	1.494e-03	6.693e-01
173	7526	1.396213e-01	0.000e+00	6.782e-03	3.152e-04	6.598e-01
174	7567	1.392797e-01	0.000e+00	1.000e+00	3.264e-02	5.332e-01
175	7608	1.390628e-01	0.000e+00	1.000e+00	1.676e-02	2.599e-01
176	7649	1.389639e-01	0.000e+00	1.000e+00	1.643e-02	1.010e-01
177	7690	1.389404e-01	0.000e+00	1.000e+00	2.332e-03	5.620e-02
178	7731	1.389011e-01	0.000e+00	1.000e+00	3.988e-03	5.145e-02
179	7772	1.388261e-01	0.000e+00	1.000e+00	5.963e-03	5.203e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
180	7814	1.387806e-01	0.000e+00	7.000e-01	5.034e-03	9.548e-01
181	7857	1.386439e-01	0.000e+00	4.900e-01	1.363e-02	5.416e-02
182	7898	1.385190e-01	0.000e+00	1.000e+00	7.591e-03	5.383e-02
183	7939	1.382995e-01	0.000e+00	1.000e+00	2.427e-02	5.831e-02

184	7980	1.382478e-01	0.000e+00	1.000e+00	3.589e-03	5.824e-02
185	8022	1.381301e-01	0.000e+00	7.000e-01	9.081e-03	1.009e+00
186	8067	1.380655e-01	0.000e+00	2.401e-01	3.116e-03	3.240e-01
187	8115	1.380627e-01	0.000e+00	8.235e-02	4.627e-04	3.064e-01
188	8168	1.380626e-01	0.000e+00	1.384e-02	5.221e-05	3.047e-01
189	8211	1.380613e-01	0.000e+00	4.900e-01	7.238e-03	5.798e-02
190	8252	1.380375e-01	0.000e+00	1.000e+00	3.764e-03	1.643e-01
191	8293	1.380265e-01	0.000e+00	1.000e+00	9.388e-04	1.990e-01
192	8334	1.379606e-01	0.000e+00	1.000e+00	4.237e-03	8.963e-02
193	8376	1.379598e-01	0.000e+00	7.000e-01	1.067e-02	1.373e+00
193		1.378728e-01	0.000e+00	1.000e-01	9.766e-03	6.792e-02
	8417					
195	8458	1.378460e-01	0.000e+00	1.000e+00	2.144e-03	6.846e-02
196	8499	1.378085e-01	0.000e+00	1.000e+00	4.478e-03	7.194e-02
197	8542	1.378079e-01	0.000e+00	4.900e-01	9.438e-04	2.425e-01
198	8583	1.378009e-01	0.000e+00	1.000e+00	1.707e-03	7.299e-02
199	8624	1.377969e-01	0.000e+00	1.000e+00	5.675e-04	7.286e-02
200	8665	1.377725e-01	0.000e+00	1.000e+00	2.741e-03	7.103e-02
201	8706	1.377344e-01	0.000e+00	1.000e+00	3.228e-03	6.829e-02
202	8747	1.376524e-01	0.000e+00	1.000e+00	5.938e-03	6.264e-02
203	8793	1.376280e-01	0.000e+00	1.681e-01	1.382e-03	6.132e-02
204	8844	1.376269e-01	0.000e+00	2.825e-02	4.000e-04	3.240e-01
205	8885	1.375258e-01	0.000e+00	1.000e+00	1.122e-02	6.340e-02
206	8926	1.375110e-01	0.000e+00	1.000e+00	2.597e-03	6.250e-02
207	8967	1.375051e-01	0.000e+00	1.000e+00	1.254e-03	6.165e-02
208	9008	1.374978e-01	0.000e+00	1.000e+00	1.756e-03	9.091e-02
209	9049	1.374935e-01	0.000e+00	1.000e+00	1.293e-03	5.832e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
210	9090	1.374881e-01	0.000e+00	1.000e+00	4.176e-03	7.922e-02
211	9131	1.374858e-01	0.000e+00	1.000e+00	5.925e-04	6.056e-02
212	9172	1.374812e-01	0.000e+00	1.000e+00	9.752e-04	6.046e-02
213	9213	1.374617e-01	0.000e+00	1.000e+00	2.157e-03	6.144e-02
214	9255	1.374398e-01	0.000e+00	7.000e-01	3.398e-03	4.606e-01
215	9296	1.374280e-01	0.000e+00	1.000e+00	6.399e-03	3.371e-01
216	9342	1.374234e-01	0.000e+00	1.681e-01	1.607e-03	6.536e-02
217	9383	1.374144e-01	0.000e+00	1.000e+00	1.738e-03	2.507e-01
218	9436	1.374021e-01	0.000e+00	1.384e-02	6.336e-03	3.479e-01
219	9477	1.373960e-01	0.000e+00	1.000e+00	3.254e-03	6.694e-02
220	9518	1.373896e-01	0.000e+00	1.000e+00	7.653e-04	6.741e-02
221	9562	1.373832e-01	0.000e+00	3.430e-01	1.312e-03	2.432e-01
222	9603	1.373823e-01	0.000e+00	1.000e+00	6.296e-04	7.218e-02
223	9644	1.373789e-01	0.000e+00	1.000e+00	3.153e-04	6.824e-02
224	9687	1.373765e-01	0.000e+00	4.900e-01	7.271e-04	2.828e-01
225	9728	1.373703c 01 1.373708e-01	0.000c+00	1.000e+00	3.121e-04	1.778e-01
226	9769	1.373708e-01 1.373482e-01	0.000e+00	1.000e+00	2.665e-03	3.824e-01
227	9811	1.373482e-01 1.373480e-01	0.000e+00	7.000e-01	8.173e-04	6.793e-02
228	9852	1.373422e-01	0.000e+00	1.000e+00	5.313e-04	6.784e-02
229	9896	1.373422e-01 1.373422e-01	0.000e+00	3.430e-01	1.046e-03	3.995e-01
		1.373374e-01				
230	9937 9978		0.000e+00	1.000e+00	2.890e-04	1.135e-01
231		1.373360e-01	0.000e+00	1.000e+00	2.711e-04	8.866e-02
232	10019	1.373290e-01	0.000e+00	1.000e+00	1.463e-03	1.145e-01
233	10060	1.373169e-01	0.000e+00	1.000e+00	4.262e-03	1.264e-01
234	10101	1.373147e-01	0.000e+00	1.000e+00	8.402e-04	7.087e-02
235	10142	1.373138e-01	0.000e+00	1.000e+00	4.749e-04	2.399e-02
236	10183	1.373134e-01	0.000e+00	1.000e+00	1.891e-04	3.260e-02
237	10224	1.373112e-01	0.000e+00	1.000e+00	9.802e-04	6.298e-02
238	10265	1.373075e-01	0.000e+00	1.000e+00	1.826e-03	8.428e-02
239	10306	1.373045e-01	0.000e+00	1.000e+00	1.831e-03	6.909e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
240	10347	1.373030e-01	0.000e+00	1.000e+00	8.062e-04	6.136e-02
241	10388	1.373022e-01	0.000e+00	1.000e+00	8.073e-04	1.403e-01
242	10433	1.373019e-01	0.000e+00	2.401e-01	2.116e-03	6.212e-02
243	10474	1.372980e-01	0.000e+00	1.000e+00	1.544e-03	6.187e-02

244	10515	1.372946e-01	0.000e+00	1.000e+00	2.907e-04	6.200e-02
245	10556	1.372763e-01	0.000e+00	1.000e+00	1.101e-03	6.270e-02
246	10603	1.372758e-01	0.000e+00	1.176e-01	5.405e-04	3.336e-01
247	10644	1.372756C 01 1.372567e-01	0.000c+00	1.000e+00	3.705e-03	6.919e-02
248	10685	1.372521e-01	0.000e+00	1.000e+00	1.240e-03	6.937e-02
249	10726	1.372450e-01	0.000e+00	1.000e+00	1.583e-03	1.839e-01
250	10767	1.372420e-01	0.000e+00	1.000e+00	1.240e-03	1.046e-01
251	10810	1.372403e-01	0.000e+00	4.900e-01	3.499e-04	1.128e-01
252	10851	1.372343e-01	0.000e+00	1.000e+00	2.978e-03	2.433e-01
253	10892	1.372275e-01	0.000e+00	1.000e+00	1.261e-03	1.312e-01
254	10933	1.372217e-01	0.000e+00	1.000e+00	1.049e-03	6.426e-02
				1.000c+00		
255	10974	1.372161e-01	0.000e+00		2.697e-03	6.522e-02
256	11015	1.372151e-01	0.000e+00	1.000e+00	9.433e-04	7.352e-02
257	11056	1.372142e-01	0.000e+00	1.000e+00	8.357e-04	6.693e-02
258	11097	1.372136e-01	0.000e+00	1.000e+00	1.278e-04	6.693e-02
259	11138	1.372103e-01	0.000e+00	1.000e+00	2.965e-04	6.683e-02
260	11180	1.372072e-01	0.000e+00	7.000e-01	2.612e-04	1.507e-01
261	11222	1.372072e-01	0.000e+00	7.000e-01	4.762e-04	1.558e-01
262	11265	1.372070e-01	0.000e+00	4.900e-01	4.406e-04	6.673e-02
					3.000e-04	
263	11306	1.372060e-01	0.000e+00	1.000e+00		6.675e-02
264	11351	1.372057e-01	0.000e+00	2.401e-01	2.339e-04	7.170e-02
265	11392	1.372054e-01	0.000e+00	1.000e+00	6.727e-05	1.426e-02
266	11433	1.372054e-01	0.000e+00	1.000e+00	7.899e-05	1.290e-02
267	11474	1.372051e-01	0.000e+00	1.000e+00	3.889e-04	1.452e-02
268	11519	1.372051e-01	0.000e+00	2.401e-01	8.391e-05	3.606e-02
269	11560	1.372050e-01	0.000e+00	1.000e+00	8.345e-05	1.448e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
				5 ccp _c6 c	step	optimality
270	11601	1.372047e-01	0.000e+00	1.000e+00	1.181e-04	1.487e-02
271	11642	1.372040e-01	0.000e+00	1.000e+00	3.282e-04	3.032e-02
272	11683	1.372017e-01	0.000e+00	1.000e+00	1.383e-03	6.656e-02
273	11724	1.372006e-01	0.000e+00	1.000e+00	5.410e-04	5.643e-02
274	11765	1.371981e-01	0.000e+00	1.000e+00	1.871e-03	6.304e-02
275	11806	1.371972e-01	0.000e+00	1.000e+00	5.394e-04	4.325e-02
276	11847	1.371936e-01	0.000e+00	1.000e+00	2.392e-03	5.806e-02
277	11888	1.371897e-01	0.000e+00	1.000e+00	1.679e-03	5.530e-02
278	11929	1.371836e-01	0.000e+00	1.000e+00	3.834e-03	6.576e-02
279	11970	1.371829e-01	0.000e+00	1.000e+00	1.587e-03	1.241e-01
280	12011	1.371818e-01	0.000e+00	1.000e+00	5.398e-04	1.784e-02
				1.000e+00		
281	12052	1.371817e-01	0.000e+00		1.654e-04	1.795e-02
282	12093	1.371817e-01	0.000e+00	1.000e+00	1.021e-04	1.808e-02
283	12134	1.371816e-01	0.000e+00	1.000e+00	1.733e-04	1.933e-02
284	12175	1.371816e-01	0.000e+00	1.000e+00	2.108e-04	1.166e-02
285	12216	1.371815e-01	0.000e+00	1.000e+00	5.102e-05	6.724e-03
286	12257	1.371814e-01	0.000e+00	1.000e+00	1.697e-04	1.361e-02
287	12298	1.371812e-01	0.000e+00	1.000e+00	1.433e-04	2.346e-02
288	12339	1.371807e-01	0.000e+00	1.000e+00	3.976e-04	4.197e-02
289	12380	1.371797e-01	0.000e+00	1.000e+00	7.196e-04	5.665e-02
290	12421	1.371779e-01	0.000e+00	1.000e+00	1.238e-03	6.247e-02
291	12462	1.371752e-01	0.000e+00	1.000e+00	1.799e-03	6.112e-02
292	12503	1.371725e-01	0.000e+00	1.000e+00	1.686e-03	1.137e-01
293	12544	1.371703e-01	0.000e+00	1.000e+00	1.543e-03	1.123e-01
294	12585	1.371679e-01	0.000e+00	1.000e+00	1.612e-03	2.187e-01
295	12626	1.371641e-01	0.000e+00	1.000e+00	1.722e-03	1.142e-01
296	12667	1.371594e-01	0.000e+00	1.000e+00	2.910e-03	1.221e-01
297	12708	1.371574e-01	0.000e+00	1.000e+00	1.034e-03	6.103e-02
298	12749	1.371562e-01	0.000e+00	1.000e+00	1.112e-03	4.706e-02
299	12790	1.371552e 01 1.371556e-01	0.000c+00	1.000c+00	1.440e-03	2.701e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
200	40004	4 374554 34	0.000.00	1 000 00	step	optimality
300	12831	1.371554e-01	0.000e+00	1.000e+00	2.787e-04	1.948e-02
301	12872	1.371553e-01	0.000e+00	1.000e+00	2.193e-04	1.952e-02
302	12913	1.371551e-01	0.000e+00	1.000e+00	2.549e-04	1.946e-02
303	12954	1.371548e-01	0.000e+00	1.000e+00	6.646e-04	4.821e-02

304	12995	1.371548e-01	0.000e+00	1.000e+00	3.591e-04	1.952e-02
305	13036	1.371546e-01	0.000e+00	1.000e+00	6.658e-05	1.952e-02
306	13079	1.371545e-01	0.000e+00	4.900e-01	1.512e-04	5.105e-02
307	13120	1.371543e-01	0.000e+00	1.000e+00	1.544e-04	1.956e-02
308	13161	1.371542e-01	0.000e+00	1.000e+00	6.743e-05	9.449e-03
309	13202	1.371542e-01	0.000e+00	1.000e+00	1.172e-04	1.794e-02
310	13243	1.371541e-01	0.000e+00	1.000e+00	9.859e-05	2.019e-02
311	13284	1.371538e-01	0.000e+00	1.000e+00	4.425e-04	2.636e-02
312	13325	1.371534e-01	0.000e+00	1.000e+00	4.367e-04	4.496e-02
313	13366	1.371524e-01	0.000e+00	1.000e+00	9.273e-04	6.722e-02
314	13407	1.371508e-01	0.000e+00	1.000e+00	1.487e-03	6.742e-02
315	13448	1.371492e-01	0.000e+00	1.000e+00	1.818e-03	6.717e-02
316	13489	1.371484e-01	0.000e+00	1.000e+00	7.643e-04	6.676e-02
317	13530	1.371478e-01	0.000e+00	1.000e+00	4.549e-04	6.637e-02
318	13571	1.371475e-01	0.000e+00	1.000e+00	3.495e-04	4.370e-02
319	13612	1.371473e-01	0.000e+00	1.000e+00	4.685e-04	2.192e-02
320	13653	1.371472e-01	0.000e+00	1.000e+00	1.660e-04	1.056e-02
321	13694	1.371471e-01	0.000e+00	1.000e+00	2.890e-04	8.361e-03
322	13735	1.371471e-01	0.000e+00	1.000e+00	8.681e-05	8.408e-03
323	13776	1.371471e-01	0.000e+00	1.000e+00	2.255e-04	9.460e-03
324	13817	1.371470e-01	0.000e+00	1.000e+00	2.121e-04	1.713e-02
325	13858	1.371467e-01	0.000e+00	1.000e+00	4.367e-04	2.857e-02
326	13899	1.371460e-01	0.000e+00	1.000e+00	7.076e-04	4.628e-02
327	13940	1.371405e 01 1.371445e-01	0.000e+00	1.000e+00	1.129e-03	6.763e-02
328	13982	1.371430e-01	0.000c+00	7.000e-01	1.037e-03	1.250e-01
329	14023	1.371430c 01 1.371420e-01	0.000c+00	1.000e+00	2.553e-03	9.850e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
1001	rune count	IVAL	reasibility	Step Length	step	optimality
330	14064	1.371406e-01	0.000e+00	1.000e+00	8.141e-04	3.074e-02
331	14105	1.371400C 01 1.371397e-01	0.000c+00	1.000c+00	8.626e-04	1.339e-02
332	14146	1.371397c 01 1.371393e-01	0.000c+00	1.000c+00	5.349e-04	4.886e-03
333	14187	1.371399e-01	0.000e+00	1.000e+00	2.025e-04	2.482e-02
334	14233	1.371330c 01 1.371387e-01	0.000e+00	1.681e-01	4.932e-04	3.485e-02
335	14278	1.371387c 01 1.371386e-01	0.000c+00	2.401e-01	1.480e-04	3.582e-02
336	14319	1.371384e-01	0.000c+00	1.000e+00	9.982e-04	1.138e-02
337	14360	1.371383e-01	0.000e+00	1.000e+00	1.956e-04	4.679e-03
338	14404	1.371383e-01	0.000e+00	3.430e-01	9.149e-06	1.304e-02
339	14445	1.371383e-01	0.000e+00	1.000e+00	4.209e-05	8.014e-03
340	14486	1.371383e-01	0.000e+00	1.000e+00	3.884e-05	4.684e-03
341	14527	1.371383e-01	0.000e+00	1.000e+00	6.511e-05	4.704e-03
342	14568	1.371382e-01	0.000e+00	1.000e+00	1.091e-04	7.302e-03
343	14612	1.371382e-01	0.000e+00	3.430e-01	1.162e-04	1.891e-02
344	14653	1.371382e-01	0.000e+00	1.000e+00	1.295e-04	7.012e-03
345	14694	1.371381e-01	0.000e+00	1.000e+00	1.908e-04	6.606e-03
346	14735	1.371379e-01	0.000e+00	1.000e+00	7.985e-04	5.368e-03
347	14776	1.371379e-01	0.000e+00	1.000e+00	2.334e-04	4.323e-03
348	14817	1.371378e-01	0.000e+00	1.000e+00	1.063e-04	4.292e-03
349	14858	1.371378e-01	0.000e+00	1.000e+00	5.056e-05	4.183e-03
350	14901	1.371378e-01	0.000e+00	4.900e-01	1.960e-05	4.235e-03
351	14942	1.371378e-01	0.000e+00	1.000e+00	2.802e-05	3.160e-03
352	14983	1.371378e-01	0.000e+00	1.000e+00	1.180e-05	3.159e-03
353	15024	1.371378e-01	0.000e+00	1.000e+00	3.514e-05	4.331e-03
354	15065	1.371378e-01	0.000e+00	1.000e+00	4.671e-05	4.335e-03
355	15111	1.371378e-01	0.000e+00	1.681e-01	1.720e-05	4.334e-03
356	15152	1.371378e-01	0.000e+00	1.000e+00	6.193e-05	4.320e-03
357	15193	1.371378e-01	0.000e+00	1.000e+00	1.160e-04	4.291e-03
358	15234	1.371378e-01	0.000e+00	1.000e+00	3.970e-05	4.299e-03
359	15275	1.371378e-01	0.000e+00	1.000e+00	3.775e-05	1.455e-03
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
360	15281	1.371378e-01	0.000e+00	1.176e-01	2.290e-06	1.455e-03
						

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

```
xi_star = reshape(xi_star_vec,2,[]); % final optimized trajectory
% Plot obstacles
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(center1', r1, 'Color', [0.5, 0.5, 0.5]);
viscircles(center2', r2, 'Color', [0.7, 0.3, 0.3]);
viscircles(center3', r3, 'Color', [0.3, 0.5, 0.7]);
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
% Plot result
grid on
hold on
axis equal
plot(xi_star(1,:), xi_star(2,:), 'o-',...
    'Color', [1, 0.5, 0], 'LineWidth', 3);
```



```
function C = cost(xi)
    gamma = 20;
    xi = reshape(xi, 2, []);
    C = 0;
    r1 = 0.2;
    center1 = [0.2;0.35];
    r2 = 0.2;
    center2 = [0.5;0.3];
    r3 = 0.2;
    center3 = [0.7;0.5];
    for idx = 2:length(xi)
        Urep1 = 0;
        Urep2 = 0;
        Urep3 = 0;
        % First obstacle
        if (norm(center1 - xi(:,idx)) <= r1)</pre>
            Urep1 = 0.5*gamma*((1/(norm(center1 - xi(:,idx)))) - (1/r1))^2;
        end
        % Second obstacle
        if (norm(center2 - xi(:,idx)) <= r2)</pre>
            Urep2 = 0.5*gamma*((1/(norm(center2 - xi(:,idx)))) - (1/r2))^2;
        end
        % Third obstacle
        if (norm(center3 - xi(:,idx)) <= r3)</pre>
            Urep3 = 0.5*gamma*((1/(norm(center3 - xi(:,idx)))) - (1/r3))^2;
        end
        % Total cost
        C = C + norm(xi(:,idx) - xi(:,idx-1))^2 + Urep1 + Urep2 + Urep3;
    end
end
```

2.3 (10 points)

Consider an environment with two obstacles:

- $\theta_{start} = [0, 0]^T$ and $\theta_{goal} = [1, 1]^T$
- First obstacle with center $c_1 = [0.4, 0.6]^T$ and radius $r_1 = 0.2$
- Second obstacle with center $c_2 = [0.6, 0.4]^T$ and radius $r_2 = 0.2$
- The trajectory ξ should have k = 20 waypoints

Modify the initial trajectory ξ^0 so that the optimal trajectory goes around both obstacles. Submit a **plot** of your result and **list** the initial trajectory that you used.

```
% Problem 2.3
clear
clc
close all
% Start and Goal orientations
theta start = [0;0];
theta_goal = [1;1];
% Initial trajectory variables
n = 2; % No. of joints/ 2-D trajectory
k = 20; % No. of waypoints
% Obstacles 1 and 2 parameters
% First obstacle's radius and center
r1 = 0.2;
center1 = [0.4; 0.6];
% Second obstacle's radius and center
r2 = 0.2;
center2 = [0.6;0.4];
% MY INITIAL TRAJECTORY
% Create initial trajectory that arches above the first and below the second
obstacle
mid_point1 = [0.5; 0.7]; % A point above the first obstacle
mid_point2 = [0.5; 0.3]; % A point below the second obstacle
% Construct initial trajectory xi 0
xi_0 = [linspace(theta_start(1), mid_point1(1), floor(k/4)), ...
        linspace(mid_point1(1), mid_point2(1), floor(k/4)), ...
        linspace(mid_point2(1), theta_goal(1), floor(k/2));
        linspace(theta_start(2), mid_point1(2), floor(k/4)), ...
```

```
linspace(mid_point1(2), mid_point2(2), floor(k/4)), ...
    linspace(mid_point2(2), theta_goal(2), floor(k/2))];

xi_0_vec = reshape(xi_0, [],1); % Reshape for the need of optimization

% Equality constraints for start and goal positions

A = [eye(n), zeros(n,n*(k-1));...
    zeros(n,n*(k-1)), eye(n)];

B = [theta_start;theta_goal];

% Nonlinear optimization
options = optimoptions('fmincon','Display','iter',...
    'Algorithm','sqp','MaxFunctionEvaluations',1e5);
xi_star_vec = fmincon(@(xi) cost(xi), xi_0_vec, ...
    [], [], A, B, [], [], [], options);
```

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	41	5.259554e+03	0.000e+00	1.000e+00	0.000e+00	1.096e+05
1	105	4.223578e+03	0.000e+00	2.737e-04	4.063e+01	1.276e+02
2	148	3.412082e+03	0.000e+00	4.900e-01	5.225e+01	6.299e+01
3	192	3.360310e+03	0.000e+00	3.430e-01	3.162e+01	5.050e+01
4	235	2.233704e+03	0.000e+00	4.900e-01	4.734e+01	4.379e+01
5	277	2.038745e+03	0.000e+00	7.000e-01	4.050e+01	4.369e+01
6	319	1.634861e+03	0.000e+00	7.000e-01	3.146e+01	4.701e+01
7	361	1.474206e+03	0.000e+00	7.000e-01	2.980e+01	4.114e+01
8	403	1.231450e+03	0.000e+00	7.000e-01	2.418e+01	3.427e+01
9	445	1.088206e+03	0.000e+00	7.000e-01	2.383e+01	2.818e+01
10	487	8.968974e+02	0.000e+00	7.000e-01	1.633e+01	3.109e+01
11	529	8.627004e+02	0.000e+00	7.000e-01	1.607e+01	3.496e+01
12	570	8.115329e+02	0.000e+00	1.000e+00	1.311e+01	3.023e+01
13	612	7.938560e+02	0.000e+00	7.000e-01	1.131e+01	2.958e+01
14	654	7.564874e+02	0.000e+00	7.000e-01	8.699e+00	2.532e+01
15	696	7.526249e+02	0.000e+00	7.000e-01	1.009e+01	3.439e+01
16	738	7.157127e+02	0.000e+00	7.000e-01	6.660e+00	2.719e+01
17	781	6.971369e+02	0.000e+00	4.900e-01	5.646e+00	2.547e+01
18	823	6.915785e+02	0.000e+00	7.000e-01	5.370e+00	2.606e+01
19	864	6.850450e+02	0.000e+00	1.000e+00	5.187e+00	2.610e+01
20	907	6.800388e+02	0.000e+00	4.900e-01	3.493e+00	2.574e+01
21	948	6.734686e+02	0.000e+00	1.000e+00	4.238e+00	2.490e+01
22	990	6.702804e+02	0.000e+00	7.000e-01	2.494e+00	2.499e+01
23	1032	6.700025e+02	0.000e+00	7.000e-01	2.931e+00	2.569e+01
24	1073	6.678741e+02	0.000e+00	1.000e+00	2.594e+00	2.246e+01
25	1116	6.659580e+02	0.000e+00	4.900e-01	1.618e+00	2.449e+01
26	1157	6.653640e+02	0.000e+00	1.000e+00	2.031e+00	2.418e+01
27	1199	6.646424e+02	0.000e+00	7.000e-01	1.344e+00	2.494e+01
28	1241	6.641004e+02	0.000e+00	7.000e-01	1.438e+00	2.383e+01
29	1283	6.634615e+02	0.000e+00	7.000e-01	1.177e+00	2.363e+01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
30	1325	6.629003e+02	0.000e+00	7.000e-01	1.062e+00	2.427e+01
31	1366	6.628434e+02	0.000e+00	1.000e+00	1.375e+00	2.398e+01
32	1407	6.619820e+02	0.000e+00	1.000e+00	1.157e+00	2.400e+01
33	1450	6.614425e+02	0.000e+00	4.900e-01	9.162e-01	2.403e+01
34	1491	6.606951e+02	0.000e+00	1.000e+00	1.131e+00	2.384e+01
35	1532	6.604600e+02	0.000e+00	1.000e+00	1.532e+00	2.336e+01
36	1573	6.588206e+02	0.000e+00	1.000e+00	1.592e+00	2.433e+01
37	1614	6.573849e+02	0.000e+00	1.000e+00	2.664e+00	2.437e+01
38	1655	6.518431e+02	0.000e+00	1.000e+00	1.921e+00	2.343e+01
39	1696	6.489891e+02	0.000e+00	1.000e+00	4.700e+00	2.312e+01

40	1737	6.336788e+02	0.000e+00	1.000e+00	3.550e+00	2.315e+01
41	1778	6.033210e+02	0.000e+00	1.000e+00	1.219e+01	2.257e+01
42	1819	5.694327e+02	0.000e+00	1.000e+00	2.000e+01	2.132e+01
43	1860	5.419120e+02	0.000e+00	1.000e+00	2.405e+01	2.087e+01
44	1901	5.130550e+02	0.000e+00	1.000e+00	1.533e+01	1.806e+01
45	1942	4.815863e+02	0.000e+00	1.000e+00	6.172e+00	1.772e+01
46	1983	4.172338e+02	0.000c+00	1.000c+00	1.844e+01	1.641e+01
47	2024	3.660126e+02	0.000e+00	1.000e+00	1.398e+01	1.472e+01
48	2065	2.799702e+02	0.000e+00	1.000e+00	2.394e+01	1.187e+01
49	2106	1.993409e+02	0.000e+00	1.000e+00	2.148e+01	8.503e+00
50	2147	1.067375e+02	0.000e+00	1.000e+00	2.682e+01	6.370e+00
51	2188	4.091122e+01	0.000e+00	1.000e+00	2.207e+01	4.335e+00
52	2229	1.048690e+01	0.000e+00	1.000e+00	1.308e+01	1.630e+00
53	2274	8.018335e+00	0.000e+00	2.401e-01	1.430e+00	8.118e+01
54	2328	7.347262e+00	0.000e+00	9.689e-03	1.375e+01	1.669e+00
55	2370	1.097989e+00	0.000e+00	7.000e-01	5.140e+00	7.712e-01
56	2415	7.610732e-01	0.000e+00	2.401e-01	5.129e-01	6.305e-01
57	2465	7.142845e-01	0.000e+00	4.035e-02	7.061e-02	5.781e-01
58	2508	3.783916e-01	0.000e+00	4.900e-01	2.229e+00	9.066e-01
59	2550	2.837937e-01	0.000e+00	7.000e-01	4.384e-01	6.868e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
60	2598	2.761461e-01	0.000e+00	8.235e-02	3.710e-02	6.671e-01
61	2660	2.761138e-01	0.000e+00	5.585e-04	3.755e-04	6.498e-01
62	2701	2.478416e-01	0.000e+00	1.000e+00	6.738e-01	4.716e-01
63	2742	2.409657e-01	0.000e+00	1.000e+00	1.254e-01	5.045e-01
64	2783	2.397934e-01	0.000e+00	1.000e+00	5.216e-02	5.065e-01
65	2824	2.388920e-01	0.000e+00	1.000e+00	8.271e-02	5.010e-01
66	2865	2.384171e-01	0.000e+00	1.000e+00	3.175e-02	4.974e-01
67	2906	2.366505e-01	0.000e+00	1.000e+00	7.353e-02	4.862e-01
68	2947	2.330986e-01	0.000e+00	1.000e+00	8.224e-02	4.681e-01
69	2988	2.239409e-01	0.000c+00	1.000c+00	1.234e-01	4.277e-01
70	3029	2.044408e-01	0.000e+00	1.000e+00	1.961e-01	3.485e-01
71	3070	1.695681e-01	0.000e+00	1.000e+00	3.956e-01	2.111e-01
		1.632345e-01	0.000e+00	1.176e-01		
72 72	3117				7.236e-02	1.931e-01
73	3169	1.613184e-01	0.000e+00	1.977e-02	2.029e-02	1.891e-01
74 75	3225	1.608086e-01	0.000e+00	4.748e-03	5.210e-03	1.882e-01
75 76	3287	1.607826e-01	0.000e+00	5.585e-04	6.126e-04	9.220e-01
76	3340	1.576940e-01	0.000e+00	1.384e-02	2.306e-02	3.361e-01
77	3398	1.575542e-01	0.000e+00	2.326e-03	4.382e-03	2.892e+00
78	3450	1.530685e-01	0.000e+00	1.977e-02	3.235e-02	1.156e+00
79	3513	1.527830e-01	0.000e+00	3.910e-04	5.222e-03	2.748e+00
80	3566	1.488220e-01	0.000e+00	1.384e-02	3.137e-02	1.653e+00
81	3620	1.485773e-01	0.000e+00	9.689e-03	4.376e-03	2.114e+00
82	3667	1.374998e-01	0.000e+00	1.176e-01	1.254e-01	8.428e-02
83	3716	1.370526e-01	0.000e+00	5.765e-02	6.377e-03	8.142e-02
84	3771	1.370384e-01	0.000e+00	6.782e-03	5.299e-04	6.803e-01
85	3816	1.363245e-01	0.000e+00	2.401e-01	2.885e-02	3.660e+00
86	3858	1.358079e-01	0.000e+00	7.000e-01	5.693e-02	6.425e-02
87	3899	1.354108e-01	0.000e+00	1.000e+00	2.733e-02	6.110e-02
88	3940	1.353238e-01	0.000e+00	1.000e+00	4.185e-03	6.199e-02
89	3981	1.352314e-01	0.000e+00	1.000e+00	6.652e-03	2.948e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
			,	, ,	step	optimality
90	4022	1.352247e-01	0.000e+00	1.000e+00	3.110e-03	5.841e-01
91	4063	1.351975e-01	0.000e+00	1.000e+00	3.594e-03	1.137e-01
92	4104	1.351787e-01	0.000e+00	1.000e+00	4.676e-03	5.817e-02
93	4145	1.351757e 01 1.351556e-01	0.000e+00	1.000e+00	9.711e-03	6.129e-02
94	4186	1.351536e-01 1.351515e-01	0.000e+00	1.000e+00	1.984e-03	2.771e-01
95	4227	1.351313e-01 1.351451e-01	0.000e+00	1.000e+00	1.355e-03	1.289e-01
96	4268	1.351431e-01 1.351332e-01	0.000e+00	1.000e+00	2.024e-03	5.817e-02
97	4309	1.351352e-01 1.351067e-01	0.000e+00	1.000e+00	2.590e-03	6.245e-02
98	4350	1.349986e-01	0.000e+00	1.000e+00	6.796e-03	6.328e-02
99	4398	1.349758e-01	0.000e+00	8.235e-02	7.998e-04	6.343e-02

100	4455	1.349745e-01	0.000e+00	3.323e-03	7.367e-05	1.255e-01
101	4496	1.349109e-01	0.000e+00	1.000e+00	6.940e-03	6.938e-02
102	4537	1.348704e-01	0.000e+00	1.000e+00	7.177e-03	7.343e-02
103	4578	1.348570e-01	0.000e+00	1.000e+00	2.583e-03	7.289e-02
104	4619	1.348484e-01	0.000e+00	1.000e+00	2.501e-03	2.266e-01
105	4660	1.348408e-01	0.000e+00	1.000e+00	1.604e-03	7.255e-02
106	4701	1.348253e-01	0.000e+00	1.000e+00	1.468e-03	7.316e-02
107	4742	1.347446e-01	0.000e+00	1.000e+00	3.980e-03	7.400e-02
108	4787	1.346992e-01	0.000e+00	2.401e-01	3.591e-03	1.056e+00
109	4828	1.346650e-01	0.000e+00	1.000e+00	2.307e-03	3.534e-01
110	4869	1.346184e-01	0.000e+00	1.000e+00	1.993e-03	2.572e-01
111	4910	1.343492e-01	0.000e+00	1.000e+00	7.262e-03	1.047e-01
112	4954	1.338188e-01	0.000e+00	3.430e-01	1.902e-02	6.290e-02
113	5003	1.337811e-01	0.000e+00	5.765e-02	3.580e-03	1.285e+00
114	5047	1.332554e-01	0.000e+00	3.430e-01	4.998e-02	2.335e+00
115	5088	1.332550e-01	0.000e+00	1.000e+00	2.496e-02	6.907e-02
116	5129	1.328924e-01	0.000e+00	1.000e+00	3.013e-02	5.675e-02
117	5170	1.328221e-01	0.000e+00	1.000e+00	5.945e-03	5.771e-02
118	5211	1.327140e-01	0.000e+00	1.000e+00	1.843e-02	8.661e-01
119	5255	1.326857e-01	0.000e+00	3.430e-01	7.882e-03	3.943e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
				2 ccb	step	optimality
120	5299	1.326816e-01	0.000e+00	3.430e-01	8.766e-03	6.336e-02
121	5340	1.326646e-01	0.000e+00	1.000e+00	1.853e-03	6.425e-02
122	5382	1.326294e-01	0.000e+00	7.000e-01	3.863e-03	2.170e-01
123	5424	1.326281e-01	0.000e+00	7.000e-01	7.558e-04	6.625e-02
124	5465	1.326165e-01	0.000e+00	1.000e+00	8.699e-04	1.337e-01
125	5506	1.326124e-01	0.000e+00	1.000e+00	3.070e-03	6.615e-02
126	5549	1.326104e-01	0.000e+00	4.900e-01	2.433e-03	2.039e-01
127	5590	1.326089e-01	0.000e+00	1.000e+00	4.985e-04	6.610e-02
128	5631	1.326070e-01	0.000c+00	1.000c+00	5.233e-04	5.521e-02
129	5674	1.326062e-01	0.000e+00	4.900e-01	6.620e-04	2.265e-01
130	5715	1.325987e-01	0.000e+00	1.000e+00	1.487e-03	8.263e-02
131	5756	1.325803e-01	0.000e+00	1.000e+00	2.052e-03	9.593e-02
132	5797	1.325565e-01	0.000e+00	1.000e+00	1.991e-03	6.397e-02
133	5838	1.324966e-01	0.000c+00	1.000c+00	1.193e-02	5.768e-02
134	5879	1.324875e-01	0.000e+00	1.000e+00	1.414e-03	5.865e-02
135	5922	1.324837e-01	0.000e+00	4.900e-01	1.285e-03	3.863e-01
136	5963	1.324589e-01	0.000e+00	1.000e+00	2.071e-03	4.183e-01
137	6004	1.324050e-01	0.000e+00	1.000e+00	5.423e-03	4.190e-01
138	6045	1.323216e-01	0.000c+00	1.000e+00	1.141e-02	1.536e-01
139	6086	1.322846e-01	0.000e+00	1.000e+00	1.298e-02	5.423e-01
140	6130	1.322814e-01	0.000e+00	3.430e-01	7.826e-03	4.648e-01
141	6171	1.322640e-01	0.000e+00	1.000e+00	5.919e-03	1.559e-01
142	6212	1.322471e-01	0.000e+00	1.000e+00	6.140e-03	2.388e-01
143	6253	1.3224716 01 1.322138e-01	0.000e+00	1.000e+00	3.740e-03	7.074e-02
144	6294	1.321767e-01	0.000e+00	1.000e+00	1.019e-02	8.938e-01
145	6335	1.320802e-01	0.000e+00	1.000e+00	1.669e-02	6.824e-02
146	6376	1.319997e-01	0.000e+00	1.000e+00	7.566e-03	6.682e-02
147	6417	1.318375e-01	0.000e+00	1.000e+00	3.686e-02	1.504e+00
148	6463	1.317930e-01	0.000e+00	1.681e-01	4.448e-02	5.508e-02
149	6504	1.316783e-01	0.000e+00	1.000e+00	4.334e-02	5.772e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
100.	rune courre	1 VUI	readibility	Seep Lengen	step	optimality
150	6545	1.316363e-01	0.000e+00	1.000e+00	1.208e-02	5.534e-02
151	6586	1.316105e-01	0.000e+00	1.000e+00	9.372e-03	5.355e-02
152	6627	1.316028e-01	0.000c+00	1.000e+00	3.012e-03	5.345e-02
153	6668	1.315921e-01	0.000e+00	1.000e+00	3.226e-03	5.380e-02
154	6709	1.315721e-01 1.315715e-01	0.000e+00	1.000e+00	3.839e-03	5.481e-02
155	6752	1.315713e-01 1.315641e-01	0.000e+00	4.900e-01	1.735e-03	4.688e-01
156	6793	1.315536e-01	0.000e+00	1.000e+00	5.503e-03	5.486e-02
157	6834	1.315356C 01 1.315446e-01	0.000c+00	1.000e+00	2.373e-03	5.523e-02
158	6875	1.3153440e-01	0.000e+00	1.000e+00	7.598e-03	4.115e-01
159	6916	1.315318e-01 1.315277e-01	0.000e+00	1.000e+00	2.477e-03	5.707e-02
	0,20		1.0000.00			2 02

160	6957	1.315238e-01	0.000e+00	1.000e+00	6.287e-04	5.780e-02
161	6999	1.315213e-01	0.000e+00	7.000e-01	1.758e-03	3.106e-01
162	7040	1.315174e-01	0.000e+00	1.000e+00	5.865e-04	5.959e-02
163	7043	1.3151746 01 1.315163e-01	0.000e+00	1.000e+00	5.606e-04	6.020e-02
164	7122	1.315152e-01	0.000e+00	1.000e+00	9.284e-04	6.132e-02
165					1.527e-04	
	7163	1.315149e-01	0.000e+00	1.000e+00		6.152e-02
166	7204	1.315132e-01	0.000e+00	1.000e+00	5.911e-04	6.221e-02
167	7253	1.315131e-01	0.000e+00	5.765e-02	6.512e-05	4.250e-02
168	7294	1.315072e-01	0.000e+00	1.000e+00	1.649e-03	6.148e-02
169	7335	1.314774e-01	0.000e+00	1.000e+00	7.751e-03	5.613e-02
170	7376	1.314580e-01	0.000e+00	1.000e+00	3.943e-03	4.992e-02
171	7417	1.314545e-01	0.000e+00	1.000e+00	2.191e-03	4.834e-02
172	7458	1.314528e-01	0.000e+00	1.000e+00	1.624e-03	4.835e-02
173	7499	1.314502e-01	0.000e+00	1.000e+00	1.798e-03	4.849e-02
174	7540	1.314434e-01	0.000e+00	1.000e+00	2.851e-03	4.880e-02
175	7587	1.314419e-01	0.000e+00	1.176e-01	4.900e-04	6.165e-02
176	7628	1.314370e-01	0.000e+00	1.000e+00	3.648e-03	4.791e-02
177	7669	1.314376e 01 1.314324e-01	0.000e+00	1.000e+00	4.363e-03	4.696e-02
178	7710	1.314324e-01 1.314294e-01	0.000e+00	1.000e+00	2.514e-03	4.673e-02
		1.314294e-01 1.314290e-01				
179	7754		0.000e+00	3.430e-01	7.735e-04	8.150e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
180	7795	1.314283e-01	0.000e+00	1.000e+00	6.412e-04	4.645e-02
181	7836	1.314279e-01	0.000e+00	1.000e+00	4.671e-04	4.626e-02
182	7877	1.314267e-01	0.000e+00	1.000e+00	1.067e-03	4.576e-02
183	7918	1.314244e-01	0.000e+00	1.000e+00	1.080e-03	4.519e-02
184	7959	1.314185e-01	0.000e+00	1.000e+00	1.823e-03	4.396e-02
185	8001	1.314102e-01	0.000e+00	7.000e-01	1.988e-03	6.251e-02
186	8042	1.314097e-01	0.000e+00	1.000e+00	1.705e-03	7.835e-02
187	8083	1.314053e-01	0.000e+00	1.000e+00	2.404e-03	9.585e-02
188	8128	1.314049e-01	0.000e+00	2.401e-01	7.786e-04	1.758e-01
189	8169	1.314026e-01	0.000e+00	1.000e+00	3.760e-04	4.089e-02
190	8210	1.314007e-01	0.000e+00	1.000e+00	1.660e-03	3.991e-02
191	8251	1.313978e-01	0.000e+00	1.000e+00	2.895e-03	4.771e-02
192	8292	1.313976c 01 1.313944e-01	0.000c+00	1.000c+00	7.428e-04	4.849e-02
193	8333	1.313344e-01 1.313756e-01	0.000e+00	1.000e+00	2.408e-03	2.095e-01
194	8374	1.312825e-01	0.000e+00	1.000e+00	8.847e-03	3.612e-01
195	8421	1.311865e-01	0.000e+00	1.176e-01	1.120e-02	6.012e-02
196	8476	1.311854e-01	0.000e+00	6.782e-03	1.527e-04	6.018e-02
197	8517	1.311080e-01	0.000e+00	1.000e+00	1.897e-02	5.915e-02
198	8558	1.310675e-01	0.000e+00	1.000e+00	2.273e-02	5.804e-02
199	8599	1.310645e-01	0.000e+00	1.000e+00	2.145e-03	5.793e-02
200	8640	1.310610e-01	0.000e+00	1.000e+00	2.391e-03	5.781e-02
201	8681	1.310566e-01	0.000e+00	1.000e+00	1.833e-03	5.773e-02
202	8722	1.310456e-01	0.000e+00	1.000e+00	3.826e-03	2.308e-01
203	8763	1.310431e-01	0.000e+00	1.000e+00	7.277e-03	5.732e-02
204	8804	1.310345e-01	0.000e+00	1.000e+00	1.368e-03	5.736e-02
205	8845	1.309973e-01	0.000e+00	1.000e+00	6.340e-03	5.730e-02
206	8889	1.309921e-01	0.000e+00	3.430e-01	6.756e-03	7.952e-01
207	8931	1.309615e-01	0.000e+00	7.000e-01	2.564e-02	5.648e-02
208	8972	1.309499e-01	0.000e+00	1.000e+00	1.236e-02	5.638e-02
209	9013	1.309438e-01	0.000e+00	1.000e+00	4.252e-04	5.626e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
TCEI	runc-counc	rvaı	reasidifficy	Step Length		
210	0054	1 200101 - 01	0.00000	1 00000	step	optimality
210	9054	1.309181e-01	0.000e+00	1.000e+00	1.336e-03	2.420e-01
211	9095	1.308842e-01	0.000e+00	1.000e+00	1.999e-02	5.499e-02
212	9145	1.308832e-01	0.000e+00	4.035e-02	2.168e-04	5.497e-02
213	9202	1.308830e-01	0.000e+00	3.323e-03	4.944e-05	9.254e-02
214	9246	1.308735e-01	0.000e+00	3.430e-01	4.298e-03	1.029e+00
215	9287	1.308557e-01	0.000e+00	1.000e+00	4.807e-03	5.684e-02
216	9328	1.308427e-01	0.000e+00	1.000e+00	8.681e-04	5.665e-02
217	9370	1.308296e-01	0.000e+00	7.000e-01	4.052e-03	6.904e-01
218	9411	1.308206e-01	0.000e+00	1.000e+00	1.888e-03	5.590e-02
219	9452	1.308095e-01	0.000e+00	1.000e+00	1.338e-03	5.648e-02

220	9493	1.308008e-01	0.000e+00	1.000e+00	4.130e-03	6.366e-01
221	9534	1.307838e-01	0.000e+00	1.000e+00	1.749e-03	4.755e-01
222	9580	1.307648e-01	0.000e+00	1.681e-01	2.980e-03	3.541e-01
223	9621	1.307593e-01	0.000e+00	1.000e+00	1.282e-03	4.911e-02
224	9665	1.307573e-01	0.000e+00	3.430e-01	3.762e-04	1.065e-01
225	9706	1.307575C 01 1.307560e-01	0.000c+00	1.000e+00	1.465e-03	4.990e-02
226	9747	1.307500e-01 1.307545e-01	0.000e+00	1.000e+00	9.728e-04	5.067e-02
227	9788	1.307526e-01	0.000e+00	1.000e+00	3.132e-04	1.039e-01
228	9830	1.307435e-01	0.000e+00	7.000e-01	1.317e-03	2.494e-01
229	9871	1.307382e-01	0.000e+00	1.000e+00	1.322e-03	1.091e-01
230	9914	1.307329e-01	0.000e+00	4.900e-01	1.261e-03	1.525e-01
231	9956	1.307327e-01	0.000e+00	7.000e-01	1.470e-03	5.721e-02
232	9997	1.307315e-01	0.000e+00	1.000e+00	4.729e-04	5.686e-02
233	10044	1.307310e-01	0.000e+00	1.176e-01	3.663e-04	5.682e-02
234	10085	1.307305e-01	0.000e+00	1.000e+00	3.219e-04	5.678e-02
235	10126	1.307300e-01	0.000e+00	1.000e+00	2.117e-04	5.677e-02
236	10168	1.307292e-01	0.000e+00	7.000e-01	2.208e-04	9.346e-02
237	10209	1.307288e-01	0.000e+00	1.000e+00	5.770e-04	5.713e-02
238	10250	1.307282e-01	0.000e+00	1.000e+00	1.098e-04	4.524e-02
239	10294	1.307282e-01	0.000e+00	3.430e-01	1.924e-04	7.055e-02
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
			,	1 0	step	optimality
240	10335	1.307279e-01	0.000e+00	1.000e+00	1.019e-04	2.345e-02
241	10376	1.307277e-01	0.000e+00	1.000e+00	9.715e-05	2.344e-02
242	10417	1.307270e-01	0.000e+00	1.000e+00	3.635e-04	5.135e-02
243	10458	1.307255e-01	0.000e+00	1.000e+00	6.331e-04	5.808e-02
244	10499	1.307191e-01	0.000e+00	1.000e+00	3.418e-03	5.944e-02
245	10540	1.307140e-01	0.000e+00	1.000e+00	3.756e-03	6.041e-02
246	10581	1.307103e-01	0.000e+00	1.000e+00	3.718e-03	6.074e-02
247	10622	1.307088e-01	0.000e+00	1.000e+00	1.887e-03	6.052e-02
248	10663	1.307080e-01	0.000c+00	1.000c+00	8.023e-04	6.028e-02
249	10704	1.307064e-01	0.000e+00	1.000e+00	9.788e-04	5.996e-02
250	10748	1.307063e-01	0.000c+00	3.430e-01	5.011e-04	9.820e-02
251	10748	1.307003e-01 1.307044e-01	0.000e+00	1.000e+00	1.489e-03	6.048e-02
252	10830	1.307044e-01 1.307029e-01	0.000e+00	1.000e+00	1.230e-03	6.107e-02
253	10871	1.307029e-01 1.307001e-01	0.000e+00	1.000e+00	2.250e-03	6.219e-02
254	10912	1.306990e-01	0.000e+00	1.000e+00	1.134e-03	6.263e-02
255	10953	1.306963e-01	0.000e+00	1.000e+00	2.549e-03	6.342e-02
256	11001	1.306961e-01	0.000e+00	8.235e-02	2.800e-04	6.687e-02
257	11042	1.306950e-01	0.000e+00	1.000e+00	1.185e-03	4.862e-02
258	11083	1.306940e-01	0.000e+00	1.000e+00	1.173e-03	7.113e-02
259	11124	1.306934e-01	0.000e+00	1.000e+00	7.057e-04	2.324e-02
260	11165	1.306931e-01	0.000e+00	1.000e+00	1.458e-03	2.329e-02
261	11206	1.306929e-01	0.000e+00	1.000e+00	6.141e-04	2.328e-02
262	11247	1.306928e-01	0.000e+00	1.000e+00	4.213e-04	2.327e-02
263	11288	1.306922e-01	0.000e+00	1.000e+00	8.927e-04	2.319e-02
264	11329	1.306909e-01	0.000e+00	1.000e+00	1.114e-03	3.249e-02
265	11370	1.306880e-01	0.000e+00	1.000e+00	1.456e-03	9.447e-02
266	11411	1.306844e-01	0.000e+00	1.000e+00	2.295e-03	6.549e-02
267	11452	1.306724e-01	0.000e+00	1.000e+00	1.464e-02	6.196e-02
268	11493	1.306631e-01	0.000e+00	1.000e+00	3.640e-03	6.096e-02
269	11534	1.306630e-01	0.000e+00	1.000e+00	6.257e-03	6.083e-01
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
270	11580	1.306531e-01	0.000e+00	1.681e-01	2.553e-03	3.486e-01
271	11629	1.306524e-01	0.000e+00	5.765e-02	9.251e-04	2.641e-01
272	11677	1.306512e-01	0.000e+00	8.235e-02	5.867e-03	5.820e-02
273	11718	1.306469e-01	0.000e+00	1.000e+00	2.252e-03	5.807e-02
274	11759	1.306468e-01	0.000e+00	1.000e+00	3.914e-03	2.747e-01
275	11800	1.306433e-01	0.000e+00	1.000e+00	2.674e-03	5.842e-02
276	11841	1.306416e-01	0.000e+00	1.000e+00	2.907e-04	5.852e-02
277	11882	1.306388e-01	0.000e+00	1.000e+00	1.164e-03	1.928e-01
278	11923	1.306361e-01	0.000e+00	1.000e+00	2.583e-03	5.793e-02
279	11964	1.306347e-01	0.000e+00	1.000e+00	6.615e-04	5.811e-02
_,,			3.3300.00		0.015C 0T	5.5110 52

280	12008	1.306334e-01	0.000e+00	3.430e-01	8.278e-04	7.544e-02
281	12049	1.306332e-01	0.000e+00	1.000e+00	5.557e-04	6.702e-02
282	12090	1.306329e-01	0.000e+00	1.000e+00	2.378e-04	3.331e-02
283	12131	1.306329e-01	0.000e+00	1.000e+00	1.261e-04	1.738e-02
284	12172	1.306327e-01	0.000e+00	1.000e+00	3.175e-04	7.882e-03
285	12213	1.306325e-01	0.000e+00	1.000e+00	1.024e-03	2.337e-02
286	12254	1.306324e-01	0.000e+00	1.000e+00	3.314e-04	1.400e-02
287	12295	1.306323e-01	0.000e+00	1.000e+00	4.633e-04	7.764e-03
288	12336	1.306323e-01	0.000e+00	1.000e+00	2.313e-04	7.824e-03
289	12377	1.306323e-01	0.000e+00	1.000e+00	3.206e-04	7.955e-03
290	12418	1.306322e-01	0.000e+00	1.000e+00	1.985e-04	7.974e-03
291	12459	1.306322e-01	0.000e+00	1.000e+00	1.010e-04	7.989e-03
292	12500	1.306322e-01	0.000e+00	1.000e+00	1.313e-04	7.956e-03
293	12541	1.306322e-01	0.000e+00	1.000e+00	1.937e-04	7.896e-03
294	12582	1.306322e-01	0.000e+00	1.000e+00	2.567e-04	1.286e-02
295	12625	1.306321e-01	0.000e+00	4.900e-01	1.962e-04	1.677e-02
296	12680	1.306321e-01	0.000e+00	6.782e-03	1.791e-05	1.712e-02
297	12721	1.306321e-01	0.000e+00	1.000e+00	1.054e-04	1.262e-02
298	12762	1.306319e-01	0.000e+00	1.000e+00	3.476e-04	7.859e-03
299	12803	1.306319e-01	0.000e+00	1.000e+00	1.258e-04	7.899e-03
Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
300	12844	1.306318e-01	0.000e+00	1.000e+00	5.684e-04	2.269e-02
301	12885	1.306317e-01	0.000e+00	1.000e+00	1.176e-03	1.123e-02
302	12926	1.306317e-01	0.000e+00	1.000e+00	6.812e-04	1.314e-02
303	12967	1.306317e-01	0.000e+00	1.000e+00	2.771e-05	1.540e-02
304	13015	1.306317e-01	0.000e+00	8.235e-02	4.358e-05	2.296e-02
305	13056	1.306316e-01	0.000e+00	1.000e+00	2.064e-04	8.264e-03
306	13097	1.306316e-01	0.000e+00	1.000e+00	1.826e-04	6.522e-03
307	13138	1.306316e-01	0.000e+00	1.000e+00	1.140e-04	5.881e-03
308	13179	1.306316e-01	0.000e+00	1.000e+00	5.220e-05	7.956e-03
309	13220	1.306316e-01	0.000e+00	1.000e+00	4.432e-05	1.129e-02
310	13261	1.306315e-01	0.000e+00	1.000e+00	6.967e-05	1.956e-02
311	13302	1.306315e-01	0.000e+00	1.000e+00	1.183e-04	3.241e-02
312	13343	1.306313e-01	0.000e+00	1.000e+00	2.447e-04	5.180e-02
313	13384	1.306307e-01	0.000e+00	1.000e+00	8.555e-04	8.655e-02
314	13425	1.306301e-01	0.000e+00	1.000e+00	6.550e-04	9.446e-02
315	13466	1.306288e-01	0.000e+00	1.000e+00	1.497e-03	7.034e-02
316	13507	1.306283e-01	0.000e+00	1.000e+00	1.162e-03	1.804e-02
317	13548	1.306282e-01	0.000e+00	1.000e+00	1.844e-04	8.669e-03
318	13589	1.306282e-01	0.000e+00	1.000e+00	1.043e-04	8.549e-03
319	13630	1.306282e-01	0.000e+00	1.000e+00	1.170e-04	8.433e-03
320	13671	1.306281e-01	0.000e+00	1.000e+00	2.371e-04	1.140e-02
321	13712	1.306280e-01	0.000e+00	1.000e+00	3.620e-04	3.253e-02
322	13754	1.306280e-01	0.000e+00	7.000e-01	2.036e-04	1.654e-02
323	13795	1.306279e-01	0.000e+00	1.000e+00	1.069e-04	1.343e-02
324	13837	1.306279e-01	0.000e+00	7.000e-01	2.846e-04	2.406e-02
325	13879	1.306279e-01	0.000e+00	7.000e-01	5.796e-05	1.301e-02
326	13920	1.306278e-01	0.000e+00	1.000e+00	7.094e-05	3.839e-03
327	13927	1.306278e-01	0.000e+00	8.235e-02	2.523e-06	3.839e-03

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

```
xi_star = reshape(xi_star_vec,2,[]); % final optimized trajectory
% Plot obstacles
```


% Cost function to minimize

```
function C = cost(xi)
  gamma = 20; % Repulsion coefficient
  xi = reshape(xi, 2, []);
  C = 0;
  epsilon = 1e-6; % Small constant to prevent division by zero

% Define obstacles with correct centers and radii
  obstacles = [
    0.4, 0.6, 0.2; % First obstacle
    0.6, 0.4, 0.2; % Second obstacle
    % Add more obstacles if needed
```

```
];
    for idx = 2:length(xi)
        Urep = 0;
        for obs = 1:size(obstacles, 1)
            center = obstacles(obs, 1:2)';
            r = obstacles(obs, 3);
            dist_to_center = norm(xi(:, idx) - center);
            % Calculate repulsive potential if within the obstacle's influence
            if dist_to_center < r</pre>
                % Add a small value epsilon to prevent division by zero
                Urep = Urep + 0.5 * gamma * ((1 / (dist_to_center + epsilon)) -
(1 / r))^2;
            end
        end
        % Sum the repulsive potential and the path length cost
        C = C + norm(xi(:, idx) - xi(:, idx - 1))^2 + Urep;
    end
end
% MY INITIAL TRAJECTORY
% % Create initial trajectory that arches above the first and below the second
obstacle
% mid point1 = [0.5; 0.7]; % A point above the first obstacle
% mid_point2 = [0.5; 0.3]; % A point below the second obstacle
%
% % Construct initial trajectory xi_0
% xi_0 = [linspace(theta_start(1), mid_point1(1), floor(k/4)), ...
          linspace(mid_point1(1), mid_point2(1), floor(k/4)), ...
%
%
          linspace(mid_point2(1), theta_goal(1), floor(k/2));
          linspace(theta_start(2), mid_point1(2), floor(k/4)), ...
%
%
          linspace(mid_point1(2), mid_point2(2), floor(k/4)), ...
%
          linspace(mid point2(2), theta goal(2), floor(k/2))];
```

3 RRT Algorithm

In this problem you will use the RRT algorithm to perform a environments. As before, the mobile robot's position is $\theta = [x, y]$

3.1 (10 points)

Implement the RRT algorithm. Your code should be able to worl of circular obstacles.

- The bounds of the workspace are $x \in [0, 1], y \in [0, 1]$
- The motion plan must end within $\epsilon = 0.1$ units of the g

```
% Problem 3.1
clear
close all
% Define start and goal positions
theta_start.coord = [0; 0];
theta_goal = [1; 1];
% Workspace bounds
x_bounds = [0, 1];
y_bounds = [0, 1];
% Define obstacles
% Each row is an obstacle with format: [center_x, center_y, radius]
obstacles = [
   0.5, 0.3, 0.2;
    0.7, 0.7, 0.2;
    0.6, 0.4, 0.1;
    0.4, 0.3, 0.2;
    0.1, 0.75, 0.3;
    % Add as many obstacles required, satisfying the condition of arbitrary
    % number of obstacles' inclusion
1;
% RRT parameters
epsilon = 0.1; % Goal threshold
delta = 0.05; % Step size
N = 1000;
               % Number of iterations
```

```
% Visualize environment
figure
hold on
grid on
axis([x_bounds, y_bounds])
axis equal
% Plot obstacles
for i = 1:size(obstacles, 1)
    viscircles(obstacles(i, 1:2), obstacles(i, 3), 'Color', [0.5, 0.5, 0.5]);
end
% Initialize tree
theta start.parent = 0;
G(1) = theta_start;
% Main RRT loop
for idx = 1:N
    if norm(G(end).coord - theta goal) < epsilon</pre>
        break
    end
    % Random sample
    theta_rand = rand(2,1);
    % Nearest node
    [min_dist, theta_near_index] = min(vecnorm([G.coord] - theta_rand));
    theta_near = G(theta_near_index);
    % Step towards random sample
    vec_to_rand = theta_rand - theta_near.coord;
    if norm(vec_to_rand) > delta
        vec_to_rand = delta * vec_to_rand / norm(vec_to_rand);
    end
    theta_new.coord = theta_near.coord + vec_to_rand;
    % Collision check with all obstacles
    if isCollision(theta_new.coord, obstacles)
        continue;
    end
    % Add new node to tree
    theta new.parent = theta near index;
    G = [G, theta_new];
    % Plotting
    plot(theta_new.coord(1), theta_new.coord(2), 'o', 'Color', [0.5, 0.5, 0.5], ...
    'MarkerFaceColor', [0.5, 0.5, 0.5]);
    line([theta_near.coord(1), theta_new.coord(1)], [theta_near.coord(2),
theta_new.coord(2)], 'Color', 'k', 'LineWidth', 2);
```

```
end

% Trace back path
child_theta = G(end);
while child_theta.parent ~= 0
    parent_theta = G(child_theta.parent);
    line([child_theta.coord(1), parent_theta.coord(1)], [child_theta.coord(2),
parent_theta.coord(2)], 'Color', [1, 0.5, 0], 'LineWidth', 3);
    child_theta = parent_theta;
end

% Plot start and goal
plot(theta_start.coord(1), theta_start.coord(2), 'ko', 'MarkerFaceColor', 'k');
plot(theta_goal(1), theta_goal(2), 'ko', 'MarkerFaceColor', 'k');
```


% Collision checking function

```
function collision = isCollision(coord, obstacles)
    collision = any(arrayfun(@(idx) norm(coord - obstacles(idx, 1:2)') <
    obstacles(idx, 3), 1:size(obstacles, 1)));
end</pre>
```

3.2 (15 points)

Use your code to find a desired trajectory for the following environments. In each environment $\theta_{start} = [0, 0]^T$ and $\theta_{goal} = [1, 1]^T$.

• Environment 1. One obstacle with center $c_1 = [0.55, 0.5]^T$ and radius $r_1 = 0.3$.

```
% Problem 3.2 - Environment 1
clear
close all
% Define start and goal positions
theta_start.coord = [0; 0];
theta_goal = [1; 1];
% Define obstacles
center = [0.55; 0.5];
radius = 0.3;
% Parameters
epsilon = 0.1;
delta = 0.1;
N = 1000;
% Visualize environment
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(center', radius, 'Color', [0.5, 0.5, 0.5]);
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
% Initialize tree
theta_start.parent = 0;
G(1) = theta_start;
for idx = 1:N
    % Stop if the last node in G is close to theta_goal
    if norm(G(end).coord - theta_goal) < epsilon</pre>
        break
    end
    % Sample random joint position
    theta_rand = rand(2,1);
```

```
% % theta_rand = theta_goal;
% % if rand() < 0.8
% %
       theta_rand = rand(2,1);
% % end
% Find node in G nearest to theta_rand
min_dist = inf;
theta_near_index = 0;
for jdx = 1:length(G)
    coord = G(jdx).coord;
    dist = norm(theta_rand - coord);
    if dist < min_dist</pre>
        min_dist = dist;
        theta near index = jdx;
    end
end
% dist = zeros(length(G), 1);
% for jdx = 1:1:length(G)
      dist(jdx) = norm(G(jdx).coord - theta_rand);
% end
% [~, theta_near_index] = min(dist);
theta_near = G(theta_near_index);
% Take a step from theta_near towards theta_rand
vec_to_rand = theta_rand - theta_near.coord;
dist_to_rand = norm(vec_to_rand);
if dist to rand < delta</pre>
    theta_new.coord = theta_rand;
else
    theta_new.coord = theta_near.coord + delta * ...
    vec_to_rand/dist_to_rand;
end
% Check if theta new is collision free
dist_to_obs = norm(theta_new.coord - center);
if dist_to_obs < radius</pre>
    continue
end
% If collision free, add theta new to tree with parent theta near
theta_new.parent = theta_near_index;
G = [G, theta new];
% Plot node and edge
plot(theta_new.coord(1), theta_new.coord(2), 'o', 'Color', [0.5, 0.5, 0.5], ...
'MarkerFaceColor', [0.5, 0.5, 0.5])
line([theta_near.coord(1), theta_new.coord(1)], [theta_near.coord(2), ...
theta_new.coord(2)], 'Color', 'k', 'LineWidth', 2);
```

```
end
  % work backwards from the final node to the root of the tree
  child_theta = G(end);
  while child_theta.parent ~= 0

    parent_theta_index = child_theta.parent; % implemented
    parent_theta = G(parent_theta_index); % implemented
    line([child_theta.coord(1), parent_theta.coord(1)], ...
        [child_theta.coord(2), parent_theta.coord(2)], ...
        'Color', [1, 0.5, 0], 'LineWidth', 3);
    child_theta = parent_theta;
end
```


Environment 2. One obstacle with center c₁ = [0.5, 0.3]^T and radius r₁ = 0.3. A second obstacle with center c₂ = [0.5, 0.7]^T and radius r₂ = 0.2.

```
% Problem 3.2 - Environment 2
clear
close all
% Define start and goal positions
theta_start.coord = [0; 0];
theta_goal = [1; 1];
% Define obstacles
center = [0.5; 0.3];
radius = 0.3;
center2 = [0.5; 0.7]; % Second obstacle center
% Parameters
epsilon = 0.1;
delta = 0.1;
N = 1000;
% Visualize environment
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(center', radius, 'Color', [0.5, 0.5, 0.5]);
viscircles(center2', radius2, 'Color', [0.7, 0.3, 0.3]); % Visualizing the second
obstacle
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
% Initialize tree
theta_start.parent = 0;
G(1) = theta_start;
for idx = 1:N
   % Stop if the last node in G is close to theta_goal
   if norm(G(end).coord - theta_goal) < epsilon</pre>
       break
   end
   % sample random joint position
   theta_rand = rand(2,1);
```

```
% % theta_rand = theta_goal;
    % % if rand() < 0.8
    % %
            theta rand = rand(2,1);
    % % end
    % Find node in G nearest to theta_rand
    min dist = inf;
    theta_near_index = 0;
    for jdx = 1:length(G)
        coord = G(jdx).coord;
        dist = norm(theta_rand - coord);
        if dist < min dist</pre>
            min_dist = dist;
            theta_near_index = jdx;
        end
    end
    theta near = G(theta near index);
    % Take a step from theta_near towards theta_rand
    vec_to_rand = theta_rand - theta_near.coord;
    dist_to_rand = norm(vec_to_rand);
    if dist to rand < delta</pre>
        theta_new.coord = theta_rand;
    else
        theta_new.coord = theta_near.coord + delta * ...
        vec_to_rand/dist_to_rand;
    end
    % Check if theta_new is collision free with both obstacles
    dist_to_obs1 = norm(theta_new.coord - center);
    dist_to_obs2 = norm(theta_new.coord - center2);
    if dist_to_obs1 < radius || dist_to_obs2 < radius2</pre>
        continue
    end
    % If collision free, add theta_new to tree with parent theta_near
    theta_new.parent = theta_near_index;
    G = [G, theta_new];
    % Plot node and edge
    plot(theta_new.coord(1), theta_new.coord(2), 'o', 'Color', [0.5, 0.5, 0.5], ...
    'MarkerFaceColor', [0.5, 0.5, 0.5])
    line([theta_near.coord(1), theta_new.coord(1)], [theta_near.coord(2), ...
    theta_new.coord(2)], 'Color', 'k', 'LineWidth', 2);
    drawnow
end
% Work backwards from the final node to the root of the tree
```

```
child_theta = G(end);
while child_theta.parent ~= 0

parent_theta_index = child_theta.parent;
parent_theta = G(parent_theta_index);
line([child_theta.coord(1), parent_theta.coord(1)], ...
    [child_theta.coord(2), parent_theta.coord(2)], ...
    'Color', [1, 0.5, 0], 'LineWidth', 3);
child_theta = parent_theta;
end
```


• Environment 3. One obstacle with center $c_1 = [0.2, 0.35]^T$ and radius $r_1 = 0.2$. A second obstacle with center $c_2 = [0.5, 0.3]^T$ and radius $r_2 = 0.2$. A third obstacle with center $c_3 = [0.7, 0.5]^T$ and radius $r_3 = 0.2$.

```
% Problem 3.2 - Environment 3
clear
close all
% Environment initiation
theta start.coord = [0; 0];
theta_goal = [1; 1];
% Obstacle Parameters
% First obstacle center and radius
center = [0.2; 0.35];
radius = 0.2;
% Second obstacle center and radius
center2 = [0.5; 0.3];
radius2 = 0.2;
% Third obstacle center and radius
center3 = [0.7; 0.5];
radius3 = 0.2;
% Specifying parameters
epsilon = 0.1;
delta = 0.1;
N = 1000;
% Visualizing the environment
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(center', radius, 'Color', [0.5, 0.5, 0.5]);
viscircles(center2', radius2, 'Color', [0.7, 0.3, 0.3]); % Visualizing the second
obstacle
viscircles(center3', radius3, 'Color', [0.3, 0.5, 0.7]); % Visualizing the third
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
% Initializing the tree
theta_start.parent = 0;
G(1) = theta start;
for idx = 1:N
    % Stop if the last node in G is close to theta goal
```

```
if norm(G(end).coord - theta goal) < epsilon</pre>
    break
end
% Sample random joint position
theta_rand = rand(2,1);
% % theta rand = theta goal;
% % if rand() < 0.8
% %
        theta_rand = rand(2,1);
% % end
% Find node in G nearest to theta rand
min dist = inf;
theta_near_index = 0;
for jdx = 1:length(G)
    coord = G(jdx).coord;
    dist = norm(theta_rand - coord);
    if dist < min dist</pre>
        min_dist = dist;
        theta near index = jdx;
    end
end
theta near = G(theta near index);
% take a step from theta_near towards theta_rand
vec_to_rand = theta_rand - theta_near.coord;
dist_to_rand = norm(vec_to_rand);
if dist_to_rand < delta</pre>
    theta_new.coord = theta_rand;
else
    theta_new.coord = theta_near.coord + delta * ...
    vec_to_rand/dist_to_rand;
end
% Check if theta new is collision free with all obstacles
dist_to_obs1 = norm(theta_new.coord - center);
dist_to_obs2 = norm(theta_new.coord - center2);
dist_to_obs3 = norm(theta_new.coord - center3);
if dist_to_obs1 < radius || dist_to_obs2 < radius2 || dist_to_obs3 < radius3</pre>
    continue
end
% If collision free, add theta_new to tree with parent theta_near
theta new.parent = theta near index;
G = [G, theta new];
% Plot node and edge
plot(theta_new.coord(1), theta_new.coord(2), 'o', 'Color', [0.5, 0.5, 0.5], ...
'MarkerFaceColor', [0.5, 0.5, 0.5])
line([theta_near.coord(1), theta_new.coord(1)], [theta_near.coord(2), ...
```

```
theta_new.coord(2)], 'Color', 'k', 'LineWidth', 2);
    drawnow

end

% Work backwards from the final node to the root of the tree
    child_theta = G(end);
    while child_theta.parent ~= 0

    parent_theta_index = child_theta.parent;
    parent_theta = G(parent_theta_index);
    line([child_theta.coord(1), parent_theta.coord(1)], ...
        [child_theta.coord(2), parent_theta.coord(2)], ...
        'Color', [1, 0.5, 0], 'LineWidth', 3);
        child_theta = parent_theta;
end
```


3.3 (10 points)

Using **Environment 3** from the previous part, compare two versions of RRT. The first version is the standard RRT algorithm you have implemented (let's refer to this as the **baseline**). The second version will sample the goal more frequently (let's refer to this as **goal bias**). For **goal bias**, with probability 0.2 set θ_{rand} as θ_{goal} . Otherwise sample randomly as normal.

Run your code 10 times for **baseline** and 10 times for **goal bias**. Write down how many samples it takes on average to find a motion plan. Which approach is more sample-efficient: **baseline** or **goal bias**? Write a few sentences to explain and support your answer.

```
% Problem 3.3 - baseline
clear
close all
% Environment initiation
theta_start.coord = [0; 0];
theta_goal = [1; 1];
% Obstacle Parameters
% First obstacle center and radius
center = [0.2; 0.35];
radius = 0.2;
% Second obstacle center and radius
center2 = [0.5; 0.3];
radius2 = 0.2;
% Third obstacle center and radius
center3 = [0.7; 0.5];
radius3 = 0.2;
% Specifying parameters
epsilon = 0.1;
delta = 0.1;
N = 1000;
% Visualizing the environment
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(center', radius, 'Color', [0.5, 0.5, 0.5]);
viscircles(center2', radius2, 'Color', [0.7, 0.3, 0.3]); % Visualizing the second
obstacle
viscircles(center3', radius3, 'Color', [0.3, 0.5, 0.7]); % Visualizing the third
obstacle
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
```

```
% Initializing the tree
theta start.parent = 0;
G(1) = theta_start;
for idx = 1:N
    % Stop if the last node in G is close to theta_goal
    if norm(G(end).coord - theta_goal) < epsilon</pre>
        break
    end
    % Sample random joint position
    theta rand = rand(2,1);
    % % theta_rand = theta_goal;
    % % if rand() < 0.8
    % %
            theta_rand = rand(2,1);
    % % end
    % Find node in G nearest to theta_rand
    min dist = inf;
    theta_near_index = 0;
    for jdx = 1:length(G)
        coord = G(jdx).coord;
        dist = norm(theta_rand - coord);
        if dist < min dist</pre>
            min_dist = dist;
            theta_near_index = jdx;
        end
    end
    theta_near = G(theta_near_index);
    % take a step from theta near towards theta rand
    vec_to_rand = theta_rand - theta_near.coord;
    dist to rand = norm(vec to rand);
    if dist_to_rand < delta</pre>
        theta_new.coord = theta_rand;
    else
        theta new.coord = theta near.coord + delta * ...
        vec_to_rand/dist_to_rand;
    end
    % Check if theta_new is collision free with all obstacles
    dist to obs1 = norm(theta new.coord - center);
    dist to obs2 = norm(theta new.coord - center2);
    dist_to_obs3 = norm(theta_new.coord - center3);
    if dist_to_obs1 < radius || dist_to_obs2 < radius2 || dist_to_obs3 < radius3</pre>
        continue
    end
```

```
% If collision free, add theta_new to tree with parent theta_near
   theta new.parent = theta near index;
    G = [G, theta_new];
   % Plot node and edge
    plot(theta_new.coord(1), theta_new.coord(2), 'o', 'Color', [0.5, 0.5, 0.5], ...
    'MarkerFaceColor', [0.5, 0.5, 0.5])
    line([theta_near.coord(1), theta_new.coord(1)], [theta_near.coord(2), ...
    theta_new.coord(2)], 'Color', 'k', 'LineWidth', 2);
    drawnow
end
% Work backwards from the final node to the root of the tree
child_theta = G(end);
while child theta.parent ~= 0
    parent_theta_index = child_theta.parent;
    parent theta = G(parent theta index);
    line([child_theta.coord(1), parent_theta.coord(1)], ...
        [child_theta.coord(2), parent_theta.coord(2)], ...
        'Color', [1, 0.5, 0], 'LineWidth', 3);
    child_theta = parent_theta;
end
```


3.3 (10 points)

Using **Environment 3** from the previous part, compare two versions of RRT. The first version is the standard RRT algorithm you have implemented (let's refer to this as the **baseline**). The second version will sample the goal more frequently (let's refer to this as **goal bias**). For **goal bias**, with probability 0.2 set θ_{rand} as θ_{goal} . Otherwise sample randomly as normal.

Run your code 10 times for **baseline** and 10 times for **goal bias**. Write down how many samples it takes on average to find a motion plan. Which approach is more sample-efficient: **baseline** or **goal bias**? Write a few sentences to explain and support your answer.

```
% Problem 3.3 - Goal Bias
clear
close all
% Environment initiation
theta_start.coord = [0; 0];
theta_goal = [1; 1];
% Obstacle Parameters
% First obstacle center and radius
center = [0.2; 0.35];
radius = 0.2;
% Second obstacle center and radius
center2 = [0.5; 0.3];
radius2 = 0.2;
% Third obstacle center and radius
center3 = [0.7; 0.5];
radius3 = 0.2;
% Specifying parameters
epsilon = 0.1;
delta = 0.1;
N = 1000;
% Visualizing the environment
figure
grid on
hold on
axis([0, 1, 0, 1])
axis equal
viscircles(center', radius, 'Color', [0.5, 0.5, 0.5]);
viscircles(center2', radius2, 'Color', [0.7, 0.3, 0.3]); % Visualizing the second
viscircles(center3', radius3, 'Color', [0.3, 0.5, 0.7]); % Visualizing the third
obstacle
plot(0, 0, 'ko', 'MarkerFaceColor', 'k')
plot(1, 1, 'ko', 'MarkerFaceColor', 'k')
```

```
% Initializing the tree
theta start.parent = 0;
G(1) = theta_start;
for idx = 1:N
    % Stop if the last node in G is close to theta_goal
    if norm(G(end).coord - theta_goal) < epsilon</pre>
        break
    end
   % sample random joint position: probability 0.2
    if rand() < 0.2
        theta_rand = theta_goal;
    else
        theta_rand = rand(2,1);
    end
    % find node in G nearest to theta rand
    min dist = inf;
    theta_near_index = 0;
    for jdx = 1:length(G)
        coord = G(jdx).coord;
        dist = norm(theta_rand - coord);
        if dist < min_dist</pre>
            min_dist = dist;
            theta_near_index = jdx;
        end
    end
    theta_near = G(theta_near_index);
    % take a step from theta_near towards theta_rand
    vec to rand = theta rand - theta near.coord;
    dist_to_rand = norm(vec_to_rand);
    if dist_to_rand < delta</pre>
        theta_new.coord = theta_rand;
    else
        theta_new.coord = theta_near.coord + delta * ...
        vec_to_rand/dist_to_rand;
    end
    % check if theta new is collision free with all obstacles
    dist_to_obs1 = norm(theta_new.coord - center);
    dist_to_obs2 = norm(theta_new.coord - center2);
    dist_to_obs3 = norm(theta_new.coord - center3);
    if dist_to_obs1 < radius || dist_to_obs2 < radius2 || dist_to_obs3 < radius3</pre>
        continue
```

```
end
    % if collision free, add theta_new to tree with parent theta_near
    theta_new.parent = theta_near_index;
    G = [G, theta_new];
    % plot node and edge
    plot(theta_new.coord(1), theta_new.coord(2), 'o', 'Color', [0.5, 0.5, 0.5], ...
    'MarkerFaceColor', [0.5, 0.5, 0.5])
    line([theta_near.coord(1), theta_new.coord(1)], [theta_near.coord(2), ...
    theta_new.coord(2)], 'Color', 'k', 'LineWidth', 2);
    drawnow
end
% work backwards from the final node to the root of the tree
child theta = G(end);
while child_theta.parent ~= 0
    parent theta index = child theta.parent;
    parent_theta = G(parent_theta_index);
    line([child_theta.coord(1), parent_theta.coord(1)], ...
        [child_theta.coord(2), parent_theta.coord(2)], ...
        'Color', [1, 0.5, 0], 'LineWidth', 3);
    child_theta = parent_theta;
end
```


I determine Goal-Biased RRT to be more sample-efficient than the baseline but there are compensations which are mentioned below in the comparison.

It took around **1-3 samples** on average to find a motion plan for **goal-biased** to find a motion plan, whereas it took **4-6 samples** on average for the **baseline** to get an ~accurate motion plan.

To quantitatively determine which is more sample-efficient, I <u>ran multiple simulations (10 times)</u> of each method and averaged the number of samples taken to find a successful path. The method with the lower average would be considered more sample-efficient which is shown above.

Sample Efficiency Comparison:

- **Goal-biased RRT** seemed to be **more sample-efficient** in open or less complex environments because it directs its exploration towards the goal, thereby potentially finding a path with fewer samples.
- In contrast, the **baseline RRT** might be more effective in **highly cluttered environments** where a direct path to the goal is less likely, and a more uniform exploration of the space is beneficial.

We need to understand the key differences between the two methods and their impact on sample efficiency:

- 1. <u>Baseline RRT</u>: This approach uniformly samples the entire configuration space **without any bias** towards the goal. It explores the space in a **more scattered** manner, which can be beneficial in complex environments with many obstacles. However, it might take **more samples to find a path to the goal**, especially in large or open spaces, because the sampling is entirely random and not directed towards the goal.
- 2. <u>Goal-Biased RRT</u>: In this approach, the algorithm is biased to sample near the goal state more frequently. This bias can significantly **reduce the number of samples** required to find a path to the goal in many cases, especially in less complex environments or when the goal is not surrounded by obstacles. The downside is that in highly cluttered environments, **this bias might lead to more samples being wasted** near the goal where paths are infeasible.