Properties of Vectors

Properties of Vector Addition and Scalar Multiplication

Commutative Property: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

Summary:

Associative Property: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$

The order in which vectors are added will not

The distributive property behaves the same with vectors as it does scalars.

change the resultant.

Adding $\vec{0}$: $\vec{a} + \vec{0} = \vec{a}$

Summary:

Adding the zero vector has no effect on the resultant.

Distributive Property:

$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

Summary:

Associative Law for Scalars:

 $m(n\vec{a}) = (mn)\vec{a} = mn\vec{a}$ $3(2\vec{a}) = (3)(2)\vec{a}$

Distributive Law for Scalars:

 $(m+n)\vec{a} = m\vec{a} + n\vec{a}$

a(m+n)

Ex 1.

Write the following vector in simplified form. $2(1\vec{u} - 3\vec{v} - \vec{w}) - 3(2\vec{u} + 4\vec{v} + \vec{w})$

=
$$2\vec{u} - 6\vec{v} - 2\vec{w} - 6\vec{u} - 12\vec{v} - 3\vec{w}$$

= $-4\vec{u} - 18\vec{v} - 5\vec{w}$

Ex 2.

If $\vec{x} = 3\vec{a} - 4\vec{b} + \vec{c}$ and $\vec{y} = 2\vec{b} + 3\vec{c}$ express $-\vec{x} + 3\vec{y}$ in terms of \vec{a} , \vec{b} , and \vec{c} .

$$-x + 3y$$
= -\((3\vec{a} - 4\vec{b} + \vec{c}\)) + 3(\(2\vec{b} + 3\vec{c}\))
= -3\vec{a} + 4\vec{b} - \vec{c} + 6\vec{b} + 9\vec{c}\)
= -3\vec{a} + 10\vec{b} + 8\vec{c}\)

