الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2011

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة : التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (05 نقاط)

 C_4H_8O فحم هيدروجيني أكسيجيني A صيغته المجملة A فحم يتفاعل A مع الكاشف A بينما A بينما A بينما كم محلول فهانغ.

أ- ما طبيعة المركب A؟

ب- اكتب صيغته نصف المفصلة.

2) نجري على المركب A سلسلة التفاعلات التالية:

A
$$\xrightarrow{\text{LiAlH}_4}$$
 B

B $\xrightarrow{\text{Al}_2\text{O}_3}$ C + H₂O

C $\xrightarrow{\text{KMnO}_4}$ 2D

- اكتب الصبيغ نصف المفصلة للمركبات D · C · B

3) يمكن نزع مجموعة الكربوكسيل من المركب D بطريقتين:
 أ- بوجود أكسيد المنغنيز MnO عند 350°C

ب- بتأثير الحرارة وفي وسط قاعدي.

- اكتب معادلة التفاعل الموافق في الحالتين أ ، ب.

4) انطلاقًا من البنزن والمركب D وكواشف أخرى يمكن الحصول على الأسيتوفينون G-CH3
 - عبر عن ذلك بكتابة معادلات النفاعلات الحاصلة.

التمرين الثاني: (05 نقاط)

I لديك الأحماض الأمينية التالية:

Met	Leu	Gly	
H ₂ N - CH-COOH CH ₂ CH ₂ CH ₂ s I CH ₃	H ₂ N-CH-COOH CH ₂ CH CH ₃ CH ₃	H ₂ N — CH—COOH H	
Glu	Thr	Cys	
H ₂ N - CH-COOH (CH ₂)- COOH	H ₂ N - CH-COOH CH-CH ₃ OH	H ₂ N — CH—COOH CH ₂ I SH	

1- صنّف الأحماض الأمينية التالية: Thr ، Met ، Glu ، Gly

2- احسب pHi لكل من الحمضين الأمينيين Glu و Leu

 $pKa_R = 4,25$, $pKa_2 = 9,67$, $pKa_1 = 2,19$: Glu

 $pKa_2 = 9,6 \cdot pKa_1 = 2,36 : Leu$

9- اكتب الصيغة الأيونية لكل من الحمضين الأمينيين Glu و Glu عند 22,322 −3

II- ليكن الببتيد التالي: Thr - Cys - Met - Leu - Gly

1- اكتب الصبيغة نصف المفصلة لهذا الببتيد.

2- حدد الروابط الببتيدية في هذا الببتيد.

3- ما تأثير كاشف بيوري على هذا الببتيد؟ علَّل إجابتك.

4- ما هو الحمض الأميني الذي يتحرّر أوّلاً خلال الإماهة الإنزيمية لهذا الببتيد بوجود إنزيم الكربوكسي ببتيداز؟

التمرين الثالث: (05 نقاط)

1) انطلاقا من المعادلات التالية عند 25°C:

(1)
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)}$$

$$\Delta H_1^0 = -286 \text{kJ.mol}^{-1}$$

(2)
$$CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}$$

$$\Delta H_2^0 = -283 \text{kJ.mol}^{-1}$$

(3)
$$C_2H_5OH_{(I)} + 3 O_{2(g)} \longrightarrow 2CO_{2(g)} + 3 H_2O_{(I)} \qquad \Delta H_3^0 = -1368 \text{kJ.mol}^{-1}$$

$$\Delta H_3^0 = -1368 \text{kJ.mol}^{-1}$$

أ- احسب أنطالبي التفاعل التالي عند 25°C :

$$2CO_{(g)}$$
 + $4H_{2(g)}$ \longrightarrow $C_2H_5OH_{(l)}$ + $H_2O_{(l)}$

ب- هل هذا التفاعل ماص أو ناشر للحرارة؟ علَّل إجابتك.

$$CO_{(g)}$$
 لـ ΔH_f^0 التشكّل ΔH_f^0 المسب أنطالبي التشكّل ΔH_f^0 ($C_2H_5OH_{(I)}$) = $-277kJ$. mol^{-1} يعطى:

2) احسب التغير في الطَّاقة الدّاخلية ΔU للتفاعل (3) عند 20°C

التمرين الرابع: (05 نقاط)

لتحضير الإيثانال نستخدم المواد والأدوات التالية:

الأدوات	المواد
- دورق كروي ثنائي العنق - مكثّف	CH_3 - CH_2OH من الكحول الإيثيلي 30mL – من الكحول الإيثيلي $ ho = 0.8 \; \mathrm{g/cm^3}$ كثانه الحجمية
- معنف - مسخَّن الدورق	خلفه الحجميه ρ = 0,8 g/cm – مزيج سلفوكرومي يتكون من:
- أنبوب بروم	60g من K ₂ Cr ₂ O ₇
- دورق استقبال (ارلن)	من H_2SO_4 المركز $50 mL$
- حوض تبريد	250mL من الماء المقطر
8	- كلور الزنك اللامائي ZnCl ₂

نسخن الدورق الذي يحتوي على الكحول الإيثيلي حتى $^{\circ}C$ ونسكب قطرة قطرة المزيج O C السلفوكرومي فيتقطّر الإيثانال المتشكّل $^{\circ}C$ - $^{\circ}C$

1- ارسم التركيب المناسب لهذا التحضير.

2- اكتب التفاعلين النصفيين للأكسدة والإرجاع واستنتج التفاعل الإجمالي الحادث.

3- لماذا يُضاف ZnCl₂ اللّمائي إلى الإيثانال المتشكّل؟

4- ما هي كتلة الكحول الإيثيلي المستعملة؟

5- احسب عدد مولات كل من الكحول الإيثيلي وثاني كرومات البوتاسيوم K2Cr2O7

6- احسب كتلة الإيثانال النقيّ المتحصل عليها إذا كان مردود التفاعل %50

يعطى:

C=12 g/mol · H=1 g/mol · O=16 g/mol · Cr = 52 g/mol · K=39,1 g/mol

الموضوع الثاني

التمرين الأول: (06 نقاط)

I- لتكن التفاعلات التالية:

(1)
$$\leftarrow$$
 + CH₃ - CH₂ - OH $\xrightarrow{\text{H}_2\text{SO}_4}$ A + H₂O

(2)
$$A + HNO_3 \xrightarrow{H_2SO_4} B + H_2O$$

(3) B $\frac{\text{LiAlH}_4}{\text{H}_2\text{O}}$ C www.eddi

(4)
$$CH_3 - CH_2 - OH \xrightarrow{KMnO_4} D$$

(5) D +
$$SOCl_2$$
 \longrightarrow E + HCl + SO_2

(6)
$$C + E \longrightarrow CH_3 - CH_2 \longrightarrow NH-C-CH_3 + HCI$$

$$N \equiv C - (CH_2)_4 - C \equiv N + 4H_2 \xrightarrow{Ni} F$$

$$O O$$

$$\parallel N \equiv 0$$

$$\parallel N \equiv$$

1- ما نوع البلمرة في تفاعل تشكّل البولي أميد (Nylon 6 - 6)؟

2- اكتب الصبيغة نصف المفصلة للمركب F

3- استنتج الصبيغة العامة لــ Nylon 6 - 6

التمرين الثاني: (07 نقاط) لديك الأحماض الأمينية التالية:

H₂N-CH-COOH H₂N-CH₂-COOH H₂N-CH-COOH CH-OH CH₃

CH3 Gly غليسين CH CH₃

Thr ثريونين Leu

- 1) أ- حدّد ذرّات الكربون غير المتناظرة في هذه الأحماض الأمينية.
- ب- مثّل المماكبات الضوئية للحمض الأميني Thr حسب إسقاط فيشر.
- 2) أ- عند أي قيمة لـ pH يكون الحمض الأميني Thr متعادلا كهربائيا؟ اكتب صيغته الأيونية الموافقة.

يعطى:

Thr و $pKa_2=9,10$ للحمض الأميني $pKa_1=2,09$ و pH=11 و pH=11 و pH=11 و pH=11 و

3) ليكن المركب التالي: Gly-Thr-Leu

أ- ماذا يمثل هذا المركب؟

ب- اكتب صيغته نصف المفصلة.

4) لديك التفاعل الإنزيمي التالي:

Leu E + CO₂

أ- أكمل معادلة التفاعل.

ب- ما اسم الإنزيم E المحفِّز للتفاعل؟

ج- إلى أيّ صنف من الإنزيمات ينتمي الإنزيم E؟

التمرين الثالث: (07 نقاط)

سعر قريق 1من غاز الإيثيلين 14G في مسعر حراري فترتفع درجة الحرارة بمقدار 12° C حسب معادلة التفاعل التالية:

$$C_2H_{4(g)} + 3 O_{2(g)} \longrightarrow 2 CO_{2(g)} + 2 H_2O_{(I)}$$

1- احسب كميّة الحرارة الناتجة عن احتراق 1g من غاز الإيثيلين.

مع العلم أن:

- السعة الحرارية الكتلية للماء: Ceau = 4,19 J/g.°C

- كتلة الماء: m = 1000g

2-أ- ما هي كميّة الحرارة الناتجة عن احتراق 1 mol من غاز الإيثيلين؟

H = 1g/mol ، C = 12g/mol ; Q = 12g/mol

ب- استنتج الأنطالبي ΔΗ لاحتراق غاز الإيثيلين.

-3 الأنطالبي المعياري $\Delta H_{\gamma}^{\circ}$ لتشكّل غاز ثاني أكسيد الكربون.

 $\Delta H_f^0(H_2O_{(l)}) = -286 \text{ kJ.mol}^{-1}$ ، $\Delta H_f^0(C_2H_{4(g)}) = 52 \text{ kJ.mol}^{-1}$

II - نحصل على الإيثانول من إماهة الإيثيلين وفق التفاعل التالي:

 $C_2H_{4(g)} + H_2O_{(l)} \longrightarrow C_2H_5OH_{(l)}$ $\Delta H = -43 \text{ kJ.mol}^{-1}$

احسب أنطالبي تشكّل الإيثانول في الحالتين السائلة والغازية.

ديث:

 $\Delta H_{up}^{0}(C_{2}H_{5}OH_{(1)}) = 42,63 \text{ kJ.mol}^{-1}$ انطالبي نبخر الإيثانول

III− لديك التفاعل التالي عند 25°C:

$$C_2H_{4(g)} + H_{2(g)} \xrightarrow{Ni} C_2H_{6(g)}$$

 ΔH_{f}^{0} ($C_{2}H_{6(g)}$) = -84,6 kJ.mol $^{-1}$: علما أن ΔH_{r} علما أن ΔH_{r} النفاعل ΔH_{f}

2- احسب التغير في الطَّاقة الدّاخلية ∆U للتفاعل عند 25°C

يعطى: R = 8,314 J.mol⁻¹.K⁻¹

الإجابة النموذجية وسلم التنقيط لموضوع امتحان البكالوريا دورة: جوان 2011 اختيار مادة: تكنولوجيا هندسة طرائق الشعبة:تقني رياضي (هندسة الطرائق) المدة: 4 سا و 30 د

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
0,75	0.25	التمرين الأول: (05 نقاط) 1- أ) طبيعة المركب A: سيتون صيغته نصف المفصلة: CH3 - CH2 - CH3 (CH3 - CH3)
	0.50	ب) صيغته نصف المفصلة: CH3 - C - CH2 - CH3
1.5		D · C · B الصيغ نصف المفصلة للمركبات −2 OH
	2×0.5	B: $CH_3 - CH - CH_2 - CH_3$ C: $CH_3 - CH = CH - CH_3$
1.75	0.5	D: CH ₃ -C-OH -3
1.75	1	2 CH ₃ - C - OH MnO CH ₃ - C - CH ₃ + CO ₂ + H ₂ O
	0.75	معادلة التفاعل في الحالة ب: $ CH_3 - C - OH $
1	0.5	CH ₃ -C-OH + PCI ₅ → CH ₃ -C-CI + HCI + POCI ₃ CH ₃ -C-OH + SOCI ₂ → CH ₃ -C-CI + HCI + SO ₂
	0.5	+ CH3-C-CI AICI3 C-CH3 + HCI
		المراسة الجزائري www.eddirasa.com

		(1 st 05) who she
,		التمرين الثاني: (05 نقاط)
1		1 - I) تصنيف الأحماض الأمينية:
		Gly : حمض أميني ذو سلسلة كربونية بسيطة
	4×0.25	Glu : حمض أميني حامضي Met : حمض أميني كبريتي
		ا الحمض اميني عبريني Thr : حمض اميني هيدروكسيلي
		۱۱۱۱ . حمص البيتي البحروتسيتي
1		2) حساب الـــ pH _i (2
	2×0.25	Glu: $pH_i = \frac{pKa_1 + pKa_R}{2} = \frac{2,19 + 4,25}{2} = 3,22$
	2.0.23	2 2
		Leu: $pH_1 = \frac{pKa_1 + pKa_2}{2} = \frac{2,36 + 9,6}{2} = 5,98$
	2×0.25	2 2 3,98
		3) الصيغ الأيونية لــ Leu و Glu عند Glu عند pH=3,22 :
1		pri 5,22 — 5.13 3.24 — 3.32 & - (5
	0.5	pH <ph₁ (leu)="" h₃n−ch−cooh<="" td="" خيث:=""></ph₁>
	1000000	
		CH ₂
		CH
		CH3 CH3
		www.eddirasa.com
	0.5	pH=pH _i (Glu) حيث H ₃ N-CH-COO
		(CH ₂) ₂
		COOH
		СООН
1		1 - II) الصيغة نصف المفصلة للبيبتيد:
		0 0 0
	1	H ₂ N - CH - C - NH - CH - C - NH - CH - C - NH - CH - C
		CH-OH CH2 (CH2) CH2 H
		الله الميدية الميدية الميدية الميدية SH الميدية SH الميدية الميدية CH الميدية الميدية CH
0.25	0.25	CH ₃ CH ₃ CH ₃ (2) هناك أربع روابط ببتيدية محددة باسهم.
0.23		 عات اربع روابط ببيوية محدد باسهم. يعطي كاشف بيوري مع الببتيد لونا أزرقا بنفسجيا، نتيجة لتشكل معقد بين أيونات النحاس
0.5	2×0.25	و) يعلى داست بيوري مع الببيد أود ارزد بلطبوا عيب عسى معد بين ايودت المدان
0.25	0.25	4) الحمض الأميني الذي يتحرر أو لا هو: Gly

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: 2011 اختبار مادة: تكنولوجيا هندسة طرائق الشعبة/السلك (*): تقني رياضي هندسة الطرائق المدة: 4 سا و 30 د

3.5			رين الثالث: (05 أ- حساب أنطالبي
	0.25	$(H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)}) \times 4$	$4\Delta H_1^0$
	0.25	$(CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)}) \times 2$	$2\Delta H_2^0$
	0.25	$2 \text{ CO}_{2(g)} + 3\text{H}_2\text{O}_{(l)} \longrightarrow \text{C}_2\text{H}_5\text{OH}_{(l)} + 3 \text{ O}_{2(g)}$	$-\Delta H_3^0$
		$2 CO_{(g)} + 4H_{2(g)} \longrightarrow C_2H_5OH_{(1)} + H_2O_{(1)}$	ΔH=?
	0.50	$\Delta H = 4\Delta H_1^{\circ} + 2\Delta H_2^{\circ} - \Delta H_3^{\circ}$ $\Delta H = 4(-286) + 2(-283) - (-1368)$	
	0.50	$\Delta H = -342 \text{kJ.mol}^{-1}$	
	2×0.25	ΔH ر للحرارة لأن ΔH : $\Delta H_{ m f}^{\circ}$ (${ m CO}_{ m (g)}$) التشكل	
	0.25	$\Delta H = \sum \Delta H_f^{\circ} \text{(produits)} - \sum \Delta H_f^{\circ} \text{(reactifs)}$	ge I
	0.50	$\Delta H = \Delta H_f^{\circ} (C_2 H_5 O H_{(1)}) + \Delta H_f^{\circ} (H_2 O_{(1)}) - 2\Delta H_f^{\circ} (CO_{(g)}) - 4 \times 0$ $-342 = -277 - 286 - 2\Delta H_f^{\circ} (CO_{(g)}) - 4 \times 0$	$4\Delta H_{f}^{\circ}(H_{2(g)})$
		$-342 = -563 - 2\Delta H_f^{\circ} \left(CO_{(g)} \right)$	
	0.50	$2\Delta H_f^{\circ}(CO_{(g)}) = -221$ $\Delta H_f^{\circ}(CO_{(g)}) = -110,5 \text{kJ.mol}^{-1}$	
1.5	0.50 0.50	25° C عند ΔU عند ΔU عند $\Delta H = \Delta U + \Delta nRT$ $\Delta n = 2 - 3 = -1 \text{ mol}$ $\Delta H = 25 + 273 = 298 \text{ Model}$	عساب التغير في ا
		$\Delta U = \Delta H - \Delta nRT$ www.eddirasa.com	

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: 2011 اختبار مادة: تكنولوجيا هندسة طرائق الشعبة/السلك (*): تقني رياضي هندسة الطرائق المدة: 4 سا و 30 د

		التمرين الرابع: (05 نقاط) 1- التركيب المناسب:
0.5	0.5	
		1 1 1
	110	HI TO
		•
		-2
1.25		(CH ₃ -CH ₂ -OH — CH ₃ -C-H + 2H ⁺ + 2e ⁻)×3
	0.50	
	0.50	$Cr_2O_7^{2^-} + 6e^- + 14H^+ \longrightarrow 2Cr^{3^+} + 7H_2O$
	0.25	3CH ₃ - CH ₂ - OH + Cr ₂ O ₇ ² + 8H ⁺ 3 CH ₃ - C - H + 2 Cr ³⁺ + 7H ₂ O
0.25	0.25	3- يضاف ZnCl ₂ اللامائي حتى يتحول الإيثانال السائل إلى البار الدهيد الصلب وذلك من أجل تتقية الإيثانال.
0.5		4- كتلة الكحول الإيثيلي المستعملة:
in a	2×0.25	$m = \rho$. $v = 0.8 \times 30 = 24g$
1	0.25	5- حساب عدد المو لات: M(C ₂ H ₅ OH)=2×12+6×1+16=46g/mol
	0.25	
	0.25	$n = \frac{m}{M} = \frac{24}{46} = 0,52 \text{mol}$
	0.25	$M(K_2Cr_2O_7)=2\times39,1+2\times52+7\times16=294,2g/mol$
	0.25	$n = \frac{m}{M} = \frac{60}{294, 2} = 0,2 \text{mol}$
		المراسة المزائري www.eddirasa.com
		19/

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: 2011 اختبار مادة: تكنولوجيا هندسة طرائق الشعبة/السلك (*): تقني رياضي هندسة الطرائق المدة: 4 سا و 30 د

1.50		- حساب كتلة الإيثانال النقي:
		$n-3x=0 \implies x=\frac{n}{3}=\frac{0.52}{3}=0.17$ mol
		كحول الإيثيلي هو المتفاعل المحدّ.
	0.25	M(CH ₃ -CHO)=2×12+4×1+16=44g/mol
		$C_2H_5OH \longrightarrow CH_3-CHO$
		46g 44g
	0.5	$24g \longrightarrow m_T \Rightarrow m_T = \frac{24 \times 44}{46} = 22,95g$
	0.5	Rend= $\frac{m_p}{m_T} \times 100 \implies m_p = \frac{\text{Rend} \times m_T}{100} = \frac{50 \times 22,95}{100}$
	0.25	m_T 100 100 $m_p = 11,48g$
		_p = 11, 40g
		£3.00 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		الدراسة الجزائري
		www.eddirasa.com
- 1		
- 1		

مة	العلا	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		تمرين الأول :(06 نقاط)
		1-كتابة الصيغ نصف المفصلة للمركبات:
3,75	5×0,75	$A: \bigcirc - CH_2 - CH_3 \qquad B: O_2N - \bigcirc - CH_2 - CH_3$
		C: H2N - CH2 - CH3 D: CH3 - C-OH E: CH3 - C-CI
	0,25	رً- يمكن تعويض الكحول الإيثيلي في النفاعل (1) بكلوريد الإيثيل CH3-CH2-Cl
0,5	0,25	ه اله سنط ما AlCl
		أو الإيثيلين CH ₂ =CH ₂ في وسط حمضي. أو بروميد الإيثيل CH ₃ -CH ₂ -Br
		والوسيط FeBr ₃
0,25	0,25	II) 1- نوع البلمرة: بلمرة بالتكانف المؤاقوي
		2- الصيغة نصف المفصلة للمركب F:
0,75	0,75	F: H ₂ N - (CH ₂) ₆ - NH ₂
		3- الصيغة العامة لـ Nylon6-6 : Nylon6-6
0,75	0,75	$ = \begin{bmatrix} C - (CH_2)_4 - C - NH - (CH_2)_6 - NH \end{bmatrix}_{n} $
1.75		التمرين الثاني: (07 نقاط) 1) أ- تحديد ذرات °C غير المتناظرة:
1,75		H2N-CH-COOH H2N-CH2-COOH H2N-CH-COOH
		CH - OH C Y CH2
1	3×0,25	CH ₃
		Thr Gly CH ₃ CH ₃
		Leu
		199

177

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: 2011 اختبار مادة: تكنولوجيا هندسة طرائق الشعبة/السلك (*): تقنى رياضي هندسة الطرائق المدة: 4 سا و 30 د

		الحمض الأميني Thr له 2C → 4 مماكبات ضوئية.	
	4×0,25	$H \longrightarrow H^2$ $H \longrightarrow H$ CH_3 $H_2N \longrightarrow H$ CH_3 CH_3	
		H_2N H	
2,25	0,25	- يكون الحمض الأميني Thr متعادلا كهربائيا عند: pH=pH _i	1 (2
	2×0,25	$pH_{i} = \frac{pKa_{1} + pKa_{2}}{2} = \frac{2,09 + 9,10}{2} = 5,59$	
	0,5	المرابة: H3N ⁺ -CH-COO المربنة الأيونية: CH-OH CH3 www.eddirasa.com Thr الصيغ الأيونية لـ Thr:	1
	0,5	H ₃ N-CH-COOH CH-OH (وسط حمضي) pH=1 عند pH ₃	
1,25	0,5	H ₂ N-CH-COO ⁻ CH-OH (وسط قاعدي): pH=11 عند CH ₃	
,23	0,5	ا- يمثل المركب Gly-Thr-Leu ثلاثي ببتيد.	(3
	0,75	- صيغته نصف المفصلة: H ₂ N-CH-C-NH-CH-C-NH-CH-COOH H CH-OH CH ₂ CH ₃ CH CH ₃ CH	

صفحة 7 من 9

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: 2011 اختبار مادة: تكنولوجيا هندسة طرائق الشعبة/السلك (*): تقني رياضي هندسة الطرائق المدة: 4 سا و 30 د

	4- أ- إكمال معادلة التفاعل:
- 1	
	H ₂ N-CH-COOH
),75	CH ₂ H ₂ N -CH ₂ -CH ₂ -CH -CH ₃ + CO ₂
	CH CH ₃
	CH ₃ CH ₃
0,5	ب- اسم الإنزيم E : لوسين ديكربوكسيلاز
0,5	ج- صنف الإنزيم: الإنزيمات النازعة
	التمرين الثالث: (07 نقاط)
	C_2H_4 من $1g$ من احترارة الناتجة عن احتراق $1g$ من $-1/I$
0,5	$Q = m.c.\Delta T$
	$= 1000 \times 4,19 \times 12 = 50280$ J
0,5	= 50,28kJ
	C_2H_4 من 1 mol من الحرارة الناتجة عن احتراق ا -2
126	M =2 12:4 1-20-/1
1,25	$M_{C_2H_4} = 2 \times 12 + 4 \times 1 = 28g/mol$
0,25	$n = \frac{m}{M} = \frac{1}{28} = 0,0357 \text{mol}$
	0,0357mol
	1mol x
0,5	$x = \frac{1 \times 50,28}{0,0357} = 1408,4 \text{kJ}$ www.eddirasa.com
0,5	$\Delta H = -1408,4 kJ.mol^{-1}$ بما أن التفاعل ناشر للحرارة فإن
	: CO_2 لتشكل يامعياري لتشكل المعياري لتشكل -3
	$C_2H_{4(g)} + 3O_{2(g)} \xrightarrow{\Delta H} 2CO_{2(g)} + 2H_2O_{(1)}$
,25	$\Delta H = \sum \Delta H_f^{\circ} (produits) - \sum \Delta H_f^{\circ} (reactifs)$
0,5	$\Delta H = \left(2\Delta H_{f}^{\circ}\left(CO_{2(g)}\right) + 2\Delta H_{f}^{\circ}\left(H_{2}O_{(1)}\right)\right) - \left(\Delta H_{f}^{\circ}\left(C_{2}H_{4(g)}\right) + 3\Delta H_{f}^{\circ}\left(O_{2(g)}\right)\right)$
	A Section of the sect
	$-1408, 4 = 2\Delta H_f^{\circ} (CO_{2(g)}) + 2(-286) - 52 - 3 \times 0$
	$\Delta H_f^{\circ}(CO_{2(g)}) = \frac{-1408, 4 + 2(286) + 52}{2}$
	$\Delta H_f^{\circ} (CO_{2(g)}) = \frac{-1408, 4 + 624}{2}$
	4
0,5	$\Delta H_f^{\circ}(CO_{2(g)}) = -392,2kJ.mol^{-1}$
	0,5 0,5 0,5 0,5 0,5 0,25 0,25 0,5

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة: بكالوريا دورة: 2011 اختبار مادة: تكنولوجيا هندسة طرائق الشعبة/السلك (*): تقني رياضي هندسة الطرائق المدة: 4 سا و 30 د

	1 1	: C ₂ H ₅ OH انطالبي تشكل - / / - حساب انطالبي تشكل
		$C_2H_{4(g)} + H_2O_{(1)} \longrightarrow C_2H_5OH_{(1)} $ $\Delta H = -43kJ.mol^{-1}$
	0,25	- في الحالة السائلة: (، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،
	0,23	$\Delta H = \Delta H_f^{\circ}(C_2 H_5 O H_{(1)}) - \left(\Delta H_f^{\circ}(C_2 H_{4(g)}) + \Delta H_f^{\circ}(H_2 O_{(1)})\right)$
		$-43 = \Delta H_f^{\circ} (C_2 H_5 OH_{(1)}) - (52 - 286)$
		$\Delta H_f(C_2H_5OH_{(1)}) = -43 + 52 - 286$
	0,5	$\Delta H_f(C_2 H_5 OH_{(1)}) = -277 \text{kJ.mol}^{-1}$
		في الحالة الغازية:
	0,25	$C_2H_5OH_{(1)} \xrightarrow{\Delta H_{vap}} C_2H_5OH_{(g)}$
	0,25	$\Delta H_{\text{vap}}^{\circ} = \Delta H_{f}^{\circ} (C_{2} H_{5} O H_{(g)}) - \Delta H_{f}^{\circ} (C_{2} H_{5} O H_{(l)})$
		$42,63 = \Delta H_f^{\circ}(C_2 H_5 O H_{(g)}) - (-277)$
	0,25	$\Delta H_f^{\circ}(C_2H_5OH_{(g)}) = -234,37 \text{kJ.mol}^{-1}$
		ΔH_r التفاعل -1 / التفاعل -1 / التفاعل التفاعل -1
		$C_2H_{4(g)} + H_{2(g)} \xrightarrow{Ni} C_2H_{6(g)}$
0,5	0,25	$\Delta H_r = \Delta H_f^{\circ}(C_2 H_{6(g)}) - \left(\Delta H_f^{\circ}(C_2 H_{4(g)}) + \Delta H_f^{\circ}(H_{2(g)})\right)$
0,0	0,25	$\Delta H_r = -84,6 - (52 + 0) = -136,6 \text{kJ.mol}^{-1}$
1	0,5	2- حساب التغير في الطاقة الداخلية ΔU عند ΔU: ΔH= ΔU + Δn R T
•	0,25	$\Delta n = 1 - (1+1) = -1 \text{ mol}$
		T=25+273=298K
		$\Delta U = \Delta H - \Delta n R T$ www.eddirasa.com $\Delta U = -136,6 - (-1) \times 8,314 \times 10^{-3} \times 298$
		$\Delta U = -136,6 + 2,477$
	0,25	$\Delta U = -134,123 \text{kJ.mol}^{-1}$