

Group 8: Ming-Chieh Hu, Ákos Sárkány, Daan Schlosser, Neelabh Singh

Survey signal strengths at locations

Create a fingerprint / ID of the
location

Classify new signals to determine users location

Implement and use classifiers:

- Linear Least Squares
- Maximum Likelihood
- Advanced Classifiers with scikit-learn


```
"id", "MAC Address", "SSID", "APN", "Connected AP", "Signal &
1, "D0:4D:C6:F2:D9:B0", "eduroam", "", "", -79, 40, 30, "Ch 116
1,"D0:4D:C6:F2:F0:F0", "eduroam", "", -80,38,6,"Ch 44 [5]
1,"D0:4D:C6:F2:C9:40", "eduroam", "", "", -68,72,0, "Ch 6 [2.
1, "D0:4D:C6:F2:F0:E0", "eduroam", "", -78, 43, 2, "Ch 6 [2.
1, "D0:4D:C6:F2:8D:D0", "eduroam", "", "", -72, 62, 5, "Ch 132 |
1,"1C:28:AF:62:9E:30", "eduroam", "", "", -73,60,0,"Ch 56 [5]
1,"1C:28:AF:62:55:D0", "eduroam", "", "Connected AP", -51,88
1, "D0:4D:C6:F2:8D:F0", "eduroam", "", "", -84, 29, 6, "Ch 56 [5]
1,"1C:28:AF:65:F5:40", "eduroam", "", "", -78, 43, 0, "Ch 1 [2.
1,"1C:28:AF:66:03:B0", "eduroam", "", "", -80,38,11, "Ch 161
1, "D0:4D:C6:F3:0B:40", "eduroam", "", "", -65, 80, 0, "Ch 1 [2.
1,"1C:28:AF:62:55:C0", "eduroam", "", "", -59, 83, 2, "Ch 1 [2.
1,"D0:4D:C6:F2:C9:50", "eduroam", "", -73,60,0,"Ch 161 |
1,"1C:28:AF:62:9E:20", "eduroam", "", "", -69,70,0,"Ch 11 [2
1,"D0:4D:C6:F3:0B:50", "eduroam", "", "", -59,83,3,"Ch 108 |
1,"1C:28:AF:61:EE:20", "eduroam", "", "", -67, 75, 0, "Ch 11 [2
1, "D0:4D:C6:F2:8D:C0", "eduroam", "", "", -74, 57, 0, "Ch 1 [2.
1, "D0:4D:C6:F2:8F:20", "eduroam", "", "", -77, 44, 1, "Ch 6 [2.
1, "D0:4D:C6:F2:B9:E0", "eduroam", "", "", -78, 43, 1, "Ch 1 [2.
1,"D0:4D:C6:F2:64:D0", "eduroam", "", -82,33,27, "Ch 64 |
1,"1C:28:AF:66:10:30", "eduroam", "", "", -80,38,5,"Ch 149
1,"1C:28:AF:65:F5:E0", "eduroam", "", "", -78, 43, 1, "Ch 11 [2
1,"D0:4D:C6:F3:07:F0", "eduroam", "", "", -77, 60, 5, "Ch 36 [5]
1,"1C:28:AF:65:F5:50", "eduroam", "", "", -81, 35, 23, "Ch 108
1,"1C:28:AF:65:F9:F0", "eduroam", "", "", -80,38,14, "Ch 48 |
1,"1C:28:AF:65:FF:F0", "eduroam", "", "", -80,38,13, "Ch 52 |
1,"D0:4D:C6:F2:E3:60", "eduroam", "", "", -80, 38, 1, "Ch 1 [2.
1, "1C:28:AF:65:EA:50", "eduroam", "", "", -83, 31, 15, "Ch 104
```

Motivation:

Unreliability of indoor GNSS Positioning

A1. Gnss Accuracy In Indoor - BK city

- GNSS data collected at above locations.
- GNSS Data was converted to CRS of EPSG:3857 with units in metres to perform statistics in metres.

X projected Y projected Z (m) **PDOP Espresso Bar** (m) (m) Mean 486531.37 6801227.75 -79.95 1.70 Difference between x,y,z of mean and estimated values Esti. value 486619.71 / 6801255.21 / 1.8 / /difference 27.46 81.75 are 88.34m, 27.46m and 81.75m respectively. 88.34 Highest DOP value is more than 10. Standard 116.18 37.41 47.72 0.85 Deviation Scatter Plot of GNSS measurements at Espresso Bar Minimum 485817.92 6801123.90 -235.80 1.20 Maximum 486640.20 16.20 6801278.52 25.30 822 261.10 15.00 Range 154.62 Espresso Bar Deans Wing Modelling H Belrage Hai **EPSG: 4326**

HDOP

0.92

0.66

0.60

13.40

12.80

VDOP

1.37

0.57

0.80

9.20

8.20

Berlage Hall 1		X projected (m)	Y projected (m)	Z (m)	PDOP	НДОР	VDOP
	Mean	486531.59	6801124.31	-73.01	2.22	1.22	1.79
• Difference between x,y,z of mean and estimated values are -48.64m, -55.60m and 73.51m respectively.	Esti value difference	486482.95 / -48.64	6801068.71 / -55.60	0.5 / 73.51			
 Highest DOP value is more than 20. 	Standard Deviation	213.57	78.55	45.78	1.81	1.21	1.37
Scatter Plot of GNSS measurements at Belrage Hall	Minimum	486117.93	6800931.32	-198.80	1.20	0.60	0.80
Cebouw Ra Gebouw	Maximum	487672.88	6801508.49	63.60	27.00	16.80	21.00
Laboratorium voor Voor Microbiologie De 121 89 Geodésie Geodésie Hortas Botanicus Technische Botanicus Technische Botanicus Technische Botanicus Technische Botanicus Technische Botanicus Technische Botanicus	Range	1554.95	577.15	262.40	25.80	16.20	20.20
International Student House Gebouw Voor Mijnbouwkunde Phydica Gebouw Voor Mijnbouwkunde Voor Mijnbouwkunde Nodelling Hall- Voor Meyskerija Voor Mijnbouwkunde Oxtord Oxtord Meyskerija Oxtord Oxtord	autisan Poortlandplein	Binessouran Brutacentrum populater 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 32 22 20 20 20 20 20 20 20 20 20 20 20 20	Stuartstrant and a second and a	Massauph Mas	NASSAUGRAM	20 Ce of the second of the sec

Dean's Wing

- Difference between x,y,z of mean and estimated values are 26.09m, 0.97m and 38.83m respectively.
- Highest DOP value is more than 3.

Scatter Plot of GNSS measurements at Deans Wing

	X projected (m)	Y projected (m)	Z (m)	PDOP	HDOP	VDOP
Mean	486621.68	6801176.78	-36.33	2.0	1.15	1.54
Esti. value /difference	486595.59 / 26.09	6801175.81/ 0.97	2.5 / 38.83			
Standard Deviation	38.0	32.97	34.36	0.75	0.36	0.67
Minimum	486528.88	6801122.10	-132.60	1.20	0.80	0.80
Maximum	486704.58	6801286.96	22.90	3.60	2.0	3.0
Range	175.70	164.86	155.50	2.40	1.20	2.20

- With the above examples we can conclude that GNSS measurement for indoor positioning are highly inaccurate and could <u>not</u> be relied upon for this use.
- Also, in many cases we saw that the receiver was not able to connect with GNSS and receive data. Especially, when inside halls with no direct connection with the satellites. Leading to none or very high DOP values.

Modelling Hall

- Difference between x,y,z of mean and estimated values are -2.87m, 26.21m and 69.89m respectively.
- Highest DOP value is more than 10.

Scatter Plot of GNSS measurements at Modelling Hall

486563.64 Estimated and 486560.77 /

-2.87

28.03

Mean

difference

Standard

Deviation

X projected

(m)

26.21

20.73

6801013.90

6801193.83

Reliable Data

6801096.45 -69.49 6801122.66 / 0.4 /

Y projected

(m)

Z(m)

69.89

35.48

-214.3

108.00

PDOP

1.30

0.64

0.80

11.80

HDOP

0.72

VDOP

1.03

0.45 0.46 0.40 0.60 8.40 8.20

179.93 144.15 322.30 11.00 8.00 7.60 Indoor GNSS data doesn't have any of the following Complete Consistent Uniform

A2. RSS-space Visualization

A2. RSS-space Distance

Room distance network in RSS feature space

- 95 percentile

Ende Meidlic (Discource

- 5 percentile

Before our analysis, we created a Wi-Fi fingerprint database by cleaning the HomeDale measurements:

- Retained only "eduroam"
 entries with signal strength
 > -85 dBm.
- Standardized timestamps to relative times.
- Computed average signal strength and standard deviation per MAC address per location for the Wi-Fi fingerprint.

Before (measurements as taken by HomeDale):

		-		-							-	
Timestamp MAC Addre	ss 🔻	Vendor	SSID	Access Point Name	Connected AP	Signal Strength	Quality	Station Count	Frequency	Position -	Info	✓ Adapter
06-12-24 11:28 1C:28:AF:6:	FB:E2	Hewlett Packard Enterprise	TUD-facility			-82	33	0	Ch 11 [2.462 GHz]		0 Stations, 8% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 1C:28:AF:6:	FB:E0	Hewlett Packard Enterprise	eduroam			-80	38	0	Ch 11 [2.462 GHz]		0 Stations, 8% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 1C:28:AF:6:	E3:A2	Hewlett Packard Enterprise	TUD-facility			-80	38	0	Ch 1 [2.412 GHz]		0 Stations, 7% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 1C:28:AF:5I	:2F:62	Hewlett Packard Enterprise	TUD-facility			-80	38	0	Ch 6 [2.437 GHz]		0 Stations, 7% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	:C8:A0	Hewlett Packard Enterprise	eduroam			-67	75	0	Ch 6 [2.437 GHz]		0 Stations, 10% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	:3A:B2	Hewlett Packard Enterprise	TUD-facility			-77	46	0	Ch 153 [5.765 GHz]		0 Stations, 1% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	:3A:B1	Hewlett Packard Enterprise	tudelft-dastud			-76	50	1	Ch 153 [5.765 GHz]		1 Station, 1% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	::3A:B0	Hewlett Packard Enterprise	eduroam			-77	46	2	Ch 153 [5.765 GHz]		2 Stations, 1% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	:C8:B2	Hewlett Packard Enterprise	TUD-facility			-70	67	0	Ch 52 [5.260 GHz]		0 Stations, 1% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	:C8:B1	Hewlett Packard Enterprise	tudelft-dastud			-70	67	0	Ch 52 [5.260 GHz]		0 Stations, 1% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	:C8:B0	Hewlett Packard Enterprise	eduroam			-70	67	1	Ch 52 [5.260 GHz]		1 Station, 1% Channel Utilization	Wi-Fi [Inte
06-12-24 11:28 D0:4D:C6:F	:0D:52	Hewlett Packard Enterprise	TUD-facility			-82	33	0	Ch 116 [5.580 GHz]		0 Stations, 1% Channel Utilization	Wi-Fi [Inte

After (measurements after cleaning up):

	_	-	_
Timestamp -	MAC Address	SSID =	Signal Strength
0	1C:28:AF:61:FB:E0	eduroam	-80
0	D0:4D:C6:F2:C8:A0	eduroam	-67
0	D0:4D:C6:F2:3A:B0) eduroam	-77
0	D0:4D:C6:F2:C8:B0	eduroam	-70
0	D0:4D:C6:F3:0D:50	eduroam	-82
0	D0:4D:C6:F2:D1:40	eduroam	-82
0	D0:4D:C6:F2:3A:A0) eduroam	-64
0	D0:4D:C6:F2:D9:50	eduroam	-77
0	1C:28:AF:5B:29:D0	eduroam	-78
0	1C:28:AF:5C:0C:70	eduroam	-79
0	D0:4D:C6:F2:D4:C0) eduroam	-83
0	1C:28:AF:5B:29:C0	eduroam	-77

Wi-Fi Fingerprint database:

			_	•																
1		02.Oost.010.txt	berlagezaal.txt	bookshop.txt	Cafeteria.txt	crows_nest.txt	deanwing.txt	espressobar.txt	Geolab.txt	Hall_A.txt	Hall_B.txt	Hall_C.txt	Hall_D.txt	Hall_F.tx	Hall_H.txt	Hall_M.txt	Hall_P.txt	Hall_Q.txt	Hall_R.txt	t Hall_T.
38	1C:28:AF:65:F8:40	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
39	1C:28:AF:5B:83:F0	-86.511	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-83.659	NaN	NaN	NaN	NaN	-82.175	NaN	NaN	NaN
40	1C:28:AF:5B:EE:B0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
11	D0:4D:C6:F2:C3:D0	NaN	NaN	NaN	NaN	-78.106	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
12	D0:4D:C6:F2:D9:40	-77.37	NaN	NaN	NaN	NaN	-69.508	NaN	NaN	-80.118	NaN	NaN	NaN	NaN	-71.826	-66.333	NaN	NaN	NaN	NaN
13	D0:4D:C6:F2:F0:F0	NaN	-80.2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
14	D0:4D:C6:F1:D2:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-67.548	NaN	NaN	NaN	NaN	NaN	NaN
15	D0:4D:C6:F3:0D:50	-60.154	NaN	NaN	NaN	NaN	-83.856	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-78.862	-73.159	NaN	NaN	NaN	NaN
16	D0:4D:C6:F2:D1:50	-58.549	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-73.952	-78.28	NaN	NaN	NaN	NaN
17	D0:4D:C6:F2:99:40	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-76.236	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-76.0
8	1C:28:AF:5B:FA:30	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-85.102	NaN	NaN	NaN	NaN	-81.205	-85.652	NaN	NaN
19	D0:4D:C6:F2:D2:D0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-65.343	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-84.0	NaN	NaN
50	1C:28:AF:5C:0C:70	NaN	NaN	NaN	NaN	NaN	-83.495	NaN	NaN	-78.86	NaN	NaN	NaN	NaN	-81.577	-88.125	NaN	NaN	NaN	NaN
51	D0:4D:C6:F2:F2:10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-68.349	-52.329	NaN	NaN	NaN	NaN	-85.661	-76.806	NaN	NaN
2	D0:4D:C6:F2:B6:60	NaN	NaN	NaN	NaN	NaN	-86.243	NaN	NaN	-77.882	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	D0:4D:C6:F2:9B:D0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN913	NaN	NaN	NaN	NaN	NaN	NaN
54	D0:4D:C6:F2:BC:50	NaN	-81.0	-85.337	-82.0	NaN	-84.0	-79.855	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
55	D0:4D:C6:F2:B9:F0	NaN	NaN	NaN	NaN	-78.575	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
56	D0:4D:C6:F2:C8:B0	-75.469	NaN	NaN	NaN	NaN	-73.367	NaN	NaN	-86.092	NaN	NaN	NaN	NaN	-63.714	-52.646	NaN	NaN	NaN	NaN
57	D0:4D:C6:F2:9A:60	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-78.771	-71.036	NaN	NaN	NaN	NaN	-65.151	-59.741	NaN	NaN
58	1C:28:AF:5B:58:30	-86.488	NaN	NaN	NaN	NaN	-44.734	NaN	NaN	-85.742	NaN	NaN	NaN	NaN	-68.407	-81.947	NaN	NaN	NaN	NaN
59	1C:28:AF:5C:01:10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-86.3
50	D0:4D:C6:F2:7B:F0	NaN	NaN	NaN	NaN	-83.547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
51	1C:28:AF:5B:39:D0	NaN	NaN	NaN	-63.174	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
52	D0:4D:C6:F2:A9:90	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-75.234	-88.425	-83.297	NaN	NaN	NaN	NaN	-82.335	-87.679	NaN

B1. Linear Least Square Classification

$$S = \sum_{i=1}^n r_i^2$$

- -65

- -70

-75 -80

- -85

- -90

B1. Maximum
Likelihood
Classification (MLC)

MLC — Concept

Assume the *Signal Strength* from an antenna follows **Normal Distribution** curve From 15 min measurements compute necessary values for each location (training):

- Mean (μ): The average signal strength during survey period per antenna
- Standard Deviation (σ): The standard deviation of the values from the mean
- Significance weight (ω): The number of logs the antenna is present relative to the total amount of logs during the surveyed period.

Given a log from an unknown location:

 for each known location compute how likely it is that the unknown location is that location

MLC — Processed Data

```
"Location", "MAC", "Significance", "Mean", "Standard Deviation"
"02.Oost.010","1C:28:AF:5B:2F:60",1.0,-76.47428571428571,1.8041765604353943
"02.Oost.010","1C:28:AF:5B:58:20",1.0,-80.94285714285714,2.5314350209527645
"02.Oost.010","1C:28:AF:5B:29:D0",1.0,-73.66857142857143,2.521651548214433
"02.Oost.010", "D0:4D:C6:F2:B9:A0", 1.0, -80.34285714285714, 2.453485650403257
"02.Oost.010", "D0:4D:C6:F2:FC:C0", 1.0, -45.29142857142857, 2.5299770104626225
"02.Oost.010", "D0:4D:C6:F3:0D:40", 1.0, -57.76571428571429, 3.2279089080033447
"02.Oost.010","1C:28:AF:61:E3:A0",1.0,-85.68571428571428,1.9620896815302171
"02.Oost.010","D0:4D:C6:F2:D1:40",1.0,-58.114285714285714,1.781996129087163
"02.Oost.010", "D0:4D:C6:F2:C8:A0", 1.0, -71.21142857142857, 2.535662373714093
"02.Oost.010", "D0:4D:C6:F2:FC:D0", 1.0, -45.92, 1.0925200226998129
"02.Oost.010","D0:4D:C6:F2:D1:50",1.0,-58.54857142857143,2.813576415329422
"02.00st.010", "D0:4D:C6:F3:0D:50", 1.0, -60.15428571428571, 2.514909013650151
"02.Oost.010", "D0:4D:C6:F2:98:D0",1.0,-66.86857142857143,1.6732810247400471
"02.Oost.010", "D0:4D:C6:F2:D9:50", 1.0, -83.44, 1.6126641666155153
"02.Oost.010", "D0:4D:C6:F2:C8:B0", 1.0, -75.46857142857142, 1.8323710523443084
"02.Oost.010", "D0:4D:C6:F2:B9:B0", 1.0, -81.61714285714285, 1.828892828897264
"02.Oost.010", "D0:4D:C6:F2:D4:D0", 1.0, -69.71428571428571, 1.851199280334293
"02.Oost.010","1C:28:AF:5B:29:C0",0.9934640522875817,-70.48275862068965,2.1674820868
"02.Oost.010", "D0:4D:C6:F2:98:C0", 1.0, -62.61142857142857, 2.9622164894909764
"02.Oost.010", "D0:4D:C6:F2:D4:C0", 1.0, -65.58857142857143, 2.8146323209330237
"02.Oost.010","D0:4D:C6:F2:D9:40",0.9869281045751634,-77.3699421965318,2.74580468155
```


MLC — Computing Likelihood

$$pdf(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

For each antenna at a known location, and for each antenna at the unknown location compute the probability the unknown signal is coming from that antenna:

- If MAC addresses **do not** match: the probability is zero.
- If MAC addresses do match:
 - μ_k and σ_k is the mean and std. dev. of the antenna at the known location
 - compute μ_u and σ_u for the antenna at the unknown location, then combine σ_k and σ_u to obtain the overall std. dev.: σ_c
 - use μ_k as μ , μ_u as x, and σ_c as σ in *pdf* equation to obtain the probability that the signal is coming from the given location
 - use the antenna's significance weight ω_a to weight the probability when combining the probabilities derived for each antenna at the known location

MLC — Evaluation

30 second samples from 14 locations. 9 *versions* of probability combination

Overall accuracy: **66.66%** — **73.33%**

Main errors: Hall A, Library, @HOK

Conclusions:

- For each location there was at least one *version* which yields the correct result
- For maximum likelihood it is not the best approach to survey a room in a single position. By standing still, the signal strength only influenced by random noise, not by actual position
- Spanning larger area at a location while surveying provides higher standard deviation in the *pdf*. If one location's *pdf* overlaps with another (i.e. they are physically close) the one with less noise (smaller σ) wins

Advanced Classification with scikit-learn

Accuracy Test

Feature Space Dimension			Naive Bayes	Decision Tree	Random Forest	Adaptive Boosting	Neural Net
379	0.79	0.78	0.49	0.70	0.70	0.77	0.86
3 (t-SNE)	0.74	0.73	0.73	0.53 0.74		0.56	0.73
	Simple, worl	ks well	Fine in 3D	Have to take care of more parameters			Overkill

```
CLASSIFIERS = [

KNeighborsClassifier(10, weight="distance"),

SVC(kernel="linear", C=0.01, random_state=42),

GaussianNB(),

DecisionTreeClassifier(criterion="entropy", max_depth=20, random_state=42),

RandomForestClassifier(criterion="entropy", max_depth=10, n_estimators=10, max_features=1, random_state=42),

AdaBoostClassifier(algorithm="SAMME", random_state=42, n_estimators=200),

MLPClassifier(alpha=1, max_iter=1000, learning_rate_init=0.001, learning_rate="adaptive", random_state=42),
```


Accuracy Test: 11/32 locations

Purple: uncompressed 379D, Blue: t-SNE reduces to 3D