

파이썬 머신러닝 완벽 가이드

▼ Chap1. 파이썬 기반의 머신러닝과 생태계 이해

머신러닝 알고리즘이란?

→ 데이터를 기반으로 통계적인 신뢰도를 강화하고 예측 오류를 최소화하기 위한 다양한 수학적 기법을 적용해 데이터 내의 패턴을 스스로 인지하고 신뢰도 있는 예측 결과를 도출해 내는 것

- 머신러닝의 분류 (지도학습 vs 비지도학습)
- 1. 지도학습: 분류(Classification), 회귀(Regression), 추천 시스템, 텍스트 분석, NLP 등
- 2. 비지도학습: 클러스터링, 차원 축소, 강화학습 등

넘파이(Numpy)

→ 파이썬에서 선형대수 기반의 프로그램을 쉽게 만들 수 있도록 지원하는 패키지

3행 3열의 numpy array 생성 가능 (2차원 데이터)

• ndarray내의 데이터 타입은 두가지가 공존할 수 없음! (int, float 공존해있으면 int → float로 바뀜)

```
#astype()을 통해 데이터 타입 변경(메모리 절약, float -> int로 바꾸자)
array_float = np.array([1.,2.,3.])
print(array_float.dtype)
array_int = array_float.astype('int32')
print(array_int.dtype)

<output>
float64
int32
```

· arange, zeros, ones, reshape

```
a = np.arange(10)
print('array1:\n',a)
b = np.zeros((3,2))
print('array2:\n',b)
c = np.ones((3,2))
print('array3:\n',c)
a_reshape = a.reshape(2,5)
print('array1_reshape:\n',a_reshape)
```

```
<output>
array1:
  [0 1 2 3 4 5 6 7 8 9]
array2:
  [[0 0 0.]
  [0 0 0.]]
array3:
  [[1 1.]
  [1 1.]
  [1 2 3 4]
  [5 6 7 8 9]]
```

• 인덱싱(Indexing)

→ ndarray 내의 일부 데이터 세트나 특정 데이터만을 선택할 수 있도록 함.

```
#단일값 추출
array1 = np.arange(1,10)
print(array1)
print('o번째 값:',array1[0]) #0번째 값 추출
print('뒤에서 2번째 값:', array1[-2])
array1[-2] = -8 #값 수정
print(array1)
print('------------------------------')
array2 = np.arange(1,10).reshape(3,3)
print(array2)
print('0행 0열:', array2[0,0])
print('1행 2열:', array2[1,2])
```

```
<output>
[1 2 3 4 5 6 7 8 9]
0번째 값: 1
뒤에서 2번째 값: 8
[ 1 2 3 4 5 6 7 -8 9]
------2차원 array-----
[[1 2 3]
[ 4 5 6]
[ 7 8 9]]
0형 0일: 1
1행 2일: 6
```

array([6, 7, 8, 9])

• 행렬의 정렬 (sort, argsort)

sort \rightarrow 행렬을 정렬, argsort \rightarrow 정렬된 행렬의 인덱스를 반환

```
coutput>
[1 3 5 9]
[3, 1, 9, 5]

None
[1, 3, 5, 9]
내림차순 정렬: [9 5 3 1]
------2차원 array-----
행 방향으로 정렬
[[ 7 1]
[ 8 12]]
[ 열 방향으로 정렬
[[ 8 12]
[ 1 7]]
```

```
#argsort
array1 = [3,1,5,0]
print(np.argsort(array1)) #[0,1,3,5]
print(np.argsort(array1)[::-1]) #[5,3,1,0]
```

```
<output>
[3 1 0 2]
[2 0 1 3]
```

3

• 행렬의 내적(np.dot)과 전치행렬(np.transpose)

전치행렬은 원 행렬에서 행과 열 위치를 교환한 우너소로 구성한 행렬

판다스(Pandas)

- → 데이터 핸들링에 특화된 프레임워크, 핵심 객체는 DataFrame
- 데이터 불러오고 살펴보기

```
import pandas as pd
titanic_df = pd.read_csv('titanic.csv')
titanic_df.head(3)
titanic_df.shape
```

891행, 12열에 해당하는 데이터프레임

describe(), info() 메서드를 통해 각 열의 특징들을 알아 볼 수 있음 info() \rightarrow 총 데이터 건수, 데이터 타입, null 건수 알 수 있음 describe() \rightarrow 오직 숫자형 column의 분포도만 조사(분포도, 평균값, 최댓값, 최솟값 등)

```
coutput>
3    491
1    216
2    184
Name: Pclass, dtype: int64
```

- → DataFrame의 [] 연산자 내부에 column 명을 입력하면 해당 column의 Series 객체 반환
- \rightarrow value_counts()는 지정된 칼럼의 데이터값 건수 반환(많은 건수 순서로 정렬)
- DataFrame ↔ ndarray, 리스트, 딕셔너리
- 1. ndarray, 리스트, 딕셔너리 → DataFrame

DataFrame은 특별하게 칼럼명을 갖고 있어, DataFrame으로 변환을 해줄 때 칼럼명을 지정해주어야 한다.(지정 안해주면 자동으로 할당)

2차원 이하의 데이터들만 DataFrame으로 변환될 수 있음.

```
<output>
  col1 col2 col3
0  1  2  3
1  4  5  6
```

딕셔너리의 경우에는 딕셔너리의 키(key)가 칼럼명으로, 값(value)이 데이터로 변환된다.

```
dict_ = {'col1':[1,11], 'col2':[2,22]}
df_dict = pd.DataFrame(dict_)
print(df_dict)
```

```
<output>
  col1 col2
0     1     2
1     11     22
```

2. DataFrame → ndarray, 리스트, 딕셔너리

```
#dataframe을 ndarray로
array_df = df_dict.values
print(type(array_df))
#dataframe을 리스트로
list_df = df_dict.values.tolist()
print(type(list_df))
#dataframe을 딕셔너리로
dict_df = df_dict.to_dict('list')
print(type(dict_df))
```

```
<class 'numpy.ndarray'>
<class 'list'>
<class 'dict'>
```

• DataFrame의 칼럼 생성, 수정 및 삭제

생성 및 수정은 [] 연산자를 통해 쉽게 할 수 있음

```
#칼럼 데이터 세트 생성
titanic_df['Age_0'] = 0
#기존 칼럼을 이용해 새로운 칼럼 생성
titanic_df['Famity_No'] = titanic_df['SibSp'] + titanic_df['Parch'] + 1
#칼럼 데이터 세트 수정
titanic_df['Age_0'] = titanic_df['Age_0'] + 100
```

DataFrame에서 데이터의 삭제는 drop() 메서드를 이용한다.

/ drop 옵션 중 axis=0(행 방향), axis=1(열 방향) 구분 주의 → 칼럼을 삭제할 땐 axis=1

```
titanic_drop_df = titanic_df.drop(['Age_0', 'Family_No'], axis=1)
titanic_drop_df.head(3)
```

 \rightarrow 원본 DataFrame은 유지하고 드롭된 DataFrame을 새롭게 객체 변수로 받고 싶다면 inplace=False로 설정(디폴트), 원본에 드롭된 결과를 적용하고 싶을 땐 inplace=True

- 1. DataFrame 바로 뒤의 [] 연산자는 넘파이의 []나 Series의 []와 다르다.
- 2. DataFrame 바로 뒤의 [] 내 입력 값을 칼럼명을 지정해 칼럼 지정 연산에 사용하거나 불린 인덱스 용도로만 사용해야 함.
- iloc[]와 loc[]
- 1. iloc[]: 위치 기반 인덱싱만 허용하는 연산자
- 2. loc[]: 명칭 기반 인덱싱만 허용하는 연산자(행 위치에는 dataframe 인덱스 값을, 열 위치에는 칼럼 명을 입력해줌 ex. data_df.loc['one','Name']
- DataFrame, Series의 정렬 → sort_values()

주요 파라미터는 by(특정 칼럼에 대한 정렬 수행), ascending(오름차순 내림차순 선택), inplace

```
#Pclass, Name을 기준으로 내립차순 정렬
titanic_sorted = titanic_df.sort_values(by=['Pclass', 'Name'], ascending=False)
titanic_sorted.head(3)

#모든 칼럼의 해당 aggregation 적용
titanic_df.count()
#지정한 칼럼만 aggregation 적용
titanic_df[['Age','Fare']].mean()
```

- groupby() 적용
 - → 칼럼을 입력값으로 넣으면 해당 칼럼으로 group화됨
 - → DataFrame에 groupby()를 호출해 반환된 결과에 aggregation 함수를 호출하면 groupby() 대상 칼럼을 제외한 모든 칼럼에 해당 aggregation 함수를 적용함

```
titanic_df.groupby('Pclass')[['PassengerId','Survived']].count()
```

groupby()로 묶어주기 → 출력할 칼럼 지정해주기 → aggregation 함수 지정

딕셔너리를 통해 각 컬럼에 대해 각기 다른 aggregation 함수를 지정해 줄 수 있다.

```
agg_format = {'Age':'max', 'SibSp':'sum', 'Fare':'mean'}
titanic_df.groupby('Pclass').agg(agg_format)
```

- 결손 데이터 처리하기
- 1. isna().sum()로 결손 데이터 여부 확인
- 2. fillna()로 결손 데이터 대체하기

```
titanic_df['Cabin'] = titanic_df['Cabin'].fillna('C000')
titanic_df['Age'] = titanic_df['Age'].fillna(titanic_df['Age'].mean())
titanic_df['Embarked'] = titanic_df['Embarked'].fillna('S')
titanic_df.isna().sum()
```

▼ Chap2. 사이킷런으로 시작하는 머신러닝

사이킷런

- → 가장 파이썬스러운 API 제공
- → 머신러닝을 위한 매우 다양한 알고리즘과 개발을 위한 편리함 프레임워크
- → 매우 많은 환경에서 사용되는 성숙한 라이브러리

첫번째 머신러닝 - 붓꽃 품종 예측

꽃잎의 길이, 너비, 꼴받침의 길이, 너비 feature를 기반으로 꽃의 품종 예측(Classification)

지도학습: 학습을 위한 다양한 피처와 분류 결정값인 Label 데이터로 모델을 학습한 뒤 별도의 테스트 데이터 세트에서 미지의 레이블 예측

→ 명확한 정답이 주어진 데이터를 학습한 뒤 미지의 정답을 예측하는 것

```
import sklearn
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
import pandas as pd

#붓꽃 데이터셋 로팅
iris = load_iris()
iris_data = iris.data
iris_label = iris.target

#붓꽃 데이터셋을 DataFrame으로 변환
iris_df = pd.DataFrame(data=iris_data, columns=iris.feature_names)
iris_df['label'] = iris.target
iris_df.head(3)
```

- $_{
 ightarrow}$ feature에는 sepal length, sepal width, petal length, petal width가 있음.
- → Label에서 0은 Setosa, 1은 Versicolor, 2는 Virginica

머신러닝 알고리즘은 의사결정트리 사용 데이터셋 분리 \rightarrow train_test_split() 사용

```
#학습데이터(80%), 테스트 데이터(20%) 분리
X_train, X_test, y_train, y_test = train_test_split(iris_data, iris_label, test_size=0.2, random_state=11)
#DecisionTreeClassifier 객체 생성
dt_clf = DecisionTreeClassifier(random_state=11)
#학습 수행
dt_clf.fit(X_train, y_train) #학습 데이터 기반으로 학습 완료
#학습이 완료된 DecisionTreeClassifier 객체에서 테스트 데이터 세트로 예측 수행
pred = dt_clf.predict(X_test)

from sklearn.metrics import accuracy_score
print('예측 정확도:', accuracy_score(y_test,pred))
```

예측 정확도: 0.9333333333333333

- 1. 데이터 세트 분리(학습 데이터, 테스트 데이터로 분리)
 - \rightarrow 첫번째 파라미터는 피처 데이터 세트, 두번째 파라미터는 Label 데이터 세트
 - → test size = 는 전체 데이터 세트 중 테스트 데이터 세트의 비율
 - → random_size는 호출할 때마다 같은 데이터 세트를 생성하기 위해 지정
 - → shuffle=True는 디폴트값(데이터를 분산시켜 좀 더 효율적인 데이터세트 만들기)
- 2. 모델 학습(학습 데이터를 기반으로 머신러닝 알고리즘을 적용해 모델 학습)
 - → 의사결정트리 객체 생성(dt clf)
 - \rightarrow fit() 메서드를 통해 학습용 피쳐 데이터(X_train)와 결정값 데이터 세트(y_train)를 입력해 호출함
- 3. 예측 수행(학습된 머신러닝 모델을 이용해 테스트 데이터의 분류를 예측)
 - → 학습 데이터가 아닌 **반드시 테스트 데이터 이용**!
 - → predict() 메서드에 테스트용 피쳐 데이터를 입력하면 학습된 모델 기반에서 테스트 데이터 세트에 대한 예측값 반환
- 4. 평가(예측된 결과값과 테스트 데이터의 실제 결과값을 비교해 머신러닝 모델 성능을 평가함)
 - → 여러가지 성능 평가 방법이 있음 (여기서는 정확도 측정)
 - \rightarrow 첫번째 파라미터로 실제 Label 데이터 세트, 두번째 파라미터는 예측 Label 데이터 세트를 입력

사이킷런의 기반 프레임워크 익히기

- fit(), predict() 메서드
 - \rightarrow ML **모델 학습**을 위해 fit(), 학습된 **모델 예측**을 위해 predict() 메서드 제공
 - → Estimator 클래스에는 Classification(분류), Regressor(회귀) 존재
 - → 분류 구현 클래스: DecisionTreeClassifier, RandomForestClassifier, GradientBoostingClassifier, GaussianNB, SVC 등등
 - $_{
 ightarrow}$ 회귀 구현 클래스: LinearRegression, Ridge, Lasso, RandomForestRegressor, GradientBoostingRegressor

교차 검증

데이터의 수가 적으면 학습 데이터, 테스트 데이터로 나눠서 진행해도 overfitting 위험 有

- → **교차 검증** 이용! (본고사를 치르기 전에 모의고사를 여러 번 보는 것)
- \rightarrow 교차 검증에서 많은 학습과 검증 세트에서 알고리즘 학습과 평가 수행 가능 (학습 데이터를 학습 데이터와 검증 데이터세트로 또 다시 나눔)

• K 폴드 교차 검증

- → K개의 데이터 폴드 세트를 만들어 K번만큼 각 폴드 세트에 학습과 검증 평가를 반복적으로 수행
- $_{
 m o}$ K가 5라고 가정하면, 5개의 폴드된 데이터 세트를 학습과 검증을 위한 데이터 세트로 변경하며 5번 평가를 수행한 뒤 이 5개의 평가를 평균한 결과를 갖고 예측 성능 평가


```
#K-FOLD 교차 검증
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
import numpy as np
iris = load_iris()
features = iris.data
label = iris.target
dt clf = DecisionTreeClassifier(random state=123)
#5개의 폴드 세트로 분리하는 KFold 객체와 폴드 세트별 정확도를 담을 리스트 객체 생성
kfold = KFold(n_splits=5)
cv_accuracy = []
#전체 붓꽃 데이터는 모두 150개, 따라서 학습용 데이터 세트는 이 중 4/5인 120개, 검증용 데이터 세트는 30개로 분할
#KFold 객체의 split()을 호출하면 폴드 별 학습용, 검증용 테스트의 row index를 array로 반환
for train_index, test_index in kfold.split(features):
   #kfold.split으로 반환된 인덱스를 이용해 학습용, 검증용 테스트 데이터 추출
   X_train, X_test = features[train_index], features[test_index]
   y_train, y_test = label[train_index], label[test_index]
   #학습 및 예측
   dt_clf.fit(X_train, y_train)
   pred = dt_clf.predict(X_test)
   n_iter += 1
   #반복할때마다 정확도 측정
   accuracy = np.round(accuracy_score(y_test, pred), 4)
   train_size = X_train.shape[0]
   test_size = X_test.shape[0]
   print(n_iter, '교차 검증 정확도:',accuracy, '학습 데이터 크기',train_size, '검증 데이터 크기', test_size)
print(n_iter, '검증 세트 인덱스:',test_index)
   cv_accuracy.append(accuracy)
#개별 iteration별 정확도를 합하여 평균 정확도 계산
print('평균 검증 정확도:', np.mean(cv_accuracy))
```

폴드 세트 설정 \rightarrow for loop에서 반복으로 학습 및 테스트 데이터의 인덱스 추출 \rightarrow 반복적으로 학습과 예측 수행 후 예측 성능 반환

• Stratified K 폴드

- $_{
 ightarrow}$ 불균형한 분포도를 가진 Label 데이터 집합을 위한 K 폴드 방식(특정 label 값이 특이하게 많거나 적어 값의 분포가 한쪽으로 치우치는 것) ex. 대출 사기 데이터 예측
- → 원본 데이터의 Label 분포를 먼저 고려한 뒤 이 분포와 동일하게 학습과 검증 데이터 세트를 분배함.
- → split() 메서드에 인자로 피쳐 데이터 세트 뿐만 아니라 Label 데이터 세트도 필요함!

→ 기존 KFold와 다르게 학습 레이블과 검증 레이블 데이터 값의 분포도가 동일하게 할당됐음

```
dt_clf = DecisionTreeClassifier(random_state=156)
skfold = StratifiedKFold(n_splits=3)
cv_accuracy = []
for train_index, test_index in skfold.split(features, label):
   #split으로 반환된 인덱스를 이용해 학습용, 검증용 테스트 데이터 추출
   X_train, X_test = features[train_index], features[test_index]
   y_train, y_test = label[train_index], label[test_index]
   #학습 및 예측
   dt_clf.fit(X_train, y_train)
   pred = dt_clf.predict(X_test)
   n iter += 1
   #반복할때마다 정확도 측정
   accuracy = np.round(accuracy_score(y_test, pred), 4)
   train size = X train.shape[0]
   test_size = X_test.shape[0]
   print(n_iter, '교차 검증 정확도:',accuracy, '학습 데이터 크기',train_size, '검증 데이터 크기', test_size) print(n_iter, '검증 세트 인덱스:',test_index)
   cv_accuracy.append(accuracy)
#개별 iteration별 정확도를 합하여 평균 정확도 계산
print('평균 검증 정확도:', np.mean(cv_accuracy))
```

평균 검증 정확도: 0.966666666666667

⚠ 일반적으로 Classification에서의 교차 검증은 KFold가 아니라 Stratified KFold로 분할돼야 함.

⚠ Regression에서는 Stratified KFold가 지원되지 않음.(회귀의 결정값은 연속된 숫자값이기에)

- 교차 검증을 보다 간편하게 → cross_val_score()
- → 사이킷런에서 제공하는 교차검증을 좀 더 편리하게 수행할 수 있게 하는 API

cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs')

estimator - Classification 또는 Regressor

X - 피쳐 데이터 세트, y - Label 데이터 세트

scoring - 예측 성능 평가 지표 기술, cv - 교차 검증 폴드 수

```
#cross_val_score() 사용하기
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score, cross_validate
from sklearn.datasets import load_iris

iris_data = load_iris()
dt_clf = DecisionTreeClassifier(random_state=123)

data = iris_data.data
label = iris_data.target

#성등 지표는 accuracy, 교차 검증 세트는 3개
scores = cross_val_score(dt_clf, data, label, scoring='accuracy', cv=3)
```

```
print('교차 검증별 정확도:', np.round(scores,4))
print('평균 검증 정확도:', np.round(np.mean(scores),4))
```

- → API 내부에서 Estimator를 학습(fit), 예측(predict), 평가(evaluation)시켜주므로 간단하게 교차검증 수행 가능
- → 비슷한 API인 cross_validate()는 여러개의 평가 지표를 반환할 수 있음 (cross_val_score는 단 하나의 평가 지표만 가능)

GridSearchCV - 교차 검증과 최적 하이퍼 파라미터 튜닝을 한 번에!

- → 하이퍼 파라미터를 조정함으로써 알고리즘의 예측 성능을 개선할 수 있다.
- → 사이킷런은 GridSearchCV API를 이용해 Classifier나 Regressor와 같은 알고리즘에 사용되는 하이퍼 파라미터를 순차적으로 입력하며 편리하게 최적의 파라밑를 도출할 수 있는 방안을 제공함.
- → 교차 검증을 기반으로 하이퍼 파라미터의 최적 값을 찾게 해준다. (수행 시간이 상대적으로 오래 걸림)

주요 파라미터

- -estimator, param_grid(키 + 리스트 값을 갖는 딕셔너리, estimator의 튜닝을 위해 파라미터명과 사용될 여러 파라미터 값을 지정해줌)
- -scoring(예측 성능을 측정할 평가 방법 지정, 별도의 성능 평가 지표 함수도 지정할 수 있음)
- -cv(교차 검증을 위해 분할되는 학습, 테스트 세트의 개수 지정)
- -refit(디폴트가 True \rightarrow 가장 최적의 하이퍼 파라미터를 찾은 뒤 입력된 estimator 객체를 해당 하이퍼파라미터로 재학습시 1

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
import pandas as pd
#데이터를 로딩하고 학습 데이터와 테스트 데이터 분리
iris_data = load_iris()
X_train,X_test,y_train,y_test = train_test_split(iris_data.data, iris_data.target, test_size=0.2, random_state=123)
dtree = DecisionTreeClassifier()
#파라미터를 딕셔너리 형태로 설정
parameters = {'max_depth':[1,2,3], 'min_samples_split':[2,3]}
#param_grid의 하이퍼 파라미터를 3개의 train, test set fold로 나누어 테스트 수행 설정
#refit=True가 디폴트 값, 가장 좋은 파라미터 설정으로 재학습 시킴,
\verb|grid_dtree| = \verb|GridSearchCV(dtree|, param_grid=parameters|, cv=3, refit=True)|
#붓꽃 학습 데이터로 param_grid의 하이퍼 파라미터를 순차적으로 학습, 평가
grid_dtree.fit(X_train, y_train)
#GridSearchCV 결과를 추출해 DataFrame으로 변환
scores_df = pd.DataFrame(grid_dtree.cv_results_)
scores\_df[['params', 'mean\_test\_score', 'rank\_test\_score', 'split0\_test\_score', 'split1\_test\_score', 'split2\_test\_score']]
```

- → params 칼럼에는 수행할 때마다 적용된 개별 하이퍼 파라미터 값을 나타낸다.
- \rightarrow rank_test_score는 하이퍼 파라미터 별로 성능이 좋은 score 순위를 나타낸다. (1이 가장 뛰어난 순위)
- ightarrow mean_test_score는 개별 하이퍼 파라미터별로 CV의 폴딩 테스트 세트에 대해 총 수행한 평가 평균값

```
print('GridSearchCV 최적 파라미터:', grid_dtree.best_params_)
print('GridSearchCV 최고 정확도:', grid_dtree.best_score_)
```

데이터 전처리

→ 결손값은 허용되지 않음, 고정된 다른 값으로 변환해야 함

- → Null 값이 대부분인 피쳐값이라면 해당 피쳐는 드롭하는 것이 좋음
- $_{
 ightarrow}$ 사이킷런의 머신러닝 알고리즘은 문자열 값을 입력값으로 허용하지 않음. 따라서 모든 문자열 값을 인코딩해서 숫자 형으로 변환해야 함

데이터 인코딩

레이블 인코딩(Label encoding): 카테고리 피쳐를 코드형 숫자 값으로 변환하는 것

원-핫 인코딩(One Hot encoding) : 피쳐 값의 유형에 따라 새로운 피쳐를 추가해 고유 값에 해당하는 칼럼에만 1을 표시하고 나머지 칼럼에는 0을 표시하는 방식

- 레이블 인코딩
- → LabelEncoder 클래스로 구현

```
#레이블 인코딩
from sklearn.preprocessing import LabelEncoder

items = ['TV', '냉장고', '전자레인지', '컴퓨터', '선풍기', '선풍기']

#LabelEncoder를 객체로 생성한 후 fit()과 transform()으로 레이블 인코딩 수행
encoder = LabelEncoder()
encoder.fit(items)
labels = encoder.transform(items)
print('인코딩 변환값:', labels)
print('인코딩 클래스:', encoder.classes_)
```

인코딩 변환값: [0 1 3 4 2 2]

인코딩 클래스: ['TV' '냉장고' '선풍기' '전자레인지' '컴퓨터']

- 원-핫 인코딩(One-Hot Encoding)
- $_{
 m o}$ 행 형태로 되어 있는 피쳐에 열 형태로 차원을 변환한 뒤, 고유 값에 해당하는 칼럼에만 1을 표시하고 나머지 칼럼에는 0을 표시
- 🛕 OneHotEncoder로 변환되기 전에 모든 문자열 값이 숫자형 값으로 변환돼야 함
- ⚠입력값으로 2차원 데이터가 필요하다.

```
from sklearn.preprocessing import OneHotEncoder
import numpy as np
items = ['TV', '냉장고', '전자레인지', '컴퓨터', '선풍기', '선풍기']
#먼저 숫자 값으로 변환을 위해 LabelEncoder로 변환
encoder = LabelEncoder()
encoder.fit(items)
labels = encoder.transform(items)
#2차원 데이터로 변환
labels = labels.reshape(-1,1)
#OneHot Encoding
oh_encoder = OneHotEncoder()
oh_encoder.fit(labels)
oh_labels = oh_encoder.transform(labels)
print('One-Hot 인코딩 데이터')
print(oh_labels.toarray())
print('One-Hot 인코딩 데이터 차원')
print(oh_labels.shape)
```


판다스에는 원-핫 인코딩을 더 쉽게 지원하는 API가 있음

→ get_dummies() 이용!

```
import pandas as pd

df = pd.DataFrame({'item':['TV', '냉장고', '전자레인지', '컴퓨터', '선풍기', '선풍기']})
pd.get_dummies(df)
```

→ get dummies()를 이용하면 숫자형 값으로 변환 없이 바로 변환 가능하다.

피쳐 스케일링 & 정규화

표준화(Standardization) : 데이터의 피쳐 각각이 평균이 0이고 분산이 1인 가우시안 정규 분포를 가진 값으로 변환하는 것 ((x-mean(x))/std(x))

정규화(Normalization) : 서로 다른 피쳐의 크기를 통일하기 위해 크기를 변환해주는 개념 (다른 변수들을 모두 동일한 크기 단위로 비교하기 위해 0~1 사이의 값으로 변환하는 것)

((x-min(x))/(max(x)-min(x)))

StandardScaler

- → 표준화를 쉽게 지원하기 위한 피쳐 스케일링 클래스
- → 개별 피쳐를 평균이 0이고 분산이 1인 값으로 변환(가우시안 분포)
- $_{
 m J}$ SVM, 선형 회귀, 로지스틱 회귀는 데이터가 가우시안 분포를 가지고 있다고 가정하고 구현됐기 때문에 사전에 표준화를 적용해야 함

```
#StandardScaler
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
import pandas as pd
#데이터 세트 로드 후 데이터 프레임으로 변환
iris = load_iris()
iris data = iris.data
iris_df = pd.DataFrame(data=iris_data, columns=iris.feature_names)
#StandardScaler 객체 생성
scaler = StandardScaler()
#StandardScaler로 데이터 세트 변환, fit()과 transform() 호출
scaler.fit(iris_df)
iris_scaled = scaler.transform(iris_df)
#transform() 했을 때 스케일 변환된 데이터 세트가 ndarray로 변환되어 이를 DataFrame으로 변환
iris_df_scaled = pd.DataFrame(data=iris_scaled, columns=iris.feature_names)
print('feature들의 평균값:')
print(iris_df_scaled.mean())
print('feature들의 분산값:')
print(iris_df_scaled.var())
```

→ 모든 칼럼의 평균이 0에 가까운 값으로, 분산은 1에 가까운 값으로 변환 되었음

MinMaxScaler

- → 데이터 값을 0~1 범위 값으로 변환(음수 값이 있으면 -1~1 범위 값으로 변환)
- → 데이터의 분포가 가우시안 분포가 아닐 경우에 적용해 볼 수 있음

```
#MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
```

```
#MinMaxScaler 객체 생성
scaler = MinMaxScaler()
#MinMaxScaler로 데이터 세트 변환
scaler.fit(iris_df)
iris_scaled = scaler.transform(iris_df)

iris_df_scaled = pd.DataFrame(data=iris_scaled, columns=iris.feature_names)
print('feature들의 최숫값:')
print(iris_df_scaled.min())
print('feature들의 최댓값:')
print(iris_df_scaled.max())
```

 $_{
ightarrow}$ 모든 피처에 0~1 사이의 값으로 변환되는 스케일링이 적용됐음

⚠ Scaler 객체를 이용해 학습 데이터 세트로 fit()을 수행한 결과를 이용해 transform()변환을 적용해야 함

- → 학습 데이터로 fit()이 적용된 스케일링 기준 정보를 그대로 테스트 데이터에 적용해야 함!
- \rightarrow 테스트 데이터로 다시 새로운 스케일링 기준 정보를 만들게 되면 학습 데이터와 테스트 데이터의 스케일링 기준 정보가 달라지기에 올바른 예측 결과 도출 불가능
- → 따라서 fit()은 학습 데이터에서 한번만 하면 되는 것!! (transform은 두번)

(test에 scale 변환을 할 때는 반드시 fit()을 호출하지 않고 transform()만으로 변환해야 함)

- 1. 가능하다면 전체 데이터의 스케일링 변환을 적용한 뒤 학습, 테스트 데이터로 분리
- 2. 여의치 않다면 테스트 데이터 변환 시에는 fit()이나 fit_transform()을 사용하지 않고 학습 데잍로 이미 fit()된 Scaler 객체를 이용해 transform()으로 변환

▼ Chap3. 평가

분류(Classification)의 성능 평가 지표

- 1. 정확도(Accuracy)
- 2. 오차행렬(Confusion Matrix)
- 3. 정밀도(Precision)
- 4. 재현율(Recall)
- 5. F1 스코어
- 6. ROC AUC
- → 모두 긍정/부정과 같은 2개의 결과값만 갖는 이진 분류에서 중요하게 강조하는 지표

정확도(Accuracy)

- → 실제 데이터에서 예측 데이터가 얼마나 같은지를 판단하는 지표
- → 예측결과가 동일한 데이터 건수 / 전체 예측 데이터 건수
- → 이진 분류의 경우 데이터의 구성에 따라 머신러닝 **모델의 성능을 왜곡할 수 있기에 정확도만 갖고 성능을 평가하지 않음!**
- → 불균형한 레이블 값 분포에서 머신러닝 모델의 성능을 판단할 경우 적합한 평가 지표가 아님
- → 다른 여러가지 분류 지표와 함께 사용해야 한다!

오차 행렬(Confusion Matrix)

→ 이진 분류의 예측 오류가 얼마인지와 더불어 어떠한 유형의 예측 오류가 발생하고 있는지를 함께 나타내는 지표

파이썬 머신러닝 완벽 가이드

14

예측 클래스 (Predicted Class)

	Negative(0)	Positive(1)
Negative(0) 실제 클래스	TN (True Negative)	FP (False Positive)
(Actual Class)		
Positive(1)	FN (False Negative)	TP (True Positive)

TN, FP, FN, TP

앞문자 True/False → 예측값이 실제값과 같은가, 다른가

뒷문자 Negative/Positive → 예측 결과 값이 부정(0)인지 긍정(1)인지

사이킷런은 오차행렬을 구하기 위해 confusion_matrix() API를 제공함

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, fakepred)

TN은 array[0,0], FP는 array[0,1]로, FN은 array[1,0]으로. TP은 array[1,1]에 해당

→ 이 값들을 조합해 정확도(Accuracy), 정밀도(Precision), 재현율(Recall) 값을 알 수 있다.

✓ 정확도 = 예측 결과와 실제 값이 동일한 건수/전체 데이터 건수 = (TN + TP)/(TN+FP+FN+TP)

→ 불균형한 데이터 세트에서 정확도보다 더 선호되는 평가 지표는 정밀도와 재현율임

정밀도와 재현율

→ Positive 데이터 세트의 예측 성능에 좀 더 초점을 맞춘 평가 지표

정밀도 = TP/(FP+TP) 재현율 = TP/(FN+TP)

정밀도: 예측을 Positive를 한 대상중에 예측값과 실제 값이 Positive로 일치한 데이터의 비율

재현율: 실제 값이 Positive인 대상 중에 예측과 실제 값이 Positive로 일치한 데이터의 비율(=민감도)

재현율이 중요 지표인 경우는 실제 Positive 양성 데이터를 Negative로 잘못 판단하게 되면 업무상 큰 영향이 발생하는 경우 ex. 암 판단 모델, 보험사기 적발 모델

정밀도가 중요 지표인 경우는 실제 Negative 음성 데이터를 Positive로 잘못 판단하게 되면 업무상 큰 영향이 발생하는 경우 ex. 스팸 메일 판단 모델

재현율과 정밀도 모두 TP를 높이는데 초점을 맞춤, 그리고 재현율은 FN을 낮추는데, 정밀도는 FP를 낮추는데 초점을 맞춤. → **재** 현율과 정밀도 모두 높은 수치를 얻는 것이 제일 바람직하다!

BUT 정밀도와 재현율은 상호보완적인 평가 지표이기에 어느 한쪽을 강제로 높이면 다른 하나의 수치는 떨어지기 쉬움. (Trade-Off)

사이킷런은 정밀도 계산을 위해 precision score()을, 재현율 계산을 위해 recall score()을 API로 제공

```
from \ sklearn.metrics \ import \ accuracy\_score, \ precision\_score, \ recall\_score, \ confusion\_matrix
def get_clf_eval(y_test, pred):
    confusion = confusion_matrix(y_test, pred)
    accuracy = accuracy_score(y_test, pred)
    precision = precision_score(y_test,pred)
    recall = recall_score(y_test,pred)
    print('오차행렬')
    print(confusion)
    print('정확도:',accuracy, '정밀도:',precision, '재현율:',precision)
#로지스틱 회귀 기반 타이타닉 생존자 예측
import pandas as pd
from sklearn.model_selection import train_test_split
from \ sklearn.linear\_model \ import \ LogisticRegression
titanic_df = pd.read_csv('titanic.csv')
y_titanic_df = titanic_df['Survived']
X_titanic_df = titanic_df.drop('Survived', axis=1)
X_titanic_df = transform_features(X_titanic_df)
```

F1 스코어

- → 정밀도와 재현율을 결합한 지표
- → 정밀도와 재현율이 어느 한 쪽으로 **치우치지 않는 수치**를 나타낼 때 상대적으로 **높은 값을 가짐**

F1 = 2*(precision*recall)/(precision+recall)

사이킷런에서는 F1 스코어를 구하기 위해 f1_score()라는 API를 제공함.

```
from sklearn.metrics import f1_score
f1 = f1_score(y_test, pred)
print('F1 스코어:'. f1)
```

ROC 곡선과 AUC

- → ROC 곡선은 FPR(False Positive Rate)이 변할 때 TPR(True Positive Rate)이 어떻게 변하는지를 나타내는 곡선
- → FPR(1-TNR=1-특이성)을 X축으로, TPR(재현율, 민감도)을 Y축으로 둔다.

ROC곡선이 가운데 직선에 가까울수록 성능이 떨어지는 것이고, 멀어질수록 성능이 뛰어난 것