

UMELÁ INTELIGENCIA

Ing. Lukáš Kohútka, PhD.

Hračkové problémy – 8 dám (1. formulácia)

- Stavy: všetky možné konfigurácie ľubovoľného možného (0-8) počtu dám na šachovnici
- Počiatočný stav: žiadna dáma na šachovnici
- Operátory: položenie dámy na ľubovoľné políčko šachovnice
- □ Cena cesty: 0
- Cieľový test: 8 dám na šachovnici umiestnených tak, že sa navzájom neohrozujú

 $64x63x...x57 \sim 3x10^{14}$ stavov

Hračkové problémy – 8 dám (2. formulácia)

- Stavy: všetky možné konfigurácie ľubovoľného možného (0-8) počtu dám na šachovnici také, že ani jedna z dám nie je ohrozená
- Počiatočný stav: žiadna dáma na šachovnici
- Operátory: položenie dámy na l'ubovol'né políčko v najl'avejšom prázdnom stĺpci také, že ju na ňom neohrozuje žiadna iná dáma
- Cena cesty: 0
- Cieľový test: 8 dám na šachovnici umiestnených tak, že sa navzájom neohrozujú

2057 stavov

Charakteristiky problémov

- Riešením problému je stav alebo cesta
- Problém rozložiteľný na samostatne riešiteľné podproblémy

- Problémy s ignorovateľnými krokmi riešenia
- Problémy s odčiniteľnými krokmi riešenia
- Problémy s neodčiniteľnými krokmi riešenia

Hl'adanie riešenia

- Hľadanie riešenia je prístup k riešeniu problémov, pri ktorom nevychádzame z algoritmu riešenia problému.
- Buď ho nepoznáme (možno preto, že ani neexistuje), alebo ho poznáme, ale pre svoju neefektívnosť je prakticky nepoužiteľný. Namiesto toho vychádzame z algoritmu, ako riešenie hľadať.

Hľadanie riešenia – algoritmus

```
function VŠEOBECNÉ-HĽADANIE(problém, stratégia) returns riešenie alebo neúspech
```

inicializuj strom hľadania použitím začiatočného stavu z *problém* loop do

if nie sú nerozvité uzly then return neúspech vyber list za uzol na rozvitie podľa stratégia if uzol predstavuje cieľový stav then return zodpovedajúce riešenie else rozvi uzol a pripíš vygenerované uzly do stromu hľadania

end

Stavový priestor a graf (strom) hľadania

Reprezentácia uzla:

- zodpovedajúci stav zo stavového priestoru,
- uzol v strome hľadania, z ktorého sa daný uzol vygeneroval,
- operátor, ktorý sa aplikoval pri generovaní uzla (na rodičovský uzol),
- počet uzlov na ceste z koreňa do daného uzla (hĺbka uzla),
- cena cesty zo začiatočného uzla do daného uzla.

datatype UZOL

components: STAV, RODIČOVSKÝ-UZOL, OPERÁTOR,

HĹBKA, CENA-CESTY

Uzly v strome hľadania a stavy

Uzly v strome hľadania a stavy

Dátová štruktúra pre uzol

hĺbka uzla N = dĺžka cesty z koreňa do N (hĺbka koreňa = 0)

Rozvinutie uzla

rozvinutie uzla N v strome hľadania pozostáva z:

- 1) vyhodnotenia funkcie nasledovníka na STAV(N)
- 2) vygenerovania potomka/nasledovníka uzla N pre každý stav, ktorý vráti funkcia nasledovníka

generovanie uzla ≠ rozvinutie uzla

	8	2
თ	4	7
5	1	6

Okraj stromu hľadania

 okraj je množina všetkých uzlov (v strome hľadania), ktoré ešte nie sú rozvinuté

Front – štruktúra na zápis množiny uzlov

- □ Angl. Queue
- Nad frontom definujeme tieto operácie:
 - VYTVOR-FRONT(prvky) vytvorí front s danými prvkami
 - PRÁZDNY(front) vráti true práve vtedy, ak front neobsahuje žiadne prvky
 - VYBER(front) odstráni prvok z frontu a vráti ho (prvok)
 - ZARAĎ-DO-FRONTU(prvky, front) vráti front po zaradení prvkov do pôvodného frontu. Rôzne druhy tejto funkcie určujú rôzne algoritmy hľadania

Všeobecný algoritmus hľadania

```
function VŠEOBECNÉ-HĽADANIE(problém, ZARAĎ-DO-FRONTU)
   returns riešenie alebo neúspech
   static: front, front obsahujúci vygenerované a nerozvité uzly,
                na začiatku prázdny
       uzol, uzol stromu hľadania
   front ← VYTVOR-FRONT(VYTVOR-UZOL(ZAČIATOČNÝ-STAV[problém]))
   loop do
     if front je prázdny then return neúspech
     uzol \leftarrow VYBER(front)
     if CIEĽOVÝ-TEST[problém] aplikovaný na STAV(uzol) je úspešný then
         return VYBER-RIEŠENIE(uzol)
     front \leftarrow ZARAĎ-DO-FRONTU(ROZVI(uzol, OPERÁTORY[problém]), front)
end
```

Stratégie hľadania

Neinformované (slepé)

- nemajú k dispozícii nejakú doplňujúcu informáciu o probléme
- poradie generovania stavov závisí iba od informácií získaných hľadaním a nie je ovplyvnené ani nepreskúmanou časťou grafu ani vlastnosťami cieľového stavu

Informované (heuristické)

- majú k dispozícii nejakú doplňujúcu informáciu o probléme
- heuristická informácia sa často využíva na to, aby sa zvýšila efektívnosť hľadania (t.j. znížila časová a/alebo pamäťová zložitosť) aj za cenu, že nebude dodržané ďalšie kritérium, a síce prípustnosť a/alebo úplnosť

Heuristika

- □ ηὕρηκα [heuréka] = našiel (objavil) som to Archimedes
- □ ηὑρίσκω = nájsť, objaviť
- Spôsob riešenia problému, pre ktorý nemáme algoritmus alebo presný postup P heuristické riešenie problémov
- □ Polya: Ako to vyriešiť. 1954:
 - ak nerozumiete riešenému problému, skúste si ho nakresliť
 - ak neviete nájsť riešenie, predstavte si, že ho máte a pozrite sa, či z neho neviete odvodiť postup (pracovať odzadu)
 - ak je problém abstraktný, skúste najprv riešiť konkrétny príklad
 - skúste najprv riešiť všeobecnejší problém (paradox vynálezcu: ambicióznejší plán môže mať lepšie vyhliadky na jeho vyriešenie)
- Heuristika v informatike: postup, ktorý zvyčajne vedie k dobrému riešeniu, avšak nezaručuje, že sa nájde najlepšie riešenie, ani že sa nájde v krátkom čase, ani že sa vôbec nájde.

Stratégie hľadania

Stratégie hľadania

- Úplnosť zaručuje hľadanie s danou stratégiou, že sa nájde riešenie, ak existuje?
- Časová zložitosť ako dlho trvá, kým sa nájde riešenie?
- Pamäťová zložitosť koľko pamäti treba na vykonanie hľadania?
- Prípustnost' (Optimálnost') nájde sa pomocou danej stratégie najlepšie riešenie, ak existuje aspoň jedno riešenie?

Príklad

pre slepú stratégiu, N₁ a N₂ sú len dva uzly (s nejakou polohou v strome hľadania)

1	2	3	
4	5		STAV
7	8	6	N_2

1	2	3
4	5	6
7	8	

cieľový stav

Príklad

pre heuristickú stratégiu, počítajúcu počet kameňov, ktoré nie sú na svojom mieste, N₂ je sľubnejší uzol než N₁

1	2	3	
4	5		STAV
7	8	6	N_2

1	2	3		
4	5	6		
7	8			

cieľový stav

Poznámka

- problémy, ktoré uvažujeme, ako napr. (n²-1)hlavolam, sú NP-ťažké
- neočakávajme, že budeme vedieť vyriešiť ľubovoľnú (t.j. každú) inštanciu takého problému v čase lepšom než exponenciálnom
- môžeme sa usilovať vyriešiť každú inštanciu čo najefektívnejšie
 - → to je účelom stratégie hľadania

Slepé stratégie

- do šírky (Breadth-First Search)
 - obojsmerne
- do hĺbky (Depth-First Search)
 - obmedzené
 - iteratívne sa prehlbujúce
 - do hĺbky s návratom
- rovnomerná cena (varianta do šírky)

cena hrany = 1

cena hrany = $c(operátor) \ge \epsilon > 0$

úplné, prípustné, exponenciálna zložitosť

function HĽADANIE-DO-ŠÍRKY(problém) returns riešenie alebo neúspech return VŠEOBECNÉ-HĽADANIE(problém, ZARAĎ-NA-KONIEC)

Nové uzly sa pridávajú na koniec OKRAJa

Nové uzly sa pridávajú na koniec OKRAJa

OKRAJ = (2, 3)

Nové uzly sa pridávajú na koniec OKRAJa

OKRAJ = (3, 4, 5)

Nové uzly sa pridávajú na koniec OKRAJa

OKRAJ = (4, 5, 6, 7)

Dôležité parametre

- Maximálny počet nasledovníkov ktoréhokoľvek stavu
 - faktor vetvenia b prehľadávaného stromu
- 2) Minimálna dĺžka (≠ cena) cesty medzi počiatočným a cieľovým stavom
 - → hĺbka d najplytšieho cieľového uzla v strome

Vyhodnotenie

- b: Vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- Hľadanie do šírky je:
 - úplné
 - optimálne, ak je krok 1
- Počet vygenerovaných uzlov ???

Vyhodnotenie

- b: Vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- Hľadanie do šírky je:
 - úplné
 - optimálne ak je krok 1
- Počet vygenerovaných uzlov

$$1 + b + b^2 + ... + b^d = ???$$

Vyhodnotenie

- b: Vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- Hľadanie do šírky je:
 - úplné
 - optimálne ak je krok 1
- Počet vygenerovaných uzlov
 1 + b + b² + ... + b^d = (b^{d+1}-1)/(b-1) = O(b^d)
- → Časová a priestorová zložitosť je O(b^d)

Časové a pamäťové nároky hľadania do šírky

Hĺbka	Počet uzlov	Č	as	Pamäť		
0	1	0.01	milisekundy	100	slabík	
1	35	0.3	milisekundy	3.4	kiloslabík	
2	1225	0.01	sekundy	119	kiloslabík	
3	42 875	0.4	sekundy	4	megaslabiky	
4	1.5×10^{6}	15	sekúnd	143	megaslabík	
5	52×10^{6}	8.7	minúty	4.8	gigaslabík	
6	1.8×10^9	5	hodín	171	gigaslabík	
7	64×10^9	7	dní	5.8	teraslabík	
8	2.2×10^{12}	261	dní	204	teraslabík	
9	78×10^{12}	25	rokov	7 168	teraslabík	
10	2.7×10^{15}	874	rokov	250 888	teraslabík	
12	3.3×10^{18}	10 ⁶	rokov	8.7×10^{6}	teraslabík	
20	7.6×10^{30}	2.4×10^{18}	rokov	6.9×10^{20}	teraslabík	

Predpoklady: faktor vetvenia 35, 100000 uzlov / sekunda, 100 slabík / uzol

Poznámka

Ak problém nemá riešenie, hľadanie do šírky sa môže vykonávať donekonečna (ak stavový priestor je nekonečný alebo stavy môžu byť znovu navštívené ľubovoľný počet ráz)

1	2	3	4		1	2	3	4
5	6	7	8	?	5	6	7	8
9	10	11	12		9	10	11	12
13	14	15			13	15	14	

Obojsmerné hľadanie

Obojsmerná stratégia

fronty dvoch okrajov: OKRAJ1 a OKRAJ2

Časová a priestorová zložitosť je O(bd/2) << O(bd) ak oba stromy majú rovnaký vetviaci faktor b

Otázka: Čo sa stane ak vetviaci faktor je rôzny od každého smeru?

Hľadanie do hĺbky

Depth-first search

function HĽADANIE-DO-HĹBKY(*problém*) **returns** *riešenie* alebo neúspech **return** VŠEOBECNÉ-HĽADANIE(*problém*, ZARAĎ-NA-ZAČIATOK)

Vyhodnotenie

- b: vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- m: maximálna hĺbka listového uzla
- Hľadanie do hĺbky je:
 - úplné?
 - optimálne?

Vyhodnotenie

- b: vetviaci faktor
- d: hĺbka najplytšieho cieľového uzla
- m: maximálna hĺbka listového uzla
- Hľadanie do hĺbky je:
 - úplné iba pre konečný strom hľadania
 - nie je optimálne
- Počet vygenerovaných uzlov (najhorší prípad) : 1 + b + b² + ... + b^m = O(b^m)
- Časová zložitosť: O(b^m)
- Priestorová zložitosť: O(bm) [alebo O(m)]

[pripomienka: Vyhľadávanie do šírky vyžaduje O(bd) čas a pamäť]

Cyklicky sa prehlbujúce hľadanie

```
function CYKLICKY-SA-PREHLBUJÚCE-HĽADANIE(problém)
returns riešenie alebo neúspech

for hĺbka ← 0 to ∞ do
    if OBMEDZENÉ-HĽADANIE(problém, hĺbka) je úspešné
        then return jeho riešenie
end
return neúspech
```

Obmedzené prehľadávanie do hĺbky

- □ Hľadanie do hĺbky s odseknutím v hĺbke k
 - hĺbka, za ktorou sa uzly nerozvíjajú
- □ Tri možné prípady
 - □ riešenie
 - □ zlyhanie žiadne riešenie
 - odseknutie hĺbky

Cyklicky sa prehlbujúce hľadanie

Poskytuje to najlepšie z hľadania do šírky a do hĺbky

Hlavná idea:

```
IDS
Pre k = 0, 1, 2, ... do:
Vykonaj hľadanie do hĺbky s odseknutím v
hĺbke k
(napr., generuj iba uzly s hĺbkou ≤ k)
```

Vyhodnotenie

- Cyklicky sa prehlbujúce hľadanie je:
 - úplné
 - optimálne ak cena kroku =1
- Časová zložitosť:
 (d+1)(1) + db + (d-1)b² + ... + (1) b^d = O(b^d)
- Priestorová zložitosť: O(bd) alebo O(d)

Počet generovaných uzlov (hľadanie do šírky a cyklické prehlbovanie)

$$d = 5 a b = 2$$

v hĺbke	do šírky	cykl. prehlb.
0	1	1 x 6 = 6
1	2	2 x 5 = 10
2	4	4 x 4 = 16
3	8	8 x 3 = 24
4	16	16 x 2 = 32
5	32	32 x 1 = 32
spolu	63	120

Počet generovaných uzlov (hľadanie do šírky a cyklické prehlbovanie)

d = 5 a b = 10

v hĺbke	do šírky	cykl. prehlb.	
0	1	6	
1	10	50	
2	100	400	
3	1,000	3,000	
4	10,000	20,000	
5	100,000	100,000	
spolu	111,111	123,456	

123,456/111,111 ~ 1.111 t.j. len o 11% viac generovaných uzlov

Porovnanie stratégií

- □ Hľadanie do šírky
 - uplné a prípustné, ale má vysokú pamäťovú zložitosť
- Hľadanie do hĺbky
 - pamäťovo efektívne, ale nie je úplné ani prípustné
- Cyklické prehlbovanie
 - úplné, prípustné, s rovnakou pamäťovou zložitosťou ako prehľadávanie do hĺbky a má skoro rovnakú časovú zložitosť ako prehľadávanie do šírky

Znovunavštívené stavy

Žiadne Málo Veľa plánovanie 8 dám 8-puzľa a navigácia robota montáže

Znovunavštívené stavy

Vyhýbanie sa znovunavštíveným stavom

- Vyžaduje porovnávanie opisov stavov
- □ Hľadanie do šírky:
 - Ulož všetky stavy združené s generovanými uzlami do NAVSTIVENE
 - Ak stav nového uzla je v NAVSTIVENE, tak zruš uzol

Vyhýbanie sa znovunavštíveným stavom

- □ Hľadanie do hĺbky:
 - □ Riešenie 1:
 - ukladaj všetky stavy asociované s uzlami v aktuálnej ceste do NAVSTIVENE
 - ak stav nového uzlu je v NAVSTIVENE, tak zruš uzol
 - tým sa iba vyhneme slučkám
 - □ Riešenie 2:
 - ukladaj všetky generované stavy do NAVSTIVENE
 - ak stav nového uzlu je v NAVSTIVENE, tak zruš uzol
 - rovnaká pamäťová zložitosť ako pri hľadaní do šírky!

Porovnanie neinformovaných stratégií hľadania

Kritérium	Do šírky	Rovno- mernej ceny	Do hĺbky	Obmedze- né do hĺbky	Cyklicky sa prehlbujúce	Obojsmerné
Čas	b ^d	b ^d	b ^m	b ^l	b ^d	b ^{d/2}
Pamäť	<i>b</i> ^d	b ^d	b^m	b^{l}	b ^d	b ^{d/2}
Prípustná?	áno	áno	nie	nie	áno	áno
Úplná?	áno	áno	nie	áno,	áno	áno
				ak <i>l</i> ≥ <i>d</i>		

- b je faktor vetvenia,
- d je hĺbka riešenia,
- m je maximálna hĺbka stromu hľadania,
- / je hraničná hĺbka (pri obmedzenom hľadaní do hĺbky)

ĎAKUJEM ZA POZORNOSŤ

lukas.kohutka@stuba.sk