Physics and IA: Predicting Paper Airplane Trajectories

Problematic

In what cases and to what extent can a model developed by AI be more relevant than a physical model in predicting the trajectories of paper airplane?

- Accuracy
- Robustness
- Amount of data

Summary

I. Technical Aspects

- 1. Problem formalization and constraints
- 2. Data collection
- 3. Data processing

II. Modeling

- 1. Physic Model
- 2. IA Model

III. Comparison

- 1. Models validity verification
- 2. Comparison of the models

$$p_{1} = (x_{1}, y_{1}, \theta_{1}, t_{1})$$

$$p_{2} = (x_{2}, y_{2}, \theta_{2}, t_{2})$$

$$p_{3} = (x_{3}, y_{3}, \theta_{3}, t_{3})$$

$$\downarrow$$

$$p_{i} = (x_{i}, y_{i}, \theta_{i}, t_{i})$$

Physical Model

Auto-regression

I. Stakes: Constraints

To predict the trajectories, models needs:

Physic:

- drag and lift coefficients

IA:

- Model training

→ Data Collection needed

I. Stake: Experiment

Dialog with Christophe Airiau

https://www.imft.fr/en/personal-page/airiau-christophe-en/

Scientist at Fluid Mechanics Institute of Toulouse

→ Prototype experiment

I. Stake: Experiment

paper airplane

Scale ________(future conversion)

Video capture zone

I. Technical Stakes: Data acquisition

OpenCv Mask

→ YoloV8

https://scholar.google.com/citations?user=ZLA7iioAAAAJ

Grgur Kovač (INRIA)

I. Technical Stakes: Data processing

- Conversion
- Encoding
- Speed / Acceleration (Euler)


```
x, y, θ, t
1.405||0.811||-22||2
1.501||0.851||-23||2
1.587||0.895||-27|
1.682||0.941||-26|
1.771||0.99||-29||
1.859||1.041||-30||2
1.953||1.087||-26||2
2.039||1.136||-30||2
2.139111.19111
2.222111.24311
2.324||1.307||-32|
2.412||1.363||-33||3
2.505||1.422||-32|
2.597||1.482||-33|
2.694||1.552||-36||3
 .78||1.614||-36||3
```

90 trajectories (77 'classics' / 13 'originals')

Mass: m = 10 g

Surface: $S = 0.03 \text{ m}^2$

$$Re = \frac{\rho VL}{\eta} \approx 10^5$$

Hypotheses:

- weight, lift and drag
- Cx, Cz constants

Poids:
$$\overrightarrow{P} = mg \overrightarrow{e_z}$$

$$A\acute{e}ro: \overrightarrow{F} = \frac{1}{2} \rho SV^2 (-C_x \overrightarrow{u} + C_z \overrightarrow{w})$$

$$(1) \implies C_x = \frac{-2m(v + g\sin(\theta))}{\rho SV^2}$$

(1)
$$\implies C_x = \frac{-2m(\dot{v} + g\sin(\theta))}{\rho SV^2}$$

(2) $\implies C_z = \frac{-2m(v\dot{\theta} - g\cos(\theta))}{\rho SV^2}$

Type
$$A: u(C) = \frac{s(C)}{\sqrt{N}}$$

$$Cx = 0.77 \mp 0.08$$

 $Cz = 3.01 \mp 0.06$

$$/\overrightarrow{e_x}: \overrightarrow{mv_x} = F_{train\acute{e}e} \cdot \cos(\theta) + F_{portance} \cdot \sin(\theta)$$

$$/\overrightarrow{e_z}: \overrightarrow{mv_z} = -F_{train\acute{e}e} \cdot \cos(\theta) - F_{portance} \cdot \sin(\theta) + mg$$

II. Modeling: IA

→ Sklearn : MLPRegressor (neural network)

Gradient Descent

$$Loss = \sum_{i} (y_i - y_{i, predict})^2$$

II. Modeling: IA

Network size (50x50)

Training

Auto-regression

III. Comparison: Models validity

III. Comparison: Error quantification

How to compare models?

→ Distance Function (Error)

$$d_i = \sqrt{(x_{predict, i} - x_i)^2 + (y_{predict, i} - y_i)^2}$$

$$Error = \frac{1}{n} \sum_{i}^{n} d_{i}$$

III. Comparison: Accuracy

General Accuracy

IA trained with 77 trajectories 'classics' (100%)

III. Comparaison: Robustesse

III. Comparison: Amount of data

Cx/Cz as a function of the amount of data available

III. Comparison: Amount of data

Relative Error as a function of the amount of data available

Proportion of data available used for the AI training

Conclusion

- The amount of data matter:
 - for Cx and Cz determination
 - for the AI model precision
- IA efficient only in its training range

The use of Al model is a viable alternative,

but it still limited by the data used for its training.

Le physical model needs the knowledge of the laws behind the phenomenon.

Conclusion

Physical Model supervised by Al

Physical Prediction + Correction = Final Prediction

Relative error as a function of the amount of data

Data a re-shuffled for each diagram

Physical Model: Intergration

$$\vec{a}(t+dt) \approx \frac{\vec{v}(t+dt) - \vec{v}(t)}{dt}$$

$$\vec{v}(t+dt) \approx \frac{\vec{x}(t+dt) - \vec{x}(t)}{dt}$$
Time Discrete
$$x_{i+1} = x_i + v_i dt + a_{i+1} dt^2$$

$$def getSpeed(traj, i):$$

$$| dt = traj['t'][i] - traj['t'][i-1]$$

$$| v = (traj['coord'][i] - traj['coord'][i-1]) / dt$$

$$return v$$

def getAcceleration(traj, i):

```
| dt = traj['t'][i] - traj['t'][i-1]
| a = (getSpeed(traj, i) - getSpeed(traj, i-1))/ dt
return a
```

```
def integrate(p, v, angle, dt, durée):
   trajectory = {'position': [p], 'angle': [angle], 't': [t]}
   tant que t < durée:
      a = force(v) / masse
      | t = t + dt
     | v = v + a * dt
     |p = p + v * dt
      angle = angle + v_angle * dt
      trajectory \leftarrow p, angle, t
  return trajectory
```

Poids: $\vec{P} = mg \vec{e_z}$ $A\acute{e}ro: \vec{F} = \frac{1}{2} \rho SV^2 (-C_x \vec{u} + C_z \vec{w})$

Drag and Lift coefficients

$$C_{x} = \frac{-2m(\dot{v} + g\sin(\theta))}{\rho SV^{2}}$$

$$C_{z} = \frac{-2m(v\dot{\theta} - g\cos(\theta))}{\rho SV^{2}}$$

```
def cx(vitesse, acceleration, theta):
    return -2 * MASSE * (acceleration + g * sin(theta)) / (RHO_AIR * SURFACE * (vitesse ** 2))
def cz(vitesse, theta_point, theta):
    return -2 * MASSE * (speed * theta_point - g * cos(theta)) / (RHO_AIR * SURFACE * (vitesse ** 2))
```

MLPRegressor: Training

```
def autorégression(points_initiaux, dt, durée):
    | trajectoire = [points_initiaux]
    | t = 0
    | tant que t < durée:
    | | t = t + dt
    | | point_suivant = prédiction_IA(points_initiaux, t)
    | | trajectoire ← point_suivant
    | | points_initiaux = points_initiaux[1:] + point_suivant</pre>
```

MLPRegressor: Normalization 'min-max'

$$x = (x - x_min)/(x_max - x_min)$$

def normalisation(trajs):

```
x_max, x_min = max(trajs['x']), min(trajs['x'])
y_max, y_min = max(trajs['y']), min(trajs['y'])
pour chaque traj dans trajs:
    | traj['x'] = (traj['x'] - x_min)/(x_max - x_min)
    | traj['y'] = (traj['y'] - y_min)/(y_max - y_min)
```

MLPRegressor

Function score:

$$score = \left(1 - \frac{u}{v}\right)$$

$$u = \sum_{i} (y_i - y_{i, predict})^2$$

$$v = \sum_{i} (y_i - y_{i, moyen})^2$$

Function loss:

$$Loss = \sum_{i} (y_i - y_{i, predict})^2$$

Logistic function use the MLPRegressor

video Analysis:

Bounding box

detections = model(frame, verbose=False)[0].boxes.data.tolist()

YoloV8

Yolo is a neural networks pre-trained in a wide range of data.

Ultralytics: https://docs.ultralytics.com

YOLO (You Only Look Once), a popular object detection and image segmentation model, was developed by Joseph Redmon and Ali Farhadi at the University of Washington Launched in 2015, YOLO quickly gained popularity for its high speed and accuracy.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 779-788).

Appendix

YoloV8

IA Models

Different types of IA:

- Supervised (K-Neighbors)
- Non-Supervised (K-Mean)
- Reinforcement Learning