VE373 Recitation Class

Week 5

2022.06.11

L8 — Input Capture

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

1. Advantage (comparing to naive solution)

- 1. Accurate
- 2. No preemption issue
- 3. Don't bother CPU too much

2. Block diagram

FIGURE 15-1: INPUT CAPTURE BLOCK DIAGRAM

3. Operation modes

- Simple capture event modes
 - Capture timer value on every falling edge
 - Capture timer value on every rising edge
 - Capture timer value on every edge, with specified starting edge (rising or falling)
- Prescaled capture event modes
 - Capture timer value on every 4th rising edge
 - Capture timer value on every 16th rising edge
- Edge detect mode
- Interrupt-only mode

4. Persistent interrupt

Interrupt is not cleared unless the interrupt condition is cleared.

Table 15-4: Interrupt Persistence Conditions

ICxCON Value	Set Condition	Persistence
ICI<1:0> = 11	Interrupt on every fourth capture event.	Interrupt is active if the number of FIFO entries is equal to 4.
ICI<1:0> = 10	Interrupt on every third capture event.	Interrupt is active if the number of FIFO entries is greater than or equal to 3.
ICI<1:0> = 01	Interrupt on every second capture event.	Interrupt is active if the number of FIFO entries is greater than or equal to 2.
ICI<1:0> = 00 or Edge Detect modes (see the ICM<2:0> bits in the ICxCON register (Register 15-1))	Interrupt on every capture event.	Interrupt is active if the number of FIFO entries is greater than or equal to 1.
ICOV = 1	Interrupt on fifth capture event if FIFO is full.	Interrupt is active until the error condition flag (ICxCON.ICOV) is cleared.

5. Simple capture event modes

- 2–3 T_{PB} delay after the event due to synchronization
- Capture input is sampled by PBCLK, therefore input signal high and low width $> T_{PB}$.

6. Edge Detect Mode

- Prescaler and interrupt count not used.
- Buffer overflow never signals.
- Interrupt request on every capture.

7. Interrupt-only mode

- Rising edge on ICx triggers an interrupt
 - Not functioning during normal operation
 - No timer capture
 - No buffer update
- Used only as a wake-up mechanism for SLEEP or IDLE modes

8. Capture buffer flags

- ICBNE (ICxCON<3>): IC buffer not empty
 - Read-only
 - Signals when 1 or more entries
- ICOV (ICxCON<4>): IC buffer overflow
 - Signals on the 5th capture
 - All extra capture values are lost, until flag cleared
 - Flag cleared when
 - * IC Module disabled
 - * Module reset
 - * ICBNE becomes 0 IC buffer empty

9. Capture event and interrupt event

- Capture event: capture change of ICx and store timer value in the FIFO.
- Interrupt event: interrupt after certain amount of capture events.

10. Examples

See reference manual or slides.

IIL9 — Output Compare and PWM

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events.

1. Block diagram

FIGURE 16-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit timer base.

2. Operation mode

- Single Compare Match mode Drive high, drive low, toggle
- Dual Compare Match mode Single output pulse, continuous output pulses
- Simple Pulse Width Modulation (PWM) mode With or without fault protection input

3. Single Compare Match mode

- Compare forces OCx pin high; initial state of pin is low. Interrupt is generated on the single compare match event.
- Compare forces OCx pin low; initial state of pin is high. Interrupt is generated on the single compare match event.
- Compare toggles OCx pin. Toggle event is continuous and an interrupt is generated for each toggle event.

4. Dual Compare Match mode

Single or continues pulse.

5. Single pulse special situations

• PRy >= OCxRS > OCxR = TMRy = 0The initial match of OCxR and TMRy at 0 doesn't drive high, work normally afterwards

- PRy >= OCxR >= OCxRS

 Match OCxR first, match OCxRS in next counting round
- \bullet OCxRS > PRy >= OCxR Only rising edge generated on first match, then signal remains high, no interrupt generated
- OCxR > PRy Not working, OCx remains low

6. PWM mode

Covered in next RC.

7. Examples

See reference manual or slides.