

DEPARTAMENTO

Departamento de Computer Science

CURSO

Matemáticas Discretas II

MALLA

2021

MODALIDAD

PRESENCIAL

CREDITOS

4

REGLAS INTEGRIDAD ACADÉMICA

Todo estudiante matriculado en una asignatura de la Universidad de Ingeniería y Tecnología tiene la obligación de conocer y cumplir las reglas de integridad académica, cuya lista a continuación es de carácter enunciativo y no limitativo, ya que el/la docente podrá dar mayores indicaciones:

- 1. La copia y el plagio son dos infracciones de magnitud muy grave en la Universidad de Ingeniería y Tecnología (UTEC) conforme a lo establecido en el Reglamento de Disciplina de los Estudiantes. Tienen una sanción desde 2 semestres de suspensión hasta la expulsión.
- 2. Si se identifica la copia o plagio en evaluaciones individuales, el/la docente puede proceder a anular la evaluación.
- Si la evaluación es personal o grupal-individual, la interacción entre equipos o compañeros se considera copia o plagio, según corresponda. Si la evaluación calificada no indica que es grupal, se presume que es individual.
- 4. La copia, plagio, el engaño y cualquier forma de colaboración no autorizada no serán tolerados y serán tratados de acuerdo con las políticas y reglamentos de la UTEC, implicando consecuencias académicas y sanciones disciplinarias.
- 5. Aunque se alienta a los estudiantes a discutir las tareas y trabajar juntos para desarrollar una comprensión más profunda de los temas presentados en este curso, no se permite la presentación del trabajo o las ideas de otros como propios. No se permite el plagio de archivos informáticos, códigos, documentos o dibujos.
- 6. Si el trabajo de dos o más estudiantes es sospechosamente similar, se puede aplicar una sanción académica a todos los estudiantes, sin importar si es el estudiante que proveyó la información o es quien recibió la ayuda indebida. En ese sentido, se recomienda no proveer el desarrollo de sus evaluaciones a otros compañeros ni por motivos de orientación, dado que ello será considerado participación en copia.
- 7. El uso de teléfonos celulares, aplicaciones que permitan la comunicación o cualquier otro tipo de medios de interacción entre estudiantes está prohibido durante las evaluaciones o exámenes, salvo que el/la docente indique lo contrario de manera expresa. Es irrelevante la razón del uso del dispositivo.
- 8. En caso exista algún problema de internet durante la evaluación, comunicarse con el/la docente utilizando el protocolo establecido. No comunicarse con los compañeros dado que eso generará una presunción de copia.
- 9. Se prohíbe tomar prestadas calculadoras o cualquier tipo de material de otro estudiante durante una evaluación, salvo que el/la docente indique lo contrario.
- 10. Si el/la docente encuentra indicios de obtención indebida de información, lo que también implica no cumplir con las reglas de la evaluación, tiene la potestad de anular la prueba, advertir al estudiante y citarlo con su Director de Carrera. Si el estudiante no asiste a la citación, podrá ser reportado para proceder con el respectivo procedimiento disciplinario. Una segunda advertencia será reportada para el inicio del procedimiento disciplinario correspondiente.
- 11. Se recomienda al estudiante estar atento/a a los datos de su evaluación. La consignación de datos que no correspondan a su evaluación será considerado indicio concluyente de copia.

UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA

SÍLABO DEL CURSO

1. ASIGNATURA

CS1022 - Matemáticas Discretas II

2. DATOS GENERALES

2.1 Ciclo: NIVEL 2 2.2 Créditos: 4

2.3 Condición: Obligatorio2.4 Idioma de dictado: Español

2.5 Requisitos: CS1021 - Matemáticas Discretas I

3. INTRODUCCIÓN AL CURSO

El curso de Matemáticas Discretas II, de naturaleza teórica y práctica, aborda temas avanzados esenciales para estudiantes de Computación. Comienza con la clasificación de conjuntos parcialmente ordenados y la identificación de elementos extremos. Luego, explora las estructuras algebraicas como los retículos y álgebras booleanas, destacando su importancia en la unificación de teoría de conjuntos y lógica proposicional. La aplicación práctica se destaca al representar funciones booleanas como circuitos y resolver problemas reales mediante permutaciones y combinaciones. Además, se abordan relaciones de recurrencia y funciones generatrices. La teoría de grafos se introduce con conceptos clave como árboles, isomorfismos y algoritmos, ofreciendo competencias valiosas para analizar y resolver problemas computacionales complejos.

4. OBJETIVOS

- Sesión 1: Aplicar los diferentes esquemas de inducción para demostrar propiedades que involucran al conjunto de los enteros positivos o conjuntos similares.
- Sesión 2: Usar el método de inducción matemática para resolver problemas recursivos.
- Sesión 3: Identificar si un conjunto de pares ordenados se puede clasificar como un conjunto parcialmente ordenado y si es el caso reconocer sus elementos extremos.
- Sesión 4: Explicar las estructuras algebraicas como el retículo y sus tipos. Demostrar si una relación es un álgebra booleana y explicar las propiedades que satisface un álgebra booleana.
- Sesión 5: Explicar la importancia del álgebra booleana como una unificación de la teoría de conjuntos y lógica proposicional. Definir funciones booleanas. Encontrar las formas canónicas de una función booleana.
- Sesión 6: Representar una función booleana como un circuito booleano usando puertas lógicas. Minimizar una función booleana usando mapas de Karnaugh.

- Sesión 7: Aplicar principios básicos de conteo para la resolución de problemas. Calcular permutaciones y combinaciones en un conjunto e interpretar su significado en el contexto de una aplicación en particular.
- Sesión 8: Resolver problemas reales dentro del ámbito de Ciencia de la Computación usando permutaciones y combinaciones.
- Sesión 9: Definir, plantear y resolver problemas usando relaciones de recurrencia homogéneas.
- Sesión 10: Identificar una recurrencia no homogénea. Resolver algebraicamente una relación de recurrencia no homogénea.
- Sesión 11: Ilustrar mediante ejemplos la terminología básica de teoría de grafos, propiedades y tipos de grafos.
- Sesión 12: Ilustrar mediante los conceptos de subgrafos, complementos e isomorfismos. Representar computacionalmente un grafo. Explicar el concepto de conexidad y sus consecuencias en un grafo.
- Sesión 13: Modelar una variedad de problemas del mundo real en el ámbito de Ciencia de la Computación usando la teoría de grafos.
- Sesión 14: Explicar la definición de árboles, sus tipos y su utilización en la resolución de problemas. Explicar cómo construir un árbol de expansión a partir de un grafo.
- Sesión 15: Plantear y analizar algunos algoritmos en grafos y, en particular, algoritmos en árboles.

5. COMPETENCIAS Y CRITERIOS DE DESEMPEÑO

Competencias Especificas ABET - COMPUTACION

- Analizar un problema computacional complejo y aplicar principios de computación y otras disciplinas relevantes para identificar soluciones.
- Diseñar, implementar y evaluar una solución computacional para satisfacer un conjunto determinado de requerimientos computacionales en el contexto de la disciplina del programa.

6. RESULTADOS DE APRENDIZAJE

- Resolver problemas reales complejos a partir de la técnica de conteo y/o algoritmo de teoría de grafos escogido.
- Analizar problemas reales complejos eligiendo la técnica de conteo y/o algoritmo de teoría de grafos adecuado en base a las características y naturaleza del problema.
- Resolver ejercicios de lógica digital usando retículas, conjuntos parcialmente ordenados y álgebras booleanas; demostrando dominio del tema, orden y distinción entre estas estructuras lógicas.
- Emplear la técnica de conteo y/o algoritmo de teoría de grafos escogido para la formulación del problema.

7. TEMAS

1. Inducción Matemática

- 1.1 Inducción matemática simple o débil.
- 1.2 Inducción matemática fuerte.
- 1.3 Otros esquemas de inducción.
- 1.4 Aplicaciones a problemas recursivos.

2. Lógica Digital y Representación de Datos

- 2.1. Conjunto parcialmente ordenado
- 2.1.1. Diagramas de Hasse
- 2.1.2. Elementos extremos de un conjunto parcialmente ordenado.
- 2.2. Retículas
- 2.2.1. Tipos y propiedades
- 2.3. Álgebras booleanas
- 2.4. Funciones y expresiones booleanas
- 2.4.1. Función normal disyuntiva y función normal conjuntiva
- 2.4.2. Suma minimal de Productos: mapas de Karnaugh
- 3. Técnicas de conteo
- 3.1. Principios básicos de conteo:
- 3.1.1. Principio aditivo y multiplicativo
- 3.1.2. Principio de inclusión-exclusión
- 3.2. Permutaciones y combinaciones sin repetición
- 3.3. Permutaciones con repetición
- 3.4. Relaciones de recurrencia
- 3.4.1. Relaciones de recurrencia de primer orden
- 3.4.2. Relaciones de recurrencia de segundo orden
- 3.4.3. Relaciones de recurrencia no homogénea

3. Técnicas de conteo

- 3.1. Principios básicos de conteo
- 3.1.1. Principio aditivo y multiplicativo
- 3.1.2. Principio de inclusión-exclusión
- 3.2. Permutaciones y combinaciones sin repetición
- 3.3. Permutaciones con repetición
- 3.4. Relaciones de recurrencia
- 3.4.1. Relaciones de recurrencia de primer orden
- 3.4.2. Relaciones de recurrencia de segundo orden
- 3.4.3. Relaciones de recurrencia no homogénea

4. Teoría de Grafos y Árboles

- 4.1. Grafos
- 4.1.1. Definiciones, tipos y propiedades
- 4.1.2. Subgrafos, complementos e isomorfismo
- 4.1.3. Representación computacional de grafos
- 4.1.4. Caminos Eulerianos y Hamiltonianos
- 4.1.5. Coloreo de grafos

- 4.2. Árboles
- 4.2.1. Definiciones, tipos y propiedades
- 4.2.2. Árboles con raíz
- 4.2.3. Árboles de expansión
- 4.3. Introducción a los Algoritmos en Grafos

8. PLAN DE TRABAJO

8.1 Metodología

Este curso presenta por metodología activa el aprendizaje clásico y el aprendizaje basado en problemas; ambos son fundamentales para introducir al estudiante a los conceptos básicos y afianzar la base necesaria para los siguientes cursos de carrera.

8.2 Sesiones de teoría

Las sesiones teóricas serán desarrolladas bajo la estructura de clase magistral. El desarrollo de las sesiones teóricas está focalizado en el estudiante, a través de la participación activa con el uso de preguntas abiertas y cerradas.

8.3 Sesiones de práctica (laboratorio o taller)

Las sesiones prácticas se desarrollarán a través de una metodología activa generandoel aprendizaje práctico por parte del estudiante. Las sesiones de práctica secaracterizan por el desarrollo de ejercicios modelos y aplicados en base a losconceptos teóricos aprendidos.

9. SISTEMA DE EVALUACIÓN

El curso consta de los siguientes espacios de evaluación:

	Teoría
Evaluación	TEORÍA 60%
	Examen Parcial E1 (20%)
	Examen Parcial E2 (20%)
	Examen Parcial E3 (20%) LABORATORIO 40% Evaluación Continua C1 (10%)

Práctica Calificada PC1 (10%)

Práctica Calificada PC2 (10%)

Práctica Calificada PC3 (10%)

La evaluación del curso depende de dos partes: TEORÍA y PRÁCTICA.

- •La TEORÍA se evalúa mediante el promedio de tres (3) exámenes.
- •La PRÁCTICA se evalúa mediante el promedio de tres (3) prácticas calificadas y una (1) evaluación continua individual, todas del mismo peso.

Luego de calcular los promedios, y sin redondear, se obtienen las notas T y P, correspondientes al promedio de TEORÍA y el promedio de PRÁCTICA, respectivamente. Para aprobar el curso ambas notas T y P deben ser mayores o iguales que 10.5. En ese caso, la nota final del curso es 60%T+40%P y se redondea si es necesario. Si alguna nota T o P es menor que 10.5 el promedio final es igual al menor de los siguientes dos números: 10 y 60%T+40%P, con lo cual la nota final, luego de redondear si fuera necesario, es desaprobatoria.

100%

10. REFERENCIAS BIBLIOGRÁFICAS

- 1.Grimaldi, R. P. (2003). Discrete and combinatorial mathematics: An appliedIntroduction. Fifth Edition, Pearson.
- 2.Rosen, K. H., & Krithivasan, K. (2013). Discrete mathematics and itsapplications. New York: McGraw-Hill.
- 3. Johnsonbaugh R. (2018). Discrete Mathematics. Chicago: Pearson.
- 4.Kolman B., Busby R., Ross S. (2018), Discrete Mathematical Structures. Pearson.

