the largest subscript for which $c_j \neq 0$. If j = 1, then $c_1 \mathbf{v}_1 = \mathbf{0}$, which is impossible because $\mathbf{v}_1 \neq \mathbf{0}$. So j > 1, and

$$c_{1}\mathbf{v}_{1} + \dots + c_{j}\mathbf{v}_{j} + 0\mathbf{v}_{j+1} + \dots + 0\mathbf{v}_{p} = \mathbf{0}$$

$$c_{j}\mathbf{v}_{j} = -c_{1}\mathbf{v}_{1} - \dots - c_{j-1}\mathbf{v}_{j-1}$$

$$\mathbf{v}_{j} = \left(-\frac{c_{1}}{c_{j}}\right)\mathbf{v}_{1} + \dots + \left(-\frac{c_{j-1}}{c_{j}}\right)\mathbf{v}_{j-1}$$

PRACTICE PROBLEMS

1. Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ -4 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -6 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} 3 \\ 7 \\ -5 \end{bmatrix}$.

- a. Are the sets $\{u,v\},\{u,w\},\{v,z\},\{v,w\},\{v,z\},$ and $\{w,z\}$ each linearly independent dent? Why or why not?
- b. Does the answer to Part (a) imply that $\{u, v, w, z\}$ is linearly independent?
- c. To determine if $\{u, v, w, z\}$ is linearly dependent, is it wise to check if, say, w is a linear combination of \mathbf{u} , \mathbf{v} , and \mathbf{z} ?
- d. Is $\{u, v, w, z\}$ linearly dependent?
- **2.** Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly dependent set of vectors in \mathbb{R}^n and \mathbf{v}_4 is vector in \mathbb{R}^n . Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is also a linearly dependent set.

1.7 EXERCISES

Ctors in

Jeoreth .

vector.

 rl_V

 $ati_{0\eta}$

is

he :ly

to

1-7 odd, 11-29 odd

In Exercises 1-4, determine if the vectors are linearly independent. Justify each answer.

1.
$$\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 4 \\ -8 \end{bmatrix}$
2. $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 5 \\ -8 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$
3. $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 9 \end{bmatrix}$
4. $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -8 \end{bmatrix}$

In Exercises 5–8, determine if the columns of the matrix form a linearly independent set. Justify each answer.

In Exercises 1–4, determine if the vectors are linearly independent. Justify each answer.

5.
$$\begin{bmatrix}
0 & -8 & 5 \\
3 & -7 & 4 \\
-1 & 5 & -4 \\
1 & -3 & 2
\end{bmatrix}$$
6.
$$\begin{bmatrix}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{bmatrix}$$
7.
$$\begin{bmatrix}
1 & 4 & -3 & 0 \\
-2 & -7 & 5 & 1 \\
-4 & -5 & 7 & 5
\end{bmatrix}$$
8.
$$\begin{bmatrix}
1 & -3 & 3 & -2 \\
-3 & 7 & -1 & 2 \\
0 & 1 & -4 & 3
\end{bmatrix}$$

In Exercises 9 and 10, (a) for what values of h is v_3 in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$, and (b) for what values of h is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly dependent? Justify each answer.

9.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 9 \\ -6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 5 \\ -7 \\ h \end{bmatrix}$$

10.
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2 \\ 10 \\ 6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -9 \\ h \end{bmatrix}$$

In Exercises 11–14, find the value(s) of h for which the vectors are linearly dependent. Justify each answer.

11.
$$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 5 \\ h \end{bmatrix}$ 12. $\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 7 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 8 \\ h \\ 4 \end{bmatrix}$

12.
$$\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}, \begin{bmatrix} -6 \\ 7 \\ -3 \end{bmatrix}, \begin{bmatrix} 8 \\ h \\ 4 \end{bmatrix}$$

13.
$$\begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}, \begin{bmatrix} -2 \\ -9 \\ 6 \end{bmatrix}, \begin{bmatrix} 3 \\ h \\ -9 \end{bmatrix}$$
 14.
$$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -5 \\ 7 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ h \end{bmatrix}$$

14.
$$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} -5 \\ 7 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ h \end{bmatrix}$$

Determine by inspection whether the vectors in Exercises 15-20 are linearly independent. Justify each answer.

15.
$$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 7 \end{bmatrix}$ 16. $\begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -3 \\ 9 \end{bmatrix}$

$$16. \begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ 9 \end{bmatrix}$$

17.
$$\begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 5 \\ 4 \end{bmatrix}$$
 18.
$$\begin{bmatrix} 4 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 8 \\ 1 \end{bmatrix}$$

18.
$$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 1 \end{bmatrix}$

$$19. \begin{bmatrix} -8 \\ 12 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$

19.
$$\begin{bmatrix} -8 \\ 12 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$$
 20.
$$\begin{bmatrix} 1 \\ 4 \\ -7 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

In Exercises 21 and 22, mark each statement True or False. Justify each answer on the basis of a careful reading of the text.

- 21. a. The columns of a matrix A are linearly independent if the equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution.
 - b. If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
 - c. The columns of any 4×5 matrix are linearly dependent.
 - d. If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$.
- 22. a. Two vectors are linearly dependent if and only if they lie on a line through the origin.
 - b. If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
 - c. If \mathbf{x} and \mathbf{y} are linearly independent, and if \mathbf{z} is in Span $\{x, y\}$, then $\{x, y, z\}$ is linearly dependent.
 - d. If a set in \mathbb{R}^n is linearly dependent, then the set contains more vectors than there are entries in each vector.

In Exercises 23–26, describe the possible echelon forms of the matrix. Use the notation of Example 1 in Section 1.2.

23. A is a 3×3 matrix with linearly independent columns.

- 24. A is a 2×2 matrix with linearly dependent columns.
- **25.** A is a 4×2 matrix, $A = [\mathbf{a}_1 \ \mathbf{a}_2]$, and \mathbf{a}_2 is not a multiple of \mathbf{a}_1 .
- **26.** A is a 4×3 matrix, $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$, such that $\{\mathbf{a}_1, \mathbf{a}_2\}_{is}$ linearly independent and a_3 is not in Span $\{a_1, a_2\}$.
- 27. How many pivot columns must a 7×5 matrix have if its columns are linearly independent? Why?
- 28. How many pivot columns must a 5×7 matrix have if its columns span \mathbb{R}^5 ? Why?
- **29.** Construct 3×2 matrices A and B such that Ax = 0 has only the trivial solution and Bx = 0 has a nontrivial solution.
- 30. a. Fill in the blank in the following statement: "If A_{is} an $m \times n$ matrix, then the columns of A are linearly independent if and only if A has _____ pivot columns."
 - b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row operations. [Hint: Write $A\mathbf{x} = \mathbf{0}$ as a vector equation.]

31. Given
$$A = \begin{bmatrix} 2 & 3 & 5 \\ -5 & 1 & -4 \\ -3 & -1 & -4 \\ 1 & 0 & 1 \end{bmatrix}$$
, observe that the third column

is the sum of the first two columns. Find a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

32. Given
$$A = \begin{bmatrix} 4 & 1 & 6 \\ -7 & 5 & 3 \\ 9 & -3 & 3 \end{bmatrix}$$
, observe that the first column

plus twice the second column equals the third column. Find a nontrivial solution of Ax = 0.

Each statement in Exercises 33-38 is either true (in all cases) or false (for at least one example). If false, construct a specific example to show that the statement is not always true. Such an example is called a counterexample to the statement. If a statement is true, give a justification. (One specific example cannot explain why a statement is always true. You will have to do more work here than in Exercises 21 and 22.)

- **33.** If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are in \mathbb{R}^4 and $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly dependent.
- **34.** If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are in \mathbb{R}^4 and $\mathbf{v}_3 = \mathbf{0}$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly dependent.
- **35.** If \mathbf{v}_1 and \mathbf{v}_2 are in \mathbb{R}^4 and \mathbf{v}_2 is not a scalar multiple of \mathbf{v}_1 , then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent.
- **36.** If $\mathbf{v}_1,\dots,\mathbf{v}_4$ are in \mathbb{R}^4 and \mathbf{v}_3 is *not* a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4$, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent.
- 37. If v_1,\dots,v_4 are in \mathbb{R}^4 and $\{v_1,v_2,v_3\}$ is linearly dependent, then $\{v_1, v_2, v_3, v_4\}$ is also linearly dependent.
- **38.** If $\mathbf{v}_1, \dots, \mathbf{v}_4$ are linearly independent vectors in \mathbb{R}^4 , then $\{v_1,v_2,v_3\}$ is also linearly independent. [Hint: Think about $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + 0 \cdot \mathbf{v}_4 = \mathbf{0}.$