det D be a TAz-deduction of a formula  $\Gamma \mapsto M: \tau$ .

- (i) If we remove from each formula in A everything except its subject, A changes to a tree of terms which is exactly the Construction-tree for M.
- (ii) If M is an atom,  $M \equiv \infty$ , then  $\Pi = \{x : T\}$  and  $\Delta$ Contains only one firmula, namely the axiom x:T >> x:T
- (iii) If  $M \equiv PQ$  the last step in  $\Delta$  must be an application of (→E) to two formulae with form TIP HOP: 5-02 PIQ HOQ: 5 for some o.

restroction Subjects(P)=FV(P)

If M ≡ 1x.P then ~ must have from P → T if  $x \in FV(P)$  the last step in  $\Delta$  must be an application of (>I) main to

if x \$ FV(P) the last step in D must be an application of (>I) vac to P: 0

Deductions in TA, may not be unique think of ->Ivac  $\Delta_{M} \left[ \begin{array}{c} y:a \mapsto y:a \\ \mapsto (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\$ Example :-+:012:0 1) (1x-14-4)(12-3): a-1a file M = (A x. 2y. y) (122) Z = a -) a T = \$

here o can be aughting and this makes the Durique.

```
(Parperty)_
Uniqueners of deductions for normal berms.
let M be a B-my ad A a TAx-deduction of PH M:T.
Then ii) every type in A has an occurrence in C
         or in a type in Pr
     (ii) A is unique, i.e., it A' is also a deduction
         of \Gamma \mapsto M: T then \Delta' \equiv \Delta.
subject reduction ad expansion (Paroputy)
If Phas dype T we can think of Pas being in Some sense "safe".
 If Prepresents a stage in some computation which
 Continues by B-reducif P then all later stopes in the
 Empulation are also "safe". (Unsafe wears mismatel of types.)
 Subject - reduction theorem:
 If Phop: c ad PDBQ etten Phop Q: C
Court Proof: - to means There is a deduction of (P, p, t) in TA2.
    P = (2x.M)N Q = M[N/x]
    let x E FV(M), then by the Subject-Constriction theorem
    the lower steps of A must have the form
                                                   subject construction
                                                   theorem used for
         getting the lower or last
        T= T, UF and Subjects (T) = FV(P)
        so we have a deduction for PHOP: T
         but (br.M)N DBQ. i.e P DBQ.
 NOW
        to we also have a deduction for PHQ:T. D.
Subject expansion thun!-

If P + 1. 9:7 and P DB 9[8] then P + P: T.
  [x] by mm-dufticating and m-concelling contractions.
   the above emdots on [x] is very important. Remon's it
    will make the circles on balse.
```

1. let M be a 2-term. let CT(M) be a the construction hie of M.

let SM be the set of all the pairs of labels-position in the CT(M).

SM be the set obtained fm SM by remorif the labels.

i.e. SM contains only the position.

Problem: Hit aiven Sinceplet & 5 %. Construct a unique M corresponding to 5 %. No, we can't create a unique lambda term.

1.2. Find a minimum sized set Schappele so that a unique M com be conshructed from the set.

2. let Z = {0, 1, 2}

21 let given a regulaur expussion RZ Obtain the Shuchie Ob 1- term M.

- 2.2. Suggest types of ngular expressions that are meantful w.r.t. I-terms.
- 2-3. Suggest types of rigular expressions that que wit meanful w. r.t. 1-terms.

