#### Definition

A **relation** on a set X is a property of an ordered pair of elements of X which can be true or false.

**Example**: < is a relation on the set of natural numbers: if a and b are natural numbers then a < b is either true or false.

#### Definition

**Properties of relations**: Let  $\sim$  be a relation on a set X.

- $\sim$  is called **symmetric** if for any  $x, y \in X$  if  $x \sim y$  then  $y \sim x$ .
- $\sim$  is called **reflexive** if for any  $x \in X$  we have  $x \sim x$ .
- $\sim$  is called **transitive** if for any  $x, y, z \in X$  if  $x \sim y$  and  $y \sim z$  then  $x \sim z$ .
- ~ is called an **equivalence relation** if it is reflexive, symmetric and transitive.

#### Definition

Let  $\sim$  be an equivalence relation on a set X, and let  $x \in X$ . The **equivalence class** of x, written [x] or  $[x]_{\sim}$ , is

$$[x] = \{ y \in X | y \sim x \}$$

## Theorem

Let  $\sim$  be an equivalence relation on a set X. Then

- Every  $x \in X$  belongs to some equivalence class.
- If two equivalence classes classes are not disjoint, then they are equal.

## 2 Functions

### Definition

Let  $f: X \to Y$  be a function. The set X is called the domain of f. The set Y is called the co-domain of f.

#### Definition

Let  $f: X \to Y$  be a function.

- f is called **injective** or **one-to-one** if for all  $a, b \in X$ , if f(a) = f(b) then a = b.
- The **image** of f, written im f, is  $\{f(x): x \in X\}$ .
- f is called **surjective** or **onto** if im f = Y.
- f is called a **bijection** if it is injective and surjective.

#### Definition

Let  $f: X \to Y$  and  $g: Y \to Z$  be functions. The **composition** of g and f, written  $g \circ f$ , is the function  $g \circ f: X \to Z$  such that  $(g \circ f)(x) = g(f(x))$ .

NB: Composition only makes sense when the co-domain of f is the same as the domain of g.

## Theorem

Function composition is associative.

If 
$$f: X \to Y, q: Y \to Z, h: Z \to W$$
, then

$$h \circ (g \circ f) = (h \circ g) \circ f$$

The reason this is true is because both sides send an input  $x \in X$  to the output h(g(f(x))).

#### Definition

The **identity function**  $id_X$  does nothing: it is defined by  $id_X(x) = x$  for all  $x \in X$ .

#### Definition

Let  $f: X \to Y$  and  $g: Y \to X$  be functions. Then

- g is a left inverse to f, and f is a right inverse to g, if  $g \circ f = im_x$ .
- f is **invertible** if there is a function  $h: Y \to X$  such that  $f \circ h = id_Y$  and  $h \circ f = id_X$ .
- If f is invertible, then there is one and only one function which is a left and right inverse to f its inverse  $f^{-1}$ .

#### Theorem

Let  $f: X \to Y$  be a function.

- f has a left inverse if and only if it is injective.
- f has a right inverse if and only if it is surjective.
- f is invertible if and only if it is a bijection.

#### Theorem

If functions  $f_1, f_2, \ldots, f_n$  are invertible and the composition  $f_1 \circ f_2 \circ \cdots \circ f_n$  makes sense, then it is invertible with inverse  $f_n^{-1} \circ f_{n-1}^{-1} \circ \cdots \circ f_1^{-1}$ .

## $\mathbf{Definition} - \mathbf{Theorem}$

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## Definition — Theorem

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

# - Definition - Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

# Definition — Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

# Definition — Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

#### $\mathbf{Definition} - \mathbf{Theorem}$

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## - Definition — Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## - Definition — Theorem

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## Definition — Theorem

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## Definition — Theorem

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

# 4 Groups

# Definition — Theorem

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## 4.1 The Symmetric Group

## Definition — Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## 4.2 Subgroups

### Definition — Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

#### 4.3 Cosets and Lagrange's Theorem

# Definition — Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

#### 4.4 The Dihedral Groups

### Definition — Theorem

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

## 4.5 Homomorphisms and Isomorphisms

### Definition — Theorem

**Description**: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

Definition — Theorem

Description: Text

$$\mathbf{v} \cdot \mathbf{w} = 0 \iff \alpha = \frac{\pi}{2} \iff \mathbf{v} \perp \mathbf{w}$$

