

Inequality in Health

Lecture V: Health Deficit Accumulation

Dr Martin Karlsson University of Duisburg-Essen Winter semester 2022-23

Outline

- Recap of Last Lecture
- 2 Introduction
- Modeling Human Ageing
- 4 Optimal Ageing and Death
- 5 Comparative Dynamics
- 6 Extensions
- Summary and Conclusions

Recap of Last Lecture

Recap of Last Lecture

- The properties of the concentration index depend on the measurement characteristics of the health variable of interest.
- When the health variable is cardinal and has finite upper and lower bounds, the **Erreygers index** E(h) and the **Wagstaff index** W(h) satisfy the desired properties (sign, scale invariance, mirror property) and are superior to the CI.
- Level-dependent indices allow for decomposition into within- and between-subgroup inequality.
- Applying decomposition methods to inequality indicators (like the CI) allows to analyse income-related inequalities in health across the entire income distribution (income proxying for SES).
- In this case, each source of inequality is quantified and not just the difference between the two groups.

Introduction

The Preston Curve

Figure 1. The Preston Curve: Life Expectancy versus GDP Per Capita.

What is Ageing?

- An intrinsic, cumulative, progressive and deleterious process that ends with death.
- Great heterogeneity: Only imperfectly captured by calendar age.
 There is no 'biological clock'.
- But at the population level: age is the best predictor of death.

Figure 2. Gompertz-Makeham Law of Mortality. Data: U.S in 2019.

The Reductionist Approach

- The body ages
- Because its organs age
- Because tissue ages
- Because cells age
- • •
- But molecules do not age!

Reliability Theory

- Failure (death): a required function is terminated.
- Ageing is degradation to failure.
- A reliability structure: arrangement of components required for system reliability.
 - Connected in series.
 - Connected in parallel.
- Combination of the two: series-parallel.

The Human Body is Series-Parallel

Figure 3. A Series-Parallel System.

Redundancy

Redundancy (given by parallel blocks) has two implications

- Damage tolerance: damage does not lead to failure/death.
- Damage accumulation the organism ages.

Figure 4. Redundancy.

odeling Human Ageing

Modeling Human Ageing

Deficit Accumulation

- Ageing is thus the collection of deficits reduced vision, strokes...
- Mitnitski et al. (2002) fit deficit accumulation equation

$$D\left(t\right) = E + Be^{\mu t} \tag{1}$$

- The **force of ageing** μ is a physiological parameter: drives the process of ageing.
- ullet E is common for men and women; B and μ are gender specific.
- Now differentiate with respect to age:

$$\dot{D}(t) = \mu \left(D(t) - E \right) \tag{2}$$

- Hence, E slows down ageing.
- Think of it as malleable part of deficit accumulation (⇒ investment).

Dalgaard & Strulik's Specification

Dalgaard and Strulik (2014) assume the following specification for E:

$$\dot{D}(t) = \mu \left(D(t) - a - Ah(t)^{\gamma} \right) \tag{3}$$

where

- Parameter a captures exogenous environmental factors.
- A > 0 and $0 < \gamma < 1$ represent state of **health technology**:
 - A: general power of expenditure
 - γ : returns to scale.
- h is health investment.
- μ is **constant** across time and space.
- Death occurs whenever $D\left(t\right)>\bar{D}$

Comparison with Grossman's Model

• In contrast, Grossman (1972) models the stock of health as

$$\dot{H}(t) = I(t) - \delta H(t) \tag{4}$$

- I(t) represents **investments** and H(t) is stock of health.
- Central implication: depreciation is greater when stock of health is large!
- Standard fix (cf. Muurinen, 1982): let it be age-dependent $(\delta(t))$.
- But where do you get this function from?
- Now use $H = \bar{H} D$ to convert the Dalgaard-Strulik model:

$$\dot{H}(t) = \mu E - \mu \left(\bar{H} - H(t)\right) \tag{5}$$

 Here, health loss is small when health is good – increasing losses when health deteriorates. optimal Ageing and Death

Optimal Ageing and Death

The Optimisation Problem

• Consider an adult maximising utility from consumption $c\left(t\right)$ over his or her life:

$$\int_{0}^{T} e^{-\rho t} u\left(c\left(t\right)\right) dt \tag{6}$$

with
$$u(c) = (c^{1-\sigma} - 1) / (1 - \sigma) + b$$
.

- Thus, health does not affect flow utility.
- ullet The model is deterministic but longevity T is endogenous.
- Income can be spent on consumption goods c and health goods h
 with price p.
- ullet The law of motion for individual wealth k is given by

$$\dot{k}(t) = w + rk(t) - c(t) - ph(t)$$
(7)

Optimal Solution

- The problem is to maximise equation (6) subject to constraints (3) and (7) and initial/terminal conditions.
- The solution provides 'optimal ageing and death' of the individual.
- First-order conditions give Euler equations for consumption and health investment:

$$g_c \equiv \frac{\dot{c}}{c} = \frac{r - \rho}{\sigma} \tag{8}$$

$$g_h \equiv \frac{\dot{h}}{h} = \frac{r - \mu}{1 - \gamma} \tag{9}$$

- Health Euler equation: health expenditure growth
 - ullet increases in r
 - **decreases** in μ : higher $\mu \Rightarrow$ health expenditure later in life ineffective.
 - increases in $\gamma\colon$ small $\gamma\Rightarrow$ diseconomies of scale \Rightarrow more smoothing of h
 - Not necessarily **positive**: if $r < \mu$ people age at a rapid pace & prevention more effective than cure.

Optimal Death

- ullet Contrary to Grossman's model, the Dalgaard-Strulik model can be solved for **optimal longevity** T.
- Impose boundary conditions $D\left(0\right)=D_{0},\ k\left(0\right)=k_{0},\ k\left(T\right)=\bar{k},$ $D\left(T\right)=\bar{D}$ and $h\left(T\right)=0.$
- Then integrate constraints (3) and (7) to solve for k(T) and h(T).
- Then solve the associated Hamiltonian for H(T) = 0.
- This leads to three equations with three unknowns and can the resulting dynamic system can be solved for optimal life cycle trajectories of c, h, k, and D.

Comparative Dynamics

Calibration for the U.S.

- Calibrated variables
 - Initial deficits, end-of-life deficits, and longevity.
 - Growth of health spending across ages (g_h) .
- No restrictions put on
 - Path of deficits
 - Expenditure shares (h versus c)
- Consistency check: do the paths of health expenditure and frailty match the data?

Calibrated Parameters

Table 1. Model calibration and implications

Description	Notation	Value	Source
Capital share	α	0.33	King & Rebelo (1999)
Inverse of IES	σ	1.0	Chetty (2006)
Interest rate	r	0.06	Barro et al (1995)
Time preference rate	ρ	0.06	Browning & Ejrnæs (2009)
GDP per worker in 2000	y	77,003	Heston, Summers and Aten (2009)
Life expectancy at 20 in year 2000	T	55.2	National Vital Statistics (2009)
Life expectancy at 20 in year 1900	T	42.0	National Vital Statistics (2009)
Force of ageing	μ	0.043	Mitnitski & Rockwood (2002)
Health deficits at age 20	D(0)	0.027	Mitnitski & Rockwood (2002)
Health deficits at age 75.2	$D\left(T\right)$	0.10	Mitnitski & Rockwood (2002)
Growth rate of health spending	g_h	0.021	Health Canada
Bequests	k(0), k(T)	0.0	Benchmark: no bequests
Exogenous health parameter	a	0.013	Implied
Health technology (scale)	A	0.0014	Implied
Health technology (curvature)	γ	0.0014	Implied
Relative price of health in 2000	p	1.0	Normalisation

Model Performance

Figure 5. Model Performance, Basic Run

Experiment 1: Income

Figure 6. Variation of Labour Income.

Experiment 2: Wealth

Figure 7. Variation of Wealth.

Experiment 3: Health Costs

Figure 8. Variation of Health Costs.

Experiment 4: Medical Effectiveness

Figure 9. Variation of Medical Effectiveness (A).

Summary of Findings

- ullet Model replicates $D\left(t\right)$ quite well, share of health expenditure somewhat less accurately.
- **Higher income** leads to more spending on health. A 33% increase in income increases longevity by 1.5 years.
- Increased wealth increases longevity, bequests do not matter.
- **Doubling of health costs** reduces longevity by 2.7 years.
- Increased medical productivity has large effect on longevity.
- → Improved technology dominates rising incomes.

Back to the Preston Curve

• The authors estimate a Preston curve for male life expectancy at 20:

$$y_i = f(z_i) + x_i \beta + \epsilon_i \tag{10}$$

 This estimated curve is then compared to the model predictions of LE as a function of income.

Figure 10. The Model versus the Preston Curve.

Comment

- The model replicates the Preston curve fairly well accounts for 2/3 of longevity-income relationship.
- Systematic deviations may be due to
 - Reverse causation health ⇒ income.
 - Explains the deviation if reverse causation has steeper slope.
 - Omitted variables such as cost of health care (p/A).
 - Requires prices to be higher in poorer countries.
- Overall, the underlying story appears to be: **differences in longevity** by income mainly driven by **differences in health investments**.

Extensions

Dalgaard and Strulik (2017): Retirement

- Dalgaard and Strulik (2017) introduce a retirement decision.
- Wages increase with experience, decrease with deficits/ageing.
- Work generates disutility.
- New health Euler while working: investing in health increases productivity.
- Increases in health prices, technological progress in health care, and rising incomes lead to longer retirement.
- Declining prices of health care will increase longevity and retirement age.

Results

Figure 11. Model Predictions by Education.

Schünemann et al. (2017): Gender gap

- Can the gender gap in longevity be explained by behaviour?
- Now assume health gives utility: U(c(t), D(t)).
- Calibrate model to gender-specific particulars $(D_0, \bar{D}, T, h(t), w)$.
- Preference parameters σ (IES) and α (preference for health) are gender-specific.
- Would the gender gap be closed if females had male preferences?

Results

Figure 12. Female Health with Male Preferences.

ummary and Conclusions

Summary and Conclusions

Summary and Conclusions

- Human Ageing is best described as an accumulation of health deficits.
- A serial-parallel system has **redundancy**, which implies **ageing**.
- The Dalgaard and Strulik (2014) model incorporate these insights in an economic model.
- Individuals invest in health to reduce deficit accumulation.
- Model can predict the trajectory of health quite well.
- Implication for Preston curve: largely reflects causation running from income to health.

Literature I

- DALGAARD, C.-J. AND H. STRULIK (2014): "Optimal aging and death: understanding the Preston curve," Journal of the European Economic Association, 12, 672–701.
- ——— (2017): "The genesis of the golden age: Accounting for the rise in health and leisure," Review of Economic Dynamics, 24, 132–151.
- GROSSMAN, M. (1972): "On the Concept of Health Capital and the Demand for Health," The Journal of Political Economy, 80, 223–255.
- MITNITSKI, A. B., A. J. MOGILNER, C. MACKNIGHT, AND K. ROCKWOOD (2002): "The accumulation of deficits with age and possible invariants of aging," *TheScientificWorldJOURNAL*, 2, 1816–1822.
- MUURINEN, J.-M. (1982): "Demand for health: a generalised Grossman model," Journal of Health economics, 1, 5-28.
- Schünemann, J., H. Strulik, and T. Trimborn (2017): "The gender gap in mortality: How much is explained by behavior?" Journal of health economics, 54, 79–90.