Statistics for Genomic Data Analysis

Annotation; gene set testing

http://moodle.epfl.ch/course/view.php?id=15271

Identifying differential expression

- Preprocess data
 - Image analysis
 - Quality assessment
 - Normalization
- Single gene linear modeling and empirical Bayesian shrinkage
 - ImFit
 - eBayes
 - topTable -> (possibly long) list of DE genes

Limitations of single gene tests

- If expression changes are not loare, might not be able to detect significance after controlling for multiple tests
- Difficulty interpreting a resulting (possibly long) gene list
- Single gene testing ignores information on functional annotation

Problem: relating list of DE genes to biology

- What to do with the list?
 - Select some genes for validation
 - Follow-up experiments on some genes
 - Publish a huge table with the results
 - Literature search to learn about genes on the list
- Maybe further/different data analysis will help?

Sets of genes

- Sets of genes defined a priori
- There are usually many sets of genes of (potential) interest
 - genes in particular pathways
 - genes having a certain function
- Genes can have multiple functions
- Pathway databases (e.g. KEGG)
- Gene ontologies (GO)
- Protein `knowledgebase' SwissProt

The Gene Ontology Consortium

- Coordinates GO development
- GO is a set of 3 ontologies for gene products
 - Molecular function
 - Biological process
 - Cellular component
- An ontology is a restricted structured vocabulary of terms used to represent domain knowledge
- The leaves are more specific terms, their parents are less specific

Gene Ontology

Molecular function

- Defined to be what a gene product does at the biochemical level
- Describes (only) the capability of the gene product
- Does not say anything about where the function is carried out, under what circumstances, how it works, etc.
- Examples: transporter, enzyme

Biological process

- A biological objective to which the gene product contributes
- Accomplished by assemblies of molecular functions
- Not the same as a pathway (which has dependencies and dynamics distinct from a biological process)
- Not always easy to distinguish from molecular function
- Example: signal transduction

Cellular component

- Component of a cell that is part of a larger structure
- Examples: telomere, nucleus

Structure of a GO annotation

```
Annotated GO: GO:0006917

□GO:0003673 : Gene_Ontology (46199)
□GO:0008150 : biological_process (30188)
□GO:0016265 : death (525)
□GO:0008219 : cell death (484)
□GO:0006915 : apoptosis (419)
□GO:0006917 : induction of apoptosis (148)
□GO:0005575 : cellular_component (22371)
□GO:0003674 : molecular_function (37018)

□ denotes an 'is-a' relationship
□ denotes a 'part-of' relationship
```

Splits: GO:0008150 GO:0016265 GO:0008219 GO:0012501 GO:0012502 GO:0006915 GO:0006917

Each gene can have several annotated GOs, and each GO can have several splits

Annotation of genes to a node

Each node is connected to other, related nodes

GO and microarray gene sets

Hypothesis: Functionally related, differentially expressed genes should accumulate in the corresponding GO-group

Problem: to find a method which scores accumulation of differential gene expression in a node of the GO

Strategies for gene set testing

- Hypergeometric testing (Fisher's exact test)
- Gene Set Enrichment Analysis (GSEA)
- Main difference: hypergeometric requires a definition of DE vs. not (often based on a p-value), whereas GSEA takes a continuous measure and computes a global summary for the gene set

A lady tasting tea

- Exact test developed for the following setup:
- A lady claims to be able to tell whether the tea or the milk is poured first
- 8 cups, 4 of which are tea first and 4 are milk first (and the lady knows this)
- Thus, the margins are known in advance
- Want to assess the chance of observing a result (table) as or more extreme

Fisher's Exact Test

- Method of testing for association when some expected values are small
- Measures the chances we would see differences of this magnitude or larger if there were no association
- The test is conditional on both margins both the row and column totals are considered to be fixed

More about Fisher's exact test

- Fisher's exact test computes the probability, given the observed marginal frequencies, of obtaining exactly the frequencies observed and any configuration more extreme
- "More extreme" means any configuration with a smaller probability of occurrence in the same direction (one-tailed) or in both directions (two-tailed)

Example

	+	-	
A	2	3	5
В	6	4	10
	8	7	15

Example

	+	1	
A	0		5
В			10
	8	7	15

B

8

	+	•	
A	3		5
В			10
	8	7	15

	+	1	
A	4		5
В			10
	8	7	15

	+	1	
A	5		5
В			10
	8	7	15

5

10

15

+ A 2 3 5 B 6 4 10 8 7 15

Example

.326

		+	1	
	4	თ		5
	В			10
		8	7	15
٠			-	

+

8

A

B

.392

.007

.093

	+	•	
A	0		5
В			10
	8	7	15

4 5 10 .163

15

	+	1	
A	1		5
В			10
	8	7	15

 +

 A
 5
 5

 B
 10

 8
 7
 15

.019

Where do these probabilities come from??

- With both margins fixed, there is only 1 cell that can vary
- The probabilities come from the hypergeometric distribution
- This distribution gives probabilities for the number of 'successes' in a sample of size n drawn without replacement from a population of size N comprised of a known number of 'successes'

Hypergeometric testing in BioC

- Category package
 - function hyperGTest
- GOstats package

Is a GO term is specific for a set?

Problems with Fisher's test

- The exact test was developed for the case of fixed marginals
- In this case the probability (p-value) computed by the Fisher test is exact (unlike the chi-square test, which relies on approximations)
- However, this setup is unrealistic for most studies - even if we know how many samples we will get in each group, we generally cannot fix in advance both margins
- Other methods have also been proposed to deal with this problem

(BREAK)

Original GSEA (Mootha et al)

- Genes involved in oxidative phosphorylation coordinately down-regulated in human diabetes
- Affy data on 22,000 genes in skeletal muscle biopsy samples from 43 males, 17 with normal glucose tolerance (NGT), 8 with impaired glucose tolerance and 18 with Type 2 diabetes (DM2)
- Computed t-statistic for each gene
- No significant difference found between NGT and DM2 after adjusting for multiple testing
- Their idea: test 149 a priori defined gene sets for association with disease phenotypes

The 149 gene sets

- Sets of metabolic pathways:
 - manually curated pathways (standard textbook literature reviews, and LocusLink)
 - Netaffx annotations using GenMAPP
- Sets of coregulated genes:
 - SOM clustering of the mouse expression atlas

Original GSEA calculation (I)

- For each gene set S, compute Kolmogorov-Smirnov running sum
- Order genes according to some criterion (e.g. a two-sample t-test)
- Beginning with the top ranking gene, the running sum increases when a gene in set S is encountered and decreases otherwise
- The enrichment score (ES) is defined to be the maximum value of the running sum

Original GSEA calculation (II)

- Obtain maximal ES (MES) over all sets S
- For each of B permutations of the class labels, ES and MES values are computed
- The observed MES is then compared to the B values of MES that have been computed, via permutation
- Several modifications have been proposed

Mootha et al. method

Collect gene sets GO terms Gene clusters

Order genes (R) by expression difference

ES=enrichment score for each gene = scaled K-S dist

A set called **OXPHOS** got the largest ES score, with p=0.029 on 1,000 permutations.

WICGR OXPHOS WICGR mitochondria. Mitochondria keyword Cluster c20 GenMAPP OXPHOS

GenMAPP retinol metabolism

181

Evaluate significance of actual MES against 1,000 permuted MES

The result

OXPHOS

(A small difference for many genes)

All genes OXPHOS

a

Review of major points

- Normalization
- Affymetrix gene expression
- Affymetrix quality assessment
- Identifying DE
- Cluster analysis

Review of major points - Normalization

- The purpose of normalization is to correct for systematic differences which do not represent true biological variation
- Normalize as much as necessary, and as little as possible!
- Standard RMA normalization is quantile normalization

Review of major points - Affymetrix GeneChip expression

- Summarizes fluorescence intensities for all probes within a probeset (which represents a single sequence, or 'gene')
- 3 steps to a measure of expression: bg correction, normalization, summarization
- Best to do this robustly
- Best to normalize a set of chips (rather than adjusting each chip to a baseline chip)
- RMA bg, quantile normalization, chip + probe effect model fit by median polish

Review of major points - Affymetrix GeneChip quality assessment

- Affymetrix quality measures (.rpt file) relate to hybridization quality
- Useful to consider instead quality of expression measure (since that is what data analysis/decisions are based on)
- Robust regression weights can be used to assess quality

Review of major points - Identifying differential expression

- Fold change (or log FC = M) intuitive for biologists, but ignores variability of replicate gene expression measurements across arrays
- t-statistic takes variability into account (too much when only a small number of replicates)
- Linear modeling and empirical Bayes moderated t-statistic (mod t) or B statistic perform better for detecting truly DE genes
- p-value adjustment
- Volcano plot to display (B vs. M, or |mod t| vs. M)

Review of major points - Cluster analysis

- Can cluster samples or genes or both
- Visualization: dendrogram (for hierarchical methods or heatmap
- There are many things that can vary in a cluster analysis: make choices/decisions based on the aim of the analysis and the types of differences you are interested in detecting

