

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехника и комплексная автоматизация»

КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к выпускной квалификационной работе

на тему

«Разработка компонентов графоориентированного программного каркаса для реализации сложных вычислительных методов»

Студент <u>РК6-81Б</u> группа	подпись, дата	<u>Тришин И.В.</u> Фио
Руководитель ВКР	подпись, дата	$\frac{\text{Соколов A.}\Pi.}{\Phi\text{ИO}}$
Консультант	подпись, дата	Першин А.Ю.
Нормоконтролёр	подпись, дата	<u>Грошев С.В.</u>

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана
УТВЕРЖДАЮ
Заведующий кафедрой $\frac{PK}{\text{инде}}$
A.П. Kapne
ЗАДАНИЕ
на выполнение выпускной квалификационной работы
Студент группы: РК6-81Б
Тришин Илья Вадимович
(фамилия, имя, отчество)
Тема выпускной квалификационной работы: Разработка компоненто
графоориентированного программного каркаса для реализации сложны
вычислительных методов
Источник тематики (кафедра, предприятие, НИР): кафедра
Тема выпускной квалификационной работы утверждена распоряжением п
факультету РК № от «» 2022 г.
Техническое задание
Часть 1. Аналитический обзор литературы.
Более подробная формулировка задания. Следует сформировать, исходя и
исходной постановки задачи, предоставленной руководителем изначально
Формулировка включает краткое перечисление подзадач, которы
требовалось реализовать, включая, например: анализ существующи
методов решения, выбор технологий разработки, обоснование актуальност
тематики и др. Например: «В рамках аналитического обзора литератур

должны быть изучены вычислительные методы, применяемые для решения

задач кластеризации больших массивов данных. Должна быть обоснована актуальность исследований.»

Часть 2. Математическая постановка задачи, разработка архитектуры программной реализации, программная реализация.

Более подробная формулировка задания. В зависимости от поставленной задачи: а) общая тема части может отличаться от работы к работе (например, может быть просто «Математическая постановка задачи» или «Архитектура программной реализации»), что определяется целесообразностью для конкретной работы; б) содержание задания должно несколько детальнее раскрывать заголовок. Например: «Должна быть создана математическая модель распространения вирусной инфекции и представлена в форме системы дифференциальных уравнений».

Часть 3. Проведение вычислительных экспериментов, тестирование.

Более подробная формулировка задания. Должсна быть представлена конкретизация: некоторая какие вычислительные эксперименты требовалось реализовать, какие тесты требовалось провести для проверки работоспособности разработанных программных решений. Формулировка задания должна включать некоторую конкретику, например: какими средствами требовалось для проведения пользоваться Например: «Вычислительные вычислительных эксперименто. эксперименты должны быть проведены с использованием разработанного в рамках ВКР программного обеспечения».

Оформление выпускной квалификационной работы:

Расчетно-пояснительная записка на 33 листах формата А4.

Перечень графического (иллюстративного) материала (чертежи, плакаты,

слаиды и т.п.):	
количество: 1 рис., 0 табл., 13 источн.	
[здесь следует ввести количество чертежей, плакатов]	
Дата выдачи задания « <u>08</u> » февраля 2022 г.	
Стулент	Тришин И.В

Руководитель выпускной подпись, дата фио Соколов А.П. квалификационной работы

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

<u>PK</u>	УТВЕРЖДАЮ
ФАКУЛЬТЕТ	Заведующий кафедрой <u>РК-6</u>
КАФЕДРА <u>РК-6</u>	индекс А.П. Карпенко
ГРУППА <u>РК6-81Б</u>	«»2022 г.

КАЛЕНДАРНЫЙ ПЛАН

выполнения выпускной квалификационной работы

Студент группы: <u>РК6-81Б</u> Тришин Илья Вадимович

(фамилия, имя, отчество)

Тема выпускной квалификационной работы: <u>Разработка компонентов</u> графоориентированного программного каркаса для реализации сложных вычислительных методов

№	Наименование	Сроки		Отметка о выполнении	
п/п	этапов выпускной	выполнения			
	квалификационной работы	этапов			
		план	факт	Должность	ФИО,
					подпись
1.	Задание на выполнение работы.	18.02.2022	18.02.2022	Руководитель	Соколов А.П.
	Формулировка проблемы, цели			BKP	
	и задач работы				
2.	1 часть: аналитический обзор	18.02.2022	31.03.2022	Руководитель	Соколов А.П.
	литературы			BKP	

№	Наименование	Сроки		Отметка о выполнении	
п/п	этапов выпускной	выполнения			
	квалификационной работы	этап	ОВ		
		план	факт	Должность	ФИО, подпись
3.	Утверждение окончательных формулировок решаемой проблемы, цели работы и перечня задач к к к	28.02.2022	28.02.2022	Заведующий кафедрой	А.П. Карпенко
4.	2 часть: математическая постановка задачи, разработка архитектуру программной реализации, программная реализация	31.03.2022	31.03.2022	Руководитель ВКР	Соколов А.П.
5.	3 часть: проведение вычислительных экспериментов, отладка и тестирование	30.04.2022	30.04.2022	Руководитель ВКР	Соколов А.П.
6.	1-я редакция работы	31.05.2022	31.05.2022	Руководитель ВКР	Соколов А.П.
7.	Подготовка доклада и презентации	17.06.2022	17.06.2022		
8.	Заключение руководителя	15.06.2022	15.06.2022	Руководитель ВКР	Соколов А.П.
9.	Допуск работы к защите на ГЭК	15.06.2022	15.06.2022	Нормоконтролер	С.В. Грошев
10.	Внешняя рецензия	12.06.2022	12.06.2022		
11.	Защита работы на ГЭК	19.06.2022	19.06.2022		

Студент		Тришин И.В.	Руководитель ВКР_		Соколов А.П.
	подпись, дата	ФИО		подпись, дата	ФИО

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

НАПРАВЛЕНИЕ НА ЗАЩИТУ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

Председателю Государственной Экзаменационной Комиссии №	
факультета «Робототехника и комплексная автоматизация» МГТУ им. Н.З	Э. Баумана
Направляется студент <i>Фамилия Имя Отчество</i> группы <i>РК6-81Б</i>	
на защиту выпускной квалификационной работы <u>Тема</u>	
Декан факультета <u>пориск</u> демяна «44» <u>неся д</u>	<u>202¶</u> Γ.
Справка об успеваемости	
Студент <i>Фамилия Имя Отчеств</i> о за время пребывания в МГТУ имени Н.Э. Ба	умана
с 2017 г. по 2020 г. полностью выполнил учебный план со следующи	іми оценками
отлично – $[npouehm]$ %, хорошо – $[npouehm]$ %, удовлетворительно – $[npouehm]$	<u>n]</u> %.
Инспектор деканата	
Отзыв руководителя выпускной квалификационной работы	Ī
Студент Фамилия И.О. в процессе выполнения ВКР проявил себя как Резульные в процессе реализации задания, позволили сделать вывод о целесообрати выбранных путей решения поставленной задачи, невозможнения Работа выполнена автором самостоятельно, в полном объёме, в по	_{'льтаты, полу}
им венные в процессе реализации задания, позволили сделать вывод о целесообр	разности/неце
лесообразности выбранных путей решения поставленной задачи, невозмож	<u>кности приме</u>
у 🖟 <u>нения Работа выполнена автором самостоятельно, в полном объёме, в по</u>	лном соответ
ствии с заданием и календарным планом. Несмотря на сделанные замечани	я студент до
стоин «отличной» оценки и присвоения звания бакалавр техники и технологи	<u>ий по направле</u>
нию «Информатика и вычислительная техника».	
30 mpocus y principality	
Руководитель ВКР А.П. Соколов «»	2020 г.
(подпись) (ФИО) (дата Студент И.О. Фамилия «»	а) 2020 г.
(подпись) (ФИО) (дата	a) ••••
noganicaile	

РЕФЕРАТ

выпускная квалификационная работа: 33 с., 1 рис., 0 табл., 13 источн.

САЅЕ-СИСТЕМЫ, РАСПРЕДЕЛЁННЫЕ ВЫЧИСЛЕНИЯ, ГРАФООРИЕНТИРОВАННЫЙ ПОДХОД, СЛОЖНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ, ОПИСАНИЕ БИЗНЕС-ЛОГИКИ.

Данная работа посвящена разработке программного инструментария, позволяющего описывать и реализовать логику решения различных задач, требующих большого количества трудоёмких вычислений. При описании применяется т.н. графоориентированный подход, который позволяет пользователю задавать действия алгоритма или вычислительного метода в виде переходов между состояниями данных. Формируемое описание затем интерпретируется и выполняется с примененим стандартных или пользовательских реализаций каждого из переходов.

Реализованные программные средства позволяют структурировать и ускорить разработку наукоёмкого программного обеспечения, применяемого при анализе больших объёмов данных и научно-технических исследованиях.

Тип работы: выпускная квалификационная работа.

Тема работы: «Разработка компонентов графоориентированного программного каркаса для реализации сложных вычислительных методов».

Объект исследования: подходы к описанию бизнес-логики в системах автоматизированной разработки программного обеспечения.

Основная задача, на решение которой направлена работа: @Основная задача, на решение которой направлена работа@.

Цели работы: @Цель выполнения работы@

В результате выполнения работы: 1) предложено ...; 2) создано ...; 3) разработано ...; 4) проведены вычислительные эксперименты ...

СОКРАЩЕНИЯ

 \mathbf{API} — прикладной программный интерфейс (Application Programming Interface).

DFD – диаграмма потоков данных (Data Flow Diagram).

GBSE – графоориентированный подход к разработке программного обеспечения (graph based software engineering).

JSON — файловый формат для хранения структур данных (Javascrtipt Object Notation).

LCPD – платформы малокодовой разработки (low-code development platforms).

ПО – программное обеспечение.

СОДЕРЖАНИЕ

C	OKPAL	цения	9
\mathbf{B}	веден	ИЕ	11
1	Постан	овка задачи	22
	1.1	Концептуальная постановка задачи	22
	1.2	Математическая постановка задачи (представляется в	
		зависимости от задачи)	22
2	Вычис	лительный метод	23
3	Програ	аммная реализация	24
	3.1	Архитектура	24
4	Тестир	ование и отладка	25
	4.1		25
5	Вычис	лительный эксперимент	26
	5.1		26
6	Анализ	з результатов	27
	6.1		27
3.	АКЛЮ	ЧЕНИЕ	28
Л	итерату	pa	29
П	РИЛОХ	КЕНИЯ	32
A			32

ВВЕДЕНИЕ

Современные научно-технические исследования зачастую включают в себя задачи, при решении которых требуется большое количество вычислений, задействуются большие вычислительные ДЛЯ которых мощности. К таким задачам относятся, например, задачи анализа, определения характеристик материалов ИЛИ технических объектов, моделирования сложных динамических процессов. Как правило, для решения подобных задач применяется или разрабатывается специализированное программное обеспечение (далее – ПО).

Среди прочих применяются программные продукты, предоставляющие пользователю формальный язык описания математических выражений и его интерпретатор, выполняющий необходимые вычисления на машине пользователя. К таким системам относятся, например, Mathcad. Также стоит отметить системы специализирующиеся на символьной алгебре, такие, как Maple[1] и Wolfram Mathematica. В настоящее время данные программные комплексы поддерживают решение задач из различных областей математики, включающих в себя теорию графов, теорию множеств и т.д, предоставляют инструменты визуализации и анализа результатов. Все они позволяют выполнять математическое моделирование, в том числе, сложных технических объектов. При всех их преимуществах необходимость формулировать математические постановки решаемых задач (т.е. формировать математические модели, составлять системы уравнений и т.д.) остаётся за пользователем. Зачастую требуется решать множество задач с схожей постановкой, но с различными входными параметрами. Такая необходимость, например, возникает при решении задач оптимизации, где критерием является некоторая характеристика, Следовательно, получаемая результате решения задачи анализа. целесообразны автоматизированные средства решения типовых задач анализа и моделирования.

Данные средства относятся к специализированному ПО, а потому при их разработке требуются глубокие познания в предметной области. Кроме того, важно, чтобы создаваемая кодовая база была рассчитана на дальнейшую поддержку, что предъявляет соответствующие требования к структуре исходного кода и документации. Таким образом целесообразно применение некоторых средств, позволяющих организовать разработку программного обеспечения для решения задач моделирования и анализа и повысить его поддерживаемость.

В наши дни популярность приобретает применение т.н. научных систем управления потоком задач (англ. scientific workflow systems). Они предоставляют средства организации этапов решения вычислительной задачи и управления вычислительными ресурсами. Процесс работы с подобными системами состоит из 4 основных этапов:

- 1) составление описания операций обработки данных и зависимостей между ними;
- 2) распределение процессов обработки данных по вычислительным ресурсам;
- 3) выполнение обработки данных;
- 4) сбор и анализ результатов и статистики [2].

Примерами подобных систем могут служить Pegasus[3], Kepler[4] и pSeven[5]. Помимо инструментов загрузки пользовательских реализаций этапов решения задачи они, как правило, представляют библиотеку типовых действий и преобразований, таких, как считывание данных и их сохранение в файлы одного из поддерживаемых форматов, операции со строками, работы с базами данных, и т.д. На рисунке В.1 изображён пример описания некоторого процесса в системе Kepler.

Кроме того, для облегчения процесса разработки трудоёмкого ПО существуют т.н. платформы малокодовой разработки (англ. low-code development platforms, LCPD)[6]. В них, подобно системам управления разрабатываемого потоком задач. логика программного продукта ПОМОЩИ некоторого формального описывается при языка или использованием графического редактора. От системы к системе подход к описаниям варьируется. Может применяться структурный подход, описывающий шаги алгоритма, или предметно-ориентированный, при котором описываются взаимодействующие сущности. Некоторые системы позволяют по созданному описанию генерировать готовые компоненты

Рисунок В.1. Описание процесса обработки данных в системе Kepler

будущего программного продукта. Так платформа Codebots реализует предметно-ориентированный подход и по составленным UML-диаграммам взаимодействующих сущностей позволяет генерировать API, JSON-схемы данных и документацию[6]. Тем не менее, при реализации сложных вычислительных методов целесообразнее использовать структурный подход.

особенностей Одной ИЗ ключевых описанных технологических решений является выделение операций обработки данных в отдельные программные модули (функции, подпрограммы, скрипты). Как правило, при созданий описаний алгоритмов в них используется следующий подход. Поскольку известно, что выходные данные одного программного модуля могут являться входными для одного или нескольких других модулей, можно сказать, что между ними формируются зависимости по входным и выходным данным. Тогда возможно составить такой ориентированный граф, описывающий общую логику алгоритма, в котором узлами являются операции обработки данных, а рёбрами – пути данных. Такой подход получил название "диаграммы потоков данных" (англ. Dataflow Diagram, DFD). При известных входных и выходных данных каждого модуля становится возможной их независимая разработка[7]. Таким образом, уменьшается объём работы по написанию исходных кодов, приходящийся на одного исследователя. Это в свою очередь облегчает отладку и

написание документации, что положительно сказывается на общем качестве реализуемого ПО.

```
!!! ------ WARNING ! MISSING PART ------ !!!
!!! Здесь нужен какой-то переход к тому, зачем может потребоваться
вводить абстракцию над обрабатываемыми данными
!!! ------ !!!
```

Таким образом, в некоторых случаях может быть целесообразен такой подход к построению описания логики реализуемого решения, что в нём не указываются конкретные обрабатываемые данные. Последовательность выполнения отдельных этапов в таком случае должна задаваться явно. В предпринимательстве и управлении проектами подобный подход широко распространён и реализован в сетевых графиках. Сетевой график представляет собой ориентированный граф, в котором вершины — это события или состояния проекта, а рёбра — это работы. В работе [8] рассматривается применение идеи переходов между состояниями при описании логики вычислительных алгоритмов. Описанный подход получил название graph-based software engineering (GBSE). Кроме того в указанной работе описана реализация GBSE в библиотеке comsdk для языка С++.

Был проведён сравнительный анализ программного каркаса comsdk с одной из реализаций DFD. В качестве такой реализации был рассмотрен программный комплекс pSeven, разработанный отечественной компанией DATADVANCE. Он направлен в первую очередь на решение конструкторских, оптимизационных задач и, помимо этого, задач анализа данных, что в первом приближении делает его аналогом comsdk по предметному назначению.

В терминах pSeven: графовое описание процесса решения задачи называется расчетной схемой (англ. workflow); узлам орграфа поставлены в соответствие процессы обработки данных (используется термин блоки), а рёбра определяют связи между блоками и направления передачи данных между процессами [5]. При работе с pSeven используются следующие понятия:

- расчётная схема формальное описание процесса решения некоторой задачи в виде ориентированного графа;
- блок программный контейнер для некоторого процесса обработки данных, входные и выходные данные для которого задаются через порты (см. ниже);
- порт переменная конкретного¹ типа, определённая в блоке и имеющая уникальное имя в его пределах;
- связь направленное соединение типа "один к одному" между выходным и входным портами разных блоков.

С учётом данных понятий можно описать используемую методологию диаграмм потов данных следующим образом. Расчётная схема содержит в себе набор процессов обработки данных (блоков), каждый из которых имеет (возможно, пустой) набор именованных входов и выходов (портов). Данные передаются через связи. Для избежания т.н. гонок данных (англ. data races) множественные связи с одним и тем же входным портом не поддерживаются. Для начала выполнения каждому блоку требуются данные на всех входных портах. Все данные на выходных портах формируются по завершении исполнения блока [5].

Результаты проведённого сравнения представлены в таблице В.2.

 $^{^{1}}$ Динамическая типизация не поддерживается.

Таблица В.2. Сравнительная таблица

№	Признак	pSeven	GBSE
1	Предметное	Задачи оптимизации, анализ данных	Задачи автоматизированного
	назначение		проектирования, алгоритмизация
			сложных вычислительных методов,
			анализ данных
2	Принцип	Узлы – блоки (процессы), рёбра –	Узлы – состояния данных, рёбра
	формирования	связи (направление передачи данных)	– переходы между состояниями, с
	графовых	[5].	указанием функций перехода [8].
	моделей		
3	Формат	Расчетная схема (в форме орграфа)	Графовая модель (определяет
	описания	сохраняется в двоичный файле	алгоритм проведения комплексных
	орграфа	закрытого формата с расширением	вычислений в форме орграфа)
		.p7wf.	сохраняется в текстовом файле
			открытого формата, подготовленного
			на языке aDOT[9], являющегося
			"сужением" (частным случаем)
			известного формата DOT (Graphviz).

_	
	_
_	\neg

4	Файловая	Проект состоит из непосредственно	Проект состоит из .aDOT файла с
	структура	файла проекта, в котором хранятся	описанием графа, .alNI-файлов с
		ссылки на созданные расчётные	описанием форматов входных данных,
		схемы и локальную базу данных,	библиотек функций-обработчиков,
		сами расчётные схемы, файлы с их	функций-предикатов и
		входными данными, файлы отчётов,	функций-селекторов , файлов, куда
		где сохраняются выходные данные	записываются выходные данные.
		последних расчётов и результаты их	
		анализа.	
5	особенности	Входные данные должны быть	Входные данные хранятся в
	работы с	указаны при настройках внешних	файле в формате aINI[10],
	входными и	входных портов расчётной схемы.	откуда считываются при запуске
	выходными	Данные с выходных портов	обхода графа [11]. Для записи
	данными	схемы сохраняются в локальной	выходных/промежуточных данных в
	графовых	базе данных. Для их записи в	файлы или базы данных необходимо
	моделей	файлы для обработки/анализа вне	добавить соответствующие
		pSeven необходимо воспользоваться	функции-обработчики.
		специально предназначенными для	Формат выходных данных не
		этого блоками.	регламентирован.

6	Особенности	Данные между узлами передаются Поскольку узлами графа являются
	передачи	согласно определйнным связям, состояния данных, существует
	параметров	которые на уровне выполнения возможность задействовать в расчётах
	между узлами	создают пространство в памяти только часть данных, оставляя их
	графовых	для ввода и вывода данных для другую часть неизменной.
	моделей	выполняемых в раздельных процессах
		блоков. Транзитная передача данных,
		которые не изменяются в данном
		блоке, на выход невозможна.

7	Поддержка	Присутствует. Достигается засчёт Присутст	вует по умолчанию
	ветвлений и	специальных управляющих блоков,	
	циклов	которые отслеживают выполнение	
		условий: для ветвления используется	
		блок "Условие" (англ. condition),	
		который перенаправляет данные	
		на один из выходных портов	
		в зависимости от выполнения	
		описанного условия (подробнее	
		см. [12]); Для реализации циклов	
		в общем случае используются	
		блоки "Цикл"(англ. loop)[13], но	
		для некоторых задач существуют	
		специализированные блоки,	
		организующие логику работы цикла	
		(например, блок "Оптимизатор" (англ.	
		optimizer))	

8	Поддержка	Присутствует. Блоки, входящие в	Присутствует. Существует	
	параллельной	состав различных ветвлений схемы	возможность обойти различные	
	обработки	могут быть выполнены параллельно,	ветвления графа одновременно.	
	данных	поскольку они не зависят друг от		
		друга по используемым данным.		
9	Возможность	Производится на этапе анализа	Планируется реализовать средство	
	выбрать	результатов с помощью отчётов, где	визуализации данных, которое в	
	из набора	можно задать фильтрацию выходных	совокупности с автоматической	
	однотипных	данных согласно указанным критерия.	генерацией форм ввода[11] позволят	
	промежуточных	В случае, если результаты являются	отбирать корректные результаты	
	результатов	промежуточными, расчётную схему	промежуточных вычислений во время	
	расчётов	приходится разбивать на части.	обхода графовой модели.	
	некоторые			
	экземпляры и			
	продолжить			
	расчёт только			
	для них;			

10	Возможность	Отсутствует	Частично реализована при помощи	
	доопределения		функций-обработчиков специального	
	значений		типа, создающих формы ввода	
	входных			
	данных в			
	процессе			
	обхода графа			

1 Постановка задачи

1.1 Концептуальная постановка задачи

В разделе концептуальная постановка задачи должны быть представлены: объект исследований (разработки), цель исследования (разработки), кратко задачи (по пунктам, не более 8), исходные данные (если предусмотрены), что требуется получить.

Обязательность представления: раздел обязателен.

Объём: как правило, не должен быть больше 1-2 страниц.

1.2 Математическая постановка задачи (представляется в зависимости от задачи)

Раздел математическая постановка задачи обязателен для проектов, предполагающих применение методов математического моделирования и, как следствие, проведение вычислительные экспериментов.

Если проект предполагает разработку программного обеспечения и не предполагает проведение вычислений, то этот раздел не обязателен.

В разделе математическая постановка задачи подробно по подразделам следует описать планируемые к применению математические модели, вычислительные методы. Следует описывать особые ситуации их применения, которые предполагается изучить. Модели следует описывать с использованием математически строгих формулировок, не допускающих неоднозначности прочтения.

<u>Обязательность представления:</u> раздел представляется в зависимости от задачи.

Объём: как правило, может составлять около 10 страниц.

2 Вычислительный метод

В разделе следует представить описание применяемого (планируемого к применению) вычислительного метода. Метод следует описывать с использованием математически строгих формулировок, не допускающих неоднозначности прочтения.

Обязательность представления: раздел представляется в зависимости от поставленной задачи. Объём: около 5 страниц.

3 Программная реализация

3.1 Архитектура

В разделе следует представить в форме ссылок применяемые (планируемые к применению) технологии разработки, включая языки программирования. Следует подробно описать предлагаемые алгоритмы, реализуемые в виде программ. Следует активно использовать графические способы представления информации: иерархий классов, реляционных моделей данных, графовые модели, диаграммы потоков данных, блок-схемы и прочие. Следует минимизировать текстовые нерепрезентативные способы описания программных объектов (например, в форме листингов).

Обязательность представления: раздел представляется в зависимости от постановки задачи. Объём: около 5 страниц.

4 Тестирование и отладка

4.1 ...

В разделе следует представить описания тестовых примеров, включая входные данные, принципы запуска и указать ожидаемый результат и фактически полученный.

Допускается включение скриншотов, однако, каждый должен быть подписан и представлено обоснование его включение в РПЗ.

Обязательность представления: раздел представляется в зависимости от постановки задачи.

Объём: около 4-5 страниц.

5 Вычислительный эксперимент

5.1 ...

В разделе следует представить описания каждого вычислительного эксперимента, включая указание особенностей их проведения, используемые программные средства, используемые исходные данные, принципы запуска с указанием ожидаемого и полученного результата.

Обязательно представление графических результатов в форме графиков, поверхностей.

Обязательность представления: раздел представляется в зависимости от постановки задачи.

Объём: объём не ограничен, но, как правило, не должен быть меньше 5-6 страниц.

6 Анализ результатов

6.1 ...

В разделе следует представить анализ полученных результатов, вклюая указание перспектив развития созданных научно-технических решений.

Обязательность представления: раздел обязателен.

Объём: объём не ограничен, но, как правило, не должен быть меньше 2 страниц.

ЗАКЛЮЧЕНИЕ

В разделе следует представить выводы по работе в целом. Каждый вывод не должен быть банальным указанием факта реализации поставленных задач. Каждый вывод должен быть результатом проведенной работы в целом, включая результаты тестирования, вычислительных экспериментов и анализа результатов.

Обязательность представления: раздел обязателен.

Объём: как правило, не должен быть больше 1-2 страниц.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 The design of Maple: A compact, portable, and powerful computer algebra system / Bruce W. Char, Keith O. Geddes, W. Morven Gentleman [и др.] // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1983. T. 162 LNCS. C. 101 115.
- 2 Workflows and e-Science: An overview of workflow system features and capabilities / D. E., G. D., S. M. et al. // Future Generation Computer Systems. 2009. Vol. 25, no. 5. P. 528 540.
- 3 Pegasus in the cloud: Science automation through workflow technologies / Deelman E., Vahi K., Rynge M. [и др.] // IEEE Internet Computing. 2016. Т. 20, № 1. С. 70 76.
- 4 Kepler: An extensible system for design and execution of scientific workflows / Altintas I., Berkley C., Jaeger E. [и др.]. Т. 16. 2004. С. 423 424.
- 5 Alexey M. Nazarenko Alexander A. Prokhorov. Hierarchical Dataflow Model with Automated File Management for Engineering and Scientific Applications // Procedia Computer Science. 2015. T. 66. URL: https://www.sciencedirect.com/science/article/pii/S1877050915034055?pes=vor.
- 6 Low-code development and model-driven engineering: Two sides of the same coin? / Davide Di Ruscio, Dimitris Kolovos, Juan de Lara [и др.] // Software and Systems Modeling. 2022. Т. 21, № 2. С. 437 446.
- 7 Данилов А.М., Лапшин Э.В., Беликов Г.Г., Лебедев В.Б. Методологические принципы организации многопотоковой обработки данных с распараллеливанием вычислительных процессов // Известия вузов. Поволжский регион. Технические науки. 2001. № 4. С. 26–34.
- 8 Соколов А.П. Першин А.Ю. Графоориентированный программный каркас для реализации сложных вычислительных методов // Программирование. 2018. № X.
- 9 Соколов А.П. Першин А.Ю. Описание формата данных aDOT (advanced DOT). 2020.

- 10 Соколов А.П. Описание формата данных aINI (advanced INI) [Электронный ресурс]. Облачный сервис SA2 Systems. [Офиц. сайт]. 2020. URL: https://sa2systems.ru/nextcloud/index.php/f/403527.
- 11 Соколов А.П Першин А.Ю. Программный инструментарий для создания подсистем ввода данных при разработке систем инженерного анализа // Программная инженерия. 2017. Т. 8, № 12. С. 543–555.
- 12 Condition pSeven 6.31.1 User Manual [Электронный ресурс] [Офиц. сайт]. 2022. (дата обращения 07.03.2022). URL: https://www.datadvance.net/product/pseven/manual/6.31.1/blocks/Condition.html.
- 13 Расчётные схемы Руководство пользователя pSeven 6.27 [Электронный ресурс] [Офиц. сайт]. 2021. Дата обращения: 15.11.2021. URL: https://www.datadvance.net/product/pseven/manual/ru/6.27/workflow.html#workflow-links.

Выходные данные

Тришин И.В.. Разработка компонентов графоориентированного программного каркаса для реализации сложных вычислительных методов по дисциплине «Модели и методы анализа проектных решений». [Электронный ресурс] — Москва: 2022. — 33 с. URL: https://sa2systems.ru: 88 (система контроля версий кафедры РК6)

2022, весенний семестр

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

АКТ проверки выпускной квалификационной работы

Студент группы $PK6-816$		
	Отчество	
(Фамилия, имя,	, отчество)	
Тема выпускной квалификационной работы: Д	<u>'ема]</u>	
Выпускная квалификационная работа проверен	а, размещена в ЭБС «Банк Р	ЗКР» в полном объ-
еме и <u>соответствует</u> / не соответствует требован ненужное зачеркнуть	ниям, изложенным в Полож	ении о порядке
	OT BYKU	
подготовки и защиты ВКР.		
Объем заимствования составляет % тексоответствует / не соответствует требованиям к	кста, что с учетом корректн	юго заимствования
<u>соответствует / не соответствует</u> треоованиям к ненужное зачеркнуть	BRP	иалиста, магистра
ненужное зичеркнуто	бакалавра, спеці	иалисти, мигистри
	OT pylin	
		nopulcate
Нормоконтролёр		С.В. Грошев
220p.::01.01.p.::0p	(подпись)	_ (ФИО)
Согласен:		
Студент		И.О. Фамилия
	(полпись)	— (ФИО)
. Well		
Дата: 07	noquica76	
Дата:		
	_	