Nombres complexes : partie algébrique

1. Ensemble des nombres complexes

1.1 Préambule

L'équation x+5=2 a ses coefficients dans $\mathbb N$ mais pour tant sa solution $x=\ldots$ n'est pas un entier naturel. Il faut ici considérer l'ensemble plus grand $\mathbb Z$ des entiers relatifs.

$$\mathbb{N} \overset{x+5=2}{\longleftrightarrow} \mathbb{Z} \overset{2x=-3}{\longleftrightarrow} \mathbb{Q} \overset{x^2=\frac{1}{2}}{\longleftrightarrow} \mathbb{R} \overset{x^2=-\sqrt{2}}{\longleftrightarrow} \mathbb{C}$$

De même l'équation 2x=-3 a ses coefficients dans $\mathbb Z$ mais sa solution $x=\ldots$ est dans l'ensemble plus grand des rationnels $\mathbb Q$. Continuons ainsi, l'équation $x^2=\frac{1}{2}$ à coefficients dans $\mathbb Q$, a ses solutions $x_1=+1/\sqrt{2}$ et $x_2=-1/\sqrt{2}$ dans l'ensemble des réels $\mathbb R$. Ensuite l'équation $x^2=-\sqrt{2}$ a ses coefficients dans $\mathbb R$ et ses solutions $x_1=+\mathrm{i}\sqrt{\sqrt{2}}$ et $x_2=-\mathrm{i}\sqrt{\sqrt{2}}$ dans l'ensemble des nombres complexes $\mathbb C$. Ce processus est-il sans fin ? Non! Les nombres complexes sont en quelque sorte le bout de la chaîne...

Outre la résolution d'équations, les nombres complexes s'appliquent à la trigonométrie, à la géométrie (comme nous le verrons cette année) mais aussi à l'électronique, à la mécanique quantique, etc.

1.2 Forme algébrique d'un nombre complexe

Étant donné que certaines équations polynomiales à coefficients réels n'ont pas toujours de solution (comme l'équation $x^2 = -1$), on cherche à construire un nouvel ensemble de nombres :

- contenant tous les nombres réels,
- muni de deux opérations prolongeant l'addition et la multiplication des nombres réels et ayant les mêmes règles de calculs,
- contenant un élément noté i tel que,
- tout nombre z s'écrive de manière unique z = x + iy où a et b sont des réels,
- le nombre 0 s'écrit

On admettra qu'un tel ensemble existe : il s'agit de l'ensemble des nombres complexes noté C.

Définition 1.

L'écriture z = x + iy unique est appelée **forme algébrique** du complexe z.

- Le *nombre réel* x est appelé *partie* de z et notée Re(z).
- Le *nombre réel* y est appelé *partie* de z et notée Im(z).

Mini-exercice. On donne $z = 5 + 4$ 1. Écrire sous forme algébrique	$z + z'$ et $z \times z'$.
2. En déduire $Re(z+z')$ et Im	(z × z).
1.3 La division dans $\mathbb C$	
	ue d'un quotient dans C, on <i>multiplie</i> le numérateur et le expression conjuguée du dénominateur.
Exemple. Déterminer l'inverse de 3 +	· 2i.
1.4 Conjugué	
Définition 2. On appelle <i>conjugué</i> du nombre co	omplexe $z=x+\mathrm{i} y$ le nombre complexe noté \overline{z} défini par :

$$\overline{z} = x - \mathrm{i}y$$

Exemples. $\overline{3-2i} = \dots \overline{5+i} = \dots$ $\overline{3} = \dots \qquad \overline{i} = \dots$

Propriétés.

Soit z et z^\prime deux nombres complexes.

•
$$\overline{\overline{z}} = z$$
 (1)

$$\bullet \ \overline{z+z'} = \overline{z} + \overline{z'} \quad (2)$$

$$\bullet \ \overline{z \times z'} = \overline{z} \times \overline{z'} \quad (3)$$

•
$$\overline{z^n} = \overline{z}^n, \, \forall n \in \mathbb{N}^* \quad (4)$$

$$\bullet \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}} \quad (5)$$

•
$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}} \text{ pour } z' \neq 0 \quad (6)$$

Démonstration de (2)	
Demonstration de (2)	

Mini-exercice. Donner la forme algébrique des nombres complexes suivants :

1.
$$z = \frac{2+i}{3-2i}$$
.

2.
$$z' = \frac{1-i}{1+i}$$

2. Techniques opératoires

2.1 Nombres réels, nombres imaginaires purs

Définition 3.

- $z \text{ r\'eel} \iff Im(z) = 0 \iff z = \overline{z}.$
- z imaginaire $pur \iff Re(z) = 0 \iff z = -\overline{z}$.

Mini-exercice. Démontrer sar	ns calcul que le nombre complexe $z=$	$=\frac{2-7i}{-3+5i}$	$-\frac{2+7i}{3+5i} \text{ est } i$	un nombre réel.

2.2 Formule du binôme de Newton

Propriété. Soit a et b deux nombres complexes. On a alors :

$$(a+b)^n = \sum_{s=0}^n \binom{n}{s} a^s b^{n-s}$$

Cette formule s'appelle binôme de Newton et elle est démontrée page 5.

Remarque. On peut calculer les coefficients binomiaux $\binom{n}{k}$ à l'aide du triangle de Pascal.

Mini-exercice. Calculer $(1+i)^5$ puis vérifier le résultat à la calculatrice.		

2.3 Équations dans $\mathbb C$

Propriété. Deux nombres complexes sont *égaux* si et seulement si ils ont *même partie réelle* et *même partie imaginaire*.

Méthode

La résolution d'équation du $premier\ degr'e$ dans $\mathbb C$ repose sur la même pratique qu'avec les nombres réels : on cherche à isoler l'inconnue z.

F	

Mini-exercice. Résoudre dans \mathbb{C} l'équation 5z - 6i = iz + 9 + 2i.

Démonstration

On démontre cette égalité par récurrence. On pose \mathscr{P}_n : $(a+b)^n = \sum_{s=0}^n \binom{n}{s} a^s b^{n-s}$.

Initialisation: si n = 0, on a d'une part $(a + b)^0 = 1$ et d'autre part $\sum_{s=0}^{0} {0 \choose s} a^s b^{0-s} = {0 \choose 0} a^0 b^0 = 1$ ce qui montre que \mathscr{P}_0 est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: soit k un entier naturel quelconque.

On suppose que \mathscr{P}_k est vraie c'est-à-dire $(a+b)^k = \sum_{s=0}^k \binom{k}{s} a^s b^{k-s}$.

Montrons que \mathscr{P}_{k+1} est vraie soit $(a+b)^{k+1} = \sum_{s=0}^{k+1} \binom{k+1}{s} a^s b^{k+1-s}$

$$(a+b)^{k+1} = (a+b)(a+b)^k (2.1)$$

$$= (a+b)\sum_{s=0}^{k} {k \choose s} a^{s} b^{k-s} \quad \text{par hypothèse de récurrence}$$
 (2.2)

$$= \sum_{s=0}^{k} {k \choose s} a^{s+1} b^{k-s} + \sum_{s=0}^{k} {k \choose s} a^{s} b^{k+1-s}$$
 (2.3)

$$= \sum_{s=0}^{k-1} \binom{k}{s} a^{s+1} b^{k-s} + \binom{k}{k} a^{k+1} b^0 + \binom{k}{0} a^0 b^{k+1-0} + \sum_{s=1}^k \binom{k}{s} a^s b^{k+1-s} \tag{2.4}$$

$$= \sum_{p=1}^{k} {k \choose p-1} a^p b^{k-p+1} + a^{k+1} + b^{k+1} + \sum_{s=1}^{k} {k \choose s} a^s b^{k+1-s}$$
 (2.5)

$$= a^{k+1} + b^{k+1} + \sum_{s=1}^{k} \left(\binom{k}{s-1} + \binom{k}{s} \right) a^s b^{k+1-s}$$
 (2.6)

$$= {k+1 \choose k+1} a^{k+1} b^0 + {k+1 \choose 0} a^0 b^{k+1} + \sum_{s=1}^k {k+1 \choose s} a^s b^{k+1-s}$$
 (2.7)

$$= {\binom{k+1}{0}} a^0 b^{k+1} + \sum_{s=1}^k {\binom{k+1}{s}} a^s b^{k+1-s} + {\binom{k+1}{k+1}} a^{k+1} b^0$$
 (2.8)

$$= \sum_{s=0}^{k+1} {k+1 \choose s} a^s b^{k+1-s} \tag{2.9}$$

On en déduit donc que \mathscr{P}_{k+1} est vraie. Ainsi :

- \mathcal{P}_0 est vraie.
- \mathscr{P}_n est héréditaire.

On peut en conclure que \mathscr{P}_n est vraie pour **tout** entier naturel n.