

Variable	Example	Type of Regression	R function / R function for mixed models
Continuous	Age, Quality of Life	linear	lm
			<pre>lmer(), glmmTMB()</pre>
Binary	Success yes/no	binary logistic	glm(family=binomial)
			<pre>glmer(), glmmTMB()</pre>
Trials (or proportion of counts)	20 successes out of 30 trials	logistic	<pre>glm(cbind(trial, success), family=binomial)</pre>
2 3(0)			glmer(), glmmTMB()
Count data	Number of usage, counts of events	Poisson	glm(family=poisson)
			glmer(), glmmTMB()
Count data, with excess zeros or overdispersion	Number of usage, counts of events (with higher variance than mean of response)	negative binomial	glm.nb()
			<pre>glmer.nb(), glmmTMB(family=nbinom)</pre>
	see count data, but response is		zeroinfl()
Count data with very many zeros (inflation)	modelled as mixture of Bernoulli & Poisson distribution (two sources of zeros)	zero-inflated	glmmTMB(ziformula, family=poisson)
Count data, with very	Number of usage, counts of	zero-inflated	zeroinfl(dist="negbin")
many zeros (inflation) and overdispersion	events (with higher variance than mean of response)	negative binomial	glmmTMB(ziformula, family=nbinom)
Count data, zero- truncated	see count data, but only for positive counts (hurdle component models zero-counts)	hurdle (Poisson)	hurdle()
			<pre>glmmTMB(family=truncated_poisson)</pre>
Count data, zero- truncated and overdispersion	see "Count data, zero-truncated", but with higher variance than mean of response	hurdle (neg. binomial)	vglm(family=posnegbinomial)
			glmmTMB(family=truncated_nbinom)
Proportion / Ratio (without zero and one)	Percentages, proportions of continuous data	Beta (see note below)	betareg()
			glmmTMB(family=beta)
Proportion / Ratio (including zero and one)	Percentages, proportions of continuous data	Beta-Binomial	<pre>BBreg(), betabin(), vglm(family=betabinomial)</pre>
Ordinal	Likert scale, worse/ok/better	ordinal, proportional odds	polr(), clm()
			<pre>clmm(), mixor(), MCMCglmm()</pre>
Cumulative, multinomial	No natural order of categories, like red/green/blue	cumulative link, multinomial	<pre>multinom(), clm(),bracl(), brmultinom()</pre>
			<pre>clmm(), mixor(), MCMCglmm()</pre>
Continuous, right- skewed	Financial data, reaction times	Gamma	glm(family=Gamma)
			<pre>glmer(), glmmTMB()</pre>
Continuous, (right) skewed, with excess	Financial data	Tweedie	<pre>glm(family=tweedie), cpglm() cpglmm()</pre>
zeros			~~~~~()
Continuous, but truncated or outliers		truncated	<pre>censReg(), tobit(), vglm(family=tobit)</pre>
Proportion / Ratio with > 2 categories	Biomass partitioning in plants (ratio of leaf, stem and root mass)	Dirichlet	DirichReg()

Note that ratios or proportions from count data, like **cbind(trials, success)**, are modelled as logistic regression with **glm(cbind(trials, success), family=binomial())**, while ratios from continuous data where the response ranges from 0 to 1 are modelled using beta-regression.

