HaplotypeCaller GVCF Workflow 'Best Practices'

Dr. Matthieu J. Miossec (@RealMattJM)

Bioinformatics analyst @ Wellcome Centre for human genetics

Programa Unidad 9

■ 17 de mayo (lunes) – Introducción a la genómica en la nube

■ 19 de mayo (miércoles) – Introducción a la plataforma Terra

■ 24 de mayo (lunes) – Otras herramientas en Terra (GATK mejores practicas)

- El miércoles, en un par de horas, logramos:
 - subir archivos BAM/BAI.
 - organizar nuestros datos de alineamiento y de referencia.
 - Parametrizar y ejecutar HaplotypeCaller, extrayendo variantes.
- Ya podríamos descargar el resultado de este trabajo (.VCF) y seguir trabajando localmente.
 - Pero no vamos a hacer eso, vamos a <u>seguir trabajando en Terra</u> usando el **Jupyter Notebook**.

Descubrimiento de variantes gatk

- GATK → Genome Analysis ToolKit (https://gatk.broadinstitute.org/)
 - Suele se usa el término para hablar estrictamente del llamador de variante → HaplotypeCaller
 - Pero en realidad GATK corresponde a mucho más, especialmente en su ultima versión GATK 4...

GATK 4

■ Disponible desde 2018.

- Ultima versión: 4.2.0.0

- Open source: https://github.com/broadinstitute/gatk/
- Rediseñado para mejor velocidad, escabilidad y versatilidad.
- Incorpora herramientas para llamar varios tipos de variantes:
 - En varios estados de finalización

	GERMLINE	SOMATIC
SNPs & INDELs	HaplotypeCaller GVCF	MuTect2
Copy Number	gCNV (beta)	CNV (ModelSegments) (beta)
Structure Variation	SVDiscovery (beta)	(planned)

GATK 4 en la nube con

- GATK 4 también fue especialmente rediseñado para funcionar en la nube.
 - GATK 4 interface directamente con el API de Google
 - → Puede leer y acceder a partes de un archivo directamente del espacio en que esta almacenado sin copiarlo entero.
 - Todos los 'workflows' de GATK, siguiendo los 'Best Practices' están disponible en forma ejecutable en Terra.

¿Por qué GATK HaplotypeCaller GVCF?

■ GATK HaplotypeCaller

- Considerado el criterio de excelencia en termino de llamado de variantes.
- Respaldado por un gran equipo de soporte.
- Documentación muy detallada.
- Reproducible gracias a los 'Best Practices'.
 - <u>Especialmente</u> reproducibles si están ejecutado en Terra!
- Diseñado para ser muy escalable → va a permitir llamar variantes en cohortes enormes (ej. +800 pacientes [exomas] con enfermedad congénita cardiaca)

GATK HaplotypeCaller GVCF 'Best Practices'

Análisis en Tiempo Real

En cada análisis llega un momento cuando el investigador quiere consultar los datos generados, aplicar filtros, reorganizar con tests estadísticos....

Y así regresamos a trabajar con el Jupyter notebook!

- El Jupyter notebook es un documento interactivo que puede contener y ejecutar líneas de código.
 - Originalmente pensado para tres lenguaje (Julia, Python y R), pero ahora cubre mucho más.
- En Terra, notebooks están disponible para Python 2, 3 y R.
 - Perfecto para descifrar y visualizar nuestros datos una vez la etapas de computo intensivo terminadas.

Configuración en Terra

- Para funcionar adentro de Terra, el notebook necesita un maquina virtual (abr. ing. VM).
 - Puede ser consultado sin VM, pero como documento fijo.
 - Cada vez que usamos el notebook configuramos una VM según nuestras necesidades computacionales.
 - Espacio disco
 - CPU
 - Memoria
 - Con cada ejecución tenemos una estimación del costo por hora.
 - Se apaga después de una media hora sin actividad pero mejor parrar la ejecución nosotros.

Cuidado: El notebook en un 'workspace' compartido

- Por razones de seguridad, la VM que uno genera para usar un notebook <u>es solo accesible por la persona que lo genera</u>, no puede ser compartida.
- Consecuencia = Si dos investigadores en un espacio de trabajo compartido están trabajando sobre el mismo
 - notebook, uno puede borrar el trabajo del otro a través del autoguardado.
 - Por eso que existe la posibilidad de duplicar notebook!

Extra: Acceso al 'Workspace' en Jupyter notebook con os environ.

■ Para consultar los datos de nuestro espacio de trabajo más directamente necesitamos hacer establecer el siguiente.

```
Python

BILLING_PROJECT_ID = os.environ['WORKSPACE_NAMESPACE']

WORKSPACE = os.environ['WORKSPACE_NAME']

bucket = os.environ['WORKSPACE_BUCKET']

Project <- Sys.getenv('WORKSPACE_NAMESPACE')

workspace <- Sys.getenv('WORKSPACE_NAME')

bucket <- Sys.getenv('WORKSPACE_BUCKET')
```

Extra: Guardar datos del Jupyter notebook en el Bucket

- Durante la ejecución del notebook, podemos subir y guardar archivos usando las clases que existen en Python y R para estas operaciones, pero...
 - Al cerrar la VM, estos archivos dejan de existir!
- Para guardarlos en el cubo Google:

Python

R

```
#Copy the file data.txt in the notebook into the bucket
!gsutil cp ./data.txt $bucket

#Run list command to see if file is in the bucket
!gsutil ls $bucket
```

```
#Copy the file data.txt in the notebook into the bucket
system(paste0("gsutil cp ./data.txt ",bucket),intern=TRUE)
#Run list command to see if file is in the bucket
system(paste0("gsutil ls ",bucket),intern=TRUE)
```