Applied Machine Learning for Business Analytics

Lecture 3: Neural Networks and Deep Learning

Lecturer: Zhao Rui

DL/NN is not New

Deep Learning Timeline

2

Why DL is powerful now?

- Feature engineering require high-level expert knowledge, which are easily over-specified and incomplete.
- Large amounts of training data
- Modern multi-core CPUs/GPUs/TPUs
- Better deep learning 'tricks' such as regularization, optimization, transfer learning etc.

Deep learning myth: three steps

To deploy deep learning (or other machine learning) systems

The truth

- Select a metric for optimization 6
- Collect data 🙇
- Train model Management
- Realize many labels are wrong 😱
- 5. Relabel data 📥
- Train model Management
- Model performs poorly on one class 🤦
- Collect more data for that class 🙇
- Train model Margarithm
- 10. Model performs poorly on most recent data 🤦
- Collect more recent data
- Train model M 12.
- 13. Deploy model **9**
- 14. Dream 🤑
- 15. Get a call at 3am about complaints that model is biased 👱
- 16. Revert to the older version
- 17. Collect more data, do more training and testing
- 18. Deploy model **9**
- 19. Pray 🧐
- Model performs well but revenue decreasing 2 20.
- 21. Cry 😭
- Choose a different metric ____
- 23.

Three steps in deep learning

To approximate the true function, define a function **space**

Need a **measure** to evaluate the quality of each potential function in the previous space

Search the function space to find the best function based on the measure.

Learning Representation

Objective Function

Optimization

Agenda

- 1. Linear Regression
- 2. Neural Networks
- 3. Evaluation of Functions
- 4. Optimization
- 5. Deep Representation Learning
- 6. Application of DL

1. Linear Regression

Linear regression (Single Variable)

- Model architecture: y=ax+b
- Objective function: Mean Squared Error Function

$$J(a,b) = \frac{1}{n} \sum_{i=0}^{n} (y_i - (ax_i + b))^2$$

Optimization: Gradient Descent Algorithm

Gradient descent

Gradient for the total loss function over parameters,

Like hiking down a mountain

Credit:https://ml-cheatsheet.readthedocs.i o/en/latest/gradient_descent.html 10

Simple math

Gradients for parameters:

$$egin{aligned} rac{\partial}{\partial a}J(a,b) &= rac{1}{n}\sum_{i=0}^n2(y_i-(ax_i+b))(-x_i)\ rac{\partial}{\partial a}J(a,b) &= rac{-2}{n}\sum_{i=0}^n(y_i-y_i^{'})x_i \end{aligned}$$

$$rac{\partial}{\partial b}J(a,b)=rac{-2}{n}\sum_{i=0}^{n}(y_{i}-y_{i}^{'})$$

Optimization

2. Neural Networks

A "simple" classification problem

A linear model

- Linear Regression if output is continuous
- Logistic Regression if output is discrete

Logistic Regression $y = \sigma(\mathbf{w}\mathbf{x} + b)$

A linear model

- Linear Regression if output is continuous
- Logistic Regression if output is discrete

Logistic Regression $y = \sigma(\mathbf{w}\mathbf{x} + b)$

How about this classification problem?

Linear model can not solve it

Add complexity

For Simplicity, the bias term is ignored here.

$$h_1^1=w_{11}^1x1+w_{12}^1x2 \ h_2^1=w_{21}^1x1+w_{22}^1x2 \ y=w_{11}^2h_1^1+w_{12}^2h_2^1 m y=m WX \ y=(w_{11}^2w_{11}^1+w_{21}^2w_{12}^1)x1+(w_{12}^2w_{12}^1+w_{12}^2w_{22}^1)x2$$

Add complexity

$$y = \mathbf{W}^3\mathbf{W}^2\mathbf{W}^1 \left[egin{array}{c} x1 \ x2 \end{array}
ight] = (\mathbf{W}^3\mathbf{W}^2\mathbf{W}^1) \left[egin{array}{c} x1 \ x2 \end{array}
ight]$$

Make it non-linear

Non-linear activation functions

Add non-linear activation function

$$y=\mathbf{W}^3\mathbf{h}^2$$
 y Output $y=\mathbf{W}^3\sigma(\mathbf{W}^2\sigma(\mathbf{W}^1\mathbf{x}))$ Hidden Layer 2 $\mathbf{h}^1=\sigma(\mathbf{W}^1\mathbf{x})$ Hidden Layer 1

Why non-linear activation

- The non-linearities activation function increases the capacity of model
- Without non-linearities, deep neural networks is meaningless: each extra layer is just one linear transform.
- How to select activation functions?

You can select an activation function which will approximate the distribution faster leading to faster training process.

Identity Function. It can be non-linear functions specified by applications.

Neural Network acts as a function that transforms the input vector into the output vector (target)

$$egin{aligned} \begin{bmatrix} 0.47 \ 1.58 \end{bmatrix} &= f_{ heta}(egin{bmatrix} 1 \ -1 \end{bmatrix}) & \mathbf{w}^1 = egin{bmatrix} -2 \ -1 & 1 \end{bmatrix} & \mathbf{b}^1 = egin{bmatrix} 1 \ 0 \end{bmatrix} \ \mathbf{w}^2 = egin{bmatrix} 2 & -1 \ -2 & -1 \end{bmatrix} & \mathbf{b}^2 = egin{bmatrix} 0 \ 0 \end{bmatrix} \ \mathbf{w}^3 = egin{bmatrix} 3 & -1 \ -1 & 4 \end{bmatrix} & \mathbf{b}^3 = egin{bmatrix} -2 \ 0 \end{bmatrix} \end{aligned}$$

$$heta = \{\mathbf{W}^1, \mathbf{b}^1, \mathbf{W}^2, \mathbf{b}^2, \mathbf{W}^3, \mathbf{b}^3\}$$

Parameter space

Output

Hidden Layer 2

Add complexity

Associative Law

$$egin{aligned} h_1^1 &= w_{11}^1 x 1 + w_{12}^1 x 2 \ h_2^1 &= w_{21}^1 x 1 + w_{22}^1 x 2 \ y &= w_{11}^2 h_1^1 + w_{12}^2 h_2^1 \end{aligned}$$

Matrix Format

Output

$$\left[egin{array}{c} h_1^1 \ h_2^1 \end{array}
ight] = \left[egin{array}{cc} w_{11}^1 & w_{12}^1 \ w_{21}^1 & w_{22}^1 \end{array}
ight] \left[egin{array}{c} x1 \ x2 \end{array}
ight]$$

Hidden Layer

$$y = \left[egin{array}{cc} w_{11}^2 & w_{12}^2 \end{array}
ight] \left[egin{array}{c} h_1^1 \ h_2^1 \end{array}
ight]$$

Input

$$y=W^2W^1\left[egin{array}{c} x1\ x2 \end{array}
ight]=(W^2W^1)\left[egin{array}{c} x1\ x2 \end{array}
ight]=W\left[egin{array}{c} x1\ x2 \end{array}
ight]$$

$$y = \mathbf{W}^3 \sigma(\mathbf{W}^2 \sigma(\mathbf{W}^1 \mathbf{x} + \mathbf{b}^1) + \mathbf{b}^2) + \mathbf{b}^3$$

- 1. Neural Network is a model that **recursively** applies the matrix multiplication and non-linear activation function.
- 2. Parallel computing techniques can be used to speed up matrix operation.

Neural network: function set

1. Number of Layers

2. Number of neurons in each layer

3. Non-linear Activation function in each layer

containing various

functions

mapping from input

data to targets.

29

Output layer

Regression

$ilde{y}=\mathbf{h}^3$

Binary Classification

Multi-class Classification

Example: MNIST dataset

Example: MNIST dataset

- 1. In this task, the neural network is a function mapping from the input 784-dim vector to the output 10-dim vector.
- The neural network structure should be decided to make sure the best function exists in the function set.

3. Evaluation of Functions

Cross-Entropy loss

Given a set of parameters and one training sample,

$$loss(ilde{\mathbf{y}},\mathbf{y}) = -\sum_{i=0}^9 y_i ln(ilde{y}_i)$$

Total loss

- Training dataset contains N training samples
- ullet The total loss is: $J = \sum_{n=1}^N loss(ilde{\mathbf{y}_n}, \mathbf{y}_n)$
- Find a function is the function set that minimizes the total loss J
- ullet Find the network parameters heta that minimizes the total loss J. Modern

For loss function, training data are fixed and model parameters are unknown.

$$argmin_{ heta}J$$

4. Optimization

Gradient descent

Like hiking down a mountain

Credit: https://ml-cheatsheet.readthedocs.i

Gradient descent

Backpropagation is used to compute gradients in an efficient way.

 $\frac{\partial J}{\partial \theta}$

Batch size: k

A dataset is [1,2,3,4,5,6] and the batch size is 2, one batch shuffle could be: batch0=[2,1], batch1=[3,6], batch2=[4,5]

Backpropagation

Definition (from wiki):

By computing the gradient of the loss function with respect to each weight by the **chain rule**, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule

 $\mathbf{x} = \mathbf{h}^0$

Batch size

Three approaches to select batch sizes:

- 1. Batch Gradient Descent
- 2. Mini-batch Gradient Descent
- 3. Stochastic Gradient Descent

batch size = Number of training data

1<bath size< number of training data

batch size = 1

Training process

- Initialize neural network randomly
- For _ in range(number of epoch):
 - Shuffle all the training dataset into a list of batches
 - For _ in range(number of batches)
 - Get output with the input data in the batch
 - Compare outputs with ground truth in training data
 - Compute loss function with the batch data
 - Update weights with backpropagation and gradient descent algorithm

Learning rate

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

Except SGD

SGD

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \bigtriangledown f(\mathbf{x}_n)$$

Momentum, Adam, AdaGrad, **RMSProp**

Auto-tune learning rates

Neural network visualization

Playground

5. Deep Representation Learning

Neural network

- From Wiki:
 - NN is based on a collection of connected units of nodes called artificial neurons which loosely model the neurons in a biological brain.
- From another way:

NN is running several 'logistic regression' at the same time (expanding at width and depth)

dimensions).

Neural computation

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

The fact that a neuron is essentially a logistic regression unit:

1 performs a dot product with the input and its weights
2 adds the bias and apply the non-linearity

Shallow vs Deep

Representation learning in DL

Representation learning in DL

From Deep Learning (Goodfellow)

Representation matters

Task: Draw a line to separate the **green triangles** and **blue circles**.

We want to project the data into the **new** feature/vector space that data is **linearly separated**

Hidden representation in deep learning

Moons Dataset


```
# fit a logistic regression model to classify this data set as a benchmark
simple_model = LogisticRegression()
simple_model.fit(X_train, Y_train)
print('Train accuracy:', simple_model.score(X_train, Y_train))
print('Test accuracy:', simple_model.score(X_test, Y_test))
```

Train accuracy: 0.89 Test accuracy: 0.88

Fully-Connected Neural Network

```
# fix a width that is suited for visualizing the output of hidden layers
H = 2
input_dim = X.shape[1]
# create sequential multi-layer perceptron
model = Sequential()
# Then, use add() to insert layers into the container
model.add(Input(shape=(input_dim,)))
model.add(Dense(H,activation='tanh'))
model.add(Dense(H, activation='tanh'))
model.add(Dense(H, activation='tanh'))
#binary classification, one output
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
              metrics=['acc'])
```


Sigmod

Hidden Layer 3

Hidden Layer 2

Hidden Layer 1

Input

Fully-Connected Neural Network

```
# evaluate the training and testing performance of your model
# note: you should extract check both the loss function and your evaluation metric
score = model.evaluate(X_train, Y_train, verbose=0)
print('Train loss:', score[0])
print('Train accuracy:', score[1])

Train loss: 0.0007340409210883081
Train accuracy: 1.0

score = model.evaluate(X_test, Y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

Test loss: 0.0008793871384114027
Test accuracy: 1.0
```


- 1. In forward computation, the output of hidden layer 3 is feed into "logistic regression" to predict labels.
- 2. Since the train and test accuracy are both 1, it means the hidden layer 3' output are linearly separated.

Let us visualize those outputs!

Fully-Connected Neural Network

Sigmod

Hidden Layer 3

Hidden Layer 2

Hidden Layer 1

Input

Representation Learning

https://github.com/rz0718/BT5153_2023/blob/main/codes/lab_lecture03/Representation_Learning.ipynb

End-to-end learning

Representation Learning in Neural Networks

- Outputs of each hidden layer of an neural network is a non-linear transformation of the input data into a feature space. Each hidden layer should transform the input so that it is more linearly separable
- we are more interested in learning the latent representation of the data rather than perfecting our performance in a single task (such as classification).
 - We do not need to preprocess the data to add non-linear features. The neural network will learn the most suitable non-linear transformations to the input (to achieve the best classification)

Deep learning structures

https://www.asimovinstitute.org/author/fjodorvanveen/

6. Applications of DL

Deep learning for speech

The first real-world tasks addressed by deep learning is speech recognition

Deep learning for computer vision

Deep learning for arts

Original photo

Reference photo

Result

Deep learning for data generations

Given training data, generate new samples from same distribution

AutoML and neural architecture search

Next Class: Deep Learning Practice