Auxiliary Sections > Integral Transforms > Tables of Laplace Transforms > Laplace Transforms: Expressions with Hyperbolic Functions

Laplace Transforms: Expressions with Hyperbolic Functions

No	Original function, $f(x)$	Laplace transform , $\widetilde{f}(p) = \int_0^\infty e^{-px} f(x) dx$
1	sinh(ax)	$\frac{a}{p^2 - a^2}$
2	$\sinh^2(ax)$	$\frac{2a^2}{p^3 - 4a^2p}$
3	$\frac{1}{x}\sinh(ax)$	$\frac{1}{2}\ln\frac{p+a}{p-a}$
4	$x^{\nu-1}\sinh(ax), \qquad \nu > -1$	$\frac{1}{2}\Gamma(\nu)[(p-a)^{-\nu} - (p+a)^{-\nu}]$
5	$\sinh(2\sqrt{ax})$	$rac{\sqrt{\pi a}}{p\sqrt{p}}e^{a/p}$
6	$\sqrt{x}\sinh(2\sqrt{ax})$	$\pi^{1/2}p^{-5/2}(\frac{1}{2}p+a)e^{a/p}\operatorname{erf}(\sqrt{a/p})-a^{1/2}p^{-2}$
7	$\frac{1}{\sqrt{x}}\sinh(2\sqrt{ax})$	$\pi^{1/2}p^{-1/2}e^{a/p}\operatorname{erf}ig(\sqrt{a/p}ig)$
8	$\frac{1}{\sqrt{x}}\sinh^2(\sqrt{ax})$	$\frac{1}{2}\pi^{1/2}p^{-1/2}(e^{a/p}-1)$
9	$\cosh(ax)$	$\frac{p}{p^2 - a^2}$
10	$\cosh^2(ax)$	$\frac{p^2 - 2a^2}{p^3 - 4a^2p}$
11	$x^{\nu-1}\cosh(ax), \qquad \nu > 0$	$\frac{1}{2}\Gamma(\nu)[(p-a)^{-\nu} + (p+a)^{-\nu}]$
12	$\cosh(2\sqrt{ax})$	$\frac{1}{p} + \frac{\sqrt{\pi a}}{p\sqrt{p}}e^{a/p}\operatorname{erf}\left(\sqrt{a/p}\right)$
13	$\sqrt{x}\cosh(2\sqrt{ax})$	$\pi^{1/2}p^{-5/2}(\frac{1}{2}p+a)e^{a/p}$
14	$\frac{1}{\sqrt{x}}\cosh(2\sqrt{ax})$	$\pi^{1/2}p^{-1/2}e^{a/p}$
15	$\frac{1}{\sqrt{x}}\cosh^2(\sqrt{ax})$	$\frac{1}{2}\pi^{1/2}p^{-1/2}(e^{a/p}+1)$

Notation: $\Gamma(\nu)$ is the gamma function, erfc z is the complementary error function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Laplace Transforms: Expressions with Hyperbolic Functions