Examen la Calcul numeric, 29 mai 2020

Problema 1 Să se determine o formulă de cuadratură de forma

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = A_0 f(-1) + A_1 f(x_1) + A_2 f(x_2) + A_3 f(1) + R(f)$$

care să aibă grad maxim de exactitate. (punctaj 1 punct nodurile, 2 puncte coeficienții, 1 punct restul).

Problema 2 Se consideră ecuația $f(x) = x^{2-\lambda} - ax^{-\lambda} = 0$, a > 0, cu rădăcina \sqrt{a} .

- (a) Determinați λ astfel ca metoda lui Newton să aibă ordinul de convergență p=3. Scrieți iterația în cea mai simplă formă. (2p)
- (b) Ce valoare de pornire trebuie aleasă astfel ca metoda să conveargă? (1p)
- (c) Folosiţi metoda de la (a) şi punctul (b) pentru a implementa în MAT-LAB o funcţie care calculează \sqrt{a} cu precizia epsilon-ul maşinii. (2p)