Lecture Outline

Reminders to self:

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone
- Last Lecture
 - Continued K-Maps (3- and 4-variable & don't cares in)
 - Started binary adders (Half-adder, part of full-adder)
- Today's Lecture
 - Continue binary adders and subtracters
 - Finish full adder
 - Ripple carry adder and subtracter
 - Carry look-ahead enhancements

Handouts and Announcements

Announcements

ECE2060

- Homework Problems no new assignments
- Homework Reminders
 - Problems 2-4 and 4-1 due: 11:59pm Thursday 2/2
 - Problems 5-1 and 5-2 due: 11:25am Monday 2/6
- Participation Quiz 4
 - Based on Lecture 9 (last lecture). 15min limit after you start.
 - Available 11:15am today, due 11:15am tomorrow, but also available 24hrs more with late penalty
- Read for Friday: pages 193, 199-203

Handouts and Announcements

Announcements

ECE2060

- Mini-Exam 2 Reminder
 - Available 5pm Monday 2/6 through 5:00pm Tuesday 2/7
 - Due in Carmen PROMPTLY at 5:00pm on 2/7
 - Designed to be completed in ~36 min, but you may use more
 - When planning your schedule:
 - I recommend building in 10-15 min extra
 - To allow for downloading exam, signing and dating honor pledge, saving solution as pdf, and uploading to Carmen
 - I also recommend not procrastinating
- Exam review topics available on Carmen
- Sample Mini-Exams 1 and 2 from Au20 also available

Full Adder

- Add two binary bits, X_i and Y_i ; and carry bit C_i
- $X_i + Y_i + C_i = S_i$, C_{i+1} (regular addition here)
- $S_i = \sum m(1,2,4,7)$
- $C_{i+1} = \sum m(3,5,6,7)$
- K-map for S_i

Y_i	C _i 00	01	11	10
0	0	1	0	1
1	1	0	1	0

			_	
X_i	Y_i	C_i	S_i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Four groups of 1 the four minterms are already minimal
- For S_i each minterm has an odd number of 1s
- $S_i = X_i \oplus Y_i \oplus C_i$

Ran out of time here.

Review before continuing.

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

ECE2060

Full Adder

- Add two binary bits, X_i and Y_i ; and carry bit C_i
- $X_i + Y_i + C_i = S_i$, C_{i+1} (regular addition here)
- $S_i = \sum m(1,2,4,7)$
- $C_{i+1} = \sum m(3,5,6,7)$
- K-map for C_{i+1}

X_i	Y_i	C_i	S_i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- · Groups of 2, I variable is diminated
- $\bullet \quad C_{i+1} = X_i Y_i + X_i C_i + Y_i C_i$

Sheet of paper (it's in the wind)

Ripple Carry Adder

- $S_i = X_i \oplus Y_i \oplus C_i$
- $C_{i+1} = X_i Y_i + X_i C_i + Y_i C_i$
- The circuits for each of the *i* bits are:

Sum

- The Carry-out circuit has two levels of logic
 - Two gate-delays for the C_{out} signal to be stable after x, y and c_{in} are applied

Full Adder

In block diagram form, each Full Adder block contains both the Sum and Carry-out circuits

Four-bit Adder

- In principle, one could make a four-bit adder directly from a truth table using a brute force approach
 - Add $B_3B_2B_1B_0$ to $A_3A_2A_1A_0$
 - Need to allow for a carry-in bit, C_0 Why?
 - Nine inputs
 - Five outputs: $S_3S_2S_1S_0$ and C_4 (Carry and)
 - Truth table will have 2° = 512 rows
 - This approach very difficult, and logic circuit to implement very complex
- Alternate approach
 - Use multiple instances of the full-adder block
 - This type of approach using multiple instances of smaller functional blocks is standard in digital design
 - Allows reliable design of complex systems to perform complex tasks

Ripple Carry Adder

To make a four-bit adder use four full adders

Dawy To or

- Add $B_3B_2B_1B_0$ to $A_3A_2A_1A_0$, bit-by-bit
- With the carry-out from the i-th bit becoming the carry-in of the i + 1 bit
- Figure shows addition of |oll and |oll
- Result is 0110 with a carry of 1

Question: What can you say about the result if this is 1's or 2's complement addition?

- Dashed line wire is only needed for: end-around carry for 1's complement
- For 2's complement the carry out of bit 4 is discarded, so wire not needed

Ripple Carry Adder

- For 2s complement addition
 - Since each there is a delay of 2 gate-delays to generate each carry, and
 - the carry from one bit ripples into the next bit (hence the name
 - there is a total delay of 8 gate-delays to generate the final carry

end-around carry for 1's complement

Ripple Carry Adder

- For 2s complement addition
 - The final carry is discarded (for the result)
 - Note that $C_0 = 0$, giving simplifications $S_0 = A_0 \oplus B_0$ and $C_1 = A_0 B_0$

Ripple Carry Adder

- For 1s complement addition
 - The final carry is used for the end-around carry
 - Fed back as C_0 , as shown by the dashed line
 - Have to wait an additional 7 gate delays for certainty its effects rippled to S_3

end-around carry for 1's complement

Ripple Carry Adder

- Overflow detection
 - Adding two positive numbers and getting a negative result
 - Adding two negative numbers and getting a positive result
 - Use the sign bits of A, B and S
 - Overflow $V = A_3' B_3' S_3' + A_3 B_3 S_3'$

end-around carry for 1's complement

Subtractor (v1)

- Can be done using the ripple carry adder already developed
- Add the complement of the number to be subtracted
- Can be done with either 1s complement or 2s complement
- 2s complement version shown here (flip bits and add 1)
 - Inverters flip bits B_i

Subtractor (v2)

- Alternative: perform direct subtraction using full subtractor blocks
- Develop using steps similar to that for full adder, but with difference and borrow truth table

Adder/Subtractor

- Both of those versions of a subtractor are separate circuits
 - Need an adder circuit
 - Need a separate subtractor circuit
- Possible to implement a single adder/subtractor circuit
 - With control bit that determines if addition or subtraction is performed
 - Control bit: SUB/\overline{ADD} (1 \rightarrow subtract, 0 \rightarrow add)

B	SUB/\overline{ADD}	OUT
0	0	0
0	1	
1	0	1
1	1	0

$B \rightarrow \bigvee$	B when	SUB = D
SUB/\overline{ADD}	B when	SUB = 1

Adder/Subtractor

- Chapter 1: An overflow occurs iff the carry out of the sign position is not equal to the carry into the sign position
- Caution: For 1's complement may falsely flag overflow before end-around carry ripples through

Ripple Carry Adder

From earlier in lecture

- Since each there is a delay of 2 gate-delays to generate each carry, and
- the carry from one bit ripples into the next bit (hence name "ripple carry")
- there is a total delay of 8 gate-delays to generate the final carry

end-around carry for 1's complement

Carry-Lookahead Adder

• In a parallel adder, carry out of i^{th} stage can be written as $C_{i+1} = A_i B_i + C_i (A_i + B_i) = A_i B_i + C_i (A \oplus B) = G_i + P_i C_i$

OR can be replaced by XOR since A_iB_i term already covers the 11 case (look at truth table from earlier)

- Where $G_i = A_i B_i$ is condition for Generation of carry at that stage, &
- $P_i = A_i \oplus B_i$ is condition for Propagation of carry-in to carry-out
- Can be used to algebraically express each carry in terms of
 - The values of the i^{th} bit of A and B, through G_i , and
 - The carry into the first stage, C_0

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

$$C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

For a 4-bit lookahead carry adder

COLLEGE OF ENGINEERING

ECE2060

Carry-Lookahead Adder

Modified full adder circuit on next slide: $(G_i \& P_i \text{ but no } C_{i+1})$

- After the G_i and P_i of the full adders are stable, a change in C_0 propagates to all C_i (i = 1,2,3,4) in 2 gate-delays
- Ripple carry adder: change in C_0 took 8 gate-delays to reach C_4

Carry-Lookahead Adder

16-bit Carry-Lookahead Adder

- If more than four bits need to be added
 - In principle the carry-lookahead circuit can be expanded
 - -But each additional bit means number of inputs to AND and OR gates increases
 - Number of inputs is known as "fen-in"
 - Practical limits (from transistor-level design of gates) set a maximum fan-in

-In practice, can cascade the 4-bit carry-lookahead circuits

16-bit Carry-Lookahead Adder

- But now there is ripple delay cascading through the Carry-Lookahead circuits: $C_0 \Rightarrow C_4 \Rightarrow C_8 \Rightarrow C_{12} \Rightarrow C_{16}$
- It is still an improvement over brute force 16 bit ripple adder
 - -Brute force 16 bit ripple adder: gate delays for C_{16} to settle
 - −16 bit adder shown here: gate delays
- Additional improvement possible: additional level of Carry-Lookahead

16-bit Carry-Lookahead Adder

Additional level of Carry-Lookahead added to handle $C_0 \Rightarrow C_4 \Rightarrow C_8 \Rightarrow C_{12} \Rightarrow C_{16}$

This is same Carry-Lookahead circuit as before

But first level of Carry-Lookahead modified to output *G* and *P* as shown, but not the carries to pass forward