Development and Validation of a Risk Prediction Model of linezolid-induced thrombocytopenia in Vietnamese patients

Nhi Nguyen Ha

An Tang Quoc

Wednesday, March 27, 2024

Write abstract here, note the indentation

1 Checklist

Table 1: TRIPOD-Cluster checklist of items to include when reporting a study developing or validating a multivariable prediction model using clustered data

Section/topic	Item No	Description	Draft date
Title and abstract			
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted	
Abstract	2	Provide a summary of research objectives, setting, participants, data source, sample size, predictors, outcome, statistical analysis, results, and conclusions*	

Section/topic	Item No	Description	Draft date
Introduction			
Background and	3a	Explain the medical	
objectives		context (including	
		whether diagnostic or	
		prognostic) and	
		rationale for	
		developing or	
		validating the	
		prediction model,	
		including references	
		to existing models,	
		and the advantages of	
		the study design*	
	3b	Specify the objectives,	
		including whether the	
		study describes the	
		development or	
		validation of the	
		model^*	
Methods			
Participants and	4a	Describe eligibility	
data		criteria for	
		participants and	
		datasets*	
	4b	Describe the origin of	
		the data, and how the	
		data were identified,	
		requested, and	
		collected	
Sample size	5	Explain how the	Mar 21
		sample size was	
		arrived at*	
Outcomes and	6a	Define the outcome	Mar 21
predictors		that is predicted by	
•		the model, including	
		how and when	
		assessed*	
		and the same of the same	

Section/topic	Item No	Description	Draft date
	6b	Define all predictors	
		used in developing or	
		validating the model,	
		including how and	
		when measured*	
Data preparation	7a	Describe how the	
		data were prepared	
		for analysis, including	
		any cleaning,	
		harmonisation,	
		linkage, and quality	
		checks	
	7b	Describe the method	
		for assessing risk of	
		bias and applicability	
		in the individual	
		clusters (eg, using	
		PROBAST)	
	7c	For validation,	
		identify any	
		differences in	
		definition and	
		measurement from	
		the development data	
		(eg, setting, eligibility	
		criteria, outcome,	
		predictors)*	
	7d	Describe how missing	
		data were handled*	
Data analysis	8a	Describe how	
		predictors were	
		handled in the	
		analyses	
	8b	Specify the type of	
		model, all model	
		building procedures	
		(eg, any predictor	
		selection and	
		penalisation), and	
		method for	
		validation*	

Section/topic	Item No	Description	Draft date
	8c	Describe how any	
		heterogeneity across	
		clusters (eg, studies or	
		settings) in model	
		parameter values was	
		handled	
	8d	For validation,	
		describe how the	
		predictions were	
		calculated	
	8e	Specify all measures	
		used to assess model	
		performance (eg,	
		calibration,	
		discrimination, and	
		decision curve	
		analysis) and, if	
		relevant, to compare	
		multiple models	
	8f	Describe how any	
	01		
		heterogeneity across	
		clusters (eg, studies or	
		settings) in model	
		performance was	
		handled and	
	0	quantified	
	8g	Describe any model	
		updating (eg,	
		recalibration) arising	
		from the validation,	
		either overall or for	
		particular populations	
		or settings*	
Sensitivity analysis	9	Describe any planned	
		subgroup or	
		sensitivity	
		analysis—eg,	
		assessing performance	
		according to sources	
		of bias, participant	
		characteristics, setting	

${f Section/topic}$	Item No	Description	Draft date
Results			
Participants and	10a	Describe the number	
datasets		of clusters and	
		participants from	
		data identified	
		through to data	
		analysed; a flowchart	
		might be helpful*	
	10b	Report the	
		characteristics overall	
		and where applicable	
		for each data source	
		or setting, including	
		the key dates,	
		predictors, treatments	
		received, sample size,	
		number of outcome	
		events, follow-up time,	
		and amount of	
		missing data*	
	10c	For validation, show a	
		comparison with the	
		development data of	
		the distribution of	
		important variables	
		(demographics,	
		predictors, and	
		outcome)	
Risk of bias	11	Report the results of	
		the risk-of-bias	
		assessment in the	
		individual clusters	

Section/topic	Item No	Description	Draft date
Model development	12a	Report the results of	
and specification		any assessments of	
		heterogeneity across	
		clusters that led to	
		subsequent actions	
		during the model's	
		development (eg,	
		inclusion or exclusion	
		of particular	
		predictors or clusters)	
	12b	Present the final	
		prediction model (ie,	
		all regression	
		coefficients, and	
		model intercept or	
		baseline estimate of	
		the outcome at a	
		given time point) and	
		explain how to use it	
		for predictions in new	
		$individuals^*$	
Model performance	13a	Report performance	
		measures (with	
		uncertainty intervals)	
		for the prediction	
		model, overall and for	
		each cluster	
	13b	Report results of any	
		heterogeneity across	
		clusters in model	
		performance	
Model updating	14	Report the results	
		from any model	
		updating (including	
		the updated model	
		equation and	
		subsequent	
		performance), overall	
		and for each cluster*	

Section/topic	Item No	Description	Draft date
Sensitivity analysis	15	Report results from	
		any subgroup or	
		sensitivity analysis	
Discussion			
Interpretation	16a	Give an overall	
		interpretation of the	
		main results,	
		including	
		heterogeneity across	
		clusters in model	
		performance, in the	
		context of the	
		objectives and	
		previous studies*	
	16b	For validation, discuss	
		the results with	
		reference to the model	
		performance in the	
		development data,	
		and in any previous	
		validations	
	16c	Discuss the strengths	
		of the study and any	
		limitations (eg,	
		missing or incomplete	
		data, non-	
		representativeness,	
		data harmonisation	
		problems)	
Implications	17	Discuss the potential	
		use of the model and	
		implications for future	
		research, with specific	
		view to	
		generalisability and	
		applicability of the	
		model across different	
		settings or	
		(sub)populations	
Other information		/1 1	

Section/topic	Item No	Description	Draft date
Supplementary information	18	Provide information about the availability of supplementary resources (eg, study protocol, analysis code, datasets)*	
Funding	19	Give the source of funding and the role of the funders for the present study	

2 Introduction

2.1 Background and objectives

Linezolid is an oxazolidinones antibiotics [1].

3 Methods

3.1 Participants and data

3.1.1 4a: Describe eligibility criteria for participants and datasets

This study used data from three hospitals in Vietnam: Thanh Nhan Hospital, Bach Mai Hospital, and the National Hospital of Tropical Diseases. Patients hospitalized and treated with linezolid were included. The following patients were excluded: (i) those under 18 years of age; (ii) those treated with linezolid for less than 3 days; (iii) those without any recorded platelet count in the period before or after initiation of linezolid therapy; (iv) those with baseline platelet count of $> 450 \times 10^9$ cells/L; (v) those with any missing recorded values among the specified predictors.

3.1.2 4b: Describe the origin of the data, and how the data were identified, requested, and collected

The data was collected from each hospital in two phases: a pilot phase and an extension phase. In the pilot phase, we requested existing datasets at the hospitals. In the extension phase, additional data was collected prospectively. Data was extracted from the electronic medical

records of the hospitals, except for the pilot dataset at Bach Mai Hospital which was extracted from physical records. In order to harmonise different datasets, data was filled out in a paper form and stored in Excel.

The pilot datasets were collected from January 01 to June 30, 2020 at Thanh Nhan Hospital; from November 01 to December 31, 2019 at Bach Mai Hospital; from May 01 to December 31, 2021 at the National Hospital of Tropical Diseases. The extension datasets were collected from September 01, 2022 to March 31, 2023 at Thanh Nhan Hospital; from December 01, 2022 to March 31, 2023 at Bach Mai Hospital; from April 01 to September 31, 2022 at the National Hospital of Tropical Diseases.

3.2 Sample size

Previous studies developing logistic regression models for LI-TP risk predictions have included 4-6 predictors in their final models [2–5]. We expect to include about as many candidate predictors, based on results from the expert opinion survey and the Bayesian Model Selection algorithm see 3.3. Some of the candidate predictors might be continuous, which may potentially require non-linear modelling and therefore slightly increase the number of variables.

A general rule of thumb is for at least 10 events be available for each candidate predictor considered in a prediction model [6]. We have a total of 816 eligible patients and 264 of those have experienced the outcome. If the number of candidate predictors is 7, we would have 37 events per candidate predictor, which is considerably greater than the minimum number required. Even if the number of parameters screened is 20, we would still have 13 events per candidate predictor.

However, the aforementioned rule of thumb have generated some debate in the literature, with recent results suggesting that event per variable criterion is too simplistic and has no strong relation to the predictive performance of a model. Riley et al [7] proposed a different set of criteria to estimate minimum sample size for models developed using logistic regression, which are the following:

- 1. Small optimism in predictor effect estimates, defined as a global shrinkage factor of >= 0.9.
- 2. Small absolute difference of <= 0.05 in the model's apparent and adjusted Nagelkerke's R-squared.
- 3. Precise estimation of the overall risk in the population.

Criteria 1 and 2 aims to reduce the potential of overfitting. Criteria 3 aims to ensure the overall risk is estimated precisely.

3.2.1 Step 1: Choose the number of candidate predictors of interest for inclusion in the model, and calculate the corresponding number of predictor parameters (p)

Note that one predictor may require two or more parameters. For example, a k-category predictor requires k-1 parameters and a continuous predictor model with a non-linear trend requires more than one parameter to be estimated. Also include any potential interaction terms towards the total p.

When using a predictor selection method, p should be defined as the total number of parameters screened, and not just the subset that are included in the final model.

Assuming maximum total p to be 20.

Note

The value of p is assumed to be no larger than 20 because univariate regression shows there are 20 variables that are significantly correlated with the outcome.

Source: Article Notebook

3.2.2 Step 2: Choose sensible values for $R^2_{CS_adj}$ and $max(R^2_{CS_app})$ based on previous studies where R^2_{CS} is the Cox-Snell R^2 statistic.

The value of $\max(R^2_{CS_app})$ is based on the overall prevalence or overall rate of the outcome in the population of interest. The incidence of LI-TP in patients treated with linezolid was estimated to be 37% in a meta-analysis by Zhao et al [8].

The value of $R^2_{CS_adj}$ could be based on that for a previously published model in the same setting and population (with similar outcome definition). However, as previous studies does not provide any information to identify a sensible value of the minimum expected Cox-Snell R^2 , the value $R^2_{CS_adj}$ will be assumed to correspond to a $R^2_{Nagelkerke}$ of 0.15.

[1] 0.2048324

Source: Article Notebook

3.2.3 Step 3: Criterion 1

Calculate the sample size required to ensure Van Houwelingen's global shrinkage factor (S_{VH}) is close to 1. A value of $S_{VH} >= 0.90$ is generally recommended, which reflects a small amount of overfitting during model development.

[1] 775

Source: Article Notebook

We see that 775 participants are required to meet criterion 1.

3.2.4 Step 4: Criterion 2

Calculate the shrinkage factor (S_{VH}) required to ensure a small absolute difference of <=0.05 in the developed model's apparent and adjusted Nagelkerke's R^2 . Then derive the required sample size conditional on this value of S_{VH} .

[1] 478

Source: Article Notebook

We see that 478 participants are required to meet criterion 2.

3.2.5 Step 5: Criterion 3

Calculate the sample size required to ensure a precise estimate of the overall risk in the population. The suggested absolute margin of error is ≤ 0.05 .

[1] 359

Source: Article Notebook

We see that 359 participants are required to meet criterion 3.

3.2.6 Step 6: Final sample size

The required minimum sample size is the maximum value from steps 3 to 5, to ensure that each of criteria 1 to 3 are met.

[1] 775

Source: Article Notebook

The final estimate of minimum sample size is 775, therefore our data is sufficient for model development with at most 20 parameters.

3.3 Outcomes and predictors

3.3.1 6a. Define the outcome that is predicted by the model, including how and when assessed

The outcome of interest is linezolid-induced thrombocytopenia, defined as (i) a platelet count of $< 112.5 \times 10^9$ cells/L (75% of the lower limit of normal) for patients with a baseline platelet count in the normal range; (ii) A reduction in platelet count of 25% from the baseline value for patients with a baseline platelet count of $< 150 \times 10^9 \text{ cells/L } [5,9,10].$

Normal platelet count is defined as 150-450 x 10⁹ cells/L. Baseline platelet count is defined as the last recorded PLT value before the start of linezolid therapy. Participants are considered to have met the outcome if they have a platelet count that meets the above criteria at any time during linezolid therapy or within 5 days after the end of therapy.

Warning

Thrombocytopenia may occur within a few days after stopping LZD, when the drug hasn't been completely eliminated. However, it is unknown exactly how long after stopping LZD can a TP event still be attributed to LZD use. We deemed that any TP events that occur after 5 days of stopping LZD would not be related to LZD use.

Our rationale is that after 5 days (120 hrs), LZD is guaranteed to be completely eliminated in all patients, as the longest $t_{1/2}$ is 8.3 ± 2.4 hrs in end-stage renal disease patients, +3 SD would be ~16 hrs, so 120 hrs is >7 half-lives, therefore in patients with the worst clearance, 99% of them would have 99% of the drug eliminated from their systems. Furthermore, trough LZD concentration (C_{min}) has previously been identified as a predictor of LI-TP development, and LI-TP itself is mostly reversible after discontinuation, so we would argue that any TP events that occur after LZD has been eliminated from the system would not be related to LZD use.

3.3.2 6b. Define all predictors used in developing or validating the model, including how and when measured

Predictors will be screened for inclusion in the model if they meet all of the following criteria: (i) has been identified as a risk factor of LI-TP in previous studies; (ii) can be collected or evaluated from the information in the datasets; (iii) for concomitant medications, has druginduced immune thrombocytopenia as an adverse drug reaction with a frequency of at least > 1/1000 in the drug label or Micromedex; (iv) has consensus from a clinical expert panel as possibly related to LI-TP development.

The following information was extracted from all records:

• Patient demographics

- Clinical department where linezolid was initiated.
- Co-morbidities
- Invasive procedures performed
- Infection type
- Laboratory results
- Linezolid route of administration
- Linezolid dose in milligrams.
- Linezolid duration, defined as the number of days from the first to the last dose of linezolid.
- Concomitant medications during linezolid therapy

3.4 Data preparation

3.4.1 7a. Describe how the data were prepared for analysis, including any cleaning, harmonisation, linkage, and quality checks

Harmonisation between datasets was mainly done via manually recording data to a standardized form. Data was then entered into an Excel spreadsheet. Data cleaning was done by handling duplicates, checking for missing values and inconsistencies. Multiple linezolid treatment episodes in the same patient were treated as duplicates and only the first episode was included in the analysis. Patients with missing values were excluded from subsequent analyses. Inconsistencies were resolved by referring back to the original records.

Before analysis, the extracted predictors are limited to those that meet criteria (i) to (iii) in the previous section:

- Patient demographics were limited to age in years, gender, and weight in kilograms.
- Clinical department was recorded into binary variables: intensive care unit, emergency department, and others.
- Co-morbidities were recorded into binary variables: hypertension, heart failure, angina, myocardial infarction, cerebral vascular accident, diabetes, chronic obstructive pulmonary disease, cirrhosis, malignancies, and hematological disorders.
- Invasive procedures were recorded into binary variables: endotracheal intubation, central venous catheter insertion, intermittent hemodialysis, and continuous renal replacement therapy.
- Infection type was recorded into binary variables: community-acquired pneumonia, hospital-acquired pneumonia, skin and soft tissue infection, central nervous system infection, intra-abdominal infection, urinary tract infection, bone and joint infection, septicemia, and sepsis.
- Laboratory results were limited to serum creatinine, hemoglobin count, white blood cell count, and platelet count. Creatinine clearance was estimated from serum creatinine using the Cockcroft-Gault equation.

- Linezolid route of administration was recorded into binary variables: intravenous, oral, and both.
- Linezolid dose in milligrams.
- Linezolid duration in days.
- Concomitant medications were recoded to binary variables: carbapenems, daptomycin, teicoplanin, levofloxacin, ibuprofen, naproxen, heparin, clopidogrel, enoxaparin, eptifibatide, carbamazepine, valproic acid, quetiapine, atezolizumab, pembrolizumab, trastuzumab, tacrolimus, fluorouracil, irinotecan, leucovorin, oxaliplatin, pyrazinamide, and rifampin.

3.4.2 7b. Describe the method for assessing risk of bias and applicability in the individual clusters (eg, using PROBAST)

Important

Is this even possible for this study?

3.4.3 7c. For validation, identify any differences in definition and measurement from the development data (eg, setting, eligibility criteria, outcome, predictors)

3.4.4 7d. Describe how missing data were handled

Any subsequent analyses were conducted on the complete case dataset. There are $\sim 5\%$ of observations with missing values in the dataset, which is considered low. The missing data mechanism is assumed to be missing completely at random.

Important

What is a possible reason for missing data?

- 3.5 Data analysis
- 3.5.1 8a. Describe how predictors were handled in the analyses
- 3.5.2 8b. Specify the type of model, all model building procedures (eg, any predictor selection and penalisation), and method for validation
- 3.5.3 8c. Describe how any heterogeneity across clusters (eg, studies or settings) in model parameter values was handled
- 3.5.4 8d. For validation, describe how the predictions were calculated
- 3.5.5 8e. Specify all measures used to assess model performance (eg, calibration, discrimination, and decision curve analysis) and, if relevant, to compare multiple models
- 3.5.6 8f. Describe how any heterogeneity across clusters (eg, studies or settings) in model performance was handled and quantified
- 3.5.7 8g. Describe any model updating (eg, recalibration) arising from the validation, either overall or for particular populations or settings
- 3.6 Sensitivity analysis
- 4 Results
- 4.1 Participants and datasets
- 4.2 Risk of bias
- 4.3 Model development and specification
- 4.4 Model performance
- 4.5 Model updating
- 4.6 Sensitivity analysis
- 5 Discussion
- 5.1 Interpretation
- 5.2 Implications
- 6 Other information

- 16
- **6.1 Supplementary information**
- 6.2 Funding
- 6.2 Deferences

- 2. Liu Y, Liu T, Wei G, Yan P, Fang X, Xie L. Analysis of risk factors and establishment of risk prediction model for linezolid-associated thrombocytopenia. Medical Journal of Chinese People's Liberation Army [Internet]. 2021;46. Available from: https://d.wanfangdata.com.cn/periodical/jfjyxzz202108006
- 3. Duan L, Zhou Q, Feng Z, Zhu C, Cai Y, Wang S, et al. A Regression Model to Predict Linezolid Induced Thrombocytopenia in Neonatal Sepsis Patients: A Ten-Year Retrospective Cohort Study. Front Pharmacol [Internet]. 2022;13:710099. Available from: https://www.ncbi.nlm.nih.gov/pubmed/35185555
- 4. Qin Y, Chen Z, Gao S, Pan MK, Li YX, Lv ZQ, et al. Development and Validation of a Risk Prediction Model of Linezolid-induced Thrombocytopenia in Elderly Patients [Internet]. In Review; 2021 Jun. Available from: https://www.researchsquare.com/article/rs-582799/v1
- 5. Xu J, Lu J, Yuan Y, Duan L, Shi L, Chen F, et al. Establishment and validation of a risk prediction model incorporating concentrations of linezolid and its metabolite PNU142300 for linezolid-induced thrombocytopenia. The Journal of Antimicrobial Chemotherapy. 2023;78:1974–81.
- 6. Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. Journal of Clinical Epidemiology [Internet]. 1995;48:1503–10. Available from: https://www.jclinepi.com/article/0895-4356(95)00048-8/abstract
- 7. Riley RD, Snell KI, Ensor J, Burke DL, Harrell Jr FE, Moons KG, et al. Minimum sample size for developing a multivariable prediction model: PART II binary and time-to-event outcomes. Statistics in Medicine [Internet]. 2019;38:1276–96. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7992
- 8. Zhao X, Peng Q, Hu D, Li W, Ji Q, Dong Q, et al. Prediction of risk factors for linezolid-induced thrombocytopenia based on neural network model. Frontiers in Pharmacology [Internet]. 2024 [cited 2024 Feb 27];15. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1292828
- 9. Zyvox prescribing information [Internet]. Available from: https://labeling.pfizer.com/showlabeling.aspx?id=649
- 10. Kawasuji H, Tsuji Y, Ogami C, Kimoto K, Ueno A, Miyajima Y, et al. Proposal of initial and maintenance dosing regimens with linezolid for renal impairment patients. BMC Pharmacology and Toxicology [Internet]. 2021 [cited 2024 Feb 26];22:13. Available from: https://doi.org/10.1186/s40360-021-00479-w