

Intelligence Artificielle pour les systèmes autonomes (IAA)

Modular pipeline: Object tracking and mission planning

Prof. Yann Thoma - Prof. Marina Zapater

Février 2024

Basé sur le cours du Prof. A. Geiger

Modular Pipeline

Reminder of main blocks

- → Vehicle control
- ightarrow Low-level perception : Odometry, SLAM and global localization
- → Scene Parsing : **Object tracking**
- → Path planning

Summary

Today's lesson

- \rightarrow Object tracking
- → Holistic Scene Understanding
- → Path planning

What did we do in previous lecture?

Analyse this video thinking about the theory of Chapter 8

- 1. What is the processing being done in this video?
- 2. Is it 2D or 3D? What are the main challenges?
- 3. What algorithms did we use for this?

What are the differences with the previous video?

What are we doing beyond what we just saw?

- 1. What is the car above doing (what kind of processing)? What are the inputs/outputs?
- 2. How would you tackle this problem?

What is object tracking?

Detecting, associating, filtering

- → Given noisy object detections (bounding boxes) for each frame in a sequence, associate those to the same physical object
- → Reject detections that are false alarms

- → <u>Detection</u>: which are the candidate objects?
- → <u>Association</u>: which detection corresponds to which object?
- → <u>Filtering</u>: what is the most likely object state (e.g.: location, size)

Detection

Association

Filtering

Online tracking for single objects

Filtering

- → Online tracking estimates current state given current and past observations
 - (Off-line tracking uses all given observations present and future)
- → If we track a single object, only detection and **filtering** are needed. No need for association.
- The moving object is characterized by an underlying state x
- → State x can provide measurements or observations y
- \rightarrow At each time t, state changes to x_t and provides observation y_t
- → Given a sequence of observations Y={y_t} we want to recover $X=\{x_t\}$

Online Tracking

Filtering example

Using probabilistic estimates

Recursive Bayesian Estimation

Using Bayes Filtering for probabilistic inference

- → We assume that at each time there is only one object to track
- → We assume that he have one (noisy) observation available per time t (per frame)
- → A Bayes filter is a probabilistic approach for estimating an unknown probability density function recursively and over time using:
 - Incoming measurements. For example: detected object location
 - · A system process model. For example: constant velocity motion model
- → Two alternating steps:
 - · Predict where the object should be in the next frame
 - Correct prediction based on the current observation

The Bayes Filter

A bit of math for the interested ones

$$p(\mathbf{X}, \mathbf{Y}) = p(\mathbf{x}_1) \prod_{t=2}^T p(\mathbf{x}_t | \mathbf{x}_{t-1}) \prod_{t=1}^T p(\mathbf{y}_t | \mathbf{x}_t)$$

The Kalman Filter

One of the simplest Bayes filters

- → We assume linearity and Gaussian distribution of noise
- → Solved by means of a Least Squares Regression
- → Based on the same predict-correct principle than before

- → Widely used in guidance, navigation and control of vehicles
 - · Aircraft, spacecraft and ship positioning
 - Apollo 11 Lunar mission

Multi-object Tracking

Association comes into play

- → Real-case: we have to track multiple objects at the same time.
- → Goal of association: associate detections in a frame to existing object tracks

Multi-object tracking

Object Association Measures

Algorithm:

- 1. Predict objects from previous frame and detect objects in current frame
- 2. Associate detections to object tracks
- 3. Correct predictions with observations (Kalman Filter)

$s_{O} = \frac{b_{1} + b_{2}}{b_{1} \cup b_{2}}$ $s_{O} = \frac{b_{1} + b_{2}}{b_{2} \cup b_{2}}$ $s_{O} = \frac{b_{1} + b_{2}}{b_{$

When do observations belong to the same object?

Several techniques:

- → Predict bounding box (via motion model) and measure overlap
- → Compare color histograms or normalized cross-correlation
- → Estimate optical flow and measure agreement
- → Compare relative location and size of bounding box
- → Compare orientation of detected objects

Solving correspondence Ambiguities

Nearest Neighbor Association

→ Issue: Objects can cease to exist (or be ocluded), measurements can be unexpected, a measurement can match multiple predictions, etc.

- → Proposal: only consider measurement within a certain area around the prediction
 - Associate detection with the closest prediction
 - Numbers represent association scores (higher is better)
 - Still... this fails because of ambiguities...

Bipartite Graph Matching

One of the most common techniques

- → A bipartite graph (bigraph) is a graph whose vertices can be divided into two disjoint sets
- → Given a bipartite graph, a matching is a subset of the edges for which every vertex belongs to exactly one of the edges
- → Frame-to-frame tracking can be formulated as a bipartite graph matching problem
 - Chooses at most one match in each row and column while maximizing score

		Frame $t+1$				
		X	1	4		
+	4	0.11	0.95	0.23		
$\frac{1}{2}$ rame t	Å	0.85	0.25	0.89		
	E.	0.90	0.12	0.81		

A more formal definition

Bipartite Graph Matching

- → If we have N detections in the previous frame and M detections in the current frame
- → We can construct a M x N table of matching scores
- → **Task**: choose the 1:1 matching that maximizes the sum of scores

	1	2	3	4	5
1	0.95	0.76	0.62	0.41	0.06
2	0.23	0.46	0.79	0.94	0.35
3	0.61	0.02	0.92	0.92	0.81
4	0.49	0.82	0.74	0.41	0.01
5	0.89	0.44	0.18	0.89	0.14

- → How many differences assignments are possible?
 - $5 \times 4 \times 3 \times 2 \times 1 = 120$ (N!)
- → Exhaustive search becomes intractable very quickly!
 - It can be solved by in integer linear program (ILP)
 - Or by greedy techniques

Greedy Matching

Using a Greedy Algorithm for bipartite graph matching

- → Start with an unmarked matrix
- \rightarrow For i=1..N
 - Mark largest value in the entire matrix that isn't in a row/column with already marked entries

	•	1	:	2	(3	4	4		5
1	0.	95	0.	76	0.	32	0.	11	0.) 6
2	0.	23	0.	10	0.	79	0.	94	0.	35
3	o .)1	0.)2	0.	92	0.	92	0.	#
4	0.	19	0.	82	0.	74	0.	11	0.)1
5	Û.	39	0.	14	0.	18	0.	39	0.	14

- → Greedy matching is easy to implement, quick to run and finds good solutions
 - But not the optimal

	1	2	3	4	5
1	0.95	0.76	0.62	0.41	0.06
2		0.46			
3	0.61	0.02	0.92	0.92	0.81
4	0.49	0.82	0.74	0.41	0.01
5	0.89	0.44	0.18	0.89	0.14

5 0.76 0.41 0.95 0.62 0.06 0.23 0.46 0.79 0.94 0.02 0.92 0.92 0.81 0.61 0.49 0.82 0.74 0.41 0.44 0.18 0.89

Greedy Solution: Score = 3.77

Multi-object tracking evaluation

An open-source benchmark

→ Associate prediction with ground truth tracks (via bipartite graph matching)

 $MOTA = 1 - \frac{\sum_{t} FN_{t} + FP_{t} + IDSW_{t}}{\sum_{t} GT_{t}}$

- → **MOTA**: Multiple Object Tracking Accuracy
 - FN/FP: False Negative/Positive detections
 - IDSW: ID switches
 - GT: GT objects
- → HOTA: A Higher-Order Metric for Evaluating Multi-object Tracking

Summary

Today's lesson

- → Object tracking
- → Holistic Scene Understanding
- \rightarrow Path planning

An intersection from a human perspective

Putting eveything together and fusing information

- → We must fuse all cues to obtain a complete understanding
- → This fusion (should) lead to more robust estimates

→ We need to put everything together!

PnPNet: Perception and Prediction with Tracking in the Loop

Joint perception, tracking and motion forecasting / trajectory estimation

Summary

Today's lesson

- → Object tracking
- → Holistic Scene Understanding
- \rightarrow Path planning

Modular Pipeline

Reminder of main blocks

- → Vehicle control
- → Low-level perception : Odometry, SLAM and global localization
- → Scene Parsing : **Object tracking**
- → Path planning

Path Planning and Decision Making

Breaking planning problem into a hierarchy of simpler problems

- → **Goal**: find and follow a path from current location to destination
- → Input: vehicle and environment state (via perception stack)
- → **Output**: path or trajectory as input to vehicle controller

→ Challenges:

- Driving situations are very complex and difficult to model
- So we break the problem into pieces

Breaking the planning problem

Step 1: Route planning

- → Represent road network as directed graph
- → Edge weights correspond to road segments length (or travel time)
- → Problem translates into a minimum-cost graph network problem
 - Dijkstra, A*, etc.

Breaking the planning problem

Step 2: Behaviour planning

- → Select driving behavior based on current vehicle/environment state
 - E.g.: at stop line you must stop, observe traffic and traverse
- → Often modeled via a finite state machine
 - Transitions governed by perception
- → Can also be modeled by Markov Decision Processes (MDPs)

Breaking the planning problem

Step 3: Motion planning

- → Find feasible, comfortable, safe and fast vehicle path/trajectories
- → Exact solutions are intractable (too large space)
- → Numerical approximations

Summary

Today's lesson

- → Object tracking
- → Holistic Scene Understanding
- \rightarrow Path planning
 - Step 1: Route Planning

Planning Algorithms

Many, many, many... we'll just see a couple today

Route Planning

Navigate from point A to point B

- → High-level planning where low details are abstracted
- → Road Networks can be seen as directed graphs
- → And we need to find the shortest path

One of the most common algorithms to find the shortest path

- → Constructs a specialized tree-based data structure
- → **Min heap** property: the value of any node in the tree is smaller than all its children
- → Efficient implementation of a priority queue
 - Smallest element stored at root note
 - · Partially ordered, but not sorted

Example

```
Algorithm 2 Dijkstra(G,s,t)

    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

 2: open.push(s,0)
 3: while !open.isEmpty() do
        u, uCost \leftarrow open.pop()
       if u = t then
            return extractPath(u,predecessors)
 6:
       for all v \in u.successors() do
            if v ∉ closed then
 8:
               uvCost \leftarrow edgeCost(u,v)
 9:
               if v \in \text{open then}
10:
                   if uCost + uvCost < open[v] then
11:
                       open[v] \leftarrow uCost + uvCost
12:
                       predecessors[v] \leftarrow u
13:
               else
14:
                   open.push(v,uCost + uvCost)
15:
                   predecessors[v] \leftarrow u
16:
        closed.add(u)
17:
```


Open Min Heap:

Node	s
Cost to Vertex	0

Example

Algorithm 2 Dijkstra(G,s,t)

```
    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

2: open.push(s,0)
3: while !open.isEmpty() do
       u, uCost \leftarrow open.pop()
       if u = t then
           return extractPath(u,predecessors)
       for all v \in u.successors() do
           if v ∉ closed then
8:
               uvCost \leftarrow edgeCost(u,v)
9:
               if v \in \text{open then}
10:
                   if uCost + uvCost < open[v] then
11:
                       open[v] \leftarrow uCost + uvCost
12:
                       predecessors[v] \leftarrow u
13:
               else
14:
                   open.push(v,uCost + uvCost)
15:
                   predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Open Min Heap:

Node	b	а	
Cost to Vertex	1	2	

Example

Algorithm 2 Dijkstra(G,s,t)

```
    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

2: open.push(s,0)
 3: while !open.isEmpty() do
       u, uCost \leftarrow open.pop()
       if u = t then
           return extractPath(u,predecessors)
 6:
       for all v \in u.successors() do
           if v ∉ closed then
 8:
               uvCost \leftarrow edgeCost(u,v)
 9:
               if v \in open then
10:
                   if uCost + uvCost < open[v] then
11:
                      open[v] \leftarrow uCost + uvCost
12:
                      predecessors[v] \leftarrow u
13:
               else
14:
                   open.push(v,uCost + uvCost)
15:
                   predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Open Min Heap:

Node	а	d	
Cost to Vertex	2	4	

Example

Algorithm 2 Dijkstra(G,s,t)

```
    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

2: open.push(s,0)
3: while !open.isEmpty() do
       u, uCost ← open.pop()
       if u = t then
           return extractPath(u,predecessors)
6:
       for all v \in u.successors() do
           if v ∉ closed then
8:
              uvCost \leftarrow edgeCost(u,v)
9:
              if v \in open then
10:
                  if uCost + uvCost < open[v] then
11:
                      open[v] \leftarrow uCost + uvCost
12:
                      predecessors[v] \leftarrow u
13:
              else
14:
                  open.push(v,uCost + uvCost)
15:
                  predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Open Min Heap:

Node	t	d	
Cost to Vertex	3	4	

Example

Algorithm 2 Dijkstra(G,s,t)

```
    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

2: open.push(s,0)
 3: while !open.isEmpty() do
       u, uCost \leftarrow open.pop()
       if u = t then
           return extractPath(u,predecessors)
 6:
       for all v \in u.successors() do
           if v ∉ closed then
 8:
               uvCost \leftarrow edgeCost(u,v)
 9:
               if v \in \text{open then}
10:
                   if uCost + uvCost < open[v] then
11:
                       open[v] \leftarrow uCost + uvCost
12:
                       predecessors[v] \leftarrow u
13:
               else
14:
                   open.push(v,uCost + uvCost)
15:
                   predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Final Path:

s a t

Closed Set:

s b c a

Scalability issues

- → Not scaling to very large graphs
- → Computationally expensive (slow!)
- → What can we do?
 - Add a heurestic to plan more efficiently
 - In particular, euclidean planning heuristics, which exploits structure of planar graphs
 - Hint: the straight line between vertices is a useful estimation of the distance along the path
 - A* algorithms

Comparison against Dijkstra

```
Algorithm 2 Dijkstra(G,s,t)
                                                                      Algorithm 3 A*(G,s,t)

    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

 2: open.push(s,0)
                                                                        2: open.push(s,0,h(s))
 3: while !open.isEmpty() do
                                                                        3: while !open.isEmpty() do
                                                                              u, uCost, uHeuristic ← open.pop() [based on cost+heuristic]
       u, uCost \leftarrow open.pop()
       if u = t then
                                                                              if u = t then
                                                                                  return extractPath(u,predecessors)
           return extractPath(u,predecessors)
       for all v \in u.successors() do
                                                                              for all v \in u.successors() do
           if v ∉ closed then
                                                                                  if v ∉ closed then
 8:
                                                                        8:
               uvCost \leftarrow edgeCost(u,v)
                                                                                      uvCost \leftarrow edgeCost(u,v)
 9:
10:
               if v \in open then
                                                                      10:
                                                                                      if v \in \text{open then}
                   if uCost + uvCost < open[v] then
                                                                                         if uCost + uvCost + h(v) < fullCost(v) then
                                                                      11:
11:
                       open[v] \leftarrow uCost + uvCost
                                                                                             open[v] \leftarrow uCost + uvCost, h(v)
12:
                                                                      12:
                       predecessors[v] \leftarrow u
                                                                                             predecessors[v] \leftarrow u
                                                                      13:
13:
               else
                                                                                      else
                                                                      14:
14:
                   open.push(v,uCost + uvCost)
                                                                                         open.push(v,uCost + uvCost, h(v))
15:
                                                                      15:
                   predecessors[v] ← u
                                                                                         predecessors[v] \leftarrow u
16:
                                                                      16:
       closed.add(u)
                                                                              closed.add(u)
17:
                                                                      17:
```


Example

Algorithm 3 A*(G,s,t)

```
    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

2: open.push(s,0,h(s))
 3: while !open.isEmpty() do
       u, uCost, uHeuristic ← open.pop()
                                               [based on cost+heuristic]
       if u = t then
           return extractPath(u,predecessors)
 6:
       for all v ∈ u.successors() do
           if v ∉ closed then
 8:
               uvCost \leftarrow edgeCost(u,v)
 9:
               if v \in \text{open then}
10:
                   if uCost + uvCost + h(v) < fullCost(v) then
11:
                       open[v] \leftarrow uCost + uvCost, h(v)
12:
                      predecessors[v] \leftarrow u
13:
               else
14:
                   open.push(v,uCost + uvCost, h(v))
15:
                   predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Open Min Heap:

Node	s
Cost + Heuristic	3

Example

Algorithm 3 A*(G,s,t)

```
    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

2: open.push(s,0,h(s))
3: while !open.isEmpty() do
       u, uCost, uHeuristic \leftarrow open.pop()
                                              [based on cost+heuristic]
       if u = t then
           return extractPath(u,predecessors)
6:
       for all v \in u.successors() do
           if v ∉ closed then
8:
               uvCost \leftarrow edgeCost(u,v)
9:
               if v \in open then
10:
                  if uCost + uvCost + h(v) < fullCost(v) then
11:
                      open[v] \leftarrow uCost + uvCost, h(v)
12:
                      predecessors[v] ← u
13:
14:
               else
                  open.push(v,uCost + uvCost, h(v))
15:
                  predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Open Min Heap:

Node	а	b	
Cost + Heuristic	З	4.2	

Example

Algorithm 3 A*(G,s,t)

```
    open ← MinHeap(), closed ← Set(), predecessors ← Dict()

2: open.push(s,0,h(s))
3: while !open.isEmpty() do
       u, uCost, uHeuristic ← open.pop() [based on cost+heuristic]
       if u = t then
           return extractPath(u,predecessors)
 6:
       for all v \in u.successors() do
           if v ∉ closed then
8:
              uvCost \leftarrow edgeCost(u,v)
9:
              if v \in open then
10:
                  if uCost + uvCost + h(v) < fullCost(v) then
11:
                      open[v] \leftarrow uCost + uvCost, h(v)
12:
                      predecessors[v] \leftarrow u
13:
              else
14:
                  open.push(v,uCost + uvCost, h(v))
15:
                  predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Open Min Heap:

Node	t	b	
Cost + Heuristic	3	4.2	

Example

Algorithm 3 A*(G,s,t)

```
1: open \leftarrow MinHeap(), closed \leftarrow Set(), predecessors \leftarrow Dict()
2: open.push(s,0,h(s))
3: while !open.isEmpty() do
       u, uCost, uHeuristic ← open.pop()
                                                 [based on cost+heuristic]
       if u = t then
           return extractPath(u,predecessors)
 6:
       for all v \in u.successors() do
           if v ∉ closed then
 8:
               uvCost \leftarrow edgeCost(u,v)
9:
               if v \in \text{open then}
10:
                   if uCost + uvCost + h(v) < fullCost(v) then
11:
                        open[v] \leftarrow uCost + uvCost, h(v)
12:
                       predecessors[v] \leftarrow u
13:
               else
14:
                   open.push(v,uCost + uvCost, h(v))
15:
                   predecessors[v] \leftarrow u
16:
       closed.add(u)
17:
```


Final Path:

s a t

Closed Set:

s a

PathFinder: A* and Dijkstra visualization

An java-based open-source program to visualize

Try it yourself!

Open-source solution provided by a student

\rightarrow Goal:

Create smooth save path for the car to follow

→ Code:

https://github.com/AndrewGls/CarND-Path-Planning-Project

→ Paper:

M. Werling, J. Ziegler, S. Kammel and S. Thrun, "Optimal trajectory generation for dynamic street scenarios in a Frenét Frame," *2010 IEEE International Conference on Robotics and Automation*, Anchorage, AK, USA, 2010, pp. 987-993, doi: 10.1109/ROBOT.2010.5509799.

→ Full video available at:

https://www.youtube.com/watch?v=ihJIQOgtAWc

HE TG

REDS
Institut
Reconfigurable
and Embedded

Digital Systems

