

Design an experiment (parametric)

Statistics

Prof. Anne Roudaut csxar@bristol.ac.uk

- 1. Chocolate study (a bad example)
- 2. Comparing two things
- 3. Comparing three things

In this deck

let's do an experiment!

memorization game

group 1

group 2

memorize as much as you can

if you beat group 1 = chocolate!

take a piece of paper and a pen

I will tell a list of numbers "1,2,3,6,write"

only when "write" -> write the list on paper

I will show the list 1, 2, 3, 6

if you are correct continue the game

if you wrong stop the game, remember best score

practice trials

1, 4, 9 (size=3)

practice trials

8, 7, 3, 5, 6, 1, 2 (size=7)

let's start the real experiment!

3, 2, 8 (size=3)

4, 2, 5, 1 (size=4)

7, 2, 5, 3, 1 (size=5)

6, 2, 9, 8, 5, 1 (size=6)

7, 4, 1, 8, 6, 3, 2 (size=7)

2, 7, 4, 9, 3, 1, 5, 9 (size=8)

1, 6, 7, 8, 5, 3, 1, 4, 6 (size=9)

6, 4, 1, 9, 3, 8, 2, 1, 7, 9 (size=10)

2, 7, 4, 1, 5, 7, 3, 8, 6, 4, 7 (size=11)

what is your best score (size of the list)?

enter it at

https://tinyurl.com/COMS10011

let's analyze the memory experiment

look at raw data

let's put everything in a table (excel is great for that)

save your file as a .csv (comma separated virgule is a format to store tables as text files)

you can open csv with excel, text file an many other software

dat = read.csv("TTEST.csv", header = TRUE)
print(dat) # look at the file in R

```
R
```

```
dat = read.csv("TTEST.csv", header = TRUE)
print(dat) # look at the file in R

library(ggplot2) # you will need to launch dirst
"install.packages("ggplot2")"

ggplot(dat, aes(x = dat$id, y = dat$score)) +
geom_bar(stat = 'identity', position = 'dodge')
```


first: does the data look ok?

search for bugs, fatigue effect, learning effect or outliers (>3 times std) = remove / redo xp

plot(score ~ group, data = dat)

look at histograms

```
# Find the mean of each group
library(plyr)
cdat <- ddply(dat, "group", summarise,</pre>
score.mean=mean(score))
cdat
 group score.mean
1 A 7.1
2 B 6.5
# Overlaid histograms with means
ggplot(dat, aes(x=score, fill=group)) +
geom histogram(binwidth=1, alpha=.3, position="identity")
+ geom vline(data=cdat, aes(xintercept=score.mean,
colour=group), linetype="dashed", size=1) +
```

expand limits(x = 0, y = 0)

your gut feeling: are these groups different?

are these distributions likely to have happen by chance? ... is this the results of the factor (chocolate)?

use a statistic test

```
# Use a t-test (two-tails, unpaired)
t.test(dat$score[dat$group == "A"], dat$score[dat$group
=="B"], alternative = "two.sided")
```

Welch Two Sample t-test

```
data: dat$score[dat$group == "A"] and
dat$score[dat$group == "B"]
t = 1.0731, df = 37.255, p-value = 0.2901
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
   -0.5326528    1.7326528
sample estimates:
mean of x mean of y
    7.1    6.5
```

"We could not find any significance differences!"

p-value = 0.29

is is enough to say that the two groups are different?

-> nope, not under significant level of 0.05

can we say that the two groups are same then?

-> nope, can only prove things are different, but not that they are the same

conclude

if p was lower than significance level we could say:

 "a student t-test showed significant difference between the two group (two-tailed t(37)=1.0731, p < 0.005)"

otherwise:

"we did not find any significant results"

cannot conclude, no evidences to show that having chocolate rewards improve memorization

You cannot claim anything else!!!!!

let's go backward a little

research question / hypothesis?

look at raw data

look at distributions

check for normality

counterbalancing?

run some stats

how many repetitions/trials?

conclude

research question::

a statement that identifies a phenomenon to be studied

in our xp: I believe that rewards improve memorization skills

... suggested by <insert smart guess>

hypotheses::

statement of the predicted relationship between at least two experimental variables

provisional answer to a research question

in our xp: group chocolate will have a higher memorisation score than group with no reward

(in)dependent variable ::

the dependent variable is the event studied and expected to change whenever the independent variable is altered

vary A → make A an independent variable

so we want to show that A causes B

measure B → make B a dependent variable

in our xp?

independent variable = group type (nothing
vs. chocolate)

dependent variable = memorization score

everything else should be a...

controlled variable ::

the variables that are kept constant to prevent their influence on the effect of the independent variable on the dependent avoid...

confounding variable ::

extraneous variables that correlates with both the dependent variable and the independent variable

ice cream consumption leads to murder counfounding: weather temperature

number of people drowned by falling into a swimming-pool correlates with number of films Nicolas Cage appeared in

this is not about correlation

this is about how to show causality, i.e., that some A causes some B

in our xp, do we have confounding variables?

yes, it is not greatly designed :s

gender, age, background, what you ate before, if you like chocolate or not, if you are competitive and want the others not to have chocolate, if some of the numbers are familiar to you etc.

what can we do about it?

- avoid them by controlling as much as you can in the environment
- if you cannot, make it an independent variable (e.g. gender)
- some are inherent *noise* (human individuality), use more participants to get *statistical power*

the goal of a quantitative study is to find a signal in a lot of noise

experimental design:

aims at maximizing your chances of finding the signal and not the noise

1. need to absolutely avoid systematic biases

(e.g., learning effect, fatigue). They give you false results!

2. avoid random noise. It makes your results nonsignificant. Clever experimental design is all about keeping the noise down e.g. in our xp, I made you practice before!

within vs. between?

within = all participants do same between = participants do only certain conditions

suffer less user variation

statistical power with less participants

no biases from other conditions (e.g. transfer of learning)

within vs. between?

within = all participants do same between = participants do only certain conditions

our xp was between subjects

participants did not do all conditions:

½ did the control condition

½ the reward condition

imagine a within subjects (test how fast we click an icon):

participants do all conditions: they start with the trackpad when finished they do the mouse

is it a good idea?

nope -> learning effect

counterbalancing ::

a method of avoiding confounding among variables presenting conditions in a different order

Latin square ::

an $n \times n$ array filled with n different Latin letters, each occurring exactly once in each row and exactly once in each column.

how many trials?

ideally make as much trials as you can to reduce noise but try to keep experiment around 30 min ... max 40 min

in our xp, we did only one trial because of time constraint, but should have done more to reduce noises

Let's complexify a little

in our xp, let's add a 3rd imaginary group

they get a slap if they had the smallest memorisation score (obviously not ethical so let's keep this hypothetical!)


```
# Find the mean of each group
library(plyr)
dat = read.csv("ANOVA.csv", header = TRUE)
cdat <- ddply(dat, "group", summarise,</pre>
score.mean=mean(score))
cdat
  group score.mean
1 A 7.1
2 B 6.5
3 C 1.8
# Overlaid histograms with means
library(ggplot2)
ggplot(dat, aes(x=score, fill=group)) +
geom histogram(binwidth=1, alpha=.3, position="identity")
+ geom vline(data=cdat, aes(xintercept=score.mean,
colour=group), linetype="dashed", size=1) +
expand limits(x = 0, y = 0)
```


your gut feeling: are these groups different?

are these distributions likely to have happen by chance?

can we use t-tests?

yes but because we are going to need to do 3 tests in total (to compare group 1 with 2, 2 with 3 and 1 with 3)

-> we need to use a Bonferoni correction

It means our significance level not 0.05 anymore but 0.05 / number of comparisons performed (here 3) so <u>0.016</u>

a simple solution would be to do this ...

a simple solution would be to do this ...

problem: any given test has a 5% chance of lying to you so when you use them multiple time you increase your risk of having errors (statisticians call this a "type I error")

bonferroni correction ::

when testing *n* hypotheses, test each one against 0.05/n

bonferroni correction ::

when testing *n* hypotheses, test each one against 0.05/n

in our example we would need to use 0.05/3 as a significant threshold instead of 0.05

Use a t-test (two-tails, unpaired) # (we already know A vs B not significative) so we need to do t.test(dat\$score[dat\$group == "A"], dat\$score[dat\$group == "C"], alternative = "two.sided") t = 11.48, df = 26.128, p-value = 1.044e-11# and t.test(dat\$score[dat\$group == "B"], dat\$score[dat\$group == "C"], alternative = "two.sided") t = 11.435, df = 28.218, p-value = 4.163e-12 In both case p value < 0.016 so we can conclude that slap condition reduces the memory abilities!

Another test we can use when we have more than two groups to compare is an ANOVA

we have 3 different conditions (or 1 factor with 3 different levels) so we will do a one-way ANOVA

anova::

analyze of variance to compare multiple variables

one-way anova = one variable with multiple levels

two-way anova = two variables with multiple levels

```
# first we run the one-way anova
library(ez) #install.packages("ez")
ezANOVA(dat,id,between=group,dv=score)
```

Effect DFn DFd ETTECT DFn DFd F
1 group 2 57 72.74697

* 0.7185101

ok something is going to be significant but what?

second, run the pairwise comparison pairwise.t.test(dat\$score,dat\$group, paired=FALSE, p.adjust.method="bonferroni")

The table shows the p-value for each comparison, 2 of them are <0.05

(here we don't need to do the Bonferroni correction (already included))

we can write:

"A one-way ANOVA showed a significant effect on time for the variable Group (F2,57=72.74, p < 0.05)."

and then:

"Post-hoc comparison t-tests (using Bonferoni correction) showed significant difference between the group C and the group A (p<0.05) and between group C and group B (p<0.05)."

<you could also give means values to give more info>

note of course the "slap" condition is made up

in practice it would be improbable that any ethical approval board would allow this = a mandatory process before any user studies is done!

http://www.bristol.ac.uk/red/research-governance/ethics/uni-ethics/

#