Review of linear models

2 Sep 2023

Basics

- assume $\mathbf{y} \sim \text{Normal}(\mathbf{X}\beta, \sigma)^1$
- **X** is the *model matrix*, can be anything we want it to be
- the *Gauss-Markov theorem* (Wikipedia) makes weaker assumptions: $y = X\beta + \epsilon$; as long as ϵ is mean-zero, homoscedastic with finite variance, and uncorrelated ... then the OLS solution

 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$

is the BLUE (or MVUE).

• we'll embrace the assumptions (which are needed for inference!)

Model matrices

- everything has to be converted to **X** before we start
 - transformations
 - encoding of categorical variables: contrasts
 - interactions
 - basis expansions (e.g. polynomials)

Wilkinson-Rogers formulas (Wilkinson and Rogers 1973)

- operators: +, *, :, /, -, ^
- I()

¹Notation-abuse warning ...

Contrasts

Computation

- matrix decompositions (QR with pivoting)
- big problems: biglm, speedglm, RcppEigen::fastLm
 - optimized BLAS, kernel trick, etc.
 - memory vs speed vs robustness ...
 - -p vs. n vs. many-small-regressions vs. ...

Diagnostics

References

Wilkinson, G. N., and C. E. Rogers. 1973. "Symbolic Description of Factorial Models for Analysis of Variance." *Journal of the Royal Statistical Society. Series C (Applied Statistics)* 22 (3): 392–99. https://doi.org/10.2307/2346786.