Colles de mathématiques en PCSI 5

3 et 10 mai 2012

Programme

Polynômes. Espaces vectoriels. Espaces vectoriels de dimension finie.

 $\mathbb K$ désignera $\mathbb R$ ou $\mathbb C$, et tous les espaces vectoriels considérés ont $\mathbb K$ pour corps de base.

Exercice 1. Factoriser sur $\mathbb{R}[X]$

$$P(X) = 1 + X + \frac{X(X+1)}{2} + \dots + \frac{X(X+1)...(X+n-1)}{n!}.$$

Exercice 2. On introduit l'opérateur linéaire $\Delta: \mathbb{R}[X] \to \mathbb{R}[X]$ défini par $\Delta(P) = P(X+1) - P(X)$.

- 1. Prouver que $deg(\Delta(P)) = deg(P) 1$ si P n'est pas constant.
- **2.** Prouver que pour $n \ge 1$,

$$\Delta^{n}(P) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} P(X+k).$$

- **3.** Calculer $\Delta^n(X^n)$
- 4. Déterminer pour $0 \leq p \leq n$,

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k k^p.$$

- **5.** Si deg P = n, prouver que (P(X), P(X+1), ..., P(X+n)) est une base de $\mathbb{R}_n[X]$.
- 6. On introduit les polynômes de Hilbert :

$$H_0 = 1 \text{ et } \forall p \in \mathbb{N}^*, \ H_p(X) = \frac{X(X-1)...(X-p+1)}{p!}.$$

- **a.** Justifier que $(H_p)_{p\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.
- **b.** Calculer $\Delta^n(H_p)$.

c. Si P est un polynôme, montrer que

$$P = \sum_{k \in \mathbb{N}} \Delta^k P(0) H_k.$$

d. Si $P \in \mathbb{R}[X]$, prouver que

 $P(\mathbb{Z}) \subset \mathbb{Z} \iff$ les coordonnées de P dans la base (H_p) sont entières.

Exercice 3. Soient E un espace vectoriel et F un sous-espace vectoriel de E. Expliciter $\text{Vect}(E \setminus F)$.

Exercice 4. Soient E un espace vectoriel et F, G deux sous-espaces de E. Donner une CNS sur F et G pour que $F \cup G$ soit un sous-espace de E.

Exercice 5. Soient A, B et C trois sous-espaces d'un espace E tels que :

$$A \cap B = A \cap C$$
, $A + B = A + C$ et $B \subset C$.

Prouver que B = C.

Exercice 6. Soient E un espace vectoriel et $f \in \mathcal{L}(E)$.

- 1. On suppose que $\forall x \in E$, (x, f(x)) est une famille liée. Prouver alors que f est une homothétie.
- **2.** On suppose que $\forall u \in \mathcal{L}(E)$, $f \circ u = u \circ f$. Prouver que f est une homothétie.

Pour la deuxième question, on prouvera qu'un tel f préserve toutes les droites vectorielles de E ($\forall D, f(D) \subset D$). Pour cela on considérera la symétrie d'axe D par rapport à un supplémentaire de D.

Exercice 7. Soient E de dimension finie, et F,G deux sous-espaces de E. Prouver l'équivalence :

F et G admettent un supplémentaire commun $\iff \dim(F) = \dim(G)$.

Exercice 8. Soient E un espace vectoriel et $u, v \in \mathcal{L}(E)$ vérifiant $u \circ v - v \circ u = u$. Calculer, en fonction de u et $k \in \mathbb{N}$, $u^k \circ v - v \circ u^k$.

Exercice 9. Soit E un espace vectoriel de dimension finie paire, égale à 2p, $p \in \mathbb{N}$. Soit u un endomorphisme de E tel que Rg(u) = p et $u^2 = 0$. Comparer Ker u et Im u.

Exercice 10. Soit E un espace de dimension finie, et soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent d'ordre $n \ge 1$, c'est à dire tel que $u^{n-1} \ne 0$ et $u^n = 0$. Prouver qu'il existe $x \in E$ tel que la famille $(x, u(x), ..., u^{n-1}(x))$ soit libre.

Exercice 11. Donner un exemple d'endomorphisme qui admet un inverse à gauche, mais pas à droite, c'est à dire un endomorphisme u tel qu'il existe v vérifiant $v \circ u = \operatorname{Id}$ mais avec $u \circ v \neq \operatorname{Id}$.

On pourra penser à l'intégration et la dérivation par exemple.

Exercice 12. Soient $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $d: f \in E \mapsto f' \in E$ l'endomorphisme de dérivation. On note $F = \text{Vect}(\sin, \cos, \cosh, \sinh)$.

- 1. Déterminer $\dim F$ et prouver que $d(F) \subset F$, et donc que d induit un endomorphisme de F, noté φ .
- 2. Écrire la matrice de φ dans une base bien choisie, et calculer ses puissances positives.
- **3.** Montrer que $\varphi \in \operatorname{Aut}(F)$ et donner M^{-1} .
- 4. Déterminer $\ker(\varphi \mathrm{id})$ et $\mathrm{Im}(\varphi \mathrm{id})$. En déduire les éléments de F solutions de l'équation différentielle :

$$\forall t \in \mathbb{R}, \ y'(t) - y(t) = e^{-t} + \sin(t).$$

5. Déterminer $\ker(\varphi^2 - \mathrm{id})$ et $\mathrm{Im}(\varphi^2 - \mathrm{id})$ en utilisant la matrice M. L'équation : $\forall t \in \mathbb{R}, \ y''(t) - y(t) = \cosh(t)$ a-t-elle des solutions dans F?