

Introduction to Deep Learning

Alexander Amini MIT 6.S191 January 24, 2022

Training Neural Networks

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$

$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

We want to find the network weights that achieve the lowest loss

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(\boldsymbol{x}^{(i)}; \boldsymbol{W}), \boldsymbol{y}^{(i)})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$
Remember:
$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \cdots\}$$

Randomly pick an initial (w_0, w_1)

Take small step in opposite direction of gradient

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

```
import tensorflow as tf
         tf Variable([tf random normal()])
while True: # loop forever
   with tf GradientTape() as g:
      loss = compute loss(weights)
      gradient = g gradient(loss, weights)
   weights = weights - lr * gradient
```


- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

```
import tensorflow as tf
         tf Variable([tf random normal()])
while True: # loop forever
   with tf GradientTape() as g:
      loss = compute_loss(weights)
     gradient g gradient(loss, weights)
            weights - lr * gradient
   weights =
```


How does a small change in one weight (ex. w_2) affect the final loss J(W)?

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repeat this for every weight in the network using gradients from later layers

Neural Networks in Practice: Optimization

Training Neural Networks is Difficult

"Visualizing the loss landscape of neural nets". Dec 2017.

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$\boldsymbol{W} \leftarrow \boldsymbol{W} - \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$$

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$W \leftarrow W - \frac{\partial J(W)}{\partial W}$$
How can we set the learning rate?

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

How to deal with this?

ldea l:

Try lots of different learning rates and see what works "just right"

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

Idea 2:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landscape

Adaptive Learning Rates

- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
 - how large gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

Gradient Descent Algorithms

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation

Reference

Kiefer & Wolfowitz. "Stochastic Estimation of the Maximum of a Regression Function." 1952.

Kingma et al. "Adam: A Method for Stochastic Optimization." 2014.

Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

Additional details: http://ruder.io/optimizing-gradient-descent/

Putting it all together


```
import tensorflow as tf
model = tf keras Sequential([ ])
# pick your favorite optimizer
                                                                   Can replace with any
                                                                   TensorFlow optimizer
optimizer = tf keras optimizer SGD()
while True: # loop forever
    # forward pass through the network
    prediction = model(x)
    with tf GradientTape() as tape:
        # compute the loss
        loss = compute loss(y, prediction)
    # update the weights using the gradient
    grads = tape gradient(loss, model trainable variables)
    optimizer apply gradients(zip(grads, model trainable variables)))
```

Neural Networks in Practice: Mini-batches

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Can be very computationally intensive to compute!

Stochastic Gradient Descent

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point *i*
- 4. Compute gradient, $\frac{\partial J_i(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Stochastic Gradient Descent

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point *i*
- 4. Compute gradient, $\frac{\partial J_i(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Easy to compute but very noisy (stochastic)!

Stochastic Gradient Descent

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- Pick batch of B data points
- Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 6. Return weights

Stochastic Gradient Descent

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- Pick batch of B data points
- Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 6. Return weights

Fast to compute and a much better estimate of the true gradient!

Mini-batches while training

More accurate estimation of gradient

Smoother convergence Allows for larger learning rates

Mini-batches while training

More accurate estimation of gradient

Smoother convergence Allows for larger learning rates

Mini-batches lead to fast training!

Can parallelize computation + achieve significant speed increases on GPU's

Neural Networks in Practice: Overfitting

The Problem of Overfitting

Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Why do we need it?

Improve generalization of our model on unseen data

Regularization I: Dropout

During training, randomly set some activations to 0

Regularization I: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Regularization I: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Core Foundation Review

The Perceptron

- Structural building blocks
- Nonlinear activation functions

x_1 x_2 $\Sigma \rightarrow \hat{y}$ x_m

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

6.S191: Introduction to Deep Learning

Lab 1: Introduction to TensorFlow and Music Generation with RNNs

Link to download labs: http://introtodeeplearning.com#schedule

- 1. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
- 3. Need help? Come to the class Gather. Town or 10-250!