CMPE 478: Parallel Processing Fall 2023, Homework 1 (due: Nov. 17th)

(This project can be done in groups of at most 2 students)

Implement an OpenMP program that generates prime numbers in the interval [2..M]. You should use the prime generation method given below (Do NOT use other method!).

Your program should generate a csv file called results.csv that reports the timing results in the following format.

S ₈	S ₄	S ₂	T ₈	T ₄	T ₂	T ₁	Chunk	Openmp	М
							Size	Loop	
								Scheduling	
								Method	
+									
			•••	•••	•••	•••			•••

```
#include <stdio.h>
#define N 50
int prime[N] ;
int main() {
    int j ;
    int k ;
    int n ;
    int quo, rem ;
P1: prime[0] = 2 ;
   n = 3;
    j = 0;
P2: j =j+1;
prime[j] = n ;
P3: if (j == (N-1)) goto P9 ;
P4: n=n+2;
P5: k=1;
P6: quo = n / prime[k] ;
    rem = n % prime[k] ;
    if (rem == 0) goto P4;
P7: if (quo \leq prime[k]) goto P2; P8: k=k+1;
    goto P6 ;
P9: for(j=0 ; j < N ; j++) printf("%d\n",prime[j]) ;
```