ENEL464 Embedded Software and Advanced Computing 2021 Group Assignment 2

1 Introduction

The purpose of this assignment is to implement a numerical algorithm on a computer to make the most efficient use of its caches and cores. You will find that you will get a large variation in program performance depending on how you implement your code and use compiler optimisations. A knowledge of computer architecture should help with this!

The algorithm is Jacobi relaxation. This is an iterative algorithm used to approximate differential equations, for example, Poisson's and Laplace's equations. Poisson's equation can be used to find the electric potential given a specified charge distribution or temperature given a specified heat source. There are more efficient ways to solve this problem using Green's functions and Fourier transforms but that is not the purpose of this assignment.

2 Jacobi relaxation

The discrete form of Poisson's equation is

$$\nabla^2 V_{i,j,k,n} = f_{i,j,k,n},\tag{1}$$

where f is the source (say, the electric charge) and V is the potential field to be determined. Poisson's equation is a partial differential equation and thus requires boundary conditions. For the assignment Neumann boundary conditions are required. This is equivalent to enclosing the problem in an insulating box so that no current flows across the boundary.

Poisson's equation can be solved iteratively, at each time-step n, using Jacobi relaxation, where

$$V_{i,j,k,n+1} = \frac{1}{6} \left(V_{i+1,j,k,n} + V_{i-1,j,k,n} + V_{i,j+1,k,n} + V_{i,j-1,k,n} + V_{i,j,k+1,n} + V_{i,j,k-1,n} - \Delta^2 f_{i,j,k} \right). \tag{2}$$

Here $\Delta = \Delta x = \Delta y = \Delta z$ is the spacing between voxels in metres, $0 \le i < N$, $0 \le j < N$, and $0 \le k < N$. Voxels on the boundary (i = -1, i = N, j = -1, j = N, k = -1, k = N) are defined such that the derivative over that boundary is zero $(\partial V/\partial n = 0)$, see Fig. 1. You might recognise (2) as a 3-D discrete convolution at each time-step.

Figure 1: Illustration of a Neumann boundary condition where the external 'ghost' point (red) is defined such that the gradient at the boundary is zero with respect to the internal points (blue).

3 Implementation

Your program to solve (2) must either use C or C++. Your goal is to find a fast implementation that will run on your (or a CAE lab) computer, making best use of the caches and multiple cores.

A good starting point is provided with *poisson.c.* You should modify this to solve the assignment. Instructions on building it are in the source code. Some suggested reading is located in the *docs/* folder regarding compiler optimisations, multithreading, and profiling.

Code templates can be found at https://eng-git.canterbury.ac.nz/bmi32/464_template_2021. We recommend writing your solutions in a Linux-like environment. This means any Linux distribution, MacOS with Homebrew, or Windows with WSL. Your mileage may vary with the profiling tools in anything other than Linux.

4 Testing

Test your algorithm with a single point charge in the centre of the volume, i.e.,

$$f_{i,j,k} = \begin{cases} 1 & i = N/2, j = N/2, k = N/2, \\ 0 & \text{otherwise} \end{cases},$$
 (3)

where the volume is comprised of $N \times N \times N$ voxels. Note, you algorithm must work with arbitrary source distributions.

A testing script (test.sh) has been provided along with some sample outputs at several cube sizes. This will automatically compare your output against a reference implementation.

5 Support

Only questions submitted via the ENCE464 assignment forum will be answered. Emails will be quietly ignored.

6 Reports

The reports are group reports and are to be submitted as PDF documents through the ENCE464 Learn page. They will be submitted to TurnItIn for plagiarism checking.

Guidelines for writing a report are available at https://eng-git.canterbury.ac.nz/mph/report-guidelines/blob/master/report-guidelines.pdf.

Each report is to use a 12 point font and be no longer than five pages, including appendices. Please use margins of at least 2 cm.

7 Assessment

Your report will be marked in terms of:

- Written style. The writing should be concise technical writing.
- Presentation. The key here is consistency and clear diagrams and graphs.
- Architecture overview. This should describe your computer's architecture (such as the cache organisation, memory size, CPU model, etc.).
- Multithreading analysis. This should discuss how your program takes advantage of multiple cores.
- Cache analysis. This should discuss how your program takes advantage of the cache.
- Profiling analysis. This should show which parts of your program take the most time.
- Optimisation analysis. This should discuss the affects of some of the compiler optimisations, such as loop unrolling, on your program.
- Overall excellence.

Each section is marked out of 5, giving a total of 40 marks. Five bonus marks will be awarded to any group who can beat our program when running on a CAE lab computer and give the correct results.

Your report should present the statistics for the time your program takes to run for the following problem sizes: N = 101, 201, 301, 401, 501, 601, 701, 801, 901. For N = 801 and N = 901, do not worry about performing many trials. If you have a really old computer, you can skip N = 901.

Your analyses should be backed up with experimental evidence, such as the output from profiling tools.

8 Code

We expect you to use git for version control. However, you must submit your code as a <code>.zip</code> file so it can be checked for numerical accuracy and plagiarism. Your fastest implementation must be able to built by running <code>make</code>.