FSAIN

Supervised Machine Learning: Modelagem Multinível I

Prof. Dr. Luiz Paulo Fávero

Reflexão

Contexto

O que são Modelos Multinível?

São modelos que reconhecem a existência de estrutura multinível ou hierárquica nos dados.

Hierarchical linear models: applications and data analysis methods. 2. ed. Thousand Oaks: Sage Publications, 2002.

Stephen W. Raudenbush *University of Chicago*

Anthony S. Bryk Stanford University

$$Y_{i1} = \beta_{01} + \beta_{11}.X_{i1} + \varepsilon_{i1}$$

Escola 2:

$$Y_{i2} = \beta_{02} + \beta_{12}.X_{i2} + \varepsilon_{i2}$$

Escola 3:

$$Y_{i3} = \beta_{03} + \beta_{13}.X_{i3} + \varepsilon_{i3}$$

Escola 4:

$$Y_{i4} = \beta_{04} + \beta_{14} \cdot X_{i4} + \varepsilon_{i4}$$

Modelo Multinível

Nível 1

$$Y_{ij} = \beta_{0j} + \beta_{1j}.X_{ij} + \varepsilon_{ij}$$

Nível 2
$$\beta_{0j} = \gamma_{00} + \gamma_{01}.W_j + \nu_{0j} \qquad \beta_{1j} = \gamma_{10} + \gamma_{11}.W_j + \nu_{1j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11}.W_j + \nu_{1}$$

$$Y_{ij} = \underbrace{\left(\gamma_{00} + \gamma_{01}.W_j + \nu_{0j}\right)}_{}$$

efeitos aleatórios

efeitos aleatórios

$$Y_{ij} = \underbrace{\left(\gamma_{00} + \gamma_{01}.W_j + \nu_{0j}\right)}_{\text{intercepto com efeitos aleatórios}} + \underbrace{\left(\gamma_{10} + \gamma_{11}.W_j + \nu_{1j}\right).X_{ij} + \varepsilon_{ij}}_{\text{inclinação com efeitos aleatórios}}$$

O Modelo Multinível

$$Y_{ij} = \underbrace{\gamma_{00} + \gamma_{10}.X_{ij} + \gamma_{01}.W_j + \gamma_{11}.W_j.X_{ij}}_{\textbf{Efeitos Fixos}} + \underbrace{\nu_{0j} + \nu_{1j}.X_{ij} + \varepsilon_{ij}}_{\textbf{Efeitos Aleatorios}}$$

 Os modelos tradicionais de regressão ignoram as interações entre variáveis no componente de efeitos fixos e as interações entre termos de erro e variáveis no componente de efeitos aleatórios.

Multilevel statistical models. 4. ed. Chichester: John Wiley & Sons, 2011.

Harvey Goldstein Centre for Multilevel Modelling University of Bristol

Variância dos Termos Aleatórios

Se as variâncias dos termos aleatórios v_{0j} e v_{1j} forem estatisticamente diferentes de zero, procedimentos tradicionais de estimação dos parâmetros do modelo, como mínimos quadrados ordinários, não serão adequados.

Using multivariate statistics. 6. ed. Boston: Pearson, 2013.

Barbara G. Tabachnick California State University

Dummies?

Apenas a inserção de *dummies* de grupo não capturaria os efeitos contextuais, visto que não permitiria que se separassem os efeitos observáveis dos não observáveis sobre a variável dependente.

Multilevel and longitudinal modeling using Stata. 3. ed. College Station: Stata Press, 2012.

Sophia Rabe-Hesketh U. C. Berkeley

Anders Skrondal Norwegian Institute of Public Health University of Oslo U. C. Berkeley

Por que Utilizar?

Os modelos multinível permitem, portanto, o desenvolvimento de novos e mais bem elaborados constructos para predição e tomada de decisão.

"Dentro de uma estrutura de modelo com equação única, parece não haver uma conexão entre indivíduos e a sociedade em que vivem. Neste sentido, o uso de equações em níveis permite que o pesquisador 'pule' de uma ciência a outra: alunos e escolas, famílias e bairros, firmas e países. Ignorar esta relação significa elaborar análises incorretas sobre o comportamento dos indivíduos e, igualmente, sobre os comportamentos dos grupos. Somente o reconhecimento destas recíprocas influências permite a análise correta dos fenômenos."

Methodology and epistemology of multilevel analysis.

London: Kluwer Academic Publishers, 2003.

Daniel Courgeau Institut National D´Études Démographiques

Business, Economics & Management

Aplicações					
Aplicações Business, Economics & Management					
Periódico	Índice h5 (Google Scholar)	% / Modelos Supervisionados			
American Economic Review	158	10,78%			
Journal of Business Research	140	12,71%			
Tourism Management	118	14,04%			
Journal of Business Ethics	117	12,15%			
Journal of Financial Economics	116	11,83%			
The Quarterly Journal of Economics	110	3,75%			
The Review of Financial Studies	108	6,88%			
Technological Forecasting and Social Change	106	4,59%			
International Journal of Information Management	105	8,15%			
Management Science	103	8,57%			

9,26%

Enginering & Computer Science

Aplicações		
Enginering & Computer Science		3.584.50
Periódico	Índice h5 (Google Scholar)	% / Modelos Supervisionados
IEEE/CVF Conference on Computer Vision and Pattern Recognition	356	4,78%
Advanced Materials	294	3,56%
International Conference on Learning Representations	253	6,22%
Neural Information Processing Systems	245	4,83%
Renewable and Sustainable Energy Reviews	225	3,42%
Advanced Energy Materials	206	2,53%
nternational Conference on Machine Learning	204	8,24%
Energy & Environmental Science	202	3,54%
ACS Nano	202	2,89%
European Conference on Computer Vision	197	3,38%

4,28%

Health & Medical Sciences

Aplicações		
Health & Medical Sciences		
Periódico	Índice h5 (Google Scholar)	% / Modelos Supervisionados
The New England Journal of Medicine	410	1,97%
The Lancet	345	2,34%
Cell	288	2,41%
Journal of the American Medical Association	253	2,75%
Proceedings of the National Academy of Sciences	245	0,98%
Journal of Clinical Oncology	213	1,75%
Nature Medicine	205	0,73%
The Lancet Oncology	196	0,45%
PLoS ONE	185	0,43%
Nature Genetics	184	2,34%

1,70%

Social Sciences

Aplicações		
Social Sciences		
Periódico	Índice h5 (Google Scholar)	% / Modelos Supervisionados
Journal of Business Ethics	117	0,97%
Computers & Education	109	0,34%
Computers & Education Research Policy New Media & Society	95	0,41%
New Media & Society	93	0,75%
American Journal of Public Health	90	0,98%
Global Environmental Change	86	0,75%
Nature Human Behaviour	84	0,73%
Health Affairs	84	0,45%
Social Science & Medicine	83	0,43%
Teaching and Teacher Education	83	0,97%

0,64%

Pouca Utilização: Qual a Razão?

- Estrutura dos dados.
- Não consideração de natureza multinível nos dados.
- Capacidade computacional por vezes insuficiente, principalmente quando da existência de interações profundas.

Multilevel network analysis for the social sciences: theory, methods and applications. New York: Springer, 2016.

RAJAN, R.G.; ZINGALES, L.

What do we know about capital structure? Some evidence from international data. **Journal of Finance**, v. 50-5, p. 1421-1460, 1995.

- Compustat Global e MSCI;

- 4.557 empresas;

- 7 países;

- período: 1987-1991.

Country	Local Market Index	Number of Firms					
United States	S&P 500	2.583					
Japan	Nikkei 500	514					
Germany	FAZ Share Index	191					
France	CAC General Index	225					
Italy	MIB Current Index	118					
United Kingdom	FT 500	608					
Canada	TSE 300	318					

Leverage_i =
$$\beta_0 + \beta_1$$
. (Tangible Assets)_i + β_2 . (Market to Book)_i
+ β_3 . (Log Sales)_i + β_4 . (ROA)_i + ε_i

588-86

$$Leverage_{i} = \beta_{0} + \beta_{1}.(Tangible\ Assets)_{i} + \beta_{2}.(Market\ to\ Book)_{i} + \beta_{3}.(Log\ Sales)_{i} + \beta_{4}.(ROA)_{i} + \varepsilon_{i}$$

Nível 1

Leverage_{ij} =
$$\beta_{0j} + \beta_{1j}$$
. (Tangible Assets)_{ij} + β_{2j} . (Market to Book)_{ij} + β_{3j} . (Log Sales)_{ij} + β_{4j} . (ROA)_{ij} + ε_{ij}

Nível 2

$$\beta_{0j} = \gamma_{00} + \nu_{0j} \qquad \beta_{1j} = \gamma_{10} + \nu_{1j} \qquad \beta_{2j} = \gamma_{20} + \nu_{2j}$$

$$\beta_{3j} = \gamma_{30} + \nu_{3j} \qquad \beta_{4j} = \gamma_{40} + \nu_{4j}$$

leverage	Coef.	Std.	Err.	z	P> z	[95% Conf.	Interval]	
tang_assets	.3462677	.04	 19087	7.0	5 0.000	.2500589	.4424765	
market_book	0641481	.014	13289	-4.4	0.000	0922322	036064	
logsale	.0353799	.009	98784	3.5	0.000	.0160185	.0547413	
roa	7729998	.207	71899	-3.7	3 0.000	-1.179085	366915	
_cons	6153343	.79	95045	-0.7	7 0.439	-2.173594	.9429252	
						10^{7}		
Random-effect	s Parameters	1	Estim	ate	Std. Err.	[95% Conf.	Interval]	
country:		+ 		-11	TU-	 1		
	var(tang_a~s)	4.33e	-13		1.83e-28	1021.785	
	var(market~k)	.0087	904		.002262	.0341598	
	var(logsale)	7.67e	-06	33%	1.96e-06	.00003	
	var(roa), 1	10.84	124		3.37015	34.87456	
	var(_cons)	3.811	.897		1.036019	14.02538	
A1	var (Residual	+	29.18	282	67%	28.01925	30.39471	
1 . 0 7				1- : O (E)	1047	68 Prob > chi		

RAJAN, R.G.; ZINGALES, L.

What do we know about capital structure? Some evidence from international data. **Journal of Finance**, v. 50-5, p. 1421-1460, 1995.

BELFIORE, P.; FÁVERO, L. P.; SERRA, R. G.; SOUZA, R. F.

Operational efficiency in Brazilian airports: an analysis through the hierarchical linear modeling with repeated measures. **Int. Journal of Logistics Systems and Management.** No prelo.

- ANAC e INFRAERO;
- 30 maiores aeroportos por tráfego;
- 23 UFs;
- período: 2014-2018.

Determinant Factor	Variable	Unit	Label		
	1111		Public		
Governance Structure	Property	Nominal	Private		
2.10			Mixed		
Airport Operational	Size	m²	Size		
Characteristics	Size	1112	Size		
	Number of commercial		Commono		
	establishments		Commerce		
	Number of aircraft parking		Positions		
	positions				
	Number of vehicle parking lots		Parking lots		
	Airport years of experience		Experience		
Service Strategy	Number of airlines		Airlines		
Location	Airport location	State	Location		

Desafios em Modelagem Multinível

Interações Profundas e Capacidade de Processamento

Métodos de Estimação dos Parâmetros

Clusterização da Amostra

Estimação de modelos com a melhor aderência possível entre os valores reais e previstos

Andrew Gelman

Multilevel Conference, 31 Out 2015, Columbia University, NYC.

588-8L

MODELAGEM MULTINÍVEL NO (R)

Modelo Nulo

Nível 1

 $desempenho_{ij} = \beta_{0j} + \varepsilon_{ij}$

Nível 2

$$\beta_{0j} = \gamma_{00} + \nu_{0j}$$

Substituindo...

 $desempenho_{ij} = \gamma_{00} + v_{0j} + \varepsilon_{ij}$

Modelo com Interceptos Aleatórios

Nível 1

$$desempenho_{ij} = \beta_{0j} + \beta_{1j}. horas_{ij} + \varepsilon_{ij}$$

Nível 2

$$\begin{cases} \beta_{0j} = \gamma_{00} + \nu_{0j} \\ \beta_{1j} = \gamma_{10} \end{cases}$$

Substituindo...

$$desempenho_{ij} = \gamma_{00} + \gamma_{10}. horas_{ij} + \nu_{0j} + \varepsilon_{ij}$$

Modelo com Interceptos e Inclinações Aleatórios

Nível 1

$$desempenho_{ij} = \beta_{0j} + \beta_{1j}.horas_{ij} + \varepsilon_{ij}$$

Nível 2
$$\begin{cases} \beta_{0j} = \gamma_{00} + \nu_{0j} \\ \beta_{1j} = \gamma_{10} + \nu_{1j} \end{cases}$$

Substituindo...

 $desempenho_{ij} = \gamma_{00} + \gamma_{10}$. $horas_{ij} + \nu_{0j} + \nu_{1j}$. $horas_{ij} + \varepsilon_{ij}$

Modelo Final HLM2

Nível 1

 $desempenho_{ij} = \beta_{0j} + \beta_{1j}. horas_{ij} + \varepsilon_{ij}$

Nível 2

$$\begin{cases} \beta_{0j} = \gamma_{00} + \gamma_{01}.texp_j + \nu_{0j} \\ \beta_{1j} = \gamma_{10} + \gamma_{11}.texp_j + \nu_{1j} \end{cases}$$

Substituindo...

$$desempenho_{ij} = \gamma_{00} + \gamma_{10}. horas_{ij} + \gamma_{01}.texp_j + \gamma_{11}.texp_j. horas_{ij} + \nu_{0j} + \nu_{1j}. horas_{ij} + \varepsilon_{ij}$$

HLM2 x OLS

