Modern Biology (Nerve Impulse and Muscle Contraction)

Navin Gupta
Dept of BSBE, IIT Guwahati
Email: cngupta@iitg.ernet.in

Structure of Neuron

- Neurons are a special type of cell for information transfer around the body.
 - * Dendrites: Receive signals from neighboring neurons (like radio antenna).
 - * Axon: Transmit Signals over a distance (like telephone wire)
 - * Axon Terminal: Transmit Signals to other neuron dendrites (like a radio transmitter).
 - * Myelin Sheath: Speeds up signal transmission along axon.

Structure of Neuron

Need to Study Resting Membrane Potential??

Potential Difference/Resting Potential

• Electrical potential difference between the inside and the surrounding extracellular fluid of cell is termed the membrane potential.

 When a nerve or muscle cell is at "rest", its membrane potential is called the **Resting** membrane potential

Images: https://courses.washington.edu/conj/membpot/membranepot.htm

Ions in Action for Resting Membrane Potential??

Resting Potential (Important Ions)

Resting Potential Expression

• *Electrical force*: Each ion will be attracted to the side of membrane with opposite charge.

• *Chemical Diffusion force* related to concentration gradients across neuron membrane (Particles move from higher to lower concentration).

$$M_s' = -D_s \frac{dc_s}{dx}$$
 Concentration gradient

Diffusion constant

• Each of ions are acted by two forces combinedly called *Electrochemical forces* which enable performing various functions.

Resting Potential (Nernst Equation)

• At equilibrium when chemical and electrical energy are balanced (Net movement)

$$M_s = 0$$

• Simplifying we arrive at the membrane potential (Nernst Equation)

$$E_x = \frac{RT}{zF} \ln \frac{[X]_o}{[X]_i}$$

T= room temperature, z=charge, F=Faraday constant

Study how 100 billion Neurons are firing of nearly 50 action potentials per second thereby controlling what we do, how we think, move muscles, listen to lecture classes © ©

Signal Propagation Between Neurons

• The process of sending signals takes place in two steps: along the cell (action potential) and between cells (neurotransmitters)

• Action potentials travel in neurons cell as an electrochemical cascade, allowing a net inward flow of positively charged ions into the axon.

- Chemicals known as neurotransmitters (glutamate, dopamine) are stored in membrane-bound vesicles at the axon terminal of neurons.
- Get released when Ca²⁺ enters the axon terminal and act by binding to receptors on the membrane of the postsynaptic cell.
- Neurotransmitters are "excitatory" firing a target neuron (Glutamate) "inhibitory" making a target neuron less likely to fire (GABA).

Image: cnx.org

Action Potentials/Nerve Impulse

Action Potential/Nerve Impulse

- Action potential (AP) occur when the combined effect of graded potentials in time brings the membrane of trigger zone over threshold potential (-50mv)
- They occur in axons of neuron.
- AP do not decay with time and distance and remain constant in duration.
- Myelinated axons conduct action potentials pass faster.
- AP speed in axons is around 1 to 100 metre/sec
- Size of AP varies from neuron to neuron

Action Potentials(Raising- Na+)

Action Potentials (Falling-K+)

STRUCTURE OF MUSCLES

Involuntary Control (Stomach)

Voluntary

control

Skeletal muscle does not consist of individual cells. Rather it is formed from huge, multinucleate **muscle fibers**

Tough Question

What is the fundamental unit of Skeletal Muscle fiber

SARCOMERE

Thick and thin protein filaments in myobril or muscle cell.

Brain/Spinal Cord Connections with Muscles

What is Neuron connecting to Muscle called ??

Birds Eyeview

Lower Motor Neurons
(from brainstem or spinal cord) control skeletal muscles

All fibers innervated by the same neuron are called motor unit

Tough Question. Give it a try © ©

What is the site of signal exchange between Neuron and Muscle

Closer Look: Neuron/Muscle connection

Neuromuscular junction is the site of signal exchange

Innervation of Skeletal Muscle

Muscles will contract/relax when they receive signals from the nervous system.

Muscle action begins at the motor end plate (or neuromuscular junction), which is analogous to a synapse between neurons

The neuromuscular junction is a site where a motor axon terminal releases neurotransmitters (acetylcholine)

Acetylcholine binds to receptors localized in the muscle membrane at the motor end plate.

Depolarizes the muscle fiber and electrical impulse travels down the T tubule and opens calcium stores

Thanks for coming © ©