A negative charge (-q) is moving in the +x direction when it encounters a region of constant magnetic field pointing in the -y direction. Which is the direction of the initial net force on the charge?

A. +y

B. -y

C. +z

D. −*z* E. ???

A proton (q = +e) is released from rest in a uniform ${\bf E}$ and uniform ${\bf B}$. ${\bf E}$ points up, ${\bf B}$ points into the page. Which of the paths will the proton initially follow?

E. It will remain stationary

MAGNETOSTATICS

A + charged particle moving up (speed v) enters a region with uniform \mathbf{B} (left) and uniform \mathbf{E} (into page). What's the direction of \mathbf{F}_{net} on the particle, at the instant it enters the region?

- A. To the left
- B. Into the page
- C. Out of the page
- D. No net force
- E. Not enough information

A proton (speed v) enters a region of uniform \mathbf{B} . v makes an angle θ with \mathbf{B} . What is the subsequent path of the proton?

- A. Helical
- B. Straight line
- C. Circular motion, \perp to page. (plane of circle is \perp to **B**)
- D. Circular motion, \bot to page. (plane of circle at angle θ w.r.t. \mathbf{B})
- E. Impossible. ${f v}$ should always be $oldsymbol{\perp}$ to ${f B}$

If we place a physical filter (i.e., a piece of metal with a thin slot that is a bit larger than the beam width to avoid diffraction) at the end of the first stage, which particles (assume they are all positively charged) hit the upper-part of the filter? Which hit the lower part?

- A. Fast moving particles hit the upper part; slow ones hit the lower part
- B. Slow moving particles hit the upper part; fast ones hit the lower part
- C. It's not possible to tell without q and/or m

In the first stage of the mass spectrometer, with $\mathbf{E}=E_0\hat{z}$ (pointing upward) and $\mathbf{B}=B_0\hat{x}$ (pointing out of the page), which particles travel through in a straight line?

- A. All particles regardless of speed
- B. Particles with speed B_0/E_0
- C. Particles with speed E_0/B_0
- D. Can't tell without knowing q and/or m

You may assume all particles move exclusively in the +y direction.

Can we use the same mass spectrometer set up for negatively and positively charged particles? That is, will our set up distinguish between particles of a given mass and differently-signed charges?

A. Yes

B. No

For our velocity selector where $\mathbf{E}=E_0\hat{z}$ and $\mathbf{B}=B_0\hat{x}$ and we start particles from rest, we end up with the following **coupled** equations of motion,

$$m\dot{v}_y = qv_z B_0$$

$$m\dot{v}_z = qE_0 - qv_y B_0$$

How might we solve them for y(t) and z(t)?

- A. Just integrate the equations of motion
- B. Guess the general solution
- C. Take the time derivative of one and plug into the other
- D. Give up???