Deep Graph InfoMax

Veličković, Petar, et al. (2018)

2021.08.09 Presented by HYOJUN KIM

CONTENTS

01 Backgrounds

02 Our model

03 Experiments

04 Conclusion

05 Implementation

06 Appendix

01 Background

Contrastive Self-Supervised Learning

- Positive example 과 Negative example을 대조하여 representation을 학습

Mutual information - Contrastive (figure from Oord)

01 Background

- Representation learning by InfoMax principle I(X; E(Z))
 - InfoMax principle: maximizing the mutual information between input X and its representation Z

• Mutual Information?

• 두 random variable들이 얼마나 dependence한지 measure하는 방법

$$I(X;Z) = D_{KL}(p(x,z)||p(x)p(z)) = \mathbb{E}_{p(x,z)} \left[\log \frac{p(x,z)}{p(x)p(z)} \right]$$

Challenge in using InfoMax principle

- $I(X; E(Z)) = D_{KL}(p(x,z)||p(x)p(z))$: Distribution을 알기가 어렵다.
- Exact computation of mutual information is mostly intractable
 - → Exact mutual information's lower bound를 Maximize 하자!

$$I(X;Z) \ge I_{\Theta}(X,Z),$$

01 Background

Used 3 variational MI Estimators

1. MINE: random variables을 샘플링 후, Donsker-Varadhan representation을 lower bound로 제안

$$\mathcal{I}(X;Y) := \mathcal{D}_{KL}(\mathbb{J}||\mathbb{M}) \ge \widehat{\mathcal{I}}_{\omega}^{(DV)}(X;Y) := \mathbb{E}_{\mathbb{J}}[T_{\omega}(x,y)] - \log \mathbb{E}_{\mathbb{M}}[e^{T_{\omega}(x,y)}],$$

2 Jensen-Shannon MI estimator

$$\widehat{\mathcal{I}}_{\omega,\psi}^{(\mathrm{JSD})}(X; E_{\psi}(X)) := \mathbb{E}_{\mathbb{P}}[-\mathrm{sp}(-T_{\psi,\omega}(x, E_{\psi}(x)))] - \mathbb{E}_{\mathbb{P} \times \tilde{\mathbb{P}}}[\mathrm{sp}(T_{\psi,\omega}(x', E_{\psi}(x)))],$$

3. CPC: Noise Contrastive Estimation (infoNCE loss를 최소화하는 관점)

$$\widehat{\mathcal{I}}_{\omega,\psi}^{(\text{infoNCE})}(X; E_{\psi}(X)) := \mathbb{E}_{\mathbb{P}} \left[T_{\psi,\omega}(x, E_{\psi}(x)) - \mathbb{E}_{\tilde{\mathbb{P}}} \left[\log \sum_{x'} e^{T_{\psi,\omega}(x', E_{\psi}(x))} \right] \right].$$

01 Background

fake

Main Idea (Well-designed Tasks)

M

DIM (Local)

Prior Matching

→ 그래프에 적용시킬 수 없을까??

M x M features drawn from another image

Local DIM Framework

Sum up

- 1. Contrastive learning (Positive, Negative)
- 2. local 과 global feature 사이의 MI expectation
 - → 효과적인 Representation
 - → Robust

Negative Sampling

Mutual information - Contrastive (figure from Oord)

- Use the corruption function!!
 - ① Preserve the original adjacency matrix
 - ② Corrupt features X by row-wise shuffling
 - → has <u>similar levels of connectivity</u> to the positive graph

How to extract feature in Graph

A set of node features $\mathbf{X} = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_N\}$ adjacency matrix, $\mathbf{A} \in \mathbb{R}^{N \times N}$

Graph Conv

$$\mathcal{E}: \mathbb{R}^{N \times F} \times \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times F'}$$

Local Feature

$$\mathcal{E}(\mathbf{X}, \mathbf{A}) = \mathbf{H} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}$$

: patch representations

, Readout function $ec{s}=\mathcal{R}(\mathbf{H})$

Global Feature

 $= \sigma \left(\frac{1}{N} \sum_{i=1}^{N} \vec{h}_i \right)$

: graph-level representations

Overview of DGI

- ① Negative example by using the corruption function
- ② Obtain patch representations for input graph
- ③ Obtain patch representations for negative example
- 4 Summarize the input graph by passing its patch representations through the readout function
- ⑤ Update parameters of ϵ , R, D by applying gradient descent

Discriminator & Mutual Information

Maximize Mutual Information

Distinguish between samples drawn from the joint p(x, y) and those drawn from the product of marginals p(x)p(y),

Discriminator On DGI

Discriminator function

$$\mathcal{D}(\vec{h}_i, \vec{s}) = \sigma \left(\vec{h}_i^T \mathbf{W} \vec{s} \right)$$

In contrastive objective, Discriminator 는 joint (positive examples)로부터 나온 샘플과 marginal의 product로부터 나온 샘플(negative examples)을 구별하는 것

Objective function

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_i, \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\vec{h}}_j, \vec{s} \right) \right) \right] \right)$$
positive examples

negative examples

Overview of DGI functions

(1)

3

(5)

$$(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}}) \sim \mathcal{C}(\mathbf{X}, \mathbf{A}). \qquad \frac{\mathbf{H} = \mathcal{E}(\mathbf{X}, \mathbf{A}) = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}.}{\widetilde{\mathbf{H}} = \mathcal{E}(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}}) = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_M\}.} \qquad \mathcal{R}(\mathbf{H}) = \sigma \left(\frac{1}{N} \sum_{i=1}^{N} \vec{h}_i\right) \qquad \mathcal{D}(\vec{h}_i, \vec{s}) = \sigma \left(\vec{h}_i^T \mathbf{W} \vec{s}\right)$$

$$\mathcal{R}(\mathbf{H}) = \sigma \left(\frac{1}{N} \sum_{i=1}^{N} \vec{h}_i \right)$$

$$\mathcal{D}(\vec{h}_i, \vec{s}) = \sigma\left(\vec{h}_i^T \mathbf{W} \vec{s}\right)$$

- Dataset Details
- ① Transductive learning task (Cora, Citeseer, Pubmed)
- 고정된 Graph에서 추론을 행하는 것
- unlabeled training data도 그들이 가진 특성(ex. 데이터 간 연결 관계, 거리)을 활용해 새로운 prediction을 하는 것
- high computational cost
 : 새로운 데이터가 들어오면, 처음부터 모델을 구축하여야 함

- ② Inductive learning task (Reddit, PPI)
- 틀에서 벗어나 새로운 Node에 대해서도 합리적인 추론을 행할 수 있는 경우
- supervised learning으로, 어떤 function parameter 를 주어진 labeled training data로 학습하는 것
- less computational cost : 모델을 구축하여 새로운 데이터가 입력으로 들어왔을 때 대응 가능 (지금껏 본적이 없는 Node에 대해 일반화를 하는 것)

Experimental Setup

Transductive learning task (Cora, Citeseer, Pubmed)

Encoder: one-layer GCN model

$$\mathcal{E}(\mathbf{X}, \mathbf{A}) = \sigma \left(\hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \mathbf{\Theta} \right)$$

→ <u>학습된 filter가 fixed and known adjacency</u> <u>matrix에 의존</u> ② Inductive learning task (Reddit, PPI)

Encoder : GraphSAGE

$$MP(\mathbf{X}, \mathbf{A}) = \mathbf{\hat{D}}^{-1} \mathbf{\hat{A}} \mathbf{X} \mathbf{\Theta}$$

$$\mathcal{E}(\mathbf{X}, \mathbf{A}) = \widetilde{MP}_3(\widetilde{MP}_2(\widetilde{MP}_1(\mathbf{X}, \mathbf{A}), \mathbf{A}), \mathbf{A})$$

→ efficiently generate node embeddings for previously unseen data.

Preview of GraphSAGE

• Aggregation 함수를 사용하여 GCN을 일반화하자!

Results

 Transductive learning task (Cora, Citeseer, Pubmed)

-							
	ra	ns	d	111	ct	IV	6

Available data	Method	Cora	Citeseer	Pubmed	
X	Raw features	$47.9 \pm 0.4\%$	$49.3 \pm 0.2\%$	$69.1 \pm 0.3\%$	
\mathbf{A}, \mathbf{Y}	LP (Zhu et al., 2003)	68.0%	45.3%	63.0%	
A	DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%	
X, A	DeepWalk + features	$70.7\pm0.6\%$	$51.4\pm0.5\%$	$74.3\pm0.9\%$	
X, A	Random-Init (ours)	$69.3 \pm 1.4\%$	$61.9 \pm 1.6\%$	$69.6 \pm 1.9\%$	
\mathbf{X}, \mathbf{A}	DGI (ours)	$82.3 \pm 0.6\%$	71.8 \pm 0.7%	76.8 \pm 0.6%	
X, A, Y	GCN (Kipf & Welling, 2016a)	81.5%	70.3%	79.0%	
X, A, Y	Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%	

② Inductive learning task (Reddit, PPI)

Inductive

Available data	Method	Reddit	PPI	
X	Raw features	0.585	0.422	
\mathbf{A}	DeepWalk (Perozzi et al., 2014)	0.324	_	
\mathbf{X}, \mathbf{A}	DeepWalk + features	0.691	_	
X, A	GraphSAGE-GCN (Hamilton et al., 2017a)	0.908	0.465	
X, A	GraphSAGE-mean (Hamilton et al., 2017a)	0.897	0.486	
X, A	GraphSAGE-LSTM (Hamilton et al., 2017a)	0.907	0.482	
X, A	GraphSAGE-pool (Hamilton et al., 2017a)	0.892	0.502	
X, A	Random-Init (ours)	0.933 ± 0.001	0.626 ± 0.002	
X, A	DGI (ours)	0.940 ± 0.001	0.638 ± 0.002	
X, A, Y	FastGCN (Chen et al., 2018)	0.937	_	
X, A, Y	Avg. pooling (Zhang et al., 2018)	0.958 ± 0.001	0.969 ± 0.002	

Demonstrate strong performance being achieved across all five datasets

04 Conclusion

Sum up

- New approach for learning unsupervised representations on graph-structured data
- Leveraging local mutual information maximization
 graph's patch representations + global structural properties of graph
- transductive, inductive classification task 모두 competitive performance를 보임

Discussion

- It is very important to tracking trends in various fields such as Vison, NLP, Graph.
- Readout function: Simple averaging of all the node's features → Global Vector
 - Future work
- Corruption function: row-wise shuffling on X features
 - Future work

04 Conclusion

Limitation

- 1) DGI merely considers the extrinsic supervision signal
 - Ignores intrinsic signal (between node embedding, node attributes)
- 2) DGI is designed for a single attributed network
 - Nodes are connected by multiple relations (Multiplex Graph)

(a) Illustration of the extrinsic and intrinsic supervision.

(b) Illustration of the joint supervision.

summary
$$\hat{I}(\mathbf{h}_n;\mathbf{s};\mathbf{f}_n) = \hat{I}(\mathbf{h}_n;\mathbf{s}) + \hat{I}(\mathbf{h}_n;\mathbf{f}_n) - \hat{I}(\mathbf{h}_n;\mathbf{s},\mathbf{f}_n)$$
 embedding attribute

05 Implementation

Visualization (PCA, t-SNE)

1. PCA

05 Implementation

Visualization (PCA, t-SNE)

2. t-SNE

Figure 3: t-SNE embeddings of the nodes in the Cora dataset from the raw features (**left**), features from a randomly initialized DGI model (**middle**), and a learned DGI model (**right**). The clusters of the learned DGI model's embeddings are clearly defined, with a Silhouette score of 0.234.

06 Appendix

Entropy

: 확률변수 x의 불확실성을 나타내는 엔트로피

이산 확률분포
$$H(x) = -\sum_{i=1,k} P(e_i) log_2 P(e_i)$$
 또는 $H(x) = -\sum_{i=1,k} P(e_i) log_e P(e_i)$ 연속 확률분포 $H(x) = -\int_R P(x) log_2 P(x)$ 또는 $H(x) = -\int_R P(x) log_e P(x)$

Cross Entropy

: 두 확률분포 P와 Q 사이의 교차 엔트로피

$$H(P,Q) = -\sum_{X} P(x) \log_{2} Q(x)$$

$$= -\sum_{X} P(x) \log_{2} P(x) + \sum_{X} P(x) \log_{2} P(x) - \sum_{X} P(x) \log_{2} Q(x)$$

$$= H(P) + \sum_{X} P(x) \log_{2} \frac{P(x)}{Q(x)}$$
KL divergence

06 Appendix

Mutual Information and KL Divergence

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= -H(Y|X) + H(Y) \\ &= -\sum_{x} p(x)H(Y|X=x) - \sum_{y} p(y)\log p(y) \\ &= \sum_{x} p(x)(\sum_{y} p(y|x)\log p(y|x)) - \sum_{y} \log p(y)(\sum_{x} p(x,y)) \\ &= \sum_{x,y} p(x)p(y|x)\log p(y|x) - \sum_{x,y} p(x,y)\log p(y) \\ &= \sum_{x,y} p(x,y)\log \frac{p(x,y)}{p(x)} - \sum_{x,y} p(x,y)\log p(y) \\ &= \sum_{x,y} p(x,y)\log \frac{p(x,y)}{p(x)} \\ &= \sum_{x,y} p(x,y)\log \frac{p(x,y)}{p(x)p(y)} \\ &= D_{KL}(p(x,y)||p(x)p(y)) \end{split}$$

Q&A

Github: