Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2024-2025 Professeur : Zakaria Haouzan Établissement : Lycée SKHOR qualifiant

Devoir surveillé N°2 $\frac{\text{Dur\'ee 2h00}}{\text{2-BAC Section des sciences expérimentales: Option de sciences physiques}}{semestre~1}$

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème
50%	25%	25%

III tableau de spécification

Niveau d'h	abileté	Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Transformations nucléaires 62%	Décroissance radioactive Noyaux, masse et énergie	9% 5Q - 4,5pts 23% 2Q - 1,5pts	4% 1Q - 0,75pt 11% 4Q - 3,5pt	4% 2Q - 2,5pt 11% -	62% 13pts 14Q 75min
Les Transformations non totales d'un d'un système chimique 47%	Transfo chimiques dans les deux sens État d'équilibre d'un système chimique	20% 6Q - 4pts	9% 2pts - 2Q	9% 2pts - 2Q	38% 7pts 10Q 45min
_		50% 14Q - 11pts	25% 6Q - 5pts	25% 6Q - 5pts	

Devoir surveillé $N^{\circ}2$ Semestre I

	Chimie	(7pts)		
Partie1: Tran	Partie1: Transformations non totales d'un système chimique			
N° Question	Réponse	Note		
1.	Définition de Bronsted-Lowry	0,25pts		
2.	$HCOOH_{(aq)} + H_2O_{(aq)} \Longrightarrow HCOO_{(aq)}^- + H_3O_{(aq)}^+$	0,25pts		
3	$x_f = [H_3O^+].V_1 = 10^{-PH_1}.V_1 = 2.10^{-3}.mol$	0,75pts		
4	Le taux d'avancement final $\tau_1 = \frac{10^{-PH_1}}{C_1} = 0,04 = 4\%$	0.75pt		
5	la constante d'équilibre $K_1 = \frac{10^{-PH_2}}{C_1 - 10^{-PH_1}} = 1,65.10^{-4}$	0,5pt		
Partie1: Transformations non totales d'un système chimique				
1.	la conductivité : $\sigma = \lambda_1 \cdot [H_3O^+] + \lambda_2 \cdot [CH_3COO^-] = [H_3O^+](\lambda_1 + \lambda_2)$	0,5pts		
2.	Montrer que : $[H_3O^+] = \frac{\sigma}{\lambda_1 + \lambda_2}$	0,5pts		
3	La solution devient un peu moins acide $PH_2 = -log([H_3O^+]) = 3,04.$	0,75pts		
4	la valeur du taux d'avancement final : $\tau_2 = \frac{[H_3O^+]}{C_2} = 17\%$	0.25pt		
5	la constante d'équilibre $K_2 = K_1 = \frac{10^{-PH_2}}{C_1 - 10^{-PH_1}} = 1,65.10^{-4}$	1pt		
6	l'effet de la dilution sur le taux d'avancement final $\tau_2 > \tau_1$ mais $K_1 = K_2$	1,5pt		

	Physique ((13pts)
Partie 1 :L'é	tude d'un nucléide d'azote 13	(6pts)
N° Question	Réponse	Note
1	$ce_7^{13}N - >_6^{13}C +_{+1}^0e$	1pt
2	la composition du noyau d'azote 13: A=13, N=6, Z=7	0,75pt
3	l'énergie de liaison : $E_l(13^N) = [Z.m_p + Nm_n - m(13^N)].c^2$ A.N $E_l(13^N) = 90,523Mev$	
4	l'énergie de liaison par nucléon: $\xi(^{1}3N) = \frac{E_{l}}{A} = 6,96Mev$	0,5pt
5	le noyau le plus stable c'est: carbone 13	0,25pt
6.a	$^{16}_{8}\mathrm{O} + ^{1}_{1}\mathrm{p} \longrightarrow ^{13}_{7}\mathrm{N} + ^{4}_{2}\mathrm{He}$	1pt
6.b	l'énergie produite par cette réaction nucléaire. : $\Delta E = (m(^4He) + m(^{13}N) - (m(^16O) + m(^1p))).c^2$	2pt
Partie 2 : da	tation par le carbone 14	(3pts)
1	la signification physique du temps de demi-vie	0,75pt
2	l'activité radioactive à l'origine de ce morceau de bois.: $a_0 = \lambda. N_0 = \lambda. \frac{m_0}{M}. N_A = \frac{ln(2)}{t_{1/2}}. \frac{m_0. N_A}{M} = 1,49.Bq$	
3	montrer que : $t = \frac{t^{1/2}}{\ln(2)} . \ln(\frac{m_0}{m}) = 12, 36.10^3 ans$	1,5pt
Partie 2 : Et	ude d'un stimulateur cardiaque	(4pts)
1	le noyau le plus stable ^{238}Pu	1pt
2.1	$^{238}_{94}$ Pu $\longrightarrow ^{234}_{92}$ U $+ ^{4}_{2}$ He	1pt
2.2	l'énergie libérée $E_{lib} = -5,6 Mev$	1pt
3	Le patient aura environ 85 ans lorsqu'il faudra changer son stimulateur cardiaque car : $t = \frac{t1/2}{ln(2)}.ln(\frac{a_0}{a}) = 45,12ans$ L'âge du patient lors du changement sera donc : Âge = $40 + 45,2 = 85,2$ ans	1pt