

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims.

1. (Original): A method of stimulating angiogenesis in a mammal, comprising administering to said mammal an effective amount of a polynucleotide encoding CTGF-2, or an active fragment or derivative thereof.
2. (Original): The method of claim 1, wherein said administered polynucleotide is contained in an adenoviral vector.
3. (Original): The method of claim 1, wherein the mammal has ischemia.
4. (Original): The method of claim 1, wherein the mammal has restenosis.
5. (Original): The method of claim 1, wherein said polynucleotide is delivered to the heart.
6. (Currently amended): The method of claim 2, wherein the adenoviral vector is pTG14550 deposited with the Pasteur Pasteur Institute as deposit number CNCM I-2695.
7. (Original): The method of claim 1, wherein the polynucleotide is administered intramuscularly.
8. (Original): The method of claim 1, wherein the polynucleotide is administered intravenously.
9. (Original): The method of claim 1, wherein the mammal is treated for limb revascularization.
10. (Original): The method of claim 9, wherein the limb is a leg.

11. (Original): The method of claim 9, wherein the limb is an arm.
12. (Original): The method of claim 1, wherein the mammal is human.
13. (Original): The method of claim 1, wherein the polynucleotide is administered with a pharmaceutically acceptable carrier selected from the group consisting of:
- (a) saline,
 - (b) buffered saline,
 - (c) dextrose,
 - (d) water,
 - (e) glycerol,
 - (f) ethanol, and
 - (g) combinations of the above.
14. (Currently amended): The method of claim 1, wherein the polypeptide polynucleotide or active fragment or derivative thereof is fused to a human serum albumin polynucleotide.
15. (Original): A method of stimulating angiogenesis in a mammal, comprising administering to said mammal an effective of a CTGF-2 polypeptide, or an active fragment or derivative thereof.
- 16-23. (Cancelled)
24. (Original): A method of inhibiting tumor growth by administering an antibody or antibody fragment that specifically binds to CTGF-2.
25. (Original): An antibody or antibody fragment that specifically binds to a protein whose sequence consists of the protein encoded by the cDNA contained in ATCC Deposit No. 75804.

26. (Cancelled)

27. (Original): An antibody or antibody fragment that specifically binds to a protein whose sequence consists of SEQ ID NO:7 (as shown in Figures 11A-C).

28. (New): The method of claim 2, wherein the mammal has ischemia.

29. (New): The method of claim 2, wherein the mammal has restenosis.

30. (New): The method of claim 2, wherein said polynucleotide is delivered to the heart.

A2
31. (New): The method of claim 2, wherein the polynucleotide is administered intramuscularly.

32. (New): The method of claim 2, wherein the polynucleotide is administered intravenously.

33. (New): The method of claim 2, wherein the mammal is treated for limb revascularization.

34. (New): The method of claim 2, wherein the mammal is human.

35. (New): The method of claim 2, wherein the polynucleotide is administered with a pharmaceutically acceptable carrier selected from the group consisting of:

- (a) saline,
- (b) buffered saline,
- (c) dextrose,
- (d) water,
- (e) glycerol,

- (f) ethanol, and
- (g) combinations of the above.

36. (New): The method of claim 2, wherein the polynucleotide or active fragment or derivative thereof is fused to a human serum albumin polynucleotide.

37. (New): The method of claim 1, wherein the mammal has cardiovascular disease.

38. (New): The method of claim 2, wherein the mammal has cardiovascular disease.

39. (New): The method of claim 1, wherein the mammal is treated for wound healing.

40. (New): The method of claim 2, wherein the mammal is treated for wound healing.

41. (New): The method of claim 1, wherein the mammal is treated for regeneration of tissues.

42. (New): The method of claim 6, wherein the mammal is treated for regeneration of tissues.

43. (New): The method of claim 6, wherein the mammal has ischemia.

44. (New): The method of claim 6, wherein the mammal has restenosis.

45. (New): The method of claim 6, wherein said polynucleotide is delivered to the heart.

46. (New): The method of claim 6, wherein the polynucleotide is administered intramuscularly.

47. (New): The method of claim 6, wherein the polynucleotide is administered

intravenously.

48. (New): The method of claim 6, wherein the mammal is treated for limb revascularization.

49. (New): The method of claim 48, wherein the limb is a leg.

50. (New): The method of claim 48, wherein the limb is an arm.

51. (New): The method of claim 6, wherein the mammal is human.

52. (New): The method of claim 6, wherein the polynucleotide is administered with a pharmaceutically acceptable carrier selected from the group consisting of:

- (a) saline,
- (b) buffered saline,
- (c) dextrose,
- (d) water,
- (e) glycerol,
- (f) ethanol, and
- (g) combinations of the above.