Inżynierska praca dyplomowa:

Szybka estymacja map głębi na procesorach graficznych

Wykonał:

Paweł Mania

Promotor: dr inż. Tomasz Grajek

Cele do osiągnięcia

- Implementacja metod wyznaczania głębi stereoskopowej.
- Analiza wydajności zaimplementowanych metod.
- Ocena jakości wyznaczonych map głębi.
- Wskazanie najbardziej czasochłonnych etapów.
- Wskazanie kierunków przyszłej optymalizacji.

Metoda krzyżowa

Para obrazów stereoskopowych

Mapa głębi

Metoda iteracyjna

Para obrazów stereoskopowych

Analiza wydajności

Możliwości obliczeniowe metody krzyżowej

Nazwa jednostki obliczeniowej	Średni czas [ms]	Rozbieżność na sekundę [10 ⁶]
Intel Core i7-6700K @4.00GHz	361,77	25,50
Intel HD Graphics 530	190,92	48,30
GeForce GTX 970	40,32	230,80

Możliwości obliczeniowe metody iteracyjnej

Nazwa jednostki obliczeniowej	Średni czas [ms]	Rozbieżność na sekundę [10 ⁶]
Intel Core i7-6700K @4.00GHz	1292,47	7,14
Intel HD Graphics 530	1360,24	6,79
GeForce GTX 970	263,61	35,02

Ocena jakości uzyskanych wyników

Metoda krzyżowa - procent błędnych punktów

tsukuba	teddy	laundry	cones
13,90%	5,04%	22,05%	10,08%

Ocena jakości uzyskanych wyników

Tsukuba Teddy Laundry Cones

Metoda iteracyjna - procent błędnych punktów

tsukuba	teddy	laundry	cones
14,04%	6,92%	13,02%	9,04%

Najbardziej czasochłonne etapy

(Metoda krzyżowa)

GeForce GTX 970

Najbardziej czasochłonne etapy

(Metoda iteracyjna)

Obliczanie wag

Iterowana agregacja

■ WTA

■ Spójność

Iterowane ulepszenie

Intel Core i7-6700K @4.00GHz

GeForce GTX 970

Podsumowanie

- Poprawnie zaimplementowano wybrane metody.
- Porównano wydajność obliczeń metod i wyciągnięto wnioski.
- Mapy głębi obu metod są zgodne z wzorcami.
- Określono krytyczne etapy algorytmów.
- Możliwości optymalizacyjne.