Exercises from Evans' Partial Differential Equations

${\bf Contents}$

5	\mathbf{Sob}	Sobolev Spaces															2													
	5.1																													2
	5.3																													6
	5.5																													6
	5.6																													e

5 Sobolev Spaces

5.1

Suppose $k \in \{0, 1, ...\}$, $0 < \gamma < 1$. Prove $C^{k,\gamma}(\overline{U})$ is a Banach space.

Proof. A Banach space is a *complete normed linear space*, so we need to show that $C^{k,\gamma}(\overline{U})$ is each of the following:

- 1. A Linear space.
- 2. A Normed linear space.
- 3. A Complete space.

Much of the proof will rely on the fact that we know $C(\overline{U})$ is a Banach space itself.

- 1. Suppose $u, v, w \in C^{k,\gamma}(\overline{U})$ and $a, b \in \mathbb{R}$. It follows that $u, v, w \in C^k(\overline{U})$ and that the Hölder norm of each u, v, and w is finite. With this knowledge we will loosely prove the linear space axioms as follows:
 - (i) $u + v \in C^{k,\gamma}(\overline{U})$ because $||u + v||_{C^{k,\gamma}(\overline{U})} < \infty$, which follows from the triangle inequality of norms.
 - (ii) u+v=v+u because $u,v\in C^k(\overline{U})$, which we know is itself a linear space.
 - (iii) u + (v + w) = (u + v) + w following the same argument as (ii).
 - (iv) $C^k(\overline{U}) \subset C^{k,\gamma}(\overline{U})$ implies $\exists \vec{0} \in C^{k,\gamma}(\overline{U})$ such that $u + \vec{0} = u$.
 - (v) Following the same argument as (iv) we get that $\forall u \in C^{k,\gamma}(\overline{U}) \exists (-u)$ such that $u + (-u) = \vec{0}$.
 - (vi) a(bu) = (ab)u following the same argument as (ii).
 - (vii) a(u+v) = au + av following the same argument as (ii).
 - (viii) (a+b)u = au + bu following the same argument as (ii).
 - (ix) Following the same argument as (iv) we get that $\exists \vec{1} \in C^{k,\gamma}(\overline{U})$ such that $\vec{1} \cdot u = u$.
 - (x) Following the same argument as (iv) we get that $\exists \vec{0} \in C^{k,\gamma}(\overline{U})$ such that $\vec{0} \cdot u = \vec{0}$.

These axioms prove that $C^{k,\gamma}(\overline{U})$ is indeed a linear space.

2. Using the fact that $C(\overline{U})$ is itself a normed linear space, with the norm

$$||u(x)||_{C(\overline{U})} := \sup_{x \in U} |u(x)|,$$

we can prove the normed linear space axioms as follows:

(i) Suppose $u, v \in C^{k,\gamma}(\overline{U})$ and that α is a fixed multi-index such that $|\alpha| \leq k$. It then follows that

$$\begin{split} \|u+v\|_{C^{k,\gamma}(\overline{U})} &= \sum_{|\alpha| \leq k} \|D^{\alpha}(u+v)\|_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}(u+v)]_{C^{0,\gamma}(\overline{U})} \\ &\leq \sum_{|\alpha| \leq k} (\|D^{\alpha}u\|_{C(\overline{U})} + \|D^{\alpha}v\|_{C(\overline{U})}) + \sum_{|\alpha| = k} [D^{\alpha}(u+v)]_{C^{0,\gamma}(\overline{U})} \\ &\leq \sum_{|\alpha| \leq k} (\|D^{\alpha}u\|_{C(\overline{U})} + \|D^{\alpha}v\|_{C(\overline{U})}) + \sum_{|\alpha| = k} ([D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} + [D^{\alpha}v]_{C^{0,\gamma}(\overline{U})}) \\ &= \|u\|_{C^{k,\gamma}(\overline{U})} + \|v\|_{C^{k,\gamma}(\overline{U})}. \end{split}$$

(ii) Suppose $m \in \mathbb{R}$, $u \in C^{k,\gamma}(\overline{U})$, and that α is a multi-index such that $|\alpha| \leq k$. It then follows that

$$\begin{split} \|mu\|_{C^{k,\gamma}(\overline{U})} &= \sum_{|\alpha| \leq k} \|mD^{\alpha}u\|_{C^{k}(\overline{U})} + \sum_{|\alpha| = k} [mD^{\alpha}u]_{C^{0,\gamma}(\overline{U})} \\ &= |m| \sum_{|\alpha| \leq k} \|D^{\alpha}u\|_{C^{k}(\overline{U})} + |m| \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} \\ &= |m| (\sum_{|\alpha| \leq k} \|D^{\alpha}u\|_{C^{k}(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{U})}) \\ &= |m| \|u\|_{C^{k,\gamma}(\overline{U})}. \end{split}$$

(iii) We now want to show that $\|u\|_{C^{k,\gamma}(\overline{U})} \ge 0$, $\forall u \in C^{k,\gamma}(\overline{U})$. So suppose $u \in C^{k,\gamma}(\overline{U})$, and from (ii) we know that

$$||-u||_{C^{k,\gamma}(\overline{U})} = ||(-1)u||_{C^{k,\gamma}(\overline{U})} = ||u||_{C^{k,\gamma}(\overline{U})},$$

which implies that

$$\begin{split} \|0\|_{C^{k,\gamma}(\overline{U})} &= \|u + (-u)\|_{C^{k,\gamma}(\overline{U})} \\ &\leq \|u\|_{C^{k,\gamma}(\overline{U})} + \|-u\|_{C^{k,\gamma}(\overline{U})} \\ &= \|u\|_{C^{k,\gamma}(\overline{U})} + \|u\|_{C^{k,\gamma}(\overline{U})} \\ &= 2\|u\|_{C^{k,\gamma}(\overline{U})}. \end{split}$$

Since u is arbitrary we can say

$$||0||_{C^{k,\gamma}(\overline{U})} \le 2||0||_{C^{k,\gamma}(\overline{U})},$$

which further implies

$$0 \le \|0\|_{C^{k,\gamma}(\overline{U})}$$

when we substract through by $||0||_{C^{k,\gamma}(\overline{U})}$. Combining inequalities from above gives us

$$0 \le \|0\|_{C^{k,\gamma}(\overline{U})} \le 2\|u\|_{C^{k,\gamma}(\overline{U})},$$

where dividing through by 1/2 results in

$$0 \le \|u\|_{C^{k,\gamma}(\overline{U})}.$$

(iv) We finally want to show that $||u||_{C^{k,\gamma}(\overline{U})} = 0$ if and only if u = 0. Firstly, suppose $u \in C^{k,\gamma}(\overline{U})$ and that $||u||_{C^{k,\gamma}(\overline{U})} = 0$. Letting α be some fixed multi-index such that $|\alpha| \leq k$, it then follows that

$$||u||_{C^{k,\gamma}(\overline{U})} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} = 0.$$

By definition we know that each $||D^{\alpha}u||_{C(\overline{U})} \geq 0$, and also by definition we know that

$$[D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} = \sup_{x,y \in U, x \neq y} \left\{ \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x - y|^{\gamma}} \right\} \ge 0.$$

Therefore, if $||D^{\alpha}u||_{C^{k,\gamma}(\overline{U})} = 0$, then it must be that each $||D^{\alpha}u||_{C(\overline{U})} = 0$ and each $[D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} = 0$. This further implies from the definitions that $D^{\alpha}u = 0$ implying $u = 0, \forall x \in U$. Conversely, suppose u = 0. Then by (ii) we can see that

$$\begin{aligned} \|u\|_{C^{k,\gamma}(\overline{U})} &= \|0\|_{C^{k,\gamma}(\overline{U})} \\ &= \|0\cdot 0\|_{C^{k,\gamma}(\overline{U})} \\ &= |0|\|0\|_{C^{k,\gamma}(\overline{U})} \\ &= 0. \end{aligned}$$

These axioms prove that $C^{k,\gamma}(\overline{U})$ is indeed a normed linear space.

3. Suppose $\{u_m\}_{m=1}^{\infty}$ is a Cauchy sequence in $C^{k,\gamma}(\overline{U})$. This implies each $u_m \in C^k(\overline{U})$, and since $C^k(\overline{U})$ is a complete space, then there exists $u \in C^k(\overline{U})$ such that $u_m \to u$ in $C^k(\overline{U})$, as $m \to \infty$. Now if we wish to show $u \in C^{k,\gamma}(\overline{U})$, then we need to show that

$$||u||_{C^{k,\gamma}(\overline{U})} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} < \infty,$$

where α is some fixed multi-index such that $|\alpha| \leq k$. $u \in C^k(\overline{U})$ implies that $D^{\alpha}u$ is uniformly continuous on bounded subsets of U, for all $|\alpha| \leq k$, and since U is a bounded open set then it follows that each $D^{\alpha}u$ is bounded, further implying that

$$\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{C(\overline{U})} = \sum_{|\alpha| \le k} \sup_{x \in U} |D^{\alpha}u(x)| < \infty$$

since there is only a finite number of k^{th} or less partial derivatives of u. Now to show that each $[D^{\alpha}u]_{C^{0,\gamma}(\overline{U})}$ is finite observe that for some fixed $x,y\in U$, where $x\neq y$, we get

$$\begin{split} \frac{|D^{\alpha}u(x)-D^{\alpha}u(y)|}{|x-y|^{\gamma}} &= \frac{|D^{\alpha}u(x)-D^{\alpha}u_m(x)+D^{\alpha}u_m(x)-D^{\alpha}u_m(y)+D^{\alpha}u_m(y)-D^{\alpha}u(y)|}{|x-y|^{\gamma}} \\ &\leq \frac{|D^{\alpha}u(x)-D^{\alpha}u_m(x)|}{|x-y|^{\gamma}} + \frac{|D^{\alpha}u_m(x)-D^{\alpha}u_m(y)|}{|x-y|^{\gamma}} + \frac{|D^{\alpha}u_m(y)-D^{\alpha}u(y)|}{|x-y|^{\gamma}}, \end{split}$$

where taking $m \to \infty$ makes the first and third summands disappear, and since u_m is a Cauchy sequence then we can say the middle summand is bounded. This means

$$\frac{|D^{\alpha}u(x)-D^{\alpha}u(y)|}{|x-y|^{\gamma}}<\infty,$$

which implies

$$\sum_{|\alpha|=k} [D^{\alpha}u]_{C^{0,\gamma}(\overline{U})} = \sum_{|\alpha|=k} \sup_{x,y \in U, x \neq y} \frac{|D^{\alpha}u(x) - D^{\alpha}u(y)|}{|x - y|^{\gamma}} < \infty$$

as again, there is only a finite number of k^{th} partial derivatives of u. Then since both summations are finite, it follows that $\|u\|_{C^{k,\gamma}(\overline{U})} < \infty$, proving that $u \in C^{k,\gamma}(\overline{U})$. Now we need to show that $u_m \to u$ in $C^{k,\gamma}(\overline{U})$. This requires that we show

$$||u_m - u||_{C^{k,\gamma}(\overline{U})} = \sum_{|\alpha| \le k} ||D^{\alpha}(u_m - u)||_{C(\overline{U})} + \sum_{|\alpha| = k} [D^{\alpha}(u_m - u)]_{C^{0,\gamma}(\overline{U})} < \infty.$$

Now since we know $u_m \to u$ in $C^k(\overline{U})$, then we could follow a similar argument as before to conclude

$$\sum_{|\alpha| \le k} \|D^{\alpha}(u_m - u)\|_{C(\overline{U})} < \infty.$$

To show each $[D^{\alpha}(u_m-u)]_{C^{0,\gamma}(\overline{U})}$ is finite observe again that

$$\begin{split} \frac{|D^{\alpha}(u_m-u)(x)-D^{\alpha}(u_m-u)(y)|}{|x-y|^{\gamma}} &= \frac{|D^{\alpha}u_m(x)-D^{\alpha}u(x)-D^{\alpha}u_m(y)+D^{\alpha}u(y)|}{|x-y|^{\gamma}} \\ &= \lim_{n\to\infty} \frac{|(D^{\alpha}u_m(x)-D^{\alpha}u_n(x))+(D^{\alpha}u_m(y)-D^{\alpha}u_n(y))|}{|x-y|^{\gamma}}, \end{split}$$

which can be made arbitrarily small choosing m large enough, since both u_m and u_n are Cauchy sequences. Then since Cauchy implies boundedness, we get that

$$\sum_{|\alpha|=k} [D^{\alpha}(u_m - u)]_{C^{0,\gamma}(\overline{U})} = < \infty.$$

This proves that $||u_m - u||_{C^{k,\gamma}(\overline{U})} < \infty$ for any $m \in \mathbb{N}$, and thus $u_m \to u$ in $C^{k,\gamma}(\overline{U})$.

With this last proof we have shown that $C^{k,\gamma}(\overline{U})$ is indeed a complete space, which completes the proof for $C^{k,\gamma}(\overline{U})$ being a Banach space.

5.3

Denote by U the open square $\{x \in \mathbb{R}^2 \mid |x_1| < 1, |x_2| < 1\}$. Define

$$u(x) = \begin{cases} 1 - x_1, & \text{if } x_1 > 0, |x_2| < x_1 \\ 1 + x_1, & \text{if } x_1 < 0, |x_2| < -x_1 \\ 1 - x_2, & \text{if } x_2 > 0, |x_1| < x_2 \\ 1 + x_2, & \text{if } x_2 < 0, |x_1| < -x_2. \end{cases}$$

For which $1 \le p \le \infty$ does u belong to $W^{1,p}(U)$.

Proof. In progress... \Box

5.5

Let U, V be open sets, with $V \subset\subset U$. Show there exists a smooth function ζ such that $\zeta \equiv 1$ on $V, \zeta = 0$ near ∂U . (Hint: Take $V \subset\subset W \subset\subset U$ and mollify χ_W .)

Proof. In progress...

5.6

Assume U is bounded and $U \subset\subset \bigcup_{i=1}^N V_i$. Show there exist C^{∞} functions ζ_i $(i=1,\ldots,N)$ such that

$$\begin{cases} 0 \le \zeta_i \le 0, \text{ supp } \zeta_i \subset V_i \ (i = 1, \dots, N) \\ \sum_{i=1}^N \zeta_i \text{ on } U. \end{cases}$$

Proof. In progress... \Box