Examen de Septiembre:

1. Calcule V₁, V₂ y V₀.

Zener: V_{γ} =0,6V , V_{z} =5V

Q1, Q2: $V_{BE-Activa} = 0.65V$, $\beta = 199$

M1: $V_T = 0.5V$, $k_n = 12 \text{ mA/V}^2$ $I_{DS} = k_n \cdot (V_{GS} - V_T)^2$ (Sat.)

M2, M3: $V_T = 0.5V$, $k_p = 8 \text{ mA/V}^2$ $I_{SD} = k_p \cdot (V_{SG} - V_T)^2$ (Sat.)

- 2. Explique brevemente el significado físico de las ganancias de corriente en base común (α) y en emisor común (β) en un BJT en zona activa directa.
- 3. Halle la tabla de verdad de las salidas S y S', en función de las entradas A, B y C. Indique el estado de los transistores. Razone por qué S y S' nunca tendrán el mismo valor lógico.

4. Calcule las tensiones V_1 , V_2 , V_3 , V_4 y V_0 en función de la tensión de entrada V_i . Particularice para V_i = 3 V. Los amplificadores operacionales están alimentados a \pm 12 V.

