Yakeen NEET 2.0 (2026)

Physics By Manish Raj Sir

Vectors

DPP: 4

- Q1 For what angle between the two vectors is their resultant minimum?
 - (A) π radian
 - (B) 2π radian
 - (C) Zero
 - (D) $\pi/2$ radian
- **Q2** If the components of a force are P and P along east and north directions, the force has magnitude of
 - (A) P
 - (B) P/2
 - (C) $\sqrt{2}P$
 - (D) 2P
- **Q3** The unit vector along $2\mathbf{i} 3\mathbf{j} + \mathbf{k}$ is
 - (A) $\frac{2i-3j+k}{\sqrt{3}}$

 - (D) None of these
- **Q4** If $\vec{A} = 7\hat{i} 2\hat{j} + 3\hat{k}$, what is the vector $-3\vec{A}$?
 - (A) $-21\hat{i} + 6\hat{j} 9\hat{k}$
 - (B) $-7\hat{i} + 2\hat{j} 3\hat{k}$
 - (C) $21\hat{i}-6\hat{j}+9\hat{k}$
 - (D) $-7\hat{i} + 6\hat{j} 9\hat{k}$
- Q5 Two forces of 12 N and 8 N act upon a body. The resultant force on the body has maximum value of:
 - (A) 4 N

- (B) 0 N
- (C) 20 N
- (D) 8 N

- **Q6** A particle is simultaneously acted by two forces equal to 4 N and 3 N. The net force on the particle is:
 - (A)7N
 - (B) 5 N
 - (C) 1 N
 - (D) Between 1 N and 7 N
- Q7 Two vectors having magnitudes 8 and 10 can have maximum and minimum value of magnitude of their resultant as:
 - (A) 12, 6
- (B) 10, 3
- (C) 18, 2
- (D) None of these
- If angle between $\overset{
 ightarrow}{A}$ and $\overset{
 ightarrow}{B}$ is 30° then angle between \vec{A} and $-\vec{B}$ will be:
 - (A) 60°
 - (B) 150°
 - (C) 45°
 - (D) 90°
- Q9 Which of the following relation is correct

between \overrightarrow{A} , \overrightarrow{B} & \overrightarrow{C} if $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$?

- (A) B + A < C < B A
- (B) A < C > B
- (C) $|A-B| \leq C \leq A+B$
- (D) A B < C < A + B
- **Q10** If $|\vec{A}-\vec{B}|=|\vec{A}|=|\vec{B}|$, the angle between \vec{A} and $ec{B}$ is:
 - $(A) 60^{\circ}$
- $(B) 0^{\circ}$
- (C) 120°
- (D) 90°

- **Q11** Two vectors \vec{A} and \vec{B} are such that $\vec{A} + \vec{B} = \vec{C}$ and $A^2+B^2=C^2$. Which of the following statements, is correct?
 - (A) \vec{A} is parallel to \vec{B}
 - (B) \vec{A} is anti-parallel to \vec{B}
 - (C) \vec{A} is perpendicular to \vec{B}
 - (D) \vec{A} and \vec{B} are equal in magnitude
- **Q12** If $\overset{
 ightarrow}{D}=\overset{
 ightarrow}{A}-\overset{
 ightarrow}{B}$, and $D^2=A^2+B^2$ then find angle between $\overset{\displaystyle \rightarrow}{A}$ and $\overset{\displaystyle \rightarrow}{B}$.
 - (A) 60°
- (B) 180°
- (C) 45°
- (D) 90°
- Q13 The resultant of two forces, each P, acting at an angle θ is:

 - (A) $2P \sin \frac{\theta}{2}$ (B) $2P \cos \frac{\theta}{2}$
 - (C) $2P\cos\theta$
 - (D) $P\sqrt{2}$
- **Q14** The angle between the direction of \hat{i} and $\hat{i}+\hat{j}$
 - (A) 90°
- (B) 0°
- $(C) 45^{\circ}$

(D) 180°

Answer Ke	y
------------------	---

Q1	(A)	Q8	(B)
Q2	(C)	Q9	
Q3	(A)	Q10	(A)
Q4	(A)	Q11	
Q5	(C)	Q12	
Q6	(D)	Q13	
Q7	(C)	Q14	(C)

