Autour des matrices de Frobenius

Notations

Dans tout le problème, \mathbf{K} désignera le corps \mathbf{R} ou \mathbf{C} . On considère un \mathbf{K} -espace vectoriel E de dimension finie $n \in \mathbf{N}^*$, muni d'un produit scalaire $(\cdot|\cdot)$. On désigne par $\mathcal{M}_n(\mathbf{K})$ l'ensemble des matrices carrées d'ordre n à coefficients dans \mathbf{K} , et par $\mathrm{GL}_n(\mathbf{K})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbf{K})$. On pose I_n la matrice identité de $\mathcal{M}_n(\mathbf{K})$. On note enfin $\mathbf{K}[X]$ l'anneau des polynômes à coefficients dans \mathbf{K} .

À tout polynôme $P = \sum_{k=0}^{n} a_k X^k \in \mathbf{K}[X]$ unitaire (i.e. $a_n = 1$), on associe sa matrice compagnon C_P , définie par

$$C_P = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}.$$

En notant $a = (a_0, \dots, a_{n-1})$, on pose $C_a = C_P$. Dans tout le problème, on s'autorisera à confondre ces deux notations.

Pour tout endomorphisme $\varphi \in \mathcal{L}(E)$ (resp. $M \in \mathcal{M}_n(\mathbf{K})$), on note respectivement χ_{φ} et π_{φ} (resp. χ_M et π_M) ses polynômes caractéristique et minimal. Pour $M \in \mathcal{M}_n(\mathbf{C})$, on note M^{\top} sa transposée. Si F est un sousespace vectoriel de E stable par φ , on note $\varphi_{|F}$ la restriction de φ à F. Enfin, si \mathscr{B} est une base de E et $\varphi \in \mathcal{L}(E)$, on note $M_{\mathscr{B}}(\varphi)$ la matrice de φ dans la base \mathscr{B} .

Pour $\varphi \in \mathcal{L}(E)$, on note $\mathbf{K}[\varphi] = \{P(\varphi) \mid P \in \mathbf{K}[X]\}.$

Un endomorphisme φ est dit cyclique s'il existe $x \in E$ tel que $\mathscr{B} = \{x, \varphi(x), \cdots, \varphi^{n-1}(x)\}$ soit une base de E. Une matrice $M \in \mathscr{M}_n(\mathbb{K})$ est dite cyclique si elle est la matrice d'un endomorphisme cyclique. On note \mathscr{C}_n l'ensemble des matrices cycliques.

Pour tout sous-espace vectoriel F de E, on note F^{\perp} l'orthogonal de F, c'est-à-dire l'ensemble $\{x \in E \mid \forall y \in F, (x|y) = 0\}$.

On pose $E^*=\mathcal{L}(E,\mathbf{K})$. Pour $1\leq i\leq n,\,\mathcal{B}=\{e_1,\cdots,e_n\}$ une base de E, on note e_i^* l'élément de E^* (on ne demande pas de le vérifier) défini par

$$\forall x = \sum_{k=1}^{n} x_i e_i \in E, \ e_i^*(x) = x_i,$$

et on pose $\mathscr{B}^* = \{e_1^*, \dots, e_n^*\}.$

Pour tout $x \in E$, on note ϕ_x l'élément de E^* défini par

$$\forall y \in E, \ \phi_x(y) = (x|y),$$

et on pose

$$\Phi: E \to E^*$$
$$x \mapsto \phi_x$$

Enfin, si *A* est un sous-espace vectoriel de E^* , on note A° l'ensemble $\{x \in E \mid \forall \phi \in A, \ \phi(x) = 0\}$.

On s'autorisera dans tout le problème la confusion entre matrice et endomorphisme (au sens où, par exemple, on pourra considérer un endomorphisme $\varphi \in \mathscr{C}_n$).

I. Préliminaires

- 1. Montrer que Φ est un isomorphisme. En déduire la dimension de E^* .
- 2. Soit *F* un sous-espace vectoriel de *E*, de dimension *d*.
 - a. Montrer que $E = F \oplus F^{\perp}$.
 - b. En déduire la dimension de F^{\perp} .
- 3. Soit *A* un sous-espace vectoriel de E^* , de dimension *d*.
 - a. Montrer que $A^{\circ} = (\Phi^{-1}(A))^{\perp}$.
 - b. En déduire que la dimension de A° est n-d.
- 4. Soit $\varphi \in \mathcal{L}(E)$, F et G deux sous-espaces vectoriels supplémentaires dans E stables par φ . Montrer que, pour tout $P \in \mathbf{K}[X]$, $P(\varphi)(E) = P(\varphi)(F) \oplus P(\varphi)(G)$.

II. Endomorphismes et matrices cycliques

Dans cette sous-partie, on considère $\varphi \in \mathcal{L}(E)$.

- 5. Montrer que, pour tout polynôme unitaire $P \in \mathbf{K}[X]$, $\chi_{C_P} = P$.
- 6. a. Soit \mathcal{B} une base de E. Montrer que, si $M_{\mathcal{B}}(\varphi)$ est une matrice compagnon, alors φ est cyclique.
 - b. On suppose que φ est cyclique et on considère $x \in E$ tel que $\mathscr{B} = \{x, \varphi(x), \cdots, \varphi^{n-1}(x)\}$ soit une base de E.
 - i. Montrer qu'il existe $P \in \mathbf{K}[X]$ tel que $M_{\mathscr{B}}(\varphi) = C_P$.
 - ii. En déduire que toute matrice cyclique est semblable à une matrice compagnon.
- 7. Pour tout $x \in E$, on note $I_{\varphi,x} = \{P \in \mathbf{K}[X] \mid P(\varphi)(x) = 0\}$.
 - a. Montrer que, pour tout $x \in E$, $I_{\varphi,x}$ est un idéal de K[X].
 - b. En déduire que, pour tout $x \in E$, il existe un unique $\pi_{\varphi,x} \in \mathbf{K}[X]$ unitaire tel que $I_{\varphi,x} = \{\pi_{\varphi,x} \cdot P \mid P \in \mathbf{K}[X]\}$.
 - **c.** On veut montrer qu'il existe $x \in E$ tel que $\pi_{\varphi} = \pi_{\varphi,x}$.
 - i. Montrer que, pour tout $x \in E$, $\pi_{\varphi} \in I_{\varphi,x}$ et en déduire que $\pi_{\varphi,x} | \pi_{\varphi}$.
 - ii. Montrer qu'il existe $x_1, \dots, x_k \in E$ tels que $E = \bigcup_{i=1}^k \operatorname{Ker} (\pi_{\varphi, x_i}(\varphi))$.
 - iii. Montrer qu'il existe $1 \le i \le k$ tel que $E = \text{Ker}(\pi_{\varphi,x_i}(\varphi))$. En déduire que $\pi_{\varphi}|\pi_{\varphi,x_i}$.
 - iv. Conclure.
- 8. On se propose de montrer que φ est cyclique si, et seulement si, $\chi_{\varphi} = \pi_{\varphi}$.
 - a. Montrer que, si φ est cyclique, alors π_{φ} est de degré n. En déduire que $\chi_{\varphi} = \pi_{\varphi}$.
 - b. On suppose que $\chi_{\varphi} = \pi_{\varphi}$.
 - i. Montrer qu'il existe $x \in E$ tel que tout polynôme $P \in I_{\varphi,x}$ non nul soit de degré supérieur ou égal à n.
 - ii. Montrer que $\mathscr{B} = \{x, \varphi(x), \dots, \varphi^{n-1}(x)\}$ est une base de E. Conclure.
 - c. Soit $P \in \mathbf{K}[X]$. Déterminer π_{C_P} .

Théorème de décomposition de Frobenius

L'objectif de cette sous-partie est de démontrer le théorème suivant :

Soit $\varphi \in \mathcal{L}(E)$. Il existe des sous-espaces vectoriels E_1, \dots, E_r de E, tous stables par φ , tels que

- E = ⊕ E_{i=1} E_i
 Pour tout 1 ≤ i ≤ r, φ_i = φ_{|E_i} est un endomorphisme cyclique
 Tour = π | π_i | π_i

La suite des π_i est alors définie de manière unique. En particulier, il existe une base \mathscr{B} de E telle que

$$M_{\mathscr{B}}(\varphi) = \begin{pmatrix} C_{\chi_1} & & \\ & \ddots & \\ & & C_{\chi_r} \end{pmatrix}.$$

On considère donc $\varphi \in \mathcal{L}(E)$ et on note d le degré de π_{φ} .

- 9. Soit $y \in E$. On note $E_y = \{P(\varphi)(y) \mid P \in \mathbf{K}[X]\}$. Montrer que E_y est le plus petit sous-espace vectoriel de E stable par φ et contenant y.
- **10**. Montrer qu'il existe $y \in E$ tel que E_y soit de dimension d, et que $\{y, \varphi(y), \dots, \varphi^{d-1}(y)\}$ est une base de E_{γ} . On note alors $e_i = \varphi^{i-1}(\gamma)$ pour tout $1 \le i \le d$.
- **11.** On note $F = \{x \in E \mid \forall k \in \mathbb{N}, \ e_d^*(\varphi^k(x)) = 0\}.$
 - a. Montrer que F est stable par φ .
 - **b.** Montrer que $E_v \cap F = \{0\}$.
 - c. On veut montrer que $\dim F = n d$. Pour cela, on considère l'opérateur

$$T_{\varphi}: \mathbf{K}[\varphi] \to E^*, g \mapsto e_d^* \circ g.$$

- i. Montrer que T_{φ} est injectif. En déduire le rang de T_{φ} .
- ii. Montrer que $(\operatorname{Im} T)^{\circ} = F$.
- iii. Conclure.
- d. En déduire que $E = E_v \oplus F$.
- 12. Posons $\pi_1 = \pi_{\varphi_{|E_v}}$ et $\pi_2 = \pi_{\varphi_{|F}}$.
 - a. Justifier que l'on peut ainsi définir ces deux polynômes.
 - **b.** Montrer que $\pi_1 = \pi_{\varphi}$.
 - c. En déduire que $\pi_2 | \pi_1$.
- 13. Démontrer l'existence de sous-espaces vectoriels E_1, \dots, E_r de E satisfaisant aux conditions du théorème.
- 14. Soit F_1, \dots, F_r et G_1, \dots, G_s des sous-espaces vectoriels non triviaux de E, tous stables par φ , satisfaisant aux conditions du théorème. On note $\pi_i=\pi_{\varphi_{|F_i}}$ et $\psi_j=\pi_{\varphi_{|G_i}}$ pour $1\leq i\leq r$ et $1\leq j\leq s$. On veut montrer que r = s et que, pour tout $1 \le i \le r$, $\pi_i = \psi_i$.
 - **a.** Justifier que $\pi_1 = \psi_1$.
 - b. On raisonne par l'absurde et on note $j \ge 2$ le plus petit entier tel que $\pi_i \ne \psi_j$.
 - i. Montrer que

$$\pi_i(\varphi)(E) = \pi_i(\varphi)(G_1) \oplus \cdots \oplus \pi_i(\varphi)(G_s).$$

ii. Montrer que

$$\pi_{i}(\varphi)(E) = \pi_{i}(\varphi)(F_{1}) \oplus \cdots \oplus \pi_{i}(\varphi)(F_{i-1}).$$

- iii. Montrer que, pour tout $1 \le i < j$, $\dim \pi_i(\varphi)(F_i) = \dim \pi_i(\varphi)(G_i)$. On pourra commencer par montrer que $\varphi_{|F_i}$ et $\varphi_{|G_i}$ sont semblables, pour tout $1 \le i < j$.
- iv. En déduire que dim $\pi_i(\varphi)(G_i) = 0$, pour $j \le i \le s$, puis que $\psi_i | \pi_i$.
- v. Aboutir à une contradiction.
- c. Conclure.

IV. Quelques propriétés topologiques

Dans cette partie, ${\bf K}$ désignera le corps ${\bf C}$.

On munit E de la norme $\|\cdot\|$ induite par le produit scalaire $(\cdot|\cdot)$, et $\mathcal{L}(E)$ (ou, de même, $\mathcal{M}_n(\mathbf{C})$) d'une norme $N(\cdot)$.

15. Montrer que \mathcal{C}_n est un ouvert de $\mathcal{M}_n(\mathbf{C})$.

Pour $A \in \mathcal{M}_n(\mathbb{C})$, on pourra considérer l'application continue $\varphi_x : M \in \mathcal{M}_n(\mathbb{C}) \to \det(x, Mx, \dots, M^{n-1}x)$, où x sera judicieusement choisi en fonction de A.

- **16**. a. Montrer que $GL_n(\mathbf{C})$ est connexe par arcs.
 - On pourra relier les matrices triangulaires supérieures à I_n dans un premier temps.
 - b. En déduire que \mathscr{C}_n est connexe par arcs.
- 17. a. Soit $M \in \mathcal{M}_n(\mathbf{C})$ possédant n valeurs propres distinctes. Montrer que M est semblable à une matrice compagnon.
 - b. Montrer que l'ensemble des matrices de $\mathcal{M}_n(\mathbf{C})$ possédant n valeurs propres distinctes est dense dans $\mathcal{M}_n(\mathbf{C})$.
 - c. En déduire que \mathscr{C}_n est dense dans $\mathscr{M}_n(\mathbf{C})$.
- 18. Montrer que l'application $\varphi: A \in \mathcal{M}_n(\mathbb{C}) \mapsto \pi_A$ n'est pas continue.

On pourra raisonner par l'absurde et utiliser, après l'avoir montrée, la continuité de $\psi: A \in \mathcal{M}_n(\mathbb{C}) \mapsto \chi_A$.

V. Propriétés spectrales

Dans cette partie, on fixe $P \in \mathbf{K}[X]$.

- 19. Montrer que les sous-espaces propres de C_P sont de dimension 1.
- 20. On suppose que P est scindé à racines simples, et on note λ une racine de P.
 - a. Montrer que λ est une valeur propre de C_P^{\top} .
 - b. Déterminer un vecteur propre e_{λ} de C_P^{\top} associé à λ .
 - c. En déduire qu'il existe $G \in GL_n(\mathbb{C})$ telle que $C_P^{\top} = GDG^{-1}$, où $D \in \mathcal{M}_n(\mathbb{C})$ est diagonale et G^{\top} est une matrice de Vandermonde à expliciter.
- 21. On suppose que P admet au moins une racine double. Montrer que C_P n'est pas diagonalisable.

FIN DU SUJET