+ DON'T TRUST, FORMALLY VERIFY

Jean-Frédéric Etienne, IOG Romain Soulat, IOG

7 Live Demo

Simple Vesting Example

```
-- Vesting validator functions
def validScriptContext : POSIXTime -> ScriptContext -> Bool :=
   fun time sc =>
       (sc.transaction.validity_range.lower_bound <= time.time && time.time <= sc.transaction.validity_range.upper_bound)
       && (sc.transaction.validity_range.lower_bound <= sc.transaction.validity_range.upper_bound)
def signed_by : List VerificationKeyHash -> VerificationKeyHash -> Bool :=
   fun keys key =>
           keys contains key
def time_elapsed : ValidityRange -> POSIXTime -> Bool :=
   fun range time =>

↑ 31 theorem only_accept_if_signatory_and_time_elapsed :

       range.upper bound >= time.time
                                                                                                                                                                                             ↑ ↓ 切 | 录 凸 ×
                                               CEX Found only_accept_if_signatory_and_time_elapsed
def validator : VestingDatum -> VestingRedeemer
                                                CEX Found
   fun datum sc =>
                                                datum: (DemoRareEvo.Vesting.VestingTypes.VestingDatum.mk (DemoRareEvo.Vesting.PlutusLedgerApi.POSIXTime.mk 21239) (DemoRareEvo.Vesting.PlutusLedge
       let transaction := sc.transaction:
       let purpose := sc.purpose;
       let signatories := transaction.signatori
                                                redeemer: (DemoRareEvo.Vesting.VestingTypes.VestingRedeemer.mk 7719)
       let v range := transaction.validity rang
       (purpose == Purpose.Spending) && (signed
                                                c: (DemoRareEvo.Vesting.PlutusLedgerApi.ScriptContext.mk DemoRareEvo.Vesting.PlutusLedgerApi.Purpose.Spending (DemoRareEvo.Vesting.PlutusLedgerApi
theorem only accept if signatory and time elapse
                                                time: (DemoRareEvo.Vesting.PlutusLedgerApi.POSIXTime.mk 21238)
       ∀ (datum: VestingDatum) (redeemer: Vesti
           ((validator datum redeemer c)
           (validScriptContext time c))
           (c.transaction.signatories.contains datum.beneficiary
           time.time ≥ datum.lock_until.time) :=
           by sorry
```

+ Why Formal Verification?

Strong guarantees for critical software

Why Smart Contracts Need Strong Guarantees

Current verification approaches:

- Unit tests
- Integration tests
- Property Based Testing
- Manual audits

Very hard and expensive to test all scenarios, all possible values, ...

Formal verification is the gold standard in many other industries: Railway (SIL4), Aerospace (DAL-A), Chips, Cybersecurity (EAL7+)

Existing Approaches: Powerful But Specialized

Agda2hs

Deep mathematical proofs **Dedicated model** Requires a strong expertise in Agda Manual proof

LiquidHaskell

At source code level Specific property types Need to specify each function used Scalability issues

hs-to-coa

Deep mathematical proofs Dedicated model Requires a strong expertise in Coq/Rocq Manual proof

(Almost) at the source code level Automated reasoning Provide tests for paths Path explosion issue

+ Our vision

Write Specs. Push Button. Get Proofs.

Write Specs. Push Button. Get Proofs.

```
{-@ uniqueNFTToken:
  ♥ (p : OracleParams) (ocHash: ScriptHash) (currSym: CurrencySymbol),
    let hasNFTToken := fun utxo => TxOut.hasValue? utxo oracleNFToken currSym > 0;
    let validScriptHash := fun utxo => TxOut.scriptHash? utxo ocHash;
     Valid0racleParams p →
     State.Validators.hasScriptHash? (Validator.oracleContract p) ocHash →
     State.MintingPolicies.hasCurrencySymbol? (Minting.oracleMintingContract p ocHash) currSym →
     State.TxOuts.any hasNFTToken →
     State.TxOuts.sumOf (fun utxo => hashNFTToken utxo && validScriptHash utxo) = 1
```

```
{-# INLINABLE validate #-}
validate :: EscrowParams DatumHash -> PaymentPubKeyHash -> Action
validate EscrowParams{escrowDeadline, escrowTargets} contributor ac
    case action of
        Redeem ->
            traceIfFalse "escrowDeadline-after" (escrowDeadline `at
            && traceIfFalse "meetsTarget" (all (meetsTarget script(
        Refund ->
            traceIfFalse "escrowDeadline-before" ((escrowDeadline
            && traceIfFalse "txSignedBy" (scriptContextTxInfo `txSi
typedValidator :: EscrowParams Datum -> V2.TypedValidator Escrow
typedValidator escrow = go (Haskell.fmap datumHash escrow) where
   go = V2.mkTypedValidatorParam @Escrow
        $$(PlutusTx.compile [|| validate ||])
        $$(PlutusTx.compile [|| wrap ||])
    wrap = Scripts.mkUntypedValidator
```

```
$ afv ./myContract.hs
```


Falsified X

IOG

Behind Push-Button Formal Verification

+ Annotation Language

One Language to Spec' Them All

- Useful for all the stack of verification needs
 - Global blockchain state properties
 - Transaction related properties
 - Temporal properties
 - Simple properties for custom helper functions
- Applicable for all Cardano Smart Contracts (Plinth, Aiken, ...)

Packaged in a set of libraries to allow easy property expression.

+ Cardano Blockchain **Formalisation**

From a generic solver to a specialized tool

Plinth and PlutusLedgerAPI

- Ease of transpilation of Plinth to Lean4 transpiler
- Introduction of the builtins for the Blockchain state formalization
- Facilitate the generation of correctness proof obligations for Typeclass instances
- Plinth-based smart contract can directly be specified in Lean4

→ Almost a 1 to 1 mapping...

```
class (Eq a) => Ord a where
  compare :: a -> a -> Ordering
  (<), (<=), (>), (>=) :: a -> a -> Bool
  max, min :: a -> a -> a
  {-# INLINEABLE compare #-}
  compare \times v =
    if x == v
      then EO
      else
        if x \ll y
          then LT
          else GT
  {-# INLINEABLE (<) #-}
 x < y = case compare x y of LT -> True; _ -> False
  {-# INLINEABLE (<=) #-}
 x <= y = case compare x y of GT -> False; _ ->
True# INLINEABLE (>) #-}
 x > y = case compare x y of GT -> True; _ -> False
 {-# INLINEABLE (>=) #-}
 x >= v = case compare x v of LT -> False: ->
True
  {-# INLINEABLE max #-}
  \max x y = \inf x \le y \text{ then } y \text{ else } x
  {-# INLINEABLE min #-}
  min \times y = if \times <= y then \times else y
  {-# MINIMAL compare | (<=) #-}
```

```
class Ord' (a : Type) extends Eq a where
 leg : a -> a -> Bool
 compare (x : a) (y : a) : Ordering :=
   if x == y then Ordering.EQ
   else if leg x y then Ordering.LT
   else Ordering.GT
class Ord (a : Type) extends Ord' a where
 lt (x : a) (y : a) : Bool :=
   match compare x y with
   | Ordering.LT => true
   | => false
 lea x v :=
   match compare x y with
   | Ordering.GT => false
   | _ => true
 gt (x : a) (v : a) : Bool :=
   match compare x y with
   | Ordering.GT => true
   | => false
 qeq(x:a)(y:a):Bool:=
   match compare x y with
    Ordering.LT => false
   | _ => true
 \max (x : a) (y : a) : a := if leq x y then y else x
 min(x:a)(y:a):a:=ifleq x y then x else y
```

IOG

7. but with a lot more verification

/-- Properties on 'leg' that need to be provided for each Ord instance -/ eq_leq_left : \forall (x y : α), x == ρ y \rightarrow leq x y eq_leq_right : \forall (x y : α), x ==p y \rightarrow leq y x eq_qeq_left : \forall (x y : α), x ==_p y \rightarrow qeq x y eq_geq_right : \forall (x y : α), x ==p y \rightarrow geq y x leg reflexive : \forall (x : α), leg x x leq_antisymmetric : \forall (x y : α), leq x y \rightarrow leq y x \rightarrow x ==_p y leg_transitive : \forall (x y z : α), leg x y \rightarrow leg y z \rightarrow leg x z leq_imp_eq_or_lt : \forall (x y : α), leq x y \rightarrow (x ==_p y ||_p lt x y) $leq_qeq_iff : \forall (x y : \alpha), leq x y = qeq y x$ $leq_not_lt_iff : \forall (x y : \alpha), not_p (lt y x) = leq x y$ $leq_not_gt_iff : \forall (x y : \alpha), not_p (gt x y) = leq x y$ /-- Properties on 'lt' that need to be provided for each Ord instance -/ eq_imp_not_lt : $\forall (x y : \alpha), x ==_0 y \rightarrow (not_0 (lt x y) &&_0 not_0 (lt y x))$ $lt_not_reflexive : \forall (x : \alpha), not_p (lt x x)$ $lt_antisymmetric : \forall (x y : \alpha), lt x y \rightarrow not_p (lt y x)$ It_transitive : \forall (x y z : α), lt x y \rightarrow lt y z -> lt x z $lt_{imp_leq} : \forall (x y : \alpha), lt x y \rightarrow leq x y$ It at iff: $\forall (x \lor x : \alpha)$. It $x \lor = at \lor x$ $lt_{imp_not_gt} : \forall (x y : \alpha), lt x y \rightarrow not_p (gt x y)$ It imp not eq : \forall (x y : α), It x y \rightarrow x /=p y It not leg iff: $\forall (x y : \alpha), not_p (leg y x) = lt x y$ $lt_not_geq_iff : \forall (x y : \alpha), not_p (geq x y) = lt x y$ /-- Properties on 'geg' that need to be provided for each Ord instance -/ $geg reflexive : \forall (x : \alpha), geg x x$ geq_antisymmetric : \forall (x y : α), geq x y \rightarrow geq y x \rightarrow x ==_p y geq_transitive : \forall (x y z : α), geq x y \rightarrow geq y z \rightarrow geq x z $geq_imp_eq_or_gt : \forall (x y : \alpha), geq x y \rightarrow (x ==_p y ||_p gt x y)$ $geq_not_gt_iff : \forall (x y : \alpha), not_p (gt y x) = geq x y$ $qeq not lt iff : \forall (x y : \alpha), not_p (lt x y) = qeq x y$ geq_and_leq_imp_eq : \forall (x y : α), geq x y \rightarrow leq x y \rightarrow x ==p y /-- Properties on 'gt' that need to be provided for each Ord instance -/ eq imp not qt: $\forall (x y : \alpha), x ==_{\theta} y \rightarrow (\text{not}_{\theta} (\text{qt} x y)) \&\&_{\theta} \text{not}_{\theta} (\text{qt} y x))$ $gt_not_reflexive : \forall (x : \alpha), not_p (gt x x)$ $gt_antisymmetric : \forall (x y : \alpha), gt x y \rightarrow not_p (gt y x)$ gt_transitive : \forall (x y z : α), gt x y \rightarrow gt y z -> gt x z $gt_{imp_geq} : \forall (x y : \alpha), gt x y \rightarrow geq x y$ $gt_imp_not_lt : \forall (x y : \alpha), gt x y \rightarrow not_p (lt x y)$ at imp not eq: $\forall (x \lor x : \alpha)$, at $x \lor \rightarrow x /=_n \lor$ $gt_not_leq_iff : \forall (x y : \alpha), not_p (leq x y) = gt x y$ $gt_not_geq_iff : \forall (x y : \alpha), not_p (geq y x) = gt x y$

/-- Propreties on 'min' that need to be provided for each Ord instance -/ min_reduce : \forall (x : α), min x x = x := by simp $leq_min_left : V (x y : \alpha), leq x y \rightarrow min x y = x := by simp; intros; contradiction$ leg min right : \forall (x y : α), leg v x \rightarrow min x v = v $lt_min_left : \forall (x y : \alpha), lt x y \rightarrow min x y = x$ $lt_min_right : \forall (x y : \alpha), lt y x \rightarrow min x y = y$ geg min left: $V(x,y;\alpha)$, geg $y,x \to \min x,y = x$:= by simp; intros; contradiction $geq_min_right : \forall (x y : \alpha), geq x y \rightarrow min x y = y$ $gt_min_left : \forall (x y : \alpha), gt y x \rightarrow min x y = x$ $gt_min_right : V (x y : \alpha), gt x y \rightarrow min x y = y$ /-- Propreties on 'max' that need to be provided for each Ord instance -/ $max_reduce : \forall (x : \alpha), max x x = x := by simp$ $leq_max_left : \forall (x y : \alpha), leq y x \rightarrow max x y = x$ $leq_max_right : \forall (x y : \alpha), leq x y \rightarrow max x y = y := by simp; intros; contradiction$ It max left: $\forall (x y : \alpha)$, It $y x \rightarrow \max x y = x$ $lt_max_right : \forall (x y : \alpha), lt x y \rightarrow max x y = y$ $qeq max left : \forall (x y : \alpha), qeq x y \rightarrow max x y = x$ $qeq_max_right: \forall (x y : \alpha), qeq y x \rightarrow max x y = y := by simp; intros; contradiction$ $gt_max_left : \forall (x y : \alpha), gt x y \rightarrow max x y = x$ gt max right : $\forall (x y : \alpha)$, gt $y x \rightarrow \max x y = y$ /-- Propreties on 'compare' that need to be provided for each Ord instance -/ compare eq left : \forall (x y : α), x == $_{p}$ y \rightarrow compare x y = Ordering.EQ compare_eq_right : \forall (x y : α), x ==p y \rightarrow compare y x = Ordering.EQ compare_imp_eq : \forall (x y : α), compare x y = Ordering.EQ \rightarrow x == φ y compare lt left : ∀ (x y : α), lt x y → compare x y = Ordering.LT compare_lt_right : \forall (x y : α), lt y x \rightarrow compare x y = Ordering.GT compare_imp_lt : \forall (x y : α), compare x y = Ordering.LT \rightarrow lt x y compare leg left : \forall (x y : α), leg x y \rightarrow (compare x y = Ordering, EO y compare x y = Ordering, LT) compare_leq_right : \forall (x y : α), leq y x \rightarrow (compare x y = Ordering.EQ v compare x y = Ordering.GT) compare imp leq : \forall (x y : α), (compare x y = Ordering.EQ v compare x y = Ordering.LT) \rightarrow leq x y compare leg neg : \forall (x y : α), leg x y \rightarrow \rightarrow (compare x y = Ordering, EO) \rightarrow lt x y compare_leq_eq : \forall (x y : α), leq x y \rightarrow (compare x y = Ordering.EQ) -> x ==p y compare_gt_left : \forall (x y : α), gt x y \rightarrow compare x y = Ordering.GT compare_gt_right : ∀ (x y : α), gt y x → compare x y = Ordering.LT compare_imp_gt : \forall (x y : α), compare x y = Ordering.GT \rightarrow gt x y compare_not_lt_imp_geq : \forall (x y : α), compare x y \neq Ordering.LT \rightarrow geq x y compare_not_gt_imp_leq : \forall (x y : α), compare x y \neq Ordering.GT \rightarrow leq x y compare_geq_left : \forall (x y : α), geq x y - (compare x y = Ordering.EQ v compare x y = Ordering.GT) compare geq right: \forall (x y : α), geq y x \rightarrow (compare x y = Ordering.EQ v compare x y = Ordering.LT) compare imp geq : \forall (x y : α), (compare x y = Ordering.EQ v compare x y = Ordering.GT) \rightarrow geq x y compare_geq_neq : \forall (x y : α), geq x y $\rightarrow \neg$ (compare x y = Ordering.EQ) \rightarrow gt x y compare $geq = q : \forall (x y : \alpha), geq x y \rightarrow (compare x y = Ordering EQ) -> x ==_0 y$ compare_equality_imp_eq : V (x y : α), compare x y = compare y x → x ==p y compare_eq_imp_not_gt : \forall (x y : α), compare x y = Ordering.EQ \rightarrow ¬ (compare x y = Ordering.GT) compare_eq_imp_not_it : ∀ (x y : α), compare x y = Ordering.EQ → ¬ (compare x y = Ordering.LT) compare_lt_imp_not_eq : \forall (x y : α), compare x y = Ordering.LT \rightarrow ¬ (compare x y = Ordering.EQ) compare_lt_imp_not_gt : \forall (x y : α), compare x y = Ordering.LT \rightarrow ¬ (compare x y = Ordering.GT) compare lt_imp_not lt : ∀ (x y : α), compare x y = Ordering LT → ¬ (compare y x = Ordering LT) compare_lt_imp_qt : ∀ (x y : α), compare x y = Ordering.LT → compare y x = Ordering.GT compare_gt_imp_not_eq : \forall (x y : α), compare x y = Ordering GT \rightarrow ¬ (compare x y = Ordering EQ) compare_gt_imp_not_it : ∀ (x y : α), compare x y = Ordering.GT → ¬ (compare x y = Ordering.LT) compare qt imp not qt : ∀ (x y : α), compare x y = Ordering GT → ¬ (compare y x = Ordering GT) compare_gt_imp_lt : ∀ (x y : a), compare x y = Ordering.GT → compare y x = Ordering.LT compare_refl_eq : \forall (x : α), compare x x = Ordering.EQ compare refl not gt : \forall (x : α), compare x x \neq Ordering.GT compare_refl_not_lt : ∀ (x : α), compare x x ≠ Ordering.LT nare atticummetric It It . W /v v . a) compare v v + Ordering IT - compare v v + Ordering IT - v -

PlutusCore with formal verification

```
inductive Data where
  I Constr : Integer → List Data → Data
  | Map : List (Data × Data) → Data
  | List : List Data → Data
  | I : Integer → Data
  | B : ByteString → Data
mutual
  private def dataStr : Data → String
    | .Constr idx fields => constrStr idx fields
    .Map mxs => mapStr "" mxs
    | .List xs => listDataStr "" xs
    | .I i => s!"(I {i})"
    | .B bs => s!"(B \{bs\})"
  private def constrStr : Integer → List Data → String
   | idx, fields => s!"(Constr {idx} [{listDataStr ""
  private def listDataStr (acc : String) : List Data → String
    | [] => s!"(List [{acc}])"
    | h :: tl =>
        let hStr := dataStr h
        if acc.isEmpty
        then listDataStr hStr tl
       else listDataStr s!"{acc}, {hStr}" tl
 private def mapStr (acc : String) : List (Data × Data) →
Strimg[] => s!"(Map [{acc}])"
    | (x, v) :: tl =>
       let hstr := s!"({dataStr x}, {dataStr v})"
      if acc.isEmpty
      then mapStr hstr tl
      else mapStr s!"{acc}, {hstr}" tl
end
```

```
@[simp] theorem Data.beq_iff_eq (x y : Data) : x == y \leftrightarrow x = y := by
  simp [BEq.beq]
  apply Iff.intro
  . apply eqData_true_imp_eq
  . intro h
    rw [h]
    apply eqData_reflexive
@[simp] theorem Data.not_beq_iff_not_eq (x y : Data) : x != y \leftrightarrow x \neq y := by simp [BEq.beq]
@[simp] theorem chooseData_constr
  (idx : Integer) (xs : List Data) (tc : \alpha) (tm : \alpha) (tl : \alpha) (ti : \alpha) (tb : \alpha) :
  UPLC.chooseData (Data.Constr idx xs) tc tm tl ti tb = tc := rfl
@[simp] theorem chooseData_map
  (xs : List (Data \times Data)) (tc : \alpha) (tm : \alpha) (tl : \alpha) (ti : \alpha) (tb : \alpha) :
  UPLC.chooseData (Data.Map xs) tc tm tl ti tb = tm := rfl
@[simp] theorem chooseData list
  (xs : List Data) (tc : \alpha) (tm : \alpha) (tl : \alpha) (ti : \alpha) (tb : \alpha) :
  UPLC.chooseData (Data.List xs) tc tm tl ti tb = tl := rfl
@[simp] theorem chooseData i
  (i : Integer) (tc : \alpha) (tm : \alpha) (tl : \alpha) (ti : \alpha) (tb : \alpha) :
  UPLC.chooseData (Data.I i) tc tm tl ti tb = ti := rfl
@[simp] theorem chooseData b
  (bs : ByteString) (tc : \alpha) (tm : \alpha) (tl : \alpha) (ti : \alpha) (tb : \alpha) :
  UPLC.chooseData (Data.B bs) tc tm tl ti tb = tb := rfl
```

CEK Machine reimplemented

```
def step (Sigma : State) : State :=
  match Sigma with
                                                        s; \rho \triangleright u(var x)
                                                                                                      \Rightarrow s \triangleleft \rho[x] If x is bound in \rho
                                                        s; \rho \triangleright u(\text{con T c})
                                                                                                      \Rightarrow s \triangleleft v(con T c)
                                                        s; \rho \triangleright u(lam \times, M)
                                                                                                      \Rightarrow s \triangleleft v(lam x, M, \rho)
                                                       s; \rho \triangleright u(\text{delay M})
                                                                                                      \Rightarrow s \triangleleft v(delay M, \rho)
                                                        s; \rho \triangleright u(force M)
                                                                                                      => (@f(force \_) · s); \rho \triangleright M
                                                                                                      \Rightarrow ((0f[\_(N, \rho)] \cdot s); \rho \triangleright M
                                                       s; \rho \triangleright u[M \circ N]
                                                       s; \rho \triangleright u(constr i (M \cdot Ms)) => (@f(constr i, [] \_ (Ms, \rho)) \cdot s); \rho \triangleright M
                                                       s; \rho \triangleright u(constr i [])
                                                                                                      => s ⊲ v(constr i, [])
                                                                                                      \Rightarrow (@f(case \_ (Ms, \rho)) \cdot s); \rho \triangleright N
                                                        s; \rho \triangleright u(case N, Ms)
                                                       s; \rho \triangleright u(builtin b)
                                                                                                      \Rightarrow s \triangleleft v(builtin b, [], \alpha(b))
                                                        s; p ⊳ u(error)
                                                                                                      => ♦
                                                          [] ⊲ V
                                                                                                      => \( \text{V}
                                   (@f[\_(M, \rho)] \cdot s) \triangleleft V
                                                                                                        \Rightarrow (@f[V \_] · s); \rho \triangleright M
                         (@f[v(lam x, M, \rho) \_] \cdot s) \triangleleft V
                                                                                                          => s: ρ[x → V] ⊳ M
                                           (0f[\_V] \cdot s) \triangleleft v(lam x, M, \rho)
                                                                                                          => s; ρ[x → V] ⊳ M
         (@f[v(builtin b, Vs, \iota \circ \eta) \_] \cdot s) \triangleleft V
                                                                                                          \Rightarrow (s \triangleleft v(builtin b, Vs : · V, \eta)) If \iota \in \mathcal{U} \cup \mathcal{V}
                                           (@f[_{-} V] · s) ⊲ v(builtin b, Vs, ι ⊙ η) => (s ⊲ v(builtin b, Vs : · V, η)) If ι ∈ u ∪ v
            (@f[v(builtin b, Vs, a[i]) \_] \cdot s) \triangleleft V
                                                                                                          \Rightarrow (Eval_CEK(s, b, Vs : · V)) If \iota \in u \cup v
                                           (@f[\_V] \cdot s) \triangleleft V(builtin b, Vs, a[i]) \Rightarrow (Eval CEK(s, b, Vs : V)) If i \in u \cup v
                                     (@f(force \_) \cdot s) \triangleleft v(delay M, \rho)
                                                                                                          => s; ρ ⊳ M
                                     (@f(force \_) · s) \triangleleft v(builtin b, Vs, \iota \circ \eta) ⇒ (s \triangleleft v(builtin b, Vs, \eta)) If \iota \in \mathcal{Q}
                                     (@f(force \_) \cdot s) \triangleleft v(builtin b, Vs, a[i]) => (Eval_CEK(s, b, Vs)) If i \in Q
       (@f(constr i, Vs \_ (M \cdot Ms, \rho)) \cdot s) \triangleleft V
                                                                                                          \Rightarrow (@f(constr i, Vs : \cdot V \_ (Ms, \rho)) \cdot s); \rho \triangleright M
              (@f(constr i, Vs \_ ([], \rho)) \cdot s) \triangleleft V
                                                                                                        => s ⊲ v(constr i. Vs :· V)
                          (@f(case \_ (Ms, \rho)) \cdot s) \triangleleft v(constr i, Vs)
                                                                                                     => unfoldCase s i Ms Vs ρ
        => •
```

+ Optimization, Normalization, **SMT-translation**

Cornerstone for scalability

Internal representation gets big, too big if not managed carefully

- Need to reduce internal representation complexity before querying the SMT solver
- Minimizes (or even removes!) user intervention and the need for manual proof
- Speeds up proof and dramatically improves scalability

Cornerstone for scalability

Key normalizations

- Aggressive constant propagation
- Arithmetic, boolean, and propositional simplification
- If-then-else simplification
- Match and recursive function equivalence detection
- Beta reduction and non-recursive function/lambda applications
- Structural equivalence on expressions
- Cone of influence computation and variable elimination

+ Sending everything to Z3

Efficient encoding to SMTLib

- Inductive data types (including mutually inductive)
- Recursive function (including mutually recursive)
- Inductive proof schemas
- Quantified functions, higher-order functions, lambda terms
- Counterexample generation support for recursive types/functions

Moving from Lean4 to SMTLib for automated reasoning

Simple translation example

```
#solve (dump-smt-lib: 1) (only-smt-lib: 1) [\forall (a b c : Nat), (a + b) * c = c * a + b * c]
```


+ State Machine

Bringing steps to the proofs

7 Blockchain as a State Machine

→ From a step to a trace of execution

And now we have traces of execution!

7 Forest of all executions

Bounded Model Checking

$$oxed{I(s_0)} \wedge oxed{T(s_0,s_1)} \wedge oxed{T(s_1,s_2)} \wedge oxed{T(s_2,s_3)} \wedge
eg P(s3)$$

Fast but incomplete: Very useful for bug finding

IOG

Induction

"Safe" states after 1 step "Safe" States after 2 steps States after 3 steps
$$orall (s_0,s_1,s_2,s_3)$$
 $orall (s_0,s_1,s_2,s_3)$ $orall (s_0,s_1) \wedge T(s_0,s_1) \wedge T(s_1,s_2) \wedge P(s_2) \wedge T(s_2,s_3)$

$$\implies P(s_3)$$

Very powerful to prove invariants for unbounded traces of execution

+ Current & Future

7 Conclusion

- Application of formal verification at the source code level
- Empowering smart contract developers to use formal verification with minimal effort
- Cost and time efficient verification with the already formalized Cardano context
- Easy debugging with counterexamples for every failed property
- Integration into VS Code for integration into traditional development workflows
- CLI tool for integration in CI/CD or uses outside VS Code

Counter Example exploration in VS Code

33

7 Trace visualization in VS Code

7 Roadmap

2025

2026

2027

Stable version

Transpilation from Plinth

Automated trace reasoning

UPLC equivalence checking

VS Code integration

Extended support

Transpilation from Aiken

Automated common attacks verification

Scalability to complex DApps

Continuous updates and improvements

Other chains

Midnight

Continuous updates and improvements

3

+GET PROVING_

Contact us:

afv_earlyaccessprogram@iohk.io

