4장: 모델 훈련

4.2 경사하강법

4.3 다항회귀

4.6 로지스틱 회귀

4.2 경사하강법

옵티마이저

손실함수의 크기를 줄이는 것이 목표

• 어떻게 줄일 것인가? -> "옵티마이저"로 줄인다.

<u>경사하강법</u>은 곧 손실함수의 크기를 줄이는 **옵티마이저**의 일종

경사(기울기)를 구한다.

학습률(스텝의 크기)

학습률이 너무 작다

-> 시간이 너무 오래 걸림

학습률이 너무 크다

-> 이상한 곳으로 발산 가능

경사하강법의 문제점

"**무작위 초기화**"로 인하여 지역 최소값에 수렴할 수 있다.

모멘텀 (Momentum)

$$w_i^{k+1} = w_i^k + \eta \left(-\frac{d\epsilon}{dw_i^k}\right) + \alpha \left(\Delta w_i^{k-1}\right)$$

 α : Momentum term

모멘텀 + SGD

지그재그 현상을 줄여준다.

Stochastic Gradient Descent withhout Momentum

Stochastic Gradient
Descent with
Momentum

경사하강법의 문제점

• 변수들의 스케일이 매우다를 경우 발생한다.

사이킷 런의 StandardScaler 활용

4.2.1 배치 경사 하강법

편도함수
$$\frac{\partial}{\partial \theta_j} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^m (\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_j^{(i)}$$
 $MSE = \frac{1}{n} \sum_{i=1}^n (y_i - t_i)^2$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - t_i)^2$$

• θ_j 가 변함에 따라 비용함수가 변하는 정도 -> 편도함수

 θ_j 에 대해 편미분..

$$\mathbf{\theta}^{(\text{next step})} = \mathbf{\theta} - \eta \nabla_{\mathbf{\theta}} \text{ MSE}(\mathbf{\theta})$$

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

4.2.2 확률적 경사 하강법

• 매 스텝에서 한 개의 샘플을 무작위로 선택한다.

에포크와 배치 크기와 이터레이션 (Epochs and Batch size and Iteration)

에포크: 인공 신경망에서 전체 데이터에 대해서 순전파와 역전파가 끝난 상태

배치 크기: 몇 개의 데이터 단위로 매개변수를 업데이트 하는지

이터레이션(스텝): 한 번의 에포크를 끝내기 위해서 필요한 배치의 수

4.2.3 미니배치 경사 하강법

- "미니배치"에 대해 그레디언트를 계산한다.
- 미니배치: 임의의 작은 샘플 세트

4.3 다하회기

VS 다중회귀

다항회귀

다중회귀

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_d x^d$$

4.6 로지스틱회귀

이진 분류

score(x)	result(y)	
45	불합격	
50	불합격	
55	불합격	
60	합격	
65	합격	
70	합격	

시그모이드 함수

$$H(x) = rac{1}{1 + e^{-(wx+b)}} = sigmoid(wx+b) = \sigma(wx+b)$$

- 출력이 0과 1 사이의 값을 가지면서 S자 형태로 그려지는 함수
- w(weight), b(bias)

로지스틱 회귀의 비용함수

$$ext{if } y=1 o \cot\left(H(x),y
ight)=-\log(H(x))$$
 $ext{if } y=0 o \cot\left(H(x),y
ight)=-\log(1-H(x))$

$$cost\left(H(x),y\right) = -[ylogH(x) + (1-y)log(1-H(x))]$$

$$J(w) = -rac{1}{n} \sum_{i=1}^n [y^{(i)} log H(x^{(i)}) + (1-y^{(i)}) log (1-H(x^{(i)}))]$$

- MSE를 사용하지 않는다.
- 로그함수를 사용한다.

결론

- 로지스틱 회귀는 비용 함수로 크로스 엔트로피를 사용한다.
- 가중치를 찾기 위해서 크로스 엔트로피 함수의 평균을 취한 함수를 사용한다.

4.6.4 소프트멕스 회귀

다항 로지스틱 회귀라고도..

• 로지스틱 회귀 모델을 <u>다중 클래스를 지원</u>하도록 일반화

SepalLengthCm(x_1)	SepalWidthCm(x_2)	PetalLengthCm(x_3)	PetalWidthCm(x_4)	Species(y)
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
5.8	2.6	4.0	1.2	versicolor
6.7	3.0	5.2	2.3	virginica
5.6	2.8	4.9	2.0	virginica

소프트맥스 함수

$$p_i = rac{e^{z_i}}{\sum_{i=1}^k e^{z_j}} \ \ for \ i=1,2,\dots k$$

$$softmax(z) = [rac{e^{z_1}}{\sum_{j=1}^3 e^{z_j}} \; rac{e^{z_2}}{\sum_{j=1}^3 e^{z_j}} \; rac{e^{z_3}}{\sum_{j=1}^3 e^{z_j}}] = [p_1, p_2, p_3] = \hat{y} =$$
 예측값

$$softmax(z) = [rac{e^{z_1}}{\sum_{j=1}^3 e^{z_j}} \; rac{e^{z_2}}{\sum_{j=1}^3 e^{z_j}} \; rac{e^{z_3}}{\sum_{j=1}^3 e^{z_j}}] = [p_1, p_2, p_3] = [p_{virginica}, p_{setosa}, p_{versicolor}]$$

크로스 엔트로피

- 비용함수

$$softmax(x) = \frac{x_i}{\sum_{j=0}^k e^{x_j}} (i = 0, 1, ... k)$$

K = 2라면 로지스틱 회귀의 비용함수가 됩니다.

감사합니다.