MA101 MATHEMATICS I

July-November, 2013

Tutorial & Additional Problem set - 1

SECTION - A (for Tutorial - 1)

- 1. True or false? Give justifications.
 - (a) Product of two symmetric matrices is symmetric.
 - (b) Product of two upper triangular matrices is upper triangular.
 - (c) Every matrix in $\mathcal{M}_2(\mathbb{R})$ with nonzero entries can be expressed as a product of a lower triangular and an upper triangular matrix.
 - (d) Every matrix is row equivalent to a unique matrix of row echelon form.
 - (e) If \mathbf{x}_0 is a solution of the system $A\mathbf{x} = \mathbf{b}$, then any solution of the system is given by $\mathbf{x} = \mathbf{x}_0 + \mathbf{x}_1$ for some solution \mathbf{x}_1 of the system $A\mathbf{x} = \mathbf{0}$.
- 2. The trace of a matrix $A = [a_{ij}] \in \mathcal{M}_n$ is the sum of its diagonal entries and is denoted by $\operatorname{tr}(A)$, i.e. $\operatorname{tr}(A) = \sum_i a_{ii}$.

Prove the following: if $A, B \in \mathcal{M}_n$ and α is scalar, then

- (a) tr(A+B) = tr(A) + tr(B);
- (b) $tr(\alpha A) = \alpha tr(A)$;
- (c) tr(AB) = tr(BA).

Also, for any matrix $C = [c_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})$ can you tell what $\operatorname{tr}(CC^T)$ is?

3. Express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} , where

(a)
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$;

(b)
$$\mathbf{u} = \begin{bmatrix} -2\\3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2\\1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2\\9 \end{bmatrix}$.

- 4. Suppose that \mathbf{x} and \mathbf{y} are two distinct solutions of the system $A\mathbf{x} = \mathbf{b}$. Prove that there are infinitely many solutions to this system. Interpret your findings geometrically.
- 5. Decide whether the following pairs are row-equivalent:

(a)
$$\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 5 & -1 & 5 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \\ 2 & 0 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 4 & 3 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \end{bmatrix}$

SECTION - B: ADDITIONAL PROBLEMS

1. Consider vectors $\mathbf{u} = [a_1, b_1]^T$ and $\mathbf{v} = [a_2, b_2]^T$ in \mathbb{R}^2 . Use parallelogram law to justify the vector addition $\mathbf{u} + \mathbf{v} = [a_1 + a_2, b_1 + b_2]^T$. Do the same for vectors $\mathbf{u} = [a_1, b_1, c_1]^T$ and $\mathbf{v} = [a_2, b_2, c_2]^T$ in \mathbb{R}^3 .

- 2. Give two examples of matrices in $\mathcal{M}_3(\mathbb{C})$, one of which is and another which is not a
 - (a) diagonal matrix,
 - (b) symmetric matrix.
 - (c) skew-symmetric matrix,
 - (d) Hermitian matrix,
 - (e) skew-Hermitian matrix,
 - (f) upper triangular,
 - (g) lower triangular.
- 3. True or false? Give justifications.
 - (a) A real Hermitian matrix is symmetric.
 - (b) The diagonal entries of a skew-Hermitian matrix are imaginary.
 - (c) Any real square matrix can be expressed as a sum of a symmetric matrix and a skew-symmetric matrix.
 - (d) For any vector $\mathbf{b} \in \mathbb{R}^n$ there is a system $A\mathbf{x} = \mathbf{b}$ with two solutions \mathbf{x}_1 and \mathbf{x}_2 such that $\mathbf{x}_1 + \mathbf{x}_2$ is also a solution.
- 4. Find the coefficients a, b, c, d so that the graph of $y = ax^3 + bx^2 + cx + d$ passes through (1, 2), (-1, 6), (2, 3) and (0, 1).
- 5. Supply two examples each and explain their geometrical meaning.
 - a) Two linear equations in two variables with exactly one solution.
 - b) Two linear equations in two variables with infinitely many solutions.
 - c) Two linear equations in two variables with no solutions.
 - d) Three linear equations in two variables with exactly one solution.
 - e) Three linear equations in two variables with no solutions.
- 6. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 0 & 5 & -1 \end{bmatrix}$. For which vectors $\mathbf{y} = [y_1, y_2, y_3]^T$ does the system $A\mathbf{x} = \mathbf{y}$ has a solution?