Image Processing and Analysis / Advanced Image Analysis 2022-2023, 2nd semester

IPA/AIA standard project

Retinal Lesions Segmentation

Alessandro Bria

Associate Professor email: a.bria@unicas.it

Motivations (1/2)

- retinal color fundus images are widely used for diagnosis, screening and treatment of cardiovascular and ophthalmologic diseases
- retinal lesions segmentation is conducive to the early detection of diabetic retinopathy that can reduce the chances of vision loss
 - four signs of diabetic retinopathy:
 - Microaneurysms (MA)
 - Hemorrhages (HE)
 - Soft Exudates (SEx)
 - Hard Exudates (HEx)

Motivations (2/2)

Goal

- implement automatic **segmentation** of **1 type** (of your choice) of **retinal lesion**
 - choosing this project requires choosing the lesion to be segmented <u>in advance</u>

Materials

- IDRiD Challenge Dataset
 - in /data
 - 81 fully-annotated images
 - 54 for training + 27 for testing

Performance evaluation

- area under the precision-recall curve (AUPR) for each lesion type
 - see Appendix in Traffic Sign Detection project and paper in /literature

Challenges

- unbalanced data
 - it is likely you will obtain a true-positivefalse-positive ratio of 1:100 or higher in your candidate lesions set
 - this will be handled by ucasML
- very heterogeneous lesions
- uneven illumination conditions
- big high-res images (4000×3000)

Hints

candidate extraction / segmentation

- color spaces, grayscale morphology, region growing, ...
- sensitivity is more important than specificity, ML will do the false positive reduction
 - it's ok to have a 1:100 or even 1:1000 class imbalance
 - it's ok to test sensitivity on groundtruth regions

feature extraction

- color features, shape features, geometrical features, texture features, ...
- large feature sets (Haar, Gabor, etc.) might need feature reduction/engineering

ML

- strongly suggested to use **ucasML** tool, it is robust to class imbalance
- training set definition is crucial and should be based on IoU
 - the higher, the purer the positive samples, the easier the learning task, but the less generalizable is the classifier....this is clearly a trade-off

Constraints

- decision with machine learning (ucasmL)
- use training and test splits as those proposed in the dataset
 - train the ML model on the training set, evaluate performance on the test set
- groundtruth data in the test folder can only be used for performance evaluation
 - of course!
- performance evaluation must be performed on original groundtruth images.
 - i.e. do not resize performances will be biased if you do it

