Propositional Logic

A proposition is a declarative sentence that is either T (1)/F (0)

- Negation ¬
- Conjunction ∧
- Disjunction V
- Implication, if-then →

T for everything else except for $T \rightarrow F = F$

p	q	$p{\rightarrow} q$	7p Ver
Т	Т	Т	T
Т	F	F	F
F	Т	Т	T
F	F	Т	T

Different Ways of Expressing $p \rightarrow q$

if p , then q	p implies q
if <i>p</i> , <i>q</i>	p only if q
q unless $\neg p$	q when p
q if p	
g whenever p	p is sufficient for q
q whichever p	
q follows from p	q is necessary for p

ullet Biconditional, if-and-only-if \leftrightarrow

T when both $p \leftrightarrow q$ has the same value (T/F)

Tautology: a proposition that is always true **Contradiction:** a proposition that is always false

- Contrapositive of $p \rightarrow q$ is for $\neg q \rightarrow \neg p$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- Converse of $p \rightarrow q$ is for $q \rightarrow p$ $p \rightarrow q$ is NOT LOGICALLY EQUIVALENT to $q \rightarrow p$
- Inverse of $p \to q$ is for $\neg p \to \neg q$ $p \to q$ is NOT LOGICALLY EQUIVALENT to $\neg p \to \neg q$

De Morgan's Law

$$i. \neg (p \land q) \equiv \neg p \lor \neg q$$
 $ii. \neg (p \lor q) \equiv \neg p \land \neg q$

Predicates & Quantifiers

- Predicate: A statement whose truth value depends on one or more variables.
- **Universal Quantifier,** \forall : "For all x, P(x) is true" \Rightarrow $\forall x, P(x)$
- Existential Quantifier, \exists : "There exist some x, where P(x) is true" $\rightarrow \exists x, P(x)$
- Domain of discourse: Object/Category/Item being considered

Proof

- 1. Direct proof, $p \rightarrow q$ If p = T, then q = T
- 2. Contrapositive, $\neg q \rightarrow \neg p$
- 3. Vacuous proof, $p \rightarrow q$ If p = F, then q can be T or F to be T.
- 4. Trivial proof, $p \rightarrow q$ If q = T, then p can be T or F to be T.
- 5. Proof by Equivalence, $p \leftrightarrow q$ Show that if $p \rightarrow q \& q \rightarrow p$

- 6. Proof by Contradiction: Negate the current statement and assume that the negated statement is T until proven F.
- 7. Proof by Counterexample: Show that at least in one condition, the statement is F.
- 8. Constructive proof: For proving $\exists x, P(x)$. Proof P(x) = T for 1 element in the domain discourse.
- 9. Proof by Cases: Identify all possible sub-cases and prove.
- For proving an "if-then-", consider using direct proofs, proofs by contraposition, or contradiction.
- For proving an "A if and only if B", think of proving both "A implies B" and "B implies A".
- For proving "There exists such that -", think of a constructive proof.
- For disproving a statement, consider showing a counterexample.
- Use rules of inference wherever you can.

Rule of Inference	Tautology	Name	
$p \to q$ $\therefore q$	$(p \land (p \to q)) \to q$	Modus ponens	Rules of
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tollens	<u>Inference</u>
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism	Premises (assume
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore q \end{array} $	$((p \vee q) \wedge \neg p) \to q$	Disjunctive syllogism	true) Conclusion
$\therefore \frac{p}{p \vee q}$	$p \rightarrow (p \lor q)$	Addition	(true)
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification	
$\begin{array}{c} p \\ \frac{q}{p \wedge q} \end{array}$	$((p) \land (q)) \to (p \land q)$	Conjunction	
$p \lor q$ $\neg p \lor r$	$((p \vee q) \wedge (\neg p \vee r)) \rightarrow (q \vee r)$	Resolution	

Set theory

Q

0

1

1

0

1

0

0

1

- The set of integers: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- The set of nonnegative integers: $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$
- The set of positive integers: $\mathbb{Z}^+ = \{1, 2, \ldots\}$

Using predicates, we can also write \mathbb{Z}^+ as $\mathbb{Z}^+ = \{x | (x \in \mathbb{Z}) \land (x > 0)\}$

- The set of real numbers: $\mathbb{R} = \{x | x \text{ is real}\}$
- The set of positive real numbers: $\mathbb{R}^+ = \{x | x \text{ is real } \land x > 0\}$
- The set of rational numbers: $\mathbb{Q} = \{x | x = \frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0\}$
- The empty set (or the null set) $\phi = \{\}$
- **1. A set** $\{a_1, a_2, ..., a_n\}$
- Repetitions removed, ex: if A = {1, 1, 2, 3}, write as A = {1, 2,
- Order of elements in a set doesn't matter, ex {1, 2, 3} = {2, 3, 1}
- Is a subset of itself, $A \subseteq A$
- The empty set is a subset of every set, Ø

Operation on sets:

- a. Union: $A \cup B = \{x | (x \in A) \lor (x \in B)\}$
- b. Intersection: $A \cap B = \{x | (x \in A) \land (x \in B)\}$
- c. Complement: \bar{A} or $A^c = \{x | x \notin A\}$
- d. Set difference: $A B = \{x | (x \in A) \land (x \notin B)\}$

Subsets vs set membership vs equality

- a. $3 \in \{1, 2, 3\}$ TRUE
- b. $\{3\} \subset \{1, 2, 3\} TRUE$
- c. $\{3\} \subseteq \{1, 2, 3\} TRUE$
- d. $\{3\} \in \{\{1\}, \{2\}, \{3\}\} TRUE$, sets of "sets"
- e. $\{2\} \in \{1, 2, 3\}$ WRONG
- f. $2 \subseteq \{1, 2, 3\} WRONG$

2. Ordered pair, tuple (a_1, a_2)

Order matters, $(a_1, a_2) \neq (a_2, a_1)$

Cartesian Product

- Cartesian product of set A and B is the set of all ORDERED PAIRS (a, b), $\alpha \in A \& b \in B$
- $\circ \quad A \times B \neq B \times A$

Cardinality of sets (Size)

- \circ Cardinality of $A \times B = |A||B|$
- Power set of A is the set of all subsets of A, if A = {1, 2,3}, then the power set:

$$0 2^3 = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, (2,3), \{1,2,3\}\}\}$$

- $|A \cap B| \le |A| \& |A \cap B| \le |B|$
- $|A \cup B| \ge |A| \& |A \cup B| \ge |B|$
- $\circ |A \cup B| \le |A| + |B|$

Functions $f: X \to Y$

- X domain of f, Y co-domain of f.
- f(x) = y, x pre-image of y, y is the image of x under f.
- Not every element of Y necessarily gets a pre-image.
- If $y \in Y$ are images of x under f, it is called the range of f, Range(f)

a. Injective Function One-to-one

- Each element in the co-domain Y has AT MOST 1 incoming arrow.
- ✓ To prove: Do **proof-by-contradiction**. Assume that $x_1 \neq 0$

 $f(x_1) = f(x_2)$. Deduce that $x_1 = x_2$, thus leading to a contradiction.

To disapprove: Do **proof-by-counterexample.** Find x_1, x_2 such that $f(x_1) = f(x_2)$. For onto, find

b. Surjective Function Onto

- Each element in the co-domain Y has AT LEAST 1 incoming arrow.
- ✓ To prove: Do **direct proof.** Assume some generic y in codomain and prove that y = f(x) for some x in domain.
- To disapprove: Do counterexample. Find y that has no inverse image in X.

c. Bijection Function 1-to-1 and onto

- One arrow out of every element in domain X
- One arrow into every element in co-domain Y

d. Composition of function

Relations

- $R \subseteq A \times B \rightarrow aRb \ or \ (a,b) \in R$, where R is a relation that makes $a \in A$ related to $b \in B$
- Every function is a relation BUT NOT vice versa.

a. Properties of Relation

- 1. Reflexivity: R is reflexive if aRa
- 2. Symmetry: R is symmetric if aRb iff bRa
- **3.** Transitivity: R is transitive if for any triple $a, b, c \in A$, aRb and bRc, then aRc.
- **4. Irreflexive:** R is irreflexive if for all element a of A is not related to itself.
- 5. Antisymmetric: R is antisymmetric if I. If aRb and bRa, then a = b II. Exist only aRb, no bRa

If R is an equivalence

b. "Equivalence" Relation:

- Reflexive
- Transitive
 - relation: if aRb, then a is Symmetric equivalent to b.

c. Equivalence Classes

- ▶ Let $A = \mathbb{Z}$ and $R = \{(a, b)|a b \text{ is even}\}.$
- ▶ **Definition:** For a given a let $[a] = \{b | b \in A, (b, a) \in R\}$, i.e., [a] is the set of elements that are related to a.
- ▶ What is [0] and what is [1]. Do you see a pattern emerging?
- \blacktriangleright {..., -4, -2, 0, 2, ...} and {..., -5, -3, -1, 1, 3, 5, ...}
- There are exactly two "equivalence classes".

d. Partitions

- Grouping of elements of a given set into DISJOINT SUBSETS.
- The union of subsets gives us the WHOLE set.
- The subsets are DISJOINT for ALL PAIR of subsets.
- e. Order relations (can use Hasse Diagram)

Partial order		Total order		
	0	Reflexive	0	For $a_1 \in A$, $a_2 \in$
	0	Transitive		A, either
	0	Antisymmetric		a_1Ra_2 or a_2Ra_1 .
			0	Antisymmetric
	*Not every pair of		0	Transitive
	elements need to be		*Any total order is also a	
	related		partial order.	

Graph

Directed Graph

- Vertex degree: in-degree and out-degree
- E = (u, v), u start vertex, v end vertex

Undirected Graph

- The relation is symmetric for the pairs.
- Undirected edge between nodes a and b, {a, b} since order doesn't matter
- Vertex degree: number of edges touching that node.
- Vertices and b are ADJACENT if they are connected by
- Given E = (a, b), then E is said to be an incident on a and

Simple Graph:

- Undirected graph
- No self-loops
- No multiple edges between nodes. At most one edge between distinct vertices.

Representing graphs:

Adjacency matrix symmetric for undirected graphs.
$$A = A^{c}$$

Degree theorem, for undirected graph:

$$\sum_{v \in V} deg(v) = 2|E|$$

$$\sum_{v \in V_{odd}} deg(v) + \sum_{v \in V_{oven}} deg(v) = 2|E|$$

Degree theorem, for directed graph:

$$\sum_{v \in V} deg^{+}(v) + \sum_{v \in V} deg^{-}(v) = |E|$$

Graph Traversal

- Walk Both edges and nodes can be visited more than
- Path any walk that does not contain repeated edges. However, nodes can be repeated.
- Simple path any path that does not contain repeated vertices.

Bipartite Graphs, $K_{m,n}$

- m vertices on one side and n vertices on another. Edges = m * n
- **Hall's Marriage Theorem: A** bipartite graph, $G = (V_1 \cup V_2)$ V_2, E) has a complete matching from $V_1 to V_2$ iff if $|N(A)| \ge |A|$ for all subsets $A \subseteq V_1$.

Special Graphs

- Line graph. [$v_1 v_2 v_3 v_n$](n nodes, n-1 edges)
- Cycle, C_n [Closed loop] $(n \ge 3)$
- Tree, [Connected graph containing no cycles]
- Star graph, [central node connected to the other outer nodes] (n nodes, n-1 edges)
- Wheel, [star graph but the outer is connected] (n nodes, 2(n-1) edges)
- Complete graph, K_n , [connecting each of the n nodes with every other node] (n nodes, $\frac{n(n-1)}{2}$ edges)

Connectivity

- Strongly connected graph: It is possible to reach every vertex from every other vertex for all cases.
- Weakly connected graph: The underlying graph is fully connected.

Mathematical Induction (Base case & Inductive Step)

Provide: Predicate, Base case, Inductive step

Inductive Step

- General form of Mathematical Induction: Assume P(k) is true and prove P(k+1) is true.
- Suppose P(k) is true for [ex: k > 0, equation]
- o $P(k) \rightarrow P(k+1)$, show that P(k+1) is true by making use of P(k) since P(k) is supposed to be true.
- Strong Induction: Assume that all of P(1), P(2),..,P(k) is true and use any combination of these k predicates to prove P(k+1) is true.
- Use when the truth of P(k+1) requires that P(I) is true for ALL integers $I \leq k$.
- Necessary to prove multiple base cases

Arithmetic Progressions

Sequences of numbers (integers or reals) defined via a recursion

$$a_0 = b,$$

$$a_n = a_{n-1} + d.$$

are called arithmetic progressions.

An arithmetic progression is any sequence of regularly-spaced numbers of the form (b, b+d, b+2d, b+3d,...).

Geometric Progressions

$$a_0 = \underline{b},$$

$$a_n = \underline{ra}_{n-1}$$

► What sequence does this generate?

Summations and Recursions

$$S_0 = a_0$$

$$S_n = S_{n-1} + a_n.$$

▶ Here are a few examples of summations. You should try to

$$\begin{split} \sum_{i=0}^{n} i &= \underbrace{1+2+\ldots+n.} & S_{\text{NH}} = S_n + 6 \text{M} , \\ \sum_{i=0}^{4} i^2 &= 0+1+4+9+16=30. \quad S_{\text{NH}} = S_n + 6 \text{M} . \\ \sum_{i=0}^{3} (-1)^i &= 1+(-1)+1+(-1)=0. \\ \sum_{i=0}^{73} i^3 &= 3^3+4^3+5^3+6^3+\ldots 73^3. \end{split}$$

Time Complexity

Complexity					
Algorithm	Best Time Complexity	Average Time Complexity	Worst Time Complexity		
Linear Search	O(1)	O(n)	O(n)		
Binary Search	O(1)	O(log n)	O(log n)		
Bubble Sort	O(n)	O(n^2)	O(n^2)		
Selection Sort	O(n^2)	O(n^2)	O(n^2)		
Insertion Sort	O(n)	O(n^2)	O(n^2)		
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)		
Quick Sort	O(nlogn)	O(nlogn)	O(n^2)		
Heap Sort	O(nlogn)	O(nlogn)	O(nlogn)		

Counting

1. Way to choose an element

a. Addition Rule

Disjoint sets:

$$A \cap B = \emptyset$$
 then $|A| + |B|$ (cardinality/size)

• Non-disjoint sets, PIE: $|A \cup B| = |A| + |B| - |A \cap B|$

b. Product Rule

- $A \times B$ is the Cartesian product of A and B, containing all ordered pairs (a, b) where $a \in A \& b \in B$.
- Number of possibilities (a, b): $A \times B = |A| \times |B|$
- If there are different conditions (ex: password length 7, 8, 9) I. Find the possibilities of 7, 8, 9 II. Sum it all.

2. <u>Permutations and Arrangement Principle</u> (order of selection matters)

• The number of ways to arrange r distinct elements drawn from a set of n elements:

$$P(n,r) = n \cdot (n-1) \cdots (n-r+1)$$

n = total num. of elements, r = num. of place (_ _ _)

• The number of ways to arrange all n elements of the set into a sequence:

$$P(n,n) = n!, 0! = 1 \& 1! = 1$$

 Hence, to find the number of possible ways with different arrangements:

$$P(n,r) = \frac{n!}{(n-r)!}$$

3. <u>Combinations and Selection Principle</u> (the order of selection doesn't matter, no repeats)

c. Division Rule

- Used when we want permutation without repeats. Ex: the knight example = (a, b, c), (b, c, a), (c, a, b) – DON'T WANT REPEATS
- "n choose r":

$$\binom{n}{r} = \frac{n!}{(n-r)! \cdot r!}$$

4. Counting with Repetitions (Ball & Sticks argument)

- Donut examples: 17 donut, 4 varieties
- n objects/item from r varieties:

$$\binom{n+r-1}{r-1} = \binom{n+r-1}{n}$$

5. Pigeon Hole

If N pigeons are placed in K holes, then there is at least A HOLE that holds at least $ceil\left(\frac{N}{K}\right)$

 ✓ How many different functions are there from a set with 10 elements to sets with 2 elements? Answer: 2¹⁰
 How many different functions are there from a set with 10

elements to sets with 5 elements? Answer: 5¹⁰