\bullet Wenn F_E kleiner

I/A	0	2	4	6	8	10.5
m/g	0	2.1	3.2	5.2	6.5	8.6
$\frac{F_G = F_L}{mN}$	0	21	32	52	65	86

l/m	0	0.0125	0.025	0.1
m/g	0	3.3	6	19.5
$\frac{F_G = F_L}{mN}$	0	33	60	195

$$F_L = I \times L \times B = e \times \frac{l}{t} \times B$$
(Stromstärke Weg, den das Elektron
$$= \frac{Ladung}{Zeit}$$
in einer Zeit zurücklegt

 $= e \times v \times B$

1)
$$r = 5cm = m$$
; $B = 1,12mT = T$; $U_B = 240V \rightarrow m_e = 1$

2)
$$r=4cm=m;$$
 $B=1,5mT=T;$ $U_B=300V$ $\rightarrow m_e=$

3)
$$r = 3cm = m$$
; $B = 2{,}175mT = T$; $U_B = 360V \rightarrow m_e = 100$

4)
$$r = 3cm = m; \quad B = 2{,}375mT = T; \quad U_B = 400V \rightarrow m_e =$$

 $F_L = I \times l \times B$ bzw. $F_L = e \times v \times B$ Lorentz:

> (kompletter Draht) (einzelnes Elektron)

(siehe 1.3) Elektrisch:

 $F_E = E \times Q = \frac{U}{d} \times Q$ bzw. $F_L = F_E \qquad \Leftrightarrow \qquad \Leftrightarrow$ $e \times v \times B = \frac{U}{d} \times e$ siehe Beschreibung

$$v = \frac{E}{B} = \frac{U_K}{B \times d}$$
 aus 1.7:
$$F_E = F_L$$

$$v = \frac{U}{v \times d}$$

$$v = \frac{U}{B \times d}$$