\* In case of the photodisintegration reactions the electromagnetic nowlear correct is taken as a single nowlear correct supplemented by the Sicyart theorem. For the extraorption processes thereties nowlean corrects are in included explicitly on the top of the single rulear operation.

## CHAPTER 4

## SUMMARY

the

of whird expansion

1005

- the

In this thesis, I investigated H, H and He photodisintegration processes as well as pion absorption by the same nuclei. To analyze these reactions and to calculate predictions for observables I used a chiral model of interaction namely the most advanced SMS nucleon-nucleon chiral potential up to N<sup>4</sup>LO<sup>+</sup> order augmented by the consistently regularized three-nucleon force at N<sup>2</sup>LO. Results prepared with the semi-phenomenological AV18 potential have been shown as a reference point. The current operator is restricted to the single-nucleon part only. Both processes are studied in the momentum space. The standard Lippmann-Schwinger equation is solved to get the t-operator and consequently 2N scattering state. For the three-nucleon processes, the formalism of Faddeev equations has been applied. I solved corresponding equations for Faddeev components both for the bound and 3N scattering states. In that way, I include all initial state as well as final state interactions. I am also able to test the importance of FSI by restricting components to only plane wave approximation. The used formalism allows me to study not only the total cross section or eapture rates but also various differential cross sections and polarization observables. The latter ones are very important to test the model and to compare with experimental data. That also allows me to conclude on the sensitivity of various observables on studied effects and to pick up observables which after measurement could deliver the most valuable information.

rpollyion-

Chiral

what I conclude from as

The main goal of this work was to investigate the quality of currently available predictions based on the semi-phenomenological SMS interactions if applied to the studied here processes. Such information is necessary due to expected two- and more- nucleon currents at higher orders of chiral expansion, consistent with the SMS potential. Various features of the model can be studied in that context. Firstly, I investigated if the predictions based on the SMS interaction are converged with respect to the chiral order. It would then be a hint whether the development of higher-order contributions to the potential is required. In most of the results, I observe very converged predictions since there is a small difference between the last two investigated chiral orders: N<sup>4</sup>LO and N<sup>4</sup>LO<sup>+</sup>. This difference in most of the regarded cases does not exceed a few percent. Another piece of evidence is the width of the truncation bands for N<sup>4</sup>LO<sup>+</sup> predictions. For the deuteron photodisintegration process, observables have a maximum truncation error below 1% for the two studied photon energies:  $E_{\gamma} = 30 \, \text{MeV}$  and  $E_{\gamma} = 100 \, \text{MeV}$ . The same trend is presented also for other regarded reactions as well. This hints is us towards a conclusion that further chiral orders would not improve the predictions much and the current model

presented us proport

leads

Which in whole thesis po

shows satisfactory convergence. This is also confirmed by the AV18 predictions which are always very close to N<sup>4</sup>LO<sup>+</sup> (see e.g. Fig. 3.8, Fig. 3.26 etc.).

The other interesting point in the investigation of chiral potential is he dependence on the value of its intrinsic cut-off parameter  $\Lambda$ , the four values of which (400, 450, 500 and 550 MeV) were investigated. I have shown that the relative spread of predictions concerning the cutoff value is higher for the higher energies. For example, the spread of the differential cross section for  ${}^{3}\text{He}$  photodisintegration at  $E_{\gamma} = 30 \,\text{MeV}$  at the characteristic point (maximum) is around 3%, while at  $E_{\gamma}=100\,\mathrm{MeV}$  it is three times larger - around  $\theta\cdot 9$ 3% (see Fig. 3.28, Fig. 3.29 and discussions). Nevertheless, usually for higher energies the difference between the predictions obtained with different values of  $\Lambda$  is smaller than the difference with experimental data (when it is available) which is visible in Fig. 3.5(b).

I have also studied the role of the various dynamical components of the model by checking how they influence the predicted values. Namely, I compare predictions obtained with plane wave part only (first term in the Eq. (2.31)), with those taking into account the final state interaction as well as predictions with and without 2N current contributions (introduced via the Siegert approach). For example, in the Fig. 3.4b we see predictions for the deuteron photodisintegration cross section obtained without rescattering part, without 2N contributions and full predictions. The contribution of rescattering processes is relatively small for the predictions at  $E_{\gamma}=30\,\mathrm{MeV}$ , but is increasing with larger 30 WeV. energies. The analysis of the relative difference at the specific  $\theta_p$  value does not show this trend (the differences are 10 %, 7 % and 4 % for  $E_{\gamma} = 30$ , 100 and 140 MeV respectively at  $\theta_p = 80\%$ ), but we see that at the lower energy predicted cross section values are qualitatively very similar and they differ mainly around the maximum point. In contrast, for the larger energies, predictions differ qualitatively, and the analyzed point depicts the region where the difference is relatively small. The difference between the full predictions and the ones, where only 1NC was used is much bigger: even for the lowest energy inclusion of two-body currents changes the cross section by around 50% and for the larger two it grows up to  $\sim 78\%$ . Clearly, both rescattering part and 2NC contributions are very important and bring significant contributions. Similar trend is visible also for other observables (see e.g. Fig. 3.10) and processes (see Figs. 3.52, 3.54, 3.56 to compare contributions for the pion absorption on <sup>3</sup>He).

That complex pattern reveals the interplay between interaction and the current operator, and is one more recommendation after derivation fully consistent model, i.e. with consistent 2N forces, 3N forces, and one-, two- and three-body currents. Such a model must be applied only within the readable scheme to compute observables. My work culminated in the preparation of such a scheme, both analytical and numerical sides, and now we are ready to study more sophisticated Hamiltonians.

Giving mentioned above results, we can also conclude that the current version of the chiral SMS potential is of very high quality: it rather does not require any additional development in the sense of adding higher chiral orders or regularization. Contrary, the 2NC should be completely derived as it is expected to bring a significant contribution and thus improvements in our understanding of electromagnetic processes.

Among the studied processes and observables, I would like to point out the following

Propose to thouse order and five the most imported the megatic.

1. The most sensitive to FSI are for (observables, energies) 2 NC is very important for the regarded processes and observables. Even including

it via the Siegert theorem allows seeing significant improvements (e.g. Figs. 3.2,

to the war,

bushar

for both

There

increw

ENC

ontrolisms to nothern current or absorption operator, by performing controlisms to nothern current or absorption operator, by performing analysisms which states or that take or do not take too-body operators

at leading order CHAPTER 4. SUMMARY

3.6 and 3.8 for the deuteron photodisintegration process). For the pion absorption process I took into account full 2NC and the difference between Fig. 3.52 and Fig. 3.56 (1NC only) is a proof of its importance.

New point 2

The importance of 3NF is less obvious looking at my results. For example, for <sup>3</sup>He photodisintegration in Fig. 3.30 3NF makes cutoff dependence weaker, but the difference between predictions with and without 3NF is not very big. \*\*

existion mechanisms and the 4. Investigation of the differential cross section is beneficial compared to the total cross sections as it allows us to see smaller details of the model in a sense of convergence and cutoff dependence. One may observe the reason for particular discrepancies (e.g. some singularity point which causes computational problems). It is also less the differential cross section through the whole region.

It would be interesting to check experimentally if theoretical uncertainties appearing at some configurations would be also reflected in the data. For example, we see that the kinematical configuration presented in Fig. 3.28 is less sensitive to the model with the parameters than the one in Fig. 3.30. So measuring the data for <sup>3</sup>He gives more possibilities to test the model as lots of configurations for the differential cross section are possible.

**16.** For  $\pi + ^3H$  there are 3 neuterous in the final state. It is a very unusual but interesting

🖣 🌓 For pion absorption write if I suggest measurements in FSI configuration, QFS configuration or other.

maybe 10 shown be 2  $\P$  Our Full model nicely describes data up to  $E_{\gamma} = 70 \,\mathrm{MeV}$ .

\* However discrepans with the dost existing date for the tatal capture rates calls for more alreaded noted of twoand three-body absorption operator.

\*\* Thus the investigated have processes are not best field to study por details of the three-nuclear interaction. The only exception to pion obserption on 3H, see below.

\*\* Thus, while the exclusive or semi-exclusive experiments one honder to do than the measurant of the total cross sections notes extraption rates, Franklable to the experimental efforts shoul focuse on sun type of nearenments in future

Molvy

1. The shird SMS interstan at MYDE higher orders of shird exists to very stable behavior one applied to see photodisinter and pron desigtion process. That unfirms previous findings for prest process in pare nuturic systems. I don't sourced haven't observed any strange postern for observables which could be

related with porter deficiencies in the nuleon-nuleon lateraction. In consequence I conclude, that MN force to known with sufficient accuracy to be used in station nuleon wases beginning with external sonds

6. Write what is more mustant - cutoff or order Une - three examples

(HECH ALGO OLDER LIST FOR (ONCLUSIONS

(D SCAN THAT It in next page)

In summy you se shoul give few detailed conclusions like Among the which process and observation The not somitive to FSI are for ... (observables, everys) case that case section us differently case sections con sections us polaristion observables Is it better de mesurement on EM, 3Me or 3M ? others that for 11 + 3M there was three nextrons of the hor vor gov is to his strendy noith ufin x Houstal for pion aborption unte it you only got me on routs IN Fill configuration, QFS

1)

1)

## BIBLIOGRAPHY

- D. M. Skopik, Y. M. Shin, M. C. Phenneger, and J. J. Murphy. Photodisintegration of deuterium determined from the electrodisintegration process. *Phys. Rev. C*, 9:531– 536, Feb 1974.
- [2] F. F. Liu, D. E. Lundquist, and B. H. Wiik. Measurements of the polarization of protons from deuteron photodisintegration. *Phys. Rev.*, 165:1478–1482, Jan 1968.
- [3] Reinhold Kose, Bjoern Martin, Rainer Runkel, Helmut Wahlen, and Karl Heinz Kissler. Measurements of the polarization of protons from deuteron photodisintegration for photon energies between 282 and 405 MeV. Zeitschrift für Physik A Hadrons and nuclei, 220:305–320, 1969.
- [4] T. Kamae, I. Arai, T. Fujii, H. Ikeda, N. Kajiura, S. Kawabata, K. Nakamura, K. Ogawa, H. Takeda, and Y. Watase. Observation of an anomalous structure in proton polarization from deuteron photodisintegration. *Phys. Rev. Lett.*, 38:468–471, Feb 1977.
- [5] Andrew L. Cooper, K. J. Kelly, E. Machado, I. Pogrebnyak, J. Surbrook, C. Tysor, P. Thompson, M. Emamian, B. Walsh, B. Carlin, J. R. Dermigny, A. E. Champagne, and T. B. Clegg. Development of a variable-energy, high-intensity, pulsed-mode ion source for low-energy nuclear astrophysics studies. *Review of Scientific Instruments*, 89(8):083301, 2018.
- [6] A.P. Tonchev, M. Boswell, C.R. Howell, H.J. Karwowski, J.H. Kelley, W. Tornow, and Y.K. Wu. The high intensity γ-ray source (hiγs) and recent results. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 241(1):170–175, 2005. The Application of Accelerators in Research and Industry.
- [7] J Bermuth, P Merle, C Carasco, D Baumann, R Böhm, D Bosnar, M Ding, M.O Distler, J Friedrich, J.M Friedrich, J Golak, W Glöckle, M Hauger, W Heil, P Jennewein, J Jourdan, H Kamada, A Klein, M Kohl, B Krusche, K.W Krygier, H Merkel, U Müller, R Neuhausen, A Nogga, Ch Normand, E Otten, Th Pospischil, M Potokar, D Rohe, H Schmieden, J Schmiedeskamp, M Seimetz, I Sick, S Širca, R Skibiński, G Testa, Th Walcher, G Warren, M Weis, H Witała, H Wöhrle, and M Zeier. The



- [80] I.E. Vnukov, I.V. Glavanakov, Y.F. Krechetov, A.P. Potylitsyn, G.A. Saruev, V.N. Stibunov, and A.N. Tabachenko. Photodisintegration of the deuteron by linearly polarized photons below the pion-production threshold. Sov. J. Nucl. Phys. (Engl. Transl.); (United States), 47:4, 4 1988.
- [81] W. Del Bianco, L. Federici, G. Giordano, G. Matone, G. Pasquariello, P. Picozza, R. Caloi, L. Casano, M. P. De Pascale, L. Ingrosso, M. Mattioli, E. Poldi, C. Schaerf, P. Pelfer, D. Prosperi, S. Frullani, B. Girolami, and H. Jeremie. Neutron Asymmetry Measurements in the Deuteron Photodisintegration between 10 and 70 MeV. Phys. Rev. Lett., 47:1118–1120, Oct 1981.
- [82] R. W. Jewell, W. John, J. E. Sherwood, and D. H. White. Polarization of Photoneutrons Produced from Deuterium by 2.75-MeV Gamma Rays. *Phys. Rev.*, 139:B71–B79, Jul 1965.
- [83] J.M. Cameron, C.A. Davis, H. Fielding, P. Kitching, J. Pasos, J. Soukup, J. Uegaki, J. Wesick, H.S. Wilson, R. Abegg, D.A. Hutcheon, C.A. Miller, A.W. Stetz, and I.J. van Heerden. Radiative capture of polarized neutrons by hydrogen below the pion production threshold. *Nuclear Physics A*, 458(4):637–651, 1986.
- [84] Th. Strauch, F. D. Amaro, D. F. Anagnostopoulos, P. Bühler, D. S. Covita, H. Gorke, D. Gotta, A. Gruber, A. Hirtl, P. Indelicato, E.-O. Le Bigot, M. Nekipelov, J. M. F. dos Santos, S. Schlesser, Ph. Schmid, L. M. Simons, M. Trassinelli, J. F. C. A. Veloso, and J. Zmeskal. Precision determination of the dπ ↔NN transition strength at threshold. Phys. Rev. Lett., 104:142503, Apr 2010.
- [85] Th. Strauch, F. D. Amaro, D. F. Anagnostopoulos, P. Bühler, D. S. Covita, H. Gorke, D. Gotta, A. Gruber, A. Hirtl, P. Indelicato, E. O. Le Bigot, M. Nekipelov, J. M. F. dos Santos, Ph. Schmid, S. Schlesser, L. M. Simons, M. Trassinelli, J. F. C. A. Veloso, and J. Zmeskal. Pionic deuterium. The European Physical Journal A, 47(7), July 2011.
- [86] J. Golak, V. Urbanevych, R. Skibiński, H. Witała, K. Topolnicki, V. Baru, A. A. Filin, E. Epelbaum, H. Kamada, and A. Nogga. Pion absorption from the lowest atomic orbital in <sup>2</sup>H, <sup>3</sup>H, and <sup>3</sup>He. Phys. Rev. C, 106:064003, Dec 2022.
- [87] I. Schwanner, G. Backenstoss, W. Kowald, L. Tauscher, H.-J. Weyer, D. Gotta, and H. Ullrich. Pionic and muonic x-ray measurements on light isotopes. *Nuclear Physics* A, 412(2):253–272, 1984.
- [88] J. McCarthy, T. Meyer, R. C. Minehart, E. A. Wadlinger, K. O. H. Ziock, and J. Vincent. Negative pion capture in <sup>3</sup>He. Phys. Rev. C, 11:266–268, Jan 1975.
- [89] P. Truöl, H.W. Baer, J.A. Bistirlich, K.M. Crowe, N. de Botton, and J.A. Helland. Measurement of the panofsky ratio in <sup>3</sup>He. Phys. Rev. Lett., 32:1268-1271, Jun 1974.

