אביב תשע"א

מבוא לבינה מלאכותית 236501 מועד א' – קווים לפתרון

שאלה 1

א. לא יתבצע גיזום מלא. דוגמא:

במקרה זה, אלפא-ביתא היה גוזם את העלה הימני ביותר, אך האלגוריתם המוצע לא.

ב. התיקון הוא ע"י העברת הערך הטוב ביותר בתור אלפא:

value = minValue(next_state, best_value, INFINITY, 1)

שאלה 2

הטענה איננה נכונה, בין אם הגרף קשיר היטב ובין אם לא. האלגוריתם עלול להכנס ללולאה, שבסופה לא יוותרו לו צמתים ב-OPEN. למשל, במקרה שבו עובי האלומה הוא 1, וההיוריסטיקה מעדיפה את Aעל פני B, האלגוריתם ייכשל לאחר שיפתח את צומת A, אף על פי שקיים פתרון:

שאלה 3

נתון מרחב מצבים ויוריסטיקה קבילה h (לא בהכרח מונוטונית).

א. נראה גרף ויוריסטיקה שבו *A מפתח את אותו המצב פעמיים, אך בשתי דרכים שונות (ובעלות מחירים שונים):

ב. כל מצב שנמצא ב-CLOSED (כלומר, פותח ע"י האלגוריתם), היה בעל ערך ה-f הנמוך ביותר ב-CPEN לפי הוכחת האופטימליות של "A, בכל שלב בריצתו, קיים צומת "S בוכחת האופטימליות של "A, בכל שלב בריצתו, קיים צומת האופטימליות של "cPEN בהכרח יקיים $f(s') \leq f(s') \leq OPT$, ולכן כל צומת $f(s') \leq OPT$ בזמן או מוקדם יותר. CLOSED, הוא בהכרח היה בעל ערך f קטן או שווה ל- $f(s') \leq OPT$

שאלה 4

- א. נתאר את בעיית החיפוש באופן הבא:
- מצבים (S) מרחב כל עצי ההחלטה מעל התכונות.

אופרטורים (O) – פיצול של עלה בעץ לפי תכונה. ניתן להגדיר שתכונות שלפיהן פוצלו צמתי-אב של אותו עלה אינן נכללות. מחיר כל אופרטור הוא מספר העלים החדשים שנוצרים; משום שמדובר בתכונות בינאריות, מחיר זה יהיה תמיד 1.

מצב התחלתי (ו) – עץ בעל צומת יחיד.

מצבים סופיים (G) – כל העצים הקונסיסטנטיים, כלומר, כל העצים שבהם העלים הומוגניים.

- ב. חיפוש Hill-Climbing המשתמש ב h_2 ייתן את אותה תוצאה כמו
- ג. נשתמש ב h_1 משום שהיא שולטת על h_2 . הוכחה: במצבים סופיים: $h_1=0=h_2$ (אפס אנטרופיה, אפס עלים הטרוגניים). במצבים לא סופיים: $h_1\leq 1\leq h_2$ (כי קיים לפחות עלה הטרוגני אחד). לכן, $h_2\leq h_1$ לכל עץ.

ניתן להוכיח גם כי מספר המצבים שיפתח h_1 עם A* עם שיפתח המצבים שיפתח ניתן להוכיח גם כי מספר המצבים שיפתח h_2 באמצעות h_2

נניח שלעץ ההחלטה העקבי הקטן ביותר יש OPT עלים.

עבור h_2 , יפתח את כל עצי ההחלטה שלהם מספר עלים קטן ממש מ-OPT. נסמן מספר עבור T(N,OPT), ואותו עצים זה בתור T(N,OPT). בנוסף, יפתח האלגוריתם עץ אחד בדיוק שגודלו OPT, ואותו יחזיר. מספר הצמתים שיפותחו סה"כ הוא T(N,OPT)+1.

(טענה זו שגויה רק כאשר לכל עצי ההחלטה מלבד עץ המטרה יש אנטרופיה ממושקלת 1, כלומר, כל העלים הטרוגניים במידה שווה.)

עבור h^* , h_1 יפתח לכל היותר h^* h_1 עצים, משום שלעץ המטרה וכן לעצים קטנים מ-A*, עבור h_1 אותו ערך h_1 , ובנוסף, ייתכנו עצים קטנים מ-OPT שיהיה להם ערך h_2 גדול ממש מ-OPT (למשל, אם נעשה בהם פיצולים מיותרים).

ד. נבצע חיפוש h_2 עם h_1 , כפי שעשינו בסעיף ג', ובנוסף, נשתמש ב h_2 בתור שובר שוויון. ראשית, ניתן להוכיח כי כאשר עץ המטרה נכנס ל-OPEN, הוא יפותח מיד באיטרציה הבאה. בנוסף, ניתן לטעון ששיפור זה יתעדף פיצולים "מבטיחים" יותר. בדוגמא הבאה, שיפור זה חוסך פיתוח של מצבים:

F1	F2	F3	Class
+	+	+	+
+	+	+	+
+	+	-	+
+	-	-	-
-	-	-	+
-	+	-	-

-	+	+	-
-	+	+	-

ה. יש הרבה פתרונות אפשריים. למשל, *Weighted-A כאשר מתחילים בחיפוש חמדני, ועם הזמן, מתכנסים ל-*A.