A Software Engineering Capstone Infrastructure that Encourages Spreading Work Over Time and Team

Abstract—How can instructors facilitate spreading out the work in a software engineering or computer science capstone course across time and between team members? Currently teams often compromise the quality of their learning experience by frantically working before each deliverable. Some team members further compromise their own learning, and that of their colleagues, by not contributing their fair share to the team effort. To mitigate these problems, we propose using a GitHub template that contains all the initial infrastructure a team needs, including the folder structure, text-based template documents and template issues. In addition, we propose each team begins the year by identifying specific quantifiable individual productivity metrics for monitoring, such as the count of meetings attended, issues closed and number of commits. Initial data suggests that these steps have an impact. In 2022/23 we observed 50% of commits happening within 3 days of due dates. After partially introducing the above ideas in 2023/24, this number improved to 37%. We experiment with different measures of fairness of workload distribution, including the ratio of maximum to minimum commits on a team, Jain's fairness index, and our own fairness index based on the disparity between number of commits. Going forward we propose an experiment where commit data and interview data is compared between teams that use the proposed interventions and those that do not.

Index Terms—software engineering; capstone; template repository; productivity measures; fairness metric

I. INTRODUCTION

The workload for a software engineering or computer science capstone team project is often unevenly distributed over time and between team members. Teams typically work in frantic bursts of activity right before a deadline and then cease almost all activity until their next deadline. These work habits compromise the learning objectives of the course because the students do not have time to properly plan their activities or reflect on their work. The uneven distribution of effort between team mates is also problematic. Some students take on an unfair share of the work, causing them stress and possibly hurting their experience in other courses, while those investing less effort miss important learning opportunities. How can instructors mitigate these problems?

To address the uneven distribution of work, we need to first think about why the problems exist. Not the same as the workplace. Other pressures on students. Not sure of expectations. Not sure where to begin. Peer pressure and social interactions that make it challenging to take charge of the group, or criticize other group members. [There must be some literature that talks about the challenges for student teamwork,

teamwork in SE, teamwork for capstone projects, teamwork for SE capstone projects]

Ideas on what we can do about it at an abstract level - the forces we can use to direct students. We have grades and we have structure of the course and expectations.

Overview of ideas.

Roadmap of paper.

II. LITERATURE REVIEW

May not need this if the literature is covered in the introduction.

III. PROPOSED INFRASTRUCTURE

The infrastructure described here matches the final year SE capstone course at [Redacted]. This course is currently delivered to 150 students divided into 29 groups of 4–5 members. Teams are provided with a list of curated software development projects from academia and industry. Teams can also propose their own projects. Most projects have a supervisor/client that the team can meet with to discuss their project. In cases where there is no supervisor, the team still needs to explicitly identify the stakeholders for the project.

A. Structure and Timeline

Figure 1 show the V-model [1] structure of the capstone course. The documents created include the Software Requirements Specification (SRS) and various Verification and Validation (VnV) plans and reports. Due to time constraints not all artifacts of the V-model are produced. Those that are created are circled with red ellipses, along with an annotation showing the week number where the artifact is due for a full year (26 week) course. The week is when the Revision 0 draft of the document is due. Almost all documents also have a second revision (Rev1 Doc) that is due at the end of the course (Week 26). The iteration allows students to take the formative assessment for Rev 0 to produce a higher quality document for their summative review. In recognition of the value for teams of "getting their hands dirty", a Proof of Concept (POC) Demo is scheduled for week 10. During this demo the teams demonstrate the aspect of their project that is of most concern for feasibility of the project, providing an opportunity to revise the project scope if necessary. The Rev0 demo is expected to show off the final and complete product. The teams rarely achieve this, but the push for Rev0, together with the feedback they received, allows them to improve their software for the final demo (Rev 1 demo). The structure of the course is stable, having been offered in this form for four years. The interventions described in the next sections are in the context of this structure.

Fig. 1: V Model Used for Capstone Deliverables

B. Template Repository

All teams start their project by using the same GitHub template repository. The template repo, summarized in Figure 2, contains all the initial infrastructure each team needs, including the folder structure, text-based template documents and template issues. The goals of the template are to remove the time team's spend building their project's infrastructure, and to standardize all the arbitrary decisions, like folder and document names, between all the teams. The standardization helps teams when doing peer reviews of each other's work and it improves communication between the teams, teaching assistants and instructor. The template presented here is for the capstone course under discussion; the template could be forked and modified to match the needs of a different capstone course.

The template documents are written in LATEX, although teams are allowed to redo the template in another text-based format, like markdown, if they wish. Besides the advantage of separating document appearance from document content, the text-based format facilitates tracking the productivity of the team members through git commits, as discussed in Section III-C. The documents correspond to the deliverables in Figure 1. The students can use any standard SRS template, including selecting one of the three options given: SRS (a template for scientific computing software [2]), SRS-Meyer (a template by Bertrand Meyer [?]) and SRS-Voler (the Volere template [3]).

For further standardization, the template repo includes four issue templates for: 1) team meeting agendas; 2) TA-team meeting agendas; 3) supervisor-team meeting agendas; and, 4) lecture attendance. In addition to encouraging good organizational habits, the issues are also used to partly measure

Fig. 2: GitHub Capstone Template

the commitment of students to their teams, as discussed in the next section.

C. Team Contribution Measurement

To improve the distribution of the workload to all team members, we can take advantage of the quantifiable productivity measures available from git and GitHub. Specifically we can use the issue tracker to quantify team meeting attendance and we can use GitHub insights to count the commits to the main branch for each team member. Each team produces a summary table as part of their performance report before the three demonstrations: POC demo, Rev0 demo and Rev1 demo (see Figure 1 for the timing). In the performance report the

team can also record reasons for a team member to appear to perform poorly on any of the metrics. The hope for explicitly capturing these numbers will reveal any problems with team collaboration. Ideally the problems will be revealed early and improved, but if the problem cannot be dealt with, at least there will be enough data to assign a fair individual grade to all team members.

- co-author commits

Measures used by team. Team charter. - also survey

IV. PRELIMINARY DATA

Look at commits over time, and possibly lines (removing outliers) of code over time

A. Timeline Comparison

Timeline comparison

Fig. 3: Timeline of Commits for 2022-2023

Fig. 4: Timeline of Commits for 2023-2024

B. Measuring Fairness

New fairness metric.

$$\sum_{c,x \in C} (c > x \Rightarrow c - x) / ((|C| - 1) \cdot \sum_{c \in C} c)$$

V. PROPOSED EXPERIMENT

blurb

A. Experiment

Start with research questions.

Collect the same data as in Section IV and conduct focus groups in all three CAS capstone courses (SE, CS and TRON).

B. Threats to validity

- Multiple changes are made to the course, so it is difficult to determine which change influences the student behaviour. The focus group should hopefully tease that
- Comparing different courses with different instructors, different backgrounds for students, etc.
- Not a controlled experiment introducing more than one change into the course. The changes are related because the productivity metrics would not be possible without a version control system.
- The interventions proposed here might behave differently for a capstone course that follows a different structure (Section III-A).

VI. CONCLUDING REMARKS

Provide concluding remarks.

ACKNOWLEDGEMENTS

If any.

REFERENCES

- [1] K. Forsberg and H. Mooz, "The relationship of system engineering to the project cycle," in *Proceedings of the National Council for Systems* Engineering First Annual Conference, 1991, pp. 57–61.
- [2] W. S. Smith and L. Lai, "A new requirements template for scientific computing," in Proceedings of the First International Workshop on Situational Requirements Engineering Processes Methods, Techniques and Tools to Support Situation-Specific Requirements Engineering Processes, SREP'05, J. Ralyté, P. Agerfalk, and N. Kraiem, Eds. Paris, France: In conjunction with 13th IEEE International Requirements Engineering Conference, 2005, pp. 107–121.
- [3] S. Robertson and J. Robertson, Mastering the Requirements Process. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co, 1999, ch. Volere Requirements Specification Template, pp. 353–391.