MATH4302, Algebra II, 2022

Outline

Today

 $\ensuremath{ \bullet}$ §3.2.6 : Finite fields, I

What we already know about finite fields:

- Most basic example \mathbb{F}_p $\mathbb{Z}/p\mathbb{Z}$, where p is a prime number.
- $|\mathbb{F}_p| = p$.
- Every finite field F is an extension of \mathbb{F}_p , where $p = \operatorname{char}(F)$.
- If F is a finite field and char(F) = p, then

$$F\cong \mathbb{F}_p^n=\{(a_1,\ldots,a_n):a_j\in \mathbb{F}_p\}$$
 as a vector space over \mathbb{F}_p , where $n=[F:\mathbb{F}_p]$. In particular, $|F|=p^n$.

7.

• There there are no fields with 35 elements.

Finite Fields

<u>Lemma.</u> If $|F| = p^n$ and $K \subset F$ a subfield, then $|K| = p^d$ for some $1 \le d \le n$ and d|n.

Proof. Being a subfield of F, K also has characteristic p. Let $d = [K : \mathbb{F}_p]$. Then

$$n = [F : \mathbb{F}_p] = [F : K][\underline{K : \mathbb{F}_p}] = d[\underline{F : K}].$$
 \Rightarrow d(n)

Example. If $|F| = 7^6$, then possible cardinalities of subfields of F are

$$(7)$$
 7^2 , 7^3 , (7^6)

Question. If $|F| = 7^6$, are there subfields of F with 7^2 or 7^3 elements?

Theorems to be proved: Let p be a prime number.

- For any $n \ge 1$, there is one field, and only one up to isomorphism, with p^n elements, which is denoted as \mathbb{F}_{p^n} .
- 2 For each $n \geq 1$ and for each d|n, there is exactly one subfield of \mathbb{F}_{p^n} which is \mathbb{F}_{p^d} .
- A description of all irreducible polynomials over \mathbb{F}_p . for every prime p.

 Question: How to comstruct \mathbb{F}_p

Main tools:

- **1** The quotient $\mathbb{F}_p[x]/\langle f \rangle$ for irreducible $f \in \mathbb{F}_p[x]$.
- Splitting fields. χ^{n} $\rightarrow 2 \in [x]$

Recall the quotient construciton:

If $f(x) \in \mathbb{F}_p[x]$ is irreducible and has degree n, then $\mathbb{F}_p[x]/\langle f \rangle$ is a field with p^n elements.

Easy for small n.4 small p

Example. There are exactly 4 quadratic polynomials in $\mathbb{F}_2[x]$:

$$f(x) = x^2 + ax + b$$
 with $a, b \in \mathbb{F}_2$:
 $x^2 + 1, \quad x^2 + x,$
Let $f(x) = x^2 + x + 1$, so $(x+)(x+)$

$$\mathbb{F}_2[x]/\langle f \rangle = \mathbb{F}_4 = \{0, 1, a, a+1\}.$$

Multiplication table:

Exercise: There are exactly two cubic irreducible polynomials in $\mathbb{F}_2[x]$:

$$f = x^3 + x + 1$$
 and $g = x^3 + x^2 + 1$.

Write down the addition and multiplication tables of

$$\mathbb{F}_8 = \mathbb{F}_2[x]/\langle f \rangle$$
 and $\mathbb{F}_8' = \mathbb{F}_2[x]/\langle f \rangle$

and show that $\mathbb{F}_8\cong \mathbb{F}_8'$.

A fundamental fact about characteristic p (Every student's dream)

Lemma. If F is a field with char(F) = p > 0, then

$$(a+b)^p = a^p + b^p, \quad \forall a, b \in F.$$

Proof: Exercise to prove that
$$P\left(\begin{pmatrix} P \\ k \end{pmatrix} & k=2,\cdots P+1 \right)$$

Lemma. If F is a finite field of order q, then every element $a \in F$ satisfies

$$x^{q} - x = 0.$$

Proof.

- If a = 0, ok.
- Assume that $a \neq 0$. Then $a \in F \setminus \{0\}$ which is an abelian group with q-1 elements.
- By Lagrange's Theorem, $a^{q-1} = 1$, so $a^q = a$.

 \Diamond

We fix a prime number p throughout. Let $n \ge 1$ be an integer.

Theorem

A finite field F has order p^n if and only if it is isomorphic to the splitting field over \mathbb{F}_p of

 $f(x) = x^{p^n} - x \in \mathbb{F}_p[x].$

Proof. Assume first that F is a field of order p^n .

- The prime field of F is \mathbb{F}_p , so F is an extension of \mathbb{F}_p ;
- By previous lemma, every $\alpha \in F$ is a root of $f(x) = x^{p^n} x \in \mathbb{F}_p[x]$;
- f can have at most pⁿ roots in F, so F = R_f, the set of all roots of f in F;
- Thus f completely splits in F[x], and $F = \mathbb{F}_p(R_f)$ is a splitting field of f over \mathbb{F}_p .

Proof Cont'd:

Conversely, let F be a splitting field of $f(x) = x^{p^n} - x \in \mathbb{F}_p[x]$ over \mathbb{F}_p . Let R be the set of all roots of f on F.

- Since $f'(x) = p^n x^{p^n 1} 1 = -1$ has no roots in F, f has no repeated roots in F.
- Since $\deg(f) = p^n$, f has exactly p^n roots in F, i.e. $|R| = p^n$
- For any $a, b \in \widehat{R}$, $a^{p^n} = b$

$$(\underline{a+b})^{p^n} = \underline{a^{p^n} + b^{p^n}} = \underline{a+b}, \quad (\underline{ab})^{p^n} = \underline{a^{p^n}b^{p^n}} = \underline{ab},$$

and if $b \neq 0$, then $(1/b)^{p^n} = 1/b$. Thus R is a subfield of F.

- Moreover, $\mathbb{F}_p \subset R$. Thus $\mathbb{F}_p(R) = \mathbb{F}_p(R)$ Conclude that
- To(R) is the smellest subfield of F contains F or R Q.E.D.

20

∄ ,

11 / 19

Corollary

For any prime number p and any integer $n \ge 1$, part 2 7 Thm + existence of the prime of the pr

- there exist fields with pⁿ elements;
- 2 any two fields with p^n elements are isomorphic. Part ($\sqrt[4]{7}$ $\sqrt[4]{m}$

+ uniquers

Proof. Statements follow directly from existence and uniqueness of splitting fields.