Combo 1 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

$1 \quad n(\mathbf{J})$

Defina $n(\mathbf{J})$ (para $\mathbf{J} \in Just^+$)

Por lema sabemos que: Sea $\mathbf{J} \in Just^+$, hay únicos $n \ge 1$ y $J_1, \ldots, J_n \in Just$ tales que $\mathbf{J} = J_1 \ldots J_n$. Dada $\mathbf{J} \in Just^+$, usaremos $n(\mathbf{J})$ para denotar al único n cuya existencia garantiza el lema anterior.

2 Par adecuado de tipo τ

Defina "par adecuado de tipo τ " (no hace falta que defina cuando $\mathbf{J} \in Just^+$ es balanceada)

Un par adecuado de tipo τ es un par $(\varphi, \mathbf{J}) \in S^{\tau +} \times Just^+$ tal que $n(\varphi) = n(\mathbf{J})$ y \mathbf{J} es balanceada.

3 $Mod_T(\varphi)$

Defina $Mod_T(\varphi)$

Sea $T = (\Sigma, \tau)$ una teoría. Dada $\varphi \in S^{\tau}$ definamos $Mod_T(\varphi) = \{ \mathbf{A} : \mathbf{A} \text{ es modelo de } T \text{ y } \mathbf{A} \vDash \varphi \}$

4
$$\mathbf{A} \models \varphi[a_1,\ldots,a_n]$$

Dados $\varphi =_d \varphi(v_1, \dots, v_n)$, **A** una estructura de tipo τ y $a_1, \dots, a_n \in A$, defina qué significa $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ (i.e., convención notacional 4)

Dados $\varphi =_d \varphi(v_1, \ldots, v_n)$, **A** una estructura de tipo τ y $a_1, \ldots, a_n \in A$, entonces $\mathbf{A} \vDash \varphi[a_1, \ldots, a_n]$ significará que $\mathbf{A} \vDash \varphi[\vec{b}]$ donde \vec{b} es una asignación tal que a cada v_i le asigna el valor a_i . En general, $\mathbf{A} \nvDash \varphi[a_1, \ldots, a_n]$ significará que no sucede $\mathbf{A} \vDash \varphi[a_1, \ldots, a_n]$

5
$$(L, s, i, {}^{c}, 0, 1)/\theta$$

Defina $(L, s, i, c, 0, 1)/\theta$ (θ una congruencia del reticulado complementado (L, s, i, c, 0, 1))

Sea $(L, s, i, {}^c, 0, 1)$ un reticulado complementado. Una congruencia sobre $(L, s, i, {}^c, 0, 1)$ será una relación de equivalencia sobre L la cual cumpla:

- 1. θ es una congruencia sobre (L, s, i, 0, 1)
- 2. $x/\theta = y/\theta$ implies $x^c/\theta = y^c/\theta$

Las condiciones anteriores nos permiten definir sobre L/θ dos operaciones binarias \tilde{s} e \tilde{i} , y una operación unaria \tilde{c} de la siguiente manera:

$$x/\theta \ \tilde{s} \ y/\theta = (x \ s \ y)/\theta$$
$$x/\theta \ \tilde{i} \ y/\theta = (x \ i \ y)/\theta$$
$$(x/\theta)^{\tilde{c}} = x^c/\theta$$

La 6-upla $(L/\theta, \tilde{s}, \tilde{i}, \tilde{c}, 0/\theta, 1/\theta)$ es llamada el cociente de (L, s, i, c, 0, 1) sobre θ y la denotaremos con $(L, s, i, c, 0, 1)/\theta$.