Theoretical Mechanics II, Spring 2020

FINAL EXAMINATION

Time: 10:10 – 12:00, June 19, 2020 Venue: 019 Physics, 501 Physics

This is a closed book exam. No search on the web or related electronic books is allowed. Useful formulas and quantities are provided in the end of the exam papers.

Please answer the following questions. There are 3 questions in total.

1. 25% Normal modes of a double pendulum. A double pendulum consists of an inextensible string of negligible mass and length 2ℓ , with one end fixed and masses m attached at the midpoint and the other end (Fig. 1). Assume small oscillations. Let the fixed end to be the origin of the coordinate system. Denote the position of m_1 as (x_1, y_1) and the position of m_2 as (x_2, y_2) .

Figure 1: A double pendulum of two identical masses.

- (a) 5% Write down the kinetic and potential energies.
- (b) 10% Find the characteristic frequencies by solving the secular equation.
- (c) 10% Find the normal coordinates and briefly describe the normal modes.
- 2. 20% Frequency splitting by coupling. Three oscillators of equal mass m are coupled such that the potential energy of the system is described by

$$U = \frac{1}{2} \left[\kappa_1 (x_1^2 + x_2^2 + x_3^2) + 2\kappa_2 (x_1 x_2 + x_2 x_3) \right]$$
 (37)

(a) 10% Write down the kinetic and potential energies. Find the equations of motion by using the Lagrangian method.

- (b) 10% Find the characteristic frequencies of the system by solving the secular equation. Discuss the conditions to have three distinct oscillation frequencies.
- 3. 35% Triatomic linear molecules are of fundamental importance in the space or laboratories. The structures of these simple molecules can be studied through their vibrational spectra. A good example is the triatomic linear molecular, hydrogen cyanide (HCN). Please answer the following questions for HCN.

Figure 2: Structures of the triatomic linear molecule hydrogen cyanide (HCN).

- (a) 5% What is the degrees of freedom (DoF) for the longitudinal vibrational motion? Explain clearly how you calculate the numbers. How about the DoF for the transverse vibrational motion?
- (b) 10% Consider only the longitudinal vibrations and write down the kinetic and potential energies. Find the equations of motion by using the Lagrangian method.
- (c) $\boxed{10\%}$ Determine the characteristic frequencies of the system by solving the secular equation for the longitudinal vibrations.
- (d) 10% Using the results from part(c), find the normal coordinates and briefly describe the normal modes.