47-PROGR-divpor7

November 4, 2017

Definición de la función Comenzamos definiendo la función *F* que vamos a iterar:

```
In [1]: def F(n):
            if n==0:
                return 0
            else:
                L = (n).digits(base=10)
                n0 = L[0]
                 return (((n-n0)//10)-2*n0)
In [2]: F(49)
Out[2]: -14
In [3]: F(-14)
Out[3]: 7
   Una definición alternativa podría ser:
In [4]: def F1(n):
            if n==0:
                return 0
            else:
                 y = n\%10
                x = n//10
                 return x-2*y
```

El problema con esta segunda definición de la función viene de su comportamiento cuando n es negativo:

```
In [5]: F1(-14)
Out[5]: -14
```

Vemos que F y F1 no son la misma función, al menos para los negativos. £Son la misma para n positivo?

```
In [6]: all([F(n)==F1(n) for n in srange(1000)])
Out[6]: True
```

No es difícil ver cómo aparece ese comportamiento diferente:

Vemos que el problema es que -14//10 es -2 y queremos que sea -1. Al calcular la órbita de la función F1 si llegamos a -14 se queda ya para siempre en -14 y si no se incluye F(n) = n como condición de parada del bucle while se produce un bucle infinito. Además, como estamos añadiendo los sucesivos valores de F(n) a la lista en la que acumulamos la órbita, esa lista crece sin límite y satura la memoria RAM, es decir, no sólo el proceso no para sino que cuelga la máquina.

Órbita

 \pounds Cuál debe ser la condición de parada para un while? Estudiamos algunos trozos de órbitas, tomando un número de iteraciones N suficientemente grande , pero no demasiado, es decir, tanteamos cuál puede ser un buen valor dependiendo de los valores ini que usamos:

```
In [9]: def orbita(ini,N,f):
        L = [ini]
        for _ in srange(N):
            ini = f(ini)
            L.append(ini)
        return L

In [10]: for item in [orbita(J,20,F) for J in srange(1,20)]:
            print(item)

[1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4]
[2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8]
[3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12]
```

```
[4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16]
[5, -10, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1]
[6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3]
[7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7]
[8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11]
[9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15]
[10, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2]
[11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2]
[12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6]
[13, -5, 10, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11]
[14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14]
[15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18]
[16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1]
[17, -13, 5, -10, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16]
[18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9]
[19, -17, 13, -5, 10, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8]
```

Parece claro que al iterar *F* se obtienen enteros pequeños que parecen entrar en ciclos. Hagamos otra prueba con enteros iniciales mayores:

```
[1841, 182, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14]
[1056, 93, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3]
[3868, 370, 37, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16]
[3880, 388, 22, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1]
[4917, 477, 33, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12]
[5595, 549, 36, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15]
[6312, 627, 48, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6]
[7418, 725, 62, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1]
[9795, 969, 78, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15]
[9168, 900, 90, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15]
[10526, 1040, 104, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1]
[11509, 1132, 109, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4]
[13837, \ 1369, \ 118, \ -5, \ 10, \ 1, \ -2, \ 4, \ -8, \ 16, \ -11, \ 1, \ -2, \ 4, \ -8]
[14220, 1422, 138, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12]
[14113, 1405, 130, 13, -5, 10, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4]
[15131, 1511, 149, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2]
[17445, 1734, 165, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3]
[17580, 1758, 159, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12]
[19440, 1944, 186, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3]
```

Parece que en cuanto una iteración tiene un único dígito entra en un ciclo. Lo comprobamos:

```
[-9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15]
[-8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11]
[-7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7, 14, -7]
[-6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3]
[-5, 10, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1]
[-4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16]
[-3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12]
[-2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8]
[-1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4]
[1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4]
[2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8]
[3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12]
[4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16, -11, 1, -2, 4, -8, 16]
[5, -10, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1]
[6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3, -6, 12, -3, 6, -12, 3]
[7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7, -14, 7]
[8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11, -1, 2, -4, 8, -16, 11]
[9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15, -9, 18, -15, 9, -18, 15]
```

£Cuántos de estos ciclos hay?

Parece que una condición de parada razonable puede ser "parar cuando se cae en el intervalo [-9,9]". Si no fuera correcta se entraría en bucles infinitos debidos al while.

```
In [13]: def orbita1(ini,f):
        L = []
        while not (-10<ini<10):
            L.append(ini)
            #print L
        ini = f(ini)
        L.append(ini)
        return L[-1]</pre>
```

En esta función no nos interesa toda la órbita completa, sino únicamente el ciclo final. £Es razonable (eficiente) programarla así?

Comprobamos primero que la condición de parada del bucle *while* es correcta, es decir, que no se entra en bucles infinitos:

```
In [14]: len([orbita1(n,F) for n in xsrange(100)])
Out[14]: 100
In [15]: len([orbita1(n,F) for n in xsrange(1000)])
Out[15]: 1000
In [16]: len([orbita1(n,F) for n in xsrange(10000)])
```

```
Out[16]: 10000
In [17]: time len([orbita1(n,F) for n in xsrange(1000000)])
CPU times: user 14.5 s, sys: 252 ms, total: 14.8 s
Wall time: 14.6 s

Out[17]: 1000000
In [18]: print [(n,orbita1(n,F)) for n in xsrange(100)]
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11, 1), (11,
```

Observamos que sólo los múltiplos de 7 todos terminan pasando por -7,0 o 7. Comprobamos si esto es cierto:

Como no ha entrado en un bucle infinito, vemos que para todos los múltiplos de 7 en el intervalo [10,9999] la órbita termina en -7,0 o 7. £Cómo vemos que ningún primo con 7 tiene esa misma propiedad?

```
In [21]: orbita(7,10,F)
Out[21]: [7, -14, 7, -14, 7, -14, 7, -14, 7]
In [22]: orbita(-7,10,F)
Out[22]: [-7, 14, -7, 14, -7, 14, -7, 14, -7]
In [23]: LL = [orbita1(n,F) for n in xsrange(10,10000) if n%7 != 0]
In [24]: 7 in LL;-7 in LL;0 in LL
Out[24]: False
```

Esto comprueba que los NO múltiplos de 7 tienen órbitas que intersecan el intervalo [-9,9] en enteros diferentes de -7,0,7.

De hecho, el primer apartado del ejercicio, tal como se enuncia en las notas, pedía que se probara que "N es múltiplo de 7 si y sólo si F(N) también lo es".

Si se ha resuelto este primer apartado, el si y sólo si nos garantiza que un primo con 7 no puede tener en su órbita al -7, ni al 0, ni al 7. Parece claro entonces, que el criterio de divisibilidad por 7 que estamos buscando debe ser:

"Un entero n es divisible entre 7 si y sólo si la órbita de n, mediante la iteración de F, interseca al conjunto $\{-7,0,7\}$."

Supuesto que se ha demostrado el primer apartado, para terminar la demostración habrá que ver que todas las órbitas intersecan al intervalo [-9,9], afirmación que hemos comprobado experimentalmente usando la función orbita1(n).

Los dos ejercicios se pueden ver resueltos en el archivo "multiplos7.pdf" en la carpeta "PDFs/PROGR/".

```
In [25]: print [orbita1(n,F) for n in srange(-20,201)]
[-2, 5, -9, -5, -1, 9, 7, 5, 3, 1, -1, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
In []:
```