MET CS248 - HW #2

1) List all elements of set A, where $A = \{x \mid x \in \mathbb{N} \text{ and } -3 \le x \le 5\}$, assume $0 \in \mathbb{N}$.

2) Fill in the blanks: U: union, ∩: intersection, Ø: empty set, F: power set, -: set difference, X: cartesian product.

a)
$$A \cup A = A$$

b)
$$A \cap A = A$$

c)
$$A \cup \emptyset = A$$

d)
$$\mathcal{P}(\mathcal{P}(\emptyset)) = \{ \phi, \{ \phi \} \}$$

e)
$$\mathcal{F}(\{a,\{b\}\}) = \{ \emptyset, \{a,\{b\}\}, \{a,\{b\}\}\} \}$$
 f) $\{a,\{b\}\} - \{a,\{b\},c\} = \emptyset$

f)
$$\{a, \{b\}\} - \{a, \{b\}, c\} = \emptyset$$

g)
$$\{1, a\} \times \{a\} = \{(1, a), (a, a)\}$$

h)
$$A \times \emptyset = \emptyset$$

 $B = \{1, 4, 5, 9\}$ $C = \{x \mid x \in \mathbb{Z} \text{ and } 2 \le x < 5\}$ be subsets of 3) Let $A = \{2, 4, 5, 6, 8\}$ $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Find

a)
$$A \cup B = \{1, 2, 4, 5, 6, 8, 9\}$$

b)
$$A \cap B = \{4,5\}$$

c)
$$A \cap C = \{2, 4\}$$

d)
$$C \cup B = \{1, 2, 3, 4, 5, 9\}$$

$$e) A - B = \{2, 6, 8\}$$

$$f)A' = \{0, 1, 3, 7, 9\}$$

g)
$$A \cap A' = \emptyset$$

h)
$$(A \cap B)' = \{0, 1, 2, 3, 6, 7, 8, 9\}$$

i)
$$C - B = \{2, 3\}$$

$$\mathbf{j}$$
) $(C \cap B) \cup A' = \{0, 1, 3, 4, 7, 9\}$

k)
$$(C' \cup B)' = \{2, 3\}$$

1)
$$|B \times C| = /2$$

4) Let $A = \{a, \{a\}, \{\{a\}\}\}, B = \{\emptyset, \{a\}, \{a, \{a\}\}\}\}, C = \{a\} \text{ be subsets of } S = \{\emptyset, a, \{a\}, \{\{a\}\}, \{a, \{a\}\}\}\}.$ Find

a)
$$(B \cup C) \cap A = \{ \phi, \alpha, \{\alpha\}, \{\alpha, \{\alpha\}\}\} \} \cap A$$

= $\{ \alpha, \{\alpha\}\}$

b)
$$A' \cap B = \{ \phi, \{\alpha, \{\alpha\}\}\} \cap B \}$$

= $\{ \phi, \{\alpha, \{\alpha\}\}\} \}$

c)
$$\emptyset \cap B = \emptyset$$

d)
$$\{\emptyset\} \cap B = \{\emptyset\}$$

e)
$$C' \cap B = \{ \phi, \{ \alpha \}, \{ \{ \alpha \} \}, \{ \alpha, \{ \alpha \} \} \} \} \cap B$$

= $\{ \phi, \{ \alpha \}, \{ \alpha, \{ \alpha \} \} \} \}$

5) Is the infinite set of all words, meaningful or not, of any finite length, made with the 26 letters of the English alphabet countable? Justify. (Length of a word is the number of characters in it)

ex,
$$\alpha = 26^{1-1}$$
, $1 = 1$
 $= 26^{1-1}$, $= 26$
 $= 26^{1-1}$, $= 26^{2-1}$, $= 27$
 $= 26^{1-1}$, $= 26^{2-1}$, $= 52$
 $= 26^{1-1}$, $= 26^{2-1}$, $= 52$
 $= 26^{1-1}$, $= 52$