Tema curs 7

Corcodel Florina-Denisa, 336CC

April 5, 2020

Cuprins

1	Inti	roducere	
2	Des	scompunere $ ho$ a lui R	
	2.1	Initial	
	2.2	Iesire	
	2.3	Algoritm	
3	\mathbf{Pro}	prietatea de jonctiune fara pierdere	
	3.1	Intrare	
	3.2	Iesire	
	3.3	Algoritm	

1 Introducere

Fie relatia R=ABCDEF si multimea de dependente functionale $F=\{A\to B, A\to F, B\to E, D\to B, E\to A\}$

2 Descompunere ρ a lui R

Se va realiza o descompumerea ρ a lui R astfel incat fiecare schema a lui ρ sa respecte cerintele FNBC. Toate schemele din ρ vor respecta cerintele FNCB (Forma Normala Boyce Codd).

2.1 Initial

O schema de relatie R, multimea de dependente functionale asociata F si o descompunere $\rho=(R_1,R_2)$.

2.2 Iesire

Se arata ca descompunerea ρ respecta cerintele FNBC.

2.3 Algoritm

- 1. Initial $\rho = (R) = (ABCDEF)$ cu cheia CD si dependentele functionale $F = \{A \to B, A \to F, B \to E, D \to B, E \to A\}$ Se va descompune R in :
- 2. $R_1 = AF$ si $R_2 = ABCDEF F = ABCDE => \rho = (AF, ABCDE)$ Deci vom avea $R_1 = AF$ cu dependenta $A \to F$ si cu cheia A si $R_2 = ABCDE$ cu cheia CD si cu dependentele functionale $(A \to B, B \to E, D \to B, E \to A)$ R_1 mosteneste de la R dependenta $A \to F$, cheia va fi A si R_1 este in FNBC.
- 3. Pentru a continua algoritmul vom alege ca R_2 sa se descompuna in 2 : R_2' mosteneste de la R dependenta $E \to A$ si cheia va fi E deci R_2' va fi in FNBC,

 $R_3 = BCDE$ vom avea dependentele $(B \to E, D \to B)$ si cheia CD deci vom avea

 $\rho = (R_1, R_2', R_3) = (AF, AE, BCDE)$ cu cheia E.

4. R_3 se va descompune in 2:

Pentru R_3' mosteneste de la R dependenta $B \to E$ si cheia B deci R_3' va fi in FNBC,

 $R_4 = BCD$ vom avea dependentele $(D \to B, C \to C$ cu cheia CD deci $\rho = (R_1, R_2', R_3', R_4) = (AF, AE, BE, BCD)$

In schema BCD avem dependenta $D \to B$ si atributul C care nu apare in nicio dependenta functional, induce ideea ca CD este cheia acestei subscheme.

Dependenta triviala $C \to C$ nu contrazice FNBC. Deci toate schemele vor respecta cerintele FNBC.

5. Rezulta ca descompunerea in FNBC cu join fara pierdere este $\rho = (AF, AE, BE, BCD)$ cu cheile A, E, B si respectiv D.

3 Proprietatea de jonctiune fara pierdere

Se verifice daca descompunerea $\rho=(AB,BCD,AEF,CDE)$ a lui R, cu multimea de dependente functionale F, are proprietatea de jonctiune fara pierdere.

3.1 Intrare

Schema de relatie R, multimea de dependente functionale $F = \{A \rightarrow B, A \rightarrow F, B \rightarrow E, D \rightarrow B, E \rightarrow A\}$ si o descompunere $\rho = (AB, BCD, AEF, CDE)$

3.2 Iesire

Decizia daca ρ are sau nu proprietatea de j.f.p.

3.3 Algoritm

Se construieste o tabela avand n linii si m coloane. Liniile sunt etichetate cu elementele descompunerii ρ iar coloanele cu atributele relatiei R.

$$F = \{A \to B(1), A \to F(2), B \to E(3), D \to B(4), E \to A(5)\}\$$

-	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}
AB	a_1	a_2	b_{13}	b_{14}	b_{15}	b_{16}
BCD	b_{21}	a_2	a_3	a_4	b_{25}	b_{26}
AEF	a_1	b_{32}	b_{33}	b_{34}	a_5	a_6
CDE	b_{41}	b_{42}	a_3	a_4	a_5	b_{46}

Se vor verifica dependentele:

- 1. Din $A \to B$ rezulta b_{32} devine a_2
- 2. Din $A \to F$ rezulta b_{15} devine a_5
- 3. Din $B \to E$ rezulta b_{25} devine a_5

- 4. Din $D \to B$ rezulta b_{42} devine a_2
- 5. Din $E \to A$ rezulta b_{41} devine a_1

Deci noul tabel va deveni :

-	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}
AB	a_1	a_2	b_{13}	b_{14}	a_5	b_{16}
BCD	a_1	a_2	a_3	a_4	a_5	b_{26}
AEF	a_1	a_2	b_{33}	b_{34}	a_5	a_6
CDE	a_1	a_2	a_3	a_4	a_5	b_{46}

De
oarece tabela nu are o linie doar cu a - uri rezulta ca descompunere
a ρ nu are proprietatea de join fara pierderi.