

Time Series Analysis Jeffrey R. Russell Homework 2 by start of class in week 3

- 1. Consider the MA(1) model $y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t$ where ε_t is white noise.
 - a. What is the unconditional mean?
 - b. What is the unconditional variance?
 - c. Find the autocorrelations.
 - d. Show that $\theta^* = \left(\frac{1}{\theta}\right)$ and $\sigma^* = \frac{1}{\sigma}$ imply the same autocorrelation structure.
- 2. Consider the model $y_t = .5 + (1 + .9L + .2L^2)\varepsilon_t$ where $\varepsilon_t \sim iid\ N(0,.5^2)$
 - a. What is the unconditional mean?
 - b. What is the unconditional variance?
 - c. What are the autocorrelations?
 - d. What is the unconditional distribution of y_t?
 - e. Is this MA model invertible? Is there an infinite AR representation? If so, find it.
 - f. Is the model weakly stationary? Why or why not?
- 3. Consider the ARMA(1,1) model $(1-\beta_1 L)y_t = (1+\theta L)\varepsilon_t$ where ε_t is white noise.
 - a. Write the model as an MA(∞) $y_t = \sum_{j=1}^{\infty} \psi_j \mathcal{E}_{t-j} + \mathcal{E}_t$. Provide an expression for the ψ_j as a

function of β_1 and θ .

- b. Find the mean, variance, and an expression for the jth autocovariance.
- c. Show that the model is weakly stationary if β_1 lies inside the unit circle.
- d. Explain why the model is strongly stationary if β_1 lies inside the unit circle and the ε_1 are iid Normal.
- 4. Consider the ARMA(p,q) model.
 - a. When is the model stationary?
 - b. When can the model be written as an $MA(\infty)$?
 - c. When can the model be written as an $AR(\infty)$?

- 5. Use the dataset xyseris.xls for this problem. There are two series in this file.
 - a. For series x, present the ACF and PACF.
 - b. Use the ACF and PACF to find a good model.
 - c. Estimate the model based on your conclusions from part b.
 - d. Examine the correlogram (ACF) of the residuals. Does you model appear to fit the data?
 - e. Repeat this exercise for series y.
- 6. Use the dataset TTM.xls for this problem. It contains one day of trade by trade data for the Tata Motor Limited, an NYSE listed stock. Each observation is a transaction. The time stamp is hours, minutes, 1/100's of minutes. The variable EX is the exchange on which the trade occurred. PRICE is the transaction price and SIZE is the number of shares transacted.
 - a. Create the simple returns using the price variable. Present a plot.
 - b. Examine the ACF and PACF. What type of model looks appropriate?
 - c. Fit an MA(1) model. Does it pass the residual diagnostics?
 - d. Fit an MA(2) model. Does it pass the residual diagnostic?
 - e. Now fit AR(1), AR(2), and AR(3) models. Do any of these pass the residual diagnostics?
 - f. Using the MA(2) model from part d, build the in sample one step ahead forecasts. Present the plot.
- 7. From the FRED, download Consumer Price Index: All Items: Total for United States (CPALTT01USM657N) from 1955 to present. This is already in growth rates or inflation.
 - a. Plot the series. Does it look dependent?
 - b. Construct the ACF, is there significant autocorrelation in the data?
 - c. Fit and present a good ARMA model for the data.
 - d. Report the roots of the AR polynomial. Recall that you can "view" a model as its ARMA structure to get the roots. What do the roots tell you about the dependence? How quickly should you expect shocks to die off?
 - e. Given information at time T (your last in-sample observation) build a 24 month forecast.