

Universidade de Brasília Departamento de Ciências Mecânicas Programa de Pós-Graduação

Programa 8

Equações Diferenciais Tranferência de Calor em Regime Transiente Geometria Complexa

Disciplina: Métodos Numéricos Professor: Dr. Rafael Gabler Gontijo

Aluno: Eng. Lucas Wanick — Mestrando em Engenharia Mecânica

28 de julho de 2025

1 Introdução

O presente relatório documenta o desenvolvimento do último programa do curso de *Métodos Numéricos* ministrado pelo Professor Rafael Gabler Gontijo na Universidade de Brasília. O objetivo central foi implementar um solver numérico capaz de resolver a equação de condução de calor estacionária em uma geometria retangular com cantos curvos (adiabáticos), submetida a condições de contorno mistas:

Programa final para casa

- Escreva um programa que resolva a equação de Laplace para a geometria abaixo, por diferenças finitas, adotando as condições de contorno especificadas na figura:

Figura 1: Enunciado do problema - Lousa da Aula 35.

- Temperaturas fixas (Dirichlet) nas faces superior e inferior;
- Fluxos de calor prescritos (Neumann) nas faces laterais;
- Isolamento térmico (condição adiabática) nos cantos arredondados.

O desenvolvimento visou obter uma solução robusta, eficiente e escalável, capaz de lidar com malhas refinadas , preservando a fidelidade geométrica e garantindo estabilidade numérica.

Figura 2: Geometria do problema. Dimenções arbitradas: $L=1.50\,\mathrm{m},\,H=2.50\,\mathrm{m},\,$ raio dos cantos $R=0.25\,\mathrm{m}.$

2. Formulação Matemática

A equação governante é a equação de Laplace bidimensional para regime estacionário $(\nabla^2 T = 0)$:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \tag{1}$$

2.1 Condições de contorno

• Dirichlet (superior e inferior):

$$T(y = 0) = 45^{\circ}C, \qquad T(y = H) = 55^{\circ}C$$

• Neumann (laterais):

$$-k \frac{\partial T}{\partial x}\Big|_{x=0} = q_{\text{left}}, \qquad -k \frac{\partial T}{\partial x}\Big|_{x=L} = q_{\text{right}}$$

onde k é a condutividade térmica do material, definida como 71 W/mK (Aço) e q_{left} , q_{right} são os fluxos de calor prescritos de 250 W/m^2 e 210 W/m^2 , respectivamente.

• Adiabático (cantos):

$$\frac{\partial T}{\partial n} = 0$$

Geometria: $L=1.50\,\mathrm{m},\,H=2.50\,\mathrm{m},\,\mathrm{cantos}$ curvos de raio $R=0.25\,\mathrm{m}.$

3. Discretização Numérica

O domínio foi discretizado em uma malha uniforme de $n \times n$ pontos, utilizando o método das diferenças finitas de 5 pontos:

$$-4T_{i,j} + T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} = 0 (2)$$

As condições de contorno foram incorporadas da seguinte forma:

- Dirichlet: valores fixos diretamente no vetor fonte b.
- Neumann: usando a formulação ajustada:

$$T_{\text{parede}} = T_{\text{vizinho}} + \frac{q'' \, \Delta x}{k}$$

com compensação na matriz:

$$A_{kk} \leftarrow A_{kk} + 1$$

• Adiabático: regiões de contorno curvo foram identificadas por verificação geométrica (x, y) e excluídas do sistema.

4. Implementação Computacional

• Linguagem: Python 3.12

• Bibliotecas: numpy, scipy.sparse (LIL \rightarrow CSR), matplotlib

Estratégias de desempenho:

- Matriz esparsa, evitando alocação densa (redução de memória de $TB \to MB$).
- Solver spsolve para eficiência em sistemas grandes.
- Máscaras (NaN) para lidar com cantos adiabáticos.

4.1 Geração da malha e classificação dos nós

A função gerar_malha_tipo atribui a cada nó:

• I: interno

• D: Dirichlet

• N: Neumann

• A: adiabático

Figura 3: Malha gerada com classificação dos nós.

4.2 Montagem do sistema

• Mapeamento de incógnitas internas.

- ullet Montagem de A e b considerando as diferentes condições.
- Implementação rigorosa da Neumann com compensação na diagonal.

4.3 Interpolação para visualização

Pós-processamento para interpolar valores em regiões Neumann e adiabáticas, garantindo visualização contínua sem alterar a solução numérica.

5. Resultados Numéricos

5.1 Distribuição de temperatura

O solver convergiu para distribuições estáveis em malhas de até 729×729 . Temperaturas coerentes com as condições impostas:

- Regiões centrais mais quentes devido ao aporte de calor lateral.
- Gradiente vertical suave entre $45^{\circ}C$ e $55^{\circ}C$.

Figura 4: Distribuição de temperatura calculada. Valores interpolados para visualização contínua.

5.2 Comportamento físico

- Alteração do sinal de q_{left} ou q_{right} produz gradientes opostos, confirmando implementação correta da Neumann.
- Perfis de fluxo e isolamento térmico nos cantos respeitados.
- ullet Balanço energético coerente: fluxo líquido o aumento da temperatura média.

6. Conclusão

O programa desenvolvido cumpre plenamente os objetivos:

- Resolver a equação de condução de calor em geometria complexa com múltiplos tipos de contorno.
- Suportar malhas muito refinadas com alta eficiência de memória.
- Produzir resultados fisicamente coerentes e visualmente interpretáveis.

Este projeto encerra o curso com demonstração de proficiência em métodos numéricos, implementação computacional avançada e capacidade analítica de validar soluções numéricas frente à realidade física.

7. Trabalhos futuros

- Implementação de parâmetros α e β para ajuste fino da curvatura em malhas grosseiras.
- Extensão para problemas transientes (dependentes do tempo).
- Acoplamento com modelos de convecção e radiação para simular trocas térmicas complexas.