Appendix

Complete likelihood for the Jolly-Seber model with tag loss

The complete likelihood for the Jolly-Seber model with tag loss assuming no possibility of loss of capture and assuming homogeneous survival, capture, and tag retention probabilities is given below.

$$L = \binom{N}{n_{\text{obs}}} \left\{ \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{(N-n_{\text{obs}})} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{n_{\text{obs}}} \times \left\{ 1 - \sum_{j=0}^{k-1} b_j (1-p) \chi_{(0,j+1,0)} \right\}^{-n_{\text{obs}}}$$

Survival Estimates

FIGURE A1: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

FIGURE A2: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

FIGURE A3: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2=0.5$ with 10 time periods for varying survival $(\phi=0.2,0.5,0.9)$, capture (p=0.2,0.5,0.9), and tag retention $(\lambda=0.2,0.5,0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

FIGURE A4: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

FIGURE A5: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 5 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

FIGURE A6: Boxplots of survival estimates $(\hat{\phi})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 7 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of ϕ used to simulate the data for each model.

Capture Estimates

FIGURE A7: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

FIGURE A8: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

FIGURE A9: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

FIGURE A10: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

FIGURE A11: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 5 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

FIGURE A12: Boxplots of capture estimates (\hat{p}) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 7 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of p used to simulate the data for each model.

Tag Retention Estimates

FIGURE A13: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

FIGURE A26: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

FIGURE A15: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2=0.5$ with 10 time periods for varying survival $(\phi=0.2,0.5,0.9)$, capture (p=0.2,0.5,0.9), and tag retention $(\lambda=0.2,0.5,0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

FIGURE A16: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival ($\phi = 0.2, 0.5, 0.9$), capture (p = 0.2, 0.5, 0.9), and tag retention ($\lambda = 0.2, 0.5, 0.9$) probabilities. The black line indicates the true value of λ used to simulate the data for each model.

FIGURE A17: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 5 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

FIGURE A18: Boxplots of tag retention estimates $(\hat{\lambda})$ of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 7 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of λ used to simulate the data for each model.

Super-Population Size Estimates

FIGURE A19: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

FIGURE A20: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 1$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

FIGURE A21: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

FIGURE A22: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 100000 with $T_2 = 0.5$ with 10 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

FIGURE A23: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 5 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

FIGURE A24: Boxplots of super-population size estimates (N) of 100 simulated datasets analyzed with and without the effect of recycled individuals for population size 1000 with $T_2 = 1$ for 7 time periods for varying survival $(\phi = 0.2, 0.5, 0.9)$, capture (p = 0.2, 0.5, 0.9), and tag retention $(\lambda = 0.2, 0.5, 0.9)$ probabilities. The black line indicates the true value of N used to simulate the data for each model.

Abundance Estimates

FIGURE A25: Mean abundance estimates $(N_j$'s) for each sample time (k = 10) between analysis with and without recycled individuals with population size N = 1000 with $T_2 = 1$ with 10 time periods for low tag retention $(\lambda = 0.2)$, varying survival probabilities $(\phi = 0.2, 0.5, 0.9)$ and varying capture probabilities (p = 0.2, 0.5, 0.9).

FIGURE A26: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=1$ with 10 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A27: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=1000 with $T_2=0.5$ with 10 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A28: Mean abundance estimates (N_j) 's) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=0.5$ with 10 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A29: Mean abundance estimates $(N_j$'s) for each sample time (k=5) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 5 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A30: Mean abundance estimates (N_j) 's for each sample time (k=7) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 7 time periods for low tag retention $(\lambda=0.2)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A31: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A32: Mean abundance estimates (N_j) 's) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=1$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A33: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=1000 with $T_2=0.5$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A34: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=0.5$ with 10 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A35: Mean abundance estimates $(N_j$'s) for each sample time (k=5) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 5 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A36: Mean abundance estimates $(N_j$'s) for each sample time (k=7) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 7 time periods for medium tag retention $(\lambda=0.5)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A37: Mean abundance estimates (N_j) 's for each sample time (k = 10) between analysis with and without recycled individuals with population size N = 1000 with $T_2 = 1$ with 10 time periods for high tag retention $(\lambda = 0.9)$, varying survival probabilities $(\phi = 0.2, 0.5, 0.9)$ and varying capture probabilities $(\rho = 0.2, 0.5, 0.9)$.

FIGURE A38: Mean abundance estimates (N_j) 's for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=1$ with 10 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A39: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=1000 with $T_2=0.5$ with 10 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A40: Mean abundance estimates $(N_j$'s) for each sample time (k=10) between analysis with and without recycled individuals with population size N=100000 with $T_2=0.5$ with 10 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A41: Mean abundance estimates (N_j) 's for each sample time (k=5) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 5 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

FIGURE A42: Mean abundance estimates $(N_j$'s) for each sample time (k=7) between analysis with and without recycled individuals with population size N=1000 with $T_2=1$ with 5 time periods for high tag retention $(\lambda=0.9)$, varying survival probabilities $(\phi=0.2,0.5,0.9)$ and varying capture probabilities (p=0.2,0.5,0.9).

