

- Apresentação e Instalação
- 2 ETL
- Visualização de Dados
- 4 Relatórios
- **5** Aprendizagem de Máquina

Apresentação e Instalação

KNIME ?:

- . Flexível;
- . Baixo Custo;
- . Visual
- . Fácil
- Extensível

Usar KNIME para:

- . ETL
- . Visualização de Dados
- Relatórios
- Produção (PMML)

Workbeanch:

MAIS DE 1500 NÓS

Data Access

MySQL, Oracle, ...
SAS, SPSS, ...
Excel, Flat, ...
Hive, Impala, ...
XML, JSON,
PMML
Text, Doc,
Image, ...
Web Crawlers
Industry Specific
Community / 3rd

Transformation

Row.

Column Matrix Text, Image Time Series Java Python Community / 3rd

Analysis & Mining

Statistics
Data Mining
Machine Learning
Web Analytics
Text Mining
Network Analysis
Social Media
Analysis
R, Weka, Python
Community / 3rd

Visualization

R JFreeChart JavaScript Community / 3rd

Deployment

via BIRT
PMML
XML, JSON
Databases
Excel, Flat, etc.
Text, Doc, Image
Industry Specific
Community / 3rd

Workspace:

Workflow Group

Workflow

→ red light

Inactive and not yet configured

→ red with cross light

Configured but not yet executed → yellow light Executed successfully → green light Executed with errors

KNIME Extensions

PORTS: DATA TABLES

Cell type	Symbol	Remarks
Int cell	I	This represents integral numbers in the range from -2 ³¹ to 2 ³¹ -1 (approximately 2E9).
Long cell	L	This represents larger integral numbers, and their range is from -263 to 263-1 (approximately 9E18).
Double cell	D	This represents real numbers with double (64 bit) floating point precision.
String cell	S	This represents unstructured textual information.
Date and time cell	calendar & clock	With these cells, you can store either date or time.
Boolean cell	В	This represents logical values from the Boolean algebra (true or false); note that you cannot exclude the missing value.
Xm1 cel1	XML	This cell is ideal for structured data.
Set cell	{}	This cell can contain multiple cells (so a collection cell type) of the same type (no duplication or order of values are preserved).
List cell	{}	This is also a collection cell type, but this keeps the order and does not filter out the duplicates.
Unknown type cell	?	When you have different type of cells in a column (or in a collection cell), this is the generic cell type used.

1º WorkFlow

- 1 Crie uma Workspace com knime-{login}
- 2 Ler os dados no arquivo M01_Measurements.csv;
- 3 Criar um novo arquivo só com Dados da BTS_01;
- 4 Use anotações para seperar as etapas;
- 5 Export o WorkFlow.

The *knime://* protocol

knime://LOCAL/	refers to the current workspace location
knime://LOCAL//knime-workspace	moves two levels up from the current workspace location to a new workspace folder named knime.workspace
knime://knime.workflow/	refers to the current workflow location
knime://knime.workflow///data	moves two levels up from the current workflow location to a new folder named data
knime:// <knime-mountid>/</knime-mountid>	refers to a KNIME Server available in the KNIME Explorer panel
<pre>knime://<knime-mountid>/<path>/data</path></knime-mountid></pre>	moves to the <path>/data folder on the referenced KNIME Server</path>

2º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar um novo arquivo só com Dados da BTS_02;
- 3 Criar um novo arquivo só com Dados da BTS_02 que estão a uma distância entre 0.4 e 0.5 Km.

3º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar um novo arquivo só com Dados da BTS_04, e retirar as colunas de Latitude
- e Longitude;
- 3 Escrever os dados em um arquivo csv;

4º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar um novo arquivo só com Dados da BTS_04 e BTS_03, e retirar as colunas de Latitude e Longitude;
- 3 Escrever os dados em um arquivo csv;

5° WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar uma Nova coluna Grupo_BTS;
- 3 Grupo_BTS=G1 para BTS_01 e BTS_02
- 4 Grupo_BTS=G2 para BTS_03 e BTS_04
- 5 Escrever os dados em um arquivo csv;

6º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar uma Nova coluna Longe
- 3 Longe=TRUE, se dist>1Km e Longe=FALSE se d<=1Km
- 5 Escrever os dados em um arquivo csv;

7º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar uma Nova coluna Grupo_BTS;
- 3 Grupo_BTS=G1 para BTS_01 e BTS_02
- 4 Grupo_BTS=G2 para BTS_03 e BTS_04
- 5 Escrever os dados em um arquivo csv;

8º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar uma Nova coluna Longe
- 3 Longe=TRUE, se dist>1Km e Longe=FALSE se d<=1Km
- 5 Escrever os dados em um arquivo csv;

9º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Calcular o PLReal Médio e seu Desvio Padrão para BTS
- 3 Escrever o Resultado no Arquivo csv;

10 10° WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar nova coluna Pot_Rec = 55.0 PLreal
- 3 Calcular a media de Pot_Rec para cada BTS

11 11º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Criar novo arquivo alterando "BTS" por "ERB" (nome da Coluna e valores)
- 3 Escrever em um arquivo csv;

12 12º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Ler os dados no arquivo M01_BTSs_Data.csv
- 3 Escrever em um arquivo csv com dados da BTS incluído nas medições;

13 13º WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Ler os dados no arquivo M01_BTSs_Data.csv
- 3 Escrever em um arquivo csv com dados da lat e lon da BTS incluídos nas medições;

14 14° WorkFlow

- 1 Ler os dados no arquivo M01_Measurements.csv;
- 2 Filtrar Dados para BTS_01
- 2 Fazer um Sccater Plotter do Percurso;
- 3 Exibir mapa com Plreal temático;