

EXPLORATORY DATA ANALYSIS ON ASTEROID FEATURES

Ruining Feng, Andrea Kang, Haozhe Liu, Ameya Mandale, Kunaal Malodhakar

QUESTIONS/OBJECTIVE

- What asteroid features will be critical to inspect in future events?
- To analyze the characteristics of previous asteroids and determine any potential correlations
- Information utilized from this could assist with missions such as DART (what asteroids should we look into for interference?)

DATASETS

ASTEROID	SEMI-MAJOR AXIS	ECCENTRICITY	MAGNITUDE	MEAN MOTION
Phaethon	190197373	0.88989766	14.6	313.938977
Dioretsa	3575929554	0.89950652	13.8	59.8733833
Damocles	1769897305	0.86640318	13.3	250.92822
Jormungandr	219312299	0.85071695	18.6	152.261476

- Open Asteroid Dataset
- NASA Asteroid Classification Dataset
- Variables with little to no data, such as color, were removed

DATASET ANALYSIS

HAZARDOUS VS NON-HAZARDOUS?

- Original Condition for Physically Hazardous Asteroids:
 - Minimum Orbit Intersection Distance (moid)
 7.5 million km
 - Absolute magnitude (H) >= 22
- Are there more correlations across hazardous asteroids beyond this guideline? (For orbit shape and angular orbit speed, potentially)

CORRELATIONS

а	Size of the orbit (km)	
е	Shape of the orbit (0 = circle, 1 = ellipse)	
q	Closest distance from sun (perihelion) in orbit (km)	
ad	Farthest distance from sun (aphelion) in orbit (km)	
per_y	Orbital period (years)	
data_arc	Data arc-span (d)	
n_obs_used	# of observations used	
н	Asteroid's absolute magnitude	
albedo	Geometric albedo (brightness ratio)	
moid	Earth Minimum Orbit Intersection Distance (km) To classify hazardous objects	
n	Mean motion (deg/day) Angular speed necessary for one complete orbit	
per	Orbital period (days)	

ORBIT SHAPE/ECCENTRICITY

Hazardous:

† Eccentricity,
 † Semi-major axis
 (shorter than non-hazardous),
 † Closest sun distance

Non-Hazardous:

- All variables concentrated in a certain area
- More circular orbits

ORBIT SHAPE + SPEED

- Eccentricity + Mean angular velocity = Distinct clusters
- Hazardous:
 - ↑ Mean angular orbit speed, ↓ Eccentricity
- Non-hazardous:
 - Mostly circular orbits compared to hazardous counterparts
 - Angular speed slower on average

CLASSIFICATION MODELS

Correlated features acquired; how to classify?

CLASSIFIERS

Six classifiers were used for further EDA:

Baseline Classifiers:

- Logistic Regression
- K-Nearest Neighbor

Target Classifiers:

- Random Forest
- Decision Trees
- AdaBoost
- XgBoost

CONFUSION MATRIX (BASELINE)

Logistic Regression

KNN

CONFUSION MATRIX (TARGET)

 Many non-hazardous asteroids were classified correctly - this is likely due to the unbalanced ratio of non-hazardous to hazardous asteroids

ROC

 All target classifiers performed near perfectly based on the ROC

FEATURE IMPORTANCE

Decision Tree

Random Forest

FEATURE IMPORTANCE

AdaBoost

Xgboost

PRECISION/F1

- Precision was high likely due to the large number of non-hazardous asteroids
- However, F1 was as expected for Baseline vs Target Classifiers

Baseline: <= 70%

Target: > 99%

	Precision	Recall	F1-score
Logistic Regression	0.9930	0.4139	0.7052
Decision Tree	0.9988	0.9768	0.9987
Random Forest	0.9991	0.9817	0.9995
KNN	0.9973	0.3203	0.6432
AdaBoost	0.9988	0.9768	0.9994
XgBoost	0.9991	0.9826	0.9996

TRAJECTORY VISUALIZATION

- Lets gaze the Skies

ORBITAL ELEMENTS

Plane of reference: Equatorial plane

- Semi-major axis
- Eccentricity
- Mean anomaly
- Inclination: i
- Argument of Periapsis: ω
- Longitude of Ascending Node: Ω

credits: planetary.org

METHODOLOGY

NON-HAZARDOUS

Mapping trajectory of Asteroid ID: 3723955

- Mapping from December 2021 to December 2022.
- Orbit shape is fairly elliptical \rightarrow e = 0.35
- Orbital Period is estimated at 426 days
- Throughout the asteroid's path, it always maintains a safe distance from earth
- It is marginally closer to Earth on June 1, 2022.

HAZARDOUS

Mapping trajectory of Asteroid ID: 2306383

- Mapping from December 2021 to June 2022.
- Orbit shape is highly elliptical \rightarrow e = 0.55
- Orbital Period is estimated at 300 days.
- The asteroid is closest to Earth at around February 1, 2022.
- The trajectory visualization merely confirms result obtained from regression analysis.

CONCLUSION

- For hazardous asteroids:
 - As eccentricity increases → The asteroids tend to travel closer to earth due to orbital shape
 - Orbital period is lesser for asteroids with more elliptical orbits
- Determining orbit shape and speed along with original conditions → Prediction of location in order to interfere with potentially hazardous asteroids.
- Visualization of the asteroid will assist in determining its risk, then trajectory prediction can be used to prevent said asteroid from causing any danger on Earth.
- Prior knowledge to estimate further correlations amongst asteroids to be discovered in the future!