Домашнее задание 1

Дедлайн: 2025-02-04, 23:59.

- 1. Случайные величины y_i независимы и одинаково распределены с $\mathbb{P}(y_i=0)=a, \mathbb{P}(y_i=1)=2a,$ $\mathbb{P}(y_i=2)=1-3a.$ В выборке $y_1,y_2,...,y_n$ оказалось N_0 нулей, N_1 единиц и N_2 двоек.
 - а) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i)$.
 - б) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i^2)$.
 - в) Найдите оценку \hat{a} параметра a методом максимального правдоподобия.
- 2. Случайные величины y_i независимы и нормально распределены $\mathcal{N}(2a;a)$ с неизвестным параметром a.
 - а) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i)$.
 - б) Найдите оценку \hat{a} параметра a методом моментов используя $\mathbb{E}(y_i^2)$.
 - в) Найдите оценку \hat{a} параметра a методом максимального правдоподобия.
- 3. В отделении банка 5 клиентских окошек. Время обслуживания каждого клиента имеет экспоненциальное распределение с неизвестной интенсивностью λ . Я был в очереди последним, и когда я встал к освободившемуся окошку номер 5, все остальные окошки ещё обслуживали клиентов. Через 3 минуты обслужили клиента в окошке 3, через 7 минут клиента в окошке номер 4, а потом я освободился и ушёл.
 - а) Найдите оценку \hat{a} параметра a методом моментов, используя любое математическое ожидание.
 - б) Найдите оценку \hat{a} параметра a методом максимального правдоподобия.

Примечание: если в данной задаче возникает нерешаемое в явном виде уравнение, то, конечно, можно и нужно воспользоваться подходящим численным методом.

Домашнее задание 2

Дедлайн: 2025-02-23, 23:59. Оцениваемые задачи:

1. Величины $y_1, y_2, ..., y_n$ независимы и равномерны отрезке на [0;a] с неизвестным a>5. Никола Тесла хочет оценить неизвестный параметр $b=\mathbb{P}(y_i>5)$.

Рассмотрим две оценки: \hat{b}_n — доля наблюдений в выборке, оказавшихся больше 5 и $\hat{b}'_n = 1 - 2.5/\bar{y}$.

- а) Является ли оценка \hat{b}_n несмещённой? состоятельной?
- б) Является ли оценка \hat{b}'_n несмещённой? состоятельной?
- 2. Величины y_i независимы и имеют функцию плотности

$$f(y) = egin{cases} 3y^2/ heta^3, \ {
m ec}$$
ли $y \in [0; heta]; \ 0, \ {
m uhaue}. \end{cases}$

- а) Найдите оценку $\hat{\theta}$ неизвестного параметра θ методом максимального правдоподобия.
- б) Является ли оценка $\hat{\theta}$ несмещённой?
- в) Является ли оценка $\hat{\theta}$ состоятельной?
- г) Найдите функцию плотности оценки $\hat{\theta}$.
- д) На какую величину нужно домножить оценку $\hat{\theta}$, чтобы она стала несмещённой?

Подсказка: ответ на пункт (б) можно получить без вычислений и интегралов :)

Неоцениваемые задачи в удовольствие:

- 3. Величина Y имеет биномиальное распределение Bin(n, p).
 - а) Является ли оценка $\hat{p} = Y/n$ для p несмещённой? Если является смещённой, то скорректируйте оценку так, чтобы она стала несмещённой.
 - б) Чему равна теоретическая дисперсия σ^2 величины Y?
 - в) Является ли оценка $\hat{\sigma}^2=n\hat{p}(1-\hat{p})$ для σ^2 несмещённой? Если является смещённой, то скорректируйте оценку так, чтобы она стала несмещённой.
- 4. Величины X_i независимы и одинаково распределены с неизвестными $\mathbb{E}(X_i) = \mu$ и $\mathbb{V}\mathrm{ar}(X_i) = \sigma^2$. Рассмотрим четыре оценки:

$$\hat{\mu}_A = (X_1 + X_2)/2$$
, $\hat{\mu}_B = (X_1 + X_2 + X_3)/3$, $\hat{\mu}_C = 2X_1 - X_2$, $\hat{\mu}_D = (X_1 + X_2 + \dots + X_{20})/21$.

- а) Какая из приведенных оценок для μ является несмещённой?
- б) У какой несмещённой оценки самая маленькая дисперсия?
- в) Выберите наиболее эффективную оценку в этом множестве по критерию MSE, если $\sigma=0.5\mu$.
- 5. Величины X_1 и X_2 независимы и равномерны на отрезке [0;a] с неизвестным a и $Y=\min\{X_1,X_2\}$.
 - а) При каком β оценка $\hat{a}=\beta Y$ для параметра a будет несмещённой?
 - б) При каком β оценка $\hat{a}=\beta Y$ для параметра a будет наиболее эффективной по критерию MSE?
- 6. Величины X_i независимы и имеют закон распределения

- а) Постройте состоятельную оценку для неизвестного a.
- б) Возможно ли в этой задаче построить несмещённую оценку для a?

Домашнее задание 3

Дедлайн: 2025-04-27, 23:59. Оцениваемые задачи:

- 1. В одном тропическом лесу водятся удавы и питоны. Длина удавов имеет нормальное распределение $\mathcal{N}(\mu_X,\sigma_X^2)$. По выборке из 10 удавов оказалось, что $\sum X_i=20$ метрам, а $\sum X_i^2=1000$. Длина питонов имеет нормальное распределение $\mathcal{N}(\mu_Y,\sigma_Y^2)$. По выборке из 20 питонов оказалось, что $\sum Y_i=60$ метрам, а $\sum Y_i^2=4000$. Все наблюдения независимы между собой.
 - а) Постройте точечные оценки для μ_X , σ_X^2 , μ_Y , σ_Y^2 .
 - б) Постройте двусторонний 95%-й доверительный интервал для σ_X^2/σ_Y^2 .
 - в) Проверьте гипотезу H_0 : $\sigma_X^2 = \sigma_Y^2$ против альтернативной H_1 : $\sigma_Y^2 > \sigma_X^2$ на уровне значимости 5%. Укажите точное p-значение.
 - г) Постройте примерный двусторонний 95%-й доверительный интервал для разницы $\mu_X \mu_Y$ с помощью статистики Уэлча.
 - д) Проверьте гипотезу H_0 : $\mu_X = \mu_Y$ против альтернативной H_1 : $\mu_Y > \mu_X$ на уровне значимости 5% с помощью теста Уэлча. Укажите точное p-значение.
- 2. Априорное распределение параметра θ является треугольным на отрезке [0;40] с модой в точке 30. Наблюдаемая величина X это индикатор того, что $\theta > 20$. Оказалось, что X = 1.
 - а) Найдите апостериорную плотность θ .
 - б) Найдите апостериорное математическое ожидание θ .
 - в) Найдите апостериорную медиану θ .
 - г) Постройте 94% байесовский интервал наивысшей плотности для θ .
 - д) Постройте 94% симметричный по вероятности байесовский интервал для θ .

Определение треугольного распределения можно найти, например, на википедии :)

Неоцениваемые задачи в удовольствие:

3. Величины $X_1,...,X_n$ независимы и одинаково распределены с функцией плотности

$$f(x) = \begin{cases} \theta x^{\theta-1}, \text{ при } x \in [0;1] \\ 0, \text{ иначе.} \end{cases}$$

- а) Оцените значение θ с помощью метода максимального правдоподобия.
- б) Оцените дисперсию оценки $\hat{\theta}_{ML}$ метода максимального правдоподобия.
- в) Как примерно распределена $\hat{\theta}_{ML}$?
- r) Оцените значение θ с помощью метода моментов.
- д) Оцените дисперсию оценки $\hat{ heta}_{MM}$ метода моментов.
- е) Как примерно распределена $\hat{\theta}_{MM}$?

- 4. Цыганка Роза ничего не понимает в статистике, но у неё всегда с собой колода из 36 карт. Помогите цыганке Розе построить точный 95%-й доверительный интервал для неизвестной вероятности p того, что клиента ждёт дальняя дорога и казённый дом.
- 5. Величины $X_1, ..., X_n$ независимы и одинаково распределены с функцией плотности

$$f(x) = \begin{cases} \frac{\theta \exp(-\theta^2/2x)}{\sqrt{2\pi x^3}} \text{ при } x \in [0; +\infty), \\ 0, \text{ иначе.} \end{cases}$$

- а) Найдите оценку параметра θ методом максимального правдоподобия, если по выборке из 100 наблюдений оказалось $\sum 1/X_i=12$.
- б) Найдите оценку параметра θ методом максимального правдоподобия для произвольной выборки.
- в) Найдите теоретическую информацию Фишера $I(\theta)$.
- г) Пользуясь данными по выборке постройте оценку \hat{I} для информации Фишера.
- д) Постройте 90% доверительный интервал для θ . Подсказка: $\mathbb{E}(1/X_i)=1/\theta^2$, интеграл берется, например, заменой $x=\theta^2a^{-2}$.
- 6. Величины X_1 и X_2 независимы и распределены по Пуассону с интенсивностью a. Есть две гипотезы, H_0 : a=1 и H_a : a=2. Мальвина отвергает H_0 в том случае, если $X_1+X_2\geq 2$. Найдите вероятность ошибок первого и второго рода.
- 7. Величины $Y_1, ..., Y_n$ независимы и имеют распределение Бернулли с неизвестным $p, \hat{p} = \bar{Y}$.
 - а) Постройте для неизвестного p доверительный интервал Вальда. Для этого вспомните про сходимость

$$\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \stackrel{\text{dist}}{\to} \mathcal{N}(0; 1)$$

и решите неравенство

$$-z_{\rm cr} \le \frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \le z_{\rm cr}.$$

б) Постройте для неизвестного p доверительный интервал Вильсона. Для этого воспользуйтесь сходимостью

$$\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\text{dist}}{\to} \mathcal{N}(0;1).$$

На этот раз потребуется решить (о ужас!) квадратное неравенство.

Обозначим центр интервала Вильсона с помощью \hat{p}_w .

в) Докажите, что центр интервала Вильсона \hat{p}_w можно представить как средневзвешенное классической оценки \hat{p} и тривиальной оценки 1/2,

$$\hat{p}_w = u\hat{p} + (1 - u)(1/2).$$

Найдите веса u и (1-u).

г) Докажите, что центр интервала Вильсона \hat{p}_w можно проинтерпретировать следующим образом: добавим f вымышленных единиц и f вымышленных нулей в выборку и посчитаем классическую оценку вероятности для выборки с вымышленными наблюдениями,

$$\hat{p}_w = \frac{\sum_{i=1}^n Y_i + f}{n + 2f}.$$

Какому целому числу примерно равно f для 95%-го доверительного интервала?

д) Докажите, что интервал Вильсона можно записать в виде

$$\hat{p}_w \pm z_{\rm cr} \cdot \sqrt{\frac{u\hat{p}(1-\hat{p}) + (1-u)(1/2)^2}{n_w}}.$$

Найдите n_w , а также веса u и (1-u).

Таким образом, интервал Вильсона слегка корректирует число наблюдений и использует в качестве оценки дисперсии Y_i средневзвешенное между классической оценкой $\hat{p}(1-\hat{p})$ и тривиальной оценкой 1/4.

Доверительный интервал Агрести — Коулла для уровня доверия 95% строится следующим образом. В выборку мысленно добавляют два наблюдения равных единице и два наблюдений равных нулю, считают оценку доли

$$\hat{p}_{ac} = \frac{\sum_{i=1}^{n} Y_i + 2}{n+4},$$

а затем строят классический интервал Вальда, используя \hat{p}_{ac} вместо классической \hat{p} .

- е) Правда ли, что при уровне доверия 95% центры интервала Агрести Коулла и Вильсона совпадают?
- ж) Какой 95%-й интервал шире, Агрести Коулла или Вильсона?
- з) С помощью симуляций на компьютере сравните фактическую вероятность накрытия неизвестного параметра p интервалами Вальда, Вильсона и Агрести Коулла с номинальной 95%-й вероятностью. Для экспериментов возьмите n=50 и различные p от 0 до 1 с шагом 0.1.

Домашнее задание 4

Дедлайн: 2025-05-18, 23:59. Оцениваемые задачи:

1. Величины (y_i) независимы и одинаково непрерывно распределены. Всего есть 1000 наблюдений. Постройте 95%-й интервал для 90%-го квантиля с помощью выборочных квантилей.

Если для вычисления необходимых выборочных квантилей использовался код, то приведите его.

- 2. Есть две выборки: x=(2.7,3.5,4.2,6.7) и y=(1.6,2.9,3.9). Все наблюдения независимы. Величины (x_i) одинаково непрерывно распределены между собой, величины (y_i) одинаково непрерывно распределены между собой. Проверьте гипотезу H_0 об одинаковом законе распределения в двух выборках, против альтернативной $\mathbb{P}(x_i>y_j)>0.5$ на уровне значимости 5%.
 - а) Проведите тест Манна Уитни, используя точное распределение статистики.

б) Проведите тест Манна — Уитни, используя нормальную аппроксимацию. Укажите p-значение.

Неоцениваемые задачи в удовольствие:

3. Рассмотрим тест знаковых рангов Уилкоксона и связанные пары наблюдений (x_i, y_i) . При верной H_0 разницы $D_i = x_i - y_i$ одинаково непрерывно распределены и независимы.

Рассмотрим сумму знаковых рангов $WSR = \sum_{i=1}^{n} \operatorname{sign}(D_i) \operatorname{rank}(|D_i|)$.

Найдите ожидание $\mathbb{E}(WSR)$ и дисперсию $\mathbb{V}ar(WSR)$ при верной H_0 .

- 4. Величины (X_i) независимы и одинаково распределены с неизвестными $\mathbb{E}(X_i) = \mu$ и $\mathbb{V}\mathrm{ar}(X_i) = \sigma^2$. По выборке из 1000 наблюдений оказалось, что $\bar{X}=30$, а несмещённая выборочная дисперсия равна 900.
 - а) Постройте асимптотический 95%-й доверительный интервал для μ . Укажите p-значение для гипотезы H_0 : $\mu=35$ против альтернативной H_a : $\mu\neq35$.
 - б) Постройте асимптотический 95%-й предсказательный интервал для X_{1001} .
 - в) Постройте асимптотический 95%-й предсказательный интервал для $(X_{1001} + X_{1002})/2$.
- 5. Бариста Борис заметил, что в последнее время посетители заказывают только капуччино и раф. Предположим, что посетители выбирают напиток независимо друг от друга, а вероятность выбора капуччино постоянна и равна неизвестному числу p.

У Бориса есть только две гипотезы, $H_0: p=1/3$ и $H_a: p=2/3$, в которые он до получения данных верит с вероятностями 0.6 и 0.4, соответственно.

Из первых 100 утренних посетителей S=40 выбрали капуччино. Борис хочет измерить разными способами, насколько этот наблюдаемый результат соотносится с гипотезами.

а) Найдите $\mathbb{P}(H_0 \mid S = 40)$ и $\mathbb{P}(H_a \mid S = 40)$.

Борис решил на следующий день повторить эксперимент и снова посчитать S_{new} , количество клиентов из первых ста, которые выберут капуччино.

- б) Найдите $\mathbb{P}(S_{\text{new}} \geq S \mid S = 40, H_0)$ и $\mathbb{P}(S_{\text{new}} \geq S \mid S = 40, H_a)$.
- в) Какие из вероятностей можно посчитать без мнения Бориса о $\mathbb{P}(H_0)$ и $\mathbb{P}(H_a)$?
- г) Какая из вероятностей называется p-значением для гипотезы H_0 и статистики S?
- 6. По таблице сопряжённости проверьте гипотезу о независимости двух признаков на уровне значимости 5% против альтернативной гипотезы о зависимости признаков. Укажите p-значение.

	X = A	X = B
Y = C	50	60
Y = D	20	30
Y = E	60	50

7. Рассмотрим таблицу сопряжённости

X = A	X = B	X = C	X = D
50	70	80	60

- а) На уровне значимости 5% проверьте гипотезу об одинаковых вероятностях $p_a=p_b=p_c=p_d$ против альтернативной о том, что хотя бы одно из равенств нарушено.
- б) На уровне значимости 5% проверьте гипотезу об одинаковых вероятностях $p_a=p_b=p_c=p_d$ против альтернативной о том, что $p_a\neq p_b=p_c$.
- в) На уровне значимости 5% проверьте гипотезу об одинаковых вероятностях $p_a=p_b=p_c$ против альтернативной о том, что $p_a\neq p_b=p_c$.

В каждом случае укажите p-значение.

Домашнее задание 5

Дедлайн: 2025-06-01, 23:59. Оцениваемые задачи:

- 1. Величины (y_i) независимы и экспоненциально распределены с интенсивностью λ . Количество наблюдений n велико. Тестируем гипотезу H_0 : $\lambda=2$ против альтернативы $\lambda\neq 2$.
 - а) Выведите формулы для теста отношения правдоподобия LR, теста множителей Лагранжа LM и теста Вальда W.
 - б) Проведите тесты для конкретной выборки с $n=1000,\, \bar{y}=2.2$ и уровня значимости 1%.
- 2. Величины (y_i) независимы и нормально распределены $\mathcal{N}(\mu, 1)$. Количество наблюдений n велико. Тестируем гипотезу H_0 : $\mu = 0$ против альтернативы $\mu \neq 0$.
 - а) Выведите формулы для теста отношения правдоподобия LR, теста множителей Лагранжа LM и теста Вальда W.
 - б) Проведите тесты для конкретной выборки с $n=1000, \sum y_i=1000, \sum y_i^2=4000$ и уровня значимости 1%.

Неоцениваемые задачи в удовольствие:

- 3. Гипотеза H_0 описывается 5-ю независимыми уравнениями, неограниченный максимум лог-правдоподоб равен $\ell_{UR}=-200$, а ограниченный $-\ell_R=-209$. Число наблюдений n велико. Альтернативная гипотеза состоит в том, что хотя бы одно уравнение не выполнено.
 - а) Отвергается ли H_0 на уровне значимости 1%?
 - б) Найдите p-значение.
- 4. Оценка неизвестного вектора параметров $a=(a_1,a_2,a_3)$ равна $\hat{a}=(1,2,3)$ с оценкой ковариационной матрицы

$$\widehat{\mathbb{V}\mathrm{ar}}(\hat{a}) = \begin{pmatrix} 9 & -1 & 2 \\ & 16 & -1 \\ & & 10 \end{pmatrix}.$$

Число наблюдений велико. Рассмотрим гипотезу H_0 : $a_1=a_2=a_3$ против альтернативы о том, что хотя бы одно уравнение не выполнено.

- а) Предложите естественную оценку \hat{b} для вектора $b=(a_1-a_2,a_2-a_3).$
- б) Оцените ковариационную матрицу $\widehat{\mathbb{V}\mathrm{ar}}(\hat{b}).$
- в) Переформулируйте H_0 в терминах вектора b.
- г) Проведите тест Вальда гипотезы H_0 на уровне значимости 5%.
- 5. Мы оцениваем три неизвестных параметра, $(\theta_1,\theta_2,\theta_3)$. При максимизации с учётом ограничений гипотезы H_0 оказывается, что градиент лог-правдоподобия равен grad $\ell=(-0.1,0.2,0)$, а матрица Гессе в точке ограниченного экстремума равна

$$H = \begin{pmatrix} -5 & -2 & 0\\ & -6 & 0\\ & & -10 \end{pmatrix}$$

Число наблюдений велико.

- а) Чему равен градиент лог-правдоподобия в точке неограниченного экстремума?
- б) Протестируйте H_0 на уровне значимости 1% с помощью теста множителей Лагранжа.
- 6. Вспомним классический хи-квадрат тест Пирсона на соответствие выборки заданному дискретному закону распределения со статистикой

$$S = \sum_{i=1}^{k} \frac{(f_i - np_i)^2}{np_i},$$

где k — число клеток таблицы, f_i — количество наблюдений, попавших в i-ую клетку таблицы, а $p_1, p_2, ..., p_k$ — вероятности, предполагаемые в H_0 .

С каким тестом (LR/LM/W) совпадает данная статистика?

Домашнее задание 6

Дедлайн: 2025-06-18, 23:59.

Оцениваемые задачи:

- 1. Случайные величины $y_1,...,y_n$ независимы и одинаково распределены с $\mathbb{P}(y_i=1)=p$ и $\mathbb{P}(y_i=0)=1-p$. Рассмотрим бутстрэп-выборку $y_1^*,...,y_n^*$.
 - а) Найдите $\mathbb{P}(y_1^* = y_1)$ и $\mathbb{P}(y_1^* = y_2^*)$.
 - б) Найдите $\mathbb{E}(y_i^*)$ и $\mathbb{V}\mathrm{ar}(y_i^*)$.
 - в) Найдите $\mathbb{C}\text{ov}(y_1^*, y_2^*)$.
- 2. Винни-Пух хочет проверить 5 нулевых гипотез. Он посчитал p-значения для каждой из них, p=(0.03,0.04,0.08,0.15,0.30).
 - а) Какие гипотезы отвергнет алгоритм Холма Бонферонни, гарантирующий FWER=0.2?
 - б) Какие гипотезы отвергнет алгоритм Беньямини Хохберга, гарантирующий FDR=0.2?

Неоцениваемые задачи в удовольствие:

3. Величины $y_1, ..., y_n$ независимы и одинаково распределены с функцией плотности

$$f(y) = egin{cases} \exp(a-y) \ \mathrm{ecnu} \ y \geq a, \ 0, \ \mathrm{uhaue}. \end{cases}$$

- а) Найдите оценку неизвестного параметра a методом максимального правдоподобия.
- б) Какова фактическая вероятность накрытия параметра a при построении наивного бутстрэп доверительного интервала с номинальной вероятностью накрытия 95%?
- 4. Опишите алгоритм наивного бутстрэпа для построения 95% доверительного интервала для истинной медианы распределения.
- 5. У исследователя всего две нулевых гипотезы. Каждая из них априорно верно с вероятностью 0.2 независимо от других. При верной отдельной нулевой гипотезы H_j распределение соответствующей ей тестовой статистики непрерывно. Для упрощения будем считать, что если отдельная нулевая гипотеза H_j не верна, то её p-значение в точности равно 0.
 - а) Вспомните, как распределено p-значение при верной нулевой гипотезе.
 - б) Рассмотри алгоритм Холма Бонферонни, гарантирующий FWER=0.2. Какова условная вероятность того, что он отвергнет конкретную нулевую гипотезу с известным p-значением равным u?
 - в) Рассмотри алгоритм Беньямини Хохберга, гарантирующий FDR=0.2. Какова условная вероятность того, что он отвергнет конкретную нулевую гипотезу с известным p-значением равным u?
- 6. В одном из вариантов бутстрэпа (subsampling bootstrap) в бутстрэп выборку попадает m < n наблюдений без повторов из исходной выборки в n наблюдений. Предположим, что исходные n наблюдений $y_1, y_2, ..., y_n$ независимы и равномерны $\mathrm{Unif}[0,1]$. Рассмотрим бутстрэп выборку $y_1^*, ..., y_m^*$.
 - а) Как распределено y_i^* ?
 - б) Найдите $\mathbb{C}\mathrm{orr}(y_1^*, y_2^* \mid y_1, y_2, \dots, y_n)$.
 - в) Найдите \mathbb{C} orr (y_1^*, y_2^*) .