

4조 LIDAR 센서를 이용한 자율주행 RC카 글러가죠...

조장 : 김동영

조원 : 박장현 최재식 권희제 한제노 최현기

프로젝트 개요

이 프로젝트는 RC카를 활용하여 자율주행 시스템을 개발하는 것을 목표로 합니다. 자율주행 시스템에는 LIDAR센서를 사용합니다. 그리고 주변 환경을 감지하고, 이를 기반으로 카메라,실시간으로 주행 경로를 조정하여 안전하고 자율적으로 이동할 수 있는 시스템을 구축을 목표로 했습니다.

프로젝트 목표

라이다 센서를 활용하여 주변 환경을 정확하게 감지하고 장애물을 식별

최종 목표는 주행 경로 계획 알고리즘을 활용하여 RC카가 자율적으로 주행이 가능한 상태로 만드는 것입니다.

하드웨어 조사 및 재료 선정

재료 선정이유?

라즈베리 파이4 : USB포트,HDMI포트,카메라,Wi-Fi,블루투스 등 다양한 연결 및 확장 기능 제공

LIDAR센서 : 레이저를 사용하여 주변 환경의 거리와 위치 정보를 측정하는 기술

L298 모터 드라이버 : 전원을 모터에 제공하고 모터의 회전 방향을 제어하는데 사용

(서보모터를 사용하지않음으로 탱크의 '무한궤도'의 회전원리를 적용)

프레임 : 주행 시스템과 다른 구성 요소들을 지탱하고 결합시키는 역할

블루투스 모듈 : 수동 컨트롤러 매핑을 위한 재료

LAN카드 : 인터넷 연결을 위한 용도

개발 환경 Setting

Main board: RaspbarryPi 4

0S: Ubuntu 20.04

Language: Python

DBMS: MySQL

Web Service: AWS

configuration management: Github

하드웨어 조립

상단 조립

완성품

하드웨어 모터 구동 확인

모터구동 확인 영상

수동 컨트롤러 조작

SSH 외부 접속

C:\Users\schen>ssh ubuntu@192.168.112.205 ubuntu@192.168.112.205's password: Welcome to Ubuntu 20.04.6 LTS (GNU/Linux 5.4.0-1069-raspi aarch64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com * Support: https://ubuntu.com/advantage

Last login: Tue Jun 13 10:32:35 2023 from 192.168.112.236 ubuntu@ubuntu:~\$

수동 컨트롤 코드 실행

```
root@ubuntu:/home/ubuntu# cd Desktop
root@ubuntu:/home/ubuntu/Desktop# ls
__pycache__ drivetest.py l298.py sixpair test.py test2.py test3.py
root@ubuntu:/home/ubuntu/Desktop# python3 drivetest.py
Available devices:
   /dev/input/js0
Opening /dev/input/js0...
Device name: Wireless Controller
```


수동 컨트롤 시행영상

마치며.

김동영

이 프로젝트를 통해 팀원들과의 협업, 문제 해결 능력, 기술 습득 등 다양한 면에서 성장할 수 있었습니다. 또한, 켄스톤 디자인 프로젝트를 통해 제가 선택한 전공 분야가 아닌 다른 분야에도 관심을 가지게 되는 계기가 되었으며 말은 일에 대한 열정과 흥미를 더욱 확고히 느낄 수 있었습니다.

마지막으로 앞으로의 성장에 조금이지만 영향을 꿰친 소중한 경험이었다고 생각합니다.

권희제

프로젝트를 하면서 하드웨어와 소프트웨어 측면에서 여러가지 문제들이 있었지만, 저희는 문제를 해결하기 위해 노력했고, 끊임없는 실험과 테스트를 통해 문제점들을 하나씩 해결해 나가며 결과를 만들어 낼 수 있었습니다. 이러한 과정에서 우리는 문제 해결 능력을 향상시킬 수 있었고, 창의적인 아이디어를 발전시킬 수 있는 기회를 얻었습니다.

박장현

캡스톤 디자인 프로젝트를 진행하면서 많은 경험을 쌓을 수 있었고, 대학생으로서의 성장을 실감할 수 있었습니다. 01 프로젝트를 통해 이론적인 지식뿐만 아니라 개발 과정에서의 문제 해결 능력을 귀울 수 있었습니다

캡스톤 디자인 프로젝트를 통해 실제로 사용되는 기술과 도구를 접할 수 있었습니다 졸업 후 취업에 큰 도움이 될 것 **같고 프로젝트를 통해 배운 기술을 직접** 적용하고 실제 결과를 확인함으로써 전공 분야에 대한 실무적인 이해를 높일 수 있었습니다

한제노

프로젝트를 진행하면서 문제 해결 과정에서 많은 도전과 실패를 경험했습니다. 하지만 그 과정에서 얻은 교훈은 더욱 중요한 성취로 다가왔습니다. 문제를 발견하고, 분석하고, 창의적인 아이디어를 도출하여 구현해 나가는 과정은 저에게 큰 자신감과 동기부여가 되었고 앞으로 남은 기간 동안 좋은 결과가 있도록 프로젝트에 임하겠습니다.

최현기

최재식

프로젝트를 시작하기 전에는 많은 불확실성과 어려움에 직면했습니다. 하지만 팀원들과의 협력과 통해 이러한 어려움을 극복할 수 있었습니다. 서로의 아이디어와 **각자의 노력으로 수동 조작까지 성공적으로** 수행할 수 있었고 방학 기간 중에 자율주행까지 완성할 수 있도록 팀원들과 최선을 다하겠습니다