1 Quadratic Fields

A quadratic field is defined as $\mathbb{Q}(\sqrt{-d}) = \{a + b\sqrt{-d} \mid a, b \in \mathbb{Q}\}$ where $d \in \mathbb{Z}$. It can be verified to be a field over \mathbb{Q} with the usual operations of $+, \times$, with respective identities 0, 1 and inverses $-a - b\sqrt{-d}$ and $\frac{a}{a^2 + b^2 d} - \frac{b}{a^2 + b^2 d}\sqrt{-d}$.

An integer in a field is defined to be any element of the field which is the root of a monic polynomial with coefficients in \mathbb{Z} . The set of integers in a quadratic field form a ring called its ring of integers. We will denote the ring of integers in $\mathbb{Q}(\sqrt{-d})$ by $\mathbb{Z}(\sqrt{-d})$.

Lemma 1.1. 1. If
$$d = 0$$
, i.e. $\mathbb{Q}(\sqrt{-d}) = \mathbb{Q}$, then $\mathbb{Z}(\sqrt{-d}) = \mathbb{Z}$.

- 2. If $d \equiv 1, 2 \mod 4$, then $\mathbb{Z}(\sqrt{-d}) = \{a + b\sqrt{-d} \mid a, b \in \mathbb{Z}\}.$
- 3. If $d \equiv 3 \mod 4$, then $\mathbb{Z}(\sqrt{-d}) = \{a + b \frac{1 + \sqrt{-d}}{2} \mid a, b \in \mathbb{Z}\}.$

Note that if $d \equiv 0 \mod 4$, then $\mathbb{Q}(\sqrt{-d}) = \mathbb{Q}(\sqrt{-d/4})$, so this case is covered by the above cases.

Proof. The elements of the given sets are integers in their respective fields:

- 1. Every $z \in \mathbb{Z}$ is the root of the monic polynomial x z.
- 2. If $d \equiv 1, 2 \mod 4$, then $a + b\sqrt{-d}$ is a root of the monic polynomial $x^2 2ax + a^2 + db^2$.
- 3. If $d \equiv 3 \mod 4$, then $a + b \frac{1 + \sqrt{-d}}{2}$ is a root of the monic polynomial $x^2 (2a + b)x + a^2 + ab + \frac{d+1}{4}b^2$, and $\frac{d+1}{4} \in \mathbb{Z}$ as $4 \mid (d+1)$.

Conversely these are the only integers because if x is a root of a monic polynomial P(x) with integer coefficients, then:

- Irrational or complex roots of rational polynomials occur in conjugate pairs so x must be the root of a linear or quadratic factor of P(x), where the coefficients of the factors are in \mathbb{Q} .
- The factors of an integer polynomial can be made to be monic with integer coefficients. This is Gauss' Lemma. Proof: Let P(x) = Q(x)R(x), where Q(x), R(x) are monic (we can assure this by dividing by the leading coefficients of Q(x) and R(x)). Then there exist smallest positive integers m, n such that mQ(x) and nR(x) are integer polynomials, say Q'(x) = mQ(x) and R'(x) = nR(x). Thus mnP(x) = Q'(x)R'(x). Now if p|mn, and p is a prime, then p divides all the coefficients of mnP(x). Now suppose q_i, r_j are the first coefficients of Q'(x), R'(x) such that $p \nmid q_i, p \nmid r_j$. Then p does not divide the coefficient of x^{i+j} in the product, which is a contradiction. Hence p must divide all the coefficients of Q'(x) or all the coefficients of R'(x). But this means that either m or n was not the smallest possible integers, as assumed. Hence Q(x) and R(x) must be integer polynomials.

- If a factor is linear monic with coefficients in \mathbb{Z} , then its root is in \mathbb{Z} , which is in the sets above for any d. Otherwise let the factor be $x^2 ax + b$, $a, b \in \mathbb{Z}$. Its root is $x = \frac{a + \sqrt{a^2 4b}}{2}$ (the other root is analogous). In this case:
 - 1. If d=0, then for x to be in \mathbb{Q} , a^2-4b must be a square. If a is even, then the square root is even, so $x\in\mathbb{Z}$. If a is odd, then the square root is also odd, so $a+\sqrt{a^2-4b}$ is even, and again $x\in\mathbb{Z}$.
 - 2. If $d \equiv 1, 2 \mod 4$, and a^2-4b is not a square, then $x \in \mathbb{Q}(\sqrt{-d})$ iff $a^2-4b=-m^2d$ for some $m \in \mathbb{Z}$. If a is even, then m is even, and $x = \frac{a}{2} + \frac{m}{2}\sqrt{-d}$, which is in $\mathbb{Z}(\sqrt{-d})$. If a is odd and $a^2 = 4b m^2d$, then $a^2 \equiv 1 \mod 4$, whereas $4b m^2d \equiv 0, 2, 3 \mod 4$, which is not possible.
 - 3. If $d \equiv 3 \mod 4$, then as before $a^2 4b = -m^2d$. In this case if a is odd, we get $x = \frac{a}{2} + \frac{m}{2}\sqrt{-d}$, where a, m are both odd. Then $x = \frac{a-m}{2} + m\frac{1+\sqrt{-d}}{2}$, which is in $\mathbb{Z}(\sqrt{-d})$.

Some definitions for rings. Let R be any ring.

- Divisibility: For any elements $a, b \in R$, define a|b if there exists $c \in R$ such that ac = b.
- Unit: A unit $u \in R$ is any element such that u|1. For example in the ring \mathbb{Z} , the only units are ± 1 , whereas in the ring $\mathbb{Z}(i)$ the units are $\pm 1, \pm i$. Note that the set of units in a ring form a subgroup of the ring.
- Associate: Two elements $a, b \in R$ are said to be associates if a = ub where u is a unit in R.
- **Prime:** A prime $p \in R$ is any element which is not a unit such that a|p iff a is a unit or an associate of p.

A ring R is a unique factorization domain if every non-unit non-zero element in R can be written as a product of primes in a unique way, up to reorderings, units and associates.

2 Case d = 0 — Unique Factorization in \mathbb{Z}

Lemma 2.1. Given any $a, b \in \mathbb{Z}$, $b \neq 0$, there exists $q, r \in \mathbb{Z}$ such that a = bq + r, and |r| < |b|.

Proof. Consider $\frac{a}{b}$. This is an element of \mathbb{Q} , and hence lies between two consecutive elements of \mathbb{Z} . Thus there is some $q \in \mathbb{Z}$ such that $|\frac{a}{b} - q| < 1$. Multiplying by |b|, we have $|b||\frac{a}{b} - q| = |a - bq| < |b|$. Set r = a - bq, then q, r have the required property. \square

The gcd of $a, b \in \mathbb{Z} - \{0\}$ is any element $d \in \mathbb{Z}, d|a, d|b$ such that for any other element $d' \in \mathbb{Z}, d'|a, d'|b \Rightarrow d'|d$.

Lemma 2.2. If d is a gcd of $a, b \in \mathbb{Z}$ then d = ax + by for some $x, y \in \mathbb{Z}$.

Proof. The proof follows by Euclid's algorithm and Lemma 2.1.

Lemma 2.3. If $p \in \mathbb{Z}$ is a prime, then p|ab implies p|a or p|b.

Proof. Suppose p|ab, and w.l.o.g. assume $p \nmid a$. Then 1 is a gcd of a, p, because if d|a, d|p, then d is a unit or an associate of p, but it cannot be an associate as $p \nmid a$ - so it is a unit i.e. d|1. By Lemma 2.2, 1 = ax + py. Thus b = abx + pby. Since p|abx, p|pby, we have p|b.

Theorem 2.4. \mathbb{Z} is a unique factorization domain.

Proof. Every element of \mathbb{Z} is either prime, or the product of two numbers which are themselves products of primes. Hence inductively, every number can be written as a product of primes. If $n = p_1 p_2 \dots p_m = q_1 q_2 \dots q'_m$, where the p_i, q_j 's are primes, then $p_1 | q_1 q_2 \dots q'_m$, so by Lemma 2.3 $p_1 | q_j$ for some $j \in 1 \dots m'$. Thus p_1 is an associate of q_j . Cancelling these out on both sides and repeating shows us that the prime factorization is unique.

3 Case d = 1, 2 — Unique Factorization in $\mathbb{Z}(i), \mathbb{Z}(\sqrt{-2})$

We only need to establish the analog of Lemma 2.1 for $\mathbb{Z}(i)$ and $\mathbb{Z}(\sqrt{-2})$ - the rest of the proof follows the case d=0.

For any ring R, a norm is a function $N: R \to \mathbb{Z}^+ \cup \{0\}$ such that N(0) = 0. The analog of Lemma 2.1 for an arbitrary ring R with a norm N is then: For any $a, b \in R$, $b \neq 0$, there exist $q, r \in R$ such that a = bq + r and either r = 0 or N(r) < N(b). Such a ring is called a normed Euclidean domain.

We can define a norm on a field F as a function $N: F \to \mathbb{Q}^+ \cup \{0\}$, and then the ring of integers in the field inherits it (of course we will need to ensure that N(z) is an integer if z is an integer in F). Define the norm on $\mathbb{Z}(\sqrt{-d})$ as a function $N: \mathbb{Q}(\sqrt{-d}) \to \mathbb{Q}$ defined by $N(a+b\sqrt{-d})=a^2+db^2$. This has the following properties:

- $N(z) \ge 0$ and $N(z) = 0 \leftrightarrow z = 0$.
- N(z) = 1 iff z is a unit.
- N(ab) = N(a)N(b).

Lemma 3.1. For d = 1, 2, given any $a, b \in \mathbb{Z}(\sqrt{-d})$, $b \neq 0$, there exists $q, r \in \mathbb{Z}(\sqrt{-d})$ such that a = bq + r, and N(r) < N(b).

Proof. The proof is analogous to the proof of Lemma 2.1. Consider $\gamma = \frac{a}{b}$. Then since $\mathbb{Q}(\sqrt{-d})$ is a field, $\gamma \in \mathbb{Q}(\sqrt{-d})$. Let $\gamma = x + y\sqrt{-d}$, where $x, y \in \mathbb{Q}$. Thus there exist $m, n \in \mathbb{Z}$ such that $|x - m| \leq \frac{1}{2}$ and $|y - n| \leq \frac{1}{2}$. Let $q = m + n\sqrt{-d}$. Thus

$$N(\gamma - q) = N((x - m) + (y - n)\sqrt{-d}) = (x - m)^2 + d(y - n)^2 \le \frac{1 + d}{4} < 1$$

Thus $N(a - bq) = N(b(\gamma - q)) = N(b)N(\gamma - q) < N(b)$. Set r = a - bq to get q, r that satisfy the properties required in the lemma.

4 Case d = 3, 7, 11 — Unique Factorization in $\mathbb{Z}(\sqrt{-3})$, $\mathbb{Z}(\sqrt{-7})$, $\mathbb{Z}(\sqrt{-11})$

Note that the above proof does not work since we showed that $N(\gamma-q) \leq \frac{1+d}{4}$, but this is less than 1 for $d \leq 2$. However if $d \equiv 3 \mod 4$, we have $\mathbb{Z}(\sqrt{-d}) = \{a+b\frac{1+\sqrt{-d}}{2} \mid a,b \in \mathbb{Z}\}$. A more careful analysis will show that in this case, $N(\gamma-q) \leq \frac{(1+d)^2}{16d}$, which is less than 1 for $d \leq 14$ and hence proves unique factorization for d = 3,7,11.

Lemma 4.1. For d = 3, 7, 11, given any $a, b \in \mathbb{Z}(\sqrt{-d})$, $b \neq 0$, there exists $q, r \in \mathbb{Z}(\sqrt{-d})$ such that a = bq + r, and N(r) < N(b).

Proof. As above, consider $\gamma = \frac{a}{b}$, once again, since $\gamma \in \mathbb{Q}(\sqrt{-d})$, we have $\gamma = x + y\sqrt{-d}$, where $x,y \in \mathbb{Q}$. Let us plot the elements of $\mathbb{Z}(\sqrt{-d})$ — these form a lattice in the plane as shown in Section 4. Each point in $\mathbb{Q}(\sqrt{-d})$ lies in one of the lattice cells. We can now compute the points in a cell that are maximally far from the vertices. Consider the cell with vertices (0,0),(1,0),(0,1),(1,-1). By symmetry and using basic calculus, we can see that the point farthest from all will lie on the vertical line connecting (0,1),(1,-1) and will be equidistant from (0,0),(0,1) which correspond to the integers $0,\frac{1}{2}+\frac{\sqrt{-d}}{2}$. Let the point be $\frac{1}{2}+x\sqrt{-d}$. Then equating the norms to the two integers, we have $\frac{1}{4}+dx^2=d(x-\frac{1}{2})^2$. Solving this we get $x=\frac{d-1}{4d}$, and its distance from the lattice points is $\frac{(1+d)^2}{16d}$.

Thus there is an element $q \in \mathbb{Z}(\sqrt{-d})$, such that $N(\gamma - q) \leq \frac{(1+d)^2}{16d} < 1$ for $d \leq 14$. Then by repeating the above argument, we get N(a - bq) < N(b), and setting r = a - bq we have the result.

5 Failure of Unique Factorization for $\mathbb{Z}(\sqrt{-5})$, $\mathbb{Z}(\sqrt{-6})$, $\mathbb{Z}(\sqrt{-10})$

The proof for d=1,2 did not work for any greater d, since it required d+1<4. The proof for d=3,7,11 worked only for these numbers because it required $d\equiv 3 \mod 4$ and

4

Figure 1: Left: Lattice of integers in $\mathbb{Z}(\sqrt{-d})$. Each point (a,b) represents the integer $a+b\frac{1+\sqrt{-d}}{2}$. Right: one lattice cell, with the point farthest from the lattice points.

 $(d+1)^2 < 16d$. Thus we do not have a proof for d=5,6,10,13,14 or any number larger than 14. Note that we do not consider d which have a square factor, as these are equivalent to smaller d. We now show that unique factorization fails for d=5,6,10,13,14,15. The key fact we need is that N(z) is multiplicative: N(ab) = N(a)N(b).

- d=5: Observe that $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. N(2)=4, thus the only integers in $\mathbb{Z}(\sqrt{-5})$ that can divide 2 and are not units or associates must have norm 2. However since $N(a+b\sqrt{-5})=a^2+5b^2$, and $a,b\in\mathbb{Z}$, we see that b must be 0, and hence there is no such a. Thus 2 is prime in $\mathbb{Z}(\sqrt{-5})$. Similarly we can verify that 3 is prime as there are no elements in $\mathbb{Z}(\sqrt{-5})$ with norm 3, and so are $1+\sqrt{-5}$ and $1-\sqrt{-5}$, whose norms are 6. Thus 6 has two distinct factorizations in $\mathbb{Z}(\sqrt{-5})$.
- $d = 6 : 10 = 2 \cdot 5 = (2 + \sqrt{-6})(2 \sqrt{-6})$. Once again $\mathbb{Z}(\sqrt{-6})$ has no elements with norm 2 or 5, thus $2, 5, 2 + \sqrt{-6}, 2 \sqrt{-6}$ are all prime in $\mathbb{Z}(\sqrt{-6})$.
- d=10: We use $14=2\cdot 7=(2+\sqrt{-10})(2-\sqrt{-10})$. Since $\mathbb{Z}(\sqrt{-10})$ has no elements with norm 2 or 7, the factors are all primes. A similar argument works for d=13,14,17.
- d=15: Observe that $4=2\cdot 2=(\frac{1+\sqrt{-15}}{2})(\frac{1-\sqrt{-15}}{2})$. The conclusion follows as above. Similar arguments show d=23,31,35,39,47 also do not result in unique factorization domains.

Unique factorization can be restored for these domains by considering ideals in the domains, we shall not consider those here.

For d<0, there are infinitely many values for which unique factorization holds in $\mathbb{Z}(\sqrt{-d})$. However for d>0, the only values for which unique factorization holds in $\mathbb{Z}(\sqrt{-d})$ are d=1,2,3,7,11 (proved above) and d=19,43,67,163. We now turn to these remaining values.

6 $\mathbb{Z}(\sqrt{-d})$ is not a normed Euclidean domain for d > 11

We showed above that $\mathbb{Z}(\sqrt{-d})$ is a unique factorization domain for various d above by defining a norm, and showing that analogs of Lemma 2.1 held for this norm. However our proofs were limited to $d \leq 11$. We now show that in fact analogs of Lemma 2.1 do not hold for $\mathbb{Z}(\sqrt{-d}), d > 11$ for any possible norm function — $\mathbb{Z}(\sqrt{-d}), d > 11$ is not a normed Euclidean domain. Hence this proof method cannot work.

Let $\theta = \frac{1}{2}(1 + \sqrt{-d})$ if $d \equiv 3 \mod 4$, and $\theta = \sqrt{-d}$ otherwise.

- The only units in $\mathbb{Z}(\sqrt{-d})$ are 1 and -1. Proof: If $(a+b\theta)$ is a unit, then $N(a+b\theta)=1$ for the standard norm. However for d>3, this is possible only if $a=\pm 1, b=0$.
- The elements 2 and 3 are irreducible in $\mathbb{Z}(\sqrt{-d})$. Again, if $(a+b\theta)|2$, then $N(a+b\theta)|N(2)=4$. Thus $N(a+b\theta)=2$, since the only elements with $N(a+b\theta)=1$ are units. However for d>7, there are no elements in $\mathbb{Z}(\sqrt{-d})$ with norm 2. Similarly if $(a+b\theta)|3$, we must have $N(a+b\theta)=3$, and this is not possible for d>11.

Now let $D: \mathbb{Z}(\sqrt{-d}) \to \mathbb{Z}^+ \cup \{0\}$ be any norm function such that D(0) = 0. Let $m \in \mathbb{Z}(\sqrt{-d})$ be such that m is not 0 or a unit, and D(m) is as small as possible. Now we divide 2 and θ by m.

- Divide 2 by m: 2 = mq + r, such that D(r) < D(m) or r = 0. Since D(m) is as small as possible, r = 0, -1, 1. If r = 0 then m|2, so $m = \pm 2$, since 2 is irreducible and m is not a unit. If r = -1, then $m = \pm 3$ as 3 is also irreducible. If r = 1, then m|1, which is not possible as m is not a unit.
- Divide θ by m: $\theta = mq' + r'$ with D(r) < D(m) or r = 0. Again r' = 0, 1, -1. Thus m divides one of $\theta, \theta 1, \theta + 1$. Since $m = \pm 2, \pm 3$ from above, none of these is possible. Thus $\mathbb{Z}(\sqrt{-d}), d > 11$ is not a Euclidean domain for any norm D.

The above argument does not apply to d=3,7,11 because for $d=3,\theta$ is a unit, whereas in $\theta|2$ in $\mathbb{Z}(\sqrt{-7})$ and theta|3 in $\mathbb{Z}(\sqrt{-11})$. Thus the premises of the argument do not hold. Thus our previous proof strategy does not work for d>11. However, there is a possible alternative — if we could establish an analog of Lemma 2.2, then we would still get unique factorization. This can be done using the Hasse-Dedekind norm.