RL Circuit:

Plot i(t), $V_R(t)$ and $V_L(t)$ for the given RL series circuit using Pspice.

CODE:

Series RL Circuit

V 1 0 DC 1

R 1 2 2K

L 2 0 50m

.TRAN 2.5u 250u UIC

.PROBE

.END

Output Plot:

 $V_{R}(t)$, $V_{L}(t)$ and $I_{L}(t)$ plots for series RC circuit

RC Circuit:

Plot i(t), $V_R(t)$ and $V_C(t)$ for the given RL series circuit using Pspice.

CODE:

Series RC Circuit

V 1 0 DC 5

R 1 2 2K

C 2 0 0.1u

.TRAN 0.02m 2m UIC

.PROBE

.END

Output Plot:

 $V_R(t)$, $V_C(t)$ and $I_C(t)$ plots for series RC circuit

Thevenin Theorem:

Find out Thevenin Equivalent Circuit and find out V_{th} and R_{th} Using Pspice for the given circuit.

Case 1: Calculation of V_{th}

CODE

Calculation of V

V1 1 0 DC 1

R1122

R2 2 4 4

R3 1 3 6

R4346

R5 4 0 10

.OP

.END

5

OUTPUT

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

1 1.0000 2 .9048 3 .8571 4 .7143

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -7.143E-02

 $V_{th} = V(2) - V(3) = 0.0477 V$

Case 2: Calculation R_{th}

CODE

Calculation of R

V 1 2 DC 1

R1012

R2 1 3 4

R3 0 2 6

R4 2 3 6

R5 3 0 10

.OP

.END

OUTPUT

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V 2.266E 00

 $R_{th} = 1/2.266 \text{ ohm}$

= 4.41 ohm

Reciprocity Theorem:

Find out the current through the 8 ohm resistor in the given circuit using P-spice and verify reciprocity theorem.

STEP-1

Finding out the current through 8 ohm resistor

CODE:

DC Analysis

V1 0 1 DC 1

V2 4 3 DC 0

R1122

R2 2 5 4

R3 2 3 8

R4 1 4 6

R5 4 5 6

R6 5 0 10

.op

.end

OUTPUT:

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V2 3.836E-03

STEP-2

Finding out the current through 8 ohm resistor

CODE:

DC Analysis

V2 0 1 DC 0

V1 4 3 DC 1

R1 1 2 2

R2 2 5 4

R3 2 3 8

R4146

R5 4 5 6

R6 5 0 10

.op

.end

OUTPUT:

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 3.836E-03

Here, from the produced output we can notice that the current passing through $V_{2,}$ after swapping the sources, is equal to the current passing through V_{1} . Hence, the Reciprocity theorem is proved and the value of current passing through 8 ohm resistor is 3.836 mA

Compensation Theorem:

Verify compensation theorem using PSpice for the given circuit when the value of R₁ is increased by 30%.

Case 1: When R3 is 20ohm.

Case- 1: When R3 is 20 ohm.

CODE

With given R value

V1 1 0 DC 75

V2 3 0 DC 0

R1125

R2 2 0 20

R3 2 3 20

.OP

.END

OUTPUT

VOLTAGE SOURCE CURRENT

NAME CURRENT V1 -5.000E+00 V2 2.500E+00

Case- 2: When R3 is 26 ohm.

CODE

R value increased

V1 1 0 DC 75

V2 3 0 DC 0

R1125

R2 2 0 20

R3 2 3 26

OP.

.END

OUTPUT

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -4.600E+00

V2 2.000E+00

Case-3: When voltage source is added

CODE

Compensated circuit

V1 1 0 DC 75

V2 3 0 DC -15

R1125

R2 2 0 20

R3 2 3 26

OP.

.END

<u>OUTPUT</u>

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -5.000E+00

V2 2.500E+00

Active Lowpass Filter:

Design a 1st order low-pass filter with cutoff frequency 50kHz and voltage gain 2. Plot the frequency response using P-Spice.

CODE:

Active LPF

V 1 0 AC 1

R 1 2 31.83

C 2 0 0.1u

E30202

.ac dec 1000 100Hz 1000kHz

.PROBE $V_{M}(3,0) V_{M}(1,0)$

.END

Output Plot:

Active Highpass Filter:

Design a first order high pass filter with cutoff frequency 5KHz and voltage gain of 5. Plot the frequency response using Pspice.

CODE:

Active HPF

V 1 0 ac 1

C 1 2 0.1u

R 2 0 318.3

E30205

.ac dec 1000 100Hz 1000KHz

.PROBE $V_M(3,0) V_M(1,0)$

.END

Output Plot:

Active Bandpass Filter:

Band Pass Filter

V 1 0 AC 1

R1 1 2 318.3

C1 2 0 0.1u

C2 2 3 0.1u

R2 3 0 3.183

E403010

.ac dec 1000 5kHz 500kHz

.probe $V_{M}(4,0) V_{M}(1,0)$

.end

Date: November 08, 2023

Y-parameter:

Find out the Y-parameters for the given circuit using Pspice.

 $\underline{\mathbf{Case-1:}} \, \mathbf{When} \, \boldsymbol{V}_1 = \, 0.$

CODE:

V1 4 0 DC 1

V2 0 1 DC 0

V3 4 3 DC 0

R1126

R2 2 3 6

R3 2 0 4

.OP

.END

OUTPUT:

Voltage source currents,

SOURCE	CURRENT
V2	-0.0476 A
V3	0.119 A

Now,

$$Y_{12} = \frac{I_1}{V_2} = \frac{-0.0476}{1} = -0.0476$$

$$Y_{22} = \frac{I_2}{V_2} = \frac{0.119}{1} = 0.119$$

Case-2: When $V_2 = 0$.

CODE:

V1 0 1 DC 1

V2 1 2 DC 0

20

V3 4 0 DC 0

R1236

R2346

R3 3 0 4

.OP

.END

OUTPUT:

Voltage source currents,

SOURCE	CURRENT
V2	0.119 A
V3	-0.0476 A

Now,

$$Y_{11} = \frac{I_1}{V_1} = \frac{0.119}{1} = 0.119$$

$$Y_{21} = \frac{I_2}{V_1} = \frac{-0.0476}{1} = -0.0476$$

Z-parameter:

Find out the Z-parameters for the given circuit using Pspice.

Case-1: When $I_1 = 0$

CODE:

V1 1 0 DC 1

V3 1 2 DC 0

R1236

R2 3 4 6

R3 3 0 4

R4 4 0 100meg

.OP

.END

OUTPUT:

Voltage source currents,

SOURCE	CURRENT
V1	0.25
V3	0.1

Now,

$$Z_{11} = 4 \text{ ohm}$$

$$Z_{12} = 10 \text{ ohm}$$

Case-2: When $I_1 = 0$,

CODE:

V1 1 0 DC 1

V3 1 2 DC 0

R1126

R2 2 3 6

R3 2 0 4

R4 1 0 100meg

.OP

.END

OUTPUT:

Voltage source currents,

SOURCE	CURRENT
V2	0.25
V3	0.1

Now,

$$Z_{22} = 4 \text{ ohm}$$

$$Z_{21} = 10 \text{ ohm}$$