General

Outlier Detection	lower_bound = 0.1	
	upper_bound = 0.95	
	<pre>print(df.values.quantile([lower_bound,</pre>	
	upperbound])	

Pandas

Basic statistics	df.info()	Shows statistics
Dasic statistics	df.head()	Shows first rows
Change Indexes	df.reset index(inplace=True)	Inplace allows to modify the
Simile Indente	df.set_index("Date", inplace=True)	variable itself
Drop Rows, Columns	df = df.drop("Row or Column Name",	axis 0 for rows, 1 for columns
r,	axis=1)	
Quickly Plot a Column	df['Columnname'].plot()	
,	plt.show()	
Showing the last lines	df.tail(2)	2 last rows
Select columns	df['Column Name', 'Column Name']	
ociect columns	<pre>df.iloc[:, columnindex]</pre>	
Select rows	<pre>df.iloc[rowindex]]</pre>	
	<pre>df['Column Name'].iloc[rowindex]</pre>	Selecting column and row
Reading file types	http://pandas.pydata.org/pandas-	Ex= pd.read_csv
	docs/stable/io.html	
Sending output back to CSV	<pre>df.to_csv('filename.csv')</pre>	All
8	<pre>df['Columname'].to_csv('filename.csv')</pre>	1 column
Change column names	<pre>df.rename(columns={ 'Columnname':</pre>	
	'Newname' })	
Read in and change columns	<pre>df.read_csv('filename', names =</pre>	
Ü	['Columname', 'Columname'])	
Select rows and columns	df[0][0][:1]	1st frame (if more than 1), 1st
		column, starting 2nd row
Print data plus extra	<pre>print("extra"+str(column))</pre>	
Combining frames	<pre>concat = pd.concat([df1,df2])</pre>	Concatenate (same columns)
Something manes	append = dfl.append(df2)	Append (like in database)
	<pre>merge = pd.merge(df1,df2, on= 'Colname',</pre>	Merge (adding both columns)
	how = 'left'/'right'/'outer'/'inner')	Join (merge based on index)
	<pre>join = df1.join(df2, on = '', how = '')</pre>	
Pickle a model	import pickle	
Tiene a model	<pre>pickle_out = open('name.pickle', 'wb')</pre>	wb = write bytes
	pickle.dump(df, pickle out)	,
	pickle out.close()	
Open a pickle	<pre>pickle in = open('name.pickle', 'rb')</pre>	rb = read bytes
open a preme	model = pickle.load(pickle in)	,
Show percentage change of time	<pre>df = df.pct change()</pre>	
series data	_	
	df.corr()	
Create Correlation Table	df.scatter matrix()	Scatter matrix
D 7 1	df.describe()	
Describe dataset	**	mean, std, max, min, count
Resample column	resample = df['column'].resample('A')	A is for annually
Handling NaNs / missing data	<pre>df.dropna(how = 'all', inplace=True)</pre>	Delete NaNs when full row is
		NaNs
	df.fillna(method='bfill'/'ffill',	Back/forward fill
	inplace = True)	
	df.fillna(value = -99999, inplace =	Replace NaNs (small value)
	True)	
Rolling mean for time series	df['column'] =	Rolling mean over 12 periods,
	pd.rolling_mean(df['column'], 12)	same for rolling_std
Quick sklearn	https://pythonprogramming.net/scikit-	
Quick skiearri	learn-sklearn-machine-learning-data-	
	analysis-python-pandas-	
	tutorial/?completed=/rolling-apply-	
	<pre>tutorial/?completed=/rolling-apply- mapping-functions-data-analysis-python-</pre>	

NumPy

Create 2-dimensional array	np.array([(a,b,c), (d,e,f)])	Inplace allows to modify the variable itself
Create array of specific size	np.arange(size)	
Information about array	np.ndim	
,	np.dtype	
	np.size	
	np.shape	
Reshape	np.reshape(#rows, #columns)	
1	np.ravel()	Converting array to single
		column
Indexing	a[rownum, colnum]	a is an array
8	a[1:, 3]	print from 2nd row onwards,
		4 th column
	a[0:2, 3]	Only first 2 rows, 4th column
Axes	Axis 0 is columns, Axis 1 is rows	
	e.g.: print(np.sum(axis=0))	
Equally distributed values	np.linspace(1,7,5)	5 equally distributed values
1 ,		between 1 and 7
Max and min	np.min, np.max	Maximum values
Concatenate (merge) arrays	np.vstack((a,b))	Vertical
	np.hstack((a,b))	horizontal
Create tables fast	np.ones or np.zeros or	
	np.random.randint(low,high,size)	
	np.random.shuffle()	Shuffling already created array

Matplotlib

Prepare Plot	fig = plt.figure()	Empty figure with no axes
1	fig, ax = plt.subplots(2,2)	2x2 grid of subplots
Plot	plt.plot(a,b)	
	plt.show()	
Attributes	plt.title	
	plt.xlabel("x")	
	plt.ylabel("y")	
	<pre>plt.legend(["a", "b"])</pre>	

Sklearn

Metrics for Classification	<pre>from sklearn.metrics import classification_report</pre>	Great evaluation overview
Evaluation in general	https://scikit- learn.org/stable/modules/model evaluation.html	