Санкт-Петербургский государственный университет

Отчет по практической части курса "Физика звезд"

Курдоякова Марина

591 группа

1. Тема работы

Для выполнения работы нам предлагалось выбрать самостоятельно себе задачу. Прочитав статью В. В. Душина и А. Ф. Холтыгина "Быстрая спектральная переменность є Per A" [1], я заинтересовалась вопросом об определении возраста этой звезды. В статье было использовали сетку моделей эволюции и изохроны вращающихся массивных звезд главной последовательности из статьи [2] и исходя из данных о вращении звезды выбирали наиболее подходящую сетку моделей. Я решила попробовать повторить этот результат и если все получится хорошо, то использовать продукт в новых работах.

2. Данные

В статье І. Brott, S. E. de Mink были представлены данные изохрон для разных химических составов:

Table 1. Initial abundances for C, N, O, Mg, Si, Fe adopted in our chemical compositions for the Magellanic Clouds and the Galaxy (see Sect. 2.3).

	-	N	О	Mg	Si	Fe
LMC	7.75	6.90	8.35	7.05	7.20	7.05
SMC	7.37	6.50	7.98	6.72	6.80	6.78
GAL	8.13	7.64	8.55	7.32	7.41	7.40

Notes. All other elements are solar abundances (Asplund et al. 2005) scaled down by 0.4 dex for the LMC and by 0.7 dex for the SMC.

Table 2. Resulting hydrogen (X), helium (Y) and metal (Z) mass fractions for the chemical mixtures used in our models.

	X	Y	Z
LMC	0.7391	0.2562	0.0047
SMC	0.7464	0.2515	0.0021
GAL	0.7274	0.2638	0.0088

Изохроны охватывают эволюцию до полного истощения водорода для звездных масс от 5 до 60 $\rm M_{sun}$. Представлены они для возрастов от 0 до 35 млн лет с интервалом 0.2 млн лет, для начальных скоростей вращения от 0 до 540 км с⁻¹ с шагом 10 км с⁻¹.

3. Задача

Задача состояла в следующем: скачать все данные для изохрон и отсортировать их по трем категориям химического состава, построить изохроны на диаграмме Г.- Р. для отдельных скоростей, чтобы сравнить полученные значения. Далее, видя что изохроны строятся правильно, попытаться среди них найти звезду, указанную в [1]. На основе данных нужно отобрать подходящие изохроны и определить возраст звезды.

4. Работа

Задача была полностью выполнена. Были скачаны данные и отсортированы. Далее я строила такие же изохроны, как в [2] дабы сравнить результаты. Как можно видеть на Рис. 1, все оказалось идентичным. Далее я написала программу, которая прогоняет некоторые параметры звезды и находит подходящие изохроны. Такая работа была проделана и для звезды є Per A, данные для который приведены на Рис. 2. Были получены такие результаты:

{10200000.0: 6, 10400000.0: 8, 10600000.0: 10, 10800000.0: 8}

где первое значение - возраст, а второе - количество подходящих изохрон. Чем больше параметров учтено и чем меньше ошибки их определения, тем изохрон меньше. Из полученных данных можно сделать вывод, что возраст ε Per A лежит в пределах 10.4 - 10.8 млн лет. Давайте построим изохроны для 10.4 млн лет и отметим на ней положение нашей звезды, как это сделано в [1] (Рис. 3). Так же, исходя из моей работы, можем построит и график для возраста 10.6 и 10.8 млн лет. (Рис. 4).

5. Выводы

Как можно видеть, изохроны строятся правильно, как же как и определяется возраст звезды. В будущем можно использовать данную наработку для определения возрастов других звезды и подтверждения уже известных данных. Работа также была полезна и для меня, интересно смотреть как меняются треки различных возрастов и химического состава. Занимательно было отбирать изохроны по параметрам и компоновать некоторые данные. И приятно получать данные, которые получали более опытные авторы.

Puc. 1. Слева показаны изохроны для хим. состава GAL и для возрастов 5.4 и 10.4 млн лет. Справа мое построение для аналогичных данных.

Параметр	Значения	Ссылка	
Спектральный класс	B0.5 III–V	[16]	
M_1, M_{\odot}	13.5 ± 2	[14]	
R_1, R_{\odot}	6.9 ± 0.2	[14]	
$T_{ m eff},{ m K}$	26405 ± 1549	[15]	
$\log g$, cgs	3.85 ± 0.13	[15]	
$v\sin i$, km/c	130	[17]	
$P_{\mathrm{puls}},$ d	0.1603	[17]	
$P_{ m rot},$ d	2.24	[18, 19]	
$-\log \dot{M}, M_{\odot}\mathrm{yr}^{-1}$	6.90	[20]	
$\log L/L_{\odot}$	4.86	[20]	
Возраст τ , Муг	10	Наст. работа	

Рис. 2. Параметры ε Per A

Рис. 3. Слева изохроны в работе [1]. Справа моя работа для тех же данных. Указан интервал ошибок определения эффективной температуры звезды. Разными линиями показаны изохроны для начальных скоростей вращения от 0 до 500 km/s с шагом 50 km/s.

Рис. 4. Подходящие изохроны для звезды ε Per A для возраста 10.6 и 10.8 млн. лет и для начальных скоростей вращения от 0 до 500 km/s с шагом 50 km/s.

Список литературы:

[1] В. В. Душин , А. Ф. Холтыгин , и др., Астр. Бюллетень. 68, No 2, с. 195–206 (2013)

[2] I. Brott, S. E. de Mink, M. Cantiello, et al., Astronom. and Astrophys. 530, A115 (2011).