探究圆锥曲线中的线段定值问题*

北京市第十二中学高中部 (100071) 刘 刚

定值问题是解析几何中的一类重要内容,它揭示了圆锥曲线相关的一些几何量(如线段长度、角度、面积、斜率等)在运动变化过程中所固有的某些几何或代数性质,是历来考试中的热点问题.下面对近些年高考、竞赛中的有关线段定值问题进行归类梳理,供大家参考.

1 长度定值

例 1 (2017 年全国高中数学联赛山东预赛) 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 经过点 $P\left(\frac{\sqrt{6}}{2}, \frac{1}{2}\right)$, 离心率为 $\frac{\sqrt{2}}{2}$, 动点 M(2,t)(t>0).

- (1) 求椭圆的标准方程;
- (2) 求以 OM 为直径且被直线 3x 4y 5 = 0 截得的 弦长为 2 的圆的方程;
- (3) 设 F 是椭圆的右焦点, 过点 F 作 OM 的垂线与以 OM 为直径的圆交于点 N, 证明线段 ON 的长为定值, 并求出这个定值.
 - **解** (1) 略, 椭圆的标准方程为 $\frac{x^2}{2} + y^2 = 1$;
 - (2) 略, 圆的方程为 $(x-1)^2 + (y-2)^2 = 5$.
- (3) 如图 1, 设 FN 与 OM 交 于点 K, 直线 x = 2 与 x 轴交 于点 Q, 连接 MN, 由已知可得 $NK \perp OM$, $ON \perp NM$, 利用直角 三角形的射影定理有 $ON^2 = OK \cdot OM$. 因为 $\angle MKF =$

 $\angle MQF = 90^\circ$,所以 M, K, F, Q 四点共圆,利用割线定理,得 $OK \cdot OM = OF \cdot OQ$. 因为 OF = 1, OQ = 2, 所以 $OF \cdot OQ = 2$, 即 $OK \cdot OM = 2$, 由此得 $ON^2 = 2$, 故线段 ON 的长为定值 $\sqrt{2}$.

点评 解法先抓住 $NK\botOM$, $ON\botNM$ 这一特点, 利用直角三角形的射影定理表示出 $ON^2 = OK \cdot OM$, 然后根据 M, K, F, Q 四点共圆, 利用割线定理 $OK \cdot OM = OF \cdot OQ$ 进行求解, 体现了解决解析几何问题时 "先几何后代数"的策略.

2 差定值

*本文系北京市第五批中小学名师发展工程成果;北京市丰台区"十三五"重点课题《新课程背景下高中数学竞赛教学研究》(课题批准号: 2016237-J)阶段成果之一.

例 2 (2014 年高考江西文科) 如图 2, 已知抛物线 $C: x^2 = 4y$, 过点 M(0,2) 任作一直线与 C 相交于 A、B 两点, 过点 B 作 y 轴的平行线与直线 AO 相交于点 D(O 为坐标原点).

- (1) 证明: 动点 D 在定直线上;
- (2) 作 C 的任意一条切线 l(不含 x 轴) 与直线 y=2 相交于点 N_1 , 与 (1) 中的定直线相交于点 N_2 , 证明: $|MN_2|^2 |MN_1|^2$ 为定值, 并求此定值.
 - **解** (1) 略, 点 D 在定直线 $y = -2(x \neq 0)$ 上.
- (2) 设切线 l 对应的切点为 $P(x_0,y_0)$,则 $y_0=\frac{1}{4}x_0^2$. 因为 $y'=\frac{1}{2}x$,所以切线 l 的斜率 $k=\frac{1}{2}x_0$,所以切线 l 的方程为 $y-\frac{1}{4}x_0^2=\frac{1}{2}x_0(x-x_0)$,即 $y=\frac{1}{2}x_0x-\frac{1}{4}x_0^2$.分别令 y=2,y=-2,得 $N_1\left(\frac{x_0}{2}+\frac{4}{x_0},2\right)$, $N_2\left(\frac{x_0}{2}-\frac{4}{x_0},-2\right)$,则 $|MN_2|^2-|MN_1|^2=\left(\frac{x_0}{2}-\frac{4}{x_0}\right)^2+4^2-\left(\frac{x_0}{2}+\frac{4}{x_0}\right)^2=8$,故 $|MN_2|^2-|MN_1|^2$ 为定值 8.

点评 解法首先借助导数表示出切线 l 的方程, 在此基础上求得点 N_1,N_2 的坐标, 然后把所求几何量用坐标表示, 再通过化简求得定值.

3 和定值

例 3 (2013 年浙江高中数学竞赛) 已知抛物线 $y^2 = 4x$, 过 x 轴上一点 K 的直线与抛物线交于 P,Q 两点, 证明: 存在唯一一点 K, 使 $\frac{1}{PK^2} + \frac{1}{QK^2}$ 为常数, 并确定点 K 的坐标.

证明 设 K(a,0), 过点 K 的直线方程为 x = ty + a, 交抛 物线于 $P(x_1,y_1)$, $Q(x_2,y_2)$, 联立 x = ty + a 与 $y^2 = 4x$, 得 $y^2 - 4ty - 4a = 0$, 所以 $y_1 + y_2 = 4t$, $y_1y_2 = -4a$. 因为 $PK^2 = (x_1 - a)^2 + y_1^2 = (1 + t^2)y_1^2$,

$$\begin{split} QK^2 &= (x_2 - a)^2 + y_2^2 = (1 + t^2)y_2^2, \text{ Fill} \\ &\frac{1}{PK^2} + \frac{1}{QK^2} \\ &= \frac{1}{1 + t^2} \left(\frac{1}{y_1^2} + \frac{1}{y_2^2} \right) = \frac{1}{1 + t^2} \cdot \frac{(y_1 + y_2)^2 - 2y_1y_2}{(y_1y_2)^2} \\ &= \frac{1}{1 + t^2} \cdot \frac{16t^2 + 8a}{16a^2} = \frac{1}{1 + t^2} \cdot \frac{2t^2 + a}{2a^2}, \end{split}$$

令 a=2, 得 $\frac{1}{PK^2}+\frac{1}{OK^2}$ 为常数 $\frac{1}{4}$, 点 K 的坐标为 (2,0).

点评 解法先设出直线的横截距式方程,避免了讨 论直线斜率是否存在的情况,然后借助韦达定理表示出 $\frac{1}{PK^2} + \frac{1}{QK^2}$, 最后通过对比系数得到定点与定值.

推广 在抛物线 $y^2 = 2px(x > 0)$ 的轴上有且仅 有一点 K(p,0), 使得过点 K 的任意一条弦 PQ 都有 $\frac{1}{PK^2} + \frac{1}{QK^2} = \frac{1}{p^2}.$

例 4 (2016 年高考北京理科) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} =$ 1(a > b > 0) 的离心率为 $\frac{\sqrt{3}}{2}$, A(a,0), B(0,b), O(0,0), $\triangle OAB$ 的面积为 1.

(I) 求椭圆 C 的方程;

4 积定值

- (II) 设 P 是椭圆 C 上一点, 直线 PA 与 y 轴交于点 M, 直线 PB 与 x 轴交于点 N. 求证: $|AN| \cdot |BM|$ 为定值.
 - 解 (I) 略, 椭圆 C 的方程为 $\frac{x^2}{4} + y^2 = 1$.
- (II) 当点 P 在 y 轴上时, 直线 PB 的斜率不存在, 此时点 $P(0,-1), M(0,-1), N(0,0), \text{ fill } |AN| \cdot |BM| = 2 \times 2 = 4,$ 下面讨论直线 PB 斜率存在的情况. 设 $P(x_0, y_0)$, 则 $\frac{x_0^2}{4} + y_0^2 = 1$,即 $x_0^2 + 4y_0^2 = 4$. 因为 A(2,0),所以 $AP: y = \frac{y_0}{x_0 - 2}(x - 2)$,令 x = 0,得 $y = -\frac{2y_0}{x_0 - 2}$,所以点 $M\left(0, -\frac{2y_0}{x_0 - 2}\right)$. 因为 B(0,1),所以 $BP: y = \frac{y_0 - 1}{x_0}x + 1$, 令 y = 0, 得 $x = \frac{x_0}{1 - y_0}$, 所以点 $N\left(\frac{x_0}{1 - y_0}, 0\right)$, 由此得 $|BM| = |\frac{x_0 + 2y_0 - 2}{x_0 - 2}|, |AN| = |\frac{x_0 + 2y_0 - 2}{y_0 - 1}|,$ 故 $|AN| \cdot |BM| = \left| \frac{x_0 + 2y_0 - 2}{x_0 - 2} \right| \cdot \left| \frac{x_0 + 2y_0 - 2}{y_0 - 1} \right|$ $= \left| \frac{x_0^2 + 4y_0^2 + 4x_0y_0 - 4x_0 - 8y_0 + 4}{x_0y_0 - x_0 - 2y_0 + 2} \right|,$

把 $x_0^2 + 4y_0^2 = 4$ 代入, 得

$$|AN|\cdot |BM| = 4|\frac{x_0y_0 - x_0 - 2y_0 + 2}{x_0y_0 - x_0 - 2y_0 + 2}| = 4,$$

综上 |AN| · |BM| 为定值 4.

点评 解法先通过直线 PB 斜率不存在的情况求得 $|AN| \cdot |BM| = 4$, 这为后续一般化求定值指明了方向. "先 特殊再一般"是解决定值问题的一个常用策略.

推广 已知
$$P$$
 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 上一

点, A(a,0), B(0,b), 直线 PA 与 y 轴交于点 M, 直线 PB 与 x 轴交于点 N, 则 $|AN| \cdot |BM| = 2ab$.

5 商定值

例 5 (2015 年全国高中数学联赛甘肃预赛) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a>b>0) 的左右焦点 <math>F_1, F_2$ 与椭圆短轴

- (I) 求椭圆 C 的标准方程;
- (II) 过椭圆 C 上任意一点 P 作椭圆 C 的切线与直线 F_1P 的垂线 F_1M 相交于点 M, 求点 M 的轨迹方程;
- (III) 若切线 MP 与直线 x=-2 交于点 N ,求证: $\frac{|NF_1|}{|MF_2|}$ 为定值.
 - **解** (I) 略, 椭圆 C 的标准方程为 $\frac{x^2}{16} + \frac{y^2}{12} = 1$;
 - (II) 略, 点 M 的轨迹方程为 x =
- (III) 如图 3, 设椭圆的左 准线 l: x = -8 与 x 轴 交于点 G, 过 N 作 l, PF_1 的 垂线, 垂足分别为 E,D, 过 P 作 l 的垂线, 垂足为 Q, 因 为 $\angle MF_1G + \angle MF_1N = 90^\circ$,

 $\angle MF_1N + \angle NF_1D = 90^\circ$, 所以 $\angle MF_1G = \angle NF_1D$, 所 $ZMF_1N + ZNF_1D = 90^\circ$,所以 $ZMF_1G = ZNF_1D$,所以 $Rt\triangle F_1DN \backsim Rt\triangle F_1GM$,即 $\frac{F_1D}{F_1G} = \frac{NF_1}{MF_1}$. 因为四边形 F_1NEG 为矩形,所以 $F_1G = EN$,故 $\frac{F_1D}{EN} = \frac{NF_1}{MF_1}$ ①. 因为 EN//PQ,所以 $\frac{PQ}{EN} = \frac{MP}{MN}$. 因为 $ND\bot PF_1$, $MF_1\bot PF_1$,所以 $ND//MF_1$,所以 $\frac{MP}{MN} = \frac{F_1P}{F_1D}$,即 $\frac{PQ}{EN} = \frac{PQ}{EN}$ $\frac{F_1P}{F_1D}$, 由此得 $\frac{F_1D}{EN} = \frac{F_1P}{PQ}$ ②. 由①②, 得 $\frac{NF_1}{MF_1} = \frac{F_1P}{PQ}$ 由椭圆的第二定义, 得 $\frac{F_1P}{PO} = \frac{c}{a} = \frac{1}{2}$, 所以 $\frac{|NF_1|}{|MF_2|}$ 为定值

点评 从结论看, 所求的是两条线段长度的比, 由此想 到了构造三角形相似, 因为 $\angle MF_1G = \angle NF_1D$, 且 MF_1 是 $Rt\triangle F_1GM$ 的斜边, 所以过 N 作 PF_1 的垂线从而构造 $Rt\triangle F_1DN$,接下来再运用平行线分得线段对应成比例及椭 圆第二定义等知识解决.

推广 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左右 焦点为 F_1, F_2 , 过椭圆 C 上任意一点 P 的切线分别交直线 $x = -\frac{a^2}{c}$ 、x = -c 于点 $M, N, 则 \frac{|NF_1|}{|MF_1|}$ 为离心率 e.

例 6 (2016 年高考四川) 已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a >$ b > 0) 的两个焦点与短轴的一个端点是直角三角形的3个 顶点, 直线 l: y = -x + 3 与椭圆 E 有且只有一个公共点 T. (I) 求椭圆 E 的方程及点 T 的坐标;

(II) 设 O 是坐标原点, 直线 l' 平行于 OT, 与椭圆 E 交 于不同的两点 $A \setminus B$, 且与直线 l 交于点 P. 证明: 存在常数 λ , 使得 $|PT|^2 = \lambda |PA| \cdot |PB|$, 并求 λ 的值.

解 (I) 略, 椭圆 E 的方程为 $\frac{x^2}{6} + \frac{y^2}{2} = 1$, 点 T 的坐标 为(2,1).

(II) 因为点 P 在直线 l: y = -x + 3 上, 所以设 $P(x_0, 3 - y_0)$ x_0). 因为 T(2,1), 所以 $\sin \angle TOx = \frac{\sqrt{5}}{5}$, $\cos \angle TOx = \frac{2\sqrt{5}}{5}$,

所以直线 l' 的参数方程为 $\begin{cases} x = x_0 + \frac{2\sqrt{5}}{5}t \\ y = 3 - x_0 + \frac{\sqrt{5}}{5}t \end{cases}$ 代人椭圆的方程 $\frac{x^2}{6} + \frac{y^2}{3} = 1$, 整理得 $2t^2 + 4\sqrt{5}t + 5(x_0 - 2)^2 = 0$. 由 t 的几何意义知, $|PA| = |t_1|$, $|PB| = |t_2|$. 因为 $t_1t_2 = \frac{5}{2}(x_0 - 2)^2$, 所以 $|PA| \cdot |PB| = |t_1t_2| = \frac{5}{2}(x_0 - 2)^2$. 因为 $|PT|^2 = (x_0 - 2)^2 + (3 - x_0 - 1)^2 = 2(x_0 - 2)^2$, 且 $|PT|^2 = \lambda |PA| \cdot |PB|$, 所以 $\lambda = \frac{|PT|^2}{|PA| \cdot |PB|} = \frac{2(x_0 - 2)^2}{\frac{5}{2}(x_0 - 2)^2} = \frac{4}{5}$, 故

存在这样的常数 λ , 且 $\lambda = \frac{4}{5}$.

点评 本题 (II) 问最大的难点是如何表示 $|PA| \cdot |PB|$, 这两条线段都是以 P 为端点, 因此可以借助直线的参数方程 进行求解,并能大大减少计算量. 所以在运算前一定要选好 方法,不可盲目处理.

推广 如图 $4, T(x_0, y_0)$ 为椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上一点, 直线 l 为过点 T 的切线, 平行于 OT 的直线 l' 与椭圆 E交于不同的两点 A、B, 且与直

线 l 交于点 P. 则存在常数 λ , 使得 $|PT|^2=\lambda |PA|\cdot |PB|$, 且 $\lambda=\frac{a^2+b^2-x_0^2-y_0^2}{x_0^2+y_0^2}$.

以上探讨了有关线段定值问题,解决这类问题的基本思 路是引入参变量,然后建立几何定值与参变量之间的关系, 再通过代数运算化简、消参进而求出定值. 另外,解析几何研 究的是几何问题,代数是工具,所以考虑问题时先注意挖掘 图形特点,尝试运用平面几何知识解决,如果行不通再进行 代数运算. 总之, 题目变化莫测, 只要我们不断总结解题规律, 养成良好的解题习惯,定能在考试中攻无不克,战无不胜.

以下几道试题供读者练习:

1.(2000 年全国高考) 过抛物线 $y = ax^2(a > 0)$ 的焦点 F 作一直线交抛物线于 $P \setminus Q$ 两点, 若线段 PF 与 FQ 的长 分别是 $p \setminus q$, 则 $\frac{1}{p} + \frac{1}{q}$ 等于 ()

A.
$$2a$$
 B. $\frac{1}{2a}$ C. $4a$ D. $\frac{4}{a}$

2.(2013年全国高中数学联赛甘肃预赛)已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的一个焦点为 $F_1(-\sqrt{3}, 0)$, 且 过点 $H\left(\sqrt{3}, \frac{1}{2}\right)$. 设椭圆 E 的上下顶点分别为 $A_1 \setminus A_2$, 点 P 是椭圆上异于 A_1 、 A_2 的任一点, 直线 PA_1 、 PA_2 分别交 x轴于点 $M \setminus N$, 若直线 OT 与过点 $M \setminus N$ 的圆 G 相切, 切点 为 T. 证明: 线段 OT 的长为定值, 并求出该定值.

3.(2014年全国高中数学联赛天津预赛)设A,B是椭圆 $\frac{x^2}{2} + y^2 = 1$ 上两个动点, O 是坐标原点, 且 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$. 又设点 P 在 AB 上, 且 $OP \perp AB$. 求 |OP| 的值.

4.(2012年高考江苏) 如图 5, 在平面直角坐标系 xOy 中, 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、 右焦点分别为 $F_1(-c,0), F_2(c,0)$. 已知 (1,e) 和 $\left(e,\frac{\sqrt{3}}{2}\right)$ 都在椭圆

上, 其中 e 为椭圆的离心率.

- (1) 求椭圆的方程;
- (2) 设 $A \setminus B$ 是椭圆上位于 x 轴上方的两点, 且直线 AF_1 与直线 BF_2 平行, AF_2 与 BF_1 交于点 P.
 - (i) 若 $AF_1 BF_2 = \frac{\sqrt{6}}{2}$, 求直线 AF_1 的斜率;
 - (ii) 求证: PF₁ + PF₂ 是定值.

5.(2010 年全国高中数学联赛江西预赛) 给定椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a>b>0)$ 以及圆 $\odot O: x^2+y^2=b^2$, 自 为 M、N,若直线 MN 在 x、y 轴上的截距分别为 m、n,证明: $\frac{a^2}{n^2} + \frac{b^2}{m^2} = \frac{a^2}{b^2}.$

6.(2012 年浙江高中数学竞赛) 设 P 为椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 长轴上一个动点, 过点 P 斜率为 k 的直线交椭圆于 $A \setminus B$ 两 点. 若 $|PA|^2 + |PB|^2$ 的值仅依赖于 k 而与 P 无关, 求 k 的 值.

答案: 1. C. 2. 线段 OT 的长为定值 2. $3.|OP| = \frac{\sqrt{6}}{3}$ 4.(1) $\frac{x^2}{2} + y^2 = 1$;(2)(i) $\frac{\sqrt{2}}{2}$;(ii) 故 $\frac{3\sqrt{2}}{2}$. 5. 略. 6. $k = \pm \frac{4}{5}$.

- [1] 刘刚, 赵毅. 探究圆中定值、定点问题的几何解法 [J]. 数学通讯 (上 半月), 2017, 3.
- [2] 刘刚, 赵毅. 探究抛物线切线问题的几何解法 [J]. 数学通讯 (上半 月), 2016, 7-8.
- [3] 刘刚, 赵毅, 2016 年高考北京理科卷圆锥曲线试题的探究与推广[J]. 数学通讯 (上半月), 2016, 9.
- [4] 刘刚, 赵毅, 一道 2016 年高考椭圆试题的探究、溯源及推广 [J]. 数理 化学习 (高中版), 2017, 2.