第十六章 量子力学基本原理

旧量子论:在经典理论框架中引入量子假设,通过革新基本观念,解决各局部领域的问题。

量子力学: 从基本属性上认识微观粒子的运动规律

本章要点: 德布罗意公式, 不确定关系,

物质波波函数及其统计解释。

学时: 4

第一节物质波假设及其实验验证

- 一、德布罗意物质波假设
- 二、实验验证
- 三、对实物粒子波粒二象性的理解 概率波

一、德布罗意物质波假设

电子:λ=1.23×10⁻¹⁰ m

德布罗意物质波假设基本思想: 自然界是对称统一的, 光与实物粒子应该有共同的本性。

对质量为m,速度为v的自由粒子:

德布罗意公式
$$\begin{cases} E = mc^2 = h\nu \\ p = m\nu = \frac{h}{\lambda} \end{cases}$$
 德布罗意波长 简洁地把对粒子描述手段 E , p 联系到一起 和对波的描述手段 ν , λ 物质波: 与实物粒子相联系的波(德布罗意波)。 地球: $\lambda = 3.72 \times 10^{-63} \mathrm{m}$ $\lambda = 2.21 \times 10^{-34} \mathrm{m}$ 波动性显示不出来

在原子范围内显示出波动性

比较

光子	$E = mc^2 = hv$	$p=mc=rac{h}{\lambda}$ 徳布罗
实物粒子	$E = mc^2 = h v$	$p = mv = \frac{h}{\lambda}$
		$\overline{v < c}$

练习1:P₁₅₆例2设光子与电子的德布罗意波长均为λ, 试比较其动量和能量大小是否相同。

解: 动量
$$p_{_{\mathcal{H}}}=rac{h}{\lambda}$$
 $p_{_{\mathcal{H}}}=p_{_{e}}$ $p_{_{e}}=rac{h}{\lambda}$ 能量 $E_{_{\mathcal{H}}}=hv=rac{hc}{\lambda}$ $E_{_{e}}=mc^{2}=rac{mvc^{2}}{v}=rac{pc^{2}}{v}=rac{c}{v}rac{hc}{\lambda}=rac{c}{v}\cdot E_{_{\mathcal{H}}}$

结论: 当电子的德布罗意波长与光子的波长相等时, 它们动量相等,能量不等,电子的能量较大。

思考: $E_e = hv = \frac{hu}{\lambda} = \frac{u}{c} \frac{hc}{\lambda} = \frac{u}{c} E_{\pm} \longrightarrow u > c$ 是否与c是自然界的极限速率矛盾?

注意: 电子物质波波速 u≠电子运动速率v

因此:U > C与c是自然界的极限速率不矛盾

波的相速度
$$u = \lambda v = \frac{h}{mv} \cdot \frac{mc^2}{h} = \frac{c^2}{v} > c$$

注意: 电子运动速率v小于c, 电子物质波波速u大于c, 即: $v \neq u \neq c$;而光子运动速率c等于光波波速c。

练习2.

静止质量不为零的微观粒子作高速运动, 其物质波波长2人与速度v有如下关系

(A)
$$\lambda \propto v$$

(B)
$$\lambda \propto 1/v$$

(C)
$$\lambda \propto \sqrt{\frac{1}{v^2} - \frac{1}{c^2}}$$

(D)
$$\lambda \propto \sqrt{c^2 - v^2}$$

解:
$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{m_0 v / \sqrt{1 - v^2/c^2}} \propto \frac{\sqrt{1 - v^2/c^2}}{v} = \sqrt{\frac{1}{v^2} - \frac{1}{c^2}}$$

练习3: P₁₅₅例1 计算动能为1KeV的电子的德布罗意波长

解: 由相对论:
$$E = E_0 + E_k$$

$$E^2 = E_0^2 + c^2 p^2$$

得:
$$p = \frac{1}{c} \sqrt{E^2 - E_0^2} = \frac{1}{c} \sqrt{(E_0 + E_k)^2 - E_0^2}$$

$$= \frac{1}{c} \sqrt{2E_0 E_k + E_k^2} = \frac{1}{c} \sqrt{2E_k m_0 c^2 + E_k^2}$$

$$\therefore \lambda = \frac{h}{p} = \frac{hc}{\sqrt{2E_{k}m_{0}c^{2} + E_{k}^{2}}}$$

两种特例:

(1) 若
$$E_k \langle \langle m_0 c^2 (= 0.51 \text{MeV}) \rangle \rangle$$
 则 $E_k^2 \langle \langle 2E_k m_0 c^2 \rangle$

$$\therefore \lambda \approx \frac{hc}{\sqrt{2E_k m_0 c^2}} = \frac{h}{\sqrt{2E_k m_0}}$$

(2) 若
$$E_k \rangle m_0 c^2 (= 0.51 \text{MeV})$$
 则 $E_k^2 \rangle 2 E_k m_0 c^2$

$$\therefore \lambda \approx \frac{hc}{\sqrt{E_k^2}} = \frac{hc}{E_k}$$

本题
$$E_k = 1$$
KeV($\langle \langle 0.51$ MeV)时: $\lambda = \frac{h}{\sqrt{2E_k m_0}} = 0.39(A)$

二、实验验证

1.戴维孙 —— 革末实验(1927年)

(1)实验

当 ϕ 等于50度,U等于54V时,散射电子束强度为极大值 (2)验证

由德布罗意公式得:

$$\lambda = \frac{h}{\sqrt{2m_{_{0}}E_{_{k}}}} = \frac{h}{\sqrt{2m_{_{0}}eU}} = \frac{12.25}{\sqrt{U}} = \frac{12.25}{\sqrt{54}} = 1.67(\text{A})$$

用X光衍射理论求波长:

布喇格公式:

$$\Delta = 2d \sin \theta = k\lambda$$

$$\theta = 65^{\circ}$$

$$k = 1$$

$$\lambda = 1.65 \text{ A}$$

$$d = 0.91 \text{ A}$$

用X光衍射理论求到的电子波波长与由德布罗意公式求到的近似相等,说明了德布罗意公式的正确性。

2.汤姆孙实验(1927年)

用高能电子束(10-40keV)直接穿过厚10-8m的单/多晶膜,得到电子衍射照片。

实验表明:

单晶

电子具有波动性,用电子波衍射测出的晶格常数与用X光衍射测定的相同,说明验证了德布罗意物质波理论的正确性。

戴维孙和汤姆孙共同获得1937年诺贝尔物理奖

@ Jourson

戴维森 Llinton Joseph Davisson, 1881—1958) 美国物理学家

发现电子的 J.J.汤姆孙 之子

St. Thomso

G.P.汤姆生 (Sir George Paget Thomson, 1892—1975 英国物理学家

3.验证物质波理论的其它实验

1929年 斯特恩氢分子衍射

氢分子具有波动性

1936年中子束衍射

中性微观粒子,具有波粒二象性

1961年 电子单缝、双缝、多缝衍射

1986年 证实固体中电子的波动性

微观粒子的波粒二象性是得到实验证实的科学结论

练习: P₁₇₆ 16.9

戴维孙—革末电子衍射实验装置如图,自电子枪发射出的电子束经 U=500V电压加速后投射到某种晶体上,在掠射角 $\phi=20^{\circ}$ 时,测得电子流强度出现第二次 极大值,试计算电子的德布罗意波长及晶体的晶格常数。

已知: $m_e = 9.11 \times 10^{-31} \text{kg}$

$$e = 1.60 \times 10^{-19} \text{C}$$

$$h = 6.634 \times 10^{-34} \mathbf{J} \cdot \mathbf{s}$$

解: 先求电子动量

$$E_k = eU = 500 \text{eV} \langle \langle m_0 c^2 (= 0.51 \text{MeV}) \rangle$$

$$E_{\rm k} = \frac{p^2}{2m_{\rm e}} = eU$$

$$\therefore p = \sqrt{2m_e eU}$$

由德布罗意公式:

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_e eU}} = 5.49 \times 10^{-11} \text{(m)}$$

由布喇格公式:

$$2d\sin\phi = k\lambda$$

得晶格常数:

$$d = \frac{k\lambda}{2\mathrm{sin}\phi} = 0.161(\mathrm{nm})$$

三、对实物粒子波粒二象性的理解

- 1.历史上有代表性的观点:
- (1)波由粒子组成,波动性是粒子相互作用的次级效应电子一个个通过单缝,长时间积累也出现衍射效应

实验否定

电子在不同介质界面要么反射,要么折射,未见电子"碎片"。

波或粒子?"波和粒子"?在经典框架内无法统一。

(3) 微观粒子不同于经典粒子,也不同于经典波, 具有波粒二象性。

我们知道:实物粒子(如子弹)具有粒子性,水波具有波动性,微观实物粒子电子呢?

电子总是像粒子一样以颗粒形式到达,但是其到达的概率分布像波的强度分布,打开两孔的效应不是单独打开每孔效应之和: $I_{12} \neq I_1 + I_2$ 呈现干涉现象。

因此:微观实物粒子具有粒子性和波动性实验证明:观点(3)正确

2.玻恩"概率波"说

"概率波"说: 物质波为概率波, 其强度分布反映了实物粒子出现在空间各处的概率。

强度小: 电子到达概率小

强度大: 电子到达概率大

零强度: 电子到达概率为零

玻恩(Max Born, 1882-1970): 德国物理学家, 1954年因"概率波" 说获诺贝尔奖。

*

* 微观粒子的运动具有不确定性,不遵从经典力学方程,只能用物质波的强度作概率性描述。那么借用经典物理量来描述微观客体时,必须对经典物理量的相互关系和结合方式加以限制。其定量表达——海森伯不确定关系。

第二节 不确定关系

- 一、位置与动量的不确定关系
- 二、时间和能量的不确定关系
- 三、不确定关系的物理意义
- 四、互补原理——哥本哈根精神

一、位置与动量的不确定关系

以电子束单缝衍射为例:

只记中央明纹区,角宽度为 $2\varphi_1$, $\Delta x \sin \varphi_1 = \lambda$

对应的动量为P,x方向的分量为 $P_x = P\sin\varphi_1$ \vec{p}_x 电子通过宽为 Δx 的单缝时位置不确定量为 Δx ,正中入射: $p_x = 0$,一级暗纹中心入

射: $p_x = p \sin \varphi_1$,其它位置: $0 < p_x < p \sin \varphi_1$

动量P,的不确定量为:

$$\Delta p_{x} = p \sin \varphi_{1} - 0 = \frac{h}{\lambda} \cdot \sin \varphi_{1}$$

 $\therefore \Delta x \sin \varphi_1 = \lambda$ (一级暗纹中心)

$$\therefore \Delta p_{x} = \frac{h}{\lambda} \cdot \frac{\lambda}{\Delta x} = \frac{h}{\Delta x}$$

$$\therefore \Delta x \cdot \Delta p_{x} = h$$

若考虑次级明纹: $\Delta p_x \geq p \sin \varphi_1$

$$\therefore \Delta x \cdot \Delta p_{x} \ge h$$

更一般的推导可得:

$$\Delta x \cdot \Delta p_x \ge \frac{h}{4\pi} = \hbar/2$$

$$(\hbar = \frac{h}{2\pi} = 1.05 \times 10^{-34} \text{J} \cdot \text{s})$$

推广得:

$$\Delta x \cdot \Delta p_{x} \geq \hbar$$

$$\Delta q \cdot \Delta p \geq \hbar$$

$$\Delta y \cdot \Delta p_{y} \geq \hbar$$

$$\Delta z \cdot \Delta p_{z} \geq \hbar$$

位置与动量间的不确定关系

练习1: P₁₇₇ 16.13

已知: 光子
$$\lambda = 3000 \, \text{Å}, \quad \frac{\Delta \lambda}{\lambda} = 10^{-6}$$

求: 光子位置的不确定量

解:设光子沿 x 方向运动

由
$$p_x = \frac{h}{\lambda}$$
 得: $\Delta p_x = -\frac{h\Delta\lambda}{\lambda^2}$ 记为: $\Delta p_x = \frac{h\Delta\lambda}{\lambda^2}$

又 $\Delta x \cdot \Delta p_r \geq \hbar$

$$\Delta x \ge \frac{\hbar}{\Delta p_x} = \frac{h}{2\pi} \cdot \frac{\lambda^2}{h\Delta \lambda} = \frac{\lambda^2}{2\pi\Delta \lambda}$$

$$= \frac{\lambda}{2\pi} \cdot \frac{\lambda}{\Delta \lambda} = \frac{3 \times 10^{-7}}{2\pi} \times 10^6 = 0.048 (\text{m})$$

练习2: P₁₇₅ 16.1(3) 设一维运动粒子的波函数图线如图 所示,其中确定粒子动量精确度最高的是哪一个?

由不确定关系: $\Delta x \cdot \Delta p_x \geq \hbar$; $\Delta x \uparrow$, $\Delta p_x \downarrow$

二、时间和能量的不确定关系

设粒子能量的不确定度为 ΔE ,粒子处于该能态的平均时间(寿命)为 Δt ,则:

$$\Delta E \cdot \Delta t \geq \hbar$$

粒子能量的不确定量与其寿命互相制约。

可以利用不确定关系解释原子谱线宽度。

解释原子谱线宽度:

基态 E_{a} : 稳定

 $\Delta t \rightarrow \infty, \Delta E \rightarrow 0, E_0$ 确定

激发态E:不稳定

$$\Delta t \neq 0, \Delta E \geq \frac{\hbar}{\Delta t}, E \, \mathcal{F} \, \mathcal{A} \mathcal{E}$$

 ΔE 为能级宽度, $E \rightarrow E_0$ 跃迁 辐射谱线宽度:

$$\Delta v = \frac{(E + \frac{\Delta E}{2}) - E_0}{h} - \frac{(E - \frac{\Delta E}{2}) - E_0}{h} = \frac{\Delta E}{h}$$

$$v_{\text{max}}$$

练习:P₁₇₇16.14

已知:电子处于某能级 $\Delta t = 10^{-8} \text{s}$, $E - E_0 = 3.39 \text{eV}$, 求:(1)该能级能量的最小不确定量 ΔE

(2)由该能级跃迁到基态时所辐射光子的 彶 △λ

 $\mathbf{M}:(1)$:: $\Delta E \cdot \Delta t \geq \hbar$

$$\triangle E \ge \frac{\hbar}{\Delta t} = \frac{1.055 \times 10^{-34}}{10^{-8}} = 1.055 \times 10^{-26} (J) = 6.59 \times 10^{-6} (eV)$$

$$(2) : E - E_0 = h v = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{E - E_0} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{3.39 \times 1.6 \times 10^{-19}} = 3.67 \times 10^{-7} \text{ (m)}$$

$$\Delta \lambda = \frac{hc}{(E - E_0)^2} \cdot \Delta E = 7.13 \times 10^{-15} (\text{m})$$

三、不确定关系的物理意义

1.说明经典描述手段对微观粒子不适用。

$$\Delta x \cdot \Delta p_{x} \geq \hbar$$

 $\Delta x \downarrow, \Delta p_x \uparrow;$ $\Delta x \to 0$ 位置完全确定 $\Delta p_x \to \infty$ 动量分量完全不确定 粒子如何运动?

 $\Delta p_x \downarrow, \Delta x \uparrow;$ $\Delta p_x \to 0$ 动量完全确定 $\Delta x \to \infty$ 位置完全不确定 粒子在何处? "轨道"概 念失去意 义

- 2. 微观粒子永远不可能静止 —— 存在零点能,否则, x和 p_x均有完全确定的值,违反不确定关系。 (热运动不可能完全停止, 0K 不能实现)
- 3.给出了宏观与微观物理世界的界限, 经典粒子模型可应用的限度。

$$\Delta x \cdot \Delta p_r \geq \hbar, \qquad \Delta E \cdot \Delta t \geq \hbar$$

若在所研究的问题中, \hbar 是可忽略的小量,即可认为 $\hbar \rightarrow 0$,则

由 $\Delta x \pi \Delta p_x$ 可同时取零 那么 $x \pi p_x$ 可同时确定

该问题可用经典力学处理,否则要用量子力学处理。

四、互补原理——哥本哈根精神

例:电子双缝干涉实验

结论:不同的实验装置决定了不同的可测量,显示出客体某些方面的特性而抑制其它方面的特性。

互补原理:对微观客体而言,波动和粒子的概念是互相协调,互相补充的,共同揭示客体的属性。