Universidad de El Salvador. 25.06.2018

Álgebra I: Estructuras algebraicas y la teoría de grupos

Soluciones del examen parcial repetido 3

Problema 1 (1 punto). Sea p un número primo y sea G un grupo finito de orden p^k . Demuestre que $p \mid |Z(G)|$ y en particular $Z(G) \neq \{1\}$.

Sugerencia: considere la ecuación de clase para la acción de G sobre sí mismo por conjugación.

Solución. Tenemos

$$|G| = |Z(G)| + \sum_{1 \le i \le n} |G : C_G(x_i)|,$$

donde x_1, \ldots, x_n representan clases de conjugación no triviales. Por ende $|G:C_G(x_i)|=p^{\ell_i}$ donde $\ell_i\neq 0$. Reduciendo la ecuación de arriba módulo p, podemos concluir que $|Z(G)|\equiv |G|\equiv 0\pmod p$.

Problema 2 (1 punto). Hemos probado en clase que en A_n para $n \ge 5$ todos los 3-ciclos forman una clase de conjugación. Demuestre que en A_4 no todos los 3-ciclos son conjugados entre sí. Sugerencia: encuentre $(i \ j \ k) \ y \ (a \ b \ c)$ que pertenecen a diferentes clases de conjugación en A_4 .

Solución. Consideremos los 3-ciclos (1 2 3) y (1 2 4). Supongamos que hay una permutación σ tal que

$$\sigma(123)\sigma^{-1} = (\sigma(1) \sigma(2) \sigma(3)) = (124).$$

Tenemos las siguientes opciones:

$$(\sigma(1), \sigma(2), \sigma(3)) = (1, 2, 4), (2, 4, 1), (4, 1, 2).$$

Es decir,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = (3\ 4), \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} = (1\ 2\ 4\ 3), \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = (1\ 4\ 3\ 2).$$

Ninguna de estas permutaciones es par.

Problema 3 (2 puntos). Sea Q_8 el grupo de cuaterniones.

- 1) Demuestre que el grupo cociente $Q_8/\{\pm 1\}$ es abeliano. Concluya que $[Q_8,Q_8]\subseteq \{\pm 1\}$.
- 2) Exprese -1 como un conmutador [x,y] para algunos $x,y \in Q_8$. Concluya que $[Q_8,Q_8]=\{\pm 1\}$.
- 3) Exprese la abelianización de Q_8 como un producto de grupos cíclicos.

Solución. En 1) notamos que el grupo $\{\pm 1\}$ es el centro de Q_8 y por esto es normal. El grupo $Q_8/\{\pm 1\}$ es de orden $|Q_8|/\#\{\pm 1\}=8/2=4$ y por ende es isomorfo a $\mathbb{Z}/4\mathbb{Z}$ o $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. De todas maneras, es abeliano, y por ende $[Q_8,Q_8]\subseteq \{\pm 1\}$.

Luego, en 2) basta calcular el conmutador de un par de elementos que no conmutan, por ejemplo:

$$[i,j] = i j i^{-1} j^{-1} = i j (-i) (-j) = (ij)^2 = k^2 = -1.$$

En el punto 3) tenemos que precisar si $(Q_8)^{ab} = Q_8/\{\pm 1\}$ es isomorfo a $\mathbb{Z}/4\mathbb{Z}$ o $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Notamos que

$$i^2 = i^2 = k^2 = -1$$
.

así que todos los elementos i,j,k tienen orden 2 módulo ± 1 , lo que nos permite concluir que

$$(Q_8)^{ab} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Problema 4 (2 + 1 puntos). Consideremos la acción del grupo $SL_2(\mathbb{Z})$ sobre el semiplano superior \mathcal{H} .

- 1) Calcule el estabilizador del punto $\sqrt{-1} \in \mathcal{H}$. Demuestre que es un grupo abeliano finito y expréselo como un producto de grupos cíclicos.
- 2) Pregunta por un punto extra: haga el mismo cálculo para $\omega:=-\frac{1}{2}+\frac{\sqrt{3}}{2}\sqrt{-1}\in\mathcal{H}.$

Solución. Supongamos que para $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ se tiene

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \sqrt{-1} = \sqrt{-1} \iff \frac{a\sqrt{-1} + b}{c\sqrt{-1} + d} = \sqrt{-1} \iff a\sqrt{-1} + b = d\sqrt{-1} - c \iff a = d, \ c = -b.$$

Entonces, la matriz es de la forma

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Además, sabemos que $a^2 + b^2 = 1$. Puesto que $a, b, c, d \in \mathbb{Z}$, esto nos deja las siguientes cuatro matrices:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Las últimas dos matrices tienen orden 4, así que el estabilizador de $\sqrt{-1}$ es isomorfo a $\mathbb{Z}/4\mathbb{Z}$.

De la misma manera, supongamos que

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \omega = \omega.$$

Esto quiere decir que

$$a \omega + b = (c \omega + d) \omega = c \omega^2 + d \omega = -c + (d - c) \omega.$$

De aquí podemos deducir que

$$c = -b$$
, $d = a - b$.

Entonces, la matriz es de la forma

$$\begin{pmatrix} a & b \\ -b & a-b \end{pmatrix}.$$

Además, el determinante de esta matriz tiene que ser $a^2 - ab + b^2 = 1$. Esto nos deja las siguientes opciones:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \quad \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}.$$

La matriz $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ tiene orden 6, así que se trata de un grupo cíclico de orden 6.

Problema 5 (2 + 1 puntos). Sea $n \ge 3$ un número natural *impar*. Consideremos el grupo diédrico

$$D_{2n} = \{ id, r, r^2, \dots, r^{2n-1}, f, fr, fr^2, \dots, fr^{2n-1} \}$$

(las simetrías del 2*n*-ágono regular) y sus subgrupos $H := \langle r^2, f \rangle$ y $K := \{1, r^n\}$.

- 1) Demuestre que $H \cong D_n$ y $K \cong \mathbb{Z}/2\mathbb{Z}$.
- 2) Demuestre que $D_{2n} \cong H \times K$.
- 3) Pregunta por un punto extra: si n es par, demuestre que $D_{2n} \not\cong D_n \times \mathbb{Z}/2\mathbb{Z}$.

Solución. Gracias a la relación $r^{2i}f = fr^{-2i}$ se ve que

$$H = \{id, r^2, r^4, \dots, r^{2n-2}, f, fr^2, fr^4, \dots, fr^{2n-2}\}.$$

Es un subgrupo de índice 2 y por ende es normal. La aplicación

$$D_n \to H$$
,
 $r^i \mapsto r^{2i}$,
 $fr^i \mapsto fr^{2i}$.

es un isomorfismo de grupos.

El grupo K es de orden 2 y por ende es isomorfo a $\mathbb{Z}/2\mathbb{Z}$. Para ver que es normal, basta calcular las conjugaciones

$$r^{i}r^{n}r^{-i} = r^{n}$$
, $(fr^{i})r^{n}(fr^{i})^{-1} = fr^{i}r^{n}r^{-i}f = fr^{n}f = r^{-n} = r^{n}$.

Tenemos $H \cap K = \{id\}$. Para concluir que se trata de un producto directo, falta ver que $D_{2n} = HK$. Los elementos de la forma r^{2i} y fr^{2i} ya están en H. Considerando $r^{2i}r^n$ y $fr^{2i}r^n$ para diferente i, se obtienen también r^j y fr^j donde j es impar. Aquí usamos la hipótesis de que n sea impar.

Ahora si n es par, entonces

$$Z(D_n \times \mathbb{Z}/2\mathbb{Z}) \cong Z(D_n) \times Z(\mathbb{Z}/2\mathbb{Z}) = \{ id, r^{n/2} \} \times \mathbb{Z}/2\mathbb{Z},$$

mientras que $Z(D_{2n}) = \{id, r^n\}$. Esto demuestra que $D_{2n} \not\cong D_n \times \mathbb{Z}/2\mathbb{Z}$.

Problema 6 (2 puntos). Sea A un grupo abeliano aditivo. Digamos que $x \in A$ es **divisible** por n = 1, 2, 3, 4, ... si existe $y \in A$ tal que $n \cdot y = x$. Si $x \in A$ es divisible por cualquier entero positivo n, digamos que es **divisible**.

- 1) Demuestre que x es divisible si y solamente es divisible por cualquier número primo p = 2, 3, 5, 7, 11, ...
- 2) Sea p un número primo fijo. Consideremos el grupo aditivo

$$\mathbb{Z}[1/p] := \{a/p^n \mid a \in \mathbb{Z}, n = 0, 1, 2, \ldots\}.$$

Demuestre que todo elemento del grupo cociente $\mathbb{Z}[1/p]/\mathbb{Z}$ es divisible por p.

- 3) Demuestre que todo elemento de $\mathbb{Z}[1/p]/\mathbb{Z}$ es divisible por cualquier primo $q \neq p$. Sugerencia: use de alguna manera la identidad de Bézout para q y p^k .
- 4) Deduzca de 1), 2), 3) que todo elemento de $\mathbb{Z}[1/p]/\mathbb{Z}$ es divisible.

Solución. En la parte 1), si x es divisible por todo número natural n, entonces es divisible por topo número primo. Viceversa, si x es divisible por todo primo p, entonces para $n = 1, 2, 3, 4, \ldots$ podemos considerar la factorización en números primos $n = p_1^{k_1} \cdots p_s^{k_s}$. Luego,

$$n \cdot y = \underbrace{p_1 \cdots p_1}_{k_1} \cdot \underbrace{p_2 \cdots p_2}_{k_2} \cdots \underbrace{p_s \cdots p_s}_{k_s} \cdot y.$$

Para dividir x por n es suficiente dividirlo k_1 veces por p_1 , luego k_2 veces por p_2 , etcétera.

En 2), dado $[a/p^n] \in \mathbb{Z}[1/p]$, tenemos $p \cdot [a/p^{n+1}] = [p \cdot a/^{n+1}] = [a/p^n]$.

En 3), dado $[a/p^n] \in \mathbb{Z}[1/p]$ y un primo $q \neq p$, tenemos $xq + yp^n = 1$ para algunos $x, y \in \mathbb{Z}$. Luego,

$$[a/p^n] = 1 \cdot [a/p^n] = (xq + yp^n) \cdot [a/p^n] = xq \cdot [a/p^n] + [yp^n \cdot a/p^n] = q \cdot [xa/p^n].$$

Hemos probado que los elementos de $\mathbb{Z}[1/p]/\mathbb{Z}$ son divisibles por todo primo, así que son divisibles.