Wiederholung

· Binomischer Lelinati: R hommutativer Ring, neW

 $-(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{k} b^{n-k} \qquad \forall a,b \in \mathbb{R}$

 $-2^{n}=(1+1)^{n}=\sum_{k=1}^{n}\binom{n}{k}$

- Falls pel mit pa=0 VaER dann:

 $(a+b)^P = a^P + b^P \qquad \forall a,b \in \mathbb{R}.$

Summer regel: $A_{11}..., A_{r}$ paarw. digi. endl. Mengen: $\left| \begin{array}{c} C \\ A_{i} \end{array} \right| = \sum_{i=1}^{r} |A_{i}|.$

Differentregel: M endl. Mengl, $A \subseteq M$: $|M \setminus A| = |M| - |A|.$

Produktnegel: A_{11} ..., A_{r} endl. Mengen $\left| \begin{array}{c} X \\ X \\ i = 1 \end{array} \right| = \frac{r}{i-1} \left| A_{i} \right|.$

Inhlusion-Eschlusionsprinzeip: $A_{11} - 1 A_{r}$ ender. Frengen $\begin{vmatrix} v \\ A_{i} \end{vmatrix} = \sum_{k=1}^{r} (-1)^{k-1} \sum_{\substack{I \subseteq I \\ |I| = k}} |\bigcap A_{i}|$ $r = 2 : |A \cup B| = |A| + |B| - |A \cap B|.$

r = 2: $|A \cup B| = |A| + |B| - |A \cap B|$. r = 3: $|A \cup B \cup C| = |A| + |B| + |C|$ $- (|A \cap B| + |A \cap C| + |B \cap C|)$ $+ |A \cap B \cap C|$. · nik & No Snik := Auzall de k-Partitioner einer n nike N $S_{n,k} = S_{n-1,k-1} + k S_{n-1,k}$ Stirling-Zahler 2. Art n mit genan k Zykelm Snik = Auzahl der Permutationer snik = sn-1/h-1 + (n-1) sn-1/k nik e N

Stirling-Zahlen 1. Art.

15. Januar 2019

Graphen

Graphen

Definition

E

Ein (ungerichteter, schlichter) Graph ist ein Paar G = (V, M) mit

- ► *V* eine endliche Menge;
- ► E Menge von zweielementigen Teilmengen von V.

Sprechweisen

Ist G = (V, E) eine Graph, dann heißen

- ▶ die Elemente von *V Knoten* von *G* (English: *vertex*),
- ▶ die Elemente von E Kanten von G (English: edge),
- $ightharpoonup n_G := |V| \text{ die } Knotenzahl \text{ von } G,$
- $ightharpoonup m_G := |E| ext{ die } Kantenzahl ext{ von } G.$

Für $\{u, v\} \in E$ schreiben wir auch uv oder vu.

$$uv = \{u_iv\}, u \neq v$$

Bemerkungen

- ▶ Mathematisches Modell für Kante zwischen $u, v \in V$: zweielementige Teilmenge $\{u, v\} = \{v, u\} \subseteq V$.
- ► Andere verbreitete Definitionen von Graphen erlauben
 - gerichtete Kanten,
 - Schlingen,
 - ► Mehrfachkanten,
 - gewichtete Kanten,
 - ► gefärbte Kanten,
 - ▶ unendlich viele Knoten oder Kanten.
 - ► usw.

Mathematisches Modell für Kanten wird angepasst: Z.B.: gerichtete Kante vom Knoten u zum Knoten v modelliert durch $(u, v) \in V \times V$.

Motivation

Graphen modellieren Netzwerke, z.B.

- ► Straßennetze
 - ► Knoten: Kreuzungen
 - ► Kanten: Straßen
- ► Stromnetze
 - ► Knoten: Umspannstationen
 - ► Kanten: Stromleitungen
- Computernetze
- ▶ Workflow-Diagramme

Zeichnungen

Oft werden Graphen durch Bilder dargestellt. Beispiel:

$$V = \{1, 2, 3, 4\},$$

$$E = \{\{1,4\},\{1,2\},\{1,3\},\{2,4\},\{2,3\}\}.$$

$$\Gamma(3) = \{1, 2\}$$

$$\Gamma(1) = \{4\} \{2, 3, 4\}$$

3 inzident zu 23

23 inzident zu 12

Es sei G = (V, E) ein Graph.

Begriffe

- ▶ Es seien $u, v \in V$ mit $u \neq v$ und es sei $uv \in E$.
 - ▶ u und v heißen die Endknoten von uv.
 - ▶ u und v heißen adjazent. oder benachbart
 - ▶ *u* heißt *Nachbar* von *v* und umgekehrt.
- ▶ Für $v \in V$ ist $\Gamma(v) := \Gamma_G(v)$ die Menge der Nachbarn von v.
- $ightharpoonup e \in E$ inzident zu $v \in V$, wenn v ein Endknoten von e ist.
- ► Zwei verschiedene Kanten heißen *inzident*, wenn sie einen gemeinsamen Endknoten haben.
- ▶ *G* heißt *vollständiger Graph*, falls je zwei verschiedene Knoten von *G* adjazent sind.

Beispiele for vollhländige Graphen:

$$M_G = \begin{pmatrix} n_G \\ 2 \end{pmatrix} = \frac{n_G (n_G - 1)}{2}$$

Die Adjazenzmatrix

Es sei G = (V, E) ein Graph mit $V = \{1, \dots, n\}$.

Definition

Die Adjazenzmatrix von G ist die Matrix

$$A := \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right) \in \{0,1\}^{n \times n}$$

mit

$$a_{ij} := egin{cases} 1 & ext{falls } ij \in E, \ 0 & ext{falls } ij
otin E. \end{cases}$$

Die *Adjazenzliste* von *G* ist die Liste

$$\Gamma_{G}^{:} = \Gamma := (\Gamma(1), \Gamma(2), \ldots, \Gamma(n)).$$

Die Adjazenzmatrix (Forts.)

Beispiel

$$V = \{1, 2, 3, 4\},\$$

$$E = \{\{1, 4\}, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{2, 3\}\}.\$$

$$e_{A} = \begin{cases} 2 & 3 & 4 \\ 2 & 1 & 1 & 1 \\ 3 & 1 & 1 & 0 \end{cases}$$

$$\begin{cases} 4 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{cases}$$

$$\begin{cases} 4 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{cases}$$

Die Inzidenzmatrix

Es sei G = (V, E) ein Graph mit $V = \{1, ..., n\}$ und $E = \{e_1, ..., e_m\}$.

Definition

Die *Inzidenzmatrix* von *G* ist die Matrix

$$B := \left(\begin{array}{cccc} b_{11} & b_{12} & \cdots & b_{1m} \\ \vdots & & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{array} \right) \in \{0,1\}^{n \times m}$$

mit

$$b_{ij} := egin{cases} 1 & ext{falls } i \in e_j, \ 0 & ext{falls } i
otin e_j. \end{cases}$$

Die j-te Spalte der Inzidenzmatrix enthält genau zwei Einsen, nämlich zu den beiden Endknoten der Kante e_i .

Grad

Es sei G = (V, E) ein Graph.

Definition

- ▶ Für $v \in V$ heißt $deg(v) := |\Gamma(v)| der Grad von v$.
- ► Knoten vom Grad 0 heißen isoliert.

Bemerkung

Es gilt

$$\sum_{v\in V}\deg(v)=2m_G.$$

Folgerung

Handschlags lemma

Die Anzahl der Knoten von G mit ungeradem Grad ist gerade.

Berveis der Bernerkung: B Inzidenzmatrix von G Summe de Sintrage von B = 2. mg Summe __ in Zeile zu Knoter v: deg (v) =) Summe de Eintrage va B = Z deg (v). Benvein der Folgerung: Z deg (V) = 2. mg Rechne in Z2 = (0+2Z,1+2Z) = Z -> Z,2+2Z $O = \overline{2 \cdot m_G} = \overline{\sum_{v \in V} deg(v)} = \overline{\sum_{v \in V} deg(v)} = \overline{\sum_{v \in V} \overline{1}} = |\{v \in V | deg(v) ungeright\}|$ $= |\{v \in V | deg(v) ungerade\}| \text{ ist gerade. } ||\mathcal{U}||$

Teilgraphen

Es sei G = (V, E) ein Graph.

Definition

Ein Graph G'=(V',E') heißt Teilgraph von G, geschrieben $G' \leq G$, wenn $V' \subseteq V$ und $E' \subseteq E$ ist.

Beispiel

Ist $V' \subseteq V$, so wird durch

$$E' := \{uv \in E \mid u, v \in V'\}$$

ein Teilgraph (V', E') von G definiert, der auf V' induzierte Teilgraph von G, geschrieben $G|_{V'}$.

Teil grapher

(4)

Teilgraph

indu rierter Teil graph

Kantenzüge, Kreise und Pfade

Es sei G = (V, E) ein Graph und $I \in \mathbb{N}_0$.

Definition

- ▶ Ein Kantenzug der Länge I in G ist ein Tupel (v_0, v_1, \ldots, v_l) von Knoten mit $v_i v_{i+1} \in E$ für alle $i = 0, \ldots, l-1$ (heißt auch $v_0 v_l$ -Kantenzug). $v_o v_o$ Kantenzug der Länge $o: (v_o)$
- ▶ Der Kantenzug heißt geschlossen falls $v_0 = v_I$ ist.
- ▶ Ein Kantenzug $(v_0, ..., v_I)$ heißt Pfad der Länge I in G, falls die Knoten $v_0, ..., v_I$ paarweise verschieden sind. (heißt auch v_0 - v_I -Pfad).
- ▶ Ein Kreis der Länge I in G ist ein geschlossener Kantenzug (v_0, \ldots, v_l) , für den $l \ge 3$ und (v_0, \ldots, v_{l-1}) ein Pfad ist.
- ► Eine *Tour der Länge I in G* ist ein geschlossener Kantenzug (v_0, \ldots, v_I) , für den die Kanten $v_0v_1, v_1v_2, \ldots, v_{I-1}v_I$ paarweise verschieden sind.

gerdilonener

(2,1,3,2,1,4,2) Kantenrug de Lange 6

(2,1,4) Pfad de Lange 2

(1,3,2,1) Krein de Länge 3

(2,1,4,2) Tour de Lange 3

Zusammenhang

Es sei G = (V, E) ein Graph.

Definition

ightharpoonup Die Zusammenhangsrelation \sim auf V wird definiert durch

 $u \sim v :\Leftrightarrow$ es gibt einen u-v-Kantenzug in G.

- ▶ G heißt zusammenhängend, falls $u \sim v$ für alle $u, v \in V$, anderenfalls unzusammenhängend.
- ▶ Zusammenhangskomponenten von G; die induzierten Teilgraphen $G|_U$, wobei U die Äquivalenzklassen von V bzgl. \sim durchläuft.
- $ightharpoonup r_G$: Anzahl der Zusammenhangskomponenten von G

Bermile 0

Zusammenhang (Forts.)

Es sei G = (V, E) ein Graph.

Bewein:

Lemma

1. Fall: u,v in verschiedene Z.K. von G

=) $r(V_1 \in u(uv_3)) = v_G - 1$

Für alle $u \neq v \in V$ gilt:

$$r_G - 1 \le r_{(V,E \cup \{uv\})} \le r_G.$$

$$r_G - 1 \le r_{(V, E \cup \{uv\})} \le r_G. \quad 2 \text{ Fall} : u, v \text{ in gleichen } ZK \text{ von } G$$

$$=) \ r_{(V, E \cup \{uv\})} = r_G.$$

$$r_{(V,E\setminus\{uv\})} - 1 \le r_G \le r_{(V,E\setminus\{uv\})}.$$

Satz

- (a) \triangleright Untere Schranke für m_G : $m_G \ge n_G r_G$.
- $(b) \triangleright \text{Obere Schranke für } m_G : m_G \leq \binom{n_G+1-r_G}{2}.$

Bewein der Satres (a) Induktion über ma $m_{G}=0$; \Rightarrow $r_{G}=n_{G}$ \Rightarrow $m_{G}=0\leq0=n_{G}-r_{G}$ Ma 70: Hth Wahle e & a, setre G' == (V, E'les) =) r_c'-1 \(\xeta\) r_G =) $n_{G} = n_{G'} \leq m_{G'} + r_{G'} = m_{G'} - 1 + r_{G'} \leq m_{G} + r_{G}$

Induktions -

(b) (1)
$$ab \in \mathbb{N} = (a) + (b) = (a+b-1)$$

 $Klar_1$ falls $a = 1$ ode $b = 1$
 $ab > 2$: En reigen: $a(a-1) + b(b-1) \neq (a+b-1)(a+b-2)$
 $direkter Nachrech num$.

(2) Indultion über
$$r_{G}$$
:

 $r_{G} = 1$:

 $m_{G} = \binom{n_{G}}{2}$
 $r_{G} > 1$:

 $G' : \text{ ginn } Z.K. \text{ non } G$
 $G' : (r-1) \text{ and leren } Z.K. \text{ ron } G$
 $m_{G} = m_{G'} + m_{G''} = \binom{n_{G'} - (r_{G}-1) + 1}{2} + \binom{n_{G''}}{2}$

(a) $\binom{n_{G'} - r_{G} + 2 + n_{G''} - 1}{2} = \binom{n_{G} - r_{G} + 1}{2}$.

 $m_{G} = \binom{n_{G'} - r_{G} + 2 + n_{G''} - 1}{2} = \binom{n_{G} - r_{G} + 1}{2}$.

Zusammenhang (Forts.)

Es sei G = (V, E) ein Graph.

Folgerung

- ▶ Ist G zusammenhängend, dann ist $m_G \ge n_G 1$.
- ▶ Ist G unzusammenhängend, so gilt $m_G \leq \binom{n_G-1}{2}$.

Brücken

Es sei G = (V, E) ein Graph, $u, v \in V$ mit $e = uv \in E$.

Bemerkung

Es sei $G' := (V, E \setminus \{e\})$. Dann sind äquivalent:

- ▶ $u \not\sim v$ in G'.
- $ightharpoonup r_{G'} > r_G$.

Definition

e heißt Brücke von G, wenn eine der beiden Bedingungen aus der Bemerkung erfüllt ist.

Brücken (Forts.)

Es sei G = (V, E) ein Graph, $u, v \in V$ mit $e = uv \in E$.

Bemerkung

Es sei $G' := (V, E \setminus \{e\})$.

Dann sind die folgenden Aussagen äquivalent.

- (a) \triangleright e ist keine Brücke von G.
- (b) \triangleright $u \sim v \text{ in } G'$.
- $(c) \triangleright r_{G'} = r_G.$
- (d) \triangleright es gibt einen u-v-Kantenzug in G, der nicht über e führt.
- (e) ► es gibt einen u-v-Pfad in G, der nicht über e führt.
- $(f) \triangleright e$ ist Teil eines Kreises in G.

Bevoir der Bem. (d) =) (e):

Sei (voivii -- ive) u-v-Kanterzag, der nicht über eführt, von karrester Länge

Beh: (vor.-, ve) ist u-v-Pfad

Ben: Fall micht, ex. ij, 0 = i cj = 2 und vi=y.

=) (voi-vijeni-, ve) ut Kanten zag von u nach v,
der micht über a führt, der Länge

l-(j-i) < ℓ .

MAN