MATH 104: MULTIVARIABLE CALCULUS

NAME:
There are five questions. Make sure you justify all your work for complete credit.
Rules
 You have 80 minutes to complete your work Closed books. No use of internet, textbooks, computer algebra systems, calculators No collaboration. 1 person per bathroom break. When you go to the bathroom, turn in your cellphone and exam until return. Scores:
(1) (2) (3) (4) (5) Total :

Date: March 12, 2025.

Questions

Problem 1 (20 points, 5 points each). (1) Where does the line

$$x(t) = 2t - 1$$
; $y(t) = 3t + 2$; $z(t) = 4t$

intersect the plane given by 4x + 3y - z = 3?

(2) What is the surface that the following function a parametrization of? Give a reason.

$$G(\varphi, \theta) = \begin{bmatrix} R\cos\theta\sin\varphi \\ R\sin\theta\sin\varphi \\ R\cos\varphi \end{bmatrix}$$

(3) In \mathbb{R}^4 , what is the intersection of the (x_1, x_2) and (x_3, x_4) plane?

(4) What is the value of c so that the planes $2cx-y+c^2z=15$ and x+5cy-3z=4 are orthogonal?

Problem 2 (20 points, 5 points each). Consider the following functions

$$f(u,v,w) = \begin{pmatrix} u^2 v^{-3} w \\ 2u - 5w \\ uv - vw \end{pmatrix},$$

and

$$g(a,b,c) = \begin{pmatrix} \ln(ab) \\ abc \\ b^2 + 5c \end{pmatrix},$$

- (1) Compute the derivative of f at the point (1, -1, 2).
- (2) What is the most sensitive output of f at the point (1, -1, 2)?
- (3) Compute $[Dg]_{(a,b,c)}$.
- (4) Compute the derivative of $g \circ f$ at the point (1, -1, 2).

Problem 3 (20 points). (1) Find an equation of the tangent plane to the surface $z=x\sin(x+y)$ at the point (-1,1,0).

(2) Find the linear approximation at (0,0) of $e^x \cos(xy)$.

Problem 4 (20 points). Given the curve $\gamma(t) = (\sin t, \cos 3t, t^2)$.

- (1) Compute the velocity, acceleration of γ at time t=1.
- (2) What is the arclength of γ from t = 1 to t = 2?

 $Problem\ 5$ (20 points). A manufacturer has modeled its yearly production function P (the value of its entire production, in millions of dollars) as a Cobb-Douglas function

$$P(L, K) = 1.47L^{0.65}K^{0.35}$$

where L is the number of labor hours (in thousands) and K is the invested capital (in millions of dollars). Suppose that when L=30 and K=8, the labor force is decreasing at a rate of 2000 labor hours per year and capital is increasing at a rate of \$500,000 per year. Find the rate of change of production.