CLAIM AMENDMENTS

1. (currently amended): A compound of the general-formula (I)

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

D is a heterocyclic ring selected from:

$$X_1$$
 X_2
 X_3
 X_4
 X_4
 X_5
 X_4
 X_5
 X_5
 X_4
 X_5
 X_5

where X_1 , X_2 , X_3 , X_4 are optionally substituted carbon, or one of X_1 , X_2 , X_3 , X_4 is nitrogen and the rest optionally substituted carbon;

[[R2]] \underline{R}^2 is 0-3 substituents independently-chosen from H, selected from the group consisting of halogen, C_{1-4} alkyl, CF_3 , OCF_3 , $OCHF_2$, CN, aryl, hetaryl, C_{1-4} alkylOH, C_{1-4} alkylNR3R4 $\underline{C_{1-4}}$ alkylNR3R4, C_{1-4} alkylhetaryl, OC_{1-4} alkylOH, $\underline{CO_2R_3}$, $\underline{CONR_3R_4}$, $\underline{NR_3R_4}$, $\underline{CO_2R_3}$, $\underline{CONR_3R_4}$, $\underline{NR_3R_4}$, nitro, $\underline{NR_3COR_4}$, $\underline{NR_3COR_4}$,

[[R3, R4]] $\underline{R^3}$, $\underline{R^4}$ are each independently H, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkylOH, $\underline{C_{1\text{-}4}}$ alkylNR19R20 $\underline{C_{1\text{-}4}}$ alkylNR19R20, $\underline{C_{1\text{-}4}}$ alkyl cycloalkyl, $\underline{C_{1\text{-}4}}$ cyclohetalkyl, aryl, $C_{1\text{-}4}$ alkylaryl, hetaryl, or $C_{1\text{-}4}$ alkylhetaryl, or may be joined to form an optionally substituted 3-8 membered (saturated or unsaturated) ring optionally containing an atom selected from O, S[[, NR6]] and $\underline{NR^6}$;

and [[R5]] \underline{R}^5 is selected from H, C_{1-4} alkyl, aryl or hetaryl;

[[R6]] \underline{R}^6 is selected from the group consisting of H, C₁₋₄ alkyl, \underline{C}_{1-4} alkyl, \underline{C}_{1-4} alkyl \underline{R}^{19} , aryl, hetaryl, C₁₋₄ alkyl aryl[[,]] and C₁₋₄ alkyl hetaryl;

R19, R20 R¹⁹, R²⁰ are each independently selected from H, H or C₁₋₄alkyl;

[[R1]] \underline{R}^1 is H, C_{1-4} alkyl, C_{1-6} cycloalkyl, or may form a 5-8 membered ring onto the ortho position of ring A;

Q is a bond, CH, C₁₋₄ alkylene;

A is aryl[[,]] <u>or</u> hetaryl optionally substituted with 0-3 substituents independently-chosen <u>selected</u> from <u>the group consisting of</u> halogen, C₁₋₄ alkyl, CF₃, OCF₃, CN, [[NR8R9]] <u>NR⁸R⁹</u>, aryl, hetaryl, C₁₋₄aryl, C₁₋₄hetaryl, C₁₋₄ alkylNR8R9, OC₁₋₄ alkylNR8R9 <u>C₁₋₄ alkylNR8R9</u>, oC₁₋₄ alkylNR⁸R⁹, nitro, <u>NR10C₁₋₄NR8R9</u>, NR8COR9, NR10CONR8R9, NR8SO₂R9, CONR8R9, CO₂R8 <u>NR¹⁰C₁₋₄NR⁸R⁹</u>, NR⁸COR⁹, NR¹⁰CONR⁸R⁹, NR⁸SO₂R⁹, CONR⁸R⁹ and CO₂R⁸;

R8 and R9- R^8 and R^9 are each independently H, C_{1-4} alkyl, aryl or together form an optionally substituted 4-8 membered ring which may contain a heteroatom selected from O, S[[, NR11]] and NR¹¹;

R10 is selected from H, R^{10} is H or C_{1-4} alkyl;

R11 is selected from H, R^{11} is H or C_{1-4} alkyl;

Q is CH or trivalent alkylene; and

W is-selected from H, C_{1-4} alkyl, <u>or</u> C_{2-6} alkenyl or may form a 5-8 membered ring onto the ortho position of ring A; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC_{1-4} alkyl[[, NR12R13]] <u>or NR¹²R¹³</u>;

R12, and R13- R^{12} and R^{13} are each independently H, C_{1-4} alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S[[, NR14]] and NR^{14} ;

R14 is selected from H, R14 is H or C14 alkyl; or

Q and W are absent;

Y is 0-2 substituents selected from H, C₁₋₄ alkyl, NR15R16 NR¹⁵R¹⁶;

R15 and R16 R^{15} and R^{16} are independently-selected from H, H or C_{1-4} alkyl; or a compound selected from a group consisting of:

and pharmaceutically acceptable salts, hydrates, solvates, crystal forms or diastereomers thereof.

2. (currently amended): A compound according to formula (I) of claim 1, wherein the compound is selected from compounds of the general formula (II):

$$A \xrightarrow{W} [[R^1]] \xrightarrow{R^1} N D$$

$$Y = X$$

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

D is a heterocyclic ring-selected from of the formula:

$$X_{1}$$
 X_{2}
 X_{3}
[[R2]] R^{2}

where X_1 , X_2 , X_3 , X_4 are optionally substituted carbon, or one of X_1 , X_2 , X_3 , X_4 is N and the rest optionally substituted carbon;

[[R2]] $\underline{R^2}$ is 0-3 substituents independently-chosen from H, selected from the group consisting of halogen, C_{1-4} alkyl, CF_3 , OCF_3 , $OCHF_2$, CN, aryl, hetaryl, C_{1-4} alkylOH, C_{1-4} alkylNR3R4 C_{1-4} alkylNR3R4, C_{1-4} alkylNR3R4, C_{1-4} alkylNR3R4

OC₁₋₄alkylNR³R⁴, OC₁₋₄alkylhetaryl, OC₁₋₄ alkylOH, CO₂R3, CONR3R4, NR3R4 CO₂R³, CONR³R⁴, NR³R⁴, nitro, NR3COR4, NR5CONR3R4, NR3SO₂R4, C₁₋₄alkylNR3COR4, C₁₋₄alkylNR5CONR3R4, C₁₋₄alkylNR3SO₂R4 NR⁵CONR³R⁴, NR⁵SO₂R⁴, C₁₋₄alkylNR³COR⁴, C₁₋₄alkylNR⁵CONR³R⁴ and C₁₋₄alkylNR³SO₂R⁴;

[[R3, R4]] $\underline{R^3}$, $\underline{R^4}$ are each independently H, C₁₋₄ alkyl, C₁₋₄alkylOH, $\underline{C_{1-4}}$ alkylNR19R20 $\underline{C_{1-4}}$ alkylNR¹⁹R²⁰, C₁₋₄ alkyl cycloalkyl, $\underline{C_{1-4}}$ cyclohetalkyl, aryl, C₁₋₄ alkylaryl, hetaryl, or C₁₋₄ alkylhetaryl, or may be joined to form an optionally substituted 3-8 membered (saturated or unsaturated) ring optionally containing an atom selected from O, S[[, NR6]] and NR⁶;

and [[R5]] \underline{R}^5 is selected from H, C_{1-4} alkyl, aryl or hetaryl;

[[R6]] \underline{R}^6 is selected from the group consisting of H, C_{1-4} alkyl, \underline{C}_{1-4} alkylNR19R20 \underline{C}_{1-4} alkylNR¹⁹R²⁰, aryl, hetaryl, \underline{C}_{1-4} alkyl aryl, and \underline{C}_{1-4} alkyl hetaryl;

[[R19, R20]] \underline{R}^{19} , \underline{R}^{20} are each independently-selected from H, H or \underline{C}_{1-4} alkyl;

[[R1]] \underline{R}^1 is H, C_{1-4} alkyl, C_{1-6} cycloalkyl, or may form a 5-8 membered ring onto the ortho position of ring A;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen_selected from the group consisting of halogen, C_{1-4} alkyl, CF_3 , OCF_3 , CN, NR8R9 NR^8R^9 , aryl, hetaryl, C_{1-4} aryl, C_{1-4} hetaryl, C_{1-4} alkylNR8R9, OC_{1-4} alkylNR8R9, OC_{1-4} alkyl NR^8R^9 , OC_{1-4} alkyl NR^8R^9 , o C_{1-4} alkyl NR^8R^9 ,

R8 and R9- R^8 and R^9 are each independently H, C_{1-4} alkyl, aryl or together form an optionally substituted 4-8 membered ring which may contain a heteroatom selected from O, S[[, NR11]] and NR¹¹;

R10 is selected from H, R¹⁰ is H or C₁₋₄ alkyl;

R11 is selected from H, R^{11} is H or C_{1-4} alkyl;

W is selected from the group consisting of H, C_{1-4} alkyl, and C_{2-6} alkenyl or may form a 5-8 membered ring onto the ortho position of ring A; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC_{1-4} alkyl[[, NR12R13]] and $NR^{12}R^{13}$;

R12, and R13- \underline{R}^{12} and \underline{R}^{13} are each independently H, C_{1-4} alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S[[, NR14]] and NR¹⁴;

R14 is selected from H, R¹⁴ is H or C₁₋₄ alkyl;

Y is 0-2 substituents selected from the group consisting of H,

 C_{1-4} alkyl[[, NR15R16]] and NR¹⁵R¹⁶;

R15 and R16 \underline{R}^{15} and \underline{R}^{16} are independently-selected from H, \underline{H} or \underline{C}_{1-4} alkyl; and a pharmaceutically acceptable salt, hydrate, solvate, crystal form or diastereomer thereof.

3. (currently amended): A compound selected from the group consisting of:

or pharmaceutically acceptable salts, hydrates, solvates, crystal forms or diastereomers thereof.

- 4. (currently amended): A compound according to formula (I) of claim 1 selected from the group consisting of
 - 6-(1H-Benzimidazol-1-yl)-N-benzylpyrazin-2-amine,
 - 6-(1H-Benzimidazol-1-yl)-N-[(1R)-1-phenylethyl]pyrazin-2-amine,
 - 6-(1H-Benzimidazol-1-yl)-N-[(1S)-1-phenylethyl]pyrazin-2-amine,
 - 1-(6-{[1-(3-Fluorophenyl)ethyl]amino}pyrazin-2-yl)-1H-benzimidazole-5-carboxamide,
 - 1-(6-{[1-(3-Fluorophenyl)ethyl]amino}pyrazin-2-yl)-1H-benzimidazole-6-carboxamide,
 - 1-(6-{[1-(3-Fluorophenyl)ethyl]amino}pyrazin-2-yl)-1H-benzimidazole-6-carbonitrile,
 - 1-[6-(3,4-Dihydroisoquinolin-2(1H)-yl)pyrazin-2-yl]-1H-benzimidazole-5-carbonitrile,
 - 1-[6-(3,4-Dihydroisoquinolin-2(1H)-yl)pyrazin-2-yl]-1H-benzimidazole-6-carbonitrile,
- 1-{6-[(1S)-1,2,3,4-Tetrahydronaphthalen-1-ylamino]pyrazin-2-yl}-1H-benzimidazole-5-carbonitrile,
- 1-{6-[(1S)-1,2,3,4-Tetrahydronaphthalen-1-ylamino]pyrazin-2-yl}-1H-benzimidazole-6-carbonitrile,
 - 1-(6-{[(1S)-1-Phenylethyl]amino}pyrazin-2-yl)-1H-benzimidazol-5-amine,
 - 1-(6-{[(1S)-1-Phenylethyl]amino}pyrazin-2-yl)-1H-benzimidazol-6-amine,
 - N-[1-(6-{[(1S)-1-Phenylethyl]amino}pyrazin-2-yl)-1H-benzimidazol-6-yl]-
- 2,2-dimethylpropanamide,
 - N-[1-(6-{[(1S)-1-Phenylethyl]amino}pyrazin-2-yl)-1H-benzimidazol-5-yl]acetamide,
 - N-[1-(6-{[(1S)-1-Phenylethyl]amino}pyrazin-2-yl)-1H-benzimidazol-5-

yl]methanesulfonamide,

- 2-(S- α -Methylbenzylamino)-6-(5-(N-methylpiperazin-4-yl-methyl)-benzimidazo-1-yl)-pyrazine,
 - [1-(6-{[1-(4-Fluorophenyl)ethyl]amino}pyrazin-2-yl)-1H-benzimidazol-5-yl]methanol,

[1-(6-{[1-(4-Fluorophenyl)ethyl]amino}pyrazin-2-yl)-1H-benzimidazol-6-yl]methanol, and N-[1-(4-Fluorophenyl)ethyl]-6-{6-[(4-methylpiperazin-1-yl)methyl]-1H-benzimidazol-1-yl}pyrazin-2-amine, and

a pharmaceutically acceptable salt, hydrate, solvate, crystal form or diastereomer thereof.

5. (currently amended): The compound of claim 3, wherein said compound is:

or a pharmaceutically acceptable prodrug, salt, hydrate, solvate, crystal form or diastereomer thereof.

- 6. (canceled)
- 7. (currently amended): A composition comprising a carrier and at least one compound according to claim 3 claim 1.
- 8. (currently amended): A method of treating a tyrosine kinase associated disease state leukemia or lymphoma in a subject, the method comprising administering a therapeutically effective amount of a compound according to claim 3 claim 1 or a pharmaceutical composition thereof.
 - 9-12. (canceled)
 - 13. (previously presented): The compound of claim 1, wherein Y is 1-2 substituents.
- 14. (currently amended): The compound of claim 1, wherein Y is 0 <u>substituents</u> and [[R2]] \underline{R}^2 is OCHF₂, CN, C₁₋₄ alkylOH, C₁₋₄alkylhetaryl, OC₁₋₄ alkyl, OC₁₋₄alkylNR³R⁴, OC₁₋₄alkylhetaryl, or OC₁₋₄ alkylOH.

- 15. (currently amended): The compound of claim 1, wherein [[R2]] \underline{R}^2 is CN.
- 16. (currently amended): The compound of claim 1, wherein [[R1]] \underline{R}^1 forms a 5-8 membered ring onto the ortho position of ring A.
 - 17. (previously presented): The compound of claim 16, wherein Q is CH and W is H.
 - 18. (currently amended): A compound having the formula

or

$$\begin{array}{c|c} R & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

wherein A is phenyl;

n is 0 or 1;

R is H, OCH₃ or halo; and

[[R1]] \underline{R}^1 is H or CH₃.

19. (new): The compound of claim 1 which is the formula

wherein R^2 is 0-3 substituents independently selected from the group consisting of halogen, C_{1-4} alkyl, CF_3 , OCF_3 , $OCHF_2$, CN, aryl, hetaryl, C_{1-4} alkylOH, C_{1-4} alkylNR 3 R 4 , C_{1-4} alkylhetaryl, OC_{1-4} alkyl, OC_{1-4} alkylNR 3 R 4 , OC_{1-4} alkylhetaryl, OC_{1-4} alkylOH, CO_2 R 3 , $CONR^3$ R 4 , NR^3 R 4 , nitro, NR^3COR^4 , NR^5CONR^3 R 4 , NR^3SO_2 R 4 , C_{1-4} alkylNR $^3COR^4$, C_{1-4} alkylNR $^5CONR^3$ R 4 and C_{1-4} alkylNR 3SO_2 R 4 ;

 R^3 , R^4 are each independently H, C_{1-4} alkyl, C_{1-4} alkylOH, C_{1-4} alkylNR¹⁹R²⁰, C_{1-4} alkyl cycloalkyl, C_{3-8} cyclohetalkyl, aryl, C_{1-4} alkylaryl, hetaryl, or C_{1-4} alkylhetaryl, or may be joined to form an optionally substituted 3-8 membered (saturated or unsaturated) ring optionally containing an atom selected from O, S and NR⁶;

and R^5 is H, C_{1-4} alkyl, aryl or hetaryl;

 R^6 is selected from the group consisting of H, C_{1-4} alkyl, C_{1-4} alkylNR¹⁹R²⁰, aryl, hetaryl, C_{1-4} alkyl aryl and C_{1-4} alkyl hetaryl;

 $R^{19},\,R^{20}$ are each independently H or $C_{1\text{--}4}$ alkyl;

and wherein ring A is optionally substituted with 0-3 substituents independently selected from the group consisting of halogen, C_{1-4} alkyl, CF_3 , OCF_3 , CN, NR^8R^9 , aryl, hetaryl, C_{1-4} aryl, C_{1-4} alkyl NR^8R^9 , OC_{1-4} alkyl NR^8R^9 , nitro, $NR^{10}C_{1-4}NR^8R^9$, NR^8COR^9 , $NR^{10}CONR^8R^9$, $NR^8SO_2R^9$, $CONR^8R^9$ and CO_2R^8 ;

 R^8 and R^9 are each independently H, C_{1-4} alkyl, aryl or together form an optionally substituted 4-8 membered ring which may contain a heteroatom selected from O, S and NR^{11} ;

 R^{10} is H or C_{1-4} alkyl; and

 R^{11} is H or C_{1-4} alkyl.