11.16 Iteth cool

11.14 rethood

Buch 2. Wlasse A(t)

Sogari Mnische Skaluiung BS 123

ordinatenlogarithmischen Koordinatensystem.

1 e (y-dobe wid logarithmirt)

Die Funktion, deren Darstellung in einem ordinatenlogarithmischen Koordinatensystem eine Gerade ist, ist daher eine Exponentialfunktion.

In einem **abszissenlogarithmischen Koordinatensystem** ist die waagrechte Achse logarithmisch skaliert, die senkrechte Achse linear. Die Darstellung jeder **logarithmischen Funktion** ist hier eine **Gerade** (Beweis siehe Aufgabe 4.151).

Sind beide Achsen eines Koordinatensystems logarithmisch skaliert, so spricht man von einem **doppeltlogarithmischen Koordinatensystem**.

Zeichnet man zum Beispiel die Potenzfunktion $y = 0.1 \cdot x^5$ ein, so erscheint sie hier als Gerade.

Da
$$\lg(y) = \lg(a \cdot x^n) = \lg(a) + n \cdot \lg(x)$$
 ist, erscheint jede
Potenzfunktion $y = a \cdot x^n$ als **Gerade**: $y = \lg(a) + n \cdot X$

Funktionstyp	Koordinatensystem	Graph
Exponential funktion $y = c \cdot a^x$	ordinatenlogarithmisch	Gerade
Logarithmusfunktion $y = log_a(x)$	abszissenlogarithmisch	Gerade
Potenzfunktion $y = a \cdot x^n$	doppeltlogarithmisch	Gerade

4.148 F- HU

4.148 - HU

4.148 Ermittle die Gleichung der dargestellten Funktion.

$$Y = C \cdot Q$$

 $Y(-1) = 2.10^{\circ}$
 $Y(4) = 4.10^{1}$

I:
$$2 = C \cdot Q$$

I: $40 = C \cdot Q$

I : $40 = C \cdot Q$

I : $40 = Q$

Q in I odu II evisaben

$$20 = Q^{5}$$
 $Q = \sqrt{20}$