Crime Forecasting using Satellite Imagery

He Zhou

University of Minnesota, 3rd Stats PhD

April 27, 2022

Crime Forecasting

- **Goal:** Predict future high-risk crime areas (hot spots) through past spatial and temporal information
- Tasks:
 - Classification (hot spot forecasting): crime / no crime
 - Prediction: number of crimes

Motivation: Examine Deep Learning Architectures

"Examining Deep Learning Architectures for Crime Classification and Prediction" [Stalidis et al., 2021]

Temporal feature Spraid feature entroider

- Use only location, time, crime type from incident reports
- Crime classification and prediction simultaneously

Motivation: Satellite Imagery

"Crime Mapping from Satellite Imagery via Deep Learning" [Najjar et al., 2018]

Figure: Visual features contained in satellite imagery can be used as a proxy indicator of crime rates

Question

Question: Forecast crime hotspots with satellite imagery?

Problem Formulation

• Incident Report Dataset:

- Location: longitude & latitude
- Time: year-month-day & time
- Crime type: C types
- Grid [Lin et al., 2018]:
 - \bullet cell edge size ℓ
 - $H \times W$ cells grid
- Aggregation:
 - Given timespan t, crime type c, cell (i, j),
 - Count sum of occurences y.
 - Multiple Incident Maps for period T: (T, C, H, W)
- Satellite Images:
 - For each cell (i, j), get static map¹ centered around centroid
 - pixels: 256 × 256; zoom level: 17

¹Google Static Maps API:

Spatio-temporal Model: Dynamic Feature Extraction

Examine Deep Learning Architectures for Crime Classification and Prediction [Stalidis et al., 2021]

Figure: Feature Extraction: the spatial features first then the temporal (SFTT).

VGGNet: Spatial Feature Extraction

Figure: VGGNet [Simonyan and Zisserman, 2014]

CNN Architecture:

incident map
$$\rightarrow$$
 $(3 \times 3 \text{ conv}, 32) \times 2 \stackrel{\mathsf{pool}}{\rightarrow} (3 \times 3 \text{ conv}, 64) \times 2$

$$\stackrel{\mathsf{pool}}{\rightarrow} (3 \times 3 \text{ conv}, 128) \times 2 \stackrel{\mathsf{pool}}{\rightarrow} (3 \times 3 \text{ conv}, 256) \times 2$$

$$\rightarrow (1 \times 1 \text{ conv}, 256) \times 2 \stackrel{\mathsf{flatten}}{\rightarrow} \mathsf{spatial features}$$

Remark: Batch normalization and dropout layers used to avoid overfitting.

LSTM: Temporal Feature Extraction

Figure: ² Stacked LSTMs [Hochreiter and Schmidhuber, 1997]

- x_t : spatial features
- $h_t^{<1>} \in \mathbb{R}^{500}$, $h_t^{<2>} \in \mathbb{R}^{500}$, $h_t^{<3>} \in \mathbb{R}^N$
- $(h_1^{<3>}, \dots, h_T^{<3>})$: dynamic spatio-temporal features

AlexNet: Static Feature Extraction

Figure: AlexNet [Krizhevsky et al., 2012] as Static Feature Extractor

- $s_{(i,j)} \in \mathbb{R}^{3 \times 256 \times 256}$: satellite image centered at centroid of cell (i,j)
- $f_{(i,j)} \in \mathbb{R}^{1000}$: static features extracted by pre-trained AlexNet
- concatenate static features with the dynamic features
- feed into fully connected output layers

Model Architecture

```
(relu): ReLU(inplace=True)
(dropout): Dropout(p=0.5, inplace=True)
(maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv11): Conv2d(11, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv12): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(conv21): Conv2d(32, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv22): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(conv31): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv32): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(conv41): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv42): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(conv51): Conv2d(256, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
(conv52): Conv2d(256, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
(lstm1): LSTMCell(6400, 500)
(lstm2): LSTMCell(500, 500)
(lstm3): LSTMCell(500, 1600)
(identity): Identity()
(fc static): Linear(in features=4096, out features=1000, bias=True)
(fc1): Linear(in_features=1030, out_features=2, bias=True)
(fc2): Linear(in features=1030, out features=1, bias=True)
```

Figure: Model Architecture with 34,666,013 parameters

Custom Loss

• Classification Loss: Binary cross-entropy (BCE) loss

$$BCE = -\frac{1}{N} \sum_{i=1}^{N} [\hat{o}_i \log o_i + (1 - \hat{o}_i) \log (1 - o_i)]$$

Prediction Loss: Mean squared error (MSE) loss

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Total Loss:

$$Loss = BCE + \lambda \cdot MSE$$

where λ is the regularization parameter for MSE.

San Francisco Incident Report

Figure: Data table preview: San Francisco Police Department Incident Reports³ (2018 to Present)

2021/01/	2021/01/30	09:43	2021	Saturday	2021/01/	10006970	1000697	210038063		VS	Vehicle S
2021/01/	2021/01/29	11:20	2021	Friday	2021/01/	10011800	1001180	216011027		П	Coplogic I
2021/01/	2021/01/17	11:59	2021	Sunday	2021/01/	10018912	1001891	216012075		П	Coplogic I
2021/02/	2021/02/03	05:31	2021	Wednesday	2021/02/	10019721	1001972	210075554	210340313	11	Initial
2021/02/	2021/02/03	12:25	2021	Wednesday	2021/02/	10022652	1002265	216012514		11	Coplogic I
2021/02/	2021/02/04	14:57	2021	Thursday	2021/02/	10024100	1002410	210041903		VS	Vehicle S
2021/01/	2021/01/16	21:00	2021	Saturday	2021/01/	10025797	1002579	216012768		11	Coplogic I
2021/02/	2021/02/05	13:50	2021	Friday	2021/02/	10026950	1002695	210049452		VS	Vehicle S
2021/02/	2021/02/06	13:30	2021	Saturday	2021/02/	10043010	1004301	216015154		11	Coplogic I
2021/02/	2021/02/09	15:00	2021	Tuesday	2021/02/	10046920	1004692	210091629	210410059	VS	Vehicle S
2021/02/	2021/02/12	13:17	2021	Friday	2021/02/	10047180	1004718	200297570		VS	Vehicle S
2021/02/	2021/02/13	14:24	2021	Saturday	2021/02/	10049800	1004980	210099156		VS	Vehicle S
2021/02/	2021/02/13	07:55	2021	Saturday	2021/02/	10052497	1005249	210098540	210440509	IS	Initial Sup

- Start year: 2018 End year: 2022
- 1572 days, 52 months

³https://data.sfgov.org/Public-Safety/

San Francisco Incident Report

Crime Types: {Assault, Theft, Robbery, Burglary, Motor Vehicle, Arson, Homicide, Vice, Narcotics, Other}

Table: Mapping of 47 Crime Categories to the 10 Crime Types [Stalidis et al., 2021].

Crime Type	Crime Category			
	Assault			
	Disorderly Conduct			
Assault	Offences Against The Family And Children			
Assault	Weapons Carrying Etc			
	Weapons Offence			
	Weapons Offense			
	Larceny Theft			
Theft	Malicious Mischief			
THEIL	Stolen Property			
	Vandalism			
Robbery	Robbery			

San Francisco Incident Report

Table: Column 2: Number of Incidents for each crime type;

Column 3: Mean number of hotspots per day for every crime type with 40×40 cell grids.

Num. of Incidents	Mean Num. of hotspots
59,773	27.78
202,506	93.77
13,106	7.33
32,816	17.99
45,034	25.67
2,464	1.46
64	0.04
1,791	0.79
13,564	4.48
143,169	62.57
514,287	# CELLS 951
	59,773 202,506 13,106 32,816 45,034 2,464 64 1,791 13,564 143,169

San Francisco Satellite Images

(a) Cell 985 with 9,194 incidents

(b) Cell 1028 with 7,779 incidents

(c) Cell 1170 with 1 incidents (d) Cell 1135 with 1 incidents

Experimental Settings

- Grid:
 - cell edge size $\ell \approx 450 \text{ m}$
 - 40 × 40 cells grid
- Aggregation:
 - timespan t: 1 dayperiod T: 30 days
 - Incident maps: (30, 10, 40, 40)
- Training:
 - First 39 periods for training and last 13 for testing
 - Loss regularization parameter λ : tune for different crime types
 - Optimizer: SGD
 - Training: batch_size = 3, epoch = 100

Results

(a) All Crime ROC Curve (auroc = 0.989)

(c) Theft ROC Curve (auroc = 0.957)

(b) All Crime Precision-Recall Curve (aps = 0.988)

(d) Theft Precision-Recall Curve (aps = 0.934)

Results

Results

Conclusions

- Use VGGNet + LSTM to extract dynamic spatio-temporal features from incident maps
- Use AlexNet to extract static spatial features from satellite imagary
- Forecasting for "All Crime" performs better than specific crime type
- Explore more on the effect of satellite imagery
- Ethical issue with crime forecasting [Gstrein et al., 2019]

References I

- O. J. Gstrein, A. Bunnik, and A. Zwitter. Ethical, legal and social challenges of predictive policing. *Católica Law Review, Direito Penal*, 3 (3):77–98, 2019.
- S. Hochreiter and J. Schmidhuber. Long short-term memory. *Neural computation*, 9(8):1735–1780, 1997.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural* information processing systems, 25, 2012.
- Y.-L. Lin, M.-F. Yen, and L.-C. Yu. Grid-based crime prediction using geographical features. *ISPRS International Journal of Geo-Information*, 7(8):298, 2018.
- A. Najjar, S. Kaneko, and Y. Miyanaga. Crime mapping from satellite imagery via deep learning. arXiv preprint arXiv:1812.06764, 2018.

References II

- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
- P. Stalidis, T. Semertzidis, and P. Daras. Examining deep learning architectures for crime classification and prediction. *Forecasting*, 3(4): 741–762, 2021.

Thank You