1

IN THE CLAIMS

What is claimed is:

1	1.	A semiconductor apparatus, comprising:
2		a plurality of device elements formed on a surface of a semiconductor
3		substrate, each device element having a diffusion region; and
4		a multi-layer wiring configuration electrically connecting at least two
5		of the diffusion regions, the multi-layer wiring configuration containing a
6		plurality of wiring layers, a first wiring layer of the plurality of wiring layers
7		being divided into a first wiring region for providing wiring in a first direction
8		and a second wiring region for providing wiring in a second direction.
1	2.	The semiconductor apparatus according to claim 1, wherein the first direction is
2	orthog	gonal to the second direction.
1		
1	3.	The semiconductor apparatus according to claim 2, wherein:
2		predetermined wiring in the first wiring layer is electrically connected
3		to and disposed in parallel with wiring in a second wiring layer of the plurality
4		of wiring layers; and
5		the second wiring layer has a higher sheet resistance than the first
6		wiring layer.

1	4.	The semiconductor apparatus according to claim 2, wherein the first wiring layer
2	includ	les:
3		a first wiring trace in the second wiring region disposed in the second
4		direction;
5		a second wiring trace in the second wiring region disposed in the second
6		direction and separated from the first wiring trace in the first direction; and
7		a third wiring trace in the first wiring region disposed in the first direction and
8		electrically connecting the first wiring trace and the second wiring trace.
1	5.	The semiconductor apparatus according to claim 2, further including:
2		a memory array having bit lines formed with a second wiring layer;
3		the second wiring layer has a higher sheet resistance than the first wiring
4		layer.
1	6.	The semiconductor apparatus according to claim 5, wherein the memory array has
2	dynan	nic random access memory cells having a capacitor over bit line structure.
1	7.	A semiconductor apparatus, comprising:
2		a plurality of functional circuit blocks, each functional circuit block
3		including a plurality of device elements, a first wiring region and a second
4		wiring region; and
5		a multi-layer wiring configuration containing a plurality of wiring
6		layers for electrically connecting predetermined ones of the device elements,

- the multi-layer wiring configuration including a first wiring layer disposed in
 the first wiring region providing first wiring in a first direction and the first
 wiring layer disposed in the second wiring region providing second wiring in
 a second direction.
- 1 8. The semiconductor apparatus according to claim 7, wherein the first direction is orthogonal to the second direction.
- 1 9. The semiconductor apparatus according to claim 8, comprising:
- predetermined first wiring in the first wiring layer is electrically
- 3 connected to and disposed in parallel with wiring in a second wiring layer of
- 4 the plurality of wiring layers; and
- 5 the second wiring layer has a higher sheet resistance than the first wiring
- 6 layer.

1

- 1 10. The semiconductor apparatus according to claim 9, wherein the second wiring layer
- 2 has a higher melting point than the first wiring layer.
- 1 11. The semiconductor apparatus of claim 8, wherein the plurality of functional circuit
- 2 blocks are disposed in a matrix on the surface of a semiconductor substrate.
- 1 12. The semiconductor apparatus of claim 8, further including:
- a memory array having bit lines formed with a second wiring layer;

3	the second wiring layer has a higher sheet resistance than the first		
4	wiring layer.		
1			
1	13. The semiconductor apparatus of claim 8, wherein the device elements are insulated		
2	gate field effect transistors (IGFETs), each IGFET having a source/drain diffusion region and		
3	the multi-layer wiring structure electrically connects a source/drain region of at least two		
4	IGFETs within a functional circuit block by using the first wiring layer in the first wiring		
5	region and the second wiring region.		
1			
1	14. A method for forming a semiconductor apparatus by electrically connecting		
2	functional blocks with a multi-layer wiring configuration containing a plurality of		
3	wiring layers and each functional block includes a plurality of device elements,		
4	comprising the steps of:		
5	forming a diffusion layer associated with device elements on the		
6	surface of the substrate;		
7	forming a first interlayer film;		
8	forming a first wiring layer to produce electrodes electrically		
9	connected to the diffusion layer;		
10	forming a second insulation film; and		
11	forming a second wiring layer wherein for each functional block a first		
12	wiring region provides electrical connections using the second wiring layer in		
13	a first direction only and a second wiring region provides electrical		
14	connections using the second wiring layer in a second direction only thereby		

providing electrical connections between at least two device elements with the second wiring layer through the electrodes produced by the first wiring layer.

1

- 1 15. The method according to claim 14, wherein the first direction is orthogonal to the second direction.
- 1 16. The method according to claim 15, wherein the first wiring layer has a higher sheet
- 2 resistance than the second wiring layer.
- 1 17. The method according to claim 15, wherein at least a portion of the wiring formed by
- 2 the second wiring layer in the first wiring region is disposed in parallel and electrically
- 3 connected to wiring formed by the first wiring layer producing the electrodes.
- 1 18. The method according to claim 15, wherein the plurality of functional blocks are
- 2 disposed in a matrix on the surface of a semiconductor substrate.
- 1 19. The method according to claim 15, wherein the step of forming the first wiring layer
- 2 also forms bit lines in a semiconductor memory array.
- 1 20. The method according to claim 19, wherein memory cells in the semiconductor
- 2 memory array are DRAM cells having a capacitor over bit line structure and the first wiring
- 3 layer has a higher melting point than the second wiring layer.

1