میکروکنترلرها خانواده AVR

Dr. Aref Karimiafshar A.karimiafshar@iut.ac.ir

ساختار یک سیستم کامپیوتری

زمانبندیهای دقیق

پردازش دادههای دنیای واقعی

- Although a general-purpose microprocessor can interface with a variety of devices over its system buses
 - Its ability to interface with the real world is limited
- To process real world information, must use
 - Analog-to-digital converters (ADCs)
 - Digital-to-analog converters (DACs)
 - Universal asynchronous receiver and transmitter (UARTs)
 - External timers
 - Peripheral interface adaptors
 - Other specialized peripheralS

ميكروكنترلر

ميكروكنترلر RST POR جهار دسته اصلی AVR Classic AVR Mega Tiny Special Purpose AVR

نمای ساده از AVR

حداقل مدارات لازم برای راه اندازی AVR

ميكروكنترلر

حداقل مدارات لازم برای راه اندازی AVR

- A $10k\Omega$ "pull-up resister" (R1) is connected to the RESET pin to keep the pin in a digital high state
- A 470 Ω resistor (R2) and an LED (LED1) are connected to pin PB0
- The resistor is a "current limiting" resistor to limit the current (mA) passing through the LED so that it doesn't burn out
 - When PB0 goes low (0V) the LED will turn on
 - When PBO goes high (+5V) the LED turns off
- A 0.1uF "bypass capacitor" (C1) helps prevent noise or "ripple" on the +5V line from effecting the microcontroller

does not work!

کد برنامه باید توسط یک پروگرامر بر روی حافظه میکروکنترلر بارگذاری شود!

AVR Programmer

Classic AVR

- Classic AVR (AT90Sxxxx)
 - This is the original AVR chip
 - Has been replaced by newer AVR chips
 - These are not recommended for new designs

Some Members of the Classic Family

Part Num	Code	Data	Data	I/O pins	ADC	Timers	Pin numbers
	\mathbf{ROM}	\mathbf{RAM}	EEPROM	pins			& Package
AT90S2313	2K	128	128	15	0	2	SOIC20,PDIP20
AT90S2323	2K	128	128	3	0	1	SOIC8,PDIP8
AT90S4433	4K	128	256	20	6	2	TQFP32,PDIP28

Mega AVR

- Mega AVR (ATmegaxxxx)
 - These are powerful microcontrollers with more than 120 instructions and lots of different peripheral capabilities, which can be used in different designs.
- Some of their characteristics are as follows:
 - Program memory: 4K to 256K bytes
 - Package: 28 to 100 pins
 - Extensive peripheral set
 - Extended instruction set: They have rich instruction sets.

Mega AVR

Some Members of the Mega Family

Part Num	Code	Data	Data	I/O pins	ADC	Timers	Pin numbers
	ROM	RAM	EEPROM	pins			& Package
ATmega8	8K	1K	0.5K	23	8	3	TQFP32,PDIP28
ATmega16	16K	1K	0.5K	32	8	3	TQFP44,PDIP40
ATmega32	32K	2K	1K	32	8	3	TQFP44,PDIP40
ATmega64	64K	4K	2K	54	8	4	TQFP64,MLF64
ATmega1280	128K	8K	4K	86	16	6	TQFP100,CBGA

Tiny AVR

- Tiny AVR (ATtinyxxxx)
 - This group have less instructions and smaller packages in comparison to mega family. You can design systems with low costs and power consumptions using the Tiny AVRs.
- Some of their characteristics are as follows:
 - Program memory: IK to 8K bytes
 - Package: 8 to 28 pins
 - Limited peripheral set
 - Limited instruction set
 - For example, some of them do not have the multiply instruction

Tiny AVR

Some Members of the Tiny Family

Part Num	Code	Data	Data	I/O pins	ADC	Timers	Pin numbers
	ROM	RAM	EEPROM	pins			& Package
ATtiny 13	1K	64	64	6	4	1	SOIC8,PDIP8
ATtiny25	2K	128	128	6	4	2	SOIC8,PDIP8
ATtiny44	4K	256	256	12	8	2	SOIC14,PDIP14
ATtiny84	8K	512	512	12	8	2	SOIC14,PDIP14

Special Purpose AVR

- Special purpose AVR
 - The ICs of this group can be considered as a subset of other groups
 - Their special capabilities are made for designing specific applications
 - Some of the special capabilities are:
 - USB controller
 - CAN controller
 - LCD controller
 - Zigbee
 - · Ethernet controller
 - FPGA
 - Advanced PWM

Special Purpose AVR

Some Members of the Special purpose Family

Part Num	Code	Data	Data	Max I/O	Special	Timer	s Pin numbers
	ROM	RAM	EEPROM	pins	Capabilities		& Package
AT90CAN128	128K	4K	4K	53	CAN	4	LQFP64
AT90USB1287	7 128K	8K	4K	48	USB Host	4	TQFP64
AT90PWM216	5 16K	1K	0.5K	19 A	.dvanced PWN	12	SOIC24
ATmega169	16K	1K	0.5K	54	LCD	3	TQFP64,MLF64

AVR Part Numbers

- Dual In-line Package (DIP)
 - Plastic DIP (PDIP)
 - To keep the cost low
 - Plastic does not protect an IC from higher humidity conditions as does Ceramic packages
 - Ceramic DIP (CDIP)
 - Military designs would use ceramic packages
 - It is rectangular in shape and has leads extending from both sides along its length, thus forming two sets of in-line pins.

- Small outline integrated circuit (SOIC)
 - Occupies an area about 30–50% less than an equivalent dual inline package (DIP)
 - Typical thickness being 70% less
 - Generally available in the same pin-outs as their counterpart DIP Ics
 - The convention for naming the package is SOIC or SO followed by the number of pins
 - For example, 14-pin 4011 would be housed in an SOIC-14 or SO-14 package

- Quad flat package (QFP)
 - Metric quad flat package (MQFP)
 - Low-profile QFP (LQFP)
 - Thin QFP (TQFP)
 - consists of a rectangular package a few millimetres thick. The package may be square with the same number of pins emanating from each edge or rectangular with different numbers of pins on each pair of sides
 - solve issues such as increasing board density
 - high numbers of interconnections

Micro lead frame (MLF)

(Onit of Measure = mm)								
SYMBOL	MIN	NOM	MAX	NOTE				
Α	-	_	1.00					
A1	-	-	0.05					
b	0.35	0.40	0.48					
D	7.90	8.00	8.10					
D1	6.30	6.40	6.50					
Е	5.90	6.00	6.10					
E1	4.70	4.80	4.90					
9								
L	0.45	0.50	0.55					
К								

COMMON DIMENSIONS

- Ceramic ball grid array (CBGA)
 - Can provide more interconnection pins than can be put on a dual in-line or flat package.
 - The whole bottom surface of the device can be used, instead of just the perimeter.

شمارهگذاری پایهها

- The AVR chip have a little notch at one end to designate the "top".
- The pin numbering starts at 1 on the top left, progress sequentially down the left side, and then back up the right side as shown in the schematic above.

پایان

موفق و پیروز باشید