| 知图、质量为m的雪橇对其心质心轴的转动根量、Jc, Q雪橇速度                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 始终的AB,在XDy平面运动,其上有AB方向为F,为偶M,设F,M,t均配矢函数                                                                                                                                                                                          |
| 确定其运动方程。                                                                                                                                                                                                                          |
| 少个m/B解:由于受非实整约束,不满足 Lagrange 方程,                                                                                                                                                                                                  |
| 以一一大大型了。可用罗斯方程:                                                                                                                                                                                                                   |
| 三十二十二十二三十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十                                                                                                                                                                                           |
| DI X 三自电度 X, y, y k=3                                                                                                                                                                                                             |
| ( ) 有: tany = 87 形: 是tany - 3+ = 0                                                                                                                                                                                                |
|                                                                                                                                                                                                                                   |
| 寸: $\int_{\mathbb{R}} x \operatorname{tem} g - \delta y = 0$ 罗斯特克为: $\frac{\partial}{\partial t} \left( \frac{\partial T}{\partial q_i} \right) - \frac{\partial T}{\partial q_j} = Q_j + \sum_{i=1}^{m} \lambda_i a_{ij}  (m=1)$ |
| 其中·右:On z fam y                                                                                                                                                                                                                   |
| $G_{12} = -1$                                                                                                                                                                                                                     |
| $Q_{i3}=0$ 附野數),而 $T=\sum_{x}m(x^2+y^2)+\sum_{z}J_{c}y^2$                                                                                                                                                                         |
| 难点:广义力的获取方法:                                                                                                                                                                                                                      |
| 関連は原理: Fox 9 Sx + Fsing Sy + M·S9 = FW = ショクラショクラショクロート                                                                                                                                                                           |
| 周此有:Q=Foxey Q=Fsiney Q=M                                                                                                                                                                                                          |
| 列方全:                                                                                                                                                                                                                              |
| $\begin{cases} m\dot{x} = F \cos \theta + \lambda_1 \tan \theta \end{cases}$                                                                                                                                                      |
| $m\ddot{y} = F \sin y - \lambda_1$ $\frac{\partial}{\partial x} \cos x - 1$                                                                                                                                                       |
|                                                                                                                                                                                                                                   |
| Jay = M ③ 这四个产生的描述雪橇运动<br>联立约束产程: × tam y - y = 0 ④ 模型                                                                                                                                                                            |
| $\sim\sim$                                                                                                                                                                                                                        |
| 下面讨论如何求解入:疑回回: 需要注意的是: 我的一个生活                                                                                                                                                                                                     |
| । अप्राप्ति ।                                                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             |
| 数:mxtamy+mxig_mi=Fsimy+tan2y+mxsec2yg-Fsiny+\=0  (1) (1+tan2y)=-mxsec2yg                                                                                                                                                          |
| でです。<br>有:入、( +tan2g)=-misec2gg                                                                                                                                                                                                   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                             |

