Θέματα Προφορικής Εξέτασης για το

Εργαστήριο "Βασικά Ηλεκτρονικά"

<u><</u>Άσκηση 2>

т	`~		
1	ενικές`	Epwin	OELL

- 01) Τι μετρά ένα πολύμετρο σε κύκλωμα με συνεχή τάση (DC); Σε ένα κύκλωμα με εναλλασσόμενη τάση (AC); [Δεν χρησιμοποιείται σε τιμές αντιστάτη (υπάρχει πηγή)! Συνεχείς τιμές // Ενεργές (RMS) τιμές τάσης και ρεύματος]
- 02) Πώς χρησιμοποιείται ο παλμογράφος για να μετρηθεί η τάση του ρεύματος; Το ρεύμα; [Άμεσα, δεν απαιτείται περαιτέρω ρύθμιση // Απαιτείται ρύθμιση στο κάθε κανάλι]
- 03) Νόμοι KCL / KVL: ποιοι είναι τι ισχύει; Ισχύουν για κυκλώματα με εναλλασσόμενη τάση; [Θεωρία // Βέβαια, τα κυκλώματα αυτά αναλύονται με φάσορες (phasor)]
- 04) Πώς αναλύονται κυκλώματα με πηγές συνεχούς και εναλλασσόμενης τάσης; [Θεωρία, αναλύονται με φάσορες (phasor) οι οποίοι, πρακτικά, είναι μιγαδικοί αριθμοί με μέτρο και γωνία]
- 05) Για ένα συνεχές σήμα ποιο όργανο μέτρησης θα χρησιμοποιούσατε; Για εναλλασσόμενο; [Πολύμετρο, πρόκειται για σταθερές τιμές // Παλμογράφο, πρόκειται για εναλλασσόμενες τιμές]
- 06) Τι γνωρίζετε για τα μεγέθη: Πλάτος; Πλάτος "pk-pk"; Ενεργό τιμή;
 [Μέγιστη τιμή σε ΑC σήμα μετρώντας από τη μηδενική στάθμη έως και την μέγιστη θετική συνιστώσα //
 // Μέγιστη τιμή σε ΑC σήμα μετρώντας από την μέγιστη αρνητική έως και τη μέγιστη θετική συνιστώσα //

// TIMH_{RMS} =
$$\frac{\sqrt{2}}{2}$$
 * TIMH_{MEΓΙΣΤΗ πλάτος} = $\frac{\sqrt{2}}{4}$ * TIMH_{MΕΓΙΣΤΗ pk-to-pk}]

- 07) Τι είναι duty cycle σε ένα εναλλασσόμενο σήμα; Ορίζεται για όλα;
 [Το ποσοστό κατά το οποίο το σήμα παραμένει σε μία από τις ενδεχόμενες προβλεπόμενες μορφές του // // Όχι, το εναλλασσόμενο σήμα πρέπει να είναι κανονικό, να επαναλαμβάνεται το ίδιο σε κάθε περίοδό του]
- 08) Το (εναλλασσόμενο) σήμα, "τρέχει" στην οθόνη του παλμογράφου. Τι μπορεί να γίνει για να σταθεροποιηθεί; [Ρύθμιση πλάτους, ρύθμιση χρόνου, ρύθμιση κυκλώματος σκανδαλισμού για τα κανάλια του παλμογράφου]
- 09) Πώς μετριέται σήμα στον παλμογράφο; Ποιες είναι οι χρήσιμες παράμετροι; Αν δεν είναι κανονικό;
 [Πρώτα πρέπει να σταματήσει να "τρέχει". Στη συνέχεια, μέσω του κομβίου "MEASURE" //
 // Ρύθμιση πλάτους, ρύθμιση χρόνου, ρύθμιση κυκλώματος σκανδαλισμού και κομβίο "MEASURE" //
 // Καλύτερα με πολύμετρο οπότε μετριέται η ενεργός (RMS) τιμή του]
- 10) Αν συνδεθούν τα ζευγάρια ακροδεκτών του παλμογράφου μεταξύ τους, ευθέως και αντίστροφα τι θα εμφανισθεί; [Δύο ευθείες γραμμές ή επικρατούσες κυματομορφές παράσιτα από τον πολωμένο αέρα]

α) Αν ρυθμισθεί το πλάτος σήματος στον παλμογράφο, αλλάζει το σήμα; [Όχι, μόνο όσον αφορά στην απεικόνισή του και μόνο (μειώνεται ή μεγεθύνεται) / // πρόκειται για σήματα τα οποία "γεννά" το κύκλωμα σκανδαλισμού του παλμογράφου	
Αν ρυθμισθεί ο χρόνος στον παλμογράφο, αλλάζει το σήμα; [Όχι, μόνο όσον αφορά στην απεικόνισή του και μόνο ("απλώνει" ή "μαζεύει") // // πρόκειται για σήματα τα οποία "γεννά" το κύκλωμα σκανδαλισμού του παλμογράφου]	
γ) Ο παλμογράφος, γειώνεται; Οι ακροδέκτες του; Αν ναι, ποιος / ποια (έχει σημασία;); [Όχι, γι' αυτό και οι "μαύροι" ακροδέκτες του γειώνονται μέσω της συσκευής IDL-800 ή σε συνδέονται κοινό κόμβο	
δ) Αν κατά τον έλεγχο αντιστραφούν οι συνδέσεις των ακροδεκτών στις ακίδες, τι θα συμβεί; [Θα παρατηρούνταν περιστροφή στο σχήμα κατά 180°	
ε) Αν κατά τον έλεγχο συνδεθούν οι ακροδέκτες στην ίδια ακίδα, τι θα συμβεί; [Δεν θα παρατηρούνταν τίποτα. Ουσιαστικά πρόκειται για βραχυκύκλωμα των ακροδεκτών στην ακίδο	
Τι μορφή θα έχει ένα σήμα συνεχούς τάσης; Συνεχούς ρεύματος; [Ευθεία γραμμή // (με ρύθμιση του καναλιού) Ευθεία γραμμή]	
β) Ποιο σήμα "παράγεται" πιο εύκολα; Τριγωνικό, ημιτονοειδής κυματομορφή ή παλμοσειρά; Γιατί; [Κατά σειρά: ημιτονοειδής κυματομορφή, τριγωνικό σήμα, παλμοσειρά (θυμηθείτε την ανάλυση κατά Fourier)	
Μπορείτε να σκεφθείτε άλλη, κανονική κυματομορφή; [Κρουστική (μονή, διπλή κ.λπ.), πριονωτή, παραβολική (από ποιο κύκλωμα; Από ένα με χωρητικότητα!),]	
δ) Πώς ενισχύεται ένα σήμα στον παλμογράφο (όχι, μόνο, στην οθόνη); [Μέσω του στρογγυλού μεγάλου κομβίου ή με ρύθμιση της ενίσχυσης του ακροδέκτη του καναλιού	
ε) Τι συχνότητα αποδίδεται στο συνεχές σήμα; [Μηδενική (δεν εναλλάσσεται)	
Ποιος τύπος δίνει τη διαφορά φάσης δύο (2) παρόμοιων σημάτων σε σχήμα Lissajous; $[\sin^{-1}(c \mid a), \acute{o}που c: ελάχιστη (μέγιστη) και a: ελάχιστη (μέγιστη) προβολή του σχήματος στον οριζόντιο άξονα]$	
Ποια στοιχεία δημιουργούν διαφορά φάσης; [Χωρητικά (πυκνωτές) και επαγωγικά (πηνία)]	
Αν διπλασιασθεί η χωρητικότητα στο κύκλωμα του Σχ. 2.3, πώς θα αλλάξει η $<\Delta \phi>$; [Ο τύπος $<\!$	
δ) Αν διπλασιασθεί η χωρητικότητα στο κύκλωμα του Σχ. 2.3, πώς θα αλλάξει η <tan(δφ)>; [Θα διπλασιασθεί</tan(δφ)>	
ε) Τι είναι προ-πορεία και καθυστέρηση σε διαφορά φάσης; [Θεωρία	

