Lale: Type-Driven Auto-ML with Scikit-Learn

Talk at ICML Expo, 12 July 2020

Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

IBM Research Al

```
In [1]: 🗎
```

- 1 import pandas as pd
- 2 import lale.datasets
- 3 (train X, train y), (test X, test y) = lale.datasets.california housing df()
- 4 pd.concat([train X.head(), train y.head()], axis=1)

Out[1]:

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target
0	3.2596	33.0	5.017657	1.006421	2300.0	3.691814	32.71	-117.03	1.030
1	3.8125	49.0	4.473545	1.041005	1314.0	1.738095	33.77	-118.16	3.821
2	4.1563	4.0	5.645833	0.985119	915.0	2.723214	34.66	-120.48	1.726
3	1.9425	36.0	4.002817	1.033803	1418.0	3.994366	32.69	- <mark>117.11</mark>	0.934
4	3.5542	43.0	6.268421	1.134211	874.0	2.300000	36.78	-119.80	0.965

Example Dataset

- sklearn California housing
- pandas dataframe
- · schema for error-checking
- numeric features
 - → no cleaning / encoding
- numeric target
 - → use regression model

4	pd.c	oncat([tr									
:	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target		
0	3.2596	33.0	5.017657	1.006421	2300.0	3.691814	32.71	-117.03	1.030		
1	3.8125	49.0	4.473545	1.041005	1314.0	1.738095	33.77	-118.16	3.821		
2	4.1563	4.0	5.645833	0.985119	915.0	2.723214	34.66	-120.48	1.726		
3	1.9425	36.0	4.002817	1.033803	1418.0	3.994366	32.69	-117.11	0.934		
4	3.5542	43.0	6.268421	1.134211	874.0	2.300000	36.78	-119.80	0.965		Importing Operator
1 2 3 4 5 6 7	from from from from from	sklearn. sklearn. sklearn. sklearn. sklearn. xgboost wrap_imp	 most directly from s also lale, xgboost wrap_imported_ope attaches schemas for type-driven Auto 								

		Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target		
	0	3.2596	33.0	5.017657	1.006421	2300.0	3.691814	32.71	-117.03	1.030		
	1	3.8125	49.0	4.473545	1.041005	1314.0	1.738095	33.77	-118.16	3.821		
	2	4.1563	4.0	5.645833	0.985119	915.0	2.723214	34.66	-120.48	1.726		
	3	1.9425	36.0	4.002817	1.033803	1418.0	3.994366	32.69	-117.11	0.934		
	4	3.5542	43.0	6.268421	1.134211	874.0	2.300000	36.78	-119.80	0.965		
In [2]: 🔰	1 2 3 4 5 6 7 8	from from from from from	sklearn. lale.lik sklearn. sklearn. sklearn. xgboost	preproces lale importante importa	ition impo ort Decisi odel impor GBRegresso	ort Normal ort PCA onTreeReg	lizer as gressor a	Norm .s Tree				
In [3]: 🔰	1 2			ine = (Sc	cale Nor alize()	rm NoOp)	>> (PCA	NoOp) >> (Tre	ee L	inear X	Planned Pipeline
		Choi	le le	Choice PCA No- Op		noice Tree inear						 pipe combinator >> for dataflow edges or combinator for auto algorithm selection elided init args XGB () for hyperparameter tuning

XGB

No-

Op

```
In [2]:
             1 from sklearn.preprocessing import StandardScaler as Scale
             2 from sklearn.preprocessing import Normalizer as Norm
             3 from lale.lib.lale import NoOp
             4 from sklearn.decomposition import PCA
             5 from sklearn.tree import DecisionTreeRegressor as Tree
             6 from sklearn.linear model import LinearRegression as Linear
               from xgboost import XGBRegressor as XGB
             8 lale.wrap imported operators()
               planned pipeline = (Scale | Norm | NoOp) >> (PCA | NoOp) >> (Tree | Linear | XGB)
In [3]:
               planned pipeline.visualize()
                Choice
                              Choice
                                            Choice
                               PCA
                 Scale
                                              Tree
                                No-
                 Norm
                                             Linear
                                Op
                 No-
                                              XGB
                  Op
                                                                                               auto configure
```

- type-driven: uses operator schemas
- creates search space for optimizer (here: Hyperopt)

.00%| | 50/50 [10:02<00:00, 12.05s/trial, best loss: -0.8107292214446913]


```
In [4]:
             1 from lale.lib.lale import Hyperopt
                import sklearn.metrics
             3 r2 = sklearn.metrics.make scorer(sklearn.metrics.r2 score)
             4 trained pipeline = planned pipeline.auto configure(
                    train X, train y, optimizer=Hyperopt,
                    scoring=r2, max opt time=10*60, max eval time=60, cv=3)
             6
                         50/50 [10:02<00:00, 12.05s/trial, best loss: -0.8107292214446913]
In [5]:
                print(f'R2 score: {r2(trained pipeline, test X, test y):.2f}')
               trained pipeline.visualize()
           R2 score: 0.83
                             No-
                                           XGB
               Scale
                                                                                                pretty print
                trained pipeline.pretty print(ipython display=True)
In [6]:
           from lale.lib.sklearn.standard scaler import Scale

    consistent syntax for input

           from lale.lib.lale import NoOp
                                                                                                   and output or Auto-ML
           from lale.lib.xgboost.xgb regressor import XGB
           import lale

    consistent syntax for

           lale.wrap imported operators ()
                                                                                                   manual ML and Auto-ML
           xgb = XGB(colsample bylevel=0.8539909881709349, colsample bytree=0.9733482608060157, learning rate=0.33190877144882
           86, max depth=10, min child weight=14, n estimators=819, reg alpha=0.07519396924044132, reg lambda=0.08746289842357
           71, subsample=0.9433039199868445)
           pipeline = Scale() >> NoOp() >> xgb
```

	Learn more
"Lale: Consistent Automated Machine Learning", Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar. KDD Workshop on Automation in Machine Learning (AutoML@KDD), August 2020.	search space generationerror checkinghigher-order operatorspipeline grammars
"Mining Documentation to Extract Hyperparameter Schemas", Guillaume Baudart, Peter Kirchner, Martin Hirzel, and Kiran Kate. ICML Workshop on Automated Machine Learning (AutoML@ICML), July 2020.	input: Python docstringoutput: JSON schema

github.com/ibm/lale

