Foundation Calculus and Mathematical Techniques

CELEN037

Practice Problems SET-3 Sample Solution

Type 1: Increasing and Decreasing Functions

1. Find the intervals where $f(x)=x^3+4x^2+4x+9$ is increasing and decreasing. Solution:

$$f(x) = x^3 + 4x^2 + 4x + 9$$

$$f'(x) = 3x^2 + 8x + 4$$

Let
$$f'(x) = 0$$

$$x = -2 \text{ or } -\frac{2}{3}$$

In intervals $(-\infty, -2)$ and $(-\frac{2}{3}, \infty)$, f'(x) > 0 the function is increasing

In interval $(-2, -\frac{2}{3}), \ f'(x) < 0$ the function is decreasing

Type 2: Classification of Stationary Points

5. Find and classify the stationary points for the following functions: (i) $f(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x$.

Solution:

$$f(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x$$

$$f'(x) = x^2 + 3x + 2$$

Let
$$f'(x) = 0$$

$$x = -2 \text{ or } -1$$

$$x = -2, y = f(-2) = -\frac{2}{3}$$

$$x = -1, y = f(-1) = -\frac{5}{6}$$

$$f''(x) = 2x + 3$$

$$f''(-2)=-1,$$
 <0 $(-2,-\frac{2}{3})$ is a local maximum point

$$f''(-1)=1, >0$$
 $(-1,-\frac{5}{6})$ is a local minimum point.

Type 3: Newton-Raphson Method

10. Use the Newton-Raphson method to approximate the value of $\sqrt[3]{3}$, correct to 8 d.p., by starting with $x_0=1.5$.

Solution:

Form an equation with root of $\sqrt[3]{3}$: $x^3 - 3 = 0$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 - 3}{3x_n^2}$$

take $x_0 = 1.5$

n	x_n
0	1.5
1	1.4444444
2	1.44225290
3	1.44224957
4	1.44224957

 \therefore the desired root $x^* = 1.44224957$

Type 4: Optimisation Problems

11. Suppose that r(x) = 9x is the revenue function and $c(x) = x^3 - 6x^2 + 15x$ is the cost function, where x represents millions of MP4 players produced. Is there a production level that maximizes profit? If so, what is it? (Hint: Profit = Revenue - Cost.)

Solution:

Let profit function p(x) = r(x) - c(x)

$$p(x) = 9x - (x^3 - 6x^2 + 15x) = -x^3 + 6x^2 - 6x$$

$$p'(x) = -3x^2 + 12x - 6$$

Let
$$p'(x) = 0$$

$$x = \sqrt{2} \pm 2$$

As x > 0, therefore $x = \sqrt{2} + 2$

$$p''(x) = -6x + 12$$

$$p''(\sqrt{2}+2) = -6\sqrt{2} < 0$$

 \therefore When $x = \sqrt{2} + 2$ the profit is maximized.