Eliminatoires test de rentrée OFM 2015 : corrigé Questionnaire collégiens

Exercice 1. Calculer
$$\left(\frac{1+3^2}{\sqrt{21+\sqrt{16}}}\right)^5$$
.

$$\frac{Solution \ de \ l'exercice \ 1}{2^5 - 32} \left(\frac{1+3^2}{\sqrt{21+\sqrt{16}}} \right)^5 = \left(\frac{10}{\sqrt{21+4}} \right)^5 = \left(\frac{10}{\sqrt{25}} \right)^5 = \left(\frac{10}{5} \right)^5 = \left$$

Exercice 2. On définit
$$a_n = \frac{1}{2n-1} - \frac{1}{2n+1}$$
. Ainsi, $a_1 = 1 - \frac{1}{3}$ et $a_2 = \frac{1}{3} - \frac{1}{5}$. Soit $S = a_1 + a_2 + a_3 + \dots + a_{100}$. Calculer $201 \times S$.

Solution de l'exercice 2
$$S = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{1}{199} - \frac{1}{201} = 1 - \frac{1}{201}$$
 donc $201S = 201 - 1 = 200$.

Exercice 3. Soit a un nombre réel tel que $(a-1)(a-2)(a-3)+a^2(6-a)=0$. Calculer 11a.

Solution de l'exercice 3 $(a-1)(a-2) = a(a-2) - (a-2) = a^2 - 2a - a + 2 = a^2 - 3a + 2$ donc $(a-1)(a-2)(a-3) = a(a^2 - 3a + 2) - 3(a^2 - 3a + 2) = a^3 - 3a^2 + 2a - 3a^2 + 9a - 6 = a^3 - 6a^2 + 11a - 6$. De plus, $a^2(6-a) = 6a^2 - a^3$, donc 11a - 6 = 0, et finalement 11a = 6.

Exercice 4. On donne 20 points du plan tels que trois quelconques d'entre eux ne sont pas alignés. Combien peut-on former de droites passant par deux de ces points?

Solution de l'exercice 4 On choisir un point A: il y a 20 possibilités. Puis on choisit un point B différent de A: il y a 19 possibilités. On trace alors la droite reliant A à B. Chaque droite a été tracée exactement deux fois, donc il y a $19 \times 20/2 = 190$ droites.

Exercice 5. Il y a 2 manières de placer deux dominos identiques 1×2 afin de recouvrir un échiquier 2×2 : soit en les plaçant tous les deux horizontalement, soit en les plaçant tous les deux verticalement.

De combien de manières peut-on recouvrir un échiquier 2×11 avec 11 dominos identiques 1×2 ?

<u>Solution de l'exercice</u> 5 Soit a_n le nombre de manière de recouvrir un échiquier à 2 lignes et n colonnes avec n dominos identiques 1×2 . On a $a_1 = 1$ et $a_2 = 2$.

Si la case en haut à gauche est recouverte par un domino vertical, il reste un échiquier $2 \times (n-1)$ à recouvrir, ce qui fait a_{n-1} possibilités.

Si la case en haut à gauche est recouverte par un domino horizontal, alors la case en bas à gauche doit l'être également, et il reste un échiquier $2 \times (n-2)$ à recouvrir, ce qui fait a_{n-2} possibilités.

On en déduit que $a_n=a_{n-1}+a_{n-2}$ pour tout n. On calcule alors de proche en proche : $a_3=3,\ a_4=5,\ a_5=8,\ a_6=13,\ a_7=21,\ a_8=34,\ a_9=55,\ a_{10}=89,\ a_{11}=144.$

Exercice 6. Les mots de la langue ababaa sont les successions de caractères "a" ou "b" tels que toute lettre "b" soit suivie d'un "a". Déterminer le nombre de mots à 6 lettres de la langue ababaa.

<u>Solution de l'exercice 6</u> Il y a 1 mot avec aucune lettre b, 5 mots avec une lettre b (en position 1,2,3,4 ou 5), 6 mots avec deux lettres b, 1 mot avec trois lettres b donc au total : 13 mots.

Exercice 7. Déterminer le plus petit entier divisible par 6, 35 et 28.

<u>Solution de l'exercice 7</u> C'est le plus petit entier divisible par 2×3 , 5×7 et 7×4 donc par $4 \times 3 \times 5 \times 7 = 420$.

Exercice 8. Déterminer la somme de tous les entiers relatifs a tels que $a^2 - 82a$ soit un nombre premier.

<u>Solution de l'exercice 8</u> a(a-82) est premier, donc l'un des facteurs est égal à 1 ou à -1. Si a=1 alors a(a-82) est négatif, donc n'est pas premier. Si a=-1 alors a(a-82)=83 est premier. Si a-82=1 alors a=83 donc a(a-82) est premier. Enfin, si a-82=-1 alors a(a-82)<0 n'est pas premier. La réponse est donc -1+83=82.

Exercice 9. Toto a écrit $5 + \frac{a}{b} = \frac{5a}{b}$. Quel est le nombre de couples d'entiers (a, b), avec $1 \le a \le 1000$, tels que l'égalité de Toto est vraie ?

<u>Solution de l'exercice 9</u> L'égalité s'écrit 5b + a = 5a, donc 5b = 4a. On en déduit que a est un multiple de 5.

Réciproquement, si a est un multiple de 5, il s'écrit a = 5c, et 5b = 4a équivaut à b = 4c, donc un et un seul b convient. Par conséquent, le nombre de couples d'entiers est égal au nombre de multiples de 5 compris entre 1 et 1000: il y en a 200.

Exercice 10. Soit ABCD un carré. Soient E, F, G, H les milieux de [AB], [BC], [CD] et [DA]. Soient I, J, K, L les milieux de [EF], [FG], [GH] et [HE]. On suppose que AB = 16. Déterminer l'aire de IJKL.

Solution de l'exercice 10 On a IJ = 8 donc l'aire de IJKL vaut 64.

Exercice 11. Soit ABC un triangle tel que $\widehat{BAC} = 48^{\circ}$ et $\widehat{CBA} = 17^{\circ}$. La bissectrice de l'angle \widehat{BAC} coupe le segment [BC] au point D. Déterminer la valeur en degrés de l'angle \widehat{CDA} .

<u>Solution de l'exercice 11</u> (Faire une figure.) On a $\widehat{CDA} = 180^{\circ} - \widehat{ADB} = \widehat{DBA} + \widehat{BAD} = \widehat{CBA} + \frac{1}{2}\widehat{BAC} = 17 + 24 = 41^{\circ}$.

Exercice 12. Soit ABC un triangle isocèle en A tel que $\widehat{CBA} = 61^{\circ}$. Soit E le point, autre que A, situé sur le cercle circonscrit à ABC tel que EB = EC. Soit D le point autre que A tel que DB = DC = AB.

Déterminer la valeur en degrés de l'angle \widehat{BED} .

Solution de l'exercice 12 On a $\widehat{BAC} = 180^{\circ} - 2\widehat{CBA} = 58^{\circ}$.

D est le symétrique de A par rapport à la droite (AB). On a $\widehat{BED}=180^\circ-\widehat{AEB}=180^\circ-(90^\circ-\widehat{BAE})=90^\circ+\frac{1}{2}\widehat{BAC}=90+29=119^\circ.$