

Deep Learning on Hyperspectral Satellite Imagery

Vladislav Bizin

Hyperspectral imaging (HSI)

spectroscopic instrumentation

+

imaging systems

spatially resolved spectroscopic data

Challenges

more per-pixel data than traditional color imagery

larger input vectors

more trainable parameters

much more memory intensive optimization

Convolutional Neural Networks

- feed-forward neural network
- filter (kernel) optimization
- for processing data sampled on a uniform grid, such as an image

https://en.wikipedia.org/wiki/Convolutional_neural_network

1D CNN

Pros

- few parameters
- fast

Cons

- pixel-level extraction of spectral features
- weak in in extracting abstract deep features (spatial and spectra local features)

1D CNN Architecture

1D CNN Filtering Operation

2D CNN

Pros

- extracts spatial local features
- produces a feature map for each band

Cons

- large number of parameters
- does not extracts spectral local features

2D CNN Architecture

2D CNN filtering Operation

Pros

- is able to extract spectral spatial information
- fewer parameters than 2D CNN
- faster convergence

Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network

Dataset

- 115 spectral bands (0.43 to 0.86 μ m), 10 % of noisiest bands removed => 103 bands
- spatial resolution 1.3 m per pixel
- 610 × 340 pixels
- 9 Classes
- 1:1 stratified train-test split

Architecture

Layer	Kernel Size	Kernel #	Stride	Output Size	Feature Volumes	Param #			
Input	-	-	-	5 × 5 × 103	1	-			
Conv3d-1	$3 \times 3 \times 7$	2	1	$3 \times 3 \times 97$	2	128			
Conv3d-2	3 × 3 × 7	4	1	1 × 1 × 95	8	220			
Linear	-	-	-	$1 \times 1 \times 1$	144	3,810			
Classification	-	-	-	$1 \times 1 \times 1$	9	-			
Total params	otal params								

Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network

Results

	Predicted											
Observed	Class	Asphalt	Meadows	Gravel	Trees	Painted metal sheets	Bare Soil	Bitumen	Self-Blocking Bricks	Shadows		
	Asphalt	6436	0	3	2	0	0	15	24	0		
	Meadows	0	17728	0	21	0	70	0	0	0		
	Gravel	4	0	1926	0	0	0	0	87	0		
	Trees	0	54	0	2964	0	5	0	0	0		
	Painted metal sheets	0	0	0	0	1345	0	0	1	0		
	Bare Soil	0	51	0	3	0	4972	0	3	0		
	Bitumen	23	0	0	0	0	0	1307	0	0		
	Self-Blocking Bricks	18	4	14	0	0	1	1	3644	0		
	Shadows	0	0	0	0	0	0	0	0	947		

Home Assignment Results and Conclusions

Results:

- Different types of CNNs were overviewed
- 3DCNN was implemented and fitted to a dataset

Conclusions:

 3D CNNs are very efficient for analyzing HSI data

More Model information

- Optimizer: Adam, Ir=0.01, weight_decay=0.001
- Loss: SoftMax (CrossEntropyLoss)
- Scheduler: threshold=0.02, patience=50
- Batch size: 100

Faculty of Computer Science

- Epochs: 250
- Validation size: 10% of train size