CS010C

No.10 Lab

Hash Lab Demo

- Attendance, code log on AWS, submission on CANVAS
- Always remember "%"
- 4 Hash Functions (separate chaining)
 - h(k) = k[0] (ASCII 1st letter of key)
 - h(k) = k[0] + 27 * k[1] + 729 * k[2]
 - $h(k) = \sum_{i} k[i] * 37^{i}$
 - hash function chosen by student (student explanation)
- Open Hashing Collision Testing (with probing)
 - probing sequence: i, i^2, i^3
 - collisions versus load factor (70%, 80%, 90%)

Review: Probing

- Initialize: all -1s(no item in table)
- Insert random number
 - Check the correspond value is not 1
 - Set corresponding value to 1
- Collision: h[pos] == 1
 - already occupied, can't insert here
 - probe the next slot (pos + offset)
 - If another collision occurs, continue probing forward
 - Linear: $offset \neq i$,
 - Quadratic: $offset = i^2 OR c_1 i + c_2 i^2$, i = 1,2,3,...
 - Cubic: $offset = (i^3)QR c_1i + c_2i^2 + c_3i^3$, i = 1,2,3,...

Linear hash table

$$i = 1,2,3 ...$$

 $i = 1,2,3, ...$

$$i = 1,2,3,...$$

Thanks for a great semester, everyone. Best of luck on your finals!