Norma Portuguesa

NP EN 933-1 2000

Ensaios das propriedades geométricas dos agregados Parte 1: Análise granulométrica Método de peneiração

Essais pour déterminer les caractéristiques géométriques des granulats Partie 1: Détermination de la granularité Analyse granulométrique par tamisage

Tests for geometrical properties of aggregates Part 1: Determination of particle size distribution Sieving method

ICS 91.1000.15

DESCRITORES

Materiais de construção; inertes; peneiração (granulometria); curva granulométrica; tamisagem; classificação de tamanhos; ensaios; condições de ensaio; preparação das amostras para ensaio; relatórios

CORRESPONDÊNCIA

Versão Portuguesa da EN 933-1:1997

HOMOLOGAÇÃO

Termo de Homologação Nº 191/2000, de 2000-07-07

ELABORAÇÃO ATIC

EDIÇÃO Novembro de 2000

CÓDIGO DE PREÇO

X004

© IPQ reprodução proibida

Instituto Português da ualidade

Rua António Gião, 2 PT - 2829-513 CAPARICA PORTUGAL

Tcl. (+ 351) 21 294 81 00

E-mail: ipq(a-mail.ipq.pt URL: www.ipq.pt

Fax. (+ 351) 21 294 81 01

p. 4 de 16

Índice	Página
Preâmbulo	6
1 Objectivo	7
2 Referências normativas	7
3 Definições	7
3.1 Provete de ensaio	. 7
3.2 Massa constante	. 7
4 Princípio	. 8
5 Aparelhos e utensílios	. 8
5.1 Peneiros de ensaio	. 8
5.2 Tampa e recipiente do fundo adaptados aos peneiros.	. 8
5.3 Estufa ventilada	. 8
5.4 Equipamento de lavagem.	. 8
5.5 Balanças	. 8
5.6 Tabuleiros e escovas	. 9
5.7 Máquina de peneirar (opcional).	. 9
6 Preparação dos provetes de ensaio	9
7 Procedimento de ensaio	9
7.1 Lavagem	9
7.2 Peneiração	10
7.3 Pesagem	10
8 Cálculos e expressão dos resultados	11
8.1 Cálculos	11
8.2 Validação dos resultados	11
9 Relatório de ensaio	11
9.1 Informação obrigatória.	11

	p. 5 de
9.2 Informação facultativa	
Anexo A (informativo) Representação gráfica dos resultados	*********
Anexo B (normativo) Método de ensaio para agregados impróprios para secagem em estufa	
Anexo C (informativo) Exemplo de relatório de ensaio	
Anexo Nacional NA (informativo) Correspondência entre documentos normativos europeus e nacionais	

p. 6 de 16

Preâmbulo

A presente Norma Europeia foi elaborada pelo Comité Técnico CEN/TC 154 "Agregados", cujo secretariado é assegurado pela BSI.

A presente Norma Europeia faz parte de um conjunto de normas de ensaio para a determinação das propriedades geométricas dos agregados. Os métodos de ensaio referentes a outras propriedades dos agregados são tratados nas partes das seguintes Normas Europeias:

- EN 932 Ensaios das propriedades gerais dos agregados
- EN 1097 Ensaios das propriedades mecânicas e físicas dos agregados
- EN 1367 Ensaios da propriedades térmicas e de meteorização dos agregados
- EN 1744 Ensaios das propriedades químicas dos agregados

Está a ser preparada uma norma europeia "Tests for filler aggregate used in bituminous mixtures".

As outras partes da EN 933 serão:

- Parte 2: Análise granulométrica. Peneiros de ensaio, aberturas nominais
- Parte 3: Determinação da forma das partículas. Índice de achatamento
- Parte 4: Determinação da forma das partículas. Índice volumétrico
- Parte 5: Determinação da percentagem de superfícies esmagadas e partidas nos agregados grossos
- Parte 6: Determinação do coeficiente de escoamento dos agregados
- Parte 7: Determinação do teor de conchas nos agregados grossos
- Parte 8: Determinação do teor de finos. Ensaio do equivalente de areia
- Parte 9: Determinação do teor de finos. Ensaio do azul de metileno
- Parte 10: Determinação do teor de finos. Granulometria dos finos (peneiração por jacto de ar)

A esta Norma Europeia deverá ser dado o estatuto de Norma Nacional, quer pela publicação de um texto idêntico, quer por adopção, o mais tardar até Fevereiro de 1998 e as normas nacionais divergentes devem ser anuladas o mais tardar até Fevereiro de 1998.

De acordo com o Regulamento Interno do CEN/CENELEC, são obrigados a implementar a presente Norma Europeia os organismos nacionais de normalização dos seguintes países: Alemanha, Áustria, Bélgica, Dinamarca, Espanha, Finlândia, França, Grécia, Irlanda, Islândia, Itália, Luxemburgo, Noruega, Países Baixos, Portugal, Reino Unido, República Checa, Suécia e Suíça.

1 Objectivo

A presente parte desta Norma Europeia tem por objectivo definir um método, usando peneiros de ensaio, para a análise granulométrica dos agregados. É aplicável aos agregados de origem natural ou artificial, incluindo agregados leves, com dimensão nominal até 63 mm, mas excluindo filer.

NOTA: A determinação da granulometria dos fileres será especificada no prEN 933-10 Tests for geometrical properties of aggregates Part 10: Determination of fines - Grading of fillers (air jet sieving)

2 Referências normativas

Esta Norma Europeia inclui, por referência datada ou não, disposições de outras publicações. Estas referências normativas são citadas nos locais adequados do texto e as respectivas publicações são a seguir enumeradas. Relativamente às referências datadas, as emendas ou posteriores revisões de qualquer uma dessas publicações só se aplicam à presente Norma Europeia se nela forem integradas através de emendas ou revisão. Relativamente às referências não datadas, aplica-se a última edição da publicação a que se faz referência.

prEN 932-2

Tests for general properties of aggregates - Part 2: Methods for reducing laboratory samples

prEN 932-5

Tests for general properties of aggregates - Part 5: Common equipment and calibration

prEN 933-2:1995

Tests for general geometrical of aggregates – Part 2: Determination of particle size distribution – Test sieves, nominal size of apertures

Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and

prEN 1097-6

water absorption

ISO 3310-1:1990

Test sieves - Technical requirements and testing. Part 1: Test sieves of metal wire cloth

ISO 3310-2:1990

Test sieves - Technical requirements and testing. Part 2: Test sieves of perforated metal plate

3 Definições

Para os objectivos desta parte da Norma, aplicam-se as seguintes definições:

3.1 Provete de ensaio

Amostra usada integralmente num mesmo ensaio.

3.2 Massa constante

Pesagens sucessivas efectuadas após secagem com pelo menos 1 h de intervalo e não diferindo mais que 0.1%.

^{*} Ver Anexo Nacional NA (informativo)

p. 8 de 16

NOTA: Em muitos casos, a massa constante pode ser obtida após a secagem do provete por um período de tempo pré-determinado numa estufa definida (ver 5.3) a (110 ± 5) °C. Os laboratórios de ensaio podem determinar o tempo necessário para se obter massa constante para tipos e dimensões específicas de amostras dependendo da capacidade de secagem da estufa utilizada.

4 Princípio

O ensaio consiste na separação, por meio de um conjunto de peneiros, de um material em diversas classes granulométricas de granulometria decrescente. A dimensão das aberturas e o número de peneiros são seleccionados de acordo com a natureza da amostra e a precisão exigida.

O método adoptado é a peneiração, com lavagem seguida de peneiração a seco. Quando a lavagem possa alterar as características físicas dum agregado leve, é necessário recorrer-se à peneiração a seco e o procedimento especificado em 7.1 não deverá ser aplicado.

NOTA: A peneiração a seco é também um método alternativo que pode ser usado para agregados isentos de partículas aglomeradas. Em caso de litigio, o método preferido será o da lavagem seguida de peneiração.

A massa das partículas retida nos diversos peneiros é relacionada com a massa inicial do material. As percentagens cumulativas que passam em cada peneiro são apresentadas sob forma numérica e quando necessário graficamente (ver Anexo A).

5 Aparelhos e utensílios

Salvo indicação em contrário, todo o equipamento deverá estar em conformidade com as exigências gerais do prEN 932-5.

5.1 Peneiros de ensaio

Peneiros de ensaio com aberturas como especificado na EN 933-2 e em conformidade com as exigências da ISO 3310-1 e ISO 3310-2.

5.2 Tampa e recipiente do fundo adaptados aos peneiros

5.3 Estufa ventilada

Estufa ventilada controlada por termostato de modo a manter uma temperatura de (110 ± 5) °C, ou qualquer outro equipamento apropriado para secagem dos agregados, que não cause alteração da granulometria.

5.4 Equipamento de lavagem.

5.5 Balanças

Balanças com a precisão de ± 0.1 % da massa do provete.

Ver Anexo Nacional NA (informativo)

5.6 Tabuleiros e escovas

5.7 Máquina de peneirar (opcional).

6 Preparação dos provetes de ensaio

As amostras deverão ser reduzidas de acordo com o prEN 932-2, de modo a obter o número necessário de provetes de ensaio.

NOTA: Poderá ser necessário humedecer as amostras que contenham quantidades significativas de finos, antes de se proceder à redução, de modo a minimizar a segregação e a perda de poeira.

A massa de cada provete de ensaio deverá estar em conformidade com o indicado no quadro 1, para agregados de densidade compreendida entre 2000 kg/m³ e 3000 kg/m³.

Quadro 1: Massa dos provetes de ensaio para agregados de peso corrente

Máxima dimensão D	Massa do provete (mínimo)
· mm	kg
63	40
32	10
16	2,6
8	0,6
< 4	0.2

NOTA 1: Para os agregados de tamanho diferente, a massa minima do provete de ensaio pode ser interpolada a partir das massas dadas no quadro 1.

NOTA 2: Se a massa do provete de ensaio não estiver de acordo com o quadro 1, a distribuição granulométrica obtida não está em conformidade com a presente Norma, devendo tal facto ser mencionado no relatório de ensaio.

NOTA 3: Para os agregados de massa volúmica inferior a 2000 kg/m3 ou superior a 3000 kg/m3 (ver prEN 1097-6), deverá aplicar-se uma correcção apropriada às massas dos provetes de ensaio do quadro 1, baseada na relação entre as massas volúmicas, de forma a obter um provete de volume aproximadamente igual aos dos agregados de peso corrente.

A redução da amostra deverá permitir obter um provete de ensaio com massa superior ao mínimo, mas sem valor exacto pré-determinado.

Secar o provete de ensaio a uma temperatura de (110 ± 5) °C até alcançar massa constante. Deixar arrefecer, pesar e registar o resultado como M_t .

Para alguns tipos de agregados, a secagem a 110 °C une as partículas fortemente de modo a impedir a sua separação durante os procedimentos posteriores de lavagem e/ou peneiração. Para este tipo de agregado deverá adoptar-se o procedimento dado no Anexo B.

7 Procedimento de ensaio

7.1 Lavagem

Colocar o provete de ensaio num recipiente e adicionar água suficiente para o cobrir.

NOTA 1: Um período de imersão de 24 h facilita a desagregação de torrões. Poderá utilizar-se um agente dispersor.

Agitar o provete de ensaio com o vigor necessário para se obter a separação completa e suspensão dos finos.

p. 10 de 16

Molhar ambos os lados de um peneiro de 63 µm usado exclusivamente neste ensaio, e colocar por cima um peneiro de protecção (p. ex. 1 mm ou 2 mm). Colocar os peneiros de forma que a suspensão que os atravessa possa ser despejada, ou se necessário recolhida num recipiente adequado. Despejar o provete de ensaio no peneiro superior. Continuar a lavagem até que a água que atravessa o peneiro de 63 µm seja límpida.

NOTA 2: Convém tomar cuidado para evitar sobrecarga, transbordo ou danos nos peneiros de 63 µm e de protecção. Para certos agregados, poderá ser necessário despejar apenas os finos em suspensão do recipiente para o peneiro de 63 µm protegido, e continuar a lavar o material grosso no recipiente e decantando os finos em suspensão no peneiro de protecção, até que a água que atravessa o peneiro de 63 µm seja limpida.

Secar o material com granulometria superior a 63 μ m a (110 \pm 5) °C até alcançar massa constante. Deixar arrefecer, pesar e registar o resultado como M_2 .

7.2 Peneiração

Despejar o material lavado e seco (ou directamente a amostra seca) na coluna de peneiros. Esta coluna é constituída por um certo número de peneiros encaixados, e dispostos de cima para baixo por ordem decrescente da dimensão das aberturas, com o fundo e a tampa.

NOTA 1: A experiência tem demonstrado que a lavagem não elimina necessariamente a totalidade dos finos. Assim, é necessário incluir um peneiro de ensaio de 63 µm na coluna.

Agitar a coluna de peneiros, manual ou mecanicamente, retirando depois os peneiros um a um, começando pelo de maior abertura e agitar cada peneiro manualmente garantindo que não existe perda de material, utilizando, por exemplo, fundo e tampa.

Transferir todo o material que passa através de cada peneiro para o peneiro seguinte da coluna antes de continuar a peneiração com este peneiro.

NOTA 2: A peneiração pode ser considerada completa quando a massa do material retido não se alterar mais de 1.0 % durante 1 min de peneiração.

De forma a evitar a sobrecarga dos peneiros, a fracção retida sobre cada peneiro, no fim da peneiração (expressa em gramas), não deverá ultrapassar:

$$\frac{A \times \sqrt{d}}{200}$$

onde:

A é a área do peneiro em milímetros quadrados;

d é a dimensão das aberturas do peneiro em milímetros.

Se alguma das fracções retidas exceder esta quantidade, deverá utilizar-se um dos procedimentos seguintes:

- a) dividir a fracção retida em porções inferiores ao máximo especificado, e peneirá-las umas após as outras;
- b) dividir a porção da amostra que passa através do peneiro de abertura imediatamente superior, com o auxílio de um divisor de amostras ou por esquartelamento, e prosseguir a peneiração com o provete de ensaio reduzido, tendo em conta as reduções efectuadas no cálculos posteriores.

7.3 Pesagem

Pesar o material retido no peneiro com a maior dimensão das aberturas e registar a sua massa como R_I .

Efectuar a mesma operação para o peneiro imediatamente inferior e registar a massa do material retido como R_2 .

Continuar com a mesma operação para todos os peneiros na coluna, de modo a obter as massas das diferentes frações dos materiais retidos e registar estas massas como R_3 , R_4 , ... R_n , ... R_n .

Pesar o material peneirado retido no fundo e registar a sua massa como P.

8 Cálculos e expressão dos resultados

8.1 Cálculos

Registar as várias massas num relatório de ensaio, cujo exemplo se dá no Anexo C.

Calcular a massa retida em cada peneiro, como percentagem da massa original seca M_l .

Calcular a percentagem cumulativa da massa original seca que passa através de cada peneiro até ao peneiro de 63 µm, mas excluindo este.

Calcular a percentagem de finos (f) que passa através do peneiro de 63 µm de acordo com a seguinte equação:

$$f = \frac{(M_1 - M_2) + P}{M_1} \times 100$$

onde:

 M_l é a massa seca do provete de ensaio, em quilogramas;

 M_2 é a massa seca do material com granulometria superior a 63 μ m, em quilogramas;

P é a massa do material peneirado retido no recipiente do fundo, em quilogramas.

8.2 Validação dos resultados

Sempre que a soma das massas R_i e P difira mais de 1 % da massa M_2 , é necessário repetir o ensaio.

9 Relatório de ensaio

9.1 Informação obrigatória

O relatório de ensaio deverá incluir a informação seguinte:

- a) a referência à presente Norma Europeia;
- b) a identificação da amostra;
- c) a identificação do laboratório;
- d) a data de recepção da amostra;
- e) o procedimento de ensaio (lavagem e peneiração ou peneiração a seco);

p. 12 de 16

 f) a percentagem cumulativa da massa do provete de ensaio que passa através de cada peneiro, arredondada à décima mais próxima para o peneiro de 63 μm e ao número inteiro mais próximo para os restantes peneiros.

9.2 Informação facultativa

O relatório de ensaio poderá incluir a informação seguinte:

- a) a proveniência da amostra;
- b) a descrição do material e do procedimento de redução da amostra;
- c) a representação gráfica dos resultados (ver Anexo A);
- d) o certificado de amostragem;
- e) a massa do provete de ensaio;
- f) a data do ensaio.

Anexo A (informativo)

Representação gráfica dos resultados

p. 14 de 16

Anexo B (normativo)

Método de ensaio para agregados impróprios para secagem em estufa

Para agregados impróprios para secagem em estufa a $110\,^{\circ}$ C, é necessário obter o dobro do número de provetes de ensaio e registar as suas massas. O teor de água de um dos provetes do par deverá ser determinado por secagem em estufa a $(110\pm5)\,^{\circ}$ C. O outro provete deverá ser ensaiado pelo procedimento de lavagem e peneiração, sem pré-secagem. A massa seca inicial deste segundo provete deverá ser calculada, assumindo-se que o par de provetes têm semelhante teor de água, e registada como M_I .

Anexo C (informativo)

Exemplo de relatório de ensaio

Análise granulométrica – Método de peneiração EN 933-1	Laboratório:
Identificação da amostra	Data:
	Operador:
Procedimento usado: lavagem e peneiração/peneiração a seco (riscar o q	ue não interessa)
Massa seca total $M_i = (\text{ou } M_i' = \text{ver Anexo B})$	

Massa seca total $M_I =$ (ou $M_I' =$ ver Anexo B

Massa seca após lavagem M_2 =

Massa seca dos finos removidos por lavagem $M_1 - M_2$ =

Dimensão das aberturas do peneiro	Massa do material retido (R,)	Percentagem do material retido	Percentagem cumulativa do material passado
mm	kg	$\left(\frac{R_i}{M_I} \times 100\right)$	$\left(100 - \frac{R_{i}}{M_{1}} \times 100\right)$
	R, R:		(arredondado ao número inteiro mais próximo)
Material restante no fundo			
P =		***	

Percentagem de finos (f) que passa o peneiro de 63 μ m = $\frac{(M_1 - M_2) + P}{M_1} \times 100 =$	
(arredondado à décima mais próxima)	

	Observações:	
$\frac{(\Sigma R_i + P)}{M_2} \times 100 = < 1\%$		

A massa seca do provete de ensaio deverá ser registada como M_l quando determinada directamente ou como M_l' quando é calculada a partir de um par de provetes.

p. **16** de 16

Anexo Nacional NA (informativo)

Correspondência entre documentos normativos europeus e nacionais

Norma Europeia	Norma Nacional
(EN)	(NP ou NP EN)
EN 933-2:1995	NP EN 933-2:1999