

Statistik

CH.8 - Wahrscheinlichkeitsverteilungen

SS 2021 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Zufallsvariablen

Definition: Zufallsvariablen

Unter einer Zufallsvariablen X versteht man eine Funktion, die aufgrund eines Zufallsexperiments den Ergebnissen des Zufallsexperiments numerische Werte zuordnet. Jedes mögliche Ergebnis eines Zufallsexperiments führt dabei zu einem anderen numerischen Wert.

- Kennzeichnend sind die Merkmalsausprägungen x_i und die damit assoziierten Wahrscheinlichkeiten $P(x) = (x_i)$.
- Zufallsvariablen werden in der Regel mit Großbuchstaben (X,Y,Xi) bezeichnet.

Beispiel: Zufallsvariablen

Das Zufallsexperiment "Werfen einer Münze" mit den Ergebnissen Kopf und Zahl kann als Zufallsvariable X modelliert werden:

$$X(x = \text{Kopf}) = X(\text{Kopf}) = 0$$

 $X(x = \text{Zahl}) = X(\text{Zahl}) = 1$

- Bei der gewählten Zuorndung kann man die Zufallsvariable X auch als Anzahl des Auftretens von Zahl beim Werfen einer Münze auffassen.
- Bei einer fairen Münze gilt $P(X = 0) = P(X = 1) = \frac{1}{2}$.

3

Diskrete und stetige Zufallsvariablen

Definition: Diskrete Zufallsvariable

Eine Zufallsvariable heißt diskret, wenn sie **nur diskrete Werte**, also endlich viele oder abzählbar unendlich viele, Werte annimmt.

- Beispiel: Anzahl defekter Glühbirnen in einer Stichprobe von 10 Stück
- Beispiel: Anzhal der Kinder unter 18 Jahre in einem Haushalt

Definition: Stetige Zufallsvariable

Eine Zufallsvariable heißt stetig, wenn sie mit zwei Werten definiert, auch alle Werte im Intervall zwischen diesen beiden Werten annehmen kann.

- Beispiel: Zeitaufwand für die Produktion eines Werkstücks
- Beispiel: Gewicht einer aus einer Abfüllanlage entnommenen Flasche

Wahrscheinlichkeitsfunktion

Definition: Wahrscheinlichkeitsfunktion

Sei X eine diskrete Zufallsvariable. Dann heißt die Funktion f Wahrscheinlichkeitsfunktion von X.

$$f(x) = P(x) = x$$

Beispiel: Als Zufallsexperiment wird eine faire Münze zweimal geworfen. Die Zufallsvariable X beschreibt die Anzahl des Auftretens des Ereignisses "Zahl". Definieren Sie die Zufallsvariable und skizzieren Sie die Wahrscheinlichkeitsfunktion?

Wahrscheinlichkeitsfunktion

Verteilungsfunktion

Definition: Verteilungsfunktion

Sei X eine diskrete oder stetige Zufallsvariable. Dann heißt die Funktion F Verteilungsfunktion von X.

$$F(x) = P(x) \leq x$$

Beispiel: Als Zufallsexperiment wird eine faire Münze zweimal geworfen. Die Zufallsvariable X beschreibt die Anzahl des Auftretens des Ereignisses "Zahl". Skizzieren Sie die Verteilungsfunktion?

7

Verteilungsfunktion

Dichtefunktion

Ist X eine diskrete Zufallsvariable, dann gilt $F(x) = \sum_{i=1}^{n} f(x_i)$

dann gilt

Ist X eine stetige Zufallsvariable,

Dichtefunktion

Definition: Wahrscheinlichkeitsdichte bzw. Dichtefunktion.

Die Funktion f(x) heißt bei **stetigen** Zufallsvariablen

Wahrscheinlichkeitsdichte bzw. Dichtefunktion.

Eigenschaften Dichtefunktion

Für Wahrscheinlichkeits- und Dichtefunktionen gilt:

- Für alle x_i silt, dass $f(x_i) \ge 0$.
- Für diskrete Verteilungen mit Wahrscheinlichkeitsfunktion gilt

$$\sum_{\text{alle } x_i} f(x_i) = 1$$

Für stetige Verteilungen mit Dichtefunktion gilt

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Eigenschaften Verteilungsfunktion

Für Verteilungsfunktionen gilt:

- F(x) is monoton steigend

- F(x) is in jedem Punkt (zumindest rechtsseitig) stetig

Erwartungswert

Definition: Erwartungswert

Sei \times eine Zufallsvariable und $\frac{f}{f}$ die dazugehörige Wahrscheinlichkeitsbzw. Dichtefunktion. Der Erwartungswert $\frac{f}{\mu}$ ist definiert als

$$\underbrace{F(X)} = \begin{cases}
\sum_{\text{alle } x_i} x_i \cdot f(x_i), & \text{falls } X \text{ diskret} \\
\int_{-\infty}^{\infty} x \cdot f(x) dx, & \text{falls } X \text{ stetig}
\end{cases}$$

■ **Beispiel:** Definieren Sie die Zufallsvariable X für das Werfen eines Würfels und berechnen Sie deren Erwartungswert.

Erwartungswert

Definition: Varianz

Sei X eine Zufallsvariable und f die dazugehörige Wahrscheinlichkeits- bzw. Dichtefunktion. Die Varianz σ^2 (Standardabweichung: σ) ist definiert als

■ **Beispiel:** Definieren Sie die Zufallsvariable X für das Werfen eines Würfels und berechnen Sie deren Varianz.

B 1.	L. E	(XI=N=	3.5 foire	reet de deur l'in Mefir cèves in 6-subject Workel		
Repor	Xi	f(x)	x; -/u	(x; - p) 2	(x:-p/2. flx)	
1	1	1/6	-2.5	6.25	1,0417	
2	2	1/6	- 1.5	225	0.375	
3	3	1/6	- 0.5	0.25	0,0417	
G	4	16	05	0.25	0,0417	
5	5	4/6	1.5	2.25	0,375	
Ь	6	1/6	2.5	6.25	1,0417	

Verständnisfragen

- Geben Sie jeweils ein Beispiel für eine diskrete und eine stetige Zufallsvariable.
- 2 Erläutern Sie was man unter einer Verteilungsfunktion versteht.
- Welches ist der maximale Wert, den eine Verteilungsfunktion annehmen kann?

