34th ALERT Doctoral School 2023 Machine Learning in Geomechanics

Introduction to regression methods

Filippo Masi

The University of Sydney

Introduction to regression methods

Filippo Masi

The University of Sydney

Regression methods / Exercises

https://qrco.de/regr

Exercise 1

Perform regression to obtain an interpretable (hyper-elastic) constitutive model that best fits stress-strain data

[TODO-1] Is the above polynomial model satisfactory?

Hint: Check the predictions of the model for larger deformations (extrapolation).

[TODO-2] Can you find a more accurate (yet interpretable) constitutive model? *Hint: Yes, you can!*

[TODO-3] Compute the effective stiffness
$$G$$
 (in GPa)

$$G \equiv \frac{d\tau}{d\gamma}(\gamma)$$

Exercise 1

Perform regression to obtain an interpretable (hyper-elastic) constitutive model that best fits stress-strain data

[TODO-1] Is the above polynomial model satisfactory?

Hint: Check the predictions of the model for larger deformations (extrapolation).

[TODO-2] Can you find a more accurate (yet interpretable) constitutive model?

Hint: Yes, you can!

[TODO-3] Compute the effective stiffness G (in GPa)

$$G \equiv \frac{d\tau}{d\gamma}(\gamma)$$

Exercise 1 - Solution

Perform regression to obtain an interpretable (hyper-elastic) constitutive model that best fits stress-strain data

Exercise 1 - Solution

Perform regression to obtain an interpretable (hyper-elastic) constitutive model that best fits stress-strain data

Constitutive model:

$$\bar{\tau} = -0.0009 + 0.95\bar{\gamma}$$

$$G \equiv \frac{d\tau}{d\gamma}(\gamma) = \frac{d\tau}{d\bar{\tau}} \frac{d\bar{\tau}}{d\bar{\gamma}} \frac{d\bar{\gamma}}{d\gamma} = \frac{\alpha_{\tau}}{\alpha_{\gamma}} \frac{d\bar{\tau}}{d\bar{\gamma}} = 11.187608 \text{ GPa}$$

$$\bar{\tau} = \frac{\tau - \beta_{\tau}}{\alpha_{\tau}}, \quad \bar{\gamma} = \frac{\gamma - \beta_{\gamma}}{\alpha_{\gamma}}$$

Exercise 1 - Solution

Perform regression to obtain an interpretable (hyper-elastic) constitutive model that best fits stress-strain data

Constitutive model:

$$\bar{\tau} = -0.0009 + 0.95\bar{\gamma}$$

Effective stiffness:

$$G \equiv \frac{d\tau}{d\gamma}(\gamma) = \frac{d\tau}{d\bar{\tau}} \frac{d\bar{\tau}}{d\bar{\gamma}} \frac{d\bar{\gamma}}{d\gamma} = \frac{\alpha_{\tau}}{\alpha_{\gamma}} \frac{d\bar{\tau}}{d\bar{\gamma}} = 11.187608 \text{ GPa}$$

$$G^{\text{truth}} = 12.3456789 \text{ GPa}$$

$$G^{\mathrm{truth}} = 12.3456789 \; \mathrm{GPa}$$
 $\bar{\tau} = \frac{\tau - \beta_{\tau}}{\alpha_{\tau}}, \quad \bar{\gamma} = \frac{\gamma - \beta_{\gamma}}{\alpha_{\gamma}}$

Exercise 2

Perform regression to obtain an interpretable (nonlinear hypo-elastic) constitutive model that best fits stress-strain data

[TODO-1] Is the above polynomial model satisfactory?

Hint: Check the predictions of the model for larger deformations (extrapolation).

[TODO-2] Can you find a more accurate (yet interpretable) constitutive model?

[TODO-3] Compute the expression of the effective stiffness G.

$$G \equiv \frac{d\tau}{d\gamma}(\gamma)$$

Exercise 2 - Solution

Perform regression to obtain an interpretable (nonlinear hypo-elastic) constitutive model that best fits stress-strain data

Exercise 2 - Solution

Perform regression to obtain an interpretable (nonlinear hypo-elastic) constitutive model that best fits stress-strain data

Constitutive model:

$$\bar{\tau} = 0.48 + 0.61\bar{\gamma}^5 - 0.2\bar{\gamma}^8 - 0.1\bar{\gamma}^{10}$$

Effective stiffness:

$$G \equiv \frac{d\tau}{d\gamma}(\gamma) = \frac{d\tau}{d\bar{\tau}} \frac{d\bar{\tau}}{d\bar{\gamma}} \frac{d\bar{\gamma}}{d\gamma} = \frac{\alpha_{\tau}}{\alpha_{\gamma}} \frac{d\bar{\tau}}{d\bar{\gamma}}$$

12

Exercise 2 - Solution

Perform regression to obtain an interpretable (nonlinear hypo-elastic) constitutive model that best fits stress-strain data

Constitutive model:

$$\bar{\tau} = 0.48 + 0.61\bar{\gamma}^5 - 0.2\bar{\gamma}^8 - 0.1\bar{\gamma}^{10}$$

Effective stiffness:

$$G \equiv \frac{d\tau}{d\gamma}(\gamma) = \frac{d\tau}{d\bar{\tau}} \frac{d\bar{\tau}}{d\bar{\gamma}} \frac{d\bar{\gamma}}{d\gamma} = \frac{\alpha_{\tau}}{\alpha_{\gamma}} \frac{d\bar{\tau}}{d\bar{\gamma}}$$

 $au=rac{eta G\gamma}{eta+|\gamma|}, \quad eta=0.001, \ G=12.345 \ ext{GPa}$