WHAT IS CLAIMED IS:

A recombinant construct comprising:

(a) a DNA sequence encoding a polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme A reductase enzyme activity, and

(b) a DNA sequence encoding at least one polypeptide having steroid pathway enzyme activity selected from the group consisting of:

squalene epoxidase enzyme activity, sterol methyl transferase I enzyme activity, sterol C4-demethylase enzyme activity, obtusifoliol C14 α -demethylase enzyme activity, sterol C5-desaturase enzyme activity, and sterol methyl transferase II enzyme activity.

2. The recombinant construct of claim 1, further comprising at least one promoter operably linked to said coding regions.

3. The recombinant construct of claim 1, further comprising a first promoter operably linked to said DNA sequence encoding a polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme A reductase enzyme activity and a second promoter operably linked to said DNA sequence encoding at least one polypeptide having steroid pathway enzyme activity, wherein said first and second promoters may or may not be the same.

4. The recombinant construct of claim 2 or 3 further comprising an operably linked transcription termination sequence located 3' to each coding region.

10

5. A recombinant construct according to claim 3 wherein the promoters are selected from the group consisting of seed-specific promoters, organ specific promoters and constitutive promoters.

6. A recombinant vector comprising operably linked in the 5' to 3' direction,

a promoter, a DNA sequence encoding a polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme A reductase enzyme activity, and a transcription termination signal sequence;

a promoter, a DNA sequence encoding at least one polypeptide having steroid pathway enzyme activity selected from the group consisting of

squalene epoxidase enzyme acitivity, sterol methyl transferase I enzyme activity, sterol C4-demethylase enzyme activity, obtusifoliol C14α-demethylase enzyme activity, sterol C5-desaturase enzyme activity, and sterol methyl transferase II enzyme activity, and a transcription termination signal sequence.

- 7. The recombinant vector of claim 6 wherein said vector is a plant expression vector.
- 8. A transformed host cell comprising a recombinant construct of claim 1.
- 9. The transformed host cell of claim 8 wherein said cell is a plant cell.

10

- A transformed host cell comprising a recombinant vector of claim 6.
- The transformed host cell according to claim 10 11. wherein said host cell is a plant cell.
- A transformed host cell comprising /a plant expression vector comprising:
- (a) as operably linked components in the 5' to 3' direction, a promoter, a DNA sequence encoding a polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme A reductase enzyme activity, and a transcription termination signal sequence; and
- as operably linked components in the 5' to 3' (b) direction, a promoter, a DNA sequence encoding at least one polypeptide having steroid pathway enzyme activity selected from the group consisting of

squalene epoxidase enzyme activity, sterol methyl transferase I enzyme activity, sterol C4-demethylase enzyme activity, obtusifoliol $/C14\alpha$ -demethylase enzyme activity, sterol C5-desaturase enzyme activity, and sterol methyl transferase II enzyme activity, and a transcription termination signal sequence.

- The transformed host cell according to claim 12 13. wherein said host cell is a plant cell.
- A cell culture comprising transformed host cells according to any of class 8-13.

15

15. A plant comprising at least one transformed host cell of any of claims 8-13.

- 16. A plant according to claim 15 wherein said transformed host cell comprises a plant cell.
- 17. A storage organ, comprising at least one transformed host cell according to any one of claims 813.
- 18. A storage organ including at least one transformed host cell containing a recombinant vector comprising:
- (a) as operably linked components in the 5' to 3' direction, a promoter, a DNA sequence encoding at least one polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme A reductase enzyme activity, and a transcription termination signal sequence; and

 (b) as operably linked components in the 5' to 3'
- direction, a promoter, a DNA sequence encoding a polypeptide having steroid pathway enzyme activity selected from the group consisting of

squalene epoxidase enzyme activity, sterol methyl transferase I enzyme activity, sterol C4-demethylase enzyme activity, obtusifoliol C14 α -demethylase enzyme activity, sterol C5-desaturase enzyme activity, and sterol methyl transferase II enzyme activity, and

a transcription termination signal sequence.

19. The storage organ according to claim 18 wherein said recombinant vector is a plant expression vector.

15

20. A process of increasing the formation of steroid pathway products in a transformed host cell as compared to an otherwise identical non-transformed host cell comprising:

(1) transforming a host cell with a recombinant vector comprising

(a) as operably linked components in the 5' to 3' direction, a promoter, a DNA sequence encoding a first polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme A reductase enzyme activity, and a transcription termination signal sequence; and

(b) as operably linked components in the 5' to 3' direction, a promoter, a DNA sequence encoding at least one polypeptide having steroid pathway enzyme activity selected from the group consisting of

squalene epoxidase enzyme activity, sterol methyl transferase I enzyme

activity,

and

sterol C4-demethylase enzyme activity, obtusifoliol C14 α -demethylase enzyme activity,

sterol C5-desaturase enzyme activity,

sterol methyl transferase II enzyme activity,

and a transcription termination signal sequence, and

(2) regenerating said transformed plant cell into said transgenic plant.

10

5

15 000

20

25

- 21. The process according to claim 20 wherein said first encoded polypeptide comprises the catalytic region and at least a portion of the linker region but is free from the membrane binding region of an 3-hydroxy-3-methylglutaryl-Coenzyme A reductase enzyme.
- 22. The process according to claim 20 wherein said promoters are promoters whose regulatory function is substantially unaffected by levels of squalene in said transgenic plant.
- 23. The process according to claim 20 wherein said plant cell is selected from the group consisting of canola, soybean, corn, tobacco, cotton, tomato, potato, safflower, sunflower, peanut, rape, flax, oil palm, cuphea and alfalfa.
- 24. A transgenic plant produced in accordance with the process of claim 20.
- 25. A transgenic plant seed transformed with a vector comprising a DNA segment that encodes a polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme A reductase activity, and a DNA segment that encodes a polypeptide having a steroid pathway enzyme activity selected from the group consisting of

squalene epoxidase enzyme activity,
sterol methyl transferase I enzyme activity,
sterol C4-demethylase enzyme activity,
obtusifoliol C14a-demethylase enzyme activity,
sterol C5-desaturase enzyme activity, and
sterol methyl transferase II enzyme activity,

(a) 5

and a promoter suitable for driving expression of said polypeptides in said plant cell, wherein said transgenic plant seed is capable of germinating into a transgenic plant that over-accumulates steroid pathway products relative to a non-transformed plant of the same strain; and mutants, recombinants, genetically engineered derivatives thereof and hybrids derived therefrom, wherein said mutants, recombinants, genetically engineer derivatives thereof and hybrids derived therefrom maintain the ability to overaccumulate steroid pathway products.

26. A plant, the genome of which includes introduced DNA comprising:

DNA encoding a polypeptide having 3-hydroxy-3methyulglutaryl-Coenzyme A reductase enzyme activity,
wherein said plant contains an elevated level of total
accumulated sterol, compared to an otherwise identical
plant, the genome of which does not comprise said
introduced DNA encoding a polypeptide encoding 3hydroxy-3-methyulglutaryl-Coenzyme A reductase enzyme
activity; and

further comprising introduced DNA encoding at least one polypeptide having steroid pathway enzyme activity selected from the group consisting of

squalene epoxidase enzyme activity, sterol methyl transferase I enzyme activity, sterol C4 demethylase enzyme activity, obtusifoliol C14 α -demethylase enzyme activity, sterol C5-desaturase enzyme activity, and sterol methyl transferase II enzyme activity,

wherein said introduced DNAs are operatively linked to regulatory signals that cause seed-specific expression

 $O_{\mathcal{O}}$

15

20

10

15

of said introduced DNAs, and wherein seeds of said plant contain a reduced level of squalene, cycloartenol, 24-methylene cycloartenol, obtusifoliol, stigmasta-7-enol, or campesterol compared to the seeds of an otherwise identical plant whose genome does not contain introduced DNA encoding said at least one polypeptide having steroid pathway enzyme activity.

A plant, the genome of which includes an introduced DNA sequence encoding a polypeptide having 3-hydroxy-3-methyulglutaryl-Cognzyme A reductase enzyme activity and an introduced DNA sequence encoding at least one polypeptide having/squalene epoxidase enzyme activity, sterol methyl transferase I enzyme activity, sterol C4-demethylase enzyme activity, obtusifoliol $C14\alpha$ -demethylase enzyme a¢tivity, sterol C5-desaturase enzyme activity, or ster ϕ l methyl transferase II enzyme activity, wherein said introduced DNA is operably linked to regulatory signals that cause seed-specific expression of said int/roduced DNA, and wherein said plant produces seed having an elevated level of a steroid pathway product, compared to a corresponding transgenic or non-transgenic plant that does not contain said introduced DNA.

(i) a polypeptide having 3-hydroxy-3-methyulglutaryl-Coenzyme A reductase enzyme activity and (ii) at least one additional polypeptide having squalene epoxidase enzyme activity, sterol methyl transferase # enzyme activity, sterol C4-demethylase

A plant comprising introduced DNA encoding

enzyme activity, obtusifoliol $C14\alpha$ -demethylase enzyme

10

15

activity, sterol C5-desaturase enzyme activity, or sterol methyl transferase II enzyme activity, wherein said plant that produces a storage organ having an elevated level of a sterol pathway product compared to a corresponding transgenic or non-transgenic plant that does not contain said introduced DNA.

29. The plant of claim 28, wherein said storage organ contains a reduced level of squalene, cycloartenol, 24-methylene cycloartenol, obtusifoliol, stigmasta-7-enol, campesterol, or mixtures thereof, compared to a corresponding transgenic plant that comprises introduced DNA encoding a polypeptide having 3-hydroxy-3-methyulglutaryl-Coenzyme A reductase enzyme activity but that does not contain introduced DNA encoding at least one polypeptide having squalene epoxidase enzyme activity, sterol C4-demethylase enzyme activity, obtusifoliol C14α-demethylase enzyme activity, sterol C5-desaturase enzyme activity, sterol C5-desaturase enzyme activity, sterol methyl transferase II enzyme activity.

30. The plant of any one of claims 24 to 29, wherein said regulatory signals cause seed-specific expression of said introduced DNAs.

31. A seed of a plant according to any one of claims 24 to 30.

32. Progeny of a plant according to any one of claims 24 to 30.

Cranil

10

10

Sort Sort

PATENT

A plant cell or transformed plant cell of a plant according to any one of claims 24 to 30.

A cell culture, comprising cells according to claim 33.

- 35. A plant produced from a seed according to claim 31.
- 36. A method of producing a plant comprising sexually crossing a plant according to any one of claims 15, 16 or 24-30 with a non-transformed plant.
- 37. A plant produced by the method of claim 36.
- A plant according to any one of claims 24 to 30, wherein said plant is an apomicitic plant.
- A seed resulting from a cross of the plant of claim 38 with a nurse oultivar.
- A uniform population of plants according to any one of claims 15, 16, 24-30, 37 or 38.
- Seed of a plant produced by the method of claim 36.
- A part, other than a seed, of a plant according to 42. any one of claims 15, 16, 24-30, 37 or 38.
- Oil containing at least one sterol pathway product, extracted from seed of a plant according to any one of claims 15, $\frac{1}{6}$, 24-30, 37 or 38.

- 44. Oil according to claim 43, wherein sitosterol, at least one sitosterol ester, or mixtures thereof, comprise at least about 57% by weight of the total sterol compounds of said oil.
- 45. Oil according to claim 43, wherein sitosterol, at least one sitosterol ester, or mixtures thereof, comprise at least about 0.08% of the dry weight of said seed.
- 46. Oil according to claim 43, having a reduced amount of squalene, cycloartenol, 24 methylene cycloartenol, obtusifoliol, stigmasta-7-enol, campesterol, or mixtures thereof, compared to oil obtained from a corresponding plant that does not contain introduced DNA encoding at least one polypeptide having squalene epoxidase enzyme activity, sterol methyl transferase I enzyme activity, a sterol C4-demethylase enzyme activity, obtusifoliol C14 α -demethylase enzyme activity, sterol C5-desaturase enzyme activity, or sterol methyl transferase II enzyme activity; wherein the reduction is in the range of from about 10% to about 100% .
- 47. A sitosterol ester composition extracted from seed of a plant according to any one of claims 15, 16, 24-30, 37 or 38.
- 48. The sit osterol ester composition of claim 47, wherein an esterifying fatty acid has 2 to 22 carbon atoms in the main chain.

- 49. A cholesterol-lowering composition, comprising said oil of any one of claims 43 to 46.
- 50. A food, food ingredient, or food composition, comprising said oil of any one of claims 43 to 46.
- 51. A pharmaceutical composition, comprising a cholesterol-lowering effective amount of said oil of any one of claims 43 to 46, and a pharmaceutically acceptable carrier, excipient, or diluent.
- 52. A method of lowering the plasma concentration of low density lipoprotein cholesterol, comprising orally administering to a human or animal subject an effective amount of a composition according to any one of claims 49-51.
- 53. A method of treating or preventing an elevated plasma concentration of low density lipoprotein cholesterol, comprising orally administering to a human or animal subject an effective amount of a composition according to any one of claims 49-51.
- 54. A method of making a food additive composition, comprising:
 obtaining oil containing a sterol pathway product compound from seed of a transgenic plant according to any one of claims 15, 16, 24-30, 37 or 38; and mixing said oil with an edible solubilizing agent, a dispersant, and optionally, an antioxidant.
 - 55. An isolated DNA molecule, having a nucleotide sequence selected from the group consisting of:

- (a) disclosure squalene epoxidase SEQ ID NO:4, 6, 8,
- 10, or the complement thereof;
- 5 (b) a nucleotide sequence that hybridizes to said nucleotide sequence of (a) under a wash stringency equivalent to 0.5% SSC to 2% SSC, 0.1% SDS, at 55-65°C, and which encodes a polypeptide having squalene epoxidase enzymatic activity substantially similar to that of the disclosed squalene epoxidase;
 - (c) a nucleotide sequence encoding the same genetic information as said nucleotide sequence of (a), but which is degenerate in accordance with the degeneracy of the genetic code; and
- 15 (d) a nucleotide sequence encoding the same genetic information as said nucleotide sequence of (b), but which is degenerate in accordance with the degeneracy of the genetic code.
 - 56. An isolated DNA molecule, having a nucleotide sequence selected from the group consisting of:
 - (a) disclosure obtusifoliol C14 α -demethylase SEQ ID NO:12, 14, or 17, or the complement thereof;
- 5 (b) a nucleotide sequence that hybridizes to said nucleotide sequence of (a) under a wash stringency equivalent to 0.5X SSC to 2X SSC, 0.1% SDS, at $55-65^{\circ}$ C, and which encodes a polypeptide having obtusifoliol C14 α -demethylase enzymatic activity substantially similar to that of the disclosed obtusifoliol C14 α -
 - (c) a nucleotide sequence encoding the same genetic information as said nucleotide sequence of (a), but which is degenerate in accordance with the degeneracy of the genetic code; and

demethylase;

- (d) a nucleotide sequence encoding the same genetic information as said nucleotide sequence of (b), but which is degenerate in accordance with the degeneracy of the genetic code.
 - 57. A recombinant construct, comprising as operably linked components in the 5' to 3' direction, a seed-specific promoter, an isolated DNA molecule of claim 55 or 56, and a transcription termination signal sequence.
 - 58. A recombinant vector comprising said recombinant construct of claim 57.
- 59. The recombinant vector of claim 58, which is a plant expression vector.
- 60. A transformed host cell, comprising said recombinant construct of claim 57.
- 61. The transformed host cell of claim 60, wherein said host cell is a plant cell.
- 62. A method of producing squalene epoxidase or obtusifoliol C14 α -demethylase, comprising culturing a transformed host cell of claim 60 for a time and under conditions conductive to the production of said squalene epoxidase or obtusifoliol C14 α -demethylase enzyme, and recovering said squalene epoxidase or obtusifoliol C14 α -demethylase produced thereby.

- 63. The transformed host cell of claim 8, further comprising a recombinant construct encoding a tocopherol synthesis pathway enzyme.
- 64. The transformed host cell of claim 10, further comprising a recombinant vector encoding a tocopherol synthesis pathway enzyme.
- 65. The transformed host cell of claim 64, wherein said tocopherol synthesis pathway enzyme is S-adenosylmethionine-dependent γ -tocopherol methyltransferase.
- 66. The transformed host cell of claim 64, wherein said vectors are plant expression vectors.
- 67. The storage organ of claim 18, wherein said at least one transformed host cell further contains a recombinant vector comprising as operably linked components, a promoter, a DNA sequence encoding a tocopherol synthesis pathway enzyme and a transcription termination sequence,
- 68. The storage organ of claim 18, wherein said tocopherol synthesis enzyme is S-adenosylmethionine-dependent γ-tocopherol methyltransferase.
- 69. A process of increasing the formation of steroid pathway products and too pherols in a transformed host cell as compared to an otherwise identical non-transformed host cell comprising,

- 5 (A) transforming a host cell with:
 - (1) a recombinant vector $c\phi$ mprising
 - (a) as operably linked components in the 5' to 3' direction, a promoter, a DNA sequence encoding a first polypeptide having 3-hydroxy-3-methylglutaryl-Coenzyme
- 10 A reductase enzyme activity, and a transcription termination signal sequence; and
 - (b) as operably linked components in the 5' to 3' direction, a promoter, a DNA sequence encoding at least one polypeptide having steroid pathway enzyme activity
- selected from the group consisting of squalene epoxidase enzyme activity, sterol methyl transferase I enzyme activity, sterol C4-demethylase enzyme activity,
- sterol C5-desaturase enzyme activity, and sterol methyl transferase II enzyme activity, and and a transcription termination signal sequence;

obtusifoliol $C14\alpha$ -demethylase enzyme activity,

- (2) a recombinant vector comprising as operably linked components, a promoter, a DNA sequence encoding at
- least one tocopherol synthesis pathway enzyme selected from the group consisting of 3-deoxy-D-arabing-heptulosonate-7-P synthase (DAHP)

shikimate kinase,

synthase),

- a prephenate dehydrogenase,
 - 1-deoxy-d-xylplose 5-phosphate synthetase (DXS),
 - 1-deoxy-d-xy/ulose 5-phosphate reductoisomerase (DXR),
 - 4-diphosphocytidyl-2C-methyl-d-erythritol synthase (YgbP),
- 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (YchB),


```
171
                                                        PATENT
   2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase
    (YgbB),
   the gene product of GcpE, LytB,
   geranylgeranylpyrophosphate synthase (GGPPS),
40
   geranylgeranylpyrophosphate hydrogenase (GGH),
   phytyl/prenyltransferase (PPT),
   4-hydroxy-phenylpyruvate dioxygenase/
                                          (HPPD),
   2-methyl-6-phytylplastooquinol,
   tocopherol methyltransferase I (MT/)
45
```

tocopherol cyclase and γ-tocopherol methyltransferase (\$MT); 4-amino-4-dexoyprephenate dehydrogenase (TryA); slr 1736;

slr 1737 50 ATPT2; AANT1; and

and a transcription termination sequence; and

- (B) regenerating said transformed plant cell into said 55 transgenic plant.
 - The process of claim 69, wherein said tocopherol synthesis enzyme is \$-adenosylmethionine-dependent γtocopherol methyltransferase.
 - A plant comprising at least one host cell of any of claims 63-66.
 - A plant produced by the process of claim 69 or 70. 72.
 - An oil from the plant of claim 71 or 72. 73.
 - A seed/from the plant of claim 71 or 72.

- 75. An oil from the seed of claim 74/
- 76. A plant produced by crossing the plant of any of claims 26-30, 35, 37, or 38 with a plant comprising a recombinant expression vector containing as operably linked components a promoter, a DNA sequence encoding a tocopherol synthesis pathway enzyme, and a transcription termination sequence.
- 77. The plant of claim 77, wherein said tocopherol synthesis enzyme is S-adenosylmethionine-dependent tocopherol methyltransferase.