Report No: CCISE170801703

FCC REPORT

(UNII)

Applicant: Haier Information Technology(Shenzhen) Co., Ltd

ROOM B4 OF FLOOR 21, NO.3 TOWER BUILDING, CHINESE

TECHNOLOGY RESEARCH PARK, CHINA TECHNOLOGY

Address of Applicant: EXPLOITATION INSTITUTE, GAOXIN SOUTH FIRST STREET

NO.009, NANSHAN DISTRICT, SHENZHEN CITY,

GUANGDONG PROVINCE, CHINA

Equipment Under Test (EUT)

Product Name: laptop

Model No.: Y11C

Trade mark: Haier

FCC ID: 2ACZD-Y11C

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 12 June, 2017

Date of Test: 12 June, to 11 July, 2017

Date of report issued: 11 July, 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE170801703

2 Version

Version No.	Date	Description
00	11 July, 2017	Original

Tested by: Date: 11 July, 2017

Reviewed by: Date: 11 July, 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		NTENTS	
4	IES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	8
	5.5	LABORATORY FACILITY	8
	5.6	LABORATORY LOCATION	8
	5.7	MEASUREMENT UNCERTAINTY	
	5.8	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	18
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	48
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
	6.8	FREQUENCY STABILITY	72
7	TES	T SETUP PHOTO	74
Ω	FIIT	CONSTRUCTIONAL DETAILS	77

4 Test Summary

Test Item	Section in CFR 47	
Antenna requirement	15.203/15.407 (g)	
AC Power Line Conducted Emission	15.207	
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	
26dB Occupied Bandwidth	15.407 (a) (5)	
6dB Emission Bandwidth	15.407(e)	
Power Spectral Density	15.407 (a) (1) (iv) &(a) (3)	
Band Edge	15.407(b)	
Spurious Emission	15.205/15.209	
Frequency Stability	15.407(g)	

Pass: The EUT complies with the essential requirements in the standard.

General Information

5.1 Client Information

Applicant:	Haier Information Technology(Shenzhen) Co., Ltd	
Address of Applicant:	ROOM B4 OF FLOOR 21, NO.3 TOWER BUILDING, CHINESE TECHNOLOGY RESEARCH PARK, CHINA TECHNOLOGY EXPLOITATION INSTITUTE, GAOXIN SOUTH FIRST STREET NO.009, NANSHAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, CHINA	
Manufacturer:	Haier Information Technology(Shenzhen) Co., Ltd	
Address of Manufacturer:	ROOM B4 OF FLOOR 21, NO.3 TOWER BUILDING, CHINESE TECHNOLOGY RESEARCH PARK, CHINA TECHNOLOGY EXPLOITATION INSTITUTE, GAOXIN SOUTH FIRST STREET NO.009, NANSHAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, CHINA	
Factory: CHUNGHSIN INTERNATIONAL ELECTRONICS CO., LTD.		
Address of Factory:	618-2# Gongren West Road, Jiaojiang, Taizhou City, Zhejiang, PR.China	

5.2 General Description of E.U.T.

Product Name:	laptop	
Model No.:	Y11C	
Operation Frequency:	Band 1: 5180MHz-5240MHz	
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2,802.11ac:1	
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac : 80MHz	
Modulation technology: (IEEE 802.11a)	BPSK, QPSK, 16-QAM, 64-QAM	
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM	
Modulation technology: (IEEE 802.11ac)	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM	
Data speed(IEEE 802.11a):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n20):	MCS0: 13Mbps, MCS1: 26Mbps, MCS2: 39Mbps, MCS3: 52Mbps, MCS4: 78Mbps, MCS5: 104Mbps, MCS6: 117Mbps, MCS7: 130Mbps	
Data speed (IEEE 802.11n40):	MCS0: 30Mbps, MCS1: 60Mbps, MCS2: 90Mbps, MCS3: 120Mbps, MCS4: 180Mbps, MCS5: 240Mbps, MCS6: 270Mbps, MCS7: 300Mbps	
Data speed (IEEE 802.11ac):	Up to 650Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	-3.46dBi	
Power supply:	Rechargeable Li-ion Battery DC7.6V-5000mAh	
AC adapter:	Adapter(1): Model: PS36A120Y3000H Input: AC100-240V, 50/60Hz, 1.0A Output: DC 12.0V, 3.0A Adapter(2): Model: EE1230-105	
	Input: AC100-240V, 50/60Hz, 0.5A	

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

C	Output: DC 12.0V, 3.0A			
A	Adapter(3):			
N	lodel: SO`	Y-1200300		
lr Ir	put: AC10	00-240V, 50/60Hz, 1.2/	4	
C	utput: DC	12.0V, 3.0A		
b	Due to marketing reasons the Model Y11C has three configurations, between them PCB board circuit design, layout, structure and appearance are the same, only the following configuration is different:			
	Manufacturers (Model)			
	Туре	1#	2#	3#
	Memory	Micron (MT52L512M32D2PF-107WT)	ELPIDA (EDFA232A2MA-JD-F-R)	BIWIN (BW52L512M32D2PF-107)
	LCD	K&D (KD116N05-30NV-A008)	STARRY ELECTRONIC (20811160240024-03)	QianhaiLingxian(LX 116NO2-3ONV-AO4)
	Hard Disk	WD (WD10SPZX)	Seagate(ST1000LM048)	WD (WD10SPZX)
	Battery	3XUN (5849112)	3Xun((5849112)	McNair (MLP5850110-2S)
	Adapter	Flypower (PS36A120Y3000H)	ENGINE (EE1230-105)	S0Y (S0Y-1200300)

Operation Frequency each of channel

	•					
	Band 1					
802.11a/802.11n20		802.11n40		802.11ac80		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	38	5190MHz	42	5210MHz	
40	5200MHz	46	5230MHz			
44	5220MHz					
48	5240MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/80	02.11n20	802.11n40		802.11ac80		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz	
Middle channel	5200MHz	Highest channel	5230MHz			
Highest channel	5240MHz					

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	

Report No: CCISE170801703

Continuously transmitting mode Keep the EUT in 100% duty cycle transmitting with modulation.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.		
Mode	Data rate	
802.11a	6Mbps	
802.11n20	13Mbps	
802.11n40	30Mbps	
802.11ac	65Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6Mbps for 802.11a, 13Mbps for 802.11n20, 30Mbps for 802.11n40 and 65Mbps for 802.11ac. All test items for 802.11a, 802.11ac and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
/	/	/	/	/

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

•FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully describedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

•IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

•CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.7 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018		
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -3.46 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH	Z		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak		
	0.15-0.5	66 to 56*	0.15-0.5	
	0.5-5	56	0.5-5	
	5-30	60	5-30	
	* Decreases with the loga	arithm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:		Reference Plane		
	AUX Equipment Test table/Insula Remark: E.U.T. Equipment Under LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power	
Test Instruments:	Refer to section 5.8 for d	letails		
Test mode:	Refer to section 5.3 for d	letails.		
Test results:	Passed			

Measurement Data: Configuration: 1#

Line:

Trace: 23

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : laptop : Y11C Model Test Mode : 5G Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: MT

: 1# adapter:PS36A120Y3000H Remark

MIDWOIL		im ada	0001.100	0112013	00011			
	100	Read		Cable		Limit	Over	<u>12</u> 0 5
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
-	MHz	dBu∀	<u>d</u> B	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.150	23.25	-0.56	10.78	33.47	56.00	-22.53	Average
2	0.154	44.33	-0.56	10.78	54.55	65.78	-11.23	QP
3	0.182	17.54	-0.53	10.77	27.78	54.42	-26.64	Average
1 2 3 4 5 6 7 8 9	0.198	39.37	-0.52	10.76	49.61	63.71	-14.10	QP
5	0.494	28.02	-0.49	10.76	38.29	56.10	-17.81	QP
6	0.494	20.00	-0.49	10.76	30.27	46.10	-15.83	Average
7	0.731	13.26	-0.48	10.78	23.56	46.00	-22.44	Average
8	1.088	23.22	-0.48	10.88	33.62	56.00	-22.38	QP
9	2.765	23.31	-0.44	10.93	33.80	56.00	-22.20	QP
10	2.765	15.30	-0.44	10.93	25.79	46.00	-20.21	Average
11	19.428	20.56	-0.50	10.93	30.99	60.00	-29.01	QP
12	19.428	12.95	-0.50	10.93	23.38	50.00	-26.62	Average

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

T-1-14 O----

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : laptop Model : Y11C

Test Mode : 5G Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

: 1# adapter:PS36A120Y3000H Remark

Freq	Level	Factor	Loss	Level	Limit	Over Limit	Remark
MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
0.150	45.68	-0.38	10.78	56.08	66.00	-9.92	QP
0.154	22.75	-0.38	10.78	33.15	55.78	-22.63	Average
0.190	17.80	-0.35	10.76	28.21	54.02	-25.81	Average
0.211	39.05	-0.34	10.76	49.47	63.18	-13.71	QP
0.258	34.47	-0.33	10.75	44.89	61.51	-16.62	QP
0.502	28.05	-0.30	10.76	38.51	56.00	-17.49	QP
0.502	18.87	-0.30	10.76	29.33	46.00	-16.67	Average
0.686	13.78	-0.30	10.77	24.25	46.00	-21.75	Average
0.697	23.97	-0.30	10.77	34.44	56.00	-21.56	QP
2.869	24.84	-0.21	10.92	35.55	56.00	-20.45	QP
2.946	16.42	-0.20	10.92	27.14	46.00	-18.86	Average
14.063	13.76	-0.21	10.91	24.46			
	MHz 0.150 0.154 0.190 0.211 0.258 0.502 0.502 0.686 0.697 2.869 2.946	MHz dBuV 0.150 45.68 0.154 22.75 0.190 17.80 0.211 39.05 0.258 34.47 0.502 28.05 0.502 18.87 0.686 13.78 0.697 23.97 2.869 24.84 2.946 16.42	MHz dBuV dB 0.150 45.68 -0.38 0.154 22.75 -0.38 0.190 17.80 -0.35 0.211 39.05 -0.34 0.258 34.47 -0.33 0.502 28.05 -0.30 0.502 18.87 -0.30 0.686 13.78 -0.30 0.697 23.97 -0.30 2.869 24.84 -0.21 2.946 16.42 -0.20	MHz dBuV dB dB 0.150 45.68 -0.38 10.78 0.154 22.75 -0.38 10.78 0.190 17.80 -0.35 10.76 0.211 39.05 -0.34 10.76 0.258 34.47 -0.33 10.76 0.502 28.05 -0.30 10.76 0.502 18.87 -0.30 10.76 0.686 13.78 -0.30 10.77 0.697 23.97 -0.30 10.77 2.869 24.84 -0.21 10.92 2.946 16.42 -0.20 10.92	MHz dBuV dB dB dBuV 0.150 45.68 -0.38 10.78 56.08 0.154 22.75 -0.38 10.78 33.15 0.190 17.80 -0.35 10.76 28.21 0.211 39.05 -0.34 10.76 49.47 0.258 34.47 -0.33 10.75 44.89 0.502 28.05 -0.30 10.76 29.33 0.686 13.78 -0.30 10.76 29.33 0.697 23.97 -0.30 10.77 34.44 2.869 24.84 -0.21 10.92 35.55 2.946 16.42 -0.20 10.92 27.14	MHz dBuV dB dB dBuV dBuV 0.150 45.68 -0.38 10.78 56.08 66.00 0.154 22.75 -0.38 10.78 33.15 55.78 0.190 17.80 -0.35 10.76 28.21 54.02 0.211 39.05 -0.34 10.76 49.47 63.18 0.258 34.47 -0.33 10.75 44.89 61.51 0.502 28.05 -0.30 10.76 29.33 46.00 0.502 18.87 -0.30 10.76 29.33 46.00 0.686 13.78 -0.30 10.77 24.25 46.00 0.697 23.97 -0.30 10.77 34.44 56.00 2.869 24.84 -0.21 10.92 35.55 56.00 2.946 16.42 -0.20 10.92 27.14 46.00	MHz dBuV dB dB dBuV dBuV dB 0.150 45.68 -0.38 10.78 56.08 66.00 -9.92 0.154 22.75 -0.38 10.78 33.15 55.78 -22.63 0.190 17.80 -0.35 10.76 28.21 54.02 -25.81 0.211 39.05 -0.34 10.76 49.47 63.18 -13.71 0.258 34.47 -0.33 10.75 44.89 61.51 -16.62 0.502 28.05 -0.30 10.76 38.51 56.00 -17.49 0.502 28.05 -0.30 10.76 29.33 46.00 -16.67 0.686 13.78 -0.30 10.77 24.25 46.00 -21.75 0.697 23.97 -0.30 10.77 34.44 56.00 -21.56 2.869 24.84 -0.21 10.92 35.55 56.00 -20.45 2.946 16.42 -0

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Configuration: 2#

Line:

Trace: 39

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT laptop YIIC Model Test Mode : 5G Wifi mode Power Rating : AC 120V/60Hz

: Temp: 23 °C Huni:56% Atmos:101KPa Environment

Test Engineer: MT

: 2# adapter:EE1230-105 Read LISM Cable Remark

	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
15	MHz	dBu∜	dB	dB	dBu₹	dBu√	<u>dB</u>	
1	0.150	24.25	-0.56	10.78	34.47	56.00	-21.53	Average
2	0.154	42.33	-0.56	10.78	52.55	65.78	-13.23	QP
3	0.182	18.54	-0.53	10.77	28.78	54.42	-25.64	Average
4 5	0.198	37.37	-0.52	10.76	47.61	63.71	-16.10	QP
5	0.494	26.02	-0.49	10.76	36.29	56.10	-19.81	QP
6	0.494	21.00	-0.49	10.76	31.27	46.10	-14.83	Average
7	0.731	15.26	-0.48	10.78	25.56	46.00	-20.44	Average
8	1.088	26.22	-0.48	10.88	36.62	56.00	-19.38	QP
8	2.765	25.31	-0.44	10.93	35.80	56.00	-20.20	QP
10	2.765	17.30	-0.44	10.93	27.79	46.00	-18.21	Average
11	19.428	21.56	-0.50	10.93	31.99	60.00	-28.01	QP
12	19.428	14.95	-0.50	10.93	25.38	50.00	-24.62	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : laptop : Y11C Model

Test Mode : 5G Wifi mode Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark : 2# adapter:EE1230-105

COMCALL	•			200 100	100			
	Freq	Read Level	LISN Factor		Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	<u>dB</u>	dBu₹	dBu₹	dB	
1	0.150	43.68	-0.38	10.78	54.08	66.00	-11.92	QP
2	0.162	24.40	-0.37	10.77	34.80	55.34	-20.54	Average
2	0.190	19.80	-0.35	10.76	30.21	54.02	-23.81	Average
4 5 6 7 8	0.282	30.85	-0.32	10.74	41.27	60.76	-19.49	QP
5	0.502	28.05	-0.30	10.76	38.51	56.00	-17.49	QP
6	0.502	19.87	-0.30	10.76	30.33	46.00	-15.67	Average
7	1.077	21.47	-0.29	10.88	32.06	56.00	-23.94	QP
8	2.869	22.84	-0.21	10.92	33.55	56.00	-22.45	QP
9	2.946	17.42	-0.20	10.92	28.14	46.00	-17.86	Average
10	7.935	13.13	0.22	10.85	24.20	50.00	-25.80	Average
11	14.063	15.76	-0.21	10.91	26.46			Average
12	18.920	22.55	-0.45	10.92	33.02	60.00	-26.98	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Configuration: 3#

Line:

Trace: 57

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : laptop : Y11C Model

Test Mode : 5G Wifi mode Power Rating : AC 120V/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT

: 3# adapter:SOY-1200300 Remark

	Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu∜	dBu∜	<u>dB</u>	
1	0.154	43.33	-0.56	10.78	53.55	65.78	-12.23	QP
2	0.162	25.44	-0.55	10.77	35.66	55.34	-19.68	Average
2	0.258	15.52	-0.51	10.75	25.76	51.51	-25.75	Average
4	0.494	27.02	-0.49	10.76	37.29	56.10	-18.81	QP
4 5 6 7	0.494	22.00	-0.49	10.76	32.27	46.10	-13.83	Average
6	0.731	17.26	-0.48	10.78	27.56	46.00	-18.44	Average
7	1.088	25.22	-0.48	10.88	35.62	56.00	-20.38	QP
8	2.765	27.31	-0.44	10.93	37.80	56.00	-18.20	QP
9	2.765	18.30	-0.44	10.93	28.79	46.00	-17.21	Average
10	8.412	20.33	0.06	10.87	31.26	60.00	-28.74	QP
11	19.428	22.56	-0.50	10.93	32.99	60.00	-27.01	QP
12	19.428	15.95	-0.50	10.93	26, 38	50.00	-23.62	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : laptop : Y11C Model

Test Mode : 5G Wifi mode Power Rating : AC 120V/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT

: 3# adapter:SOY-1200300 Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
_	MHz	dBu∀	dB	₫B	dBu∜	dBu∜	<u>d</u> B	
1	0.150	44.68	-0.38	10.78	55.08	66.00	-10.92	QP
2	0.162	24.40	-0.37	10.77	34.80	55.34	-20.54	Average
3	0.190	19.80	-0.35	10.76	30.21	54.02	-23.81	Average
1 2 3 4 5 6 7	0.266	33.64	-0.33	10.75	44.06	61.25	-17.19	QP
5	0.502	30.05	-0.30	10.76	40.51	56.00	-15.49	QP
6	0.502	19.87	-0.30	10.76	30.33	46.00	-15.67	Average
7	1.005	24.02	-0.29	10.87	34.60	56.00	-21.40	QP
8	2.869	23.84	-0.21	10.92	34.55	56.00	-21.45	QP
9	2.946	17.42	-0.20	10.92	28.14	46.00	-17.86	Average
10	7.935	13.13	0.22	10.85	24.20	50.00	-25.80	Average
11	14.063	15.76	-0.21	10.91	26.46	50.00	-23.54	Average
12	15.635	23.83	-0.34	10.90	34.39	60.00	-25.61	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)		
Test Method:	ANSI C63.10: 2013, KDB789033		
Limit:	Band 1: 24dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Band1

Bandi						
Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result
	Laurant	AUX	12.58	,	24.00	Pass
	Lowest	MAIN	12.13	/		
902 110	Middle	AUX	12.25	,	24.00	Pass
802.11a	Middle	MAIN	12.39	/		
	Highest	AUX	11.63	,	24.00	Door
		MAIN	11.43	/	24.00	Pass
	Lowest	AUX	9.30	11.85	24.00	Door
		MAIN	8.33	11.00	24.00	Pass
802.11n20	Middle	AUX	8.65	11.39	24.00	Pass
002.111120		MAIN	8.10	11.39		
	Lighoot	AUX	8.30	11.18	24.00	Door
	Highest	MAIN	8.04	11.10	24.00	Pass
	Lowest	AUX	8.66	11.47	24.00	Door
902 11p40	Lowest	MAIN	8.24	11.47	24.00	Pass
802.11n40	Highest	AUX	8.41	11.28	24.00	Pass
	riignest	MAIN	8.12	11.20	24.00	F 055
802.11ac80	Middle	AUX	8.00	11.09	24.00	Page
002.11acou	ivildale	MAIN	8.16	11.09	24.00	Pass

Test plot as follows: Band 1 AUX Antenna Port:

Highest channel

Lowest channel

Middle channel

Highest channel

MAIN Antenna Port:

Lowest channel

Middle channel

Highest channel

Tx Channel
Bandwidth

8.12 dBm

40 MHz

6.4 Occupy Bandwidth

1 7					
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Band 1:

AUX Antenna Port:

AOX Antenna i ore									
Test Channel	26dB Emission Bandwidth (MHz)					Dogult			
	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result			
Lowest	23.68	24.36	41.68						
Middle	23.68	23.20		80.32	N/A	N/A			
Highest	19.88	19.62	39.60						
Test Channel	99% Occupy Bandwidth (MHz)					Decult			
	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result			
Lowest	16.96	17.96	36.16						
Middle	16.88	17.92		75.84	N/A	N/A			
Highest	16.88	17.88	36.08						

MAIN Antenna Port:

Test Channel	26dB Emission Bandwidth (MHz)					Dooult
	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	23.60	22.56	42.16			
Middle	24.16	23.32		79.68	N/A	N/A
Highest	19.72	19.80	39.44			
Test Channel	99% Occupy Bandwidth (MHz)					Dogult
	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	16.96	17.88	36.16			
Middle	16.96	17.96		75.52	N/A	N/A
Highest	16.84	17.96	36.16			

Test plot as follows: Band 1: AUX Antenna Port:

Date: 1.JUL.2017 11:31:12

Lowest channel

Date: 1.JUL.2017 11:31:46

Middle channel

Date: 1.JUL.2017 11:33:40

Highest channel

Page 28 of 77

Date: 1.JUL.2017 11:36:40

Lowest channel

Date: 1.JUL.2017 11:35:50

Middle channel

Date: 1.JUL.2017 11:34:52

Highest channel

Date: 1.JUL.2017 11:37:44

Lowest channel

Date: 1.JUL.2017 11:38:35

Highest channel

Date: 1.JUL.2017 11:29:58

Middle channel

Date: 1.JUL.2017 11:31:02

Lowest channel

Date: 1.JUL.2017 11:32:07

Middle channel

Date: 1.JUL.2017 11:32:38

Highest channel

Date: 1.JUL.2017 11:36:56

Lowest channel

Date: 1.JUL.2017 11:35:41

Middle channel

Date: 1.JUL.2017 11:35:11

Highest channel

Date: 1.JUL.2017 11:37:34

Lowest channel

Date: 1.JUL.2017 11:38:57

Highest channel

Date: 1.JUL.2017 11:30:17

Middle channel

MAIN Antenna Port:

Date: 1.JUL.2017 10:56:54

Lowest channel

Date: 1.JUL.2017 10:57:41

Middle channel

Date: 1.JUL.2017 10:59:19

Highest channel

Date: 1.JUL.2017 11:02:59

Lowest channel

Date: 1.JUL.2017 11:03:56

Middle channel

Date: 1.JUL.2017 11:02:18

Highest channel

Date: 1.JUL.2017 11:04:30

Lowest channel

Date: 1.JUL.2017 11:05:30

Highest channel

Date: 1.JUL.2017 10:54:43

Middle channel

Date: 1.JUL.2017 10:57:08

Lowest channel

Date: 1.JUL.2017 10:57:29

Middle channel

Date: 1.JUL.2017 10:59:37

Highest channel

Date: 1.JUL.2017 11:03:23

Lowest channel

Date: 1.JUL.2017 11:03:47

Middle channel

Date: 1.JUL.2017 11:00:12

Highest channel

Date: 1.JUL.2017 11:04:41

Lowest channel

Date: 1.JUL.2017 11:05:03

Highest channel

Date: 1.JUL.2017 10:53:55

Middle channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)
Test Method:	ANSI C63.10:2013, KDB 789033
Limit:	Band 1: 11 dBm/MHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Band 1:

Band 1:							
Mode	Test Channel	Ant. Port	PSD (dBm)	Total PSD (dBm)	Limit (dBm)	Result	
	1	TX1	2.22	,	44.00	D	
	Lowest	TX2	2.24	/	11.00	Pass	
	Middle	TX1	2.15	,	11.00	Door	
802.11a		TX2	1.89	/	11.00	Pass	
	Highest	TX1	1.48	,	11.00	Page	
	nighest	TX2	1.30	/	11.00	Pass	
	Lowest	TX1	-1.72	1.71	11.00	Pass	
	Lowest	TX2	-0.91	1.71	11.00	F a 5 5	
	Middle	TX1	-1.60	2.16	11.00	Pass	
802.11n 20	Middle	TX2	-0.21	2.10	11.00	F a 3 3	
	Highest	TX1	-2.40	1.06	11.00	Pass	
	riigiiest	TX2	-1.55	1.00	11.00	1 033	
Lowes		TX1	-4.71	-1.58	11.00	Pass	
000 44 = 40	LOWEST	TX2	-4.48	-1.50	11.00	F 033	
802.11n 40	Highest	TX1	-5.03	-1.73	11.00	Pass	
	i ligitest	TX2	-4.46	-1.73	11.00	F 033	
000 4400	Middle	TX1	-8.02	-4.58	11.00	Pass	
802.11ac80	wiidale	TX2	-7.20	7.50	11.00	1 433	

Test plot as follows:

Band 1: AUX Antenna Port:

Date: 1.JUL.2017 11:23:46

Date: 1.JUL.2017 11:24:08

Date: 1.JUL.2017 11:24:27

Highest channel

Date: 1.JUL.2017 14:01:08

Lowest channel

Date: 1.JUL.2017 14:01:38

Middle channel

Date: 1.JUL.2017 14:01:58

Highest channel

Date: 1.JUL.2017 13:58:23

Lowest channel

Date: 1.JUL.2017 13:58:47

Highest channel

Test mode:802.11ac

Date: 1.JUL.2017 13:57:32

Middle channel

MAIN Antenna Port:

Date: 1.JUL.2017 11:16:45

Date: 1.JUL.2017 11:17:35

Date: 1.JUL.2017 11:17:56

Highest channel

Date: 1.JUL.2017 14:06:09

Lowest channel

Date: 1.JUL.2017 14:05:51

Middle channel

Date: 1.JUL.2017 14:03:35

Highest channel

Date: 1.JUL.2017 14:06:43

Lowest channel

Date: 1.JUL.2017 14:07:00

Highest channel

Test mode:802.11ac

Date: 1.JUL.2017 14:07:39

Middle channel

6.6 Band Edge

Test Method: Receiver setup: Detector RBW VBW Remark Quasi-peak 120kHz 300kHz Quasi-peak Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Band Limit (dBuV/m @3m) Remark Band 1 68.20 Peak Value Remark: 1. Band 1 limit: EldBy/m] = EIRP[dBm] + 95.2=68.2 dBuV/m,for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was funded to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to 16nd the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test results: Pesser to section 5.8 for details Refer to section 5.3 for details	Test Requirement:	FCC Part15 E Secti	on 15.407 (b)		
Receiver setup: Detector RBW VBW Remark	Test Method:	ANSI C63.10:2013	, KDB 789033		
Quasi-peak Value RMS 1MHz 30MHz Average Value RMS 1MHz 3MHz Average Value Band Limit (dBuV/m @3m) Remark Band 1 68.20 Peak Value Remark: 1. Band 1 limit: E[dBuV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=27dBm. FeldBuV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Holid Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.8 for details Refer to section 5.3 for details Refer to sectio	Receiver setup:			VBW	Remark
RMS 1MHz 3MHz Average Value Band Limit (dBuV/m @3m) Remark Band 1 54.00 Average Value Remark: 1. Band 1 limit: E[dByV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was turned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details	receiver detap.				
Band Limit (dBuV/m @3m) Remark			1MHz	3MHz	
Band 1 54.00 Average Value	Limit:	Band	Limit (dBu	V/m @3m)	
Remark: 1. Band 1 limit: E[dByV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m,for EIPR[dBm]=-27dBm. 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details		Pand 1	68	.20	Peak Value
1. Band 1 limit: E[dByl/m] = EIRP[dBm] + 95.2=68.2 dBuV/m,for EIPR[dBm]=-27dBm. 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details		Danu i	54	.00	Average Value
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details					
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details					
Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.3 for details	Test Procedure:	1. The EUT was perfect the groundat and todetermine the second to the second to the ground to describe the ground the make the measurement of the maxes. 5. The test-receive the specified Bands of the EUT would have 10dB man peak or average.	placed on the top 3 meter camber. The position of the haset 3 meters awards awas mounted on the leight is varied from the letermine the mall and vertical polar surement. The ected emission, the antenna was all rotatable was turn imum reading. The rotatable was turn imum reading. The rotatable was turn imum reading. The leter in the level of the EUT ed, then testing of the leter in would be re-	of a rotating take. The table was a redighest radiation by from the interfect the top of a variance of the top of a variance of the arizations of the top	ole 0.8 meters above rotated 360 degrees in the rence-receiving riable-height antennation of the field strength, antenna are set to anged to its worst afrom 1 meter to 4 rees to 360 degrees of the field strength in the reak values missions that did not the using peak, quasi-
Test mode: Refer to section 5.3 for details	Test setup:		(Turntable) Ground R	In Instance Plane	Tower State of the
Test mode: Refer to section 5.3 for details	Test Instruments:	Refer to section 5.8	for details		
,	Test results:	Passed			

Band 1:

Test Mode: 802.11a for AUX Antenna

				802.11a				
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	43.01	36.23	7.05	41.93	44.36	68.20	-23.84	Horizontal
5150.00	41.65	36.23	7.05	41.93	43.00	68.20	-25.20	Vertical
				802.11a				
Test cl	hannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	32.71	36.23	7.05	41.93	34.06	54.00	-19.94	Horizontal
5150.00	32.03	36.23	7.05	41.93	33.38	54.00	-20.62	Vertical
				802.11a				
Test cl	Test channel Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.69	35.37	7.11	41.89	43.28	68.20	-24.92	Horizontal
5350.00	42.58	35.37	7.11	41.89	43.17	68.20	-25.03	Vertical
				802.11a				
Test cl	hannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.09	35.37	7.11	41.89	33.68	54.00	-20.32	Horizontal
5350.00	31.13	35.37	7.11	41.89	31.72	54.00	-22.28	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Mode: 802.11a for MAIN Antenna

	802.11a								
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	44.25	36.23	7.05	41.93	45.60	68.20	-22.60	Horizontal	
5150.00	42.36	36.23	7.05	41.93	43.71	68.20	-24.49	Vertical	
				802.11a					
Test channel Lowest Lev				vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	32.65	36.23	7.05	41.93	34.00	54.00	-20.00	Horizontal	
5150.00	32.78	36.23	7.05	41.93	34.13	54.00	-19.87	Vertical	
				802.11a					
Test cl	hannel	Highest Le		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	43.65	35.37	7.11	41.89	44.24	68.20	-23.96	Horizontal	
5350.00	43.21	35.37	7.11	41.89	43.80	68.20	-24.40	Vertical	
				802.11a					
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	33.74	35.37	7.11	41.89	34.33	54.00	-19.67	Horizontal	
5350.00	32.25	35.37	7.11	41.89	32.84	54.00	-21.16	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

CCIS

Test Mode: 802.11n-HT20 for MIMO Antenna

	802.11n-HT20								
Test cl	nannel	Lowest		Level		F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	43.17	36.23	7.05	41.93	44.52	68.20	-23.68	Horizontal	
5150.00	41.85	36.23	7.05	41.93	43.20	68.20	-25.00	Vertical	
			8	02.11n-HT20)				
Test cl	nannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	33.03	36.23	7.05	41.93	34.38	54.00	-19.62	Horizontal	
5150.00	31.76	36.23	7.05	41.93	33.11	54.00	-20.89	Vertical	
			8	02.11n-HT20)				
Test cl	hannel Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	41.78	35.37	7.11	41.89	42.37	68.20	-25.83	Horizontal	
5350.00	42.19	35.37	7.11	41.89	42.78	68.20	-25.42	Vertical	
			8	02.11n-HT20)				
Test cl	hannel		Highest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	33.58	35.37	7.11	41.89	34.17	54.00	-19.83	Horizontal	
5350.00	32.19	35.37	7.11	41.89	32.78	54.00	-21.22	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Mode: 802.11n-HT40 for MIMO Antenna

			802.11n-HT40					
Test cl	hannel		Lowest			vel	F	Peak
Eroguenev	Read	Antenna	Cable	Preamp	Level	Limit	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization
(1011 12)	(dBuV/m)	(dB)	(dB)	(dB)	,	(dBuV/m)	(dB)	
5150.00	43.69	36.23	7.05	41.93	45.04	68.20	-23.16	Horizontal
5150.00	42.07	36.23	7.05	41.93	43.42	68.20	-24.78	Vertical
			8	02.11n-HT40)			
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization
(1011-12)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)	
5150.00	31.05	36.23	7.05	41.93	32.40	54.00	-21.60	Horizontal
5150.00	32.28	36.23	7.05	41.93	33.63	54.00	-20.37	Vertical
			8	02.11n-HT40)			
Test cl	est channel Highest			Le	vel	F	Peak	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization
, ,	(dBuV/m)	(dB)	(dB)	(dB)	,	(dBuV/m)	(dB)	
5350.00	42.17	35.37	7.11	41.89	42.76	68.20	-25.44	Horizontal
5350.00	41.89	35.37	7.11	41.89	42.48	68.20	-25.72	Vertical
			8	02.11n-HT40)			
Test cl	hannel		Highest		Le	vel	Av	rerage
Eroguenev	Read	Antenna	Cable	Preamp	Lovol	Limit	Over	
Frequency	Level	Factor	Loss	Factor	Level (dBuV/m)	Line	Limit	Polarization
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)	
5350.00	32.39	35.37	7.11	41.89	32.98	54.00	-21.02	Horizontal
5350.00	33.14	35.37	7.11	41.89	33.73	54.00	-20.27	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Mode: 802.11ac-HT80 for MIMO Antenna

			8	02.11ac-HT8	0			
Test cl	hannel		Lowest			vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	45.03	36.23	10.96	40.06	52.16	68.20	-16.04	Horizontal
5150.00	41.17	36.23	10.96	40.06	48.30	68.20	-19.90	Vertical
			8	02.11ac-HT8	0			
Test cl	hannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	31.36	36.23	10.96	40.06	38.49	54.00	-15.51	Horizontal
5150.00	32.42	36.23	10.96	40.06	39.55	54.00	-14.45	Vertical
			8	02.11ac-HT8	0			
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.01	35.37	11.19	40.18	49.39	68.20	-18.81	Horizontal
5350.00	40.58	35.37	11.19	40.18	46.96	68.20	-21.24	Vertical
			8	02.11ac-HT8	0			
Test cl	hannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	34.58	35.37	11.19	40.18	40.96	54.00	-13.04	Horizontal
5350.00	35.76	35.37	11.19	40.18	42.14	54.00	-11.86	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

Δhoνe 1(+Hz	6.7.1 F	Restricted Band									
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz RMS 1MHz 3MHz Peak Value RMS 1MHz 3MHz Peak Value RMS 1MHz 3MHz Peak Value RMS 1MHz Above 1GHz Above	T	est Requirement:	FCC Part15 E Se	ection 15.	407(b))					
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value RMS 1MHz Above 1GHz T4.00 Peak Value T4.00 Peak Value T4.00 Peak Value T4.00 Peak Value T6.00 Average Value T6.00 Average Value T6.00 Average Value T6.00 T6.00 Average Value T6.00 T6	T	est Method:	ANSI C63.10: 20)13							
Receiver setup: Frequency	T	estFrequencyRange:									
Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value	Te	est site:									
Limit: Frequency Limit (dBuV/m@3m) Remark Above 1GHz 74.00 Peak Value Above 1GHz 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenn tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower that the limitspecified, then testing could be stopped and the peak value of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quas peak or average method as specified andthen reported in a data sheet.	R	eceiver setup:									
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna whichwas mounted on the top of a variable-height antenna which was mounted on the top of a variable-height antenna was tuned to height strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rota table was tuned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak value of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quas peak or average method as specified andthen reported in a data sheet. Test setup:			Δboνα 1(±Hz								
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower thar the limitspecified, then testing could be stopped and the peak value of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quas peak or average method as specified andthen reported in a data sheet. Test setup:	Li	imit:									
the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenn tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak value of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quas peak or average method as specified andthen reported in a data sheet. Test setup:			ADOVE 10-HZ								
Horn Antenna Tower	Т	est Procedure:	the ground a to determine The EUT was antenna, wh tower. The antenna the ground to Both horizon make the m For each su case and the meters and to find the m The test-reconstruction of the EUT whave 10dB in peak or averess.	at a 3 met e the positions set 3 minichwas me a height is to determinated and vi- easurements espected enthe anti- the rota to enthe anti- the rota to exiver systematical and cified, theif wouldbe re- margin wo	ter can tion of neters nounte s varie ine the ertical ent. emissic enna v able w readin tem wa with M of the E n testil eporte ould be	mber. The take the highest away from the don the top ed from one remaximum on, the EUT was turned from the set to Peas set to Peas faximum Ho EUT in peaking could be ed. Otherwisere-tested or	ble was radiation he interfer for a variation of a variation of the state of the st	ole 1.5 meter rotated 360 m. Ference-receirable-height four meters antenna are anged to its variety from 1 meters are seen to 360 ct Function a was 10dB low and the peanissions that he using peak	rs above degrees iving antenna above ngth. set to worst er to 4 degrees nd ver than ak values did not k, quasi-		
Ground Reference Plane Test Receiver Fig. Controller	Т	est setup:		130em	ole)	3m Ground Reference Plane		1Tower			
Test Instruments: Refer to section 5.8 for details	Т	est Instruments:	Refer to section	5.8 for de	tails						
Test mode: Refer to section 5.3 for details	T	est mode:	Refer to section	5.3 for de	tails						
Test results: Passed	T	est results:	Passed								

Band 1:

Test Mode: 802.11a for AUX Antenna

Test cl	hannel		Lowest		Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.59	34.50	6.80	42.05	42.84	74.00	-31.16	Horizontal
4500.00	42.27	34.50	6.80	42.05	41.52	74.00	-32.48	Vertical
Test cl	Test channel Lowest			Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	33.03	34.50	6.80	42.05	32.28	54.00	-21.72	Horizontal
4500.00	31.12	34.50	6.80	42.05	30.37	54.00	-23.63	Vertical
Test cl	Fest channel Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal
5460.00	41.79	34.90	7.18	41.85	42.02	74.00	-31.98	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.51	34.90	7.18	41.85	32.74	54.00	-21.26	Horizontal
5460.00	33.17	34.90	7.18	41.85	33.40	54.00	-20.60	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Mode: 802.11a for MAIN Antenna

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.64	34.50	6.80	42.05	42.89	74.00	-31.11	Horizontal
4500.00	43.99	34.50	6.80	42.05	43.24	74.00	-30.76	Vertical
Test c	hannel	Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	33.25	34.50	6.80	42.05	32.50	54.00	-21.50	Horizontal
4500.00	32.69	34.50	6.80	42.05	31.94	54.00	-22.06	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.98	34.90	7.18	41.85	43.21	74.00	-30.79	Horizontal
5460.00	42.74	34.90	7.18	41.85	42.97	74.00	-31.03	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
(1411.12)	(dBuV/m)	(dB)	(dB)	(dB)		(ubuv/III)	(ub)	
5460.00	(dBuV/m) 32.54	(dB) 34.90	(dB) 7.18	(dB) 41.85	32.77	54.00	-21.23	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Mode: 802.11n-HT20 for MIMO Antenna

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.83	34.50	6.80	42.05	42.08	74.00	-31.92	Horizontal
4500.00	42.58	34.50	6.80	42.05	41.83	74.00	-32.17	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.22	34.50	6.80	42.05	31.47	54.00	-22.53	Horizontal
4500.00	32.17	34.50	6.80	42.05	31.42	54.00	-22.58	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	43.36	34.90	7.18	41.85	43.59	74.00	-30.41	Horizontal
5460.00	42.18	34.90	7.18	41.85	42.41	74.00	-31.59	Vertical
Test cl	hannel	Highest		Level		Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.02	34.90	7.18	41.85	32.25	54.00	-21.75	Horizontal
5460.00	31.75	34.90	7.18	41.85	31.98	54.00	-22.02	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Mode: 802.11n-HT40 for MIMO Antenna

Test c	hannel		Lowest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	41.35	34.50	6.80	42.05	40.60	74.00	-33.40	Horizontal	
4500.00	42.23	34.50	6.80	42.05	41.48	74.00	-32.52	Vertical	
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	31.19	34.50	6.80	42.05	30.44	54.00	-23.56	Horizontal	
4500.00	32.57	34.50	6.80	42.05	31.82	54.00	-22.18	Vertical	
Test c	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	42.49	34.90	7.18	41.85	42.72	74.00	-31.28	Horizontal	
5460.00	42.07	34.90	7.18	41.85	42.30	74.00	-31.70	Vertical	
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	31.20	34.90	7.18	41.85	31.43	54.00	-22.57	Horizontal	
5460.00	32.48	34.90	7.18	41.85	32.71	54.00	-21.29	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Mode: 802.11ac-HT80 for MIMO Antenna

Test channel		Lowest			Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.26	34.50	10.22	40.67	46.31	74.00	-27.69	Horizontal
4500.00	41.87	34.50	10.22	40.67	45.92	74.00	-28.08	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	31.12	34.50	10.22	40.67	35.17	54.00	-18.83	Horizontal
4500.00	32.28	34.50	10.22	40.67	36.33	54.00	-17.67	Vertical
Test channel								
Test cl	hannel		Highest		Le	vel	F	Peak
Test cl Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Highest Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	vel Limit Line (dBuV/m)	Over Limit (dB)	Peak Polarization
Frequency	Read Level	Factor	Cable Loss	Factor	Level	Limit Line	Over Limit	
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Cable Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
Frequency (MHz) 5460.00 5460.00	Read Level (dBuV/m) 42.25	Factor (dB) 34.90	Cable Loss (dB) 11.32	Factor (dB) 40.23	Level (dBuV/m) 48.24 47.17	Limit Line (dBuV/m) 74.00	Over Limit (dB) -25.76 -26.83	Polarization Horizontal
Frequency (MHz) 5460.00 5460.00	Read Level (dBuV/m) 42.25 41.18	Factor (dB) 34.90	Cable Loss (dB) 11.32	Factor (dB) 40.23	Level (dBuV/m) 48.24 47.17	Limit Line (dBuV/m) 74.00	Over Limit (dB) -25.76 -26.83	Polarization Horizontal Vertical
Frequency (MHz) 5460.00 5460.00 Test cl	Read Level (dBuV/m) 42.25 41.18 hannel Read Level	Factor (dB) 34.90 34.90 Antenna Factor	Cable Loss (dB) 11.32 11.32 Highest Cable Loss	Factor (dB) 40.23 40.23 Preamp Factor	Level (dBuV/m) 48.24 47.17 Le	Limit Line (dBuV/m) 74.00 74.00 vel Limit Line	Over Limit (dB) -25.76 -26.83 Av Over Limit	Polarization Horizontal Vertical erage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205						
Test Method:	ANSI C63.10:20	13							
TestFrequencyRange:	30MHz to 40GH	Z							
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark								
·	30MHz-1GHz	Quasi-peak	100kHz	300k	кHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3Mł		Peak Value			
		RMS	1MHz	3MI	Hz	Average Value			
Limit:	Frequency		nit (dBuV/m @3	m)		Remark			
	30MHz-88M		40.0			uasi-peak Value			
	88MHz-216M		43.5			uasi-peak Value			
	216MHz-960N		46.0			uasi-peak Value			
	960MHz-1G	Hz	54.0		Q	uasi-peak Value			
	Above 1GH	lz	68.20			Peak Value			
			54.00			Average Value			
Test Procedure:		<i>P[dBm] + 95.2=6</i> as placed on th	ne top of a rota	ting tak	ole 0.8	3m(below			
	table was re radiation. 2. The EUT was antenna, what tower. 3. The antennal ground to destruct horizontal as measurement and the rotal maximum recommends. 5. The test-recommends become a limits pecified Becut would a lodb marginal maximum recommends.	as set 3 meters as set 3 meters as height is vari etermine the m nd vertical policent. Ispected emiss a table was turn eading. ceiver system vandwidth with ion level of the d, then testing pe reported. Of	rees to determ s away from the ed on the top of ed from one meaximum value arizations of the sion, the EUT valued to heigh hed from 0 deg was set to Peal Maximum Holo EUT in peak re could be stopp therwise the er ested one by of	e interfof a var eter to of the e anter vas arrats from prees to k Detect Mode wo ped and nission one usir	e position of position of the	height antenna neters above the strength. Both e set to make the left to its worst case ter to 4 meters degrees to find the ction and led lower than the beak values of the did not have ak, quasi-peak or			

Below 1GHz Configuration: 1#

Horizontal:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : laptop : Y11C Model

Test mode : 5G Wifi Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK : 1# : 1# adapter:PS36A120Y3000H

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
-	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	183.844	51.68	9.86	2.75	28.94	35.35	43.50	-8.15	QP
2	215.268	53.73	11.30	2.85	28.73	39.15	43.50	-4.35	QP
1 2 3	259.234	57.81	12.33	2.83	28.52	44.45	46.00	-1.55	QP
4 5	441.743	52.13	15.60	3.18	28.86	42.05	46.00	-3.95	QP
5	645.120	50.82	18.52	3.87	28.79	44.42	46.00	-1.58	QP
6	706.700	49.86	19.15	4.20	28.64	44.57	46.00	-1.43	QP

Vertical:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) VERTICAL Condition

EUT : laptop Model : Y11C

Test mode : 5G Wifi Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5 C Huni:55%

Test Engineer: MT

REMARK : 1# adapter:PS36A120Y3000H

	Freq		Antenna Factor						Remark
	MHz	dBu∀	$\overline{-dB}/\overline{m}$	dB	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>dB</u>	
1	81.212	54.58	8.92	1.69	29.63	35.56	40.00	-4.44	QP
2	87.112	54.73	10.18	1.91	29.59	37.23	40.00	-2.77	QP
2	230.099	51.01	11.51	2.83	28.65	36.70	46.00	-9.30	QP
4	321.061	50.78	13.57	3.01	28.50	38.86	46.00	-7.14	QP
5	451.135	50.78	15.59	3.21	28.87	40.71	46.00	-5.29	QP
6	638.369	48.67	18.55	3.88	28.81	42.29	46.00	-3.71	QP

Configuration: 2#

Horizontal:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : laptop : Y11C Model

Test mode : 5G Wifi Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK : 2# : 2# adapter:EE1230-105

Limit ReadAntenna Cable Preamp Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m dB dB dBuV/m dBuV/m dB MHz

		100000000000000000000000000000000000000	1 31	1000000				
1	55.609	42.55	13.44	1.36	29.80	27.55	40.00	-12.45 QP
2	143.830	49.15	8.38	2.44	29.25	30.72	43.50	-12.78 QP
3	215.268	53.73	11.30	2.85	28.73	39.15	43.50	-4.35 QP
4	259.234	56.81	12.33	2.83	28.52	43.45	46.00	-2.55 QP
5	441.743	52.13	15.60	3.18	28.86	42.05	46.00	-3.95 QP
6	706.700	48.86	19.15	4.20	28.64	43.57	46.00	-2.43 QP

Vertical:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) VERTICAL Condition

: laptop : Y11C EUT Model

Test mode : 5G Wifi Mode Power Rating : AC 120V/60Hz Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK : 2# adapter:EE1230-105

CHICKLY		Z# aua	hrer: FF1	200-10	U				
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBu√/m	<u>dB</u>	
1	59.649	45.59	12.80	1.38	29.77	30.00	40.00	-10.00	QP
2	87.112	52.73	10.18	1.91	29.59	35.23	40.00	-4.77	QP
3	230.099	53.01	11.51	2.83	28.65	38.70	46.00	-7.30	QP
4	321.061	50.78	13.57	3.01	28.50	38.86	46.00	-7.14	QP
5	451.135	52.78	15.59	3.21	28.87	42.71	46.00	-3.29	QP
6	638.369	49.67	18.55	3.88	28.81	43.29	46.00	-2.71	QP

Configuration: 3#

Horizontal:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : laptop

: Y11C
Test mode : 5G Wifi Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK : 3# -3

: 3# adapter:SOY-1200300

munut.		on ada	beer . por	12000					
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	33.328	43.75	11.67	0.98	29.96	26.44	40.00	-13.56	QP
2	55.609	41.55	13.44	1.36	29.80	26.55	40.00	-13.45	QP
3	183.844	50.68	9.86	2.75	28.94	34.35	43.50	-9.15	QP
4 5	284.977	55.28	12.91	2.90	28.48	42.61	46.00	-3.39	QP
5	441.743	49.13	15.60	3.18	28.86	39.05	46.00	-6.95	QP
6	706.700	47.86	19.15	4.20	28.64	42.57	46.00	-3.43	QP

Vertical:

Site

: 3m chamber : FCC PART 15.407 3m VULB9163(30M2G) VERTICAL Condition

EUT laptop Model : Y11C

Test mode : 5G Wifi Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK : 3# : 3# adapter:SOY-1200300

	Freq		intenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB/m	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	59.649	43.59	12.80	1.38	29.77	28.00	40.00	-12.00	QP
2	87.112	51.73	10.18	1.91	29.59	34.23	40.00	-5.77	QP
2	230.099	54.01	11.51	2.83	28.65	39.70	46.00	-6.30	QP
4	321.061	51.78	13.57	3.01	28.50	39.86	46.00	-6.14	QP
5	451.135	52.78	15.59	3.21	28.87	42.71	46.00	-3.29	QP
6	638.369	48.67	18.55	3.88	28.81	42.29	46.00	-3.71	QP

Above 1GHz:

Test Mode: 802.11a for AUX Antenna

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	48.31	40.10	9.82	41.97	56.26	68.20	-11.94	Vertical			
10360.00	48.29	40.10	9.82	41.97	56.24	68.20	-11.96	Horizontal			
		802.11	a mode Lowe	est channe	I (AverageVa	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	38.72	40.10	9.82	41.97	46.67	54.00	-7.33	Vertical			
10360.00	39.87	40.10	9.82	41.97	47.82	54.00	-6.18	Horizontal			

802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	49.01	40.00	9.85	41.95	56.91	68.20	-11.29	Vertical		
10400.00	48.57	40.00	9.85	41.95	56.47	68.20	-11.73	Horizontal		
		802.11	a mode Mido	lle channe	(AverageVa	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	40.01	40.00	9.85	41.95	47.91	54.00	-6.09	Vertical		
10400.00	39.62	40.00	9.85	41.95	47.52	54.00	-6.48	Horizontal		

802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	48.23	39.70	9.96	41.88	56.01	68.20	-12.19	Vertical		
10480.00	48.17	39.70	9.96	41.88	55.95	68.20	-12.25	Horizontal		
		802.11a	a mode High	est channe	l (AverageV	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	39.62	39.70	9.96	41.88	47.40	54.00	-6.60	Vertical		
10480.00	40.01	39.70	9.96	41.88	47.79	54.00	-6.21	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test Mode:	802.1	1a for	MAIN	Antenna
-------------------	-------	--------	------	----------------

	802.11a mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	48.65	40.10	9.82	41.97	56.60	68.20	-11.60	Vertical
10360.00	48.65	40.10	9.82	41.97	56.60	68.20	-11.60	Horizontal
		802.11	a mode Lowe	est channe	I (AverageVa	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	38.65	40.10	9.82	41.97	46.60	54.00	-7.40	Vertical
10360.00	38.74	40.10	9.82	41.97	46.69	54.00	-7.31	Horizontal

	802.11a mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	49.63	40.00	9.85	41.95	57.53	68.20	-10.67	Vertical	
10400.00	49.25	40.00	9.85	41.95	57.15	68.20	-11.05	Horizontal	
		802.11	a mode Mido	dle channe	l (AverageVa	alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	40.32	40.00	9.85	41.95	48.22	54.00	-5.78	Vertical	
10400.00	40.25	40.00	9.85	41.95	48.15	54.00	-5.85	Horizontal	

	802.11a mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	48.66	39.70	9.96	41.88	56.44	68.20	-11.76	Vertical	
10480.00	48.62	39.70	9.96	41.88	56.40	68.20	-11.80	Horizontal	
		802.11a	a mode High	est channe	l (AverageV	alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	39.55	39.70	9.96	41.88	47.33	54.00	-6.67	Vertical	
10480.00	39.74	39.70	9.96	41.88	47.52	54.00	-6.48	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 69 of 77

Test Mode: 802.11n-HT20 for MIMO Antenna

	802.11n20 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	48.51	40.10	9.82	41.97	56.46	68.20	-11.74	Vertical	
10360.00	49.03	40.10	9.82	41.97	56.98	68.20	-11.22	Horizontal	
		802.11n2	20 mode Lov	vest chann	el (Average	√alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	39.11	40.10	9.82	41.97	47.06	54.00	-6.94	Vertical	
10360.00	40.25	40.10	9.82	41.97	48.20	54.00	-5.80	Horizontal	

	802.11n20 mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	49.12	40.00	9.85	41.95	57.02	68.20	-11.18	Vertical	
10400.00	48.27	40.00	9.85	41.95	56.17	68.20	-12.03	Horizontal	
		802.11n	20 mode Mic	dle chann	el (Average\	/alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	40.05	40.00	9.85	41.95	47.95	54.00	-6.05	Vertical	
10400.00	39.27	40.00	9.85	41.95	47.17	54.00	-6.83	Horizontal	

	802.11n20 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	47.71	39.70	9.96	41.88	55.49	68.20	-12.71	Vertical	
10480.00	48.03	39.70	9.96	41.88	55.81	68.20	-12.39	Horizontal	
		802.11n2	20 mode Hig	hest chann	el (Average)	Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	40.12	39.70	9.96	41.88	47.90	54.00	-6.10	Vertical	
10480.00	39.65	39.70	9.96	41.88	47.43	54.00	-6.57	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test Mode: 802.11n-HT40 for MIMO Antenna

	802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10380.00	48.63	40.00	9.85	41.95	56.53	68.20	-11.67	Vertical	
10380.00	48.42	40.00	9.85	41.95	56.32	68.20	-11.88	Horizontal	
		802.11n	40 mode Lov	vest chann	el (Average	√alue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10380.00	39.64	40.00	9.85	41.95	47.54	54.00	-6.46	Vertical	
10380.00	38.81	40.00	9.85	41.95	46.71	54.00	-7.29	Horizontal	

	802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460.00	48.78	39.80	9.92	41.90	56.60	68.20	-11.60	Vertical	
10460.00	49.62	39.80	9.92	41.90	57.44	68.20	-10.76	Horizontal	
		802.11n ²	10 mode Higl	hest chann	el (Average	Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10460.00	39.57	39.80	9.92	41.90	47.39	54.00	-6.61	Vertical	
10460.00	40.32	39.80	9.92	41.90	48.14	54.00	-5.86	Horizontal	

Test Mode: 802.11ac-HT80 for MIMO Antenna

	802.11ac-HT80MHz mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10420.00	43.71	39.90	15.46	41.24	57.83	68.20	-10.37	Vertical	
10420.00	42.25	39.90	15.46	41.24	56.37	68.20	-11.83	Horizontal	
	80	2.11ac-HT	80MHz mod	e Middle cl	nannel (Avei	rageValue)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10420.00	34.15	39.90	15.46	41.24	48.27	54.00	-5.73	Vertical	
10420.00	32.07	39.90	15.46	41.24	46.19	54.00	-7.81	Horizontal	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.					
Test setup:	Temperature Chamber					
	Spectrum analyzer EUT Att. Variable Power Supply					
Test procedure:	Note: Measurement setup for testing on Antenna connector 1. The EUT is installed in an environment test chamber with external					
	 Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.					
Test results:	Passed					

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test co	onditions	5 (441.)	M. Buitter (con)		
Temp(°C)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)		
	6.46V	5179.987151	2.48		
20	7.60V	5179.965890	6.58		
	8.74V	5179.948265	9.99		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Fraguency/MH=\	May Deviation (nnm)
Voltage(ac)	Temp(°ℂ)	Frequency(MHz)	Max. Deviation (ppm)
7.60V	-20	5179.978960	4.06
	-10	5179.963846	6.98
	0	5179.998412	0.31
	10	5179.925681	14.35
	20	5179.977849	4.28
	30	5179.936592	12.24
	40	5179.945866	10.45
	50	5179.998825	0.23