WHAT IS CLAIMED IS:

1	1. A system for controlling power distribution in an aircraft, comprising:
2	a first interface;
3	a plurality of nodes connected to the interface; each of said plurality of
4	nodes monitoring and responding to commands received from the first interface;
5	a communication network interconnecting each of the plurality of nodes
6	and the first interface; and
7	a second interface for receiving commands from an aircraft load
8	management system.
1	2. The system of claim 1, further comprising:
2	a control device operably coupled to the first interface; said control
3	device providing a flight crew with control over the system;
4	an in-flight control device having a touch screen; said device providing
5	a passenger with control over multiple functions at each seat in the aircraft; and
6	a computer device operably coupled to the first interface; said computer
7	device providing maintenance of the system by way of software which reside or
8	the computer.

1	3. The system of claim 1, further comprising:
2	external closures and external switches or relays which perform system
3	on/off functions when activated/deactivated by the flight crew.
1	4. The system of claim 3, wherein the external closures are programmed upon
2	installation of the system.
1	5. The system of claim 2, further comprising:
2	passenger seat controls.
. 1	6. The system of claim 5, wherein the in-flight control device activates various seat
2	motors, turns on/off at least one reading light, adjusts light intensity of the at lest one reading
3	light, and turns on/off in-seat power ports.
1	7. The system of claim 5, wherein the passenger seat controls move various seat
2	motors, turn on/off at least one reading light, adjust light intensity of the at least one reading
3	light, turn on/off the in-flight entertainment system, and turn on/off in-seat power ports.
1	8. The system of claim 1, further comprising:
2	a gateway controller coupled to the first interface.

10

1	9. The system of claim 8, wherein the gateway controller is a removeable.
1	10. The system of claim 1, wherein the communication network is a inter-node and
2	power communication network.
1	11. The system of claim 10, wherein the communication network is one of an Ethernet
2	network, a CAN bus and a Twisted wire differential serial bus.
1	12. The system of claim 1, wherein the second interface is an ARINC 429 data bus.
1	13. The system of claim 1, wherein each of the plurality of nodes comprises:
2	a communication transceiver and packet processor operable coupled to
3	the communication network; said communication transceiver performing at least
4	one of address recognition, error detection and correction, and buffering;
5	an input voltage module supplying power to a respective node;
6	a control processor; said processor receiving commands from the
7	communication network and broadcasting information to other nodes on the
8	network;
9	an analog to digital (A/D) convertor and multiplexor; said A/D

convertor and multiplexor monitoring inputs received by the multiplexer; and

1	a plurality of power supplies receiving and converting power from the
2	input power module.
1	14. The system of claim 13, wherein the inputs received by the multiplexer are currents
2	drawn by various motors in the aircraft, voltages and currents generated and drawn by power
3	supplies in the aircraft, current being drawn by the input voltage power module, and any
4	ground fault current drawn during a fault condition.
1	15. The system of claim 13, wherein the input voltage module operates at 115 VAC,
2	400 Hz.
1	16. The system of claim 13, wherein the plurality of power supplies comprise:
2	at least one DC-to-AC invertor;
3	at least one DC-to-DC power supply; and
4	at least one pulse width modulated control.
1	17. The system of claim 13, further comprising:
2	passenger controls and indicator; said controls and indicators permitting
3	a passenger to control seat motors, activation and deactivation of the in-flight
4	entertainment system.

1	18. The system of claim 13, further comprising:
2	solid state relays; and
3	seat motor controllers coupled to the relays.
1	19. The system of claim 18, wherein the seat motor controllers generate direction and
2	start/stop information for seat motors seats in the aircraft.
1	20. The system of claim 19, wherein the seat motor controller is implemented by way
2	of one of programmable or discrete logic, and at least one microprocessor and digital signal
3	processor.
1	21. The system of claim 18, wherein outputs from the motor controllers control at least
2	one of solid state and electro-mechanical relays and solid state "H bridge" devices.

1 22. The system of claim 20, wherein the solid state relays and "H bridges" are one of discrete electronic devices, or integrated solid state relays.