졸업프로젝트 디자인 스프린트1, 2

성명: 김주성

학번: 201701996

1. 병합전 map과 hwm

2. 병합한 map 과 hwm

3. 라이트닝 데모

키스트로크를 사용하는 기관

Technology

Integration Guide

Contact Us

Join Beta

HOW you type, not WHAT you type

Keystroke dynamics studies one's behavioral patterns and uses this data for identification purposes, independent of language, words or characters.

Effective on keyboard and keypad

Keystroke DNA can recognize the identity of a user whether they're on a keyboard or a touchscreen as individual typing patterns remain unique.

Simple integration

Keystroke DNA can be easily integrated into any web application with just a few lines of code. It doesn't require any expertise in biometrics.

Resistant to password attacks

Keystroke DNA provides a more secure method of authentication that keeps data secure and access under control even if a password is hacked or stolen.

More reliable

Unlike static biometric authentication methods, Keystroke DNA recognizes dynamic typing patterns, which cannot be shared or imitated.

No special hardware required

Keystroke DNA requires only a keyboard or keypad making it the most convenient and affordable method of biometric authentication available.

출처: https://keystrokedna.com/

키스트로크를 사용하여 보안을 연구하고 있는 기관이다.

- 1. 키 스트로크 DNA는 암호를 해킹하거나 도난당한 경우에도 데이터를 안전하게 보호한다
- 2. 정적 생체 인증 방법과 달리 Keystroke DNA는 공유하거나 모방 할 수없는 동적 타이핑 패턴을 인식한다.
- 3. 특별한 하드웨어가 필요하지 않아서 비용이 적게 든다.
- 이 세가지 장점을기준으로 기술을 연구하고 있다.

4. 크레이지8스

