Title

D. Zack Garza

Tuesday 29th September, 2020

Contents

1 Tuesday, September 29

1

1 | Tuesday, September 29

Recall the definition of a presheaf: a sheaf of rings on a space is a contravariant functor from its category of open sets to ring, such that

- 1. $F(\emptyset) = 0$
- 2. The restriction from U to itself is the identity,
- 3. Restrictions compose.

Examples:

- Smooth functions on \mathbb{R}^n
- Holomorphic functions on $\mathbb C$

Recall the definition of sheaf: a presheaf satisfying unique gluing: given $f_i \in \mathcal{F}(U_i)$, such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ implies that there exists a unique $f \in \mathcal{F}(\cup U_i)$ such that $f|_{U_i} = f_i$.

Question: Are the constant functions on \mathbb{R} a presheaf and/or a sheaf?

Answer: This is a presheaf but not a sheaf. Set $\mathcal{F}(U) = \{f : U \to \mathbb{R} \mid f(x) = c\} \cong \mathbb{R}$ with $\mathcal{F}(\emptyset) = 0$. Can check that restrictions of constant functions are constant, the composition of restrictions is the overall restriction, and restriction from U to itself gives the function back.

Given constant functions $f_i \in \mathcal{F}(U_i)$, does there exist a unique constant function $\mathcal{F}(\cup U_i)$ restricting to them? No: take $f_1 = 1$ on (0,1) and $f_2 = 2$ on (2,3). Can check that they both restrict to the zero function on the intersection, since these sets are disjoint.

How can we make this into a sheaf? One way: weaken the topology. Another way: define another presheaf \mathcal{G} on \mathbb{R} given by *locally* constant function, i.e. $\{f:U\to\mathbb{R}\mid \forall p\in U, \exists U_p\ni p,\ f|_{U_p} \text{ is constant}\}$. Reminiscent of definition of regular functions in terms of local properties.

Example 1.1.

Let $X = \{p, q\}$ be a two-point space with the discrete topology, i.e. every subset is open. Then

define a sheaf by

where the sheaf condition forces the assignment of the whole space to be the product. Note that the first 3 assignments are automatically compatible, which means that we need a unique $f \in \mathcal{F}(X)$ restricting to R and S. In other words, $\mathcal{F}(X)$ needs to be unique and have maps to R, S, but this is exactly the universal property of the product.

Example 1.2.

Consider the presheaf on X given by $\mathcal{F}(X) = R \times S \times T$. Taking $T = \mathbb{Z}/2\mathbb{Z}$, we can force uniqueness to fail: by projecting to R, S, there are two elements in the fiber, namely $(r, s, 0) \mapsto r, s$ and $(r, s, 1) \mapsto r, s$.

Example 1.3.

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Can check that it's closed under finite intersections and arbitrary unions, so this forms a topology.