静电场

高斯定理:
$$\mathbf{E} \cdot \mathbf{S} = \frac{q_0}{\varepsilon_0}$$
 场强公式: $E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$ 环路定理: $E \cdot l = 0$

静电场中的导体和电介质

电荷面密度: $\sigma = \mathbf{P} \cdot \mathbf{n}$, p是极化强度, n是面的法向方向。

线性电介质: $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$, P是极化强度, E是总电场强度, χ_e 是电极化率。

D的高斯定理: $\mathbf{D} \cdot \mathbf{S} = q_0$, 其中 $\mathbf{D} = \mathbf{E} \varepsilon_0 + \mathbf{P}$ 是电位移矢量, E是实际场强, P是极

化强度, \mathbf{q}_0 是自由电荷带电数。又有 $\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$, $\varepsilon_r = 1 + \chi_e$ 是相对介电常量。

一组点电荷静电能:
$$W = \frac{1}{2} \sum_{i=1}^{n} q_i U_i$$
; $W = \frac{1}{2} \int U dq$.

电容器静电能 $W = \frac{1}{2}QU$ 。单位体积静电能 $W = \frac{1}{2}\int DEdV$ 。

直流电

$$j = \frac{I}{S} = \sigma E = nqv$$
, $R = \rho \frac{l}{S}$, $p = \sigma E^2$, p是单位体积热功率

恒定磁场

毕奥-萨伐尔定律: $dB = \frac{\mu_0}{4\pi} \frac{Idl}{r^2} \sin \alpha$ 磁场的高斯定理: BS = 0

安培环路定理: $BL = \mu_0 I$, $B = \mu_0 i'$, i'是电流面密度。

磁力矩: $\mathbf{M} = IS(\mathbf{n} \times \mathbf{B})$; 磁矩: $\mathbf{p} = IS\mathbf{n}$, \mathbf{S} 是线圈围成的面积。

通电长直螺线管的内部场强: $B = \mu_0 nI$, n是单位长度匝数。

磁介质

磁化强度: $\mathbf{M} = \frac{\sum \mathbf{p}}{V}$, p是磁矩, V是单位体积。

电流面密度: $i'=\mathbf{M}\times\mathbf{n}$ H的安培环路定理: Hl=I, $H=\frac{B}{\mu_0}-M$

线性磁介质: $B=\mu_0\mu_r H$, $M=\chi_m H$, $\mu_r=1+\chi_m$, μ_r 相对磁导率 , χ_m 磁化率 。

电磁感应

感应电动势: $E = -\frac{d\Phi}{dt}$

动生电动势: $E = \int (v \times B) dl$ 感生电动势: $\oint E dl$

自感系数: $L = \frac{N\Phi}{I} = \frac{\Psi}{I}$ 自感电动势: $E = -L\frac{dI}{dt}$

互感系数: $M = M_{12} = \frac{N_2 \Phi_{12}}{I_1} = M_{21} = \frac{N_1 \Phi_{21}}{I_2}$

互感电动势: $E_{12} = -M_{12} \frac{dI_1}{dt} = -N_2 \frac{d\Phi_{12}}{dt}$, $E_{21} = -M_{21} \frac{dI_2}{dt} = -N_1 \frac{d\Phi_{21}}{dt}$

自感磁能: $\int EIdt = \int L \frac{dI}{dt} Idt = \frac{1}{2} LI^2$

互感磁能: $\int EI_1dt = \int M \frac{dI_2}{dt} I_1dt = MI_1I_2$

磁场能量体密度: $W = \frac{1}{2}BHV$

交流电

矢量图解法:

复数法:

元件	阻抗	相位差	复阻抗
电阻	R	0	R
电感	ωL	π/2	jωL
电容	1/ωC	-π/2	1/jωC

麦克斯韦电磁场理论

安培环路定理: $HL = I_0 + \iint \frac{\partial D}{\partial t} dS$