Multivariate Analysis (slides 10)

- Today we present some extensions of k-means clustering.
- We will also provide discussion on 'model-based clustering'.
- Previously we considered hierarchical clustering and k-means clustering, which are nonparametric (distribution free) in nature.
- Model-based clustering makes use of statistical models and is thus parametric in nature.

Extensions of k-Means Clustering

- Several possible extensions to k-means clustering have been proposed.
- First, recall that k-means clustering assigns observations to the group which has the closest centre in terms of squared Euclidean distance.
- That is, an observation $\mathbf{x}_i^T = (x_{i1}, \dots, x_{im})$ is assigned to group k so that $d(\mathbf{x}, \mu_k)$ is minimized, where

$$d(\mathbf{x}_{i}, \mu_{k}) = \sum_{j=1}^{m} (x_{ij} - \mu_{kj})^{2}$$

- Also, the new centres for the groups are the mean of the values assigned to that group.
- The choice of dissimilarity and the choice of centre are related.

Extensions of k-Means Clustering

- Alternatives to k-means clustering could use a different measure of dissimilarity.
- For example, we could assign observation \mathbf{x}_i to group k so that $d(\mathbf{x}_i, \mu_k)$ is minimized, but where $d(\mathbf{x}_i, \mu_k)$ relates to an alternative measure of dissimilarity to squared Euclidean distance.
- This can help prevent the algorithm from forming circular clusters.
- The new centres for the groups could then be computed by minimizing,

$$\sum_{i=1}^{N} d(\mathbf{x}_i, \mu_k) I_{ik}$$

Here $I_{ik} = 1$ if observation i is assigned to cluster k and is 0 otherwise.

• The Partitioning Around Medoids algorithm does this (Kaufman and Rousseau 1990).

Cluster Medoids

- A medoid is a representative object of a cluster so that its average dissimilarity to all the data points in the cluster is minimal.
- Unlike the means or centroids used in k-means clustering, a medoid has to be an actual data point within the cluster.
- Think along the lines of mean and median in averaging: the median has to be one of the actual numbers, whilst the mean can be something that can't possibly occur (the mean roll of a die is 3.5).
- The use of medoids becomes very useful in applications where a mean or centroid are conceptually difficult to understand, or if they can not even be defined, e.g., 3-D trajectories.

PAM Pseudo-Code

- 1. Select a dissimilarity metric to be used.
- 2. Initialize by selecting k of the n data points to be the medoids.
- 3. Cluster each data point to belong to the same group as the medoid it is closest to under the dissimilarity metric selected.
- 4. For each medoid \mathbf{x}^* :
 - For each non-medoid point \mathbf{x} , swap \mathbf{x}^* and \mathbf{x} and compute the total dissimilarity cost of the configuration.
- 5. Select the configuration with lowest total dissimilarity cost.
- 6. Repeat 3 to 5 until covergence, i.e., no change in medoids.

PAM Results

• Clustering the olive oil data using Manhattan dissimilarity gives:

k-means Results

• Clustering the olive oil data using k-means gives:

Agreement?

• A cross tabulation of the cluster memberships shows good agreement.

```
5
          3
1 36 2 2 0 0 0
        0 0 0 0
 0 31
      0
        0 0 0 0
 0 0 53
 0 5 0 71
          0 0
 0 0 0 2 0 76
 0 0 0 3 0 79 17
  0 0 0 0 0 0 34
 0 0
      0
        0 0 0 0
    0
        0 15
            0 0
```

• Note, that the columns have been re-ordered to make the matrix as diagonal as possible.

Mixture Models

- Suppose we have data $\mathbf{x}_i^T = (x_{i1}, x_{i2}, \dots, x_{im})$, which is known to arise from one of k populations.
- Within each population (cluster) the data follows a density $f(\mathbf{x}_i|\theta_j)$ for j = 1, ..., k, where θ_j are the parameters governing population j.
- Suppose the probability that a data point is from population j is π_i .
- Then the data can be modeled using a **mixture model**:

$$P(\mathbf{x}_i) = \sum_{j=1}^k P(\mathbf{x}_i \in j) P(\mathbf{x}_i | \mathbf{x}_i \in j)$$

$$P(\mathbf{x}_i) = \sum_{j=1}^k \pi_j f(\mathbf{x}_i | \theta_j)$$

• Mixture models can be used to form a model based clustering technique.

Mixture models: m=1

- The π_j values are called the *mixing proportions*, and $f(\cdot|\theta_j)$ is known as the j-th component density.
- These models offer good modeling flexibility by allowing both k and the model parameters within each population to vary.
- One common form of mixture model is the mixture of normals, where each component density is a normal density (or multivariate normal density). In the univariate case this is:

$$P(x_i) = \sum_{j=1}^{k} \pi_j \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left\{-\frac{(x_i - \mu_j)^2}{2\sigma_j^2}\right\}$$

- This assumes that the data within each population is normal with mean μ_j and variance σ_j^2 .
- This is a similar idea as LDA and QDA, and we could constrain groups to have the same variance or allow the variance to vary across groups.

Cluster shapes

- \bullet Remember that k-means clustering looks for circular clusters.
- LDA fits ellipses of the same shape and direction (equal covariance matrix assumption).
- QDA allows for different covariance matrices between groups, *i.e.*, different shapes and directions.
- Model-based clustering allows different shapes and directions, as well as a varying number of clusters k.

Multivariate Mixture models: m > 1

- The normal mixture model can be easily extended to a multivariate mixture model.
- In this case it is assumed that the data within group j follows a multivariate normal distribution with mean μ_j and covariance matrix Σ_j .
- Again we could constrain the covariance matrix in different ways to allow modeling flexibility.

Decomposing covariance matrices

• We have already seen (in PCA) how we can decompose the covariance matrix using an eigenvalue/eigenvector decomposition. We could decompose the covariance matrix Σ as:

$$\Sigma = \lambda \mathbf{D} \mathbf{A} \mathbf{D}^T$$

Here

 $\lambda = a constant$

 \mathbf{D} = orthogonal matrix of eigenvectors

A = diagonal matrix with entries proportional to eigenvalues.

• Proof omitted, but it is this result which drives the other proofs that were omitted when covering PCA.

Decomposing Covariance Matrices

- We have also seen that the contours of the density for a multivariate normal form ellipses, the shape of which being controlled by the covariance matrix Σ .
- The various elements of the decomposition of Σ control different aspects of the shape:
 - A controls the shape of the ellipse
 - **D** controls the orientation of the ellipse
 - $-\lambda$ controls the size of the ellipse.
- If A = D = I then the ellipse becomes a circle.
- If $\mathbf{D} = \mathbf{I}$ and \mathbf{A} is unconstrained, then the ellipse becomes aligned with the axes.
- When we move to mixtures of normals the flexibility increases further. This is the basis for model-based clustering.

Mechanism of the Method

- The main aim is to find clusters in the data when k is unknown (unsupervised).
- The general idea is to fit a mixture of normals to the data set for a range of possible values for k and for a range of different possibilities for the Σ 's.
- Model fitting uses a maximum likelihood approach via an algorithm known as the Expectation-Maximization (EM) algorithm (this is generally what happens in the k-means and PAM algorithms).
- For a given cluster number k and a likelihood model $L(\theta|\mathbf{X}, \mathbf{z})$ for the probability of parameters θ given data set \mathbf{X} and cluster assignment \mathbf{z} , the pseudo-EM algorithm iterates between the following:
 - E-step: Find the expected value of θ as a function of **z** using the given likelihood model.
 - M-step: Change cluster assignment z to maximise the expected likelihood from the E-step.

How to choose the optimum model?

• One way to choose the optimal model is to use the **Bayesian Information**Criterion:

BIC = $-(2 \times \text{maximized likelihood of the data}) + (\log N \times \# \text{ of parameters})$

- This criterion is calculated for each different type of model fitted, and the model with the smallest value is deemed optimal.
- Note that the first term in the criterion rewards good model fit, whilst the second term penalizes models for having a large number of parameters.
- We will not go into the details of how to perform this technique, rather it is sufficient you know of its existence.

Going Further...

- Alternatively a Bayesian approach can be employed though approximation by simulation, but then we really are moving well beyond what can be expected of this course.
- Model-based clustering will return the optimal number of groups in our data and also indicate the optimal constrained decomposition of the Σ 's (we can even incorporate k into the likelihood model).
- It can also return estimates of the group membership of each data point and an estimate of the uncertainty in the group assignment.
- Of course all of this is a live field of active research.