

Tools and Tips for Statistical Data Analysis

Jack Huber, Ph.D.
Senior Clinical Data Analyst
Providence Swedish Pharmacy

Observations about statistics in healthcare

- We value data.
- Statistical literacy varies.
- Residents need help with statistics (Newsome et al., 2018; Windish et al., 2007)
- Increasingly sophisticated statistics in medical journals (Arnold et al., 2013; Horton & Switzer, 2005; Windish et al., 2007; Yi et al., 2020)
- Growing presence of AI / machine learning methods
- Service

Where help seems needed

- 1. How many patients do I need for statistics?
- 2. What statistics should I use with my data?
- 3. How do I do a chi-square (or other statistic) in Excel (or other program)?

How many patients do I need for statistics?

Power analysis: A quick primer on effect sizes

How many patients do I need for statistics? Power analysis

Power: "the ability to find a treatment effect when it really does exist" (Cohen, 1988)

χ² test of independence (comparing two groups on a dichotomous outcome)

		Effect size	
	"Large" (0.8)	"Moderate" (0.5)	"Small" (0.2)
Power	.8	.8	.8
p-value	.05	.05	.05
Sample size	31	87	784

SOURCE: pwr package in R

What statistics should I use? Understand the measurement level of the outcome variable

A quick review of measurement levels (Simpson, 2015)

Measurement level		Simple definition	Simple examples		
Categorical	Nominal / dichotomous	Patients in <i>unordered</i> categories	Mortality (Y/N)		
	Ordinal	Patients in categories that progress in meaningful order	Counts of hospital stays Levels of oxygen support		
Continuous	Interval	Patients on a continuous scale but no true zero. Arithmetic is permitted.	Temperature		
	Ratio	Patients on a continuous scale that includes a true zero. Arithmetic is permitted.	Blood pressure Length of stay Days to readmission		

What statistics should I use?

A decision tree for selecting statistics

Simpson, SH. 2015. "Creating a Data Analysis Plan: What to Consider When Choosing Statistics for a Study." *Canadian Journal Hospital Pharmacy* 68(4):311-7.

<20 Items: Fisher's Exact

Chi-Square

Nominal

What statistics should I use? What statistics get published?

Most frequently used statistics in pharmacy literature

(Lee, Soin & Einarson, 2004, "Statistics in the Pharmacy Literature", Annals of Pharmacotherapy)

Table 2. Summary of Inferential Statistics Found in Pharmacy Research Articles in 2001								
Category	Term or Procedure	Articles, n (%) (N = 144)	Total Statistics, % (N = 637)	Inferential Statistics, % (N = 205)				
Parametric statistics used to test differences	Student's <i>t</i> -test ANOVA Matched pairs <i>t</i> -test	31 (21.5) 26 (18.1) 7 (4.9)	4.9 4.1 1.1	15.1 12.7 3.4				
Post hoc and multiple comparison tests	Tukey's HSD Scheffe's contrast unspecified post hoc analysis Bonferroni adjustment	4 (2.8) 2 (1.4) 3 (2.1) 1 (0.7)	0.6 0.3 0.5 0.2	2.0 1.0 1.5 0.5				
Nonparametric tests for differences	Fisher's exact Wilcoxon signed-ranks Kruskall–Wallis Mann–Whitney U McNemar's Cochrane Q	48 (33.3) 12 (8.3) 4 (2.8) 8 (5.6) 7 (4.9) 4 (2.8) 1 (0.7)	7.5 1.9 0.6 1.3 1.1 0.6 0.2	23.4 5.9 2.0 3.9 3.4 2.0 0.5				
Tests of association	Pearson's r logistic regression multiple regression Spearman's rho kappa	26 (18.1) 12 (8.3) 4 (2.8) 3 (2.1) 2 (1.4)	4.1 1.9 0.6 0.5 0.3	12.7 5.6 2.0 1.5 1.0				

What statistics should I use? What statistics get published?

Most frequently published statistics in NEJM, Lancet, JAMA, Nature

(Yi et al., 2015, "Statistical Use in Clinical Studies: Is there Evidence of a Methodological Shift?" PLOS One)

	Overall (N = 838)	1990 (N = 301)	2000 (N = 314)	2010 (N = 223)	χ²	p*
Descriptive [#]	100	100	100	1000		
ANOVA	47.0	49.3	47.1	45.2	5.636	0.060
t test	36.3	35.0	36.3	37.2	1.345	0.520
Chi-square	32.8	37.1	30.9	31.6	5.236	0.062
Survival analysis***	28.5	15.3	23.6	43.4	56.279	0.001
Non-parametric test*	28.0	23.1	33.2	26.2	6.961	0.031
Correlation analysis***	27.0	17.9	23.9	36.9	25.755	0.001
Simple linear regression***	23.4	15.7	20.7	31.9	20.784	0.001
Cox models***	16.0	7.7	13.6	24.6	29.404	0.001
Logistic regression*	15.3	12.3	15.6	17.3	7.686	0.021
Fisher exact	11.0	10.0	12.0	10.6	1.707	0.426

^{*}Chi-square test for differences among years

^{*}Includes means, standard deviations, median, percentages, etc.

Statistics in medical literature: two conclusions

(Simpson, 2015)

- 1. Medical journals publishing increasingly sophisticated statistics, AND
- 2. You can still publish with these comparatively simpler statistics:
 - t tests
 - Contingency table tests (chi square χ^2 and Fisher exact test)
 - Simple correlation analyses
 - Simple regression analyses

How do I do a chi-square (in Excel)? A quick review of the statistic

We observe patients fill categories

How would they fill the variables were independent? Calculate difference between observed and expected Sum difference between observed and expected and evaluate probability

C	DBSERVE	D COUNTS	S	EXPE	CTED CO	UNTS		RVED -	(0		EXPECTE	•
	Treatme	nt Group										
Mortality	PRE	POST	Total	PRE	POST	Total	PRE	POST		PRE	POST	Total
Alive	6	6	12	4.8	7.2	12	1.2	-1.2		1.44	1.44	2.88
Expired	6	12	18	7.2	10.8	18	-1.2	1.2		1.44	1.44	2.88
Total	12	18	30	12	18	30					χ²	5.76
											р	0.36

How to do a χ^2 test in Excel template

Step 1. Format your raw data for PivotTable

All patients in the same data array

Column with codes identifying patient groups

• (\bigcap	u	tc:	O	m	6	va	ri	al	h	6
,	\smile	u	ιU	U			٧U		a	U	

patient_num	patients	d_group	group_c	d_mortality	mortality_c
1	1	0	PRE	0	Alive
2	1	0	PRE	1	Expired
3	1	0	PRE	0	Alive
4	1	0	PRE	1	Expired
5	1	0	PRE	0	Alive
6	1	1	POST	1	Expired
7	1	1	POST	1	Expired
8	1	1	POST	1	Expired
9	1	1	POST	1	Expired
10	1	1	POST	0	Alive

Sample Chi-square data and formulae.xlsx

How to do a χ^2 test in Excel template

Step 2. Use PivotTable to get observed counts

Count of patie	ents	d_group	group_c	_
		0	□1	Grand Total
d_mortality	🥃 mortality_c 🕞	PRE	POST	
0	Alive	6	6	12
1	Expired	6	12	18
Grand Total		12	18	30

Choose fields to add to report: Drag fields between areas below: Columns d_group group_c ■ Rows Σ Values Count of patients mortality_c Defer Layout Update

PivotTable Fields

PivotTable settings

Values → patients → Field settings → Count

Design → Report Layout → Show in Tabular Form

How to do a χ^2 test in Excel template Step 3. Expected counts, residuals, χ^2 , p, calculated for you

Observed counts

Expected counts

Patients expected if treatment and outcome are independent

Residual (Observed – Expected)

Difference between observed and expected patient counts

Square residuals

Difference between observed and expected patient counts

 χ^2 and p-value

	PRE	POST	
Count of Patien	t Column Labels 🔻		
Row Labels	▼ 1	2	Grand Total
1	6	5	11
2	5	7	12
3	4	6	10
4	5	2	7
Grand Total	20	20	40
1	5.5	5.5	11
2	6	6	12
3	5	5	10
4	3.5	3.5	7
	20	20	40
1	0.5	-0.5	
2	-1	1	
3	-1	1	
4	1.5	-1.5	
			C
4	0.045	0.045	Sum
1	0.045	0.045	0.091
2	0.167	0.167	0.333
3	0.200	0.200	0.400
4	0.643	0.643	1.286
		X ²	2.110
		p-value	0.550

Sample Chi-square data and formulae.xlsx

Formulas

calculate

for you

How do I do a logistic regression? A gentle review of the statistic

Why logistic regression?

- Can isolate relationship between predictor and outcome controlling for additional explanatory variables
- Can examine interactions between multiple predictors on outcome variable (Does the effect of X on Y depend on the level of W?)

How do I do a logistic regression?

An R implementation

Quarto / R Markdown document

Abstract

Methods

Results

Discussion

Conclusion

Interest

References

Author Contributions

Acknowledgements

Declaration of Competing

Introduction

Table 2: Primary and Secondary Outcomes for Primary Matched Cohort

Characteristic	Untreated , N = 1,220 ¹	mAb treated , N = 1,220 ¹	p- value
Primary outcomes			
28-Day Readmission to ED or Hospital Inpatient	95 (7.8%)	112 (9.2%)	0.2
Mortality within Study Period	55 (4.5%)	24 (2.0%)	< 0.00
Secondary outcomes			
Total inpatient hospital days	1.0025 (8.6627)	1.1590 (12.7330)	0.2
Total ICU days	0.1671 (2.4999)	0.1454 (2.4283)	0.3
Total days on ventilator	0.1269 (2.3108)	0.1180 (2.1186)	0.3
¹ n (%)			
² Pearson's Chi-squared test			

Finally, Table 3 reports adjusted odds ratios for mAb treatment derived from logistic regressions of 28-day hospitalization and mortality on mAb treatment. Odds of 28-day rehospitalization did not vary significantly by treatment group, but treated patients had less than half the odds of dying after the first ED visit than untreated patients (aOR = 0.43 (0.26-0.68), p < .001)

Table 3: Adjusted Odds Ratios

	28-Day Rehospitalization				Mortality			
Characteristic	OR ¹	95% CI ¹	p-value	OR ¹	95% CI ¹	p-value		
mAb treated	1.20	0.90, 1.61	0.2	0.43	0.26, 0.68	<0.001		
Pandemic phase at 1st ED visit	0.71	0.61, 0.82	<0.001	0.72	0.58, 0.91	0.004		

Additional resources

Visualizations of statistical concepts at https://rspsychologist.com/

Statistical decision trees in Simpson (2015)

statology.org

quarto.org

SharePoint page for this presentation: <u>Tools and Tips for</u> <u>Statistical Data Analysis</u>

References

Arnold, L.D., Braganza, M., Salih, R., & Colditz, G.A. (2013). Statistical trends in the *Journal of the American Medical Association* and implications for training across the continuum of medical education. PLoS ONE 8(10): e77301.

Cohen, J. 1988. Statistical power analysis for the behavioral sciences. Lawrence Erlbaum.

Horton, N.J. & Switzer, S.S. (2005). Statistical methods in the journal. New England Journal of Medicine 353:1977-9.

Lee CM, Soin HK, Einarson TR. Statistics in the pharmacy literature. Annals of Pharmacotherapy. 2004 Sep;38(9):1412-8.

Newsome, C., Ryan, K. Bakhireva, L., & Sarangarm, P. (2019). Breadth of statistical training among pharmacy residency programs across the United States. Hospital Pharmacy 53(2): 101-106.

Ou, F.-S., Le-Rademacher, J.G., Ballman, K.V., Adjei, A.A., & Mandrekar, S.J. (2020). Guidelines for statistical reporting in medical journals. Journal of Thoracic Oncology 15(1): 1722-6.

Panos, G.D. & Boeckler, F.M. (2023). Statistical analysis in clinical and experimental medical research: Simplified guidance for authors and reviewers. Drug Design, Development and Therapy 2023:17, 1959-1961.

Simpson SH. Creating a Data Analysis Plan: What to Consider When Choosing Statistics for a Study. Can J Hosp Pharm. 2015 Jul-Aug;68(4):311-7. doi: 10.4212/cjhp.v68i4.1471. PMID: 26327705; PMCID: PMC4552232.

Windish, D.M., Huot, S.J., & Green, M.L. (2007). Medical residents' understanding of the biostatistics and results in the medical literature. JAMA 298(9): 1010-1022.

Yi, D., Ma, D., Li, G., Zhou, L., Xiao, Q., Zhang, Y., Liu, X., Chen, H., Pettigrew, J.C., Yi, D., Liu, L., & Wu, Y. (2015). Statistical use in clinical studies: Is there evidence of a methodological shift? PLoS ONE 10(10): e0140159.

