

ADS AD TO AT P CA CO SOUN

www.aduni.edu.pe

Razonamiento Matemático

Máximos y mínimos I

OBJETIVO

Conocer y aplicar las diferentes formas prácticas para determinar el mínimo valor o máximo valor de ciertas expresiones matemáticas.

MÁXIMOS Y MÍNIMOS I

Aplicaciones algebraicas

Aplicaciones aritméticas

ADUNI

ADUNI

ADUNI

ADUNI

ADUNI

Aplicaciones algebraicas

FUNCIÓN CUADRÁTICA

Forma general:

$$F(x) = ax^2 + bx + c \quad ; \quad a \neq 0$$

Para calcular los valores Máximos o Mínimos de F(x) se presentan dos casos.

Primer caso: (a > 0)

Segundo caso: (a < 0)

Para ambos casos el valor de X_o que hace que F(x) sea mínimo o máximo es:

$$X_0 = \frac{-b}{2a}$$

es decir:

$$F_{min} = F\left(\frac{-b}{2a}\right)$$
 y $F_{max} = F\left(\frac{-b}{2a}\right)$

Por ejemplo:

1.- Halle el valor mínimo de $R = x^2 - 6x + 10$; $x \in \mathbb{R}$

Recordemos que: para $X_0 = \frac{-b}{2a}$, R es mínimo.

$$X_0 = \frac{-(-6)}{2(1)} = 3$$

$$R_{min} = (3)^2 - 6(3) + 10 = 1$$

2.-Halle el valor máximo de $M=-2x^2+4x+10$; $x\in\mathbb{R}$

Recordemos que: para $X_0 = \frac{-b}{2a}$, M es máximo.

$$X_0 = \frac{-(4)}{2(-2)} = 1$$

$$\therefore M_{m\acute{a}x} = -2(1)^2 + 4(1) + 10 = 12$$

Otra forma de resolver es: Completando cuadrados

Veamos en el ejemplo 1:

Completamos cuadrados

Recordemos que: $(a-b)^2 = a^2 - 2ab + b^2$

$$R = x^2 - 6x + 10$$

$$R = \left[x^2 - 2(3)x + 3^2 - 3^2 \right] + 10$$
$$(x - 3)^2$$

$$R = (x - 3)^2 + 1$$

mínimo mínimo

Recordemos que: $\forall x \in \mathbb{R}; x^2 \ge 0$

$$(x-3)^2 \ge 0 \longrightarrow (x-3)^2_{min} = 0$$

$$\therefore R_{min} = (x-3)^2 + 1 = 1$$

Un empleado trabajará hasta que su remuneración sea máxima. Si la empresa paga según $f(x) = -3x^2 + 192x + 960$, donde f(x) es el número de soles y x el número de años de trabajo. ¿Cuántos años trabajará en total?

- A) 35 años
- **B**) 32 años
- C) 36 años
- D) 37 años

Resolución:

Nos piden determinar el número total de años que trabajará el empleado. De los datos:

La remuneración se calcula:

$$f(x) = -3x^2 + 192x + 960$$
El número de años de trabajo

y el valor de x que hace que la remuneración sea máxima es:

$$x = \frac{-b}{2a}$$

$$a = -3$$
 y $b = 192$

$$x = \frac{-(192)}{2(-3)} = 32$$

∴ El empleado trabajará 32 años en total.

Aplicaciones aritméticas

MEDIA ARITMÉTICA Y MEDIA GEOMÉTRICA

En \mathbb{R}^+ consideramos la siguiente relación al momento de maximizar o minimizar expresiones matemáticas:

En particular para dos valores $a \ y \ b \in \mathbb{R}^+$

$$\frac{a+b}{2} \ge \sqrt{a \times b}$$

Si reemplazamos para: a = x y $b = \frac{1}{x}$

Tenemos:
$$\frac{x + \frac{1}{x}}{2} \ge \sqrt{(x)\left(\frac{1}{x}\right)}$$

$$\longrightarrow \boxed{x + \frac{1}{x} \ge 2} \quad ; x \in \mathbb{R}^+$$

Todo valor real positivo al sumarse con su inverso siempre es mayor o igual a 2

Por ejemplo:

Halle el valor máximo de
$$M = \frac{30}{x^2 + \frac{1}{x^2} + 3}$$
, $x \in \mathbb{R}$

$$\underline{M} = \underbrace{\frac{30}{x^2 + \frac{1}{x^2} \ge 2}}_{\text{Máximo}}$$

$$\underbrace{\frac{30}{x^2 + \frac{1}{x^2} \ge 2}}_{\text{Mínimo}}$$

$$M_{\text{máx}} = \frac{30}{5} = 6$$

ANUAL SAN MARCOS 2021

Aplicación 2

Sean x e y números reales positivos, tales que 3x + 2y = 60. calcule xy máximo.

- A) 160
- B) 200
- C) 120
- D) 150

Resolución:

Nos piden el máximo valor de xy.

Del dato:

$$3x + 2y = 60$$

Aplicamos la relación:

$$\overline{MA} \ge \overline{MG}$$

$$\frac{3x + 2y}{2} \ge \sqrt{(3x)(2y)}$$

$$\frac{60}{2} \geq \sqrt{6(xy)}$$

$$30 \ge \sqrt{6(xy)}$$

$$900 \geq 6xy$$

$$150 \ge xy$$

$$\rightarrow xy_{m\acute{a}x} = 150$$

∴ El máximo valor de xy <u>es 150</u>

Halle el mínimo valor de R si x > -1.

$$R = \frac{x^2 + 2x + 10}{x + 1}$$

- A) 8
- B) 6
- C) 7
- D) 10

Resolución:

Nos piden el mínimo valor de R.

Del dato:

$$x > -1 \longrightarrow (x+1) > 0$$

$$R = \frac{x^2 + 2x + 10}{x + 1} = \frac{(x^2 + 2x + 1) + 9}{x + 1} = \frac{(x + 1)^2 + 9}{x + 1}$$

$$R = (x+1) + \frac{9}{(x+1)}$$

Aplicamos la relación: $\overline{MA} \ge \overline{MG}$

$$\frac{(x+1) + \frac{9}{(x+1)}}{2} \ge \sqrt{\frac{(x+1)\left(\frac{9}{(x+1)}\right)}{2}}$$

$$(x+1) + \frac{9}{(x+1)} \ge 6$$

$$R \geq 6$$

$$\longrightarrow R_{min} = 6$$

∴ El mínimo valor de <u>R es 6</u>

PRODUCTO MÁXIMO A PARTIR DE LA SUMA

Veamos el siguiente ejemplo:

Si
$$a + b = 10$$
; $a \land b \in \mathbb{R}^+$

1 $9 \longrightarrow a \times b = 9$
2 $8 \longrightarrow a \times b = 16$
3 $7 \longrightarrow a \times b = 21$
4 $6 \longrightarrow a \times b = 24$

Si $a + b = 10$; $a \land b \in \mathbb{R}^+$

¿Cuándo $a \times b$
será máximo?

 $a \times b$ será máximo
cuando $a = b$

Máximo

En general:

Si a; b; c; ...; m son números reales positivos , tal que: $a+b+c+\cdots+m=S$ (constante) entonces **el máximo valor** de: $a\times b\times c\times ...\times m$ se obtiene cuando: a=b=c=...=m

Por ejemplo:

Halle el valor máximo de xyz. Si x + y + z = 12, donde $x, y, z \in R^+$.

xyz es máximo cuando: x = y = z = 4

$$\therefore (xyz)_{m\acute{a}x} = (4)(4)(4) = 64$$

SUMA MÍNIMA APARTIR DEL PRODUCTO

En general:

Si a; b; c; ...; m son números reales positivos , tal que: $a \times b \times c \times \cdots \times m = P$ (constante) entonces **el mínimo valor** de: a + b + c + ... + m

se obtiene cuando: a = b = c = ... = m

Por ejemplo:

Halle el valor mínimo de x + y. Si xy = 9, donde $x, y \in R^+$

x + y es mínimo cuando: x = y = 3

$$x (x + y)_{min} = 3 + 3 = 6$$

Si a + b + c = 7; a > 2, b > 0, c > 0, calcule el máximo valor de M = (2a - 4)(3b + 6)(5c + 10).

- A) 750
- B) 900
- C) 975
- D) 810

Resolución:

Nos piden el máximo valor de M. Del dato:

$$a+b+c=7$$

$$M = (2a - 4)(3b + 6)(5c + 10)$$

Primero factorizamos:

$$M = 2 (a-2)3(b+2)5(c+2)$$

$$a-2+b+2+c+2$$

= $a+b+c+2 = 9$

$$M = 30 (a-2)(b+2)(c+2)$$
 $3 \quad 3$
IGUALES

$$M_{\text{máx}} = 30 \times 3 \times 3 \times 3 = 810$$

∴ El máximo valor de M es 810

Luisa compra x artículos a S/4x cada uno y los vende a S/48 cada uno. ¿Cuál es la máxima ganancia que Luisa puede obtener al vender los x artículos que compró?

- A) S/100
- B) S/120
- S/144
- D) S/180

Resolución:

Nos piden la máxima ganancia.

Recuerda que en una transacción comercial se cumple:

Ganancia = Precio de venta – Precio de costo

Calculemos el precio de costo.

Precio de costo =
$$(x)(4x)$$

 $N.^{\circ}$ de artículos = xCosto de c/artículo = 4x

Calculemos el precio de venta.

Precio de venta =
$$(x)(48)$$

 $N.^{\circ}$ de artículos = xVenta de c/artículo = S/48

Obtengamos la ecuación de la ganancia.

Ganancia =
$$(x)(48) - (x)(4x) = (x)(48 - 4x) = 4(x)(12 - x)$$

Suma = 12

Ganancia =
$$4[(x)(12 - x)] = 4(6)(6) = 144$$

Máxima

Guales

∴ La máxima ganancia es S/144

El dueño de un circo concluye, previo estudio, que cuando el precio de la entrada al circo cuesta S/20, asisten 320 personas; y cada vez que se aumenta en S/10 el precio de la entrada, asisten 20 personas menos. ¿ A qué precio debe fijar la entrada al circo para que obtenga la máxima recaudación?

- A) S/80
- B) S/100
- S/90
- D) S/50

Resolución:

Nos piden el precio que debe fijar la entrada al circo. Calculamos la recaudación de la siguiente manera:

 $Recaudaci\'on = (precio de la entrada) \times (N^{\circ} de personas asistente)$

: *El precio a fijar* =
$$20 + 10(7) = 90$$

www.aduni.edu.pe

