OCMJ4X8C液晶显示模块使用说明书

感谢您关注和使用金鹏 C 系列液晶显示器产品, 欢迎您提出意见和建议, 我们将竭诚为您服务、让您满意。您可以浏览 http://www.gptlcm.cn 了解最新 的产品与应用信息,或拨打热线电话 0758-2317156 以及向 syl@gptlcm.cn 邮箱发 E-mail 获取具体的技术咨询与服务。

金鹏电子有限公司

Golden Palm Industry Co., Ltd.

— ,	概述	3
_,	外形尺寸	3
三、	模块引脚	4
四、	资料传输与接口时	5
五、	用户指令	9
六、	显示坐标关系	-11
七、	显示步骤	-13
八、	显示示例程序	-15
附录	:一、字符表	-17

业务联系: 0758-2317976/2317692

概述

C系列中文模块可以显示字母、数字符号、中文字型及图形,具有绘图及文字画面混合显示功能。提供三种 控制接口,分别是8位微处理器接口,4位微处理器接口及串行接口(OCMJ4X16A/B 无串行接口)。所有 的功能,包含显示 RAM,字型产生器,都包含在一个芯片里面,只要一个最小的微处理系统,就可以方便 操作模块。内置 2M-位中文字型 ROM (CGROM) 总共提供 8192 个中文字型(16x16 点阵), 16K-位半宽字 型 ROM (HCGROM) 总共提供 126 个符号字型(16x8 点阵), 64 x 16-位字型产生 RAM (CGRAM), 另外绘 图显示画面提供一个 64x256 点的绘图区域 (GDRAM),可以和文字画面混和显示。提供多功能指令:画面 清除(Display clear)、光标归位(Return home)、显示打开/关闭(Display on/off)、光标显示/隐藏(Cursor on/off)、 显示字符闪烁(Display character blink)、光标移位(Cursor shift)显示移位(Display shift)、垂直画面旋转 (Vertical line scroll)、反白显示 (By_line reverse display)、待命模式 (Standby mode)。

主要参数:

- 1、工作电压(VDD): 4.5~5.5V
- 2、逻辑电平:2.7~5.5V
- 3、LCD 驱动电压(Vo): 0~7V
- 4、工作温度(TOP): 0~55℃(常温)/-20~70℃(宽温) 保存温度(TST): -10~65 常温)/-30~80℃(宽温)

二、外形尺寸图

业务联系: 0758-2317976/2317692

三、模块引脚说明

引脚	名称	方向	说明
1	VSS	-	电源地 (0V)
2	VDD	-	工作电压(+5V)
3	VO	-	悬空(LCD 驱动电压输入)
4	RS(CS)	I	并行模式: H: 数据 L: 指令 串行模式: 片选控制, 高有效
5	R/W(STD)	I	并行模式: H: 读状态 L: 写状态 串行模式: 数据信号输入
6	E(SCLK)	I	并行模式: 使能控制, 高有效 串行模式: 时钟信号输入
7	DB0	I/O	数据 0
8	DB1	I/O	数据 1
9	DB2	I/O	数据 2
10	DB3	I/O	数据 3
11	DB4	I/O	数据 4
12	DB5	I/O	数据 5
13	DB6	I/O	数据 6
14	DB7	I/O	数据 7
15	PSB	I	串并模式选择: H: 并口通信 L: 串口通信
16	NC	-	空脚
17	/RST	I	复位控制信号输入,低有效
18	NC	-	空脚
19	LEDA	-	背光源正极(+5V)
20	LEDK	-	背光源负极 (OV)

技术支持: 0758-2317156

共17页第4页 E-mail: syl@gptlcm.cn 传真: 0758-2317023

四、资料传输与接口时序

1. 并列接口传输讯号

当 PSB 脚(OCMJ4X16A/B 无串行接口,无此引脚)接高电位时,模块将进入并列模式,在并列模式下可 由指令 DL FLAG 来选择 8-位或 4-位接口, 主控制系统将配合(RS, RW, E, DB0..DB7)来达成传输动作。 从一个完整的流程来看, 当下设定地址指令后(CGRAM,DDRAM)若要读取数据时需先 DUMMY READ 一 次,才会读取到正确数据第二次读取时则不需 DUMMY READ 除非又下设定地址指令才需再次 DUMMY READ。在 4-位传输模式中,每一个八位的指令或数据都将被分为两个字节动作:较高 4 位(DB7~DB4) 的资料将会被放在第一个字节的(DB7~DB4)部分,而较低4位(DB3~DB0)的资料则会被放在第二个字 节的(DB7~DB4)部分,至于相关的另四位则在4-位传输模式中DB3~DB0接口未使用。 相关接口传输讯号请参考下图说明:

Timing Diagram of 8-bit Parallel Bus Mode Data Transfer

Timing Diagram of 4-bit Parallel Bus Mode Data Transfer

2. 串行接口与串行传输资料

当 PSB 脚接低电位时,模块将进入串行模式。从一个完整的串行传输流程来看,一开始先传输启始字节, 它需先接收到五个连续的"1"(同步位字符串),在启始字节,此时传输计数将被重置并且串行传输将被 同步,再跟随的两个位字符串分别指定传输方向位(RW)及寄存器选择位(RS),最后第八的位则为"0 "。在接收到同步位及 RW 和 RS 资料的启始字节后,每一个八位的指令将被分为两个字节接收到:较高 4 位(DB7~DB4)的指令资料将会被放在第一个字节的 LSB 部分,而较低 4 位(DB3~DB0)的指令资料则 会被放在第二个字节的 LSB 部分,至于相关的另四位则都为 0。 串行传输讯号请参考下图说明:

业务联系: 0758-2317976/2317692

AC Characteristics ($T_A = 25^{\circ}C$, $V_{DD} = 4.5V$) Parallel Mode Interface

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
		Internal Clock Oper	ation	•		
f_{OSC}	OSC Frequency	$R = 33K\Omega$	480	540	600	KHz
		External Clock Oper	ation	•	•	
f_{EX}	External Frequency	-	480	540	600	KHz
	Duty Cycle	-	45	50	55	%
T_R, T_F	Rise/Fall Time	-	-	-	0.2	μs
	Write M	ode (Writing data from 1	MPU to ST792	20)	•	
$T_{\mathbf{C}}$	Enable Cycle Time	Pin E	1200	-	-	ns
T_{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T_{AS}	Address Setup Time	Pins: RS,RW,E	10	-	-	ns
T_{AH}	Address Hold Time	Pins: RS,RW,E	20	-	-	ns
T_{DSW}	Data Setup Time	Pins: DB0 - DB7	40	-	-	ns
$T_{\mathbf{H}}$	Data Hold Time	Pins: DB0 - DB7	20	-	-	ns
	Read Mo	de (Reading Data from	ST7920 to MI	U)		
$T_{\mathbf{C}}$	Enable Cycle Time	Pin E	1200	-	-	ns
T_{PW}	Enable Pulse Width	Pin E	140	-	-	ns
T_R, T_F	Enable Rise/Fall Time	Pin E	-	-	25	ns
T_{AS}	Address Setup Time	Pins: RS,RW,E	10	-	-	ns
T_{AH}	Address Hold Time	Pins: RS,RW,E	20	-	-	ns
T_{DDR}	Data Delay Time	Pins: DB0 - DB7	-	-	100	ns
Тн	Data Hold Time	Pins: DB0 - DB7	20	-	-	ns

4. 串行接口时序图

MPU 写资料到模块

AC Characteristics ($T_A = 25^{\circ}\text{C}$, $V_{DD} = 4.5\text{V}$) Serial Mode Interface

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit				
		Internal Clock Operation	n			•				
f_{OSC}	OSC Frequency	$R = 33K\Omega$	470	530	590	KHz				
	External Clock Operation									
f_{EX}	External Frequency	-	470	530	590	KHz				
	Duty Cycle	-	45	50	55	%				
T_R, T_F	Rise/Fall Time	-	-	-	0.2	μs				
Tscyc	Serial clock cycle	Pin E	400	-	-	ns				
Tshw	SCLK high pulse width	Pin E	200	-	-	ns				
Tslw	SCLK low pulse width	Pin E	200	-	-	ns				
Tsds	SID data setup time	Pins RW	40	-	-	ns				
TSDH	SID data hold time	Pins RW	40	-	-	ns				
Tcss	CS setup time	Pins RS	60	-	-	ns				
TCSH	CS hold time	Pins RS	60	-	-	ns				

业务联系: 0758-2317976/2317692

技术支持: 0758-2317156

邮编: 526040

五、用户指令集

指令表 1: (RE=0: 基本指令集)

1日、4人	_•		<u></u> ر	Œ''	<u> </u>							
			ı	1	指	令码	1	1	ı	ı		执行
指令	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	说明	时间 (540 KHZ)
清除显示	0	0	0	0	0	0	0	0	0	1	将 DDRAM 填满 "20H", 并且设定 DDRAM 的地址计数器(AC)到 "00H"	1.6ms
地址归位	0	0	0	0	0	0	0	0	1	Х	设定DDRAM的地址计数器(AC) 到"00H",并且将光标移到开头 原点位置;这个指令并不改变 DDRAM的内容	72us
进入点设 定	0	0	0	0	0	0	0	1	I/D	S	指定在资料的读取与写入时,设 定光标移动方向及指定显示的移 位	72us
显示状态 开/关	0	0	0	0	0	0	1	D	С	В	D=1:整体显示 ON,D=0:显示 OFF C=1: 光标 ON,C=0: 光标 OFF B=1: 光标位置反白且闪烁, B=0: 光标位置不反白闪烁	72us
光标或显 示移位控 制	0	0	0	0	0	1	S/C	R/L	X	X	设定光标的移动与显示的移位控制位;这个指令并不改变 DDRAM的内容	72us
功能设定	0	0	0	0	1	DL	Х	0 RE	х	Х	DL=1: 8-BIT 控制接口 DL=0: 4-BIT 控制接口 RE=1: 扩充指令集动作 RE=0: 基本指令集动作	72us
设 定 CGRAM 地址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	ACO	设定 CGRAM 地址到地址计数器 (AC) 需确定扩充指令中 SR=0(卷动地 址或 RAM 地址选择)	72us
设 DDRAM 地址	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	ACO	设定 DDRAM 地址到地址计数器(AC)	72us
读取忙碌 标 志 (BF)和 地址	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	ACO	读取忙碌标志(BF)可以确认内部动作是否完成,同时可以读出地址计数器(AC)的值	Ous
写资料到 RAM	1	0	D7	D6	D5	D4	D3	D2	D1	DO	写入资料到内部的 RAM (DDRAM/CGRAM/GDRAM)	72us
读 RAM 值	1	1	D7	D6	D5	D4	D3	D2	D1	DO	从内部 RAM 读取数据 (DDRAM/CGRAM/GDRAM)	72us

邮编: 526040

指令表 2: (RE=1: 扩充指令集)

					指	令码						执行
指令	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	说明	时间 (540 KHZ)
待命模式	0	0	0	0	0	0	0	0	0	1	进入待命模式,执行其它命令都可终止待命模式	72us
卷动地址 或 RAM 地址选择	0	0	0	0	0	0	0	0	1	SR	SR=1: 允许输入垂直卷动地址 SR=0: 允许设定 CGRAM 地址(基 本指令)	72us
反白选择	0	0	0	0	0	0	0	1	R1	RO	选择4行中的任一行作反白显示, 并可决定反白与否	72us
睡眠模式	0	0	0	0	0	0	1	SL	Х	Х	SL=1: 脱离睡眠模式 SL=0: 进入睡眠模式	72us
扩充功能设定	0	0	0	0	1	DL	Х	1 RE	G	0	DL=1: 8-BIT 控制接口 DL=0: 4-BIT 控制接口 RE=1: 扩充指令集动作 RE=0: 基本指令集动作 G=1: 绘图显示 ON G=0: 绘图显示 OFF	72us
设定卷动 地址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	ACO	SR=1: AC5—AC0 为垂直卷动地 址	72us
设定绘图 RAM 地 址	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	设定 GDRAM 地址到地址计数器(AC)	72us

备注:

当模块在接受指令前,微处理顺必须先确认模块内部处于非忙碌状态,即读取 BF 标志时 BF 需为 0,方可接受新的指令;如果在送出一个指令前并不检查 BF 标志,那么在前一个指令和这个指令中间必须延迟一段较长的时间,即是等待前一个指令确实执行完成,指令执行的时间请参考指令表中的个别指令说明。

"RE"为基本指令集与扩充指令集的选择控制位,当变更"RE"位后,往后的指令集将维持在最后的状态,除非再次变更"RE"位,否则使用相同指令集时,不需每次重设"RE"位。

具体指令介绍:

1、清除显示(指令代码为 01H)

CODE: RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 RS L L L L L Η

功能: 将 DDRAM 填满"20H"(空格), 把 DDRAM 地址计数器调整为"00H", 重新进入点设定将 I/D 设为"1", 光标右移 AC 加 1

2、地址归位(02H)

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

L L L L L L L L L H X

功能:把 DDRAM 地址计数器调整为"00H",光标回原点,该功能不影响显示 DDRAM

肇庆金鹏实业有限公司 Golden Palm Industry Co., Ltd. 地址: 肇庆市建设四路 13 号天宁广场 E 幢 13、14、15 楼

业务联系: 0758-2317976/2317692

7 Co., Ltd. <u>http://www.gptlcm.cn</u> 5 楼 邮编: 526040 技术支持: 0758—2317156 共 17 页 第 10 页 E-mail: <u>syl@gptlcm.cn</u> 传真: 0758-2317023

3、点设定(04H/05H/06H/07H)

CODE: RS **RW** DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L L L L L L L Η I/D S

功能:设定光标移动方向并指定整体显示是否移动。

I/D=1 光标右移, AC 自动加 1; I/D=0 光标左移, AC 自动减 1

SH=1 且 DDRAM 为写状态:整体显示移动,方向由 I/D 决定(I/D=1 左移, I/D=0 右移)

SH=0 或 DDRAM 为读状态:整体显示不移动

4、显示状态 开/关(08H/0CH/ODH/0EH/0FH)

CODE: RW DB7 DB6 RS DB5 DB4 DB3 DB2 DB1 DB0 L L L L L Н C

功能: D=1: 整体显示 ON; D=0: 整体显示 OFF. C=1: 光标显示 ON; C=0: 光标显示 OFF.

B=1: 光标位置反白且闪烁; B=0: 光标位置不反白闪烁

5、光标或显示移位控制(10H/14H/18H/1CH)

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L S/C L L L Η R/L X

功能: 10H/14H: 光标左/右移动, AC 减/加 1; 18H/1CH: 整体显示左/右移动, 光标跟随移动, AC 值不变

6、功能设定(20H/24H/26H/30H/34H/36H)

CODE: RS RW DB7 DB6 DB5 DB4 DB2 DB3 DB₁ D_B0 Η DL X RE X L L L L X

功能: DL=1: 8-BIT 控制接口 DL=0: 4-BIT 控制接口

RE=1: 扩充指令集动作 RE=0: 基本指令集动作

7、设定 CGRAM 地址(40H-7FH)

CODE: RW DB7 RS DB6 DB5 DB4 DB3 DB₂ DB₁ D_B0 L L Н AC5 AC4 AC3 AC2 L AC1 AC₀

功能:设定 CGRAM 地址到地址计数器 (AC),需确定扩充指令中 SR=0(卷动地址或 RAM 地址选择)

8、设定 DDRAM 地址(80H-9FH)

CODE: RS RW DB7 DB6 DB5 DB4 DB₂ DB₁ D_B0 DB3 L L Η AC6 AC5 AC4 AC3 AC2 AC1 AC0

功能:设定 DDRAM 地址到地址计数器 (AC)

9、读取忙碌状态(BF)和地址

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB₂ DB₁ DB₀ L Η BF AC6 AC5 AC4 AC3 AC2 AC1 AC₀

功能:读取忙碌状态(BF)可以确认内部动作是否完成,同时可以读出地址计数器(AC)的值,当 BF=1,表示内部忙碌中此时不可下指令需等 BF=0 才可下新指令

10、写资料到 RAM

CODE: RS D_B0 RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 L D7 D6 D5 D4 D3 D2D1 D0

功能:写入资料到内部的RAM(DDRAM/CGRAM/GDRAM),每个RAM地址都要连续写入两个字节的资料。

11、读出 RAM 的值

CODE: RS RW DB6 DB5 DB4 DB1 D_B0 DB7 DB3 DB2 Н Η D7 D6 D5 D4 D3 D2D1

功能:从内部 RAM 读取数据(DDRAM/CGRAM/GDRAM),当设定地址指令后,若需读取数据时需先执行一次空的读数据,才会读取到正确数据,第二次读取时则不需要,除非又下设定地址指令。

12、待命模式(01H)

CODE: RS DB5 RW DB7 DB6 DB4 DB3 DB2 DB1 DB₀ L L L L L

功能: 进入待命模式, 执行其它命令都可终止待命模式

13、卷动地址或 RAM 地址选择(02H/03H)

CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

肇庆金鹏实业有限公司 Golden Palm Industry Co., Ltd. http://www.gptlcm.cn 共 17 页 第 11 页 地址: 肇庆市建设四路 13 号天宁广场 E 幢 13、14、15 楼 邮编: 526040 E-mail: syl@gptlcm.cn 业务联系: 0758-2317976/2317692 技术支持: 0758-2317156 传真: 0758-2317023

OCMJ4X8C液晶显示模块使用说明书 SR L Η L 功能: SR=1: 允许输入卷动地址 SR=0: 允许设定 CGRAM 地址(基本指令) 14、反白选择(04H-07H) CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB₂ DB1 DB₀ L L L L L L Η R1 R0 功能:选择4行中的任一行作反白显示,并可决定反白与否。 注: 4X8C/3的一、三行为反自选择的第一行,二、四行为反自选择的第二行。 15、睡眠模式 (08H/0CH) CODE: DB1 DB₀ RS RW DB7 DB6 DB5 DB4 DB3 DB₂ Η SL X L L L L L L X 功能: SL=1: 脱离睡眠模式 SL=0: 进入睡眠模式 16、扩充功能设定(20H/24H/26H/30H/34H/36H) CODE: RS RW DB7 DB6 DB4 DB3 DB2 DB1 DB0 L L L Н DL X G L L RE 功能: DL=1: 8-BIT 控制接口 DL=0: 4-BIT 控制接口 RE=1: 扩充指令集动作 RE=0: 基本指令集动作 G=1: 绘图显示 ON G=0: 绘图显示 OFF 17、设定卷动地址(40H-7FH) CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 L L L Н AC5 AC4 AC3 AC2 AC1 AC0 功能: SR=1: AC5~AC0 为垂直卷动地址 18、设定绘图 RAM 地址 (80H-FFH) CODE: RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 D_B0

L L Н AC6 AC5 AC4 AC3 AC2 AC1 AC0

功能:设定GDRAM地址到地址计数器(AC)

肇庆金鹏实业有限公司 地址: 肇庆市建设四路 13 号天宁广场 E 幢 13、14、15 楼

Golden Palm Industry Co., Ltd.

http://www.gptlcm.cn 邮编: 526040

共17页第12页 E-mail: syl@gptlcm.cn 传真: 0758-2317023

业务联系: 0758-2317976/2317692

六、显示坐标关

		GDRAM水平	· 位址(X)	
	80H	81H		87H
L1 80H L2 L3 L4 L5 L6 L7 L1 L12 L13 L14 L15 L2 L3 L3 L14 L15 L16 L17 L18 L19 L10 L1	88H	89H		8FH
L26 L27 L28 L29 L30				
L32 9FH				

2、汉字字符显示坐标

	X 坐标											
Line1	80H	81H	82H	83H	84H	85H	86H	87H				
Line2	90H	91H	92H	93H	94H	95H	96H	97H				
Line3	88H	89H	8AH	8BH	8CH	8DH	8EH	8FH				
Line4	98H	99H	9AH	9BH	9CH	9DH	9EH	9FH				

地址: 肇庆市建设四路 13 号天宁广场 E 幢 13、14、15 楼

邮编: 526040

七、显示步骤

1、显示资料 RAM(DDRAM)

显示数据 RAM 提供 64x2 个字节的空间,最多可以控制 4 行 16 字(64 个字)的中文字型显示,当写入 显示资料 RAM 时,可以分别显示 CGROM,HCGROM 与 CGRAM 的字型;本系列模块可以显示三种字 型,分别是半宽的 HCGROM 字型、CGRAM 字型及中文 CGROM 字型,三种字型的选择,由在 DDRAM 中写入的编码选择, 在 0000H~0006H 的编码中将选择 CGRAM 的自定字型, 02H~7FH 的编码中将选择 半宽英数字的字型,至于 A1 以上的编码将自动的结合下一个字节,组成两个字节的编码达成中文字型的 编码 BIG5(A140~D75F) GB(A1A0~F7FF), 详细各种字型编码如下:

- 1. 显示半宽字型: 将 8 位资料写入 DDRAM 中, 范围为 02H~7FH 的编码。
- 2. 显示 CGRAM 字型: 将 16 位资料写入 DDRAM 中,总共有 0000H,0002H,0004H,0006H 四种编码。
- 3. 显示中文字形:将 16 位资料写入 DDRAM 中,范围为 A140H~D75FH 的编码(BIG5), A1A0H~F7FFH 的编码(GB)。将 16 位资料写入 DDRAM 方式为透过连续写入两个字节的资料来完成,先写入高字节(D15~ D8) 再写入低字节 (D7~D0)。

2、绘图 RAM(GDRAM)

绘图显示 RAM 提供 64x32 个字节的记忆空间(由扩充指令设定绘图 RAM 地址), 最多可以控制 256x64 点 的二维绘图缓冲空间, 在更改绘图 RAM 时, 由扩充指令设定 GDRAM 地址先设垂直地址再设水平地址(连 续写入两个字节的数据来完成垂直与水平的坐标地址),再写入两个 8 位的资料到绘图 RAM,而地址计数 器(AC)会自动加一,整个写入绘图 RAM 的步骤如下:

- 1. 先将垂直的字节坐标(Y)写入绘图 RAM 地址。
- 2. 再将水平的字节坐标(X)写入绘图 RAM 地址。
- 3. 将 D15~D8 写入到 RAM 中(写入第一个 Bytes)。
- 4. 将 D7~D0 写入到 RAM 中(写入第二个 Bytes)。

业务联系: 0758-2317976/2317692

八、显示示例程序

以下程序为51系列汇编例程:

```
1、发送数据子程序
                                    ;检测模块内部工作状态
SEND D:
            LCALL CHK BUSY
         SETB
               RS
                                 ;RS=1 选择数据寄存器
         CLR
               RW
                                 ;RW=0 写状态
         MOV
                P1, A
                                 ;送数据到数据口
SETB
      Ε
         NOP
NOP
CLR
      Ε
         RET
2、发送指令子程序
SEND_I:
                                 :检测模块内部工作状态
         LCALL CHK_BUSY
         CLR
               RS
                                 ;RS=0 选择指令寄存器
         CLR
               RW
                                 ;RW=0 写状态
         MOV
               P1, A
                                 ;送数据到数据口
         SETB
               Ε
NOP
NOP
               E
         CLR
RET
3、读数据子程序
            LCALL CHK_BUSY
READ D:
                                    ;检测模块内部工作状态
                                 ;RS=1 选择数据寄存器
         SETB
               RS
         SETB
               RW
                                 ;RW=1 读状态
         SETB
               Ε
NOP
MOV
      A, P1
                        :从数据口读数据
         CLR
               Ε
         RET
4、测忙碌子程序
CHK BUSY: MOV
                P1, #0FFH
CLR
                        :RS=0 选择指令寄存器
      RS
SETB
      RW
                        ;RW=1 读状态
         SETB
               Ε
                        ;判别 BF 位
JB
      P1.7, $
         CLR
               E
         RET
5、串口写子程序:
;DA IN:
         数据或指令
         数据指令选择
;RS_STU:
;WR_COUNT1: 计数器 1
;WR_COUNT2: 计数器 2
SERIAL_WR: PUSH
               ACC
         MOV
                  A,DA_IN
         SETB
               CS
                  WR COUNT1,#05H
         MOV
```

STD

SETB

;1

```
SERIAL_WR1:
              CLR
                    SCLK
          SETB
                 SCLK
          DJNZ
                 WR_COUNT1,SERIAL_WR1
                 STD
                                      ;RW
          CLR
          CLR
                 SCLK
          SETB
                 SCLK
          JNB
                 RS_STU,CLR_RS
          SETB
                                      ;写数据
                 STD
          SJMP
                 SETB_RS
CLR_RS:
          CLR
                 STD
                                      ;写指令
SETB_RS:
          CLR
                 SCLK
          SETB
                 SCLK
          CLR
                                      ;0
                 STD
          CLR
                 SCLK
          SETB
                 SCLK
          MOV
                     WR_COUNT1,#02H
SERIAL_WR2:
             MOV
                        WR_COUNT2,#04H
SERIAL_WR21:RLC
                    A
                    STD,C
          MOV
          CLR
                 SCLK
          SETB
                 SCLK
          DJNZ
                 WR_COUNT2,SERIAL_WR21
          MOV
                     WR_COUNT2,#04H
          CLR
                 STD
                                      ;0
SERIAL_WR22:CLR
                    SCLK
          SETB
                 SCLK
          DJNZ
                 WR_COUNT2,SERIAL_WR22
          DJNZ
                 WR_COUNT1,SERIAL_WR2
          CLR
                 SCLK
          CLR
                 CS
          LCALL DELAY
          POP
                 ACC
          RET
```

附录一、字符表

代码 (02H---7FH)

业务联系: 0758-2317976/2317692