Human Robot Interactionmkk

CIR - Session 1

My background and interests in research

Kinematics

Perception and manipulation

Mobile Robotics

Automatic Control

Contents

- What is HRI
- Modalities and Resources for sHRI
 - Roles of intervention
 - Caveats to roles
 - Awareness in hri
 - HRI Taxonomy (i) and (II)
 - HRI vs HCI
 - Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI
 - Roles of intervention
 - Caveats to roles
 - Awareness in hri
 - HRI Taxonomy (i) and (II)
 - HRI vs HCI
 - Evaluation of HRI
- Our Focus: Robot motion and body language

Systematic study of the interaction between humans and robots

Example of Sociable Robots

Asimo (Honda)

hyper-realistic Einstein robot

iCub (RobotCub)

Current State of the Art: Some Examples

- Health care and Assistive Technology
 - Aids for the Blind
 - Robotic walkers
 - Robotic wheelchairs
 - Companion robots
- Robot Soccer
- Humanoid Robots

Current State of the Art: Some Examples

- Health care and Assistive Technology
 - Aids for the Blind
 - Robotic walkers
 - Robotic wheelchairs
 - Companion robots
- Robot Soccer
- Humanoid Robots

Aids for the blind

GuideCane, UMich

NavBelt, UMich

Robotic walkers

Robotic wheelchair

Wheelesley, MIT AI Lab

Hephaestus Smart Wheelchair, AT Sciences

Companion Robot

CosmoBot, AnthroTronix

Current State of the Art: Some Examples

- Health care and Assistive Technology
 - Aids for the Blind
 - Robotic walkers
 - Robotic wheelchairs
 - Companion robots
- Robot Soccer
- Humanoid Robots

Robot Soccer

Current State of the Art: Some Examples

- Health care and Assistive Technology
 - Aids for the Blind
 - Robotic walkers
 - Robotic wheelchairs
 - Companion robots
- Robot Soccer
- Humanoid Robots

Humanoid Robots

Uncanny Valley

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy (i) and (II)
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy (i) and (II)
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

- (a) Roles of interaction
 - Supervisor
 - Operator
 - Teammate
 - Mechanic/programmer
 - Bystander

- (a) Roles of interaction
 - Supervisor
 - Operator
 - Teammate
 - Mechanic/programmer
 - Bystander

Supervisor

Supervisor

- Oversees a number of robots.

Supervisor

- Oversees a number of robots.
- Needs global picture of all robots/mission.

Supervisor

- Oversees a number of robots.
- Needs global picture of all robots/mission.
- Needs to understand when a robot is having a problem, the seriousness of the problem, the effect on the mission.

_

Supervisor

- Oversees a number of robots.
- Needs global picture of all robots/mission.
- Needs to understand when a robot is having a problem, the seriousness of the problem, the effect on the mission.
- **Challenge**: How many robots can a supervisor effectively monitor?

- (a) Roles of interaction
 - Supervisor
 - Operator
 - Teammate
 - Mechanic/programmer
 - Bystander

Operator

- Needs to have "telepresense" to understand where robot is and what must be done.
- Can vary from complete teleoperation to giving high level task to specifying a mission.
- Needs awareness of robot health, awareness of environment and awareness of what robot is doing to support task/ mission

- Challenges:

- How to maintain awareness despite communications limitations?
- How to control multiple robots?

- (a) Roles of interaction
 - Supervisor
 - Operator
 - Teammate
 - Mechanic/programmer
 - Bystander

Teammate

- Robot is a member of the team
- Teammates can give commands within the scope of the task/mission
- Interactions such as gestures and voice maybe helpful here
- Need to understand any limitations robot has in capabilities
- Challenge:
 - Can the robot understand the same interaction vocabulary as other team members?

Roles of interaction

- Supervisor
- Operator
- Teammate
- Mechanic/programmer
- Bystander

Mechanic/Programmer

Mechanic/Programmer

- Comes into play if the operator cannot resolve the issue.

Mechanic/Programmer

- Comes into play if the operator cannot resolve the issue.
- These interactions could happen within a task.

Mechanic/Programmer

- Comes into play if the operator cannot resolve the issue.
- These interactions could happen within a task.
- Given that a hardware/software change is made, the mechanic/programmer must have a way of interacting with the robot to determine if the problem it is solved.

Mechanic/Programmer

- Comes into play if the operator cannot resolve the issue.
- These interactions could happen within a task.
- Given that a hardware/software change is made, the mechanic/programmer must have a way of interacting with the robot to determine if the problem it is solved.

- Challenges:

- How much self diagnosis can the robot do?
- Have to determine when to move from operating in degraded capability to pulling robot off task and attempting to fix problem.

Modalities and resources for SHRI

Roles of interaction

- Supervisor
- Operator
- Teammate
- Mechanic/programmer
- Bystander

Bystander

- No formal training using robot but must co-exist in environment with robot
- Consider health care situation; floor cleaning robots; robot pets; on-road driving,

- Challenges:

- How can a bystander form a mental model of what the robot's capabilities are?
- Should a bystander have a subset of interactions available?
- What type of social interactions come into play?

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy (i) and (II)
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy (i) and (II)
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Modalities and resources for SHRI: caveats to roles

Modalities and resources for SHRI: caveats to roles

- One person might be able to assume a number of roles for a particular robot (excluding the bystander role).

Modalities and resources for SHRI: caveats to roles

- One person might be able to assume a number of roles for a particular robot (excluding the bystander role).
- Assuming we can determine information/interaction needs for different roles,
 then we could use that information to
 - Design a user interface to support a given role.
 - Determine whether multiple roles could be supported in one user interface.

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy (i) and (II)
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy (i) and (II)
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

- Awareness is used frequently in CSCW (Computer supported cooperative work, 1980)
- **Definition [Drury 2001]:** Given two participants p1 and p2 who are collaborating via a synchronous collaborative application, awareness is the understanding that p1 has of the
 - presence,
 - identity and
 - activities of p2

- Awareness is used frequently in CSCW (Computer supported cooperative work, 1980)
- **Definition [Drury 2001]:** Given two participants p1 and p2 who are collaborating via a synchronous collaborative application, awareness is the understanding that p1 has of the
 - presence,
 - identity and
 - activities of p2
- But HRI is different due to
 - Single or multiple humans interacting with a single or multiple robots
 - Non-symmetrical relationships between humans and robots; e.g., differences in:

Given one human and one robot working on a task together, HRI awareness is the understanding

that the *human* has of the

Given one human and one robot working on a task together, **HRI awareness** is the understanding that the *human* has of the

- Location,
- Activities,
- status, and
- surroundings of the robot;

Given one human and one robot working on a task together, **HRI awareness** is the understanding that the *human* has of the

- Location,
- Activities,
- status, and
- surroundings of the robot;

and

The knowledge that the **robot** has of

- the human's commands necessary to direct its activities and
- the constraints under which it must operate

A General Framework for HRI Awareness

A General Framework for HRI Awareness

Given **n** humans and **m** robots working together on a synchronous task, **HRI awareness** consists of five components:

A General Framework for HRI Awareness

Given **n** humans and **m** robots working together on a synchronous task, **HRI awareness** consists of five components:

- Human-robot awareness
- Human-human awareness
- Robot-human awareness
- Robot-robot awareness
- Humans' overall mission awareness

A General Framework for HRI Awareness

Human-robot awareness: the understanding that the humans have of **the locations, identities, activities, status and surroundings of the robots**. Further, the understanding of the certainty with which humans know this information.

Human-human awareness: the understanding that the humans have of the **locations, identities** and activities of their fellow human collaborators

Robot-human awareness: the robots' knowledge of the **humans' commands needed to direct activities** and any human- delineated constraints that may require command noncompliance or a modified course of action

A General Framework for HRI Awareness

Robot-robot awareness: the knowledge that the robots have of the **commands given to them**, if any, by other robots, the tactical plans of the other robots, and the robot-to-robot coordination necessary to dynamically re-allocate tasks among robots if necessary.

Humans' overall mission awareness: the humans' understanding of the **overall goals of the joint human- robot activities** and the measurement of the moment- by-moment progress obtained against the goals.

Contents

- What is HRI
- Modalities and Resources for sHRI.
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus : Robot motion and body language

- Why classify?
 - Way to measure properties of systems
 - Easier to compare systems

- Why classify?
 - Way to measure properties of systems
 - Easier to compare systems

(1) Task type

- e.g., urban search and rescue, walking aid for the blind, toy, etc.

(1) Task type

- e.g., urban search and rescue, walking aid for the blind, toy, etc.

(1) Task type

- e.g., urban search and rescue, walking aid for the blind, toy, etc.

(2) Task criticality

- high, e.g., as in disaster situations
- medium, e.g., hospital delivery robot
- low, e.g., robot soccer

(3) Robot morphology

- anthropomorphic: human appearance, e.g., ASIMO humanoid
- **zoomorphic**: non-human animal appearance, e.g., AIBO robot dog
- **functional**: related to robot function, e.g., RAPOSA

(3) Robot morphology

- anthropomorphic: human appearance, e.g., ASIMO humanoid
- **zoomorphic**: non-human animal appearance, e.g., AIBO robot dog
- **functional**: related to robot function, e.g., RAPOSA

(4) Ratio of people to robots

- non-reduced fraction of number of humans over number of robots
- e.g., in urban search and rescue 2/1 is a commonly found

(3) Robot morphology

(4) Ratio of people to robots

- non-reduced fraction of number of humans over number of robots
- e.g., in urban search and rescue 2/1 is a commonly found

(5) Composition of robot teams

- **homogeneous**, all of the same type, e.g., soccer team
- **heterogeneous**, different types, e.g., land robot + aerial robot

(6) Autonomy Level

- **autonomy**: from 0% (teleoperated) to 100% (fully autonomous)
- *intervention*: = 1 autonomy
- *adjustable autonomy*: the user is given the possibility of defining the robot's level of autonomy dynamically
- **example**: the development of automated tasks for RAPOSA, namely automatic docking and automatic stair climbing, allow to increase the level of autonomy of the system

(6) Autonomy Level

(7) Type of human-robot physical proximity

- Avoiding
- Passing
- Following
- Approaching
- Touching
- None

(7) Type of human-robot physical proximity

- Avoiding
- Passing
- Following
- Approaching
- Touching
- None

(7) Type of human-robot physical proximity

- Avoiding
- Passing
- Following
- Approaching
- Touching
- None

(8) Decision support for operators

- available sensors: list of all available sensors, baseline for following fields
- provided sensors: list of sensor information provided to the operator
- *sensor fusion:* list of sensor fusion mappings, e.g., {{sonar,laser}→map}
- pre-processing: list of sensor data processing operations

(8) Decision support for operators

- available sensors: list of all available sensors, baseline for following fields
- provided sensors: list of sensor information provided to the operator
- *sensor fusion:* list of sensor fusion mappings, e.g., {{sonar,laser}→map}
- pre-processing: list of sensor data processing operations

(9) Time/space taxonomy

- *in terms of time:* synchronous (same time) or asynchronous (diff. times)
- *in terms of space:* collocated (same place) or non-collocated (diff. places)

(8) Decision suppor

- available sensors:
- provided sensors:
- sensor fusion: list 🍒
- pre-processing: lis⁻

(9) Time/space tax

- in terms of time: 🕏
- in terms of space:

Example

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Modalities and resources for SHRI

Modalities and resources for SHRI: HRI vs HCI

- Much research to date has been devoted to robot technology but little on human-robot interaction (HRI)
- Human-computer interaction (HCI) has been studied for many years, but tools and metrics do not directly transfer to HRI

Modalities and resources for SHRI: HRI vs HCI

- Much research to date has been devoted to robot technology but little on human-robot interaction (HRI)
- Human-computer interaction (HCI) has been studied for many years, but tools and metrics do not directly transfer to HRI

Need to test robots in degraded conditions

Modalities and resources for SHRI: HRI vs HCI

- Much research to date has been devoted to robot technology but little on human-robot interaction (HRI)
- Human-computer interaction (HCI) has been studied for many years, but tools and metrics do not directly transfer to HRI

Need to test robots in degraded conditions

- Environment (noise, poor visibility)
- Sensor failures
- Repeatability
- No two robots will follow the same path

Modalities and resources for SHRI

- Different roles of interaction are possible
- Multiple people can interact in different roles with same robot
- Robot acts based on "worldmodel"
- Degraded state of operation of robot
- Physical world-air, land, and sea
- Intelligent systems, learning, emerging behaviors
- Harsh environments

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Real world:

- Difficult to collect data
- Can see what they did but there isn't time to determine why
- Best used to get an idea of the difficulties in the real world
- Can identify "critical events" but don't know for certain whether operator was aware of them

Laboratory studies

- Take what we learned in the real world and isolate factors to determine effects
- Repeatability is still difficult to achieve due to fragile nature of robots

Some Metrics (ex. In rescue tasks)

- Time spent navigating
- Amount of space covered
- Number of victims found
- Critical incidents
- Positive outcomes
- Negative outcomes
- Operator interventions
- Amount of time robot needs help
- Time to acquire situation awareness
- Reason for intervention

Some Metrics (ex. In rescue tasks)

- Time spent navigating, on UI overhead and avoiding obstacles
- Amount of space covered
- Number of victims found
- Critical incidents
- Positive outcomes
- Negative outcomes
- Operator interventions
- Amount of time robot needs help
- Time to acquire situation awareness
- Reason for intervention

Anova test, croachbach's alpha... To compare two methods (next sessions)

Human-Computer Interaction (HCI) design principles apply naturally to HRI

Human-Computer Interaction (HCI) design principles apply naturally to HRI

Human-Computer Interaction (HCI) design principles apply naturally to HRI

Nielsen's heuristics applied to HRI

- Is the robot's information presented in a way that makes sense to human controllers?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?
- Does the interface provide feedback?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?
- Does the interface provide feedback?
- Does the interface help prevent, and recover, from errors?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?
- Does the interface provide feedback?
- Does the interface help prevent, and recover, from errors?
- Does the interface follow real-world conventions?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?
- Does the interface provide feedback?
- Does the interface help prevent, and recover, from errors?
- Does the interface follow real-world conventions?
- Is the interface forgiving; does it allow reversible actions?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?
- Does the interface provide feedback?
- Does the interface help prevent, and recover, from errors?
- Does the interface follow real-world conventions?
- Is the interface forgiving; does it allow reversible actions?
- Does the interface make it obvious what actions are available at any given point?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?
- Does the interface provide feedback?
- Does the interface help prevent, and recover, from errors?
- Does the interface follow real-world conventions?
- Is the interface forgiving; does it allow reversible actions?
- Does the interface make it obvious what actions are available at any given point?
- Does the interface provide shortcuts and accelerators?

Human-Computer Interaction (HCI) design principles apply naturally to HRI

- Is the robot's information presented in a way that makes sense to human controllers?
- Can the human(s) control the robot(s) without having to remember information presented in various parts of the interface?
- Is the interface consistent?
- Does the interface provide feedback?
- Does the interface help prevent, and recover, from errors?
- Does the interface follow real-world conventions?
- Is the interface forgiving; does it allow reversible actions?
- Does the interface make it obvious what actions are available at any given point?
- Does the interface provide shortcuts and accelerators?
- Does the interface have a clear and simple design?

Norman's HCI model, seven stages of interaction:

- 1. Formulation of the goal, in high-level terms
- 2. Formulation of the intention, what will satisfy the goal?
- 3. Specification of the action, what actions are necessary to accomplish goal?
- 4. Execution of the action
- 5. Perception of the system state, after/while executing action
- 6. Interpretation of the system state
- 7. Evaluation of the outcome, does it accomplish goal initially set?

These stages are iterated until goal achieved (or modified)

Contents

- What is HRI
- Modalities and Resources for sHRI
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus: Robot motion and body language

Contents

- What is HRI
- Modalities and Resources for sHRI.
 - a. Roles of intervention
 - b. caveats to roles
 - c. Awareness in hri
 - d. HRI Taxonomy
 - e. HRI vs HCI
 - f. Evaluation of HRI
- Our Focus : Robot motion and body language

Our focus: robot's motion and body language

- Robot Motion:
 - Proxemics
 - Spatial configurations
 - Social formations
 - Space managing for collaboration
 - ...

- Body language:

- Communicating through body stance, orientation, position, gestures, gaze, facial expression and vocalizations
- Pets Robots

Proxemics

- "Interrelated observations and theories of human's use of space as a specialized elaboration of culture" [Hall, 1966]

Feel uncomfortable if others within personal space

- "egg -shaped," with more space in front with more space in front
- Exact size is culturally determined

Factors Affecting Personal Space •

- Interpersonal Relationships
- Gender
- Culture **Lewis Model of Cultural Types**
 - Cool and decisive (US, Germany)
 - Accommodating and non-confrontational (China, Japan)
 - Warm and impulsive (Italy, Mexico)

- One method people have for dealing with violated personal space is dehumanization treating the intruder as inanimate
 - Are robots seen as deserving of personal space, or are they treated as inanimate?

Empirical Empirical Evaluation of HR Proxemics

Based on several studies with many participants and different robots (Walters, Dautenhan, et al)

Empirical Empirical Evaluation of HR Proxemics

Based on several studies with many participants and different robots (Walters, Dautenhan, et al)

Compares to 51 cm for h 56 cm for "d	Approach Context	Mean (cm)	Lower Bound (95% CI)	Upper Bound (95% CI)
	Interaction: Pass Verbal Physical	60 60 49	57.6 58.0 46.3	62.7 63.1 51.4
	Appearance: Mechanoid Humanoid	51 62	48.7 60.1	53.0 64.2
	Initiative: Robot Human	57 56	53.4 52.0	61.1 60.6
	Direction: Front Side	58 55	54.1 51.4	62.5 59.0
	SHOIT	60 56 61 55	46.8 61.6 53.6 54.8	54.2 69.2 61.4 62.1
	dummy" Overall	57	53.0	60.5

8 Simmons, Nourbakhsh: Spring 2015

HRI: Proxemics

Social Navigation

- Culturally determined conventions that guide our movement through (peopled) space
- Why do we use social conventions?

User Study of Social Approaching

User Study of Social Approaching

User Attitudes

- Social robot seen as more intelligent and social in both back-facing and side-facing conditions
- Social robot seen as more attentive to personal space and social conventions in back-facing condition
- Women found social robot more attentive to personal space and social conventions, under all conditions

HRI Study example

https://www.focusforwardfilms.com/films/41/robot

Please read the paper,

Create a document:

- Explain the relation between the user and the robot
- Why is important the interaction here?
- What are the authors analyzing in the paper?
- What is the advantage of this robot behavior?