CAPÍTULO 5

- 1. a) Escolhendo os pontos $x_0 = 2.8$, $x_1 = 3.0$ e $x_2 = 3.2$, obteremos: $f(3.1) \approx 22.20375$.
 - b) $|E(3.1)| \le 1.23 \times 10^{-2}$.
- 2. Sugestão: Verifique que o máximo da função $g(x) = |(x x_0)(x x_1)|$ ocorre para $\overline{x} = (x_1 + x_0)/2$ e obtenha $g(\overline{x})$.
- 3. Escolhendo $x_0 = 25$, $x_1 = 30$ e $x_2 = 35$ obtemos $f(32.5) \approx 0.99820$ e f(x) = 0.99837 para $x_1 \approx 27.88$.
- 4. Usando o processo de interpolação inversa para f(x), sobre os pontos: y₀ = 0.67, y₁ = 0.549 e y₂ = 0.449 obtemos: f(0.5101) ≈ 0.6 e aplicando o processo de interpolação inversa para g(x) sobre os pontos y₀ = 0.32, y₁ = 0.48 e y₂ = 0.56 obtemos g(1.4972) ≈ 0.5101, portanto, para x ≈ 1.4972: f(g(1.4972)) ≈ f(0.5101) ≈ 0.6.
- A função cos(x) deverá ser tabelada em, no mínimo, 260 pontos.
- 7. Usando um processo de interpolação inversa e escolhendo y₀ = f(0) = -1, y₁ = f(0.5) = -0.1065 e y₂ = f(1) = 0.6321 obtemos f(0.5673) ≈ 0. E, usando a tabela de diferenças divididas e os pontos y(0), y(0.5), y(1) e y(1.5) a estimativa do erro será: | E(0) | ≈ 0.17851 × 10⁻⁴.
- 8. $|E(115)| \le 1.631 \times 10^{-3}$.
- Polinômio de grau 3 porque as diferenças divididas de grau 3 são aproximadamente constantes. Escolhendo x₀ = 0.5, x₁ = 1.0, x₂ = 1.5 e x₃ = 2.0 obtemos f(1.23) ≈ -1.247 com | E(1.23) | ≈ 2.327 × 10⁻⁵.
- 10. Processo 1: construindo $p_2(x)$ que interpola f(x) em $x_0 = 0.25$, $x_1 = 0.30$, $x_2 = 0.35$ e calculando x tal que $p_2(x) = 0.23$ obtemos $x \approx 0.3166667$.

Processo 2: interpolação inversa, escolhendo $y_0 = 0.19$, $y_1 = 0.22$ e $y_2 = 0.25$ obtemos: $p_2(0.23) = 0.3166667$, e portanto, $f(0.3166667) \approx 0.23$. Neste caso, é possível estimar o erro cometido $|E(0.23)| \approx 1.666 \times 10^{-3}$.

- 11. $cos(1.07) \approx 0.4801242$ $|E(1.07)| \approx 1.202 \times 10^{-6}$.
- 12. d = 3a 8b + 6c.
- 17. Usando o processo de interpolação inversa e os pontos: $y_0 = 1.5735$, $y_1 = 2.0333$ e $y_2 = 2.6965$ obtemos $f(0.623) \approx 2.3$.
- Usando o processo de interpolação inversa e escolhendo os pontos: y₀ = 0, y₁ = 1.5 e
 y₂ = 5.3 obtemos: f(1.5037) ≈ 2.

CAPÍTULO 6

- 2. a) 0.21667x + 0.175.
 - b) $0.01548x^2 + 0.07738x + 0.40714$.

A comparação pode ser feita através do cálculo de $\sum_{k=1}^{8} d_k^2$: para a reta,

$$\sum_{k=1}^{8} d_k^2 = 0.08833 \text{ e, para a parábola, } \sum_{k=1}^{8} d_k^2 = 0.04809.$$

Como o menor valor para a soma dos quadrados dos desvios foi para a parábola, o melhor ajuste para os dados, entre as duas possibilidades, é a parábola.

- 3. Curva de ajuste escolhida: $\varphi(x) = \alpha_1 \ln(x) + \alpha_2$. Obteve-se: $\varphi(x) = 5.47411 \ln(x) + 0.98935$.
- b) 52.7570x 20.0780, trabalhando com as alturas em metros.