75 MHz Portable Dual-Channel Oscilloscope PM3256/PM3256U

Service Manual

4822 872 05307 851215/1/06

Industrial & Electro-acoustic Systems

75 MHz Portable Dual-Channel Oscilloscope PM3256/PM3256U

Service Manual

4822 872 05307 851215/1/06 For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Also published: Operating Manual PM3256

WARNING:

These servicing instructions are for use by qualified personal only. To reduce the risk of electric shock, do not perform any servicing other than that specified in the Operating Instructions unless you are fully qualified to do so.

PHILIPS

IMPORTANT

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

NOTE:

The design of this instrument is subject to continuous development and improvement. Consequently, this instrument may incorporate minor changes in detail from the information contained in this manual.

CC	ONTENTS			Page
0.	SAFETY INSTE	RUCTIONS	For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554	0-1
1.	CHARACTERIS	STICS	Email:- enquiries@mauritron.co.uk	1-1
	1.1.	Cathode ray tube		1-1
	1.2.	Vertical or Y-axis		1-2
	1.3.			1-3
	1.4. 1.4.1. 1.4.2. 1.4.3. 1.4.4.	Triggering of the main time-base Main time-base	e	1-3 1-3 1-4 1-4 1-4
	1.5.	X-Y operations		1-4
	1.6.	Calibration unit		1-5
	1.7.	Power supply		1-5
	1.8.	Z-modulation		1-5
	1.9.	Options		1-5
	1.10.	Environmental characteristics .		1-5
2.	CIRCUIT DESC	RIPTION	,	2-5
	2.1. 2.1.1. 2.1.2. 2.1.3. 2.1.4.	Vertical deflection		2-5 2-5 2-5 2-8 2-8
	2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7.	Input signal coupling Attenuator and impedance conv Amplifier	al section erter	2-9 2-9 2-12 2-13 2-14 2-14 2-15
	2.3. 2.3.1. 2.3.2. 2.3.3. 2.3.4. 2.3.5.	Main time-base triggering Delayed time-base triggering Main time-base	ental section	2-16 2-19 2-20 2-27 2-28 2-29
	24	L. H. L. display section. CAL den	erator and front-panel signal lamps	2-29

	2.5. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6.	The power supply	2-30 2-31 2-33 2-34 2-34 2-35
	2.6. 2.6.1. 2.6.2.	Basic analog and digital circuits	2-35 2-35 2-36
3.	DISMANTLING	THE INSTRUMENT	3-1
	3.1.	General information	3-1
	3.2.	Removal of top and bottom cover	3-1
	3.3.	Access to parts necessary for the adjustment procedure	3-2
4.	PERFORMANCE	E CHECK	4-1
	4.1.	General information	4-1
	4.2.	Preliminary settings of the controls	4-4
	4.3.	Recommended test equipment	4-4
	4.4.	Checking procedure	4-5
5.	CHECKING AND	O ADJUSTING	5-1
	5.1.	General information	5-1
	5.2.	Recommended test equipment	5-1
	5.3.	Preliminary settings of the controls	5-1
	5.4.	Checking and adjusting elements and auxilliary equipment	5-6
	5.5. 5.5.1. 5.5.2. 5.5.3. 5.5.4. 5.5.5. 5.5.6. 5.5.7. 5.5.8. 5.5.9. 5.5.10. 5.5.11.	Checking and adjusting procedure Power supply C.R.T. display adjustments Balance adjustments LF corrections and sensitivities Vertical channels Triggering Time-base generators Final checks of the vertical channels X-deflection Calibration signal check Checking the effect of mains voltage variations	5-9 5-10 5-11 5-12 5-13 5-16 5-21 5-24 5-25 5-26
	5.6.	Adjustment interactions	5-27

te ----

7

6.	CORRECTIVE MA	AINTENANCE	6-1
	6.1.	Important notes	6-1
	6.2.	Replacements	6-1
	6.2.1.	Standard parts	6-1
	6.2.2.	Special parts	6-1
	6.2.3.	Transistors and integrated circuits	6-1
	6.2.4.	Replacing knobs	6-2
	6.2.5.	Replacing the cathode tray tube	6-3
	6.2.6.	Removing the printed circuit boards	6-4
	6.2.7.	Soldering techniques	6-10
	6.3.	Recalibration after repair	6-10
	6.4.	Instrument repacking	6-10
	6.5.	Tel:- 01844-351694 Fax:- 01844-352554 Trouble-shooting	6-11
	6.5.1.	Introduction	6-11
	6.5.2.	Trouble-shooting hints	6-11
	0.3.2.		.
	6.6.	Optional MTB gate output, DTB gate output, MTB sweep output and TV or ECL	0.40
		triggering	6-12
	6.6.1.		6-12 6-12
	6.6.2.	MTB sweep out	6-12
	6.6.3.	IV or ECL triggering	0-12
	6.7.	Accessory information	6-16
	6.7.1.	Adjustments of the passive probes PM8927A	6-16
	6.7.2.	Dismantling	6-17
	6.7.3.	Replacing parts	6-17
	6.7.4.	Replacing the BNC	6-17
	6.7.5.	Parts list	6-18
	6.8.	Safety inspection and test after repair and maintenance in the primary circuit	6-19
	6.8.1.	General directives	6-19
	6.8.2.	Safety components	6-19
	6.8.3.	Checking the protective earth connection	6-19
	6.8.4.	Checking the insulation resistance	6-19
	6.8.5.	Checking the leakage current	6-19
	6.8.6.	Voltage test	6-19
7.	PARTS LIST		7-1
	7.4	Parts indicated in the figures	7-1
	7.1.	Parts Indicated in the figures	7-1
	7.2.	Parts not indicated in the figures	7-7
	7.3.	Electrical parts	7-8
	7.4.	Location list of parts situated on the time-base unit A2	7-42
	7.5.	Location list of parts situated on the pre-amplifier and trigger unit A3	7-48

8.	DIAGRAMS AND	PRINT LAY-OUTS	8-1
	8.1.	Location of electrical parts	8-1
9.	VOLTAGE-WAVE	EFORMS IN THE INSTRUMENT	9-1
	9.1.	Introduction	9-1
	9.2.	Vertical deflection and triggering	9-2
	9.3.	Horizontal deflection	9-9
	9.4	Power supply	9-13

LIST OF FIGURES Page

Fig.	2.1.	Blockdiagram	2-2
Fig.	2.2.	Impedance converter	2-10
Fig.	2.3.	Continuous control circuit	2-11
Fig.	2.4.	Vertical channel selection logic	2-12
Fig.	2.5.	Important voltage waveforms in the MTB logic	2-21
Fig.	2.6.	Important voltage waveforms in the Z-modulation control logic	2-24
Fig.	2.7.	Important voltage waveforms in the alternate mode control logic	2-26
Fig.	2.8.	Important voltage waveforms in the DTB control logic	2-28
Fig.	2.9.	The converter-driver	2-31
Fig.	2.10.	The fly-back converter	2-32
Fig.	2.11.	Pulse-width modulation	2-33
Fig.	2.12.	Basic analog circuits	2-37
Fig.	2.13.	Basic digital circuits	2-37
Fig.	3.1.	Removal of rubber band of rear panel	3-2
Fig.	3.2.	Removal of shoulder strap, top and bottom cover	3-2
Fig.	4.1.	Preliminary settings	1-1
Fig.	5.1.	Adjustment points top view 5	5-4
Fig.	5.2.	Adjustment points bottom view 5	5-4
Fig.	5.3.	Adjustment points right side	5-5
Fig.	5.4.	Geometry check	5-11
Fig.	5.5.	Dummy probe 2:1 5	5-14
Fig.	5.6.	Square-wave response 5	5-14
Fig.	5.7.	Effective signal delay For Service Manuals Contact	5-24
Fig.	5.8.	Phase shift between X and Y amplifier	5-26
Fig.	6.1.	Removing the knobs	3-2
Fig.	6.2.		3-5
Fig.	6.3.	Time-base unit removed	6-6
Fig.	6.4.	Removal of pre-amplifier and trigger unit 6	3-5
Fig.	6.5.	Pre-amplifier and trigger unit removed 6	6-6
Fig.	6.6.	Removal of rear panel	3-7
Fig.	6.7.	Removal of power supply	3·7
Fig.	6.8.	Over-compensation (C2) 6	3-16
Fig.	6.9.	Correct-compensation (C2)	3-16
Fig.	6.10.	Under-compensation (C2) 6	3-16
Fig.	6.11.	Preset potentiometers correctly adjusted	3-16
Fig.	6.12.	Trouming and to missing majority for the second sec	3-16
Fig.	6.13.	Overshoot due to incorrectly adjusted potentiometers	3-16
Fig.	6.14.	Dismantling + accessories	3-17
Fig.	6.15.	Printed-wiring board showing adjusting elements, circuit diagram	3-18
Fig.	7.1.	Mechanical parts, front view	7-2
Fig.	7.2.	Mechanical parts, rear view	7-2
Fig.	7.3.	Internal view of bottom side of instrument	7-4
Fig.	7.4.	***************************************	7-4
	7.5.	Internal view with pre-amplifier and trigger unit removed	7-5
Fig.	7.6.	Internal view with time-base unit removed	7-5
Fig.	7.7.	Time-base unit p.c.b, with component location raster	7-42
Fig.	7.8.	Pre-amplifier and trigger unit p.c.b. with component location raster	7-46

Fig. 8.1.	Pre-amplifier and trigger unit p.c.b. A3	8-3
Fig. 8.2.	Circuit diagram vertical deflection	8-8
Fig. 8.3.	Pre-amplifier and trigger unit p.c.b. A3	8-9
Fig. 8.4.	Circuit diagram m.t.b. triggering (A3)	8-9
Fig. 8.5.	Circuit diagram d.t.b. triggering (A3)	8-15
Fig. 8.6.	Trigger selection unit A4, p.c.b	8-15
Fig. 8.7.	Time-base unit p.c.b. A2	8-16
Fig. 8.8.	Circuit diagram main time-base (A2)	8-20
Fig. 8.9.	Time-base unit p.c.b. A2	8-21
Fig. 8.10.	Circuit diagram delayed time-base (A2)	8-24
Fig. 8.11.	Final amplifier unit p.c.b. A5	8-25
Fig. 8.12.	Circuit diagram final X amplifier, Z amplifier, calibration unit and display section	8-28
Fig. 8.13.	Power supply unit p.c.b. A6	8-30
Fig. 8.14.	Circuit diagram Power supply and H.V. generator	8-30
Fig. 8.15.	Switch unit p.c.b. A102	8-34
	Potentiometer unit A103	8-35

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

1

SAFETY INSTRUCTIONS

Read these pages carefully before installation and use of the instrument.

The following clauses contain information, cautions and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition.

Adjustment, maintenance and repair of the instrument shall be carried out only by qualified personnel.

0.1. SAFETY PRECAUTIONS

For the correct and safe use of this instrument it is essential that both operating and servicing personnel follow generally-accepted safety procedures in addition to the safety precautions specified in this manual. Specific warning and caution statements, where they apply, will be found throughout the manual. Where necessary, the warning and caution statements and/or symbols are marked on the apparatus.

0.2. CAUTION AND WARNING STATEMENTS

CAUTION: is used to indicate correct operating or maintenance procedures in order to prevent damage

to or destruction of the equipment or other property.

WARNING: calls attention to a potential danger that requires correct procedures or practices in order to

prevent personal injury.

0.3. SYMBOLS

0.4. IMPAIRED SAFETY-PROTECTION

Whenever it is likely that safety-protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation. The matter should then be referred to qualified technicians. Safety protection is likely to be impaired if, for example, the instrument fails to perform the intended measurements or shows visible damage.

0.5. GENERAL CLAUSES

- 0.5.1. WARNING: The opening of covers or removal of parts, except those to which access can be gained by hand, is likely to expose live parts and accessible terminals which can be dangerous to live.
- 0.5.2. The instrument shall be disconnected from all voltage sources before it is opened.
- 0.5.3. Bear in mind that capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources.

0.5.4. WARNING: (only PM3256U)

Any interruption of the protective earth conductor inside or outside the instrument, or disconnection of the protective earth terminal, is likely to make the instrument dange-

1

Ŧ

rous.

Intentional interruption is prohibited.

WARNING: (only PM3256)

It must be born in mind that in all measurements the frame ground of the oscilloscope is raised to the same potential as that of the measuring ground probe connection.

Neither the probe's ground lead nor the frame ground shall be connected to live poten-

tials.

0.5.5. Components which are important for the safety of the instrument may only be renewed by components obtained through your local Philips organisation. (See also section 6).

0.5.6. After repair and maintenance in the primary circuit, safety inspection and tests, as mentioned in Section 6 have to be performed.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel: 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

1. CHARACTERISTICS

A. Performance Characteristics

- Properties expressed in numerical values with stated tolerance are guaranteed by PHILIPS.
 Specified non-tolerance numerical values indicate those that could be nominally expected from the mean of a range of identical instruments.
- This specification is valid after the instrument has warmed up for 30 minutes (reference temperature 23°C).

B. Safety Characteristics

This appartus has been designed and tested in accordance with:

PM3256U : Safety Class I requirements of IEC Publication 348 Safety Requirements for Electronic

Measuring Apparatus, UL 1244 and CSA 556B for "U" instruments.

PM3256 : Safety Class II requirements of IEC Publication 348, Safety Requirements for Electronic

Measuring Apparatus for "Double Insulated" instruments.

The instrument has been supplied in a safe condition.

C. Initial Characteristics

- Overall dimensions:

Height : 143mmWidth : 305mm

- Depth : 418mm incl. cover and feet

— Maximum Weight (Mass) : 90N (≈ 9 kg)

- Operation position:

a) Horizontally on bottom feet

b) Vertically on rear feet

c) With the tilting bracket folded down (sloping position)

1.1. CATHODE RAY TUBE

C.R.T. type Rectangular tube face, mesh type,

post-accelerator, metal-backed phosphor

Total acceleration 10 kV

Graticule Internal 8 x 10 div.

each equals 8 mm, dotted lines on 1,5 and 6,5 div. from the top of the graticule, for rise-time measurements

Trace rotation Screwdriver adjustment (front panel)

1.2. **VERTICAL OR Y-AXIS**

Display modes

Polarity inversion

Chopping frequency

Dynamic range 10 MHz

Two identical channels

- Channel A only

- Channel B only - Trigger view only

- Channels A and B chopped

- Channels A and B and trigger view chopped

- Channels A and B and trigger view alternated

- Channels A and B alternated

Channels A and B added

Channels A and B can be inverted

 $\approx 500 \text{ kHz}$

40 dB at 1 MHz after adjustment at low frequency

24 div. 7 div.

DC: 0 ... ≥ 75MHz* AC: 2Hz ... ≥ 75MHz*

* 2, 5, 10mV: DC: 0 ... ≥ 70MHz AC: 2Hz ... ≥ 70MHz

 \leq 4,7ns (in settings 2, 5, 10mV: \leq 5ns)

Rise time

Bandwidth

CMRR

Pulse aberrations, input rise time

 \leq 1ns, + and -2,5 div. from screen centre

75 MHz

settings: 20 mV/div ... 10 V/div 2 mV/div ... 10 mV/div

Deflection coefficients

Non-calibrated continuous control

Vert. positioning Input impedance

 \leq 3 % (\leq 4 % p-p) \leq 4 % (\leq 5 % p-p) \leq In INVERT mode additional 1%

2 mV...10 V/div calibrated in 1-2-5 steps.

1:>2.5

+ or -8 div. from screen centre

1 M Ω (± 1 %) in parallel with 25 pF (± 2.5 pF). Input capacitanes are adjusted in such a way that 10: 1 attenuator probe after being adjusted at one channel can be applied to the second channel or ext. trig. input without readjustment.

AC, 0, DC

400V (d.c. + a.c. peak)

Test voltage for 1 min. 570V (a.c./r.m.s.) 50Hz

± 3 %

 \leq 0.2 div.

 \leq 0.2 div; except for 10 mV/div. \rightarrow 20 mV/div.: \leq 0.4 div.

≤ 0.5 div. (only in settings 20 mV/div...10 V/div)

40 dB at 10 MHz

Built-in delay-line permits viewing at leading edge of

input signal

Input coupling

Max. rated input voltage

Deflection accuracy

Trace jump: continuous control

attenuator control

normal/invert control

Cross talk

Visible signal delay

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554

Email:- enquiries@mauritron.co.uk

1.3. TRIGGER VIEW

Bandwidth 50 MHz (INT.) 60 MHz (EXT.)

Sensitivity A or B Settings of AMPL. /DIV switches.

Sensitivity EXT. : 200 mV/div. + or -3 % EXT. TTL : 200 mV/div. + or -3 %

EXT. TV (TV option) : 200 mV/div. + or -3 %

Pulse aberrations via EXT. \leq 6 % (\leq 8 % p-p)

Time delay between vertical input displayed via A or ≤ 10 ns

B and external input displayed via trigger view

Time delay between vertical input displayed via A or B and trigger view of A or B

≤ 15 ns

1.4. HORIZONTAL OR X-AXIS

Display – Main time-base

Main time-base intensified

Delayed time-base

 Alternated between main time-base intensified and delayed time base

X-Y operation

Trace separation adjustment in alternate MTB: between 0 and +2 div. and

time-base mode DTB: between 0 and -2 div.

Horizontal positioning range + or -5 div.

Intensified ratio Internal adjustable

1.4.1. Triggering of the main time-base

Source Y_A, Y_B, composite, external and line

Coupling DC, LF, HF, TTL

Optional TV or ECL instead of TTL

Mode Automatic, normal

Trigger bandwidth in normal mode DC: 0 ... 100 MHz

LF: 2 Hz ... 25 kHz HF: 25 kHz ... 100 MHz

ΠΓ. 25 KH2 III 100 KH12

External 100 mV \int 10 MHz Internal 1,2 div. \leq 100 MHz \leq 100 MHz

Internal TTL TTL level in 2 V/div.

External TTL TTL level with 10: 1 probe connected

Fixed level + or -

Level range

In normal internal mode + or -8 divIn normal external mode + or -1,6 V

In auto mode

In TTL mode and in optional TV and ECL mode

Triggering slope

External input impedance 1 M Ω ± 1 % in parallel with 25 pF ± 2,5 pF

(See also for additional information the channel input impedance)

400V (d.c. + a.c. peak)

Test voltage for 1 min. 570V (a.c./r.m.s.) 50Hz.

Related to peak-to-peak value of the trigger signal

Max, rated input voltage

1.4.2. Main time-base

Time coefficients

Continuous non-calibrated control

Magnifier

Coefficients error

Mode

Variable hold-off time

Not trig'd LED

Triggering of the delayed time-base 1.4.3.

Source

Coupling

Trigger bandwidth

Trigger sensitivity

Level range

Triggering slope

1.4.4. Delayed time-base

Operation

Time coefficients

Continuous non-calibrated control

Coefficients error

Delay time

Incremental delay time error Delay time jitter

X-Y-OPERATIONS

1.5.

Mode

Deflection coefficients

Bandwidth starting at 8 div at 1 kHz DC:

Phase shift between X and Y ampl.

Dynamic range

0.5 s/div ... 50 ns/div

22 calibrated steps in 1-2-5 sequence

1:>2.5

x10 calibrated

 \leq 3 % (\leq 5 % including magn.)

AUTO, TRIG., SINGLE

The sweep hold-off time can be varied by a factor

Ġ.

1

of 10

LAMP is on when there is no trigger signal.

In single shot mode LAMP is on when sweep is

waiting for trigger signal.

 Y_A, Y_B

DC:

LF:

HF:

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor

Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554

Email:- enquiries@mauritron.co.uk

LF: HF: DC, LF, HF

0 ... 100MHz

2Hz ... 25kHz

25kHz ... 100MHz

≤ 10MHz 0.5 div

≤ 100MHz 1,3 div.

+ or -8 div

+ or -

Delayed time-base starts either immediately after delay time or is triggerable after the delay time

1 ms/div ... 50 ns/div

14 calibrated steps in 1-2-5 sequence

1:>2.5

 \leq 3 % (\leq 5 % including magn.)

Variable between 0.00 and 10.00 div. of the main

time base with a minimum of 60ns

0,5% (measured at 15°C - 25°C)

1:>20.000

YA, YB, External, Line

In channel A or B mode as selected by A or B

AMPL./div ± 10 %

In external mode 0,2 V/div. ± 10 %

In line mode 8 div. at 50 Hz

DC ... 100kHz (-0,5 dB)

2 Hz ... 25 kHz

25 kHz ... 100 kHz

≤ 30 at 100 kHz in DC mode

20 div at 100 kHz

1.6. CALIBRATION UNIT

Amplitude

Frequency

 $1,2 V_{p-p} \pm 1 \%$

approx. 2 kHz square-wave, output is short-circuit

protected

1.7. POWER SUPPLY

Mains voltage ranges

Power consumption

a.c.:

battery supply:

110 V + 20 %, -10 %

220V, 240 V ± 10 %

20 V...28 V

Mains frequency

50 Hz...400 Hz ± 10 %

38 W from a.c.

30 W from battery supply, 1,5 A max.

1.8. Z-MOD.

TTL compatible

"1" is normal intensity

"0" is blanked

1.9. OPTIONS

Automatic TV trigger Automatic ECL trigger Sweep out MTB Gate out MTB Gate out DTB

1.10. ENVIRONMENTAL CHARACTERISTICS

The environmental data mentioned in this manual are based on the results of the manufacturer's checking procedures.

Details on these procedures and failure criteria are supplied on request by the PHILIPS organisation in your country, or by PHILIPS, INDUSTRIAL AND ELECTRO—ACOUSTIC SYSTEMS DIVISION, EINDHOVEN, THE NETHERLANDS.

Ambient temperature

Rated range of use

Limit range of operation

Storage conditions

Humidity

Bump

0 °C ... +40 °C*

-10 °C ... +55 °C*

-40 °C ... +70 °C

According to IEC 68 Db

30 g half sine, 11 ms duration, 3 shocks per direction

with a total of 18

Vibration

15 minutes in each of 3 directions, 5-55 Hz;

0,7 mm_{D-D} and 4 g max. acceleration

Altitude

Limit range of operation

Limit range of transport

Recovery time

5000 m (in open air)

15000 m (in open air)

30 minutes if amb. temp. is raised from -10 °C to

30 fillitates if airib. temp. is raised from —

+ 20 °C at 60 % relative humidity

Meets VDE 0871 and VDE 0875 grenzwertklasse B

Electromagnetic interference

* When operated with pouch:

Ambient temperature

Rated range of use

0 °C ... +30 °C

Limit range of operation -10 °C ... +45 °C

Fig. 2.1 Blockdiagram.

2. CIRCUIT DESCRIPTION

2.1. BLOCK DIAGRAM DESCRIPTION (see Fig. 2.1.)

2.1.1. Vertical Deflection

The vertical deflection system is located on the PRE-AMPLIFIER + TRIGGER UNIT A3, DELAY LINE UNIT A8 and FINAL AMPLIFIER UNIT A5.

The instrument has two identical vertical channels, A and B: only channel A is described.

Channel A vertical input signal is fed via the SIGNAL COUPLING switch AC-0-DC (S17) to the HIGH IMPEDANCE ATTENUATOR, which is controlled via reed relays by the AMPL/DIV switch. Attenuation factors of x1, x10 and x100 are achieved in this portion of the attenuator circuit.

The IMPEDANCE CONVERTER adapts the output of the HIGH IMPEDANCE ATTENUATOR to the input of the LOW IMPEDANCE ATTENUATOR, which is also controlled via reed relays by the AMPL/DIV switch to give attenuatons of x1, x2 and x5.

For the three most sensitive ranges (2-5-10 mV/div), the signal is amplified by a factor of 10. This is achieved in the AMPLIFIER circuit controlled by the AMPL/DIV switch.

Via the CONTINUOUS CIRCUIT, controlled by the AMPL/DIV continuous control, the signal is fed to the AMPLIFIER circuit. The AMPLIFIER stage converts the voltage signal into a current signal. From the TRIG. PICK-OFF of the AMPLIFIER, the channel A trigger signal is routed to both time-bases.

Returning to the display signal path, the output signal of the AMPLIFIER is fed to an integrated circuit comprising the vertical POSITION, the NORMAL/INVERT circuit and the VERTICAL CHANNEL SWITCH circuit. The vertical POSITION control circuit allows vertical shift of the c.r.t. trace. Incorporated in the POSITION control, the PULL TO INVERT switch controls the NORMAL/INVERT circuit.

The VERTICAL CHANNEL SWITCH is controlled by the vertical display mode switches A, ALT, TRIG VIEW, CHOP, ADD, B, via the VERTICAL CHANNEL SELECTION LOGIC circuit. In ALT mode, the A and B channel switching is controlled by the ALT pulse derived from the HORIZONTAL CHANNEL SELECTION LOGIC.

In the CHOP mode, the swiching period between channels A and B is blanked by the Z amplifier (via the Z-logic) controlled by the CHOPPER BLANKING signal derived from the VERTICAL CHANNEL SELECTION LOGIC.

The TRIG VIEW signal, derived from the MTB trigger INTERFACE, can also be selected by the vertical display mode switches to enable display of the MTB trigger signal.

When the pushbutton ADD is depressed, the input signals of both vertical channels are added.

From the VERTICAL CHANNEL SWITCH, the selected vertical signal is fed via the DELAY LINE DRIVER to the DELAY LINE.

In the DELAY LINE DRIVER the current signal is converted to a voltage signal and the common-mode signals are also suppressed in this stage.

The COMP. TRIG. signal is routed to the TRIGGER INPUT STAGE of the time-base for composite triggering. From the DELAY LINE DRIVER, the adapted output signal is fed to the DELAY LINE, which gives sufficient delay to ensure that the steep leading edges of fast signals are displayed.

To reduce and to compensate for interference and distortion originating in the DELAY LINE, the signal is fed to the DELAY LINE COMPENSATION CIRCUIT before being applied to the FINAL VERTICAL AMPLIFIER. The vertical distance on the screen between the traces of the two time-bases in the ALT TB mode, is controlled by the trace separation signal applied to the FINAL VERTICAL AMPLIFIER.

The output signal of the FINAL VERTICAL AMPLIFIER feeds the vertical deflection plates of the c.r.t.

2.1.2. Horizontal Deflection

The triggering circuits for both the MTB and the DTB are located on the PRE-AMPLIFIER — TRIGGER UNIT A3. Both the main time-base and the delayed time-base are located on the TIME—BASE UNIT A2. The FINAL HORIZONTAL AMPLIFIER and the Z-AMPLIFIER are situated on the FINAL AMPLIFIER UNIT A5.

The trigger signals derived from the AMPLIFIER circuits of channel A and B, and from the DELAY LINE DRIVER are routed to the TRIGGER INPUT STAGE. These signals are in current form, which makes them less sensitive to interference; often a problem with long signal wires. In the TRIGGER INPUT STAGE, these current signals are converted into voltage form, and fed to the TRIGGER SELECTION CIRCUIT.

The EXT trigger signal from the EXT input socket, and the LINE signal from the LINE TRIGGER PICK-OFF are fed to the TRIGGER AMPLIFIER INPUT STAGE via the EXT-LINE TRIGGER INPUT circuit.

In this stage, the EXT and LINE trigger signals are converted to symmetrical current signals and adapted to the A, B and COMP signals.

The EXT-LINE TRIGGER INPUT stage is controlled by the EXT pushbutton and LINE (pushbuttons B and EXT depressed simultaneously).

In addition, the A and B trigger signals are fed to the TRIGGER SELECTION CIRCUIT of the DTB.

2.1.2.1, Main time-base

The trigger signals are selected by the MTB trigger source switches A, B, EXT, COMP, LINE, which control the TRIGGER SELECTION CIRCUIT.

Common-mode interference is reduced by using a symmetrical configuration for the TRIGGER SELECTION CIRCUIT output signal. This output current signal is fed to the TRIGGER AMPLIFIER INPUT STAGE.

This stage converts the symmetrical current signal to an asymmetrical voltage signal, which is fed to the INTERFACE via the TRIGGER COUPLING stage. The coupling is controlled by the MTB trigger coupling switches DC, LF, HF.

Several signals are produced by the INTERFACE, e.g. X DEFL, TRIG VIEW and AUTO/TV.

The X-DEFL signal is an asymmetrical signal that is fed to the X DEFLECTION AMPLIFIER.

The symmetrical TRIG VIEW signal is routed to the VERTICAL CHANNEL SWITCH; the asymmetrical AUTO/TV signal is routed to the AUTO and TV CIRCUIT.

The FINAL TRIGGER AMPLIFIER comprises the SLOPE circuit under the control of the SLOPE switch incorporated in the LEVEL control. It permits positive and negative triggering.

The output of the FINAL TRIGGER AMPLIFIER is fed to the CURRENT-VOLTAGE CONVERTER. In the AUTO CIRCUIT, the TOP DETECTOR detects the amplitude of the AUTO SIGNAL. When in the AUTO Mode, the LEVEL range is determined by this detected amplitude. The MULTIPLEXER is an electronic switch which, depending on the selected mode, selects the different ranges for the LEVEL control.

Each mode has its own specific LEVEL range, for example:

TTL : \pm 0,7 divisions

AUTO : determined by TOP DETECTOR

TRIG: ±8 divisions

X DEFL : 0 divisions (LEVEL inoperative)

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-35254
Email:- enquiries@mauritron.co.uk

If the instrument is provided with the TV option, the TTL pushbutton will function as the TV mode switch. The TV trigger signal is fed to the TV CIRCUIT.

When the TV pushbutton is selected, the TV CIRCUIT is inserted between the INTERFACE and the CURRENT-VOLTAGE CONVERTER of the MTB.

In the TV mode, the FINAL TRIGGER AMPLIFIER is switched off and also the LEVEL control is inoperative, a fixed trigger level being set.

For FRAME and LINE synchronisation, a frame or line filter is selected with the MTB TIME/DIV switch. Via the CURRENT-VOLTAGE CONVERTER, the trigger signal is routed to the SWEEP-GATING LOGIC.

The SWEEP-GATING LOGIC determines the start of the MAIN TIME-BASE GENERATOR sweep.

The SWEEP-GATING LOGIC is controlled by signals derived from the TRIGGER MODE SELECTION, the HOLD-OFF CIRCUIT and the CURRENT-VOLTAGE CONVERTER.

The TRIGGER MODE SELECTION is controlled by the MTB trigger mode selection pushbuttons AUTO, TRIG, SINGLE. In the AUTO mode, the MAIN TIME-BASE GENERATOR runs automatically when no trigger pulses are available.

In the TRIG mode, the MAIN TIME-BASE GENERATOR must be normally triggered by trigger signals derived from the CURRENT-VOLTAGE CONVERTER.

If the SINGLE pushbutton is selected, the SWEEP-GATING LOGIC will start the MAIN TIME-BASE GENERATOR for one sweep.

The MAIN GATE OUT signal (optional) is taken from the SWEEP-GATING LOGIC

This MAIN GATE OUT signal output is at logic H during the MTB sweep and L for other conditions.

The NOT TRIG LED lights up when the MTB is not triggered.

The MAIN TIME-BASE GENERATOR produces a sawtooth voltage, the repetition time being controlled by the TIME/DIV switch. To enable the capacitors that determine the repetition rate sufficient time to discharge, the HOLD-OFF CIRCUIT is employed. This time is adjustable with the HOLD-OFF control.

After the HOLD-OFF time, the HOLD-OFF CIRCUIT sends a signal to the SWEEP-GATING LOGIC, which in turn starts the next time-base sweep.

The repetition rate of the MTB sawtooth voltage is continuously variable with the continuous control CAL. The output sawtooth voltage from the MTB is fed to the HORIZONTAL CHANNEL SWITCH circuit.

2.1,2.2. Delayed time-base

Channel A and B trigger signals are fed to the DTB TRIGGER SELECTION CIRCUIT via the TRIGGER INPUT STAGE

Trigger selection is controlled by the DTB trigger source selection pushbuttons A, B.

The symmetrical output current signal from the TRIGGER SELECTION CIRCUIT is converted to an asymmetrical voltage signal in the TRIGGER AMPLIFIER INPUT STAGE. This signal is then fed via the TRIGGER COUPLING circuit to the FINAL TRIGGER AMPLIFIER. Trigger coupling is selected by the DC, LF, HF pushbuttons.

The FINAL TRIGGER AMPLIFIER comprises the LEVEL/SLOPE controls and their associated circuits. The asymmetrical input voltage signal is converted to an asymmetrical current signal, which is fed to the CURRENT-VOLTAGE CONVERTER.

The output of the CURRENT-VOLTAGE CONVERTER and the output of the COMPARATOR are fed to the SWEEP-GATING LOGIC.

The COMPARATOR circuit compares the amplitude of the MTB sawtooth voltage with a d.c. voltage selected by the DELAY TIME control. If the amplitude of the MTB sawtooth is equal to the d.c. voltage, the COMPARATOR produces a signal that is then fed to the SWEEP-GATING LOGIC.

If the MTB pushbutton of the delayed time-base trigger source switches is depressed, the SWEEP-GATING LOGIC starts the DELAYED TIME-BASE GENERATOR immediately after the DELAY TIME selected.

If the A or B pushbutton is depressed, the SWEEP-GATING LOGIC detects the end of the delay time but waits for a trigger signal (A or B) from the CURRENT-VOLTAGE CONVERTER, after which the TIME-BASE GENERATOR starts.

The DELAYED GATE OUT is taken from the SWEEP-GATING LOGIC when this option is available. The output is at logic H during the DTB sweep and L for other conditions.

The DTB sawtooth voltage is produced in the DELAYED TIME-BASE GENERATOR under the control of the TIME/DIV switch and its continuous CAL control.

If the UNCAL LED lights up, it indicates that the continuous controls of one or both time-bases are not in the CAL position.

2.1.2.3. Horizontal channel selection and final horizontal amplifier

In the X DEFLECTION AMPLIFIER the X DEFL signal derived from the MTB INTERFACE is amplified and fed to the HORIZONTAL CHANNEL SWITCH circuit.

The HORIZONTAL CHANNEL SWITCH selects the X DEFL, MTB and/or DTB signals under the control of the HORIZONTAL CHANNEL SELECTION LOGIC, which in turn is controlled by the horizontal display mode switches X DEFL, DTB, ALT TB, MTB.

If the X DEFL pushbutton is selected, the signal chosen by the MTB trigger source selection switches A, B, EXT, LINE, will determine the horizontal deflection.

Horizontal deflection is performed by the sawtooth output of the DELAYED TIME-BASE GENERATOR if the DTB pushbutton is selected.

Similarly, the MTB pushbutton selects the MAIN TIME-BASE GENERATOR sawtooth for horizontal deflection.

If the ALT TB pushbutton is selected, the HORIZONTAL CHANNEL SWITCH alternates from the MTB saw-tooth to the DTB sawtooth voltage at the end of everty time-base sweep.

The selected signal is routed to the FINAL HORIZONTAL AMPLIFIER via the HORIZONTAL PRE-AMPLIFIER. This pre-amplifier comprises the X POS potentiometer for horizontal shift of the trace, and its associated circuit. It also includes the X MAGNIFIER for x10 magnification of the horizontal deflection. If the X MAGN push-pull switch, incorporated in the X POS control, is pulled for x10 magnification the MAGN LED lights-up.

The signal is converted into symmetrical current form in the HORIZONTAL PRE-AMPLIFIER and fed to the FINAL HORIZONTAL AMPLIFIER to drive the horizontal deflection plates of the c.r.t.

2.1.3. CRT Display Section

The Z-LOGIC and Z PRE-AMPLIFIER stages are part of the TIME-BASE UNIT A2.

The Z-AMPLIFIER, CALIBRATION GENERATOR and TRACE ROTATION CIRCUIT are located on the FINAL AMPLIFIER UNIT A5. The supply voltages for the c.r.t. are derived from the POWER SUPPLY UNIT A6.

The Z-LOGIC receives the following inputs to drive the Z PRE-AMPLIFIER and Z-AMPLIFIER:

- The external Z-MOD signal applied to the BNC connector on the rear panel. This Z-MOD signal must be TTL-compatible. An L level in gives trace blanking.
- Two signals produced in the MTB and DTB to unblank the trace during the sweeps.
- The chopper blanking signal from the VERTICAL CHANNEL SELECTION LOGIC to blank the trace during switching between channels A and B in the chopped mode.

The output signal from the Z-LOGIC that determines trace blanking or unblanking is routed to the Z PRE-AMPLIFIER. Here the trace intensity is determined by the front-panel INTENS potentiometer setting. In the Z AMPLIFIER, after amplification the Z-signal is split into two paths, an I.f. + d.c. and an h.f. path, because of the potential difference that exists between the Z AMPLIFIER output and the c.r.t. cathode (-1500 V).

The h.f. signals are fed via a high voltage capacitor directly to grid G1 of the c.r.t.

However, the d.c. and l.f. signals are blocked by this capacitor. These signals therefore are used to modulate an oscillator frequency, which is then passed via another high voltage capacitor and demodulated in the DEMO-DULATOR stage to retrieve the original signal.

The original h.f. and d.c. + l.f. signals are recombined on the grid G1

The c.r.t. supply voltages are derived from the 1500 V GENERATOR.

The CRT CIRCUIT comprises the FOCUS control circuit for the electron beam, and the preset potentiometers for GEOMETRY and ASTIGMATISM.

The post-acceleration anode potential of 8,5 kV is produced in the HV MULTIPLIER and derived from the -1500 V cathode supply.

A preset front-panel control TRACE ROTATION enables the trace to be aligned in parallel with the graticule lines. This preset controls the TRACE ROTATION CIRCUIT that drives the trace rotation coil situated on the c.r.t.

2,1,4. Power Supply

The instrument may be powered either by an a.c. supply voltage or by a 24 V battery supply voltage.

By means of the MAINS VOLTAGE ADAPTOR the instrument can be set to the local mains voltage. This circuit incorporates a fuse for the a.c. supply.

This a.c. supply voltage is fed via the double-insulated mains transformer to the full-wave RECTIFIER.

A LINE trigger signal at mains frequency is fed via the LINE TRIGGER PICK-OFF circuit to the EXT-LINE TRIGGER INPUT.

From the RECTIFIER the unregulated d.c. supply is fed to the CONVERTER DRIVER. When a 24 V battery supply is used, this is fed via the DC PROTECTION + FUSE stage to the CONVERTER DRIVER. This protection stage safeguards the instrument against reversed polarity of the battery supply source.

The CONVERTER DRIVER stage drives the CONVERTER transformer. The rectified +14 V output-voltage is fed back as control via the REGULATOR + PROTECTION circuit.

In this way, the voltages on the secondary windings of the CONVERTER transformer are stabilised. After rectification and smoothing, the stabilised supply voltages are fed to the various electronic circuits in the instrument

2.2 CIRCUIT DESCRIPTION OF THE VERTICAL SECTION

As the channel A and B attenuators are almost identical, only the channel A is described.

2.2.1. Input Signal Coupling (see Fig. 8.2)

Input signals applied to input socket A (X2) can be either a.c.-coupled, d.c.-coupled or internally disconnected, depending on the coupling mode switch position of S17 (AC-O-DC).

In the AC position (S17A points 2 and 3) a blocking capacitor (C694) is inserted in the signal path R758// C695-C694-R755-R728 which prevents the d.c. component being applied to the attenuator. In this mode, the lower frequency limit is 2 Hz and some pulse droop may occur when low-frequency square-wave signals are displayed.

The HF part of the input signal is applied to the attenuator via C697.

When DC is selected (S17A points 1 and 2 and S17B points 4 and 5) the complete input signal (a.c. + d.c. components) is fed to the attenuator input via R758, R760 and R728. Thus the full bandwidth of the oscilloscope is available. In this mode the HF part of the input signal is applied to the attenuator via C697.

If the 0 pushbutton is depressed, the input signal is isolated from the attenuator and the attenuator input is earthed via R728 and S17B points 5 and 6, as a reference for calibration or trace centreing, etc. Blocking capacitor C694 is discharged via R757, R728 and S17B points 5 and 6 when 0 is selected.

2.2.2. Attenuator and Impedance Converter (see Fig. 2.2. and 8.2)

The attenuator consists of a triple high-impedance voltage divider, an impedance converter and a low-impedance voltage divider.

High-impedance and low-impedance attenuator

The overall attenuation is determined by the combinations of the selected sections of the high- and low-impedance attenuator.

The voltage dividers of the high-impedance attenuator are controlled by reed relays.

Reed relay K653 is activated in the AMPL/DIV (S9) positions 2 mV/DIV...100 mV/DIV (x1 stage).

In the 0,2 V/DIV...1 V/DIV positions of S9, reed relays K651, K652 are activated. The input signal is x10 attenuated by voltage divider R674, R704.

When positions 2 V/DIV...10 V/DIV are selected, reed relays K654, K656 are activated, and the input signal is x100 attenuated by voltage divider R759, R732.

The low-impedance attenuator reduces the gain by x1, x2 and x5, using voltage dividers R723, R764, R763, R767 and R766, selected by FET switches D653

In the x1 positions the FET switch D653 (9, 11, 12) is conductive (x5 attenuation).

In the x2 positions D653 (1, 3, 4) conducts (x1 attenuation) and in the x5 positions, D653 (5, 6, 8) (x 2,5 attenuation).

The AMPL/DIV switch S9 controls the FET switches via resistors R721, R722 and R684. These resistors have high-ohmic values to eliminate parasitic capacitances on the FET gates, to prevent loss of bandwidth. Trimmers C686 and C662 are adjustable to obtain constant input capacitance in all attenuator settings.

The high-impedance attenuator sections are made independent of input frequency (i.e. the capacitive attenuation for a.c. signals is adjusted to the resistive attenuator for d.c. signals) with trimmers C687, C676 and C663.

Impedance convertor (see Fig. 2.2 and 8.2)

The input signal is fed via FET V661 (in source-follower configuration), transistors V666, V667 and V668 to the low-impedance attenuator.

The special type FET V661, with very fast rise-time response, reduces the source impedance which prevents bandwidth loss.

The FET consists of a double gate. One gate is not used and connected to the drain via R710.

The input signal is applied to the other gate.

The diodes inside this FET protect the input source follower of the impedance convertor against excessive voltage swings.

The l.f. part of the signal is fed to the inverting input, pin 2, of D652 via the LF gain potentiometer R719. This l.f. signal is compared with a d.c. voltage on pin 3 of D652 that is adjustable with R653 (attenuator balance)

The output of D652 (frequencies up to 300 Hz, determined by R683 and C661) is routed to the voltage divider R676, R678.

The input signal of the impedance converter is fed to the other end of the voltage divider.

The average value of both signals is fed to the inverting input of the correction amplifier D651.

To reduce distortion originated in the current source V662, transistor V660 is mounted between the low-ohmic output of D651 and the base of V662.

The collector of V660 is high-ohmic, so the distortion on the base and on the emitter of V662 is equal and in antiphase, so it is eliminated.

If the feedback I.f. signal is, for example, too small, the correction amplifier will drive transistor V662 so that the amplitude of the I.f. part of the input signal is compensated.

Potentiometer R719 permits adjustment of the l.f. feedback gain.

The d.c. offset of the operational amplifiers D652, D651 can be compensated by preset R653 (A ATT. BAL.).

IMPEDANCE CONVERTOR

Fig. 2.2 Impedance convertor.

Continuous Control Circuit (see Fig. 2.3 and 8.2)

The output signal of the low-impedance attenuator is fed to the integrated circuit D654 (3,6) via the continuous circuit comprising FET D653 (13, 14, 16).

This FET is located between the signal path, pin 6 of D654 and earth, via resistor R686, This resistor compensates the output impedance of the low-impedance attenuator (50 Ω) and the impedance of the selected FET switch (30 Ω), as shown in Fig. 2.3.

This compensation is necessary to obtain an equal bias current for the inputs (6,3) of integrated circuit D654. The continuous control R7 drives the FET (pin 14) more, or less conductive via transistor V669 and resistors R724, R688, R687.

In the CAL position of the CONT. control R7, the FET drain-source junction (pin 13 and 16) is at a high ohmic level and thus the signal is not attenuated.

The CONT. control R7 is connected between +5 V and transistor V655, which functions as a voltage source. This also supplies the CONT. control (R8) of channel B.

If R7 is not in the CAL position, the current I increases (Fig. 2.3). This increases the gate-source voltage of the FET, which results in a low drain-source resistance. The lower drain-source resistance reduces the amplitude of the signal fed to pin 6 of integrated circuit D654.

The CAL position of the CONT. control can be adjusted with the CAL CONT. potentiometer R743 that controls the current I through transistor V663. The CONT. control range can be adjusted with potentiometer R750.

Fig. 2.3. Continuous control circuit

2.2.3. Amplifier

The channel A trigger signals for both time-bases are picked-off from pins 14 and 15 of integrated circuit D654. The circuit of D654 (known as a Cherry-stage) converts the voltage input signal into a current output signal (pins 12 and 13). Transistor V653 serves as a current source for D654.

In the three most sensitive AMPL/DIV positions (2,5,10 mV/DIV) the an plifier has a gain of ten, controlled via D654, pin 2, from the AMPL/DIV switch.

Potentiometer R672 controls the current source circuit to give adjustment of the x1/x10 gain balance. The x10 gain of the amplifier in the AMPL/DIV positions 2,5,10 mV/DIV can be adjusted by potentiometer R727.

The supply voltage of D654 is applied to pin 9 via transistor V654.

In this way the temperature drift in the x10 gain mode is compensated to prevent bandwidth loss. The gain x1 of channel B can be adjusted by potentiometer R578 to equalise the x1 gain of both vertical channels.

From the amplifier D654 (pins 12 and 13) the output current signal is routed to the vertical channel switch via transistors V656 and V658. These transistors function as a current mirror and also compensate for trace shift when the signal is inverted (POSITION control pulled). Potentiometer R701 (NORMAL/INVERT BAL) provides the shift compensation.

VERTICAL DISPLAY MODE SWITCH	X501					D806				A B D804		TRIG VIEW	
S1	В4	Α1	А3	Α4	В2	A2	P5	P6	P7	P9	P8	P11	Р3
Α	*	*	0	1	0	1	1	0	0	11	1	0	0
В	0	1	1	0	0	1	0	1	0	1	0	1	0
TRIG VIEW	1	0	1	0	0	1	0	1	1	0	0	0	1
СНОР	0	1	1	1	1	1	1∻0	0→1		1	1+0	0→1	0
	}						0→1	1÷0	0	'	0+1	1∻0	0
ALT	0	1	1	1	0	0	1+0	0+1		1	1+0	0+1	0
							0→1	1÷0	0	'	0+1	1 > 0	0
ADD	0	1	0	0	0	1	1	1	0	1	1	1	0
CHOP + TRIG VIEW	1	1	1	1	1	1	1 0 0	0 1 1	1 1 0	0 0 1	1 0 0	0 0 1	0 1 0
ALT+ TRIG VIEW	1	1	1	1	0	0	1 0 0	0 1 1	1 1 0	0 0 1	1 0 0	0 0 1	0 1 0

* = don't care= vertical channel is selected

Fig. 2.4 Vertical channel selection logic

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

7

2.2.4. Vertical Channel Selection Logic

Vertical channel switches D802 and D803 are controlled by the vertical channel selection logic (D804, D806, D807) which, in turn, is controlled by the vertical display mode switches: A, ALT, TRIG VIEW, CHOP, ADD, B.

These switches control the vertical logic via connectors X204 (on SWITCH UNIT A102) and X501.

Positive logic is used in the digital circuits; i.e. '1' is +5 V (H) and logic '0' is 0 V (L).

The table, Fig. 2.4., indicates the logic used for vertical mode selection.

Selection of the various vertical display mode pushbuttons has the following result:

A depressed: Pin 8 of D804 is H in this mode, opening the signal path for channel A in integrated circuit

D803.

Signals on D803 pins 5 and 6 are routed to output pins 13, 14 of D803.

B depressed: Pin 11 of D804 is at H level in this mode opening the signal path for channel B in integrated

circuit D803.

Signals on D803 pins 3 and 4 are routed to the output (pins 13,14) of D803.

TRIG VIEW

depressed: Pin 3 of D804 is H in this mode, opening the path for trigger view signals in integrated

circuit D802.

The trigger view signal from the INTERFACE of the trigger amplifier (V861, V862) is

routed to D802, pins 5 and 6, via transistors V801, V802.

In this mode, the TRIG VIEW signal is fed to the DELAY LINE DRIVER via the outputs

(13,14) of D802.

CHOP depressed: Pins 8 and 11 of D804 are alternately H and L at a fixed frequency of 500 kHz approx.,

generated by the chopper oscillator, consisting of transistor V804 and two NAND gates of

D807 (11,12,13)(4,5,6) and capacitor C832.

If D804-6 is at H level, transistor V803 starts the chopper oscillator. Transistor V804 is

blocked and C832 charges via R861.

If pins 12 and 13 of D807 are both H, its output goes to an L level, giving an H on pin 6 of D807. This H signal is fed back to the base of V804, which conducts and discharges

C832 to give an L on D807-12.

Pin 6 of D807 goes L and blocks transistor V804, etc.

The chopper signal is applied to the clock inputs of the flip-flops D806 via D807, pins 10

and 8. The alternate pulse applied at D807-9 is overruled.

The J and K inputs (pins 2 and 3) and the preset and clear inputs (pins 4 and 15) of D806 are at level H, so this flip-flop switches on the chopper frequency applied to the clock

input.

The input pin 10 of D806 is L and pin 14 is H, so output pin 7 is L in this mode, resulting

in a level L on D804-3 (TRIG VIEW is off).

ALT depressed: In the ALT mode, the chopper oscillator is switched off (D804-6 = L).

However, D807-10 is H, which means that the alternate pulses from the HORIZONTAL CHANNEL SELECTION LOGIC are applied to the clock inputs of flip-flops D806 (pins 1

and 13), which make the D804 outputs (pins 8 and 11) alternately H and L.

ADD depressed: With ADD selected, D804 outputs 8 and 11 are both at H level.

Channel A and B signals are selected via pins 10 and 11 of D803, and are added in

integrated circuit D803.

CHOP+TRIG VIEW

depressed: Vertical channels A, B and TRIG VIEW are displayed, the switching between these

channels is being determined by the chopper oscillator. The chopper frequency is applied

to the clock inputs of flip-flops D806 (pins 1 and 13).

The outputs of D804 (pins 8,11,3) are alternately H and L, controlled by the clock

frequency (see Fig. 2.4.).

The display sequence is as follows:

Channel A TRIG VIEW Channel B

ALT+TRIG VIEW

depressed:

Vertical channels A, B and TRIG VIEW are displayed, and in this mode the chopper oscillator is switched off, so D807-10 is at level H.

The alternate pulses are applied to the clock inputs of flip-flop D806, which control the switching between the three vertical channels. The display sequence is as follows:

Channel A TRIG VIEW Channel B

2.2.5. Vertical Channel Switch

The VERTICAL CHANNEL SWITCH consists of the two integrated circuits D802 and D803 (000020), this IC being specially designed for application in vertical deflection systems.

This IC enables the following functions:

- two differential input signals can be chopped (CHOP),
- one or two differential input signals can be selected (A and/or B).
- two differential input signals can be added (ADD),
- normal/invert mode is available per channel (PULL TO INVERT),
- vertical Y shift is available per channel (POSITION).

The 000020 is controlled by the outputs of D804 (pins 8,11,3) as follows:

000	020	OUTPUT pins				
1 .	ins					
10	11	13 and 14				
0	0	NO				
0	1	Α				
1	0	В				
1	1	A + B				

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

The normal/invert function is controlled by the PULL TO INVERT switches S4 and S5 via pins 7 and 2 of D803. If these inputs (7,2) are at level L the signal is inverted.

The vertical Y shift is controlled by the POSITION controls R1 and R2.

The variable voltages derived from the sliders of these controls are applied to pin 8 (channel A) and pin 1 (channel B).

The TRIG VIEW signal is derived from the INTERFACE of the MTB trigger amplifier and applied to D802 (pins 5 and 6) via transistors V801, V802, which adapt the trigger view signal to the input level of the channel switch D802.

The balance of the symmetrical TRIG VIEW signal is adjustable with R808. The trigger view signal is controlled by the signal applied to D802-11.

If this input is H, it opens the trigger view signal path to the DELAY LINE DRIVER (D801).

2.2.6. Delay-Line Driver

In the DELAY-LINE DRIVER the input current signals are converted to voltage signals. This consists of a Hooper stage, using transistors D801 (3,4,5)(1,2,3).

For optimal common mode suppression the voltage level on the emitters of the Hooper stage D801 pin 3 must be constant. If the current on the input of this stage changes the currents of the two current sources V807 and V808 must be adapted to keep the voltage level on the emitters D801 pin 3 constant. This current regulation is achieved by transistor D801 (12, 13, 14).

In this way the common mode signals are optimal suppressed so that only the differential signals are applied to the DELAY LINE.

The composite trigger signals (COMP TRIG) are picked-off from the collectors of D801-8 and D801-11 and fed symmetrically to the bases of V917 and V918 located on the TRIGGER INPUT STAGE.

The output of the DELAY-LINE DRIVER is applied to the FINAL VERTICAL AMPLIFIER via the DELAY LINE. The characteristic impedance of this cable-type delay line is 140 ohms.

2.2.7. Final Vertical Amplifier

The DELAY LINE is terminated in the DELAY-LINE COMPENSATION CIRCUIT by the resistor R1216. Compensation is achieved by transistors V1201, V1202, V1203 and RC network.

Transistors V1201, V1202 form a Cherry stage. Distortion originating in the delay line is corrected by the frequency-dependent impedance of the RC network between the emitters of V1201, V1202.

This frequency-dependent network consists of:

a) R1203/C1207

: For optimal square-wave response by adjusting the pulse-roundings.

C1203

b) R1201-L1201-L1202

: To reduce pulse aberrations.

c) R1202

: To reduce chopper cross-talk.

d) V1205-V1210

: Temperature compensation for optimal square-wave response at high input

frequencies.

The varicap diodes V1205 and V1210 are driven by a d.c. voltage controlled by the temperature dependent resistor R 1235

The Cherry stage converts the input voltage signal to a current signal.

Transistor V1203 functions as a current source for this stage.

Any unbalance in the Y deflection plates of the c.r.t. can be corrected with the position-balance potentiometer R1205 that controls the emitter currents of V1201, V1202.

The output currents of the Cherry stage feed the Hooper stage V1208, V1211, which converts the input current signals into voltage form. It also contains the TRACE SEPARATION facility for the ALT TB mode. The TRACE SEPARATION CIRCUIT located on the TIME-BASE UNIT controls the current that is drawn from V1208, V1211, and thus controls the output voltage of the stage. Adjusting the TRACE SEP results in the MTB signal being shifted upwards and the DTB signal downwards.

The output voltage of the Hooper stage is applied to another Cherry stage V1206, V1209 where it is converted again to a current signal. The common-emitter circuit includes the gain adjustment R1239 of the FINAL VERTICAL AMPLIFIER to adjust for different c.r.t. sensitivities. By means of the RC combination R1250/C1223 the rise time of the square-wave signal can be optimised. The current source for the Cherry stage is transistor V1213. The output currents of this stage are fed via transistors V1204 and V1214 to the Y-deflection plates of the c.r.t. In the interest of low output capacitance, these drive transistors are mounted in common-base configuration.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

2.3. CIRCUIT DESCRIPTION OF THE HORIZONTAL SECTION

2.3.1. Main Time-base Triggering (see Fig. 8.4)

a) Trigger selection circuit and trigger input stage (A, B, COMP)

The trigger signal from the vertical channel A is applied to shunt feedback amplifier V912, V913, as a symmetrical current signal. The output is a symmetrical voltage signal that is routed to the series feedback stage V873, V876 for MTB triggering, and to series feedback stage V872, V874 for DTB triggering. Channel A is selected as MTB trigger source if R918 in the emitter circuit of V873, V876 is connected to earth via the MTB trigger source selector switch S23, to switch on these transistors.

The trigger signal from vertical channel B is applied to shunt feedback amplifier V914, V916, which is followed by a series feedback stage V878, V879, for MTB triggering and a series feedback stage V877, V881 for DTB triggering. These amplifier stages are identical to those described above for channel A.

The composite trigger signal obtained from the DELAY-LINE DRIVER D801 is applied to shunt feedback amplifier V917, V918.

This amplifier is followed by a series feedback stage, V882, V883 for MTB triggering. If R892 in the emitter circuit of V882, V883 is connected to earth via the MTB trigger source switch S23 via switching transistor V870, the composite signal is used for MTB triggering.

If in composite trigger mode TRIG VIEW is selected, a logic H level from D806-10 makes V880 conductive via R994 and V870 is switched off. Consequently, composite triggering is inhibited. In this event, V875 is conductive and an earth potential is applied to R918 via V860 to select channel A as MTB trigger source. As a result, it is not possible to switch on the trigger view and composite trigger modes together.

b) External and line trigger input

The external trigger signal can be applied to input socket X5. The signal is routed via a network that gives the correct external input impedance and sensitivity, and via C1109 (a.c.-component), R1122, R1123 (d.c.-component) to the gate of FET V1104. In the LF and HF trigger coupling modes the d.c. component of the signal is interrupted because the junction of R1122, R1123 is connected to earth via LF and HF switches S20.

FET V1104 is part of the balanced source-follower stage. One FET receives the external trigger signal and the other, the LINE trigger signal. The trigger source signal not desired is short-circuited to earth.

The LINE trigger signal, originated in the power supply, is routed via the potentiometer R891 (LINE) to the TRIGGER SELECTION UNIT.

The amplifier stage V1104 is followed by a series feedback stage V1102, V1103 that converts the asymmetrical input voltage signal into a symmetrical output current signal.

Transistor V1101 provides a common current-source in the emitter circuit, which is only switched in if EXT or LINE triggering is selected (an earth potential from trigger source selector switch S23).

For instruments with TTL trigger facilities, the gain of the amplifier stage V1102, V1103 can be increased by a factor of 2,5 (relay contact K1101 closes in the TTL trigger mode).

c) Trigger amplifier input stage

This amplifier has two balanced inputs that apply an input signal to the common-base circuit V852, V853. The input current is routed via socket X859 and socket X863 for MTB triggering via channel A, B or composite. The input current signal is routed via sockets X861 and X862 for MTB triggering via the EXT input or LINE.

1

The common-base circuit V852, V853 is followed by a shunt feedback stage V851, V854 that converts the input current signal into an output voltage signal. This output signal is taken off asymmetrically and applied to the DC, LF, HF filter.

2-17

d) Trigger coupling

In the DC mode, relay contact K851 is closed and the signal is passed unattenuated via R868.

In the LF mode, K851 is open and switch contact S20C is closed. The signal is now passed via the series low-pass filter R872, C858, R869.

In the HF mode, K851 is open and switch contact S20D is closed (moving contact to earth). The signal is now passed via the high-pass filter C858, R872. Both in LF and HF modes, the d.c. component is blocked by C868. In the AUTO mode, the trigger signal is a.c.-coupled (K851 is open).

Only in the external X deflection mode together with AUTO mode can d.c. coupling be selected.

If TTL trigger mode is available on the instrument, the signal is always d.c.-coupled (K851 closed).

e) Interface

This stage receives its input signal from the DC, LF, HF trigger coupling and produces asymmetrical output signals for the TOP DETECTOR, TV CIRCUIT (if option is available in the oscilloscope) and X DEFLECTION AMPLIFIER.

The INTERFACE also produces symmetrical output signals for TRIGGER VIEW and the FINAL TRIGGER AMPLIFIER.

The asymmetrical voltage signal from the TRIGGER COUPLING stage is applied to one gate of the symmetrical FET source-follower stage V887. The other gate of V887 receives a d.c. voltage that can be adjusted with the LEVEL control R6. As a result, the source outputs of V887 show a symmetrical voltage signal, the level of which can be varied by the LEVEL control.

The source-follower V887 is followed by an emitter-follower D853 (9,10,11) (6,7,8) with a common-current source V859. As the emitter-follower transistors are part of one IC, it results in better stability and closer-matched characteristics for these transistors. This technique is featured widely in the MTB and DTB trigger circuits.

An asymmetrical current signal for external X deflection is picked-off from D853-11 and routed via the switch unit to the horizontal channel switch on the time-base unit.

Another asymmetrical current signal is taken from D853-6 and is routed via shunt feedback amplifier V863 to the TOP DETECTOR and the TV CIRCUIT (when available).

The symmetrical output voltage signal is available on D853-10 and D853-7, and applied to series feedback stage V862, V861, with common current source V864. This stage sends a symmetrical current signal to the vertical channel switch to facilitate trigger view.

f) Final trigger amplifier

The signal available on D853-10 and D853-7 is also applied to the series feedback amplifier D853 (12,13,14) and D853 (1,15,16). The common current source for this stage is D853 (2,3,4), switched on by an earth potential applied to R996 via selection switch S20A. In the external X deflection and TV trigger modes this is switched off and R996 floats.

In the TTL trigger mode the amplification of this stage is increased as relay contact K852 closes. The symmetrical output current signals are available on D853-12 and D853-1 and have phase shift of 180 degrees. Depending on the position of the +/- SLOPE switch S8, one of the two signals is used for MTB triggering. Selection is by switching diodes: V888, V889 for the + slope, V857, V858 for the - slope.

If the + slope is selected (S8 open), V889 blocks and the signal from D853-12 is routed via V888 to the MTB. Transistor V896 is not conducting so transistor V897 switches on. The positive potential on its emitter switches on diode V857 and the signal from D853-1 leaks away. Diode V858 is blocked and the connection between D853-1 and the MTB is interrupted.

If the - slope is selected (S8 closed), V889 conducts, so the signal from D853-12 leaks away. Diode V888 blocks so any signal at this point is also prevented from reaching the MTB.

In this event, transistor V896 conducts because the positive-going base potential and switches off transistor V897. Diode V857 blocks as a result, so diode V858 conducts and the output signal on D853-1 collector is routed to the input of the MTB.

g) TV circuit (Optional)

With the TV CIRCUIT it is possible to trigger the MTB on television line signals (TIME/DIV = $20 \mu s...$ 0.05 $\mu s/DIV$) or TV frame signals (TIME/DIV = 0.5 s...50 $\mu s/DIV$).

In the TV mode, the FINAL TRIGGER AMPLIFIER is inoperative and instead, the TV CIRCUIT triggers the MTB. The LEVEL control R6 is also inoperative and the +/- slope switch S8 permits selection between positive and negative video signals.

The input of the TV circuit is the base of transistor V869. For positive video signals V869 functions as an amplifier with a phase shift of 180 degrees between base and collector. In this mode, collector resistor R983 is connected to +14 V via transistor V897, which is conducting.

For negative video signals, V896 functions as an emitter-follower. As a result, there is no phase shift between base and collector. This collector now functions as an emitter, connected to -7 V via R1011 and R983. In this situation, transistor V897 is not conducting. The collector of V869 is direct-coupled to the base of emitter-follower V871. This is followed by a clamping stage formed by C904 and the base-emitter junction of V899, the synchronisation pulses being available on its collector. These pulses have a top level of +5 V and a bottom level of 0 V approx. In the TV line trigger mode, the pulses are routed via diode V901, transistor V898 and switching diode V894 to the MTB trigger circuit.

In the TV frame trigger mode (MTB TIME/DIV = 0,5 s...50 μ s/DIV), switching transistor V909 conducts via the TIME/DIV switch. As a result, C917 and C918 are switched into the circuit and line trigger pulses are suppressed.

Only frame trigger pulses can now reach the MTB trigger circuit.

Transistor V908 functions as a 'current mirror' in order to give the correct current ratio between the current in the diode V894 and in transistor V898.

The TV CIRCUIT is switched off by a 0 V applied to the cathode of diode V901.

h) Multiplexer

This circuit stage produces the supply voltage for the MTB LEVEL control R6. The integrated circuit multiplexer D851 contains two 4-way analog switches that select the voltages applied to both ends of the LEVEL control. These voltages depend on the selected trigger mode.

The four possible modes are:

TTL/ECL/TV mode
AUTO (peak-peak level mode)
TRIG mode
EXT X DEFL mode

Switch position depends on the logic levels at control inputs pins 10 and 9 of multiplexer D851.

In the TTL, ECL or TV mode (depending on user's instrument), the control input D851-10 is at logic L and input D851-9 is also L. Thus, inside the multiplexer points 1+3 are interconnected and also points 12+13. As a result, the potential from voltage divider R907,R909 is connected to both ends of R6. The position of R6 is now irrelevant and the trigger level is fixed.

Note that circuit differences necessary to adapt the instrument for TTL, ECL or TV triggering are indicated in the table given in the circuit diagram.

In the AUTO mode, the control input D851-10 is at logic H and D851-9 is L. Internally, multiplexer points 2+3 and points 15+13 are interconnected. This results in one end of R6 being connected to D852-1 output, which carries a voltage proportional to the top level of the trigger signal. The other end of R6 is connected to output D852-7. This operational amplifier output carries a voltage that is proportional to the bottom level of the trigger signal. In this mode the MTB stays triggered in all positions of the LEVEL control since the voltage on R6 is proportional to the signal voltage.

In the TRIG mode, the control input D851-10 is at logic H, D851-9 is H and internally, points 4+3 and points 11+13 are interconnected. As a result, one end of R6 is connected to -3 V approx. from voltage divider R884, R903, and the other end of R6 is connected to +3 V approx. from voltage divider R951, R952.

The MTB trigger level can now be adjusted over approximately +8 or -8 divisions of the displayed signal.

In the modes described above, transistor V866 conducts and D851-6 is at logic L; as a result, the multiplexer input levels are applied to output pins 3 and 13. In the EXT X DEFLECTION mode however, transistor V866 blocks and D851-6 is at logic H. In this case, the multiplexer input levels are isolated from the outputs, which now float.

i) Top detector

This stage produces positive and negative output d.c. voltages that are proportional to the positive and negative top of the trigger signal. In the AUTO mode, these voltages are applied to the two ends of the LEVEL control R6. The input signal for the TOP DETECTOR is derived from shunt feedback stage V863. The positive top of this signal is rectified by diode V867 and smoothed by C872. The negative top is rectified by diode V868 and smoothed by C873.

Both voltages are applied to the non-inverting input of an operational amplifier D852 (inputs 3 and 5). The feedback loop of each amplifier is such that the gain is one These operational amplifiers operate as emitter-followers with a high input impedance and a low output impedance.

2.3.2. Delayed Time-base Triggering (see Fig. 8.5)

a) Trigger selection circuit (A, B)

For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554

Series feedback amplifier V872, V874 receives the channel A signal for by Berniger Mariena A is selected as a DTB trigger source if R886 in the emitter circuit of V872, V874 is connected to earth via the DTB trigger source switchcontacts S22A to make this stage conductive.

Series feedback amplifier V865, V895 receives the channel B signal for DTB triggering if R888 in the emitter circuit of V865, V895 is connected to earth via switch contacts S22B of the trigger source switch, which makes this stage conductive.

b) Trigger amplifier input stage

This is a balanced input amplifier that accepts input current signals via soxkets X871 and X872 when triggering the DTB via channel A or B. The common-base circuit V921, V922 is followed by a shunt feedback stage V923, V924 that converts the input current signal into an output voltage signal.

This output signal is taken off asymmetrically from V923 collector and applied to the DC, LF, HF filter.

c) Trigger coupling (DC, LF, HF)

In the DC mode, switch contact S19A is closed and the trigger signal is passed via R1080 without frequency

In the LF mode, the d.c. path is interrupted and switch contact S19B is closed. The signal is now passed via the low-pass filter R1057, C929.

In the HF mode, the d.c. path is interrupted and switch contact S19C is now closed. The signal is passed via the high-pass filter C929, R1057. Both in the LF and HF modes, the d.c. component is blocked by the series capacitor C931.

d) Final trigger amplifier

The asymmetrical voltage signal from the TRIGGER COUPLING stage is applied to one gate of the symmetrical FET source-follower stage V919. The other gate receives a d.c. voltage, adjustable by the LEVEL control R4. As a result, the source outputs of V919 show a symmetrical voltage signal, the d.c. level of which is adjustable by R4. This signal is fed to an emitter-follower stage D854 (9,10,11) and D854 (6,7,8), part of integrated circuit D854. The symmetrical output voltage signal on emitters D854-10 and D854-7 is applied to the series feedback amplifier D854 (12,13,14) and D854 (2,3,4), with common-current source D854 (1,15,16).

The symetrical output current signals are available on collectors D854-12 and D854-2 and have a phase shift of 180 degrees. Depending on the position of the SLOPE switch S6, one of the two signals is selected for DTB triggering by means of switching diodes: V910, V906 for + slope, V892, V891 for slope.

If the + SLOPE is selected (S6 open), V906 is not conducting and the signal from collector D854-12 is routed via diode V910 to the DTB.

Transistor V907 is not conducting and transistor V893 is therefore switched on. Diode V892 is blocked and the connection between collector D854-2 and the DTB is interrupted.

If the - SLOPE is selected (S6 closed), diode V906 now conducts, so the signal from collector D854-12 leaks away. Furthermore, diode V910 blocks and prevents any signal from collector D854-12 being passed to the DTB. The positive voltage applied to the base of V907 from S6 causes this transistor to conduct, which then turns off transistor V893. As a result, diode V891 is blocked and the output signal on collector D854-2 is routed via V892 to the input of the DTB.

2.3.3. Main Time-base (see Fig. 8.8)

For a fuller understanding of the functioning of the main time-base, important voltage waveforms in the MTB control logic are given in Fig. 2.5.

a) Auto mode without triggering (free-running time-base)

Consider the situation at the moment the main time-base starts.

With AUTO selected (S3A closed), NOR-gate output D209-13 is L and the switching transistors V233 and V234 are turned off. The MTB is therefore able ro run and produces a time-linear sawtooth voltage. This is picked-off by the Darlington pair V257, V258 and applied to the X deflection selector via emitter-follower V224 and switching diode V217.

b) Main time-base generator

The MTB is based upon the principle that a timing capacitance charged by a constant-current source is capable of generating a time-linear sawtooth voltage that is ideal for c.r.t. forward trace sweep and flyback.

Transistor V236 provides the current source, the base of which is connected to a fixed voltage in the CAL position of R10. This voltage is only varied when the continuous control R10 is moved from the CAL position. The emitter resistance of V236 may have ten different values (R109...R113) selectable by the TIME/DIV switch S15, which has 22 positions. Three timing capacitors are also selectable. Capacitor C226 is permanently in circuit, capacitor C234 is selectable via switching transistor V238 and C241, C242 and C243 paralleled capacitance via transistor V237. These transistors function in 'reversed' mode (collector-emitter reversed) during charging of the timing capacitors and in the 'normal' way during the discharge period.

The following table indicates the capacitors and adjustment potentiometers that are brought into circuit in the various positions of S15.

TIME/DIV range	Timing capacitors in circuit	Adjustment point	
0,05 μs 5 μs/DIV 10 μs 2 ms/DIV 5 ms 0,5 s/DIV	C226 C234 (via V238) C241, C242, C243 (via V237)	(+C226) (+C226)	– R348 R347

The MTB sawtooth voltage is also routed via voltage divider R327, R329 and emitter-follower V256 to the input of Schmitt trigger D214 (1,2,3), the end-of-sweep detector. It detects an H input level if the input voltage rises above +1,9 V, whereupon output D214-3 becomes L. This L level is applied to the set input, pin 4 of flip-flop D212, to make the inverting output (pin 6) logic L.

This L level is routed via NAND gate D211 (3,4,5,6) and NOR gate D209 (2,3,1) to input pin 12 of D209. Input pin 2 is always at logic L in the AUTO mode. If no trigger signal is present, the other input, pin 11 of D209 is permanently at L. The L level on input D209-12 makes output D209-13 go to level H, which makes transistors V233 and V234 conductive. Switching transistor V233 discharges the MTB timing capacitance and V234 takes over the current from current source V236. As a result, the MTB sweep is switched off.

The L level from the inverting output pin 6 of flip-flop D212 is applied to the base of switching transistor V271, to switch it off. The hold-off time now starts.

c) Hold-off circuit

The hold-off time-base circuit operates according to the same principle as for the MTB and DTB. Timing capacitors are charged by a constant-current source to generate a time-linear sawtooth voltage. The charging current can be adjusted in steps via the MTB TIME/DIV switch, which influences the voltage applied to the non-inverting input (pin 3) of operational amplifier D216. The HOLD-OFF potentiometer R11 permits continuous adjustment of the current.

The voltage on the hold-off timing capacitors is applied to the input of Schmitt trigger D214 (12,13,11) via Darlington pair V286, V272 and the voltage divider R339, R308.

If this voltage has reached a level of ± 1.9 V, an H level is detected. In this event, output D214-11 becomes L. This L level is applied to the reset input D212-1, which gives an H on inverting output pin 6. Switching transistor V271 conducts again and the hold-off time-base is switched off: the timing capacitance is discharge.

Schmitt output D214-11 and NAND gate input D211-3 are at level H when the hold-off capacitors are discharged. The H level on output pin 6 of flip-flop D212 is routed via D211 (3,4,5,6) and D209 (2,3,1) to D209-12 input and the time-base restarts.

Fig. 2.5. Important voltage waveforms in the MTB control logic

d) AUTO mode with trigger pulses

MTB trigger pulses are applied as a current signal to the CURRENT-VOLTAGE CONVERTER. If a trigger pulse occurs in this mode, transistors V291 and V292 convert the selected trigger source current signal into a voltage signal, and emitter-follower V293 makes D214-4 input logic L. This trigger pulse is applied at H level to clock input pin 11 of flip-flop D212, which switches over to make output pin 9 logic H. This cannot occur during the hold-off period because D214-5 is L, or reset input D212-13 is L.

The H level from D212-9 output switches off transistor V233 and diode V234 via NOR gate D209 (11,12,13) to start the time-base.

As described for the free-run mode, the end of the time-base sweep is detected and the hold-off time-base is started.

When this occurs, output pin 6 of flip-flop D212 becomes L. This L level is routed via NAND gate D211 (1,2,13,12) and NOR gate D209 (8,9,10) to the reset input (13) of flip-flop D212. As a result, output pin 9 does L and the time-base is switched off. Moreover, the one-shot multivibrator D213 is triggered and output D213-6 stays at level L for 100 ms after the H to L transition of the clock input on pin 1.

If D213-6 is L, then D211-5 is also L. This means that it is not possible to start the time-base at the end of the hold-off period via the path D211 (3,4,5,6) and D209 (2,3,1). Now the MTB can only be started if a trigger pulse appears. An incoming trigger pulse is applied to the clock input (11) of flip-flp D212 to make output pin 9 logic H. This H level is applied to pin 11 of NOR gate D209, which makes output pin 13 a logic L and the MTB starts.

e) Triggered mode (see also AUTO mode with and without triggering)

In the triggered mode, the signal path that starts the MTB directly after the hold-off period (in auto free-run mode) is interrupted by an H level on NAND gate D209-2. This interrupted signal path is via D211 (3,4,5,6) and D209 (2,3,1).

The finish of the MTB sweep at the start of the hold-off period is identical to the situation described for AUTO mode. At the start of the hold-off period, input pin 2 of NAND gate D211 becomes L. As inputs 1 and 13 are both H, output pin 12 becomes H. This produces via NOR gate D209 (8,9,10) a logic L that is applied to reset input (13) of flip-flop D212. Consequently, the flip-flop switches over and the MTB stops.

f) SINGLE-SHOT mode (see also AUTO and TRIGGERED modes)

In this mode, the conditions of the Set-Reset (SR) flip-flop formed by NAND gates D211 (1,2,12,13) and D211 (8,9,10,11) are important.

Before the start of the hold-off period, the following apply:

D211 INPUTS	LEVEL		OUT	PUTS
2 1 13	H H H	only L in EXT X DEFL	12	L
11 9 10	L H H	only L in AUTO and TRI	G 8	H I

At the start of the hold-off period input pin 2 of D211 is made L and the flip-flop jumps to the set position (output 12 is H, output 8 is L).

This situation remains after the end of the hold-off period although input 2 is now H, because an L level from output 8 is applied to input 13 of D211. As a result of this SR flip-flop condition, the reset input pin 13 of flip-flop D212 stays at L and the time-base cannot be started by a further trigger pulse.

Only by forcing the SR flip-flop back to the reset condition (output 12 at L, output 8 at H) is it possible to re-trigger the time-base. Reset is achieved if the SINGLE/RESET pushbutton is depressed, to give an L level to input 10 of the SR flip-flop. However, the time-base can only be triggered if the SINGLE/RESET pushbutton is in the normal position. If it is depressed, the reset input (pin 13) of flip-flop D212 remains at level L via D214 (9,10,8) and D209 (8,9,10).

In the SINGLE mode, the signal path that starts the time-base directly after the hold-off period (in AUTO free-run mode) is interrupted by an H level on D209-2. This interrupted signal path is D211 (3,4,5,6) and D209 (2,3,1).

g) EXT X-DEFL mode

Input pin 1 of SR flipflop D211 is permanently at level L. Consequently, output D211-12 is H. This H level gives an L level on reset input pin 13 of D212, which inhibits the start of the time-base in this mode.

h) NOT TRIG'D indicator

The not triggered indicator, LED B1, is supplied with current from the current source V1512 on the FINAL AMPLIFIER UNIT A5 via X202-7.

If the time-base is running, flip-flop output D212-8 is L, this level being applied via diode V252 and via X202-7 to the anode of B1 to hold it off (see Fig. 8.12).

When trigger pulses occur with a time interval of 100 ms or less, pin 6 of one-shot multivibrator D213 is permanently at logic L. This L output is fed via diode V251 to the anode of B1 to switch it off.

In the SINGLE mode, the output 8 of flip-flop D211 is L from the start of the hold-off period until the moment when the SINGLE/RESET pushbutton is depressed. This L level is applied via diode V249 to the anode of B1 to hold it off.

ş.,

Email:- enquiries@mauritron.co.uk

The NOT TRIG'D indicator normally glows when awaiting a single-shot trigger.

i) HORIZONTAL CHANNEL SELECTION LOGIC & HORIZONTAL CHANNEL SWITCH

MTB only (S2D depressed or all horizontal display mode switches S2 released)

In this mode, S2D feeds a logic L to the set input (10) of flip-flop D207. The reset input (13) is H, therefore output pin 9 is H and inverting output pin 8 is L. This L level causes transistor V208 to conduct and thus opens a signal path for the MTB sweep via transistor V224 and the diode V217 to the input of the final X amplifier.

DTB only (S2B depressed)

In this mode, an L level is applied to the reset input pin 13 of D207. The set input (10) is H and inverting output pin 8 is H. The L output on pin 9 causes transistor V223 to conduct and thus opens the signal path for the DTB sweep via diodes V211 and V214 to the final X amplifier.

EXT X-DEFL only (S2A depressed)

In this mode, both the set input (10) and the reset input (13) of D207 are made logic L via diodes V294 and V295 and S2A-6 of the horizontal display mode switch. Consequently, outputs (pins 9 and 8) of flip-flop D207 are H and both the MTB and DTB sawtooths are prevented from reaching the input of the final X amplifier.

The external X deflection signal is now routed via transistors V203 and V204, in the X DEFLECTION AMPLIFIER, and switching diode V216 to the X FINAL AMPLIFIER.

ALT TB mode (S2C depressed)

Flip-flop D207 functions as a divide-by-two stage in this mode because the set and reset inputs are both at level H, and the data input (12) is connected to the inverting output (8). The signal applied to clock input (11) is the END OF SWEEP pulse. This signal goes L at the end of the MTB sweep and goes H when the MTB sweep reaches the 0 V level. When the clock-pulse input goes from L to H the condition of the flip-flop changes. For instance, output 9 goes H and the inverting output 8 goes L, so the MTB sawtooth is applied to the final X amplifier. After the L to H transition, on the clock input, output 9 is L and inverting output 8 is H, which applies the DTB sawtooth to the final X amplifier. At the next transition, the MTB is again applied, and so on.

j) Trace separation circuit

This stage is formed by integrated circuit D202, of which the transistors connected to pins 1,15,16 and 8,9,10 are not used (all pins wired to -7 V). The TRACE SEPARATION CIRCUIT receives, via two outputs, current from R1226 and R1237 in the FINAL VERTICAL AMPLIFIER. These currents provide the trace shift in the ALTTR mode

The transistor connected to pins 2 and 1, and the transistor connected to pins 7 and 8 are current sources.

If the ALT TB mode is not selected, the currents from both sources are equal because the switch contact S2C between pins 2 and 7 is closed. The output pin 1 of NOR gate D208 is at logic L. Therefore the current from R1226 is routed to D202-11 and via an internal transistor to the current source connected to pins 7,8. The current from R1237 is routed to D202-14 and then via an internal transistor to the current source on pins 2,1. When ALT TB mode is selected, the contact between pins 2 and 7 of D202 is open. Consequently, the current of both current sources is no longer equal. Current source pin 2,1 carries a lower current than current source pin 7,8. The difference depends on the setting of the TRACE SEPARATION potentiometer R15. With R15 at zero resistance both currents are identical. If the DTB is displayed, NOR gate output D208-1 is L and the routeing of the currents of R1226 and R1237 over both current sources are identical to the situation without ALT TB selected. Only the magnitude of the currents differs, that from R1226 being higher than that from R1237. This results in a downwards shift of the time-base line in comparison with the situation where the currents in R1226 and R1237 are equal.

In the MTB sweep that follows, the MTB is displayed and the output D208-1 is now H. As a result, the currents from R1226 and R1237 in the FINAL VERTICAL AMPLIFIER are routed via another path in D202. The current from R1226 is routed to D202-12 and is lower than the current from R1237, which is routed to D202-13. In this case, the result is an upwards shift of the time-base line compared with the situation where the currents in R1226 and R1237 are equal.

k) Z-LOGIC

This stage sends a current signal to the Z amplifier to control the intensity of the spot on the c.r.t. screen. The spot intensity depends on the mode selected; e.g. MTB, MTB intensified by DTB, DTB, ALT TB, EXT X DEFL, and also on the position of the INTENS control R12.

During the hold-off period the display must be blanked. The current that determines the intensity is a summation of the collector currents of transistors V288 and V289. Both transistors are controlled by the logic circuits: V288 by NAND-gate output D218-12 and V289 by NAND-gate output D218-6.

If both logic outputs are L, V288 and V289 conduct and the display is unblanked. The logic levels on D218-12 and D218-6 as a function of the mode selected are given in Fig. 2.6.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

I.

ġ. ..

Fig. 2.6 Important voltage waveforms in the Z-modulation control logic

MTB only

During the MTB sweep, input D217-2 is H, resulting in OR-gate output D217-3 and D218-13 becoming H during the sweep.

Input D217-5 is H if the MTB output signal is routed to the final X amplifier. As a result, OR-gate output D217-6 is H during this time, and also D218-1.

NAND-gate input D218-2 is permamently H so output D218-12 is L during the MTB sweep (see Fig. 2.6/1 for comparison).

Input D217-12 is H during the MTB sweep, so OR-gate output D217-11 is H and also D218-5.

Input D217-9 is H. As a result for gate output D217-8 is H and also D218-4.

Input D218-3 is H. Output D218-6 is L during the MTB sweep (compare with Fig. 26/1).

DTB only

Input D217-4 is H during the DTB sweep, which makes output D217-6 and input D218-1 logic H. Input D217-1 is H and consequently output D217-3 is H and also input D218-13.

Input D218-2 is permanently H, so output D218-12 is L during the DTB sweep (compare this with Fig. 2.6/3). Input D217-10 is H during the DTB sweep, which makes output D217-8 and also input D218-4 at logic H during the DTB sweep.

Input D206-2 is L, so output D206-3 and also input D217-13 go to logic H. Consequently, the OR-gate output D217-11 and input D218-5 are at logic H.

Input D218-3 is permanently at H so output D218-6 is L during the DTB sweep (compare this with Fig. 2.6/3).

MTB intensified by DTB

When this mode is selected, the input of the FINAL HORIZONTAL AMPLIFIER is derived from the MTB output and the DTB TIME/DIV switch does not occupy the OFF position.

Input D217-2 is H during the MTB sweep, which means that D217-3 and input D218-13 are also H during the sweep period.

Input D217-5 is H if the MTB output signal is routed to the final X amplifier. As a result, OR-gate output D217-6 and input D218-1 are also H.

With input D218-1 also H, the output of this 3 -input NAND gate **D218-12** is L during the MTB sweep (compare this with Fig. 2.6/2).

Input D217-10 is H during the DTB sweep, which means that output D217-8 is H during the DTB sweep and also input D218-4.

A logic L on input D206-2 makes output D206-3 and also input D217-13 logic H. Output D217-11 is therefore H and also input D218-5.

Input D218-3 is H, so output D218-6 is L during the DTB sweep (compare this with Fig. 2.6/2).

Therefore with L signal on NAND-gate output D218-12 during the MTB sweep, transistor V288 conducts. With an L signal on NAND-gate output D218-6 during the DTB sweep, transistor V289 conducts, and during that time the current from the Z amplifier doubles providing that preset R401 is in mid-position. This increase in current produces the intensified part of the MTB trace during the DTB sweep.

ALT TB mode

When ALT TB is selected, NAND-gate output D218-6 is L during the DTB sweep, in the same way as described for the 'DTB only' mode (compare with Fig. 2.6/4 and Fig. 2.6/3).

For NAND-gate output D218-12 this situation is as follows:

- for one MTB sweep, the output is L during that MTB sweep,
- for the next MTB sweep the output is L during the DTB sweep.

This depends on the condition of flip-flop D207 (8...13), which switches the final X amplifier input alternately between MTB (D218-12 L during MTB sweep) and DTB (D218-12 L during DTB sweep).

The generation of these pulses occurs as follows:

- If the MTB is used for X-deflection then D217-1 is L. Pin 2 is H during the MTB sweep, so D217-3 and D218-13 are also H during the MTB sweep.
 Input D217-5 is also H, which makes output D217-6 a logic H.
 Thus input D218-1 is H and since input D218-2 is H, the three inputs of the NAND-gate are at H, which gives a logic L on output D218-12 during the MTB sweep (compare with Fig. 2.6/4).
- If the DTB is used for X-deflextion (the next MTB sweep) then D217-5 is L. Pin 4 is H during the DTB sweep, so D217-6 and D218-1 are also H during the DTB sweep.
 Input D217-1 is H, which makes output D217-3 and input D218-13 logic H. As the remaining input, D218-2 is H, then the NAND-gate output D218-12 is L during the DTB sweep (compare with Fig. 2.6/4).
- At the next MTB sweep, the MTB is again selected for X-deflection and D218-12 is L during the MTB sweep, and so on.

Display Blanking

In the foregoing circuit descriptions for display blanking in MTB, MTB intensified DTB and ALT TB modes, it is assumed that inputs 2 and 3 of D218 are permanently at logic H. However, there are certain conditions, listed below, when these inputs are L and the display is blanked.

- In the chopped mode of the vertical channels the display is blanked during switching over between channels,
 by connecting the cathode of diode V296 to earth for this period.
- If a logic L is applied to the external Z MOD input on the rear-panel, this signal is routed via diode V297 to inputs 2 and 3 of D218 for blanking purposes.
- The display is blanked if an incorrect mode is selected. This condition is detected by NAND gates D218 (9,10,11,8) and D206 (4,5,6) which together give a logic L on the cathode of diode V298.

Inputs D218-9/10 are H if X DEFL is selected or if the DTB TIME/DIV switch in OFF (V285 non-conductive).

Input D218-11 is H if ALT TB is selected or if the final X amplifier is fed from the DTB signal. As a result, output D218-8 is L (i.e. display blanked), if DTB TIME/DIV switch is OFF while DTB or ALT TB selected on S2. The display is also blanked if X DEFL is selected together with DTB or ALT TB for horizontal display.

I) ALTERNATE mode control logic

This circuit produces clock-pulses for the vertical display mode logic. It consists of NOR gates D208 (1,2,3), D208 (11,12,13), D208 (8,9,10) and NAND gate D206 (8,9,10).

The pulses are routed via the switch unit to UNIT A3.

The vertical display switches from one channel to the other if output D206-8 goes from L to H.

The circuit operates as follows:

If the horizontal deflection is initiated by MTB or DTB only, input D208-11 is L. Normally, input D208-12 is H, but is L during the flybackperiod of the MTB (= discharge of timing capacitance). If input D208-12 goes from H to L (at start of MTB flyback) this transition is routed via D208 (11,12,13), D208 (8,9,10) and D206 (8,9,10), this triple inversion making output D206-8 go from L to H to switch the vertical channel display from one to the other.

Fig. 2.7 Important voltage-waveforms in the alternate mode control logic

If the ALT TB mode is selected, input D208/12 also goes from H to L at the start of the MTB flyback period. Input D208/11 is H if the MTB drives the final X amplifier, and L if the DTB drives the final X amplifier. As a result, the H to L transition of input D208/12 only gives a L to H transition of output D206/8 if the DTB drives the final X amplifier.

Thus the display sequence in the ALT TB mode combined with ALTernate vertical display is:

- Channel A with MTB intensified by DTB
- Channel A with DTB
- Channel B with MTB intensified by DTB
- Channel B with DTB
- Channel A with MTB intensified by DTB, and so on.

m) Stabilisation circuit

This circuit consists of operational amplifier D201 and transistor V200. The circuit converts +14 V into +12 V for the time-base, and the current drain from +14 V is constant. The reference voltage for the positive input of D201 is obtained via voltage divider R201, R202 from the +14 V supply. The negative input of D201 is connected to the +12 V output voltage. Any variation between reference voltage and output voltage is corrected via output D201-6 and emitter-follower V200.

Email:- enquiries@mauritron.co.uk

2-27

2.3.4. Delayed Time-base (see Fig. 8.10)

The DELAYED TIME-BASE GENERATOR itself generates a time-linear sawtooth in the same way as described for the main time-base.

Transistor V229 is the constant-current source, with its base fed from a fixed d.c. voltage that is derived via the continuous TIME/DIV control R9. The base voltage of V229 is only changed if R9 is moved out of the CAL position. By means of the TIME/DIV switch S13, eight different emitter resistors can be selected for current source V229. Depending on the position of S13, only one timing capacitor C219 (fast sweep speeds) or two timing capacitors C219/C218 (slow sweep speeds) are switched into the circuit. Capacitor C218 is switched into the circuit by means of transistor V231.

This transistor functions in the 'reversed' mode (collector and emitter are reversed) during the charge of the timing capacitor and in the 'normal' way during the discharge.

Switching of V231 is controlled by TIME/DIV switch S13. The table below indicates the capacitors and adjustment potentiometers that are in circuit as a function of the position of S13.

TIME/DIV range	Timing capacitors in circuit	Adjustment point
0,05 μs5 μs/DIV	C219	R349
10 μs1 ms/DIV	C219, C218	R351

The time-base is switched on and off by means of the switching transistors V228 and V227. At the end of the DTB sweep V228 conducts and takes over the current from current source V229; V227 conducts at the start of the hold-off period in order to discharge the timing capacitance.

The DTB sawtooth is taken off by Darlington pair V219/V209 and routed to diode V211 in the X deflection selector. The sawtooth is also routed via emitter-follower V221 to the input of the end-of-sweep detector D203 (1.2.3).

a) COMPARATOR

This part of the circuit consists of transistors V259, V248 and current source V268 and it compares the MTB sawtooth voltage (applied to the base of V259) with an adjustable d.c. voltage from DELAY TIME potentiometer R3 (applied to the base of V248 via Darlington pair V246, V247).

At the moment that the instantaneous d.c. value of the MTB sawtooth exceeds the voltage on the base of V248, this transistor switches off, V259 conducts and the comparator switches over. Now V261 conducts and NAND-gate input D203-4 becomes H.

The comparator has a current source V268, which is switched on if the lower end of R358 is connected to earth via S13. With the DTB TIME/DIV switch S13 in the OFF position, R358 is floating and the current source is switched off. As a result, the comparator is inoperative and the DTB cannot be started.

The voltage at both ends of the DELAY TIME control R3 is adjustable by presets R262 and R268.

b) START and STOP of DTB (see timing diagram Fig. 2.8)

Before the start of the DTB, the position of the SR flip-flop D204 (1,2,3) and D204 (4,5,6) is as follows:

Output D204-1 - L

Output D204-4 - H

Input D203-4 becomes H if the comparator switches over. Input D203-5 is H (during the MTB sweep). Consequently, output D203-6 becomes L together with input D204-12.

Input D204-11 is L, thus output D204-13 becomes H and is applied to the reset input, pin 1 of flip-flop D207. There are now two start possibilities for the DTB:

- Pushbutton MTB of S22 is depressed: the 'START' mode is selected and the DTB starts directly after the selected DELAY TIME.
 - In this mode, the set input, pin 4 of flip-flop D207 is connected to earth, so the inverted form of the signal on onput pin 1 of D207 appears on the output pin 6. If pin 1 goes H, then output pin 6 goes L, the switching transistor V228 turns off and the DTB starts.
- Pushbutton A or B of S22 is depressed: the TRIGGERED mode is selected and the DTB starts after the
 pre-selected time delay, only upon receipt of a trigger pulse.
 - In this mode, the set input D207-4 is H, and D207 now functions as a normal flip-flop.
 - After pin 1 has gone H, a clock-pulse on D207-3 is necessary to make output pin 6 logic L.

This clock-pulse occurs if V226, V212 (the CURRENT-VOLTAGE CONVERTER for the selected trigger source) and emitter-follower V225 make inverter inputs D203-12/13 logic L. As a result, the clock input D207-3 goes H and the flip-flop switches over: output pin 6 goes L and switch V228 now goes non-conductive and the time-base starts.

If the timing capacitance of the DTB is charged, the voltage across it rises linearly with time. This voltage is applied via the Darlington pair V219, V209, the voltage divider R239, R238 and emitter-follower V221 to the input of the Schmitt trigger D203 (1,2,3), which is the end-of-sweep detector.

If this voltage has reached a value of +1,9 V, the input level is detected as being H.

Output D203-3 now becomes L and is inverted to give H on output D203-8, which is applied to pin 6 of SR flip-flop D204 (1...6). The flip-flop switches over and gives a logic H on input D204-11.

Output D204-13 becomes L and also the reset input D207-1 and the DTB stops as switching transistor V228 conducts again. In this way, the charging of the timing capacitance stops, and these are discharged via V227 at the start of the hold-off period.

The situation described above is valid if the DTB sweep is completed before the MTB sweep (see Fig. 2.8. indicating the voltage waveforms for the DTB SWEEP COMPLETED mode, and also for the DTB SWEEP NOT COMPLETED mode).

In the DTB SWEEP NOT COMPLETED mode, the state of the RS flip-flop is not changed and the DTB is stopped if input D203-5 becomes L at the end of the MTB sweep. Now input D204-12 becomes H and flip-flop reset input D207-1 becomes L.

Fig. 2.8 Important voltage-waveforms in the DTB control logic

2.3.5. Final X Amplifier (see Fig. 8.12)

The input stage comprises a balanced series-feedback amplifier, V1371, V1372 with common current source V1373. The base of V1371 receives the output signal from the X-deflection selector. This signal can be the MTB or DTB sawtooth or the X DEFL. signal. The base of V1372 receives an adjustable d.c. voltage derived from the X POSITION control R5.

This control, R5, consists of two ganged sections, one of which has a degree of backlash to enable fine and coarse adjustment of the X position with one knob.

The amplification of the V1371, V1372 stage in increased by x10 if the X MAGN control is pulled. Relay K1371 is energised in this mode and additional emitter resistance (R1378 and R1381) is switched into circuit.

The collector of transistor V1371 drives one half of the final X amplifier, the other half being driven by the collector of V1372. The configuration of both amplifier halves is the same, but corresponding transistors are complementary (PNP vs NPN) so corresponding supply voltages are therefore reversed (V1316 vs V1312). One half of the final X amplifier consists of V1302 (NPN to adapt d.c. level). V1306 (PNP shunt-feedback amplifier), V1311 (PNP, to adapt d.c. level), V1312 (NPN, current source) and V1313 (NPN, output emitter-follower).

The signal conditions are as follows:

If the sawtooth voltage on the base of V1371 rises, the collector current falls. The voltage level on the junction R1307-R1318 does not change. Therefore the current is fed via transistor V1302 to the base of V1306. The base becomes more negative, so the collector potential of V1306 rises. Also the potential on the junction of collectors V1311, V1312 rises and is applied via emitter-follower V1313 to one horizontal deflection plate. During the flyback of the sawtooth, diode V1308 can conduct. The feedback components of V1306 are R1323, R1318 and C1308.

The other half of the final X amplifier consists of V1303 (PNP, to adapt d.c. level) V1307 (NPN, shunt-feedback amplifier), V1317 (NPN, to adapt d.c. level), V1316 (PNP, current source) and V1314 (PNP output emitter-follower).

The signal conditions are as follows:

If the sawtooth voltage on the base of V1371) rises, the collector current of V1372 also rises. The emitter of V1303 becomes more positive. (Resistor R1308 has a higher value than R1307 in the other half of the amplifier.)

Transistor V1303 starts conducting so the current to the base of V1307 rises. The voltage level on the collector of V1307 decreases and the potential on the base of V1314 also.

Via emitter-follower V1314 the signal is fed to the horizontal deflection plate XI.

The feedback components for V1307 are R1319, R1324 and C1309

2.4. CRT DISPLAY SECTION, CAL GENERATOR AND FRONT-PANEL SIGNAL LAMPS (see Fig. 8.12)

a) Z-Amplifier

The signal from the Z-LOGIC on the time-base unit A2 that determines the c.r.t. spot intensity is applied to the base of emitter-follower V1503. From the emitter the signal feeds the output stage with shunt-feedback amplifier V1513 and current source V1511.

The output signal may contain d.c., l.f. and h.f. components to be applied to the Wehnelt cylinder G1 of the c.r.t. Since G1 is at a cathode potential of -1500 V, blocking capacitors are required between G1 and the Z amplifier output.

The h.f. component is routed via blocking capacitor C1512 to G1.

However, the d.c. and l.f. components are blocked. These components are filtered by the low-pass filter R1529, C1514 and applied to the modulator V1508, V1509. Here, the d.c. and l.f. components modulate an h.f. carrier signal to pass blocking capacitor C1513, and are then demodulated by V1514. Finally, the reconstituted d.c. and l.f. components are added to the h.f. component and applied to G1 of the c.r.t.

b) Signal lamps

The front-panel LED indicators POWER ON, VERT UNCAL, HOR UNCAL, MAGN X10 and NOT TRIG'D are connected in series, and fed from constant-current source V1504.

The POWER ON LED always glows when the instrument is switched on. The other are short-circuited by the relevant switches when not in operation, as listed below:

- Vertical and horizontal UNCAL LEDs short-circuited if continuous controls R7, R8, R9, R10 are in CAL position.
- The MAGN x10 LED is short-circuited by V1512, which is blocked if the MAGN x10 mode is selected.
- The NOT TRIG'D LED is short-circuited if a logic L from the MTB logic is applied to its anode.

c) Trace rotation circuit

This circuit determines the magnitude and sense of the current in the trace rotation coil around the neck of the c.r.t. Either npn transistor V1501 or pnp transistor V1502 conducts depending on the setting of the front-panel adjustment R14. This control also determines the magnitude of the current.

d) Calibration generator

The square-wave generator consists basically of an operational amplifier D1501 with an RC feedback loop. This feedback loop consisting of R1543 and C1517 determines the frequency of oscillation (2 kHz).

The generator is followed by output stage V1516, which is used in the 'reversed' mode; i.e. the collector is used as 'emitter' and the emitter used as 'collector'.

In this way, the saturation voltage is very low, which gives an accurate output voltage on socket X1. Resistors R1547, R1548, R1549 in the output circuit are high-precision types.

2.5. THE POWER SUPPLY

The stabilised power supply for the oscilloscope consists of the following:

- an input circuit
- a converter driver
- a flyback converter
- a regulator and protection circuit
- secondary output rectifiers

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

2.5.1. Input circuit

The instrument can be set to operate from the following mains supply voltages: 110 V, 220 V and 240 Va.c., these nominal voltages being selected by the mains voltage selector S25 at the rear of the instrument.

Fuse F1402 protects the instrument against incorrect mains voltage settings or high mains fluctuations. A thermal fuse F1403 is located in the mains transformer T1406.

The secondary winding of T1406 is connected to the diode bridge V1431, where the input is rectified and smoothed by capacitor C1452.

The instrument may alternatively be powered by a battery supply of 20...28 V. This battery supply must be connected via the d.c. input connector X7 at the rear of the instrument.

If a battery supply is used, it is applied to resistor R1460 via the POWER ON switch S21 and connector X1407 pins 6 and 8. Protection is provided by the 2 A delayed-action fuse F1401. Diode V1436 also safeguards the input against incorrect polarity of the battery supply. This diode blocks in the event of reversed input. Resistor R1447 prevents capacitor C1452 being charged to excessive values by spikes that may be present on the battery supply.

To reduce the current flowing in C1441 at switching-on, resistor R1460 is mounted in series with the POWER ON switch S21.

2.5.2. Converter Driver and Flyback Converter

The converter driver consists of transistors V1438, V1413 and transformer T1404. The converter itself consists of the converter transformer T1402.

- The converter driver (see Fig. 2.9 and 8.14)

The circuit functions as follows:

The pulse-width of the square-wave current I1 that is applied to the base of transistor V1438 is determined by the integrated circuit D1402.

The frequency of the square-wave current is 26 kHz approximately.

If transistor V1438 starts to conduct (see point A of Fig. 2.9), its collector current 12 increases to 0,4 A during the period T1.

The current I2 is flowing via the primary winding of T1404 to the base of transistor V1413 (I3)

The base current of V1413 (I3) will increase by the same amount as the collector current of V1438 (I2).

Transistor V1413 will conduct and its collector current I6 will increase to 4 A.

If the transistor V1438 is blocked (see point B of Fig. 2.9) its collector current I2 is switched off.

Because of this sudden switch-off, the current 14 will be maximum at this moment.

The current **I**4 is in anti-phase with respect to **I**2 and flows via diode V1437 to the supply voltage. In this way, the base current **I**3 of V1413 becomes negative (-0,4 A) during period T2, which rapidly blocks V1413.

The collector current I6 of V1413 is also switched off rapidly at this moment. The energy present in the transformer T1404 is fed to earth via diode V1419 (I5). This is realised by the negative current I5 during period T3. After $\approx 40\mu$ s, the procedure is repeated.

Resistor R1446 provides the base of V1413 with a d.c. current to speed-up the switching-on of this transistor.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:-01844-351694 Fax:-01844-352554
Email:-enquines@maunitron.co.uk

 \approx 40 μ S

Fig. 2.9 The converter-driver

The flyback converter (see Fig. 2.10)

The flyback converter functions as follows:

If transistor V1413 conducts under the control of base current I3, the collector current I6 increases to 4 A. During the period T1, the voltage level on the collector of V1413 is eat earth potential.

At the moment when V1413 is blocked its collector current 16 is switched off (see point B of Fig. 2.10). At the same time, the energy present in T1402, built up during period T1, is discharged via the secondary winding of T1402 during period T2.

This results in current 17 which, after rectification and smoothing, is fed to the various circuits in the instrument.

The energy that was present in T1402 is consumed at point A and the procedure described above is repeated approximately every $40\mu s$.

Diode V1415, capacitor C1430 and resistors R1418, R1425 serve to eliminate the switching spikes present on the collector of transistor V1413.

Fig. 2.10 The fly-back converter

2.5.3. The Regulator and Protection Circuit (see Fig. 8.14)

The regulator circuit D1402, via transistors V1433 and V1428, controls the pulse-width of the square-wave current applied to the base of V1438.

At the moment of switch-on, the supply voltage for D1402 is delivered via the emitter-follower V1429 to pin 1 of D1402.

When the power supply has started, the transistor V1429 is blocked and the supply voltage for D1402 is derived from the secondary +14V supply via diode V1423.

The regulator circuit is controlled by the following:

- The +14 V secondary output voltage fed back to D1402-3 via potentiometer R1474 and resistors R1452,
 R 1453 and R1456 for output voltage sensing.
 Potentiometer R1474 permits adjustment of the output voltages.
- The frequency of the sawtooth generator, determined by the value of C1448 and R1466 connected to pins 8 and 7 of D1402 respectively (26 kHz approx.).
- The current-limit circuit, adjustable by preset R1476, for output current sensing.

a) Output voltage sensing

The voltage level of the feedback voltage (on D1402-3) is compared with the amplitude of the sawtooth voltage in the pulse-width modulator (see Fig. 2.11). The pulse-width modulator is part of integrated circuit D1402.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

MAT 950

Fig. 2.11 Pulse-width modulation

The pulse-width of the output square-wave voltage is determined by the level of the feedback voltage to D1402-3. For instance, if the output voltage is too high (see level B of Fig. 2.11), the pulse-width of the output voltage on pin 14 and pin 15 will be reduced.

If the output voltage is too low (see level A of Fig. 2.11), the pulse-width will increase.

Via transistor V1428, the square-wave current is applied to the base of V1438. Transistor V1428 functions as a current source, started by the pulse from D1402-14. The square-wave voltage from D1402-15 switches-off transistor V1438 rapidly via transistor V1433 and C1449.

A 'slow' start of the power supply is achieved by capacitor C1447, which is charged slowly by the reference voltage from D1402-2 via resistors R1448 and R1462.

The voltage level on pin 6 determines the duty cycle of the output square-wave voltage.

The maximum duty-cycle is also determined by the voltage level on D1402-6 which prevents the converter transformer T1402 going into saturation.

The +14 V feedback voltage is continuously checked. A voltage level is applied to D1402-10 via the Zener diode V1422 and R1439.

In the event of a short-circuit longer than approximately two seconds, the voltage level on pin 10 will fall to such a value that the output pulses on pins 14 and 15 of D1402 are blocked.

b) Output current sensing

The voltage level derived from potentiometer R1476 is applied to D1402-11 for current sensing. This voltage level is taken from the current transformer T1403, This transformer has no power losses so its dissipation is low.

Ž-

النية

ţ

If the voltage level on D1402-11 exceeds 0,48 V, the output pulses from pins 14 and 15 are cut-off. This means that the duty-cycle of the square-wave output voltage is reduced, which in turn reduces the output current of the power supply (e.g. in the event of a small overload).

If the voltage level on pin 11 of D1402 exceeds 0,6 V (e.g. in the event of a short-circuit), the power supply is immediately switched-off.

2.5.4. Output Circuits (see Fig. 8.14)

The output voltages taken from the secondary windings of transformer T1402 are rectified by diodes and smoothed by capacitors in conventional circuits.

The d.c. output voltages are fed to the various circuits of the instrument. The c.r.t. filament is also supplied by a secondary winding of T1402, via connector X1406, pins 1 and 2.

WARNING Note that pin 2 of connector X1406 is at -1500 V level.

If connector X1406 is removed from its socket, the +14 V supply voltage for the -1500 V converter is also interrupted for safety reasons. In this case, the connection between the connector pins 9 and 10 is interrupted.

2.5.5. -1500 V Generator and HV Multiplier (see Fig. 8.14)

The -1500 V supply consists of an oscillator and a regulator circuit.

The oscillator comprises transistor V1401, transformer T1401, capacitor C1415 and resistor R1417. The output signal voltage on the secondary winding of T1401 is rectified by diode V1403 and smoothed by C1408 and C1409.

The -1500 V_i is divided by resistors R1408, R1413 and fed back to the positive input of operational amplifier D1401-3 for output voltage sensing.

This part of the -1500 V output is compared with a reference voltage applied to the inverting input D1401-2. The reference voltage is extremely stable, and independent of temperature variations. This is achieved by Zener diode V1408. Tolerances in this Zener diode can be compensated for by preset R1471. Resistor R1434 and capacitor C1436 prevent unwanted oscillation in D1401.

The regulator part of the circuit functions as follows:

If for example the -1500 V output increases (i.e. goes more negative), the voltage level on the positive input D1401-3 decreases.

The output voltage of the comparator D1401-6 decreases to such a value that current is drawn from the oscillator via diode V1410.

Consequently, the oscillator amplitude decreases, resulting in a lower output voltage.

If the -1500 V is short-circuited, the voltage level on D1401-3 becomes positive, and the output voltage of the comparator D1401-6 increases. The current to the base of transistor V1401 increases as a result, and V1401 dissipates this current.

Diode V1410 prevents the transistor V1401 getting excessive base current when the instrument is switched on. At switch-on the diode blocks and the base current for V1401 is delivered via resistor R1426.

The -1500 V output is converted to 8,5 kV in the high-voltage multiplier D1403 and fed via connector X1414 to the post-acceleration anode of the c.r.t.

2.5.6. Line Trigger Pick-off (see Fig. 8.14)

The line trigger signal is derived from the secondary winding of the mains transformer via the connector X1407, pins 4 and 7.

The mains voltage sine-wave signal is applied to the transistor V1406 via resistors R1422 and R1423. The square-wave signal on the collector of V1406 is routed to a filter consisting of R1419, R1416, R1414 and C1416, C1417 and C1407, and transistor V1404.

This filter re-converts the square-wave voltage to a sine-wave voltage at the mains frequency.

This line trigger signal is routed via electrolytic capacitor C1406 to the TRIGGER SELECTION UNIT via the connector X858, pin 6.

2.6. BASIC ANALOG AND DIGITAL CIRCUITS

This section describes briefly the most important characteristics of the analog and digital circuits to be found in the instrument.

2.6.1. Basic Analog Circuits (see Fig. 2.12)

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Series feedback amplifier

This is also called a Cherry configuration.

A voltage signal ΔU is applied to the input; the output produces a current signal $\Delta I = \frac{\Delta U}{RE}$

- Shunt feedback amplifier

This is also called a Hooper configuration.

A current signal ΔI is applied to the input; the output produces a voltage signal $\Delta U = \Delta I$. RF

Series feedback amplifier followed by a shunt feedback amplifier

This combination of the two previous configurations is called a Cherry-Hooper circuit.

In this two-stage amplifier, both the input and the output are voltage signals. The gain of this amplifier is:

$$\frac{\Delta U_{OUT}}{\Delta U_{IN}} = \frac{R_{F}}{R_{E}}$$

Emitter-follower

The emitter-follower is used as an impedance converter.

The input impedance is HIGH and the output impedance is LOW. The stage has a voltage gain of x1, and the output voltage signal is identical to the input voltage signal.

- Darlington pair

This circuit consists of two emitter-followers connected in cascade. As a result, the input impedance is very high and the output impedance low.

Again, this stage has a voltage gain of x1 and the output voltage signal is identical to the input voltage signal.

Common base circuit

This type of circuit is frequently used between amplifier stages for d.c. voltage level adaption or for buffering. The input impedance is low and the output impedance is high.

It has a current gain of x1, the output current signal being identical to the input current signal.

Long-tailed pair

In the diagram of Fig. 2.12, the long-tailed pair is formed by transistors V1 and V2. Transistor V3 functions as a constant-current source for V1 and V2. The current drawn from V3 is divided between V1 and V2, the proportion depending on the base voltages applied (U1 and U2).

The division is as follows:

$$I_1 - I_2 = \frac{U1}{RE1} - \frac{U2}{RE2}$$

The type of logic used is TTL and the supply voltage +5 V.

The logic levels used are defined as follows:

- a high level (H) constitutes an input between 2...5 V and an output between 2,4...5 V.
- a low level (L) constitutes an input between 0...0,8 V and an output of between 0...0,4 V.

The following types of logic circuit elements are used this instrument:

- AND-gate: In this gate, the output is only H if all the inputs are H. Therefore, if one input is low, the

state of the other inputs is irrelevant and the output is L.

NAND-GATE: the output is only L if all the inputs are H. Therefore, if one input is L the state of the other

inputs is irrelevant and the output is H.

- OR-gate: the output is only L if all inputs are L. If one input is H, then the state of the other inputs

is irrelevant and the output is H.

- NOR-gate: the output is only H if all inputs are L. Therefore, if one input is H, the state of the other

inputs is irrelevant and the output is L.

D-FLIP-FLOP: One integrated circuit incorporates two flip-flops.

Each flip-flop has an output (pin 5 or 9) and an inverted output (pin 6 or 8). If the reset input R (pin 1 or 13) is made L it is activated and the flip-flop is forced to the reset state: output L and inverted output H. The set input S (pin 4 or 10) is active when L and forces

T

the flip-flop to the set state: output H and inverted output L.

If the set and reset inputs are both H, the condition of the clock input CL (pin 3 or 11) and

the data input D (pin 2 or 12) are important.

The logic level on the data input (L or H) is clocked into the flip-flop if the clock goes L to

H - now the output also becomes L or H.

JK FLIP-FLOP: One IC contains two flip-flops. Each flip-flop has an output (pin 5 or 9) and an inverted output (pin 6 or 7). If the reset input R (pin 15 or 14) is made L, it is activated and the

flip-flop is forced to the reset condition: output L and inverted output H.

The set input S (pin 4 or 10) is active when L and forces the flip-flop to the set condition :

output is H and inverted output is L.

If both the set and reset inputs are H, the condition of the clock input C (pin 1 or 13), the J-input (pin 3 or 11) and the K-input (pin 2 or 12) are important.

If the clock input goes from H to L, the following occurs:

If J = L and K = L: the output states remain unchanged.

If J = H and K = L: the output becomes H and the inverting output L.

If J = L and K = H: the cutput becomes L and the inverting output H.

If J = H and K = H: the outputs switch to the opposite state.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:-01844-351694 Fax:-01844-352554

Email:- enquiries@mauritron.co.uk

Fig. 2.12 Basic analog circuits

Fig. 2.13 Basic digital circuits

3. DISMANTLING THE INSTRUMENT

3.1. GENERAL INFORMATION

This section provides the dismantling procedures required for the removal of components during repair operations. All circuit boards removed from the oscilloscope should be adequately protected against damage, and all normal precautions regarding the use of tools must be observed. During dismantling a careful note must be made of all disconnected leads that they can be reconnected to their correct terminals during assembly.

CAUTION: Damage may result if:

- The instrument is switched on when a circuit board has been removed.
- A circuit board is removed within one minute after switching-off the instrument.

3.2. REMOVAL OF TOP AND BOTTOM COVER

- Remove the two locking-brackets situated on the right- and left-hand side of the instrument.
- Pull the rubber band off the rear side of the instrument as indicated in Fig. 3.1./A.
- Remove 4 "cross-head" screws in the rear panel as indicated in Fig. 3.1./B.
- Bend the top and bottom cover of the instrument in the directions indicated in Fig. 3.2./A.
- Remove the shoulder strap as indicated in Fig. 3.2./B.
- Take the top and bottom cover out of the rubber band at the front side of the instrument as indicated in Fig. 3.2./C.
- If necessary the rubber band can be pulled off the front side of the instrument in the direction indicated in Fig. 3.2./D.

When remounting the top and bottom cover, take care that the strap-clasp is on the right-hand side of the instrument (the side where the mains transformer is situated).

When remounting the rubber bands

- The front and the rear bands are different.
 - The rear band incorporates small rubber feet, that permit air circulation if the instrument is standing on its rear panel. The front band is equipped with studs that fit in slits of the front panel. Due to the asymmetrical position of two studs that fit in the left- and right-hand side of the front panel, only one position of the rubber band is correct.
- If the mounting of the rubber bands and the top and bottom cover gives problems, industrial talcum powder can be used to facilitate this procedure.
 - Take care that no talcum powder falls in the instrument.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

3.3 ACCESS TO PARTS FOR CHECKING AND ADJUSTING PROCEDURES

All the adjustment points can be reached after removal of the top and bottom cover of the instruments (see section 3.2.).

Five adjustment points on the power supply unit can be reached via holes in the right-hand chassis plate of the instrument.

14.4

Note: For adjustment, always use an insulated adjustment tool.

Fig. 3.1 Removal of rubber band of rear panel

Fig. 3.2 Removal of shoulder strap, top and bottom cover

4. PERFORMANCE CHECK

4.1. GENERAL INFORMATION

WARNING: Before switching-on, ensure that the instrument has been installed in accordance with the Installation Instructions outlined in Section 3 of the Operating Manual.

This procedure is intended to:

- Check the instruments' specification.
- Be used for incoming inspection to determine the acceptability of newly purchased instruments and/or recently recalibrated instruments.
- Check the necessity of recalibration after the specified recalibration intervals.

NOTE: The procedure does not check every facet of the instruments calibration; rather, it is concerned primarily with those parts of the instrument which are essential to measurement accuracy and correct operation. Removing the instruments covers is not necessary to perform this procedure. All checks are made from the outside of the instrument.

If the test is started within a short period after switching-on, bear in mind that steps may be out of specification, due to insufficient warming-up time.

The performance checks are made with a stable, well-focused, low-intensity display. Unless otherwise noted, adjust the intensity and trigger-level controls as needed.

- NOTE 1: At the start of every check, the controls always occupy the preliminary settings; unless otherwise stated.
- NOTE 2: The input voltage has to be supplied to the A-input; unless otherwise stated.

 NOTE 3: Set the TIME/DIV switches to a suitable position; unless otherwise stated.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 4.1 Preliminary settings

4.2. PRELIMINARY SETTINGS OF THE CONTROLS

- Start this check procedure with NO input signals connected, ALL pushbuttons released and ALL switches in the CAL position.
- Depress the controls as indicated in figure 4.1.

4.3. RECOMMENDED TEST EQUIPMENT

Type of instrument	Required specification	Example of recommended instrument
Function generator	Freq.: 1 mHz 10 MHz Sine-wave/Square-wave Ampl. 0 20 Vpp DC offset 0 ± 5 V Rise-time < 30 ns Duty cycle 50 %	Philips PM 5134
Constant amplitude sine-wave generator	Freq.: 100 kHz 100 MHz Constant ampl. of 120 mVpp and 3 Vpp	Tektronix SG 503
Square-wave calibration generator	For ampl. calibration: Freq.: 1 kHz Ampl.: 10 mV 50 V For rise-time measurements: Freq.: 1 MHz Ampl.: 10 mV 500 mV Rise-time: ≤ 1 ns	Tektronix PG 506
Time-marker generator	Repetition rate: 0,5 s 0,05 μs	Tektronix TG 501
Variable mains transformer	Well-insulated output voltage 90 264 Vac	Philips ord. number 2422 529 00005
DC power supply	Adjustable output: 20 28 V Current: 1,5 A	Philips PE1540
Moving-iron meter		
Dummy probe 2 : 1	1 MΩ ± 0,1 %//25 pF	
Cables, T-piece, terminations for the generators	General Radio types for fast rise-time square-wave and high freq. sine-wave. BNC-types for other applications	

CHECKING PROCEDURE

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.1.	Power on Start power supply	Mains voltage 50 Hz - 400 Hz ± 10 %	- Depress pushbutton S21 POWER ON	- Starts at selected mains voltage ± 10 % (for 110 V: +20 % −10 %)	
4.1.2a 4.1.1b	Power consumption Start POWER SUPPLY	24 V (x7 - rear side)	- Depress pushbutton S21 POWER ON	Sa W from ac Starts at dc supply voltages between 20 V and 28 V	
4.1.2b	Power consumption			30 W from dc (1.5 A max.)	
4.2.1. 4.2.1. 4.2.2. 4.2.3.	CRT display INTENS FOCUS TRACE ROTATION	For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844.351694 Fax-: 01844.32554 Email: enquires@mauritron.co.uk	 INTENS potentiometer FOCUS potentiometer Screwdriver adjustment R14 	Normal INTENS adjusting Trace sharpness adjusting Trace must be in parallel with horizontal graticule lines; if necessary readjust potentiometer TRACE ROTATION R14	
4.3.1.	Vertical or Y-axis Display modes	Square-wave signal 1 kHz ampl. 100 mV to A input	- Depress A - Ampl/div. to 20 mV - Depress B - Depress TRIG VIEW S1 - Depress TRIG VIEW and CHOP S1 - Depress ALT - Depress ADD - Depress ADD	Square-wave 1 kHz 5 div. high must be visible Trace channel B visible Traces of A and B visible Traces of A and B and TRIG VIEW visible Traces of A and B wisible Traces of A and B wisible Traces of A and B wisible Square-wave signal 1 kHz, trace height	2
4.3.2.	Polarity inversion	ampl. 200 mV to A and B input Square-wave signal to A input (B)	vitches to 55) of S1	8 div. visible Square-wave signal is inverted.	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.3.3.	Vertical deflection coefficients	Square-wave signal 1 kHz to A input (B) AMPL 10 mV (p-p) 20 mV (p-p) 100 mV (p-p) 200 mV (p-p) 200 mV (p-p) 500 mV (p-p) 1 V (p-p) 500 mV (p-p) 500 v (p-p) 50 V (p-p) 50 V (p-p) 50 V (p-p)	- Depress A (B) of S1 - Depress A (B) of S23 AMPL/DIV S9 (S11) 2 mV 5 mV 10 mV 20 mV 50 mV 50 V 0,1 V 0,2 V 0,5 V 1 V 2 V 1 V 1 V 1 V 2 V 1 V 1 V 2 V 1 V 1 V 1 V 2 V 1 V 1 V 1 V 2 V 1 V 1 V 2 V 1 V 2 V 1 V 1 V 2 V 1 V 2 V	Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 4 DIV., + or -3 % (± 0,12 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 4 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.) Trace height 5 DIV., + or -3 % (± 0,15 div.)	
4.3.3.1.	4.3.3.1. Continuous control	Square-wave signal 1 kHz to A input (B) ampl. 100 mV (p-p)	 – AMPL/DIV to 20 mV – Continuous control R7 ← (R8 ←) 	 Continuous range 1:>2,5 (<2 div.) UNCAL led B3 lights up 	
4.3.4.	Vertical positioning	Sine-wave signal 10 kHz to input A Amplitude 160 mVp-p	 – AMPL/DIV to 20 mV – Set signal in vertical centre by means of position R1 – Set AMPL./DIV. to 10 mV – Position control R1 fully ← – Position control R1 fully ← 	 Top of sine-wave visible on the screen on the vertical centre line Bottom of sine-wave visible on the vertical centre line 	
4.3.5.	Vertical deflection via dummy (input impedance) IMO 25pF warress	Square-wave signal 1 kHz to A input via dummy (B) AMPL. 20 mV (p-p) 50 mV (p-p) 200 mV (p-p) 200 mV (p-p) 100 mV (p-p) 100 mV (p-p) 100 mV (p-p) 100 mV (p-p)	Depress A (B) of S1 Depress A (B) of S23 AMPL/DIV S9 (S11) 2 mV 5 mV 10 mV 20 mV 50 mV 0,1 V	Trace height 5 div., + or -3% (\pm 0,15 div.) Trace height 5 div., + or -3% (\pm 0,15 div.) Trace height 5 div., + or -3% (\pm 0,15 div.) Trace height 5 div., + or -3% (\pm 0,15 div.) Trace height 5 div., + or -3% (\pm 0,15 div.) Trace height 5 div., + or -3% (\pm 0,15 div.)	

1

7

1

January Market M

I

I

Marrie I

ē ...

Par south

The same

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
-		AMPL. 2 V (p-p) 5 V (p-p) 10 V (p-p) 20 V (p-p) 50 V (p-p) 50 V (p-p)	0,2 V 0,5 V 1 V 2 V 5 V 10 V	Trace height 5 div., $+$ or -3% (\pm 0,15 div.) Trace height 5 div., $+$ or -3% (\pm 0,15 div.) Trace height 5 div., $+$ or -3% (\pm 0,15 div.) Trace height 5 div., $+$ or -3% (\pm 0,15 div.) Trace height 5 div., $+$ or -3% (\pm 0,15 div.) Trace height 2.5 div., $+$ or -3%	
	Input coupling	Sine-wave signal 2 kHz + DC offset to A input (B)	 Depress 0 of S17 (S18) Set the trace in the centre of the screen R1 (R2√1) Depress AC of S17 (S18) Depress DC of S17 (S18) 	Signal is visible on the screen, centre of the signal is visible on the vertical centre of the screen Signal is visible.	
	Common mode rejection	Sine-wave signal 100 kHz ampl. 0,48 V to A and B input Sine-wave signal 1 MHz, ampl. 0,48 V to A and B	 AMPL/DIV switches to 0,1 V. Pull N/I switch S5. Depress ADD of S1 AMPL/DIV switches to 20 mV Set the continuous controls for minimum trace height difference 	Rejection 40 dB → trace height ≤ 0,24 div.	For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk
	Dynamic range	Sine-wave signal 10 MHz, ampl. 2,4 V to input A (B) Sine-wave signal 75 MHz, ampl. 1 V to input A (B)	 Depress A (B) of S1 Depress AC of S17 (S18) AMPL/DIV to 0,1 V Shift trace with POSITION control R1♥ (R2♥) AMPL/DIV to 0,1 V 	24 div. trace height distortion-free visible on screen 7 div. trace height distortion-free visible on screen	
	Cross talk	Sine-wave signal 10 MHz to A input ampl. 120 mV	AMPL/DIV switches S9and S11 to 20 mVDepress B of S1	Cross talk from A to B \leqslant 0,06 div. (40 dB)	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.3.10.	Pulse aberration	Square-wave signal 1 MHz, rise-time ≤ 1 ns, ampl. 10 mV to A input (B)	– AMPL/DIV to 2 mV– Position controls R1 (R2)	 Trace height 5 div., + and -2,5 div. from screen centre 	
		Square-wave signal 1 MHz,	- AMPI (DIV to 0.1 V	 Pulse aberrations ≤ 4 % (≤ 5%p-p) In invert mode additional 1 % 	
		rise-time ≤ 1 ns, ampl. 0,5 V to input A (B)	- Position controls R1 (R2)	 Trace height 5 div., + and -2,5 div. from screen centre Pulse aberrations ≤ 3 % (≤ 4 %p-p) In invert mode additional 1 % 	
4.3.11.	Rise time	Square-wave signal 1 MHz, rise-time ≤ 1 ns, ampl. 50 mV to input A (B) (pos. slope)	- AMPL/DIV to 10 mV - Set signal between dotted lines - Pull S8 (neg. triggering) - Set second pos. slope in the	Trace height 5 div.	
			R5	Rise-time measured between10 % and 90 % (4 div.) must be4,7 ns (second pos. slope)	
4.3.12.	Trace jump a) attenuator		Depress 0 of S17 (S18)Set trace in the centre of the	Trace jump ≤ 0,2 div.	
			screen - Switch AMPL/DIV switch between 2 mV and 5 mV - Switch AMPL/DIV switch between 10 mV and 20 mV	Trace jump ≤ 0,4 div.	
-	b) normal/invert		Depress 0 of S17 (S18)Trace in the centre of the screen	Trace jump \leq 0,5 div. (only in AMPL./DIV. settings: 20 mV/div 10 V/div.)	
	c) continuous control		 Pull and push switch S4 (S5) Depress 0 of S17 (S18) Set trace in the centre of the screen 	Trace jump ≤ 0,2 div.	
			- Rotate the continuous control		

÷.

:

The Care of

I

I

1

....

110

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.3.13.	Bandwidth channel A (B)	Sine-wave signal 500 kHz, ampl. 120 mV to input A (B)	 TIME/DIV switch S15 to 5 μs AMPL/DIV switch to 20 mV Adjust ampl. of input signal to trace height 6 div. 		
		Sine-wave signal 500 kHz- 75 MHz, ampl. 120 mV to input A (B)		Trace height must be ≥ 4,2 div.	
4.4.	Trigger view		— Denress A (B) of S23		
4.4.1.	Sensitivity A (B)	Square-wave signal 1 kHz to A input (B)	 Depress TRIG VIEW S1. AMPL/DIV switch S9 (S11) 		
					JAN 8 -:le
		Ampl. 10 mV (p-p)	2 mV	Trace height 5 div.	JRITI 3 Ch
		20 mV (p-p)	10 5 EV	Trace height 4 div.	ervice RON T erry 1 Oxor 4-3510 enqui
		100 mV (p-p)		Trace height 5 div.	ECHI ree OX 94 F
		200 mV (p-p)	⊏	Trace height 4 div.	NICA Rd, (9 4) ax:- (
		500 mV (p-p)		Trace height 5 div.	L SE Chir QY 0184
				Trace height 5 div.	RVI(nnoi 1-35/
				Trace height 4 div.	ES r 2554
				Trace height 5 div.	
				Trace height 5 div.	
		20 V (p-p) 50 V (p-p)	5 V 10 V	Trace height 4 div. Trace height 5 div.	
4.4.2	Sensitivity EXT	Sine-wave signal 1 kHz to	- Deprese EXT of C03		
		EXT input X5	- Depress TRIG VIEW of S1		
		Ampl. 1,2 V	- Depress AUTO+TRIG of S3	Trace height 6 div. \pm 3 % (\pm 0,18 div.)	
		Square-wave signal	- Depress EXT of S23		
		I KHZ, ampl. 1,2 V to EXT input X5	 Depress I RIG VIEW of S1 Depress TTL of S20 	Trace height 6 div. $\pm 3\% (\pm 0.18 \text{ div})$	
443	Pulse aberrations	Sauste wave clans 1 MH-	Down TDIC VIEW C1	T	
<u>.</u>	via EXT.	ampl. 3 V, rise time ≤ 1 ns, to input EXT X5	- Depress EXT of S23	nace neight o div. Pulse aberrations ≤ 6 % (≤ 8 %p-p)	
		(15)			

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.4.5.	Time delay between vertical input displayed via A or B and external input displayed via trigger view Time delay between A or B and trigger view A or B	Square-wave signal 1 MHz, ampl. 0,5 V, rise-time 1 ns to A (B) input and to EXT input	 AMPL/DIV to 0,1 V/DIV Depress ALT and TRIG VIEW of S1 TIME/DIV switch S15 to 0.05 µs Pull X MAGN S7 Depress EXT of S23 Depress A (B) of S23 Depress alternately A (B) and TRIG VIEW of S1 	 Time delay between A (B) signal and EXT (via TRIG VIEW) signal must be ≤ 10 ns (≤ 2 div.) Time delay between A (B) signal and trigger view signal of A (B) must be ≤ 15 ns (≤ 3 div.) 	
4.4.6.	Bandwidth EXT	Sine-wave signal 500 kHz, ampl. 120 mV to input A Sine-wave signal 500 kHz- 50 MHz, ampl. 120 mV to input A Sine-wave signal 500 kHz, ampl. 3 V to EXT input X5 Sine-wave signal 500 kHz - 60 MHz, ampl. 3 V to EXT input	 Depress TRIG VIEW S1 AMPL/DIV to 20 mV Adjust the ampl. of the input signal to 6 div. trace height Depress TRIG VIEW S1 Depress EXT of S23 Adjust the ampl. of the input signal to trace height 6 div. 	Trace height must be ≥ 4,2 div. Trace height must be ≥ 4,2 div.	

-

下 一 から

1

I

Ī

16.4

-

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.5.	Horizontal or X-axis				
4.5.1.	Display modes	Square-wave signal 2 kHz, ampl. 120 mV to input A	AMPL/DIV to 50 mVTIME/DIV MTB (S15) to		
			O,2 ns - Depress MTB of S2	- Square-wave signal 2,4 div. high	
			 TIME/DIV DTB (S13) to 50 μs Depress DTB of S2 	(M i B trace) — Intensified part DTB visible — Intensified part (DTB) visible over the	
			 Depress ALT TB of S2 	entire screen width — MTB trace with intensified part and	
			- Depress X DEFL of S2	Ulb trace visible — Horizontal deflection is determined by the input signal A (2,4 div.)	
4.5.2.	Trace separation		TIME/DIV MTB S15 to 0,2 msTIME/DIV DTB S13 to 50 us		MAURI 8 C
			- Depress ALT TB of S2	 Both time-base lines cover each (one line) 	TRON herry Ox 344-35
			 Set trace in the centre of the screen R1 		TECH Tree on O
			- TRACE SEP R15	- MTB trace (with intensified part)	NICAL Rd, C K9 4Q Fax:- 01
			- TRACE SEP R15 €	2 div. upwards – DTB trace 2 div. downwards	Contact SERVICE Chinnor Y 1844-3525 Iron.co.uk
4.5.3.	Horizontal positioning range	Time marker signal to input A			\$
			- X POS control R5 €	First marker to horizontal centre of the screen	
			- X POS control R5	Last marker to horizontal centre of the	
			- Pull X MAGN S7 - X POS R5 → - X POS R5	screen First marker visible on screen Last marker visible on screen	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.6.	Triggering of the main time-base			NOTE: If signal is triggered the NOT TRIG'D led B1 is off.	
4.6.1.	Trigger source and trigger coupling	Square-wave signal 2 kHz ampl. 300 mV to input A	AMPL/DIV switch (S9) to 50 mV	Well triggered display	
			Depress LF of S20Depress TRIG VIEW of S1	Square-wave signal visible with roundings (LF filter)	
			Depress HF of S20Depress B of S1	Differentiated square-wave visible	
		Square-wave signal 2 kHz, 500 mV to input B and EXT (X5)	– AMPL/DIV (S11) to 0,1 V– Depress DC of S20– Depress B of S23	Well triggered display	
			Depress EXT of S23	Well triggered display	
		TTL compatible square- wave signal to input A (B)	Depress TTL of S20Depress A (B) of S23Depress A (B) of S1	Well triggered display	
		Sine-wave signal 10 kHz, ampl. 120 mV to input A	AMPL/DIV to 50 mVDepress A and B (COMP) of	Both input signals (that have no time relation) well triggered displayed (both	
		and CAL signal via 10:1 probe to input B	S23 - Depress ALT of S1	input signals must overlap each other)	
		Sine-wave signal, equal to mains freq., ampl. 120 mV to input A (B)	Depress A (B) of S1Depress B and EXT (LINE)of S23	Well triggered display	
4.6.2.	Trigger sensitivity INTERNAL	Sine-wave signal freq. ≤ 10 MHz, ampl. 120 mVpp to input A	 AMPL/DIV to 0,2 V Decrease trace height by R7 	Signal triggers at trace height of ≥ 0,5 div.	
		Sine-wave signal freq. < 100 MHz, 1,2 div. trace height to input A	 AMPL/DIV to 0,1 V Decrease trace height by R7 	Signal triggers at trace height of ≥ 1 div.	

William Co.

Marie Marie

1

I

I

4

**

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.6.3.	Trigger sensitivity TTL	TTL compatible signal, 1 kHz to input A and EXT	 AMPL/DIV to 2 V Depress TTL of S20 Pull slope S8 Depress EXT S23 Push slope S8 	 Well triggered display Well triggered display Well triggered display Well triggered display 	MA { Tel:-
4.6.4.	Trigger sensitivity EXTERNAL	Sine-wave signal, freq. < 10 MHz, ampl. 100 mVpp to EXT (X5)	Depress TRIG VIEW of S1Depress EXT of S23	Signal is well triggered	URITRON TECH Cherry Tree Oxon OX 01844-351694 F
		Sine-wave signal, freq. ≤ 100 MHz, ampl. 300 mV to EXT (X5)		Signal is well triggered	anuals Contac INICAL SERVICI Rd, Chinnor K9 4QY Fax:- 01844-3525 ⊅mauritron.co.uk
4.6.5.	Level range and	Sine-wave signal, ampl.	AMPL/DIV to 10 mV		S
	triggering slope	160 mV, freq. 1 kHz to	- Depress TRIG of S3		
		Input A	- Depress I RIG VIEW of ST		
			- rever no • •	race is triggered over ± o div., trigger point on positive slope	
			Pull SLOPE S8	Trigger point on negative slope	
			- AMPL/DIV to 20 mV		
			- LEVEL R6	Triggered signal over the complete LEVEL	
				range	
		Sine-wave signal 1 kHz, ampl. 3.2 V to EXT	Depress EXT of S23Depress TRIG of S3		
		input X5	- LEVEL R6	Trigger point adjustable over the complete amplitude (+ or $-1,6$ V)	

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.6.6.	Trigger bandwidth	Sine-wave signal 25 kHz, ampl. 300 mV to input A	 Depress DC of S20 Depress TRIG of S3 AMPL/DIV to 50 mV Depress TRIG VIEW Set trace in the centre by means of R6 	Trace must be triggered	
			 Decrease freq. of input signal to ≈ 1 Hz (trace height 6 div.) 	Trace must be triggered	
			 Increase freq. of input signal to 100 MHz 	Trace must be triggered	
		Sine-wave signal, 25 kHz to input A	 Depress DC of S20 Adjust ampl. of input signal so that trace height is 6 div. 		
			- Depress LF of S20	Trace height ≥ 4,2 div.	
			- Decrease freq. of input signal	Trace height increases and signal must be	
			to 2 Hz - Depress HF of S20	triggered	
			 Freq. of input signal 25 kHz 	Trace height ≥ 4,2 div.	
			Increase freq. of input signal to 100 MHz	i race neignt increases and signal must be triggered	

The second

-

4. ac. 4

I

I

1

il approach

Branch Street

MEASURING RESULTS						% {				Tel:	URI 8 C - 018 Emai	TRO herr O 344-3 I:- er	ny T ry T ixon 3516 nquir	ree OX 94 F ies@	Rd, (9 4 ax:-)mai	AL SI Ch QY 018- uritro	ERV inno 44-3 on.co	ICES or 5255 .uk		3%	%1	%1	%1	%-	%1	tsub	2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	er 100 div.	its up.
REQUIREMENTS			Coofficient of Coofficient	//	Coefficient error ≤ 3	Coefficient error ≤ 3	V	' \ /	V	V	Coefficient error ≤ 3	Coefficient error ≤ 3		Coefficient error ≤ 3	Coefficient error ≤ 3	Coefficient error ≤ 3	V	Coefficient error ≤ 3 %	Coefficient error ≤ 3	- MAGN, led B2 lights up		- Trace adjustable over 100 div	- UNCAL led B4 lights up.						
SETTINGS		- MTB TIME/DIV S15 to	311 YO O					1 µs				20 µs		_	0,2 ms	0,5 ms	1 ms	2 ms	5 ms	10 ms	20 ms	50 ms	0,1 s	0,2 s	s 5,0	- TIME/DIV to 1 µs	- Pull X MAGN. S7	- X pos R5	- TIME/DIV to 0,1 µs
INPUT VOLTAGE		Time-marker signal, repetition time:	0.05 //s		0,1 µs	0,2 µs	sn/ G'0		2 µs	srt g	10 µs	20 µs	20 πs	0,1 ms	0,2 ms	0,5 ms	1 ms	2 ms	5 ms	10 ms	20 ms	50 ms	0,1 s	0,2 s	s <u>5</u> ′0	Square-wave signal repeti-	tion time 0,1 µs to input A		As 4.7.2.
OBJECTIVE	Main time-base	Time coefficients												-												Magnifier			Continuous control
STEP	4.7.	4.7.1.																								4.7.2.			4.7.3.

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.7.4.	Single shot	Square-wave signal 10 kHz to input A	TIME/DIV to 0,1 msDepress SINGLE of S3	 Trace once visible During SINGLE shot action NOT TRIG'D led B1 lights up 	
4.7.5.	Hold off	Square-wave signal repetition time $10\mu s$ to input A	 TIME/DIV to 2 μs HOLD OFF R11 ψ 	 Sweep HOLD OFF time can be varied by a factor of 10> trace intensity decreases 	
4.8.	Triggering of the delayed time-base				
4.8.1.	Trigger source, trigger coupling and trigger bandwidth	Sine-wave signal 2 kHz ampl. 300 mV to input A	 AMPL/DIV to 0,1 V TIME/DIV MTB (S15) to 0,5 ms TIME/DIV DTB (S13) to 50 μs 	 Well triggered intensified part (DTB signal) 	
			Depress A of S22Adjust LEVEL R4 ←	 Well triggered intensified part 	
			Depress DTB of S2Increase freq. of input signal to 100 MHz.	 Trace must be well triggered 	
			Depress HF of S19Decrease freq. of input signal to 25 kHz.	 Trace must be well triggered 	
			Depress LF of S19Decrease freq. of input signal to 2 Hz.	 Trace must be well triggered 	
		Sine-wave signal 2 kHz ampl. 300 mV to input B	 Depress DC of S19 Depress MTB of S2 Depress B of S1 Depress B of S2 		
			 Depress B of S22 Adjust LEVEL R4 ← Depress MTB of S22 	 Well triggered intensified part Intensified part well triggered independent of R4 	

THE STATE OF

To the second

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.8.2.	Trigger sensitivity	Sine-wave signal freq. ≤ 10 MHz, ampl. 300 mVpp — TIN to input A — Del — Del — Del Sine-wave signal freq. — Ad ≤ 100 MHz ampl. 300 mVpp — Del to input A	Sine-wave signal freq. ≤ 10 MHz, ampl. 300 mVpp — TIME/DIV MTB (S15) to 0,05 µsec — TIME/DIV DTB (S13) to 0,05 µsec — TIME/DIV DTB (S13) to 0,05 µsec — Depress A of S22 — Depress DTB of S22 — Adjust LEVEL R4 — Decrease trace height by R7 — Adjust LEVEL R4 — Adjust LEVEL R4 — Decrease trace height by R7 to input A	Signal triggers at trace height of ≥ 0,5 div. Signal triggers at trace height of ≥ 1,3 div.	MAURITRON 8 Cherry Oxo Tei:- 01844:35
4 .8.3.	Level range and triggering slope	Sine-wave signal 1 kHz ampl. 160 mV to input A (B)	- AMPL/DIV to 10 mV - TIME/DIV MTB (S15) to 0,5 ms - TIME/DIV DTB (S13) to 0,1 ms - Depress A (B) of S22 - Depress DTB of S2 - Adjust LEVEL R4 ← - Pull slope S6	Trace is triggered over ± 8 div., trigger point on positive slope Trigger point on negative slope	e Manuals Contact TECHNICAL SERVICES Tree Rd, Chinnor In OX9 4QY 694 Fax:- 01844-352554 iries@mauritron.co.uk

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.9.	Delayed time-base				
4.9.1.	Time coefficients	Time-marker signal repetition time:	Depress DTB of S2MTBTIME/DIVS15		
		0,05 µs 0,1 µs 0,2 µs 0,5 µs 1 µs 2 µs 5 µs 10 µs 50 µs 0,1 ms 0,2 ms 0,5 ms	0,1 µs 0,05 µs 0,2 µs 0,2 µs 0,1 µs 0,1 µs 0,1 µs 0,2 µs 1 µs 2 µs 1 µs 5 µs 10 µs 50 µs 50 µs 0,1 ms 0,2 ms 1 ms 0,5 ms 2 ms 1 ms 0,5 ms 2 ms	Coefficient error < 3 %	
4.9.2.	Magnifier	Square-wave signal repetition time 1 µs	 Depress DTB of S2 TIME/DIV MTB (S15) to 2 μs TIME/DIV DTB (S13) to 1 μs Pull X MAGN S7 X pos R5 	 MAGN led B2 lights up Coefficient error ≤ 5 % Trace adjustable over 100 div. 	
4.9.3.	Continuous control	As 4.9.2.	- TIME/DIV MTB (S15) to 5 μ s - TIME/DIV DTB (S13) to 1 μ s - Depress DTB of S2 - Continuous control R9	UNCAL led B4 lights upContinuous range 1:>2,5	

Law les

I

I

Andrew St.

MEASURING RESULTS		MAURITRON TE 8 Cherry Tro Oxon Tel:- 01844-35169	Manuals Contact CHNICAL SERVICES ee Rd, Chinnor OX9 4QY 4 Fax:- 01844-352554 es@mauritron.co.uk	
REQUIREMENTS		Intensified part to second marker pulse. Positive slope of DTB signal to vertical centre of the screen. Note the value of R3 in 3 digits.	Intensified part to third tenth marker pulse. Positive slope of DTB signal to vertical centre of the screen. Note the values of R3 in 3 digits. Calculate the steps between the sequential noted values. Maximum difference between the steps is: < 0,05.	Jitter of DTB trace ≤ 1 div
SETTINGS	MTB/TIME/DIV to 0.5 msec. DTB/TIME/DIV to 20 µsec. Depress ALT TB of S2. Depress MTB of S22.	Delay Time R3	Delay Time R3	 Set trace height to 6 div. TIME/DIV MTB (S15) to 1 ms TIME/DIV DTB (S13) to 0,5 μs Delay time R3 to 10 Depress DTB of S2
INPUT VOLTAGE	Marker pulse to input A, repetition time 0,5 msec. ampl. 3 div.			Sine-wave signal 1 MHz to input A
OBJECTIVE	Incremental Delay Time error			Delay time jitter
STEP	4.9.4.			4.9.5.

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.10	X-Y Operation				
4.10.1.	Mode and deflection coefficients	Sine-wave signal 10 kHz to input A	Set trace height to 6 div.Depress A of S23Depress X DFFL of S2	A line under an angle of 45°0 with respect to the horizontal graticule line visible, trace height and trace width 6 div. + 10 %	
		Sine-wave signal 10 kHz to input B	 Depress MTB of S2 Depress B of S2 Depress B of S1 Set trace beinth to 6 div 	As described above	
		Sine-wave signal 10 kHz ampl. 1 V to EXT input X5	Depress X DEFL of S2 Depress EXT of S23 Depress B and EXT (LINE) of S23	Trace width 5 div. ± 10 % Trace width 5 div. at 50 Hz mains frequency	
4.10.2.	Bandwidth via A	Sine-wave signal 1 kHz to input A	 Depress A of S23 Depress HF of S20 Depress X DEFL of S2 Depress B of S1 Adjust ampling for a point signal for a point si	Horizontal deflection 8 div.	
			horizontal deflection 8 div. — Increase freq. of input signal to	Horizontal deflection ≥ 7,8 div. (0,5 dB)	
		Sine-wave signal 1 kHz to input A	 Depress LF of S20 Adjust ampl. of input signal for horizontal deflection 8 div. Increase freq. of input signal to 20 kHz (ampl. same as above) Depress HF of S20 	Horizontal deflection decreases Horizontal deflection decreases	
	Bandwidth via EXT. input (X5)	Sine-wave signal 1 kHz to input EXT (ampl. 4 V)	 Increase freq. of input signal to 100 kHz Depress EXT of S23 Horizontal deflection 8 div. Increase freq. of input signal to 100 kHz 	Horizontal deflection increases Trace width ≥ 7,8 div.	

} !-&

3.

I

I

1

₹ 1 -2 -

STEP	OBJECTIVE	INPUT VOLTAGE	SETTINGS	REQUIREMENTS	MEASURING RESULTS
4.10.3.	Dynamic range	Sine-wave signal 100 kHz to input A	 Set AMPL/DIV to 0,2 V Adjust ampl. of input signal to 5 div. trace height. Set AMPL/DIV to 50 mV Depress X DEFL of S2 Adjust R1 and R5 to check the complete signal shape. 	— Check that the displayed signal is distortion free (see the Fig.)	For Service Ma MAURITRON TECH 8 Cherry Tree Oxon O: Tel:- 01844-351694 Email:- enquiries(
4.10.4	Y and Y anpl.	Sine-wave signal 2 kHz, ampl. 120 mV to input A	 Depress X DEFL. of S2 Depress DC of S20 Adjust amplitude of input signal for a trace-height of 6 div. Increase the freq. of the input signal to 100 kHz 	A line under an angle of 450 with respect to the horizontal graticule line visible Phase shift ≤ 30 A line under an angle of 450 with respect to the horizontal graticule line visible Phase shift ≤ 30	MICAL SERVICES
4.11.	Calibration		CAL X1	≈ 2 kHz square-wave signal, ampl. 1,2 Vpp, short-circuit protected	
4.12.	Z-Modulation	TTL compatible square- wave signal to input Z-MOD X6		logic "1" is normal intensity logic "0" is blanked	

5. CHECKING AND ADJUSTING

5.1. General Information

The following information provides the complete checking and adjusting procedure for the oscilloscope. As various control functions are interdependent, a certain order of adjustment is often necessary.

The procedure is, therefore, presented in a sequence which is best suited to this order, cross-reference being made to any circuit which may affect a particular adjustment.

Before any check or adjustment, the instrument must attain its normal operating temperature.

- Where possible, instrument performance is checked before an adjustment is made.
- Warming-up time under average conditions is 30 minutes.
- All limits and tolerances given in this section are calibration guides and should not be interpreted as instrument specifications unless they are also published in chapter 1. characteristics.
- Tolerances given are for the instrument under test and do not include test equipment error.
- The most accurate display adjustments are made with a stable, well-focused, low-intensity display. Unless
 otherwise stated, adjust the Intensity, Focus and Trigger Level controls as needed.
- Unless otherwise stated, the controls occupy the same position as in the previous check.

5.2. Recommended test equipment

As indicated in chapter 4.3.

Additional equipment for the checking and adjusting procedure:

Digital multimeter

e.g. PM 2522 (A) or PM 2524

H.T. probe

e.g. PM 9246

Trimming tool set

e.g. Philips 800NTX

Resistor 130 Ω , 1,5 W

e.g. 120 Ω WR (4822 112 21083) in serial with

10 Ω WR (4822 112 51054)

5.3. Preliminary settings of the controls

See Fig. 4.1.

Fig. 5.1. Adjustment points top view

Fig. 5.3. Adjustment points right side

Fig. 5.2. Adjustment points bottom view

5.4. SURVEY OF ADJUSTING ELEMENTS AND AUXILIARY EQUIPMENT

ADJUSTMENT	ADJUSTING ELEMENT	3	ADJUSTING RESULT		RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURES
POWER SUPPLY							
Supply voltage adjustment	R1474		-7.35 V + or -3 %oo on p	in 3 of X858	Digital multimeter	5.5,1.1.	5.3.
Current sensing	R1476		Extra load between pin 2 (4 pin 1 of X858. Adjust so th limit point is just not reach	at current	_	5.5.1.2.	5.3.
-1500 V supply voltage R1471		-1500 V + or -3 %oo on p		Digital multimeter and HV probe	5.5.1.3.	5.3.	
CRT DISPLAY ADJUSTM	ENTS	,				-	
Intensity	R1504		Point is just visible		-	5.5.2.1.	5.1.
Intens ratio	R401		DTB-trace must be well dist from MTB-trace	inguished	-	5.5.2.2.	5.1.
Trace rotation	R14		Trace runs exactly in paralle horizontal graticule line	el with the	-	5.5.2.3.	4.1.
Focus and astigmatism	R1473		Trace as sharp as possible		Function generator (sine-wave signal 10 kHz)	5.5.2.4.	5.3.
Geometry	R1472		Displayed vertical lines as st possible and signal must fall hatched area shown in Fig.	between	Function generator (sine-wave signal 100 kHz and ≈ 50 Hz)	5.5.2.5.	5.3.
BALANCE ADJUSTMENT	s						
Attenuator balance channel A (B)	R653	(R503)	Trace jump ≤ 0.2 div. (AMf setting 2 mV and 5 mV)	PL/DIV	-	5.5.3.1.	5.2.
	R672	(R521)	Trace jump ≤ 0.4 div. (AM setting 10 mV and 20 mV)	PL/DIV	-	5.5.3.1.	5.2.
Normal-Invert balance channel A (B)	R701	(R553)	Trace jump ≤ 0.5 div.		-	5.5.3.2.	5.2.
Final Y-amplifier balance	R1205		Top and bottom levels of the on the same point of the sci the POSITION controls R1 fully and	een, with	-	5,5,3.3.	5.1.
Added balance	R562		Trace in vertical centre			5.5.3.4.	5.2.
LF CORRECTIONS AND SENSITIVITIES							
Continuous control of channel A (B)	R743	(R 583)	Continuous attenuation star from counter clockwise-stop		Function generator (square-wave signal 10 kHz)	5.5.4.1.	5.2.
	R750	(R610)	Trace height from 6 div. to when R7 (R8) are fully could clockwise		Function generator (square-wave signal 10 kHz)	5.5.4.1.	5.2.
LF correction of channel A (B)	R719	(R563)	Pulse top as straight as possi	ble	Function generator (square-wave signal 100 Hz)	5.5.4.2.	5.2.
Gain x1 channel A (B)	R1239	(R578)	Trace height 6 div. + or -3 9	%	Function generator (square-wave signal 1 kHz)	5.5.4.3.	5.1, and 5.2
Gain x10 channel A (B)	R727	(R604)	Trace height 6 div. + or -3 5	%	Function generator (square-wave signal 1 kHz)	5.5.4.4.	5.2.
Trigger view sensitivity EXT ,A and B		R958 (A) R961 (B)	Trace height 6 div. + or -0.9	9 subdiv.	Function generator (square-wave signal 1 kHz)	5.5.4.5.	5.2.
VERTICAL CHANNELS		-					
Attenuator square-wave response channel A (B)			Pulse top errors ≤ + or −1.5	%	Square-wave calibration generator, rise time ≤ 100 ns	5.5.5.1.	5.2.
			AMPL/DIV switch setting	Trace height	freq. 10 kHz amplitude:		
			2-5-10 mV	+ or -1.5 % 6 div.	12 mV - 30 mV - 60 mV		
			∫ 20 mV	6 div.	120 mV		
	C676	(C538)	50 mV 0.1 V	6 div. 6 div.	300 mV 600 mV		
			0.2 V	6 div.	1.2 V		
	C663	(C539)	0.5 V	6 div.	3 V		
			l 1 V	6 div.	6 V 12 V		
	C687	(C519)	2 V 5 V	6 div. 3 div.	12 V 15 V		
	500.	,50.0/	10 V	3 div.	30 V	1	

For .. . 9

1

ADJUSTMENT	ADJUSTING ELEMENT	ADJUSTING RESULT	RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURES
Input capacitance channel A (B)		Pulse top errors ≤ + or −1.5 % AMPL/DIV setting Trace height + or −1.5 % 2 mV 6 div. 5 mV 6 div. 10 mV 6 div.	Square-wave calibration generator, rise time ≤ 100 ns, via dummy-probe 2 : 1 (fig. 5.5) Freq. 10 kHz Amplitude 24 mV 60 mV 120 mV	5.5.5.2.	5.2.
	Adjust C of dummy	20 mV 6 div. 50 mV 6 div. 0.1 V 6 div. 0.2 V 6 div.	240 mV 600 mV 1.2 V 2.4 V		
	C686 (C518)	0.5 V 6 div. 1 V 6 div. 2 V 6 div.	6 V 12 V 24 V		
UE		5 V 3 div. 10 V 1.5 div.	30 V 30 V		
HF square wave response	0070 0000 (A)	Adjust for minimum canacity	1	5.5.5.3.	5.2.
Presets	C672, C683 (A)	Adjust for minimum capacity		3,3,3,3	5.2.
	C512, C528 (B)	Adjust for minimum capacity			5.1.
	R1203 (final Y)	Fully counter clockwise			
N-99-	C1207 (final Y)	Adjust for minimum capacity	Samuel Marie		5.1.
Square-wave response chan	nel B I	AMPL/DIV setting:	Square-wave generator, rise time ≤ 1 ns		
	R1202	20 mV, pulse top straight	120 mV/25 kHz	Ì	5.1.
		20 mV, pulse top straight	120 mV/100 kHz		5.1.
	C1203, R1201				5.1.
	R1250	20 mV, steep slope, no aberrations	120 mV/1 MHz 120 mV/1 MHz		5.1. 5.1.
	C1223, L1201 L1202 C1207	20 mV, pulse top straight 20mV, pulse top straight	120 mV/1 MHz		5.1.
	C512	20 mV, slope 1/2 div overshoot	120 mV/1 MHz		5.2.
	C528	2 mV, 3/4 subdiv. overshoot	12 mV/1 MHz		5.2.
	C1223	20 mV, pulse top straight	120 mV/ 1 MHz		5.1.
	Repeat the previous two	20 mv, paise top straight			
	steps for optimal result.	50 mV, pulse response equal to	300 mV/1 MHz		5.2.
	C540	20 mV/div 0.2 V, pulse response equal to	1.2 V/1 MHz		5.2.
Square-wave response chan	nel A	20 mV/div			
	C683	2 mV, 3/4 subdiv. overshoot	12 mV/1MHz •		5.2.
	C672 Repeat the previous two st optimal result	20 mV, 1/2 subdiv. overshoot eps for	120 mV/1MHz		5.2.
	C645	50 mV, pulse response equal to 20 mV/div	300 mV/1MHz		5.2.
	C662	0.2 V, pulse response equal to 20 mV/div	1.2 V/1 MHz		5.2.
Square-wave response tigger view EXT	C1112	Pulse top as straight as possible	3 V/10 kHz applied to X5.	5.5.5.5.	5.3.
	C1102	Trig view signal 5% overshoot	3 V/1 MHz applied to X5		5.3.
	C895	Trig view signal A: aberrations ≤ 8 %	1 MHz/120 mV square wave to A		5.3.
	C896	Trig view signal B: aberrations ≤ 8 %	1 MHz/120 mV square wave to A		5.3.
TRIGGERING					
Trigger symmetry	R1054	The distances between the trigger points and the top respectively the bottom of the sine-wave signal must be equal.	Sine-wave signal, 10 kHz, ampl. 0.8 V	5.5.6.1.	5.2.
Trigger sensitivity	R388	Push and pull S8; trace must be triggered at trace height of 2 subdivisions	Sine-wave signal, 10 kHz, ampl. 0.8 V	5.5.6.2	5.1.
Trigger balance channel	R959	Trace in the vertical centre		5.5.6.3.	5.2.
A, B and EXT	R962	Trace in the vertical centre		5.5.6.3.	5.2. 5.2.
	R1134	Trace in the vertical centre			
	B007	. 0. 005		5.5.6.3.	5.2.
TTL leve!	R907 R907	+ SLOPE symmetrically around 0,7 div.	Sine-wave signal, 10 kHz	5.5.6.4.	5.2.
				:	
				L	

ADJUSTMENT	ADJUSTING ELEMENT	ADJUSTING RESULT	RECOMMENDED INSTRUMENT AND INPUT SIGNALS	CHAPTER	FIGURE
COMP balance	R964	+ SLOPE:			
	R964	- SLOPE:	Sine-wave signal, 10 kHz	5.5.6.4.	5.2.
Trigger view balance	R808	Trace in the vertical centre	_	5.5.6.5.	5.2.
Trigger balance	R887 (A)	Start of trace on the vertical centre line	Sine-wave signal, 10 kHz	5.5.6.6.	5.2.
DTB via A and B	R889 (B)	Start of trace on the vertical centre line	Sine-wave signal, 10 kHz	5.5.6.6.	5.2.
Line triggering	R891	Trace must be 8 div. high	_	5.5.6.7.	5.2
TIME-BASE GENERATO	RS				
Main-time base time coefficients		Check that the centre 8 cycles have a total width of 8 div. MTB TIME/DIV	Time-marker generator, pulse repetition rate:	5.5.7.1.	
	R1381	0.05 μ s horizont. lin. of first three cycles 0.1 μ s 0.2 μ s	0.05 μs 0.1 μs 0.2 μs		5.1. 5.1.
	R1384	0.5 μs 1 μs 2 μs 5 μs 10 μs	0.5 μs 1 μs 2 μs 5 μs 10 μs		5.1.
		20 μs 50 μs	20 μs 50 μs		
	R348	0.1 ms 0.2 ms 0.5 ms 1 ms 2 ms	0,1 ms 0,2 ms 0,5 ms 1 ms 2 ms		5.1
	R347	5 ms 10 ms 20 ms 50 ms 1 s 2 s	5 ms 10 ms 20 ms 50 ms 1 s 2 s		5.1
		5 s Continuous control range of R10 must be between 1:2,6 and 1:3	5 s		
Delayed time-base time coefficients		Check that the centre 8 cycles have a total width of 8 div. MTB TIME/DIV. DTB TIME/DIV	Time-marker generator ,pulse repetition rate:	5.5.7.4	
		0,1 μs 0,05 μs 0,2 μs 0,1 μs 0,5 μs 0,2 μs 1 μs 0,5 μs	0.05 µs 0,1 µs 0,2 µs 0,5 µs		
	R349	2 μs 1 μs 5 μs 2 μs 10 μs 5 μs 20 μs 10 μs 50 μs 20 μs	1 μs 2 μs 5 μs 10 μs 20 μs		5.1
	R351	0,1 ms 50 μs 0,2 ms 0,1 ms 0,5 ms 0,2 ms 1 ms 0,5 ms 2 ms 1 ms	50 µs 0,1 ms 0,2 ms 0,5 ms 1 ms		5.1
		Continuous control range of R9 must be between 1 : 2,6 and 1 : 3			
Delay time multiplier	R268	Start of DTB trace on the second time marker pulse when DELAY TIME control is set to 1,0	Time-marker generator pulse repetition rate 0,1 ms	5.5.7.5	5.1
	R262	Start of DTB trace on the tenth time marker pulse when DELAY TIME control is set to 9,0	Time-marker generator pulse repetition rate 0,1 ms	5.5.7.5.	5.1
ALIBRATION SIGNAL					
Output voltage	R1549	2 kHz 1,2 Vpp ± 0,1%	-	5.5.10.	5.2.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

ŧ.

5.5. CHECKING AND ADJUSTING PROCEDURE

The adjusting elements are indicated in fig. 5.1, 5.2 and 5.3 for respectively top, bottom and right-hand side of the instrument.

5.5.1. Power supply

- Check that the voltage selector (S25) has been set to the local mains voltage.
- Connect the instrument to the mains voltage or to a 24 V battery supply.
- Switch on the oscilloscope and check that the pilot lamp B5 lights up.
- Check that the power consumption does not exceed 38 W from AC and 30 W from a battery supply.

5.5.1.1. Supply voltage adjustment

Check at nominal mains voltage or battery supply voltage that the voltage on pin 3 of X858 (see fig. 5.2) is
 7.35 V + or -3 0/00; if necessary readjust R1474 (fig. 5.3.).

5.5.1.2. Current sensing

- Connect a resistor of 130 Ω (1.5 W) across pin 2 (+14 V) and pin 1 (\perp) of X858 (fig. 5.2).
- Adjust the maximum current by means of R1476 (fig. 5.3), so that the current limit point is just not reached.
- Remove the resistor.

5.5.1.3. -1500 V supply voltage

- Remove the cover of the c.r.t. socket (item 18 of fig. 7.2).
- Check the -1500 V supply voltage on pins 7 and 14 of the c.r.t. socket. This -1500 V must be + or -3 0 /oo; if necessary readjust R1471 (fig. 5.3.).

Dummy load for power supply.

Components:

R1 and R2	Ω 67	4W	WR0617	4822 112 21074
R3	18Ω	4W	WR0617	4822 112 21061
R4	12 Ω	4W	WR0617	4822 112 21056
R5 and R6	27K	1,15W	CR68	4822 110 23145
R7	1K8	4W	WR0617	4822 112 21114
R8 and R9	3K3	4W	WR0617	4822 112 21121
R10 and R11	1K5	4W		4822 112 21112
R12	Ω 089	7W	WR0825	4822 112 41103

5.5.2. CRT display adjustments

5.5.2.1. Intensity

- Set the controls as indicated in fig. 4.1.
- Depress X DEFL of S2.
- Set the displayed point in the vertical and horizontal centre of the screen by means of the position R1 and the X pos. R5 controls.
- Depress 0 of S17.
- Turn the INTENS control R12 \approx 22,5° (one notch-distance) from the left hand stop.
- Check that the point is just visible; if necessary readjust R1504 (fig. 5.1.) If after installing a new c.r.t., the adjustment range is too small, R1503 must be changed into 24,9 K Ohm (5322 116 54648) and R1315 into 8,66 K Ohm (5322 116 54613).
- Depress DC of S17.

5.5.2.2. Intens ratio

- Depress MTB of S2.
- Set the MTB TIME/DIV switch S15 to 5 μ s.
- Set the DTB TIME/DIV switch S13 to 1 μ s.
- Set the DELAY TIME control R3 to 5.0.
- Set the INTENS control R12 so that the MTB trace is barely visible over the entire screen.
- Check that the intensified part (DTB part) is more brilliant and can be well distinguished from the MTB trace; if necessary readjust R401 (fig. 5.1).
- Set the DTB TIME/DIV S13 to OFF.

5.5.2.3. Trace rotation

- Set the MTB TIME/DIV S15 to 0.1 ms.
- Set the trace in the vertical centre of the screen by means of the POSITION control R1.
- Check that the trace runs exactly in parallel with the horizontal graticule line; if necessary readjust TRACE ROTATION R14 (front panel).

NOTE: If the adjustment range is not sufficient enough, remove connector X1502 (FINAL AMPLIFIER UNIT A5), turn it 180° and reconnect it.

After that, repeat the procedure described above.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

5.5.2.4. Focus and astigmatism

- Set the AMPL/DIV switch S9 to 0.1 V.
- Depress 0 of S18.
- Set the MTB TIME/DIV switch S15 to 50 μ s.
- Depress ALT of S1.
- Set the trace of channel B in the vertical centre of the screen by means of the POSITION control R2.
- Set the FOCUS control R13 1800 from its left hand stop.
- Apply a sine-wave signal, frequency 10 kHz, 6 div. trace height to input A.
- Check that the traces are as sharp as possible; if necessary optimise with the aid of R1473 (fig. 5.3).

5.5.2.5. Geometry (barrel and pin-cushion distortion)

- Depress A of S1.
- Set the AMPL/DIV switches S9 and S11 to 50 mV.
- Apply a sine-wave signal, frequency 100 kHz, amplitude ≈ 400 mVpp to input A.
- Adjust the trace height to 7,4 div.
- Set the MTB TIME/DIV switch S15 to 50 μ s.
- Apply a sine-wave signal, frequency ≈ 50 Hz to input B.
- Depress X DEFL of S2.
- Depress B of S23.
- Adjust the horizontal deflection to 9.4 div. by means of the continuous control R8.
- Check that the displayed vertical and horizontal lines are as straight as possible and check that the signal falls between the hatched area shown in fig. 5.4; if necessary readjust R1472 (fig. 5.3).
- Remove the input signals.

MAT 981 A

Fig. 5.4. Geometry check

5.5.3. Balance adjustments

The balance adjustments of channels A and B are identical.

The knobs, sockets and adjustments of channel B are shown in brackets behind those of channel A.

5.5.3.1. Attenuator AMPL/DIV balance channel A (B)

- Set the controls as indicated in fig. 4.1.
- Depress A (B) of S1.
- Depress 0 of S17 and S18.
- Depress A (B) of S23.
- Set the trace in the vertical centre of the screen by means of POSITION control R1 (R2).
- Switch the AMPL/DIV control S9 (S11) between the positions 2 mV and 5 mV.
- Check that the trace does not jump more than 0.2 div.; if necessary readjust R653 (R503), fig. 5.2.
- Switch the AMPL/DIV control S9 (S11) between the positions 10 mV and 20 mV.
- Check that the trace does not jump more than 0,4 div.; if necessary readjust R672 (R521), fig. 5.2.

5.5.3.2. Normal-Invert balance channel A (B)

- Put the AMPL/DIV switch in position 20 mV.
- Depress A (B) of S1.
- Set the trace in the vertical centre of the screen by means of POSITION control R1 (R2).
- Pull and push the normal-invert switch S4 (S5).
- Check that the trace does not jump more than 0.5 div.; if necessary readjust R701 (R553), fig. 5.2.

5.5.3.3. Final Y-amplifier balance

- $-\,$ Apply a sine-wave signal to input A and B, amplitude 160 mV (p-p), frequency \approx 10 kHz.
- Set the AMPL/DIV. switches S9 and S11 to 10 mV.
- Depress CHOP of S1.
- Turn the POSITION controls R1 and R2 fully counter clockwise and clockwise.
- Check that the top and bottom levels of the sine-wave signal are on the same point on the screen on both sides of the vertical centre line in the POSITION controls positions fully and : if necessary readjust R1205, fig. 5.1.

5.5.3.4. Added balance

- Remove the input signals of channel A and B.
- Depress ALT of S1.
- Set the AMPL/DIV switches S9 and S11 to 20 mV.
- Set the trace of channel A and B in the vertical centre of the screen.
- Depress ADD of S1.
- Check if the trace lies in the vertical centre of the screen; if necessary readjust R562, fig. 5.2 (the deviation of the trace from the vertical centre line must be doubled by adjusting R562.)
- Depress ALT of S1.
- Set the traces of both channels A and B on the vertical centre line.
- Depress ADD of S1.
- Check if the trace lies exactly on the vertical centre line; if necessary repeat the procedure above.

5.5.4. LF corrections and sensitivities

The LF corrections and sensitivity adjustments of channel A and B are identical.

The knobs, sockets and adjustments for channel B are shown in brackets behind those of channel A.

5.5.4.1. Continuous control of channel A (B)

- Depress A (B) of S1.
- Depress A (B) of S23.
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Apply a square-wave signal, freq. 10 kHz, ampl. 120 mV (p-p) to input A (B).
- Turn the continuous control CAL R7 (R8) 150 counter clockwise out of its CAL position.
- Check that the continuous attenuation starts at this position of the continuous control; if necessary readjust R743 (R583), fig. 5.2.
- Turn the continuous control CAL R7 (R8) fully counter clockwise.
- Check that the trace height is ≤ 2,4 div.; if necessary readjust R750 (R610), fig. 5.2.

5.5.4.2. LF correction of channel A (B)

- Set the controls as indicated in fig. 4.1.
- Set the MTB TIME/DIV switch S15 to 2 ms.
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Apply a square-wave signal, frequency 100 Hz, ampl. 120 mV to input A (B).
- Check that the pulse top is as straight as possible; if necessary readjust R719 (R563), fig. 5.2.

5.5.4.3. Gain X1 (sensitivity) channel A (B)

- Set the MTB TIME/DIV switch to 0.1 ms.
- Apply a square-wave signal, freq. 1 kHz, ampl. 120 mV (from calibrated output of PG506) to input A (B).
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Depress A (B) of S1.
- Depress A (B) of S23.
- Check that the trace height is 6 div. + or -3 %; if necessary readjust R1239 (R578), fig. 5.1 (fig. 5.2).

5.5.4.4. Gain X10 (sensitivity) channel A (B)

- Depress A (B) of S1.
- Depress A (B) of S23.
- Set the AMPL/DIV switch S9 (S11) to 2 mV.
- Apply a square-wave signal, freq. 1 kHz, ampl. 12 mV (from calibrated output of PG506) to input A (B).
- Check that the trace height is 6 div. + or -3 %; if necessary readjust R727 (R604), fig. 5.2.

5.5.4.5. Trigger view sensitivity via EXT and A and B.

- Set the controls as indicated in fig. 4.1.
- Set the MTB TIME/DIV switch S15 to 50 μ s.
- Apply a square-wave signal, freq. 1 kHz, ampl. exactly 1,2 V to input EXT (X5) and A and B.
- Depress TRIG VIEW of S1.
- Depress TRIG and AUTO of S3.
- Set the trace in the vertical centre by means of the LEVEL control R6.
- Depress EXT of S23.
- Check that the trace height is 6 div. \pm or -0.9 subdiv.; if necessary readjust R1104, fig. 5.2.
- Depress A of S23.
- Put AMPL/DIV switches S9 and S11 in position 0.2 V.
- Check that the trace height is exactly 6 div.; if necessary readjust R958.
- Depress B of S23.
- Check that the trace height is exactly 6 div.; if necessary readjust R961.

5.5.5. Vertical channels

The adjustments of channel A and B are identical.

The item numbers of the knobs, sockets and adjustments of channel B are shown in brackets behind those of channel A.

5.5.5.1. Attenuator square-wave response, channel A (B)

- Set the controls as indicated in fig. 4.1.
- Set the MTB TIME/DIV switch S15 to 20 μ s.
- Apply a square-wave signal, freq. 10 kHz, rise time ≤ 100 ns to input A (B).
- Depress A (B) of S1.
- Depress A (B) of S23.
- Check the trace height of the displayed signal (indicated in the table below).
- Check the square-wave response; check that the pulse-top errors do not exceed + or -1,5 %; if necessary readjust as indicated in the table below.

Channel A (B) AMPL /DIV S9 (S11)	Amplitude of input signal A (B)	Adjusting element channel A (B)	Trace height + or -1.5 %
2 mV	12 mV		6 div.
5 mV	30 mV		6 div.
10 mV	60 mV		6 div.
20 mV	120 mV }		6 div.
50 mV	300 mV }	C676 (C538)	6 div.
0.1 V	600 mV)		6 div.
0.2 V	1.2 V)		6 div.
0.5 V	3 v }	C663 (C539)	6 div.
1 V	6 V J		6 div.
2 V	12 V]		6 div.
5 V	15 V }	C687 (C519)	3 div.
10 V	30 V		3 div.
-		see fig. 5.2	

- Remove the input signal.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-35254
Email:- enquiries@mauritron.co.uk

5.5.5.2. Input capacitance, channel A (B)

- Apply via a dummy probe (fig. 5.5) a square-wave signal, freq. 10 kHz, rise time ≤ 100 ns to input A (B).
- Check the square-wave response; check that the pulse top errors do not exceed + or -1.5 %; if necessary readjust as indicated in the table below.
- Check the amplitude of the displayed signal.

Channel A (B) AMPL/DIV S9 (S11)	Amplitude of input signal A (B)	Adjusting element channel A (B)	Trace height + or -1.5 %
2 mV	24 mV		6 div. 6 div.
5 mV 10 mV	60 mV 120 mV		6 div.
20 mV	240 mV	Adjust Cd (dummy)	6 div.
50 mV	600 mV		6 div.
0.1 V	1.2 V	_	6 div.
0.2 V	2.4 V	C662 (C537)	6 div.
0.5 V	6 V	_	6 div.
1 V	12 V	—	6 div.
2 V	24 V	C686 (C518)	6 div.
5 V	30 V		3 div.
10 V	30 V		1.5 div.

1ΜΩ

Fig. 5.5. Dummy probe 2:1

5.5.5.3. HF square-wave response channel B (A)

- Set the controls as indicated in fig. 4.1.
- Depress B of S1.
- Depress B of S23.
- Apply a square-wave signal to input B, frequency as given in the table below, rise time ≤ 1 ns.
- Adjust the trace height to exactly 6 div. (AMPL/div to 20mV).
- Set by means of the POSITION control R2 the top of the square-wave signal on the second division from the top of the graticule.
- Preset the following adjustment points:

Preamplifier and trigger unit:

CHANNEL A: C672 and C683 minimum capacity.

CHANNEL B: C512 and C528 minimum capacity.

Final Y-amplifier:

R1203 maximum (fully counter clockwise) R1207 minimum capcity.

- Adjust according the table below:

Fig. 5.6. Square-wave response

ADJUST- MENT SEQUENCE	S11 AMPL/DIV	FREQ. OF INPUT SIGNAL	S15 TIME/DIV	ADJUST- MENT POINT	ADJUSTING RESULT (see also fig. 5.6.)
1 2	20 mV 20 mV 20 mV	25 kHz 100 kHz 1 MHz	10 μs 1 μs 50 ns	R1202 C1203 } R1201 } R1250	top as straight as possible top as straight as possible slope as steep as possible without
4	20 mV	1MHz	50 ns	C1223) L1201 } L1202)	aberrations top as straight as possible
5 5a 6 7	20 mV 20 mV 2 mV 20 mV	1 MHz 1 MHz 1 MHz 1 MHz	50 ns 50 ns 50 ns 50 ns	C1207 C 512 C528 C1223	top as straight as possible slope 1/2 subdivision overshoot. slope 3/4 subdivision overshoot. top as straight as possible
8 9 10 11	Repeat po 50 mV .2 V 20 mV/div.	ints 6 and 7 for an o 1 MHz 1 MHz 1 MHz	50 ns 50 ns 50 ns 50 ns	C540 } C537 }	pulse response equal to response in 20 mV/div. (point 7) minimum pulse aberrations, also in invert mode
	10 V/div. For MAUF 8 2 2 mV/div Tel:-0	Service Manuals Contac ITRON TECHNICAL SERVICI Cherry Tree Rd, Chinnor Oxon OX9 4QY 844-351694 Fax:- 01844-352 ail:- enquiries@mauritron.co.ul	S (≤1 ≤1 554	,9 subdiv. subdiv. pp) subdiv. 2 subdiv. pp)	in invert additional 0,25 subdivisions

- Depress A of S1.
- Depress A of S23.
- Apply a square-wave signal to input A, frequency as given in the table below, rise time \leq 1ns.
- Adjust the trace height to exactly 6 div.
- Set by means of the POSITION control R1 the top of the square-wave signal on the second division from the top of the graticule.
- Adjust according the table below:

ADJUST- MENT SEQUENCE	S9 AMPL./DIV.	FREQ. OF INPUT SIGNAL	S15 TIME/DIV.	ADJUSTMENT POINT	ADJUSTING RESULT (see also fig. 5.6.)
12	2mV	1MHz	50ns	C683	Slope 3/4 subdivision overshoot.
13	20mV	1MHz	50ns	C672	Slope 1/2 subdivision overshoot.
14	Repeat poin	ts 12 and 13 for an	optimal result.		
15	50mV	1MHz	50ns	C645 \	Pulse response equal
16	.2 V	1MHz	50ns	C662)	to response in 20mV/div. (point 13).
17	20 mV/div. 10 V/div.	1MHz	50ns		Minimum pulse aberrations, also in invert mode.
			≤ 0.9 subdiv	. (≤ 1 subdiv. PP)	In invert mode additional
	2 mV/div.		i -	≤ 1.2 subdiv. PP)	,
	 10 mV/div.				

5.5.5.4. Vertical shift influence on the input signal

- Set the AMPL/DIV switch S9 to 20 mV.
- Apply a square-wave signal to input A, trace height exactly 5 div., rise time ≤ 1 ns.
- Set by means of the POSITION control R1 the top of the square-wave signal 2,5 div. above the vertical centre line.
- Shift the bottom of the square-wave signal by means of R1 5,5 div. upwards and check that the aberrations
 on the bottom of the square-wave signal are ≤ 0,25 div.
- Set the square-wave signal in the centre of the screen.
- Shift the top of the square-wave signal 5,5 div. downwards and check that the aberrations are \le 0,25 div.

5.5.5.5. Square-wave response Trigger view EXT.-channel A (B)

- Set the MTB TIME/DIV switch S15 to 20 μ s.
- Depress TRIG VIEW of S1.
- Apply a square-wave signal, freq. 10 kHz, amplitude 1,2 V to input EXT (X5).
- Depress EXT of S23.
- Depress TRIG of S3.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Check that the pulse top is as straight as possible; if necessary readjust C1112 (fig. 5.3) (overshoot
 1.8 subdiv.).
- Increase the frequency of the input signal to 1 MHz, rise time \leq 1 ns, amplitude 1,2 V.
- Set the MTB TIME/DIV switch S15 to 0.2 μ s.
- Check that the trigger view signal is as straight as possible; if necessary readjust C1102 (see fig. 5.3.).
- Remove the input signal.
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Depress A of S23.
- Apply a square-wave signal, freq. 1 MHz, rise-time ≤ 1 ns, amplitude 120 mV to input A.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Check that the pulse-aberrations and overshoot are \leq 8 % (2,4 subdiv.); if necessary readjust C895.
- Apply the square wave signal to input B.
- Depress B of S23.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Check that the pulse response is as straight as possible and that the pulse aberrations and overshoot are
 ≤ 8 % (2,4 subdiv.); if necessary readjust R896.

5.5.6. Triggering

5.5.6.1. Trigger symmetry

- Set the controls as indicated in fig. 4.1.
- Set S15 to 50 μ s.
- Set S9 to .2 V.
- Apply a sine-wave signal, frequency 10 kHz to input A.
- Set the trace-height to exactly 8 div.
- Push the SLOPE switch S8 for positive triggering.
- Set R6 fully clockwise.
- Note the starting-point of the trace.
- Pull the SLOPE switch S8 for negative triggering.
- Set R6 fully counter-clockwise.
- Note the starting-point of the trace.
- Check that in both situations described above, the distances between the trigger points and the top
 respectively the bottom of the sine-wave signal are equal; if necessary readjust R1054 for an optimal result.

Ė

- Remove the input signal.

5.5.6.2. Trigger sensitivity

- Set the controls as indicated in fig. 4.1.
- Set S9 and S11 to .2V.
- Apply a sine-wave signal, frequency 10 kHz to the input A, trace height 2 subdivisions.
- Pull and push the SLOPE switch S8.
- Check that the trace is well triggered over the complete level range; if necessary readjust R388 (fig. 5.1.).

NOTE: Section 5.5.6.3. and 5.5.6.4. and 5.5.6.5. must always be adjusted together in the sequence as given helow

5.5.6.3. Trigger balance channel A, B and EXT

- Depress A of S23.
- Depress TRIG VIEW of S1.
- Depress AUTO and TRIG of S3.
- Depress 0 of S17 and S18.
- Depress LF of S20.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Depress DC of S20.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R959 (see fig. 5.2.).
- Depress B of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R962 (see fig 5.2.).
- Depress EXT of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R1134 (see fig. 5.2.).

5.5.6.4. TTL level and COMP balance

- Depress A of S1.
- Depress A of S23.
- Set the trace in the vertical centre of the screen by means of R1.
- Depress DC of S17.
- Apply a sine-wave signal, frequency 10 kHz to input A.
- Set the trace-height to 4 div.
- Set S15 to 10 μs.
- Depress TTL of S20.
- Push the switch S8 for positive triggering and pull S8 for negative triggering.
- Check that the starting points of the trace lies symmetrically around 0.7 div. above the vertical centre of the screen; if necessary readjust R907 (see fig. 5.2.).
- Depress A and B (COMP) of S23.
- Push the SLOPE switch S8 for positive triggering and pull S8 for negative triggering.
- Check that the trace starts symmetrically around 0.7 div. above the vertical centre of the screen; if necessary readjust R964 (fig. 5.2.).

5.5.6.5. Trigger view balance

- Depress TRIG VIEW of S1.
- Depress 0 of S17.
- Depress AUTO of S3.
- Depress DC of S20.
- Depress A of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R808 (see fig. 5.2).

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554

Email:- enquiries@mauritron.co.uk

5.5.6.6. Trigger balance, DTB, via channel A and B

- Depress A of S1.
- Set S9 and S11 to 0.2V.
- Set S13 and S15 to 50 μ s.
- Depress A of S22.
- Set the DELAY TIME control R3 fully counter-clockwise (to 0.0).
- Depress DTB of S2.
- Depress DC of S17 and S18.
- Apply a sine-wave signal, frequency 10 kHz, amplitude 1.2 V to input A (X2).
- Release all switches of S19.
- Set the trace in the vertical centre of the screen by means of R1.
- Set the start of the trace on the vertical centre line of the screen by means of R4 (LEVEL DTB).
- Depress DC of S19.
- Check that the start of the trace is on the vertical centre line of the screen; if necessary readjust R887 (fig. 5.2).
- Depress B of S1.
- Depress B of S22.
- Depress B of S23.
- Apply a sine-wave signal, frequency 10 kHz, amplitude 1.2 V to input B (X4).
- Set the trace in the vertical centre of the screen by means of R2.
- Release all switches of S19.
- Set the start of the trace on the vertical centre line of the screen by means of R4.
- Depress DC of S19.
- Check that the start of the trace is on the vertical centre line of the screen; if necessary readjust R889 (see fig. 5.2).
- Remove the input signal.

5.5.6.7. Line triggering.

- Depress TRIG VIEW of S1.
- Set MTB switch S15 to 10 ms/div.
- Depress AUTO and TRIG of S3 (auto triggering without peak-peak level range).
- Depress LINE of S23.
- Check if the displayed line signal is 8 div. high; if necessary readjust R891 (fig. 5.2.).

5.5.6.8. Trigger slope and level of the main time-base

- Apply a sine-wave signal, freq. 10 kHz, amplitude 160 mV to input A (B).
- Depress A (B) of S1.
- Depress A (B) of S23.
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Set the MTB TIME/DIV switch S15 to 50 us.
- Depress TRIG of S3.
- Adjust the LEVEL control R6 for a well triggered display.
- Check that the signal is triggered on the positive going slope.
- Check that the signal is not triggered when the LEVEL control is set fully counter-clockwise and fully clockwise.
- Depress AUTO of S3.
- Check that the signal is triggered over the whole LEVEL range (R6).
- Set the AMPL/DIV switch S9 (S11) to 10 mV.
- Depress TRIG of S3.
- Check that the trace is triggered over + and -8 div.
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Pull the SLOPE switch S8.
- Check that the signal is triggered on the negative going slope.
- Push the SLOPE switch S8.
- Remove the input signal.
- Depress EXT of S23.
- Apply a sine-wave signal, freq. 1 kHz, amplitude 3,2 V to input EXT (X5).
- Depress TRIG VIEW of S1.
- Check that the trigger point can be shifted over $\ge \pm$ 1,6 (≥ 8 div.) by means of the LEVEL control R6.
- Remove the input signal.

5.5.6.9. Trigger sensitivity check of the main time-base via channel A (B) and EXT

- Depress DC of S20.
- Apply a sine-wave signal, frequency as given in the table below to input A (B) (EXT).
- Set the AMPL/DIV switch S9 (S11) to 0.2 V.
- Adapt the setting of the MTB TIME/DIV switch to the frequency of the input signal.
- Decrease the amplitude of the displayed signal by means of the continuous control R7 (R8).
- Check that the signal is triggered at trace heights given in the table below.

TRIGGER SENSITIVITY MAIN TIME-BASE								
Input	S1	\$23	Frequency of the sine wave signal	S 3	Trace height			
Α	А	Α	10 Hz	TRIG	≤ 0.4 div.			
Α	Α	Α	100 Hz	AUTO	≤ 0.4 div.			
Α	Α	Α	10 kHz	AUTO	≤ 0.4 div.			
Α	Α	A	75 MHz	AUTO	≤ 0.6 div.			
Α	Α	Α	100 MHz	AUTO	≤ 1,2 div.			
В	В	В	100 Hz	AUTO	\leq 0.4 div.			
В	В	В	75 MHz	AUTO	≤ 0.6 div.			
В	В	В	100 MHz	AUTO	≤ 1,2 div.			
EXT	TRIG V	EXT	100 Hz	AUTO	≤ 100 mV			
EXT	TRIG V	EXT	75 MHz	AUTO	≤ 200 mV			
EXT	TRIG V	EXT	100 MHz	AUTO	≤ 300 mV			

5.5.6.10. Triggering of the main time-base in COMP mode

- Set the MTB TIME/DIV switch S15 to 0.1 ms.
- Depress A of S23.
- Depress ALT of S1.
- Depress DC of S17 and S18.
- Set the AMPL/DIV switches S9 and S11 to 20 mV.
- Apply a sine-wave signal, freq. 10 kHz, amplitude 120 mV to input A.
- Apply the CAL signal (X1) to input B via a 10:1 probe.
- Depress A and B (COMP) of S23.
- Set the POSITION controls R1 and R2 so that both traces overlap each other.
- Check that both traces are well triggered.
- Remove the input signals.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES

8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk

5.5.6.11. Triggerslope and level of the delayed time-base

- Depress A (B) of S1.
- Depress A (B) of S23.
- Apply a sine-wave signal, freq. 1 kHz, amplitude 160 mV to input A (B).
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Set the MTB TIME/DIV switch S15 to 0.5 ms.
- Set the DTB TIME/DIV switch S13 to 0.1 ms.
- Depress A (B) of S22.
- Depress DTB of S2.
- Adjust the LEVEL control R4 for a well triggered display.
- Check that the signal is triggered on the positive going slope.
- Set the AMPL/DIV switch to 10 mV.
- Check that the trace is triggered over + and -8 div.
- Set the AMPL/DIV switch to 20 mV.
- Pull the SLOPE switch S6.
- Check that the signal is triggered on the negative going slope.
- Push the SLOPE switch S6.

5.5.6.12. Trigger sensitivity check of the delayed time-base via the channel A (B)

- Depress AUTO of S3.
- Depress DC of S20.
- Depress DC of S19.
- Set the DELAY TIME control R3 to 0.
- Apply a sine-wave signal, frequency as given in the table below, amplitude 120 mV to input A (B).
- Set the AMPL/DIV switch S9 (S11) to 0.2 V.
- Adapt the setting of the TIME/DIV switches S15 and S13 to the frequency of the input signal.
- Set the MTB TIME/DIV switch one position lower (longer sweep time) than the DTB TIME/DIV switch.
- Decrease the amplitude of the displayed signal by means of the continuous control R7 (R8).
- Check that the signal is triggered at the trace heights given in the table below.

TRIGGER SENSITIVITY DELAYED TIME-BASE					
Input	S1	\$23	\$22	Frequency of the sine-wave signal	Trace height
A	Α	Α	Α	100 Hz	< 0.4 div.
A	A	l A	Α	10 kHz	≤ 0.4 div.
Α	A	A	A	75 MHz	< 0.6 div.
A	A	A	A	100 MHz	≤ 1,3 div.
В	B	В	В	100 Hz	≤ 0.4 div.
В	B	В	В	10 kHz	≤ 0.4 div.
В	В	В	В	75 MHz	≤ 0.6 div.
В	B	В	В	100 MHz	≤ 1,3 div.

- Set the DTB TIME/DIV switch S13 to OFF.
- Depress MTB of S2.
- Remove the input signal.

5.5.6.13. Filter check main time-base

- Set the MTB TIME/DIV switch to 0.2 ms.
- Apply a square-wave signal, freq. 2 kHz, amplitude 300 mV to input A.
- Set the AMPL/DIV switch S9 to 50 mV.
- Depress A of S1.
- Depress A of S23.
- Check that the signal is well triggered.
- Depress LF of S20.
- Depress TRIG VIEW of S1.
- Check that a square-wave is visible with roundings.
- Depress HF of S20.
- Check that a differentiated square-wave is visible.
- Depress DC of S20.
- Depress A of S1.

5.5.6.14. Filter check delayed time-base

- Set the DTB TIME/DIV switch S13 to 0.1 ms.
- Depress DTB of S2.
- Apply a sine-wave signal, freq. 2 kHz, amplitude 300 mV to input A.
- Set the start of the trace in the vertical centre of the screen by means of the POSITION control R1.
- Depress A of S22.
- Depress LF of S19.
- Set the start of the trace in the vertical centre by means of the LEVEL control R4.
- Depress HF of S19.
- Check that the signal is not triggered.
- Increase the frequency of the input signal to 25 kHz and higher.
- Check that the signal is well triggered.
- Depress DC of S19.

- Check that the trigger point is at the positive top of the sine-wave.
- Decrease the frequency of the input signal to 2 kHz.
- Check that the signal is well triggered.

5.5.7. Time-base generators

5.5.7.1. Main time-base time coefficients

To compensate temperature influences on the time base time coefficients, especially at high environmental temperatures, the contacts X220 (see fig. 8.7.) must be interconnected by means of a jumper or a wire during adjusting the time base coefficients.

- Set the controls as indicated in fig. 4.1.
- Set the AMPL/DIV switch S9 to 0.5 V.
- Set the MTB TIME/DIV switch S15 to 1 μ s.
- Apply a time-marker signal of \approx 2 V, pulse repetition rate 1 μ s to input A.
- Check that the centre 8 cycles have a total width of 8 div.; if necessary readjust R1384 (fig. 5.1).
- Pull the X MAGN switch S7 (X10).
- Check if the MAGN led B2 lights up.
- Apply a time-marker signal, pulse repetition rate 0.1 μ s to input A.
- Check that the centre 8 cycles have a total width of 8 div.; if necessary readjust R1381 (fig. 5.1).
- Set the MTB TIME/DIV switch S15 to 0.05 μ s.
- Apply a time-marker signal, pulse repetition rate 5 ns to input A.
- Set the X POS control R5 fully clockwise.
- Check the horizontal linearity of the first three displayed cycles of the signal.
- Check the horizontal linearity of the displayed signal when the X POS control R5 is in mid-position.
- Push the X MAGN switch S7.
- Set the MTB TIME/DIV switch S15 to 0.1 ms.
- Apply a time-marker signal, pulse repetition rate 0.1 ms, to input A.
- Check that the centre 8 cycles have a total width of 8 div.; if necessary readjust R348 (fig. 5.1).
- Set the MTB TIME/DIV switch S15 to 10 ms.
- Apply a time-marker signal, pulse repetition rate 10 ms, to input A.
- Check that the centre 8 cycles have a total width of 8 div.; if necessary readjust R347 (fig. 5.1).
- Check the other positions of the TIME/DIV switch S15, using the appropriate input signals, tolerances
 2.5 % (+ or -1 subdiv.).
- Check that the trace-length in all TIME/DIV positions is > 10 div.
- Set the TIME/DIV switch S15 to 1 μ s.
- Apply a time-marker signal, pulse repetition rate 1 μ s to input A.
- Check that the control range of the continuous control R10 lies between 1:2,6 and 1:3.
- Check that the UNCAL led lights up when the continuous control R10 is not in CAL position.
- Set the continuous control R10 in CAL position.
- Remove the jumper on X220!

5.5.7.2. X position range

- Set the MTB TIME/DIV switch S15 to 1 ms.
- Apply a time-marker signal, pulse repetition rate 10 ms, to input A.
- Check that the two displayed marker pulses can be horizontally shifted over a range of 10 div.
- Pull the X MAGN control S7 (X10).
- Check that the two time-marker pulses can be horizontally shifted over a range of 100 div.
- Depress the X MAGN control S7.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:-01844-351694 Fax:-01844-35254
Email:-enquiries@mauritron.co.uk

5.5.7.3. Hold off

- Set the MTB TIME/DIV switch S15 to 0.1 $\mu s.$
- Apply a time-marker signal, pulse repetition rate $10 \,\mu s$, to input A.
- Turn the HOLD OFF control R11 counter clockwise.
- Check if the intensity of the displayed signal suddenly decreases.
- Set the TIME/DIV switch S15 to $10 \,\mu s$.
- Apply a time-marker signal, pulse repetition rate 0.1 ms, to input A.
- Turn the HOLD OFF control R11 counter clockwise.
- Check if the intensity of the displayed signal suddenly decreases.
- Set the TIME/DIV switch S15 to 5 ms.
- Apply a time-marker signal, pulse repetition rate 0.1 sec, to input A.
- Turn the HOLD OFF control R11 counter clockwise.
- Check if the number of sweeps sudden ly decreases (longer HOLD OFF time).
- Set the HOLD OFF control R11 fully clockwise.

5.5.7.4. Delayed time-base time coefficients

To compensate temperature influences on the time base time coefficients, especially at high environmental temperatures, the contacts X219 (see fig. 8.7.) must be interconnected by means of a jumper or a wire during adjusting the time base coefficients and the delay time multiplier.

- Set the DELAY TIME control R3 to 0.
- Set the MTB TIME/DIV switch S15 to $2 \mu s$.
- Set the DTB TIME/DIV switch S13 to 1 μ s.
- Apply a time-marker signal, pulse repetition rate 1 μ s, to input A.
- Depress DTB of S2.
- Check that the centre 8 cycles have a total width of 8 div.; if necessary readjust R349 (fig. 5.1).
- Set the MTB TIME/DIV switch to 0.2 ms.
- Set the DTB TIME/DIV switch to 0.1 ms.
- Apply a time-marker signal, pulse repetition rate 0.1 ms, to input A.
- Check that the centre 8 cycles have a total width of 8 div.; if necessary readjust R351 (fig. 5.1).
- Check the other positions of the DTB TIME/DIV switch S13 (keep the MTB TIME/DIV switch S15 one position slower than the DTB TIME/DIV switch) using the appropriate input signals, tolerances 2.5 % (+ or -1 subdiv.).
- Set the MTB TIME/DIV switch S15 to 5 μ s.
- Set the DTB TIME/DIV switch S13 to 1 μ s.
- Apply a time-marker signal, pulse repetition rate 1 μ s, to input A.
- Check that the control range of the continuous control R9 lies between 1:2.6 and 1:3.
- Check that the UNCAL led B4 lights up when the continuous control R9 is not in CAL position.
- Set the continuous control R9 in CAL position.
- Remove the input signal.

5.5.7.5. Delay time multiplier

- Depress MTB of S2.
- Depress MTB of S22.
- Set the DELAY TIME control R3 to 1.0.
- Set the start of the trace exactly on the first vertical graticule line by means of the X POS control R5.
- Set the MTB TIME/DIV switch (S15) to 0.1 ms.
- Set the DTB TIME/DIV switch (S13) to 1 μ s.
- Apply a time-marker signal, pulse repetition rate 0.1 ms to input A.
- Check that the intensified part on the trace coincides with the starting point of the second time-marker pulse if necessary readjust R268 (fig. 5.1).
- Set the DELAY TIME control to 9.0.
- Check that the intensified part on the trace coincides with the starting point of the tenth time-marker pulse; if necessary readjust **R262** (fig. 5.1).
- Both adjustments are a little bit interdependent, so the procedure described above must be repeated until both conditions are fulfilled.
- Set the DELAY TIME control R3 to 0.
- Remove the jumper on X219!

5.5.7.6. Trace separation

- Remove the input signal.
- Depress ALT TB of S2.
- Set the MTB TIME/DIV switch S15 to 50 μ s.
- Set the DTB TIME/DIV switch S13 to 20 $\mu s.$
- Set the TRACE SEP. control R15 fully clockwise.
- Check that only one line is visible.
- Set the trace in the vertical centre of the screen by means of the POSITION control R1.
- Turn the TRACE SEP control R15 fully counter clockwise.
- Check that the MTB trace shifts 2 div. upwards and the DTB trace 2 div. downwards.
- Depress MTB of S2.

5.5.7.7. Checking the delay time jitter

- Set the MTB TIME/DIV switch S15 to 1 ms.
- Set the DTB TIME/DIV switch S13 to $0.5 \,\mu s$.
- Apply a sine-wave signal, frequency 1 MHz to input A.
- Set the trace height to 6 div.
- Set the DELAY TIME control to 9.0.
- Depress DTB of S2.
- Check that the jitter of the DTB trace is \leq 1 div.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

5.5.8. Final checks of the vertical channels

5.5.8.1. Effective signal delay

- Depress A of S1.
- Depress A of S23.
- Apply a square-wave signal, freq. 1 MHz, rise time ≤ 1 ns, amplitude 120 mV to input A.
- Set the AMPL/DIV switch S9 to 20 mV.
- Set the MTB TIME/DIV switch S15 to $0.05 \mu s$.
- Turn the LEVEL control R6 counter-clockwise so that the trace is just triggered.
- Pull the X MAGN S7 (X10).
- Turn the X POS control to make the first positive slope visible.
- Check that the effective signal delay T is \geq 15 ns (3 div.), see Fig. 5.7.

Fig. 5.7. Effective signal delay

5.5.8.2. Bandwidth check channel A (B)

- Depress the X MAGN switch S7 (X1).
- Set the MTB TIME/DIV switch S15 to 5 μ s.
- Apply a sine-wave signal, freq. 500 kHz, constant amplitude of 12 mV to input A (B).
- Depress A (B) of S1.
- Depress A (B) of S23.
- Set the AMPL/DIV switch S9 (S11) to 2 mV.
- Check that the trace height is exactly 6 div.
- Increase the frequency of the input signal from 500 kHz to 75 MHz (constant amplitude 12 mV).
- Check that the trace height is \geq 4.8 div. over the whole freq. range (oscilloscope without housing).
- If oscilloscope is provided with top and bottom cover and warmed up during 30 min. the trace height must be ≥ 4.5 div. over the whole frequency range.
- Set the AMPL/DIV switch S9 (S11) to 20 mV.
- Apply a sine-wave signal, freq. 500 kHz, constant amplitude of 120 mV to input A (B).
- Check that the trace height is exactly 6 div.
- Increase the frequency of the input signal from 500 kHz to 75 MHz (constant amplitude 120 mV).
- Check that the trace height is ≥ 4.8 div. over the whole freq. range (oscilloscope without housing).
- If oscilloscope is provided with top and bottom cover and warmed up during 30 min. the trace height must be ≥ 4,5 div. over the whole frequency range.

5.5.8.3. Bandwidth check trigger view via channel A (B)

- Set the AMPL/DIV switch S9 (S11) to 2 mV.
- Apply a square-wave signal, frequency 500 kHz, constant amplitude of 12 mV to input A (B).
- Depress A (B) of S23.
- Depress TRIG VIEW of S1.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Check that the trace height is exactly 6 div.
- Increase the frequency of the input signal from 500 kHz to 60 MHz (constant amplitude 12 mV).
- Check that the trace height is ≥ 4.2 div.

5.5.8.4. Bandwidth check trigger view via EXT

- Depress EXT of S23.
- Apply a sine-wave signal, freq. 500 kHz, constant amplitude 3 V to input EXT (X5).
- Check that the trace height is exactly 6 div.
- Increase the frequency of the input signal to 75 MHz (constant amplitude 3 V).
- Check that the trace height is \geq 4 div.
- Remove the input signal.

5.5.8.5. Position range, channel A (B)

- Depress A (B) of S1.
- Depress A (B) of S23.
- Apply a sine-wave signal, freq. 10 MHz, amplitude 2.4 V to input A (B).
- Set the AMPL/DIV switch S9 (S11) to 0.1 V.
- Set the MTB TIME/DIV switch to 0.05 μ s.
- Check that the top and bottom parts of the sine-wave can be displayed by means of the POSITION control R1 (R2).
- Check that the displayed sine-wave signal shows no distortion over the whole position range.

5.5.8.6. Common mode rejection

- Set the AMPL/DIV switches S9 and S11 to 0.1 V.
- Apply a sine-wave signal, frequency 1 MHz, amplitude 0.48 V to inputs A and B.
- Depress ALT of S1.
- Adjust the continuous control R7 for minimum trace height difference of the channel A and B signals.
- Pull the NORMAL/INVERT switch S5.
- Depress ADD of S1.
- Set the AMPL/DIV switches S9 and S11 to 20 mV.
- Check that the displayed signal has a trace height of maximum 0.24 div.

5.5.9. X Deflection

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

5.5.9.1. Sensitivity via EXT

- Set the controls as indicated in fig. 4.1.
- Depress EXT of S23.
- Apply a sine-wave signal, frequency 2 kHz, amplitude 4 V to input EXT (X5).
- Depress X DEFL of S2.
- Check that the trace-width is 8 div. + or -4 subdiv.

5.5.9.2. Bandwidth check of X amplifier

- Apply a sine-wave signal, frequency 1kHz, amplitude 4V, to input EXT.
- Adjust the amplitude of the input signal for a trace-width of exactly 8 div.
- Increase the frequency of the input signal to 100kHz.
- Check that the trace-width is \geq 7.8 div.

5.5.9.3. Checking the LINE mode via X DEFL

- Connect the instrument to a mains voltage with a mains frequency of 50 Hz.
- Depress B and EXT (LINE) of S23.
- Check that the trace width is 8 div. (± 0,6 div.).

5.5.9.4. X DEFL sensitivity via channel A and B

- Depress A of S23.
- Depress X DEFL of S2.
- Depress B of S1.
- Apply a sine-wave signal, frequency 2 kHz, amplitude 120 mV to input A.
- Set the AMPL/DIV switch S9 to 20 mV.
- Check that the trace-width is > 5.4 div. and < 6.6 div.
- Depress B of S23.
- Depress A of S1.

- Apply a sine-wave signal, frequency 2 kHz, amplitude 120 mV to input B.
- Set the AMPL/DIV switch S11 to 20 mV.
- Check that the trace-width is > 5.4 div. and < 6.6 div.

5.5.9.5. Phase shift check between X and Y amplifier

- Depress A of S1.
- Depress A of S23.
- Apply a sine-wave signal, frequency 2 kHz, amplitude 120 mV to input A.
- Set the AMPL/DIV switch S9 to 20 mV.
- Check that a line, under an angle of 450 with respect to the horizontal graticule line, is visible.
- Increase the frequency of the input signal to 100 kHz.
- Check that the phase shift is $< 3^{\circ}$ i.e. d = 2 subdiv, see Fig. 5.8.
- Depress MTB of S2.
- Remove the input signal.

Fig. 5.8. Phase shift between X and Y amplifier

5.5.10. Calibration signal check

- Set the controls as indicated in fig. 4.1.
- Set the AMPL/DIV switch S9 to 20 mV.
- Set the MTB TIME/DIV switch to 0.1 ms.
- Apply the CAL signal via a 10:1 probe to input A.
- Check that the CAL signal has a frequency of \approx 2 kHz with an amplitude of 1.2 Vpp (6 div.) \pm 0.1 %; if necessary readjust R1549 (unit A5).
- Adjustmentpotentiometer R1549 can be reached at the bottom side of the oscilloscope after removing the extension shaft of the mains switch. See also fig. 5.2.

5.5.11. Checking the effect of mains voltage variations

- Set the controls as indicated in fig. 4.1.
- Depress CHOP of S1.
- Pull the X MAGN switch S7 (X10).
- Set the MTB TIME/DIV switch S15 to 0.1 ms.
- Apply the CAL signal via a 10:1 probe to input A.
- Vary the mains voltage between + and -10 % of the nominal value.
- Check that neither the trace height nor trace width changes and that the brilliance remains the same.

5.6. ADJUSTMENT INTERACTIONS

If adjusting potentiometer is replaced.

6. CORRECTIVE MAINTENANCE

6.1. IMPORTANT NOTES

Damage may result if the instrument is switched on when a printed circuit board has been removed, or if a circuit board is removed within one minute after switching off the instrument.

How to open the instrument is outlined in chapter 3. "Dismantling the instrument".

WARNING: The EHT-cable is unbreakably connected to the EHT multiplier unit. The cable can be disconnected from the CRT. When the EHT-cable is disconnected from the CRT the end of the cable must be discharged immediately by shorting it to the instrument's earth.

6.2. REPLACEMENTS

6.2.1. Standard parts

Electrical and mechanical part replacements can be obtained through your local Philips organisation or representative. However, many of the standard electronic components can be obtained from other local suppliers.

Before purchasing or ordering replacement parts, check the parts list for value, tolerance, rating and description.

NOTE:

Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade the instrument's performance.

6.2.2. Special parts

In addition to the standard electronic components, some special components are used:

- Components, manufactured or selected by Philips to meet specific performance requirements.
- Components which are important for the safety of the instrument.

ATTENTION: Both type of components may only be replaced by components obtained through your local Philips organisation, or representative.

6.2.3. Transistor, integrated circuits and mos circuits

- Return transistors and I.C.'s to their original positions, if removed during routine maintenance.
- Do not renew or switch semi-conductor devices unnecessary, as it may affect the calibration of the instrument.
- Any replacement component should be of the original type or a direct replacement. Bend the leads to fit the socket or pcb-holes and cut the leads to the same length as on the component being renewed.
- When a device has been renewed, check the operation of the part of the instrument, that may be affected.
- When re-installing power-supply transistors, use silicon grease to increase the heat-transfer capabilities.

WARNING: Handle silicon grease with care. Avoid contact with the eyes.

Wash hands thoroughly after use.

6.2.3.1. Static sensitive components (Input MOS - FET's ON905)

This instrument contains electrical components that are susceptible to damage from static discharge. Servicing static-sensitive assemblies or components should be performed only at a static-free work station by qualified service personnel.

6.2,3,2. Handling MOS devices

Though all our MOS devices incorporate protection against electrostatic discharges, they can nevertheless be damaged by accidental over-voltages. In storing and handling them, the following precautions are recommended.

CAUTION: Testing or handling and mounting call for special attention to personal safety. Personnel handling MOS devices should normally be connected to ground via a resistor.

Storage and transport.

Store and transport the circuits in their original packing.

Alternatively, use may be made of a conductive material or a special IC carrier that either short-circuits all leads or insultates them from external contact.

Testing or handling.

Work on a conductive surface (e.g. metal table top) when testing the circuits or transfering them from one carrier to another. Electrically connect the person doing the testing or handling to the conductive surface, for example by a metal bracelet and a conductive cord to a chain. Connect all testing and handling equipment to the same surface. Signals should not be applied to the inputs while the device power supply is off. All unused input leads should be connected either to the supply voltage or to ground.

Mounting.

Mount MOS devices on printed circuit boards after all other components have been mounted. Take care that the circuits themselves, metal parts of the board, mounting tools, and the person doing the mounting are kept at the same electric (ground) potential.

If it is impossible to ground the printed-circuit board, the person mounting the circuits should touch the board before bringing the MOS circuits into contact with it.

Soldering.

Soldering iron tips, including those of low voltage irons, or soldering baths should also be kept at the same potential as the MOS circuits and the board.

Static charges.

Dress personnel in clothing of non-electrostatic material (no wool silk or synthetic fibres). After the MOS circuits have been mounted on the proper handling precautions should still be observed.

Until the sub-assemblies are inserted into the complete system in which the proper voltages are supplied, the board is no more than an extension of the leads of the devices mounted on the board. To prevent static charges from being transmitted through the board wiring to the device it is recommended that conductive clips or conductive tape is put on the circuit board terminals.

Transient voltages.

To prevent permanent damage due to transient voltages, do not insert or remove MOS devices, or printed circuit boards with MOS devices, from test sockets or systems with power on.

Voltage surges.

Beware of voltage surges due to switching electrical equipment ON or OFF, relays and d.c. lines.

6.2.4. Replacing knobs

Single knobs and delay time multiplier knob

- Remove cap A
- Slacken screw (or nut) B.
- Pull the knob from the spindle.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor

Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Double knobs

- Remove cap A and slacken screw B.
- Pull the inner knob from the spindle.
- Slacken nut C and pull the outer knob from the spindle.

MAT 163

Fig. 6.1. Removing the knobs.

When fitting a knob or cap, ensure that the spindle is in a position which allows reference lines to be coincident with the markings on the text plate of the oscilloscope.

When fitting the delay-time multiplier knob, turn the spindle of the potentiometer fully anti-clockwise, so that it occupies the "0" position. Adjust the knob so that its dial also occupies the "0" position and slide it on the potentiometer shaft: when doing this, take care that the stud of the knob fits correctly in the hole that is present in the front panel. After this screw B can be tightened again.

6.2.5. Replacing the cathode ray tube (CRT)

- Remove the top and bottom cover as indicated in chapter 3.
- Remove the left-hand side plate by means of 4 screws.
- Remove the delay-line cable from the c.r.t. shield.
- Remove the round cover of the CRT socket from the rear panel.
- Remove very carefully the 5 side connections of the CRT.

WARNING: Handle the CRT carefully. Rough handling or scratching can cause the CRT to implode.

In particular be very careful with the side connections of the CRT. If these pins are bent the CRT is likely to develop a loss of vacuum.

- Remove the extension shaft of the mains switch.
- Remove the 3-pole connector that is connected with the trace rotation coil.
- Remove the EHT connector from the CRT and discharge it to the instruments earth (see also chapter 6.1).
- Remove the screw from the bracelet round the CRT neck.
- Slacken the 4 screws that secure the rear panel to the chassis.
- Take the rear panel from the instrument, after disconnecting the supply connector.
- Take the CRT together with its shield out of the instrument after having removed the CRT-socket.
- Slide the CRT out of its shield; take care of the trace rotation coil.

When remounting the CRT and rear-side panel follow the procedure described above in reversed sequence and take care that the c.r.t. is pushed properly against the contrast filter in the front panel before fixing the bracelet round the c.r.t. neck.

6.2.5.1. Improved earthing of the c.r.t. shielding

IMPORTANT: To prevent HF oscillations on the trace, the earthing of the c.r.t. shielding is changed during production of the PM 3256/05. The best performance is reached when the shielding of the c.r.t. is earthed as indicated in the figure below.

Part of top view

6.2.6. Removing the printed circuit boards

6.2.6.1. Removing the trigger source unit (see fig. 6.4A)

- Remove the front rubber band (refer to chapter 3.2). Bear in mind that this rubber band is equipped with 8 studs, that must be removed from the slits in the front panel.
- Remove 2 screws in the unit.
- Remove 1 screw that secures the unit to the right chassis plate.
- Unplug 1 multipole connector.
- Unplug 2 coaxial connectors.
- Unplug one single pole connector.
- Slide the unit out of the front panel.

6.2.6.2. Removal of pre-amplifier and trigger unit

- Remove the trigger source unit as indicated in chapter 6.2.6.1. (see also fig. 6.4.A).
- Unplug the inputs of the delay-line cable and unscrew the attachment bracket.
- Unplug 3 coaxial connectors.
- Unplug 3 multipole connectors. One of them is a so called bottom-entry, that is attainable via a square hole
 in the right-hand chassis plate.
- Remove the 2 screws in the pushbutton switches that secure the unit to the front panel.
- Remove the metal screening plate from the attenuator part. This plate is attached by means of 6 self-tapping screws (see also fig. 6.4.8).
- Remove the 6 fixing screws, that are equipped with isolation washers.
- Remove the intensity-unit bracket by lifting it out of the chassis.
- Lift the unit in the direction indicated in fig. 6.4.C.
- CHECK THAT THE CONTACTS AND THE POSITION-PINS OF THE SWITCH UNIT ARE FREE FROM THE PRE-AMPLIFIER AND TRIGGER UNIT IN ORDER TO PREVENT THAT THE CONTACTS ARE BEND IF THE UNIT IS TAKEN OUT OF THE INSTRUMENT (see fig. 6.5.).
- Take the unit out of the instrument in the direction indicated in fig. 6.4.D.

When remounting, follow the procedure above in reversed sequence and take care that the unit is correctly positioned above the position-pins before inserting the unit.

6.2.6.3. Removal of time base unit

- Remove the front rubber. Bear in mind that this rubber band is equipped with 8 studs, that must be removed from the slits in the front panel.
- Remove the screening-plate.
- Unplug 5 coaxial cables.
- Unplug 2 single wire connectors (blue wire of x216, white wire of x217).
- Unplug 4 multipole connectors. One of them is a so called bottom-entry, that is attainable via a square hole
 in the right-hand chassis plate.
- Remove the 3 fixing screws, one of them fixes also the screening-plate.
- Remove the 4 screws in the pushbutton switches that secure the unit to the front panel.
- Lift the unit in the direction indicated in fig. 6.2.A.
- CHECK THAT THE CONTACTS AND THE POSITION-PINS OF THE SWITCH UNIT ARE FREE FROM.
 THE TIME BASE UNIT IN ORDER TO PREVENT THAT THE CONTACTS ARE BEND IF THE UNIT IS
 TAKEN OUT OF THE INSTRUMENT (see fig. 6.3).
- Take the unit out of the instrument in the direction indicated in fig. 6.2.B.

When remounting, follow the procedure above in reversed sequence and take care that the unit is correctly positioned above the position-pins before inserting the unit.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 6.2. Removal of time-base unit

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:-01844-351694 Fax:-01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 6.4. Removal of pre-ampl. and trigger unit

Fig. 6.3. Time-base unit removed

Fig. 6.5. Pre-ampl. and trigger unit removed

Fig. 6.6. Removal of rear panel

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 6.7. Removal of power supply

6.2.6.4. Removal of switch unit and potentiometer unit

- Remove the time base unit as indicated in chapter 6.2.6.3.
- Remove the trigger source unit as indicated in chapter 6.2.6.1.
- Remove the pre-amplifier and trigger unit as indicated in chapter 6.2.6.2.
- Remove one multipole connector from the final amplifier unit.
- Remove all the knobs from the front panel.
- Remove 4 star-screws, that secure the switch unit and potentiometer unit to the left and right-hand chassis panel.
- Lift the units upwards out of the instrument.
- The switch board can be separated from the potentiometer unit by means of 4 star screws (one of them is only attainable with a small screwdriver).

IMPORTANT: Repair of parts on the switch unit is not recommended because special tools are required for assembling. As a result the unit is only available as a complete spare part.

6.2.6.5. Removal of power supply and mains transformer

- For extra information refer to fig. 6.6 and 6.7.
- Remove the round cover of the CRT-socket from the rear panel.
- Remove the front rubber. Bear in mind that this rubber band is equipped with 8 studs, that must be removed from the slits in the front panel.
- Remove the left-hand metal plate by removing 4 screws.
- Remove if required the screw that secures the power supply to its compartment. This screw is attainable via a hole in the pre-amplifier and trigger unit.

NOTE: This screw also earthens the power supply. When remounting the supply, fix this screw as strong as possible.

- Remove the extension shaft from the mains switch.
- Remove the screw from the bracelet round the CRT-socket.
- Slacken the 4 screws that attach the rear panel to the chassis.
- Take the rear panel from the chassis, and take care that the CRT stays on its place.
- Plug the multipole connector out of the power supply that connects this unit with the rear panel.
- The mains transformer can be reached after removal of the cap of the compartment of the rear panel.
 This cap can be removed with a screwdriver in the slot of the cap.
- Remove one multipole connector from the pre-amplifier and trigger unit and 2 multipole connectors from the power supply.
- Remove the tyre-wrap that secures the focus cable to the H.V. multiplier cable.

IMPORTANT: After remounting the unit, this focus cable must be secured such as in the original situation in order to prevent focus modulation.

- Slide the unit gently out of its compartment and remove if necessary the two wires from the EHT multiplier unit.
- For removal of the EHT unit click it out of the two slits of the power supply compartment. For removal of
 the post-accelerator connection wire it is necessary to remove the time base unit according to chapter
 6.2.6.3.

After having removed the post-accelerator connection from the CRT, discharge it to the instrument's earth (see also chapter 6.1).

6.2.6.6. Replacement of thermal fuse in mains transformer

The double isolation of the instrument is achieved by the isolation properties of the mains transformer. If the mains transformer should become too hot (for instance due to a secondary short-circuit) the isolation layer can be damaged. In order to prevent this a thermal fuse is incorporated in the mains transformer. If the temperature of the transformer becomes too high, the fuse blows and the mains voltage is interrupted. The blown fuse can be replaced by a new one.

For this proceed as follows: Remove the mains transformer out of its compartment. Desolder the two wires of the fuse and slide it out of its compartment within the transformer. Slide the new fuse into the compartment and solder the wires on to the soldering tags of the transformer.

6.2.6.7. Removal of final amplifier unit

- Unplug 3 multipole connectors.
- Unplug 2 single-wire connectors from the time base.
- Remove very carefully the 5 side connections of the CRT.

WARNING: Handle the CRT carefully. Rough handling or scratching can cause the CRT to implode.

In particular be very careful with the side connections of the CRT. If these pins are bent the CRT is likely to develop a loss of vacuum.

- Remove 3 fixing screws.
- Lift the unit a little out of its bottom fixing points.
- Unplug the outputs of the delay-line cable and unscrew the attachment bracket.
- Unplug the last multipole connector from the short side of the unit.
- Unplug 2 wires, that originate from the CRT socket.

CAUTION: These wires carry the -1500 Volt life voltages for the CRT; they may neither be touched nor be short-circuited to earth if the instrument is working.

- Unplug 2 wires, that originate from the CAL output socket on the front panel.
- Unplug 1 coaxial cable.
- Take the unit out of the instrument.

When remounting follow the procedure above in reversed sequence.

6.2.6.8. Removal of potentiometer from potentiometer unit

- For R7, R8, R9, R10 and R11: remove the pre-amplifier and trigger unit according to chapter 6.2.6.2. For R1, R2, R3, R4, R5 and R6: remove the time base unit according to chapter 6.2.6.3.
- Remove the fixing nut of the potentiometer.
- Unsolder the wires of the potentiometer and take it out of the coupling piece and the potentiometer
- Remove the coupling-disc by pulling it of the potentiometer shaft. Bear in mind that the coupling discs of the potentiometers with a push-pull function are secured with a fixing-washer.

6.2.6.9. Removal of coupling piece

- Remove the potentiometer according to chapter 6.2.6.8.
- Pull the plastic fixing spring out of the coupling piece.
- Remove the coupling piece from the plastic shaft.
- Remove the knob from the plastic shaft; remove the plastic cap from the knob, remove the screw inside the knob and pull the knob off.
- Slide the plastic shaft backwards out of the instrument.

IMPORTANT: When rearranging the coupling piece take care that the flat side at the ends of the plastic shaft and the potentiometer shaft fits correctly in the hole of the coupling discs.

6.2.6.10. Removal of the stand-up stop-block and the stand-up

- Push by means of a pair of pliers the front side clamping lip backwards and lift the block out of the bottom cover.
- Remove both stop-blocks.
- Pull the stop-blocks from the stand-up.

For reassembling:

- Slide both stop-blocks on the stand-up.
- Push both stop-blocks first with their rear-sides in the bottom cover.
- Push by means of a screw-driver the front-sides of the stop-blocks in the bottom cover.

For Service Manuals Contact
MAURITHON TECHNICAL SERVICES
8 Cherry Free Rd, Chinnor
Chon 0X9 4QY
Tel:-01844-351694 Fax:-01844-35254
Email:-enquiries@mauritron.co.uk

6.2.7. Soldering techniques

Working method:

- Carefully unsolder one after the other the soldering tags of the semi-conductor.
- Remove all superfluous soldering material. Use a sucking iron or sucking litze wire.
- Check that the tags of the replacement part are clean and pre-tinned on the soldering places.
- Locate the replacement semi-conductor exactly on its place, and solder each tag to the relevant printed conductor on the circuit board.

NOTE: Bear in mind that the maximum permissible soldering time is 10 seconds during which the temperature of the tags must not exceed 250°C. The use of solder with a low melting point is therefore recommended.

Take care not to damage the plastic encapsulation of the semiconductor (softening point of the plastic is 150°C)

ATTENTION: When you are soldering inside the instrument it is essential to use a low-voltage soldering iron, the tip of which must be earthed to the mass of the oscilloscope.

Suitable soldering irons are:

- ORYX micro-miniature soldering instrument, type 6A, voltage 6V, in combination with PATO pin-point tip type 0-569.
- ERSA miniature soldering iron, type minor 040B, voltage 6V.
- Low Voltage Mini Soldering Iron, type 800/12W-6V, power 12W, voltage 6V, order no. 4822 395 10004.
 in combination with 1mm pin-point tip, order no. 4822 395 10012.

Ordinary 60/40 solder with core and 35- to 40W pencil type soldering iron can be used to accomplish the majority of the soldering. If a higher wattage-rating soldering iron is used on the etched circuit boards, excessive heat can cause the etched circuit wiring to separate from the board base material.

6.3. RECALIBRATION AFTER REPAIR

After any electrical component has been replaced the calibration of that particular circuit should be checked, as well as the calibration of other closely related circuits.

Since the power supply affects all circuits, calibration of the entire instrument should be checked if work has been done on the power supply.

For more detailed information see the interaction table (section 5.6).

6.4. INSTRUMENT REPACKING

If the instrument is to be shipped to a Service Centre for service or repair, attach a tag showing owner (with address) and the name of an individual at your firm who can be contacted. The Service Centre needs the complete instrument serial number and a fault description.

Save and re-use the packing in which your instrument was shipped. If the original packing is unfit for use or not available, repack the instrument in such a way that no damage occurs during transport.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

6.5. TROUBLE-SHOOTING

6.5.1. Introduction

The following information is provided to facilitate trouble-shooting. Information contained in other sections of this manual should be used along with the following information to aid in locating the defective component. An understanding of the circuit operation is helpful in locating troubles, particularly where integrated circuits are used. Refer to the Circuit Description section for this information.

6.5.2. Trouble-shooting hints

If a fault appears, the following test sequence can be used to find the defective circuit part:

- Check if the settings of the controls of the oscilloscope are correct. Consult the operating instructions in the operating manual.
- Check the equipment to which the oscilloscope is connected and the interconnection cables.
- Check if the oscilloscope is well-calibrated. If not refer to section 5 (checking and adjusting).
- Visually check the part of the oscilloscope in which the fault is suspected. In this way, it is possible to find
 faults such as bad soldering connections, bad interconnection plugs and wires, damaged components or
 transistors and IC's that are not correctly plugged into their sockets.
- Location of the circuit part in which the fault is suspected: the symptom often indicates this part of the circuit. If the power supply is defective the symptom will appear in several circuit parts.

After having carried out the previous steps, individual components in the suspected circuit parts must be examined:

- Transistors and diodes. Check the voltage between base and emitter (0,7 Volt approx. in conductive state) and the voltage between collector and emitter (0,2 Volt approx. in saturation) with a voltmeter or oscilloscope. When removed from the p.c.b. it is possible to test the transistor with an ohmmeter since the base/emitter and base/collector junctions can be regarded as diodes. Like a normal diode, the resistance is very high in one direction and low in the other direction. When measuring take care that the current from the ohmmeter does not damage the component under test.
 - Replace the suspected component by a new one if you are sure that the circuit is not in such a condition that the new one will be damaged.
- Integrated circuits. In circuit testing cab be done with an oscilloscope or voltmeter. A good knowlegde of the circuit par under test is essential. Therefore first read the circuit discription in section 2.
- Capacitors. Leakage can be traced with an ohmmeter adjusted to the highest resistance range.
 When testing take care of polarity and maximum allowed voltage. An open capacitor can be checked if the response for AC signals is observed. Also a capacitance meter can be used: compare the measured value with value and tolerance indicated in the parts list.
- Resistors. Can be checked with an ohmmeter after having unsoldered one side of the resistor from the p.c.b.
 Compare the measured value with value and tolerance indicated in the parts list.
- Coils and transformers. An ohmmeter can be used for tracing an open circuit. Shorted or partially shorted windings can be found by checking the wave-form response when HF signals are passed through the circuit.
 Also an inductance meter can be used.

NOTE: If a component must be replaced always use a direct-replacement. If not available use an equivalent after carefully checking that it does not degrade the instrument's performance. See also section 6.2. (replacement).

After replacement of a component the calibration of the instrument may be affected due to component tolerances. If necessary do the required adjustments.

6.6. OPTIONAL MTB GATE OUTPUT, DTB GATE OUTPUT, MTB SWEEP OUTPUT AND TV OR ECL TRIGGERING

6.6.1. MTB and DTB gate

For these options it is necessary to install coax sockets X209 and X211 and BNC sockets at the rear panel and to add coaxial cables between these sockets and respectively socket X209 (MTB gate) and socket X211 (DTB gate) on the time base unit.

For ordering numbers of coax sockets and BNC sockets and coaxial cables see the parts list in chapter 7. For MTB gate: mount coax socket X209 and resistor R270 (33,2 Ω , 5322 116 50527) on the time base unit. For DTB gate: mount coax socket X211 and close the soldering bridge inbetween D207/6 and D208/5,6 on the time base unit.

6.6.2. MTB sweep out

For this option it is necessary to install a number of components in the way indicated on the time base p.c.b. lay-out (see fig. 8.7).

R352	1K/MR25	5322 116 54549
R353	1K27/MR25	5322 116 5 0555
R354	5E11/MR25	5322 116 541 92
V267	BC548C	4822 130 44196
C252	15UF/40 V	4822 124 20709
C266	10NF	4822 121 41134
X218	Coax socket, out	er part 5322 268 24116
	Coax socket, cor	tact pin 5322 268 14141

Mount a BNC socket on the rear panel and add a coaxial cable between the BNC socket and socket X218 on the time base unit. For ordering numbers of BNC socket and coaxial cable refer to the parts list in chapter 7.

6.6.3. TV or ECL triggering (see Fig. 8.4.)

The modifications necessary for these options are indicated in the table on the circuit diagram of the MTB triggering. The modifications must be carried out on the pre-amplifier and trigger unit. On the pre-amplifier and trigger unit p.c.b. lay-out is indicated where the modified components are located (see Fig. 8.1.). For the TV trigger mode a number of components must be added of which the ordering number is listed below:

V869	BF199	4822 130 44154	
V871	BC548C	4822 130 44196	
V899	BC548C	4822 130 44196	For Service Manuals Contact
V898	BC548C	4822 130 44196	MAURITRON TECHNICAL SERVICES
V909	BC548C	4822 130 44196	8 Cherry Tree Rd, Chinnor Oxon OX9 4QY
V908	BC558B	4822 130 44197	Tel:- 01844-351694 Fax:- 01844-352554
V894	BAW62	4822 130 30613	Email:- enquiries@mauritron.co.uk

To change the text TTL on the textplate into ECL or TV the stickers:

ECL ordering number 5322 455 81021 TV ordering number 5322 455 81022

must be used.

Specifications of TV triggering

Trigger sensitivity:

Internal TV 0,7 div. sync. pulse max. 8 div. (24 div. TV signal)

External TV 350mV sync. pulse

Frame In 0,5s/div. - 50µs/div. main time-base settings.

Line In 20µs/div. — 50ns/div. main time-base settings

Specifications of ECL triggering

Trigger sensitivity:

Internal ECL

ECL level in 0,5V/div.

External ECL

Not specified

6.6.3.1. Adjustment procedure ECL triggering

After the instrument is changed from TTL into ECL triggering the following must be readjusted:

a. Trigger view sensitivity via EXT, channel A and B

- Set the controls as indicated in fig. 4.1.
- Set the MTB TIME/DIV switch S15 to 50 μ s.
- Apply a square-wave signal, freq. 10 kHz, ampl. exactly 1,2 V to input EXT (X5), A (X2) and B (X4).
- Depress TRIG VIEW of S1.
- Depress TRIG and AUTO of S3.
- Depress EXT of S23.
- Set the trace in the vertical centre by means of the LEVEL control R6.
- Check that the trace height is 6 div. + or -0.9 subdiv.; if necessary readjust R1104 (fig. 5.2).
- Depress A of S23.
- Set the AMPL/DIV switches S9 and S11 to 0.2 V.
- Check that the trace height is exactly 6 div.; if necessary readjust R958 (fig. 5.2.).
- Depress B of S23.
- Check that the trace height is exactly 6 div.; if necessary readjust R961 (fig. 5.2.).

b. Trigger sensitivity

- Set the controls as indicated in fig. 4.1.
- Set S9 and S11 to 0.5 V.
- Depress AUTO and TRIG of S3.
- Depress ECL of S20.
- Depress A of \$23.
- Set S15 to 20 μs.
- Apply a sine-wave signal, amplitude 2 V, frequency 10 kHz to the input A.
- Set the start of the trace on the vertical and horizontal centre lines of the screen by means of the controls R1 and R5.
- Pull and push the SLOPE switch S8.
- Check that the gap between the starting points of the traces is exactly 1 div.; if necessary readjust R388 (fig. 5.1).

c. Trigger symmetry

- Readjust R1054 as described in section 5.5.6.1.

d. Trigger balance channel A, B and EXT

- Depress TRIG VIEW of S1.
- Depress AUTO and TRIG of S3.
- Depress 0 of S17 and S18.
- Depress LF of S20.
- Set the trace in the vertical centre of the screen by means of the LEVEL control R6.
- Depress DC of S20.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R959 (see fig. 5.2).
- Depress B of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R962 (see fig. 5.2).
- Depress EXT of S23.
- Check that the trace is in the vertical centre of the screen; if necessary readjust R1134 (see fig. 5.2).

e. ECL level and COMP balance

- Depress A of S1.
- Depress A of S23.
- Set the trace in the vertical centre of the screen by means of R1.
- Depress DC of S17.
- Apply a sine-wave signal, frequency 10 kHz to input A.
- $-\,$ Set the trace-height to 6 div.
- Set S15 to $10 \mu s$.
- Depress ECL of S20.
- Depress 0 of S17.
- Set the starting point of the trace in the vertical and horizontal centre of the screen by means of the controls R1 and R5.
- Depress DC of \$17.
- Push the switch S8 for positive triggering.
- Adjust starting point of trace symmetrically around -2,6 div (from mid of screen) with R907 when operating MTB SLOPE S8.
- Depress A and B(COMP) of S23.
- Adjust starting point of trace symmetrically around -2,6 div (from mid of screen) with R964 when operating MTB SLOPE S8.

f. Trigger view balance

- Readjust according section 5.5.6.5.

g. Trigger balance, DTB, via channel A and B

- Readjust according section 5.5.6.6.

6.6.3.2. Adjustment procedure T.V. triggering

After the instrument is changed from TTL into T.V. triggering the following must be readjusted.

- a. Trigger view sensitivity via EXT, channel A and B
 - Readjust according section 6.6.3.1.a. (ECL).

b. Trigger symmetry

- Readjust according section 5.5.6.1.

c. Trigger sensitivity

- Set the controls as indicated in fig. 4.1.
- Apply a sine-wave signal, frequency 10 kHz to input A (X2).
- Set the trace height to 0.4 div.
- Check that the signal is triggered; if necessary readjust R388 (fig. 5.1).
- Pull the SLOPE switch S8 for negative triggering.
- Check that the signal is triggered; if necessary readjust R388 (fig. 5.1).

d. Trigger balance channel A, B and EXT

- Readjust according section 6.6.3.1.d. (ECL).

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel: 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

**

e. COMP balance

- Depress A of S1.
- Depress A of S23.
- Set the trace in the vertical centre of the screen by means of R1.
- Depress DC of S17.
- Set S9 to 0.2 V.
- Apply a sine-wave signal, frequency 10 kHz to input A.
- Set the trace-height to 4 div.
- Set S15 to $10 \mu s$.
- Depress DC of S20.
- Push SLOPE switch S8.
- Set the start of the trace on the vertical centre line by means of R6.
- Depress A and B (COMP) of S23.
- Check that the trace starts on the vertical centre line; if necessary readjust R964 (fig. 5.2).

f. Trigger view balance

- Readjust according section 5.5.6.5.

g. Trigger balance, DTB, via channel A and B.

- Readjust according section 5.5.6.6.

6.6.3.3. Checking procedure TV triggering

- Apply a video signal to input A (B) (see table)
- Check the trigger sensitivity in accordance with the table below.

S23 TRIGGER SOURCE	S20 TRIGGER MODE	S8 SLOPE	TRACE HEIGHT	SHAPE	S15 TIME/DIV MTB
A (B) A (B) A (B) A (B)	TV TV TV	+ + - +	0,3 div. sync. pulse 0,3 div. sync. pulse 0,3 div. sync. pulse 8 div. sync. pulse	+ video + video — video + video	50μs (FRAME) 20μs (LINE)

- Check the switching between $50\mu s$ (FRAME) and $20\mu s$ (LINE) of the TIME/DIV. switch S15.

Email:- enquiries@mauritron.co.uk

6.7. **ACCESSORY INFORMATION**

6.7.1. Adjustments of the passive probes PM8927A

Matching the probe to your oscilloscope

The measuring probe has been adjusted and checked by the manufacturer. However, to match the probe to your oscilloscope, the following manipulation is necessary.

Connect the measuring pin to the CAL socket of the oscilloscope.

A trimmer C2 (Fig. 6.14) can be adjusted through a hole in the compensation box to obtain optimum squarewave response. See Fig. 6.8, 6.9 and 6.10.

Fig. 6.8. Over-compensation (adjustment C2)

Fig. 6.9. Correct-compensation (adjustment C2)

Fig. 6.10. Under-compensation (adjustment C2)

Adjusting the h.f. step response

The h.f. step response correction network has been adjusted by the manufacturer to match the oscilloscope input. For optimum pulse response, for separate delivered probes, the probe can be adjusted to match your particular oscilloscope. Later readjustment is only necessary if the probe is to be used with a different type of oscilloscope, or after replacement of an electrical component.

For the adjustment, proceed as follows:

Connect the probe to a fast pulse generator (rise-time not exceeding 1 ns) which is terminated by its characteristic impedance. Dismantle the compensation box. Set the generator to 100 kHz. Adjust R2 and R3 alternatively to obtain a display as shown in Fig. 6.11.

It is important that the leading edge is as steep, and the top is as flat, as possible. Incorrect settings of R2 and R3 give rise to pulse distortions as shown in Fig. 6.12 en 6.13.

Fig. 6.11. Preset potentiometers Fig. 6.12. Rounding due to correctly adjusted

incorrectly adjusted potentiometers

Fig. 6.13. Overshoot due to incorrectly adjusted potentiometers

MAT 615

6.7.2. Dismantling

Dismantling the probe (see Fig. 6.14)

The front part 11 of the probe can be screwed from the rear part 13. Item 11 can then be slid from 12 and 13. The RC combination 12 is soldered to 13. For replacement of 12 refer to the next section.

Dismantling the compensation box (see Fig. 6.14)

Unscrew the ribbed collar of the compensation box to the cable. The case 14 can then be slid sideways off the compensation box. The electrical components of the printed-wiring board are then accessible.

Fig. 6.14. Dismantling + accessories

6.7.3. Replacing parts

Assembling the probe

A new RC network is slid over the cable nipple, after which the cable core is soldered on to the resistor wire. When the measuring probe is assembled, the RC network must be at dead centre in the probe tip.

Replacing the cable assembly

Dismantle the compensation box.

Unsolder the connection between the inner conductor and the printed-wiring board. Keep the frame of the compensation box steady and loosen the cable nipple with a 5 mm spanner on the hexagonal part. Replace the cable and fit it, working in the reverse order.

6.7.4. Replacing the BNC

Dismantle the compensation box.

Unsolder the connection to the printed-wiring board. Hold the frame of the compensation box firmly and loosen the BNC with a 3/8 inch spanner. Replace the BNC and fit it, working in the reverse order.

Replace the probe tip

The damaged tip can be pulled out by means of a pair of pliers. A new tip must be firmly pushed in.

6.7.5. Parts lists

Mechanical parts (see Fig. 6.14 and 6.15)

Items 1 to 10 are standard accessories supplied with the probe.

Item	Ordering number	Qty	Description
1	5322 321 20223	1	Earth cable
2	5322 256 94136	1	Probe holder
3	5322 255 44026	10	Soldering terminals which may be incorporated in circuits as routine test points
4/5	5322 532 64223	6	Set marking rings
6	5322 268 14017	2	Probe tip
7	5322 462 44319	1	Insulating cap to cover metal part of probe during measurements in densely wired circuits
8	5322 462 44318	2	Cap facilitating measurements on dual-in-line integrated circuits
9	5322 264 24018	1	Wrap pin adaptor
10	5322 264 24019	1	Spring-loaded test clip
11	5322 264 24021	1	Probe shell with check-zero button
12	5322 216 54152	1	RC network
13	5322 320 14063	1	Cable assembly
14	5322 447 61006	1	Cap
15	5322 268 44019	1	BNC connector

Electrical parts

Item	Ordering number	Description
C1 C2	_ 5322 125 54003	Part of RC network (not supplied separately) Trimmer 60 pF, 300 V
R1 R2 R3	 5322 101 14047 5322 100 10112	Part of RC network (not supplied separately) Potmeter 470 Ω , 20 %, 0.5 W Potmeter 1 k Ω , 20 %, 0.5 W
Γ	C1	

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 6.15. Printed-wiring board showing adjusting elements, circuit diagram.

6.8. SAFETY INSPECTION AND TESTS AFTER REPAIR AND MAINTENANCE IN THE PRIMARY CIRCUIT

6.8.1. General directives

- Take care that the creepage distances and clearances have not been reduced.
- Before soldering, the wires should be bent through the holes of solder tags, or wrapped around the tag in the form of an open U, or, wiring ridigity shall maintained by cable clamps or cable lacing.
- Replace all insulating guards and -plates.

6.8.2. Safety components

Components in the primary circuit may only be renewed by components selected by Philips, see also clause 6.2.2.

6.8.3. Checking the protective earth connection (in instruments with a three-core mains cable)

The correct connection and condition is checked by visual control and by measuring the resistance between the protective lead connection at the plug and the cabinet/frame. The resistance shall not be more than 0.1 Ω During measurement the mains cable should be removed.

Resistance variations indicate a defect.

6.8.4. Checking the insulation resistance

Measure the insulation resistance at U = 500V dc between the mains connections and the protective lead connections. For this purpose set the mains switch to ON. The insulation resistance shall not be less than $2M\Omega$.

NOTE: $2M\Omega$. is a minimum requirement at 40° C and 95% Relative Humidity. Under normal conditions the insulation resistance should be much higher (10 ... $20M\Omega$).

6.8.5. Checking the leakage current

The leakage current shall be measured between each pole of the mains supply in turn, and all accessible conductive parts connected together (including the measuring earth terminal).

The leakage current is not excessive if the measured currents from the mentioned parts is ≤ 3,5mA rms.

(For safety class II instruments this is ≤ 0.7 mA rms).

6.8.6. Voltage test

The instrument shall withstand, without electrical breakdown, the application of a test voltage between the supply circuit and accessible conductive parts that are likely to become energized.

The test potential shall be 1500V rms at supply-circuit frequency, applied for one second.

The test shall be conducted when the instrument is fully assembled, and with the primary switch in the ON position.

During the test, both sides of the primary circuit of the instrument are connected together and to one terminal of the voltage test equipment; the other voltage test equipment terminal is to be connected to the accessible conductive parts.

(For class II instruments the test potential shall be 3000V rms).

7. PARTS LIST

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Subject to alteration without notice

7.1. PARTS INDICATED IN FIG. 7.1 ... FIG. 7.6

Item	Ordering number	Description
Fig. 7.1.		
1	5322 414 30004	Knob with dial (used for "delay time")
2	5322 414 20034	Pushbutton brown/green (32 pcs/instr.)
3	5322 414 20033	Pushbutton brown (used for "single")
4	5322 447 90408	Top cover, brown
5	5322 498 50129	Strap, complete
	5322 498 70061	Strap fastener (to lock the strap in the rear side ventilation holes)
6	5322 447 90409	Bottom cover (without stand-up bracket), brown
7	5322 414 70016	Cap, brown with line
	5322 414 30044	Knob, dia 10 mm, brown
7A	5322 414 30047	Hold-off knob, brown
,,,	5322 492 64337	Fixing spring for Hold-off knob
8	5322 414 70018	Cap, blue with line
J	5322 502 80006	Screw, selftapping
	5322 414 30065	Knob, dia 10 mm (short), brown
	5322 414 30045	Knob, dia 19 mm, brown
9	5322 267 10004	BNC input socket (used for A, B and EXT TRIG)
10	5322 462 10207	Stand-up bracket
	5322 462 40535	Stand-up stop-block (fastening piece)
11	5322 532 20752	Screw (used for "trace rotation")
12	5322 414 74015	Cap, grey with line
	5322 502 80006	Selftapping screw
	5322 414 30065	Knob, dia 10 mm (short), brown
13	5322 480 30151	Removeable contrast filter, blue
	5322 480 30155	Yellow-green contrast filter (for PM3256-G version
	5322 492 62993	Plastic spring for contrast filter
14	5322 447 90407	Front panel PM3256 (brown)
15	5322 466 60837	Rubber band, front
16	5322 446 60838	Rubber band, rear
Fig. 7.2.		
17	5322 263 40045	Mains voltage adapter + fuse holder (S25)
	4822 253 30017	Fuse 5 x 20 mm/500 mA
18	5322 462 40664	Cover of CRT-socket, brown
19	4822 321 10301	Mains cable
	5322 290 40196	Mains cable clamp for two-cored mains cable
	5322 290 40197	Mains cable clamp for three-cored mains cable
	5322 325 64083	Cleat for mains cable
	5322 321 20816	Mains cable PM3256P (British version)
	5322 321 10331	Mains cable PM3256U (U.S.A. version)
	5322 325 50108	Cable cleat for PM3256P and PM3256U
20	5322 267 10004	BNC socket (X6 Z-mod.)
21	4822 265 20051	24 Volt, Battery input socket
22	5322 447 90411	Rear panel, brown

Fig. 7.1. Mechanical parts, front view

Fig. 7.2. Mechanical parts, rear view

Fig. 7.3. Internal view of bottom side of instrument

Fig. 7.4. Internal view with rear panel removed

Fig. 7.5. Internal view with pre-amplifier and trigger unit removed

Fig. 7.6. Internal view with time-base unit removed

l tem	Ordering number	Description
Fig. 7.3.		
23	5322 535 91575	Extension shaft (used for "intens, focus, trace sep").
2.5	5322 535 94925	Extension shaft (used for "trace rotation").
24	5322 535 91233	Extension shaft (used for "power on")
25	5322 535 91232	Extension shaft (used for trigger source selection)
26	5322 216 51059	Trigger selector unit/unit A4
27	5322 216 51109	Pre-amplifier and trigger unit A3
Fig. 7.4.		
28	5322 466 80812	Plate 10x10 mm with M3-thread (fixes rear panel to chassis)
29	5322 320 20119	EHT multiplier unit
30	5322 216 51108	Time base/unit A2
31	5322 216 51027	Final amplifier/unit A5
32	5322 532 80667	CRT shield
33	5322 320 40068	Delay line cable/unit A8
34	5322 216 51028	Power supply/unit A6 (bridge-rectifier on
, ,	3022 210 31020	mains transformer)
	5322 218 61013	Power supply/unit A6 (rectifier diodes on p.c.b.)
35	5322 276 10922	Mains switch (S21)
Fig. 7.5.		
36	5322 466 80812	Plate 10x10 mm with M3-thread (fixes front panel to
50	3322 400 00012	pushbutton switch S17 S20)
	5322 502 21001	Special screw M3
37	5322 535 91234	Plastic shaft (continuous controls) (for short knobs)
,,	5322 492 62451	Fixing spring, plastic
	5322 532 60765	Coupling bush, plastic
7.0	5322 528 20333	Coupling disc, plastic Plastic shaft (hold-off)
37A	5322 535 91235	Plastic shart (hold-off)
Fig. 7.6.	5000 070 40040	0. 11.1
38	5322 270 10048	Switch unit, complete (see OSC 198, 9499 448 28011)
	5322 265 40186	Pin connector, 4 double pins (X204, X867, X501, X502 and X651)
	5322 265 40187	Pin connector, 7 double pins (X213)
39	5322 528 20338	Coupling piece for delay time
10	5322 466 80812	Plate 10x10 mm with M3-thread (fixes front panel to pushbutton switch S1 S3)
	5322 502 21001	Special screw M3
1 1	5322 535 91415	Alu shaft (POSITION A and B, X MAGN, LEVEL M LEVEL DTB)
	5322 492 62451	Fixing spring, plastic
	5322 532 51241	Coupling bush, plastic
	5322 528 20333	Coupling disc, plastic
	4822 530 70043	Spring washer, metal

Additional information for PM3256-G version

The PM3256-G is a normal PM3256 instrument with a special c.r.t. type D12-120GM-115.

This c.r.t. has a longer persistence time than the standard version.

Together with this c.r.t. another contrast filter (yellow/green) is installed.

Ordering numbers: D12-120GM-115

5322 131 20112

yellow/green contrast filter

5322 480 30155

7.2. PARTS NOT INDICATED WITH ITEM-NUMBERS IN THE FIGURES

Ordering number	Description
FRONT COVER AND	FIXING MATERIALS
5322 447 90406	Front cover box
5322 417 20115	Lock for front cover
5322 505 10698	Nut for lock and side brackets
5322 502 11524	Screw for lock
5322 502 21086	Bold headed Allen screw (for locking bracket)
5322 405 70002	Bracket for lock (right- and left handside of the oscilloscope)
CABLES AND CONN	ECTORS
5322 268 24116	Coaxial socket (p.c.b. type) X206, X207, X208, X209, X211, X212, X806, X861, X862, X868, X869, X1504, X1551
5322 268 14141	Contact pin for coaxial socket, X206, X207, X208, X209, X211, X212, X806, X861, X862, X868, X869, X1504, X1551
5322 320 14102	Coaxial cable set. This is a universal cable set. Always use the cable out of this set with a length that comes close to the length of the cable that must be replaced.
5322 320 10003	Coaxial cable per metre (without sockets)
5322 265 54006	20 pole-Cis connector, female, p.c.b. type. This connector must be sawn on the required size for: X807, X852, X858, X1406, X1501, X1502, X1503, X1401 and X1407
5322 267 50343	Double 4-pole cis connector, female, p.c.b. type, bottom entry, X204 (unit A2) X501, X502, X651, X867 (unit A3)
5322 267 50341	Double 7-pole cis connector, female, p.c.b. type, bottom entry, X213 (unit A2)
5322 267 64031	8-pole cis connector, female, p.c.b. type. This connector must be sawn on the required size for: X214, X851.
5322 267 64027	8-pole cis connector, female p.c.b. type. This connector must be sawn on the required size for: X201, X202, X203 and X1506
5322 267 64007	20 pin cis contact block without pins. This connector must be sawn on the required size for: X201, X202, X203, X214, X807, X851, X852, X858, X1401, X1406, X1407, X1501, X1502, X1503, X1506
5322 265 40186	Double 4 pin cis contact block (male header) X204, X501, X502, X651, X867 (switch unit)
5322 265 40187	Double 7 pin cis contact block (male header) X213 (switch unit)
5322 268 14105	Contact pin, long type for bottom entry: X214, X851
5322 268 14013	Contact pin, short type: all connectors except X214 and X851

7.3. ELECTRICAL PARTS

CAPACITORS

CAPACITORS				
PC	SNR	DESCRIPTION	ORDERING CODE	
0000	201	33UF-10+50 16	4822 124 20688	
	202	33UF-10+50 16	4822 124 20688	
	204	10NF-20+50 100	4822 122 31414	
	206	10NF-20+50 100	4822 122 31414	
00000	207	6,8UF 20% 25V	5322 124 14081	
	208	10NF-20+50 100	4822 122 31414	
	209	10NF-20+50 100	4822 122 31414	
	211	10NF-20+50 100	4822 122 31414	
	212	1NF-20+50 100	4822 122 30027	
000000	213 216 218 219 220 221	10NF-20+50 100 10NF-20+50 100 47NF 10% 160V 10NF-20+50 100V 10NF-20+50 100	4822 122 31414 4822 122 31414 4822 121 41676 5322 121 54229 4822 122 31414 4822 122 31414	
00000	222 223 224 225 226	10NF-20+50 100 10NF-20+50 100 10NF-20+50 100 18PF	4822 122 31414 4822 122 31414 4822 122 31414 4822 122 31061 5322 121 54229	
ccccc	227	10NF-20+50 100	4822 122 31414	
	230	18PF	4822 122 31061	
	232	10NF-20+50 100	4822 122 31414	
	233	47PF	4822 122 31072	
	234	47NF 10% 160V	4822 121 41676	
CCCCC	237	6,8UF 20% 25V	5322 124 14081	
	238	10NF-20+50 100	4822 122 31414	
	239	10NF-20+50 100	4822 122 31414	
	240	15UF-10+50 40	4822 124 20709	
	241	1.5UF 10% 100V	5322 121 40227	
00000	242	1.5UF 10% 100V	5322 121 40227	
	243	1.5UF 10% 100V	5322 121 40227	
	244	10NF-20+50 100	4822 122 31414	
	245	10NF-20+50 100	4822 122 31414	
	246	1NF-20+50 100	4822 122 30027	
CCCCC	247	10NF-20+50 100	4822 122 31414	
	248	10NF	4822 122 31414	
	249	10NF-20+50 100	4822 122 31414	
	250	220PF 2 100	4822 122 30094	
	251	10NF-20+50 100	4822 122 31414	
00000	252	15UF MTB SWEEP-OUT	4822 124 20977	
	253	10NF-20+50 100	4822 122 31414	
	254	10NF-20+50 100	4822 122 31414	
	255	330NF 10% 100V	4822 121 40257	
	256	15UF-10+50 40	4822 124 20709	
00000	257	15UF-10+50 40	4822 124 20709	
	258	10NF-20+50 100	4822 122 31414	
	259	10NF-20+50 100	4822 122 31414	
	260	10NF-20+50 100	4822 122 31414	
	261	120PF 2 100	4822 122 30093	
00000	262	22NF-20+80 40	4822 122 30103	
	263	470PF 10 100	4822 122 30034	
	264	10NF-20+50 100	4822 122 31414	
	265	10NF-20+50 100	4822 122 31414	
	266	10NF MTB SWEEP-OUT	4822 122 31414	
00000	267	10NF-20+50 100	4822 122 31414	
	268	470NF 10% 100V	5322 121 40175	
	269	27PF 2 100	4822 122 30045	
	270	330PF	4822 122 31353	
	271	10NF-20+50 100	4822 122 31414	

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

ĭ.

Z

P0	SNR	DESCRIPTION		ORDERING	CODE
00000	272 273 275 276 277	2.2PF 10NF-20+50 330PF 33UF 10V 27PF 2	100	4822 122 4822 122 4822 122 4822 124 4822 122	31414
00000	278 279 280 281 282	4,7PF 0,25PF 2.2PF 10NF-20+50 1NF 220NF 10%	100 100 100V	4822 122 4822 122 4822 122 4822 122 4822 121	31045 31036 31414 30027 40232
00000	283 284 285 286 287	15UF 10% 10NF-20+50 10NF-20+50 10NF-20+50 10NF-20+50	16V 100 100 100		
00000	288 289 290 291 292	10NF-20+50 10NF-20+50 33UF 10NF 10NF	100	4822 122 4822 122 4822 124 4822 122 4822 122	31414 20945 31414
00000	500 501 502 503 504	12PF 2 10NF-20+50 33UF 40% 10NF-20+50 10NF-20+50	100 100 10V 100 100	4822 122 4822 122 4822 124 4822 122 4822 122	31414 20945
00000	505 506 507 508 509	10NF-20+50 10NF-20+50 2,7NF 10 10NF-20+50 10PF 2	100 100 100 100 100	4822 122 4822 122 4822 122 4822 122 4822 122	31414 30057 31414
00000	510 512 514 515 516	10NF-20+50 1.PF10PF 33UF 40% 10NF-20+50 4,7NF 10	100 300V 10V 100 100	4822 122 5322 125 4822 124 4822 122 4822 122	20945 31414
00000	517 518 519 520 521	100PF 2 5,5PF 3PF 10NF-20+50 300PF 10	100 100 300	4822 122 5322 125 5322 125 4822 122 5322 123	54027 54026 31414
00000	522 523 524 525 528	100PF 2 10NF-20+50 10NF-20+50 3,3PF 0,25PF 2,0-18P TRIM	100 100 100 500	4822 122 4822 122 4822 122 4822 122 5322 125	31414 31414 31188
00000	529 530 531 532 533	100PF 2 15UF 10% 33PF 2 68PF 2 4,7NF 10	100 16V 100 500 100	4822 122 4822 124 5322 122 4822 122 4822 122	20977 32072 31207
00000	534 535 536 537 538	10NF-20+50 3,3PF 0,25PF 6,8UF 5,5PF 5,5PF	100 500	4822 122 4822 122 5322 124 5322 125 5322 125	31188 14069 54027
00000	539 540 541 542 543	5,5PF 3,5PF 30PF 10 100NF 10% 6,8PF 0,25PF	300 400V 100	5322 125 5322 125 5322 123 4822 121 4822 122	50048 34001 40012
CCCCC	544 545 546 547 550	2,7NF 10 33UF 40% 4,7NF 10 4,7NF 10 47PF 2	500 10V 100 100 100	4822 124 4822 124 4822 122 4822 122 4822 122	20945 30128 30128

F	POSNR	DESCRIPTION		ORDE	RING C	DDE
	650	3,5PF 10NF-20+50 10NF-20+50 10NF-20+50 10NF-20+50	100 100 100 100	5322 4822 4822 4822 4822	122 31 122 31 122 31	048 414 414 414 414
00000	655 656 657	33UF 40% 3,3PF 0,25PF 10NF-20+50 10NF-20+50 10NF-20+50	10V 500 100 100	4822 4822 4822 4822 4822	122 31 122 31 122 31	945 188 414 414 414
00000	661 662 663 664 665	2,7NF 10 5,5PF 5,5PF 30PF 10 10NF-20+50	100 300 100	4822 5322 5322 5322 4822	125 54 125 54 123 34	057 027 027 001 414
00000	666 667 668 669 671	10NF-20+50 10PF 2 4,7NF 10 4,7NF 10 33UF 40%	100 100 100 100 10V	4822 4822 4822 4822 4822	122 31 122 30 122 30	414 054 128 128 945
00000	672 674 675 676 677	10PF 68PF 2 10NF-20+50 5,5PF 100PF 2	500 100 100	5322 4822 4822 5322 4822	122 313	207 414 027
00000	678 679 681 682 683	100PF 2 10NF-20+50 100PF 2 100PF 2 2,0-18P TRIM	100 100 100 100	4822 4822 4822 4822 5322	122 313 122 313 122 313 122 313 125 500	414 316 316
00000	684 685 686 687 688	10NF-20+50 3,3PF 0,25PF 5,5PF 3PF 300PF 10		4822 4822 5322 5322 5322	122 314 122 311 125 540 125 540 123 101	.88 127 126
00000	689 690 691 692 693	10NF-20+50 33UF 40% 100PF 2 33PF 2 6,8UF	10V 100 100	4822 4822 5322	122 314 124 209 122 313 122 320 124 140	45 16 72
00000	694 695 696 697 698	100NF 10% 6,8PF 0,25PF 15UF 10% 2,7NF 10 4,7NF 10%	100 16V 500	4822 4822 4822	121 400 122 310 124 209 122 311 122 301	49 77 74
00000	699 700 701 705 801	4,7NF 10% 12PF 2 10NF-20+50 10NF-20+50 6,8UF 20%	100 4 100 4	4822 4822 4822	122 301 122 310 122 314 122 314 124 140	56 14 14
00000	802 803 804 805 806	33UF 40% 33UF 40% 10NF-20+50 10NF-20+50 10NF-20+50	10V 4 100 4 100 4	1822] 1822] 1822]	24 209 24 209 22 314 22 314 22 314	45 14 14
00000	807 808 809 811 812	10NF-20+50 10NF-20+50 10NF-20+50 10NF-20+50 10NF-20+50	100 4 100 4 100 4	822 I 822 I 822 I	.22 3141 22 3141 22 3141 22 3141 22 3141	L4 L4 L4
C C	813 814 815 816 817	18PF 2 18PF 2 10NF-20+50 1.5PF 1.5PF	100 4 100 4 5	822 1 822 1 322 1	22 3106 22 3106 22 3141 22 3210 22 3210	1 4 1

P0:	SNR	DESCRIPTION		ORDERING	CODE
CCCCC	818 819 820 821 822	10NF-20+50 10NF-20+50 10NF-20+50 10NF-20+50 10NF-20+50	100 100 100 100 100	4822 122 4822 122 4822 122 4822 122 4822 122	31414 31414 31414
00000	823 824 825 826 827	10NF-20+50 22PF 2 10NF-20+50 10NF-20+50 10NF-20+50	100 100 100 100 100	4822 122 4822 122 4822 122 4822 122 4822 122	31063 31414 31414
00000	828 829 831 832 833	10NF-20+50 10NF-20+50 10PF 2 820PF 10 10NF-20+50	100 100 100 100 100	4822 122 4822 122 4822 122 4822 122 4822 122	31414 31054 30135
00000	834 835 836 837 838	33UF 40% 10PF 2 10NF-20+50 10NF-20+50 33UF 40%	10V 100 100 100 10V	4822 124 4822 122 4822 122 4822 122 4822 124	31054 31414 31414
00000	851 852 853 854 856	33PF 2 10NF-20+50 10NF-20+50 10NF-20+50 33UF 40%	100 100 100 100 10V	5322 122 4822 122 4822 122 4822 122 4822 124	31414 31414 31414
00000	857 858 860 863 864	10NF-20+50 680PF 10 33UF 33PF 2 33PF 2	100 100 100 100	4822 122 4822 122 4822 124 5322 122 5322 122	30053 20945 32072
00000	866 867 868 869 872	10NF-20+50 33UF 40% 220NF 10% 10PF 10NF-20+50	100 10V 100V	4822 122 4822 124 4822 121 4822 122 4822 122	20945 40232 32185
00000	873 874 878 879 881	10NF-20+50 3,3PF 0,25PF 3,3PF 0,25PF 33PF 2 22PF 2	100 100 100 100 100	4822 122 4822 122 4822 122 5322 122 4822 122	31041 31041 32072
00000	882 883 884 885 888	2.7PF 100V 33PF 2 150PF 10NF-20+50 6,8UF 20%	100 100 25V	4822 122 5322 122 4822 122 4822 122 5322 124	2 32072 2 31413 2 31414
00000	889 890 893 894 895	10NF-20+50 10NF-20+50 220NF 10% 15PF 2PF18PF	100V 100 100V	4822 122 4822 122 4822 123 4822 123 5322 123	2 31414 1 40232 2 31823
00000	896 397 898 899 901	10PF TRIMCAP 4,7PF 0,25PF 10NF-20+50 10NF-20+50 12PF	100 100 100	5322 125 4822 123 4822 123 4822 123 4822 123	2 31045 2 31414 2 31414
CCCCC	902 903 904 905 906	10NF-20+50 10NF-20+50 22NF 10% 100PF 2 10NF-20+50	100 100 400V 100 100	4822 123 4822 123 5322 123 4822 123 4822 123	2 31414 1 40308 2 31316
00000	907 908 909 910 911	15PF 10NF-20+50 10NF-20+50 22PF 2 10NF-20+50	100 100 100 100	4822 123 4822 123 4822 123 4822 123 4822 123	2 31414 2 31414 2 31063

DOCUD	DESCRIPTION	ORDERING CODE
C 913		
	10NF-20+50 100 10NF-20+50 100 33UF 10 20%	4822 122 31414 4822 124 20945
C 916 C 917	10NF-20+50 100 33UF 10 20% 3,9NF 10 100 4,7NF 10 100	4822 122 30098 4822 122 30128
C 918 C 919 C 920	4,7NF 10 100 10NF-20+50 100 10NF-20+50 100 1,8PF 0,25PF 100 10NF-20+50 100	4822 122 31414 4822 122 31034
C 923 C 924	1,8PF 0,25PF 100 1PF 0,25PF 100 1PF 0,25PF 100 1,8PF 0,25PF 100 1,8PF 0,25PF 100	4822 122 31034 4822 122 30104
C 926 C 927 C 928	1PF 0,25PF 100 1,8PF 0,25PF 100	4822 122 30104 4822 122 31034
C 929	680PF 10 100	4822 122 30053
C 930 C 931	33PF 220NF 10% 100V 10NF-20+50 100	5322 122 32072 4822 121 40232
C 932 C 933	10NF-20+50 100 100PF	4822 122 31414 4822 122 31316
C 934	1PF 0,25PF 100 33PF 2 100	4822 122 30104 5322 122 32072
C 934 C 935 C 936 C 937 C 938	1PF 0,25PF 100 33PF 2 100 1PF 0,25PF 100 33PF 2 100 22PF 2 100V	4822 122 30104 5322 122 32072
C 939 C 940	10NF-20+50 100 33PF	4822 122 31414 5322 122 32072
C 942 C 944	10NF-20+50 100 10NF-20+50 100	4822 122 31414 4822 122 31414
	10NF-20+50 100 1,8/27PF 250V TRIM	
C 1102 C 1103 C 1104	10NF-20+50 100	4822 122 31414 4822 122 31414 4822 122 31414 4822 122 31429
C 1105 C 1106	D.ONE	4822 122 31429 4822 122 31414
C 1108 C 1109 C 1112	10NF-20+50 100 3,9PF 0,25PF 100 4,7NF 10 100 27PF	4822 122 30128 5322 125 50164
C 1113	10PF	4822 122 31195
C 1114 C 1116	10PF 10NF 100V	4822 122 31195 4822 122 31414
C 1117 C 1201	100PF 100V 2% 10NF-20+50 100	4822 122 31414
C 1202	18PF 2 100 27PF	5322 125 50164
C 1203 C 1204 C 1206	10NF-20+50 100 68PF 2 100	4822 122 31414 4822 122 31349
C 1207 C 1208	40PF 3,3NF 10 100	4822 125 50092 4822 122 30099
C 1209	100PF 2 100	4822 122 31316
C 1211 C 1212	10NF-20+50 100 10NF-20+50 100 100PF 2 100	4822 122 31414
C 1213 C 1215	1PF 0,25PF 100	4822 122 30104
C 1218 C 1222	1,2PF 0,25PF 100 10NF-20+50 100	4822 122 31414
C 1223 C 1225	27PF 22PF 2 100 1.2PF 0.25PF 100	
C 1226	1,2PF 0,25PF 100 10NF-20+50 100	
C 1231 C 1233	1,8PF 0,25PF 100 10NF-20+50 100	4822 122 31034 4822 122 31414
C 1234 C 1236	10NF-20+50 100	4822 122 31414 4822 122 31414

*

POSNR	DESCRIPTION		ORDERING	CODE
C 1300 C 1301 C 1302 C 1303 C 1304	330PF 2 68NF 10% 68NF 10% 10NF-20+50 10NF-20+50	100 250V 250V 100 100	4822 122 5322 121 5322 121 4822 122 4822 122	44137 44137 31414
C 1305 C 1306 C 1307 C 1308 C 1309	330PF 2 1NF 10 1NF 10 8,2PF 0,25PF 8,2PF 0,25PF	100 500 500 100 100	4822 122 4822 122 4822 122 4822 122 4822 122	31175 31175 31052
C 1310 C 1311 C 1314 C 1315 C 1316	330PF 2 10NF-20+50 10NF-20+50 10NF-20+50 10NF-20+50	100 100 100 100 100	5322 122 4822 122 4822 122 4822 122 4822 122	31414 31414 31414
C 1317 C 1318 C 1319 C 1320 C 1321	10NF-20+50 10NF-20+50 68NF 10% 330PF 2 68NF 10%	100 100 250V 100 250V	4822 122 4822 122 5322 121 5322 122 5322 121	31414 44137 34148
C 1322 C 1323 C 1326 C 1327 C 1372	68NF 10% 22UF 20% 4,7UF-10+50 4,7UF-10+50 10NF-20+50	250V 10V 63 63 100	5322 121 4822 124 4822 124 4822 124 4822 122	20943 20726 20726
C 1373 C 1401 C 1402 C 1403 C 1404	220NF 20% 220UF 470UF 33UF 40% 33UF 40%	35V 10V 10V	5322 124 4822 124 4822 124 4822 124 4822 124	20704 20684 20945
C 1406 C 1407 C 1408 C 1409 C 1411	10UF 20% 2,7NF 10% 13NF 5% 13NF 5% 470UF	16 V 100V 2K V 2KV	5322 124 4822 122 5322 121 5322 121 4822 124	30057 41466 41466
C 1412 C 1413 C 1414 C 1415 C 1416	220UF-10+50 22UF-10+50 100NF 10% 1500NF 10% 47NF 10%	25 63 100V 100V 160V	5322 124 5322 124 5322 121 4822 121 4822 121	24146 40323
C 1417 C 1419 C 1421 C 1422 C 1423	220NF 10% 220UF-10+50 10UF-10+50 47UF-10+50 330UF-10+50	100V 25 160 63 10	4822 121 5322 124 4822 124 5322 124 5322 124	24139 21129 21182
C 1424 C 1426 C 1427 C 1428 C 1430	330UF-10+50 330UF-10+50 330UF-10+50 100UF 10NF 0	10 10 10	5322 124 5322 124 5322 124 4822 124 5322 121	21181 21181 20735
C 1431 C 1432 C 1433 C 1434 C 1436	100NF 10% 10NF-20+50 10UF-10+50 100NF 10% 22NF 10%	630V 100 160 630V 400V	4822 121 4822 122 4822 124 4822 121 5322 121	31414 21129 40145
C 1437 C 1438 C 1439 C 1440 C 1441	10UF-10+50 10UF-10+50 100NF 10% 10NF 47UF-10+50	160 160 630¥	4822 124 4822 124 4822 121 4822 122 5322 124	21129 40145 31414
C 1442 C 1443 C 1444 C 1445 C 1446	100UF-10+50 6,8UF 20% 10UF 20% 4,7NF 10 10NF-20+50	10 25V 16V 100 100	4822 124 5322 124 5322 124 4822 122 4822 122	14081 14066 30128

DOCNE	DESCRIPTION	ORDERING CODE	
POSNR C 1447	33UF 40% 10V	4822 124 20945	
C 1448 C 1449	2NF 1% 250V 10NF-20+50 100	4822 121 50568 4822 122 31414	
C 1450 C 1451	150PF 100NF 10% 100V	4822 122 31413 5322 121 40323	
C 1452	4700UF-10+30 40	4822 124 70326	
C 1453 C 1501	220NF 10% 250V 68NF 10% 250V	5322 121 44142 5322 121 44137	
C 1502 C 1503	10NF-20+50 100 10NF-20+50 100	4822 122 31414 4822 122 31414	
C 1504	22UF 20% 10V	4822 124 20943	
C 1506 C 1507	10NF-20+50 100 0,82PF 0,25PF 100	4822 122 31414 4822 122 31214	
C 1508	10NF-20+50 100 4,7NF 10 100	4822 122 31414 4822 122 30128	
C 1509	10NF-20+50 100	4822 122 31414	
C 1511 C 1512	1,5NF 10% 1600V	4822 121 40354 4822 121 40354	
C 1513 C 1514	1,5NF 10% 1600V 1NF 10 100	4822 122 30027	
C 1515	470PF H.V. CAP.	5322 122 50076	
C 1516 C 1517	10UF-10+50 63 4,7NF 10 100	4822 124 20728 4822 122 30128	
C 1518 C 1519	10NF-20+50 100 4,7UF 20% 25V	4822 122 31414 4822 124 10367	
č 1520	INF 10 100	4822 122 30027	
C 1521 C 1522	10NF-20+50 100 10NF-20+50 100	4822 122 31414 4822 122 31414	
	TED CIRCUITS	1000 400 00.00	
D 201	UA741CN SC	4822 209 80617	
D 202 D 203	TCA240 PH SN74S132N-00 T	4822 209 80629 5322 209 85267	
D 204	N74LS02N SC	5322 209 85312	
D 206	N74LSOON SC SN74F74	5322 209 84823 5322 209 81474	For Service Manuals Contact
D 207 D 208	N74LS02N SC	5322 209 85312 5322 209 85407	8 Cherry Tree Rd, Chinnor
D 209	N74502N SC	5322 209 84996	Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554
D 211 D 212	N74LS10N SC SN74F74	5322 209 81474	Email:- enquiries@mauritron.co.uk
D 213 D 214	SN74LS122N-00 T SN74S132N-00 T	5322 209 85563 5322 209 85267	
D 216	LM308AN NS	5322 209 86056	
D 217 D 218	N74S32N SC N74S10N SC	5322 209 85679 5322 209 84954	
D 501 D 502	LT 1012 CN8 UA714HC FA	5322 209 83584 5322 209 86169	
D 503	SD 5000N	5322 209 85748	
D 504 D 651	0Q 0043 LT 1012 CN8	5322 209 86488 5322 209 83584	
D 652 D 653	UA714HC FA SD5000N(SEMIPROCES.)	5322 209 86169 5322 209 83243	
D 653	5D5000N	5322 209 85748	
D 654 D 801	0Q 0043 SL3145E PL	5322 209 86488 5322 130 34854	
D 802	AMPLIFIER	5322 209 80991 5322 209 80991	
D 803 D 804	AMPLIFIER N74LS08N SC	5322 209 84995	
D 806	N74LS112N SC	5322 209 85741	
D 807 D 851	N74LS132N SC HEF4052BP PH	5322 209 85201 4822 209 10263	
D 852 D 853	TL082CP T ARRAY OQ 0127	5322 209 86064 5322 209 80992	
D 854	ARRAY OQ 0127	5322 209 80992	
D 1401 D 1402	UA741CN SC TDA1060 PH	4822 209 80617 5322 209 85662	
D 1501	UA741CH SC	4822 209 80617	

45000 ¢

ż.

THE STATE OF

POTENTIOMETERS- FRONT PANEL

POTENTION		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000507110	0005
POSNR I	DESCRIPTION		ORDERING	
R 1/S4 R 2/S5 R 3	10K 20 10K 20 5K 10-T		5322 101 5322 101 5322 103	
R 4/S6 R 5/S7 R 6/S8 R 7/S10 R 8/S12	10K 20 47K 20 10K 20 10K 20 10K 20	0.1W 0.1W 0.1W	5322 101 5322 102 5322 101 5322 101 5322 101	40062 40097 40096
R 9/S14 R 10/S16 R 11 R 12 R 13	10K 20 10K 20 10K 20 4,7K 20 2,2M 20	0.1W 0.1W 0.1W	5322 101 5322 101 5322 101 5322 101 5322 101	40096 40096 20618
R 14 R 15	22K 20 22K	0.1W	5322 101 5322 100	
RESISTORS				
R 101 R 102 R 103	191K 0,5 113 0,5 1,05K	MR25	5322 116 5322 116 5322 116	54019
R 104 R 106 R 107 R 108 R 109	2,94K 0,5 8,66K 1,05K 95,3K 113 0,5	L MR25 L MR25 L MR25	5322 116 5322 116 5322 116 5322 116 5322 116	54613 54552 50567
R 111 R 112 R 113 R 114 R 116	2,94K 0,5 37,4K 0,5 962K 18,2K 0,5 385K	MR25 MPR24	5322 116 5322 116 5322 116 5322 116 5322 116	51397 52091 51403
R 117 R 118 R 119 R 121 R 122	37,4K 0,5 18,2K 0,5	MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	50567 51397 51403
R 201 R 202 R 204 R 205 R 206	2,05K 1 2,15K 5 511K	MR25 MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116	50664 50767 55258
R 207 R 208 R 209 R 211 R 212	1K 9,09K 9,53K	MR25 MR25 MR25 MR25 MR25 MR25	5322 116 4822 116 4822 116 5322 116 5322 116	51235 51284 55574
R 214 R 216 R 217 R 218 R 219	30,1 237 6,19K	MR25 MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116 5322 116 5322 116	50904 50679 55426
R 220 R 221 R 222 R 223 R 224	1,54K 15,4K 15,4K	MR25 MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116 5322 116 5322 116	50586 55459 55459
R 226 R 227 R 228 R 229 R 230	17,8K 15,4K 10K	MR25 MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116 4822 116 5322 116	5 54637 5 55459 5 51253

P051	ir i	DESC	RIPT	ION					0	RD	ER	I	N:	G	C	ם	ÞΕ		
R 2 R 2 R 2	231 232 233 234 236	1, 5, 5,	19K 69K 11 11		1 1 1 1	4	1R2 1R2 1R2 1R2 1R2	5 5 5	5: 4: 4:	32	2 2 2	1	10	5	54 52	5 5 9 9 9 9	9	7 9 9	
R 2 R 2 R 2	37 38 39 40	3, 7 1	01K 01K 15 69		1 1 1	4	1R2 1R2 1R2 1R2 1R2	5 5 5	5 5	32 32 32	2	1	10	5 5 5	5(12	7 8	6 1 9	
R 2 R 2 R 2	42 43 44 46 47	5, 5,	11K 11K 11K 11K 11K		1 1 1 1	4	1R2 1R2 1R2 1R2 1R2	5 5 5	5.	32 32	2 2 2	1 1 1 1		5 5	5 4 5 4 5 4 5 4	15	9	5 5 5	
R 2 R 2 R 2	248 249 250 251 252	7 1 5,	,7 50 00 11		1 1 1 1	4	1R2 1R2 1R2 1R2 1R2	5 5 5	4; 5; 4;	32	2 2 2	1		6	50 51 52 52 52	55	3 4 9	4 9 9	
R R R	253 254 255 256 257	5,	100 511 511 11		1 1 1 1	! !	MR2 MR2 MR2 MR2 MR2	5 5	44	82 82 82	2 2 2 2 2	1 1 1	1 1 1	6 6 6 6	5 5 5 5 5 5		28 28 99	2 2 9	
R R	258 259 260 261 262	30 6,	325 3,1 81K 11 22K	;	1 1 1 20	! ! !	MR2 MR2 MR2 MR2	5 5 5	5 4 4	32 82 82	2 2 2 2 2	111	1 1 1	6 6 6 1	_	0 9 1 2 2 9	9 0 2 5 9 9	4	
R R	263 264 265 266 267	6,	87K 81K 87K 19K 1K		1 1 1 1	1	MR2 MR2 MR2 MR2 MR2	5 5 25	4 5 5	82 32 32	2 2 2 2 2 2	1 1 1	1 1 1	6 6 6 6	5 5 5	12	25	3	
R R R	268 269 270 271 272	33	22K 154 33 3,2K 11K	;	20 1 1	MR:	0.5 MR2 S16 MR2 MR2	25 T	5 4	32 82	2 2 2 2 2 2	1	1	6 6	5	0 ! 3 ? 1 ?	5 0 2 9	9	
R R R	273 274 276 277 278	40	33 11 3,2 1,33	ίΚ	5 1 1	1	CRI MR2 MR2 MR2 MR2	.5 .5	4 5 5	8 2 3 2	2 2 2 2 2 2	1 1 1	1 1 1	6 6 6 6	5 5 5	2 9 0 9 5 4	92 42	9	
R R R	279 280 281 282 283	33 33	,5 3.2 3.2 662 01K			MR:		T 25	5 5 4	32 32 32 82 82	2 2 2 2 2 2	1	1 1 1	6 6 6	5 5 5	32 32 12	41 29 29 23	6	
R R R	284 285 286 287 288	30	01K 7,5 662 0,1		1 1 1 1	1	MR2 MR2 MR2 MR2 MR2	5 5	5 4 5	32 82	2 2 2 2 2 2	111	1 1 1	6 6 6 6	5 5 5	4 4 1 3 0 9	24 41 23 90	7	
R R R	289 290 291 292 293	6, 5, 3,	81K 81K 11 65K 3,2K		1 1 1 1	1	MR2 MR2 MR2 MR2 MR2	5 5	4 4 5	32 82 82 32 82	22	1	1 1 1	6 6 6 6	5 5 5 5	12 2 4 1	58 25	2 9 7 9	
R R	296 297 298 299 301	5 5 5	,78K ,11 ,11 ,11K 100		1 1 1 1		MR MR MR MR	25 25 25	4	8 8 3	22 22 22 22 22]		6 6 6	5	2	9	15 99 99 95 49	

1..

Р0	SNR	DESCRIPTIO	N		ORDER	ING	CODE
R R R R	302 306 307 308 309	10K 154K 5,11 2,87K 1,27K	1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 4822 5322 5322	116 116 116 116 116	51253 54714 52999 55279 50555
R R R R	311 312 317 318 319	5,11K 5,11 154K 2,26K 2,26K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 5322	116 116 116 116 116	54595 52999 54714 50675 50675
R R R R	321 322 323 324 325	2,26K 154K 5,11 33,2K 5,11	I I 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 4822 4822 4822	116 116 116 116 116	50675 54714 52999 51259 52999
R R R R	326 327 328 329 331	3,01K 649 5,11 3,01K 51,1	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	4822 5322 4822 4822 5322	116 116 116 116 116	51246 54532 52999 51246 54442
R R R R	332 333 334 336 337	5,11 4,64K 3,83K 5,11K 5,11K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 5322 5322	116 116 116 116 116	52999 50484 54589 54595 54595
R R R R	338 339 341 342 343	30,1K 1,21K 5,11 590 825	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 5322	116 116 116 116 116	52999
R R R R R	344 345 346 347 348	6,19K 10M 6,19K 22K 22K	1 5 1 20 20	MR25 VR25 MR25 0.5W	5322 4822 5322 5322 5322	116 110 116 101 101	55426 72214 55426 14069 14069
R R R R	349 351 352 352 353	22K 22K 1K MTB 1.8M 1,27K MTB	20 20 SWEEP SWEEP	0.5W 0.5W -OUT VR25 -OUT	5322 5322 4822 4822 5322	101 101 116 110 116	14069 14069 51235 72194 50555
R R R R	354 355 356 357 358	5,11 MTB 4.22K 1,87K 10K 10K	SWEEP 1 1	-OUT MR25 MR25 MR25 MR25	4822 5322 5322 4822 4822	116 116 116 116 116	52999 50729 52123 51253 51253
R R R R	359 360 361 362 363	30,1 5,11 2,26K 2,26K 33,2K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 4822	116 116 116 116 116	50904 52999 50675 50675 51259
R R R R	364 365 366 367 368	5,11K 5,11K 1,15K 825 4,64K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	54595 54595 52121 54541 50484
R R R R	369 370 371 372 373	7,87K 5,11 27,4K 19,6K 68,1K	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 4822	116 116 116 116 116	50458 52999 50559 54641 51266
R R R R	374 375 376 377 378	56,2K 100 68,1K 51,1K 78,7K	1	MR25 MR25 MR25 MR25 MR25	4822 5322 4822 5322 5322	116 116 116 116 116	51264 55549 51266 50672 50533

P0:	SNR	DESCRIPTIO	N		ORDERING	CODE	
R R R R R R	379 380 381 382 383	19,6K 1.8M 28,7K 86,6K 53,6K	1	MR25 VR25 MR25 MR25 MR25	5322 116 4822 110 5322 116 5322 116 5322 116	72194 55462	
R R R R	384 385 386 387 388	909 40,2 100 5,11K 22K	1 1 1 20		5322 116 5322 116 5322 116 5322 116 5322 101	50926 55549 54595	
R R R R R	390 391 392 393 394	511 511 5,11 48,7 536	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	4822 116 4822 116 4822 116 5322 116 5322 116	51282 52999 50511	
R R R R R	395 396 397 398 399	750 100 10 1,69K 1,69K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116 5322 116 5322 116	55549 50452 54567	
R R R R R	400 401 402 403 404	1,15K 2.2K 1,15K 51,1 51,1	1 1 1 1	MR25 MR25 MR25 MR25	5322 116 5322 101 5322 116 5322 116 5322 116	10678 52121 54442	
R R R R R	405 406 408 410 411	1.78K 7.5K 2,15K 3,16K 28,7K	1	VR25 VR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	54608 50767 50579	
R R R R R	412 413 415 500 503	1.21K 2,37K 31,6E 61,9 1K	1 20	MR25 MR25 MR16 MR25 0,5W	5322 116 5322 116 5322 116 5322 116 5322 100	54576 55392	For Servi MAURITRON 8 Cherry Ox
R R R R R R	504 506 507 508 509	1M 1M 1M 1M	1 1 1 1	MR25 MR25 MR25 MR25 MR25		55535 55535 55535	Tel:- 01844-33 Email:- end
R R R R	510 511 512 513 514	68,1 11,5 287 5,11K 4,02K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	50838 54506	
R R R R	516 517 518 519 521	90,9 90,9 511 23,7K 10K	1 1 1 20	MR25 MR25 MR25 MR25 0,5W	5322 116 5322 116 4822 116 5322 116 5322 100	54466 54466 51282 54646 10113	
R R R R R	522 523 524 525 526	14K 3,48K 75K 562 8,25K	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 4822 116	55571 55367 51267 51231 51498	
R R R R R	527 530 531 532 533	3,48K 10 10 825K 11K	1 1 0,5 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116	55367 50452 50452 51398 54623	
R R R R R	534 535 537 538 539	22,6K 7,87K 1M 82,5 1M	1 1 1 1	MR25 MR25 MR25 MR25 MR25		55357	

1

PO	SNR	DESCRIPTIO	ЭН		ORDER	ING	CODE
R R R R R	541 542 543 544 545	1M 562 5,11 5,11 1,33K	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 4822 4822 5322	116 116 116 116 116	55535 51231 52999 52999 55422
R R R R	546 547 548 549 550	2,05K 348 10K 226 1,33K	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 5322	116 116 116 116 116	50664 54515 51253 54497 55422
R R R R R	551 552 553 554 556	226 1,33K 220 825K 1M	20 0,5 1	MR25 MR25 0.75W MR25 MR25	5322 5322 5322 5322 5322	116 116 100 116 116	54497 55422 10133 51398 55535
R R R R R	557 558 559 560 561	162 4,02K 3,16K 383 2,87K	1 1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	50417 55448 50579 55368 55279
R R R R R R	563 564 565 566 567	22K 1M 6,49K 1M 53,6	POT 1 1 1 0,1	M.20% MR25 MR25 MR25 MR24E	5322 5322 5322 5322 5322	101 116 116 116 116	14042 55535 54603 55535 54997
R R R R R	568 569 570 571 572	988K 1,96K 5,11 5,11 51,1	0,5 1 1 1 1	MR30 MR25 MR25 MR25 MR25	5322 5322 4822 4822 5322	116 116 116 116 116	51401 54571 52999 52999 54442
R R R R R	573 574 575 576 577	2,74K 133 61,9 1M 196	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	50636 54482 54451 55535 55273
R R R R	578 579 580 581 582	470 1,62K 383 1,62K 115K	20 1 1 1 1	0.75W MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	100 116 116 116 116	10135 55359 55368 55359 54279
R R R R	583 584 585 586 588	10K 11K 2,37K 68,1K 8,35K	20 1 1 1 0,1	0.75W MR25 MR25 MR25 MR24E	5322 5322 5322 4822 5322	100 116 116 116 116	10141 54623 54576 51266 55148
R R R R	589 590 591 592 593	10K 5,11 172K 365 5,11	0,5 1 1	MR25 MR25 MR30 MR25 MR25	4822 4822 5322 5322 4822	116 116 116 116 116	51253 52999 51399 54516 52999
R R R R R	594 595 596 597 598	5,11 5,11 205 31,6 205	1 1 1 1 0,1	MR25 MR25 MR25 MR25 MR24E	4822 4822 5322 5322 5322	116 116 116 116 116	52999 52999 55365 54034 51404
R R R R	599 601 602 603 604	137 82,5 82,5 51,1 1K	0,1 0,1 0,1 1 20	MR24E MR24E MR24E MR25 0.75W	5322 5322 5322 5322 5322	116 116 116 116 100	51402 51405 51405 54442 10143
R R R R R	605 606 607 608 609	464 3,3K 649 487 2,26K	1 5 1 1	MR25 0.5W MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	50536 30234 54532 55451 50675

POSNR	DESCRIPTIO	М		ORDERING	CODE
R 610 R 611 R 612 R 614 R 616	10K 215K 215 59 92K	20	0.75W MR25 MR25 MR25 MR24E	5322 100 5322 116 5322 116 5322 116 5322 116	54728 55274 54448
R 617 R 618 R 619 R 621 R 622	5,11 920K 21,5 1M 42,2	0,5 1 1 1	MR25 MR30 MR25 MR30 MR25	4822 116 5322 116 5322 116 4822 116 5322 116	55218 50677 51279
R 623 R 625 R 653 R 654 R 655	14,7 1K 1K 1M 68,1	1 20 1 1	MR25 MR25 0,5W MR25 MR25	5322 116 4822 116 5322 100 5322 116 5322 116	51235 10112 55535
R 656 R 657 R 658 R 659 R 661	1M 1M 1M 8,66K 12,1K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	55535 55535 54613
R 662 R 663 R 664 R 666 R 667	287 5,11K 4,02K 59 59	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	54595 55448 54448
R 668 R 669 R 671 R 672 R 673	365K 511 23,7K 10K 14K	1 1 20 1	MR25 MR25 MR25 0.75W MR25	5322 116 4822 116 5322 116 5322 100 5322 116	51282 54646 10141
R 674 R 676 R 678 R 679 R 680	920K 825K 825K 10 10	0,5 0,5 0,5 1	MR30 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	51398 51398 50452
R 681 R 682 R 683 R 684 R 686	22,6K 11K 7,87K 1M 82,5	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	54623 50458 55535
R 687 R 688 R 689 R 691 R 692	1M 1M 562 5,11 5,11	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 4822 116 4822 116 4822 116	55535 51231 52999
R 693 R 694 R 696 R 697 R 698	2,05K 348 10K 226 226	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 4822 116 5322 116 5322 116	5 54515 5 51253 5 54497
R 700 R 701 R 702 R 704 R 706	61,9 220 8,25K 92K 59	20 1 0,1 1	MR25 0.75W MR25 MR24E MR25	5322 116 5322 106 5322 116 5322 116	10133 51498 54875
R 707 R 708 R 709 R 710 R 711	172K 365 5,11 1M 5,11	0,5	MR30 MR25 MR25 MR25 MR25	5322 116 5322 116 4822 116 5322 116 4822 116	54516 52999 555535
R 712 R 713 R 714 R 715 R 716	1,33K 162 4,02K 1,33K 2,87K	1 1	MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	5 50417 5 55448 5 55422

. ...

1

-

PO	SNR	DESCRIPTION	ИС		ORDER	RING	CODE
R R R R R	718 719 720 721 722	3,16K 22K 6,49K 1M 1M	1 POT 1 1	MR25 M.20% MR25 MR25 MR25	5322 5322 5322 5322 5322	116 101 116 116 116	50579 14042 54603 55535 55535
R R R R R	723 724 725 726 727	53,6 1M 562 51,1 1K	0,1 1 1 1 20	MR24E MR25 MR25 MR25 0.75W	5322 5322 4822 5322 5322	116 116 116 116 100	54997 55535 51231 54442 10143
R R R R R	728 729 730 731 732	21,5 464 10 10K 8,35K	1 1 1 0,1	MR25 MR25 MR25 MR25 MR24E	5322 5322 5322 4822 5322	116 116 116 116 116	50677 50536 50452 51253 55148
R R R R	733 734 735 736 737	5,11 1,96K 61,9 5,11 51,1	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 4822 5322	116 116 116 116 116	54571 54451 52999
R R R R	737 738 739 740 741	348 2,74K 133 5,11 1,62K	1 1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 4822 5322	116 116 116 116 116	
R R R R	742 743 744 745 748	1,62K 10K 115K 10 11K	20 1 1	MR25 0.75W MR25 MR25 MR25	5322 5322 5322 5322 5322	116 100 116 116 116	54279
R R R R	749 750 751 752 754	68,1K 10K 215K 2,26K 3,48K	20	MR25 0.75W MR25 MR25 MR25	4822 5322 5322 5322 5322	116 100 116 116 116	51266 10141 54728 50675 55367
R R R R R	755 756 757 758 759	14,7 3,48K 1M 42,2 988K	1 1 1 0,5	MR25 MR25 MR30 MR25 MR30	5322 5322 4822 5322 5322	116 116 116 116 116	50412 55367 51279 51052 51401
R R R R	760 761 762 763 764	1K 205 31,6 205 137	1 1 0,1 0,1	MR25 MR25 MR25 MR24E MR24E	4822 5322 5322 5322 5322	116 116 116 116 116	51235 55365 54034 51404 51402
R R R R	766 767 768 801 802	82,5 82,5 365K 1 2,49	0,1 0,1 1 1	MR24E MR24E MR25 MR25 MR25	5322 5322 5322 4822 5322	116 116 116 116 116	51405 51405 55641 51179 51394
R R R R	803 804 806 807 808	1 5,11K 5,11K 8,25K 22K	1 1 1 20	MR25 MR25 MR25 MR25 0.5W	4822 5322 5322 5322 5322	116 116 116 116 101	51179 54595 54595 51498 14069
R R R R R	809 810 811 812 813	1,33K 51,1 61,9 619 619	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 4822 4822	116 116 116 116 116	54442 54451
R R R R	814 815 816 817 818	511 51,1 61,9 348 42,2	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 5322 5322	116 116 116 116 116	54442 54451

POSNR	DESCRIPTION	4		ORDERIN	G	CODE
R 819 R 821 R 822 R 824 R 826	5,11K 100 1,54K 1,54K 100	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	666	
R 827 R 828 R 829 R 830 R 831	42,2 5,11K 215 7,5K 215	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6.6	54608
R 832 R 833 R 834 R 835 R 836	511 18,7K 3,32K 5,11K 287	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 11 5322 11 4822 11 5322 11 5322 11	6.6	55362 51247
R 838 R 839 R 841 R 842 R 843	274 1,05K 1,05K 1K 1K	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 4822 11 4822 11	6 6	54552 54552
R 844 R 846 R 847 R 848 R 849	1K 1K 5,11K 5,11K 2.21K	1	MR25 MR25 MR25 MR25 MR25	4822 11 4822 11 5322 11 5322 11 4822 11	6.6	51235 54595 54595
R 852 R 853 R 854 R 856 R 857	3,32K 1,33K 18,7K 64,9K 5,11K	1 1 1	MR25 MR25 MR25 MR25 MR25	4822 11 5322 11 5322 11 5322 11 5322 11	6.6	55422 55362
R 858 R 859 R 860 R 861 R 362	5,11K 3,01K 13,3 5,11K 10K	1 1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 4822 11 5322 11 5322 11 4822 11	6 6 6	51246 51047 54595
R 863 R 864 R 866 R 867 R 868	51,1 48,7 6,49K 6,49K 100	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6.6	50511 54603 54603
R 869 R 870 R 871 R 872 R 873	100 1K 100K 9,53K 536	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 4822 11 4822 11 5322 11 5322 11	6.6	
R 875 R 876 R 877 R 878 R 879	100 422 464 40,2 40,2	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6.6	50536
R 880 R 881 R 882 R 883 R 884	100 2,49K 1,05K 3,01K 7,15K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 4822 11 5322 11	666	50581 54552
R 886 R 887 R 888 R 889 R 891	1K 100 1K 100 10K PC	20 1 20 20 20	MR25 0,5W MR25 0.75W 0.75W	4822 11 5322 10 4822 11 5322 10 5322 10	6	51235 14011 51235 10138 10141
R 892 R 893 R 894 R 896 R 897	909 1 100K 422 100	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 4822 11 4822 11 5322 11 5322 11	666	55278 51179 51268 50459 55549

PO	SNR	DESCRIPTI	ON		ORDE	RING	CODE
R R R R R	898 899 901 902 903	40,2 40,2 619 4,02K 5,11K	1 1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 5322	116 116 116 116 116	50926 50926 51232 55448 54595
R R R R R	904 906 907 908 909	100K 100K 4,7K 14,7K 51,1K	1 20 1	MR25 MR25 0.75W MR25 MR25	4822 4822 5322 5322 5322	116	51268 51268 10139 54632 50672
R R R R R R	910 911 912 913 914	100 90,9K 10M 10M 59	1 5 5 1	MR25 MR25 VR25 VR25 MR25	5322 5322 4822 4822 5322		55549 54694 72214 72214 54448
R R R R R	917 918 919 921 922	59 750 48,7 48,7 48,7	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 5322	116 116	54448 51234 50511 50511 50511
R R R R R R	923 924 925 927 928	48,7 59 1.1K 750 59	1 1 1	MR25 MR25 MR25 MR25	5322 5322 4822 4822 5322	116 116 116 116 116	50511 54448 51236 51234 54448
R R R R R R	929 930 931 932 933	2,49 422 619 402K 536	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 5322	116 116 116 116 116	51394 50459 51232 55283 50621
R R R R R R R	936 937 938 939 940	100 287 31.6 464 5,11K	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	55549 54506 54034 50536 54595
R R R R	941 942 943 944 945	14,7 48,7 487 48,7 100	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	50412 50511 55451 50511 55549
R R R R	946 947 948 949 950	1,69K 1,27K 487 100K 1K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 4822 4822	116 116 116 116 116	54567 50555 55451 51268 51235
R R R R R	951 952 953 954 955	2,49K 7,15K 105K 4,22K 14,7	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	50581 54606 55356 50729 50412
R R R R R	956 957 958 959 960	12,7K 8,25K 220 220 90.9	1 20 20	MR25 MR25 0.75W 0,5W MR25	5322 5322 5322 5322 5322	116 116 100 101 116	50443 51498 10133 14009 54466
R R R R R	961 962 963 964 965	220 220 100 100 21,5	20 20 1 20	0.75W 0,5W MR25 0,5W MR25	5322 5322 5322 5322 5322	100 101 116 101 116	10133 14009 55549 14011 50677
R R R R R	966 967 968 969 970	100 2,49 48,7 5,11K 100K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322 4822	116 116 116 116 116	55549 51394 50511 54595 51268

POSNR	DESCRIPTION		ORDERING	CODE	
R 971 R 973 R 974 R 975 R 976	487 51,1K 21,5	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	55451 50672 50677	
R 977 R 978 R 979 R 980 R 981	3,01K 1K 51,1K	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	5322 116 4822 116 4822 116 5322 116 5322 116	51246 51235 50672	
R 982 R 983 R 984 R 986 R 987	2,2M 511	1 MR25 1 MR25 5 VR25 1 MR25 1 MR25	4822 116 5322 116 4822 110 4822 116 5322 116	54595 72196 51282	
R 988 R 989 R 991 R 992 R 993	511 316 511	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	4822 116 4822 116 5322 116 4822 116 4822 116	51282 54511 51282	
R 994 R 995 R 996 R 997 R 999	287 511	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	5322 116 5322 116 5322 116 4822 116 5322 116	54651 54506 51282	
R 1000 R 1001 R 1002 R 1003 R 1004	14.7	MR25 1 MR25 1 MR25 MR25 1 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	54506 55549 50412	
R 1005 R 1006 R 1007 R 1008 R 1011	365K 100K 1,15K	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	5322 116 5322 116 4822 116 5322 116 5322 116	55641 51268 52121	
R 1013 R 1014 R 1016 R 1017 R 1019	5,11K	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	4822 116 4822 116 4822 116 5322 116 5322 116	51253 51246 54595	For Service Manuals Contact MAURITRON TECHNICAL SERVICES
R 1021 R 1022 R 1023 R 1024 R 1026	1K 487 750	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25		51235 55451 51234	8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel:- 01844-351694 Fax:- 01844-352554 Email:- enquiries@mauritron.co.uk
R 1027 R 1028 R 1029 R 1031 R 1032	487 750 30,1	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	4822 116	55451 51234 50904	
R 1033 R 1034 R 1036 R 1037 R 1038	750 30,1 1K	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	4822 116 5322 116	55451 51234 50904 51235 55451	
R 1039 R 1041 R 1042 R 1043 R 1044	30,1 1K 487	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	4822 116	50904 51235 55451	
R 1045 R 1046 R 1047 R 1048 R 1049	30,1 IK 487	1 MR25 1 MR25 1 MR25 1 MR25 1 MR25	5322 116 5322 116 4822 116 5322 116 4822 116	50904 51235 55451	

1

POSNR	DESCRIPTION	N		ORDER	ING	CODE
R 1051 R 1054 R 1056 R 1057 R 1058	30,1 1K 48,7 9,53K 5,11K	20 1 1 1	MR25 0.75W MR25 MR25 MR25	5322 5322 5322 5322 5322	116 100 116 116 116	50904 10143 50511 55574 54595
R 1059 R 1060 R 1061 R 1062 R 1063	5,11K 100 1K 14.7 3,01K	1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 4822	116 116 116 116 116	54595 55549 51235 50412 51246
R 1064 R 1065 R 1066 R 1067 R 1068	4,02K 100 866 51,1K 10K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 4822	116 116 116 116 116	55448 55549 54543 50672 51253
R 1069 R 1071 R 1072 R 1073 R 1076	196K 866K 402K 100 1K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 4822	116 116 116 116 116	51395 55283
R 1077 R 1078 R 1079 R 1080 R 1081	511 38,3 38,3 100 511	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	4822 5322 5322 5322 4822	116 116 116 116 116	51282 50954 50954 55549 51282
R 1082 R 1083 R 1084 R 1085 R 1086	100 100 48,7 51,1K 30,1	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	
R 1087 R 1088 R 1089 R 1090 R 1091	402 649 2,49K 100 196	1 1 1 1	MR25 MR25 MR25 MR16 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	54519 54532 50581 55392 55273
R 1092 R 1093 R 1094 R 1095 R 1096	402 30,1 1,05K 100 649	1 1 1 1	MR25 MR25 MR25 MR16 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	54519 50904 54552 55392 54532
R 1097 R 1098 R 1099 R 1101 R 1102	1,87K 100 100 287 100	1 1 1	MR25 MR16 MR16 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	52123 55392 55392 54506 55549
R 1104 R 1105 R 1106 R 1107 R 1108	220 100 3,01K 4,02K 402	20 1 1 1	0,5W MR25 MR25 MR25 MR25	5322 5322 4822 5322 5322	101 116 116 116 116	14009 55549 51246 55448 54519
R 1109 R 1110 R 1111 R 1113 R 1114	287 100 10M 48,7 48,7	1 5% 1	MR25 MR25 VR25 MR25 MR25	5322 5322 4822 5322 5322	116 116 110 116 116	54506 55549 72214 50511 50511
R 1115 R 1116 R 1117 R 1118 R 1119	4.22K 48,7 5,11K 24,9 24,9	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116 116 116	50729 50511 54595 50903 50903
R 1121 R 1122 R 1123 R 1124 R 1126	5,11K 5,6M 5,6M 100 750K	1 5 5 1	MR25 VR25 VR25 MR25 MR30	5322 4822 4822 5322 5322	116 110 110 116 116	54595 72207 72207 55549 51706

POSNR	DESCRIPTION		ORDERING	CODE	
R 1127 R 1129 R 1131 R 1132 R 1133	162 1 205 1 147K	MR25 MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 4822 116	54734 50417 55365 54712 51253	
R 1134 R 1135 R 1136 R 1201 R 1202	196K 4,7K 20	20% MR25 MR25 0.5W 0.5W	5322 116	14071 51253 55364 14067 10118	
R 1203 R 1204 R 1205 R 1206 R 1207	1K 20 28,7 1	0.5W MR25 0.5W MR25 MR25	5322 101 4822 116 5322 101 5322 116 5322 116	14244 52999 10294 54068 50481	
R 1208 R 1209 R 1210 R 1211 R 1212	121 1 1,33K 1 1,47K 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 5322 116 5322 116	50635	
R 1213 R 1214 R 1215 R 1216 R 1217	90,9 1 2,74K 1 147 1	MR25 MR25 MR25 MR25 MR25 MR25		50636 54466 50636 50766 55358	
R 1218 R 1219 R 1220 R 1221 R 1222	215 1 215 1 1K 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 116 5322 116 5322 116 4822 116 5322 116	55274 55274 55274 51235 54718	For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor
R 1223 R 1224 R 1225 R 1226 R 1228	10K 1 15K 10 1K 1	MR25 MR25 0.5W MR25 MR25	5322 116 4822 116 5322 116 4822 116 5322 116	51052 51253 30221 51235 55549	Oxon OX9 4QY Tel:-01844-351694 Fax:-01844-352554 Email:-enquiries@mauritron.co.uk
R 1229 R 1230 R 1231 R 1232 R 1233	2,61K 1 953K 1.2M	MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116 4822 110 5322 116	52999 50671 51368 72189 50492	
R 1234 R 1235 R 1236 R 1237 R 1238	2,61K 1 100 1 1K 1	MR25 MR25 MR25 MR25 MR25 MR25	4822 116 5322 116 5322 116 4822 116 5322 116	50671 55549 51235	
R 1239 R 1242 R 1246 R 1247 R 1248	249 1 46,4 1 100 1	0.5W MR25 MR25 MR25 MR25 MR25	4822 100 5322 116 5322 116 5322 116 4822 116	54499 50492 55549	
R 1250 R 1251 R 1252 R 1253 R 1254	42,2 1 274 1	0.5W MR25 MR25 MR25 MR25 MR25	4822 100 4822 116 5322 116 5322 116 4822 116	51282 51052 54504	
R 1256 R 1257 R 1258 R 1262 R 1263	38,3 l	MR25 MR25 MR25	4822 116 5322 116 4822 116 5322 116 5322 116	50954 51231 52721	

POSNR DESCRIPTION				ORDERIN	G CODE
R 1264 R 1266 R 1269 R 1270 R 1300 R 1301 R 1302	1,33K MS 1,33K MS 1,1K 1,1K 19,6K 100 4,02K	220N 220N	MR25 MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 4822 11 4822 11 5322 11 5322 11 5322 11	6 52721 6 51236 6 51236 6 54641 6 55549
R 1303 R 1304 R 1305 R 1306 R 1307	5,11 100 5,11 3,01K 619	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 11 5322 11 4822 11 4822 11 4822 11	6 55549 6 52999 6 51246
R 1308 R 1309 R 1310 R 1311 R 1312	1,78K 2,61K 19,6K 4,22K 140K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6 50671 6 54641 6 50729
R 1313 R 1314 R 1315 R 1316 R 1317	15,4K 3,01K 649 3,01K 3,32K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 11 4822 11 5322 11 4822 11 4822 11	6 51246 6 54532 6 51246
R 1318 R 1319 R 1320 R 1321 R 1322	301 301 649 7,5K 487	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6 55366 6 54532 6 54608
R 1323 R 1324 R 1325 R 1326 R 1327	46,4K 46,4K 147 487 7,5K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6 50557 6 50766 6 55451
R 1328 R 1329 R 1330 R 1331 R 1332	86,6K 71,5K 147 110K 16,2K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6 54685 6 50766 6 54701
R 1333 R 1334 R 1336 R 1338 R 1339	4,64K 953 402K 953 402K	1 1 1 1 1 1	MR25 MR25 MR25 MR25 MR25		6 54547 6 55283 6 54547
R 1346 R 1347 R 1360 R 1361 R 1362	5,11 5,11 31,6K 18,7K 511K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 11 4822 11 5322 11 5322 11 5322 11	6 52999 6 54657 6 55362
R 1363 R 1370 R 1371 R 1372 R 1373	13,3K 10 26,1K 9,53K 649	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 11 5322 11 5322 11 5322 11 5322 11	6 50452 6 54651 6 55574
R 1374 R 1376 R 1377 R 1378 R 1381	1,54K 3,01K 100 154 100	1 1 1 20	MR25 MR25 MR25 MR25 0,5W	5322 11 4822 11 5322 11 5322 11 5322 10	6 51246 6 55549 6 50506
R 1383 R 1384 R 1388 R 1389 R 1392	1,54K 10K 10 4,22K 953	20 1 1 1	MR25 0,5W MR25 MR25 MR25	5322 11 5322 10 5322 11 5322 11 5322 11	0 10113 6 50452 6 50729

POSNR	DESCRIPTIO	N		ORDER	ING	CODE	
R 1401 R 1402 R 1403 R 1404 R 1406	40,2K 1,27 1,27 1,27 24,9K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 4822 4822	116 116 116	54665 52169 52169 52169 54648	
R 1407 R 1408 R 1409 R 1411 R 1412	2,2M 10K 15,4K 1,2M 5,6M	5 1 5 5	VR37 MR25 MR25 VR37 VR37		116 116 110	42196 51253 55459 42189 42207	
R 1413 R 1414 R 1415 R 1415 R 1416	10M 82,5K 7,SE BYV96D 82,5K	1	VR37 MR25 MR25 MR25	5322 5322 4822	116 116 130	42214 55374 54417 31348 55374	
R 1417 R 1418 R 1419 R 1420 R 1421	1K 7,5E 75K 4,02K 10K	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 4822 5322	116 116 116	51235 54417 51267 55448 51253	
R 1422 R 1423 R 1424 R 1426 R 1428	100K 10K 196 6,81K 21,5K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 4822	116 116 116	51268 51253 55273 51252 50451	
R 1429 R 1430 R 1431 R 1432 R 1433	3,16K 100 51,1 51,1 13K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322	116 116 116	50579 55549 54442 54442 50522	
R 1434 R 1435 R 1436 R 1437 R 1438	100K 100 78,7K 13,3K 750	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5 5322	116 116 116	51268 55549 50533 55276 51234	For Service Manuals MAURITRON TECHNICAL 8 Cherry Tree Rd, C Oxon OX9 4Q
R 1439 R 1440 R 1441 R 1442 R 1443	3,83K 11 19,6 6,19K 261	1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 5322	116 116 116	54059 50473 55426	Tel:- 01844-351694 Fax:- 01 Email:- enquiries@mauriti
R 1444 R 1445 R 1446 R 1447 R 1448	1K 16.2K 2,49K 10K 5,9K	1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 4822 5322	116 116 116	51235 55361 50581 51253 50583	
R 1451 R 1452 R 1453 R 1456 R 1457	5,11K 4,64K 30,1K 14,7K 1,54K	1 1 1 1	MR25 MR25 MR25 MR25 MR25		116 116 116	54595 50484 54655 54632 50586	
R 1458 R 1459 R 1460 R 1461 R 1462	1,27K 100K 5,11 24,9K 4,64K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	4822 4822 5322	116 116 116	50555 51268 52999 54648 50484	
R 1463 R 1464 R 1466 R 1467 R 1468	226 8,25K 23,7K 750 15,4K	1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	5322 5322 4822	116 116 116	54497 51498 54646 51234 55459	
R 1469 R 1470 R 1471 R 1472 R 1473	20,5K 100 100K 1M 220K	1 20 20 20	MR25 MR25 0.5W 0.5W 0.5W	5322 5322	116 101 101	55419 55549 10312 10314 10315	

ls Contact AL SERVICES , Chinnor QY 01844-352554 uritron.co.uk

POSNR	DESCRIPTIO	И		ORDER	RING	CODE
R 1474 R 1476 R 1501 R 1502 R 1503	22K 330 5,11 100 11K	20 20 1 1	0.5W 0.5W MR25 MR25 MR25	5322 5322 4822 5322 5322	101 101 116 116 116	10311 10313 52999 55549 54623
R 1504 R 1505 R 1506 R 1507 R 1508	22K 5,11 402 511 6,49K	20 1 1 1	0.5W MR25 MR25 MR25 MR25	5322 4822 5322 4822 5322	100 116 116 116 116	10118 52999 54519 51282 54603
R 1509 R 1511 R 1512 R 1513 R 1514	511 40,2K 348K 15,4K 1,87K	1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 5322 5322	116 116 116 116 116	51282 54665 55499 55459 52123
R 1516 R 1517 R 1519 R 1520 R 1521	5,11 36,5K 249 7,5K 7,5K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 5322 5322	116 116 116 116 116	52999 50726 54499 54608 54608
R 1522 R 1523 R 1524 R 1526 R 1527	511 909 23,7K 100 7,87K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	4822 5322 5322 5322 5322	116 116 116 116 116	51282 55278 54646 55549 50458
R 1528 R 1529 R 1532 R 1533 R 1536	20,5K 12,1K 100K 46,4K 100	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 4822 5322 5322	116 116 116 116 116	55419 50572 51268 50557 55549
R 1537 R 1538 R 1539 R 1541 R 1542	383K 1M 511K 78,7K 100K	1 1 1 1	MR25 MR25 MR25 MR25 MR25	5322 5322 5322 5322 4822	116 116 116 116 116	55335 55535 55258 50533 51268
R 1543 R 1546 R 1547 R 1548 R 15549 R 15551 R 1552 R 1553	51,1K 1K 348E 5,11K 2,2K PO 1 133	1 TM. 1 1	MR25 MR25 MR25 MR25 MR25 MR25 MR25 MR25	5322 4822 5322 5322 5322 4822 5322 4822		50672 51235 54515 54595 10117 51179 54482 51235
CRT						
V 1 V 1	D12-120GH- C.R.T.D12-		-115	5322 5322	131 131	20092 20112
SEMI CON	IDUCTORS					
V 200	BC558B	PH		4822	130	44197
V 202 V 203 V 204 V 205 V 206	BZX79-C3V0 BC558B BC558B BAW62 BAW62	PH PH PH PH		4822 4822 4822 4822 4822	130 130 130 130 130	31881 44197 44197 30613 30613
V 207 V 208 V 209 V 211 V 212	BC548C BC558B BC548C BAW62 BFQ24	PH PH PH PH		4822 4822 4822 4822 5322	130 130 130 130 130	44196 44196 30613 41664

PΠ	SNR	DESCRIPTIO	N	ORDERING	CODE
> > > > > > > > > > > > > > > > > > >	213 214 216 217 218	BC558B BAW62 BAW62 BAW62 BAW62 BAW62	PH PH PH PH PH	4822 130	44197 30613 30613 30613
V V V V V	219 220 221 222 223	BC548C BAW62 BC548C BAW62 BC558B	РН РН РН РН РН	4822 130	30613 44196 30613
V V V V	224 225 226 227 228	BC558B BF324 BF324 BSX20 BSX20	РН РН РН	4822 130 4822 130 4822 130	44197 41448 41448 41705 41705
V V V V	229 230 231 232 233	BC558B BAT83 BC548C BAW62 BSX20	РН РН РН РН	5322 130	44197 32103 44196 30613 41705
V V V V V	234 235 236 237 238	BSX20 BC548C BC558B BC548C BC548C	PH PH PH PH PH	4822 130	44196 44197 44196
>>>>	239 240 241 242 243	BAW62 BAW62 BAW62 BAW62 BAW62	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	30613 30613
V V V V V	244 246 247 248 249	BAW62 BC548C BC548C BC548C BAW62	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	44196
V V V V	250 251 252 253 254	BAW62 BAW62 BAW62 BAT83 BAW62	РН РН РН	4822 130 4822 130 4822 130 5322 130 4822 130	30613 30613 32103
>>>>	255 256 257 258 259	BAW62 BC548C BC548C BC548C BC548C	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	44196 44196 44196
V V V V	260 261 262 263 264	BZX79-C6V8 BC558B BAW62 BAW62 BC558B	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	44197 30613 30613
> > > > > > > > > > > > > > > > > > >	265 266 267 268 269	BAW62 BZV46-C1V5 BC548C MTB BC548C BC548C	PH PH SWEEP-OUT PH PH	4822 130 5322 130 4822 130 4822 130 4822 130	34865 44196 44196
> > > > > > > > > > > > > > > > > > >	271 272 273 274 276	BSX20 BC548C BC548C BAW62 BAW62	PH PH PH PH PH		44196 44196 30613
V V V V	277 278 279 280 281	BAW62 BAW62 BAW62 BC548C BAW62	РН РН РН РН	4822 130 4822 130	30613

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Ī.

*

POSNR	DESCRIPTION		ORDERING	CODE
V 282 V 283 V 284 V 285 V 286	BAW62 BAW62 BC548C BC548C BC548C	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	30613
V 287 V 288 V 289 V 290 V 291	BC548C BFY90 BFY90 BAW62 BF324	PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	40493
V 292 V 293 V 294 V 295 V 296	BFQ24 BF324 BAW62 BAW62 BAT83	PH PH PH	5322 130 4822 130 4822 130 4822 130 5322 130	41448
V 297 V 298 V 299 V 300 V 300	BAT83 BAW62 BAT 83 BAT83 BAT 83	PH	5322 130 4822 130 5322 130 5322 130 5322 130	30613
V 302 V 303 V 304 V 305 V 306 V 310	BC548C BAW62 BZX79 C5V6 BC558B BAW62 BAS 45		4822 130 4822 130 4822 130 4822 130 4822 130 5322 130	30613 34173 44197
V 311 V 503 V 504 V 505 V 506	STAB.BZV 46 BC548C BC558B BAV45 BFQ24 SELECT	C1V5 PH PH	5322 130 4822 130 4822 130 5322 130 5322 130	44196 44197
V 507 V 508 V 509 V 510 V 511	BZV46-C2V0 BAV45 BF199 BC558B BC548C	PH PH PH PH	4822 130 5322 130 4822 130 4822 130 4822 130	34037 44154
V 512 V 513 V 514 V 515 V 516	BAW62 ON905 BF324 BZX79-C5V6 BFW30	PH PH PH PH PH	4822 130 5322 130 4822 130 4822 130 5322 130	41904 41448
V 517 V 518 V 651 V 653 V 654	BF199 BF450 BAW62 BC548C BC558B	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	
V 655 V 656 V 657 V 660 V 661	BC548C BFQ24 SELECT BZV46-C2V0 BC558B ON905	PH PH PH PH	4822 130 5322 130 4822 130 4822 130 5322 130	31248
V 662 V 663 V 664 V 665 V 666	BF199 BC548C BAV45 BAV45 BF324	PH PH	4822 130 4822 130 5322 130 5322 130 4822 130	44196 34037
V 667 V 668 V 669 V 770 V 801	BFW30 BF199 BF450 BZX79-C5V6 BF324	PH PH PH PH PH	4822 130	

POSNR	DESCRIPTION	ORDERING CODE	
V 802	BF324 PH	4822 130 41448	
V 803	BC548C PH	4822 130 44196	
V 804	BSX20 PH	4822 130 41705	
V 806	BZV46-C1V5 PH	5322 130 34865	
V 807	BC558B PH	4822 130 44197	
V 808	BC558B PH	4822 130 44197	
V 851	BFQ24 PH	5322 130 41664	
V 852	BF450 PH	4822 130 44237	
V 853	BF450 PH	4822 130 44237	
V 854	BFQ24 PH	5322 130 41664	
V 856 V 857 V 858 V 859 V 860	BC558B BAW62 PH BAW62 PH BC548C PH BAW62 PH	4822 130 44197 4822 130 30613 4822 130 30613 4822 130 44196 4822 130 30613	
V 861	BF199 PH	4822 130 44154	
V 862	BF199 PH	4822 130 44154	
V 863	BC558B PH	4822 130 44197	
V 864	BC548C PH	4822 130 44196	
V 865	BF199 PH	4822 130 44154	
V 866 V 867 V 868 V 869 V 870	BC548C PH BAT83 BAT83 BF199 TV OPTION BC548C PH	4822 130 44196 5322 130 32103 5322 130 32103 4822 130 44154 4822 130 44196	
V 871 V 872 V 873 V 874 V 875	BC548C TV OPTION BF199 PH BF199 PH BF199 PH BC548C PH	4822 130 44196 4822 130 44154 4822 130 44154 4822 130 44154 4822 130 44196	
V 876	BF199 PH	4822 130 44154	For Service Manuals Contact MAURITRON TECHNICAL SERVICES 8 Cherry Tree Rd, Chinnor Oxon OX9 4QY Tel: 01844-351694 Fax: 01844-352554
V 877	BZX79-C4V7 PH	4822 130 34174	
V 878	BF199 PH	4822 130 44154	
V 879	BF199 PH	4822 130 44154	
V 880	BC548C PH	4822 130 44196	
V 881	BZX79-C6V2	4822 130 34167	Email:- enquiries@mauritron.co.uk
V 882	BF199 PH	4822 130 44154	
V 883	BF199 PH	4822 130 44154	
V 884	BAW62 PH	4822 130 30613	
V 885	BZX79-C4V7 PH	4822 130 34174	
V 887	0N4057	5322 130 42366	
V 888	BAW62 PH	4822 130 30613	
V 889	BAW62 PH	4822 130 30613	
V 890	BZX79 C6V2	4822 130 34167	
V 891	BAW62 PH	4822 130 30613	
V 892	BAW62 PH	4822 130 30613	
V 893	BC548C PH	4822 130 44196	
V 894	BAW62 TV OPTION	4822 130 30613	
V 895	BF199 PH	4822 130 44154	
V 896	BC548C PH	4822 130 44196	
V 897 V 898 V 899 V 901 V 902	BC548C PH BC548C TV OPTION BC548C TV OPTION BAW62 PH BAW62 PH	4822 130 44196 4822 130 44196 4822 130 44196 4822 130 30613 4822 130 30613	
V 903	BAW62 PH	4822 130 30613	
V 904	BAW62 PH	4822 130 30613	
V 906	BAW62 PH	4822 130 30613	
V 907	BC548C PH	4822 130 44196	
V 908	BC558B TV OPTION	4822 130 44197	
V 909 V 910 V 912 V 913 V 914	BC548C TV OPTION BAW62 PH BF450 PH BF450 PH BF450 PH	4822 130 44196 4822 130 30613 4822 130 44237 4822 130 44237 4822 130 44237	

. 20h. day.

*

* --

. . . .

.

POSNR	DESCRIPTION		ORDERING	CODE
V 916 V 917 V 918 V 919 V 921	BF450 BF450 BF450 ON4057 BF450	PH PH PH PH	4822 130 4822 130 4822 130 5322 130 4822 130	44237 44237 42366
V 922 V 923 V 924 V 1101 V 1102	BF450 BFQ24 BFQ24 BC548C BF199	PH PH PH PH PH	4822 130 5322 130 5322 130 4822 130 4822 130	41664 41664 44196
V 1103 V 1104 V 1106 V 1201 V 1202	BF199 0N4057 BAV45 BFQ24 BFQ24	PH PH PH PH	4822 130 5322 130 5322 130 5322 130 5322 130	42366 34037 41664
V 1203 V 1204 V 1205 V 1206 V 1208	BC558B BFW16A BB405B BFW30 BFQ24	PH PH PH PH PH	4822 130 5322 130 5322 130 5322 130 5322 130	44015 34953 40379
V 1209 V 1210 V 1211 V 1213 V 1214	BFW30 BB405B BFQ24 BC548C BFW16A	PH PH PH PH PH	5322 130 5322 130 5322 130 4822 130 5322 130	34953 41664 44196
V 1302 V 1303 V 1306 V 1307 V 1308	BF422 BF423 BFQ24 BFQ22 BAW62	PH PH PH PH PH	4822 130 4822 130 5322 130 5322 130 4822 130	41646 41664 41709
V 1309 V 1311 V 1312 V 1313 V 1314	BAW62 BF423 BF422 BF422 BF423	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	41646 41782 41782
V 1316 V 1317 V 1318 V 1319 V 1371	BF423 BF422 BAW62 BAW62 BF324	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	41782
V 1372 V 1373 V 1374 V 1401 V 1402	BF324 BC558B BC548C BSW68A BAX12A	PH PH PH PH PH	4822 130 4822 130 4822 130 5322 130 5322 130	44197 44196 44788
V 1403 V 1404 V 1405 V 1406 V 1408	VG10 RECT.DIO BC547B BAW62 BC547B BZV10	DDE PH PH PH PH	5322 130 4822 130 4822 130 4822 130 5322 130	40959 30613 40959
V 1409 V 1410 V 1411 V 1412 V 1413	BYW29-150 BAW62 BAS11 BYW29-150 BDY90	PH PH PH PH PH	5322 130 4822 130 4822 130 5322 130 5322 130	30613 41273 34711
V 1414 V 1415 V 1416 V 1417 V 1418	BYW29-150 BYV 96D BAS11 BAS11 BAS11	PH PH PH PH	5322 130 4822 130 4822 130 4822 130 4822 130	31348 41273 41273
V 1419 V 1421 V 1422 V 1423 V 1424	BAS11 BAW62 BZX79-C10 BZX79-C6V2 BZX79-C12	PH PH PH PH PH	4822 130 4822 130 4822 130 4822 130 4822 130	30613 34297 34167

POSNR	DESCRIPTION		ORDERING	CODE
V 1426	BAW62	PH	4822 130	30613
V 1427	BAW62	PH	4822 130	30613
V 1428	BC547B	PH	4822 130	40959
V 1429	BC547B	PH	4822 130	40959
V 1431	BY225-200	PH	4822 130	50312
V 1432	BAW62	PH	4822 130	30613
V 1433	BC547B	PH	4822 130	40959
V 1434	BAW62	PH	4822 130	30613
V 1436	BYW29-150	PH	5322 130	34711
V 1437	BAX12A	PH	5322 130	34605
V 1438 V 1440 V 1501 V 1502 V 1503	2N4033 BAX12 BC548C BC558B BSX20	PH PH PH PH	5322 130 5322 130 4822 130 4822 130 4822 130	
V 1504	BC558B	PH	4822 130	44197
V 1507	BAV21	PH	4822 130	30842
V 1508	BSS68	PH	5322 130	44247
V 1509	BC548C	PH	4822 130	44196
V 1511	BF450	PH	4822 130	44237
V 1512 V 1513 V 1514 V 1515 V 1516	BC548C BF199 BAV21 BZY10 BC548C	PH PH PH	4822 130 4822 130 4822 130 5322 130 4822 130	44196 44154 30842 34439 44196

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-35254
Email:- enquiries@mauritron.co.uk

1

....

MISCELLANEOUS

POSNR.	ORDERING NUMBER								
PUSHBUTTON :									
	n time base unit) ND S3 (on time base	5322 276 60208							
	unit) PUSHBUTTON SWITCH S17		5322 276 70075						
	ampl. + trigger unit) PUSHBUTTON SWITCH S22, S		5322 276 80237 5322 276 60209						
LED'S	100/100 110/10/110/10/10/22,	,20 (en ingger ame,							
LLD3									
B 1	LED	CQY54A	5322 130 32188						
B 2	LED	CQY54A	5322 130 32188						
В 3	LED	CQY54A	5322 130 32188						
B 4	LED	CQY54A	5322 130 32188						
B 5	LED	CQY54A	5322 130 32188						
FUSES									
	THERMAL FUSE FOR MAINS	TRANSORMER	5322 252 24008						
F 1401	FUSE	T2A	4822 253 30025						
F 1402	FUSE	500 MA	4822 253 30017						
RELAYS									
K 501	REED RELAY		5322 280 20101						
K 502	REED RELAY		5322 280 20099						
K 503	REED RELAY		5322 280 20101						
K 504	REED RELAY		5322 280 20101						
K 506	REED RELAY		5322 280 20099						
K 651	REED RELAY		5322 280 20101						
K 652	REED RELAY		5322 280 20099						
K 653	REED RELAY		5322 280 20101						
K 654	REED RELAY		5322 280 20101						
K 656	REED RELAY		5322 280 20099						
K 851	REED RELAY		5322 280 20099						
K 852	REED RELAY		5322 280 2009 9						
K 1101	REED RELAY		5322 280 20099						
K 1371	REED RELAY		5322 280 20099						
COILS									
L 1	BEAD FOR COAX CABLE FR	OM X806 to X206	5322 526 14019						
L 1 L 2	BEAD FOR POWER SUPPLY (5322 526 14031						
L 2 L 1201	COIL	J, 1044	5322 156 21103						
L 1201	COIL		5322 156 21103						
L 1401	COIL		5322 156 44014						
L 1402	COIL		5322 281 64154						
L 1403	COIL		5322 156 44014						
L 1404	COIL		5322 156 44014						
	· -								

TRANSFORMERS

т	801	TRANSFORMER	ASSY	5322 142 50147
'	001		, , , , ,	
T	1401	TRANSFORMER	TFE25	5322 142 60329
Т	1402	TRANSFORMER	TFEC41	5322 148 80046
Т	1403	TRANSFORMER	TFU10	5322 142 70065
Т	1404	TRANSFORMER	TFRM6	5322 158 40085
Т	1406	MAINS TRANSFOR	RMER	5322 146 10037
		PLUG FOR 24 V BA	ATTERY	4822 266 20014
		SUPPLY ACCORDI	NG 130/10	
		IEC-02		
		PLUG AND CABLE	(length 40 cm)	4822 321 20125
		FOR 24 V BATTER	Y SUPPLY	
		ACCORDING 130/1	10 IEC-02	

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

franc.

Fig. 7.7. Time-base unit p.c.b. with component location raster

																																																-		
9. /./.)	512	C16	C17	817	C17	C17	9 5	C16	C17	B17	D13	B17	E12	C13	513	4 5	410,710	D14/C14	C15	D13	D13	015	515	5 T	510	D16	D14	D16	016	D17	710	217	D13/E13	D14/E14	E13	D17	E12	D15/E15	E13	E13	E13	E13	n 1 1 r	E15	E15	E15	E15	E16	E17	E17
AZ (see F)	R259	R260	R261	R262	R263	H264	2074	R267	R268	R269	R270	R271	R272	R273	H2/4	4275 2720	7770	R278	R279	R280	R281	R282	R283	K284	R286	R287	R288	R289	R290	R291	R292 R293	R296	R297	R298	R299	R301	R302	R306	R307	R308	H309	H311	7150	R317	R318	R321	R322	R323	R324	R325
-BASE UNI																										-													-											
LOCATION LIST OF PARTS STITUALED ON THE TIME-BASE UNIT AZ (see Fig. 7.7.)		A11	A12	A13	814	814	A13/B13	B14	A14/B14	A14/B14	A14/B14	A15/B15	A11	A11/B11	813	A13	813	A13	B16	816 916	2.18	. u	9 6	913	817	C16	816/817	C16/C17	C14	C14	C14	<u> </u>	<u> </u>	814	C15	D11/D12	C12/C13	C12	110	C12	C14	C14	B14/C14	D13/C13	C14	717	<u> </u>	C14	C15	C15
SILORIED	Resistors	R201	R202	R204	R205	8203 8208	R207	R208	R209	R211	R212	R214	R216	R217	R218	R219	H220	R221	R222	H223	R225	B228	777	H22/	R229	R230	R231	R232	R233	R234	R236	n 23/	R230	R240	R241	R242	R243	R244	R246	R247	R248	R249	R250	R251	R252	H253	1070	R255	R256	R257 R258
מאירט ויט																																																		
CALICIN LIST	F17	513	F12	F13	D14	F17	F15	712/713	į	014	C14	C14	C14/D14	D14	710	117	E14	E14	Š	E14 E13/E14	B15/B14	E15	E15	F13/F14	014	3.7	2 C	C14/D14	E14	B14	B15	816/817	d circuit	,	A11/A12	C13 / C13	C13	D12/C12	013	D12	D13	D12	D13/E13	E12	E13	F C	B12/B13)		B16
	C260	1975	C263	C264	C265	C266	C267	2 2 2 2 2	8	C270	C271	C272	377	C275	3767	227	C278	C279	325	282	(282	C283	C284	C285	C286	C28/	8 8	C230	C291	C292	C1372	C1373	beterestal	megrare	020	D203	D204	D206	D207	D208	D209	D211	2120	0213	D214	0216	D218	}	Refav	K1371

	A11 A12 B13 B13 C12 A14	B13/C13 C15 C15 C14 C14 C15	D16 C17 D13/C13 D13 D14/C14 D15 D15/D16	D15 D12 D16 D16 D16 D17/D16 D16 D16 D16/E16 D16/E16 D16/E16 D16/E16 D16/E16 D16/E16 D16 D16 D16	F13 D14 F17 F17 E13 E14 F14 F13
Capacitors	C201 C202 C204 C206 C207 C208	C211 C212 C213 C216 C216 C218	C220 C221 C222 C223 C224 C225 C226	C230 C233 C234 C234 C236 C239 C240 C241 C242 C245 C245 C245 C245 C245 C245 C245	C250 C251 C252 C253 C254 C255 C256 C256 C256 C257

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon ÖX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Page	E16	R384	D14	V209	C15
R326	E16	4	D14 D14	V203	C15
R327	E17	R385		V211	C14
R328	E16	R386	E14	V212 V213	C14 C16
R329	E17	R387	E14		
R331	E17	R388	D15/E15	V214	C16
R332	E17	5000	E4.4	V216	C16
R333	E17	R390	E14	V217	C16/C17
R334	E17	R391	E14	V218	C11
	E11/E12	R392	E14/D14	V219	C15
R336		R393	E14	V220	C12
R337	D11	R395	E14	V221	C14
R338	E12	R396	E14	V222	C16
R339	F13	R397	E15	V223	C16
R341	F13	R398	B13	V223 V224	C16
R342	F14	R399	B12	V224 V225	B14
R343	F14	11.000	5.2	V225 V226	
R345	F14	R400	B12	V226 V227	D14
R346	F14	R401	B12		C15
R347	F15	R402	B12	V228	C16
R348	F15	R403	B12	V229	C16
R349	F16/F15	R404	B12/A12	V230	D16
R350	F16	R405	A13	V231	D15
R351	F16	R406	A12	V232	D15
R352	F16	R407	C12/C13	V233	D15
i		R408	F13	V234	D15
R353	F16			V235	D11
R354	F16	R411	D12	V236	D16
R355	A12	R412	A12	V237	D15
R356	F17	R413	B11	V238 V239	D15/D16 B11/B12
R357	F17	R414	B12	V 239	611/612
R358	F17	R415	B13	V240	D16
R359	F12			V241	D11/D12
R360	C13/B13	R1370	A17	V242	D15/E15
R361	F11	R1371	B15	V243	D15/E15
R362	F12	R1372	B15	V244	D15/E15
R363	F13	R1373	B15	V246	D16
R364	C12	R1374	B15	V247	D17
R365	B12	R1376	A16/B16	V248	D17
R366	C11	R1377	C17	V249	E12
R367	F14	R1378	A16/B16		0.15
R368	F14	R1379	B15	V250	C15
R369	F14	R1381	A15/B15	V251	E12
R370	B13	R1383	A15/B15	V252	E13
R370	F15			V253	C16
R371	F15	R1384	A16/B16		
R373	F15	R1388	A17/B17	V255	F11
R374	F15	R1389	B17	V256	E16
R374	C11/D11	R1392	B17	V257	E16
R376	F15			V258	E17
R376	F16/F15			V259	E17
R377	F16/F15	V200	B12/A12	V260	D17
R379	F16	V202	A14	V261	E17
113/3	1 10	V203	B14	V262	E11/E12
R380	E16	V204	B14/B15	V263	E11/E12
R381	F16	V205	B15	V264	F13
R382	F16	V206	B13	V265	E11/E12
R383	F16	V207	B16	V266	F14
		V208	C16	V267	F17

Fig. 7.8. Pre-amplifier and trigger unit p.c.b. with component location raster

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

p.c.b. with component location raster

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

_		
	V268 V269	F17 F12
	V209	E11
	V271	F12
	V272	F13
	V273	F14
	V274	F15
	V276	F15
	V277	F15
	V278	F15
	V279	F16
	V280	E11
	V281	F16
	V282	F11
	V283	F11
	V284	F12
	V285 V286	C11 F13
	V287	F14
	V287	B13/B12
	V289	A13/A12
	V290	E13
	V291	D14
	V292	E14
	V293	E14
	V294	D11/D12
	V295	D12
	V296	B12
	V297	B12
	V298	B12 A12
	V299	–
	V302	D11
	V303	E11
	V304 V306	B11 C12
	V306 V307	D11
	V307	D16
	V311	D16
	V1371	B16
	V1372	A16
	V1373	B15
	V1374	B17

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

7.5. LOCATION LIST OF PARTS SITUATED ON THE PRE-AMPLIFIER AND TRIGGER UNIT A3 (see Fig. 7.8.)

LOCATION LIST OF PARTS STITUATED ON THE PRE-AMPLIFIER AND TRIGGER ONT AS (See Fig. 7.6.)						
Capacitor	•	C658	E8	C815	D10	
		C660	F1	C816	C10	
C500	D6	C661	E5	C817	C10	
C501	D6	C662	E3	C818	D9	
C502	C6	C663	E3	C819	D10	
C503	C6	C664	E3	C820	C10	
C504	C8		F1		,	
C505	D1	C665		C821	D8/D9	
		C666	E6	C822	D8	
C506	C7	C667	E7/F7	C823	D8/D9	
C507	D5	C668	E5/F5	C824	E10	
C508	D6	C669	E5	C825	D2 (TS)	
C509	D 7	C671	E5	C826	E9	
C510	D1	C672	E7/F7	C827	E8/E9	
1			F3	C828	E9	
C512	D7	C674		C829	E8/E9	
C514	C5/C6	C675	E4/F4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
C515	D1	C676	F3	C831	E10	
		C677	F4	C832	F10/E10	
C516	D5	C678	E4/E5	C833	F10/E10	
C517	D4	C679	F6/E6	C834	F9/F10	
C518	D3		F0	C835	E10	
C519	D3	C681	F9	C836	F10	
C520	D4/D5	C682	D9	C837	F10	
C521	D3	C683	F7	C838	F10	
C522	C4/C5	C684	F8	C851	A2/A3	
C523	D7/D8	C685	F3	C852	A2/A3 A8	
C524	C5	C686	F3			
C525	D3	C687	F3	C853	A8	
		C688	F3	C854	A8	
C528	D7	C689	F5	C856	A10	
C529	D5	C690	F1	C857	A10	
C530	E5	C691	F5	C858	A1	
C531	D5	C692	F5	C860	A2	
C532	D3	C693	F7	C863	A3	
C533	D5	C694	E1	C864	A3	
C534	D5	1		C866	A8	
C535	E2	C695	F1	C867	A10	
C536	E7	C696	F4/F5	C868	A1	
C537	E3	C697	F1	C869	B3	
C538	E3	C698	E8			
C539	E3	C699	E9	C872	A5	
C540	D6	C700	E6	C873	A5/A6	
C541	E3	C701	F9	C874	В7	
C542	E1	C705	F8	C878	A8	
C543	E1/F1			C879	A2/A3	
C544	E1	C801	B10	5575	. :=• #	
C545	E1	C802	B10	C881	A2	
C546	D9	C803	B10	C882	A4	
C547	D8	C804	B10	C883	B3	
		C805	B10	C884	B3	
C550	D2 (TS)	C806	B10	C885	B4	
C645	F6	C807	C10	C888	B10	
C650	F1	C808	C10	C889	A10	
C651	E4	C809	C10			
C652	E5	C811	C10	C890	B4	
C653	E5	C812	D10/E10	C893	A4/A5	
C654	E5	C813	C9	C894	A7	
C655	E3	C814	C9	C896	B8	
C656	E6			C897	A9	
C657	E7			į		
		1				

		D001	С9	R538	D6
C898	A10	D801	•		
C899	B2	D802	D10/D9	R539	D7
C900	B2/C2	D803	D9/E9	R541	D7
C901	A7	D804	E9	R542	D7
C902	B6	D 806	E10/F10	R543	D8
	3	D807	E10		
C903	B5			R544	D8
C904	В6	D851	A6/A7	R545	D9
C905	B2	D852	A6	R546	D8
C906	B6	D050	D2	R547	D8 .
C907	A7	D853	B3	R 548	D8
C908	C6	D854	C3	R549	D8
C909	A3			R550	D8/D9
0303	79	Relays			1
C910	B3	KEO1	D2	R551	D8
C913	C5	K501		R552	D9
C914	C3	K502	D3/D4	R553	D9
		K503	D2	R554	D4
C915	A4	K504	E2		DA/EA
C916	B5	KEUG	E3/E4	R556	D4/E4
C917	B5	K506		R557	D5
C918	B6	K651	E2	R558	D5
C919	A10	K652	E3/E4	R559	D5
		K653	F2	R560	D10
C920	C1		F2	R561	D6
C921	B7/C7	K654		R562	D9
C922	B2	K656	F3/F4	R563	D6
1		K851	A1/A2		
C923	B8			R564	D6
C924	B8	Resistors		R565	D6
C925	C2			R566	D6
C926	B9	R500	C9	R567	D6
C927	B9	R503	C5	R568	D3
C928	В9	R504	C6	R569	D4/D5
C929	C2	R506	C6		D4
1		R507	C6	R570	
C930	C2		C6	R571	D4
C931	C2/B2	R508		R572	D4/D5
C932	C2	R509	C6	R573	D5
C933	C2	R510	D6	R574	D5
C934	C2	R511	C6	R575	D5
C935	C3	R512	C7	R576	D6/D7
C936	C2	R513	C7		D7
3		R514	C7	R577	
C937	C2/C3			R578	D7
C938	C2	R516	C7	R579	D7
C939	C4	R517	C7	R580	D10
00.10	00	R518	C7	R581	D7
C940	C3	R519	C7	R582	D8
C942	B4	DE 21	C8	R583	D8
C943	B3	R521		1	D8
C944	C4	R522	C8	R584	
C945	C4	R523	C8/C9	R585	D9/D10
	.	R524	C8	R586	D8
1	d aivavita	R525	E4	R588	D3
Integrated	a circuits			R589	D2
D501	D4	R526	C8/C9	R590	D9
D502	D5	R527	C8	R591	D3
D502	D6	R530	C6	1	D3
		R531	C6	R592	
D504	D7	R532	D4/D5	R593	D3
D651	E4/F4	R533	C5	R594	D4
D652	E5/F5	R534	D5	R 59 5	D9
D653	E6/F6			R 596	D4
1	E7/F7	R535	C5	R597	D5
D654	E//F/	R537	D6		· -

					
R598	E6	R691	F8	R753	F1
R599	D6	R692	F8	R754	F9
		R693	F8	R755	F1
R601	E6	R694	E8/F8	R756	F9
R602	D6	1		R757	F1/E1
R603	D7	R696	E8/F8	1	
R604	E7	R697	E8/F8	R758	E1
R605	D6	R698	F8	R759	F3
R606	E8	R700	F9/E9	R760	F1
R607	D8			R761	F4/F5
		R701	E9/F9	R762	F5
R608	E8	R702	F9	R763	F6
R609	E8	R704	F3	R764	F6
R610	E8	R706	E2	R766	F6
R611	E8	R707	F3	R767	F6
R612	E8	R708	F3	R768	F7
R614	E2	R709	F3		
		R710	F4	R801	B10
R616	E3		F4	R802 ·	B10
R617	E4	R711		R803	B10
R618	E3	R712	E8/F8	R804	B10/C19
R619	E1	R713	E5/F5	R806	B10/C10
		R714	E5/F5	R807	C10
R620	D1	R715	E8	R808	C10
R621	E1	R716	E5/F5		
R622	E1	R718	F 5	R809	C8/C9
R623	E1 + 8 5	R719	E6	R810	B9
R625	Contact LT	R720	F6	R811	C9
R653	Is Contact Opinion. Series	3	F6	R812	C9
R654	E9 18 (R721		R813	C9
	CO.	R722	F6/E6	R814	C9
R655	## ## ## ## ## ## ## ## ## ## ## ## ##	R723	F6	R815	B9
R656	Vice 1	R724	E6	R816	C10
R657	E6 Service 44.	R725	F4	R817	C10
R658	E6 STATE BE	R726	F7	R818	C10
R659	E6 E S E	R727	F7	R819	C10/D10
R661	E6	R728	F1	ł	
R662	E7	R729	F6	R821	C10
R663	E7	R730	F5	R822	C10
R664	E7	R731	F2	R824	C10
R666	E7			R826	C10
		R732	F3	R827	D10
R667	E7	R733	F4	R828	D10
R668	E7	R734	F4/F5	R829	D10
R669	E7	R735	F5	R830	C9/C10
R671	E7	R736	F4	1	D10
R672	E8	R737	F4/F5	R831	
R673	E8	R738	F5	R832	C9
R674	E3	R739	F5	R833	D9
		R740	F4	R834	D9
R676	E4	R741	F7	R835	D9
R678	E4/E5	R742	F7	R836	D9
R679	E6	R743	F8	R837	C10
R680	E6	R744	F8	R838	D10
R681	E5	R745	E4	R839	D10
R682	E5			R841	D10
R683	E5	R748	F8	R842	D8/D9
R684	E6	R749	F8	R843	E8/E9
R686	F6	R750	F8/F9	R844	E8/E9
R687	E7/F7	R751	F8	R846	E8/E9
R688	F7	R752	F8	R847	E10
R689	E7			''07'	
11000				l	

R848						
R849 E10	D040	E10	RQ11	Δ7	R973	B4
R850 F10 R913 A5/A6 R976 A3 R852 E9 R914 B7 R977 B5 R853 E9 R917 B8 R978 A5 R854 E9 R919 B6 R990 B5 R856 E9 R919 B6 R981 B5 R857 E10 R921 B6 R981 B5 R858 E10/F10 R823 A9 R983 A5/A6 R860 F10 R823 A9 R984 B6 R860 F10 R823 A9 R984 B6 R861 E10 R927 A8 R987 B7 R862 F10 R927 A8 R986 A7/B7 R863 E10/F10 R928 A9 R988 A7/B7 R866 F9 R930 A2 R991 A8/B8 R867 F9/F10 R931 A2 R992 <						
MSBO F10 MSBO P10 R814 B7 R977 B5 R853 E9 R917 B8 R979 A5 R854 E9 R918 A8 R979 A5 R857 E10 R921 B6 R980 B5 R858 E10 R922 A9 R982 B5 R859 E10/F10 R922 A9 R984 B6 R860 F10 R924 A8/B8 R984 B6 R860 F10 R924 A8/B8 R984 B6 R861 E10 R927 A8 R986 A7/B7 R862 F10 R927 A8 R986 A7/B7 R863 E10/F10 R928 A9 R988 A7/B7 R866 F9 R930 A2 R991 A8/B8 R866 F9/F10 R931 A2 R991 A8/B8 R868 A2 R932	R849	EIU	l l			
M892 E9 R917 BB R978 A5 R854 E9 R918 A8 R979 A5 R856 E9 R919 B6/87 R980 B5 R857 E10 R921 B6 R981 B5 R858 E10 R922 A9 R983 A5/A6 R860 F10 R923 A9 R983 A5/A6 R861 E10 R924 A8/B8 R984 B6 R861 E10 R927 A8 R986 A7/B7 R862 F10 R927 A8 R987 B7 R863 E10/F10 R928 A9 R986 A7/B7 R864 E10 R927 A8 R987 B7 R866 F9 R930 A2 R991 A8/R8 R867 F9/F10 R931 A2 R993 B10 R868 A2 R933 A2 R993	R850	F10				
M893 E9 R918 A8 R979 A5 R856 E9 R919 B8677 R980 B5 R857 E10 R921 B6 R981 B5 R858 E10 R922 A9 R982 B5 R860 F10 R923 A9 R984 B6 R861 E10 R924 A8/B8 R984 B6 R860 F10 R927 A8 R986 A7/B7 R862 F10 R927 A8 R987 B7 R863 E10/F10 R928 A10 R988 A7/B7 R864 E10 R929 A10 R989 A8 R866 F9/F10 R931 A2 R991 A8/B8 R866 F9/F10 R931 A2 R991 A8/B8 R868 A2 R932 B102 R993 B10 R869 A1 R933 A2 R994	R852	E9				
R854 E9 R918 A8 H979 A5 R856 E9 R919 B6/87 R980 B5 R857 E10 R921 B6 R981 B5 R858 E10 R922 A9 R983 A5/A6 R860 F10 R924 A8/B8 R984 B6 R861 E10 R924 A8/B8 R984 B6 R861 E10 R925 B4 R986 A7/B7 R862 F10 R927 A8 R987 B7 R863 E10/F10 R928 A9 R988 A7/B7 R866 F9 R930 A2 R991 A8/B8 R867 F9/F10 R931 A2 R992 A8 R868 A2 R932 B1/B2 R993 B10 R868 A1 R933 A2 R994 B10 R870 A2 R934 A2 R996	R853	E9				
R856 E9 R919 B6/87 H980 E5 R857 E10 R921 B6 R981 B5 R981 B5 R858 E10/F10 R922 A9 R983 A5/A6 R860 F10 R924 A8/B8 R984 B6 R861 E10 R925 B4 R986 A7/B7 R862 F10 R927 A8 R987 B7 R863 E10/F10 R928 A9 R988 A7/B7 R864 E10 R929 A10 R988 A7/B7 R866 F9 R930 A2 R998 A8 R866 F9 R930 A2 R993 B10 R866 A2 R932 B1/B2 R993 B10 R866 A2 R932 B1/B2 R993 B10 R870 A2 R933 A2 R994 B10 R871 A2/A3 R932 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1					
R857 E10 R921 B6 H981 B5 R985 B5 R985 B5 R985 B5 R985 B5 R985 B5 R986 B6 R924 A9 R983 A5/A6 A5/A6 R866 F10 R924 A8/B8 R984 B6 R966 R967 B7 R986 A5/A6 R967 B7 R986 A7/B7 R986 A6/B7 R968 A7/B7 R987 B7 R988 A7/B7 R988 A8 R986 F9 R930 A2 R991 A8 R8 R986 F9 R931 A2 R989 A8 R8 R8/B8 R8/B8 A2 R993 A2 R993 A3 R996 B2 R997 A3 R997 B2 R993 A3 R996 <			R919	B6/B7		
R858 E10 R922 A9 R982 B5 R9859 E10/F10 R923 A9 R983 A6/A6 R984 B6 R986 A7/B7 R862 E10 R927 A8 R996 B7 R97 R868 B9 B7 R868 B9 B7 R868 B9 R97 B7 R868 B9 B992 A10 R988 A7/B7 R868 R86 F9/F10 R931 A2 R991 A8/B8 R868 R867 F9/F10 R931 A2 R992 A8 R868 R869 A1 R933 A2 R992 A8 R868 A2 R932 B1/B2 R993 B10 R871 A2/A3 R933 A2 R995 A10 R871 A2/A3 R934 A2 R995 A10 R937 B2 R995 A10 R937 <td></td> <td></td> <td>R921</td> <td>B6</td> <td></td> <td></td>			R921	B6		
R869 F10/F10 R924 A8/B8 R944 B6 R860 F10 R924 A8/B8 R94 B6 R861 E10 R925 B4 R986 A7/B7 R862 F10 R927 A8 R987 B7 R864 E10 R929 A10 R989 A8 R864 E10 R929 A10 R989 A8 R866 F9 R930 A2 R991 A8/B8 R867 F9/F10 R931 A2 R993 B10 R868 A2 R932 B1/B2 R993 B10 R868 A2 R933 A2 R994 B10 R870 A2 R934 A2 R994 B10 R871 A2/A3 R936 A3 R996 B2 R871 A2/A3 R938 A1 R998 B3 R875 A2 R939 A2 R999	li .					
R860					R983	A5/A6
R861 E10 R925 B4 R986 A7/B7 R862 F10 R927 A8 R987 B7 R863 E10/F10 R928 A9 R988 A7/B7 R864 E10 R929 A10 R989 A8 R866 F9 R930 A2 R991 A8/B8 R867 F9/F10 R931 A2 R991 A8/B8 R868 A2 R932 B1/B2 R993 B10 R869 A1 R933 A2 R993 B10 R870 A2 R934 A2 R994 B10 R871 A2/A3 R936 A3 R996 B2 R871 A2/A3 R938 A1 R998 B2 R874 A2 R939 A2 R999 B3 R875 B2 R940 B1 R1000 B3 R876 A2 R941 B3 R1001	1				R984	B6
R862					R986	A7/R7
R863 E10/F10 R928 A9 R988 A7/B7 R864 E10 R929 A10 R989 A8 R866 F9 R930 A2 R991 A8/B8 R867 F9/F10 R931 A2 R992 A8 R868 A2 R932 B1/B2 R993 B10 R870 A2 R934 A2 R994 B10 R871 A2/A3 R936 A3 R996 B2 R871 A2/A3 R936 A3 R996 B2 R873 A2 R938 A1 R998 C2 R874 A2 R939 A2 R999 B3 R875 B2 R941 B3 R1001 B3 R876 A2 R941 B3 R1001 B3 R877 A2/A3 R944 B4 R1002 B3 R878 A2/A3 R944 B4 R1005						
R864 E10 R929 A10 R989 A8 R866 F9 R930 A2 R991 A8 R867 F9/F10 R931 A2 R992 A8 R868 A2 R933 A2 R994 B10 R869 A1 R933 A2 R994 B10 R870 A2 R934 A2 R994 B10 R871 A2/A3 R936 A3 R996 B2 R872 A1 R937 B3 R996 B2 R872 A1 R938 A1 R998 C2 R874 A2 R938 A1 R998 C2 R875 B2 R940 B1 R1000 B3 R876 A2 R941 B3 R1001 B3 R877 A2/A3 R942 A4 R1002 B3 R879 A2/A3 R944 B4 R1004 B4						
R866 F9 R930 A2 R991 A8/88 R867 F9/F10 R931 A2 R992 A8 R868 A2 R932 B1/B2 R993 B10 R869 A1 R934 A2 R994 B10 R870 A2 R934 A2 R994 B10 R871 A2/A3 R936 A3 R996 B2 R872 A1 R937 B3 R997 B2 R873 A2 R938 A1 R998 C2 R874 A2 R939 A2 R999 B3 R874 A2 R939 A2 R999 B3 R876 A2 R941 B3 R1001 B3 R876 A2 R941 B3 R1001 B3 R877 A2/A3 R943 A4 R1002 B3 R879 A2/A3 R946 A4 R1004 B4 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•					
R867 F9/F10 R931 A2 R992 A8 R868 A2 R932 B1/B2 R993 B10 R868 A2 R934 A2 R994 B10 R870 A2 R934 A2 R994 B10 R870 A2 R934 A2 R995 A10 R871 A2/A3 R936 A3 R996 B2 R872 A1 R937 B3 R997 B2 R873 A2 R938 A1 R898 C2 R874 A2 R938 A1 R898 C2 R874 A2 R938 A1 R898 C2 R875 B2 R940 B1 R1000 B3 R876 A2 R941 B3 R1001 B3 R876 A2 R941 B3 R1001 B3 R878 A2/A3 R942 A4 R1002 B3 R878 A2/A3 R943 A4 R1002 B3 R878 A2/A3 R944 B4 R1004 B4 R1005 B4 R881 A3 R946 A4 R1005 B4 R1006 C4 R882 A3 R946 A4 R1006 C4 R1006 C4 R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1008 B4/B5 R886 A8 R950 B1/C1 R1011 B5 R889 A8 R953 A4/A5 R1014 B6 R891 A9/A10 R955 A3 R1019 B7 R1016 B6 R893 A10 R954 B6 R1016 B6 R893 A10 R955 A3 R1019 B7 R898 A3 R960 A4 R1002 B7 R1022 B7 R1024	R804				naoa	Ao
R868 A2 R932 B1/B2 R893 B10 R869 A1 R934 A2 R894 B10 R870 A2 R934 A2 R995 A10 R871 A2/A3 R936 A3 R896 B2 R871 A2 R939 B3 R997 B2 R873 A2 R839 A1 R998 C2 R874 A2 R839 A2 R899 B3 R875 B2 R940 B1 R1000 B3 R876 A2 R941 B3 R1001 B3 R877 A2/A3 R942 A4 R1002 B3 R879 A2/A3 R944 B4 R1003 C3 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1006 C4 R884 B6 R949 A7 R1008 B3	R866				R991	A8/B8
R869	R867	F9/F10			R992	A8
R870 A2 R934 A2 R995 A10 R871 A2/A3 R936 A3 R996 B2 R872 A1 R937 B3 R997 B2 R873 A2 R939 A2 R999 B3 R874 A2 R940 B1 R1000 B3 R875 B2 R940 B1 R1000 B3 R877 A2/A3 R942 A4 R1000 B3 R877 A2/A3 R943 A4 R1003 C3 R879 A2/A3 R944 B4 R1004 B4 R880 A3 R945 B4 R1005 B4 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1006 C4 R882 A3 R948 A4 R1007 C3 R884 B6 R949 A7 R1011 B5	R868	A2			R993	B10
R870 A2 R934 A2 R995 A10 R871 A2/A3 R936 A3 R996 B2 R872 A1 R938 A1 R998 C2 R874 A2 R939 A2 R999 B3 R875 B2 R940 B1 R1000 B3 R876 A2 R941 B3 R1001 B3 R877 A2/A3 R942 A4 R1002 B3 R878 A2/A3 R943 A4 R1003 C3 R879 A2/A3 R944 B4 R1004 B4 R880 A3 R945 B4 R1005 B4 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1006 C4 R883 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B6 <td></td> <td>A1</td> <td>1</td> <td></td> <td></td> <td>B10</td>		A1	1			B10
R871 A2/A3 R936 A3 R996 B2 R872 A1 R937 B3 R997 B2 R873 A2 R939 A2 R939 A2 R999 B3 R876 A2 R940 B1 R1000 B3 R876 A2 R941 B3 R1001 B3 R876 A2 R941 B3 R1001 B3 R877 A2/A3 R942 A4 R1002 B3 R879 A2/A3 R944 B4 R1004 B4 R889 A2/A3 R944 B4 R1004 B4 R1006 C4 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1007 C3 R8878 A2/A3 R948 A4 R1006 C4 R882 A3 R947 A4 R1007 C3 R889 A8 R950 B1/C1 R1011 B5 R886 A8 R950 B1/C1 R1011 B5 R888 A8 R952 A7 R1013 B5 R888 A8 R952 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R955 A3 R1016 B6 R1016 B6 R891 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1019 B7 R893 A10 R956 A5 R1019 B7 R893 A10 R957 A5/A6 R1019 B7 R894 A3 R960 A4 R1002 B7 R1019 B7 R893 A10 R956 A5 R1019 B7 R1019 B7 R893 A10 R956 A5 R1019 B7 R1022 B7 R894 A3 R960 A4 R1002 B7 R1002 B7 R1004 B7 R1004 B7 R1004 B7 R1004 B8 R1005 B7 R1004 B7 R1004 B8 R1005 B7 R1004 B7 R1004 B7 R1004 B8 R1005 B7 R1004 B7 R10	1		R934	A2		
R872 A1 R937 B3 R997 B2 R873 A2 R938 A1 R998 C2 R874 A2 R939 A2 R999 B3 R876 A2 R941 B3 R1000 B3 R877 A2/A3 R942 A4 R1002 B3 R877 A2/A3 R942 A4 R1002 B3 R878 A2/A3 R944 B4 R1004 B4 R880 A3 R945 B4 R1005 B4 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1006 C4 R882 A3 R948 A4 R1006 C4 R883 B3/C3 R948 A4 R1008 B4/B5 R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R891 A9/A10 R956 A5 R1016 B6 R891 A9/A10 R956 A5 R1016 B6 R893 A10 R956 A5 R1019 B7 R893 A10 R956 A5 R1019 B7 R894 A3 R958 B7 R1019 B7 R898 A3 R960 A4 R1020 B7 R898 A3 R960 A4 R1020 B7 R899 A3 R961 A8 R963 A9 R1022 B7 R899 A3 R961 A8 R963 A9 R1020 B7 R899 A3 R961 A8 R963 A9 R1020 B7 R890 B4 R963 A9 R1020 B7 R890 B6 R964 A9 R1031 B7 R890 B7 R890 B7 R966 A9 R1031 B7 R890 B8 R966 A7 R966 A9 R1031 B7 R890 B8 R966 A7 R966 A9 R1033 C8 R890 A6 R969 B2 R1036 B8 R890 A6 R969 B2 R1036 B8 R890 A6 R969 B2 R1036 B8 R890 A6	i .		R936	A3		
R873 A2 R938 A1 R998 C2 R874 A2 R939 A2 R999 B3 R876 A2 R941 B3 R1001 B3 R877 A2/A3 R942 A4 R1002 B3 R877 A2/A3 R943 A4 R1003 C3 R879 A2/A3 R944 B4 R1005 B4 R880 A3 R945 B4 R1006 C4 R881 A3 R946 A4 R1007 C3 R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1007 C3 R888 A8 R950 B1/C1 R1011 B5 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R851 A7 R1013 B5 R888 A8 R952 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R891 A9/A10 R955 A3 R1016 B6 R891 A9/A10 R955 A3 R1019 B7 R892 A9/A10 R956 A5 R1016 B6 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1024 B7 R897 B2/B3 R950 A4 R1026 B7 R899 A3 R960 A4 R1027 B7 R899 A3 R960 A4 R1027 B7 R899 A3 R961 A8 R962 A8 R1017 B8 R899 A3 R960 A4 R1027 B7 R899 A3 R960 A4 R1028 B7 R899 A3 R961 A8 R962 A8 R1023 C7 R897 B2/B3 R960 A4 R1026 B7 R899 A3 R961 A8 R962 A8 R1027 B7 R890 B3/B4 R963 A9 R1029 B7 R890 B3/B4 R963 A9 R1029 B7 R890 B3/B4 R963 A9 R1029 B7 R890 B3/B4 R963 A9 R1031 B7 R890 A6 R968 B2 R1036 B8 R890 A6 R968 B2 R1036 B8 R890 A6 R969 B2 R1036 B8 R909 A6/A7 R970 A10 R1038 B8/B9						
R874 A2 R939 A2 R999 B3 R876 A2 R940 B1 R1000 B3 R877 A2/A3 R941 B3 R1001 B3 R877 A2/A3 R942 A4 R1002 B3 R878 A2/A3 R943 A4 R1003 C3 R879 A2/A3 R944 B4 R1004 B4 R880 A3 R945 B4 R1006 C4 R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1007 C3 R888 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1011 B5 R887 B7/B8 R951 A7 R1014 B6 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1017 B5 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R951 A8 R952 A7 R1014 B6 R891 A9/A10 R956 A5 R1016 B6 R891 A9/A10 R956 A5 R1017 B5 R892 A9/A10 R956 A5 R1021 B8 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1023 C7 R897 B2/B3 R958 B7 R1023 C7 R897 B2/B3 R959 A7 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R960 A4 R1026 B7 R801 B4 R962 A8 R1027 B7 R801 B4 R963 A9 R1029 B7 R802 B3/B4 R963 A9 R1029 B7 R803 B6 R964 A9 R1031 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R966 A9 R1031 B7 R906 A7 R966 A9 R1033 C8 R908 A6 R968 B2 R1037 B9 R909 A6/A7 R967 A10 R1038 B8/B9	1					
R876 A2 R876 A2 R877 A2/A3 R877 A2/A3 R878 A2/A3 R878 A2/A3 R879 A2/A3 R880 A3 R8945 B4 R800 A3 R881 A3 R946 A4 R1005 B4 R881 A3 R946 A4 R1006 C4 R882 A3 R883 B3/C3 R948 A4 R1007 C3 R883 B3/C3 R884 B6 R949 A7 R1008 B4/B5 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R888 A8 R950 B1/C1 R1011 B5 R888 A8 R951 A7 R1013 B5 R888 A8 R952 A7 R1013 B5 R889 A8 R891 A9/A10 R955 A3 R1016 B6 R891 A9/A10 R955 A3 R1017 B5 R892 A9/A10 R955 A3 R1019 B7 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R897 B2/B3 R896 A2 R897 B2/B3 R898 A3 R960 A4 R1026 B7 R899 A3 R896 A4 R1027 B7 R897 B2/B3 R898 A3 R961 A8 R1028 B7 R800 B4 R901 B4 R902 B3/B4 R903 B6 R904 A7 R906 A7 R906 A9 R1031 B8 R808 B2 R1032 B8 R908 A6 R909 A6/A7 R900 A6 R909 B2 R1031 B8 R898 R909 A6/A7 R900 A6 R909 A6/A7 R900 A6 R900 R900 R900 R900 R900 R900 R900 R900	1					
R876	1					
R877 A2/A3 R942 A4 R1002 B3 R878 A2/A3 R943 A4 R1003 C3 R879 A2/A3 R944 B4 R1005 B4 R880 A3 R946 A4 R1006 C4 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1009 B3 R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1013 B5 R888 A8 R953 A4/A5 R1014 B6 R899 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R955 A3 R1016 B6 R891 A9/A10 R956 A5 R1016 B6 R892 A9/A10 R956 A5 R1019 B7 R892 A9/A10 R956 A5 R1019 B7 R894 A3 R958 B7 R1021 B8 R894 A3 R958 B7 R1021 B8 R896 A2 R959 A7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R899 A3 R961 A8 R1027 B7 R890 B4 R963 A9 R1028 B7 R890 B4 R964 A9 R1028 B7 R8903 B6 R965 B2 R1033 B8 R906 A7 R966 A9 R1033 C8 R8908 A6 R968 B2 R1036 B8 R909 A6/A7 R969 B2 R1037 B9 R909 A6/A7 R970 A10 R1038 B8/B9	1		i			
R878 A2/A3 R944 B4 R1003 C3 R879 A2/A3 R944 B4 R1004 B4 R880 A3 R945 B4 R1005 B4 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1008 B4/B5 R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R888 A8 R952 A7 R1013 B6 R889 A8 R953 A4/A5 R1014 B6 R889 A8 R953 A4/A5 R1014 B6 R891 A9/A10 R955 A3 R1017 B5 R892 A9/A10 R956 A5 R1017 B5 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1021 B7 R896 A2 R959 A7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R898 A3 R960 A4 R1022 B7 R899 A3 R960 A4 R1026 B7 R890 B3/B4 R961 A8 R1026 B7 R890 B3/B4 R963 A9 R1028 B7 R890 B3/B4 R964 A9 R1028 B7 R890 B3/B4 R966 A9 R1031 B7 R890 B3/B4 R966 A9 R1033 C8 R890 A7 R966 A9 R1033 C8 R890 A7 R966 A9 R1033 C8 R890 A6 R968 B2 R1036 B8 R890 A6 R969 B2 R1037 B9 R909 A6/A7 R967 A10 R1038 B8/B9	1					
R879 A2/A3 R944 B4 R1004 B4 R880 A3 R946 A4 R1006 C4 R881 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1009 B3 R886 A8 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1014 B6 R891 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R958 A5 R1021 B8 R894 A3 R958 B7 R1021 B8 R894 A3 R958 B7 R1021 B8 R894 A3 R958 B7 R1021 B8 R896 A2 R959 A7 R1022 B7 R896 A2 R959 A7 R1024 B7 R1024 B7 R1024 B7 R1024 B7 R1024 B7 R1024 B7 R1026 B7 R1026 B7 R1027 B7 R1029 B7 R1023 C8 R1029 B7 R1029 B7 R1024 B8 R1029 B7 R1029 B7 R1029 B7 R1024 B8 R1029 B7 R1029 B7 R1024 B8 R1029 B7 R1029 B7 R1029 B7 R1029 B7 R1029 B7 R1024 B8 R1029 B7 R1024 B8 R1029 B7 R1029 B7 R1024 B8 R1029 B7 R1029 B7 R1024 B8 R1029 B7 R1029 B7 R1029 B7 R1029 B7 R1024 B8 R1029 B7 R1029 B	1					
R800 A3 R945 B4 R1005 B4 R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1008 B4/B5 R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R955 A3 R1016 B6 R892 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R958 B7 R1021 B7 R896 A2 R959 A7 R1022 B7 R897 B2/B3 R960 A4 R1024 B7 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1					
R881 A3 R946 A4 R1006 C4 R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1008 B4/B5 R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1014 B6 R891 A9/A10 R955 A3 R1016 B6 R891 A9/A10 R956 A5 R1019 B7 R892 A9/A10 R956 A5 R1021 B8 R893 A10 R956 A5 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1023	R879					
R882 A3 R947 A4 R1007 C3 R883 B3/C3 R948 A4 R1008 B4/B5 R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R954 B6 R1017 B5 R892 A9/A10 R955 A3 R1019 B7 R893 A10 R955 A5 R1021 B8 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R960 A4 R1024	R880	A3			R1005	
R883 B3/C3 R948 A4 R1008 B4/B5 R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R899 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R955 A3 R1019 B7 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1021 B8 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R898 A3 R960 A4 R1026 B7 R899 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R890 B4 R963 A9 R1029 B7 R901 B4 R963 A9 R1029 B7 R903 B6 R966 A9 R1031 B7 R906 A7 R966 A9 R1032 B8 R907 A6 R968 B2 R1034 B8 R909 A6/A7 R970 A10 R1038 B8/B9 R909 A6/A7 R970 A10 R1038 B8/B9	R881	A3			R1006	
R884 B6 R949 A7 R1009 B3 R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R955 A3 R1017 B5 R892 A9/A10 R955 A5 R1021 B8 R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1022 B7 R897 B2/B3 R960 A4 R1022 B7 R898 A3 R960 A4 R1024 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028	R882	A3			R1007	C3
R886 A8 R950 B1/C1 R1011 B5 R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R956 A5 R1017 B5 R892 A9/A10 R956 A5 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1024 B7 R897 B2/B3 R960 A4 R1026 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 <	R883	B3/C3				
R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1014 B6 R891 A9/A10 R955 A3 R1017 B5 R892 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R959 A7 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R963 A9 R1028 B7 R902 B3/B4 R964 A9 R1031 B7 R904 A7 R966 A9 R1032 <	R884	B6			R1009	B3
R887 B7/B8 R951 A7 R1013 B5 R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1014 B6 R891 A9/A10 R955 A3 R1017 B5 R892 A9/A10 R956 A5 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1022 B7 R897 B2/B3 R960 A4 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R964 A9 R1031 B7 R903 B6 R964 A9 R1032 <	R886	A8	t .		R1011	B5
R888 A8 R952 A7 R1014 B6 R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R955 A3 R1019 B7 R892 A9/A10 R956 A5 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R960 A4 R1026 B7 R898 A3 R961 A8 R1027 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R966 A9 R1031 B7 R906 A7 R966 A9 R1032 B8 R907 A6 R968 B2 R1034 B8 R909 A6/A7 R970 A10 R1036 B8 R909 A6/A7 R970 A10 R1038 B8/B9					R1013	85
R889 A8 R953 A4/A5 R1016 B6 R891 A9/A10 R954 B6 R1017 B5 R892 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R959 A7 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1028 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R966 A9 R1032 B8 R904 A7 R966 A9 R1033 C8 R907 A6 R968 B2 R1036 B8 <t< td=""><td>1</td><td></td><td>R952</td><td>A7</td><td></td><td></td></t<>	1		R952	A7		
R891 A9/A10 R954 B6 R1017 B5 R892 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R957 A5/A6 R1021 B8 R896 A2 R959 A7 R1022 B7 R897 B2/B3 R959 A7 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1027 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1031 B7 R904 A7 R966 A9 R1032 B8 R907 A6 R968 B2 R1034 B8 R908 A6 R969 B2 R1037 B9 <t< td=""><td>1</td><td></td><td>R953</td><td>A4/A5</td><td></td><td></td></t<>	1		R953	A4/A5		
R892 A9/A10 R955 A3 R1019 B7 R893 A10 R956 A5 R1021 B8 R894 A3 R957 A5/A6 R1022 B7 R896 A2 R958 B7 R1023 C7 R897 B2/B3 R959 A7 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R904 A7 R966 A9 R1033 C8 R907 A6 R968 B2 R1034 B8 R908 A6 R969 B2 R1036 B8 R909 A6/A7 R970 A10 R1038 B8/B9 <	}		R954	B6		
R893 A10 R956 A5 R1021 B8 R894 A3 R957 A5/A6 R1022 B7 R896 A2 R958 B7 R1023 C7 R897 B2/B3 R959 A7 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R906 A9 R1033 C8 R906 A7 R967 A10 R1034 B8 R908 A6 R968 B2 R1036 B8 R909 A6/A7 R969 B2 R1037 B9 R910 A6 R970 A10 R1038 B8/B9	1		R955	A3		
R893 A10 R957 A5/A6 R1021 B8 R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R959 A7 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R906 A7 R966 A9 R1033 C8 R906 A7 R967 A10 R1034 B8 R908 A6 R968 B2 R1036 B8 R909 A6/A7 R969 B2 R1037 B9 R910 A6 R964 R968 R968 R968 R968 <td>1</td> <td></td> <td>R956</td> <td>A5</td> <td></td> <td></td>	1		R956	A5		
R894 A3 R958 B7 R1022 B7 R896 A2 R959 A7 R1023 C7 R897 B2/B3 R960 A4 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1031 B7 R904 A7 R966 A9 R1032 B8 R906 A7 R966 A9 R1033 C8 R907 A6 R968 B2 R1034 B8 R908 A6 R969 B2 R1036 B8 R909 A6/A7 R970 A10 R1038 B8/B9	1		R957	A5/A6		
R896 A2 R959 A7 R1023 C7 R897 B2/B3 R960 A4 R1024 B7 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R904 A7 R966 A9 R1033 C8 R906 A7 R967 A10 R1034 B8 R907 A6 R968 B2 R1036 B8 R909 A6/A7 R969 B2 R1037 B9 R910 A6 R970 A10 R1038 B8/B9						
R897 B2/B3 R898 A3 R960 A4 R1026 B7 R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1031 B7 R906 A9 R1032 B8 R906 A9 R1033 C8 R1034 B8 R907 A6 R968 B2 R1034 B8 R908 A6 R969 B2 R1036 B8 R1037 B9 R909 A6/A7 R970 A10 R1038 B8/B9						
R899 A3 R961 A8 R1027 B7 R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R906 A9 R1033 C8 R906 A9 R1034 B8 R907 A6 R968 B2 R1034 B8 R908 A6 R969 B2 R1036 B8 R909 A6/A7 R970 A10 R1038 B8/B9						
R901 B4 R962 A8 R1028 B7 R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R906 A9 R1033 C8 R907 A6 R967 A10 R1034 B8 R908 A6 R969 B2 R1036 B8 R909 A6/A7 R970 A10 R1037 B9 R910 A6 R969 B2 R1038 B8/B9						
R901 B4 R963 A9 R1029 B7 R902 B3/B4 R964 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R906 A9 R1033 C8 R1033 C8 R907 A6 R968 B2 R1034 B8 R908 A6 R969 B2 R1036 B8 R909 A6/A7 R970 A10 R1038 B8/B9	R899	A3				
R902 B3/B4 R963 A9 R1029 B7 R903 B6 R964 A9 R1031 B7 R904 A7 R965 B2 R1032 B8 R906 A7 R966 A9 R1033 C8 R907 A6 R967 A10 R1034 B8 R908 A6 R968 B2 R1036 B8 R909 A6/A7 R970 A10 R1037 B9 R910 A6 R970 A10 R1038 B8/B9	R901	B4				
R903 B6 R965 B2 R1031 B7 R904 A7 R965 B2 R1032 B8 R906 A9 R1033 C8 R907 A6 R967 A10 R1034 B8 R908 A6 R968 B2 R1034 B8 R909 A6/A7 R969 B2 R1037 B9 R910 A6 R970 A10 R1038 B8/B9	t .				R1029	87
R904 A7 R965 B2 R1032 B8 R906 A9 R1033 C8 R907 A6 R967 A10 R1034 B8 R907 A6 R968 B2 R1034 B8 R908 A6 R969 B2 R1036 B8 R909 A6/A7 R970 A10 R1037 B9 R910 A6 R971 R970 R1038 B8/B9	i i				R1031	B7
R966 A9 R906 A7 R967 A10 R968 B2 R908 A6 R909 A6/A7 R970 A10 R968 B2 R970 A10			t e			•
R906 A7 R967 A10 R1034 B8 R907 A6 R968 B2 R1036 B8 R908 A6 R969 B2 R1037 B9 R909 A6/A7 R970 A10 R1038 B8/B9	1		1			
R907 A6 R968 B2 R1036 B8 R969 B2 R1037 B9 R1038 B8/B9	1		R967			
R908 A6 R969 B2 R1037 B9 R1038 B8/B9	1		R968			
R909 A6/A7 R970 A10 R1038 B8/B9	1		R969	B2		
P010 A6 P071 P2 N1030 B0/09	R909		R970	A10		
1,1039 00109	R910	A6	R971	B2		
	1				111009	50/50

		T'		1		
R1041	B8/B9	Semi-con	ductors	V866	A7	
R1042	B9	V503	C7	V867	A5	
R1043	B9	V504	C8/D8	V868	A5	
R1044	B9	V505	D4	V869	A5	
R1045	B9	V506	D8	∨870	A9/A10	
R1046	B9	V507	D8	V871	В6	
R1047	B9	V508	D4	V872	В7	
R1048	B10	V509	D5	V873	В7	
R1049	B10	V510	D5	V874	В7	
R1051	В9	V511	D8	V875	A10	
R1054	B2/C2	V512	C8	V876	В7	
		V513	D4	V877	B4	
R1056	C1/C2	V514	D5	V878	B8	
R1057	C1	V515	D4	V879	B8	
R1058	C2/B2	V516	D5/E5	∨880	B10	
R1059	C2/B2	V517	D5	V881	B5	
R1060	C4/C3	V518	E7	V882	A9/B9	
R1061	B2/B3	V651	F9	V883	A9/B9	
R1062	C3	V653	E6/E7	V884	B1	
R1063 R1064	C3	V654	E8	V885	C4	
R1064	C4	V655	E8	V887	B2	
R1066	C3	V656	E8/F8	V888	B4	
R1067	B4/B5	V657	E8	V889	B4	
R1068	C5	V660	F5	V890	C4	
R1069	B5	V661	F4	V891	C4	
		V662	F5	V892	C4	
R1071	C5/C6	V663	F8	V893	C5	
R1072	C1	V664	E4/F4	V894	B5 For Service Manual	s Contact
R1073	B2/B3	V665	F4	V895	MAURITRON TECHNICAL	L SERVICES
R1076	C3	V666	F5	V896	8 Cherry Tree Rd B5 Oxon OX9 4)V
R1077	C3	V667	F5	V897	RS Tel:- 01844-351694 Fax:- h	1844-352554
R1078	C2/C3	V668	F5	∨898	B5 Email:- enquiries@mauri	itron.co.uk
R1079	C3	V669	F7	V899	B6	
R1080	C1/C2	V770	F4	V901	B5/B6	
R1081	C3	V801	D10	V902	B5	
R1082	C1	V802	D10	V903	B1	
R1083	C3	V803	F10	V904	B2	
R1084	C4	V804	F10		A	
R1085	B4			V906	C4	
R1086	C2 C2	V806	F10	∨907	C5	
R1087		V807	D10	∨909	B6	
R1088 R1089	C2/C1	V808	D10	V910	C4	
R1089	C2 B6	∨851	A2	V912	B7/C7	
R1090	D2	V852	A2	V913	B7/B8	
R1091	C2	V853	A2/A3	V914	B8	
R1092	C2	V854	A2	V916	B8	
R1093	C2	V856	A2	V917	В9	
R1095	B7/B8	V857	B4	V918	B9	
R1096	C3/C2	V858	B4	V919	C2	
R1097	B2/C2	V859	В3	V921	C2	
R1098	B8	V860	A9	V922	C2	
R1099	B8-B9	V861	A4	V923	C1	
		V862	B4	V924	C2	
Coil		V863	A4			
T801	В3	V864	A5			
1601	50	V865	B8			
1				L		

-

7. Q40

T

Mar and

I

1

8. DIAGRAMS AND PRINT LAY-OUTS

8.1. LOCATION OF ELECTRICAL PARTS

Item numbers of C ldots, R ldots, V ldots and K ldots have been divided in groups which relate to the circuit, the unit and the circuit diagram, according the following table.

Item number	Location	Figure	Unit
1 25 100 199	Potentiometer unit and front- and rear-side unit Switch unit	8.16 and 4.1 8.15	A103 A102
200 499 1370 1394	Time base unit (see location list section 7.4)	8.7	A2
500 1099	Pre-amplifier and trigger unit (see location list section 7.5)	8.3	A3
1100 1150	Trigger selection unit	8.6	A4
1200 1599	Final amplifier unit	8.11	A5
1400 1499	Power supply unit	8.13	A6

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@maunitron.co.uk

Fig. 8.1. Pre-amplifier and trigger-unit p.c.b. A3 and final Y-amplifier p.c.b. (part of unit A5)

DELAY LINE

PPER BLANKING 6 ON TIME BASE

Email:- enquiries@mauritron.co.uk

7

Ĩ

...

Fig. 8.2. Circuit diagram vertical deflection (attenuator, channel switch, final Y-amplifier)

Fig. 8.3. Pre-amplifier and trigger-unit p.c.b. A3

Fig. 8.4. Circuit diagram

Fig. 8.4. Circuit diagram main time-base triggering (unit A3)

Fig. 8.5. Circuit diagram delayed time-base triggering (unit A3)

it A3)

14b 10n

+14D **►**

MAT 2146 8 5 1 1 1 5

Fig. 8.6. Trigger selection unit A4, p.c.b.

G. TO PRE-AMPL.
AND TRIGGER UNIT A3

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 8.7. Time-base unit p.c.b. A2

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

IG. FROM NIT A3 IG. FROM NIT A3

Fig. 8.8. Circuit diagram main time-base (unit A2)

Fig. 8.8. Circuit diagram main time-base (unit A2)

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:-01844-351694 Fax:-01844-352554
Email:-enquiries@mauritron.co.uk

Fig. 8.9. Time-base unit p.c.b. A2

Fig. 8.9. Time-base unit p.c.b. A2

Fig. 8.10. Circuit diagram delayed time-base (unit A2)

Fig. 8.11. Final amplifier unit p.c.b. A5

Fig. 8.11. Final amplifier unit p.c.b. A5

Fig. 8.12. Circuit diagram final X-amplifier, Z-amplifier, calibration unit and display section

n unit and display section

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 8.13 Power supply unit p.c.b. A6.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel: 01844-351694 Fax: 01844-352554
Email:- enquiries@mauritron.co.uk

Fig. 8.14. Circuit diagram

Fig. 8.14. Circuit diagram power supply and H.V. generator.

Fig. 8.15. Switch unit p.c.b. A102

Fig. 8.16. Potentiometer unit A103

9. VOLTAGE WAVEFORMS IN THE INSTRUMENT

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

9.1. INTRODUCTION

The waveforms given in this chapter are typical values and represent an average instrument.

So the waveforms measured in your "oscilloscope under test" can differ somewhat from the values given in this manual. The waveforms are listed in 3 chapters:

- 9.2. Vertical deflection and triggering
- 9.3. Horizontal deflection
- 9.4. Power supply

The measurement can be started at every desired point because settings of "measuring oscilloscope" and "oscilloscope under test" that differ from the "standard" settings are indicated beside the waveforms. The test points are marked on the units.

The required test equipment consists of an oscilloscope of 100 MHz (e.g. Philips PM 3262) with a suitable 10:1 attenuator probe.

The input square wave signal for the "oscilloscope under test" can be obtained from a function generator (e.g. Philips PM 5127).

Standard-settings for the "oscilloscope under test"

- Depress the Y-position controls to the non-inverted position (S4 and S5).
- Push the channel A and B signal coupling switches in the AC position (S17 and S18).
- Depress pushbutton A (or B) of the vertical display mode selector S1.
- Set the channel A and B AMPL/DIV controls in the 1 V/div. position and their verniers to CAL.
- Depress pushbutton MTB of the horizontal display mode selector (S2).
- Depress the time base magnifier X MAGN (S7).
- Depress pushbutton AUTO of trigger mode selector (S3).
- Set the MTB in the 0.1 ms/div. position and its vernier to CAL.
- Set the DTB TIME/DIV switch in the OFF position and its vernier to CAL.
- Depress pushbutton DC of the MTB and DTB trigger coupling controls (S20 and S19).
- Depress pushbutton A (or B) of the MTB trigger source selector (S23).
- Depress pushbutton MTB of the DTB trigger source selector (S22).
- Apply a square-wave signal on 6 Vp-p/10 kHz to the input sockets A, B and EXT.
- Set the signal in the middle of the screen by means of the channel A (or B) position controls (R1 and R2).
- Set the HOLD OFF control in the CAL position.
- Adjust the DELAY TIME control to 5,00.

Standard-settings of the "measuring oscilloscope"

- The waveforms are measured on channel A, the required AMPL/DIV position is indicated beside every waveform.
- The vertical position of the main time base line without input signal is indicated beside every waveform with a "0".
- The instrument is triggered on channel A.
- Only the MTB is used and the required TIME/DIV position is indicated beside every waveform.
- The MTB trigger coupling control occupies the DC position.

The units on which voltage waveforms can be measured are:

- Unit 2: Time base unit
- Unit 3: Preamplifier and trigger unit; for measurements on test points M23 ... M29, the trigger source selection unit must be lifted.
- Unit 4: Trigger selection unit, the test point on this unit (M27) is not indicated. For the location of M27 refer to the p.c.b. lay-out of the unit.
- Unit 6: Power supply.

9.2 VERTICAL DEFLECTION AND TRIGGERING

Unit 3

Measuring oscilloscope: 0.1 V/div. 20 μ s/div. DC input coupling Oscilloscope under test: M1 = channel A M4 = channel B

₹

-

1

Ţ

Measuring oscilloscope: 10 mV/div. 20 μ s/div. DC input coupling Oscilloscope under test: M2 = channel A M6 = channel B

Measuring oscilloscope: 2 mV/div. $20 \mu\text{s/div.}$ DC input coupling Oscilloscope under test: M3 = channel A M7 = channel B

Measuring oscilloscope: 5 mV/div. 20 μ s/div. AC input coupling. Oscilloscope under test: Select vertical display (S1) via channel A and B.

Measuring oscilloscope:
0.1 V/div.
1 ms/div.
DC input coupling
Oscilloscope under test:
Select vertical display mode
(S1) ALT combined with
TRIG VIEW

Measuring oscilloscope:
0.1 V/div.
0.2 µs/div.
DC input coupling
Oscilloscope under test:
Select vertical display mode
(S1) CHOP

Measuring oscilloscope: 5 mV/div. 20 μs/div. AC input coupling Oscilloscope under test:

M16/M17: MTB triggering on channel A. M18/M19: MTB triggering on

channel B.

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Measuring oscilloscope:
5 mV/div.
20 µs/div.
AC input coupling
Oscilloscope under test:
MTB triggering via COMP.
Waveform depends on channel A and B position control.
Depress ALT of S1

.

.

NOTE: For the following measurements the Trigger selection unit must be lifted.

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling Oscilloscope under test: Select MTB triggering via channel A and B.

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling Oscilloscope under test: Select MTB triggering via the EXT

input. Apply the channel A/B input signal to EXT input socket.

M23/

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Measuring oscilloscope:
20 mV/div.
20 µs/div.
AC input coupling
Oscilloscope under test:
Select MTB triggering via COMP.
Waveform depends on channel A and B position controls.

Measuring oscilloscope: 20 mV/div. 5ms/div. AC input coupling Oscilloscope under test: Select MTB triggering via LINE.

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling Oscilloscope under test: DC or TTL trigger coupling of MTB.

Measuring oscilloscope: 20 mV/div 20 μs/div. AC input coupling Oscilloscope under test: LF trigger coupling of MTB.

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling Oscilloscope under test: HF trigger coupling of MTB.

Ì.

Measuring oscilloscope: 50 mV/div. 20 μs/div. AC input coupling

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Measuring oscilloscope: 10 mV/div. 20 μ s/div. AC input coupling Oscilloscope under test: This test point is located on the trigger selection unit. Select MTB triggering via the EXT input. Apply the channel A/B input signal to the EXT input socket.

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling Oscilloscope under test: Select DTB triggering on channel A and B

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling

Ŧ

4

i

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling. Oscilloscope under test: LF trigger coupling of DTB.

Measuring oscilloscope: 20 mV/div. 20 μs/div. AC input coupling Oscilloscope under test: HF trigger coupling of DTB.

9.3 HORIZONTAL DEFLECTION

Unit 2

Measuring oscilloscope: 0.1 V/div. 20 μ s/div. DC input coupling

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Rd, Chinnor
Oxon OX9 4QY
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Measuring oscilloscope: 0.2 V/div. 0.5 ms/div. DC input coupling

Measuring oscilloscope:
0.2 V/div.
0.5 ms/div.
DC input coupling
Oscilloscope under test:
Turn the HOLD OFF control
fully anti-clockwise.

Measuring oscilloscope:
0.2 V/div.
0.5 ms/div.
DC input coupling.
Oscilloscope under test:
Select ALT TB mode (S2).
Adjust the DTB to 20µs/div.
Operate the HOLD OFF control to avoid "double" triggering.

I

3

1

Measuring oscilloscope: 0.2 V/div. 0.2 ms/div. DC input coupling.

Measuring oscilloscope:
0.2 V/div.
0.5 ms/div.
DC input coupling.
Oscilloscope under test:
Select ALT TB mode (S2).
Adjust the DTB to 20 μs/div.

Measuring oscilloscope:
0.1 V/div.
20 µs/div.
DC input coupling
Oscilloscope under test:
Adjust the DTB to 20 µs/div.
Select ALT TB mode (S2).
Depress A of S22

Measuring oscilloscope: 0.2 V/div. 0.2 ms/div. DC input coupling. Oscilloscope under test: Adjust the DTB to 20 μ s/div. Select DTB mode (S2).

Measuring oscilloscope: 0.1 V/div. 0.5 ms/div. DC input coupling. Oscilloscope under test: Adjust the DTB to 20 μ s/div. Select DTB mode (S2).

Measuring oscilloscope:
0.1 V/div.
0.5 ms/div.
DC input coupling
Oscilloscope under test:
Adjust the DTB to 20 μs/div.
Select DTB mode (S2).

T

T

For Service Manuals Contact
MAURITRON TECHNICAL SERVICES
8 Cherry Tree Pol Chinnor
Oxon OXA 20Y
Tel:- 01844-351694 Fax:- 01844-352554
Email:- enquiries@mauritron.co.uk

Measuring oscilloscope:
0.1 V/div.
0.5 ms/div.
DC input coupling.
Oscilloscope under test:
Adjust the DTB to 20 μs/div.
Select ALT TB mode (S2).
Operate the HOLD OFF control to avoid "double" triggering.

Measuring oscilloscope:
0.1 V/div.
0.5 ms/div.
DC input coupling
Oscilloscope under test:
Adjust the DTB to 20 μs/div.
Select ALT TB mode (S2).

9.4. POWER SUPPLY

Unit 6

Measuring oscilloscope: 0.1 V/div. 5 ms/div. DC input coupling

Measuring oscilloscope: 2 V/div. 20 μs/div. DC input coupling

Measuring oscilloscope: 2 V/div. 10 μ s/div. DC input coupling