

Derek Westjohn and Elizabeth Stephan

Why This Topic

- World's deadliest viral pandemic since the Spanish Flu
- Some areas seemed to be more devastated by the outbreak than others
- Understand factors that contributed to the unequal devastation

Questions to Answer

- Is there an underlying correlation between the areas that with hit harder with Covid.
- Can we use this information to predict future outbreaks and subsequently can the information be used to prevent future outbreaks

Data Sources

NYT - county level Covid19 case and fatality data (github)

USDA Economic Research SErvice

- Unemployment and median household income for US, States and Counties 2000-20
- Education attainment for US, States, Counties 1970-2019
- Population estimates for the US, States and Counties 2010-2020

Data Science Process

Data Exploration and Analysis

- Raw data was taken from NYT Covid 19 fatality data set and also key socio-economic factors from the USDA.
- Raw data was stored in Haroku database and linked to PostgreSQL where tables were created.
- The tables were cleaned, null values were investigated and either were changed to 0 or were dropped.
- Dataframes were created from the tables and merged on "FIPS" location code,

de		df.head(leaths.csv")		loca	ation	ns_df.he	ad()						
	fips	state	county	number_o	of deaths	Out[7]:		fips	state	county	latitude	longitude	total_population	area_per_square_mile	population_density_per_square_r	mile
0	1000	Alabama	16.00		791.0	43	0	1001	Alabama	Autauga	32.534928	-86.642748	55049	594.446120	92.605	5533
1	1003	Alabama	Baldwin		2987.0		1	1003	Alabama	Baldwin	30.727489	-87.722575	199510	1589.807425	125.493	3187
2	1005	Alabama	Barbour		472.0		2	1005	Alabama	Barbour	31.869589	-85.393213	26614	884.875776	30.076	8538
3	1007	Alabama	Bibb		471.0		3	1007	Alabama	Bibb	32.998634	-87.126480	22572	622,582355	38.255	5444
4	1009	Alabama	Blount		1085.0		4	1009	Alabama	Blount	33.980878	-86.567383	57704	644.806508	89.490	0412
[8]:		Code		Area name	Less than a hi	gh school diplor 2015	-19	1 22	ligh sch		oma only, 2015-19	S	ome college or deg	ree, 2015-19	chelor's degree or higher, 2015-19	
8]:	0			Area name	Less than a hi		-19	1 22	ligh sch			s				
[8]:	0	0 1000 n [9]: c	US Un AL covid_dep	nited States Alabama epend_df=p	od.read_csv(2015 26,472,2 4586	261 922			59	2015-19	S		ree, 2015-19	2015-19	
[8]:	0 1 In	0 1000 n [9]: c	US Un AL covid_dep	nited States Alabama	od.read_csv(2015 26,472,2 4586	261 922			59	2015-19 9,472,748	S		63,756,905	2015-19 70,920,162	
[8]:	0 1 In	0 1000 n [9]: c	US Un AL covid_dep	Alabama epend_df=p	od.read_csv(nead()	2015 28,472,2 4589 "covid depen	281 922 nder	nts.	CSV")	59	2015-19 9,472,748 1022839		degi	63,756,905 993344	2015-19 70,920,162	tution
[8]:	0 1	Code 0 1000 n [9]: c c ut[9]:	US Un AL covid_dep covid_dep fips	Alabama epend_df=p	od.read_csv(nead() county minori	2015 28,472,2 4589 "covid depen	281 922 nder	nts.	CSV")	59	2015-19 9,472,748 1022839	ing mobi	degi	63,756,905 993344	2015-19 70,920,162 845772	itutio
8]:	0 1	Code 0 1000 n [9]: c c ut[9]:	US Un AL covid_dep covid_dep fips 0 1001	Alabama spend_df=p spend_df.h state Alabama A	od.read_csv(nead() county minori	2015 28,472,3 4586 "covid depen ty_percentage	281 922 nder	nts.	CSV")	59	2015-19 9,472,748 1022839 unit_housi	ing mobi	degr	ree, 2015-19 63,756,905 993344 ercrowding_rank n	2015-19 70,920,162 845772 no_vehicle_household instit	itutio
8]:	0 1	Ode 0 1000 n [9]: c c ut[9]:	US Un AL covid_dep fips 0 1001 a	Alabama spend_df=p spend_df.h state Alabama A	od, read_csv(nead() county minori Autauga Baldwin	2015 26,472,2 4586 "covid depen ty_percentage 0.6339	281 922 nder	nts.	csv") _english 0.5355	59	2015-19 9,472,748 1022839 unit_housi	ing mobi 791 733	ile_homes ove	ercrowding_rank n	2015-19 70,920,162 845772 no_vehicle_household instit 0.3298	itutio
8]:	0 1	Code 0 1000 n [9]: c c ut[9]:	US Un AL covid_dep fips 0 1001 / 1 1003 / 2 1005 /	Alabama A	od, read_csv(nead() county minori Autauga Baldwin	2015 26,472,2 4586 "covid depen ty_percentage 0.6339 0.5253	281 922 nder	nts.	english 0.5355 0.5282	59	2015-19 9,472,748 1022839 unit_housi 0.67	ing mobil 791 733 314	degriile_homes ove 0.7268 0.5387	ercrowding_rank n 0.2477 0.2639	2015-19 70,920,162 845772 no_vehicle_household instit 0.3298 0.0872	itutio

```
In [37]: covid_complete_df=reduce(lambda left,right:pd.merge(left,right, on=['fips'], how='outer'), data_frames)
In [38]: covid_complete_df.head()
Out[38]:
```

fips	state	county	number_of_deaths	latitude	longitude	total_population	area_per_square_mile	population_density_per_square_mile	minority_perc

0	1001	Alabama	Autauga	791.0	32.534928	-86.642748	55049.0	594.446120	92.605533
1	1003	Alabama	Baldwin	2987.0	30.727489	-87.722575	199510.0	1589.807425	125.493187
2	1005	Alabama	Barbour	472.0	31.869589	-85.393213	26614.0	884.875776	30.076538
3	1007	Alabama	Bibb	471.0	32.998634	-87.126480	22572.0	622,582355	36.255444
4	1009	Alabama	Blount	1085.0	33.980878	-86.567383	57704.0	644.806508	89.490412

5 rows x 22 columns

```
In [41]: #Find null values
          for column in covid_complete_df.columns:
           print(f"Column {column} has {covid_complete_df[column].isnull().sum()} null values")
         Column fips has 0 null values
         Column state has 140 null values
         Column county has 140 null values
         Column number_of_deaths has 433 null values
         Column latitude has 140 null values
         Column longitude has 140 null values
         Column total_population has 140 null values
         Column area_per_square_mile has 140 null values
         Column population_density_per_square_mile has 140 null values
         Column minority_percentage has 140 null values
         Column limited_english has 140 null values
         Column multi_unit_housing has 140 null values
         Column mobile_homes has 140 null values
         Column overcrowding_rank has 140 null values
         Column no_vehicle_household has 140 null values
         Column institutionalized_ranker has 140 null values
         Column housing_and_transportation has 140 null values
         Column social_vulnerability has 140 null values
         Column Less than a high school diploma, 2015-19 has 10 null values
         Column High school diploma only, 2015-19 has 10 null values
         Column Some college or associate's degree, 2015-19 has 10 null values
         Column Bachelor's degree or higher, 2015-19 has 10 null values
In [42]: covid complete df["number of deaths"].fillna(0,inplace=True)
In [43]: #Find null values
         for column in covid_complete_df.columns:
             print(f"Column {column} has {covid_complete_df[column].isnull().sum()} null values")
```

Figure 1

Out[46]:

	fips	number_of_deaths	latitude	longitude	total_population	area_per_square_mile	population_density_per_square_m
fips	1.000000	-0.058086	0.060077	0.121840	-0.055953	-0.092250	0.0237
number_of_deaths	-0.058088	1.000000	-0.083293	0.036395	0.973784	0.025095	0.3112
latitude	0.080077	-0.083293	1.000000	-0.293782	-0.057794	0.265048	0.0072
longitude	0.121840	0.036395	-0.293782	1.000000	0.002150	-0.377956	0.1034
total_population	-0.055953	0.973784	-0.057794	0.002150	1.000000	0.026403	0.3332
area_per_square_mile	-0.092250	0.025095	0.265048	-0.377956	0.026403	1.000000	-0.0307
population_density_per_square_mile	0.023786	0.311260	0.007280	0.103499	0.333226	-0.030771	1.0000
minority_percentage	-0.057613	0.241787	-0.437147	-0.143856	0.226865	0.111257	0.1345
limited_english	0.020930	0.276481	-0.248990	-0.151381	0.271044	0.050584	0.1481
multi_unit_housing	0.004688	0.363160	0.211813	-0.001236	0.341998	0.004216	0.1918
mobile_homes	0.000314	-0.271149	-0.410686	0.040638	-0.275804	-0.021542	-0.1839
overcrowding_rank	-0.054611	0.134660	-0.237876	-0.277427	0.142246	0.141417	0.0877
no_vehicle_household	-0.065233	0.155547	-0.103838	0.236776	0.117206	0.026210	0.1248
institutionalized_ranker	-0.015489	-0.017983	0.040895	0.022841	-0.025154	0.052320	0.0062
housing_and_transportation	-0.054778	0.162899	-0.204223	0.001801	0.135399	0.084906	0.0975
social_vulnerability	-0.092763	0.072261	-0.486962	0.027885	0.033129	0.080175	0.0215
Less than a high school diploma,	-0.056385	0.906951	-0.081702	-0.020504	0.950822	0.034522	0.3095

```
In [31]: data df.corr()['number of deaths']
Out[31]: number_of_deaths
                                                         1.0000000
         total population
                                                        0.973784
         area per square mile
                                                        0.025095
         population density per square mile
                                                       0.311260
         minority percentage
                                                        0.241787
         limited english
                                                        0.276481
         multi unit housing
                                                        0.363160
         mobile homes
                                                        -0.271149
         overcrowding rank
                                                        0.134660
         no_vehicle_household
                                                        0.155547
         institutionalized ranker
                                                        -0.017983
         housing and transportation
                                                        0.162899
         social vulnerability
                                                        0.072261
         Less than a high school diploma, 2015-19
                                                     0.906951
         High school diploma only, 2015-19
                                                       0.986901
         Some college or associate's degree, 2015-19 0.977690
         Bachelor's degree or higher, 2015-19
                                                        0.922002
         Name: number_of_deaths, dtype: float64
```

Unsupervised Learning

Unsupervised Learning

```
In [57]: from sklearn.preprocessing import StandardScaler
         data scaler=StandardScaler()
In [58]: covid data scaled=data scaler.fit transform(covid complete update df)
In [59]: covid data scaled[:5]
Out[59]: array([[-0.13052159, -0.1425129 , -0.09752616, 0.46369547, 0.12595086,
                 0.62016999, -0.56785283, -0.73379171, -0.11289334, -0.12503346,
                 -0.15894355, -0.153966631,
                [ 0.54685283,  0.30177745, -0.07923043,  0.08761386,  0.10083111,
                 1.63729524, -1.40505023, -0.58038006, 0.14930449, 0.44836329,
                 0.44231868, 0.31147732],
                [-0.22982419, -0.22996485, -0.13231164, 1.39974389, 0.68477931,
                 -0.75478144, 1.33637438, 1.49327456, -0.09866661, -0.24570832,
                -0.25599008, -0.249554411,
                [-0.23013548, -0.24239603, -0.12887426, 0.50213475, -0.49412849,
                -0.31985841, 0.24208215, 0.57592134, -0.1376058 , -0.22884717,
                -0.26956348, -0.25445011],
                [-0.03900134, -0.13434743, -0.09925913, -0.26388047, 0.85786473,
                 -1.26299834, -1.04787821, -1.09879371, -0.01808488, -0.11036818,
                 -0.11102683, -0.2114362111)
```

```
In [62]: # Initialize PCA model
          pca = PCA(n_components=2)
In [63]: # Get two principal components for the covid data.
          covid_pca = pca.fit_transform(covid_data_scaled)
In [64]: #Transform PCA data to a Dataframe
          covid_pca_df=pd.DataFrame(data=covid_pca, columns=["principal component 1", "principal component 2"])
          covid pca df.head()
Out[64]:
             principal component 1 principal component 2
                       -0.267109
                                           0.246536
                        0.967681
                                           0.882183
                       -0.094863
                                           -2.392524
                       -0.528244
                                           -0.617686
```

```
In [66]: # Get the explained variance
    pca.explained_variance_ratio_
```

1.151701

-0.581242

Out[66]: array([0.52307586, 0.17062066])

```
In [67]: # Find the best value for K
   inertia = []
   k = list(range(1, 11))

# Calculate the inertia for the range of K values
   for i in k:
        km = KMeans(n_clusters=i, random_state=0)
        km.fit(covid_pca_df)
        inertia.append(km.inertia_)

# Create the elbow curve
   elbow_data = {"k": k, "inertia": inertia}
   df_elbow = pd.DataFrame(elbow_data)
   df_elbow.hvplot.line(x="k", y="inertia", xticks=k, title="Elbow Curve")
```

Out[67]:


```
In [68]: # Initialize the K-means model
    model = KMeans(n_clusters=4, random_state=0)

# Fit the model
    model.fit(covid_pca_df)

# Predict clusters
    predictions = model.predict(covid_pca_df)

# Add the predicted class columns
    covid_pca_df["class"] = model.labels_
    covid_pca_df.head()
```

Out[68]:

	principal component 1	principal component 2	class
0	-0.267109	0.246536	2
1	0.967681	0.882183	2
2	-0.094863	-2.392524	0
3	-0.526244	-0.617686	0
4	-0.581242	1.151701	2

Out[70]:

Supervised Learning

```
In [37]: # Create our features
        X = data_df.drop(columns=['number_of_deaths'], axis=1)
        # Create our target
        y = data df["number of deaths"]
In [38]: # Scale the data
        Scaler = StandardScaler().fit(X)
        X = Scaler.transform(X)
In [40]:
         from sklearn.model selection import train test split
         X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.2, random_state = 0)
In [41]: from sklearn.linear model import LinearRegression
         from sklearn.metrics import r2 score
        regressor = LinearRegression()
         regressor.fit(X_train,y_train)
Out[41]: LinearRegression()
In [43]: y_pred = regressor.predict(X_test)
        print(r2_score(y_test,y_pred))
         0.9731904050032136
                              In [45]: print('Train Score: ', regressor.score(X_train, y_train))
                                          print('Test Score: ', regressor.score(X_test, y_test))
                                          Train Score: 0.9823416444527159
                                          Test Score: 0.9731904050032136
```

Out[47]: <AxesSubplot:>

Results

- This model confirmed a lot of what is already known about COVID 19 and it's ultimate fatality
 - Areas with larger populations are prone to have higher death rates
 - Areas with larger populations of minorities are more likely to have higher death rates
 - Populations that have limited english have higher death rates
 - Multi-unit housing also is more inclined to have higher death rates
 - Alternatively the level of education (higher education) leads to lower death rates