Wave Generation and Propagation in an Underwater Energy Release

Rahul Joshi

Under the Guidance of Prof. Shivasubramanian Gopalakrishnan

Department of Mechanical Engineering Indian Institute of Technology, Bombay

April 15, 2014

Overview

- 1 Introduction to Underwater Energy Release
- Q Gas Bubble Dynamics
- Governing Equations
- 4 Volume of Fluid (VoF)
- OpenFOAM
- 6 Conclusion
- Future Work Proposed
- 8 Refrences

Introduction to Underwater Energy Release

- Underwater Energy Release is an phenomena which occurs due to detonation under water surface
- The energy release is classified into two type, depending on $\frac{d}{W_3^{\frac{1}{3}}}$:
 - → Amount of TNT or explosive 'W' (lbs)
 - ightarrow Depth 'd' (ft) at which the energy release has taken place
- Deep water energy release : $\frac{d}{W^{\frac{1}{3}}} > 16$
- Shallow water energy release : $\frac{d}{W^{\frac{1}{3}}} < 3$
- Now depending on the depth at which the energy release takes place the nature of the water waves varies

Initial Condition

Figure: Schematic representation of initial condition of underwater energy release

Shock Wave generation

Figure: Shock wave and center gas bubble after detonation

- In majority of underwater energy release the shock wave is the main cause of damage
- Initial shock wave is propagated in milliseconds and the corresponding bubble contraction and expansion is occurs in seconds
- Due to the reflection of the shock waves from the free surface, a change in the pressure field is also observed.

Cavitation

Figure: Cavitation after energy release

- As the shock wave is generated it travels to surface and reflects back as a tensile wave
- Since water cannot sustain this large amount of tensile force it leads to cavitation
- Due to the effects of gravity and atmospheric pressure this region of cavitation and bubble from the bottom surface collide and give rise to
 Water Hammer Effect

Gas Bubble Dynamics

Figure: Different phases of Explosion bubble with pressure-time graph

Governing Equations

- Pressure on bubble surface \rightarrow $P_R = 7.8 \frac{W}{V}^{\gamma} + \sigma$
- Initial radius of the bubble $\rightarrow R_m = 3.38(\frac{W}{H+10})^{\frac{1}{3}}$
- We neglect viscosity and surface tension effects

•

Governing Equations

Volume of Fluid

- Volume of Fluid (VoF), is one of the numerical technique for tracking and locating free surfaces or a two fluid interface
- Type of advection scheme which is used to track the motion and shape of the interface

Figure: Volume fraction α for a Fluid-gas interface

•
$$\alpha = \frac{V_k}{V_\tau}$$

Volume of Fluid- Interface reconstruction

Figure: VoF interface reconstruction

OpenFOAM

Figure: Overview of OpenFOAM

OpenFOAM- File structure

Figure: File structure of OpenFOAM

Conclusion

- Physics behind underwater energy release is both fascinating and challenging
- From literature it was found that there is scope for implementation of non-conservative form of the equations
- Quantify the resulting errors for energy release in free/ compact surfaces as well as in deep and shallow water depths

Future Work

 Using OpenFOAM solve the test case given below and validate the results with the paper published by S.T.Miller et.al

Figure: Test case for validation, S.T. Miller et.al

Refrences