CU Boulder: Algebra Prelim August 2017

Juan Moreno April 2019

These are my solutions to the questions on the CU Boulder *Algebra* preliminary exam from *August* 2017 found here. I worked on these solutions over the summer of 2019 in preparation for the preliminary exam in the Fall 2019. Please send any questions, comments, or corrections to juan.moreno-1@boulder.edu.

Problem 1. Assume that G is an infinite nonabelian group whose proper subgroups are finite. Show that every proper normal subgroup of G is contained in the center of G. Explain why G/Z(G) is an infinite simple group whose proper subgroups are finite.

Proof. Let $N \subseteq G$ be a proper normal subgroup of G. Then G acts on N by conjugation, giving rise to a homomorphism $\varphi: G \to S_n$, where n = |N|. The kernel of this map must then also be a normal subgroup. This leaves us two options, either $\ker \varphi$ is finite or $\ker \varphi = G$. In the first case, however, we would have the infinite quotient $G/\ker \varphi$ being isomorphic to a subgroup of the finite group S_n , a contradiction. Hence $\ker \varphi = G$ so that action of G on G by conjugation is trivial, implying G lies in the center of G. The last statement follows mostly from the lattice isomorphism theorem since any normal subgroup of G/Z(G) corresponds to a normal subgroup containing G/Z(G), but as we have shown, all proper normal subgroups are contained in G/Z(G). Thus the only normal subgroups of G/Z(G) are the trivial subgroup and the entire group, hence G/Z(G) is simple. Similarly, any proper subgroup of G/Z(G) is isomorphic to the quotient of a proper subgroup of G containing G/Z(G) by G/Z(G), which must be finite by assumption. It is infinite since G/Z(G) is normal in G/Z(G) and since G/Z(G) is infinite.

Problem 2. Suppose the alternating group A_4 acts transitively on a set X. What are the possible sizes of X.

Solution. For a group G, define a transitive G-set to be a set X with a transitive action by G. Define an isomorphism of G-sets X and Y to be a bijective map of sets $f: X \to Y$ which preserves the G-action, i.e. $f(g \cdot x) = g \cdot f(x)$ for all $g \in G$. For $x \in X$, let G_x be the stabilizer of x under the G-action. We prove that any transitive G-set X is isomorphic to the set of cosets G/G_x for any $x \in X$. Simply pick any $x \in X$, and define the map $\varphi: G \to X$ by $\varphi(g) = g \cdot x$. Evidently, this map factors through the map $\pi: G \to G/G_x$ since $G_x \cdot x = x$. So we have the following commutative diagram

$$G \downarrow \varphi \downarrow G/G_{x} \xrightarrow{-\frac{1}{\varphi}} X$$

We claim that the induced map $\overline{\varphi}$ is a G-set isomorphism. To see this, simply note that $|G/G_x| = |X|$ and compute for any $g \in G$, $\overline{\varphi}(g \cdot hG_x) = \overline{\varphi}((gh)G_x) = (gh)G_x \cdot x = (gh) \cdot x = g \cdot (h \cdot x) = g \cdot (hG_x \cdot x) = g\overline{\varphi}(hG_x)$. This proves the result.

Now consider the case $G = A_4$. By the above, any set X on which A_4 acts transitively, is isomorphic as an A_4 -set to some set of cosets of A_4 . Since A_4 has subgroups of order 1, 2, 3, 4, and 12, the possible sizes of sets of cosets and hence sets on which G acts transitively are 12, 6, 4, 3, and 1.

Problem 3. Let A be an integral domain containing the field \mathbb{F} as a subring. This makes A a vector space over \mathbb{F} . Show that if A is finite dimensional over \mathbb{F} then A is a field. Show that A need not be a field if it is not finite dimensional over \mathbb{F} .

Proof. Assume A is finite dimensional over \mathbb{F} . Take any nonzero $r \in A$. Consider the set of powers of r, $\{r^k\}_{k=0}^{\infty}$. If this set is finite, then we must have $r^k = r^{k'}$ for some k, k'. Using the cancellation property of multiplication in integral domains we have that $r^l = 1$ for some l so that r is a unit in A with inverse r^{l-1} . If, on the other hand the set is infinite, by finite dimensionality of A over \mathbb{F} , we have that there exists some $n \in \mathbb{N}$ and $c_0, c_1, ..., c_n \in \mathbb{F}$ not all zero such that $\sum_{i=0}^n c_i r^i = 0$. Notice that if k is the minimal number such that $c_k \neq 0$ then we may write $\sum_{i=k}^n c_i r^i = r^k \sum_{i=0}^n c_i r^{i-k} = 0$, and since A is an integral domain and $r \neq 0$, we have $\sum_{i=k}^n c_i r^{i-k}$. Therefore, we may assume $c_0 \neq 0$. Let $b_i = \frac{c_i}{c_0}$ so that, in particular, $b_0 = 1$. Then

$$\sum_{i=0}^{n} c_{i} r^{i} = 0 \implies \sum_{i=0}^{n} b_{i} r^{i} = 0 \implies 1 = \sum_{i=1}^{n} (-b_{i}) r^{i}.$$

Since the left side of the final expression above must be nonzero (1 \neq 0 in a nontrivial ring) and the indexing begins at i = 1, we may factor out at least one factor of r and write

$$r\sum_{i=0}^{n}(-b_i)r^i=1,$$

implying *r* has an inverse in *A*.

Problem 4. You are given that G is a group for which there exists a surjective homomorphism $\alpha : \mathbb{Z}^n \to G$ and an injective homomorphism $\beta : \mathbb{Z}^n \to G$. What are the possible isomorphism classes of G?

Solution. Since we have a surjective homomorphism from the abelian group \mathbb{Z}^n onto G, we must have that G is abelian. Further, since \mathbb{Z}^n has n generators, and α is determined by the images of these generators, the fact that α is surjective implies that G has at most n generators. By the classification of finitely generated abelian groups, we have that

$$G \cong \mathbb{Z}^k \times \mathbb{Z}/(a_1) \times \cdots \times \mathbb{Z}/(a_l)$$
,

for some $k, l \in \mathbb{N}$ such that $k + l \le n$, and $a_i \in \mathbb{Z}$. Here k is the free rank of G. Now the existence of the injective map β from \mathbb{Z}^n into G, implies that G has a subgroup isomorphic to \mathbb{Z}^n , implying that the free rank of G is at least n. It follows that k = n and l = 0 so that $G \cong \mathbb{Z}^n$.

Problem 5. Consider the following three rings

$$\mathbb{F}_3[x]/(x^2+1)$$
, $\mathbb{F}_3[x](x^2+2)$, and $\mathbb{F}_3[x]/(x^2+2x+2)$,

where \mathbb{F}_3 is the field with 3 elements.

(a) Show that each of these rings is a product of fields and say which fields are involved.

Solution. Let $p_1(x) = x^2 + 1$, $p_2(x) = x^2 + 2$, $p_3(x) = x^2 + 2x + 2$ and $K_i = \mathbb{F}_3[x]/(p_i(x))$. Since these polynomials are all of degree 2 it is trivial to check by finding roots that $p_1(x)$ and $p_3(x)$ are irreducible and $p_2(x) = (x+1)(x+2)$. Since \mathbb{F}_3 is a field, $\mathbb{F}_3[x]$ is a PID so that both $p_1(x)$ and $p_3(x)$ must be prime hence generate maximal ideals. It follows that K_1 and K_3 are fields. Further, as sets each of these are of the form $\{a+b\bar{x}|a,b\in\mathbb{F}_3\}$, where \bar{x} denotes the image of x in K_i . These are both finite fields of the same order, namely 9. Thus, $K_1 \cong K_3 \cong \mathbb{F}_9$. As for $p_2(x)$, since 2(x+1)+(x+2)=1, as ideals we have (x+1)+(x+2)=1 since this intersection would be generated by a greatest common divisor of x+1 and x+2. This can only be the case if x+1 and x+2 differ by a unit in $\mathbb{F}_3[x]$, which is not the case since they are not multiples of one another as can easily be checked. Thus, by the Chinese Remainder Theorem

$$K_2[x] = \mathbb{F}_3[x]/(x^2 + 2) \cong \mathbb{F}_3[x]/(x + 1) \times \mathbb{F}_3[x]/(x + 2) \cong \mathbb{F}_3 \times \mathbb{F}_3.$$

(b) For each pair of isomorphic rings in the list, provide an explicit isomorphism.

To exhibit an explicit isomorphism between the fields K_1 and K_3 , let α denote the image of x under the projection $\mathbb{F}_3[x] \to K_1$ and β the image of x under the projection $\mathbb{F}_3[x] \to K_2$. Then $\alpha^2 = 2$ and $\beta^2 = \beta + 1 \implies (\beta + 1)^2 = \beta^2 + 2\beta + 1 = 2$. We can then define a map $\varphi : K_1 \to K_3$ by requiring it restrict to the identity on \mathbb{F}_3 and map $\alpha \mapsto \beta + 1$. To see that this is a field homomorphism, take any $a + b\alpha$, $c + d\alpha \in K_1$ and compute

$$\varphi((a+b\alpha)(c+d\alpha)) = \varphi((ac+2bd) + (ad+bc)\alpha) = (ac+2bd) + (ad+bc)(\beta+1),$$

and

$$\varphi(a+b\alpha)\varphi(c+d\alpha) = (a+b(\beta+1))(c+d(\beta+1)) = (ac+bd(\beta+1)^2) + (ad+bc)(\beta+1) = (ac+2bd) + (ad+bc)(\beta+1).$$

The additive property of φ follows simply from its definition, so φ is indeed a field homomorphism. It is also evidently nontrivial and so it must be an isomorphism onto its image. Since these fields have the same cardinality, we have that φ is an explicit isomorphism between the two fields K_1 and K_3 .

Problem 6. Let $p \ge 5$ be a prime number and let L be the splitting field of $x^p - 1$ over \mathbb{Q} . (a) Find explicit generators for the Galois group $Gal(L/\mathbb{Q})$ and explain why your answer is correct. What is the structure of this group?

Solution. We view $\mathbb Q$ as a subfield of $\mathbb C$ as usual. Then $\alpha_k = e^{2\pi ki/p}$, k = 0, 1, ..., p-1 are the roots of $p(x) = x^2 - 1$ in $\mathbb C$. Notice that if $\alpha_k \in \mathbb Q$ then $2\pi k/p = \pi l$ for some $l \in \mathbb Z$, implying $2k/p \in \mathbb Z$, however, this cannot be unless k = 0 since k < p and p is an odd prime. Thus, the only root of p(x) in $\mathbb Q$ is $\alpha_0 = 1$. Moreover, note that $\alpha_k = \alpha_1^k$ for all k = 0, 1, ..., p-1. Hence $L = \mathbb Q(\alpha_1) \cong \mathbb Q[x]/(q(x))$ where $q(x) = \frac{x^p-1}{x-1}$. We now have that $[L:\mathbb Q] = |\mathrm{Gal}(L/\mathbb Q)| = p-1$ and that this Galois group must act transitively on the roots of q(x) since it is irreducible and L is its splitting field. Let $\sigma_k : L \to L$ be the automorphism which fixes $\mathbb Q$ and maps $\alpha_1 \mapsto \alpha_k$, for k = 1, 2, ..., p-1. We can quickly investigate how these automorphisms relate

$$\sigma_l \circ \sigma_k(\alpha_1) = \sigma_l(\alpha_k) = \sigma_l(\alpha_1^k) = \sigma_l(\alpha_1)^k = \alpha_l^k = \alpha_l^{lk} = \alpha_{lk} = \sigma_{lk}(\alpha_1).$$

It follows that $\operatorname{Gal}(L/\mathbb{Q}) \cong Z_{p-1}$ and is generated by any σ_k such that k is a generator of \mathbb{Z}_p^{\times} .

(b) Use (a) to find explicit generators for a subfield K of L such that [L:K]=2 and explain why your answer is correct.

Solution. In part (a) we found that the Galois group of K over $\mathbb Q$ is cyclic of order p-1. By the fundamental theorem of Galois Theory, to find a subfield of L of index 2 is equivalent to finding a subgroup of the Galois group of order 2. Such a subgroup can be found simply by noting that the automorphism of complex conjugation on $\mathbb C$ restricts to the identity on $\mathbb Q$ and the nontrivial automorphism $\sigma_{p-1}:\alpha_1\mapsto\alpha_{p-1}$ of L. Since complex conjugation is a transformation of order 2, σ_{p-1} has order 2 in $Gal(L/\mathbb Q)$ and so we have found a subgroup of order 2, $\langle \sigma_{p-1} \rangle$. To find its corresponding fixed field, note that the elements

$$\begin{aligned} \theta_1 &= \alpha_1 + \sigma_{p-1}\alpha_1 = 2\mathrm{Re}(\alpha_1), \\ \theta_2 &= \alpha_2 + \sigma_{p-1}\alpha_2 = 2\mathrm{Re}(\alpha_2), \\ &\vdots \\ \theta_{\frac{p-1}{2}} &= \alpha_{\frac{p-1}{2}} + \sigma_{p-1}\alpha_{\frac{p-1}{2}} = 2\mathrm{Re}(\alpha_{\frac{p-1}{2}}), \end{aligned}$$

are each distinct and fixed by σ_{p-1} . Moreover, since $\text{Re}(\alpha_k) = \cos(2\pi k/p)$