ARCHITETTURA DEGLI ELABORATORI

A.A. 2020-2021

Università di Napoli Federico II Corso di Laurea in Informatica

Docenti

Proff. Luigi Sauro gruppo 1 (A-G)

Silvia Rossi gruppo 2 (H-Z)

Logiche sequenziali sincrone

- I circuiti asincroni presentano delle criticità a volte difficilmente analizzabili
 - Dipendono dalla struttura fisica dei componenti
- Per questo si cerca di evitare di retroazionare l'output in maniera diretta e si interpone un registro nel ciclo di retroazione
- Nell'ipotesi che il clock sia più lento del ritardo accumulato sul cammino, il registro consente al sistema di essere sincronizzato col clock: circuito sincrono

Logiche sequenziali sincrone

- In generale un circuito sequenziale sincrono ha un insieme finito di stati $\{S_0,...,S_{k-1}\}$
- Logica combinatoria:

Logica sequenziale sincrona:

```
out=f(in,s<sub>c</sub>)
s<sub>n</sub> =g(in,s<sub>c</sub>)
```

Design di logiche sequenziali sincrone

- Inserire registri nei cammini ciclici
- I registri determinano lo **stato** S₀,..., S_{k-1} del sistema
- I cambiamenti di stato sono determinati dalle transizioni del clock: il sistema è sincronizzato con il clock
- Regole di composizione:
 - Ogni componente è un registro o un circuito combinatorio
 - Almeno un componente è un registro
 - Tutti i registri sono sincronizzati con un unico clock
 - Ogni ciclo contiene almeno un registro
- Due tipici circuiti sequenziali sincroni
 - Finite State Machines (FSMs)
 - Pipelines

Current state / Next state

- Un flip-flop D è il più semplice circuito sequenziale sincrono
 - \blacksquare Q= S_c
 - \blacksquare D= s_n

Finite State Machines

- State register
 - Memorizzano lo stato corrente
 - Caricano il prossimo stato (clock edge)
- Logica combinatoria
 - "Computa" il prossimo stato (g)
 - "Computa" gli output (f)

Finite State Machines

s_n dipende sia dall'input che da s_c

$$s_n = g(in, s_c)$$

- 2 tipi di FSM a seconda della logica di output:
 - Moore FSM: out=f(s_c)
 - Mealy FSM: out=f(in,s_c)

Moore FSM

Mealy FSM

Esempio: semaforo

- Sensori: T_A , T_B (TRUE quando c'è traffico)
- Luci: L_A , L_B

Semaforo: black box

Inputs: CLK, Reset, T_A, T_B

• Outputs: L_A , L_B

Diagramma di transizione: Moore FSM

- Stati: labellati con gli outputs
- Transizioni: labellate con gli inputs

Esempio Moore FSM

• Quale è il comportamento della FSM seguente?

Esempio Mealey FSM

• Quale è il comportamento della FSM seguente?

Diagramma di transizione: Moore FSM

- Stati: labellati con gli outputs
- Transizioni: labellate con gli inputs

FSM State Transition Table

Current State	Inp	Next State	
\boldsymbol{S}	T_{A}	T_A T_B	
S0	0	X	S 1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

FSM State Transition Table

Current State	Inp	Next State	
\boldsymbol{S}	$T_{\!A}$	T_A T_B	
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

FSM Encoded State Transition Table

Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X		
1	0	X	0		
1	0	X	1		
1	1	X	X		

State	Encoding
S0	00
S 1	01
S2	10
S3	11

FSM Encoded State Transition Table

Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S 1	01
S2	10
S3	11

$$S'_1 = S_1 \oplus S_0$$

$$S'_0 = \overline{S_1} \overline{S_0} \overline{T_A} + S_1 \overline{S_0} \overline{T_B}$$

$$S'_1 = \underline{S_1}S_0 + S_1 * \underline{S_0} * \underline{T_B} + S_1 * \underline{S_0} * TB$$

 $S'_1 = \underline{S_1}S_0 + S_1 \underline{S_0}$

FSM Output Table

Current	State		Outp	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0				
1	1				

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Current	State		Outp	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$L_{B0} = S_1 S_0$$

FSM Schematic: State Register

state register

Schema della logica di transizione

Schema della logica di output

inputs next state logic

state register

Moore FSM

output logic outputs

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$\boldsymbol{L}_{B0} = \boldsymbol{S}_1 \boldsymbol{S}_0$$

FSM Timing Diagram

