SÉRIES ENTIÈRES - SÉRIES DE FOURIER

- 1. On considère les séries entières $\sum \ln n x^n$ et $\sum (1 + \frac{1}{2} + ... + \frac{1}{n}) x^n$.
 - a. Déterminer leurs rayons de convergence, et exprimer la somme de la seconde grâce aux fonctions usuelles.
 - **b.** En majorant leur différence, donner un équivalent de la première série entière au voisinage de 1.
- 2. Pour $n \in \mathbb{N}$, on note u_n le nombre de parenthésages envisageables pour calculer un produit de n+1 termes avec une loi non associative. On posera conventionnellement $u_0 = 1$.
 - **a.** Calculer u_1 , u_2 et u_3 .
 - **b.** Établir la formule de récurrence $u_{n+1} = \sum_{k=0}^{n} u_k u_{n-k}$.
- c. On fait momentanément l'hypothèse que la série entière $\sum u_n x^n$ a un rayon de convergence non nul. Prouver que sa somme est solution d'une certaine équation du second degré.
 - **d.** On envisage (pourquoi?) la fonction g définie sur $]-\frac{1}{4},\frac{1}{4}[$ par $g(x)=\frac{1-\sqrt{1-4x}}{2x}$ si $x \ne 0$ et g(0)=???

Prouver que g est développable en série entière sur $]-\frac{1}{4},\frac{1}{4}[$, et expliciter ce développement (que l'on notera formellement $\sum a_n x^n$).

- e. Prouver que la suite (a_n) vérifie la même relation de récurrence que la suite (u_n) , puis en déduire que l'on a : $u_n = a_n \quad \forall n \in \mathbb{N}$.
- 3. a. Développer en série entière $\sqrt{1+x}$ pour x réel élément de]-1,1[. On note $\sum a_n x^n$ ce développement.
 - **b.** Calculer, pour z complexe de module strictement plus petit que 1, $\left(\sum_{n=0}^{\infty} a_n z^n\right)^2$.
- c. Prouver que la partie réelle de la somme $\sum_{n=0}^{\infty} a_n z^n$ n'est jamais nulle. À laquelle des deux racines carrées de 1+z cette somme de série est-elle égale ?
- **4.** Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0 et de somme f(x) pour $x \in]-R, R[$. Soit $a \in]-R, R[$. Prouver que l'application définie par g(h) = f(a+h) est développable en série entière sur un intervalle que l'on précisera.
- 5. On pose, pour tout réel x, $f(x) = \sum_{n=0}^{+\infty} e^{-n} \sin(n^2 x)$.
 - **a.** Prouver que f est de classe \mathcal{C}^{∞} sur \mathbb{R} , et déterminer ses dérivées successives.
 - **b.** Prouver que la série de Taylor de f en 0 a un rayon de convergence nul (on pourra utiliser une série double).

6. Théorème d'Abel

Soit $\sum a_n z^n$ une série entière de rayon de convergence 1, telle que la série $\sum a_n$ converge. Prouver que la série de fonctions $\sum a_n z^n$ converge uniformément sur [0,1] (on écrira $a_n = R_{n-1} - R_n$ avec $R_n = \sum_{k=n+1}^{+\infty} a_k$). Qu'en déduire ?

- 7. On établit dans cet exercice une condition nécessaire et suffisante (portant sur l'ordre de grandeur de ses dérivées successives) pour qu'une fonction de classe \mathcal{C}^{∞} soit développable en série entière.
- **a.** Soit f une fonction de classe \mathcal{C}^{∞} sur un intervalle $]-\alpha,\alpha[$ de \mathbb{R} , à valeurs dans \mathbb{C} . On suppose l'existence de deux constantes A et k telles que :

$$\forall x \in]-\alpha, \alpha[, \forall n \in \mathbb{N}, \left|f^{(n)}(x)\right| \leq Ak^n n!.$$

Prouver, grâce à une formule de Taylor, que f est développable en série entière autour de 0, et expliciter un intervalle sur lequel f est somme de sa série de Taylor.

- **b.** Réciproquement, on se donne une série entière $\sum a_n x^n$ de rayon de convergence R non nul, et on désigne par f(x) sa somme pour x élément de]-R, R[. Soit r un élément de [0,R[, et α un réel vérifiant $0 \le \alpha < r$.
 - i. Prouver que la suite $(a_n r^n)$ est bornée ; on notera $M = \sup_n |a_n r^n|$.
 - ii. Quelle formule obtient-on en dérivant à un ordre p quelconque le développement en série entière de $\frac{1}{1-x}$?
 - *iii.* Prouver que pour tout x de $[-\alpha, \alpha]$ et pour tout entier positif p, on a :

$$\left| f^{(p)}(x) \right| \leq Mr \frac{1}{(r-\alpha)^{p+1}} p!.$$

- 8. Soit $\sum c_n z^n$ une série entière de rayon de convergence R > 0, f sa fonction somme définie sur le disque D(0,R) du plan complexe. Soit a un élément de D(0,R), et r un réel tel que |a| < r < R.
 - **a.** Pour θ dans $[0, 2\pi]$, représenter $f(re^{i\theta})$ et $\frac{1}{1-\frac{a}{r}e^{-i\theta}}$ sous forme de séries et en déduire un développement en série

de
$$g(\theta) = \frac{f(re^{i\theta})}{1 - \frac{a}{r}e^{-i\theta}}$$
.

b. Prouver que la convergence de la série obtenue est normale sur $[0,2\pi]$, et en déduire la formule intégrale de Cauchy

$$f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{f(re^{i\theta})}{1 - \frac{a}{r}e^{-i\theta}} d\theta.$$

c. Soit réciproquement une fonction continue f sur D(0,R), qui pour tous a et r vérifiant |a| < r < R, satisfait à la formule intégrale précédente.

Grâce au développement en série de $\frac{1}{1-\frac{a}{r}e^{-\mathrm{i}\theta}}$, puis à une intégration terme à terme bien justifiée, prouver que f est déve-

loppable en série entière sur D(0, R).

- **d.** Soit (f_n) une suite de fonctions définies sur D(0,R), développables en série entière sur ce disque, et convergeant uniformément sur tout disque D(0,r) avec r < R, vers une fonction f. Prouver que f est définie et continue sur D(0,R), et qu'elle vérifie, pour tous g et g vérifiant g et g
- e. Le résultat obtenu à la question d. subsiste-t-il si les fonctions f_n sont développables en série entière sur l'intervalle]-R,R[de \mathbb{R} et convergent uniformément vers une fonction f sur tout segment [-r,r] inclus dans]-R,R[?

9. Soit la fonction f, 2π -périodique, définie par $f(x) = \sqrt{|x|}$ pour tout x de $[-\pi, \pi]$.

a. Exprimer les coefficients de Fourier $a_n(f)$ en fonction de l'intégrale $u_n = \int_0^\pi \frac{1 - \cos(nt)}{t^{3/2}} dt$.

b. Prouver que pour tout n, on a $0 \le u_n \le 5\sqrt{n}$.

 \mathbf{c} . En déduire que f est somme de sa série de Fourier. Intérêt ?

10. Plus classique, tu meurs...

On fixe un réel λ non entier.

a. Déterminer la série de Fourier de la fonction 2π -périodique dont la restriction à $[-\pi, \pi]$ est $x \mapsto \cos \lambda x$.

b. En déduire les deux jolies (et utiles) formules suivantes :

$$\pi \cot g \lambda \pi = \frac{1}{\lambda} + \sum_{n=1}^{\infty} \frac{2\lambda}{\lambda^2 - n^2}$$
 et $\frac{\pi}{\sin \lambda \pi} = \frac{1}{\lambda} + \sum_{n=1}^{\infty} \frac{(-1)^n 2\lambda}{\lambda^2 - n^2}$.

c. Calculer la somme de la série $\sum \frac{1}{n^2 + 1}$.

11. On se propose ici de prouver une forme affaiblie du théorème de Dirichlet, connue sous le nom de "Théorème de Féjer", selon laquelle, si f est une fonction continue et 2π -périodique de $\mathbb R$ dans $\mathbb C$, alors la série de Fourier de f converge uniformément vers f au sens de Cesàro.

On fixe donc une fonction f continue et 2π -périodique de $\mathbb R$ dans $\mathbb C$. On rappelle les quelques résultats suivants : si $S_n(f)$ désigne la somme partielle d'ordre n de la série de Fourier de f, alors pour tout réel x, on a :

$$S_n(f)(x) = \sum_{k=-n}^n c_k(f) e^{ikx} = \frac{a_0(f)}{2} + \sum_{k=1}^n \left[a_k(f) \cos kx + b_k(f) \sin kx \right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u+x) \frac{\sin(n+\frac{1}{2})u}{\sin\frac{u}{2}} du.$$

Pour tout entier non nul n, on posera $\sigma_n(f) = \frac{S_0(f) + S_1(f) + \ldots + S_{n-1}(f)}{n}$.

a. Prouver que f est uniformément continue et bornée sur $\mathbb R$.

b. Calculer, pour u non nul dans $[-\pi, \pi]$, la somme $\sum_{k=0}^{n-1} \sin(k+\frac{1}{2})u$.

c. Prouver que pour tout réel x, on a :

$$\sigma_n(f)(x) - f(x) = \frac{1}{2n\pi} \int_{-\pi}^{\pi} \left(f(u+x) - f(x) \right) \frac{\sin^2 \frac{nu}{2}}{\sin^2 \frac{u}{2}} du.$$

On fixe un réel ϵ strictement positif.

d. Prouver l'existence d'un réel δ élément de $]0,\pi[$ tel que, pour tous réels x et u, on ait :

$$|u| \le \delta \Longrightarrow |f(u+x) - f(x)| \le \varepsilon$$
.

e. Prouver l'inégalité:

$$\left| \frac{1}{2n\pi} \int_{-\delta}^{\delta} \left(f(u+x) - f(x) \right) \frac{\sin^2 \frac{nu}{2}}{\sin^2 \frac{u}{2}} du \right| \le \varepsilon.$$

f. Prouver que si M désigne la norme infinie de f, on a :

$$\left| \frac{1}{2n\pi} \left(\int_{-\pi}^{\delta} \left(f(u+x) - f(x) \right) \frac{\sin^2 \frac{nu}{2}}{\sin^2 \frac{u}{2}} du + \int_{\delta}^{\pi} \left(f(u+x) - f(x) \right) \frac{\sin^2 \frac{nu}{2}}{\sin^2 \frac{u}{2}} du \right) \right| \le \frac{2M}{n \sin^2 \frac{\delta}{2}}.$$

- **g.** En déduire que la suite $(\sigma_n(f))$ converge uniformément vers f sur \mathbb{R} .
- **h.** Prouver que l'on peut écrire, pour tout entier n non nul et tout réel x:

$$\sigma_n(f)(x) = \frac{a_0(f)}{2} + \sum_{k=1}^n (1 - \frac{k}{n}) \left[a_k(f) \cos kx + b_k(f) \sin kx \right].$$

i. Prouver le théorème de Stone-Weierstrass

12. Théorème de Liouville

Soit $\sum a_n z^n$ une série entière de rayon de convergence R non nul (éventuellement infini), et f sa fonction somme définie sur le disque ouvert de centre 0 et de rayon R du plan complexe.

Soit r un réel élément de [0,R[. On se propose (dans les questions \mathbf{b} . et \mathbf{c} .) de donner deux démonstrations de l'égalité :

$$\frac{1}{2\pi} \int\limits_0^{2\pi} \left| f(re^{i\theta}) \right|^2 \mathrm{d}\theta = \sum_{n=0}^{\infty} \left| a_n \right|^2 r^{2n} \ .$$

- a. Prouver que la série $\sum |a_n|^2 r^{2n}$ est convergente (ce n'est pas indispensable pour traiter les deux questions suivantes).
- **b.** Écrire, pour tout réel θ , $h(\theta) = f(re^{i\theta})$ sous forme d'une série. Calculer les coefficients de Fourier exponentiels de la fonction h (on vérifiera très soigneusement les hypothèses du théorème utilisé).
 - c. On veut donner ici une preuve directe de notre égalité :

Pour θ élément de $[0,2\pi]$, représenter, grâce à un produit de Cauchy, $\left|f(re^{i\theta})\right|^2$ comme somme d'une série.

Prouver que cette série peut être intégrée terme à terme par rapport à θ , et en déduire le résultat demandé.

d. On pose, toujours pour r élément de $[0, R[, M(r) = \sup_{|z|=r} |f(z)|]$.

Prouver, pour tout entier n, l'inégalité de Cauchy : $\left|a_n\right| \le \frac{M(r)}{r^n}$.

- **e.** On suppose dans cette question que R est égal à $+\infty$, et que f est une fonction bornée sur $\mathbb C$. Prouver que f est constante (c'est ce résultat qu'un historien des sciences, bourré ou incompétent, a nommé le théorème de Liouville, alors qu'il est dû à 100% à Cauchy...).
- 13. On pose, quand c'est possible, $f(x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n^2 \ln n}$ et $g(x) = \sum_{n=1}^{+\infty} \frac{\cos nx}{n \ln n}$.
 - a. Donner le domaine de définition de f, prouver que f est continue et déterminer sa série de Fourier.
 - **b.** Prouver que pour tout x de $\mathbb{R} 2\pi\mathbb{Z}$ et tous entiers p et q avec q > p, on a $\left| \sum_{k=p+1}^{q} \cos kx \right| \le \frac{1}{\sin x/2}$. En déduire que la

série définissant g(x) converge pour tout x de $\mathbb{R} - 2\pi\mathbb{Z}$, et que la convergence est uniforme sur tout intervalle de la forme $[\alpha, 2\pi - \alpha]$ avec $\alpha > 0$. Qu'en conclure concernant f?

c. En écrivant $g(x) = \sum_{n=1}^{\lfloor \frac{1}{x} \rfloor} \frac{\cos nx}{n \ln n} + \sum_{n=\lfloor \frac{1}{x} \rfloor}^{+\infty} \frac{\cos nx}{n \ln n}$, déterminer la limite de g en 0.