

Model evaluation and comparison

Jonathan Dushoff, McMaster University

DAIDD 2020

Goals

- Discuss model types and model goals
- Explain the value of simulation for validating models
- Discuss metrics for evaluating fit
 - Put the Goodness of fit test in its place
 - Take a long digression about statistical philosophy

Do I have a good model?

- What is my model trying to accomplish?
 - Generating hypotheses
 - Evaluating plausibility
 - Prediction
 - Mechanistic understanding
 - Evaluating scenarios

Statistical philosophy

or else...

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Digression
Going beyond

Conclusion

Disease thresholds

endemic equilibrium

Effects of clinical immunity

Bistability

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Digression
Going beyond

Conclusion

Ptolemy v. Copernicus

Ptolemy v. Copernicus (present)

Ptolemy v. Copernicus (present)

Where will we see cholera cases?

Where will we see cholera cases? (present)

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Digression
Going beyond

Conclusion

15/57

Model Validation

▶ Does your fitting algorithm match your *model world*?

▶ If you use your fitting algorithm on simulations from your model world, then you *know the right answer*!

Validation measures

- Coverage
- Precision
- ► Bias?
- ► Accuracy?

17/57

Coverage

- ► The right answer should be inside your 95% confidence interval 95% of the time
 - If more, your model is too conservative
 - If less, your model is invalid
- In many cases it's good to look at the two tails separately:
 - How often do you overestimate? Underestimate?

Precision

- A good model tries to provide a precise answer
 - Confidence intervals should be narrow, if possible
 - But not at the price of overconfidence (invalidity)
- As data increases, your precision should increase
 - Cls should approach zero width
 - ... as long as you have data about everything
- Conversely, CIs should reflect a variety of sources of uncertainty

Bias and accuracy

- Good coverage and high precision should ensure high accuracy and low bias
- Don't worry about "unbiased estimators"
 - Your estimator doesn't need to be absolutely unbiased
 - Your reasonable estimator will be asymptotically unbiased

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation

Goodness of fit Digression Going beyond

Conclusion

21/57

Model Evaluation

- Does your model match the real world?
 - ➤ * No!
- How well does your model match the real world?

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation Goodness of fit Digression Going beyond

Conclusion

23/57

Goodness of fit

- Goodness of fit statistics describe how well a model prediction matches observed data
- Goodness of fit tests attempt to determine whether the observed difference between model and data is statistically significant

Your model is false!

... or at least, incomplete

- A goodness of fit test won't make it true
- You can "pass" a goodness of fit test by:
 - having a good model
 - making very broad predictions
 - having bad data
 - choosing an inappropriate way to compare
- So why would we do this?
- For that matter, why do we use P values at all in biology?

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation

Goodness of fit

Digression

Going beyond

Conclusion

Passing goodness of fit tests

- I can make any model pass a goodness of fit test by broadening the uncertainty
- That doesn't make it a good model

Vitamin A example

- We want to know if vitamin A supplements improve the health of village children
 - Outcome: height growth in 6 months
- What does it mean if I find a "significant P value" for some effect in this experiment?
 - * The difference is unlikely to be due to chance
 - So what! I already know vitamin A has strong effects on metabolism
- If I'm certain that the true answer isn't exactly zero, why do I want the P value anyway?

Vitamin study

Vitamin study

Discussion

- Do you agree that in biology we should assume that the answer to our sensible question is not exactly zero?
 - Or at least have a philosophy consistent with that assumption?
 - Can we ever prove that an effect is zero?
- ▶ If we make that assumption (null hypothesis is false), why might we want a P value anyway?

Vitamin study (present)

Annualized flu deaths

Why is weather not causing deaths at this time scale?

... with confidence intervals (present)

- Never say: A is significant and B isn't, so A > B
- ► Instead: Construct a statistic for the hypothesis *A* > *B*
 - May be difficult

Low P values

High P values

Low P values

- If I have a low P value I can see something clearly
- But it's usually better to focus on what I see than the P value

High P values

- If I have a high P value, there is something I don't see clearly
- It may be because this effect is small
- High P values should not be used to advance your conclusion

Goodness of fit test

- Your model is not reality (null hypothesis is false)
- Can we see the difference clearly?
 - If no, model may be good or bad.
 - We probably can't add any more complexity based on current data
 - If yes, model may be good or bad.
 - We may be able to add more complexity based on current data
 - But we may not need to

Capturing patterns

- You can ask:
 - Does your model do a reasonable job of capturing the data?
 - You can use a goodness of fit statistic for this, and not worry about the P value
 - Does your model capture patterns and relationships that you (or other experts) think are important?

40/57

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation

Goodness of fit Digression

Going beyond

Conclusion

41/57

Out-of-sample validation

- Does your model make predictions outside the range on which you calibrated it?
 - Predicting gravitational shifts in star positions from measurements in Earth laboratories
 - Predicting cholera outbreaks in Bangladesh from a model calibrated to Haiti
 - Predicting influenza patterns in 2010 from a model calibrated from 2000–2009

Predicting way out of sample

Essentially, all models are wrong, but some are useful.

- Box and Draper (1987), Empirical Model Building ...

43/57

Test sets

- What is test set spelled backwards?
- Hold some data out while fitting your model
- Or just pretend to do this as an evaluation method
 - In other words, test what would happen under various withholding scenarios
 - This can get very elaborate, and we should probably do it more

Other model worlds

- ► The model you're *fitting* is probably pretty simple
- ▶ But you can *simulate* very complicated models, indeed

How well can you do? Which details are important?

Other model worlds (present)

Other model worlds (present)

Generating hypotheses (present)

Generating hypotheses (present)

Testing hypotheses (present)

Testing hypotheses (present)

Testing hypotheses (present)

Hard questions

Answers are not always easy

Outline

Conceptual models

Prediction

Model Validation

Model Evaluation
Goodness of fit
Digression
Going beyond

Conclusion

Summary

Dynamic models

- Clarify thinking
 - What are our assumptions, what else do we need to know?
- Understand outcomes
 - Can heterogeneity explain the time course of HIV epidemics?
 - Is it possible that MDA could break the cycle of malaria transmission in some areas?
- Predict outcomes
 - What is the potential for a hepatitis A outbreak in Cape Town?
 - What might happen if I improve testing-and-treatment outreach in Jamaica?
- Find new mechanisms
 - Why can't I explain my data? What haven't I thought of?

Summary

Evaluation

- Validation (inside your model world)
 - Does my fitting method work (assuming my model is right)?
- Inspection (compare patterns)
- Prediction (and other out-of-sample comparison)
 - Can my model predict things I haven't told it yet?
- Generate and test mechanistic hypotheses

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2013-2020, International Clinics on Infectious Disease Dynamics and Data

Title: Model evaluation and comparison Attribution: Jonathan Dushoff, McMaster University, DAIDD 2020

Source URL: https://figshare.com/collections/International_ Clinics_on_Infectious_Disease_Dynamics_and_Data/3788224 For further information please contact admin@ici3d.org.

