0.1 特征值与特征向量

定义 0.1 (线性变换的特征值和特征向量)

设 φ 是数域 \mathbb{K} 上线性空间 V 上的线性变换, 若 $\lambda_0 \in \mathbb{K}, x \in V$ 且 $x \neq 0$, 使

$$\varphi(x)=\lambda_0 x,$$

则称 λ_0 是线性变换 φ 的一个特征值, 向量 x 称为 φ 关于特征值 λ_0 的特征向量.

 $ilde{f Y}$ 笔记 显然 $oldsymbol{arphi}$ 的关体特征向量加上零向量构成 $oldsymbol{V}$ 的子空间.

定义 0.2 (线性变换的特征子空间)

设 λ_0 是线性空间V上的线性变换 φ 的特征值,令

$$V_{\lambda_0} = \{ \alpha \in V \mid \varphi(\alpha) = \lambda_0 \alpha \} = \{ \alpha \in V \mid \alpha \neq \varphi$$
的属于 λ_0 的特征向量 $\} \cup \{ 0 \},$

则显然 V_{λ_0} 是 V 的子空间, 称为 φ 的属于特征值 λ_0 的**特征子空间**.

笔记 显然 V_{λ_0} 是 φ 的不变子空间.

定义 0.3 (矩阵的特征值和特征向量)

设 A 是数域 \mathbb{F} 上的 n 阶方阵, 若存在 $\lambda_0 \in \mathbb{F}$ 及 n 维非零列向量 α , 使

$$A\alpha = \lambda_0 \alpha$$

式成立, 则称 λ_0 为矩阵 A 的一个特征值, α 为 A 关于特征值 λ_0 的特征向量.

定义 0.4 (矩阵的特征子空间)

设 l_0 是 \mathbb{F} 上的n 阶矩阵A 的特征值,令

$$V_{\lambda_0} = \{x \in \mathbb{F}^n \mid Ax = \lambda_0 x\} = \{x \in \mathbb{F}^n \mid x \not\in A$$
的属于 λ_0 的特征向量 $\} \cup \{0\}$,

则 V_{λ_0} 是线性方程组 $(\lambda_0 I_n - A)x = 0$ 的解空间, 从而是 \mathbb{F}^n 的子空间, 称为 A 的属于特征值 λ_0 的**特征子空间**。

定义 0.5 (特征多项式)

设A 是n 阶方阵, 称 $|\lambda I_n - A|$ 为A 的特征多项式.

定理 0.1 (特征值的和与积)

矩阵 A 的 n 个特征值的和与积分别为

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(A),$$

 $\lambda_1 \lambda_2 \dots \lambda_n = |A|.$

证明 设

$$|\lambda I_n - A| = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n$$
$$= (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

由 Vieta 定理知 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = -a_1, \lambda_1 \lambda_2 \cdots \lambda_n = (-1)^n a_n$. 由例题??可知 $a_1 = -(a_{11} + a_{22} + \cdots + a_{nn}) = -\text{tr}(A), a_n = (-1)^n |A|$. 因此矩阵 A 的 n 个特征值的和与积分别为

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = \operatorname{tr}(A),$$

$$\lambda_1 \lambda_2 \cdots \lambda_n = |A|$$
.

定义 0.6 (特征多项式)

设 φ 是线性空间V上的线性变换, φ 在V的某组基下的表示矩阵为A,由相似矩阵有相同特征值知 $|\lambda I_n - A|$ 与基或表示矩阵的选取无关, 称 $|\lambda I_n - A|$ 为 φ 的**特征多项式**,记为 $|\lambda I_V - \varphi|$.

定理 0.2 (复方阵必相似于上三角阵)

任何复方阵必相似于一个上三角阵,并且对角元素都是其特征值.

注 一般数域 区上的矩阵未必相似于上三角阵.

证明 设 $A \in n$ 阶复方阵, 现对 n 用数学归纳法. 当 n = 1 时结论显然成立. 假设对 n - 1 阶矩阵结论成立, 现对 n 阶矩阵 A 来证明. 设 λ_1 是 A 的一个特征值, 则存在非零列向量 α_1 , 使

$$A\alpha_1 = \lambda_1\alpha_1$$
.

将 α_1 作为 C_n 的一个基向量, 并扩展为 C_n 的一组基 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$. 将这些基向量按照列分块方式拼成矩阵 $P=(\alpha_1,\alpha_2,\cdots,\alpha_n),$ 则 P 为 n 阶非异阵, 且

$$AP = A(\alpha_1, \alpha_2, \cdots, \alpha_n) = (A\alpha_1, A\alpha_2, \cdots, A\alpha_n)$$
$$= (\alpha_1, \alpha_2, \cdots, \alpha_n) \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix},$$

其中 A_1 是一个 n-1 阶方阵. 注意到 $P=(\alpha_1,\alpha_2,\cdots,\alpha_n)$ 非异, 上式即为

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix}.$$

因为 A_1 是一个 n-1 阶方阵, 所以由归纳假设可知, 存在 n-1 阶非异阵 Q, 使 $Q^{-1}A_1Q$ 是一个上三角阵. 令

$$R = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix},$$

则 R 是 n 阶非异阵, 且

$$R^{-1}P^{-1}APR = \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}^{-1} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}$$
$$= \begin{pmatrix} 1 & O \\ O & Q^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & Q \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & * \\ O & Q^{-1}A_1Q \end{pmatrix}.$$

这是一个上三角阵,它与 A 相似,并且对角元素都是其特征值.

推论 0.1

若数域 \mathbb{K} 上的 n 阶方阵 A 的特征值全在 \mathbb{K} 中, 则存在 \mathbb{K} 上的非异阵 P, 使 $P^{-1}AP$ 是一个上三角阵.

证明 由复方阵必相似于上三角阵的证明类似可得.

命题 0.1

- 1. 设 φ 为n维线性空间V上的线性变换,则 φ 在V上至少存在一个特征值 $\lambda_0 \in \mathbb{C}$ 及其特征向量 $\alpha_0 \in V$.
- 2. 设 A 为 n 阶 复矩阵,则 A 在 复数域上至少存在一个特征值 λ_0 ∈ \mathbb{C} 及其特征向量 α_0 ∈ \mathbb{C}^n .

证明

1. 任取 V 的一组基 $\{e_1, e_2, \cdots, e_n\}$, 设 φ 在这组基下的表示矩阵为 A, 由代数学基本定理可知, 特征多项式 $|\lambda I_V - \varphi| = |\lambda I_n - A|$ 在复数域上至少有一个根 $\lambda_0 \in \mathbb{C}$. 又由线性方程组理论可知, $(\lambda_0 I_n - A)x = 0$ 一定有非

$$|\lambda I_{V} - \varphi| = |\lambda I_{n} - A| \text{ 在复数域上至少有一个根 } \lambda_{0} \in \mathbb{C}. \text{ 又由线性方程组理论可知, } (\lambda_{n}) \in \mathbb{C}.$$
零解 $(x_{1}, x_{2}, \dots, x_{n})^{T}$,即 $\lambda_{0} I_{n} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = A \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$. 记 $\alpha_{0} = (e_{1}, e_{2}, \dots, e_{n}) \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = (e_{1}, e_{2}, \dots, e_{n}) A \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$

$$= (e_{1}, e_{2}, \dots, e_{n}) \cdot \lambda_{0} I_{n} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \lambda_{0} (e_{1}, e_{2}, \dots, e_{n}) \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \lambda_{0} \alpha_{0}.$$

故 φ 在 V 上至少存在一个特征值 $\lambda_0 \in \mathbb{C}$ 及其特征向量 $\alpha_0 \in V$.

2. 由代数学基本定理可知, 特征多项式 $|\lambda I_n - A|$ 在复数域上至少有一个根 $\lambda_0 \in \mathbb{C}$. 又由线性方程组理论可知, $(\lambda_0 I_n - A)x = 0$ 一定有非零解 $\alpha_0 \in \mathbb{C}^n$. 故 A 在复数域上至少存在一个特征值 $\lambda_0 \in \mathbb{C}$ 及其特征向量 $\alpha_0 \in \mathbb{C}^n$.

0.1.1 直接利用定义计算和证明

例题 0.1 设 $V \in n$ 阶矩阵全体组成的线性空间, $\varphi \in V$ 上的线性变换: $\varphi(X) = AX$, 其中 A 是一个 n 阶矩阵。求证: φ 和 A 具有相同的特征值 (重数可能不同)。

证明 设 λ_0 是 A 的特征值, x_0 是对应的特征向量, 即 $Ax_0 = \lambda_0 x_0$ 。令 $X = (x_0, 0, ..., 0)$, 则 $\varphi(X) = AX = \lambda_0 X$ 且 $X \neq 0$, 因此 λ_0 也是 φ 的特征值.

反之, 设 λ_0 是 φ 的特征值, X 是对应的特征向量, 即 $\varphi(X) = AX = \lambda_0 X$ 。令 $X = (x_1, x_2, ..., x_n)$ 为列分块, 设 第 i 个列向量 $x_i \neq 0$, 则 $Ax_i = \lambda_0 x_i$, 因此 λ_0 也是 A 的特征值.

例题 0.2 设 λ_1 , λ_2 是矩阵 A 的两个不同的特征值, α_1 , α_2 分别是 λ_1 , λ_2 的特征向量, 求证: $\alpha_1 + \alpha_2$ 必不是 A 的特征向量。

证明 用反证法, 设 $A(\alpha_1 + \alpha_2) = \mu(\alpha_1 + \alpha_2)$, 又

$$A(\alpha_1 + \alpha_2) = A\alpha_1 + A\alpha_2 = \lambda_1\alpha_1 + \lambda_2\alpha_2,$$

于是 $(\lambda_1 - \mu)\alpha_1 + (\lambda_2 - \mu)\alpha_2 = 0$ 。由于属于不同特征值的特征向量线性无关, 故有 $\lambda_1 = \mu, \lambda_2 = \mu$, 从而 $\lambda_1 = \lambda_2$, 引 出矛盾.

命题 0.2

设 φ 是线性空间V上的线性变换,V有一个直和分解:

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$$

其中 V_i 都是 φ -不变子空间。

(1) 设 φ 限制在 V_i 上的特征多项式为 $f_i(\lambda)$, 求证: φ 的特征多项式

$$f(\lambda) = f_1(\lambda) f_2(\lambda) \cdots f_m(\lambda).$$

(2) 设 λ_0 是 φ 的特征值, $V_0 = \{v \in V \mid \varphi(v) = \lambda_0 v\}$ 为特征子空间, $V_{i,0} = V_i \cap V_0 = \{v \in V_i \mid \varphi(v) = \lambda_0 v\}$,

求证:

$$V_0 = V_{1,0} \oplus V_{2,0} \oplus \cdots \oplus V_{m,0}$$
.

证明

(1) 取 V_i 的一组基,将它们拼成 V 的一组基。记 A_i 是 φ 在 V_i 上的限制在 V_i 所取基下的表示矩阵,则由定理??可 知 φ 在 V 的这组基下的表示矩阵为分块对角矩阵 $A=\mathrm{diag}(A_1,A_2,\cdots,A_m)$,于是

$$f(\lambda) = |\lambda I_n - A| = |\lambda I - A_1| |\lambda I - A_2| \cdots |\lambda I - A_m|,$$

(2) $\exists x \in V_0, \ \exists \alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_m, \ \exists x \in V_i, \ \exists x \in V_i$

$$\varphi(\alpha_1) + \varphi(\alpha_2) + \dots + \varphi(\alpha_m) = \varphi(\alpha) = \lambda_0 \alpha = \lambda_0 \alpha_1 + \lambda_0 \alpha_2 + \dots + \lambda_0 \alpha_m.$$

注意到 $\varphi(\alpha_i) \in V_i, \varphi(\alpha) = \lambda_0 \alpha \in V$, 故由直和的等价条件 (5) 可得 $\varphi(\alpha_i) = \lambda_0 \alpha_i$, 即 $\alpha_i \in V_{i,0}$, 从而 $V_0 = V_{1,0} \oplus V_{2,0} \oplus \cdots \oplus V_{m,0}$ 。注意到 $V_{i,0} \subseteq V_i$, 故

$$V_{i,0} \cap (V_{1,0} + \dots + V_{i-1,0}) \subseteq V_i \cap (V_1 + \dots + V_{i-1}) = \{0\}, \quad 2 \le i \le m,$$

于是由直和的等价条件(2)可知上述为直和。

推论 0.2

对分块对角矩阵 $A = \text{diag}\{A_1, A_2, \cdots, A_m\}$ 的任一特征值 λ_0 , 其代数重数等于每个分块的代数重数之和, 其几何重数等于每个分块的几何重数之和.

证明 将命题 0.2的条件和结论代数化之后,即可得到结论.

命题 0.3 (特征向量的延拓)

设 n 阶分块对角矩阵 $A = \text{diag}\{A_1, A_2, \dots, A_m\}$, 其中 $A_i \neq n_i$ 阶矩阵。

- (1) 任取 A_i 的特征值 λ_i 及其特征向量 $x_i \in \mathbb{C}^{n_i}$, 求证: 可在 x_i 的上下添加适当多的零, 得到非零向量 $\tilde{x}_i \in \mathbb{C}^n$, 使得 $A\tilde{x}_i = \lambda_i \tilde{x}_i$, 即 \tilde{x}_i 是 A 关于特征值 λ_i 的特征向量, 称为 x_i 的**延拓**.
- (2) 任取 A 的特征值 λ_0 ,并设 λ_0 是 A_{i_1}, \cdots, A_{i_r} 的特征值,但不是其他 A_j $(1 \le j \le m, j \ne i_1, \cdots, i_r)$ 的特征值,求证: A 关于特征值 λ_0 的特征子空间的一组基可取为 $A_{i_1}(1 \le k \le r)$ 关于特征值 λ_0 的特征子空间的一组基的延拓的并集.

证明

- (1) 令 $\tilde{x}_i = (0, \dots, 0, x_i, 0, \dots, 0)'$, 即 \tilde{x}_i 的第 i 块为 x_i , 其余块均为 0, 显然 $\tilde{x}_i \neq 0$ 。容易验证 $A\tilde{x}_i = \lambda_i \tilde{x}_i$, 故结论成立。
- (2) 由命题 0.2(2)以及直和的等价条件 (5) 即得.

例题 0.3 设 $A \neq n$ 阶整数矩阵, p,q 为互素的整数且 q > 1。求证: 矩阵方程 $Ax = \frac{p}{q}x$ 必无非零解。

证明 用反证法。设上述矩阵方程有非零解,则 $\frac{p}{q}$ 为 A 的特征值,即为特征多项式 $f(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \cdots + a_{n-1} \lambda + a_n$ 的根。由于 A 是整数矩阵,故 $f(\lambda)$ 为整数系数多项式。由整数系数多项式有有理根的必要条件可知 $q \mid 1$,从而

 $q = \pm 1$, 于是 $q \mid p$, 这与 p, q 互素矛盾。

例题 0.4 求下列 n 阶矩阵的特征值:

$$A = \begin{pmatrix} 0 & a & \cdots & a & a \\ b & 0 & \cdots & a & a \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b & b & \cdots & 0 & a \\ b & b & \cdots & b & 0 \end{pmatrix}.$$

解 若 a=0 或 b=0, 则 A 是主对角元全为零的下三角或上三角矩阵, 故 A 的特征值全为零. 设 $a\neq 0, b\neq 0$, 则由命题??可知: 若 $a\neq b$, 则 $|\lambda I_n-A|=\frac{a(\lambda+b)^n-b(\lambda+a)^n}{a-b}$. 设 $\frac{b}{a}$ 的 n 次方根为 $\omega_i(1\leq i\leq n)$, 则

$$\begin{aligned} |\lambda I_n - A| &= \frac{a(\lambda + b)^n - b(\lambda + a)^n}{a - b} = 0 \Rightarrow \left(\frac{\lambda + b}{\lambda + a}\right)^n = \frac{b}{a} \\ &\Rightarrow \frac{\lambda + b}{\lambda + a} = w_i \ (1 \le i \le n) \Rightarrow \lambda = \frac{a\omega_i - b}{1 - \omega_i} \ (1 \le i \le n). \end{aligned}$$

从而 A 的特征值为 $\frac{a\omega_i - b}{1 - \omega_i} (1 \le i \le n)$.

若 a = b, 则 $|\lambda I_n - A| = (\lambda - (n-1)a)(\lambda + a)^{n-1}$, 从而 A 的特征值为 (n-1)a (1 重), -a (n-1) 重).

综上, 容易验证当 a=b=0 或 $ab\neq 0$ 时, A 有完全的特征向量系或有 n 个不同的特征值, 从而此时 A 可对角化. 若 A 可对角化也不难得到 a=b=0 或 $ab\neq 0$. \Box

0.1.2 正向利用矩阵的多项式

定义 0.7 (矩阵多项式)

若
$$A$$
 是一个 n 阶矩阵, $f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$ 是一个多项式, 记
$$f(A) = a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 I_n.$$

命题 0.4

设 n 阶矩阵 A 的全部特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n,\ f(x)$ 是一个多项式,则 f(A) 的全部特征值为 $f(\lambda_1),f(\lambda_2),\cdots,f(\lambda_n).$

注 这个命题告诉我们: 如果能够将一个复杂矩阵写成一个简单矩阵的多项式, 那么就可以由简单矩阵的特征值得 到复杂矩阵的特征值.

证明 因为任一n阶矩阵均复相似于上三角阵,可设

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

因为上三角阵的和、数乘及乘方仍是上三角阵,经计算不难得到

$$P^{-1}f(A)P = f(P^{-1}AP) = \begin{pmatrix} f(\lambda_1) & * & \cdots & * \\ 0 & f(\lambda_2) & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_n) \end{pmatrix}.$$

因此 f(A) 的全部特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$.

例题 0.5 设 n 阶矩阵 A 的全体特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 求 2n 阶矩阵

$$\begin{pmatrix} A^2 & A \\ A^2 & A \end{pmatrix}$$

的全体特征值。

证明 由命题??可知

$$\begin{vmatrix} \lambda I_{2n} - \begin{pmatrix} A^2 & A \\ A^2 & A \end{pmatrix} \end{vmatrix} = \begin{vmatrix} \lambda I_n - A & -A^2 \\ -A^2 & \lambda I_n - A \end{vmatrix} = |\lambda I_n - A - A^2| |\lambda I_n - A + A^2|.$$

由命题 0.4可知 $A + A^2$ 的全体特征值为 $\lambda_i + \lambda_i^2 (1 \le i \le n)$, $A - A^2$ 的全体特征值为 $\lambda_i - \lambda_i^2 (1 \le i \le n)$, 因此所求矩阵的全体特征值为

$$\lambda_1 + \lambda_1^2, \lambda_1 - \lambda_1^2, \lambda_2 + \lambda_2^2, \lambda_2 - \lambda_2^2, \cdots, \lambda_n + \lambda_n^2, \lambda_n - \lambda_n^2.$$

命题 0.5 (循环矩阵的特征值)

求下列循环矩阵的特征值:

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}.$$

解 设 $J = \begin{pmatrix} O & I_{n-1} \\ 1 & O \end{pmatrix}$, $f(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1}$, 则由循环矩阵的性质 2 可知 A = f(J)。经简单计算可得

$$|\lambda I_n - J| = \begin{vmatrix} \lambda & -1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & -1 \\ -1 & 0 & 0 & \cdots & 0 & \lambda \end{vmatrix} \xrightarrow{\frac{1}{2}(3-1)} \frac{\lambda}{n-1} \begin{pmatrix} \lambda & -1 & \cdots & 0 & 0 \\ 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & -1 \\ 0 & 0 & \cdots & \lambda & \lambda \end{vmatrix} + (-1)^{n+1} (-1) \begin{vmatrix} -1 & 0 & \cdots & 0 & 0 \\ \lambda & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & -1 \\ 0 & 0 & \cdots & \lambda & -1 \end{vmatrix}$$

于是J的特征值为

$$\omega_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad 0 \le k \le n - 1$$

因此 A 的特征值为 $f(1), f(\omega_1), \cdots, f(\omega_{n-1})$ 。

定义 0.8 (友矩阵)

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -a_{n-2} \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

称为多项式 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ 的 **友矩阵**.

6

命题 0.6 (友矩阵的特征多项式及特征值)

设首一多项式 $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, f(x) 的友矩阵

$$C = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}.$$

- (1) 求证: 矩阵 C 的特征多项式就是 $f(\lambda)$ 。
- (2) 设 f(x) 的根为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, g(x) 为任一多项式, 求以 $g(\lambda_1), g(\lambda_2), \cdots, g(\lambda_n)$ 为根的 n 次多项式。

证明

(1)

$$|xE - A| = \begin{vmatrix} x & 0 & 0 & \cdots & 0 & a_0 \\ -1 & x & 0 & \cdots & 0 & a_1 \\ 0 & -1 & x & \cdots & 0 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & a_{n-2} \\ 0 & 0 & 0 & \cdots & -1 & x + a_{n-1} \end{vmatrix} \underbrace{\begin{vmatrix} xr_i + r_{i-1} \\ i = n, n-1, \cdots, 2 \end{vmatrix}}_{xr_i + r_{i-1}} \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \\ -1 & 0 & 0 & \cdots & 0 & x^{n-1} + a_{n-1}x^{n-2} + \cdots + a_2x + a_1 \\ 0 & -1 & 0 & \cdots & 0 & x^{n-2} + a_{n-1}x^{n-3} + \cdots + a_3x + a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & x^2 + a_{n-1}x + a_{n-2} \\ 0 & 0 & 0 & \cdots & -1 & x + a_{n-1} \end{vmatrix}$$

$$= (x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a) (-1)^{n+1} (-1)^{n-1}$$
$$= x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a = f(x).$$

(2) 由假设及 (1) 的结论可知 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是 C 的全体特征值,故由命题 0.4可知 $g(\lambda_1), g(\lambda_2), \cdots, g(\lambda_n)$ 是 g(C) 的全体特征值,从而 $h(x) = |xI_n - g(C)|$ 即为所求的多项式。

0.1.3 反向利用矩阵的多项式

命题 0.7

设 n 阶矩阵 A 适合一个多项式 g(x), 即 g(A) = O, 则 A 的任一特征值 λ_0 也必适合 g(x), 即 $g(\lambda_0) = 0$.

证明 设 α 是A关于特征值 λ_0 的特征向量,经简单计算得

$$g(\lambda_0)\alpha = g(A)\alpha = 0.$$

而
$$\alpha \neq 0$$
, 因此 $g(\lambda_0) = 0$.

命题 0.8 (幂零矩阵关于特征值的充要条件)

求证: n 阶矩阵 A 为幂零矩阵的充要条件是 A 的特征值全为零。

证明 若 A 为幂零矩阵, 即存在正整数 k, 使得 $A^k = O$, 则由命题 0.7可知 A 的任一特征值 λ_0 也适合 x^k , 于是 $\lambda_0 = 0$ 。

反之, 证法一: 若 A 的特征值全为零, 则存在可逆矩阵 P, 使得 $P^{-1}AP = B$ 为上三角矩阵且主对角元素全为零。由上三角阵性质 (1) 可知 $B^n = O$, 于是 $A^n = (PBP^{-1})^n = PB^nP^{-1} = O$, 即 A 为幂零矩阵。

证法二:也可以利用 Cayley-Hamilton 定理来证明, 由于 A 的特征值全为零, 故其特征多项式为 λ^n , 从而 $A^n = O$.

例题 0.6 设 V 是数域 \mathbb{F} 上的 n 阶方阵全体构成的线性空间, n 阶方阵

$$P = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & & \vdots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix},$$

V 上的线性变换 η 定义为 $\eta(X) = PX'P$. 试求 η 的全体特征值及其特征向量.

笔记任意n阶矩阵A左乘P相当于行倒排,右乘P矩阵相当于列倒排.

解 由 P = P', $P^2 = I_n$ 容易验证 $\eta^2(X) = P(PX'P)P = X$, 即 $\eta^2 = I_V$, 于是 η 的特征值也适合多项式 $x^2 - 1$, 从而特征值只能是 ± 1 .

设 $\eta(X_0) = PX_0'P = \pm X_0$, 这等价于 $(PX_0')P = \pm PX_0$, 即 PX_0 为对称矩阵或反对称矩阵.

令 $PX_0 = E_{ii}, E_{ij} + E_{ji}$ (对称矩阵空间的基向量), 容易证明 η 关于特征值 1 的线性无关的特征向量为 $X_0 = PE_{ii}$ $(1 \le i \le n), P(E_{ij} + E_{ji})$ $(1 \le i < j \le n)$.

令 $PX_0 = E_{ij} - E_{ji}$ (反对称矩阵空间的基向量), 容易证明 η 关于特征值 -1 的线性无关的特征向量为 $X_0 = P(E_{ij} - E_{ji})$ ($1 \le i < j \le n$). 注意到这些特征向量恰好构成 V 的一组基, 故 η 的特征值为 $1 \frac{n(n+1)}{2}$ 重, $-1 \frac{n(n-1)}{2}$ 重.

例题 0.7 设 n 阶方阵 A 的每行每列只有一个元素非零,并且那些非零元素为 1 或 -1,证明: A 的特征值都是单位根.

证明 设 S 为由每行每列只有一个元素非零,并且那些非零元素为 1 或 -1 的所有 n 阶方阵构成的集合,由排列组合可得 $\overline{S} = 2^n n!$,即 S 是一个有限集合. 注意到矩阵 $M \in S$ 当且仅当 $M = P_1 P_2 \cdots P_r$,其中 P_k 是初等矩阵 P_{ij} 或 $P_i(-1)$,因此对任意的 $M, N \in S$, $MN \in S$. 特别地,由 $A \in S$ 可知 $A^k \in S$ ($k \ge 1$),即 $\{A, A^2, A^3, \cdots\} \subseteq S$,于是存在正整数 k > l,使得 $A^k = A^l$. 注意到 $|A| = \pm 1$,故 A 可逆,于是 $A^{k-l} = I_n$,从而 A 的特征值适合多项式 $x^{k-l} - 1$,即为单位根.

例题 0.8 设 $A \in n$ 阶实方阵, 又 $I_n - A$ 的特征值的模长都小于 1, 求证: $0 < |A| < 2^n$.

证明 设 A 的特征值为 $\lambda_1, \dots, \lambda_n$, 则 $I_n - A$ 的特征值为 $1 - \lambda_1, \dots, 1 - \lambda_n$. 由假设 $|1 - \lambda_i| < 1$, 若 λ_i 是实数,则 $0 < \lambda_i < 2$; 若 λ_i 是虚数,则 $\overline{\lambda_i}$ 也是 A 的特征值,此时 $1 - \overline{\lambda_i}$ 也是 $I_n - A$ 的特征值. 从而 $|1 - \lambda_i| < 1$, $|1 - \overline{\lambda_i}| < 1$, 于是

$$|1-\lambda_i^2|=|(1-\lambda_i)(1-\overline{\lambda_i})|=|1-\lambda_i||1-\overline{\lambda_i}|<1.$$

因此 $0 < \lambda_i^2 < 2$, 故此时 $0 < \lambda_i < \sqrt{2}$.

综上, 无论 λ_i 是实数还是虚数, 都有 $0 < |\lambda_i| < 2$. 由于 |A| 等于所有特征值之积, 故 $0 < |A| < 2^n$.

命题 0.9 (逆矩阵的特征值)

设n阶矩阵A是可逆矩阵,且A的全部特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$,则 A^{-1} 的全部特征值为 $\lambda_1^{-1},\lambda_2^{-1},\cdots,\lambda_n^{-1}$ 。

证明 首先注意到 A 是可逆矩阵, $\lambda_1 \lambda_2 \cdots \lambda_n = |A| \neq 0$, 因此每个 $\lambda_i \neq 0$ (事实上, A 可逆的充分必要条件是它的特征值全不为零)。由复方阵必相似于上三角阵可设

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

因为上三角矩阵的逆矩阵仍然是上三角矩阵,经过计算不难得到

$$P^{-1}A^{-1}P = (P^{-1}AP)^{-1} = \begin{pmatrix} \lambda_1^{-1} & * & \cdots & * \\ 0 & \lambda_2^{-1} & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^{-1} \end{pmatrix}.$$

因此 A^{-1} 的全部特征值为 $\lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1}$.

命题 0.10 (伴随矩阵的特征值)

设 n 阶矩阵 A 的全体特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 求证: A^* 的全体特征值为

$$\prod_{i\neq 1}\lambda_i, \prod_{i\neq 2}\lambda_i, \cdots, \prod_{i\neq n}\lambda_i.$$

证明 因为任一n 阶矩阵均复相似于上三角矩阵,故可设

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

注意到上三角矩阵的伴随矩阵仍是上三角矩阵, 经计算可得

$$P^{-1}A^*P = P^*A^*(P^{-1})^* = (P^{-1}AP)^* = \begin{pmatrix} \prod_{i \neq 1} \lambda_i & * & \cdots & * \\ 0 & \prod_{i \neq 2} \lambda_i & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \prod_{i \neq n} \lambda_i \end{pmatrix}.$$

因此 A* 的全部特征值为

$$\prod_{i\neq 1}\lambda_i, \prod_{i\neq 2}\lambda_i, \cdots, \prod_{i\neq n}\lambda_i.$$

0.1.4 特征值的降价公式

定理 0.3 (特征值的降价公式)

设 $A \neq m \times n$ 矩阵, $B \neq n \times m$ 矩阵, 且 $m \geq n$ 。求证:

$$|\lambda I_m - AB| = \lambda^{m-n} |\lambda I_n - BA|.$$

特别地, 若 A, B 都是 n 阶矩阵, 则 AB 与 BA 有相同的特征多项式.

Ŷ 笔记 本质上就是打洞原理.

证明 证法一(打洞原理): 当 λ ≠ 0 时, 考虑下列分块矩阵:

$$\begin{pmatrix} \lambda I_m & A \\ B & I_n \end{pmatrix},$$

因为 $\lambda I_m, I_n$ 都是可逆矩阵,故由行列式的降阶公式可得

$$|I_n| \cdot |\lambda I_m - A(I_n)^{-1}B| = |\lambda I_m| \cdot |I_n - B(\lambda I_m)^{-1}A|,$$

9

即有

$$|\lambda I_m - AB| = \lambda^{m-n} |\lambda I_n - BA|$$

成立.

当 $\lambda = 0$ 时, 若 m > n, 则 $r(AB) \le \min\{r(A), r(B)\} \le \min\{m, n\} = n < m$, 故 |-AB| = 0, 结论成立;若 m = n, 则 $|-AB| = (-1)^n |A| |B| = |-BA|$, 结论也成立。

事实上, $\lambda = 0$ 的情形也可以用 Cauchy-Binet 公式来处理, 还可以通过摄动法由 $\lambda \neq 0$ 的情形来得到.

证法二 (相抵标准型): 设 A 的秩等于 r, 则存在 m 阶可逆矩阵 P 和 n 阶可逆矩阵 Q, 使得

$$PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

令

$$Q^{-1}BP^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},$$

其中 B_{11} 是 $r \times r$ 矩阵, 则

$$PABP^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ O & O \end{pmatrix}, \quad Q^{-1}BAQ = \begin{pmatrix} B_{11} & O \\ B_{21} & O \end{pmatrix}.$$

因此

$$|\lambda I_m - AB| = \left| \begin{pmatrix} \lambda I_r - B_{11} & -B_{12} \\ O & \lambda I_{m-r} \end{pmatrix} \right| = \lambda^{m-r} |\lambda I_r - B_{11}|,$$

同理

$$|\lambda I_n - BA| = \left| \begin{pmatrix} \lambda I_r - B_{11} & O \\ -B_{21} & \lambda I_{n-r} \end{pmatrix} \right| = \lambda^{n-r} |\lambda I_r - B_{11}|.$$

比较上面两个式子即可得出结论。

证法三 (摄动法): 先证明 m=n 的情形。若 A 可逆,则 $BA=A^{-1}(AB)A$,即 AB 和 BA 相似,因此它们的特征 多项式相等。对于一般的方阵 A,可取到一列有理数 $t_k \to 0$,使得 $t_k I_n + A$ 是可逆矩阵。由可逆情形的证明可得

$$|\lambda I_n - (t_k I_n + A)B| = |\lambda I_n - B(t_k I_n + A)|.$$

注意到上述两边的行列式都是 t_k 的多项式,从而关于 t_k 连续.上式两边同时取极限,令 $t_k\to 0$,即有 $|\lambda I_n-AB|=|\lambda I_n-BA|$ 成立。

再证明 m > n 的情形。令

$$C = \begin{pmatrix} A & O \end{pmatrix}, \quad D = \begin{pmatrix} B \\ O \end{pmatrix},$$

其中C,D均为 $m \times m$ 分块矩阵,则

$$CD = AB, \quad DC = \begin{pmatrix} BA & O \\ O & O \end{pmatrix}.$$

因此由方阵的情形可得

$$|\lambda I_m - AB| = |\lambda I_m - CD| = |\lambda I_m - DC| = \lambda^{m-n} |\lambda I_n - BA|.$$

例题 0.9 设 α 是 n 维实列向量且 $\alpha'\alpha = 1$,试求矩阵 $I_n - 2\alpha\alpha'$ 的特征值。

解 设 $A = I_n - 2\alpha\alpha'$,则由特征值的降价公式可得

$$|\lambda I_n - A| = |(\lambda - 1)I_n + 2\alpha\alpha'| = (\lambda - 1)^{n-1}(\lambda - 1 + 2\alpha'\alpha) = (\lambda - 1)^{n-1}(\lambda + 1).$$

因此, 矩阵 A 的特征值为 1(n-1) 重, -1(1 重). 进一步, 容易验证 A 有完全的特征向量系 $(|-I_n-A|)$ 为零, 但其 n-1 阶子式不为零), 于是 A 可对角化.

例题 0.10 设 A 为 n 阶方阵, α , β 为 n 维列向量, 试求矩阵 $A\alpha\beta'$ 的特征值。

解 设 $B = A\alpha\beta'$,则由特征值的降价公式可得

$$|\lambda I_n - B| = |I_n - (A\alpha)\beta'| = \lambda^{n-1}(\lambda - \beta' A\alpha).$$

若 $\beta'A\alpha \neq 0$, 则 B 的特征值为 0(n-1) 重), $\beta'A\alpha$ (1 重). 进一步, 容易验证此时 B 有完全的特征向量系, 从而可对角化. 若 $\beta'A\alpha = 0$, 则 B 的特征值为 0(n) 重).

综上, 容易验证
$$B = A\alpha\beta'$$
 可对角化的充要条件是 $\beta'A\alpha \neq 0$ 或 $A\alpha\beta' = 0$.

例题 **0.11** 设 a_i (1 $\leq i \leq n$) 都是实数, 且 $a_1 + a_2 + \cdots + a_n = 0$, 试求下列矩阵的特征值:

$$A = \begin{pmatrix} a_1^2 & a_1 a_2 + 1 & \cdots & a_1 a_n + 1 \\ a_2 a_1 + 1 & a_2^2 & \cdots & a_2 a_n + 1 \\ \vdots & \vdots & \ddots & \vdots \\ a_n a_1 + 1 & a_n a_2 + 1 & \cdots & a_n^2 \end{pmatrix}.$$

解 矩阵 A 可以分解为 $A = -I_n + BC$, 其中

$$B = \begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix}, \quad C = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

由特征值的降价公式得

$$|\lambda I_n - A| = |(\lambda + 1)I_n - BC|$$

= $(\lambda + 1)^{n-2} |(\lambda + 1)I_2 - CB|$.

注意到 $a_1 + a_2 + \cdots + a_n = 0$, 故有

$$CB = \begin{pmatrix} a_1^2 + a_2^2 + \dots + a_n^2 & 0 \\ 0 & n \end{pmatrix}.$$

因此 A 的特征值为 -1 (n-2 重), n-1, $a_1^2+a_2^2+\cdots+a_n^2-1$. 进一步, 若 a_i 全部为零, 则特征值 -1 和 n-1 都有完全的特征向量系. 若 $\sum_{i=1}^n a_i^2 = n$, 利用秩的降阶公式可得特征值 -1 和 n-1 都有完全的特征向量系. 在剩余情况, 利用秩的降阶公式可得 3 个特征值都有完全的特征向量系. 因此, A 可对角化. 事实上, 即使去掉 $a_1+a_2+\cdots+a_n=0$ 的条件, 也可以计算出 A 的全体特征值的代数重数和几何重数, 从而得到 A 可对角化. 这一结论的深层次背景是: A 是实对称矩阵, 从而可正交对角化.

例题 0.12 设 A, B, C 分别是 $m \times m, n \times n, m \times n$ 矩阵, 满足: AC = CB, r(C) = r. 求证: $A \cap B$ 至少有 r 个相同的特征值。

注 不妨设 $C = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$ 的原因: 假设当 $C = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$ 时, 结论已经成立, 则对于一般的满足条件的矩阵 C, 由条件 我们有

$$r(C) = r$$
, $AC = BC$.

由 r(C) = r 可知, 存在可逆矩阵 P,Q, 使得

$$PCQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

从而对 AC = BC 两边同时左乘 P, 右乘 Q 得到

$$(PAP^{-1})(PCQ) = (PCQ)(Q^{-1}BQ).$$

于是由假设可知 PAP^{-1} 和 $Q^{-1}BQ$ 都至少有 r 个相同的特征值. 又因为相似矩阵有相同的特征值, 所以 A, B 也至少有 r 个相同的特征值. 故不妨设成立.

证明 设P为m阶非异阵,Q为n阶非异阵,使得

$$PCQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}.$$

注意到问题的条件和结论在相抵变换 $C\mapsto PCQ$, $A\mapsto PAP^{-1}$, $B\mapsto Q^{-1}BQ$ 下保持不变, 故不妨从一开始就假设 $C=\begin{pmatrix}I_r&O\\O&O\end{pmatrix}$ 是相抵标准型. 设

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

为对应的分块,则

$$AC = \begin{pmatrix} A_{11} & O \\ A_{21} & O \end{pmatrix}, \quad CB = \begin{pmatrix} B_{11} & B_{12} \\ O & O \end{pmatrix}.$$

由 AC = CB 可得 $A_{11} = B_{11}, A_{21} = 0, B_{12} = 0$. 于是

$$|\lambda I_m - A| = |\lambda I_r - A_{11}| \cdot |\lambda I_{m-r} - A_{22}|,$$

 $|\lambda I_n - B| = |\lambda I_r - B_{11}| \cdot |\lambda I_{n-r} - B_{22}|.$

从而 A, B 至少有 r 个相同的特征值 (即 $A_{11} = B_{11}$ 的特征值).

0.1.5 特征值与特征多项式系数的关系

命题 0.11 (特征值与特征多项式系数的关系)

设n阶矩阵A的特征多项式为

$$f(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n.$$

求证: a_r 等于 $(-1)^r$ 乘以 A 的所有 r 阶主子式之和, 即

$$a_r = (-1)^r \sum_{\substack{1 \le i_1 \le i_2 \le \dots \le i_r \le n}} A \begin{pmatrix} i_1 & i_2 & \dots & i_r \\ i_1 & i_2 & \dots & i_r \end{pmatrix}, \quad 1 \le r \le n.$$

进一步, 若设 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 则

$$\sum_{1 \leq i_1 < i_2 < \cdots < i_r \leq n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_r} = \sum_{1 \leq i_1 < i_2 < \cdots < i_r \leq n} A \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ i_1 & i_2 & \cdots & i_r \end{pmatrix}, \quad 1 \leq r \leq n.$$

注 上述结论中最常用的是 r=1 和 r=n 的情形:

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = \operatorname{tr}(A), \quad \lambda_1 \lambda_2 \cdots \lambda_n = |A|.$$

特别地, A 是非异阵的充要条件是 A 的特征值全不为零. 因此, 特征值的计算是判断矩阵是否非异阵的重要依据. 证明 第一种结论是推论??.

由 Vieta 定理可得

$$\sum_{1 \le i_1 < i_2 < \dots < i_r \le n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_r} = (-1)^r a_r = (-1)^r (-1)^r \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_r \\ i_1 & i_2 & \dots & i_r \end{pmatrix}$$

$$= \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_r \\ i_1 & i_2 & \dots & i_r \end{pmatrix} , 1 \le r \le n.$$

因此第二种结论也成立.

例题 0.13 设 n 阶方阵 A 满足

$$A^2 - A - 3I_n = O.$$

求证: $A-2I_n$ 是非奇异阵。

П

🕏 笔记 用特征值判断矩阵非异性.

证明 用反证法。设 $A-2I_n$ 为奇异阵,则 2 是 A 的特征值。注意到 A 适合

$$f(x) = x^2 - x - 3$$

但特征值 2 却不适合 f(x), 这与命题 0.7矛盾。

例题 **0.14** 设 P 是可逆矩阵, $B = PAP^{-1} - P^{-1}AP$, 求证: B 的特征值之和为零.

证明 由特征值与特征多项式系数的关系可知,只要证 tr(B) = 0 即可. 由迹的线性和交换性即得

$$tr(B) = tr(PAP^{-1}) - tr(P^{-1}AP) = tr(A) - tr(A) = 0.$$

例题 0.15 设 n 阶实方阵 A 的特征值全是实数, 且 A 的一阶主子式之和与二阶主子式之和都等于零. 求证: A 是零矩阵.

证明 设 A 的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$, 由条件和特征值与特征多项式系数的关系可知

$$\sum_{i=1}^{n} \lambda_i = \lambda_1 + \lambda_2 + \dots + \lambda_n = 0,$$

$$\sum_{1 \le i < j \le n} \lambda_i \lambda_j = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \dots + \lambda_{n-1} \lambda_n = 0.$$

则

$$\sum_{i=1}^{n} \lambda_i^2 = \left(\sum_{i=1}^{n} \lambda_i\right)^2 - 2 \sum_{1 \le i < j \le n} \lambda_i \lambda_j = 0.$$

由于 λ_i 都是实数, 故 $\lambda_i = 0$ ($1 \le i \le n$) 成立, 再由命题 0.8可知 A 为零矩阵.

例题 0.16 设 $n(n \ge 3)$ 阶非异实方阵 A 的特征值都是实数, 且 A 的 n-1 阶主子式之和等于零. 证明: 存在 A 的一个 n-2 阶主子式, 其符号与 |A| 的符号相反.

 $\overline{\text{ti}}$ 明 设 A 的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$, 由 A 非异可知它们都是非零实数. 再由条件和例 6.24 可知

$$\sum_{1 \le i_1 < i_2 < \dots < i_{n-1} \le n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_{n-1}} = 0.$$

$$(1)$$

将(1)式左边除以 $|A| = \lambda_1 \lambda_2 \cdots \lambda_n$ 可得

$$\sum_{i=1}^{n} \frac{1}{\lambda_i} = 0,\tag{2}$$

将(2) 式左边平方,并将平方项移到等式的右边可得

$$\sum_{1 \le i \le j \le n} \frac{1}{\lambda_i \lambda_j} = -\frac{1}{2} \left(\sum_{i=1}^n \frac{1}{\lambda_i} \right)^2 < 0, \tag{3}$$

将(3)式两边同时乘以 $|A| = \lambda_1 \lambda_2 \cdots \lambda_n$ 可得

$$\sum_{1 \le i_1 < i_2 < \dots < i_{n-2} \le n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_{n-2}} = -\frac{1}{2} \left(\sum_{i=1}^n \frac{1}{\lambda_i^2} \right) |A|. \tag{4}$$

由(4)式和特征值与特征多项式系数的关系可得

$$\sum_{1 \le i_1 < i_2 < \dots < i_{n-2} \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_{n-2} \\ i_1 & i_2 & \dots & i_{n-2} \end{pmatrix} = -\frac{1}{2} \left(\sum_{i=1}^n \frac{1}{\lambda_i^2} \right) |A|,$$

于是 A 的 n-2 阶主子式之和与 |A| 的符号相反, 从而至少存在 A 的一个 n-2 阶主子式, 其符号与 |A| 的符号相反.

结论 设 n 阶方阵 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则对任意的正整数 k, A^k 的特征值为 $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$,于是特征值的 k 次幂和

$$s_k = \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k = \operatorname{tr}(A^k), \quad k \ge 1.$$

若已知 n 阶方阵 A 的迹 $tr(A^k)(1 \le k \le n)$, 则由 Newton 公式可以计算出特征值的初等对称多项式

$$\sigma_r = \sum_{1 \leq i_1 < i_2 < \cdots < i_r \leq n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_r}, \quad 1 \leq r \leq n,$$

从而可以确定特征多项式的系数, 最后便可计算出 A 的所有特征值.

例题 0.17 设 $A \in n$ 阶对合矩阵, 即 $A^2 = I_n$, 证明: n - tr(A) 为偶数, 并且 tr(A) = n 的充要条件是 $A = I_n$.

证明 由 $A^2 = I_n$ 可知 A 的特征值也适合 $x^2 - 1$, 从而只能是 ± 1 . 设 A 的特征值为 $1(p \, \mathbb{1})$, $-1(q \, \mathbb{1})$, 则 p + q = n. 且 tr(A) = p - q, 于是 n - tr(A) = 2q 为偶数. 若 $A = I_n$, 则 tr(A) = n. 反之, 若 tr(A) = n, 则由上述讨论可知 p = n, q = 0, 从而 -1 不是 A 的特征值,即 $A + I_n$ 是非奇阵. 最后由 $A^2 = I_n$ 可得

$$(A - I_n)(A + I_n) = O \Rightarrow A - I_n = O \Rightarrow A = I_n.$$

例题 0.18 设 4 阶方阵 A 满足: $tr(A^k) = k \ (1 \le k \le 4)$, 试求 A 的行列式.

证明 题目条件即为 $s_k = k$ $(1 \le k \le 4)$, 要求 $|A| = \sigma_4$. 根据 Newton 公式 (白皮书这一部分还没看)

$$s_k - s_{k-1}\sigma_1 + \dots + (-1)^k k\sigma_k = 0 \quad (1 \le k \le 4)$$

可依次算出 $\sigma_1 = 1$, $\sigma_2 = -\frac{1}{2}$, $\sigma_3 = \frac{1}{6}$, $\sigma_4 = \frac{1}{24}$. 故 $|A| = \frac{1}{24}$. 也可以直接利用例 5.64(白皮书这一部分还没看) 来计算 σ_4 .

命题 0.12 (幂零矩阵关于迹的充要条件)

求证: n 阶矩阵 A 是零矩阵的充要条件是 $tr(A^k) = 0$ $(1 \le k \le n)$.

证明 设 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$. 若 A 是零矩阵, 则 A 的特征值全为零, 从而 $\operatorname{tr}(A^k) = s_k = 0$ ($k \ge 1$). 若 $s_k = \operatorname{tr}(A^k) = 0$ ($1 \le k \le n$), 则由 Newton 公式 (白皮书这一部分还没看) 或直接利用例 5.64(白皮书这一部分还没看) 可计算出 $\sigma_r = 0$ ($1 \le r \le n$), 于是 A 的特征多项式为 λ^n , 从而 A 的特征值全为零, 再由幂零矩阵关于特征值的充要条件可知 A 为零矩阵.

定义 0.9 (线性变换的迹)

线性变换的迹定义为它在任一组基下的表示矩阵的迹.

笔记 因为矩阵的迹在相似变换下保持不变,并且同一线性变换在不同基下的表示矩阵必相似,所以同一线性变换在任意一组基下的表示矩阵的迹都相同,故线性变换的迹是良定义的.

命题 0.13

设 φ 为 n 维线性空间, λ_0 为 φ 的一个特征值, V_0 为特征值 λ_0 的特征子空间,则存在 V_0 上的一组基,使得 φ 在 V_0 上的限制 φ $|_{V_0}$ 在这组基下的表示矩阵为 dim V_0 阶的对角阵 diag $\{\lambda_0,\lambda_0,\cdots,\lambda_0\}$,从而 tr $(\varphi|_{V_0})$ = λ_0 dim V_0 .

注 因为线性变换的特征子空间一定是不变子空间, 所以线性变换在其特征子空间上做限制后仍是线性变换, 因此线性变换在其特征子空间上的限制是良定义的.

证明 设 x_1 是 φ 属于 λ_0 的特征向量,将其扩充成 V_0 的一组基 $\{x_1, x_2, \cdots, x_r\}$,则 $r = \dim V_0$. 注意到 x_1, x_2, \cdots, x_r 也是 $\varphi|_{V_0}$ 属于 λ_0 的特征向量,从而

$$\varphi|_{V_0}(x_1, x_2, \cdots, x_r) = (\lambda_0 x_1, \lambda_0 x_2, \cdots, \lambda_0 x_r) = (x_1, x_2, \cdots, x_r) \begin{pmatrix} \lambda_0 & & \\ & \lambda_0 & & \\ & & \ddots & \\ & & & \lambda_0 \end{pmatrix}.$$

故 $\varphi|_{V_0}$ 在 $\{x_1, x_2, \dots, x_r\}$ 下的表示矩阵为 $\dim V_0$ 阶对角阵 $\operatorname{diag}\{\lambda_0, \lambda_0, \dots, \lambda_0\}$.

命题 0.14

设 A,B,C 是 n 阶矩阵, 其中 C = AB - BA. 若它们满足条件 AC = CA,BC = CB, 求证: C 的特征值全为零.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

由计算可得 C = AB - BA, ABC = CAB, CBA = BAC, 但 C 的特征值为 1 和 -1。

Ŷ 笔记 从下述的证法一不难看出: 只需要 AC = CA 和 BC = CB 这两个条件中的一个就能证明本题的结论.

证明 证法一: 由 AC = CA 可知, 对任意的正整数 k,

$$C^{k} = C^{k-1}AB - C^{k-1}BA = A(C^{k-1}B) - (C^{k-1}B)A.$$

由迹的线性和交换性可得 $\operatorname{tr}(C^k)=0$ $(k\geq 1)$, 再由幂零矩阵关于迹的充要条件可知 C 为幂零矩阵, 从而 C 的特征 值全为零。

证法二:将 A, B, C 看成是 n 维复列向量空间 V 上的线性变换. 任取 C 的特征值 λ_0 及其特征子空间 V_0 , 由 AC = CA, BC = CB 以及命题**??**可知, V_0 是 A— 不变子空间, 也是 B— 不变子空间. 将等式 C = AB - BA 两边的线性变换同时限制在 V_0 上,可得 V_0 上线性变换的等式 $C|_{V_0} = A|_{V_0}B|_{V_0} - B|_{V_0}A|_{V_0}$. 两边同时取迹, 由迹的线性和交换性及命题 0.13可知

$$\lambda_0 \dim V_0 = \operatorname{tr}(C|_{V_0}) = \operatorname{tr}(A|_{V_0}B|_{V_0}) - \operatorname{tr}(B|_{V_0}A|_{V_0}) = 0,$$

从而 $\lambda_0 = 0$, 结论得证.

 $\dot{\mathbf{L}}$ 上述证法二中, \mathbf{A} , \mathbf{B} , \mathbf{C} 在不变子空间 V_0 上的限制只能理解成线性变换在不变子空间上的限制,而不是矩阵在不变子空间上的限制.

推论 0.3

设 A,B,C 是 n 阶矩阵, 其中 C=AB-BA. 若它们满足条件 AC=CA,BC=CB, 求证: A,B,C 可同时上三角化.

证明 对阶数进行归纳. 由命题 0.14 证法二可知, C 的特征值全为 0, 其特征子空间 V_0 满足

$$A|_{V_0}B|_{V_0} - B|_{V_0}A|_{V_0} = C|_{V_0} = 0,$$

即 $A|_{V_0}, B|_{V_0}$ 乘法可交换. 由命题??可知 $A|_{V_0}, B|_{V_0}$ 有公共的特征向量, 即存在 $0 \neq e_1 \in V_0$, 使得

$$Ae_1 = A|_{V_0}(e_1) = \lambda_1 e_1, Be_1 = B|_{V_0}(e_1) = \mu_1 e_1, Ce_1 = 0.$$

余下的证明完全类似于命题??的证明,请读者自行补充相关的细节.

0.1.6 特征值的估计

定理 0.4 (第一圆盘定理)

设 $A = (a_{ij})$ 是 n 阶矩阵, 则 A 的特征值在复平面的下列圆盘中:

$$|z-a_{ii}| \leq R_i, \ 1 \leq i \leq n,$$

其中
$$R_i = |a_{i1}| + \cdots + |a_{i,i-1}| + |a_{i,i+1}| + \cdots + |a_{in}|$$
.

注 该定理又称为 Gerschgorin 圆盘第一定理, 即戈氏圆盘第一定理. 上述圆盘称为戈氏圆盘. 证明

定理 0.5 (第二圆盘定理)

若 n 阶矩阵 A 的 n 个戈氏圆盘分成若干个连通区域, 其中某个连通区域恰含 k 个戈氏圆盘, 则有且仅有 k 个特征值落在该连通区域内 (若两个圆盘重合应计算重数, 若特征值为重根也要计算重数).

证明

例题 0.19 如果圆盘定理中有一个连通分支由两个圆盘外切组成,证明:每个圆盘除去切点的区域不可能同时包含两个特征值.

证明 设 $A = (a_{ij})$ 为 n 阶矩阵, $D_i : |z - a_{ii}| \le R_i (1 \le i \le n)$ 是 A 的 n 个戈氏圆盘. 不妨设 A 的两个戈氏圆盘 D_1, D_2 外切并组成一个连通分支. 令

$$A(t) = \begin{pmatrix} a_{11} & ta_{12} & \cdots & ta_{1n} \\ ta_{21} & a_{22} & \cdots & ta_{2n} \\ \vdots & \vdots & & \vdots \\ ta_{n1} & ta_{n2} & \cdots & a_{nn} \end{pmatrix},$$

由第一圆盘定理, A(t) 的特征值落在下列圆盘中:

$$tD_i: |z - a_{ii}| \le tR_i, \ 1 \le i \le n.$$

由于当 $0 \le t < 1$ 时, A(t) 的特征值是关于 t 的连续函数, 故 A(t) 的特征值 $\lambda_i(t)$ 从 D_i 的圆心开始, 始终在圆盘 $tD_i(1 \le i \le n)$ 中连续变动. 注意此时 tD_1, tD_2 不相交, 它们是两个连通分支, 于是特征值 $\lambda_i(t)$ 落在 $tD_i(i = 1, 2)$ 中. 最后当 t = 1 时, A 的特征值 $\lambda_1 = \lambda_1(1)$ 落在 D_1 中, 特征值 $\lambda_2 = \lambda_2(1)$ 落在 D_2 中. 因此, λ_1, λ_2 不可能同时落在 D_1 或 D_2 除去切点的区域中.

例题 0.20 设 $A = (a_{ij})$ 为 n 阶矩阵, 证明: 存在正数 δ , 使得对任意的 $s \in (0, \delta)$, 下列矩阵均有 n 个不同的特征值:

$$A(s) = \begin{pmatrix} a_{11} + s & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} + s^2 & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} + s^n \end{pmatrix}.$$

证明 先证当 s 充分大时, A(s) 有 n 个不同的特征值. 由第一圆盘定理, A(s) 的特征值落在下列戈氏圆盘中:

$$D_i: |z - a_{ii} - s^i| \le R_i = \sum_{j=1, j \ne i}^n |a_{ij}|, \ 1 \le i \le n.$$

取 s 充分大, 使得 $s^n \gg s^{n-1} \gg \cdots \gg s$. 注意到 R_i 的值固定, 故 D_i 的圆心之间的距离大于半径 R_i , 从而 D_i 互不相交, 各自构成了一个连通分支. 再由第二圆盘定理, 每个连通分支 D_i 中有且仅有一个特征值, 于是 A(s) 有 n 不同的特征值.