Contents

1	Spa	tial Derivatives	2
	1.1	Definition and elementary properties of spatial deriva-	
		tives	2

Chapter 1

Spatial Derivatives

Spatial derivatives were introduced by A. Connes in [1]. In this chapter, we give an alternative definition (equivalent to that given in [1]) suggested to us by U. Haagerup, based on the notion of the extended positive part of a von Neumann algebra. This definition permits us to obtain very easily some elementary properties of spatial derivatives. After this, we recall their main modular properties and the characterization as (-1)-homogeneous operators.

1.1 Definition and elementary properties of spatial derivatives

Let M be a von Neumann algebra acting on a Hilbert space H, and let ψ be a normal faithful semifinite weight on the commutant M' of M.

We shall use the following standard notation: $n_{\psi} = \{y \in M' | \psi(y^*y) < \infty\}$, H_{ψ} the Hilbert space completion of n_{ψ} with respect to the inner product $(y_1, y_2) \mapsto \psi(y_2^*y_1)$, Λ_{ψ} the canonical injection of n_{ψ} into H_{ψ} , π_{ψ} the canonical representation of M' on H_{ψ} .

Definition 1. For each $\xi \in H$, we denote by $R^{\psi}(\xi)$ the (densely defined) operator from H_{ψ} to H defined by

$$R^{\psi}(\xi)\Lambda_{\psi}(y) = y\xi, y \in n_{\psi}. \tag{1}$$

Proposition 2. For all $\xi, \xi_1, \xi_2 \in H$, $x \in M$, and $y \in M'$ we have

(i)
$$R^{\psi}(\xi_1 + \xi_2) = R^{\psi}(\xi_1) + R^{\psi}(\xi_2)$$
,

(ii)
$$R^{\psi}(x\xi) = xR^{\psi}(\xi)$$
,

(iii)
$$yR^{\psi}(\xi) \subset R^{\psi}(\xi)\pi_{\psi}(y)$$
,

and

$$(i)^* R^{\psi}(\xi_1)^* + R^{\psi}(\xi_2)^* \subset R^{\psi}(\xi_1 + \xi_2)^*,$$

$$(ii)^* R^{\psi}(x\xi)^* = R^{\psi}(\xi)^* x^*,$$

$$(iii)^* \pi_{\psi}(y)R^{\psi}(\xi)^* \subset R^{\psi}(\xi)^*y.$$

Proof. (i) and (ii) are immediate from Definition 1. (iii): For all $z \in n_{\psi}$, we have $yR^{\psi}(\xi)\Lambda_{\psi}(z) = yz\xi = R^{\psi}(\xi)\Lambda_{\psi}(yz) = R^{\psi}(\xi)\pi_{\psi}(y)\Lambda_{\psi}(z)$.

(i)*, (ii)*, and (iii)* follow from (i), (ii), and (iii) using $R^{\psi}(\xi_1) + R^{\psi}(\xi_2) \subset (R^{\psi}(\xi_1) + R^{\psi}(\xi_2))^*$, $(xR^{\psi}(\xi))^* = R^{\psi}(\xi)^*x^*$, and $(y^*R^{\psi}(\xi))^* = R^{\psi}(\xi)^*y^*$.

Definition 3. A vector $\xi \in H$ is called ψ -bounded if the operator $R^{\psi}(\xi)$ is bounded. The set of ψ -bounded vectors is denoted $D(H, \psi)$.

Notation. If $\xi \in D(H, \psi)$, $R^{\psi}(\xi)$ extends to a bounded operator $H_{\psi} \to H$ which we shall also denote $R^{\psi}(\xi)$.

Proposition 4. The set $D(H, \psi)$ is an M-invariant dense subspace of H.

Proof. That $D(H, \psi)$ is an M-invariant subspace of H follows from Proposition 2, i) and (ii). Denote by e the projection onto $\overline{D(H, \psi)}$; then $e \in M'$. Suppose that $e \neq 1$. Then $\psi(1 - e) > 0$. We can write $\psi = \sum_{i \in I} \omega_{\zeta_i, \zeta_i}$ for certain $\zeta_i \in H$. Then for at least one ζ_i , we have $((1 - e)\zeta_i|\zeta_i) \neq 0$ so that $(1 - e)\zeta_i \neq 0$. On the other hand, we have

$$\forall y \in n_{\psi} : ||y\zeta_i||^2 < \psi(y^*y) = ||\Lambda_{\psi}(y)||^2$$

so that $\zeta_i \in D(H, \psi)$ and hence $e\zeta_i = \zeta_i$. This is a contradiction. Hence we must have e = 1 and $D(H, \psi)$ is dense in H.

Let $\xi \in H$. By Proposition 2, (iii)*, $D(R^{\psi}(\xi)^*)$ is invariant under the action of M'. Hence the projection p onto $\overline{D(R^{\psi}(\xi)^*)}$ is in M. Considered as an operator from pH to H_{ψ} , $R^{\psi}(\xi)^*$ is closed and densely defined and hence $\left|R^{\psi}(\xi)^*\right|^2$ exists as a positive self-adjoint operator on pH which by Proposition 2, (iii)*, is affiliated with pMp. We denote by $\theta^{\psi}(\xi,\xi)$ the element of \widehat{M}_+ (the extended positive part of M) associated with the couple $(pH, \left|R^{\psi}(\xi)^*\right|^2)$ as in [7, Example 1.2 and Lemma 1.4], i.e.

Definition 5. For each $\xi \in H$, we denote by

$$\theta^{\psi}(\xi,\xi)$$

the element of \widehat{M}_+ characterized by

$$\forall \eta \in H : \langle \omega_{\eta,\eta}, \theta^{\psi}(\xi, \xi) \rangle = \begin{cases} \left\| R^{\psi}(\xi)^* \eta \right\|^2 & \text{if } \eta \in D(R^{\psi}(\xi)^*) \\ \infty & \text{otherwise} \end{cases}$$
(2)

Remark 6. If $\xi \in D(H, \psi)$, we simply have

$$\theta^{\psi}(\xi,\xi) = R^{\psi}(\xi)R^{\psi}(\xi)^*. \tag{3}$$

Proposition 7. For all $\xi \in H$ and $x \in M$, we have

$$\theta^{\psi}(x\xi, x\xi) = x \cdot \theta^{\psi}(\xi, \xi) \cdot x^*.$$

Proof. For all $\eta \in H$, we have, using Proposition 2, (ii)*, and Definition 5

$$\langle \omega_{\eta,\eta}, \theta^{\psi}(x\xi, x\xi) \rangle = \langle \omega_{x^*\eta, x^*\eta}, \theta^{\psi}(\xi, \xi) \rangle$$
$$= \langle x^* \cdot \omega_{\eta,\eta} \cdot x, \theta^{\psi}(\xi, \xi) \rangle$$
$$= \langle \omega_{\eta,\eta}, x \cdot \theta^{\psi}(\xi, \xi) \cdot x^* \rangle$$

where the last equality simply follows from the definition of the operation $m \mapsto x \cdot m \cdot x^*$ in \widehat{M}_+ .

Recall that by [7, Proposition 1.10], every normal weight φ has a unique extension, also denoted φ , to a normal weight on \widehat{M}_+ .

Definition 8. Let φ be a normal weight on M. We define

$$q_{\varphi}: H \to [0, \infty]$$

by

$$q_{\varphi}(\xi) = \langle \varphi, \theta^{\psi}(\xi, \xi) \rangle, \xi \in H. \tag{4}$$

Proposition 9. Let φ be a normal weight on M. Then q_{φ} is a l.s.c. quadratic form on M, i.e.

(i)
$$\forall \xi_1, \xi_2 \in H : q_{\varphi}(\xi_1 + \xi_2) + q_{\varphi}(\xi_1 - \xi_2) = 2q_{\varphi}(\xi_1) + 2q_{\varphi}(\xi_2),$$

(ii)
$$\forall \xi \in H \forall \lambda \in \mathbb{C} : q_{\varphi}(\lambda \xi) = |\lambda|^2 q_{\varphi}(\xi),$$

(iii) q_{φ} is lower semi-continuous.

Proof. (ii) is immediate. For the proof of (i) and (iii), first suppose that $\varphi = \omega_{\eta,\eta}$ for some $\eta \in H$. Then

$$q_{\varphi}(\xi) = \langle \omega_{\eta,\eta}, \theta^{\psi}(\xi, \xi) \rangle = \begin{cases} \left\| R^{\psi}(\xi)^* \eta \right\|^2 & \text{if } \eta \in D(R^{\psi}(\xi)^*) \\ \infty & \text{otherwise} \end{cases}$$
(5)

Let $\xi_1, \xi_2 \in H$. We shall prove that

$$q_{\varphi}(\xi_1 + \xi_2) + q_{\varphi}(\xi_1 - \xi_2) \le 2q_{\varphi}(\xi_1) + 2q_{\varphi}(\xi_2).$$
 (6)

If either $\eta \in D(R^{\psi}(\xi_1)^*)$ or $\eta \in D(R^{\psi}(\xi_2)^*)$, the right hand side of (6) is $+\infty$ and hence (6) holds. Now suppose that $\eta \in D(R^{\psi}(\xi_1)^*)$ and $\eta \in D(R^{\psi}(\xi_2)^*)$. Then by Proposition 2, (i)*, also $\eta \in D(R^{\psi}(\xi_1 + \xi_2)^*)$ and $\eta \in D(R^{\psi}(\xi_1 - \xi_2)^*)$. Furthermore,

$$\begin{aligned} & \left\| R^{\psi}(\xi_{1} + \xi_{2})^{*} \eta \right\|^{2} + \left\| R^{\psi}(\xi_{1} - \xi_{2})^{*} \eta \right\|^{2} \\ &= \left\| R^{\psi}(\xi_{1})^{*} \eta + R^{\psi}(\xi_{2})^{*} \eta \right\|^{2} + \left\| R^{\psi}(\xi_{1})^{*} \eta - R^{\psi}(\xi_{2})^{*} \eta \right\|^{2} \\ &= 2 \left\| R^{\psi}(\xi_{1})^{*} \eta \right\|^{2} + 2 \left\| R^{\psi}(\xi_{2})^{*} \eta \right\|^{2}. \end{aligned}$$

Thus we have proved (6) in all cases.

By (6) applied to $\xi_1 + \xi_2$ and $\xi_1 - \xi_2$ we get

$$4(q_{\varphi}(\xi_1) + q_{\varphi}(\xi_2)) = q_{\varphi}(2\xi_1) + q_{\varphi}(2\xi_2) \le 2q_{\varphi}(\xi_1 + \xi_2) + 2q_{\varphi}(\xi_1 - \xi_2).$$

In all, we have shown (i).

By (5), we have

$$\langle \omega_{\eta,\eta}, \theta^{\psi}(\xi, \xi) \rangle = \sup\{ \left| (R^{\psi}(\xi)^* \eta | \zeta) \right|^2 | \zeta \in D(R^{\psi}(\xi)), \|\zeta\| \le 1 \}$$

$$= \sup\{ \left| (\eta | R^{\psi}(\xi) \Lambda_{\psi}(y)) \right|^2 | y \in n_{\psi}, \|\Lambda_{\psi}(y)\| \le 1 \}$$

$$= \sup\{ |(\eta | y \xi)|^2 | y \in n_{\psi}, \|\Lambda_{\psi}(y)\| \le 1 \}$$

for all $\xi \in H$. Since each $\xi \mapsto |(\eta | y \xi)|^2$ is continuous, this implies (iii).

Now let φ be an arbitrary normal weight. Then we can write

$$\varphi = \sum_{i \in I} \omega_{\eta_i, \eta_i}$$

and thus (cf. the proof of [7, Proposition 1.10])

$$\forall \xi \in H : q_{\varphi}(\xi) = \langle \varphi, \theta^{\psi}(\xi, \xi) \rangle = \sum_{i=I} \langle \omega_{\eta_i, \eta_i}, \theta^{\psi}(\xi, \xi) \rangle.$$

Now (i) and (iii) follow by the first part of the proof. \Box

Remark 10. Let φ be a normal weight on M. Write

$$Dom(q_{\varphi}) = \{ \xi \in H | q_{\varphi}(\xi) < \infty \}. \tag{7}$$

Then for all $x \in n_{\varphi}$ and $\xi \in D(H, \psi)$, we have

$$x^*\xi \in \text{Dom}(q_{\varphi}). \tag{8}$$

Indeed,

$$q_{\varphi}(x^{*}\xi) = \langle \varphi, \theta^{\psi}(x^{*}\xi, x^{*}\xi) \rangle$$
$$= \langle \varphi, x^{*} \cdot \theta^{\psi}(\xi, \xi) \cdot x \rangle$$
$$\leq \|\theta^{\psi}(\xi, \xi)\| \langle \varphi, x^{*}x \rangle < \infty.$$

In particular, if φ is semifinite then $Dom(q_{\varphi})$ is dense in H (since n_{φ}^* is strongly dense in M).