

planetmath.org

Math for the people, by the people.

Algebraic K-theory

Canonical name AlgebraicKtheory
Date of creation 2013-03-22 13:31:32
Last modified on 2013-03-22 13:31:32

Owner mhale (572) Last modified by mhale (572)

Numerical id 10

Author mhale (572)

Entry type Topic
Classification msc 19-00
Classification msc 18F25
Related topic KTheory

Related topic GrothendieckGroup Related topic StableIsomorphism Algebraic K-theory is a series of functors on the category of rings. Broadly speaking, it classifies ring invariants, i.e. ring properties that are Morita invariant.

The functor K_0

Let R be a ring and denote by $M_{\infty}(R)$ the algebraic direct limit of matrix algebras $M_n(R)$ under the embeddings $M_n(R) \to M_{n+1}(R)$: $a \mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. The zeroth K-group of R, $K_0(R)$, is the Grothendieck group (abelian group of formal differences) of idempotents in $M_{\infty}(R)$ up to similarity transformations. Let $p \in M_m(R)$ and $q \in M_n(R)$ be two idempotents. The sum of their equivalence classes [p] and [q] is the equivalence class of their direct sum: $[p] + [q] = [p \oplus q]$ where $p \oplus q = \operatorname{diag}(p, q) \in M_{m+n}(R)$. Equivalently, one can work with finitely generated projective modules over R.

The functor K_1

Denote by $\operatorname{GL}_{\infty}(R)$ the direct limit of general linear groups $\operatorname{GL}_n(R)$ under the embeddings $\operatorname{GL}_n(R) \to \operatorname{GL}_{n+1}(R) : g \mapsto \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}$. Give $\operatorname{GL}_{\infty}(R)$ the direct limit topology, i.e. a subset U of $\operatorname{GL}_{\infty}(R)$ is open if and only if $U \cap \operatorname{GL}_n(R)$ is an open subset of $\operatorname{GL}_n(R)$, for all n. The first K-group of R, $K_1(R)$, is the abelianisation of $\operatorname{GL}_{\infty}(R)$, i.e.

$$K_1(R) = \operatorname{GL}_{\infty}(R)/[\operatorname{GL}_{\infty}(R), \operatorname{GL}_{\infty}(R)].$$

Note that this is the same as $K_1(R) = H_1(GL_{\infty}(R), \mathbb{Z})$, the first group homology group (with integer coefficients).

The functor K_2

Let $E_n(R)$ be the elementary subgroup of $GL_n(R)$. That is, the group generated by the elementary $n \times n$ matrices $e_{ij}(r)$, $r \in R$, where $e_{ij}(r)$ is the matrix with ones on the diagonals, the value r in row i, column j and zeros elsewhere. Denote by $E_{\infty}(R)$ the direct limit of the $E_n(R)$ using the construction above (note $E_{\infty}(R)$ is a subgroup of $GL_{\infty}(R)$). The second K-group of R, $K_2(R)$, is the second group homology group (with integer coefficients) of $E_{\infty}(R)$,

$$K_2(R) = H_2(\mathcal{E}_{\infty}(R), \mathbb{Z}).$$

Higher K-functors

Higher K-groups are defined using the Quillen plus construction,

$$K_n^{\text{alg}}(R) = \pi_n(B\text{GL}_{\infty}(R)^+), \tag{1}$$

where $B\operatorname{GL}_{\infty}(R)$ is the classifying space of $\operatorname{GL}_{\infty}(R)$. Rough sketch of suspension:

$$\Sigma R = \Sigma \mathbb{Z} \otimes_{\mathbb{Z}} R \tag{2}$$

where $\Sigma \mathbb{Z} = C\mathbb{Z}/J\mathbb{Z}$. The cone, $C\mathbb{Z}$, is the set of infinite matrices with integral coefficients that have a finite number of non-trivial elements on each row and column. The ideal $J\mathbb{Z}$ consists of those matrices that have only finitely many non-trivial coefficients.

$$K_i(R) \cong K_{i+1}(\Sigma R)$$
 (3)

Algebraic K-theory has a product structure,

$$K_i(R) \otimes K_j(S) \to K_{i+j}(R \otimes S).$$
 (4)

References

- [1] H. Inassaridze, Algebraic K-theory. Kluwer Academic Publishers, 1994.
- [2] Jean-Louis Loday, Cyclic Homology. Springer-Verlag, 1992.