Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Inhaltsverzeichnis:

1	F	Allgemeines	
		Einheiten / Potenzen	٠٠
2	ŀ	Hardware	
	2.1	1 Schaltnetze	
	2.2		
	2.3	B Programmablaufplan (PAP)	6
3	ξ	Software	7
	3.1	1 Kontrollstrukturen (Struktogramm, Implementierung, UML)	-
	3.2		
	3.3		
	3.4		
	3.5	5 Sequenzdiagramm 1	1
	3.6	S Sequenzdiagramm 2	12
	3.7	Zustandsdiagramm	1
4		Datenbanken	.14
	4.1	1 Entity-Relationship-Diagram	14
	4.2	Relationen	14
	4.3	B Abfrageformulierung mit SQL	14
5	ľ	Netze	.16
	5.1	1 Netzwerksymbole	16
	5.2	Prouting-Tabelle	16
	5.3	B Aufbau IP-Adresse	17
	5.4	1 ISO-OSI-7-Schichtenmodell	17
	5.5	5 Header	18
6	E	Betriebssysteme	.19
	6.1	1 FAT-Dateisystem	19
	6.2	J	
	6.3	B EXT-Dateisystem	20
	6 4	1 Betriebsmittel-Allokationsgraph	20

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

1 Allgemeines

1.1 Einheiten / Potenzen

Binärpräfixe (IEC-Präfixe zur Basis 2)		Unter-	Dezimalpräfixe (SI-Präfixe zur Basis 10)			
Bezeichnung	Bezeichnung Präfix Wert		schied	Bezeichnung	Präfix	Wert
kibi	Ki	2 ¹⁰ = 1.024	2 %	kilo	k	10 ³ = 1.000
mebi	Mi	$2^{20} = 1.048.576$	5 %	mega	М	$10^6 = 1.000.000$
gibi	Gi	$2^{30} = 1.073.741.824$	7 %	giga	G	10 ⁹ = 1.000.000.000
tebi	Ti	$2^{40} = 1.099.511.627.776$	10 %	tera	Т	10 ¹²
pebi	Pi	2 ⁵⁰	13 %	peta	Р	10 ¹⁵
exbi	Ei	2 ⁶⁰	15 %	exa	Е	10 ¹⁸
zebi	Zi	2 ⁷⁰	18 %	zetta	Z	10 ²¹
yobi	Yi	2 ⁸⁰	21 %	yotta	Υ	10 ²⁴

2 Hardware

2.1 Schaltnetze

NOT (Negation)

$$\begin{array}{c|c} Wahrheitstabelle \\ \hline A & Y \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

NAND

NOR

AND (Konjunktion)

$$Y = A \wedge B$$

 $Y = A \& B$

В	A	Y
0	0	1
Ō	1	1
1	0	1
1	1	0
		1

OR (Disjunktion)

$$Y = A \lor B$$

 $Y = A \# B$

В	A	Y
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = \overline{AVB}$$

$$Y = ! (A \# B)$$

В	A	Y
0	0	1
0	1	0
1	0	0
1	1	0

XOR (Antivalenz)

$$Y = (\overline{A} \land B) \lor (A \land \overline{B})$$

 $Y = (!A \& B) \# (A \& !B)$

В	A	Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR (Äquivalenz)

$$Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$$

$$Y = (!A \& !B) \# (A \& B)$$

Α	Y
0	1
1	0
0	0
1	1
	0 1 0

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Codeumsetzer (Umcodierer)

BCD zu 7 Seg

Vergleicher

Halbaddierer

Volladdierer

Typische Schaltnetze

С	В	A	CS	Y			
x	x	х	1	0			
0	0	0	0	D0			
0	0	1	0	D1			
0	1	0	0	D2			
0	1	1	0	D3			
1	0	0	0	D4			
1	0	1	0	D5			
1	1	0	0	D6			
1	1	1	0	D7			
x =	x ê don't care						

Adress- und Datenleitungen können auch zusammengefasst werden CS = chip select (low active)

DEMUX (1 zu 4) **Decodierer**

В	A	CS	¥3	¥2	Y1	YO
X	X	1	0	0	0	0
0	0	0	0	0	0	S
0	1	0	0	0	S	0
1	0	0	0	s	0	0
1	1	1 0 0 0 0	S	0	0	0

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

7-Segmentanzeige

LED

Schrittmotor

Gleichstrommotor

2.2 Schaltwerke

RS-Latch

	S	R	Qn	Q ⁿ⁺¹	
,	0	0	0	0	anoiahorn
•	0	0	1	1	speichern
•	0	1	0	0	löschen
•	0	1	1	0	- Toschen
	1	0	0	1	
•	1	0	1	1	setzen
	1	1	х	?:	undefiniert

RS-Flip-Flop

T-Flip-Flop

(Taktflanken gesteuert)

Takt	Q ⁿ⁺¹
1	$\overline{\mathbf{Q}^{\mathbf{n}}}$
sonst	Qn

JK-Flip-Flop

(Taktflanken gesteuert)

Takt	J	K	Q^{n+1}
1	0	1	0
↑	1	0	1
↑	1	1	\overline{Q}^n
sonst	x	x	Qn

D-Flip-Flop

(Taktflanken gesteuert)

Takt	D	Q^{n+1}
↑	0	0
↑	1	1
sonst	X	Qn

Taktgenerator

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

RAM

Schreib-Lese-Speicher mit 64 mal 4 Bit

- 4-Bit Registerbreite
- 64 Register gesamt
- A5-A0: Adresseingänge
- D3-D0: Ein-/Ausgabe des Speicherinhalts
- WR=0 → lesen (von D0-D3 in den Speicher)
 WR=1 → schreiben (vom Speicher an D0-D3)
- OE ermöglicht, die Ausgänge in Tri-State zu schalten (OE=1) oder den Speicherinhalt auszulesen (OE=0)
- EN: aktiviert den Baustein (EN=0)

ROM

Festwertspeicher mit 1024 (1KiBi) mal 4 Bit

- A9-A0: Adresseingänge
- OE ermöglicht, die Ausgänge in Tri-State zu schalten (OE=1) oder den Speicherinhalt auszulesen (OE=0)
- EN: aktiviert den Baustein
- Q3-Q0: Wert der Speicherzelle an Adresse A

Schieberegister

- 4-Bit Schieberegister
- Schieben mit der positiven Taktflanke
- CLR setzt das Schieberegister auf 0
- SL Dateneingang bei links schieben
- SR Dateneingang bei rechts schieben
- Modus M:

M	Bedeutung
00	Stop
01	links schieben
10	rechts schieben
11	rechts schieben laden von D3 - D0

Zähler (Blockschaltbild)

- CLR = 0 setzt den Counter auf den Wert 0 zurück
- Q gibt den Zählerzustand aus
- Mit jeder steigenden Flanke an CLK wird der Z\u00e4hlerwert um 1 erh\u00f6ht. Nach dem maximalen Wert beginnt er wieder mit 0.

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Zähler (4-Bit)

- CTR = Zähler
- **DIV 16** \(\hat{a}\) 16 verschiedene binäre Zustände
- UP Umschalter für Vorwärts- (=1) und Rückwärtszähler (=0)
- Mit LOAD = 0 kann ein Anfangszustand geladen werden
- **EN** = 1 und die positive Taktflanke führen zum nächsten Zählzustand

Zustandssymbol

Zustandsübergangsdiagramm

des CTR DIV 4

Zustandsübergangsdiagramm

Zustandsübergangstabelle

		n	n+1
) _	Eingang	aktueller	folgender
	in	Zustand	Zustand
	X	Z0	Z1
	0	Z1	Z1
	1	Z1	Z2
	0	Z 2	Z 0
	1	Z2	Z1
		•	•

Zustandscodierung

mit minimaler Speicherzahl

Zustand	Q1	Q0
Z 0	0	0
Z1	0	1
Z2	1	0

Bei entsprechender Kodierung kann auf das Ausgangsschaltnetz verzichtet werden

Codierte Zustandsübergangstabelle

	1	n	n-	+1
in	Q1	Q0	Q1	Q0
х	0	0	0	1
0	0	1	0	1
1	0	1	1	0
0	1	0	0	0
1	1	0	0	1

Funktionstabelle Ausgangsschaltnetz

Q1	Q0		В	С
0	0	1	1	0
0	1	0	1	1
1	0	0	1	0

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

2.3 Programmablaufplan (PAP)

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3 Software

Zuweisung	Code (C-Notation)	
dieVariable ← derAusdruck	dieVariable = derAusdruck;	
dieVariable := derAusdruck		
Sequenz		
Anweisung1 Anweisung2 Anweisung3 Auswahl	Anweisung1; Anweisung2; Anweisung3;	Sequenzdiagramm
		- Joquonzalagramm
Bedingung erfüllt ja nein Anweisung(en)	<pre>if (Bedingung) { Anweisung(en); }</pre>	opt [Bedingung]
Bedingung erfüllt ia nein Anweisung(en)1 Anweisung(en)2	if (Bedingung) { Anweisung(en)1; } else	alt [Bedingung]
wahr falsch Anweisung(en)1 Anweisung(en)2	Anweisung(en)2;	alt [Selektor = Fall 1]
Selektor =	switch (Selektor) { case Fall1: Anweisung1; break; case Fall2: Anweisung2; break; case Fall3: Anweisung3: break; default: Anweisung4; }	[Selektor = Fall 2] [Selektor = Fall 3] [else]
Wiederholung (Iteration)	ı	[11
Schleife mit Eintrittsbedingung solange Bedingung erfüllt Anweisungen(en)	while (Bedingung) { Anweisung(en); }	loop [Bedingung]
Anweisung(en) solange Bedingung erfüllt	do { Anweisung(en); }	loop
Zählschleife ür i:=0 bis n, Schritt: +1 Anweisung(en)	while (Bedingung); for (i=0; i<=n; i=i+1) { Anweisung(en); }	[Bedingung] loop [für i:=0 bis n, Schritt: +1]
Schleife mit Abbruchmöglichkeit ür i:=n bis 0, Schritt: -1	for (i=n; i>=0; i=i-1) {	loop [für i:=n bis 0, Schritt: -1]
logischer Ausdruck wahr falsch	if (logischer Ausdruck) break;	break [logischer Ausdruck]

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.2 Klassen, Datentypen und Notationen

Klasse

Analysesichten

Klasse

AbstrakteKlasse	
abstrakteOperation()	

AbstrakteKlasse {abstract}
abstrakteOperation() {abstract}

Bedeutung Datentypen und Abkürzungen

Boolsches Attribut: Boolean, bool GZ, Integer, int Ganzzahlattribut: FKZ, Real, double Fließkommaattribut: Zeichenattribut: Zeichen, char Textattribut: Text, string Währungsattribut: Geld, currency Datumsattribut: Datum, date Zeitattribut: Zeit, time

> (auch Basisdatentypen der Programmiersprachen sind erlaubt)

Designsicht

Klasse
- privatesAttribut:Typ {Zusicherung}
geschütztesAttribut:Typ
geschütztesAttributMitAnfangswert:Typ = Anfangswert
- feldAttribut1[0maxldx]:Typ
- feldAttribut2[anzElemente]:Typ
- feldAttribut3:Typ[anzElemente]
<u>klassenAttribut:Typ</u>/ abgeleitetesAttribut:Typ
31
+ Klasse() «constructor»
+ Klasse(parameter:Typ) «constructor»
+ ~Klasse() «destructor»
+ operation(parameter:Typ) + operation1(parameter:Typ):Ergebnistyp[]
+ operation2(parameter1:Typ1, parameter2:Typ2)
+ operation2(parameter1:Typ1=Wert):Ergebnistyp
- privateOperation()
geschützteOperation()
+ öffentlicheOperation()
+ klassenOperation():Typ

Attribute

Die Variablen einer Klasse heißen Attribute. Der Bezeichner eines Attributs beginnt in der UML mit einem Kleinbuchstaben.

Operationen

Die Funktionen bzw. Prozeduren der Programmiersprache heißen in der UML Operationen. Der Bezeichner einer Operation beginnt in der UML mit einem Kleinbuchstaben.

Bezeichner von Operationen sollen mit einem Verb beginnen.

Notation

<optionale Bestandteile> in spitzen Klammern

Attribut

privat

protected

geschützt

public

öffentlich

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.3 Klassendiagramm, Vererbung, Assoziation, Polymorphie, Objektdiagramm

Vererbung SuperKlasse alternativ: **SuperKlasse** Generalisierung SubKlasse1 SubKlasse2 SubKlasse1 SubKlasse2 Spezialisierung **Assoziation** Multiplizität, Kardinalität Rollenname2 Rollenname1 Klasse1 Klasse2 **Klasse** genau 1 Multiplizitäten Leserichtung Klasse genau 2 Beziehungsname Klasse1 Klasse2 Navigation nicht spezifiziert **Klasse** 0 oder 1 **Klasse** 0 bis viele Klasse1 Klasse2 gerichtete Assoziation 3 bis viele **Klasse** Klasse1 Klasse2 einFeld[] bidirektionale Assoziation **Klasse** Multiplizität = Anzahl der möglichen Objekte Assoziation zu 12 Objekten, Kardinalität = Anzahl der tatsächlichen Objekte realisiert über ein Feld

Polymorphie

Objektdiagramm

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.4 Beispiele

Beispielklassendiagramme

Klassendiagramm 3-Schichtenarchitektur

Klassendiagramm mit temporärer Assoziation

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.5 Sequenzdiagramm 1

Sequenzdiagramm mit Botschaft

Erzeugen und Zerstören

Abweichend vom UML2-Standard dürfen im Sequenzdiagramm die Objektnamen auch unterstrichen werden

Selbstdelegation und wechselseitige Botschaft

Alternative Darstellung

Alternative und Option

objekt1 objekt2 op1() alt [x>0] op4() opt [z>=0] op5() [else] op3()

Mehrfachauswahl

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.6 Sequenzdiagramm 2

Die innerhalb des Iterationsfragments liegenden Nachrichten werden abhängig von der Iterationsbedingung wiederholt

Schleife mit Abbruch

Die Operation op1() durchsucht das Feld objekt[] solange bis ein Objekt die Antwort antwort<0 zurückliefert oder an alle Objekte des Felds die Nachricht op2() gesendet wurde. Falls ein Objekt objekt[i] die Antwort antwort<0 geliefert hatte, wird die Nachricht op3 () an das Objekt objekt[i] gesendet.

objekt2

[solange aX>0]

Iterations-

bedingung

op2() aX=op2()

Für die Darstellung von Teilszenarien

op1()

"Gefundene Nachricht"

Nachricht, bei welcher der Sender nicht spezifiziert ist

op1()

"Verlorene Nachricht"

Nachricht, bei welcher der Empfänger nicht spezifiziert ist

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

3.7 Zustandsdiagramm

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)	
Formelsammlung	1.5.2 Informationstechnik	

4 Datenbanken

4.1 Entity-Relationship-Diagram

4.2 Relationen

ER-Diagramm

Relationenschreibweise

Angestellter(PersNr, Name, Vorname, AbtNr) Abteilung(**AbtNr**, Bezeichnung)

fett = Primärschlüssel, unterstrichen = Fremdschlüssel

4.3 Abfrageformulierung mit SQL

Projektion und Formatierung Auswahl aller Spalten einer Tabelle

Syntax: SELECT FROM <Tabelle> Auswahl mehrerer Spalten einer Tabelle Syntax: SELECT <Spalte1>, <Spalte2>, ... FROM <Tabelle> Auswahl ohne mehrfaches Auftreten desselben Tupels SELECT DISTINCT <Spalte> Syntax: <Tabelle> FROM Umbenennen von Spalten bei der Ausgabe Syntax: SELECT <Spalte> AS <neuer Spaltenname> FROM <Tabelle> Sortierung

Syntax:

SELECT <Spalte>

FROM <Tabelle>

ORDER BY <Spalte> {DESC | ASC}

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

Selektion

Syntax: SELECT <Spalte>

FROM <Tabelle> WHERE <Bedingung>

Hinweis: WHERE Klausel definiert die auszuwählenden Zeilen

Vergleichsoperatoren: = , <> , > , < , >= , <= Leere Einträge: IS [NOT] NULL Logische Operatoren: AND, OR, NOT

Weitere Operatoren: LIKE '_ ... %', BETWEEN ... AND ..., [NOT] IN ('Wert1',

'Wert2', ...)

Verbund von Tabellen

Einfacher Equijoin mit zwei Tabellen (Natural Join)

Syntax: SELECT <Spalte1>, <Spalte2>, ...

FROM <Tabelle1>, <Tabelle2>

WHERE <Join-Bedingung>

Hinweis: Tabellennamen können in der FROM-Komponente durch Aliase abgekürzt

werden.

Beispiel: SELECT a.<Spalte1>, b.<Spalte2>, ...

FROM <Tabelle1> a , <Tabelle2> b

WHERE a.ID = Tb.ID

INNER JOIN mit zwei Tabellen

Syntax: SELECT a.<Spalte1>, b.<Spalte2>, ...

FROM FROM Tabelle1 a INNER JOIN Tabelle2 b

ON a.Spalte1 = b.Spalte2

Aggregatfunktionen und Gruppen

Hinweis: NULL-Werte werden vor der Auswertung einer Aggregatfunktion eliminiert.

Syntax: SELECT SUM (<Spalte>)

FROM <Tabelle>

Funktionen: SUM(...), COUNT(...), AVG(...), MAX(...), MIN(...)

Gruppenbildung in SQL-Anfragen

In den vorangegangenen Beispielen wurden die Aggregatfunktionen immer auf eine ganze Tabelle angewandt. Daher bestand das Abfrageergebnis immer nur aus einem Tupel. In SQL ist es aber auch möglich, eine Tabelle zu gruppieren, d.h. die Tupel einer Tabelle in Gruppen einzuteilen, und dann die Aggregatfunktionen jeweils auf die Gruppen anzuwenden.

Syntax: SELECT <SpalteX>, <Aggregatfunktion (<Spalte>) AS <Spaltenname>>

FROM <Tabelle>

Bedingungen mit Funktionen

Syntax: SELECT <Spalte>, <Aggregatfunktion>

FROM <Tabelle>
WHERE <Bedingungen>
GROUP BY <Spalte>

HAVING <Aggregatfunktion> <VerglOp> <Wert>

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)	
Formelsammlung	1.5.2 Informationstechnik	

5 Netze

5.1 Netzwerksymbole

5.2 Routing-Tabelle

Die Routingtabelle des Router R2 sieht folgendermaßen aus:

Netzadresse	Subnetzmaske	Gateway
141.91.7.0	/30	*
10.1.0.0	/16	*
192.168.1.0	/24	10.1.0.253
0.0.0.0	0.0.0.0	141.91.7.2

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

5.3 Aufbau IP-Adresse

```
IP-Adresse (dotted-decimal-format): z.B. 177
                                               17
                                                          223
IP-Adresse (binär):
                                10110001.00010001.11011111.00000001
                               8 Bit = 1 Oktett
                                               32 Bit = 4 Bytes
IP-Adresse z.B.
                  192.168. 2 . 1 → 11000000.10101000.00000001.00000001
Netzmaske z.B. /24 = 255.255.255.255.0 \Rightarrow 111111111.111111111.11111111.000000000
                  192.168. 2 . 0 ← 11000000.10101000.00000001.00000000
Netz-ID
Host-ID
                   0.0.0.1 \leftarrow 00000000.00000000.00000000.00000001
Alle Host-ID-Bits = 0: Netz-Adresse, hier 192.168.2.0
Alle Host-ID-Bits = 1: Broadcast-Adresse, hier 192.168.2.255
```

5.4 ISO-OSI-7-Schichtenmodell

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

5.5 Header

Ethernet II

Präambel	Zieladresse	Absenderadresse	Тур	Daten	Link Trailer
8	6	6	2	461500	4

IP-Header

Byte		Inhalt	
0	Version	IHL	
1	TOS		
2-3	Paketlänge		
4-5	Identifikation		
6	Flags	Fragmentabstand	
7	Fragmentabstand		
8	Time To Live (TTL)		
9	Protokoll		
10-11	Kopf-Prüfsumme		
12-15	IP-Sendeadresse		
16-19	IP-Empfängeradresse		
20	Optionen (mit evtl. Füllzeichen		

TCP -Header

Byte	Inhalt					
0-1	Source Port	Source Port				
2-3	Destination Port					
4-7	Sequenznummer					
8-11	Quittungsfeld (Piggy	Quittungsfeld (Piggyback, Acknowledgement Number)				
12	Header-Länge			reservi	ert	
13	reserviert	reserviert URG ACK PSH RST SYN FIN				
14-15	Fenster Größe	Fenster Größe				
16-17	Prüfsumme					
18-19	Urgent Zeiger					
20	Optionen (evtl. mit Füllzeichen)					

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)	
Formelsammlung	1.5.2 Informationstechnik	

6 Betriebssysteme

6.1 FAT-Dateisystem

Alle Cluster einer Datei sind über FAT-Einträge verkettet, hier FAT16: (0 = leerer Cluster, FFF7 = schadhafter Cluster, FFFF = letzter Cluster einer Datei)

Beispiel: (Die Nummer des Startclusters steht im Verzeichnis mit Dateiverwaltungsinformationen)

Clusterbelegung: Datei 1: 2 - 5 - 6

Datei 2: 3 - 7 - 10

6.2 NTFS-Dateisystem

Überblick (MFT Master File Table)

	Verwaltungs- informationen	Variabler Datenbereich	MFT	Variabler Datenbereich	Kopie der MFT	Variabler Datenbereich
--	-------------------------------	---------------------------	-----	---------------------------	---------------------	---------------------------

MFT-Eintrag-Eintrag einer kleinen Datei

Datei-Verwaltungs-	Datenbereich
Informationen	

MFT-Eintrag-Eintrag einer großen Datei (Beispiel)

Abiturprüfung ab 2019	Berufliches Gymnasium (TG)
Formelsammlung	1.5.2 Informationstechnik

6.3 EXT-Dateisystem

Überblick

6.4 Betriebsmittel-Allokationsgraph

