Exercice 1.

$$\begin{array}{ll} \bullet & \text{Calculons} \lim_{x \to -\infty} 5x^2 - 4x + 1 \\ \lim_{x \to -\infty} 5x^2 = +\infty \\ \lim_{x \to -\infty} -4x + 1 = +\infty \end{array} \right\} \overset{\text{par somme des limites}}{\Longrightarrow} \quad \lim_{x \to -\infty} 5x^2 - 4x + 1 = +\infty.$$

2 Calculons $\lim_{x \to -\infty} x^3 \left(x^2 - \frac{1}{r} \right)$:

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} x^3 = -\infty$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} x^2 - \frac{1}{x} = +\infty$$

$$\Rightarrow \lim_{\substack{x \to -\infty \\ x \to -\infty}} x^3 \left(x^2 - \frac{1}{x} \right) = -\infty.$$

Calculons
$$\lim_{\substack{x \to 5 \ x > 5}} \frac{1 - 2x}{5 - x}$$

$$\lim_{\substack{x \to 5 \ x > 5}} 1 - 2x = -9$$

$$\lim_{\substack{x \to 5 \ x > 5}} 5 - x = 0 \quad \text{avec} \quad 5 - x < 0$$

$$\implies \qquad \lim_{\substack{x \to 5 \ x > 5}} \frac{1 - 2x}{5 - x} = +\infty.$$

 $\bullet \text{ Calculons } \lim_{x \to -\infty} \frac{-3x^2}{1 + 2x^2}$

On a une forme indéterminée du type $\frac{\infty}{\infty}$ donc on change d'écriture. Pour tout réel x > 0,

$$\frac{-3x^2}{1+4x^2} = \frac{x^2 \times (-3)}{x^2 \left(\frac{1}{x^2} + 4\right)}$$
$$= \frac{-3}{\frac{1}{x^2} + 4}$$

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to -\infty} \frac{1}{x^2} + 4 = 4}} \frac{-3}{x^2} = -3 \text{ Donc } \lim_{x \to +\infty} \frac{-3x^2}{1 + 4x^2} = -\frac{3}{4}.$$

6 Calculons $\lim_{x \to -\infty} 4x + 1 - \cos(x)$

cos n'ayant pas de limite à l'infini, on encadre.

 $\forall x \in \mathbb{R}, -1 \leqslant \cos(x) \leqslant 1 \text{ donc } -1 \leqslant -\cos(x) \leqslant 1 \text{ puis } Ax \leqslant 4x + 1 - \cos(x) \leqslant 4x + 2.$ Or $\lim_{x\to -\infty} 4x + 2 = -\infty$ donc d'après le théorème de comparaison des limites :

$$\lim_{x \to -\infty} 4x + 1 - \cos(x) = -\infty$$

G Calculons
$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} 4x + 1 - \cos(x) = -6$$

$$\lim_{x \to +\infty} -x^2 = -\infty$$

$$\lim_{x \to +\infty} e^{-x^2} = 0$$

$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x^2} = -\infty$$

$$\lim_{\substack{x \to 0 \\ x < 0}} e^X = 0$$

$$\lim_{\substack{x \to 0 \\ x < 0}} e^X = 0.$$

$$\lim_{\substack{x \to 0 \\ x < 0}} e^{-\frac{1}{x^2}} = 0.$$

Calculons $\lim_{x\to 5} \frac{3x^2-15x}{x-5}$. On a une forme indéterminée du type $\frac{0}{0}$ donc on change d'écriture. Pour tout réel $x\neq 5$, $\frac{3x^2-15x}{x-5}=\frac{3x(x-5)}{x-5}$ donc $\frac{3x^2-15x}{x-5}=3x$. $\lim_{x\to 5} 3x=15$ donc $\lim_{x\to 5} \frac{3x^2-15x}{x-5}=15$.

Exercice 2.

- 1. $f_1(x) = (x^3 4x^2 + 2x + 1)^5$ sur $I = \mathbb{R}$. Pour tout réel x, $f_1'(x) = 5(3x^2 - 8x + 2)(x^3 - 4x^2 + 2x + 1)^4$.
- 2. $f_2(x) = \sqrt{x^2 + e^x}$ sur $I = \mathbb{R}$. Pour tout réel x, $f'_2(x) = \frac{2x + e^x}{2\sqrt{x^2 + e^x}}$.
- 3. $f_3(x) = e^{2x^3 9x^2 + 5x + 4}$ sur $I = \mathbb{R}$. Pour tout réel x, $f_3'(x) = (6x^2 - 18x + 5)e^{2x^3 - 9x^2 + 5x + 4}$.

Exercice 3.

- $\lim_{x\to +\infty} f(x) = 6$ donc la droite d'équation y=6 est asymptote horizontale à \mathscr{C}_f au voisinage de $+\infty$.
- $\lim_{\substack{x\to 0\\x<0}} f(x) = +\infty$ et $\lim_{\substack{x\to 0\\x>0}} f(x) = -\infty$ donc la droite d'équation x=0 est asymptote verticale à \mathscr{C}_f .

Exercice 4.

Soit f une fonction définie sur $]-\infty$; 0[telle que pour tout réel x<0,

$$3 - \frac{1}{x} \leqslant f(x) \leqslant 3 + \frac{1}{x}$$

- 1. On a $\lim_{x\to -\infty} 3-\frac{1}{x}=\lim_{x\to -\infty} 3+\frac{1}{x}=3$ donc d'après le théorème d'encadrement des limites : $\lim_{x\to -\infty} f(x)=3$.
- 2. $\lim_{\substack{x \to -\infty \\ -\infty}} f(x) = 3$ donc la droite d'équation y = 3 est asymptote horizontale à \mathscr{C}_f au voisinage de

Exercice 5.

Voir exercice 3 de révisions...quasiment le même.