PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-037655

(43)Date of publication of application: 07.02.1990

(51)Int.Cl.

H01J 37/305 H01L 21/027

(21)Application number: 01-137321

(71)Applicant: SIEMENS AG

(22)Date of filing:

29.05.1989

(72)Inventor: BENECKE WOLFGANG

SCHNAKENBERG UWE

LISCHKE BURKHARD

(30)Priority

Priority number: 88 3818535

Priority date: 31.05.1988

Priority country: DE

(54) MANUFACTURE OF CONTROL PLATE FOR LITHOGRAPHY DEVICE

(57)Abstract:

PURPOSE: To obtain a control plate having deflection elements of the number corresponding to the numbers of semiconductor layers and particle probes by making thickness of a photoresist layer to which the dimension and arrangements of deflection elements are transferred exceed the height of the deflection elements and filling a recessed part made in this layer up to a desired height of the deflection elements by electrodeposition.

CONSTITUTION: A control plate is mainly constituted of a single crystal semiconductor substrate 1 provided with a window 10 for passing particle probes 14, 14' generated from a multiple radiation source and deflection elements 9 and 9' of the corresponding number. The deflection elements 9, 9' of the control plate are attached to each of particle probes 14, 14' and the deflection elements 9, 9' deflect the particle probes 14, 14' individually. To form deflection elements 9, 9' and bond pads 7, 7' and to connect them with a semiconductor substrate 1 coated with dielectric 2, a lithography method and electrodeposition

forming technique are used and working is performed by control voltage because the heights of the deflection elements 9, 9' are several 10µm. Thus, the control plate having the deflection elements of the number matching with the numbers of semiconductor layer and particle probes can be formed.

LEGAL STATUS

[Date of request for examination]

Searching PAJ Page 2 of 2

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

® 公開特許公報(A) 平2-37655

®Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成2年(1990)2月7日

H 01 J 37/305 H 01 L 21/027 7013-5C

8831-5F H 01 L 21/30 7376-5F 3 4 1 B 3 5 1

審査請求 未請求 請求項の数 4 (全5頁)

60発明の名称

リングラフイ装置用制御板の製造方法

②特 願 平1-137321

20出 願 平1(1989)5月29日

優先権主張

劉1988年5月31日劉西ドイツ(DE)到P3818535.0

⑩発 明 者 ウオルフガング、ベネ

ドイツ連邦共和国ベルリン30、ジギスムントシュトラーセ

5

⑩発 明 者 ウベ、シュナーケンベ

ドイツ連邦共和国ベルリン21、ビルケンシュトラーセ10

ルク

⑩発 明 者 ブルクハルト、リシユ

ドイツ連邦共和国ミュンヘン82、インデアホイルス13

ケ

の出 願 人 シーメンス、アクチエ

ドイツ連邦共和国ベルリン及ミユンヘン(番地なし)

ンゲゼルシヤフト

四代 理 人 弁理士 富 村 潔

明細書

1. 発明の名称 リソグラフィ装置用制御板の 製造方法

2. 特許請求の範囲

多数の粒子プローブ(14、14、)で付勢される制御板が、粒子プロープ(14、14)を通すための切欠部(10)を備えた半導体層(2)及び粒子プロープ(14、14)の数と一致する数の偏向素子(9、9)を有する形式のリソグラフィ装置用の制御板を製造する方法において、

半導体基板 (1) の表面に第1 誘電層 (2) をまたその背面に第2 誘電層 (3) を設け、 金属層 (4) を第1 誘電層 (2) 上に折出 させ、

第2誘電暦(3)を半導体基板(1)に製造すべきスルーホール(10)の寸法に相応 して構造化し、

製造すべき偏向素子 (9、9°) の寸法及 び配置を金属暦 (4) 上に施されたフォトレ ジスト層 (8)上にリソグラフィで転写し、その際フォトレジスト層 (8)の厚さが偏向素 子 (9)の高さを上回るようにし、

フォトレジスト層 (8) 中に作られた凹部 を偏向素子 (9) の所望の高さまで電着によ り満たし、

フォトレジスト暦 (8)を除去し、

半導体基板 (1) の背面をエッチング処理することによりスルーホール (10) を形成し、

スルーホール (10) の範囲内の金属層 (4) 及び第1 誘電層 (2) をエッチング処理により除去する

ことを特徴とするリソグラフィ装置用制御板の製造方法。

 多数の粒子プロープ(14、14[°])で付 勢される制御板が、粒子プローブ(14、14[°])を通すための切欠部(10)を備えた 半導体層(2)及び粒子プローブ(14、14[°])の数と一致する数の偏向業子(9、9[°]) を有する形式のリソグラフィ装置用の制御板 を製造する方法において、

半導体基板 (1) の表面に第1誘電層 (2) をまたその背面に第2誘電層 (3) を設け、

金属層 (4) を第1誘電層 (2) 上に折出させ、

第2 誘電層 (3) を半導体基板 (1) に製造すべきスルーホール (10) の寸法に相応して構造化し、

金属層を第1中間層(11)及び第2中間 層(12)で覆い、その際第1中間層(11) の厚さが形成すべき偏向素子(9)の高さを 上回るようにし、

製造すべき偏向素子(9)の寸法及び形状を第2中間層(12)上に施されたフォトレジスト層(5)上にリソグラフィにより転写し、

フォトレジスト層 (5) の構造をエッチング処理により第1及び第2中間層 (11、12) に転写し、

御板が、粒子プロープを通すための切欠部を備えた半導体層(ダイアフラム)及び粒子プロープの数と一致する数の偏向素子を有する形式の、リソグラフィ装置用の制御板を製造する方法に関する。 (従来の技術)

米国特許第4724328号明細書からリソグ
ラフィ装置(電子ピーム記録器)は公知であり、
その電子光学柱状体は多数の個々に偏向可能の電子プローブを得るための開口絞りを有する。欧州
特許出願公開第191439号明細書に詳述されている開口絞りは主として列状の多穿孔構造を有するシリコンのダイアフラムからなり、その表面には偏向単位として作用する電極系が配置されている。

(発明が解決しようとする課題)

本発明の課題は、多数の粒子プローブで付勢される制御板が半導体層及び粒子プローブの数に相応する数の偏向素子を有する形式の、リソグラフィ装置用の制御板を製造する方法を提供することにある。

第1中間層 (11) 中に形成された凹部を、 偏向素子 (9) の高さまで電着により満たし、 フォトレジスト層 (5) 及び中間層 (11、 12) を除去し、

スルーホール (10) を半導体基板の異方性エッチングによりウエハの背面に形成し、

スルーホール(10)の範囲内の第1誘電 暦(2)と金属暦(4)をエッチング処理に より除去する

ことを特徴とするリソグラフィ装置用制御板の製造方法。

- 3) 半導体落板(1)がシリコンからなり、このシリコンが(1,0,0)配向を有することを特徴とする請求項1又は2記載の方法。
- 4) 半導体基板(1)がシリコンからなり、このシリコンが(1, 1, 0)配向を有することを特徴とする請求項1又は2記載の方法。
- 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、多数の粒子プローブで付勢される制

(課題を解決するための手段)

この課題は本発明によれば特許請求の範囲の請求項1及び2に記載した方法によって解決される。 請求項3及び4は本発明方法の有利な実施態機を示すものである。

(発明の効果)

本発明により得ることのできる利点は特に、本 発明方法により製造された偏向素子がマイクロエ レクトロニクス分野で通常に用いられる制御電圧 で付勢され得ることである。

(実施例)

次に本発明を図面に基づき詳述する。

第1図に略示した制御板は主として、多放射源から発せられる粒子プローブ 14、14 を適すための窓 10及び相応する数の偏向業子 9、9 (これはポンド・パッド 7、7 及び接続導体を介して、電子又はイオンビームリソグラフィ装置の制御信号発生エレクトロニクスに接続されている)を備えた単結晶半導体装板 1 からなる。多放射源としては特に、制御板の上方に配置されかつ

大衷面の一次粒子ピームで付勢される、切欠部を 有する絞りが考慮される。粒子プローブ14、1 4 の各々には制御板の偏向素子9、9 が所属 し、これによりその都度の粒子プローブ14、1 4 を個別に偏向し、場合によっては帰線消去す ることができる(当該粒子プローブを光線路内で 制御板の下方に配置された紋りに偏向させる)。 偏向素子9、9′及び場合によっては強化された ポンド・パッド7、7 を製造しまた誘電体2で 被覆された半導体基板1に接続させるには、リソ グラフィ法及び電着成形技術を使用することが好 ましく、この場合リソグラフィは製造すべき構造 体の寸法及び形状との関連においてUV又はシン クロトロン光線で実施する。偏向素子9、9°の 高さは、数10μm、特に10~100μmであ り、従ってマイクロエレクトロニクスでの通常の 制御電圧で加工することができる。

第1図に示した制御板を製造する方法は本発明 においては次の処理工程を含む (第2図参照)。

半週体基板 ! 例えば (1, 0, 0) 又は (1,

- 1, 0) 配向を有するシリコン上への、第1 誘 電暦 2 例えば窒化珪素又は酸化珪素層の折出 (第2 図a、 b)、
- 基板下面への第2 誘電層3、例えば窒化珪素 又は酸化珪素の析出(第2図b)、
- 誘電層2への、金属製電気めっき出発層4、 例えばクロム・金又はチタン・金層の折出(第 2 図 c)、
- 電気めっき出発層4に遠心塗布されたフォトレジスト層5への、接続導体及びボンド・パッド7、7 の寸法及び形状のリソグラフィ転写(第2図4)、
- 接続導体7の電気めっき補強及びフォトレジ スト暦5の除去(第2図e、「)、
- フォトレジスト暦 8 でのウェハ表面の被覆(・ その厚さは形成すべき偏向素子 9 の所望の高さ

よりも大きい)(第2図g)、

- フォトレジスト暦8への、偏向素子9の寸法及び形状のリソグラフィ転写(第2図h)、
- フォトレジスト暦8に製造された凹部の、偏向素子9の所望の高さまでの電気めっきによる 充城(第2図h)、
- フォトレジスト層8の除去(第2図i)、
- 基板スルーホール 10を得るための、ウエハ 背面での半導体基板 1の温式化学的異方性エッチング(第2図j)、
- スルーホール10の範囲内での誘電層2及び電気めっき出発層4のエッチング(第2図」)。本発明の別の方法によれば、偏向素子9は三層技術を使用することによっても製造することができる。この処理は第3図に基づき説明する工程を含み、この場合には第2図(に示した構造体から出発する。
- レジスト又はプラスチック11(例えばポリ イミド)でのウエハ表面の被覆(この厚さは、 これが形成すべき偏向素子9の高さを上回るよ

うに構成する)(第3図a、b)、

- 第2中間層!2、例えば窒化・アルミニウム 又は珪素の堕布(第3図b)、
- 中間暦12上に遠心塗布されたフォトレジスト暦5への、偏向素子9の寸法及び形状のリソグラフィ転等(第3図b、c)、
- 中間隔11及び12のエッチング(構造化)(第3図d)、
- 第1中間層11内に製造された凹部の、偏向 素子9の所望の高さまでの電気めっきによる充 域(第3図e)、
- フォトレジスト層 5 及び中間層 1 1 及び 1 2の除去(第3図()、
- スルーホール 1 0 を得るための、ウェハ背面 での基板 1 の温式化学的異方性エッチング(第 3 図 g)、
- スルーホール 1 0 の範囲内での誘電層 2 及び電気めっき出発層 4 のエッチング(第3図8)。
- 4. 図面の簡単な説明

第1図は製造すべき制御板の略示図、第2図及

び第3図は制御板を製造するための処理工程図で

ある.

] … 半導体基板

2、3…誘電層

4 … 金旗層

5、6…フォトレジスト厚

7、7 * …ポンド・パッド

8…フォトレジスト暦

9、9"…偏向素子。

10…スルーホール

11、12…中間層

14、14 ~ …粒子プロープ

FIG 1

(6118) 代現人 光理士 高村 (西)

FIG 2

