Plan du cours

I.	Notion de vecteurs		
	1.	Translations et vecteurs	1
	2.	Egalité de deux vecteurs	2
	3.	Vecteurs particuliers	3
H.	Opérations sur les vecteurs		4
	1.	Somme de deux vecteurs	4
	2.	Produit d'un vecteur par un réel	6
	3	Colinéarité de deux vecteurs	7

Chapitre 4: Vecteurs (Partie 1)

I. Notion de vecteurs

1. Translations et vecteurs

Définition

On dit que D est l'image de C par **la translation qui transforme A en B** lorsque le quadrilatère ABDC est un parallélogramme (éventuellement aplati).

A cette translation on associe le vecteur \overrightarrow{AB} et on dit que cette translation est **une translation de vecteur** \overrightarrow{AB} .

Exercice: Tracer l'image du triangle ABC par la transaltion de vecteur \overrightarrow{MN} .

Définition

Un vecteur \overrightarrow{AB} est caractérisé par :

- sa direction : celle de la droite (AB)
- son sens : celui de A vers B
- sa longueur que l'on appelle sa norme : la longueur AB du segment [AB] soit sa norme $||\overrightarrow{AB}||$.

Remarque:

- A est l'origine du vecteur \overrightarrow{AB}
- B est l'extrémité du vecteur \overrightarrow{AB}

Exercice:

1) Tracer le vecteur \overrightarrow{EO} .

2) Tracer le vecteur $-\overrightarrow{OF}$.

3) Construire M l'image du point \overrightarrow{EO} .

4) Construire N l'image du point

D par le le vecteur $-\overrightarrow{OF}$.

2. Egalité de deux vecteurs

Définition

Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} non nuls **sont égaux** lorsquils ont :

- la même direction (les droites (AB) et (CD) sont parallèles)
- le même sens (on va de A vers B comme on va de C vers D.)
- la même norme (les longueurs AB et CD sont égales).

On note alors $\overrightarrow{AB} = \overrightarrow{CD}$.

Exercice: ABEF, BCDE et ABDE sont des parallélogrammes.

1) Citer les vecteurs égaux aux vecteurs \overrightarrow{AB} et \overrightarrow{FA} .

 \overrightarrow{AB} Nommer le représentant du vecteur d'origine B.

Nommer le représentant du vecteur \overrightarrow{FE} d'origine G.

Chapitre 4: Vecteurs (Partie 1)

Propriété

• Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si **ABDC** est un parallélogramme (éventuellement aplati).

- $\overrightarrow{AB} = \overrightarrow{AC}$ si et seulement si B = C.
- K est le milieu du segment [AB] si et seulement si $\overrightarrow{AK} = \overrightarrow{KB}$

3. Vecteurs particuliers

Le vecteur nul

Un vecteur nul est un vecteur dont l'origine et l'extrémité sont confondues. $\overrightarrow{0} = \overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{EE}$

Opposé d'un vecteur

L'opposé d'un vecteur non nul \overrightarrow{v} , qu'on note $-\overrightarrow{v}$, est le vecteur qui a la même direction et la même norme que v, mais qui est de sens contraire à \overrightarrow{v} .

3

Remarque:

- L'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} .
- L'opposé du vecteur nul $\overrightarrow{0}$.

Exercice:

Sur la figure ci-contre, placer les points

- L tel que
$$\overrightarrow{AL} = -\overrightarrow{u}$$

- M tel que
$$\overrightarrow{BM} = -\overrightarrow{V}$$

- K tel que
$$\overrightarrow{BK} = \overrightarrow{KA}$$

II. Opérations sur les vecteurs

1. Somme de deux vecteurs

Exercice: Dans chacun des cas de la figure suivante, construire en rouge le vecteur \overrightarrow{w} d'origne A tel que $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$

• Avec la relation de Chasles

Définition

La somme de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur associé à la translation résultant de lenchaînement des translations de vecteur \overrightarrow{u} et de vecteur \overrightarrow{v} .

On note ce vecteur $\overrightarrow{u} + \overrightarrow{v}$.

Propriété

Pour tous points A, B et C du plan, on a : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. Cette égalité s'appelle **la relation de Chasles**.

Chapitre 4: Vecteurs (Partie 1)

<u>Cas particulier</u>: pour tous points A et B: $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$

On admet alors que la somme de deux vecteurs opposés est égale au vecteur nul.

Par la construction d'un parallèlogramme (ou par la règle du parallélogramme

On définit les points A, B et C tels que : $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$. Soit D le point tel que ABDC soit un parallélogramme, alors : $\overrightarrow{AD} = \overrightarrow{w}$.

 $\overrightarrow{u} + \overrightarrow{V} = \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD}$ car ABDC est un parallélogramme donc $\overrightarrow{AC} = \overrightarrow{BD}$ Ainsi, d'après la relation de Chasles : $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$

Propriété

Soit ABDC un parallélogramme. On a $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$

Exercice: ABCD est un rectangle de centre O. Les points I, J et K sont les milieux respectifs des segments [AB], [AD] et [BC].

Compléter les égalités suivantes :

- 1) En utilisant la relation de Chasles :
- (a) $\overrightarrow{JI} = \overrightarrow{J} + \overrightarrow{O}$.

- (b) $\overrightarrow{AC} = \overrightarrow{I} + \overrightarrow{I}$ (c) $\overrightarrow{D} = \overrightarrow{K} + \overrightarrow{C}$ (d) $\overrightarrow{AJ} + \overrightarrow{KC} = \overrightarrow{AJ} + \dots = \dots$

2) En utilisant la règle du parallélogramme :

(a)
$$\overrightarrow{AB} + \overrightarrow{A} = \overrightarrow{AC}$$

(b)
$$\overrightarrow{AJ} + \overrightarrow{AI} = \dots$$

(b)
$$\overrightarrow{AJ} + \overrightarrow{AI} = \dots$$
 (c) $\overrightarrow{BK} + \dots = \overrightarrow{BO}$

2. Produit d'un vecteur par un réel

Exercice: Construire les vecteurs demandés à partir du vecteur \overrightarrow{u} .

Définition

 \overrightarrow{u} désigne un vecteur non nul et k un réel non nul.

Le produit du vecteur \overrightarrow{u} par le réel k est le vecteur noté $k \overrightarrow{u}$ tel que :

- \overrightarrow{u} et \overrightarrow{k} ont la même direction
- $k\overrightarrow{u}$ a **le même sens** que $k\overrightarrow{u}$ si k>0, autrement si k<0, $k\overrightarrow{u}$ a **le sens contraire** de \overrightarrow{u}
- $k\overrightarrow{u}$ a pour norme $|k| \times ||\overrightarrow{u}||$

<u>Exercice</u>: Soient A et B deux points distincts. Tracer les points N et Q tels que $\overrightarrow{MN} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{PQ} = -\frac{1}{2}\overrightarrow{AB}$

3. Colinéarité de deux vecteurs

Définition

On dit que deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} **sont colinéaires** lorsqu'il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Autrement dit, deux vecteurs non nuls sont colinéaires lorsqu'ils ont sont colinéaires.

Exemple : Dans l'exercice précédent, on avait que $\overrightarrow{MN} = \frac{3}{4}\overrightarrow{AB}$ et $\overrightarrow{PQ} = -\frac{1}{2}\overrightarrow{AB}$.

Les vecteurs \overrightarrow{MN} et \overrightarrow{AB} sont colinéaires.

De même, les vecteurs \overrightarrow{PQ} et \overrightarrow{AB} sont colinéaires.

Remarque:

Par convention, on dit que le vecteur nul est colinéaire à tout vecteur.

Propriété

- Deux droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires
- Trois points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

- 1) Placer les points D et E sur la figure ci-dessous.
- 2) Exprimer le vecteurs \overrightarrow{BC} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 3) Exprimer le vecteur \overrightarrow{DE} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- **4)** En déduire que les droites (DE) et (BC) sont parallèles.