

Introdução ao Processamento Digital de Imagem MC920 / MO443

Prof. Hélio Pedrini

Instituto de Computação UNICAMP

http://www.ic.unicamp.br/~helio

Roteiro

- Dimensionalidade dos Dados
- Maldição da Dimensionalidade
- Redução da Dimensionalidade
- 4 Análise de Componentes Principais
- 6 Apêndice

Dimensionalidade dos Dados

• Conforme visto anteriormente, uma representação de dados comum é:

$$\mathbf{D} = \begin{bmatrix} & X_1 & X_2 & \dots & X_d \\ \hline \mathbf{x}_1 & X_{11} & X_{12} & \dots & X_{1d} \\ \mathbf{x}_2 & X_{21} & X_{22} & \dots & X_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & X_{n1} & X_{n2} & \dots & X_{nd} \end{bmatrix}$$

em que x_i é a *i*-ésima linha e uma *d*-tupla dada por:

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})$$

e X_j denota a j-ésima coluna e uma n-tupla dada por:

$$X_j = (x_{1j}, x_{2j}, \ldots, x_{nj})$$

Dimensionalidade dos Dados

- ullet O número de instâncias ou amostras n é chamado de tamanho do conjunto dos dados.
- ullet O número de atributos ou características d é chamado de dimensionalidade dos dados.

Dimensionalidade dos Dados

- Conjuntos de dados tipicamente podem ter um grande número de atributos.
- A redução de dimensionalidade visa diminuir o número de atributos de um conjunto de dados.
- Benefícios da redução de dimensionalidade:
 - Redução da complexidade de tempo computacional.
 - ▶ Redução da complexidade de espaço de armazenamento.
 - ▶ Eliminação de atributos redundantes ou irrelevantes.
 - Geração de modelo mais simples e mais compreensível.
 - Visualização mais intuitiva.

- O termo maldição da dimensionalidade foi introduzido pelo matemático americano Richard Bellman.
- A maldição da dimensionalidade refere-se ao fenômeno que surge ao se analisar dados em espaços de alta dimensionalidade (tipicamente, centenas ou milhares de dimensões).
- Muitas abordagens de análise de dados tornam-se significativamente mais complexos com o aumento da dimensionalidade dos dados.

- Quando a dimensionalidade aumenta, os dados se tornam cada vez mais esparsos no espaço que eles ocupam.
- Para um problema de classificação, isto significa que não há objetos de dados suficientes para permitir a criação de um modelo que atribua, de forma confiável, uma classe a todos os objetos possíveis.
- Como consequência, muitos algoritmos de agrupamento e classificação apresentam problemas em termos de eficácia e eficiência.

• Um hipercubo 4D (básico) é difícil de imaginar.

À medida que a dimensionalidade aumenta, os dados tornam-se progressivamente esparsos no espaço em que ocupam.

10 dados 1 dimensão: 5 regiões

À medida que a dimensionalidade aumenta, os dados tornam-se progressivamente esparsos no espaço em que ocupam.

10 dados 2 dimensões: 25 regiões

À medida que a dimensionalidade aumenta, os dados tornam-se progressivamente esparsos no espaço em que ocupam.

10 dados 3 dimensões: 125 regiões

À medida que a dimensionalidade aumenta, os dados tornam-se progressivamente esparsos no espaço em que ocupam.

1 dimensão: 10/5 = 2 dados / intervalo 2 dimensões: 10/25 = 0.4 dados / intervalo 3 dimensões: 10/125 = 0.08 dados / intervalo

- O problema da maldição da dimensionalidade pode tornar a noção de distância entre pontos do espaço essencialmente inútil.
- Portanto, estratégias baseadas em distância (por exemplo, distância Euclidiana) podem não funcionar.

- Possível solução:
 - Aumentar o tamanho do conjunto de treinamento para atingir uma densidade suficiente de dados de treinamento.
 - Infelizmente, a quantidade de dados de treinamento necessária para atingir uma determinada densidade cresce exponencialmente com o número de dimensões.

Algumas técnicas para reduzir a dimensionalidade dos dados são:

- Seleção de Atributos ou Características:
 - Processo que escolhe um subconjunto ótimo de atributos de acordo com uma função objetivo.

$$[X_1,X_2,\ldots,X_d] \underset{k \ll d}{\longrightarrow} [X_{i_1},X_{i_2},\ldots X_{i_k}]$$

- Extração de Atributos ou Características:
 - Ao invés de escolher um subconjunto de atributos, define novas dimensões em função de todos os atributos do conjunto original.

$$[X_1, X_2, \ldots, X_d] \underset{k \ll d}{\longrightarrow} [Z_1, Z_2, \ldots Z_k] = f([X_{i_1}, X_{i_2}, \ldots X_{i_k}])$$

Seleção de Características:

- Muitas características são redundantes ou irrelevantes ao problema.
- Tais características podem reduzir o desempenho do algoritmo em questão.
- Muitas características podem ser eliminadas por meio de senso comum ou conhecimento do domínio.
- Entretanto, selecionar o melhor subconjunto de características normalmente requer uma abordagem sistemática.

Seleção de Características:

- Atributos irrelevantes individualmente podem ser úteis em conjunto.
- Nem sempre os melhores k atributos, segundo algum critério de ordenação, constituem o melhor subconjunto:
 - Atributos devem ser não correlacionados.
 - O melhor subconjunto é o mais complementar.

Seleção de Características:

- A abordagem ideal é experimentar todos os subconjuntos possíveis de características como entrada para o algoritmo de aprendizado de máquina e então selecionar o subconjunto que produza os melhores resultados.
- Infelizmente, este processo é computacionalmente proibitivo, já que o número de subconjuntos envolvendo *d* atributos é 2^{*d*} (crescimento exponencial).

Duas técnicas automáticas comuns para a seleção de características são:

- Abordagens de Filtros.
- Abordagens de Envoltório.

- Abordagens de Filtros:
 - As características são selecionadas antes que o algoritmo de aprendizado de máquina seja executado, usando alguma abordagem que seja independente da tarefa de agrupamento ou classificação.
 - Por exemplo, pode-se selecionar conjuntos de atributos cuja correlação de pares seja tão baixa quanto possível.
 - A saída da abordagem é o conjunto de atributos por ela selecionados.
 - Entretanto, atributos considerados relevantes por um filtro não necessariamente são úteis para diferentes famílias de algoritmos de aprendizado.

- Abordagens de Envoltório:
 - ▶ Elas geram um subconjunto candidato de atributos, executa o algoritmo de aprendizado com apenas esses atributos no conjunto de treinamento e usa a precisão do classificador extraído para avaliar o subconjunto de atributos em questão.
 - Este processo é repetido para cada subconjunto candidato, até que o critério de parada seja satisfeito.
 - O algoritmo de aprendizado é responsável por conduzir a busca por um subconjunto adequado de atributos.
 - A qualidade de um subconjunto candidato é avaliada utilizando o próprio algoritmo de aprendizado como uma caixa-preta.

Estratégias:

- Busca para Frente:
 - A busca é iniciada sem atributos e os mesmos são adicionados um a um.
 - Cada atributo é adicionado isoladamente e o conjunto resultante é avaliado segundo um critério.
 - ▶ O atributo que produz o melhor critério é incorporado.
- Busca para Trás
 - ▶ Inicia-se com todo o conjunto de atributos, eliminando um atributo a cada passo.

Processo iterativo:

- Pode-se requerer, por exemplo, que a medida de avaliação não apenas cresça a cada passo, mas que ela cresça mais do que uma determinada constante.
- Alguns critérios de parada são:
 - Parar de remover ou adicionar atributos quando nenhuma das alternativas melhorar o desempenho do classificador.
 - Continuar gerando subconjuntos de atributos até que um extremo do espaço de busca seja alcançado e escolher o melhor desses subconjuntos.
 - Ordenar os atributos segundo algum critério e utilizar um parâmetro para determinar o ponto de parada, por exemplo, o número de atributos desejado no subconjunto.

Outros métodos de busca:

- Busca bidirecional.
- Busca aleatória.
- Busca melhor-primeiro.
- Busca tabu (metaheurística).
- Algoritmos evolutivos.

Extração de Características:

- Todos os atributos dos dados originais são usados.
- Os atributos são transformados ou combinados em um conjunto reduzido de características melhor representativo, segundo algum critério.
- Esse mapeamento normalmente é uma função dependente do problema.

$$\underbrace{\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{bmatrix} \longrightarrow \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_k \end{bmatrix}}_{Z=f(X)} = \underbrace{\begin{bmatrix} W_{11} & W_{12} & \dots & W_{1d} \\ W_{21} & W_{12} & \dots & W_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ W_{k1} & W_{k2} & \dots & W_{kd} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{bmatrix}}_{W \cdot X}$$

Extração de Características:

- Os dados no espaço original d-dimensional são projetados em um espaço de menor dimensão.
- Espera-se que o conjunto resultante da transformação preserve informação relevante para a tarefa desejada.
- Exemplos de técnicas:
 - Análise de Componentes Principais.
 - ► Análise de Componentes Independentes.
 - ► Redução Dimensional Não-Linear.
 - Escala Multidimensional (IsoMap e FastMap).

- Método¹ criado por Karl Pearson em 1901.
- Utiliza uma transformação ortogonal para converter um conjunto de observações de variáveis, possivelmente correlacionadas, em um conjunto de valores de variáveis linearmente não correlacionadas.
- As variáveis linearmente não correlacionadas são chamadas de componentes principais.
- A transformação é definida de forma que a primeira componente principal tenha a maior variância possível (ou seja, é responsável pelo máximo de variabilidade nos dados) e, cada componente seguinte, por sua vez, tenha a máxima variância sob a restrição de ser ortogonal (ou seja, não correlacionado) às componentes anteriores.

 $^{^{1}}$ Em inglês, a técnica é conhecida como Principal Component Analysis (PCA).

- Se apenas as primeiras componentes principais forem mantidas, a dimensionalidade dos dados transformados é reduzida.
- Tornou-se popular para a redução de dimensionalidade de dados.
- Possibilita encontrar uma aproximação dos dados originais utilizando um conjunto menor de atributos.
- Sua operação auxilia a identificação das dimensões que exibem as maiores variações em um conjunto de dados.

• Dado um conjunto D com n instâncias e d atributos, uma transformação linear do conjunto de atributos (X_1, X_2, \ldots, X_d) para um novo conjunto de atributos (Z_1, Z_2, \ldots, Z_d) pode ser calculada como:

$$Z_{1} = a_{11}X_{1} + a_{21}X_{2} + \dots + a_{d1}X_{d}$$

$$Z_{2} = a_{12}X_{1} + a_{22}X_{2} + \dots + a_{d2}X_{d}$$

$$\vdots = \vdots$$

$$Z_{d} = a_{1d}X_{1} + a_{2d}X_{2} + \dots + a_{dd}X_{d}$$

- As componentes principais Z_i são tipos específicos de combinações lineares escolhidas de tal modo que sejam não correlacionadas (independentes).
- Em geral, apenas algumas das primeiras componentes principais são responsáveis pela maior parte da variabilidade do conjunto de dados.

- A análise de componentes principais pode ser reduzida ao problema de encontrar os autovalores e autovetores da matriz de covariância (ou correlação) do conjunto de dados.
- A proporção da variância do conjunto de dados originais explicada pela i-ésima componente principal é igual ao i-ésimo autovalor dividido pela soma de todos os d autovalores.
- Ou seja, as componentes principais s\(\tilde{a}\) ordenadas decrescentemente de acordo com os autovalores.
- Quando os valores dos diferentes atributos estão em diferentes escalas, pode-se utilizar a matriz de correlação ao invés da matriz de covariância.

• Dada a matriz de dados $\mathbf{X} = D \in \mathbb{R}^{n \times d}$, centralizamos os pontos para que fiquem com média zero:

$$x'_{ij}=x_{ij}-\overline{x}_j$$

em que \overline{x}_i é a média dos valores do atributo j.

• A matriz de covariância dos atributos pode ser calculada como:

$$\Sigma = X'X'^T$$

em que $\Sigma \in \mathbb{R}^{d \times d}$. O elemento i, j dessa matriz representa a correlação entre o atributo i e o atributo j. A diagonal indica a variância do respectivo atributo.

• Dessa matriz de covariância, pode-se extrair um total de d autovalores (λ) e autovetores (\mathbf{V}) tal que:

$$\mathbf{\Sigma} \cdot \mathbf{V} = \lambda \cdot \mathbf{V} \quad \Rightarrow \quad \lambda = \mathbf{V}^{-1} \cdot \mathbf{\Sigma} \cdot \mathbf{V}$$

- Se ordenarmos decrescentemente todos os autovetores conforme os autovalores, tem-se que:
 - ► Cada autovetor *i* representa a *i*-ésima direção de maior variação.
 - ▶ O autovalor correspondente quantifica essa variação.
- Cada autovetor representa uma combinação linear dos atributos originais de tal forma a capturar a variação descrita pelo autovalor.
- Basicamente, a matriz de autovetores é uma base de dados após rotação que captura a variação em ordem crescente.
- Se um autovalor for muito pequeno, significa que n\u00e3o existe varia\u00e7\u00e3o naquele eixo e, portanto, ele pode ser descartado.
- Imagine um problema de classificação utilizando apenas uma variável x_j com variância baixa. É fácil perceber que tal variável não tem poder discriminatório pois, para toda classe, ela apresenta um valor muito similar.

• De posse da matriz $\mathbf{V} \in \mathbb{R}^{d \times k}$ dos k primeiros autovetores com um valor significativo de λ , é possível transformar a matriz de dados centralizada \mathbf{X}' com:

$$\hat{\mathbf{X}} = \mathbf{V}^T \cdot \mathbf{X}'$$

- Isso transforma a matriz \mathbf{X}' em uma matriz $\hat{\mathbf{X}} \in \mathbb{R}^{n \times k}$ com k < d.
- A projeção corresponde a uma transformação de rotação. Portanto, para retornar novamente aos dados, basta fazer:

$$\mathbf{X}' = \mathbf{V} \cdot \hat{\mathbf{X}}$$

Ilustração dos principais passos da análise de componentes principais:

- Identificação do hiperplano que está mais próximo dos dados.
- Projeção dos dados para o hiperplano.
- As direções que contêm a maior variação dos dados são determinadas.
- Essas direções, chamadas de componentes principais, são ordenadas conforme valor de variação.
- As componentes principais são ortogonais (perpendiculares) entre si.

- Para reduzir de 2 dimensões para 1 dimensão:
 - ▶ Encontre uma direção (um vetor) que minimiza o erro da projeção dos dados.

- Para reduzir de *n*-dimensões para *k*-dimensões:
 - ▶ Encontre *k* vetores que minimizam o erro da projeção dos dados.

Redução da Dimensionalidade

Gráfico da fração da variância geral dos dados calculada para cada autovalor (componente principal) da matriz de covariância.

Algoritmo:

- Entrada: matriz **X** de dados $(n \times d)$, em que cada linha é um vetor x_i .
- Saída: matriz $\hat{\mathbf{X}}$ $(n \times k)$.
- 1. Calcular as médias das colunas (dimensões) de \mathbf{X} , formando o vetor de médias $\overline{\mathbf{X}}$.
- 2. Subtrair o vetor $\overline{\mathbf{X}}$ de cada linha de \mathbf{X} , formando a matriz \mathbf{X}' .
- 3. Calcular a matriz de covariância Σ de X'.
- Calcular e ordenar, descrescentemente pelos autovalores, os autovetores v_i de Σ, formando a matriz V dos autovetores.
- 5. Selecionar os k primeiros autovetores em \mathbf{V} , formando \mathbf{V}_k .
- 6. Calcular a matriz $n \times k$ dos dados de saída $\hat{\mathbf{X}} = \mathbf{V}_k^T \mathbf{X}'$.

Vantagens:

- Alto poder de representação.
- Redução do custo de armazenamento.
- Fácil implementação.
- Robusta e largamente estudada.

Desvantagens:

- Assume apenas relações lineares entre os atributos.
- A interpretação dos atributos transformados torna-se mais difícil, pois seu significado original é alterado.
- Nem sempre é fácil determinar o valor de k.
- Não considera as classes das amostras (não é ótima para classificação).

Aplicações:

- Reconhecimento de faces.
- Reconstrução de imagens.
- Compressão de dados.
- Visualização de dados multidimensionais.

Análise de Componentes Principais com Núcleo

- Esta técnica² é uma extensão da Análise de Componentes Principais para permitir o uso de transformações não lineares (chamadas de núcleos).
- Essa transformação mapeia o espaço original dos dados para um novo espaço de atributos, de maior dimensionalidade, de forma que passem a ser linearmente separáveis.
- A análise de componentes principais é então implicitamente aplicada nesse espaço de maior dimensão, o qual não é linearmente relacionado ao espaço original.

²Em inglês, a técnica é conhecida como Kernel PCA.

Análise de Componentes Independentes

- A técnica³ utiliza a informação mútua (conceito semelhante à entropia) entre as componentes para torná-las maximamente independentes.
- Portanto, a informação mútua entre as componentes resultantes é zero.
- Não impõe restrição de ortogonalidade.
- Assim como na análise de componentes principais, a interpretação dos atributos transformados não é simples.
- Uma aplicação comum é a separação de sinais de áudio.

³Em inglês, a técnica é conhecida como Independent Component Analysis (ICA).

Mapeamento Topológico Localmente Linear

- Preserva⁴ relações de vizinhança dos dados de entrada quando mapeados para um espaço de baixa dimensão.
- Cada ponto é expresso como uma combinação linear de pontos vizinhos.
- A reconstrução de cada ponto é realizada a partir dos seus vizinhos por meio de pesos apropriados.
- Esses pesos capturam as propriedades geométricas intrínsecas das vizinhanças locais.

⁴Em inglês, a técnica é conhecida como Locally Linear Embedding (LLE).

Escalonamento Multidimensional Métrico

- Método⁵ de redução de dimensionalidade linear.
- Visa encontrar uma projeção dos dados em um espaço de dimensão menor que preserve as distâncias entre pares de pontos tão bem quanto possível.
- No modelo geométrico procurado, quanto maior a distância observada ou dissimilaridade entre duas observações (ou menor a similaridade), mais afastados devem estar os pontos que as representam no modelo espacial.
- Assume-se normalmente que a distância entre os pontos no modelo espacial é Euclidiana.

⁵Em inglês, a técnica é conhecida como Multidimensional Scaling (MDS).

Mapeamento Não Linear de Sammon

- Similar ao Escalonamento Multidimensional Métrico, entretanto, esta técnica⁶ utiliza uma função de custo com um fator inversamente proporcional à distância nos dados de entrada.
- Dessa forma, a preservação de distâncias longas é menos importante do que a preservação de distâncias mais curtas.
- Nenhuma hipótese é feita em relação a qual tipo de função distância utilizar, embora a distância Euclidiana seja geralmente escolhida.
- Método muito utilizado para visualização bidimensional de dados multivariados.

⁶Em inglês, a técnica é conhecida como Sammon Mapping.

FastMap

- Método de mapeamento de pontos em um espaço dimensional por um conjunto de eixos, em que cada eixo é definido por um par de pontos (pivôs) mais afastados obtidos do conjunto de dados.
- Para encontrar pontos mais afastados entre si, seria necessário computar as distâncias entre cada par de pontos, resultando em um algoritmo de complexidade quadrática pelo número de cálculos de distância.
- O método utiliza uma heurística para encontrar os pares de pontos cujas distâncias são próximas àquelas dos pontos mais distantes, levando a um algoritmo de complexidade linear.
- A aplicação da função de distância Euclidiana permite que as projeções dos pontos possam ser calculadas utilizando a lei dos cossenos.
- Intuitivamente, o método trata cada distância entre pares de pontos como uma mola, buscando rearranjar as posições dos pontos de forma a minimizar as deformações na mola.

Mapeamento Isométrico (IsoMap)

- Método de redução de dimensionalidade não linear que usa a distância por grafos como uma aproximação para a distância geodésica.
- Pode ser visto como uma generalização do método de Escalonamento Multidimensional Métrico.
- Uma diferença entre eles é que o IsoMap utiliza distância por grafos, enquanto que o método de Escalonamento Multidimensional Métrico utiliza distância Euclidiana.
- Tal diferença torna o método IsoMap não linear.
- Pontos de alta dimensionalidade próximos são mapeados mais perto, enquanto pontos de alta dimensionalidade distantes são mapeados mais longe, de acordo com a distância geodésica.
- Método de redução de dimensionalidade apropriado quando os dados possuem relacionamento complexo e não linear entre si.

Mapas Auto-Organizáveis

- Tipo de rede neural artificial baseada em aprendizado competitivo e não supervisionado⁷.
- Método de redução de dimensionalidade não linear que busca a preservação de topologia do espaço original, ou seja, procura fazer com que neurônios vizinhos no arranjo apresentem vetores de pesos que considerem as relações de vizinhança entre os dados.
- Capaz de mapear um conjunto de dados em um conjunto finito de neurônios organizados em um arranjo normalmente unidimensional ou bidimensional.
- As relações de similaridade entre os neurônios podem ser observadas por meio de relações estabelecidas entre os vetores de pesos dos neurônios.
- Os neurônios competem para representar cada dado, tal que o neurônio vencedor tem seu vetor de pesos ajustados na direção do dado.

⁷Em inglês, a técnica é conhecida como Self-Organizing Maps (SOM).

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Técnica não linear para redução de dimensionalidade que é particularmente adequada para a visualização de conjuntos de dados de alta dimensão.
- Distâncias Euclidianas em alta dimensionalidade entre pontos são convertidas para probabilidades condicionais que representam similaridades.
- A similaridade entre dois pontos x_i e x_j é a probabilidade condicional, $P(x_j \mid x_i)$, de que o ponto x_i escolheria o ponto x_j como seu vizinho se os vizinhos fossem selecionados em proporção à sua densidade de probabilidade sob uma distribuição normal centrada em x_i .

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Se os pontos mapeados y_i e y_j corretamente modelarem a similaridade entre os pontos de alta dimensionalidade x_i e x_j , as probabilidades condicionais $P_1(x_j \mid x_i)$ e $P_2(x_j \mid x_i)$ serão iguais.
- A partir dessa observação, a técnica visa encontrar uma representação de baixa dimensionalidade que minimiza a diferença entre essas probabilidades condicionais (ou similaridades).
- A técnica minimiza a soma das divergências de Kullback-Leibler sobre todos os pontos de dados utilizando um método de gradiente descendente.
- A variância da distribuição normal utilizada para calcular as similaridades no espaço de maior dimensão é definida a partir de um hiper-parâmetro da técnica, chamado de perplexidade (valor definido pelo usuário), que pode ser interpretado pela quantidade de vizinhos muito próximos que cada ponto tem.

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Diferenças entre Análise de Componentes Principais e t-SNE

- A técnica t-SNE é computacionalmente cara e pode demandar muito mais tempo de execução do que a Análise de Componentes Principais.
- Análise de Componentes Principais é uma técnica determinística, enquanto t-SNE é uma técnica probabilística.
- Redução de dimensionalidade não linear (como realizada pela técnica t-SNE) pode representar relacionamentos complexos de atributos que nem sempre são possíveis com algoritmos lineares (como Análise de Componentes Principais).

Dados bidimensionais

X_1	X_2
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2.0	1.6
1.0	1.1
1.5	1.6
1.1	0.9

Subtração da média

X_1'	X_2'
0.69	0.49
-1.31	-1.21
0.39	0.99
0.09	0.29
1.29	1.09
0.49	0.79
0.19	-0.31
-0.81	-0.81
-0.31	-0.31
-0.71	-1.01

Gráfico dos dados originais:

• Matriz de covariância:

$$\mathbf{\Sigma} = \left[\begin{array}{cc} 0.6166 & 0.6154 \\ 0.6154 & 0.7166 \end{array} \right]$$

Autovalores e Autovetores:

$$\mathbf{U} = [0.0491 \ 1.2840]$$

$$\mathbf{V} = \left[\begin{array}{cc} -0.7352 & -0.6779 \\ 0.6779 & -0.7352 \end{array} \right]$$

 Vetor de características: construído a partir dos autovetores que desejam ser mantidos, formando uma matriz com esses autovetores nas colunas:

Vetor de Características =
$$[v_1, v_2, \dots, v_n]$$

• Se dois autovetores forem mantidos, o vetor de características é:

$$\begin{bmatrix} -0.6779 & -0.7352 \\ -0.7352 & 0.6779 \end{bmatrix}$$

• Se um autovetor for mantido, o vetor de características é:

$$\begin{bmatrix} -0.6779 \\ -0.7352 \end{bmatrix}$$

Dados transformados com dois autovetores

\hat{X}_1	\hat{X}_2
-0.8279	-0.1751
1.7775	0.1428
-0.9921	0.3843
-0.2742	0.1304
-1.6758	-0.2094
-0.9129	0.1752
0.0991	-0.3498
1.1445	0.0464
0.4380	0.0177
1.2238	-0.1626

Dados transformados com um autovetor

• Geração do novo conjunto de dados:

$$\hat{X} = \text{Vetor de Características}^T \cdot X'$$

• Recuperação dos dados originais:

$$\hat{X} = \text{Vetor de Características}^T \cdot X'$$

$$\hat{X} = \text{Vetor de Características}^{-1} \cdot X'$$

$$X' =$$
Vetor de Características $\cdot \hat{X}$

$$X = X' + \overline{X}$$

Análise de Componentes Principais (Compressão de Imagens)

- A técnica de análise de componentes principais pode ser aplicada no contexto de processamento de imagens.
- Manter apenas algumas das componentes principais pode resultar em uma imagem de menor qualidade, entretanto, que requer menor capacidade de armazenamento.
- A técnica é aplicada separadamente em cada banda de cor, cujos valores de intensidade estão no intervalo entre 0 e 255.
- Considerando apenas algumas componentes principais, a imagem colorida é gerada novamente.

Análise de Componentes Principais (Compressão de Imagens)

Alguns resultados da compressão de uma imagem mantendo-se diferentes números
 (k) de componentes principais:

imagem original

imagem comprimida (k=1)

imagem comprimida (k=5)

Análise de Componentes Principais (Compressão de Imagens)

imagem comprimida (k=20)

imagem comprimida (k=30)

Análise de Componentes Principais (Compressão de Imagens)

imagem comprimida (k=40)

imagem comprimida (k=50)

Análise de Componentes Principais × t-SNE

Exemplo: base de dígitos MNIST

Técnica: Análise de Componentes Principais

Análise de Componentes Principais × t-SNE

Exemplo: base de dígitos MNIST

Técnica: t-SNE

Distância Euclidiana

• Dadas duas amostras $\mathbf{x} = (x_1, x_2, \dots, x_d)$ e $\mathbf{y} = (y_1, y_2, \dots, y_d)$ em um espaço d-dimensional, a distância Euclidiana é expressa como:

$$D(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_d - y_d)^2}$$
$$= \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$$

Variância e Covariância

 A variância mede a variação de uma única variável aleatória (por exemplo, altura de uma pessoa em uma população). Ela é expressa como:

$$\sigma(X)^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})$$

em que n é o número de amostras e \overline{X} é a média da variável aleatória X (representada como um vetor).

 A covariância é uma medida de quanto duas variáveis aleatórias variam em conjunto (por exemplo, a altura e o peso de uma pessoa em uma população). Ela é expressa como:

$$\sigma(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

em que X e Y são duas variáveis com n amostras. A variância σ_X^2 de uma variável X pode também ser expressa como a covariância com ela própria por $\sigma(X,X)$.

• A matriz de covariância é expressa como:

$$\mathbf{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} = (X_i - \overline{X})(X_i - \overline{X})^T$$

em que o conjunto de dados é representado pela matriz $X \in \mathbb{R}^{n \times d}$.

- A matriz de covariância é quadrada, em que $\Sigma_{i,j} = \sigma(X_i, X_j)$, com $\Sigma \in \mathbb{R}^{d \times d}$, tal que d descreve a dimensão dos dados (número de atributos).
- A matriz de covariância é simétrica, já que $\sigma(X_i, X_i) = \sigma(X_i, X_i)$.
- As entradas da diagonal da matriz de covariância são as variâncias, enquanto as outras entradas são as covariâncias.

• A matriz de covariância para dois atributos X_1 e X_2 (duas dimensões) é dada por:

$$\mathbf{\Sigma} = \left[\begin{array}{cc} \sigma_1^2 & \sigma_{1,2}^2 \\ \sigma_{2,1}^2 & \sigma_2^2 \end{array} \right]$$

• A matriz de covariância para d dimensões é dada por:

$$\mathbf{\Sigma} = \left[egin{array}{cccc} \sigma_1^2 & \sigma_{1,2} & \dots & \sigma_{1,d} \\ \sigma_{2,1} & \sigma_2^2 & \dots & \sigma_{2,d} \\ & & & & & \\ \dots & \dots & \ddots & \vdots \\ \sigma_{d,1} & \sigma_{d,2} & \dots & \sigma_d^2 \end{array}
ight]$$

 Para a base de dados Iris, considerando os atributos X₁ como o comprimento da sépala e X₂ como a largura da sépala, o vetor da média (total de 150 amostras) e a matriz de covariância são:

$$\overline{X} = \begin{bmatrix} 5.843 \\ 3.054 \end{bmatrix}$$

$$\mathbf{\Sigma} = \begin{bmatrix} 0.681 & -0.039 \\ -0.039 & 0.187 \end{bmatrix}$$

• Ou seja, a variância para X_1 é $\sigma_1^2=0.681$ e para X_2 é $\sigma_2^2=0.187$, enquanto a covariância entre os dois atributos é $\sigma_{1,2}=\sigma_{2,1}=-0.039$.

 Considerando agora os 4 atributos da base de dados Iris, X₁ como o comprimento da sépala, X₂ como a largura da sépala, X₃ como o comprimento da pétala e X₄ como a largura da pétala, o vetor da média (total de 150 amostras) e a matriz de covariância são:

$$\overline{X} = \left[\begin{array}{c} 5.843 \\ 3.054 \\ 3.759 \\ 1.199 \end{array} \right]$$

$$\boldsymbol{\Sigma} = \left[\begin{array}{cccc} 0.681 & -0.039 & 1.265 & 0.513 \\ -0.039 & 0.187 & -0.320 & -0.117 \\ 1.265 & -0.320 & 3.092 & 1.288 \\ 0.513 & -0.117 & 1.288 & 0.579 \end{array} \right]$$

Autovalores e Autovetores

ullet Um vetor ullet é chamado de autovetor de uma matriz $oldsymbol{\Sigma}$ quadrada d imes d se a equação linear é satisfeita:

$$\mathbf{\Sigma} \cdot \mathbf{v} = \lambda \cdot \mathbf{v}$$

em que λ é o autovalor correspondente a \mathbf{v} .

• Exemplo:

$$\left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right] \cdot \left[\begin{array}{c} 3 \\ 0 \end{array}\right] = 2 \cdot \left[\begin{array}{c} 3 \\ 0 \end{array}\right]$$

• Para encontrar os autovalores da matriz, basta resolver:

$$\det(\mathbf{\Sigma} - \lambda \cdot \mathbf{I}) = 0$$

em que det(.) é o determinante da matriz e I é a matriz identidade.

• Para encontrar os autovetores da matriz, basta resolver o sistema:

$$(\mathbf{\Sigma} - \lambda \cdot \mathbf{I})\mathbf{v} = 0$$

Autovalores e Autovetores

• Considerando novamente os atributos X_1 como o comprimento da sépala e X_2 como a largura da sépala para a base de dados Iris, os autovalores e autovetores da matriz de covariância são:

$$\lambda_1 = 0.684$$
 $\mathbf{v}_1 = (-0.997, 0.078)^T$
 $\lambda_2 = 0.184$ $\mathbf{v}_2 = (-0.078, -0.997)^T$