Tandem Trainer Aircraft

Sizing model for a tandem trainer plane.

Mission

Variables	Value	Units	Description
MTOW		[lbf]	max take off weight
$W_{fuel-tot}$		[lbf]	total fuel weight
R_{min}	400.000	[nmi]	minimum flight range

```
 \begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & ['Mission']_{[0]} \\ & ['Mission']_{[0]} \\ & MTOW = W_{start} \\ & MTOW \geq W_{fuel-tot} + W_{zfw} \\ & W_{fuel-tot} \geq W_{fuel-fs} \\ & W_{end} \geq W_{zfw} \\ & W_{structures} \geq MTOW f_{structures} \\ & \vec{R} \geq 0.2 R_{min} \end{array}
```

Aircraft

Variables	Value	Units	Description
W_{pay} $f_{structures}$ $W_{structures}$ W_{zfw}	500.000 0.700	$[lbf] \\ [lbf] \\ [lbf]$	payload fractional structural weight structural weight zero fuel weight

```
 \begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & ['Mission', 'Aircraft']_{[0,0]} \\ & W_{structures} = W_{structures} \\ & f_{structures} = f_{structures} \\ & W_{zfw} \geq W_{pay} + W_{structures} \\ \end{array}
```

${\bf Flight Segment}$

Variables Value	Units	Description	
-----------------	-------	-------------	--

```
W_{fuel-fs} [lbf] flight segment fuel weight
```

```
\begin{array}{lll} \text{minimize} & 1 \\ \text{subject to} & ['Mission']_{[0]} \\ & ['Mission', 'FlightSegment']_{[0,0]} \\ & ['Mission', 'FlightSegment']_{[0,0]} \\ & ['Mission', 'FlightSegment']_{[0,0]} \\ & ['Mission', 'FlightSegment']_{[0,0]} \\ & W_{fuel-fs} \geq W_{fuel} + W_{fuel} + W_{fuel} + W_{fuel} \\ & [W_{end} \ [\text{lbf}] \ \ W_{end} \ [\text{lbf}] \ \ W_{end} \ [\text{lbf}]] \geq [W_{start} \ [\text{lbf}] \ \ W_{start} \ [\text{lbf}] \end{array}
```

Wing

Variables	Value	Units	Description
$c_{MAC} \ S \ AR \ b$	27.000	$[ft] \\ [ft * *2]$ $[ft]$	mean aerodynamic chord planform area aspect ratio wing span

$$\begin{array}{ll} \mbox{minimize} & 1 \\ \mbox{subject to} & b^2 = ARS \\ & c_{MAC} = \frac{S}{b} \end{array}$$

FlightState

Variables	Value	Units	Description
ρ	0.771	[kg/m * *3]	air density
V_{min}	10.000 0.000	[m/s] $[N*s/m**2]$	minimum true airspeed dynamic viscosity
V V	0.000	[m/s]	true airspeed
h	15000.000	[ft]	flight altitude
h_{ref}	15000.000	[ft]	reference altitude

$$\begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & \vec{V} \geq \vec{V_{min}} \\ & \vec{\rho} = \vec{\rho} \\ & \vec{\mu} = \vec{\mu} \\ & \vec{h} = \vec{h} \\ & \vec{h_{ref}} = \vec{h_{ref}} \\ \end{array}$$

AircraftPerf

Variables	Value	Units	Description
η_{prop}	0.700		propulsive efficiency
C_D			aircraft drag coefficient
W_{start}		[lbf]	vector-begin weight
CDA_0	0.005		non-wing drag coefficient
W_{end}		[lbf]	vector-end weight

```
 \begin{array}{ll} \text{minimize} & 1 \\ \text{subject to} & \vec{C_D} \geq \begin{bmatrix} CDA_0 + C_d & CDA_0 + C_d & CDA_0 + C_d & CDA_0 + C_d & CDA_0 + C_d \end{bmatrix} \\ & W_{start}^{'} = W_{start}^{'} \\ & W_{end}^{'} = W_{end}^{'} \\ & \eta_{prop}^{'} = \eta_{prop}^{'} \\ & ['Mission', 'FlightSegment', 'AircraftPerf']_{[0,0,0]} \\ & ['Mission', 'FlightSegment', 'AircraftPerf']_{[0,0,0]} \\ \end{array}
```

SteadyLevelFlight

Variables	Value	Units	Description
\overline{T}		[N]	thrust

BreguetRange

Variables	Value	Units	Description
g	9.810	[m/s * *2]	gravitational acceleration
R		[nmi]	range
$W_{fuel} \ z_{bre}$		[lbf]	segment-fuel weight Breguet coefficient
$ ho_{JetA}$	6.750	[lb/gal]	Jet A fuel density

$$\begin{array}{lll} \text{minimize} & 1 \\ \text{subject to} & z_{\overrightarrow{bre}} \geq \left[0.01386 \frac{R \dot{m} \rho_{JetAg}}{V W_{end}^{0.5} W_{start}^{0.5}} \right. & 0.01386 \frac{R \dot{m} \rho_{JetAg}}{V W_{end}^{0.5} W_{start}^{0.5}} \right. & 0.01386 \frac{R \dot{m} \rho_{JetAg}}{V W_{end}^{0.5} W_{start}^{0.5}} \\ & \left[\frac{W_{fuel}}{W_{end}} \right. & \frac{W_{fuel}}{W_{end}} \right. & \frac{W_{fuel}}{W_{end}} \right. & \frac{W_{fuel}}{W_{end}} \right] \geq \left[0.1667 z_{bre}^{3} + 0.5 z_{bre}^{2} + z_{bre} \right. & 0.1667 z_{bre}^{3} + 0.5 z_{bre}^{2} + z_{bre} \\ & W_{start}^{2} \geq \left[W_{end} + W_{fuel} \right. & \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right. & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left. \left[\text{lbf} \right] \right] \\ & W_{end} + W_{fuel} \left[\text{lbf} \right] \\ & W_{end} + W_{fuel} \left[\text{lb$$

NACA652Aero

Variables	Value	Units	Description
Re			Reynold's number
c_{dp}			wing profile drag coeff
$c_{dp} \ C_L$			lift coefficient
e	0.900		Oswald efficiency
C_d			wing drag coefficient

minimize 1 subject to
$$\vec{C}_d \ge \begin{bmatrix} 0.3183 \frac{C_L^2}{ARe} + c_{dp} & 0.3183 \frac{C_L^2}{ARe} + c_{d$$

EnginePerf

Variables	Value	Units	Description
$\eta_{alternator}$	0.800		alternator efficiency
P_{shaft}		[hp]	Shaft power
P_{total}		[hp]	Total power, avionics included
RPM		[rpm]	Engine operating RPM
RPM_{max}	5800.000	[rpm]	Maximum RPM
P_{avn}	40.000	[W]	Avionics power
\dot{m}		[l/hr]	fuel burn rate
L_{eng}	1.000	., ,	shaft power loss factor
$P_{shaft-max}$		[hp]	Max shaft power at altitude
\dot{m}_{f-min}	7.000	[l/hr]	minimum fuel burn rate

minimize 1 subject to
$$\begin{bmatrix} \frac{P_{total}}{P_{shaft-max}} & \frac{P_{total}}{P_{shaft-max}} & \frac{P_{total}}{P_{shaft-max}} & \frac{P_{total}}{P_{shaft-max}} \end{bmatrix} = \begin{bmatrix} 1.115 \frac{RPM^{1.6}}{RPM_{max}^{1.6}} & 1.115 \frac{RPM^{1.6}}{RPM_{max}^{1.6}$$

Solution

Minimizing the max take off weight we arrive at the solution.

Free Variables	Value	Units	Description
Mission			
MTOW	1747	lbf	max take off weight
$W_{fuel-tot}$	24.05	lbf	total fuel weight
Mission/Airci	raft		
$W_{structures}$	1223	lbf	structural weight
W_{zfw}	1723	lbf	zero fuel weight
Mission/Airci	raft/Wing		
S	31.9	ft^2	planform area
b	29.35	ft	wing span
c_{MAC}	1.087	ft	mean aerodynamic chord
Mission/Fligh	atSegment		
$W_{fuel-fs}$	24.05	lbf	flight segment fuel weight
Mission/Fligh	${ m atSegment/AircraftPerf}$		
C_D	[0.0155 0.0154 0.0153 0.0151]		aircraft drag coefficient
W_{end}	[1.74e+03 1.74e+03 1.73e+03 1.73e+03]	lbf	vector-end weight
W_{start}	$[1.75e+03 1.74e+03 1.74e+03 1.73e+03 \dots]$	lbf	vector-begin weight
Mission/Fligh	${ m ttSegment/AircraftPerf/EnginePerf}$		
$P_{shaft-max}$	[98.6 98.6 98.6 98.6]	hp	Max shaft power at altitude
P_{shaft}	[40.7 40.7 40.7 40.7]	hp	Shaft power
$P_{total} \ RPM$	[40.8 40.8 40.8 40.8]	hp	Total power, avionics included
\dot{m}	[3.17e+03 3.17e+03 3.17e+03 3.17e+03] [7 7 7 7]	$_{ m l}^{ m rpm}$	Engine operating RPM fuel burn rate
711	[[[[[[[[[[[[[[[[[[[[$\frac{1}{\text{hr}}$	ruer burn rate

${\bf Mission/FlightSegment/AircraftPerf/NACA652Aero}$

$C_L \\ C_d \\ Re \\ c_{dp}$	$ \begin{bmatrix} 0.602 \ 0.597 \ 0.592 \ 0.587 \ \dots \ \end{bmatrix} $ $ \begin{bmatrix} 0.0105 \ 0.0104 \ 0.0103 \ 0.0101 \ \dots \ \end{bmatrix} $ $ \begin{bmatrix} 1.65e+06 \ 1.66e+06 \ 1.66e+06 \ 1.67e+06 \ \dots \ \end{bmatrix} $ $ \begin{bmatrix} 0.00579 \ 0.00573 \ 0.00568 \ 0.00563 \ \dots \ \end{bmatrix} $		lift coefficient wing drag coefficient Reynold's number wing profile drag coeff
Mission/Flight	tSegment/BreguetRange		
$R \\ W_{fuel} \\ z_{bre}$	[80 80 80 80] [4.84 4.82 4.81 4.8] [0.00277 0.00277 0.00277 0.00277]	nmi lbf	range segment-fuel weight Breguet coefficient
Mission/Fligh	${f tSegment/FlightState}$		
V	[106 107 107 107]	$\frac{\mathrm{m}}{\mathrm{s}}$	true airspeed
Mission/Flight	${f tSegment/SteadyLevelFlight}$		
T	[200 200 199 199]	N	thrust

Constants	Value	Units	Description			
Mission						
R_{min}	400	nmi	minimum flight range			
Mission/Aircraft						
W_{pay} $f_{structures}$	500 0.7	lbf	payload fractional structural weight			
Mission/Aircraft/Engine						
P_{sl-max}	98.56	hp	Max shaft power at sea level			
Mission/Aircraft/Wing						
AR	27		aspect ratio			
${\bf Mission/FlightSegment/AircraftPerf}$						
$CDA_0 \\ \eta_{prop}$	[0.005 0.005 0.005 0.005] [0.7 0.7 0.7 0.7]		non-wing drag coefficient propulsive efficiency			
${\bf Mission/FlightSegment/AircraftPerf/EnginePerf}$						
RPM_{max} \dot{m}_{f-min} $\eta_{alternator}$	[7 7 7 7] [0.8 0.8 0.8 0.8]	$egin{array}{c} W \\ rpm \\ rac{1}{hr} \end{array}$	shaft power loss factor Avionics power Maximum RPM minimum fuel burn rate alternator efficiency			
${\bf Mission/FlightSegment/AircraftPerf/NACA652Aero}$						

Oswald efficiency

 $[\ 0.9\ 0.9\ 0.9\ 0.9\ \dots\]$

${\bf Mission/FlightSegment/BreguetRange}$

$ ho_{Jet A}$ g	[6.75 6.75 6.75 6.75] [9.81 9.81 9.81 9.81]	$\frac{\frac{\text{lb}}{\text{gal}}}{\frac{\text{m}}{\text{s}^2}}$	Jet A fuel density gravitational acceleration				
${\bf Mission/FlightSegment/FlightState}$							
$V_{min} \ \mu \ ho \ h$	[10 10 10 10] [1.64e-05 1.64e-05 1.64e-05 1.64e-05] [0.771 0.771 0.771 0.771] [1.5e+04 1.5e+04 1.5e+04 1.5e+04]	$rac{ ext{m}}{ ext{s}} rac{ ext{N} \cdot ext{s}}{ ext{m}^2} rac{ ext{kg}}{ ext{m}^3} ext{ft}$	minimum true airspeed dynamic viscosity air density flight altitude				
h_{ref}	[1.5e+04 1.5e+04 1.5e+04 1.5e+04]	ft	reference altitude				

Sensitivities	Value	Units	Description			
Mission/FlightSegment/BreguetRange						
$g \ ho_{JetA}$	[0.00956 0.00956 0.00956 0.00956] [0.00956 0.00956 0.00956 0.00956]	$\frac{\frac{m}{s^2}}{\frac{lb}{gal}}$	gravitational acceleration Jet A fuel density			
${\bf Mission/Flight Segment/Aircraft Perf/NACA 652 Aero}$						
e	[-0.00315 -0.00301 -0.00287 -0.00274]		Oswald efficiency			
Mission/FlightSegment/AircraftPerf/EnginePerf						
$\dot{m}_{f-min} \ L_{eng}$	[0.00956 0.00956 0.00956 0.00956] [-0.0103 -0.00993 -0.00956 -0.0092]	$\frac{1}{\mathrm{hr}}$	minimum fuel burn rate shaft power loss factor			
Mission/FlightSegment/AircraftPerf						
$CDA_0 \\ \eta_{prop}$	[0.00331 0.00322 0.00313 0.00303] [-0.0103 -0.00992 -0.00955 -0.00919]		non-wing drag coefficient propulsive efficiency			
Mission/Aircraft/Wing						
AR	-0.01465		aspect ratio			
Mission/Aircraft/Engine						
P_{sl-max}	-0.04788	hp	Max shaft power at sea level			
Mission/Aircraft						
$f_{structures} \ W_{pay}$	2.446 1	lbf	fractional structural weight payload			
Mission						
R_{min}	0.0478	nmi	minimum flight range			

Sweeps

