数学冲刺模拟题

共创(合工大)考研辅导中心

绝密★启用前

2016年全国硕士研究生入学统一考试

数学三

(模拟一)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学冲刺模拟题

共创(合工大)考研辅导中心

数学三 (模拟一)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时. 		
得分 评卷人 一、选择题: (1) ~ (8) 小题,每小题 4 分,共 32 分.		
在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的 括号里.		
(1) 设 $f(u)$ 为可导函数,曲线 $y = f(e^x)$ 的过点 $(1,2)$,且它在点 $(1,2)$ 处的切线过点 $(0,0)$,那么函数 $f(u)$ 在 $u = e$ 处,当 u 取得增量 $\Delta u = 0.01$ 时,相应的函数值增量的线性主部是().		
(A) 0.02 (B) $\frac{0.02}{e}$ (C) $-\frac{0.02}{e}$ (D) -0.02		
e e e e e e e e e e		
$g''(x) > 0$, $\exists S_1 = \int_a^b f(x) dx$, $S_2 = \int_a^b g(x) dx$, $\exists S_1 = \int_a^b f(x) dx$.		
(A) $S_2 < b - a < S_1$ (B) $S_1 < b - a < S_2$		
(C) $S_1 < S_2 < b-a$ (D) $b-a < S_2 < S_1$		
(3) 设函数 $z = (1 + e^y)\cos x - ye^y$,则函数 $z = f(x, y)$ () (A) 无极值 (B) 有有限个极值 (C)有无穷多个极大值 (D) 有无穷多个极小值 (4) 积分 $I = \int_a^{a+\pi} \ln(3 + \sin 2x) \sin 2x dx$ 的值().		
J_a (A) 是与 a 无关的负的常数 (B) 是与 a 无关的正的常数		
(C) 恒为零 (D) 不为常数 (2.2.2.2)		
(5) 下列矩阵 $A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 6 & 4 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 中两两相位		
的是() (A) A_3, A_4 (B) A_1, A_2 (C) A_1, A_3 (D) A_2, A_3		
(A) $A_{3,}A_{4}$ (B) $A_{1,}A_{2}$ (C) $A_{1,}A_{3}$ (D) $A_{2,}A_{3}$		
(6) 设向量组(I): $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 均为 4 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$,若 $\eta_1 = (-1)00$, $\eta_2 = (0,1,3,1,0)$, $\eta_3 = (1,0,5,1,1)^T$ 是齐次方程组 $AX = 0$ 的一个基础解系,则向量组(I)的一个极大无关组织 () .		
(A) α_1,α_2 (B) α_1,α_4 (C) α_3,α_5 (D) $\alpha_1,\alpha_3,\alpha_4$ (7) 设随机变量 X 的概率密度函数为 $f(x)$,数学期望 $E(X)=0$,则().		
(A) $\int_0^{+\infty} f(x) dx = \int_0^{+\infty} f(-x) dx$ (B) $\int_0^{+\infty} f(x) dx = -\int_0^{+\infty} f(-x) dx$		
(C) $\int_{0}^{+\infty} xf(x)dx = \int_{0}^{+\infty} xf(-x)dx$ (D) $\int_{0}^{+\infty} xf(x)dx = -\int_{0}^{+\infty} xf(-x)dx$		
(8) 设随机变量 X 不小于零,且分布函数为 $F(x)$,则对 $y>0$ 时,正确()		
(A) $Y = 1 - X$ 的分布函数 $F_Y(y) = 1 - F(1 - y)$ (B) $Y = X^2$ 的分布函数 $F_Y(y) = F(\sqrt{y})$		
(C) $Y = aX$ 的分布函数 $F_Y(y) = F(ay)$ (D) $Y = \frac{1}{X}$ 的分布函数 $F_Y(y) = F(\frac{1}{y})$		

得分 评卷人

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

数学冲刺模拟题

共创(合工大)考研辅导中心

(10)设点
$$a_n$$
 满足等式 $\int_{a_n}^{+\infty} \frac{\mathrm{d} x}{x(\ln x)^{n+1}} = 2, n = 1, 2, \cdots$,则 $\lim_{n \to \infty} a_n = \underline{\qquad}$.

(12)设曲线 y = f(x) 过点(0, -1),且其上任一点处的切线斜率为 $2x\ln(1+x^2)$,则 f(x) =_

(13)已知
$$D_4 = \begin{vmatrix} 5 & -5 & 1 & 19 \\ 7 & 8 & 2 & 9 \\ 4 & 8 & 0 & 6 \\ 3 & 1 & 3 & 4 \end{vmatrix}$$
, 则 $2A_{11} - 4M_{21} - 6M_{41} =$ _____.

(14)设随机变量 X,Y,Z 两两不相关,方差相等且不为零,则 X+Y与 X+Z 的相关系数为

三、解答题: 15~23 小题, 共94分。解答应写出文字说明、证明过程或演算步骤。

- (15) (本小题满分 10 分) 设 $f(x) = x^3 + ax^2 + bx + c$,若点(1,0) 是曲线 y = f(x) 的拐点,且 x = 2 是 函数 f(x) 的极值点,(I) 常数 a,b,c 的值; (II) 求函数 f(x) 的单调性区间和凹凸性区间; (III) 求 函数 f(x) 的极值。
- (16) (本小题满分 10 分)设-1 < a < b,证明不等式: $(a+b)e^{a+b} < ae^{2a} + be^{2b}$
- (17) (本小题满分 10 分) 设 f(u,v) 具有连续偏导数,且 $f_{u}'(u,v) + f_{v}'(u,v) = \sin(u+v)e^{u+v}$,求 $y(x) = e^{-2x} f(x, x)$ 所满足的一阶微分方程,并求其通解.
- (18) (本小题满分 10 分) 设 $f(x) = \begin{cases} x+1, 1 \le x \le 3 \\ 0, 其他 \end{cases}$,求 $I = \iint_D f(y+1)f(x+y^2)dxdy$, 其中 D 为全平 面区域.
 - (19) (本小题满分 10 分)将 $f(x) = x \arctan \frac{1+x}{1-x}$ 展开成 x 的幂级数,并求 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$
- (20) (本小题满分 11 分)设 $A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} a & 4 & 0 \\ -1 & 0 & c \\ 1 & b & 1 \end{pmatrix}$,问 a,b,c 为何值时,矩阵方程 AX = B 有解,有

解时,求出全部解.

(21) (本小题满分 11 分)设二次型 $f(x_1,x_2,x_3) = ax_1^2 + 2x_2^2 - x_3^2 + 8x_1x_2 + 2bx_1x_3 + 2cx_2x_3$ 矩阵 A 满足

其中
$$B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,

(I)求正交变换 x = Ov, 化二次形 f 为标准型, 并写出所用正交变换; (II)判断矩阵 A 和 B 是否合同.

- (22) (本小题满分 11 分)设(X,Y)在区域 $G = \{(x,y) | 0 < x < 1, -1 < y < 1\}$ 服从均匀分布,试求: (I)概率 $P{X+2Y \ge 1}$; (II) Z = X - Y 的密度函数 $f_z(z)$; (III) 方差 D(X+2Y).
- (23) (本题满分 11 分)设某批产品的一等品率为 1/10, 从这批产品中任取 400 件, 求其中一等品所占比例 与 1/10 之差的绝对值不超过 0.02 的概率.(I)用切比契夫不等式估计; (II)利用中心极限定理计算.

数学冲刺模拟题

共创(合工大)考研辅导中心

绝密★启用前

2016年全国硕士研究生入学统一考试

数学三

(模拟二)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书) 写必须使用蓝(黑) 色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学冲刺模拟题

共创(合工大)考研辅导中心

数学三(模拟二)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时.

得分	评卷人	一、选择题:(1)~(8)小题,每小题 4 分,共 32 分.
		在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的 括号里.

(1). 函数
$$f(x) = \frac{x|x+1|e^{\frac{1}{x}}}{\ln|x|}$$
 的无穷间断点个数为().

- (D) 4

(2). 设*n*为正整数,
$$f(x) = \int_0^x \sin^n t \, dt$$
, 则()。

- (A) n 为奇数是 f(x) 为周期函数
- (B) n 为偶数时 f(x) 为周期函数
- (C) f(x) 必为偶函数

(D) f(x) 必为有界函数

(3) 函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
(A) 连续但偏导数不存在
(B) 偏导数存在但不连

- (B)偏导数存在但不连续
- (A) 连续但偏导数不存在 (C) 连续且偏导数存在但不可微

(4) 设在极坐标系下二次积分
$$I = \int_0^{\frac{\pi}{4}} d\theta \int_0^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$
,那么在直角坐标系下有 $I = (\cdot)$.

(A)
$$\int_{0}^{1} dx \int_{1-\sqrt{1-x^2}}^{x} f(x, y) dy$$

(B)
$$\int_0^1 dx \int_x^{1+\sqrt{1-x^2}} f(x, y) dy$$

(C)
$$\int_0^1 dy \int_0^y f(x, y) dy + \int_1^2 dx \int_0^{\sqrt{2y-y^2}} f(x, y) dy$$
 (D) $\int_0^1 dx \int_y^{\sqrt{2y-y^2}} f(x, y) dy$

(D)
$$\int_0^1 dx \int_y^{\sqrt{2y-y^2}} f(x,y) dy$$

(5). 设A是一个n阶矩阵,交换A的第i列和第i列后,再交换第i行和第i行得矩阵B,则A,B之 间关系是().

(A) 等价但不相似

(B) 相似但不合同

(C) 相似, 合同但不等价

(D) 等价,相似,合同

(6). 设A,B是n阶方阵,齐次方程式组Ax = 0与Bx = 0有相同的基础解系 ξ_1 , ξ_2 , ξ_3 ,则在下列方 程组中以 ξ_1,ξ_2,ξ_3 为基础解系的方程组是().

(A)
$$(A+B)x=0$$

(B)
$$AB x = 0$$

(B)
$$AB x = 0$$
 (C) $BA x = 0$

(D)
$$\binom{A}{B}x = 0$$

(7) 设随机变量
$$X \sim f(x) =$$

$$\begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases} (\lambda > 0), \quad \exists \ X \text{ 的数学期望 } E(X) = \frac{1}{2}, \quad \forall \ X \text{ 进行独立}$$

观察,则第三次观察时事件 $\{X > \frac{1}{2}\}$ 第二次出现的概率 ().

(A)
$$\frac{2}{a^2}(1-\frac{1}{a})$$

(A)
$$\frac{2}{e^2}(1-\frac{1}{e})$$
 (B) $1-\frac{1}{e}(1-\frac{1}{e})^2$ (C) $\frac{2}{e}(1-\frac{1}{e})^2$ (D) $\frac{1}{e}(1-\frac{1}{e})^2$

(C)
$$\frac{2}{a}(1-\frac{1}{a})^2$$

(D)
$$\frac{1}{a}(1-\frac{1}{a})^2$$

(8) 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,对统计量 $Y = k \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$,若满足

数学冲刺模拟题

共创(合工大)考研辅导中心

 $E(Y) = \sigma^2$,则应选 k 为().

(A)
$$\frac{1}{n-1}$$

(B)
$$\frac{1}{n}$$

(A)
$$\frac{1}{n-1}$$
 (B) $\frac{1}{n}$ (C) $\frac{1}{2(n-1)}$ (D) $\frac{1}{2n}$

(D)
$$\frac{1}{2n}$$

二、填空题:9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

- (9). 设 $f(x) = \lim_{t \to \infty} (1 \frac{x}{2t} + \frac{x^2}{2t^2})^t$,则曲线 y = f(x) 在 x = 1 处的切线方程为______.
- (10) 已知函数 f(x) 满足等式 $xf'(x) f(x) = \sqrt{2x x^2}$,且 f(2) = 0,那么 $\int_0^2 f(x) dx =$ _____.
- (11) 设 f(u) 为连续函数,且 $x^2 + y^2 + z^2 = \int_x^y f(x y t)dt$,那么 $z(\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}) = \underline{\qquad}$.
- (12) 若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (C_1 + C_2 x)e^x$, 则非齐次方程 y'' + ay' + by = x 满足条件 y(0) = 0, y'(0) = 0 的解为_
- (13) 若 $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$, $\mathbf{B} = \mathbf{A}^2 3\mathbf{A} + 2\mathbf{E}$, 其中 \mathbf{E} 为单位矩阵,则 $\mathbf{B}^{-1} = \underline{}$.
- (14) 设A与B是相互独立两随机事件,且P(B)=0.6,P(B-A)=0.3,则概率 $P(\overline{A} \cup B)$ =
- (15) (本小题满分 10 分). (I)在曲线 $y = e^x$ 上找一条切线使得该切线与曲线 $y = e^x$ 、y 轴及直线 x = 2围成的图形面积最小;(II)求(I)中的图形绕 y 轴旋转一周所形成的旋转体的体积.
- (16) (本小题满分 10 分) 设 y = f(x) 在[0,1] 上非负连续, $x_0 \in (0,1)$,且在[0, x_0] 上以 $f(x_0)$ 为高 的矩形面积等于函数 f(x) 在 $[x_0,1]$ 上的平均值。试证明: (I)存在点 $\xi \in (x_0,1)$ 内使得 $f(\xi) = x_0 f(x_0)$;
- (II) 存在 $\eta \in (0,1)$ 使得 $(\xi x_0)f'(\eta) = (x_0 1)f(x_0)$ 。
- (17) (本小题满分 10 分) 计算二重积分 $I = \iint_D x(x + ye^{x^2}) \operatorname{sgn}(y x^2) d\sigma$, 其中 $D: -1 \le x \le 1$,

 $0 \le y \le 1$,且符号函数 $sgn(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$

- (本小题满分 10 分)设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位: 吨) 时的总收益函数为 $R(x,y) = 27x + 42y - x^2 - 2xy - 4y^2$ 和总成本函数为 C(x,y) = 36 + 12x + 8y(单位:万元),除此以外生产甲种产品每吨还需支付排污费用 1 万元,生产乙种产品每吨还需支付排 污费用 2 万元. (I) 在不限制排污费用的前提下,两种产品的产量各为多少吨时总利润最大?最大利 润是多少? (Ⅱ) 在限制排污费用支出总量为 6 万元的情况下,这两种产品的产量各为多少吨时总利 润最大?最大利润是多少?
- (19) (本小题满分 10 分) 设在区间 $[n\pi, (n+1)\pi]$ 上由曲线 $y = e^{-x} \sin x$ 与 x 轴所围成平面图形的面积 为 $a_n(n=0,1,2,\cdots)$,(I)证明级数 $\sum_{n=0}^{\infty}na_n$ 收敛;(II)并求其和。
- (20) (本小题满分 11 分) 设有向量组 $\alpha_1 = (1,1,1,2)^T$, $\alpha_2 = (3,a+4,2a+5,a+7)^T$,

 $\alpha_3 = (4,6,8,10)^T$, $\alpha_4 = (2,3,2a+3,5)^T$. (I) 求向量组 α_1 , α_2 , α_3 , α_4 的秩及一个极大线性无关组;

- (II) 令 $\beta = (0,1,3,b)^T$,若任意的 4 维列向量 γ 均可由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\beta$ 线性表示,求 a,b 的值.
- (21) (本小题满分 11 分)设 A 为三阶方阵, $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的三维列向量组,且 $A\alpha_1=2\alpha_1$,

数学冲刺模拟题

共创(合工大)考研辅导中心

 $A\alpha_2 = 3\alpha_2 + 2\alpha_3$, $A\alpha_3 = 2\alpha_2 + 3\alpha_3$. (I) 求|A|; (II) 证明 A 与对角阵相似,并求相应的相似变换

(22) (本小题满分 11 分)设(X,Y)密度函数为

- (23) (本小题满分 11 分) 设总体 X 的密度函数为 $f(x) = \begin{cases} \alpha, & -1 < x < 0, \\ bx, & 0 \le x < 1, , 其中 <math>\alpha$ 是未知参数, 0, 其他,

对 X 的样本值为 0.5、-0.1、0.7、-0.5、0.8、-0.8、-0.2、-0.6.试求(I)参数 α 的矩估计;(II) 参数 α 的最大似然估计.

数学冲刺模拟题

共创(合工大)考研辅导中心

绝密★启用前

2016年全国硕士研究生入学统一考试

数学三

(模拟 三)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学冲刺模拟题

共创(合工大)考研辅导中心

数学三 (模拟三)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

得分	评卷人	一、选择题:(1)~(8)小题,每小题 4 分,共 32 分.
		在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的 括号里.

- (1) 设 $\lim x_n$ 与 $\lim y_n$ 均不存在,那么下列命题正确的是().
 - (A) 若 $\lim_{n\to\infty} (x_n + y_n)$ 不存在,则 $\lim_{n\to\infty} (x_n y_n)$ 必也不存在
 - (B) 若 $\lim_{n\to\infty}(x_n+y_n)$ 存在,则 $\lim_{n\to\infty}(x_n-y_n)$ 必也存在
 - (C) 若 $\lim_{n\to\infty} (x_n + y_n)$ 与 $\lim_{n\to\infty} (x_n y_n)$ 均不存在
 - (D) 若 $\lim(x_n + y_n)$ 与 $\lim(x_n y_n)$ 中只要有一个存在,另一个必定不存在
- (2) 设f(x)在 $(-\infty,+\infty)$ 内二阶可导,f''(0)<0,且 $\lim_{x\to 0} \frac{f(x)}{x}=1$,则有()。
 - (A) $x \neq 0$ 时恒有 f(x) > x
- (B) $x \neq 0$ 时恒有 f(x) < x
- (C) x > 0 $\forall f(x) > x$, x < 0 $\forall f(x) < x$ (D) x > 0 $\forall f(x) < x$, x < 0 $\forall f(x) > x$
- (3) 设曲线 y = f(x) 与 $y = \tan 2x$ 在原点处相切,则极限 $I = \lim_{x \to 0} \frac{\int_0^x \left[\int_0^t f(t-u) du \right] dt}{x^2 (1 e^{-2x})} = ($

 - (A) 0 (B) $\frac{1}{6}$ (C) $\frac{1}{12}$

(4) 设级数
$$\sum_{n=1}^{\infty} na_n = \sum_{n=1}^{\infty} n(a_n - a_{n-1})$$
 收敛,则级数 $\sum_{n=1}^{\infty} a_n$ ()。

(5) 设
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
为可逆矩阵, $B = \begin{pmatrix} a_{12} + a_{13} & a_{11} & a_{13} \\ a_{22} + a_{23} & a_{21} & a_{23} \\ a_{32} + a_{33} & a_{31} & a_{33} \end{pmatrix}$ 又 $P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
$$P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$P_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

$$P_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

则 $B^{-1} =$ ()

- (A) $P_2A^{-1}P_4$ (B) $A^{-1}P_2P_3$ (C) $P_1P_3A^{-1}$ (D) $P_4P_1A^{-1}$
- (6) 已知 $\beta_1 = \alpha_1 + 2\alpha_2 + 3\alpha_3$, $\beta_2 = -\alpha_1 + \alpha_2$, $\beta_3 = 5\alpha_1 + 2\alpha_2 + 7\alpha_3$. 则下列结论正确的是().
 - (A) 向量组 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 线性无关
 - (B) 向量组 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 线性相关
 - (C) 仅当向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关时,向量组 β_1 , β_2 , β_3 线性无关
 - (D) 仅当向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关时,向量组 β_1 , β_2 , β_3 线性相关
- (7) 设随机变量 X 服从正态分布,其概率密度函数 f(x) 在 x=1 处有驻点,且 f(1)=1,则概率 $P\{X \ge 0\}$ 为 ().

数学冲刺模拟题

共创(合工大)考研辅导中心

- (A) $1-\Phi(0)$ (B) $1-\Phi(\sqrt{2\pi})$ (C) $\Phi(1)$ (D) $\Phi(\sqrt{2\pi})$
- (8) 设随机事件 A 和 B 互不相容,且 0 < P(A) < 1, 0 < P(B) < 1, 令 $X = \begin{cases} 1, & A$ 发生;

 $Y = \begin{cases} 1, & B$ 发生, $0 \in \mathbb{R}$ 不发生, $0 \in \mathbb{R}$ 不发生, $0 \in \mathbb{R}$ 的相关系数为 ρ ,则().

- (A) $\rho = 0$ (B) $\rho = 1$ (C) $\rho < 0$ (D) $\rho > 0$

│ │ **二、填空题:** 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

- (9) $\lim_{x\to 0} \left(\frac{e^x-1}{r}\right)^{\frac{1}{\sin x}} = \underline{\qquad}$...
- (10) $\mathcal{L} f(x) = (x^2 3x + 2)^n \sin \frac{\pi x^2}{8}$, 此处 n 为正整数,那么 $f^{(n)}(2) = \underline{\hspace{1cm}}$
- (11) 设函数 F(x,y) 具有一阶连续偏导数,函数 z = z(x,y) 由方程 $F(\frac{x}{y},z^2) = xy^2 + e^{-z}$ 决定,则全 微分 dz =
- (13) 设 3 阶方阵 \boldsymbol{A} 有可逆矩阵 \boldsymbol{P} ,使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, \boldsymbol{A}^* 为 \boldsymbol{A} 的伴随矩阵,则

 $P^{-1}A^*P =$

- (14) 设X与Y相互独立,且 $X \sim U(0,1)$, $Y \sim E(\lambda)$ 且Y的数学期望为 1/2,则概率 $P(\max\{X,Y\} > \frac{1}{2}) = \underline{\hspace{1cm}}$.
- 三、解答题: 15~23 小题, 共94 分。解答应写出文字说明、证明过程或演算步骤。
- (15) **(本题满分 10 分)** 设函数 f(x) 在 x = 0 处可导,且 $\lim_{x \to 0} (\frac{\sin x}{x^2} + \frac{f(x)}{x}) = 3$,求 f'(0)。
- (16) (本题满分 10 分) 设 f(x) 在 [0,1] 上有连续的导数,且 f(0)=0,证明: $\exists \eta \in [0,1]$ 使得 $f'(\eta) = 2 \int_0^1 f(x) dx$.
- (17) (本题满分 10 分) 设函数 $z = xf(\frac{x}{v}) + g(xy, x^2 y)$, 且函数 f(u) 具有二阶连续导数, g(v, w)具有二阶连续导数, 试求 $\frac{\partial^2 z}{\partial x^2}$
 - (18) (本题满分 10 分) 设某出租车公司,预备卖出公司的汽车,汽车的转让价格是时间t的函数

数学冲刺模拟题

共创(合工大)考研辅导中心

 $P(t) = Ce^{-\frac{t}{10}}$ (时间 t 为周),其中 C 为汽车的初始价格,由于该车一直在经营, t 周时利润的边际函数为 $\frac{C}{2}e^{-\frac{t}{5}}$,试求(I)汽车多长时间卖出时总利润达到最大?最大利润为多少;(II)此时车价是多少元?

- (19) (**本题满分 10 分**) 求幂级数 $\sum_{n=0}^{\infty} \frac{n^2+1}{n+1} x^n$ 的收敛域及和函数. 且计算 $\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)3^n}$ 的值
- (20) **(本题满分 11 分)** 已知二次型 $f(x_1,x_2,x_3)=ax_1^2-2x_1x_2+2x_1x_3+2x_2x_3$ 经过正交变换 $\textbf{\textit{x}}=\textbf{\textit{Py}}$ 后化为 $f=-2y_1^2+y_2^2+y_3^2$,其中 $\textbf{\textit{x}}=(x_1,x_2,x_3)^T$, $\textbf{\textit{y}}=(y_1,y_2,y_3)^T$.求(I)常数 a;(II)正交矩阵 $\textbf{\textit{P}}$.
- (21) (**本题满分 11 分**) 设 A 是 n 阶方阵,矩阵 $B = (\alpha_1 \ \alpha_2 \ \alpha_3)$,其中 $\alpha_1, \alpha_2, \alpha_3$ 是 n 维列向量, $\alpha_1 \neq \mathbf{0}$,且满足 $A(\alpha_1 \ \alpha_2 \ \alpha_3) = (\alpha_1 \ \alpha_1 + \alpha_2 \ \alpha_2 + \alpha_3)$,证明: (I) 齐次线性方程组 $Bx = \mathbf{0}$ 仅有零解; (II) B^TB 是正定矩阵,其中 B^T 是 B 的转置矩阵.
- (22) (**本題满分 11 分**) 设X 的密度函数为 $f(x) = \begin{cases} A, & -2 < x < 0, \\ Bx, & 0 \le x < 1, 且 E(X^2) = \frac{11}{12}.$ 试求 (I) 常 $0, \quad$ 其他,

数 $A \setminus B$; (II) Y = |X|的概率密度函数 $f_Y(x)$; (III) 方差 D(Y).

(23) (**本題满分 11 分**) 设连续型总体 X 的分布函数为 $F(x) = \begin{cases} 1 - \frac{a}{x^2}, & x > \theta, \\ 0, & x \le \theta, \end{cases}$ (其中 $\theta > 0$),且

 X_1,\ldots,X_n 为总体 X 的简单随机样本.试求:(I)常数 a;(II)参数 θ 的极大似然估计 $\hat{\theta}_L$;(III) $E((2n-1)\hat{\theta}_L)$.

数学冲刺模拟题

共创(合工大)考研辅导中心

绝密★启用前

2016年全国硕士研究生入学统一考试

数学三

(模拟四)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书) 写必须使用蓝(黑) 色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学冲刺模拟题

共创(合工大)考研辅导中心

数学三(模拟四)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时.

得分 评卷人

一、选择题: (1) ~ (8) 小题,每小题 4分,共 32分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的

- (1) 设 f(x) 在 x = 0 处连续, $g(x) = \begin{cases} \frac{f(x)(\sqrt{1+x^2}-1)}{\arctan x^3}, & x \neq 0, \\ 1, & x = 0 \end{cases}$, $x \neq 0$, $\exists g(x)$ 在 x = 0 处连续,则()。

 - (A) f(0) = 2, f'(0) 不存在 (B) f(0) = 2 不能确定 f'(0) 是否存在
 - (C) $f(0) = 0, f'(0) = \frac{1}{2}$ (D) f(0) = 0, f'(0) = 2
- - (A) -3 (B) $-\frac{3}{2}$ (C) -1 (D) 0
- (3) 设函数 $f(x,y) = e^{-x}(ax+b-y^2)$ 中常数 a,b 满足条件 () 时, (-1,0) 为其极大值点。
 - (A) a < 0, b = -2a (B) a = 0, b = -2a (C) a > 0, b = 2a (D) $a \ge 0, b = 2a$

- (4) 微分方程 $y'' + 4y = e^{-2x} + \sin 2x$ 的一个特解形式是 ().

- (A) $Ae^{-2x} + B\cos 2x + C\sin 2x$ (B) $Axe^{-2x} + B\cos 2x + C\sin 2x$ (C) $Ae^{-2x} + x(B\cos 2x + C\sin 2x)$ (D) $Axe^{-2x} + x(B\cos 2x + C\sin 2x)$
- (C) $Ae^{-2A} + x(B\cos 2x + \cos 2x)$ (5) 设 A 为三阶非零矩阵,且满足 AB = O,其中 $B = \begin{bmatrix} 1 & -1 & 1 \\ 2a & 1-a & 2a \\ a & -a & a^2-2 \end{bmatrix}$,则()
 - (A) a = -1, r(A) = 1 (B) $a \neq -1, r(A) = 2$ (C) a = 2, r(A) = 1 (D) $a \neq 2, r(A) = 2$

- (6) 已知 5×4 矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,若 $\eta_1 = (3 \ 1 \ -2 \ 1)^T$, $\eta_2 = (0 \ 1 \ 0 \ 1)^T$ 是齐次线性方 程组 Ax = 0的基础解系,那么下列命题

 - (1) α_1, α_3 线性无关 (2) α_1 可由 α_2, α_3 线性表出

 - (3) α_3, α_4 线性无关 (4) 秩 $r(\alpha_1, \alpha_1, +\alpha_2, \alpha_3 \alpha_4) = 3$

中正确的是().

- (A) (1) (3) (B) (2) (4) (C) (2) (3) (D) (1) (4)

- (7) 设随机变量 X 的概率密度函数为 f(x) ,则随机变量 |X| 的概率密度函数为 () .
- (B) $f_1(x) = f(x) + f(-x)$
- (C) $f_1(x) = \begin{cases} \frac{f(x) + f(-x)}{2}, x > 0, \\ 0, x < 0 \end{cases}$ (D) $f_1(x) = \begin{cases} f(x) + f(-x), x > 0, \\ 0, x \le 0 \end{cases}$

数学冲刺模拟题

共创(合工大)考研辅导中心

(8) 设
$$X$$
与 Y 相互独立, X 的分布函数为 $F(x) = \begin{cases} 0, & x < 1, \\ \frac{2}{3}, 1 \le x < 2, 且 Y \sim E(\lambda) \; (\lambda = 1 \, \text{的指数分布}), 则 \\ 1, & x > 2, \end{cases}$

概率 $P\{XY > 1\} = ($).

(A)
$$1 - \frac{1}{3}(2e^{-1} + e^{-\frac{1}{2}})$$
 (B) $2e^{-1} + e^{-\frac{1}{2}}$ (C) $\frac{1}{3}(2e^{-1} + e^{-\frac{1}{2}})$ (D) $\frac{1}{3}(2e^{-\frac{1}{2}} + e^{-1})$

(B)
$$2e^{-1} + e^{-\frac{1}{2}}$$

(C)
$$\frac{1}{3}(2e^{-1}+e^{-\frac{1}{2}})$$

(D)
$$\frac{1}{3}(2e^{-\frac{1}{2}}+e^{-1})$$

得分|评卷人

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

- (9) 设 y = y(x) 由方程 $\tan(x^2 + y) e^x + xy = 0$ 确定,且 $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 则 d $y|_{x=0} =$ ____
- (11)设需求函数Q=Q(P)为价格P的减函数,且满足Q(0)=10,已知需求价格弹性 $\eta=\frac{P}{50-P}$,则 需求价格函数为:
- (13) 设 $A = \begin{pmatrix} 1 & 1 & 0 & -3 \\ 1 & -1 & 2 & -1 \\ 1 & 0 & 1 & -2 \end{pmatrix}$,则方程组Ax = 0解空间的一组规范正交基为______.
- (14) 设X,Y相互独立同分布N(0,4),且 X_1,\dots,X_4 是来自X的简单随机样本,且 \overline{X} 为样本均值, 记 $Z = \sqrt{\sum_{i=1}^{4} (X_i - \bar{X})^2}$,若统计量 $C \frac{Y}{Z}$ 服从 t 分布,则常数 $C = \underline{\qquad}$.

三、解答题: 15~23 小题, 共94分。解答应写出文字说明、证明过程或演算步骤。

- (15) **(本题满分 10 分)** 设 $f(x) = \begin{cases} \frac{2}{\pi(1+x^2)}, x \le 0, \\ \vdots & \end{cases}$,求极限 $\lim_{x \to 0} \left(\int_{-\infty}^{x^2} f(t) dt \right)^{\frac{1}{x^4}}$ 。
- (16) (本题满分 10 分) 设 f(x) 在[0,a]上二阶可导,且在(0,a)内取得最小值,又 $|f''(x)| \le M$,求 证: $|f'(0)|+|f'(a)|\leq Ma$.
- (17) (本题满分 10 分)设 u = f(xy)满足 $\frac{\partial^2 u}{\partial x \partial y} = (xy+1)e^{xy}$,其中 f(t),当 $t \neq 0$ 时,二阶导数连续, 且 f'(1) = f(1) = e + 1, 求 f(xy).
- (18) (本题满分 10 分) (I)在曲线 $y=e^x$ 上找一条切线使得该切线与曲线 $y=e^x$ 、y 轴及直线 x=2 围 成的图形面积最小;(II)求(I)中的图形绕 y 轴旋转一周所形成的旋转体的体积.
- (19) **(本题满分 10 分)**计算二重积分 $I = \iint_{\Gamma} \sin x \sin y \cdot \max\{x,y\} d\sigma$,其中 $D: 0 \le x \le \pi, 0 \le y \le \pi$.

数学冲刺模拟题

共创(合工大)考研辅导中心

(20) (本题满分 11 分) (I) 设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & a \\ 1 & 4 & 9 & a^2 \\ 1 & 8 & 27 & a^3 \end{pmatrix}$$
, 若存在 4 阶非零矩阵 \mathbf{B} ,使 $\mathbf{AB} = \mathbf{O}$,问:

- ① B 是否可逆?② a 可能取哪些值?(II)已知 3 阶矩阵 A 的特征值为1,2,-3,求 $\left|A^*+2E\right|$.
- (21)**(本题满分 11 分)** 设 A 是各行元素之和均为 0 的三阶矩阵, α , β 是线性无关的三维列向量,并满足 $A\alpha=3\beta$, $A\beta=3\alpha$,
- (I) 证明矩阵 A 和对角矩阵相似; (II) 如果 $\alpha = (0 -1 1)^T$, $\beta = (1 0 -1)^T$, 求矩阵 A;
- (III) 用配方法化二次型 x^TAx 为标准形,并写出所用坐标变换。
- (22) (本小题满分 11 分) 设随机变量T 为在[-1,3] 上的均匀分布,令

$$X = \begin{cases} 1, & T > 0, \\ 0, & T \le 0, \end{cases} Y = \begin{cases} 1, & T > 1, \\ 0, & T \le 1. \end{cases}$$

试求: (I) (X,Y) 联合分布律; (II) Z = X + Y 的分布律; (III) 方差 D(X - Y).

(23) (**本小题满分 11 分**) 设总体 $X \sim N(\mu, \sigma^2)$, $X_1, ..., X_{2n} (n \ge 2)$ 是 X 的简单随机样本,且 $\bar{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i \text{ 及统计量} Y = \sum_{i=1}^{n} (X_i + X_{n+i} - 2\bar{X})^2 . \text{ (I) } 求 E(Y) ; \text{ (II) } \mu = 0 \text{ 时,试求 } D(\bar{X}^2) .$

数学冲刺模拟题

共创(合工大)考研辅导中心

绝密★启用前

2016年全国硕士研究生入学统一考试

数 学三

(模拟五)

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学冲刺模拟题

共创(合工大)考研辅导中心

数学三(模拟五)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时.

得分	评卷人	一、选择题:(1)~(8)小题,每小题 4分,共 32分. 在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后 括号里.

(1) 设函数 y = f(x) 在 x = 1 处取得增量 Δx 时相应的函数值增量 $\Delta y = \Delta x + o(\Delta x)$, 且 f(1) = 0,

则当 $x \to 0$ 时 $\int_1^{e^{x^2}} f(t) dt$ 是 $\ln(1+x^4)$ 的 ()。

- (A) 高阶无穷小 (B) 低阶无穷小 (C) 等价无穷小 (D) 同阶而非等价无穷小
- (2) 下列命题中正确的是().
 - (A) 设 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点,则 $x = x_0$ 一定不是函数 f(x) 的极值点
 - (B) 设 $x = x_0$ 是函数 f(x) 的极小值点,则必有 $f'(x_0) = 0$, $f''(x_0) > 0$
- (C) 设 f(x) 在区间[a,b]上可导,且 f'(a)f'(b)<0,则 f(x) 在区间[a,b]上的最大值与最小值必 有一个在区间 (a,b) 的内部取得
- (D) 设 f(x) 在区间 (a,b) 内只有一个驻点 x_0 ,且 x_0 是 f(x) 的极小值点,则 $f(x_0)$ 为 f(x) 在区间 (a,b)内的最小值

(4) 设平面区域 $D: x^2 + y^2 \le 1$,记

$$I_1 = \iint_D (x+y)^3 d\sigma, \qquad I_2 = \iint_D \cos x^2 \sin y^2 d\sigma, \qquad I_3 = \iint_D [e^{-(x^2+y^2)} - 1] d\sigma,$$

则有(

- $\text{(A)} \ \ I_1 > I_2 > I_3 \, . \\ \text{(B)} \ \ I_2 > I_1 > I_3 \, . \\ \text{(C)} \ \ I_1 > I_3 > I_2 \, . \\ \text{(D)} \ \ I_2 > I_3 > I_1 \, .$

 $A\alpha_3 = 0$,其中 $\alpha_1, \alpha_2, \alpha_3$ 为 3 维非向量,且 α_1, α_2 线性无关,则矩阵 P 不能是 ()。

- $\text{(A)} \quad \left(-\alpha_1, 5\alpha_2, \alpha_3\right) \qquad \text{(B)} \quad \left(\alpha_2, \alpha_1, \alpha_3\right) \qquad \text{(C)} \quad \left(\alpha_1 + \alpha_2, \alpha_2, \alpha_3\right) \qquad \text{(D)} \quad \left(\alpha_1, \alpha_2, \alpha_2 + \alpha_3\right)$

(6) 设A 是三阶矩阵, $\boldsymbol{\xi}_1 = \begin{pmatrix} 1 & 2 & -2 \end{pmatrix}^T$, $\boldsymbol{\xi}_2 = \begin{pmatrix} 2 & 1 & -1 \end{pmatrix}^T$, $\boldsymbol{\xi}_3 = \begin{pmatrix} 1 & 1 & t \end{pmatrix}^T$ 是线性非齐次方程组 的 Ax = b 解向量,其中 $b = (1 \ 3 \ -2)^T$,则 ().

- (A) t = -1,必有 r(A) = 1(C) $t \neq -1$,必有 r(A) = 1
- (B) t = -1,必有 r(A) = 2
- (C) $t \neq -1$,必有 r(A) = 1
- (D) $t \neq -1$,必有 r(A) = 2

(7) 设
$$X \sim f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
 ($\lambda > 0$),且概率 $P(X > D(X)) = e^{-2}$,则参数 $\lambda = ($). (A) 1/2 (B)1 (C)0 (D)2

(8) 设X 的分布函数与密度函数分别为F(x)及f(x),若X与-X具有相同的分布函数,则对任意的 实数x,有().

(A)
$$F(-x) = F(x)$$

(A)
$$F(-x) = F(x)$$
 (B) $F(-x) = -F(x)$ (C) $f(-x) = f(x)$ (D) $f(-x) = -f(x)$

(C)
$$f(-x) = f(x)$$

(D)
$$f(-x) = -f(x)$$

数学冲刺模拟题

共创(合工大)考研辅导中心

得分	评卷人

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

(9)
$$\lim_{n\to\infty} \frac{1}{n^2} \left[\sin\frac{\pi}{n^2} + 2\sin\frac{2^2\pi}{n^2} + \dots + (n-1)\sin\frac{(n-1)^2\pi}{n^2}\right] = \underline{\qquad}.$$

(10) 设
$$y = y(x)$$
 由方程 $x - \int_{1}^{x+y} e^{-u^2} du = 0$ 所 确定,则 $\frac{d^2 y}{dx^2}\Big|_{x=0} = \underline{\qquad}$

(11) 设函数
$$z = f(x, y) = \frac{\sin(x-1)\cos y - y\cos\sqrt{x+1}}{x+\sin y}$$
, 求 $dz\Big|_{(1,0)} =$ _______

- (12) 微分方程 $y^2 dx + (x 2xy y^2) dy = 0$ 的通解为
- 的一个最大线性无关组
- (14) 设二维随机变量服从正态分布 $N(\mu, \mu; \sigma^2, \sigma^2; 0)$, 且 $\mu = 0$ 时,则有 $D(2X Y^2) =$

三、解答题: 15~23 小题, 共94 分。解答应写出文字说明、证明过程或演算步骤。

- (15) (本题满分 10 分) 设 $\lim_{x\to 0} \frac{(1+bx^2)\cos x-a}{\sin^2 x \ln(1+x^2)} = c$,求常数 a,b,c 的值。
- (16) **(本题满分 10 分)** 设 f(x) 在 $[0,+\infty)$ 上是单调递减的连续函数。证明: a > 0 时有 $3\int_{a}^{a} x^{2} f(x) dx < a^{2} \int_{a}^{a} f(x) dx$.
- (17) (本题满分 10 分) 求函数 $f(x,y) = e^{-xy}$ 在区域 $D = \{(x,y) | x^2 + 4y^2 \le 1\}$ 上的最大值和最小值.
- (18) (本题满分 10 分) 计算二重积分 $I = \iint e^{\frac{|x|}{|x|+|y|}} d\sigma$, $D \oplus |x|+|y| \le 1$ 所围平面区域.
- (19) (本题满分 10 分) 设 f(x) 在 (0, 1) 内可导,且导数 f'(x) 有界,证明:
 - (1) $\sum_{n\to\infty}^{\infty} [f(\frac{1}{2^n}) f(\frac{1}{2^{n+1}})]$ 绝对收敛 (2) $\lim_{n\to\infty} f(\frac{1}{2^n})$ 存在
- (20) **(本题满分 11 分)** 已知 $\alpha = (1, -2, 2)^T$ 是二次型

$$\mathbf{x}^{T} \mathbf{A} \mathbf{x} = ax_{1}^{2} + 4x_{2}^{2} + bx_{3}^{2} - 4x_{1}x_{2} + 4x_{1}x_{3} - 8x_{2}x_{3}$$

对应矩阵 A 属于 λ 的特征向量,(1) 求 a,b,λ 的值;(2) 利用正交变换将二次型化为标准形,并写出所 用的正交变换和对应的正交矩阵.

- (21) (本题满分 11 分) 设 ξ 为 n(n>1) 维单位列向量,即 $\xi^T\xi=1$, $A=\xi\cdot\xi^T$. (1) 证明: $A\xi=\xi$, $A^2 = A$; (2) 证明: R(A) = 1, R(A - E) = n - 1; (3) 计算|A + E|.
- (22) (本小题满分 11 分)设(X,Y)联合密度

$$f(x, y) = \begin{cases} Ax^2e^{-y}, & 0 < x < y, \\ 0, & 其他. \end{cases}$$

(I) 考查 X与Y 的独立性; (II) 求条件密度函数 $f_{X/Y}(x/y)$; (III) 求条件概率 $P\{X < 1/Y = 2\}$.

数学冲刺模拟题

共创(合工大)考研辅导中心

(23) (本题满分 11 分) 设 X_1, \ldots, X_n 为总体 X 的简单随机样本,总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{2}{\theta\sqrt{\pi}} e^{-\frac{x^2}{\theta^2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

试求: (I) 参数 θ 的最大似然估计 $\hat{\theta}$; (II) $E(\hat{\theta}^2)$

•