Travaux dirigés de MACHINE LEARNING

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

Joon Kwon

mercredi 16 mars 2022

K

EXERCICE 1. — On se place dans un cadre de classification binaire avec $\mathscr{X} = [0,1]$ et $\mathscr{Y} = \{0,1\}$. Soit P une distribution sur $\mathscr{X} \times \mathscr{Y}$, ainsi que des variables aléatoires $(X,Y) \sim P$. Un prédicteur f_* minimisant le risque, c'est-à-dire tel que :

$$\mathbf{R}(f_*) = \min_{f \in \mathscr{F}(\mathscr{X},\mathscr{Y})} \mathbf{R}(f)$$

est appelé prédicteur *oracle*. On rappelle que la perte considérée par défaut en classification est la perte 0-1:

$$\ell(y, y') = \mathbb{1}_{\{y \neq y'\}} = \begin{cases} 1 & \text{si } y \neq y', \\ 0 & \text{si } y = y'. \end{cases}$$

On considère ci-dessous deux cas distincts. Dans chacun des cas, déterminer un prédicteur oracle ainsi que son risque.

- 1) La distribution P est telle que X suit une loi uniforme sur [0,1] et Y=1 si $X\geqslant 1/2$ et Y=0 sinon. Déterminer un prédicteur oracle ainsi que son risque.
- 2) La distribution P est telle que X et Y sont indépendants et $\mathbb{P}[Y=1]=2/3$.

EXERCICE 2. — On se place dans un cadre de classification avec l'ensemble d'entrées $\mathscr{X}=[0,10]$ et l'ensemble de sorties $\mathscr{Y}=\{0,1\}$. On considère sur \mathscr{X} la distance :

$$\rho(x, x') = |x - x'|.$$

On dispose de l'échantillon d'apprentissage suivant :

$$S = ((0, 0), (3, 1), (4, 1), (6, 0), (9, 0)).$$

- 1) Représenter graphiquement les données d'apprentissage.
- 2) Pour $1 \le k \le 5$, on note $\hat{f}^{(k)}$ le prédicteur kNN (pour la distance ρ) construit avec S. Pour les valeurs $k \in \{1, 2, 5\}$, donner (sans justifier) l'expression de $\hat{f}^{(k)}$.
- 3) Pour chaque $k \in \{1, 2, 5\}$, calculer l'erreur d'apprentissage de $\hat{f}^{(k)}$.

