3D-Stacked Integrated Circuits: How Fine Should System Partitioning be?

In the next 15 minutes

Correlation between MAX-cut and 3D nets

Study of an optimal partitioning grain

In the next 15 minutes

Correlation between MAX-cut and 3D nets

Study of an optimal partitioning grain

What is inside a 2D IC?

What is inside a 2D IC?

3D flavours

	3D-SIC	3D-SOC		3D-IC
Wiring	Global	Intermediate	Local	Local
Partition	Die	Clusters	Std cells	Transistors
3D Tech	Die stacking	W2W bonding	Active layer bonding or deposition	

3D flavours

	3D-SIC	3D-9	50C	3D-IC
Wiring	Global	Intermediate	Local	Local
Partition	Die	Clusters	Std cells	Transistors
3D Tech	Die stacking	W2W bonding	Active layer bonding or deposition	

Next level challenges: clustering and partitioning

Focus on the clustering

- What would be a good clustering method?
- What would be an ideal clustering grain?

Method: Clustering

Method: Clustering

Method: Clustering

Method: Partitioning

Bipartition the graph: Min/max-cut

Min or max cutsize:

Number of nets

Total wire-length

Average wire-length

Designs

Design	Gates	Nets	Wire-length (norm)
D1	42,471	49,633	2,101
D2	121,580	137,171	2,050
D3	185,777	200,999	2,860
D4	220,587	234,373	4,318
D5	289,812	306,118	5,312
D6	694,082	773,679	12,606
D7	808,199	883,295	16,722

Cut as little as possible, stay low on the Y-axis

Cut as long as possible, get high on the Y-axis

	Percentage of nets cut		Percentage of 3D WL			
Clusters	8	2048	32768	8	2048	32768
Average	7.00%	35.00%	49.00%	37.00%	73.00%	78.00%
Std dev	2.00%	55	7.00%	J ,	, -	4.00%

Future work

- New partitioning metrics: gate dispersion
- New clustering methods: heuristics on progressive wire-length
- Fully automated toolchain

- 3D SIC
- 3D SoC3D IC

