Analysis of Algorithms - CS 323 Lecture #14 – May 18, 2016

Notes by: Anna Ip

Announcements

The final exam will start at 6:30 p.m. on Wednesday, May 25th.

You can submit today's lecture notes for extra credit (2 points or 3 if it's really good) by 11 a.m. on Sunday, May 22^{nd} .

Lecture Notes

Countable \rightarrow there is a mapping of every element in a set to the natural numbers (\mathbb{N})

Uncountable \rightarrow you will miss some numbers in the set (\mathbb{R}), Cantor's Diagonalization Argument

Inclusive (up to and including) \rightarrow [0, 1) \leftarrow Exclusive (up to but not including)

```
\begin{array}{c} 0 \cdot \boldsymbol{b_{1,1}} \ b_{1,2} \ b_{1,3} \ b_{1,4} \dots \\ 0 \cdot b_{2,1} \ \boldsymbol{b_{2,2}} \ b_{2,3} \ b_{2,4} \dots \end{array}
```

 $0.b_{3,1}b_{3,2}b_{3,3}b_{3,4}...$

Look at the diagonal values and take the complement

$$\overline{b}_{\mathrm{i,i}} = 1 - \overline{b}_{\mathrm{i,i}}$$

 $0 \rightarrow 1$

 $1 \rightarrow 0$

$$r^* = 0 . \overline{b}_{1,1} \overline{b}_{2,2} \overline{b}_{3,3} \overline{b}_{4,4} ...$$

$$f(x) \rightarrow y$$

 $x \in \mathbb{N}$

 $y \in \mathbb{N}$

X	f ₀ (x)	f ₁ (x)	f ₂ (x)	f ₃ (x)	 f*(x)
0	$f_0(0)$	$f_1(0)$	$f_2(0)$	f ₃ (0)	$f_0(0) + 1$
1	f ₀ (1)	f ₁ (1)	f ₂ (1)	f ₃ (1)	$f_1(1) + 1$
2	f ₀ (2)	f ₁ (2)	f ₂ (2)	f ₃ (2)	$f_2(2) + 1$
3	f ₀ (3)	f ₁ (3)	f ₂ (3)	f ₃ (3)	$f_3(3) + 1$
4	f ₀ (4)	f ₁ (4)	f ₂ (4)	f ₃ (4)	
					$f_{i}(i) + 1$

There are countably infinite programs

There are uncountably infinite simple integer functions

```
The Halting Problem
```

The Median Problem

```
NP Complete Problems IS \ (Independent \ Set) \ Problem \\ Subgraph \ S \ such \ that \ no \ edges \ in \ V_s \ are \ adjacent \\ VC \ (Vertex \ Cover) \ Problem \\ Subgraph \ S \ such \ that \ each \ v_i \in V_s \ is \ adjacent \ to \ another \ vertex \ v_i \in V_s
```

IS and VC are complements of each other

Final Exam Review

Time complexities Names of main algorithms

1 question from the first exam and 1 question from the second exam (more general)

For example:

- 1) Sorting algorithms
- 2) Graph algorithms
- 3) Pseudocode for something ← e.g., Halting problem

The rest are from the last 1.5 lectures

Sequences (know the most basic ones, like these)

$$1 + 2 + 3 + ... + n = n(n+1)/2$$

$$r + r^2 + r^3 + ... + r^n = (r^{n+1} - 1)/(r - 1)$$

$$f(n) = f(n) + f(n-2) \leftarrow$$
 Characteristic equation (be able to identify what this is)

$$f(n) - f(n-1) - f(n-2) = 0$$

$$x^2 - x - 1 = 0$$

$$n = 2^k$$

$$T(n) = T(n/2) + f(n) \leftarrow$$
 Domain transformation (change the input) $S(k) = S(k-1)$

$$T(n) = 2T(n/2) + ... \leftarrow$$
 Range transformation (change the output)

Master theorem ← What theorem helps algorithms estimate time complexity

Dynamic programming technique

Floyd

Diikstra

Prim

Bellman Ford \leftarrow Handles negative weight complexity, O(V * E)

Weighted triangulation ← Not on the final

Dynamic problem solution

Knapsack problem \leftarrow Classic NP complete problem, O(n * k) where k is the upper bound on weight capacity of knapsack

Classic knapsack problem → You want to maximize the value

0-1 knapsack problem

0-1 knapsack problem with integer capacity \rightarrow 0(n * k) but k will be very large to n, more like exponential

Fractional knapsack problem \rightarrow O(n), sort by: (value/weight)

Basic matrix multiplication problem

Divide and conquer approach, divide into 4 quadrants

Now you have 8 subproblems, solve those

$$T(n) = 8T(n/2) + O(n^2)$$

$$T(n) = O(n^3)$$

Strassen

$$T(n) = 7T(n/2) + O(n^2)$$

$$T(n) = O(n^{\log_2 7})$$