5477. Minimum Swaps to Arrange a Binary Grid

My Submissions (/contest/weekly-contest-200/problems/minimum-swaps-to-arrange-a-binary-grid/submissions/)

Back to Contest (/contest/weekly-contest-200/)

Given an $n \times n$ binary grid, in one step you can choose two **adjacent rows** of the grid and swap them.

A grid is said to be **valid** if all the cells above the main diagonal are **zeros**.

Return *the minimum number of steps* needed to make the grid valid, or **-1** if the grid cannot be valid.

The main diagonal of a grid is the diagonal that starts at cell (1, 1) and ends at cell (n, n).

User Accepted:	0
User Tried:	0
Total Accepted:	0
Total Submissions:	0
Difficulty:	Medium

Example 1:

Swap row 1 with row 2 Swap row 2 with row 3 Swap row 1 with row 2

Input: grid = [[0,0,1],[1,1,0],[1,0,0]]

Output: 3

Example 2:

Input: grid = [[0,1,1,0],[0,1,1,0],[0,1,1,0]]
Output: -1
Explanation: All rows are similar, swaps have no effect on the grid.

Example 3:

Input: grid = [[1,0,0],[1,1,0],[1,1,1]]

Output: 0

Constraints:

- n == grid.length
- n == grid[i].length
- 1 <= n <= 200
- grid[i][j] is 0 or 1