

Course Specialist Test 1 Year 12

Student name:	Teacher name:
Task type:	Response
Reading time for this test	: 5 mins
Working time allowed for	r this task: 40 mins
Number of questions:	7
Materials required:	No cals allowed!!
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	42 marks
Task weighting:	13%
Formula sheet provided:	no
Note: All part questions	worth more than 2 marks require working to obtain full marks.

Useful formulae

Complex numbers

Cartesian form				
z = a + bi	$\overline{z} = a - bi$			
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$			
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$			
$arg(z_1 z_2) = arg(z_1) + arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$			
$z\overline{z} = z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$			
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$			
Polar form				
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis} (-\theta)$			
$z_1 z_2 = r_1 r_2 cis \left(\theta_1 + \theta_2\right)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$			
$cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$	$cis(-\theta) = \frac{1}{cis\theta}$			
De Moivre's theorem				
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$			
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$				

No cals allowed!!

Q1 (2, 2, 2 & 2 = 8 marks)

If z = 3 + 4i and w = 1 - i determine the following exactly.

a) ZV

	Solution	
zw = 7 + i		
	Specific behaviours	
✓ real part ✓ imaginary part		
✓ imaginary part		

b) $z^2 w$

Solution

$$z^2w = (3 + 4i)^2(1 - i) = (9 - 16 + 24i)(1 - i)$$
 $= (-7 + 24i)(1 - i)$
 $= 17 + 31i$

Specific behaviours

✓ real part

✓ imaginary part

c) $\frac{1}{\overline{z}}$

Solution
$$\frac{1}{3 - 4i} \frac{3 + 4i}{3 + 4i} = \frac{3 + 4i}{25}$$
Specific behaviours

✓ uses conjugate

✓ states result

d) $\frac{Z}{W}$

Solution	
$\frac{3+4i}{3+4i} \frac{1+i}{3+4i} = \frac{-1+7i}{3+4i}$	
1- i 1+ i 2	

✓ uses conjugate

✓ states result

Q2 (4 marks)

$$\frac{22 - 3i}{i} = 5 + bi$$

Determine all possible real number pairs a & b such that a+i

Solution

$$22 - 3i = (5 + bi)(a + i) = 5a - b + i(ab + 5)$$

$$22 = 5a - b$$
, $b = 5a - 22$

$$-3 = ab + 5 = a(5a - 22) + 5 = 5a^{2} - 22a + 5$$

$$0 = 5a^2 - 22a + 8 = (5a - 2)(a - 4)$$

$$a = 4, b = -2$$

$$a = \frac{2}{5}, b = -20$$

Specific behaviours

- ✓ equates reals and imaginaries
- ✓ sets up an equation with only one variable
- ✓ solves for two a values
- ✓ solves for two b values

Q3 (2, 3 & 3 = 8 marks)

Consider the function $f(z) = z^3 + 2z^2 + 9z + 18$

a) Determine f(3i)

Solution

$$f(3i) = -27i + -18 + 27i + 18 = 0$$

Specific behaviours

- ✓ shows all 4 terms
- ✓ final answer of zero

(Zero marks if all 4 terms not shown)

b) Hence solve $z^3 + 2z^2 + 9z + 18 = 0$

Solution

$$z^3 + 2z^2 + 9z + 18 = (z - a)(z - 3i)(z + 3i) = (z - a)(z^2 + 9)$$

$$2 = -a, a = -2$$

$$z = -2, \pm 3i$$

- ✓ uses conjugate
- ✓ shows full factorisation of f
- ✓ states all 3 roots
- c) Consider $g(z) = (z^2 + bz + c)(z^2 + dz + e)$ where b, c, d & e are real constants and g(3+i) = g(2-3i). Determine the values of b, c, d & e.

Solution $(x-\alpha)(x-\beta) = x^2 - (\alpha+\beta)x + \alpha\beta$

$$\alpha = 3 + i, \beta = 3 - i$$

$$z^2 - 6z + 10$$

$$\alpha = 2 - 3i, \beta = 2 + 3i$$

$$z^2 - 4z + 13$$

Specific behaviours

- ✓ uses conjugates
- ✓ shows factorisation of each quadratic
- ✓ states all 4 constant values

Q4 (3 marks)

Use the diagram below to determine the complex number W in polar form with a principal argument.

(diagram not drawn to scale)

Solution

$$w = rcis\theta$$

$$\frac{w}{z} = 3cis170 = \frac{r}{5}cis(\theta - 20)$$

$$r = 15, \theta = 150$$

$$w = 15 cis 150$$

Specific behaviours

- ✓ determines r of w
- \checkmark determines argument of w
- ✓ states w in polar form

Q5 (2 & 3 = 5 marks)

Sketch the following regions on the axes below.

a)
$$|z-2-3i|+|z-5-7i|=5$$

Solution

- ✓ shows a line segment of length 5 units
- ✓ plots correct endpoints of closed line segment (includes endpoints)

Solution

Specific behaviours

- ✓ shows a line segment open (i.e arrow)
- ✓ plots y coordinate
- ✓ plots a dotted line segment to 7 on real axis

Q6 (5, 2 & 2 = 9 marks)

a) Solve $z^6 = 2 + 2\sqrt{3}i$ in polar form with principal arguments.

Solution

$$z^6 = 2 + 2\sqrt{3}i = 4cis\left(\frac{\pi}{3} + 2n\pi\right)$$
 $n = 0, \pm 1, \pm 2,...$

$$z = 4^{\frac{1}{6}} cis \left(\frac{\pi}{18} + \frac{2n\tau}{6} \right) = 4^{\frac{1}{6}} cis \left(\frac{\pi}{18} + \frac{6n\tau}{18} \right)$$

$$z_1 = 4^{\frac{1}{6}} cis \left(\frac{\pi}{18} \right)$$

$$z_2 = 4^{\frac{1}{6}} cis\left(\frac{7\pi}{18}\right)$$

$$z_3 = 4^{\frac{1}{6}} cis\left(\frac{-5\pi}{18}\right)$$

$$z_4 = 4^{\frac{1}{6}} cis\left(\frac{13\pi}{18}\right)$$

$$z_5 = 4^{\frac{1}{6}} cis \left(\frac{-11\tau}{18} \right)$$

$$z_6 = 4^{\frac{1}{6}} cis \left(\frac{-17\pi}{18} \right)$$

- ✓ converts RHS to polar form
- ✓ shows use of De Moivres
- ✓ states 6 roots with same modulus
- ✓ all roots equally spaced
- ✓ all arguments in Principal form
- b) Plot these points on the axes below.

Solution

Specific behaviours

- ✓ scale shown with 6 roots equally spaced
- ✓ correct positions for all roots
- c) Determine the area of the polygon formed by joining the points in (b) above.

Solution

$$6 \times \frac{1}{2} \left(4^{\frac{1}{6}}\right)^2 \sin \frac{\pi}{3} = 3 \frac{\sqrt{3}}{2} \left(4^{\frac{1}{3}}\right)$$

Specific behaviours

- ✓ uses 6 equilateral triangles
- ✓ states exact value in surd form

Q7 (5 marks)

The locus of |z-a-2i|=|z-7-bi| where $a\otimes b$ are real constants is plotted below and can also be defined as $6\operatorname{Im}(z)=-8\operatorname{Re}(z)+61$. Determine the values of $a\otimes b$ showing full reasoning.

Solution

$$\mathbf{Midpoint} \left(\frac{a+7}{2}, \frac{2+b}{2} \right)$$

Gradient of dotted line $\frac{b-2}{7-a}$ perpendicular to locus line $\frac{b-2}{7-a} = \frac{3}{4}$

$$\frac{b-2}{7-a} = \frac{3}{4}$$

$$b = \frac{29 - 3a}{4} = \frac{87 - 9a}{12}$$

$$6\left(\frac{b+2}{2}\right) = -8\left(\frac{7+a}{2}\right) + 61$$

$$b = \frac{27 - 4a}{3} = \frac{108 - 16a}{12}$$

$$7a = 21$$

$$a = 3$$

- ✓ identifies two major points in terms of a&b OR subs z=x+iy into both sides
- ✓ uses midpoint and subs into line equation OR squares both sides and eliminates squared terms.
- \checkmark uses perpendicular gradient and major points \overrightarrow{OR} subs eqn of line
- ✓ sets up two simultaneous eqns for a&b
- ✓ solves for both a & b