Spreading
Resistance
Estimation
Tool for Heat
Spreader
Design

Fast, visual MATLAB-based method for early-stage thermal design

Problem and Solution

PROBLEM

- Designers need to size heat spreaders for ICs and power devices, but full 3D simulations are timeconsuming.
- Spreading resistance (R_sp) is a key metric, and engineers need quick ways to visualize how geometry and material properties affect it.

SOLUTION

- This tool estimates thermal spreading resistance using the closed-form model by Lee et al., popularized by Simons (2004).
 - Accepts heat source dimensions, material properties, and spreader geometry ranges
 - Computes R_sp for different thicknesses and areas
 - Outputs a clean **R_sp vs Area** plot
 - Helps identify optimal spreader size for target R_sp

References:

Simons, R.E., Simple Formulas for Estimating Thermal Spreading Resistance, Electronics Cooling, 2004 Lee et al., 1995: Constriction/Spreading Resistance Model for Electronics Packaging

Methodology

- Core Principle: Estimate spreading resistance from a heat source into a larger heat spreader using closedform equations derived from a circular area transformation.
- Geometry Mapping: Rectangular source → equivalent circular radius

r1=
$$\sqrt{\frac{A_{source}}{\pi}}$$
, r2 = $\sqrt{\frac{A_{spreader}}{\pi}}$

 Applicable to non-square spreaders using areaequivalence

Tool Features:

- Fast MATLAB implementation
- Handles thousands of spreader combinations
- Outputs design chart: R_{sp} vs Area, color-coded by thickness

• Parameters:

- Inputs:
 - Heat source length & width
 - Spreader length, width, and thickness range
 - Thermal conductivity k, effective heat transfer coefficient h_eff
- Computed:
 - Biot Number, Bi = h*r2/k
 - $$\begin{split} \bullet & \text{ Spreading Resistance: } R_{sp} = \frac{1}{k \times r 1 \times \sqrt{\pi}} \times \left[\frac{E \times \tau}{\sqrt{\pi}} + \frac{(1-E)}{\sqrt{\pi}} \times \phi \right] \\ & where, E = \frac{r1}{r2}, \tau = \frac{t}{r2}, and \\ & \phi = \frac{\tanh(\lambda \times \tau) + \left(\frac{\lambda}{Bi}\right)}{1 + \left(\frac{\lambda}{Bi}\right) \times \tanh(\lambda \times \tau)}, \qquad \lambda = E + \frac{1}{E\sqrt{\pi}} \end{split}$$

Output: R_sp vs Heat Spreader Area

• This plot shows how spreader area and thickness affect thermal spreading resistance (K/W).

• Curves correspond to different thickness values (1 mm to 10 mm).

 Red dashed line indicates actual heat source area (84.32 mm²)

Key Takeaways:

- Increasing thickness reduces R_sp, especially at small areas.
- After a certain point, increasing area or thickness yields diminishing returns

Spreading Resistance vs Heat Spreader Area

This chart enables engineers to select an optimal spreader size and thickness to meet target R_sp values, no FEA required.

Application Example: Choosing a Spreader

Design Scenario:

- You're packaging a 10.5 mm × 8.03 mm chip dissipating high power.
- Your target: keep spreading resistance R_sp < 0.25 K/W

Heat Source Area:

$$A_{source} = 84.32 \ mm^2$$

What spreader dimensions and thickness meet the target?

Using the Tool:

- Use the chart from Slide 3
- Follow the red dashed line (84.32 mm²)
- Check which curves fall below 0.25 K/W

Design Decision:

- At $t \ge 5.5$ mm, R_sp< 0.25 K/W
- Suggested geometry: Area ≥ 300 mm²
- Thickness ≥ 5.5 mm
- Material: Use high-k

Result:

You've quickly eliminated infeasible spreaders and focused on efficient thermal designs, without FEA.