EECS 16A Designing Information Devices and Systems I Discussion 4B

1. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix **M** and their associated eigenvectors.

(a)
$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$$

Do you observe anything about the eigenvalues and eigenvectors?

Answer:

Let's begin by finding the eigenvalues:

$$\det \left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) = \det \left(\begin{bmatrix} 1 - \lambda & 0 \\ 0 & 9 - \lambda \end{bmatrix} \right) = 0$$

The determinant of a diagonal matrix is the product of the entries.

$$(1-\lambda)(9-\lambda)=0$$

From the above equation, we know that the eigenvalues are $\lambda = 1$ and $\lambda = 9$. For the eigenvalue $\lambda = 1$:

$$(\mathbf{M} - 1\mathbf{I})\vec{x} = \vec{0}$$

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \vec{x} = \vec{0}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 8 \end{bmatrix} \vec{x} = \vec{0}$$

From the second equation in the system, $x_2 = 0$, with any solution having the form $\begin{bmatrix} 1 \\ 0 \end{bmatrix} t$ for $t \in \mathbb{R}$. The eigenspace is thus span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$.

For the eigenvalue $\lambda = 9$:

$$(\mathbf{M} - 9\mathbf{I})\vec{x} = \vec{0}$$

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - 9 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \vec{x} = \vec{0}$$

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix} \right) \vec{x} = \vec{0}$$

$$\begin{bmatrix} -8 & 0 \\ 0 & 0 \end{bmatrix} \vec{x} = \vec{0}$$

From the first equation in the system, $x_1 = 0$, so any solution must take the form $\begin{bmatrix} 0 \\ 1 \end{bmatrix} t$ for $t \in \mathbb{R}$. The eigenspace is span $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.

We observe that the eigenvalues are just the diagonal entries. Since the matrix is diagonal, multiplying the diagonal matrix **D** with any standard basis vector \vec{e}_i produces $d_i\vec{e}_i$, that is, $\mathbf{D}\vec{e}_i = d_i\vec{e}_i$. Therefore, the eigenvalues are the diagonal entries d_i of **D**, and the corresponding eigenvector associated with $\lambda = d_i$ is the standard basis vector \vec{e}_i .

(b)
$$\mathbf{M} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Answer

Let's begin by finding the eigenvalues:

$$\det(A - \lambda I) = \det\left(\begin{bmatrix} 0 - \lambda & 1\\ -2 & -3 - \lambda \end{bmatrix}\right) = 0$$
$$-\lambda(-3 - \lambda) + 2 = 0$$
$$\lambda^2 + 3\lambda + 2 = 0$$
$$(\lambda + 2)(\lambda + 1) = 0$$
$$\lambda = -1, -2$$

$$\lambda = -1:$$

$$\begin{bmatrix} 0 - (-1) & 1 & | & 0 \\ -2 & -3 - (-1) & | & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & | & 0 \\ -2 & -2 & | & 0 \end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

$$x_1 + x_2 = 0$$

$$x_2 = t \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -t \\ t \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} t$$

The eigenspace for $\lambda = -1$ is span $\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$.

$$\lambda = -2:$$

$$\begin{bmatrix} 0 - (-2) & 1 & 0 \\ -2 & -3 - (-2) & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ -2 & -1 & 0 \end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1 + x_2/2 = 0$$

$$x_2 = t \implies \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -t/2 \\ t \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} t$$

The eigenspace for $\lambda = -2$ is span $\left\{ \begin{bmatrix} -1/2 \\ 1 \end{bmatrix} \right\}$.

2. Steady and Unsteady States

You're given the matrix **M**:

$$\mathbf{M} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$

which generates the next state of a physical system from its previous state: $\vec{x}[k+1] = \mathbf{M}\vec{x}[k]$.

(a) The eigenvalues of **M** are $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = \frac{1}{2}$. Define $\vec{x} = \alpha \vec{v}_1 + \beta \vec{v}_2 + \gamma \vec{v}_3$, a linear combination of the eigenvectors corresponding to the eigenvalues. For each of the cases in the table, determine if

$$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$$

converges. If it does, what does it converge to?

α	β	γ	Converges?	$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$
0	0	$\neq 0$		
0	$\neq 0$	0		
0	$\neq 0$	$\neq 0$		
$\neq 0$	0	0		
$\neq 0$	0	$\neq 0$		
$\neq 0$	$\neq 0$	0		
$\neq 0$	$\neq 0$	$\neq 0$		

Answer:

$$\mathbf{M}^{n}\vec{x} = \mathbf{M}^{n}(\alpha\vec{v}_{1} + \beta\vec{v}_{2} + \gamma\vec{v}_{3})$$

$$= \alpha\mathbf{M}^{n}\vec{v}_{1} + \beta\mathbf{M}^{n}\vec{v}_{2} + \gamma\mathbf{M}^{n}\vec{v}_{3}$$

$$= 1^{n}\alpha\vec{v}_{1} + 2^{n}\beta\vec{v}_{2} + \left(\frac{1}{2}\right)^{n}\gamma\vec{v}_{3}$$

α	β	γ	Converges?	$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$
0	0	$\neq 0$	Yes	$\vec{0}$
0	$\neq 0$	0	No	-
0	$\neq 0$	$\neq 0$	No	-
$\neq 0$	0	0	Yes	$\alpha \vec{v}_1$
$\neq 0$	0	$\neq 0$	Yes	$\alpha \vec{v}_1$
$\neq 0$	$\neq 0$	0	No	-
$\neq 0$	$\neq 0$	$\neq 0$	No	-

(b) (**Practice**) Find the eigenspaces associated with the eigenvalues:

- i. span(\vec{v}_1), associated with $\lambda_1 = 1$
- ii. span(\vec{v}_2), associated with $\lambda_2 = 2$
- iii. span(\vec{v}_3), associated with $\lambda_3 = \frac{1}{2}$

Answer:

i. $\lambda = 1$:

$$\begin{bmatrix} \mathbf{M} - \mathbf{I} & \vec{0} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$ec{v}_1 = lpha egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, lpha \in \mathbb{R}$$

This means that

$$span\{\vec{v}_1\} = span\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$

ii. $\lambda = 2$:

$$\begin{bmatrix} \mathbf{M} - 2\mathbf{I} & \vec{0} \\ \vec{0} & -1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\vec{v}_2 = \beta \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}, \beta \in \mathbb{R}$$

This means that

$$span\{\vec{v}_2\} = span\left\{ \begin{bmatrix} -1\\ -2\\ 1 \end{bmatrix} \right\}$$

iii. $\lambda = \frac{1}{2}$:

$$\begin{bmatrix} \mathbf{M} - \frac{1}{2}\mathbf{I} & \vec{0} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -2 & 0 \\ 0 & 0 & \frac{3}{2} & 0 \end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\vec{v}_3 = \gamma \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \gamma \in \mathbb{R}$$

This means that

$$span\{\vec{v}_3\} = span \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

3. Are eigenvectors linearly independent?

Suppose we have a square matrix $\mathbf{A}^{n\times n}$ with n distinct eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ (meaning that $\lambda_i \neq \lambda_j$ when $i \neq j$) and n corresponding eigenvectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$. Prove that any two eigenvectors \vec{v}_i, \vec{v}_j (for $i \neq j$) are linearly independent.

HINT: Begin proof by contradiction: Suppose that \vec{v}_i and \vec{v}_j correspond to distinct eigenvalues, so that $(\lambda_i - \lambda_j) \neq 0$, and are linearly dependent. Show this leads to a nonsensical equality after applying **A**.

If you still feel stuck, apply the definition of linear dependence to \vec{v}_i and \vec{v}_j . What happens when we apply **A** to eigenvectors, and more importantly to the definition you found in the last sentence? If you need help understanding proof by contradiction, Example 4.4 in Note 4 gives a good explanation and example.

Answer:

PROOF BY CONTRADICTION:

Suppose \vec{v}_i and \vec{v}_j correspond to distinct eigenvalues such that $(\lambda_i - \lambda_j) \neq 0$ and are linearly dependent, meaning $\alpha \vec{v}_i + \beta \vec{v}_i = \vec{0}$.

NOTE: We know that both $\alpha \neq 0$ and $\beta \neq 0$ since any zero constant would imply that one of the eigenvectors is $\vec{0}$, which by definition of an eigenvector cannot be true.

Let
$$\vec{u} = \alpha \vec{v}_i + \beta \vec{v}_j = \vec{0}$$
. By definition $\mathbf{A} \vec{u} = \mathbf{A} \vec{0} = \vec{0}$. However ...

$$\mathbf{A} \vec{u} = \mathbf{A} (\alpha \vec{v}_i + \beta \vec{v}_j) = \alpha \mathbf{A} \vec{v}_i + \beta \mathbf{A} \vec{v}_j$$

$$= \alpha \lambda_i \vec{v}_i + \beta \lambda_j \vec{v}_j$$

$$= \lambda_i (\alpha \vec{v}_i + \beta \vec{v}_j) + (\lambda_j - \lambda_i) \beta \vec{v}_j$$

$$= \lambda_i \vec{u} + (\lambda_j - \lambda_i) \beta \vec{v}_j$$

$$= (\lambda_i - \lambda_i) \beta \vec{v}_i = \vec{0}$$

Since all three components $(\lambda_j - \lambda_i)$, β , and \vec{v}_j cannot be zero by construction (and/or definition), we've arrived at a contradiction suggesting that the eigenvectors \vec{v}_i and \vec{v}_j MUST be linearly independent!