问题 1. (Folland) Let X = [0, 1], $\mathcal{M} = \mathcal{B}_{[0,1]}$, m = Lebesgue measure, and $\mu = \text{counting measure}$ on \mathcal{M} .

- 1. $m \ll \mu$ but $dm \neq f d\mu$ for any f.
- 2. μ has no Lebesgue decomposition with respect to m.

问题 2. (Folland) By the definition:

If $f \in L^1_{loc}(\mathbb{R}^n)$, define its Hardy-Littlewood maximal function Mf by

$$Mf(x) = \sup_{r>0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y)| dy.$$

 $Mf\left(x\right) = \sup_{r>0} \frac{1}{m\left(B\left(r,x\right)\right)} \int_{B\left(r,x\right)} \left|f\left(y\right)\right| \, \mathrm{d}y.$ If $f \in L^{1}\left(\mathbb{R}^{n}\right), \ f \neq 0$, there exist C, R > 0 such that $Mf\left(x\right) \geq \frac{C}{|x|^{n}}$ for |x| > R. Hence $m\left(\left\{x:Mf\left(x\right)>\alpha\right\}\right)\geq\frac{C'}{\alpha}$ when α is small, so the maximal theorem is essentially sharp.

问题 3. (Folland) If E is a Borel set in \mathbb{R}^n , the density $D_E(x)$ of E at x is defined as

$$D_{E}(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))},$$

whenever the limit exists.

- 1. Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in E^c$.
- 2. Find examples of E and x such that $D_{E}(x)$ is a given number $\alpha \in (0,1)$, or such that $D_{E}(x)$ does not exist.

问题 4. (Rudin) Let $L^{\infty} = L^{\infty}(m)$, where m is Lebesgue measure on I = [0, 1]. Show that there is a bounded linear functional $\Lambda \neq 0$ on L^{∞} that is 0 on C(I), and that therefore there is no $g \in L^{1}(m)$ that satisfies $\Lambda f = \int_L fg \, dm$ for every $f \in L^{\infty}$. Thus $(L^{\infty})^* \neq L^1$.

问题 5. (Rudin) Suppose $1 and prove that <math>L^{q}(\mu)$ is the dual space of $L^{p}(\mu)$ even if μ is not σ -finite, 1/p + 1/q = 1 as usual.

问题 6. (GTM 18*) If μ and ν are totally σ -finite signed measures such that $\nu \ll \mu$, then

$$\nu\left(\left\{x:\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\left(x\right)=0\right\}\right)=0.$$