

Lecture 33

Machine Learning

Announcements

Review: Classifiers

Training a Classifier

Nearest Neighbor Classifier

Finding the k Nearest Neighbors

To find the *k* nearest neighbors of an example:

- Find the distance between the example and each example in the training set
- Augment the training data table with a column containing all the distances
- Sort the augmented table in increasing order of the distances
- Take the top k rows of the sorted table (Demo)

The Classifier

To classify a point:

- Find its *k* nearest neighbors
- Take a majority vote of the k nearest neighbors to see which of the two classes appears more often
- Assign the point the class that wins the majority vote

(Demo)

Evaluation

Accuracy of a Classifier

The accuracy of a classifier on a labeled data set is the proportion of examples that are labeled correctly

Need to compare classifier predictions to true labels

If the labeled data set is sampled at random from a population, then we can infer accuracy on that population

(Demo)

Machine Learning

What is ML?

A machine learning algorithm enables a computer to

- identify patterns in observed data
- build models that explain the world
- and predict things without having explicit pre-programmed rules and models.

All you'll need to know from this lecture -- the difference between supervised and unsupervised ML

Supervised Machine Learning

Input: Labeled data

Output: Prediction for unlabeled example

High computational complexity

Unsupervised Machine Learning

Input: Unlabeled data

Objective: Recognize underlying patterns in data

Low computational complexity

Semi-Supervised Machine Learning

Input: Some labeled data, but majority unlabeled

What we've learned: Regression

Is Linear Regression supervised?

Yes!

What we've learned: Classification

Is Classification supervised? Yes!

Interesting Material (that will not be tested!)

Other Interesting Techniques

Decision Trees -- supervised? Yes!

Other Interesting Techniques

Clustering -- supervised? No!

If you like this, take DATA 100, STAT 154, CS 189

Group and interpret data based only on input data CLUSTERING

MACHINE LEARNING

SUPERVISED LEARNING

Develop predictive model based on both input and output data CLASSIFICATION

REGRESSION

Neural Networks

Data Science problems for the next 10 years

Self-Driving Cars

State of the Art: Deep Learning + Computer Vision

Natural Language Processing

How can a computer read a book?

- Machine Translation
- Question Answering
- Ambiguity

"One morning I shot an elephant in my pajamas"

Can a computer play Jeopardy?

Yes! IBM Watson can.

Conversational Agents

Smart Home / IoT

If you like this, take Systems (CS 162) and Databases (CS 186)

And many more...

- Education
- Social Science
- Humanities
- Economics
- Environmental Science
- (We'll never finish listing them all)

You are data scientists now -- go out and change the world!