Silicon Labs Si5351: VFOs on the cheap and easy

Hudson Spillers, KL4LJ

Why should you care

- VFO for radio frequencies
- Well established NanoVNA, QRP Labs, etc
- Affordable COTS breakout boards

Si5351A S Wave Freq

\$1288

√prime

FREE delivery

Si5351A I2C

Brand New

\$2.19

Was: \$2.44 or Best Offer Free shipping from China Free returns 112 sold

Features overview

- Original purpose: computer system clock generator
- 3 squarewave clock outputs
- Versatile 8 kHz to at least 160 MHz
- Supports arbitrary phase shifts
- I²C interface any typical microcontroller

Libraries

- Adafruit obsolete and little hardware abstraction
- Etherkit simple for basic functionality

```
si5351.init //setup hardware options
si5351.drive_strength //output power*
si5351.set_freq
si5351.output_enable
```

More detail under the hood

- Typically 25 MHz external quartz oscillator
- Each PLL multiplies the 25 MHz source independently by a factor m + (n/d)
 - \circ 15 \leq m \leq 90
 - o **n** and **d** are 20 bit binary numbers: 0 1,048,575
- Each output is driven by a "multi-synth"
- PLL A or B input specified for each multisynth
- Input frequency divided by a similar factor
 - o In this case, $4 \le \mathbf{m} \le 900$
 - o **n** and **d** are also 20 bit, as above
- Finally the multisynth divides further by power of 2, from 1 to 128

Example projects/uses

- Test VFO source
- FSK transmitter
 - o RTTY, WSPR, FT8, etc.
- Quadrature local oscillator for quadrature SSB modulator