Tinkerkit Braccio - uživatelský manuál

Firmware v1.0 - Lukáš Bílek - www.lukasbilek.com

Gratuluji Vám, pokud toto čtete, pravděpodobně se chystáte stát obsluhou robotického ramene spolu s celým robotickým pracovištěm. V tomto manuálu se seznámíte s procesem zapnutí a oživení robotického ramene, s ovládáním, dostupnými instrukcemi a nakonec s přípravou a obsluhou demonstračních úloh.

1 Potřebný software

Firmware (řídicí systém) je postaven na platformě Arduino. Celé pracoviště lze řídit skrz USB komunikaci. Pro řízení ramene na svůj stroj (stolní počítač, notebook, kalkulačku?) nainstalujte:

- Arduino IDE vývojové prostředí Arduino dostupné na oficiálním webu www.arduino.cc/en/software
- ovladače ovladače pro Arduino Uno R3 dostupné z docs.arduino.cc/tutorials/generic/DriverInstallation

Po instalaci jste připravení přejít k fyzickému zapojení a oživení robotu.

2 Zapojení kabelů

Před spuštěním ramene zapojte potřebné kabely do řídicí jednotky. Připojte:

- USB kabel USB kabel typu USB-B připojte do USB portu Arduina
- Napájecí kabel napájecí kabel připojte do černé kulaté zdířky shieldu.
- Světelný maják* dráty připojte přesně dle uvedeného pořadí a barev:
 Zelená A3, Oranžová A4, Hnědá A5 Trojdrát GND
- Nouzové tlačítko* dráty připojte přesně dle uvedeného pořadí:
 izolovaný drát 5V drát z rezistoru (neizolovaný) GND izolovaný dvojdrát A0

Pozor.

Napájení připojte do oranžového shieldu na Arduinu, ne do Arduina!!!

^{* -} Tyto komponenty by měly být již připojeny a neměly by se odpojovat. Pokud jsou odpojeny, zde jsou instrukce, jak je připojit.

3 Zapnutí ramene

Po připojení všech periferií je na řadě zapnutí ramene. Postupujte **přesně** dle těchto instrukcí, v případě nedodržení postupu hrozí poškození robotu.

- Nastavte rameno do vzpřímené polohy Kriticky důležitý bod. Při startu ramene z jiné než vzpřímené polohy hrozí zlomení plastových vložek kolem rotorů servomotorů. Rameno napolohojte rukou dle polohy na obrázku 1.
- Připojte napájecí adaptér Připojte napájecí adaptér do zdroje el. energie.
- Připojte USB kabel Připojte USB kabel do portu ve Vašem zařízení.
- Spuste aplikaci Otevřete aplikaci Arduino IDE.
- Nastavte komunikační port V nabídce Nástroje vyberte v nabídce Port připojené zařízení Arduino Uno.
- Spustte terminál V nabídce Nástroje vyberte Sériový monitor a nastavte frekvenci na 9 600 baudů.

Po nastavení konzole se vypíše úvodní zpráva a rameno je připraveno přijímat instrukce od uživatele.

Pro zjištění aktuálního stavu ramene je k dispozici signální světelný maják, popis jeho stavů je uveden v následující tabulce.

Světelná kombinace	Význam	
Zelená, Žlutá, Červená	Spouštění robotického pracoviště	
Zelená	"Stand by"- rameno je připraveno a čeká na příchozí instrukci	
Žlutá	Rameno vykonává zadanou instrukci/úlohu	
Červená	CENTRAL-STOP - Nouzový stav, rameno se zastaví v aktuální poloze	

Tabulka 1: Světelné kombinace a jejich význam

Obrázek 1: Startovní pozice ramene

Pozor

Rameno spouštějte **VŽDY** ve vzpřímené poloze, viz obrázek 1, jinak hrozí zničení spojek rotorů servomotorů vlivem prudkých pohybových rázů.

4 Uživatelské instrukce

Rameno implementuje standard G-code, dostupné instrukce jsou uvedeny v tabulce.

Instrukce	Dodatečné argumenty	Popis instrukce
10	X	Otevření koncového efektoru
11	X	Zavření koncového efektoru
12	úhel otevření klepet	Nastavení přesného úhlu otevření klepet efektoru (pro jemné uchopení)
28	X	AutoHOME - Rameno se přesune do domovské polohy
90	úhly q0 - q3	Nastavení polohy ramene zadáním přesných úhlů jednotlivých kloubů
92	souřadnice X, Y, Z	Nastavení polohy ramene zadáním souřadnic bodu v prostoru (IKU)
101	X	Demonstrační úloha - Přesun nákladu
102	X	Demonstrační úloha - Stavba věže
103	X	Demonstrační úloha - Pyramida
104	X	Demonstrační úloha - Dvě věže
105	X	Demonstrační úloha - Stabilizace v bodu

Instrukce zadávejte do terminálu pouze číselně bez písmene *G*. Pokud jsou u funkce uvedeny dodatečné argumenty, nezadávejte je spolu s instrukcí, instrukce se na ně sama po jednom doptá. Řiďte se instrukcemi v terminálu.

5 CENTRAL-STOP

V případě, že by se rameno začalo chovat nestandardně, hrozil náraz do pracovní desky nebo jiného objektu zasahujícího do pracovní oblasti, je možné rameno **okamžitě zastavit** stiskem tlačítka **CENTRAL-STOP**. Stiskem tlačítka dojde k zastavení ramene, rozsvícení červeného signálního světla na světelném majáku a rameno zruší aktuální pohybový manévr. Rameno čeká ve stop stavu do té doby, než je tlačítko CENTRAL-STOP uvolněno. Uvolnění tlačítka provede otočením tlačítka ve směru vyznačených šipek.

Nyní jste v podstatě expert na robotiku a můžete začít s obsluhou ramene. Odměňte se něčím dobrým za úspěšné studium manuálu a vzhůru do ovládání robotu <3. V dalších návodech naleznete detailně popsané jednotlivé demonstrační úlohy, jejich chovaní a potřebnou přípravu spolu s plánky, kam umístit jaké válečky.

Informace

Instrukce **G101 - G105** vyžadují pro správné spuštění přípravu. Každou úlohu před spuštěním připravte dle manuálu jednotlivých úloh. Jedná se hlavně o správné rozmístění přiložených válečků simulujících náklad.

Pozor

Rameno spouštějte **VŽDY** ve vzpřímené poloze, viz obrázek 1, jinak hrozí zničení spojek rotorů servomotorů vlivem prudkých pohybových rázů.

G101 - Přesun nákladu

Ukázková úloha

Popis úlohy

Robotické rameno přesouvá 1 váleček mezi dvěma body. Simuluje tak přesun obrobku například z dopravníkového pásu na stanoviště k obrobení a pak zpět na dopravníkový pás.

Příprava

Na desku umístěte 1 váleček dle plánku na pozici:

• X = 200; Y = 300 - **1 váleček**

Obrázek 2: Schéma G101

Informace

G102 - Stavba věže

Ukázková úloha

Popis úlohy

Robotické rameno bere válečky ze 3 stanovišť a staví z nich jednu vysokou věž. Celkem využije všech 6 válečků.

Příprava

Na desku umístěte 6 válečků dle plánku na pozice:

- X = 0; Y = 300 2 válečky
- X = -200; Y = 300 **2 válečky**
- X = -300; Y = 100 2 válečky

Obrázek 3: Schéma G102

Informace

G103 - Pyramida

Ukázková úloha

Popis úlohy

Robotické rameno postupně odebírá válečky ze stanoviště a staví z nich malou pyramidu. Celkem využije 3 válečky.

Příprava

Na desku umístěte 3 válečky dle plánku na pozici:

• X = -300; Y = 100 - 3 válečky

Obrázek 4: Schéma G103

Informace

G104 - Dvě věže

Ukázková úloha

Popis úlohy

Robotické rameno přesouvá válečky ze stanoviště a staví z nich dvě paralelní věže. Celkem je využito všech 6 válečků, každá věž tedy využije 3 válečky.

Příprava

Na desku umístěte 6 válečků dle plánku na pozici:

• X = 0; Y = 300 - 6 válečků

Obrázek 5: Schéma G104

Informace

G105 - Stabilizace v bodu

Ukázková úloha

Popis úlohy

Robotické rameno nic nepřesouvá. Snaží se o pohyb celého ramene, přitom konec efektoru zůstává stále v jednom bodu v prostoru. Dalo by se říct, že se jedná o "obíhání" jednoho bodu v prostoru.

Příprava

Úlohu není třeba připravovat, válečky se zde nevyužívají.

Informace

