A data matrix Y is made up of two submatrices, Y_1 and Y_2 of size $I \times J_n$. The task is to solve a distributed low-rank approximation by two agents, such that each agent has only one part of the data Y, and does not have access to the other parts of the data.

Derive the algorithms to update $\{U_n,V_n\}$ by the n-th agent for the following problem

```
\min \quad rac{1}{2}||Y_1-U_1V_1^T||_F^2 + rac{1}{2}||Y_2-U_2V_2^T||_F^2
                                     s.\,t U_1=U_2
                         \mathcal{L} = rac{1}{2} ||Y_1 - U_1 V_1^T||_F^2 + rac{1}{2} ||Y_2 - U_2 V_2^T||_F^2 + rac{lpha}{2} ||U_1 - U_2 - T||_F^2
                    rac{\partial \mathcal{L}}{\partial V_1} = U_1^T (Y_1 - U_1 V_1^T) = 0 \quad => \quad V_1^* = ((U_1^T U_1)^{-1} U_1^T Y_1)^T
 ||Y_1 - U_1 V_1^{*T}||_F^2 = ||Y_1 - U_1 (U_1^T U_1)^{-1} U_1^T Y_1|| = [	ext{SVD decomposition } U_1 = A \Sigma B^T] =
                              =\left|\left|Y_{1}-AA^{T}Y_{1}
ight|_{F}^{2}=\left|\left|Y_{1}
ight|_{F}^{2}+\left|\left|AA^{T}Y_{1}
ight|\right|_{F}^{2}-2tr(Y_{1}^{T}AA^{T}Y_{1})=
                             = ||Y_1||_F^2 + ||A^TY_1||_F^2 - 2||A^TY_1||_F^2 = ||Y_1||_F^2 - ||A^TY_1||_F^2
||U_1-U_2-T||_F^2 = ||U_1-D||_F^2 = ||A\Sigma B^T-D||_F^2
                         \mathcal{L} = rac{1}{2} ||Y_1||_F^2 - rac{1}{2} ||A^T Y_1||_F^2 + rac{1}{2} ||Y_2 - U_2 V_2^T||_F^2 + rac{lpha}{2} ||A \Sigma B^T - D||_F^2
                     \frac{\partial \mathcal{L}}{\partial \Sigma} = 0 => \Sigma^* = A^T D B
                         \mathcal{L} = rac{1}{2} ||Y_1||_F^2 - rac{1}{2} ||A^T Y_1||_F^2 + rac{1}{2} ||Y_2 - U_2 V_2^T||_F^2 + rac{lpha}{2} ||AA^T D - D||_F^2
                  \min_{A} \mathcal{L} = \min_{A} - rac{1}{2} ||A^T Y_1||_F^2 + rac{lpha}{2} ||AA^T D - D||_F^2 = 0
                             = \min_{A} -rac{1}{2}||A^TY_1||_F^2 + rac{lpha}{2}(||A^TD||_F^2 + ||D||_F^2 - 2||A^TD||_F^2)
                             = \min_{A} -rac{1}{2}||A^TY_1||_F^2 -rac{lpha}{2}||A^TD||_F^2
                             =\max_{A}tr(Y_{1}^{T}AA^{T}Y_{1}-lpha D^{T}AA^{T}D)
                             =\max_{A}tr(A^T(Y_1Y_1^T-lpha DD^T)A)
```

A = R -leading eigenvectors of matrix $Y_1Y_1^T - lpha DD^T$ For V_2^* formula is similar to V_1^* because of simmetry.

 $\left|\left|U_{1}-U_{2}-T
ight|
ight|_{F}^{2}=\left|\left|U_{2}-U_{1}+T
ight|
ight|_{F}^{2}$

```
D_2=U_1-T and A_2 for U_2 should be similare to A for U_1 because of simmetry.
```

Final updates:

1.

2.

3.

 $A = R - ext{ leading eigenvectors of matrix } Y_1 Y_1^T - lpha DD^T$ $\Sigma^*B^T = A^TD => U_1^* = AA^TD$ $V_1^* = ((U_1^T U_1)^{-1} U_1^T Y_1)^T$ $D=U_1-T$ $A = R - ext{ leading eigenvectors of matrix } Y_2 Y_2^T - lpha DD^T$ $U_2^* = AA^TD$ $V_2^* = ((U_2^T U_2)^{-1} U_2^T Y_2)^T$

 $T=T_{prev}+U_2^st-U_1^st$

In []: import numpy as np from numpy.linalg import svd, eig, inv import matplotlib.pyplot as plt from PIL import Image import cv2 img = cv2.imread("airplane.jpg") shape = (600, 600)img = cv2.resize(img, (600, 600))

Y = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).astype(float)

In []: J = Y.shape[1] // 2 Y1 = Y[:, :J]Y2 = Y[:, J:]

In []: def get_U_V(Y, T, alpha, U1=None, U2=None): if U1 is None: D = U2 + Telif U2 is None: D = U1 - TR = D.shape[1]

mat = Y @ Y.T - alpha * D @ D.T _, eigenvectors = eig(mat) A = eigenvectors[:, :R] U = A @ A.T @ DV = (inv(U.T @ U) @ U.T @ Y).Treturn U, V

def update_T(T_prev, U2, U1): return T_prev + U2 - U1

return np.linalg.norm(Y - U @ V.T, "fro") ** 2

def get_score(Y, U, V): def plot(rank, result_img, primal_img): fig, ax = plt.subplots(ncols=2) fig.suptitle(f" rank = {rank}") ax[0].set_title("result img") ax[1].set_title("primal img") ax[0].imshow(np.real(result_img), cmap="gray") ax[1].imshow(np.real(primal_img), cmap="gray") fig.show()

Give an example of two agents fitting an image Y.

Report the approximation error err1 and the difference $\left|\left|U_1-U_2
ight|
ight|_F^2$ between U1 and U2. Check the approximation error after exchanging U_1 and U_2 - err2.

In []: for R in [2, 10, 24]: V1 = np.random.random((J, R)) U1 = np.random.random((Y.shape[0], R)) V2 = np.random.random((J, R)) U2 = np.random.random((Y.shape[0], R)) T = np.random.random(U1.shape) alpha = 10for _ in range(3): U1, V1 = get_U_V(U2=U2, Y=Y1, T=T, alpha=alpha) U2, V2 = get_U_V(U1=U1, Y=Y2, T=T, alpha=alpha) $T = update_T(T, U2=U2, U1=U1)$ # print(get_score(Y1, U1, V1)) result_img = np.concatenate([U1 @ V1.T, U2 @ V2.T], axis=1) error1 = get_score(Y1, U1, V1) + get_score(Y2, U2, V2) error2 = get_score(Y1, U2, V1) + get_score(Y2, U1, V2) U_dist = np.linalg.norm(U1 - U2, "fro") ** 2 f"rank = {R}, error1 = {error1}, error2 = {error2}, U1-U2 distance = {U_dist}" plot(R, result_img, Y)

rank = 2, error1 = 229622028.5063237, error2 = 508835645.1671115, U1-U2 distance = 4.864087271041002 rank = 10, error1 = 69800916.99687403, error2 = 3268974718.5229964, U1-U2 distance = 13.087975037182579 rank = 24, error1 = 29840213.682771675, error2 = 5032585725.268271, U1-U2 distance = 21.095415568257792

rank = 2

100

200

300

500

rank = 24

0

200

400

400

200

Are the two approximation errors are significantly different? If so, explain why the algorithm fails and reformulate the problem if possible.

error1 and error2 are significantly different because U_1 and U_2 are different matrices with small scale factor. As far as we approximate Y_1 with $U_1V_1^T$ s.t. $U_1=U_2$ the scale factor of $U_1V_1^T$ is contained in V_1 and U_2 remains relatively small in terms of norm. So then we compare U_1 and U_2 the distance error is small because of the small scale factor of U_1 and by the same logic U_2 .

So if we force U to be orthogonal we could resolve that issue.

$$egin{aligned} \min && rac{1}{2}||Y_1 - U_1 V_1^T||_F^2 + rac{1}{2}||Y_2 - U_2 V_2^T||_F^2 \ & s.\, t && U_1^T U_1 = I \ && U_2^T U_2 = I \ && U_1^T U_2 = I \end{aligned}$$