Python Foundations for Data Science Module 1.2

Sunit Bhattacharya

July 2025

How to write a program

- Let's try writing code for a toy problem.
- Algorithm = Set of instructions
- Program = Implementation of the algorithm.

- Pre-python:
 - How to think of a program using natural language?
 - How to write a program in a make-believe language?

Becoming a Data Scientist: An Algorithm

- Step 1: Be born.
- Step 2: Stay alive and pursue education.
- Step 3: Pass important school exams (10th, 12th, etc.).
- Step 4: Decide your career path.
- Step 5: If the chosen path is Data Science, keep learning relevant skills.
- Step 6: Apply for data science jobs when ready.
- Step 7: Work, sleep, and repeat.
- Step 8: Die

This is a high-level algorithm outlining the steps in becoming a data scientist.

Becoming a Data Scientist: A Program

```
// Pseudocode implementation of the algorithm
let alive = true
while (alive) {
    if (pass_exams([10,12,15,17]) &&
        decide career() == "Data Science"
        && check interest()) {
        let job = apply_for_job()
        while (job && alive) {
            work()
            sleep()
            alive = check alive()
    } else {
        alive = check_alive()
```

How to Think Like a Programmer

- **Algorithm**: A step-by-step way to solve a problem.
- Program: Tells the computer how to follow the algorithm.
- **Programming Language**: A structured way to write instructions for a machine.

Example: Calculate Average Inflation Over 5 Years

- Step 1: Collect inflation rates
- Step 2: Add all values
- Step 3: Divide by count

Python Program: Average Inflation

```
inflation = [4.2, 5.1, 6.3, 3.9, 4.7]
average = sum(inflation) / len(inflation)
print("Average inflation:", average)
```

How to Run Python Code

- Options:
 - Free online compilers
 - Google Colab
 - VS Code
 - Python shell (for quick tests)
- Recommended: Use Colab for this course (free and easy)

What is a Virtual Environment in Python?

Virtual Environment:

- A virtual environment is an isolated Python environment that allows you to manage separate package installations for different projects without conflicts.
- It ensures that each project can have its own dependencies (libraries and versions) independent of others.
- Avoids version clashes and preserves system Python integrity.

Why use Virtual Environments?

- Different projects may require different versions of the same package.
- Simplifies dependency management and reproducibility.
- Facilitates sharing and deployment of projects.

What is a Virtual Environment in Python?

Basic Commands with venv (built-in tool):

```
# Create virtual environment
python3 -m venv env_name
# Activate (Linux/macOS)
source env_name/bin/activate
# Activate (Windows)
.\env_name\Scripts\activate
# Deactivate
deactivate
```

How to Install and Use Virtual Environments

... With Anaconda:

```
# Create a new environment
conda create -n env_name python=3.11
```

Activate the environment
conda activate env_name

Deactivate
conda deactivate

Python Basics: Variables and Types

```
x = 10
country = "India"
gdp_values = [2.9, 3.1, 3.4] # in trillion USD
```

- Types: integer, string, list
- Python uses dynamic typing

Classroom Exercise: Algorithm Design

- Task: Design an algorithm to calculate the average temperature over a week.
- Write down the step-by-step instructions (in plain English or pseudocode) for this task.
- Think about:
 - How to represent the temperatures (list, variables, etc.)
 - How to sum the values
 - How to calculate the average
- Example:
 - Step 1: Collect temperatures for 7 days.
 - Step 2: Add all the collected temperatures.
 - Step 3: Divide the total by 7.
 - Step 4: Output the result.

Classroom Exercise: Implementing the Program

```
# Python program to calculate average temperature over a week
temperatures = [23.4, 22.1, 21.8, 24.0, 23.9, 22.5, 21.7]
total = sum(temperatures)
count = len(temperatures)
average_temp = total / count
print("Average temperature over the week:", average_temp)
```

Try writing this code yourself based on your algorithm!

Control Flow: Conditions and Loops

Why use Conditionals?

- Conditionals allow programs to make decisions based on data.
- They enable different **actions** depending on whether certain conditions are true or false.
- This helps in creating flexible and dynamic programs that can respond to varying inputs.

Example: Identifying High GDP Values

```
for gdp in gdp_values:
    if gdp > 3.0:
        print("High GDP")
```

The 'if' statement checks the GDP value and only prints a message when the condition 'gdp > 3.0' is True.

Classroom Exercise: Conditional Statements

Task: Categorize temperature levels based on value

Write a Python program to classify the day's temperature (in °C) as:

- **Cold**: temperature < 10
- Mild: $10 \le temperature \le 25$
- **Hot**: temperature > 25

Classroom Exercise: Conditional Statements

Task: Categorize temperature levels based on value Example

Algorithm:

- Input temperature
- If temperature < 10, print "Cold"
- Else if temperature between 10 and 25 inclusive, print "Mild"
- Else, print "Hot"

Sample Python Code:

```
temperature = float(input("Enter temperature (°C): "))
if temperature < 10:
    print("Cold")
elif 10 <= temperature <= 25:
    print("Mild")
else:
    print("Hot")</pre>
```

Functions in Python: Concept and Example

What is a Function?

- A function is a reusable block of code that performs a specific task.
- Functions help to organize code, avoid repetition, and make programs easier to understand and maintain.
- Functions can take inputs (parameters) and return an output (result).

Example: Calculate GDP Growth Rate

```
def growth_rate(gdp_now, gdp_before):
    return (gdp_now - gdp_before) / gdp_before
```

```
print(growth_rate(3.1, 2.9)) # 6.9% growth
```

The function takes two GDP values and returns the relative growth between them.

Classroom Exercise: Writing Your Own Function

Task: Write a Python function average(lst) to calculate the average of a list of numbers.

Steps to consider:

- The function should accept a list of numeric values as input.
- Calculate the sum of all items in the list.
- Divide by the number of items to get the average.
- Return the average value.

Example usage:

```
print(average([10, 20, 30])) # Output should be 20.0
```

Try writing the function yourself and test it with different lists!

July 2025

18 / 32

Why Visualize Data?

- Visualization helps us see patterns, trends, and anomalies in our data.
- It makes complex datasets intuitive and accessible.
- Common use cases: understanding distributions, spotting outliers, and comparing groups.

Matplotlib is Python's most popular library for creating static, interactive, and animated graphics.

Simple Visualization with Matplotlib

Let's plot the distribution of random data:

```
import matplotlib.pyplot as plt
import numpy as np
import random # You need to import the 'random' module
# Generate 1,000 random data points
data_uniform = [random.random() for _ in range(1000)]
plt.hist(data_uniform, bins=20) # You were using 'data' instead of
plt.title("Histogram of Random Data")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()
```

This code generates a histogram of random numbers.

Why Do We Need Specialized Numeric Libraries?

Example Problem: Sum of Two Large Arrays

- Task: Add two arrays, each with 10 million numbers, element-wise.
- With a **Python list** and a for loop, this operation can take several **seconds or more** due to Python's slow loop execution.
- With NumPy arrays, the same operation is performed in a tiny fraction of a second!

Why?

- NumPy uses efficient, compiled code underneath.
- Operations are vectorized—no Python loops needed!
- This efficiency is essential for data science, AI, statistics, and scientific computing.

Numeric Computing: Why Do We Need Specialized Libraries?

- Numeric computing involves processing large numerical datasets efficiently.
- Python lists are flexible but not optimized for numerical operations:
 - Operations on lists are often slow and verbose.
 - Lack of vectorized operations means looping explicitly for calculations.
 - Memory inefficiency: lists are collections of pointers.
- NumPy provides:
 - Multidimensional arrays (ndarrays) optimized for fast numerical computations.
 - Vectorized operations allowing element-wise math without explicit Python loops.
 - Efficient memory use and integration with C/C++ backends for speed.
- Essential for data science, machine learning, scientific computing, and more!

Sunit Bhattacharya Python for Data Science July 2025 22 / 32

Introduction to NumPy Arrays

- NumPy's primary data structure: ndarray (N-dimensional array)
- Unlike Python lists, NumPy arrays:
 - Hold elements of the same data type (homogeneous)
 - Support efficient, element-wise operations
 - Can be multi-dimensional (1D, 2D, 3D, ...)
- Example: Creating a 1D NumPy array of GDP values

```
import numpy as np
gdp = np.array([2.9, 3.1, 3.4])
print(gdp)
```

Computing with NumPy: Basic Array Operations

- NumPy makes numerical computing fast and simple:
 - Element-wise arithmetic (+, -, *, /)
 - Aggregations (np.mean(), np.std(), etc.)
- Operations are vectorized—no manual loops necessary!

Example: Analyze synthetic data

```
mean = np.mean(data)
std = np.std(data)
print(f"Mean: {mean}, Std: {std}")
```

NumPy vs. Pure Python: Simplicity

Adding two lists element-wise (Pure Python):

```
a = [1, 2, 3, 4, 5]
b = [6, 7, 8, 9, 10]
c = [a[i] + b[i] for i in range(len(a))]
print(c) # [7, 9, 11, 13, 15]
```

- Requires manual looping or a list comprehension.
- Can get cumbersome and error-prone for complex operations.

With NumPy: Simple, Intuitive Syntax

```
import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.array([6, 7, 8, 9, 10])
c = a + b
print(c) # [7 9 11 13 15]
```

One line does the entire calculation!

NumPy vs. Pure Python: Speed for Large Problems

- **Pure Python:** Element-wise operations on large lists are slow—Python loops have overhead.
- **NumPy:** Uses optimized, compiled C code under the hood; vectorized operations run orders of magnitude faster.
- **Example:** Adding two arrays of one million elements:

Pure Python

```
# Slow, loop-based approach
result = [a[i] + b[i] for i in range(1_000_000)]
```

NumPy

```
# Fast, vectorized approach
result = a + b
```

 Result: NumPy performs the operation much faster and with less code!

Generating Synthetic Data with NumPy

- NumPy enables the creation of large arrays of random numbers for simulations, testing, and experiments.
- Synthetic data is crucial for experimenting with algorithms without real-world datasets.
- NumPy offers tools like np.random for generating arrays from various distributions (uniform, normal, etc.).

```
Example: Generate 1000 random values
import numpy as np
data = np.random.rand(1000) # Uniform [0, 1)
print(data[:10])
```

Create Structured Data: Simulate Multivariate Records

- You can simulate structured datasets: e.g., "fake persons" with age, height, and weight.
- Use different NumPy random functions for each field.

Example: Synthetic demographic data

```
n = 1000
ages = np.random.randint(18, 65, n)
heights = np.random.normal(170, 10, n)
weights = np.random.normal(65, 15, n)
```

• This creates 1,000 fake people with plausible age, height, and weight.

Summary: Why Use Synthetic Data?

- Rapidly prototype algorithms and analysis.
- Test statistical methods on controlled data.
- Practice machine learning workflows—even when real datasets aren't available.
- Sharing code is easier since everyone can generate the same fake data.

NumPy's random module is your friend for quick, flexible data generation!

Introducing Pandas: Python's Data Analysis Library

- **Pandas** is a powerful, open-source Python library dedicated to data analysis and manipulation.
- Designed for working with "tabular" (spreadsheet-like) and time-series data.
- Developed by Wes McKinney, Pandas offers functions to load, clean, transform, and analyze data efficiently.
- It is integral to the data science ecosystem and widely used for everything from exploratory analysis to data engineering.
- Pandas is built on top of NumPy and extends its capabilities to more complex data structures and operations.

Pandas and NumPy: Working Together

- NumPy provides fast, efficient operations on numerical arrays.
- Pandas leverages NumPy "under the hood" for its performance.
- Every Pandas Series or DataFrame stores its data as one or more underlying NumPy arrays.
- You get both: the speed of NumPy and the ease of use and labeling capabilities of Pandas (row and column labels).
- Many Pandas operations automatically broadcast or vectorize using NumPy's machinery.
- Useful workflow: Load and manipulate data with Pandas, perform heavy numerical computations with NumPy if needed.

DataFrame: The Core Data Structure of Pandas

- The DataFrame is a 2-dimensional labeled data structure, similar to a spreadsheet or SQL table.
- Columns can contain different data types (numbers, text, dates, etc.).
- DataFrames support powerful filtering, aggregation, grouping, merging, and reshaping.
- You can create a DataFrame from lists, NumPy arrays, dictionaries, or direct imports (CSV, Excel, SQL).
- Think of a DataFrame as a "supercharged table" for all your data analysis needs!

Simple DataFrame Example