Avhandlingsserie för Gymnastik- och Idrottshögskolan

Nr 999

DETERMINANTS OF INTRA-INDIVIDUAL VARIATION IN ADAPTABILITY TO RESISTANCE TRAINING OF DIFFERENT VOLUMES WITH SPECIAL REFERENCE TO SKELETAL MUSCLE PHENOTYPES

Determinants of intra-individual variation in adaptability to resistance training of different volumes with special reference to skeletal muscle phenotypes

Daniel Hammarström

©Daniel Hammarström, Stockholm 2019 ISBN Provided by the library

Printed by Printer service, Stockholm, 2019

Distributor: Gymnastik- och idtrottshögskolan

THESIS FOR DOCTORAL DEGREE (Ph.D.)

The title of your thesis

by

Your name

Thesis for Philosophy of Doctoral Degree in Sport Sciences, at The Swedish School of Sport and Health Sciences (GIH), which, according to the decision of the dean, will be publicly defended on *DATE*. The thesis defense will be held at the auditorium at The Swedish School of Sport and Health Sciences (GIH), Stockholm.

Opponent

Profesor

Principal supervisor

Profesor...

Co-supervisor(s)

- -Professor...
- -Professor...
- -Professor...

Examination board

- -Associate professor...
- -Professor ...
- -Professor ...

Abstract

The preface pretty much says it all. Second paragraph of abstract starts here.

List of scientific papers

- I. Hammarström D, Øfsteng S, Koll L, Hanestadhaugen M, Hollan I, Apró W, Blomstrand E, Rønnestad B, Ellefsen S Benefits of higher resistance-training volume are related to ribosome biogenesis. The *Journal of physiology*. 2020;598(3):543-65.
- II. Khan Y, **Hammarström D**, Rønnestad B, Ellefsen S, Ahmad R Increased biological relevance of transcriptome analyses in human skeletal muscle using a model-specific pipeline. *Submitted*.
- III. **Hammarström D**, Øfsteng S, Jacobsen N, Flobergseter K, Rønnestad B, Ellefsen S Ribosome accumulation during early phase resistance training. *Manuscript*

Contents

Li	st of Tables	xiii
Li	st of Figures	xv
1	Introduction	1
2	Background	
	2.1 $$ Effects of resistance exercise volume on muscle strength and mass .	3
3	Aims	7
4	Methods	9
	4.1 Study participants, protocols and training interventions	9
	4.2 Resistance training interventions	9
	4.2.1 Ethical considerations	10
	4.3 Muscle tissue sampling and preparations for downstream analyses .	11
5	Results and Discussion	13
	5.1 Effects of different training volume on changes in muscle size and	
	function	13
	5.2 Acute effects of diffrent training volume on determinants of muscle protein synthesis	15
	protein synthesis	19
6	General Discussion	17
\mathbf{C}_{0}	onclusion	19
\mathbf{R}	eferences	21

List of Tables

4.1	Participant characteristics	10
5.1	Training induced changes in muscle CSA and average strength in	
	Study I	14

List of Figures

5.1	Differences in training induced changes to muscle mass and strength	
	measures between volume conditions in Study I	15

1. Introduction

Selectal muscle health is essential for physical independence. In a lifespan perspective, measures of muscle mass and/or strength are inversely associated with mortality (1–6) and disability (7). Besides adverse associations between of low muscle mass and strength and clinical conditions, muscle weakness also accounts for increased health care costs in patient populations (8,9). The intercept between muscle mass, muscle function and health status is interrelated with variables such as age and primary illness or injury (10). This highlights that interventions designed to increase muscle mass and strength are likely to prevent adverse health outcomes across the lifespan. A higher level of muscle mass and functional capacity would counteract the effects of muscle loss due to illness, age or inactivity.

Although a large degree of the observed variations in lean mass and strength are attributed to genetic components (11,12), environmental factors also contribute, leaving a window of opportunity to increase muscle mass and functional capacity. Among factors affecting muscle mass and functioning are nutrition and pharmacological agents. However, physical activity and specifically systematic resistance training of sufficient volume, intensity and frequency provides a stimulus that promote morphological and functional changes to the human neuromuscular system without adverse side-effects. Irrespective of age, resistance training generally leads to increased muscle mass and strength (13,14) and is considered safe when performed in a well organized manner (14,15).

Resistance training can be modulated indefinitely through combined variations of training variables such as frequency, intensity and volume (16,17). Well designed training prescriptions should incorporate information about the current state and goals of the trainee to maximize the potential outcome of the training program (16–18). Training volume has received particular attention in the scientific community for many reasons. Evidence suggests that exercise volume affects selected molecular determinants of muscle hypertrophy in a dose-dependent manner (19–21). Such effects are believed to facilitate long-term training effects as training programs with higher volume generally result in higher gains in muscle mass and strength

with little evidence of differences between age groups or participants with different training backgrounds (22–24).

A consequence of a more extensive training program is the increased time required to complete such a program. As time constraints has been reported as a limiting factor for engaging in physical activity (25) some merit can be given to arguments against guidlines suggesting higher volume in resistance training prescription (18,26). From an individual perspective, training prescription that balances time-requirement with efficacy presumably increases the likelihood of participation in physical activity (25). From a more general perspective, increased knowledge about mechanisms governing responses to physical training could improve training prescription also for individuals and populations that experience attenuated benefit of resistance training (27). The overreaching goal of the present thesis is to contribute to understanding individualized training loads. To this end, training volume was used to study the effects of variable training stimulus in within-participant models of exercise-training.

2. Background

2.1 Effects of resistance exercise volume on muscle strength and mass

Precise exercise-training¹ prescription gives information on exercises, their sequential order, intensity and volume at which exercises should be performed, rest periods between efforts or sessions and the frequency at which exercise sessions are to be performed (23). By manipulating these variables, resistance training programs can be tailored to better fit goals and starting points of any individual. The relative importance of exercise-training variables for training outcomes has been examined in numerous studies including (but not limited to) the overall organization of exercise sessions, (28,29) training frequency (30), and intensity (31). It could be argued that training volume is of particular importance for muscle growth as when this variable is held constant, manipulation of other variables has little or no effect hypertrophy (31,32). For development of strength, factors such as intensity and within session organization of exercises is of importance (33,34), however, when other factors are held constant, increased training volume generally leads to increased strength (22,33,35), similarly to effects of training volume on muscle growth (23,24).

Exercise volume can be prescribed as the within session number of sets performed per muscle group. This unit is practical as it comparable between individuals and muscle groups (36). Berger conducted an early study concerning effects of resistance exercise volume with the goal to determine what method most efficiently produced strength gains (in healthy young males) (37). Berger compared one, two and three sets performed with two, six or ten repetition maximum (RM) in the bench press, three times per week, over twelve weeks. As the combined

¹Exercise is herein defined as an acute bout of physical activity designed to affect physical characteristics such as strength, speed or endurance. Training is defined as the systematic process of combining multiple exercise-sessions performed in sequence over time. Resistance-exercise is defined as an acute strength-promoting program requiring the neuromuscular system to exert force against resistance. Resistance training is defined as a long-term process of multiple resistance exercise-sessions performed over a defined period of time.

effect of three sets per session was superior regardless of the number of repetitions performed Berger concluded in favor of three sets. This conclusion was later challenged on the basis of data interpretation (18,26). Reveiging the study by Berger and others, Carpinelli and Otto arrived to the conclusion that there was "insufficient evidence to support the prevalent belief that a greater volume of exercise (through multiple sets) will elicit superior muscular strength or hypertrophy" (26). This stand has since been repeatedly put forward as a criticism of higher volume training programs (38.39) and sparked considerable scientific activity. The main argument against the recommendation of additional volume in strength training programs has been the lack of statistically significant results in single studies (18,38). Indeed, individual studies do not generally agree on dose-dependent effects of training volume on muscle mass and strength gains (40–51), including studies performed within participants, where different training volumes are allocated to either extremity (52,53). For example, differences in strength are between volume conditions are found in older individuals (40,41,46) but not confirmed in another study (44). Studies shows that more volume does not lead to increased muscle gains in young individuals (42,47,49) a conclusion challenged by others (43,51).

As previously noted, combining the above results and additional studies, metaanalyses concluded that training volume dose-dependency exists for the development of muscle mass and strength [(33); (35); (22); (23,24). As a second argument against additional volume in resistance training recommendation has been the cost/benefit relationship of adding training volume without meaningful or substantial additional gains (18,38), a subsequent question is, whom would benefit from greater volumes and whom would not? Schoenfeld et al. combined data from published studies to explore if participant characteristics of the above mentioned studies interacted with training volume in explaining study outcomes. Neither sex, muscle groups nor age interacted with volume prescription indicating that no such factor would be able refine training prescription guidelines (24). As the number of studies used to synthesis the meta-analysis was relatively low (n = 15) and the studies were heterogeneous in terms of e.g. outcome measurements, it may have lacked in power to detect any meaningful interactions. Additionally, included studies may not have been reporting relevant characteristics for such analysis.

Collectively, the available evidence suggest that there is overlap between training outcomes in studies were different volume has been utilized. The overlap cannot, with available data, be explained by general population characteristics such as age or sex. Studying the effect of different training volumes within participants could potentially help to define determinants of training outcomes in response to

2.1. EFFECTS OF RESISTANCE EXERCISE VOLUME ON MUSCLE STRENGTH AND MASS

different volume conditions. Two within-participant studies have investigated the effects of training volume on strength and hypertrophy outcomes. Sooneste et al. compared strength outcomes in response to three- and one-set elbow flexor training for 12 weeks in young males using a whitin-participant protocol (arms allocated to either volume condition). The results showed general benefit of three- over one-set training for muscle hypertrophy and tended to do so also for strength gains (53). No attempts were made to relate baseline characteristics to the magnitude of differences between volume conditions, presumably due to the small sample size (n = 8). Mitchell et al. compared muscle hypertrophy and strength gains in response to three- and one-set of knee-extension exercise performed three times per week for ten weeks. The study contained an additional training condition (low intensity, 30% of 1RM performed with three sets) with participants legs assigned to either of the three conditions in a random fashion. No significant differences were reported between volume conditions for muscle mass or strength gains (52). However, the analyses were performed without taking the correlation between individuals into account due to the mixed design (52). No attempts were made to relate any measured characteristic to differences in responses.

. .

.

3. Aims

The primary aim of this thesis was to relate the adaptive response to resistance training with low- and moderate-volume to skeletal-muscle characteristics in previously untrained individuals. The key question was whether manipulation of exercise-volume will have diverse effects in different individuals related to muscular intrinsic characteristics. A further aim was to characterize exercise-volume dependence in muscle molecular characteristics and determine a time course profile of markers of ribosomal biogenesis in response to resistance training. Based on these aims, the objectives of the present thesis were;

- to relate skeletal muscle and systemic characteristics to benefit of moderatecompared to low-volume resistance training;
- To determine volume-dependence in molecular networks related to muscle growth and remodeling in response to resistance training
- To determine a time course of markers related to ribosome biogenesis in the early phase of resistance training.

4. Methods

4.1 Study participants, protocols and training interventions

Study I was designed to examine effects of low- and moderate-volume on responses to acute exercise and long-term training within participants. Forty-one healthy individuals were recruited and 34 of these completed at least 85% of the prescribed sessions and were thus included in subsequent data analyses. Reasons for not completing the trial included injury not related to the study (n = 1), pain or discomfort during exercises (n = 5) and non-adherence to the study protocol. There were no differences in characteristics between participants included in or excluded from data analysis in Study I.

Study II was designed to study the effects of resistance training $per\ se$, and effects of variable volume on selected markers related to ribosome biogenesis. Participants were therefore recruited to a training group (n=11) and a non-training control group (n=8). Eligible for participation in both studies were young (Study I age 18-40; Study II 18-35), non-smoking men and women. Exclusion criteria included a training history of more than one weekly session during the last 12 (Study I) or six (Study II) months leading up to the study. Participants were also screened for intolerance to local anesthetic, current or previous injuries affecting their ability to perform resistance training, self-reported symptoms or history of disease, intake of medication or supplements with known effects on adaptations to training. Participant characteristics for both studies are shown in Table 4.1.

4.2 Resistance training interventions

Each training session started with a light standardized warm-up (5 min ergometer cycling and 10 repetitions each of push-ups, sit-ups, back-extensions and squats). Before each exercise in the main program, one set of 10 repetitions were performed in the specific exercise with approximately 50% of 1RM.

		Sex	Age (years)	Stature (cm)	Mass (kg)	Fat mass (%)	Lean mass (%)
		Female	22.0 (1.3)	168 (7)	64.4 (10.4)	34.1 (5.6)	64.3 (6.2)
	Included	Male	23.6 (4.1)	183 (6)	75.8 (10.7)	20.4 (6.0)	79.3 (5.0)
Study I		Female	22.9 (1.6)	166 (8)	64.6 (9.7)	28.8 (8.7)	68.6 (9.1)
	Excluded	Male	24.3 (1.5)	189 (5)	88.2 (22.4)	24.3 (15.3)	76.8 (12.7)
		Female	23.4 (2.9)	168 (8)	64.0 (9.2)	30.8 (7.1)	65.5 (6.8)
	Training	Male	25.7 (5.8)	177 (3)	77.5 (8.0)	25.3 (3.9)	71.3 (2.4)
Study II		Female	24.1 (3.5)	166 (4)	63.8 (0.6)	30.5 (6.4)	66.3 (5.2)
	Control	Male	25.5 (5.5)	182 (5)	76.5 (7.7)	18.2 (5.1)	78.7 (4.2)

Table 4.1: Participant characteristics

Data are means and (SD)

Studies were fully or partially performed as within-participant studies as each participant had their legs assigned to different training conditions (not including the control group in Study II). Allocation was performed after enrollment where each participant had their legs randomized to either low- or moderate volume (Study I), or variable or constant volume (Study II).

In Study I, the low-volume protocol consisted of a single set of each exercise and the moderate-volume consisted of three sets per exercise. Three unilateral leg exercises were used (leg press, leg curl and knee extension). The moderate volume-leg commenced all sessions and the low volume-leg performed a single set of each exercise in the rest between second and third set of the moderate volume training protocol.

In Study II, only unilateral knee-extension was performed in an effort to concentrate the stimulus to the quadriceps muscles. The constant-volume leg performed six sets of 10RM throughout the study and variable leg performed six sets in session one to four, three sets in session five to eight and nine sets in session nine to twelve with same intensity (10RM).

4.2.1 Ethical considerations

Both studies were approved by the local ethics committee Lillehammer University College/Inland Norway University of Applied Sciences and the Norwegian Centre for Research Data. In accordance with the *Declaration of Helsinki*(54) the studies were pre-registered in publicly accessible databases (Study I, ClinicalTrials.gov Identifier: NCT02179307; Study II, https://osf.io/wa96y). Participants were informed of the study design, potential risks and sources of discomfort prior to

giving their informed consent.

4.3 Muscle tissue sampling and preparations for downstream analyses

Muscle samples were obtained under local anesthesia (Study I, Xylocaine, 10 mg ml⁻¹ with adrenalin 5 μg ml⁻¹, AstraZeneca, Oslo, Norway; Study II, Lidocaine Mylan, 10 mg ml^{-1} , Mylan Ireland Ltd, Ireland) with a fine needle (12-14 gauge; Universal-plus, Medax, Italy) operated with a spring-loaded instrument (Bard Magnum, Bard Norway AS, Norway). Sampling was performed as previously described (55), with modifications. Anesthesia was injected in the subcutaneous tissue with care taken not to inject anesthesia into the muscle itself. Following pilot experiments we decided not to use an insertion cannula as described in (55) as the biopsy needle itself could be used to puncture the skin and muscle fascia. This also resulted in less discomfort. Several passes through the same skin puncture was made to obtain sufficient material for downstream analyses. A smaller needle (14 vs. 12 gauge) was used to further minimize discomfort in Study II where more biopsies were sampled over a shorter time span, with exception from when material was used for immunohistochemistry. The first biopsy was sampled at one third of the distance between the patella to the anterior superior iliac spinae with subsequent biopsies sampled $\sim 2 \,\mathrm{cm}$ proximal to previous samples. In Study II, samples obtained more than one week apart were sampled with closer proximity and distally from previous samples but never at previous sampling sites.

The micro biopsy technique produces smaller samples compared to other biopsy techniques (56), and thus requires several passes to produce sufficient material for multiple downstream experiments. However, reports confirms that the micro biopsy technique is comparable to the traditionally used Bergström technique in several measures of muscle characteristics at the same time as being well tolerated (55,57). Any reported differences in fiber type distributions between sampling techniques have been suggested relating to differences in sampling depth (57,58).

For determination of fiber type distributions, a threshold of 200-300 fibers has been suggested as a suitable sample size per specimen as more fibers does not reduce the variation between duplicate samples (59). In Study I, one or several pieces of muscle (total weight $\sim 15 \,\mathrm{mg}$) were chosen per sampling for analysis of fiber type distributions (described in detail below). The total number of fibers were counted from these specimens (Figure ref fig). Using an average of fibers from the

first sampling time point the between leg coefficient of variation was determined to 14% for Type I fibers and 11.3 for type II fibers. The between leg variation in Type I fibers is similar to what has been previously reported...

->

5. Results and Discussion

5.1 Effects of different training volume on changes in muscle size and function

In Study I, the average increases (Table 5.1) in muscle strength and mass in each volume condition corresponded to what could be expected based on previous studies (13,60).

Average within participant differences in responses between LOW and MOD were consistent across measures of muscle hypertrophy and strength gains (Figure 5.1). These differences were in agreement to what could be expected based on published meta-analyses (22–24,35). Taken together, these observations confirmed the efficacy of the training program in general and a dose-response with regard to within-session exercise volume.

In Study II, training efficacy was assessed by comparing outcomes to a non-training control group. The training group displayed increases compared to the control group for both strength muscle thickness measures.

Table 5.1: Training induced changes in muscle CSA and average strength in Study I

	Sex	Volume condition	Mean (SD)	Reference
		LOW	3.05 (3.61)	
	Female	MOD	5.02 (4.04)	-
CSA %-change		LOW	3.83 (3.50)	-
	Male	MOD	5.10 (3.71)	-
		LOW	0.04 (0.05)	
	Female	MOD	0.07 (0.05)	-
CSA %-change day		LOW	0.05 (0.05)	0.11 [0.04-0.26]a
	Male	MOD	0.07 (0.05)	-
		LOW	0.11 (0.13)	
	Female	MOD	0.18 (0.15)	0.08 (0.22)b
CSA %-change session		LOW	0.14 (0.12)	
	Male	MOD	0.19 (0.13)	0.14 (0.14)b
		LOW	21.0 (9.8)	
	Female	MOD	27.8 (14.4)	
Average strength %-change		LOW	19.2 (12.4)	-
	Male	MOD	23.1 (12.0)	-
		LOW	0.77 (0.36)	
	Female	MOD	1.00 (0.49)	0.67 (0.35)b
Average strength %-session		LOW	0.72 (0.48)	
	Male	MOD	0.87 (0.46)	0.47 (0.22)b

^a Estimates from Wernbom et al. (60) ^b Estimates from Ahtiainen et al. (ref:ahtiainen-citation

Figure 5.1: Differences in training induced relative changes in muscle mass and strength measures. Estimates are derived from ANCOVA models controling for baseline values and sex.

5.2 Acute effects of diffrent training volume on determinants of muscle protein synthesis

6. General Discussion

Conclusion

If we don't want Conclusion to have a chapter number next to it, we can add the {-} attribute.

More info

And here's some other random info: the first paragraph after a chapter title or section head *shouldn't be* indented, because indents are to tell the reader that you're starting a new paragraph. Since that's obvious after a chapter or section title, proper typesetting doesn't add an indent there.

- Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations
 of muscle mass and strength with all-cause mortality among us older adults.
 Medicine and science in sports and exercise [Internet]. 2018;50(3):458-67.
- Fukasawa H, Kaneko M, Niwa H, Matsuyama T, Yasuda H, Kumagai H, et al. Lower thigh muscle mass is associated with all-cause and cardiovascular mortality in elderly hemodialysis patients. European Journal of Clinical Nutrition [Internet]. 2017;71(1):64–9.
- 3. Miyake H, Kanazawa I, Tanaka KI, Sugimoto T. Low skeletal muscle mass is associated with the risk of all-cause mortality in patients with type 2 diabetes mellitus. Ther Adv Endocrinol Metab [Internet]. 2019;10:2042018819842971.
- Ruiz JR, Sui X, Lobelo F, Morrow J James R., Jackson AW, Sjöström M, et al. Association between muscular strength and mortality in men: Prospective cohort study. BMJ (Clinical research ed) [Internet]. 2008;337(7661):a439-9.
- Szulc P, Munoz F, Marchand F, Chapurlat R, Delmas PD. Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: The prospective minos study. Am J Clin Nutr [Internet]. 2010;91(5):1227–36.
- Abramowitz MK, Hall CB, Amodu A, Sharma D, Androga L, Hawkins M. Muscle mass, bmi, and mortality among adults in the united states: A population-based cohort study. PLoS One. 2018;13(4):e0194697.
- Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc [Internet]. 2002;50(5):889–96.
- 8. Sousa AS, Guerra RS, Fonseca I, Pichel F, Ferreira S, Amaral TF. Financial

impact of sarcopenia on hospitalization costs. Eur J Clin Nutr [Internet]. 2016;70(9):1046–51.

- Pinedo-Villanueva R, Westbury LD, Syddall HE, Sanchez-Santos MT, Dennison EM, Robinson SM, et al. Health care costs associated with muscle weakness: A uk population-based estimate. Calcif Tissue Int [Internet]. 2019;104(2):137–44.
- Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr [Internet]. 2006;84(3):475–82.
- Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: A twin study. Journal of Bone and Mineral Research [Internet]. 1997;12(12):2076–81.
- 12. Roth SM. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. BoneKEy reports [Internet]. 2012;1:58–8.
- 13. Ahtiainen JP, Walker S, Peltonen H, Holviala J, Sillanpaa E, Karavirta L, et al. Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age (Dordr) [Internet]. 2016;38(1):10.
- 14. Grgic J, Garofolini A, Orazem J, Sabol F, Schoenfeld BJ, Pedisic Z. Effects of resistance training on muscle size and strength in very elderly adults: A systematic review and meta-analysis of randomized controlled trials. Sports Med [Internet]. 2020;
- Faigenbaum AD, Myer GD. Resistance training among young athletes: Safety, efficacy and injury prevention effects. British Journal of Sports Medicine [Internet]. 2010;44(1):56.
- Ratamess N, Alvar BA, Evetoch TK, Housh TJ, Kibler B, Kraemer WJ, et al. American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc [Internet]. 2009;41(3):687–708.
- Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med [Internet]. 2005;35(10):841–51.
- 18. Feigenbaum MS, Pollock ML. Prescription of resistance training for health and disease. Med Sci Sports Exerc. 1999;31(1):38–45.

 Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol [Internet]. 2010;588(Pt 16):3119–30.

- 20. Terzis G, Spengos K, Mascher H, Georgiadis G, Manta P, Blomstrand E. The degree of p70 s6k and s6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol [Internet]. 2010;110(4):835–43.
- Ahtiainen JP, Walker S, Silvennoinen M, Kyrolainen H, Nindl BC, Hakkinen K, et al. Exercise type and volume alter signaling pathways regulating skeletal muscle glucose uptake and protein synthesis. Eur J Appl Physiol. 2015;115(9):1835–45.
- 22. Krieger JW. Single versus multiple sets of resistance exercise: A meta-regression. J Strength Cond Res [Internet]. 2009;23(6):1890–901.
- 23. Krieger JW. Single vs. Multiple sets of resistance exercise for muscle hypertrophy: A meta-analysis. J Strength Cond Res [Internet]. 2010;24(4):1150–9.
- Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J Sports Sci [Internet]. 2016;1–10.
- 25. Choi J, Lee M, Lee JK, Kang D, Choi JY. Correlates associated with participation in physical activity among adults: A systematic review of reviews and update. BMC Public Health [Internet]. 2017;17(1):356.
- 26. Carpinelli RN, Otto RM. Strength training. Single versus multiple sets. Sports Med [Internet]. 1998;26(2):73–84.
- 27. Pickering C, Kiely J. Do non-responders to exercise exist—and if so, what should we do about them? Sports Medicine [Internet]. 2019;49(1):1–7.
- 28. Evans JW. Periodized resistance training for enhancing skeletal muscle hypertrophy and strength: A mini-review. Frontiers in physiology [Internet]. 2019;10:13–3.
- 29. Grgic J, Mikulic P, Podnar H, Pedisic Z. Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: A

- systematic review and meta-analysis. PeerJ [Internet]. 2017;5:e3695–5.
- 30. Schoenfeld BJ, Ogborn D, Krieger JW. Effects of resistance training frequency on measures of muscle hypertrophy: A systematic review and meta-analysis. Sports Med [Internet]. 2016;46(11):1689–97.
- 31. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. High-load resistance training: A systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–23.
- 32. Schoenfeld BJ, Ratamess NA, Peterson MD, Contreras B, Sonmez GT, Alvar BA. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res [Internet]. 2014;28(10):2909–18.
- 33. Grgic J, Schoenfeld BJ, Davies TB, Lazinica B, Krieger JW, Pedisic Z. Effect of resistance training frequency on gains in muscular strength: A systematic review and meta-analysis. Sports Med [Internet]. 2018;48(5):1207–20.
- 34. Nunes JP, Grgic J, Cunha PM, Ribeiro AS, Schoenfeld BJ, Salles BF de, et al. What influence does resistance exercise order have on muscular strength gains and muscle hypertrophy? A systematic review and meta-analysis. Eur J Sport Sci [Internet]. 2020;1–9.
- 35. Ralston GW, Kilgore L, Wyatt FB, Baker JS. The effect of weekly set volume on strength gain: A meta-analysis. Sports Med [Internet]. 2017;47(12):2585–601.
- 36. Baz-Valle E, Fontes-Villalba M, Santos-Concejero J. Total number of sets as a training volume quantification method for muscle hypertrophy: A systematic review. J Strength Cond Res. 2018;
- 37. Berger R. Effect of varied weight training programs on strength. Research Quarterly American Association for Health, Physical Education and Recreation [Internet]. 1962;33(2):168–81.
- 38. Carpinelli RN. Berger in retrospect: Effect of varied weight training programmes on strength. British Journal of Sports Medicine [Internet]. 2002;36(5):319.
- 39. Carpinelli RN. Science versus opinion. British journal of sports medicine [Internet]. 2004;38(2):240–2.
- 40. Ribeiro AS, Schoenfeld BJ, Pina FLC, Souza MF, Nascimento MA, Santos

L dos, et al. Resistance training in older women: Comparison of single vs. Multiple sets on muscle strength and body composition. Isokinetics and Exercise Science. 2015;23:53–60.

- Correa CS, Teixeira BC, Cobos RC, Macedo RC, Kruger RL, Carteri RB, et al. High-volume resistance training reduces postprandial lipaemia in postmenopausal women. J Sports Sci. 2015;33(18):1890–901.
- 42. Bottaro M, Veloso J, Wagner D, Gentil P. Resistance training for strength and muscle thickness: Effect of number of sets and muscle group trained. Science & Sports [Internet]. 2011;26(5):259–64.
- 43. Radaelli R, Fleck SJ, Leite T, Leite RD, Pinto RS, Fernandes L, et al. Dose response of 1, 3 and 5 sets of resistance exercise on strength, local muscular endurance and hypertrophy. J Strength Cond Res [Internet]. 2014;
- 44. Radaelli R, Wilhelm EN, Botton CE, Rech A, Bottaro M, Brown LE, et al. Effects of single vs. Multiple-set short-term strength training in elderly women. Age (Dordr) [Internet]. 2014;36(6):9720.
- 45. McBride JM, Blaak JB, Triplett-McBride T. Effect of resistance exercise volume and complexity on emg, strength, and regional body composition. Eur J Appl Physiol [Internet]. 2003;90(5-6):626–32.
- 46. Galvao DA, Taaffe DR. Resistance exercise dosage in older adults: Single-versus multiset effects on physical performance and body composition. J Am Geriatr Soc [Internet]. 2005;53(12):2090–7.
- 47. Starkey DB, Pollock ML, Ishida Y, Welsch MA, Brechue WF, Graves JE, et al. Effect of resistance training volume on strength and muscle thickness. Med Sci Sports Exerc [Internet]. 1996;28(10):1311–20.
- 48. Ostrowski KJ, Wilson GJ, Weatherby R, Murphy PW, Lyttle AD. The effect of weight training volume on hormonal output and muscular size and function. Journal of Strength and Conditioning Research [Internet]. 1997;11(3):148–54.
- 49. Rhea MR, Alvar BA, Ball SD, Burkett LN. Three sets of weight training superior to 1 set with equal intensity for eliciting strength. J Strength Cond Res [Internet]. 2002;16(4):525–9.
- 50. Cannon J, Marino FE. Early-phase neuromuscular adaptations to high- and

low-volume resistance training in untrained young and older women. J Sports Sci [Internet]. 2010;28(14):1505–14.

- 51. Ronnestad BR, Egeland W, Kvamme NH, Refsnes PE, Kadi F, Raastad T. Dissimilar effects of one- and three-set strength training on strength and muscle mass gains in upper and lower body in untrained subjects. J Strength Cond Res [Internet]. 2007;21(1):157–63.
- 52. Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) [Internet]. 2012;113(1):71-7.
- 53. Sooneste H, Tanimoto M, Kakigi R, Saga N, Katamoto S. Effects of training volume on strength and hypertrophy in young men. J Strength Cond Res [Internet]. 2013;27(1):8–13.
- 54. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. Jama [Internet]. 2013;310(20):2191–4.
- 55. Hayot M, Michaud A, Koechlin C, Caron MA, Leblanc P, Prefaut C, et al. Skeletal muscle microbiopsy: A validation study of a minimally invasive technique. Eur Respir J [Internet]. 2005;25(3):431–40.
- 56. Ekblom B. The muscle biopsy technique. Historical and methodological considerations. Scand J Med Sci Sports [Internet]. 2017;27(5):458–61.
- 57. Bonafiglia JT, Islam H, Preobrazenski N, Drouin P, Ma A, Gerhart A, et al. A comparison of pain responses, hemodynamic reactivity and fibre type composition between bergström and microbiopsy skeletal muscle biopsies. Current Research in Physiology [Internet]. 2020;3:1–10.
- 58. Hughes MC, Ramos SV, Turnbull PC, Nejatbakhsh A, Baechler BL, Tahmasebi H, et al. Mitochondrial bioenergetics and fiber type assessments in microbiopsy vs. Bergstrom percutaneous sampling of human skeletal muscle. Frontiers in Physiology [Internet]. 2015;6(360).
- 59. Blomstrand E, Ekblom B. The needle biopsy technique for fibre type determination in human skeletal muscle—a methodological study. Acta Physiol Scand [Internet]. 1982;116(4):437–42.
- 60. Bland M. An introduction to medical statistics. Fourth edition. Oxford;

Oxford University Press; 2015. (Oxford medical publications).