TP

Monte Carlo Simulation et intervalles de confiences

CHASSAGNOL Rémi ${\bf ZZ2}$ - ${\bf F2}$ - ${\bf promo24}$

Professeur: HILL Davide

7 octobre 2022

Contents

1	Simulation de π	2
2	Calcul de précision	3
3	Calcul d'intervalles de confiance à 95%	4

1 Simulation de π

Le but de cette première partie est de déterminer une valeur approchée de π en utilisant une méthode de **Monte Carlo**. Le principe est le suivant:

Figure 1: Simulation π Monte Carlo

On tire deux nombres aléatoires x et y, compris entre 0 et 1, à l'aide de **Mecene Twister**. C'est deux nombres sont les coordonnées d'un point appartenant un à espace représenté par un carré de

Ensuite, on teste si $x^2 + y^2 < 1$, si c'est le cas, cela signifie que le point trouvé se trouve dans le quart de cercle de rayon 1 situé à l'intérieur de notre carré comme ci-dessus. À la fin on fait le rapport du nombre de points trouvés dans le quart de cercle sur le nombre de points total et on obtient une valeur approchée de $\frac{\pi}{4}$. Là il suffit de multiplier par 4 pour trouver π .

 $^{^1\}mathrm{Figure}\ 1:\ https://media.eduscol.education.fr/ftp_eduscol/2019/Ressources/Mathematiques/RA19_Lycee_G_1_MATH_Algorithmique_et_Programmation_activite_11.html$

Pour l'implémentation, on va utiliser genrand_real1() pour avoir des nombres aléatoire dans [0;1] et on suit les étapes expliquées précédemment. La fonction prend en paramètre le nombre de points à générer. Comme Mercene Twister est un bon générateur qui explore bien l'espace, plus on génère de points, plus on couvre l'espace et ce de manière "uniforme". De ce fait, plus on augmente le nombre de points générés, plus la précision augmente.

Voici le résultat pour différents nombres de générations:

points générés	valeur de π trouvée
1000	3.124000
1000000	3.144720
1000000000	3.141541

On constate bien que plus on génère de points, plus on se rapproche de la valeur de π .

2 Calcul de précision

Dans cette deuxième partie, on va réutiliser la fonction simPi() implémentée précédemment, et on va s'intéresser à la précision. Le but va être de calculer une moyenne sur un certain nombre de simulation de π . Pour chacune des moyennes, la simulation se fera avec différents nombres de points à générer. Ensuite, on compare la valeur de π trouvée (en moyenne) avec M_PI qui est une macro de math.h qui contient une valeur relativement précise de π .

Notre fonction simPiPrecisison() va donc prendre deux paramètre:

- nbPoints: le nombre de points à générer avec simPi()
- nbSimulations: le nombre d'expériences à effectuer pour le calcule de la moyenne

La fonction affiche simplement le pourcentage de différence entre la valeur de π simulée et M_PI.

```
void simPiPrecisison(unsigned int nbPoints, int nbSimulations) {
  int    i;
  double mean;
  double sum = 0;
  initMT();
```

```
// calcul des pis
for (i = 0; i < nbSimulations; ++i) {
   sum += simPi(nbPoints);
}
mean = sum / nbSimulations;

printf("mean: %lf\n", mean);
printf("precision: %lf\n", fabs(mean - M_PI) / M_PI);
}</pre>
```

Voici les résultats pour des moyennes calculées sur 40 Simulations:

points générés	moyenne	précision
1000	3.142400	0.000257
1000000	3.141186	0.000129
1000000000	3.141586	0.000002

3 Calcul d'intervalles de confiance à 95%

Dans cette dernier partie, on va écrire une fonction qui permet de calculer et d'afficher l'intervalle de confiance à 95% pour les moyennes simulées précédemment. Pour ce faire on commence par calculer la moyenne arithmétique $\overline{X}(n)$ sur un certain nombre de simulations de π . En même temps, on sauvegarde les valeurs de π trouvées dans un tableau. Ensuite on utilise la moyennes et le tableaux de valeurs de π pour calculer $S^2(n) = \frac{\sum_{i=1}^n X_i - \overline{X}(n)}{n-1}$, qui est un estimateur sans biais de la variance. Enfin on utilise une loi de Student pour calculer le taux d'erreur.