

Name : Azeem Manzoor Reg# : SP20-BCS-046

Group: 4 Semester: 6th

Section: B Assignment#: 5th

Course: Introduction To Data Science

Submitted To.

Prof. Dr. Muhammad Sharjeel.

Question 1.

S1 Sunshine state enjoy sunshine.

S2 Brown fox jump high, brown fox run..

Sunshine state fox run fast.

Bag of Words:

Documents	Vocabulary							Length		
	sunshine	state	enjoy	brown	fox	jump	high	run	fast	
S1	2	1	1	0	0	0	0	0	0	4
S2	0	0	0	2	2	1	1	1	0	7
S 3	1	1	0	0	1	0	0	1	1	5

Term Frequency (TF)

Formula:

TF = (number of times term appears in document) / (total number of terms in document)

<u>S1:</u>

sunshine \longrightarrow 2/4

state $\longrightarrow 1/4$

enjoy 1/4

<u>S2:</u>

brown \longrightarrow 2/7

fox \longrightarrow 2/7

jump = 1/7

high $\longrightarrow 1/7$

run 1/7

<u>S3:</u>

sunshine 1/5

state 1/5

fox $\longrightarrow 1/5$

run 1/5 fast 1/5

Table of TF

Documents	Vocabulary								
	sunshine	state	enjoy	brown	fox	jump	high	run	fast
S1	2/4	1/4	1/4	0	0	0	0	0	0
S2	0	0	0	2/7	2/7	1/7	1/7	1/7	0
S3	1/5	1/5	0	0	1/5	0	0	1/5	1/5

Inverse Document Frequency (IDF)

Formula:

IDF = log (total number of documents) / (number of documents containing the term)

sunshine $\longrightarrow \log (3/2) = 0.176$ state $\longrightarrow \log (3/2) = 0.176$ enjoy $\longrightarrow \log (3/1) = 0.477$ brown $\longrightarrow \log (3/1) = 0.477$

fox $\log (3/2) = 0.176$

jump $\log (3/1) = 0.477$

high $\log (3/1) = 0.477$

run $\log (3/2) = 0.176$

fast $\log (3/1) = 0.477$

Term Frequency-Inverse Document Frequency (TF-IDF)

<u>S1:</u>

state $1/4 \times 0.176 = 0.044$

enjoy $1/4 \times 0.477 = 0.1192$

<u>S2:</u>

brown $2/7 \times 0.477 = 0.136$

fox $2/7 \times 0.176 = 0.051$

jump $1/7 \times 0.477 = 0.068$

high
$$1/7 \times 0.477 = 0.068$$

run $1/7 \times 0.176 = 0.025$
S3:
sunshine $1/5 \times 0.176 = 0.0352$
state $1/5 \times 0.176 = 0.0352$

fox
$$1/5 \times 0.176 = 0.0352$$

run
$$1/5 \times 0.176 = 0.0352$$

fast
$$1/5 \times 0.477 = 0.0954$$

TF-IDF Table.

Vocabulary	S1	S2	S3
sunshine	0.088	0	0.0352
state	0.044	0	0.0352
enjoy	0.11925	0	0
brown	0	0.136	0
fox	0	0.051	0.0352
jump	0	0.068	0
high	0	0.068	0
run	0	0.025	0.0352
fast	0	0	0.0954

Question 2.

Cosine similarity between S1 and S3.

Formula:

$$Cos \Theta = S1.S3 \div |S1| |S3|$$

Vector Representation of S1 and S3:

$$S1 = [2,1,1,0,0,0,0,0,0]$$

$$S3 = [1,1,0,0,1,0,0,1,1]$$

To Find S1.S3:

$$S1.S3 = (2*1)+(1*1)+(1*0)+(0*0)+(0*1)+(0*0)+(0*0)+(0*1)+(0*1)$$

$$S1.S3 = 2+1$$

$$S1.S3 = 3$$

To Find |S1| and |S2|:

$$|S1| = (2*2 + 1*1 + 1*1)^{0.5}$$

$$=(4+1+1)^{0.5}$$

$$=(6)^{0.5}$$

$$= 2.45$$

$$|S2| = (1*1 + 1*1 + 1*1 + 1*1 + 1*1)^{0.5}$$

$$=(1+1+1+1+1)^{0.5}$$

$$=(5)^{0.5}$$

$$= 2.24$$

Now put these values in Cos $\Theta = S1.S3 \div |S1| |S3|$

$$Cos(S1,S3) = 3 / (2.45)(2.24)$$

$$= 3 / 5.47$$

$$= 0.547$$

Cosine similarity of S1 and S3 is,

$$Cos(S1,S3) = 0.547$$