Patch Mobility Method

Zhou Zhenwei

April 18, 2016

1 Patch Mobility Definition

Patch-Mobility method is defined by:

$$Y_{R-I} = \frac{\langle V \rangle_R}{\langle F \rangle_I} \tag{1}$$

where:

$$\langle V \rangle_R = \frac{\iint_{S_R} V(x, y) \, \mathrm{d}S}{S_R}$$
 (2)

and:

$$\langle F \rangle_I = \frac{\iint_{S_I} F(x, y) \, dS}{S_I} = \iint_{S_I} P(x, y) \, dS = \langle P \rangle_I S_I$$
 (3)

The subscript I indicates Incident, and R indicates Response.

2 Panel Patch Mobility

2.1 General Function Solution

Panel equation:

$$D\nabla^{4}w(x,y) - \omega^{2}\rho hw(x,y) = P(x,y)$$
(4)

panel displacement modal expansion:

$$w(x,y) = \sum_{n=1}^{\infty} W_n \psi_n(x,y)$$
 (5)

substitute Eq. (5) into Eq. (4):

$$D\nabla^{4} \sum_{n=1}^{\infty} W_{n} \psi_{n}\left(x, y\right) - \omega^{2} \rho h \sum_{n=1}^{\infty} W_{n} \psi_{n}\left(x, y\right) = P\left(x, y\right)$$

$$(6)$$

Eq. (6)'s characteristic equation:

$$D\nabla^4 W_n \psi_n(x, y) - \omega_n^2 \rho h W_n \psi_n(x, y) = 0 \tag{7}$$

We can obtain:

$$\rho h \sum_{n=1}^{\infty} \omega_n^2 W_n \psi_n(x, y) - \omega^2 \rho h \sum_{n=1}^{\infty} W_n \psi_n(x, y) = P(x, y)$$
(8)

Use modal orthogonality decouple Eq. (8), times panel modal $\psi_m(x,y)$, m=1,2,... on both side and then integral, obtain:

$$\rho h \omega_m^2 W_m \iint_S \psi_m^2(x, y) \, dS - \omega^2 \rho h W_m \iint_S \psi_m(x, y) \, dS = \iint_S P(x, y) \psi_m(x, y) \, dS$$
 (9)

Solve Eq. (9):

$$W_m = \frac{\iint_S P(x, y) \psi_m(x, y) dS}{\rho h(\omega_m^2 - \omega^2) \iint_S \psi_m^2(x, y) dS}$$
(10)

Where P(x, y) the mean pressure on the incident Patch:

$$P(x,y) = \begin{cases} \langle P \rangle_i , & (x,y) \in S_i \\ 0 , & \text{other} \end{cases}$$
 (11)

Put it into Eq. (10):

$$W_m = \frac{\langle P \rangle_i \iint_{S_i} \psi_m(x, y) \, dS}{\rho h \left(\omega_m^2 - \omega^2\right) \iint_{S} \psi_m^2(x, y) \, dS}$$
(12)

Substitute Eq. (12) into Eq. (5):

$$w(x,y) = \langle P \rangle_{i} \sum_{n=1}^{\infty} \frac{\iint_{S_{i}} \psi_{n}(x,y) \, \mathrm{d}S}{\rho h \left(\omega_{n}^{2} - \omega^{2}\right) \iint_{S} \psi_{n}^{2}(x,y) \, \mathrm{d}S} \psi_{n}(x,y)$$

$$= \frac{\langle F \rangle_{i}}{S_{i}} \sum_{n=1}^{\infty} \frac{\iint_{S_{i}} \psi_{n}(x,y) \, \mathrm{d}S}{\rho h \left(\omega_{n}^{2} - \omega^{2}\right) \iint_{S} \psi_{n}^{2}(x,y) \, \mathrm{d}S} \psi_{n}(x,y)$$
(13)

Velocity:

$$v(x,y) = i\omega w(x,y) = i\omega \frac{\langle F \rangle_i}{S_i} \sum_{n=1}^{\infty} \frac{\iint_{S_i} \psi_n(x,y) \, dS}{\rho h(\omega_n^2 - \omega^2) \iint_{S} \psi_n^2(x,y) \, dS} \psi_n(x,y)$$
(14)

Patch mean velocity:

$$\langle V \rangle_{j} = \frac{\iint_{S_{j}} v\left(x,y\right) \, \mathrm{d}S}{S_{j}} = i\omega \frac{\langle F \rangle_{i}}{S_{i}S_{j}} \sum_{n=1}^{\infty} \frac{\iint_{S_{i}} \psi_{n}\left(x,y\right) \, \mathrm{d}S}{\rho h\left(\omega_{n}^{2} - \omega^{2}\right) \iint_{S} \psi_{n}^{2}\left(x,y\right) \, \mathrm{d}S} \iint_{S_{i}} \psi_{n}\left(x,y\right) \, \mathrm{d}S$$
(15)

Panel patch-mobility:

$$YP_{ij} = \frac{\langle V \rangle_j}{\langle F \rangle_i} = \frac{i\omega}{S_i S_j} \sum_{n=1}^{\infty} \frac{\iint_{S_i} \psi_n(x, y) \, dS}{\rho h(\omega_n^2 - \omega^2) \iint_{S} \psi_n^2(x, y) \, dS} \iint_{S_j} \psi_n(x, y) \, dS$$
(16)

2.2 Simply Support Boundary Solution

For simply support boundary:

$$\psi_n(x,y) = \sin\left(\frac{p\pi}{L_x}x\right)\sin\left(\frac{q\pi}{L_y}y\right) \tag{17}$$

then

$$\iint_{S_{i}} \psi_{n}(x,y) \, dS$$

$$= \int_{S_{ix1}}^{S_{ix2}} \sin\left(\frac{p\pi}{L_{x}}x\right) \, dx \int_{S_{iy1}}^{S_{iy2}} \sin\left(\frac{q\pi}{L_{y}}y\right) \, dy$$

$$= \left[-\frac{L_{x}}{p\pi} \cos\left(\frac{p\pi}{L_{x}}x\right)\Big|_{S_{ix1}}^{S_{ix2}}\right] \left[-\frac{L_{y}}{q\pi} \cos\left(\frac{q\pi}{L_{y}}y\right)\Big|_{S_{iy1}}^{S_{iy2}}\right]$$

$$= \frac{L_{x}L_{y}}{pq\pi^{2}} \left[\cos\left(\frac{p\pi}{L_{x}}S_{ix2}\right) - \cos\left(\frac{p\pi}{L_{x}}S_{ix1}\right)\right] \left[\cos\left(\frac{q\pi}{L_{y}}S_{iy2}\right) - \cos\left(\frac{q\pi}{L_{y}}S_{iy1}\right)\right]$$
(18)

apply the same process:

$$\iint_{S_{j}} \psi_{n}(x,y) \, dS$$

$$= \frac{L_{x}L_{y}}{pq\pi^{2}} \left[\cos \left(\frac{p\pi}{L_{x}} S_{jx2} \right) - \cos \left(\frac{p\pi}{L_{x}} S_{jx1} \right) \right] \left[\cos \left(\frac{q\pi}{L_{y}} S_{jy2} \right) - \cos \left(\frac{q\pi}{L_{y}} S_{jy1} \right) \right] \tag{19}$$

and:

$$\iint_{S} \psi_{n}^{2}(x,y) ds = \int_{0}^{L_{x}} \sin^{2}\left(\frac{p\pi}{L_{x}}x\right) dx \int_{0}^{L_{y}} \sin^{2}\left(\frac{q\pi}{L_{y}}y\right) dy = \frac{1}{4}L_{x}L_{y}$$
 (20)

Substitute Eq. (17), (18), (19) and (20) into Eq. (16):

$$YP_{ij} = \frac{\mathrm{i}\omega}{S_{i}S_{j}} \sum_{n=1}^{\infty} \frac{\frac{L_{x}L_{y}}{pq\pi^{2}} \left[\cos\left(\frac{p\pi}{L_{x}}S_{ix2}\right) - \cos\left(\frac{p\pi}{L_{x}}S_{ix1}\right) \right] \left[\cos\left(\frac{q\pi}{L_{y}}S_{iy2}\right) - \cos\left(\frac{q\pi}{L_{y}}S_{iy1}\right) \right]}{\frac{1}{4}\rho h\left(\omega_{n}^{2} - \omega^{2}\right) L_{x}L_{y}}$$

$$* \frac{L_{x}L_{y}}{pq\pi^{2}} \left[\cos\left(\frac{p\pi}{L_{x}}S_{jx2}\right) - \cos\left(\frac{p\pi}{L_{x}}S_{jx1}\right) \right] \left[\cos\left(\frac{q\pi}{L_{y}}S_{jy2}\right) - \cos\left(\frac{q\pi}{L_{y}}S_{jy1}\right) \right]$$

$$= \frac{4i\omega L_{x}L_{y}}{\rho h\pi^{4}S_{i}S_{j}} \sum_{n=1}^{\infty} \frac{\left[\cos\left(\frac{p\pi}{L_{x}}S_{ix2}\right) - \cos\left(\frac{p\pi}{L_{x}}S_{ix1}\right) \right] \left[\cos\left(\frac{q\pi}{L_{y}}S_{iy2}\right) - \cos\left(\frac{q\pi}{L_{y}}S_{iy1}\right) \right]}{pq\left(\omega_{n}^{2} - \omega^{2}\right)}$$

$$* \frac{1}{pq} \left[\cos\left(\frac{p\pi}{L_{x}}S_{jx2}\right) - \cos\left(\frac{p\pi}{L_{x}}S_{jx1}\right) \right] \left[\cos\left(\frac{q\pi}{L_{y}}S_{jy2}\right) - \cos\left(\frac{q\pi}{L_{y}}S_{jy1}\right) \right]$$

where:

$$\omega_n^2 = \frac{D^*}{\rho h} \left[\left(\frac{p\pi}{L_x} \right)^2 + \left(\frac{q\pi}{L_y} \right)^2 \right]^2 \tag{22}$$

2.3 Numerical Calculation

Use accumulation instead integral in Eq. (16):

$$YP_{ij} = \frac{\mathrm{i}\omega}{S_{i}S_{j}} \sum_{n=1}^{\infty} \frac{\iint_{S_{i}} \psi_{n}(x,y) \, \mathrm{d}S}{\rho h\left(\omega_{n}^{2} - \omega^{2}\right) \iint_{S} \psi_{n}^{2}(x,y) \, \mathrm{d}S} \iint_{S_{j}} \psi_{n}(x,y) \, \mathrm{d}S$$

$$= \frac{\mathrm{i}\omega}{S_{i}S_{j}} \sum_{n=1}^{\infty} \frac{S_{i}\psi_{n}(x_{i},y_{i})}{\rho h\left(\omega_{n}^{2} - \omega^{2}\right) \sum_{k=1}^{patchNum} S_{k}\psi_{n}^{2}(x_{k},y_{k})} S_{j}\psi_{n}(x_{j},y_{j})$$

$$= \mathrm{i}\omega \sum_{n=1}^{\infty} \frac{\psi_{n}(x_{i},y_{i})}{\rho h\left(\omega_{n}^{2} - \omega^{2}\right) \sum_{k=1}^{patchNum} S_{k}\psi_{n}^{2}(x_{k},y_{k})} \psi_{n}(x_{j},y_{j})$$

$$(23)$$

3 Cavity Patch Mobility

3.1 General Function Solution

Wave equation:

$$\nabla^{2} p\left(x, y, z\right) + k^{2} p\left(x, y, z\right) = -2\mathrm{i}\omega \rho_{0} V\left(x, y\right) \delta\left(z - z_{0}\right)$$
(24)

Modal expansion:

$$p(x, y, z) = \sum_{s=0}^{\infty} P_s \Phi(x, y, z)$$
(25)

Incorporating Eq. (25) into Eq. (24):

$$\nabla^{2} \sum_{s=0}^{\infty} P_{s} \Phi\left(x, y, z\right) + k^{2} \sum_{s=0}^{\infty} P_{s} \Phi\left(x, y, z\right) = -2i\omega \rho_{0} V\left(x, y\right) \delta\left(z - z_{0}\right)$$
(26)

Eq. (26)'s characteristic equation:

$$\nabla^{2} P_{l} \Phi_{l}(x, y, z) + k_{l}^{2} P_{l} \Phi_{l}(x, y, z) = 0$$
(27)

Substitute Eq. (27) into Eq. (26):

$$-\sum_{s=0}^{\infty} k_s^2 P_s \Phi(x, y, z) + k^2 \sum_{s=0}^{\infty} P_s \Phi(x, y, z) = -2i\omega \rho_0 V(x, y) \delta(z - z_0)$$
 (28)

Using modal orthogonality:

$$\left(k^{2}-k_{l}^{2}\right) P_{l} \iint_{\Omega} \Phi_{l}^{2}\left(x,y,z\right) d\Omega = -2i\omega\rho_{0} \iint_{\Omega} \Phi_{l}\left(x,y,z\right) V\left(x,y\right) \delta\left(z-z_{0}\right) d\Omega \tag{29}$$

where:

$$V(x,y) = \begin{cases} \langle V \rangle_j , & (x,y) \in S_j \\ 0 , & \text{other} \end{cases}$$
 (30)

then:

$$\iiint_{\Omega} \Phi_{l}(x, y, z) V(x, y) \delta(z - z_{0}) d\Omega = \frac{1}{2} \iint_{S} \Phi_{l}(x, y, z_{0}) V(x, y) dS$$

$$= \frac{1}{2} \langle V \rangle_{j} \iint_{S_{j}} \Phi_{l}(x, y, z_{0}) dS$$
(31)

Put it into Eq. (29), become:

$$(k^2 - k_l^2) P_l \iiint_{\Omega} \Phi_l^2(x, y, z) d\Omega = -i\omega \rho_0 \langle V \rangle_j \iint_{S_j} \Phi_l(x, y, z_0) dS$$
(32)

We can obtain the modal answer:

$$P_{l} = -i\omega \rho_{0} \langle V \rangle_{j} \frac{\iint_{S_{j}} \Phi_{l}(x, y, z_{0}) dS}{(k^{2} - k_{l}^{2}) \iint_{\Omega} \Phi_{l}^{2}(x, y, z) d\Omega}$$

$$(33)$$

Substitute Eq. (33) into Eq. (25):

$$p(x, y, z) = -i\omega \rho_0 \langle V \rangle_j \sum_{s=0}^{\infty} \frac{\iint_{S_j} \Phi_s(x, y, z_0) dS}{(k^2 - k_l^2) \iiint_{\Omega} \Phi_s^2(x, y, z) d\Omega} \Phi_s(x, y, z)$$
(34)

Combine Eq. (34) and Eq. (3), we can obtain cavity impedance, which is the reciprocal of mobility:

$$ZC_{ij} = \frac{\langle F \rangle_i}{\langle V \rangle_j} = -i\omega \rho_0 \sum_{s=0}^{\infty} \frac{\iint_{S_j} \Phi_s(x, y, z_0) dS}{(k^2 - k_l^2) \iiint_{\Omega} \Phi_s^2(x, y, z) d\Omega} \iint_{S_i} \Phi_s(x, y, z_1) dS$$
(35)

3.2 Hexahedral Cavity Solution

Cavity Modal:

$$\Psi_{s}\left(x,y,z\right) = \cos\left(\frac{p\pi}{L_{x}}x\right)\cos\left(\frac{q\pi}{L_{y}}y\right)\cos\left(\frac{r\pi}{L_{z}}z\right) \tag{36}$$

4 SOURCE ROOM 5

where $s = 0, 1, 2, \cdots$. Then:

$$\iint_{S_{j}} \Phi_{s}(x, y, z_{0}) dS = \iint_{S_{j}} \cos\left(\frac{p\pi}{L_{x}}x\right) \cos\left(\frac{q\pi}{L_{y}}y\right) \cos\left(\frac{r\pi}{L_{z}}z_{0}\right) dS$$

$$= \cos\left(\frac{r\pi}{L_{z}}z_{0}\right) \int_{S_{jx1}}^{S_{jx2}} \cos\left(\frac{p\pi}{L_{x}}x\right) dx \int_{S_{jy1}}^{S_{jy2}} \cos\left(\frac{q\pi}{L_{y}}y\right) dy$$
(37)

where

$$\int_{S_{jx1}}^{S_{jx2}} \cos\left(\frac{p\pi}{L_x}x\right) dx = \begin{cases} S_{jx2} - S_{jx1} , & p = 0\\ \frac{L_x}{p\pi} \left[\sin\left(\frac{p\pi}{L_x}S_{jx2}\right) - \sin\left(\frac{p\pi}{L_x}S_{jx1}\right)\right] , & p \neq 0 \end{cases},$$

and

$$\int_{S_{jy1}}^{S_{jy2}} \cos\left(\frac{q\pi}{L_y}y\right) dy = \begin{cases} S_{jy2} - S_{jy1} , & q = 0\\ \frac{L_y}{q\pi} \left[\sin\left(\frac{q\pi}{L_y}S_{jy2}\right) - \sin\left(\frac{q\pi}{L_y}S_{jy1}\right)\right] , & q \neq 0 \end{cases}$$

$$\iiint_{\Omega} \Phi_s^2(x, y, z) d\Omega = \iiint_{\Omega} \cos^2\left(\frac{p\pi}{L_x}x\right) \cos^2\left(\frac{q\pi}{L_y}y\right) \cos^2\left(\frac{r\pi}{L_z}z\right) d\Omega$$

$$= \int_0^{L_x} \cos^2\left(\frac{p\pi}{L_x}x\right) dx \int_0^{L_y} \cos^2\left(\frac{q\pi}{L_y}y\right) dy \int_0^{L_z} \cos^2\left(\frac{r\pi}{L_z}z\right) dz \tag{38}$$

$$= L L L \in \mathcal{C} \mathcal{C} \tag{38}$$

where

$$\varepsilon_x = \begin{cases} 1 \ , & x = 0 \\ \frac{1}{2} \ , & x \neq 0 \end{cases} , \qquad \varepsilon_y = \begin{cases} 1 \ , & y = 0 \\ \frac{1}{2} \ , & y \neq 0 \end{cases} \quad \text{and} \quad \varepsilon_z = \begin{cases} 1 \ , & z = 0 \\ \frac{1}{2} \ , & z \neq 0 \end{cases} .$$

Cavity modal circular frequency:

$$\omega_l^2 = c^2 \left[\left(\frac{p\pi}{L_x} \right)^2 + \left(\frac{q\pi}{L_y} \right)^2 + \left(\frac{r\pi}{L_z} \right)^2 \right]$$
 (39)

Cavity modal wave number:

$$k_l^2 = \left(\frac{p\pi}{L_x}\right)^2 + \left(\frac{q\pi}{L_y}\right)^2 + \left(\frac{r\pi}{L_z}\right)^2 \tag{40}$$

4 Source Room

4.1 General Function Solution

Wave equation with point source:

$$\nabla^{2} p^{\mathrm{S}}(x, y, z) + k^{2} p^{\mathrm{S}}(x, y, z) = -\mathrm{i}\omega \rho_{0} Q \delta(x - x_{s}) \delta(y - y_{s}) \delta(z - z_{s})$$

$$\tag{41}$$

Where (x_s, y_s, z_s) is the point source location and the upper script "S" indicate "Source". Modal expansion:

$$p^{S}(x,y,z) = \sum_{t=0}^{\infty} P_{t}^{S} \phi_{t}(x,y,z)$$

$$(42)$$

4 SOURCE ROOM 6

Refer to Eq. (33), we can write pressure modal answer directly:

$$P_{t}^{S} = \frac{-\mathrm{i}\omega\rho_{0}Q \iiint_{\Omega}\phi_{t}(x,y,z)\delta(x-x_{s})\delta(y-y_{s})\delta(z-z_{s})\,\mathrm{d}\Omega}{(k^{2}-k_{t}^{2})\iiint_{\Omega}\phi_{t}^{2}(x,y,z)\,\mathrm{d}\Omega}$$

$$= \frac{-\mathrm{i}\omega\rho_{0}Q\phi_{t}(x_{s},y_{s},z_{s})}{(k^{2}-k_{t}^{2})\iiint_{\Omega}\phi_{t}^{2}(x,y,z)\,\mathrm{d}\Omega}$$
(43)

Incorporating Eq. (43) into Eq. (42):

$$p^{S}(x,y,z) = -i\omega\rho_{0}Q\sum_{t=0}^{\infty} \frac{\phi_{t}(x_{s},y_{s},z_{s})}{(k^{2}-k_{t}^{2})\iint_{\Omega}\phi_{t}^{2}(x,y,z) d\Omega}\phi_{t}(x,y,z)$$
(44)

For hexahedral room:

$$\phi_t(x, y, z) = \cos\left(\frac{p\pi}{L_x}x\right)\cos\left(\frac{q\pi}{L_y}y\right)\cos\left(\frac{r\pi}{L_z}z\right)$$
(45)

then

$$\iiint_{\Omega} \phi_t^2(x, y, z) \, d\Omega = \int_0^{L_x} \cos^2\left(\frac{p\pi}{L_x}x\right) \, dx \int_0^{L_y} \cos^2\left(\frac{q\pi}{L_y}y\right) \, dy \int_0^{L_z} \cos^2\left(\frac{r\pi}{L_z}z\right) \, dz$$

$$= \varepsilon_p \varepsilon_q \varepsilon_r L_x L_y L_z \tag{46}$$

where

$$\varepsilon_p = \begin{cases} 1 \ , & p = 0 \\ \frac{1}{2} \ , & p \neq 0 \end{cases} , \qquad \varepsilon_q = \begin{cases} 1 \ , & q = 0 \\ \frac{1}{2} \ , & q \neq 0 \end{cases} \quad \text{and} \quad \varepsilon_r = \begin{cases} 1 \ , & r = 0 \\ \frac{1}{2} \ , & r \neq 0 \end{cases} .$$

Incorporating Eq. (46) into Eq. (43) and Eq. (44):

$$P_t^{S} = \frac{-\mathrm{i}\omega\rho_0 Q\phi_t\left(x_s, y_s, z_s\right)}{\left(k^2 - k_t^2\right)\varepsilon_p\varepsilon_q\varepsilon_r L_x L_y L_z} \tag{47}$$

$$p^{S}(x,y,z) = -i\omega\rho_{0}Q\sum_{t=0}^{\infty} \frac{\phi_{t}(x_{s},y_{s},z_{s})}{(k^{2}-k_{t}^{2})\varepsilon_{p}\varepsilon_{q}\varepsilon_{r}L_{x}L_{y}L_{z}}\phi_{t}(x,y,z)$$

$$(48)$$

4.2 Quadratic Room Pressure

Quadratic room pressure:

$$P_{r}^{2} = \frac{\iiint_{\Omega} \left[p^{S}(x, y, z)\right]^{2} d\Omega}{L_{x}L_{y}L_{z}}$$

$$= \frac{\iiint_{\Omega} \left[\sum_{t=0}^{\infty} P_{t}^{S} \phi_{t}(x, y, z)\right]^{2} d\Omega}{L_{x}L_{y}L_{z}}$$

$$= \frac{\sum_{t=0}^{\infty} \left|P_{t}^{S}\right|^{2} \iiint_{\Omega} \phi_{t}^{2}(x, y, z) d\Omega}{L_{x}L_{y}L_{z}}$$

$$= \sum_{t=0}^{\infty} \left|P_{t}^{S}\right|^{2} \varepsilon_{p}\varepsilon_{q}\varepsilon_{r}$$

$$= \sum_{t=0}^{\infty} \frac{\omega^{2} \rho_{0}^{2} Q^{2} \phi_{t}^{2}(x_{s}, y_{s}, z_{s})}{(k^{2} - k_{t}^{2})^{2} \varepsilon_{p}\varepsilon_{q}\varepsilon_{r} L_{x}^{2} L_{y}^{2} L_{z}^{2}}$$

$$(49)$$

4.3 Blocked Patch Pressure

Blocked patch pressure:

$$\langle P \rangle_{i} = \frac{1}{S_{i}} \iint_{S_{i}} p^{S}(x, y_{w}, z) dS_{i}$$

$$= \frac{1}{S_{i}} \iint_{S_{i}} \left[\sum_{t=0}^{\infty} P_{t}^{S} \phi_{t}(x, y_{w}, z) \right] dS_{i}$$

$$= \frac{1}{S_{i}} \sum_{t=0}^{\infty} \left[P_{t}^{S} \iint_{S_{i}} \phi_{t}(x, y_{w}, z) dS_{i} \right]$$

$$= \frac{1}{S_{i}} \sum_{t=0}^{\infty} \left[P_{t}^{S} \cos \left(\frac{q\pi}{L_{y}} y_{w} \right) \int_{\text{patch}x1}^{\text{patch}x2} \cos \left(\frac{p\pi}{L_{x}} x \right) dx \int_{\text{patch}z1}^{\text{patch}z2} \cos \left(\frac{r\pi}{L_{z}} z \right) dz \right]$$

$$(50)$$

where

$$\int_{\text{patch.}x1}^{\text{patch.}x2} \cos\left(\frac{p\pi}{L_x}x\right) dx = \begin{cases} \frac{L_x}{p\pi} \sin\left(\frac{p\pi}{L_x}x\right) \Big|_{\text{patch.}x1}^{\text{patch.}x2}, & p \neq 0 \\ \text{patch.}x2 - \text{patch.}x1, & p = 0 \end{cases}$$

and

$$\int_{\text{patch.}z1}^{\text{patch.}z2} \cos\left(\frac{r\pi}{L_z}z\right) dz = \begin{cases} \frac{L_z}{r\pi} \sin\left(\frac{r\pi}{L_z}z\right) \Big|_{\text{patch.}z1}^{\text{patch.}z2}, & r \neq 0 \\ \text{patch.}z2 - \text{patch.}z1, & r = 0 \end{cases}$$

5 Semi-Infinite Medium

5.1 Radiated Pressure and Impedance

Radiation impedance is defined as the ratio of averaged patch i radiated pressure to averaged patch j velocity:

$$\langle Z \rangle_{ij} = \frac{\langle P_{\rm rad} \rangle_i}{\langle V \rangle_j}$$
 (51)

Rayleigh's formula [David Feit. Sound, Structures, and Their Interaction: p89, Eq. (4.29)]:

$$p(\mathbf{R}) = \frac{\rho_0}{2\pi R} \int_{S_0} \exp\left(jk \left| \mathbf{R} - \mathbf{R}_0 \right|\right) \ddot{w}(\mathbf{R}_0) \, dS(\mathbf{R}_0) \quad , \qquad \mathbf{R} \gg \mathbf{R}_0$$
 (52)

Where the vibrating surface is planar and infinitely extend, the Rayleigh integral applies:

$$\tilde{p}(\mathbf{r}) e^{j\omega t} = \frac{j\omega\rho_0}{4\pi} e^{j\omega t} \int_S \left[2\tilde{v}_n(\mathbf{r}_s) \frac{e^{-jkR}}{R} \right] dS$$
(53)

then, consider the patch as a rigid circular disc of radius a vibrating in a coplanar rigid baffle. The pressure at the centre due to the motion of an annulus of radius R is given by Eq. (53) as (Fahy P247):

$$\delta \tilde{p}(0) = \frac{\mathrm{j}\omega \rho_0}{4\pi R} 2\tilde{v}_n e^{-\mathrm{j}kR} 2\pi R \delta R = \mathrm{j}\omega \rho_0 \tilde{v}_n e^{-\mathrm{j}kR} \delta R \tag{54}$$

The total pressure at the centre is given by the integral over the limits 0 to a:

$$\tilde{p}(0) = j\omega\rho\tilde{v}_n \int_0^a e^{-jkR} dR = \rho_0 c\tilde{v}_n \left(1 - e^{-jka}\right)$$
(55)

the patch impedance:

$$\langle \langle Z \rangle_i \rangle_i = \frac{\langle P_{\text{rad}} \rangle_i}{\langle V \rangle_i} = \frac{\tilde{p}(0)}{\tilde{v}_n} = \rho_0 c \left(1 - e^{-jka} \right)$$
(56)

Consider the patch j, if the patch dimensions are small, the integral can be approximated by the value at the central point times the patch area. The pressure at patch j can be write from Eq. (53):

$$\tilde{p}(d_{ij}) = \frac{\mathrm{j}\omega\rho_0}{4\pi} 2\tilde{v}_n \frac{e^{\mathrm{j}kd_{ij}}}{d_{ij}} S_j \tag{57}$$

the patch impedance:

$$\langle \langle Z \rangle_i \rangle_j = \frac{\langle P_{\text{rad}} \rangle_j}{\langle V \rangle_i} = \frac{\tilde{p}(d_{ij})}{\tilde{v}_n} = j\omega \rho_0 \frac{e^{-jkd_{ij}}}{2\pi d_{ij}} S_j$$
(58)

Radiation patch mobilities are obtained by inversion of impedance matrix calculated from previous Eq. (56) and Eq. (58).

5.2 Radiated Power

Radiated power is calculated from patch velocities and radiated patch pressures, and can be written using radiation patch mobility method (Fahy P124):

$$I_{\text{rad}} = \frac{1}{2} \sum_{i} \text{Re}\{\langle V \rangle_{i}^{*} \langle P_{\text{rad}} \rangle_{i}\} = \frac{1}{2} \left([Y_{\text{rad}}]^{-1} \{V\} \right)' \{V\}^{*} = \frac{1}{2} \{V\}' [Z_{\text{rad}}] \{V\}^{*}$$
 (59)