Teoremas e formulas uteis The AC is a lie - ICPC Library Geometry Contents String Algorithms 1 String Algorithms String Alignment int pd[ms][ms]; Data Structures int edit_distance(string &a, string &b) { int n = a.size(), m = b.size(); for(int i = 0; i <= n; i++) pd[i][0] = i;</pre> for(int j = 0; j <= m; j++) pd[0][j] = j;</pre> for(int i = 1; i <= n; i++) {</pre> 2.5 for(int j = 1; j <= m; j++) {</pre> 2.7 int del = pd[i][j-1] + 1; 2.8 **int** ins = pd[i-1][j] + 1;2.9 int mod = pd[i-1][j-1] + (a[i-1] != b[j-1]);2.10 pd[i][j] = min(del, min(ins, mod)); return pd[n][m]; Graph Algorithms 1.2 $_{ m KMP}$ Articulation Points/Bridges/Biconnected Components 3.4string p, t; 3.5 int b[ms], n, m; 3.7 3.8 void kmpPreprocess() { int i = 0, j = -1; Math 13 b[0] = -1;4.1 while(i < m) {</pre> 4.2 while (j >= 0 & & p[i] != p[j]) j = b[j];b[++i] = ++j;4.4 4.6void kmpSearch() { int i = 0, j = 0, ans = 0; Geometry 15 while (i < n) { Geometry 5.1while $(j \ge 0 \&\& t[i] != p[j]) j = b[j];$ <u>i++;</u> <u>i++;</u> **if**(j == m) { //ocorrencia aqui comecando em i - j ans++; j = b[j];**Dynamic Programming** 19 20 Miscellaneous return ans;

1.3

Trie

7.3

```
int trie[ms][sigma], terminal[ms], z;
void init() {
 memset(trie[0], -1, sizeof trie[0]);
 z = 1;
int get_id(char c) {
  return c - 'a';
void insert(string &p) {
  int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int id = get_id(p[i]);
    if(trie[cur][id] == -1)
      memset(trie[z], -1, sizeof trie[z]);
      trie[cur][id] = z++;
    cur = trie[cur][id];
  terminal[cur]++;
int count(string &p) {
  int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      return false;
    cur = trie[cur][id];
  return terminal[cur];
```

} } int search(string &txt) { int node = 0; int ans = 0; for(int i = 0; i < txt.length(); i++) { int pos = get_id(txt[i]); node = trie[node][pos]; // processar informacoes no no atual ans += terminal[node]; } return ans; }</pre>

1.5 Algoritmo de Z

```
string s;
int fz[ms], n;

void zfunc() {
  fz[0] = n;
  for(int i = 1, l = 0, r = 0; i < n; i++) {
    if(l && i + fz[i-l] < r)
        fz[i] = fz[i-l];
    else {
        int j = min(l ? fz[i-l] : 0, i > r ? 0 : r - i);
        while(s[i+j] == s[j] && ++j);
        fz[i] = j; l = i; r = i + j;
    }
}
```

1.4 Aho-Corasick

```
// Construa a Trie do seu dicionario com o codigo acima
int fail[ms];
queue<int> q;
void buildFailure() {
  q.push(0);
  while(!q.empty()) {
    int node = q.front();
    q.pop();
    for(int pos = 0; pos < sigma; pos++) {</pre>
      int &v = trie[node][pos];
      int f = node == 0 ? 0 : trie[fail[node]][pos];
      if(v == -1) {
       v = f:
      } else {
       fail[v] = f;
        q.push(v);
        // juntar as informacoes da borda para o V ja q um match em V
            implica um match na borda
        terminal[v] += terminal[f];
```

1.6 Suffix Array

```
namespace SA {
  typedef pair<int, int> ii;
  vector<int> buildSA(string s) {
    int n = (int) s.size();
    vector<int> ids(n), pos(n);
    vector<ii>> pairs(n);
    for (int i = 0; i < n; i++) {
      ids[i] = i;
      pairs[i] = ii(s[i], -1);
    sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
      return pairs[a] < pairs[b];</pre>
    });
    int on = 0:
    for(int i = 0; i < n; i++) {</pre>
      if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
      pos[ids[i]] = on;
    for(int offset = 1; offset < n; offset <<= 1) {</pre>
      //ja tao ordenados pelos primeiros offset caracteres
      for(int i = 0; i < n; i++) {
```

```
pairs[i].first = pos[i];
        if (i + offset < n) {
          pairs[i].second = pos[i + offset];
          pairs[i].second = -1;
      sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
        return pairs[a] < pairs[b];</pre>
      });
      int on = 0;
      for (int i = 0; i < n; i++) {
        if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
        pos[ids[i]] = on;
   return ids;
  vector<int> buildLCP(string s, vector<int> sa) {
   int n = (int) s.size();
   vector<int> pos(n), lcp(n, 0);
    for (int i = 0; i < n; i++) {
      pos[sa[i]] = i;
   int k = 0;
    for(int i = 0; i < n; i++) {</pre>
      if (pos[i] + 1 == n) {
       \mathbf{k} = 0;
        continue;
      int j = sa[pos[i] + 1];
      while(i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
      lcp[pos[i]] = k;
      k = \max(k - 1, 0);
   return lcp;
};
```

2 Data Structures

2.1 BIT - Binary Indexed Tree

```
int bit[ms], n;

void update(int v, int idx) {
  while(idx <= n) {
    bit[idx] += v;
    idx += idx & -idx;
  }
}

int query(int idx) {
  int r = 0;
  while(idx > 0) {
    r += bit[idx];
    idx -= idx & -idx;
}
```

```
}
return r;
```

2.2 BIT 2D

```
int bit[ms][ms], n, m;

void update(int v, int x, int y) {
    while(x <= n) {
        bit[x][y] += v;
        y += y&-y;
        }
        x += x&-x;
    }
}

int query(int x, int y) {
    int r = 0;
    while(x > 0) {
        while(y > 0) {
            r += bit[x][y];
            y -= y&-y;
        }
        x -= x&-x;
    }

    return r;
}
```

2.3 BIT 2D Comprimida

```
// by TFG
#include <vector>
#include <utility>
#include <algorithm>
typedef std::pair<int, int> ii;
struct Bit2D {
public:
  Bit2D(std::vector<ii> pts) {
    std::sort(pts.begin(), pts.end());
    for(auto a : pts) {
      if(ord.empty() || a.first != ord.back())
        ord.push_back(a.first);
    fw.resize(ord.size() + 1);
    coord.resize(fw.size());
    for(auto &a : pts)
      std::swap(a.first, a.second);
    std::sort(pts.begin(), pts.end());
    for(auto &a : pts) {
      std::swap(a.first, a.second);
      for(int on = std::upper_bound(ord.begin(), ord.end(), a.first) -
           ord.begin(); on < fw.size(); on += on & -on) {
        if(coord[on].empty() || coord[on].back() != a.second);
          coord[on].push_back(a.second);
```

```
for(int i = 0; i < fw.size(); i++) {
      fw[i].assign(coord[i].size() + 1, 0);
  void upd(int x, int y, int v) {
   for(int xx = std::upper bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx < fw.size(); xx += xx & -xx) {
      for(int yy = std::upper_bound(coord[xx].begin(), coord[xx].end()
          , y) - coord[xx].begin(); yy < fw[xx].size(); yy += yy & -yy
          ) {
        fw[xx][yy] += v;
  int gry(int x, int y) {
   int ans = 0:
   for(int xx = std::upper_bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx > 0; xx -= xx & -xx) {
      for(int yy = std::upper_bound(coord[xx].begin(), coord[xx].end()
         , y) - coord[xx].begin(); yy > 0; yy -= yy & -yy) {
        ans += fw[xx][yy];
    return ans;
private:
  std::vector<int> ord;
  std::vector<std::vector<int>> fw, coord;
};
```

2.4 Iterative Segment Tree

```
int n, t[2 * ms];
void build() {
  for (int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1|1];
void update(int p, int value) { // set value at position p
  for (t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1];
int query(int 1, int r) {
  int res = 0;
  for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
   if(1&1) res += t[1++];
    if(r\&1) res += t[--r];
  return res:
// If is non-commutative
S query(int 1, int r) {
  S resl, resr;
  for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
  if (l\&1) resl = combine(resl, t[l++]);
```

```
if (r&1) resr = combine(t[--r], resr);
}
return combine(resl, resr);
```

2.5 Iterative Segment Tree with Interval Updates

```
int n, t[2 * ms];
void build() {
  for (int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1|1];
void update(int 1, int r, int value) {
  for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1)
    if(1&1) t[1++] += value;
    if(r&1) t[--r] += value;
int query(int p) {
  int res = 0;
  for (p += n; p > 0; p >>= 1) res += t[p];
  return res:
void push() { // push modifications to leafs
 for (int i = 1; i < n; i++) {
   t[i<<1] += t[i];
   t[i<<1|1] += t[i];
    t[i] = 0;
```

2.6 Recursive Segment Tree

```
int arr[4 * ms], seg[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  if(1 == r) {
    seg[idx] = arr[l];
    return;
 build(left, 1, mid); build(right, mid + 1, r);
  seq[idx] = seq[left] + seq[right];
int query(int L, int R, int idx = 0, int l = 0, int r = n - 1) {
 int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 if(R < 1 \mid | L > r) return 0;
  if(L <= 1 && r <= R) return seg[idx];</pre>
  return query(L, R, left, l, mid) + query(L, R, right, mid + 1, r);
void update(int V, int I, int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  if(1 > I \mid | r < I) return;
```

```
if(1 == r) {
    arr[I] = V;
    seg[idx] = V;
    return;
}
update(V, I, left, 1, mid); update(V, I, right, mid + 1, r);
seg[idx] = seg[left] + seg[right];
}
```

2.7 Segment Tree with Lazy Propagation

```
int arr[4 * ms], seq[4 * ms], lazy[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 lazy[idx] = 0;
 if(1 == r) {
   seg[idx] = arr[l];
   return;
 build(left, 1, mid); build(right, mid + 1, r);
  seg[idx] = seg[left] + seg[right];
void propagate(int idx, int 1, int r) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  if(lazv[idx]) {
   seg[idx] += lazy[idx] * (r - l + 1);
   if(1 < r) {
     lazv[2*idx+1] += lazv[idx];
      lazy[2*idx+2] += lazy[idx];
    lazy[idx] = 0;
int query(int L, int R, int idx = 0, int l = 0, int r = n - 1) {
 int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 propagate(idx, l, r);
 if(R < 1 \mid | L > r) return 0:
 if(L <= 1 && r <= R) return seg[idx];</pre>
 return query(L, R, left, 1, mid) + query(L, R, right, mid + 1, r);
void update(int V, int L, int R, int idx = 0, int 1 = 0, int r = n -1)
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 propagate(idx, l, r);
  if(1 > R | | r < L) return;
 if(L \le 1 \&\& r \le R) {
   lazv[idx] += V;
   propagate(idx, l, r);
  update(V, L, R, left, l, mid); update(V, L, R, right, mid + 1, r);
  seq[idx] = seq[left] + seq[right];
```

2.8 Persistent Segment Tree

```
struct PSEGTREE{
 private:
   int z, t, sz, *tree, *L, *R, head[112345];
   void _build(int 1, int r, int on, vector<int> &v) {
      if(1 == r){
       tree[on] = v[1];
        return:
      L[on] = ++z;
      int mid = (1+r) >> 1;
      _build(l, mid, L[on], v);
     R[on] = ++z;
      _build(mid+1, r, R[on], v);
      tree[on] = tree[L[on]] + tree[R[on]];
    int _upd(int ql, int qr, int val, int l, int r, int on) {
      if(1 > qr \mid | r < ql) return on;
      int curr = ++z;
      if(1 >= ql && r <= qr) {
       tree[curr] = tree[on] + val;
       return curr:
      int mid = (1+r) >> 1;
      L[curr] = \_upd(ql, qr, val, l, mid, L[on]);
      R[curr] = \_upd(ql, qr, val, mid+1, r, R[on]);
      tree[curr] = tree[L[curr]] + tree[R[curr]];
      return curr;
   int _query(int ql, int qr, int l, int r, int on){
     if(1 > qr || r < ql) return 0;
      if(1 >= q1 && r <= qr) {
        return tree[on];
      int mid = (1+r) >> 1;
      return _query(ql, qr, l, mid, L[on]) + _query(ql, qr, mid+1, r,
          R[on]);
 public:
   PSEGTREE (vector<int> &v) {
     tree = new int[1123456];
      L = new int[1123456];
      R = new int[1123456];
     build(v):
    void build(vector<int> &v) {
     t = 0, z = 0;
      sz = v.size():
     head[0] = 0;
      _{\text{build}}(0, \text{sz-1}, 0, \text{v});
    void upd(int pos, int val, int idx){
     head[++t] = \_upd(pos, pos, val, 0, sz-1, head[idx]);
```

```
int query(int 1, int r, int idx) {
    return _query(1, r, 0, sz-1, head[idx]);
    }
};
```

2.9 Color Updates Structure

```
struct range {
  int 1. r:
  int v;
  range(int l = 0, int r = 0, int v = 0) : l(1), r(r), v(v) {}
 bool operator < (const range &a) const {</pre>
    return 1 < a.1;</pre>
};
set<range> ranges;
vector<range> update(int 1, int r, int v) { // [1, r)
  vector<range> ans;
  if(l >= r) return ans;
  auto it = ranges.lower_bound(1);
  if(it != ranges.begin()) {
   it--;
    if(it->r > 1) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.1, 1, cur.v));
      ranges.insert(range(l, cur.r, cur.v));
  it = ranges.lower_bound(r);
  if(it != ranges.begin()) {
    it--;
    if(it->r>r) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.l, r, cur.v));
      ranges.insert(range(r, cur.r, cur.v));
  for(it = ranges.lower_bound(l); it != ranges.end() && it->l < r; it</pre>
      ++) {
    ans.push_back(*it);
  ranges.erase(ranges.lower_bound(l), ranges.lower_bound(r));
  ranges.insert(range(l, r, v));
  return ans;
int query(int v) { // Substituir -1 por flag para quando nao houver
  auto it = ranges.upper_bound(v);
  if(it == ranges.begin()) {
    return -1;
  it--;
```

```
return it->r >= v ? it->v : -1;
```

2.10 Policy Based Structures

2.11 Heavy Light Decomposition

```
#include <bits/stdc++.h>
#define all(foo) foo.begin(), foo.end()
using namespace std;
const int N = 112345, inf = 0x3f3f3f3f3f;
int k, adj[N], ant[2*N], to[2*N];
void add(int a, int b, bool f = 1) {
  ant[k] = adj[a], adj[a] = k, to[k] = b;
  k++;
  if(f) add(b, a, 0);
int par[N], h[N], big[N], sz[N];
void dfs(int v, int p, int hght) {
  sz[v] = 1, par[v] = p, h[v] = hght, big[v] = -1;
  for(int i = adj[v]; ~i; i = ant[i]){
    if(to[i] != p) {
      dfs(to[i], v, hght+1);
      sz[v] += sz[to[i]];
      if(big[v] == -1 \mid \mid sz[big[v]] < sz[to[i]]) big[v] = to[i];
int chainNo, chain[N], ind[N], chainSz[N], head[N];
vector<int> tree[N];
vector<int> st[N];
void upd(int p, int value, vector<int> &tree) {
  int n = tree.size()>>1;
  for (\text{tree}[p += n] = \text{value}; p > 1; p >>= 1) \text{ tree}[p>>1] = \min(\text{tree}[p],
      tree[p^1]);
int rmq(int 1, int r, vector<int> &tree) {
```

```
int res = inf;
  int n = tree.size()>>1;
  for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
    if(l\&1) res = min(res, tree[l++]);
    if(r&1) res = min(res, tree[--r]);
  return res;
void HLD(int v, int p, int cIn){
  if(cIn == 0) head[chainNo] = v;
  ind[v] = cIn;
  chain[v] = chainNo;
  st[chainNo].push_back(v);
  if(~biq[v]){
   HLD(big[v], v, cIn+1);
  }else{
    int n = chainSz[chainNo] = st[chainNo].size();
    tree[chainNol.resize(2*n):
    fill(all(tree[chainNo]), inf);
    chainNo++;
  for(int i = adj[v]; ~i; i = ant[i]){
    if(to[i] != p && to[i] != big[v]){
      HLD(to[i], v, 0);
int up(int v) {
  return (head[chain[v]] != v) ? head[chain[v]] : (par[v] != -1 ? par[
int LCA(int a, int b) {
  while(chain[a] != chain[b]){
    if(par[a] == -1 || h[up(a)] < h[up(b)]) swap(a, b);
    a = up(a);
  return h[a] < h[b] ? a : b;
int queryUp(int a, int b){
 int ans = -1, curr;
  while(chain[a] != chain[b]){
   curr = rmq(0, ind[a]+1, tree[chain[a]]);
    if(curr != inf) ans = st[chain[a]][curr];
    a = par[head[chain[a]]];
  curr = rmq(ind[b], ind[a]+1, tree[chain[a]]);
  if(curr != inf) ans = st[chain[a]][curr];
  return ans;
int main(){
  int n, q;
  scanf("%d %d", &n, &q);
  memset(adj, -1, sizeof adj);
  for (int i = 0; i < n-1; i++) {
    int a, b:
    scanf("%d %d", &a, &b);
```

```
add(a, b);
}
dfs(1, -1, 0);
HLD(1, -1, 0);
for(int i = 0; i < q; i++){
   int o, v;
   scanf("%d %d", &o, &v);
   if(o){
      printf("%d\n", queryUp(v, 1));
   }else{
      int ans = rmq(ind[v], ind[v]+1, tree[chain[v]]);
      upd(ind[v], (ans == inf) ? ind[v] : inf, tree[chain[v]]);
   }
}</pre>
```

2.12 Heavy Light Decomposition + Euler Tour Technique

```
//HLD + Euler Tour by adamant http://codeforces.com/blog/entry/53170

void dfs_sz(int v = 0)
{
    sz[v] = 1;
    for(auto &u: g[v])
    {
        dfs_sz(u);
        sz[v] += sz[u];
        if(sz[u] > sz[g[v][0]])
            swap(u, g[v][0]);
    }
}

void dfs_hld(int v = 0)
{
    in[v] = t++;
    rin[in[v]] = v;
    for(auto u: g[v])
    {
        nxt[u] = (u == g[v][0] ? nxt[v] : u);
        dfs_hld(u);
    }
    out[v] = t;
}
```

2.13 Centroid Decomposition

```
//Centroid decomposition1

void dfsSize(int v, int pa) {
   sz[v] = 1;
   for(int u : adj[v]) {
      if (u == pa || rem[u]) continue;
      dfsSize(u, v);
      sz[v] += sz[u];
   }
}

int getCentroid(int v, int pa, int tam) {
   for(int u : adj[v]) {
```

```
if (u == pa || rem[u]) continue;
   if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void decompose(int v, int pa = -1) {
  //cout << v << ' ' << pa << '\n';
  dfsSize(v, pa);
  int c = getCentroid(v, pa, sz[v]);
  //cout << c << '\n';
  par[c] = pa;
  rem[c] = 1;
  for(int u : adj[c]) {
   if (!rem[u] && u != pa) decompose(u, c);
  adj[c].clear();
//Centroid decomposition2
void dfsSize(int v, int par) {
 sz[v] = 1;
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   dfsSize(u, v);
   sz[v] += sz[u];
int getCentroid(int v, int par, int tam) {
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void setDis(int v, int par, int nv, int d) {
  dis[v][nv] = d;
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   setDis(u, v, nv, d + 1);
void decompose(int v, int par, int nv) {
  dfsSize(v, par);
  int c = getCentroid(v, par, sz[v]);
  ct[c] = par;
  removed[c] = 1;
  setDis(c, par, nv, 0);
  for(int u : adj[c]) {
   if (!removed[u]) {
      decompose(u, c, nv + 1);
```

2.14 Sparse Table

```
template < class Info_t>
class SparseTable {
private:
  vector<int> log2:
  vector<vector<Info_t>> table;
  Info_t merge(Info_t &a, Info_t &b) {
public:
  SparseTable(int n, vector<Info_t> v) {
    log2.resize(n + 1);
    log2[1] = 0;
    for (int i = 2; i <= n; i++) {
      log2[i] = log2[i >> 1] + 1;
    table.resize(n + 1);
    for (int i = 0; i < n; i++) {
      table[i].resize(log2[n] + 1);
    for (int i = 0; i < n; i++) {
      table[i][0] = v[i];
    for (int i = 0; i < log2[n]; i++) {
      for (int j = 0; j < n; j++) {
        if (j + (1 \ll i) >= n) break;
        table[j][i + 1] = merge(table[j][i], table[j + (1 << i)][i]);
  int get(int 1, int r) {
    int k = log2[r - 1 + 1];
    return merge(table[1][k], table[r - (1 << k) + 1][k]);
};
```

2.15 Li Chao Tree

```
// by luucasv
typedef long long T;
const T INF = 1e18, EPS = 1;
const int BUFFER_SIZE = 1e4;

struct Line {
   T m, b;

   Line(T m = 0, T b = INF): m(m), b(b) {}
   T apply(T x) { return x * m + b; }
};

struct Node {
   Node *left, *right;
   Line line;
```

```
Node(): left(NULL), right(NULL) {}
};
struct LiChaoTree {
 Node *root, buffer[BUFFER_SIZE];
  T min value, max value;
  int buffer_pointer;
  LiChaoTree (T min_value, T max_value): min_value (min_value),
      max value(max value + 1) { clear(); }
  void clear() { buffer_pointer = 0; root = newNode(); }
  void insert_line(T m, T b) { update(root, min_value, max_value, Line
      (m, b)); }
  T eval(T x) { return query(root, min_value, max_value, x); }
  void update(Node *cur, T l, T r, Line line) {
    T m = 1 + (r - 1) / 2;
    bool left = line.apply(l) < cur->line.apply(l);
    bool mid = line.apply(m) < cur->line.apply(m);
    bool right = line.apply(r) < cur->line.apply(r);
      swap(cur->line, line);
    if (r - 1 <= EPS) return;</pre>
    if (left == right) return;
    if (mid != left) {
      if (cur->left == NULL) cur->left = newNode();
      update(cur->left, 1, m, line);
    } else {
      if (cur->right == NULL) cur->right = newNode();
      update(cur->right, m, r, line);
  T query(Node *cur, T 1, T r, T x) {
    if (cur == NULL) return INF;
    if (r - 1 <= EPS) {
      return cur->line.apply(x);
    T m = 1 + (r - 1) / 2;
    T ans;
    if (x < m) {
      ans = query(cur->left, l, m, x);
    } else {
      ans = query(cur->right, m, r, x);
    return min(ans, cur->line.apply(x));
  Node* newNode() {
      buffer[buffer_pointer] = Node();
      return &buffer[buffer_pointer++];
};
```

3 Graph Algorithms

3.1 Dinic Max Flow

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
```

```
int adj[ms], to[me], ant[me], wt[me], z, n;
int copy_adj[ms], fila[ms], level[ms];
void clear() {
 memset(adj, -1, sizeof adj);
  z = 0;
int add(int u, int v, int k) {
  to[z] = v;
  ant[z] = adj[u];
  wt[z] = k;
  adj[u] = z++;
  swap(u, v);
  to[z] = v;
  ant[z] = adj[u];
 wt[z] = 0; // Lembrar de colocar = 0
 adj[u] = z++;
int bfs(int source, int sink) {
  memset(level, -1, sizeof level);
  level[source] = 0;
  int front = 0, size = 0, v;
  fila[size++] = source;
  while(front < size) {</pre>
  v = fila[front++];
  for(int i = adj[v]; i != -1; i = ant[i]) {
    if(wt[i] && level[to[i]] == -1) {
    level[to[i]] = level[v] + 1;
    fila[size++] = to[i];
  return level[sink] != -1;
int dfs(int v, int sink, int flow) {
 if(v == sink) return flow;
  int f:
  for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
  if(wt[i] && level[to[i]] == level[v] + 1 &&
    (f = dfs(to[i], sink, min(flow, wt[i])))) {
    wt[i] -= f;
    wt[i ^ 1] += f;
    return f;
  return 0;
int maxflow(int source, int sink) {
  int ret = 0, flow;
  while(bfs(source, sink)) {
 memcpy(copy_adj, adj, sizeof adj);
  while((flow = dfs(source, sink, 1 << 30))) {</pre>
    ret += flow;
  return ret;
```

3.2 Euler Path and Circuit

```
int pathV[me], szV, del[me], pathE, szE;
int adj[ms], to[me], ant[me], wt[me], z, n;

// Funcao de add e clear no dinic

void eulerPath(int u) {
  for(int i = adj[u]; ~i; i = ant[u]) if(!del[i]) {
    del[i] = del[i^1] = 1;
    eulerPath(to[i]);
    pathE[szE++] = i;
  }
  pathV[szV++] = u;
}
```

3.3 Articulation Points/Bridges/Biconnected Components

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], z, n;
int idx[ms], bc[me], ind, nbc, child, st[me], top;
// Funcao de add e clear no dinic
void generateBc(int edge) {
  while(st[--top] != edge) {
    bc[st[top]] = nbc;
  bc[edge] = nbc++;
int dfs(int v, int par = -1) {
  int low = idx[v] = ind++;
  for(int i = adj[v]; i > -1; i = ant[i]) {
    if(idx[to[i]] == -1) {
      if(par == -1) child++;
      st[top++] = i;
      int temp = dfs(to[i], v);
      if (par == -1 && child > 1 || ^{\circ}par && temp >= idx[v]) generateBc(
          i);
      if(temp >= idx[v]) art[v] = true;
      if(temp > idx[v]) bridge[i] = true;
      low = min(low, temp);
    } else if(to[i] != par && idx[to[i]] < low) {</pre>
      low = idx[to[i]];
      st[top++] = i;
  return low:
void biconnected() {
 ind = 0;
  nbc = 0;
 top = -1;
  memset(idx, -1, sizeof idx);
```

```
memset(art, 0, sizeof art);
memset(bridge, 0, sizeof bridge);
for(int i = 0; i < n; i++) if(idx[i] == -1) {
   child = 0;
   dfs(i);
}</pre>
```

3.4 SCC - Strongly Connected Components / 2SAT

```
vector<int> g[ms];
int idx[ms], low[ms], z, comp[ms], ncomp, st[ms], top;
int dfs(int u) {
  if(~idx[u]) return idx[u] ? idx[u] : z;
  low[u] = idx[u] = z++;
  st.push(u);
  for(int v : g[u]) {
    low[u] = min(low[u], dfs(v));
  if(low[u] == idx[u]) {
    idx[st.top()] = 0;
    st.pop();
    while(st.top() != u) {
      int v = st.top();
      st.pop();
      idx[v] = 0;
      low[v] = low[u];
      comp[v] = ncomp;
    comp[u] = ncomp++;
  return low[u];
bool solveSat() {
 memset(idx, -1, sizeof idx);
  ind = 1; top = -1;
  for(int i = 0; i < n; i++) dfs(i);</pre>
  for(int i = 0; i < n; i++) if(comp[i] == comp[i^1]) return false;</pre>
  return true;
// Operacoes comuns de 2-sat
// ~v = "nao v"
#define trad(v) (v<0?((~v)*2)^1:v*2)
void addImp(int a, int b) { g[trad(a)].push(trad(b)); }
void addOr(int a, int b) { addImp(~a, b); addImp(~b, a); }
void addEqual(int a, int b) { addOr(a, ~b); addOr(~a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// valoracao: value[v] = comp[trad(v)] < comp[trad(~v)]</pre>
```

3.5 LCA - Lowest Common Ancestor

```
int par[ms][mlg+1], lvl[ms];
vector<int> g[ms];

void dfs(int v, int p, int 1 = 0) {
```

```
lvl[v] = 1;
  par[v][0] = p;
  for(int u : g[v]) {
    if (u != p) dfs(u, v, l + 1);
void processAncestors(int root = 0) {
  dfs(root, root);
  for (int k = 1; k \le mlg; k++) {
    for(int i = 0; i < n; i++) {</pre>
      par[i][k] = par[par[i][k-1]][k-1];
int lca(int a, int b) {
  if(lvl[b] > lvl[a]) swap(a, b);
  for (int i = mlg; i >= 0; i--) {
    if(lvl[a] - (1 << i) >= lvl[b]) a = par[a][i];
  if(a == b) return a;
  for(int i = mlg; i >= 0; i--) {
    if(par[a][i] != par[b][i]) a = par[a][i], b = par[b][i];
  return par[a][0];
```

3.6 Sack

```
void solve(int a, int p, bool f) {
  int big = -1;
  for(auto &b : adj[a]){
    if(b != p \&\& (big == -1 || en[b] - st[b] > en[big] - st[big])) {
      biq = b;
  for(auto &b : adj[a]){
   if(b == p || b == big) continue;
    solve(b, a, 0);
  if(~big) solve(big, a, 1);
  add(cnt[v[a]], -1);
  cnt[v[a]]++;
  add(cnt[v[a]], +1);
  for(auto &b : adj[a]){
    if(b == p || b == big) continue;
    for(int i = st[b]; i < en[b]; i++) {</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]++;
      add(cnt[ett[i]], +1);
  for(auto &q : Q[a]){
    ans[q.first] = query(mx-1)-query(q.second-1);
  if(!f){
    for(int i = st[a]; i < en[a]; i++) {</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]--;
```

```
add(cnt[ett[i]], +1);
}
}
```

3.7 Min Cost Max Flow

```
template <class flow_t, class cost_t>
class MinCostMaxFlow {
private:
  typedef pair<cost_t, int> ii;
  struct Edge {
    int to;
    flow t cap;
    cost t cost;
    Edge(int to, flow_t cap, cost_t cost) : to(to), cap(cap), cost(
        cost) {}
  };
  int n;
  vector<vector<int>> adj;
  vector<Edge> edges;
  vector<cost_t> dis;
  vector<int> prev, id_prev;
        vector<int> g:
        vector<bool> ing;
  pair<flow_t, cost_t> spfa(int src, int sink) {
    fill(dis.begin(), dis.end(), int(1e9)); //cost_t inf
    fill(prev.begin(), prev.end(), -1);
    fill(ing.begin(), ing.end(), false);
    q.clear():
    q.push_back(src);
    inq[src] = true;
    dis[src] = 0;
    for(int on = 0; on < (int) q.size(); on++) {</pre>
        int cur = q[on];
        inq[cur] = false;
        for(auto id : adj[cur]) {
                if (edges[id].cap == 0) continue;
                int to = edges[id].to;
                if (dis[to] > dis[cur] + edges[id].cost) {
                        prev[to] = cur;
                        id prev[to] = id;
                        dis[to] = dis[cur] + edges[id].cost;
                        if (!ing[to]) {
                                q.push_back(to);
                                inq[to] = true;
    flow_t mn = flow_t(1e9);
    for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
     int id = id prev[cur];
      mn = min(mn, edges[id].cap);
    if (mn == flow_t(1e9) || mn == 0) return make_pair(0, 0);
    pair<flow_t, cost_t> ans(mn, 0);
```

```
for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
      int id = id_prev[cur];
      edges[id].cap -= mn;
      edges[id ^ 1].cap += mn;
      ans.second += mn * edges[id].cost;
    return ans;
public:
  MinCostMaxFlow(int a = 0) {
    adj.resize(n + 2);
    edges.clear();
    dis.resize(n + 2);
    prev.resize(n + 2);
    id_prev.resize(n + 2);
    inq.resize(n + 2);
  void init(int a) {
   n = a;
    adj.resize(n + 2);
    edges.clear();
    dis.resize(n + 2);
    prev.resize(n + 2);
    id_prev.resize(n + 2);
    inq.resize(n + 2);
  void add(int from, int to, flow_t cap, cost_t cost) {
    adj[from].push_back(int(edges.size()));
                edges.push_back(Edge(to, cap, cost));
                adj[to].push_back(int(edges.size()));
                edges.push_back(Edge(from, 0, -cost));
  pair<flow_t, cost_t> maxflow(int src, int sink) {
    pair<flow_t, cost_t> ans(0, 0), got;
    while((got = spfa(src, sink)).first > 0) {
      ans.first += got.first:
      ans.second += got.second;
    return ans;
} ;
```

3.8 Hungarian Algorithm - Maximum Cost Matching

```
const int inf = 0x3f3f3f3f;

int n, w[ms][ms], maxm;
int lx[ms], ly[ms], xy[ms], yx[ms];
int slack[ms], slackx[ms], prev[ms];
bool S[ms], T[ms];

void init_labels() {
   memset(lx, 0, sizeof lx); memset(ly, 0, sizeof ly);
   for(int x = 0; x < n; x++) for(int y = 0; y < n; y++) {
      lx[x] = max(lx[x], cos[x][y]);
   }
}

void updateLabels() {</pre>
```

```
int delta = inf;
  for(int y = 0; y < n; y++) if(!T[y]) delta = min(delta, slack[y]);
  for(int x = 0; x < n; x++) if(S[x]) lx[x] -= delta;
  for(int y = 0; y < n; y++) if(T[y]) ly[y] += delta;
  for(int y = 0; y < n; y++) if(!T[y]) slack[y] -= delta;
void addTree(int x, int prevx) {
  S[x] = 1; prev[x] = prevx;
  for(int y = 0; y < n; y++) if(lx[x] + ly[y] - w[x][y] < slack[y]) {
    slack[y] = lx[x] + ly[y] - cost[x][y];
    slackx[y] = x;
void augment() {
  if(maxm == n) return;
  int x, y, root;
  int q[ms], wr = 0, rd = 0;
 memset(S, 0, sizeof S); memset(T, 0, sizeof T);
 memset (prev, -1, sizeof prev);
  for (int x = 0; x < n; x++) if (xy[x] == -1) {
    q[wr++] = root = x;
    prev[x] = -2;
    S[x] = 1;
    break;
  for (int y = 0; y < n; y++) {
    slack[y] = lx[root] + ly[y] - w[root][y];
    slackx[y] = root;
  while(true) {
    while(rd < wr) {</pre>
      x = q[rd++];
      for (y = 0; y < n; y++) if (w[x][y] == 1x[x] + 1y[y] && !T[y]) {
        if(yx[y] == -1) break;
        T[y] = 1;
        q[wr++] = yx[y];
        addTree(yx[y], x);
      if(y < n) break;</pre>
    if(y < n) break;</pre>
    updateLabels();
    wr = rd = 0;
    for(y = 0; y < n; y++) if(!T[y] && !slack[y]) {
      if(yx[y] == -1) {
        x = slackx[y];
        break;
      } else {
        T[v] = true;
        if(!S[yx[y]]) {
          q[wr++] = yx[y];
          addTree(yx[y], slackx[y]);
    if(y < n) break;</pre>
  if(y < n) {
    maxm++;
```

```
for(int cx = x, cy = y,ty; cx != -2; cx = prev[cx], cy = ty) {
    ty = xy[cx];
    yx[cy] = cx;
    xy[cx] = cy;
    }
    augment();
}

int hungarian() {
    int ans = 0; maxm = 0;
    memset(xy, -1, sizeof xy); memset(yx, -1, sizeof yx);
    initLabels(); augment();
    for(int x = 0; x < n; x++) ans += w[x][xy[x]];
    return ans;
}</pre>
```

4 Math

4.1 Discrete Logarithm

```
ll discreteLog(ll a, ll b, ll m) {
  // a^ans == b mod m
  // ou -1 se nao existir
  11 \text{ cur} = a, \text{ on } = 1;
  for (int i = 0; i < 100; i++) {
    cur = cur * a % m;
  while (on \star on \leq m) {
    cur = cur * a % m;
    on++;
  map<ll, 11> position;
  for (11 i = 0, x = 1; i * i <= m; i++) {
    position[x] = i * on;
    x = x * cur % m;
  for (ll i = 0; i \le on + 20; i++) {
    if(position.count(b)) {
      return position[b] - i;
    b = b * a % m;
  return -1;
```

4.2 GCD - Greatest Common Divisor

```
11 gcd(l1 a, l1 b) {
  while(b) a %= b, swap(a, b);
  return a;
}
```

4.3 Extended Euclides

```
// euclides estendido: acha u e v da equacao:
// u * x + v * y = gcd(x, y);
// u eh inverso modular de x no modulo y
// v eh inverso modular de y no modulo x

pair<ll, ll> euclides(ll a, ll b) {
    ll u = 0, oldu = 1, v = 1, oldv = 0;
    while(b) {
        ll q = a / b;
        oldv = oldv - v * q;
        oldu = oldu - u * q;
        a = a - b * q;
        swap(a, b);
        swap(v, oldv);
    }
    return make_pair(oldu, oldv);
}
```

4.4 Fast Exponentiation

```
const 11 mod = 1e9+7;

11 fExp(11 a, 11 b) {
    11 ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
```

4.5 Matrix Fast Exponentiation

```
const 11 \mod = 1e9+7;
const int m = 2; // size of matrix
struct Matrix {
  11 mat[m][m];
 Matrix operator * (const Matrix &p) {
    Matrix ans;
    for (int i = 0; i < m; i++)
      for (int j = 0; j < m; j++)
        for (int k = ans.mat[i][j] = 0; k < m; k++)
          ans.mat[i][j] = (ans.mat[i][j] + mat[i][k] * p.mat[k][j]) %
    return ans;
};
Matrix fExp(Matrix a, ll b) {
  Matrix ans:
  for (int i = 0; i < m; i++) for (int j = 0; j < m; j++)
    ans.mat[i][j] = i == j;
  while(b) {
    if(b \& 1) ans = ans * a;
    a = a * a;
```

```
b >>= 1;
}
return ans;
```

4.6 FFT - Fast Fourier Transform

```
typedef complex<double> Complex;
typedef long double ld:
typedef long long 11;
const int ms = maiortamanhoderesposta * 2;
const ld pi = acosl(-1.0);
int rbit[1 << 23];</pre>
Complex a[ms], b[ms];
void calcReversedBits(int n) {
 int lq = 0;
  while (1 << (lg + 1) < n) {
   lg++;
  for(int i = 1; i < n; i++) {</pre>
    rbit[i] = (rbit[i >> 1] >> 1) | ((i & 1) << lq);
void fft(Complex a[], int n, bool inv = false) {
  for(int i = 0; i < n; i++) {</pre>
    if(rbit[i] > i) swap(a[i], a[rbit[i]]);
  double ang = inv ? -pi : pi;
  for (int m = 1; m < n; m += m) {
    Complex d(cosl(ang/m), sinl(ang/m));
    for(int i = 0; i < n; i += m+m) {</pre>
      Complex cur = 1;
      for (int j = 0; j < m; j++) {
        Complex u = a[i + j], v = a[i + j + m] * cur;
        a[i + j] = u + v;
        a[i + j + m] = u - v;
        cur *= d;
    }
    for(int i = 0; i < n; i++) a[i] /= n;</pre>
void multiply(ll x[], ll y[], ll ans[], int nx, int ny, int &n) {
  n = 1:
  while (n < nx+nv) n <<= 1;
  calcReversedBits(n);
  for(int i = 0; i < n; i++) {</pre>
   a[i] = Complex(x[i]);
   b[i] = Complex(y[i]);
  fft(a, n); fft(b, n);
  for (int i = 0; i < n; i++) {
```

```
a[i] = a[i] * b[i];
}
fft(a, n, true);
for(int i = 0; i < n; i++) {
   ans[i] = ll(a[i].real() + 0.5);
}
n = nx + ny;
}</pre>
```

4.7 NTT - Number Theoretic Transform

```
long long int mod = (11911 << 23) + 1, c_root = 3;</pre>
namespace NTT {
  typedef long long int 11;
  ll fexp(ll base, ll e) {
    11 \text{ ans} = 1;
    while(e > 0) {
      if (e & 1) ans = ans * base % mod;
     base = base * base % mod;
      e >>= 1;
    return ans;
  11 inv_mod(ll base) {
    return fexp(base, mod - 2);
  void ntt(vector<ll>& a, bool inv) {
    int n = (int) a.size();
    if (n == 1) return;
    for (int i = 0, j = 0; i < n; i++) {
      if (i > j) {
        swap(a[i], a[j]);
      for (int 1 = n / 2; (j = 1) < 1; 1 >>= 1);
    for(int sz = 1; sz < n; sz <<= 1) {</pre>
      11 delta = fexp(c root, (mod - 1) / (2 * sz)); //delta = w 2sz
      if (inv) {
        delta = inv mod(delta);
      for(int i = 0; i < n; i += 2 * sz) {
        11 w = 1;
        for (int j = 0; j < sz; j++) {
          11 \ u = a[i + j], \ v = w * a[i + j + sz] % mod;
          a[i + j] = (u + v + mod) % mod;
          a[i + j] = (a[i + j] + mod) % mod;
          a[i + j + sz] = (u - v + mod) % mod;
          a[i + j + sz] = (a[i + j + sz] + mod) % mod;
          w = w * delta % mod;
    if (inv) {
      11 inv_n = inv_mod(n);
```

```
for (int i = 0; i < n; i++) {
        a[i] = a[i] * inv n % mod;
    for (int i = 0; i < n; i++) {
      a[i] %= mod;
      a[i] = (a[i] + mod) % mod;
  void multiply(vector<1l> &a, vector<1l> &b, vector<1l> &ans) {
    int lim = (int) max(a.size(), b.size());
    int n = 1:
    while(n < lim) n <<= 1;
    n <<= 1;
    a.resize(n);
    b.resize(n):
    ans.resize(n);
    ntt(a, false);
    ntt(b, false);
    for(int i = 0; i < n; i++) {</pre>
      ans[i] = a[i] * b[i] % mod;
    ntt(ans, true);
};
```

4.8 Miller and Rho

```
typedef long long int 11;
bool overflow(ll a, ll b) {
  return b && (a >= (111 << 62) / b);
11 add(l1 a, l1 b, l1 md) {
  return (a + b) % md;
11 mul(ll a, ll b, ll md) {
  if (!overflow(a, b)) return (a * b) % md;
 11 \text{ ans} = 0;
 while(b) {
   if (b & 1) ans = add(ans, a, md);
   a = add(a, a, md);
   b >>= 1;
  return ans;
11 fexp(ll a, ll e, ll md) {
 11 \text{ ans} = 1;
  while(e) {
   if (e & 1) ans = mul(ans, a, md);
   a = mul(a, a, md);
   e >>= 1;
  return ans;
```

```
11 my_rand() {
  11 \text{ ans} = rand();
  ans = (ans << 31) \mid rand();
  return ans;
ll gcd(ll a, ll b) {
  while(b) {
    11 t = a % b;
    a = b;
    b = t;
  return a;
bool miller(ll p, int iteracao) {
  if(p < 2) return 0;
  if(p % 2 == 0) return (p == 2);
  11 s = p - 1:
  while(s % 2 == 0) s >>= 1;
  for(int i = 0; i < iteracao; i++) {</pre>
    11 a = rand() % (p - 1) + 1, temp = s;
    11 mod = fexp(a, temp, p);
    while (temp != p - 1 \&\& \mod != 1 \&\& \mod != p - 1) {
      mod = mul(mod, mod, p);
      temp <<= 1;
    if(mod != p - 1 && temp % 2 == 0) return 0;
  return 1;
ll rho(ll n) {
  if (n == 1 || miller(n, 10)) return n;
  if (n % 2 == 0) return 2;
  while(1) {
    11 x = my_rand() % (n - 2) + 2, y = x;
    11 c = 0, cur = 1;
    while (c == 0) {
      c = my_rand() % (n - 2) + 1;
    while(cur == 1) {
      x = add(mul(x, x, n), c, n);
      y = add(mul(y, y, n), c, n);
     y = add(mul(y, y, n), c, n);
      cur = gcd((x >= y ? x - y : y - x), n);
    if (cur != n) return cur;
```

5 Geometry

5.1 Geometry

```
const double inf = 1e100, eps = 1e-9;
struct PT {
```

```
double x, y;
        PT (double x = 0, double y = 0) : x(x), y(y) {}
        PT operator + (const PT &p) { return PT(x + p.x, y + p.y); }
        PT operator - (const PT &p) { return PT(x - p.x, y - p.y); }
        PT operator * (double c) { return PT(x * c, y * c); }
        PT operator / (double c) { return PT(x / c, y / c); }
        bool operator <(const PT &p) const {</pre>
                if(fabs(x - p.x) >= eps) return x < p.x;</pre>
                return fabs (y - p.y) >= eps && y < p.y;
        bool operator == (const PT &p) const {
                return fabs(x - p.x) < eps && fabs(y - p.y) < eps;
};
                                                                                if(linesCollinear(a, b, c, d)) {
double dot(PT p, PT q) { return p.x * q.x + p.y * q.y; }
double dist2(PT p, PT q) { return dot(p - q, p - q); }
double dist(PT p, PT q) {return hypot(p.x-q.x, p.y-q.y); }
double cross(PT p, PT q) { return p.x * q.y - p.y * q.x; }
                                                                                         d - b > 0 return false:
                                                                                    return true:
// Rotaciona o ponto CCW ou CW ao redor da origem
PT rotateCCW90(PT p) { return PT(-p.v, p.x); }
PT rotateCW90(PT p) { return PT(p.y, -p.x); }
PT rotateCCW(PT p, double d) {
                                                                                return true;
   return PT(p.x * cos(t) - p.y * sin(t), p.x * sin(t) + p.y * cos(t)
       );
                                                                                  unica intersecao existe
// Projeta ponto c na linha a - b assumindo a != b
PT projectPointLine(PT a, PT b, PT c) {
                                                                                 intersectam e que nao paralelos
   return a + (b - a) * dot(c - a, b - a) / dot(b - a, b - a);
                                                                                b = b - a; d = c - d; c = c - a;
// Projeta ponto c no segmento a - b
PT projectPointSegment(PT a, PT b, PT c) {
   double r = dot(b - a, b - a);
   if(abs(r) < eps) return a;</pre>
   r = dot(c - a, b - a) / r;
   if(r < 0) return a;</pre>
   if(r > 1) return b:
                                                                                b = (a + b) / 2:
                                                                                c = (a + c) / 2;
   return a + (b - a) * r;
// Calcula distancia entre o ponto c e o segmento a - b
                                                                                     rotateCW90(a - c));
double distancePointSegment(PT a, PT b, PT c) {
   return sqrt(dist2(c, projectPointSegment(a, b, c)));
// Determina se o ponto c esta em um segmento a - b
                                                                              if(cross(b-a, c-b) < 0) swap(a, b);
                                                                              11 x = cross(b-a, p-b);
bool ptInSegment(PT a, PT b, PT c) {
  bool x = min(a.x, b.x) \le c.x \& c.x \le max(a.x, b.x);
                                                                              11 y = cross(c-b, p-c);
 bool y = min(a.y, b.y) \le c.y \& c.y \le max(a.y, b.y);
                                                                              11 z = cross(a-c, p-a);
  return x && y && (cross((b-a),(c-a)) == 0); // testar com eps se for
       double
                                                                              if(!x) return ptInSegment(a,b,p);
                                                                              if(!v) return ptInSegment(b,c,p);
                                                                              if(!z) return ptInSegment(c,a,p);
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz =
                                                                              return false:
double distancePointPlane(double x, double y, double z, double a,
    double b, double c, double d) {
    return abs(a * x + b * y + c * z - d) / sqrt(a * a + b * b + c * c
                                                                              PT pivot = p[0];
```

// Determina se as linhas a - b e c - d sao paralelas ou colineares bool linesParallel(PT a, PT b, PT c, PT d) { return abs(cross(b - a, c - d)) < eps;</pre> bool linesCollinear(PT a, PT b, PT c, PT d) { return linesParallel(a, b, c, d) && abs(cross(a - b, a - c)) < eps && abs(cross(c - d, c - a)) < eps; // Determina se o segmento a - b intersecta com o segmento c - d bool segmentsIntersect(PT a, PT b, PT c, PT d) { if(dist2(a, c) < eps || dist2(a, d) < eps || dist2(b, c) < eps</pre> || dist2(b, d) < eps) return true;</pre> if(dot(c - a, c - b) > 0 & dot(d - a, d - b) > 0 & dot(c - b)if(cross(d - a, b - a) * cross(c - a, b - a) > 0) return false; if(cross(a - c, d - c) * cross(b - c, d - c) > 0) return false; // Calcula a intersecao entre as retas a - b e c - d assumindo que uma // Para intersecao de segmentos, cheque primeiro se os segmentos se PT computeLineIntersection(PT a, PT b, PT c, PT d) { assert (cross(b, d) != 0); // garante que as retas nao sao paralelas, remover pra evitar tle return a + b * cross(c, d) / cross(b, d); // Calcula centro do circulo dado tres pontos PT computeCircleCenter(PT a, PT b, PT c) { return computeLineIntersection(b, b + rotateCW90(a - b), c, c + // Determina se o ponto p esta dentro do triangulo (a, b, c) bool ptInsideTriangle(PT p, PT a, PT b, PT c) { if (x > 0 && y > 0 && z > 0) return true; // Determina se o ponto esta num poligono convexo em O(lqn) bool pointInConvexPolygon(const vector<PT> &p, PT g) {

```
int x = 1, y = p.size();
  while (y-x != 1)
    int z = (x+y)/2;
    PT diagonal = pivot - p[z];
    if(cross(p[x] - pivot, q - pivot) * cross(q-pivot, p[z] - pivot)
        >= 0) v = z;
    else x = z;
  return ptInsideTriangle(q, p[x], p[y], pivot);
// Determina se o ponto esta num poligono possivelmente nao-convexo
// Retorna 1 para pontos estritamente dentro, 0 para pontos
    estritamente fora do poligno
// e 0 ou 1 para os pontos restantes
// Eh possivel converter num teste exato usando inteiros e tomando
    cuidado com a divisao
// e entao usar testes exatos para checar se esta na borda do poligno
bool pointInPolygon(const vector<PT> &p. PT g) {
 bool c = 0;
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    if((p[i].y \le q.y \& q.y < p[j].y || p[j].y \le q.y \& q.y < p[i].y
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y)
      c = !c;
  return c;
// Determina se o ponto esta na borda do poligno
bool pointOnPolygon(const vector<PT> &p, PT q) {
  for(int i = 0; i < p.size(); i++)</pre>
    if(dist2(projectPointSegment(p[i], p[(i + 1) % p.size()], q), q) <</pre>
      return true;
    return false;
// Calcula intersecao da linha a - b com o circulo centrado em c com
vector<PT> circleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ans;
 b = b - a;
  a = a - c;
  double x = dot(b, b);
  double y = dot(a, b);
  double z = dot(a, a) - r * r;
  double w = y * y - x * z;
  if (w < -eps) return ans;</pre>
  ans.push_back(c + a + b \star (-y + sqrt(w + eps)) / x);
  if (w > eps)
    ans.push_back(c + a + b \star (-y - sqrt(w)) / x);
  return ans;
// Calcula intersecao do circulo centrado em a com raio r e o centrado
     em b com raio R
vector<PT> circleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ans;
```

```
double d = sqrt(dist2(a, b));
  if (d > r + R \mid \mid d + min(r, R) < max(r, R)) return ans;
  double x = (d * d - R * R + r * r)/(2 * d);
  double y = sqrt(r * r - x * x);
  PT v = (b - a) / d;
  ans.push_back(a + v * x + rotateCCW90(v) * y);
  if (\lor > 0)
    ans.push_back(a + v * x - RotateCCW90(v) * y);
  return ans;
// Calcula a area ou o centroide de um poligono (possivelmente nao-
    convexo)
// assumindo que as coordenadas estao listada em ordem horaria ou anti
    -horaria
// O centroide eh equivalente a o centro de massa ou centro de
    gravidade
double computeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i + 1) % p.size();
    area += p[i].x * p[j].y - p[j].x * p[i].y;
  return area / 2.0;
double computeArea(const vector<PT> &p) {
  return abs(computeSignedArea(p));
PT computeCentroid(const vector<PT> &p) {
  PT c(0.0):
  double scale = 6.0 * ComputeSignedArea(p);
  for(int i = 0; i < p.size(); i++) {</pre>
    int i = (i + 1) % p.size();
    c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
  return c / scale;
// Testa se o poligno listada em ordem CW ou CCW eh simples (nenhuma
    linha se intersecta)
bool isSimple(const vector<PT> &p) {
  for(int i = 0; i < p.size(); i++) {</pre>
    for (int k = i + 1; k < p.size(); k++) {
      int j = (i + 1) % p.size();
      int 1 = (k + 1) % p.size();
      if (i == 1 \mid \mid j == k) continue;
      if (segmentsIntersect(p[i], p[j], p[k], p[l]))
        return false;
  return true;
```

5.2 Convex Hull

```
vector<PT> convexHull(vector<PT> p)) {
  int n = p.size(), k = 0;
  vector<PT> h(2 * n);
```

```
sort(p.begin(), p.end());
for(int i = 0; i < n; i++) {
   while(k >= 2 && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
   h[k++] = p[i];
}
for(int i = n - 2, t = k + 1; i >= 0; i--) {
   while(k >= t && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
   h[k++] = p[i];
}
h.resize(k);
return h;</pre>
```

5.3 Closest Pair

```
double closestPair(vector<PT> p) {
  int n = p.size(), k = 0;
  sort(p.begin(), p.end());
  double d = inf;
  set<PT> ptsInv;
  for(int i = 0; i < n; i++) {
    while(k < i && p[k].x < p[i].x - d) {
        ptsInv.erase(swapCoord(p[k++]));
    }
  for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
        it != ptsInv.end() && it->x <= p[i].y + d; it++) {
        d = min(d, !(p[i] - swapCoord(*it)));
    }
    ptsInv.insert(swapCoord(p[i]));
}
return d;
}</pre>
```

5.4 Intersection Points

```
// Utiliza uma seg tree
int intersectionPoints(vector<pair<PT, PT>> v) {
  int n = v.size();
 vector<pair<int, int>> events, vertInt;
  for (int i = 0; i < n; i++) {
   if(v.first.x == v.second.x) { // Segmento Vertical
      int y0 = min(v.first.y, v.second.y), y1 = max(v.first.y, v.
          second.y);
      events.push_back({v.first.x, vertInt.size()}); // Tipo = Indice
          no arrav
      vertInt.push_back({y0, y1});
    } else { // Segmento Horizontal
      int x0 = min(v.first.x, v.second.x), x1 = max(v.first.x, v.
          second.x);
      events.push_back({x0, -1}); // Inicio de Segmento
      events.push_back({x1, inf}); // Final de Segmento
  sort(events.begin(), events.end());
  int ans = 0;
```

```
for(int i = 0; i < events.size(); i++) {
   int t = events[i].second;
   if(t == -1) {
      segUpdate(events[i].first, 1);
   } else if(t == inf) {
      segUpdate(events[i].first, 0);
   } else {
      ans += segQuery(vertInt[t].first, vertInt[t].second);
   }
}
return ans;
}</pre>
```

5.5 Java Geometry Library

```
import java.util.*;
import java.io.*;
import java.awt.geom.*;
import java.lang.*;
//Lazy Geometry
class AWT{
  static Area makeArea(double[] pts){
    Path2D.Double p = new Path2D.Double();
    p.moveTo(pts[0], pts[1]);
    for (int i = 2; i < pts.length; i+=2) {
      p.lineTo(pts[i], pts[i+1]);
    p.closePath();
    return new Area(p);
  static double computePolygonArea(ArrayList<Point2D.Double> points) {
    Point2D.Double[] pts = points.toArray(new Point2D.Double[points.
        size()]);
    double area = 0:
    for (int i = 0; i < pts.length; i++) {</pre>
      int j = (i+1) % pts.length;
      area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
    return Math.abs(area)/2;
  static double computeArea(Area area) {
    double totArea = 0;
    PathIterator iter = area.getPathIterator(null);
    ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>()
    while (!iter.isDone()) {
      double[] buffer = new double[6];
      switch (iter.currentSegment(buffer)) {
        case PathIterator.SEG_MOVETO:
        case PathIterator.SEG LINETO:
          points.add(new Point2D.Double(buffer[0], buffer[1]));
          break:
        case PathIterator.SEG CLOSE:
          totArea += computePolygonArea(points);
          points.clear();
          break;
      iter.next();
    return totArea;
```

ı

6 Dynamic Programming

6.1 Convex Hull Trick

```
typedef long double double_t;
typedef long long int 11;
class HullDynamic {
public:
  const double t inf = 1e9;
  struct Line {
    11 m, b;
    double_t start;
    bool is_query;
    Line() {}
    Line(ll _m, ll _b, double_t _start, bool _is_query) : m(_m), b(_b)
        , start(_start), is_query(_is_query) {}
    11 eval(11 x) {
      return m * x + b;
    double_t intersect(const Line& 1) const {
      return (double_t) (1.b - b) / (m - 1.m);
    bool operator< (const Line& 1) const {</pre>
      if (is_query == 0) return m > 1.m;
      return (start < 1.start);</pre>
  };
  typedef set<Line>::iterator iterator_t;
  bool has prev(iterator t it) {
    return (it != hull.begin());
  bool has_next(iterator_t it) {
    return (++it != hull.end());
  bool irrelevant(iterator_t it) {
    if (!has_prev(it) || !has_next(it)) return 0;
    iterator_t prev = it, next = it;
    prev--;
    return next->intersect(*prev) <= it->intersect(*prev);
  void update_left(iterator_t it) {
    if (it == hull.begin()) return;
```

```
iterator_t pos = it;
  --it:
  vector<Line> rem;
  while(has_prev(it)) {
    iterator_t prev = it;
    if (prev->intersect(*pos) <= prev->intersect(*it)) {
      rem.push_back(*it);
    } else {
     break;
    --it:
  double_t start = pos->intersect(*it);
 Line f = *pos;
  for (Line r : rem) hull.erase(r);
 hull.erase(f):
 f.start = start;
 hull.insert(f):
void update right(iterator t it) {
  if (!has_next(it)) return;
  iterator t pos = it;
  ++it;
  vector<Line> rem;
  while(has_next(it)) {
    iterator_t next = it;
    if (next->intersect(*pos) <= pos->intersect(*it)) {
      rem.push_back(*it);
    } else {
     break;
    ++it:
  double_t start = pos->intersect(*it);
  Line f = *it;
  for (Line r : rem) hull.erase(r);
 hull.erase(f):
  f.start = start;
 hull.insert(f):
void insert_line(ll m, ll b) {
 Line f(m, b, -inf, 0);
  iterator_t it = hull.lower_bound(f);
 if (it != hull.end() && it->m == f.m) {
    if (it->b <= f.b) {
      return:
    } else if (it->b > f.b) {
     hull.erase(it);
 hull.insert(f);
  it = hull.lower_bound(f);
  if (irrelevant(it)) {
   hull.erase(it);
    return:
  update_left(it);
```

```
it = hull.lower_bound(f);
  update_right(it);
}

ll get(ll x) {
  Line f(0, 0, x, 1);
  iterator_t it = hull.upper_bound(f);
  assert(it != hull.begin());
  --it;
  return it->m * x + it->b;
}

private:
  set<Line> hull;
};
```

7 Miscellaneous

7.1 LIS - Longest Increasing Subsequence

```
int arr[ms], lisArr[ms], n;
// int bef[ms], pos[ms];
int lis() {
  int len = 1;
  lisArr[0] = arr[0];
  // bef[0] = -1;
  for (int i = 1; i < n; i++) {
    // upper_bound se non-decreasing
    int x = lower_bound(lisArr, lisArr + len, arr[i]) - lisArr;
   len = max(len, x + 1);
    lisArr[x] = arr[i];
    // pos[x] = i;
    // bef[i] = x ? pos[x-1] : -1;
  return len;
vi getLis() {
  int len = lis();
  for(int i = pos[lisArr[len - 1]]; i >= 0; i = bef[i]) {
    ans.push_back(arr[i]);
  reverse(ans.begin(), ans.end());
  return ans;
```

7.2 Binary Search

```
int smallestSolution() {
  int x = -1;
  for(int b = z; b >= 1; b /= 2) {
    while(!ok(x+b)) x += b;
  }
  return x + 1;
}
```

```
int maximumValue() {
  int x = -1;
  for(int b = z; b >= 1; b /= 2) {
    while(f(x+b) < f(x+b+1)) x += b;
  }
  return x + 1;
}</pre>
```

7.3 Ternary Search

```
for (int i = 0; i < LOG; i++) {
  long double m1 = (A * 2 + B) / 3.0;
  long double m2 = (A + 2 * B) / 3.0;
  if(f(m1) > f(m2))
   A = m1;
  else
    B = m2;
ans = f(A);
//Z
while (B - A > 4) {
  int m1 = (A + B) / 2;
 int m2 = (A + B) / 2 + 1;
 if(f(m1) > f(m2))
   A = m1;
  else
    B = m2:
ans = inf:
for (int i = A; i \le B; i++) ans = min(ans, f(i));
```

7.4 Random Number Generator

```
// mt19937_64 se LL
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
// Random_Shuffle
shuffle(v.begin(), v.end(), rng);
// Random number in interval
int randomInt = uniform_int_distribution(0, i)(rng);
double randomDouble = uniform_real_distribution(0, 1)(rng);
// bernoulli_distribution, binomial_distribution,
geometric_distribution
// normal_distribution, poisson_distribution, exponential_distribution
```

7.5 Submask Enumeration

```
for (int s=m; ; s=(s-1)&m) {
    ... you can use s ...
    if (s==0) break;
}
```

7.6 Java Fast I/O

```
import java.util.*;
import java.io.*;
// https://www.spoj.com/problems/INTEST/
class Main{
  public static void main(String[] args) throws Exception{
    Reader s = new Reader();
    PrintWriter out = new PrintWriter (new BufferedOutputStream (System.
    int n = s.nextInt();
    int k = s.nextInt();
    int count=0;
    while (s.hasNext()) {
      int x = s.nextInt();
     if (x%k == 0)
     count++;
    out.printf("%d\n", count);
    out.close();
    s.close();
  // fast io
  static class Reader {
    final private int BUFFER_SIZE = 1 << 16;</pre>
    private DataInputStream din;
    private bvte[] buffer;
    private int bufferPointer, bytesRead;
    public Reader() {
      din = new DataInputStream(System.in);
      buffer = new bvte[BUFFER SIZE];
     bufferPointer = bytesRead = 0;
    public Reader(String file_name) throws IOException {
      din = new DataInputStream(new FileInputStream(file_name));
      buffer = new byte[BUFFER_SIZE];
      bufferPointer = bytesRead = 0;
    }
    public String readLine() throws IOException {
      byte[] buf = new byte[64]; // line length
      int cnt = 0, c;
      while ((c = read()) != -1) {
       if (c == '\n') break;
        buf[cnt++] = (byte) c;
      return new String(buf, 0, cnt);
    public int nextInt() throws IOException {
      int ret = 0;
      byte c = read();
      while (c <= ' ') c = read();</pre>
      boolean neg = (c == '-');
      if (neg) c = read();
      do{
```

```
ret = ret * 10 + c - '0';
  \} while ((c = read()) >= '0' && c <= '9');
  if (neg) return -ret;
  return ret;
public long nextLong() throws IOException {
  long ret = 0;
  byte c = read();
  while (c <= ' ') c = read();</pre>
 boolean neg = (c == '-');
  if (neg) c = read();
  do √
   ret = ret * 10 + c - '0';
  } while ((c = read()) >= '0' && c <= '9');</pre>
  if (neg) return -ret;
  return ret;
public double nextDouble() throws IOException {
  double ret = 0, div = 1;
 byte c = read();
 while (c <= ' ')
 c = read();
 boolean neg = (c == '-');
 if (neg) c = read();
  do {
   ret = ret * 10 + c - '0';
  \} while ((c = read()) >= '0' && c <= '9');
 if (c == '.') {
    while ((c = read()) >= '0' \&\& c <= '9')  {
      ret += (c - '0') / (div *= 10);
  if (neg) return -ret;
  return ret;
private void fillBuffer() throws IOException {
 bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
  if (bytesRead == -1) buffer[0] = -1;
public boolean hasNext() throws IOException {
  if (bufferPointer < bytesRead) return true;</pre>
  fillBuffer();
 if(buffer[0] == -1) return false;
  return true;
private byte read() throws IOException {
  if (bufferPointer == bytesRead) fillBuffer();
  return buffer[bufferPointer++];
public void close() throws IOException {
  if (din == null) return;
```

```
din.close();
    }
}
```

8 Teoremas e formulas uteis

8.1 Grafos

```
Formula de Euler: V - E + F = 2 (para grafo planar)
Handshaking: Numero par de vertices tem grau impar
Kirchhoff's Theorem: Monta matriz onde Mi, i = Grau[i] e Mi, j = -1 se
    houver aresta i-j ou 0 caso contrario, remove uma linha e uma
    coluna qualquer e o numero de spanning trees nesse grafo eh o det
    da matriz
Grafo contem caminho hamiltoniano se:
Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
Ore's theorem: Se a soma dos graus que cada par nao-adjacente de
    vertices for pelo menos n
Trees:
Tem Catalan(N) Binary trees de N vertices
Tem Catalan (N-1) Arvores enraizadas com N vertices
Caley Formula: n^(n-2) arvores em N vertices com label
Prufer code: Cada etapa voce remove a folha com menor label e o label
    do vizinho eh adicionado ao codigo ate ter 2 vertices
Flow:
Max Edge-disjoint paths: Max flow com arestas com peso 1
Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em
    um com as arestas de chegadas e um com as arestas de saida e uma
    aresta de peso 1 conectando o vertice com aresta de chegada com
    ele mesmo com arestas de saida
Konig's Theorem: minimum node cover = maximum matching se o grafo for
    bipartido, complemento eh o maximum independent set
Min Node disjoint path cover: formar grafo bipartido de vertices
    duplicados, onde aresta sai do vertice tipo A e chega em tipo B,
    entao o path cover eh N - matching
Min General path cover: Mesma coisa mas colocando arestas de A pra B
    sempre que houver caminho de A pra B
Dilworth's Theorem: Min General Path cover = Max Antichain (set de
    vertices tal que nao existe caminho no grafo entre vertices desse
Hall's marriage: um grafo tem um matching completo do lado X se para
    cada subconjunto W de X,
    |W| <= |vizinhosW| onde |W| eh quantos vertices tem em W
```

8.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b
   onde a e b sao primos
Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos
Legendre's: sempre tem um primo entre n^2 e (n+1)^2
Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4
   quadrados
```

```
numeros de fibonnacis diferentes e nao consecutivos
Euclid's: toda tripla de pitagoras primitiva pode ser gerada com
    (n^2 - m^2, 2nm, n^2+m^2) onde n, m sao coprimos e um deles eh par
Wilson's: n \in P primo quando (n-1)! \mod n = n - 1
Mcnugget: Para dois coprimos x, y o maior inteiro que nao pode ser
    escrito como ax + by eh (x-1)(y-1)/2
Fermat: Se p eh primo entao a(p-1) % p = 1
Se x \in m tambem forem coprimos entao x^k % m = x^k (k \mod (m-1)) % m
Euler's theorem: x^(phi(m)) mod m = 1 onde phi(m) eh o totiente de
    euler
Chinese remainder theorem:
Para equacoes no formato x = a1 \mod m1, ..., x = an \mod mn onde todos
     os pares m1, ..., mn sao coprimos
Deixe Xk = m1 * m2 * ... * mn/mk e Xk^-1 mod mk = inverso de Xk mod mk, entao
x = \text{somatorio com } k \text{ de } 1 \text{ ate } n \text{ de } ak \times Xk \times (Xk, mk^-1 \text{ mod } mk)
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
C0 = 1, Cn = somatorio de i=0 -> n-1 de <math>Ci*C(n-1+1)
outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q,
    prob de em todo ponto ter mais As do que Bs antes dele = (p-q)/(p+
Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de
    possibilidades nos dois casos basta multiplicar por (p + q escolhe
Hockey-stick: Somatorio de i = r \rightarrow n de (i escolhe r) = (n + 1)
    escolhe r + 1)
Vandermonde: (m+n \text{ escolhe r}) = \text{somatorio de } k = 0 \rightarrow r \text{ de } (m \text{ escolhe } k
    ) \star (n escolhe r - k)
Burnside lemma: colares diferentes nao contando rotacoes quando m =
    cores e n = comprimento
(m^n + somatorio i = 1 - > n-1 de m^qcd(i, n))/n
Distribuicao uniforme a, a+1, ..., b Expected[X] = (a+b)/2
Distribuicao binomial com n tentativas de probabilidade p, X =
    P(X = x) = p^x * (1-p)^(n-x) * (n escolhe x) e E[X] = p*n
Distribuicao geometrica onde continuamos ate ter sucesso, X =
    tentativas:
    P(X = x) = (1-p)^(x-1) * p e E[X] = 1/p
Linearity of expectation: Tendo duas variaveis X e Y e constantes a e
    b, o valor esperado de aX + bY = a*E[X] + b*E[X]
```

Zeckendorf's: todo numero pode ser representado pela soma de dois

8.3 Geometry

```
Formula de Euler: V - E + F = 2
Pick Theorem: Para achar pontos em coords inteiras num poligono Area =
    i + b/2 - 1 onde i eh o o numero de pontos dentro do poligono e b
    de pontos no perimetro do poligono
Two ears theorem: Todo poligono simples com mais de 3 vertices tem
    pelo menos 2 orelhas, vertices que podem ser removidos sem criar
    um crossing, remover orelhas repetidamente triangula o poligono
```

Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde a = lado oposto ao vertice a, incentro eh onde cruzam as bissetrizes, eh o centro da circunferencia inscrita e eh equidistante aos lados

8.4 Mersenne's Primes

Primos de Mersenne 2^n - 1

Lista de Ns que resultam nos primeiros 41 primos de Mersenne: 2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 607; 1.279; 2.203; 2.281; 3.217; 4.253; 4.423; 9.689; 9.941; 11.213; 19.937; 21.701; 23.209; 44.497; 86.243; 110.503; 132.049; 216.091; 756.839; 859.433; 1.257.787; 1.398.269; 2.976.221; 3.021.377; 6.972.593; 13.466.917; 20.996.011; 24.036.583;