Supplement 2: Simulations — Inverse Probability Weights for Quasi-Continuous Ordinal Exposures with a Binary Outcome: Method Comparison and Case Study

Sack, Daniel E, Shepherd, Bryan E, Audet, Carolyn M, De Schact, Caroline, Samuels, Lauren R

Updated 2022-11-20 for American Journal of Epidemiology

Setup

Generate Data

Generating data per stipulations of Naimi, Moodie, Auger, Kaufman, Epidemiology 2014; 25: 292-299 (1).

To generate the skewed version of mage, which we define as mage_g, we started with a gamma distribution with shape equal to 0.5 and scale equal to 500. We then shifted the mean to 0 and changed it from right skewed to left skew (to make it a more appropriate skew for maternal age). We then normalized the standard deviation to 1 so that we could stretch the distribution to have the same standard deviation as mage. Finally, we set the mean of mage_g to the mean of mage and reallocated any mage_g values of less than 11 to the mean age. To generate the updated μ , μ_2 , we increased the correlation between mage_g and μ_2 from 0.025 to 0.25.

```
# function to generate data per Naimi et al. specifications,
# but make the exposure ordinal instead of continuous via rounding
sim_data <- function(n) {</pre>
  # draw maternal age from normal distribution
  mage <- rnorm(n, 29.84, sqrt(21.60))
  # maternal age from gamma distribution for a conditionally normal
  # but marginally not normal covariate
  m1 <- rgamma(n, shape = 0.5, scale = 5000) # make very skewed distribution, sims is 5 and 5
  m2 \leftarrow (m1 - mean(m1)) * -1 # shift the mean to zero and
  # flip the direction of the skew (so left instead of right skewed)
  m3 <- m2 / sd(m2) # makes sd 1
  m4 <- m3 * sd(mage) # stretch so it has the sd of mage
  mage_g <- m4 + mean(mage) # make it have the same mean as mage</pre>
  mage_g[mage_g < 11] <- mean(mage_g) # make any values < 0 the mean,
  # since maternal age cannot really be under 11
  # draw paternal age from normal distribution
  page <- rnorm(n, 32.52, sqrt(30.45))
  # establish parity with same parameters as Naimi et al.
  parityA <- runif(n)</pre>
  parity <- ifelse(parityA <= 0.24, 2,</pre>
               ifelse(parityA \leq 0.24 + 0.07, 3,
```

```
ifelse(parityA \leq 0.24 + 0.07 + 0.02, 4,
                                                   ifelse(parityA \leq 0.24 + 0.07 + 0.02 + 0.02, 5, 1))))
parity2 <- ifelse(parity == 2, 1, 0)</pre>
parity3 <- ifelse(parity == 3, 1, 0)</pre>
parity4 <- ifelse(parity == 4, 1, 0)</pre>
parity5 <- ifelse(parity == 5, 1, 0)</pre>
# mu w/o strong correlation with maternal age
mu_un \leftarrow (0.025 * mage) + (0.0025 * page) + (0.00125 * mage * page) -
(0.21 * parity2) - (0.22 * parity3) - (0.45 * parity4) - (0.45 * parity5)
# mu w/ gamma distributed maternal age and strong correlation
mu_g \leftarrow (0.25 * mage_g) + (0.0025 * page) + (0.00125 * mage_g * page) -
(0.21 * parity2) - (0.22 * parity3) - (0.45 * parity4) - (0.45 * parity5)
# normal exposure distribution, but round so it's ordinal to nearest 0.1
x1 \leftarrow round(15 + mu_un + rnorm(n, 0, sqrt(2)), 1)
# normal exposure distribution, but marginally not normal, but round so it's ordinal to nearest 0.1
x2 \leftarrow round(15 + mu_g + rnorm(n, 0, sqrt(2)), 1)
# poisson exposure distribution, but round so it's ordinal to nearest 0.1
x3 \leftarrow round(pmax(rpois(n, mu_un) + rnorm(n,0,1), 0), 1)
# normal exposure distribution, but round so it's ordinal to nearest 1
x4 \leftarrow round(15 + mu_un + rnorm(n, 0, sqrt(2)))
# normal exposure distribution, but marginally not normal, but round so it's ordinal to nearest 1
x5 \leftarrow round(15 + mu_g + rnorm(n, 0, sqrt(2)))
# poisson exposure distribution, but round so it's ordinal to nearest 1
x6 \leftarrow round(pmax(rpois(n, mu_un) + rnorm(n, 0, 1), 0))
# now replicate Naimi's continuous exposures
n_x1 \leftarrow 15 + mu_un + rnorm(n, 0, sqrt(2))
\# n_x 1 \leftarrow rnorm(n, 15 + mu_un, 1.5) \#
\# \leftarrow I think this is how they technically did it, but they are the same.
n_x2 \leftarrow pmax(rpois(n, mu_un) + rnorm(n, 0, 1), 0)
# outcome normal exposure distribution, uncorrelated with maternal age
y1 \leftarrow rbinom(n, 1, (1 + exp(-(-11.5 + log(1.25) * x1 + log(1.7) * sqrt(mage) + log(1.5) * sqrt(page)
                                          log(0.75) * parity2 + log(0.8) * parity3 + log(0.85) * parity4 + log(0.9) * parity4 + log(0
# normal exposure distribution, but marginally not normal
y2 \leftarrow rbinom(n, 1, (1 + exp(-(-13 + log(1.25) * x2 + log(1.7) * sqrt(mage_g) +
                                                               log(1.5) * sqrt(page) + log(0.75) * parity2 +
                                                               log(0.8) * parity3 + log(0.85) * parity4 +
                                                               log(0.9) *parity5)))^(-1))
# outcome poisson exposure distribution, uncorrelated with maternal age
y3 \leftarrow rbinom(n, 1, (1 + exp(-(-8.05 + log(1.25) * x3 + log(1.7) * sqrt(mage) +
                                                            log(1.5) * sqrt(page) + log(0.75) * parity2 +
```

```
log(0.8) * parity3 + log(0.85) * parity4 +
                                                                        log(0.9) * parity5)))^(-1))
    # outcome normal exposure distribution, uncorrelated with maternal age
    y4 \leftarrow rbinom(n, 1, (1 + exp(-(-11.5 + log(1.25) * x4 + log(1.7) * sqrt(mage) + log(1.5) * sqrt(page)
                                                   log(0.75) * parity2 + log(0.8) * parity3 + log(0.85) * parity4 + log(0.9) *parity4 +
    # normal exposure distribution, but marginally not normal
    y5 \leftarrow rbinom(n, 1, (1 + exp(-(-13 + log(1.25) * x5 + log(1.7) * sqrt(mage_g) +
                                                                          log(1.5) * sqrt(page) + log(0.75) * parity2 +
                                                                           log(0.8) * parity3 + log(0.85) * parity4 +
                                                                          log(0.9) *parity5)))^(-1))
    # outcome poisson exposure distribution, uncorrelated with maternal age
    y6 \leftarrow rbinom(n, 1, (1 + exp(-(-8.05 + log(1.25) * x6 + log(1.7) * sqrt(mage) +
                                                                        log(1.5) * sqrt(page) + log(0.75) * parity2 +
                                                                        log(0.8) * parity3 + log(0.85) * parity4 +
                                                                        log(0.9) * parity5)))^(-1))
    # replicate Naimi's outcomes given continuous exposures
    n_y1 \leftarrow rbinom(n, 1, (1 + exp(-(-11.5 + log(1.25) * n_x1 + log(1.7) * sqrt(mage) +
                                                                               log(1.5) * sqrt(page) + log(0.75) * parity2 +
                                                                               log(0.8) * parity3 + log(0.85) * parity4 +
                                                                               log(0.9) * parity5)))^(-1))
   n_y^2 \leftarrow rbinom(n, 1, (1 + exp(-(-8.05 + log(1.25) * n_x^2 + log(1.7) * sqrt(mage) +
                                                                            log(1.5) * sqrt(page) + log(0.75) * parity2 +
                                                                            log(0.8) * parity3 + log(0.85) * parity4 +
                                                                            log(0.9) * parity5)))^(-1))
    # create df with all covariates as output
   data.frame(mage, mage_g, page, parity2, parity3, parity4, parity5,
                           x1, x2, x3, x4, x5, x6, n_x1, n_x2, y1, y2, y3, y4, y5, y6, n_y1, n_y2)
}
# to check outcome prevalence with different intercepts
\#table1::table1(~ factor(y1) + factor(y2) + factor(y3) + factor(y4) + factor(y5) + factor(y6), data = s
# test exposure distributions
\# test <- sim_data(n = 30000)
# hist(test$x1)
# hist(test$x2)
# hist(test$x3)
# hist(test$x4)
# hist(test$x5)
# hist(test$x6)
```

Simulations

Do 3000 simulations and generate weights for each simulation, combine each simulation into one long dataframe with weights and list and simulation number. Generate weights with OLS, CBGPS, QB10, QB15, QB20, and CPM.

For X_2 , we updated the intercept values (from -11.5 $[X_1]$ to -11.4 $[X_2]$) to maintain a marginal probability of the outcome of approximately 0.08 with the updated exposure distributions.

We calculated the sIPW denominators using the following regression formula per Naimi et al.'s specifications, where C are the selected confounders, with $mage_g$ instead of mage when i ϵ {2} and binned exposures instead of X_i when calculating QB weights:

```
E(X_i \mid C) = \beta_1(\text{mage}) + \beta_2(\text{page}) + \beta_3(\text{mage*page}) + \beta_4(\text{parity2}) + \beta_5(\text{parity3}) + \beta_6(\text{parity4}) + \beta_7(\text{parity5})
```

The range, median, and mean of the exposure distributions are in Supplemental Table 1.2.

```
# register clusters (use 7 cores)
registerDoParallel(detectCores() - 1)
# number of reps (will go up to 3000, can tinker to test things)
n = 3000
# now generate weights
# (will generate weights in each simulated dataset individually)
sims <- foreach(i = 1:n, .inorder = FALSE, .errorhandling = "remove") %dopar% {</pre>
  # first need to generate data and quantile binned exposures
 df \leftarrow sim_data(n = 1500) \%
  mutate(x1_qb10 = as.numeric(cut2(x1, g = 10)),
         x2_qb10 = as.numeric(cut2(x2, g = 10)),
         x3_{qb10} = as.numeric(cut2(x3, g = 10)),
         x4_qb10 = as.numeric(cut2(x4, g = 10)),
         x1_qb15 = as.numeric(cut2(x1, g = 15)),
         x2_{qb15} = as.numeric(cut2(x2, g = 15)),
         x3_qb15 = as.numeric(cut2(x3, g = 15)),
         x4_qb15 = as.numeric(cut2(x4, g = 15)),
         x1_qb20 = as.numeric(cut2(x1, g = 20)),
         x2_qb20 = as.numeric(cut2(x2, g = 20)),
         x3 \text{ qb20} = \text{as.numeric}(\text{cut2}(x3, g = 20)),
         x4_{qb20} = as.numeric(cut2(x4, g = 20)))
  # start by creating formulas
  x1_formula <- formula(x1 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  x2_formula <- formula(x2 ~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 + parity5)
  x3_formula <- formula(x3 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  x4_formula <- formula(x4 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  x5_formula <- formula(x5 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  x6_formula <- formula(x6 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  # use WeightIt package to generate OLS and CBGPS weights
  # OLS
  x1_ols_wts <- weightit(x1_formula, df %>% filter(!is.na(x1)), method = "ps")$weights
  x2_ols_wts <- weightit(x2_formula, df %>% filter(!is.na(x2)), method = "ps")$weights
  x3_ols_wts <- weightit(x3_formula, df %>% filter(!is.na(x3)), method = "ps")$weights
  x4_ols_wts <- weightit(x4_formula, df %>% filter(!is.na(x4)), method = "ps")$weights
  x5_ols_wts <- weightit(x5_formula, df %>% filter(!is.na(x5)), method = "ps")$weights
  x6_ols_wts <- weightit(x6_formula, df %>% filter(!is.na(x6)), method = "ps")$weights
  x1_cbgps_wts <- weightit(x1_formula, df %>% filter(!is.na(x1)), method = "cbps",
                           over = FALSE)$weights
```

```
x2_cbgps_wts <- weightit(x2_formula, df %>% filter(!is.na(x2)), method = "cbps",
                         over = FALSE)$weights
x3_cbgps_wts <- weightit(x3_formula, df %>% filter(!is.na(x3)), method = "cbps",
                         over = FALSE)$weights
x4_cbgps_wts <- weightit(x4_formula, df %>% filter(!is.na(x4)), method = "cbps",
                         over = FALSE)$weights
x5_cbgps_wts <- weightit(x5_formula, df %>% filter(!is.na(x5)), method = "cbps",
                         over = FALSE)$weights
x6_cbgps_wts <- weightit(x6_formula, df %>% filter(!is.na(x6)), method = "cbps",
                         over = FALSE)$weights
#npCBGPS
x1_npcbgps_wts <- weightit(x1_formula, df %>% filter(!is.na(x1)), method = "npcbps",
                         over = FALSE)$weights
x2_npcbgps_wts <- weightit(x2_formula, df %>% filter(!is.na(x2)), method = "npcbps",
                         over = FALSE)$weights
x3_npcbgps_wts <- weightit(x3_formula, df %>% filter(!is.na(x3)), method = "npcbps",
                         over = FALSE)$weights
x4_npcbgps_wts <- weightit(x4_formula, df %>% filter(!is.na(x4)), method = "npcbps",
                         over = FALSE)$weights
x5_npcbgps_wts <- weightit(x5_formula, df %>% filter(!is.na(x5)), method = "npcbps",
                         over = FALSE)$weights
x6_npcbgps_wts <- weightit(x6_formula, df %>% filter(!is.na(x6)), method = "npcbps",
                         over = FALSE)$weights
# use orm.wt file to create quantile binning and OLR weights
# only doing QB for x1-x3, because at smaller number of categories, they are the same thing
# QB10
x1_qb10_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1_qb10",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x2_qb10_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
                  exposure = "x2_qb10",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_qb10_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = "x3_qb10",
                  cov form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
# QB15
x1_qb15_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1_qb15",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x2_qb15_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
```

```
exposure = "x2_qb15",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_qb15_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = x3_qb15,
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
# QB20
x1_qb20_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1_qb20",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x2_qb20_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
                  exposure = "x2_qb20",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_qb20_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = "x3_qb20",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
# OLR
x1_olr_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x2_olr_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
                  exposure = "x2",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_olr_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = "x3",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x4_olr_wts <- orm.wt(object = df %>% filter(!is.na(x4)),
                  exposure = "x4",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x5_olr_wts <- orm.wt(object = df %>% filter(!is.na(x5)),
                  exposure = "x5",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                 parity5") %>%
 unlist()
```

```
x6_olr_wts <- orm.wt(object = df %>% filter(!is.na(x6)),
                    exposure = "x6",
                    cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                    parity5") %>%
    unlist()
  # create final dataframe
  data <- data.frame(i, df,</pre>
                      x1_ols_wts, x2_ols_wts, x3_ols_wts, x4_ols_wts, x5_ols_wts, x6_ols_wts,
                     x1_cbgps_wts, x2_cbgps_wts, x3_cbgps_wts, x4_cbgps_wts, x5_cbgps_wts, x6_cbgps_wts
                     x1_npcbgps_wts, x2_npcbgps_wts, x3_npcbgps_wts, x4_npcbgps_wts, x5_npcbgps_wts, x6
                     x1_qb10_wts, x2_qb10_wts, x3_qb10_wts,
                     x1_qb15_wts, x2_qb15_wts, x3_qb15_wts,
                     x1_qb20_wts, x2_qb20_wts, x3_qb20_wts,
                     x1_olr_wts, x2_olr_wts, x3_olr_wts, x4_olr_wts, x5_olr_wts, x6_olr_wts)
}
# add in simluation for anything less than 3000, with new seed across all all streams for parallel proc
set.seed(11111, kind = "L'Ecuyer-CMRG")
n_extra <- 3000 - length(sims)</pre>
sims2 <- foreach(i = 1:n_extra, .inorder = FALSE, .errorhandling = "remove") %dopar% {</pre>
  # first need to generate data and quantile binned exposures
 df <- sim_data(n = 1500) \%>\%
 mutate(x1_qb10 = as.numeric(cut2(x1, g = 10)),
         x2_{qb10} = as.numeric(cut2(x2, g = 10)),
         x3_{qb10} = as.numeric(cut2(x3, g = 10)),
         x4_qb10 = as.numeric(cut2(x4, g = 10)),
         x1_qb15 = as.numeric(cut2(x1, g = 15)),
         x2_qb15 = as.numeric(cut2(x2, g = 15)),
         x3_{qb15} = as.numeric(cut2(x3, g = 15)),
         x4_qb15 = as.numeric(cut2(x4, g = 15)),
         x1_qb20 = as.numeric(cut2(x1, g = 20)),
         x2_qb20 = as.numeric(cut2(x2, g = 20)),
         x3_qb20 = as.numeric(cut2(x3, g = 20)),
         x4_qb20 = as.numeric(cut2(x4, g = 20)))
  # start by creating formulas
  x1_formula <- formula(x1 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  x2_formula <- formula(x2 ~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 + parity5)
  x3_{\text{formula}} \leftarrow \text{formula}(x3 \sim \text{mage} + \text{page} + \text{mage*page} + \text{parity2} + \text{parity3} + \text{parity4} + \text{parity5})
  x4_formula <- formula(x4 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  x5_formula <- formula(x5 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  x6_formula <- formula(x6 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
  # use WeightIt package to generate OLS and CBGPS weights
  # OLS
  x1_ols_wts <- weightit(x1_formula, df %>% filter(!is.na(x1)), method = "ps")$weights
  x2_ols_wts <- weightit(x2_formula, df %>% filter(!is.na(x2)), method = "ps")$weights
  x3_ols_wts <- weightit(x3_formula, df %>% filter(!is.na(x3)), method = "ps")$weights
  x4_ols_wts <- weightit(x4_formula, df %>% filter(!is.na(x4)), method = "ps")$weights
  x5_ols_wts <- weightit(x5_formula, df %>% filter(!is.na(x5)), method = "ps")$weights
  x6_ols_wts <- weightit(x6_formula, df %>% filter(!is.na(x6)), method = "ps")$weights
```

```
#CBGPS
x1_cbgps_wts <- weightit(x1_formula, df %>% filter(!is.na(x1)), method = "cbps",
                         over = FALSE)$weights
x2_cbgps_wts <- weightit(x2_formula, df %>% filter(!is.na(x2)), method = "cbps",
                         over = FALSE)$weights
x3_cbgps_wts <- weightit(x3_formula, df %>% filter(!is.na(x3)), method = "cbps",
                         over = FALSE)$weights
x4 cbgps wts <- weightit(x4 formula, df %>% filter(!is.na(x4)), method = "cbps",
                         over = FALSE)$weights
x5_cbgps_wts <- weightit(x5_formula, df %>% filter(!is.na(x5)), method = "cbps",
                         over = FALSE)$weights
x6_cbgps_wts <- weightit(x6_formula, df %>% filter(!is.na(x6)), method = "cbps",
                         over = FALSE)$weights
#npCBGPS
x1_npcbgps_wts <- weightit(x1_formula, df %>% filter(!is.na(x1)), method = "npcbps",
                         over = FALSE)$weights
x2_npcbgps_wts <- weightit(x2_formula, df %>% filter(!is.na(x2)), method = "npcbps",
                         over = FALSE)$weights
x3_npcbgps_wts <- weightit(x3_formula, df %>% filter(!is.na(x3)), method = "npcbps",
                         over = FALSE)$weights
x4_npcbgps_wts <- weightit(x4_formula, df %>% filter(!is.na(x4)), method = "npcbps",
                         over = FALSE)$weights
x5_npcbgps_wts <- weightit(x5_formula, df %>% filter(!is.na(x5)), method = "npcbps",
                         over = FALSE)$weights
x6_npcbgps_wts <- weightit(x6_formula, df %>% filter(!is.na(x6)), method = "npcbps",
                         over = FALSE)$weights
# use orm.wt file to create quantile binning and OLR weights
# only doing QB for x1-x3, because at smaller number of categories, they are the same thing
# QB10
x1_qb10_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1_qb10",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x2_qb10_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
                  exposure = "x2_qb10",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_qb10_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = "x3_qb10",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
# QB15
x1_qb15_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1_qb15",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
```

```
parity5") %>%
 unlist()
x2_qb15_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
                  exposure = "x2_qb15",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_qb15_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = "x3_qb15",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
# QB20
x1_qb20_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1_qb20",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x2_qb20_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
                  exposure = "x2_qb20",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_qb20_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = "x3_qb20",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
# OLR
x1_olr_wts <- orm.wt(object = df %>% filter(!is.na(x1)),
                  exposure = "x1",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x2_olr_wts <- orm.wt(object = df %>% filter(!is.na(x2)),
                  exposure = "x2",
                  cov_form = "~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x3_olr_wts <- orm.wt(object = df %>% filter(!is.na(x3)),
                  exposure = "x3",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
 unlist()
x4_olr_wts <- orm.wt(object = df %>% filter(!is.na(x4)),
                  exposure = "x4",
                  cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                  parity5") %>%
  unlist()
x5_olr_wts <- orm.wt(object = df %>% filter(!is.na(x5)),
                  exposure = "x5",
```

```
cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                    parity5") %>%
    unlist()
  x6_olr_wts <- orm.wt(object = df %>% filter(!is.na(x6)),
                    exposure = "x6",
                    cov_form = "~ mage + page + mage*page + parity2 + parity3 + parity4 +
                    parity5") %>%
    unlist()
  # create final dataframe
  data <- data.frame(i, df,</pre>
                      x1_ols_wts, x2_ols_wts, x3_ols_wts, x4_ols_wts, x5_ols_wts, x6_ols_wts,
                      x1_cbgps_wts, x2_cbgps_wts, x3_cbgps_wts, x4_cbgps_wts, x5_cbgps_wts, x6_cbgps_wts
                      x1_npcbgps_wts, x2_npcbgps_wts, x3_npcbgps_wts, x4_npcbgps_wts, x5_npcbgps_wts, x6
                      x1_qb10_wts, x2_qb10_wts, x3_qb10_wts,
                      x1_qb15_wts, x2_qb15_wts, x3_qb15_wts,
                      x1_qb20_wts, x2_qb20_wts, x3_qb20_wts,
                      x1_olr_wts, x2_olr_wts, x3_olr_wts, x4_olr_wts, x5_olr_wts, x6_olr_wts)
}
# combine
sims <- append(sims, sims2)</pre>
# save simulation output
Save(sims)
# load simulation data
Load(sims)
# make it a dataframe
df <- sims %>% bind_rows(.id = "i")
# create a new dataset with 4.5 million rows to simulate the truth
set.seed(1111)
df_msm_sim \leftarrow sim_data(n = nrow(df))
# Marginal Structural Model "Truth"
getMeanProb_MSM <- function(dat, val, xnum) {</pre>
    # returns the mean outcome probability (that is, an estimate of E[Y(t)]) at exposure value [val]
    if (xnum == "x1" | xnum == "x4") {
        alpha <- -11.5
        magevar <- "mage"</pre>
    } else if (xnum == "x2" | xnum == "x5") {
        alpha <- -13
        magevar <- "mage_g"</pre>
    } else if (xnum == "x3" | xnum == "x6") {
        alpha \leftarrow -8.05
        magevar <- "mage"</pre>
    }
    lp <-
        alpha +
        log(1.25) * (val) +
        log(1.7) * sqrt(dat[[magevar]])+
```

```
log(1.5) * sqrt(dat*page) +
        log(0.75) * dat*parity2 +
        log(0.8) * dat*parity3 +
        log(0.85) * dat*parity4 +
        log(0.9) * dat*parity5
    prob <- plogis(lp)</pre>
    mean(prob)
}
# run it with parallel processing
# register clusters (use 6 cores because 6 processes)
registerDoParallel(6)
# now generate weights
msm_truths <- foreach(i = 1:6, .inorder = FALSE, .errorhandling = "remove") %dopar% {</pre>
  #exposures
  exps <- c("x1", "x2", "x3", "x4", "x5", "x6")
  # each is a vector of estimates of E[Y(t)]'s: one for each unique t in the original dataset
  # (excluding repeats)
 probs <- lapply(unique(df_msm_sim[[exps[i]]]),</pre>
                  function(x) getMeanProb_MSM(df_msm_sim, x, xnum = exps[i]))
# save it
Save(msm truths)
# pull in MSM truth, because it will be too big to run each time
Load(msm truths)
x1_truth_key <- tibble(x1 = unique(df_msm_sim$x1), prob_x1 = unlist(msm_truths[1]))</pre>
x2_truth_key <- tibble(x2 = unique(df_msm_sim$x2), prob_x2 = unlist(msm_truths[2]))</pre>
x3_truth_key <- tibble(x3 = unique(df_msm_sim$x3), prob_x3 = unlist(msm_truths[3]))
x4_truth_key <- tibble(x4 = unique(df_msm_sim$x4), prob_x4 = unlist(msm_truths[4]))
x5_truth_key <- tibble(x5 = unique(df_msm_sim$x5), prob_x5 = unlist(msm_truths[5]))
x6_truth_key <- tibble(x6 = unique(df_msm_sim$x6), prob_x6 = unlist(msm_truths[6]))
# now need to link truths with exposure they match
x_truths <- df_msm_sim %>%
 select(x1, x2, x3, x4, x5, x6)
# put in truths
x_truths <- left_join(x_truths, x1_truth_key, by = "x1")</pre>
x_truths <- left_join(x_truths, x2_truth_key, by = "x2")</pre>
x_truths <- left_join(x_truths, x3_truth_key, by = "x3")</pre>
x_truths <- left_join(x_truths, x4_truth_key, by = "x4")</pre>
x_truths <- left_join(x_truths, x5_truth_key, by = "x5")</pre>
x_truths <- left_join(x_truths, x6_truth_key, by = "x6")</pre>
# show that there are no non-missing values of prob_x1:prob_x6 after joining
sum(is.na(x_truths$prob_x1), is.na(x_truths$prob_x2), is.na(x_truths$prob_x3),
    is.na(x_truths$prob_x4), is.na(x_truths$prob_x5), is.na(x_truths$prob_x6))
```

[1] 0

```
sum(!is.na(x_truths$prob_x1), !is.na(x_truths$prob_x2), !is.na(x_truths$prob_x3),
   !is.na(x_truths$prob_x4), !is.na(x_truths$prob_x5), !is.na(x_truths$prob_x6))/6
[1] 4500000
# Our MSM: logit{E[Y(t)]} = b0 + b1*t
     The warning is OK!
msm_x1 <- glm(x_truths$prob_x1 ~ x_truths$x1, family= binomial)</pre>
true_x1 <- coef(msm_x1)["x_truths$x1"] %>% unname()
msm_x2 <- glm(x_truths$prob_x2 ~ x_truths$x2, family= binomial)</pre>
true_x2 <- coef(msm_x2)["x_truths$x2"] %>% unname()
msm_x3 <- glm(x_truths$prob_x3 ~ x_truths$x3, family= binomial)</pre>
true_x3 <- coef(msm_x3)["x_truths$x3"] %>% unname()
msm_x4 <- glm(x_truths$prob_x4 ~ x_truths$x4, family= binomial)
true_x4 <- coef(msm_x4)["x_truths$x4"] %>% unname()
msm_x5 <- glm(x_truths$prob_x5 ~ x_truths$x5, family= binomial)</pre>
true_x5 <- coef(msm_x5)["x_truths$x5"] %>% unname()
msm_x6 <- glm(x_truths$prob_x6 ~ x_truths$x6, family= binomial)</pre>
true_x6 <- coef(msm_x6)["x_truths$x6"] %>% unname()
# Austin, 2018 approach to finding the truth
# find the true probability, across all 4.5 million observations at each decile (seq(0.1, 0.9, 0.1))
# the the expected probabilities are found below in the bias chunk
getMeanProb <- function(dat, val, xnum) {</pre>
    if (xnum == 1 | xnum == 4) {
        alpha <- -11.5
        magevar <- "mage"</pre>
    } else if (xnum == 2 | xnum == 5) {
        alpha <- -13
        magevar <- "mage g"</pre>
    } else if (xnum == 3 | xnum == 6) {
        alpha < -8.05
        magevar <- "mage"</pre>
    lp <- alpha +
        log(1.25) * (val) +
        log(1.7) * sqrt(dat[[magevar]])+
        log(1.5) * sqrt(dat*page) +
        log(0.75) * dat*parity2 +
        log(0.8) * dat*parity3 +
        log(0.85) * dat*parity4 +
        log(0.9) * dat*parity5
    \# p = (1 + 1/odds)^{(-1)}
    prob <- (1 + 1/\exp(1p))^{-1}
```

```
mean(prob)
}
# x1
true2_x1_qs \leftarrow map_dbl(seq(0.1, 0.9, 0.1), \sim getMeanProb(dat = df_msm_sim,
                                                              val = quantile(df msm sim$x1, .x), xnum = 1))
true2_x2_qs \leftarrow map_dbl(seq(0.1, 0.9, 0.1), \sim getMeanProb(dat = df_msm_sim,
                                                              val = quantile(df msm sim$x2, .x), xnum = 2))
# x3
true2 x3 qs <- map dbl(seq(0.1, 0.9, 0.1), \sim getMeanProb(dat = df msm sim,
                                                             val = quantile(df_msm_sim$x3, .x), xnum = 3))
# $24
true2_x4_qs <- map_dbl(seq(0.1, 0.9, 0.1), ~ getMeanProb(dat = df_msm_sim,</pre>
                                                             val = quantile(df_msm_sim$x4, .x), xnum = 4))
# x5
true2_x5_qs \leftarrow map_dbl(seq(0.1, 0.9, 0.1), \sim getMeanProb(dat = df_msm_sim,
                                                              val = quantile(df_msm_sim$x5, .x), xnum = 5))
true2_x6_qs \leftarrow map_dbl(seq(0.1, 0.9, 0.1), \sim getMeanProb(dat = df_msm_sim,
                                                              val = quantile(df_msm_sim$x6, .x), xnum = 6))
```

Supplemental Table 2.1 - Updated Exposure Levels

```
# get number of exposure levels across simulations
exp_levels <- function(data) {
    x1 <- n_distinct(data$x1)
    x2 <- n_distinct(data$x2)
    x3 <- n_distinct(data$x3)
    x4 <- n_distinct(data$x4)
    x5 <- n_distinct(data$x5)
    x6 <- n_distinct(data$x6)

    data.frame(x1, x2, x3, x4, x5, x6)
}
suptab2 <- map_df(sims, ~ exp_levels(.x)) %>% summary()
kable(suptab2) %>%
    kable_classic(html_font = "Arial", full_width = FALSE)
```

Supplemental Table 2.2 - Dose Response Deciles

```
# create deciles quantiles for each Austin approach
x1_quants <- map_dbl(seq(0.1, 0.9, 0.1), ~ quantile(df$x1, .x))
x2_quants <- map_dbl(seq(0.1, 0.9, 0.1), ~ quantile(df$x2, .x))</pre>
```

x1	x2	x3	x4	x5	x6
Min. :76.00	Min.: 96.0	Min. :69.00	Min.: 9.00	Min. :11.0	Min.: 8.00
1st Qu.:83.00	1st Qu.:105.0	1st Qu.:75.00	1st Qu.:10.00	1st Qu.:13.0	1st Qu.:10.00
Median :85.00	Median :107.0	Median :76.00	Median :11.00	Median :14.0	Median :10.00
Mean :85.16	Mean :106.8	Mean :76.54	Mean :10.82	Mean :13.8	Mean :10.04
3rd Qu.:87.00	3rd Qu.:109.0	3rd Qu.:78.00	3rd Qu.:11.00	3rd Qu.:14.0	3rd Qu.:10.00
Max. :94.00	Max. :117.0	Max. :85.00	Max. :13.00	Max. :17.0	Max. :12.00

Decile	X1	X2	Х3	X4	X5	X6
1	15.1	21.4	0.0	15	21	0
2	15.7	22.3	0.5	16	22	0
3	16.2	22.9	0.9	16	23	1
4	16.6	23.4	1.4	17	23	1
5	17.0	23.9	1.8	17	24	2
6	17.3	24.3	2.3	17	24	2
7	17.7	24.7	2.8	18	25	3
8	18.2	25.3	3.4	18	25	3
9	18.8	25.9	4.3	19	26	4

Recreating Distributions from Naimi et al.

Supplemental Table 2.3 - Simulation Descriptive Statistics

```
"4".
                               "5+".
                               "X1 (normal, naimi) - rounded to 0.1",
                               "X2 (normal, skewed) - rounded to 0.1",
                               "X3 (Poisson, naimi) - rounded to 0.1",
                               "X4 (normal, naimi) - rounded to 1",
                               "X5 (normal, skewed) - rounded to 1",
                               "X6 (Poisson, naimi) - rounded to 1",
                               "Y1 (Bernoulli, naimi)",
                               "Y2 (Bernoulli, skewed)",
                               "Y3 (Bernoulli, naimi)",
                               "Y4 (Bernoulli, naimi)",
                               "Y5 (Bernoulli, skewed)",
                               "Y6 (Bernoulli, naimi)",
                               "Naimi Homoscedastic X",
                               "Naimi Heteroscedastic X".
                               "Naimi Homoscedastic Y",
                               "Naimi Heteroscedastic Y"),
Mean = c(mean(df$mage),
         mean(df$mage_g),
         mean(df$page),
         NA,
         mean(df$parity2),
         mean(df$parity3),
         mean(df$parity4),
         mean(df$parity5),
         mean(df$x1),
         mean(df$x2),
         mean(df$x3, na.rm = TRUE),
         mean(df$x4, na.rm = TRUE),
         mean(df$x5, na.rm = TRUE),
         mean(df$x6, na.rm = TRUE),
         mean(df$y1),
         mean(df$y2),
         mean(df\$y3, na.rm = TRUE),
         mean(df$y4, na.rm = TRUE),
         mean(df$y5, na.rm = TRUE),
         mean(df\$y6, na.rm = TRUE),
         mean(df$n_x1),
         mean(df$n_x2, na.rm = TRUE),
         mean(df$n_y1),
         mean(df$n_y2, na.rm = TRUE)),
Variance = c(var(df$mage),
         var(df$mage_g),
         var(df$page),
         var(df$parity2),
         var(df$parity3),
         var(df$parity4),
         var(df$parity5),
         var(df$x1),
         var(df$x2),
         var(df$x3, na.rm = TRUE),
```

Maternal Age (normal) 29.84 21.61 Maternal Age (skewed) 30.07 15.46 Paternal Age (normal) 32.52 30.43 Parity (Poisson) 0.24 0.18 3 0.07 0.07 4 0.02 0.02 5+ 0.02 0.02 X1 (normal, naimi) - rounded to 0.1 16.96 2.16 X2 (normal, skewed) - rounded to 0.1 23.74 3.38 X3 (Poisson, naimi) - rounded to 0.1 2.04 2.67 X4 (normal, naimi) - rounded to 1 16.96 2.24 X5 (normal, skewed) - rounded to 1 23.74 3.45 X6 (Poisson, naimi) - rounded to 1 2.04 2.77 Y1 (Bernoulli, naimi) 0.08 0.07 Y2 (Bernoulli, skewed) 0.08 0.07 Y3 (Bernoulli, naimi) 0.08 0.07 Y6 (Bernoulli, naimi) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Homoscedastic Y 0.08	Variable (Distribution)	Mean	Variance
Maternal Age (skewed) 30.07 15.46 Paternal Age (normal) 32.52 30.43 Parity (Poisson) 0.24 0.18 3 0.07 0.07 4 0.02 0.02 5+ 0.02 0.02 X1 (normal, naimi) - rounded to 0.1 16.96 2.16 X2 (normal, skewed) - rounded to 0.1 23.74 3.38 X3 (Poisson, naimi) - rounded to 0.1 2.04 2.67 X4 (normal, naimi) - rounded to 1 16.96 2.24 X5 (normal, skewed) - rounded to 1 23.74 3.45 X6 (Poisson, naimi) - rounded to 1 2.04 2.77 Y1 (Bernoulli, naimi) 0.08 0.07 Y2 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, naimi) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67		29.84	21.61
Parity (Poisson) 0.24 0.18 3 0.07 0.07 4 0.02 0.02 5+ 0.02 0.02 X1 (normal, naimi) - rounded to 0.1 16.96 2.16 X2 (normal, skewed) - rounded to 0.1 23.74 3.38 X3 (Poisson, naimi) - rounded to 0.1 2.04 2.67 X4 (normal, naimi) - rounded to 1 16.96 2.24 X5 (normal, skewed) - rounded to 1 23.74 3.45 X6 (Poisson, naimi) - rounded to 1 2.04 2.77 Y1 (Bernoulli, naimi) 0.08 0.07 Y2 (Bernoulli, skewed) 0.08 0.07 Y3 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	_ ,	30.07	15.46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Paternal Age (normal)	32.52	30.43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parity (Poisson)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0.24	0.18
5+ 0.02 0.02 X1 (normal, naimi) - rounded to 0.1 16.96 2.16 X2 (normal, skewed) - rounded to 0.1 23.74 3.38 X3 (Poisson, naimi) - rounded to 0.1 2.04 2.67 X4 (normal, naimi) - rounded to 1 16.96 2.24 X5 (normal, skewed) - rounded to 1 23.74 3.45 X6 (Poisson, naimi) - rounded to 1 2.04 2.77 Y1 (Bernoulli, naimi) 0.08 0.07 Y2 (Bernoulli, skewed) 0.08 0.07 Y3 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	3	0.07	0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	0.02	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5+	0.02	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1 (normal, naimi) - rounded to 0.1	16.96	2.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X2 (normal, skewed) - rounded to 0.1	23.74	3.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X3 (Poisson, naimi) - rounded to 0.1	2.04	2.67
X6 (Poisson, naimi) - rounded to 1 2.04 2.77 Y1 (Bernoulli, naimi) 0.08 0.07 Y2 (Bernoulli, skewed) 0.08 0.07 Y3 (Bernoulli, naimi) 0.09 0.08 Y4 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	X4 (normal, naimi) - rounded to 1	16.96	2.24
Y1 (Bernoulli, naimi) 0.08 0.07 Y2 (Bernoulli, skewed) 0.08 0.07 Y3 (Bernoulli, naimi) 0.09 0.08 Y4 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	X5 (normal, skewed) - rounded to 1	23.74	3.45
Y2 (Bernoulli, skewed) 0.08 0.07 Y3 (Bernoulli, naimi) 0.09 0.08 Y4 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	X6 (Poisson, naimi) - rounded to 1	2.04	2.77
Y3 (Bernoulli, naimi) 0.09 0.08 Y4 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	Y1 (Bernoulli, naimi)	0.08	0.07
Y4 (Bernoulli, naimi) 0.08 0.07 Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	Y2 (Bernoulli, skewed)	0.08	0.07
Y5 (Bernoulli, skewed) 0.08 0.07 Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	Y3 (Bernoulli, naimi)	0.09	0.08
Y6 (Bernoulli, naimi) 0.09 0.08 Naimi Homoscedastic X 16.96 2.16 Naimi Heteroscedastic X 2.04 2.67	Y4 (Bernoulli, naimi)	0.08	0.07
Naimi Homoscedastic X16.962.16Naimi Heteroscedastic X2.042.67	Y5 (Bernoulli, skewed)	0.08	0.07
Naimi Heteroscedastic X 2.04 2.67	Y6 (Bernoulli, naimi)	0.09	0.08
	Naimi Homoscedastic X	16.96	2.16
Naimi Homoscedastic Y 0.08 0.07	Naimi Heteroscedastic X	2.04	2.67
	Naimi Homoscedastic Y	0.08	0.07
Naimi Heteroscedastic Y 0.09 0.08	Naimi Heteroscedastic Y	0.09	0.08

```
var(df$x4, na.rm = TRUE),
                        var(df$x5, na.rm = TRUE),
                        var(df$x6, na.rm = TRUE),
                        var(df$y1),
                        var(df$y2),
                        var(df$y3, na.rm = TRUE),
                        var(df\$y4, na.rm = TRUE),
                        var(df\$y5, na.rm = TRUE),
                        var(df$y6, na.rm = TRUE),
                        var(df$n_x1),
                        var(df$n_x2, na.rm = TRUE),
                        var(df$n_y1),
                        var(df$n_y2, na.rm = TRUE)))
# table 1
kable(tab1, digits = 2) %>%
  kable_classic(html_font = "Arial", full_width = FALSE) %>%
  add_indent(c(5:8))
```

Supplemental Figure 2.1 - Continuous Exposure

```
# now create plot
naimix1 <- ggplot(df, aes(x = n_x1)) +
geom_histogram(aes(y = ..density..), binwidth = 0.5, alpha = 0.5, color = "grey50") +</pre>
```

#ggsave("./sim_png/supfig1.1.png")

Panel A) Homoscedastic Continuous Exposure, Panel B) Heteroscedastic Continuous Exposure

Supplemental Figure 2.2 - Continuous Exposure

```
# linear predictors
preds_x1_n <- predict(ols_x1_n)</pre>
preds_x2_n <- predict(ols_x2_n)</pre>
preds_x2_n_log <- predict(ols_x2_n_log)</pre>
# residuals
res_x1_n <- residuals(ols_x1_n)</pre>
res_x2_n <- residuals(ols_x2_n)</pre>
res_x2_n_log <- residuals(ols_x2_n_log)</pre>
# now plot
x1_plot_n <- ggplot() +</pre>
  geom_point(aes(x = preds_x1_n, y = res_x1_n), alpha = 0.01) +
  ylab("Residual") +
  xlab("Linear Predictor") +
  theme
x2_plot_n <- ggplot() +</pre>
  geom_point(aes(x = preds_x2_n, y = res_x2_n), alpha = 0.01) +
  ylab("Residual") +
  xlab("Linear Predictor") +
  theme
x2_plot_n_log <- ggplot() +</pre>
  geom_point(aes(x = preds_x2_n_log, y = res_x2_n_log), alpha = 0.01) +
  ylab("Residual") +
  xlab("Linear Predictor") +
  theme
# combine
ggarrange(x1_plot_n, x2_plot_n, x2_plot_n_log,
          nrow = 1,
          labels = c("A", "B", "C"))
#ggsave("./sim_png/supfig1.2.png")
```


Updated Distributions

Supplemental Figure 2.3 - Maternal Age Distributions

```
mage_hist <- df %>%
  ggplot(aes(x = mage)) +
  geom_histogram(aes(y = ..density..), binwidth = 0.1, alpha = 0.5, color = "grey50") +
  geom_density(adjust = 2) +
  ylab("Density") +
  xlab("Normal") +
  labs(caption = paste0("Skew (", round(moments::skewness(df$mage), 3), "), Kurtosis (",
                        round(moments::kurtosis(df$mage), 3), ")")) +
  theme
mage_g_hist \leftarrow df \%
  ggplot(aes(x = mage_g)) +
  geom_histogram(aes(y = ..density..), binwidth = 0.1, alpha = 0.5, color = "grey50") +
  geom_density(adjust = 2) +
  ylab("Density") +
  xlab("Skewed") +
  labs(caption = paste0("Skew (", round(moments::skewness(df$mage_g), 3), "), Kurtosis (",
                        round(moments::kurtosis(df$mage_g), 3), ")")) +
  theme
ggarrange(mage_hist, mage_g_hist,
          labels = c("A", "B"))
#ggsave("./sim_png/supfig1.3.png")
```


Supplemental Figure 3 shows the updated marginal distributions of maternal age (mage) and skewed maternal age (mage_g). Despite similar means and variances in mage and mage_g, mage is normally distributed whereas mage_g is significantly left-skewed.

Supplemental Figure 2.4 - Exposure-Covariate Correlations

```
df %>%
  select(mage, mage_g, x1:x6) %>%
  pivot_longer(x1:x6) %>%
  mutate(mage_fin = ifelse(name %in% c("x1", "x3", "x4", "x6"), mage, mage_g)) %>%
  mutate(name = factor(name,
                       labels = c(expression(paste("A. ", X[1], " - Homoscedastic, Naimi (0.1)")),
                                  expression(paste("B. ", X[2], " - Homoscedastic, Skewed (0.1)")),
                                  expression(paste("C. ", X[3], " - Heterocedastic, Naimi (0.1)")),
                                  expression(paste("D. ", X[4], " - Homoscedastic, Naimi (1)")),
                                  expression(paste("E. ", X[5], " - Homoscedastic, Skewed (1)")),
                                  expression(paste("F. ", X[6], " - Heterocedastic, Naimi (1)"))))) %>%
  ggplot(aes(x = mage_fin, y = value)) +
  facet_wrap(~ name, labeller = "label_parsed") +
  geom_point(alpha = 0.01) +
  ylab("Exposure") +
  xlab("Maternal Age (years)") +
#ggsave("./sim_png/supfig1.4.png")
```


Marginal and Conditional Exposure Distributions

Figure 1 - Marginal and Conditional Exposure Distribution

```
dens_x2 \leftarrow ggplot(df, aes(x = x2)) +
  geom_histogram(aes(y = ..density..), binwidth = 0.1, alpha = 0.5, color = "grey50") +
  geom density(adjust = 2) +
  ylab("Density") +
  scale_x_continuous(name = expression(paste(X[2]))) +
  # labs(caption = pasteO("Skew (", round(moments::skewness(df$x2), 3),
          "), Kurtosis (", round(moments::kurtosis(df$x2), 3), ")")) +
  theme(text = element_text(size = 8.5))
dens_x3 \leftarrow ggplot(df, aes(x = x3)) +
  geom_histogram(aes(y = ..density..), binwidth = 0.1, alpha = 0.5, color = "grey50") +
  geom_density(adjust = 2) +
  ylab("Density") +
  scale_x_continuous(name = expression(paste(X[3]))) +
  # labs(caption = " ") +
  theme +
  theme(text = element_text(size = 8.5))
dens_x4 \leftarrow ggplot(df, aes(x = x4)) +
  geom_histogram(aes(y = ..density..), binwidth = 1, alpha = 0.5, color = "grey50") +
  \#geom\_density(adjust = 2) +
  ylab("Density") +
  scale_x_continuous(name = expression(paste(X[4]))) +
  # labs(caption = pasteO("Skew (", round(moments::skewness(df$x4), 3),
          "), Kurtosis (", round(moments::kurtosis(df$x4), 3), ")")) +
  theme(text = element_text(size = 8.5))
dens_x5 \leftarrow ggplot(df, aes(x = x5)) +
  geom_histogram(aes(y = ..density..), binwidth = 1, alpha = 0.5, color = "grey50") +
  \#geom\_density(adjust = 2) +
  ylab("Density") +
  scale_x_continuous(name = expression(paste(X[5]))) +
  # labs(caption = pasteO("Skew (", round(moments::skewness(df$x5), 3),
          "), Kurtosis (", round(moments::kurtosis(df$x5), 3), ")")) +
  theme +
  theme(text = element text(size = 8.5))
dens x6 \leftarrow ggplot(df, aes(x = x6)) +
  geom_histogram(aes(y = ..density..), binwidth = 1, alpha = 0.5, color = "grey50") +
  \#geom\_density(adjust = 2) +
  ylab("Density") +
  scale_x_continuous(name = expression(paste(X[6]))) +
  # labs(caption = " ") +
  theme(text = element_text(size = 8.5))
# Conditional Exposure Distribution
# will run ols regression on df
ols_x1 <- ols(x1 ~ + mage + page + mage*page + parity2 + parity3 + parity4 +
                parity5, data = df)
```

```
ols_x2 <- ols(x2 ~ + mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                 parity5, data = df)
ols_x3 <- ols(x3 ~ + mage + page + mage*page + parity2 + parity3 + parity4 +
                 parity5, data = df)
ols_x4 <- ols(x4 ~ + mage + page + mage*page + parity2 + parity3 + parity4 +
                 parity5, data = df)
ols_x5 <- ols(x5 ~ + mage_g + page + mage_g*page + parity2 + parity3 + parity4 +
                 parity5, data = df)
ols_x6 <- ols(x6 ~ + mage + page + mage*page + parity2 + parity3 + parity4 +
                 parity5, data = df)
# linear predictors
preds_x1 <- predict(ols_x1)</pre>
preds_x2 <- predict(ols_x2)</pre>
preds_x3 <- predict(ols_x3)</pre>
preds_x4 <- predict(ols_x4)</pre>
preds_x5 <- predict(ols_x5)</pre>
preds_x6 <- predict(ols_x6)</pre>
# residuals
res_x1 <- residuals(ols_x1)</pre>
res_x2 <- residuals(ols_x2)</pre>
res_x3 <- residuals(ols_x3)</pre>
res_x4 <- residuals(ols_x4)</pre>
res_x5 <- residuals(ols_x5)</pre>
res_x6 <- residuals(ols_x6)</pre>
# now plot
x1_plot <- ggplot() +</pre>
  geom_point(aes(x = preds_x1, y = res_x1), alpha = 0.01) +
  ylab("Residual") +
  scale_x_continuous(name = expression(paste("Linear Predictor (", X[1], ")"))) +
  theme +
  theme(text = element_text(size = 8.5))
x2_plot <- ggplot() +</pre>
  geom_point(aes(x = preds_x2, y = res_x2), alpha = 0.01) +
  ylab("Residual") +
  scale_x_continuous(name = expression(paste("Linear Predictor (", X[2], ")"))) +
  theme +
  theme(text = element_text(size = 8.5))
x3_plot <- ggplot() +
  geom_point(aes(x = preds_x3, y = res_x3), alpha = 0.01) +
  ylab("Residual") +
  scale_x_continuous(name = expression(paste("Linear Predictor (", X[3], ")"))) +
  theme +
  theme(text = element_text(size = 8.5))
x4_plot <- ggplot() +
  geom_point(aes(x = preds_x4, y = res_x4), alpha = 0.01) +
  ylab("Residual") +
  scale_x_continuous(name = expression(paste("Linear Predictor (", X[4], ")"))) +
```

```
theme(text = element_text(size = 8))
x5_plot <- ggplot() +
  geom_point(aes(x = preds_x5, y = res_x5), alpha = 0.01) +
  ylab("Residual") +
  scale_x_continuous(name = expression(paste("Linear Predictor (", X[5], ")"))) +
  theme +
  theme(text = element_text(size = 8))
x6_plot <- ggplot() +
  geom_point(aes(x = preds_x6, y = res_x6), alpha = 0.01) +
  ylab("Residual") +
  scale_x_continuous(name = expression(paste("Linear Predictor (", X[6], ")"))) +
  theme(text = element_text(size = 8))
# combine
ggarrange(dens_x1, x1_plot,
          dens_x2, x2_plot,
          dens_x3, x3_plot,
          dens_x4, x4_plot,
          dens_x5, x5_plot,
          dens_x6, x6_plot,
          labels = c("A)", "B)", "C)", "D)", "E)", "F)",
                     "G)", "H)", "I)", "J)", "K)", "L)"),
          nrow = 6, ncol = 2,
          font.label = list(size = 10))
# save plot
ggsave("figs/fig1.tiff", width = 7, height = 7)
```

Stabilized Inverse Probability Weight Assessments

```
# make dataframe that gives the mean IPW weights for each simulation
# (will then take mean, min, and max of those)
mean_wts <- df %>%
  select(i, x1_ols_wts:x6_olr_wts) %>%
 group by(i) %>%
  summarise(x1_ols_wts = mean(x1_ols_wts),
            x1_cbgps_wts = mean(x1_cbgps_wts),
            x1_npcbgps_wts = mean(x1_npcbgps_wts),
            x1_qb10_wts = mean(x1_qb10_wts),
            x1_qb15_wts = mean(x1_qb15_wts),
            x1_qb20_wts = mean(x1_qb20_wts),
            x1_olr_wts = mean(x1_olr_wts),
            x2_ols_wts = mean(x2_ols_wts),
            x2_cbgps_wts = mean(x2_cbgps_wts),
            x2_npcbgps_wts = mean(x2_npcbgps_wts),
            x2_qb10_wts = mean(x2_qb10_wts),
            x2_qb15_wts = mean(x2_qb15_wts),
            x2_qb20_wts = mean(x2_qb20_wts),
```

```
x2_olr_wts = mean(x2_olr_wts),
            x3_ols_wts = mean(x3_ols_wts),
            x3_cbgps_wts = mean(x3_cbgps_wts),
            x3_npcbgps_wts = mean(x3_npcbgps_wts),
            x3_qb10_wts = mean(x3_qb10_wts),
            x3_qb15_wts = mean(x3_qb15_wts),
            x3_qb20_wts = mean(x3_qb20_wts),
            x3 olr wts = mean(x3 olr wts),
            x4_ols_wts = mean(x4_ols_wts),
            x4 cbgps wts = mean(x4 cbgps wts),
            x4_npcbgps_wts = mean(x4_npcbgps_wts),
            x4_olr_wts = mean(x4_olr_wts),
            x5_ols_wts = mean(x5_ols_wts),
            x5_cbgps_wts = mean(x5_cbgps_wts),
            x5_npcbgps_wts = mean(x5_npcbgps_wts),
            x5_{olr_wts} = mean(x5_{olr_wts}),
            x6_{ols_wts} = mean(x6_{ols_wts}),
            x6_cbgps_wts = mean(x6_cbgps_wts),
            x6\_npcbgps\_wts = mean(x6\_npcbgps\_wts),
            x6_olr_wts = mean(x6_olr_wts))
# have to get mean (min, max) of weights from different exposure scenarios
tab2 <- tibble(Method = c("Ordinary least squares",</pre>
                          "Covariate balancing generalized propensity score",
                          "Non-parametric covariate balancing generalized propensity score",
                          "Quantile binning categories",
                          "10".
                          "15",
                          "20",
                          "Ordinal logistic regression"),
               `Mean (min, max)` = c(paste0(round(mean(mean_wts$x1_ols_wts), 2), " (",
                                            round(min(mean_wts$x1_ols_wts), 2), ", ",
                                            round(max(mean_wts$x1_ols_wts), 2), ")"),
                                     paste0(round(mean_wts$x1_cbgps_wts), 2), " (",
                                            round(min(mean_wts$x1_cbgps_wts), 2), ", ",
                                            round(max(mean_wts$x1_cbgps_wts), 2), ")"),
                                     paste0(round(mean(mean_wts$x1_npcbgps_wts), 2), " (",
                                            round(min(mean_wts$x1_npcbgps_wts), 2), ", ",
                                            round(max(mean_wts$x1_npcbgps_wts), 2), ")"),
                                     NA,
                                     paste0(round(mean(mean_wts$x1_qb10_wts), 2), " (",
                                            round(min(mean_wts$x1_qb10_wts), 2), ", ",
                                            round(max(mean_wts$x1_qb10_wts), 2), ")"),
                                     paste0(round(mean(mean_wts$x1_qb15_wts), 2), " (",
                                            round(min(mean_wts$x1_qb15_wts), 2), ", ",
                                            round(max(mean_wts$x1_qb15_wts), 2), ")"),
                                     pasteO(round(mean_wts$x1_qb20_wts), 2), " (",
                                            round(min(mean_wts$x1_qb20_wts), 2), ", ",
                                            round(max(mean_wts$x1_qb20_wts), 2), ")"),
                                     paste0(round(mean_wts$x1_olr_wts), 2), " (",
                                            round(min(mean_wts$x1_olr_wts), 2), ", ",
                                            round(max(mean_wts$x1_olr_wts), 2), ")")),
               `Mean (min, max) ` = c(paste0(round(mean(mean_wts$x2_ols_wts), 2), " (",
```

```
round(min(mean_wts$x2_ols_wts), 2), ", ",
                             round(max(mean_wts$x2_ols_wts), 2), ")"),
                      paste0(round(mean_wts$x2_cbgps_wts), 2), " (",
                             round(min(mean_wts$x2_cbgps_wts), 2), ", ",
                             round(max(mean_wts$x2_cbgps_wts), 2), ")"),
                      paste0(round(mean_wts$x2_npcbgps_wts), 2), " (",
                             round(min(mean_wts$x2_npcbgps_wts), 2), ", ",
                             round(max(mean_wts$x2_npcbgps_wts), 2), ")"),
                      NA,
                      paste0(round(mean(mean_wts$x2_qb10_wts), 2), " (",
                             round(min(mean_wts$x2_qb10_wts), 2), ", ",
                             round(max(mean_wts$x2_qb10_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x2_qb15_wts), 2), " (",
                             round(min(mean_wts$x2_qb15_wts), 2), ", ",
                             round(max(mean_wts$x2_qb15_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x2_qb20_wts), 2), " (",
                             round(min(mean_wts$x2_qb20_wts), 2), ", ",
                             round(max(mean_wts$x2_qb20_wts), 2), ")"),
                      paste0(round(mean_wts$x2_olr_wts), 2), " (",
                             round(min(mean_wts$x2_olr_wts), 2), ", ",
                             round(max(mean_wts$x2_olr_wts), 2), ")")),
`Mean (min, max) ` = c(paste0(round(mean(mean_wts$x3_ols_wts), 2), " (",
                             round(min(mean_wts$x3_ols_wts), 2), ", ",
                             round(max(mean_wts$x3_ols_wts), 2), ")"),
                      paste0(round(mean_wts$x3_cbgps_wts), 2), " (",
                             round(min(mean_wts$x3_cbgps_wts), 2), ", ",
                             round(max(mean_wts$x3_cbgps_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x3_npcbgps_wts), 2), " (",
                             round(min(mean_wts$x3_npcbgps_wts), 2), ", ",
                             round(max(mean_wts$x3_npcbgps_wts), 2), ")"),
                      NA,
                      paste0(round(mean(mean_wts$x3_qb10_wts), 2), " (",
                             round(min(mean_wts$x3_qb10_wts), 2), ", ",
                             round(max(mean_wts$x3_qb10_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x3_qb15_wts), 2), " (",
                             round(min(mean_wts$x3_qb15_wts), 2), ", ",
                             round(max(mean_wts$x3_qb15_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x3_qb20_wts), 2), " (",
                             round(min(mean_wts$x3_qb20_wts), 2), ", ",
                             round(max(mean_wts$x3_qb20_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x3_olr_wts), 2), " (",
                             round(min(mean_wts$x3_olr_wts), 2), ", ",
                             round(max(mean_wts$x3_olr_wts), 2), ")")),
'Mean (min, max)
                    = c(paste0(round(mean(df$x4_ols_wts), 2), " (",
                             round(min(df$x4_ols_wts), 2), ", ",
                             round(max(df$x4_ols_wts), 2), ")"),
                      pasteO(round(mean(df$x4_cbgps_wts), 2), " (",
                             round(min(df$x4_cbgps_wts), 2), ", ",
                             round(max(df$x4_cbgps_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x4_npcbgps_wts), 2), " (",
                             round(min(mean_wts$x4_npcbgps_wts), 2), ", ",
                             round(max(mean_wts$x4_npcbgps_wts), 2), ")"),
                      NA,
```

```
NA,
                      NA,
                      NA,
                      pasteO(round(mean(df$x4_olr_wts), 2), " (",
                             round(min(df$x4_olr_wts), 2), ", ",
                             round(max(df$x4_olr_wts), 2), ")")),
'Mean (min, max)
                    = c(paste0(round(mean(df$x5_ols_wts), 2), " (",
                             round(min(df$x5_ols_wts), 2), ", ",
                             round(max(df$x5_ols_wts), 2), ")"),
                      paste0(round(mean(df$x5_cbgps_wts), 2), " (",
                             round(min(df$x5_cbgps_wts), 2), ", ",
                             round(max(df$x5_cbgps_wts), 2), ")"),
                      paste0(round(mean(mean_wts$x5_npcbgps_wts), 2), " (",
                             round(min(mean_wts$x5_npcbgps_wts), 2), ", ",
                             round(max(mean_wts$x5_npcbgps_wts), 2), ")"),
                      NA,
                      NA,
                      NA,
                      NA,
                      pasteO(round(mean(df$x5_olr_wts), 2), " (",
                             round(min(df$x5_olr_wts), 2), ", ",
                             round(max(df$x5_olr_wts), 2), ")")),
'Mean (min, max)
                     = c(paste0(round(mean(df$x6_ols_wts), 2), " (",
                             round(min(df$x6_ols_wts), 2), ", ",
                             round(max(df$x6_ols_wts), 2), ")"),
                      pasteO(round(mean(df$x6_cbgps_wts), 2), " (",
                             round(min(df$x6_cbgps_wts), 2), ", ",
                             round(max(df$x6_cbgps_wts), 2), ")"),
                      pasteO(round(mean_wts$x6_npcbgps_wts), 2), " (",
                             round(min(mean_wts$x6_npcbgps_wts), 2), ", ",
                             round(max(mean_wts$x6_npcbgps_wts), 2), ")"),
                      NA,
                      NA,
                      NA,
                      pasteO(round(mean(df$x6_olr_wts), 2), " (",
                             round(min(df$x6_olr_wts), 2), ", ",
                             round(max(df$x6_olr_wts), 2), ")"))
```

Covariate Balance

```
# will need to calculate number of covariates with correlation greated than 0.1 in all exposure scenari
# start with a function (ignore QB for now)

covbal_func <- function(data){
    # simulation number
    i <- data$i[1]

# start with formulas for different exposures
    x1_formula <- formula(x1 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
    x2_formula <- formula(x2 ~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 + parity5)</pre>
```

```
x3_formula <- formula(x3 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
x4_formula <- formula(x4 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
x5_formula <- formula(x6 ~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 + parity5)
x6_formula <- formula(x6 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
# now calculate balance
bal_tab_x1 <- bal.tab(x1_formula, data = data,</pre>
      weights = list(OLS = "x1_ols_wts",
                     CBGPS = "x1_cbgps_wts",
                     NPCGPS = "x1_npcbgps_wts",
                     CPM = "x1_olr_wts"),
      stats = c("c"),
      un = TRUE, thresholds = c(cor = .1))
bal_tab_x2 <- bal.tab(x2_formula, data = data,</pre>
      weights = list(OLS = "x2_ols_wts",
                     CBGPS = "x2_cbgps_wts",
                     NPCGPS = "x2_npcbgps_wts",
                     CPM = "x2_olr_wts"),
      stats = c("c"),
      un = TRUE, thresholds = c(cor = .1))
bal_tab_x3 <- bal.tab(x3_formula, data = data,</pre>
      weights = list(OLS = "x3_ols_wts",
                     CBGPS = "x3_cbgps_wts",
                     NPCGPS = "x3_npcbgps_wts",
                     CPM = "x3_olr_wts"),
      stats = c("c"),
      un = TRUE, thresholds = c(cor = .1))
bal_tab_x4 <- bal.tab(x4_formula, data = data,</pre>
      weights = list(OLS = "x4_ols_wts",
                     CBGPS = "x4_cbgps_wts",
                     NPCGPS = "x4_npcbgps_wts",
                     CPM = "x4_olr_wts"),
      stats = c("c"),
      un = TRUE, thresholds = c(cor = .1))
bal_tab_x5 <- bal.tab(x5_formula, data = data,</pre>
      weights = list(OLS = "x5_ols_wts",
                     CBGPS = "x5_cbgps_wts",
                     NPCGPS = "x5_npcbgps_wts",
                     CPM = "x5_olr_wts"),
      stats = c("c"),
      un = TRUE, thresholds = c(cor = .1))
bal_tab_x6 <- bal.tab(x6_formula, data = data,</pre>
      weights = list(OLS = "x6_ols_wts",
                     CBGPS = "x6_cbgps_wts",
                     NPCGPS = "x6_npcbgps_wts",
                     CPM = "x6_olr_wts"),
      stats = c("c"),
      un = TRUE, thresholds = c(cor = .1))
# now calculate quantile binning correlations
# qb10
x1_qb10form <- formula(x1_qb10 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
```

```
x2_qb10form <- formula(x2_qb10 ~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 + parity5)
x3_qb10form <- formula(x3_qb10 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
bal_tab_x1_qb10 <- bal.tab(x1_qb10form, data = data, weights = "x1_qb10_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
bal_tab_x2_qb10 <- bal.tab(x2_qb10form, data = data, weights = "x2_qb10_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
bal tab x3 qb10 <- bal.tab(x3 qb10form, data = data, weights = "x3 qb10 wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
# qb15
x1_qb15form <- formula(x1_qb15 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)</pre>
x2_qb15form <- formula(x2_qb15 ~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 + parity5)
x3_qb15form <- formula(x3_qb15 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
bal_tab_x1_qb15 <- bal.tab(x1_qb15form, data = data, weights = "x1_qb15_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
bal_tab_x2_qb15 <- bal.tab(x2_qb15form, data = data, weights = "x2_qb15_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
bal_tab_x3_qb15 <- bal.tab(x3_qb15form, data = data, weights = "x3_qb15_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
# qb20
x1_qb20form <- formula(x1_qb20 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)</pre>
x2_qb20form <- formula(x2_qb20 ~ mage_g + page + mage_g*page + parity2 + parity3 + parity4 + parity5)
x3_qb20form <- formula(x3_qb20 ~ mage + page + mage*page + parity2 + parity3 + parity4 + parity5)
bal_tab_x1_qb20 <- bal.tab(x1_qb20form, data = data, weights = "x1_qb20_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
bal_tab_x2_qb20 <- bal.tab(x2_qb20form, data = data, weights = "x2_qb20_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
bal_tab_x3_qb20 <- bal.tab(x3_qb20form, data = data, weights = "x3_qb20_wts", stats = c("c"),
                           un = TRUE, thresholds = c(cor = .1))
# now combine into output dataframe
data_frame(i,
           x1_uw = sum(bal_tab_x1$Balance$Corr.Un < 0.1),</pre>
           x1 ols = bal tab x1$Balanced.correlations[2, 1],
           x1_cbgps = bal_tab_x1$Balanced.correlations[2, 2],
           x1_npcbgps = bal_tab_x1$Balanced.correlations[2, 3],
           x1_qb10 = bal_tab_x1_qb10$Balanced.correlations[2, 1],
           x1_qb15 = bal_tab_x1_qb15$Balanced.correlations[2, 1],
           x1_qb20 = bal_tab_x1_qb20$Balanced.correlations[2, 1],
           x1 olr = bal tab x1$Balanced.correlations[2, 4],
           x2_uw = sum(bal_tab_x2$Balance$Corr.Un < 0.1),</pre>
           x2_ols = bal_tab_x2$Balanced.correlations[2, 1],
           x2_cbgps = bal_tab_x2$Balanced.correlations[2, 2],
           x2_npcbgps = bal_tab_x2$Balanced.correlations[2, 3],
           x2_qb10 = bal_tab_x2_qb10$Balanced.correlations[2, 1],
           x2_qb15 = bal_tab_x2_qb15$Balanced.correlations[2, 1],
           x2_qb20 = bal_tab_x2_qb20$Balanced.correlations[2, 1],
           x2_olr = bal_tab_x2$Balanced.correlations[2, 4],
           x3_uw = sum(bal_tab_x3$Balance$Corr.Un < 0.1),</pre>
```

```
x3_ols = bal_tab_x3$Balanced.correlations[2, 1],
             x3_cbgps = bal_tab_x3$Balanced.correlations[2, 2],
             x3_npcbgps = bal_tab_x3$Balanced.correlations[2, 3],
             x3_qb10 = bal_tab_x3_qb10$Balanced.correlations[2, 1],
             x3_qb15 = bal_tab_x3_qb15$Balanced.correlations[2, 1],
             x3_qb20 = bal_tab_x3_qb20$Balanced.correlations[2, 1],
             x3_olr = bal_tab_x3$Balanced.correlations[2, 4],
             x4_uw = sum(bal_tab_x4$Balance$Corr.Un < 0.1),</pre>
             x4_ols = bal_tab_x4$Balanced.correlations[2, 1],
             x4_cbgps = bal_tab_x4$Balanced.correlations[2, 2],
             x4_npcbgps = bal_tab_x4$Balanced.correlations[2, 3],
             x4_qb10 = NA,
             x4 \text{ qb15} = NA,
             x4_qb20 = NA,
             x4_olr = bal_tab_x4$Balanced.correlations[2, 4],
             x5_uw = sum(bal_tab_x5$Balance$Corr.Un < 0.1),</pre>
             x5_ols = bal_tab_x5$Balanced.correlations[2, 1],
             x5_cbgps = bal_tab_x5$Balanced.correlations[2, 2],
             x5_npcbgps = bal_tab_x5$Balanced.correlations[2, 3],
             x5_qb10 = NA,
             x5_qb15 = NA,
             x5_qb20 = NA,
             x5_olr = bal_tab_x5$Balanced.correlations[2, 4],
             x6_uw = sum(bal_tab_x6$Balance$Corr.Un < 0.1),</pre>
             x6 ols = bal tab x6$Balanced.correlations[2, 1],
             x6 \text{ cbgps} = bal tab x6\$Balanced.correlations[2, 2],
             x6_npcbgps = bal_tab_x6$Balanced.correlations[2, 3],
             x6_qb10 = NA,
             x6_qb15 = NA,
             x6_qb20 = NA,
             x6_olr = bal_tab_x6$Balanced.correlations[2, 4])
}
# # get covariate balance across all simulations
\# covbal \leftarrow map\_df(sims[1:10], \sim covbal\_func(.x))
# run in parallel with furrr
plan(multisession, workers = 7)
covbal <- future_map_dfr(sims, ~ covbal_func(.x))</pre>
# save
Save(covbal)
# load covbal
Load(covbal)
# now make table of mean squared error, which is the mean of the squared biases (or errors)
covbal_tab <- tibble(Method = c("Unweighted",</pre>
                                 "Ordinary least squares",
                           "Covariate balancing generalized propensity score",
                           "Non-parametric covariate balancing generalized propensity score",
                           "Quantile binning categories",
                           "10",
                           "15",
```

```
"Ordinal logistic regression"),
`Mean (min, max)` = c(paste0(round(mean(covbal$x1_uw), 2), " (",
                             min(covbal$x1_uw), ", ",
                             max(covbal$x1_uw), ")"),
                      paste0(round(mean(covbal$x1_ols), 2), " (",
                             min(covbal$x1_ols), ", ",
                             max(covbal$x1_ols), ")"),
                      pasteO(round(mean(covbal$x1_cbgps), 2), " (",
                             min(covbal$x1_cbgps), ", ",
                             max(covbal$x1_cbgps), ")"),
                      pasteO(round(mean(covbal$x1_npcbgps), 2), " (",
                             min(covbal$x1_npcbgps), ", ",
                             max(covbal$x1_npcbgps), ")"),
                      NA,
                      paste0(round(mean(covbal$x1_qb10), 2), " (",
                             min(covbal$x1_qb10), ", ",
                             max(covbal$x1_qb10), ")"),
                      pasteO(round(mean(covbal$x1_qb15), 2), " (",
                             min(covbal$x1_qb15), ", ",
                             max(covbal$x1_qb15), ")"),
                      paste0(round(mean(covbal$x1_qb20), 2), " (",
                             min(covbal$x1_qb20), ", ",
                             max(covbal$x1_qb20), ")"),
                      pasteO(round(mean(covbal$x1_olr), 2), " (",
                             min(covbal$x1_olr), ", ",
                             max(covbal$x1_olr), ")")),
`Mean (min, max) ` = c(pasteO(round(mean(covbal$x2_uw), 2), " (",
                             min(covbal$x2_uw), ", ",
                             max(covbal$x2_uw), ")"),
                      pasteO(round(mean(covbal$x2_ols), 2), " (",
                             min(covbal$x2_ols), ", ",
                             max(covbal$x2_ols), ")"),
                      paste0(round(mean(covbal$x2_cbgps), 2), " (",
                             min(covbal$x2_cbgps), ", ",
                             max(covbal$x2_cbgps), ")"),
                      paste0(round(mean(covbal$x2_npcbgps), 2), " (",
                             min(covbal$x2_npcbgps), ", ",
                             max(covbal$x2_npcbgps), ")"),
                      NA,
                      paste0(round(mean(covbal$x2_qb10), 2), " (",
                             min(covbal$x2_qb10), ", ",
                             max(covbal$x2_qb10), ")"),
                      pasteO(round(mean(covbal$x2_qb15), 2), " (",
                             min(covbal$x2_qb15), ", ",
                             max(covbal$x2_qb15), ")"),
                      paste0(round(mean(covbal$x2_qb20), 2), " (",
                             min(covbal$x2_qb20), ", ",
                             max(covbal$x2_qb20), ")"),
                      paste0(round(mean(covbal$x2_olr), 2), " (",
                             min(covbal$x2_olr), ", ",
                             max(covbal$x2_olr), ")")),
`Mean (min, max) ` = c(pasteO(round(mean(covbal$x3_uw), 2), " (",
```

```
min(covbal$x3_uw), ", ",
                             max(covbal$x3_uw), ")"),
                      pasteO(round(mean(covbal$x3_ols), 2), " (",
                             min(covbal$x3_ols), ", ",
                             max(covbal$x3_ols), ")"),
                      pasteO(round(mean(covbal$x3_cbgps), 2), " (",
                             min(covbal$x3_cbgps), ", ",
                             max(covbal$x3_cbgps), ")"),
                      paste0(round(mean(covbal$x3_npcbgps), 2), " (",
                             min(covbal$x3_npcbgps), ", ",
                             max(covbal$x3_npcbgps), ")"),
                      NA,
                      paste0(round(mean(covbal$x3 qb10), 2), " (",
                             min(covbal$x3_qb10), ", ",
                             max(covbal$x3_qb10), ")"),
                      paste0(round(mean(covbal$x3_qb15), 2), " (",
                             min(covbal$x3_qb15), ", ",
                             max(covbal$x3_qb15), ")"),
                      paste0(round(mean(covbal$x3_qb20), 2), " (",
                             min(covbal$x3_qb20), ", ",
                             max(covbal$x3_qb20), ")"),
                      pasteO(round(mean(covbal$x3_olr), 2), " (",
                             min(covbal$x3_olr), ", ",
                             max(covbal$x3_olr), ")")),
'Mean (min, max)
                     = c(paste0(round(mean(covbal$x4_uw), 2), " (",
                             min(covbal$x4_uw), ", ",
                             max(covbal$x4_uw), ")"),
                         paste0(round(mean(covbal$x4_ols), 2), " (",
                             min(covbal$x4_ols), ", ",
                             max(covbal$x4_ols), ")"),
                      paste0(round(mean(covbal$x4_cbgps), 2), " (",
                             min(covbal$x4_cbgps), ", ",
                             max(covbal$x4_cbgps), ")"),
                      pasteO(round(mean(covbal$x4_npcbgps), 2), " (",
                             min(covbal$x4_npcbgps), ", ",
                             max(covbal$x4_npcbgps), ")"),
                      NA,
                      NA,
                      NA,
                      pasteO(round(mean(covbal$x4_olr), 2), " (",
                             min(covbal$x4_olr), ", ",
                             max(covbal$x4_olr), ")")),
'Mean (min, max)
                    = c(paste0(round(mean(covbal$x5_uw), 2), " (",
                             min(covbal$x5_uw), ", ",
                             max(covbal$x5_uw), ")"),
                          pasteO(round(mean(covbal$x5_ols), 2), " (",
                             min(covbal$x5_ols), ", ",
                             max(covbal$x5_ols), ")"),
                      paste0(round(mean(covbal$x5_cbgps), 2), " (",
                             min(covbal$x5_cbgps), ", ",
                             max(covbal$x5_cbgps), ")"),
                      pasteO(round(mean(covbal$x5_npcbgps), 2), " (",
```

```
min(covbal$x5_npcbgps), ", ",
                             max(covbal$x5_npcbgps), ")"),
                      NA,
                      NA,
                      NA,
                      NA,
                      pasteO(round(mean(covbal$x5_olr), 2), " (",
                             min(covbal$x5_olr), ", ",
                             max(covbal$x5_olr), ")")),
'Mean (min, max)
                     = c(paste0(round(mean(covbal$x6_uw), 2), " (",
                             min(covbal$x6_uw), ", ",
                             max(covbal$x6_uw), ")"),
                           pasteO(round(mean(covbal$x6_ols), 2), " (",
                             min(covbal$x6_ols), ", ",
                             max(covbal$x6_ols), ")"),
                      pasteO(round(mean(covbal$x6_cbgps), 2), " (",
                             min(covbal$x6_cbgps), ", ",
                             max(covbal$x6_cbgps), ")"),
                      pasteO(round(mean(covbal$x6_npcbgps), 2), " (",
                             min(covbal$x6_npcbgps), ", ",
                             max(covbal$x6_npcbgps), ")"),
                      NA,
                      NA,
                      NA,
                      NA,
                      paste0(round(mean(covbal$x6_olr), 2), " (",
                             min(covbal$x6_olr), ", ",
                             max(covbal$x6_olr), ")"))
```

Table 2 - Inverse Probability Weight and Covariate Balance Distributions [Mean (Min, Max) Version]

```
fin_tab1 <- tibble(Method = c("Unweighted",</pre>
                               "Stabilized weight",
                               "Unbalanced covariates",
                           "Ordinary least squares",
                           "Stabilized weight",
                               "Unbalanced covariates",
                           "Covariate balancing generalized propensity score",
                           "Stabilized weight",
                               "Unbalanced covariates",
                           "Non-parametric covariate balancing generalized propensity score",
                           "Stabilized weight",
                               "Unbalanced covariates",
                           "Quantile binning categories",
                           "10",
                           "Stabilized weight",
                               "Unbalanced covariates",
                           "15",
                           "Stabilized weight",
                               "Unbalanced covariates",
```

```
"20",
       "Stabilized weight",
           "Unbalanced covariates",
       "Ordinal logistic regression",
       "Stabilized weight",
           "Unbalanced covariates"),
`Mean (min, max)` = c(NA, NA, covbal_tab[1, 2],
                      NA, tab2[1, 2], covbal_tab[2, 2],
                      NA, tab2[2, 2], covbal_tab[3, 2],
                      NA, tab2[3, 2], covbal_tab[4, 2],
                      NA, tab2[5, 2], covbal_tab[6, 2],
                      NA, tab2[6, 2], covbal_tab[7, 2],
                      NA, tab2[7, 2], covbal_tab[8, 2],
                      NA, tab2[8, 2], covbal_tab[9, 2]),
`Mean (min, max)
                   = c(NA, NA, covbal_tab[1, 5],
                      NA, tab2[1, 5], covbal_tab[2, 5],
                      NA, tab2[2, 5], covbal_tab[3, 5],
                      NA, tab2[3, 5], covbal_tab[4, 5],
                      NA, tab2[5, 5], covbal_tab[6, 5],
                      NA, tab2[6, 5], covbal_tab[7, 5],
                      NA, tab2[7, 5], covbal_tab[8, 5],
                      NA, tab2[8, 5], covbal_tab[9, 5]),
`Mean (min, max)
                   = c(NA, NA, covbal_tab[1, 3],
                      NA, tab2[1, 3], covbal_tab[2, 3],
                      NA, tab2[2, 3], covbal_tab[3, 3],
                      NA, tab2[3, 3], covbal_tab[4, 3],
                      NA, tab2[5, 3], covbal_tab[6, 3],
                      NA, tab2[6, 3], covbal_tab[7, 3],
                      NA, tab2[7, 3], covbal_tab[8, 3],
                      NA, tab2[8, 3], covbal_tab[9, 3]),
'Mean (min, max)
                      = c(NA, NA, covbal_tab[1, 6],
                      NA, tab2[1, 6], covbal_tab[2, 6],
                      NA, tab2[2, 6], covbal_tab[3, 6],
                      NA, tab2[3, 6], covbal_tab[4, 6],
                      NA, tab2[5, 6], covbal_tab[6, 6],
                      NA, tab2[6, 6], covbal_tab[7, 6],
                      NA, tab2[7, 6], covbal_tab[8, 6],
                      NA, tab2[8, 6], covbal_tab[9, 6]),
'Mean (min, max)
                    = c(NA, NA, covbal_tab[1, 4],
                      NA, tab2[1, 4], covbal_tab[2, 4],
                      NA, tab2[2, 4], covbal_tab[3, 4],
                      NA, tab2[3, 4], covbal_tab[4, 4],
                      NA,
                      NA, tab2[5, 4], covbal_tab[6, 4],
                      NA, tab2[6, 4], covbal_tab[7, 4],
                      NA, tab2[7, 4], covbal_tab[8, 4],
                      NA, tab2[8, 4], covbal_tab[9, 4]),
'Mean (min, max)
                     = c(NA, NA, covbal_tab[1, 7],
                      NA, tab2[1, 7], covbal_tab[2, 7],
```

```
NA, tab2[2, 7], covbal_tab[3, 7],
                                         NA, tab2[3, 7], covbal_tab[4, 7],
                                         NA,
                                         NA, tab2[5, 7], covbal_tab[6, 7],
                                         NA, tab2[6, 7], covbal_tab[7, 7],
                                         NA, tab2[7, 7], covbal_tab[8, 7],
                                         NA, tab2[8, 7], covbal_tab[9, 7]))
kable(fin_tab1) %>%
  kable_classic(html_font = "Arial", full_width = FALSE) %>%
  add_header_above(c("Exposure", "X1" = 1, "X4" = 1, "X2" = 1, "X5" = 1,
                     "X3" = 1, "X6" = 1), bold = TRUE) \%%
  add_header_above(c("Marginally", "Normal" = 2, "Non-Normal" = 2,
                     "Non-Normal" = 2), bold = TRUE) %>%
  add_header_above(c("Conditionally", "Normal" = 2, "Normal" = 2,
                     "Non-Normal" = 2), bold = TRUE) %>%
  add_indent(c(2:3, 5:6, 8:9, 11:12, 14:22, 24:25)) %>%
  add_indent(c(2:3, 5:6, 8:9, 11:12, 15:16, 18:19, 21:22, 24:25))
```

Assessment of Bias

Calculating Bias and Mean Squared Error

```
# will need to calculate all weights using x1 and x2 for each
  # simulated dataset with weighted lrm models
# then calculate bias for exposure coefficient versus truth
# create deciles quantiles for each Austin approach
x1_quants \leftarrow map_dbl(seq(0.1, 0.9, 0.1), \sim quantile(df$x1, .x))
x2_{quants} \leftarrow map_{dbl(seq(0.1, 0.9, 0.1), \sim quantile(df$x2, .x))}
x3_{quants} \leftarrow map_{dbl(seq(0.1, 0.9, 0.1), \sim quantile(df$x3, .x))}
x4_quants \leftarrow map_dbl(seq(0.1, 0.9, 0.1), \sim quantile(df$x4, .x))
x5_quants <- map_dbl(seq(0.1, 0.9, 0.1), ~ quantile(df$x5, .x))
x6_{quants} \leftarrow map_{dbl}(seq(0.1, 0.9, 0.1), \sim quantile(df$x6, .x))
# function to get list of biases via msm approach and Austin approaches
bias_func <- function(data){</pre>
  # simulation number
  i <- data$i[1]
  # bias via the Marginal Structural Model Approach
  # generate weighted models
  # unweighted comparison
  x1_uw \leftarrow lrm(y1 \sim x1, data = data)
  x2_uw \leftarrow lrm(y2 \sim x2, data = data)
```

```
x3_uw \leftarrow lrm(y3 \sim x3, data = data)
x4_uw \leftarrow lrm(y4 \sim x4, data = data)
x5_uw \leftarrow lrm(y5 \sim x5, data = data)
x6_uw \leftarrow lrm(y6 \sim x6, data = data)
# ols
d_ols_x1 <- svydesign(~1, weights = data$x1_ols_wts, data = data)</pre>
x1 ols <- svyglm(y1 ~ x1, design = d ols x1, family = binomial)
d_ols_x2 <- svydesign(~1, weights = data$x2_ols_wts, data = data)</pre>
x2_ols <- svyglm(y2 ~ x2, design = d_ols_x2, family = binomial)</pre>
d_ols_x3 <- svydesign(~1, weights = data$x3_ols_wts, data = data)</pre>
x3_ols <- svyglm(y3 ~ x3, design = d_ols_x3, family = binomial)</pre>
d_ols_x4 <- svydesign(~1, weights = data$x4_ols_wts, data = data)</pre>
x4_ols <- svyglm(y4 ~ x4, design = d_ols_x4, family = binomial)
d_ols_x5 <- svydesign(~1, weights = data$x5_ols_wts, data = data)</pre>
x5_ols <- svyglm(y5 ~ x5, design = d_ols_x5, family = binomial)
d_ols_x6 <- svydesign(~1, weights = data$x6_ols_wts, data = data)</pre>
x6_ols <- svyglm(y6 ~ x6, design = d_ols_x6, family = binomial)</pre>
# cbqps
d_cbgps_x1 <- svydesign(~1, weights = data$x1_cbgps_wts, data = data)</pre>
x1_cbgps <- svyglm(y1 ~ x1, design = d_cbgps_x1, family = binomial)</pre>
d_cbgps_x2 <- svydesign(~1, weights = data$x2_cbgps_wts, data = data)</pre>
x2_cbgps <- svyglm(y2 ~ x2, design = d_cbgps_x2, family = binomial)</pre>
d_cbgps_x3 <- svydesign(~1, weights = data$x3_cbgps_wts, data = data)</pre>
x3_cbgps <- svyglm(y3 ~ x3, design = d_cbgps_x3, family = binomial)</pre>
d cbgps x4 <- svydesign(~1, weights = data$x4 cbgps wts, data = data)</pre>
x4_cbgps <- svyglm(y4 ~ x4, design = d_cbgps_x4, family = binomial)</pre>
d_cbgps_x5 <- svydesign(~1, weights = data$x5_cbgps_wts, data = data)</pre>
x5_cbgps <- svyglm(y5 ~ x5, design = d_cbgps_x5, family = binomial)</pre>
d_cbgps_x6 <- svydesign(~1, weights = data$x6_cbgps_wts, data = data)</pre>
x6_cbgps <- svyglm(y6 ~ x6, design = d_cbgps_x6, family = binomial)
# npcbqps
d_npcbgps_x1 <- svydesign(~1, weights = data$x1_npcbgps_wts, data = data)</pre>
x1_npcbgps <- svyglm(y1 ~ x1, design = d_npcbgps_x1, family = binomial)
d_npcbgps_x2 <- svydesign(~1, weights = data$x2_npcbgps_wts, data = data)</pre>
x2_npcbgps <- svyglm(y2 ~ x2, design = d_npcbgps_x2, family = binomial)</pre>
d_npcbgps_x3 <- svydesign(~1, weights = data$x3_npcbgps_wts, data = data)</pre>
x3_npcbgps <- svyglm(y3 ~ x3, design = d_npcbgps_x3, family = binomial)
d_npcbgps_x4 <- svydesign(~1, weights = data$x4_npcbgps_wts, data = data)</pre>
x4_npcbgps <- svyglm(y4 ~ x4, design = d_npcbgps_x4, family = binomial)</pre>
d npcbgps x5 <- svydesign(~1, weights = data$x5 npcbgps wts, data = data)</pre>
x5_npcbgps <- svyglm(y5 ~ x5, design = d_npcbgps_x5, family = binomial)
d_npcbgps_x6 <- svydesign(~1, weights = data$x6_npcbgps_wts, data = data)</pre>
x6_npcbgps <- svyglm(y6 ~ x6, design = d_npcbgps_x6, family = binomial)
# qb10
d_qb10_x1 <- svydesign(~1, weights = data$x1_qb10_wts, data = data)</pre>
x1_qb10 <- svyglm(y1 ~ x1, design = d_qb10_x1, family = binomial)</pre>
d_qb10_x2 <- svydesign(~1, weights = data$x2_qb10_wts, data = data)</pre>
x2_qb10 <- svyglm(y2 ~ x2, design = d_qb10_x2, family = binomial)</pre>
d_qb10_x3 <- svydesign(~1, weights = data$x3_qb10_wts, data = data)</pre>
```

```
x3_qb10 <- svyglm(y3 ~ x3, design = d_qb10_x3, family = binomial)</pre>
# qb15
d_qb15_x1 <- svydesign(~1, weights = data$x1_qb15_wts, data = data)</pre>
x1_qb15 <- svyglm(y1 ~ x1, design = d_qb15_x1, family = binomial)</pre>
d_qb15_x2 <- svydesign(~1, weights = data$x2_qb15_wts, data = data)</pre>
x2_qb15 <- svyglm(y2 ~ x2, design = d_qb15_x2, family = binomial)</pre>
d_qb15_x3 <- svydesign(~1, weights = data$x3_qb15_wts, data = data)</pre>
x3_qb15 <- svyglm(y3 ~ x3, design = d_qb15_x3, family = binomial)
# qb20
d_qb20_x1 <- svydesign(~1, weights = data$x1_qb20_wts, data = data)</pre>
x1_qb20 <- svyglm(y1 ~ x1, design = d_qb20_x1, family = binomial)</pre>
d_qb20_x2 <- svydesign(~1, weights = data$x2_qb20_wts, data = data)</pre>
x2_qb20 <- svyglm(y2 ~ x2, design = d_qb20_x2, family = binomial)
d_qb20_x3 <- svydesign(~1, weights = data$x3_qb20_wts, data = data)</pre>
x3_qb20 <- svyglm(y3 ~ x3, design = d_qb20_x3, family = binomial)
# olr
d_olr_x1 <- svydesign(~1, weights = data$x1_olr_wts, data = data)</pre>
x1_olr <- svyglm(y1 ~ x1, design = d_olr_x1, family = binomial)</pre>
d_olr_x2 <- svydesign(~1, weights = data$x2_olr_wts, data = data)</pre>
x2_olr <- svyglm(y2 ~ x2, design = d_olr_x2, family = binomial)</pre>
d_olr_x3 <- svydesign(~1, weights = data$x3_olr_wts, data = data)</pre>
x3_olr <- svyglm(y3 ~ x3, design = d_olr_x3, family = binomial)</pre>
d_olr_x4 <- svydesign(~1, weights = data$x4_olr_wts, data = data)</pre>
x4 olr <- svyglm(y4 ~ x4, design = d olr x4, family = binomial)
d_olr_x5 <- svydesign(~1, weights = data$x5_olr_wts, data = data)</pre>
x5_olr <- svyglm(y5 ~ x5, design = d_olr_x5, family = binomial)</pre>
d_olr_x6 <- svydesign(~1, weights = data$x6_olr_wts, data = data)</pre>
x6_olr <- svyglm(y6 ~ x6, design = d_olr_x6, family = binomial)
# bias via the Marginal Structural Model Approach
# unweighted bias
x1_uw_bias <- true_x1 - x1_uw$coefficient[2]</pre>
x2_uw_bias <- true_x2 - x2_uw$coefficient[2]</pre>
x3_uw_bias <- true_x3 - x3_uw$coefficient[2]</pre>
x4_uw_bias <- true_x4 - x4_uw$coefficient[2]</pre>
x5_uw_bias <- true_x5 - x5_uw$coefficient[2]</pre>
x6_uw_bias <- true_x6 - x6_uw$coefficient[2]</pre>
# unweighted se
x1_uw_se <- sqrt(x1_uw$var[2,2])</pre>
x2_uw_se <- sqrt(x2_uw$var[2,2])</pre>
x3_uw_se <- sqrt(x3_uw$var[2,2])</pre>
x4_uw_se <- sqrt(x4_uw$var[2,2])</pre>
x5_uw_se <- sqrt(x5_uw$var[2,2])</pre>
x6_uw_se \leftarrow sqrt(x6_uwv_se[2,2])
# unweighted coverage
x1_uw_cov \leftarrow (true_x1 > (x1_uw\\coefficient[2] - (1.96 * x1_uw_se))) &
  (true_x1 < (x1_uw\$coefficient[2] + (1.96 * x1_uw_se)))
```

```
x2_uw_cov \leftarrow (true_x2 > (x2_uw\\coefficient[2] - (1.96 * x2_uw_se))) &
  (true x2 < (x2_uw\$coefficient[2] + (1.96 * x2_uw_se)))
x3_uw_cov \leftarrow (true_x3 > (x3_uw_coefficient[2] - (1.96 * x3_uw_se))) &
  (true_x3 < (x3_uw\$coefficient[2] + (1.96 * x3_uw_se)))
x4_uw_cov \leftarrow (true_x4 > (x4_uw\\coefficient[2] - (1.96 * x4_uw_se))) &
  (true_x4 < (x4_uw\$coefficient[2] + (1.96 * x4_uw_se)))
x5_uw_cov \leftarrow (true_x5 > (x5_uw\\coefficient[2] - (1.96 * x5_uw_se))) &
  (true x5 < (x5 uw\$coefficient[2] + (1.96 * x5 uw se)))
x6_uw_cov \leftarrow (true_x6 > (x6_uw\\cefficient[2] - (1.96 * x6_uw_se))) &
  (true_x6 < (x6_uw\$coefficient[2] + (1.96 * x6_uw_se)))
# ols
x1_ols_bias <- true_x1 - x1_ols$coefficient[2]</pre>
x2_ols_bias <- true_x2 - x2_ols$coefficient[2]</pre>
x3_ols_bias <- true_x3 - x3_ols$coefficient[2]</pre>
x4_ols_bias <- true_x4 - x4_ols$coefficient[2]</pre>
x5_ols_bias <- true_x5 - x5_ols$coefficient[2]</pre>
x6_ols_bias <- true_x6 - x6_ols$coefficient[2]</pre>
# ols se
x1_ols_se <- sqrt(x1_ols$cov.unscaled[2,2])</pre>
x2_ols_se <- sqrt(x2_ols$cov.unscaled[2,2])</pre>
x3_ols_se <- sqrt(x3_ols$cov.unscaled[2,2])</pre>
x4_ols_se <- sqrt(x4_ols$cov.unscaled[2,2])</pre>
x5 ols se <- sqrt(x5 ols$cov.unscaled[2,2])
x6_ols_se <- sqrt(x6_ols$cov.unscaled[2,2])</pre>
# ols coverage
x1_ols_cov \leftarrow (true_x1 > (x1_ols\\coefficient[2] - (1.96 * x1_ols_se))) &
  (true_x1 < (x1_ols\\coefficient[2] + (1.96 * x1_ols_se)))
x2_ols_cov \leftarrow (true_x2 > (x2_ols\\coefficient[2] - (1.96 * x2_ols_se))) &
  (true_x2 < (x2_ols\\coefficient[2] + (1.96 * x2_ols_se)))
x3_{ols}cov \leftarrow (true_x3 > (x3_{ols}coefficient[2] - (1.96 * x3_{ols}se))) &
  (true_x3 < (x3_ols\\coefficient[2] + (1.96 * x3_ols_se)))
x4_ols_cov \leftarrow (true_x4 > (x4_ols\\coefficient[2] - (1.96 * x4_ols_se))) &
  (true_x4 < (x4_ols\\coefficient[2] + (1.96 * x4_ols_se)))
x5_{ols}cov \leftarrow (true_x5 > (x5_{ols}coefficient[2] - (1.96 * x5_{ols}se))) &
  (true_x5 < (x5_ols\\coefficient[2] + (1.96 * x5_ols_se)))
x6_{ols}cov \leftarrow (true_x6 > (x6_{ols}coefficient[2] - (1.96 * x6_{ols}se))) &
  (true_x6 < (x6_ols\\coefficient[2] + (1.96 * x6_ols_se)))
# cbgps
x1_cbgps_bias <- true_x1 - x1_cbgps$coefficient[2]</pre>
x2_cbgps_bias <- true_x2 - x2_cbgps$coefficient[2]</pre>
x3_cbgps_bias <- true_x3 - x3_cbgps$coefficient[2]</pre>
x4_cbgps_bias <- true_x4 - x4_cbgps$coefficient[2]</pre>
x5_cbgps_bias <- true_x5 - x5_cbgps$coefficient[2]</pre>
x6_cbgps_bias <- true_x6 - x6_cbgps$coefficient[2]</pre>
# cbqps se
x1_cbgps_se <- sqrt(x1_cbgps$cov.unscaled[2,2])</pre>
x2_cbgps_se <- sqrt(x2_cbgps$cov.unscaled[2,2])</pre>
x3_cbgps_se <- sqrt(x3_cbgps$cov.unscaled[2,2])</pre>
```

```
x4_cbgps_se <- sqrt(x4_cbgps$cov.unscaled[2,2])</pre>
x5_cbgps_se <- sqrt(x5_cbgps$cov.unscaled[2,2])</pre>
x6_cbgps_se <- sqrt(x6_cbgps$cov.unscaled[2,2])</pre>
# cbqps coverage
x1_cbgps_cov <- (true_x1 > (x1_cbgps$coefficient[2] - (1.96 * x1_cbgps_se))) &
  (true_x1 < (x1_cbgps$coefficient[2] + (1.96 * x1_cbgps_se)))</pre>
x2 cbgps cov <- (true x2 > (x2 cbgps$coefficient[2] - (1.96 * x2 cbgps se))) &
  (true_x2 < (x2_cbgps$coefficient[2] + (1.96 * x2_cbgps_se)))</pre>
x3_cbgps_cov <- (true_x3 > (x3_cbgps$coefficient[2] - (1.96 * x3_cbgps_se))) &
  (true_x3 < (x3_cbgps$coefficient[2] + (1.96 * x3_cbgps_se)))</pre>
x4_cbgps_cov <- (true_x4 > (x4_cbgps$coefficient[2] - (1.96 * x4_cbgps_se))) &
  (true x4 < (x4 \text{ cbgps}\$\text{coefficient}[2] + (1.96 * x4 \text{ cbgps se})))
x5_cbgps_cov <- (true_x5 > (x5_cbgps$coefficient[2] - (1.96 * x5_cbgps_se))) &
  (true_x5 < (x5_cbgps$coefficient[2] + (1.96 * x5_cbgps_se)))</pre>
x6_cbgps_cov <- (true_x6 > (x6_cbgps$coefficient[2] - (1.96 * x6_cbgps_se))) &
  (true_x6 < (x6_cbgps$coefficient[2] + (1.96 * x6_cbgps_se)))</pre>
# npcbqps
x1_npcbgps_bias <- true_x1 - x1_npcbgps$coefficient[2]</pre>
x2_npcbgps_bias <- true_x2 - x2_npcbgps$coefficient[2]</pre>
x3_npcbgps_bias <- true_x3 - x3_npcbgps$coefficient[2]</pre>
x4_npcbgps_bias <- true_x4 - x4_npcbgps$coefficient[2]</pre>
x5_npcbgps_bias <- true_x5 - x5_npcbgps$coefficient[2]</pre>
x6_npcbgps_bias <- true_x6 - x6_npcbgps$coefficient[2]</pre>
# npcbqps se
x1_npcbgps_se <- sqrt(x1_npcbgps$cov.unscaled[2,2])</pre>
x2_npcbgps_se <- sqrt(x2_npcbgps$cov.unscaled[2,2])</pre>
x3_npcbgps_se <- sqrt(x3_npcbgps$cov.unscaled[2,2])</pre>
x4_npcbgps_se <- sqrt(x4_npcbgps$cov.unscaled[2,2])</pre>
x5_npcbgps_se <- sqrt(x5_npcbgps$cov.unscaled[2,2])</pre>
x6_npcbgps_se <- sqrt(x6_npcbgps$cov.unscaled[2,2])</pre>
# npcbgps coverage
x1_npcbgps_cov <- (true_x1 > (x1_npcbgps$coefficient[2] - (1.96 * x1_npcbgps_se))) &
  (true_x1 < (x1_npcbgps$coefficient[2] + (1.96 * x1_npcbgps_se)))</pre>
x2_npcbgps_cov <- (true_x2 > (x2_npcbgps$coefficient[2] - (1.96 * x2_npcbgps_se))) &
  (true_x2 < (x2_npcbgps$coefficient[2] + (1.96 * x2_npcbgps_se)))</pre>
x3_npcbgps_cov <- (true_x3 > (x3_npcbgps$coefficient[2] - (1.96 * x3_npcbgps_se))) &
  (true_x3 < (x3_npcbgps$coefficient[2] + (1.96 * x3_npcbgps_se)))</pre>
x4_npcbgps_cov <- (true_x4 > (x4_npcbgps$coefficient[2] - (1.96 * x4_npcbgps_se))) &
  (true_x4 < (x4_npcbgps$coefficient[2] + (1.96 * x4_npcbgps_se)))</pre>
x5_npcbgps_cov <- (true_x5 > (x5_npcbgps$coefficient[2] - (1.96 * x5_npcbgps_se))) &
  (true_x5 < (x5_npcbgps$coefficient[2] + (1.96 * x5_npcbgps_se)))</pre>
x6_npcbgps_cov <- (true_x6 > (x6_npcbgps$coefficient[2] - (1.96 * x6_npcbgps_se))) &
  (true_x6 < (x6_npcbgps$coefficient[2] + (1.96 * x6_npcbgps_se)))</pre>
# qb10
x1_qb10_bias <- true_x1 - x1_qb10$coefficient[2]</pre>
x2_qb10_bias <- true_x2 - x2_qb10$coefficient[2]</pre>
x3_qb10_bias <- true_x3 - x3_qb10$coefficient[2]</pre>
```

```
# qb10 se
x1_qb10_se <- sqrt(x1_qb10$cov.unscaled[2,2])</pre>
x2_qb10_se <- sqrt(x2_qb10$cov.unscaled[2,2])</pre>
x3_qb10_se <- sqrt(x3_qb10$cov.unscaled[2,2])</pre>
# qb10 coverage
x1_qb10_cov \leftarrow (true_x1 > (x1_qb10\$coefficient[2] - (1.96 * x1_qb10_se))) &
    (true_x1 < (x1_qb10\$coefficient[2] + (1.96 * x1_qb10_se)))
x2_{p}10_{c} < (true_x2 > (x2_{p}10_{c}ent[2] - (1.96 * x2_{p}10_{s}e))) &
    (true_x2 < (x2_qb10\$coefficient[2] + (1.96 * x2_qb10_se)))
x3_{p10_{ov}} < (true_x3 > (x3_{p10_{ov}} = (1.96 * x3_{p10_{ov}})) &
    (true_x3 < (x3_qb10\$coefficient[2] + (1.96 * x3_qb10_se)))
# qb15
x1_qb15_bias <- true_x1 - x1_qb15$coefficient[2]</pre>
x2_qb15_bias <- true_x2 - x2_qb15$coefficient[2]</pre>
x3_qb15_bias <- true_x3 - x3_qb15$coefficient[2]</pre>
#qb15 se
x1_qb15_se <- sqrt(x1_qb15$cov.unscaled[2,2])</pre>
x2_qb15_se <- sqrt(x2_qb15$cov.unscaled[2,2])</pre>
x3_qb15_se <- sqrt(x3_qb15$cov.unscaled[2,2])</pre>
#_qb15 coverage
x1_qb15_cov \leftarrow (true_x1 > (x1_qb15$coefficient[2] - (1.96 * x1_qb15_se))) &
    (true_x1 < (x1_qb15$coefficient[2] + (1.96 * x1_qb15_se)))
x2_qb15_cov \leftarrow (true_x2 > (x2_qb15$coefficient[2] - (1.96 * x2_qb15_se))) &
    (true_x2 < (x2_qb15$coefficient[2] + (1.96 * x2_qb15_se)))
x3_qb15_cov \leftarrow (true_x3 > (x3_qb15$coefficient[2] - (1.96 * x3_qb15_se))) &
    (true_x3 < (x3_qb15$coefficient[2] + (1.96 * x3_qb15_se)))
# qb20
x1_qb20_bias <- true_x1 - x1_qb20$coefficient[2]</pre>
x2_qb20_bias <- true_x2 - x2_qb20$coefficient[2]</pre>
x3_qb20_bias <- true_x3 - x3_qb20$coefficient[2]</pre>
#qb20 se
x1_qb20_se <- sqrt(x1_qb20$cov.unscaled[2,2])</pre>
x2_qb20_se <- sqrt(x2_qb20$cov.unscaled[2,2])</pre>
x3_qb20_se <- sqrt(x3_qb20$cov.unscaled[2,2])</pre>
#_qb20 coverage
x1_qb20_cov \leftarrow (true_x1 > (x1_qb20\$coefficient[2] - (1.96 * x1_qb20_se))) &
    (true_x1 < (x1_qb20\$coefficient[2] + (1.96 * x1_qb20_se)))
x2_{p}^{20} = (true_x^2 > (x2_{p}^20$coefficient[2] - (1.96 * x2_{p}^20_se))) &
    (true_x2 < (x2_qb20\$coefficient[2] + (1.96 * x2_qb20_se)))
x3_{p20} = (true_x3 > (x3_{p20} = (1.96 * x3_{p20} = (1.96 * x3_{p20
    (true_x3 < (x3_qb20\$coefficient[2] + (1.96 * x3_qb20_se)))
# olr
x1_olr_bias <- true_x1 - x1_olr$coefficient[2]</pre>
x2_olr_bias <- true_x2 - x2_olr$coefficient[2]</pre>
x3_olr_bias <- true_x3 - x3_olr$coefficient[2]</pre>
```

```
x4_olr_bias <- true_x4 - x4_olr$coefficient[2]</pre>
x5_olr_bias <- true_x5 - x5_olr$coefficient[2]</pre>
x6_olr_bias <- true_x6 - x6_olr$coefficient[2]
# olr se
x1_olr_se <- sqrt(x1_olr$cov.unscaled[2,2])</pre>
x2_olr_se <- sqrt(x2_olr$cov.unscaled[2,2])</pre>
x3_olr_se <- sqrt(x3_olr$cov.unscaled[2,2])</pre>
x4_olr_se <- sqrt(x4_olr$cov.unscaled[2,2])</pre>
x5_olr_se <- sqrt(x5_olr$cov.unscaled[2,2])</pre>
x6_olr_se <- sqrt(x6_olr$cov.unscaled[2,2])</pre>
# olr coverage
x1_olr_cov \leftarrow (true_x1 > (x1_olr\\coefficient[2] - (1.96 * x1_olr_se))) &
  (true_x1 < (x1_olr\\coefficient[2] + (1.96 * x1_olr_se)))
x2_olr_cov \leftarrow (true_x2 > (x2_olr\\coefficient[2] - (1.96 * x2_olr_se))) &
  (true_x2 < (x2_olr\\coefficient[2] + (1.96 * x2_olr_se)))
x3_olr_cov <- (true_x3 > (x3_olr$coefficient[2] - (1.96 * x3_olr_se))) &
  (true_x3 < (x3_olr\\cent[2] + (1.96 * x3_olr_se)))
x4_olr_cov \leftarrow (true_x4 > (x4_olr_scoefficient[2] - (1.96 * x4_olr_se))) &
  (true_x4 < (x4_olr\\coefficient[2] + (1.96 * x4_olr_se)))
x5_olr_cov \leftarrow (true_x5 > (x5_olr_scoefficient[2] - (1.96 * x5_olr_se))) &
  (true_x5 < (x5_olr$coefficient[2] + (1.96 * x5_olr_se)))
x6_olr_cov \leftarrow (true_x6 > (x6_olr_coefficient[2] - (1.96 * x6_olr_se))) &
  (true_x6 < (x6_olr\\cent[2] + (1.96 * x6_olr_se)))
# bias via the Austin, 2018 approach
# first have to generate probability of having each exposure decile in each model
# unweighted
x1_uw_qs <- map_dbl(x1_quants,
                  ~ predict(x1_uw,
                            newdata = .x,
                             type = "fitted"))
x2_uw_qs <- map_dbl(x2_quants,</pre>
                  ~ predict(x2_uw,
                            newdata = .x,
                             type = "fitted"))
x3_uw_qs <- map_dbl(x3_quants,
                  ~ predict(x3_uw,
                            newdata = .x,
                             type = "fitted"))
x4_uw_qs <- map_dbl(x4_quants,</pre>
                  ~ predict(x4_uw,
                            newdata = .x,
                             type = "fitted"))
x5_uw_qs <- map_dbl(x5_quants,
                  ~ predict(x5_uw,
                            newdata = .x,
                             type = "fitted"))
x6_uw_qs <- map_dbl(x6_quants,
                  ~ predict(x6_uw,
```

```
newdata = .x,
                             type = "fitted"))
# x1
x1_uw_bias2 <- true2_x1_qs - x1_uw_qs</pre>
# x2
x2_uw_bias2 <- true2_x2_qs - x2_uw_qs</pre>
x3_uw_bias2 <- true2_x3_qs - x3_uw_qs</pre>
# x4
x4_uw_bias2 <- true2_x4_qs - x4_uw_qs</pre>
# x5
x5_uw_bias2 <- true2_x5_qs - x5_uw_qs</pre>
# x6
x6_uw_bias2 <- true2_x6_qs - x6_uw_qs
x1_ols_qs <- data.frame(predict(x1_ols,</pre>
                                   newdata = data.frame(x1 = x1_quants),
                                   type = "response"))$response
x2_ols_qs <- data.frame(predict(x2_ols,</pre>
                                   newdata = data.frame(x2 = x2_quants),
                                   type = "response"))$response
x3_ols_qs <- data.frame(predict(x3_ols,
                                   newdata = data.frame(x3 = x3_quants),
                                   type = "response"))$response
x4_ols_qs <- data.frame(predict(x4_ols,</pre>
                                   newdata = data.frame(x4 = x4_quants),
                                   type = "response"))$response
x5_ols_qs <- data.frame(predict(x5_ols,</pre>
                                   newdata = data.frame(x5 = x5_quants),
                                   type = "response"))$response
x6_ols_qs <- data.frame(predict(x6_ols,</pre>
                                   newdata = data.frame(x6 = x6 quants),
                                   type = "response"))$response
# x1
x1_ols_bias2 <- true2_x1_qs - x1_ols_qs</pre>
x2_ols_bias2 <- true2_x2_qs - x2_ols_qs</pre>
# x3
x3_ols_bias2 <- true2_x3_qs - x3_ols_qs</pre>
# x4
x4_ols_bias2 <- true2_x4_qs - x4_ols_qs</pre>
```

```
# x5
x5_ols_bias2 <- true2_x5_qs - x5_ols_qs</pre>
# x6
x6_ols_bias2 <- true2_x6_qs - x6_ols_qs</pre>
# cbgps
x1_cbgps_qs <- data.frame(predict(x1_cbgps,</pre>
                                   newdata = data.frame(x1 = x1_quants),
                                   type = "response"))$response
x2_cbgps_qs <- data.frame(predict(x2_cbgps,</pre>
                                   newdata = data.frame(x2 = x2_quants),
                                   type = "response"))$response
x3_cbgps_qs <- data.frame(predict(x3_cbgps,</pre>
                                   newdata = data.frame(x3 = x3_quants),
                                   type = "response"))$response
x4_cbgps_qs <- data.frame(predict(x4_cbgps,</pre>
                                   newdata = data.frame(x4 = x4_quants),
                                   type = "response"))$response
x5_cbgps_qs <- data.frame(predict(x5_cbgps,</pre>
                                   newdata = data.frame(x5 = x5_quants),
                                   type = "response"))$response
x6_cbgps_qs <- data.frame(predict(x6_cbgps,</pre>
                                   newdata = data.frame(x6 = x6_quants),
                                   type = "response"))$response
# x1
x1_cbgps_bias2 <- true2_x1_qs - x1_cbgps_qs</pre>
# x2
x2_cbgps_bias2 <- true2_x2_qs - x2_cbgps_qs</pre>
# x3
x3_cbgps_bias2 <- true2_x3_qs - x3_cbgps_qs</pre>
# x4
x4_cbgps_bias2 <- true2_x4_qs - x4_cbgps_qs</pre>
# 25
x5_cbgps_bias2 <- true2_x5_qs - x5_cbgps_qs</pre>
# x6
x6_cbgps_bias2 <- true2_x6_qs - x6_cbgps_qs</pre>
# npcbgps
x1_npcbgps_qs <- data.frame(predict(x1_npcbgps,</pre>
                                   newdata = data.frame(x1 = x1_quants),
                                   type = "response"))$response
x2_npcbgps_qs <- data.frame(predict(x2_npcbgps,</pre>
                                   newdata = data.frame(x2 = x2_quants),
                                   type = "response"))$response
x3_npcbgps_qs <- data.frame(predict(x3_npcbgps,</pre>
                                   newdata = data.frame(x3 = x3_quants),
```

```
type = "response"))$response
x4_npcbgps_qs <- data.frame(predict(x4_npcbgps,</pre>
                                   newdata = data.frame(x4 = x4_quants),
                                   type = "response"))$response
x5_npcbgps_qs <- data.frame(predict(x5_npcbgps,</pre>
                                   newdata = data.frame(x5 = x5_quants),
                                   type = "response"))$response
x6_npcbgps_qs <- data.frame(predict(x6_npcbgps,</pre>
                                   newdata = data.frame(x6 = x6_quants),
                                   type = "response"))$response
# x1
x1_npcbgps_bias2 <- true2_x1_qs - x1_npcbgps_qs</pre>
# x2
x2_npcbgps_bias2 <- true2_x2_qs - x2_npcbgps_qs</pre>
# x3
x3_npcbgps_bias2 <- true2_x3_qs - x3_npcbgps_qs</pre>
# x4
x4_npcbgps_bias2 <- true2_x4_qs - x4_npcbgps_qs</pre>
# x5
x5_npcbgps_bias2 <- true2_x5_qs - x5_npcbgps_qs</pre>
x6_npcbgps_bias2 <- true2_x6_qs - x6_npcbgps_qs</pre>
# qb10
x1_qb10_qs <- data.frame(predict(x1_qb10,</pre>
                                   newdata = data.frame(x1 = x1_quants),
                                   type = "response"))$response
x2_qb10_qs <- data.frame(predict(x2_qb10,</pre>
                                   newdata = data.frame(x2 = x2_quants),
                                   type = "response"))$response
x3_qb10_qs <- data.frame(predict(x3_qb10,</pre>
                                   newdata = data.frame(x3 = x3_quants),
                                   type = "response"))$response
# x1
x1_qb10_bias2 <- true2_x1_qs - x1_qb10_qs</pre>
# x2
x2_qb10_bias2 \leftarrow true2_x2_qs - x2_qb10_qs
# x3
x3_qb10_bias2 \leftarrow true2_x3_qs - x3_qb10_qs
# qb15
x1_qb15_qs <- data.frame(predict(x1_qb15,</pre>
                                   newdata = data.frame(x1 = x1_quants),
                                   type = "response"))$response
```

```
x2_qb15_qs <- data.frame(predict(x2_qb15,</pre>
                                   newdata = data.frame(x2 = x2_quants),
                                   type = "response"))$response
x3_qb15_qs <- data.frame(predict(x3_qb15,</pre>
                                   newdata = data.frame(x3 = x3_quants),
                                   type = "response"))$response
# x1
x1_qb15_bias2 \leftarrow true2_x1_qs - x1_qb15_qs
# x2
x2_qb15_bias2 <- true2_x2_qs - x2_qb15_qs</pre>
# x3
x3_qb15_bias2 \leftarrow true2_x3_qs - x3_qb15_qs
# qb20
x1_qb20_qs <- data.frame(predict(x1_qb20,</pre>
                                   newdata = data.frame(x1 = x1_quants),
                                   type = "response"))$response
x2_qb20_qs <- data.frame(predict(x2_qb20,</pre>
                                   newdata = data.frame(x2 = x2_quants),
                                   type = "response"))$response
x3_qb20_qs <- data.frame(predict(x3_qb20,</pre>
                                  newdata = data.frame(x3 = x3_quants),
                                   type = "response"))$response
# x1
x1_qb20_bias2 <- true2_x1_qs - x1_qb20_qs</pre>
x2_qb20_bias2 \leftarrow true2_x2_qs - x2_qb20_qs
# x3
x3_qb20_bias2 <- true2_x3_qs - x3_qb20_qs</pre>
# olr
x1_olr_qs <- data.frame(predict(x1_olr,</pre>
                                   newdata = data.frame(x1 = x1_quants),
                                   type = "response"))$response
x2_olr_qs <- data.frame(predict(x2_olr,</pre>
                                   newdata = data.frame(x2 = x2_quants),
                                   type = "response"))$response
x3 olr qs <- data.frame(predict(x3 olr,
                                   newdata = data.frame(x3 = x3_quants),
                                   type = "response"))$response
x4_olr_qs <- data.frame(predict(x4_olr,</pre>
                                   newdata = data.frame(x4 = x4_quants),
                                   type = "response"))$response
x5_olr_qs <- data.frame(predict(x5_olr,</pre>
                                   newdata = data.frame(x5 = x5_quants),
                                   type = "response"))$response
x6_olr_qs <- data.frame(predict(x6_olr,</pre>
```

```
newdata = data.frame(x6 = x6_quants),
                                 type = "response"))$response
# x1
x1_olr_bias2 <- true2_x1_qs - x1_olr_qs</pre>
# x2
x2 olr bias2 <- true2 x2 qs - x2 olr qs
x3_olr_bias2 <- true2_x3_qs - x3_olr_qs</pre>
# x4
x4_olr_bias2 <- true2_x4_qs - x4_olr_qs</pre>
# x5
x5_olr_bias2 <- true2_x5_qs - x5_olr_qs</pre>
# x6
x6_olr_bias2 <- true2_x6_qs - x6_olr_qs</pre>
# output dataframe
bias1 <- data.frame(i,</pre>
           x1_uw_bias, x2_uw_bias, x3_uw_bias, x4_uw_bias, x5_uw_bias, x6_uw_bias,
           x1_ols_bias, x2_ols_bias, x3_ols_bias, x4_ols_bias, x5_ols_bias, x6_ols_bias,
           x1_cbgps_bias, x2_cbgps_bias, x3_cbgps_bias, x4_cbgps_bias, x5_cbgps_bias, x6_cbgps_bias,
           x1_npcbgps_bias, x2_npcbgps_bias, x3_npcbgps_bias, x4_npcbgps_bias, x5_npcbgps_bias, x6_np
           x1_qb10_bias, x2_qb10_bias, x3_qb10_bias,
           x1_qb15_bias, x2_qb15_bias, x3_qb15_bias,
           x1_qb20_bias, x2_qb20_bias, x3_qb20_bias,
           x1_olr_bias, x2_olr_bias, x3_olr_bias, x4_olr_bias, x5_olr_bias, x6_olr_bias)
se1 <- data.frame(i,</pre>
           x1_uw_se, x2_uw_se, x3_uw_se, x4_uw_se, x5_uw_se, x6_uw_se,
           x1_ols_se, x2_ols_se, x3_ols_se, x4_ols_se, x5_ols_se, x6_ols_se,
           x1_cbgps_se, x2_cbgps_se, x3_cbgps_se, x4_cbgps_se, x5_cbgps_se, x6_cbgps_se,
           x1_npcbgps_se, x2_npcbgps_se, x3_npcbgps_se, x4_npcbgps_se, x5_npcbgps_se, x6_npcbgps_se,
           x1_qb10_se, x2_qb10_se, x3_qb10_se,
           x1_qb15_se, x2_qb15_se, x3_qb15_se,
           x1_qb20_se, x2_qb20_se, x3_qb20_se,
           x1_olr_se, x2_olr_se, x3_olr_se, x4_olr_se, x5_olr_se, x6_olr_se)
cov1 <- data.frame(i,</pre>
           x1_uw_cov, x2_uw_cov, x3_uw_cov, x4_uw_cov, x5_uw_cov, x6_uw_cov,
           x1_ols_cov, x2_ols_cov, x3_ols_cov, x4_ols_cov, x5_ols_cov, x6_ols_cov,
           x1_cbgps_cov, x2_cbgps_cov, x3_cbgps_cov, x4_cbgps_cov, x5_cbgps_cov, x6_cbgps_cov,
           x1_npcbgps_cov, x2_npcbgps_cov, x3_npcbgps_cov, x4_npcbgps_cov, x5_npcbgps_cov, x6_npcbgps
           x1_qb10_cov, x2_qb10_cov, x3_qb10_cov,
           x1_qb15_cov, x2_qb15_cov, x3_qb15_cov,
           x1_qb20_cov, x2_qb20_cov, x3_qb20_cov,
           x1_olr_cov, x2_olr_cov, x3_olr_cov, x4_olr_cov, x5_olr_cov, x6_olr_cov)
bias2 <- data.frame(quantile = c(1:9),</pre>
```

```
x1_uw_bias2, x2_uw_bias2, x3_uw_bias2, x4_uw_bias2, x5_uw_bias2, x6_uw_bias2,
             x1_ols_bias2, x2_ols_bias2, x3_ols_bias2, x4_ols_bias2, x5_ols_bias2, x6_ols_bias2,
             x1_cbgps_bias2, x2_cbgps_bias2, x3_cbgps_bias2, x4_cbgps_bias2, x5_cbgps_bias2, x6_cbgps_b
             x1_npcbgps_bias2, x2_npcbgps_bias2, x3_npcbgps_bias2, x4_npcbgps_bias2, x5_npcbgps_bias2,
             x1_qb10_bias2, x2_qb10_bias2, x3_qb10_bias2,
             x1_qb15_bias2, x2_qb15_bias2, x3_qb15_bias2,
             x1_qb20_bias2, x2_qb20_bias2, x3_qb20_bias2,
             x1_olr_bias2, x2_olr_bias2, x3_olr_bias2, x4_olr_bias2, x5_olr_bias2, x6_olr_bias2) %>%
   pivot_wider(names_from = quantile,
                values_from = x1_uw_bias2:x6_olr_bias2)
  data.frame(bias1, se1, cov1, bias2)
}
# # get bias across all simulations
# bias <- map_df(sims, ~ bias_func(.x))</pre>
# run in parallel with furrr
plan(multisession, workers = 7)
bias <- future_map_dfr(sims, ~ bias_func(.x))</pre>
Save(bias)
```

Dose Reponse Decile Approach

Supplemental Figure 2.5 - Bias at Deciles

```
Load(bias)
# function to plot austin bias plots
aus_bias_plot <- function(decile) {</pre>
  # make bias dataframes
  x1_bias2 <- bias %>%
   select(starts_with("x1") & contains("bias2") & ends_with(as.character(decile))) %%
   gather(label, bias) %>%
   mutate(label = factor(label,
                          levels = c(paste0("x1_uw_bias2_", decile),
                                     paste0("x1_ols_bias2_", decile),
                                     paste0("x1_cbgps_bias2_", decile),
                                     paste0("x1_npcbgps_bias2_", decile),
                                     paste0("x1_qb10_bias2_", decile),
                                     paste0("x1_qb15_bias2_", decile),
                                     paste0("x1_qb20_bias2_", decile),
                                     paste0("x1_olr_bias2_", decile))))
  x2_bias2 <- bias %>%
    select(starts_with("x2") & contains("bias2") & ends_with(as.character(decile))) %%
    gather(label, bias) %>%
   mutate(label = factor(label,
                          levels = c(paste0("x2_uw_bias2_", decile),
                                     paste0("x2_ols_bias2_", decile),
                                     paste0("x2_cbgps_bias2_", decile),
                                     paste0("x2_npcbgps_bias2_", decile),
                                     paste0("x2_qb10_bias2_", decile),
```

```
paste0("x2_qb15_bias2_", decile),
                                   paste0("x2_qb20_bias2_", decile),
                                   paste0("x2_olr_bias2_", decile))))
x3_bias2 <- bias %>%
  select(starts_with("x3") & contains("bias2") & ends_with(as.character(decile))) %%
  gather(label, bias) %>%
  mutate(label = factor(label,
                        levels = c(paste0("x3_uw_bias2_", decile),
                                   paste0("x3_ols_bias2_", decile),
                                   paste0("x3_cbgps_bias2_", decile),
                                   paste0("x3_npcbgps_bias2_", decile),
                                   paste0("x3_qb10_bias2_", decile),
                                   paste0("x3_qb15_bias2_", decile),
                                   paste0("x3_qb20_bias2_", decile),
                                   paste0("x3_olr_bias2_", decile))))
x4_bias2 \leftarrow bias \%
  select(starts_with("x4") & contains("bias2") & ends_with(as.character(decile))) %%
  gather(label, bias) %>%
 mutate(label = factor(label,
                        levels = c(paste0("x4_uw_bias2_", decile),
                                   paste0("x4_ols_bias2_", decile),
                                   paste0("x4_cbgps_bias2_", decile),
                                   paste0("x4_npcbgps_bias2_", decile),
                                   paste0("x4_olr_bias2_", decile))))
x5_bias2 \leftarrow bias \%
  select(starts_with("x5") & contains("bias2") & ends_with(as.character(decile))) %>%
 gather(label, bias) %>%
 mutate(label = factor(label,
                        levels = c(paste0("x5_uw_bias2_", decile),
                                   paste0("x5_ols_bias2_", decile),
                                   paste0("x5_cbgps_bias2_", decile),
                                   paste0("x5_npcbgps_bias2_", decile),
                                   paste0("x5_olr_bias2_", decile))))
x6_bias2 <- bias %>%
  select(starts_with("x6") & contains("bias2") & ends_with(as.character(decile))) %>%
  gather(label, bias) %>%
 mutate(label = factor(label,
                        levels = c(paste0("x6_uw_bias2_", decile),
                                   paste0("x6_ols_bias2_", decile),
                                   paste0("x6_cbgps_bias2_", decile),
                                   paste0("x6_npcbgps_bias2_", decile),
                                   paste0("x6_olr_bias2_", decile))))
# make plots
x1_bias_plot2 \leftarrow ggplot(x1_bias2, aes(y = fct_rev(label), x = bias)) +
 stat_halfeye() +
  geom_vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
  scale_y_discrete(name = "", labels = c("CPM", "QB20", "QB15", "QB10", "npCBGPS", "CBGPS", "OLS", "U
  scale_x_continuous(name = "Bias", limits = c(-0.125, 0.125),
```

```
breaks = seq(-0.1, 0.1, 0.05), labels = seq(-0.1, 0.1, 0.05)) +
  theme +
  theme(axis.text = element_text(size = 20),
      axis.title = element_text(size = 24))
x2_{\text{bias}} plot2 <- ggplot(x2_{\text{bias}}2, aes(y = \text{fct_rev(label}), x = \text{bias})) +
  stat_halfeye() +
 geom vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
  scale_y_discrete(name = "", labels = c("CPM", "QB20", "QB15", "QB10", "npCBGPS", "CBGPS", "OLS", "U
  scale_x_continuous(name = "Bias", limits = c(-0.125, 0.125),
                     breaks = seq(-0.1, 0.1, 0.05), labels = seq(-0.1, 0.1, 0.05)) +
 theme +
  theme(axis.text = element_text(size = 20),
      axis.title = element_text(size = 24))
x3_bias_plot2 \leftarrow ggplot(x3_bias2, aes(y = fct_rev(label), x = bias)) +
  stat_halfeye() +
  geom_vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
  scale_y_discrete(name = "", labels = c("CPM", "QB20", "QB15", "QB10", "npCBGPS", "CBGPS", "OLS", "U
  scale_x_continuous(name = "Bias", limits = c(-0.125, 0.125),
                     breaks = seq(-0.1, 0.1, 0.05), labels = seq(-0.1, 0.1, 0.05)) +
 theme +
  theme(axis.text = element_text(size = 20),
      axis.title = element_text(size = 24))
x4_bias_plot2 \leftarrow ggplot(x4_bias2, aes(y = fct_rev(label), x = bias)) +
 stat halfeye() +
 geom_vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
  scale_y_discrete(name = "", labels = c("CPM", "npCBGPS", "CBGPS", "OLS", "UW")) +
  scale_x_continuous(name = "Bias", limits = c(-0.125, 0.125),
                     breaks = seq(-0.1, 0.1, 0.05), labels = seq(-0.1, 0.1, 0.05)) +
 theme +
  theme(axis.text = element_text(size = 20),
      axis.title = element_text(size = 24))
x5_{bias_plot2} \leftarrow ggplot(x5_{bias2}, aes(y = fct_rev(label), x = bias)) +
  stat_halfeye() +
 geom_vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
  scale_y_discrete(name = "", labels = c("CPM", "npCBGPS", "CBGPS", "OLS", "UW")) +
  scale_x_continuous(name = "Bias", limits = c(-0.125, 0.125),
                     breaks = seq(-0.1, 0.1, 0.05), labels = seq(-0.1, 0.1, 0.05)) +
 theme +
  theme(axis.text = element_text(size = 20),
      axis.title = element text(size = 24))
x6\_bias\_plot2 \leftarrow ggplot(x6\_bias2, aes(y = fct\_rev(label), x = bias)) +
  stat_halfeye() +
 geom_vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
  scale_y_discrete(name = "", labels = c("CPM", "npCBGPS", "CBGPS", "OLS", "UW")) +
  scale_x_continuous(name = "Bias", limits = c(-0.125, 0.125),
                     breaks = seq(-0.1, 0.1, 0.05), labels = seq(-0.1, 0.1, 0.05)) +
 theme +
  theme(axis.text = element_text(size = 20),
```

```
axis.title = element_text(size = 24))
# combine plots
  ggarrange(x1_bias_plot2, x2_bias_plot2, x3_bias_plot2,
               x4_bias_plot2, x5_bias_plot2, x6_bias_plot2,
               labels = c(paste0("A", decile), paste0("B", decile), paste0("C", decile),
                             paste0("D", decile), paste0("E", decile), paste0("F", decile)),
               font.label = list(size = 28),
               nrow = 1
}
# plot all deciles
aus_plots <- map(c(1:9), ~ aus_bias_plot(.x))</pre>
# plots in chunks
ggarrange(aus_plots[[1]], aus_plots[[2]], aus_plots[[3]], ncol = 1)
#ggsave("./sim_png/supfig1.5_1.png")
ggarrange(aus_plots[[4]], aus_plots[[5]], aus_plots[[6]], ncol = 1)
#qqsave("./sim_pnq/supfiq1.5_2.pnq")
ggarrange(aus_plots[[7]], aus_plots[[8]], aus_plots[[9]], ncol = 1)
#ggsave("./sim_png/supfig1.5_3.png")
                                                          D1
                                                                                                 F1
Α1
                   B1
                                       C1
                                                                             E1
     UW
                         UW-
                                            UW
                                                                UW:
                                                                                   UW
                                                                                                       UW
  OLS
CBGPS
                        OLS
                                         OLS
CBGPS
                      CBGPS
                                                                                                      OLS
                                                               OLS
                                                                                   OLS
                    npCBGPS
                                        npCBGPS
 npCBGPS
                                                             CBGPS
                                                                                CBGPS
                                                                                                    CBGPS
                                           QB10
QB15
    OB10
                       OB10
    QB15
                                                           npCBGPS
                                                                               npCBGPS
                                                                                                  npCBGPS
    QB20
                        QB20
                                           QB20
                                                               CPM
                                                                                  СРМ
                                                                                                      СРМ
    CPM
                        CPM
                                            CPM
                                                                   -0.01.050.05.1
                                                                                      -0.01.050.005.1
                                                                                                          -0.01.050.035.1
         -0.01.050.05.1
                            -0.01.050.035.1
                                               -0.01.050.035.1
                                                                                         Bias
                                                                                                            Bias
           Bias
                               Bias
                                                  Bias
                                                                     Bias
A2
                   B2
                                       C2
                                                          D2
                                                                             E2
                                                                                                 F2
    UW-
                                            UW
                        UW-
                                                                UW
                                                                                   UW
                                                                                                       UW
  OLS
CBGPS
                        OLS
                                         OLS
CBGPS
                      CBGPS
                                                               OLS
                                                                                   OLS
                                                                                                      OLS
 npCBGPS
                    npCBGPS
                                        npCBGPS
                                                             CBGPS
                                                                                CBGPS
                                                                                                    CBGPS
                                           QB10
QB15
    OB10
                       OB10
                        QB15
    QB15
                                                           npCBGPS
                                                                               npCBGPS
                                                                                                  npCBGPS
    OB20
                        OB20
                                           QB20
                                                               CPM
                                                                                  СРМ
                                                                                                      СРМ
    CPM
                        CPM:
                                            CPM
                                                                   -0.01.050.055.1
                                                                                      -0.01.050.055.1
        -0.01.050.005.1
                            -0.01.050.005.1
                                               -0.01.050.005.1
                                                                                                          -0.01.050.005.1
                                                                                         Bias
                                                                                                            Bias
           Bias
                                                  Bias
                                                                     Bias
                              Bias
A3
                   B3
                                       C3
                                         OLS
CBGPS
                                                          D3
                                                                             E3
                                                                                                 F3
     UW
                         UW
                                                                UW
                                                                                   UW
                                                                                                       UW
  OLS
CBGPS
                      OLS
CBGPS
                                                                                   OLS.
                                                                                                      OLS
                                                               OLS
 npCBGPS
                    npCBGPS
                                        npCBGPS
                                                             CBGPS
                                                                                CBGPS
                                                                                                    CBGPS
    QB10
QB15
                       QB10
QB15
                                           QB10
QB15
                                                           npCBGPS
                                                                              npCBGPS
                                                                                                  npCBGPS
    QB20
                        QB20
                                           QB20
                                                               CPM
                                                                                  СРМ
                                                                                                      СРМ
    CPM
                        CPM
                                            CPM
         -0.01.050.005.1
                            -0.01.050.055.1
                                                -0.01.050.035.1
                                                                   -0.01.050.005.1
                                                                                       -0.01.050.05.1
                                                                                                          -0.01.050.005.1
                                                                                                            Bias
           Bias
                              Bias
                                                  Bias
                                                                     Bias
                                                                                         Bias
```


Figure legend: Column A) Homoscedastic Exposure, Conditionally Normal, Marginally Normal, Column B) Homoscedastic Exposure, Conditionally Normal, Marginally Non-Normal, Column C) Heteroscedastic Exposure, Conditionally Non-Normal, Marginally Non-Normal. The number next to each panel represents the decile, such that "A1" is the 1st decile of the Homoscedastic, Conditionally Normal, Marginally Normal Exposure.

Supplemental Figure 2.6 - Mean Squared Error at Deciles

```
"npCBGPS",
                                       "QB10",
                                       "QB15",
                                       "QB20",
                                       "OLR"),
                            Exposure = c("x1",
                                         "x2",
                                         "x3",
                                         "x4",
                                         "x5",
                                         "x6"),
                           MSE = NA)
# now loop through and fill in cells
for(i in 1:nrow(austin_mse)){
  # create column name of bias tibble
  col_name <- paste0(austin_mse$Exposure[i], "_",</pre>
                      tolower(austin_mse$Method[i]), "_bias2_",
                      austin_mse$Decile[i])
  austin_mse$MSE[i] <- mean(bias[[col_name]]^2)</pre>
}
# Marginal Log Odds Ratio
mlor_mse <- expand_grid(Decile = c(0),</pre>
                           Method = c("UW",
                                       "OLS",
                                       "CBGPS",
                                       "npCBGPS",
                                       "QB10",
                                       "QB15",
                                       "QB20",
                                       "OLR"),
                            Exposure = c("x1",
                                         "x2",
                                         "x3",
                                         "x4",
                                         "x5",
                                         "x6").
                           MSE = NA)
# now loop through and fill in cells
for(i in 1:nrow(mlor_mse)){
  # create column name of bias tibble
  col_name <- pasteO(mlor_mse$Exposure[i], "_",</pre>
                      tolower(mlor_mse$Method[i]), "_bias")
  mlor_mse$MSE[i] <- mean(bias[[col_name]]^2)</pre>
}
# now combine
mse_plot <- bind_rows(austin_mse, mlor_mse) %>%
  mutate(Method = ifelse(Method == "OLR", "CPM", Method),
         Type = ifelse(Decile == 0, "MLOR", "Decile"))
```

```
# now make plot
# first update levels
mse plot <- mse plot %>%
 mutate(Decile = factor(Decile),
         Method = factor(Method, levels = c("UW",
                                            "QB10",
                                     "OLS",
                                     "QB15",
                                     "CBGPS",
                                     "QB20",
                                     "npCBGPS",
                                     "CPM")),
         Exposure = factor(Exposure, levels = c("x1",
                                       "x2",
                                       "x3",
                                       "x4",
                                       "x5",
                                       "x6"))) %>%
  mutate(name = factor(Exposure,
                       labels = c(expression(paste("A) ", X[1])),
                                  expression(paste("B) ", X[2])),
                                  expression(paste("C) ", X[3])),
                                  expression(paste("D) ", X[4])),
                                  expression(paste("E) ", X[5])),
                                  expression(paste("F) ", X[6]))))
# fiq 2
mse_plot %>% filter(Decile != 0) %>%
  ggplot(aes(x = MSE, y = Decile)) +
  # qeom_vline(data = msm_mse,
               aes(xintercept = MSE, color = Method),
               linetype = "longdash", alpha = 0.9) +
  #
  geom_point(aes(shape = Method, color = Method), size = 1) +
  facet_wrap(~name, ncol = 3, labeller = "label_parsed", scales = "free_x") +
  scale_color_grey(guide = guide_legend(nrow = 2)) +
  scale_shape_manual(values = 1:nlevels(mse_plot$Method)) +
  \#scale\_y\_continuous(name = "Decile", breaks = 1:9) + \# if you'd like to jitter things
  theme +
  theme(panel.grid.major.y = element_line(),
        axis.text = element_text(size = 12, angle = 90),
        axis.title = element_text(size = 16),
        legend.title = element_text(size = 16),
        legend.text = element_text(size = 14),
        strip.text = element_text(hjust = 0, size = 18),
        strip.background = element_blank())
# save plot
#ggsave("./sim_png/supfig1.6.png")
```


Marginal Log Odds Ratio Approach

Figure 2 - Marginal Log Odds Ratio Approach Bias

```
x2_bias <- bias %>%
  select(starts_with("x2") & ends_with("bias")) %>%
  gather(label, bias) %>%
  mutate(label = factor(label,
                        levels = c("x2_uw_bias",
                                    "x2_ols_bias",
                                    "x2_cbgps_bias",
                                    "x2 npcbgps bias",
                                    "x2_qb10_bias",
                                    "x2_qb15_bias",
                                    "x2_qb20_bias",
                                    "x2_olr_bias")),
         facet = str_sub(label, 1, 2),
         lab = str_sub(label, 4))
x3_bias <- bias %>%
  select(starts_with("x3") & ends_with("bias")) %>%
  gather(label, bias) %>%
  mutate(label = factor(label,
                        levels = c("x3_uw_bias",
                                    "x3 ols bias",
                                    "x3_cbgps_bias",
                                    "x3_npcbgps_bias",
                                    "x3_qb10_bias",
                                    "x3 qb15 bias",
                                    "x3_qb20_bias",
                                    "x3_olr_bias")),
         facet = str_sub(label, 1, 2),
         lab = str_sub(label, 4))
x4_bias <- bias %>%
  select(starts_with("x4") & ends_with("bias")) %>%
  gather(label, bias) %>%
  mutate(label = factor(label,
                        levels = c("x4_uw_bias",
                                    "x4_ols_bias",
                                    "x4_cbgps_bias",
                                    "x4 npcbgps bias",
                                    "x4_olr_bias")),
         facet = str_sub(label, 1, 2),
         lab = str_sub(label, 4))
x5_bias <- bias %>%
  select(starts_with("x5") & ends_with("bias")) %>%
  gather(label, bias) %>%
  mutate(label = factor(label,
                        levels = c("x5_uw_bias",
                                    "x5_ols_bias",
                                    "x5_cbgps_bias",
                                    "x5_npcbgps_bias",
                                    "x5_olr_bias")),
         facet = str_sub(label, 1, 2),
         lab = str_sub(label, 4))
```

```
x6_bias <- bias %>%
  select(starts_with("x6") & ends_with("bias")) %>%
  gather(label, bias) %>%
  mutate(label = factor(label,
                        levels = c("x6_uw_bias",
                                   "x6 ols bias",
                                   "x6_cbgps_bias",
                                   "x6 npcbgps bias",
                                   "x6 olr bias")),
         facet = str_sub(label, 1, 2),
         lab = str_sub(label, 4))
# combine into one dataset so can make facet plot
mse_bias_plot <- bind_rows(x1_bias, x2_bias, x3_bias, x4_bias, x5_bias, x6_bias) %>%
  mutate(facet = factor(facet, levels = c("x1", "x2", "x3", "x4", "x5", "x6")),
         lab = factor(lab,levels = c("uw_bias",
                                   "ols_bias",
                                   "cbgps_bias",
                                   "npcbgps_bias",
                                   "qb10_bias",
                                   "qb15 bias",
                                   "qb20_bias",
                                   "olr bias"))) %>%
  mutate(name = factor(facet,
                       labels = c(expression(paste("A) ", X[1])),
                                  expression(paste("B) ", X[2])),
                                  expression(paste("C) ", X[3])),
                                  expression(paste("D) ", X[4])),
                                  expression(paste("E) ", X[5])),
                                  expression(paste("F) ", X[6]))))
# now plot with both austin and molr mse...
fig2_func <- function(exp_num, letter) {</pre>
  if(exp num < 4) {
   mse_bias_plot %>% filter(facet == paste0("x", exp_num)) %>%
      ggplot(aes(y = fct_rev(lab), x = bias)) +
      stat halfeye() +
     geom_vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
      scale_y_discrete(name = "", labels = c("CPM", "QB20", "QB15", "QB10", "npCBGPS", "CBGPS", "OLS",
      scale_x_continuous(name = "Bias", limits = c(-0.25, 0.25),
                      breaks = seq(-0.2, 0.2, 0.1), labels = seq(-0.2, 0.2, 0.1)) +
      annotate(geom = "text", x = 0.2, y = 9, label = "MSE", size = 10 / .pt) +
      annotate(geom = "text", x = 0.2, y = 8.5, label = mlor_mse %>%
                filter(Exposure == paste0("x", exp_num) & Method == "UW") %>%
                pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
      annotate(geom = "text", x = 0.2, y = 7.5, label = mlor_mse %>%
                filter(Exposure == paste0("x", exp_num) & Method == "OLS") %>%
                pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
      annotate(geom = "text", x = 0.2, y = 6.5, label = mlor_mse %>%
                filter(Exposure == paste0("x", exp_num) & Method == "CBGPS") %>%
                pull(MSE) \%\% round(4) %>% format(nsmall = 4), size = 9 / .pt) +
      annotate(geom = "text", x = 0.2, y = 5.5, label = mlor_mse %>%
```

```
filter(Exposure == paste0("x", exp_num) & Method == "npCBGPS") %>%
              pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 4.5, label = mlor_mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "QB10") %>%
              pull(MSE) \%\% round(4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 3.5, label = mlor_mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "QB15") %>%
              pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 2.5, label = mlor mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "QB20") %>%
              pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 1.5, label = mlor_mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "OLR") %>%
              pull(MSE) \%\% round(4) %>% format(nsmall = 4), size = 9 / .pt) +
    ggtitle(bquote(.(letter) * ") " ~ X[.(exp_num)])) +
    coord_cartesian(clip = "off") +
    theme +
    theme(panel.grid.major.y = element_line(),
         axis.text = element_text(size = 8),
          axis.title = element_text(size = 9),
          legend.position = "none")
} else {
 mse_bias_plot %>% filter(facet == paste0("x", exp_num)) %>%
    ggplot(aes(y = fct_rev(lab), x = bias)) +
    stat halfeye() +
    geom_vline(xintercept = 0, alpha = 0.5, linetype = "dashed") +
    scale y discrete(name = "", labels = c("CPM", "npCBGPS", "CBGPS", "OLS", "UW")) +
    scale_x_continuous(name = "Bias", limits = c(-0.25, 0.25),
                   breaks = seq(-0.2, 0.2, 0.1), labels = seq(-0.2, 0.2, 0.1)) +
    annotate(geom = "text", x = 0.2, y = 6, label = "MSE", size = 10 / .pt) +
   annotate(geom = "text", x = 0.2, y = 5.5, label = mlor_mse %>%
               filter(Exposure == paste0("x", exp_num) & Method == "UW") %>%
              pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 4.5, label = mlor_mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "OLS") %>%
              pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 3.5, label = mlor_mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "CBGPS") %>%
              pull(MSE) \%\% round(4) %>% format(nsmall = 4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 2.5, label = mlor_mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "npCBGPS") %>%
              pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
    annotate(geom = "text", x = 0.2, y = 1.5, label = mlor_mse %>%
              filter(Exposure == paste0("x", exp_num) & Method == "OLR") %>%
              pull(MSE) \%% round(4) \%% format(nsmall = 4), size = 9 / .pt) +
    ggtitle(bquote(.(letter) * ") " ~ X[.(exp_num)])) +
    coord_cartesian(clip = "off") +
    theme +
    theme(panel.grid.major.y = element_line(),
         axis.text = element_text(size = 8),
          axis.title = element_text(size = 9),
         legend.position = "none")
}
```

Mean Squared Error

Table 3 - Marginal Log Odds Ratio Approach Standard Error Ratio and Coverage

```
# now make table of mean squared error, which is the mean of the squared biases (or errors)
tab3 <- tibble(Method = c("Unweighted",</pre>
                             "Standard Error Ratio",
                             "Coverage",
                          "Ordinary least squares",
                             "Standard Error Ratio",
                             "Coverage",
                          "Covariate balancing generalized propensity score",
                             "Standard Error Ratio",
                             "Coverage",
                          "Non-parametric covariate balancing generalized propensity score",
                             "Standard Error Ratio",
                             "Coverage",
                          "Quantile binning categories",
                          "10",
                             "Standard Error Ratio",
                             "Coverage",
                             "Standard Error Ratio",
                             "Coverage",
                             "Standard Error Ratio",
                             "Coverage",
                          "Ordinal logistic regression",
                             "Standard Error Ratio",
                             "Coverage"),
               X1 = c(NA,
                        mean(bias$x1_uw_se) / sd(true_x1 - bias$x1_uw_bias),
                        mean(bias$x1_uw_cov),
                        NA,
```

```
mean(bias$x1_ols_se) / sd(true_x1 - bias$x1_ols_bias),
        mean(bias$x1_ols_cov),
        NA,
        mean(bias$x1_cbgps_se) / sd(true_x1 - bias$x1_cbgps_bias),
        mean(bias$x1_cbgps_cov),
        mean(bias$x1_npcbgps_se) / sd(true_x1 - bias$x1_npcbgps_bias),
        mean(bias$x1 npcbgps cov),
        NA,
        NA.
        mean(bias$x1_qb10_se) / sd(true_x1 - bias$x1_qb10_bias),
        mean(bias$x1_qb10_cov),
        mean(bias$x1_qb15_se) / sd(true_x1 - bias$x1_qb15_bias),
        mean(bias$x1_qb15_cov),
        NA,
        mean(bias$x1_qb20_se) / sd(true_x1 - bias$x1_qb20_bias),
        mean(bias$x1_qb20_cov),
        mean(bias$x1_olr_se) / sd(true_x1 - bias$x1_olr_bias),
        mean(bias$x1_olr_cov)),
X4 = c(NA,
        mean(bias$x4_uw_se) / sd(true_x4 - bias$x4_uw_bias),
        mean(bias$x4_uw_cov),
        NA,
        mean(bias$x4_ols_se) / sd(true_x4 - bias$x4_ols_bias),
        mean(bias$x4 ols cov),
        NA,
        mean(bias$x4_cbgps_se) / sd(true_x4 - bias$x4_cbgps_bias),
        mean(bias$x4_cbgps_cov),
        mean(bias$x4_npcbgps_se) / sd(true_x4 - bias$x4_npcbgps_bias),
        mean(bias$x4_npcbgps_cov),
        NA,
        NA, NA, NA,
        NA, NA, NA,
        NA, NA, NA,
        mean(bias$x4_olr_se) / sd(true_x4 - bias$x4_olr_bias),
        mean(bias$x4 olr cov)),
X2 = c(NA,
        mean(bias$x2_uw_se) / sd(true_x2 - bias$x2_uw_bias),
        mean(bias$x2 uw cov),
        NA.
        mean(bias$x2_ols_se) / sd(true_x2 - bias$x2_ols_bias),
        mean(bias$x2_ols_cov),
        mean(bias$x2_cbgps_se) / sd(true_x2 - bias$x2_cbgps_bias),
        mean(bias$x2_cbgps_cov),
        mean(bias$x2_npcbgps_se) / sd(true_x2 - bias$x2_npcbgps_bias),
        mean(bias$x2_npcbgps_cov),
```

```
mean(bias$x2_qb10_se) / sd(true_x2 - bias$x2_qb10_bias),
        mean(bias$x2 qb10 cov),
        NA,
        mean(bias$x2_qb15_se) / sd(true_x2 - bias$x2_qb15_bias),
        mean(bias$x2_qb15_cov),
        NA,
        mean(bias$x2_qb20_se) / sd(true_x2 - bias$x2_qb20_bias),
        mean(bias$x2 qb20 cov),
        mean(bias$x2_olr_se) / sd(true_x2 - bias$x2_olr_bias),
        mean(bias$x2_olr_cov)),
X5 = c(NA,
        mean(bias$x5_uw_se) / sd(true_x5 - bias$x5_uw_bias),
        mean(bias$x5_uw_cov),
        NA,
        mean(bias$x5_ols_se) / sd(true_x5 - bias$x5_ols_bias),
        mean(bias$x5 ols cov),
        mean(bias$x5_cbgps_se) / sd(true_x5 - bias$x5_cbgps_bias),
        mean(bias$x5_cbgps_cov),
        mean(bias$x5_npcbgps_se) / sd(true_x5 - bias$x5_npcbgps_bias),
        mean(bias$x5_npcbgps_cov),
        NA,
        NA, NA, NA,
        NA, NA, NA,
        NA, NA, NA,
        mean(bias$x5_olr_se) / sd(true_x5 - bias$x5_olr_bias),
        mean(bias$x5_olr_cov)),
X3 = c(NA,
        mean(bias$x3_uw_se) / sd(true_x3 - bias$x3_uw_bias),
        mean(bias$x3_uw_cov),
        NA,
        mean(bias$x3_ols_se) / sd(true_x3 - bias$x3_ols_bias),
        mean(bias$x3_ols_cov),
        mean(bias$x3_cbgps_se) / sd(true_x3 - bias$x3_cbgps_bias),
        mean(bias$x3_cbgps_cov),
        mean(bias$x3_npcbgps_se) / sd(true_x3 - bias$x3_npcbgps_bias),
        mean(bias$x3_npcbgps_cov),
        NA,
        mean(bias$x3_qb10_se) / sd(true_x3 - bias$x3_qb10_bias),
        mean(bias$x3_qb10_cov),
        mean(bias$x3_qb15_se) / sd(true_x3 - bias$x3_qb15_bias),
        mean(bias$x3_qb15_cov),
        NA,
        mean(bias$x3_qb20_se) / sd(true_x3 - bias$x3_qb20_bias),
        mean(bias$x3_qb20_cov),
```

```
mean(bias$x3_olr_se) / sd(true_x3 - bias$x3_olr_bias),
                        mean(bias$x3 olr cov)),
               X6 = c(NA,
                        mean(bias$x6_uw_se) / sd(true_x6 - bias$x6_uw_bias),
                        mean(bias$x6_uw_cov),
                        NA,
                        mean(bias$x6_ols_se) / sd(true_x6 - bias$x6_ols_bias),
                        mean(bias$x6_ols_cov),
                        mean(bias$x6_cbgps_se) / sd(true_x6 - bias$x6_cbgps_bias),
                        mean(bias$x6_cbgps_cov),
                        mean(bias$x6_npcbgps_se) / sd(true_x6 - bias$x6_npcbgps_bias),
                        mean(bias$x6_npcbgps_cov),
                        NA,
                        NA, NA, NA,
                        NA, NA, NA,
                        NA, NA, NA,
                        NA,
                        mean(bias$x6_olr_se) / sd(true_x6 - bias$x6_olr_bias),
                        mean(bias$x6 olr cov))
               )
# make table
kable(tab3, digits = 3) %>%
  kable_classic(html_font = "Arial", full_width = FALSE) %>%
  add_header_above(c("Marginally", "Normal" = 2, "Non-Normal" = 2,
                     "Non-Normal" = 2), bold = TRUE) %>%
  add_header_above(c("Conditionally", "Normal" = 2, "Normal" = 2,
                     "Non-Normal" = 2), bold = TRUE) %>%
  add_indent(c(2:3, 5:6, 8:9, 11:12, 15:16, 18:19, 21:22, 24:25)) %%
  add_indent(c(2:3, 5:6, 8:9, 11:12, 13:22, 24:25))
```

Supplemental Table 2.5 - Marginal Log Odds Ratio Approach Bias

```
# now make table of biases
tab4 <- tibble(Method = c("Unweighted",
                          "Ordinary least squares",
                          "Covariate balancing generalized propensity score",
                          "Non-parametric covariate balancing generalized propensity score",
                          "Quantile binning categories",
                          "10",
                          "15",
                          "20",
                          "Ordinal logistic regression"),
               `Median Bias (IQR)` = c(paste0(round(median(bias$x1_uw_bias), 4), " (",
                                            round(quantile(bias$x1_uw_bias, 0.25), 3), ", ",
                                            round(quantile(bias$x1_uw_bias, 0.75), 3), ")"),
                                       pasteO(round(median(bias$x1_ols_bias), 4), " (",
                                            round(quantile(bias$x1_ols_bias, 0.25), 3), ", ",
                                            round(quantile(bias$x1_ols_bias, 0.75), 3), ")"),
```

```
pasteO(round(median(bias$x1_cbgps_bias), 4), " (",
                             round(quantile(bias$x1_cbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x1_cbgps_bias, 0.75), 3), ")"),
                      pasteO(round(median(bias$x1_npcbgps_bias), 4), " (",
                             round(quantile(bias$x1_npcbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x1_npcbgps_bias, 0.75), 3), ")"),
                      NA,
                      pasteO(round(median(bias$x1 qb10 bias), 4), " (",
                             round(quantile(bias$x1_qb10_bias, 0.25), 3), ", ",
                             round(quantile(bias$x1_qb10_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x1_qb15_bias), 4), " (",
                             round(quantile(bias$x1_qb15_bias, 0.25), 3), ", ",
                             round(quantile(bias$x1_qb15_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x1_qb20_bias), 4), " (",
                             round(quantile(bias$x1_qb20_bias, 0.25), 3), ", ",
                             round(quantile(bias$x1_qb20_bias, 0.75), 3), ")"),
                      pasteO(round(median(bias$x1_olr_bias), 4), " (",
                             round(quantile(bias$x1_olr_bias, 0.25), 3), ", ",
                             round(quantile(bias$x1_olr_bias, 0.75), 3), ")")),
`Median Bias (IQR)
                      = c(paste0(round(median(bias$x4_uw_bias), 4), " (",
                             round(quantile(bias$x4_uw_bias, 0.25), 3), ", ",
                             round(quantile(bias$x4_uw_bias, 0.75), 3), ")"),
                        pasteO(round(median(bias$x4_ols_bias), 4), " (",
                             round(quantile(bias$x4_ols_bias, 0.25), 3), ", ",
                             round(quantile(bias$x4 ols bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x4_cbgps_bias), 4), " (",
                             round(quantile(bias$x4 cbgps bias, 0.25), 3), ", ",
                             round(quantile(bias$x4_cbgps_bias, 0.75), 3), ")"),
                      pasteO(round(median(bias$x4_npcbgps_bias), 4), " (",
                             round(quantile(bias$x4_npcbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x4_npcbgps_bias, 0.75), 3), ")"),
                      NA,
                      NA,
                      NA,
                      NA,
                      pasteO(round(median(bias$x4_olr_bias), 4), " (",
                             round(quantile(bias$x4_olr_bias, 0.25), 3), ", ",
                             round(quantile(bias$x4_olr_bias, 0.75), 3), ")")),
`Median Bias (IQR) ` = c(paste0(round(median(bias$x2_uw_bias), 4), " (",
                             round(quantile(bias$x2_uw_bias, 0.25), 3), ", ",
                             round(quantile(bias$x2_uw_bias, 0.75), 3), ")"),
                         pasteO(round(median(bias$x2_ols_bias), 4), " (",
                             round(quantile(bias$x2_ols_bias, 0.25), 3), ", ",
                             round(quantile(bias$x2_ols_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x2_cbgps_bias), 4), " (",
                             round(quantile(bias$x2_cbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x2_cbgps_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x2_npcbgps_bias), 4), " (",
                             round(quantile(bias$x2_npcbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x2_npcbgps_bias, 0.75), 3), ")"),
                      NA,
                      paste0(round(median(bias$x2_qb10_bias), 4), " (",
                             round(quantile(bias$x2_qb10_bias, 0.25), 3), ", ",
```

```
round(quantile(bias$x2_qb10_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x2_qb15_bias), 4), " (",
                             round(quantile(bias$x2_qb15_bias, 0.25), 3), ", ",
                             round(quantile(bias$x2_qb15_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x2_qb20_bias), 4), " (",
                             round(quantile(bias$x2_qb20_bias, 0.25), 3), ", ",
                             round(quantile(bias$x2_qb20_bias, 0.75), 3), ")"),
                      pasteO(round(median(bias$x2 olr bias), 4), " (",
                             round(quantile(bias$x2_olr_bias, 0.25), 3), ", ",
                             round(quantile(bias$x2_olr_bias, 0.75), 3), ")")),
`Median Bias (IQR)
                       = c(paste0(round(median(bias$x5_uw_bias), 4), " (",
                             round(quantile(bias$x5_uw_bias, 0.25), 3), ", ",
                             round(quantile(bias$x5_uw_bias, 0.75), 3), ")"),
                        paste0(round(median(bias$x5_ols_bias), 4), " (",
                             round(quantile(bias$x5_ols_bias, 0.25), 3), ", ",
                             round(quantile(bias$x5_ols_bias, 0.75), 3), ")"),
                      pasteO(round(median(bias$x5_cbgps_bias), 4), " (",
                             round(quantile(bias$x5_cbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x5_cbgps_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x5_npcbgps_bias), 4), " (",
                             round(quantile(bias$x5_npcbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x5_npcbgps_bias, 0.75), 3), ")"),
                      NA,
                      NA,
                      NA,
                      NA,
                      pasteO(round(median(bias$x5_olr_bias), 4), " (",
                             round(quantile(bias$x5_olr_bias, 0.25), 3), ", ",
                             round(quantile(bias$x5_olr_bias, 0.75), 3), ")")),
                    = c(paste0(round(median(bias$x3_uw_bias), 4), " (",
`Median Bias (IQR)
                             round(quantile(bias$x3_uw_bias, 0.25), 3), ", ",
                             round(quantile(bias$x3_uw_bias, 0.75), 3), ")"),
                          pasteO(round(median(bias$x3_ols_bias), 4), " (",
                             round(quantile(bias$x3_ols_bias, 0.25), 3), ", ",
                             round(quantile(bias$x3_ols_bias, 0.75), 3), ")"),
                      pasteO(round(median(bias$x3_cbgps_bias), 4), " (",
                             round(quantile(bias$x3_cbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x3_cbgps_bias, 0.75), 3), ")"),
                      pasteO(round(median(bias$x3_npcbgps_bias), 4), " (",
                             round(quantile(bias$x3_npcbgps_bias, 0.25), 3), ", ",
                             round(quantile(bias$x3_npcbgps_bias, 0.75), 3), ")"),
                      NA,
                      paste0(round(median(bias$x3_qb10_bias), 4), " (",
                             round(quantile(bias$x3_qb10_bias, 0.25), 3), ", ",
                             round(quantile(bias$x3_qb10_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x3_qb15_bias), 4), " (",
                             round(quantile(bias$x3_qb15_bias, 0.25), 3), ", ",
                             round(quantile(bias$x3_qb15_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x3_qb20_bias), 4), " (",
                             round(quantile(bias$x3_qb20_bias, 0.25), 3), ", ",
                             round(quantile(bias$x3_qb20_bias, 0.75), 3), ")"),
                      paste0(round(median(bias$x3_olr_bias), 4), " (",
                             round(quantile(bias$x3_olr_bias, 0.25), 3), ", ",
```

```
round(quantile(bias$x3_olr_bias, 0.75), 3), ")")),
                                         = c(paste0(round(median(bias$x6_uw_bias), 4), " (",
               `Median Bias (IQR)
                                            round(quantile(bias$x6_uw_bias, 0.25), 3), ", ",
                                            round(quantile(bias$x6_uw_bias, 0.75), 3), ")"),
                                       pasteO(round(median(bias$x6_ols_bias), 4), " (",
                                            round(quantile(bias$x6_ols_bias, 0.25), 3), ", ",
                                            round(quantile(bias$x6_ols_bias, 0.75), 3), ")"),
                                     paste0(round(median(bias$x6 cbgps bias), 4), " (",
                                            round(quantile(bias$x6_cbgps_bias, 0.25), 3), ", ",
                                            round(quantile(bias$x6_cbgps_bias, 0.75), 3), ")"),
                                     paste0(round(median(bias$x6_npcbgps_bias), 4), " (",
                                            round(quantile(bias$x6_npcbgps_bias, 0.25), 3), ", ",
                                            round(quantile(bias$x6 npcbgps bias, 0.75), 3), ")"),
                                     NA,
                                     NA,
                                     NA,
                                     NA,
                                     paste0(round(median(bias$x6_olr_bias), 4), " (",
                                            round(quantile(bias$x6_olr_bias, 0.25), 3), ", ",
                                            round(quantile(bias$x6_olr_bias, 0.75), 3), ")"))
               )
# make table
kable(tab4) %>%
  kable_classic(html_font = "Arial", full_width = TRUE) %>%
  add_header_above(c("", "X1" = 1, "X4" = 1, "X2" = 1,
                     "X5" = 1, "X3" = 1, "X6" = 1), bold = TRUE) \%>%
  add_header_above(c("Marginally", "Normal" = 2, "Non-Normal" = 2,
                     "Non-Normal" = 2), bold = TRUE) %>%
  add_header_above(c("Conditionally", "Normal" = 2, "Normal" = 2,
                     "Non-Normal" = 2), bold = TRUE) %>%
  add_indent(c(6:8))
```

Conditionally	Normal		Normal		Non-Normal	
Marginally	Normal		Non-Normal		Non-Normal	
	X1	X4	X2	X5	X3	X6
Method	Median Bias	Median Bias				
	(IQR)	(IQR)	(IQR)	(IQR)	(IQR)	(IQR)
Unweighted	-0.0613	-0.055	-0.0647	-0.0633	-0.0415	-0.0403
	(-0.107,	(-0.103,	(-0.104,	(-0.102,	(-0.076,	(-0.076,
	-0.014)	-0.01)	-0.029)	-0.026)	-0.009)	-0.006)
Ordinary	-0.0024	-5e-04	-0.0118	-0.0507	-2e-04 (-0.04,	-3e-04
least squares	(-0.055,	(-0.054,	(-0.077,	(-0.089,	0.038)	(-0.039,
	0.048)	0.05)	0.056)	-0.013)	,	0.039)
Covariate	-0.0026	-1e-04	-0.0277	-0.0506	-8e-04	-4e-04
balancing	(-0.055,	(-0.054,	(-0.097,	(-0.088,	(-0.039,	(-0.039,
generalized	0.049)	0.05)	0.054)	-0.013)	0.038)	0.038)
propensity	,	,	,	,	,	•
score						
Non-	-8e-04	0.0023	-5e-04	-0.0496	0.01 (-0.034,	0.0086
parametric	(-0.058,	(-0.054,	(-0.071,	(-0.087,	0.051)	(-0.032,
covariate	0.056)	0.059)	0.064)	-0.01)		0.049)
balancing						
generalized						
propensity						
score						
Quantile						
binning						
categories	0.000		0.0007		0.0004	
10	-0.009		-0.0207		-0.0084	
	(-0.059,		(-0.074,		(-0.046,	
1.5	0.042)		0.037)		0.028)	
15	-0.0082		-0.0214		-0.0082	
	(-0.059,		(-0.074,		(-0.046,	
20	0.043)		0.036)		0.029)	
20	-0.0077		-0.0209		-0.008	
	(-0.058,		(-0.075,		(-0.045,	
0 1: 1	0.043)	0.0044	0.036)	0.040	0.029)	0.0076
Ordinal	-0.0073	-0.0044	-0.0196	-0.049	-0.0079	-0.0072
logistic .	(-0.058,	(-0.055,	(-0.075,	(-0.087,	(-0.045,	(-0.044,
regression	0.044)	0.045)	0.035)	-0.012)	0.029)	0.032)

Session Info

sessionInfo()

R version 4.1.0 (2021-05-18)

Platform: aarch64-apple-darwin20 (64-bit)

Running under: macOS 12.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRblas.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRlapack.dylib

Random number generation:
RNG: L'Ecuyer-CMRG
Normal: Inversion

Sample: Rejection

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

parallel stats graphics grDevices utils datasets [1] grid

[8] methods base

other attached packages:

[1]	survey_4.1-1	ggdist_3.0.0	extrafont_0.17	doParallel_1.0.16
[5]	iterators_1.0.14	foreach_1.5.2	furrr_0.2.3	future_1.23.0
[9]	ggpubr_0.4.0	kableExtra_1.3.4	lme4_1.1-27.1	Matrix_1.3-4
[13]	cobalt_4.3.1	MatchThem_1.0.1	WeightIt_0.12.0	mice_3.13.0
[17]	rms_6.2-0	SparseM_1.81	${\tt Hmisc_4.6-0}$	Formula_1.2-4
[21]	survival_3.2-13	lattice_0.20-45	forcats_0.5.1	stringr_1.4.0
[25]	dplyr_1.0.8	purrr_0.3.4	readr_2.0.2	tidyr_1.2.0
[29]	tibble_3.1.6	ggplot2_3.3.5	tidyverse_1.3.1	

10

d via a namespace (and	d not attached):	
readxl_1.3.1	backports_1.3.0	systemfonts_1.0.3
plyr_1.8.6	splines_4.1.0	listenv_0.8.0
TH.data_1.1-0	digest_0.6.29	htmltools_0.5.2
magick_2.7.3	fansi_1.0.2	magrittr_2.0.2
checkmate_2.0.0	cluster_2.1.2	tzdb_0.2.0
recipes_0.1.17	globals_0.14.0	modelr_0.1.8
gower_0.2.2	matrixStats_0.61.0	extrafontdb_1.0
sandwich_3.0-1	svglite_2.0.0	jpeg_0.1-9
colorspace_2.0-3	rvest_1.0.2	mitools_2.4
haven_2.4.3	xfun_0.30	crayon_1.5.0
jsonlite_1.8.0	zoo_1.8-9	glue_1.6.2
gtable_0.3.0	ipred_0.9-12	webshot_0.5.2
MatrixModels_0.5-0	${\tt distributional_0.2.2}$	car_3.0-12
Rttf2pt1_1.3.9	<pre>future.apply_1.8.1</pre>	abind_1.4-5
scales_1.1.1	mvtnorm_1.1-3	DBI_1.1.1
rstatix_0.7.0	Rcpp_1.0.8.3	viridisLite_0.4.0
htmlTable_2.3.0	foreign_0.8-81	stats4_4.1.0
lava_1.6.10	prodlim_2019.11.13	htmlwidgets_1.5.4
httr_1.4.2	MatchIt_4.3.0	RColorBrewer_1.1-2
ellipsis_0.3.2	farver_2.1.0	pkgconfig_2.0.3
nnet_7.3-16	dbplyr_2.1.1	utf8_1.2.2
caret_6.0-90	labeling_0.4.2	tidyselect_1.1.2
rlang_1.0.2	reshape2_1.4.4	munsell_0.5.0
cellranger_1.1.0	tools_4.1.0	cli_3.2.0
moments_0.14	generics_0.1.2	broom_0.7.10
evaluate_0.15	fastmap_1.1.0	yaml_2.3.5
ModelMetrics_1.2.2.2		fs_1.5.2
nlme_3.1-153		xml2_1.3.3
compiler_4.1.0	rstudioapi_0.13	png_0.1-7
	reprex_2.0.1	stringi_1.7.6
nloptr_1.2.2.3	vctrs_0.3.8	pillar_1.7.0
lifecycle_1.0.1	cowplot_1.1.1	data.table_1.14.2
conquer_1.2.1	R6_2.5.1	latticeExtra_0.6-29
<pre>gridExtra_2.3</pre>	parallelly_1.28.1	codetools_0.2-18
	readxl_1.3.1 plyr_1.8.6 TH.data_1.1-0 magick_2.7.3 checkmate_2.0.0 recipes_0.1.17 gower_0.2.2 sandwich_3.0-1 colorspace_2.0-3 haven_2.4.3 jsonlite_1.8.0 gtable_0.3.0 MatrixModels_0.5-0 Rttf2pt1_1.3.9 scales_1.1.1 rstatix_0.7.0 htmlTable_2.3.0 lava_1.6.10 httr_1.4.2 ellipsis_0.3.2 nnet_7.3-16 caret_6.0-90 rlang_1.0.2 cellranger_1.1.0 moments_0.14 evaluate_0.15 ModelMetrics_1.2.2.2 nlme_3.1-153 compiler_4.1.0 ggsignif_0.6.3 nloptr_1.2.2.3 lifecycle_1.0.1 conquer_1.2.1	plyr_1.8.6 splines_4.1.0 TH.data_1.1-0 digest_0.6.29 magick_2.7.3 fansi_1.0.2 checkmate_2.0.0 cluster_2.1.2 recipes_0.1.17 globals_0.14.0 gower_0.2.2 matrixStats_0.61.0 sandwich_3.0-1 svglite_2.0.0 colorspace_2.0-3 rvest_1.0.2 haven_2.4.3 xfun_0.30 jsonlite_1.8.0 zoo_1.8-9 gtable_0.3.0 ipred_0.9-12 MatrixModels_0.5-0 distributional_0.2.2 Rttf2pt1_1.3.9 future.apply_1.8.1 scales_1.1.1 mvtnorm_1.1-3 rstatix_0.7.0 Rcpp_1.0.8.3 htmlTable_2.3.0 foreign_0.8-81 lava_1.6.10 prodlim_2019.11.13 httr_1.4.2 MatchIt_4.3.0 ellipsis_0.3.2 farver_2.1.0 nnet_7.3-16 dbplyr_2.1.1 caret_6.0-90 labeling_0.4.2 rlang_1.0.2 reshape2_1.4.4 cellranger_1.1.0 tools_4.1.0 moments_0.14 generics_0.1.2 evaluate_0.15 fastmap_11.0

[103]	polspline_1.1.19	boot_1.3-28	MASS_7.3-54
[106]	assertthat_0.2.1	withr_2.5.0	multcomp_1.4-17
[109]	hms_1.1.1	rpart_4.1-15	<pre>timeDate_3043.102</pre>
[112]	class_7.3-19	$minqa_1.2.4$	rmarkdown_2.13
[115]	carData_3.0-4	pROC_1.18.0	<pre>lubridate_1.8.0</pre>
[118]	base64enc_0.1-3		

References

1. Naimi AI, Moodie EEM, Auger N, et al. Constructing inverse probability weights for continuous exposures: a comparison of methods. Epidemiology~(Cambridge,~Mass.).~2014;25(2):292-299.