CS294-248 Special Topics in Database Theory Unit 6: Constraints, Incomplete and Probabilistic Databases

Dan Suciu

University of Washington

Outline

• Today: Generalized Constraints, Semantics Optimization.

• Thursday: Repairs, Incomplete Databases

Constraints

A constraint is an assertion on the database **D** that must always hold.

How does this differ from invariants in programs?

Constraints

A constraint is an assertion on the database **D** that must always hold.

How does this differ from invariants in programs?

Constraints: we check them at runtime (this may be costly)

Invariants: we prove them offline, do not check at runtime.

Applications of Constraints

- Enforce database consistency.
 - Most common constraint in practice:
 - "Please type in your phone number using XXX XXX XXXX";
- Database normalization.
- Semantic optimization: given query Q find a "better" query Q' s.t. $Q \equiv Q'$ on databases satisfying the constraints.
- Database repair: if $\mathbf{D} \not\models \Sigma$, delete/insert tuples s.t. $\mathbf{D}' \models \Sigma$.
- Consistent query answering: given query Q return only those answers that are present in $Q(\mathbf{D}')$ for all repairs \mathbf{D}' .

Classical Database Constraints

Classical Database Constraints

• Functional Dependencies (FD).

Multivalued Dependencies (MVD).

Join Dependencides (JD).

Inclusion Dependencies (IND).

Functional Dependency

Notation:

$$oldsymbol{U}
ightarrow oldsymbol{V}$$

Semantics: $R^D \models \mathbf{U} \rightarrow \mathbf{V}$ if:

$$\forall u, v_1, w_1, v_2, w_2(R(u, v_1, w_1) \land R(u, v_2, w_2) \Rightarrow v_1 = v_2)$$

Consequence

Lossless decomposition: $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}) = R_1(\boldsymbol{U}, \boldsymbol{V}) \bowtie R_2(\boldsymbol{U}, \boldsymbol{W})$.

The implication problem: axiomatizable (Armstrong), decidable in PTIME.

Multivalued Dependency

Notation: given a partition all attribute $X = U \cup V \cup W$:

Semantics: $R^D \models \boldsymbol{U} \rightarrow \boldsymbol{V}; \boldsymbol{W}$ if:

$$\forall \boldsymbol{u}, \boldsymbol{v}_1, \boldsymbol{w}_1, \boldsymbol{v}_2, \boldsymbol{w}_2(R(\boldsymbol{u}, \boldsymbol{v}_1, \boldsymbol{w}_1) \land R(\boldsymbol{u}, \boldsymbol{v}_2, \boldsymbol{w}_2) \Rightarrow R(\boldsymbol{u}, \boldsymbol{v}_1, \boldsymbol{w}_2))$$

Equivalent Definition

Lossless decomposition: $R(\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}) = R_1(\boldsymbol{U}, \boldsymbol{V}) \bowtie R_2(\boldsymbol{U}, \boldsymbol{W})$.

The implication problem for FD+MVD: axiomatizable, decidable.

Notation: given a cover of all attributes $\mathbf{X} = \mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k$:

$$\bowtie (\boldsymbol{U}_1, \boldsymbol{U}_2, \ldots, \boldsymbol{U}_k)$$

Notation: given a cover of all attributes $\mathbf{X} = \mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k$:

$$|\bowtie (\boldsymbol{U}_1, \boldsymbol{U}_2, \ldots, \boldsymbol{U}_k)|$$

Semantics by example. $R^D(X, Y, Z) \models \bowtie (XY, YZ, XZ)$ if R^D satisfies

$$\forall x, x', y, y, z, z'(R(x, y, z') \land R(x', y, z) \land R(x, y', z)) \Rightarrow R(x, y, z)$$

Notation: given a cover of all attributes $\mathbf{X} = \mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k$:

$$|\bowtie (\boldsymbol{U}_1, \boldsymbol{U}_2, \ldots, \boldsymbol{U}_k)|$$

Semantics by example. $R^D(X, Y, Z) \models \bowtie (XY, YZ, XZ)$ if R^D satisfies

$$\forall x, x', y, y, z, z'(R(x, y, z') \land R(x', y, z) \land R(x, y', z)) \Rightarrow R(x, y, z)$$

Equivalently: $R^D \models \bowtie (\mathbf{U}_1, \dots, \mathbf{U}_k)$ if:

Definition of JD

Lossless decomposition: $R(\mathbf{X}) = R_1(\mathbf{U}_1) \bowtie \cdots \bowtie R_k(\mathbf{U}_k)$

Notation: given a cover of all attributes $\mathbf{X} = \mathbf{U}_1 \cup \ldots \cup \mathbf{U}_k$:

$$|\bowtie (\boldsymbol{U}_1, \boldsymbol{U}_2, \ldots, \boldsymbol{U}_k)|$$

Semantics by example. $R^D(X, Y, Z) \models \bowtie (XY, YZ, XZ)$ if R^D satisfies

$$\forall x, x', y, y, z, z'(R(x, y, z') \land R(x', y, z) \land R(x, y', z)) \Rightarrow R(x, y, z)$$

Equivalently: $R^D \models \bowtie (\mathbf{U}_1, \dots, \mathbf{U}_k)$ if:

Definition of JD

Lossless decomposition: $R(\mathbf{X}) = R_1(\mathbf{U}_1) \bowtie \cdots \bowtie R_k(\mathbf{U}_k)$

JD implication problem not axiomatizable [Abiteboul et al., 1995, pp.171].

FD+JD implication problem is decidable (later).

Inclusion Dependencies

Notation: relation schemas $R(X), S(Y), U \subseteq X, V \subseteq Y, |U| = |Y|$:

$$R[\boldsymbol{U}] \subseteq R[\boldsymbol{V}]$$

Inclusion Dependencies

Notation: relation schemas $R(X), S(Y), U \subseteq X, V \subseteq Y, |U| = |Y|$:

$$R[\boldsymbol{U}] \subseteq R[\boldsymbol{V}]$$

Semantics: (what you expect, but watch the FO sentence):

$$\forall \mathbf{u} \forall \mathbf{r} (R(\mathbf{u}, \mathbf{r}) \Rightarrow \exists \mathbf{s} S(\mathbf{u}, \mathbf{s}))$$

Inclusion Dependencies

Notation: relation schemas $R(X), S(Y), U \subseteq X, V \subseteq Y, |U| = |Y|$:

$$R[\boldsymbol{U}] \subseteq R[\boldsymbol{V}]$$

Semantics: (what you expect, but watch the FO sentence):

$$\forall \mathbf{u} \forall \mathbf{r} (R(\mathbf{u}, \mathbf{r}) \Rightarrow \exists \mathbf{s} S(\mathbf{u}, \mathbf{s}))$$

[Abiteboul et al., 1995, pp.171-202]:

- IND is axiomatizable (3 simple axioms).
- The implication problem for IND is PSPACE complete.
- The implication problem for FD+IND is undecidable.

Discussion

FDs, MVDs, JDs, INDs, ..., why so many kinds?

It turns out that all can be captured by a single formalism:

Generalized Dependencies

Relational schema: $R_1, R_2, ...$

A Generalized Dependency is a statement of one of these two forms:

Tuple-Generating Dependency (TGD):

$$\forall \boldsymbol{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow \exists \boldsymbol{y}(B_1 \wedge \cdots \wedge B_k)$$

Relational schema: $R_1, R_2, ...$

A Generalized Dependency is a statement of one of these two forms:

Tuple-Generating Dependency (TGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k)$$
The TGD is full if there is no $\exists \mathbf{y}$

Relational schema: $R_1, R_2, ...$

A Generalized Dependency is a statement of one of these two forms:

Tuple-Generating Dependency (TGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k)$$
The TGD is full if there is no $\exists \mathbf{y}$

Equality-Generating Dependency (EGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow x_i = x_j$$

Relational schema: $R_1, R_2, ...$

A Generalized Dependency is a statement of one of these two forms:

Tuple-Generating Dependency (TGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k)$$
The TGD is full if there is no $\exists \mathbf{y}$

Equality-Generating Dependency (EGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow x_i = x_j$$

Examples

FD:
$$\forall u \forall x_1 \forall x_2 (R(u, x_1) \land R(u, x_2) \Rightarrow x_1 = x_2)$$
.

Relational schema: R_1, R_2, \dots

A Generalized Dependency is a statement of one of these two forms:

Tuple-Generating Dependency (TGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k)$$
The TGD is full if there is no $\exists \mathbf{y}$

Equality-Generating Dependency (EGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow x_i = x_j$$

Examples

FD: $\forall u \forall x_1 \forall x_2 (R(u, x_1) \land R(u, x_2) \Rightarrow x_1 = x_2)$. MVD: $\forall u, v_1, w_1, v_2, v_2 (R(u, v_1, w_1) \land R(u, v_2, w_2) \Rightarrow R(u, v_1, w_2))$.

Relational schema: $R_1, R_2, ...$

A Generalized Dependency is a statement of one of these two forms:

Tuple-Generating Dependency (TGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k)$$
The TGD is full if there is no $\exists \mathbf{y}$

Equality-Generating Dependency (EGD):

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m) \Rightarrow x_i = x_j$$

Examples

FD: $\forall u \forall x_1 \forall x_2 (R(u, x_1) \land R(u, x_2) \Rightarrow x_1 = x_2)$.

MVD: $\forall u, v_1, w_1, v_2, v_2(R(u, v_1, w_1) \land R(u, v_2, w_2) \Rightarrow R(u, v_1, w_2))$.

IND: $\forall x \forall x' (R(x, x') \Rightarrow \exists y S(x, y'))$.

Dan Suciu

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k))$$

• Need \exists on the right, but not on the left: $\forall x (\exists y R(x, y) \Rightarrow \exists z S(x, z))$

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k))$$

• Need \exists on the right, but not on the left: $\forall x (\exists y R(x,y) \Rightarrow \exists z S(x,z))$ equivalent to $\forall x \forall y (R(x,y) \Rightarrow \exists z S(x,z))$

$$\forall \boldsymbol{x}(A_1 \wedge \ldots \wedge A_m \Rightarrow \exists \boldsymbol{y}(B_1 \wedge \cdots \wedge B_k))$$

- Need \exists on the right, but not on the left: $\forall x (\exists y R(x,y) \Rightarrow \exists z S(x,z))$ equivalent to $\forall x \forall y (R(x,y) \Rightarrow \exists z S(x,z))$
- When \exists is missing, then we can split the RHS: $\forall x \forall y (R(x,y) \Rightarrow S(x) \land (x=y))$

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k))$$

- Need \exists on the right, but not on the left: $\forall x (\exists y R(x,y) \Rightarrow \exists z S(x,z))$ equivalent to $\forall x \forall y (R(x,y) \Rightarrow \exists z S(x,z))$
- When \exists is missing, then we can split the RHS: $\forall x \forall y (R(x,y) \Rightarrow S(x) \land (x=y))$ equivalent to two GDs: $\forall x \forall y (R(x,y) \Rightarrow S(x))$ $\forall x \forall y (R(x,y) \Rightarrow (x=y))$

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k))$$

- Need \exists on the right, but not on the left: $\forall x (\exists y R(x,y) \Rightarrow \exists z S(x,z))$ equivalent to $\forall x \forall y (R(x,y) \Rightarrow \exists z S(x,z))$
- When \exists is missing, then we can split the RHS: $\forall x \forall y (R(x,y) \Rightarrow S(x) \land (x=y))$ equivalent to two GDs: $\forall x \forall y (R(x,y) \Rightarrow S(x))$ $\forall x \forall y (R(x,y) \Rightarrow (x=y))$
- A GD is equivalent to a query containment assertion: $\forall x (\exists y (R(x,y) \Rightarrow \exists z S(x,z)))$ is equivalent to: $Q_1 \subseteq Q_2$ where $Q_1(x) \stackrel{\mathsf{def}}{=} \exists y R(x,y), \ Q_2(x) \stackrel{\mathsf{def}}{=} \exists z S(x,z).$

Dan Suciu

$$\forall \mathbf{x}(A_1 \wedge \ldots \wedge A_m \Rightarrow \exists \mathbf{y}(B_1 \wedge \cdots \wedge B_k))$$

- Need \exists on the right, but not on the left: $\forall x (\exists y R(x,y) \Rightarrow \exists z S(x,z))$ equivalent to $\forall x \forall y (R(x,y) \Rightarrow \exists z S(x,z))$
- When \exists is missing, then we can split the RHS: $\forall x \forall y (R(x,y) \Rightarrow S(x) \land (x=y))$ equivalent to two GDs: $\forall x \forall y (R(x,y) \Rightarrow S(x))$ $\forall x \forall y (R(x,y) \Rightarrow (x=y))$
- A GD is equivalent to a query containment assertion: $\forall x (\exists y (R(x,y) \Rightarrow \exists z S(x,z)))$ is equivalent to: $Q_1 \subseteq Q_2$ where $Q_1(x) \stackrel{\mathsf{def}}{=} \exists y R(x,y), \ Q_2(x) \stackrel{\mathsf{def}}{=} \exists z S(x,z).$
- To check $\mathbf{D} \models \sigma$, compute $Q_1(\mathbf{D}), Q_2(\mathbf{D})$; in PTIME.

Discussion

 GDs are a fragment of FO, powerful enough to capture classical constraints, yet weak enough to be useful.

• Next: we show their utility in semantics optimization.

Semantic Query Optimization

Overview

Semantics Query Optimization means query optimization that uses the database constraints Σ

Replace a query Q by Q' such that $Q(\mathbf{D}) = Q'(\mathbf{D})$ for every database instance \mathbf{D} that satisfies the constraints.

We write
$$\Sigma \models Q \equiv Q'$$

Note that, in general, $Q \not\equiv Q'$.

Semantic optimization is an old idea [King, 1981, Chakravarthy et al., 1990].

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_1 \subseteq Q_2$$
?

$$Q_2(z)=S(55,z)$$

$$Q_2 \subseteq Q_1$$
?

Example

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z)=S(55,z)$$

Which of the following hold?

$$Q_1 \subseteq Q_2$$
? NO

$$Q_2 \subseteq Q_1$$
?

Example

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z) = S(55,z)$$

Which of the following hold?

$$Q_1 \subseteq Q_2$$
? NO

$$Q_2 \subseteq Q_1$$
? NO

(In class: show canonical database refuting these containments)

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z)=S(55,z)$$

Which of the following hold?

 $Q_1 \subseteq Q_2$? NO

 $Q_2 \subseteq Q_1$? NO

(In class: show canonical database refuting these containments)

What constraint implies $Q_1 \subseteq Q_2$?

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z)=S(55,z)$$

Which of the following hold?

 $Q_1 \subseteq Q_2$? NO

 $Q_2 \subseteq Q_1$? NO

(In class: show canonical database refuting these containments)

What constraint implies $Q_1 \subseteq Q_2$?

$$R.x$$
 is a key:

$$\sigma_1: \forall x, y, w(R(x, w) \land R(x, y) \Rightarrow (w = y))$$

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z) = S(55,z)$$

Which of the following hold?

$$Q_1 \subseteq Q_2$$
? NO

 $Q_2 \subseteq Q_1$? NO

(In class: show canonical database refuting these containments)

What constraint implies $Q_1 \subseteq Q_2$?

$$R.x$$
 is a key: $\sigma_1: \forall x, y, w(R(x, w) \land R(x, y) \Rightarrow (w = y))$
Then $Q_1(z) \equiv R(x, 55) \land R(x, 55) \land S(55, z) \equiv R(x, 55) \land S(55, z)$

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z) = S(55,z)$$

Which of the following hold?

$$Q_1 \subseteq Q_2$$
? NO

 $Q_2 \subseteq Q_1$? NO

(In class: show canonical database refuting these containments)

What constraint implies $Q_1 \subseteq Q_2$?

$$R.x$$
 is a key: $\sigma_1: \forall x, y, w(R(x, w) \land R(x, y) \Rightarrow (w = y))$

Then
$$Q_1(z) \equiv R(x, 55) \land R(x, 55) \land S(55, z) \equiv R(x, 55) \land S(55, z)$$

What constraint implies $Q_2 \subseteq Q_1$?

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z)=S(55,z)$$

Which of the following hold?

$$Q_1 \subseteq Q_2$$
? NO

 $Q_2 \subseteq Q_1$? NO

(In class: show canonical database refuting these containments)

What constraint implies $Q_1 \subseteq Q_2$?

$$R.x$$
 is a key:

$$\sigma_1: \forall x, y, w(R(x, w) \land R(x, y) \Rightarrow (w = y))$$

Then
$$Q_1(z) \equiv R(x, 55) \land R(x, 55) \land S(55, z) \equiv R(x, 55) \land S(55, z)$$

What constraint implies $Q_2 \subseteq Q_1$?

$$\sigma_2: \forall y, z(S(y,z) \Rightarrow \exists x R(x,y)).$$

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z)=S(55,z)$$

Which of the following hold?

$$Q_1 \subseteq Q_2$$
? NO

 $Q_2 \subseteq Q_1$? NO

(In class: show canonical database refuting these containments)

What constraint implies $Q_1 \subseteq Q_2$?

$$R.x$$
 is a key: $\sigma_1: \forall x, y, w(R(x, w) \land R(x, y) \Rightarrow (w = y))$

Then
$$Q_1(z) \equiv R(x, 55) \land R(x, 55) \land S(55, z) \equiv R(x, 55) \land S(55, z)$$

What constraint implies $Q_2 \subseteq Q_1$?

IND:
$$\sigma_2 : \forall y, z(S(y,z) \Rightarrow \exists x R(x,y))$$
. Then:

$$Q_2(z) \equiv S(y,z) \wedge y = 55 \equiv R(x,y) \wedge S(y,z) \wedge y = 55 \equiv R(x,55) \wedge S(55,z)$$

$$Q_1(z) = R(x,55) \wedge R(x,y) \wedge S(y,z)$$

$$Q_2(z) = S(55,z)$$

Which of the following hold?

$$Q_1 \subseteq Q_2$$
? NO

 $Q_2 \subseteq Q_1$? NO

(In class: show canonical database refuting these containments)

What constraint implies $Q_1 \subseteq Q_2$?

$$R.x$$
 is a key: $\sigma_1: \forall x, y, w(R(x, w) \land R(x, y) \Rightarrow (w = y))$

Then
$$Q_1(z) \equiv R(x, 55) \land R(x, 55) \land S(55, z) \equiv R(x, 55) \land S(55, z)$$

What constraint implies $Q_2 \subseteq Q_1$?

IND:
$$\sigma_2 : \forall y, z(S(y,z) \Rightarrow \exists x R(x,y))$$
. Then:

$$Q_2(z) \equiv S(y,z) \wedge y = 55 \equiv R(x,y) \wedge S(y,z) \wedge y = 55 \equiv R(x,55) \wedge S(55,z)$$

Assume the database satisfies σ_1, σ_2 . Then we can optimize Q_1 to Q_2

The Chase: Overview

- The Chase takes a query Q and a GD σ and creates a new query Q_1 by "applying" σ to Q.
- The important semantics property of the chase is: $\sigma \models Q \equiv Q_1$.
- ullet By repeatedly applying the chase we obtain a sequence $Q,\,Q_1,\,Q_2,\ldots$
- To check $\Sigma \models Q \equiv Q'$ it suffices to find a chase sequence from Q to Q_m , and one from Q' to Q'_n , then prove $Q_m \equiv Q'_n$ (unconditioned).

Let σ be $\forall x(A \Rightarrow C)$ where A is a conjunction of atoms, Q be a CQ.

Definition (The Chase)

- If σ is a TGD with $C \equiv \exists y B$, then $Q' \stackrel{\text{def}}{=} Q \wedge \theta(B)$.
- If σ is an EGD with $C \equiv (x_i = x_i)$, then $Q' \stackrel{\text{def}}{=} Q[x_i/x_i]$.

Let σ be $\forall x(A \Rightarrow C)$ where A is a conjunction of atoms, Q be a CQ.

Definition (The Chase)

- If σ is a TGD with $C \equiv \exists y B$, then $Q' \stackrel{\mathsf{def}}{=} Q \wedge \theta(B)$.
- If σ is an EGD with $C \equiv (x_i = x_j)$, then $Q' \stackrel{\text{def}}{=} Q[x_j/x_i]$.

Example
$$Q(x) = R(x, y) \wedge A(y) \wedge R(x, z) \wedge B(z)$$

Let σ be $\forall \mathbf{x}(A \Rightarrow C)$ where A is a conjunction of atoms, Q be a CQ.

Definition (The Chase)

- If σ is a TGD with $C \equiv \exists y B$, then $Q' \stackrel{\mathsf{def}}{=} Q \wedge \theta(B)$.
- If σ is an EGD with $C \equiv (x_i = x_j)$, then $Q' \stackrel{\text{def}}{=} Q[x_j/x_i]$.

Example
$$Q(x) = R(x, y) \land A(y) \land R(x, z) \land B(z)$$

$$\sigma_1 = \forall u \forall v \forall w (R(u, v) \land R(u, w) \Rightarrow (v = w))$$

$$\sigma_2 = \forall u \forall v (R(u, v) \Rightarrow \exists w S(u, w))$$

Let σ be $\forall \mathbf{x}(A \Rightarrow C)$ where A is a conjunction of atoms, Q be a CQ.

Definition (The Chase)

- If σ is a TGD with $C \equiv \exists y B$, then $Q' \stackrel{\text{def}}{=} Q \wedge \theta(B)$.
- If σ is an EGD with $C \equiv (x_i = x_j)$, then $Q' \stackrel{\text{def}}{=} Q[x_j/x_i]$.

Let σ be $\forall \mathbf{x}(A \Rightarrow C)$ where A is a conjunction of atoms, Q be a CQ.

Definition (The Chase)

For a homomorphism $\theta: A \to Q$, we write $Q \stackrel{\sigma,\theta}{\to} Q'$ where Q' is:

- If σ is a TGD with $C \equiv \exists \mathbf{v} B$, then $Q' \stackrel{\text{def}}{=} Q \wedge \theta(B)$.
- If σ is an EGD with $C \equiv (x_i = x_i)$, then $Q' \stackrel{\text{def}}{=} Q[x_i/x_i]$.

Example
$$Q(x) = R(x, y) \land A(y) \land R(x, z) \land B(z)$$

$$\sigma_{1} = \forall u \forall v \forall w (R(u, v) \land R(u, w) \Rightarrow (v = w))$$

$$\sigma_{2} = \forall u \forall v (R(u, v) \Rightarrow \exists w S(u, w))$$
Chase Q with σ_{2} , θ_{3} : $(u, v, w) + \lambda (x, y, z)$

Chase Q with σ_1 , θ_1 : $(u, v, w) \mapsto (x, y, z)$.

$$Q \stackrel{\sigma_1,\theta_1}{\rightarrow} R(x,y) \wedge A(y) \wedge B(y)$$

Let σ be $\forall \mathbf{x}(A \Rightarrow C)$ where A is a conjunction of atoms, Q be a CQ.

Definition (The Chase)

For a homomorphism $\theta: A \to Q$, we write $Q \stackrel{\sigma,\theta}{\to} Q'$ where Q' is:

- If σ is a TGD with $C \equiv \exists y B$, then $Q' \stackrel{\text{def}}{=} Q \wedge \theta(B)$.
- If σ is an EGD with $C \equiv (x_i = x_j)$, then $Q' \stackrel{\text{def}}{=} Q[x_j/x_i]$.

Example
$$Q(x) = R(x, y) \land A(y) \land R(x, z) \land B(z)$$

$$\sigma_1 = \forall u \forall v \forall w (R(u, v) \land R(u, w) \Rightarrow (v = w))$$

$$\sigma_2 = \forall u \forall v (R(u, v) \Rightarrow \exists w S(u, w))$$

Chase Q with σ_1 , θ_1 : $(u, v, w) \mapsto (x, y, z)$.

$$Q \stackrel{\sigma_1,\theta_1}{\rightarrow} R(x,y) \wedge A(y) \wedge B(y)$$

Chase the result with σ_2 , θ_2 : $(u, v) \mapsto (x, y)$.

$$Q' \stackrel{\sigma_2,\theta_2}{\rightarrow} ?$$

Dan Suciu

Let σ be $\forall \mathbf{x}(A \Rightarrow C)$ where A is a conjunction of atoms, Q be a CQ.

Definition (The Chase)

For a homomorphism $\theta: A \to Q$, we write $Q \stackrel{\sigma,\theta}{\to} Q'$ where Q' is:

- If σ is a TGD with $C \equiv \exists y B$, then $Q' \stackrel{\mathsf{def}}{=} Q \wedge \theta(B)$.
- If σ is an EGD with $C \equiv (x_i = x_j)$, then $Q' \stackrel{\text{def}}{=} Q[x_j/x_i]$.

Example
$$Q(x) = R(x, y) \land A(y) \land R(x, z) \land B(z)$$

$$\sigma_1 = \forall u \forall v \forall w (R(u, v) \land R(u, w) \Rightarrow (v = w))$$

$$\sigma_2 = \forall u \forall v (R(u, v) \Rightarrow \exists w S(u, w))$$

Chase Q with σ_1 , θ_1 : $(u, v, w) \mapsto (x, y, z)$.

$$Q \stackrel{\sigma_1,\theta_1}{\to} R(x,y) \wedge A(y) \wedge B(y)$$

Chase the result with σ_2 , θ_2 : $(u, v) \mapsto (x, y)$.

$$Q' \stackrel{\sigma_2,\theta_2}{\rightarrow} R(x,y) \wedge A(y) \wedge B(y) \wedge S(x,w)$$

 \bullet Given a set Σ of GD, we can repeatedly apply the chase:

$$Q \stackrel{\sigma_1,\theta_1}{\rightarrow} Q_1 \stackrel{\sigma_2,\theta_2}{\rightarrow} Q_2 \cdots$$

¹The book doesn't consider constants; need to add this to allow constants.

• Given a set Σ of GD, we can repeatedly apply the chase:

$$Q \stackrel{\sigma_1,\theta_1}{\rightarrow} Q_1 \stackrel{\sigma_2,\theta_2}{\rightarrow} Q_2 \cdots$$

• In general, this may not terminate:

$$\sigma = \forall x \forall y (R(x,y) \rightarrow \exists z R(y,z)) \qquad Q() = R(u_0,u_1)$$

$$R(u_0,u_1) \rightarrow (R(u_0,u_1) \land R(u_1,u_2)) \rightarrow (R(u_0,u_1) \land R(u_1,u_2) \land R(u_2,u_3)) \rightarrow \cdots$$

Dan Suciu

¹The book doesn't consider constants; need to add this to allow constants.

• Given a set Σ of GD, we can repeatedly apply the chase:

$$Q \stackrel{\sigma_1,\theta_1}{\rightarrow} Q_1 \stackrel{\sigma_2,\theta_2}{\rightarrow} Q_2 \cdots$$

• In general, this may not terminate:

$$\sigma = \forall x \forall y (R(x,y) \rightarrow \exists z R(y,z)) \qquad Q() = R(u_0,u_1)$$

$$R(u_0,u_1) \rightarrow (R(u_0,u_1) \land R(u_1,u_2)) \rightarrow (R(u_0,u_1) \land R(u_1,u_2) \land R(u_2,u_3)) \rightarrow \cdots$$

• Fact: if all TGDs are full (i.e. no ∃) then any chase terminates.

Dan Suciu

¹The book doesn't consider constants: need to add this to allow constants.

• Given a set Σ of GD, we can repeatedly apply the chase:

$$Q \stackrel{\sigma_1,\theta_1}{\rightarrow} Q_1 \stackrel{\sigma_2,\theta_2}{\rightarrow} Q_2 \cdots$$

• In general, this may not terminate:

$$\sigma = \forall x \forall y (R(x,y) \rightarrow \exists z R(y,z)) \qquad Q() = R(u_0,u_1)$$

$$R(u_0,u_1) \rightarrow (R(u_0,u_1) \land R(u_1,u_2)) \rightarrow (R(u_0,u_1) \land R(u_1,u_2) \land R(u_2,u_3)) \rightarrow \cdots$$

- Fact: if all TGDs are *full* (i.e. no \exists) then any chase terminates.
- In general, the chase may also fail: $\sigma = \forall x \forall y \forall z (R(x,y) \land R(x,z) \Rightarrow (y=z)) \ Q() = R(x,33) \land R(x,55) \ Q \rightarrow \text{fail}.$

¹The book doesn't consider constants; need to add this to allow constants.

• Given a set Σ of GD, we can repeatedly apply the chase: $O \stackrel{\sigma_1,\theta_1}{\rightarrow} Q_1 \stackrel{\sigma_2,\theta_2}{\rightarrow} Q_2 \cdots$

$$\sigma = \forall x \forall y (R(x,y) \rightarrow \exists z R(y,z)) \qquad Q() = R(u_0,u_1)$$

$$R(u_0,u_1) \rightarrow (R(u_0,u_1) \land R(u_1,u_2)) \rightarrow (R(u_0,u_1) \land R(u_1,u_2) \land R(u_2,u_3)) \rightarrow \cdots$$

- **Fact**: if all TGDs are *full* (i.e. no ∃) then any chase terminates.
- In general, the chase may also fail: $\sigma = \forall x \forall y \forall z (R(x,y) \land R(x,z) \Rightarrow (y=z)) \ Q() = R(x,33) \land R(x,55)$ $Q \to \mathtt{fail}$.
- Fact: if Σ does not contain EGDs, then the chase never fails.

Dan Suciu

¹The book doesn't consider constants; need to add this to allow constants.

• Given a set Σ of GD, we can repeatedly apply the chase: $O \xrightarrow{\sigma_1,\theta_1} O_1 \xrightarrow{\sigma_2,\theta_2} O_2 \cdots$

• In general, this may not terminate:

$$\sigma = \forall x \forall y (R(x,y) \rightarrow \exists z R(y,z)) \qquad Q() = R(u_0,u_1)$$

$$R(u_0,u_1) \rightarrow (R(u_0,u_1) \land R(u_1,u_2)) \rightarrow (R(u_0,u_1) \land R(u_1,u_2) \land R(u_2,u_3)) \rightarrow \cdots$$

- Fact: if all TGDs are *full* (i.e. no \exists) then any chase terminates.
- In general, the chase may also fail: $\sigma = \forall x \forall y \forall z (R(x,y) \land R(x,z) \Rightarrow (y=z)) \ Q() = R(x,33) \land R(x,55) \ Q \rightarrow \texttt{fail}.$
- **Fact**: if Σ does not contain EGDs, then the chase never fails.
- Theorem [Abiteboul et al., 1995, Theorem 8.4.18]: if Σ consists of full TGDs and EDGs (i.e. no \exists) and the chase succeeds¹ then all terminating chases end in the same query, denoted Chase(Q).

¹The book doesn't consider constants; need to add this to allow constants.

Theorem (Soundness Theorem)

Let
$$\sigma = \boxed{\forall \mathbf{x}(A \Rightarrow C)}$$
 be a GD. If $Q \stackrel{\sigma,\theta}{\rightarrow} Q_1$ then $\sigma \models Q \subseteq Q_1$.

Theorem (Soundness Theorem)

Let
$$\sigma = \boxed{\forall \textbf{\textit{x}}(A \Rightarrow C)}$$
 be a GD. If $Q \overset{\sigma, \theta}{\rightarrow} Q_1$ then $\sigma \models Q \subseteq Q_1$.

Proof Assume Q is a Boolean query. Let D be s.t. $D \models \sigma$, Q(D) = true.

Theorem (Soundness Theorem)

Let
$$\sigma = \boxed{\forall \textbf{\textit{x}}(A \Rightarrow C)}$$
 be a GD. If $Q \overset{\sigma, \theta}{\rightarrow} Q_1$ then $\sigma \models Q \subseteq Q_1$.

Proof Assume Q is a Boolean query. Let D be s.t. $D \models \sigma$, Q(D) = true.

Then $\exists \varphi: Q \to \textbf{\textit{D}}.$ Compose it with $\theta: \qquad \varphi \circ \theta = \quad A \overset{\theta}{\to} Q \overset{\varphi}{\to} \textbf{\textit{D}}$

Theorem (Soundness Theorem)

Let
$$\sigma = \boxed{\forall \textbf{\textit{x}}(A \Rightarrow C)}$$
 be a GD. If $Q \overset{\sigma, \theta}{\rightarrow} Q_1$ then $\sigma \models Q \subseteq Q_1$.

Proof Assume Q is a Boolean query. Let D be s.t. $D \models \sigma$, Q(D) = true.

Then
$$\exists \varphi : Q \to \mathbf{D}$$
. Compose it with $\theta : \varphi \circ \theta = A \xrightarrow{\theta} Q \xrightarrow{\varphi} \mathbf{D}$

Case 1: σ is a TGD $\forall x(A \Rightarrow \exists yB)$ Then $Q_1 \stackrel{\text{def}}{=} Q \land \theta(B)$.

Theorem (Soundness Theorem)

Let
$$\sigma = \boxed{\forall \textbf{\textit{x}}(A \Rightarrow C)}$$
 be a GD. If $Q \overset{\sigma, \theta}{\rightarrow} Q_1$ then $\sigma \models Q \subseteq Q_1$.

Proof Assume Q is a Boolean query. Let D be s.t. $D \models \sigma$, Q(D) = true.

Then $\exists \varphi : Q \to \mathbf{D}$. Compose it with $\theta : \varphi \circ \theta = A \xrightarrow{\theta} Q \xrightarrow{\varphi} \mathbf{D}$

Case 1: σ is a TGD $\forall \boldsymbol{x}(A \Rightarrow \exists \boldsymbol{y}B)$ Then $Q_1 \stackrel{\text{def}}{=} Q \wedge \theta(B)$. $\varphi \circ \theta(A) \subseteq \boldsymbol{D}$ and $\boldsymbol{D} \models \sigma$ implies $\varphi \circ \theta$ extends to a homomorphism $B \to \boldsymbol{D}$ that factors as $B \stackrel{\theta}{\to} Q_1 \to \boldsymbol{D}$, thus $Q_1(\boldsymbol{D})$ =true.

Theorem (Soundness Theorem)

Let
$$\sigma = \boxed{\forall \textbf{\textit{x}}(A \Rightarrow C)}$$
 be a GD. If $Q \overset{\sigma, \theta}{\rightarrow} Q_1$ then $\sigma \models Q \subseteq Q_1$.

Proof Assume Q is a Boolean query. Let D be s.t. $D \models \sigma$, Q(D) = true.

Then $\exists \varphi : Q \to \mathbf{D}$. Compose it with $\theta : \varphi \circ \theta = A \xrightarrow{\theta} Q \xrightarrow{\varphi} \mathbf{D}$

Case 1: σ is a TGD $\forall x(A \Rightarrow \exists yB)$ Then $Q_1 \stackrel{\text{def}}{=} Q \land \theta(B)$. $\varphi \circ \theta(A) \subseteq \mathbf{D}$ and $\mathbf{D} \models \sigma$ implies $\varphi \circ \theta$ extends to a homomorphism $B \to \mathbf{D}$ that factors as $B \stackrel{\theta}{\to} Q_1 \to \mathbf{D}$, thus $Q_1(\mathbf{D}) = \text{true}$.

Case 2: is an EGD $\forall x(A \Rightarrow (x_i = x_j))$ In class.

Chase for Query Containment

We want to check $\Sigma \models Q \subseteq Q'$

- Simple (but important) observation. If $Q \to Q_1$ then $Q_1 \subseteq Q$ (unconditioned). Why?
- The Soundness Theorem proves $\Sigma \models Q \subseteq Q_1$.
- To check $\Sigma \models Q \subseteq Q'$, repeatedly chase Q: $Q \to Q_1 \to Q_2 \to \cdots \\ \cdots \subseteq Q_2 \subseteq Q_1 \subseteq Q \text{ (unconditioned)}$
- If $Q_m \subseteq Q'$ (unconditioned) for some $m \ge 0$, then $\Sigma \models Q \subseteq Q'$ why?.

Chase for Query Equivalence

To check equivalence $\Sigma \models Q \equiv Q'$, we need to chase both Q and Q': $Q \rightarrow Q_1 \rightarrow Q_2 \rightarrow \cdots \qquad Q' \rightarrow Q'_1 \rightarrow Q'_2 \rightarrow \cdots$ If $Q_m \equiv Q'_n$ for some m, n, then $\Sigma \models Q \equiv Q'$

Chase and Backchase

[Popa et al., 2000]

Semantics optimization of Q under constraints Σ .

Assume Σ has only full TGDs and EGDs.

Chase Chase Q to completion: $Q \stackrel{*}{\to} \text{Chase}(Q)$.

Backchase Go in reverse $\mathtt{Chase}(Q) \leftarrow Q_1' \leftarrow Q_2' \leftarrow \cdots$

There are multiple choices for the backchase: this is an optimization problem.

Relation R(k, x, y), key k, index I(k, x) on R.x

Want to optimize
$$Q(y) = R(k, 55, y)$$
 to $Q'(y) = R(k, x, y) \wedge I(k, 55)$

Relation R(k, x, y), key k, index I(k, x) on R.x

Want to optimize
$$Q(y) = R(k, 55, y)$$
 to $Q'(y) = R(k, x, y) \wedge I(k, 55)$

FD
$$\sigma_0$$
: $\forall k, x_1, x_2, y_1, y_2(R(k, x_1, y_1) \land R(k, x_2, y_2) \Rightarrow (x_1 = x_2))$

IND1: σ_1 : $\forall k, x, y (R(k, x, y) \Rightarrow I(k, x))$

IND2: σ_2 : $\forall kI(k,x) \rightarrow \exists yR(k,x,y)$

Relation R(k, x, y), key k, index I(k, x) on R.x

Want to optimize
$$Q(y) = R(k, 55, y)$$
 to $Q'(y) = R(k, x, y) \wedge I(k, 55)$

FD
$$\sigma_0$$
: $\forall k, x_1, x_2, y_1, y_2(R(k, x_1, y_1) \land R(k, x_2, y_2) \Rightarrow (x_1 = x_2))$

IND1: σ_1 : $\forall k, x, y (R(k, x, y) \Rightarrow I(k, x))$

IND2: σ_2 : $\forall kI(k,x) \rightarrow \exists yR(k,x,y)$

$$\begin{array}{ccc} Q \equiv & R(k,55,y) & \stackrel{\sigma_1}{\rightarrow} & R(k,55,y) \land I(k,55) & \equiv \mathtt{Chase}(Q). \\ Q' \equiv & R(k,x,y) \land I(k,55) \stackrel{\sigma_2}{\rightarrow} R(k,x,y) \land R(k,55,y') \land I(k,55) \\ & \stackrel{\sigma_0}{\rightarrow} R(k,55,y) \land I(k,55) & \equiv \mathtt{Chase}(Q') \end{array}$$

 $\operatorname{Chase}(Q) = \operatorname{Chase}(Q')$, implies $\Sigma \models Q \equiv Q'$.

Relation R(k, x, y), key k, index I(k, x) on R.x

Want to optimize
$$Q(y) = R(k, 55, y)$$
 to $Q'(y) = R(k, x, y) \wedge I(k, 55)$

FD
$$\sigma_0$$
: $\forall k, x_1, x_2, y_1, y_2(R(k, x_1, y_1) \land R(k, x_2, y_2) \Rightarrow (x_1 = x_2))$

IND1: σ_1 : $\forall k, x, y (R(k, x, y) \Rightarrow I(k, x))$

IND2: σ_2 : $\forall kI(k,x) \rightarrow \exists yR(k,x,y)$

$$egin{array}{ll} Q \equiv & R(k,55,y) & \stackrel{\sigma_1}{
ightarrow} & R(k,55,y) \wedge I(k,55) & \equiv \mathtt{Chase}(Q). \ Q' \equiv & R(k,x,y) \wedge I(k,55) & \stackrel{\sigma_2}{
ightarrow} & R(k,x,y) \wedge R(k,55,y') \wedge I(k,55) \ & \stackrel{\sigma_0}{
ightarrow} & R(k,55,y) \wedge I(k,55) & \equiv \mathtt{Chase}(Q') \end{array}$$

 $\operatorname{Chase}(Q) = \operatorname{Chase}(Q')$, implies $\Sigma \models Q \equiv Q'$.

Given Q, chase/Backchase computes Chase(Q) the <u>searches</u> for Q':

$$Q \stackrel{\sigma_1}{\rightarrow} \stackrel{\sigma_0}{\leftarrow} \stackrel{\sigma_2}{\leftarrow} Q'$$

Dan Suciu

Summary

Constraints are restricted sentences in FO.

 The implication problem: elegant theory because it's a special case of logical implication.

• Chase: simple, yet fundamental technique. Egg and Egglog use chase. Termination is undecidable in general. Understanding termination is a major open problem.

Abiteboul, S., Hull, R., and Vianu, V. (1995).

Foundations of Databases.

Chakravarthy, U. S., Grant, J., and Minker, J. (1990).

Logic-based approach to semantic query optimization.

ACM Trans. Database Syst., 15(2):162-207.

King, J. J. (1981).

QUIST: A system for semantic query optimization in relational databases.

In Very Large Data Bases, 7th International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 510-517, IEEE Computer Society.

Popa, L., Deutsch, A., Sahuguet, A., and Tannen, V. (2000).

A chase too far?

In Chen, W., Naughton, J. F., and Bernstein, P. A., editors, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pages 273-284, ACM,