Contrôle d'algèbre linéaire $N^{\circ}4$

Durée: 1 heure 45 minutes. Barème sur 20 points.

NOM:	
	Groupe
PRENOM:	

1. Soit f un endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique est :

$$M_f = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -2 & -t - 1 \\ 0 & 0 & t + 1 \end{pmatrix}, t \in \mathbb{R}.$$

(a) Pour quelle (s) valeur (s) du paramètre $\ t\,,$ l'endomorphisme f est-il diagonalisable ?

Justifiez rigoureusement votre réponse.

R'eponse:

 $t \notin \{0, -3\}$: A est diagonalisable.

t=0: A n'est pas diagonalisable.

t = -3: A est diagonalisable.

(b) On pose t = -3.

Au cas où f est diagonalisable, déterminer une base propre et la matrice de passage. Donner, avec précision, la nature géométrique de f.

5 pts

Réponse

$$A' = \left(\begin{array}{rrr} -2 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 1 \end{array}\right)$$

f est composée d'une affinité d'axe la droite $\vec{w} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, de direction parallèle au plan 3x + 2z = 0 et de rapport -2.

2. Soit f un endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique est :

$$A = \begin{pmatrix} m & 1 & m+1 \\ 2 & m+1 & m+3 \\ 1 & m & 2 \end{pmatrix}, \quad m \in \mathbb{R}.$$

(a) Déterminer $m \in \mathbb{R}$ pour que $\ker f \neq \{\vec{0}\}.$

R'eponse:

m = 1 ou m = -2

(b) Soit le vecteur
$$\vec{c} = \begin{pmatrix} k^2 \\ 2k \\ 3-4k \end{pmatrix}$$
, $k \in \mathbb{R}$.

Déterminer k et m de sorte que $\vec{c} \in \text{Im } f$.

Dans quels cas les équations de $f^{-1}(\vec{c})$ dépendent d'un seul paramètre?

4.5 pts

R'eponse:

 $m \notin \{-2, 1\} : \vec{c} \in \text{Im } f \text{ (solution unique)}$

m=-2, k=0 ou $k=-2: \vec{c} \in \text{Im } f, f^{-1}(\vec{c})$ dépend d'un seul paramètre

m=1, quelque soit $k\in\mathbb{R}:\vec{c}\notin\mathrm{Im}\;f$

3. \mathbb{R}^2 est muni de la base orthonormée $B(\vec{e}_1, \vec{e}_2)$. On considère des endomorphismes de \mathbb{R}^2 dont la matrice par rapport à la base B est

$$A = \begin{pmatrix} \alpha & 2 \\ -4 & \alpha + 6 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

(a) Soit h l'endomorphisme de \mathbb{R}^2 composé d'une homothétie de rapport 2 et d'une projection. Déterminer $\alpha \in \mathbb{R}$ pour que A soit la matrice de h relativement à B.

 $R\'{e}ponse:$

$$\alpha = -2$$

Pour la suite, on pose $\alpha = 0$ et on note f l'endomorphisme de matrice A.

(b) Déterminer, avec précision, la nature géométrique de $\ f.$

Soit le vecteur $\vec{a} = 2\vec{e_1} + 3\vec{e_2}$.

Déterminer les composantes de $f^n(\vec{a})$ relativement à B.

 $R\'{e}ponse:$

$$A' = \left(\begin{array}{cc} 2 & 0 \\ 0 & 4 \end{array}\right)$$

f est composée d'une homothétie de centre O et rapport 2, avec une affinité d'axe la droite x-y=0, de direction parallèle à la droite 2x-y=0 et de rapport 2.

$$f^n(\vec{a}) = \begin{pmatrix} 2^n + 4^n \\ 2^n + 2 \cdot 4^n \end{pmatrix}$$

Soient $E_f(\lambda_1)$ et $E_f(\lambda_2)$ avec $\lambda_1 < \lambda_2$, les sous-espaces propres de f.

On note l la projection dont l'image est $E_f(\lambda_1)$ et le noyau est $E_f(\lambda_2)$.

(c) On considère l'endomorphisme $j = f + \beta l$, $\beta \in \mathbb{R}^*$. Déterminer $\beta \in \mathbb{R}^*$ pour que j comporte dans sa décomposition une symétrie. Donner avec précision la nature géométrique de j.

7 pts

 $R\'{e}ponse$:

$$\beta = -6$$

j est composée d'une homothétie de centre O et rapport 4, avec une symétrie d'axe la droite x-y=0, de direction parallèle à la droite 2x-y=0.

4. On munit \mathbb{R}^2 de la base canonique $\mathcal{B}_e\left(\vec{e}_1\,,\,\vec{e}_2\right)$.

On note P_2 l'espace vectoriel des polynômes de degré plus petit ou égal à deux.

On munit P_2 de la base canonique $\mathcal{B}_1(1, x, x^2)$.

On considère l'application linéaire f de P_2 dans \mathbb{R}^2 dont la matrice associée est $M = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, par rapport à \mathcal{B}_1 et \mathcal{B}_e .

Soit $\mathcal{B}_u\left(\vec{u}_1, \vec{u}_2\right)$ la nouvelle base de \mathbb{R}^2 telle que :

$$\begin{cases} \vec{u}_1 - \vec{e}_2 = \vec{0} \\ \vec{e}_1 - \vec{e}_2 + \vec{u}_2 = \vec{0} \end{cases}$$

(a) Déterminer la matrice de f par rapport à \mathcal{B}_1 et \mathcal{B}_u .

$$R\acute{e}ponse:$$

$$\tilde{M} = \begin{pmatrix} 1 & 3 & 2 \\ -1 & -2 & -1 \end{pmatrix}$$

(b) Soit la droite d d'équation cartésienne 2x' + 3y' - 1 = 0 dans \mathcal{B}_u . Déterminer $f^{-1}(d)$ dans \mathcal{B}_1 .

3.5 pts

R'eponse:

$$f^{-1}(d) = \{ p(x) \in P_2 \mid p(x) = a(x^2 + 1) + bx + x^2, \ a, b \in \mathbb{R} \}$$