Alignment Phylogenetic Biology - Week 5

Biology 1425

Professor: Casey Dunn, dunnlab.org

Brown University

Front matter...

All original content in this document is distributed under the following license:

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US)

See sources for copyright of non-original content

Sources

Some non-original content is drawn from:

Baum, D and S. Smith (2012) Tree Thinking: and Introduction to Phylogenetic Biology. Roberts and Company Publishers. ISBN 9781936221165

INFERRING PHYLOGENIES

Joseph Felsenstein

Swofford, D. L., Olsen, G. J., Waddell, P. J., & Hillis, D. M. (1996). Phylogenetic inference. In: Molecular Systematics, Second Edition. eds: D. M. Hillis, C Moritz, & B. K. Mable. Sinauer Associates. ISBN 9780878932825

Felsenstein, J. (2003) Inferring Phylogenies. Sinauer Associates. ISBN 978-0878931774

Other non-original content is referenced by url.

What is sequence alignment?

The identification of homologous sites in molecular sequence data.

If sequences didn't evolve and could be observed error free, we could just look for identical sequence regions.

Due to evolution, sequence error, and analysis error, we have to ask - How do we know when the same site in two different sequences is homologous?

Alignment

Reconciles differences that arise from two processes:

- Substitution
- Insertion/deletion (ie, indels)

Many applications of alignment

Pairwise sequence alignment (eg blast) to find homologous sequences

Alignment of raw sequence reads to a reference sequence to identify variants

Multiple sequence alignment to build character matrices

Pairwise alignment

Sertularia tumida voucher MZUSP:4200 16S ribosomal RNA gene, partial sequence; mitochondrial Sequence ID: gb|KT266643.1| Length: 605 Number of Matches: 1

Range 1	l: 24 to	598 GenBank Graphi	CS	▼ Ne	xt Match 🛕 P	revious Mat
Score	t-/20E	Expect	Identities	Gaps	Strand	
545 bits(295) 3e-151 488/580(84%) 18/580(3%) Plus/Plus						5
Query	20	GTGTAACCTGCCCAGT	GGTTGATAAACTGAA	ATAAACTCTATAATT	CAACTGAAC	74
Sbjct	24	ĠŤĠŤĂĂĊĊŤĠĊĊĊĂĂŤ	ĠĠŦŦŦŦŦĸŔŦŔŔŦĸŦŦŔŔ	ÀTÀÀÀATTTÀATTÀÀAA	AAACTTAAA	83
Query	75	GGATGCGGT-ATCTTG	ACCGTAATAAAGTAGCAT	AATCACTCGCCACTTAA	TTAGTGGAT	133
Sbjct	84	GGACGCGGTAACCTTG	ACCGTGATAATGTAGCAT	AATCATTCGCCATTTAA	TTGATGGAT	143
Query	134	AGTATGAATGGTTGAA	CGAATTTTTAGCTGTCTT	AATTAG-AATATTATGA	AATTGAAAT	192
Sbjct	144	AGTATGAATGGTTGAA	CGAATATTTCACTGTCTT	AAGAAGAAATACCAAAA	AATTAGAAT	203
Query	193	AATAGTCAAGATGCTA	TTTAAAATTGTAAGACGA	AAAGACCCTATAGAGCT	TAACTATT-	251
Sbjct	204	AATAGTAAAGATACTA	TTTAAAATTGTAAGACGA	AAAGACCCTATAGAGCT	TAACTACAA	263
Query	252	TCTTTCTGTATAAAGG	AATTTTAAATAATTACAA	AAA-GA-AAGTTAGGTA	GTTTAGTTG	309
Sbjct	264	TCTTCCCACA-AAAG-	AATGAAAGATTCACTA	AAATGAGAAGATAGGTA	GTTTAGTTG	319
Query	310	GGGCGACTGCCTTTTA	AAAGAAACAAAGGTAAAC	aatgtaattaattac	ttattgtat	367
Sbjct	320	GGGCGACTGTCTTTTA	AAAAAAACAAAGACAAGC	AAAGTAAATAATAAAAC	TTATTGTAT	379
Query	368	aataaataaatttaac	aattattaaagtaggtaa	taatgacccgttattat	taaattaaa	427
Sbjct	380	AATAAATTAATTTAAC	AATTATAAAAATAGGCTA	TAATGACCCGTTATAAG	TATGTAAAA	439
Query	428	aaaaTAACGATCAATA	AATAAAAGCTACCTTAGG	GATAACAGGATAATTTT	AATTTAGAG	487
Sbjct	440	ACAATAACGATCAATA	AATAAAAGCTACCTTAGG	GATAACAGGATAATTT	ATTTTAGAG	499
Query	488	ACCTTATCGAAGTTAA	AGTTTGTCACCTCTATGT	TGAATTGAGATATCCAT	G-TAACGCA	546
Sbjct	500	ATCTAATCGAAAATAA	AGTTTGTCACCTCTATGT	TGAATTAAGATATCC-T	GATAATGCA	558
Query	547		GGTCTGTTCGACCTTTAA	AATCTT 586		
bjct	559	GAAGTTATCAAAGGTA	GGTCTGTTCGACCTTTAA	AATCTT 598		

Read alignment

https://vimeo.com/120429438

Common models used in phylogenetic inference (eg GTR) accommodate substation, but not insertion/ deletion

Most phylogenetic programs therefore don't infer homology, they assume that each column is a set of homologous sequences

They treat gaps introduced by indels as missing data

Need an aligner upstream of phylogenetic inference that infers which sequence differences are due to substitution and which are due to insertion/deletion

Partitions sites according to inferred mechanism: changes due to indels are put in separate columns, each column contains sites that are hypothesized to be only due to substitution

Many MSA tools are available:

mafft clustalw muscle t-coffee

In general, they work by:

1. Defining a set of penalties for site differences and the introduction of gaps

2. Heuristically searching for an alignment that minimizes these penalties

The scoring matrix is used to evaluate site differences.

Explains how surprised we should be to see a particular substitution that leads to a difference between homologous sequences.

Related to site substitution models.

```
Ala
Arg
                                                             BLOSUM62
Asn
     - 2
Asp
                                                   scoring matrix
Cys
Gln
Glu
                               5
Gly
His
lle
                  - 3
Leu
                  - 4
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
                              - 2
                                  - 3
                                                  - 2
Val
                                                  - 2
    Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
```

Different types of gap penalties:

Gap opening penalty - The cost of creating a gap of one site where there was no gap

Gap extension penalty - The cost of adding gaps adjacent to an existing gap.