Contents

12	2 Session Twelve: Applications of Differentiation II
	12.1 Session Objectives
	12.2 Introduction
	12.3 Concavity of a graph
	12.4 Absolute Extrema
	12.5 Horizontal, Verticle and Oblique Asymptotes
	12.6 Session Summary
	12.7 Student Activity

12 Session Twelve: Applications of Differentiation II

12.1 Session Objectives

By the end of this session, you should be able to:

- (i) Discuss concavity of graphs of functions
- (ii) Identify relative and absolute extreme points of a graph
- (iii) Find asymptotes of a graph

12.2 Introduction

In this second part of applications of differentiation, we discuss: Concavity, Absolute extrema, Horizontal and Verticle Asymptotes.

12.3 Concavity of a graph

A function is a **concave up** on (a, b) if the the graph of the function lies above its tangent line at each point of (a, b).

A function is a **concave down** on (a, b) if the the graph of the function lies below its tangent line at each point of (a, b).

Definition 12.3.1 (Inflection point). A point where a graph changes its concavity is called an inflection point (see Figure 1).

Figure 1: Inflection point

Test for concavity

Let f be a function with derivatives f' and f'' existing at all points in an interval (a, b). Then

1. f is concave up on (a, b) if f''(x) > 0 for all x in (a, b)

2. f is concave down on (a, b) if f''(x) < 0 for all x in (a, b)

Example 12.3.1. Find all intervals where $f(x) = x^4 - 8x^3 + 18x^2$ is concave up or down and find all inflection points.

Solution:
$$f'(x) = 4x^3 - 24x^2 + 36x$$
, $f''(x) = 12x^2 - 48x + 38x = 12(x-1)(x-3)$

Table 1: Signs of f'(x)

X	0	1	2	3	4
Sign of f'	+		-		+
Concavity	up		down		up

Concave up: $(-\infty, 1)$, $(3, \infty)$ Concave down: (1, 3)

Example 12.3.2. Find all intervals where $f(x) = x^2 + 10x - 9$ is concave up or down and find all inflection points.

Solution: f'(x) = 2x + 10, $f''(x) = 2 \Rightarrow f''(x) > 0 \ \forall \ x \Rightarrow f$ is a concave up everywhere. f has no points of inflection.

Note 12.3.1. At an inflection point for a function f, f''(x) = 0 or f''(x) does not exist.

The converse of Note 12.3.1 is not true in general i.e., f''(x) = 0 does not imply x is a point of inflection.

Second derivative test

Let f'' exist on some open interval containing c (except possibly at c itself) and let f'(c) = 0.

- 1. If f''(c) > 0, then f(c) is a relative minimum.
- 2. If f''(c) < 0, then f(c) is a relative maximum.
- 3. If f''(c) = 0 or f''(c) does not exist, then the test gives no information about extrema, therefore, use the first derivative test.

Note 12.3.2. The second derivative test only applies for critical numbers c for which f'(c) = 0 but not where f'(c) does not exist (since f''(c) will not exist either)

Example 12.3.3. Use the second derivative test to distinguish between the critical numbers in $f(x) = 3x^3 - 3 + 1$.

Solution: $f'(x) = 9x^2 - 6x = 3x(3x - 2) = 0 \Rightarrow x = 0, \frac{2}{3}$ are critical numbers. f''(x) = 18x - 6

 $f''(0) = -6 < 0 \Rightarrow \text{ at } x = 0 \text{ we have a relative maximum.}$

 $f''(\frac{2}{3}) = 6 > 0 \Rightarrow \text{ at } x = \frac{2}{3} \text{ we have a relative minimum.}$

12.4 Absolute Extrema

Definition 12.4.1 (Absolute maximum and absolute minimum). Let f be a function defined on some interval I. Let c be a number in I. Then

- 1. f(c) is the absolute (or global) maximum of f on I if $f(x) \leq f(c)$ for every x in I.
- 2. f(c) is the absolute (or global) minimum of f on I if $f(x) \ge f(c)$ for every x in I.

Figure 2: Absolute extrema

A function has an absolute extrenum (plural: extrema) at c if it has either an absolute maximum or absolute minimum there.

Remark 12.4.1. 1. Absolute extrema may occur at the end points or at relative extrema

- 2. Although a function can have only one absolute minimum (or maximum) value, it can have many points where these values occur e.g f(x) = 2 has abs min=2 and abs max=2 and both occur at every real number x.
- 3. A continuous function on an open interval may or may not have an absolute maximum (or minimum)

Theorem 12.4.1 (Extreme Value Theorem). A function f that is continuous on a closed interval [a, b] will have both an absolute maximum and an absolute minimum.

Caution: Just like a relative extrenum, an absolute extrenum is a y-value not an x-value.

Finding absolute extrema

To find absolute extrema for a function f continuous on a closed interval [a, b]

- 1. Find all critical numbers for f in (a, b)
- 2. Evaluate f for all critical numbers in (a, b)
- 3. Evaluate f for the endpoints a and b of the interval [a, b]

4. The largest value in 2 or 3 is the absolute maximum for f on [a, b] and the smallest value is the value is the absolute minimum for f on [a, b].

Example 12.4.1. Find the absolute extrema of the function $f(x) = x^{\frac{8}{3}} - 16x^{\frac{2}{3}}$ on [-1, 8]

Solution:

$$f'(x) = \frac{8}{3}x^{\frac{5}{3}} - \frac{32}{3}x^{-\frac{1}{3}}$$
$$= \frac{8}{3}x^{-\frac{1}{3}}(x^2 - 4)$$
$$= \frac{8}{3}\left(\frac{x^2 - 4}{x^{\frac{1}{3}}}\right)$$

 $f'(\pm 2) = 0$ and f'(0) does not exist $\Rightarrow x = \pm 2$, 0 are critical numbers but $-2 \notin [-1, 8]$ so ignore it. The Table 2 gives the absolute extrema candidates

Table 2: Absolute extrema for $f(x) = x^{\frac{8}{3}} - 16x^{\frac{2}{3}}$

X-V	alue	value of $f(x)$
	-1	-15
	0	0
	2	-19.05
	8	192

Therefore, the absolute maximum=192 and absolute minimum=-19.05.

Exercise 12.4.1. Find the absolute extrema of the functions $f(x) = 3x^4 - 4x^3 - 12x^2 + 2$.

12.5 Horizontal, Verticle and Oblique Asymptotes

Definition 12.5.1 (Horizontal and Verticle Asymptotes). A line y = b is a **horizontal** asymptote of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \text{ or } \lim_{x \to -\infty} f(x) = b$$

A line x = a is a **vertical asymptote** of the graph if either

$$\lim_{x \to a^+} f(x) = \pm \infty \text{ or } \lim_{x \to a^-} f(x) = \pm \infty$$

Example 12.5.1. Find the asymptotes of $y = \frac{x}{x-1}$

Solution: $y = 1 + \frac{1}{x-1}$, $\lim_{x \to +\infty} \frac{x}{x-1} = 1$ and $\lim_{x \to -\infty} \frac{x}{x-1} = 1 \Rightarrow y = 1$ is an horizontal asymptote.

Similarly, $\lim_{x\to 1^-} \frac{x}{x-1} = -\infty$ and $\lim_{x\to 1^+} \frac{x}{x-1} = \infty \Rightarrow x=1$ is a vertical asymptote.

Figure 3: $y = \frac{x}{x-1}$

Example 12.5.2. The following are examples that explain vertical asymptotes.

- 1. The function $f(x) = \frac{5x-1}{x-3}$ has the line x=3 as a vertical asymptote. $\lim_{x\to 3^+} f(x) = +\infty$ and $\lim_{x\to 3^-} f(x) = -\infty$. (see Figure 4)
- 2. Similarly, the function $\frac{x(x-1)}{(x-5)(x+2)}$ has the lines x=5 and x=-2 as vertical asymptotes.
- 3. The function $\frac{x-1}{x^2+1}$ has no vertical asymptotes as $x^2+1\neq 0$ for any real number x.
- 4. The function $f(x) = \tan x = \frac{\sin x}{\cos x}$ has infinitely many vertical asymptotes $x = \pm \frac{3}{2}\pi, \pm \frac{5}{2}\pi, \pm \frac{7}{2}\pi, \cdots$ since $\cos x = 0$ at $x = \pm \frac{3}{2}\pi, \pm \frac{5}{2}\pi, \pm \frac{7}{2}\pi, \cdots$
- 5. The function $f(x) = \frac{x^2 9}{x 3}$ has no vertical asymptote since $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = 6$. The graph has a "hole" at x = 3

Example 12.5.3. Find the horizontal asymptote in the functions

1.
$$f(x) = \frac{5x-1}{x-3}$$

Solution: $\lim_{t \to \infty} \frac{5x-1}{x-3} = \lim_{t \to \infty} 5 + \frac{14}{x-3} = 5$. So $y = 5$ is the horizontal asymptote. (see Figure 4)

2.
$$f(x) = \frac{5x^2 - 7}{9x^2 + 3}$$

Solution: $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{5 - \frac{7}{x^2}}{9 + \frac{3}{x^2}} = \frac{5}{9} = \lim_{x \to +\infty} \frac{5 - \frac{7}{x^2}}{9 + \frac{3}{x^2}}$ (see Figure 5)

Figure 4

Figure 5

Example 12.5.4. Find the horizontal and vertical asymptotes of $f(x) = \frac{x^2 - 1}{x^3}$

Solution: $\frac{x^2-1}{x^3} = \frac{1}{x} - \frac{1}{x^3}. \lim_{x \to \pm \infty} \frac{1}{x} - \frac{1}{x^3} = 0 \Rightarrow y = 0 \text{ is a horizontal asymptote.}$ Similarly, $\lim_{x \to 0^-} \frac{1}{x} - \frac{1}{x^3} = +\infty \text{ and } \lim_{x \to 0^+} \frac{1}{x} - \frac{1}{x^3} = -\infty \Rightarrow x = 0 \text{ is a vertical asymptote.}$

Note 12.5.1. A rational function $f(x) = \frac{p(x)}{q(x)}$ has:

- 1. A vertical asymptote when q(x) = 0 (with f(x) in its simplest form). **Example:** $f(x) = \frac{2x-1}{x^2-1} = \frac{2x-1}{(x-1)(x+1)}$. The denominator is zero when x = -1 and x = 1. Therefore, x = -1 and x = 1 are vertical asymptotes.
- 2. A horizontal asymptote when the deg $p(x) \leq deg q(x)$.
 - If deg $p(x) < deg \ q(x)$, then the horizontal asymptote is y = 0 (x-axis) **Example:** $f(x) = \frac{2x-1}{x^2-1}$, deg p(x) = 1, deg q(x) = 2. So y = 0 is a horizontal asymptote.
 - If deg $p(x) = deg \ q(x)$, the horizontal asymptote is $y = \frac{a}{b}$ where a is the leading coefficient of the numerator p(x) and b is the leading coefficient of the denominator q(x).

Example: $\frac{2x^2-1}{x^2-1}$, $deg\ p(x)=deg\ q(x)=2$. So the horizontal asymptote is $y=\frac{2}{1}=2$.

Definition 12.5.2 (Oblique Asymptote). The line y = mx + c is an oblique (or slant) asymptote to the graph y = f(x) if $f(x) = mx + c \lim_{x \to \pm \infty} g(x) = 0$

 $\lim_{x\to\pm\infty}g(x)=0$ means that the graph of f(x) approaches the graph of y=mx+c as x approaches ∞ .

Note 12.5.2. 1. When m = 0, in y = mx + b, this becomes a horizontal asymptote.

2. For a rational function $f(x) = \frac{p(x)}{q(x)}$, an oblique asymptote occurs when the degree of the numerator p(x) is exactly 1 greater that of the denominator q(x).

Example 12.5.5. The function $f(x) = \frac{x^2 + 1}{x - 1} = x + 1 + \frac{2}{x - 1}$ has the line y = x + 1 oblique asymptote since $\lim_{x \to \pm \infty} g(x) = \lim_{x \to \pm \infty} \frac{2}{x = 1} = 0$. (Figure 6)

Example 12.5.6. Find the oblique asymptote in $g(x) = \frac{x^2 + 2x - 3}{x + 1}$.

Solution: By long division $g(x) = x + 1 + \frac{-4}{x+1}$. Therefore, y = x + 1 is an oblique asymptote. (see Figure 7)

Figure 6

Figure 7

Note 12.5.3. 1. You can never have both horizontal and oblique asymptotes on the same graph. (why?)

2. Graphs can cross both horizontal and oblique asymptotes but will never cross a verticel asymptote.

12.6 Session Summary

We emphasize that getting the first derivative right is very key since subsequent derivatives depend on it. For more material on this section check out [1, 2] or visit concavity, absolute extrema, asymptotes 1, asymptotes 2. You can also watch the lecture videos: Concavity, absolute extrema, asymptotes.

12.7Student Activity

Exercise

Concavity of a Graph

In questions 1-4, Find all intervals where $f(x) = x^2 + 10x - 9$ is concave up or down and find all inflection points.

1.
$$f(x) = (x-1)^4$$

2.
$$f(x) = x^{\frac{1}{3}}$$

3.
$$f(x) = x^{\frac{8}{3}} - 4x^{\frac{5}{3}}$$

4.
$$f(x) = -2x^3 + 9x^2 + 168x - 3$$

Second Derivative Test

Use the second derivative test to distinguish between the critical numbers f.

1.
$$f(x) = 4x^3 + 7x^2 - 10x + 8$$

2.
$$f(x) = x^2 + 10x - 9$$

Horizontal, Verticle and Oblique Asymptotes

Find the horizontal, verticle and oblique asymptotes in the following functions and sketch the graphs.

1.
$$f(x) = x + \frac{1}{x}$$

$$2. \ f(x) = \frac{2x}{x-3}$$

3.
$$f(x) = \frac{x-1}{x-2}$$

4.
$$f(x) = \frac{x^3 - 2x^2 - x + 2}{x^2 - x - 6}$$
 5. $f(x) = \frac{5x^3 + 2x^2 + 3}{x^2}$ 6. $f(x) = \frac{3x^2 + x - 2}{2x + 6}$

5.
$$f(x) = \frac{5x^3 + 2x^2 + 3}{x^2}$$

6.
$$f(x) = \frac{3x^2 + x - 2}{2x + 6}$$

References

- [1] E. Purcell D. Varberg and S. Rigdon. Calculus. Pearson Education, Inc., 9 edition, 2006. ISBN-13: 978-0132306331.
- [2] J. Stewart. Calculus. Cengage Learning 20 Channel Center Street, Boston, MA 02210, USA, 8 edition, 2016. ISBN-13: 978-1-305-27176-0.