EE228 – HW3 Report Track & Hold Circuits

Muhammad Aldacher

Student ID: 011510317

Overview

- 1. S/H using Ideal switch
- 2. S/H using NMOS or PMOS
- 3. S/H using CMOS Transmission Gate (TG)
- 4. Bootstrapped Circuits
 - a) Using Ideal Switches
 - b) Using transistors [2 topologies]
- 5. Summary

(1) S/H Using Ideal Switch

Circuit

 \triangleright Increasing the Ron of the switch, increases τ = RC ... This decreases ENOB, SINAD, SNR, & SFDR.

Waveforms

DFT

DFT (MATLAB)

Using PrettyFFT function

(2) S/H Using NMOS or PMOS

Circuit

Waveforms

- NMOS is better for passing smaller Vin, while PMOS is better for passing larger Vin.
- ➤ Increasing (W/L), decreases Ron of the transistor, improving the S/H circuit performance.

Maximum Allowed size

DFT of NMOS output

DFT of NMOS output (MATLAB)

Using PrettyFFT function

DFT of PMOS output

DFT of PMOS output (MATLAB)

Using PrettyFFT function

(3) S/H Using CMOS Transmission Gate

Circuit

Transient Response

Input Signal

Clock

.5

.25

-.25 1.5

.75

.5

.25

0.0

100.0

200.0

300.0

400.0

time (ns)

output_{1.25}

of S/H₁₀

500.0

600.0

DFT of TG output

DFT of TG output (MATLAB)

Using PrettyFFT function

DFT of TG output

• Notes:

- The TG gives better performance than NMOS only or PMOS only, at the same (W/L).
- Increasing (W/L)n,p, decreases Ron of the TG, improving the S/H circuit performance.
- With the maximum size for both transistors in the TG (best performance), the
 Maximum ENOB achieved = 9.29 bits (<10 bits).
- Tradeoff:
 - → Increasing (W/L)n,p , decreases Ron but increases parasitic capacitors.

(4) S/H Using Bootstrapped Circuit a) With Ideal switches

Circuit

Waveforms

Max size for best ENOB & performance

DFT of output

DFT of output (MATLAB)

Using PrettyFFT function

(4) S/H Using Bootstrapped Circuit b) Topology 1

Original Circuit

Mohamed Dessouky and Andreas Kaiser, "Very Low-Voltage Digital-Audio ΔΣModulator with 88-dB Dynamic Range Using Local Switch Bootstrapping", *IEEE J. Solid-State Circuits*, vol. 36, pp. 349–355, Mar. 2001

Implemented Circuit

Sizing & Modifications

- **1. Mn3,Mp4** are added to decrease charge sharing, by separating nodes A & B of the offset Cap from the parasitic Cap of Mn5,Mp6 that are directly connected to the rails (when Mn5,Mp6 are off).
- 2. Mn1,Mp6 have their gates connected to Vg node, since this node goes from gnd in clkb phase, to the highest potential in the circuit in clk phase. Thus causing Mn1,Mp6 to turn on & off much better.
- **3. Mn8** is added to decrease charge sharing, by separating gate node Vg of MnSW from the parasitic Cap of Mn9 that is directly connected to gnd when Mn9 is off.
- **4. MpSW** is added to assist MnSW when Vin is high & to decrease the equivalent resistance of the switch (the ENOB of the system increases from ~9.7 bits to ~ 10.6 bits).

→ Sizing:

Device	Size
MnSW	15 * (320n/150n)
MpSW	14 * (320n/150n)
Mn1	4 * (320n/150n)
Mp2	1 * (320n/150n)
Mn3,Mn5,Mp4,Mp6	1 * (320n/150n)
Mn7,Mn8,Mn9	4 * (320n/150n)
Offset Cap, Load Cap	1pF

Waveforms

DFT of output

DFT of output (MATLAB)

Using PrettyFFT function

(4) S/H Using Bootstrapped Circuit c) Topology 2

Original Circuit

A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline ADC", IEEE Journal of Solid-State Circuits, vol. 34, issue 5, pp. 599-606, 1999.

Implemented Circuit

Sizing & Modifications

- **1. A Charge Pump** is connected to the gate of Mn5 to keep Vgs of Mn5 to be much greater than Vth, & have a switch that can pass a strong VDD signal.
- 2. Mn4 is added to decrease charge sharing, by separating the offset Cap from the parasitic Cap of Mn3 that is directly connected to gnd when Mn3 is off.
- **3. Mn7** is added to decrease charge sharing, by separating gate node Vg of MnSW from the parasitic Cap of Mn8 that is directly connected to gnd when Mn8 is off.

→ Sizing:

Device	Size
MnSW	30 * (320n/150n)
Mnch1,Mnch2	10 * (320n/150n)
Mn1	32 * (320n/150n)
Mp2	3 * (320n/150n)
Mn3,Mn4,Mn5	1 * (320n/150n)
Mn6,Mn7,Mn8	2 * (320n/150n)
Ch Pump Caps, Load Cap	1pF
Offset Cap	4pF

Waveforms

DFT of output

DFT of output (MATLAB)

Using PrettyFFT function

SUMMARY

For Full-Scale input = 1V, from 0.4V to 1.4V:

	Ideal	NMOS Only	PMOS Only	Transmission Gate	Bootstrap (with ideal switches)	Bootstrap (topology 1)	Bootstrap (topology 2)
ENOB	15.51 bits	3.37 bits	3.44 bits	9.29 bits	14.24 bits	10.55 bits	9.01 bits
SNR	95.12 dB	22.07 dB	22.49 dB	57.71 dB	87.51 dB	65.27 dB	55.99 dB
SFDR	102.85 dB	25.04 dB	25.35 dB	59.01 dB	88.35 dB	67.00 dB	56.78 dB

^{*} These are the best performances I was able to achieve for each case, after careful sizing of all the devices.

SUMMARY

• For Full-Scale input = 0.5V, from 0.65V to 1.15V:

	Ideal	NMOS Only	PMOS Only	Transmission Gate	Bootstrap (with ideal switches)	Bootstrap (topology 1)	Bootstrap (topology 2)
ENOB	15.01 bits	6.62 bits	6.59 bits	8.20 bits	13.90 bits	12.29 bits	10.10 bits
SNR	92.13 dB	41.63 dB	41.29 dB	51.14 dB	85.43 dB	75.76 dB	62.56 dB
SFDR	96.36 dB	42.64 dB	42.91 dB	51.51 dB	88.84 dB	77.95 dB	63.27 dB

^{*} These results are achieved by only changing the input full-scale. The same sizes as before are used.

SUMMARY

Observations:

- ➤ The Bootstrapped techniques are shown to increase the ENOB, SNR, & SFDR, improving the performance.
- There is a tradeoff while sizing (W/L) of the transistors; Increasing (W/L), decreases the Ron of the transistors, but increases at the same the parasitic capacitances of the transistors.
- The Matlab results show a greater noise floor level than that on Cadence in the cases where ideal switches were used.
 But the Matlab results are very close to that of Cadence in the NMOS/PMOS circuits & the Bootstrapped circuits.
- Decreasing the full-scale input, improves the circuit performance for all the cases, except the ideal circuits & the transmission gate circuit.