PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Previously Presented) A compound of formula

a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof, wherein

ring A is phenyl;

 R^1 represents hydrogen; aryl; formyl; C_{1-6} alkylcarbonyl; C_{1-6} alkyl, C_{1-6} alkylcarbonyl; C_{1-6} alkylcarbonyl, C_{1-6} alkylcarbonyloxy; or C_{1-6} alkylcarbonyloxy; or C_{1-6} alkylcarbonyl optionally substituted with

 C_{1-6} alkyloxycarbonyl; X_1 represents a direct bond; -(CH₂)_{n3}- or -(CH₂)_{n4}- X_{1a} - X_{1b} -;

with n_3 representing an integer with value 1, 2, 3 or 4; with n_4 representing an integer with value 1 or 2; with X_{1a} representing O, C(=O) or NR⁵; and with X_{1b} representing a direct bond or C_{1-2} alkyl;

R² represents C₃₋₇cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula

wherein -B-C- represents a bivalent radical of formula

 $\begin{array}{lll} -CH_2\text{-}CH_2\text{-}CH_2\text{-} & (b-1); \\ -CH_2\text{-}CH_2\text{-}CH_2\text{-}CH_2\text{-} & (b-2); \\ -X_3\text{-}CH_2\text{-}CH_2\text{-}(CH_2)_n\text{-} & (b-3); \\ -X_3\text{-}CH_2\text{-}(CH_2)_n\text{-}X_3\text{-} & (b-4); \\ -X_3\text{-}(CH_2)_n\text{-}CH=CH\text{-} & (b-5); \\ -CH=N\text{-}X_3\text{-} & (b-6); \end{array}$

with X₃ representing O or NR⁵;

n representing an integer with value 0, 1, 2 or 3;

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

n' representing an integer with value 0 or 1;

wherein said R² substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

 C_{1-4} alkyloxy C_{1-4} alkyloxy, C_{1-4} alkyloxytorbonyl, C_{1-4} al

-NR⁵-S(=O)_{n1}-R⁸; C₂₋₆alkenyl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,

-C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸; polyhalo-C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4}

 $C_{1\text{-4}}$ alkyloxycarbonyl, $C_{1\text{-4}}$ alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; $C_{1\text{-6}}$ alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl,

 $C_{1\text{-4}}$ alkyloxy, $C_{1\text{-4}}$ alkylcarbonyl, $C_{1\text{-4}}$ alkyloxycarbonyl, $C_{1\text{-4}}$ alkylcarbonyloxy, NR^6R^7 ,

 $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$;

polyhaloC₁₋₆alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy,

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,

 $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$;

 $C_{1\text{--}6} alkylthio; polyhalo C_{1\text{--}6} alkylthio; C_{1\text{--}6} alkyloxy carbonyl; C_{1\text{--}6} alkylcarbonyloxy;$

C₁₋₆alkylcarbonyl; polyhaloC₁₋₆alkylcarbonyl; cyano; carboxyl; aryloxy; arylthio; arylcarbonyl; arylC₁₋₄alkyl; arylC₁₋₄alkyloxy; NR⁶R⁷; C(=O)NR⁶R⁷; -NR⁵-C(=O)-NR⁶R⁷;

 $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^8$; $-NR^5-S(=O)_{n1}-R^8$; -S-CN;

-NR 5 -CN; oxazolyl optionally substituted with $C_{1\text{--}4}$ alkyl; imidazolyl optionally substituted

with C_{1-4} alkyl; or ${}^{-(CH_2)_{n2}-X_4-(CH_2)_{n2}-N}$

with n2 representing an integer with value 0, 1, 2, 3 or 4;

with X₄ representing O, NR⁵ or a direct bond;

with X_5 representing O, CH₂, CHOH, CH-N(R₅)₂, NR⁵ or N C(=0) C, called:

 $N-C(=O)-C_{1-4}alkyl;$

 X_2 represents a direct bond; $-NR^1$ -; $-NR^1$ -(CH₂)_{n3}-; -O-; -O-(CH₂)_{n3}-; -C(=O)-;

-C(=O)- (CH₂)_{n3}-; -C(=O)-NR⁵-(CH₂)_{n3}-; -C(=S)-; -S-; -S(=O)_{n1}-; -(CH₂)_{n3}-;

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

R³ represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, or a 9-or 10-membered bicyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R³ substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

C₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl,

 C_{1-4} alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or

-NR⁵-S(=O)_{n1}-R⁸; C₂₋₆alkenyl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,

$$-C(=O)-NR^6R^7$$
, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$;

polyhalo C_{1-6} alkyl; C_{1-6} alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxyl, C_{1-4} alkyloxyl

 $C_{1\text{-4}}$ alkyloxycarbonyl, $C_{1\text{-4}}$ alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$,

 $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhalo C_{1-6} alkyloxy;

 $C_{1\text{--}6} alkylthio; polyhalo C_{1\text{--}6} alkylthio; C_{1\text{--}6} alkyloxy carbonyl; C_{1\text{--}6} alkylcarbonyloxy;$

C₁₋₆alkylcarbonyl; polyhaloC₁₋₆alkylcarbonyl; cyano; carboxyl; NR⁶R⁷; C(=O)NR⁶R⁷;

$$-NR^5-C(=O)-NR^6R^7$$
; $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^8$;

$$-NR^5-S(=O)_{n1}-R^8$$
; -S-CN;

-NR⁵-CN; or X_5 ; and in case R³ represents a saturated or a partially saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R³ may also be substituted with at least one oxo;

 R^4 represents hydrogen; halo; hydroxy; C_{1-4} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbonyloxy, NR^9R^{10} , $-C(=O)-NR^9R^{10}$, $-NR^5-C(=O)-NR^9R^{10}$, $-S(=O)_{n1}-R^{11}$ or $-NR^5-S(=O)_{n1}-R^{11}$; C_{2-4} alkenyl or C_{2-4} alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxycarbonyl,

 $C_{1\text{-4}}$ alkylcarbonyloxy, NR^9R^{10} , $-C(=O)-NR^9R^{10}$, $-NR^5-C(=O)-NR^9R^{10}$, $-S(=O)_{n1}-R^{11}$ or $-NR^5-S(=O)_{n1}-R^{11}$; polyhalo $C_{1\text{-3}}$ alkyl; $C_{1\text{-4}}$ alkyloxy optionally substituted with carboxyl; polyhalo $C_{1\text{-3}}$ alkyloxy; $C_{1\text{-4}}$ alkylthio; polyhalo $C_{1\text{-3}}$ alkylthio;

Application No.: 10/565,065

Office Action Dated: January 7, 2008

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

 $C_{1\text{-4}}$ alkyloxycarbonyl; $C_{1\text{-4}}$ alkylcarbonyloxy; $C_{1\text{-4}}$ alkylcarbonyl; polyhalo $C_{1\text{-4}}$ alkylcarbonyl; nitro; cyano; carboxyl; NR^9R^{10} ; $C(=O)NR^9R^{10}$; $-NR^5$ -C(=O)- NR^9R^{10} ; $-NR^5$ -C(=O)- R^5 ; -S(=O)_{n1}- R^{11} ; $-NR^5$ -S(=O)_{n1}- R^{11} ; -S-CN; or $-NR^5$ -CN:

R⁵ represents hydrogen, C₁₋₄alkyl or C₂₋₄alkenyl;

 R^6 and R^7 each independently represent hydrogen; cyano; $C_{1\text{-}6}$ alkylcarbonyl optionally substituted with $C_{1\text{-}4}$ alkyloxy or carboxyl; $C_{1\text{-}6}$ alkyloxycarbonyl;

 C_{3-7} cycloalkylcarbonyl; adamantanylcarbonyl; C_{1-4} alkyloxy C_{1-4} alkyl;

 C_{1-4} alkyl substituted with C_{1-4} alkyl-NR⁵-; C_{1-6} alkyl optionally substituted with at least one substituent selected from halo, hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, polyhalo C_{1-4} alkyl,

$$C_{1-4}$$
alkyloxy C_{1-4} alkyloxy, $NR^{6a}R^{7a}$, $C(=O)NR^{6a}R^{7a}$ or X_6 ; with X_6 representing O , CH_2 , $CHOH$, $CH-N(R_5)_2$, NR^5 or $N-C(=O)-C_{1-4}$ alkyl;

 R^{6a} and R^{7a} each independently represent hydrogen; $C_{1\text{--}4}$ alkyl or $C_{1\text{--}4}$ alkylcarbonyl;

R⁸ represents C₁₋₄alkyl optionally substituted with hydroxy; polyhaloC₁₋₄alkyl or NR⁶R⁷;

R⁹ and R¹⁰ each independently represent hydrogen; C₁₋₆alkyl; cyano; C₁₋₆alkylcarbonyl; C₁₋₄alkyloxyC₁₋₄alkyl; or C₁₋₄alkyl substituted with C₁₋₄alkyl-NR⁵-;

R¹¹ represents C₁₋₄alkyl or NR⁹R¹⁰;

n1 represents an integer with value 1 or 2;

aryl represents phenyl or phenyl substituted with at least one substituent selected from halo, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, cyano, nitro, polyhaloC₁₋₆alkyl or polyhaloC₁₋₆alkyloxy.

2. (Original) A compound according to claim 1 wherein

R² represents C₃₋₇cycloalkyl; phenyl or a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; or a radical of formula

wherein -B-C- represents a bivalent radical of formula

-CH₂-CH₂-CH₂- (b-1); -CH₂-CH₂-CH₂-CH₂- (b-2); -X₃-CH₂-CH₂-(CH₂)_n- (b-3); -X₃-CH₂-(CH₂)_n-X₃- (b-4);

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

 $-X_3-(CH_2)_{n'}-CH=CH-$ (b-5);with X_3 representing O or NR⁵; n representing an integer with value 0, 1, 2 or 3; n' representing an integer with value 0 or 1;

wherein said R² substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷,

 $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; C_{2-6} alkeryl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C_{1-4} alkylcarbonyloxy, NR^6R^7 , $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhalo C_{1-6} alkyl; C_{1-6} alkyloxy optionally substituted with carboxyl; $polyhaloC_{1\text{-}6}alkyloxy;\ C_{1\text{-}6}alkylthio;\ polyhaloC_{1\text{-}6}alkylthio;$

C₁₋₆alkyloxycarbonyl; C₁₋₆alkylcarbonyloxy; C₁₋₆alkylcarbonyl; polyhaloC₁₋₆alkylcarbonyl; cyano; carboxyl; NR⁶R⁷; C(=O)NR⁶R⁷; -NR⁵-C(=O)-NR⁶R⁷; $-NR^5-C(=O)-R^5$; $-S(=O)_{n1}-R^8$; $-NR^5-S(=O)_{n1}-R^8$; -S-CN;

-(CH₂)_{n2}-X₄-(CH₂)_{n2}-N
$$X_5$$

with n2 representing an integer with value 0, 1, 2, 3 or 4; with X₄ representing O, NR⁵ or a direct bond; with X_5 representing O or NR⁵;

 X_2 represents a direct bond; -NR¹-; -O-; -C(=O)-; -C(=S)-; -S-; -S(=O)_{n1}-; -(CH₂)_{n3}-; or $-(CH_2)_{n4}-X_{1a}-X_{1b}-;$

R³ represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R³ substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C₁₋₆alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; C_{2-6} alkeryl or C₂₋₆alkynyl, each optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy,

C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyloxy, NR⁶R⁷, $-C(=O)-NR^6R^7$, $-NR^5-C(=O)-NR^6R^7$, $-S(=O)_{n1}-R^8$ or $-NR^5-S(=O)_{n1}-R^8$; polyhaloC₁₋₆alkyl; C₁₋₆alkyloxy optionally substituted with carboxyl;

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

polyhalo C_{1-6} alkyloxy; C_{1-6} alkylthio; polyhalo C_{1-6} alkylthio; C_{1-6} alkyloxycarbonyl; C_{1-6} alkylcarbonyloxy; C_{1-6} alkylcarbonyl; polyhalo C_{1-6} alkylcarbonyl; cyano; carboxyl; NR^6R^7 ; $C(=O)NR^6R^7$; $-NR^5-C(=O)-NR^6R^7$; $-NR^5-C(=O)-R^5$;

-S(=O)_{n1}-R⁸; -NR⁵-S(=O)_{n1}-R⁸; -S-CN; -NR⁵-CN; or -(CH₂)_{n2}-X₄-(CH₂)_{n2}-N
$$X_5$$
; and in case R³ represents a saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R³ may also be substituted with at least one oxo;

R⁵ represents hydrogen or C₁₋₄alkyl;

 R^6 and R^7 each independently represent hydrogen; cyano; $C_{1\text{-}6}$ alkylcarbonyl; $C_{1\text{-}4}$ alkylcarbonyl; $C_{1\text{-}4}$ alkyl; $C_{1\text{-}4}$ alkyl substituted with $C_{1\text{-}4}$ alkyl-NR 5 -; $C_{1\text{-}6}$ alkyl optionally substituted with hydroxy, $C_{1\text{-}4}$ alkyloxy, $C_{1\text{-}4}$ alkyloxy, $NR^{6a}R^{7a}$, $C(=O)NR^{6a}R^{7a}$

$$-N$$
 X_5

 R^8 represents $C_{1\text{--}4}$ alkyl, polyhalo $C_{1\text{--}4}$ alkyl or NR^6R^7 .

3. (Previously presented) A compound as claimed in claim 1 wherein R^1 represents hydrogen or C_{1-6} alkyl; X_1 represents a direct bond or $-(CH_2)_{n3}$ -; R^2 represents C_{3-7} cycloalkyl; phenyl; a 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl; or a radical of formula

wherein -B-C- represents a bivalent radical of formula

 $-CH_2-CH_2-CH_2-$ (b-1);

 $-X_3$ -CH₂-(CH₂)_n-X₃- (b-4);

 $-CH=N-X_3-$ (b-6);

with X_3 representing O or NR⁵;

n representing an integer with value 1;

wherein said R^2 substituent, where possible, may optionally be substituted with at least one substituent, in particular with 1 or 2 substituents selected from halo; C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano,

 C_{1-4} alkyloxy, C_{1-4} alkyloxy C_{1-4} alkyloxy, NR^6R^7 or $-C(=O)-NR^6R^7$; polyhalo C_{1-6} alkyl; C_{1-6} alkyloxy optionally substituted with C_{1-4} alkyloxy; C_{1-6} alkylthio; C_{1-6} alkyl-

Application No.: 10/565,065

Office Action Dated: January 7, 2008

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

oxycarbonyl; cyano; arylthio; aryloxy; arylcarbonyl; NR^6R^7 ; $C(=O)NR^6R^7$; $-S(=O)_{n1}-R^8$; or imidazolyl optionally substituted with C_{1-4} alkyl; X_2 represents a direct bond; $-NR^1$ -; $-O-(CH_2)_{n3}$ -; -C(=O)-; -C(=O)- NR^5 -($CH_2)_{n3}$ -; $-(CH_2)_{n3}$ -; or $-S(=O)_{n1}$ - NR^5 -($CH_2)_{n3}$ - NR^5 -; R^3 represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R^3 substituent, where possible, may optionally be substituted with at least one substituent selected from halo; hydroxy; C_{1-6} alkyl; or NR^6R^7 ; and in case R^3 represents a saturated or a partially saturated 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, said R^3 may also be substituted with at least one oxo; R^4 represents hydrogen; nitro or carboxyl; R^5 represents hydrogen; R^6 and R^7 each independently represent hydrogen; cyano; C_{1-6} alkylcarbonyl optionally substituted with C_{1-4} alkyloxy; C_{1-6} alkyloxycarbonyl; C_{3-7} cycloalkylcarbonyl; adamantanylcarbonyl; or C_{1-6} alkyl; R^8 represents NR^6R^7 ; R^7 ; R^7 represents an integer with value 2; aryl represents phenyl.

- 4. (Previously presented) A compound as claimed in claim 1 wherein R^1 is hydrogen; X_1 is a direct bond or $-(CH_2)_{n3}$ -; R^2 is indanyl; 2,3-dihydro-1,4-benzodioxanyl; phenyl optionally being substituted with 1 or 2 substituents each independently being selected from C_{1-6} alkyl which may optionally be substituted with hydroxy, cyano, C_{1-4} alkyloxy, C_{1-4} alkyloxy, NR^6R^7 or $C(=O)NR^6R^7$; C_{1-6} alkyloxy; halo; polyhalo C_{1-6} alkyl which may optionally be substituted with hydroxy, cyano, C_{1-4} alkyloxy, C_{1-4} alkyloxy C_{1-4} alkyloxy, C_{1-4} alkyloxy; C_{1
- 5. (Previously presented) A compound as claimed in claim 1 wherein the R³ substituent is linked to ring A in meta position compared to the NR¹ linker.
- 6. (Previously presented) A compound as claimed in claim 1 wherein the R³ substituent is linked to ring A in para position compared to the NR¹ linker.

Application No.: 10/565,065

Office Action Dated: January 7, 2008

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

- 7. (Previously presented) A compound as claimed in claim 1 wherein the R³ substituent is an optionally substituted saturated 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N.
- 8. (Previously presented) A compound as claimed in claim 1 wherein X_1 represents a direct bond.
- 9. (Previously presented) A compound as claimed in claim 1 wherein R^2 represents C_{3-7} cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula (a-1) wherein said R^2 substitutent is substituted with at least one substituent selected from C_{1-6} alkyl substituted with NR^6R^7 ; C_{2-6} alkenyl or C_{2-6} alkynyl, each substituted with NR^6R^7 ; polyhalo C_{1-6} alkyl substituted with NR^6R^7 ; C_{1-6} alkyloxy substituted with NR^6R^7 ; or NR^6R^7 .
- 10. (Previously presented) A compound as claimed in claim 1 wherein R³ represents a 5-or 6-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N, or a 9-or 10-membered bicyclic heterocycle containing at least one heteroatom selected from O, S or N, wherein said R³ substituent is substituted with at least one substituent selected from C₁₋₆alkyl substituted with NR⁶R⁷; C₂₋₆alkenyl or C₂₋₆alkynyl, each substituted with NR⁶R⁷; C₁₋₆alkyloxy substituted with NR⁶R⁷; or NR⁶R⁷.
- 11. (Previously presented) A compound as claimed in claim 1 wherein R^2 represents C_{3-7} cycloalkyl; phenyl; a 4, 5, 6- or 7-membered monocyclic heterocycle containing at least one heteroatom selected from O, S or N; benzoxazolyl or a radical of formula (a-1), wherein said R^2 substituent is substituted with at least one substituent selected from halo; polyhalo C_{1-6} alkyl optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C_{1-4} alkyloxy, C_{1-4} alkyloxy- C_{1-4} alkyloxy, C_{1-4} alkyloxy- C_{1

-C(=O)-NR°R′, -NR°-C(=O)-NR°R′, -S(=O)_{n1}-R° or -NR°-S(=O)_{n1}-R°; polyhalo-C₁₋₆alkyloxy optionally substituted with at least one substituent selected from hydroxy, cyano, carboxyl, C₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonyloxy, NR⁶R⁷, -C(=O)-NR⁶R⁷, -NR⁵-C(=O)-NR⁶R⁷, -S(=O)_{n1}-R⁸ or -NR⁵-S(=O)_{n1}-R⁸.

12. (Previously Presented) A compound as claimed in claim 1 wherein the compound is selected from

2	1 N		
X_1	R ²	X_2	R ³
db	'\(\frac{1}{4}\)	2-db	N CH ₃
db	1,00	2-db	N N CH ₃
db	'\\F	2-db	N—N II II N N CH ₃
db) Living OH	2-db	\(\frac{1}{\chi_0}\)
db	H CH_3	2-db	7/1 O N
db	L'ALLE F	3-db	N—NH
db	NH ₂	2-db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
db	¹¹į́ OH	3-NH	\(\frac{1}{\chi_{\chi}\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tinmed\chi_{\chi_{\chi_{\chi_{\chi_{\chi}\tinmed\chi\tinmi\tinmed\chi\tinmed\chi\tinmed\chi\tinmed\chi\tinmed\chi\tii\tinmed\chi\tinmed\chin\chi\tinmed\chi\tinmed\chi\tinmed\chi\ti}\chi\tinmi\tinmed\chi\tii\tini
db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2-db	NH ₂

Page 10 of 16

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

X_1	R ²	X ₂	R ³
db	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3-db	N CH ₃

a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof.

13. (Previously Presented) A compound as claimed in claim 1 wherein the compound is selected from

a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof.

- 14. (Previously presented) A pharmaceutical composition comprising a compound as claimed in claim 1 and a pharmaceutical excipient.
- 15. (Canceled)
- 16. (Canceled)
- 17. (Canceled)
- 18. (Currently Amended) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in claim 1.
- 19. (Previously presented) A process for preparing a pharmaceutical composition comprising mixing a compound as claimed in claim 1 with a pharmaceutically acceptable carrier.
- 20. (Previously Presented) A process for preparing a compound as claimed in claim 1, comprising
- a) cyclizing an intermediate of formula (II) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

wherein ring A, R^1 to R^4 , X_1 and X_2 are as defined in claim 1;

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

b) cyclizing an intermediate of formula (II-a) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

wherein ring A, R^1 to R^3 , X_1 and X_2 are as defined in claim 1;

c) cyclizing an intermediate of formula (II-b) in the presence of a nitrite salt, a suitable solvent, and a suitable acid,

wherein ring A, R¹, R³ and R⁴, X₁ and X₂ are as defined in claim 1;

d) reacting an intermediate of formula (III) with an intermediate of formula (IV) in the presence of a suitable solvent,

wherein ring A, R^1 to R^4 , X_1 and X_2 are as defined in claim 1;

e) reacting an intermediate of formula (XV) with an intermediate of formula (XVI), wherein R^b represents hydrogen, C_{1-4} alkyl or cyano, and R^c represents hydrogen or C_{1-4} alkyl, in the presence of a suitable solvent and a suitable salt

wherein ring A, $R^1 R^2$, R^4 and X_1 are as defined in claim 1;

f) reacting an intermediate of formula (XV) with hydrazine in the presence of a suitable solvent,

wherein ring A, $R^1 R^2$, R^4 and X_1 are as defined in claim 1;

g) reacting an intermediate of formula (III') with an intermediate of formula (IV) in the presence of a suitable solvent, and optionally in the presence of a suitable base,

wherein ring A, R^1 R^2 , R^3 , R^4 , X_1 and X_2 are as defined in claim 1;

and optionally converting compounds of formula (I) into each other following art-known transformations, and further, optionally converting the compounds of formula (I), into a

Application No.: 10/565,065

Office Action Dated: January 7, 2008

PATENT REPLY FILED UNDER EXPEDITED PROCEDURE PURSUANT TO 37 CFR § 1.116

therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, optionally preparing stereochemically isomeric forms or quaternary amines thereof.