PROBABILITÉS

I. PROBABILITÉS (RAPPELS)

a. Expériences aléatoires et modèles

Le lancer d'une pièce de monnaie, le lancer d'un dé ... sont des *expériences aléatoires*, car avant de les effectuer, on ne peut pas prévoir avec certitude quel en sera le résultat, résultat qui dépend en effet du hasard.

A cette expérience aléatoire, on associe l'ensemble des résultats possibles appelé *univers*. Ses éléments sont appelés *éventualités*.

- ullet Les sous-ensembles de l'univers Ω sont appelés *événements*.
- Les événements formés d'un seul élément sont appelés événements élémentaires.
- Etant donné un univers Ω , l'événement Ω est *l'événement certain*.
- ♦ L'ensemble vide est *l'événement impossible*.
- ♦ L'événement formé des éventualités qui sont dans A et dans B est noté A ∩ B et se lit A inter B.
- ♦ L'événement formé des éventualités qui sont dans A ou dans B est noté A ∪ B et se lit A union B.
- Etant donné un univers Ω et un événement A, l'ensemble des éventualités qui ne sont pas dans A constitue un événement appelé *événement contraire* de A, noté \overline{A} .
- A et B sont *incompatibles* si et seulement si $A \cap B = \emptyset$.

Pour décrire mathématiquement une expérience aléatoire, on choisit un *modèle* de cette expérience ; pour cela on détermine l'univers et on associe à chaque événement élémentaire un nombre appelé *probabilité*.

b. Probabilités sur un ensemble fini

<u>Définition</u>: Soit $\Omega = \{a_1, a_2, ..., a_n\}$ un ensemble fini. on définit une **loi de probabilité** sur Ω si on choisit des nombres $p_1, p_2, ..., p_n$ tels que, pour tout i, $0 \le p_i \le 1$ et $p_1 + p_2 + ... + p_n = 1$; p_i est la probabilité élémentaire de l'événement $\{a_i\}$ et on note $p_i = p(\{a_i\})$ ou parfois plus simplement $p(a_i)$.

pour tout événement E inclus dans Ω , on définit p(E) comme la somme des probabilités des événements élémentaires qui définissent E.

Propriétés

Parties de E	Vocabulaire des événements	Propriété
Α	A quelconque	$0 \le p(A) \le 1$
Ø	Evénement impossible	p(∅) = 0
Е	Evénement certain	p(E) = 1
$A \cap B = \emptyset$	A et B sont incompatibles	$p(A \cup B) = p(A) + p(B)$
Ā	A est l'événement contraire de A	$p(\overline{A}) = 1 - p(A)$
A, B	A et B quelconques	$p(A \cup B) = p(A) + p(B) - p(A \cap B)$

Exercice n^a:

On considère l'ensemble E des entiers de 20 à 40. On choisit l'un de ces nombres au hasard.

- A est l'événement : « le nombre est multiple de 3 »
- B est l'événement : « le nombre est multiple de 2 »
- C est l'événement : « le nombre est multiple de 6 ».

Calculer p(A), p(B), p(C), p(A \cap B), p(A \cup B), p(A \cap C) et p(A \cup C).

<u>Définition</u>: On dit qu'il y a *équiprobabilité* quand tous les événements élémentaires ont la même probabilité.

Calculs dans le cas d'équiprobabilité

Dans une situation d'équiprobabilité, si Ω a n éléments et si E est un événement composé de m événements élémentaires : $p(E) = \frac{\text{card } E}{\text{card } \Omega}$ où card E et card Ω désignent respectivement le nombre d'éléments de E et de Ω . On le mémorise souvent en disant que c'est *le nombre de cas favorables divisé par le nombre de cas possibles*.

Remarque:

Les expressions suivantes « dé équilibré ou parfait », « boule tirée de l'urne au hasard », « boules indiscernables » ... indiquent que, pour les expériences réalisées, le modèle associé est l'équiprobabilité .

Exercice n2: avec un dé

On lance deux fois de suite un dé équilibré.

- 19 Représenter dans un tableau les 36 issues équi probables.
- 2°) Calculer la probabilité des événements :

A: « on obtient un double »; B: « on obtient 2 numéros consécutifs »

C: « on obtient au moins un 6 »; D: « la somme des numéros dépasse 7 ».

Exercice n3: avec une pièce

On lance 4 fois de suite une pièce équilibrée.

- 1°) Dresser la liste des issues équiprobables.
- 2°) Quel est l'événement le plus probable : A ou B ?

A: « 2 piles et 2 faces »

B: « 3 piles et 1 face ou 3 faces et 1 pile ».

c. Variables aléatoires

Exercice n⁴:

On lance trois fois de suite une pièce de monnaie équilibrée. On gagne 2 € pour chaque résultat « pile » et on perd 1 € pour chaque résultat « face».

- 1°) Quel est l'ensemble E des issues possibles ?
- 2°) Soit X l'application de E dans ℝ qui, à chaque issue, associe le gain correspondant.
 - a) Quelles sont les valeurs prises par X?
 - b) Quelle est la probabilité de l'événement « obtenir un gain de 3 € » ? On note cette probablité p(X = 3).

On obtient une nouvelle loi de probabilité sur l'ensemble des gains $E' = X(E) = \{-3; 0; 3; 6\}$; nous la nommons *loi de probabilité de X*:

Gain x_i	$x_1 = -3$	$x_2 = 0$	$x_3 = 3$	$x_4 = 6$
Probabilité	1	3	3	1
$p_i = p(X = x_i)$	8	8	8	8

Définition :

- Une *variable aléatoire* X est une application définie sur un ensemble E muni d'une probabilité P, à valeurs dans \mathbb{R} .
- X prend les valeurs $x_1, x_2, ..., x_n$ avec les probabilités $p_1, p_2, ..., p_n$ définies par : $p_i = p(X = x_i)$.
- L'affectation des p_i aux x_i permet de définir une nouvelle loi de probabilité. Cette loi notée P_X , est appelée *loi de probabilité de X*.

Remarque:

Soit X une variable aléatoire prenant les valeurs $x_1, x_2, ..., x_n$ avec les probabilités $p_1, p_2, ..., p_n$. On appelle respectivement *espérance mathématique* de X, *variance* de X et *écart-type* de X, les nombres suivants :

- l'espérance mathématique est le nombre E(X) défini par : $E(X) = \sum_{i=1}^{n} (p_i x_i)$.
- la variance est le nombre V défini par : $V(X) = \sum_{i=1}^{n} p_i (x_i E(X))^2 = \sum_{i=1}^{n} p_i x_i^2 E(X)^2$.
- l'écart type est le nombre σ défini par : σ = \sqrt{V} .

Exercice n⁵:

Un joueur lance un dé : si le numéro est un nombre premier, le joueur gagne une somme égale au nombre considéré (en euros) ; sinon il perd ce même nombre d'euros.

- 1°) Si X est le gain algébrique réalisé, donner la loi de probabilité de X et calculer son espérance mathématique et son écart-type.
- 2°) Le jeu est-il favorable au joueur?

II. CONDITIONNEMENT

a. Arbres pondérés

Règles de construction

La somme des probabilités des branches issues d'un même nœud est 1.

La probabilité de l'événement correspondant à un trajet est le produit des probabilités des différentes branches composant ce trajet.

Exemple

On jette une pièce.

- Si on obtient pile, on tire une boule dans l'urne P contenant 1 boule blanche et 2 boules noires.
- Si on obtient face, on tire une boule dans l'urne F contenant 3 boules blanches et 2 boules noires. On peut représenter cette expérience par l'arbre pondéré ci-dessous :

b. Probabilité conditionnelle

Exercice n%:

En fin de 1°S, chaque élève choisit une et une seule spécialité en terminale suivant les répartitions ci –dessous :

Par spécialité:

Mathématique	Sciences	SVT
S	Physiques	
40%	25%	35%

Sexe de l'élève selon la spécialité :

Sexe / Spécialité	Mathématiques	Sciences physiques	SVT
Fille	45%	24%	60%
Garçon	55%	76%	40%

On choisit un élève au hasard.

- 19 Construire l'arbre pondéré de cette expérience aléatoire.
- 2°) a) Quelle est la probabilité de chacun des év énements suivants ? F: « l'élève est une fille », M: « l'dève est en spécialité maths ».
 - b) Quelle est la probabilité que ce soit une fille ayant choisi spécialité mathématiques ?
 - c) Sachant que cet élève a choisi spécialité mathématiques, quelle est la probabilité que ce soit une fille ?

On appelle **probabilité de F sachant M** cette probabilité (conditionnelle) et on la note $p_M(F)$ ou P(F/M)

Quelle égalité faisant intervenir $p(F \cap M)$, p(F) et $p_M(F)$ peut-on écrire ? Comparer p(F) et $p_M(F)$ et en donner une interprétation.

- d) Sachant que cet élève a choisi spécialité SVT, quelle est la probabilité que ce soit une fille ?
- e) Comparer p_S(F) et p(F), et en donner une interprétation.

<u>Définition</u>: p désigne une probabilité sur un univers fini Ω .

A et B étant deux événements de Ω , B étant de probabilité non nulle.

- On appelle *probabilité conditionnelle* de l'événement A sachant que B est réalisé le réel noté $p(A/B) = \frac{P(A \cap B)}{p(A)}$.
- Le réel p(A / B) se note aussi $p_B(A)$ et se lit aussi probabilité de A sachant B.

Remarque:

Si A et B sont tous deux de probabilité non nulle, alors les probabilités conditionnelles p(A/B) et p(B/A) sont toutes les deux définies et on a : $p(A \cap B) = p(A/B)p(B) = p(B/A)p(A)$.

Exercice n7: Efficacité d'un test »

Une maladie atteint 3% d'une population donnée. Un test de dépistage donne les résultats suivants :

- Chez les individus malades, 95% des tests sont positifs et 5% négatifs.
- Chez les individus non malades, 1% des tests sont positifs et 99% négatifs.

On choisit un individu au hasard.

- 1°) Construire l'arbre pondéré de cette expérience aléatoire.
- 2°) Quelle est la probabilité
 - a) qu'il soit malade et qu'il ait un test positif?
 - b) qu'il ne soit pas malade et qu'il ait un test négatif?
 - c) qu'il ait un test positif?
 - d) qu'il ait un test négatif?
- 39 Calculer la probabilité
 - a) qu'il ne soit pas malade, sachant que le test est positif?
 - b) qu'il soit malade, sachant que le test est négatif?
- 4) Interpréter les résultats obtenus aux question s 3a et 3b.

III. INDÉPENDANCE

a. Événements indépendants

Définition : A et B sont 2 événements de probabilité non nulle.

- A et B sont indépendants lorsque la réalisation de l'un ne change pas la réalisation de l'autre.
- A et B sont *indépendants* si et seulement si p(A/B) = p(A) ou p(B/A) = p(A).

Théorème:

Deux événements A et B de probabilité non nulle sont **indépendants** si et seulement si ils vérifient une des trois conditions :

$$p(A/B) = p(A)$$
 ou $p(B/A) = p(B)$ ou $p(A \cap B) = p(A)p(B)$.

Démonstration:

- Par définition, les deux premières sont équivalentes
- si p(A/B) = p(A) comme $p(A \cap B) = p(A/B)p(B)$ alors $p(A \cap B) = p(A)$ p(B)
- si $p(A \cap B) = p(A)p(B)$, comme $p(B) \neq 0$, $\frac{p(A \cap B)}{p(B)} = p(A)$ c'est-à-dire $p_B(A) = p(A)$

Remarque:

Ne pas confondre événements indépendants et événements incompatibles.

- 2 événements A et B sont indépendants si $p(A \cap B) = p(A)p(B)$
- 2 événements A et B sont incompatibles si $A \cap B = \emptyset$.

Exercice n₈

On extrait au hasard un jeton d'un sac contenant six jetons : trois rouges numérotés 1, 2 et 3, deux jaunes numérotés 1 et 2, et un bleu numéroté 1.

On désigne respectivement par R, U et D les événements :

« le jeton est rouge », « le numéro est 1 » et « lenuméro est 2 ».

Les événements R et U sont-ils indépendants ? Et les événements R et D ?

b) Indépendance de deux variables aléatoires

Définition: X et Y sont deux variables définies sur l'univers Ω d'une expérience aléatoire;

X prend les valeurs $x_1, x_2, ..., x_n$ et Y prend les valeurs $y_1, y_2, ..., y_q$.

Définir la loi du couple (X, Y) c'est donner la probabilité p_{i,i} de chaque événement

$$[(X = x_i) et (Y = y_j)].$$

Remarque:

Les événements $(X = x_i)$ et $(Y = y_i)$ sont indépendants si : $p[(X = x_i)$ et $(Y = y_i)] = p(X = x_i) \times p(Y = y_i)$

Exercice n°9

On tire au hasard une carte d'un jeu de 32 cartes. L'ensemble Ω des issues est alors l'ensemble des 32 cartes et le fait de tirer au hasard implique que les événements élémentaires sont équiprobables.

- On définit sur Ω la variable aléatoire X qui, à chaque issue, associe 1 si cette issue est un valet, 2 si c'est une dame, 3 si c'est un roi, 4 si c'est un as et 0 si ce n'est pas l'une de ces figures. Les valeurs de X sont donc $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $x_4 = 3$, $x_5 = 4$.
- ullet On définit sur Ω la variable aléatoire Y qui, à chaque issue, associe 1 si cette issue est un trèfle ou un carreau, 2 si c'est un cœur, 3 si c'est un pique.
- Les valeurs de Y sont $y_1 = 1$, $y_2 = 2$, $y_3 = 3$.
- 1) Définir la loi du couple (X, Y).(on pourra dr esser un tableau à double entrée)
- 2°) Donner les lois de X et de Y.
- 3°) X et Y sont-elles indépendantes ?

c) Probabilités totales

<u>Définition</u>: Soient Ω un univers associé à une expérience aléatoire et n un entier ≥ 2 . Les événements A_1 , A_2 , ..., A_n forment une *partition* de Ω si les trois conditions suivantes sont réalisées :

- pour tout $i \in \{1; 2; ...; n\}, A_i \neq 0.$
- pour tous i et j (avec i \neq j) de {1;2;...n}, $A_i \cap A_j \neq \emptyset$.
- $A_1 \cup A_2 \cup ... \cup A_n = E$.

Formule des probabilités totales

Soient A_1 , A_2 , ..., A_n une *partition* de l'univers Ω constituée d'événements de probabilités non nulles et B un événement quelconque contenu dans Ω .

Alors:
$$p(B) = p(B \cap A_1) + p(B \cap A_2) + ... + p(B \cap A_n)$$

Ou
$$p(B) = p_{A_1}(B) \times p(A_1) + p_{A_2}(B) \times p(A_2) + K K + p_{A_n}(B) \times p(A_n)$$
.

Démonstration:

$$B = (B \cap A_1) \cup (B \cap A_2) \cup ... \cup (B \cap A_n),$$

Les événements (B \cap A₁), (B \cap A₂), ..., (B \cap A_n) sont 2 à 2 incompatibles donc la probabilité de leur réunion est la somme de chacun d'entre eux , on en déduit :

$$p(B) = p(B \cap A_1) + p(B \cap A_2) + ... + p(B \cap A_n).$$

et en utilisant que, pour tout i de $\{1; 2; ...; n\}$, $p(B \cap A_i)=p_{Ai}(B) \times p(A_i)$, on obtient :

$$p(B) = p_{A_1}(B) \times p(A_1) + p_{A_2}(B) \times p(A_2) + K K + p_{A_n}(B) \times p(A_n)$$

Exercice n°10:

On dispose de deux urnes U_1 et U_2 indiscernables. U_1 contient 4 boules rouges et trois boules vertes, U_2 contient 2 boules rouges et 1 boule verte.

On choisit une urne au hasard et on tire une boule de cette urne.

Calculer la probabilité pour qu'elle soit rouge.

d) Modélisation d'expériences indépendantes

On considère les deux expériences aléatoires suivantes :

- A : on lance une pièce de monnaie équilibrée, les issues de l'expérience sont notées P et F.
- B: on tire au hasard un jeton dans une urne qui contient trois jetons portant les lettres a, b et c.

Lorsqu'on effectue successivement les deux expériences A et B, l'issue de l'une quelconque des deux expériences ne dépend pas de l'issue de l'autre.

Les issues de la nouvelle expérience qui consiste à effectuer successivement A et B sont des listes d'issues telles que (P; c), ...

L'arbre donnant toutes les listes de résultats possibles est :

On modélise cette expérience aléatoire en définissant la probabilité d'une liste d'issues comme le produit des probabilités de chaque issue.

IV. **DENOMBREMENT**

Un magazine propose à ses lecteurs une liste de 5 chanteurs célèbres a, b, c, d et E ; il leur demande de choisir 3 des ces chanteurs et de les ranger par ordre de préférence sur un coupon réponse à renvoyer au journal.

Exemples de réponses :

1 : a	1:b	1:c
2 : b	2:a	2:e
3 : c	3 : c	3 : a

On veut dénombrer les différentes réponses possibles

a) Permutations

<u>Définition</u>: Soit E un ensemble à p éléments, on appelle *permutation* de E toute liste ordonnée des p éléments de E .

Exemple:

Les permutations de $\{a, b, c\}$ sont : abc, acb, bac, bca, cab, cba. Elles sont au nombre de $3 \times 2 \times 1 = 6$.

<u>Définition</u>: Le nombre $p \times (p-1) \times (p-2) \times ... \times 2 \times 1$ se note p! et se lit « factorielle p ».

Par convention, 0! = 1.

Exercice n°11:

Avec les chiffres 5, 6, 7, 8 et 9 utilisés une et une seule fois, combien peut-on écrire de nombres à 5 chiffres ?

b) **Combinaisons**

<u>Définition</u>: Soit E un ensemble à n éléments, on appelle *combinaison* de p éléments de E toute partie de E formée de p éléments.

Exemple:

Les combinaisons de 3 éléments de E = { a, b, c, d, e } sont les groupes de 3 chanteurs (sans ordre) : {a, b, c} ; {a, b, e} ; {a, c, d} ; {a, c, e} ; {a, d, e} ; {b, c, d} ; {b, c, e} ; {b, d, e} ; {c, d, e} Elles sont on nombre de 10. On note $\binom{5}{3}$ = 10.

Propriété:

Soit E un ensemble non vide à n éléments et p un entier tel que $0 , alors le nombre de combinaisons à p éléments de E noté <math>\binom{n}{p}$ vérifie :

$$\binom{n}{p} = \frac{n!}{p! \times (n-p)!}$$

Triangle de Pascal et propriétés des combinaisons

On dispose les $\binom{n}{p}$ dans un tableau à double entrée, appelé triangle de Pascal :

· ·	0	1	2	3	4	5	
0	(°)= 1						
1	$\binom{1}{0} = 1$	$\binom{1}{1} = 1$					
2	(² ₀)= 1	(² ₁) = 2	(² ₂) = 1				
3	$\binom{3}{0} = 1$	$\binom{3}{1} = 3$	$\binom{3}{2} = 3$	$\binom{3}{3} = 1$			
4	(4 ₀)=1	(4 ₁) = 4	(⁴ ₂) = 6	$\binom{4}{3} = 4$	(4 ₄) = 1		
5	(⁵ ₀)= 1	$\binom{5}{1} = 5$	(⁵ ₂) = 10	$\binom{5}{3} = 10$	$\binom{5}{4} = 5$	$\binom{5}{5} = 1$	

Propriétés:

Pour tous entiers p et n tels que $0 \leq p \leq n,$ on a :

$$\cdot \binom{n}{0} = 1 \text{ et } \binom{n}{1} = n$$

$$\begin{bmatrix} n \\ n \end{bmatrix} = \begin{bmatrix} n \\ n-n \end{bmatrix}$$

$$\begin{bmatrix} n \\ n \end{bmatrix} + \begin{pmatrix} n \\ n+1 \end{pmatrix} = \begin{pmatrix} n+1 \\ n+1 \end{pmatrix}$$

Binôme de Newton

On observe que : (a + b) = 1a + 1b,

$$(a + b)^2 = 1a^2 + 2ab + 1b^2$$
,

$$(a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$$
.

On retrouve les coefficients du triangle de Pascal.

<u>Propriété</u>:

Pour tous réels a et b et tout entier naturel n, on a :

$$(a + b)^n = \sum_{p=0}^{n} \binom{n}{p} \times a^{n-p} \times b^p$$

Les nombres $\binom{n}{p}$ sont appelés « coefficients du binôme ».

Exercice n²:

Développer les expressions suivantes : $A = (x + 2)^4$ $B = (x - 2)^4$

Exercice n°13:

Dans un jeu de 32 cartes, on tire simultanément 3 cartes au hasard.

Quelle est la probabilité d'obtenir :

- 1°) Trois as.
- 2°) Trois cartes de même valeur.
- 3°) Deux cœurs et un pique.

Exercice nº14:

Une urne contient: 5 boules n°10; 4 boules n°15; 3 boules n°20.

On tire simultanément 3 boules de cette urne. Les tirages sont équiprobables.

1°) Déterminer les probabilités suivantes :

A: « On tire au moins une boule n°15 »

B: « On tire trois boules portant trois numéros différents »

C : « On tire trois boules portant le même numéro »

D: « Parmi les trois boules, deux portent le même numéro »

2°) Il faut payer 51 € pour effectuer un tirage de trois boules, et chaque tirage rapporte en euros la somme des points marqués. Quelle est la probabilité d'être gagnant ?.

c) Autres dénombrements, hors programme

- P-listes : Il s'agit de compter toutes les listes possibles de p éléments parmi n en tenant compte de l'ordre et avec répétitions des éléments. Le nombre de ces listes est $\mathbf{n}^{\mathbf{p}}$.
- <u>Arrangements</u>: On choisit p éléments parmi n en tenant compte de l'ordre mais sans répétitions. $A_n^p = n(n-1)K(n-p+1) = \frac{n!}{(n-p)!}!$
- <u>Combinaisons</u>: Une combinaison de p éléments de E est une partie de E qui contient p éléments. On choisit p éléments parmi n mais sans tenir compte de l'ordre et sans répétitions.

Types de tirages	Ordre	Répétitions d'éléments	Dénombrement	
Successifs Avec remise	On tient compte	Un élément peut être tiré plusieurs fois	r ^p p-listes	
Successifs Avec remise	de l'ordre	Un élément n'est tiré	A_n^p arrangements	
Simultanés	L'ordre n'intervient pas	qu'une seule fois	C_n^p combinatoires	

V. LOIS DE PROBABILITE

a) Loi de Bernoulli

<u>Définition</u>: Une alternative est une épreuve à deux issues possibles :

- le succès, noté 1, de probabilité p,
- l'échec, noté 0, de probabilité q = 1 p.

Sa loi de probabilité est appelée *loi de Bernoulli* de paramètre p.

Exemple:

Un dé cubique est mal équilibré : la probabilité d'obtenir 6 est de 1/7.

On appelle succès l'événement « obtenir 6 » et échec « obtenir un numéro différent de 6 ».

Cette expérience qui ne comporte que deux issues suit une loi de Bernoulli.

Si On effectue cinq fois cette expérience. On est en présence d'un schéma de Bernoulli.

Théorème :

Pour une loi de Bernoulli de paramètre p, l'espérance est p et l'écart type est \sqrt{pq}

b) Loi Binomiale

<u>Définition</u>: Soit un schéma de Bernoulli constitué d'une suite de n épreuves. Soit X la variable aléatoire égale au nombre de succès obtenus, alors :

$$P(X = k) = {n \choose k} \times p^{k} \times (1 - p)^{n - k} \qquad (0 \le k \le n)$$

Exemple:

Dans l'exemple précédent, on appelle X la variable aléatoire comptant le nombre de succès à l'issue des 5 lancés. On obtient les probabilités suivantes :

$$P_0 = P(X = 0) = {5 \choose 0} \times (\frac{1}{7})^0 \times (\frac{6}{7})^5 = 0,4627.$$

 $P_1 = 0.3856$; $P_2 = 0.1285$; $P_3 = 0.0214$; $P_4 = 0.0018$; $P_5 = 0.0001$.

Théorème:

Pour une loi Binomiale de paramètres n et p, l'espérance est np et l'écart type est \sqrt{npq}

Exercice n⁹⁵:

Un sac contient 20 jetons indiscernables au toucher.

Six d'entre eux sont rouges et les autres sont bleus.

- 1°) On tire un jeton au hasard. Quelle est la probabilités p d'obtenir un jeton rouge ?
- 2°) On tire successivement 6 jetons un à un, avec remise.
 - a) Quelle est la probabilité P1 d'obtenir exactement trois jetons rouges ?
 - b) Quelle est la probabilité P2 d'obtenir exactement un jeton rouge ou un jeton bleu ?
 - c) Quelle est la probabilité P3 d'obtenir au moins quatre jetons rouges ?