# Neural networks and quantum field theory

JAMES HALVERSON, ANINDITA MAITI, AND KEEGAN STONER

HTTPS://DOI.ORG/10.1088/2632-2153/ABECA3

#### Outline



fully-connected neural network with one hidden layer

#### Gaussian Process

Function over x : f(x)

f(x) has a distribution: p(f)

x is like time/space coordinates. Infinite choices of x, but for any finite subset of x, the finite function variables  $\{f_i\}_{i=1}^m$  has joint (zero mean) Gaussian distribution.

$$p(\mathbf{f}|\mathbf{X}) \sim \mathcal{N}$$

For neural networks, x is our input data, f is the network.

 $f_{ heta.N}:R^{d_{in}} o R^{d_{out}}$ 

parameter space distribution  $\rightarrow$  function space distribution

### Correspondence between GP and neural networks

Consider one hidden later of N units, and output dimension is 1:

$$f(\mathbf{x}) = b_1 + \sum_{j=1}^N W_1^j \sigma(\mathbf{x}; \mathbf{W}_0^j, b_0^j)$$
 Sum over i.i.d. terms By CLT, for infinite N f(x) is Gaussian

 $\mathbf{W}_0^j$  is i.i.d.,  $b_0^j$ ,  $b_1$  and  $W_1^j$  is zero mean and independent.

In this paper, 
$$b_0^j, b_1 \sim \mathcal{N}(0,\sigma_b^2)$$
 ,  $\left. \mathbf{W}_0^j \sim \mathcal{N}(0,\sigma_W^2/d_{in}) \right.$  ,  $\left. \mathbf{W}_1^j \sim \mathcal{N}(0,\sigma_W^2/N) \right|$ 

$$f_{ heta,N}:R^{d_{in}} o R^{d_{out}}$$

parameter space distribution  $\rightarrow$  function space distribution



# Correspondence between neural networks and QFT

$$\{f(x_1),\ldots,f(x_k)\}\sim \mathcal{N}(\mu,\Xi^{-1})$$

assumption:  $\mu=0$ 

$$(\Xi^{-1})_{ij} = K_{ij}$$

Correlation function (n-pt functions)

$$G^{(n)}(x_1,\ldots,x_n)=rac{\int df f_1...f_n e^{-S}}{Z}$$

- ullet partition function  $Z=\int df e^{-S}$
- ullet discrete action  $S=rac{1}{2}f_i\Xi_{ij}f_j$  (Einstein summation)
- ullet continuous action  $S=rac{1}{2}\int d^{d_{in}}xd^{d_{in}}x'f(x)\Xi(x,x')f(x')$

| GP/asymptotic NN     | Free QFT                               |
|----------------------|----------------------------------------|
| Input x              | External space or momentum space point |
| Kernel $K(x_1,x_2)$  | Feynman propagator                     |
| Asymptotic NN $f(x)$ | Free Field                             |
| Log-likelihood       | Free action $S_{GP}$                   |

- quantum field  $\phi(x)$
- ullet path integral  $Z=\int D\phi e^{-S[\phi]}$
- ullet action  $S[\phi]=\int d^dx \phi(x) (\Box+m^2)\phi(x)$

Free scalar field theory

#### **Experimental Verification of NNGP**

#### How to measure

• normalized deviation  $m_n$ 

$$m_n(x_1,\ldots,x_n) = \Delta G^{(n)}(x_1,\ldots,x_n)/G^{(n)}_{GP}(x_1,\ldots,x_n) \ \Delta G^{(n)}(x_1,\ldots,x_n) = G^{(n)}(x_1,\ldots,x_n)-G^{(n)}_{GP}(x_1,\ldots,x_n)$$

#### **Experimental Measurement**

 $G^{(n)}(x_1, \dots, x_n) = \mathcal{E}[f_{\alpha}(x_1) \dots f_{\alpha}(x_n)]$  is measured in the experiment  $100(\text{experiments}) * 10^5(\text{nets})$  times weights and biases is drawn from Gaussian dist. with mean equals zero and std equals 1

 $G^{(n)}_{GP}(x_1,\ldots,x_n)$  is computed using Wick contraction

$$G^{(n)}_{GP}(x_1,\ldots,x_n)=\sum_{p\in \mathrm{Wick}(x_1,\ldots,x_n)}K(a_1,b_1)\ldots K(a_{n/2},b_{n/2})$$
 Theoretical Computation

### Feynman Diagram

$$G_{GP}^{(2)}(x_1, x_2) = K(x_1, x_2)$$

$$= x_1 \quad x_2$$

$$G_{GP}^{(4)}(x_1, x_2, x_3, x_4) = K(x_1, x_2)K(x_3, x_4) + K(x_1, x_3)K(x_2, x_4) + K(x_1, x_4)K(x_2, x_3)$$

$$= \int_{x_2}^{x_1} \int_{x_4}^{x_3} + \int_{x_2}^{x_1} \int_{x_4}^{x_3} + \int_{x_2}^{x_2} \int_{x_4}^{x_4} + \int_{x_2}^{x_2} \int_{x_4}^{x_4} + \int_{x_2}^{x_3} \int_{x_4}^{x_4} + \int_{x_2}^{x_4} \int_{x_4}^{x_4} \int_{x_4$$



background is average std across 100 experiments of  $m_n$ 

#### NGP contributions

$$\Delta G^{(n)} \propto N^{-1}$$

$$G^{(2k)}(x_1,\ldots,x_{2k})|_{ ext{connected}} \propto rac{1}{N^{k-1}}$$

$$egin{aligned} \Delta G^{(2)} &\propto 0 \ &\Delta G^{(4)} \propto N^{-1} \ &\Delta G^{(6)} \propto N^{-1} + N^{-2} \propto N^{-1} \ &G^{(4)}(x_1,\ldots,x_4)|_{ ext{connected}} &= \Delta G^{(4)} \propto N^{-1} \ &G^{(6)}(x_1,\ldots,x_6)|_{ ext{connected}} &= \Delta G^{(6)} - \sum G^{(4)}(x_1,\ldots,x_4)|_{ ext{connected}} &G^{(2)}(x_5,x_6) \propto N^{-2} \end{aligned}$$

#### From GP to NGP

| NGP NN                    | EFT                                    |  |
|---------------------------|----------------------------------------|--|
| Input x                   | External space or momentum space point |  |
| Kernel $K(x_1,x_2)$       | Free or exact propagator               |  |
| NN output $f(x)$          | Interacting Field                      |  |
| Non-Gaussianities         | Interactions                           |  |
| Non-Gaussian coefficients | Coupling strengths                     |  |
| Log-likelihood            | EFT action $S$                         |  |

### **Perturbation Theory**

$$G^{(n)}(x_1,\ldots,x_n)=rac{\int df f_1...f_n e^{-S}}{Z_0}$$

$$Z_0 = \int df e^{-S}$$

$$S = S_{GP} + \Delta S$$

for 
$$\mathcal{O}_k := g_k f(x)^k$$
 in  $\Delta S$  as  $\int d^{d_{in}} x \mathcal{O}_k$ 

$$G^{(n)}(x_1,\ldots,x_n) = rac{\int df f(x_1)...f(x_n) igl[ 1 - \int d^d\!i n_x g_k f(x)^k + O(g_k^2) igr] e^{-S}\!GP\!/Z_{GP,0}}{\int df igl[ 1 - \int d^d\!i n_x g_k f(x)^k + O(g_k^2) igr] e^{-S}\!GP\!/Z_{GP,0}}$$

$$\Delta S = \int d^{d_{in}}x \left[\lambda f(x)^4 + \kappa f(x)^6
ight]$$

### Feynman Rule

$$G^{(n)}\left(x_1,\ldots,x_n
ight)=rac{\int df f(x_1)...f(x_n)\left[1-\int d^{d_{in}x}\left[\lambda f(x)^4+\kappa f(x)^6
ight]\left]e^{-S}GP/Z_{GP,0}}{\int df\left[1-\int d^{d_{in}x}\left[\lambda f(x)^4+\kappa f(x)^6
ight]\left]e^{-S}GP/Z_{GP,0}} \qquad \Delta S=\int d^{d_{in}x}\left[\lambda f(x)^4+\kappa f(x)^6
ight]}{x_i}$$

Throw away





Because no correction to 2-pt function

### Coupling constants

$$\Delta S = \int d^{d_{in}}x \left[\lambda f(x)^4 + \kappa f(x)^6
ight]$$

 $\lambda,\ \kappa$  is constants by symmetry at GP and Technical Naturalness.

• Technical naturalness: a coupling g appearing in  $\Delta S$  may be small relative to  $\Lambda$  if a symmetry is restored when g is set to zero.

**Conjecture:** couplings in NGPs associated to neural network architectures are constants (or nearly constants) if the kernel K(x, y) associated with their GP limit is translationally invariant.

## Experimental measurements of coupling constants

$$G^{(4)}(x_1, x_2, x_3, x_4) = 3 - 24 \lambda \qquad y - 360 \kappa \qquad z$$

$$G^{(6)}(x_1, x_2, x_3, x_4, x_5, x_6) = 15 - 360 \lambda \qquad y - \kappa \left[ 720 - 5400 \right]$$
Small



# Experimental prediction of correlation function

**Table 5.** Optimized values of  $\lambda_0$ ,  $\lambda_2$ ,  $\lambda_{NL}$  and resulting MAPE and MSE loss upon application to test-sets.

|                          | $(\lambda_0,\lambda_2,\lambda_{ m NL})$                           | Test (MAPE, MSE)                |
|--------------------------|-------------------------------------------------------------------|---------------------------------|
| Gauss $M_0$              | (0.0, 0.0, 0.0)                                                   | (100, 0.019)                    |
| Gauss $M_1$              | (0.0046, 0.0, 0.0)                                                | $(0.0145, 6.8 \times 10^{-10})$ |
| Gauss $M_2$              | (0.0043, 0.0011, 0.0)                                             | $(0.0144, 6.7 \times 10^{-10})$ |
| Gauss $M_3$              | (0.00062, 0.00016, 0.0015)                                        | $(0.0156, 7.5 \times 10^{-10})$ |
| ${ m ReLU}M_0$           | (0.0, 0.0, 0.0)                                                   | (100, 0.003)                    |
| ${ m ReLU}M_1$           | $(6.2 \times 10^{-11}, 0.0, 0.0)$                                 | $(0.0035, 7.6 \times 10^{-12})$ |
| ${ m ReLU}M_2$           | $(1.2 \times 10^{-18}, 8.7 \times 10^{-15}, 0.0)$                 | $(0.0013, 1.5 \times 10^{-12})$ |
| $ReLU M_3$               | $(1.2 \times 10^{-18}, 8.7 \times 10^{-15}, 6.8 \times 10^{-17})$ | $(0.0012, 1.2 \times 10^{-12})$ |
| $\operatorname{Erf} M_0$ | (0.0, 0.0, 0.0)                                                   | (100, 0.006)                    |
| $\operatorname{Erf} M_1$ | (0.039, 0.0, 0.0)                                                 | $(0.030, 8.3 \times 10^{-10})$  |
| $\operatorname{Erf} M_2$ | (0.040, -0.00043, 0.0)                                            | $(0.0042, 1.9 \times 10^{-11})$ |
| $\operatorname{Erf} M_3$ | (0.0019, -0.0054, 0.0063)                                         | $(0.037, 1.1 \times 10^{-9})$   |

#### Renormalization, RG flow

• goal of RG: solve divergences arising from integrals over the space of inputs

using cutoff: 
$$\Delta S_{\Lambda} = \int_{-\Lambda}^{\Lambda} d^{d_{in}} x \sum_{l \leqslant k} g_{\mathcal{O}_l}(\Lambda) \mathcal{O}_l$$

RGEs: 
$$rac{dG^{(n)}\left(x_1,...,x_n
ight)}{d\log\Lambda}=0 \qquad eta(g_{\mathcal{O}_l}):=rac{d(g_{\mathcal{O}_l}(\Lambda))}{d\log\Lambda}$$

#### Perturbation Theory

$$egin{align*} G^{(n)}(x_1,\ldots,x_n) &= rac{\int df f_1...f_n e^{-S}}{Z_0} \ Z_0 &= \int df e^{-S} \ S &= S_{GP} + \Delta S \ ext{for } \mathcal{O}_k := g_k f(x)^k ext{ in } \Delta S ext{ as } \int d^{d_{in}} x \mathcal{O}_k \ G^{(n)}(x_1,\ldots,x_n) &= rac{\int df f(x_1)...f(x_n) \left[1-\int d^{d_{in}} x g_k f(x)^k + O(g_k^2)
ight] e^{-S_{GP}/Z_{GP,0}}}{\int df \left[1-\int d^{d_{in}} x g_k f(x)^k + O(g_k^2)
ight] e^{-S_{GP}/Z_{GP,0}}} \ \Delta S &= \int d^{d_{in}} x \left[\lambda f(x)^4 + \kappa f(x)^6
ight] \end{aligned}$$