Avancerade algoritmer DD2440

Homework C

Jim Holmström - 890503-7571

November 24, 2011

Exercise 1. Multiply the following two polynomials using FFT.

$$p(x) = x^3 + 3x^2 + x - 1$$
$$q(x) = 2x^3 - x^2 + 3$$

If you use a recursive version of FFT, you only need to show the top-most call to FFT (and FFT inverse), what recursive calls are made from the top-most level, what those calls return and how the final result is computed.

Solution. Algorithm:

Define
$$r = pq$$

$$p = \sum_{i=0}^{m} p_i x^i$$

$$q = \sum_{i=0}^{m} q_i x^i$$

$$r = pq = \sum_{i=0}^{m} \sum_{j=0}^{m} p_i q_j x^{i+j} = \{\text{Cauchy product}\} = \sum_{k=0}^{2m} \left(\sum_{i=0}^{k} p_i q_{k-i}\right) x^k = \sum_{i=0}^{2m} r_k x^k$$

Where c_k is the convolution between p_i and q_j

Now using the ordinary shortcut in the fourier domain to calculate the convolution using the convolution theorem.

- * $\hat{p} = \mathcal{F}\{p_i\}$ and $\hat{q} = \mathcal{F}\{q_i\}$ using fft.
- * $\hat{r} = \hat{p} \cdot \hat{q}$, using termvise multiplication.
- * $\mathcal{F}^{-1}\hat{c}$

Represent the polynomials p, q as vectors of their coefficients where the constant coefficient is the first element p = (-1, 1, 3, 1, 0, 0, 0, 0) and q = (3, 0, -1, 2, 0, 0, 0, 0) (note the zero padding)

The MATLAB code would have been: ifft(fft([-1,1,3,1,0,0,0,0]).*fft([3 0 -1 2 0 0 0 0]))wich yields [-3 3 10 0 -1 5 2 0]

Now showing the first steps by hand using the Cooley-Tukey FFT algorithm: Using the 8^{th} root of unity as base $e^{2\pi i \frac{k}{8}}$ The principle of Cooley-Tukey:

$$\hat{x}_k = \sum_{n=0}^{N-1} x_n e^{-2\pi i \frac{n}{N} k} = \{ \text{Break it up in even and odd part} \} = \sum_{m=0}^{N/2-1} x_{2m} e^{-2\pi i \frac{2m}{N} k} + \sum_{m=0}^{N/2-1} x_{2m+1} e^{-2\pi i \frac{2m+1}{N} k} = \sum_{m=0}^{N/2-1} x_{2m} e^{-2\pi i \frac{2m}{N} k} + e^{-2\pi i \frac{1}{N} k} \sum_{m=0}^{N/2-1} x_{2m+1} e^{-2\pi i \frac{2m}{N} k} \text{ Where to two sums are halfsized fft's and running the same argument again until we hit size 1 wich$$

trivially has itself as fft.

In our case for
$$p$$
 we have $\hat{p}_k = [\text{fft}([-1,3,0,0])_{2k} + (\sqrt{2} - \sqrt{2}i)^k \cdot \text{fft}([1,1,0,0])_{2k}] \hat{q}_k = [\text{fft}([3,-1,0,0])_{2k}, (\sqrt{2} - \sqrt{2}i)^k \cdot \text{fft}([0,2,0,0])_{2k}]$

Pointwise multiplication on \hat{p} and \hat{q} yields \hat{r} ifft are almost the same thing as fft except for that the root of unity goes in the other direction that is the minus sign is replaced with a plus.

ifft the same way as above both with interchanged sign yields

$$r = [-3, 3, 10, 0, -1, 5, 2, 0]$$

Exercise 2. Let $A = \{a_{i,j} : a_{i,j} = a_{i-1,j-1} \land a_{i,1} = a_{i-1,n}\}$ for $i,j \in [2,n]$. Give an O(nlog(n))-time algorithm for computing Ax where x is a vector of length n

Solution. Note that all indices in the following equations are beginning at 0 and taken modulo n The matrix A is circulant matrix.

Lemma 0.1.
$$A \in Circulant \Rightarrow A_{i,j} = A_{i+k,j+k} \forall k \in \mathbb{Z}$$

Proof. Repeating the property $A_{i,j} = A_{i-1,j-1}$ together with $a_{i,0} = a_{i-1,n-1}^{-1}$ $k \in \mathbb{N}$ times yields $A_{i,j} = A_{i-k,j-k}$ then exchanging $(i-k,j-k) \leftrightarrow (i,j) \Rightarrow A_{i,j} = A_{i+k,j+k}$ showing that it works for both directions and thus one can instead say $k \in \mathbb{Z}$

Lemma 0.2. $A \in \text{Circulant} \Rightarrow Ax = a * x^2 \text{ where } a \text{ is the first colomn of } A$

 $^{^{1}}$ To make it work modulo n

²Circular convolution

Proof.
$$a*x = \{\text{Since convolution is commutative}\} = (x*a)_k \stackrel{def}{=} \sum_{i=0}^{n-1} x_i a_{k-i} = \sum x_i A_{k-i,0} = \{\text{Using lemma}\} = \sum x_i A_{k,i} = \sum A_{k,i} x_i \stackrel{def}{=} (Ax)_k = Ax$$

We also are going to use the convolution theorem: $\mathcal{F}\{c*x\} = \mathcal{F}\{c\} \cdot \mathcal{F}\{x\}$

The algorithm:

- * Pickout a from A wich is O(n)
- * Calculate $\hat{a} = \mathcal{F}\{a\}$ and $\hat{x} = \mathcal{F}\{x\}$ with fft where both a and x is of length n, fft is known to have implementations running at O(nlogn)
- * $\widehat{Ax} = \widehat{a} \cdot \widehat{b}$ still having the same length, pointwise multiplication runs at O(n)
- * $Ax = \mathcal{F}^{-1}\{\widehat{Ax}\}$ with ifft, similarly runs in O(nlogn)

The algorithm gives us the vector Ax in O(nlogn) operations. \square

Exercise 3. Show how to formulate the Vertex Cover problem as an integer linear program (with a polynomial number of constraints).

Solution. Vertex Cover problem: Find the minimal vertex cover C in a graph G with vertices V and edges E

Define $\bar{x} \in \{0,1\}^n$ as

$$x_i = \begin{cases} 1 & \text{if vertex-} i \in C \\ 0 & \text{else} \end{cases}$$

and \tilde{E} as

$$e_{ij} = \begin{cases} 1 & \text{if there is an edge between vertex-} i \text{ and vertex-} j \\ 0 & \text{else} \end{cases}$$

 $\tilde{E}^T = \tilde{E}$ (undirected graph) $\bar{x} \geq \bar{0}$

With the constraint "An edge of the graph has at least on vertex in the vertex-cover set connected to it" $e_i j = 1 => x_i = 1$ OR $x_j = 1$ or more mathematical notation $e_{ij} = 1 \Rightarrow x_i + x_j \ge 1$ to get a lower amount of constraints.

Define the vector c = (1, 1, ..., 1) with length n, representing that each vertice gets the same weight.

We want to minimize the number of vertices in the cover that is $\sum x_i = |\hat{x}|_1 = c^T x$

To sum up we have: $min\{c^Tx\}$

³Where · is pointwise multiplication, that is treating $\mathcal{F}\{x\}$ and $\mathcal{F}\{c\}$ as discrete functions.

with constraints $\{e_{ij} = 1 \Rightarrow x_i + x_j \ge 1\}$ $x \in \{0,1\}^n$

Both the cost-function and constraints are linear and the domain is integer wich gives us a integer linear program.

Since \tilde{E} is of size $O(n^2)$ the number of constraints is $O(n^2)$ thus polynomial number of linear constraints.

Exercise 4. Give an example of Euclidian TSP where the nearest neighbor heuristic fails to find the optimal solution.

Solution. The nearest neighbor is a greedy algorithm and will sometimes choose to walk to a city that would have been better to walk to in a later stage, giving a shorter total walk.

This simple example that gets the essence of the problem of the greedy approach of the algorithm, here starting at city A^4 :

(NN): $\Sigma = 18$ (Better): $\Sigma = 16$

(NN) solution > (Better) solution

Showing that this example of Euclidian TSP when starting at city A has a non optimal solution since \exists a better solution. \Box

Exercise 5. Generalize the result for nearest neighbor (NN) as follows. Find a constant K > 1 and an increasing function f(n) such that, for each n there is a Euclidean TSP instance with f(n) cities for which NN, starting in city 1 will

⁴Doesn't matter if we went to D instead of C from B by symmetri-reason, just relabel $C \leftrightarrow D$

yield a solution that is at least K times larger than the optimum solution. You get 2 bonus points if K is such that Christofides' algorithm is guaranteed to do better on these instances.

Solution. Choosing A as city "1" and constructing the TSP instances as below with f(n) = 2n + 2 cities. We assume that n > 0.

(NN):
$$\Sigma = 4n + 3n + 3(n+1) + 3(n-1) + 5n = 18n$$

(Better):
$$\Sigma = 5n + 3n + 3n + 5n = 16n$$

(NN) =
$$K \cdot$$
 (Better) $\leq K \cdot$ (OPT) $K = \frac{(NN)}{(Better)} = \frac{18n}{16n} = \frac{9}{8} > 1$

B is always the closest city from A⁵ The walk will always be $K = \frac{9}{8}$ worse then a better solution and therefore it is at least $\frac{9}{8}$ times worse then the optimal solution.

⁵Doesn't matter if we went to D^1 instead of C^1 from B by symmetri-reason just relabel $C^i \leftrightarrow D^i$