Отчёт прохождения внешнего курса

Безопасность в сети

Криптография на практике

Содержание

1	Цель работы	5
2	Выполнение контрольных заданий	6
3	Выводы	13
Сп	исок литературы	14

Список иллюстраций

2.1	Задание 1 .																	6
2.2	Задание 2 .																	7
2.3	Задание 3.																	7
2.4	Задание 4.																	8
2.5	Задание 5 .																	8
2.6	Задание 6.																	8
2.7	Задание 7 .																	9
2.8	Задание 8 .									•								9
2.9	Задание 9 .																	9
2.10	Задание 10																	10
2.11	Задание 11																	10
2.12	Задание 12										•		•			•		11
2.13	Задание 13																	11
2.14	Задание 14										•		•			•		11
2.15	Задание 15																	12
2.16	Задание 16																	12

Список таблиц

1 Цель работы

Провести контроль усвоения теоритического материала раздела "Криптография на практике"

2 Выполнение контрольных заданий

В асимметричной криптографии, также известной как криптография с открытым ключом, каждая сторона обладает парой ключей: открытым и закрытым (или секретным). Открытый ключ доступен для общего использования, в то время как закрытый ключ хранится конфиденциально у владельца. К протоколам асимметричной криптографии относятся электронно-цифровая подпись и протокол генерации общего ключа. Последний позволяет установить общий секретный ключ без необходимости физического взаимодействия между сторонами. (рис. 2.1).

Рис. 2.1: Задание 1

Криптографическая хэш-функция, эффективно вычисляется, дает на выходе фиксированное число бит независимо от объема входных данных, но главное она стойкая к колизиям. Это значит что двое разных входных данных не могут дать один выходной(рис. 2.2).

Рис. 2.2: Задание 2

К ним относятся именно RSA, ECDSA, ГОСТ Р 34.10-2012, остальные отношения не имеют(рис. 2.3).

Рис. 2.3: Задание 3

Этот процесс также является симметричным и использует ключ (который должен быть отличным от ключа, использованного для шифрования) и само сообщение для создания кода аутентификации. Этот примитив можно представить как симметричный аналог подписи. Обычно код аутентификации сообщения создается с использованием хэш-функции или симметричного шифрования. (рис. 2.4).

Рис. 2.4: Задание 4

Обмен ключам Диффи-Хэллмана - это асимметричный примитив генерации общего секретного ключа(рис. 2.5).

Рис. 2.5: Задание 5

Конечно же к протоколам с публичным(открытым ключом)(рис. 2.6).

Рис. 2.6: Задание 6

НАм в первую очередь нужна сама подпись, потом открытый ключ(никак не секретный) и потом также сообщение. ТОлько так пройдёт верификация (рис. 2.7).

Рис. 2.7: Задание 7

Конечно конфиденциальность. Это же подпись. ОНа указывает на человека, которому принадлежит(рис. 2.8).

Рис. 2.8: Задание 8

Только усиленная квалифицированная. Это касается серьёзных документов. Никакая другая не подойдёт (рис. 2.9).

Рис. 2.9: Задание 9

Только в удостоверяющем, сертификационном центре. Иные организации таких полномочий не имеют. (рис. 2.10).

Рис. 2.10: Задание 10

Мастеркарт и мир. Биткоин это валюта, банкомат - усстройство, выдающее и принимающе деньги.(рис. 2.11).

Рис. 2.11: Задание 11

Нам нужны доказательства из разных категорий. Минимум две. В эти категории входят наша биометрия, то что мы знаем(пароль) и то что имеем (наприер телефон). Пароль и капча таковыми не являются, капча это вообще защита от автоматических атак, ну и пин код с паролем тоже из одной категории(рис. 2.12).

Рис. 2.12: Задание 12

При онлайн платежах сегодня используется многофакторная аутентификация покупателя перед банком-эмитентом(рис. 2.13).

Рис. 2.13: Задание 13

СЛожность нахождения прообраза конечно же. Это очень важное свойствр(рис. 2.14).

Рис. 2.14: Задание 14

Снова задание с подвохом. ЗДесь подходят все варианты. Об этом говорилось в лекции(рис. 2.15).

Рис. 2.15: Задание 15

(рис. 2.16).

Рис. 2.16: Задание 16

3 Выводы

Мы успешно прошли контроль усвоения теоритического материала раздела "Криптография на практике"

Список литературы