

Wideband Amplifiers

EE4341: Advanced Analog Circuits

Professor Zheng Yuanjin

School of Electrical and Electronic Engineering

Email: YJZHENG@ntu.edu.sg

Learning Objectives

By the end of this section, you should be able to:

Exactly know how to draw the frequency response and the relationship between unity gain frequency and -3 dB frequency of an amplifier.

Fully master how to analyse a C-E amplifier frequency response using the miller capacitor splitting technique.

Understand how to analyse a CE-CB amplifier frequency response.

Understand the concept of feedback technique extending the amplifier bandwidth, and calculating cascaded system's bandwidth.

Wideband Amplifiers

Topic 1: Amplifier Frequency Response

EE4341: Advanced Analog Circuits

Professor Zheng Yuanjin

School of Electrical and Electronic Engineering

Email: YJZHENG@ntu.edu.sg

The short-circuit current gain is determined with output shorted.

$$i_c = g_m v_{b'e}$$

Apply KCL at node b':

$$i_{b} = g_{\pi} v_{b'e} + j\omega C_{b'e} v_{b'e} + j\omega C_{cb'} (v_{b'e} - v_{ce})$$

$$= g_{\pi} v_{b'e} + j\omega C_{b'e} v_{b'e} + j\omega C_{cb'} v_{b'e}$$

$$= [g_{\pi} + j\omega (C_{b'e} + C_{cb'})] v_{b'e}$$
1

$$g_{\pi} = \frac{1}{r_{\pi}}$$

$$A_{i(sc)} = \frac{i_c}{i_b} = \frac{g_m}{g_{\pi} + j\omega(C_{b'e} + C_{cb'})}$$
$$= \left(\frac{g_m}{g_{\pi}}\right) \left[\frac{1}{1 + j\omega(C_{b'e} + C_{cb'})/g_{\pi}}\right]$$

$$\because \frac{g_m}{g_\pi} = \frac{I_C}{V_T} \times \frac{V_T}{I_B} = \beta$$

$$\therefore A_{i(sc)} = \frac{\beta}{1 + j\omega(C_{b'e} + C_{cb'})\beta/g_m}$$

By definition, unity gain frequency f_T occurs when:

$$|A_{i(sc)}| = \left| \frac{\beta}{1 + j\omega_T(C_{b'e} + C_{cb'})\beta/g_m} \right| = 1$$

$$: \omega_T(C_{b'e} + C_{cb'}) \beta/g_m >> 1$$

$$\therefore \frac{\beta}{\frac{\omega_T(C_{b'e} + C_{cb'})\beta}{g_m}} \approx 1$$

$$\omega_T \approx \frac{g_m}{C_{b'e} + C_{cb'}} \Rightarrow f_T = \frac{g_m}{2\pi(C_{b'e} + C_{cb'})}$$

Note: The above expression shows that f_T is independent of β but is dependent on the biasing point (that determines g_m) and the inherent parasitic capacitances of the device. As a general rule, to design a wideband amplifier with a -3 dB bandwidth of $\mathrm{BW}_{3\mathrm{dB}}$, the BJT must have a $f_T > 5$ to 10 times $\mathrm{BW}_{3\mathrm{dB}}$.

$$A_{i(sc)}(j\omega) = \frac{\beta}{1 + j\omega(C_{b'e} + C_{cb'})\beta/g_m}$$

$$: \omega_T = \frac{g_m}{C_{b'e} + C_{cb'}}$$

$$\therefore A_{i(sc)}(j\omega) = \frac{\beta}{1 + j\left(\frac{\beta\omega}{\omega_T}\right)}$$

$$A_{i(sc)}(jf) = \frac{\beta}{1 + j\left(\frac{\beta f}{f_T}\right)}$$

$$A_{i(sc)} = \frac{\beta}{1 + j\left(\frac{\beta f}{f_T}\right)} = \frac{\beta}{1 + j\left(\frac{f}{f_\beta}\right)}$$

Where, $f_{\beta} = \frac{f_T}{\beta}$ is the -3 dB frequency.

$$A_{i(sc)} \approx \frac{\beta}{j\left(\frac{f}{f_{\beta}}\right)} = \frac{\beta f_{\beta}}{jf} = \frac{f_T}{jf} \text{ for } f > 3f_{\beta}$$

Apply KCL at node b':

$$v_{b'e}(G_1 + g_{\pi} + j\omega C_{b'e}) = i_s + (v_o - v_{b'e})j\omega C_{cb'}$$

$$v_{b'e}[G_1 + g_{\pi} + j\omega (C_{b'e} + C_{cb'})] - j\omega C_{cb'}v_o = i_s ------(1)$$

Substitute (2) into (1):

$$v_{b'e} \left[G_1 + g_{\pi} + j\omega (C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'} (g_m - j\omega C_{cb'})}{G_L + j\omega (C_{cb'} + C_L)} \right] = i_s$$

$$G_1 = \frac{1}{R_S + r_{bb'}} \qquad G_L = \frac{1}{R_L}$$

Apply KCL at node c:

$$v_{o}(G_{L} + j\omega C_{L}) + g_{m}v_{b'e} = (v_{b'e} - v_{o})j\omega C_{cb'}$$

$$v_{o}[G_{L} + j\omega (C_{L} + C_{cb'})] + g_{m}v_{b'e} = j\omega C_{cb'}v_{b'e}$$

$$v_{o} = \frac{-(g_{m} - j\omega C_{cb'})v_{b'e}}{G_{L} + j\omega (C_{L} + C_{cb'})} -----(2)$$

$$v_{b'e} = \frac{i_s}{G_1 + g_\pi + j\omega(C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'}(g_m - j\omega C_{cb'})}{G_L + j\omega(C_{cb'} + C_L)}} ----(3)$$

Substitute (3) into (2):

$$i_S = \frac{v_S}{R_S + r_{bb'}} = v_S G$$

$$A_{v} = \frac{v_{o}}{v_{s}} = \frac{-(g_{m} - j\omega C_{cb'})G_{1}}{[G_{L} + j\omega (C_{cb'} + C_{L})] \left[G_{1} + g_{\pi} + j\omega (C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'}(gm - j\omega C_{cb'})}{G_{L} + j\omega (C_{cb'} + C_{L})}\right]}$$

In the frequency range of interest (f in the MHz range):

 g_m (in the range of 10^{-3}) >> $\omega C_{cb'}$ (in the range of $10^6 \times 10^{-12} \approx 10^{-6}$)

$$\therefore (g_m - j\omega C_{cb'})G_1 \approx g_m G_1$$

 G_1 (in the range of 10^{-2}) >> g_{π} (in the range of 10^{-4})

$$\therefore G_1 + g_\pi \approx G_1$$

$$G_L$$
(in the range of 10^{-3}) >> $\omega(C_{cb'} + C_L)$ (in the range of $10^6 \times 10^{-12} \approx 10^{-6}$)

$$\therefore G_L + j\omega(C_{cb'} + C_L) \approx G_L$$

$$A_v \approx \frac{-g_m G_1}{\left[G_L + j\omega(C_{cb'} + C_L)\right] \left[G_1 + j\omega(C_{b'e} + C_{cb'}) + \frac{j\omega C_{cb'} g_m}{G_L}\right]}$$

$$A_{v} = \frac{-g_{m}G_{1}}{[G_{L} + j\omega(C_{cb'} + C_{L})][G_{1} + j\omega(C_{b'e} + C_{cb'} + g_{m}R_{L}C_{cb'})]}$$

$$= \frac{-g_{m}G_{1}}{G_{L}G_{1}\left[1 + \frac{j\omega(C_{cb'} + C_{L})}{G_{L}}\right]\left[1 + \frac{j\omega(C_{b'e} + C_{cb'} + g_{m}R_{L}C_{cb'})}{G_{1}}\right]}$$

$$= \frac{-g_{m}R_{L}}{\left[1 + \frac{j\omega(C_{b'e} + C_{cb'} + g_{m}R_{L}C_{cb'})}{G_{1}}\right]\left[1 + \frac{j\omega(C_{cb'} + C_{L})}{G_{L}}\right]}$$

$$= \frac{-g_{m}R_{L}}{(1 + i\omega/\omega_{1})(1 + i\omega/\omega_{2})}$$

The two break frequencies:

$$\omega_1 = \frac{G_1}{C_{b'e} + C_{cb'}(1 + g_m R_L)} = \frac{1}{(R_S + r_{bb'})[C_{b'e} + C_{cb'}(1 + g_m R_L)]}$$

$$\therefore f_1 = \frac{1}{2\pi (R_S + r_{bb'})C_i} \quad \text{where, } C_i = C_{b'e} + (1 + g_m R_L)C_{cb'}$$

$$\omega_2 = \frac{G_L}{C_{cb'} + C_L} = \frac{1}{R_L(C_{cb'} + C_L)}$$

$$\therefore f_2 = \frac{1}{2\pi R_L (C_{cb'} + C_L)}$$

Note: The effective input capacitance is equal to $C_{cb'}$ multiplied by $(1 + g_m R_L)$.

This is known as the Miller effect.

Miller Effect

$$i_i = i_1 + i_2$$

$$i_i = \frac{v_i}{Z_i} + \frac{v_i - v_o}{(1/j\omega C)}$$

$$i_i = \frac{v_i}{Z_i} + j\omega C(v_i - v_o)$$

$$\therefore A = \frac{v_o}{v_i}$$

$$: i_i = \frac{v_i}{Z_i} + j\omega C(v_i - Av_i)$$

Miller Effect

$$i_i = \frac{v_i}{Z_i} + j\omega C(v_i - Av_i)$$

$$i_i = v_i \left[\frac{1}{Z_i} + j\omega C(1 - A) \right]$$

The above expression shows that the effective input impedance is basically Z_i in parallel with a capacitance C(1-A).

The magnification of the capacitance \mathcal{C} at the input of an amplifier is called the 'Miller Effect'.

$$r_{bb'} = 60 \Omega$$

$$R_s = 40 \Omega$$

$$C_{cb'} = 1.5 \text{ pF}$$

$$f_T$$
 = 1.6 GHz

Load capacitance: $C_L = 1 \text{ pF}$

The BJT is biased at 2.5 mA.

Determine the voltage gain frequency response for different values of R_L varying from $30~\Omega$ to $10~\mathrm{k}\Omega$.

$$\omega_T = 2\pi \times 1.6 \times 10^9 = 1.005 \times 10^{10} \text{ rad/s}$$

$$g_m = \frac{I_C}{V_T} = \frac{2.5 \text{ mA}}{26 \text{ mV}} = 0.096 \text{ S}$$

$$C_{b'e} + C_{cb'} = \frac{g_m}{\omega_T} = \frac{0.096}{1.005 \times 10^{10}} = 9.6 \text{ pF}$$

$$|A_{v(MID)}| = g_m R_L = (0.096) R_L$$

$$f_1 = \frac{1}{2\pi (R_S + r_{bb'})(C_{b'e} + C_{cb'} + g_m R_L C_{cb'})}$$

$$= \frac{1}{2\pi (100)(9.6 + 0.096 \times R_L \times 1.5) \times 10^{-12}}$$

If
$$R_L = 1 \text{ k}\Omega$$
, $f_1 = 10.26 \text{ MHz}$

$$f_2 = \frac{1}{2\pi \times R_L (C_{cb'} + C_L)}$$

$$= \frac{1}{2\pi \times R_L (2.5 \times 10^{-12})}$$

$$= \frac{1}{1.57 \times 10^{-11} \times R_L}$$

If
$$R_L = 1 \text{ k}\Omega$$
, $f_2 = 63.7 \text{ MHz}$

Both f_1 and f_2 can be calculated for different load R_L .

From the calculations, we have:

$R_L(\Omega)$	f_1 (MHz)	f_2 (MHz)	BW (MHz)	$A_{V(\mathrm{MID})}$	$A_{V(\text{MID})} \times BW(\text{MHz})$
30	110	2,122	110	3	330
100	64	637	64	10	640
300	29	212	28	30	868
1,000	10	64	10	100	1,000
3,000	3.5	21	3.5	300	1,038
10,000	1.05	6.4	1.04	1,000	1,040

 $f_1 << f_2$ for all load resistance values. Therefore, f_1 is the primary factor that determines the -3dB BW of the amplifier.

Larger R_L gives larger mid-band gain but at the expense of reduction in BW.

Summary: C-E Amplifier Frequency Analysis using Miller Effect

Summary: C-E Amplifier Frequency Analysis using Miller Effect

Summary: C-E Amplifier Frequency Analysis using Miller Effect

Calculate break frequency f_1 and f_2 .

$$f_{1} = \frac{1}{2\pi [(R_{s} + r_{bb'}) // r_{\pi}][C_{b'e} + (1 + g_{m}R_{L})C_{cb'}]}$$

$$\approx \frac{1}{2\pi [(R_{s} + r_{bb'})][C_{b'e} + (1 + g_{m}R_{L})C_{cb'}]}$$

$$f_2 = \frac{1}{2\pi R_L \left[\left(1 + \frac{1}{g_m R_L} \right) C_{cb'} + C_L \right]}$$

$$\cong \frac{1}{2\pi R_L (C_{cb'} + C_L)}$$

Limitation of CE Stage for Wideband Application

$$|A_{v(MID)}| = g_m R_L$$

$$f_1 = \frac{1}{2\pi (R_s + r_{bb'})C_i}$$
 Where, $C_i = C_{b'e} + (1 + |A_{v(MID)}|)C_{cb'}$
$$f_2 = \frac{1}{2\pi R_L(C_{cb'} + C_L)}$$

The BW is determined by f_1 and C_i is large due to **Miller effect**. Hence, CE amplifier alone is not suitable for wideband application.

BJT Models

$$r_{\pi} = \frac{V_T}{I_B}$$
 $i_c = g_m v_{be}$
 $v_{be} = i_b r_{\pi}$
 $i_e = i_b + i_c$

$$r_e = \frac{r_{\pi}}{(\beta + 1)} \approx \frac{r_{\pi}}{g_m r_{\pi}} = \frac{1}{g_m}$$
 $v_{be} = i_e r_e = i_b (\beta + 1) r_e$
 $r_{\pi} = (\beta + 1) r_e$
 $i_e = i_b + i_c$

The term cascode means <u>cascading triode</u> (it has been used since 1939).

$$r_e = \frac{(r_\pi + r_{bb'})}{(\beta + 1)} \approx \frac{r_\pi}{(\beta + 1)} :: r_\pi >> r_{bb'}$$
$$\approx \frac{r_\pi}{\beta} = \frac{r_\pi}{g_m r_\pi} = \frac{1}{g_m}$$

For CB amplifier, the effect of $r_{bb^{\prime}}$ can be neglected.

$$Y_{L(CE)} \approx g_e + j\omega(C_{b'e} + C_{cb'})$$

$$= \frac{I_Q}{V_T} + j\omega(C_{b'e} + C_{cb'})$$

$$\text{Where, } g_e = \frac{1}{r_{e2}} = \frac{I_{E2}}{V_T}, \ I_Q = I_{E2} = I_{C1}, g_e = g_m$$

$$Y_{L(CE)} = g_m + j\omega(C_{b'e} + C_{cb'}) = g_m \left[1 + \frac{j\omega(C_{b'e} + C_{cb'})}{I_{Cb'e}} \right] = g_m \left(1 + \frac{j\omega}{I_{Cb'e}} \right)$$

$$Y_{L(CE)} = g_m + j\omega(C_{b'e} + C_{cb'}) = g_m \left[1 + \frac{j\omega(C_{b'e} + C_{cb'})}{g_m} \right] = g_m \left(1 + \frac{j\omega}{\omega_T} \right)$$

$$Y_{L(CE)} = g_m \left(1 + \frac{jf}{f_T} \right) \text{ For } f \ll f_T, Y_{L(CE)} \approx g_m$$

The voltage gain for CE stage is:
$$A_{v(CE)} = -g_m \left(\frac{1}{Y_{L(CE)}} \right) = -\frac{g_m}{g_m} = -1$$

$$\omega_{1} = \frac{1}{(R_{S} + r_{bb'})[C_{b'e} + C_{cb'}(1 + |A_{v(CE)}|)]}$$
$$= \frac{1}{(R_{S} + r_{bb'})(C_{b'e} + 2C_{cb'})}$$

$$: C_{b'e} >> C_{cb'}$$

$$\therefore C_{b'e} + 2C_{cb'} \approx C_{b'e} + C_{cb'} \approx \frac{g_m}{\omega_T}$$

$$\omega_1 = \frac{\omega_T}{g_m(R_s + r_{bb'})} \Rightarrow f_1 = \frac{f_T}{g_m(R_s + r_{bb'})}$$

Note: Now, f_1 is independent of R_L .

The second break frequency
$$\omega_2$$
 is: $\omega_2 = \frac{g_e}{C_{b'e} + C_{cb'} \left(1 + \frac{1}{|A_{v(CE)}|}\right)} \approx \frac{g_m}{C_{b'e} + 2C_{cb'}} \approx \omega_T \Rightarrow f_2 \approx f_T$

 ω_2 will not have any significant effect in finding the overall BW.

The third break frequency ω_3 is:

$$\omega_3 = \frac{1}{R_L(C_{cb'} + C_L)} \Rightarrow f_3 = \frac{1}{2\pi R_L(C_{cb'} + C_L)}$$

$$A_{v(CB)} = \frac{\alpha R_L}{r_e} \approx g_m R_L$$
 Note: $\alpha \approx 1$ and $r_e \approx \frac{1}{g_m}$

The overall mid-band gain:

$$A_{V(MID)} = A_{v(CE)}A_{v(CB)} = (-1)(g_m R_L) = -g_m R_L$$

CE-CB Configuration (Cascode Amplifier): Example

Two identical transistors Q_1 and Q_2 are configured as a Cascode Amplifier (CE-CB):

The BJT device parameters are:

$$r_{bb'} = 60 \Omega$$

$$R_{\rm s} = 40 \ \Omega$$

$$C_{cb'} = 1.5 \text{ pF}$$

$$f_T = 1.6 \, \text{GHz}$$

Load capacitance: $C_L = 1 \text{ pF}$

The BJT is biased at 2.5 mA.

Determine the overall voltage gain frequency response for different values of R_L varying from 30 Ω to 10 $k\Omega$.

CE-CB Configuration (Cascode Amplifier): Example

$$A_{v(MID)} = -g_m R_L = -0.096 R_L$$

$$f_1 = \frac{f_T}{g_m(R_s + r_{bb'})} = \frac{1.6 \times 10^9}{0.096(100)} \approx 160 \text{ MHz}$$

$$f_2 \approx f_T \approx 1.6 \, \mathrm{GHz}$$

$$f_3 = \frac{1}{2\pi R_L(C_{cb'} + C_L)} = \frac{1}{2\pi R_L(2.5 \times 10^{-12})}$$

CE-CB Configuration (Cascode Amplifier): Example

From the calculations, we have:

$R_L(\Omega)$	$f_1(MHz)$	f_2 (MHz)	f_3 (MHz)	BW (MHz)	$A_{V(\mathrm{MID})}$	$A_{V(MID)} \times BW(MHz)$
30	160	1,600	2,122	160	3	480
100	160	1,600	637	160	10	1,600
300	160	1,600	212	128	30	3,831
1,000	160	1,600	64	59	100	5,900
3,000	160	1,600	21	21	300	6,305
10,000	160	1,600	6.4	6.4	1,000	6,400

CE and Cascode Comparison

	$R_L(\Omega)$	f_1 (MHz)	$f_2(MHz)$	BW(MHz)	$A_{V(ext{MID})}$	$A_{V(MID)}$ X $BW(MHz)$
	30	110	2,122	110	3	330
	100	64	637	64	10	640
	300	29	212	28	30	868
[1,000	10	64	10	100	1,000
	3,000	3.5	21	3.5	300	1,038
	10,000	1.05	6.4	1.04	1,000	1,040

CE Stage

Cascode

	$R_L(\Omega)$	$f_1(MHz)$	f_2 (MHz)	f_3 (MHz)	BW(MHz)	$A_{V\!(ext{MID})}$	$A_{V(MID)} \times BW(MHz)$
	30	160	1,600	2,122	160	3	480
	100	160	1,600	637	160	10	1,600
	300	160	1,600	212	128	30	3,831
	1,000	160	1,600	64	59	100	5,900
Ī	3,000	160	1,600	21	21	300	6,305
	10,000	160	1,600	6.4	6.4	1,000	6,400

For $R_L = 1~\rm k\Omega$, mid-band gain is 100 in both the cases but BW = 10 MHz for CE and BW \approx 60 MHz for the cascode stage which is nearly six times wider in BW.

Wideband Amplifiers

Topic 2: Amplifier Feedback Analysis

EE4341: Advanced Analog Circuits

A/P Zheng Yuanjin

School of Electrical and Electronic Engineering

Email: YJZHENG@ntu.edu.sg

Applying Feedback to Broaden BW

$$G(j\omega) = \frac{A_o}{1 + j\,\omega/\omega_o}$$

$$A_v(j\omega) = \frac{G(j\omega)}{1 + G(j\omega)H(j\omega)}$$

As the bandwidth of a transistor is restricted by its device parameters, negative feedback technique can be employed to broaden the amplifier's bandwidth. It would be at the expense of lower gain.

Applying Feedback to Broaden BW

 $G(j\omega)$ is the voltage transfer function of the amplifier and $H(j\omega)$ is the negative feedback network.

If $H(j\omega)$ is frequency-independent in the frequency of interest that is $H(j\omega) = H$.

$$A_v(j\omega) = \frac{G(j\omega)}{1 + G(j\omega)H}$$

$$A_{v}(j\omega) = \frac{\frac{A_o}{1+j\omega/\omega_o}}{1+\frac{A_oH}{1+j\omega/\omega_o}} = \frac{A_o}{1+j\omega/\omega_o + A_oH}$$

$$= \frac{A_o}{1 + A_o H} \left(\frac{1}{1 + \frac{j\omega}{\omega_o (1 + A_o H)}} \right) = \frac{A_o}{1 + A_o H} \left(\frac{1}{1 + j\omega/\omega_L} \right)$$

Applying Feedback to Broaden BW

$$A_{v}(j\omega) = \frac{A_{o}}{1 + A_{o}H} \left(\frac{1}{1 + \frac{j\omega}{\omega_{o}(1 + A_{o}H)}} \right) = A_{v(MID)} \left(\frac{1}{1 + j\omega/\omega_{L}} \right)$$

The mid-band gain of the amplifier with feedback is:

$$A_{v(MID)} = \frac{A_o}{1 + A_o H}$$
 $\therefore A_o H >> 1 \therefore A_{v(MID)} \approx \frac{1}{H}$

... The mid-band gain is controlled by the feedback network.

Now, the bandwidth of the amplifier with feedback has been broadened by a factor of $(1 + A_o H)$:

$$\omega_L = \omega_o (1 + A_o H)$$

Summary of Feedback Configurations

Feedback Configuration	Input	Output	Transfer Function
Shunt-Shunt	Current	Voltage	Transresistance Amplifier
Shunt-Series	Current	Current	Current Amplifier
Series-Shunt	Voltage	Voltage	Voltage Amplifier
Series-Series	Voltage	Current	Transconductance Amplifier

To sample the output voltage, measure the voltage with a voltmeter. Hence, voltage sampling at output is a 'shunt' connection.

To sample the output current, measure the current with an amp-meter. Hence, current sampling at output is a 'series' connection.

To feedback a voltage at the input, it needs to be in 'series' with the voltage signal source (think of the Thevenin equivalent model).

To feedback a current at the input, it needs to be in 'shunt' with the current signal source (think of the Norton equivalent model).

$$i_{out} = -i_c \approx -i_e$$

$$v_{in} = v_{be} + i_e R_E$$

$$\approx -i_{out}(r_e + R_E) \approx -i_{out}R_E$$

$$: R_E >> r_e$$

$$\therefore \frac{i_{out}}{v_{in}} = -\frac{1}{R_E}$$

 R_E samples output current in 'series' and feedback a signal voltage in 'series' with the input voltage.

It is a trans-conductance amplifier with a gain of $-1/R_E$.

$$v_{out} = v_{be} - (i_{in} - i_b)R_F$$

$$= i_b r_{\pi} - i_{in}R_F + i_b R_F$$

$$= i_b (r_{\pi} + R_F) - i_{in}R_F$$

$$\because i_{in} >> i_b, \therefore v_{out} \approx -i_{in}R_F$$

$$\frac{v_{out}}{i_{in}} = -R_F$$

 R_F samples output voltage in 'shunt' and feedback a signal current in 'shunt' with the input current.

It is a trans-impedance amplifier with a gain of $-R_{\rm F}$.

It is a voltage amplifier with series-shunt feedback configuration.

$$\frac{v_{out}}{v_{in}} = \left(-\frac{1}{R_E}\right)(-R_F) = \frac{R_F}{R_E}$$

It is a current amplifier with shunt-series feedback configuration.

$$\frac{i_{out}}{i_{in}} = (-R_F) \left(-\frac{1}{R_E} \right) = \frac{R_F}{R_E}$$

Differential Video Amplifier

Circuit diagram of μA 733 wideband differential video amplifier that uses the series-shunt cascade feedback topology.

The circuit has a good CMRR (Common-mode Rejection Ratio).

Differential Video Amplifier

DC Biasing Analysis

$$I_{C8} = \frac{(V^+ - V^-) - V_{BE8}}{R_8 + R_{15}}$$

$$= \frac{12 - 0.6}{(10 + 1.4) \times 10^3}$$

$$= 1 \text{ mA}$$

$$V_{R15} = 1 \text{ mA} \times 1.4 \text{ k}\Omega = 1.4 \text{ V}$$

$$I_{C7} = I_{C9} = \frac{1.4 \text{ V}}{300 \Omega} = 4.7 \text{ mA}$$

$$I_{C10} = I_{C11} = \frac{1.4 \text{ V}}{400 \Omega} = 3.5 \text{ mA}$$

$$g_{f1} = \frac{i_{c1}}{v_{b1}} = \frac{i_{c1}}{i_{e1}(r_{e1} + R_E)} \approx \frac{i_{c1}}{i_{c1}(r_{e1} + R_E)} = \frac{1}{r_{e1} + R_E}$$

$$r_{e1} \approx \frac{V_T}{I_{c1}}$$

$$i_{c1} = g_{f1} v_{b1} = \frac{g_{f1} v_{in}}{2}$$

The voltage gain for second stage $(Q_3 \text{ or } Q_4)$ is:

$$A_{v2} = \frac{v_{c3}}{v_{i2}} = -\frac{g_{f3}v_{i2}R_9}{v_{i2}} = -\left(\frac{I_{C3}}{V_T}\right)R_9$$
$$= -\frac{4.7 \text{ mA/2}}{26 \text{ mV}} \times 1.1 \text{ k}\Omega = -103$$

The voltage gain for third stage (Q_5 or Q_6) is:

$$A_{v3} = \frac{v_o/2}{v_{c3}} = \frac{i_{e5}R_L}{i_{e5}(R_L + r_{e5})} = \frac{R_L}{R_L + r_{e5}} \approx 1$$

$$: R_L >> r_{e5}$$

$$\therefore A_{v2} \times A_{v3} \approx -100$$

Applying KCL at node "x":

$$\frac{g_{f1}v_{in}}{2} + \frac{v_x}{R_1} = \left(\frac{v_o}{2} - v_x\right) \left(\frac{1}{R_{11}}\right) \Rightarrow$$

$$\frac{g_{f1}v_{in}}{2} = \frac{v_o}{2R_{11}} - v_x \left(\frac{1}{R_1} + \frac{1}{R_{11}}\right) - - - - (1)$$

Note:
$$\frac{v_o}{2} = A_{v2}A_{v3}v_x \Rightarrow v_x = -\frac{v_o}{200} - - - - (2)$$

Substituting (2) into (1):

$$\frac{g_{f1}v_{in}}{2} = \frac{v_o}{2R_{11}} + \left(\frac{v_o}{200}\right)\left(\frac{1}{R_1} + \frac{1}{R_{11}}\right)$$

$$A_v = \frac{v_o}{v_{in}} = \frac{g_{f1}}{1/R_{11} + (1/100)(1/R_1 + 1/R_{11})}$$

$$= \frac{g_{f1}}{1/7 \,\mathrm{k} + (1/100)(1/7 \,\mathrm{k} + 1/2.4 \,\mathrm{k})} \approx g_{f1}(7 \,\mathrm{k})$$

$$A_v = g_{f1}(7 \text{ k}) = \frac{7 \text{ k}}{r_{e1} + R_E} = \frac{7 \times 10^3}{11 + R_E}$$

The gain for R_E = 0, 50 Ω and 640 Ω are calculated as follows:

$$R_E = 0: A_v = \frac{7 \times 10^3}{11} = 640$$

$$R_E = 50 \ \Omega$$
: $A_v = \frac{7 \times 10^3}{11 + 50} = 115$

$$R_E = 640 \ \Omega$$
: $A_v = \frac{7 \times 10^3}{11 + 640} = 10.8$

The 3 dB bandwidth obtained from the data sheet:

$$R_E = 0$$
: BW = 50 MHz (Typical)

$$R_E = 50 \Omega$$
: BW = 90 MHz (Typical)

$$R_E = 640 \Omega$$
: BW = 200 MHz (Typical)

Cascading Identical Stages

If a large voltage gain is required, it is convenient to cascade several identical amplifier stages.

The voltage transfer function of each stage is:

$$A_v = \frac{A}{1 + j \, \omega / \omega_p}$$

The overall voltage transfer function of *n* stage is:

$$A_T = \frac{A^n}{\left(1 + j\,\omega/\omega_p\right)^n}$$

The overall bandwidth ω_1 can be found by:

$$|A_T| = \frac{A^n}{|1 + j \omega_1/\omega_p|^n} = \frac{A^n}{\sqrt{2}} \Rightarrow \left[1 + (\omega_1/\omega_p)^2\right]^{n/2} = 2^{1/2}$$

$$\therefore \omega_1 = \omega_p (2^{1/n} - 1)^{1/2} \Rightarrow f_1 = f_p \sqrt{2^{1/n} - 1}$$

$$\therefore \omega_1 = \omega_p (2^{1/n} - 1)^{1/2} \Rightarrow f_1 = f_p \sqrt{2^{1/n} - 1}$$

Cascading Identical Stages: Example

Three identical amplifiers, each with a voltage gain of 10 and a bandwidth of 10 MHz, are cascaded. What is the overall gain and bandwidth?

The overall voltage gain:

$$A^n = 10^3 = 1,000$$

The overall bandwidth:

$$f_1 = f_p \sqrt{2^{1/n} - 1}$$

$$= 10 \times 10^6 \sqrt{2^{1/3} - 1}$$

$$= 5.1 \text{ MHz}$$

Wideband Amplifiers

Summary

EE4341: Advanced Analog Circuits

A/P Zheng Yuanjin

School of Electrical and Electronic Engineering

Email: YJZHENG@ntu.edu.sg

Summary

BJT Frequency Response Amplifier Frequency Response for CE Amplifiers **CE-CB Amplifier Analysis** Feedback Circuit Analysis for Wideband Amplifiers **Cascaded Integrated Circuit Analysis**