

PROBABILITY TREES WITH REPLACEMENT

SOLUTIONS

TASK 1 Card selection

1 The probability of selecting a card from each suit is $\frac{1}{4}$ since each suit makes up $\frac{1}{4}$ the cards in the pack.

Angelo returns the card to the pack each time so the probabilities do not change from step to step. These are **independent events**.

- **2 a** P(HH) = $\frac{1}{4} \times \frac{1}{4}$ = $\frac{1}{16}$
 - **b** P(two red cards) = P(HH) + P(HD) + P(DH) + P(DD) = $(\frac{1}{4} \times \frac{1}{4}) + (\frac{1}{4} \times \frac{1}{4}) + (\frac{1}{4} \times \frac{1}{4}) + (\frac{1}{4} \times \frac{1}{4})$ = $\frac{4}{16}$ or $\frac{1}{4}$

- $\textbf{c} \quad P(1\text{red}, 1 \text{ black, any order}) = P(HC) + P(HS) + P(DC) + P(DS) + P(CH) + P(CD) + P(SH) + P(SD)$ $= \frac{1}{16} + \frac{1}{16}$ $= \frac{1}{16} + \frac{$
- **3** $P(SSS) = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$
- **4** P(10 spades in row) = $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \dots \times \frac{1}{4} = (\frac{1}{4})^{10}$ (ie $\frac{1}{1048576}$)
- 5 In the answers for questions 3 and 4, the probability is the product of repeated $\frac{1}{4}$. The number of factors of $\frac{1}{4}$ equals the number of steps in the tree. So the probability of selecting 100 spades in a row would be $(\frac{1}{4})^{100}$.

TASK 2

Coin flips

1 a P(H) =
$$\frac{3}{4}$$

b
$$P(T) = \frac{1}{4}$$

2 See diagram.

3 **a** P(HHH) =
$$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$$

= $\frac{27}{64}$

b
$$P(TTT) = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}$$
$$= \frac{1}{64}$$

c P(HHT) =
$$\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}$$

= $\frac{9}{64}$

1st toss 2nd toss 3rd toss Outcomes

d P(2 heads and 1 tail in any order) = P(HHT) + P(HTH) + P(THH)
$$= (\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}) + (\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}) + (\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4})$$

$$= \frac{9}{64} + \frac{9}{64} + \frac{9}{64}$$

$$= \frac{27}{64}$$

CHALLENGE

Roll a six

Note: A probability tree showing this information is not symmetrical. Once Milu rolls a 6, she doesn't have another roll. So the tree branches out each step from the lower branch only (not 6).

1
$$P(6) = \frac{1}{6}$$

2 P(not 6, 6) =
$$\frac{5}{6} \times \frac{1}{6} = \frac{5}{36}$$

3 P(not 6, not 6, 6) =
$$\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = \frac{25}{216}$$

4 The pattern shows repeated factors of $\frac{5}{6}$ followed by one factor of $\frac{1}{6}$.

a (P not getting 6 until 10th roll) =
$$\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \dots \times \frac{5}{6} \times \frac{1}{6}$$
 [There are 9 factors of $\frac{5}{6}$ here.]
$$= (\frac{5}{6})^9 \times \frac{1}{6}$$

b (P not getting 6 until 24th roll) =
$$\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \dots \times \frac{5}{6} \times \frac{1}{6}$$
 [There are 24 factors of $\frac{5}{6}$ here.]
$$= (\frac{5}{6})^{24} \times \frac{1}{6}$$