

www.9alami.com

Concours d'accès en 1^{ère} année des ENSA Maroc Juillet 2013

Epreuve de Physique Chimie

Durée: 1H30 min

(N.B : Toutes les opérations numériques ne nécessitent pas l'utilisation de la calculatrice.)

Exercice 1: La constante de Planck est $h = 6.10^{-34}$ J.s⁻¹ et la vitesse de la lumière dans le vide est : $c = 3.10^8 \text{ms}^{-1}$; $1 \text{ eV} = 1,6.10^{-19}$ J

Dans le spectre de l'atome d'hydrogène, on observe une raie pour la longueur d'onde $\lambda = 648$ nm.

Q21: Cocher la bonne réponse

- A) La fréquence correspondant à cette raie est comprise entre 400.103 GHz et 500.103 GHz.
- B) L'énergie correspondant à cette raie est comprise entre 1,6 KeV et 2,1 KeV.
- **C**) Cette radiation est dans le domaine de l'infrarouge.
- D) Cette radiation est une radiation ionisante (son énergie est supérieure à 13,6 eV).

Exercice 2: On dispose d'un Laser hélium-néon. On interpose entre le Laser et un écran (E) une fente verticale de largeur $a = 3.10^{-2}$ mm (figure 1). Sur l'écran situé à la distance D = 1,5 m, on observe dans la direction perpendiculaire à la fente, une figure de diffraction représentée sur la figure 1.

Figure 1

Q22: Cocher la bonne réponse.

- **A)** La largeur de la tache centrale d est donnée par $d = \frac{2aD}{\lambda}$.
- B) Quand la largeur de la fente a augmente la largeur de la tache centrale d diminue.
- C) La longueur d'onde Laser vaut $\lambda = 600 \, nm$ lorsque la mesure de la tache centre est $d = 6 \, cm$.
- **D**) L'écart angulaire θ est une fonction croissante en fonction de la largeur a de la fente.

 $\mathbf{Q23}$: la force \overrightarrow{F} qui s'exerce sur une particule portant la charge négative q, placée dans une région où règne un champ électrostatique \overrightarrow{E} :

- A) Est liée au champ \overrightarrow{E} par la relation $\overrightarrow{E} = q\overrightarrow{F}$.
- **B)** Est liée au champ E par la relation $\overrightarrow{E} = -q\overrightarrow{F}$.
- C) N'a pas le même sens lorsque la charge q change de signe.
- D) Ne dépend pas de la charge q.

Exercice 3: Un oscillateur électrique libre est formé d'un condensateur initialement chargé, de capacité $C = 1,0 \mu F$, d'un conducteur ohmique de résistance R et d'une bobine d'inductance L = 0,40 H et de résistance négligeable.

L'enregistrement de la tension aux bornes du condensateur a permis de tracer la courbe suivante (figure 2) où q désigne la charge de son armature positive.

Q24: Déterminer la pseudopériode T des oscillations.

A)
$$T = 2 ms$$
;

B)
$$T = 4 \text{ ms}$$
; **C)** $T = 5 \text{ ms}$;

C)
$$T = 5 \text{ ms}$$
;

D)
$$T = 10 \text{ ms}$$
;

 $\mathbf{Q25}$: Établir l'équation différentielle vérifiée par la charge q(t) à chaque instant dans le cas où R est considérée comme nulle.

A)
$$LC \frac{d^2q}{dt} + q = 0$$
;

B)
$$\frac{d^2q}{dt} + \frac{L}{C}q = 0$$

C)
$$LC \frac{d^2q}{dt} + q = E$$

A)
$$LC\frac{d^2q}{dt} + q = 0$$
; B) $\frac{d^2q}{dt} + \frac{L}{C}q = 0$ C) $LC\frac{d^2q}{dt} + q = E$; D) $\frac{d^2q}{dt} + \frac{1}{LC}q = E$

Q26: Avec une période To = $2\pi\sqrt{LC}$, la solution de cette équation est:

A)
$$q(t) = Q_m \cos(2\pi t. T_o);$$

B)
$$q(t) = Q_m \cos(\pi t/T_0)$$

C)
$$q(t) = Q_m \cos(2\pi t/T_o);$$
 D) $q(t) = Q_m \cos(\pi t.T_o)$

$$D) q(t) = Q_m \cos(\pi t. T_o)$$

Exercice 4 : Dans une bobine d'inductance L et de résistance R, le courant varie selon la loi :

i(t) = a - b t, où i est exprimé en ampères (A), t est exprimé en secondes (s) et a et b sont des constantes.

Q27: Calculer la tension aux bornes de la bobine à la date t = 0 et déterminer la date t_1 à laquelle la tension aux bornes de la bobine est nulle.

A)
$$U_B(t=0) = 0$$
 et $t_1 = \frac{a}{b}$;

B)
$$U_B(t=0) = Ra \ et \ t_1 = \frac{a}{b}$$

C)
$$U_B(t=0) = Ra \ et \ t_1 = \frac{Ra + bL}{Rb}$$
 D) $U_B(t=0) = Ra \ et \ t_1 = \frac{Ra - bL}{Rb}$

D)
$$U_B(t=0) = Ra \ et \ t_1 = \frac{Ra - bL}{Rb}$$

Exercice 5 : Un joueur lance une balle de tennis de diamètre 5 cm verticalement et la frappe avec sa raquette quand le centre d'inertie de la balle est situé à une hauteur H = 2,25 m du sol. Il lui communique alors une vitesse horizontale de valeur $v_0 = 20 \text{ ms}^{-1}$. On suppose que les frottements dues à l'air sont négligeables. Le filet de hauteur h = 90 cm est situé à la distance D= 10m du point de lancement (figure 3).

Q28: Cocher la bonne réponse.

A) La balle atteindra le filet au bout de 0,4 s après le lancement.

B) La balle ne passera pas au dessus du filet.

C) Le centre d'inertie de la balle passera à 10 cm au-dessus du filet.

D) Le centre d'inertie de la balle passera à 15 cm au dessus du filet.

Q29 : Cocher la bonne réponse.

A) La balle touchera le sol au bout d'une durée $t_1 = 2\sqrt{\frac{H}{\sigma}}$ à partir de la date de son lancement.

B) La balle touchera le sol au bout d'une durée $t_1 = \sqrt{\frac{H}{2g}}$ à partir de la date de son lancement

D) La balle touchera le sol à la distance $D_1 = v_0 \sqrt{\frac{H}{2g}}$ du point de lancement.

Le joueur souhaite maintenant que la balle passe de $h_{\!\scriptscriptstyle d}$ cm au-dessus du file en la lançant horizontalement à partir de la même position.

Q30: Cocher la bonne réponse.

- A) La balle atteindra la position où se trouve le filet au bout d'un temps $t_d = \sqrt{\frac{H (h + h_d)}{2g}}$
- **B)** La balle atteindra la position où se trouve le filet au bout d'un temps $t_d = \sqrt{\frac{H + (h + h_d)}{2g}}$
- C) La nouvelle valeur initiale de la vitesse est donnée par l'expression $v_0' = D\sqrt{\frac{g}{2(H+h+h_d)}}$.
- D) La nouvelle valeur initiale de la vitesse est donnée par l'expression $v_0' = D\sqrt{\frac{g}{2(H-h-h_d)}}.$

Exercice 6: Dans le plan horizontal xOy d'un référentiel galiléen R(O,i,j), un mobile modélisé par un point matériel M est astreint à se déplacer sur un cercle de centre O et de rayon b (figure 4). L'équation horaire du mouvement est donnée par l'abscisse curviligne $s(t) = \widehat{AM} = b \ln(1+\omega t)$ où ω est une constante positive et \ln est le logarithme népérien. A est un point du cercle situé sur le demi axe positif Ox et $t \in [0; +\infty[$.

A l'instant initial t = 0, le mobile M est en A avec la vitesse $vo = b\omega$.

La base orthonormée de Frenet est $(\overrightarrow{e_t}, \overrightarrow{e_n})$ où e_t un vecteur unitaire tangent à la trajectoire en tout point et $\overrightarrow{e_n}$ vecteur unitaire normal à $\overrightarrow{e_t}$ dirigé vers le centre O

Q31: Le vecteur vitesse du mobile M à l'instant t est $\overrightarrow{v} = v$ $\overrightarrow{e_i}$ où v est donnée par l'expression

A)
$$v = v_0 \exp\left(-\frac{s}{b}\right)$$
; B) $v = \frac{2v_0 b}{b+s}$; C) $v = \frac{v_0 b}{b+s}$; D) $v = v_0 \exp\left(-\frac{s}{2b}\right)$

Le vecteur accélération \vec{a} exprimé dans la base de Frenet est donné par : $\vec{a} = \vec{a}_N \vec{e}_n + \vec{a}_T \vec{e}_t$

 $\mathbf{Q32}:$ La composante normale de l'accélération à l'instant t $a_N = \frac{v^2}{b}$ est donnée par l'expression

A)
$$a_N = v_0^2 \frac{b}{(b+s)^2}$$
; B) $a_N = 4v_0^2 \frac{b}{(b+s)^2}$; C) $a_N = \frac{v_0^2}{b} \exp\left(-\frac{s}{b}\right)$; D) $a_N = \frac{v_0^2}{b} \exp\left(-\frac{2s}{b}\right)$

Q33: La composante tangentielle de l'accélération à l'instant t $a_T = \frac{dv}{dt} = v\frac{dv}{ds}$ est donnée par l'expression ci aprés.

A)
$$a_T = -v_0^2 \frac{b}{(b+s)^2}$$
; **B)** $a_T = -\frac{v_0^2}{b} \exp\left(-\frac{2s}{b}\right)$; **C)** $a_T = -\frac{v_0^2}{b} \exp\left(-\frac{s}{b}\right)^2$; **D)** $a_T = -4v_0^2 \frac{b}{(b+s)^2}$

Q34 : Cocher la bonne réponse sur la nature du mouvement.

- A) décéléré
- B) uniformément décéléré
- C) accéléré
- D) uniformément accéléré

 $\mathbf{Q35}$: Le module $F = \|\overline{F}\|$ de la résultante des forces appliquées à M, est donné par l'expression :

$$A) F = \frac{mv^2}{b\sqrt{2}}$$

A)
$$F = \frac{mv^2}{b\sqrt{2}}$$
; **B)** $F = \frac{mv^2}{2b} \exp\left(-\frac{v}{v_0}\right)$; **C)** $F = \frac{mv^2\sqrt{2}}{b}$; **D)** $F = \frac{mv^2}{2b} \ln\left(1 + \frac{v}{v_0}\right)$

$$C) F = \frac{mv^2 \sqrt{2}}{b}$$

$$D) F = \frac{mv^2}{2b} \ln \left(1 + \frac{v}{v_0} \right)$$

Q36: On ajoute 300 ml d'eau à 500 ml d'une solution de chlorure de sodium NaCl de concentration 4.10⁻² mole.L⁻¹. La nouvelle concentration de la solution de chlorure de sodium est égale à :

A) $1,3.10^{-2}$ mole. L^{-1} ; B) $1,7.10^{-2}$ mole. L^{-1} ; C) $2,5.10^{-2}$ mole. L^{-1} ; D) $6,7.10^{-2}$ mole. L^{-1}

Q37 : On considère la molécule suivante

CH3-C-CH2-CH3

Le nom de cette molécule est :

- A) 1-éthyl, 1méthyl éthanol
- B) 2-méthyl butan-2-ol
- C) 2-hydroxy, 2-méthyl butane
- D)1,1-diméthyl propan-1-ol

 $\mathbf{Q38}$: On neutralise 40 ml d'acide acétique $\mathrm{CH_3CO_2H}$ de concentration 3.10⁻³ mole. $\mathrm{L^{-1}}$ par une solution d'hydroxyde de potassium KOH de concentration 2.10⁻² mole.L⁻¹. Le volume de KOH à l'équivalence est égal à:

- A) 6 ml;
- **B**) 15 ml;
- C) 20 ml;
- **D**)60 ml

 $\mathbf{Q}_{\mathbf{39}}$: On chauffe un mélange contenant de l'acide méthano $\ddot{\mathbf{q}}$ ue et de l'éthanol en présence d'acide sulfurique. Le produit obtenu se nomme :

- A) Ethanoate d'éthyle
- B) Ethanoate de méthyle
- C) Méthanoate de méthyle
- D) Méthanoate d'éthyle

 $\mathbf{Q4o}$: On réalise l'électrolyse, entre deux électrodes de carbone, d'une solution de chlorure de zinc (Zn²+, 2Cl¹) pendant 1 minute avec un courant de 9,65 mA. La masse de zinc récupérée à la cathode est égale à :

- A) 0,19 mg;
- **B**) 0.38 mg; **C**) 8.80 mg;
- D) 11,52 mg

<u>Données</u>: $F = 9,65.10^4$ C.mole⁻¹, Masse molaire du zinc = 64 g.mole⁻¹

Correction physique-Chimie

Exercice 1

Q21.

On sait que v=-, avec

N : la fréquence (Hz)

c : la vitesse de la lumière dans le vide (m/s)

 λ : la longueur d'onde (m)

AN:
$$v = 3.10^8/648.10^{-9}$$

$$v = 4,62. \ 10^{14} \ Hz$$

$$v = 462. 10^3 \, \text{GHz}$$

donc 400. 10^3 GHz ν . 10^3 GHz **Q22.**

 $\boldsymbol{\lambda}$: longueur d'onde

a : largeur de la fente

D: distance fente-écran

d : largeur de tache centrale

 θ est petite implique que $\tan(\theta) = \theta$

Et la relation liant le champ E el la force électrostatique \overrightarrow{F} . : $= q\overrightarrow{E}$.

$$5T=20 \text{ ms}$$

$$T=4 \text{ ms}$$

Q25. Dans le cas où la résistance R est nulle, on a un circuit LC en série.

D'après la loi d'addition de courant : $U_1 + U_C = 0$

$$L \longrightarrow U_C = 0$$
 ($i = C \longrightarrow$)

$$L \longrightarrow + U_C = 0$$
 (q= CUc)

L'équation différentielle vérifiée par la charge q(t) à chaque instant s'écrit sous la forme :

$$LC - + - = 0$$
 (1)

Q26. La résolution de l'équation (1) s'écrit sous la forme :

$$q(t) = q_m Cos(\omega_0 t)$$

$$q(t)=q_mCos(-t)$$
, avec la période $T_0=2\pi\sqrt{LC}$

Exercice 4

Q27. D'après les données,
$$i(t)=a-bt$$
 (1)

$$U_b = L - +Ri(2)$$

On introduit (1) dans (2):
$$U_b = -Lb+Ra - bRt$$

$$U_b = (Ra - Lb) - bRt$$

A
$$t=t_1$$
: $U_{b(t=t_1)}=0$

$$0 = Ra - Lb - bRt_1$$

$$t_1 = -----$$

Exercice 5

Q28. Cherchons l'équation de la trajectoire, et l'équation horaire :

y=
$$V_0t + y_0(y_0 = 0$$
condition initiale)
x= $-gt^2 + V_0t + x_0(V_0 = 0, x_0 = H \text{ condition initiale})$
y= V_0t (1)
x= $-gt^2 + H$ (2)
x= $-y^2 + H$ (3) l'équation de la trajectoire

Le temps nécessaire pour que la balle atteigne le filet (y=D et x=0m) est y= V_0t

$$t = --- = 0.5s$$

La balle passera au-dessus du filet (y=D et x > h) donc l'équation (3) devient :

$$x = --- y^2 + D$$

D'où
$$x = ---- \times 100 + 1.25$$

Donc la balle passera au-dessus du filet avec une hauteur de x=100cm> h=90 cm **Q29**. A un temps t_1 la balle touchera sol (x=0), l'équation (2) devient :

$$0 = -gt_1^{2} H$$

$$t_1 = \sqrt{-}$$

A une distance D_1 la balle touchera le sol (x=0, y=D₁), l'équation (3) devient :

$$0 = - D_1^2 + H$$

$$D_1=V_0\sqrt{-}$$

Q30. La balle passera au-dessus du filet à un temps t_d , donc $x=h_d+h$ et y=D, l'équation (2) devient :

$$h_d + h = -gt_d^2 + H$$

$$t_d = \frac{}{}$$

Cherchons l'expression de la nouvelle valeur initiale de vitesse V_0 , l'équation (3) devient :

$$h_d + h = - D^2 + H$$

Exercice 6

Q31. La relation entre la vitesse v et l'abscisse curviligne (s) est donnée par l'expression :

Et on a: v=—(1)

Donc —=—

$$---=\ln(1+\omega t)$$

$$\exp(--)=1+\omega t$$
 (2)

On remplace l'équation (2) en (1) et on a :

$$v = b\omega.exp(----)$$

L'expression de la vitesse du mobil M à l'instant t est donnée par :

$$v = v_0.exp(----)$$

Q32. La composante normale de l'accélération a_N à l'instant t est donnée par l'expression :

$$a_N = -$$

$$a_N = \frac{0}{-} . \exp(----)$$

Q33. La composante tangentielle de l'accélération a_Tà l'instant t est donnée par l'expression :

Q34. Nature du mouvement

-L'expression de la vitesse s'écrit : $v=v_0.exp(---)$, donc le mouvement du mobile M n'est pas uniforme, car il n'est pas lineaire (V=at+Cte).

$$-\overrightarrow{a_T}.\overrightarrow{v} = ---.\exp(----)\overrightarrow{e_T}.--.\exp(----)\overrightarrow{e}$$

$$\vec{v} =$$
 $\exp() <$

Alors, le mouvement est décéléré

Q35.On cherche le module de la force \vec{F} résultante des forces appliquées à M, et selon le deuxième principe de Newton on a :

$$\vec{F} = m\vec{a}$$

$$\vec{F} = m\vec{a}$$

$$\|=m\|$$

$$||=m\sqrt{-}$$
 $||=m\sqrt{-}$
 $||=m\frac{0}{\sqrt{2}}$

Q36. On a une dilution d'une solution de chlorure de sodium NaCl de concentration initiale C_1 =4.10⁻⁴ mol/l et volume initial V_1 =300ml. On cherche la valeur de la nouvelle concentration C_2 et de volume V_2 .

Selon la relation de dilution :

$$C_1V_1 = C_2V_2$$
 $C_2 =$
 C

Q37. La nomenclature de cette molécule est : 2-hydroxy,2-méthyl-butane

Q38. Au cours de la neutralisation de l'acide acétique (C_1 =3.10⁻³ mol/l et V_1 =40 ml) par une solution d'hydroxyde de potassium (C_2 = 2.10⁻² mol/l et V_e), on a une conservation du nombre du mole: n(acide)=n(base) ce qui implique :

$$C_1V_1 = C_2V_e$$
 $V_e = -- V_e = 6ml$

Q39. Le chauffe l'acide méthanoïque et l'éthanol en présence d'acide sulfurique (catalyseur), conduit à la formation de lester correspondant qui est le méthanoate d'éthyle.

$$\text{CH}_3\text{-COO-CH}_2\text{-CH}_3$$
 \longrightarrow $\text{CH}_3\text{-COO-CH}_2\text{-CH}_3$

Q39. L'équation de la réduction d'ions du zinc s'écrit sous la forme :

$$Zn_{aq}^{2+} + 2e^{-} \longrightarrow Zn_{s}$$

Selon la relation de proportionnalité on a : n(Zn)=

____ = ___

$$m(Zn) = ---- \times M(Zn)$$

Donc la masse de Zinc récupérée à la cathode m(Zn)=0,19 mg

Correction du Concours d'entrée en 1ère année du cycle préparatoire

Ecole Nationale Des Sciences Appliquées

2012-2013

Fiche de réponses Epreuve de Physique-Chimie (Durée 1h : 30min)

Nom:	
Prénom:	Note
C. N. E. :	
No d'examen :	

Remarques Importantes:

- 1) La documentation, les calculatrices et les téléphones portables sont interdits.
- 2) Parmi les réponses proposées il n'y en a qu'une qui est juste.
- 3) Cochez la case qui correspond à la réponse correcte sur cette fiche.
- 4) Réponse juste = 1 point ; Réponse fausse = 1 point ; Pas de Réponse = 0 point.

Noter Bien: Plus qu'une case cochée = - 1 point.

	A	В	C	D
Q21	×			
Q22		×		
Q23		×		
Q24		×		
Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30	×			
Q26			×	
Q27				×
Q28			×	
Q29			×	
Q30				×
Q31	×			
Q32				×
Q33		×		
Q34	×			
Q35			×	
Q36			×	
Q37		×		
Q38	×			
Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39				×
Q40	×			

R ⁺	R

