(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-92977

(43)公開日 平成9年(1997)4月4日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
H05K	3/46			H05K	3/46	Н
						Q
H 0 1 G	4/12	427	•	H01G	4/12	4 2 7

審査請求 未請求 請求項の数2 FD (全 5 頁)

(21)出願番号	特願平7-26764 9	(71)出顧人	000183303
			住友金属鉱山株式会社
(22)出願日	平成7年(1995)9月21日		東京都港区新橋5丁目11番3号
		(72)発明者	海野 浩志
			東京都青梅市末広町1-6-1 住友金属
			鉱山株式会社電子事業本部内
•		(74)代理人	弁理士 菅 直人 (外1名)

(54) 【発明の名称】 コンデンサ内蔵ガラスセラミック基板

(57)【要約】

【課題】 コンデンサを内蔵したガラスセラミック基板、特にガラスセラミック絶縁層、コンデンサ用電極、その他の回路用配線等を同時焼成して得るコンデンサ内蔵ガラスセラミック基板に係り、製造時の工程数を増加させることなく、焼成時に酸化硼素やシリカなどのガラス成分が誘電体層中に拡散して誘電率が低下するのを防止することを目的とする。

【解決手段】 ガラスセラミック絶縁層、コンデンサ用電極、その他の回路用配線等を同時焼成して得るコンデンサ内蔵ガラスセラミック基板において、上記コンデンサ用電極は、球状Ag粉とフレーク状Ag粉とを含有する導体ペーストを焼成して形成されていることを特徴とする。

【特許請求の範囲】

【請求項1】 ガラスセラミック絶縁層、コンデンサ用電極、その他の回路用配線等を同時焼成して得るコンデンサ内蔵ガラスセラミック基板において、上記コンデンサ用電極は、球状Ag粉とフレーク状Ag粉とを含有する導体ペーストを焼成して形成されていることを特徴とするコンデンサ内蔵ガラスセラミック基板。

【請求項2】 前記の球状Ag粉とフレーク状Ag粉との配合比率を、20:80~80:20の範囲内とした請求項1記載のコンデンサ内蔵ガラスセラミック基板。 【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、コンデンサを内蔵 したガラスセラミック基板、特にガラスセラミック絶縁 層、コンデンサ用電極、その他の回路用配線等を同時焼 成して得るコンデンサ内蔵ガラスセラミック基板に関す る。

[0002]

【従来の技術】ガラス粉末とセラミックフィラーの混合物から作製したグリーンシートにAgペースト、コンデ 20ンサペーストを用いて所定のパターンを形成し、複数枚積層して800~1000℃で焼成して得られるコンデンサ内蔵ガラスセラミック基板(多層配線基板)がある。このようなコンデンサ内蔵ガラスセラミック基板は、リード付きコンデンサやチップコンデンサを、基板上に半田付けしたものに比べて小型高密度化が可能なため、電子機器の小型化に貢献するものと期待されている

【0003】従来、コンデンサ内蔵のセラミック多層配線基板においては、そのコンデンサに用いる材料として、低温焼成可能な鉛ペロブスカイト系複合材料を主成分としたものについて数々の研究が行われている。その代表的なものとして、例えばPb (Mg1/3 Nb2/3) O3、Pb (Fe1/2 Nb1/2) O3、Pb (Fe2/3 W1/3) O3 等の材料があり、それらの誘電率は単独では各々12000、24000、20000と高い値が得られている。

[0004]

【発明が解決しようとする課題】しかしながら、上記従来の鉛ペロブスカイト系複合材料をガラスセラミック基 40 板に内蔵すると、焼成時に酸化硼素やシリカなどのガラス成分の誘電体層中への拡散がおこり、焼成後のコンデンサが所望の誘電特性を満たさないことがあった。例えば、鉛ペロブスカイト系複合材料Pb(Mg1/3 Nb2/3)〇3の誘電率は単独では上記のように12000であるが、低温焼成基板に内蔵すると30程度に低下してしまう。これを改善する方法として、従来たとえばコンデンサ用電極とガラスセラミック絶縁層との間にバリア層を印刷等により設けて拡散を抑制する方法が提案されているが、バリア層を形成するための工程数が増加す 50

る等の不具合がある。

【0005】本発明は上記の問題点に鑑みて提案されたもので、上記従来のように工程数を増加させることなく、焼成時に酸化硼素やシリカなどのガラス成分が誘電体層中へ拡散するのを防止して、高誘電率で誘電損失の少ないコンデンサ内蔵のガラスセラミック多層配線基板を提供することを目的とする。

2

[0006]

【課題を解決するための手段】上記の目的を達成するた 10 めに本発明によるコンデンサ内蔵ガラスセラミック基板 は、以下の構成としたものである。

【0007】即ち、ガラスセラミック絶縁層、コンデン サ用電極、その他の回路用配線等を同時焼成して得るコ ンデンサ内蔵ガラスセラミック基板において、上記コン デンサ用電極は、球状Ag粉とフレーク状Ag粉とを含 有する導体ペーストを焼成して形成されていることを特 徴とする。

[0008]

【作用】上記のようにコンデンサ用電極を形成する導体ペーストに、球状Ag粉とともにフレーク状Ag粉を含有させたことによって、焼成時に電極層が緻密化され、ガラス成分の誘電体層中への拡散が抑制される。それによって誘電率の低下が防止され、高誘電率で誘電特性の優れたコンデンサ内蔵ガラスセラミック基板を提供することが可能となる。

【0009】なお上記の球状Ag粉とフレーク状Ag粉の混合比率(重量比率)は、20:80~80:20の範囲内、すなわち球状Ag粉20~80wt%に対して、フレークAg粉は80~20wt%とするのが望ま30 しい。フレーク状Ag粉が80wt%を越えるか20wt%未満であると、電極層があまり緻密化せずガラス成分が拡散してコンデンサの容量が低下するからである。【0010】

【発明の実施の形態】図1は本発明によるコンデンサ内 蔵ガラスセラミック基板 (多層配線基板) の具体的な構 成の一例を示す焼成後の断面図である。図において、1 はガラスセラミックよりなる絶縁層、2はコンデンサで ある。そのコンデンサ2は一対の電極21と、その両電 極21・21間に介在させた誘電体層22とよりなる。 3は上記各電極21に導電接続させたビア導体である。 【0011】上記のようなコンデンサを内蔵したガラス セラミック多層配線基板を製造するに当たっては、例え ば絶縁層1を構成する複数枚のガラスセラミックグリー ンシートに予めコンデンサ2の電極21や誘電体層22 およびピア導体3さらに必要に応じて図に省略した所望 の配線パターン等を形成した後、それらのガラスセラミ ックグリーンシートを積層して焼成する。この場合、コ ンデンサ2は、例えばセラミックグリーンシート上に電 極21を印刷等で形成した後に、その上に誘電体層22 となる誘電体ペーストを印刷等で形成し、さらにその上 に電極21を印刷等して形成する。またビア導体3は、 ビア孔を形成した後に導体ペーストを充填して形成すれ ばよい。

【0012】上記のガラスセラミックグリーンシートに 用いるガラスセラミック粉末としては、例えば1100 ℃以下で充分に焼結するものを用いればよく、その材質 は適宜であり、ガラス粉末としては、例えば酸化鉛、酸 化亜鉛、アルカリ土類金属酸化物、アルカリ金属酸化物 等を含有するアルミノ硼珪酸ガラスで軟化点が600~ 800℃の非晶質ガラス粉末、あるいは600~110 ○℃で結晶化する結晶化ガラス等が使用できる。又これ にアルミナ、ジルコン、ムライト、コージェライト、ア ノーサイト、シリカ等のセラミックフィラーを混合して もよい。その場合の混合比率は、ガラスセラミック基板 の坑折強度、誘電率、緻密性等の性能を勘案して適宜調 整すればよく、一般的に重量比で約1:1が好ましい。 【0013】上記のガラスセラミックグリーンシート は、ガラスセラミック粉末をスラリーに調整後、ドクタ ープレード等を用いてシート状に形成するもので、その 厚さは、作成すべき基板の焼成後の厚さを勘案して適宜 20 設定すればよく、例えば30~200μm程度に成形す る。また上記のスラリーに調整するには、ガラスセラミ ック粉末にバインダや可塑剤および溶剤を加えて、ボー ルミルやアトライタ等で混合して得ればよい。そのバイ ンダとしては、例えばポリビニルブチラール、メタアク リルポリマ、アクリルポリマ等を使用することができ る。また可塑剤としてはフタル酸の誘導体等を、また溶 剤としてはアルコール類、ケトン類、塩素系有機溶剤等 をそれぞれ使用することができる。

【0014】上記のようにして作成したガラスセラミックグリーンシートには、前述のように予めコンデンサ2やビア導体3さらに必要に応じて図に省略した所望の配線パターン等を形成するもので、特に本発明においてはコンデンサ2の電極21を形成するための導体ペーストに前述のように球状Ag粉とフレーク状Ag粉とを混合したものを用いる。

【0015】その球状およびフレーク状Ag粉の粒径は、コンデンサ用電極を例えばスクリーン印刷等で形成する際にスクリーンを容易に通過できればよく、球状Ag粉の平均粒径は $0.1\sim1\mu$ m程度、フレーク状Ag粉の平均粒径(平均長径)は $1\sim5\mu$ m程度が好ましい。またフレーク状Ag粉の長径を厚さで割ったアスペクト比は $5\sim40$ 程度が好ましい。アスペクト比が5未満または40よりも大きいと電極層を緻密化する効果が

少ないからである。

【0016】上記の球状Ag粉とフレーク状Ag粉とを混合し、これにバインダを混練して導体ペーストを作製するもので、具体的には例えば球状Ag粉とフレーク状Ag粉との混合粉末100重量部に対してビヒクルを20~30重量部程度加え、スリーロールミル等で混合する。そのビヒクルの特性は、特に限定されないが、エチルセルロース4~8wt%のターピネオール溶液を使用することができる。またペーストの粘度は、200~300Pa・Sとすれば印刷に好適である。

4

【0017】一方、コンデンサ2の誘電体層22を形成する誘電体ペーストとしては、前述のような鉛ペロブスカイト系複合材料を主成分としたもの等を用いることができる。それらの材料を上記導体ペーストと同様の要領でペースト状にすればよい。また前記のビア導体3や配線パターン等を形成する導体ペーストとしては上記と同様にAg粉等を含有するペーストを用いればよく、その場合フレーク状のAg粉を含有するものでも含有しないものでもいずれでもよい。

0 【0018】なお、上記のコンデンサ電極21を形成するために導体ペーストを印刷等する際の厚さは、あまり薄いと前記のガラス成分の拡散抑制効果が少なく、あまり厚いと表面に凹凸がでてしまうので、7~15μm程度が望ましい。また誘電体層22を形成するための誘電体ペーストの厚さは、あまり薄いとショートしてしまい、厚いと表面に凹凸がでてしまうので、30~40μm程度が望ましい。

【0019】次に、上記のようにして予めコンデンサ2やビア導体3および配線パターン等を形成したガラスセラミックグリーンシートを複数枚積層した後、ホットプレス機等で一体化して焼成する。そのときのホットプレス機等による圧力は、例えば50~300kg/cm²、温度は60~90℃程度とする。また焼成は、例えば450~600℃程度に加熱してバインダ等の有機物を除去した後、1100℃以下、例えば800から1000℃で行えばよい。

[0020]

【実施例】前記図1に示すようなコンデンサ内蔵ガラスセラミック多層配線基板を作製するに当たり、ガラスセラミックグリーンシートを形成するためのガラスセラミック粉末として、下記表1に示す組成のガラス粉末(平均粒径2.2μm)と、アルミナ粉末(平均粒径1.7μm)を50:50の比率で混合した。

[0021]

表 1

成分	PbO	SiO	A 1 2 O8	B ₂ O ₃	CaO
重量%	30. 7	51.7	8.4	7.3	1.9

【0022】上記の混合粉末100重量部に対して、ボ リビニルブチラール9重量部、フタル酸ジイソブチル7 重量部、オレイン酸1重量部、イソプロピルアルコール ルミルで24時間混合してスラリーを製作した。そのス ラリーをドクターブレード法でシート状に成形してガラ スセラミックグリーンシートを作製した。そのガラスセ ラミックグリーンシートの厚さは232μmであった。 【0023】一方、コンデンサ2の電極21を形成する ための導体ペーストとしては、平均粒径 0.1~1μm の球状Ag粉と、平均粒径(平均長径)1~5μm、ア スペクト比30のフレークAg粉とを種々の割合(重量 比)で混合し、それらの各混合粉末100重量部を、そ れぞれエチルセルロース6wt%のターピネオール溶液 20 30重量部とともにスリーロールミルで混練したものを 用いた。

【0024】またコンデンサ2の誘電体層22を形成す るための誘電体ペーストとしては、平均粒径0.3 μm のPb (Mg1/3 Nb2/3) O3 粉末100重量部をエ チルセルロース8wt%のターピネオール溶液30重量 部とともにスリーロールミルで混練したものを用いた。 【0025】そして上記の導体ペーストや誘電体ペース トを、それぞれ印刷等で所望の厚さに形成することによ ってコンデンサ2の電極21と誘電体層22を形成し た。なおコンデンサ電極21の厚さはそれぞれ10µm とし、誘電体層22の厚さは30μmに形成した。

【0026】さらに、ビア導体4は、ガラスセラミック*

*グリーンシートに形成した直径100μmのスルーホー ルに導体ペーストを充填して形成した。その導体ペース トとしては、平均粒径10μmのAg粉末100重量部 40重量部、トリクロロエタン20重量部を加えてボー 10 を、エチルセルロース5%のターピネオール溶液11重 量部とともにスリーロールミルで混合したものを用い

6

【0027】上記のようにしてコンデンサ2の電極21。 と誘電体層22およびピア導体3を形成するためのペー ストを予め印刷もしくは充填してなる複数枚のガラスセ ラミックグリーンシートを互いに積層し、その積層体を 150kg/cm²、85℃の条件で加圧成形した。次 いで、500℃で3時間保持してバインダを除去した 後、875℃の空気中で20分間焼成してコンデンサ内 蔵のガラスセラミック基板を作製した。

【0028】なおコンデンサ2の電極21に用いる導体 ペーストの球状Ag粉とフレーク状Ag粉との混合比率 (重量比率)は、前述のように種々異ならせ、前記の好 適な条件を満たすものと満たさないもの、さらに本発明 のように球状Ag粉とフレーク状Ag粉との両方を用い ることなく、球状Ag粉またはフレーク状Ag粉のいず れか一方のみを用いた場合についても上記と同様の要領 でコンデンサ内蔵ガラスセラミック基板を作製した。そ れらの基板を試料として各基板のコンデンサの誘電特性 を調べた。その結果を下記表2に示す。なお下記表2中 の誘電率 ε および誘電損失 t a n δ は 1 k H z 、室温で の測定値である。

[0029]

					,		
試 料 No	Ag粉の配合比率		Ag粉の粒径(μm)		誘 電 特 性		
	球状	フレーク状	球状	フレーク状	誘電率 ε	誘電損失 tan 8	
1	100	0	0.1~1	_	80	0. 133	
2	90	10	0.1~1	1~5	2000	0.044	
3	80	20	0.1~1	1~5	8000	0. 012	
4	50	50	0.1~1	1~5	10000	0. 018	
5	20	80	0.1~1	1~5	6000	0. 015	
6	10	90	0.1~1	1~5	1500	0.031	
7	0	100	_	1~5	100	0. 152	
8	100	0	3~5	_	50	0. 174	

【0030】上記表2中の試料2~6は、コンデンサ電 ※球状Ag粉とフレーク状Ag粉との両方を用いたもので 極を形成するための導体ペーストに本発明が要件とする※50 あるが、試料1および8のように球状Ag粉のみを、ま

た試料7のようにフレーク状Ag粉のみを用いたものに 比べ、誘電率 ϵ が高いことが分かる、特に球状Ag粉と フレーク状Ag粉との混合比率を20:80~80:2 0の範囲内とした試料3~5では誘電率が5000以上 に向上し、良好な誘電特性を示している。

[0031]

【発明の効果】以上のように本発明によるコンデンサ内 蔵ガラスセラミック基板は、コンデンサの電極を形成す るための導体ペーストに、球状Ag粉とフレーク状Ag 粉とを含有させたことによって、焼結時にガラスセラミ 10 2 コンデンサ ックの絶縁体材料成分、特に酸化硼素やシリカなどのガ ラス成分の誘電体層中への拡散を抑制することができ、 誘電率が高くかつ誘電損失の低いコンデンサにすること ができる。また前記従来のようにバリア層を印刷等で形

成する場合に比べ、その印刷等の工程が少なくなるため 手間の削減やコストの低下が図れ、なおかつ誘電特性の よい高品質のセラミック基板を提供することができるも のである。

【図面の簡単な説明】

【図1】本発明によるコンデンサ内蔵ガラスセラミック 基板の構成例を示す断面図。

【符号の説明】

- 1 絶縁層
- - 21 コンデンサ用電極
 - 22 誘電体層
 - 3 ビア導体

【図1】

