

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA Departamento de Ciência da Computação Tecnólogo em Análise e Desenvolvimento de Sistemas

Falhas em sistemas sociotécnicos

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

O que é um sistema sociotécnico?

- Sistema sociotécnico: hardware + software + elementos não técnicos
 - O hardware sozinho não faz nada
 - De forma parecida, o software sem hardware não executa
 - Pessoas interpretam dados gerados pelo hardware+software
 - Pessoas são o elo criativo, criando conhecimento a partir de dados brutos
 - Exemplo de elementos não técnicos: pessoas, processos, regulamentos, documentações

Complexidade de sistemas sociotécnicos

- Esses sistemas são complexos de entender como um todo
 - Há muitos elementos interagindo simultaneamente

Complexidade de sistemas sociotécnicos

- Solução: dividir o sistema em camadas:
 - Equipamentos: dispositivos de hardware
 - Sistema operacional: interage com o hardware

Normalmente, cada camada interage com a camada subjacente (quando isso não ocorre, podemos ter problemas)

- Comunicações e gerenciamento de dados (middleware): interface que permite interação entre aplicações e o sistema operacional
- Aplicação: funcionalidade específica da aplicação
- o **Processos de negócio:** processos do negócio da organização que usa o sistema
- Organizacional: processos de alto nível estratégico (regras de negócio, políticas e normas)
- Social: leis e os regulamentos da sociedade que governam o funcionamento do sistema

Sistemas sociotécnicos

• É preciso pensar no sistema como um todo (visão holística)

Software interage com o hardware, que interage com o mundo

físico

 Se essa interação for incorreta, problemas fatalmente irão ocorrer

 Ex: Therac-25 (falha de software de aparelho de raio-X, que levou a administração de doses fatais de radiação em pacientes)

- Precisamos analisar a forma como o software interage com seu ambiente imediato para nos assegurarmos que:
 - Falhas do software não devem afetar gravemente o funcionamento de outras camadas do sistema
 - "Falhas de software não devem ocasionar a falha do sistema"

- Precisamos analisar a forma como o software interage com seu ambiente imediato para nos assegurarmos que:
 - Devemos <u>entender como defeitos e falhas</u> de outras camadas afetam o software
 - "Como as verificações podem ser incorporadas ao software para ajudar a detectar e recuperar essas falhas"

- Ex: radar com fantasmas na imagem
 - Colocaram um radar em um local onde há muita interferência eletromagnética

software, ou do projeto

do sistema?

- Problema: A interferência dificulta a criação de imagens nítidas
- Solução: corrigir o problema em software, retirando os fantasmas no pós-processamento da imagem
 O problema é do
 - Porque?
 - Software é flexível (é mais fácil ajustar no software que mover o radar para outro local)
 - Consequencia: Software se torna lento demais

- Muitas vezes, as "falhas de software" não são consequência de problemas inerentes ao software
 - Elas são resultados da tentativa de mudar o software para acomodar os requisitos de um sistema complexo
 - Ex: fantasmas na imagem do radar (interferencias)
 - Ex: sistema de bagagem do aeroporto de Denver
 - Esteira tinha um problema e queria que o software resolvesse isso!

- I Um sistema sociotecnico é composto por software, hardware, pessoas, processos e documentações.
- II Para gerenciar a alta complexidade de sistemas sociotecnicos, os mesmos são divididos em camadas.
- III Cada camada de um sistema sociotecnico interage com a camada subjacente.
- IV Um sistema deve ser visto como um todo (visão holística) a fim de evitar interações incorretas e problemas potencialmente fatais.

0	Todas as assertivas são verdadeiras.
0	Somente II e III.
0	Somente II e IV.
0	Somente I e IV.
\cap	Comente Le III

- I Um sistema sociotecnico é composto por software, hardware, pessoas, processos e documentações. V
- II Para gerenciar a alta complexidade de sistemas sociotecnicos, os mesmos são divididos em camadas.
- III Cada camada de um sistema sociotecnico interage com a camada subjacente.
- IV Um sistema deve ser visto como um todo (visão holística) a fim de evitar interações incorretas e problemas potencialmente fatais.

0	Todas as assertivas são verdadeiras.
0	Somente II e III.
0	Somente II e IV.
0	Somente I e IV.
0	Somente I e III.

Considerando os escopo de falhas em sistemas, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

I - Um sistema sociotecnico é composto por software, hardware, pessoas, processos e documentações. V

II - Para gerenciar a alta complexidade de sistemas sociotecnicos, os mesmos são divididos em camadas. V

III - Cada camada de um sistema sociotecnico interage com a camada subjacente.

IV - Um sistema deve ser visto como um todo (visão holística) a fim de evitar interações incorretas e problemas potencialmente fatais.

0	Todas as assertivas são verdadeiras.
0	Somente II e III.
0	Somente II e IV.
0	Somente I e IV.
0	Somente I e III

- I Um sistema sociotecnico é composto por software, hardware, pessoas, processos e documentações. V
- II Para gerenciar a alta complexidade de sistemas sociotecnicos, os mesmos são divididos em camadas. V
- III Cada camada de um sistema sociotecnico interage com a camada subjacente. V
- IV Um sistema deve ser visto como um todo (visão holística) a fim de evitar interações incorretas e problemas potencialmente fatais.

0	Todas as assertivas são verdadeiras.
0	Somente II e III.
0	Somente II e IV.
0	Somente I e IV.
\cap	Comente Le III

incorretas e problemas potencialmente fatais.

Todas as assertivas são verdadeiras. Considerando os escopo de falhas em sistemas, marque a alternativa que contém somente as assertivas VERDADFIRAS. Somente II e III. I - Um sistema sociotecnico é composto por software, hardware, pessoas, processos e Somente II e IV. documentações. V Somente I e IV. II - Para gerenciar a alta complexidade de sistemas sociotecnicos, os mesmos são divididos em camadas. V Somente Le III. III - Cada camada de um sistema sociotecnico interage com a camada subjacente. V

IV - Um sistema deve ser visto como um todo (visão holística) a fim de evitar interações

Afinal, o que é um sistema sociotécnico?

- Sistema: "é uma coleção intencional de componentes inter-relacionados, de diferentes tipos, que funcionam em conjunto para atingir um objetivo" (SOMMERVILLE, 2003)
 - O bom funcionamento de cada componente do sistema depende do funcionamento de outros componentes

 Engenharia de sistemas: processo de projeto de sistemas completos, não apenas o software desses sistemas

Sistemas e subsistemas

Um sistema pode ser composto por vários sub-sistemas integrados

Ex: Windows (stack de rede TCP/IP + drivers de hardware + firewall

+ anti-virus + navegador de internet + ...)

Características de Sistemas Sociotécnicos

- Sistemas sociotécnicos possuem características importantes para proteção e confiança do sistema:
 - Possuem propriedades emergentes
 - São sistemas não determinísticos
 - Há independência entre os objetivos organizacionais e o sistema

Propriedades emergentes

- São propriedades do sistema como um todo, e não associadas apenas a partes individuais do sistema
 - Dependem tanto dos componentes do sistema quanto dos relacionamentos entre eles
 - Só podem ser avaliadas uma vez que o sistema tenha sido montado
 - Essas propriedades só surgem quando os componentes do sistema são integrados
 - Ex: Proteção, confiança, desempenho

Exemplo de Propriedades emergentes

 O uso de memória de navegadores de internet é uma propriedade de um sistema emergente

O uso de memória depende não somente do navegador, mas também

do sistema operacional

	O	C	
	Google Chrome	Microsoft Edge	Mozilla Firefox
10 tabs	952MB	873MB	956MB
20 tabs	1.8GB	1.4GB	1.6GB
60 tabs	3.7GB	2.9GB	3.9GB

Classificação de Propriedades emergentes

- Propriedades emergentes funcionais: finalidade do sistema só surge após seus componentes serem integrados
 - Ex: bicicleta tem a propriedade funcional de meio de transporte
- Propriedades emergentes não funcionais: se relacionam com o comportamento do sistema em seu ambiente operacional
 - Ex: segurança, privacidade, desempenho
 - A falha em alcançar um nível mínimo definido nessas propriedades faz com que o sistema se torne inútil
 - Ex: "Ninguém deseja ter um smartphone inseguro ou lento"

Exemplos de Propriedades emergentes

Propriedade	Descrição
Volume	O volume de um sistema (o espaço total ocupado) varia conforme os conjuntos de componentes estão dispostos e conectados.
Confiabilidade	A confiabilidade de sistema depende da confiabilidade de componentes, mas interações inesperadas podem causar novos tipos de falhas e, portanto, afetar a confiabilidade do sistema.
Proteção	A proteção do sistema (sua capacidade de resistir ao ataque) é uma propriedade complexa que não pode ser facilmente mensurada. Os ataques podem ser criados de forma imprevista pelos projetistas de sistemas e, assim, derrotar as proteções internas.
Reparabilidade	Essa propriedade reflete quão fácil é corrigir um problema com o sistema uma vez que este tenha sido descoberto. Depende da capacidade de diagnosticar o problema e do acesso a componentes que estejam com defeito, bem como de se modificar ou substituir tais componentes.
Usabilidade	Essa propriedade reflete quão fácil é usar o sistema. Depende dos componentes técnicos de sistema, seus operadores e seu ambiente operacional.

Confiabilidade

As falhas podem ser propagadas entre níveis diferentes (hardware, software, operador)

- Podemos analisar a confiabilidade sob três níveis (perspectivas):
 - Confiabilidade de hardware: probabilidade de falha de hardware
 - Ex: memória RAM com defeito
 - Confiabilidade de software: probabilidade de falha de software
 - Ex: calculadora calculando operações matemáticas erradas
 - Confiabilidade de operador: probabilidade de falha humana
 - Ex: entrada incorreta em um sistema
 - "Qual é a probabilidade de o software não detectar esse erro e o propagar?"

Propagação de falhas

A falha surgiu no hardware, mas afetou o software. Este por sua vez interferiu com o trabalho do operador, o induzindo ao erro também

Sistemas não determinísticos

- Sistemas sociotécnicos são não determinísticos
 - Quando apresentados a uma entrada específica, o sistema nem sempre produz a mesma saída
 - "Comportamento do sistema depende de pessoas, e seres humanos nem sempre reagem da mesma maneira"
 - Além disso, existem defeitos e falhas de sistema transitórios

Sistemas não determinísticos

- **Ex**: um chefe pede que um atendente de loja de roupas insira algumas camisetas novas no sistema
 - O atendente está chateado naquele dia e insere a quantidade de roupas errada no sistema (propositalmente ou não)

Independência entre objetivos organizacionais e sistema sociotécnico

- O sistema apoia os objetivos organizacionais, mas eles podem mudar a qualquer momento, por várias razões diferentes
 - Ex: um novo gerente pode mudar os objetivos organizacionais, fazendo um sistema "bem-sucedido" parecer "fracassado"

Elon Musk achou que havia algo de errado com o Twitter

Então ele mudou a proposta (objetivos) do sistema.

Independência entre objetivos organizacionais e sistema sociotécnico

- O sistema apoia os objetivos organizacionais, mas eles podem mudar a qualquer momento, por várias razões diferentes
 - Ex: um novo gerente pode mudar os objetivos organizacionais, fazendo um sistema "bem-sucedido" parecer "fracassado"

Elon Musk achou que havia algo de errado com o Twitter

Então ele mudou a proposta (objetivos) do sistema.

Sistemas precisam se adaptar aos objetivos organizacionais o tempo inteiro

- I Sistemas sociotecnicos possuem propriedades emergentes, que surgem somente quando os componentes do sistema são integrados.
- II Propriedades emergentes podem ser classificadas como funcionais ou não-funcionais. A falha em alcançar uma propriedade emergente não-funcional torna o sistema inútil.
- III A confiabilidade é uma propriedade não-funcional, pois ela depende do comportamento dos componentes do sistema.
- IV A usabilidade é uma propriedade não-funcional. Ela reflete a facilidade no uso do sistema.

- Todas as assertivas são verdadeiras.
- Somente II, III e IV.
- O Somente II e IV.
- O Somente III e IV.
 - Nenhuma das alternativas anteriores.

- I Sistemas sociotecnicos possuem propriedades emergentes, que surgem somente quando os componentes do sistema são integrados. V
- II Propriedades emergentes podem ser classificadas como funcionais ou não-funcionais. A falha em alcançar uma propriedade emergente não-funcional torna o sistema inútil.
- III A confiabilidade é uma propriedade não-funcional, pois ela depende do comportamento dos componentes do sistema.
- IV A usabilidade é uma propriedade não-funcional. Ela reflete a facilidade no uso do sistema.

- Todas as assertivas são verdadeiras.
- Somente II, III e IV.
- O Somente II e IV.
- O Somente III e IV.
- Nenhuma das alternativas anteriores.

- I Sistemas sociotecnicos possuem propriedades emergentes, que surgem somente quando os componentes do sistema são integrados. V
- II Propriedades emergentes podem ser classificadas como funcionais ou não-funcionais. A falha em alcançar uma propriedade emergente não-funcional torna o sistema inútil. V
- III A confiabilidade é uma propriedade não-funcional, pois ela depende do comportamento dos componentes do sistema.
- IV A usabilidade é uma propriedade não-funcional. Ela reflete a facilidade no uso do sistema.

- Todas as assertivas são verdadeiras.
- Somente II, III e IV.
- O Somente II e IV.
- O Somente III e IV.
 - Nenhuma das alternativas anteriores.

- I Sistemas sociotecnicos possuem propriedades emergentes, que surgem somente quando os componentes do sistema são integrados. V
- II Propriedades emergentes podem ser classificadas como funcionais ou não-funcionais. A falha em alcançar uma propriedade emergente não-funcional torna o sistema inútil. V
- III A confiabilidade é uma propriedade não-funcional, pois ela depende do comportamento dos componentes do sistema. V
- IV A usabilidade é uma propriedade não-funcional. Ela reflete a facilidade no uso do sistema.

- Todas as assertivas são verdadeiras.
- Somente II, III e IV.
- Somente II e IV.
- O Somente III e IV.
 - Nenhuma das alternativas anteriores.

Considerando os escopo de falhas em sistemas, marque a alternativa que Todas as assertivas são verdadeiras. contém somente as assertivas VERDADFIRAS. Somente II, III e IV. I - Sistemas sociotecnicos possuem propriedades emergentes, que surgem somente quando os componentes do sistema são integrados. V Somente II e IV. II - Propriedades emergentes podem ser classificadas como funcionais ou não-funcionais. A Somente III e IV. falha em alcançar uma propriedade emergente não-funcional torna o sistema inútil. V Nenhuma das alternativas anteriores. III - A confiabilidade é uma propriedade não-funcional, pois ela depende do comportamento dos componentes do sistema.

IV - A usabilidade é uma propriedade não-funcional. Ela reflete a facilidade no uso do sistema. V

Engenharia de sistemas

- Engloba as atividades envolvidas na aquisição, especificação, projeto, implementação, validação, implantação, operação e manutenção dos sistemas sociotécnicos
 - Preocupação com o bom funcionamento do software + hardware + interações com os usuários + ambiente de operação do sistema
 - "Que serviços o sistema oferece?"
 - "Quais as restrições do sistema? (desempenho, segurança, etc)"
 - "De que maneiras o sistema será usado?"

Engenharia de sistemas

• Envolve uma ampla gama de profissionais trabalhando em conjunto

Estágios da Engenharia de sistemas

- **Obtenção ou aquisição:** define os objetivos e requisitos de alto nível do sistema; compra dos componentes do sistema
- Desenvolvimento: o sistema é desenvolvido (projeto, implementação, e testes) e cursos de treinamento para usuários são projetados
- Operação: o sistema é colocado em uso (implantado) e os usuários são treinados

A qualquer momento erros podem ocorrer, comprometendo a proteção e a confiança do sistema

Por isso, os estágios não são independentes. Podemos precisar retornar a um estágio ou outro, a qualquer momento.

Aquisição do sistema

- Ênfase na tomada de decisões com relação ao sistema, como por exemplo:
 - Orçamentos
 - Fornecedores de componentes
 - Tipo de sistema requerido
 - Requisitos de alto nível de sistema
 - Cronograma de desenvolvimento sistema

Exemplo de processo de Aquisição de sistema

Desenvolvimento de sistemas

- Envolve:
 - Desenvolver ou adquirir todos os componentes do sistema
 - Integrar esses componentes para criar um sistema final
- Os requisitos s\u00e3o a ponte entre os processos de aquisi\u00e7\u00e3o e de desenvolvimento

Operação de sistemas

- São os processos envolvidos no uso do sistema para seus fins definidos
 - Ex: "que atividades precisam ser realizadas por um operador de controle de tráfego aérea para permitir a decolagem de um avião?"
 - Definir a altura, rota, velocidade, ...
- Processos operacionais s\(\tilde{a}\) definidos e documentados durante o processo de desenvolvimento do sistema

Operação de sistemas

- Esta etapa permite detectar erros que passaram "batido" pelas demais etapas do desenvolvimento de sistemas, tais como:
 - Erros na especificação
 - Funcionalidade faltando no sistema
 - Funcionalidade com defeito ou inadequada
- Processos de operação devem ser flexíveis e adaptáveis
 - Operation of the property o

Flexibilidade de Processos de Operação

- Processos de operação devem ser flexíveis e adaptáveis
 - Não devem exigir que determinadas operações sejam realizadas, nem deve determinar a ordem de execução delas
- Os operadores podem recuperar o controle de uma falha no sistema, mesmo que isso viole os processos de operação do sistema
 - As pessoas têm a capacidade única de responder eficazmente a situações inesperadas, mesmo sem ter experienciado elas antes
 - Ex: Se o sistema de vendas da loja travar, o operador pode realizar a venda usando um recibo escrito a mão

Erros humanos

- Sempre que pessoas estão envolvidas em um processo, há a possibilidade de erro humano. Podemos enxergar esses erros como:
 - Responsabilidade do indivíduo: falta de cuidado individual ou do comportamento imprudente do operador
 - Solução: sanções disciplinares, procedimentos mais rigorosos, reciclagem (demissão)
 - Responsabilidade do sistema: erros como conseqüência de decisões de projeto de sistema ou fatores organizacionais
 - Solução: os sistemas devem incluir barreiras e salvaguardas para evitar erros humanos

Exemplo de barreiras e salvaguardas em sistemas

 Ex: exigir que dois operadores autorizem o lançamento de um foguete, girando duas chaves simultaneamente

Toda defesa do sistema (barreira, salvaguarda, etc) possui limitações (**condições latentes**). **Ex**: operadores podem ser rendidos por um terrorista e forçados a realizar o lançamento

Condições latentes

Devemos reduzir ao máximo a quantidade de condições latentes ("buracos") do sistema

- Levam à falha do sistema quando as defesas construídas não interceptam uma falha ativa de um operador de sistema
- Erro humano é um gatilho, mas não é o único motivo da falha ter ocorrido
 - "Cada defesa do sistema é uma camada ("fatias de um queijo suiço")"
 - o "Quando os buracos de cada camada se alinham, a falha acontece"

A posição dos "buracos" de cada camada mudam conforme o estado do sistema

Ex: iniciando uma venda, cliente fazendo o pagamento, emissão de recibo, ...

Considerando os escopo de falhas em sistemas, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I Os estágios da engenharia de sistemas são independentes uns dos outros.
- II Os requisitos do sistema são definidos no estágio de desenvolvimento do sistema.
- III Os processos operacionais são definidos no estágio de operação dos sistemas.
- IV A aquisição de sistema é o estágio da engenharia de sistemas responsável por avaliar se existe um sistemas customizado que pode ser adaptado para atender aos requisitos de negócio da organização.

0	Somente III.
0	Somente III e IV.
0	Somente I, III e IV.
0	Somente II e III.
	Nenhuma das alternativas anteriores

Considerando os escopo de falhas em sistemas, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I Os estágios da engenharia de sistemas <mark>s</mark>ão independentes <mark>uns dos outros. **F**</mark>
- II Os requisitos do sistema são definidos no estágio de desenvolvimento do sistema.
- III Os processos operacionais são definidos no estágio de operação dos sistemas.
- IV A aquisição de sistema é o estágio da engenharia de sistemas responsável por avaliar se existe um sistemas customizado que pode ser adaptado para atender aos requisitos de negócio da organização.
- Somente III.
 Somente III e IV.
 Somente I, III e IV.
 Somente II e III.
 Nenhuma das alternativas anteriores.

negócio da organização.

IV - A aquisição de sistema é o estágio da engenharia de sistemas responsável por avaliar se

existe um sistemas customizado que pode ser adaptado para atender aos requisitos de

negócio da organização.

IV - A aquisição de sistema é o estágio da engenharia de sistemas responsável por avaliar se

existe um sistemas customizado que pode ser adaptado para atender aos requisitos de

Referencial Bibliográfico

SOMMERVILLE, Ian. Engenharia de Software. 6. ed.
 São Paulo: Addison-Wesley, 2003.

 PRESSMAN, Roger S. Engenharia de Software. São Paulo: Makron Books, 1995.

JUNIOR, H. E. Engenharia de Software na Prática.
 Novatec, 2010.