Sequence Labeling for Parts of Speech and Named Entities

Erhard Hinrichs

Seminar für Sprachwissenschaft Eberhard-Karls Universität Tübingen

Three Different Tagsets for American English

- Universal Dependency (UD) Tagset: 17 distinct tags
- ▶ Penn Treebank Tagset: 45 distinct tags
- ▶ Brown Corpus Tagset: 82 distinct tags

The Stuttgart-Tübingen Tagset (STTS) for German

- ► tagset with 54 distinct tags
- ► Tagging guidelines for STTS: https://www.ims.uni-stuttgart.de/documents/ ressourcen/lexika/tagsets/stts-1999.pdf
- ► For an overview of the tagset see
 https://www.ims.uni-stuttgart.de/forschung/
 ressourcen/lexika/germantagsets/#id-cfcbf0a7-0

UD Tagset: English Word Classes (Nivre et al. 2016a)

	Tag	Description	Example
	ADJ	Adjective: noun modifiers	red, young,
		describing properties	awesome
	ADV	Adverb: verb modifiers of	very, slowly,
Ŋ	ADV	time, place, manner	home, today
Class	NICHINI	words for persons, places,	algorithm, cat,
_	NOUN	things, etc.	mango, beauty
Open	VERB	words for actions and	draw, provide,
0		processes	go
	PROPN	Proper noun: name of a person,	red, young,
		organization, place, etc	awesome
	INTJ	Interjection: exclamation, greeting,	oh, um,
	IIN I J	yes/no response, etc.	yes, hello

UD Tagset: English Word Classes: Continued

	Tag	Description	Example
Closed Class Words	ADP	Adposition (Pre-/Postposition): marks a noun's spacial relation	in, on, by under
	AUX	Auxiliary: helping verb marking time, place, manner	can, may, should, are
	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
	DET	Determiner: marks noun phrase properties	a, an, the, this
O	NUM	Numeral	<i>one, two</i> first, second

UD Tagset: English Word Classes: Continued

	Tag	Description	Example
qs	PART	Particle: a preposition-like form	up, on, off,
Words	FAIL	used together with a verb	in, at, by
> s	PRON	Pronoun: a shorthand for	she, who,
Class	FICON	referring to an entity or event	I, others
		Subordinating Conjunction: joins a	
Closed	SCONJ	main clause with a subordinate clause	that, which
ŏ		such as a sentential complement	
	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
0	X	Other	asdf, qwfg

Penn Treebank part-of-speech tags

Tag	Description	Example
CC	coord. conj.	and, but, or
CD	cardinal number	one, two
DT	determiner	a, the
EX	existential 'there'	there
FW	foreign word	mea culp
IN	preposition/subordin-conj	of, in, by
JJ	adjective	yellow
JJR	comparative adj	bigger
JJS	superlative adj	wildest
LS	list item marker	1, 2, One
MD	modal	can, should
NN	sing or mass noun	llama

Penn Treebank part-of-speech tags

Tag	Description	Example
NNP	proper noun, sing.	IBM
NNPS	proper noun, plu.	Carolinas
NNS	noun, plural	llamas
PDT	predeterminer	all, both
POS	possessive ending	's
PRP	personal pronoun	I, you, he
PRP\$	possess. pronoun	your, one's
RB	adverb	quickly
RBR	comparative adv	faster
RBS	superlatv. adv	fastest
RP	particle	up, off
SYM	symbol	+,%, &

Penn Treebank part-of-speech tags

Tag	Description	Example
TO	"to"	to
UH	interjection	ah, oops
VB	verb base	eat
VBD	verb past tense	ate
VBG	verb gerund	eating
VBN	verb past participle	eaten
VBP	verb non-3sg-pr	eat
VBZ	verb 3sg pres	eats
WDT	wh-determ.	which, that
WP	wh-pronoun	what, who
WP\$	wh-possess.	whose
WRB	wh-adverb	how, where

Tagging Guidelines for the Penn Treebank

CC or **DT**: Either/**DT** child could sing.

Either/**CC** a boy could sing or/**CC** a girl could dance.

CD or **JJ**: a 50 3/**JJ** victory (cf. a handy/**JJ** victory)

IN or **RP** the picture we will look at/**IN** next.

She told off/**RP** her friends. She told her friends off/**RP**.

because/ \mathbf{IN} of/ \mathbf{IN} her late arrival.

She stepped off/**IN** the train * She stepped the train off/**IN**.

 ${f IN}$ or ${f WDT}$ the fact that ${f IN}$ you are here.

a man that/ \mathbf{WDT} I know

JJ or **NP**: English/**JJ** cuisine tends to be uninspired.

The English/NNS tend to be uninspired cooks.

The West**JJ** German/**JJ** mark He is a West/**NP** German/**NP**.

Tagging Guidelines for the Penn Treebank

JJ or RB: rapid/JJ growth/NN

rapid/JJ growing/VBG plants

JJ or **VBG**: The conversation became depressing/**JJ**.

an appetizing/**JJ** dish *A dish that appetizes

an existing/**VBG** safeguards

safeguards that exist.

JJ or **VBN**: He became interested/**JJ**.

He remains guided/VBN by these principles.

They should be kept well-watered/ \mathbf{JJ} .

At the time, I was married/JJ.

NN or **RB**: Call me when you get home/**RB**.

Call me when you are at home/NN.

Beatrice Santorini (1991). Part-of-Speech Guidelines for the PTB.

www.cis.upenn.edu/~bies/manuals/tagguide.pdf

Tag	Description	Examples
	sentence closer	.;?!
(left paren	
)	right paren	
*	not, n't	
	dash	
,	comma	
:	colon	
ABL	pre-qualifier	quite, rather
ABN	pre-quantifier	half, all
ABX	pre-quantifier	both
AP	post-determiner	many, several, next
AT	article	a, the, no

BE	be	
BED	were	
BEDZ	was	
BEG	being	
BEM	am	
BEN	been	
BER	are, art	
BEZ	is	
CC	coordinating conjunction	and, or
CD	cardinal numeral	one, two, 2
CS	subordinating conjunction	if, although
DO	do	
DOD	did	
DOZ	does	

DT	singular determiner	this, that
DTI	singular or plural determiner/quantifier	some, any
DTS	plural determiner	these, those
DTX	determiner/double conjunction	either
EX	existentil there	
FW	foreign word (hyphenated before regular tag)	
HL	word occurring in headline (hyphenated after regular tag)	
HV	have	
HVD	had (past tense)	
HVG	having	
HVN	had (past participle)	
HVZ	has	
IN	preposition	
JJ	adjective	
JJR	comparative adjective	
JJS	semantically superlative adjective	chief, top
JJT	morphologically superlative adjective	biggest

MD	modal auxiliary	can, should, will
NC	cited word (hyphenated after regular tag)	
NN	singular or mass noun	
NN\$	possessive singular noun	
NNS	plural noun	
NNS\$	possessive plural noun	
NP	proper noun or part of name phrase	
NP\$	possessive proper noun	
NPS	plural proper noun	
NPS\$	possessive plural proper noun	
NR	adverbial noun	home, today, west
NRS	plural adverbial noun	
OD	ordinal numeral	first, 2nd

PN	nominal pronoun	everybody, nothing
PN\$	possessive nominal pronoun	
PP\$	possessive personal pronoun	my, our
PP\$\$	second (nominal) possessive pronoun	mine, ours
PPL	singular reflexive/intensive personal pronoun	myself
PPLS	plural reflexive/intensive personal pronoun	ourselves
PPO	objective personal pronoun	me, him, it, them
PPS	3rd. singular nominative pronoun	he, she, it, one
PPSS	other nominative personal pronoun	I, we, they, you

QL	qualifier	very, fairly
QLP	post-qualifier	enough, indeed
RB	adverb	
RBR	comparative adverb	
RBT	superlative adverb	
RN	nominal adverb	here, then, indoors
RP	adverb/particle	about, off, up
TL	word occurring in title (hyphenated after	
	regular tag)	
ТО	infinitive marker to	
UH	interjection, exclamation	

VB	verb, base form		
VBD	verb, past tense		
VBG	verb, present participle/gerund		
VBN	verb, past participle		
VBZ	verb, 3rd. singular present		
WDT	wh- determiner	what, which	
WP\$	possessive wh- pronoun	whose	
WPO	objective wh- pronoun	whom, which, that	
WPS	nominative wh- pronoun	who, which, that	
WQL	wh- qualifier	how	
WRB	wh- adverb	how, where, when	

Part-of-Speech Tagging

Example

- ► There/PRON/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS there/ADV/RB ./PUNC/.
- Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN in/ADP/IN today/NOUN/NN 's/PART/POS New/PROPN/NNP England/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

Part-of-Speech Tagging

Tag ambiguity in the Brown and WSJ corpora

Types:	WSJ	Brown
Unambiguous (1 tag)	44,432 (86%)	45,799 (85%)
Ambiguous (2+ tags)	7,025 (14%)	8,050 (15%)
Tokens:		
Unambiguous (1 tag)	577,421 (45%)	384,349 (33%)
Ambiguous (2+ tags)	711,780 (55%)	786,646 (67%)

Tag ambiguity in the Brown and WSJ corpora

Example

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

A list of generic named entity types

Туре	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	Mt. Sanitas is in Sunshine Canyon.
Geo-Political E.	GPE	countries, states	Palo Alto is raising the fees for parking.

How difficult is POS tagging in English?

- ▶ Roughly 15% of word types are ambiguous.
 - ► Hence 85% of word types are unambiguous
 - Janet is always PROPN, hesitantly is always ADV
- ▶ But those 15% tend to be very common.
- ► So appr. 60% of word tokens are ambiguous.
 - For example: back can be an adjective (JJ), a noun (NN), a finite (VBP) or non-finite verb (VB), an adverb (RB), or a particle (RP).

Tag ambiguity in the Brown and WSJ corpora

Example

- earnings growth took a back/JJ seat
- ► a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP debt
- ► I was twenty-one back/RB then

Most Frequent Class Baseline

Always compare a classifier against a baseline at least as good as the most frequent class baseline (assigning each token to the class it occurred in most often in the training set).

Examples of type ambiguities in the use of the name Washington

[$_{PER}$ Washington] was born into slavery on the farm of James Burroughs. [$_{ORG}$ Washington] went up 2 games to 1 in the four-game series. Blair arrived in [$_{LOC}$ Washington] for what may well be his last state visit. In June, [$_{GPE}$ Washington] passed a primary seatbelt law.

Named Entities and Named Entity Tagging

Example

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

NER as a sequence model

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	Ο	0	0
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	Ο	0	0
the	Ο	0	0
Chicago	I-LOC	B-LOC	S-LOC
route	0	0	0
	0	O	0

Table: NER as a sequence model, showing IO, BIO, and BIOES taggings

Markov Chains

Markov chain

Formally, a Markov chain is specified by the following components:

$$Q = q_1 q_2 \dots q_N$$

$$A=a_{11}a_{12}\dots a_{N1}\dots a_{NN}$$

$$\pi = \pi_1, \pi_2, \ldots, \pi_N$$

a set of N states

a **transition probability matrix** A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{i=1}^{n} a_{ij} = 1 \quad \forall i$

an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i. Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

The Hidden Markov Model

$Q = q_1 q_2 \dots q_N$	a set of <i>N</i> states		
	a transition probability matrix A , each a_{ij} representing		
$A = a_{11}a_{12}a_{N1}a_{NN}$	the probability of moving from state i to state j , s.t.		
	$\sum_{j=1}^{n} a_{ij} = 1 \forall i$		
$O = o_1 o_2 o_T$	a sequence of <i>T</i> observations , each one drawn		
$O = O_1 O_2 O_T$	from a vocabulary $V = v_1, v_2,, v_V$		
	a sequence of observation likelihoods , also called		
$B = b_i(o_t)$	emission probabilities, each expressing the probability		
	of an observation o_t being generated from a state q_i		
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^n \pi_i = 1$		

The Hidden Markov Model

A first-order hidden Markov model instantiates two simplifying assumptions. First, as with a first-order Markov chain, the probability of a particular state depends only on the previous state:

Markov Assumption:
$$P(q_i|q_1,...,q_{i-1}) = P(q_i|q_{i-1})$$
 (1)

Second, the probability of an output observation o_i depends only on the state that produced the observation q_i and not on any other states or any other observations:

Output Independence:
$$P(o_i|q_1,...,q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_1,...,q_t,o_1,...,o_t)$$
 (2)

The components of an HMM tagger

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$
(3)

$$P(VB|MD) = \frac{C(MD, VB)}{C(MD)} = \frac{10471}{13124} = .80$$
 (4)

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$
 (5)

$$P(will|MD) = \frac{C(MD, will)}{C(MD)} = \frac{4046}{13124} = .31$$
 (6)

HMM tagging as decoding

HMM tagging as decoding

$$\widehat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$
(7)

The way we'll do this in the HMM is to use Bayes' rule to instead compute:

$$\widehat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} \frac{P(w_1...w_n|t_1...t_n)P(t_1...t_n)}{P(w_1...w_n)}$$
(8)

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1...w_n | t_1...t_n) P(t_1...t_n)$$
 (9)

$$P(w_1...w_n|t_1...t_n) \approx \prod_{i=1}^n P(w_i|t_i) \quad P(t_1...t_n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$
(10)

HMM tagging as decoding

$$\widehat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n) \approx \underset{t_1...t_n}{\operatorname{argmax}} \prod_{i=1}^{n} \underbrace{P(w_i | t_i) P(t_i | t_i - 1)}_{(11)}$$

The Viterbi Algorithm

```
function VITERBI(observations of len T. state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                          ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
\textit{bestpathprob} \leftarrow \max_{s=1}^{N} \ \textit{viterbi}[s,T] \hspace{1cm} ; \text{termination step}
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath 		— the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

The Viterbi Algorithm

$$v_t(j) = \max_{q_1, \dots, q_{t-1}} P(q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$
 (12)

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$
 (13)

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** y from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the the current state j

The Viterbi Algorithm

Working through an example

	NNP	MD	VB	JJ	NN	RB	DT
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Table: The A transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.

Working through an example

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Table: Observation likelihoods B computed from the WSJ corpus without smoothing, simplified slightly

Working through an example

Conditional Random Fields (CRFs)

$$\widehat{Y} = \underset{Y}{\operatorname{argmax}} p(Y|X)
= \underset{Y}{\operatorname{argmax}} p(X|Y)p(Y)
= \underset{Y}{\operatorname{argmax}} \prod_{i} p(x_{i}|y_{i}) \prod_{i} p(y_{i}|y_{i-1})$$
(14)

CRF to discriminate among the possible tag sequences:

$$\widehat{Y} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(Y|X) \tag{15}$$

Multinomial logistic regression (Recap from J&M, ch. 5)

- multi-nominal regression, also called softmax regression or maxent classifier, is used when more than two labels are needed for classification, that is:
 - when we want to label the target variable y of each data instance xⁱ with a unique label k, taken from a set of K classes.
 - We can represent the correct target value by a one-hot vector that assigns the value 1 to the correct class and the value 0 to all other classes.
 - For each prediction \hat{y} , we can calculate the probability for each class $\mathbf{k} \in \mathbf{K}$ classes, using the **softmax** function.

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j=1}^k exp(z_j)} \quad 1 \le i \le k$$
 (16)

Conditional Random Fields (CRFs)

Let's assume we have K features, with a weight w_k for each feature F_k :

$$p(Y|X) = \frac{exp\left(\sum_{k=1}^{K} w_k F_k(X, Y)\right)}{\sum_{Y' \in \mathcal{Y}} exp\left(\sum_{k=1}^{K} w_k F_k(X, Y')\right)}$$
(17)

Applying Softmax in Logistic Regression

The probability of each output class \hat{y}_k can be computed as:

$$p(\mathbf{y}_k = 1|x) = \frac{exp(\mathbf{w}_k \cdot \mathbf{x} + \mathbf{b}_k)}{\sum_{j=1}^k exp(\mathbf{w}_j \cdot \mathbf{x} + b_j)}$$
(18)

The vector $\hat{\mathbf{y}}$ of output probabilities for each of the K classes can be computed by:

$$\hat{\mathbf{y}} = softmax(\mathbf{X}\mathbf{w} + \mathbf{b}) \tag{19}$$

Conditional Random Fields (CRFs)

It's common to also describe the same equation by pulling out the denominator into a function Z(X):

$$p(Y|X) = \frac{1}{Z(X)} exp\left(\sum_{k=1}^{K} w_k F_k(X, Y)\right)$$
(20)

$$Z(X) = \sum_{Y' \in \mathcal{Y}} exp\left(\sum_{k=1}^{K} w_k F_k(X, Y')\right)$$
 (21)

$$F_k(X,Y) = \sum_{i=1}^n f_k(y_{i-1}, y_i, X, i)$$
 (22)

$$\mathbb{1}\{x_i = the, y_i = \mathsf{DET}\}
\mathbb{1}\{y_i = \mathsf{PROPN}, x_{i+1} = Street, y_{i-1} = \mathsf{NUM}\}
\mathbb{1}\{y_i = \mathsf{VERB}, y_{i-1} = \mathsf{AUX}\}$$
(23)

$$f_{3743}: y_i = VB \text{ and } x_i = \text{back}$$

 $f_{156}: y_i = VB \text{ and } y_{i-1} = MD$ (24)
 $f_{99732}: y_i = VB \text{ and } x_{i-1} = \text{will and } x_{i+2} = \text{bill}$

```
x_i contains a particular prefix (perhaps from all prefixes of length \leq 2) x_i contains a particular suffix (perhaps from all suffixes of length \leq 2) x_i's word shape x_i's short word shape
```

For example the word *well-dressed* might generate the following non-zero valued feature values:

```
prefix(x_i) = w

prefix(x_i) = we

suffix(x_i) = ed

suffix(x_i) = d

word-shape(x_i) = xxxx-xxxxxxx

short-word-shape(x_i) = x-x
```

Features for CRF Named Entity Recognizers

Typical features for a feature-based NER system:

identity of w_i , identity of neighboring words embeddings for w_i , embeddings for neighboring words part of speech of w_i , part of speech of neighboring words presence of w_i in a **gazetteer** w_i contains a particular prefix (from all prefixes of length ≤ 4) w_i contains a particular suffix (from all suffixes of length ≤ 4) word shape of w_i , word shape of neighboring words short word shape of w_i , short word shape of neighboring words gazetteer features

```
prefix(x_i) = L

prefix(x_i) = L'

prefix(x_i) = L'O

prefix(x_i) = L'Oc

word-shape(x_i) = X'Xxxxxxx
```

suffix
$$(x_i)$$
 = tane
suffix (x_i) = ane
suffix (x_i) = ne
suffix (x_i) = e
short-word-shape (x_i) = X'Xx

Words	POS	Short shape	Gazetteer	BIO Label
Jane	NNP	Xx	0	B-PER
Villanueva	NNP	Xx	1	I-PER
of	IN	X	0	0
United	NNP	Xx	0	B-ORG
Airlines	NNP	Xx	0	I-ORG
Holding	NNP	Xx	0	I-ORG
discussed	VBD	X	0	O
the	DT	X	0	0
Chicago	NNP	Xx	1	B-LOC
route	NN	X	0	O
•		•	0	0

Table: Some NER features for a sample sentence, assuming that Chicago and Villanueva are listed as locations in a gazetteer. We assume features only take on the values 0 or 1, so the first POS feature, for example, would be represented as $\mathbb{1}\{POS = NNP\}$.

Inference and Training for CRFs

$$\begin{split} \widehat{Y} &= \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(Y|X) \\ &= \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z(X)} exp\left(\sum_{k=1}^K w_k F_k(X,Y)\right) \\ &= \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \exp\left(\sum_{k=1}^K w_k \sum_{i=1}^n f_k(y_{i-1},y_i,X,i)\right) \\ &= \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \sum_{k=1}^K w_k \sum_{i=1}^n f_k(y_{i-1},y_i,X,i) \\ &= \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} \sum_{i=1}^n \sum_{k=1}^K w_k f_k(y_{i-1},y_i,X,i) \end{split}$$

Inference and Training for CRFs

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$
 (25)

which is the HMM implementation of

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) P(s_j|s_i) P(o_t|s_j) \quad 1 \le j \le N, 1 < t \le T \quad (26)$$

The CRF requires only a slight change to this latter formula, replacing the a and b prior and likelihood probabilities with the CRF features:

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) \sum_{k=1}^{K} w_k f_k(y_{i-1}, y_i, X, i) \quad 1 \le j \le N, 1 < t \le T$$
(27)