

Market risk measures with stochastic liquidity horizon by Shannon wavelet expansions

G. Colldeforns-Papiol^{1,2} L. Ortiz-Gracia^{1,2} C.W. Oosterlee^{3,4}

¹Centre de Recerca Matematica (Barcelona, Spain), ²Universitat Autonoma de Barcelona (Barcelona, Spain), ³Delft University of Technology (Delft, The Netherlands), ⁴Centrum Wiskunde & Informatica (Amsterdam, The Netherlands)

Student Computational Finance Day 2016 Delft, 23rd of May 2016

Outline

Outline

- Motivation
 - Risk measures
 - VaR and ES
 - Crisis
 - Our purpose
- SWIFT
 - Multiresolution analysis
 - Shannon wavelets
 - SWIFT
- Efficient computation of liquidity-adjusted risk measures
 - VaR by SWIFT
 - ES by SWIFT
 - VaR and ES with SLH
 - Results
- 4 Conclusions

Motivation

Risk measures

Definition

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a time horizon Δt . Denote by \mathcal{L} the set of all random variables on (Ω, \mathcal{F}) (representing the portfolio returns/loses over a time horizon Δt). Then, **risk measures** are real-valued maps $\rho : \mathcal{L} \to \mathbb{R}$.

A risk measure is **coherent** if it satisfies: normality, monotonicity, sub-additivity, positive homogeneity and translation invariance.

- Use: determine the amount of currency to keep in reserve.
- Purpose: make the risks taken by financial institutions
 banks
 insurance companies
 acceptable to the regulator.
- The most famous: VaR and ES.

Value at Risk (VaR) and Expected Shortfall (ES)

Definition

Given a confidence level $\alpha \in (0,1)$. Being L a loss.

The VaR_{α} is the smallest number I such that the probability that the loss L exceeds I is at most $(1 - \alpha)$. I.e.

$$VaR_{\alpha}(L) = \inf\{I \in \mathbb{R} : P(L > I) \le 1 - \alpha\}.$$

The ES_{α} is defined by

$$\mathsf{ES}_{\alpha}(L) := \frac{1}{1 - \alpha} \int_{\alpha}^{1} \mathsf{VaR}_{u}(L) \, du.$$

- VaR is a quantile of the loss distribution.
- VaR is not a coherent risk measure, not satisfies sub-additivity.
- ES is more sensitive to the shape of the loss distribution in the tail of the distribution. ES is a coherent risk measure.

The financial crisis, review of BCBS

Basel Committee of Banking Supervision (BCBS) stated:

- The crisis exposed:
 - Weaknesses in the framework design for capitalizing trading activities.
 - Insufficient capital level required against trading book exposures to absorb losses.

- Review/assessment:
 - From VaR to ES, due to the inability to capture the risk in the tail.
 - Incorporate market liquidity risk. The time it takes to liquidate a risk position varies; thus, the horizon should be extended.

Our purpose

- Produce a set of numerical techniques to address the challenge of the VaR and ES computation under a stochastic liquidity horizon framework (idea from Brigo and Nordio, 2015).
- To do so, we use SWIFT. Because:
 - In the scenarios we work, the characteristic function of the density is know. Thus, makes sense a Fourier inversion method.
 - Densities with stochastic holding period have fat tails, so we do no need to relay on a truncation range.
 - Make use of wavelets properties to get the risk measures values.
 - Analysis of the error is available.
 - There are rules on how to select the parameters.

SWIFT Shannon Wavelet Inverse Fourier Technique

Multiresolution analysis (1)

Definition

Let $V_j, j = \cdots, -2, -1, 0, 1, 2, \cdots$ be a sequence of subspaces of functions in $L^2(\mathbb{R})$. The collection of spaces $(V_j)_{j \in \mathbb{Z}}$ is called a **multiresolution analysis (MRA)** of $L^2(\mathbb{R})$ with scaling function $\phi \in V_0$, if the following conditions hold

- **1** (nested) $V_j \subset V_{j+1}$,
- **(separation)** \cap $V_j = \{0\},$
- (scaling) The function f(x) belongs to V_j if and only if the function f(2x) belongs to V_{j+1} ,
- **(o** (orthonormal basis) The function ϕ belongs to V_0 and the set $\{\phi(x-k), k \in \mathbb{Z}\}$ is an orthonormal basis (using the L^2 inner product) for V_0 .

MRA defines general wavelet structures in $L^2(\mathbb{R})$.

Multiresolution analysis (2)

The set of functions

$$\{\phi_{m,k}(x) = 2^{m/2}\phi(2^mx - k); k \in \mathbb{Z}\}$$

is an orthonormal basis for V_m .

Lemma

Let us define $\mathcal{P}_m f$ as the **orthogonal projection** of a function $f \in L^2(\mathbb{R})$ on the space V_m , constructed by

$$\mathcal{P}_m f(x) = \sum_{k \in \mathbb{Z}} c_{m,k} \phi_{m,k}(x),$$

where $c_{m,k} = \int_{\mathbb{R}} f(x) \bar{\phi}(x) dx$. Then, the **convergence** of the projection $\mathcal{P}_m f(x)$ holds in the $L^2(\mathbb{R})$ – norm.

Shannon wavelets

Cardinal sine function (sinc):

$$\phi(x) = \operatorname{sinc}(x) := \frac{\sin(\pi x)}{\pi x}$$
 (Shannon scaling function).

Simplicity in the Fourier domain:

$$\hat{\phi}(\omega) := \int_{\mathbb{R}} \phi(x) \mathrm{e}^{-i\omega x} dx = \mathrm{rect}\left(rac{\omega}{2\pi}
ight).$$

SWIFT (Shannon Wavelet Inverse Fourier Technique)

SWIFT (From: Ortiz-Gracia and Oosterlee, 2015)

Let us consider a density function $f \in L^2(\mathbb{R})$. Assuming \hat{f} to be known. Following MRA we approximate f by f_m :

$$f(x) \approx f_m(x) := \sum_{k=k_1}^{k_2} c_{m,k}^* \phi_{m,k}(x),$$

where $c_{m,k}^* \approx c_{m,k} = \langle f, \phi_{m,k} \rangle$ (scaling coefficients).

Approximation technique:

- Step 1: Projection on the space V_m (seen).
- Step 2: Truncation of the infinite sum.
- Step 3: Approximation of the scaling coefficients by assuming known the characteristic function of f.

SWIFT (Sum truncation (1))

Lemma

The scaling coefficients $c_{m,k}$ satisfy,

$$\lim_{k\to\pm\infty}c_{m,k}=0.$$

SWIFT (Sum truncation (2))

Proof.

The set of Shannon scaling functions in V_m is defined as

$$\phi_{m,k}(x) = 2^{m/2} \frac{\sin(\pi(2^m x - k))}{\pi(2^m x - k)}, \ k \in \mathbb{Z}.$$

Thus, for $h \in \mathbb{Z}$,

$$\phi_{m,k}\left(\frac{h}{2^m}\right)=2^{m/2}\delta_{k,h},$$

being $\delta_{k,h}$ the Kronecker delta. It gives us that

$$\mathcal{P}_m f\left(\frac{h}{2^m}\right) = 2^{m/2} \sum_{k \in \mathbb{Z}} c_{m,k} \delta_{k,h} = 2^{m/2} c_{m,h}.$$

Since f is a density function, we assume it to tend to zero at plus and minus infinity.

SWIFT (Coefficients approximation)

To do so, we make use of Vieta's formula.

Vieta's formula

$$\operatorname{sinc}(t) := \frac{\sin(\pi t)}{(\pi t)} \approx \frac{1}{2^{J-1}} \sum_{j=1}^{2^{J-1}} \cos\left(\frac{2j-1}{2^J} \pi t\right).$$

Using Vieta's formula and some algebraic manipulation, one arrives to the coefficients expression.

Coefficients approximation

$$c_{m,k} pprox c_{m,k}^* := rac{2^{m/2}}{2^{J-1}} \sum_{j=1}^{2^{J-1}} \mathsf{Re} \left[\hat{f} \left(rac{(2j-1) \pi 2^m}{2^J}
ight) \mathrm{e}^{rac{\mathrm{i} k \pi (2j-1)}{2^J}}
ight].$$

Note the need of the characteristic function.

SWIFT: observations

 We can evaluate the density at the extremes of the interval and compute the area underneath the density function as a byproduct, since

$$f_m\left(\frac{h}{2^m}\right)=2^{\frac{m}{2}}c_{m,k},\,h\in\mathbb{Z}.$$

Then

$$\mathcal{A} = rac{1}{2^{rac{m}{2}}} \left(rac{c_{m,k_1}}{2} + \sum_{k_1 < k < k_2} c_{m,k} + rac{c_{m,k_2}}{2}
ight).$$

Efficient computation of liquidity-adjusted risk measures

VaR with SWIFT (deterministic Δt)

- We recover the density function of the portfolio change ΔV from its Fourier transform, carrying out the Fourier inversion by means of SWIFT.
- We speed up the computation by using a FFT algorithm.
- We look for the α -quantile of the distribution. To do so:
 - 1. We find h and h+1 such that $2^{\frac{m}{2}}$ VaR is located between these two values (it is a sum of trapezoids).

2. We can accurately compute the VaR using a bisection method within the interval $\left[\frac{h}{2m}, \frac{h+1}{2m}\right]$.

ES with SWIFT (deterministic Δt)

Using Vieta's formula

$$\mathsf{ES}(\alpha) = \frac{1}{1-\alpha} \int_{\mathsf{VaR}(\alpha)}^{+\infty} x f(x) \, dx$$
$$\approx \frac{1}{1-\alpha} \int_{\mathsf{VaR}(\alpha)}^{b} x \sum_{k=k_1}^{k_2} c_{m,k} \phi_{m,k}(x) \, dx.$$

VaR and ES with SLH (stochastic Δt)

- Let us assume we have the Fourier transform of the deterministic situation: $\hat{t}_{\Delta V}$.
- We assume that the stochastic holding period Δt follows a process with density function $f_{\Delta t}$.
- Making use of the rule $\mathbb{E}\left[\mathbb{E}\left[X\mid Y\right]\right]=\mathbb{E}\left[X\right]$, we have

$$\hat{f}_{\Delta V(\Delta t)}\left(u\right) = \int_{\mathbb{R}} \hat{f}_{\Delta V}\left(u\right) f_{\Delta t}\left(h\right) dh.$$

 Then, using a numerical integration quadrature we compute VaR and ES as in the deterministic situation.

Results: Portfolio dynamics as GBM

- There exists closed form solution.
- The characteristic function of the log-return portfolio change is

$$\hat{f}_{\Delta X_{\Delta t}}(u) = e^{-i\mu u\Delta t - \frac{(\sigma u)^2}{2}\Delta t}.$$

Results: Under delta-gamma approach(1)

Delta-gamma approximation

It consists of approximate the change in a portfolio value ΔV by

$$\Delta V \approx \Delta V_{\gamma} := \Theta \Delta t + \delta^{T} \Delta S + \frac{1}{2} \Delta S^{T} \Gamma \Delta S,$$

where
$$S(t) = (S_1(t), \dots, S_p(t))^T$$
 are the risk factors, $\Theta = \frac{\partial V}{\partial t}$, $\delta_i = \frac{\partial V}{\partial S_i}$ and $\Gamma_{i,j} = \frac{\partial^2 V}{\partial S_i \partial S_i}$.

• (Mathai and Provost, 1992) It is known the characteristic function of $f_{\widetilde{\Delta V}_{\gamma}}$ under the assumption that ΔS follows a normal distribution.

Results: Under delta-gamma approach(2)

Table: Bernoulli SLH. Reference prices by Monte Carlo.

Holding Period	Prob - case 1	Prob - case 2	Prob - case 3
10	0.25	0.5	0.75
30	0.75	0.5	0.25
VaR	3.0430	3.0418	3.0364
ES	3.0436	3.0432	3.0414

Risk measures log10-errors

Conclusions

Conclusions

- SWIFT method has been presented.
- SWIFT method has been used to compute VaR and ES.
- The holding period in VaR and ES has been considered stochastic to reflect the liquidity risk.
- We exhibited the convergence of the method by means of some examples.

Thank you! ⊚ ⊚ ⊚