Finding out the Topology of a WSN Network

Presentation by: Alexander Fougner, Aliaksandr Ivanou,

Frej Knutar, Engla Ling and Georgios Ziogas

The Problem

- Large WSN
- Finding bad quality links
- Find missing nodes
- Find optimal sink
- Find CDS

Solution

- Collect neighbourhood contexts
- Data collection to sink
 - LQI
 - RSSI
 - ETX
 - received packets
 - lost packets
- Data analysis and representation

Solution

Contiki, Cooja and Z1 nodes

RIME stack

collect

broadcast

NetworkX

LQI and RSSI

- Link Quality Indicator
 - strength of the received signal and errors received
 - reliability
- Received signal strength indicator
 - strength of the received signal in dBm

ETX - Expected transmissions

- Probabilistic measure for expected transmissions on a link
- 1 = Perfect
- Infinity = non-functional link

Collection tree protocol - CTP

Uses ETX to decide routing ETXroot = 0 ETXnode = ETXparent + ETXparentlink

Simulation in Cooja

- Emulate TI MSP430 nodes
- Serial2pty (virtual serial interface) at sink

NetworkX

Python package for creating graphs.

- Collect output information data from sink.
 - Serial output saved to log files.
- Model our network
 - by analyzing this information.
 - plot the MST of our nodes.

Grid

Informationsteknologi

ETX MST

ETX Graph ETX MST

Ring

ETX Graph ETX MST

Demo

- Start the nodes
- 2. Wait for broadcast
- Collect the data
- 4. Evaluate the data output

Minimum Spanning Tree - MST

Finding the best path Dijkstra's algorithm

- ETX
 - Basic algorithm
- Normalized RSSI and LQI
 - All edge weights are between 0 and 1.
 - The best edge has weight 1
 - The worst edge has a weight 0
 - Product instead of sum

Optimal Sink Selection

- Dijkstra's Algorithm
 - Run on all nodes
 - Best MST in regards to the sum of all edge weights within the MST is the base for the sink selection.

Connected Dominating Set - CDS

- creating a backbone in the WSN
- creating minimum CDS
- creating kmCDS

Improvements

- Clustering
 - Data collection traffic, divided into optimal subnetworks. More sink nodes.
- Dynamically adapting WSN
- Protothreads

Questions?