劣モジュラ最適化

2023年2月20日

目次

第1章	基礎	2
1.1	劣モジュラ関数の定義と具体例	2
1.2	劣モジュラ多面体と基多面体	3
1.3	ロヴァース拡張	4
第2章	劣モジュラ最適化	5
第3章	実装	6
第4章	42 +v -L +h	_

第1章

基礎

1.1 劣モジュラ関数の定義と具体例

定義 1.1.1(劣モジュラ関数 その1) n 個の要素からなる有限集合 $V=\{1,\ldots,n\}$ と、 V を台集合とする集合関数 $f:2^V\to\mathbb{R}$ を考える。V の任意の部分集合 $S,T\subset V$ について次の不等式が成立するとき、 f を劣モジュラ関数と呼ぶ。

$$f(S) + f(T) \ge f(S \cup T) + f(S \cap T) \tag{1.1}$$

定義 1.1.2(劣モジュラ関数 その 2) f と V は先ほどと同じものとする。 $S \subset T$ を満たす V の任意の部分集合 $S,T \subset V$ と T に含まれない任意の要素 $i \in V-T$ について次の不等式が成立するとき、 f を劣モジュラ関数と呼ぶ。

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) + f(T) \tag{1.2}$$

1.2 を限界効用逓減と言う。

命題 1.1.3(二つの定義の等価性) 劣モジュラ関数の二つの定義 1.1.1 と 1.1.2 は等価である。

(証明) $1.1 \implies 1.2$ について。 $S \subset T, i \in V - T$ とする。

$$f(S \cup \{i\}) + f(T) \ge f((S \cup \{i\}) \cup T) + f((S \cup \{i\}) \cap T)$$

$$\implies f(S \cup \{i\}) + f(T) \ge f(T \cup \{i\}) + f(S)$$

$$\implies f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T)$$

 $1.2 \implies 1.1$ について。S,T を V の任意の部分集合とする。 $S \subset T$ の場合、1.1 は自明である。 $S \not\subset T$ の場合を考える。 $\{i_1,\ldots,i_m\} = S - T$ とする。集合の増加列を考え

る: $S_i, T_i (j = 0, ..., m)$ 。

$$S_0 = S \cap T, S_j = S_{j-1} \cup \{i_j\}$$

$$T_0 = T, T_j = T_{j-1} \cup \{i_j\}$$

上の式の j は $j=1,\ldots,m$ とする。 $S_m=S,T_m=S\cup T$ が成立する。また、 1.2 より、 $f(S_j)-f(S_{j-1})\geq f(T_j)-f(T_{j-1})(j=1,\ldots,m)$ が成立する。この式を足し合わせることで証明できる。

$$f(S_m) - f(S_0) \ge f(T_m) - f(T_0)$$

$$\implies f(S) - f(S \cap T) \ge f(S \cup T) - f(T)$$

$$\implies f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$$

例 1.1.4 (カバー関数)

例 1.1.5(グラフのカット関数)

例 1.1.6 (凹関数が生成する関数)

例 1.1.7 (Matroid rank functions)

例 1.1.8 (Entropy functions)

1.2 劣モジュラ多面体と基多面体

 $V=\{1,\dots,n\}, f:2^V\to\mathbb{R}$ で、 f は正規化された劣モジュラ関数とする(正規化とは $f(\{\})=0$ が成り立つ関数のこと)。 f を使って、 \mathbb{R}^n に二つの凸多面体 P(f), B(f) を定義できる。

定義 1.2.1(劣モジュラ多面体、基多面体) $x=(x_1,\ldots,x_n)$ を n 次元の変数ベクトルとし、V の各部分集合を S とする。 $x(S)=\sum_{i\in S}x_i$ として、劣モジュラ多面体 (submodular polyhedron) P(f) を次のように定義する。

$$P(f) = \{x \in \mathbb{R}^n | x(S) \le f(S), S \subset V\}$$

$$\tag{1.3}$$

また、基多面体 (base polytope) B(f) は次のように定義する。

$$P(f) = \{x \in P(f) | x(V) = f(V)\}$$
(1.4)

命題 1.2.2 B(f) は有界

(証明)

$$x_i \le f(\{i\})$$

$$x(V - \{i\}) \le f(V - \{i\}) \iff x(V) - x_i \le f(V - \{i\})$$

$$x(V) = f(V)$$

$$\implies f(V) - f(V - \{i\}) \le x_i \le f(\{i\})$$

命題 1.2.3 B(f) の端点と P(f) の端点は一致する。

集合 V を並び替えた線形順序 (linear ordering) $L=(i_1,\ldots,i_n)$ を考える。 n! 通りある。この時、 L に対応する基多面体 B(f) の端点 x^L を定めることができる。

1.3 ロヴァース拡張

第2章

劣モジュラ最適化

第3章

実装

- https://github.com/OptMist-Tokyo/SubmodularFunctionMinimization
- https://github.com/joschout/SubmodularMaximization

第4章

参考文献

- https://proceedings.mlr.press/v119/breuer20a.html
- https://fujiik.github.io/
- https://viterbi-web.usc.edu/~shanghua/teaching/Fall2021-670/krause12survey.pdf
- https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1634.pdf
- http://papers.neurips.cc/paper/6652-continuous-dr-submodular-maximization-structure-and-algorithms.pdf