УДК 502.3:504.064

УПРАВЛЕНИЕ РИСКОМ В ЖИЗНЕННОМ ЦИКЛЕ ОБОРУДОВАНИЯ НЕФТЕХИМИЧЕСКОГО КОМПЛЕКСА

С.А. Зайдес – д-р техн. наук, профессор, **А.В. Протасов** – канд. техн. наук (*Иркутский национальный исследовательский технический университет*)

В настоящее время в российской химической промышленности особенно актуально встает вопрос повышения конкурентоспособности предприятий и продукции. Это определяет создание и внедрение сложных технических систем (СТС), наличие высококвалифицированного персонала, а также создание инфраструктуры.

В последнее время в химической отрасли появилось большое число мини-предприятий, оснащенных высокотехнологическим оборудованием, а также опасными производственными объектами (ОПО): печи, теплообменники, компрессорные установки, газовое хозяйство, подъемники и т. д. Их развитие показывает, что для эффективного использования ресурсов в производственном процессе необходимы его совершенствование, грамотное управление, внедрение инновационных знаний и технологий для повышения качества и безопасности.

В связи с принятием Федеральных законов № 116-ФЗ «О промышленной безопасности опасных производственных объектов» и № 184-ФЗ «О техническом регулировании», особую актуальность приобрели разработка и внедрение научно обоснованных методов риск-менеджмента, позволяющих всесторонне оценить возникновение чрезвычайных ситуаций (ЧС): отказ, авария, инцидент, несчастный случай и другие на опасном производственном объекте, а также повысить безопасность СТС.

Постоянное развитие инновационных технологий требует оперативно, с минимальными затратами определять новые факторы, воздействующие на количест-

венные и качественные показатели риска возникновения чрезвычайных ситуаций. Остается открытым вопрос комплексного, многофакторного рассмотрения возможностей использования интеллектуальных информационных технологий оперативного контроля и управления оборудованием, информационной поддержки принятия решений и как следствие снижения рисков и последствий ЧС. В то же время проблема концентрации на системе управления безопасностью приводит к тому, что управление риском отходит на второй план, что постепенно приводит к деградации оборудования и возникновению аварийных ситуаций.

Целью данного исследования является интеграция индексного метода оценки риска СТС и динамического моделирования с использованием модифицированной сети Петри в программный комплекс мониторинга параметров технологического оборудования в режиме on-line. Это позволит оперативно принимать управленческие решения по прогнозированию и предотвращению отказов СТС.

Полный жизненный цикл изделий обычно состоит из следующих циклов: мониторинг спроса и предложения на основе технологического прогнозирования, разработка технологий и создание научно-технического задела на основе системы управления рисками, интегрированное проектирование и производство, эксплуатация, ремонт, техническое обслуживание и утилизация.

Для управления жизненным циклом целесообразно использовать различные методы, шаблоны и инструменты управления. Координация работ в точках «стыка» циклов и анализ (управление) рисков в указанных точках требуют особого подхода.

Каждый цикл, в свою очередь, состоит из отдельных этапов. Этапы технического проектирования и содержание выполняемых на них работ строго определены ГОСТом. Функциональное существование технических систем проходит внутри организационных систем, причем отдельные его циклы, и даже этапы, иногда обеспечиваются разными организациями [1].

На стадии эксплуатации проводятся доставка системы, ввод ее в эксплуатацию, эксплуатация, модернизация и снятие с эксплуатации. Анализ причин отказов (аварий) технических систем [2, 3] показал, что именно на этой стадии проявляется основная причина — техническая неисправность, включая коррозионно-механические повреждения материала, нарушения режимов эксплуатации и т. д. (рис. 1).

В настоящее время динамическое моделирование является хорошим инструментом для оценки и понимания переходных физических и химических процессов, а также для мониторинга систем управления безопасностью СТС.

Концепция системного подхода для анализа, оценки и управления техногенным риском, а также по выявлению первопричин отказа оборудования представлена на рис. 2. Под управлением риском понимается адекватное определение опасностей, угроз, а также негативных последствий и разработка комплексных мероприятий по снижению последствий с помощью системы диагностирования, предупреждения и мониторинга.

Объектами контроля систем мониторинга и управления инженерными системами являются технологические процессы, подсистемы жизнеобеспечения и

безопасности, такие, как теплоснабжение, инженернотехнический комплекс пожарной безопасности объекта, системы оповещения и обнаружения повышенного уровня радиации, значительной концентрации токсичных и взрывоопасных концентраций веществ и др.

В целях повышения оперативности информационного обеспечения анализа технологических параметров, для мониторинга СТС с возможностью описания поведения ее элементов на высоком уровне детализации все большее применение находит метод имитационного моделирования, позволяющий исследовать динамику взаимодействия элементов системы во времени, контроля протекания процессов и принятия решения.

Одной из основных проблем при координации работы информационно-управляющих и диагностических систем является обеспечение динамической интеграции всех имеющихся разнородных параметров, в том числе и для оценки риска, в единую наглядную форму, отражающую все происходящие изменения, что позволит выдавать соответствующие варианты решений.

Для создания математической модели СТС предлагается использовать модифицированную сеть Петри (СП) [4, 5], где определены основные понятия, связанные со структурой и поведением сети, которые используются для создания и управления моделями. Одним из основных свойств сети Петри является способность отражать динамические характеристики моделей. Использование иерархических сетей Петри с приоритетами позволяет моделировать на различных уровнях сети состояние и функционирование как технологического процесса в целом, так и отдельных аппаратов, машин, механизмов и их деталей.

При количественной оценке риска возникают некоторые проблемы, связанные с нахождением частотной оценкой возникновения ЧС вследствие неопределенности исходных данных. При этих обстоятельствах целесообразно использование экспертного подхода, но и он имеет ряд недостатков. Главные из них заключаются в том, что для репрезентативности оценки необходимо наличие достаточного числа экспертов.

Существующие индексные и балльные методы анализа риска позволяют исключить эти недостатки путем использования безразмерных индексных оценок специальных шкал безопасностей, приводимых в нормативных документах, как для определенных объектов, так и используемых веществ. Кроме того, индексные методы значительно упрощают вычисления.

В основе этих методов лежит принцип оценки числовым (балльным) значением факторов опасности, без учета составляющих технологических операций. Существует множество разнообразных способов индексирования и выявления наиболее опасных факторов для ОПО в различных областях промышленности.

Примером специализированного индексного метода, используемого на предприятиях химической промышленности, является усовершенствованный индексный метод «Дау Кемикал» (DOW – Dow's Fire and Explosion Index Hazard Classification Guide) [6, 7] для российской промышленности.

Согласно этому методу выделяются определенные производственные участки, для каждого из которых определяется фактор опасности материала M, характеризующий интенсивность энерговыделения при возгорании и оцениваемый в баллах в диапазоне 1... 40, и показатель опасности F в пределах 1...8.

Под фактором материала M понимается опасность используемых веществ; показатель опасности F включает в себя технические и технологические особенности оборудования.

Фактор материала определяют следующим способом: для отдельных производственных участков устанавливают потенциальные источники опасности (вещества) с соответствующими факторами опасности: количество вещества в оборудовании или технологической линии v, а также его индекс опасности I по специальной шкале. Показатели каждого источника опасности перемножаются, а результаты суммируются [6, 7].

$$M = \sum_{i=0}^{n} v \cdot I, \tag{1}$$

где n — число рассматриваемых веществ.

Показатель опасности F также разделяется на два показателя: f_1 и f_2 [6, 7].

$$F = f_1 \cdot f_2, \tag{2}$$

где f_1 характеризует условия увеличения или ослабления тяжести последствий (расположение аппарата на открытой площадке или в помещении, уровень опасности технологической операции, наличие системы оповещения и предупреждения ЧС; f_2 характеризует специфические опасности, связанные с увеличением возникновения аварийной ситуации: высокое давление, температура, число и тип нагревательных устройств, деградационные процессы и др.

Оценку степени опасности определяют с помощью индекса Дау (DOW) [7]

$$DOW = F \cdot M \tag{3}$$

согласно табл. 1 [7].

Таблица 1

Шкала индекса DOW

Значение индекса <i>DOW</i>	Степень опасности			
160	Малая (очень низкая)			
6196	Средняя (низкая)			
97127	Промежуточная (средняя)			
128158	Серьезная (высокая)			
Более 159	Очень серьезная (очень высокая)			

Качественную оценку риска осуществляют с помощью матрицы риска. На основе полученных данных можно осуществлять мониторинг за уровнем безопасности производственного комплекса в целом и отдельных аппаратов.

В основном индексные методы разрабатывались зарубежными компаниями для своих производств. Использование их на российских предприятиях, где эксплуатируется оборудование как отечественного, так и импортного производства, без должного адаптирования к законам РФ о промышленной безопасности может привести к резкому снижению уровня техногенной безопасности.

В основу получения индексов для оценки рисков для химического комплекса были приняты положения Федерального закона от 21.07.97 № 116-ФЗ «О промышленной безопасности опасных производственных объектов» и федеральных норм и правил (ФНиП) «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств».

Для фактора материала M предлагается использовать показатель категорий взрывоопасности технологических блоков (табл. 2) [8].

Таблица 2

Показатели категорий взрывоопасности технологических блоков

Категория взрывоопасности	$Q_{\scriptscriptstyle \mathrm{B}}$	Общая масса горючих веществ <i>т</i> , кг
I	> 37	> 5000
II	2737	20005000
III	< 27	< 2000

Относительный энергетический потенциал взрывоопасности $Q_{\rm B}$ технологического блока находится расчетным методом по формуле

$$Q_{\rm B} = \frac{1}{16,354} \sqrt[3]{E},\tag{4}$$

где $Q_{\rm B}$ — относительный энергетический потенциал взрывоопасности; E — общий энергетический потенциал взрывоопасности [8].

При расчете показателя E используются такие важные параметры эксплуатации оборудования, как давление, температура, физические и химические свойства используемых веществ, а также скорость истече-

ния опасных веществ из аппарата в случае возникновения ЧС.

В качестве показателя опасности f_1 использована характеристика класса взрывоопасной зоны (помещения), в зависимости от степени опасности применяемых веществ и особенностей технологических процессов (табл. 3). Данные по классам взрывоопасных зон взяты согласно [9].

Таблица 3

Показатель опасности f_1

Показатель f_1	1	2	3	4	5	6
Класс взрывоопасной зоны	B-I	B-Ia	В-Іб	В-Іг	B-II	B-IIa

Для показателя f_2 предлагается использовать характеристику химического аппарата согласно ГОСТ Р 52630-2012 «Сосуды и аппараты стальные сварные. Общие технические условия» — группа (от 1 до 5), в зависимости от содержащихся в них веществ и их рабочих параметров.

Согласно вышеизложенному были получены следующие интервалы индексов: фактора материала M=1...3, показателя опасности F=1...30 и, соответственно, значение предлагаемого индекса опасности объектов нефтехимического комплекса ($\text{ИO}_{\text{ОПО}}$) находится в диапазоне от 1 до 90.

Степень опасности определяется согласно табл. 4.

Таблица 4

Шкала индекса опасности ОПО

Значение индекса ИО _{опо}	Степень опасности	Показатель опасности
< 22	Высокая	1
2245	Средняя	2
4568	Малая	3
6890	Незначительная	4

Любая методология, используемая для анализа и оценки риска, должна количественно отвечать на вопрос: какому риску подвергается население региона в связи с промышленной деятельностью? В качестве такого критерия формально может быть использован показатель среднего риска для всего населения. При этом на основании поля потенциального риска можно и необходимо выделить из всего населения ту группу, которая потенциально может быть подвержена опасности.

Тяжесть последствий (уязвимость территории) предлагается определять через степень урбанизации территории (табл. 5) [10].

Таблица 5

Тяжесть последствий (уязвимость территории)

Плотность населения, тыс. чел./км ²	Тяжесть последствий (класс уязвимости)		
> 9,2	I (Очень высокая)		
6,919,2	II (Высокая)		
4,616,9	III (Средняя)		
2,34,6	IV (Низкая)		
< 2,3	V (Очень низкая)		

Уровень риска оценивается с помощью матрицы риска (табл. 6).

Таблина 6

Матрица риска

Показатель опасности	Тяжесть последствий (класс уязвимости)				
	1	2	3	4	5
1	1	2	3	4	5
2	2	4	6	8	10
3	3	6	9	12	15
4	4	8	12	16	20

В матрице ранжированы следующие уровни риска:

- 1. Высокая величина риска $(1 \le R \le 5)$;
- 2. Средняя величина риска ($5 \le R \le 10$);
- 3. Малая величина риска ($10 \le R \le 15$);
- 4. Незначительная величина риска ($15 \le R \le 20$).

Интеграция динамического моделирования с использованием модифицированной сети Петри, а также индексного метода позволила создать программное обеспечение, позволяющее проводить мониторинг систем, а также управлять риском возникновения аварийных (нештатных) ситуаций.

На основе разработанного программного обеспечения можно осуществлять мониторинг за уровнем безопасности производственного комплекса как в целом, так и отдельных аппаратов.

В качестве примера для расчета риска и уровня безопасности промышленного предприятия с исполь-

зованием предлагаемых предложений был рассмотрен процесс абсорбции. Абсорбция представляет собой химико-технологический процесс, включающий массоперенос между газообразным компонентом и жидким растворителем, осуществляемый в аппарате для контактирования газа с жидкостью.

В технологическую схему абсорбции примесей сжиженного природного газа (СПГ) входят следующие основные аппараты: абсорбер, резервуары, компрессор, насосы, десорбер, холодильник, теплообменник, а также емкости для сбора и хранения продукта. Принципиальная схема процесса абсорбции СПГ представлена на рис. 3, где изображен интерфейс информационной системы моделирования.

На данном примере показан расчет оценки риска возникновения нештатной ситуации в абсорбере. Результаты представлены в табл. 7.

Высокий уровень риска обусловливает необходимость проводить мероприятия по повышению безопасности данного объекта: постоянный мониторинг технологических параметров и при необходимости их изменение, смягчение условий эксплуатации, включение резервных аппаратов. Также возможны конструкторские и технологические решения по модернизации, повышению запасов устойчивости, прочности, изменению регламентов технического обслуживания, увеличению глубины и частоты диагностирования. Уровень риска определяется для любого аппарата технологической цепи, результаты анализа риска появляются во всплывающем окне при наведении курсором на технологический объект.

Таблица 7

Результаты оценки риска на основе системы индексов

№ п/п	Показатели	Значение	Примечание
1	Категория взрывоопасности <i>М</i>	1	-
2	Класс взрывоопасной зоны f_1	4 (<i>B–I</i> Γ)	-
3	Группа химического аппарата f_2	1	-
4	Индекс $MO_{O\Pi O} = M \cdot f_1 \cdot f_2$	4	-
5	Показатель опасности	1	-
6	Класс уязвимости	5	Плотность населения 1,2 тыс. чел./км ²
7	Уровень риска	5	Высокая величина риска

Параллельно данная система позволяет проводить мониторинг технологических параметров оборудования в режиме *on-line* — рабочая температура процесса, соотношение между количествами контактирующих абсорбента и газа (в данном случае для абсорбера — давление (см. рис. 3)). В случае их отклонения от нормы система выдает сообщение оператору о рекомендуемом принятии решения по устранению ошибки (уменьшению опасности), например открытие (закрытие) клапана.

Перед оператором постоянно представлены на табло измеряемые параметры, изменяемые во времени, в виде графика, в форме таблиц с перечнем оборудования и числовыми значениями.

В работе предложена концепция системного подхода для анализа, оценки и управления техногенным риском.

Разработана концепция индексного метода оценки техногенного риска нефтехимического комплекса на территории России, учитывающего особенности технологических процессов и оборудования в соответствии с нормативными требованиями о промышленной безопасности в Российской Федерации.

Предложенный подход к анализу риска позволяет упростить расчет и дает возможность агрегирования информации и приведения ее к единой шкале.

Проведена модификация существующего аппарата сетей Петри с целью получения формализма, направленного на исследование технологических процессов различной структуры для предотвращения отказов. Модифицированные сети Петри получаются путем расширения формализма цветных сетей Петри и введением меток с памятью, функциями прогнозирования, анализа и управления рисками сложных технических систем.

Интеграция динамического моделирования с использованием модифицированных сетей Петри, а также индексного метода позволила создать программное обеспечение, позволяющее проводить мониторинг технологических систем, а также управлять риском возникновения аварийных (нештатных) ситуаций.

ЛИТЕРАТУРА

1. Колчин А.Ф. Управление жизненным циклом продукции. – М.: Анахарсис, 2002. - 304 с.

- 2. Берман А.Ф. Деградация механических систем. Новосибирск: Наука, 1998. 320 с.
- 3. Мак-Ивили А.Дж. Анализ аварийных разрушений. М.: Техносфера, 2010. 416 с.
- 4. Питерсон Дж. Теория сетей Петри и моделирования систем: пер. с англ. М.: Мир, 1984. 264 с.
- 5. Протасов А.В., Вильвер П.Ю. Интелектуальная система обучения персонала основа обеспечения безопасности технологических процессов // Химическое и нефтегазовое машиностроение. 2013. № 6. С. 32–36.
- 6. Протасов А.В., Вильвер П.Ю. Особенности использования метода индексирования при анализе техногенного риска в России // Вестник ИрГТУ. 2011. № 11. С. 262—266. 7. Якуш С.Е., Эсманский Р.К. Анализ пожарных рисков. Часть І. Подходы и методы // Проблемы анализа риска. 2009. № 3. С. 8—27.
- 8. Федеральные нормы и правила в области промышленной безопасности «Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств» // Нормативные документы в сфере деятельности Федеральной службы по экологическому, технологическому и атомному надзору. Серия 09. Документы по безопасности, надзорной и разрешительной деятельности в химической, нефтехимической и нефтеперерабатывающей промышленности. Выпуск 37: 2-е изд., доп. М.: ЗАО НТЦ БП, 2013.
- 9. Смирнов Г.Г. Конструирование безопасных аппаратов для химических и нефтехимических производств. Л.: Машиностроение, 1988.-303 с.
- 10. Тридворнов А.В. Оценка природного, техногенного и комплексного рисков территориально-промышленных образований (на примере Красноярского края): дис. ... канд. техн. наук. Красноярск, 2008. 201 с.

LITERATURA

- 1. Kolchin A.F. Upravlenie zhiznennym tsiklom produktsii. M.: Anakharsis, 2002. 304 s.
- 2. Berman A.F. Degradatsiya mekhanicheskikh sistem. Novosibirsk: Nauka, 1998. 320 s.
- 3. Mak-Ivili A.Dzh. Analiz avariynykh razrusheniy. M.: Tekhnosfera, 2010. 416 s.
- 4. Piterson Dzh. Teoriya setey Petri i modelirovaniya sistem: per. s angl. M.: Mir, 1984. 264 s.
- 5. Protasov A.V., Vil'ver P.Yu. Intelektual'naya sistema obucheniya personala osnova obespecheniya bezopasnosti tekhnologicheskikh protsessov // Khimicheskoe i neftegazovoe mashinostroenie. 2013. № 6. S. 32–36.
- 6. Protasov A.V., Vil'ver P.Yu. Osobennosti ispol'zovaniya metoda indeksirovaniya pri analize tekhnogennogo riska v Rossii // Vestnik IrGTU. 2011. № 11. S. 262–266.
- 7. Yakush S.E., Esmanskiy R.K. Analiz pozharnykh riskov. Chast' I. Podkhody i metody // Problemy analiza riska. – 2009. – № 3. – S. 8–27.
- 8. Federal'nye normy i pravila v oblasti promyshlennoy bezopasnosti «Obshchie pravila vzryvobezopasnosti dlya vzryvopozharoopasnykh khimicheskikh, neftekhimicheskikh i neftepererabatyvayushchikh proizvodstv» // Normativnye dokumenty v sfere deyatel'nosti Federal'noy sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru. Seriya 09. Dokumenty po bezopasnosti, nadzornoy i razreshitel'noy deyatel'nosti v khimicheskoy, neftekhimicheskoy i neftepererabatyvayushchey promyshlennosti. Vypusk 37: 2-e izd., dop. M.: ZAO NTTs BP, 2013.
- 9. Smirnov G.G. Konstruirovanie bezopasnykh apparatov dlya khimicheskikh i neftekhimicheskikh proizvodstv. L.: Mashinostroenie, 1988. 303 s.
- 10. Tridvornov A.V. Otsenka prirodnogo, tekhnogennogo i kompleksnogo riskov territorial'no-promyshlennykh obrazovaniy (na primere Krasnoyarskogo kraya): dis. ... kand. tekhn. nauk. Krasnoyarsk, 2008. 201 s.