Второе задание по курсу «Аналитическая Механика»

От: 20 ноября 2020 г.

Содержание

1	Динамика II	2
	1.8 Геометрия масс	2
	1.9 Динамика твёрдого тела	4

1 Динамика II

1.8 Геометрия масс

11.8(7)

Запишем тензор квадрата расстояния

$$\widetilde{r_i}^{\mathrm{T}} \widetilde{r_i} = \begin{pmatrix} y_i^2 + z_i^2 & -x_i y_i & -x_i z_i \\ -x_i y_i & x_i^2 + y_i^2 & -y_i z_i \\ -x_i z_i & -y_i z_i & x_i^2 + y_i^2 \end{pmatrix} = \hat{j}_i, \tag{1.1}$$

суммируя, получим

$$\hat{J}_0 = \begin{pmatrix} J_x & -J_{xy} & -J_{xz} \\ -J_{xy} & J_y & -J_{yz} \\ -J_{xz} & -J_{yz} & J_z \end{pmatrix}. \tag{1.2}$$

В силу симметрии системы $J_x = J_y = J_z$, выбрав сферические координаты найдём J_z :

$$J_z = \int_M (y^2 + x^2) \, dm = \rho \int_V (y^2 + x^2) \, dV = \rho \int_0^R \int_0^{2\pi} \int_0^{\pi/2} r^4 \sin^3 \theta \, dr \, d\varphi \, d\theta = \frac{2}{5} R^5 \frac{1}{R^2} \left(\frac{4}{3} R^3 \rho \pi \right) = \frac{2}{5} M R^2. \tag{1.3}$$

11.12

Тензор инерции твердого тела в базисе (e_1, e_2, e_3) имеет такой вид

$$\hat{J} = \begin{pmatrix} A & 0 & 0 \\ 0 & B & -D \\ 0 & -D & C \end{pmatrix}, \quad D \neq 0.$$

Хотелось бы его к диагональному виду привести. Повернем оси вокруг оси Ox на некоторый угол α и приведём к диагональному виду

$$S^{\mathrm{T}}\hat{J}S = \begin{pmatrix} A' & 0 & 0 \\ 0 & B' & 0 \\ 0 & 0 & C' \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix}.$$

После нескольких монотонных операций (ограничив все на плоскость Oxy) получаем

$$S^{\mathrm{T}}JS\bigg|_{Oyz} = \begin{pmatrix} B\cos^2\alpha + C\sin^2\alpha + D\sin2\alpha & B\sin2\alpha/2 - C\sin2\alpha/2 - D\cos2\alpha \\ B\sin2\alpha/2 - C\sin2\alpha/2 - D\cos2\alpha & B\cos^2\alpha + C\cos^2\alpha - D\sin2\alpha \end{pmatrix},$$

откуда находим α

$$\cos 2\alpha = \frac{B - C}{\sqrt{4D^2 + (B - C)^2}}$$

и, соответсвенно,

$$A' = A, \quad B' = \frac{1}{2} \left(B + C + \sqrt{(B - C)^2 + 4D^2} \right), \quad C' = \frac{1}{2} \left(B + C - \sqrt{(B - C)^2 + 4D^2} \right). \tag{1.4}$$

Направляющие же векторы найдём, повернув базисные векторы

$$S\begin{pmatrix} e_2 \\ e_3 \end{pmatrix} = \begin{pmatrix} e_2' \\ e_3' \end{pmatrix}, \quad \Rightarrow \quad \begin{cases} e_2' = (e_2 + \operatorname{tg} \alpha e_3)/n_2, \\ e_3' = (-\operatorname{tg} \alpha e_2 + e_3)/n_3 \end{cases}$$

Возвращаясь в трёхмерие наш новый базис (который остается отнормировать)

$$e'_1 = (1, 0, 0), \quad e'_2 = (0, D, (B' - B)), \quad e'_3 = (0, C' - C, D).$$
 (1.5)

11.18

Поместим начало координат в центр масс (потому что так привычнее считать) и найдём тензор инерции по (1.1) и (1.2), аналогично (1.3), несколько раз проинтегрировав по параллелепипеду

$$J_z = \rho \int_V (x^2 + y^2) dV = \rho \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \int_{-c/2}^{c/2} dz (x^2 + y^2) = \frac{1}{12} m(a^2 + b^2),$$

Рис. 1: К задаче 11.18

Рис. 2: К задаче 11.27

Рис. 3: К задаче 11.27

аналогичные результаты получим для J_y, J_x

$$J_y = \dots = \frac{1}{12}m(a^2 + c^2), \qquad J_x = \dots = \frac{1}{12}m(b^2 + c^2).$$

Остается найти осевые моменты инерции

$$J_{xy} = \rho \int_{V} xy \, dV = \rho \frac{1}{16} a^2 b^2 c^2 = \frac{1}{16} mab, \quad J_y z = \dots = \frac{1}{16} mbc, \quad J_x z = \dots = \frac{1}{16} mac.$$

Таким образом

$$\hat{J}_O = \frac{1}{48} m \begin{pmatrix} 4(b^2 + c^2) & -3ab & -3ac \\ -3ab & 4(a^2 + c^2) & -3bc \\ -3ac & -3bc & 4(a^2 + b^2) \end{pmatrix}.$$

$$(1.6)$$

Кинетический момент найдём по определению, как

$$\mathbf{K}_O = \hat{J}_O \boldsymbol{\omega}, \quad \mathbf{K}_A = \hat{J}_A \boldsymbol{\omega},$$

где ω и \hat{J}_A

$$\hat{J}_A = \hat{J} + m\hat{j}_{OA}, \qquad \omega = \frac{\omega}{\sqrt{a^2 + b^2 + c^2}} (a, b, c)^{\mathrm{T}}$$

Заметим что \hat{j}_{OA} будет аналогичен (1.1), тогда осталось найти \mathbf{K}_{O}

$$\mathbf{K}_{O} = \hat{J}_{O}\boldsymbol{\omega} = \frac{\omega m}{48\sqrt{a^{2} + b^{2} + c^{2}}} \begin{pmatrix} a(b^{2} + c^{2}) \\ b(a^{2} + c^{2}) \\ c(a^{2} + b^{2}) \end{pmatrix}.$$

11.27

Проинтегрировав как в задачах 11.18 и 11.8(7) найдём, что относительно центра масс тензор инерции \hat{J}_O диска в главных осях имеет вид

$$\hat{J}_C = \frac{1}{4} mR^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \tag{1.7}$$

Кинетическая энергия тела может быть найдена, как

$$T = \frac{1}{2} \boldsymbol{\omega}^{\mathrm{T}} \hat{J}_O \boldsymbol{\omega} + \frac{1}{2} m v_O^2.$$

Запишем T для случая $\omega_1 \parallel Oz$, как сумму вращательной и поступательной энергии для двух дисков.

Поступательные, в силу геометрии системы, у дисков равны, первый диск вращается с угловой скоростью $\omega_{D1}=(0,\ 0,\ \omega+\omega_1)$, а второй с $\omega_{D2}=(0,\ \omega,\ \omega_1)$. Тензор инерции для второго диска аналогичен (1.7), только с 2 по оси Oy. Собирая всё вместе

$$T = 2 \times \frac{1}{2} m \omega_1^2 a^2 + \underbrace{\frac{1}{4} m R^2 (\omega + \omega_1)^2}_{\overrightarrow{\omega_{\text{T}_1}} \hat{J}_{0,\text{D1}} \overrightarrow{\omega_{\text{D1}}}} + \underbrace{\frac{1}{8} m R^2 \omega_1^2 + \frac{1}{4} m R^2 \omega^2}_{\overrightarrow{\omega_{\text{T}_2}} \hat{J}_{0,\text{D2}} \overrightarrow{\omega_{\text{D2}}}} = \frac{1}{2} m R^2 \omega^2 + \left(a^2 + \frac{3}{8} R^2\right) \omega_1^2 + \frac{1}{2} m R^2 \omega \omega_1.$$

Также заметим, что вопросы задачи симметричны с точностью до замены дисков, что упрощает нам дело в

плане поиска и записи ответа:

$$T_i = \frac{1}{2}mR^2\omega^2 + \left(a^2 + \frac{3}{8}R^2\right)\omega_i^2 + \frac{1}{2}mR^2\omega\omega_i, \qquad i = 1, 2.$$
 (1.8)

11.92

Найдём тензор инерции для точки B по (1.2):

$$\hat{J}_B = ma^2 \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Вспоминая результаты задачи №11.12, где подобное приведение к главным осям решено в общем виде, находим

$$B' = \frac{1}{2} \left(3 + \sqrt{5} \right), \qquad C' = \frac{1}{2} \left(3 - \sqrt{5} \right).$$

Главные оси же параллельны векторам

$$e'_1 = (1, 0, 0), \quad e'_2 = (0, -2, \sqrt{5} - 1), \quad e'_3 = (0, 1 - \sqrt{5}, -2).$$

Отнормировав которые найдём новый базис.

Тензор инерции точки А и эллипсоид инерции, соответственно, равны

$$\hat{J}_A = ma^2 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad M = \{2x^2 + y^2 + z^2 = 1\},$$

где M, как можно заметить, является эллипсоидом инерции $(J_y = J_z)$.

1.9 Динамика твёрдого тела

11.45

Твердое тело с неподвижной точкой движется под действием момента

$$M_O = a \times \omega$$

где вектор \boldsymbol{a} вращается вместе с твёрдым телом. Хотим перейти к динамическим уравнениям Эйлера, так что

$$\hat{J}_O = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}, \quad \boldsymbol{\omega} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}, \quad \boldsymbol{a} = \begin{pmatrix} a_{\xi} \\ a_{\eta} \\ a_{\zeta} \end{pmatrix}, \quad \boldsymbol{M}_O = \begin{pmatrix} a_{\eta}r - a_{\zeta}q \\ a_{\zeta}p - a_{\xi}r \\ a_{\xi}r - a_{\eta}p \end{pmatrix}.$$

Для начала попробуем в лоб, домножив динамические уравнения эйлера на p,q,r соответсвенно

$$\begin{cases} A\dot{p} + (C-B)qr = -M_{\xi} \\ B\dot{q} + (A-C)pr = -M_{\eta} , & \Rightarrow & A\dot{p}p + B\dot{q}q + C\dot{r}r = 0. \\ C\dot{r} + (B-A)pq = -M_{\zeta} \end{cases}$$

Не густо.

Пойдём в чуть более низкоуровневую запись

$$\frac{d\mathbf{K}_O}{dt} = \dot{K}_{Oi}\mathbf{e}_i + \boldsymbol{\omega} \times \mathbf{K}_O = \boldsymbol{a} \times \boldsymbol{\omega}.$$

Т.к. $\dot{a}_i \boldsymbol{e}_i = 0$, то

$$(\dot{K}_{Oi}+\dot{a}_i)m{e}_i+m{\omega} imes(m{K}_O+m{a})=0\ \ \Rightarrow\ \ \frac{d}{dt}(m{K}_O+m{a})=0\ \ \Rightarrow\ \ \boxed{m{K}_0+m{a}=\mathrm{const}}$$
— первый I интеграл.

Теперь, т.к. $\boldsymbol{\omega} \perp \boldsymbol{M}_O$ предположим, что $T = \mathrm{const.}$ Действительно

$$dT = \partial A = (\mathbf{R} \cdot \mathbf{v}_O) \, dt + (\mathbf{M})_O \cdot \mathbf{\omega}) \, dt = 0$$
 \Rightarrow $T = \text{const}$ – второй I интеграл.

11.59

Есть твёрдое тело в отсутсвие внешних сил с $K_O = {\rm const}$ и $A = B \neq C$. Выберем в качестве оси динамической симметрии ось $O\zeta$. Запишем динамические уравнения Эйлера

$$\begin{cases} A\dot{p} + (C - A)qr = 0 \\ A\dot{q} - (C - A)pr = 0 \\ C\dot{r} = 0 \end{cases} \Rightarrow C\dot{r} = 0, \quad Cr_0 = K_O \cos \theta = \text{const} \Rightarrow \begin{cases} r(t) = r_0 = \text{const} \\ \theta(t) = \theta = \text{const} \end{cases}$$

Посмотрим теперь на $\|\boldsymbol{K}_O\|$

$$K_O^2 = A^2(p^2 + q^2) + (K_O \cos \theta)^2 \quad \Rightarrow \quad p^2 + q^2 = \left(\frac{K_0 \sin \theta}{A}\right)^2.$$

Теперь посмотрим на ω

$$\omega = \dot{\varphi} + \dot{\psi} + \dot{\not}\theta,$$

проецируя всё на базис $O\xi\eta\zeta$ нахожим, что

$$\begin{cases} r = \dot{\varphi} + \dot{\psi}\cos\theta \\ \sqrt{p^2 + q^2} = \dot{\psi}\sin\theta \end{cases} \Rightarrow \begin{cases} \dot{\psi} = K_O/A = \text{const} \\ \dot{\varphi} = r_0 (1 - C/A) = \text{const} \end{cases}$$

Теперь мы готов записать параметры регулярной прецессии в случае Эйлера:

$$\cos \theta = \frac{Cr_0}{K_0}, \quad \dot{\psi} = \frac{K_O}{A}, \quad \dot{\varphi} = r_0 \left(1 - \frac{C}{A} \right), \quad K_O = \sqrt{C^2 r_0^2 + A^2 (\omega_0^2 - r_0^2)}. \tag{1.9}$$

11.63

Для начала поймём куда диск движется, точнее найдем (или хотя бы сделаем шаги в эту сторону) мгновенную ось вращения проходящую через точку A и некоторую точку C.

Для начала посмотрим на геометрию системы (введя неизвестные a, b, c):

$$\overrightarrow{AB} = \begin{pmatrix} -r \\ -r \\ 0 \end{pmatrix}, \quad \overrightarrow{AD} = \begin{pmatrix} r \\ -r \\ 0 \end{pmatrix}, \quad \overrightarrow{CA} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad \begin{cases} \boldsymbol{v}_A = \boldsymbol{\omega} \times \overrightarrow{CA} = 0 \\ \boldsymbol{v}_B = \boldsymbol{\omega} \times \overrightarrow{CB} \\ \boldsymbol{v}_A = \boldsymbol{\omega} \times \overrightarrow{CD} \end{cases}, \quad \begin{cases} \overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{BD} \\ \overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD} \\ \overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB} \end{cases}$$

Для удобства далее будем считать $\boldsymbol{\omega}=k\overrightarrow{CA}$. Посчитаем векторы скоростей в нашеих обозначениях

$$\mathbf{v}_D = kr \begin{pmatrix} c \\ c \\ -b-a \end{pmatrix} \mathbf{v}_B = k\overrightarrow{CA} \times \overrightarrow{AB} = kr \begin{pmatrix} c \\ -c \\ b-a \end{pmatrix} \Rightarrow a = b$$

Так как мы знаем абсолютные значения скоростей точек, то запишем

$$v_D^2 - v_B^2 = v_0^2 = 4a^2k^2 \quad \Rightarrow \quad a = \frac{v_0}{2rk}.$$

Подставив теперь значения a в v_B^2 получим

$$v_B^2 = 2k^2c^2r^2 = v_0^2$$
 \Rightarrow $c = \frac{v_0\sqrt{2}}{2kr},$ \Rightarrow $\omega = k \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{v_0}{2r} \begin{pmatrix} 1 \\ 1 \\ \sqrt{2} \end{pmatrix}$

Теперь найдём скорость центра масс

$$\boldsymbol{v}_O = \boldsymbol{\omega} \times \boldsymbol{r}_{CO} = \boldsymbol{\omega} \times \left(\boldsymbol{r}_{CA} + \overrightarrow{AO}\right) = \boldsymbol{\omega} \times \begin{pmatrix} 0 \\ -r \\ 0 \end{pmatrix} = \frac{v_0}{2} \begin{pmatrix} -\sqrt{2} \\ 0 \\ 1 \end{pmatrix}, \quad \Rightarrow \quad \boldsymbol{r}_O(t) = \begin{pmatrix} v_0 t/\sqrt{2} \\ 0 \\ -gt^2/2 + v_0 t/2 \end{pmatrix}.$$

Теперь мы знаем как будет двигаться в условиях гравитации наш диск (его центр масс)!

Теперь посмотрим на вращение диска относительно центра масс. Для этого пересядем в СО падающую с g, теперь $M_O = 0$ и мы пришли к случаю Эйлера (который подробно был рассмотрен в задаче №11.59).

Для начала вспомним, что для диска кинетический момент

$$\mathbf{K}_{O} = \hat{J}_{O}\boldsymbol{\omega} = \frac{mr^{2}}{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \sqrt{2} \end{pmatrix} \frac{v_{0}}{2r} = \frac{mrv_{0}}{8} \begin{pmatrix} 1 \\ 1 \\ 2\sqrt{2} \end{pmatrix} = \text{const}, \quad \Rightarrow \quad K_{O} = \frac{\sqrt{10}}{8} mrv_{0}.$$

Зная $oldsymbol{K}_O$ можем найти ось прецессии $oldsymbol{e} \parallel oldsymbol{K}_O$

$$e = \frac{1}{\sqrt{10}} \left(1, \ 1, \ 2\sqrt{2} \right).$$

Подставляя параметры системы в уравнения (1.9), найдём

$$\dot{\psi} = \frac{K_O}{A} = \frac{\sqrt{10}}{2} \frac{v_0}{r}, \qquad \dot{\varphi} = r_0 \left(1 - \frac{C}{A} \right) = -\frac{v_0 \sqrt{2}}{2r}, \qquad \cos \theta = \frac{Cr_0}{K_O} = \frac{2\sqrt{5}}{5}.$$

11.72

Решим чуть более общую задачу о движении тяжелого симметричного волчка с неподвижней нижней точкой. Начало координат O совпадает с неподвижной точкой волчка, расстояние до центра масс равно l.

Запишем кинематические и динамические уравнения Эйлера

$$\begin{cases} p = \dot{\varphi} \sin \theta \sin \psi + \dot{\theta} \cos \psi, \\ q = \dot{\varphi} \sin \theta \cos \psi - \dot{\theta} \sin \psi, , \\ r = \dot{\varphi} \cos \theta + \dot{\psi}. \end{cases} \begin{cases} I_1 \dot{p} + (I_3 - I_2) q r = -M_{\xi} \\ I_2 \dot{q} + (I_1 - I_3) p r = -M_{\eta}, \\ I_3 \dot{r} + (I_2 - I_1) p q = -M_{\zeta} \end{cases} \hat{J}_O = \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_1 & 0 \\ 0 & 0 & I_3 \end{pmatrix}, \qquad \boldsymbol{\omega} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}.$$

Кинетическая энергия волчка (с учетом параллельного переноса тензора инерции с центра масс к точке O)

$$T = \boldsymbol{\omega}^{\mathrm{T}} \hat{J}_{O} \boldsymbol{\omega} = \frac{I_{1} + ml^{2}}{2} \left(\dot{\theta}^{2} + \dot{\varphi}^{2} \sin^{2} \theta \right) + \frac{1}{2} I_{3} \left(\dot{\psi} + \dot{\varphi} \cos \theta \right)^{2}.$$

Потенциальная энергия, соответсвенно, равна

$$\Pi = mgl\cos\theta.$$

Собирая вместе, находим

$$L = T - \Pi$$
.

Понятно, что $K_3={
m const.}$ докажем также что $K_z={
m const.}$ Действительно,

$$\frac{dK_z}{dt} = M_A \Big|_Z + Q \times v_O = 0 \quad \Rightarrow \quad K_z = \text{const.}$$

Явно выпишем их

$$\begin{cases}
K_3 = \partial L/\partial \dot{\psi} = I_3 \left(\dot{\psi} + \dot{\varphi} \cos \theta \right) \\
K_z = \partial L/\partial \dot{\varphi} = \left((I_1 + ml^2) \sin^2 \theta + I_3 \cos^2 \theta \right) \dot{\varphi} + I_3 \dot{\psi} \cos \theta.
\end{cases}$$
(1.10)

Кроме того, в системе сохраняется энергия

$$E = T + \Pi = \frac{1}{2}(I_1 + ml^2)\left(\dot{\theta}^2 + \dot{\varphi}^2\sin^2\theta\right) + \frac{1}{2}I_3\left(\dot{\psi} + \dot{\varphi}\cos\theta\right)^2 + mgl\cos\theta.$$

Из (1.10) находим явные выражения для $\dot{\varphi}$ и θ

$$\begin{split} \dot{\varphi} &= \frac{K_z - K_3 \cos \theta}{(I_1 + ml^2) \sin^2 \theta}, \\ \dot{\psi} &= \frac{K_3}{I_3} - \cos \theta \frac{K_z - K_3 \cos \theta}{(I + ml^2) \sin^2 \theta}. \end{split}$$

Подставляя это в выражения для энергии E получим

$$E = \frac{1}{2}(I_1 + ml^2)\dot{\theta}^2 + \frac{(K_z - K_3\cos\theta)^2}{2(I_1 + ml^2)\sin^2\theta} + \frac{K_3^2}{2I_3} + mgl\cos\theta.$$
(1.11)

Таким образом мы находим

$$\dot{\theta} = \frac{d\theta}{dt} = f_{\dot{\theta}}(E, K_z, K_3) \quad \Rightarrow \quad t = \int_{\theta_0}^{\theta} \frac{d\theta}{f_{\dot{\theta}}(E, K_z, K_3)},\tag{1.12}$$

что и является нашим искомым решением в квадратурах. Конкретно для №11.72 следует положить $I_3=0$ и, в силу доступного для стержня произволя, $\dot{\psi}=0$. Слагаемые вида K_3/I_3 в таком случае просто не возникнут, решение сохранится.

11.118

Как и в решение к №11.72 у нас симметричный волчок. Требуется определить начальную угловую скорость прецессии $\dot{\varphi}_0$, чтобы $\dot{\theta}=0$. Формально можем поставить задачу несколько иначе, какой должен быть момент

внешних сил M_O чтобы происходила регулярная прецессия $\dot{\theta}=0$?

Для начала введём отдельно $\omega_1 \parallel O\xi$ и $\omega_2 \parallel OZ$. По раннее проделанной работе с регулярной прецессией, мы знаем, что K_z и K_3 постоянны, соответсвенно $\omega_1, \omega_2, \omega = \text{const.}$ Аналогично случаю Эйлера (см. №???)

$$(K_O)_{\xi} = Cr, \quad (K_O)_Z = A\sqrt{q^2 + q^2}.$$

То есть $K_O \in O\xi Z$ и $K_O = {
m const.}$ Но, т.к. плоскость $O\xi Z$ вращаеся с угловой скорсотью ω_2 то и вектор K_O аналогично. Тогда для M_O верно, что

$$\frac{d\mathbf{K}_O}{dt} = \boldsymbol{\omega}_2 \times \mathbf{K}_O = \mathbf{M}_O. \tag{1.13}$$

Нетрудно показать, что

$$\boldsymbol{\omega}_2 \times \boldsymbol{K}_O = \frac{\boldsymbol{\omega}_2 \times \boldsymbol{\omega}_1}{\|\boldsymbol{\omega}_2 \times \boldsymbol{\omega}_1\|} \omega_2 \sin \theta \left(C(\omega_1 + \omega_2 \cos \theta) - A\omega_2 \cos \theta \right)$$

Т.к. $\|\omega_2 \times \omega_1\| = \omega_1 \omega_2 \sin \theta$, то

$$\mathbf{M}_O = (\boldsymbol{\omega}_2 \times \boldsymbol{\omega}_1) \left[C + (C - A) \frac{\omega_2}{\omega_1} \cos \theta \right].$$
 (1.14)

Это *основная формула гироскопии*, так что, наверное, можно было принять её на веру. В частном случае, когда $\omega_1 \gg \omega_2$ можно приближенно записать эту формулу, как

$$\boldsymbol{M}_{O} = C\left(\boldsymbol{\omega}_{2} \times \boldsymbol{\omega}_{1}\right). \tag{1.15}$$

Конкретно для нашей задачи (1.14) перепишется как

$$\dot{\varphi}\omega\sin\theta\left(C+(C-A)\frac{\dot{\varphi}}{\omega}\cos\theta\right)=mgl\sin\theta,$$

т.к. мы действительно требуем регулярной прецессии. Так получаем квадратное уравнение вида

$$(C - A)\dot{\varphi}^2 \cos \theta + C\omega\varphi - mgl = 0 \quad \Rightarrow \quad \dot{\varphi} = \frac{-C\omega \pm \sqrt{C^2\omega^2 + (C - A)mgl\cos\theta}}{2(C - A)\cos\theta}.$$
 (1.16)

Стоит заметить, что при $C^2\omega^2 + (C-A)mgl\cos\theta < 0$ регулярная прецессия, по всей видимости, невозможна. При $\omega \gg \dot{\varphi}$ угловая прецессия будет равна

$$\dot{\varphi} = \frac{mgl}{C\omega},\tag{1.17}$$

и, как видно, не зависит от угла нутации.

Теперь про силы. Запишем II закон Ньтона в проекции на вертикаль и нормаль к вертикали, повернутую на $+\varphi$ от X, получим

$$\begin{cases} N_x = m\dot{\varphi}^2 l \sin \theta \\ N_y - mg = 0 \end{cases} \Rightarrow N = m\sqrt{g^2 + \dot{\varphi}^2 l^2 \sin^2 \theta}. \tag{1.18}$$

T.16*

Запишем динамические уравнения Эйлера

$$\begin{cases} A\dot{p} + (C - B)qr = -M_{\xi} \\ B\dot{q} + (A - C)pr = -M_{\eta} , & \omega = \begin{pmatrix} p \\ q \\ r \end{pmatrix}, & \hat{J}_{O} = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}. \end{cases}$$
(1.19)

Тело вращается относительно закрепленного центра масс O. По условию

$$M_O = -\gamma \omega, \qquad A = B > C.$$

Хочется доказать, что мгновенная ось вращения тела асимптотически стремится стать ортогональной оси динамической симметрии тела $(O\zeta)$. Если чуть формализовать, то

$$\lim_{t \to \infty} \frac{\|\boldsymbol{\omega}^{\zeta}\|}{\|\boldsymbol{\omega}^{\xi\eta}\|} = \frac{r}{\sqrt{p^2 + q^2}} = 0, \tag{1.20}$$

равносильно поставленному условию.

Конкретизируем динамические уравнения Эйлера под наш случай:

$$A\dot{p} + (C - A)qr = -\gamma p \tag{1.21}$$

$$A\dot{q} - (C - A)pr = -\gamma q \tag{1.22}$$

$$C\dot{r} = -\gamma r \tag{1.23}$$

Из (1.23) найдём

$$r = \omega^{\zeta} = r_0 \exp\left(-\frac{\gamma}{C}t\right).$$

Теперь посмотрим на $p \cdot (1.21) + q \cdot (1.22)$ равное полному дифференциалу по времени

$$p\dot{p}+q\dot{q}=\frac{1}{2}\frac{d}{dt}\left(p^2+q^2\right)=-\frac{\gamma}{A}\left(p^2+q^2\right).$$

Естественно решить это уравнение относительно $\omega^{\xi\eta}$

$$\omega^{\xi\eta} = -\frac{\gamma}{A}\omega^{\xi\eta} \quad \Rightarrow \quad \sqrt{p^2 + q^2} = \omega_0^{\xi\eta} \exp\left(-\frac{\gamma}{A}t\right).$$

Подставляя всё в (1.20) находим

$$\lim_{t\to\infty}\ \left[\frac{\omega^{\zeta}}{\omega^{\xi\eta}}\right] = \frac{r_0}{\omega_0^{\xi\eta}} \cdot \lim_{t\to\infty} \left[\exp\left(\frac{\gamma}{AC}\underbrace{(C-A)}_{<0}t\right)\right] = 0, \qquad \quad \text{Q. E. D.}$$

Рис. 4: К задаче 11.72