LTPC 3003

OBJECTIVES:

The student should be made to:

- Understand how Grid computing helps in solving large scale scientific problems
- Gain knowledge on the concept of virtualization that is fundamental to cloud computing
- Learn how to program the grid and the cloud
- Understand the security issues in the grid and the cloud environment

UNIT I INTRODUCTION 9

Evolution of Distributed computing: Scalable computing over the Internet – Technologies for network based systems – clusters of cooperative computers - Grid computing Infrastructures

- cloud computing - service oriented architecture - Introduction to Grid Architecture and standards - Elements of Grid - Overview of Grid Architecture.

UNIT II GRID SERVICES 9

Introduction to Open Grid Services Architecture (OGSA) – Motivation – Functionality Requirements – Practical & Detailed view of OGSA/OGSI – Data intensive grid service models – OGSA services.

UNIT III VIRTUALIZATION 9

Cloud deployment models: public, private, hybrid, community – Categories of cloud Computing: Everything as a service: Infrastructure, platform, software - Pros and Cons of cloud computing – Implementation levels of virtualization – virtualization structure virtualization of CPU, Memory and I/O devices – virtual clusters and Resource Management

- Virtualization for data center automation.

UNIT IV PROGRAMMING MODEL 9

Open source grid middleware packages – Globus Toolkit (GT4) Architecture, Configuration – Usage of Globus – Main components and Programming model - Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job – Design of Hadoop file system, HDFS concepts, command line and java interface, dataflow of File read & File write.

UNIT V SECURITY 9

Trust models for Grid security environment – Authentication and Authorization methods - Grid security infrastructure – Cloud Infrastructure security: network, host and application level – aspects of data security, provider data and its security, Identity and access management architecture, IAM practices in the cloud, SaaS, PaaS, IaaS availability in the cloud, Key privacy issues in the cloud.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Apply grid computing techniques to solve large scale scientific problems.
- Apply the concept of virtualization.
- Use the grid and cloud tool kits.
- Apply the security models in the grid and the cloud environment.

TEXT BOOK:

1. Kai Hwang, Geoffery C. Fox and Jack J. Dongarra, "Distributed and Cloud Computing: Clusters, Grids, Clouds and the Future of Internet", First Edition, Morgan Kaufman Publisher, an Imprint of Elsevier, 2012.

REFERENCES:

- 1. Jason Venner, "Pro Hadoop- Build Scalable, Distributed Applications in the Cloud", A Press, 2009
- 2. Tom White, "Hadoop The Definitive Guide", First Edition. O"Reilly, 2009.
- 3. Bart Jacob (Editor), "Introduction to Grid Computing", IBM Red Books, Vervante, 2005
- 4. Ian Foster, Carl Kesselman, "The Grid: Blueprint for a New Computing Infrastructure", 2nd Ed, Morgan Kaufmann.
- 5. Frederic Magoules and Jie Pan, "Introduction to Grid Computing" CRC Press, 2009.
- 6. Daniel Minoli, "A Networking Approach to Grid Computing", John Wiley Publication, 2005.
- 7. Barry Wilkinson, "Grid Computing: Techniques and Applications", Chapman and Hall, CRC, Taylor and Francis Group, 2010.