

or A, Z and R¹ together form the group

m, n and o

stand for 0-3,

q

stands for 1-6,

independently of one another, R_a , R_b , R_c , R_d , R_e , R_f , stand for hydrogen, C_{1-4} alkyl or the group =NR¹⁰, and/or R_a and/or R_b can form a bond with R_C and/or R_d or R_C can form a bond with R_{e} and/or R_{f} , or up to two of radicals $R_a - R_f$ form a bridge of no more than 3 C-atoms, and said bridge is connected to R1 or R2, stands for the group =NR9 or =N-, Х Y stands for the group $-(CH_2)_p$, stands for 1-4, р R^1 stands for unsubstituted aryl heteroaryl, or for aryl or heteroaryl substituted one or more times with halogen; C₁₋₆ alkyl; or one or more times with halogen substituted C_{1-6}

 R^2

 \mathbb{R}^3

alkyl or C_{1-6} alkoxy; with the proviso that R^1 is not aryl directly bonded to $=NR^2$ in the meaning of A,

stands for hydrogen or C_{1-6} alkyl or, with $R_a\text{-}R_f$ from Z, or to R^1 , forms a bridge with up to 3 ring members,

stands for monocyclic or bicyclic aryl or heteroaryl that is unsubstituted or optionally substituted in one or more places with halogen, C_{1-6} alkyl, C_{1-6} alkoxy or hydroxy,

 R^4 , R^5 , R^6 , and R^7 , independently of one another, stand for hydrogen, halogen, or C_{1-6} alkoxy, C_{1-6} alkyl or C_{1-6} carboxylalkyl that is unsubstituted or optionally substituted in one or more places with halogen, or R^5 and R^6 together form the group

 R^8 , R^9 , and R^{10} , independently of one another, stand for hydrogen or C_{1-6} alkyl, as well as their isomers and salts, stop a tyrosine phosphorylation or persistent

If R_a and/or R_b form a bond with R_c and/or R_d or R_c and/or R_d form a bond with R_e and/or $R_f,\ Z$ stands for an alkenyl or alkinyl chain.

If $R_a \text{-} R_f$ form a bridge on their own, Z represents a cycloalkyl or cycloalkenyl group.

If up to two of radicals $R_a - R_f$ form a bridge of no more than 3C atoms, and said bridge is connected to R1, Z together with R1 is a benzo- or hetaryl-condensed (Ar) cycloalkyl.

For example, there can be mentioned:

If one of radicals $R_a \hbox{-} R_f$ forms a bridge connected to R2, a nitrogen heterocycle that can be separated from R1 by a group is formed.

For example, there can be mentioned:

Alkyl is defined in each case as a straight-chain or branched alkyl radical, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, pentyl, isopentyl or hexyl, whereby C_{1-4} alkyl radicals are preferred.

Cycloalkyl is defined respectively as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

whereby phenyl, substituted phenyl or naphthyl is not directly bonded to the $=NR^2$ group in the meaning of A,

stands for hydrogen or $C_{1\text{-}6}$ alkyl or, with $R_a\text{-}R_f$ from Z, or to R^1 , forms a

bridge with up to 3 ring members,

stands for monocyclic or bicyclic aryl or monocyclic or bicyclic heteroaryl that is unsubstituted or optionally substituted in one or more places with halogen, C_{1-6} alkyl, C_{1-6} alkoxy or hydroxy,

 R^4 , R^5 , R^6 , and R^7 , independently of one another, stand for hydrogen, halogen, or C_{1-6} alkoxy, or C_{1-6} alkyl that is unsubstituted or optionally substituted in one or more places with halogen, or R^5 and R^6 together form the group

$$\begin{pmatrix} O \\ CH_2 \end{pmatrix}$$

 R^8 , R^9 , and R^{10} , independently of one another, stand for hydrogen or C_{1-6} alkyl, as well as their isomers and salts, have proven

especially effective.

 R^2

 R^3

whereby phenyl, or substituted phenyl or naphthyl is not right in the =NR2 group in the meaning of A, stands for hydrogen or methyl, stands for pyridyl or phenyl, pyridyl or 1,2,3,4-tetrahydronaphthyl that is substituted with hydroxy, halogen, methyl or methoxy, or the group

N OME CH,

N OH CH,

N CH,

SUBSTITUTE PAGE

 R^2 R^3

whereby phenyl, or substituted phenyl or naphthyl is not directly bonded to the $=NR^2$ group in the meaning of A, stands for hydrogen or methyl,

 R^2

or naphthyl is not directly bonded to the =NR² group in the meaning of A, stands for hydrogen or methyl,

stands for pyridyl or for phenyl, pyridyl or 1,2,3,4-

whereby phenyl, or substituted phenyl

tetrahydronaphthyl that is substituted in one or more places with hydroxy, halogen, methyl or methoxy, or for the group

SUBSTITUTE PAGE

R²

 \mathbb{R}^3

 R^2

 R^3

whereby phenyl, or substituted phenyl or naphthyl is not directly bonded to the =NR² group in the meaning of A, stands for hydrogen or methyl, stands for pyridyl or for phenyl, pyridyl or 1,2,3,4-tetrahydronaphthyl that is substituted in one or more places with hydroxy, halogen, methyl or methoxy, or for the group

N OME N O CH3