House Pricing Prediction Team 70

Youssef Khaled Abdallah

Youssef Omar Hussein

20191700767

20191700776

Required Libraries

1. Caret

Youssef Khaled Farouk

- 2. RandomForest.
- 3. GBM.

Preprocessing

ExploreData(data)

displays the number of columns, number of rows, count of missing values, and summary statistics of the data

2. RemoveNullColumns(threshold, train_data, test_data)

Drop columns that have more than a **threshold** percentage of **NULL** values. It calculates the **NULL** percentage for each column, identifies columns exceeding the threshold, and removes those columns from the train and test datasets.

EncodeCategoricalData(train_data, test_data)

Performs **one-hot encoding** on **categorical variables** in the train and test datasets. It saves the target variable from the train dataset, removes the target variable, combines train and test datasets, applies **one-hot encoding**, and **normalizes** the data using **Z-scores**. It splits the encoded data back into train and test datasets.

20191700768

4. FillNulls(data)

Replace **NULL** values in a dataset with the median value of each respective column.

Preprocess(train_data, test_data)

Integrate the preprocessing steps by calling the **RemoveNullColumns**, **EncodeCategoricalData**, and **FillNulls** functions. It returns the preprocessed **x_train**, **x_test**, **y_train**, **y_test**, **train_ids**, **and test_ids**.

- TrainValidateSplit(x, y, ids, splitSize=0.8, seed=100)
 - Shuffles and splits the preprocessed train dataset into training and validation sets. It adds IDs to the datasets, randomly partitions the data based on a specified split size and returns the split datasets.
- RemoveLowCorrelation(x_train, y_train, threshold)
 Removes Least threshold percentage correlation columns

Model

Gradient Boosting machine: It is a type of ensemble method that combines multiple weak prediction models (typically decision trees) to create a strong predictive model.

Data Visualization

Variables Correlations Heatmap

Actual vs Predicted Plot:

Actual Predicted Plot (Train)

Actual Predicted Plot (Validation)

Residuals Plot:

Residuals Plot (Train)

Residuals Plot (Validation)

Residuals Histogram:

Residuals Histogram (Train)

Residuals Histogram (Validation)

Evaluation Metrics

The evaluation metrics for the **training dataset** are as follows:

Mean Squared Error (MSE): 249,788,746

Root Mean Squared Error (RMSE): 15,804.71

• R-squared (R²): 0.9619353

The evaluation metrics for the validation dataset are as follows:

Mean Squared Error (MSE): 1,912,787,428

• Root Mean Squared Error (RMSE): 43,735.43

• R-squared (R²): 0.710436

Summary

We have successfully applied preprocessing techniques, data visualization, utilized the Gradient Boosting Machine model, and evaluated the performance of house pricing prediction model using various metrics.