# Most Valued Data Science Skills

Guillermo Schneider • Jonathan Cruz • Lucas Weyrich • Richie Rivera

•••

March 20, 2024

### Resources

#### Reddit



#### Coursera



#### Linkedin



- R Package "RedditExtractoR"
- Scrape comments from the past year
  - r/datascience (1.2m members)
  - r/DataEngineering (169k members)
- Yielded a combined data frame of over 120,000 comments for analysis.
- Project's replicability is somewhat limited due to the dynamic nature of the subreddits

- Python lib BeautifulSoup4 | and request
- Extract advertised skills

   that are to be acquired
   from most popular data
   science courses

- Python lib BeautifulSoup4 and request
- Extract "Skills Required" section from over 50 of the latest job postings on LinkedIn

### **Data Loading**

 Two files were created to scrape Reddit comments and LinkedIn job postings

- Data was tidied and then normalized into a SQLite database
  - o reddit\_comments
  - o reddit\_authors
  - reddit\_posts
  - o linkedin\_skills





Relevancy

3.583780

3,417614

3.064806

2.439058

2,275386

2.142001

2.118805

2.025451

Prepare Data for Exploration

Information Technology (IT) Architecture

## **Sentiment Analysis Prep**

#### Step 1 - Sentiments

**AFINN** by Finn Årup Nielsen, **bing** by Bing Liu and collaborators, **nrc** by Saif Mohammad and Peter Turney.

These dictionaries categorize **sentiments** (positive/negative) and **emotions** (joy/anger/disgust/etc) on a scale from -5 to 5, ranking positivity.

| ^  | word <sup>‡</sup> | value ‡ | sentiment <sup>‡</sup> | ÷  | word        | value | sentiment    |
|----|-------------------|---------|------------------------|----|-------------|-------|--------------|
| 1  | abandon           | -2      | fear                   | 1  | hurrah      | 5     | joy          |
| 2  | abandon           | -2      | negative               | 2  | hurrah      | 5     | positive     |
| 3  | abandon           | -2      | sadness                | 3  | outstanding | 5     | joy          |
| 4  | abandoned         | -2      | anger                  | 4  | outstanding | 5     | negative     |
| 5  | abandoned         | -2      | fear                   | 5  | outstanding | 5     | positive     |
| 6  | abandoned         | -2      | negative               | 6  | superb      | 5     | positive     |
| 7  | abandoned         | -2      | sadness                | 7  | brilliant   | 4     | anticipation |
| 8  | abduction         | -2      | fear                   | 8  | brilliant   | 4     | joy          |
| 9  | abduction         | -2      | negative               | 9  | brilliant   | 4     | positive     |
| 10 | abduction         | -2      | sadness                | 10 | brilliant   | 4     | trust        |

#### Step 2 - Two-word Skills

Two-word skills were merged into single words (e.g., "Data Science" became "datascience")

We applied the same transformation to all the Reddit comments collected by Lucas using gsub.

| Ŷ  | Skills                                   | Relevancy | word                  |
|----|------------------------------------------|-----------|-----------------------|
| 25 | Prepare Data for Exploration             | 3.5837803 | dataexploration       |
| 65 | Information Technology (IT) Architecture | 3.4176142 | informationtechnology |
| 67 | Process Data from Dirty to Clean         | 3.0648062 | processdata           |
| 68 | Process Data from Dirty to Clean         | 3.0648062 | clean                 |
| 49 | Data Science                             | 2.4390583 | datascience           |
| 15 | Creating case studies                    | 2.2753861 | casestudies           |
| 64 | Microsoft Excel                          | 2.2444093 | excel                 |
| 13 | Data Visualization                       | 2.1420012 | visualization         |
| 6  | Developing a portfolio                   | 2.1188049 | portfolio             |
| 59 | Database (DBMS)                          | 2.0254509 | database              |

#### Step 3 - Separate Words

Comments were **unnested** into individual words (grouped by comment ID).

Using the sentiment dictionaries, each word was assigned a **score** and a **sentiment**.

| github  | 0 | NA       |
|---------|---|----------|
| copilot | 0 | NA       |
| is      | 0 | NA       |
| amazing | 4 | positive |

### **Sentiment Analysis Results**

#### Step 4 - Filtering for Skill words

We filtered for words that matched our Skills.

Using those comment IDs, we then filtered the full comment scrape to just include comment IDs that were in that list.

| github  | 0 | NA       | Github |
|---------|---|----------|--------|
| copilot | 0 | NA       | NA     |
| is      | 0 | NA       | NA     |
| amazing | 4 | positive | NA     |

#### Step 5 - Average Skill Sentiment Score

We grouped words first by comment ID for **Average Comment Sentiment Score**, and then by Skills for **Average Skills Sentiment Score**.

'Sum of sentiment scores in a comment' / 'Total words in a comment' =Average Comment Sentiment Score

| Skills                                   | Relevancy | mean_score  | rescaled_score | RescaledRelevancy |
|------------------------------------------|-----------|-------------|----------------|-------------------|
| Process Data from Dirty to Clean         | 3.0648062 | 0.087231315 | 1.000000000    | 0.85518809        |
| R Markdown                               | 0.0000000 | 0.078117965 | 0.892034297    | 0.00000000        |
| Data Aggregation                         | 1.6286817 | 0.064467980 | 0.730323158    | 0.45445913        |
| Rstudio                                  | 0.0000000 | 0.064385592 | 0.729347105    | 0.00000000        |
| Creating case studies                    | 2.2753861 | 0.064112769 | 0.726114974    | 0.63491227        |
| Information Technology (IT) Architecture | 3.4176142 | 0.057065673 | 0.642628150    | 0.95363386        |
| Data Visualization                       | 2.1420012 | 0.054597699 | 0.613390102    | 0.59769321        |
| Github                                   | 0.0000000 | 0.052550012 | 0.589131184    | 0.00000000        |
| Apache Spark                             | 0.0000000 | 0.050742113 | 0.567713040    | 0.00000000        |
| Big Data                                 | 1.6286817 | 0.050619318 | 0.566258287    | 0.45445913        |
| Neural Network Architecture              | 1.7275182 | 0.050000000 | 0.558921240    | 0.48203798        |
| Deep Learning                            | 1.9331006 | 0.049453391 | 0.552445570    | 0.53940265        |
| Developing a portfolio                   | 2.1188049 | 0.048973881 | 0.546764820    | 0.59122066        |

relevancy vs. sentiment Values 1.5-1.0 sentiment score 0.5 -.0--1.0 -Apache Spark Backpropagation Dashboard Giffub Numpy Pandas Markdown Rstudio NoSOLand Belins Cloud Databases Jupytemoteboks PrbbityAndStbt RegressinAnlyss R Programming Data Aggrégation Data Cleansing JDNN twik HT Rao Ask Ostnstinbi-bb Microsoft Excel IBMCognsAnlytos StstciHypthssT DataArchitectur DatCalculations Anlyzbtwnswros Developngaprtfi Netadata Artfclintli(AI) Big Data Data Ethics Methodology Database (DBMS) StrctrngWchnLr Data Analysie Deep L relevancy



### Results

#### Findings

- On average there are more positive sentiments than negative sentiments in past year
- Drop off due to decreasing total comment amounts for recent comments (> 1 month)



### Results

### Findings

 Net sentiments usually ranges from +110 to +170



## Conclusion

Data Science
SQL

Python Programming
Artificial Intelligence (AI)

ETL & Data Pipelines

R Programming

joy trust fear sadness anticipation

### Data Loading

| 1 3/ John Charler at/ Documents/ oftenab/ carry moas | project 3, p |
|------------------------------------------------------|--------------|
| Skills                                               | Relevancy    |
| Prepare Data for Exploration                         | 3.583780     |
| Information Technology (IT) Architecture             | 3.417614     |
| Process Data from Dirty to Clean                     | 3.064806     |
| Process Data from Dirty to Clean                     | 3.064806     |
| Data Science                                         | 2.439058     |
| Creating case studies                                | 2.275386     |
| Microsoft Excel                                      | 2.244409     |
| Data Visualization                                   | 2.142001     |
| Developing a portfolio                               | 2.118805     |
| Database (DBMS)                                      | 2.025451     |
|                                                      |              |



- Skills script executed and results saved in tab delimited text file
- Reddit\_scrape.r file executed and results saved in tab delimited text file
  - Dates and numeric columns converted to proper data types
    - Reddit dataset encoded to create reference tables for:
      - **A** . reddit\_comments **B**. reddit\_authors **C** . reddit\_posts
  - Four datasets written to tables in same sqlite database:
- ${f A}$  . reddit\_comments: comments information and content  $ullet {f B}$  . reddit\_authors: author\_id and author's name ullet
- C. reddit\_posts: url\_id and url of the post D . linkedin\_skills: skills outlined in job posting and relevancy score



## **Analysis Methods Section 3**

#### Step 1

- Computed 30-day rolling average time-series for sentiments
  - Show absolute numbers and differences

### Data Sources & Process

- Reddit comments from the r/datascience and r/dataengineering subreddits
- What linked in jobs did we scrape?
- How did we orchestrate our scripts together and create the database file we used?
- I think Richie wrote this in the Google doc within the section where we went over how we got our data.