Bipolar Junction Transistors - I (BJT-I)

BASICS

- A bipolar junction transistor (BJT) is a three terminal device constructed of doped semiconductor material
- •BJT is used in amplifying or switching applications, in discrete circuits and in IC design, both in analog and digital domain
- •Bipolar Junction Transistors are so named because their operation involves both electrons and holes which are negative and positive charge carriers

Physical Structure of PNP Transistor

Arrow indicates the direction in which the current flows in the emitter

Physical Structure of NPN Transistor

Arrow indicates the direction in which the current flows in the emitter

	Mode of Operation	B-E Junction	B-C Junction
Amplifier	Active	Forward Biased	Reverse Biased
- Hob	Saturation	Forward Biased	Forward Biased
Switch	Cut-Off	Reverse Biased	Reverse Biased

Amplifier: Signal voltage (or current) is amplified

Output AC signal power is more than input AC signal power

Switch: At Saturation, very low resistance between C and E

At Cut-Off, No current flow from C to E

Operation of a PNP Transistor in the Active mode

 $I_{E} = I_{B} + I_{C}$ $I_{C} = \alpha I_{E} + I_{CO}$

α is the fraction of the total emitter current which goes from the emitter, across the base, to the collector

Operation of an NPN Transistor in the Active mode

$$I_{C} = \alpha I_{E} + I_{CO} \qquad I_{E} = I_{B} + I_{C}$$

$$I_{C} = \alpha(I_{B} + I_{C}) + I_{CO}$$

$$(1-\alpha)I_C = \alpha I_B + I_{CO}$$

Transistor in Active Mode

$$I_{C} = \frac{\alpha}{1 - \alpha} I_{B} + \frac{1}{1 - \alpha} I_{CO}$$

Define
$$\beta = \frac{\alpha}{1-\alpha}$$

$$I_{\rm C} = \beta I_{\rm B} + (\beta + 1)I_{\rm CO}$$

Different Transistor configurations –

A Transistor may be operated in three different configurations :

Common Base (CB)

Common Emitter (CE)

Common Collector (CC)

AMPLIFIER TYPE	COMMON BASE	COMMON EMITTER	COMMON COLLECTOR		
INPUT/OUTPUT					
PHASE	0°	180°	0°		
RELATIONSHIP					
VOLTAGE GAIN	HIGH	MEDIUM	LOW		
CURRENT GAIN	LOW	MEDIUM	HIGH		
POWER GAIN	LOW	HIGH	MEDIUM		
INPUT	LOW	MEDIUM	HIGH		
RESISTANCE		MEDIOM	піоп		
OUTPUT	HIGH	MEDIUM	LOW		
RESISTANCE	піоп	IVIEDIOIVI	LOVV		

Common Base (CB) Transistor Configuration

Common Emitter (CE) Transistor Configuration

Common Collector (CC) Transistor Configuration

The Common Emitter (CE) configuration is the most common configuration for using a transistor.

We will discuss this in more detail in our subsequent slides concentrating mainly on the way in which this can be used as an amplifier.

To keep things simple, we will mainly look at circuits using an NPN transistor but the usage of a PNP transistor will be very similar (just use voltage supplies of opposite polarity!).

NPN

Common Emitter Configuration (NPN Transistor)

Transistor in Active Mode

$$I_{\rm C} = \beta I_{\rm B} + (\beta + 1)I_{\rm CO}$$

$$I_{\rm C}\cong \beta I_{\rm B}$$
 ignoring $I_{\rm CO}$

$$I_C + i_c \cong \beta(I_B + i_b)$$

$$I_{C} + i_{c} \cong \beta I_{B} + \beta i_{b}$$
DC AC DC AC

AC Amplifier

$$i_c \cong \beta i_b$$
 AC current gain