合肥工学大学

机器学习工程报告

课	程:	机器学习基础
姓	名:	王家琪
学	号:	2018217918
完成	时间:	2020年12月22日

一. 工程摘要与每人贡献

摘要:

收集合肥地区过去一段时间(例如过去一年每个月的平均值)的空气质量(例如 pm2.5 值),然后构建回归模型,能够预测今年某个月的空气质量值。

每人分工:

姓名	角色	工作量	负责内容
	(组长,组员,独自完 成)	比例	
王家琪	独自完成	100%	收集数据集;算法代码实现;报告撰写

二、研究背景与意义

PM是英文 particulate matter (颗粒物)的首字母缩写,PM2.5 指空气动力学当量直径小于或等于 2.5 微米 (一微米等于百万分之一米)的悬浮颗粒物。它在大气中滞留时间长,传输距离远,含多种由于有害物质,而且与其他空气污染物存在着复杂的转化关系。PM2.5 易于滞留在终末细支气管和肺泡中,其中某些还可以穿透肺泡进入血液,也更易于吸附各种有毒的有机物和重金属元素,对健康的危害极大。

PM2.5 除来自自然界的风沙尘土、森林火灾、海水喷溅等,更主要来自工业生产、公路扬尘、建筑扬尘以及人类生产生活使用的能源燃烧等。

PM2.5 主要对呼吸系统和心血管系统造成伤害,包括呼吸道受刺激、咳嗽、呼吸困难、降低肺功能、加重哮喘、导致慢性支气管炎、心律失常、非致命性的心脏病、心肺病患者的过早死。老人、小孩以及心肺疾病患者是 PM2.5 污染的敏感人群。如果空气中 PM2.5 的浓度长期高于 10 微克/立方米,死亡风险就开始上升。浓度每增加 10 微克/立方米,总的死亡风险就上升 4%,得心肺疾病的死亡风险上升 6%,得肺癌的死亡风险上升 8%。

2012年10月11日,中国国家环境保护部副部长吴晓青表示,新的《环境空气质量标准》颁布后,环保部明确提出了新标准实施的"三步走"目标。按照计划,2012年年底前,京津冀、长三角、珠三角等重点区域以及直辖市、计划单列市和省会城市要按新标准开展监测并发布数据。截至目前,全国已有195个站点完成PM2.5仪器安装调试并试运行,有138个站点开始正式PM2.5监测并发布数据。

随着城市对 PM2.5 进行监测,人们在出行的时候更加的注意保护措施,环保意识也更加的强烈,自己的日常行为也在不断的改善。对空气中悬浮颗粒物、可吸入颗粒物等的关注程度得到了大大的提高,这在一定的程度上也促进国家对 PM2.5 监测和解决的进行。

三、模型方法

1. 模型

采用普通的线性回归模型,使用每个数据帧样本中的9个PM2.5含量值:

$$y = \sum_{i=0}^{8} w_i x_i + b$$

 x_i 为对应数据帧中第 i 个 PM2. 5 含量, w_i 为其对应的权重值,b 为偏置项,y 为该数据帧样本的预测结果。

2. 损失函数

用预测值与 label 之间的平均欧式距离来衡量预测的准确程度,并充当损失函数:

$$Loss_{label} = \frac{1}{2 \text{num}} \sum_{n=0}^{mm-1} (\hat{y}^n - y^n)^2$$

 \hat{y}^n 为第 n 个 label, y^n 为第 n 个数据帧的预测结果, num 为参加训练的数据帧样本个数。

加入正则项, 防止过拟合,:

$$Loss_{regularization} = \frac{1}{2} \sum_{i=0}^{8} w_i^2$$

$$Loss = Loss_{label} + \beta \cdot Loss_{regularization} = \frac{1}{2} \left[\frac{1}{num} \sum_{n=0}^{num-1} (\hat{y}^n - y^n)^2 + \beta \sum_{i=0}^{8} w_i^2 \right]$$

 $Loss_{regularization}$ 为正则项, $oldsymbol{eta}$ 为正则项系数。

3. 梯度更新

梯度计算:为使 Loss 最小,需要求 Loss 在 w 上的偏微分和 Loss 在 b 上的偏微分。

$$\frac{\partial Loss}{\partial w_i} = \frac{\partial Loss_{label}}{\partial y} \frac{\partial y}{\partial w_i} + \frac{\partial Loss_{regularization}}{\partial w_i} = \frac{1}{num} \sum_{n=0}^{num-1} (\hat{y}^n - \sum_{i=0}^8 w_i x_i - b) \bullet (-x_i) + \beta \bullet \sum_{i=0}^8 w_i x_i - b)$$

$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss_{label}}{\partial y} \frac{\partial y}{\partial b} + \frac{\partial Loss_{regularization}}{\partial b} = \frac{1}{num} \sum_{n=0}^{num-1} (\hat{y}^n - \sum_{i=0}^8 w_i x_i - b) \bullet (-1)$$

计算出梯度后, 通过梯度下降法实现参数更新。

$$w_{newi} = w_i - \eta_w \frac{\partial Loss}{\partial w_i}, b_{new} = b - \eta_b \frac{\partial Loss}{\partial b}$$

 η_{w} 为权重 w 更新时的学习率, η_{b} 为偏置 b 更新时的学习率。

4. 学习率更新

采用 adagrad 算法来更新学习率。在不影响模型效果的前提下提高学习速度,对学习率进行实时更新,即让学习率的值在学习初期较大,之后逐渐减小。

$$\eta_n = \frac{\eta_{n-1}}{\sqrt{\sum_{i=1}^{n-1} grad_i^2}}$$

 η_{n 为更新后的学习率, η_{n-1} 为更新前的学习率, $\sqrt{\sum_{i=1}^{n-1} grad_i^2}$ 为在此之前所有梯度平方和的二次根。

四、系统设计

1. 数据处理

2014/1/1	AMB_TEM	14	14	14	13	12	12	12	12	15	17	20
2014/1/1	CH4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
2014/1/1	CO	0.51	0.41	0.39	0.37	0.35	0.3	0.37	0.47	0.78	0.74	0.59
2014/1/1	NMHC	0.2	0.15	0.13	0.12	0.11	0.06	0.1	0.13	0.26	0.23	0.2
2014/1/1	NO	0.9	0.6	0.5	1.7	1.8	1.5	1.9	2.2	6.6	7.9	4.2
2014/1/1	NO2	16	9.2	8.2	6.9	6.8	3.8	6.9	7.8	15	21	14
2014/1/1	NOx	17	9.8	8.7	8.6	8.5	5.3	8.8	9.9	22	29	18
2014/1/1	O3	16	30	27	23	24	28	24	22	21	29	44
2014/1/1	PM10	56	50	48	35	25	12	4	2	11	38	56
2014/1/1	PM2.5	26	39	36	35	31	28	25	20	19	30	41
2014/1/1	RAINFALL	NR										
2014/1/1	RH	77	68	67	74	72	73	74	73	66	56	45
2014/1/1	SO2	1.8	2	1.7	1.6	1.9	1.4	1.5	1.6	5.1	15	4.5
2014/1/1	THC	2	2	2	1.9	1.9	1.8	1.9	1.9	2.1	2	2
2014/1/1	WD_HR	37	80	57	76	110	106	101	104	124	46	241
2014/1/1	WIND_DIR	35	79	2.4	55	94	116	106	94	232	153	283
2014/1/1	WIND_SPE	1.4	1.8	1	0.6	1.7	2.5	2.5	2	0.6	0.8	1.6
2014/1/1	WS_HR	0.5	0.9	0.6	0.3	0.6	1.9	2	2	0.5	0.3	0.8

部分数据截图

数据中存在空数据 NR, RAINFALL 表示当天对应时间点是否降雨, 有降雨值为 1, 无降雨值为 NR, 则将空数据 NR 替换为 0。

每一天包含的信息维度为(18,24)(18 项指标,24 个时间节点)。将0到8时的数据截取出来,形成一个维度为(18,9)的数据帧,作为训练数据,将9 时的PM2.5 含量取出来,作为该训练数据对应的 label;同理可取1到9时的数据作为训练用的数据帧,10 时的PM2.5 含量作为 label。以此分割,可将每天的信息分割为15个 shape为(18,9)的数据帧和15个 label。

训练集中共包含 240 天的数据, 共可获得 3600 个数据帧和对应的 label。

2. 训练模型

参照上文模型方法中所述:

3. 验证效果

在训练过程中,每训练200轮输出一次在训练集上的损失:

```
if i%200 == 0: # 輸出训练集上的损失 200轮/次
loss = 0
for j in range(3200):
loss += (y_train[j] - weights.dot(x_train[j, 9, :]) - bias)**2
print('{} 轮后, 训练集上的损失:'.format(i), loss/3200)
```

结束后,输出在验证集上的损失:

```
# 验证效果

def validate(x_val, y_val, weights, bias):
    loss = 0
    for i in range(400):
        loss += (y_val[i] - weights.dot(x_val[i, 9, :]) - bias)**2
    return loss / 400
```

五. 实验结果分析、对比和讨论

1. 实验结果

```
C:\Users\G1aft_w\AppData\Local\Programs\Python\Python38-32\python.exe D:/文档/机器学习/pmPredict.py 0 轮后,训练集上的损失: 955.3009375
200 轮后,训练集上的损失: 49.86823677027294
400 轮后,训练集上的损失: 46.20101423801224
600 轮后,训练集上的损失: 44.88913061600438
800 轮后,训练集上的损失: 44.26903588227097
1000 轮后,训练集上的损失: 43.95010919056685
1200 轮后,训练集上的损失: 43.78092633274225
1400 轮后,训练集上的损失: 43.68982565130423
1600 轮后,训练集上的损失: 43.64031430329769
1800 轮后,训练集上的损失: 43.613225892364426
验证集上的损失: 40.35422383809946

Process finished with exit code 0
```

模型在验证集上的损失为 40 左右,即预测值与 label 之间的平均差异在 6 到 7 之间,模型的整体效果较差。

2. 改进思路

- (1)更换模型,不使用线性回归模型,从数据中发现规律并以此为依据建立模型。
- (2)数据集中除 PM2.5 的值外还有许多可能会影响或与 PM2.5 有关联的数据, 在构建模型时,可充分考虑 PM2.5 与其他大气成分之间的关系,构建更合理的模型。
- (3)分割训练集和验证集时,可以按照比例随机抽取数据帧作为训练集和验证集。

六. 对本门课的感想、意见和建议

建议在本门课程前开设 python 语言相关课程,由于对 python 比较不熟悉,在进行实验的过程中遇到了很多问题并需要花费大量时间解决,在本门课程结束后我对此语言的使用更加熟练了。

个人感觉本门课程与之前所学专业课难度跨度较大,仅通过上课所学无法理解掌握,需要自己在课余时间查阅资料并进行实践。

随着大数据时代的发展和 AI 领域的延伸, 我认为开设本门课程很有必要, 可以让我们了解专业的前沿发展并培养相关领域的兴趣。