Predicció de precipitacions a Austràlia

Aprenentatge Computacional

UAB
Universitat Autònoma
de Barcelona

Introducció

Aquest 'dataset' anomenat "Rain in Australia" proporciona un conjunt de dades exhaustives que recull observacions meteorològiques diàries de diverses localitzacions d'Austràlia, que es troba en un clima particularment variable.

Dat	e Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	Pressure9am	Pressure3pm	Cloud9am	Cloud3pm	Temp9am	Temp3pm	RainToday	RainTomorrow
0 2008 12-0	- Albury 1	13.4	22.9	0.6	NaN	NaN	w	44.0	w	wnw	20.0	24.0	71.0	22.0	1007.7	1007.1	8.0	NaN	16.9	21.8	No	No
1 2008 1 12-0	- Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW	WSW	4.0	22.0	44.0	25.0	1010.6	1007.8	NaN	NaN	17.2	24.3	No	No
2 2008 2 12-0	3 Albury	12.9	25.7	0.0	NaN	NaN	wsw	46.0	w	WSW	19.0	26.0	38.0	30.0	1007.6	1008.7	NaN	2.0	21.0	23.2	No	No
3 2008 3 12-0	3- 4 Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE	E	11.0	9.0	45.0	16.0	1017.6	1012.8	NaN	NaN	18.1	26.5	No	No
4 2008 4 12-0	3- 5 Albury	17.5	32.3	1.0	NaN	NaN	w	41.0	ENE	NW	7.0	20.0	82.0	33.0	1010.8	1006.0	7.0	8.0	17.8	29.7	No	No
145455 2017 06-2	r_ Uluru 1	2.8	23.4	0.0	NaN	NaN	E	31.0	SE	ENE	13.0	11.0	51.0	24.0	1024.6	1020.3	NaN	NaN	10.1	22.4	No	No
145456 2017 06-2	r_ Uluru 2	3.6	25.3	0.0	NaN	NaN	NNW	22.0	SE	N	13.0	9.0	56.0	21.0	1023.5	1019.1	NaN	NaN	10.9	24.5	No	No
145457 2017 06-2	,_ Uluru 3	5.4	26.9	0.0	NaN	NaN	N	37.0	SE	WNW	9.0	9.0	53.0	24.0	1021.0	1016.8	NaN	NaN	12.5	26.1	No	No
145458 2017 06-2	,_ Uluru 4	7.8	27.0	0.0	NaN	NaN	SE	28.0	SSE	N	13.0	7.0	51.0	24.0	1019.4	1016.5	3.0	2.0	15.1	26.0	No	No
145459 2017 06-2 145460 rows × 2		14.9	NaN	0.0	NaN	NaN	NaN	NaN	ESE	ESE	17.0	17.0	62.0	36.0	1020.2	1017.9	8.0	8.0	15.0	20.9	No	NaN

Tractament de dades

Tractament de NaNs:

- PER A LES COLUMNES NUMÈRIQUES, OMPLIM ELS VALORS NAN UTILITZANT PRIMERAMENT EL MÈTODE 'BACKWARD FILL', SEGUIT DEL 'FORWARD FILL' I FINALMENT LA MITJANA.
- PER A LES COLUMNES NO NUMÈRIQUES, OMPLIM ELS VALORS
 NAN AMB EL VALOR MÉS FREQÜENT, ÉS A DIR, EL MODE.

Noves dades:

 GENEREM NOVES COLUMNES COM 'RAINYESTERDAY' I 'RAINLASTWEEK', QUE INDIQUEN SI VA PLOURE EL DIA ANTERIOR O LA SETMANA PASSADA, RESPECTIVAMENT.

Encoding:

- PER A LES COLUMNES QUE INDIQUEN LA DIRECCIÓ DEL VENT,
 UTILITZEM UN CODI PERSONALITZAT BASAT EN LES
 DIRECCIONS CARDINALS MESURADES EN GRAUS.
- PEL QUE FA A LA DATA, QUE ÉS ÚNICA PER A CADA FILA DEL CONJUNT DE DADES, UTILITZEM UNA TÈCNICA BASADA EN LA FUNCIÓ SINUSOIDAL PER CONVERTIR CADA DATA EN UN VALOR NUMÈRIC.

Dataset tractat

	MinTemp	MaxTemp	Rainfall	WindGustDir	WindGustSpeed	WindDir9am	WindDir3pm	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	Pressure9am	Pressure3pm	Cloud9am	Cloud3pm	Temp9am	Temp3pm	RainToday	RainTomorrow	DateSin	RainedYesterday	RainedLastWeek
45593	6.1	18.2	0.2	0.707107	43.0	0.707107	0.923880	19.0	26.0	63.0	47.0	1024.6	1022.2	4.0	6.0	12.4	17.3	0.0	0.0	-0.803460	0.0	1.0
45594	8.3	17.0	0.0	0.999998	41.0	0.707107	0.999998	11.0	24.0	65.0	57.0	1026.2	1024.2	6.0	7.0	12.1	15.5	0.0	0.0	-0.793100	0.0	1.0
45595	8.8	19.5	0.0	-0.001745	48.0	0.999998	0.923880	19.0	17.0	70.0	48.0	1026.1	1022.7	7.0	7.0	14.1	18.9	0.0	1.0	-0.782505	0.0	1.0
45596	8.4	22.8	16.2	0.999998	31.0	-0.001745	0.923880	7.0	6.0	82.0	32.0	1024.1	1020.7	7.0	1.0	13.3	21.7	1.0	0.0	-0.771679	0.0	1.0
45597	9.1	25.2	0.0	0.001745	30.0	0.707107	-0.707107	6.0	9.0	74.0	34.0	1024.4	1021.1	1.0	2.0	14.6	24.0	0.0	0.0	-0.760624	1.0	1.0
145454	3.5	21.8	0.0	0.999998	31.0	0.923880	0.999998	15.0	13.0	59.0	27.0	1024.7	1021.2	3.0	2.0	9.4	20.9	0.0	0.0	0.198569	0.0	0.0
145455	2.8	23.4	0.0	0.999998	31.0	0.707107	0.923880	13.0	11.0	51.0	24.0	1024.6	1020.3	3.0	2.0	10.1	22.4	0.0	0.0	0.181680	0.0	0.0
145456	3.6	25.3	0.0	-0.382683	22.0	0.707107	0.001745	13.0	9.0	56.0	21.0	1023.5	1019.1	3.0	2.0	10.9	24.5	0.0	0.0	0.164737	0.0	0.0
145457	5.4	26.9	0.0	0.001745	37.0	0.707107	-0.923880	9.0	9.0	53.0	24.0	1021.0	1016.8	3.0	2.0	12.5	26.1	0.0	0.0	0.147746	0.0	0.0
145458	7.8	27.0	0.0	0.707107	28.0	0.382683	0.001745	13.0	7.0	51.0	24.0	1019.4	1016.5	3.0	2.0	15.1	26.0	0.0	0.0	0.130711	0.0	0.0
102182 rov	vs × 22 colui	mns																				

Classificadors: millors paràmetres

StratifiedKFold = 10

Regressió Logistica	KNN	XGBoost					
C: 0.03359818286283781 penalty: I2 solver: lbfgs	n_neighbors: 8 p: 1 weights: distance	learning_rate: 0.2 max_depth: 10 min_child_weight: 1 n_estimators: 500					

Classificadors: resultats

Train - CV = 10									
Model	F1-Score								
	Per Defecte	Millor paràmetres							
Regressió Logística	0.74966722156244	0.749914586215							
KNN	0.73438586866161	0.744864761043							
XGBoost	0.76811363952401	0.775600887485							

Resultats finals

Regressió Logística

Accuracy::0.8535
Precision: 0.8015
Recall: 0.7280

F1-Score: 0.7543

ROC AUC = 0.874

Best Distance thr: 0.203 Best Youden thr: 0.203

KNN

Accuracy: 0.8497 Precision: 0.7985

Recall: 0.7155

F1-Score: 0.7435

ROC AUC = 0.854

Best Distance thr: 0.229 Best Youden thr: 0.244

XGBoost

Accuracy: 0.8637 Precision: 0.8144 Recall: 0.7538

F1-Score: 0.7774

ROC AUC = 0.894

Best Distance thr: 0.0769 Best Youden thr: 0.0769

Conclusions

XGBoost

Accuracy: 0.8637764838283506

Precision: 0.8144731965984963

Recall: 0.7538899855632417

F1-score: 0.7774820289404807

ROC AUC= 0.894

Gracies