

Exponentielle Glättung bei Vorliegen eines Trends: Das Verfahren von Holt

Verwendung von zwei Glättungsparametern

Achsenabschnitt der Trendgeraden

$$\widehat{a}_t = \alpha \cdot y_t + (1-\alpha) \cdot \underbrace{\left(\widehat{a}_{t-1} + \widehat{b}_{t-1}\right)}_{\text{letzte Schätzung des Nachfrageniveaus}}$$

Steigung der Trendgeraden

$$\widehat{b}_t = \beta \cdot \underbrace{(\widehat{a}_t - \widehat{a}_{t-1})}_{\text{aktuelle Beobachtung der Steigung}} + (1 - \beta) \cdot \widehat{b}_{t-1}$$

Prognosewerte (i Perioden später)

$$p_{t+i} = \widehat{a}_t + \widehat{b}_t \cdot i$$

Beispiel Verfahren von Holt ($\alpha=0.1$, $\beta=0.2$)

Nachfragedaten für 1997:

t	y_t	\widehat{a}_t	\widehat{b}_t	p_t	e_t
0	0	275.0000	10.8800	0	0
1	317	288.9920	11.5024	285.8800	31.1200
2	194	289.8450	9.3725	300.4944	-106.4944
3	312	300.4957	9.6282	299.2175	12.7825
4	316	310.7115	9.7457	310.1239	5.8761
5	322	320.6115	9.7765	320.4572	1.5428
6	334	330.7492	9.8488	330.3880	3.6120
7	317	338.2382	9.3768	340.5980	-23.5980
8	356	348.4535	9.5445	347.6150	8.3850
9	428	364.9982	10.9446	357.9980	70.0020
10	411	379.4485	11.6457	375.9428	35.0572
11	494	401.3848	13.7038	391.0942	102.9058
12	412	414.7798	13.6420	415.0886	-3.0886

(s. Tempelmeier (2008))

Beispiel Verfahren von Holt ($\alpha=0.1$, $\beta=0.2$)

Nachfragedaten für 1998:

t	y_t	\widehat{a}_t	\widehat{b}_t	p_t	e_t
13	460	431.5796	14.2736	428.4218	31.5782
14	395	440.7679	13.2565	445.8532	-50.8532
15	392	447.8220	12.0161	454.0245	-62.0245
16	447	458.5543	11.7593	459.8381	-12.8381
17	452	468.4822	11.3930	470.3136	-18.3136
18	571	488.9877	3.2155	479.8752	91.1248
19	517	503.6829	13.5115	502.2032	14.7968
20	397	505.1749	11.1076	517.1944	-120.1944
21	410	505.6542	8.9819	516.2825	-106.2825
22	579	521.0725	10.2692	514.6362	64.3638
23	473	525.5076	9.1024	531.3417	-58.3417
24	558	536.9489	9.5702	534.6099	23.3901
25				546.5191	

(s. Tempelmeier (2008))

Beispiel Exponentielle Glättung mit Trendkorrektur ($\alpha = 0.1$)

Beispiel Exponentielle Glättung mit Trendkorrektur ($\alpha = 0.1$)

Beispiel Verfahren von Holt ($\alpha=0.1$, $\beta=0.2$)

Beispiel Saisonale Nachfrageschwankungen

		Quar			
Jahr t	1	2	3	4	Summe
1	289	410	301	213	1213
2	212	371	374	333	1290
3	293	441	411	363	1508
4	324	462	379	301	1466
5	347	520	540	521	1928
6	381	594	573	504	2052
7	444	592	571	507	2114

(vgl. Tempelmeier (2008))

Beispiel Saisonale Nachfrageschwankungen

Beispiel Saisonale Nachfrageschwankungen

Autokorrelationskoeffizient $\rho(\tau)$

Autokorrelationskoeffizient

(bezüglich einer Zeitverschiebung von τ Perioden)

$$\rho(\tau) = \frac{\sum_{t=1}^{T-\tau} y_t \cdot y_{t+\tau} - \frac{1}{T-\tau} \cdot \sum_{t=1}^{T-\tau} y_t \cdot \sum_{t=1+\tau}^{T} y_t}{\sqrt{\left(\sum_{t=1}^{T-\tau} y_t^2 - \frac{1}{T-\tau} \cdot \left(\sum_{t=1}^{T-\tau} y_t\right)^2\right) \cdot \left(\sum_{t=1+\tau}^{T} y_t^2 - \frac{1}{T-\tau} \cdot \left(\sum_{t=1+\tau}^{T} y_t\right)^2\right)}}$$

Autokorrelogramm für eine Zeitreihe mit saisonalem Verlauf

Die Autokorrelationsfunktion $\rho(\tau)$ schwankt um 0, weicht aber in regelmäßigen Abständen systematisch davon ab.

Autokorrelogramm für eine Zeitreihe mit trendförmigem Verlauf

Die Autokorrelationsfunktion $\rho(\tau)$ verläuft im positiven Bereich, wenngleich fallend, d. h. mit abnehmender Korrelation.

Beispiel Saisonale Nachfrageschwankungen

Autokorrelationskoeffizient $\rho(\tau)$

Nachfrageprognose bei saisonalen Schwankungen: Saisonbereinigung

Saisonbereinigung im multiplikativen Modell

$$Y_{\text{Saisonbereinigt}} = \frac{Y}{S} = \frac{T \cdot C \cdot S \cdot I}{S} = T \cdot C \cdot I$$

$$\iff$$
 Zeitreihenmodell: $Y = S \cdot Y_{\text{saisonbereinigt}}$

glatte Komponente

$$T \cdot C = \frac{Y}{S \cdot I} = \frac{T \cdot C \cdot S \cdot I}{S \cdot I}$$

Isolierung der **glatten Komponente**

$$S \cdot I = \frac{T \cdot C \cdot S \cdot I}{T \cdot C}$$
 ("Ratio to Moving Average")

Schätzung der **glatten Komponente**

(gleitende Durchschnitte ("moving averages") der Ordnung n)

$$\mathsf{tc}_{tm} = \frac{1}{2 \cdot k + 1} \cdot \sum_{j=t-k}^{t+k} y_j \tag{n = 2 \cdot k + 1}$$

... bei gerader Gliederanzahl (d. h. Ordnung $n = 2 \cdot k$):

$$tc_{tm} = \frac{1}{2 \cdot k} \cdot \left(0.5 \cdot y_{t-k} + \sum_{j=t-k+1}^{t+k-1} y_j + 0.5 \cdot y_{t+k} \right)$$
 (n = 2 \cdot k)

Schätzung der Saisonfaktoren (aus Daten über n Jahre hinweg):

$$\mathsf{si}_{tm} = rac{y_{tm}}{\mathsf{tc}_{tm}}$$

$$s_m = \frac{1}{n} \cdot \sum_{t=1}^n \operatorname{si}_{tm}$$

(für alle Saisonperioden m eines Jahres)

Beispiel Saisonale Nachfrageschwankungen

		Quar			
Jahr t	1	2	3	4	Summe
1	289	410	301	213	1213
2	212	371	374	333	1290
3	293	441	411	363	1508
4	324	462	379	301	1466
5	347	520	540	521	1928
6	381	594	573	504	2052
7	444	592	571	507	2114

(vgl. Tempelmeier (2008))

Beispiel Saisonale Nachfrageschwankungen

$$tc_{13} = \frac{0.5 \cdot y_{11} + y_{12} + y_{13} + y_{14} + 0.5 \cdot y_{21}}{4} = 293.63$$

$$\mathsf{tc}_{14} = \frac{0.5 \cdot y_{12} + y_{13} + y_{14} + y_{21} + 0.5 \cdot y_{22}}{4} = 279.13$$

$$\mathsf{tc}_{21} = \frac{0.5 \cdot y_{13} + y_{14} + y_{21} + y_{22} + 0.5 \cdot y_{23}}{4} = 283.38$$

$$\mathsf{tc}_{22} = \frac{0.5 \cdot y_{14} + y_{21} + y_{22} + y_{23} + 0.5 \cdot y_{24}}{4} = 307.50$$

USW.

Beispiel Saisonale Nachfrageschwankungen

$$\mathsf{tc}_{13} = \frac{0.5 \cdot y_{11} + y_{12} + y_{13} + y_{14} + 0.5 \cdot y_{21}}{4} = 293.63, \ \mathsf{si}_{13} = \frac{y_{13}}{\mathsf{tc}_{13}} = \frac{301}{293.63} = 1.0251$$

$$\mathsf{tc}_{14} = \frac{0.5 \cdot y_{12} + y_{13} + y_{14} + y_{21} + 0.5 \cdot y_{22}}{4} = 279.13, \; \mathsf{si}_{14} = \frac{y_{14}}{\mathsf{tc}_{14}} = \frac{213}{279.13} = 0.7631$$

$$\mathsf{tc}_{21} = \frac{0.5 \cdot y_{13} + y_{14} + y_{21} + y_{22} + 0.5 \cdot y_{23}}{4} = 283.38, \ \mathsf{si}_{21} = \frac{y_{21}}{\mathsf{tc}_{21}} = \frac{212}{283.38} = 0.7481$$

$$\mathsf{tc}_{22} = \frac{0.5 \cdot y_{14} + y_{21} + y_{22} + y_{23} + 0.5 \cdot y_{24}}{4} = 307.50, \ \mathsf{si}_{22} = \frac{y_{22}}{\mathsf{tc}_{22}} = \frac{371}{307.50} = 1.2065$$

usw.

Jahr	t Quartal m	Beobachtung y_{tm}	glatte Komponente tc $_{tm}$	si_{tm}
1	1	289		
1	2	410		
1	3	301	293.63	1.025117071
1	4	213	279.13	0.763098970
2	1	212	283.38	0.748125276
2	2	371	307.50	1.206504065
2	3	374	332.63	1.124389327
2	4	333	351.50	0.947368421
2 3 3	1	293	364.88	0.803014731
3	2	441	373.25	1.181513731
3	3	411	380.88	1.079094191
3	4	363	387.38	0.937076476
4	1	324	386.00	0.839378238
4	2	462	374.25	1.234468938
4	3	379	369.38	1.026057530
4	4	301	379.50	0.793148880
5	1	347	406.88	0.852841782
5	2 3	520	454.50	1.144114411
5		540	486.25	1.110539846
5	4	521	499.75	1.042521261
6	1	381	513.13	0.742509135
6	2	594	515.13	1.153118175
6	3	573	520.88	1.100071994
6	4	504	528.50	0.953642384
7	1	444	528.00	0.840909091
7	2 3	592	528.13	1.120946746
7	3	571		
7	4	507		

Beispiel Saisonale Nachfrageschwankungen

Beispiel Saisonale Nachfrageschwankungen

Beispiel Saisonale Nachfrageschwankungen

Saisonfaktoren sitm:

Jahr t	1	2	3	4	
1			1.0251171	0.7630990	
2	0.7481253	1.2065041	1.1243893	0.9473684	
3	0.8030147	1.1815137	1.0790942	0.9370765	
4	0.8393782	1.2344689	1.0260575	0.7931489	
5	0.8528418	1.1441144	1.1105398	1.0425213	
6	0.7425091	1.1531182	1.1000720	0.9536424	
7	0.8409091	1.1209467			
Durchschnitt	0.8044630	1.1734443	1.0775450	0.9061427	3.9615951

Schätzung der Saisonfaktoren (aus Daten über n Jahre hinweg):

$$\operatorname{si}_{tm} = rac{y_{tm}}{\operatorname{tc}_{tm}}$$

$$s_m = \frac{1}{n} \cdot \sum_{t=1}^n \operatorname{si}_{tm}$$

(für alle Saisonperioden m eines Jahres)

Sei M die Anzahl **Saisonperioden**, dann ist

$$\widehat{s}_m = s_m \cdot \frac{M}{\sum_{m=1}^{M} s_m}$$

ein Schätzwert für den **standardisierten Saisonfaktor** der Saisonperiode m.

Beispiel Saisonale Nachfrageschwankungen

Saisonfaktoren sitm:

Jahr t	1	2	3	4	
1			1.0251171	0.7630990	
2	0.7481253	1.2065041	1.1243893	0.9473684	
3	0.8030147	1.1815137	1.0790942	0.9370765	
4	0.8393782	1.2344689	1.0260575	0.7931489	
5	0.8528418	1.1441144	1.1105398	1.0425213	
6	0.7425091	1.1531182	1.1000720	0.9536424	
7	0.8409091	1.1209467			
Durchschnitt	0.8044630	1.1734443	1.0775450	0.9061427	3.9615951
Durchschnitt					
(standardisiert)	0.8122617	1.1848201	1.0879910	0.9149272	4.0000000

Beispiel Saisonale Nachfrageschwankungen

$$\mathsf{tci}_t = rac{y_t}{\widehat{s}_{m(t)}}$$

Anpassung der Prognose bei konstantem Niveau der Nachfragemengen:

$$p_{t+1} = y_t^{(1)s} \cdot \widehat{s}_{m(t+1)} = \left(\alpha \cdot \frac{y_t}{\widehat{s}_{m(t)}} + (1 - \alpha) \cdot y_{t-1}^{(1)s}\right) \cdot \widehat{s}_{m(t+1)}$$

Anpassung der Prognose bei trendförmigem Verlauf der Nachfragemengen:

$$p_{t+i} = \underbrace{\left(\widehat{a}_t + \widehat{b}_t \cdot j\right)} \cdot \widehat{s}_{m(t+i)}$$

Schätzung auf Basis der saisonbereinigten Beobachtungswerte tci_t

Beispiel Saisonale Nachfrageschwankungen

Trendgeradenschätzung für die saisonbereingte Zeitreihe (Startwerte: $\widehat{a}_0 = 348.4505$, $\widehat{b}_0 = 7.3461$)

$$y_t = 304.4543 + 8.5885 \cdot t$$

Beispiel Saisonale Nachfrageschwankungen

Trendgeradenschätzung für die saisonbereingte Zeitreihe (Startwerte: $\widehat{a}_0 = 348.4505, \, \widehat{b}_0 = 7.3461$)

$$y_t = 304.4543 + 8.5885 \cdot t$$

Prognosewerte ohne Berücksichtigung des Saisoneinflusses

$$p_{29} = 304.4543 + 8.5885 \cdot 29 = 553.5208$$

$$p_{30} = 304.4543 + 8.5885 \cdot 30 = 562.1093$$

$$p_{31} = 304.4543 + 8.5885 \cdot 31 = 570.6978$$

$$p_{32} = 304.4543 + 8.5885 \cdot 32 = 579.2863$$

Beispiel Saisonale Nachfrageschwankungen

Trendgeradenschätzung für die saisonbereingte Zeitreihe (Startwerte: $\widehat{a}_0 = 348.4505, \, \widehat{b}_0 = 7.3461$)

$$y_t = 304.4543 + 8.5885 \cdot t$$

Prognosewerte mit Berücksichtigung des Saisoneinflusses

$$p_{29} = 553.5208 \cdot 0.8123 = 449.6249$$

$$p_{30} = 562.1093 \cdot 1.1848 = 665.9871$$

$$p_{31} = 570.6978 \cdot 1.0880 = 620.9192$$

$$p_{32} = 579.2863 \cdot 0.9149 = 529.9890$$

Beispiel Saisonale Nachfrageschwankungen

Beispiel Saisonale Nachfrageschwankungen

Nachfrageprognose bei saisonalen Schwankungen: Verfahren von Holt/Winters

Verfahren von Holt/Winters

Verwendung von drei Glättungsparametern

Achsenabschnitt der Trendgeraden (aktuelles Nachfragemengenniveau zum Zeitpunkt t)

$$\widehat{a}_t = \alpha \cdot \frac{y_t}{\widehat{s}_{m(t)}} + (1 - \alpha) \cdot \left(\widehat{a}_{t-1} + \widehat{b}_{t-1}\right)$$

Steigung der Trendgeraden

$$\widehat{b}_t = \beta \cdot (\widehat{a}_t - \widehat{a}_{t-1}) + (1 - \beta) \cdot \widehat{b}_{t-1}$$

Saisonfaktoren

$$\widehat{s}_t = \gamma \cdot \frac{y_t}{\widehat{a}_t} + (1 - \gamma) \cdot \widehat{s}_{m(t)}$$

Prognosewerte

$$p_{t+i} = (\widehat{a}_t + \widehat{b}_t \cdot i) \cdot \widehat{s}_{m(t+i)}$$

Verfahren von Holt/Winters

Beispiel Saisonale Nachfrageschwankungen

Achsenabschnitt der Trendgeraden ($\alpha = 0.2$)

$$\widehat{a}_1 = 0.2 \cdot \frac{289}{0.8123} + (1 - 0.2) \cdot (304.4543 + 8.5885) = 321.5936$$

Steigung der Trendgeraden ($\beta = 0.1$)

$$\hat{b}_1 = 0.1 \cdot (321.5936 - 304.4543) + (1 - 0.1) \cdot 8.5885 = 9.4436$$

Saisonfaktoren ($\gamma = 0.3$)

$$\hat{s}_1 = 0.3 \cdot \frac{289}{321.5936} + (1 - 0.3) \cdot 0.8123 = 0.8382$$

Prognosewerte

$$p_2 = (321.5936 + 9.4436) \cdot 1.1848 = 392.2195$$

Saisonbereinigung und Prognose

Prognosemodell

Nachfragemenge zum Zeitpunkt t

(die abhängige Größe, "abhängige, erklärte Variable")

$$y_t = \underbrace{\beta_0 \cdot x_{0t} + \beta_1 \cdot x_{1t} + \beta_2 \cdot x_{2t} + \dots + \beta_m \cdot x_{mt}}_{\text{systematische. erklärbare Komponente für den Zeitpunkt } t \qquad (t = 1, 2, \dots, n)$$

$$y_t = \beta_0 \cdot x_{0t} + \beta_1 \cdot x_{1t} + \beta_2 \cdot x_{2t} + \dots + \beta_m \cdot x_{mt} + \underbrace{\epsilon_t}_{\text{Restkomponente } I} (t = 1, 2, \dots, n)$$

Einflussgröße j zum Zeitpunkt t

(die die Nachfragemenge erklärenden Größen, "unabhängige, erklärende Variable")

 x_{it} (gegeben: beobachtet und/oder prognostiziert)

$$(j = 0, 1, 2, \dots, m; t = 1, 2, \dots, n, n + 1, n + 2, \dots)$$

Stärke des Einflusses j ("Regressionskoeffizient")

$$\beta_j$$
 (noch zu bestimmen bzw. effizient zu schätzen) $(j=0,1,2,\ldots,m)$

Prognosemodell

Schätzwerte für die Regressionskoeffizienten

$$\widehat{\beta_j}$$
 bzw. b_j

$$(j = 0, 1, 2, \dots, m)$$

geschätzte ex-post-Prognosewerte

$$\widehat{y_t}$$
 bzw. p_t

$$(t = 1, 2, \dots, n)$$

Prognosefunktion

$$p_t = b_0 \cdot x_{0t} + b_1 \cdot x_{1t} + b_2 \cdot x_{2t} + \dots + b_m \cdot x_{mt} = \sum_{j=0}^m b_j \cdot x_{jt}$$
 (t = 1, 2, ...)

Prognosemodell

Schätzwerte für die Regressionskoeffizienten

$$\widehat{\beta_j}$$
 bzw. b_j

$$(j = 0, 1, 2, \dots, m)$$

geschätzte ex-post-Prognosewerte

$$\widehat{y_t}$$
 bzw. p_t

$$(t=1,2,\ldots,n)$$

Prognosefunktion

$$p_t = b_0 \cdot x_{0t} + b_1 \cdot x_{1t} + b_2 \cdot x_{2t} + \dots + b_m \cdot x_{mt} = \sum_{j=0}^m b_j \cdot x_{jt} \qquad (t = 1, 2, \dots)$$

Spezialfall: Trendgerade

$$p_t = b_0 \cdot 1 + b_1 \cdot x_{1t}$$
$$= b_0 + b_1 \cdot k$$

$$(t=1,2,\ldots)$$

$$(k = t - n + 1, t - n + 2, \dots, t - 1, t)$$

Spezialfall: Trendgerade

Trendgerade: Prognosemodell

Die Regressionskoeffizienten b_j werden üblicherweise so geschätzt, dass die Summe der quadrierten Prognosefehler (SQA) minimiert wird.

$$\begin{split} & \mathsf{SQA}(b_0,b_1) := \sum_{k=t-n+1}^t (y_t - p_t)^2 = \sum_{k=t-n+1}^t (y_t - (b_0 + b_1 \cdot k))^2 \\ & \frac{\mathrm{d}\,\mathsf{SQA}(b_0,b_1)}{\mathrm{d}\,b_1} = -2 \cdot \sum_{k=t-n+1}^t (y_k - (b_0 + b_1 \cdot k) \cdot k \stackrel{!}{=} 0 \\ & \iff \sum_{k=t-n+1}^t (y_k - b_0 - b_1 \cdot k) \cdot k = 0 \\ & \iff \sum_{k=t-n+1}^t y_k \cdot k - \sum_{k=t-n+1}^t b_0 \cdot k - \sum_{k=t-n+1}^t b_1 \cdot k^2 = 0 \\ & \iff \sum_{k=t-n+1}^t y_k \cdot k = b_0 \cdot \sum_{k=t-n+1}^t k + b_1 \cdot \sum_{k=t-n+1}^t k^2 \end{split}$$

k=t-n+1 k=t-n+1

Lineares Gleichungssystem:
$$(1) \sum_{k=t-n+1}^{t} y_k = n \cdot b_0 + b_1 \cdot \sum_{k=t-n+1}^{t} k$$

(2)
$$\sum_{k=t-n+1}^{t} y_k \cdot k = b_0 \cdot \sum_{k=t-n+1}^{t} k + b_1 \cdot \sum_{k=t-n+1}^{t} k^2$$

Lineares Gleichungssystem:

(1)
$$\sum_{k=t-n+1}^{t} y_k = n \cdot b_0 + b_1 \cdot \sum_{k=t-n+1}^{t} k$$

(2)
$$\sum_{k=t-n+1}^{t} y_k \cdot k = b_0 \cdot \sum_{k=t-n+1}^{t} k + b_1 \cdot \sum_{k=t-n+1}^{t} k^2$$

Lösung des Gleichungssystems:

(1)
$$b_0 = \frac{\sum_{k=t-n+1}^{t} k^2 \cdot \sum_{k=t-n+1}^{t} y_k - \sum_{k=t-n+1}^{t} k \cdot \sum_{k=t-n+1}^{t} k \cdot y_k}{n \cdot \sum_{k=t-n+1} k^2 - \left(\sum_{k=t-n+1}^{t} k\right)^2}$$

Lineares Gleichungssystem: (1)
$$\sum_{k=t-n+1}^{t} y_k = n \cdot b_0 + b_1 \cdot \sum_{k=t-n+1}^{t} k$$

(2)
$$\sum_{k=t-n+1}^{t} y_k \cdot k = b_0 \cdot \sum_{k=t-n+1}^{t} k + b_1 \cdot \sum_{k=t-n+1}^{t} k^2$$

Lösung des Gleichungssystems:

(2)
$$b_{1} = \frac{n \cdot \sum_{k=t-n+1}^{t} k \cdot y_{k} - \sum_{k=t-n+1}^{t} k \cdot \sum_{k=t-n+1}^{t} y_{k}}{n \cdot \sum_{k=t-n+1} k^{2} - \left(\sum_{k=t-n+1}^{t} k\right)^{2}}$$

Lineares Gleichungssystem (in Matrixschreibweise):

$$\begin{bmatrix} \sum_{k=t-n+1}^{t} y_k \cdot k \\ \sum_{k=t-n+1}^{t} y_k \cdot k \end{bmatrix} = \begin{bmatrix} n & \sum_{k=t-n+1}^{t} k \\ \sum_{k=t-n+1}^{t} k & \sum_{k=t-n+1}^{t} k^2 \end{bmatrix} \cdot \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

Es sei dann:

$$\mathbf{y} := \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{(2 \times 1 - \mathsf{Matrix})} \quad \mathbf{X} := \begin{bmatrix} 1 & x_{11} \\ 1 & x_{12} \end{bmatrix}_{(2 \times 2 - \mathsf{Matrix})} \quad \mathbf{b} := \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}_{(2 \times 1 - \mathsf{Matrix})}$$

Koeffizientenschätzung (Normalgleichungssystem in Matrixschreibweise):

$$\left(\mathbf{X}^{\mathbf{T}}\mathbf{X}\right)^{-1}\mathbf{X}_{(2\times2)}^{\mathbf{T}}\cdot\mathbf{y}_{(2\times1)} = \left(\mathbf{X}^{\mathbf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathbf{T}}\mathbf{X}_{(2\times2)}\cdot\mathbf{b}_{(2\times1)} = \mathbf{b}_{(2\times1)}$$

$$\mathbf{b}_{(2\times1)} = \left(\mathbf{X}^{\mathbf{T}}\mathbf{X}\right)^{-1}\mathbf{X}_{(2\times2)}^{\mathbf{T}} \cdot \mathbf{y}_{(2\times1)}$$
$$\mathbf{p}_{(2\times1)} = \mathbf{X}_{(2\times2)} \cdot \mathbf{b}_{(2\times1)}$$

Beispiel Exponentielle Glättung mit Trendkorrektur ($\alpha = 0.1$)

Nachfragedaten für 1997:

t	y_t	$y_t^{(1)}$	$y_t^{(2)}$	\widehat{a}_t	\widehat{b}_t	p_{t+1}	e_t
0		177.0800	79.1600	275.0000	10.8800	285.8800	
1	317	191.0720	90.3512	291.7928	11.1912	302.9840	31.1200
2	194	191.3648	100.4526	282.2770	10.1014	292.3784	-108.9840
3	312	203.4283	110.7501	296.1065	10.2976	306.4041	19.6216
4	316	214.6855	121.1437	308.2273	10.3935	318.6208	9.5959
5	322	225.4169	131.5710	319.2629	10.4273	329.6902	3.3792
6	334	236.2752	142.0414	330.5091	10.4704	340.9795	4.3098
7	317	244.3477	152.2721	336.4234	10.2306	346.6540	-23.9795
8	356	255.5129	162.5961	348.4298	10.3241	358.7538	9.3460
9	428	272.7617	173.6127	371.9106	11.0166	382.9272	69.2462
10	411	286.5855	184.9100	388.2610	11.2973	399.5583	28.0728
11	494	307.3269	197.1517	417.5022	12.2417	429.7439	94.4417
12	412	317.7942	209.2159	426.3726	12.0643	438.4368	-17.7439

(vgl. Tempelmeier (2008))

Beispiel Exponentielle Glättung mit Trendkorrektur ($\alpha = 0.1$)

Nachfragedaten für 1998:

t	y_t	$y_t^{(1)}$	$y_t^{(2)}$	\widehat{a}_t	\widehat{b}_t	p_{t+1}	e_t
12	412	317.7942	209.2159	426.3726	12.0643	438.4368	-17.7439
13	460	332.0148	221.4958	442.5338	12.2799	454.8137	21.5632
14	395	338.3133	233.1776	443.4491	11.6818	455.1309	-59.8137
15	392	343.6820	244.2280	443.1360	11.0504	454.1864	-63.1309
16	447	354.0138	255.2066	452.8210	10.9786	463.7996	-7.1864
17	452	363.8124	266.0672	461.5577	10.8606	472.4183	-11.7996
18	571	384.5312	277.9136	491.1488	11.8464	502.9952	98.5817
19	517	397.7781	289.9000	505.6561	11.9864	517.6426	14.0048
20	397	397.7003	300.6800	494.7205	10.7800	505.5005	-120.6426
21	410	398.9302	310.5051	487.3554	9.8250	497.1804	-95.5005
22	579	416.9372	321.1483	512.7261	10.6432	523.3694	81.8196
23	473	422.5435	331.2878	513.7992	10.1395	523.9387	-50.3694
24	558	436.0891	341.7679	530.4103	10.4801	540.8905	34.0613

(vgl. Tempelmeier (2008))

Trendgerade: Einfache lineare Regressionsrechnung

Beispiel Einfach-Regression bei Vorliegen eines linearen Trends

Trendgerade: Einfache lineare Regressionsrechnung

Beispiel Einfach-Regression bei Vorliegen eines linearen Trends

Trendgerade und ex-post- und ex-ante-Prognosewerte:

$$p_t = 275.00 + 10.88 \cdot t$$

Bestimmtheitsmaß \mathbb{R}^2 (= Anteil der erklärten Variation an der Gesamtvariation, der durch den Verlauf der Trendgeraden erklärt wird) :

$$R^2 = 66.61768 \%$$

Erweiterung der linearen Regressionsrechnung um weitere Einflussgrößen

Trendgerade: Einfache lineare Regressionsrechnung

Beispiel 2 Einfach-Regression bei Vorliegen eines linearen Trends

Monat t	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Beobachtungen	30	25	37	43	39	55	66	59	48	53	49	57

Trendgerade und ex-post- und ex-ante-Prognosewerte:

$$p_t = 30.364 + 2.521 \cdot t$$

Bestimmtheitsmaß \mathbb{R}^2 (= Anteil der erklärten Variation an der Gesamtvariation, der durch den Verlauf der Trendgeraden erklärt wird) :

$$R^2 = 54.67366 \%$$

Beispiel II Regression bei Trend und weiteren Einflüssen

Monat t	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Beobachtungen	30	25	37	43	39	55	66	59	48	53	49	57
Anzahl Werktage	21	20	23	19	21	20	21	23	22	20	21	21

Trendgerade und ex-post- und ex-ante-Prognosewerte:

$$p_t = 19.3439019 + 2.5024304 \cdot t + 0.5304905 \cdot (Anzahl Werktage)$$

Bestimmtheitsmaß \mathbb{R}^2 (= Anteil der erklärten Variation an der Gesamtvariation, der durch den Verlauf der Trendgeraden erklärt wird) :

$$R^2 = 54.94158\%$$

Beispiel II Regression bei Trend und weiteren Einflüssen

Beispiel II Regression bei Trend und weiteren Einflüssen

Monat t	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Beobachtungen	30	25	37	43	39	55	66	59	48	53	49	57
Werktage	21	20	23	19	21	20	21	23	22	20	21	21
Aktionswochen	2	1	1	1	2	1	0	1	2	1	4	3

Trendgerade und ex-post- und ex-ante-Prognosewerte:

$$p_t = 21.1034446 + 3.3570323 \cdot t + 0.6571497 \cdot \text{Werktage} - 6.2995571 \cdot \text{Aktionswochen}$$

Bestimmtheitsmaß \mathbb{R}^2 (= Anteil der erklärten Variation an der Gesamtvariation, der durch den Verlauf der Trendgeraden erklärt wird) :

$$R^2 = 79.41516\%$$

Beispiel II Regression bei Trend und weiteren Einflüssen

Ausgewählte Probleme bei der Einführung und Anwendung eines Verfahrens zur Nachfrageprognose

Begrenzte Vergangenheit

[∥]Zeit

Begrenzte Vergangenheit

"Zeit

Ausreißer

- Projektbedarf
- ► Nachfragemenge auf Grund eines Großauftrags
- ► Nachfragemenge auf Grund von Sonderaktionen

Ausreißer

[⊯]Zeit