Operating System (CS-33101) MCA – 3rd Semester Assignment 5

- **Q.1.** A CPU generates 32-bit virtual addresses. The page size is 4 KB. The processor has a translation look-aside buffer (TLB) which can hold a total of 128 page table entries and is 4-way set associative. Find the minimum size of the TLB tag?
- **Q.2.** A computer uses 46—bit virtual address, 32—bit physical address, and a three—level paged page table organization. The page table base register stores the base address of the first—level table (T1), which occupies exactly one page. Each entry of T1 stores the base address of a page of the second—level table (T2). Each entry of T2 stores the base address of a page of the third—level table (T3). Each entry of T3 stores a page table entry (PTE). The PTE is 32 bits in size. The processor used in the computer has a 1 MB 16 way set associative virtually indexed physically tagged cache. The cache block size is 64 bytes. What is the size of a page in KB in this computer?
- **Q.3.** A processor uses 36 bit physical addresses and 32 bit virtual addresses, with a page frame size of 4 Kbytes. Each page table entry is of size 4 bytes. A three level page table is used for virtual to physical address translation, where the virtual address is used as follows:
 - Bits 30-31 are used to index into the first level page table
 - Bits 21-29 are used to index into the second level page table
 - Bits 12-20 are used to index into the third level page table, and
 - Bits 0-11 are used as offset within the page

The number of bits required for addressing the next level page table (or page frame) in the page table entry of the first, second and third level page tables are respectively.

- **Q.4.** The memory access time is 1 nanosecond for a read operation with a hit in cache, 5 nanoseconds for a read operation with a miss in cache, 2 nanoseconds for a write operation with a hit in cache and 10 nanoseconds for a write operation with a miss in cache. Execution of a sequence of instructions involves 100 instruction fetch operations, 60 memory operand read operations and 40 memory operand write operations. The cache hit-ratio is 0.9. What is the average memory access time (in nanoseconds) in executing the sequence of instructions?
- Q.5. A processor uses 2-level page tables for virtual to physical address translation. Page tables for both levels are stored in the main memory. Virtual and physical addresses are both 32 bits wide. The memory is byte addressable. For virtual to physical address translation, the 10 most significant bits of the virtual address are used as index into the first level page table while the next 10 bits are used as index into the second level page table. The 12 least significant bits of the virtual address are used as offset within the page. Assume that the page table entries in both levels of page tables are 4 bytes wide. Further, the processor has a translation look-aside buffer (TLB), with a hit rate of 96%. The TLB caches recently used virtual page numbers and the corresponding physical page numbers. The processor also has a physically addressed cache with a hit rate of 90%. Main memory access time is 10 ns, cache access time is 1 ns, and TLB access time is also 1 ns. Assuming that no page faults occur, what is the average time taken to access a virtual address?