Problem 6.6 P240

The voltage waveform in Fig. 6.46 is applied across a $55-\mu F$ capacitor. Draw the current waveform through it.

$$\frac{1}{1} = C \cdot \frac{dv}{dt}$$

$$\Rightarrow 1 = \begin{cases}
55 \times 10^{-6} \times \frac{10}{2 \times 10^{-3}} = 275 \times 10^{-3} \text{ (o < t < 2)} \\
0 \quad (2 < t < 4)
\end{cases}$$

$$55 \times 10^{-6} \times \left(-\frac{20}{14 \times 10^{-3}}\right) = -275 \times 10^{-3} \text{ (4 < t < 8)}$$

$$0 \quad (8 < t < 10)$$

$$275 \times 10^{-3} \text{ (fo < t < 12)}$$

Problem 6.22 P242

Obtain the equivalent capacitance of the circuit in Fig. 6.56.

Problem 6.28 P243

Obtain the equivalent capacitance of the network shown in Fig. 6.60.

Problem 6.32 P243

6.32 In the circuit in Fig. 6.64, let $i_s = 4.5e^{-2t}$ mA and the voltage across each capacitor is equal to zero at t = 0. Determine v_1 and v_2 and the energy stored in each capacitor for all t > 0.

Promblem 6.45 P244

If the voltage waveform in Fig. 6.68 is applied to a 25-mH inductor, find the inductor current i(t) for 0 < t < 2 seconds. Assume i(0) = 0.

Promblem 6.54 P245

Find the equivalent inductance looking into the terminals of the circuit in Fig. 6.76.

