0.0.1 A Reconstruction

The following cuts were used to select good $\Lambda\left(\bar{\Lambda}\right)$ candidates:

- 1. Cuts Common to Both Daughters
 - (a) $|\eta| < 0.8$
 - (b) SetTPCnclsDaughters(80)
 - (c) SetStatusDaughters(AliESDtrack::kTPCrefic)
 - (d) SetMaxDcaV0Daughters(0.4)
- 2. Pion Specific Daughter Cuts
 - (a) $p_T > 0.16$
 - (b) DCA to prim vertex > 0.3
- 3. Proton Specific Daughter Cuts

(a)
$$p_T >$$
- 0.5 (p)
- 0.3 (\bar{p})

- (b) DCA to prim vertex > 0.1
- 4. V0 Cuts

(a)
$$|\eta| < 0.8$$

(b)
$$p_T > 0.4$$

(c)
$$|m_{inv} - m_{PDG}| < 3.8 \text{ MeV}$$

- (d) Cosine of pointing angle > 0.9993
- (e) OnFlyStatus = false
- (f) Decay Length < 60 cm

Fig. 1: Mass assuming K_S^0 -hypothesis for V0 candidates passing all Λ (1a) and $\bar{\Lambda}$ (1b) cuts. The "NoMisID" distribution (black triangles) uses the V0 finder without any attempt to remove misidentified K_S^0 . The slight peak in the "NoMisID" distribution around $m_{inv} = 0.5$ GeV/c² likely contains misidentified K_S^0 particles in our Λ collection. "SimpleMisID" (pink squares) simply cuts out the entire peak, which throws away some good Λ and $\bar{\Lambda}$ particles. "MisID_NoM_{inv}Comp" (green squares) uses the misidentification cut outlined in the text, but does not utilize the invariant mass comparison method. "MisID_M_{inv}Comp" (red circles) utilizes the full misidentification methods, and is currently used for this analysis. "N_{pass}/N_{ev}" is the total number of $\Lambda(\bar{\Lambda})$ particles found, normalized by the total number of events. The purity of the collection is also listed. If one simply cuts out the entire peak, good Λ particles will be lost. Ideally, the Λ selection and K_S^0 misidentification cuts are selected such that the peak is removed from this plot while leaving the distribution continuous.

Fig. 2: Λ and $\bar{\Lambda}$ Purity