Universidade Federal da Fronteira Sul - UFFS - Campus Chapecó

Disciplina: Cálculo I - 2024/1 Curso de Ciência da Computação

Prof^a: Divane Marcon

4^a Lista de Exercícios - Derivadas

1. Encontrar a equação da reta tangente à curva $y=1-x^2$, que seja paralela à reta y=1-x. Resp:4x+4y-5=0

- 2. Encontrar a equação da reta tangente à curva $y=x^3-1$, que seja perpendicular à reta y=-x. Resp: $3\sqrt{3}x-3\sqrt{3}y-2=0$; $3\sqrt{3}x-3\sqrt{3}y+2=0$
- 3. Encontre a derivada das funções abaixo:

a)
$$f(x) = 3x^2 + 6x - 10$$
. Resp: $6x + 6$

b)
$$f(x) = 14 - \frac{1}{2}x^{-3}$$
. Resp: $\frac{3}{2x^4}$

c)
$$f(x) = (3x^5 - 1)(2 - x^4)$$
. Resp: $-27x^8 + 30x^4 + 4x^3$

d)
$$f(x) = (x-1)(x+1)$$
. Resp:2x

e)
$$f(x) = 7(ax^2 + bx + c)$$
. Resp:7 $(2ax + b)$

f)
$$f(x) = \frac{2}{3} (5x - 3)^{-1} (5x + 3)$$
. Resp: $\frac{-20}{(5x - 3)^2}$

g)
$$f(s) = (s^2 - 1)(3s - 1)(5s^3 + 2s)$$
.

Resp:
$$(s^2 - 1)(3s - 1)(15s^2 + 2) + 3(s^2 - 1)(5s^3 + 2s) + 2s(3s - 1)(5s^3 + 2s)$$

h)
$$f(u) = (4u^2 - a)(a - 2u)$$
. Resp: $-24u^2 + 8au + 2a$

i)
$$f(t) = \frac{2-t^2}{t-2}$$
. Resp: $\frac{-t^2+4t-2}{t^2-4t+4}$

j)
$$f(x) = \frac{x+1}{x+2} (3x^2 + 6x)$$
. Resp: $\frac{6x^3 + 27x^2 + 36x + 12}{(x+2)^2}$

k)
$$f(x) = \frac{1}{2}x^4 + \frac{2}{x^6}$$
. Resp: $2x^3 - \frac{12}{x^7}$

l)
$$f(x) = 3x^2 + \sqrt[3]{x^4}$$
. Resp: $6x + \frac{4}{3}x^{\frac{1}{3}}$

m)
$$H(z) = (z^5 - 2z^3)(7z^2 + z - 8)$$

n)
$$h(z) = \frac{8-z+3z^2}{2-9z}$$
 Resp: $\frac{-27z^2+12z+70}{(2-9z)^2}$

o)
$$f(t) = t^2 + \frac{1}{t^2}$$
 Resp. $2t - \frac{2}{t^3}$

p)
$$g(r) = (5r - 4)^2$$
 Resp: $\frac{-10}{(5r - 4)^3}$

q)
$$M(x) = \frac{2x^3 - 7x^2 + 4x + 3}{x^2}$$
 Resp. $2 - \frac{4}{x^2} - \frac{6}{x^3}$

4. Para as funções abaixo, determine a derivada

a)
$$f(x) = (2x-5)^4 + \frac{1}{x+1} - \sqrt{x}$$
. Resp: $8(2x-5)^3 - \frac{1}{(x+1)^2} - \frac{1}{2\sqrt{x}}$

b)
$$f(t) = \left(\frac{7t+1}{2t^2+3}\right)^3$$
. Resp: $\frac{3(7t+1)^2(-14t^2-4t+21)}{(2t^2-3)^4}$

c)
$$f(x) = \frac{2x}{\sqrt{3x-1}}$$
. Resp: $\frac{3x-2}{(3x-1)\sqrt{3x-1}}$

d)
$$f(x) = 2e^{3x^2+6x+7}$$
 Resp: $12e^{3x^2+6x+7}(x+1)$

e)
$$f(t) = \frac{e^{-t^2}+1}{t}$$
 Resp: $\frac{-2t^2e^{-t^2}-e^{-t^2}-1}{t^2}$

f)
$$f(t) = \left(\frac{a}{b}\right)^{\sqrt{t}}$$
 Resp: $\left(\frac{a}{b}\right)^{\sqrt{t}} \ln\left(\frac{a}{b}\right) \frac{1}{2\sqrt{t}}$

g)
$$f(u) = \cos(\frac{\pi}{2} - u)$$
 Resp: $\sin(\frac{\pi}{2} - u)$

h)
$$f(a) = \frac{1+\cos 2a}{2}$$
 Resp: $-\sin 2a$

i)
$$f(\theta) = \sin^2 \theta + \cos^2 \theta$$
 Resp:0

j)
$$f(x) = \left(\frac{1}{\sin x}\right)^2$$
 Resp: $\frac{-2\cos x}{\sin^3 x}$

k)
$$f(x) = e^{2x} \cos 3x$$
 Resp: $e^{2x} (2 \cos 3x - 3 \sin 3x)$

1)
$$f(t) = e^{2\cos 2t}$$
 Resp: $-4\sin 2te^{2\cos 2t}$

m)
$$k(t) = t - t^2 \cos t$$
 Resp: $t^2 \sin t - 2t \cos t + 1$

n)
$$R(w) = \frac{\cos w}{1-\sin w}$$

o)
$$f(x) = \frac{\tan x}{1+x^2}$$
 Resp: $\frac{\sec^2 x + x \sec^2 x - 2x \tan x}{(1+x^2)^2}$

5. Calcular
$$f''(0)$$
, se $f(x) = e^{-x} \cos 3x$ Resp:-1

6. Dada
$$f(x) = e^{-x}$$
, calcular $f(0) + xf''(0)$ Resp:1 – x

7. Dada
$$f(x) = 1 + \cos x$$
, mostrar que $f(x)$ é par e $f''(x)$ é impar.

8. Calcular as derivadas sucessivas até a ordem n indicada.

a)
$$f(x) = 3x^4 - 2x$$
; $n = 5$. Resp:0

b)
$$y = \sqrt{3 - x^2}; n = 3.$$
 Resp: $y'' = \frac{-3}{(3 - x^2)\sqrt{3 - x^2}}$

c)
$$y = \frac{1}{x-1}$$
; $n = 4$. Resp: $y^{iv} = \frac{24}{(x-1)^5}$

d)
$$y = \frac{1}{e^x}; n = 4.$$
 Resp: $y^{iv} = \frac{1}{e^x}$

9. Sejam f(x) e g(x) funções deriváveis até 3^a ordem. Mostrar que:

a)
$$(fg)$$
" = gf " + $2f'g' + fg$ "

b)
$$(fg)$$
" = gf " + $3f$ " g' + $3f'g$ " + fg "

10. Calcule $\frac{dy}{dx}$ utilizando a regra do quociente e, também, pela regra do produto:

a)
$$y = \frac{3x-1}{x^2}$$

b)
$$y = \frac{x^2 - 3x}{\sqrt[3]{x^2}}$$

- 11. Dadas as funções $f\left(x\right)=x^2+Ax$ e $g\left(x\right)=Bx$, determinar A e B de tal forma que $\begin{cases} f'\left(x\right)+g'\left(x\right)=1+2x\\ f\left(x\right)-g\left(x\right)=x^2 \end{cases}$ Resp: $A=B=\frac{1}{2}$
- 12. Em que pontos o gráfico da função $y = \frac{1}{3}x^3 \frac{3}{2}x^2 + 2x$ tem tangente horizontal? Resp: $\left(2,\frac{2}{3}\right)$; $\left(1,\frac{5}{6}\right)$