0.0.1. Desigualdades de Sobolev Generales

Poner cosas

0.1. Compacidad

Definición 1: Compactamente Contenido

Sean X, Y espacios de Banach tal que $X \subset Y$. Diremos que X está compactamente contenido en Y y lo denotamos por $X \subset \subset Y$ si

- 1. $||u||_Y \leq C||u||_X$.
- 2. Toda sucesión acotada en X es precompacta en Y. Vale decir, si $(u_k)_{k\in\mathbb{N}}\subset X$ es tal que $\sup_K \|u_k\|_X < \infty$, entonces existe una subsucesión $(u_{k_j})_{j\in\mathbb{N}}$ convergente a $u\in Y$.

Teorema 1: Reilich-Kondrachov

Sea $\Omega \subset \mathbb{R}^n$ abierto y acotado con frontera de clase \mathscr{C}^1 . Sea $1 \le 1 < n$, entonces

$$W^{1,p}(\Omega) \subset \subset L^q(\Omega)$$
 para $1 \leq q < p^*$.

DEMOSTRACIÓN

Teorema 2: Desigualdad de Poincaré

Sea $\Omega \subset \mathbb{R}^n$ abierto, acotado y conexo con frontera \mathscr{C}^1 y $1 \leq p \leq \infty$. Entonces existe $C = C(n, p, \Omega)$ tal que

$$||u-(u)_{\Omega}||_{L^p(\Omega)} \le C||Du||_{L^p(\Omega)} \qquad \forall u \in W^{1,p}(\Omega),$$

donde $(u)_{\Omega} = f_{\Omega} u$.

_