3D inversion for estimating total magnetization direction

using equivalent layer technique

André L. A. Reis * and Vanderlei C. Oliveira Jr.*

* Observatório Nacional, Rio de Janeiro, Brazil

e-mails: decoluisreis@gmail.com, vanderlei@on.br

(November 5, 2018)

GEO-2018XXXX

Running head: Determining total magnetization direction

ABSTRACT

We have developed a new methor for estimating the total magnetization direction of mag-

netic sources based on equivalent layer technique using total field anomaly data. In this

approach, we do not have to impose a strong information about the shape and the depth

of the sources, and do not require a regularly spaced data. Usually, this technique is used

for processing potential data estimating a 2D magnetic moment distribution over a ficti-

cious layer composed by dipoles below the observation plane. In certain conditions, when

the magnetization direction of equivalent sources is almost the same of true body, the esti-

mated magnetic property over the layer is all positive. The methodology uses a positivity

constraint to estimate a set of magnetic moment and a magnetization direction of the layer

through a iterative process. Mathematically, the algorithm solve a least squares problem

in two steps: the first one solve a linear problem for estimating a magnetic moment and

the second solve a non-linear problem for magnetization direction of the layer. We test the

methodology applying to synthetic data for different geometries and magnetization types

1

of sources. Moreover, we applied this method to field data from Goias Alkaline Province (GAP), center of Brazil, showing that the methodology can be a good tool for estimating the magnetization component of the alkaline intrusion complex in the Diorama region. The result for this complex suggests that this source has a remarkable strong remanent magnetization component. The magnetization direction estimated for this complex is -47° and -111° for inclination and declination, respectivelly.

METHODOLOGY

Considering a Cartesian coordinate system with x-, y- and z-axis being oriented to north, east and downward, respectively. Let $\Delta T(x_i, y_i, z_i)$ be the total field anomaly, at the i-th position (x_i, y_i, z_i) , produced by a continuous layer located below the observation plane on the depth z_c , where $z_c > z_i$, and $p(x', y', z_c)$ is the distribution of magnetic dipoles per unit area over the layer surface. In this case, the total field anomaly produced by this continuous layer is given by the equation

$$\Delta T(x_i, y_i, z_i) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x', y', z_c) [\gamma_m \hat{\mathbf{F}}_0^T \mathbf{H} \, \hat{\mathbf{h}}(\mathbf{q})] dx' \, dy', \tag{1}$$

where γ_m is a constant proportional to the vaccum permeability, $\hat{\mathbf{F}}_0$ is a unit vector with the same direction of the geomagnetic field \mathbf{F}_0 and \mathbf{H} is a 3×3 matrix equal to

$$\mathbf{H} = \begin{bmatrix} \partial_{xx}\phi & \partial_{xy}\phi & \partial_{xz}\phi \\ \partial_{yx}\phi & \partial_{yy}\phi & \partial_{yz}\phi \\ \partial_{zx}\phi & \partial_{zy}\phi & \partial_{zz}\phi \end{bmatrix}, \tag{2}$$

where $\partial_{\alpha\beta}\phi$, $\alpha=x,y,z,$ $\beta=x,y,z,$ is the second derivative of the function

$$\phi(x - x', y - y', z' - z_c) = \frac{1}{r},\tag{3}$$

where $r = [(x-x')^2 + (y-y')^2 + (z_c-z')^2]^{1/2}$ and $\hat{\mathbf{h}}(\mathbf{q})$ is a unit vector with the magnetization direction of the layer that depends on the vector \mathbf{q} given by

$$\mathbf{q} = \begin{bmatrix} i \\ d \end{bmatrix}, \tag{4}$$

where i and d is the inclination and declination, respectively.