Hypothesis testing (part 2)

Lecture 15b (STAT 24400 F24)

1/18

Hypothesis testing (Poisson)

Example — $X \sim \text{Poisson}(\lambda)$:

- Testing $H_0: \lambda = 100$ vs $H_1: \lambda \in \{110, 120, 130\}$
- If X is in the range 84–117 then choose H_0 , otherwise choose H_1

In the terminology of the general framework:

- Test statistic = *X*
- Null distribution = Poisson(100)
- Rejection region = $\{0,1,\ldots,83\} \cup \{118,119,\ldots\}$

Hypothesis testing - general framework

A general framework:

- Test statistic = the function of the data that we'll use to make our decision (i.e., choose H_0 or H_1)
 - e.g., test statistic \bar{X} is a function of the data X_1,\cdots,X_n
- **Null distribution** = distrib. of the test statistic, assuming H_0 is true
- **Rejection region** = values of the test statistic for which we reject H_0

2/18

Hypothesis testing (Normal LRT)

Example — $X \sim N(\mu, \sigma^2)$:

- Testing $H_0: \mu = 1, \ \sigma^2 = 1 \text{ vs } H_1: \mu = 2, \ \sigma^2 = 2$
- LR test: if LR > 1.3 then choose H_0 , otherwise choose H_1

In the terminology of the general framework:

- Test statistic = LR = $\sqrt{2e} \cdot e^{-X^2/4}$
- Null distribution = [distrib. of $\sqrt{2e} \cdot e^{-X^2/4}$ when $X \sim N(1,1)$]
- Rejection region = [0, 1.3]

Hypothesis testing (Normal, non-LR test)

Example — $X \sim N(\mu, \sigma^2)$:

- Testing $H_0: \mu = 1, \ \sigma^2 = 1 \text{ vs } H_1: \mu = 2, \ \sigma^2 = 2$
- A different test: if $X \le 1.5122$ then choose H_0 , otherwise choose H_1

In the terminology of the general framework:

- Test statistic = X
- Null distribution = N(1, 1)
- Rejection region = $(1.5122, \infty)$

5 / 18

Common rejection regions

Common types of rejection regions: "one sided" and "two sided"

- (c,∞) or $[c,\infty)$ for some threshold $c\in\mathbb{R}$
- $(-\infty, c)$ or $(-\infty, c]$ for some threshold $c \in \mathbb{R}$
- $(-\infty, -c) \cup (c, \infty)$ or $(-\infty, -c] \cup [c, \infty)$ for some threshold c > 0
- $(-\infty, c_1) \cup (c_2, \infty)$ or $(-\infty, c_1] \cup [c_2, \infty)$ for some thresholds $c_1 < c_2$

E.g., for i.i.d. data from a distrib. with mean μ , using test statistic \bar{X} :

- $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0 \leadsto$ use rej. region (c, ∞) for some $c > \mu_0$
- $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0 \leadsto (-\infty, c)$ for some $c < \mu_0$
- $H_0: \mu = 0$ vs $H_1: \mu \neq 0 \rightsquigarrow (-\infty, -c) \cup (c, \infty)$ for some c > 0
- $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0 \leadsto (-\infty, c_1) \cup (c_2, \infty)$ for $c_1 < \mu_0 < c_2$

Test statistics & rejection regions

In general, we want to choose the test statistic to satisfy:

- It must be a function of the data (can't depend on unknown parameters).
- Its distribution under H₀ (i.e., the null distribution) should be appropriate or easy to calculate.
- Its typical values should be as different as possible under H_0 vs H_1 , so that it can help us accurately distinguish between H_0 & H_1 .

6/18

Test level and rejection regions

Defining the rejection region:

If we have a fixed level α , we choose the rejection region to satisfy

$$\underset{\nearrow}{\mathbb{P}_{H_0}}(\mathsf{test}\;\mathsf{statistic}\in\mathsf{rejection}\;\mathsf{region}) = \underset{\nwarrow}{\alpha}$$

this means probability under the null distrib.

for a discrete distrib., may need to be $< \alpha$

E.g.,

• For rejection region of the form (c, ∞) , find c to satisfy

$$\mathbb{P}_{H_0}(\text{test statistic} > c) = \alpha$$

• For rejection region of the form $(-\infty, -c) \cup (c, \infty)$, find c to satisfy

$$\mathbb{P}_{H_0}(\text{test statistic} > c \text{ or } < -c) = \mathbb{P}(|\text{test statistic}| > c) = \alpha$$

• For rejection region of the form $(-\infty, c_1] \cup [c_2, \infty)$, find c_1, c_2 to satisfy

$$\mathbb{P}_{H_0}(\mathsf{test}\;\mathsf{statistic} \leq c_1) = rac{lpha}{2} \;\;\mathsf{and}\;\; \mathbb{P}_{H_0}(\mathsf{test}\;\mathsf{statistic} \geq c_2) = rac{lpha}{2}$$

Hypothesis tests: overview

General recipe for a hypothesis test:

- Design the test:
 - Choose a test statistic (a function of the data) & rejection region
 - Compute $\alpha = \mathbb{P}_{H_0}$ (test statistic \in rejection region)
 - If applicable... compute $\beta = \mathbb{P}_{H_1}$ (test statistic \notin rej. region)
- Run the test:
 - Observe the data, compute the test statistic, & choose H_0 or H_1

→ By construction, the test has the property

$$\mathbb{P}_{H_0}(\text{reject } H_0) = \alpha$$

(and if applicable, the test may satisfy \mathbb{P}_{H_1} (fail to reject H_0) = β)

9/18

Example: Exponential (one-sided)

Suppose we have data $X \sim \text{Exponential}(\lambda)$, and we want to test $H_0: \lambda = 20$ vs. $H_1: \lambda < 20$ at level $\alpha = 0.1$

- Choose the test statistic: X
- Choose the rejection region:

$$0.1 = \mathbb{P}_{H_0}(X > c) = e^{-20 \cdot c} \iff c = 0.1151$$

- \Rightarrow if $X \le 0.1151$ then do not reject H_0 , otherwise reject H_0
- We may want to calculate power against some alternatives, e.g.,
 - If $\lambda = 10$, $\mathbb{P}(X \le 0.1151) = 0.684 \Rightarrow power = 0.316$
 - If $\lambda = 1$, $\mathbb{P}(X \le 0.1151) = 0.109 \Rightarrow power = 0.891$

Remarks: the increase of the power for one-sided test and the trade-off.

Example: Exponential (two-sided)

Suppose we have data $X \sim \text{Exponential}(\lambda)$, and we want to test $H_0: \lambda = 20$ vs. $H_1: \lambda \neq 20$ at level $\alpha = 0.1$

- Choose the test statistic: X
- Choose the rejection region:

$$0.05 = \mathbb{P}_{H_0}(X < c_1) = 1 - e^{-20 \cdot c_1} \implies c_1 = 0.0026$$

 $0.05 = \mathbb{P}_{H_0}(X > c_2) = e^{-20 \cdot c_2} \implies c_2 = 0.1498$

 \Rightarrow if $0.0026 \le X \le 0.1498$ then do not reject H_0 , otherwise reject H_0

- We may want to calculate power against some alternatives, e.g.,
 - If $\lambda = 10$, $\mathbb{P}(0.0026 \le X \le 0.1498) = 0.751 \Rightarrow \text{power} = 0.249$
 - If $\lambda = 1$, $\mathbb{P}(0.0026 < X < 0.1498) = 0.137 \Rightarrow power = 0.863$

10 / 18

Multiple testing concerns

Caution—the type of test (two sided / one sided / which side?) must be chosen **before** seeing the data.

Suppose $X \sim N(\mu, 1)$, & we want to test if $\mu = 0$ at level $\alpha = 0.05$. We observe X and then choose the test:

- If we observe a positive value, we'll choose to test $H_0: \mu = 0$ vs $H_1: \mu > 0$ $\rightarrow 1 \Phi(1.65) = 0.05$, so we use rejection region $= (1.65, \infty)$
- If we observe a negative value, we'll choose to test $H_0: \mu = 0$ vs $H_1: \mu < 0$ $\Rightarrow \Phi(-1.65) = 0.05$, so we use rejection region $= (-\infty, -1.65)$

Overall, we will reject H_0 : $\mu=0$ if either X>1.65 or X<-1.65 \Rightarrow Type I error =0.1 (twice as large as the desired level 0.05) This is not valid!

Understanding p-values

"p-value" is a way to quantify how strong the evidence from data is against H_0 . Once we've picked the type of rejection region

(e.g., (c, ∞) or $(-\infty, c)$ or $(-\infty, -c) \cup (c, \infty)$ or ...), the rejection regions for different test levels α 's are nested.

E.g., for rejection regions of the form (c, ∞) , reduce $\alpha \Leftrightarrow \text{increase } c$ \rightsquigarrow (rejection region at a smaller α) \subseteq (rejection region at a larger α)

For any value t of the test statistic, can calculate

- For which values of α would t lie in the rejection region?
- For which values of α would t lie outside the rejection region?

The **p-value** is the value of α where t switches from being inside the rejection region to being outside the rejection region.

13 / 18

Illustrate p-value: two-sided H_a

For a two-sided alternative:

Illustrate p-value: one-sided H_a

For a one-sided alternative:

14 / 18

Pitfalls about p-values

Another common interpretation of the p-value: quantifying the probability of the test statistic being at least as extreme as what we observed, given that H_0 is true.

A common misinterpretation is to think the p-value is the prob. that H_0 is true, given the observed data

- ullet In a frequentist setting, H_0 being true is not random
- In a Bayesian setting, $\mathbb{P}(\text{data} \mid H_0) \neq \mathbb{P}(H_0 \mid \text{data})$.

16 / 18

15 / 18

Example of p-value: Exponential

17 / 18

Data $X \sim \mathsf{Exponential}(\lambda)$

Testing H_0 : $\lambda = 20$ vs H_1 : $\lambda < 20$

• What's the value of α for which x is at the boundary of the rej. region?

$$\alpha = \mathbb{P}_{H_0}(X > x) = e^{-20x}$$

 \rightsquigarrow after observing data X, the p-value is e^{-20X} .

For example, if we observe x = 0.2, then the p-value is $e^{-20 \cdot 0.2} = 0.018$.

- If (pre-specified) $\alpha > 0.018$ (e.g. $\alpha = 0.05$), then $x = 0.018 \in \text{(rej. region)}$.
- If (pre-specified) $\alpha < 0.018$ (e.g. $\alpha = 0.01$), then $x = 0.018 \notin$ (rej. region).
- If (pre-specified) $\alpha = 0.018$, then x = 0.018 is at the boundary of the rej. region.

Hypothesis testing vs. confidence intervals

The connection between hypothesis testing / p-values / conf. intervals...

For a two-sided test / confidence interval with a pre-specified test level $\alpha,$ these outcomes are equivalent:

- If we test $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$, we can reject at the level α
- If we test $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$, the p-value is $\leq \alpha$
- If we construct a (1α) C.I. for θ , then θ_0 lies outside the C.I.

(The same is true for one-sided tests / one-sided conf. int.)

18 / 18