PREDIKATSKA LOGIKA

- Predikatska logika (predikatski račun) ističe činjenicu da se ova logika bavi pre svega predikatima. To su u matematičkom smislu relacije, koje opisuju činjenicu da određeni objekat ima neku osobinu (relacije dužine 1) ili da su dati objekti u nekom odnosu (relacije dužine 2 ili više).
- Kvantifikatorski račun ističe da se u ovim logikama (pored logičkih veznika koje "nasleđujemo" iz iskazne logike) javljaju specifični operatori, koji govore o "kvantitetu" objekata sa nekom osobinom. To su tzv. univerzalni kvantifikator ∀ (za sve ili svaki) i egzistencijalni kvantifikator ∃ (postoji).
- ▶ Logika prvog reda sugeriše da postoje i logike reda dva, tri i više. Grubo rečeno, logika prvog reda ima moć da opiše samo osobine objekata na "prvom nivou". Preciznije, u logici prvog reda predikati i funkcije kao argumente mogu uzimati samo promenljive i samo promenljive je moguće kvantifikovati, dok u logikama višeg reda predikati i funkcije kao argumente mogu imati druge predikate i funkcije i dozvoljeno je njihovo kvantifikovanje.

Predikatski račun – uvod

- Jezik predikatskog računa nastao je kao prirodno uopštenje jezika matematičkih formula, tj. matematičkog jezika koji obuhvata simbole za konstante i promenljive, operacije, relacije i kvantifikatore.
- Izražajne mogućnosti ovog jezika su znatno veće od mogućnosti koje pruža jezik iskaznog računa.
- ▶ Jezik predikatskog računa dopušta i izražavanje objekata, operacija i relacija koje su van posebnih matematičkih teorija, što ga čini univerzalnim sredstvom predstavljanja znanja o operacijama i relacijama sa objektima iz raznih domena.

Iskazna vs. predikatska logika – izražajnost

U iskaznoj logici osnovna jedinica građe formula je bio iskaz, dok u predikatskoj logici razmatramo strukturu iskaza.

Primer

Posmartamo sledeće rečenice:

- (R1) Ako je a > b, onda nije b > a.
- (R2) Postoji najmanji prirodan broj.

Prva rečenica bi se kao iskazna formula mogla zapisati u obliku $p \Rightarrow q$, ali se tim zapisom ne može iskazati njen smisao. Druga rečenica ne bi se ni u toj meri mogla zapisati iskaznom formulom.

U predikatskoj logici gornje rečenice možemo izraziti sledećim formulama:

(R1)
$$P(a,b) \Rightarrow \neg P(b,a)$$
;

(R2)
$$(\exists x)(\forall y) Q(x, y)$$
.

Predikatska logika

Predikatska logika, kao i svaki logički sistem ima tri aspekta:

- | Sintaksa (jezik)
- Il Semantika (značenje jezika)
- III Deduktivni sistem (formalna teorija)

Centralni problemi u predikatskoj logici, kao i u iskaznoj, su ispitivanje da li je data formula:

- valjana
- zadovoljiva

Iskazna vs. predikatska logika – odlučivost

iskazna logika = predikatska logika

Formula je valjana (semantička kategorija) akko je teorema (deduktivna kategorija).

iskazna logika ≠ predikatska logika

Predikatska logika, za razliku od iskazne logike, **nije odlučiva**, tj. ne postoji procedura koja će za proizvoljnu formulu dati odgovor DA ako je valjana, a NE ako nije.

Međutim, predikatska logika je **poluodlučiva**:

- ako je formula valjana, postoji algoritam koji će u konačnom broju koraka pronaći dokaz i zaustaviti se:
- ako formula nije valjana, može se desiti da se algoritam nikad ne zaustavi.

Simboli jezika predikatskog računa

Alfabet čine:

- Logički simboli:
 - 1. promenljive x, y, z, \ldots , ili x_1, x_2, x_3, \ldots
 - 2. logički veznici $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
 - 3. kvantifikatori ∀, ∃
 - logičke konstante ⊤, ⊥
 - 5. pomoćni znaci (,),,
- Nelogički simboli:
 - 6. n-arni funkcijski simboli (operacijska slova) f_k^n , $n \ge 0$, $k \ge 1$. (Specijalno, funkcijske simbole arnosti 0 zovemo simbolima konstanti i označavamo sa a, b, c, \ldots)
 - 7. m-arni predikatski simboli (relacijska slova) R_k^m , $n \ge 1$, $k \ge 1$.
- \star Signatura ${\mathcal L}$ nelogički simboli i preslikavanje ar

4 D > 4 D > 4 E > 4 E > 4 E > 9 K (*

Jezik - osnovne definicije

- ▶ TERMI
 - 1. Simboli konstanti i promenljive su termi.
 - 2. Ako su $t_1, t_2, \ldots, t_n, n \ge 1$ termi i znak f n-arni funkcijski simbol, onda je izraz $f(t_1, t_2, \ldots, t_n)$ takođe term.
 - 3. Termi se mogu dobiti samo konačnim brojem primena pravila 1 i 2.

Primer

Termi su: x, a, f(x, x), g(a, x, y), h(f(y, y), g(a, x, z)), ...

- ▶ ELEMENTARNA (ATOMIČKA) FORMULA
 - 1. Logičke konstante \top , \bot su elementarne formule.
 - 2. Ako je *R m*-arni predikatski simbol, a $t_1, t_2, ..., t_m$ termi, onda je $R(t_1, t_2, ..., t_m)$ elementarna formula.

Primer

Elementarne formule su: \top , \bot , P(x), Q(a, b, y), R(x, f(x, y), y, g(a, z, z)), . . .

DOBRO ZASNOVANE FORMULE – FORMULE

- 1. Svaka elementarna formula je dobro zasnovana formula.
- 2. Ako su A i B dobro zasnovane formule, onda su i $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \Rightarrow B)$, $(A \Leftrightarrow B)$ dobro zasnovane formule.
- 3. Ako je A dobro zasnovana formula i x promenljiva, onda su i $((\forall x) A), ((\exists x) A)$ dobro zasnovane formule.

Primer

$$(\forall x) \left(Q(y) \Rightarrow (\exists y) P(x, f(y))\right)$$
 je formula.
 $Objašnjenje: x, y \text{ i } f(y)$ su termi, pa su $Q(y) \text{ i } P(x, f(y))$ elementarne formule; tada je $(\exists y) P(x, f(y))$ formula, kao i $\left(Q(y) \Rightarrow (\exists y) P(x, f(y))\right)$; konačno, dodavanjem kvantifikatora dobijamo polaznu formulu.

- ★ Dogovor o brisanju zagrada:
 - brišemo spoljne zagrade;
 - prioritet znakova je sledeći: \forall , $\exists \mid \neg \mid \land$, $\lor \mid \Rightarrow$, \Leftrightarrow
 - LITERAL elementarna formula ili njena negacija.
 - ▶ KLAUZA disjunkcija literala.

Slobodna i vezana pojavljvanja promenljive

Neka je A formula predikatskog računa i x promenljiva.

- ▶ U formulama $(\forall x)$ A i $(\exists x)$ A oblast dejstva kvantifikatora $(\forall x)$ odnosno $(\exists x)$ je formula A.
- Pojavljivanje promenljive x u nekoj formuli je **vezano** ako je to pojavljivanje u oblasti dejstva kvantifikatora $(\forall x)$ ili $(\exists x)$. U tom slučaju kažemo i da je to pojavljivanje promenljive x **pod dejstvom kvantifikatora** $(\forall x)$ ili $(\exists x)$. U suprotnom, to pojavljivanje promenljive x je **slobodno**.
- ▶ Promenljiva x je slobodna u formuli A ako ima bar jedno slobodno pojavljivanje u formuli A. Za formule koje nemaju slobodnih promenljivih kažemo da su zatvorene (rečenice).

<ロ > < 回 > < 巨 > < 巨 > ・ 豆 ・ りへの

Primer

Posmatramo formulu

$$(\forall x) (Q(y) \Rightarrow (\exists y) P(x, f(y))).$$

Oba pojavljivanja promenljive x su vezana (pod dejstvom kvantifikatora $(\forall x)$). Prvo pojavljivenje promenljive y je slobodno, a druga dva su vezana (pod dejstvom kvantifikatora $(\exists y)$). Promenljiva y je slobodna u datoj formuli jer ima slobodno pojavljivanje.

Primer

U formuli

$$(\exists x)(P(x) \wedge (\forall x) Q(x))$$

sva pojavljivanja promenljive x su vezana, s tim što su prva dva pod dejstvom kvantifikatora $(\exists x)$, a druga dva pod dejstvom kvantifikatora $(\forall x)$. Data formula je rečenica.

12/21

V(t) - skup promenljivih terma t

FV(A) - skup slobodnih promenljivih formule A

$$V(x) = \{x\}$$

$$V(a) = \emptyset$$

$$V(t_i^n(t_1,\ldots,t_n))=V(t_1)\cup\cdots\cup V(t_n)$$

$$FV(R_i^n(t_1,\ldots,t_n)) = V(t_1) \cup \cdots \cup V(t_n)$$

$$FV(\neg B) = FV(B)$$

$$FV(B \wedge C) = FV(B) \cup FV(C)$$

$$FV(B \Rightarrow C) = FV(B) \cup FV(C)$$

$$FV((\forall x) B) = FV(B) \setminus \{x\}$$

$$FV(B \lor C) = FV(B) \cup FV(C)$$

$$FV(B \Leftrightarrow C) = FV(B) \cup FV(C)$$

$$FV((\exists x) B) = FV(B) \setminus \{x\}$$

$$A(x_1, x_2, \dots, x_n)$$
 - formula A ima slobodne promenljive x_1, x_2, \dots, x_n \downarrow

 $A(t_1,t_2,\ldots,t_n)$ - formula dobijenu zamenom svih slobodnih pojavljivanja promenljivih x_1,x_2,\ldots,x_n redom termovima t_1,t_2,\ldots,t_n .

Ako formula A ne sadrži kvantifikatore, kao ni slobodne promenljive osim (eventualno) promenljivih x_1, x_2, \ldots, x_k , tada za formulu oblika

$$(\forall x_1)(\forall x_2)\cdots(\forall x_k) A$$

kažemo da je univerzalno zatvorena, dok za formulu oblika

$$(\exists x_1)(\exists x_2)\cdots(\exists x_k) A$$

kažemo da je egzistencijalno zatvorena.

Za datu signaturu \mathcal{L} , \mathcal{L} -struktura (model) \mathcal{D} je par $\langle D, I \rangle$, gde je D neprazan skup koji zovemo **domen** (nosač) modela, a I je preslikavanje (**interpretacija**) za koje važi sledeće:

- ako je c simbol konstante, onda $I(c) \in D$;
- ako je f funkcijski simbol, ar(f) = n, n > 0, onda je $I(f) : D^n \to D$;
- ako je R relacijski simbol, ar(R) = m, m > 0, onda je $I(R) \subseteq D^m$.

 \bigstar Ako je $\mathcal{D} = \langle D, I \rangle$ neki model, a s neki simbol, onda ćemo interpretaciju tog simbola u modelu \mathcal{D} umesto sa I(s) obeležavati sa s_I .

Valuacija i interpretacija

- ▶ Neka je $\mathcal{D} = \langle D, I \rangle$ neki model i V neki skup promenljivih. **Valuacija modela** \mathcal{D} je svako preslikavanje $v: V \to D$.
- ▶ Ako su v i ω valuacije za isti skup promenljivih i u odnosu na isti domen, onda sa $v \sim_x \omega$ označavamo da je $v(y) = \omega(y)$ za svaku promenljivu y različitu od x.
- Ako je v valuacija modela $\mathcal{D} = \langle D, I \rangle$, onda par (\mathcal{D}, v) određuje interpretaciju, tj. funkciju I_v , koja preslikava
 - skup \mathcal{L} -termova nad skupom promenljivih V u skup D;
 - skup \mathcal{L} -formula nad skupom promenljivih V u skup $\{0,1\}$.

Interpretacija terma

Vrednost terma t u interpretaciji I_v , određenoj modelom \mathcal{D} i valuacijom v, označavamo sa $I_v(t)$ i definišemo na sledeći način:

- ako je t = x, onda je $I_v(t) = v(x)$;
- ako je t = c, onda je $I_v(t) = c_l$;
- ako je $t = f(t_1, t_2, ..., t_n)$ i ako je $I_v(t_i) = d_i \in D, i = 1, 2, ..., n$, onda je $I_v(t) = f_I(d_1, d_2, ..., d_n)$.

Primer

Dat je term
$$t = g(f(x, c), y)$$
. Ako je $D = \mathbb{N}$, funkcija $I = \begin{pmatrix} f & g & c \\ + & \cdot & 2 \end{pmatrix}$ i

valuacija $v=\left(egin{array}{cc} X & Y \\ 1 & 5 \end{array}\right)$, onda je vrednost terma t u interpretaciji I_v

$$I_{v}(t) = (1+2) \cdot 5 = 15.$$

Interpretacija formule

Vrednost formule F u interpretaciji I_v označavamo sa $I_v(F)$ i definišemo na sledeći način:

- $I_v(\top) = 1 \text{ i } I_v(\bot) = 0;$
- Ako je $F = R(t_1, t_2, ..., t_m)$ i ako je $I_v(t_i) = d_i \in D, i = 1, 2, ..., m$, onda je $I_v(F) = 1$ ako važi $R_I(d_1, d_2, ..., d_m)$, a $I_v(F) = 0$ inače;
- $I_v(\neg A) = 1$ ako je $I_v(A) = 0$ i $I_v(\neg A) = 0$ ako je $I_v(A) = 1$;
- $I_v(A \wedge B) = 1$ ako je $I_v(A) = 1$ i $I_v(B) = 1$, a $I_v(A \wedge B) = 0$ inače;
- $I_{\upsilon}(A \vee B) = 0$ ako je $I_{\upsilon}(A) = 0$ i $I_{\upsilon}(B) = 0$, a $I_{\upsilon}(A \vee B) = 1$ inače;

- $I_v(A \Rightarrow B) = 0$ ako je $I_v(A) = 1$ i $I_v(B) = 0$, a $I_v(A \Rightarrow B) = 1$ inače;
- $I_v(A \Leftrightarrow B) = 1$ ako je $I_v(A) = I_v(B)$, a $I_v(A \Leftrightarrow B) = 0$ inače;
- ako je $F = (\forall x) A$, onda je $I_v(F) = 0$ ako postoji valuacija ω sa domenom D takva da je $\omega \sim_x v$ i $I_\omega(A) = 0$, inače je $I_v(F) = 1$;
- ako je $F = (\exists x) A$, onda je $I_v(F) = 1$ ako postoji valuacija ω sa domenom D takva da je $\omega \sim_x v$ i $I_\omega(A) = 1$, inače je $I_v(F) = 0$.
- ★ Vrednost $I_v(F)$ zavisi samo od slobodnih promenljivih u formuli F. Specijalno, ako je F rečenica, vrednost $I_v(F)$ uopšte ne zavisi od v, pa tada umesto $I_v(F)$ pišemo kraće I(F).

Valjane formule

- $\triangleright (\mathcal{D}, v) \models A \mathcal{L}$ -struktura \mathcal{D} sa valuacijom v je **model** za formulu A, tj. važi $I_v(A) = 1$ za interpretaciju I_v određenu sa \mathcal{D} i v. Ako važi $(\mathcal{D}, v) \models A$, formula A je **zadovoljiva**.
- Ako formula nije zadovoljiva, onda je kontradikcija.
- $\mathcal{D} \models A \mathcal{L}$ -struktura \mathcal{D} je **model** za formulu A, tj. u \mathcal{L} -strukturi \mathcal{D} formula A je tačna za svaku valuaciju.
- $ho \models A$ važi $\mathcal{D} \models A$ za svaku \mathcal{L} -strukturu \mathcal{D} . Tada je formula A valjana.
- ▶ Ako formula nije valjana, onda kažemo da je ona poreciva.
- Ako nije $\mathcal{D} \models A$, onda pišemo $\mathcal{D} \nvDash A$ i kažemo da je \mathcal{D} kontramodel za A.

Osobine

- ▶ Formula A je valjana ako i samo ako je formula $(\forall x)$ A valjana.
- ▶ Ako su $x_1, x_2, ..., x_n$ sve slobodne promenljive formule A, tada važi: formula A je valjana ako i samo ako je njeno univerzalno zatvorenje $(\forall x_1) \cdots (\forall x_n) A$ valjana formula.
- Formula A je zadovoljiva ako i samo ako je formula $(\exists x) A$ zadovoljiva.
- ▶ Ako su $x_1, x_2, ..., x_n$ sve slobodne promenljive formule A, tada važi: formula A je zadovoljiva ako i samo ako je njeno egzistencijalno zatvorenje $(\exists x_1) \cdots (\exists x_n) A$ zadovoljiva formula.