

Neutrino Detectors

Sina Bahrasemani

November 20, 2017

Outline

DØ experiment

Central tracking

Solenoidal magnet

Preshower detectors

Calorimetry

Muon system

Forward proton detector

Luminosity monitor

Aerial view of Fermilab National Accelerator Laboratory

□ probed $\sqrt{s} = 1.96 TeV \ p - \bar{p}$ collisions at a rate of $1.2 \times 10^6 \frac{1}{s^{-1}}$

Perpendicular 120 nh^{-1} of design Bulmann III (1992–1996) and Full 2017

DØ Experiment Goals

☐ Precision searches:

- ▶ Z and W masses, widths and production cross sections
- ► Forward-backward asymmetry
- ▶ $W/Z \rightarrow q\bar{q}$
- $\qquad \qquad \frac{\alpha_{QCD}}{\alpha_{OED}}$

☐ New physics:

- $ightharpoonup Z
 ightharpoonup X\gamma; X
 ightharpoonup l^+l^-$
- ► Single top
- Gauge boson couplings
- Higgs boson
- Supersymmetry
- \triangleright W', Z', heavy leptons and heavy quarks
- ▶ Surprises are also welcomed :D

DØ Experiment Goals

- ☐ Precision searches:
 - ▶ Z and W masses, widths and production cross sections
 - ► Forward-backward asymmetry
 - ▶ $W/Z \rightarrow q\bar{q}$
 - $\qquad \frac{\alpha_{QCD}}{\alpha_{OED}}$
- ☐ New physics:
 - $ightharpoonup Z o X\gamma; X o l^+l^-$
 - ► Single top
 - ► Gauge boson couplings
 - ► Higgs boson
 - Supersymmetry
 - \blacktriangleright W', Z', heavy leptons and heavy quarks
 - ► Surprises are also welcomed :D

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - muons are less analyzed, but with charge tagging \rightarrow ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \triangleright jet energies, masses and E_T are critically dependent upon it
- Missing transverse energy resolution:
 - good hadron energy resolution → uranium-liquid argon calorimerty was chosen.
 - ► angular coverage down to about 1°
 - ▶ minimizing dead areas in the large angle calorimetry

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - muons are less analyzed, but with charge tagging → ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \triangleright jet energies, masses and E_T are critically dependent upon it
- Missing transverse energy resolution:
 - ▶ good hadron energy resolution → uranium-liquid argon calorimetry was chosen.
 - ► angular coverage down to about 1°
 - minimizing dead areas in the large angle calorimetry

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - \blacktriangleright muons are less analyzed, but with charge tagging \to ID them even inside jets which is important for many searche
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \blacktriangleright jet energies, masses and E_T are critically dependent upon it
- Missing transverse energy resolution:
 - ▶ good hadron energy resolution → uranium-liquid argon calorimetry was chosen.
 - angular coverage down to about 1°
 minimizing dead areas in the large angle calorimetry

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - ▶ good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - \blacktriangleright muons are less analyzed, but with charge tagging \to ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \triangleright jet energies, masses and E_T are critically dependent upon it
- Missing transverse energy resolution:
 - good hadron energy resolution → uranium-liquid argon calorimerty was chosen.
 - ► angular coverage down to about 1°
 - minimizing dead areas in the large angle calorimetry

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - ▶ good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - \blacktriangleright muons are less analyzed, but with charge tagging \to ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - ▶ jet energies, masses and E_T are critically dependent upon it
- Missing transverse energy resolution:
 - ▶ good hadron energy resolution → uranium-liquid argon calorimetry was chosen.
 - angular coverage down to about 1°
 minimizing doed group in the large covel coloring

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - \blacktriangleright muons are less analyzed, but with charge tagging \to ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - ▶ jet energies, masses and E_T are critically dependent upon it.
- Missing transverse energy resolution:
 - good hadron energy resolution → uranium-liquid argon calorimetry was chosen.
 - ▶ angular coverage down to about 1°
 - minimizing dead areas in the large angle calorimetr

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - ▶ muons are less analyzed, but with charge tagging \rightarrow ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \blacktriangleright jet energies, masses and E_T are critically dependent upon it.
- Missing transverse energy resolution:
 - ▶ good hadron energy resolution → uranium-liquid argon calorimerty was chosen.
 - ▶ angular coverage down to about 1°
 - minimizing dead areas in the large angle calori

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - \blacktriangleright muons are less analyzed, but with charge tagging \rightarrow ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \blacktriangleright jet energies, masses and $E/_T$ are critically dependent upon it.
- Missing transverse energy resolution:
 - ▶ good hadron energy resolution → uranium-liquid argon calorimetry was chosen.
 - ▶ angular coverage down to about 1°
 - minimizing doed aroug in the large of

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - \blacktriangleright muons are less analyzed, but with charge tagging \rightarrow ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \blacktriangleright jet energies, masses and $E/_T$ are critically dependent upon it.
- Missing transverse energy resolution:
 - \blacktriangleright good hadron energy resolution \rightarrow uranium-liquid argon calorimetty was chosen.
 - ▶ angular coverage down to about 1°
 - ▶ minimizing dead areas in the large angle calorimetry

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 - e$ separation:
 - ▶ good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - \triangleright good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 - e$ separation)
- Muon momentum resolution of approximately 20%:
 - \triangleright muons are less analyzed, but with charge tagging \rightarrow ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \triangleright jet energies, masses and E_T are critically dependent upon it.
- Missing transverse energy resolution:
 - \triangleright good hadron energy resolution \rightarrow uranium-liquid argon calorimetty was chosen.
 - ► angular coverage down to about 1°

- Electromagnetic energy resolution at the level of $\delta E/E = \frac{0.05}{\sqrt{E}}$ with good $\pi^0 e$ separation:
 - good electron ID for narrow massive states searches and to lower electron-jet faking rate.
 - good lateral and longitudinal sampling for single γ searches with high p_T (challenging $\pi^0 e$ separation)
- Muon momentum resolution of approximately 20%:
 - \blacktriangleright muons are less analyzed, but with charge tagging \to ID them even inside jets which is important for many searches
- Hadron energy resolution of about $\delta E/E = \frac{0.8}{\sqrt{E}}$:
 - \blacktriangleright jet energies, masses and $E/_{\!\!T}$ are critically dependent upon it.
- Missing transverse energy resolution:
 - \blacktriangleright good hadron energy resolution \rightarrow uranium-liquid argon calorimetty was chosen.
 - \blacktriangleright angular coverage down to about 1°
 - ▶ minimizing dead areas in the large angle calorimetry

☐ in 2001 after the Main Injector and associated Tevatron upgrades the instantaneous luminosity increased by more than a factor of ten

- The central tracking system was completely replaced.
 - ► the old system lacked a magnetic field and suffered from radiation damage
 - ▶ improved tracking technologies are now available.
 - ► The new system included a silicon microstrip tracker and a scintillating-fiber tracker located within a 2 T solenoidal magnet.

Between the solenoidal magnet and the central calorimeter and in front of the forward calorimeters, preshower detectors have been added for improved electron identification.

- In the forward muon system, proportional drift chambers are replaced by mini drift tubes and trigger scintillation counters
 - which can withstand the harsh radiation environment and additional shielding has been added.
 - ► In the central region, scintillation counters have been added for improved muon triggering.

▶ A silicon microstrip tracker (SMT) and a central fiber tracker (CFT) surrounded by a solenoidal magnet

▶ the primary interaction vertex resolution of about $35\mu m$ along the beamline → good measurement of lepton p_T , jet transverse energy (E_T) , and missing transverse energy E_T . b-quark jets tagging with an impact parameter resolution of

Silicon μ-strips	Barrels	Inner disks	Outer disks
Type of ladders	Single, double-sided	Double-sided	Double-sided
Stereo angle	0°, 2° and 90°	7.5°	15°
Inner radius	2.7 cm	2.6 cm	9.5 cm
Outer radius	9.5 cm	10.5 cm	26 cm
# of channels	400K	250K	150K

▶ The SMT provides both tracking and vertexing over nearly the full η coverage of the calorimeter and muon systems.

Silicon μ-strips	Barrels	Inner disks	Outer disks
Type of ladders	Single, double-sided	Double-sided	Double-sided
Stereo angle	0°, 2° and 90°	7.5°	15°
Inner radius	2.7 cm	2.6 cm	9.5 cm
Outer radius	9.5 cm	10.5 cm	26 cm
# of channels	400K	250K	150K

▶ The barrel detectors primarily measure the r-phi coordinate and the disk detectors measure r-z as well as $r-\phi$.

left: grassy noise seen in the Micron-supplied F-disk detectors. right: energy loss for a K-enriched sample of tracks showing π , K, and proton bands.

▶ during run II $\approx 90\%$ of sensors were functional

left: grassy noise seen in the Micron-supplied F-disk detectors. right: energy loss for a K-enriched sample of tracks showing π , K, and proton bands.

most operational difficulties have been peripheral to the silicon detector itself. These include latchup of operational amplifiers on the interface boards, low voltage power

left: grassy noise seen in the Micron-supplied F-disk detectors. right: energy loss for a K-enriched sample of tracks showing π , K, and proton bands.

▶ the most serious detector feature is "grassy noise," which is confined to the Micron-supplied F-disk detectors (75% of the F-disk sensors). This noise is characterized by large

left: grassy noise seen in the Micron-supplied F-disk detectors. right: energy loss for a K-enriched sample of tracks showing π , K, and proton bands.

▶ leakage currents typically rise to greater than $100\mu A$ within one hour of turn-on at the beginning of a store.

left: grassy noise seen in the Micron-supplied F-disk detectors. right: energy loss for a K-enriched sample of tracks showing π , K, and proton bands.

▶ Alignment and calibration Signal/noise performance varies with detector type from 12:1to18:1.

left: grassy noise seen in the Micron-supplied F-disk detectors. right: energy loss for a K-enriched sample of tracks showing π , K, and proton bands.

Coherent noise is typically one-third of the random noise.

left: grassy noise seen in the Micron-supplied F-disk detectors. right: energy loss for a K-enriched sample of tracks showing π , K, and proton bands.

► Gains vary among detector types with the n-sides 515% lower than the p-sides due to the larger load capacitance.

Title

▶ item

Title

▶ item