Name: _____ Math 40, Section ____ HW 05; Subspace Basis Dimension Rank Invertible Matrix Theorem Determinants February 9, 2017

> Section 3.5 Numbers; 8, 17, 42, 48, 58, 66(b) Section 3.6 Numbers; 4, 8, 12, 16, 32, 44, 50. Section 4.2 Number; 8

3.5.8 Let S be the collection of vectors
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 in \mathbb{R}^3 that satisfy the given property;

$$|x - y| = |y - z|$$

Either prove that S forms a subspace of \mathbb{R}^2 or give a counterexample to show that it does not.

3.5.17 Give bases for row(A), col(A), and null(A).

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}.$$

3.5.42 If A is a 4×2 matrix, what are the possible values of nullity(A)?

3.5.58 If A and B are $n \times n$ matricies of rank n, prove that AB has rank n.

3.5.66(b) Let A be a skew-symmetric $n \times n$ matrix (see page 162). Prove that I + A is invertible. [Hint: Show that $null(I + A) = \{0\}$].

3.6.4 Prove that the transformation is linear, using the definition (or the Remark following Example 3.55):

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x + 2y \\ 3x - 4y \end{bmatrix}$$

3.6.8 *Give a counterexample to show that the transformation is not linear:*

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} |x| \\ |y| \end{bmatrix}$$

3.6.12 Find the standard matrix of the linear transformation in Exercise 4.

3.6.16 Show that the transformation from \mathbb{R}^2 to \mathbb{R}^2 is linear by showing that it is a matrix transformation: R rotates a vector 45° counterclockwise about the origin.

3.6.32 Verify Theorem 3.32 by finding the matrix of $S \circ T$ (a) by direct substitution and (b) by matrix multiplication of [S][T]:

$$T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}$$

$$S \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 + 3y_2 \\ y_1 - y_2 \end{bmatrix}$$

3.6.44 Let T be a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 (or \mathbb{R}^3 to \mathbb{R}^3). Prove that T maps a straight line to a straight line or a point. [Hint: use the vector form of the equation of a line.]

3.6.50 Let ABCD be the square with vertices (-1,1), (1,1), (1,-1), and (-1,-1). Use the results in Exercises 44 and 45 to find and draw the image of ABCD under the given transformation:

 $T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ -3x_1 + x_2 \end{bmatrix}$

4.2.8 Compute the determinant using cofactor expansion along any row or column that seems convenient:

$$\begin{vmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 3 & -2 & 1 \end{vmatrix}$$