Generated on 2025-04-15 15:09:39 by gEcon version 1.2.1 (2023-01-18)

Model name: NK_RS

1 CONSUMER

1.1 Optimisation problem

$$\max_{C_t, K_t^s, I_t, B_t, L_t^s} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.:

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + K_{t-1}^{s} r_t + L_t^{s} W_t \quad (\lambda_t)$$
(1.2)

$$K_t^{\rm s} = I_t + K_{t-1}^{\rm s} (1 - \delta) \quad (q_t)$$
 (1.3)

1.2 Identities

$$Q_t = \lambda_t^{-1} q_t \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$-q_t + \beta \left((1 - \delta) \, \mathcal{E}_t \left[q_{t+1} \right] + \mathcal{E}_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \quad (K_t^{\mathrm{s}})$$
(1.6)

$$-\lambda_t + q_t = 0 \quad (I_t) \tag{1.7}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.8)

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.9)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}} t t_t^{\rm j} = -r_t K_t^{\rm d} - L_t^{\rm d} W_t \tag{2.1}$$

s.t.:

$$Y_t^{\mathbf{j}} = Z_t K_t^{\mathbf{d}^{\alpha}} L_t^{\mathbf{d}^{1-\alpha}} \quad (mc_t) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha m c_t Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad \left(K_t^{\mathrm{d}}\right) \tag{2.3}$$

$$-W_t + mc_t Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.4)$$

3 PRICE SETTING PROBLEM

3.1 Identities

$$g_t^1 = \eta_t^{\rm p} + g_t^2 (1 + \lambda^{\rm p}) \tag{3.1}$$

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathbf{p}} \pi_t^* \mathbf{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} \right]$$
(3.2)

$$g_t^2 = \beta \xi^{\rm p} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{\rm p}} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} \right] + \lambda_t m c_t Y_t$$
(3.3)

4 PRICE EVOLUTION

4.1 Identities

2

$$1 = \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$

$$\tag{4.1}$$

5 PRODUCT AGGREGATION

5.1 Identities

$$Y_t^{\rm s} = Y_t^{\rm j} \tag{5.1}$$

$$\nu_t^{\rm p} = (1 - \xi^{\rm p}) \, \pi_t^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{t-1}^{\rm p} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})}$$

$$(5.2)$$

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{5.3}$$

6 EQUILIBRIUM

6.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{6.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{6.2}$$

$$B_t = 0 (6.3)$$

$$D\dot{w}_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \tag{6.4}$$

7 MONETARY POLICY AUTHORITY

7.1 Identities

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\pi_{t}^{obj} + r^{\pi}\left(-\log\pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right)$$
(7.1)

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{perical}_t^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right)$$

$$(7.2)$$

8 ENDOGENOUS REGIME PROB

8.1 Identities

$$\log \inf_{t} \inf_{t} = -\log \operatorname{pericul}_{t}^{\pi^{\text{obj}}} + \log \pi_{t} \tag{8.1}$$

$$pL_t = \left(1 + e^{pLss - \kappa \log \inf_t flation_t^{\text{gap}}}\right)^{-1} \tag{8.2}$$

$$pH_t = 1 - pL_t \tag{8.3}$$

$$\log percieved_t^{\pi^{\text{obj}}} = pH_t \log \pi^{\text{H}} + pL_t \left(\log percieved_{t-1}^{\pi^{\text{obj}}} + \tau \log inflation_t^{\text{gap}}\right)$$
(8.4)

9 GOVERNMENT

9.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{9.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1} \tag{9.2}$$

10 GOVERNMENT SPENDING SHOCK

10.1 Identities

$$\log \epsilon_t^{G} = \eta_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} \tag{10.1}$$

11 TECHNOLOGY

11.1 Identities

$$Z_t = e^{\epsilon_t^Z + \rho^a \log Z_{t-1}} \tag{11.1}$$

12 Equilibrium relationships (after reduction)

$$-B_t = 0 ag{12.1}$$

$$-\lambda_t + q_t = 0 \tag{12.2}$$

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0$$
(12.3)

$$-pL_t + \left(1 + e^{pLss - \kappa \log \inf totion_t^{\text{gap}}}\right)^{-1} = 0 \tag{12.4}$$

$$-q_t + \beta \left((1 - \delta) \, \mathcal{E}_t \left[q_{t+1} \right] + \mathcal{E}_t \left[\lambda_{t+1} r_{t+1} \right] \right) = 0 \tag{12.5}$$

$$-r_t + \alpha m c_t Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s1-\alpha} = 0$$
 (12.6)

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{12.7}$$

$$-Q_t + \lambda_t^{-1} q_t = 0 (12.8)$$

$$-W_t + mc_t Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
(12.9)

$$-Y_t^{j} + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 {(12.10)}$$

$$Y_t^{j} - Y_t^{s} = 0 (12.11)$$

$$Y_t^{\rm s} - \nu_t^{\rm p} Y_t = 0 (12.12)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \rho^{\mathbf{a}} \log Z_{t-1}} = 0 \tag{12.13}$$

$$\beta E_t \left[\lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \tag{12.14}$$

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0$$
(12.15)

#

$$-1 + \xi^{p} \left(\pi_{t}^{-1} \pi_{t-1}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}} = 0$$
 (12.16)

$$1 - pH_t - pL_t = 0 (12.17)$$

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{12.18}$$

$$\eta_t^{\mathcal{G}} - \log \epsilon_t^{\mathcal{G}} + \rho^{\mathcal{G}} \log \epsilon_{t-1}^{\mathcal{G}} = 0 \tag{12.19}$$

$$-g_t^1 + \lambda_t \pi_t^* Y_t + \beta \xi^p \pi_t^* \mathcal{E}_t \left[g_{t+1}^1 \pi_{t+1}^{*-1} \left(\pi_{t+1}^{-1} \pi_t^{\gamma^p} \right)^{-\lambda^{p-1}} \right] = 0$$
 (12.20)

$$-g_t^2 + \beta \xi^{P} E_t \left[g_{t+1}^2 \left(\pi_{t+1}^{-1} \pi_t^{\gamma^{P}} \right)^{-\lambda^{P-1} (1+\lambda^{P})} \right] + \lambda_t m c_t Y_t = 0$$
(12.21)

$$-\nu_t^{\mathbf{p}} + (1 - \xi^{\mathbf{p}}) \pi_t^{\star - \lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} + \xi^{\mathbf{p}} \nu_{t-1}^{\mathbf{p}} \left(\pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{p}} \right)^{-\lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} = 0$$
(12.22)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (12.23)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(12.24)

$$-\log \inf_t dtim_t^{\text{gap}} - \log \operatorname{period}_t^{\pi^{\text{obj}}} + \log \pi_t = 0 \tag{12.25}$$

$$-\log \operatorname{percieved}_{t}^{\pi^{\operatorname{obj}}} + pH_{t}\log \pi^{\operatorname{H}} + pL_{t}\left(\log \operatorname{percieved}_{t-1}^{\pi^{\operatorname{obj}}} + \tau \log \operatorname{inflation}_{t}^{\operatorname{gap}}\right) = 0 \tag{12.26}$$

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{perice} d_t^{\pi^{\text{obj}}} \left(1 - \rho^{\pi^{\text{bar}}} \right) = 0 \tag{12.27}$$

$$-D\dot{w}_t + Y_t - K_{t-1}^{s} r_t - L_t^{s} W_t = 0 (12.28)$$

$$-G_t + T_t - B_{t-1}\pi_t^{-1} + B_t R_t^{-1} = 0 (12.29)$$

$$-\alpha k r^{\pi} + \eta_{t}^{R} - \log\left(R_{ss}^{-1}R_{t}\right) + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\pi_{t}^{obj} + r^{\pi}\left(-\log\pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right) = 0$$

$$(12.30)$$

$$-C_t + D\dot{w}_t - I_t - T_t + B_{t-1}\pi_t^{-1} + K_{t-1}^s r_t - B_t R_t^{-1} + L_t^s W_t = 0$$
(12.31)

13 Steady state relationships (after reduction)

$$-B_{\rm ss} = 0 \tag{13.1}$$

$$-\lambda_{\rm ss} + q_{\rm ss} = 0 \tag{13.2}$$

$$-\lambda_{ss} + \mu C_{ss}^{-1+\mu} (1 - L_{ss}^{s})^{1-\mu} \left(C_{ss}^{\mu} (1 - L_{ss}^{s})^{1-\mu} \right)^{-\eta} = 0$$
(13.3)

$$-pL_{\rm ss} + \left(1 + e^{pLss - \kappa \log \inf lation_{\rm ss}^{\rm gap}}\right)^{-1} = 0 \tag{13.4}$$

$$-q_{\rm ss} + \beta \left(\lambda_{\rm ss} r_{\rm ss} + q_{\rm ss} \left(1 - \delta\right)\right) = 0 \tag{13.5}$$

$$-r_{\rm ss} + \alpha m c_{\rm ss} Z_{\rm ss} K_{\rm ss}^{\rm s}^{-1+\alpha} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{13.6}$$

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{13.7}$$

$$-Q_{ss} + \lambda_{ss}^{-1} q_{ss} = 0 ag{13.8}$$

$$-W_{\rm ss} + mc_{\rm ss}Z_{\rm ss}(1-\alpha)K_{\rm ss}^{\rm s}{}^{\alpha}L_{\rm ss}^{\rm s}{}^{-\alpha} = 0$$
(13.9)

$$-Y_{ss}^{j} + Z_{ss}K_{ss}^{s} L_{ss}^{\alpha} = 0$$
 (13.10)

$$Y_{\rm ss}^{\rm j} - Y_{\rm ss}^{\rm s} = 0 \tag{13.11}$$

$$Y_{\rm ss}^{\rm s} - \nu_{\rm ss}^{\rm p} Y_{\rm ss} = 0 \tag{13.12}$$

$$-Z_{\rm ss} + e^{\rho^{\rm a} \log Z_{\rm ss}} = 0 {13.13}$$

$$-\lambda_{\rm ss}R_{\rm ss}^{-1} + \beta\lambda_{\rm ss}\pi_{\rm ss}^{-1} = 0 \tag{13.14}$$

$$\lambda_{\rm ss} W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{-\mu} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{-\eta} = 0 \tag{13.15}$$

$$-1 + \xi^{p} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{\star - \lambda^{p-1}} = 0$$
(13.16)

$$1 - pH_{ss} - pL_{ss} = 0 (13.17)$$

$$-g_{ss}^{1} + g_{ss}^{2} (1 + \lambda^{p}) = 0$$
 (13.18)

$$-\log \epsilon_{\rm ss}^{\rm G} + \rho^{\rm G} \log \epsilon_{\rm ss}^{\rm G} = 0 \tag{13.19}$$

$$-g_{ss}^{1} + \lambda_{ss} \pi_{ss}^{\star} Y_{ss} + \beta \xi^{p} g_{ss}^{1} \left(\pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} = 0$$
(13.20)

$$-g_{\rm ss}^2 + \lambda_{\rm ss} m c_{\rm ss} Y_{\rm ss} + \beta \xi^{\rm p} g_{\rm ss}^2 \left(\pi_{\rm ss}^{-1} \pi_{\rm ss} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} = 0$$
(13.21)

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})} = 0 \tag{13.22}$$

6

$$I_{ss} - K_{ss}^{s} + K_{ss}^{s} (1 - \delta) = 0 \tag{13.23}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{13.24}$$

$$-\log \inf_{ss} -\log \operatorname{periand}_{ss}^{\pi^{\text{obj}}} + \log \pi_{ss} = 0 \tag{13.25}$$

$$-\log \textit{percicued}_{\rm ss}^{\pi^{\rm obj}} + \textit{pH}_{\rm ss}\log \pi^{\rm H} + \textit{pL}_{\rm ss}\left(\log \textit{percicued}_{\rm ss}^{\pi^{\rm obj}} + \tau \log \textit{inflation}_{\rm ss}^{\rm gap}\right) = 0 \tag{13.26}$$

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \operatorname{periced}_{\rm ss}^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}}\right) = 0 \tag{13.27}$$

$$-D\dot{w}_{ss} + Y_{ss} - r_{ss}K_{ss}^{s} - L_{ss}^{s}W_{ss} = 0$$
(13.28)

$$-G_{\rm ss} + T_{\rm ss} - \pi_{\rm ss}^{-1} B_{\rm ss} + B_{\rm ss} R_{\rm ss}^{-1} = 0 \tag{13.29}$$

$$-\alpha k b r^{\pi} + (1 - \rho) \left(\log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(13.30)$$

$$-C_{ss} + D\dot{w}_{ss} - I_{ss} - T_{ss} + \pi_{ss}^{-1}B_{ss} + r_{ss}K_{ss}^{s} - B_{ss}R_{ss}^{-1} + L_{ss}^{s}W_{ss} = 0$$
(13.31)

14 Calibrating equations

$$-0.18 + G_{\rm ss}Y_{\rm ss}^{-1} = 0 ag{14.1}$$

$$-0.05 + pL_{\rm ss} = 0 ag{14.2}$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{14.3}$$

15 Parameter settings

 \neg

$$\alpha = 0.3 \tag{15.1}$$

$$\beta = 0.99 \tag{15.2}$$

$$\delta = 0.025 \tag{15.3}$$

$$\eta = 2 \tag{15.4}$$

$$\gamma^{\rm p} = 0.469$$
 (15.5)

$$\kappa = 10$$
(15.6)

$$\lambda^{\mathbf{p}} = 0.5 \tag{15.7}$$

$$\mu = 0.3 \tag{15.8}$$

$$\pi^{\mathrm{H}} = 1 \tag{15.9}$$

$$r^{\pi} = 1.684 \tag{15.10}$$

$$r^{Y} = 0.099 (15.11)$$

$$\rho = 0.961 \tag{15.12}$$

$$\rho^{\pi^{\text{bar}}} = 0.9999 \tag{15.13}$$

$$\rho^{G} = 0.949 \tag{15.14}$$

$$\rho^{\rm a} = 0.823 \tag{15.15}$$

$$\tau = 0.085 \tag{15.16}$$

$$\xi^{\rm p} = 0.908 \tag{15.17}$$

16 Steady-state values

	Steady-state value
$\epsilon^{ m G}$	1
g^1	7.3514
g^2	4.9009
$inflation^{ m gap}$	1
λ	1.5467
mc	0.6667
$ u^{ m p}$	1
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$	1
π	1
π^{\star}	1
$\pi^{ m obj}$	1
$p\!H$	0.95
$p\!L$	0.05
q	1.5467
r	0.0351
B	0
C	0.3255
Div	0.1601
G	0.0865
I	0.0684
$K^{ m s}$	2.7374
$L^{\mathbf{s}}$	0.2279
Q	1
R	1.0101
T	0.0865
U	-167.8256
W	0.9837
Y	0.4804
$Y^{ m j}$	0.4804
Y^{s}	0.4804
Z	1

17 The solution of the 1st order perturbation

Matrix P

$\mathbf{Matrix}\ Q$

Matrix R

	$\epsilon_{t-1}^{\mathrm{G}}$	$ u_{t-1}^{ ext{p}}$	$percived_{t-1}^{\pi^{ ext{obj}}}$	π_{t-1}	$\pi^{ ext{obj}}_{t-1}$	B_{t-1}	K_{t-1}^{s}	R_{t-1}	Z_{t-1}
g_t^1	$\int 0.1474$	0.9164	0.0002	-1.9772	30.4198	0	-0.8826	-15.6826	-0.8627
g_t^2	0.1474	0.9164	0.0002	-1.9772	30.4198	0	-0.8826	-15.6826	-0.8627
$inflation_t^{ m gap}$	-0.0001	0.0547	-0.0498	0.3333	1.6672	0	-0.0398	-1.1104	-0.0642
λ_t	0.1179	0.1359	-0.0001	0.8044	-9.5958	0	-0.2745	9.2056	-0.0385
mc_t	0.0862	4.9708	0.0007	-10.2156	126.7452	0	-4.181	-122.7415	-4.7403
π_t^\star	-0.0012	0.5419	0.0001	-1.3251	16.5247	0	-0.3941	-11.006	-0.636
$p\!H_t$	0.0001	-0.0273	0.0249	-0.1667	-0.8336	0	0.0199	0.5552	0.0321
pL_t	-0.0011	0.5194	-0.4729	3.1666	15.8386	0	-0.3778	-10.549	-0.6096
q_t	0.1179	0.1359	-0.0001	0.8044	-9.5958	0	-0.2745	9.2056	-0.0385
r_t	0.2504	9.6818	0.0012	-19.1237	237.5426	0	-8.6795	-230.101	-7.5809
C_t	-0.0534	0.9652	0.0002	-2.6415	32.5391	0	-0.6513	-31.4584	-0.8022
$Di\!w_t$	-0.0082	-7.9545	-0.0007	11.5232	-142.6932	0	4.8635	138.1235	6.6399
G_t	0.949	0	0	0	0	0	0	0	0
I_t	0.2078	22.1074	0.0033	-49.972	623.0451	0	-21.4623	-604.0518	-16.1258
$L_t^{ m s}$	0.2346	6.7301	0.0008	-12.7258	158.2819	0	-5.4265	-153.3708	-5.2337
Q_t	0	0	0	0	0	0	0	0	0
T_t	0.949	0	0	0	0	11.5637	0	0	0
U_t	-0.0107	-0.0272	0	-0.0234	0.2831	0	0.0226	-0.1954	0.0162
W_t	0.0158	2.9517	0.0004	-6.3979	79.2607	0	-2.2531	-76.7303	-2.3471
Y_t	0.1642	3.8031	0.0006	-8.9081	110.7973	0	-3.4985	-107.3595	-2.8406
Y_t^{j}	0.1642	4.7111	0.0006	-8.9081	110.7973	0	-3.4985	-107.3595	-2.8406
Y_t^s	0.1642	4.7111	0.0006	-8.9081	110.7973	0	-3.4985	-107.3595	-2.8406

$\mathbf{Matrix}\ S$

	$\epsilon^{ m Z}$	$\eta^{ m p}$	$\eta^{ m R}$	η^{π}	$\eta^{ m G}$
g^1	$\int -1.0482$	0.1094	-16.319	30.4228	0.1553
g^2	-1.0482	-0.0266	-16.319	30.4228	0.1553
<i>inflation</i> gap	-0.078	0.012	-1.1555	1.6674	-0.0001
λ	-0.0468	0.0052	9.5791	-9.5967	0.1243
mc	-5.7597	-0.0537	-127.7227	126.7579	0.0908
π^{\star}	-0.7728	0.1192	-11.4526	16.5264	-0.0012
$p\!H$	0.039	-0.006	0.5777	-0.8337	0.0001
pL	-0.7407	0.1142	-10.9771	15.8402	-0.0012
q	-0.0468	0.0052	9.5791	-9.5967	0.1243
r	-9.2113	-0.0999	-239.4392	237.5663	0.2638
C	-0.9748	-0.0144	-32.735	32.5424	-0.0563
Dw	8.0679	0.0612	143.7289	-142.7074	-0.0086
G	0	0	0	0	1
I	-19.594	-0.2554	-628.5659	623.1074	0.2189
$L^{ m s}$	-6.3594	-0.066	-159.595	158.2977	0.2472
Q	0	0	0	0	0
T	0	0	0	0	1
U	0.0197	-0.0003	-0.2033	0.2831	-0.0113
W	-2.8519	-0.0339	-79.8442	79.2686	0.0167
Y	-3.4515	-0.0462	-111.7165	110.8084	0.173
$Y^{ m j}$	-3.4515	-0.0462	-111.7165	110.8084	0.173
Y^{s}	$\setminus -3.4515$	-0.0462	-111.7165	110.8084	0.173

18 Model statistics

18.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
$\epsilon^{ m G}$	1	1.3033	1.6986	Y
g^1	7.3514	33.2682	1106.7707	Y
g^2	4.9009	33.268	1106.7604	Y
$inflation^{ m gap}$	1	2.0394	4.1593	Y
λ	1.5467	16.9702	287.9891	Y
mc	0.6667	174.7432	30535.1868	Y
$ u^{ m p}$	1	0	0	Y
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$	1	0.0089	0.0001	Y
π	1	2.0483	4.1954	Y
π^{\star}	1	18.6165	346.574	Y
$\pi^{ m obj}$	1	1.2917	1.6684	Y
$p\!H$	0.95	1.0197	1.0398	Y
$p\!L$	0.05	19.3745	375.373	Y
q	1.5467	16.9702	287.9891	Y
r	0.0351	336.2675	113075.8376	Y
B	0	0	0	N
C	0.3255	42.2117	1781.8288	Y
Div	0.1601	198.2823	39315.8834	Y
G	0.0865	1.3033	1.6986	Y
I	0.0684	868.2099	753788.4129	Y
$K^{ m s}$	2.7374	27.5518	759.1001	Y
$L^{ m s}$	0.2279	220.2747	48520.9583	Y
Q	1	0	0	Y
R	1.0101	0.8977	0.8059	Y
T	0.0865	1.3033	1.6986	Y
U	-167.8256	0.8178	0.6688	Y
W	0.9837	106.2007	11278.5832	Y
Y	0.4804	151.3211	22898.0866	Y
$Y^{ m j}$	0.4804	151.3211	22898.0866	Y
$Y^{ m s}$	0.4804	151.3211	22898.0866	Y
Z	1	1.227	1.5056	Y

18.2 Correlation matrix

	ϵ^{G}	g^1	g^2	$inflation^{ m gap}$	λ	mc	$percieved^{\pi^{ m obj}}$	π	π^{\star}	π^{obj}	$p\!H$	pL	
$\epsilon^{ m G}$	1	0.006	0.006	-0.001	0.01	0	-0.001	-0.001	-0.001	0	0.001	-0.001	0
g^1		1	1	0.844	-0.463	0.92	0.82	0.844	0.983	0.545	-0.844	0.844	-0.
$egin{array}{c} g^1 \ g^2 \end{array}$			1	0.844	-0.463	0.92	0.82	0.844	0.983	0.545	-0.844	0.844	-0.
$inflation^{ m gap}$				1	-0.799	0.758	0.999	1	0.884	0.752	-1	1	-0.
λ					1	-0.443	-0.812	-0.799	-0.579	-0.701	0.799	-0.799	
mc						1	0.73	0.758	0.953	0.25	-0.758	0.758	-0.
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$							1	0.999	0.862	0.765	-0.999	0.999	-0.
π								1	0.884	0.752	-1	1	-0.
π^{\star}									1	0.528	-0.884	0.884	-0.
$\pi^{ m obj}$										1	-0.752	0.752	-0.
$p\!H$											1	-1	0.
pL												1	-0.
q													
r													
C													
Div													
G													
I													
$K^{ m s}$													
$L^{ m s}$													
$R = \frac{R}{r}$													
T													
U													
W													
Y													
$Y^{ m j}$													
$Y^{ m s}$													
Z													

18.3 Cross correlations with the reference variable (π)

	$\sigma[\cdot]$ rel. to $\sigma[\pi]$	π_{t-5}	π_{t-4}	π_{t-3}	π_{t-2}	π_{t-1}	π_t	$ \pi_{t+1} $	π_{t+2}	π_{t+3}	π_{t+4}	$ \pi_{t+1}$
$\epsilon_t^{ m G}$	0.636	0	0	-0.001	-0.001	-0.001	-0.001	0	0	0	0	0
$g_t^1 \ g_t^2$	16.242	-0.018	0.017	0.073	0.173	0.376	0.844	-0.13	-0.085	-0.074	-0.073	-0.07
g_t^2	16.242	-0.018	0.017	0.073	0.173	0.376	0.844	-0.13	-0.085	-0.074	-0.073	-0.07
$inflation_t^{ m gap}$	0.996	-0.084	-0.047	0.017	0.139	0.396	1	0.396	0.139	0.017	-0.047	-0.08
λ_t	8.285	0.155	0.14	0.102	0.008	-0.221	-0.799	-0.568	-0.392	-0.251	-0.139	-0.0
mc_t	85.313	-0.007	0.009	0.041	0.115	0.294	0.758	-0.254	-0.193	-0.156	-0.128	-0.10
$perieved_t^{\pi^{ ext{obj}}}$	0.004	-0.088	-0.051	0.014	0.137	0.395	0.999	0.438	0.158	0.025	-0.045	-0.08
π_{t}	1	-0.084	-0.047	0.017	0.139	0.396	1	0.396	0.139	0.017	-0.047	-0.08
π_t^\star	9.089	-0.038	-0.008	0.043	0.142	0.36	0.884	-0.079	-0.051	-0.052	-0.06	-0.06
$\pi_t^\star \\ \pi_t^{ ext{obj}}$	0.631	-0.114	-0.067	0.005	0.121	0.329	0.752	0.566	0.406	0.269	0.155	0.06
$p\!H_t$	0.498	0.084	0.047	-0.017	-0.139	-0.396	-1	-0.396	-0.139	-0.017	0.047	0.08
$p\!L_t$	9.459	-0.084	-0.047	0.017	0.139	0.396	1	0.396	0.139	0.017	-0.047	-0.08
q_t	8.285	0.155	0.14	0.102	0.008	-0.221	-0.799	-0.568	-0.392	-0.251	-0.139	-0.0
r_t	164.172	0.004	0.019	0.05	0.118	0.287	0.723	-0.303	-0.227	-0.179	-0.142	-0.11
C_t	20.608	-0.05	-0.033	0.005	0.094	0.31	0.866	-0.05	-0.05	-0.059	-0.068	-0.07
$Di\!v_t$	96.805	0.004	-0.012	-0.044	-0.116	-0.292	-0.748	0.27	0.204	0.163	0.132	0.10
G_t	0.636	0	0	-0.001	-0.001	-0.001	-0.001	0	0	0	0	0
I_t	423.875	-0.003	0.013	0.045	0.116	0.291	0.744	-0.275	-0.208	-0.166	-0.134	-0.10
$K_t^{ m s}$	13.451	-0.154	-0.14	-0.101	-0.007	0.222	0.802	0.566	0.388	0.248	0.136	0.04
$L_t^{ m s}$	107.542	-0.003	0.013	0.044	0.116	0.292	0.745	-0.273	-0.206	-0.164	-0.133	-0.10
R_t	0.438	0.005	0.054	0.111	0.169	0.206	0.158	0.185	0.161	0.122	0.082	0.04
T_t	0.636	0	0	-0.001	-0.001	-0.001	-0.001	0	0	0	0	0
U_t	0.399	-0.169	-0.156	-0.123	-0.046	0.132	0.565	0.758	0.537	0.361	0.221	0.10
W_t	51.849	-0.022	-0.005	0.029	0.108	0.302	0.8	-0.187	-0.146	-0.124	-0.109	-0.09
Y_t	73.878	-0.012	0.004	0.038	0.113	0.297	0.771	-0.234	-0.179	-0.146	-0.122	-0.10
$Y_t^{ m j}$	73.878	-0.012	0.004	0.038	0.113	0.297	0.771	-0.234	-0.179	-0.146	-0.122	-0.10
Y_t^{s}	73.878	-0.012	0.004	0.038	0.113	0.297	0.771	-0.234	-0.179	-0.146	-0.122	-0.10
Z_t	0.599	0.005	0.002	-0.004	-0.012	-0.024	-0.043	-0.028	-0.016	-0.008	-0.001	0.00

18.4 Autocorrelations

	1			- .	
	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
$\epsilon^{ m G}$	0.713	0.471	0.271	0.109	-0.017
g^1	-0.035	-0.013	-0.016	-0.025	-0.034
g^2	-0.035	-0.013	-0.016	-0.025	-0.034
$inflation^{ m gap}$	0.396	0.139	0.017	-0.047	-0.084
λ	0.686	0.443	0.25	0.097	-0.022
mc	-0.114	-0.079	-0.063	-0.053	-0.046
$\mathit{percieved}^{\pi^{\mathrm{obj}}}$	0.437	0.156	0.022	-0.049	-0.089
π	0.396	0.139	0.017	-0.047	-0.084
π^{\star}	-0.06	-0.029	-0.026	-0.031	-0.037
π^{obj}	0.721	0.484	0.286	0.125	-0.002
$p\!H$	0.396	0.139	0.017	-0.047	-0.084
pL	0.396	0.139	0.017	-0.047	-0.084
q	0.686	0.443	0.25	0.097	-0.022
r	-0.117	-0.081	-0.064	-0.054	-0.046
C	-0.026	-0.021	-0.028	-0.037	-0.044
Div	-0.116	-0.08	-0.063	-0.054	-0.046
G	0.713	0.471	0.271	0.109	-0.017
I	-0.116	-0.08	-0.064	-0.054	-0.046
$K^{ m s}$	0.682	0.438	0.246	0.095	-0.023
$L^{ m s}$	-0.116	-0.08	-0.063	-0.054	-0.046
R	0.71	0.475	0.283	0.127	0.004
T	0.713	0.471	0.271	0.109	-0.017
U	0.835	0.544	0.312	0.128	-0.015
W	-0.098	-0.068	-0.056	-0.05	-0.046
Y	-0.111	-0.076	-0.061	-0.053	-0.046
$Y^{ m j}$	-0.111	-0.076	-0.061	-0.053	-0.046
$Y^{ m s}$	-0.111	-0.076	-0.061	-0.053	-0.046
Z	0.644	0.368	0.159	0.006	-0.102

18.5 Variance decomposition

	$\epsilon^{ m Z}$	$\eta^{ m p}$	$\eta^{ m R}$	η^{π}	$\eta^{ m G}$
$\epsilon^{ m G}$	0	0	0	0	1
g^1	0.001	0	0.347	0.652	0
g^2	0.001	0	0.347	0.652	0
$inflation^{ m gap}$	0.002	0	0.323	0.675	0
λ	0	0	0.492	0.508	0
mc	0.001	0	0.506	0.493	0
$percived^{\pi^{\mathrm{obj}}}$	0.002	0	0.319	0.679	0
π	0.002	0	0.323	0.675	0
π^{\star}	0.002	0	0.373	0.625	0
$\pi^{ m obj}$	0	0	0	1	0
$p\!H$	0.002	0	0.323	0.675	0
pL	0.002	0	0.323	0.675	0
q	0	0	0.492	0.508	0
r	0.001	0	0.506	0.493	0
C	0.001	0	0.504	0.495	0
Div	0.001	0	0.506	0.493	0
G	0	0	0	0	1
I	0.001	0	0.506	0.493	0
K^{s}	0.001	0	0.496	0.503	0
$L^{ m s}$	0.001	0	0.506	0.493	0
R	0	0	0.573	0.426	0
T	0	0	0	0	1
U	0.001	0	0.415	0.584	0
W	0.001	0	0.506	0.494	0
Y	0.001	0	0.506	0.493	0
$Y^{ m j}$	0.001	0	0.506	0.493	0
$Y^{ m s}$	0.001	0	0.506	0.493	0
Z	1	0	0	0	0

19 Impulse response functions

responses

Figure 1: Impulse $(\pi, p\!H, R, \textit{percieved}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}}) \text{ to } \epsilon^{\text{Z}} \text{ shock}$

responses Figure 2: Impulse $(\pi, p\!H, R, \textit{percieved}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}}) \text{ to } \eta^{\text{p}} \text{ shock}$

Figure 3: Impulse $(\pi, p\!H, R, \textit{percieved}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}}) \text{ to } \eta^{\text{R}} \text{ shock}$

responses Figure 4: Impulse responses nock $(\pi, pH, R, percieved^{\pi^{\text{obj}}}, inflation^{\text{gap}})$ to η^{π} shock

Figure 5: Impulse responses $(\pi, p\!H, R, \textit{percieved}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}})$ to η^{G} shock