1. (**1p**) Care din următoarele variante este o sortare topologică pentru următorul graf? Justificați.

- a) 5, 3, 1, 2, 4, 6, 7
- b) 4, 5, 7, 1, 2, 3, 6
- c) 4, 5, 1, 2, 3, 7, 6
- d) 1, 2, 3, 4, 5, 7, 6

2. (**1p**) Care dintre următoarele afirmații sunt adevărate pentru un graf neorientat (neponderat) cu n>3 vârfuri și m muchii, m≥n? Justificați (complexitatea algoritmilor studiați se presupune cunoscută, nu trebuie demonstrată în justificare)

- a) Putem determina distanța de la nodul 2 la celelalte noduri în O(n+m) folosind parcurgerea în adâncime
- b) Graful este conex
- c) Putem determina muchiile critice din graf în O(n+m)
- d) Graful are cel puțin 3 muchii care nu sunt critice

3. (**1p**) a) Fie G un graf cu gradul maxim al unui vârf 6. Care este numărul maxim de culori folosite de algoritmul Greedy de colorare a vârfurilor lui G prezentat la curs, dacă vârfurile sunt considerate în ordine descrescătoare după grad (Largest First)? Justificați.

b) Exemplificați (cu explicații) algoritmul Greedy de colorare cu vârfurile considerate în ordine descrescătoare după grad (Largest First) pentru graful din figura alăturată.

4. (**1,5p**) Definiți noțiunile de flux, tăietură minimă și lanț nesaturat/drum de creștere. Ilustrați pașii algoritmului Ford-Fulkerson pentru rețeaua din figura următoare (unde pe un arc e sunt trecute valorile f(e)/c(e) reprezentând flux/capacitate), pornind de la fluxul indicat și alegând la fiecare pas un s-t lanț f-nesaturat de lungime minimă (algoritmul Edmonds-Karp). Indicați o tăietură (s-t tăietură) minimă în rețeaua (se vor indica vârfurile din bipartiție, arcele directe, arcele inverse). Mai există și o altă s-t tăietură minimă în această rețea? Justificați răspunsurile

5. (**2p**) **a**) Descrieți algoritmul Floyd-Warshall pentru determinarea de distanțe într-un graf orientat ponderat cu n vârfuri, detaliind următoarea schemă (se vor respecta numele variabilelor din schemă):

Inițializarea matricelor D de distanțe și P de predecesori

pentru $\mathbf{i} \leftarrow 1$, n execută

pentru $\mathbf{u} \leftarrow 1$, n execută

pentru $\mathbf{v} \leftarrow 1$, n execută

.....

- b) Presupunem că n>3. Ce reprezintă valoarea D[u][v] după încheierea execuției pasului la care i=2 (ce semnifică)?
- c) La finalul execuției pseudocodului de mai sus pentru un graf cu 8 vârfuri se obțin matricele următoare:

D =	0	2	3	7	4	8	-1	9	P =	0	1	2	5	7	4	8	6
D –	8	0	1	8	8	8	8	8	r –	2	0	2	0	0	0	0	0
	8	8	0	8	8	8	8	8		0	3	0	0	0	0	0	0
	0	2	3	-1	-4	0	-9	1		4	1	2	5	7	4	8	6
	3	5	6	2	-1	3	-6	4		4	1	2	5	7	4	8	6
	-1	1	2	-2	-5	-1	-10	0		4	1	2	5	7	4	8	6
	8	10	11	7	4	8	-1	9		4	1	2	5	7	4	8	6
	-3	-1	0	-4	-7	-3	-12	-2		4	1	2	5	7	4	8	6

Adăugați în pseudocod instrucțiunile necesare pentru ca algoritmul să testeze existența unui circuit cu cost negativ în graf, și, în caz afirmativ, să afișeze unul, și ilustrați-le pentru graful dat ca exemplu (cu explicații).

6. (**1p**) Este corect următorul algoritm de determinare a unui arbore parțial de cost minim al unui graf conex ponderat G = (V, E, w)? Justificați (fără a apela în justificare la modul de funcționare al altor algoritmi; rezultatele folosite trebuie demonstrate și trebuie explicat modul în care se folosesc)

 \mathbf{T} = (V, E = \emptyset) - inițial V conține toate vârfurile și nu conține nicio muchie

pentru i = 1, |V|-1

- 1. Alege o componentă conexă C al lui T care conține vârful i
- 2. Alege o muchie de cost minim e cu o extremitate în C și cealaltă nu și adaugă e la T
- 7. (1,5p).a) Indicați fețele hărții următoare și gradul fiecărei fețe.

b) Fie M=(V, E, F) o hartă conexă cu n>3 vârfuri și m muchii. Arătați că dacă orice vârf din M are gradul 3 și orice față are gradul 3 sau 6 atunci sunt exact 4 fețe de grad 3.