MA 519: Homework 7

Max Jeter, Carlos Salinas October 13, 2016

Problem 7.1 (Handout 10, # 4)

(*Poisson Approximation.*) One hundred people will each toss a fair coin 200 times. Approximate the probability that at least 10 of the 100 people would each have obtained exactly 100 heads and 100 tails.

SOLUTION. Let X denote the number of people who obtain exactly 100 heads and (consequently) 100 tails. First, we compute the probability that any one given person obtains exactly 100 heads. There are 2^{200} possible outcomes for 200 tosses of a fair coin, and $\binom{200}{100}$ possible ways of obtaining exactly 100 heads. Thus, the probability that any one person obtains exactly 100 head in 200 tosses of a fair coin is

$$p = \frac{\binom{200}{100}}{2^{200}} \approx 0.056.$$

Now, assuming $X \sim \text{Poisson}(100, 0.056)$, the probability that at least 10 of the 100 people have each obtained exactly 100 heads and 100 tails is

$$P(X \ge 10) = 1 - P(X < 10)$$

$$= 1 - \sum_{i=1}^{9} P(X = i)$$

$$1 - e^{-0.056} \sum_{i=1}^{9} \frac{0.056^{i}}{i!}$$

MA 519: Homework 7

Problem 7.2 (Handout 10, # 5)

(A Pretty Question.) Suppose X is a Poisson distributed random variable. Can three different values of X have an equal probability?

SOLUTION. Suppose $X \sim \text{Poisson}(n, \lambda)$. Then the PMF of X has the form

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}.$$

Then, three different values of X having the same probability means that

$$\frac{e^{-\lambda}\lambda^{k_1}}{k_1!} = \frac{e^{-\lambda}\lambda^{k_2}}{k_2!} = \frac{e^{-\lambda}\lambda^{k_3}}{k_3!}$$

for k_1 , k_2 , k_3 all distinct positive integers, i.e.,

$$\lambda^{k_1} k_2! k_3! = \lambda^{k_2} k_1! k_3! = \lambda^{k_3} k_1! k_2!.$$

Taking the log on the equalities above, we have

$$k_1 \ln \lambda \left(\sqrt[k_1]{k_2! k_3!} \right) = k_2 \ln \lambda \left(\sqrt[k_2]{k_1! k_3!} \right) = k_3 \ln \lambda \left(\sqrt[k_3]{k_1! k_2!} \right) =$$

MA 519: Homework 7

Problem 7.3 (Handout 10, # 6)

(*Poisson Approximation*.) There are 20 couples seated at a rectangular table, husbands on one side and the wives on the other, in a random order. Using a Poisson approximation, find the probability that exactly two husbands are seated directly across from their wives; at least three are; at most three are.

Problem 7.4 (Handout 10, # 7)

(*Poisson Approximation.*) There are 5 coins on a desk, with probabilities 0.05, 0.1, 0.05, 0.01, and 0.04 for heads. By using a Poisson approximation, find the probability of obtaining at least one head when the five coins are each tossed once. Is the number of heads obtained binomially distributed in this problem?

Problem 7.5 (Handout 10, # 8)

A book of 500 pages contains 500 misprints. Estimate the chances that a given page contains at least three misprints.

Problem 7.6 (Handout 10, # 9)

Estimate the number of raisins which a cookie should contain on the average if it is desired that not more than one cookie out of a hundred should be without raisin.

Problem 7.7 (Handout 10, # 10)

The terms $\operatorname{Poisson}(k;X)$ of the Poisson distribution reach their maximum when k is the largest integer not exceeding X.

Problem 7.8 (Handout 10, # 11)

Prove

Poisson
$$(0, \lambda) + \cdots + \text{Poisson}(n, \lambda) = \frac{1}{n!} \int_{\lambda}^{\infty} e^{-x} x^n dx.$$

Problem 7.9 (Handout 10, # 12)

There is a random number N of coins in your pocket, where N has a Poisson distribution with mean μ . Each one is tossed once.

Let X be the number of times a head shows.

Find the distribution of X.

Problem 7.10 (Handout 10, # 14)

Find the MGF of a general Poisson distribution, and hence prove that the mean and the variance of an arbitrary Poisson distribution are equal.

Problem 7.11 (Handout 10, # 17 (a))

(*Poisson approximations*.) 20 couples are seated in a rectangular table, husbands on one side and the wives on the other. First, find the expected number of husbands that sit directly across from their wives. Then, using a Poisson approximation, find the probability that two do; three do; at most five do.