Х24 — Физика дождевых капель

A1^{1.00} Найдите изменение свободной энергии водяного пара, если из него образовать каплю радиуса r. Выразите ответ через r, σ , φ , R, T, ρ_L , μ .

Записан поверхностный вклад в свободную энергию $\Delta G_{surf} = 4\pi\sigma r^2$.	0.30
Найдено количество вещества в капле $v = \frac{4\pi \rho_L r^3}{3\mu}$.	0.20
Объемный вклад в свободную энергию $-rac{4\pi ho_L}{3\mu}r^3RT\ln \phi$	0.30
Правильные знаки	0.20

A2^{0.80} Найдите критическое значение радиуса капли r_c , при котором ΔG максимально, а также соответствующее значение ΔG_c . Выразите ответ через σ , φ , R, T, ρ_L , μ . Найдите численное значение r_c при $\varphi = 1.01$.

Вычислена производная $\partial \Delta G/\partial r$	0.20
$r_c = \frac{2\sigma\mu}{\rho_L RT \ln \varphi}.$	0.20
$r_c = 1.15 \cdot 10^{-7} \text{M}$	0.10
$\Delta G_c = \frac{16\pi}{3} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}$	0.30
Ошибка в безразмерном численном коэффициенте в ΔG_c	-0.10

А3^{0.70} Рассмотрим каплю критического радиуса r_c . Определите время τ , за которое количество молекул в ней увеличится на g. Выразите ответ через r_c , g, p_s , m, k, T, φ . Считайте, что в процессе роста радиус капли не меняется, испарением молекул из капли можно пренебречь. Известно, что на площадь dS поверхности за время dt попадает

$$dN = dtdS \frac{p_v}{\sqrt{2\pi mkT}}$$

молекул. Здесь p_{ν} - давление пара, m - масса молекул, T - температура газа.

$p_{v}=p_{s}\varphi$	0.10
Записан полный поток молекул в каплю	0.30
$ au = rac{g\sqrt{2\pi mkT}}{4\pi r_c^2 p_s \phi}.$	0.30
Ошибка в численном коэффициенте	-0.20

A4^{0.60} Найдите количество капель J, которые образуются в единицу времени в единице объема перенасыщенного водяного пара. Выразите ответ через σ , φ , p_s , r_c , T, g.

Использована формула $J=n_c/ au$	0.10
$J = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right) = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{4\pi r_c^2 \sigma}{3kT}\right).$	0.40
Концентрация выражена через давление $p_{ m s}$	0.10
Ошибка в численном коэффициенте или в ответе остались не приведенные в условии вели-	-0.20
чины	

А5^{0.90} Из результатов предыдущего пункта следует, что скорость образования капель очень сильно зависит от коэффициента перенасыщения пара. Определите численно значение коэффициента перенасыщения пара φ , при котором при температуре T=283K в 1см³ воздуха рождается одна капля в секунду. Считайте, что g=100. Остальные численные данные приведены в начале задачи.

Найдены численные значения коэффициента перед экспонентой (J_0) и постоянной в экспо-	2×0.20
ненте А, или аналогичные им	
Численный ответ $\phi \in [3.8, 3.9]$	0.50

В1^{0.80} Для насыщенного пара, находящегося в равновесии с жидкостью, выразите производную давления по температуре dp_s/dT через p_s , L, R, T, μ . Используя полученный результат, найдите относительное изменение плотности насыщенного водяного пара $\Delta \rho_s/\rho_s$ при малом изменении температуры ΔT . Выразите ответ через ΔT , T, L, μ , R. Вы можете использовать связь малых изменений давления, плотности и температуры идеального газа

$$\frac{\Delta p_s}{p_s} = \frac{\Delta \rho_s}{\rho_s} + \frac{\Delta T}{T}.$$

Использовано или получено уравнение Клапейрона-Клаузиуса в любом виде	0.30
$\frac{dp_s}{dT} = \frac{L\mu p_s}{RT^2}$.	0.20
$rac{\Delta ho_{ m s}}{ ho_{ m s}} = rac{\Delta T}{T} \left(rac{\mu L}{RT} - 1 ight).$	0.30

 ${f B2^{0.20}}$ Выразите dQ/dt через dM/dt и L.

$$\frac{dQ}{dt} = L\frac{dM}{dt} \tag{0.20}$$

B3^{0.30} Используя результат предыдущего пункта и уравнение теплопроводности, выразите разность температур капли и атмосферы, $T_r - T$, через dM/dt, а также r, L, K.

$T_r - T = \frac{1}{4\pi r K} \frac{dQ}{dt}$	0.10
$T_r - T = \frac{L}{4\pi r K} \frac{dM}{dt}.$	0.20

В4^{0.30} Будем считать, что вблизи поверхности капли плотность водяного пара равна плотности насыщенного пара при температуре капли. Считая разности температур и плотностей малыми и используя результаты B1, B3 выразите отношение $(\rho_r - \rho_s)/\rho_s$ (ρ_r - давление пара вблизи поверхности капли) через L, r, K, μ , R, T и dM/dt.

$$\frac{\rho_r - \rho_s}{\rho_s} = \left(\frac{\mu L}{RT} - 1\right) \frac{L}{4\pi r K T} \frac{dM}{dt}.$$

 ${f B5^{0.30}}$ Используя уравнение диффузии, выразите отношение $(
ho_rho_v)/
ho_s$ через $dM/dt, r, D,
ho_s$.

$\frac{\rho_r - \rho_v}{\rho_s} = -\frac{1}{4\pi r \rho_s D} \frac{dM}{dt}$	0.30
Ошибка в знаке	-0.10

Получено корректное соотношение, не содержащее $ ho_r$	0.30
$\frac{dM}{dt} = \frac{4\pi r(\varphi - 1)}{\left(\frac{\mu L}{RT} - 1\right)\frac{L}{KT} + \frac{RT}{\mu p_S D}}$	0.30
Не подставлено значение $ ho_s$	-0.10

B7^{0.50} Скорость увеличения радиуса капли имеет вид

$$\frac{dr}{dt} = \frac{\xi}{r^k}.$$

Определите k и ξ , выразите ответ через φ , ρ_L , μ , R, T, D, p_s , L, K.

dr/dt выражено через dM/dt	0.20
k = 1	0.10
$\xi = \frac{\varphi - 1}{\left(\frac{\mu L}{RT} - 1\right)\frac{L}{KT} + \frac{RT}{\mu p_S D}} \frac{1}{\rho_L}.$	0.20

B8^{0.50} Найдите зависимость радиуса капли от времени. Начальный радиус капли равен r_0 . Выразите ответ через r_0 , ξ , t.

Уравнение корректно проинтегрировано	0.20
$r(t) = \sqrt{r_0^2 + 2\xi t}.$	0.30
Ошибка в численном коэффициенте	-0.10

В9^{0.50} Пусть начальный радиус капли равен $r_0=0.7$ мкм. Найдите численное значение времени, за которое она вырастет до размера $r_1=10$ мкм при коэффициенте перенасыщения $\phi=1.1$. Остальные численные значения приведены в начале этой части.

$t = rac{r_1^2 - r_0^2}{2\xi}$	0.30
t = 5.50c.	0.20