Sistemas Basados en Microprocesador

B1 ARM Cortex M4 - MDK - CMSIS

UNIVERSIDAD POLITÉCNICA DE MADRID

- 1. ARM Cortex M4
- 2. ARM MDK
- 3. CMSIS
- 4. MDK first project

5. Information

4 product series

Common core peripherals and architecture:

Communication peripherals: USART, SPI, I ² C
Multiple general-purpose timers
Integrated reset and brown-out warning
Multiple DMA
2x watchdogs Real-time clock
Integrated regulator PLL and clock circuit
External memory interface (FSMC)
Dual 12-bit DAC
Up to 3x 12-bit ADC (up to 0.41 µs)
Main oscillator and 32 kHz oscillator
Low-speed and high-speed internal RC oscillators
-40 to +85 °C and up to 105 °C operating temperature range
Low voltage 2.0 to 3.6 V or 1.65/1.7 to 3.6 V (depending on series) 5.0 V tolerant I/Os
Temperature sensor

STM32 F4 series -	High performance	with DSP	(STM32F405/415/407/417)
OTHIOL I T JUILOU	ingii portorniano	midi Doi	[OTTRIOE 100/ 110/ 101/ 111/

168 MHz Cortex-M4 with DSP and FPU	Up to 192-Kbyte SRAM	Up to 1-Mbyte Flash	2x USB 2.0 OTG FS/HS	3-phase MC timer	2x CAN 2.0B	SDIO 2x I ² S audio Camera IF	Ethernet IEEE 1588	Crypto/hash processor and RNG
STM32 F2 s	eries - High	performance	(STM32F20	5/215/207/217)			
120 MHz Cortex-M3 CPU	Up to 128-Kbyte SRAM	Up to 1-Mbyte Flash	2x USB 2.0 OTG FS/HS	3-phase MC timer	2x CAN 2.0B	SDIO 2x I ² S audio Camera IF	Ethernet IEEE 1588	Crypto/hash processor and RNG
STM32 F1 s	eries - Conn	ectivity line (STM32F105	/107)				

72 MHz Cortex-M3	Up to 64-Kbyte SRAM	Up to 256-Kbyte Flash	USB 2.0 OTG FS	3-phase MC timer	2x CAN 2.0B	2x I2S audio	Ethernet IEEE 1588
---------------------	---------------------------	-----------------------------	-------------------	---------------------	----------------	--------------	-----------------------

STM32 F1 series - Performance line (STM32F103)

72 MHz Cortex-M3		Up to 1-Mbyte	USB FS device	3-phase MC timer	CAN 2.0B	SDIO 2x I2S	
CPU CPU	SRAM	Flash	device	MC timer	2.0B	2x I2S	

STM32 F1 series - USB Access line (STM32F102)

H	48 MHz Cortex-M3	Up to 16-Kbyte	Up to 128-Kbyte	USB FS device	
	CPU	SRAM	Hash		

STM32 F1 series - Access line (STM32F101)

36 MHz	Up to	Up to
Cortex-M3	80-Kbyte	1-Mbyte
CPU	SRAM	Flash

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

UNIVERSIDAD POLITÉCNICA DE MADRID

STM32 F1 series - Value line (STM32F100)

24 MHz Cortex-M3	Up to 32-Kbyte	Up to 512-Kbyte	3-phase MC timer	CEC	
CPU	SRAM	Flash	mo unito		

STM32 L1 series - Ultra-low-power (STM32F151/152)

32 MHz Up to Up to Up to Cortex-M3 48-Kbyte 384-Kbyte d	JSB FS device	up to 12 Kbytes			MSI VScal	AES 128-bit
---	------------------	--------------------	--	--	--------------	----------------

ARM Cortex M4

Figure 1.1:

Use of intellectual property (IP) in microcontroller design.

UNIVERSIDAD POLITÉCNICA DE MADRID

ARM Cortex-M Performance, Power and Area

	90LP (7-track, typical 1.2v, 25C)		40G (9-track, typical 0.9v, 25C)	
	Dynamic power (µW/MHz)	Area mm²	Dynamic power (µW/MHz)	Area mm²
Cortex-M0	16	0.04	4	0.01
Cortex-M0+	9.8	0.035	3	0.009
Cortex-M3	32	0.12	7	0.03
Cortex-M4	33	0.17	8	0.04

Static power <0.7 μW/MHz

UNIVERSIDAD POLITÉCNICA DE MADRID

CoreMark® and Dhrystone

Dhrystone (official)	Dhrystone (max options)	CoreMark
DMIPS/MHz	DMIPS/MHz	CoreMark/MHz
0.84	1.21	2.33
0.94	1.31	2.42
1.25	1.89	3.32
1.25	1.95	3.40

^{*} CoreMark data from ARM website & CoreMark.org website

Cortex-M0 Base usable configuration includes I IRQ + NMI, excludes debug Cortex-M0+ Base usable configuration includes I IRQ + NMI, excludes debug Cortex-M3 Base usable configuration includes I IRQ + NMI, excludes ETM, MPU and debug Cortex-M4 Base usable configuration includes DSP extensions, I IRQ + NMII, excludes ETM, MPU, FPU and debug

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA
DE SISTEMAS Y TELECOMUNICACIÓN

ARM Cortex STM32F4xxx

ARM Cortex M4

ARM Cortex M4

UNIVERSIDAD POLITÉCNICA DE MADRID

Figure 1. Nucleo-144 board (top view)

Figure 2. Nucleo-144 board (bottom view)

https://www.st.com/en/evaluation-tools/nucleo-f429zi.html

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

DE SISTEMAS Y TELECOMUNICACIÓN

mbed Application Board

- 1. 128x32 Graphics LCD
- 2. 5 way joystick
- 3. 2 x Potentiometers
- 4. 3.5mm Audio jack (Analog Out)
- 5. Speaker, PWM Connected
- 6. 3 Axis +/1 1.5g Accelerometer
- 7. 3.5mm Audio jack (Analog In)
- 8. 2 x Servo motor headers
- 9. RGB LED, PWM connected
- 10.USB-mini-B Connector
- 11.Temperature sensor
- 12. Socket for for Xbee (Zigbee) or RN-XV (Wifi)

UNIVERSIDAD POLITÉCNICA DE MADRID

- 13.RJ45 Ethernet connector
- 14.USB-A Connector
- 15.1.3mm DC Jack input

http://mbed.org/cookbook/mbed-application-board

mbed API

mbed common

mbed HAL API

mbed HAL implementation

CMSIS-CORE

MCU Registers

- Capa de abstracción software para desarrollar aplicaciones rápidamente que utilicen microcontroladores ARM.
- Se puede trabajar en C/C++.
- Dos versiones mbed 2.0 /mbed OS (>5.0).
- Compilador online.
- Extensa comunidad de desarrollo.

MCU Independent
MCU dependent
MCU Hardware

- Disponible solo para un conjunto de HW determinado
- Orientado a aplicaciones loT en su últimas versiones.
- Versiones muy cambiantes.
- Poco control de los recursos hardware del microcontrolador.
- Se generan binarios demasiado grandes para pequeñas funcionalidades.

UNIVERSIDAD POLITÉCNICA DE MADRID

CMSIS Cortex Microcontroller Software Interface Standard

- ARM provee de un estándar para que los fabricantes que utilicen sus núcleos puedan desarrollar software
- Sólo tienen que añadir el soporte para los periféricos que incluyan en el microcontrolador
- Periféricos típicos: USART, I2C, SPI, ADC, DAC, Host/Device USB, Ethernet MAC, SDIO controller, LCD interface.

<u>Componentes:</u>

- CMSIS Core
- CMSIS Driver
- CMSIS Pack
- CMSIS RTOS
- CMSIS DSP
- CMSIS SVD-DAP

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

DE SISTEMAS Y TELECOMUNICACIÓN

http://www.keil.com/pack/doc/CMSIS/General/html/index.html

- Es posible reutilizar código y proyectos entre distintos dispositivos de un fabricante, además de compartir desarrollos entre distintas herramientas.
- No es una capa software con multitud de ficheros que generan binarios muy grandes. Se generan pocos kilobytes de código y se utiliza poca RAM.
- Puede ser utilizado desde no solo las herramientas de ARM (MDK, DS-MK), también puede ser utilizado desde IAR, Eclipse (Windows-Linux) utilizando el toolchain adecuado.

Define los recursos mínimos para acceder al core del uC:

- Hardware Abstraction Layer (HAL)
- System exception names
- Methods to organize header files
- Methods for system initialization (systemInit())

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

System clock frequency

driver.c(h) - p.e. I2C LPC17xx.c(h)

UNIVERSIDAD POLITÉCNICA DE MADRID

Define la API para cada uno de los periféricos que integra el microcontrolador.

Especificación para añadir componentes (devices, boards, middlewares)

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

DE SISTEMAS Y TELECOMUNICACIÓN

CMSIS RTOS

- Especificación utilizar el API del sistema operativo en tiempo real.
- Pueden elegirse distintas implementaciones (RTX, FreeRTOS, etc).

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

DE SISTEMAS Y TELECOMUNICACIÓN

Uso información

Documentos de referencia	Ubicación
Mastering STM32 (Carmine Noviello)	
ST Microelectronics resources	https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html https://www.st.com/content/st_com/en/support/learning/stm32-education.html https://www.st.com/content/st_com/en/support/learning/stm32- education/stm32-online-training.html
MDK5 Getting Started	http://www2.keil.com/docs/default-source/default-document-library/mdk5-getting-started.pdf?sfvrsn=2[NC,L]
CMSIS (Cortex Microcontroller Software Interface Standard)	http://www.keil.com/pack/doc/CMSIS/General/html/index.html

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE SISTEMAS Y TELECOMUNICACIÓN

Sistemas Basados en Microprocesador

Instalación de Keil µVision

Instalación µVision

Instalacion como administrador: MDK534.exe

Agregar soporte para STM32F429ZiTX usando la utilidad Pack Installer

Instalacion del driver para Windows del interface de depuración STLink:

UNIVERSIDAD POLITÉCNICA DE MADRID

stlink_winusb_install.bat (como Administrador)

dentro de la carpeta descomprimida del fichero en.stsw-link009_v2.0.2.zip

Pack installer

Es muy importante que las versiones instaladas sean las mismas que aqui se indican

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

DE SISTEMAS Y TELECOMUNICACIÓN

+ AKM::V2M_MP53_55E	⟨y⟩ Install+	AKM V2M-MP33 IF-M PI
	Install	Intuitive graphical FIR/IIR
	♦ Install	Flexible Safety RTOS
■ Keil::ARM_Compiler	Up to date	Keil ARM Compiler extens
1.6.3 (2020-04-22)	※ Remove	Keil ARM Compiler extens
+ Previous		Keil::ARM_Compiler - Pre
★ Keil::iMXRT105x_MWP	♦ Install+	NXP i.MX RT 1051/1052 M
★ Keil::iMXRT1060_MWP	♦ Install+	NXP i.MX RT 1061/1062 M
★ Keil::iMXRT1064_MWP	♦ Install+	NXP i.MX RT 1064 MDK-N
+ Keil::Jansson	♦ Install	Jansson is a C library for e
+ Keil::LPC55S6x_TFM-PF	♦ Install+	NXP LPC55S6x MCU Fam

Anexo. Opciones Debug

Anexo. Opciones Debug

UNIVERSIDAD POLITÉCNICA DE MADRID

Anexo. Opciones Debug

UNIVERSIDAD POLITÉCNICA DE MADRID

Keil Microvision First Project from scratch

UNIVERSIDAD POLITÉCNICA DE MADRID

36

Step I

- Project->New Microvision Project
- Device selection (STM32F429ZI)

UNIVERSIDAD POLITÉCNICA DE MADRID

Step II

Configuration of the Run Time Environment

UNIVERSIDAD POLITÉCNICA DE MADRID

Step III

Project created

UNIVERSIDAD POLITÉCNICA DE MADRID

Step IV

Adding a basic "main.c" file

UNIVERSIDAD POLITÉCNICA DE MADRID

Step V

- Some details of "main.c"
 - RTE_Components.h added
 - main() calls to
 - HAL_Init()

UNIVERSIDAD POLITÉCN

- SystemClock_Config();
- SystemCoreClockUpdate();
- SystemClock_Config() and Error_Handler functions code
- Main code is an infinite loop

Step VI

- Add definition of HSE_VALUE to the Keil project
- Compile and debug

UNIVERSIDAD POLITÉCNICA DE MADRID

