Deep Learning Software Tensorflow/PyTorch

(Based on stanford cs231n slides)

A zoo of frameworks!

Choose a deep learning software

- Efficiency
- Memory Usage
- Coding Language Supporting
- Debugging Information
- Documentation
- Organization & Community

Tensorflow

- From Google
- All about computation graphs
- Easy visualizations (TensorBoard)
- Multi-GPU and multi-node training
- Easy deploying
- Have a try: http://playground.tensorflow.org/

Tensorflow: Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

Tensorflow: Version

• For this course, we are using Tensorflow 1.13

- Why we don't use Tensorflow 2.0?
 - Eager Execution
 - Unstable APIs


```
# Basic computational graph
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values =
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c val, grad x val, grad y val, grad z val = out
```



```
# Basic computational graph
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values = {
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c val, grad x val, grad y val, grad z val = out
```


Run the graph: feed in the numpy arrays and get c_val and gradients

```
# Basic computational graph
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values =
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c val, grad x val, grad y val, grad z val = out
```

Tensorflow: About Tensor

A+B Problem

```
import tensorflow as tf

a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
c = tf.add(a, b)

with tf.Session() as session:
    result = session.run(c, {a:1, b:2})
    print(result) # 3
    result = session.run(c, {a:[5,2,1], b:[3,6,5]})
    print(result) # [8., 8., 6.]
```

Tensorflow: About Tensor

Everything is Tensor

```
import tensorflow as tf

a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
c = tf.add(a, b)

print(a) # Tensor("Placeholder:0", dtype=float32)
print(b) # Tensor("Placeholder_1:0", dtype=float32)
print(c) # Tensor("add:0", dtype=float32)
```

Tensorflow: About Tensor

- About Placeholder
 - 1.dtype, 2.shape, 3.name

A handwritten digits classification task.

- A simple model
 - inputs: x, outputs: y
 - parameters of model: W, b

- A simple model
 - inputs: x, outputs: y
 - parameters of model: W, b

- A simple model
 - inputs: x, outputs: y
 - parameters of model: W, b

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \text{softmax} \begin{bmatrix} W_{1,1}x_1 + W_{1,2}x_2 + W_{1,3}x_3 + b_1 \\ W_{2,1}x_1 + W_{2,2}x_2 + W_{2,3}x_3 + b_2 \\ W_{3,1}x_1 + W_{3,2}x_2 + W_{3,3}x_3 + b_3 \end{bmatrix}$$

- A simple model
 - inputs: x, outputs: y
 - parameters of model: W, b

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ \end{bmatrix} = {\sf softmax} \left[egin{bmatrix} W_{1,1} & W_{1,2} & W_{1,3} \ W_{2,1} & W_{2,2} & W_{2,3} \ W_{3,1} & W_{3,2} & W_{3,3} \ \end{bmatrix} \cdot egin{bmatrix} x_1 \ x_2 \ x_3 \ \end{bmatrix} + egin{bmatrix} b_1 \ b_2 \ b_3 \ \end{bmatrix}$$

- A simple model
 - inputs: x, outputs: y
 - parameters of model: W, b

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \text{softmax} \begin{bmatrix} \begin{bmatrix} W_{1,1} & W_{1,2} & W_{1,3} \\ W_{2,1} & W_{2,2} & W_{2,3} \\ W_{3,1} & W_{3,2} & W_{3,3} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$y = \operatorname{softmax}(Wx + b)$$

Build the graph

```
import tensorflow as tf

x = tf.placeholder(tf.float32, [None, 784], name='x')
# shape of x is (?,784)
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
# shape of y is (?,10)
z = tf.argmax(y, 1, name='z')
```

Compute the loss & gradients

Training & Saving

```
mnist = input_data.read_data_sets(DIR, one_hot=True)
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    for _ in range(1000):
        xs, ys = mnist.train.next_batch(100)
        sess.run(train_step, {x: xs, y_hat: ys})

saver = tf.train.Saver(tf.global_variables())
saver.save(sess, 'train/train')
```

Restoring & Testing

```
mnist = input_data.read_data_sets(DIR, one_hot=True)
saver = tf.train.import_meta_graph('train/train.meta')
with tf.Session() as sess:
    saver.restore(sess, 'train/train')
    result = sess.run('z:0',{'x:0':mnist.test.images})
```

Variable Scope

```
with tf.variable_scope('scope1'):
    v1 = tf.get_variable('v', shape=[23])
with tf.variable_scope('scope2'):
    v2 = tf.get_variable('v', shape=[23])

for item in tf.global_variables():
    print((item.name, item.get_shape()))

# (u'scope1/v:0', TensorShape([Dimension(23)]))
# (u'scope2/v:0', TensorShape([Dimension(23)]))
```

- Reuse
 - bad case

```
with tf.variable_scope('scope1'):
    v1 = tf.get_variable('v', shape=[23])
with tf.variable_scope('scope1'):
    v2 = tf.get_variable('v', shape=[23])
```

ValueError: Variable scope1/v already exists

- Reuse
 - good case

```
with tf.variable_scope('scope1'):
    v1 = tf.get_variable('v', shape=[23])
with tf.variable_scope('scope1', reuse=True):
    v2 = tf.get_variable('v', shape=[23])
```

v2 and v1 share the same parameter

Trainable Variable

```
with tf.variable_scope('scope1'):
    v1 = tf.get_variable('v', shape=[23])

with tf.variable_scope('scope2'):
    v2 = tf.get_variable('v', shape=[23],
        trainable=False)

for item in tf.trainable_variables():
    print((item.name, item.get_shape()))

# (u'scope1/v:0', TensorShape([Dimension(23)]))
```

Print all trainable variables for debugging

```
embed:0: (40000, 100)
encoder/multi_rnr_cell/cell_0/gru_cell/gates/weights:0: (1124, 2048)
encoder/multi_rnn_cell/cell_0/gru_cell/gates/biases:0: (2048,)
encoder/multi_rnn_cell/cell_0/gru_cell/candidate/weights:0: (1124, 1024)
encoder/multi_rnn_cell/cell_0/gru_cell/candidate/biases:0: (1024,)
encoder/multi_rnn_cell/cell_1/gru_cell/gates/weights:0: (2048, 2048)
encoder/multi_rnn_cell/cell_1/gru_cell/gates/biases:0: (2048,)
encoder/multi_rnn_cell/cell_1/gru_cell/candidate/weights:0: (2048, 1024)
encoder/multi_rnn_cell/cell_1/gru_cell/candidate/biases:0: (1024,)
encoder/multi_rnn_cell/cell_2/gru_cell/gates/weights:0: (2048, 2048)
encoder/multi_rnn_cell/cell_2/gru_cell/gates/biases:0: (2048.)
encoder/multi_rnn_cell/cell_2/gru_cell/candidate/weights:0: (2048, 1024)
encoder/multi_rnn_cell/cell_2/gru_cell/candidate/biases:0: (1024.)
encoder/multi_rnn_cell/cell_3/gru_cell/gates/weights:0: (2048, 2048)
encoder/multi_rnn_cell/cell_3/gru_cell/gates/biases:0: (2048,)
encoder/multi_rnn_cell/cell_3/gru_cell/candidate/weights:0: (2048, 1024)
encoder/multi_rnn_cell/cell_3/gru_cell/candidate/biases:0: (1024,)
attention_keys/weights:0: (1024, 1024)
decoder/multi_rnn_cell/cell_0/gru_cell/gates/weights:0: (2148, 2048)
decoder/multi_rnn_cell/cell_0/gru_cell/gates/biases:0: (2048,)
decoder/multi_rnn_cell/cell_0/gru_cell/candidate/weights:0: (2148, 1024)
decoder/multi_rnn_cell/cell_0/gru_cell/candidate/biases:0: (1024.)
decoder/multi_rnn_cell/cell_1/gru_cell/gates/weights:0: (2048, 2048)
decoder/multi_rnn_cell/cell_1/gru_cell/gates/biases:0: (2048.)
decoder/multi_rnn_cell/cell_1/gru_cell/candidate/weights:0: (2048, 1024)
decoder/multi_rnn_cell/cell_1/gru_cell/candidate/biases:0: (1024,)
decoder/multi_rnn_cell/cell_2/gru_cell/gates/weights:0: (2048, 2048)
decoder/multi_rnn_cell/cell_2/gru_cell/gates/biases:0: (2048.)
decoder/multi_rnn_cell/cell_2/gru_cell/candidate/weights:0: (2048, 1024)
decoder/multi_rnn_cell/cell_2/gru_cell/candidate/biases:0: (1024,)
decoder/multi_rnn_cell/cell_3/gru_cell/gates/weights:0: (2048, 2048)
decoder/multi_rnn_cell/cell_3/gru_cell/gates/biases:0: (2048,)
decoder/multi_rnn_cell/cell_3/gru_cell/candidate/weights:0: (2048, 1024)
decoder/multi_rnn_cell/cell_3/gru_cell/candidate/biases:0: (1024.)
attention_construct/weights:0: (2048, 1024)
decoder/output_projection/weights:0: (1024, 40000)
decoder/output_projection/biases:0: (40000,)
```

Tensorflow: About RNN

RNN for Sentence Classification

Tensorflow: About RNN

- RNN for Sentence Classification
 - Word Embedding

Tensorflow: About RNN

Word Embedding

Embedding Lookup

```
x = tf.placeholder(tf.int32, shape=[None, max_step])
v = tf.nn.embedding_lookup(embed, x)
# the shape of v is (?,max_step,d)
```

RNN for Sentence Classification

A Simple RNN

```
h = tf.zeros((1. d))
for step in range(max_step):
   with tf.variable_scope('rnn', reuse=step>0):
       with tf.variable_scope('W'):
           parts_w = layers.linear(v[:,step,:], d)
       with tf.variable_scope('U'):
           parts_u = layers.linear(h, d)
       h = tf.nn.tanh(parts_w+parts_u)
with tf.variable_scope('classifier'):
   y = layers.linear(h, 5)
# 'embed:0': (10000, 300)
# 'rnn/W/fully_connected/weights:0': (300, 300)
# 'rnn/W/fully_connected/biases:0': (300)
# 'rnn/U/fully_connected/weights:0': (300, 300)
# 'rnn/U/fully_connected/biases:0': (300)
# 'classifier/fully_connected/weights:0': (300, 5)
# 'classifier/fully_connected/biases:0': (5)
```

Using RNNCell Module

```
from tensorflow.contrib.rnn import BasicRNNCell

cell = BasicRNNCell(d)
h = cell.zero_state(batch_size, tf.float32)

for step in range(max_step):
    with tf.variable_scope('rnn', reuse=step>0):
    _, h = cell(v[:,step,:], h)

# 'rnn/basic_rnn_cell/weights:0': (600, 300)
# 'rnn/basic_rnn_cell/biases:0': (300)
```

Using LSTMCell or GRUCell Module

```
from tensorflow.contrib.rnn import GRUCell, LSTMCell

cell = LSTMCell(d)
# 'rnn/lstm_cell/weights:0': (600, 1200)

# 'rnn/lstm_cell/biases:0': (1200)

cell = GRUCell(d)
# 'rnn/gru_cell/gates/weights:0': (600, 600)
# 'rnn/gru_cell/gates/biases:0': (600)
# 'rnn/gru_cell/candidate/weights:0': (600, 300)
# 'rnn/gru_cell/candidate/biases:0': (300)
```

Using DynamicRNN

```
x = tf.placeholder(tf.int32, shape=[None, None])
x_len = tf.placeholder(tf.int32, shape=[None])
# an example for x and x_len
# x = [[2, 4, 6, 0], [3, 5, 6, 1], [2, 4, 0, 0]]
# x_len = [3, 4, 2]

v = tf.nn.embedding_lookup(embed, x)
# the shape of v is (?,?,d)
```

```
from tensorflow.nn import dynamic_rnn

cell = BasicRNNCell(d)
_, h = dynamic_rnn(cell, v, x_len, dtype=tf.float32)

# 'rnn/basic_rnn_cell/weights:0': (600, 300)
# 'rnn/basic_rnn_cell/biases:0': (300)
```

Tensorflow: How to Debug

• tf.Print

```
import tensorflow as tf

a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
c = tf.add(a, b)
c = tf.Print(c, [tf.shape(c)], summarize=10)

with tf.Session() as session:
    result = session.run(c, {a:[1, 2, 3], b:[4, 5, 6]})
    #I tensorflow/core/kernels/logging_ops.cc:79] [3]

result = session.run(c, {a:[[1,2],[3,4]], b:[[4,5], [4,6]]})
#I tensorflow/core/kernels/logging_ops.cc:79] [2 2]
```

Tensorflow: Tensorboard

Add logging to code to record loss, stats, etc.

Tensorflow: Distributed Version

Split one graph over multiple machines!

https://tensorflow.google.cn/deploy/distributed

Tensorflow: Summary

- Placeholder(dtype,shape,name)
- Variable(dtype,shape,name,scope,reuse,trainable)
- Tensor(dtype,shape)
- Operation, Graph, Session
- Gradient, Optimizer
- Save, Restore, Debug (Tensorboard)
- Distributed Version

Tensorflow: High-level Wrappers

- tf.layers
 (https://tensorflow.google.cn/api_docs/python/tf/layers)
- tf.contrib.layers (https://tensorflow.google.cn/api_docs/python/tf/contrib/layers)
- tf.estimator (https://tensorflow.google.cn/api_docs/python/tf/estimator)
- tf.keras
 (https://tensorflow.google.cn/api_docs/python/tf/keras)
- Sonnet (https://github.com/deepmind/sonnet)
- TFLearn (http://tflearn.org/)
- TensorLayer (https://tensorlayer.readthedocs.io/en/latest/)
- ZhuSuan (https://zhusuan.readthedocs.io/en/latest/)

A zoo of frameworks!

PyTorch: An example


```
import torch

N, D = 3, 4

x = torch.randn(N, D)
y = torch.randn(N, D)
z = torch.randn(N, D)

a = x * y
b = a + z
c = torch.sum(b)
```

Looks exactly like numpy!

PyTorch: An example

PyTorch handles gradients for us!

PyTorch: An example


```
import torch
device = 'cuda:0'
N, D = 3, 4
x = torch.randn(N, D, requires grad=True,
                device=device)
y = torch.randn(N, D, device=device)
z = torch.randn(N, D, device=device)
c = torch.sum(b)
c.backward()
print(x.grad)
```

Trivial to run on GPU

– just construct arrays on a different device!

PyTorch: Version

• For this slides, we are using PyTorch 1.0

Be careful if you are looking at older PyTorch code!

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

 Autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

 Module: A neural network layer; may store state or learnable weights

We will not want gradients (of loss) with respect to data

Do want gradients with respect to weights

Operations on Tensors with requires_grad=True cause PyTorch to build a computational graph

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        wl -= learning rate * wl.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Forward pass looks exactly the same as before, but we don't need to track intermediate values - PyTorch keeps track of them for us in the graph

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        wl -= learning rate * wl.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Compute gradient of loss with respect to w1 and w2

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        wl -= learning rate * wl.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

```
w2 = torch.randn(H, D out, requires grad=True)
                            learning rate = 1e-6
                            for t in range(500):
                                y pred = x.mm(w1).clamp(min=0).mm(w2)
                                loss = (y pred - y).pow(2).sum()
                                loss.backward()
Make gradient step on
                                with torch.no grad():
weights, then zero them.
                                    w1 -= learning_rate * w1.grad
Torch.no_grad means "don't
                                    w2 -= learning rate * w2.grad
                                    wl.grad.zero ()
build a computational graph
                                    w2.grad.zero ()
for this part"
```

x = torch.randn(N, D_in)
y = torch.randn(N, D out)

N, D in, H, D out = 64, 1000, 100, 10

w1 = torch.randn(D in, H, requires grad=True)

import torch

Clear the gradients, waiting for next loop

PyTorch methods that end in underscore modify the Tensor in-place; methods that don't return a new Tensor

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        wl -= learning rate * wl.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero_()
        w2.grad.zero ()
```

PyTorch: nn

import torch

Higher-level wrapper for working with neural nets

Use this! It will make your life easier

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse_loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

PyTorch: optim

Use an **optimizer** for different update rules

After computing gradients use optimizer to update params and zero gradient

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                              lr=learning rate)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

PyTorch: nn -- Define new Modules

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors

Modules can contain weights or other modules

You can define your own Modules using autograd!

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
   y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

```
import torch
         w1
                  w2
Х
                            У
                               N, D_in, H, D_out = 64, 1000, 100, 10
                                 = torch.randn(N, D in)
                               y = torch.randn(N, D out)
                               w1 = torch.randn(D_in, H, requires_grad=True)
                                w2 = torch.randn(H, D out, requires grad=True)
                                learning rate = 1e-6
                                for t in range(500):
                                    y pred = x.mm(w1).clamp(min=0).mm(w2)
                                    loss = (y pred - y).pow(2).sum()
                                    loss.backward()
```


import torch w1 w2 У X N, D_in, H, D_out = 64, 1000, 100, 10 x = torch.randn(N, D in)y = torch.randn(N, D out) w1 = torch.randn(D in, H, requires grad=True) w2 = torch.randn(H, D out, requires grad=True) learning rate = 1e-6 Throw away the graph, for t in range(500): backprop path, and y pred = x.mm(w1).clamp(min=0).mm(w2) loss = (y pred - y).pow(2).sum()rebuild it from scratch on

loss.backward()

every iteration

Building the graph and **computing** the graph happen at the same time.

Seems inefficient, especially if we are building the same graph over and over again...

But useful if you are tackle with varied-length data

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Pytorch: TensorboardX

- A python wrapper around Tensorflow's web-based visualization tool.
 - pip install tensorboardx

Static vs Dynamic Graphs

Build

graph

iteration

TensorFlow: Build graph once, then run many times (static)

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random normal((D, H)))
w2 = tf.Variable(tf.random normal((H, D)))
h = tf.maximum(tf.matmul(x, w1), 0)
y pred = tf.matmul(h, w2)
diff = y pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])
learning rate = 1e-5
new w1 = w1.assign(w1 - learning rate * grad w1)
new w2 = w2.assign(w2 - learning rate * grad w2)
updates = tf.group(new w1, new w2)
with tf.Session() as sess:
    sess.run(tf.global variables initializer())
    values = {x: np.random.randn(N, D),
              y: np.random.randn(N, D),}
    losses = []
    for t in range(50):
        loss_val, _ = sess.run([loss, updates],
                               feed dict=values)
```

PyTorch: Each forward pass defines a new graph (dynamic)

```
import torch
             from torch.autograd import Variable
             N, D in, H, D out = 64, 1000, 100, 10
             x = Variable(torch.randn(N, D in), requires grad=False)
             y = Variable(torch.randn(N, D out), requires grad=False)
             w1 = Variable(torch.randn(D in, H), requires grad=True)
             w2 = Variable(torch.randn(H, D out), requires grad=True)
             learning rate = 1e-6
             for t in range(500):
                 y pred = x.mm(w1).clamp(min=0).mm(w2)
                 loss = (y pred - y).pow(2).sum()
                 if w1.grad: w1.grad.data.zero ()
                 if w2.grad: w2.grad.data.zero ()
                 loss.backward()
                 1.data -= learning rate * w1.grad.data
                 w2.data -= learning rate * w2.grad.data
Run each
```

New graph each iteration

Dynamic TensorFlow: Eager Execution

TensorFlow 2.0 supports **eager execution** which allows dynamic graphs!

Convert input numpy arrays to TF **tensors**. Create weights as tf.Variable

Use tf.GradientTape() context to build **dynamic** computation graph.

All forward-pass operations in the contexts (including function calls) gets traced for computing gradient later.

```
N, D, H = 64, 1000, 100

x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
  h = tf.maximum(tf.matmul(x, w1), 0)
  y_pred = tf.matmul(h, w2)
  diff = y_pred - y
  loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
```

tape.gradient() uses the traced computation graph to compute gradient for the weights

Personal Advice

- TensorFlow pre2.0: safe bet for most projects, not perfect but huge community, wide usage. Better pair with high-level wrapper (Keras, Sonnet, etc)
- Tensorflow 2.0: still new
- PyTorch: Personal choice. Best for research.
 Lighter than tensorflow, easy to debug.

Links

- https://tensorflow.google.cn
- https://pytorch.org
- https://keras.io

Conversational Toolkits (CoTK)

HUANG Fei

What is CoTK

A toolkit for deep learning researchers

Design Concept

What can CoTK do

Data

Model Implementation

Evaluation

Publish

Help you throughout your workflow

Data processing	Datasets and Preprocess	torchtext
Model Implementation	Baselines	Github
Evaluation	Metrics	NLTK
Publish	Reproduce Experiments	SACRED

Advantages

- A few lines to start
- Light-weight and framework independent
- Predefined standard datasets
- Predefined baseline models
- Compare models fairly
- Reproduce your and others' experiments

Overview

- An example: Implement a GRU LM
- Quick Start
 - Installation
 - Dataloader
 - Metrics
 - Publish Experiments
 - Reproduce Experiments
 - Predefined models
- Extending CoTK

Quick Start

Installation

cmd: pip install cotk

Github: github.com/thu-coai/cotk

Homepage:

http://coai.cs.tsinghua.edu.cn/dialtk/cotk/

• Tutorials:

https://thu-coai.github.io/cotk_docs/

- Automatically download online resources
 - cotk.dataloader.MSCOCO("resources://MSCOCO_small")
- Download from a url
 - cotk.dataloader.MSCOCO("http://cotk-data.s3-apnortheast-1.amazonaws.com/mscoco_small.zip#MSCOCO")
- Import from local file
 - cotk.dataloader.MSCOCO("./MSCOCO.zip#MSCOCO")

NAME @ SOURCE # Preprocessor

- Inspect vocabulary list
 - dataloader.vocab_size
 Vocabulary size: 2588
 - dataloader.vocab_list[:10]['<pad>', '<unk>', '<go>', '<eos>', '.', 'a', 'A', 'on', 'of', 'in']

- Convert between ids and strings
 - dataloader.convert_tokens_to_ids(["<go>", "hello", "world", "<eos>"])
 - dataloader.convert_ids_to_tokens([2, 1379, 1897, 3])

- Iterative over batch
 - for data in dataloader.get_batch("train", batch_size=1): print(data)

```
{'sent':
    array([[ 2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 1, 1099, 4, 3]]),
    # <go> This is an old photo of people and a <unk> wagon.
    'sent_allvocabs':
    array([[ 2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 3755, 1099, 4, 3]]),
    # <go> This is an old photo of people and a horse-drawn wagon.
    'sent_length': array([14])
}
```

Valid / Invalid / Unknown Vocabs

- Valid vocabs
 - From training set
 - Appear > min_vocab_times
 - Model should read and generate

- Invalid vocabs
 - From train & dev & test set
 - Appear > invalid_vocab_times, but not valid
 - Model can optionally read or generate in test stage (like copyNet)

Valid / Invalid / Unknown Vocabs

- Unknown vocabs
 - Not valid vocabs or invalid vocabs
 - Model can't know or generate

All Vocabs

Invalid Vocabs

UNK

- Why?
 - Transfer models between different datasets
 - Compare between models with the same allvocabs
 - Compare between common generate model & copyNet

Valid / Invalid / Unknown Vocabs

- How ?
 - Most models only care about valid vocabs
 - Transferable if using the same valid vocabs
 - Metrics care about valid & invalid vocabs
 - Perplexity -> smoothing <unk> to invalid vocabs
 - Bleu -> <unk> never matched
 - Comparable if all_vocabs is the same

- LanguageGeneration
 - MSCOCO
- SingleTurnDialog
 - OpenSubtitles
- BERTSingleTurnDialog
 - BERTOpenSubtitles
- MultiTurnDialog
 - UbuntuCorpus
- SentenceClassification
 - SST

Metric Pipeline

```
metric = cotk.metric.xxMetric(dataloader)
metric.forward(...)
metric.close()
```

MetricChain: Merge multiple metrics

```
metric = cotk.metric.MetricChain()
metric.add_metric(metricA)
metric.add_metric(metricB)
metric.forward(...)
metric.close()
```

Predefined metrics for given tasks

```
metric = dataloader.get_inference_metric(gen_key="gen")
metric.forward({
  "gen":
    [[2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 3755, 1099, 4, 3],
     [2, 46, 145, 500, 1764, 207, 11, 5, 93, 7, 31, 4, 3]]
})
print(metric.close())
 'self-bleu': 0.0220,
  'self-bleu hashvalue': 'c206..',
  'fw-bleu': 0.383, 'bw-bleu': 0.0259, 'fw-bw-bleu': 0.0486
  'fw-bw-bleu hashvalue': '530d...',
```

- Hashvalue: Make sure we have the same
 - References
 - Settings
 - Version

- PerplexityMetric
- BleuCorpusMetric
- SelfBleuCorpusMetric
- FwBwBleuCorpusMetric
- BleuPrecisionRecallMetric
- EmbSimilarityPrecisionRecallMetric
- NgramFwBwPerplexityMetric

Publish Experiments

- Make a git repo
- Write your model
 - Output your result to result.json
- Use "cotk run" command

Dashboard Home Records Log in Sign up

Publish Experiments

~

Extra columns (Corresponding to keys in 'result', separated by commas):

perplexity,perplexity hashvalue,bleu,bleu hashvalue

Submit

Uploaded by

Github commit

file_id

Search

Show 10

e

entries

ID ↑↓	User ↑↓	Github commit	Dataloader	perplexity 📬	perplexit hashvalue
#5	hzhwcmhf	thu- coai/seq2seq- pytorch@aa1869	OpenSubtitles (resources://OpenSubtitles_small)	94.698	460f26
#4	Hikari	thu- coai/seq2seq- pytorch@eff99e	OpenSubtitles (resources://OpenSubtitles_small)	94.698	460f26
#3	Hikari	thu- coai/seq2seq-	OpenSubtitles (resources://OpenSubtitles)	43.868	104528

Publish Experiments

- Dashboard
 - Compare with others
 - Manage your experiments
 - Hold competitions

Reproduce Experiments

- Download code from dashboard
 - cotk download ID
- Download code from github
 - cotk download USERNAME/REPO/COMMIT
- Cotk recover codes, cmdlines
 - but not weights
 - Publishers should make their codes reproducible

Predefined models

cotk download thu-coai/seq2seq-pytorch/master

- LanguageModel
- VAE
- SeqGAN
- Seq2seq
- HRED
- CVAE

Extending CoTK

New dataset

- Use existing dataloader & Write your preprocessor
 - LanguageGeneration("./path/to/your_data#your_processor")
- Override the base dataloader
 - Class MyDataloader(LanguageGeneration)
 - Just define some fields, don't need to build vocab list again

New metrics

- Override MetricBase
 - Implement __init___, forward, close

```
class AverageLengthMetric(MetricBase):
    def init (self, dataloader, gen key="gen"):
        super(). init ()
        self.dataloader = dataloader
        self.gen key = gen key
        self.token num = 0
        self.sent num = 0
   def forward(self, data):
        gen = data[gen key]
       for sent in gen:
            self.token num += len(self.dataloader.trim_index(sent))
            self.sent num += 1
   def close(self):
        return {"len avg": self.token num / self.sent num}
```

New models

- Just make your model reproducible
- And upload it to dashboard

- We'll check whether the report is reproducible
- You can become one of our baseline

Contribution to CoTK

We will create a package named cotk_contrib

- Define your datasets, metrics, models
- Every contribution can be made regardless of quality
- Good contribution will be merged into CoTK

THANK YOU

• cmd: pip install cotk

• Github: github.com/thu-coai/cotk

