

Sentinel I28, C28, A28, LPC528, MH, & Blackbelt Communications Guide

This page is intentionally blank.

7/31/2018 v5 www.cincinnati-test.com

Table of Contents

Table of Contents		i
Introduction		iv
Overview	iv	
Interface Connections	V	
Chapter 1 Communication Interfaces		1
Chapter 2 Communication Overview		3
Instrument Communication	3	
Establishing RS-232 Communication	3	
Establishing Ethernet (TCP/IP) Communication via Telnet	4	
Understanding the Header Information	6	
Table of Data Type or Header Codes	6	
Menu Structure and Read/Write		
Controlling the Instrument	8	
Table of General Instrument Control Commands	8	
Table of General Menu Control Commands	9	
Chapter 3 Setup		12
Global Configuration		
Network Settings	12	
Miscellaneous Settings	12	
Setting the Units of Measure	13	
Setting the Leak Standard Values	14	
Setting the Pneumatic Regulator	15	
Selection of Test Types	15	
Table of Test Type Selection Options	16	
Setting the Test Parameters	18	
Self-Test	18	
Security	18	
Parameter edit with security turned ON:	19	
Verifying Setup	19	
Barcode	19	
Chapter 4 – Test Configuration		20
Pressure Decay ΔP		
Timer Parameters		
Pressure Parameters	21	
Test Parameters	22	

Pressure Decay-Leak Std	23	
Timer Parameters	24	
Pressure Parameters	25	
Test Parameters	26	
Program Calibration	27	
Initiating the Program Cal Sequence	28	
Calibration Parameters	29	
Diff Pressure (DP) Decay-Leak Std	30	
How it works	30	
Test Setup	30	
Timer Parameters	31	
Pressure Parameters	32	
Test Parameters	32	
Program Calibration	33	
Initiating the Program Cal Sequence	34	
Calibration Parameters	35	
Chapter 5 – Test and Result Data		36
Test Results via Communications	36	
Table of Test Result Data Format	37	
Streaming Measured Data	38	
Appendix A – Messages & Error Codes		40
Test Messages & Error Codes	40	
Appendix B – Communication Code Tables		50
Table 1: Data Type or Header Codes	50	
Table 2: Program Evaluation Codes		
Table 3: Test Evaluation Codes		
Table 4: Segment Codes	53	
Table 5: Test Data Identifier Codes	55	
Appendix C – Terminal Emulator Software Configuration		62
PuTTY		
RS-232 Serial Port Configuration	62	
Telnet Configuration		
RealTerm		
RS-232 Serial Port Configuration		
Telnet Configuration		
Terra Term		
RS-232 Serial Port Configuration		
Telnet Configuration		
HyperTerminal Private Edition		

RS-232 Serial Port Configuration	65
Telnet Configuration	65

Introduction

Overview

The Cincinnati Test Systems Sentinel product line are high-precision leak test instruments which features a serial RS-232 DB9 connector and an RJ45 Ethernet port for communication with a machine control system. The Sentinel instruments communicate via the Telnet protocol with an underlying TCP/IP transport mechanism. It is the goal of this guide to explore the communication protocol and available commands to be able to successfully control and configure a Sentinel instrument in a control system. The Sentinel instruments that this guide covers include the I28, C28, A28, LPC528, MH, and Blackbelt.

Many of the operations available via the user interface can also be performed via communications. This document details functionality and provides various examples to reference.

Throughout this document you will text see displayed in green font, representing **direct writes to** and reads from the Sentinel instrument. A write command is prefaced with the character (' > '). This character NEVER needs to be written to the Sentinel instrument. In fact, writing it to the instrument will result in an error.

IMPORTANT:

All instrument commands and parameter writes in this manual are referenced in standard text form for ease of readability. However, when actually sending a command to the instrument over Telnet, it will need to be ASCII literal code, followed by a carriage return and line feed. For example, when this document instructs you to send the following:

> P1\X\Test Type=Pressure Decay-Leak Std

The ASCII string that should be sent to the instrument MAY actually be:

> P1\\X\\Test\sType=Pressure\sDecay\s-\sLeak\sStd\r\n

Note the use of ASCII codes with the escape character '\' to denote spaces, carriage return and line feed.

Double-check how your API or run-time environment formats ASCII string commands in order to ensure that you have input the correct syntax.

Interface Connections

The Sentinel instruments feature the following ports:

- (1 or 2) RS-232 Serial DB9 connector
- (1) RJ45 Ethernet port
- USB port supports only FAT32 USB flash drives, not serial communication

This page is intentionally blank.

Chapter 1 – Communication Interfaces

Below is the list of available communication Interfaces in Sentinel instruments.

Sentinel Instrument	RS232 1	RS232 2	Telnet (TCP/IP)	Ethernet/IP	USB (Storage)
I28	✓	✓	✓	✓	✓
C28	√	*	✓	✓	✓
A28	✓	*	✓	✓	✓
LPC528	✓	*	✓	✓	✓
MH	✓	*	✓	×	✓
Blackbelt	✓	*	✓	✓	✓

Note: Communication interfaces are only available in the English language. The language cannot be changed via the communication interface., The language can be changed only via the User Interface menu.

This page is intentionally blank.

Chapter 2 – Communication Overview

Instrument Communication

The Sentinel instrument is able to communicate over RS-232 and/or Ethernet via Telnet. This chapter explains how to setup communications. The commands in this chapter work with either method of communication.

Refer to Appendix C —

<u>Terminal Emulator Software Configuration</u> to see example configurations for a variety of terminal emulators that can be configured to communicate with the Sentinel instrument.

The communication parameters are located in Main Menu > Global Config icon.

Establishing RS-232 Communication

The pinout for the RS232 connector is denoted in the diagram below. Pins 1, 4, and 6 are internally connected, but are unused by the instrument.

1	DCD
2	RX
3	TX
4	DTR
5	Ground
6	DSR
7	RTS
8	CTS
9	Not Connected

The RS-232 parameters are located in **Main Menu > Global Config > RS232 1** or **RS232 2**. The first step in establishing RS-232 communication with the instrument is to set the RS232 1 or RS232 2 Interface parameter to "2-way" communication. Next, set the Baud parameter to match the baud rate of the device that will be communicating with the instrument. The options are: 115200, 57600, 38400, 19200, or 9600 bits per second.

Note: The instrument always uses 8 data bits. The Parity is set to "None". The instrument uses 1 stop bit. The flow control is always set to "None".

Once you have established communication with the desired device you may select whether you want the instrument to "echo" back each character it receives on the TCP/IP 1 communication port. This setting is located in the Main Menu > Global Config > RS232 1 icon > RS232 1 Echo or Main Menu > Global Config > RS232 2 icon > RS232 2 Echo. If the parameter is set to "ON", the instrument will output an echo for each character it receives. If this parameter is set to "OFF", the instrument will not echo anything.

Note: The Sentinel I28 is the only instrument to support two RS-232 ports.

Establishing Ethernet (TCP/IP) Communication via Telnet

It is highly recommended that you consult with your company's IT department regarding the configuration of placing the instrument on any network. You should get the proper settings for the following parameters from your company's IT department.

The TCP/IP parameters are located in **Main Menu > Global Config > TCP/IP**. The first step in establishing Ethernet communication with the instrument is to set the Obtain Network Settings parameter to DHCP or Manual (static IP address). The Sentinel instrument is shipped with a default setting of DHCP, to acquire network settings from an Ethernet router. If set to "DHCP", the Instrument IP Address becomes a read only parameter. If set to "Manual", then you will need to set the Instrument IP Address manually. You may choose to let the instrument initially get its settings with DHCP and then change the setting to Manual to edit the IP Address of the instrument or lock it so that it will not change.

The Subnet Mask parameter will need to be configured next. The most common configuration for this parameter is "255.255.255.0" unless there is more than one subnet in which case a common configuration is "255.255.0.0".

The Gateway IP Address is the default gateway of the network domain.

The MAC Address is the hardware address of the instrument. This number is read-only.

Once you have established communication with the desired device you may select whether you want the instrument to "echo" back each character it receives on the TCP/IP 1 communication port. This setting is located in the **Main Menu > Global Config > Telnet 1** icon. Select **Telnet 1 Echo**. If the parameter is set to "On", the instrument will output an echo for each character it receives. If this parameter is set to "Off", the instrument will not echo anything.

A Telnet session with the instrument can be established by connecting to its IP address over port 23. A successful connection to the Sentinel via Telnet will offer an interface menu. The instrument will return:

The Sentinel can handle up to 4 separate interfaces concurrently, with the caveat that only one interface at a time can handle streaming data. Interface Connection 1 is used in the example below. Successful selection of an interface will result in the Sentinel returning an acknowledgement of the interface selected.

> 1

* Interface Connection 1 has been established *

Note: For the purposes of communication, after an interface has been selected, all frames returned from the Sentinel starting with an * (asterisks) can be safely ignored.

Note: Once a connection has been established, it can persist for the lifetime of the machine application. Any network disruptions may cause loss of communications and force a reestablishment of the Telnet session.

Understanding the Header Information

All of the information that the instrument sends over the communication ports is preempted by header information. This data is sent to help parse specific information. This header information is in the format XXYYZZZ H. The header is followed by a Tab as shown in the table below:

Header	Description
XX	8-Bit CRC in HEX. Used for error checking.
YY	Sequence Code in HEX. The value increments from 01 to FF. This value can be used as a verification that all data has been received and nothing was missed by the receiving device.
ZZZ	Data length in HEX.
	Tab
Н	Data Type Code. (See the Data Type Code Table below.)
	Tab

Table of Data Type or Header Codes

Data Type Code	Description
V	Variable
L	List
M	Message
U	System Message
Q	Result List
Т	Streaming Started
S	Streaming Value
X	Streaming Stopped
R	Result

Menu Structure and Read/Write

The CTS instrument consists of a menu system to be able to read and write parameters. The menus are nested two deep with a variable attached. All variables will be found in the form:

> Menu 1\Menu 2\Variable Name = Value

Reading a variable is as simple as calling the variable and waiting for a response from the instrument. For example, to read the value of the Program 1 Fill Timer, you would write:

> P1\R\Fill

The Sentinel would then respond as:

```
AE11006 P1\R\Fill=2.00 sec f
```

To write a new value to a variable, simply append an equal sign followed by a value to the variable. For example, to change the Program 1 Fill Timer to 3 seconds, you would write:

```
> P1\R\Fill=3.00
```

The Sentinel will always reply to a well-formed variable with a response. It will always echo back what is currently written in the flash memory of the Sentinel. In this case, the Sentinel will respond with:

```
351202F P1\R\Fill=3.00 sec f
```

This indicates that the value was written successfully to 3.00 seconds.

In some cases, the instrument will prompt you for an action when attempting to run some functionality. An example of this is shown below:

```
{\tt DC00062\ P} {\tt SET\ REGULATOR} - Insert Self-Test cap into test port. Select OK to continue, or CANCEL to quit.
```

Notice that the instrument's response begins with the header "**DC00062 P**". The Data Type Code "**P**" indicates that the instrument has prompted you for an action. Responding to this prompt will require the use of a menu command.

Controlling the Instrument

The Sentinel instrument can be instructed to Start, Stop, and Calibrate a program. The Sentinel instrument can only have one Current Active Program (CAP) available at a time to control. The CAP can be found using the command:

> M\S1TCAP 880400E V01: MS1TCAP=1

In this example, the CAP is program 1. Sending a Start, Stop, or Calibrate command to the Sentinel instrument would act on program 1. Below are the control commands followed by the response from the Sentinel, as an example.

> M\S1TStart

5000016 M01: Start Test-S01P02

> M\S1TAutoCal

BF05019 M01: Start AutoCal-S01P02

> M\S1TStop

* Station Stopped

Here we see the commands followed by the response from the instrument. The response gives information about whether a test/calibration has started and which station and program is currently running. Stopping a test gives a message back alerting the user that the Sentinel has stopped. If streaming data is turned on, after a test has started, the instrument will start streaming measured data for the duration of the test. The Sentinel will return results after a test has run. Refer to Chapter 5 - Test and Result Data for more information.

Table of General Instrument Control Commands

Example Command	Description
M\S1TCAP	Reads the Currently Active Program.
M\S1TCAP=#	Changes the Currently Active Program to Program #.
M\S1TStart	Starts testing the Currently Active Program.
M\S1TStop	Stops a currently running test.
M\S1TAutoCal	Begins an Auto-Calibration sequence on the Currently Active Program.

Table of General Menu Control Commands.

Example Command	Description
EXIT	Exits out of the current menu level. If the instrument is not recognizing commands, you may have navigated into a nested menu. Sending an EXIT command will bring you back to the root menu from which all commands should be run.
KEY ENTER	Simulates an OK button when prompted for an action.
KEY EXIT	Simulates a CANCEL button when prompted for an action.
KEY MENU	Simulates a MENU button when prompted for an action
KEY UP	Simulates a UP button when prompted for an action
KEY DOWN	Simulates a DOWN button when prompted for an action
KEY LEFT	Simulates a LEFT button when prompted for an action
KEY RIGHT	Simulates a RIGHT button when prompted for an action
KEY HELP	Simulates a HELP button when prompted for an action
KEY USB	Simulates a USB button when prompted for an action
KEY START	Simulates a START button when prompted for an action
KEY STOP	Simulates a STOP button when prompted for an action

Note1: If a prompt is left unanswered with either a KEY ENTER or KEY EXIT, further commands or prompts may unknowingly begin to stack up in the instrument RAM. In this situation a power cycle may be required to clear the memory.

Throughout this document there are example commands given for different variables in the instrument setup. For the sake of space and to eliminate redundancy, the instrument's response is usually not included with the example, unless it is specifically needed.

Warning 1: The KEY commands can only be used for the purpose of user interface and not for the purpose of communication query and control. These KEY commands must be used only to simulate physical key functionality present on the instrument.

Warning 2: KEY command should not be used as standard test control operation command, i.e. test change operation etc. For this purpose, the user can use standard test commands, as mentioned in the Chapter 2, "controlling the instrument".

Warning 3: The KEY command does not provide any acknowledgment so while using KEY command user must aware about the instrument and user interface state. Without knowing the instrument state, it is not advisable to use KEY command because this may cause inappropriate operation.

This page is intentionally blank.

Chapter 3 - Setup

Global Configuration

Network Settings

All Sentinel instruments ship from the manufacturer set to request IP parameters from a network server using DHCP. If it is necessary for your application to change these addresses, the configuration can be done with the following commands:

- > I\T\Obtain Network Settings=Manual
- > I\T\Instrument IP Address=169.254.0.77
- > I\T\Subnet Mask=255.255.0.0
- > I\T\Gateway IP Address=169.254.0.1

Setting the first parameter above to Manual tells the instrument that it will have a static IP address, which is then set with the second command. However, the instrument can also be configured to obtain an address dynamically from a switch or router by changing the first parameter to DHCP instead of Manual:

> I\T\Obtain Network Settings=DHCP

Note: Changing network settings over an active Telnet session may require you to power cycle the instrument or re-establish the Telnet connection.

Miscellaneous Settings

If desired, each instrument can be given a unique name to more easily identify it.

> I\M\Instrument Name=CTS I281

The instrument's internal date and time settings can also be reconfigured if your location is different from the time zone set at the factory.

- > I\M\Date Format=MM/DD/YY
- > I\M\Date=10/28/15
- > I\M\Time=04:12:18

Setting the Units of Measure

The instrument has the capability to utilize different units of measure for each configured program. In order to keep things simple and user friendly if you always use the same unit of measure, you can set the units in one place and have them apply instrument wide. This is done in the Channel Configuration menu.

COMMAND	VARIABLE OPTIONS	
C\U\Time Unit	=hour, min, sec, msec	
C\U\Time Precision	=X.X, X.XX,, X.XXXXXX	
C\U\Pressure Unit	=psig, psiv, iWC, cmWC, mmWC, inHg, cmHg, mmHg, Pa, kPa, MPa, ksc, atm, bar, mbar, Torr	
C\U\Pressure Precision	=X.X, X.XX,, X.XXXXXX	
C\U\d Pressure Unit	=dpsig, dpsiv, diWC, dcmWC, dmmWC, dinHg, dcmHg, dmmHg, dPa, dkPa, dMPa, dksd, datm, dbar, dmbar, dTorr	
C\U\d Pressure Precision	=X.X, X.XX,, X.XXXXXX	
C\U\dP/dT Unit	=bar/s, psi/s, iWC/s, cWC/s, mWC/s, iHg/s, cHg/s, mHg/s, pa/s, kPa/s, MPa/s, ksd/s, atm/s, bar/s, mb/s	
C\U\dP/dT Precision	=X.X, X.XX,, X.XXXXXX	
C\U\Flow Unit	=sccm, sccs, scch, slpm, slps, slph, scfm, scfs, scfh	
C\U\Flow Precision	=X.X, X.XX,, X.XXXXXX	
C\U\Volume Unit	=cc, Cin, Gal, L, ML	
C\U\Volume Precision	=X.X, X.XX,, X.XXXXXX	
C\U\Percent Unit	=%	
C\U\Percent Precision	=X.X, X.XX,, X.XXXXXX	

Note: The units set on the Channel Config are also the units used for Self-Test and Auto Setup (where applicable).

Setting the Leak Standard Values

The instrument has the capability to utilize a different leak standard for each configured program that uses a leak standard. Alternatively, the instrument also has the capability to use the same leak standard for all programs. If you always use the same leak standard, you can set the leak standard value and pressure in one place and have it apply instrument wide to any program that uses a leak standard. This is done in the Channel Configuration menu.

Question:

Are you planning to use the same leak standard for every program that requires a leak standard?

Yes: Change the Leak Std/Cal Define parameter to "Channel". Set the leak standard value and the pressure at which it was calibrated. This leak standard value will apply to every program that utilizes a leak standard for calibration.

```
> C\L\Leak Std/Cal Define=Channel
> C\L\Leak Std Cal Flow=0.13 sccm
> C\L\Leak Std Cal Press=1.00 bar
```

No: Change the Leak Std/Cal Define parameter to "Program". The leak standard parameters will now be available under the Program Config menu. When a program is created, the units for the program will use the leak standard value under the Channel Config menu as the default settings but now can be changed per program.

```
> C\L\Leak Std/Cal Define=Program
> P1\S\Leak Std Cal Flow=0.35 sccm
> P1\S\Leak Std Cal Press=2.00 bar
```

Note: Every time the leak standard value changes due to a calibration or when a new leak standard is used this value needs to be modified to reflect the new value.

Setting the Pneumatic Regulator

Setting the regulator is done by plugging the instrument test port and adjusting the manual regulator until the pressure reads the desired value. If the test port is not plugged, the instrument will be unable to build pressure and the readings will not be accurate. To start the Set Regulator function in the instrument, send the Set Regulator command.

```
> C\P\Set Regulator=Yes
```

The instrument will respond as below.

```
DC00062 P SET REGULATOR - Insert Self-Test cap into test port. Select OK to continue, or CANCEL to quit.
```

Send a KEY ENTER command to start the instrument. Alternatively, send a KEY EXIT command to cancel. The instrument will stream pressure readings as you manually adjust the regulator to the desired pressure. Refer to Chapter 5 – Test and Result Data for a better understanding of streamed data. Send a STOP command when finished to stop the instrument.

```
> KEY ENTER
...
...
...
> M\S1TStop
```

Selection of Test Types

In order to setup a leak test, you will first select the type of test you would like to conduct via the prepackaged test sequences. <u>Table of Test Type Selection Options</u> on the following pages includes all of the different test types available in the Sentinel instruments, and a brief description that details each test type. Not all of the test types are available in all Sentinel instruments. Some test types will not apply to the instrument you are using. Three common test types are described in more detail in the following three chapters.

Once you determine which test type is appropriate for your application, first select the program you would like to configure using the Current Active Program command.

```
> M\S1TCAP=1
```

Then set the program type using the Program Test Type command.

```
> P1\X\Test Type=Pressure Decay-Leak Std
```

If desired, the program can also be given a name as a descriptor.

```
> P1\M\Program Name=Part A
```

Table of Test Type Selection Options

Sample commands are shown with **bold green font**.

Test Type	Description
Pressure Decay-ΔP Pressure Decay ΔP P1\X\Test Type=Pressure Decay-dP	Measures the Pressure Loss (ΔP) over a fixed time. Determined from the pressure loss over the duration of the test timer. The result is presented in units of delta pressure.
Pressure Decay-ΔP/ΔT P1\X\Test Type=Pressure Decay-dPdt	Measures the Pressure Loss ($\Delta P/\Delta T$) over unit time. Determined from the pressure loss over the duration of the test timer divided by the test time. The result is presented in units of delta pressure over delta time.
Pressure Decay-Leak Std Pressure Decay-Leak Std P1\X\Test Type=Pressure Decay-Leak Std	Calculates the Leak Rate, based on pressure loss. Determined from the pressure loss over the duration of the test timer relating to the pressure loss of the leak standard and of the non-leaking master part. The result is presented in units of flow.
Differential Pressure Decay Leak Std Diff Pressure (DP) Decay-Leak Std P1\X\Test Type= Diff Pressure Decay-Leak Std	Calculates the Leak Rate determined from the differential loss between the test part and the reference volume over time relating to the pressure loss of the leak standard and of the master part. The result is presented in units of flow.
Occlusion P1\X\Test Type=Occlusion	Measures the Back Pressure (part blockage). Determined from the pressure at the end of the test timer. The result is presented in units of pressure.
Pressure Verify P1\X\Test Type=Pressure Verify	Measures the Pressure at the isolated test port (no fill). Determined from the pressure at the end of the Test segment timer. The result is presented in units of pressure.
Mass Flow P1\X\Test Type=Mass Flow	Measures the Mass Flow needed to maintain the part at a set pressure. Typically used in applications where flow is expected. The result is presented in units of flow.

Test Type	Description
Mass Flow-Leak Std P1\X\Test Type=Mass Flow-Leak Std	Measures the Mass Flow needed to maintain the part at a set pressure. Typically used in low leak applications. The result is presented in units of flow.
Ramp to ΔP Event P1\X\Test Type=Ramp to dP Event	Measures the peak pressure before a Pressure Loss (ΔP) Event. Determines the maximum pressure before the pressure loss limit is exceeded as well as records the duration of time before the event. The results are presented in units of pressure and time.
Ramp to Input Event P1\X\Test Type=Ramp to Input Event	Measures the pressure at an Input Event. During test pressure ramp, monitors for trigger event on a digital input, then determines the pressure as well as records the duration of time before the event. The results are presented in units of pressure and time.
Ramp to Flow Event P1\X\Test Type=Ramp to Flow Event	Primarily used for testing the cracking point of a check valve. Measures the point at which the flow crosses a threshold. Determines the maximum pressure before the Flow Event limit is exceeded as well as records the duration of time before the event. The results are presented in units of pressure and time.
Ramp to Proof Test P1\X\Test Type=Ramp to Proof	Designed to make sure component can hold a pressure for a fixed period of time. Result determined from the maximum pressure during the test and duration of the test timer. The result is presented in units of pressure.
Parent Program Linking P1\X\Test Type=Parent Program Linking	Facilitates linking individual programs into a single test sequence for conducting multiple tests on one part or one part with multiple chambers. Contains tooling control parameters and link definitions. Each link defines the target program to execute and evaluation conditions for additional program execution.

Setting the Test Parameters

It is time to set the test parameters to fit your application. If the test type for your application is not one of the three sample test types covered in Chapter 3, please refer to the user manual for your Sentinel instrument for more information on setting parameters.

Note: During execution, the Program/Channel configuration parameters cannot be edited via communication interfaces.

Self-Test

The Self-Test diagnostic provides a way to check the integrity of the instrument's pneumatic circuit. This is a great way to quickly isolate a potential leak by allowing the user to verify the instrument is working correctly. By isolating the instrument from the test part and the external tooling and plumbing, this special test will verify that the instrument is performing properly and leak free.

To run a Self-Test, first specify the pressure setting of the pressure source, then send a Start Self-Test command and a KEY ENTER command to accept the prompt. Alternatively, send a KEY EXIT command to cancel.

- > C\S\Self Test Pressure=1.00 bar
- > C\S\Start Self Test=Yes

```
EE0205E P SELF TEST - Insert Self-Test cap into test port. Select OK to continue, or CANCEL to quit.
```

> KEY ENTER

When finished, the instrument will output the evaluation result of the test. Refer to <u>Chapter 5 – Test and Result Data</u> for a better understanding of streamed data. Once the test completes and a final result is returned, send a KEY ENTER command to exit the Self-Test function.

> KEY ENTER

Security

The as-shipped security mode of the instrument is set to use a password ("5555" by default) to unlock secure functionality in the instrument web page. It is recommended that this password be changed through the Security Menu. To access the instrument Security Menu, you must first enable viewing it:

> I\M\Edit / View Security=On

The password can now be changed with the following command format:

> I\X\Change Password=<New Password> <Old Password>

For example, to change the password from "5555" to "1234", you would send:

> I\X\Change Password=1234 5555

Remember to write down the new password. If the new password is forgotten, Cincinnati Test Systems can provide a back door password that changes every hour.

Parameter edit with security turned ON:

To override security while editing the variables of Global, Channel or Program config when respective security feature is enabled, user needs to send the command "variable=x PASSWORD" via communication interface. However, it doesn't disable the security for the user interface, and while editing variable via user interface, the user will be required to enter user password.

For example, to edit RS232 1 streaming from the Global config->RS232, you would send:

> I\S\RS232 1 Streaming=ON 5555

To edit Number of Programs from the Channel config->MISC, you would send:

> C\M\Number of Programs=12 5555

To edit Target pressure variable from the Program config->Program 1->Pressure, you would send:

> P1\P\Target Pressure=50 5555

Verifying Setup

Once you have everything programmed, run a repeatability study based on your company's quality standards to assure you are getting the results you desire.

Barcode

The instrument has the capability to store barcode data with each test result. The instrument will work with any RS232 barcode scanner that has the ability to supply a barcode in an ASCII string (no longer than 40 characters*) followed by a carriage return.

To edit Barcode, you would send:

> Barcode=TST123456

Another method to enter Barcode:

The Barcode function is located in Global Config->RS232->RS232 Interface. Set the parameter to "Barcode". Now to edit Barcode, you would send:

> TST123456

Note: If you want instrument to support larger barcode string length (up to 80 characters), please contact CTS service.

Note: Barcode feature only supported in Blackbelt and I28 instruments.

Chapter 4 – Test Configuration

The following 3 sections of this guide provide configuration examples for some of the various test types available in the Sentinel product line. Your instrument may have addition test types that are not listed in this chapter. Refer to the user manual provided with your instrument for detailed descriptions of each test parameter.

Pressure Decay △**P**

This section explains the parameters for conducting a pressure decay test measuring a pressure loss over time. The result of this test is the pressure loss (or gain for a vacuum test) measured over a fixed period of time, presented in units of pressure.

The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the source air and allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time.

Timer Parameters

Timer	Description	Example Setting
Prefill P1\R\Prefill	Checks for excessively leaking parts or lack of pressure. Set as a % of fill time, for fixed fill time tests. Maximum time to reach the minimum pressure.	=50%
Fill P1\R\Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	=2.00
Stabilize P1\R\Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	=5.00
Test P1\R\Test	The precise time over which to measure pressure drop or decay or the precise end time to measure pressure rise.	=10.00
Exhaust P1\R\Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	=0.50

Pressure Parameters

Pressure	Description	Example Setting
Minimum Pressure P1\P\Minimum Pressure	The value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization segments or the testing cycle will end as a Severe Leak.	=0.3 bar
Target Pressure P1\P\Target Pressure	The specified test pressure for the part. For vacuum test pressures enter as positive values if psiv (Vacuum) was selected as the pressure unit. Enter as a negative if psig was selected as the pressure unit. (i.e. A test pressure 9.7 psia would entered as 5 psiv or -5 psig.) Pressure loss may be corrected to the Target Pressure.	=0.4 bar
Maximum Pressure P1\P\Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.	=0.5 bar
Target Press Window P1\P\Target Press Window	This is a window (default - +/-50%) set about the Target Pressure that must be maintained during the Test segment of the testing cycle. It generates a Target Pressure Low or High Malfunction if the actual pressure falls outside this window during test.	=50%

Test Parameters

TST Parameter	Description	Example Setting
Low Limit Loss P1\S\Low Limit Loss	Lower set point value used to evaluate test results.	=-0.50 sccm
High Limit Loss P1\S\High Limit Loss	Upper set point value used to evaluate test results	=0.13 sccm
EDC Enable P1\S\EDC Enabled	Enables Environmental Drift Compensation	=Yes
EDC Percentage P1\S\EDC Percentage	Defines the band about the master part curve where test values are saved to calculate EDC drift. Set as a percentage of the High Limit parameter.	=25%
EDC Quantity P1\S\EDC Quantity	Defines the number of test results within the EDC band used to calculate drift.	=10

Pressure Decay-Leak Std

This section explains the parameters for conducting a pressure decay test and correlating the pressure loss to a leak rate using a leak standard. This test requires a two cycle calibration routine to correlate the pressure loss to a flow rate. The result of this test is presented in units of flow.

The basic principle of operation of a pressure decay leak test instrument is to fill the test part to a specified target test pressure, isolate the test part from the source air and allow the pressure to stabilize, and then measure the pressure loss due to a leak over a defined time. The leak test instrument translates the pressure loss value measured over the fixed test time to a leak or flow rate.

The tables that follow give the parameters (and descriptions) used to setup a Pressure Decay Test that correlates the pressure loss result to a flow rate using a leak standard.

Timer Parameters

Timer	Description	Example Setting
Prefill P1\R\Prefill	Checks for excessively leaking parts or lack of pressure. Set as a % of fill time, for fixed fill time tests. Maximum time to reach the minimum pressure.	=50%
Fill P1\R\Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	=2.00
Stabilize P1\R\Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	=5.00
Test P1\R\Test	The precise time over which to measure pressure drop or decay or the precise end time to measure pressure rise.	=10.00
Exhaust P1\R\Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	=0.50
Relax P1\R\Relax	Timer used during Program Cal sequence as a delay between tests to allow the part to recover to repeatable virgin state. Usually short relax times result in decreasing pressure losses (flows) in successive tests.	=5.00

Pressure Parameters

Pressure	Description	Example Setting
Minimum Pressure P1\P\Minimum Pressure	The value that must be reached before the Prefill set point is reached and must be maintained through fill and stabilization timers or the testing cycle will end as a Severe Leak.	=0.3 bar
Target Pressure P1\P\Target Pressure	The specified test pressure for the part. For vacuum test pressures enter as positive values if psiv was selected as the pressure unit. Enter as a negative if psig was selected as the pressure unit. (i.e. A test pressure 9.7 psia would entered as 5 psiv or -5 psig.) Pressure loss may be corrected to the Target Pressure.	=0.4 bar
Maximum Pressure P1\P\Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle will end as an Over Pressure Malfunction.	=0.5 bar
Target Press Window P1\P\Target Press Window	This value is not visible. It is a window (default - +/-50%) set about the Target Pressure that must be maintained during the Test segment of the testing cycle. It generates a Target Pressure Low or High Malfunction if the actual pressure falls outside this window during test.	=50%

Test Parameters

TST Parameter	Description	Example Setting
Low Limit Rate P1\S\Low Limit Leak	Lower set point value used to evaluate test results.	=-0.50 sccm
High Limit Rate P1\S\High Limit Leak	Upper set point value used to evaluate test results	=0.13 sccm
Max Mstr+Leak Loss P1\S\Max Mstr+Leak Loss	Maximum pressure loss allowed during either test in the Program Cal routine. Prevents the acceptance of a calibration with excessive pressure loss due to part or fixture leaks. Set slightly higher than max loss during Program Cal.	=0.100 dbar
Min Master Loss P1\S\Min Master Loss	Minimum pressure loss or flow allowed during either test in Program Cal routine. Prevents the acceptance of a calibration of a blocked part or test line.	=-0.001 dbar
Min Perform Factor P1\S\Min Perform Factor	Minimum value for Performance Factor calculated at completion of Program Cal routine. Resultant evaluation of ratio of Master Part Loss (Flow) to Master+Leak Loss (Flow), Test Pressure, and loss (flow) due to Leak Std.	=30 PF
Leak Std Cal Flow P1\S\Leak Std Cal Flow	Certified flow value of Leak Standard used to calibrate instrument. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".	=0.13 sccm
Leak Std Cal Press P1\S\Leak Std Cal Press	Certified pressure at which Leak Standard Flow was calibrated. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".	=1.00 bar
EDC Enable P1\S\EDC Enabled	Enables Environmental Drift Compensation	=Yes
EDC Percentage P1\S\EDC Percentage	Defines the band about the master part curve where test values are saved to calculate EDC drift. Set as a percentage of the High Limit parameter.	=25%
EDC Quantity P1\S\EDC Quantity	Defines the number of test results within the EDC band used to calculate drift.	=10

Program Calibration

In order to convert the pressure loss measured by the instrument to a leak (flow) rate, the instrument uses a leak standard and needs to run the "Program Cal" procedure. This procedure requires at least one known non-leaking part referred to as a "master part ". This procedure tests a non-leaking master part connected to the instrument using the timers and pressures established for the program. The procedure automatically tests the non-leaking master part twice with the Relax timer delay between tests. Within each program that uses a leak standard, Program Cal can be configured to use one of four methods. See **Setting the Cal Method and Leak Standard Location** in the Features chapter of the Sentinel instrument user manual.

Remember: The Leak/Cal menu has a parameter called Leak Std/Cal Define that determines the location for the leak standard settings.

When set to "Channel", leak standard settings are located in the Channel Config menu.

When set to "Program", leak standard settings are located in the Program menu.

Below is a graph that shows how a pressure loss test result is correlated to a flow rate using a calibrated leak standard. The values are stored in the program after a successful 2-cycle calibration routine.

Initiating the Program Cal Sequence

To initiate a Program Cal sequence, first insert a master non-leaking part or buck into the system, then send the Program AutoCal command. Ensure that the correct program number is selected in the instrument before starting. Only 'Pressure Decay – Leak Std' and 'Differential Pressure Decay – Leak Std' test types can be calibrated.

- > M\S1TCAP=1
- > M\S1TAutoCal

The instrument will conduct an initial test of the non-leaking master part to measure the pressure loss associated with zero leak. This represents the typical offset associated with testing parts within the environment of the test system. The pressure loss value is saved as the Master Part Loss. After the initial test is completed, you will be prompted to add a calibrated leak orifice to the test circuit:

```
97EA076 P PROGRAM CALIBRATION - Please connect Leak Standard. Select OK or START to continue calibration, or CANCEL to quit
```

Connect the leak standard, and send a START or KEY ENTER command to begin the second phase of calibration, or a KEY EXIT to cancel the sequence.

> M\S1TStart

The system will conduct a second test with the known calibrated leak standard included in the test. The pressure loss value result for this test is saved as the Master+Leak Loss.

Upon the successful completion of the Program Cal routine, the instrument will calculate a Performance Factor for the calibration. The Performance Factor is an estimate of the quality of the calibration. It combines the ratio of the Hi Limit Leak result to the non-leaking master part result, the test pressure, and difference between the Hi Lim result and the non-leaking master part result to scale its anticipated performance. This value ranges from 0 to 100. It is generally desirable to have a Performance Factor of 35 to 100. The actual acceptable Performance Factor can vary depending on the desired Gage R&R performance of the test. Generally, longer timer settings will produce higher Performance Factors and improved Gage R&R performance.

Note: The instrument will require a Program Cal Sequence if any parameters are modified that effects the calibration.

Several conditions must be met during the Program Calibration procedure for the instrument to accept and store the calibration results. If the procedure does not meet these conditions, error messages will be sent at the completion of tests. Refer to the <u>Test Parameters</u> table on page 26 for calibration limits.

If the Program Cal routine is successfully completed, a Program Cal Passed message will be displayed. If there are any problems during the Program Cal sequence an error will be displayed. Refer to Appendix A – Messages & Error Codes for a description of error codes.

Calibration Parameters

Calibration parameters are values that are measured or calculated as a result of the Program Cal routine for a pressure decay leak rate test. These values are essential to running a successful leak test and should not be manually overwritten. The table below describes the parameters.

Parameter	Description
Performance Factor P1\C\Performance Factor	Resultant evaluation of ratio of Master Part Loss (Flow) to Master+Leak loss (Flow), Test Pressure, and loss (flow) due to Leak Std
Master Part Press P1\C\Master Part Press	Measured pressure at the beginning of the test segment during the first test of the Program Cal process for the non-leaking master part.
Master+Leak Press P1\C\Master+Leak Press	Measured pressure at the beginning of the test cycle of second test during Program Cal process for the master part with the leak standard introduced to the pneumatic test circuit.
Master Part Loss P1\C\Master Part Loss	Measured pressure loss for the non-leaking master part during the first test of Program Cal process
Master+Leak Loss P1\C\Master+Leak Loss	Measured pressure loss during the second test of Program Cal for the master part with the leak standard introduced to the pneumatic test circuit.
Corr. Leak Std Flow P1\C\Corr. Leak Std Flow	The calculated leak standard flow rate based on the Program Target Pressure, the leak standard calibrated pressure, and the leak standard calibrated flow rate.

Diff Pressure (DP) Decay-Leak Std

This section explains the parameters for conducting a pressure decay test measuring a pressure loss over time utilizing a Differential Pressure (DP) transducer. The result of this test is the pressure loss (or gain for a vacuum test) measured over a fixed period of time, presented in units of pressure.

How it works

In order to detect leakage in a part, the change in pressure due to temperature and part elasticity must be allowed to settle before taking any pressure readings.

With differential pressure, a reference part volume (should be identical to the nominal test part volume) is pressurized simultaneously with the test part.

Leaks are determined by detecting the rate of pressure loss between the two parts.

Test Setup

The test part and the reference volume are simultaneously pressurized to a preset pressure. The air in the system is then allowed to stabilize, with the supply valves all closed. After the stabilization time, the Differential Pressure Transducer is automatically zeroed.

During test, the pressure change in the test piece is compared to the pressure change in the reference volume, using the Transducer. If the test piece is leaking, the difference will increase and be measured; an alarm limit may be set for a pass/fail decision.

The following Chart gives an overview of the parameters used to setup a Pressure Differential Test and correlating the results to a flow rate using a leak standard. The Tables that follow give detailed descriptions of each parameter and also document the Display User Level associated with each parameter.

The tables that follow give the parameters (and descriptions) used to setup a Differential Pressure Decay Test that correlates the pressure loss result to a flow rate using a leak standard.

Timer Parameters

Timer	Description	Example Setting
Prefill P1\R\Prefill	Percentage of the fill timer where the minimum pressure limit is not monitored. This allows time within the fill stage for the instrument to achieve the minimum test pressure.	=50%
Fill P1\R\Fill	Time to enable part to reach the Target Pressure. It may also be used as time to stabilize part pressure with additional air.	=2.00
Balance P1\R\Balance	Time to allow the DP sensor to be introduced into the test circuit. The reference volume and test part should be close to fully charged before the balance portion of the test.	=1.00
Stabilize P1\R\Stabilize	Time to stabilize part pressure while isolated from the pressure regulator. This time directly affects the repeatability of the test.	=5.00
Test P1\R\Test	At the end of this timer, the instrument will read the pressure on the pressure transducer. This pressure is due to the backpressure created in the pneumatic circuit and part.	=10.00
Exhaust P1\R\Exhaust	Time to relieve or vent part pressure before signaling the end of test. Need time to prevent blowing out debris or fixture seals.	=0.50
Relax P1\R\Relax	Amount of time allocated after Tooling Retract segment for execution before continuing to the next test.	=5.00

Pressure Parameters

Pressure	Description	Example Setting
Minimum Pressure P1\P\Minimum Pressure	Minimum test pressure that must be met within the Pre-fill timer and maintained during the Fill and Stabilization timers. This is an early indication of a major leak	=0.3 bar
Target Pressure P1\P\Target Pressure	Target test pressure. Also used as a setpoint for the Electronic Regulator.	=0.4 bar
Maximum Pressure P1\P\Maximum Pressure	The value that must not be exceeded at any time to complete a successful test. If the pressure goes above the Maximum Test Pressure, the testing cycle (during Fill and Stabilization) will end as an Over Pressure Malfunction.	=0.5 bar

Test Parameters

TST Parameter	Description	Example Setting
Low Limit Leak P1\S\Low Limit Leak	Lower set point value used to evaluate test results of parts.	=-0.50 sccm
High Limit Leak P1\S\High Limit Leak	Upper set point value used to evaluate test results of parts.	=0.13 sccm
Decay Direction P1\S\Decay Direction	Defines whether the instrument is set to read pressure drop or pressure gain. In most circumstances Loss should be used, where a positive delta pressure value indicates pressure drop on the test circuit.	=Loss
Max Mstr+Leak Loss P1\S\Max Mstr+Leak Loss	Maximum pressure loss allowable for the master part with Leak Standard during the calibration cycle. Use to prevent calibration to leaking master parts or fixtures.	=0.100 dbar
Min Master Loss P1\S\Min Master Loss	Minimum pressure loss allowable for the Master Part with Leak Standard during the calibration cycle. Use to prevent calibration to the Self-Test Cap.	=-0.001 dbar

Note: This table is continued on the next page.

TST Parameter	Description	Example Setting
Min Perform Factor P1\S\Min Perform Factor	Minimum acceptable value for the Performance Factor compared after the calibration cycle to prevent improper calibration.	=30 PF
Leak Std Cal Flow P1\S\Leak Std Cal Flow	Certified flow value of Leak Standard used to calibrate instrument. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".	=0.13 sccm
Leak Std Cal Press P1\S\Leak Std Cal Press	Certified pressure at which Leak Standard Flow was calibrated. This parameter is only viewable in this location if the Leak Std/Cal Define parameter is set to "Program".	=1.00 bar
EDC Enable P1\S\EDC Enabled	Enables Environmental Drift Compensation	=Yes
EDC Percentage P1\S\EDC Percentage	Defines the band about the master part curve where test values are saved to calculate EDC drift. Set as a percentage of the High Limit parameter.	=25%
EDC Quantity P1\S\EDC Quantity	Defines the number of test results within the EDC band used to calculate drift.	=10

Program Calibration

In order to convert the pressure loss measured by the instrument to a leak (flow) rate, the instrument uses a leak standard and needs to run the "Program Cal" procedure. This procedure requires one known non-leaking part referred to as a "master part", and a calibrated leak orifice. The calibration will first test the non-leaking master part connected to the instrument using the timers and pressures established for the program, then test the non-leaking part with the leak orifice installed.;

Note: For more information on this, see <u>Program Calibration</u> on page 27 of this guide.

Initiating the Program Cal Sequence

To initiate a Program Cal sequence, first insert a master non-leaking part or buck into the system, then send the Program AutoCal command. Ensure that the correct program number is selected in the instrument before starting. Only 'Pressure Decay – Leak Std' and 'Differential Pressure Decay – Leak Std' test types can be calibrated.

- > M\S1TCAP=1
- > M\S1TAutoCal

The instrument will conduct an initial test of the non-leaking master part to measure the pressure loss associated with zero leak. This represents the typical offset associated with testing parts within the environment of the test system. The pressure loss value is saved as the Master Part Loss. After the initial test is completed, you will be prompted to add a calibrated leak orifice to the test circuit:

```
97EA076 P PROGRAM CALIBRATION - Please connect Leak Standard. Select OK or START to continue calibration, or CANCEL to quit
```

Connect the leak standard, and send a START or KEY ENTER command to begin the second phase of calibration, or a KEY EXIT to cancel the sequence.

> M\S1TStart

The system will conduct a second test with the known calibrated leak standard included in the test. The pressure loss value result for this test is saved as the Master+Leak Loss.

Upon the successful completion of the Program Cal routine, the instrument will calculate a Performance Factor for the calibration. The Performance Factor is an estimate of the quality of the calibration. It combines the ratio of the Hi Limit Leak result to the non-leaking master part result, the test pressure, and difference between the Hi Lim result and the non-leaking master part result to scale its anticipated performance. This value ranges from 0 to 100. It is generally desirable to have a Performance Factor of 35 to 100. The actual acceptable Performance Factor can vary depending on the desired Gage R&R performance of the test. Generally, longer timer settings will produce higher Performance Factors and improved Gage R&R performance.

Note: The instrument will require a Program Cal Sequence if any parameters are modified that effects the calibration.

Several conditions must be met during the Program Calibration procedure for the instrument to accept and store the calibration results. If the procedure does not meet these conditions, error messages will be sent at the completion of tests. Refer to the <u>Test Parameters</u> table on pages 32and 33 for calibration limits.

If the Program Cal routine is successfully completed, a Program Cal Passed message will be displayed. If there are any problems during the Program Cal sequence an error will be displayed. Refer to Appendix A – Messages & Error Codes for a description of error codes.

Calibration Parameters

Calibration parameters are values that are measured or calculated as a result of the Program Cal routine for a pressure decay leak rate test. These values are essential to running a successful leak test and should not be manually overwritten. The table below describes the parameters.

CAL Parameter	Description
Performance Factor P1\C\Performance Factor	This is a Performance value generated by the actual calibration cycle to be compared to the Min Perform Factor input as a Test Parameter.
Master Part Press P1\C\Master Part Press	Absolute pressure data generated for the master part during the calibration cycle.
Master+Leak Press P1\C\Master+Leak Press	Absolute pressure data generated for the master part with Leak Standard during the calibration cycle.
DP Master Part Loss P1\C\DP Master Part Loss	Differential pressure loss during the calibration cycle of the Master Part and stored to represent normal differential loss at the specified Target Pressure.
DP Master+Leak Loss P1\C\DP Master+Leak Loss	Differential pressure loss during the calibration cycle of the Master Part with Leak Standard and stored to represent normal loss + leak standard differential loss at the specified Target Pressure.
Master Part Loss P1\C\Master Part Loss	Pressure loss during the calibration cycle of the Master Part and stored to represent normal loss at the specified Target Pressure.
Master+Leak Loss P1\C\Master+Leak Loss	Pressure loss during the calibration cycle of the Master Part with Leak Standard and stored to represent normal loss + leak standard loss at the specified Target Pressure.
Corr. Leak Std Flow P1\C\Corr. Leak Std Flow	The calculated leak standard flow rate based on the Program Target Pressure, the leak standard calibrated pressure, and the leak standard calibrated flow rate.

Chapter 5 – Test and Result Data

This chapter gives a more in-depth explanation of the formatting of the instrument communication and explains how to decode the test results output.

Test Results via Communications

To see the menu settings described below, the communication interface must be set to "2-Way" and not to "Barcode". Depending on which type of communication is being used, these settings are located in:

```
Main Menu > Global Config > RS232 1 icon > RS232 1 Results, or Main Menu > Global Config > RS232 2 icon > RS232 2 Results, or Main Menu > Global Config > Telnet 1 icon > TCP/IP 1 Results.
```

In order for the instrument to send the test result data automatically once the test is complete, the Global Config menu parameter for RS232 Results or TCP/IP 1 Results must be set to "On.".

Alternatively, the following commands can be sent via RS-232 or Telnet:

- > I\S\RS232 1 Results=On
- > I\R\RS232 2 Results=On
- > I\1\Telnet 1 Results=On

Once this parameter is turned on, the Result Field data parameters show on the screen and can be set. Each parameter may be turned on or off depending on the information that is required for to accompany each result. The Test Field parameter may be set to "All Result Information" or "First 2 Test Results". The "First 2 Test Results" will send the two primary results.

Table of Test Result Data Format

	Number of				
Parameter	Characters	Format	Example Text	Description of Example	
Channel #	4	C##	C01	Channel 1	
Program #	4	P##	P01	Program 1	
Time	13	HH:MM:SS.XXX	16:15:14.123	16 hours, 15 minutes, 14.123 seconds	
Date	9	MM/DD/YY	11/13/15	January 01,2010	
Unique Id	11	##########	0000098353	Unique test number	
Program Evaluation	3	#	A	Accept	
SPC Flag	2	#	-	SPC Test Data Result	
Test Field	All Result Int	ormation			
Test Type	8	###	PLR	Pressure Decay Leak Std	
Test Evaluation	2	#	P	Pass	
Test Data 1	22	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit	
Test Data 2	22	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit	
Test Data X	22	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit	
Tab				Tab	
Tab				Tab	
CR				Carriage Return	
LF				Line Feed	

Streaming Measured Data

The instrument has the ability to stream measured data via RS-232 or Telnet in real time while the test is being conducted. Streaming data can be enabled by using the following command:

- > I\S\RS232 1 Streaming=On
- > I\R\RS232 2 Streaming=On
- > I\1\Telnet 1 Streaming=On

IMPORTANT:

Streaming data must be turned on in order for certain Sentinel functionality to work, such as Set Regulator and Self-Test. You will also not receive any responses or prompt messages from the instrument if Telnet Streaming is set OFF.

This data may be collected and used for analysis. The data is comma delimited. The table below shows the format of the streaming data.

Parameter		Format	Example Text	Description of Example
Channel #	Comma Delimited	C##	C01	Channel 1
Program #	Comma Delimited	P##	P01	Program 1
Segment	Comma Delimited	XXX	PRF	Prefill Segment
Test Data	Comma Delimited	TDI Value Unit	LR 0.123456 sccm	Test Data Identifier - Value - Unit
Tab				Tab
Tab				Tab
CR				Carriage Return
LF				Line Feed

This page is intentionally blank.

Appendix A – Messages & Error Codes

This appendix is a quick reference for the messages and error codes that display on the screen and through the communication ports.

Test Messages & Error Codes

Note: For the most up to date <u>Test Message and Error Codes</u> type "TABLE EVALUATION" into the instrument using the communication port. The instrument will return a list of Data Type Codes and descriptions. (This table contains the same list of codes found in the 3^d table of Appendix B.)

Message	Code	Description	Corrective Actions
Program Accept	A	Program evaluation was successful, for multiple tests – all tests passed.	
Auto Setup Seq Complete	AC	The Auto Setup Sequence is complete.	
Program Calibration Failed	AF	The test type is one that is capable of conducting a program calibration and this sequence was not successful.	
Master Part Complete	AM	The test type is one that is capable of conducting a program calibration. The first phase of the sequence is complete.	
Program Calibration Passed	AP	The test type is one that is capable of conducting a program calibration and this sequence was successful.	
Error: Anti-Tie- Down	АТ	The two inputs (Start and Common) are not held high during all of the "extend" tooling motions. There is no resultant output.	The two inputs must go high within 0.05 seconds and be held high until the end of all extend tooling motions.
Error: Barcode Req to Start	BR	The instrument was expecting a barcode value to be received over the RS-232 port. The Barcode Required parameter was set to "Yes", which requires a barcode before a start command is enabled.	Check barcode reader wiring and functionality. Make sure the Baud Rates are set properly within the instrument.

Message	Code	Description	Corrective Actions
Master+Leak Loss <master Loss</master 	C1	During the Program Cal routine, the instrument measured a greater pressure loss for the master part by itself than for the master part with the leak in the second test. This results in a Malfunction.	Increase the stabilization and possibly test time. Verify the leak standard.
Master Part Loss>Max Mstr+Leak Loss	C2	The pressure loss during the first test of Program Cal on the master part exceeded the Max Mstr+Leak Loss set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend stabilization timer. Check that Max Mstr+Leak Loss was correctly set.
Master +Leak Loss>Max Mstr+Leak Loss	С3	The pressure loss during the second test of Program Cal on the master part exceeded the Max Mstr+Leak Loss set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend stabilization timer. Check to leaks about leak standard. Check that Max Mstr+Leak Loss was correctly set.
Master Flow>Max M+L Flow	C4	The flow value during the first sequence of Program Cal on the master part exceeded the Max Mstr+Leak Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check that Max Mstr+Leak Flow was correctly set.
Master Flow <min Master Flow</min 	C5	The master flow value was less than the Min Master Flow setpoint.	Check that the Min Master Flow setpoint was set correctly. Verify the test line is connected to the test port and not the Self-Test cap.
Master+Leak Flow>Max M+L Flow	C6	The flow value during the second sequence of Program Cal on the master part exceeded the Max Mstr+Leak Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check the leak standard. Check that Max Mstr+Leak Flow was correctly set.

Message	Code	Description	Corrective Actions
Master Flow>Max Master Flow	C7	The flow value during the first sequence of Program Cal on the master part exceeded the Max Master Flow set point. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check that Max Master Flow was correctly set.
Master+Leak Flow <master Flow</master 	C8	The flow value during the second sequence of Program Cal on the master part was less than the measured Master Flow value. This results in a Malfunction.	Check the seals and master part for leaks, or extend fill or test timers. Check the leak standard. Check that Max Master Flow was correctly set.
Master Loss <min Master Loss</min 	С9	The pressure loss reading during the first test of Program Cal cycle for a pressure decay test was less than the Min Master Loss set point. This results in a Malfunction.	Check for blockage in the test line of part.
Cal Program Accept	CA	The Program Calibration was successful.	
Calculation Error	CE	This result occurs from illegal program configurations, calculation errors when trying to convert vacuum pressures to positive pressure readings, and other occurrences.	
Cal Required - Limit Exceeded	CF	Not Used.	
Min Perf Factor Error	СМ	The Performance Factor calculated at the end of Program Cal exceeds the Minimum Performance Factor set in the Test Factors.	Check that the Minimum Performance Factor was correctly set. Increase stabilize and test timers.

Message	Code	Description	Corrective Actions
Calibration Required- Parameters Changed	СР	The stabilization or test timers, target pressure, Leak Std Flow, or Leak Std Pressure have been changed since the last calibration and therefore the part needs to be recalibrated. There is no output resultant.	Recalibrate the instrument for this program.
Cal Program Reject	CR	The Program Calibration was not successful.	
DP Transducer Fault	DF	Not Used.	
DP Transducer Over Range	DO	Not Used.	
DP Transducer Zero Bad	DZ	Not Used.	
Elec Regulator Cal Complete	EC	The Electronic Regulator Calibration was successful.	
Elec Regulator Cal Error	EE	The Electronic Regulator Calibration was not successful.	Check the wiring of the electronic regulator. Check that the entry of each pressure calibration point was correct.
Part Evac Fault	EF	Not Used.	
Prog Error	EP	There was an error with the program. Please contact the CTS Service department.	
System Error - Service Req	ER	There was an error with the instrument. Please contact the CTS Service department.	
Flow Transducer Over Range	FO	The flow transducer measured a value out of its range. The instrument stopped the test sequence to prevent damage to the sensor.	
Error: Excessive Flow	FX	The flow sensor measured a value out of its range. The instrument stopped the test sequence to prevent damage to the sensor.	
Flow Transducer Zero Bad	FZ	The flow transducer was not sending the proper voltage. The instrument checks to make sure that the flow transducer is within range before the test sequence begins.	Check the flow sensor wiring. If this happens multiple times, replace the flow sensor.

Message	Code	Description	Corrective Actions
Helium Background Fault	HF	Not Used.	
Invalid Calibration Data	ID	The calibration data has been corrupted or not properly entered. Please calibrate the unit again.	
I/O Fault	IF	Not Used.	
Invalid I/O Configuration	Ю	Not Used.	
Invalid Program Selected	IP	The program selected does not exist or has not been configured.	Check BCD Input programming.
Error: Duplicate Target Link	LD	The same child program cannot be in the same link structure. If it is desired to conduct the same test twice you will need to copy the program.	
Leak Std Select Config Error	LE	Configuration Error. The instrument was not configured properly.	
Error: Link Execution Loop	LL	There was an error in the Linking Execution.	Check programming of the Parent/Child Structures.
Error: No Links Defined	LN	The instrument was expecting a link that did not exist.	
Error: Dissimilar Link Order	LO	When the instrument conducts a Program Calibration sequence on linked programs, the links must execute in the same order for both the first and second sequences for Program Calibration.	
Error: Link Program is Parent	LP	A Parent Program may not be a link target.	
Error: Link Prog Undefined	LU	The linked program is undefined.	
Error: Part Mark Fault	MF	The part mark feedback input did not receive the input in time.	Check operation of the part marker. Check wiring of the feedback input. Check wiring of the valve to fire the part marker.

Message	Code	Description	Corrective Actions
No Event Occurred	NE	In a test that is looking for an event, this is the result when one does not occur.	
Above Target Pressure	PA	The instrument will stop conducting a test if the pressure rises above the target pressure window setting.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part.
Below Target Pressure	PA	The instrument will stop conducting a test if the pressure drops below the target pressure window setting.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part.
Part Not Changed	РС	The present input signal did not go low between tests to indicate that the part was removed from the fixture after the last test. This results in a Malfunction.	Remove the part after each test.
Part Configuration Error	PE	There was an error in the way the program was configured.	
Part Not Full	PF	This is an error in the Auto Setup Sequence that can occur if the instrument fails to fill the part to the desired pressure.	
Test Pressure Low	PL	Test pressure was below Minimum Pressure during fill cycle. This results in a severe leak.	
Test Pressure High	РН	Test pressure was above the Maximum Pressure during fill or stabilization cycles resulting in a Malfunction.	Check pressure regulator setting and tooling control pressures
Error: Part Not Present	PP	The part present input is set for the active program and the input was not received.	Check the part presence sensor and input wiring
Part Not Stabilized	PS	This is an error in the Auto Setup Sequence that can occur if the instrument fails to stabilize the part.	

Message	Code	Description	Corrective Actions
Part Not Exhausted	PX	This is an error in the Auto Setup Sequence that can occur if the instrument fails to exhaust the part.	
Sequence Complete	QC	Sequence Complete	
Program Reject	R	Program evaluation was not successful, for multiple tests – if any test fails, the part is rejected	
Part Reject - Level 1	R1	Not Used.	
Part Reject - Level 2	R2	Not Used.	
Part Reject - Level 3	R3	Not Used.	
Source Pressure Exceeded	RX	The source pressure set by the factory on the hardware configuration menu was exceeded.	
Stop Button Pressed	SB	The stop button or input was received.	
Start Common Input Low	SC	Not Used.	
Pressure Select Config Error	SE	Configuration Error. The instrument was not configured properly.	
Self-Test Failed	SF	The Self-Test failed.	Make sure the test line was removed and the test port plugged before the test was conducted. One of the internal valves may be leaking.
Error: Stop Input High	SH	The instrument cannot start a test if the Stop input is high.	
Stop Input Received	SI	Stop Input Received.	
Severe Leak	SL	Severe Leak indicates the test process did not achieve Minimum Pressure before reaching the Prefill set point or failed to maintain Minimum Pressure during fill or Stabilization timers. This results in a Program Reject.	Check pressure regulator setting, cut seals, bad parts, or tooling control pressure by testing with master part
Self-Test Passed	SP	Self-Test process indicates no internal leak.	
System Pressure Exceeded	SX	The system pressure of the unit was exceeded.	Check the pressure source and regulators

Message	Code	Description	Corrective Actions
Tooling Not Reset	TE	If a tooling error occurs involving any motions, there will be a tooling error. Before the start of the next test, the tooling needs to be reset by the Stop/Reset input. This results in a Malfunction.	Push the Stop/Reset Input and possibly Common to return the tooling to the Start position.
Error: Two- Input Req to Start	TI	Both Start Test and Common must go high to start a test.	
Test Port Select Config Error	ТР	The instrument configuration is not correct.	
Error: Tooling not Retracted	TR	The instrument may not start a sequence if all of the tooling is not retracted.	
Tooling Reset	TS	Most tooling errors or some test errors may require a tooling reset with the Stop/Reset input. After completion of the reset, this confirmation message is displayed.	
Error: Tooling not Extended	TX	If the instrument is configured for tooling feedback this error will occur if the tooling feedback input is not received within the time allocated.	Check feedback sensor and input wiring. Make sure the tooling motion feedback timer is set properly.
Vent Part Reset Tooling	VR	Message sent when retain part pressure and tooling are both configured to be used. This message is sent upon a reset.	
Transducer Cal Complete	XC	The transducer calibration is complete and was successful.	
Transducer Cal Error	XE	There was an error when trying to calibrate the transducer.	Check transducer wiring
Pressure Transducer Fault	XF	Not used.	
External Switch did not go high	ХН	The External Pressure Switch input did not go high before the end of the fill timer. This results in a Malfunction.	Check the pressure switch. Make sure that the path to the pressure switch is not blocked.
External Switch did not go low	XL	The External Pressure Switch input did not go low between tests. This results in a Malfunction.	Check pressure switch to make sure it is functioning.
Transducer Over Range	XO	During the testing process the pressure exceeded the range of the transducer. This results in a Malfunction.	Check the pressure regulator setting

Message	Code	Description	Corrective Actions
Transducer Verify Complete	XV	The transducer verification sequence is complete.	
Transducer Zero Bad	XZ	The pressure transducer's atmospheric pressure reading at the beginning of the testing cycle is outside of tolerance. This results in a Malfunction.	Perform transducer calibration routine in Self-Test

This page is intentionally blank.

Appendix B – Communication Code Tables

This appendix lists the codes for all Sentinel instruments. Some codes may not apply to the instrument you are using.

Table 1: Data Type or Header Codes

type "TABLE HEADER"

	Data Type Code	Description
1	V	Variable Edit
2	L	List
3	M	Message
4	Q	Result List
5	T	Streaming Started
6	S	Streaming Value
7	X	Streaming Stopped
8	R	Result Value

Table 2: Program Evaluation Codes

type "TABLE RESULT"

	Program Evaluation Code	Description
1	P	TEST PASSED
2	F	TEST FAILED
3	Е	TEST ERROR
4	S	TEST SKIPPED
5	X	TEST FAILED - LEVEL 1
6	Y	TEST FAILED - LEVEL 2
7	Z	TEST FAILED - LEVEL 3
8	M	AUTO-CAL MASTER PART
9	L	AUTO-CAL LEAK STANDARD PART
10	N	TEST FAILED - NO EVENT
11	С	TEST COMPLETE

Table 3: Test Evaluation Codes

type "TABLE EVALUATION"

•	Test Evaluation Code	Description
1	A	PROGRAM ACCEPT
2	AC	AUTO SETUP SEQ COMPLETE
3	AF	PROGRAM CALIBRATION FAILED
4	AM	MASTER PART COMPLETE
5	AP	PROGRAM CALIBRATION PASSED
6	AT	ERROR: ANTI-TIE-DOWN
7	BR	ERROR: BARCODE REQ TO START
8	C1	MASTER+LEAK LOSS <master loss<="" td=""></master>
9	C2	MASTER LOSS>MAX M+L LOSS
10	C3	MASTER+LEAK LOSS>MAX M+L LOSS
11	C4	MASTER FLOW>MAX M+L FLOW
12	C5	MASTER FLOW <min flow<="" master="" td=""></min>
13	C6	MASTER+LEAK FLOW>MAX M+L FLOW
14	C7	MASTER FLOW>MAX MASTER FLOW
15	C8	MASTER+LEAK FLOW <master flow<="" td=""></master>
16	С9	MASTER LOSS <min loss<="" master="" td=""></min>
17	CA	CAL PROGRAM ACCEPT
18	CE	CALCULATION ERROR
19	CF	CAL REQUIRED - LIMIT EXCEEDED
20	CM	MIN PERF FACTOR ERROR
21	CP	CAL REQUIRED - PARAM CHANGED
22	CR	CAL PROGRAM REJECT
23	CX	CHAMBER EVACUATION FAULT
24	DF	DP TRANSDUCER FAULT
25	DO	DP TRANSDUCER OVER-RANGE
26	DZ	DP TRANSDUCER ZERO BAD
27	EC	ELEC REGULATOR CAL COMPLETE
28	EE	ELEC REGULATOR CAL ERROR
29	EF	PART EVAC FAULT
30	EP	PROG ERROR

	Test Evaluation Code	Description
31	ER	SYSTEM ERROR - SERVICE REQ
32	FO	FLOW TRANSDUCER OVER-RANGE
33	FX	ERROR: EXCESSIVE FLOW
34	FZ	FLOW TRANSDUCER ZERO BAD
35	HF	HELIUM BACKGROUND FAULT
36	IC	INVALID INPUT CONFIGURATION
37	ID	INVALID CALIBRATION DATA
38	ΙE	INPUT INITIAL STATE ERROR
39	IF	I/O FAULT
40	IO	INVALID I/O CONFIGURATION
41	IP	INVALID PROGRAM SELECTED
42	IS	ISOLATION FAILURE
43	LD	ERROR: DUPLICATE TARGET LINK
44	LE	LEAK STD SELECT CONFIG ERROR
45	LL	ERROR: LINK EXECUTION LOOP
46	LN	ERROR: NO LINKS DEFINED
47	LO	ERROR: DISSIMILAR LINK ORDER
48	LP	ERROR: LINK PROG IS PARENT
49	LU	ERROR: LINK PROG UNDEFINED
50	MF	ERROR: PART MARK FAULT
51	MS	MAN FILL SWITCH
52	NE	NO EVENT OCCURRED
53	OC	ATMOSPHERIC PRESSURE COMPLETE
54	OE	ATMOSPHERIC PRESSURE ERROR
55	PA	ABOVE TARGET PRESSURE
56	PB	BELOW TARGET PRESSURE
57	PC	ERROR: PART NOT CHANGED
58	PE	PROGRAM CONFIGURATION ERROR
59	PF	PART NOT FULL
60	PH	TEST PRESSURE HIGH

type "TABLE EVALUATION"

	Test	150.111011
	Evaluation Code	Description
61	PL	TEST PRESSURE LOW
62	PP	ERROR: PART NOT PRESENT
63	PR	POWER RESET
64	PS	PART NOT STABILIZED
65	PV	PROCESS FAULT
66	PX	PART NOT EXHAUSTED
67	QC	SEQUENCE COMPLETE
68	R	PROGRAM REJECT
69	R1	PART REJECT - LEVEL 1
70	R2	PART REJECT - LEVEL 2
71	R3	PART REJECT - LEVEL 3
72	RF	CHAMBER RISE FAULT
73	RH	PRE-PRESSURE HIGH
74	RL	PRE-PRESSURE LOW
75	RX	SOURCE PRESSURE EXCEEDED
76	S1	LD ZERO < MIN
77	S2	LD ZERO > MAX
78	S3	LD LEAK < MIN
79	S4	LD LEAK > MAX
80	SB	STOP BUTTON PRESSED
81	SC	START COMMON INPUT LOW
82	SE	PRESSURE SELECT CONFIG ERROR
83	SF	SELF-TEST FAILED
84	SH	ERROR: STOP INPUT HIGH
85	SI	STOP INPUT RECEIVED
86	SL	SEVERE LEAK
87	SM	SNIFFER MODE MISMATCH
88	SN	ERROR: SNIFFER NOT READY
89	SP	SELF-TEST PASSED
90	SR	SNIFFER READY INPUT FAULT

	Test Evaluation Code	Description
91	ST	SNIFFER TYPE MISMATCH
92	SU	SNIFFER UNITS MISMATCH
93	SX	SYSTEM PRESSURE EXCEEDED
94	TB	T-GAS BACKGROUND FAULT
95	TC	T-GAS CHAMBER CLEANUP FAULT
96	TE	ERROR: TOOLING NOT RESET
97	TI	ERROR: TWO-INPUT REQ TO START
98	TM	T-GAS MIN LEAK RATE FAULT
99	TP	TEST PORT SELECT CONFIG ERROR
100	TR	ERROR: TOOLING NOT RETRACTED
101	TS	TOOLING RESET
102	TX	ERROR: TOOLING NOT EXTENDED
103	VR	VENT PART RESET TOOLING
104	WA	WEIGHT ABOVE MAX
105	WB	WEIGHT BELOW MIN
106	WC	SCALE CONFIG ERROR
107	WH	SCALE WEIGHT HIGH
108	WL	SCALE WEIGHT LOW
109	WR	SCALE NOT READY
110	WS	SCALE NOT STABLE
111	XC	TRANSDUCER CAL COMPLETE
112	XE	TRANSDUCER CAL ERROR
113	XF	PRESSURE TRANSDUCER FAULT
114	XH	EXT SWITCH DID NOT GO HIGH
115	XL	EXT SWITCH DID NOT GO LOW
116	XO	TRANSDUCER OVER-RANGE
117	XP	EXTERNAL XDCR PRESS
118	XV	TRANSDUCER VERIFY COMPLETE
119	XZ	TRANSDUCER ZERO BAD

Table 4: Segment Codes

type "TABLE SEGMENT"

type	Segment Code	Description
1	%VR	Percent of Reference Volume Test
2	APC	Setup - Atmospheric Pressure Check
3	AR	Autorun Relax
4	BAL	Stabilize DP Xdcr Balance
5	CBC	Chamber - blower control
6	CC0	Chamber - circulation off
7	CC1	Chamber - circulation on
8	CCX	Chamber - accumulation rest
9	CE0	Chamber - evacuate off
10	CE1	Chamber - evacuate on
11	СНА	Exhaust - Chamber Output Rest
12	CIF	Chamber - inlet blower off
13	CIO	Chamber - inlet blower on
14	CLN	Stabilize Chamber Cleanup
15	CO0	Chamber - outlet blower off
16	CO1	Chamber - outlet blower on
17	CP0	Chamber - pre-purge
18	CPC	Chamber - clamshell purge rings control
19	CPG	Chamber - Exh/Purge
20	CPO	Chamber - clamshell purge rings option
21	CPR	Chamber - clamshell purge rings rest
22	CST	Fill Clean
23	CV0	Chamber - vent off
24	DLY	Delay
25	DPD	Differential Pressure Decay Test
26	DPL	Differential Pressure Decay - Leak Std Test
27	DPS	Setup - DP Transducer Setpoint
28	DPT	Rate of Pressure Loss Test
29	DTV	Setup - DP Transducer Verification
30	DTZ	Setup - DP Transducer Zero

	Segment Code	Description	
31	ERA	Setup - Electronic Regulator Analyze	
32	ERS	Setup - Electronic Regulator Setpoint	
33	ERZ	Setup - Electronic Regulator Zero	
34	ESI	Internal - Empty-Seq	
35	EST	Fill Evac	
36	EXE	Exhaust until Empty	
37	EXH	Exhaust	
38	EXP	Exhaust until Pressure	
39	EXT	Tooling Motion Extend	
40	FFL	Fill until Full	
41	FGN	General Fill	
42	FLC	Mass Flow - Leak Rate Test	
43	FLL	Fill (without pressure monitoring)	
44	FLR	Precise Mass Flow Test (Differential Flow)	
45	FLW	Mass Flow Test	
46	FRF	Fill Reference	
47	FRP	Fill Ramp	
48	FST	Fill Tracer	
49	FTS	Setup - Flow Transducer Setpoint	
50	FTV	Setup - Flow Transducer Verification	
51	FTZ	Setup - Flow Transducer Zero	
52	HVC	Chamber - hard vac control	
53	LKC	Link Control	
54	LNK	Link Decision	
55	MVX	Setup - Mix Verification	
56	OCC	Occlusion Test (Backpressure)	
57	PLO	Pressure Loss Test	
58	PLR	Pressure Decay - Leak Standard Test	
59	PMK	Tooling Part Mark	
60	PRF	Prefill/Fill	

type "TABLE SEGMENT"

type "	ABLE SEGMEN		
	Segment Code	Description	
61	PRF	Prefill until Pressure	
62	PRF	Proof Test	
63	PRI	Internal - Pre-Seq	
64	PRI	Internal - Evaluate Part Result	
65	PRP	Prefill Pre-Pressure	
66	PRS	Step Proof	
67	PSI	Internal - Post-Seq	
68	PTS	Setup - Pressure Transducer Setpoint	
69	PTV	Setup - Pressure Transducer Verification	
70	PTZ	Setup - Pressure Transducer Zero	
71	PVF	Pressure Verify	
72	RCF	Refrigerant Iso Off	
73	RCX	Refrigerant CS Isolation	
74	REC	Exhaust - T-Gas	
75	REF	Refrigerant Fill	
76	RET	Tooling Motion Retract	
77	REV	Exhaust - Re-Evacuate	
78	RFE	Refrigerant Evac	
79	RFM	Refrigerant Manual Fill	
80	RFS	Stabilize Scale	
81	RFT	Refrigerant Fill	
82	RFX	Refrigerant Stabilize	
83	RL	Calibration Relax	
84	RPS	Refrigerant Part Switch	
85	RTE	Ramp to Pressure Event Test	
86	RTF	Ramp to Flow Event Test	
87	RTI	Ramp to Digital Input Event Test	
88	RVN	Refrigerant Vent	
89	SCI	Setup - Scale Init	
90	SD1	Setup - Sniffer idle	

	Segment Code	Description
91	SDP	Stabilize for DP
92	SFS	Stabilize Tracer
93	SGL	Fill Tracer Gross
94	SGS	Stabilize Tracer Gross
95	SI1	Setup - Sniffer Init
96	SI2	Setup - Sniffer Init 2
97	SLE	Tooling Seal Extend
98	SLR	Tooling Seal Retract
99	SME	Setup - Manifold Exhaust
100	SMF	Setup - Manifold Fill
101	SMI	Setup - Manifold Isolate
102	SNF	Sniffer Test
103	SNG	Sniffer Gross Test
104	SNW	Stabilize Tracer Wait
105	SPF	Fill Step
106	SPL	Setup - Pressure Select
107	SPR	Setup - Pre-Seq
108	SPS	Setup - Post-Seq
109	SSD	Stabilize Step Dwell
110	SSR	Setup - Set Regulator
111	STE	Stabilize Evac
112	STF	Stabilize for Flow
113	STG	General Stabilize
114	STR	Setup - Transducer Residual
115	STR	Stabilize Reference Volume
116	STS	Stabilize until Slope
117	SVD	Evac Test
118	SXT	Stabilize for Xdcr Test
119	TMC	Tooling Motion Control
120	XDR	Transducer Test

Table 5: Test Data Identifier Codes

5) [2]	Test Data Identifier Code	Description
1	%P	Percent Precision
2	2in	Two Inputs to Start
3	AAA	Accum Autozero
4	AAV	Accept Average
5	ACT	Auto-Cycle Test Mode
6	AD	Analog A/D
7	AER	Permit Early Reject
8	ALR	Alt Leak Rate
9	APC	Accept Percentage
10	APC	Atm Pressure Check
11	APP	Accept Program
12	ARC	Autorun Cycle Count
13	ARE	Autorun Enable
14	ARM	Autorun Method
15	ARR	Autorun Relax
16	ASA	Short Autozero
17	ASD	Accept Std Dev
18	ASM	Auto Setup Method
19	ASP	Accept SPC Std Dev
20	ATD	Anti-Tie-Down
21	AZD	Autozero Delay
22	AZE	Autozero Enable
23	Ain	Analog Input
24	Aot	Analog Output
25	BCM	Barcode Method
26	BR	Barcode Required
27	CA	Accept Cycles
28	CAP	Calibrate Percent
29	CC	Capability Code
30	CCD	Ch Evac Valve Dly
31	CCP	Clear Prog Counters
32	CCR	Clear Chan Results
33	CCS	Clear Chan Counters
34	CEF	Chamber Evac Limit
35	CEV	Chamber Evac Close
36	CFS	Chamber Clean
37	CHM	Post-Purge Method
38	СНО	Chamber Post-Purge
39	CHP	Chamber Pressure
40	CHV	Chamber Volume
41	CID	CS Iso Delay
42	CLF	Corr. Leak Std Flow
43	CLM	Clamshell
44	CLP	Check Limit Percent
45	CLR	Cumulative Leak

	Test Data Identifier	Description	
46	Code CM	Description Cal Method	
47	CM	Malfunction Cycles	
48	CMN	Clean Min Pressure	
49			
50	CMX COF	Maximum Pressure Continue on Fail	
51	COL	Cutoff Limit	
52	CP	Current Precision	
53	СРР	Copy Program	
54	CPS	TLR Change/Sec	
55	СРТ	Consecutive Points	
56	CPT	Consecutive Points	
57	CR	Reject Cycles	
58	CRA	Clean Part Source	
59	CRF	Pre-Purge	
60	CRS	Chamber Crossover	
61	CSC	Cycles Since Cal	
62	CSN	Clear Since New Counter	
63	CSN	Cycles Since New	
64	CST	Custom Self-Test	
65	CT		
66	CTG	Total Cycles Target Pressure	
67	СТР	Target Pressure Copy to Target Prog	
68	CTR	Clean Part Timer	
69	DA	Analog D/A	
70	DD	Decay Direction	
71	DFL	Direct Flow	
72	DL	Diff Press Loss	
73	DLL	DP Master+Leak Loss	
74	DLR	Diff Press Loss Rd	
75	DLT	Delay Timer	
76	DML	DP Master Part Loss	
77	DMR	DP Mstr Part Loss Read	
78	DP	Diff Pressure	
79	DPI	DP Iso Percent	
80	DPP	Δ Press Precision	
81	DVF	Vent During Fill	
82	DVF	Test Mode	
83	DVM	Device Mode	
84	Dt	Date Device Mode	
85	ECL	ERC Crossover Limit	
86	EDC	EDC Offset	
87		EDC Unset	
88	EDE EDP	EDC Enabled Event ΔP	
89			
	EDP	EDC Percentage	
90	EDQ	EDC Quantity	

type "TABLE VARIABLE"

	Test Data Identifier Code	Description	
91	EDT	Event ΔT	
92	EIL	ERC Increment Limit	
93	EMP	Ext Xdcr Pressure	
94	ENB	E-NOB	
95	ENC	Enable Calibration	
96	ENT	Enable Tooling I/O	
97	EOL	ERC Offset Limit	
98	EPP	Pressure Precision	
99	EPR	Pressure Reference	
100	ERA	Atm Pressure	
101	ERC	ERC Method	
102	ERE	ERC Enabled	
103	ERP	ERC Rate/Period	
104	ERQ	ERC Quantity	
105	ERR	E-Regulator Rest	
106	ERV	Re-Evac After Test	
107	ESC	Ext Switch Low Chk	
108	ESN	External Sniffer	
109	ESP	Exhaust Setpoint	
110	ET	Elapsed Time	
111	ETP	Evacuation Setpoint	
112	ETP	Fine T-Gas Target	
113	ETW	ERC Target Window	
114	ETW	ERC Target Window	
115	ETY	Edge Type	
116	EUP	Pressure Unit	
117	EVA	Evacuation Source	
118	EVC	Eval Condition	
119	EVD	Vacuum Decay	
120	EVL	Test Evaluation	
121	EVM	Allow Evac Limit	
122	EVP	Event Pressure	
123	EVT	Event Type	
124	EXD	Evacuation Xdcr	
125	EXP	Execution Pause	
126	FCC	Force Cal Cycles	
127	FCD	FCal Date Limit	
128	FCL	FCal Cycle Limit	
129	FCM	Force Cal Mode	
130	FCT	FCal Time Limit	
131	FCT	Force Cal Time	
132	FEL	Flow Event Limit	
133	FL	Flow	
134	FLD	Fine T-Gas Decay	
135	FLF	Fine T-Gas Fill	

	Test Data Identifier Code	Description
136	FMV	Finish Mix Verify
137	FNB	FF-NOB
138	FP	Flow Precision
139	FPR	Fill Pressure
140		Fine Sample
141	FPS	
	FSW	Final Source Weight
142	FTA	Dwell
143	FTA	Fill
144	FTX	Test Failed Text
145	Fdb	Tooling Feedback
146	GLD	Gross T-Gas Decay
147	GLF	Gross T-Gas Fill
148	GLN	Gross T-Gas Min
149	GLT	Gross T-Gas Target
150	GLX	Gross T-Gas Max
151	GPS	Gross Sample
152	GPT	Gross Fill Pulse
153	HLE	High Limit Event
154	HLF	High Limit Flow
155	HLL	High Limit Loss
156	HLP	High Limit Pressure
157	HLQ	High Limit Leak
158	HLR	High Limit Rate
159	HLV	High Limit %Vref
160	I/O	I/O ID
161	IET	Event Type
162	IF	Instrument Flow
163	IIS	Input Initial State
164	ILS	Level State
165	ILT	Level Time
166	IPR	Close Inner Purge
167	IS	Input State
168	LAV	Leak Alarm Volume
169	LCD	Leak Std/Cal Define
170	LCD	Leak Std Cal Date
171	LCF	Correction Factor
172	LDP	Leak Det Precision
173	LDT	Dev Zero Delay
174	LDU	Leak Det Unit
175	LDZ	Device Zero
176	LF	Master+Leak Flow
177	LFC	Leak Std Cal Flow
178	LFR	Master+Leak Flow Rd
179	LIN	Linearity
180	LKM	Link Motion

type "TABLI	E VARIABLE"
-------------	-------------

ype "TAl	BLE VARIA	BLE") F			
	Test Data Identifier Code	Description			Test Data Identifier Code	Description
181	LL	Master+Leak Loss		226	MQR	Master Part QL Rd
182	LLE	Low Limit Event		227	MSL	Reject Rate
183	LLF	Low Limit Flow		228	MSO	MS Iso Open Delay
184	LLL	Low Limit Loss		229	MSP	Max Pressure - Opt
185	LLP	Low Limit Pressure		230	MSR	Mark Severe Lk Rej
186	LLQ	Low Limit Leak		231	MST	Mass Spec Purge
187	LLR	Master+Leak Loss Rd		232	MTM	Min T-Gas Mode
188	LLR	Low Limit Rate		233	MTS	T-Gas Source
189	LLV	Low Limit %Vref		234	MV	T-Gas Mix Verify
190	LMP	Link Motion Preempt		235	MVF	T-Gas Target Press
191	LNL	Linearity Limit		236	MVH	Leak Rate High Limit
192	LOF	Loss Offset		237	MVL	Leak Rate Low Limit
193	LQ	Master+Leak QL		238	MVM	T-Gas Leak Rate
194	LQD	DP Mstr+Lk QL Rd		239	MVS	Start Mix Verify
195	LQD	DP Master+Leak QL		240	MVT	T-Gas Fill Timer
196	LQF	Master+Leak QF Rd		241	MXT	Max Tare Weight
197	LQF	Master+Leak QF		242	Mot	Motion Number
198	LQR	Master+Leak QL Rd		243	Mot	Number of Motions
199	LR	Leak Rate		244	NAM	Program Name
200	LRC	Leak Std Recert		245	NBC	Number of Barcodes
201	LSC	Leak Std Chk		246	NLK	Number of Links
202	LSP	Leak Std Pressure		247	NOP	Number of Options
203	LSS	Leak Std Select		248	NPP	Next Program
204	LSV	Leak Std Value		249	NPS	Number of Steps
205	LV	Launch Validation		250	NTP	Sample Points
206	MF	Master Part Flow		251	NUM	Number of Programs
207	MFO	Manual Fill		252	OLS	Open Leak Std
208	MFR	Master Part Flow Rd	-	253	OPT	Option
209	MFT	Manual Fill		254	P	Master Gauge Press
210	ML	Master Part Loss	-	255	P	Instrument Pressure
211	MLR	Master Part Loss Rd		256	P	Meas Pressure
212	MMF	Min Master Flow		257	P%V	Part % Vref
213	MMF	Min Master Flow	ļ ļ	258	PC	Pneumatic Code
214	MML	Min Master Loss		259	PCL	Leak Std Cal Press
215	MNT	Min Tare Weight		260	PCR	Pressure Correction
216	MO	Master Flow Offset		261	PCT	Chamber Post-Purge
217	MOR	Master Flow Offset		262	PDL	Press Delta Limit
218	MPC	Malfunction Percent		263	PEP	Part Evac Fault
219	MPF	Min Perform Factor		264	PET	Part Evac Limit
220	MPP	Max System Pressure		265	PEV	Part Evacuation
221	MQ	Master Part QL		266	PEX	Partial Exhaust
222	MQD	DP Mstr Part QL Rd		267	PF	Performance Factor
223	MQD	DP Master Part QL		268	PFL	Part Flow
224	MQF	Master Part QF Rd		269	PFM	Prefill Method
225	MQF	Master Part QF] [270	PG	Target Pressure

type	TABLE VARIA	BLE
	Test Data Identifier Code	Description
271	PKP	Peak Pressure
272	PL	Pressure Loss
273	PLP	Predicted Loss
274	PLQ	Master+Leak Q-Press
275	PLR	Pressure Loss Rd
276	PLR	DP Mstr+Lk Loss Rd
277	PM	Master Part Press
278	PM	Part Mark
279	PMF	Part Mark Feedback
280	PML	Master+Leak Press
281	PMN	Minimum Pressure
282	PMQ	Master Part Q-Press
283	PMX	Maximum Pressure
284	PNM	Sniffer Test Point
285	PP	Pressure Precision
286	PP	Proof Pressure
287	PPC	Part Present Check
288	PPE	Pre-Press Enable
289	PPR	Pre-Pressure
290	PPS	Pre-Press Select
291	PPW	Pre-Pressure Window
292	PO	Predicted Leak
293	PRF	Prefill
294	PRI	Programmable Input
295	PRO	Programmable Output
296	PRR	Pressure Restrict
297	PSL	Pressure Select
298	PSL	Pressure Select
299	PSL	Pressure Select
300	PSP	Setpoint Pressure
301	PST	Self-Test Pressure
302	PSV	Part Sniffer Type
303	PT	Target Pressure
304	PTF	Prefill
305	PTG	Gross Prefill
306	PTP	ΔP/ΔT Precision
307	PTS	Port Select
308	PTS	Part Seal
309	PTU	ΔP/ΔT Unit
310	PTX	Test Passed Text
311	PW	Weight Precision
312	Pp	Part Pressure
313	Pr	Ref Pressure
314	Pt	Test Pressure
315	Pt	Target Pressure

	Test Data Identifier Code	Description
316	Pt	Apply to Program #
317	Pt	Program Number
318	Pv	Estimated Part Size
319	QF	Quik Flow
320	QHL	Quik Test HL Band
321	QL	Quik Loss
322	QLL	Quik Test LL Band
323	QP	Quik Test Pressure
324	QPT	Quantity Points
325	QTE	Quik Test Enable
326	RAN	Number of Points
327	RAP	Analysis Pressure
328	RAS	Analysis Voltage
329	RAT	Analysis Percent
330	RAV	Reject Average
331	RC	Elec Regulator Cal
332	RC1	EReg Zero DA Cal
333	RC2	EReg Span DA Cal
334	RC3	EReg Zero Base Cal
335	RC4	EReg Span Base Cal
336	RCA	Analog Value
337	RCD	Last Cal Date
338	RCI	Instrument Pressure
339	RCP	Retention Cutoff
340	RCS	Setpoint Voltage
341	RCT	Last Cal Time
342	RCV	Master Value
343	RDI	Restore Default I/O
344	RDT	Reg Dwell Timer
345	RED	Refrgnt Vent Close
346	REG	Regulator
347	REO	Refrigerant Vent
348	REX	Refrigerant Vent
349	RFC	Fill Close Delay
350	RFL	Reference Loss
351	RL	Loss Rate
352	RLC	Run Leak Calibrate
353	RLR	Loss Rate Rd
354	RLV	Leak Std Value
355	RMX	EReg Span DA Cal
356	RNP	Number of Points
357	ROS	Reject on Slope
358	RPC	Reject Percentage
359	RPM	Ramp Method
360	RPP	Reject Program
361	RPP	Retain Part Press

	Test Data Identifier Code	Description	
362	RR	Retract on Reject	
363	RR	Ramp Rate	
364	RRT	Reject Rate Total	
365	RSI	Result Information	
366	RSP	Slope Window	
367	RSR	Slope Change/Sec	
368	RST	Stabilize	
369	RVH	High Limit Voltage	
370	RVH	High Limit Voltage	
371	RVL	Low Limit Voltage	
372	RVL	Low Limit Voltage	
373	RVP	Retain Volume Press	
374	RXM	Pre-Evac Exhaust	
375	SAM	Sample Size	
376	SAS	Start Auto Setup	
377	SCF	Cal Coefficient	
378	SCL	Leak Std Value	
379	SCO	Cal Offset	
380	SCP	Start Clean Part	
381	SCR	Reject Rate Percent	
382	SCT	Scale Type	
383	SEV	Leak Rate Window	
384	SF	Standard Flow	
385	SGN	Sample Gas Number	
386	SIO	Sniffer Init	
387	SMP	Sample Time	
388	SN	Step Number	
389	SNR	SNR	
390	SP	Starting Pressure	
391	SP	Standard Pressure	
392	SPM	Fine Wait	
393	SPT	Gross Wait	
394	SR	Set Regulator	
395	SRC	Start Calibration	
396	SRH	LD Leak Val Max	
397	SRL	LD Leak Val Min	
398	SSW	Starting Source Weight	
399	STL	Self-Test Level	
400	STM	Self-Test Method	
401	STN	Self-Test Program	
402	STP	Target Press	
403	STS	Start Self-Test	
404	STS	Self-Test Source	
405	STT	Self-Test Limit	
406	STV	Step Target Press	
	Ī	Target Window	

	Test Data Identifier Code	Description
408	SXC	Start Calibration
409	SXT	Start Xdcr Test
410	SXV	Start Verification
411	SZH	LD Zero Val Max
412	SZL	LD Zero Val Min
413	Ser	Serial Number
414	Stn	Channel Number
415	Т	Timer
416	Т	Timer
417	TBF	Background Limit
418	TI	Iso Delay Timer
419	TL	Tooling Option
420	TLK	Test Leak Rate
421	TLP	Leak Rate Precision
422	TLR	T-Gas Leak Rate
423	TLU	Leak Rate Unit
424	TML	Min T-Gas Setpoint
425	TMN	Fine T-Gas Min
426	TMP	Temp Precision
427	TMX	Fine T-Gas Max
428	TP	Time Precision
429	TPP	Target Program
430	TPW	Target Press Window
431	TQ	Quik Test Timer
432	TR1	Trigger 1
433	TRA	T-Gas Source
434	TRM	T-Gas Recovery
435	TSM	T-Gas Sampling
436	TT	Test Sel Timer
437	TT	Test Execution Time
438	TTF	TracerMate Flags
439	TTY	Test Type
440	TTY	Test Type
441	TV	Valve Delay Timer
442	TW	Target Weight
443	TWN	Min Fill Weight
444	TWX	Max Fill Weight
445	Тсу	Desired Cycle Time
446	Tm	Time
447	Tm	Timer Mode
448	UC	Current Unit
449	UDP	Δ Pressure Unit
450	UF	Flow Unit
451	UP	Percent Unit
452	UP	Pressure Unit
453	UPD	Unit/Prec Define

type	type "TABLE VARIABLE"		
	Test Data Identifier Code	Description	
454	UT	Time Unit	
455	UTM	Temperature Unit	
456	UV	Voltage Unit	
457			
	UV	Volume Unit	
458	V UW	Weight Unit V	
459			
460	VAN	Valve A Num - Opt	
461	VAP	Valve A PWM - Opt	
462	VAT	Valve A Type - Opt	
463	VBN	Valve B Num - Opt	
464	VBP	Valve B PWM - Opt	
465	VBT	Valve B Type - Opt	
466	VC	Valve Code	
467	VCN	Valve C Num - Opt	
468	VCP	Valve C PWM - Opt	
469	VCT	Valve C Type - Opt	
470	VDN	Valve D Num - Opt	
471	VDP	Valve D PWM - Opt	
472	VDT	Valve D Type - Opt	
473	VFL	Virtual Flow	
474	VHT	Vent/Halt Tooling	
475	VLP	Volume Precision	
476	VLV	Valve Number	
477	VNP	Number of Points	
478	VP	Voltage Precision	
479	VPS	Setpoint Pressure	
480	VPW	Valve PWM	
481	VSP	Setpoint Voltage	
482	VWO	Residual Offset	
483	WGT	Refrigerant Weight	
484	WHL	High Limit	
485	WIN	Stat History Length	
486	WLL	Low Limit	
487	XAN	Xdcr Zero LL	
488	XAX	Xdcr Base Max	
489	XBH	Xdcr Zero Hwin	
490	XBL	Xdcr Zero Lwin	
491	XC	Transducer Cal	
492	XC1	Xdcr Zero AD Cal	
493	XC2	Xdcr Span AD Cal	
494	XC3	Xdcr Zero Base Cal	
495	XC4	Xdcr Span Base Cal	
496	XCA	Analog Value	
497	XCB	Atm Pressure	
498	XCD	Last Cal Date	
499	XCF	Instrument Flow	

	Test Data Identifier Code	Description
500	XCI	Instrument Pressure
501	XCL	Xdcr Current Limit
502	XCM	Master Reading
503	XCP	Cal Pressure
504	XCS	Setpoint Pressure
505	XCT	Last Cal Time
506	XCV	Master Value
507	XCX	Xdcr Cal X Array
508	XCY	Xdcr Cal Y Array
509	XFC	Xdcr Filter Code
510	XFP	Flow Precision
511	XID	Xdcr Iso Delay
512	XIS	Xdcr Span Inter Cal
513	XIZ	Xdcr Zero Inter Cal
514	XLF	Max Mstr+Leak Flow
515	XMF	Max Master Flow
516	XML	Max Mstr+Leak Loss
517	XMN	Xdcr Base Min
518	XMX	Xdcr Base Max
519	XNP	Number of Points
520	XOP	Crossover Pressure
521	XPC	Pressure Correction
522	XPM	Pressure Mode
523	XPP	Pressure Precision
524	XPR	Pressure Reference
525	XRL	Xdcr Residual Limit
526	XRW	Xdcr Residual Warn
527	XSP	Setpoint Pressure
528	XT	Transducer
529	XT	Xdcr Tare
530	XTG	Xdcr Tare Range
531	XTR	Xdcr Typ Residual
532	XUF	Flow Unit
533	XUP	Pressure Unit
534	XV	Transducer Verify
535	XVD	Verify Date
536	XVF	Instrument Flow
537	XVI	Instrument Pressure
538	XVM	Master Reading
539	XVS	Setpoint Pressure
540	XVT	Verify Time
541	XVV	Master Value
542	XZC	Xdcr Zero Check
543	XZH	Xdcr Zero HL
544	XZL	Xdcr Zero LL
545	XZW	Xdcr Zero Window

This page is intentionally blank.

Appendix C -

Terminal Emulator Software Configuration

A variety of tools can be configured to communicate with the Sentinel instrument. Acceptable configurations of each are shown in this appendix.

PuTTY

RS-232 Serial Port Configuration

RealTerm

RS-232 Serial Port Configuration

Tera Term

RS-232 Serial Port Configuration

HyperTerminal Private Edition

RS-232 Serial Port Configuration

