CS418 Computer Graphics
John C. Hart

#### Rasterization

#### Converts

- lines and triangles
- with floating point vertices
- in viewport (screen) coordinates

#### into

- pixels
- with integer coordinates
- in viewport (screen) coordinates



• Ignore horizontal lines



- Ignore horizontal lines
- Sort edges by smaller y coordinate





| Edge | X | dx/dy | ymax |
|------|---|-------|------|
|      |   |       |      |
|      |   |       |      |
|      |   |       |      |
|      |   |       |      |

- For each scanline...
- Add edges wherey = ymin
- Sorted by x
- Then by dx/dy

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X | dx/dy | ymax |
|------|---|-------|------|
|      |   |       |      |
|      |   |       |      |
|      |   |       |      |
|      |   |       |      |

Plotting rules for when segments lie on pixels

- 1. Plot lefts
- 2. Don't plot rights
- 3. Plot bottoms
- 4. Don't plot tops

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X | dx/dy | ymax |
|------|---|-------|------|
| G    | 1 | 2/7   | 8    |
| A    | 1 | 4/2   | 3    |
|      |   |       |      |
|      |   |       |      |

- y = 1
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from  $ceil(x_0)$

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X     | dx/dy | ymax |
|------|-------|-------|------|
| G    | 1 2/7 | 2/7   | 8    |
| A    | 3     | 4/2   | 3    |
| В    | 8     | -3/1  | 3    |
| С    | 8     | 0/3   | 5    |

- y = 2
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from ceil( $x_0$ )

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X     | dx/dy | ymax |
|------|-------|-------|------|
| G    | 1 4/7 | 2/7   | 8    |
| C    | 8     | 0/3   | 5    |
|      |       |       |      |
|      |       |       |      |

- y = 3
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from  $ceil(x_0)$

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X     | dx/dy | ymax |
|------|-------|-------|------|
| G    | 1 6/7 | 2/7   | 8    |
| C    | 8     | 0/3   | 5    |
|      |       |       |      |
|      |       |       |      |

- y = 4
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from  $ceil(x_0)$

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X     | dx/dy | ymax |
|------|-------|-------|------|
| G    | 2 1/7 | 2/7   | 8    |
| D    | 8     | 1/4   | 9    |
|      |       |       |      |
|      |       |       |      |

- y = 5
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from  $ceil(x_0)$

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X     | dx/dy | ymax |
|------|-------|-------|------|
| G    | 2 3/7 | 2/7   | 8    |
| F    | 4     | -1/2  | 8    |
| Е    | 6     | 1/1   | 9    |
| D    | 8 1/4 | 1/4   | 9    |

- y = 6
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from ceil( $x_0$ )

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X     | dx/dy | ymax |
|------|-------|-------|------|
| G    | 2 5/7 | 2/7   | 8    |
| F    | 3 1/2 | -1/2  | 8    |
| Е    | 7     | 1/1   | 9    |
| D    | 8 2/4 | 1/4   | 9    |

- y = 7
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from  $ceil(x_0)$

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X     | dx/dy | ymax |
|------|-------|-------|------|
| Е    | 8     | 1/1   | 9    |
| D    | 8 3/4 | 1/4   | 9    |
|      |       |       |      |
|      |       |       |      |

- y = 8
- Delete y = ymax edges
- Update x
- Add y = ymin edges
- For each pair  $x_0, x_1$ , plot from  $ceil(x_0)$

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



| Edge | X | dx/dy | ymax |
|------|---|-------|------|
|      |   |       |      |
|      |   |       |      |
|      |   |       |      |
|      |   |       |      |

- y = 9
- Delete y = ymax edges
- Update x
- Add y = ymin edges

• For each pair  $x_0, x_1$ , plot from  $ceil(x_0)$ 

| Edge | ymin |
|------|------|
| A    | 1    |
| G    | 1    |
| В    | 2    |
| C    | 2    |
| D    | 5    |
| Е    | 6    |
| F    | 6    |



# Gouraud Interpolation

- Flat shading
  - Per face normals
  - Color jumps across edge
  - Human visual perception accentuates edges



- Smooth shading
  - Per vertex normals
  - Colors similar across edge
  - Edges become harder to discern





# Gouraud Interpolation

- Keep track of R, G, B at edge endpoints
- Compute dR/dy, dG/dy and dB/dy per edge
- Compute dR/dx, dG/dx and dB/dx at each scanline
- Color each pixel

$$R += dR/dx$$

$$G += dG/dx$$

$$B += dB/dx$$



