

Multiple facets of social influence in goal-directed learning

Lei Zhang

Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany Faculty of Psychology, University of Vienna, Austria

Marr's 3 levels

Computational theory	Representation and algorithm	Hardware implementation
What is the goal of the computation, why is it appropriate, and what is the logic of the strategy by which it can be carried out?	How can this computa- tional theory be imple- mented? In particular, what is the representa- tion for the input and output, and what is the algorithm for the trans- formation?	How can the representation and algorithm be realized physically?

Figure 1—4. The three levels at which any machine carrying out an information-processing task must be understood.

[...] "trying to understand perception by understanding neurons is like trying to understand a bird's flight by studying only feathers. It just cannot be done"

Marr, 1982

Marr's 3 levels

Lockwood et al., 2020

My own research

Overarching goal: uncover the neuro-computational mechanisms underlying social decision-making

→ social specificity?

Social influence

Challenge: no feedback is given in subjective decisions, hence direct no measure of internal value representation

Klucharev et al, 2009

social influence

Face (2 sec) Initial rating (3-5 sec) Group rating + Face (2 sec) ITI (3-5 sec) ITI (3-5 sec) ITI (3-5 sec)

goal-directed learning

Klucharev et al, 2009

Rangel et al, 2008

Goal-directed learning

Rangel et al, 2008

The current study

goal-directed learning

The current study

goal-directed learning

social influence

social influence on goal-directed learning

Where does social influence come from?

goal-directed learning social influence

value reward prediction error action selection ... conformity alignment normative influence informational influence ...

Direct learning

Social learning / observational learning

direct vs social learning

Suzuki et al, 2012

Grabenhorst et al, 2019 Olsson et al, 2020

Research Question

How does knowing about other people's decisions influence my own choices in the same environment?

behavioral readouts

Computation (why/goal)

What is the underlying algorithm by which social influence is integrated into my own decision-making?

computational modeling

Algorithm (what/rules)

How such computation is implemented in the brain?

functional neuroimaging

Implementation (how/physical)

Paradigm

- Probabilistic reversal learning task
- Goal: maximize the outcome
- Group decision-making
 - 5 same-gender subjects / group
- 185 participants (95 F, 18-37 yrs)
- Truly real-time communication via intranet

Procedure

1st choice

^{*}post-decision wagering metric (Persaud et al., 2007)

Procedure

1st choice

1st bet*

^{*}post-decision wagering metric (Persaud et al., 2007)

preference

^{*}post-decision wagering metric (Persaud et al., 2007)

preference

adjustment**

^{*}post-decision wagering metric (Persaud et al., 2007)

adjustment**

*post-decision wagering metric (Persaud et al., 2007)

outcome

Why bother?

- Enhances ecological validity
- Allows to dissociate reward-based info and socially-based info
- Suitable for applying computational modeling
- Enables to parametrically test the effect of group coherence

Behavioral Results

group coherence

Computational Modeling

What to be modeled?

Computational Modeling

What to be modeled?

1st bet

2nd choice

2nd bet

Direct learning

Instantaneous social info

1st choice

1st bet

2nd choice

2nd bet

Direct learning

Model Comparison

Hierarchical Bayesian Modeling (MCMC)+ Leave-one-out model prediction

RL: reinforcement learning OL: observational learning

Posterior predictive check

Summary

Instantaneous social information predicts behavioral adjustment (algorithmic).

Learning is a weighted combination of direct learning and observational learning (algorithmic).

Learning is a weighted combination of direct learning and observational learning (algorithmic).

Model-based fMRI analysis

Dissociable value signals

Domain

Option Domain

Action

Domain

Learning Fictitious RL

Domain

Conflicting social information and action adjustment

How do these regions interact?

Whether / how behavioral adjustment modulates the functional link between the brain's social hub and reward hub?

PPI: psycho-physiological interaction PhiPI: physio-physiological interaction

PPI reveals social prediction error

Prediction error:

$$PE = R_t - V_t$$

PPI reveals social prediction error

Functional connectivity (PhiPI)

A network of social decision-making

Summary

Social influence affects both choice and bet (computational).

Instantaneous social information predicts behavioral adjustment (algorithmic).

Learning is a weighted combination of direct learning and observational learning (algorithmic).

These dissociable value signals are respectively represented in vmPFC and ACC (implemental).

Connectivity reveals a network of social influence in decision-making (implemental).

Acknowledgement

Dr. Jan Gläscher

working group: Valuation and Social Decision-Making

RAs/HiWis:

Anne Bert Kiona Weisel Julia Spilcke-Liss Julia Majewski

Radiographers/MTRAs:

Katrin Bergholz Kathrin Wendt Timo Krämer Waldemar Schwarz

Lei Zhang, Jan P. Gläscher doi: https://doi.org/10.1101/551614

Abstract

Full Text

Info/History

Metrics

Preview PDF

Preprint:

https://www.biorxiv.org/conte nt/10.1101/551614v3

Science Advances, in press

Abstract

Humans learn from their own trial-and-error experience and from observing others. However, it remains unanswered how brain circuits compute expected values when direct learning and social learning coexist in an uncertain environment. Using a multi-

Shameless self promotion

lei.zhang@univie.ac.at

https://lei-zhang.net/

@lei_zhang_lz

<u>@zhang-lei-44-62</u>

@leizhang认知神经科学

<u>@LeiZhang</u>

@lei-zhang

Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices

Lei Zhang, $^{\odot 1,2}$ Lukas Lengersdorff, 1,2 Nace Mikus, 1 Jan Gläscher, 3 and Claus Lamm 1,2,4

¹Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria, ²Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria, ³Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and ⁴Vienna Cognitive Science Hub, University of Vienna, Vienna 1010, Austria

https://academic.oup.com/scan/article/15/6/695/5864690

https://www.mitpressjournals .org/doi/full/10.1162/CPSY_ a_00002

Thank you Presented by Lei Zhang