Gilt ML Course

- Pádraig Cunningham
 - UCD Computer Science
 - Insight Data Analytics Centre
- Content
 - Regression
 - Linear Regression
 - Multivariate Regression
 - Logistic Regression
 - Predictive Analytics
 - Evaluation
 - Other Classification Algorithms
 - Recommender Systems
- Data files
 - http://www.csi.ucd.ie/content/gilt-ml-course
 - http://goo.gl/bm6cd6

Regression

- Linear Regression
 - In Excel, In Weka
- Multiple Regression
- Logistic Regression
 - Odds, Log Odds
 - In Weka

Supervised Machine Learning

- aka: Predictive Analytics
- Regression or Classification?
- Regression
- Logistic Regression (actually classification)
- Other Classification Models
 - Naive Bayes
 - Neural Networks
 - Support Vector Machines

First: Task Categories

Supervised Learning

Unsupervised

Simple Regression

Height	Weight
173	75
160	60
190	82
192	99
162	78
165	66
155	65
163	58
170	80
172	85
180	70
160	60
188	80
190	90
177	80

Predict Weight, given only Height

Simple Regression

Height	Weight	Pred- Weight
173	75	75.1
160	60	65.32
190	82	87.88
192	99	89.39
162	78	66.83
165	66	69.08
155	65	61.56
163	58	67.58
170	80	72.84
172	85	74.35
180	70	80.36
160	60	65.32
188	80	86.38
190	90	87.88
177	80	78.11

Weight = $0.75 \times \text{Height} - 54.99$

Linear Regression

- Iris Setosa from Iris data set
 - Sepal Width
 - Sepal Length
- Model

$$y = \beta_0 + \beta_1 x$$

Linear Regression

0.7468

0.1995

50

- In Weka
 - Load iris-setosa.csv
 - Remove last 3 atts.

```
Linear Regression Model
sepalwidth =
      0.8072 * sepallength +
     -0.623
Time taken to build model: 0.05 seconds
=== Evaluation on training set ===
=== Summary ===
Correlation coefficient
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
                                         66.5071 %
Total Number of Instances
```


Linear Regression

- Estimate Petal Width
 - from Petal Length

```
Linear Regression Model

petalwidth =

0.1893 * petallength +
-0.0331

Time taken to build model: 0 seconds

=== Evaluation on training set ===
=== Summary ===

Correlation coefficient
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
```


0.3063 0.0794 0.101 94.7497 % 95.1932 %

LR: Parameter Estimation

 The parameters can be calculated directly from the data.

$$y = \beta_0 + \beta_1 x$$

$$\beta_1 = \frac{n\Sigma(xy) - \Sigma x\Sigma y}{n\Sigma(x^2) - (\Sigma x)^2}$$

$$\beta_0 = \frac{\sum y - m\sum x}{n}$$

See: http://www.csi.ucd.ie/files/iris-setosa.xls

Multiple Regression

- Estimate Petal Width
 - from Petal Length, Sepal Length & Sepal Width

```
Linear Regression Model

petalwidth =

0.1893 * petallength +
-0.0331

Time taken to build model: 0 seconds

=== Evaluation on training set ===
=== Summary ===

Correlation coefficient
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
```

```
Linear Regression Model
petalwidth =
      0.0251 * sepallength +
      0.0488 * sepalwidth +
      0.1569 * petallength +
     -0.2782
Time taken to build model: 0 seconds
=== Evaluation on training set ===
=== Summary ===
Correlation coefficient
                                          0.3865
Mean absolute error
                                          0.0762
                                          0.0979
Root mean squared error
Relative absolute error
                                         90.8572 %
Root relative squared error
                                         92.2296 %
Total Number of Instances
                                         50
```

0.3063 0.0794 0.101 94.7497 % 95.1932 %

Multiple Regression

\Diamond	A	В	C	D	E
72	Sepal-len	Sepal-width	Petal-len	Petal-width	
73	5.1	3.5	1.4	0.2	Iris-setosa
74	4.9	3	1.4	0.2	Iris-setosa
'5	4.7	3.2	1.3	0.2	Iris-setosa
76	4.6	3.1	1,5	0.2	Iris-setosa
77	5	3.6	1. I	Linear Regress:	ion Model
78	5.4	3.9	1,	etalwidth =	
79	4.6	3.4	1.	occurwing.	
0	5	3.4	1.		sepallength
31	4.4	2.9	1.		sepalwidth petallength
82	4.9	3.1	1.	-0.2782	pecarrengen
83	5.4	3.7	1.		
0.4	4.0	2.4	. 1	Time taken to l	build model:
				== Evaluation	on training

In Excel

= LINEST(D73:D122,A73:C122,TRUE,TRUE)

F				
	0.157	0.049	0.025	-0.278
ł				

icient	0.3865
or	0.0762
error	0.0979
error	90.8572 %
ared error	92.2296 %
nstances	50

Multiple Regression

Allow attribute selection

```
Linear Regression Model

petalwidth =

0.0656 * sepalwidth +
0.1638 * petallength +
-0.22

Time taken to build model: 0 seconds

=== Evaluation on training set ===
=== Summary ===

Correlation coefficient
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
```

```
Linear Regression Model
petalwidth =
      0.0251 * sepallength +
      0.0488 * sepalwidth +
      0.1569 * petallength +
     -0.2782
Time taken to build model: 0 seconds
=== Evaluation on training set ===
=== Summary ===
Correlation coefficient
                                          0.3865
                                          0.0762
Mean absolute error
Root mean squared error
                                          0.0979
Relative absolute error
                                         90.8572 %
                                         92.2296 %
Root relative squared error
Total Number of Instances
                                         50
```

```
0.3827
0.0752
0.0981
89.6547 %
92.3863 %
```


BikeShare Data

- season: season (1:spring, 2:summer, 3:fall, 4:winter)

- yr: year (0: 2011, 1:2012)

- mnth: month (I to I2)

- holiday: whether day is holiday or not

- weekday: day of the week

- workingday: if day is neither weekend nor holiday is 1, otherwise is 0.

+ weathersit:

- I: Clear

- 2: Mist

- 3: Rain

- temp: Normalized temperature

- atemp: Normalized feeling temperature

- hum: Normalized humidity

- windspeed: Normalized wind speed

Outcomes

- casual: count of casual users

- registered: count of registered users

- cnt: both casual and registered

BikeShare Model

Linear Regression Model

```
casual =
registered =
                                                  * season +
                                             61
  447 * season +
                                                  * yr +
                                             286
  1754 * yr +
                                             -15
                                                  * mnth +
  -23 * mnth +
                                            -274
                                                  * holiday +
 -244 * holiday +
                                             26
                                                  * weekday +
  42 * weekday +
                                            -828
                                                  * workingday +
  948 * workingday +
                                                  * weathersit +
                                            -113
 -497 * weathersit +
                                            1194 * temp +
  834 * temp +
                                             894
                                                  * atemp +
 2678
       * atemp +
                                            -393
                                                  * hum +
 -625
        * hum +
                                            -862
                                                  * windspeed +
 -1695 * windspeed +
                                             700
  768
```

For other examples see: http://logisticregressionanalysis.com/

Odds and Probabilities

- What is the probability of throwing a 6?
 - I/6 = 0.16667

- What are the odds of throwing a 6?
 - **→** 1:5
 - I to 5
 - I/5 = 0.2
 - 0.2 is the monetary stake required to win I unit in a wager with fair odds.

$$odds = \frac{prob}{1 - prob}$$

$$prob = \frac{odds}{1 + odds}$$

Logistic Regression

 In linear regression the dependent variable is a numeric value

$$y = \beta_0 + \beta_1 x$$

 In logistic regression the dependent variable is the log odds that an outcome variable is 1.

$$ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

Logistic Regression

log odds is the dependent variable

$$ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

$$\frac{p}{1-p} = odds = e^{(\beta_0 + \beta_1 x)}$$

$$p = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}} \quad \text{given} \quad prob = \frac{odds}{1 + odds}$$

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

more generally
$$ln\frac{p}{1-p} = \beta_0 + \sum_{j=1}^d \beta_j x_j$$

$$prob = \frac{odds}{1 + odds}$$

Logistic Regression

 Equivalent to a single layer neural network with a sigmoid transfer function

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Binge Drinking Example

- 17,096 students, 3,314 binge drinkers
- p = 0.194, odds = 0.24
- predictive variable is gender
 - x = 1 if man, x = 0 if woman
- $p_{men} = 0.227$, $odds_{men} = 0.294$, $ln(odds_{men}) = -1.23$
- $p_{women} = 0.17 \ odds_{women} = 0.205, \ ln(odds_{women}) = -1.59$

Taken from text book by Moore and McCabe

http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore16.pdf

Binge Drinking Example

- $-p_{men} = 0.227$, $odds_{men} = 0.294$, $ln(odds_{men}) = -1.22$
- $p_{women} = 0.17 \ odds_{women} = 0.205, \ ln(odds_{women}) = -1.58$

$$ln\left(\frac{p_{men}}{1 - p_{men}}\right) = \beta_0 + \beta_1 x \qquad ln\left(\frac{p_{women}}{1 - p_{women}}\right) = \beta_0$$

$$\beta_0 = -1.58; \beta_1 = 1.58 - 1.22 = 0.36$$

Interpretability: being male adds 0.36 to the log odds

Building (Training) LR Models

- Models can have many input variables
- Training is done in an iterative fashion
 - see Iteratively Re-weighted Least Squares
 - http://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares
 - see Charles Elkan tutorial at UCSD
 - http://cseweb.ucsd.edu/~elkan/250B/logreg.pdf

Regression

- Linear Regression
 - In Excel, In Weka
- Multiple Regression
- Logistic Regression
 - Odds, Log Odds
 - In Weka

