## **Exercise 6. Answer Sheet**

Student's Name: Tomonori Masubuchi Student's ID: s1240078

**Problem 1.** Given the graph below



a) (10 points) Fill the following matrix by putting 1 if there is an edge between nodes. Put 0 otherwise.

|   | a | b | с | D | Е | f | g | Н |
|---|---|---|---|---|---|---|---|---|
| a | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| b | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| c | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| d | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| e | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| f | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| g | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| h | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |

b) (40 points) Write a program implementing Warshal's algorithm. Upload your code. Use your program to create a transitive closure G\* of the graph above and show it in the space below.

## Transitive closure defined by adjacency table

|   | a | b | с | D | e | f | g | Н |
|---|---|---|---|---|---|---|---|---|
| a | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| b | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| С | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| d | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| e | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| f | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| g | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| h | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

```
#include<stdio.h>
int n;
int func[100][100];
int main(){
 int i,j,k;
 printf("Please input:");
 scanf("%d",&n);
 for(i = 0; i < n; i ++)
   for(j = 0; j < n; j ++)
     scanf("%d",&func[i][j]);
 for(k = 0; k < n; k ++)
   for(i = 0; i < n; i ++)
     for(j = 0; j < n; j ++)
        if(func[i][j] != 1)func[i][j] = func[i][k] * func[k][j];
 printf("\nOutput\n");
 for(i = 0; i < n; i ++)
   for(j = 0; j < n; j ++)
```

```
{
    printf("%d ",func[i][j]);
}
printf("\n");
}
return 0;
}
```

**Problem 2.** (50 points) Consider the following weight adjacency matrix.

|   | a        | b        | с        | d        | e        | f  | g  | Н  |
|---|----------|----------|----------|----------|----------|----|----|----|
| a | 0        | 48       | $\infty$ | 8        | 20       | 8  | 20 | 8  |
| b | $\infty$ | 0        | 24       | $\infty$ | 9        | 8  | 76 | 29 |
| c | 97       | $\infty$ | 0        | $\infty$ | $\infty$ | 8  | 18 | 1  |
| d | $\infty$ | 52       | 34       | 0        | 29       | 8  | 8  | 8  |
| e | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 0        | 10 | 8  | 8  |
| f | $\infty$ | 10       | 85       | 43       | $\infty$ | 0  | 41 | 29 |
| g | $\infty$ | $\infty$ | $\infty$ | 76       | 38       | 8  | 0  | 8  |
| h | 28       | 42       | $\infty$ | 77       | 21       | 8  | 11 | 0  |

Write a program implementing Floyd's algorithm. Upload your code. Given the matrix above, calculate all pairs shortest paths using your program and fill the table below:

All pairs shortest path table

|   | A   | b  | c  | d  | e  | f  | g  | Н  |
|---|-----|----|----|----|----|----|----|----|
| a | 0   | 40 | 42 | 8  | 20 | 30 | 20 | 43 |
| b | 53  | 0  | 24 | 61 | 9  | 19 | 36 | 25 |
| c | 29  | 42 | 0  | 37 | 22 | 32 | 12 | 1  |
| d | 63  | 49 | 34 | 0  | 29 | 39 | 46 | 35 |
| e | 67  | 20 | 44 | 53 | 0  | 10 | 50 | 39 |
| f | 57  | 10 | 34 | 43 | 19 | 0  | 40 | 29 |
| g | 105 | 58 | 82 | 76 | 38 | 48 | 0  | 77 |
| h | 28  | 41 | 65 | 36 | 21 | 31 | 11 | 0  |

```
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define INF 99999
int min(int x, int y){
```

```
if(x == 0) return x;
 if(x == INF || y < x) return y;
 else return x;
int n;
int func[100][100];
int main(){
 int i,j,k;
 char c[100];
 printf("Please input: ");
 scanf("%d", &n);
 for(i = 0; i < n; i ++)
   for(j = 0; j < n; j ++)
         scanf("%s", c);
         if(strcmp(c,"infinity") == 0)func[i][j] = INF;
         else func[i][j] = atoi(c);
   }
 for(k = 0; k < n; k ++)
    for(i = 0; i < n; i ++)
         for(j = 0; j < n; j ++)
           if(func[i][k] != INF && func[k][j] != INF) func[i][j] = min(func[i][j], func[i][k] + func[k][j]);
        }
   }
 printf("\nOutput\n");
 for(i = 0; i < n; i ++)
   for(j = 0; j < n; j ++)
         if(func[i][j] == INF)printf("infinity ");
         else printf("%d ",func[i][j]);
   printf("\n");
 return 0;
```