Projeto 1 – Otimização de Métodos Monolíticos e Ensembles para Aprendizagem de Máquina

1. Métodos Monolíticos

1.1. Wine Dataset

1.1.1. Decision Tree

Melhores Parâmetros		
max_depth	12	

Precisão	
Classe 0	0.89
Classe 1	0.89
Classe 2	0.94
Média/Total	0.91

	Matriz de Confusão		
	0	1	2
0	17	1	0
1	2	16	1
2	0	1	16

1.1.2. Naïve Bayes

Precisão: 0.96 (+/- 0.09)

1.1.3. K-Nearest Neighbors (KNN)

Melhores Parâmetros		
n_neighbors 3		
weights	distance	

Precisão	
Classe 0	0.84
Classe 1	0.85
Classe 2	0.87
Média/Total 0.85	

	Matriz de Confusão		
	0	1	2
0	16	1	1
1	1	17	1
2	2	2	13

1.1.4. Multi-Layer Perceptron (MLP)

Melhores Parâmetros	
alpha	0.01
activation	relu
solver	Ibfgs
hidden_layer_sizes	60

Precisão		
Classe 0	0.89	
Classe 1	0.94	
Classe 2	0.94	
Média/Total	0.93	

	Matriz de Confusão		
	0	1	2
0	17	1	0
1	2	16	1
2	0	0	17

1.1.5. Support Vector Machine (SVM)

Melhores Parâmetros		
kernel	rbf	
С	30	
gamma	0.001	

Precisão	
Classe 0	1.00
Classe 1	0.86
Classe 2	0.94
Média/Total 0.93	

	Matriz de Confusão		
	0	1	2
0	17	1	0
1	0	18	1
2	0	2	15

1.2. Liver Disorders Dataset

1.2.1. Decision Tree

Melhores Parâmetros		
max_depth	2	

Precisão	
Mean Absolute Error	2.5240

1.2.2. K-Nearest Neighbors (KNN)

Melhores Parâmetros		
n_neighbors	20	
weights	distance	

Precisão		
Mean Absolute Error	2.4644	

1.2.3. Multi-Layer Perceptron (MLP)

Melhores Parâmetros		
alpha	0.001	
activation	tanh	
solver	adam	
hidden_layer_sizes	55	

Precisão	
Mean Absolute Error	2.6744

1.2.4. Multi-Layer Perceptron (MLP)

Melhores Parâmetros		
kernel	rbf	
С	100	
gamma	0.0001	

Precisão	
Mean Absolute Error	2.6875

2. Métodos de Ensembles

2.1. Wine Dataset

2.1.1. Bagging

Melhores Parâmetros	
n_estimators	4
base estimator	Gaussian NB

Precisão		
Classe 0	1.00	
Classe 1	0.91	
Classe 2	1.00	
Média/Total	0.97	

	Matriz de Confusão		
	0	1	2
0	21	2	0
1	0	20	0
2	0	0	11

2.1.2. Boosting – AdaBoost

Melhores Parâmetros		
n_neighbors	80	
base_estimator	Gaussian NB	
learning_rate	1.0	
algorithm	SAMME.R	

Precisão		
Classe 0	1.00	
Classe 1	0.91	
Classe 2	1.00	
Média/Total	0.97	

	Matriz de Confusão			
	0 1 2			
0	22	1	0	
1	0	20	0	
2	0	1	10	

2.1.3. Random Subspaces (RSS)

Melhores Parâmetros		
max_features	0.3	
n_estimators	58	
base_estimator	Decision Tree	
hidden_layer_sizes	60	

Precisão		
Classe 0	1.00	
Classe 1	0.91	
Classe 2	1.00	
Média/Total	0.97	

	Matriz de Confusão		
	0	1	2
0	21	2	0
1	0	20	0
2	0	0	11

2.1.4. Random Forest (RF)

Melhores Parâmetros		
n_estimators	13	
criterion	entropy	
max_depth	20	

Precisão		
Classe 0	1.00	
Classe 1	0.95	
Classe 2	1.00	
Média/Total	0.98	

	Matriz de Confusão		
	0	1	2
0	22	1	0
1	0	20	0
2	0	0	11

2.2. Liver Disorders Dataset

2.2.1. Bagging

Melhores Parâmetros		
n_estimators 93		
base_estimator	Decision Tree	

Precisão	
Mean Absolute Error	2.3750

2.2.2. Boosting - AdaBoost

Melhores Parâmetros		
n_estimators	9	
base_estimator	KNN-3	

Precisão		
Mean Absolute Error	2.4070	

2.2.3. Random Subspaces (RSS)

Melhores Parâmetros		
n_estimators	45	
base_estimator	KNN-3	

Precisão	
Mean Absolute Error	2.3602

2.2.4. Random Forest (RF)

Melhores Parâmetros		
n_estimators	23	
criterion	Mse	
max_depth	3	

Precisão		
Mean Absolute Error	2.3796	

3. Rankings

3.1. Wine Dataset

Método	Precisão
Random Forest (RF)	0.98
Random Subspaces (RSS)	0.97
Boosting - AdaBoost	0.97
Bagging	0.97
Naive Bayes (Gaussian)	0.96
Support Vector Machine (SVM)	0.93
Multi-Layer Perceptron (MLP)	0.93
Decision Tree	0.91
K-Nearest Neighbors (KNN)	0.85

3.2. Liver Disorders Dataset

Método	MEA
Random Subspaces (RSS)	2.3602
Bagging	2.3750
Random Forest (RF)	2.3796
Boosting - AdaBoost	2.4070
K-Nearest Neighbors (KNN)	2.4644
Decision Tree	2.5240
Multi-Layer Perceptron (MLP)	2.6744
Support Vector Machine (SVM)	2.6874