

Sistem de alarmă împotriva incendiilor

Nume: Gorgan Raluca-Sara

Grupa: 2127

Seria: B

Profesorii îndrumători: Prof. Dr. Ing. Pop Ovidiu, Dr. Ing. Alexandra Fodor

Cuprins

1.	Tematica proiectului	
2.	Specificatii de proiectare	
3.	Schema bloc	5
4.	Schema electrică a circuitului	<i>6</i>
5.	Serii de valori standardizate	7
6.	Oglindă de curent	9
7.	Repetor	15
8.	Amplificator operational	18
9.	Comparator neinversor	21
10.	LED-ul si rezistența	25
11.	Releul	35
12.	Analize Monte Carlo/Worst Case	38
13	Bibliografie	43

UNIVERSITATEA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

1. Tematica proiectului

Să se proiecteze un sistem de alarmă împotriva incendiilor. Știind că senzorul de fum folosit poate să măsoare concentrația de fum liniar în domeniul specificat în tabel în coloana C, sistemul se va proiecta astfel încât alarma să se declanșeze la nivelul de fum menționat in coloana D. Alarma se va opri după ce nivelul de fum scade pana la valoarea din coloana E. Senzorul de fum se va modela cu ajutorul unui rezistor. Variația liniară a rezistenței electrice a senzorului cu concentrația de fum este specificată în coloana F și trebuie convertită într-o variație de tensiune în domeniul [0-(VCC-2V)], VCC fiind precizat in coloana G. Alarma este comandată de un comparator cu histereză prin intermediul unui releu care este modelat cu un rezistor. Starea alarmei (pornit/oprit) este semnalizată de un LED având culoarea specificată în tabel, in coloana H

2. Specificatii de proiectare

Tabel: Specificații

С	D	E	F	G	Н
Domeniul masurabil al concentratiei de fum	Nivelul concentrației de fum pentru pornirea alarmei [ppm]	Nivelul concentrației de fum pentru pornirea alarmei [ppm]	Rezistenta senzorului[Ω]	VCC[V]	Culoare LED de semnalizare
1110-1550	1500	1150	2k-12k	14	Roșu

3. Schema bloc

4. Schema electrică a circuitului

Schema include oglinda de curent, repetorul, amplificatorul operațional, comparatorul neinversor si ansamblul Releu+LED

UNIVERSITATEA TEHNICA

5. Serii de valori standardizate

Pentru acest proiect am ales rezistente care sa apartină seriei standardizate E96 cu toleranta de 1%.

Prin urmare, uitandu-mă in tabel, dupa ce am făcut calculele am realizat următoarele ajustări:

E-96	(tolerar	nta 1%)						
1.00	2.00	3.01	4.02	5.11	6.04	7.15	8.06	9.09
1.02	2.05	3.09	4.12	5.23	6.19	7.32	8.25	9.31
1.05	2.10	3.16	4.22	5.36	6.34	7.50	8.45	9.53
1.07	2.15	3.24	4.32	5.49	6.49	7.68	8.66	9.76
1.10	2.21	3.32	4.42	5.62	6.65	7.87	8.87	
1.13	2.26	3.40	4.53	5.76	6.81			
1.15	2.32	3.48	4.64	5.90	6.98			
1.18	2.37	3.57	4.75					
1.21	2.43	3.65	4.87					
1.24	2.49	3.74	4.99					
1.27	2.55	3.83						
1.30	2.61	3.92						
1.33	2.67							
1.37	2.74							
1.40	2.80							
1.43	2.87							
1.47	2.94							
1.50								
1.54								
1.58								
1.62								
1.65								
1.69								
1.74								
1.78								
1.82								
1.87								
1.91								
1.96								

R17=13.65K -> 13.7K R20=1K, R18=1K, R18=1K

R21=1,56K->

R3=10K, R10=10K

R11=27.6K -> 28K

R19=2.03K -> 2.05K

R24=600 Ohm -> 604 Ohm

RL=378 Ohm -> 383 Ohm

UNIVERSITATEA TEHNICĂ

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

6. Oglindă de curent

Pentru a realiza oglinda de curent, mi-am ales tranzistoare pnp low-current de tip BC556A, e important ca tranzistoarele sa fie la fel deoarece se fac pe aceiasi pastila de siliciu si am urmărit foaia de catalog

Philips Semiconductors Product specification

PNP general purpose transistors

BC556; BC557

FEATURES

- . Low current (max. 100 mA)
- . Low voltage (max. 65 V).

APPLICATIONS

· General purpose switching and amplification.

DESCRIPTION

PNP transistor in a TO-92; SOT54 plastic package. NPN complements: BC546 and BC547.

PINNING

PIN	DESCRIPTION
1	emitter
2	base
3	collector

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter			
	BC556		_	-80	V
	BC557		_	-50	V
V _{CEO}	collector-emitter voltage	open base			
	BC556		_	-65	V
	BC557		_	-45	V
V _{EBO}	emitter-base voltage	open collector	_	-5	٧
Ic	collector current (DC)		-	-100	mA
I _{CM}	peak collector current		-	-200	mA
I _{BM}	peak base current		_	-200	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	-	500	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

specificațiile acestora.

cu

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicatji și Tehnologia Informației

Philips Semiconductors

Product specification

PNP general purpose transistors

BC556; BC557

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	note 1	250	K/W

Note

1. Transistor mounted on an FR4 printed-circuit board.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = -30 V	48	-1	-15	nA
		I _E = 0; V _{CB} = -30 V; T _j = 150 °C	48	-	-4	μА
I _{EBO}	emitter cut-off current	I _C = 0; V _{EB} = -5 V	48	-	-100	nA
h _{FE}	DC current gain BC556 BC557 BC556A BC556B; BC557B BC557C	I _C = -2 mA; V _{CE} = -5 V; see Figs 2, 3 and 4	125 125 125 220 420		475 800 250 475 800	
V _{CEsat}	collector-emitter saturation	$I_C = -10 \text{ mA}; I_B = -0.5 \text{ mA}$	76	-60	-300	mV
	voltage	$I_C = -100 \text{ mA}; I_B = -5 \text{ mA}$	20	-180	-650	mV
V _{BEsat}	base-emitter saturation voltage	I _C = -10 mA; I _B = -0.5 mA; note 1	3 8	-750	-	mV
		I _C = -100 mA; I _B = -5 mA; note 1	-	-930	-	mV
V _{BE}	base-emitter voltage	I _C = -2 mA; V _{CE} = -5 V; note 2	-600	-650	-750	mV
		I _C = -10 mA; V _{CE} = -5 V; note 2		-	-820	mV
Cc	collector capacitance	I _E = i _e = 0; V _{CB} = -10 V; f = 1 MHz	=0	3	-	pF
C.	emitter capacitance	I _C = I _c = 0; V _{EB} = -0.5 V; f = 1 MHz	-	10	-	pF
fT	transition frequency	I _C = -10 mA; V _{CE} = -5 V; f = 100 MHz	100	-	-	MHz
F	noise figure	$I_C = -200 \mu A$; $V_{CE} = -5 V$; $R_S = 2 k\Omega$; $f = 1 kHz$; $B = 200 Hz$	-	2	10	dB

Notes

- V_{BEsat} decreases by about –1.7 mV/K with increasing temperature.
- V_{BE} decreases by about –2 mV/K with increasing temperature.

Calcule

$$(R_{m} \cdot I)_{max} = 12V$$

$$I = \frac{12V}{R_{mmax}} = \frac{12V}{12k0hm} = 1mA$$

$$R_{mmin}. I = 2k \cdot 1mA = 2V$$

$$R_{mmax}. I = 12k \cdot 1mA = 12V$$

$$V_{senzor} \in [2V, 12V]$$

$$I = \frac{V_{cc} = V_{BE}}{R} = > R = \frac{V_{cc} = V_{BE}}{I}$$

$$R = \frac{14 - 0,65V}{1mA} = \frac{13,65}{1mA} = 13,65k0hm = > 13,7k0hm$$

$$(1)$$

Am realizat o analiză DC Sweep cu parametru global pe care l-am declarat si inițializat.

Variația curentului

Variația tensiunii pe senzor

Cu ajutorul formulelor învățate în timpul laboratorului "MIN respectiv MAX" am obținut rezistenta minima si maxima iar apoi cu ajutorul cursorului am obținut exact valoarea acestora.

->MIN=2,20k

->MAX=11,74k

UNIVERSITATEA TEHNICĂ

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

7. Repetor

Pentru a realiza repetorul, AO operațional si Comparatorul, am ales amplificatorul operational uA741, urmărind specificațiile din foaia de catalog.

CLEOTO, CAL CUAS	ACYEBIETICS IVE	= +15V Ta = 25°	µA741A C unless otherwise specified)				
PARAMETERS (see		CONDITION		MIN	TYP	MAX	UNITS
	De l'initionit	Rs < 50Ω		1	0.8	3.0	mV
Input Offset Voltage	11 to 10 10	ng < 5011		+		15	μV/°C
Average Input Offset	Voltage Drift			-	3.0	30	nA
Input Offset Current	Carres Dalle			-	- 0.0	0.5	nA/+C
Average Input Offset	Current Drift				30	80	nA
Input Bies Current	- Davis	Vo = +10	20; Vs = +20, -10V, Rs = 50Ω	-	15	50	μV/V
Power Supply Rejecti		13 - 10, -	20, 13 120, 101,113 2011	10	25	35	mA
Output Short Circuit	Current	V _S = ±20V		1.0	80	150	mW
Power Dissipation		Vs = ±20V		1.0	6.0	100	MΩ
Input Impedance	0.1.		RL'= 2kΩ, VOUT = ±15V	50	0.0	-	V/mV
Large Signal Voltage	Rise Time	VS - 120V,	ML - 2ktt, VOUT - 118V		0.25	0.8	μs
Transient Response				70.00	6.0	20	*
(Unity Gain)	Overshoot			.437	1.5		MHz
Bandwidth (Note 4) Slew Rate (Unity Gain) The following specifications apply				0.3	0.7		V/us
		VIN = 110V		0,3	0.7	-	
	specifications apply	or -55 C < 1A	1 +125 C	-	-	4.0	mV
Input Offset Voltage				+	-11 738	70	nA
Input Offset Current				1		210	nA
Input Bias Current		W		80	95	2.0	d8
Common Mode Rejec		V _S = ±20V, V _{IN} = ±15V, R _S = 50Ω		10	- 30		mV
Adjustment For Inpu		VS = ±20V		10	-	40	mA
Output Short Circuit	Current		-55°C	10		165	mW
Power Dissipation	er Dissipation V _S = ±20V		+125°C	+	-	135	mW
		14]+125 C	0.5		100	МΩ
Input Impedance		V _S = ±20V	10 - 10/0	116	_		V
Output Voltage Swin	9	Vs = ±20V.	R _L = 10kΩ R ₁ = 2kΩ	115	_		V
				32	-		V/mV
Large Signal Voltage	Gein		RL = 2kΩ, VOUT = ±15V	10	_		V/mV
		es up to 70°C. A	bove 70°C embient derete linearly	at 6.3mW/	°C for the	metal can,	B.3mW/°C fo

FAIRCHILD LINEAR INTEGRATED CIRCUITS . #A741

PARAMETERS (see de		VS = ±15 V, TA = 25°C unless otherwise specific CONDITIONS	TYP	MAX	UNITE	
Input Offset Voltage		R _S < 10 kΩ		1.0	5.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nA
Input Resistance			0.3	2.0		MU
Input Capacitance				1.4		pF
Offset Voltage Adjustn	nent Range			115		mV
Large Signal Voltage G		RL > 2 kft, VOUT = ±10 V	50,000	200,000		
Output Resistance				75		n
Output Short Circuit C	urrent			26		mA
Supply Current	-			1.7	2.9	mA
Power Consumption	and the second			50	85	mW
Transient Response	Rise time			0.3		μs
(Unity Gain)	Overshoot	VIN = 20 mV, RL = 2 kΩ, CL < 100 pF		5.0		%
Slew Rate	Ownincor	R _L > 2 kΩ		0.5		V/µt
The following speci	fications apply fo	or -55°C < TA < +125°C:				
Input Offset Voltage		R _S < 10 kΩ		1.0	6.0	mV
	-	TA ++125°C		7.0	200	nA
Input Offset Current	r	TA = -55°C		85	500	, nA
		TA = +125°C	YELD YELD	0.03	0.6	μА
Input Biss Current		TA55°C		0.3	1.5	μA
			112	±13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V
Input Voltage Range	SALE AND CHIEF		70	90	S. Za Value	dB
	on Ratio	R _S < 10 kΩ	10			
Common Mode Rejecti		R _S < 10 kΩ R _S < 10 kΩ	70	30	150	μV/V
Common Mode Rejecti Supply Voltage Rejecti	on Ratio	R _S < 10 kΩ	25,000	30	150	
Common Mode Rejecti Supply Voltage Rejecti Large Signal Voltage G	on Ratio			30 ±14	150	V
Common Mode Rejecti Supply Voltage Rejecti Large Signal Voltage G	on Ratio	R _S < 10 kΩ R _L > 2 kΩ, V _{OUT} = ±10 V	25,000		150	
Common Mode Rejecti Supply Voltage Rejecti Large Signal Voltage G Output Voltage Swing	on Ratio	R _S < 10 kΩ R _L > 2 kΩ, V _{OUT} = ±10 V R _L > 10 kΩ R _L > 2 kΩ	25,000 ±12	114	2.5	V
Common Mode Rejecti Supply Voltage Rejecti Large Signal Voltage G Output Voltage Swing	on Ratio	R _S < 10 kΩ R _L > 2 kΩ, V _{OUT} = ±10 V R _L > 10 kΩ R _L > 2 kΩ T _A = +125°C	25,000 ±12	±14 ±13		V
Input Voltage Range Common Mode Rejecti Supply Voltage Rejecti Large Signal Voltage G Output Voltage Swing Supply Current	on Ratio	R _S < 10 kΩ R _L > 2 kΩ, V _{OUT} = ±10 V R _L > 10 kΩ R _L > 2 kΩ	25,000 ±12	±14 ±13	2.5	V V mA

TYPICAL PERFORMANCE CURVES FOR μΑ741A AND μΑ741

Un amplificator tampon, cunoscut și sub denumirea de buffer, este un circuit electronic folosit pentru a izola etapele unui sistem electronic. Funcția principală a unui amplificator tampon este de a transfera un semnal de la o etapă la alta fără a influența caracteristicile semnalului, cum ar fi amplitudinea sau impedanța.

8. Amplificator operațional

Am realizat un divizor de tensiune pentru Vref.

Calcule

$$\frac{R^4}{R^3} = \frac{V_{0max} - V_{0min}}{V_{cdmax} - V_{cdmin}}$$

$$\frac{R^4}{R^3} = \frac{12 - 0}{11,74 - 2,20} - 1 \implies 1,25 - 1 = 0.25$$

$$\frac{R^4}{R^3} = 0,25$$

Am ales R3 = 10k

$$R4 = 10 \cdot 0.25 = 2.5k$$

 \hat{I} n final => R3 = 10k iar R4 = 2,5k

$$V_{ref} = \frac{\frac{(1+\frac{R^2}{R^2})}{R^2} \cdot \frac{V}{C^{cdmax}} \cdot \frac{-V}{0}}{1}$$

$$V_{ref} = \frac{1,25 \cdot 11,74 - 12}{0,26} = \frac{2,675}{0,26} = 10,28V$$
(4)

Calcule pentru divizorul de tensiune

$$\frac{R11}{R11+R10} \cdot V_{CC} = V_{REF}$$

$$\frac{R11}{R11+R10} \cdot 14 = 10,28V$$

$$\frac{14R11}{R11+R10} = 10,28V$$
(5)

$$14R11 = 10,28R11 + 10,28R10$$

$$14R11 - 10,28R11 = 10,28R10$$

$$3,72R11 = 10,28R1$$

$$\frac{R11}{R10} = \frac{10,28V}{3,72V}$$

$$\frac{R11}{R10} = 2,76$$

Am ales R10=10k

$$=>R11=27,6k=>28k$$

E96 1%

În urma simulării se observă ca am o variație de tensiune intre [0- (*Vcc*-2V)] și anume [0-12V]

9. Comparator neinversor

Sistemul se va proiecta astfel încat ca la atingerea nivelului de fum de 1500 [ppm] led-ul să se aprinda iar la atingerea nivelului de fum de 1150 led-ul sa se stinga. O să realizez acest lucru folosind un comparator neinversor

Calcule

$$Rsenzor \in [2K - 12K]$$

Rezistenta variaza 10K

Presiunea variaza 440ppm

$$\frac{10K}{440ppm} = \frac{10 \times 10^{3}Ohm}{440ppm}$$

$$= > 22.72 Ohm/ppm$$

$$R1 = 2K + 40ppm \times \frac{22,72}{ppm} = 2K + 908,8m = 2,908K$$

$$R2 = 12K - 50ppm \times \frac{22,72}{ppm} = 12K - 1,136K = 10,864K$$

$$V \in [0,12V]$$
 => $Variaz \times 12 V$

$$\frac{12V}{440m} = \frac{0.027V}{ppm}$$

$$0.027V \dots 1ppm$$

$$x \dots 40ppm$$

$$x = \frac{40ppm \times 0.027V}{1ppm} = 1,09V$$

$$0.027V \dots 1ppm$$

$$y \dots 390ppm$$

$$y = 10,53V$$

 $V_{PH}=10,86\text{V}->1500 \text{ [ppm]}$

 $V_{PL}=2,90V->1150$ [ppm]

$$VPH = -\frac{R18}{R18 + R19} \times Vcc + \frac{R19}{R18 + R19} \times Vref$$

$$VPL = \frac{R18}{R18 + R19} \times Vcc + \frac{R19}{R18 + R19} \times Vref$$
(6)
(7)

Am scazut cele doua ecuatii =>

$$V_{PH} - V_{PL} = 2 \times V_{CC} \times \frac{R18}{R18 + R19}$$

$$10,53 - 1,09 = 2 \times 14 \times \frac{R18}{R18 + R19}$$

$$9,44 = 28 \times \frac{R18}{R18 + R19}$$

$$\frac{R18}{R18 + R19} = \frac{9,44}{28}$$
(8)

$$\frac{R18}{R18 + R19} = 0.33$$

$$R18 = 0.33 \times R18 + 0.33 \times R19$$

$$0,67 \times R18 = 0,33 \times R19$$

$$\frac{R19}{R18} = \frac{0,67}{0,33}$$

$$\frac{R19}{R18} = 2,03$$

Am ales R18=1K

Am adunat cele 2 ecuatii =>

$$V_{PH} + V_{PL} = 2 \times \frac{R^2}{R^{1+R^2}} \times Vref \qquad (9)$$

$$11,62 = 2 \times \frac{2,03}{3,03} \times Vref \qquad (10)$$

$$11,62 = 1,33 \times Vref$$

$$Vref = 8,67V$$

$$Vref = \frac{R^{20}}{R^{20+R^{21}}} \times Vcc \qquad (11)$$

$$8,67 = \frac{R^{20}}{R^{20+R^{21}}} \times 14 \qquad (12)$$

$$\frac{R^{20}}{R^{20+R^{21}}} = 0,61$$

$$R^{21} = 0,61 \times R^{20} + 0,61 \times R^{21}$$

$$0,39 \times R^{21} = 0,61 \times R^{20}$$

$$\frac{R^{21}}{R^{20}} = \frac{0,61}{0,39}$$

$$\frac{R^{21}}{R^{20}} = 1,56k$$

Am ales R20=1K

Am realizat înca un divizor de tensiune pentru Vref 2.

După cum se poate observa, pentru concentrația fumului de 1500 se aprinde alarma

$$V_{PH}=10,86V$$

Dupa cum se poate observa, pentru concentrația fumului de 1150 se stinge alarma

$$V_{PL} = 2,90 \text{V}$$

LED-ul si rezistența **10.**

M-am uitat in foaia de catalog a led-ului roșu

Facultatea de Electronică, Telecomunicatji și Tehnologia Informației

Standard LED

Red Emitting Colour

Features:

- High intensity
 Standard T-1 3/4 diameter package
 General purpose leads
 Reliable and rugged

Package Dimensions:

Dimensions : Millimetres (Inches)

Specification Table

Chip Material	Lens Colour	Source Colour	Part Number
AlGaAs	Diffused	Red	MV5754A

Notes:

- Tolerance is ±0.25 mm (0.01°) unless otherwise noted
 Protruded resin under flange is 1 mm (0.04°) maximum
 Lead spacing is measured where the leads emerge from the package

www.element14.com www.farnell.com www.newark.com

Page <1>

18/10/11 V1.1

Standard LED **Red Emitting Colour**

Absolute Maximum Ratings at T_a = 25°C

Parameter	Maximum	Unit	
Power Dissipation	80	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1 ms Pulse Width)	100	mA	
Continuous Forward Current	20		
Derating Linear From 50°C	0.4	mA/°C	
Reverse Voltage	5	v	
Operating Temperature Range	-25°C to +80°C		
Storage Temperature Range	-40°C to +100°C		
Lead Soldering Temperature (4 mm (0.157) Inches from Body)	260°C for 5 s		

Electrical Optical Characteristics at Ta = 25°C

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Test Condition
Luminous Intensity	I _v		40		mod	l _f = 20 mA (Note 1)
Viewing Angle	201/2		25		Deg	(Note 2)
Peak Emission Wavelength	λp		640		nm	l _f = 20 mA
Dominant Wavelength	λd		635		nm	l _f = 20 mA (Note 3)
Spectral Line Half-Width	Δλ		25		nm	l _f = 20 mA
Forward Voltage	V _f		2	2.5	٧	l _f = 20 mA
Reverse Current	I _R	-		100	μА	V _R = 5 V

Notes:

- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve
- 2. θ_{32} is the off-axis angle at which the luminous intensity is half the axial luminous intensity 3. The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the colour of the device

Standard LED Red Emitting Colour

reported Motics: This date steet and its contents five "information"; being the remindent of the Premier Familia (placy of companies of the Content of Con

www.tarnell.com www.tarnell.com

Page <3> 18/10/11 V1.1

Din foaia de catalog=> $Iled \cong 30mA$

$$R8 = \frac{E - Vled}{Iled} = \frac{20V - 2V}{30mA} = \frac{18V}{30mA} = 0.6 \times 10^{3} \, Ohm = 600 \, Oh \rightarrow 604 \, Ohm$$

E96 1%

Pentru a ridica caracteristica LED-ului roșu o sa mă folosesc de foaia de catalog a acestuia.

În cadrul foii de catalog, sunt expuse mai multe caracteristici cea de mai jos e cea mai utila în cazul meu deoarece arata modul in care variază curentul prin LED in funcție de tensiune.

UNIVERSITATEA TEHNICĂ

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Observăm faptul ca tensiunea de prag a LED-ului roșu este in jur de 2V.

Modelare LED

Pentru a modela LED-ul am folosit Pspice Model Editor.

Am adăugat valorile in urma analizei caracteristicii de mai sus

Am extras parametrii

Am șters tot de la Rs în jos iar apoi l-am salvat cu numele "ledrosu"

Punem în proiectul Orcad unde este circuitul o componentă Dbreak. Dăm click dreapta pe această componentă și la Implementation Path ne punem fișierul .lib creat în model editor.

Dăm la Configuration Files->Library si adăugăm fișierul .lib, apoi apăsăm Add to Design, apoi Apply și Ok.

Releul 11.

Am ales un tranzistor npn de tip BC107A, urmărind foaia de catalog a acestuia.

R1 (16-August 2012)

BC107,A,B BC108B,C BC109B,C

NPN SILICON TRANSISTOR

ELECTRICAL CHARACTERISTICS - Continued: (T _A =25°C unless otherwise noted)								
	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
	h _{fe}	V _{CE} =5.0V, I _C =2.0mA, f=1.0kHz (BC107)	125		500			
	h _{fe}	V _{CE} =5.0V, I _C =2.0mA, f=1.0kHz (BC107A)	125		260			
	h _{fe}	V _{CE} =5.0V, I _C =2.0mA, f=1.0kHz (BC107B, BC108B, BC109B)	240		500			
	h _{fe}	V _{CE} =5.0V, I _C =2.0mA, f=1.0kHz (BC108C)		500				
	h _{fe}	V _{CE} =5.0V, I _C =2.0mA, f=1.0kHz (BC109C)	450		900			
	fT	V _{CE} =5.0V, I _C =10mA, f=100MHz	150			MHz		
	Cob	V _{CB} =10V, I _E =0, f=1.0MHz			4.5	pΕ		
	NF	NF V _{CE} =5.0V, I _C =0.2mA, R _Q =2.0kΩ, B=200Hz, f=1.0kHz (BC107, BC108)						
	NF	V _{CE} =5.0V, I _C =0.2mA, R ₀ =2.0kΩ, B=200Hz, f=1.0kHz (BC109)			4.0	dB		

TO-18 CASE - MECHANICAL OUTLINE

DIMENSIONS								
	INCHES		MILLIMETERS					
SYMBOL	MIN	MAX	MIN	MAX				
A (DIA)	0.209	0.230	5.31	5.84				
B (DIA)	0.178	0.195	4.52	4.95				
С	-	0.030	-	0.76				
D	0.170	0.210	4.32	5.33				
Ē	0.500	-	12.70	-				
F (DIA)	0.016	0.019	0.41	0.48				
G (DIA)	0.100 0.050		2,54					
Н			1.27					
	0.036	0.046	0.91	1.17				
J	0.028	0.048	0.71	1,22				
TO-18 (REV: R1)								

LEAD CODE: 1) Emitter 2) Base

MARKING: FULL PART NUMBER

R1 (16-August 2012)

www.centralseml.com

Am ales factorul de amplificare in curent: β =100

Ireleu=30mA=IC=IE

$$RL = \frac{Vcc - (VCE + VBE)}{Ireleu} = > RL = \frac{14V - (2V + 0.65V)}{30mA}$$

$$14V - 2.65V - \frac{11.35V}{2} = 0.279 \times 10^{3} \text{ Ohm} = 278 \text{ Ohm} = 282 \text{ Ohm}$$

$$\frac{14V-2.65V}{30mA} = \frac{11,35V}{30mA} = 0,378 \times 10^3 \text{ Ohm} = 378 \text{ Ohm} -> 383 \text{ Ohm}$$

$$IC = \beta \times IB => IB = \frac{IC}{\beta} => IB = \frac{30mA}{100} = 0.3mA = 300\mu A$$

$$R9 = R9 = \frac{Vcc - VBE}{IB} = \frac{14V - 0.65V}{300\mu A} = \frac{13.35V}{0.3mA} = 44.5 \times 10^3 \ Ohm = 44.5 \ KOhm \rightarrow 44.5 \ KOhm$$

12. Analize Monte Carlo/Worst Case

Analiza Monte Carlo constituie cel mai bun mod de analiza a unui circuit din punct de vedere statistic, de a vedea cum se comporta acel circuit la variatii ale valorilor componentelor.

Analiza Worst-case/Sensitivity

Sensitivity identifică care parametrii ai componentelor sunt critici pentru funcționarea circuitului. Această analiză determină în ce masură fiecare componenta afectează funcționarea circuitului. De asemenea modifică toate valorile pentru a simula cel mai defavorabil caz.

Analiza Monte Carlo

Facem profilul de simulare

Simulare

Analiza Worst-case/Sensitivity

Simulare

13. Bibliografie

Editare Bibliografie

- Site web [1]
- Foaie de catalog [2]
- Cursuri [3]

Bibliografie

- [1] https://www.bertys.ro/codul_culorilor_rezistente.htm
- [2] Tranzistor uA741, Tranzistor BC107A, Led Roșu
- [3] Cursuri Dispozitive Electronice Prof.dr.ing. Emilia Şipoş

Curs Teams Tehnici CAD- Prof.dr.ing. Ovidiu Pop

http://193.226.6.189/dce/didactic/de/DE_Curs7.pdf- Comparatoare cu AO cu RP. Amplificatoare electronice

http://193.226.6.189/dce/didactic/de/DE_Curs10.pdf- Aplicații cu AO

http://193.226.6.189/dce/didactic/de/DE_Curs13.pdf- TB. Tranzistoare MOS