Linguagens Formais e Autômatos

Aula 02 - Autômatos finitos

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 2 Seções 2.1 e 2.2
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 1 Seção 1.1

- Definição informal
 - Conjunto de estados: cada um "lembra" o que já foi feito na história de um sistema
 - Conjunto de transições: movimentos possíveis de um estado para outro
 - Controle: dispositivo hipotético que lê uma entrada externa e move de um estado para outro
 - Existem transições que não mudam o estado
 - Exemplo: geladeira

Exercício: Locadora de vídeo

- Aplicações
 - Avaliar um determinado processo/protocolo em busca de erros/falhas
 - Ex: e se eu fechar a porta com o alarme tocando?
 - Ex: e se eu reservar um filme atrasado?
 - Dependendo da implementação, pode resultar em erros

- Definição Formal: DFA
- $A=(Q,\Sigma,\delta,q_0,F)$
 - Q=Conjunto finito de estados
 - Σ=Conjunto finito de símbolos de entrada
 - δ=Função de transição
 - q₀=Um estado inicial (q₀ ∈ Q)
 - F=Um conjunto de estados finais ou de aceitação (F
 ⊆ Q)

- Função de transição
 - \circ $\delta: Q \times \Sigma \rightarrow Q$
- Define o funcionamento do autômato
- Ex. da geladeira:
 - Precisa ter estado inicial e de aceitação
 - Q = {Fechada, Aberta, Alarme}
 - \circ $\Sigma = \{abrir, fechar, 10seg, 20seg\}$
 - q0 = Fechada
 - o F = {Fechada}

- δ(Fechada, abrir) = Aberta
- δ(Aberta, fechar) = Fechada
- $\delta(Aberta, 10seg) = Alarme$
- δ(Alarme, 20seg) = Aberta

- Em um DFA
 - As transições estão completas
 - Para todo estado e todo símbolo de entrada
 - Sempre sabe o que fazer
 - Definição de determinismo

- Notações
 - Diagramas (Exemplo mais comum)
 - Tabelas de transição (Versão tabular do diagrama)
 - Representam completamente a 5-upla do autômato
- Diagrama de estado
 - Cada estado tem um nó correspondente
 - Estado inicial (seta apontando para o estado a partir do nada)
 - Estado de aceitação (círculo duplo)
 - Setas saindo de um estado para outro são transições
 - Representação visual da função δ

• Ex:{x01y | x e y são quaisquer strings de 0's e 1's}

Versão tabular

- Linhas correspondem aos estados
- Colunas correspondem às entradas
- Estado inicial é marcado com uma seta
- Estados de aceitação são marcados com asterisco

	0	1
→ q0	q1	q0
q1	q1	q2
* q2	q2	q2

- Um DFA denota uma linguagem
 - Conjunto de todas as cadeias que aceita
 - \circ L(M) = A
 - M reconhece A
 - M aceita A
 - Mesmo que um M não aceite nenhuma cadeia
 - Ele aceita a linguagem vazia Ø

- Quando o autômato recebe uma cadeia de entrada
 - Processa a cadeia e produz uma saída: aceita ou rejeita
 - Começa no estado inicial
 - Lê símbolos da esquerda para a direita
 - Após ler um símbolo, move-se de um estado para outro, de acordo com a função de transição
 - Quando lê o último símbolo, produz a saída
 - Se o autômato estiver em estado de aceitação, a saída será aceita
 - Caso contrário, será rejeitada
- Ex: abrir-fechar-abrir-fechar
- Ex: 0010111

• Ex:{x01y | x e y são quaisquer strings de 0's e 1's}

- Definição formal de linguagem (indutiva)
 - \circ $\delta(q,a)=p$
 - \circ $\delta^{(q,\epsilon)=q}$
 - \circ $\delta^{(q,w)} = \delta(\delta^{(q,x)},a)$ onde w=xa
 - \circ L(A)={w| $\delta^{\circ}(q_0, w)$ está em F}
- Definição:
 - Se L é L(A) para algum DFA
 - L é regular

- Configuração instantânea
- $W_1W_2W_3...W_kQW_{k+1}W_{k+2}...W_{n-2}W_{n-1}W_n$
- Ex:
 - Entrada: 001010011
 - Configuração: 001[q₃]010011
 - Já leu 001, falta ler 010011
 - Encontra-se no estado q₃
 - Próxima entrada é 0

Interpretando autômatos finitos

Dado o seguinte autômato finito:

Interpretando autômatos finitos

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 00000 0100 01000 010000 010101 11111
- Quais dessas cadeias fazem parte da linguagem do autômato?
- Descreva informalmente a linguagem do autômato
- Descreva formalmente a linguagem do autômato

Respostas

- Linguagens com um 1 pelo menos e um número par de zeros depois do último 1 (zero é par)
 - A = {w | w contém pelo menos um 1 e um número par de 0s segue o último 1}

Interpretando autômatos finitos

Dado o seguinte autômato finito:

Interpretando autômatos finitos

 Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:

0101 0110 1001 1111 1 11100

- Quais dessas cadeias fazem parte da linguagem do autômato?
- Descreva informalmente a linguagem do autômato
- Descreva formalmente a linguagem do autômato

Respostas

- Cadeias com um número par de 0s e 1s
- L = {w | w tem ao mesmo tempo um número par de 0s e um número par de 1s}

Interpretando Autômatos Finitos

Dado o seguinte autômato finito:

	0	1
→ q1	q1	q2
* q2	q1	q2

Interpretando autômatos finitos

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 010
 0111110
 0000001
 1101
 001
 11100
- Quais dessas cadeias fazem parte da linguagem do autômato?
- Descreva informalmente a linguagem do autômato
- Descreva formalmente a linguagem do autômato

Respostas

- Todas as cadeias que terminam com 1
- L = {w | w termina com um 1}

Interpretando autômatos finitos

Interpretando autômatos finitos

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - a b aa bb bab ab ba bbba
- Quais dessas cadeias fazem parte da linguagem do autômato?
- Descreva informalmente a linguagem do autômato
- Descreva formalmente a linguagem do autômato

Respostas

- Cadeias que começam e terminam com o mesmo símbolo
- L = {w | w começa e termina com a ou w começa e termina com b}

- Projetar é um processo criativo
- Não pode ser reduzido a uma receita ou fórmula simples
- Dica: ponha-se a si próprio no lugar da máquina que está tentando projetar
 - Veja como você se conduziria para realizar a tarefa da máquina
 - Você recebe uma cadeia de entrada
 - Vai vendo os símbolos um por um
 - Você não sabe quando o final da cadeia está vindo
 - Tem que estar sempre pronto com a resposta

- Você precisa lembrar coisas sobre a cadeia
 - Impossível lembrar tudo
 - Autômatos finitos não sabem contar!
 - Nem você consegue lembrar tudo
 - Imagine uma entrada com 1000 dígitos
 - Precisa ter uma lógica
 - Um raciocínio
 - Essa informação é crucial
 - Depende do feeling, talento, dom, etc...

- Ex:
 - \circ $\Sigma = \{0,1\}$
 - Linguagem = cadeias com número ímpar de 1s

Ex:

- \circ $\Sigma = \{0,1\}$
- Linguagem = cadeias que contém a cadeia 001 como uma subcadeia

- Ex:
 - \circ $\Sigma = \{0,1\}$
 - Linguagem = cadeias que terminam em 00

Mais um exercício

- Linguagem A consistindo de todas as cadeias sobre {0,1} contendo um 1 na terceira posição a partir do final
 - Ex: 000100, 010110 estão em A, mas 0011 não

Mais um exercício

Fim

Aula 02 - Autômatos finitos