GRB 211211A-like Events and How Gravitational Waves May Tell Their Origins

Yi-Han Yin, Nanjing University

The Peculiar GRB 211211A

long duration

kilonova evidence

NS-NS? NS-BH? NS-WD? Collapsar? ...?

The Peculiar GRB 211211A

NS-BH interpretation

(Jin-Ping Zhu et al. 2022)

- $a \sim 1.23 M_{\odot} NS$
- $a \sim 8.21 M_{\odot} BH$
- an aligned spin of $\chi_{\rm BH}$ ~ 0.62
- formed an NS-first-born NSBH

NS-WD interpretation

(Jun Yang et al. 2022)

- comparable masses
- WD close to the Chandrasekhar limit
- a millisecond post-merger magnetar engine
- WD ~ 1.3 M_{\odot} and NS ~ 1.4 M_{\odot}

$$\frac{\approx 8 \, sr}{\Omega_{GBM} \, T_{GBM}} \approx 7 \, yrs$$

$$\frac{\Omega_{GBM} \, T_{GBM}}{4\pi} \rho_{0,GRB \, 211211A} V_{max} = N \ge 1$$

$$V_{max} = \int_{0}^{z_{max}} \frac{f(z)}{1+z} \frac{dV(z)}{dz} dz$$

(derived from Eldrige et al. 2019)

$$\frac{28 sr}{\Omega_{GBM} T_{GBM}} \approx 7 yrs$$

$$\frac{\Omega_{GBM} T_{GBM}}{4\pi} \rho_{0,GRB \ 211211A} V_{max} = N \ge 1$$

$$V_{max} = \int_0^{z_{max}} \frac{f(z)}{1+z} \frac{dV(z)}{dz} dz$$

$$\frac{\approx 8 \, sr}{\Omega_{GBM} \, T_{GBM}} \approx 7 \, yrs$$

$$\frac{\Omega_{GBM} \, T_{GBM}}{4\pi} \rho_{0,GRB \, 211211A} V_{max} = N \ge 1$$

$$V_{max} = \int_0^{z_{max}} \frac{f(z)}{1+z} \frac{dV(z)}{dz} dz$$

$$\rho_{0,\text{GRB }211211A} \simeq 5.67 \times 10^{-3} N \ Gpc^{-3} yr^{-1}$$

From galactic source: BNS ~ 5000, NSWD ~ 6700

===> get a relative rate density factor $k \sim 1.34$

From SGRB data

===> get beamed BNS event rate density ρ_{BNS}

Assuming same beaming factor

==> NSWD event rate density $\rho_{\text{NSWD}} = k \times \rho_{\text{BNS}} = 1.3 \text{ Gpc}^{-3} \text{ yr}^{-1}$

Fraction $f = \rho_{0,GRB211211A} / \rho_{NSWD} \sim N/307 \sim 3.26N \%$

===> only a few out of 307 NS-WD merger can make such a GRB

Distinguish between GW Signals

Distinguish between GW Signals

NS-BH

inspiral phase (*TaylorF2*)

inspiral-merger-ringdown

(IMRPhenomNSBH)

NS-WD

inspiral phase (*TaylorF2*)

 \downarrow

merger point (frequency)

 \downarrow

merger phase (unknown)

Distinguish between GW Signals

obtain optimal signal-to-noise ratio (SNR) through matched filtering

$$\rho = 2 \sqrt{\int_{f_{low}}^{f_{high}} \frac{|\tilde{h}(f)|^2}{S_n(f)}} df \qquad h_c(f) = 2f|\tilde{h}(f)|$$

$$h_c(f) = 2f|\tilde{h}(f)|$$

$$h_n(f) = \sqrt{fS_n(f)} \qquad \rho = \sqrt{\int_{f_{low}}^{f_{high}} \left[\frac{h_c(f)}{h_n(f)}\right]^2} d(logf)$$

in visualization: the area between the source and the detector curves on a log-log scale

Merger System	Detectors	Longevity	Distance (Mpc)	Range (Hz)	ρ	PSD Ref.
NS-BH	aLIGO	=	347.8	20-512	22.62	$LIGO\text{-}T1800044\text{-}v5^{\mathrm{a}}$
	AdV	-	347.8	20-512	16.15	$LIGO-P1200087-v48^{b}$
	KAGRA	-	347.8	20-512	$\sqrt{}$ 19.54	$\rm JGW\text{-}T1707038\text{-}v9^{c}$
	A+	-	347.8	20-512	43.35	$LIGO\text{-}T1800042\text{-}v5^{\mathrm{d}}$
	AdV+	-	347.8	20-512	29.52	$LIGO\text{-}P1200087\text{-}v48^{\mathrm{e}}$
	KAGRA+	-	347.8	20-512	38.27	$ m JGW-T1809537-v6^{f}$
NS-WD	BBO	$\sim 5 \text{ years}$	347.8	$(1.03 - 4.66) \times 10^{-1}$ $(1.03 - 4.66) \times 10^{-1}$	1432.36	Yagi & Seto (2011)
	DECIGO	$\sim 5 \text{ years}$	347.8	$(1.03 - 4.66) \times 10^{-1}$	635.62	
	LISA	$\sim 4 \text{ years}$	347.8	$(3.63 - 3.70) \times 10^{-2}$	4.55×10^{-2}	Robson et al. (2019)
			1.98		8	
	TaiJi	\sim 5 years	347.8	$(4.58 - 4.79) \times 10^{-2}$	8.92×10^{-2}	Ruan et al. (2020)
			3.83		8	
	TianQin	$2 \times (3 \text{ months})$	347.8	$(2.84 4.66) \times 10^{-1}$	7.18×10^{-2}	Hu et al. (2018)
		each year	3.10		8	

For millihertz space-borne detectors to detect the signal, GRB 211211A would have to be much closer, e.g., at a distance of around **3 Mpc**.

THANK YOU