Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k

Thatchaphol Saranurak
University of Michigan

Wuwei Yuan
IIIS, Tsinghua University

Maximal k-Edge-Connected Subgraphs Problem

- Graph G is k-(edge-)connected if one needs to delete at least k edges to disconnect G
- Input: undirected unweighted graph G=(V,E) with n=|V| and m=|E| and number k
- Output: unique vertex partition $\{V_1, \dots, V_Z\}$ such that,
 - $G[V_i]$ is k-connected, and
 - there is no $V_i' \supset V_i$ where $G[V_i']$ is k-connected
- Dynamic k-connected subgraphs problem: maintain k-connected subgraphs under updates

k = 3

k-Connected Components

- Two vertices s and t are k-connected in G if one needs to delete at least k edges to disconnect s and t in G
- Set of vertices S is k-connected if every pair of vertices in S is kconnected
- *k*-connected component: maximal *k*-connected subset

[Abboud+'22]: find all k-connected components in $O(m^{1+o(1)})$ time

Applications

Previous Works

All above algorithms require $\Omega(n^{3/2})$ time when m=O(n) and k=3

Reference	Time	Constraints
Folklore	$\tilde{O}(mn)$	Randomized
Chechik+ [SODA'17]	$\tilde{O}ig(m\sqrt{n}k^{O(k)}ig)$	
Forster+ [SODA'20]	$\tilde{O}(mk + n^{3/2}k^3)$	Randomized
Georgiadis+ ['22]	$\tilde{O}(m+n^{3/2}k^8)$	

Previous Works

All above algorithms require $\Omega(n^{3/2})$ time when m=O(n) and k=3

Reference	Time	Constraints
Folklore	$\tilde{O}(mn)$	Randomized
Chechik+ [SODA'17]	$\tilde{O}(m\sqrt{n}k^{O(k)})$	
Forster+ [SODA'20]	$\tilde{O}(mk + n^{3/2}k^3)$	Randomized
Georgiadis+ ['22]	$\tilde{O}(m+n^{3/2}k^8)$	
This work	$O\left(m + n^{1+o(1)}\right)$	$k = \log^{o(1)} n$

Definitions

- E(S,T): set of edges between S and T
- Vertex set S is a k-cut if $|E(S, V \setminus S)| < k$

Recursive Algorithm

 Each k-connected subgraph is contained in some k-cut

[Karger'96]: find global mincut in $\tilde{O}(m)$ time

Requires $\Omega(n)$ rounds!

Our Approach

• Key idea: maintain list of vertices L, which contains at least one vertex

from each *k*-cut

- Initially, $L \leftarrow V$
- While |L| > 1
 - Choose arbitrary $u, v \in L$
 - Check if u and v are k-connected

[JS'21]: Fully dynamic pairwise k-connectivity for $k = \log^{o(1)} n$ in $O(n^{o(1)})$ time

L contains at least one vertex from each k-cut

- If u and v are k-connected
 - Remove v from L

u and v are in the same k-connected component, so they are in the same k-cut

k = 3

$$L = \{1,2,3,4,5,6\}$$

L contains at least one vertex from each k-cut

- Otherwise, u and v are not k-connected
 - We can find two k-connected components
 - Remove smaller one U and recurse on U

Add neighbours of U to L

$$L = \{1,3,4,5,6\}$$

[CHILP'17]: Each k-cut in $G \setminus U$ either (1) is a k-cut in G, or (2) contains some neighbour of U

$$L = \{1,2,4,5,6\}$$

$$L = \{1,2,4,5\}$$

$$L = \{1,4,5\}$$

$$L = \{1,4\}$$

L contains at least one vertex from each k-cut

- Finally: the remaining graph is k-connected
- #vertices ever added into L in each recursion step: O(m)
- #recursion levels: $O(\log n)$

|U| < |V(G)|/2

• Total running time: $O(m^{1+o(1)})$

[GIKP'22]: Can be improved to
$$O(m + n^{1+o(1)})$$
 using sparsification techniques

$$L = \{1\}$$

Conclusion

- Our results (for $k = \log^{o(1)} n$)
 - Maximal k-edge-connected subgraphs in $O(m+n^{1+o(1)})$ time
 - ullet Decremental maximal k-connected subgraphs in $Oig(m^{1+o(1)}ig)$ time
- Open problems
 - Remove constraint on k
 - Improve $n^{o(1)}$ to polylog(n)
 - Weighted / directed graphs
 - Incremental / fully dynamic updates
 - Maximal k-vertex-connected subgraphs

Thank you!