Policy Gradient

Last Time

Bandits

Guiding Questions

- What is Policy Optimization?
- What is Policy Gradient?
- What tricks are needed for it to work effectively?

Map

Challenges in RL

- Exploration and Exploitation
- Credit Assignment

Generalization

Policy Optimization

$$egin{aligned} ext{maximize} & E \ s_{\sim b} \ \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \mid s_0 = s, a_t = \pi(s_t)
ight] \end{aligned}$$

$$\operatornamewithlimits{maximize}_{\pi} U(\pi) = \mathop{E}_{s \sim b} \left[U^{\pi}(s)
ight]$$

Two approximations:

1. Parameterized stochastic policies

$$\max_{ heta} ext{mize} \quad U(\pi_{ heta}) = U(heta)$$

$$a \sim \pi_{\theta}(a \mid s)$$

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$
 trajectory: $au=(s_0,a_0,r_0,s_1,a_1,r_1,\ldots s_d,a_d,r_d)$

$$au = (s_0, a_0, r_0, s_1, a_1, r_1, \dots s_d, a_d, r_d)$$

Two classes of optimization algorithms:

- 1. Zeroth order (use only $U(\theta)$)
- 2. First order (use $U(\theta)$ and $\nabla_{\theta}U(\theta)$)

1. Zeroth-Order Optimization

Common zeroth-order aproaches:

- 1. Genetic Algorithms
- 2. Pattern Search
- 3. Cross-Entropy

Cross Entropy:

Initialize d

loop:

population \leftarrow sample(d)

elite $\leftarrow m$ with highest $U(\theta)$

 $d \leftarrow \mathsf{fit}(\mathsf{elite})$

2. First Order Optimization

- Definition of Gradient
- Gradient Ascent
- Stochastic Gradient Ascent

Tricks

For policy gradient, 3 tricks

- Likelihood Ratio/Log Derivative
- Reward to go
- Baseline Subtraction

Log Derivative

Trajectory Probability Gradient

Example

$$\pi_{ heta}(a=L\mid s=1)=\mathrm{clamp}(heta,0,1)$$

$$\pi_{ heta}(a=R\mid s=1)= ext{clamp}(1- heta,0,1)$$

$$abla U(heta) = \mathrm{E}\left[\sum_{k=0}^d
abla_ heta \log \pi_ heta(a_k \mid s_k) R(au)
ight].$$

Given heta=0.2 calculate $\sum_{k=0}^d
abla_{ heta} \log \pi_{ heta}(a_k\mid s_k) R(au)$ for two cases, (a) where $a_0=L$ and (b) where $a_0=R$

Policy Gradient

loop

$$au \leftarrow ext{simulate}(\pi_{ heta})$$

$$heta \leftarrow heta + lpha \sum_{k=0}^d
abla_ heta \log \pi_ heta(a_k \mid s_k) R(au)$$

On Policy!

Causality

$$\nabla U(\theta) = \mathbf{E} \left[\sum_{k=0}^{d} \nabla_{\theta} \log \pi_{\theta}(a_{k} \mid s_{k}) R(\tau) \right]$$

$$= \mathbf{E} \left[\left(\sum_{k=0}^{d} \nabla_{\theta} \log \pi_{\theta}(a_{k} \mid s_{k}) \right) \left(\sum_{k=0}^{d} \gamma^{k} r_{k} \right) \right]$$

$$= \mathbf{E} \left[(f_{0} + \ldots + f_{d}) \left(\gamma^{0} r_{0} + \ldots \gamma^{d} r_{d} \right) \right]$$

$$= \mathbf{E} \left[(f_{0} + \ldots + f_{d}) \left(\gamma^{0} r_{0} + \ldots \gamma^{d} r_{d} \right) \right]$$

$$= \mathbf{E} \left[(f_{0} + \ldots + f_{d}) \left(\gamma^{0} r_{0} + \ldots \gamma^{d} r_{d} \right) \right]$$

$$= \mathbf{E} \left[(f_{0} + \ldots + f_{d}) \left(\gamma^{0} r_{0} + \ldots \gamma^{d} r_{d} \right) \right]$$

$$= \mathbf{E} \left[(f_{0} + \ldots + f_{d}) \left(\gamma^{0} r_{0} + \ldots \gamma^{d} r_{d} \right) \right]$$

$$ext{E} = ext{E} \left[\sum_{k=0}^d
abla_{ heta} \log \pi_{ heta}(a_k \mid s_k) \left(\sum_{l=k}^d \gamma^l r_l
ight)
ight] = ext{E} \left[\sum_{k=0}^d
abla_{ heta} \log \pi_{ heta}(a_k \mid s_k) \, \gamma^k r_{k, ext{to-go}}
ight]$$

Baseline Subtraction

$$egin{aligned}
abla U(heta) &= \mathrm{E}\left[\sum_{k=0}^{d}
abla_{ heta} \log \pi_{ heta}(a_k \mid s_k) \, \gamma^k r_{k, ext{to-go}}
ight] \
abla U(heta) &= \mathrm{E}\left[\sum_{k=0}^{d}
abla_{ heta} \log \pi_{ heta}(a_k \mid s_k) \, \gamma^k \left(r_{k, ext{to-go}} - r_{ ext{base}}(s_k)
ight)
ight] \
abla 27 \, \text{nof bias} \
\left(\text{proof in book}
ight) \end{aligned}$$

$$r_{\text{base},i} = \frac{\mathbb{E}_{a,s,r_{\text{to-go}},k} \left[\ell_i(a,s,k)^2 r_{\text{to-go}} \right]}{\mathbb{E}_{a,s,k} \left[\ell_i(a,s,k)^2 \right]} \qquad \qquad \ell_i(a,s,k) = \gamma^{k-1} \frac{\partial}{\partial \theta_i} \log \pi_{\theta}(a \mid s)$$

Figure 11.3. Several policy gradient methods used to optimize policies for the simple regulator problem from the same initial parameterization. Each gradient evaluation ran six rollouts to depth 10. The magnitude of the gradient was limited to 1, and step updates were applied with step size 0.2. The optimal policy parameterization is shown in black.

Guiding Questions

- What is Policy Gradient?
- What tricks are needed for it to work effectively?