2009 Putnam A6

Tristan Shin

26 July 2019

Let $f:[0,1]^2\to\mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^2$. Let $a=\int_0^1 f(0,y)dy$, $b=\int_0^1 f(1,y)dy$, $c=\int_0^1 f(x,0)dx$, $d=\int_0^1 f(x,1)dx$. Prove or disprove: There must be a point (x_0,y_0) in $(0,1)^2$ such that

 $\frac{\partial f}{\partial x}(x_0, y_0) = b - a$ and $\frac{\partial f}{\partial y}(x_0, y_0) = d - c$.

This is false. A counterexample is $f(x,y) = x\sin(2\pi y)$. Note that a = b = c = d = 0 while $\nabla f = \sin(2\pi y)\mathbf{i} + 2\pi x\cos(2\pi y)\mathbf{j}$ is never zero unless x = 0, which is outside $(0,1)^2$.

1