Übungsblatt 9 Ana

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- ➤ Sie kennen die Begriffe partielle Ableitung, Tangentialebene, Gradient, totales Differential, Satz von Schwarz und deren wichtigste Eigenschaften.
- > Sie können die partiellen Ableitungen von Funktionen in mehreren Variablen berechnen.
- > Sie können die Tangentialebene in einem Punkt an ein Skalarfeld bestimmen.
- Sie können den Gradienten und das totale Differential von Skalarfeldern bestimmen.

1. Aussagen über partielle Ableitungen

Gegeben sei $f: \mathbb{R}^n \to \mathbb{R}$.

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Unter einer partiellen Ableitung von f versteht man die Ableitung		
	nach einer der n Variablen, wobei die anderen Variablen wie		
	Konstanten betrachtet werden.		
b)	Die partiellen Ableitungen können mit Hilfe des		
	Differenzquotienten bestimmt werden.		
c)	Die Rechenregeln für Ableitungen von einer Funktion in einer		
	Variablen gelten auch für partielle Ableitungen von Funktionen in		
	mehreren Variablen.		
d)	Jede in einem Punkt P differenzierbare Funktion f ist dort partiell		
	differenzierbar.		
e)	Aus der Existenz von $grad(f(\vec{x}))$ folgt: die Tangentialebene an f		
	ist in \vec{x} berechenbar.		

2. Ableitungswerte von Funktionen in zwei Variablen

Bestimmen Sie für die nachfolgenden Funktionen die partiellen Ableitungen allgemein und an den gegebenen Stellen (x_0, y_0) .

a)
$$f(x,y) = \sqrt{2x + 3xy + 4y}$$
, $(x_0, y_0) = (1; 1)$

b)
$$f(x,y) = \cos(e^{xy} + xy)$$
, $(x_0, y_0) = (0, 1)$

c)
$$f(x,y) = x^{2y}, (x_0, y_0) = (2;1)$$

Bestimmen Sie für die nachfolgenden Funktionen die partiellen Ableitungen.

d)
$$z = f(x, y) = (2x - 3y^2)^5$$

e)
$$z = f(x, y) = (x^3 - y^2) \cdot \cosh(xy)$$

f)
$$z = f(x, y) = \ln(2x + e^{3y})$$

3. Partielle Ableitungen 1. und 2. Ordnung

Bestimmen Sie alle partiellen Ableitungen 1. und 2. Ordnung.

- a) $z = f(x, y) = x \cdot e^y y \cdot e^x$
- b) $z = f(x, y) = \ln(2y x^2)$
- c) $z = f(x, y) = \sqrt{x^2 2xy}$.

4. Ableitungen in Funktion einsetzen

- a) Zeigen Sie, dass die Funktion $z = f(x, y) = xy + x \cdot \ln\left(\frac{y}{x}\right)$, mit x > 0 und y > 0, die Gleichung $xz_x + yz_y = xy + z$ (bzw. in anderer Schreibweise: $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = xy + z$ z) erfüllt.
- b) Zeigen Sie, dass die Funktion $f(x,t) = e^{-\pi^2 a^2 t} \cdot \sin(\pi x)$, $a \in \mathbb{R}$ eine Lösung der Gleichung $a^2 \cdot f_{xx} = f_t$ (andere Schreibweise: $a^2 \cdot \frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$) ist.

5. Tangentialebene

Bestimmen Sie die Tangentialebene zu

- a) $f(x,y) = \frac{x^3}{y+3}$ im Punkt $(x_0, y_0) = (2; 1)$. b) $f(x,y) = (x^2 + y^2) \cdot e^{-x}$ im Punkt $(x_0, y_0) = (0; 1)$.
- c) $f(x,y) = 3 \cdot \sqrt{\frac{x^2}{y}} + 2 \cdot \cos(\pi(x+2y))$ im Punkt $(x_0, y_0) = (2; 1)$.
- d) In welchem Punkt $P_0=(x_0,y_0,z_0)$ der Fläche $z=f(x,y)=x^2+y^2-7$ verläuft die Tangentialebene parallel zur Ebene z = f(x, y) = 8x + 2y? Wie lautet die Gleichung dieser Tangentialebene?

6. Totales Differenzial

- a) Berechnen Sie das totale Differenzial dF der Funktion $F(x, y, z) = x^4 + 2x \cos y 2x \cos y$ $\sqrt{2}\sin y\cos z$. Durch die Gleichung F(x,y,z)=0 ist lokal um die Stelle $(1; \pi/2; \pi/4)$ eine Funktion z = f(x, y) gegeben. Berechnen Sie das totale Differenzial dz = df dieser Funktion an der genannten Stelle. Wie ändert sich demzufolge näherungsweise die Variable z, wenn man x und y jeweils um 0,1 erhöht?
- b) Bestimmen Sie das totale Differential der Funktion $u = u(x, y, z) = \ln \sqrt{(2x^2 + 2y^2 + 2z^2)^3}.$ Wie lautet es an der Stelle (-1; 2; -2)? Welchen Näherungswert für die abhängige Variable u liefert das totale Differential für die Änderungen dx = 0.1, dy = -0.2 und dz = -0.1?

7. Volumenänderung Tonne

Das Volumen einer Tonne wird nach der Formel $V = \frac{1}{3}\pi h(2R^2 + r^2)$ berechnet. Es liegen folgende Werte vor: R = 1 m, r = 0.8 m, h = 1.5 m. Wie ändert sich das Volumen V, wenn man bei unveränderter Höhe h den Radius R um 2% vergrössert und gleichzeitig den Radius r um 2,5% verkleinert? Führen Sie sowohl eine exakte als auch eine näherungsweise Berechnung (totales Differenzial) durch.

2

8. Aussagen über den Gradienten in 2D Gegeben sei eine differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$. Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Der Gradient von f ist tangential an den Graphen von f .		
b) Der Gradient von f steht senkrecht auf dem Graphen von f .		
c) Der Gradient von f ist tangential zu den Höhenlinien von f .		
d) Der Gradient von f steht senkrecht auf den Höhenlinien von f .		
e) Der Betrag des Gradienten von f ist die maximale Steigung des		
Graphen von f .		