2018年第7次课习题答案

——Vance 吴方熠

2 Bundle Adjustment (5 分,约 3 小时)

2.1 文献阅读 (2 分)

我们在第五讲中已经介绍了 Bundle Adjustment,指明它可以用于解 PnP 问题。现在,我们又在后端中说明了它可以用于解大规模的三维重构问题,但在实时 SLAM 场合往往需要控制规模。事实上,Bundle Adjustment 的历史远比我们想象的要长。请阅读 Bill Triggs 的经典论文 Bundle Adjustment: A Modern Synthesis (见 paper/目录) ,了解 BA 的发展历史,然后回答下列问题:

- 1. 为何说 Bundle Adjustment is slow 是不对的?
- 2. BA 中有哪些需要注意参数化的地方? Pose 和 Point 各有哪些参数化方式? 有何优缺点。
- 3. * 本文写于 2000 年, 但是文中提到的很多内容在后面十几年的研究中得到了印证。你能看到哪些 方向在后续工作中有所体现?请举例说明。

答:

- 1. Bundle Adjustment is slow 不对是因为之前的研究中没有考虑到雅克比矩阵 J 和海森矩阵 H 的稀疏性质。根据《十四讲》中 10.2.3 小节,对于稀疏的 H 可以用 Schur 消元法等方法来实现边缘化(Marginalization),从而加速 H 的计算,进而提高整体 BA 的速度。
- 2. BA 中需要注意参数化的地方有: 3D 路标点和旋转。3D 路标点可以表示成非 齐次和齐次形式,若用非齐次形式表示,当点的距离很远时,点的坐标数值 将会很大,此时的代价函数会变得很单调,步长将会变得很大;若使用齐次 坐标来表示,则可以控制步长。而旋转的参数化方式可以用欧拉角、四元素 和旋转矩阵。用欧拉角会存在约束和万向锁的问题。
- 3. 海森矩阵 H 的稀疏性可以让 BA 实现实时,这在 07 年 Georg Klein 和 David Murray 提出的 PTAM 上得到了体现。

2.2 BAL-dataset (3 分)

BAL (Bundle Adjustment in large) 数据集(http://grail.cs.washington.edu/projects/bal/)是一个大型 BA 数据集,它提供了相机与点初始值与观测,你可以用它们进行 Bundle Adjustment。现在,请你使用 g2o,自己定义 Vertex 和 Edge(不要使用自带的顶点类型,也不要像本书例程那边调用 Ceres来求导),书写 BAL 上的 BA 程序。你可以挑选其中一个数据,运行你的 BA,并给出优化后的点云图。

本题不提供代码框架,请独立完成。提示:

1. 注意 BAL 的投影模型比教材中介绍的多了个负号;

解:

根据 BAL 网站介绍的模型及数据格式,可确定相机的数据维度为 9 维,空间点的维度为 3 维,误差维度为 2 维。已知:

$$\begin{cases} \boldsymbol{P}_{c} = \boldsymbol{R}\boldsymbol{P}_{w} + \boldsymbol{t} = exp(\boldsymbol{\xi}^{\hat{}})\boldsymbol{P}_{w} \\ \boldsymbol{P}_{n} = -\boldsymbol{P}_{c}/\boldsymbol{P}_{c}(z) \\ \boldsymbol{P}'_{uv} = f \cdot r(\boldsymbol{P}_{n}) \cdot \boldsymbol{P}_{n} \\ r(\boldsymbol{P}_{n}) = 1.0 + k_{1} \cdot \left| |\boldsymbol{P}_{n}| \right|^{2} + k_{2} \cdot ||\boldsymbol{P}_{n}||^{4} \end{cases}$$

$$(2.1)$$

其中 P_w 、 P_c 、 P_n 、 P_{uv} 分别表示点 P 在世界坐标系、相机坐标系、归一化相机坐标系和像素坐标系的坐标。

可确定误差函数为:

$$\boldsymbol{e}(\boldsymbol{\xi}, f, k_1, k_2, \boldsymbol{P}_w) = \boldsymbol{P}_{uv} - \boldsymbol{P}'_{uv} \tag{2.2}$$

则整体的雅克比矩阵为:

$$J = \begin{bmatrix} J_{\delta\xi}^{2\times6} & J_f^{2\times1} & J_{k_1}^{2\times1} & J_{k_2}^{2\times1} & J_{P_w}^{2\times3} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial e}{\partial \delta\xi} & \frac{\partial e}{\partial f} & \frac{\partial e}{\partial k_1} & \frac{\partial e}{\partial k_2} & \frac{\partial e}{\partial P_w} \end{bmatrix}$$
(2.3)

下面我们分别讨论以上几项的值。根据公式(2.1)、(2.2)及链式求导法则可得:

$$\frac{\partial e}{\partial \delta \xi} = \frac{\partial e}{\partial \mathbf{P}_c} \cdot \frac{\partial \mathbf{P}_c}{\partial \delta \xi} \tag{2.4}$$

将公式 (2.2) 展开,有:

$$e = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} + f(1 + k_1 r^2 + k_2 r^4) \begin{bmatrix} x_c / z_c \\ y_c / z_c \\ 1 \end{bmatrix}$$

$$e_u = u + f(1 + k_1 r^2 + k_2 r^4) \frac{x_c}{z_c}$$

$$e_v = u + f(1 + k_1 r^2 + k_2 r^4) \frac{y_c}{z_c}$$
(2.5)

其中, $r^2 = (\frac{x_c}{z_c})^2 + (\frac{y_c}{z_c})^2$ 。对公式 (2.5) 进行求导可得:

$$\begin{split} \frac{\partial e_{u}}{\partial x_{c}} &= \frac{f}{z_{c}} (1 + k_{1}r^{2} + k_{2}r^{4}) + \frac{2fx_{c}^{2}}{z_{c}^{3}} (k_{1} + 2k_{2}r^{2}) \\ \frac{\partial e_{u}}{\partial y_{c}} &= \frac{2fx_{c}y_{c}}{z_{c}^{3}} (k_{1} + 2k_{2}r^{2}) \\ \frac{\partial e_{u}}{\partial z_{c}} &= -\frac{fx_{c}}{z_{c}^{2}} (1 + k_{1}r^{2} + k_{2}r^{4}) - \frac{2fx_{c}r^{2}}{z_{c}^{2}} (k_{1} + 2k_{2}r^{2}) \\ \frac{\partial e_{v}}{\partial x_{c}} &= \frac{2fx_{c}y_{c}}{z_{c}^{3}} (k_{1} + 2k_{2}r^{2}) \\ \frac{\partial e_{v}}{\partial y_{c}} &= \frac{f}{z_{c}} (1 + k_{1}r^{2} + k_{2}r^{4}) + \frac{2fy_{c}^{2}}{z_{c}^{3}} (k_{1} + 2k_{2}r^{2}) \\ \frac{\partial e_{v}}{\partial z_{c}} &= -\frac{fy_{c}}{z_{c}^{2}} (1 + k_{1}r^{2} + k_{2}r^{4}) - \frac{2fy_{c}r^{2}}{z_{c}^{2}} (k_{1} + 2k_{2}r^{2}) \end{split}$$

将公式 (2.6) 结合起来,即为 $\frac{\partial e}{\partial P_c}$,对于 $\frac{\partial P_c}{\partial \delta \xi}$ 参考《十四讲》中的 4.3.5 小节,有:

$$\frac{\partial \mathbf{P}_c}{\partial \delta \boldsymbol{\xi}} = \begin{bmatrix} I & -\mathbf{P}_c \end{bmatrix} \tag{2.7}$$

将公式 (2.6) 与 (2.7) 结合即为雅克比矩阵的第一项,对于第 2 至 5 项,根据 (2.5) 有:

$$\frac{\partial e}{\partial f} = \begin{bmatrix} \frac{x_c}{z_c} (1 + k_1 r^2 + k_2 r^4) \\ \frac{y_c}{z_c} (1 + k_1 r^2 + k_2 r^4) \end{bmatrix}$$
(2.8)

$$\frac{\partial e}{\partial k_1} = \begin{bmatrix} \frac{f x_c}{z_c} r^2 \\ \frac{f y_c}{z_c} r^2 \end{bmatrix}$$
 (2.9)

$$\frac{\partial e}{\partial k_2} = \begin{bmatrix} \frac{f x_c}{z_c} r^4 \\ \frac{f y_c}{z_c} r^4 \end{bmatrix}$$
 (2.10)

$$\frac{\partial e}{\partial \mathbf{P}_{w}} = \frac{\partial e}{\partial \mathbf{P}_{c}} \cdot \frac{\partial \mathbf{P}_{c}}{\partial \mathbf{P}_{w}} = \frac{\partial e}{\partial \mathbf{P}_{c}} \cdot \mathbf{R}$$
 (2.11)

至此雅克比矩阵以全部求得。

本题源码见附件。

以下为BAL 数据集 "problem-52-64053-pre.txt"的运行结果的截图:

图 1 BAL 数据集优化前(左)后(右)对比图

图 2 BAL 数据集优化过程截图

3 直接法的 Bundle Adjustment (5 分,约 3 小时)

3.1 数学模型

特征点法的 BA 以最小化重投影误差作为优化目标。相对的,如果我们以最小化光度误差为目标,就得到了直接法的 BA。之前我们在直接法 VO 中,谈到了如何用直接法去估计相机位姿。但是直接法亦可用来处理整个 Bundle Adjustment。下面,请你推导直接法 BA 的数学模型,并完成它的 g2o 实现。注意本题使用的参数化形式与实际的直接法还有一点不同,我们用 x,y,z 参数化每一个 3D 点,而实际的直接法多采用逆深度参数化 \square 。

本题给定 7 张图片,记为 0.png 至 6.png,每张图片对应的相机位姿初始值为 \mathbf{T}_i ,以 \mathbf{T}_{cw} 形式存储在 poses.txt 文件中,其中每一行代表一个相机的位姿,格式如之前作业那样:

time,
$$t_x, t_y, t_z, q_x, q_y, q_z, q_w$$

平移在前,旋转(四元数形式)在后。同时,还存在一个 3D 点集 P,共 N 个点。其中每一个点的初始坐标记作 $\mathbf{p}_i = [x,y,z]_i^{\mathrm{T}}$ 。每个点还有自己的固定灰度值,我们用 16 个数来描述,这 16 个数为该点周围 4x4 的小块读数,记作 $I(p)_i$,顺序见图 1 。换句话说,小块从 u-2,v-2 取到 u+1,v+1,先迭代 v。那么,我们知道,可以把每个点投影到每个图像中,然后再看投影后点周围小块与原始的 4x4 小块有多大差异。那么,整体优化目标函数为:

$$\min \sum_{i=1}^{7} \sum_{i=1}^{N} \sum_{i=1}^{N} \|I(\mathbf{p}_{i}) - I_{j}(\pi(\mathbf{K}\mathbf{T}_{j}\mathbf{p}_{i}))\|_{2}^{2}$$
(1)

即最小化任意点在任意图像中投影与其本身颜色之差。其中 K 为相机内参(在程序内以全局变量形式给定), π 为投影函数,W 指代整个 patch。下面,请回答:

- 1. 如何描述任意一点投影在任意一图像中形成的 error?
- 2. 每个 error 关联几个优化变量?
- 3. error 关于各变量的雅可比是什么?

答:

1. 对任意一点 P_w 投影在任意一图像j中的误差项 error 可表示为:

$$e(\mathbf{P}_{w}, \boldsymbol{\xi}) = I(\mathbf{P}_{i}) - I_{j} \left(\frac{1}{Z_{c}} \mathbf{K} exp(\boldsymbol{\xi}^{\hat{}}) \mathbf{P}_{w} \right)$$

其中 z_c 为点 P_w 投影到相机坐标系下的 z 坐标的值。

- 2. 每个误差项 error 关联 2 个优化变量, 分别是P_w和 ξ。
- 3. 误差项 error 关于各变量的雅克比矩阵如下:

第一项为 J_{P_w} :

$$\boldsymbol{J}_{\boldsymbol{P}_{w}} = \frac{\partial e}{\partial \boldsymbol{P}_{w}} = \frac{\partial I_{j}}{\partial \boldsymbol{P}_{uv}} \cdot \frac{\partial \boldsymbol{P}_{uv}}{\partial \boldsymbol{P}_{c}} \cdot \frac{\partial \boldsymbol{P}_{c}}{\partial \boldsymbol{P}_{w}}$$
(3.1)

其中 $\frac{\partial I_j}{\partial P_{uv}}$ 为投影点(u, v)的灰度梯度,参考《十四讲》公式(7.42)、(7.47)、(8.13) 有:

$$\frac{\partial I_j}{\partial \mathbf{P}_{vv}} = \left[\frac{I_j(u+1,v) - I_j(u-1,v)}{2} \quad \frac{I_j(u,v+1) - I_j(u,v-1)}{2} \right]$$
(3.2)

$$\mathbf{P}_{uv} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c/z_c \\ y_c/z_c \end{bmatrix} \\
u = \frac{f_x x_c}{z_c} \qquad v = \frac{f_y y_c}{z_c} \\
\frac{\partial \mathbf{P}_{uv}}{\partial \mathbf{P}_c} = \begin{bmatrix} \frac{f_x}{z_c} & 0 & -\frac{f_x x_c}{z_c^2} \\ 0 & \frac{f_y}{z_c} & -\frac{f_y y_c}{z_c^2} \end{bmatrix}$$

$$\frac{\partial \mathbf{P}_c}{\partial \mathbf{P}_w} = \mathbf{R} \tag{3.4}$$

第二项为 J_{ξ} ,可参考《十四讲》8.4.1 小节,得出:

$$J_{\xi} = \frac{\partial e}{\partial \delta \xi} = -\frac{\partial I_j}{\partial \mathbf{P}_{uv}} \cdot \frac{\partial \mathbf{P}_{uv}}{\partial \mathbf{P}_c} \cdot \frac{\partial \mathbf{P}_c}{\partial \delta \xi}$$
(3.5)

前两项上面已经得出,最后一项可参考《十四讲》4.3.5 小节,有:

$$\frac{\partial \mathbf{P}_c}{\partial \delta \mathbf{\xi}} = \begin{bmatrix} I & -\mathbf{P}_c \\ \end{bmatrix} \tag{3.6}$$

3.2 实现

下面,请你根据上述说明,使用 g2o 实现上述优化,并用 pangolin 绘制优化结果。程序框架见 code/directBA.cpp 文件。实现过程中,思考并回答以下问题:

- 1. 能否不要以 $[x,y,z]^T$ 的形式参数化每个点?
- 2. 取 4x4 的 patch 好吗? 取更大的 patch 好还是取小一点的 patch 好?
- 3. 从本题中, 你看到直接法与特征点法在 BA 阶段有何不同?
- 4. 由于图像的差异, 你可能需要鲁棒核函数, 例如 Huber。此时 Huber 的阈值如何选取? 提示:
- 1. 构建 Error 之前先要判断点是否在图像中,去除一部分边界的点。
- 2. 优化之后, Pangolin 绘制的轨迹与地图如图 1 所示。
- 3. 你也可以不提供雅可比的计算过程, 让 g2o 自己计算一个数值雅可比。
- 4. 以上数据实际取自 DSO[1]。

答:

1. 如果不要以[x,y,z]^T的形式参数化每个点的话,可以使用逆深度来参数化。 根据论文《Inverse Depth Parametrization for Monocular SLAM》中描述, 逆深度参数化点的公式如下图所示:

C. Inverse Depth Point Parametrization

In our new scheme, a scene 3-D point i can be defined by the 6-D state vector:

$$\mathbf{y}_i = (x_i \quad y_i \quad z_i \quad \theta_i \quad \phi_i \quad \rho_i)^\top \tag{3}$$

which models a 3-D point located at (see Fig. 1)

$$\mathbf{x}_{i} = \begin{pmatrix} X_{i} \\ Y_{i} \\ Z_{i} \end{pmatrix} = \begin{pmatrix} x_{i} \\ y_{i} \\ z_{i} \end{pmatrix} + \frac{1}{\rho_{i}} \mathbf{m} \left(\theta_{i}, \phi_{i}\right)$$
(4)

$$\mathbf{m} = (\cos \phi_i \sin \theta_i, -\sin \phi_i, \cos \phi_i \cos \theta_i)^{\top}.$$
 (5)

The \mathbf{y}_i vector encodes the ray from the first camera position from which the feature was observed by x_i, y_i, z_i , the camera optical center, and θ_i, ϕ_i azimuth and elevation (coded in the world frame) defining unit directional vector $\mathbf{m}(\theta_i, \phi_i)$. The point's depth along the ray d_i is encoded by its inverse $\rho_i = 1/d_i$.

图 3 逆深度参数化公式截图

其中 $[X_i,Y_i,Z_i]^T$ 为世界坐标系下点的坐标, $[x_i,y_i,z_i]^T$ 为相机坐标系下点的坐标, $m(\theta,\emptyset)$ 表示相机光轴到路标点的旋转角度, ρ 为相机光心到路标点的距离的导数。

- 2. patch 取小一点更好。因为在不同的视角下,对于同一个三维点 P 来说,其附近的点的投影点的灰度值会不同。如果 patch 取的太大,要计算的周围点的灰度值变化程度更高,不利于匹配。故取小 patch 有助于提高匹配成功率。
- 3. 直接法中的雅克比需要考虑灰度梯度,而特征点法不需要考虑;直接法中需要引入 patch 块,考虑特征点周围一定数目点的误差项,而特征点法仅考虑重投影误差,只有两个误差项。
- 4. 假设误差项服从高斯分布,则误差项的平方服从卡方分布。根据表 1 中的卡方分布,先确定误差项的自由度(这里是 16 维),再确定置信度(一般假设为 0.95),最后根据自由度和置信度查找卡方分布表就能得知 Huber 的阈值是多少。显然,阈值越低,其置信度就越高。

表 1 卡方分布表

	P												
n ´	0. 995	0.99	0.975	0. 95	0.9	0.75	0.5	0. 25	0. 1	0. 05	0. 025	0.01	0.00
1					0. 02	0. 1	0.45	1.32	2.71	3.84	5. 02	6. 63	7.88
2	0.01	0.02	0. 02	0. 1	0. 21	0. 58	1.39	2.77	4.61	5. 99	7.38	9. 21	10.6
3	0. 07	0.11	0. 22	0. 35	0. 58	1. 21	2. 37	4. 11	6. 25	7.81	9. 35	11.34	12.8
4	0. 21	0.3	0.48	0.71	1.06	1.92	3. 36	5. 39	7.78	9. 49	11. 14	13. 28	14.80
5	0.41	0. 55	0.83	1. 15	1.61	2.67	4.35	6. 63	9. 24	11.07	12.83	15. 09	16. 7
5	0.68	0.87	1.24	1.64	2. 2	3. 45	5. 35	7.84	10.64	12.59	14.45	16.81	18.5
ī	0. 99	1.24	1.69	2. 17	2.83	4. 25	6. 35	9. 04	12.02	14.07	16.01	18.48	20. 2
8	1.34	1.65	2. 18	2.73	3. 4	5. 07	7.34	10.22	13.36	15. 51	17. 53	20. 09	21.96
9	1.73	2.09	2.7	3. 33	4. 17	5. 9	8. 34	11.39	14.68	16.92	19.02	21.67	23. 59
10	2.16	2.56	3. 25	3. 94	4.87	6.74	9. 34	12.55	15. 99	18. 31	20.48	23. 21	25. 19
11	2.6	3. 05	3.82	4. 57	5. 58	7.58	10.34	13.7	17. 28	19.68	21.92	24.72	26. 76
12	3. 07	3. 57	4.4	5. 23	6. 3	S. 44	11.34	14.85	18. 55	21.03	23. 34	26. 22	28. 3
13	3. 57	4.11	5. 01	5. 89	7.04	9.3	12. 34	15.98	19.81	22.36	24.74	27. 69	29. 82
14	4.07	4.66	5. 63	6. 57	7.79	10. 17	13. 34	17.12	21.06	23.68	26. 12	29. 14	31. 3
15	4.6	5. 23	6. 27	7. 26	8. 55	11.04	14.34	18. 25	22. 31	25	27.49	30. 58	32.8
16	5. 14	5.81	6. 91	7. 96	9.31	11.91	15. 34	19.37	23. 54	26. 3	28.85	32	34. 2
17	5. 7	6.41	7. 56	8. 67	10.09	12.79	16. 34	20.49	24.77	27.59	30. 19	33. 41	35. 72
18	6. 26	7.01	8. 23	9. 39	10.86	13.68	17. 34	21.6	25. 99	28.87	31. 53	34.81	37. 16
19	6. 84	7.63	8. 91	10. 12	11.65	14.56	18. 34	22.72	27. 2	30. 14	32. 85	36. 19	38. 5
20	7.43	8. 26	9. 59	10.85	12.44	15. 45	19.34	23.83	28.41	31.41	34. 17	37. 57	40

本题源码见附件,程序运行的结果截图如下:

图 4 光流法 BA 优化效果

irectBA (disabled) 💥							
eration= 0	chi2= 3390801.837720	time= 4.28044	cumTime= 4.28044	edges= 24130	schur= 1	lambda= 353084.637036 levenberg	Iter= 1
teration= 1	chi2= 3254418.937140	time= 4.24391	cumTime= 8.52435	edges= 24130	schur= 1	lambda= 117694.879012 levenberg	Iter= 1
teration= 2	chi2= 3161874.852353	time= 4.20855	cumTime= 12.7329	edges= 24130	schur= 1	lambda= 39231.626337 levenberg	Iter= 1
teration= 3	chi2= 3096958.128049	time= 4.2246	cumTime= 16.9575	edges= 24130	schur= 1	lambda= 13077.208779 levenberg	Iter= 1
teration= 4	chi2= 3045653.406289	time= 4.28372	cumTime= 21.2412	edges= 24130	schur= 1	lambda= 4359.069593 levenberg	Iter= 1
teration= 5	chi2= 3010667.997942	time= 4.22744	cumTime= 25.4687	edges= 24130	schur= 1	lambda= 2906.046395 levenberg	Iter= 1
teration= 6	chi2= 2975290.581957	time= 4.20445	cumTime= 29.6731	edges= 24130	schur= 1	lambda= 1937.364264 levenberg	Iter= 1
teration= 7	chi2= 2957734.120737	time= 4.20255	cumTime= 33.8757	edges= 24130	schur= 1	lambda= 1291.576176 levenberg	Iter= 1
teration= 8	chi2= 2933629.871687	time= 4.19955	cumTime= 38.0752	edges= 24130	schur= 1	lambda= 861.050784 levenberg	Iter= 1
teration= 9	chi2= 2917446.643709	time= 4.19798	cumTime= 42.2732	edges= 24130	schur= 1	lambda= 574.033856 levenberg	Iter= 1
teration= 10	chi2= 2901171.247891	time= 4.20682	cumTime= 46.48	edges= 24130	schur= 1	lambda= 382.689237 levenberg	Iter= 1
teration= 11	chi2= 2892459.243423	time= 4.19859	cumTime= 50.6786	edges= 24130	schur= 1	lambda= 255.126158 levenberg	Iter= 1
teration= 12	chi2= 2885617.324537	time= 4.20777	cumTime= 54.8864	edges= 24130	schur= 1	lambda= 170.084105 levenberg	Iter= 1
teration= 13	chi2= 2882725.432777	time= 4.19857	cumTime= 59.0849	edges= 24130	schur= 1	lambda= 113.389404 levenberg	Iter= 1
teration= 14	chi2= 2881379.575439	time= 4.20091	cumTime= 63.2859	edges= 24130	schur= 1	lambda= 75.592936 levenberg	
teration= 15	chi2= 2879017.915669	time= 4.20232	cumTime= 67.4882	edges= 24130	schur= 1	lambda= 50.395291 levenberg	
teration= 16	chi2= 2874343.612996	time= 4.19978	cumTime= 71.688	edges= 24130	schur= 1	lambda= 33.596860 levenberg	
teration= 17	chi2= 2873961.028388	time= 5.20803	cumTime= 76.896	edges= 24130	schur= 1	lambda= 179.183255 levenberg	Iter= 3
teration= 18	chi2= 2868564.405924	time= 4.19375	cumTime= 81.0897	edges= 24130	schur= 1	lambda= 119.455503 levenberg	Iter= 1
teration= 19	chi2= 2863855.640269	time= 5.70658	cumTime= 86.7963	edges= 24130	schur= 1	lambda= 5096.768146 levenbers	Iter= 4
teration= 20	chi2= 2861508.683252	time= 4.19212	cumTime= 90.9884	edges= 24130	schur= 1	lambda= 3397.845430 levenberg	Iter= 1
teration= 21	chi2= 2859040.711592	time= 5,20896	cumTime= 96.1974	edges= 24130	schur= 1	lambda= 18121.842295 levenberg	Iter= 3
teration= 22	chi2= 2854295.729088	time= 5.20018	cumTime= 101.398	edges= 24130	schur= 1	lambda= 96649.825575 levenberg	
teration= 23	chi2= 2849673.207300	time= 4.19318	cumTime= 105.591	edges= 24130	schur= 1	lambda= 64433.217050 levenberg	Iter= 1
teration= 24	chi2= 2845469.261514	time= 5.24006	cumTime= 110.831	edges= 24130	schur= 1	lambda= 343643.824268 levenbers	Iter= 3
teration= 25	chi2= 2844186.461191	time= 4.27093	cumTime= 115.102	edges= 24130	schur= 1	lambda= 229095.882845 levenberg	Iter= 1
teration= 26	chi2= 2841616.590509	time= 5.26775	cumTime= 120.369	edges= 24130	schur= 1	lambda= 1221844.708508	levenbergIter= 3
teration= 27	chi2= 2841218.573518	time= 4.29292	cumTime= 124.662	edges= 24130	schur= 1	lambda= 814563.139006 levenberg	Iter= 1
teration= 28	chi2= 2841046.206970	time= 4.71636	cumTime= 129.379	edges= 24130	schur= 1	lambda= 1086084.185341	levenbergIter= 2
teration= 29	chi2= 2840931.297194	time= 4.25347	cumTime= 133.632	edges= 24130	schur= 1	lambda= 724056.123560 levenberg	Iter= 1
teration= 30	chi2= 2840751.527782	time= 4.74213	cumTime= 138.374	edges= 24130	schur= 1	lambda= 965408.164747 levenberg	Iter= 2
teration= 31	chi2= 2840189.463518	time= 4.78918	cumTime= 143.164	edges= 24130	schur= 1	lambda= 1287210.886330	levenbergIter= 2
teration= 32	chi2= 2839953.853373	time= 4.74442	cumTime= 147.908	edges= 24130	schur= 1	lambda= 1716281.181773	levenbergIter= 2
teration= 33	chi2= 2839180,472603	time= 5,21928	cumTime= 153.127	edges= 24130	schur= 1	lambda= 9153499.636123	levenbergIter= 3
teration= 34	chi2= 2839141.636368	time= 5.22347	cumTime= 158.351	edges= 24130	schur= 1	lambda= 48818664.725988	levenbergIter= 3
teration= 35	chi2= 2839111.850547	time= 4.197	cumTime= 162.548	edges= 24130	schur= 1	lambda= 32545776.483992	levenbergIter= 1
teration= 36	chi2= 2839106.386823	time= 5.19789	cumTime= 167.746	edges= 24130	schur= 1	lambda= 173577474.581292	levenbergIter= 3
teration= 37	chi2= 2839100.221774	time= 4.19661	cumTime= 171.942	edges= 24130	schur= 1	lambda= 115718316.387528	levenbergIter= 1
teration= 38	chi2= 2839099.341928	time= 5.19912	cumTime= 177.141	edges= 24130	schur= 1	lambda= 617164354.066815	levenbergIter= 3
teration= 39	chi2= 2839099.174836	time= 5.20439	cumTime= 182.346	edges= 24130	schur= 1	lambda= 3291543221.689680	levenbergIter= 3
teration= 40	chi2= 2839099.106276	time= 5.19579	cumTime= 187.542	edges= 24130	schur= 1	lambda= 17554897182.344959	levenbergIter= 3
teration= 41	chi2= 2839099.064060	time= 4.19674	cumTime= 191.738	edges= 24130	schur= 1	lambda= 11703264788.229973	levenbergIter= 1
eration= 42	chi2= 2839099.025164	time= 4.1927	cumTime= 195.931	edges= 24130	schur= 1	lambda= 7802176525.486649	levenbergIter= 1
eration= 43	chi2= 2839099.003658	time= 5.70125	cumTime= 201.632	edges= 24130	schur= 1	lambda= 166446432543.715149	levenbergIter= 4
eration= 44	chi2= 2839098.964616	time= 4.20133	cumTime= 205.834	edges= 24130	schur= 1	lambda= 55482144181.238380	levenbergIter= 1
eration= 45	chi2= 2839098.952702	time= 4.19609	cumTime= 210.03	edges= 24130	schur= 1	lambda= 36988096120.825584	levenbergIter= 1
eration= 46	chi2= 2839098.949528	time= 6.20307	cumTime= 216.233	edges= 24130	schur= 1	lambda= 12625270142575.132812	levenbergIter= 5
eration= 47	chi2= 2839098.948942	time= 5.21211	cumTime= 221.445	edges= 24130	schur= 1	lambda= 67334774093734.039062	levenbergIter= 3
eration= 48	chi2= 2839098.948694	time= 4.69796	cumTime= 226.143	edges= 24130	schur= 1	lambda= 89779698791645.375000	levenbergIter= 2
eration= 49	chi2= 2839098.947548	time= 5.20648	cumTime= 231.349	edges= 24130	schur= 1	lambda= 239412530111054.312500	levenbergIter= 3
	chi2= 2839098.947548	time= 5.19815	cumTime= 231.549	edges= 24130 edges= 24130	schur= 1	lambda= 15322401927107476.00000	

图 5 光流法 BA 优化过程截图