

Lecture 4

Subgroup & Cyclic Group

& Lagrange's Theorem

What you will learn in Lecture 4

4.1 Subgroup (部分群)

4.2 Cyclic Group (巡回群)

4.3 Lagrange's Theorem (ラグランジュの定理)

Let us consider the groups $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$, where + is the usual addition of numbers, and note the following:

- 1. Both these groups have the same binary operation.
- 2. \mathbb{Z} is a subset of \mathbb{Q} .

The same is true for the groups $(\mathbb{Z}, +)$ and $(\mathbb{R}, +)$; $(\mathbb{Q}, +)$ and $(\mathbb{R}, +)$; $(\mathbb{R}, +)$ and $(\mathbb{C}, +)$.

This leads us to the concept of a subgroup. Before formally defining subgroups, let us also note the following:

Let (G, \circ) be a group and H be a nonempty subset of G. Then H is said to be closed under the binary operation \circ if $a \circ b \in H$ for all $a, b \in H$.

Suppose H is **closed** under **the binary operation** \circ . Then the restriction of \circ to $H \times H$ is a mapping from $H \times H$ into H. Thus, the binary operation \circ defined on G induces **a binary operation on** G induces **a binary operation on** G induces a binary operation on G induces a binary operation of G induces a binary operation

It also follows that \circ is **associative** as a binary operation on H, i.e., $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in H$.

If (H, \circ) is a group, then we call H a subgroup of G.

More formally, we have the following definition.

Definition 4.1

Let (G, \circ) be a group and H be a nonempty subset of G. If (H, \circ) is a group, then (H, \circ) is called a subgroup of (G, \circ) .

For example, consider the rational number group $(\mathbb{Q}, +)$ and its subgroups $(\mathbb{Z}, +)$. Now the identity elements of both these groups is 0.

Next, let $a \in \mathbb{Z}$. Then $a \in \mathbb{Q}$.

Also, the inverse of a in \mathbb{Z} as well as in \mathbb{Q} is -a. In other words, the inverse of a in \mathbb{Z} and the inverse of a in \mathbb{Q} is the same. In general, we have the following result.

Theorem 4.1

Let (G, \circ) be a group and (H, \circ) be a subgroup of (G, \circ) .

- (i) The identity elements of (H, \circ) and (G, \circ) are the same.
- (ii) If $h \in H$, then the inverse of h in H and the inverse of h in G is the same.

Remark

If (G,\circ) is a group, then $(\{e\},\circ)$ and (G,\circ) are subgroups of (G,\circ) . These subgroups are called trivial subgroup (自明な部分群).

Example 4.1

Consider the following list of groups.

(i)
$$(\{0\}, +), (\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +),$$

(ii)
$$(\{1\},\cdot)$$
, $(\mathbb{Q}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$, $(\mathbb{C}\setminus\{0\},\cdot)$,

where + is the usual addition operation and \cdot is the usual multiplication operation.

Each group is a subgroup of the group listed to its right.

For example, $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$, and $(\mathbb{R}\setminus\{0\},\cdot)$ is a subgroup of $(\mathbb{C}\setminus\{0\},\cdot)$.

Theorem 4.2

Let (G, \circ) be a group and H be a **nonempty subset** of G. Then (H, \circ) is a subgroup of (G, \circ) if and only if for all $a, b \in H$, $ab^{-1} \in H$.

Proof:

Suppose H is a subgroup of G. Let $a, b \in H$. Because H is a subgroup, it is a group. Therefore, $b \in H$ implies that $b^{-1} \in H$. Thus, $ab^{-1} \in H$ because H is closed under the binary operation. Conversely, suppose H is a nonempty subset of G such that $a, b \in H$ implies $ab^{-1} \in H$. Because $H \neq \emptyset$, there exists $a \in H$. Now $a, a^{-1} \in H$. Therefore, $e = aa^{-1} \in H$, i.e., H contains the identity.

Next, let $b \in H$. Then $e, b \in H$, implies that $b^{-1} = eb^{-1} \in H$. Thus, every element of H has an inverse in H.

To show that H is closed under the binary operation, let $a, b \in H$. Then $a, b^{-1} \in H$. Thus, $ab = a(b^{-1})^{-1} \in H$.

Hence, H is closed under the binary operation. From the statements preceding Definition, associativity holds for H. Hence, H is a group, so H is subgroup of G.

Example 4.2 Find all subgroups of $(\mathbb{Z}, +)$.

Solution: Let (H, +) be a subgroup of $(\mathbb{Z}, +)$. Suppose $H \neq \{0\}$.

Let a be a nonzero element of H. Then $-a \in H$. Since either a or -a is a positive integer, H contains a positive integer. With the help of the principle of well-ordering, we can show that H contains a smallest positive integer. Let a be the smallest positive integer in H. We claim that $H = \{na \mid n \in \mathbb{Z}\}$.

Now $na \in H$ for all $n \in \mathbb{Z}$ and so $\{na \mid n \in \mathbb{Z}\} \subseteq H$. On the other hand, let $b \in H$.

By the division algorithm, there exist c and r in \mathbb{Z} such that b = ca + r, where $0 \le r < a$. Suppose $r \ne 0$. Then $r = b - ca \in H$. Thus, H contains a positive integer smaller than a, a contradiction.

Hence, r = 0 and so $b = ca \in \{na \mid n \in \mathbb{Z}\}.$

This implies that $H \subseteq \{na \mid n \in \mathbb{Z}\}$. Thus, $H = \{na \mid n \in \mathbb{Z}\}$ for some $a \in \mathbb{Z}$. Also, for all $n \in \mathbb{Z}$, the set $T = \{nm \mid m \in \mathbb{Z}\} = n\mathbb{Z}$ generate a subgroup of $(\mathbb{Z}, +)$.

Hence, $(n\mathbb{Z}, +)$, n = 0, 1, 2, ... are the subgroups of $(\mathbb{Z}, +)$.

Definition 4.2

Let H and L be nonempty subsets of G from a group (G, \circ) . The product of H and L is defined to be the set $HL = \{hl \mid h \in H, l \in L\}$.

Example 4.3

Consider the group of symmetries of the square.

```
Let H = \{r_{360}, d_1\} and L = \{r_{360}, h\}. Then H and L are subgroups of G. Now HL = \{r_{360}r_{360}, r_{360}h, d_1r_{360}, d_1h\} = \{r_{360}, h, d_1, r_{90}\}. Now hd_1 = r_{270} \notin HL, so HL is not closed under the binary operation.
```

Hence, \overline{HL} is **not** a subgroup of the symmetries of the square. Also, note that

$$LH = \{r_{360}r_{360}, \quad r_{360}d_1, \quad hr_{360}, \quad hd_1\} = \{r360, \quad d1, \quad h, \quad r_{270}\},$$
 And $\langle H \cup L \rangle = \{r_{360}, r_{90}, r_{180}, r_{270}, h, v, d_1, d_2\}.$

This example shows that in general the product of subgroups need not be a subgroup.

Figure. Rigid motions of a square in symmetry

2019/6/24

$$r_{90} \circ h$$

The complete operation table for the operation • is as following

0	r_{360}	r_{90}	r_{180}	r_{270}	h	v	d_1	d_2
r_{360}	r_{360}	r_{90}	r_{180}	r_{270}	h	v	d_1	d_2
r_{90}	r_{90}	r_{180}	r_{270}	r_{360}	d_1	d_2	v	h
r_{180}	r_{180}	r_{270}	r_{360}	r_{90}	v	h	d_2	d_1
r_{270}	r_{270}	r_{360}	r_{90}	r_{180}	d_2	d_1	h	v
h	h	d_2	v	d_1	r_{360}	r_{180}	r_{270}	r_{90}
v	v	d_1	h	d_2	r_{180}	r_{360}	r_{90}	r_{270}
d_1	d_1	h	d_2	v	r_{90}	r_{270}	r_{360}	r_{180}
d_2	d_2	v	d_1	h	r_{270}	r_{90}	r_{180}	r_{360}

In the following theorem, we give a necessary and sufficient condition for the product of subgroups to be a subgroup.

Theorem 4.3

Let (H, \circ) and (L, \circ) be subgroups of a group (G, \circ) . Then (HL, \circ) is a subgroup of (G, \circ) if and only if HL = LH.

Corollary 3.2

If (H,\circ) and (L,\circ) are subgroups of a <u>commutative</u> group (G,\circ) , then (HL,\circ) is a <u>subgroup</u> of (G,\circ) .

4.2 Cyclic Group (巡回群)

In the previous section, we introduced the notion of a subgroup generated by a set. **Groups** that are generated by a single element, called cyclic groups, are of special importance. Cyclic groups are easier to study than any other group.

Definition 4.3

A group (G, \circ) is called a cyclic group if there exists $a \in G$ such that $G = \langle a \rangle$

where $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Let $G = \langle a \rangle$ defines a cyclic group and $b, c \in G$. Then $b = a^n$ and $c = a^m$ for some $n, m \in Z$. Now

$$bc = a^n a^m = a^{n+m} = a^{m+n} = a^m a^n = cb.$$

This shows that *G* is commutative. Hence, every cyclic group is commutative. We record this result in the following theorem.

Theorem 4.4

Every cyclic group is commutative.

Example 4.4

- (i) $(\mathbb{Z}, +)$ is a cyclic group because $\mathbb{Z} = \langle 1 \rangle$.
- (ii) $(\{na \mid n \in \mathbb{Z}\}, +)$ is a cyclic group, where a is any fixed element of \mathbb{Z} .

Example 4.5

Consider the set $G = \{e, a, b, c\}$. Define \circ on G by means of the following operation table.

0	e	a	b	С	
e	e	a	b	С	
a	а	e	С	b	
b	b	С	e	а	
С	С	b	а	e	

From the multiplication table, it follows that (G, \circ) is a **commutative** group. **However,** G is **NOT** a **cyclic group** because $\langle e \rangle = \{e\}, \langle a \rangle = \{e, a\}, \langle b \rangle = \{e, b\}, \text{ and } \langle c \rangle = \{e, c\}$ and each of these subgroups is properly contained in G. G is known as the **Klein 4-group** (クラインの四元群).

Theorem 4.5

Let $\langle a \rangle$ be a finite cyclic group of order n.

Then
$$\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}.$$

Theorem 4.6

Every subgroup of a cyclic group is cyclic.

Corollary 3.2

Let $G = \langle a \rangle$ be a cyclic group of order n, n > 1, and H be a proper subgroup of G.

Then $H = a^k$ for some integer k such that k divides n and k > 1. Furthermore, the order |H| divides n.

4.3 Lagrange's Theorem

(ラグランジュの定理)

4.3 Lagrange's Theorem (ラグランジュの定理)

In the last section, we noted that the order of a subgroup of a finite cyclic group divides the order of the group (Corollary 4.2).

We will learn that this is a special case of a general result, called Lagrange's theorem, i.e., the order of a subgroup of a finite group divides the order of the group.

History:

Lagrange proved this result in 1770, long before the creation of group theory, while working on the permutations of the roots of a polynomial equation. Lagrange's theorem is a basic theorem of finite group theory and is considered by some to be the most important result in finite group theory.

Definition 4.4

Let H be a subgroup of a group G and $a \in G$. The sets $aH = \{ah \mid h \in H\}$ and $Ha = \{ha \mid h \in H\}$ are called the **left and right** cosets (左剰余類と右剰余類) of H in G, respectively. The element a is called a representative of aH and Ha.

If G is **commutative**, then of course we have aH = Ha. Observe that eH = H = He and that $a = ae \in aH$ and $a = ea \in Ha$. **Example 4.6** Consider the symmetric group S_3 (Example 3.7).

(1)
$$H = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

is a subgroup of S_3 .

We now compute the left and right cosets of H in S_3 . The left cosets of H in S_3 are

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right) H = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) H = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) H = H$$

and
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} H = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
 Applied Algebra (応用代数)

and the right cosets of H in are

$$H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) = H$$

and

$$H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) = H\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) = \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) \right\}.$$

Thus, for all $a \in S_3$, aH = Ha.

4.3 Lagrange's Theorem (ラグランジュの定理)

Left and Right Cosets

$$(2) H' = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}$$

is also a subgroup of S_3 .

Now we compute the left and right cosets of H' in S_3 . The left cosets of H' in S_3

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right) H^{'} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) H^{'} = H^{'},$$

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) H^{'} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) H^{'} = \left\{\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)\right\},$$

and

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) H^{'} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) H^{'} = \left\{\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \right\}$$

and the right cosets of H' in S_3 are

$$H^{'}\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right) = H^{'}\left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right) = H^{'},$$

$$H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\3 & 2 & 1\end{array}\right)=H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\2 & 3 & 1\end{array}\right)=\left\{\left(\begin{array}{ccc}1 & 2 & 3\\3 & 2 & 1\end{array}\right), \left(\begin{array}{ccc}1 & 2 & 3\\2 & 3 & 1\end{array}\right)\right\},$$

and

$$H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\ 2 & 1 & 3\end{array}\right)=H^{'}\left(\begin{array}{ccc}1 & 2 & 3\\ 3 & 1 & 2\end{array}\right)=\left\{\left(\begin{array}{ccc}1 & 2 & 3\\ 2 & 1 & 3\end{array}\right), \left(\begin{array}{ccc}1 & 2 & 3\\ 3 & 1 & 2\end{array}\right)\right\}.$$

We see that

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} H^{'} \neq H^{'} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Thus, the left and right cosets of H' in S_3 are not the same.

There are some interesting phenomena happening in the above example.

- We see that all left and right cosets of H in S_3 have the same number of elements, namely, 3; that there are the same number of distinct left cosets of H in S_3 as of right cosets, namely, 2; that the set of all left cosets and the set of all right cosets form partitions of S_3 ; and, finally, that $3 \cdot 2$ equals the order of S_3 .
- Similar statements hold for the subgroup H'. We show, in the results to follow, that these phenomena hold in general.

4.3 Lagrange's Theorem (ラグランジュの定理)

The following theorem tells us when two left (right) cosets are equal. It is a result that is used often in the study of groups.

Theorem 4.7

Let H be a subgroup of a group G and $a, b \in G$. Then

- (i) aH = bH if and only if $b^{-1}a \in H$.
- (ii) Ha = Hb if and only if $ab^{-1} \in H$.

Theorem 4.8

Let H be a **subgroup** of a **group** G. Then for all $a, b \in G$, either aH = bH or $aH \cap bH = \emptyset$ (i.e., two left cosets are either equal or they are disjoint). Similar result also satisfied for two right cosets.

Definition 4.5

Let H be a subgroup of a group G. Then the number of distinct (相異なる) left (or right) cosets, written as [G: H], of H in G is called the index of H in G.

Theorem 4.9 (Lagrange's Theorem)

Let H be a subgroup of a finite group G. Then the order of H divides the order of G. In particular,

$$|G| = [G:H]|H|.$$

Proof:

Suppose that [G:H]=m. Every element of G is in a coset of H, and Theorem 4.8 tells us we can decompose G into a union of M pairwise disjoint cosets:

$$G = H \cup Ha_1 \cup Ha_2 \cup \cdots \cup Ha_{m-1}$$

But each of these cosets has |H| elements. Thus, there must be [G:H]|H| elements in G altogether.

Theorem 4.10

Let *H* and *L* be **finite subgroups** of a **group** *G*. Then

$$|HL| = \frac{|H||L|}{|H \cap L|}$$

Review for Lecture 4

- Subgroup (部分群)
- Trivial Subgroup (自明な部分群)
- Cyclic Group (巡回群)
- Left and Right Cosets (左剰余類と右剰余類)
- Lagrange's Theorem (ラグランジュの定理)

Assignment

Please Check https://github.com/uoaworks/Applied-Algebra

References

- [1] Thomas W. Judson etc. Abstract Algebra Theory and Applications, 2018
- [2] D. S. Malik, John N. Mordeson, M.K. Sen, Introduction to Abstract Algebra, 2007
- [3] (おすすめ) 松本 眞, 代数系への入門, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/daisu-nyumon2014.pdf
- [4] Wikipedia
- [5] Materials from internet.