

Semi-Simple Sample Document

Ingeniería en Informática

Departamento de Tecnología y Administración

Loiseau, Matías mloiseau@undav.edu.ar

Snow, Jon jsnow@winterfell.edu.ar

November 2021

Contents

1	Ways to write text						
	1.1	Enumerate and itemize information	3				
2	Equations						
	2.1	Simple equations	3				
	2.2	Complex equations	3				
		2.2.1 Matrix	4				
3	Figu	ures	5				
4	Tables						
Appendices							
A First Appendix							
B Second Appendix							
Bibliography							

1 Ways to write text

Normal text

Text in bold (ctrl + b)

Text in italic (ctrl + i)

Text with footnote¹

This is a cite[3].

1.1 Enumerate and itemize information

- 1. Enumerate one
- 2. Enumerate two
 - (a) Sub-enumerate one
 - (b) Sub-enumerate two
- \bullet item one
- item two
 - sub-item one
 - sub- item two
- 0. Start enumerate at 0
- 1. Enumerate one

2 Equations

2.1 Simple equations

$$E = mc^2 (1)$$

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leqslant 0 \end{cases}$$
 (2)

2.2 Complex equations

$$\vec{h_1} = f(\vec{x}.W_1)$$

$$\vec{h_2} = f(\vec{h_1}.W_2)$$

$$\vec{h_3} = f(\vec{h_2}.W_3)$$

$$\vec{y} = f(\vec{h_3}.W_4)$$
(3)

¹This is a footnote.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (4)

$$\begin{pmatrix} a_0 & a_1 \\ a_2 & a_3 \end{pmatrix} \odot \begin{pmatrix} b_0 & b_1 \\ b_2 & b_3 \end{pmatrix} = \begin{pmatrix} a_0.b_0 & a_1.b_1 \\ a_2.b_2 & a_3.b_3 \end{pmatrix}$$

$$\frac{dL}{db_k} = \frac{dL}{dy_k} \frac{dy_k}{db_k} = \frac{dL}{dy_k} \frac{dy_k}{dz_k} \frac{dz_k}{db_k} = l'_{k+1} \odot f'_k \frac{d(W_k x_k + b_k)}{db_k}$$

2.2.1 Matrix

$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$
 (5)

3 Figures

Figure 3.1: Perceptron diagram.

This is a reference for the image (figure 3.1) above.

Figure 3.2: Both figures.

4 Tables

Data 1	185
Data 222	37
Data 333333	12
Data 444444444	12
Data 555	13

Table 1: Table X.

	Number of people			Difference between		
Module	0	1	2	1 y 0	2 y 0	
1	21.07	21.19	21.33	0.12	0.26	
2	22.25	22.35	22.39	0.1	0.14	
3	18.11	18.19	18.61	0.07	0.5	
4	18.3	18.44	18.87	0.15	0.57	
6	18.21	18.43	19.45	0.21	1.24	

Table 2: Table Y.

Appendices

A First Appendix

This is an appendix

B Second Appendix

Text

References

- [1] Iván Federico Kwist, Matías Loiseau, David Exequiel Contreras, Federico Gabriel D'Angiolo, Roberto Osvaldo Mayer. (2019). *Monitorización de un Datacenter mediante Protocolos de IoT*. Congreso Nacional de Ingeniería Informática Sistemas de Información.
- [2] Federico Gabriel D'Angiolo, Iván Federico Kwist, Matías Loiseau, David Exequiel Contreras, Fernando Asteasuain. (2019). Algoritmos de Regresión Lineal aplicados al mantenimiento de un Datacenter. Congreso Argentino de Ciencias de la Computación.
- [3] Federico Gabriel D'Angiolo, Iván Federico Kwist, Matías Loiseau , David Exequiel Contreras, Gregorio Oscar Glas. (2019). Algoritmo de KNN aplicado al mantenimiento de un Datacenter. Congreso Nacional de Ingeniería Informática Sistemas de Información.
- [4] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
- [5] Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232.