The Power of Quantitative Easing: Liquidity Channel vs Interest Rate Channel

SHI, Xiang

Hong Kong University of Science and Technology

2nd, June, 2023

Outline

- Introduction
- Model Implication
- Quantitative Result
- IV-VAR
- Conclusion

Quantitative Easing after The Great Recession

Balance sheet expansion and Term Yield twisting

Why Quantitative Easing works?

- Sign/Information Effect
 - $\hbox{ \ } \hbox{ \ } \hbox{$
 - Signal from central bank to market to reveal unobservable economic foundation → Anchoring belief
- Portfolio Rebalance Effect (Bernanke 2020AER)
 - Imperfect substitution and Balance Sheet twisting \rightarrow Investment \uparrow (Gertler and Karadi 2011JME) and (Vayanos and Vila 2021ETCA)

Why Quantitative Easing works?

- Sign/Information Effect
 - ullet Change Expectation about short-term interest rate ightarrow Euler Equation/SDF
 - Signal from central bank to market to reveal unobservable economic foundation → Anchoring belief
- Portfolio Rebalance Effect (Bernanke 2020AER)
 - Imperfect substitution and Balance Sheet twisting \rightarrow Investment \uparrow (Gertler and Karadi 2011JME) and (Vayanos and Vila 2021ETCA)

Liquidity Channel & Interest Rate Channel

• Quantitative Easing after Great Recession Mechanism

Liquidity Channel & Interest Rate Channel

Quantitative Easing after Great Recession Mechanism

Liquidity Channel & Interest Rate Channel

Quantitative Easing after Great Recession Mechanism

How they work

How they work

Supply Side

Output ↑

Central Bank's holding of long-term bonds

QE Policy

Long term yield

How they work

How they work

How they work

How they work

Demand Side

How they work

How they work

How they work

How they work

• Decompose the stimulation power of QE to output into two channels

How they work

- Decompose the stimulation power of QE to output into two channels
- Propose 4 main mechanisms through which these two channels work

Table: QE Decomposition

QE effect	Liquidity channel	Interest rate channel
Supply side	liquidity easing	pecuniary easing
Demand side	redistribution effect	substitution effect

• Heterogeneous household, financial friction and financial accelerator asymmetrically affect liquidity and interest rate channel

How large they are

• Three Agents DSGE: Quantitatively the stimulation power on output of liquidity channel is 1.5 times larger than that of interest rate channel $\frac{\partial Y_t}{\partial q_t^B B_t}$ Slutskey

IV-VAR

- Canonical IV to monetary policy FOMC announcement
 - ΔP_t^F , change of the price of future contract during announcement
 - only aggregate effect of monetary policy

Model Implication Quantitative Result IV-VAR Conclusion

IV-VAR

Introduction

- Canonical IV to monetary policy FOMC announcement
 - ΔP_t^F , change of the price of future contract during announcement
 - only aggregate effect of monetary policy
- A New Instrument variable: Treasury securities issuing announcement

 - Treasury securities issuing announcement \rightarrow Information about the change in volume of liquidity \rightarrow liquidity channel

Model Implication Quantitative Result IV-VAR Conclusion

IV-VAR

Introduction

- Canonical IV to monetary policy FOMC announcement
 - ΔP_t^F , change of the price of future contract during announcement
 - only aggregate effect of monetary policy
- A New Instrument variable: Treasury securities issuing announcement

 - Treasury securities issuing announcement \rightarrow Information about the change in volume of liquidity \rightarrow liquidity channel
- A New Bayesian IV-VAR algorithm

Literature review

- Term structure change triggered by QE: Bauer and Rudebusch (2014), Kuttner (2018)
 - Kuttner (2018): imperfect sustainability,improvements in financial balance sheet and signal about future short-term rate
- Conventional monetary policy-HANK: McKay, Nakamura, and Steinsson (2016), Kaplan, Moll, and Violante (2018), Auclert (2019), Bayer et al. (2019), Bilbiie (2020)
- Unconventional monetary policy-Financial friction: Carlstrom, Fuerst, and Paustian (2017), Sims and Wu (2021), and Karadi, Peter and Anton Nakov (2021).
- Unconventional monetary policy-HANK&Financial friction:Cui and Sterk (2021) and Sims, Wu, and Zhang (2022).
- IV-VAR, frequentist method: Stock and Watson (2012), Mertens and Ravn (2013) and Gertler and Karadi (2015).
- Bayesian-IV-VAR: Arias, Rubio-Ramírez, and Waggoner (2021) and Giacomini, Kitagawa, and Read (2021).

Proposition 1

When the price and depreciation rate is fixed, the contemporaneous effect of unconventional monetary policy on output can be decomposed to liquidity and interest rate channel such that (Literature)

$$\left. \frac{\partial \widehat{Y}_t}{\partial \left(\widehat{q}_t^B + \widehat{B}_t^m \right)} \right|_{\widehat{q}_t^B = q^B} = -\frac{\frac{1}{h^n} - 1 + \frac{\lambda^b}{\phi} + \varphi_1^m \frac{\varphi_1^h}{Th^n}}{C^n \frac{\psi}{\sigma} + \frac{(1-\tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = -\varphi_L q^B B^m$$

$$\frac{\partial \widehat{Y}_t}{\partial \widehat{q}_t^B}\bigg|_{\widehat{g}_t^B + \widehat{B}_t^m = q^B + B^m} = \frac{\rho}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = \varphi_R q^B B^m$$

Redistribution Effect

$$\left.\frac{\partial \widehat{Y}_t}{\partial \left(\widehat{q}_t^B + \widehat{B}_t^m\right)}\right|_{\widehat{q}_t^B = q^B} = -\frac{\frac{\frac{1}{h^n} - 1 + \frac{\lambda^b}{\phi} + \varphi_1^m \frac{\varphi_1^h}{Th^n}}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = -\varphi_L q^B B^m$$

$$\left. \frac{\partial \widehat{Y}_t}{\partial \widehat{q}_t^B} \right|_{\widehat{q}_t^B + \widehat{B}_t^m = q^B + B^m} = \frac{\rho}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = \varphi_R q^B B^m$$

Canonical GE Effect

$$\left.\frac{\partial \widehat{Y}_t}{\partial \left(\widehat{q}_t^B + \widehat{B}_t^m\right)}\right|_{\widehat{q}_t^B = q^B} = -\frac{\frac{\frac{1}{h^n} - 1 + \frac{\lambda^b}{\phi} + \varphi_1^m \frac{\varphi_1^h}{Th^n}}{C^n \frac{\psi}{\sigma} + \frac{(1-\tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = -\varphi_L q^B B^m$$

$$\left. \frac{\partial \widehat{Y}_t}{\partial \widehat{q}_t^B} \right|_{\widehat{q}_t^B + \widehat{B}_t^m = q^B + B^m} = \frac{\rho}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = \varphi_R q^B B^m$$

Liquidity easing

$$\begin{split} & \frac{\partial \widehat{Y}_t}{\partial \left(\widehat{q}_t^B + \widehat{B}_t^m\right)} \Bigg|_{\widehat{q}_t^B = q^B} = -\frac{\frac{\frac{1}{h^n} - 1 + \frac{\lambda^b}{\phi} + \varphi_1^m \frac{\varphi_1^h}{Th^n}}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = -\varphi_L q^B B^m \\ & \frac{\partial \widehat{Y}_t}{\partial \widehat{q}_t^B} \Bigg|_{\widehat{q}_t^B + \widehat{B}_t^m = q^B + B^m} = \frac{\rho}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = \varphi_R q^B B^m \end{split}$$

Pecuniary easing

$$\begin{split} \frac{\partial \widehat{Y}_t}{\partial \left(\widehat{q}_t^B + \widehat{B}_t^m\right)} \Bigg|_{\widehat{q}_t^B = q^B} &= -\frac{\frac{\frac{1}{h^n} - 1 + \frac{\lambda^b}{\phi} + \varphi_1^m \frac{\varphi_1^h}{Th^n}}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = -\varphi_L q^B B^m \\ \frac{\partial \widehat{Y}_t}{\partial \widehat{q}_t^B} \Bigg|_{\widehat{q}_t^B + \widehat{B}_t^m = q^B + B^m} &= \frac{\rho}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = \varphi_R q^B B^m \end{split}$$

Aggregate-demand complementarity(Bilbiie et al. 2022)

$$\left.\frac{\partial \widehat{Y}_t}{\partial \left(\widehat{q}_t^B + \widehat{B}_t^m\right)}\right|_{\widehat{q}_t^B = q^B} = -\frac{\frac{\frac{1}{h^n} - 1 + \frac{\lambda^b}{\phi} + \varphi_1^m \frac{\varphi_1^h}{Th^n}}{C^n \frac{\psi}{\sigma} + \frac{(1-\tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = -\varphi_L q^B B^m$$

$$\left.\frac{\partial \widehat{Y}_t}{\partial \widehat{q}_t^B}\right|_{\widehat{q}_t^B + \widehat{B}_t^m = q^B + B^m} = \frac{\rho}{C^n \frac{\psi}{\sigma} + \frac{(1 - \tau)WL}{h^n} + \varphi_1^m \varphi_4^h} q^B B^m = \varphi_R q^B B^m$$

Calibration

Parameter	Value	Description
β	0.98	Discount factor
au	0.25	Labor income tax
ho	0.995	Geometric decay rate of long-term bonds
$\theta^{m{m}}$	0.85	Exist rate of mutual funds
λ^b	0.83	Relative financial friction slackness
$\lambda^{ u}$	0.36	Absolute financial friction
$h^{ m HtM}$	0.313	Share of hand-to-mouth household
$h^{ m nHtM}$	0.687	Share of non hand-to-mouth household
$h^{ m wHtM}$	0.192	Share of wealthy hand-to-mouth household
$h^{ m pHtM}$	0.121	Share of poor hand-to-mouth household
$ ho^{ m EU}$	0.044	Possibility go from nHtM to HtM
$ ho^{ m UE}$	0.097	Possibility go from HtM to nHtM
$h^{ m wHtM HtM}$	0.613	Share of wealthy hand-to-mouth conditional on HtM
$h^{ m pHtM HtM}$	0.387	Share of poor hand-to-mouth conditional on HtM
X	0.55	Total illiquid asset withdrawing

IRF: QE shock

• 1% increase in long-term bonds hold by central bank

Link Model to Reality

- In line with previous empirical analysis.
 - With the same drop in shadow rate, 0.64% jump in output vs 0.59% at the peak Wu and Xia (2016)
 - With the same jump in the value of long-term bonds hold by central bank

Liquidity & Interest Rate Channel: Quantitative Result

IV to Liquidity: Treasury securities issuing announcement

TREASURY NEWS

202-504-3550

Department of the Treasury . Bureau of the Fiscal Service

CONTACT: Treasury Securities Services Embargoed Until 11:00 A.M. February 16, 2017

TREASURY OFFERING ANNOUNCEMENT 1 Term and Type of Security 2-Year Note \$26,000,000,000 Offering Amount Currently Outstanding CUSIP Number 912828W30 Auction Date February 21, 2017 Original Issue Date February 28, 2017 Issue Date February 28, 2017 Maturity Date February 28, 2019 Dated Date February 28, 2017 Series AX-2019 Vield Determined at Auction Determined at Auction Interest Payment Dates⁴ August 31 and February 28 Accrued Interest from 02/28/2017 to 02/28/2017 Premium or Discount Determined at Auction Minimum Amount Required for STRIPS Corpus CUSIP Number 9128206Q5 Additional TINT(s) Due Date(s) and None CUSIP Number(s) None Maximum Award \$9,100,000,000 Maximum Recognized Bid at a Single Yield \$9,100,000,000 NLP Reporting Threshold \$9,100,000,000 NLP Exclusion Amount \$0 Minimum Bid Amount and Multiples \$100 Competitive Bid Yield Increments 0.001% Maximum Noncompetitive Award \$5,000,000 Eligible for Holding in TreasuryDirect. Yes Estimated Amount of Maturing Coupon Securities Held by the Public \$81,108,000,000 Maturing Date February 28, 2017 SOMA Holdings Maturing \$13,175,000,000 SOMA Amounts Included in Offering Amount No Yes FIMA Amounts Included in Offering Amount

12:00 Noon ET

18 / 24

Noncompetitive Closing Time

Methodology

Reduce form DGP

$$Y_t = \sum_{j=1}^{p} A_j Y_{t-j} + B\varepsilon_t = \sum_{j=1}^{p} A_j Y_{t-j} + u_t$$

• IV m_t to specific shock we are interested

$$E\left[m_t \varepsilon'_{1t}\right] = \Phi \tag{3}$$

$$E\left[m_t \varepsilon'_{2t}\right] = 0 \tag{4}$$

Methodology

ullet Previous work: Fully identify Φ with restriction on eta_1

$$\Phi \beta_1' = \Sigma_{mu'} \tag{5}$$

• Fully identify β_1 with restriction on Φ Detail_S11

$$\Phi\Phi' = \Sigma_{mu_1'} \left(\Sigma_{mu_1'}^{\prime - 1} s_{11} s_{11}' \right)^{-1} \tag{6}$$

New inequality restriction

$$F\left(\Phi_{tr}, Q; \rho\right) \equiv \operatorname{diag}\left\{\left(\Phi_{tr}Q\right) \circ \left(\Phi_{tr}Q\right) \begin{bmatrix} 1 & -\frac{1}{1-\kappa_{2}} \\ -\frac{1}{1-\kappa_{1}} & 1 \end{bmatrix}\right\} > 0$$
(7)

troduction Model Implication Quantitative Result IV-VAR Conclusion

Liquidity vs Interest rate - Empirical

- market yield on 2-Year U.S. Treasury Securities r_t
- consumer price index cpi_t
- industrial production y_t
- excess bonds premium esp_t from Gilchrist, Simon and Egon Zakrajšek (2012)

Liquidity vs Interest rate - Empirical

Impulse Response to QE via liquidity channel

troduction Model Implication Quantitative Result IV-VAR Conclusion

Liquidity vs Interest rate - Empirical

Impulse Response to QE via liquidity channel

Impulse Response to QE via Interest rate channel

Model Implication Quantitative Result IV-VAR Conclusion

Conclusion

- the effectiveness of quantitative easing can be decomposed into liquidity channel and interest rate channel
 - stimulate the economy via different mechanisms
 - asymmetrically affected by Household heterogeneity and Financial friction
- liquidity channel is 1.5 times larger than the interest rate channel quantitatively
- novel instrument variable and identification algorithm
- liquidity channel is 1.46 times larger than the interest rate channel empirically

QE-effect Decomposition: Transmission mechanism

- Financial friction
 - Low: Extra liquidity \to Less debt but not more investment \to QE policy plays no role in stimulating output
 - \bullet High: Scarcity of liquidity dominates; One more unit of liquidity in net worth $\to \phi$ unit of more investment
- Heterogeneous household
 - ullet GE effect: more output o more wage income o more consumption even fixed real interest rate
 - \bullet Non-HtM household pays the liquidity \to Wealth Redistribution from non-HtM to HtM
 - Substitution: Iliquid asset investment&withdrawing

QE-effect Decomposition: Slutsky equation

•
$$X dY(q_t^B, B_t) = \frac{\partial Y}{\partial q^B} dq_t^B + \frac{\partial Y}{\partial B} dB_t$$

i.e. Financial institutions get 7.5 dollars of liquidity from central bank $(\Delta q_t B_t = 1.5 \times 5 \text{ where } \Delta B_t = 5, \Delta q_t = 0.5 \text{ and } q_{t-1} = 1). 1 \times 5 \text{ dollars}$ comes from selling the bonds and 0.5×5 dollars comes from price inflation.

•
$$\checkmark dY(q_t^B, q_t^B B_t) = \frac{\partial Y}{\partial q^B} dq_t^B + \frac{\partial Y}{\partial q^B B} d(q_t^B B_t)$$

i.e. Financial institutions get 7.5 dollars of liquidity from central bank. What is the response of output if they sell 1×7.5 dollars of bonds to central bank or sell 0 dollars (but bonds price gets a 0.5 dollars inflation).

Liquidity Channel & Interest Rate Channel

- Debortoli and Galí (2022): Average consumption $\frac{(1-\tau)WL}{h^n}$ vs Cross-sectional consumption dispersion $C^n \frac{\psi}{\sigma}$
- Redistribution credit effect $\frac{1}{h^n}-1$
- ullet Portfolio adjustment effect ${\lambda^b\over\phi}$
- Pecuniary effect ρ
- Bilbiie, Känzig, and Surico (2022): multiplier φ_1^m of multiplier effect φ_4^h

Liquidity Channel & Interest Rate Channel

Proposition 2

The complementary component of stimulation effect at supply side can be further decomposed as

$$\varphi_1^m = \underbrace{\left(N^h \frac{1 - \theta^m + \theta^m \eta}{\theta^m} \lambda \frac{R^k}{R^k - R} \frac{1}{KQ + \Pi^f} - 1 + \frac{1}{\phi}\right) \frac{\varphi_I}{\delta} (1 - \beta \Lambda)}_{\text{redistribution return}} \underbrace{-\left(1 - \frac{1}{\phi}\right) Q}_{\text{redistribution return}}$$

Back

FOCs of mutual funds

$$\begin{split} \Omega_{t,t+1} &= \Lambda_{t,t+1} \omega_{t+1} \\ \omega_t &= 1 - \theta^m + \theta^m \eta_t \\ \eta_t &= \frac{\zeta_t}{1 - \lambda_t} \\ W_t &= \eta_t n_t \\ V_t &= \mu_t^s Q_t s_t + \mu_t^b q_t^B b_t + \zeta_t n_t \\ \zeta_t &= E_t \left[\beta \Omega_{t,t+1} R_t\right] \\ \mu_t^s &= E_t \beta \Omega_{t,t+1} \left(R_{t+1}^k - R_t\right) \\ \mu_t^b &= E_t \beta \Omega_{t,t+1} \left(R_{t+1}^B - R_t\right) \end{split}$$

IV-Methodology

Write the **B** into partition

$$\mathbf{B} = \left[\begin{array}{cc} \mathbf{s}_{11} & \mathbf{s}_{12} \\ \mathbf{s}_{21} & \mathbf{s}_{22} \end{array} \right]$$

$$\mathbf{\Sigma}_{uu'} = \left[egin{array}{ccc} oldsymbol{\sigma}_{11} & oldsymbol{\sigma}_{12} \ oldsymbol{\sigma}_{21} & oldsymbol{\sigma}_{22} \end{array}
ight]$$

where \mathbf{s}_{11} is the k-by-k matrix. Then I can use the relationship

$$\mathbf{s}_{11}\mathbf{s}_{11}' = \sigma_{11} - \mathbf{s}_{12}\mathbf{s}_{12}' \tag{8}$$

$$\mathbf{s}_{12}\mathbf{s}_{12}' = \left(\boldsymbol{\sigma}_{21} - \mathbf{s}_{21}\mathbf{s}_{11}^{-1}\boldsymbol{\sigma}_{11}\right)'\mathbf{Q}^{-1}\left(\boldsymbol{\sigma}_{21} - \mathbf{s}_{21}\mathbf{s}_{11}^{-1}\boldsymbol{\sigma}_{11}\right)$$

$$\mathbf{Q} = \mathbf{s}_{21}\mathbf{s}_{11}^{-1}\boldsymbol{\sigma}_{11}\left(\mathbf{s}_{21}\mathbf{s}_{11}^{-1}\right)' - \left(\boldsymbol{\sigma}_{21}\left(\mathbf{s}_{21}\mathbf{s}_{11}^{-1}\right)' + \mathbf{s}_{21}\mathbf{s}_{11}^{-1}\boldsymbol{\sigma}_{21}'\right) + \boldsymbol{\sigma}_{22}$$

Household

- Three types of household: poor hand-to-mouth, wealthy hand-to-mouth and non hand-to-mouth
- Household $i \in \{pHtM, wHtM, nHtM\}$ solves the problem

$$V(b_{t-1}^{i}, a_{t-1}^{i}, \varepsilon^{i}) = \max_{c_{t}, b_{t}, X_{t}^{i}} U(c_{t}^{i}, l_{t}^{i}) + \beta \mathbb{E} V(b_{t}^{i}, a_{t}^{i}, \varepsilon^{i})$$

$$\text{s.t. } c_{t}^{i} + b_{t}^{i} = X_{t}^{i} + b_{t-1}^{i} R_{t-1} + (1 - \tau_{l}) w_{t} l_{t} \varepsilon_{t}^{i} + \Theta_{t}^{i} 1_{\varepsilon_{t}^{i} = 0} + T_{t}$$

$$a_{t}^{i} \geq 0$$

$$R_{t}^{a} a_{t-1}^{i} - X_{t}^{i} = a_{t}^{i}$$

where a_t is illiquid asset. b_t^i is liquid asset. Θ_t^i is unemployment insurance. T_t is lump-sum tax transfer.

Household

- Iliquid asset: fixed withdrawing $X_t^{wHtM} = X^{\mathrm{wHtM}}$ and $X_t^{nHtM} = X^{nHtM}$
 - Iliquid asset a_t is fully determined by illiquid asset return R_t^a
- Constrained household: poor hand-to-mouth pHtM and wealthy hand-to-mouth wHtM
 - Euler equation does not hold anymore $c_t^{pHtM} = \Theta_t^{\text{HtM}} + T_t$ and $c_t^{\text{wHtM}} = X^{\text{wHtM}} + \Theta_t^{\text{HtM}} + T_t$
- Unconstrained household: precautionary saving

$$U_{c}\left(c_{t}^{\mathrm{nHtM}}\right) = \mathbb{E}\beta R_{t}\left\{p^{\mathrm{nHtM}}U_{c}\left(c_{t+1}^{\mathrm{nHtM}}\right) + p^{\mathrm{pHtM}}U_{c}\left(c_{t+1}^{\mathrm{pHtM}}\right) + p^{\mathrm{wHtM}}U_{c}\left(c_{t+1}^{\mathrm{wHtM}}\right)\right\}$$

 Ex-post value of mutual fund at time t (Value of mutual fund conditional on survived at time t)

$$W(n_t|s_t^*, b_{,t}^{m*}) = \max_{s_{j,t}, b_{i,t}^m} V(s_t, b_t^m, n_t)$$
(9)

s.t.
$$V(s_t, b_t^m, n_t) \ge \lambda^{\nu} Q_t s_t + \lambda^b \lambda^{\nu} q_t^B b_t^m$$
 (10)

• Ex-ante value of mutual fund at time t+1

$$V\left(s_{t},b_{t}^{m},n_{t}\right)=E_{t}\beta\Lambda_{t,t+1}\left[\left(1-\theta^{m}\right)n_{t+1}+\theta^{m}W\left(n_{t+1}|s_{t+1}^{*},b_{t+1}^{m*}\right)\right]$$

- Balance sheet $Q_t s_t + q_t^B b_t^m = n_t + d_t^m$
- Budget constraint

$$n_t = R_t^k Q_{t-1} s_{t-1} - Q_t s_t + \frac{\left(1 + \rho q_t^B\right)}{\Pi_t} b_{t-1}^m - q_t^B b_t^m - R_{t-1} d_{t-1}^m$$

Law of motion of the net worth

$$n_{t} = \left(R_{t}^{k} - R_{t-1}\right) Q_{t-1} s_{t-1} + \left(R_{t}^{B} - R_{t-1}\right) q_{t-1}^{B} b_{t-1}^{m} + R_{t-1} n_{t-1}$$

$$N_{t} = \theta^{m} \left[\left(R_{t}^{k} - R_{t-1} \right) Q_{t-1} S_{t-1} + \left(R_{t}^{B} - R_{t-1} \right) q_{t-1}^{B} B_{t-1}^{m} + R_{t-1} N_{t-1} \right] + \varphi \phi_{t} N_{t-1}$$

where
$$N_t = \int n_{j,t} dj$$
 and $R_t^B = rac{1 +
ho^B q_t^B}{q_{t-1}^B}$

Non-arbitrage condition

$$\lambda^{b} E_{t} \beta \Omega_{t,t+1} \left(R_{t+1}^{k} - R_{t} \right) = E_{t} \beta \Omega_{t,t+1} \left(R_{t+1}^{B} - R_{t} \right)$$

If no financial friction, $R_{t+1}^k = R_t = R_{t+1}^B$.

One unit of liquidity \rightarrow decrease one unit of debt;instead of increasing one unit of physical investment

Endogenous leverage ratio

$$\phi_t \leq \overline{\phi}_t = \frac{E_t \left[\beta \Omega_{t,t+1} R_t\right]}{\lambda^v - E_t \left[\beta \Omega_{t,t+1} \left(R_{t+1}^k - R_t\right)\right]}$$

A larger $E_t\left[\beta\Omega_{t,t+1}R_t\right] \rightarrow$ increased funding cost \rightarrow smaller $\overline{\phi}_t$ A larger $E_t\left[\beta\Omega_{t,t+1}\left(R_{t+1}^k-R_t\right)\right] \rightarrow$ mutual funds are more valuable \rightarrow larger $\overline{\phi}_t$ rocs

Production sector

Intermediate good producer closes the equity market

$$R_t^k = \frac{\left[\frac{\Pi_t^t + \tau_{y^m}}{\xi_t K_{t-1}} + Q_t\right] \xi_t}{Q_{t-1}}$$

- Capital producer pins down capital price
- Retailer sets the price with monopolic power
- Final goods producer: CES aggregation

Central Bank and Government

Budget constraint

$$T_{t} = T_{t}^{s} - \frac{\left(1 + \rho q_{t}^{B}\right)}{\Pi_{t}} B_{t-1}^{g} + q_{t}^{B} B_{t}^{g} \tag{11}$$

$$T_{t}^{s} + D_{t}^{h} - R_{t-1}D_{t-1}^{h} + D_{t}^{m} - R_{t-1}D_{t-1}^{m} = \frac{\left(1 + \rho q_{t}^{B}\right)}{\Pi_{t}}B_{t-1}^{cb} - q_{t}^{B}B_{t}^{cb}$$
(12)

where

$$B_t^g = B_t^{cb} + B_t^m = 0 (13)$$

$$B_t^m = \int b_{i,t}^m di \tag{14}$$

$$D_t^h + h^{\text{nHtM}} b_t^{\text{nHtM}} = 0$$
 (15)

$$D_t^m = \int d_{i,t}^m di \tag{16}$$

Central Bank and Government

Conventional monetary policy

$$\mathcal{R}_{t} = \max \left\{ \mathcal{R}_{t-1}^{\theta_{r}} \mathbb{E}_{t} \left[\left(\frac{\Pi_{t+1}}{\Pi} \right)^{\theta_{\pi}} \left(\frac{Y_{t}}{Y} \right)^{\theta_{y}} \right]^{1-\theta_{r}} \gamma_{t}^{MP}, 1 \right\}$$
 (17)

Unconventional monetary policy

$$\frac{B_t^m}{\overline{B^m}} = \frac{B_{t-1}^m}{\overline{B^m}}^{Q^{QE}} \left[\left(\frac{\Pi_{t+1}}{\Pi} \right)^{\theta_{\pi}^{QE}} \left(\frac{Y_t}{Y} \right)^{\theta_y^{QE}} \right]^{1 - \theta_r^{QE}} \gamma_t^{QE} \tag{18}$$

The money used to implement QE policy is fully funded by household

$$q_t^B B_t^m = D_t^h + \overline{T}_{\rm cb}$$

Asymmetric effect: Supply Side

Low Financial Friction \rightarrow High Financial Friction

Asymmetric effect: Supply Side

Low Financial Friction \rightarrow High Financial Friction

Higher Financial Accelerator → Low Financial Accelerator

Back

Asymmetric effect: Demand Side

Redistribution: Low Inequality \rightarrow High Inequality

Asymmetric effect: Demand Side

Redistribution: Low Inequality \rightarrow High Inequality

Income Effect: Low Inequality \rightarrow High Inequality

