Corso di Linguaggi di Programmazione

Prova parziale del 14 dicembre 2011—Linguaggi e Compilatori

Tempo a disposizione: ore 2.

1. La seguente grammatica è ambigua? Motivare adeguatamente.

$$\begin{array}{ccc} S & \rightarrow & SA \mid A \\ A & \rightarrow & \mathtt{a}A\mathtt{b} \mid \varepsilon \end{array}$$

2. Applicando la costruzione canonica, si dia un NFA per la seguente espressione regolare (si possono applicare ottimizzazioni alla costruzione canonica, ma senza distruggerne la struttura):

$$a(b \mid c)^*a^*$$

3. Si applichi la costruzione dei sottinsiemi all'NFA dell'esercizio precedente.

FACOLTATIVO: si è ottenuto l'automa minimo? Motivare brevemente.

- 4. Sono dati il linguaggio $L_1 = \{a^n b^n c^n \mid n \geq 0\}$ ed $L_2 = \{c^m b^m \mid m \geq 0\}$. (i) Si classifichino, senza necessità di motivazione, L_1 ed L_2 (si dica cioè se trattasi di linguaggi regolari, liberi non regolari, non liberi). (ii) Si classifichi poi il linguaggio $L_1 L_2$, dimostrando quanto asserito.
- 5. Si applichi alla grammatica seguente:

$$\begin{array}{ccc} S \rightarrow & AB \\ A \rightarrow & aAA \mid \varepsilon \\ B \rightarrow & bBB \mid b \end{array}$$

la procedura di eliminazione delle ε -produzioni.

6. Si costruisca la tabella di parsing LL(1) per la seguente grammatica. È una grammatica LL(1)? Motivare.

$$\begin{array}{ccc} S & \rightarrow & BS \mid \varepsilon \\ B & \rightarrow & \mathrm{a}X \\ X & \rightarrow & B\mathrm{b} \mid \mathrm{b} \end{array}$$

7. Si consideri la seguente tabella di un parser LR (r=reduce; s=shift; g=goto; i numeri delle azioni reduce fanno riferimento ad opportune produzioni):

	a	\mathbf{c}	\$	S
1	s3	r1	r1	g2
$\frac{1}{2}$			ac	
3	s3	r1	r1 ac r1	g4
4		r1 $ s5$		
5	s3	r1 r2	r1 r2	g6
6		r2	r2	

- (i) Si tratta di un parser LR(0)? Motivare brevemente (due linee max).
- (ii) Quale simbolo corrisponde allo stato 4? E allo stato 6?
- (iii) Si supponga che il parser guidato dalla tabella sia nella configurazione seguente:

Sapendo che la produzione 1 ha la parte destra composta da zero simboli (cioè è ε) e che la produzione 2 ha la parte destra composta da 4 simboli, si diano, su righe distinte, le configurazioni successive in cui evolve il parser, indicando su ogni riga qual è l'azione che porta nella configurazione seguente.

- (iv) Su quale stringa di input è stato eseguito il parser nella domanda (iii)?
- 8. Si vuole costruire l'automa canonico LR(1) per la grammatica aumentata

$$\begin{array}{cccc} 0 & S' & \rightarrow & S \\ 1 & S & \rightarrow & aScS \\ 2 & S & \rightarrow & \varepsilon \end{array}$$

Tra gli stati dell'automa canonico LR(1) troviamo $t = [S \to aS \cdot cS, \$]$. Si costruisca la porzione di automa LR(1) raggiungibile a partire da t con un massimo di tre transizioni.