Semaine du 22/04/2024

Chapitre M6 – Mouvement dans un champ de gravitation newtonien

Plan du cours

I Position du problème

- I.1 Lois de Kepler
- I.2 Champ de gravitation newtonien

II Caractère central de la force

- II.1 Conservation du moment cinétique
 - → Établir la conservation du moment cinétique à partir du théorème du moment cinétique.
- II.2 Planéité du mouvement
 - \rightarrow Établir les conséquences de la conservation du moment cinétique : mouvement plan.
- II.3 Loi des aires
 - $\rightarrow~$ Établir les conséquences de la conservation du moment cinétique : loi des aires.

III Caractère conservatif de la force

III.1 Conservation de l'énergie mécanique

 $\rightarrow\,$ Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du mouvement.

III.2 Énergie potentielle effective

→ Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective.

III.3 Nature des trajectoires

- → Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective.
- ightarrow Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique.

IV Cas du mouvement circulaire

IV.1 Vecteurs vitesse et accélération

 \rightarrow Déterminer les caractéristiques des vecteurs vitesse et accélération du centre de masse d'un système en mouvement circulaire dans un champ de gravitation newtonien.

IV.2 Période

 \rightarrow Établir et exploiter la troisième loi de Kepler dans le cas du mouvement circulaire.

IV.3 Satellite géostationnaire

Questions de cours

- \rightarrow Énoncer les trois lois de Kepler.
- → Établir la conservation du moment cinétique et expliciter ses conséquences (planéité du mouvement et loi des aires).
- → Établir l'expression de l'énergie potentielle effective, la représenter graphiquement et discuter des différentes trajectoires possibles en fonction de la valeur de l'énergie mécanique.
- \rightarrow Établir l'expression de la vitesse dans le cas d'une trajectoire circulaire de rayon r_0 .
- → Énoncer, puis établir la troisième loi de Kepler dans le cas d'une orbite circulaire.
- → Donner les caractéristiques de l'orbite géostationnaire.

Chapitre M7 – Mouvement d'un solide

Plan du cours

I Cinématique du solide

- I.1 Description d'un solide
 - → Différencier un solide d'un système déformable.
- I.2 Translation
 - → Reconnaître et décrire une translation rectiligne ainsi qu'une translation circulaire.
- **I.3** Rotation
 - → Décrire la trajectoire d'un point quelconque du solide et exprimer sa vitesse en fonction de sa distance à l'axe et de la vitesse angulaire.

II Moment cinétique

- II.1 Moment d'inertie
 - \rightarrow Exploiter, pour un solide, la relation entre le moment cinétique scalaire, la vitesse angulaire de rotation et le moment d'inertie fourni.
 - $\rightarrow~$ Relier qualitativement le moment d'inertie à la répartition des masses.

II.2 Couple

- \rightarrow Définir un couple.
- $\rightarrow~$ Définir une liaison pivot et justifier le moment qu'elle peut produire.

II.3 Théorème du moment cinétique

 \rightarrow Exploiter le théorème scalaire du moment cinétique appliqué au solide en rotation autour d'un axe fixe dans un référentiel galiléen.

III Approche énergétique

III.1 Énergie cinétique

→ Utiliser l'expression de l'énergie cinétique, l'expression du moment d'inertie étant fournie.

III.2 Puissance d'une force

III.3 Théorème de l'énergie cinétique

→ Établir, dans le cas d'un solide en rotation dans autour d'un axe fixe, l'équivalence entre le théorème scalaire du moment cinétique et celui de l'énergie cinétique.

Questions de cours

- → Énoncer le théorème du moment cinétique par rapport à un axe fixe pour un solide en rotation.
- → Énoncer le théorème de l'énergie cinétique pour un solide en rotation autour d'un axe fixe et montrer qu'il est équivalent à la loi du moment cinétique scalaire.
- → Établir l'équation du mouvement du pendule pesant par application du théorème du moment cinétique et/ou avec le théorème de l'énergie cinétique.

Chapitre T3 – Deuxième principe

Plan du cours

I Deuxième principe

- I.1 Réversibilité et irréversibilité
- I.2 Causes d'irréversibilité
 - → Relier la création d'entropie à une ou plusieurs causes physiques de l'irréversibilité.
- **I.3** Bilan d'entropie
 - ightarrow Définir un système fermé et établir pour ce système un bilan entropique.

II Fonction d'état entropie

- II.1 Entropie d'un gaz parfait
 - → Analyser le cas particulier d'un système en évolution adiabatique.
 - \rightarrow Citer et utiliser la loi de Laplace et ses conditions d'application.
- II.2 Entropie d'une phase condensée

III Exemples

- $\rightarrow~$ Utiliser l'expression fournie de la fonction d'état entropie.
- $\rightarrow~$ Exploiter l'extensivité de l'entropie.
- III.1 Détente de Joule Gay-Lussac
- III.2 Chauffage par effet Joule

Questions de cours

- → Énoncer complètement le second principe : propriétés de l'entropie, bilan d'entropie et expliciter les différents termes.
- $\rightarrow\,\,$ Citer la loi de Laplace pour un gaz parfait et ses conditions d'application. L'établir, l'expression de l'entyropie d'un GP étant donnée.
- → Application : mise en contact de deux systèmes à des température différentes (App. ??).
- → Application : détente de Joule Gay-Lussac (App. ??).
- \rightarrow Application : effet Joule (App. ??).

Note aux colleurs : les expressions de l'entropie d'un GP ou d'une PCII ne sont pas exigibles et doivent être redonnées.