

EXERCICE ET PROJETS ALGORITHMES

(Voir projet au bas du document)

Exercice 1.1

Quelles seront les valeurs des variables A et B après exécution des instructions suivantes?

Variables A, B en Entier

Début

 $A \leftarrow 1$

 $B \leftarrow A + 3$

 $A \leftarrow 3$

Fin

Quelles seront les valeurs des variables A, B et C après exécution des instructions suivantes?

Variables A, B, C en Entier

Début

 $A \leftarrow 5$

B ← 3

 $C \leftarrow A + B$

 $A \leftarrow 2$

 $C \leftarrow B - A$

Fin

Exercice 1.4

Quelles seront les valeurs des variables A, B et C après exécution des instructions suivantes?

Variables A, B, C en Entier

Début

 $A \leftarrow 3$

B ← 10

 $C \leftarrow A + B$

 $B \leftarrow A + B$

 $A \leftarrow C$

Fin

Quelles seront les valeurs des variables A et B après exécution des instructions suivantes?

Variables A, B en Entier

Début

 $A \leftarrow 5$

B ← 2

 $A \leftarrow B$

 $B \leftarrow A$

Fin

Moralité : les deux dernières instructions permettent-elles d'échanger les deux valeurs de B et A? Si l'on inverse les deux dernières instructions, cela change-t-il quelque chose?

Exercice 1.6

Plus difficile, mais c'est un classique absolu, qu'il faut absolument maîtriser : écrire un algorithme permettant d'échanger les valeurs de deux variables A et B, et ce quel que soit leur contenu préalable.

Exercice 1.7

Une variante du précédent: on dispose de trois variables A, B et C. Ecrivez un algorithme transférant à B la valeur de A, à C la valeur de B et à A la valeur de C (toujours quels que soient les contenus préalables de ces variables).

Que produit l'algorithme suivant?

Variables A, B, C en Caractères

Début

$$C \leftarrow A + B$$

Fin

Exercice 1.9

Que produit l'algorithme suivant?

Variables A, B, C en Caractères

Début

Fin

Quel résultat produit le programme suivant ?

Variables val, double numériques

Début

Val ← 231

Double ← Val * 2

Ecrire Val

Ecrire Double

Fin

Exercice 2.2

Ecrire un programme qui demande un nombre à l'utilisateur, puis qui calcule et affiche le carré de ce nombre.

Exercice 2.3

Ecrire un programme qui lit le prix HT d'un article, le nombre d'articles et le taux de TVA, et qui fournit le prix total TTC correspondant. Faire en sorte que des libellés apparaissent clairement.

Exercice 2.4

Ecrire un algorithme utilisant des variables de type chaîne de caractères, et affichant quatre variantes possibles de la célèbre « belle marquise, vos beaux yeux me font mourir d'amour ». On ne se soucie pas de la ponctuation, ni des majuscules.

Ecrire un algorithme qui demande un nombre à l'utilisateur, et l'informe ensuite si ce nombre est positif ou négatif (on laisse de côté le cas où le nombre vaut zéro).

Exercice 3.2

Ecrire un algorithme qui demande deux nombres à l'utilisateur et l'informe ensuite si leur produit est négatif ou positif (on laisse de côté le cas où le produit est nul). Attention toutefois : on ne doit **pas** calculer le produit des deux nombres.

Exercice 3.3

Ecrire un algorithme qui demande trois noms à l'utilisateur et l'informe ensuite s'ils sont rangés ou non dans l'ordre alphabétique.

Ecrire un algorithme qui demande un nombre à l'utilisateur, et l'informe ensuite si ce nombre est positif ou négatif (on inclut cette fois le traitement du cas où le nombre vaut zéro).

Exercice 3.5

Ecrire un algorithme qui demande deux nombres à l'utilisateur et l'informe ensuite si le produit est négatif ou positif (on inclut cette fois le traitement du cas où le produit peut être nul). Attention toutefois, on ne doit pas calculer le produit!

Exercice 3.6

Ecrire un algorithme qui demande l'âge d'un enfant à l'utilisateur. Ensuite, il l'informe de sa catégorie :

- "Poussin" de 6 à 7 ans
- "Pupille" de 8 à 9 ans
- "Minime" de 10 à 11 ans
- "Cadet" après 12 ans

Peut-on concevoir plusieurs algorithmes équivalents menant à ce résultat?

Formulez un algorithme équivalent à l'algorithme suivant :

```
Si Tutu > Toto + 4 OU Tata = "OK" Alors
Tutu ← Tutu + 1
Sinon
Tutu ← Tutu - 1
Finsi
```

Exercice 4.2

Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible!

Il lira au clavier l'heure et les minutes, et il affichera l'heure qu'il sera une minute plus tard. Par exemple, si l'utilisateur tape 21 puis 32, l'algorithme doit répondre :

"Dans une minute, il sera 21 heure(s) 33".

NB : on suppose que l'utilisateur entre une heure valide. Pas besoin donc de la vérifier.

Exercice 4.3

De même que le précédent, cet algorithme doit demander une heure et en afficher une autre. Mais cette fois, il doit gérer également les secondes, et afficher l'heure qu'il sera une seconde plus tard.

Par exemple, si l'utilisateur tape 21, puis 32, puis 8, l'algorithme doit répondre : "Dans une seconde, il sera 21 heure(s), 32 minute(s) et 9 seconde(s)".

NB : là encore, on suppose que l'utilisateur entre une date valide.

Un magasin de reprographie facture 0,10 E les dix premières photocopies, 0,09 E les vingt suivantes et 0,08 E au-delà. Ecrivez un algorithme qui demande à l'utilisateur le nombre de photocopies effectuées et qui affiche la facture correspondante.

Exercice 4.5

Les habitants de Zorglub paient l'impôt selon les règles suivantes :

- les hommes de plus de 20 ans paient l'impôt
- les femmes paient l'impôt si elles ont entre 18 et 35 ans
- · les autres ne paient pas d'impôt

Le programme demandera donc l'âge et le sexe du Zorglubien, et se prononcera donc ensuite sur le fait que l'habitant est imposable.

Exercice 4.6

Les élections législatives, en Guignolerie Septentrionale, obéissent à la règle suivante :

- lorsque l'un des candidats obtient plus de 50% des suffrages, il est élu dès le premier tour.
- en cas de deuxième tour, peuvent participer uniquement les candidats ayant obtenu au moins 12,5% des voix au premier tour.

Vous devez écrire un algorithme qui permette la saisie des scores de quatre candidats au premier tour. Cet algorithme traitera ensuite le candidat numéro 1 (et **uniquement** lui) : il dira s'il est élu, battu, s'il se trouve en ballottage favorable (il participe au second tour en étant arrivé en tête à l'issue du premier tour) ou défavorable (il participe au second tour sans avoir été en tête au premier tour).

Une compagnie d'assurance automobile propose à ses clients quatre familles de tarifs identifiables par une couleur, du moins au plus onéreux : tarifs bleu, vert, orange et rouge. Le tarif dépend de la situation du conducteur :

- un conducteur de moins de 25 ans et titulaire du permis depuis moins de deux ans, se voit attribuer le tarif rouge, si toutefois il n'a jamais été responsable d'accident. Sinon, la compagnie refuse de l'assurer.
- un conducteur de moins de 25 ans et titulaire du permis depuis plus de deux ans, ou de plus de 25 ans mais titulaire du permis depuis moins de deux ans a le droit au tarif orange s'il n'a jamais provoqué d'accident, au tarif rouge pour un accident, sinon il est refusé.
- un conducteur de plus de 25 ans titulaire du permis depuis plus de deux ans bénéficie du tarif vert s'il n'est à l'origine d'aucun accident et du tarif orange pour un accident, du tarif rouge pour deux accidents, et refusé au-delà
- De plus, pour encourager la fidélité des clients acceptés, la compagnie propose un contrat de la couleur immédiatement la plus avantageuse s'il est entré dans la maison depuis plus d'un an.

78

Ecrire l'algorithme permettant de saisir les données nécessaires (sans contrôle de saisie) et de traiter ce problème. Avant de se lancer à corps perdu dans cet exercice, on pourra réfléchir un peu et s'apercevoir qu'il est plus simple qu'il n'en a l'air (cela s'appelle faire une analyse!)

Ecrivez un algorithme qui a près avoir demandé un numéro de jour, de mois et d'année à l'utilisateur, renvoie s'il s'agit ou non d'une date valide.

Cet exercice est certes d'un manque d'originalité affligeant, mais après tout, en algorithmique comme ailleurs, il faut connaître ses classiques! Et quand on a fait cela une fois dans sa vie, on apprécie pleinement l'existence d'un type numérique « date » dans certains langages...).

Il n'est sans doute pas inutile de rappeler rapidement que le mois de février compte 28 jours, sauf si l'année est bissextile, auquel cas il en compte 29. L'année est bissextile si elle est divisible par quatre. Toutefois, les années divisibles par 100 ne sont pas bissextiles, mais les années divisibles par 400 le sont. Ouf!

Un dernier petit détail : vous ne savez pas, pour l'instant, exprimer correctement en pseudo-code l'idée qu'un nombre A est divisible par un nombre B. Aussi, vous vous contenterez d'écrire en bons télégraphistes que A divisible par B se dit « A dp B ».

Exercice 5.1

Ecrire un algorithme qui demande à l'utilisateur un nombre compris entre 1 et 3 jusqu'à ce que la réponse convienne.

Exercice 5.2

Ecrire un algorithme qui demande un nombre compris entre 10 et 20, jusqu'à ce que la réponse convienne. En cas de réponse supérieure à 20, on fera apparaître un message : « Plus petit! », et inversement, « Plus grand! » si le nombre est inférieur à 10.

Exercice 5.3

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite affiche les dix nombres suivants. Par exemple, si l'utilisateur entre le nombre 17, le programme affichera les nombres de 18 à 27.

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite écrit la table de multiplication de ce nombre, présentée comme suit (cas où l'utilisateur entre le nombre 7):

Table de 7:

 $7 \times 1 = 7$

 $7 \times 2 = 14$

 $7 \times 3 = 21$

•••

 $7 \times 10 = 70$

Exercice 5.5

Ecrire un algorithme qui demande un nombre de départ, et qui calcule la somme des entiers jusqu'à ce nombre. Par exemple, si l'on entre 5, le programme doit calculer :

$$1+2+3+4+5=15$$

NB : on souhaite afficher uniquement le résultat, pas la décomposition du calcul.

Exercice 5.6

Ecrire un algorithme qui demande un nombre de départ, et qui calcule sa factorielle.

NB : la factorielle de 8, notée 8 !, vaut

 $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8$

Ecrire un algorithme qui demande successivement 20 nombres à l'utilisateur, et qui lui dise ensuite quel était le plus grand parmi ces 20 nombres :

Entrez le nombre numéro 1 : 12 Entrez le nombre numéro 2 : 14

etc.

Entrez le nombre numéro 20 : 6

Le plus grand de ces nombres est : 14

Modifiez ensuite l'algorithme pour que le programme affiche de surcroît en quelle position avait été saisie ce nombre :

C'était le nombre numéro 2

Exercice 5.8

Réécrire l'algorithme précédent, mais cette fois-ci on ne connaît pas d'avance combien l'utilisateur souhaite saisir de nombres. La saisie des nombres s'arrête lorsque l'utilisateur entre un zéro.

Exercice 5.9

Lire la suite des prix (en euros entiers et terminée par zéro) des achats d'un client. Calculer la somme qu'il doit, lire la somme qu'il paye, et simuler la remise de la monnaie en affichant les textes "10 Euros", "5 Euros" et "1 Euro" autant de fois qu'il y a de coupures de chaque sorte à rendre.

Ecrire un algorithme qui déclare et remplisse un tableau de 7 valeurs numériques en les mettant toutes à zéro.

Exercice 6.2

Ecrire un algorithme qui déclare et remplisse un tableau contenant les six voyelles de l'alphabet latin.

Exercice 6.3

Ecrire un algorithme qui déclare un tableau de 9 notes, dont on fait ensuite saisir les valeurs par l'utilisateur.

Exercice 6.4

Que produit l'algorithme suivant ?

```
Tableau Nb(5) en Entier

Variable i en Entier

Début

Pour i ← 0 à 5

Nb(i) ← i * i
i suivant

Pour i ← 0 à 5

Ecrire Nb(i)
i suivant
```

Peut-on simplifier cet algorithme avec le même résultat?

Exercice 5.1

Fin

Ecrire un algorithme qui demande à l'utilisateur un nombre compris entre 1 et 3 jusqu'à ce que la réponse convienne.

Exercice 5.2

Ecrire un algorithme qui demande un nombre compris entre 10 et 20, jusqu'à ce que la réponse convienne. En cas de réponse supérieure à 20, on fera apparaître un message : « Plus petit! », et inversement, « Plus grand! » si le nombre est inférieur à 10.

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite affiche les dix nombres suivants. Par exemple, si l'utilisateur entre le nombre 17, le programme affichera les nombres de 18 à 27.

Ecrire un algorithme qui demande un nombre de départ, et qui ensuite écrit la table de multiplication de ce nombre, présentée comme suit (cas où l'utilisateur entre le nombre 7) : Table de 7 :

 $7 \times 1 = 7$

 $7 \times 2 = 14$

 $7 \times 3 = 21$

•••

 $7 \times 10 = 70$

MINI PROJET

1-Ecrire un algorithme permettant de présenter un menu de restaurant.

Tout d'abord on présente le menu au client, on lui demande faire un choix. En fonction du choix de client on lui donne le temps d'estimation de préparation de son plat.

2- Ecrire un algorithme qui permet de recueillir les notes d'un élève et générer sa moyenne, il doit permettre également de donner la plus forte note obtenue et la plus faible note.

Permettre à l'utilisateur le choix du nombre de note a entrer et ensuite fait la moyenne de ses notes et émettre la plus faible et la plus forte note. 3-ecrire un algorithme qui permet de convertir une somme en euro en Franc CFA

4-ecrire un algorithme qui permet de converser avec une personne selon les réponses de l'utilisateur

Exemple de conversation entre l'algorithme et l'utilisateur :

- Bonjour, quel est votre nom?
- Bonjour, mon nom est Abdoul
- Comment allez-vous Abdoul?
- Et la journée

Emettre des conversation d'au moins 10 échanges.