一、本周研究内容

- **1.** 使用 semi-supervised learning (pseudo labeling) 方法,用训练好的 SVM model 对上周新增 214081 条 tweets 进行了预测,并在 KNN 和 SVM 上进行了实验。实验发现使用扩充后的数据集,模型表现都有明显提升。
- 2. Web app 对接:和 zhang juntao 同学在 web app 的需求上进行了探讨,并且在前端的实现中发现了一些问题: 地理区域划分该如何选择。

二、项目实施当前状态

项目目前在 text classification 部分已经完成,下一步重点在与 web app 的对接以及设定相关预警规则。

三、本周成果

1. Semi-supervised learning (Pseudo labeling)

使用 SVM 去 predict 214081 unlabeled tweets。最终数据集的构成为 221145 条数据 (7064 + 214081), 其中 label 为 0 的 211691 条, label 为 1 的 9454 条。

	label	full_text
0	0	211691
1	1	9454

图一: pseudo-labeled 后数据集分布

实验: 使用 214081 条 tweets 的 70% 154801 条 tweets 作为 training set, 30% 66344 条 tweets 作为 validation set。

```
text_train, text_test, label_train, label_test = \
train_test_split(iteration5['full_text'], iteration5['label'], test_size=0.3,random_state=42)
print(len(text_train), len(text_test), len(text_train) + len(text_test))
154801 66344 221145
```

SVM 模型在 7064 条 labeled tweets 上 (supervised learning) 的实验结果如下图所示 , marco average F1 为 0.72。

	precision	recall	f1-score	support
0.0 1.0	0.96 0.68	0.99 0.36	0.97 0.47	1994 126
accuracy macro avg weighted avg	0.82 0.94	0.67 0.95	0.95 0.72 0.94	2120 2120 2120

图二: SVM 在 7064 条 tweets 上 classification report

SVM 模型在 221145 条 pseudo-labeled tweets 上 (semi-supervised learning)的实验结果如下图所示, marco average F1 为 **0.95**。

	precision	recall	f1-score	support
0.0 1.0	1.00 0.87	0.99 0.93	1.00 0.90	63425 2919
accuracy macro avg weighted avg	0.93 0.99	0.96 0.99	0.99 0.95 0.99	66344 66344

图三: SVM 在 221145 条 tweets 上 classification report

KNN 模型在 7064 条 labeled tweets 上 (supervised learning) 的实验结果如下图所示 , marco average F1 为 0.66。

	precision	recall	f1-score	support
0.0	0.95	0.99	0.97	1994
1.0	0.71	0.23	0.35	126
accuracy			0.95	2120
macro avg	0.83	0.61	0.66	2120
weighted avg	0.94	0.95	0.94	2120

图四: KNN 在 7064 条 tweets 上 classification report

KNN 模型在 221145 条 pseudo-labeled tweets 上 (semi-supervised learning)的实验结果如下图所示, marco average F1 为 **0.82**。

	precision	recall	f1-score	support
0.0	0.98	0.99	0.99	63425
1.0	0.72	0.60	0.66	2919
accuracy			0.97	66344
macro avg	0.85	0.80	0.82	66344
weighted avg	0.97	0.97	0.97	66344

图五: KNN 在 221145 条 tweets 上 classification report

2. Web app 对接

在'预警 Web App 需求 V2'中,我把前端方面的需求归纳为三个:全球疫情预警地图,疫情预警信息 table 以及时间选择功能。Zhang juntao 同学已经将他做的符合这三个需求的 demo 截图发给了我,如下图所示。

图六: Web App 前端 Demo 页面

四、本周问题

Zhang juntao 同学在将疫情预警地图按照城市划分的时候,发现 UI 效果不是很理想,如下图所示。本周的问题是,能否将按照城市划分预警等级转为国家划分?

图七: Web App 按照城市划分

五、下周计划

落实疫情预警规则地域的设定,配合WebApp对需要的后端数据进行处理。

Yiming Zhang Weekly Report Page 3/3