Algoritma Greedy

Bahan Kuliah IF2211 Strategi Algoritma

Oleh: Rinaldi Munir

Pendahuluan

- Algoritma greedy merupakan metode yang paling populer untuk memecahkan persoalan optimasi.
- Persoalan optimasi (optimization problems):
 - persoalan mencari solusi optimum.
- Hanya ada dua macam persoalan optimasi:
 - 1. Maksimasi (*maximization*)
 - 2. Minimasi (*minimization*)

Contoh persoalan optimasi:

(Persoalan Penukaran Uang):
Diberikan uang senilai A. Tukar A
dengan koin-koin uang yang ada.
Berapa jumlah minimum koin
yang diperlukan untuk penukaran
tersebut?

→ Persoalan minimasi

Contoh 1: tersedia banyak koin 1, 5, 10, 25

 Uang senilai A = 32 dapat ditukar dengan banyak cara berikut:

$$32 = 1 + 1 + ... + 1$$
 (32 koin)
 $32 = 5 + 5 + 5 + 5 + 10 + 1 + 1$ (7 koin)
 $32 = 10 + 10 + 10 + 1 + 1$ (5 koin)
... dst

• Minimum: 32 = 25 + 5 + 1 + 1 (4 koin)

Greedy = rakus, tamak, loba, ...

- Prinsip greedy: "take what you can get now!".
- Algoritma greedy membentuk solusi langkah per langkah (step by step).
- Pada setiap langkah, terdapat banyak pilihan yang perlu dievaluasi.
- Oleh karena itu, pada setiap langkah harus dibuat keputusan yang terbaik dalam menentukan pilihan.

 Pada setiap langkah, kita membuat pilihan optimum lokal (local optimum)

 dengan harapan bahwa langkah sisanya mengarah ke solusi optimum global (global optimm). Algoritma greedy adalah algoritma yang memecahkan masalah langkah per langkah;

pada setiap langkah:

- mengambil pilihan yang terbaik yang dapat diperoleh pada saat itu tanpa memperhatikan konsekuensi ke depan (prinsip "take what you can get now!")
- berharap bahwa dengan memilih optimum lokal pada setiap langkah akan berakhir dengan optimum global.

Tinjau masalah penukaran uang:

The state of the s

Strategi *greedy*:

Pada setiap langkah, pilihlah koin dengan nilai terbesar dari himpunan koin yang tersisa.

- Misal: A = 32, koin yang tersedia: 1, 5, 10, dan 25
 Langkah 1: pilih 1 buah koin 25 (Total = 25)
 Langkah 2: pilih 1 buah koin 5 (Total = 25 + 5 = 30)
 Langkah 3: pilih 2 buah koin 1 (Total = 25+5+1+1= 32)
- Solusi: Jumlah koin minimum = 4 (solusi optimal!)

Elemen-elemen algoritma greedy:

- 1. Himpunan kandidat, C.
- 2. Himpunan solusi, S
- 3. Fungsi seleksi (selection function)
- 4. Fungsi kelayakan (feasible)
- 5. Fungsi obyektif

Dengan kata lain:

algoritma *greedy* melibatkan pencarian sebuah himpunan bagian, *S*, dari himpunan kandidat, *C*; yang dalam hal ini, *S* harus memenuhi beberapa kriteria yang ditentukan, yaitu menyatakan suatu solusi dan *S* dioptimisasi oleh fungsi obyektif.

Pada masalah penukaran uang:

- Himpunan kandidat: himpunan koin yang merepresentasikan nilai 1, 5, 10, 25, paling sedikit mengandung satu koin untuk setiap nilai.
- Himpunan solusi: total nilai koin yang dipilih tepat sama jumlahnya dengan nilai uang yang ditukarkan.
- Fungsi seleksi: pilihlah koin yang bernilai tertinggi dari himpunan kandidat yang tersisa.
- Fungsi layak: memeriksa apakah nilai total dari himpunan koin yang dipilih tidak melebihi jumlah uang yang harus dibayar.
- Fungsi obyektif: jumlah koin yang digunakan minimum.

Skema umum algoritma greedy:

```
function greedy(input C: himpunan kandidat) → himpunan kandidat
{ Mengembalikan solusi dari persoalan optimasi dengan algoritma greedy
  Masukan: himpunan kandidat C
  Keluaran: himpunan solusi yang bertipe himpunan kandidat
Deklarasi
   x : kandidat
    S : himpunan kandidat
Algoritma:
    S \leftarrow \{\} { inisialisasi S dengan kosong }
    while (not SOLUSI(S)) and (C \neq {}) do
      x \leftarrow SELEKSI(C) { pilih sebuah kandidat dari C}
      C \leftarrow C - \{x\} { elemen himpunan kandidat berkurang satu }
       if LAYAK(S \cup {x}) then
           S \leftarrow S \cup \{x\}
       endif
     endwhile
     {SOLUSI(S) \text{ or } C = {}}
    if SOLUSI(S) then
        return S
    else
       write('tidak ada solusi')
    endif
```

- Pada akhir setiap lelaran, solusi yang terbentuk adalah optimum lokal.
- Pada akhir kalang while-do diperoleh optimum global.

 Warning: Optimum global belum tentu merupakan solusi optimum (terbaik), tetapi sub-optimum atau pseudooptimum.

Alasan:

- 1. Algoritma *greedy* tidak beroperasi secara menyeluruh terhadap semua alternatif solusi yang ada (sebagaimana pada metode *exhaustive search*).
- 2. Terdapat beberapa fungsi SELEKSI yang berbeda, sehingga kita harus memilih fungsi yang tepat jika kita ingin algoritma menghasilkan solusi optiamal.
- Jadi, pada sebagian masalah algoritma greedy tidak selalu berhasil memberikan solusi yang optimal.

Koin: 5, 4, 3, dan 1 (a) Uang yang ditukar = 7.

Solusi greedy: 7 = 5 + 1 + 1(3 koin) → tidak optimal

Solusi optimal: 7 = 4 + 3

(2 koin)

(b) Koin: 10, 7, 1

Uang yang ditukar: 15

Solusi *greedy*: 15 = 10 + 1 + 1 + 1 + 1 + 1

(6 koin)

Solusi optimal: 15 = 7 + 7 + 1

(hanya 3 koin)

(c) Koin: 15, 10, dan 1

Uang yang ditukar: 20

Solusi *greedy*: 20 = 15 + 1 + 1 + 1 + 1 + 1

(6 koin)

Solusi optimal: 20 = 10 + 10

(2 koin)

- Untuk sistem mata uang dollar AS, euro Eropa, dan crown Swedia, algoritma greedy selalu memberikan solusi optimum.
- Contoh: Uang \$6,39 ditukar dengan uang kertas (bill) dan koin sen (cent), kita dapat memilih:
 - Satu buah uang kertas senilai \$5
 - Satu buah uang kertas senilai \$1
 - Satu koin 25 sen
 - Satu koin 10 sen
 - Empat koin 1 sen

$$$5 + $1 + 25c + 10c + 1c + 1c + 1c + 1c = $6,39$$

 Jika jawaban terbaik mutlak tidak diperlukan, maka algoritma greedy sering berguna untuk menghasilkan solusi hampiran (approximation),

- daripada menggunakan algoritma yang lebih rumit untuk menghasilkan solusi yang eksak.
- Bila algoritma greedy optimum, maka keoptimalannya itu dapat dibuktikan secara matematis

Contoh-contoh Algoritma Greedy

1. Masalah penukaran uang

Nilai uang yang ditukar: A

Himpunan koin (*multiset*): $\{d_1, d_2, ...\}$.

Himpunan solusi: $X = \{x_1, x_2, ..., x_n\},\$

 $x_i = 1$ jika d_i dipilih, $x_i = 0$ jika d_i tidak dipilih.

Obyektif persoalan adalah

Minimisasi
$$F = \sum_{i=1}^{n} x_i$$

(fungsi obyektif)

dengan kendala $\sum_{i=1}^{n} d_i x_i = A$

Penyelesaian dengan exhaustive search

• Terdapat 2^n kemungkinan solusi (nilai-nilai $X = \{x_1, x_2, ..., x_n\}$)

• Untuk mengevaluasi fungsi obyektif = O(n)

• Kompleksitas algoritma exhaustive search seluruhnya = $O(n \cdot 2^n)$.

Penyelesaian dengan algoritma greedy

 Strategi greedy: Pada setiap langkah, pilih koin dengan nilai terbesar dari himpunan koin yang tersisa.

```
function CoinExchange(input C : himpunan koin, A : integer) → himpunan koin
{ mengembalikan koin-koin yang total nilainya = A, tetapi jumlah koinnya minimum }
Deklarasi
   S : himpunan koin
   x : koin
Algoritma
  S \leftarrow \{\}
  while (\sum (\text{nilai semua koin di dalam S}) \neq A) and (C \neq \{\}) do
     x ← koin yang mempunyai nilai terbesar
     C \leftarrow C - \{x\}
     if (\sum (\text{nilai semua koin di dalam S}) + \text{nilai koin } x \leq A \text{ then}
       S \leftarrow S \cup \{x\}
      endif
  endwhile
  if (\sum (\text{nilai semua koin di dalam S}) = A \text{ then}
     return S
  else
      write('tidak ada solusi')
  endif
```

- Agar pemilihan koin berikutnya optimal, maka perlu mengurutkan himpunan koin dalam urutan yang menurun (noninceasing order).
- Jika himpunan koin sudah terurut menurun, maka kompleksitas algoritma greedy = O(n).
- Sayangnya, algoritma greedy untuk masalah penukaran uang ini tidak selalu menghasilkan solusi optimal (lihat contoh sebelumnya).

2. Minimisasi Waktu di dalam Sistem (Penjadwalan)

Persoalan: Sebuah server (dapat berupa processor, pompa, kasir di bank, dll) mempunai n pelanggan (customer, client) yang harus dilayani. Waktu pelayanan untuk setiap pelanggan i adalah t_i.

Minimumkan total waktu di dalam sistem:

$$T = \sum_{i=1}^{n}$$
 (waktu di dalam sistem)

 Ekivalen dengan meminimumkan waktu rata-rata pelanggan di dalam sistem.

Contoh 3: Tiga pelanggan dengan

$$t_1 = 5,$$
 $t_2 = 10,$ $t_3 = 3,$

Enam urutan pelayanan yang mungkin:

Urutan

 \mathcal{T}

1, 2, 3:
$$5 + (5 + 10) + (5 + 10 + 3) = 38$$

1, 3, 2:
$$5 + (5 + 3) + (5 + 3 + 10) = 31$$

2, 1, 3:
$$10 + (10 + 5) + (10 + 5 + 3) = 43$$

2, 3, 1:
$$10 + (10 + 3) + (10 + 3 + 5) = 41$$

3, 1, 2:
$$3 + (3 + 5) + (3 + 5 + 10) = 29 \leftarrow \text{(optimal)}$$

3, 2, 1:
$$3 + (3 + 10) + (3 + 10 + 5) = 34$$

Penyelesaian dengan Exhaustive Search

- Urutan pelangan yang dilayani oleh server merupakan suatu permutasi
- Jika ada n orang pelanggan, maka tedapat n! urutan pelanggan
- Untuk mengevaluasi fungsi obyektif : O(n)
- Kompleksitas algoritma exhaustive search = O(nn!)

Penyelesaian dengan algoritma greedy

 Strategi greedy: Pada setiap langkah, pilih pelanggan yang membutuhkan waktu pelayanan terkecil di antara pelanggan lain yang belum dilayani.

```
function PenjadwalanPelanggan (input C: himpunan pelanggan) → himpunan pelanggan
{ mengembalikan urutan jadwal pelayanan pelanggan yang meminimumkan waktu di dalam
sistem }
Deklarasi
   S : himpunan pelanggan
   i : pelanggann
Algoritma
  S \leftarrow \{\}
  while (C \neq \{\}) do
     i ← pelanggan yang mempunyai t[i] terkecil
    C \leftarrow C - \{i\}
     S \leftarrow S \cup \{i\}
  endwhile
  return S
```

- Agar proses pemilihan pelanggan berikutnya optimal, urutkan pelanggan berdasarkan waktu pelayanan dalam urutan yang menaik.
- Jika pelanggan sudah terurut, kompleksitas algoritma greedy = O(n).

```
procedure PenjadwalanPelanggan(input n:integer)
{ Mencetak informasi deretan pelanggan yang akan diproses oleh
server tunggal
  Masukan: n pelangan, setiap pelanggan dinomori 1, 2, ..., n
  Keluaran: urutan pelanggan yang dilayani
Deklarasi
  i : integer
Algoritma:
  {pelanggan 1, 2, ..., n sudah diurut menaik berdasarkan t_i}
  for i\leftarrow 1 to n do
     write('Pelanggan ', i, ' dilayani!')
  endfor
```

- Algoritma greedy untuk penjadwalan pelanggan akan selalu menghasilkan solusi optimum.
- **Teorema.** Jika $t_1 \le t_2 \le ... \le t_n$ maka pengurutan $i_j = j, \ 1 \le j \le n$ meminimumkan

$$T = \sum_{k=1}^{n} \sum_{j=1}^{k} t_{i_j}$$

untuk semua kemungkinan permutasi i_j .

3. An Activity Selection Problem

 Persoalan: Misalkan kita memiliki S = {1, 2, ..., n} yang menyatakan n buah aktivitas yang ingin menggunakan sebuah resource, misalnya ruang pertemuan, yang hanya dapat digunakan satu aktivitas setiap saat.

Tiap aktivitas *i* memiliki waktu mulai s_i dan waktu selesai f_i , dimana $s_i \le f_i$. Dua aktivitas *i* dan *j* dikatakan kompatibel jika interval $[s_i, f_i]$ dan $[s_i, f_i]$ tidak bentrok.

Masalah *Activity selection problem* ialah memilih sebanyak mungkin aktivitas yang bisa dilayani.

Contoh Instansiasi Persoalan:

i	s _i	${ t f_i}$
1	1	4
2	3	5
3	4	6
4	5	7
5	3	8
6	7	9
7	10	11
8	8	12
9	8	13
10	2	14
11	13	15

Penyelesaian dengan Exhaustive Search

- Tentukan semua himpunan bagian dari himpunan dengan n aktivitas.
- Evaluasi setiap himpunan bagian apakah semua aktivitas di dalamnya kompatibel.
- Jika kompatibel, maka himpunan bagian tersebut adalah solusinya
- Kompleksitas waktu algoritmanya O(2ⁿ)

- Apa strategi greedy-nya?
 - Urutkan semua aktivitas berdasarkan waktu selesai dari kecil ke besar

 Pada setiap step, pilih aktivitas yang waktu mulainya lebih besar atau sama dengan waktu selesai aktivitas yang dipilih sebelumnya

Solusi: aktivitas yang dipilih adalah 1, 3, 6, 7, dan 11

Contoh lain:

Example				
Start time (si)	finish time (fi)	Activity name		
1	4	A1		
3	5	A2		
0	6	A3		
5	7	A4		
3	9	A5		
5	9	A6		
6	10	A7		
8	11	A8		
8	12	A9		
2	14	A10		
12	16	A11		

Sumber: http://scanftree.com/Data_Structure/activity-selection-problem

• Solusi dengan Algoritma *Greedy*:

Algoritma

```
function Greedy-Activity-Selector(s, f)
{ Asumsi: aktivitas sudah diurut terlebih dahulu
Berdasarkan waktu selesai: f1 <= f2 <= ... <= fn }
Algoritma
  n \leftarrow length(s)
  A \leftarrow \{1\}
  j ← 1
  for i ← 2 to n do
       if s_i >= f_i then
           A \leftarrow A \cup \{i\}
           j ← i
       end
  end
```

Bukti:

The greedy-choice property:

There exists an optimal solution A such that the greedy choice "1" in A.

The proof goes as follows:

- let's order the activities in A by finish time such that the first activity in A is "k₁".
- ▶ If $k_1 = 1$, then A begins with a greedy choice
- ▶ If $k_1 \neq 1$, then let $A' = (A \{k_1\}) \cup \{1\}$. Then
 - 1. the sets $A \{k_1\}$ and $\{1\}$ are disjoint
 - 2. the activities in A' are compatible
 - 3. A' is also optimal, since |A'| = |A|
- Therefore, we conclude that there always exists an optimal solution that begins with a greedy choice.

Sumber: http://web.cs.ucdavis.edu/~bai/ECS122A/ActivitySelect.pdf

 Usulan strategi greedy yang lain: pilih aktivitas yang durasinya paling kecil lebih dahulu dan waktu mulainya tidak lebih besar dari waktu selesai aktivitas lain yang telah terpilih

→ lebih rumit

i	s _i	$\mathbf{f_{i}}$	durasi
1	1	4	3
2	3	5	2
3	4	6	2
4	5	7	2
5	3	8	5
6	7	9	2
7	10	11	
8	8	12	4
9	8	13	5
10	2	14	12
11	13	15	

Solusi: aktivitas 7, 2, 4, 6, dan 11

4. Integer Knapsack

Maksimasi
$$F = \sum_{i=1}^{n} p_i x_i$$

dengan kendala (constraint)

$$\sum_{i=1}^n w_i X_i \leq K$$

yang dalam hal ini, $x_i = 0$ atau 1, i = 1, 2, ..., n

Penyelesaian dengan exhaustive search

 Sudah dijelaskan pada pembahasan exhaustive search.

• Kompleksitas algoritma exhaustive search untuk persoalan ini = $O(n \cdot 2^n)$.

Penyelesaian dengan algoritma greedy

- Masukkan objek satu per satu ke dalam knapsack. Sekali objek dimasukkan ke dalam knapsack, objek tersebut tidak bisa dikeluarkan lagi.
- Terdapat beberapa strategi greedy yang heuristik yang dapat digunakan untuk memilih objek yang akan dimasukkan ke dalam knapsack:

1. Greedy by profit.

- Pada setiap langkah, pilih objek yang mempunyai keuntungan terbesar.
- Mencoba memaksimumkan keuntungan dengan memilih objek yang paling menguntungkan terlebih dahulu.

- Pada setiap langkah, pilih objek yang mempunyai berat teringan.
- Mencoba memaksimumkan keuntungan dengan dengan memasukkan sebanyak mungkin objek ke dalam knapsack.

3. Greedy by density.

- Pada setiap langkah, *knapsack* diisi dengan objek yang mempunyai p_i/w_i terbesar.
- Mencoba memaksimumkan keuntungan dengan memilih objek yang mempunyai keuntungan per unit berat terbesar.
- Pemilihan objek berdasarkan salah satu dari ketiga strategi di atas <u>tidak menjamin</u> akan memberikan solusi optimal.

Contoh 4.

$$w1 = 6; p1 = 12;$$

$$w2 = 5$$
; $p1 = 15$;

$$w3 = 10$$
; $p1 = 50$; $w4 = 5$; $p1 = 10$

$$w4 = 5; \quad p1 = 10$$

	Prop	perti o	bjek		Solusi		
i	$ w_i $	p_i	p_i/w_i	profit	weight	density	Optimal
1	6	12	2	0	1	0	0
2	5	15	3	1	1	1	1
3	10	50	5	1	0	1	1
4	5	10	2	0	1	0	0
		Tot	al bobot	15	16	15	15
	Tota	al keu	ntungan	65	37	65	65

- Solusi optimal: X = (0, 1, 1, 0)
- Greedy by profit dan greedy by density memberikan solusi optimalla

Contoh 5.

```
w1 = 100; p1 = 40; w2 = 50; p2 = 35; w3 = 45; p3 = 18; w4 = 20; p4 = 4; w5 = 10; p5 = 10; w6 = 5; p6 = 2 Kapasitas knapsack K = 100
```

	Properti objek				Greedy by			
i	w_i	p_i	p_i/w_i	profit	weight	density	Optimal	
1	100	40	0,4	1	0	0	0	
2	50	35	0,7	0	0	1	1	
3	45	18	0,4	0	1	0	1	
4	20	4	0,2	0	1	1	0	
5	10	10	1,0	0	1	1	0	
6	5	2	0,4	0	1	1	0	
Total bobot				100	80	85	100	
	Total	keun	tungan	40	34	51	55	

Kesimpulan: Algoritma *greedy* tidak selalu berhasil menemukan solusi optimal untuk masalah 0/1 *Knapsack*.

4. Fractional Knapsack

Maksimasi
$$F = \sum_{i=1}^{n} p_i x_i$$

dengan kendala (constraint)

$$\sum_{i=1}^n w_i x_i \leq K$$

yang dalam hal ini, $0 \le x_i \le 1$, i = 1, 2, ..., n

Penyelesaian dengan exhaustive search

• Oleh karena $0 \le x_i \le 1$, maka terdapat tidak berhinga nilai-nilai x_i .

• Persoalan *Fractional Knapsack* menjadi malar (*continuous*) sehingga tidak mungkin dipecahkan dengan algoritma exhaustive search.

Penyelesaian dengan algoritma greedy

 Ketiga strategi greedy yang telah disebutkan di atas dapat digunakan untuk memilih objek yang akan dimasukkan ke dalam knapsack.

Mari kita bahas satu per satu

Contoh 6.

$$w1 = 18$$
; $p1 = 25$; $w2 = 15$; $p1 = 24$

$$w3 = 10$$
; $p1 = 15$ Kapasitas knapsack $K = 20$

	Prope	erti o	bjek	Greedy by		
i	$ w_i $	p_i	p_i/w_i	profit	weight	density
1	18	25	1,4	1	0	0
2	15	24	1,6	2/15	2/3	1
3	10	15	1,5	0	1	1/2
		Tota	al bobot	20	20	20
	Tota	l keu	ntungan	28,2	31,0	31,5

- Solusi optimal: X = (0, 1, 1/2)
- yang memberikan keuntungan maksimum = 31,5.

- Strategi pemilihan objek ke dalam knapsack berdasarkan densitas p_i /w_i terbesar pasti memberikan solusi optimal.
- Agar proses pemilihan objek berikutnya optimal, maka kita urutkan objek berdasarkan p_i /w_i yang menurun, sehingga objek berikutnya yang dipilih adalah objek sesuai dalam urutan itu.

Teorema 3.2. Jika $p_1/w_1 \ge p_2/w_2 \ge ... \ge p_n/w_n$ maka algoritma *greedy* dengan strategi pemilihan objek berdasarkan p_i/w_i terbesar menghasilkan solusi yang optimum.

Algoritma persoalan fractional knapsack:

- 1. Hitung harga p_i/w_i , i = 1, 2, ..., n
- 2. Urutkan seluruh objek berdasarkan nilai p_i/w_i dari besar ke kecil
- 3. Panggil Fractinonal Knapsack

```
function FractionalKnapsack(input C : himpunan objek, K : real) → himpunan solusi
{ Menghasilkan solusi persoalan fractional knapsack dengan algoritma greedy yang
menggunakan strategi pemilihan objek berdasarkan density (pi/wi). Solusi dinyatakan
sebagai vektor X = x[1], x[2], ..., x[n].
Asumsi: Seluruh objek sudah terurut berdasarkan nilai p_i/w_i yang menurun
Deklarasi
    i, TotalBobot : integer
    MasihMuatUtuh : boolean
    x : himpunan solusi
Algoritma:
   for i \leftarrow 1 to n do
      x[i] \leftarrow 0 { inisialisasi setiap fraksi objek i dengan 0 }
   endfor
   i \leftarrow 0
   TotalBobot \leftarrow 0
   MasihMuatUtuh ← true
   while (i \le n) and (MasihMuatUtuh) do
     { tinjau objek ke-i }
     i \leftarrow i + 1
     if TotalBobot + C.w[i] ≤ K then
        { masukkan objek i ke dalam knapsack }
        x[i] \leftarrow 1
        TotalBobot ← TotalBobot + C.w[i]
     else
        MasihMuatUtuh ← false
        x[i] \leftarrow (K - TotalBobot)/C.w[i]
     endif
   endwhile
   { i > n or not MasihMuatUtuh }
   return x
```

5. Penjadwalan Job dengan Tenggat Waktu (Job Schedulling with Deadlines)

Persoalan:

- Ada *n* buah *job* yang akan dikerjakan oleh sebuah mesin;
- tiap *job* diproses oleh mesin selama 1 satuan waktu dan tenggat waktu (*deadline*) setiap *job i* adalah $d_i \ge 0$;
- job i akan memberikan keuntungan sebesar p_i
 jika dan hanya jika job tersebut diselesaikan
 tidak melebihi tenggat waktunya;

- Bagaimana memilih *job-job* yang akan dikerjakan oleh mesin sehingga keuntungan yang diperoleh dari pengerjaan itu maksimum?
- Fungsi obyektif persoalan ini:

Maksimasi
$$F = \sum_{i \in J} p_i$$

- Solusi layak: himpunan J yang berisi urutan job yang sedemikian sehingga setiap job di dalam J selesai dikerjakan sebelum tenggat waktunya.
- Solusi optimum ialah solusi layak yang memaksimumkan F.

Contoh 7. Misalkan A berisi 4 *job* (n = 4):

$$(p_1, p_2, p_3, p_4) = (50, 10, 15, 30)$$

 $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$

Mesin mulai bekerja jam 6.00 pagi.

Job	Tenggat	Harus selesai
	(d_i)	sebelum pukul
1	2 jam	8.00
2	1 jam	7.00
3	2 jam	8.00
4	1 jam	7.00

Pemecahan Masalah dengan Exhaustive Search

Cari himpunan bagian (*subset*) *job* yang layak dan memberikan total keuntungan terbesar.

Barisan <i>job</i>	Total keuntungan (F)	<u>keterangan</u>	
{}	0	layak	
{1}	50	layak	
{2}	10	layak	
{3}	15	layak	
{4}	30	layak	
{1, 2}	-	tidak layak	
{1, 3}	65	layak	
{1, 4}	-	tidak layak	
{2, 1}	60	layak	
{2, 3}	25	layak	
{2, 4}	-	tidak layak	
{3, 1}	65	layak	
{3, 2}	-	tidak layak	
{3, 4}	-	tidak layak	
{4, 1}	80	layak	(Optimum!)
{4, 2}	-	tidak layak	
{4, 3}	45	layak	

Pemecahan Masalah dengan Algoritma Greedy

Strategi greedy untuk memilih job:

Pada setiap langkah, pilih *job i* dengan p_i yang terbesar untuk menaikkan nilai fungsi obyektif F.

Contoh:
$$(p_1, p_2, p_3, p_4) = (50, 10, 15, 30)$$

 $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$

Langkah	J	$F = \sum p_i$	Keterangan
0	{}	0	-
1	{1}	50	layak
2	{4,1}	50 + 30 = 80	layak
3	{4, 1, 3}	-	tidak layak
4	$\{4, 1, 2\}$	-	tidak layak

Solusi optimal: $J = \{4, 1\}$ dengan F = 80.

```
function JobSchedulling1(input C : himpunan job) \rightarrow himpunan job
{ Menghasilkan barisan job yang akan diproses oleh mesin }
Deklarasi
  i : integer
  J: himpunan job { solusi }
Algoritma
  J \leftarrow \{\}
  while C \neq \{\} do
     i ← job yang mempunyai p[i] terbesar
     C \leftarrow C - \{i\}
     if (semua job di dalam J \cup \{i\} layak) then
     J \leftarrow J \cup \{i\}
     endif
  endwhile
  \{C = \{\}\}
  return J
```

Kompleksitas algoritma $greedy : O(n^2)$.

6. Pohon Merentang Minimum

(a) Graf
$$G = (V, E)$$

(b) Pohon merentang minimum

(a) Algoritma Prim

Strategi greedy yang digunakan:
 Pada setiap langkah, pilih sisi e dari graf G(V, E) yang mempunyai bobot terkecil dan bersisian dengan simpulsimpul di T tetapi e tidak membentuk sirkuit di T.

Algoritma Prim

Langkah 1: ambil sisi dari graf G yang berbobot minimum, masukkan ke dalam T.

Langkah 2: pilih sisi (u, v) yang mempunyai bobot minimum dan bersisian dengan simpul di T, tetapi (u, v) tidak membentuk sirkuit di T. Masukkan (u, v) ke dalam T.

Langkah 3: ulangi langkah 2 sebanyak *n* – 2 kali.

```
procedure Prim(input G : graf, output T : pohon)
{ Membentuk pohon merentang minimum T dari graf terhubung-
berbobot G.
Masukan: graf-berbobot terhubung G = (V, E), dengan /V/= n
Keluaran: pohon rentang minimum T = (V, E')
Deklarasi
  i, p, q, u, v : integer
Algoritma
  Cari sisi (p,q) dari E yang berbobot terkecil
  T \leftarrow \{(p,q)\}
  for i \leftarrow 1 to n-2 do
   Pilih sisi (u,v) dari E yang bobotnya terkecil namun
    bersisian dengan simpul di T
    T \leftarrow T \cup \{(u,v)\}
  endfor
```

Komplesitas algoritma: O(n²)

Contoh:

(a) Algoritma Kruskal

Strategi greedy yang digunakan:

Pada setiap langkah, pilih sisi *e* dari graf *G* yang mempunyai bobot minimum tetapi *e* tidak membentuk sirkuit di *T*.

Algoritma Kruskal

(Langkah 0: sisi-sisi dari graf sudah diurut menaik berdasarkan bobotnya – dari bobot kecil ke bobot besar)

Langkah 1: T masih kosong

Langkah 2: pilih sisi (u, v) dengan bobot minimum yang tidak membentuk sirkuit di T. Tambahkan (u, v) ke dalam T.

Langkah 3: ulangi langkah 2 sebanyak *n* – 1 kali.

```
procedure Kruskal(input G : graf, output T : pohon)
{ Membentuk pohon merentang minimum T dari graf terhubung -
berbobot G.
Masukan: graf-berbobot terhubung G = (V, E), dengan |V| = n
Keluaran: pohon rentang minimum T = (V, E')
Deklarasi
 i, p, q, u, v : integer
Algoritma
  ( Asumsi: sisi-sisi dari graf sudah diurut menaik
     berdasarkan bobotnya - dari bobot kecil ke bobot
    besar)
  T \leftarrow \{\}
  while jumlah sisi T < n-1 do
    Pilih sisi (u,v) dari E yang bobotnya terkecil
    if (u,v) tidak membentuk siklus di T then
       T \leftarrow T \cup \{(u,v)\}
    endif
  endfor
```

Kompleksitas algoritma: $O(|E| \log |E|)$

Contoh:

Sisi-sisi diurut menaik:

Sisi	(1,2)	(3,6)	(4,6)	(2,6)	(1,4)	(3,5)	(2,5)	(1,5)	(2,3)	(5,6)
Bobot	10	15	20	25	30	35	40	45	50	55

Langkah	Sisi	Bobot	Hutan merentang
0			• • • • • • • 1 2 3 4 5 6
1	(1, 2)	10	1 2
2	(3, 6)	15	3 4 5 6
3	(4, 6)	20	1 2 3 5 4 6
4	(2, 6)	25	1 2 3 5 4 5

30

ditolak

6

35

Pohon merentang minimum yang dihasilkan:

Bobot = 10 + 25 + 15 + 20 + 35 = 105

7. Lintasan Terpendek (Shortest Path)

Beberapa macam persoalan lintasan terpendek:

- a) Lintasan terpendek antara dua buah simpul tertentu (a pair shortest path).
- b) Lintasan terpendek antara semua pasangan simpul (*all pairs shortest path*).
- c) Lintasan terpendek dari simpul tertentu ke semua simpul yang lain (*single-source shortest path*).
- d) Lintasan terpendek antara dua buah simpul yang melalui beberapa simpul tertentu (intermediate shortest path).

[→] Yang akan dibahas adalah persoalan c)

Persoalan:

Diberikan graf berbobot G = (V, E). Tentukan lintasan terpendek dari sebuah simpul asal a ke setiap simpul lainnya di G.

Asumsi yang kita buat adalah bahwa semua sisi berbobot positif.

Berapa jarak terpendek berikut lintasannya dari:

- a ke b?
- a ke c?
- a ke d?
- a ke e?
- a ke f?

Penyelesaian dengan Algoritma Brute Force

- Misalkan ingin menentukan jarak terpendek dari a ke b
- Enumerasi semua lintasan yang mungkin dibentuk dari a ke b, hitung panjangnya
- Lintasan yang memiliki panjang terkecil adalah lintasan terpendek dari a ke b
- Ulangi cara yang sama untuk jarak terpendek dari a ke c, dari a ke d, dan seterusnya.

Algoritma Dijkstra

Strategi *greedy*:

Pada setiap langkah, ambil sisi yang berbobot minimum yang menghubungkan sebuah simpul yang sudah terpilih dengan sebuah simpul lain yang belum terpilih.

Lintasan dari simpul asal ke simpul yang baru haruslah merupakan lintasan yang terpendek diantara semua lintasannya ke simpul-simpul yang belum terpilih.

Edsger W. Dijkstra (1930–2002)

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
- algorithm design
- programming languages
- program design
- operating systems
- distributed processing

In addition, Dijkstra was intensely interested in teaching, and in the relationships between academic computing science and the software industry. During his forty-plus years as a computing scientist, which included positions in both academia and industry, Dijkstra's contributions brought him many prizes and awards, including computing science's highest honor, the ACM Turing Award.

Sumber: http://www.cs.utexas.edu/users/EWD/

procedure Dijkstra (input G: weighted_graph, input a: intial_vertex)
Deklarasi:

S: himpunan simpul solusi

L : array[1..n] of real $\{L(z) \text{ berisi panjang lintasan terpendek dari a ke } z\}$

for i
$$\leftarrow$$
1 to n
 $L(v_i) \leftarrow \infty$
end for

$$L(a) \leftarrow 0; S \leftarrow \{ \}$$

while z ∉ S do

u ← simpul yang bukan di dalam S dan memiliki L(u) minimum

$$S \leftarrow S \cup \{u\}$$

for semua simpul v yang tidak terdapat di dalam S

if
$$L(u) + G(u,v) < L(v)$$
 then $L(v) \leftarrow L(u) + G(u,v)$

end for

end while

Aplikasi algoritma Dijkstra:

→ Routing pada jaringan komputer

Lintasan terpendek (berdasarkan delay time):

Router Asal	Router Tujuan	Lintasan Terpendek
1	1	-
	2	1, 4, 2
	2 3	1, 4, 6, 3
	4	1, 4
	5	1, 4, 2, 5
	6	1, 4, 6
2	1	2, 4, 1
	2	-
	3	2, 4, 6, 3
	4	2, 4
	5	2, 5
	6	2, 4, 6
3	1	3, 6, 4, 1
	2	3, 6, 4, 2
	3	-
	4	3, 6, 4
	5	3, 5
	6	3, 6
4	1	4, 1
	2	4, 2
	3	4, 6, 2
	4	4, 6, 3
	5	4, 2, 5
	6	4, 6

Asal	Tujuan	Via
6	1	4
6	2	4
6	3	6
6	4	6
6	5	3
6	6	-

Asal	Tujuan	Via
3	1	6
3	2	6
3	3	-
3	4	6
3	5	3
3	6	3

Asal	Tujuan	Via
5	1	2
5	2	5
5	3	5
5	4	2
5	5	-
5	6	3

8. Pemampatan Data dengan Algoritma Huffman

Prinsip kode Huffman:

- karakter yang paling sering muncul di dalam data dengan kode yang lebih pendek;
- sedangkan karakter yang relatif jarang muncul dikodekan dengan kode yang lebih panjang.

Fixed-length code

Karakter	a	b	С	d	e	f
Frekuensi	45%	13%	12%	16%	9%	5%
Kode	000	001	010	011	100	111

'bad' dikodekan sebagai '001000011'

Pengkodean 100.000 karakter membutuhkan 300.000 bit.

Variable-length code (Huffman code)

Karakter	а	b	С	d	e	f
Frekuensi	45%	13%	12%	16%	9%	5%
Kode	0	101	100	111	1101	1100

'bad' dikodekan sebagai '1010111'

Pengkodean 100.000 karakter membutuhkan
$$(0,45 \times 1 + 0,13 \times 3 + 0,12 \times 3 + 0,16 \times 3 + 0,09 \times 4 + 0,05 \times 4) \times 100.000 = 224.000$$
 bit

Nisbah pemampatan:

$$(300.000 - 224.000)/300.000 \times 100\% = 25,3\%$$

Algoritma Greedy untuk Membentuk Kode Huffman:

- 1. Baca semua karakter di dalam data untuk menghitung frekuensi kemunculan setiap karakter. Setiap karakter penyusun data dinyatakan sebagai pohon bersimpul tunggal. Setiap simpul di-assign dengan frekuensi kemunculan karakter tersebut.
- Terapkan strategi greedy sebagai berikut: pada setiap langkah gabungkan dua buah pohon yang mempunyai frekuensi terkecil pada sebuah akar. Akar mempunyai frekuensi yang merupakan jumlah dari frekuensi dua buah pohon penyusunnya.
- 3. Ulangi langkah 2 sampai hanya tersisa satu buah pohon Huffman.

Kompleksitas algoritma Huffman: O(n log n)

• Contoh 9.

Karakter	a	b	С	d	е	f
Frekuensi						5

9. Pecahan Mesir (*Egyptian Fraction*)

Persoalan: Diberikan pecahan p/q. Dekomposisi pecahan menjadi jumlah dari sejumlah pecahan yang berbeda:

$$\frac{p}{q} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$$

yang dalam hal ini, $k_1 < k_2 < ... < k_n$.

$$\frac{2}{5} = \frac{1}{3} + \frac{1}{15}$$

$$\frac{5}{7} = \frac{1}{2} + \frac{1}{5} + \frac{1}{70}$$

Contoh:
$$\frac{2}{5} = \frac{1}{3} + \frac{1}{15}$$
 $\frac{5}{7} = \frac{1}{2} + \frac{1}{5} + \frac{1}{70}$ $\frac{87}{100} = \frac{1}{2} + \frac{1}{5} + \frac{1}{11}$

 Pecahan yang diberikan mungkin mempunyai lebih dari satu representasi Mesir

Contoh:
$$8/15 = 1/3 + 1/5$$

 $8/15 = 1/2 + 1/30$

 Kita ingin mendekompoisinya dengan jumlah unit pecahan <u>sesedikit</u> mungkin Strategi *greedy*: pada setiap langkah, tambahkan unit pecahan terbesar ke representasi yang baru terbentuk yang jumlahnya tidak melebihi nilai pecahan yang diberikan

Algoritma:

Input: p/q

- 1. Mulai dengan *i* = 1
- 2. Jika p = 1, maka $k_i = q$. STOP
- 3. $1/k_i$ = pecahan terbesar yang lebih kecil dari p/q
- 4. $p/q = p/q 1/k_i$
- 5. Ulangi langkah 2.

Contoh keluaran:

$$8/15 = 1/2 + 1/30$$

tetapi, dengan algoritma greedy: 26/133 = 1/6 + 1/35 + 1/3990 (tidak optimal)

 Kesimpulan: algoritma greedy untuk masalah pecahan Mesir tidak selalu optimal

10. Connecting wires

- There are n white dots and n black dots, equally spaced, in a line
- You want to connect each white dot with some one black dot, with a minimum total length of "wire"
- Example:

- Total wire length above is 1 + 1 + 1 + 5 = 8
- Do you see a greedy algorithm for doing this?
- Does the algorithm guarantee an optimal solution?
 - Can you prove it?
 - Can you find a counterexample?

Aplikasi Algoritma *Greedy* pada Permainan Othello (Riversi)

Othello

- Othello atau Reversi adalah permainan yang menggunakan papan (board game) dan sejumlah koin yang berwarna gelap (misalnya hitam) dan terang (misalnya putih).
- Ukuran papan biasanya 8 x 8 kotak (grid) dan jumlah koin gelap dan koin terang masingmasing sebanyak 64 buah. Sisi setiap koin memiliki warna yang berbeda (sisi pertama gelap dan sisi kedua terang).
- Pada permainan ini kita asumsikan warna hitam dan putih. Jumlah pemain 2 orang.

- Dalam permainan ini setiap pemain berusaha mengganti warna koin lawan dengan warna koin miliknya (misalnya dengan membalikkan koin lawan) dengan cara "menjepit" atau memblok koin lawan secara vertikal, horizontal, atau diagonal.
- Barisan koin lawan yang terletak dalam satu garis lurus yang diapit oleh sepasang koin pemain yang current diubah (reverse) warnanya menjadi warna pemain yang current.

- Setiap pemain bergantian meletakkan koinnya.
 Jika seorang pemain tidak dapat meletakan koin karena tidak ada posisi yang dibolehkan, permainan kembali ke pemain lainnya.
- Jika kedua pemain tidak bisa lagi meletakkan koin, maka permainan berakhir. Hal ini terjadi jika seluruh kotak telah terisi, atau ketika seorang pemain tidak memiliki koin lagi, atau ketika kedua pemain tidak dapat melakukan penempatan koin lagi.
- Pemenangnya adalah pemain yang memiliki koin paling banyak di atas papan.

- Algoritma Greedy dapat diaplikasikan untuk memenangkan permainan.
- Algoritma greedy berisi sejumlah langkah untuk melakukan penempatan koin yang menghasilkan jumlah koin maksimal pada akhir permainan.
- Algoritma Greedy dipakai oleh komputer pada tipe permainan komputer vs manusia.

Dua strategi greedy heuristik:

1. Greedy by jumlah koin

Pada setiap langkah, koin pemain menuju koordinat yang menghasilkan sebanyak mungkin koin lawan. Strategi ini berusaha memaksimalkan jumlah koin pada akhir permainan dengan menghasilkan sebanyakbanyaknya koin lawan pada setiap langkah.

2. Greedy by jarak ke tepi

Pada setiap langkah, koin pemain menuju ke koordinat yang semakin dekat dengan tepi arena permainan. Strategi ini berusaha memaksimumkan jumlah koin pada akhir permainan dengan menguasai daerah tepi yang sulit untuk dilangkahi koin lawan. Bahkan untuk pojok area yang sulit dilangkahi lawan.

Greedy by Jumlah Koin

- Himpunan kandidat
 Langkah-langkah yang menghasilkan jumlah koin yang diapit.
- Himpunan solusi
 Langkah-langkah dari Himpunan kandidat yang memiliki jumlah koin diapit paling besar.
- Fungsi seleksi
 Pilih langkah yang memiliki jumlah koin diapit paling besar
- Fungsi kelayakan
 Semua langkah adalah layak
- Fungsi obyektif
 Maksimumkan jumlah koin lawan

		в		A		
		0	0	0		
	О	Ο	Ο	Ο	Ο	
	0	0		0		