CS203: Abstract Algebra Assignment 3 Solutions

Ayush Bansal September 1, 2017

Problem 1 Solution

1.1 Part 1.

I have to find and prove whether the following equation has integral solutions or not:

$$x^3 = y^2 + 3 \tag{1.1}$$

For proving the above fact, I will first prove the following lemma.

Lemma 1. If p is an odd prime number then $\exists x \in \mathbb{Z}$ such that $(x^2 + 1) \mod p = 0$ if and only if p is of the form 4n+1

Proof. Consider p, a prime number and $p \neq 2$, then p will be of the form 4n+1 or 4n+3 and $\frac{p-1}{2}=2n$ and $\frac{p-1}{2}=2n+1$ respectively in either cases. Now consider the value of (p-1)!, I will do some computations on this as follows:

$$(p-1)! = 1 * 2 * 3... \frac{p-1}{2} * (p - \frac{p-1}{2}) \cdots * (p-1)$$
 (1.2)

$$(p-1)! = (\frac{p-1}{2})! * (p - \frac{p-1}{2}) \cdots * (p-1)$$
(1.3)

The terms beyond $(\frac{p-1}{2})!$) will form a polynomial in p whose constant term will not be divisible by p, rest will be divisible by p. Now if $\frac{p-1}{2}=2n$, then the constant term will be **positive**, so using this:

$$(p-1)! = (\frac{p-1}{2})! * (\frac{p-1}{2})! \mod p \tag{1.4}$$

$$(p-1)! = ((\frac{p-1}{2})!)^2 \mod p$$
 (1.5)

By using **Wilson's Theorem** (Proved in **2.1 Part 1**) we can say:

$$(x^2+1) mod p = 0$$
, $x = (\frac{p-1}{2})!$

If $\frac{p-1}{2}=2n+1$, then the constant term will be **negative**, and since x^2 cannot be negative for integral x, such x will not exist, hence our lemma is proved.

Consider a second lemma as follows.

Lemma 2. The square of any odd number is of the form 8n + 1.

Proof. Any odd number can be written in 4 forms which are 8n+1,8n+3,8n+5,8n+7, considering each one by one.

8n+1: $(8n+1)^2 = 8(8n^2+2n)+1$ which is of the form 8n+1.

8n+3: $(8n+3)^2 = 8(8n^2+2n+1)+1$ which is of the form 8n+1. **8n+5**: $(8n+3)^2 = 8(8n^2+2n+3)+1$ which is of the form 8n+1. **8n+7**: $(8n+3)^2 = 8(8n^2+2n+6)+1$ which is of the form 8n+1.

Thus, the lemma is proved.

Now coming to the equation (1.1) and proving the existence or non-existence of it's solutions.

Proof. Consider x as even then $(y^2 + 3)mod8 = 0$ but this is not possible as y is odd and $y^2mod8 = 1$ by **Lemma 2**.

Thus, x must be **odd** and due to this y must be **even**.

Doing following computations on the equation and putting y = 2a:

$$x^3 + 1 = y^2 + 4 \tag{1.6}$$

$$(x+1)(x^2-x+1) = 4(a^2+1)$$
(1.7)

Notice that $(x^2 - x + 1)$ is **odd**, let p be a prime factor of $(x^2 - x + 1)$, then p must of the form 4n + 1, as $(a^2 + 1)mod p = 0$, by **Lemma 1**.

Thus all prime divisors of the number $(x^2 - x + 1)$ will be of the form 4n + 1.

 $\therefore (x^2 - x + 1) \mod 4 = 1$, which shows $4 \mid x^2 - x$ and since x is odd, $4 \mid x - 1$.

By using above results we can see that, (x+1)mod4 = 2 which means **LHS** in equation (1.7) is not divisible by 4 but **RHS** is, which means there is no possible integral solution for the equation (1.1).

1.2 Part 2.

I have to find and prove whether the following equation has integral solutions or not:

$$x^3 = y^2 + 1 \tag{1.8}$$

For proving this, I will assume that $\mathbb{Z}[i]$ is a **Unique Factorization Domain**.

Proof. We can re-write the above equation as:

$$x^{3} = (y+i)(y-i) \tag{1.9}$$

Now there are 2 possible cases:

Case 1: (y+i) and (y-i) does not have a common factor.

If there is no common factor between (y+i) and (y-i), then both of have will be a cube of a certain element in $\mathbb{Z}[i]$ since **LHS** in (1.9) is a perfect cube of some element in $\mathbb{Z}[i]$, which means:

$$y + i = (a + ib)^{3}$$
$$y + i = a^{3} - 3ab^{2} + i(3a^{2}b - b^{3})$$
$$3a^{2}b - b^{3} = 1$$

Since $a, b \in \mathbb{Z}$, the only possible solution for this case is a = 0, b = -1.

Case 2: (y + i) and (y - i) have a common factor.

If 2 numbers have a common factor, then their difference and their sum will also have that number as a factor, using their difference we get that the only possible common factors they can have are (1+i) and (1-i), also (1-i)(1+i)=2.

Now we can write $y + i = (1+i)^{f_1}(1-i)^{f_2}(a+ib)^{3k}$ such that $3 \mid f_1 + f_2$ but $3 \nmid f_1$ and $3 \nmid f_2$ because net sum of powers in (x+i)(x-i) must remain multiple of 3 and these both are **Conjugates** of each other.

Assuming $f_1 < f_2$, we can write $x + i = 2^{f_1}(1-i)^{f_2-f_1}(a+ib)^{3k}$, this gives x + i = 2(p+qi) or 1 = 2q but $q \in \mathbb{Z}$ which means this case has no possible solution.

Thus, by above 2 cases, it is clear that an integral solution of equation (1.8) exists which is x = 1, y = 0.

2. Problem 2 Solution

2.1 Part 1.

In this part I have to prove the following theorem:

Theorem 1 (Wilson's Theorem). *Suppose p is a prime number then:*

$$(p-1)! = -1 \mod p$$
 (2.1)

The proof will be in 2 cases, p = 2 and $p \ge 3$. Let's first suppose p = 2, we can see that (2-1)! = 1 and (-1)mod(2) = 1, thus results holds for p = 2.

Now we consider that p is a prime number such that $p \ge 3$. Since p is a prime number, the numbers $\{1,2,3...,p-1\}$ form a group called \mathbb{Z}_p under binary operation **multiplication mod p** and since it forms a group, every element will have an inverse.

Lemma 3. Every number in group \mathbb{Z}_p has a unique inverse unequal to itself except for 1 and p-1, where p is an odd prime number.

Now, I will prove the above lemma using Division Algorithm.

Proof. Assume some number a in group \mathbb{Z}_p is inverse of itself, thus $a^2 mod(p) = 1$, and by division algorithm $a^2 = np + 1, n \in \mathbb{Z}$.

Since a is an integer we can rewrite the above equation as $a^2 = (kp \pm 1)^2$ and thus $a = (\pm 1) mod(p)$ which gives us 2 values of a which are 1 and p-1.

Now going for the main proof:

Proof. Since $p \ge 3$, p will be an odd prime number and thus by **Lemma 3** for the group \mathbb{Z}_p . Since every element a_i in the group can be paired with unique unequal element a_j which is it's inverse such that $(a_i * a_j) mod(p) = 1$ except for 1 and p-1, we get:

$$(p-1)! = [1*(p-1)].[a_i*a_j]... (2.2)$$

$$(p-1)! = (p-1)mod(p)$$
(2.3)

$$(p-1)! = (-1)mod(p) (2.4)$$

By (2.4), **Wilson's Theorem** is proved.

2.2 Part 2.

Now we take p, a prime number of the form 4n + 1 and have to prove that:

$$x^2 \equiv -1 \mod p \tag{2.5}$$

Proof. $p = 4n + 1, n \in \mathbb{N}$, and thus $\frac{p-1}{2} = 2n$.

Using the result proved in **Lemma 1**, I can say $x = (\frac{p-1}{2})!$.

2.3 Part 3.

Consider a prime number p of the form 4n + 1, p is prime in \mathbb{Z} .

Lemma 4. *p is not prime in* $\mathbb{Z}[i]$ *if p is of the form* 4n + 1.

Proof. Since p is of the form 4n + 1, by (2.5) we have some x such that $(x^2 + 1) mod p = 0$, or we can say that $x^2 + 1 = kp$, $k \in \mathbb{N}$.

Now assume p is a prime number in $\mathbb{Z}[i]$.

We can write $x^2 + 1 = (x+i)(x-i)$ and since $p \mid x^2 + 1$, by definition of prime in $\mathbb{Z}[i]$, $p \mid x+i$ or $p \mid x-i$. **Case 1.** $p \mid x+i$

Since $p \mid x+i, \frac{x}{p} + \frac{i}{p} \in \mathbb{Z}[i]$ but since we know that i is a unit in $\mathbb{Z}[i], \frac{i}{p} \notin \mathbb{Z}[i]$, thus our statement is a **Contradiction**.

Case 2. p | x - i

Same argument as that of **Case 1**.

By above 2 cases, our lemma is proved.

Now we will prove that there exists integers x, y and c such that $x^2 + y^2 = cp$ and gcd(c, p) = 1.

Proof. Since we have proved that p is not a prime in $\mathbb{Z}[i]$, we consider that it is product of 2 numbers from $\mathbb{Z}[i]$.

Let p = (x + iy)(a + ib), doing computations on it and equating imaginary part to 0, we get:

$$p = (ax - by) + i(ay + bx)$$
(2.6)

$$ay + bx = 0 (2.7)$$

$$\frac{a}{b} = -\frac{x}{y} \tag{2.8}$$

$$kp = x^2 + y^2, k = \frac{x}{a} \tag{2.9}$$

Putting k=1 in the above equation, we get $p*1=x^2+y^2, x,y\in\mathbb{Z}$ and gcd(1,p)=1 and so the proof is complete

2.4 Part 4.

We are given that p is prime number such that $x^2 + y^2 = cp$, where x, y and c are integers and gcd(c, p) = 1.

I have to prove that p is not a prime in $\mathbb{Z}[i]$.

Proof. Assume that p is a prime in $\mathbb{Z}[i]$.

Since $cp = x^2 + y^2$, we can write it as cp = (x + iy)(x - iy), since $p \mid (x + iy)(x - iy)$, by definition of prime in $\mathbb{Z}[i]$, either $p \mid (x + iy)$ or $p \mid (x - iy)$.

Considering either of the both cases we get that $\frac{x}{p}$, $\frac{y}{p} \in \mathbb{Z}[i]$ and since $x, y \in \mathbb{Z}$, also units of $\mathbb{Z}[i]$ are $\pm 1, \pm i$, and $p \mid x$ and $p \mid y$.

Using above result, x = ap and y = bp, $a, b \in \mathbb{Z}$, putting these values in our original equation we get:

$$cp = b^2 p^2 + a^2 p^2 (2.10)$$

$$c = p(b^2 + a^2) (2.11)$$

Since equation (2.11) is a **Contradiction** to the fact that gcd(c, p) = 1, thus p is not a prime in $\mathbb{Z}[i]$.

2.5 Part 5.

We are given a prime number p which is prime in \mathbb{Z} but not in $\mathbb{Z}[i]$. I have to prove that $p = a^2 + b^2$ and $a, b \in \mathbb{Z}$.

Proof. Since p is not a prime in $\mathbb{Z}[i]$, we can write p as p = (a+ib)(x+iy), where a,b,x,y are integers.

Now doing the same computations done in (2.6), (2.7), (2.8) and (2.9), putting k = 1, we get:

$$p = x^2 + y^2, \quad x, y \in \mathbb{Z}$$

The above equation is the one which I had to prove and so my proof is complete.

2.6 Part 6.

We are given that p is a prime number in \mathbb{Z} and is of the form 4n+1. I have to prove that $p=a^2+b^2$, where $a,b\in\mathbb{Z}$.

Proof. Using **Lemma 2**, we can say that since p is of the form 4n+1, p will not be a prime in $\mathbb{Z}[i]$. Since p is not a prime in $\mathbb{Z}[i]$, from the proof of **2.5 Part 5.** we can say that $p = a^2 + b^2$ for some integers a and b, which concludes our proof.

3. Problem 3 Solution

3.1 Part 1.

We are given a ring R such that $x^2 = x, \forall x \in R$.

I have to prove that the ring *R* is commutative i.e. $\forall a, x \in R$ we have ax = xa.

Proof. Let $a, x \in R$ be two elements then, a + x and $(a + x)^2$ will also lie in the ring and they will satisfy:

$$(a+x)^2 = a+x \tag{3.1}$$

$$a^2 + xa + ax + x^2 = a + x (3.2)$$

$$xa = -ax \tag{3.3}$$

Now take some element -m and since we know that $x^2 = x, \forall x \in R$, we have $(-m)^2 = -m$, also $(-m)^2 = m^2 = m, \therefore m = -m$.

By combining above result with (3.3), we have ax = xa and the ring R is **Commutative**.

3.2 Part 2.

For the proof of this part, I will first prove the following Lemma 5:

Lemma 5. $\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}_2$, i.e. there are 2 elements in $\mathbb{Z}/2\mathbb{Z}$ which are $\{0,1\}$.

Proof. Z is the group of all integers under operation "+", and 2Z is the group of all **even** integers under same operation which we can get my multiplying each and every integer in \mathbb{Z} by 2.

Thus we can write set O of all **odd** integers as $O = \{1 + x \mid x \in 2Z\}$ and set E of all even integers as $E = \{0 + x \mid x \in 2Z\}$ and set $E + O = \mathbb{Z}$.

Thus, the **quotient group** $\mathbb{Z}/2\mathbb{Z}$ contains 2 elements $\{0,1\}$ and operation for this group is **addition** \mathbb{Z}

Now I will prove that for the type of ring specified in **3.1 Part 1**, the only possible ring which is also an integral domain is $\mathbb{Z}/2\mathbb{Z}$.

Proof. Consider an element $x \in R$, then we know that $x^2 = x$, taking 1 as the multiplicative identity of the ring R and doing some computations we have:

$$x^2 = x.1$$
$$x^2 - x.1 = 0$$

Since "Addition" is distributive over "Multiplication" in a ring, we can write above equation as:

$$x(x-1) = 0 \tag{3.4}$$

$$\therefore x = 0, 1 \tag{3.5}$$

Since, only 2 elements i.e $\{0,1\}$ can be in this ring, by **Lemma 3**, the ring is $\mathbb{Z}/2\mathbb{Z}$ or \mathbb{Z}_2 .