CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 19

Posted Friday 14 February 2014. Due 1pm Friday 28 February 2014.

19. [25 points]

All parts of this question should be done by hand.

Let

$$C_z^1[-1,1] = \left\{ v \in C^1[-1,1] : \int_{-1}^1 v(x) \, dx = 0 \right\}.$$

Let $v_1 \in C_z^1[-1,1], v_2 \in C_z^1[-1,1], \text{ and } f \in C_z^1[-1,1]$ be defined by

$$v_1(x) = \frac{\sqrt{3}}{\sqrt{2}}x,$$

$$v_2(x) = \frac{\sqrt{3}}{\sqrt{2}}(3x^2 - x - 1),$$

and

$$f(x) = \frac{\sqrt{2}}{\sqrt{3}}\cos(\pi x)$$

for all $x \in [-1,1]$. Let the inner product $(\cdot,\cdot): C_z^1[-1,1] \times C_z^1[-1,1] \to \mathbb{R}$ be defined by

$$(u,v) = \int_{-1}^{1} u(x)v(x) dx$$

and let the norm $\|\cdot\|:C^1_z[-1,1]\to\mathbb{R}$ be defined by

$$||u|| = \sqrt{(u, u)}.$$

Also, let the inner product $a(\cdot,\cdot):C_z^1[-1,1]\times C_z^1[-1,1]\to \mathbb{R}$ be defined by

$$a(u,v) = \int_{-1}^{1} (2+x)u'(x)v'(x) dx$$

and let the norm $\|\cdot\|_a:C_z^1[-1,1]\to\mathbb{R}$ be defined by

$$||u||_a = \sqrt{a(u,u)}.$$

Moreover, let the inner product $B(\cdot,\cdot):C_z^1[-1,1]\times C_z^1[-1,1]\to\mathbb{R}$ be defined by

$$B(u, v) = a(u, v) + (u, v)$$

and the norm $\|\cdot\|_B:C^1_z[-1,1]\to\mathbb{R}$ be defined by

$$||u||_B = \sqrt{B(u, u)}.$$

Note that $(v_1, v_1) = 1$; $(v_2, v_2) = \frac{17}{5}$; $(f, v_1) = 0$; $(f, v_2) = -\frac{12}{\pi^2}$; $a(v_1, v_1) = 6$; $a(v_2, v_2) = 66$; $a(f, v_1) = -2$ and $a(f, v_2) = -22$.

(a) Use the fact that (\cdot, \cdot) and $a(\cdot, \cdot)$ are inner products on $C_z^1[-1, 1]$ to verify that $B(\cdot, \cdot)$ is an inner product on $C_z^1[-1, 1]$.

- (b) What is the best approximation to f from span $\{v_1\}$ with respect to the norm $\|\cdot\|$?
- (c) What is the best approximation to f from span $\{v_1\}$ with respect to the norm $\|\cdot\|_a$?
- (d) What is the best approximation to f from span $\{v_1\}$ with respect to the norm $\|\cdot\|_B$?
- (e) What is the best approximation to f from span $\{v_1, v_2\}$ with respect to the norm $\|\cdot\|_a$?
- (f) What is the best approximation to f from span $\{v_1, v_2\}$ with respect to the norm $\|\cdot\|$?