## RESERVE CON

## PATENT SPECIFICATION



Convention Date (Germany): Dec. 14, 1934.

455,408

No. 34866 /35. Application Date (in United Kingdom): Dec. 16, 1935.

Complete Specification Accepted: Oct. 20, 1936.

## COMPLETE SPECIFICATION

## Process for the conversion of Bituminous Substances or of Bitumen and Filler Mixtures, in particular those having a high Melting Point, into Protective Coatings on Constructions and the like by Spraying

I, GEORG COLMANT, a German citizen, of Bendorf, a.Rhein, Germany, do hereby declare the nature of this invention and 5 in what manner the same is to be performed, to be particularly described and ascertained in and by the following state-

ment -

The invention relates to a process for 10 the spraying of bituminous masses. in particular those having a high melting point or those with a comparatively high content in fillers. As is known, such masses are used to an increasing extent in modern building practice for producing protective coatings on constructions or the like. The increasing requirements for such protective layers have brought numerous proposals in recent times for 20 the composition of the masses in question, without, however, useful suggestions being made known at the same time for the method of application of these masses. The application of these coatings presents considerable difficulties when using 25 masses of high consistency, which is always the case when a high efficiency is required of the protective coating with respect to insulation, strength, and the like. Thus, in particular the spraying 30 process, which undoubtedly presents the greatest practical advantages, has had to be given up and replaced by painting or where it is practicable, the masses have

been poured out. Apart, however, from 85 the fact that these methods of working cannot be used for all the desired masses, the same strength and uniformity of the protective layers cannot be attained as

is possible by the spraying process. It has previously been proposed, to apply to surfaces molten bitumen, asphalt and pitch, in the form of a spray, by using as a source of pressure pumps, steam, or the exhaust gas from an internal 45 combustion engine. This problem has not however, hitherto been satisfactorily solved, since in the use of known machines particularly those employed in connection with road making, and while 50 following the usual procedure for the spraying of similar substances, any success has been prevented owing to the constitution and the properties of the [Price 1/-] masses here under consideration

It is, of course, known that bitumen and even bitumen having a high melting point, can be sprayed. For the spraying of bitumen with a low melting point. quite ordinary pumps, centrifugal and also piston pumps can be used. With bitumen having a high melting point. however, spraying for all practical purposes has hitherto not been possible as a complete gumming up and clogging of the pumps and the feeder devices takes place very quickly. For this reason, the use of compressed air has been adopted for the spraying out of bitumen, which for bitumen of a low melting point is easily practicable. The use of this method of working for bitumen with a high melting point, however, brings with it the great danger of spontaneous combustion of the mass taking place. Such bitumens having a high melting point must, under certain circumstances, in order to be fit for spraying, be heated to 200 to 220° C. This temperature, however, is at a dangerous level for the middle oils which must necessarily be contained in bitumen. To this must be added that the higher the melting point of the bitumen, the higher must be the pressure in order to eject the mass by spraying. The danger of spontaneous combustion is 85 consequently very great if for a bitumen having a melting point of 35° C. for example, a compressed air pressure from 5 to 6 atmospheres is necessary.

Known spraying processes also com- 90 pletely fail when dealing with bitumen having a high content of fillers such as, for example, asbestos fibre, both in the case of hard bitumen and of soft bitumen. Previous efforts to spray by means of compressed air, bitumen having a high filler addition, have failed to meet with satisfactory results. Either the apparatus was soon completely blocked or the bitumen and filler separated, which again 100 made the application of such masses by the spraying process appear to be

impossible. This invention has for its object to obviate these varied difficulties or their 105 causes which hitherto have made the

spraying of the masses impossible and is characterised in that the bituminous masses are placed under pressure when in the hot state by means of a mechani-5 cally acting continuous delivery pump or

by means of a gas practically free from oxygen or by steam and are sprayed through a spraying nozzle having a homogenising effect with the avoidance

10 following and the average of any sadden changes of velocity action on the material. As shown by practical difficulties are, the influence of the compressed air or of the oxygen on bitumen masses, the pressure and movement impulses acting on the material in the pipes, and the clogging and separation

phenomena thereby caused in the bitumen and filler mass. According to this invention these phenomena can now be entirely avoided if the following rules of procedure for the spraying of the masses are

observed.

25 Primarily, the contact of compressed air with the melted mass in the pressure conveyor devices is to be avoided. Preferably this is brought about by using directly as the pressure producing means

so delivery pump. In place of such a pump, steam or if necessary superheated steem can be used as the pressure medium. In this way, the influence of the oxygen and, above all, the dancer of the 'soontaneous'

85 shove all, the danger of the spontaneous combustion of the heated bitumen masses is obviated.

Furthermore in order to prevent the clogging and separation phenomena in the pressure and spraying devices, these 40 devices are so arranged according to this invention that there is no sudden alteration of cross-section of the pines or the

like parts by means of which pressure impulses could be produced in the hot 45 mass flowing through. The result thus attained is that the masses are carried along in a constant and uniform movement until they finally reach the spraving

mozzles. If circumstances do not allow the above mentioned alterations of crosssection to be completely avoided, then by-passes, compensating spaces or like known means must be provided at the points where bends are formed in the pines to prevent any sudden change of

55 pines to prevent any sudden change of velocity or pressure of the material which is being conveyed through the spraying device.

Above all, when the masses to be 90 sprayed have a high addition of filters, it will be necessary to oppose a separation of the mixture again at the spraying, nozzle which can be brought about by the use of homogenising nozzles in themselves (55 known. It is also possible to supply compressed air at the point of exit of the mass from the nozzle, as is already the case with known devices, for the better atomisation. Even if compressed air supplied at this point does not produce the defects mentioned previously, it is nevertheless advisable to use instead of air, a neutral gas, e.g., nitrouen in order than the contract of the c

According to the present invention the use of nitrogen also comes into consideration when dealing with bitumen masses or mixtures at high temperatures and high pressure, for example, underground, in mines, and the like, where there may be inflammable gases or firedamp. In such cases nitrogen cán be supplied as a safety measure to the bitumen tank from

such casés nitrogen cán be supplied as a safety measure to the bitumen tank from a nitrogen container, which has in the usual way a reducing valve, the container being brought into communication with this tank. Since nitrogen is almost as heavy as air and comes on to the bitumen surface in a cold expanded condition it remains for a certain time over the bitumen mass and thus blocks the entrance of oxygen, whereby the bitumen tank itself does not need to be closed. Thus no oxygen can penetrate to the bitumen and spontaneous combustion is therefore impossible. Furthermore, the bitumen vapours which are

more, the bitumen vapours which are liberated by the Heating connot escape 100 from the bitumen boiler itself and thus remain in the bittimen tank. There is consequently no distillation. Furthermore, any spack occurring in the vicinity cannot cause the ignition of the bittimen 105 mass.

It has been found that by the correct observation of the foregoing process rules and with a suitable construction of the devices used, it is possible for example, 110 even under the most unfavourable external temperature conditions to apply bitumen masses having additions of 50% of filler and even more in entirely uniform adhering protective lavers of any desired 115 thickness on all possible surfaces. This result means a considerable technical improvement since it is now possible to apply masses by the spraying process which were hitherto considered to be 120 completely impossible to spray and were therefore frequently applied with considerable danger in the hot condition or. the masses even had to be trowelled on when, for example, applying protective 125 layers on ceilings. Bituminous substances of high consistency, that is of a melting point of 70° C. and over, to which

many natural and artificial asphalts such

as mineral pitch, petroleum residues, 130

hard and brown coal-tar pitch, wood tar pitch and common tars appertain, which are often mixed to a high percentage with finely ground mineral filling substances, 5 serve as such protective layers.

Having now particularly described and ascertained the nature of my said invention and in what manner the same is to be performed, I declare that what I claim

10 is:--

'n Process for the production on buildings and the like, of protective layers consisting of bituminous sub-stances in particular those of high melt-15 ing point or those with a comparatively

high content in fillers, characterised by these bituminous masses being placed under pressure when in the hot state by means of a mechanically acting con-

20 tinuous delivery pump or by means of a gas practically free from oxygen and being sprayed through a spraying nozzle having a homogenising effect with the avoidance of any sudden changes of

velocity acting on the material.

2. Process according to claim 1, characterised by steam, and if necessary superheated steam, being used as the pressure medium for the melted material.

3. Process according to claims 1 and 2, characterised by the hot bituminous mass standing in a container, which may be open, being closed from the air by nitrogen carried over it.

4. Process according to claims 1-3, characterised by the use of such conveying and spraying devices as have no variations in cross-section, or only gradual ones.

5. The improved process for the conversion of bituminous substances into protective coatings by spraying substan-

tially as described.

Dated this 16th day of December, 1935. WHEATLEY & MACKENZIE, 40, Chancery Lane, London, W.C.2, Agents.

Learnington Spa: Printed for His Majesty's Stationery Office, by the Courier Press .- 1936.