Advanced Machine Learning Assignment 1

Olteanu Fabian Cristian

FMI, AI Master, Year 1

1. Exercise 1

1.a.

Let \mathcal{H} be our hypothesis class, where: $\mathcal{H} = \{h_{\omega_0,\omega_1,\omega_2,...,\omega_{2022}} : \mathbb{R}^{2022} \to \{0,1\} | h_{\omega_0,\omega_1,\omega_2,...,\omega_{2022}}(x) = \mathbf{1}_{\omega_1 x_1 + ... + \omega_{2022} x_{2022} \le \omega_0}(x), \omega_0, \omega_1, \omega_2, ..., \omega_{2022} \in \{1,2\} \}.$

In other words, \mathcal{H} is a finite class (because components of ω and ω_0 can only be either 1 or 2, so $|\mathcal{H}|=2^{2023}$) composed of classifiers which output positives depending whether the 2022-dimensional vector x belongs in some halfspace. Furthermore, if we denote $\omega=(\omega_1,...,\omega_{2022})\in\mathbb{R}^{2022}$, the following expressions are equivalent:

$$h_{\omega}(x) = \mathbf{1}_{\omega_1 x_1 + \dots + \omega_n x_n < \omega_0} = \mathbf{1}_{\omega \cdot x < \omega_0}.$$

In order to justify the fact that $VCdim(\mathcal{H}) = 2023$, we first have to prove that $VCdim(\mathcal{H}) \geq 2023$ and afterwards $VCdim(\mathcal{H}) < 2024$. We can consider the standard basis of \mathbb{R}^{2022} plus the origin $(e_0 = \mathbf{0}_{2022})$ as a set $B = \{e_0, ..., e_{2022}\}$ and prove that it is shattered by \mathcal{H} . Given a certain labelling $l_0, ..., l_{2022}$ to these points, we set the following relations:

$$\omega_0 = -l_0,$$

$$\omega_i = \omega_0 + l_i, i = \overline{1,2022},$$

so $\omega \cdot e_0 - \omega_0 = l_0$ and for all $i = \overline{1,2022}$, $\omega \cdot e_i - \omega_0 = l_i$ (for example, $\omega \cdot e_1 - \omega_0 = \omega_1 - \omega_0 = \omega_0 + l_1 - \omega_0 = l_1$. This proves that B is shattered by \mathcal{H} and, since |B| = 2023, $VCdim(\mathcal{H}) \geq 2023$. Additionally, this statement holds for any $\omega_0, ..., \omega_{2022} \in \mathbb{R}$.

The proof of $VCdim(\mathcal{H}) < 2024$ can be achieved by utilizing Radon's Lemma, which states that for a set S from \mathbb{R}^d , |S| = d+2, there are two subsets of S with the property that their convex hulls intersect. Starting from this theorem, we can construct a set $S = \{x_1, ..., x_{2024}\} \subset \mathbb{R}^{2022}$ and assign to each element the labels $L = \{l_1, ..., l_{2024}\}$. Now, if we were to split S according to Radon's Lemma, we would arrive at the conclusion that one point always lies in the convex hulls of both subsets from S (\mathcal{H} will never be able to realize the labels of S; the proof follows the demonstration written below in exercise 3 very closely), so $VCdim(\mathcal{H}) < 2024$ [1].

Thus, it is proven that $VCdim(\mathcal{H}) = 2023$ for any $\omega \in \mathbb{R}^{2022}$ and $\omega_0 \in \mathbb{R}$, so the original statement is also valid.

1.b.

Let \mathcal{H} be our hypothesis class, where: $\mathcal{H} = \{h_{\omega_0,\omega_1,\omega_2,...,\omega_{2022}} : \mathbb{R}^{2022} \in \{0,1\} | h_{\omega_0,\omega_1,\omega_2,...,\omega_{2022}}(x) = \mathbf{1}_{\omega_1x_1+...+\omega_{2022}x_{2022}\leq\omega_0}(x), \omega_0,\omega_1,\omega_2,...,\omega_{2022}\in\mathbb{R}\}$. \mathcal{H} is infinite because $\omega_0,...,\omega_{2022}\in\mathbb{R}$. $VCdim(\mathcal{H})$ is also 2023 as described in subsection a.

1.c

1.c.

Let $\mathcal{H} = \{h_{\theta} : [-1,1] \to \{0,1\} | h_{\theta}(x) = \mathbf{1}_{sin(\theta x) \geq 0}(x), \theta \in \mathbb{R}\}$. If we were to consider some set $X = \{x_1, ..., x_n\} \subset [-1,1]$, \mathcal{H} can shatter X because $sin(\theta x)$ can oscillate at any frequency to accommodate labeling X. Hence, $VCdim(\mathcal{H}) = \infty$.

2.

We have
$$\mathcal{H} = \{h_a : \mathbb{R}^3 \to \{0,1\} | h_a(x) = \mathbf{1}_{[||x||_2 \le a]}(x), x = (x_1, x_2, x_3) \in \mathbb{R}^3, ||x||_2 = \sqrt{x_1^2 + x_2^2 + x_3^2} \}.$$

2

2.a.

 \mathcal{H} is PAC-learnable if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and there exists a learning algorithm A with the property that for every $\varepsilon, \delta > 0$, for every classifier $f \in \mathcal{H}$, for every distribution \mathcal{D} on \mathbb{R}^3 , when we run the learning algorithm A on a training set S consisting of $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ examples sampled independent and identically distributed from \mathcal{D} and labeled by f, the algorithm A returns a hypothesis $h_S \in \mathcal{H}$ such that, with probability at least $1 - \delta$, the real risk of h_S is smaller than ε :

$$P_{S \sim \mathcal{D}^m}(L_{f,\mathcal{D}}(h_S) > \varepsilon) < \delta.$$

Let's consider the realizability assumption: there exists some $f = h_a^* \in \mathcal{H}$ such that $L(h_a^*) = 0$ $(a^* \in \mathbb{R})$, where $h_a^*(x) = \mathbf{1}_{[||x||_2 \le a^*]}$. We construct a training set $S = \{(x_1, y_1), ..., (x_m, y_m) | y_i = h_a^*(x_i), x_i \in \mathbb{R}^3\}$. h_a^* labels each point from S positively if it is contained within the 3-d ball of radius a^* and labels negatively all other points (label 0).

Consider the following algorithm A, which takes as input the training set S and outputs $h_S = h_{aS}(x)$:

- 1. Take $a_S = \max_{\substack{i=\overline{1},m\\y_i=1}}(||x_i||_2)$ if there is at least a positively labeled sample in S (h_{a_S} is the ball of radius a_S), or
- 2. Take $a_S = -1$ if there is no positively labeled sample in S (h_{a_S} always outputs negatives).
- 3. Output $A(S) = h_{a_S}$.

By design, A is an ERM, so $L_{h^*,\mathcal{D}}(h_S) = 0$.

Consider \mathcal{D} a distribution over $\mathcal{X} = \mathbb{R}^3$ and take $a_0 < a^* \in \mathbb{R}$ such that $\underset{x \sim \mathcal{D}_{\mathcal{X}}}{P}(||x||_2 \in (a_0, a^*) = \varepsilon$ (if $\mathcal{D}_{\mathcal{X}}(-\infty, a^*) \le \varepsilon$ take $a_0 = -\infty$). Since $L_{\mathcal{D}}(h_S) > \varepsilon$ is equivalent with saying that $a_S < a_0$, we can say:

$$\Pr_{S \sim \mathcal{D}^m}(L_{\mathcal{D}}(h_S) > \varepsilon) = P(a_S < a_0) = (1 - \varepsilon)^m \le e^{-\varepsilon m} < \delta,$$

which, by definition, proves that \mathcal{H} is PAC-learnable with the sample complexity $m \geq m_{\mathcal{H}}(\varepsilon, \delta) = \frac{1}{\varepsilon} \log \frac{1}{\delta}$.

2.b.

We know that $VCdim(\mathcal{H})$ is at least greater or equal than 1, since the hypothesis class contains non-constant classifiers, so it is able to shatter any set $S_0 = \{x_0 \in \mathbb{R}^3\}$, where $|S_0| = 1$, regardless of a.

Let's take $S = \{x_0, x_1\} \subset \mathbb{R}^3$, |S| = 2 and assign a labelling $L = \{l_0, l_1\}$. Our hypothesis class is composed of classifiers which output positives when the input is part of the origin-centered ball of radius a (B_a) and outputs negatives otherwise.

We need to prove that \mathcal{H} can't shatter S, or in other words, to prove that all possible labellings L of the set S can't be realized by functions from \mathcal{H} . In our context there are four possible cases:

3

- 1. $x_0, x_1 \in B_a$,
- 2. $x_0 \in B_a$ and $x_1 \notin B_a$,
- 3. $x_0, x_1 \notin B_a$,
- 4. $x_0 \notin B_a$ and $x_1 \in B_a$.

The last two cases are equivalent to the first two if we change the labels, so we will only focus on the former two.

<u>Case 1</u>: It is obvious to see that there is no function in \mathcal{H} that will correctly label points from S when the ground-truth is $L = \{0, 1\}$ or $L = \{1, 0\}$.

<u>Case 2</u>: Functions in \mathcal{H} will mislabel points from S when $L = \{1, 1\}$ or $L = \{0, 0\}$.

Taking this into account, we can conclude that \mathcal{H} does not shatter S, so $VCdim(\mathcal{H}) < 2$ and, furthermore, that $VCdim(\mathcal{H}) = 1$.

3.

 $\mathcal{H} = \{h_{\theta_1,\theta_2} : \mathbb{R} \to \{0,1\} | h_{\theta_1,\theta_2}(x) = h_{\theta_1,\theta_2}(x_1,x_2) = \mathbf{1}_{[\theta_1+x_1sin\theta_2+x_2sin\theta_2>0]}, \theta_1,\theta_2 \in \mathbb{R}\}$ is our hypothesis class. It can be observed that, similar to the example given in the first exercise, the class is also composed of classifiers which output positives depending whether the 2-dimensional vector x belongs in some halfspace. Following a proof very similar to the one described in the first exercise will render the following result: $VCdim(\mathcal{H}) = 3$.

First, we need to prove that there exists a set $C = \{c_0, c_1, c_2\} \subset \mathbb{R}^3$ which is shattered by \mathcal{H} . Let's fix $c_0 = (0,0), c_1 = (1,0), c_2 = (0,1)$ and assign the labelling $L = \{l_0, l_1, l_2\}$ to C. We want to find $h_{\theta_1,\theta_2}(x)$ such that $h_{\theta_1,\theta_2}(c_i) = l_i, \forall l_i \in \{0,1\}, i = \overline{0,2}$.

We will first make the following notations: $\omega_0 = \theta_1$, $\omega_1 = \sin\theta_2$, $\omega_2 = \cos\theta_2$ and set:

$$\omega_0 = l_0,$$

$$\omega_i = -\omega_0 + l_i, i \in \{1, 2\}.$$

It immediately follows that $h_{\theta_1,\theta_2}(c_0) = \mathbf{1}_{l_0>0}$, $h_{\theta_1,\theta_2}(c_1) = \mathbf{1}_{l_1>0}$ and $h_{\theta_1,\theta_2}(c_2) = \mathbf{1}_{l_2>0}$, which are always going to output the ground-truth labels, so \mathcal{H} shatters C and $VCdim(\mathcal{H}) \geq 3$.

Proving that $VCdim(\mathcal{H}) < 4$ can be done following the same way of thinking as in the previous example. More explicitly, we start by defining our set $X = \{x_1, x_2, x_3, x_4\}$. If we consider the following system of equations:

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{pmatrix} = 0,$$

with the variables $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, we know that there exist solutions $\lambda_{0i} \neq 0, i \in \mathbb{N}, \lambda_{0i} \in \mathbb{R}$, because there are only two equations and four variables.

If we construct $P = \{i | \lambda_{0i} > 0\}$ and $N = \{j | \lambda_{0j} < 0\}$, we get the following relation:

$$\lambda^* = \sum_{i \in P} \lambda_{0i} = -\sum_{j \in N} \lambda_{0j} \neq 0.$$

Additionally, we know that $\sum_{i=1}^{4} \lambda_{0i} x_i = 0$, so we can write:

$$x^* = \sum_{i \in P} \lambda_{0i} x_i = -\sum_{j \in N} \lambda_{0j} x_j \neq 0.$$

4 4

Now, if we compute the point

$$\frac{x^*}{\lambda^*} = \sum_{i \in P} \frac{\lambda_{0i}}{\lambda^*} x_i = -\sum_{j \in N} \frac{\lambda_{0j}}{\lambda^*} x_j,$$

we can observe that the point $\frac{x^*}{\lambda^*}$ lies in both convex hulls of $X_1 = \{x_i | i \in P\}$ and $X_2 = \{x_j | j \in N\}$, so this proves that, for example, label $\{1, 1, 1, 0\}$ is not realizable.

We have thus used Radon's Theorem to prove that \mathcal{H} cannot shatter $X = \{x_1, x_2, x_3, x_4\}$ and, as such, $VCdim(\mathcal{H}) < 4$, so $VCdim(\mathcal{H}) = 3$.

4.

4.a.

 α denotes the aspect of the rectangles classifiers in \mathcal{H}_{α} . We have three cases:

- if $0 < \alpha < 1$, the rectangle's width is longer than its height,
- if $\alpha = 1$, we have a square classifier,
- if $\alpha > 1$, the rectangle's height is longer than its width.

Let $S = \{(x_1, y_1), ..., (x_m, y_m) | y_i = h_{a_1^*, b_1^*, a_2^*, b_2^*}, x_i \in \mathbb{R}^2\}$ be our training set, so $h_{a_1^*, b_1^*, a_2^*, b_2^*} = \mathbf{1}_{R^*}$. In order to choose an algorithm A that is an ERM, we have to take into consideration the fact that both h^* and the output of A, $h_S = h_{a_{1S},b_{1S},a_{2S},b_{2S}}$, have the same parameter α , so we have to take into account the three cases mentioned above. Furthermore, for each case, we have four additional edge cases:

- 1. when the points are close to the bottom edge of the rectangle,
- 2. when the points are close to the leftmost edge of the rectangle,
- 3. when the points are close to the rightmost edge of the rectangle,
- 4. when the points are close to the top edge of the rectangle.

The algorithm will have to compensate the position of the rectangle of h_S such that it doesn't go outside R^* , because the aspect ratio of both h^* and h_S have to be the same.

5.

 $\mathcal{H} = \{h_{\theta} : \mathbb{R} \to \{0,1\} | h_{\theta}(x) = \mathbf{1}_{[\theta,\theta+1]\cup[\theta+2,\theta+4]\cup[\theta+6,\theta+9]}(x), \theta \in \mathbb{R}\}$ is our hypothesis class. We will assume that $VCdim(\mathcal{H}) = 4$

The first step is to prove that $VCdim(\mathcal{H}) \geq 4$. Consider the set $C_0 = \{c_1, c_2, c_3, c_4 | c_1 \leq c_2 \leq c_3\}$ $c_3 \leq c_4$ $\subset \mathbb{R}$ and the labelling $L = \{l_1, l_2, l_3, \overline{l_4}\}, \ l_i \in \{0, 1\}, i = \overline{1, 4}$. Take $c_1 = -5, \ c_2 = -4.2, \ c_3 = -1.8, \ c_4 = 1.6$ and prove that all $2^4 = 16$ labels can be realized by classifiers from \mathcal{H} . In other words, find at least a value θ_i for each labelling such that h_{θ_i} correctly labels C:

- 1. For $L = \{0, 0, 0, 0\}$, take $\theta_1 = -20.0$, 4. For $L = \{0, 0, 1, 1\}$, take $\theta_4 = -2.4$, $h_{\theta_4} = -2.4$ $h_{\theta_1} = \mathbf{1}_{[-20.0, -19.0] \cup [-18.0, -16.0] \cup [-14.0, -11.0]}$
- 3. For $L=\{0,0,1,0\}, \text{ take } \theta_3=-10.1,$ 6. For $L=\{0,1,0,1\}, \text{ take } \theta_6=-6.9, \ h_{\theta_6}=-6.9, \ h_{\theta_6}$ $h_{\theta_3} = \mathbf{1}_{[-10.1, -9.1] \cup [-8.1, -6.1] \cup [-4.1, -1.1]}$

 $\mathbf{1}_{[-6.1,-5.1]\cup[-4.1,-2.1]\cup[-0.1,2.9]}$

- $\mathbf{1}_{[-2.4,-1.4]\cup[-0.4,1.6]\cup[3.6,6.6]}$
- 2. For $L = \{0, 0, 0, 1\}$, take $\theta_2 = -6.1$, $h_{\theta_2} = 6.1$ 5. For $L = \{0, 1, 0, 0\}$, take $\theta_5 = -10.9$, $h_{\theta_5} = \mathbf{1}_{[-10.9, -9.9] \cup [-8.9, -6.9] \cup [-4.9, -1.9]}$
 - $\mathbf{1}_{[-6.9,-5.9]\cup[-4.9,-2.9]\cup[-0.9,2.1]}$

5

7. For
$$L = \{0, 1, 1, 0\}$$
, take $\theta_7 = -10.8$, $h_{\theta_7} = \mathbf{1}_{[-10.8, -9.8] \cup [-8.8, -6.8] \cup [-4.8, -1.8]}$

- 8. For $L = \{0, 1, 1, 1\}$, take $\theta_8 = -4.9$, $h_{\theta_8} = \mathbf{1}_{[-4.9, -3.9] \cup [-2.9, -0.9] \cup [1.1, 4.1]}$
- 9. For $L = \{1,0,0,0\}$, take $\theta_9 = -14.0$, $h_{\theta_9} = \mathbf{1}_{[-14.0,-13.0] \cup [-12.0,-10.0] \cup [-8.0,-5.0]}$
- 10. For $L = \{1, 0, 0, 1\}$, take $\theta_{10} = -6.0$, $h_{\theta_{10}} = \mathbf{1}_{[-6.0, -5.0] \cup [-4.0, -2.0] \cup [0.0, 3.0]}$
- 11. For $L=\{1,0,1,0\}$, take $\theta_{11}=-9.0$, $h_{\theta_{11}}=\mathbf{1}_{[-9.0,-8.0]\cup[-7.0,-5.0]\cup[-3.0,0.0]}$

12. For
$$L = \{1, 0, 1, 1\}$$
, take $\theta_{12} = -5.8$, $h_{\theta_{12}} = \mathbf{1}_{[-5.8, -4.8] \cup [-3.8, -1.8] \cup [0.2, 3.2]}$

- 13. For $L = \{1, 1, 0, 0\}$, take $\theta_{13} = -13.2$, $h_{\theta_{13}} = \mathbf{1}_{[-13.2, -12.2] \cup [-11.2, -9.2] \cup [-7.2, -4.2]}$
- 14. For $L = \{1, 1, 0, 1\}$, take $\theta_{14} = -7.4$, $h_{\theta_{14}} = \mathbf{1}_{[-7.4, -6.4] \cup [-5.4, -3.4] \cup [-1.4, 1.6]}$
- 15. For $L = \{1, 1, 1, 0\}$, take $\theta_{15} = -5.2$, $h_{\theta_{15}} = \mathbf{1}_{[-5.2, -4.2] \cup [-3.2, -1.2] \cup [0.8, 3.8]}$.
- 16. For $L = \{1, 1, 1, 1\}$, take $\theta_{16} = -8.2$, $h_{\theta_{16}} = \mathbf{1}_{[-8.2, -7.2] \cup [-6.2, -4.2] \cup [-2.2, 0.8]}$

The values were obtained by using a search algorithm implemented in Python, which tried θ_i values from a set $\{-20, -19.9, ..., 19.9, 20\}$ until one value satisfies the labelling of some points, which were also searched for via brute force. The conclusion is that \mathcal{H} shatters C_0 , so $VCdim(\mathcal{H}) \geq 5$.

Consider the set $C = \{c_1, c_2, c_3, c_4, c_5 | c_1 \le c_2 \le c_3 \le c_4 \le c_5\} \subset \mathbb{R}$ and the labels $L_1 = \{1, 0, 1, 0, 1\}$. Assuming that \mathcal{H} shatters C, then there exists some $h_{\theta} \in \mathcal{H}$ which correctly labels the points from C. One possible configuration can be the following:

$$\theta \le c_1 \le \theta + 1$$

 $\theta + 1 < c_2 < \theta + 2$
 $\theta + 2 \le c_3 \le \theta + 4$
 $\theta + 4 < c_4 < \theta + 6$
 $\theta + 6 \le c_5 \le \theta + 9$,

which means:

$$2 \le c_3 - c_1 \le 3 \tag{1}$$

$$3 < c_4 - c_2 < 4 \tag{2}$$

$$2 \le c_5 - c_3 \le 5 \tag{3}$$

$$6 \le c_5 - c_1 \le 8. \tag{4}$$

Consider the same configuration, but with the labels $\{1,0,0,1,1\}$. We will prove that, no matter how the points are positioned, there is no way this labelling can be achieved by any $h_{\theta} \in \mathcal{H}$. We have two possible ways of choosing the points:

<u>Case 1</u>: The first point is in the first interval, the next two are outside of it and the last two are in the second interval,

<u>Case 2</u>: The first point is in the second interval, the next two are outside of it and the last two are in the last interval.

The first case implies that $2 \le c_5 - c_1 \le 3$, but if we substract it from relation (4), we get 4 < 0 < 5, which is impossible.

The second case implies that $4 \le c_5 - c_1 \le 5$, but if we substract if from (4), we get $2 \le 0 \le 3$, which is also impossible.

We've thus proven that any configuration from C cannot satisfy these two labels, so \mathcal{H} doesn't shatter any C, which means that $VCdim(\mathcal{H}) < 5$, so $VCdim(\mathcal{H}) = 4$.

REFERENCES 6

${\bf References}$

[1] Stefan Hausler, VC Dimension, Tutorial for the Course Computational Intelligence, https://www2.spsc.tugraz.at/www-archive/downloads/vc_examples.pdf