Latent Variable Modeling: Tensor and Graphical Approaches

Anima Anandkumar

U.C. Irvine

Latent Variable Modeling

Goal: Discover hidden effects from observed measurements

Example: document modeling

Observations: words. Hidden: topics.

Learning latent variable models: efficient methods and guarantees

Challenges: High-Dimensional Regime

- Sample and Computational complexities
- Identifiability: when can hidden variables be discovered?

Challenges: High-Dimensional Regime

Sample and Computational complexities

• Identifiability: when can hidden variables be discovered?

Our Approach: Two Perspectives

Challenges: High-Dimensional Regime

- Sample and Computational complexities
- Identifiability: when can hidden variables be discovered?

Our Approach: Two Perspectives

Method of Moments

- Hidden choice variable and observed samples
- Inverse moment method: solve equations relating hidden variable to observed moments
- Low order tensor form and efficient decomposition methods

Challenges: High-Dimensional Regime

- Sample and Computational complexities
- Identifiability: when can hidden variables be discovered?

Our Approach: Two Perspectives

Method of Moments

- Hidden choice variable and observed samples
- Inverse moment method: solve equations relating hidden variable to observed moments
- Low order tensor form and efficient decomposition methods

Graphical Modeling

- Qualitative: graph structure. Quantitative: interaction strengths.
- Markov relationships: graphs with long cycles and hidden variables.
- Greedy graph estimation method: efficient tradeoffs.

Results from Two Approches

Learning Mixture Models through Tensor Decomposition

Topic 1	Topic 2	Topic 3
bush	company	show
president	percent	book
government	million	women
official	companies	family
campaign	market	film
political	business	school
law	stock	look
leader	billion	home
george_bush	money	children
al_gore	cost	friend

 Top 10 words for three topics from NYTimes data set.

Results from Two Approches

Learning Mixture Models through Tensor Decomposition

Topic 1	Topic 2	Topic 3
bush	company	show
president	percent	book
government	million	women
official	companies	family
campaign	market	film
political	business	school
law	stock	look
leader	billion	home
george_bush	money	children
al_gore	cost	friend

 Top 10 words for three topics from NYTimes data set.

Graph Estimation Through Greedy Methods

 Graph: Topic-Word Relationships.

Other Motivating Applications

Social Network Modeling

- Community detection: Discovering hidden communities
- Dynamic network modeling: Predicting vertex co-presence

Other Motivating Applications

Social Network Modeling

- Community detection: Discovering hidden communities
- Dynamic network modeling: Predicting vertex co-presence

Bio-Informatics

- Modeling gene associations
- Hidden variables may be regulators that control groups of functionally similar genes

Other Motivating Applications

Social Network Modeling

- Community detection: Discovering hidden communities
- Dynamic network modeling: Predicting vertex co-presence

Bio-Informatics

- Modeling gene associations
- Hidden variables may be regulators that control groups of functionally similar genes

Computer Vision, Phylogenetics, Financial Modeling ...

Outline

- Introduction
- Inverse Moment Methods
 - Moment Tensor Form
 - Tensor Decomposition Methods
- 3 Structure Estimation in Latent Graphical Models
 - Latent Tree Models
 - Loopy Latent Models
- Experiments and Applications
- Conclusion

Exchangeability

- Order of words does not matter
- Sufficient statistics: word counts
- DeFinetti's theorem: latent variable

Exchangeable Topic Models

- l words in a document x_1, \ldots, x_l .
- Document: topic mixture (draw of h).
- Word x_i generated from topic y_i .
- Exchangeability: $x_1 \perp x_2 \perp \ldots \mid h$
- $\Phi(i,j) := \mathbb{P}[x_m = i | y_m = j].$

Exchangeability

- Order of words does not matter
- Sufficient statistics: word counts
- DeFinetti's theorem: latent variable

Exchangeable Topic Models

- l words in a document x_1, \ldots, x_l .
- Document: topic mixture (draw of h).
- Word x_i generated from topic y_i .
- Exchangeability: $x_1 \perp \!\!\! \perp x_2 \perp \!\!\! \perp \ldots \mid h$
- $\Phi(i,j) := \mathbb{P}[x_m = i | y_m = j].$

Exchangeability

- Order of words does not matter
- Sufficient statistics: word counts
- DeFinetti's theorem: latent variable

Exchangeable Topic Models

- l words in a document x_1, \ldots, x_l .
- Document: topic mixture (draw of h).
- Word x_i generated from topic y_i .
- Exchangeability: $x_1 \perp \!\!\! \perp x_2 \perp \!\!\! \perp \ldots \mid h$
- $\Phi(i,j) := \mathbb{P}[x_m = i | y_m = j].$

Exchangeability

- Order of words does not matter
- Sufficient statistics: word counts
- DeFinetti's theorem: latent variable

Exchangeable Topic Models

- l words in a document x_1, \ldots, x_l .
- Document: topic mixture (draw of h).
- Word x_i generated from topic y_i .
- Exchangeability: $x_1 \perp \!\!\! \perp x_2 \perp \!\!\! \perp \ldots \mid h$
- $\Phi(i,j) := \mathbb{P}[x_m = i | y_m = j].$

Single topic model

- Each document has only one hidden topic: $y_i = h$.
- h is a discrete variable and let $\lambda_i := \mathbb{P}[h=i]$.

$$\vec{\lambda} := [\mathbb{P}[h=i]]_i.$$

$$\Phi(i,j) := \mathbb{P}[x_m = i|h=j].$$

 Learning: Loading matrix Φ and Vector $\vec{\lambda}$

$$\bullet \quad \vec{\lambda} := [\mathbb{P}[h=i]]_i.$$

$$\Phi(i,j) := \mathbb{P}[x_m = i|h = j].$$

• Learning: Loading matrix Φ and Vector $\vec{\lambda}$

Pairwise Probability Matrix M_2

$$M_2(a,b) := \mathbb{P}(x_1 = a, x_2 = b) = \sum_r \lambda_r \Phi(a,r) \Phi(b,r)$$

$$\vec{\lambda} := [\mathbb{P}[h=i]]_i.$$

$$\Phi(i,j) := \mathbb{P}[x_m=i|h=j].$$

$$\Phi(i,j) := \mathbb{P}[x_m = i|h = j].$$

ullet Learning: Loading matrix Φ and Vector

Pairwise Probability Matrix M_2

$$M_2(a,b) := \mathbb{P}(x_1 = a, x_2 = b) = \sum_r \lambda_r \Phi(a,r) \Phi(b,r)$$

Triples Probability Tensor M_3

$$M_3(a, b, c) := \mathbb{P}(x_1 = a, x_2 = b, x_3 = c) = \sum_r \lambda_r \Phi(a, r) \Phi(b, r) \Phi(c, r)$$

$$\bullet \quad \overrightarrow{\vec{\lambda}} := [\mathbb{P}[h=i]]_i.$$

$$\vec{\lambda} := [\mathbb{P}[h=i]]_i.$$

$$\Phi(i,j) := \mathbb{P}[x_m = i|h=j].$$

ullet Learning: Loading matrix Φ and Vector

Pairwise Probability Matrix M_2

$$M_2(a,b) := \mathbb{P}(x_1 = a, x_2 = b) = \sum_r \lambda_r \Phi(a,r) \Phi(b,r)$$

Triples Probability Tensor M_3

$$M_3(a, b, c) := \mathbb{P}(x_1 = a, x_2 = b, x_3 = c) = \sum_r \lambda_r \Phi(a, r) \Phi(b, r) \Phi(c, r)$$

Matrix and Tensor Forms: $\phi_r := r^{\text{th}}$ column of Φ .

$$M_2 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r.$$
 $M_3 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r \otimes \phi_r$

Tensor Basics: Multilinear Transformations

ullet For a tensor M_3 , define (for matrices V_i of appropriate dimensions)

$$\boxed{[M_3(V_1, V_2, V_3)]_{i_1, i_2, i_3} := \sum_{j_1, j_2, j_3} (M_3)_{j_1, j_2, j_3} \prod_{m \in [3]} V_1(j_m, i_m)}$$

ullet For a matrix M_2 , $M(V_1,V_2):=V_1^{ op}M_2V_2$.

$$M_3 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r \otimes \phi_r$$

$$M_3(W, W, W) = \sum_{r \in [k]} \lambda_r (W^\top \phi_r)^{\otimes 3}$$

$$M_3(I, v, v) = \sum_{r \in [k]} \lambda_r \langle v, \phi_r \rangle^2 \phi_r.$$

$$M_3(I, I, v) = \sum_{r \in [k]} \lambda_r \langle v, \phi_r \rangle \phi_r \phi_r^\top.$$

Inverse Moment Methods for Learning

$$M_2 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r, \quad M_3 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r \otimes \phi_r$$

Identifiability Using 2^{nd} and 3^{rd} Order Moments

Matrix Φ has linearly independent columns and $\vec{\lambda} > 0$.

Inverse Moment Methods for Learning

$$M_2 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r, \quad M_3 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r \otimes \phi_r$$

Identifiability Using 2^{nd} and 3^{rd} Order Moments

Matrix Φ has linearly independent columns and $\vec{\lambda} > 0$.

Special Case: Orthogonality

- If Φ is an orthogonal matrix $M_3(I,\phi_r,\phi_r)=\lambda_r\phi_r$. Loading vectors $\{\phi_r\}$ are eigenvectors of the tensor M_3

Inverse Moment Methods for Learning

$$M_2 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r, \quad M_3 = \sum_{r=1}^k \lambda_r \phi_r \otimes \phi_r \otimes \phi_r$$

Identifiability Using 2^{nd} and 3^{rd} Order Moments

Matrix Φ has linearly independent columns and $\vec{\lambda} > 0$.

Special Case: Orthogonality

- If Φ is an orthogonal matrix $M_3(I,\phi_r,\phi_r)=\lambda_r\phi_r$. Loading vectors $\{\phi_r\}$ are eigenvectors of the tensor M_3

How to obtain an orthogonal tensor form?

Orthogonal Tensor Decomposition

$$M_2 = \sum_{r \in [k]} \lambda_r \phi_r \otimes \phi_r, \quad M_3 = \sum_{r \in [k]} \lambda_r \phi_r \otimes \phi_r \otimes \phi_r$$

- Define $W = UD^{-1}$, where $M_2 = UDU^{\top}$.
- Let $\widetilde{\phi}_i := \sqrt{\lambda_i} \ W^{\top} \phi_i$. They are orthonormal.

$$M_2(W, W) = \sum_{i \in [k]} W^{\top} (\sqrt{\lambda_i} \phi_i) (\sqrt{\lambda_i} \phi_i)^{\top} W = \sum_{i \in [k]} \widetilde{\phi}_i \widetilde{\phi}_i^{\top} = I,$$

• Now define \widetilde{M}_3 , so that

$$\widetilde{M}_3 = M_3(W, W, W) = \sum_{i \in [k]} \lambda_i (W^{\top} \phi_i)^{\otimes 3} = \sum_{i \in [k]} \frac{1}{\sqrt{\lambda_i}} \widetilde{\phi}_i^{\otimes 3}.$$

Learning: Tensor Decomposition of \widetilde{M}_3

• Consider orthogonal symmetric tensor $T = \sum_i w_i \mu_i^{\otimes 3}$

$$T = \sum_{i=1}^{k} w_i \mu_i^{\otimes 3}. \quad T(I, \mu_i, \mu_i) = w_i \mu_i$$

• Consider orthogonal symmetric tensor $T = \sum_i w_i \mu_i^{\otimes 3}$

$$T = \sum_{i=1}^{k} w_i \mu_i^{\otimes 3}. \quad T(I, \mu_i, \mu_i) = w_i \mu_i$$

Obtaining eigenvectors through power iterations

$$u \mapsto \frac{T(I, u, u)}{\|T(I, u, u)\|}$$

• Consider orthogonal symmetric tensor $T = \sum_i w_i \mu_i^{\otimes 3}$

$$T = \sum_{i=1}^{k} w_i \mu_i^{\otimes 3}. \quad T(I, \mu_i, \mu_i) = w_i \mu_i$$

Obtaining eigenvectors through power iterations

$$u \mapsto \frac{T(I, u, u)}{\|T(I, u, u)\|}$$

Challenges and Solution

• Challenge: Other eigenvectors present Solution: Only stable vectors are basis vectors $\{\mu_i\}$

• Consider orthogonal symmetric tensor $T = \sum_i w_i \mu_i^{\otimes 3}$

$$T = \sum_{i=1}^{k} w_i \mu_i^{\otimes 3}. \quad T(I, \mu_i, \mu_i) = w_i \mu_i$$

Obtaining eigenvectors through power iterations

$$u \mapsto \frac{T(I, u, u)}{\|T(I, u, u)\|}$$

Challenges and Solution

- Challenge: Other eigenvectors present Solution: Only stable vectors are basis vectors $\{\mu_i\}$
- Challenge: empirical moments
 Solution: robust tensor decomposition methods

Optimization Viewpoint for Tensor Eigen Analysis

Consider Norm Optimization Problem for Tensor ${\cal T}$

$$\bullet \boxed{\max_{u} \ T(u, u, u) \qquad s.t. \ u^{\top}u = I}$$

- Constrained stationary fixed points $T(I, u, u) = \lambda u$ and $u^{\top}u = I$.
- u is a local isolated maximizer if $w^{\top}(T(I,I,u)-\lambda I)w<0$ for all w such that $w^{\top}w=I$ and w is orthogonal to u.

Review for Symmetric Matrices $M = \sum_i w_i \mu_i^{\otimes 2}$

- Constrained stationary points are the eigenvectors
- Only top eigenvector is a maximizer and stable under power iterations

Orthogonal Symmetric Tensors $T = \sum_i w_i \mu_i^{\otimes 3}$

- Stationary points are the eigenvectors (up to scaling)
- All basis vectors $\{\mu_i\}$ are local maximizers and stable under power iterations

Tensor Decomposition: Perturbation Analysis

- Observed tensor $\widetilde{T}=T+E$, where $T=\sum_{i\in k}w_i\mu_i^{\otimes 3}$ is orthogonal tensor and perturbation E, and $||E|| \leq \epsilon$.

$$\bullet \ \ \text{Recall power iterations} \boxed{ u \mapsto \frac{\widetilde{T}(I,u,u)}{\|\widetilde{T}(I,u,u)\|} }$$

Tensor Decomposition: Perturbation Analysis

- Observed tensor $\widetilde{T} = T + E$, where $T = \sum_{i \in k} w_i \mu_i^{\otimes 3}$ is orthogonal tensor and perturbation E, and $||E|| \leq \epsilon$.

$$\bullet \ \ \text{Recall power iterations} \boxed{u \mapsto \frac{\widetilde{T}(I,u,u)}{\|\widetilde{T}(I,u,u)\|}}$$

$$ullet$$
 "Good" initialization vector $\left|\langle u^{(0)},\mu_i
angle=\Omega\left(rac{\epsilon}{w_{\min}}
ight)
ight|$

Tensor Decomposition: Perturbation Analysis

- Observed tensor $\widetilde{T} = T + E$, where $T = \sum_{i \in k} w_i \mu_i^{\otimes 3}$ is orthogonal tensor and perturbation E, and $||E|| < \epsilon$.
- Recall power iterations $u \mapsto \frac{T(I, u, u)}{\|\widetilde{T}(I, u, u)\|}$

$$\mathbf{S} \left[u \mapsto \frac{\widetilde{T}(I,u,u)}{\|\widetilde{T}(I,u,u)\|} \right]$$

$$ullet$$
 "Good" initialization vector $\left|\langle u^{(0)}, \mu_i
angle = \Omega\left(rac{\epsilon}{w_{\min}}
ight)
ight|$

Perturbation Analysis

After N iterations, eigen pair (w_i, μ_i) is estimated up to $O(\epsilon)$ error, where

$$N = O\left(\log k + \log\log\frac{w_{\text{max}}}{\epsilon}\right).$$

A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade and M. Telgarsky "Tensor Decompositions for Learning Latent Variable Models," Preprint, October 2012.

Robust Tensor Power Method

$$\widetilde{T} = \sum_{i} w_{i} \mu_{i}^{\otimes 3} + E$$

Basic Algorithm

- Pick random initialization vectors

$$\bullet \ \, \text{Run power iterations} \boxed{ u \mapsto \frac{\widetilde{T}(I,u,u)}{\|\widetilde{T}(I,u,u)\|} }$$

Go with the winner, deflate and repeat

Robust Tensor Power Method

$$\widetilde{T} = \sum_{i} w_{i} \mu_{i}^{\otimes 3} + E$$

Basic Algorithm

- Pick random initialization vectors
- $\bullet \ \, \text{Run power iterations} \left| u \mapsto \frac{\widetilde{T}(I,u,u)}{\|\widetilde{T}(I,u,u)\|} \right|$
- Go with the winner, deflate and repeat

Further Improvements

- Initialization: Use long document vectors for initialization
- $\bullet \ \ \text{Stabilization:} \ \boxed{u^{(t)} \mapsto \alpha \frac{\widetilde{T}(I, u^{(t-1)}, u^{(t-1)})}{\|\widetilde{T}(I, u^{(t-1)}, u^{(t-1)})\|} + (1-\alpha)u^{(t-1)}}$

Efficient Learning Through Tensor Power Iterations

Extensions...

Latent Dirichlet Allocation

- Each document a topic mixture rather than a single topic
- Modified second and third order moments reduce to symmetric tensor.

Extensions...

Latent Dirichlet Allocation

- Each document a topic mixture rather than a single topic
- Modified second and third order moments reduce to symmetric tensor.

Spherical Gaussian Mixtures, Hidden Markov Models, Independent Component Analysis (ICA) ...

Extensions...

Latent Dirichlet Allocation

- Each document a topic mixture rather than a single topic
- Modified second and third order moments reduce to symmetric tensor.

Spherical Gaussian Mixtures, Hidden Markov Models, Independent Component Analysis (ICA) ...

Community Modeling and Detection in Social Networks

- Mixed membership model (Airoldi et. al): overlapping communities
- Edge counts and 3-star counts: tensor decomposition

A. Anandkumar, R. Ge, D. Hsu, S. Kakade, "Learning Mixed Membership Block Models."

Preliminary Experiments

Top 10 words for 5 topics (NYTimes data)

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5
bush	company	show	official	team
president	percent	book	water	game
government	million	women	attack	season
official	companies	family	u_s	player
campaign	market	film	food	play
political	business	school	united_states	games
law	stock	look	afghanistan	point
leader	billion	home	taliban	run
george_bush	money	children	air	win
al_gore	cost	friend	military	won

Outline

- Introduction
- Inverse Moment Methods
 - Moment Tensor Form
 - Tensor Decomposition Methods
- 3 Structure Estimation in Latent Graphical Models
 - Latent Tree Models
 - Loopy Latent Models
- Experiments and Applications
- Conclusion

Hierarchical Latent Variable Models

Graph Estimation with Latent Variables

- # and location of hidden variables
- Estimate graph over all variables
- Trees and girth-constrained graphs

Information Distances $\{d_{ij}\}$

- Gaussian: $d_{ij} := -\log |\rho_{ij}|$.
- Discrete: $d_{ij} := -\log |\operatorname{Det}(P_{i,j})|$.

Information Distances $\{d_{ij}\}$

- Gaussian: $d_{ij} := -\log |\rho_{ij}|$.
- Discrete: $d_{ij} := -\log |\operatorname{Det}(P_{i,j})|$.

$[d_{i,j}]$ is an additive tree metric:

$$d_{k,l} = \sum_{(i,j) \in \text{Path}(k,l;E)} d_{i,j}.$$

Information Distances $\{d_{ij}\}$

- Gaussian: $d_{ij} := -\log |\rho_{ij}|$.
- Discrete: $d_{ij} := -\log |\operatorname{Det}(P_{i,j})|$.

$[d_{i,j}]$ is an additive tree metric:

$$d_{k,l} = \sum_{(i,j) \in \text{Path}(k,l;E)} d_{i,j}.$$

Learning latent tree using $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

•
$$-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$$
 leaves with common parent

• $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Proof Ideas

Relating Chow-Liu Tree with Latent Tree

ullet Surrogate $\operatorname{Sg}(i)$ for node i: observed node with strongest correlation

$$\operatorname{Sg}(i) := \operatorname*{argmin}_{j \in V} d_{i,j}$$

Neighborhood preservation

$$(i,j) \in T \Rightarrow (\operatorname{Sg}(i),\operatorname{Sg}(j)) \in T_{\operatorname{ML}}.$$

Chow-Liu grouping reverses edge contractions

Proof by induction

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Guarantees for Latent Structure Learning

• Ising model with minimum edge potential J_{\min} .

$$p(x) \propto \exp \left[\sum_{(i,j) \in G} J_{i,j} x_i x_j + \sum_{i \in V} h_i x_i \right]$$

- Depth δ : worst-case distance between hidden and observed nodes.
- Parameter β : depends on min. and max. node and edge potentials
 - $\beta = 1$ for homogeneous models.

Guarantees for Latent Structure Learning

ullet Ising model with minimum edge potential J_{\min} .

$$p(x) \propto \exp\left[\sum_{(i,j)\in G} J_{i,j} x_i x_j + \sum_{i\in V} h_i x_i\right]$$

- Depth δ : worst-case distance between hidden and observed nodes.
- Parameter β : depends on min. and max. node and edge potentials
 - $\beta = 1$ for homogeneous models.

Theorem (A., Valluvan '12)

Proposed method correctly recovers graph structure w.h.p. on p observed nodes and n samples when

$$\frac{J_{\min}^{-2\delta\beta(\beta+1)-2}\log p}{n} = O(1).$$

Insights and Implications

Tradeoff between depth δ and girth g

Roughly require: $\delta < g/4$.

Tradeoff between max. edge strength $J_{\rm max}$ and degree Δ

Require $J_{\text{max}} < \text{atanh}(\Delta^{-1})$.

Insights and Implications

Tradeoff between depth δ and girth g

Roughly require: $\delta < g/4$.

Tradeoff between max. edge strength $J_{\rm max}$ and degree Δ

Require $J_{\text{max}} < \text{atanh}(\Delta^{-1})$.

Sample complexity for uniform node sampling

Given ρ fraction of nodes as observed nodes,

$$n = \Omega\left(\Delta^2 \rho^{-4} (\log p)^5\right).$$

Necessary conditions for structure recovery

For any deterministic algorithm, the number of samples n needs to be

$$n = \Omega\left(\frac{\Delta_{\min}}{\rho}\log p\right)$$

Insights and Implications

Tradeoff between depth δ and girth q

Roughly require: $\delta < g/4$.

Tradeoff between max. edge strength $J_{\rm max}$ and degree Δ

Require $J_{\text{max}} < \text{atanh}(\Delta^{-1})$.

Sample complexity for uniform node sampling

Given ρ fraction of nodes as observed nodes,

$$n = \Omega\left(\Delta^2 \rho^{-4} (\log p)^5\right).$$

Necessary conditions for structure recovery

For any deterministic algorithm, the number of samples n needs to be

$$n = \Omega\left(\frac{\Delta_{\min}}{\rho}\log p\right)$$

Outline

- Introduction
- Inverse Moment Methods
 - Moment Tensor Form
 - Tensor Decomposition Methods
- 3 Structure Estimation in Latent Graphical Models
 - Latent Tree Models
 - Loopy Latent Models
- Experiments and Applications
- Conclusion

Discovering Word Relationships engine honda insurance aids problem patients medicine research science software university system president computer rights government disk video problem card baseba windows mac players team research hockey software university scsi system season program fttp format computer drive nasa image number display disk memory server dos

Dynamic Network Modeling

- Observations: series of graph $G_t = (V_t, E_t)$ and covariates
- Modeling vertex participation through latent graphical model
- Logistic regression for edge prediction given vertices
- Data: windsurfer interaction on a beach
- Improvement over baseline: 164% for vertices and 45% for edges.

Modeling Hazard-related Tweets

Modeling Gene Associations

- Observed: gene expression levels
- Relationships between genes, e.g. genes that encode ribosomal subunits group together
- Hidden nodes: regulators that control groups of functionally similar genes, e.g. transcription factors

Outline

- Introduction
- Inverse Moment Methods
 - Moment Tensor Form
 - Tensor Decomposition Methods
- 3 Structure Estimation in Latent Graphical Models
 - Latent Tree Models
 - Loopy Latent Models
- Experiments and Applications
- Conclusion

Summary on Learning Latent Variable Models

Tensor Methods

- Tensor forms for a range of models
- Efficient decomposition methods
- Perturbation analysis

Graph Estimation

- Latent modeling via graphical approaches
- Efficient methods for graph estimation
- Guarantees on sample and computational complexities

The Big Picture

http://newport.eecs.uci.edu/anandkumar