Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

Nella scorsa lezione

- ▶ Esempi di sistemi a tempo continuo e discreto
 - ▶ Soluzioni di un sistema autonomo
 - $e^{Ft} = \sum_{k=0}^{\infty} \frac{1}{k!} F^k t^k$ ▷ Esponenziale di matrice
 - ▶ Calcolo dell'esponenziale di matrice: metodo diretto

In questa lezione

▶ Richiami di algebra lineare e diagonalizzazione di matrici

▶ Calcolo dell'esponenziale di matrice tramite diagonalizzazione

▶ Forma di Jordan

Vettori e basi in \mathbb{R}^n

$$V = (\mathbb{R}^n, \mathbb{R}, +, \cdot)$$

- 1. L'insieme (di vettori) \mathbb{R}^n con campo (di scalari) \mathbb{R} dotato delle consuete operazioni di somma tra vettori e prodotto di vettore per scalare, è uno spazio vettoriale.
- **2.** I vettori $v_1, \ldots, v_k \in \mathbb{R}^n$ sono detti linearmente indipendenti (dipendenti) se

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0, \ \alpha_i \in \mathbb{R} \implies (\not\Rightarrow) \ \alpha_1 = \cdots = \alpha_k = 0.$$

- **3.** I vettori $v_1, \ldots, v_k \in \mathbb{R}^n$ formano una base di \mathbb{R}^n se:
 - (i) generano \mathbb{R}^n : $\forall v \in \mathbb{R}^n$, $\exists \alpha_i \in \mathbb{R}$ t.c. $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$
 - (ii) sono linearmente indipendenti

Trasformazioni lineari

1. Una trasformazione $f: \mathbb{R}^m \to \mathbb{R}^n$ si dice lineare se

(i)
$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in \mathbb{R}^m$$

(ii)
$$f(\alpha v) = \alpha f(v)$$
, $\forall v \in \mathbb{R}^m$, $\forall \alpha \in \mathbb{R}$

2. Una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ è univocamente individuata dalla sua restrizione ai vettori di una qualsiasi base \mathcal{B} di \mathbb{R}^m .

Trasformazioni lineari e rappresentazione matriciale

1. Fissata una base \mathcal{B}_1 di \mathbb{R}^m e una base \mathcal{B}_2 di \mathbb{R}^n è possibile rappresentare una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ con una matrice $F \in \mathbb{R}^{n \times m}$ che descrive come le coordinate (rispetto a \mathcal{B}_1) di vettori di \mathbb{R}^m vengono mappate da f in coordinate di vettori (rispetto a \mathcal{B}_2) di \mathbb{R}^n .

2. Fissata una base \mathcal{B} di \mathbb{R}^n , sia $F \in \mathbb{R}^{n \times n}$ la matrice che rappresenta la trasformazione lineare $f : \mathbb{R}^n \to \mathbb{R}^n$. Sia $T \in \mathbb{R}^{n \times n}$ la matrice di cambio di base da \mathcal{B} di \mathbb{R}^n ad una "nuova" base \mathcal{B}' di \mathbb{R}^n . La matrice che rappresenta f nella nuova base è

$$F' = T^{-1}FT$$
.

Matrici: fatti base

1. Sia $F \in \mathbb{R}^{n \times m}$

$$\ker F \triangleq \{v \in \mathbb{R}^m : Fv = 0\}, \quad (\text{ moleo})$$

$$\operatorname{im} F \triangleq \{w \in \mathbb{R}^n : w = \underline{Fv}, \exists v \in \mathbb{R}^m\}, \quad (\text{immagine})$$

$$\operatorname{rank} F \triangleq \# \text{ righe (o colonne) lin. indipendenti di } F \quad (\text{range})$$

- **2.** Sia $F \in \mathbb{R}^{n \times n}$, un vettore $v \in \mathbb{C}^n$ tale che $Fv = \lambda v$, $\lambda \in \mathbb{C}$, è detto autovettore di F corrispondente all'autovalore λ .
- **3.** Gli autovalori $\{\lambda_i\}_{i=1}^k$ di $F \in \mathbb{R}^{n \times n}$ sono le radici del polinomio caratteristico

$$\Delta_F(\lambda) = \det(\lambda I - F) = (\lambda - \underline{\lambda_1})^{\nu_1} (\lambda - \underline{\lambda_2})^{\nu_2} \cdots (\lambda - \underline{\lambda_k})^{\nu_k},$$

dove ν_i è la molteplicità algebrica dell'autovalore λ_i .

Matrici: fatti base

4. Ogni autovettore ν relativo all'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ soddisfa

$$(\lambda_i I - F)v = 0.$$

5. La molteplicità geometrica g_i dell'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ è il numero massimo di autovettori linearmente independenti associati a λ_i e coincide con

$$g_i = \dim \ker(\lambda_i I - F) = n - \operatorname{rank}(\lambda_i I - F).$$

6. Se $\nu_i = g_i$ per ogni autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ allora F è diagonalizzabile, i.e., esiste una matrice di cambio di base $T \in \mathbb{R}^{n \times n}$ tale che

$$F_D \triangleq T^{-1}FT$$
 è diagonale

The per colonne gli autovellori di F autovellori di F autovellori di F8 Marzo 2021

G. Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

Esempio: diagonalizzazione

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, F diagonalizzabile? Se sì, calcolare T .

$$\lambda_1=i,\ \nu_1=1,\ g_1=1,\ \lambda_2=-i,\ \nu_2=1,\ g_2=1\implies F$$
 diagonalizzabile \checkmark

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \implies F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

In questa lezione

▶ Richiami di algebra lineare e diagonalizzazione di matrici

▶ Calcolo dell'esponenziale di matrice tramite diagonalizzazione

▶ Forma di Jordan

$$F \in \mathbb{R}^{n imes n}$$
 diagonalizzabile $(
u_i = g_i \text{ per ogni autovalore } \lambda_i)$

$$F\in\mathbb{R}^{n imes n}$$
 diagonalizzabile $(
u_i=g_i ext{ per ogni autovalore } \lambda_i)$

$$\downarrow$$
Esiste $T\in\mathbb{R}^{n imes n}$ tale che $F_D=T^{-1}FT$ diagonale

$$F\in\mathbb{R}^{n imes n}$$
 diagonalizzabile $(
u_i=g_i ext{ per ogni autovalore } \lambda_i)$ $igg|$ Esiste $T\in\mathbb{R}^{n imes n}$ tale che $F_D=T^{-1}FT$ diagonale

Come ci aiuta questo nel calcolo di e^{Ft} ?

$$F \in \mathbb{R}^{n \times n}$$
 diagonalizzabile $(\nu_i = g_i \text{ per ogni autovalore } \lambda_i)$

$$F_D = T^{-1}FT \implies F = TF_DT^{-1} \implies e^{Ft} = e^{TF_DT^{-1}t}$$

$$(TF_DT^{-1}t)^n = T(F_Dt)^nT^{-1} \implies e^{Ft} = Te^{F_Dt}T^{-1}$$

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, calcolare e^{Ft} tramite diagonalizzazione di F .

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
, $F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$

$$e^{Ft} = Te^{F_D t}T^{-1} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

In questa lezione

▶ Richiami di algebra lineare e diagonalizzazione di matrici

▶ Calcolo dell'esponenziale di matrice tramite diagonalizzazione

▶ Forma di Jordan

Come calcolare e^{Ft} ?

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ diagonale

Come calcolare e^{Ft} ?

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ diagonale

Non sempre possibile!!! Che fare quando non esiste una tale T?

Come calcolare e^{Ft} ?

Calcolare
$$e^{Ft}$$
, $F \in \mathbb{R}^{n \times n}$

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ diagonale

Non sempre possibile!!! Che fare quando non esiste una tale T?

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ "quasi" diagonale!

Esempi

$$1. F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$2. F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$3. F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Esempi

1.
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
, $\nu_1 = 2$, $g_1 = 2 \implies \nu_1 = g_1$ diagonalizzabile \checkmark

2.
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies \lambda_1 = 2, \ \nu_1 = 1, \ g_1 = 1, \ \lambda_2 = 0, \ \nu_2 = 1, \ g_2 = 1$$

$$\implies \nu_i = g_i \text{ diagonalizzabile } \checkmark$$

3.
$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
, $\nu_1 = 2$, $g_1 = 1 \implies \nu_1 > g_1$ non diagonalizzabile! \times

$$F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$\nu_i = \text{molteplicità algebrica } \lambda_i$$

$$g_i = \mathsf{molteplicita}$$
 geometrica λ_i

$$F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$ $u_i = ext{molteplicità algebrica } \lambda_i$
 $g_i = ext{molteplicità geometrica } \lambda_i$

Caso 1:
$$\nu_i = g_i$$
 per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste i tale che
$$\nu_i > g_i \implies F$$
 non diagonalizzabile \times

$$F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$ $u_i = \mathsf{molteplicit}$ algebrica λ_i $g_i = \mathsf{molteplicit}$ geometrica λ_i

Caso 1:
$$\nu_i = g_i$$
 per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste
$$i$$
 tale che $\nu_i > g_i \implies F$ non diagonalizzabile \times

possiamo trasformare la matrice in una forma a blocchi diagonali o "quasi" diagonali (forma di Jordan)

$$F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$ $u_i = \mathsf{molteplicit}$ algebrica λ_i $g_i = \mathsf{molteplicit}$ geometrica λ_i

Caso 1:
$$\nu_i = g_i$$
 per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste i tale che
$$\nu_i > g_i \implies F$$
 non diagonalizzabile \times

possiamo trasformare la matrice in una forma a blocchi diagonali o "quasi" diagonali (forma di Jordan)

blocchi diagonali o quasi uiagonali (iorina di socali, ...e i blocchi "quasi" diagonali hanno una forma ben nota !! $\begin{bmatrix} f & 1 & \cdots & 0 \\ 0 & f & \ddots & \vdots \\ \vdots & \ddots & f & 1 \\ 0 & f & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & f & \vdots & \vdots \\ 0 & f$

$$\begin{bmatrix} f & 1 & \cdots & 0 \\ 0 & f & \ddots & \vdots \\ \vdots & \ddots & f & 1 \\ 0 & \cdots & 0 & f \end{bmatrix}$$

Forma di Jordan: teorema

Teorema: Siano $\{\lambda_i\}_{i=1}^k$ gli autovalori di $F \in \mathbb{R}^{n \times n}$. Esiste una $T \in \mathbb{R}^{n \times n}$ tale che

$$F_{J} \triangleq T^{-1}FT = \begin{bmatrix} J_{\lambda_{1}} & 0 & \cdots & 0 \\ \hline 0 & J_{\lambda_{2}} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k}} \end{bmatrix}, J_{\lambda_{i}} = \begin{bmatrix} J_{\lambda_{i},1} & 0 & \cdots & 0 \\ \hline 0 & J_{\lambda_{i},2} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{i},g_{i}} \end{bmatrix}, J_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}}.$$

Inoltre F_J è unica a meno di permutazioni dei blocchi $\{J_{\lambda_i}\}$ e miniblocchi $\{J_{\lambda_i,i}\}$.

 ${\it F_J}=$ forma canonica di Jordan di ${\it F}$

Forma di Jordan: osservazioni

- 1. Esiste una procedura algoritmica per il calcolo della trasformazione \mathcal{T} (cf. $\S 1.5\text{-}1.6$ del testo di riferimento)
- **2.** dim. blocco J_{λ_i} associato a $\lambda_i =$ molteplicità algebrica ν_i
- **3.** # miniblocchi $\{J_{\lambda_i,j}\}$ associati a λ_i = molteplicità geometrica g_i
- **4.** In generale, per determinare F_J non è sufficiente conoscere gli autovalori $\{\lambda_i\}$ e i valori di $\{\nu_i\}$, $\{g_i\}$, ma bisogna anche conoscere i valori di $\{r_{ij}\}$!
- **5.** Se $g_i = 1 \ \forall i$ o se n = 1, 2, 3 si può ricavare F_J calcolando solo $\{\lambda_i\}$, $\{\nu_i\}$, $\{g_i\}$!

Forma di Jordan: esempi

$$\mathbf{1.} \ F = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

2.
$$F = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, $\alpha = 0, 1$

Forma di Jordan: esempi

1.
$$F = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \implies \lambda_1 = 2, \ \nu_1 = 2, \ g_1 = 1 \\ \lambda_2 = 1, \ \nu_1 = 1, \ g_1 = 1 \implies F_J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\textbf{MatLab}: \quad \textbf{jordom} (\textbf{F}) = \begin{bmatrix} \textbf{T}, \textbf{D} \end{bmatrix}$$

$$\textbf{MatLab}: \quad \textbf{jordom} (\textbf{F}) = \begin{bmatrix} \textbf{T}, \textbf{D} \end{bmatrix}$$

$$\textbf{Combio} \quad \textbf{forma}$$

$$\textbf{Combio} \quad \textbf{forma}$$

$$\textbf{Ai} = 1, \ \nu_1 = 4, \ g_1 = 2$$

$$\textbf{Ai} \text{ base} \quad \textbf{Ai} \text{ Jordem}$$

$$\Rightarrow F_J = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \alpha = 0$$

$$\textbf{P}_J = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \alpha = 1$$

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Richiami di algebra lineare e forma di Jordan

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

⊠ baggio@dei.unipd.it

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \implies F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

Lez. 5: Richlami di algebra lineare e forma di Jordan 8 Marzo 2021

F= [01] F diagonalizzabile?

Calcolo autovalori:

$$\Delta_{F}(\lambda) = \det(\lambda I - F) = \det\begin{bmatrix}\lambda - 1\\1 \lambda\end{bmatrix} = \lambda^{2} + 1$$
 $\lambda_{1,2} = \pm i$

Calcola autorettori:

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$
 autoveltore relative a $\lambda_1 = +i$:

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$
 autovellore relativo a $\lambda_z = -i$:
$$V = \begin{bmatrix} d \\ -id \end{bmatrix} \times \in \mathbb{R}$$

Matrice di cambio base:
$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
 $T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$

 $F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, calcolare e^{Ft} tramite diagonalizzazione di F.

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
, $F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$

$$e^{Ft} = Te^{F_D t} T^{-1} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

G. Baggio Lez. 5: Richiami di algebra lineare e forma di Jordan 8 Mar

	~	17)	٠,	<i>,</i> ¬		- ي ، م	,
F=	0	٦	T:	1	1	F,=	1 0	
	-1	0	•	ji	- i	V	0 - i	

Inversa matrice 2x2:

$$\begin{bmatrix} a & b \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \end{bmatrix} \Rightarrow \tau^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{-1} = \frac{1}{-2i} \begin{bmatrix} -i & -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1 & -i \end{bmatrix}$$

$$e^{Ft} = e^{TF_0T^{-1}t} = Te^{F_0t}T^{-1} = 1 \begin{bmatrix} 1 & 1 \\ 2 & i - i \end{bmatrix} \begin{bmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{bmatrix} \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix}$$

$$\frac{\cos x = e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\frac{2}{2i}\left(-e^{it}+e^{-it}\right) \qquad \frac{e^{it}+e^{-it}}{2}$$

Esempi

1.
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2. $F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

3. $F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

G. Baggio Lee. S. Richtami di algebra lineare e forma di Juntian B Marco 2023.

1)
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\lambda_1 = 1$ $\nu_1 = 2 = g_1$ diagonalizzabile

2)
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 $\Delta_{F}(\lambda) = \det(\lambda I - F) = \begin{bmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{bmatrix}$
 $\lambda_{1} = 0$ $\nu_{1} = 1 = g_{1}$ $\Rightarrow \text{diagonalizabile}$ $\lambda_{2} = 2$ $\nu_{2} = 1 = g_{2}$ $\Rightarrow \text{diagonalizabile}$ $\lambda_{3} = 2$ $\lambda_{4} = 3$

3)
$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $\lambda_1 = 1$ $\nu_1 = 2$

$$g_1 = 2 - \text{rank} \left(\lambda_1 I - F \right) = 2 - \text{rank} \left[\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array} \right] = 2 - 1 = 1$$

$$V_1 > g_1 \Rightarrow \text{non diagonalizzabile} \qquad 1$$

2.
$$F = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \ \alpha = 0, 1$$

1)
$$F = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} F_{11} & 0 \\ 0 & F_{22} \end{bmatrix}$$

$$\lambda(F) = \lambda(F_n) \cup \lambda(F_{22})$$

$$\Delta_{\mathsf{F}_{\mathsf{m}}}(\lambda) = \det\left(\lambda\,\mathsf{I} - \mathsf{F}_{\mathsf{m}}\right) = \det\left[\begin{matrix}\lambda-3\\ -1\end{matrix}\right] = (\lambda-3)(\lambda-1) + 1$$

$$= \lambda^2 - 4\lambda + 4$$

Autovalori di F: 2=2 v1=3

$$g_1 = 3 - rank(\lambda_1 I - F) = 3 - rank\begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 2$$

Fy
$$\rightarrow$$
 $g_1=2$ minible cehi relativi a $\lambda_1=2$ \rightarrow 1 minible ceo 2×2 \rightarrow 1 minible ceo 1×1

$$F_{J} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\lambda_1 = 1$$
 $\nu_1 = 4$

$$g_1 = 4 - remk(I-F) = 4 - remk(000-d) = 2$$

Fy -> g_=2 miniblocchi relativi a 2=1

2 miniblecchi 2x2

\$ 1 miniblecco 3x3

1 ministerco 1x1

$$F_{J} = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \lambda = 0 \\ \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} & \lambda = 1 \\ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & \lambda = 1 \end{cases}$$