

数字电子技术

数字逻辑电路 ----复习课

第一部分 知识点

一、 常用数制、码制及其转换

常用数制:十进制、二进制、八进制、十六进制。

码制: 8421BCD码; 余3码

二、常用逻辑关系(表达式、符号、真值表)

与、或、非、与非、或非、异或、同或。

三、逻辑函数表示方法及其转换

真值表、逻辑表达式、逻辑图、卡诺图、 波形图

几种计数进制数

BCD码

十进制	二进制	八进制	十六进
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

十进制数	8421码	余三码		
0	0000	0011		
1	0001	0100		
2	0010	0101		
3	0011	0110		
4	0100	0111		
5	0101	1000		
6	0110	1001		
7	0111	1010		
8	1000	1011		
9	1001	1100		

常 用 逻 辑 关 系

常用逻辑关系

常用逻辑关系

$A \longrightarrow Z$

$$B$$
 $=1$ Z

异或逻辑

$$Z = A\overline{B} + \overline{AB}$$
$$= A \oplus B$$

$$A - \begin{bmatrix} = 0 \\ B \end{bmatrix} - Z$$

同或逻辑

$$Z = A \odot B$$
$$= \overline{A \oplus B}$$
$$= \overline{A}\overline{B} + AB$$

四、逻辑代数的基本公式

1、基本公式

01 律	(1) $A \cdot 1 = A$ (3) $A \cdot 0 = 0$	(2) $A + 0 = A$ (4) $A + 1 = 1$
交换律	(5) A • B = B • A	(6) $A + B = B + A$
结合律	$(7) \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$	(8) $A + (B+C) = (A+B) + C$
分配律	$(9) A \cdot (B+C) = A \cdot B + A \cdot C$	(10) A+ (BC) = (A+B) (A+C)
互补律	$(11) A \cdot \overline{A} = 0$	$(12) A + \overline{A} = 1$
重叠律	(13) A • A = A	(14) A + A = A
反演律	$(15) \ \overline{AB} = \overline{A} + \overline{B}$	$(16) \ \overline{A+B} = \overline{A} \cdot \overline{B}$
还原律	$(17) \stackrel{=}{A} = A$	

2、化简常用公式

18	常用公式							
- 77	\bigcirc A + AB = A							
-7.	3 $A + \overline{A}B = A + B$							
(4)								
4	$4) AB + \overline{A}C + BC = AB + \overline{A}C$							
(4)	推论:							
	$AB + \overline{A}C + BCDE = AB + \overline{A}C$							

摩根定律:

$$A \cdot B = A + B$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

五、逻辑代数的基本规则和定理

1、对偶规则

对于任意一个逻辑表达式 Y,作对偶变换 "·" \longleftrightarrow "+" "0" \longleftrightarrow "1"后,得到新的表达式Y', Y'与Y互为对偶式。

2、反演规则

对于原函数Y的逻辑表达式 ,作反演变换 "·" \longleftrightarrow "+" "0" \longleftrightarrow "1" , 原变量 \longleftrightarrow 反变量 后,得到Y的非(反)函数 \overline{Y} 。

注意: ①运用对偶规则、反演规则时,应保持原函数的运算顺序。

运算顺序: 先括号、再相与, 最后或, 必要时可加或减括号。

②运用反演规则时不在一个变量上的非号应保持不变。

六、最小项表达式

由若干个最小项相或构成的逻辑表示为最小项表达式,也 称为标准与或表达式。如:

$$Y(A,B,C) = \overline{ABC} + AB\overline{C} + ABC$$

或:
$$Y(A,B,C) = m_3 + m_6 + m_7 = \sum_{m} (3,6,7)$$

七、逻辑函数的代数化简法

1、公式化简:利用常用公式化简逻辑函数。

$$\overrightarrow{AB} + \overrightarrow{AB} = B$$
 $\overrightarrow{A} + \overrightarrow{AB} = A$ $\overrightarrow{A} + \overrightarrow{AB} = A + B$
 $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AC}$ $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{BCDE} = \overrightarrow{AB} + \overrightarrow{AC}$

2、卡诺图化简:利用卡诺图化简逻辑函数。 (含具有无关项逻辑函数化简)

八、组合逻辑电路

- 1、组合逻辑电路:任意时刻的输出仅仅取决于当时的输入信号,而与电路原来的状态无关,由门电路组合而成。
 - 2、组合逻辑电路的分析

给定:组合逻辑电路图;

待求:组合逻辑电路的功能。

分析步骤:

- (1)由逻辑图写表达式;
- (2) 化简表达式;
- (3)列真值表;
- (4) 描述逻辑功能。

3、组合逻辑电路的设计

给定:实际逻辑问题;

待求: 满足逻辑功能的最简逻辑电路。

设计步骤: (适用于SSI)

- (1)分析设计要求,设置输入输出变量并逻辑赋值;
- (2)列真值表;
- (3)写出逻辑表达式,并化简;
- (4) 画逻辑电路图。

4、组合逻辑电路中要求掌握的集成电路

(1) 3线-8线译码器74HC138:

符号、功能、译码输入和输出关系式 实现逻辑函数的方法。

138译码输出逻辑功能表达式
$$\overline{Y_0} = \overline{(\overline{A_2}\overline{A_1}\overline{A_0})} = \overline{m_0} \qquad \overline{Y_1} = \overline{(\overline{A_2}\overline{A_1}A_0)} = \overline{m_1} \qquad \overline{Y_2} = \overline{(\overline{A_2}A_1\overline{A_0})} = \overline{m_2} \qquad \blacksquare \blacksquare$$

 $Y_7 = (A_2 A_1 A_0) = m_7$ 每个输出对应于输入变量的一个最小项取反。

(2) 8线-3线优先编码器CD4532 (P164-165) 符号、功能、输入和输出的关系

当输入为 $I_7 I_6 I_5 I_4 I_3 I_2 I_1 I_0 = 01110001$ 其输出为 $Y_2 Y_1 Y_0 = 110$

74138

Y4

Y5

Y6 Y7

(I₇的优先级别最高, I₀优先级别最低)

(3) 四选一数据选择器

符号、功能、表达式、实现逻辑函数的方法。

$$Y = (\overline{S_1} \overline{S_0}) D_0 + (\overline{S_1} S_0) D_1 + (S_1 \overline{S_0}) D_2 + (S_1 S_0) D_3 = \sum_{i=0}^{3} m_i D_i$$

(4) 八选一数据选择器 74HC151

符号、功能、表达式、实现逻辑函数的方法。

$$Y = (\overline{S_2} \overline{S_1} \overline{S_0}) D_0 + (\overline{S_2} \overline{S_1} S_0) D_1 + (\overline{S_2} S_1 \overline{S_0}) D_2 + (\overline{S_2} S_1 S_0) D_3$$

$$+ (S_2 \overline{S_1} \overline{S_0}) D_4 + (S_2 \overline{S_1} S_0) D_5 + (S_2 S_1 \overline{S_0}) D_6 + (S_2 S_1 S_0) D_7$$

$$= \sum_{i=0}^{7} m_i D_i$$

九、触发器

触发器按逻辑功能分类可分为: RS触发器、D触发器、 JK类触发器、T触发器、T'触发器五种类型。

1、D 触发器

在时钟脉冲CP作用下,根据输入信号D的不同,具有置"1"、置"0" 功能的触发器。

逻辑符号

特性方程
$$Q^{n+1} = D$$
 (CP \uparrow)

$$\boldsymbol{Q}^{n+1} = \boldsymbol{D} \ (\mathbf{CP})$$

2、JK触发器

在CP作用下,根据信号JK的不同具有置0、置1、保持和翻转的功能。

逻辑符号

特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n \text{ (CP)} \qquad Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n \text{ (CP)}$$

3、T触发器

在CP作用下,根据信号T的不同具有保持和翻转的功能。

逻辑符号

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

$$= T\overline{Q^n} + \overline{T}Q^n = T \oplus Q^n \qquad (CP^{\uparrow})$$

特性方程

$$Q^{n+1} = T \oplus Q^n$$

$$(CP\uparrow)$$

十、时序逻辑电路

1、时序逻辑电路的特点

时序逻辑电路在任何时刻的输出不仅取决于该时刻的输入,而 且还取决于电路的原来状态,具有记忆功能。

存储电路(触发器)必不可少。 组合逻辑电路(门电路)可选。

2、时序逻辑电路的分析

给定: 时序逻辑电路图; 待求: 时序逻辑电路的功能。

分析步骤:

3、同步时序逻辑电路的设计

给定:设计要求; 待求:满足要求的时序逻辑电路设计步骤:

- (1) 根据设计要求作出原始状态图(或状态表)。
- (2) 状态化简。消去重复的状态(等价状态)。
- (3) 状态分配,又称状态编码。即把一组适当的二进制代码分配给简化状态图(或表)中各个状态。
 - (4) 选择触发器的类型和数目。
 - (5) 求状态方程和输出方程。
 - (6) 求驱动方程。
 - (7) 根据输出方程和驱动方程画出逻辑图。
 - (8) 检查电路能否自启动。

异步清0端

74161、74160功能表P324

清零	置数	使能		时钟	置数输入				输出	
CR	PE	CET	CEP	CP	D 3	D 2	D 1	D 0	Q_3 Q_2	Q_1 Q_0
0	×	×	×	×	×	×	×	×	0 0	0 0
1	0	×	×		D 3	D2	D 1	$D\theta$	D3 D2	D1 D0
1	1	1	1	†	×	×	×	×	计	数
1	1	0	×	×	×	×	×	×	保	持
1	1	×	0	×	×	×	×	×	保持	RC0=0

- (2) 根据74160、74161组成的电路会分析构成几进制计数器、摸数为多少?
- (3) 会用一片或两片74160、74161构成任意进制计数器。

构成任意进制计数器方法和步骤:

反馈清零法 利用清零端 层 接成任意进制计数器。

①写模数M的代码

74161写M的二进制代码: 74160写M的8421BCD码

②写 \overline{CR} 的表达式

CR 的表达式为代码中所有为1所对应的Q的与非表达式。

③画逻辑图 根据 \overline{CR} 表达式画连线图

反馈置数法 利用置数端 \overline{PE} $\overline{(LD)}$ 构成任意进制计器。

- ①写摸数M-1的代码 74161写M-1的二进制代码: 74160写M-1的8421BCD码
- ②写 \overline{PE} 的表达式 \overline{PE} 的表达式为代码中所有为1所对应的Q的与非表达式。
- ③ 画逻辑图 根据 PE的表达式画连线图

十一、 半导体存储器 ; 数模、模数转换

- 1、半导体存储器的功能:用以存储二进制信息的器件。
- 2、半导体存储器分类:只读存储器(ROM)和随机存取存储器(RAM)两类。

ROM:存储器内容只能读出,不能随时写入。存储的数据不会因断电而消失。

RAM:存储器中的数据既能读出,又能随时写入新的数据。 一旦掉电,所存的数据全部丢失。

- 3、会计算半导体的容量、地址线、数据线
- 4、D/A: 数模转换器,将数字信号转换成模拟信号的电路。
- 5、A/D:模数转换器,将模拟信号转换成模拟信号的电路。