

New Product

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistor (PNP)

TO-226AA (TO-92)

Features

- PNP Silicon Epitaxial Planar Transistor for switching and amplifier applications.
- As complementary type, the NPN transistor MPSA06 is recommended.
- On special request, this transistor is also manufactured in the pin configuration TO-18.
- This transistor is also available in the SOT-23 case with the type designation MMBTA56.

Mechanical Data

Case: TO-92 Plastic Package

Weight: approx. 0.18g

Packaging Codes/Options:

E6/Bulk – 5K per container, 20K/box E7/4K per Ammo mag., 20K/box

Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter	Symbol	Value	Unit	
Collector-Base Voltage	-Vсво	80	V	
Collector-Emitter Voltage	-Vceo	80	V	
Emitter-Base Voltage	-VEBO	4.0	V	
Collector Current	-Ic	500	mA	
Power Dissipation $T_A = 25^{\circ}C$ $T_C = 25^{\circ}C$	P _{tot}	625 1.5	mW W	
Thermal Resistance Junction to Ambient Air	R _⊖ JA	200 ⁽¹⁾	°C/W	
Junction Temperature	Tj	150	°C	
Storage Temperature Range	Ts	-55 to +150	°C	

Note

(1) Valid provided that leads are kept at ambient temperature.

MPSA56

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DC Current Gain	hFE	-V _{CE} = 1 V, -I _C = 10 mA -V _{CE} = 1 V, -I _C = 100 mA	100 100	_ _	_	_
Collector-Emitter Breakdown Voltage	-V _{(BR)CEO}	-I _C = 1 mA, I _B = 0 mA	80	_	_	V
Emitter-Base Breakdown Voltage	-V(BR)EBO	-IE = 100 μA, IC = 0	4.0	_	_	V
Collector Saturation Voltage	-VcEsat	-I _C = 100 mA, −I _B = 10 mA	_	_	0.25	V
Base-Emitter ON Voltage	-V _{BE(on)}	$-I_C = 10 \text{ mA}, -I_B = 1 \text{ mA}$	_	_	1.2	V
Collector-Emitter Cut-off Current	-lces	-VCE = 60 V, -IB = 0	_	_	100	nA
Collector-Base Cut-off Current	-Ісво	-Vcb = 80 V, IE = 0	_	_	100	nA
Gain-Bandwidth Product	f⊤	-V _{CE} = 1 V, -I _C = 100 mA f = 100 MHz	50	_	_	MHz