LMV341, LMV342, LMV344 RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS447C - SEPTEMBER 2004 - REVISED JANUARY 2005

- 2.7-V and 5-V Performance
- Rail-to-Rail Output Swing
- Input Bias Current . . . 1 pA (Typ)
- Input Offset Voltage . . . 0.25 mV (Typ)
- Low Supply Current . . . 100 μA (Typ)
- Low Shutdown Current . . . 45 pA (Typ)
- Gain Bandwidth of 1 MHz (Typ)
- Slew Rate . . . 1 V/μs (Typ)
- Turn-On Time From Shutdown . . . 5 μs Typ
- Input Referred Voltage Noise (at 10 kHz) ... 20 nV/√Hz

LMV341 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE (TOP VIEW)

- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
- Applications
 - Cordless/Cellular Phones
 - Consumer Electronics (Laptops, PDAs)
 - Audio Pre-Amps for Voice
 - Portable/Battery-Powered Electronic Equipment
 - Supply-Current Monitoring
 - Battery Monitoring
 - Buffers
 - Filters
 - Drivers

LMV342...D (SOIC), DDU (VSSOP), OR DGK (MSOP) PACKAGE (TOP VIEW)

LMV344 . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW)

description/ordering information

The LMV341, LMV342, LMV344 devices are single, dual, and quad CMOS operational amplifiers, respectively, with low voltage, low power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input bias current of 1 pA (typ) and an offset voltage of 0.25 mV (typ). The single supply amplifier is designed specifically for low-voltage (2.7 V to 5 V) operation, with a wide common-mode input voltage range that typically extends from -0.2 V to 0.8 V from the positive supply rail. The LMV341 (single) also offers a shutdown pin that can be used to disable the device. In shutdown mode, the supply current is reduced to 33 nA (typical). Additional features of the family are a $20 \text{ nV}/\sqrt{\text{Hz}}$ voltage noise at 10 kHz, 1-MHz unity-gain bandwidth, 1-V/ μ s slew rate, and $100-\mu$ A current consumption per channel.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS447C - SEPTEMBER 2004 - REVISED JANUARY 2005

description/ordering information (continued)

Offered in both the SOT-23 and smaller SC-70 packages, the LMV341 is suitable for the most space-constraint applications. The LMV342 dual device is offered in the standard SOIC and MSOP packages. Additional space saving is achieved with the ultra-small VSSOP (DDU) package that occupies \sim 58% less board space than the MSOP package. An extended industrial temperature range from -40° C to 125°C makes these devices suitable in a wide variety of commercial and industrial environments.

ORDERING INFORMATION

TA		PACKAGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING‡	
		00T 00 (DD) ()	Reel of 3000	LMV341IDBVR	RC9_
	0'	SOT-23 (DBV)	Reel of 250	LMV341IDBVT	PREVIEW
	Single	00 70 (DOV)	Reel of 3000	LMV341IDCKR	R4_
		SC-70 (DCK)	Reel of 250	LMV341IDCKT	PREVIEW
	Dual	SOIC (D) MSOP/VSSOP (DGK)	Tube of 75	LMV342ID	PREVIEW
			Reel of 2500	LMV342IDR	I IVE VIEVV
–40°C to 125°C			Reel of 2500	LMV342IDGKR	PREVIEW
			Reel of 250	LMV342IDGKTT	PREVIEW
		VSSOP (DDU)	Reel of 200	LMV342IDDUR	PREVIEW
		SOIC (D)	Tube of 50	LMV344ID	DDE\/!E\M
	Quad		Reel of 2500	LMV344IDR	PREVIEW
	Quau	TSSOP (PW)	Tube of 90	LMV344IPW	PREVIEW
		1330F (FW)	Reel of 2000	LMV344IPWR	FKEVIEVV

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

application circuit: sample and hold circuit

[‡]The actual top-side marking has one additional character that designates the assembly/test site.

LMV341, LMV342, LMV344 RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS447C - SEPTEMBER 2004 - REVISED JANUARY 2005

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Differential input voltage, V _{ID} (see Note 2) Input voltage, V _I (either input)	5.5 V
, , ,	PW package
and any sig	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values (except differential voltages and V₊ specified for the measurement of I_{OS}) are with respect to the network GND.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Selecting the maximum of 150°C can affect reliability.
 - 4. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 5)

		MIN	MAX	UNIT
٧+	Supply voltage (single-supply operation)	2.5	5.5	V
TA	Operating free-air temperature	-40	125	°C

NOTE 5: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ESD protection

TEST CONDITIONS	TYP	UNIT
Human-Body Model	2000	V
Machine Model	200	V

LMV341, LMV342, LMV344 RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS447C - SEPTEMBER 2004 - REVISED JANUARY 2005

electrical characteristics, V₊ = 2.7 V, GND = 0, V_{IC} = V_O = V₊/2, R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		TA	MIN	TYP	MAX	UNIT				
\/	Innut offeet voltage			25°C		0.25	4	m)/				
VIO	Input offset voltage			Full range			4.5	mV				
$\alpha_{V_{IO}}$	Average temperature coefficient of input offset voltage			Full range		1.7		μV/°C				
				25°C		1	120					
l _{IB}	Input bias current			-40°C to 85°C			250	рА				
				-40°C to 125°C			1	nA				
IIO	Input offset current			25°C		6.6		fA				
CMRR	Common mode rejection ratio	$0 \le V_{ICR} \le 1.7 \text{ V}$		25°C	56	80		dB				
CIVIKK	Common-mode rejection ratio	$0 \le V_{ICR} \le 1.6 \text{ V}$		Full range	50			uБ				
kovp	Supply-voltage rejection ratio	2.7 V ≤ V ₊ ≤ 5 V		25°C	65	82		dB				
ksvr	Supply-voltage rejection ratio	2.7 V S V + S S V		Full range	60			uБ				
VICR	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	0	-0.2 to 1.9	1.7	V				
		D. 4010 to 4.05 V		25°C	78	113						
Δ	Large-signal voltage gain	$R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{ V}$		Full range	70			40				
A _V	(see Note 6)	D. 01:0 to 4.25 V		25°C	72	2 103	dB					
		$R_L = 2 k\Omega$ to 1.35 V		Full range	64							
			Low level	25°C		24	60					
		R_L = 2 kΩ to 1.35 V	LOW IEVEI	Full range			95					
			High level	25°C		26	60					
\/ -	Output swing							High level	Full range			95
VO	(delta from supply rails)	R_L = 10 kΩ to 1.35 V	I avvilavjal	25°C		5	30	mV				
			Low level	Full range			40					
			High level	25°C		5.3	30					
				Full range			40					
1	Cumply ourrent (nor shannel)			25°C		100	170					
Icc	Supply current (per channel)			Full range			230	μΑ				
		Sourcing	LMV341, LMV342		20	32						
los	Output short-circuit current		LMV344	25°C	18	24		mA				
		Sinking			15	24						
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, Note 7		25°C		1		V/μs				
GBM	Unity-gain bandwidth	$R_L = 100 \text{ k}\Omega, C_L = 200 \text{ pF}$		25°C		1		MHz				
Φ_{m}	Phase margin	$R_L = 100 \text{ k}\Omega$		25°C		72		deg				
Gm	Gain margin	$R_L = 100 \text{ k}\Omega$		25°C		20		dB				
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		40		nV/√Hz				
In	Equivalent input noise current	f = 1 kHz		25°C		0.001		pA/√Hz				
THD	Total harmonic distortion	f = 1 kHz, A _V = 1, R _L = V _I = 1 V _{PP}	600 Ω,	25°C		0.017		%				

[†] Typical values represent the most likely parametric norm.

NOTES: 6. GND + $0.2 \text{ V} \le \text{V}_O \le \text{V}_{CC+} - 0.2 \text{ V}$ 7. Connected as voltage follower with 2-V_{PP} step input. Number specified is the slower of the positive and negative slew rates.

LMV341, LMV342, LMV344 RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS447C – SEPTEMBER 2004 – REVISED JANUARY 2005

shutdown characteristics, V₊ = 2.7 V, GND = 0, V_{IC} = V_{O} = $V_{+}/2$, R_{L} > 1 M Ω (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
	Complex suggestion about decomposed a	V _{SD} = 0 V	25°C		0.045	1	μΑ
ICC(SHDN)	Supply current in shutdown mode	V _{SD} = 0 V	Full range			1.5	μΑ
t(on)	Amplifier turn-on time		25°C		5		μs
V	Chutdour nin valtage ronge	ON mode	25°C		1.7 to 2.7	2.4 to 2.7	V
V _{SD}	Shutdown pin voltage range	Shutdown mode	25 0		0 to 1	0 to 0.8	V

LMV341, LMV342, LMV344 RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN

SLOS447C - SEPTEMBER 2004 - REVISED JANUARY 2005

electrical characteristics, V₊ = 5 V, GND = 0, V_{IC} = V_O = V₊/2, R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	TA	MIN	TYP†	MAX	UNIT
V: -	Input offset voltege			25°C		0.25	4	\/
VIO	Input offset voltage			Full range			4.5	mV
$\alpha_{V_{IO}}$	Average temperature coefficient of input offset voltage			Full range		1.9		μV/°C
				25°C		1	200	pА
I _{IB}	Input bias current			–40°C to 85°C			375	рΑ
				-40°C to 125°C			1	nA
ΙΙΟ	Input offset current			25°C		6.6		fA
CMRR	Common-mode rejection ratio	$0 \le V_{ICR} \le 4 V$		25°C	56	86		dB
CIVIKK	Common-mode rejection ratio	$0 \le V_{ICR} \le 3.9 V$		Full range	50			uБ
lea	Cumply voltage rejection ratio	271/21/251/		25°C	65	82		4D
ksvr	Supply-voltage rejection ratio	2.7 V ≤ V ₊ ≤ 5 V		Full range	60			dB
VICR	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	0	-0.2 to 4.2	4	V
		D 40101-051/		25°C	78	116		
	Large-signal voltage gain	$R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{ V}$		Full range	70			
Ay	(see Note 6)	B 0101 0511		25°C	72	107		dB
		$R_L = 2 k\Omega$ to 2.5 V		Full range	64			
				25°C		32	60	
		$R_L = 2 k\Omega$ to 2.5 V	Low level	Full range			95	m\/
				25°C		34	60	
.,	Output swing		High level	Full range			95	
VO	(delta from supply rails)		1 1 1	25°C		7	30	mV
		R_L = 10 kΩ to 2.5 V	Low level High level	Full range			40	
				25°C		7	30	
				Full range			40	
	Complex company (non-phases)			25°C		107	200	
Icc	Supply current (per channel)			Full range			260	μΑ
		Sourcing	LMV341, LMV342		85	113		_
los	Output short-circuit current		LMV344	25°C	PR	EVIEW		mA
		Sinking			50	75		
SR	Slew rate	R_L = 10 kΩ, Note 7		25°C		1		V/μs
GBM	Unity-gain bandwidth	R _L = 10 kΩ, C _L = 200 pF		25°C		1		MHz
Φ_{m}	Phase margin	R _L = 100 kΩ		25°C		70		deg
Gm	Gain margin	R _L = 100 kΩ		25°C		20		dB
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		39		nV/√Hz
In	Equivalent input noise current	f = 1 kHz		25°C		0.001		pA/√Hz
THD	Total harmonic distortion	f = 1 kHz, A _V = 1, R _L V _I = 1 V _{PP}	= 600 Ω,	25°C		0.012		%

† Typical values represent the most likely parametric norm.

NOTES: 6. GND + $0.2 \text{ V} \le \text{V}_{\text{O}} \le \text{V}_{\text{CC+}} - 0.2 \text{ V}$ 7. Connected as voltage follower with 2-V_{PP} step input. Number specified is the slower of the positive and negative slew rates.

LMV341, LMV342, LMV344 RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS447C – SEPTEMBER 2004 – REVISED JANUARY 2005

shutdown characteristics, V₊ = 5 V, GND = 0, V_{IC} = V_O = $V_+/2$, R_L > 1 M Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
	Complex suggestion about decomposed a	25°C			0.033	1	
ICC(SHDN)	Supply current in shutdown mode	$V_{SD} = 0 V$	Full range			1.5	μΑ
t(on)	Amplifier turn-on time		25°C		5		μs
V	Chutdaya nia yakana maara	ON mode	25°C		3.1 to 5	4.5 to 5	V
V _{SD}	Shutdown pin voltage range	Shutdown mode	25 0		0 to 1	0 to 0.8	٧

OUTPUT VOLTAGE SWING

OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION + NOISE

TOTAL HARMONIC DISTORTION + NOISE

TEXAS INSTRUMENTS

FREQUENCY RESPONSE

Figure 21

FREQUENCY RESPONSE

Figure 22

FREQUENCY RESPONSE

Figure 31

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 32

Figure 35

DBV (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-203

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.