

Igualdade de matrizes

Desinição: Duas matrizes são iguais se tiverem o mes mo tamanho e suas entradas são iguais.

Ex: Determine or valory de x e y, para que as ma trizes A e B sejam iguais.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & x+1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & y-2 \\ 3 & 2 & 2 \end{bmatrix}$

$$y+1=2 \Rightarrow x=2-1 \Rightarrow x=1$$

 $y-2=0 \Rightarrow y=2$

Soma e Subtração de matrites

Definição: Se A=[aij] e 8=[bij] são matrizes mxn, então a soma de A e B é uma matriz C=[cij], mxn, tal que:

cij = aij + bij (1 ≤ i ≤ m, 1 ≤ j ≤ n) e a diferença A-B é uma matriz D=[dij], mxn, fal que:

dij = aij - bij (1 s i s m, 1 s j s n).

Ex; Sejam as matrites
$$A = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 & 2 & 0 \end{bmatrix}$, $\begin{bmatrix} 3 & -1 & 2 \end{bmatrix}$

$$A+B = \begin{bmatrix} 2+3 & 1+2 & 0+0 \\ 3+0 & -1+1 & 2+2 \end{bmatrix} = \begin{bmatrix} 5 & 3 & 0 \\ 3 & 0 & 4 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 2-3 & 1-2 & 0-0 \\ 3-0 & -1-1 & 2-2 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 0 \\ 3 & -2 & 0 \end{bmatrix}$$

tilibra

3

multiplicação por escalar

Definicas: Se A=[aij] e' uma matriz m x n e c é um número real, entavo a multiplicação de A pelo escalar c, cA, é uma matriz B=[bij], m x n, talque: bij=caij (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Ex1: Sejan $A = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 & 2 \end{bmatrix}$ e c = 2. Entao:

 $2A = \begin{bmatrix} 2.2 & 2.1 & 2.0 \\ 2.3 & 2(-1) & 2(-2) \end{bmatrix} = \begin{bmatrix} 4 & 2 & 0 \\ 6 & -2 & -4 \end{bmatrix}$

 $A-B = A + (-1)B = \begin{bmatrix} 2 & 1 & 0 \\ 3 & -1 & -2 \end{bmatrix} + \begin{bmatrix} 0 & 1 & -2 \\ 2 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 2 & -2 \\ 1 & -1 & -5 \end{bmatrix}$

Ex2: 0 vetor p = [30. 15.5 9.2] representa os precos atuais de três produtos de uma loja. O gerente quer saber qual e o vetor de desconto d, se todos os produtos forem vendidos com 20% de desconto.

 $d = \frac{20}{100}, p = 0.2 [30.15.5 9.2] - [6 3.1 1.84]$

abral e o vetor de preços q com os descontos em butidos?

 $q = p - d = [30 \ 15.5 \ 9.2] - [6 \ 3.1 \ 1.84]$

 $q = [30-6 \quad 15.5-3.1 \quad 9.2-1.84] = [24 \quad 12.4 \quad 7.36]$

tilibra

		4	
	1	$\overline{}$	
/			

		100		
Combina cão	1	/	/ *	
las bush	1. 0	10	man ta	70
Comming cao	livear	40	mar	Tay
The second secon		1.4		

Definição: Se A1, A2,..., An e B são matrizes de mes mo tamanho, e se c1, c2, ..., Cr são exalares, entos uma expressão da forma B=c1A1+c2A2+...+crAr

é denominada combinação linear de A1, A2, ..., An, com expicientes C1, C2, ..., Cr.

Ex: Sijam $A_1 = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$, le $C_1 = 2$, $C_2 = 3$. Entrope a combinação linear $B = C_1 A_1 + C_2 A_2$, l'ada por:

 $B = 2 \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} + 3 \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2.2 & 2.3 \\ 2.1 & 2.2 \end{bmatrix} + \begin{bmatrix} 3.0 & 3.1 \\ 3.2 & 3.1 \end{bmatrix}$

 $= \begin{bmatrix} 4 & 6 \\ 2 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 9 \\ 8 & 7 \end{bmatrix}$

Exercício: la laule a combinação linear B = A1-2A2. (A corgo do aluno)

Multiplicação de matrizes

Definicas: Se A for uma matriz mxr e B uma matriz rxn, entas o produto AB e uma matriz Cmxn, cuja entrada cij é obtida multiplicando-se cada elemento do vetor linha i de A pelo elemento, correspondente no vetor columa j de B. Isto é:

Cij = Ziajk bij (15i 5m; 15j 6n)

K=1

Cij = linhaj (A). columaj (B) $(1 \le i \le m, 1 \le j \le n)$ Ex1: Se jam as matrizer $A = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} = B = \begin{bmatrix} 4 & 1 & 4 \end{bmatrix}$ a) Calcule $C = A \cdot B$. $\begin{bmatrix} 2 & 7 & 5 \end{bmatrix}$

 $A_{2\times3}$ $B_{3\times3}$ = $C_{2\times3}$ = C_{11} C_{12} C_{13} C_{21} C_{22} C_{23}

 $\begin{array}{c} \text{linha. columa} \\ \text{C11} = L_1(A) \cdot C_1(B) = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 \end{bmatrix} = 4 + 0 + 8 = 12 \\ \text{C12} = L_1(A) \cdot C_2(B) = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 - 1 & 7 \end{bmatrix} = 1 - 2 + 28 = 27 \\ \text{C13} = L_1(A) \cdot C_2(B) = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 & 5 \end{bmatrix} = 4 + 6 + 20 = 30 \\ \text{C21} = L_2(A) \cdot C_1(B) = \begin{bmatrix} 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 \end{bmatrix} = 8 + 0 + 0 = 8 \\ \text{C22} = L_2(A) \cdot C_2(B) = \begin{bmatrix} 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 1 - 1 & 7 \end{bmatrix} = 2 - 6 + 0 = -4 \\ \text{C23} = L_2(A) \cdot C_2(B) = \begin{bmatrix} 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 3 & 5 \end{bmatrix} = 8 + 18 + 0 = 26 \end{array}$

Lago: $c = \begin{bmatrix} 12 & 27 & 30 \\ 8 & -4 & 26 \end{bmatrix}$

b) Calcule D= B.A.

B_{3×3}. A_{2×3} = D so D não está definida (tilibra)

Forma matricial de um sistema hinear
Considere um sistema linear de mequações e n varia
(a11 x1 + a12 x2 + + a1n xn = b1
$\{a_{21}x_1 + a_{22}x_2 + + a_{2n}x_n = b_2\}$
$lam_1x_1 + am_2x_2 + \cdots + am_nx_n = bm$
Sua forma matricial é dada por:
an an an X1 bs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$a_{21} \ a_{22} \ a_{00} \ a_{2n} \ \begin{vmatrix} x_2 \\ \vdots \\ x_n \end{vmatrix} = b_2$
[anjane o amn] [xn] [bm]
Amxn Xnxx b -> vetor de termos Lp matriz (> vetor constantes)
La matriz Lyvetor constantes
de coeficientes de variaveis
Transporta de uma matriz
Definição: Seja A = an an an uma matriz m xn
ami anzamn
sua tramporta é uma matriz AT, nxm, dada jos:
T an all am 1
$A^{T} = \begin{array}{ccccccccccccccccccccccccccccccccccc$
an an amn
Isto é, as linhas de A se transformam nas coluna de AT. (tilibra
1. AT
al T

Ex:	Sejà	A =	2	3	0]	, sua	transporta	e Jada
	U		3	1	4		/	

por:

$$A^{T} = \begin{bmatrix} 2 & 3 \\ 3 & 1 \\ 0 & 4 \end{bmatrix}$$

