

KOD UCZNIA

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

I ETAP SZKOLNY

19 października 2017 r.

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka (wyjątek rysunki) ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	30	100 %
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

UWAGA:

W zadaniach o numerach od 1 do 3 spośród podanych propozycji odpowiedzi wybierz i zaznacz przekreślając krzyżykiem tę, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu.

Zadanie 1. (0 - 1 pkt.)

Na spoczywające ciało zaczyna działać niezrównoważona siła \vec{F} . Poniżej przedstawiono zależność wartości tej siły od czasu trwania ruchu ciała.

Pod działaniem tej siły ciało poruszało się ruchem

- A. jednostajnie opóźnionym.
- B. niejednostajnie opóźnionym.
- C. jednostajnie przyspieszonym.
- D. niejednostajnie przyspieszonym.

Zadanie 2. (0 - 1 pkt.)

W szkole uczniowie wykonali doświadczenie, w którym badali zależność przebytej drogi od czasu dla ruchu prostoliniowego bez prędkości początkowej pewnego ciała. Uczniowie wykonali pomiary, których wyniki przedstawione są w poniższej tabeli z dokładnością do 0,01 m.

Czas [s]	2	4	6
Droga [m]	0,33	1,33	3,00

Szybkość ciała, którego ruch był badany, pod koniec czwartej sekundy ruchu miała wartość

A.
$$0,33\frac{m}{s}$$
.

B.
$$0,67\frac{m}{s}$$
.

C.
$$1\frac{m}{s}$$
.

D.
$$2\frac{m}{s}$$
.

Zadanie 3. (0 – 1 pkt.)

Stojący samochód o masie 1200 kg został rozpędzony po poziomym podłożu do prędkości $10\frac{m}{s}$.

Silnik samochodu wykonał pracę 100 kJ. Praca sił oporu podczas rozpędzania była równa

- A. 100 kJ.
- B. 80 kJ.
- C. 60 kJ.
- D. 40 kJ.

Zadanie 4(0-3 pkt)

Podczas skoku bungee, czyli skoku na elastycznej linie z pewnej wysokości, można wyróżnić cztery istotne fazy ruchu skoczka:

I – spadek do osiągnięcia wysokości, na której lina jest wyprostowana ale nie naciągnięta,

II – dalszy spadek do najniższego punktu lotu gdzie lina jest maksymalnie rozciągnięta,

III – wznoszenie się do wysokości opisanej w pkt. I,

IV – dalsze wznoszenie się do chwili kiedy zacznie się ponownie spadanie.

Przybliżony przebieg ruchu skoczka w postaci zależności wysokości (h) nad podłożem od czasu (t), z zaznaczeniem wspomnianych obszarów, przedstawiony jest na rysunku poniżej.

Wybierz i **zaznacz** przekreślając krzyżykiem w tabelach a) i b) właściwe stwierdzenie oraz jego poprawne uzasadnienie dotyczące sytuacji przedstawionej w treści zadania.

a) Ruch skoczka w IV fazie jest

	Stwierdzenie		Uzasadnienie	
1.	ruchem jednostajnym,		A	działające na niego siły równoważą się.
2.	ruchem opóźnionym,	ponieważ	В	działa na niego siła sprężystości liny.
3.	ruchem przyspieszonym,		С	siłą działającą na skoczka jest siła ciężkości.

b) Energia mechaniczna skoczka podczas opisanych w treści zadania fazach skoku

	Stwierdzenie		Uzasadnienie	
1.	nie ulega zmianie,		A	nie ma wykonanej pracy przez siły oporu działające na skoczka i linę czyli nie ma strat energii.
2.	rośnie,	ponieważ	В	siły oporu działające na skoczka i linę wykonują pracę a zatem energia jest tracona.
3.	maleje,		С	ponieważ rośnie energia potencjalna sprężystości naciągniętej liny.

c) Podczas ruchu skoczka działa na niego siła grawitacyjnego przyciągania Ziemi (F_g) oraz siła sprężystości liny (F_s). Wypadkowa tych sił decyduje o przyspieszeniu z jakim porusza się skoczek. Wybierz i zaznacz przekreślając krzyżykiem, który z podanych niżej warunków dla wartości tych sił jest spełniony w chwili, w której szybkość **opadania** skoczka jest największa.

A.
$$F_g \neq 0$$
 i $F_s = 0$

B.
$$F_g > F_s$$

C.
$$F_g < F_s$$

D.
$$F_g = F_s$$

Zadanie 5. (0 - 2 pkt.)

Poniżej w tabeli podane są stwierdzenia dotyczące sił działających na pewne ciało oraz ruchu tego ciała.

Siły	Ruch
 Wartość siły wypadkowej jest równa 0. Wartość siły wypadkowej jest różna od 0. Siły działające na ciało równoważą się. Siły działające na ciało nie równoważą się. 	A. Ciało pozostaje w spoczynku. B. Ciało porusza się ruchem opóźnionym. C. Ciało porusza się ruchem przyspieszonym. D. Ciało porusza się ruchem jednostajnym prostoliniowym.

Wybierz spośród zapisanych w tabeli i zaznacz poniżej przekreślając krzyżykiem **wszystkie oznaczenia** stwierdzeń – cyfrowych (dla sił) i literowych (dla ruchu), które dotyczą:

a) I zasady dynamiki:

b) II zasady dynamiki:

Zadanie 6 (0 – 4 pkt)

Trasa rowerowej wycieczki składała się z dwóch etapów o jednakowej długości. Uczestnicy wycieczki przejechali I etap ze średnią szybkością 12 km/h a na etapie II średnia szybkość rowerzystów była równa 20 km/h . Oblicz średnią szybkość uczestników wycieczki na całej trasie.

Zadanie 7 (0 – 3 pkt)

Wyznacz graficznie i zaznacz na załączonym rysunku kierunek, w którym rybak powinien skierować łódkę, jeśli chce przepłynąć rzekę prostopadle do brzegu z przystani A do przystani B i względem brzegu rzeki ma zacząć poruszać się wzdłuż odcinka AB.

Przyjmując, że prędkość łódki względem wody $\overrightarrow{v_l}$ oraz prędkości wody w rzece $\overrightarrow{v_w}$ na całe jej szerokości nie zmieniają swoich wartości, zapisz warunek, jaki musi spełniać prędkość łódk względem brzegu rzeki \overrightarrow{v} aby ruch łódki odbywał się cały czas wzdłuż odcinka AB.
Zadanie 8
Sportowiec na treningu siłowym stojąc na wyprostowanych nogach wypchnął przed siebie piłk
lekarską w taki sposób, że piłka tracąc kontakt z rękoma sportowca uzyskała szybkość $5\frac{m}{s}$
i znalazła się wyżej niż w chwili rozpoczęcia ćwiczenia (wypchnięcie piłki odbywało się po pewnym kątem do poziomu). Masa piłki jest równa 5 kg. Sportowiec ma masę 80 kg, jego ręc mają długość 75 cm a średnia siła z jaką wypycha piłkę to 85 N.
Zadanie 8.1. (0 – 3 pkt)
Wykaż, wykonując odpowiednie obliczenia, że czas trwania wypchnięcia piłki wynosi 0,3 s.

Zadanie 8.2. (0 – 2 pkt) Przyjmując, że czas wypychania piłki jest równy 0,3 s oblicz moc, z jaką pracowały mięśnie sportowca podczas opisanego w zadaniu ćwiczenia.					
Zadanie 8.3. (0 – 3 pkt) Oblicz, o ile wyżej niż przed wyrzutem znajdowała się piłka w chwili, kiedy utraciła kontakt z rękoma sportowca podczas opisanego w zadaniu ćwiczenia.					
Zadanie 8.4. $(0-3 \text{ pkt})$ Sportowiec założył wrotki i wypchnął tą samą piłkę lekarską przed siebie w kierunku poziomym. Po wypchnięciu sportowiec zaczął poruszać się w przeciwną stronę niż piłka. Zapisz nazwę zjawiska i nazwę zasady, która jest spełniona podczas wykonywania opisanego ćwiczenia oraz wyznacz zależność między szybkością piłki (v_p) i szybkością sportowca (v_s) (ile razy jest większa lub mniejsza) tuż po wykonaniu ćwiczenia.					

Zadanie 9	(0 - 4)	pkt)
-----------	---------	------

Metalową kulkę o masie 150 g włożono do naczynia z wrzącą wodą. Po czasie, w którym kulka uzyskała temperaturę wody, szybko ją wyjęto i wrzucono do kalorymetru zawierającego 0,1 litra wody o temperaturze 20°C. Po ustaleniu się stanu równowagi termodynamicznej temperatura w kalorymetrze była wyższa o 10°C. Pomijając straty ciepła na ogrzanie kalorymetru oraz zmianę temperatury kulki podczas przekładania jej z wrzącej wody do kalorymetru, oblicz ciepło właściwe metalu, z którego wykonano kulkę.

Ciepło właściwe wody i jej gęstość są odpowiednio równe: $c_w = 4200$	$\frac{J}{\text{kg} \cdot \text{K}} \text{ i } \rho_w = 1000 \frac{\text{kg}}{\text{m}^3}$	

Brudnopis