② DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

Welcome to the course!

Sergey Fogelson

Before we get to XGBoost...

- Need to understand the basics of
 - Supervised classification
 - Decision trees
 - Boosting

Supervised learning

- Relies on labeled data
- Have some understanding of past behavior

Supervised learning example

• Does a specific image contain a person's face?

Supervised learning: Classification

• Outcome can be binary or multi-class

Binary classification example

• Will a person purchase the insurance package given some quote?

Multi-class classification example

• Classifying the species of a given bird

AUC: Metric for binary classification models

Area under the ROC curve (AUC)

• Larger area under the ROC curve = better model

Accuracy score and confusion matrix

Confusion matrix

Actual: Spam Email

Actual: Real Email

Predicted: Spam Email	Predicted: Real Email
True Positive	False Negative
False Positive	True Negative

ullet Accuracy: $rac{tp+tn}{tp+tn+fp+fn}$

Supervised learning with scikit-learn

Other supervised learning considerations

- Features can be either numeric or categorical
- Numeric features should be scaled (Z-scored)
- Categorical features should be encoded (one-hot)

Ranking

• Predicting an ordering on a set of choices

Recommendation

- Recommending an item to a user
- Based on consumption history and profile
- Example: Netflix

(2)	DataCamp
-----	----------

EXTREME GRADIENT BOOSTING WITH XGBOOST

Let's get to work!

DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

Introducing XGBoost

Sergey Fogelson

What is XGBoost?

- Optimized gradient-boosting machine learning library
- Originally written in C++
- Has APIs in several languages:
 - Python
 - R
 - Scala
 - Julia
 - Java

What makes XGBoost so popular?

- Speed and performance
- Core algorithm is parallelizable
- Consistently outperforms single-algorithm methods
- State-of-the-art performance in many ML tasks

DataCamp

Extreme Gradient Boos

Using XGBoost: A Quick Example

```
In [1]: import xgboost as xgb
In [2]: import pandas as pd
In [3]: import numpy as np
In [4]: from sklearn.model_selection import train_test_split
In [5]: class_data = pd.read_csv("classification_data.csv")
In [6]: X, y = class_data.iloc[:,:-1], class_data.iloc[:,-1]
In [7]: X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2, random_state=123)
In [8]: xg_cl = xgb.XGBClassifier(objective='binary:logistic', n_estimators=10, seed=123)
In [9]: xg_cl.fit(X_train, y_train)
```

DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

Let's begin using XGBoost!

② DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

What is a decision tree?

Sergey Fogelson

Visualizing a decision tree

Decision trees as base learners

- Base learner Individual learning algorithm in an ensemble algorithm
- Composed of a series of binary questions
- Predictions happen at the "leaves" of the tree

Decision trees and CART

- Constructed iteratively (one decision at a time)
 - Until a stopping criterion is met

Individual decision trees tend to overfit

Individual decision trees tend to overfit

CART: Classification and Regression Trees

- Each leaf **always** contains a real-valued score
- Can later be converted into categories

② DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

Let's work with some decision trees!

② DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

What is Boosting?

Sergey Fogelson

Boosting overview

- Not a specific machine learning algorithm
- Concept that can be applied to a set of machine learning models
 - "Meta-algorithm"
- Ensemble meta-algorithm used to convert many weak learners into a strong learner

Weak learners and strong learners

- Weak learner: ML algorithm that is slightly better than chance
 - Example: Decision tree whose predictions are slightly better than 50%
- Boosting converts a collection of weak learners into a strong learner
- Strong learner: Any algorithm that can be tuned to achieve good performance

How boosting is accomplished

- Iteratively learning a set of weak models on subsets of the data
- Weighing each weak prediction according to each weak learner's performance
- Combine the weighted predictions to obtain a single weighted prediction
- ... that is much better than the individual predictions themselves!

Boosting example

Model evaluation through cross-validation

- Cross-validation: Robust method for estimating the performance of a model on unseen data
- Generates many non-overlapping train/test splits on training data
- Reports the average test set performance across all data splits

Cross-validation in XGBoost example

DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

Let's practice!

② DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

When should I use XGBoost?

Sergey Fogelson

When to use XGBoost

- You have a large number of training samples
 - Greater than 1000 training samples and less 100 features
 - The number of features < number of training samples
- You have a mixture of categorical and numeric features
 - Or just numeric features

When to NOT use XGBoost

- Image recognition
- Computer vision
- Natural language processing and understanding problems
- When the number of training samples is significantly smaller than the number of features

DataCamp

Extreme Gradient Boos

EXTREME GRADIENT BOOSTING WITH XGBOOST

Let's practice!