# Big Data Analysis Application and Practice (XAI605)

Introduction

2023 Spring

Instructor: Sejun Park

#### Instructor

- Assistant Professor, Department of AI, Korea University
  - B.S. (2014) in EE and Math at KAIST
  - Ph.D. (2020) in EE at KAIST
- Research interest: "mathematical" machine learning problems
  - Developing algorithms with provable guarantees
    - e.g., on the correctness of automatic differentiation, efficient computation of gradient in neural networks
  - Analyzing expressivity, optimization properties, and generalization properties of machine learning models
    - e.g., universal approximation, memorization, generalization properties of SGD

# What we will study in this course

- Course title: Big Data Analysis Application and Practice
  - "Analysis": dimensionality reduction (and data visualization) methods
    - Goal: embed high-dimensional data in a space with a small dimension
    - From classical methods (e.g., PCA, LDA) to modern ones (e.g., t-SNE, UMAP)
  - "Big Data": fast algorithms
    - e.g., algorithms with running time at most proportional to #data points
  - "Application and Practice": practice sessions
    - In these sessions, you will implement learned algorithms by yourself

#### Grading

• 6 practice sessions (60%, 10% for each), 2 exams (40%, 20% for each)

## **Motivation**

- Each feature of a data point does not carry an equal amount of information
  - e.g., background pixels in image, Fourier features in audio





### **Motivation**

- Manifold hypothesis
  - The d-dimensional data points of a dataset usually do not cover the entire space, but they lie on a specific lower-dimensional structure



# Why dimensionality reduction

#### Data visualization

• We often want to "see" the distribution of the data points



# Why dimensionality reduction

#### Noise reduction for supervised learning

- Smaller input dimension can lead us to better generalization
- Namely, dimensionality reduction can relax the "overfitting"
  - n: #training data
  - d: dimension of each data
  - p: the regression function is p-times differentiable

Optimal convergence rate of regression  $\lesssim n^{-p/(2p+d)}$ 

## **Schedule**

| week | period        | freq. | studying contents                       |
|------|---------------|-------|-----------------------------------------|
| 1    | 03,02 - 03,08 | 1     | Introduction                            |
| 2    | 03,09 - 03,15 | 1     | Classical data visualization algorithms |
| 3    | 03,16 - 03,22 | 1     | Practice session                        |
| 4    | 03,23 - 03,29 | 1     | Classical data visualization algorithms |
| 5    | 03,30 - 04,05 | 1     | Practice session                        |
| 6    | 04.06 - 04.12 | 1     | Classical data visualization algorithms |
| 7    | 04,13 - 04,19 | 1     | Practice session                        |
| 8    | 04,20 - 04,26 | 1     | Mid-term exam                           |
| 9    | 04,27 - 05,03 | 1     | Modern data visualization algorithms    |
| 10   | 05,04 - 05,10 | 1     | Practice session                        |
| 11   | 05,11 - 05,17 | 1     | No class                                |
| 12   | 05,18 - 05,24 | 1     | Modern data visualization algorithms    |
| 13   | 05,25 - 05,31 | 1     | Practice session                        |
| 14   | 06,01 - 06,07 | 1     | Modern data visualization algorithms    |
| 15   | 06,08 - 06,14 | 1     | Practice session                        |
| 16   | 06,15 - 06,21 | 1     | Final exam                              |

# Warning

- This course will be very mathy
  - We will observe the mathematical objective of each algorithm
  - We will often analyze the computational complexity of each algorithm
  - You should be able to read/write mathematical statements
- I am assuming you
  - Know math including calculus, optimization, linear algebra, algorithm, ...
  - Can use python, matlab and can google so that you can implement algorithms learned in the class
    - Sample problem: implement the singular value decomposition and PCA
- You should bring your own laptop for each practice session