Математически анализ 2

Exonaut

9 май 2021 г.

Съдържание 1

Съдъј	ожа	ни	2
Овды	JAKO	PTTRT	$\overline{}$

1	Лен	кция 1: Пространството \mathbb{R}^m	3	
	1.1	Няколко важни неравенства	3	
	1.2	Видове крайно мерни пространства	3	
		1.2.1 Линейно(Векторно) пространство	3	
		1.2.2 Евклидово пространство	4	
		1.2.3 Метрично пространство	4	
		1.2.4 Нормирано пространство	4	
	1.3	Пространството \mathbb{R}^m - дефиниция и основни свойства	5	
		1.3.1 Скаларно произведение	5	
		1.3.2 Норма и метрика	5	
		1.3.3 Скаларен квадрат	5	
		1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат	6	
		1.3.5 Неравенство на Минковски, чрез скаларен квадрат.	6	
	1.4	Точки и множества в \mathbb{R}^m	6	
		1.4.1 Паралелепипед	6	
		1.4.2 Сфера и кълбо	6	
	1.5	Редици от точки в \mathbb{R}^m	8	
2	Лекция 2: Функция на няколко променливи. Граница и			
_			10	
	2.1	•	10	
	2.2		10	
	2.3		11	
	2.4	Равномерна непрекъснатост на функция на няколко про-		
			12	
_		менливи	12	
3	Лег	менливи		
3	Лен кци	менливи	13	
3	Лен кци 3.1	менливи	13 13	
3	Лен кци 3.1 3.2	менливи	13 13	
3	Лен кци 3.1	менливи	13 13	
	Лен кци 3.1 3.2 3.3	менливи	13 13	
3	Лен кци 3.1 3.2 3.3 Лен	менливи	13 13	
	Лен кци 3.1 3.2 3.3 Лен	менливи	13 13	
	Лекци 3.1 3.2 3.3 Лек	менливи	13 13 14	
	Лен кци 3.1 3.2 3.3 Лен вод ва	менливи	13 13 14 17	

Съдържание 2

5 Лекция 5: Неявни функции. Съществуване и диферен		
	ране	22
	5.1 Неявни функции	. 22
6	Лекция 6: Формула на Тейлор за функция на няколк	0
	променливи. Локални екстремуми на функция на няколк	0
	променливи	27
	6.1 Формула на Тейлор за функция на няколко променливи.	. 27
	6.2 Локални екстремуми на функция на няколко променливи	
	6.3 Достатъчни условия за съществуване на локален екстре-	
	мум на функция	. 30
7	Лекция 7: Локални екстремуми на функция на няколк	0
	променливи. Екстремум на неявна функция	35
	7.1 Достатъчни условия за съществуване на локален екстре-	
	мум на функция II	. 35
	7.2 Локален екстремум на неявна функция	. 38
8 Лекция 8: Условни и абсолютни екстремуми на функ		
	на няколко променливи	41
	8.1 Условни екстремуми на функция на няколко променливи	. 41
	8.2 Абсолютни екстремуми на функция на няколко променлив	зи 43
9	Лекция 9: Двоен интеграл	45
	9.1 Понятие за обем в \mathbb{R}^m . Множество с мярка нула	. 45
	9.2 Измерими множества в \mathbb{R}^m	. 46
	9.3 Дефиниция на многократен интеграл	. 47
	9.4 Съществуване на многократния интеграл	. 49
	9.5 Свойства на многократните интеграли	
	9.6 Свеждане на кратни интеграли до повторни	
	9.6.1 Двумерен случай	
10	Лекция 10: Смяна на променливите на двоен интеграл	53
	10.1 Матрица на Якоби	. 53
	10.2 Смяна на променливите в многократен интеграл	. 58
11	Лекция 11	62
12	Лекция 12	63
13	Лекция 13	64

1 Лекция 1: Пространството \mathbb{R}^m

1.1 Няколко важни неравенства

Нека a_k и $b_k(k=1,2,...,m)$ са реални числа и $m\in\mathbb{N}$

Теорема 1.1.1 (Неравенство на Коши-Шварц). *В сила е следното неравенство:*

$$\left(\sum_{k=1}^{m} a_k b_k\right)^2 \le \left(\sum_{k=1}^{m} a_k\right) \left(\sum_{k=1}^{m} b_k\right)$$

Равенство се достига само когато a_k и b_k са пропорционални: $(\exists \lambda_0: b_k = \lambda_0 a_k)$

Равенството може да се запише:

$$\left| \sum_{k=1}^{m} a_k b_k \right| \le \sqrt{\left(\sum_{k=1}^{m} a_k\right)} \sqrt{\left(\sum_{k=1}^{m} b_k\right)}$$

Теорема 1.1.2 (Неравенство на Минковски). *В сила е следното неравенство:*

$$\sqrt{\sum_{k=1}^{m} (a_k + b_k)^2} \le \sqrt{\sum_{k=1}^{m} a_k^2} + \sqrt{\sum_{k=1}^{m} b_k^2}$$

Равенство се достига само когато a_k и b_k са пропорционални. Общ случай на неравенството на Минковски:

$$\left(\sum_{k=1}^{m} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{m} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{m} |b_k|^p\right)^{\frac{1}{p}} (p \ge 1)$$

Теорема 1.1.3. *В сила е следното неравенство:*

$$|a_k + b_k| \le \sqrt{\sum_{k=1}^m (a_k + b_k)^2} \le \sum_{k=1}^m |a_k - b_k|$$

1.2 Видове крайно мерни пространства

1.2.1 Линейно(Векторно) пространство

Дефиниция 1.2.1. Нека L е линейно (векторно) пространство над полето R. B него има въведени две операции: събиране и умножение на вектор c число.

1.
$$x, y \in L \implies z = x + y \in L$$

2.
$$x \in L, \lambda \in \mathbb{R} \implies z = \lambda x \in L$$

1.2.2 Евклидово пространство

Дефиниция 1.2.2. Крайномерното пространство L се нарича евклидово, ако в него е въведено скаларно произведение, т.е за всеки два елемента $x,y \in L$ може да се съпостави реално число (x,y), удовлетворяващо свойствата за линейност, симетричност и положителна определеност.

1.
$$x, y, z \in L, \lambda \in \mathbb{R} \implies (x + y, z) = (x, z) + (y, z); (\lambda x, y) = \lambda(x, y)$$

$$2. \ x, y \in L \implies (x, y) = (y, x)$$

3.
$$x \in L, x \neq 0 \implies (x, x) > 0$$

1.2.3 Метрично пространство

Дефиниция 1.2.3. Крайномерното пространство L се нарича метрично, ако в него е въведено разстояние (метрика) ρ , т.е за два елемента $x,y\in L$ може да се съпостави неотрицателно число $\rho\geq 0$ със следните свойства

1.
$$\rho(x,x) = 0$$
; $\rho(x,y) > 0$, $x \neq y$

2.
$$\rho(x,y) = \rho(y,x)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z) \forall x,y,z \in L$$

Метрично пространство L с метрика ρ се означава (L, ρ)

1.2.4 Нормирано пространство

Дефиниция 1.2.4. Пространството се нарича нормирано, ако в него е въведена норма $\|.\|$, m.e $\|.\|$: $L \to \mathbb{R}_0^+$ със свойства

1.
$$x = 0 \implies ||x|| = 0, x \neq 0 \implies ||x|| > 0$$

2.
$$x \in L, \lambda \in \mathbb{R} \implies ||\lambda x|| = |\lambda|||x||$$

3.
$$x, y \in L \implies ||x + y|| < |x| + |y|$$

Теорема 1.2.1. Ако L е нормирано пространство c дадена норма $\|.\|$, то L е метрично пространство, т.е равенството $\rho(x,y) = \|x-y\|$ дефинира разстоянието в L

1.3 Пространството \mathbb{R}^m - дефиниция и основни свойства

Дефиниция 1.3.1. Множеството от наредени т-торки $a = (a_1, a_2, ..., a_m)$ от реални числа. Числата $a_1, a_2, ..., a_m$ се наричат съответно първа, втора, ..., т-та кордината на a.

Ако имаме $a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_m), ; \lambda \in \mathbb{R}$ то

1.
$$a+b=(a_1,a_2,...,a_m)+(b_1,b_2,...,b_m)=(a_1+b_1,a_2+b_2,...,a_m+b_m)\in \mathbb{R}^m$$

2.
$$\lambda a = (\lambda a_1, \lambda a_2, ..., \lambda a_m) \in \mathbb{R}^m$$

1.3.1 Скаларно произведение

Скаларно произведение се дефинира:

$$(a,b) = \left(\sum_{k=1}^{m} a_k b_k\right)$$

С така въведено скаларно произведение пространството R^m се превръща в евклидово.

1.3.2 Норма и метрика

С равенството:

$$||a|| := \sqrt{\sum_{k=1}^{m} (a_k)^2}$$

се въвежда норма в \mathbb{R}^m .

Нормата генерира метрика в \mathbb{R}^m с формула:

$$\rho(a,b) := ||a-b|| = \sqrt{\sum_{k=1}^{m} (a_k - b_k)^2}$$

1.3.3 Скаларен квадрат

Скаларен квадрат: $a^2 = (a, a) = \sum_{k=1}^m a_k^2$

1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат

Коши-Шварц чрез скаларен квадрат: $(a,b)^2 \le a^2b^2$ и $|(a,b)| \le ||a|| ||b||$

1.3.5 Неравенство на Минковски, чрез скаларен квадрат

Неравенство на Минковски чрез скаларен квадрат: $||a+b|| \le ||a|| + ||b||$

1.4 Точки и множества в \mathbb{R}^m

1.4.1 Паралелепипед

Дефиниция 1.4.1. Множеството

$$\Pi(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k < x_k - a_k < \delta_k\}$$

се нарича отворен паралелепипед в \mathbb{R}^m с център точката а.

Множеството

$$\widetilde{\Pi}(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k \le x_k - a_k \le \delta_k\}$$

ce нарича затворен паралелепипед в R^m c център точката a.

Ако $\delta_1 = \delta_2 = ... = \delta_m = \delta$, получените множества $\Pi(a; \delta)$ и $\widetilde{\Pi}(a; \delta)$ се наричат съответно отворен и затворен куб в \mathbb{R}^m с център a.

1.4.2 Сфера и кълбо

Дефиниция 1.4.2. *Нека числото* r > 0. *Множеството*

$$B(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) < r\} = \{x | x \in \mathbb{R}^m, \|x - a\| < r\}$$

се нарича отворено кълбо в \mathbb{R}^m с център а и радиус r, множеството

$$\widetilde{B}(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) \le r\} = \{x | x \in \mathbb{R}^m, ||x-a|| \le r\}$$

се нарича затворено кълбо в \mathbb{R}^m с център а и радиус r, а множеството

$$S(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) = r\} = \{x | x \in \mathbb{R}^m, ||x - a|| = r\}$$

се нарича сфера в \mathbb{R}^m с център а и радиус r, а множеството

Дефиниция 1.4.3. Точката а се нарича

- ullet вътрешна за множеството A, ако съществува отворено кълбо $B(a,arepsilon):B(a,arepsilon)\subset A$
- външна за A, ако съществува $B(a,\varepsilon):B(a,\varepsilon)\subset\mathbb{R}^m\setminus A$
- контурна за A, ако за всяко $\varepsilon > 0$: $B(a, \varepsilon) \cap A \neq \emptyset$ u $B(a, \varepsilon) \cap (\mathbb{R}^m \setminus A) \neq \emptyset$
- изолирана ако съществува $\varepsilon > 0$: $B(a, \varepsilon) \cap A = \{a\}$

Дефиниция 1.4.4. Множеството $A \subset \mathbb{R}^m$ се нарича

- отворено, ако всяка негова точка е вътрешна
- ullet затворено, ако неговото допълнение $\mathbb{R}^m \setminus A$ е отворено

Дефиниция 1.4.5. Околност на дадена точка $a \in \mathbb{R}^m$ се нарича всяко отворено множество, което я съдържа. Означава се с U_a .

Дефиниция 1.4.6. Точка а се нарича точка на сетстяване на множеството $A \subset \mathbb{R}^m$, ако всяка нейна околност U_a съдържа поне една точка на A, различна от a, т.е $U_a \cap (A \setminus \{a\} \neq \emptyset)$

Дефиниция 1.4.7. Величината

$$d = d(A) = \sup_{a', a'' \in A} \rho(a'; a'')$$

се нарича диаметър на множеството $A \subset \mathbb{R}^m$.

Дефиниция 1.4.8. Множеството $A \subset \mathbb{R}^m$ се нарича ограничено, ако съществува кълбо(с краен радиус), което го съдържа.

Дефиниция 1.4.9. Множеството $A \subset \mathbb{R}^m$ се нарича компактно, ако A е затворено и ограничено.

Дефиниция 1.4.10. Множееството $x = (x_1, x_2, ..., x_m) \in \mathbb{R}^m$, чийто кординати са непрекъснати функции $x_k = x_k(t)(k = 1, 2, ..., m)$, дефинирани върху даден интервал [a,b] се нарича непрекъсната крива в R^m . t се нарича параметър на кривата.

Точките $x(a) = (x_1(a), x_2(a), ..., x_m(a))$ и $x(b) = (x_1(b), x_2(b), ..., x_m(b))$ се наричат начало и край на дадената крива. Ако x(a) = x(b) кривата е затворена

Дефиниция 1.4.11. Нека $x^0 = (x_1^0, x_2^0, ..., x_m^0) \in \mathbb{R}^m$ и $\alpha_1, \alpha_2, ..., \alpha_m$ са фиксирани числа за които $\sum_{k=1}^m \alpha_k > 0$. Множеството от точки $x = (x_1, x_2, ..., x_m)$ чиито кординати се представят във вида

$$x_k = x_k^0 + \alpha_k t, k = 1, 2, ..., m, -\infty < t < \infty$$

се нарича права линия в пространството R^m , минаваща през точка x^0 по направление $(\alpha_1, \alpha_2, ..., \alpha_m)$.

Дефиниция 1.4.12. Множеството $A \subset \mathbb{R}^m$ се нарича свързано, ако за всеки две негови точки съществува непрекъсната крива γ , която ги свързва и $\gamma \subset A$.

Дефиниция 1.4.13. Множеството $A \subset \mathbb{R}^m$ се нарича област, ако е отворено и свързано. Ако е и затворено, то се нарича затворена област.

Дефиниция 1.4.14. Област, всеки две точки на която могат да се съединят с отсечка, изцяло лежаща в нея, се нарича изпъкнала област.

Дефиниция 1.4.15. Областа $A \subset \mathbb{R}^m$ се нарича звездообразна област, отностно точката $x^0 \in A$, ако за вскяка точка $x \in A$ отсечката $[x^0, x]$ лежи изцяло в A.

1.5 Редици от точки в \mathbb{R}^m

Дефиниция 1.5.1. Редицата $\{x^{(n)}\}_{n=1}^{\infty}=\{x_1^{(n)},x_2^{(n)},...,x_m^{(n)}\}$ се нарича редица от точки в \mathbb{R}^m , а редицата $\{x_k^{(n)}\}_{n=1}^{\infty}(k=1\div m)$ - к-та кординатна редица. За по кратко редицата $\{x^{(n)}\}_{n=1}^{\infty}$ се означава $\{x^{(n)}\}$

Дефиниция 1.5.2. Редицата $\{y^{(l)}\}_{l=1}^{\infty}$ се нарича поредица на редицата $\{x^{(n)}\}$ и се означава: $\{x^{(n_l)}\}, l=1,2,...,$ или $\{x^{(n_l)}\}_{l=1}^{\infty}$ ако за всяко l съществува такова n_l , че $y^{(l)}=x^{(n_l)}$, при това, ако l' < l'', то $n_{l'} < n_{l''}$.

Дефиниция 1.5.3. Редицата $\{x^{(n)}\}$ се нарича сходяща към точка $a \in \mathbb{R}^m$ (граница на редицата), ако за всяко $\varepsilon > 0$ съществува такова $N_0 > 0$, че за всяко $n > N_0$ е изпълено неравенството $\rho(x^{(n)}; a) = ||x^{(n)} - a|| < \varepsilon$. Ако редицата няма граница, се нарича разходяща.

Дефиниция 1.5.4. Точката $a \in R^m$ се нарича точка на състяване на редицата $\{x^{(n)}\}$, ако всяка нейна околност съдържа безброй много членове на редицата.

Теорема 1.5.1. Нека $x^{(n)} \in \mathbb{R}^m$ за $n \in \mathbb{N}$ и точката $a \in \mathbb{R}^m$. Тогава

$$(\lbrace x^{(n)}\rbrace \to a) \iff (x_k^{(n)} \to a_k, k = 1 \div m)$$

T.e редицата има граница точката a, тогава и само тогава когато всяка от кординатите на редици $\{x_k^{(n)}\}$ има граница съответната кордината a_k на точката a

Теорема 1.5.2 (Критерий на Коши). Нека $x^{(n)} \in \mathbb{R}^m$ за $n \in \mathbb{N}$. Редицата $x^{(n)}$ е сходяща тогава и само тогава когато за всяко $\varepsilon > 0$ съществува такова число $N_0 > 0$, че при всяко $n \in N, n > N_0$ и всяко $p \in \mathbb{N}$ е изпълено $\rho(x^{(n+p)}, x^{(n)}) = ||x^{(n+p)} - x^{(n)}|| < \varepsilon$

Дефиниция 1.5.5. Редицата $\{x^{(n)}\}$ се нарича ограничена, ако съществува кълбо (с краен радиус), което съдържа всичките ѝ членове.

Теорема 1.5.3 (Болцано-Вайерщрас). От всяка ограничена редица в пространството R^m може да се избере сходяща подредица.

Дефиниция 1.5.6. Всяко множество $A \subset \mathbb{R}^m$ се нарича компактно, ако от всяка редица $\{x^{(n)}\}, x^{(n)} \in A$, може да се избере сходяща подредица $\{x_k^{(n)}\}$ с граница принадлежаща на A

2 Лекция 2: Функция на няколко променливи. Граница и непрекъснатост

2.1 Дефниция на функция на няколко променливи

Дефиниция 2.1.1. Казва се че дадена функция с дефиниционна област (дефиниционно множество) D, ако на всяка точка $x=(x_1,x_2,...,x_m)$ от множеството D е съпоставено реално число $f(x)=f(x_1,x_2,...,x_m)$, m.е на всяко $x\in D$ съществува единствено число $y=f(x)\in \mathbb{R}$. Понякога за кратко се записва.

$$f:D\to\mathbb{R}$$

 $B \mathbb{R}^2$ се използва (x,y) за означение, а в \mathbb{R}^3 - (x,y,z).

2.2 Граница на функция на няколко променливи

Дефиниция 2.2.1 (Коши). Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на сеъстяване за D. Казва се че f(x) има граница L при $x \to a$ със стойностти $x \neq a$ ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, че за всяко x от множеството $D \setminus \{a\}$, за което $\rho(x;a) = \|x - a\| < \delta$ е изпълнено $|f(x) - L| < \varepsilon$. Записва се

$$\lim_{x \to a} f(x) = L$$

Дефиниция 2.2.2 (Хайне). Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на съсстяване за D. Казва се че f(x) има граница L при $x \to a$ със стойностти $x \neq a$ ако за всяка редица $\{x^{(n)}\}, x^{(n)} \in D, x^{(n)} \neq a$ сходяща към a, числовата редица $\{f(x^{(n)})\}$ има граница L.

Теорема 2.2.1. Дефинициите 2.2.1 и 2.2.2 на Коши и Хайне за граница на функция са еквивалентни.

Дефиниция 2.2.3. Нека $f: D \to \mathbb{R}, a \in \mathbb{R}^m$, а е точка на сгъстяване за D. Казва се че f(x) дивергира към ∞ (съответно към $-\infty$) при $x \to a$ със стойностти $x \neq a$, ако за всяко $A \in \mathbb{R}$ съществува такова $\delta > 0$, че за всяко x от множеството $D \setminus \{a\}$, за което $\rho(x;a) = \|x - a\| < \delta$ е изпълнено f(x) > A (съответно f(x) < A). Записва се

$$\lim_{x \to a} f(x) = \infty(-\infty)$$

Дефиниция 2.2.4 (Повторна граница). Нека $D \subset \mathbb{R}^2$, $a = (a_1, a_2) \in \mathbb{R}^2$ е точка на сгостяване за D и функция $f : D \to \mathbb{R}$. Нека съществува

такава околност $U_{a_2} \subset \mathbb{R}$ на точката 2, че за всички стойностти $y \in U_{a_2}$ да съществува $\lim_{x \to a_1} f(x,y) = \varphi(y)$. Ако освен това съществува $\lim_{y \to a_2} \varphi(y) = A$, A се нарича повторна граница и се означава както следва

$$A = A_{1,2} = \lim_{y \to a_2} (\lim_{x \to a_1} f(x, y))$$

Аналогично се съвежда и другата повторна граница

$$A_{2,1} = \lim_{x \to a_1} (\lim_{y \to a_2} f(x, y))$$

Теорема 2.2.2. *Нека* $D \subset \mathbb{R}^2$, $a = (a_1, a_2) \in \mathbb{R}^2$ е точка на сеъстяване за D и функция $f : D \to \mathbb{R}$. *Нека*

- 1. Съществува такава околност $U_{a_2} \subset \mathbb{R}$ на точката a_2 , че за всички стойностти $y \in U_{a_2}$ да съществува $\lim_{x \to a_1} f(x,y) = \varphi(y)$.
- 2. Съществува границата $\lim_{(x,y)\to(a_1,a_2)} f(x,y) = L$.

Тогава съществува граница $\lim_{y\to a_2} \varphi(y)$ и освен това е в сила равенство- тот $\lim_{y\to a_2} \varphi(y) = L$

2.3 Непрекъснатост на функция на няколко променливи

Дефиниция 2.3.1. Казва се че функцията $f: D \to \mathbb{R}$ е непрекъсната в точка $a \in D$ ако $\lim_{x \to a} f(x) = f(a)$.

Дефиниция 2.3.2 (непрекъснатост по Коши). Казва се, че функцията $f: D \to \mathbb{R}$ е непрекъсната в точка $a \in D$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, че за всяко x от множеството D, за което $\rho(x; a) = \|x - a\| < \delta$ е изпълнено $|f(x) - f(a)| < \varepsilon$.

Дефиниция 2.3.3 (непрекъснатост по Хайне). Казва се, че функцията $f: D \to \mathbb{R}$ е непрекъсната в точка $a \in D$ ако за всяка редица $\{x^{(n)}\}$ (с $x^{(n)} \in D$ за $n \in \mathbb{N}$) сходяща към а, числовата редица $\{f(x^{(n)})\}$ има граница f(a).

Дефиниция 2.3.4 (за съставна функция). Нека $A \subset \mathbb{R}^m$ е отворено множеество, $f: A \to \mathbb{R}$ и $x_k: (\alpha, \beta) \to \mathbb{R}$, $k = 1 \div m$. Полагайки $x(t) = (x_1(t), x_2(t), ..., x_m(t)) \in A$ за всяко $t \in (\alpha, \beta)$ съставната функция $F(t) = f \circ x(t) = f(x(t))$ се дефинира по формулата

$$F(t) = f \circ x(t) = f(x(t)) = f(x_1(t), x_2(t), ..., x_m(t))$$

٠.

Теорема 2.3.1. Нека $A \subset \mathbb{R}^m$ е отворено множество $u \ f : A \to \mathbb{R}$ интервальт $(\alpha, \beta) \subset \mathbb{R}$, $x_k : (\alpha, \beta) \to \mathbb{R}$ за $k = 1 \div m$. Нека освен това $x(t) = (x_1(t), x_2(t), ..., x_m(t)) \in A$ за $\forall t \in (\alpha, \beta)$ и x_k са непрекъснати в точката $t_0 \in (\alpha, \beta)$ за $k = 1 \div m$, а f е непрекъсната в $x^0 = x(t_0)$. Тогава функцията $F(t) = f \circ x(t) = f(x(t)) = f(x_1(t), x_2(t), ..., x_m(t))$ е непрекъсната в точката t_0

2.4 Равномерна непрекъснатост на функция на няколко променливи

Дефиниция 2.4.1. Нека $A \subset \mathbb{R}^m$ е отворено множество u $f: A \to \mathbb{R}$. Функцията се нарича равномерно непрекъсната в A, ако за всяко $\varepsilon > 0$ съществува $\delta = \delta(\epsilon)$, че за всеки две точки $x', x'' \in A$ за които разстоянието $\rho(x'; x'') = ||x' - x''|| < \delta$, да следва, че $|f(x') - f(x'')| < \varepsilon$.

Теорема 2.4.1 (на Вайершрас). Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f: K \to \mathbb{R}$ е непрекосната ворху K. Тогава

- 1. f е ограничена в K, m.е същестуват $m, M \in \mathbb{R}$ такива че за всички $x \in K$ е изпълнено неравенството $m \le f(x) \le M$
- 2. f достифа най малката и най-голямата си стойност в K, m.e съществуват точки $x^0, y^0 \in K$, такива че

$$f(x^0) = \inf_{x \in K} f(x); f(y^0) = \sup_{y \in K} f(x)$$

Теорема 2.4.2 (на Кантор). Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f: K \to \mathbb{R}$ е непрекъсната върху K. Тогава f е равномерно непрекъсната върху K.

3 Лекция 3: Частни производни. Диференцируемост на функция на две и повече променливи

3.1 Дефиниция на частна производна

Ще дефинираме елементи които ще се използват.

- $D \subset \mathbb{R}^m$ отворено множество
- $x^0 = (x_1^0, x_2^0, ..., x_m^0)$ точка, принадлежаща на D
- $U_{x^0} \subset D$ околност на x^0
- $U_{x_i^0}\subset D$ околност на x_i^0 (i = 1, 2, ..., m)
- \bullet точката $(x_1^0,x_2^0,...,x_{i-1}^0,x_i^0,x_{i+1}^i,...,x_m^0)\in U_{x^0},$ за всички стойности на $x_i\in U_{x_i^0}$
- f и g функции, дефинирани съответно в D и $U_{x_i^0}$. т.е $f:D\to\mathbb{R},g:U_{x_i^0}\to\mathbb{R}$ и $g(x_i)=f(x_1^0,x_2^0,...,x_{i-1}^0,x_i^0,x_{i+1}^i,...,x_m^0)$

Дефиниция 3.1.1. Производната, ако съществува на функцията g в точката x_i^0 се нарича частна производна на функцията f(по променлива $x_i^0)$ в точката x^0 . Използва се означението $\frac{\partial f(x^0)}{\partial x_i}$ или $f'_{x_i}(x^0)$. Частната производна на функцията f отностно променливата x_i е равна на границата на функцията $\varphi(h_i) = \frac{g(x_i^0 + h_i) - g(x_i^0)}{h_i}$ при $h_i \to 0$ (ако съществува) т.е

$$\lim_{h_i \to 0} \varphi(h_i) = \lim_{h_i \to 0} \frac{g(x_i^0 + h_i) - g(x_i^0)}{h_i} = \frac{\partial f(x^0)}{\partial x_i}$$

Пример 3.1.1.

$$f(x,y) = x^{2} + 9xy^{2}$$

$$f'_{x}(x,y) = (x^{2})'_{x} + (9xy^{2})'_{x} = 2x + 9y^{2}$$

$$f'_{y}(x,y) = (x^{2})'_{y} + (9xy^{2})'_{y} = 0 + 9x \cdot 2 \cdot y = 18xy$$

3.2 Частни производни от по-висок ред

Дефиниция 3.2.1. Частната производна на частната производна от n-1 ред, n=1,2,... (ако съществува), се нарича частична производна от n-ти ред. Частните производни, получени при диференциране по различни променливи се наричат смесени производни, а получените при диференциране само по една и съща променлива се наричат чисти производни.

Пример 3.2.1.

$$\begin{split} f(x,y) &= x^3 \sin(6y) + x^2 y^3 + 2222, f_{x,y}'' = ?, f_{y,x}'' = ? \\ f_{x,y}'' &= (f_x'(x,y))_y' \\ f_x'(x,y) &= (x^3 \sin(6y))_x' + (x^2 y^3)_x' + (2222)_x' = 3x^2 \sin(6y) + 2xy^3 + 0 \\ f_{x,y}'' &= (3x^2 \sin(6y) + 2xy^3)_y' \\ f_{x,y}'' &= (3x^2 \sin(6y))_y' + (2xy^3)_y' = 3x^2 \cos(6y).6 + 2.3xy^2 = 18x^2 \cos(6y) + 6xy^2 \\ f_{y,x}'' &= (f_y'(x,y))_x' \\ f_y'(x,y) &= (x^3 \sin(6y))_y' + (x^2 y^3)_y' + (2222)_y' \\ f_y'(x,y) &= x^3 \cos(6y).6 + x^2.3y^2 + 0 = 6x^3 \cos(6y) + 3x^2y^2 \\ f_{y,x}'' &= (6x^3 \cos(6y) + 3x^2y^2)_y' = (6x^3 \cos(6y))_y + (3x^2y^2)_y' \\ f_{y,x}'' &= 6.3.x^2 \cos(6y) + 3.2.xy^2 = 18x^2 \cos(6y) + 6xy^2 \end{split}$$

Теорема 3.2.1 (за равенство на смесени производни). Нека точката $(x_0, y_0) \in \mathbb{R}^2$ и нека функцията f е дефинирана в отвореното множество $U = U_{(x_0, y_0)} \subset \mathbb{R}^2$, което е нейната област т.е $f: U \to \mathbb{R}$. Нека освен това съществуват частните производни $f'_x, f'_y, f''_{x,y}, f''_{y,x}$ за всички $(x, y) \in U$ и $f''_{x,y}, f''_{y,x}$ са непрекъснати в точката (x_0, y_0) . Тогава е изпълнено равенството

$$f_{x,y}''(x_0, y_0) = f_{y,x}''(x_0, y_0)$$

3.3 Диференцируемост на функция

Ще дефинираме елементи които ще се използват.

• $x^0 \in \mathbb{R}^m$

- $U \subset \mathbb{R}^m$ отворено множество, което е околност на x^0 . Без ограничение на общността може да се счита че U е δ -околност на x^0 т.е U е отворено кълбо $B(x^0; \delta)$ с център x^0 и радиус δ
- $f: U \to \mathbb{R}$ функция дефинирана в $U = B(x^0; \delta)$

Дефиниция 3.3.1. Функцията f се нарича диференцируема в точка x^0 ако съществуват числа $A_1, A_2, ..., A_m$ и функция $\varepsilon(x^0, x-x^0)$, дефинирана за всички допустими стойности на $x \in U$ и $x-x^0=(x_1-x_1^0, x_2-x_2^0, ... x_m-x_m^0)$, като при това

$$f(x) - f(x^{0}) = \sum_{k=1}^{m} A_{k}(x_{k} + x_{k}^{0}) + \varepsilon(x^{0}, x - x^{0}) ||x - x^{0}||$$

$$u \lim_{\|x-x^0\| \to 0} \varepsilon(x^0, x - x^0) = 0$$

Дефиниция 3.3.2. Функцията f се нарича диференцируема в отвореното множество U, ако тя е диференцируема във всяка негова точка.

Теорема 3.3.1. Ако функцията $f: U \to \mathbb{R}$ е диференцируема в точката $x^0 \in U$, то тя е непрекосната.

Дефиниция 3.3.3. В случай на диференцируемост в точката x^0 на функцията $f: U \to \mathbb{R}$, изразът

$$df(x^0) \circ (h) = A_1 h_1 + A_2 h_2 + \dots + A_m h_m$$

 $(unu\ df,df(x^0))$ се нарича пълен диференциал на f(x) в точката x^0

Теорема 3.3.2. Ако функцията $f: U \to \mathbb{R}$ е диференцируема в точката $ma\ x^0 \in U$, то съществуват частните производни $\frac{\partial f(x^0)}{\partial x_k}$ в точката x^0 и освен това $A_k(x^0) = \frac{\partial f(x^0)}{\partial x_k}$, $k = 1 \div m$.

Дефиниция 3.3.4. Ако функцията $f: U \to \mathbb{R}$ е диференцируема в точката $x^0 \in U$, то със следната формула се изразява нейната производна в точката x^0

$$f'(x^0) = (f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0))$$

.

Теорема 3.3.3. Ако функцията $f: U \to \mathbb{R}$ притежава частни производни $\frac{\partial f(x^0)}{\partial x_k}, k = 1 \div m$ в отвореното множество U и освен това са непрекъснати в точката $x^0 \in U$, то f е диференцируема в точката x^0 .

Дефиниция 3.3.5. Ако функцията $f: U \to \mathbb{R}$ притежава частни производни в U и тези частични производни са непрекъснати в точката $x^0 \in U$, то функцията се нарича непрекъснато диференцируема в точката x^0 . Ако тези производни са непрекъснати в U, то функцията се нарича непрекъсанот диференцируема в това множество.

Дефиниция 3.3.6. Диференциалът на диференциала от n-1 ред (n=2, 3, ...) от функцията f(aко съществува) се нарича диференциал от n-ти ред(n-ти диференциал) на тази функция и се бележи $d^n f$

Ако f е два пъти непрекъсната и диференцируема в $x^0 \in U$ тогава втория диференциал получава по следния резултат

$$d^{2}f(x^{0}) = \sum_{i=1}^{m} \sum_{j=1}^{m} f_{x_{i}x_{j}}''(x^{0}) dx_{i} dx_{j} = \left(\frac{\partial}{\partial x_{1}} dx_{1} + \dots + \frac{\partial}{\partial x_{m}} dx_{m}\right)^{2} f(x^{0})$$

което е симетрична квадратична форма на $dx_i (i=1 \div m)$.

Аналогично ако f е n пъти непрекъсната и диференцируема в $x^0 \in U$, то $d^n f(x^0)$ съществува и се дава със следната формула

$$d^{n} f(x^{0}) = \left(\frac{\partial}{\partial x_{1}} dx_{1} + \dots + \frac{\partial}{\partial x_{m}} dx_{m}\right)^{n} f(x^{0})$$

4 Лекция 4: Диференциране на съставна функция. Производна по посока. Градиент. Допирателна. Нормална права

4.1 Диференциране на съставна функция

 $x^{0} \in \mathbb{R}^{m}$ и отворено множество $U \subset \mathbb{R}^{m}$ е околност на точката x^{0} (Без ограничение на общността може да се счита че U е δ -околност на x^{0} т.е U е отворено кълбо $B(x^{0};\delta)$ с център x^{0} и радиус δ). $t_{0} \in (\alpha,\beta) \subset R$

Теорема 4.1.1. Нека функцията f е дефинирана в U, а φ_k - в интервала (α, β) , m.e

 $f: U \to \mathbb{R} \ u \ \varphi_k : (\alpha, \beta) \to \mathbb{R} \ (k = 1 \div m)$ като при това $x_k = \varphi_k(t)$ за $k = 1 \div m$, $\varphi_1(t), \varphi_2(t), ..., \varphi_m(t) \in U$ за всички стойности на $t \in (\alpha, \beta)$. Нека f е диференцируема в U, f'_k са непрекоснати в x^0 за $k = 1 \div m$, φ_k са диференцируеми в t_0 и $F: (\alpha, \beta) \to \mathbb{R}$ е дефинирана c равенствово.

$$F(t) = f(\varphi_1(t), \varphi_2(t), ..., \varphi_m(t)), t \in (\alpha, \beta)$$

Tогава функцията F е диференцируема в t_0 и в сила е следното равенство

$$F'(t_0) = \sum_{k=1}^{m} f'_{x_k}(x^0) \varphi'_k(t_0)$$

 $3a \ m = 2:$ $\varphi_1(t) = \varphi(t), \varphi_2(t) = \psi(t)$

$$F'(t_0) = f'_x(x_0, y_0)\varphi'(t_0) + f'_y(x_0, y_0)\psi'(t_0)$$

Пример 4.1.1. f(x,y) - дефинирана и диференцируема в $U_{(1,2)} \subset \mathbb{R}^2$. с непрекъснати частни производни f'_x, f'_y в точката (1,2). Намерете производната F'(0) на съставната фунция F, зададена с равен-

ството
$$F(t) = f(1+3t,2+4t)$$
.
$$t_0 = 0$$

$$x = \varphi(t) = 1+3t$$

$$y = \psi(t) = 2+4t$$

$$x_0 = \varphi(0) = 1$$

$$y_0 = \psi(0) = 2$$

$$\varphi'(t) = 3$$

$$\psi'(t) = 4$$

$$F'(t_0) = f_x'(x_0, y_0)\varphi'(t_0) + f_y'(x_0, y_0)\psi'(t_0) \implies F'(0) = 3f_x'(1,2) + 4f_y'(1,2)$$

4.2 Производна по посока. Градиент

Нека $x^0 \in \mathbb{R}^m$ и лъчът l е дефиниран, както следва:

$$l: x = x^0 + t\nu, t > 0$$

Функцията f е дефинирана върху този лъч, а

$$\varphi(t) := f(x(t)) = f(x^0 + t\nu), t > 0$$

Дефиниция 4.2.1. Границата (ако съществува)

$$\lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0, t > 0} \frac{\varphi(x^0 + t\nu) - \varphi(x^0)}{t}$$

се нарича производна на f в точката x^0 по посока на вектора ν и се означава $\frac{\partial f(x^0)}{\partial \nu},$ т.е

$$\frac{\partial f(x^0)}{\partial \nu} = \lim_{t \to 0, t > 0} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0, t > 0} \frac{\varphi(x^0 + t\nu) - \varphi(x^0)}{t}$$

ако същестува границата.

Ако частните производни съществуват, са производни "по посока на кординатните оси".

Ако f е дефинирана и диференцируема в околността U_{x^0} на точката в x^0 и f'_{x_k} са непрекъснати в x_0 , то съществува производната ѝ по посока на вектора $\nu = (\nu_1, \nu_2, ..., \nu_m)$ и

$$\frac{\partial f(x^0)}{\partial \nu} = \sum_{k=1}^m \nu_k \frac{\partial f(x^0)}{\partial x_k}$$

Дефиниция 4.2.2. Векторът с кординати $f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0)$ се нарича градиент на f в точката x^0 и се означава

$$grad f(x^0) = (f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0))$$

Предвид тази дефиниция, формулата за производна по посока на вектор u се записва по кратко във вида

$$\frac{\partial f(x^0)}{\partial \nu} = grad(f(x^0), \nu)$$

Теорема 4.2.1. Ако функцията f е дефинирана и диференцируема в околността U_{x^0} на точката в x^0 и f'_{x_k} са непрекъснати в x_0 , то съществува производната на f по посока на произволен вектора $\nu = (\nu_1, \nu_2, ..., \nu_m)$ и тя се дава с формула: $\frac{\partial f(x^0)}{\partial \nu} = \operatorname{grad} f(x^0)$

Ако, ν е единичен вектор, т.е $\|\nu\| = 1$.

Тогава е в сила неравнестово $\left| \frac{\partial f(x^0)}{\partial \nu} \right| \leq \|grad f(x^0)\|$, което следва от неравенство на Коши.

$$\left| \frac{\partial f(x^0)}{\partial \nu} \right| = \left| \operatorname{grad} \left(f(x^0), \nu \right) \right| \le \left\| \operatorname{grad} f(x^0) \right\| \left\| \nu \right\| = \left\| \operatorname{grad} f(x^0) \right\|$$

Равенство се достига само когато ν и $f(x^0)$ са колинеарни (еднопосочни или успоредни). тогава

$$\left|\frac{\partial f(x^0)}{\partial \nu}\right| = \|grad \, f(x^0)\|$$

Ако вектора ν е колинеарен с градиента, тогава векторът $\nu = \frac{grad\,f(x^0)}{\|grad\,f(x^0)\|}$ и тогава

$$\frac{\partial f(x^0)}{\partial \nu} = \left(\operatorname{grad} f(x^0), \frac{\operatorname{grad} f(x^0)}{\|\operatorname{grad} f(x^0)\|} \right) = \|\operatorname{grad} f(x^0)\|$$

Ако $\operatorname{grad} f(x^0) \neq 0$ то производната достига най голяма стойност единствено, ако диференцирането се извършва по посока на градиента. С други думи, посоката на градиента е посоката на най бързо нарастване на функцията, а големината му е равна на производната по тази посока.

Ако $\nu = (\cos \alpha_1, \cos \alpha_2, ..., \cos \alpha_m)$, то производната по посока ν става

$$\frac{\partial f(x^0)}{\partial \nu} = f'_{x_1}(x^0) \cos \alpha_1 + f'_{x_2}(x^0) \cos \alpha_2 + \dots + f'_{x_m}(x^0) \cos \alpha_m.$$

4.3 Допирателна равнина. Нормална права

- $(x_0, y_0) \in \mathbb{R}^2$ точка в \mathbb{R}^2
- $M_0(x_0, y_0, z_0) \in \mathbb{R}^3$ точка в \mathbb{R}^3
- $U = U_{(x_0,y_0)} \subset \mathbb{R}^2 =$ околност на (x_0,y_0)
- $f:U\to\mathbb{R}$ функция
- $z_0 = f(x, y)$
- $S:z=f(x,y)\iff S:f(x,y)-z=0$ уравнение на равнина
- f'_x, f'_y първи частни производни за всички $(x,y) \in U, f'_x, f'_y$ са непрекъснати в точката (x_0, y_0)

Дефиниция 4.3.1. Равнината $\tau(\tau \not\parallel Oz)$, зададена с уравнение

$$\tau: z - z_0 = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0)$$

се нарича допирателна (тангенциална) равнина в точкат M_0 към повърхнината S и представлява графиката на f(x,y).

Дефиниция 4.3.2. $Beкmopume \ n_1, n_2$

$$n_1(-f'_x(x_0, y_0), -f'_y(x_0, y_0), 1)$$
 $n_2(f'_x(x_0, y_0), f'_y(x_0, y_0), -1),$

които са нормални вектори на тангенциалната равнина, се наричат нормални вектори и за повърхнината S.

 $n_1 = -n_2$ Това позволява да се използват за ориентация на повърхина- ma~S

Горната страна се дефинира с вектора n_1 за който вгел $\measuredangle(n_1,k)$ е остър.

Дефиниция 4.3.3. Правата п, зададена с уравнение

$$n: \frac{x - x_0}{-f'_x(x_0, y_0)} = \frac{y - y_0}{-f'_y(x_0, y_0)} = \frac{z - z_0}{1}$$

ce нарича нормала към повърхнината S към точка M_0

Ако прекараме две равнини през $_0$ съответно $\alpha: x = x_0$ и $\beta: y = y_0$ всяка от тях пресича повърхнината в крива линия съответно

$$C_1: x = x_0, y = y, z = f(x_0, y)$$
 $C_2: x = x, y = y_0, z = f(x, y_0)$

 t_1 е направляващ вектор на допирателната права на кривата C_1 в точката $_0$, а с t_2 - направляващ вектор на допирателната права на кривата C_1 в същата точката, то

$$t_1(0, 1, f_y'(x_0, y_0), t_2(1, 0, f_x'(x_0, y_0))$$

Равнината τ е компланарна с векторите t_1, t_2 то нейния нормален вектор може да се получи от векторното им произведение

$$n_1 = t_2 \times t_1 \qquad n_2 = t_1 \times t_2$$

Пример 4.3.1. За повърхнина S, зададена с уранение $S: z = x^2 + y^2 + 3$, да се напишат:

- 1) допирателната равнина $\tau z M_0(0,0,3)$
- 2) нормалните вектори на τ в т. M_0 .
- 3) нормалата на повърхнината S в т. M_0 . Решение:

$$z'_{x} = 2x \; ; z'_{y} = 2y \; ; M_{0}(0,0,3) = M_{0}(x_{0},y_{0},z_{0})$$

$$z'_{x}(x_{0},y_{0}) = z'_{x}(0,0) = 0 \; ; z'_{y}(x_{0},y_{0}) = z'_{y}(0,0) = 0$$

$$1)\tau : z - z_{0} = z'_{x}(x_{0},y_{0})(x - x_{0}) + z'_{y}(x_{0},y_{0})(y - y_{0})$$

$$\tau : z - 3 = 0x + 0y \iff \tau : z = 3$$

$$2)\vec{n_{1}} = (-f'_{x}(x_{0},y_{0}), -f'_{y}(x_{0},y_{0}), 1) = (0,0,1)$$

$$\vec{n_{2}} = (f'_{x}(x_{0},y_{0}), f'_{y}(x_{0},y_{0}), -1) = (0,0,-1)$$

$$3)n : \frac{x - x_{0}}{-f'_{x}(x_{0},y_{0})} = \frac{y - y_{0}}{-f'_{y}(x_{0},y_{0})} = \frac{z - z_{0}}{1}$$

$$n : \frac{x - 0}{0} = \frac{y - 0}{0} = \frac{z - 3}{1} = \lambda$$

$$n(0,0,\lambda + 3), \lambda \in \mathbb{R}$$

5 Лекция 5: Неявни функции. Съществуване и диференциране

5.1 Неявни функции

Нека имаме уравнението F(x,y)=0 и да се реши спрямо у. Решението трябва да зависи и от другата променлива. Нека y=f(x) и заместваме в началното уравнение.

$$F(x, f(x)) = 0$$

Дефиниция 5.1.1. *Ако функцията* f(x) *удовлетворява равенството*

$$F(x, f(x)) = 0$$

за всяко x от дефиниционното си множество, то тя се нарича неявна функция, дефинирана от уравнението F(x;y)=0.

Ако диференцираме равенството F(x, f(x)) = 0 по x с теоремата за съставни функции получаваме

$$F'_x(x, f(x)) + f'(x)F'_y(x, f(x)) = 0 \implies f'(x) - \frac{F'_x(x, f(x))}{F'_y(x, f(x))}$$

Където $F_y'(x, f(x)) \neq 0$

Пример 5.1.1. $F(x,y) = x^2 + y^2 - 5$

$$F(x,y) = 0 \iff y^2 = 5 - x^2$$

 $y_{1,2} = \pm \sqrt{5 - x^2}$

Нека $M_0(x_0,y_0)$ точка в \mathbb{R}^2 , отвореното множество $U=U_{M_0}\subset\mathbb{R}^2$ е нейна околност и нека $F\to\mathbb{R}$.

Теорема 5.1.1 (Съществуване на неявна функция). Нека $M_0(x_0, y_0)$ точка в \mathbb{R}^2 , отвореното множество $U = U_{M_0} \subset \mathbb{R}^2$ е нейна околност и функцията $F: U \to \mathbb{R}$ удовлетворява следните условия

- 1. F е непрекосната в U
- 2. $F(x_0, y_0) = 0$
- 3. За всяка точка $(x,y) \in U \exists F_y'(x,y)$
- 4. F_y' е непрекъсната в M_0

5.
$$F'_{u}(x_0, y_0) \neq 0$$

Тогава съществуват околности

$$X = \{x : |x - x_0| < a\}(a > 0)$$
 $Y = \{y : |y - y_0| < b\}(b > 0)$

такива че правотеглника $\Pi=X\times Y\subset U$ и съществува единствена функция $y=f(x), f:X\to Y$, f - непрекъсната в X, $f(x_0)=y_0$ и $\forall x\in X: F(x,f(x))=0$

Дефиниция 5.1.2. Фунцкията y = f(x) се нарича неявна функция, дефинирана от уравнението F(x,y) = 0, в околност на точката (x_0,y_0)

Теорема 5.1.2 (Добавка към 5.1.1). Ако освен това F'_x, F'_y са дефинирани в U и непрекъснати в (x_0, y_0) то f(x) е диференцируема в точката x_0 и $f'(x_0)$ се изразява

$$f'(x_0) = -\frac{F_x'(x_0, f(x_0))}{F_y'(x_0, f(x_0))} = -\frac{F_x'(x_0, y_0)}{F_y'(x_0, y_0)}$$

Ако F_x', F_y' са непрекъснати в $U = U_{M_0}$, то f' е непрекъсната в X. Прилагайки формулата за производна в произволна точка в $x \in X$ получаваме

$$y' = f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))} = -\frac{F'_x(x, y)}{F'_y(x, y)}$$
(1)

Аналогично се формулира теоремата за неявна функция от уравнението $F(x,y)=0,\,$ за $x(x_1,x_2,...,x_m)\in\mathbb{R}^m\,(m>2)$ и $y\in R$ т.е $F(x_1,x_2,...,x_m,y)=0$

Теорема 5.1.3 (Съществуване на неявна функция). Нека точката $x^0 = (x_1^0, x_2^0, ..., x_m^0) \in \mathbb{R}^m, M_0(x^0, y_0) \in \mathbb{R}^{m+1}$ и $U = U_{M_0} \subset \mathbb{R}^{m+1}$ е околност на M_0 и функцията $F: U \to \mathbb{R}$ удовлетворява следните условия

- $1. \; F \; e \; непрекъсната \; в \; U$
- 2. $F(x^0, y_0) = 0$
- 3. За всяка точка $(x,y) \in U \exists F_y'(x,y)$
- 4. F_y' е непрекъсната в M_0
- 5. $F'_{u}(x^{0}, y_{0}) \neq 0$

Тогава съществуват околности:

$$X = \{x : |x - x_k^0| < a_k\} (a_k > 0) \ k = 1 \div m; \qquad Y = \{y : |y - y_0| < b\} (b > 0)$$

такива че правотеглника $\Pi = X \times Y \subset U, X = X_1 \times X_2 \times ... \times X_m$ и освен това съществува единствена функция $y = f(x), f: X \to Y$, f-непрекъсната в X, $f(x^0) = y_0$ и $\forall x \in X: F(x; f(x)) = 0$ Ако освен това $F'_{x_k}, k = 1 \div m$ и F'_y са дефинирани в U и непрекъснати в (x^0, y_0) , то f(x) е диференцируема в точката x^0 и $f'(x_k^0)$ се изразява с формулата

$$f'(x_k^0) = -\frac{F'_{x_k}(x^0, f(x_0))}{F'_{y}(x^0, f(x_0))} = -\frac{F'_{x_k}(x^0, y_0)}{F'_{y}(x^0, y_0)}$$

Пример 5.1.2. $F(x,y) = x^2 + y^2 - 5$. Да се определи дали съществува единствена функция y = f(x) определена от неявно от уравнението F(x,y) = 0 в околността (1,2). Ако съществува да се пресметне f'(1).

$$F'_{y} = 2y; \quad F'_{y}(1,2) = 4 \neq 0$$

Съществува единствена неявна функция y = f(x) определена с уравнението F(x,y) =

$$f'(x_0) = -\frac{F'_x(x_0, y_0)}{F'_y(x_0, y_0)}$$

$$F'_x = 2x, \quad F'_x(1, 2) = 4, \quad F'_y = 2y; \quad F'_y(1, 2) = 4$$

$$f'(1) = -\frac{2}{4} = -\frac{1}{2}$$

Пример 5.1.3. $F(x,y)=x^2+y^2-3z^2-13$. Да се определи дали съществува единствена функция z=f(x,y) определена от неявно от уравнението F(x,y,z)=0 в околността (0,1,2). Ако съществува да се пресметне $z_x'(0,1),z_y'(0,1)$.

$$F'_z = 6z \implies F'_z(0, 1, 2) = 6 \cdot 2 = 12 \neq 0$$

Същесвува единствена неявна функция z=f(x,y) определена от неявно от уравнени

$$F'_{x} = 2x \implies F'_{x}(0, 1, 2) = 2 \cdot 0 = 0$$

$$F'_{y} = 2y \implies F'_{y}(0, 1, 2) = 2 \cdot 1 = 2$$

$$z'_{x}(x_{0}, y_{0}) = -\frac{F'_{x}(x_{0}, y_{0}, z_{0})}{F'_{z}(x_{0}, y_{0}, z_{0})} = -\frac{0}{6} = 0$$

$$z'_{y}(x_{0}, y_{0}) = -\frac{F'_{x}(x_{0}, y_{0}, z_{0})}{F'_{z}(x_{0}, y_{0}, z_{0})} = -\frac{2}{6} = -\frac{1}{3}$$

Ако F'_{x_k}, F'_{y_k} са непрекъснати в $U = U_{M_0}$, то f'_{x_k} е непрекъсната в X. Прилагайки формулата за производна в произволна точка в $x \in X$ получаваме

$$y'_{x_k} = f'_{x_k}(x) = -\frac{F'_{x_k}(x, f(x))}{F'_{y}(x, f(x))} = -\frac{F'_{x_k}(x, y)}{F'_{y}(x, y)}$$
(2)

Ако F има непрекъснати частни производни от втори ред, то изразите от дясната страна на (1) (съответно (2)) могат да се диференцират още веднъж по променлива $x(x_j, j=1 \div m)$, при което се получават вторите производни на f. Така се получават формулите

$$f''(x) = -\frac{F''_{xx}(x,y) + 2F''_{xy}y' + F''_{yy}(x,y)y'^2}{F'_{y}(x,y)}$$

респективно, изпускайки за удобство променливите получаваме

$$f_{x_k x_k}^{"}(x) = f_{x_k^2}^{"}(x) = -\frac{F_{x_k^2}^{"} + 2F_{x_k y}^{"} y_{x_k}^{'} + F_{yy}^{"} y_{x_k}^{'2}}{F_y^{'}}$$

и за $k \neq j$

$$f_{x_k x_j}^{"}(x) = -\frac{F_{x_k x_j}^{"} + F_{x_k y}^{"} y_{x_j}^{"} + F_{x_j y}^{"} y_{x_k}^{"} + F_{yy}^{"} y_{x_k}^{"} y_{x_j}^{"}}{F_y^{"}}$$

Пример 5.1.4. Да се намери y', y'' на неявната функция y = f(x), дефинирана от уравнението

$$x^2 - 2xy + 5y^2 + 4y = 2x + 9$$

Да се пресметнат y'(0), y''(0), ако y(0) = 1

Решение:

$$\begin{split} F(x,y) &= x^2 - 2xy + 5y^2 + 4y = 2x + 9 \\ F'_y &= -2x + 10y + 4 \neq 0 \\ F'_x(x,y) &= 2x - 2y - 2 \\ F'_y(0,1) &= -2 \cdot 0 + 10 \cdot 1 + 4 \neq 0 \\ y'(x) &= -\frac{F'_x(x,y)}{F'_y(x,y)} = -\frac{2x - 2y - 2}{-2x + 10y + 4} = -\frac{x - y - 1}{-x + 5y + 2} \\ y'(0) &= -\frac{0 - 1 - 1}{-0 + 5 \cdot 1 + 2} = -\frac{2}{7} = \frac{2}{7} \\ y''(x) &= -\frac{F''_{xx}(x,y) + 2F''_{xy}y' + F''_{yy}(x,y)y'^2}{F'_y(x,y)} \\ F''_{xx} &= 2, \quad F''_{yy} &= 10, \quad F''_{xy} &= -2 \\ F''_{xx}(0,1) &= 2, \quad F''_{yy}(0,1) &= 10, \quad F''_{xy}(0,1) &= -2 \\ y''(x) &= -\frac{2 + 2 \cdot (-2)y' + 10y'^2}{-2x + 10y + 4} \\ y''(x) &= -\frac{2 + -4y' + 10y'^2}{-2x + 10y + 4} \\ y''(0) &= -\frac{2 + -4 \cdot \frac{2}{7} + 10 \cdot \left(\frac{2}{7}\right)^2}{-2 \cdot 0 + 10 \cdot 1 + 4} \\ y''(0) &= -\frac{2 + -\frac{8}{7} + \frac{40}{49}}{14} \\ y''(0) &= -\frac{\frac{82}{49} - \frac{82}{49} \cdot \frac{1}{14}}{\frac{98 - 56 + 40}{14}} \\ y''(0) &= -\frac{\frac{41}{343}}{\frac{49}{14}} = -\frac{\frac{82}{49}}{\frac{49}{14}} = \frac{82}{49} \cdot \frac{1}{14} = \frac{41}{343} \end{split}$$

6 Лекция 6: Формула на Тейлор за функция на няколко променливи. Локални екстремуми на функция на няколко променливи

6.1 Формула на Тейлор за функция на няколко променливи

Формула на Тейлор за функията f дефинирана и непрекъсната в околност $U = U_{x_0}$ на точката x_0 , която има производни до (n+1) ред $(n \in \mathbb{N}_0)$

$$f(x) - f(x_0) = \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x)$$

с остатъчен член записан във формата на Лагранж

$$r_n(x) = \frac{f^{n+1}(x_0 + \vartheta(x - x_0))}{(n+1)!} (x - x_0)^{n+1} \qquad (0 < \vartheta < 1)$$

Нека имаме точката $(x_0, y_0) \in \mathbb{R}^2$, околността $U = U_{(x_0, y_0)} \subset \mathbb{R}^2$, която е звездообразна относно (x_0, y_0) (Всяка точка $(x, y) \in U$ околността съдържа и отсечка, която я свързва с (x_0, y_0)). Без ограничение на общостта считаме, че U е δ -околност на (x_0, y_0) (отворен кръг с център (x_0, y_0) и радиус δ). Функцията f е дефинирана в U.

Теорема 6.1.1. Нека функцията $f: U \to R$ е дефинирана и непрекъсната в δ -околността U на точката (x_0, y_0) , заедно c частните производни от n+1-ви ред $(n \in \mathbb{N}_0)$. Нека $\rho = \sqrt{\Delta x^2 + \Delta y^2} < \delta$. Тогава съществува $\vartheta = \vartheta(\Delta x, \Delta y), (0 < \vartheta < 1)$ за която

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y + \frac{1}{2} \left[\frac{\partial^2 f(x_0, y_0)}{\partial x^2} \Delta x^2 + 2 \frac{\partial^2 f(x_0, y_0)}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f(x_0, y_0)}{\partial y^2} \Delta y^2 \right] + \frac{1}{3!} \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^3 f(x_0, y_0) + \dots + \frac{1}{n!} \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^n f(x_0, y_0) + r_n(\Delta x, \Delta y)$$

или по кратко

$$\Delta z = \sum_{k=1}^{n} \frac{1}{k!} \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^{k} f(x_0, y_0) + r_n(\Delta x, \Delta y)$$
 (3)

където

$$r_n(\Delta x, \Delta y) = \frac{1}{(n+1)!} \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^{n+1} f(x_0 + \vartheta \Delta x, y_0 + \vartheta \Delta y)$$
(4)
$$(0 < \vartheta < 1)$$

Дефиниция 6.1.1. Формулата (3) се нарича формула на Тейлор от ред n за функция f, а функцията r_n - остатъчен член, а записът му във вида (4) се нарича остатъчен член на формулата на Тейлор във формата на Лагранж.

Ако n=0, първото събираемо изисква разяснение, защото индексът над знака за сумиране е по малък от индекса под знака за сумиране. В този случай по дефиниция този член е равен на нула, т.е формулата има енд

$$\Delta z = r_0(\Delta x, \Delta y)$$

Теорема 6.1.2. Нека функцията $f: U \to R$ дефинирана и непрекъсната в δ -околността U на точката x^0 , заедно c частните производни от n+1-ви ред $(n \in \mathbb{N}_0)$. Нека $\rho = \sqrt{\Delta x_1^2 + \Delta x_2^2 + ... + \Delta x_m^2} < \delta$. Тогава съществува $\vartheta = \vartheta(\Delta x) = \vartheta(\Delta x_1, \Delta x_2, ..., \Delta x_n), (0 < \vartheta < 1)$ за която

$$\Delta z = f(x) - f(x^{0}) = f(x^{0} + \Delta x) - f(x^{0}) =$$

$$= f(x_{1}^{0} + \Delta x_{1}, x_{2}^{0} + \Delta x_{2}, ..., x_{m}^{0} + \Delta x_{m}) - f(x_{1}^{0}, x_{2}^{0}, ..., x_{m}^{0}) =$$

$$= \sum_{k=1}^{n} \left(\frac{\partial}{\partial x_{1}} \Delta x_{1} + ... + \frac{\partial}{\partial x_{m}} \Delta x_{m} \right)^{k} f(x_{1}^{0}, ..., x_{m}^{0}) + r_{n}(\Delta x_{1}, ..., \Delta x_{m})$$

 $K \sigma \partial e m o$

$$\begin{split} r_n(\Delta x) &= \frac{1}{(n+1)!} \left(\frac{\partial}{\partial x_1} \Delta x_1 + \ldots + \frac{\partial}{\partial x_m} \Delta x_m \right)^{n+1} f(x^0 + \vartheta \Delta x), \\ (x^0 + \vartheta \Delta x) &= (x_1^0 + \vartheta \Delta x_1, \ldots, x_m^0 + \vartheta \Delta x_m) \qquad (0 < \vartheta < 1) \\ 3 anu сано \ c \ \partial u \phi еренциали \end{split}$$

$$\Delta z = f(x) - f(x^0) = \sum_{k=1}^{n} d^k f(x^0) + r_n(\Delta x)$$

$$\begin{aligned} &npu\ n = 1\\ &\Delta z = f(x,y) - f(x_0,y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0,y_0) = \\ &= \frac{\partial f(x_0,y_0)}{\partial x} \Delta x + \frac{\partial f(x_0,y_0)}{\partial y} \Delta y + r_1(\Delta x, \Delta y)\\ &r_1(\Delta x, \Delta y) = \frac{1}{2} \left[\frac{\partial^2 f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)}{\partial x^2} \Delta x^2 \right] + \frac{\partial^2 f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)}{\partial x \partial y} \Delta x \Delta y\\ &+ \frac{1}{2} \left[\frac{\partial^2 f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)}{\partial y^2} \Delta y^2 \right] \end{aligned}$$

Пример 6.1.1. Да се напише формулата на Тейлор за $f(x,y)=e^{x+y}$ в точката $(x_0,y_0)=(0,0), n=1$

$$\begin{split} f_x' &= e^{x+y} \, f_y' = e^{x+y} \qquad f_{xx}'' = f_{xy}'' = f_{yx}'' = e^{x+y} \\ f(0,0) &= f_x'(0,0) = f_y'(0,0) = 1 \\ \xi &= (\xi_1, \xi_2), \quad \xi_1 = \vartheta x, \quad \xi_2 = \vartheta y, \quad \vartheta \in (0,1) \\ f_{xx}''(\xi_1, \xi_2) &= f_{xy}''(\xi_1, \xi_2) = f_{yx}''(\xi_1, \xi_2) = e^{\xi_1 + \xi_2} = e^{\vartheta(x+y)} \\ f(x,y) &= 1 + 1x + 1y + \frac{1}{2!} \left(e^{\vartheta(x+y)} x^2 + 2 e^{\vartheta(x+y)} xy + e^{\vartheta(x+y)} y^2 \right) \\ &= 1 + (x+y) + \frac{e^{\vartheta(x+y)}}{2!} (x+y)^2 \end{split}$$

6.2 Локални екстремуми на функция на няколко променливи

Дефиниция 6.2.1. Казваме че функцията $f:D\to\mathbb{R}$ има локален максимум в точката $x^0\in D$, ако съществува околност $U_{x^0}\subset D$ на точката x^0 , че

$$f(x^0) \ge f(x), \quad \forall x \in U_{x^0}$$

Дефиниция 6.2.2. Казваме че функцията $f:D\to\mathbb{R}$ има локален минимум в точката $x^0\in D$, ако съществува околност $U_{x^0}\subset D$ на точката x^0 , че

$$f(x^0) \le f(x), \quad \forall x \in U_{x^0}$$

Дефиниция 6.2.3. Локалните максимуми и локалните минимуми се наричат по - общо локални екстремуми.

Дефиниция 6.2.4. Ако неравенството в дефинииците (6.2.1) или (6.2.2) е строго при $x \neq x^0$, то съответния локален екстремум се нарича строг локален екстремум(строг локален максимум или строг локален минимум).

30

Теорема 6.2.1 (Необходимо условие). Нека функцията $f: D \to \mathbb{R}$ притежава локален екстремум в $x^0 \in D \subset \mathbb{R}^m$ и освен това съществуват първите частни производни $f'_{x_k}(x^0)$ в точката x^0 , $k=1 \div m$ тогава

$$f'_{x_k}(x^0) = 0 \quad k = 1 \div m$$

Дефиниция 6.2.5. Точката x^0 се нарича стационарна точка за функцията f, диференцируема в нея, ако $\operatorname{grad} f(x^0) = 0$.

Пример 6.2.1. Тук са разгледани две функции които са дефинирани и диференцируеми в цялата равнина \mathbb{R}^2 , но нямат локални екстремуми

$$f(x,y) = e^{x+y}$$

$$f'_x(x,y) = f'_y(x,y) = e^{x+y} \neq 0 \forall (x,y) \in \mathbb{R}^2$$

$$f(x,y) = xy$$

$$f'_{x}(x,y) = xy$$

$$f'_{x}(x,y) = x \qquad f'_{y}(x,y) = y$$

$$grad f(x,y) = (y,x) = (0,0)$$

$$f(x,y) - f(0,0) = xy - 0 = xy \implies$$

няма локален екстремум (сменя знака си във всяка произволно взета околност на точката (0,0)). Точката (0,0) е седловина на хиперболичната повърхнина z=xy.

6.3 Достатъчни условия за съществуване на локален екстремум на функция

Теорема 6.3.1 (Достатъчно условие). Нека функцията $f: D \to \mathbb{R}$ притежава непрекъснати частни производни $f''_{xx}, f''_{xy}, f''_{yx}, f''_{yy}$ от втори ред в околността U и точката (x_0, y_0) е стационарна точка f, т.е

$$f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$$

Тогава

1. Ако $\Delta = f''_{xx}(x_0, y_0) \cdot f''_{yy}(x_0, y_0) - \left[f''_{xy}(x_0, y_0) \right]^2 > 0$ то f(x, y) има локален екстермум в (x_0, y_0) .

2.
$$A\kappa o$$

$$\Delta = f''_{xx}(x_0, y_0) \cdot f''_{yy}(x_0, y_0) - \left[f''_{xy}(x_0, y_0) \right]^2 < 0$$
 $mo\ f(x, y)$ няма локален екстермум b (x_0, y_0) .

3. A KO

$$\Delta = f_{xx}''(x_0, y_0) \cdot f_{yy}''(x_0, y_0) - \left[f_{xy}''(x_0, y_0) \right]^2 = 0$$

то f(x,y) може да има локален екстремум в (x_0,y_0) , така и да няма такъв.

Пример 6.3.1. Да се намерят екстремумите на (ако съществуват) и да се определи видът им.

•
$$f(x,y) = x^2 + y^2$$

•
$$f(x,y) = -x^2 - y^2$$

•
$$f(x,y) = x^2 - y^2$$

$$f(x,y) = x^2 + y^2$$

$$f_x' = 2x \qquad f_y' = 2y$$

$$\left|egin{array}{c} 2x=0 \\ 2y=0 \end{array}
ight. \Longrightarrow \ M_0(0,0)-$$
стационарна точка

$$f_{xx}'' = 2$$
 $f_{yy}'' = 2$ $f_{xy}'' = 0$

$$\Delta = f''_{xx} \cdot f''_{yy} - \left[f''_{xy} \right]^2 = 2 \cdot 2 - 0 = 4 > 0 \implies \exists \text{екстремум}$$

$$f_{xx}'' = 2 > 0 \implies$$
 екстремума е минимум $f_{min} = f(0,0) = 0^2 + 0^2 = 0$

$$f(x,y) = -x^2 - y^2$$

$$f_x' = -2x \qquad f_y' = -2y$$

$$\begin{vmatrix} -2x=0 \\ -2y=0 \end{vmatrix}$$
 $\Longrightarrow M_0(0,0)$ — стационарна точка

$$f_{xx}'' = -2$$
 $f_{yy}'' = -2$ $f_{xy}'' = 0$

$$\Delta = f_{xx}'' \cdot f_{yy}'' - \left[f_{xy}'' \right]^2 = (-2)(-2) - 0 = 4 > 0 \implies \exists \text{екстремум}$$

$$f_{xx}'' = -2 < 0 \implies$$
 екстремума е максимум $f_{max} = f(0,0) = -0^2 - 0^2 = 0$

$$f(x,y) = x^2 - y^2$$

$$f_x' = 2x \qquad f_y' = -2y$$

$$\begin{vmatrix} 2x=0 \\ -2y=0 \end{vmatrix}$$
 $\Longrightarrow M_0(0,0)$ — стационарна точка

$$f_{xx}'' = 2$$
 $f_{yy}'' = -2$ $f_{xy}'' = 0$

$$\Delta = f''_{xx} \cdot f''_{yy} - \left[f''_{xy} \right]^2 = 2(-2) - 0 = -4 < 0 \implies$$
 няма екстремум

Пример 6.3.2. Да се намерят екстремумите на (ако съществуват) и да се определи видът им.

•
$$f(x,y) = y^4 + x^2$$

•
$$f(x,y) = -y^4 - x^2$$

•
$$f(x,y) = y^3 + x^2$$

•
$$f(x,y) = xy^3$$

•
$$f(x,y) = (x+y)^2$$

•
$$f(x,y) = -(x+y)^2$$

$$f(x,y)=y^4+x^2$$
 $f'_x=2x$ $f'_y=4y^3$ $\Big| \begin{array}{l} 2x=0 \\ 4y^3=0 \end{array} \implies M_0(0,0)-$ стационарна точка $f''_{xx}=2$ $f''_{yy}=12y^2$ $f''_{xy}=0$ $\Delta=f''_{xx}\cdot f''_{yy}-\left[f''_{xy}\right]^2=2(12y^2)-0=24y^2=0 \Longrightarrow$ трябва допълнително изследване $f(x,y)-f(0,0)=y^4+x^2-(0^4+0^2)=y^4+x^2\geq 0$ $y^4+x^2=0 \iff x=y=0$ $f(x,y)-f(0,0)\geq 0 \iff f(x,y)\geq f(0,0)$ в $\mathbb{R}^2 \implies$ локален минимум $f_{min}=f(0,0)=0^4+0^2=0$

$$f(x,y) = -y^4 - x^2$$

$$f'_x = -2x \quad f'_y = -4y^3$$

$$\begin{vmatrix} -2x = 0 \\ -4y^3 = 0 \end{vmatrix} \implies M_0(0,0) - \text{стационарна точка}$$

$$f''_{xx} = -2 \quad f''_{yy} = -12y^2 \quad f''_{xy} = 0$$

$$\Delta = f''_{xx} \cdot f''_{yy} - \left[f''_{xy}\right]^2 = -2(-12y^2) - 0 = 24y^2 = 0 \implies \text{допълнително изследване}$$

$$f(x,y) - f(0,0) = -y^4 - x^2 - (-0^4 - 0^2) = -y^4 - x^2 \ge 0 \iff y^4 + x^2 \le 0$$

$$y^4 + x^2 = 0 \iff x = y = 0$$

$$f(x,y) - f(0,0) \le 0 \iff f(x,y) \le f(0,0) \text{ в } \mathbb{R}^2 \implies \text{локален максимум}$$

$$f_{max} = f(0,0) = -0^4 + -0^2 = 0$$

$$f(x,y)=y^3+x^2f_x'=2x$$
 $f_y'=3y^2$ $\begin{vmatrix} 2x=0 \\ 3y^2=0 \end{vmatrix} \implies M_0(0,0)$ — стационарна точка $f_{xx}''=2$ $f_{yy}''=6y$ $f_{xy}''=0$ $\Delta=f_{xx}''\cdot f_{yy}''-\left[f_{xy}''\right]^2=2(6y)-0=12y^2=0 \implies$ допълнително изследване $f(x,y)-f(0,0)=y^3+x^2-(0^3+0^2)=y^3+x^2$ За всяка точка от положителната ординатна ос $(x>0,y>0)f(x,y)-f(0,0)>0$ За всяка точка от отрицателната ординатна ос $(x<0,y<0)f(x,y)-f(0,0)<0 \implies f(x,y)-f(0,0)$ Няма постоянен знак във всяка околност на M_0 $\implies f(x,y)$ няма локален екстремум в $_0$ и точката M_0 е седловинна точка

$$\begin{split} f(x,y) &= xy^3 f_x' = y^3 \quad f_y' = 3xy^2 \\ \begin{vmatrix} y^3 &= 0 \implies y = 0 \\ 3xy^2 &= 0 \implies x = 0 \text{ или } x \neq 0 \end{aligned} \Longrightarrow$$

Стационарните точки са безкрайно много

$$M_0(x,0)(x \in \mathbb{R})$$

1.
$$x_0 = 0, y = 0 \implies M_0 = (0,0)$$

$$f(x,y) - f(0,0) = xy^3 - 0 = xyy^2$$
 I и III квадрант - $xy > 0$, а във II и IV - $xy < 0, y^2 > 0 \implies$ Сменя знака си \implies f няма локален екстремум в $_0$

2.
$$x_0 \neq 0, y = 0 \implies M_1 = (x_0, 0)$$

$$\Delta f = f(x_0, y) - f(x_0, 0) = x_0 y^3 - x_0 0^3 \implies \Delta f = y^2(x_0 y)$$

$$x_0 > 0 \implies \begin{cases} \Delta f > 0, & y > 0 \\ \Delta f < 0, & y < 0 \end{cases} \implies \Delta f$$
 сменя знака си в околността на M_1

Аналогично за $x_0 < 0$ знакът не се запазва \Longrightarrow f няма локален екстремум в точката $M_1 \Longrightarrow$ f няма локални екстремуми

$$f(x,y) = (x+y)^{2}$$

$$f'_{x} = 2(x+y) \quad f'_{y} = 2(x+y)$$

$$\begin{vmatrix} 2(x+y) = 0 \\ 2(x+y) = 0 \end{vmatrix} \iff x+y=0 \iff -x=y \implies$$

Стационарни точки са всички точки от ъглополовящата на II и IV квадрант - от правата x+y=0, т.е $M(x_0,-x_0),x_0\in\mathbb{R}$

$$f''_{xx} = 2, \quad f''_{yy} = 2, \quad f''_{xy} = 2,$$

$$\Delta = 2 \cdot 2 - (2)^2 = 0 \implies$$
 допълнително изследване

$$f(x,y) - f(x_0, -x_0) = (x+y)^2 - (x_0 - x_0)^2 = (x+y)^2 \ge 0 \implies$$

f има локален минимум във всяка точка от вида $M(x_0,-x_0),$

$$f_{min} = (x_0 - x_0)^2 = 0$$

$$f(x,y) = -(x+y)^{2}$$

$$f'_{x} = -2(x+y) \quad f'_{y} = -2(x+y)$$

$$\begin{vmatrix}
-2(x+y) & 0 \\
-2(x+y) & 0
\end{vmatrix} \iff x+y=0 \iff -x=y \implies$$

Стационарни точки са всички точки от ъглополовящата на II и IV квадрант - от правата $\mathbf{x}+\mathbf{y}=0$, т.е $M(x_0,-x_0),x_0\in\mathbb{R}$

$$f''_{xx} = -2, \quad f''_{yy} = -2, \quad f''_{xy} = -2,$$

$$\Delta = (-2)(-2) - (-2)^2 = 0 \implies$$
 допълнително изследване

$$f(x,y) - f(x_0, -x_0) = -(x+y)^2 + (x_0 - x_0)^2 = -(x+y)^2 \le 0 \implies$$

f има локален максимум във всяка точка от вида $M(x_0, -x_0),$

$$f_{max} = (x_0 - x_0)^2 = 0$$

7 Лекция 7: Локални екстремуми на функция на няколко променливи. Екстремум на неявна функция

7.1 Достатъчни условия за съществуване на локален екстремум на функция II

Нека точката $x^0 \in \mathbb{R}^m$, $(m \ge 2)$, отвореното множество $U = U_{x^0} \subset \mathbb{R}^m$ е нейна околност и функцията $f: U \to \mathbb{R}$ е поне два пъти непрекъснато диференцируема в U а точката x^0 е стационарна точка за f. В този случай изследванията се свеждат до използване на формулата на Тейлор с n=1

$$f(x) - f(x^{0}) = \sum_{k=1}^{m} f'_{x_{k}}(x^{0})(x_{k} - x_{k}^{0}) + \frac{1}{2!} \sum_{i=1}^{m} \sum_{j=1}^{m} f''_{x_{i}x_{j}}(\xi)(x_{i} - x_{i}^{0})(x_{j} - x_{j}^{0})$$

$$\xi := x^0 + \vartheta(x - x^0), \quad \vartheta = \vartheta(x) \in (0, 1)$$

Първите частни производни имат стойност 0 в стационарните точки

$$f(x) - f(x^{0}) = \frac{1}{2!} \sum_{i=1}^{m} \sum_{j=1}^{m} f_{x_{i}x_{j}}''(\xi)(x_{i} - x_{i}^{0})(x_{j} - x_{j}^{0})$$

Дефиниция 7.1.1. Квадратична форма А

$$A(x) = A(x_1, ..., x_m) = \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} x_i x_j$$

се нарича положително дефинирана(отрицателно дефинирана) ако за всеки ненулев вектор $x=(x_1,...,x_m)\in\mathbb{R}^m$ е изпълнено

$$A(x) > 0 \qquad (A(x) < 0)$$

u знакопроменлива, ако за вектори

$$x, y \in \mathbb{R}^m$$
: $A(x) > 0$ $A(y) < 0$

Теорема 7.1.1 (Достатьчно условие). Нека функцията $f: U \to \mathbb{R}$ притежава непрекъснати частни производни $f''_{x_ix_j}(i,j=1\div m)$ от втори ред в околността U на точката $x^0=(x_1^0,...,x_m^0)$ и е стационарна точка

$$f_{x_i}(x^0) = f_{x_i}(x_1^0, ..., x_m^0) = 0$$
 $(i = 1 \div m)$

Тогава ако квадратичната форма (втори диференциал)

$$A(dx_1, ..., dx_m) = \sum_{i=1}^{m} \sum_{j=1}^{m} f''_{x_i x_j}(x^0) dx_i dx_j$$

е положително дефинитна квадратична форма, то точката x^0 е строг локален минимум за функцията f.

Aко е отрицателно дефинитна квадратична форма, то точката x^0 е строг локален максимум за функцията f.

Ако е недефинитна, то f няма локален екстремум.

Ако изразът е равен на 0 може да има локален, но може и да няма.

Теорема 7.1.2 (Критерий на Силвестър). *Квадратичната форма А де-* финирана в (7.1.1) в която $a_{ij} = a_{ji}$, $(i, j = 1 \div m)$ е положително дефинитна тогава и само тогава когато,

$$\Delta_{1} = a_{11} > 0, \quad \Delta_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \dots, \quad \Delta_{m} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{vmatrix} > 0$$

u отрицателно дефинитна (-A(x) е положително дефинитна) тогава u само тогава, когато

$$\Delta_1 < 0, \quad \Delta_2 > 0, \quad \Delta_3 < 0, ..., \qquad (-1)^k \Delta_k > 0 (k = 1 \div m)$$

Пример 7.1.1. Да се разгледат функциите в точката $M_0(1,2,-3)$

- $u = x^2 + y^2 + z^2 2x 4y 6z$
- $u = -x^2 y^2 z^2 + 2x + 4y 6z$
- $u = x^2 + y^2 z^2 2x 4y 6z$

$$\Delta_{1}(M_{0}) = u''_{xx}(M_{0}),$$

$$\Delta_{2}(M_{0}) = \begin{vmatrix} u''_{xx}(M_{0}) & u''_{xy}(M_{0}) \\ u''_{yx}(M_{0}) & u''_{yy}(M_{0}) \end{vmatrix}$$

$$\Delta_{3}(M_{0}) = \begin{vmatrix} u''_{xx}(M_{0}) & u''_{xy}(M_{0}) & u''_{xz}(M_{0}) \\ u''_{yx}(M_{0}) & u''_{yy}(M_{0}) & u''_{yz}(M_{0}) \\ u''_{zx}(M_{0}) & u''_{zy}(M_{0}) & u''_{zz}(M_{0}) \end{vmatrix}$$

$$\begin{split} u &= x^2 + y^2 + z^2 - 2x - 4y - 6z \\ u'_x &= 2x - 2 \qquad u'_y = 2y - 4 \qquad u'_z = 2z - 6 \\ u''_{xx} &= 2 \qquad u''_{xy} = 0 \qquad u''_{xz} = 0 \\ u''_{yx} &= 0 \qquad u''_{yy} = 2 \qquad u''_{yz} = 0 \\ u''_{zx} &= 0 \qquad u''_{zy} = 0 \qquad u''_{zz} = 2 \\ \Delta_1(M_0) &= u''_{xx}(M_0) = 2 > 0 \\ \Delta_2(M_0) &= \begin{vmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 > 0 \\ \Delta_3(M_0) &= \begin{vmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) & u''_{xz}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) & u''_{yz}(M_0) \\ u''_{xx}(M_0) & u''_{yy}(M_0) & u''_{zz}(M_0) \end{vmatrix} = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8 > 0 \implies 0 \end{split}$$

Съгласно критерия на Силвестър вторият диференциал е положително дефинитна квадратична форма и има локален минимум $u_{min}=u(1,-2,3)=-14$

$$\begin{aligned} u &= -x^2 - y^2 - z^2 + 2x + 4y - 6z \\ u'_x &= -2x + 2 \qquad u'_y = -2y + 4 \qquad u'_z = -2z - 6 \\ u''_{xx} &= -2 \qquad u''_{xy} = 0 \qquad u''_{xz} = 0 \\ u''_{yx} &= 0 \qquad u''_{yy} = -2 \qquad u''_{yz} = 0 \\ u''_{zx} &= 0 \qquad u''_{zy} = 0 \qquad u''_{zz} = -2 \\ \Delta_1(M_0) &= u''_{xx}(M_0) = -2 < 0 \\ \Delta_2(M_0) &= \begin{vmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) \end{vmatrix} = \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} = 4 > 0 \\ \Delta_3(M_0) &= \begin{vmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) & u''_{xz}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) & u''_{yz}(M_0) \\ u''_{xx}(M_0) & u''_{yy}(M_0) & u''_{yz}(M_0) \end{vmatrix} = \begin{vmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{vmatrix} = -8 < 0 \implies 0 \end{aligned}$$

Съгласно критерия на Силвестър вторият диференциал е отрицателно дефинитна квадратична форма и има локален максимум $u_{max} = u(1, -2, 3) = 14$

$$\begin{aligned} u &= x^2 + y^2 - z^2 - 2x - 4y - 6z \\ u'_x &= 2x - 2 \qquad u'_y = 2y - 4 \qquad u'_z = -2z - 6 \\ u''_{xx} &= 2 \qquad u''_{xy} = 0 \qquad u''_{xz} = 0 \\ u''_{yx} &= 0 \qquad u''_{yy} = 2 \qquad u''_{yz} = 0 \\ u''_{zx} &= 0 \qquad u''_{zy} = 0 \qquad u''_{zz} = -2 \\ \Delta_1(M_0) &= u''_{xx}(M_0) = 2 > 0 \\ \Delta_2(M_0) &= \begin{vmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 > 0 \\ \Delta_3(M_0) &= \begin{vmatrix} u''_{xx}(M_0) & u''_{xy}(M_0) & u''_{xz}(M_0) \\ u''_{yx}(M_0) & u''_{yy}(M_0) & u''_{yz}(M_0) \end{vmatrix} = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{vmatrix} = -8 < 0 \implies 0 \end{aligned}$$

Не е дефинитна квадратична форма \implies няма локален екстремум

7.2 Локален екстремум на неявна функция

Нека

- $x^0 \in \mathbb{R}^m$
- $M_0(x^0, y_0) \in \mathbb{R}^{m+1}$ точка
- ullet $U_{M_0}\subset \mathbb{R}^{m+1}$ околност на M_0
- $F: U_{M_0} \to \mathbb{R}, \qquad F(x^0, y_0) = 0$
- $\exists F_x', F_y': F_y'(M_0) \neq 0, F_y'$ е непрекъсната в M_0

Тогава уравнението F(x,y)=0 дефинира неявната функция f в околност $U=U_{x^0}\subset \mathbb{R}^m$ на точката x^0

$$f: U \to \mathbb{R}$$
 $f(x^0) = y_0$

Възможно е да има локални екстремуми. Тяхното намиране се осъществява по познатия ни алгоритъм.

В случая m=1 неявната функция f е на една променлива съгласно формулата

$$y' = f'(x) = -\frac{F_x'(x, f(x))}{F_y'(x, f(x))} = -\frac{F_x'(x, y)}{F_y'(x, y)}$$

стационарните точки се намират като решения на система

$$| F'_x(x,y) = 0 F(x,y) = 0 F'_y(x,y) \neq 0$$

Евентуално съществуване на екстремум може да се останови от знака на $f''(x^0)$ тъй като по формула

$$f''(x^0) = -\frac{F''_{xx}(x_0, y_0)}{F'_y(x_0, y_0)}$$

Пример 7.2.1. Уравнението $(x^2+y^2)^2=2(x^2-y^2)$ задава четири неявни функции $y=f_k(x)(k=1,2,3,4)$ според това в кой квадрант се намира точката, в чиято околност се търси неявната функция. Нека

$$F(x,y) = (x^2 + y^2)^2 - 2(x^2 - y^2)$$

то уравнението F(x,y)=0 задава единствена неявна функция в околността на някоя тока, само ако

$$F_y'(x,y) = 4y(x^2 + y^2 + 1) \neq 0$$

в нея което дава $y \neq 0$

$$\begin{vmatrix} 4x(x^{2} + y^{2} - 1) = 0\\ (x^{2} + y^{2})^{2} - 2(x^{2} - y^{2}) = 0\\ 4y \neq 0 \end{vmatrix}$$

x=0 не е решение системата е еквивалентна

$$\begin{vmatrix} x^2 + y^2 = 1 \\ (x^2 + y^2)^2 - 2(x^2 - y^2) = 0 \Leftrightarrow \begin{vmatrix} x^2 + y^2 = 1 \\ 1 - 2(2x^2 - 1) = 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 4x^2 = 3 \\ 4y^2 = 1 \end{vmatrix}$$

От където се получават 4 точки

$$M_1 = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), M_2 = \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right), M_3 = \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right), M_4 = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

Нека $y=f_k(x)$ е неявна функция дефинирана в околността на точката M_k . Тъй като $F"_{xx}(x,y)=4(3x^2+y^2-1)>0$ за точките M_k то знакът се определя от стойността на $F'_y(M_k)=8y_k$

$$f_1''(x_1) < 0$$
 $f_2''(x_2) < 0 \implies$ максимум със стойност $\frac{1}{2}$

$$f_3''(x_3) > 0$$
 $f_4''(x_4) > 0 \Longrightarrow$ минимум със стойност $-\frac{1}{2}$

 $F_y'(0,0)=0$ е точка на самопресичане на леминската на Бернули, чието уравнение е дадено в този пример.

Ако m>1 неявната фунцкия е на повече променливи и се намира като решения на системата

$$\begin{vmatrix} F'_{x_k}(x,y) = 0 & k = 1 \div m \\ F(x,y) = 0 & \\ F'_y(x,y) \neq 0 & \end{vmatrix}$$

Стойностите на вторите частни производни в стационарните точки са

$$f_{x_k x_k}^{"}(x^0) = -\frac{F_{x_k x_k}^{"}(x^0, y_0)}{F_y^{'}(x^0, y_0)} \qquad f_{x_k x_j}^{"}(x^0) = -\frac{F_{x_k x_j}^{"}(x^0, y_0)}{F_y^{'}(x^0, y_0)} \quad (k \neq j)$$

8 Лекция 8: Условни и абсолютни екстремуми на функция на няколко променливи

8.1 Условни екстремуми на функция на няколко променливи

Нека $D \subset \mathbb{R}^m$ и функциите $f, \varphi_n : D \to \mathbb{R} (n=1,2,...,k)$ са дефинирани и два пъти непрекъснато диференцируеми в D. Нека E е множеството от точки $x=(x_1,x_2,...,x_m) \in D$, за които дадената функция φ_n

$$E = \{x | \varphi_n(x) = 0, n = 1, 2, ..., k, x \in D\}$$

Дефиниция 8.1.1. Уравненията

$$\varphi_n(x) = 0, \quad (n = 1, 2, ..., k)$$

се наричат условния на връзките.

Дефиниция 8.1.2. Точката $x^0 \in D$ се нарича точка на условен екстремум на f при условие, че са изпълнени условия на връзките (8.1.1), ако тя е точка на обичаен (локален) екстремум на тази функция, разглеждана само върху множесството E. в което са изпълнени дадените условия.

C други думи стойността $f(x^0)$ се сравнява не със всички стойностти в околността на x^0 , а само с тези от множеството E.

За да се изследва за екстремум функцията $y=f(x_1,x_2,...,x_m)$ при ограничения

$$\begin{vmatrix} \varphi_1(x_1, x_2, ..., x_m) = 0 \\ \varphi_2(x_1, x_2, ..., x_m) = 0 \\ ... \\ \varphi_k(x_1, x_2, ..., x_m) = 0 \end{vmatrix}$$

се конструира функцията на Лагранж.

$$L(x_1, x_2, ..., x_m; \lambda_1, \lambda_2, ..., \lambda_k) = f(x_1, x_2, ..., x_m) + \sum_{n=1}^k \lambda_n \varphi(x_1, x_2, ..., x_m)$$

Където $\lambda_n, n = 1, 2, ..., k$ се наричат множители на Лаграж. За получената функция се решава задача за локален есктремум, като стационарните

точки са решения на следната система:

$$\begin{split} \frac{\partial L(x_1, x_2, ..., x_m; \lambda_1, \lambda_2, ..., \lambda_k)}{\partial x_1} &= 0 \\ \frac{\partial L(x_1, x_2, ..., x_m; \lambda_1, \lambda_2, ..., \lambda_k)}{\partial x_2} &= 0 \\ ... \\ \frac{\partial L(x_1, x_2, ..., x_m; \lambda_1, \lambda_2, ..., \lambda_k)}{\partial x_m} &= 0 \varphi_1(x_1, x_2, ..., x_m) &= 0 \\ \varphi_2(x_1, x_2, ..., x_m) &= 0 \\ ... \\ \varphi_k(x_1, x_2, ..., x_m) &= 0 \\ \lambda_n &\neq 0, n = 1, 2, ..., k \end{split}$$

Видът на екстремума се определя от знака на втория диференциал в съотвентата стационарна точка.

Теорема 8.1.1. Нека $D \subset \mathbb{R}^m$ и функциите $f, \varphi_n : D \to \mathbb{R} (n = 1, 2, ..., k)$ са дефинирани и два пъти непрекъснато диференцируеми в D. Ако точката x^0 удовлетворява условията на връзките и е стационарна точка за функцията на Лагранже и ако вторият диференциал на функцията на Лагранже в тази точка е положително/отрицателно дефинитна квадратична форма на променливите $dx_1, dx_2, ..., dx_m$ при условие че те удовлетворяват системата от уравнения

$$\frac{\partial \varphi_n}{\partial x_1} dx_1 + \dots + \frac{\partial \varphi_n}{\partial x_m} dx_m = 0, n = 1, \dots, k$$

то точката x^0 е точка на строг условен минимум/максимум за дадената функция, относно уравненията на връзките.

Пример 8.1.1. Ако $E \subset \mathbb{R}^2, (x,y) \in \mathbb{R}^2, x>0, y>0, x+y=s$ да се намери минумума на функцията $f(x,y)=x^2+y^2$ върху Е.

$$L(x, y; \lambda) = f(x, y) + \lambda(s - x - y) = x^{2} + y^{2} + \lambda(s - x - y)$$

$$L''_{xx} = 2 \quad L''_{yy} = 2 \quad L''_{xy} = L''_{yx} = 0$$

$$(x_{0}, y_{0}) = \left(\frac{s}{2}, \frac{s}{2}\right)$$

$$L_{min} \implies f_{min} = f(x_{0}, y_{0}) = f\left(\frac{s}{2}, \frac{s}{2}\right) = \frac{s^{2}}{2}$$

8.2 Абсолютни екстремуми на функция на няколко променливи

В много случаи е важно да се намерят най-голямата и най-малката стойност на дадена функция върху цялото дефиниционно множество, т.е. абсолютният (глобалният) минимум и максимум на функцията. Да предположим, че дефиниционното множество $D \subset \mathbb{R}^m$ на функцията f(x) е компактно множество в \mathbb{R}^m . Тогава по теоремата на Вайерщрас (Теорема (2.4.1), f(x) достига най-малката и най-голямата си стойност в някакви точки на D. Тогава се получават следните две алтернативни възможности: абсолютният максимум може да се достигне във вътрешна или контурна точка на D. Ако максимумът се достига във вътрешна точка, то той е и локален, и ние можем да използваме развитата дотук теория. Разбира се, всичко казано тук се отнася и за абсолютния минимум. Ако екстремумът е в точка от контура ∂D на дефиниционната област, то той е условен екстремум, и може да бъде намерен по алгоритъма, описан в предния параграф. Така задачата за намиране на абсолютните екстремуми се свежда до намирането на стационарните точки в множеството и локалните екстемуми, условните екстремуми по контура (или съставните му части) и сравняването на тези стойности. Най-голямата от тях е абсолютен максимум, а наймалката е абсолютен минимум. По-долу, за по-голяма яснота е разгледан следният пример.

Пример 8.2.1. Ако $E \subset \mathbb{R}^2, (x,y) \in \mathbb{R}^2, x \geq -1, y \geq -1, x+y \leq 1$ да се намерят най малката и най голямата стойност на функцията $f(x,y) = x^2 + y^2$ върху E. Решение:

$$M_{0} = (0,0) \in E$$

$$\Delta = 2 \cdot 2 - 0^{2} > 0 \quad f''_{xx} = 2 > 0 \implies f_{min}$$

$$f_{min} = f(0,0) = 0$$

$$L(x,y;\lambda) = f(x,y) + \lambda(x+y-1) = x^{2} + y^{2} + \lambda(x+y-1)$$

$$L'_{x} = 2x + \lambda \quad L'_{y} = 2y + \lambda$$

$$\begin{vmatrix} 2x + \lambda & 0 \\ 2y + \lambda & 0x + y - 1 = 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = -\frac{\lambda}{2} \\ y = -\frac{\lambda}{2} \\ \lambda & -1 \end{vmatrix} \implies M_{1}\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$L''_{xx} = 2 \quad L''_{yy} = 2 \quad L''_{xy} = L''_{yx} = 0$$

$$f_{min} = f(M_1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$x = -1 \Leftrightarrow g(y) = (-1)^2 + y^2 = y^2 + 1$$

$$g_{min} = g(0) = 1 = f_{min} \implies M_2(-1, 0)$$

$$y = -1 \Leftrightarrow h(x) = x^2 + (-1)^2 = x^2 + 1$$

$$h_{min} = h(0) = 1 = f_{min} \implies M_3(0, -1) \quad f(M_3) = 1$$

$$\begin{vmatrix} x + y = 1 \\ y = -1 \end{vmatrix} \implies M_4(2, -1) \quad \begin{vmatrix} x + y = 1 \\ x = -1 \end{vmatrix} \implies M_5(-1, 2)$$

$$f(-1, -1) = 2 \quad f(2, -1) = 5 \quad f(-1, 2) = 5$$

9 Лекция 9: Двоен интеграл

9.1 Понятие за обем в \mathbb{R}^{m} . Множество с мярка нула

Нека $T_k(k=0,1,2...)$ е съвкупността от всички затворени кубове от вида

$$Q^{m} = Q^{m,k} = \left\{ x : x \in \mathbb{R}^{m}, \frac{l_{i}}{10^{k}} \le x_{i} \le \frac{l_{i} + 1}{10^{k}}, i = 1, 2, ..., m \right\}$$

където $l_i \in \mathbb{Z}$ За удобство кубовете се означават просто Q^m .

Дефиниция 9.1.1. Системата T_k се нарича разделяне на \mathbb{R}^m от ранг k, а кубовете Q^m - кубове от ранг k.

В частност за m=1 множествата Q^m са интервали, а за m=2 -квадрати. По нататък ще предполагаме, че $m\geq 2$

Дефиниция 9.1.2. Числото $\frac{1}{10^{km}}$ се нарича т-мерен обем на куба Q^m и е използвано означението $\mu(Q^m)$.

$$\mu(Q^m) = \frac{1}{(10^k)^m} = \frac{1}{10^{km}}, k = 0, 1, 2, \dots$$

Дефиниция 9.1.3. Ако $E \subset \mathbb{R}^m$ и E представлява обеднинение на крайно или изброимо много кубове Q_j^m от даден ранг k, т.е. $E = \cup_j Q_j^m$, то $\mu(E)$ се дефинира като

$$\mu(E) = \sum_{j} \mu(Q_{j}^{m})$$

Нека $G \subset \mathbb{R}^m$ G - отворено. Да означим със $S_k = S_k(G)$ множеството от точки на всички m-мерни кубове от ранг k, изцяло лежащи в G. Тогава

$$S_0 \subset S_1 \subset S_2 \subset ... \subset S_k \subset S_{k+1} \subset ...$$

и следователно

$$\mu(S_0) \le \mu(S_1) \le \dots \le \mu(S_k) \le \mu(S_{k+1}) \le \dots$$

и поради това съществува крайна или безкрайна граница $\lim_{k\to\infty}\mu(S_k)$.

Дефиниция 9.1.4. Крайната или безкрайната граница $\lim_{k\to\infty} \mu(S_k(G))$ се нарича т-мерна мярка или т-мерен ожем на множеството G и се означава с $\mu(G)$

$$\mu(G) = \lim_{k \to \infty} \mu(S_k(G))$$

По силата на тази дефиниция $\mu(G) > 0$ за всяко отворено непразно множество $G \subset \mathbb{R}^m$ и $\mu(G) < \infty$ ако G е и ограничено.

Лема 9.1.1 (адитивност на мярка). Нека $G', G'' \subset \mathbb{R}^m$ са отворени множества и $G' \cap G'' = \emptyset$ тогава е в сила

$$\mu(G' \cup G'') = \mu(G') + \mu(G'')$$

Лема 9.1.2 (полуадитивност на мярка). *Нека* $G', G'' \subset \mathbb{R}^m$ са отворени множества. Тогава е в сила

$$\mu(G' \cup G'') \le \mu(G') + \mu(G'')$$

Лема 9.1.3 (адитивност на мярка). *Нека* $G', G'' \subset \mathbb{R}^m$ са отворени множества и $G' \subset G''$ тогава е в сила

$$\mu(G') \le \mu(G'')$$

Дефиниция 9.1.5. Границата $\lim_{k\to\infty} \mu(S_k^*(G))$ се нарича горна т-мерна мярка на множеството D и се означава с $\overline{\mu}(D)$

$$\overline{\mu}(D) = \lim_{k \to \infty} \mu(S_k^*(G))$$

Лема 9.1.4 (монотонност на горната мярка). $A\kappa o\ D', D'' \subset \mathbb{R}^m\ mo\ s$ сила е неравенството

$$\overline{\mu}(D') \le \overline{\mu}(D'')$$

Лема 9.1.5 (полуадитивност на горната мярка). Ако $D_i \subset \mathbb{R}^m, i = 1 \div s$ $u \ D = \bigcup_{i=1}^s D_i \ mo \ s \ cuna \ e \ nepasencmsomo$

$$\overline{\mu}(D) \le \sum_{i=1}^{s} \overline{\mu}(D_i)$$

Дефиниция 9.1.6. Ако $\overline{\mu}(D)=0$ то множеството D се нарича множество с мярка нула и се записва $\mu(D)=0$. Празното множество по дефиниция има мярка нула $\mu(\varnothing)=0$

9.2 Измерими множества в \mathbb{R}^m

Нека $G \subset \mathbb{R}^m$ е ограничено множество, [G] е негова затворена обвивка. Да означим с $S_k^*([G])$ множеството от точки на всички m-мерни кубове от ранг k, всеки който се пресича с [G] а със $S_k(G)$ множеството от точки

на всички m-мерни кубове от ранг k, съдържащи се във G. От $S_k \subset S_k^*$ следва

$$\mu(S_k) \le \mu(S_k^*)$$

откъдето при $k \to \infty$ се получава че

$$\mu(G) \leq \overline{\mu}([G])$$

Дефиниция 9.2.1. Множеството $G \subset \mathbb{R}^m$ (G - отворено и ограничено) се нарича измеримо(кубируемо, а при m=2 - квадратируемо), ако неговата мярка е равна на горната мярка на [G]

$$\mu(G) = \overline{\mu}([G])$$

Теорема 9.2.1. Ограниченото и отвореното множество $G \subset \mathbb{R}^m$ е измеримо, тогава и само тогава, когато контурът му има мярка нула.

$$\mu(\partial G) = 0$$

Дефиниция 9.2.2. Затворената обвивка [G] на отвореното и измеримо множество $G \subset \mathbb{R}^m$ също се нарича измеримо и по дефиниция

$$\mu([G]) = \mu(G)$$

9.3 Дефиниция на многократен интеграл

Нека $G \subset \mathbb{R}^m$ е отворено и измеримо множество.

Дефиниция 9.3.1. Системата $\tau = \{G_i\}_{i=1}^{i_0}$ от измерими множества G_i се нарича разделяне на множеството G, ако

- 1. $G_i \subset G, i = 1 \div i_0$
- 2. $G_i \cap G_j = \emptyset, i \neq j$
- 3. $\cup [G_i] = [G]$

Дефиниция 9.3.2. Числото

$$\delta_{\tau} = \max_{1 \le i \le i_0} d(G_i)$$

Където $d(G_i)$ е диаметър на множеството G_i , се нарича диаметър на разделянето τ

Лема 9.3.1. $A \kappa o \ \tau = \{G_i\}_{i=1}^{i_0} \ e \ pasdeлянето на <math>G, \ mo$

$$\mu(G) = \sum_{i=1}^{i_0} \mu(G_i)$$

Дефиниция 9.3.3. Нека $\tau = \{G_i\}$ и $\tau' = \{G'_j\}$ са две разделяния от отвореното и измеримо множество G. Разделянето τ' се нарича вписано в τ ако за всеки елемент $G'_j \in \tau'$ съществува елемент $G_i \in \tau$, такъв че $G'_i \subset G_i$ Записва се $\tau' \succ \tau$ или $\tau \prec \tau'$.

Лема 9.3.2. В сила са следните свойства

- 1. Ako $\tau \prec \tau'$ u $\tau' \prec \tau''$, mo $\tau \prec \tau''$.
- 2. За всеки две разделяния $\tau' = \{G'_i\}$ и $\tau'' = \{G''_j\}$ на отвореното и измеримо множество G съществува разделяне τ , такова че $\tau' \prec \tau$ и $\tau'' \prec \tau$.

Дефиниция 9.3.4. Нека $G \subset \mathbb{R}^m$, функцията $f: [G] \to \mathbb{R}$ и $\tau = \{G_i\}_{i=1}^{i_0}$ е разделяне на множеството G. Тогава сумата

$$\sigma_{\tau}(f) = \sum_{i=1}^{i_0} f(\xi^{(i)}) \mu(G_i)$$

където

$$\xi^{(i)} \in [G_i], i = 1, 2, ..., i_0$$

се нарича риманова интегрална сума на функцията f.

Дефиниция 9.3.5. Крайната граница

$$\lim_{\delta_{\tau}\to 0} \sigma_{\tau}(f)$$

ако съществува се нарича многократен интеграл от функцията f върху измеримото и отворено множеството $G(unu\ [G])$ а функцията се нарича интегруема в риманов смисъл върху множеството $G(unu\ [G])$. Означава се по един от следните начини

$$\int f dG, \int f(x) dG, \int \dots \int f(x_1, x_2, \dots, x_m) dx_1 dx_2 \dots dx_m$$

Множеството G([G]) се нарича област на интегриране.

Дефиниция 9.3.6. Числото A се нарича интеграл от функцията f върху отвореното и измеримо множество G, ако за всяка редица от разделяния $\tau_n = \left\{G_i^{(n)}\right\}_{i=1}^{i_0^{(n)}}$ на множеството G, с $\delta_{\tau_n} \to 0$ при $n \to \infty$ и каквито и да са точките

$$\xi^{(i_n)} \in [G_i^{(n)}], i_n = 1, 2, ... i_0, n = 1, 2, ...$$

е изпълнено равенството

$$\lim_{n \to \infty} \sigma_{\tau_n}(f; \xi_n^{(1)}, \xi_n^{(2)}, ..., \xi_n^{(i_0^{(n)})}) = A$$

9.4 Съществуване на многократния интеграл

Теорема 9.4.1. Нека $G \subset \mathbb{R}^m$ отворено е измеримо множество и функцията $f:[G] \to \mathbb{R}$ е интегруема върху него. Тогава f е ограничена върху множеството [G].

9.5 Свойства на многократните интеграли

За класа на функции, интегруеми в риманов смисъл в дадено отворено и измеримо множество G е използвано означението $\Re(G)$.

Нека $G \subset \mathbb{R}^m$, G - измеримо и отворено множество.

Освен това $f,g:[G]\to\mathbb{R}, f,g\in\Re(G),$ а λ,ν - производни реални константи.

Теорема 9.5.1. B сила са следните свойства на многократните интеграли

- 1. $\int dG = \int 1 dG = \mu(G)$
- 2. $\int (\lambda f + \nu g) dG = \lambda \int f dG + \nu \int g dG$ (Линейност на интеграла) В частност

(a)
$$\lambda = \nu = 1 \implies \int (f+g) dG = \int f dG + \int g dG$$

(6)
$$\lambda = 1, \nu = -1 \implies \int (f - g) dG = \int f dG - \int g dG$$

(e)
$$\lambda = const, \nu = 0 \implies \int \lambda f \, dG = \lambda \int f \, dG$$

3.
$$f \geq 0$$
 expxy $G \implies \int f \, dG \geq 0$

От тези три свойства се получва следствието

$$f \ge g \implies \int f \, dG \ge \int g \, dG$$

Теорема 9.5.2. Ако G', G'' са измеримо множество, $[G] = [G'] \cup [G'']$ и $G' \cap G'' = \emptyset$ то следва

$$\int f dG = \int f d(G' \cup G'') = \int f dG' + \int f dG''$$

Теорема 9.5.3 (адитивност относно множества). Ако $G' \subset G$ е измеримо множество, то $f \in \Re(G')$

От тази теорема следва монотонноста на интеграла: Ако $\Gamma \subset G$ е измеримо множество и $f \geq 0$ върху G, то

$$\int f \, dG \ge \int f \, d\Gamma$$

Теорема 9.5.4. Произведението $f \cdot g \in \Re(G)$

Теорема 9.5.5. Функцията $|f| \in \Re(G)$ и освен това е изпълнено неравенството

$$\left| \int f \, dG \right| \le \int |f| \, dG$$

9.6 Свеждане на кратни интеграли до повторни

9.6.1 Двумерен случай

Нека равнината \mathbb{R}^2 е фиксирана правоъгълна кординатна система с кординати х и у.

Дефиниция 9.6.1. Нека $G \subset \mathbb{R}^2$. G се нарича елементарна област отностно, ако ∂G се състои от графиките на две непрекъснати функции $\varphi(x), \psi(x)$, дефинирани в интервал [a,b] и $\varphi(x) \leq \psi(x), x \in [a,b]$, и може да съдържа и отсечки от правите x=a, x=b. Аналогично се дефинира област, елементарна отностно Ox.

На фигурата по-долу е показана област, елементарна от носно Оу.

Фигура 5.6.1: $G \subset \mathbb{R}^2$ — елементарна относно Oy

Теорема 9.6.1 (Теорема на Фубини). Нека G е елементарна фигура отностно $Oy, G \subset \mathbb{R}^2, \partial G$ границата на G, се състои от графиките на непрекъснатите функции $\varphi(x)\psi(x), \varphi(x) \leq \psi(x), x \in [a,b]$ и евентуално от отсечки от правите x=a, x=b. Нека $f:[G] \to \mathbb{R}$ и f е непрекъсната върху [G]. Тогава

$$\iint\limits_{G} f(x,y) \, dx \, dy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) \, dy \right) \, dx$$

Дефиниция 9.6.2. Интегральт в дясната страна на формулата от Теорема 9.6.1 се нарича повторен и обикновенно се записва във вида

$$\int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x, y) dy$$

Лема 9.6.1. При предпложенията от Теорема 9.6.1 функцията

$$F(x) = \int_{\varphi(x)}^{\psi(x)} f(x, y) \, dy$$

e непрекосната функция на x в интервала [a,b].

Ако областта G е елементарна отностно Ox и границата ѝ се състои от графиките на непрекъснатите функции $\alpha(y), \beta(y), \alpha(y) \leq \beta(y), c \leq y \leq d$ и евентуално отсечки от правите y = c, y = d и функцията f(x,y) е непрекъсната в компактното множество [G] то е в сила формулата

$$\iint_{G} f(x,y) dx dy = \int_{c}^{d} dy \int_{\alpha(y)}^{\beta(y)} f(x,y) dx$$

Пример 9.6.1.
$$z=x^2y$$
 заградена между $y=x^2,y=1.$ Имаме: $\iint\limits_G x^2y\,dx\,dy,\,G=\begin{cases} y=x^2\\y=1\end{cases}$

$$\begin{vmatrix} y = x^2 \\ y = 1 \end{vmatrix} \implies x^2 = 1 \implies x_{1,2} = \pm 1$$

Абсцисите на пресечните точки на кривата $y = x^2$ и y = 1. Фигурата G се намира между правите x = -1 и x = 1 и освен това е оградена и от параболата $y = x^2$ и правата y = 1. По точно

$$G = \begin{cases} -1 \le x \le 1\\ x^2 \le y \le 1 \end{cases}$$

Тогава

$$\iint_{G} x^{2}y \, dx \, dy = \int_{-1}^{1} x^{2} \, dx \int_{x^{2}}^{1} y \, dy \qquad \left(\int_{x^{2}}^{1} y \, dy = \frac{y^{2}}{2} \Big|_{x^{2}}^{1} \right)$$

$$\frac{1}{2} \int_{-1}^{1} x^{2} (1 - x^{4}) \, dx = \frac{1}{2} \cdot 2 \int_{0}^{1} (x^{2} - x^{6}) \, dx =$$

$$\frac{x^{3}}{3} - \frac{x^{7}}{7} \Big|_{0}^{1} = \frac{1}{3} - \frac{1}{7} = \frac{4}{21}$$

10 Лекция 10: Смяна на променливите на двоен интеграл

10.1 Матрица на Якоби

Нека $x\in D\subset\mathbb{R}^m, f:D\to\mathbb{R}^n\implies y\in\mathbb{R}^m$ се задава със системата от функции

$$\begin{vmatrix} y_1 = f_1(x_1, x_2, ..., x_m) \\ y_2 = f_2(x_1, x_2, ..., x_m) \\ ... \\ y_n = f_n(x_1, x_2, ..., x_m) \end{vmatrix}$$

Дефиниция 10.1.1. Нека в точката $x^0 \in D$ съществуват първите частни производни на функциите $f_i(i=1\div m)$ от системата дефинирана по горе, тогава матрицата от всички частни производни в точката x^0

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_m} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_m} \\ \dots & \dots & \dots & \dots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \dots & \frac{\partial y_n}{\partial x_m} \end{bmatrix}$$

се нарича матрица на Якоби за изображението f(x).

Ако m = n може да се пресметне детерминантата $J(x_1, x_2, ..., x_m)$ за матрицата на Якоби.

$$J(f; x_1, x_2, ..., x_m) = \frac{D(y_1, y_2, ..., y_m)}{D(x_1, x_2, ..., x_m)} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & ... & \frac{\partial y_1}{\partial x_m} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & ... & \frac{\partial y_2}{\partial x_m} \\ ... & ... & ... & ... \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & ... & \frac{\partial y_m}{\partial x_m} \end{bmatrix}$$

Дефиниция 10.1.2. Детерминанта на матрицата на Якоби се нарича още якобиан на изображението f(x). Означава се $J(x_1, x_2, ..., x_m)$ или J(f)

Дефиниция 10.1.3. Изображението $f:G\to\mathbb{R}^m(G\subset\mathbb{R}^m)$ дадено със cucmemama

$$\begin{vmatrix} y_1 = f_1(x_1, x_2, ..., x_m) \\ y_2 = f_2(x_1, x_2, ..., x_m) \\ ... \\ y_n = f_n(x_1, x_2, ..., x_m) \end{vmatrix}$$

се нарича непрекъснато диференцируемо изображение, ако всички първи частни производни на $f_i(i=1\div m)$ съществуват в G и са непрекъснати там.

Теорема 10.1.1. *Нека*

$$y = f(x) = \{y_i = f_i(x_1, x_2, ..., x_m), i = 1 \div m\}$$

е взаимно еднозначно непрекъснато диференцируемо изображение от отвореното множество $G \subset \mathbb{R}^m$ върху отвореното множество $\widetilde{G} \subset \mathbb{R}^m$. Нека освен това и обратното изображение

$$x = f^{-1}(y) = \{x_i = f_i^{-1}(y_1, y_2, ..., y_m), i = 1 \div m\}$$

което е еднозначно непрекъснато диференцируемо изображение от своето дефиниционно множество \widetilde{G} . Тогава е в сила формулата

$$\frac{D(y_1,y_2,...,y_m)}{D(x_1,x_2,...,x_m)} \cdot \frac{D(x_1,x_2,...,x_m)}{D(y_1,y_2,...,y_m)} = 1$$

което може да се запише във вида

$$\frac{D(x_1, x_2, ..., x_m)}{D(y_1, y_2, ..., y_m)} = \frac{1}{\frac{D(y_1, y_2, ..., y_m)}{D(x_1, x_2, ..., x_m)}}$$

т.е якобианът на изображението, което е обратно на даденото изображение е равен на реципрочната стойност на якобиана на даденото изображение.

Нито един от двата якобиана не е нула, защото произведението им е равно на 1.

 $\Pi pu\ m=1\ \phi opмулата\ ce\ ceeжda\ do\ \phi opмулата\ за\ npouзводна\ на\ oбpamha\ \phi yhkuus$

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

Теорема 10.1.2. Нека $G \subset \mathbb{R}^m$ е отворено множество, $f: G \to \mathbb{R}^m$

$$y = f(x) = \begin{vmatrix} y_1 = f_1(x_1, x_2, ..., x_m) \\ y_2 = f_2(x_1, x_2, ..., x_m) \\ ... \\ y_n = f_n(x_1, x_2, ..., x_m) \end{vmatrix}$$

е непрекъснато диференцируемо изображение и нека точката $x^{(0)} \in G$ а $y^{(0)} = f(x^{(0)}) \in \mathbb{R}^m$. Освен това, ако якобианът на това изображение е различен от нула в точката $x^{(0)}$, то съществува такива околностти $U_{x^{(0)}}, U_{y^{(0)}}$ съответно в точките $x^{(0)}, y^{(0)}$, че изображението f е взаимно еднозначно изображение от $U_{x^{(0)}}$ върху $U_{y^{(0)}}$, т.е $f: U_{x^{(0)}}, \to U_{y^{(0)}}$ и

обратното му изображение е непрекъснато диференцируемо в множеството $U_{v^{(0)}}$.

Следствие: Нека $G \subset \mathbb{R}^m$ е отворено множество и $F: G \to \mathbb{R}^m$ е непрекъснато диференцируема в G, а якобианът J(F) е различен от нула върху G. Тогава F(G) също е отворено множество.

Теорема 10.1.3 (Принцип за запазване на областта). Образътна тмерна област в т-мерното пространство при непрекъснато диференцируемо изображение с ненулев якобиан е област, т.е ако

- 1. $G \subset \mathbb{R}^m$ е област
- 2. $F:G \to \mathbb{R}^m$ е непрекъснато диференцируемо изображение
- 3. $J(F) \neq 0$ sopry G

то F(G) също е област.

По нататък е разгледан въпросът за геометричен смисъл на модула на якобиана. За по голяма яснота е разгледано в \mathbb{R}^2 .

Нека $G, G^* \subset \mathbb{R}^2$ са отворени множества и изображението $F: G \to G^*$, като F е зададена с двойката функции

$$x = x(u, v),$$
 $y = y(u, v)$

и предполагаме, че F удовлетворява следните условия

- 1. F е взаимно еднозначно изображение от G върху G^*
- 2. F е непрекъснато диференцируемо върху G
- 3. Якобианът $J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} \neq 0$ върху G

Изображението F^{-1} което е обратно на F също е непрекъснато диференцируемо взаимно еднозначно изображение и якобианът му е различен от нула в G^*

Лема 10.1.1. Ако $\gamma \subset G$ е по части гладка крива, то и нейния образ $\gamma^* = F(\gamma)$ е също по части гладка крива.

Забележка: Ако $\gamma \subset G$ е прост затворен контур, то поради взаимната еднозначност на F, неговия образ $\gamma^* = F(\gamma)$ е също прост затворен контур.

Лема 10.1.2. Ако Γ е отворено и ограничено множество и $[\Gamma] \subset G$ тогава $\Gamma^* = F(\Gamma)$ е също отворено и ограничено множество и

$$\partial F(\Gamma) = F(\partial \Gamma)$$

A ко $\partial\Gamma$ се състои от краен брой по част гладки криви, то отворените множества Γ и $F(\Gamma)$ са квадрируеми.

Нека $(u_0, v_0) \in G$ и $h \in \mathbb{R}$ е реално число, и да разгледаме затворения квадрат S с върхове

$$A(u_0, v_0)$$
 $B(u_0 + h, v_0)$ $C(u_0 + h, v_0 + h)$ $D(u_0, v_0 + h)$

Нека $S\subset G$ (за "достатъчно малки" h това включване винаги се изпълнява). Границата ∂S на квадрата S която се състои от четирите му страни е прост затворен по части гладък контур. Поради Лема 10.1.2 множеството $S^*=F(S)$ е затворена квадратируема област (факта, че S^* е затворена област, следва от принципа за запзаване на областа). В сила е следната теорема

Теорема 10.1.4. Нека изображението F от отвореното множество $G \subset \mathbb{R}^2$ върху отвореното множество $G^* \subset \mathbb{R}^2$ е взаимно еднозначно и непрекъснато диференцируемо върху G и нека якобианът му $J(u,v) \neq 0$ върху G. Тогава ако S е квадрат c върховете по горе, то

$$\frac{\mu(F(S))}{\mu(S)} = |J(u_0, v_0)| + \varepsilon(u_0, v_0, h)$$

където $\varepsilon = \varepsilon(u_0, v_0, h)$ клони към нула, когато $h \to 0$. При това сходимостта е равномерна отностно (u_0, v_0) , върху всяко затворено и ограничено множество $A \subset G$ за което $(u_0, v_0) \in A$.

Следствие: За всяка точка (u_0, v_0) на отворено множество G е изпълнено равенството

$$\lim_{h \to 0} \frac{\mu(F(S))}{\mu(S)} = |J(u_0, v_0)|$$

В общия случай за т-мерно пространство тази теорема се обобщава по следния начин.

Теорема 10.1.5. Нека множествата $G, G^* \subset \mathbb{R}^m$ са отворени множества и изображението $F: G \to G^*$, е зададено с т-торка функции

$$x = F(t) = \{x_i = x_i(t_1, t_2, ..., t_m), i = 1 \div m\}$$

Hека F е взаимно еднозначно и непрекъснато диференцируемо върху G и якобианът му

$$J(t) = \frac{\partial(x_1, \dots, x_m)}{\partial(t_1, \dots, t_m)} \neq 0, \quad t \in G$$

а S е т-мерния куб

$$S - \{t : t_i^0 \le t_i \le t_i^0 + h, i = 1, 2, ..., m\} \subset G, t^0 = (t_1^0, t_2^0, ..., t_m^0)$$

Тогава

$$\lim_{h \to 0} \frac{\mu(F(S))}{\mu(S)} = |J(t^0)|$$

при това, ако

$$\frac{\mu(F(S))}{\mu(S)} = |J(t^0)| + \varepsilon(t^0, h)$$

то за всяко ограничено и затворено множество $A \subset G$, функцията $\varepsilon = \varepsilon(t^0,h)$, дефинирана за $t^0 \in A$, клони равномерно към нула върху множеството A, при $h \to 0$.

Aко $G, G^* \subset R^3, \quad F: G \to G^*$ е зададено с тройка функции

$$x = x(u, v, w)$$
 $y = y(u, v, w)$ $z = z(u, v, w)$

Лема 10.1.3. Ако $S \subset G$ е по части гладка повърхнина в \mathbb{R}^3 , то и нейния образ $S^* = F(S)$ е също по части гладка повърхнина.

Забележка: Ако $S \subset G$ е проста затворена повърхнина, то поради взаимната еднозначност на F, неговия образ $S^* = F(S)$ е същопроста затворена повърхнина.

Лема 10.1.4. Ако Γ е отворено и ограничено множество и $[\Gamma] \subset G$ тогава $\Gamma^* = F(\Gamma)$ е също отворено и ограничено множество и

$$\partial F(\Gamma) = F(\partial \Gamma)$$

A ко $\partial\Gamma$ се състои от краен брой по част гладки повърхнини, то отворените множества Γ и $F(\Gamma)$ са измерими.

10.2 Смяна на променливите в многократен интеграл

Нека

- F е непрекъснато диференцируемо изображение от отвореното множество $G \subset \mathbb{R}^2$ върху отвореното множество $G^2 \subset \mathbb{R}^2$
- Якобиан $J(F) \neq 0$ в G
- Γ, Γ^* са квадратируеми (следователно ограничени) и отворени множества
- $[\Gamma] \subset G, [\Gamma^*] \subset G^*$
- $F([\Gamma]) = [\Gamma^*]$
- F изобразява вътрепните точки на Γ във вътрешни точки на Γ^* а контура $\partial \Gamma$ в контура $\partial \Gamma^*$

Теорема 10.2.1 (за смяна на променливите на двукратен интеграл). *Нека функцията*

$$f: [\Gamma^*] \to \mathbb{R}$$

е непрекъсната върху $[\Gamma]$. Тогава в сила е формулата

$$\iint_{\Gamma^*} f(x,y) \, dx \, dy = \iint_{\Gamma} f(x(u,v), y(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

Верността на (10.2.1) остава в сила и при малко по-общия случай, когато якобианът на изображението F, става нула върху границата на областта на интегриране, а самото изображение не е взаимно еднозначно върху тази граница. По-точно е в сила следната теорема.

Теорема 10.2.2. Нека $G, G^* \subset \mathbb{R}^2$ са отворени измерими множества u

$$x = x(u, v),$$
 $y = y(u, v)$

е непрекъснато изображение от [G] върху $[G^*]$, което е взаимно еднозначно и непрекъснато диференцируемо изображение от G върху G^* . Нека якобианът на това изображение

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)}$$

е различен от нула в G и е непрекъснато продължим върху [G]. Нека освен това функцията

$$f: [G^*] \to \mathbb{R}$$

е непрекъсната върхи множеството $[G^*]$. Тогава е в сила формулата

$$\iint\limits_{G^*} f(x,y) \, dx \, dy = \iint\limits_{G} f(x(u,v),y(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

Теорема 10.2.3. Нека $G, G^* \subset \mathbb{R}^m$ са отворени кубируеми множества. Нека $F: [G] \to [G^*]$ е непрекоснато изображение, зададено с уравненията

$$x = F(t) = \{x_i = x_i(t_1, t_2, ..., t_m), i = 1 \div m\}$$

взаимно еднозначно и непрекъснато диференцируемо върху $G,\ u$ якоби-анът му

$$J(t) = \frac{\partial(x_1, \dots, x_m)}{\partial(t_1, \dots, t_m)} \neq 0, \quad t \in G$$

е непрекоснато продолжим ворху [G]. Тогава, ако функцията

$$f: [G^*] \to \mathbb{R}$$

e непрекосната ворху $[G^*]$ то

$$\int f(x) dG^* = \int f(x(t))|J(t)|dG$$

Пример 10.2.1. Да се пресметне интеграла

$$\iint\limits_{x^2+y^2<1} \cos(\pi\sqrt{x^2+y^2}) \, dx \, dy$$

Нека въведем нови променливи ρ, φ по формулите

$$x = \rho \cos \varphi$$
 $y = \rho \sin \varphi$

Тогава модулът на якобиана на смяната се дава със израза

$$\Delta = |J(\rho, \varphi)| = \rho$$

Изображението на новите променливи е правоъгълника

$$G = \{(\rho, \varphi) : 0 < \rho < 1, -\pi < \varphi < \pi\}$$

взаимно еднозначно и непрекъснато диференцируемо и с якобиан, различен от нула върху кръга

$$K: \{(x,y): x^2 + y^2 < 1\}$$

от който е премахнат радиусът, лежащ върху отрицателната част на оста Ox, т.е G се изобразява върху множеството

$$G = K \setminus \{(x, y) : x \le 0, y = 0\}$$

Освен това изображението на смяната изобразява затвореният правоъгълник [G] върху затворения кръг

$$[G] = [K] = \{(x, y) : x^2 + y^2 < 1\}$$

при което контура [G] вече не е взаимно еднозначно. Якобианът на изображението на смяната е непрекъснат върху [G] а в една точка от контура(кординатното начало) е нула. Следователно това изображение удовлетворява всички условия от Теорема (10.2.2), и затова може да се приложи формулата за смяна на променливите на интеграла. Така се получава

$$\iint_{x^2+y^2<1} \cos(\pi\sqrt{x^2+y^2}) \, dx \, dy = \iint_{G} \rho \cos(\pi\rho) \, d\rho \, d\varphi = \int_{-\pi}^{\pi} d\varphi \int_{0}^{1} \rho \cos(\pi\rho) \, d\rho = -\frac{4}{\pi}$$

Пример 10.2.2. Да се пресметне лицето на фигурата

$$A^* = \{(x,y) : x^{\frac{2}{3}} + y^{\frac{2}{3}} \le a^{\frac{2}{3}}, a > 0\}$$

Фигура 5.9.1: $A^* \subset \mathbb{R}^2$

Фигура 5.9.2

Поради симетрията на дадената фигура, нейното лице може да се пресметни като първо се намери лицето на часта A_1^* разположена в първи квадрант и получения резултат да се умножи по 4. За да се пресметне това може да се извърши следната смяна

$$x = \rho \cos^3 \varphi$$
 $y = \rho \sin^3 \varphi$

която води до ограничения $0 \le \rho \le a, 0 \le \varphi \le 2\pi, \quad (\rho, \varphi) \in A$ и има якобиан с модул

$$\Delta = |J(\rho, \varphi)| = 3\rho \cos^2 \varphi \sin^2 \varphi$$

поради което

$$\mu(A^*) = 4\mu(A_1^*) = 4 \iint_{A_1^*} = 12 \int_0^{\frac{\pi}{2}} \cos^2 \varphi \sin^2 \varphi \, d\varphi \int_0^a \rho \, d\rho = \frac{3\pi a^2}{8}$$

11 Лекция 11

12 Лекция 12

13 Лекция 13