Computer Algebra 522 Homework 1

Nutan Nepal

September 22, 2023

1.3.8	Consider the curve defined by $y^2 = cx^2 - x^3$, where c is some constant.
a.	Show that a line will meet this curve at either 0,1,2, or 3 points. Illustrate your answer with a picture. Let the equation of the line be either $x = a$ or $y = mx + b$.
b.	Show that a non-vertical line through the origin meets the curve at exactly one other point when $m^2 \neq c$. Draw a picture to illustrate this, and see if you can come up with an intuitive explanation as to why this happens.

c. Now draw the vertical line x = 1. Given a point (1,t) on this line, draw the line connecting (1,t) to the origin. This will intersect the curve in a point (x,y). Draw a picture to illustrate this, and argue geometrically that this gives a parameterization of the entire curve.

d. Show that the geometric description from part (c) leads to the parameterization

$$x = c - t^2,$$

$$y = t(c - t^2).$$

1.4.8 The ideal $\mathbf{I}(V)$ of a variety has a special property not shared by all ideals. Specifically, we define an ideal I to be radical if whenever a power f^m of a polynomial f is in I, then f itself is in I. More succinctly, I is radical when $f \in I$ if and only if $f^m \in I$ for any positive integer m.

a. Prove that I(V) is always a radical ideal.

If $f \in \mathbf{I}(V)$, then $f^m \in \mathbf{I}(V)$ for all positive integers m since $\mathbf{I}(V)$ is an ideal. If $f^m \in \mathbf{I}(V)$ then $f^m(x) = 0$ for all $x \in V$. So since k[x] is an integral domain, we have f(x) = 0 which implies $f \in \mathbf{I}(V)$. Thus, $\mathbf{I}(V)$ is radical.

b. Prove that $\langle x^2, y^2 \rangle$ is not a radical ideal. This implies that $\langle x^2, y^2 \rangle \neq \mathbf{I}(V)$ for any variety $V \subseteq k^2$.

 $x^2 \in \langle x^2, y^2 \rangle$ but $x \notin \langle x^2, y^2 \rangle$. So, by (a) $\langle x^2, y^2 \rangle$ is not radical.

1.4.15 In the text, we defined $\mathbf{I}(V)$ for a variety $V \subseteq k^n$. We can generalize this as follows: if $S \subseteq k^n$ is any subset, then we set

$$I(S) := \{ f \in k[x_1, \dots, x_n] | f(a) = 0 \ \forall a \in S \}.$$

a. Prove that $\mathbf{I}(S)$ is an ideal.

If $f, g \in \mathbf{I}(S) \subset k[x_1, \dots, x_n]$, (f - g)(a) = 0 and (fg)(a) = f(a)g(a) = 0 for all $a \in S$. So I(S) is a subring of $k[x_1, \dots, x_n]$. Furthermore, for any $h \in k[x_1, \dots, x_n]$ and $f \in \mathbf{I}(S)$, we have (fh)(a) = f(a)h(a) = 0 for all $a \in S$. So $fh \in \mathbf{I}(S)$ and $\mathbf{I}(S)$ is an ideal.

b. Let $X = \{(a, a) \in \mathbb{R}^2 | a \neq 1\}$. Determine $\mathbf{I}(X)$.

If $f \in I(X)$, then f(a,a) = 0 for all $a \in \mathbb{R}$ by exercise 1.2.8. Then, f vanishes precisely on the line y = x in \mathbb{R}^2 . So, $f \in \langle y - x \rangle$. We also have that $\langle y - x \rangle \subset I(X)$ since y - x vanishes at all points of X. Thus $I(X) = \langle y - x \rangle$.

c. Let \mathbb{Z}^n be the points of \mathbb{C}^n with integer coordinates. Determine $\mathbf{I}(\mathbb{Z}^n)$. [Hint: Exercise 1.1.6].

By 1.1.6, we must have that if f vanishes at every point in \mathbb{Z}^n then f = 0. Thus, $I(\mathbb{Z}^n) = 0$.

1.5.3 The fact that every ideal of k[x] is principal is special to the case of polynomials in one variable. In this exercise we will see why. Namely, consider the ideal $I = \langle x, y \rangle \subseteq k[x, y]$. Prove that I is not a principal ideal.

If I is a principal ideal then it is generated by some element $f \in k[x,y]$. Since $x \in I$, we have x = fg for some $g \in k[x,y]$ and $\operatorname{degree}(f) + \operatorname{degree}(g) = \operatorname{degree}(x)$. So either f or g must be a constant. f cannot be a constant since $I = \langle f \rangle$ would then be all of k[x,y]. If g is a constant, f would be a polynomial entirely on x and so y = fh for $y \in I$ would have no solution. Thus I is not a principal ideal.

- 1.5.11 In this exercise we will study the one-variable case of the *consistency problem* from section 1.2. Given $f_1, \ldots, f_s \in k[x]$, this asks if there is an algorithm to decide whether $\mathbf{V}(f_1, \ldots, f_s)$ is nonempty, we will see that the answer is yes when $k = \mathbb{C}$.
 - a. Let $f \in \mathbb{C}[x]$ be a nonzero polynomial. Then use Theorem 7 of section 1.1 to show that $\mathbf{V}(f) = \emptyset$ if and only if f is constant.

By theorem 7, every non-constant polynomial in $\mathbb{C}[x]$ has a root. Thus for the forward direction, we see that if f is not constant then it has a root, say, a. Hence $a \in V(f) \neq \emptyset$. Now, if $f \neq 0$ is a constant polynomial f = c, then c = 0 is always false. So

$$V(f) = \emptyset$$
.

b. If $f_1, \ldots, f_s \in \mathbb{C}[x]$ Prove $\mathbf{V}(f_1, \ldots, f_s) = \emptyset$ if and only if $\gcd(f_1, \ldots, f_s) = 1$.

Since $\mathbb{C}[x]$ is a principal ideal domain, we have $\langle f_1,\ldots,f_s\rangle=\langle f\rangle$ for some f. By proposition 4 in 1.4, we have $V(f_1,\ldots,f_s)=V(f)$. Thus using (a) on V(f) we have, $V(f)=\emptyset$ iff f is a constant polynomial. If gcd=f=1, then $V(f_1,\ldots,f_s)$ is clearly empty. If $V(f_1,\ldots,f_s)$ is empty, then f is a constant polynomial k and we have

$$\alpha_1 f_1 + \dots + \alpha_s f_s = k$$

for some polynomials α_i . Dividing by k, we see that $\sum_{i=1}^s \beta_i f_i = 1$ which implies that the gcd of the polynomials is 1.

c. Describe in words an algorithm for determining whether or not $V(f_1, \ldots, f_s)$ is nonempty.

We calculate the gcd of the f_1, \ldots, f_s . If the gcd is not constant, then the set $V(f_1, \ldots, f_s)$ is not empty.

1.5.12 This exercise will study the one-variable case of the *Nullstellensatz* problem from section 1.4 which asks for the relation between $\mathbf{I}(\mathbf{V}(f_1,\ldots,f_s))$ and $\langle f_1,\ldots,f_s\rangle$ when $f_1,\ldots,f_s\in\mathbb{C}[x]$. By using gcd's, we can reduce to the case of a single generator. So, in this problem, we will explicitly determine $\mathbf{I}(\mathbf{V}(f))$ when $f\in\mathbb{C}[x]$ is a nonconstant polynomial. Since we are working over the complex numbers, we know by Exercise 1.5.1 that f factors completely, i.e.,

$$f = c(x - a_1)^{r_1} \cdots (x - a_l)^{r_l},$$

where $a_1, \ldots, a_l \in \mathbb{C}$ are distinct and $c \in \mathbb{C} \setminus \{0\}$. Define the polynomial

$$f_{\text{red}} = c(x - a_1) \cdots (x - a_l).$$

The polynomials f and f_{red} have the same roots, but their multiplicities may differ. In particular, all roots of f_{red} have multiplicity one. We call f_{red} the reduced or square-free part of f. The latter name recognizes that f_{red} is the square-free factor of f of largest degree.

a. Show that $V(f) = \{a_1, ..., a_l\}.$

Clearly for each $a_i \in \{a_1, \ldots, a_l\}$, we have $f(a_i) = 0$ and so $\{a_i\}_1^n \subset V(f)$. Since $\mathbb{C}[x]$ is an integral domain, we have $f = 0 \implies (x - a_i) = 0$ for some a_i and so $V(f) \subset \{a_i\}_1^n$.

b. Show that $\mathbf{I}(\mathbf{V}(f)) = \langle f_{red} \rangle$.

If $g \in I(V(f))$, then $g(a_i) = 0$ for all i. So, all $(x - a_i)$ divides g and hence, f_{red} also divides $g \implies g \in \langle f_{red} \rangle$. So $I(V(f)) \subset \langle f_{red} \rangle$. Similarly, if $h \in \langle f_{red} \rangle$, $f_{red} \mid h \implies h = k \cdot f_{red}$ for some polynomial k. So $h(a_i) = 0$ for all i and hence $\langle f_{red} \rangle \subset I(V(f)).$

- 2.2.11 Let > be a monomial order on $k[x_1,\ldots,x_n]$.
 - a. Let $f \in k[x_1, \ldots, x_n]$ and let m be a monomial. Show that $LT(m \cdot f) = m \cdot LT(f)$.

Since $LM(m \cdot f) = m \cdot LM(f)$, we have $LT(m \cdot f) = LC(m \cdot f) \cdot LM(m \cdot f) =$ $LC(f) \cdot m \cdot LM(f) = m \cdot LT(f).$

b. Let $f, g \in k[x_1, ..., x_n]$. Is $LT(f \cdot g)$ necessarily the same as $LT(f) \cdot LT(g)$?

For each term $c_i m_i$ of g, we have $LT(c_i m_i \cdot f) = c_i m_i \cdot LT(f)$. If $c_i m_i$ is the leading term of g then $c_i m_i \cdot LT(f)$ appears exactly once in the sum $\sum_i c_i m_i \cdot f$ and so does not cancel out or add up with any other terms. Furthermore, $LT(g) \cdot LT(f)$ has the maximal multidegree. Thus, LT(fg) = LT(f)LT(g).

c. If $f_i, g_i \in k[x_1, \dots, x_n]$, $1 \le i \le s$, is $LM(\sum_{i=1}^s f_i g_i)$ necessarily equal to $LM(f_i) \cdot LM(g_i)$ for some i?

No. For $f_1 = f_2 = x_1$, $g_1 = x_1$ and $g_2 = -x_1$, we have $f_1g_1 + f_2g_2 = 0$. But none of $f_i g_i$ have the leading terms equal to 0.

2.3.11 In this exercise, we will characterize completely the expression

 $\Delta_1 =$

$$f = q_1 f_1 + \dots + q_s f_s + r$$

that is produced by the division algorithm (among all the possible expressions for f of this form). Let $LM(f_i) = x^{\alpha(i)}$ and define

$$\Delta_{1} = \alpha(1) + \mathbb{Z}_{\geq 0}^{n},
\Delta_{2} = (\alpha(2) + \mathbb{Z}_{\geq 0}^{n}) \setminus \Delta_{1},
\vdots
\Delta_{s} = (\alpha(s) + \mathbb{Z}_{\geq 0}^{n}) \setminus \left(\bigcup_{i=1}^{s-1} \Delta_{i}\right),
\overline{\Delta} = \mathbb{Z}_{\geq 0}^{n} \setminus \left(\bigcup_{i=1}^{s} \Delta_{i}\right)$$

a. Show that $\beta \in \Delta_i$ iff $x^{\alpha(i)}$ divides x^{β} and no $x^{\alpha(j)}$ with j < i divides x^{β} .

If $\beta \in \Delta_i$, then $\beta = \alpha(i) + \delta$ for some $\delta \in \mathbb{Z}_{\geq 0}^n$ and $\beta \neq \alpha(j) + \delta'$ for j < 1 and some $\delta' \in \mathbb{Z}_{\geq 0}^n$. So, $x^{\alpha(i)}$ divides x^{β} and no $x^{\alpha(j)}$ with j < i divides x^{β} .

Similarly, if $x^{\alpha(i)}$ divides x^{β} and no $x^{\alpha(j)}$ with j < i divides x^{β} , then $\beta = \alpha(i) + \delta$ for some $\delta \in \mathbb{Z}^n_{\geq 0}$ and $\beta \neq \alpha(j) + \delta'$ for j < 1 and some $\delta' \in \mathbb{Z}^n_{\geq 0}$. In other words,

$$\beta \in (\alpha(i) + \mathbb{Z}_{\geq 0}^n) \setminus \left(\bigcup_{j=1}^{i-1} \Delta_j\right) = \Delta_i.$$

b. Show that $\gamma \in \overline{\Delta}$ iff no $x^{\alpha(i)}$ divides x^{γ} .

```
\gamma \in \overline{\Delta} iff \gamma \notin \Delta_i for all i \leq s. Thus by (a), \gamma \in \overline{\Delta} iff no x^{\alpha(i)} divides x^{\gamma}.
```

- c. Show that in the expression $f = q_1 f_1 + \cdots + q_s f_s + r$ computed by the division algorithm, for every i, every monomial x^{β} in q_i satisfies $\beta + \alpha(i) \in \Delta_i$, and every monomial x^{γ} in r satisfies $\gamma \in \overline{\Delta}$.
- d. Show that there is exactly one expression $f = q_1 f_1 + \cdots + q_s f_s + r$ satisfying the properties given in part (c).

Programming Exercise 1

```
R.<x> = PolynomialRing(CC)
def gcduni(g,f):
    f1=g; f2=f
    q, r = g.quo_rem(f)
    if (q==0):
        f1 = f; f2 = g
    h=f1; s=f2

while s!= 0:
    q, r = h.quo_rem(s)
    h = s
    s = r
return h
```

Programming Exercise 2

```
S.<x,y> = PolynomialRing(CC,2,'xy',order='degrevlex')
def multidiv(f, listf):
    listofqs = []
    p=f
    for fs in listf:
        q, r = p.quo_rem(fs)
        listofqs.append(q)
        p=r
    return (listofqs, p)
```