

PERTEMUAN

Komponen-komponen Komputer

Komponen CPU #1

Register

Register yang terdapat dalam CPU, yaitu:

MAR (Memory Address Register)
Menentukan alamat di dalam memori yang akan diakses untuk operasi Read/Write

MBR (Memory Buffer Register)
Berisi data yang akan di tuliskan ke dalam
memori atau menerima data yang di baca dari
memori

PC (Program Counter)

Mencatat alamat memori dimana instrusi di dalamnya akan dieksekusi

I/O AR (I/O Addres Register)

Menspesifikasikan perangkat I/O yang akan diakses

I/O BR (I/O Buffer Register)

Menyimpan data yang akan dituliskan ke port atau data yang akan disalin dari port.

Alamat port ditunjuk oleh I/O AR

Komponen CPU #3

IR (Instruction Register)

Menampung instruksi yang akan dilaksanakan

AC (Accumulator)

Menyimpan data semenatara baik data yang sedang diproses atau data yang hasilkan

Modul I/O

- Memindahkan data dari perangkat eksternal ke CPU dan sebaliknya
- Modul ini berisi buffer internal untuk menampung data ini sementara sampai data itu di kirimkan.

Fungsi Komputer

- Fungsi dasar komputer adalah eksekusi program
- Program yang akan di eksekusi oleh CPU ada dalam memori

<u>Ada 2 langkah pengambilan instruksi</u> :

- 1. CPU membaca instruksi yang ada di memori (fetch)
- 2. CPU mengeksekusi setiap instruksi (execute)

Siklus Fetch# 1

- Pada CPU yang umum, suatu register Program Counter (PC) di pakai untuk mengawasi instruksi yang akan di baca selanjutnya.
- Instruksi yang di baca akan di muatkan kedalam sebuah register (IR) Instructions Register

Siklus Fetch# 2

Aksi-aksi yang dilakukan oleh CPU ketika menginterpretasikan instruksi di bagi menjadi 4 kategori :

1. CPU --- Memori

Data di pindahkan dari CPU ke memori atau sebaliknya

2. CPU --- I/O

Data dapat di pindahkan ke atau dari dunia luar dengan pemindahan antara CPU dan modul I/O.

Siklus Fetch# 3

3. Pengolahan data

CPU dapat membentuk sejumlah operasi aritmatik /logik.

4. Control

Sebuah instruksi yang dapat mengubah urutan eksekusi

berisi 300 alamat instruksi

e dalam Instruction Register (IR)

nengindikasikan bahwa uatkan

ı alamat, yaitu 940

nstruksi berikutnya akan

okasi 941 ditambahkan dan n AC

n istruksi berikutnya akan

da lokasi 941

Interrupts #1

Kelas-kelas Interupt:

1. Program

dibangkitkan dengan beberapa kondisi yang terjadi sebagai hasil dari suatu eksekusi instruksi

2. Timer

dibangkitkan oleh timer di dalam processor

Interrupts #2

3. 1/0

di bangkitkan oleh I/O kontroller untuk memberi signal penyelesaian normal atau memberikan signal bergagai kondisi error

4. H/W Failure

di bangkitkan oleh kegagalan seperti kegagalan daya atau memori parity error

Pengertian Interrupts

Interrupt disediakan terutama sebagai cara untuk meningkatkan efesiensi pengolahan, karena sebagian besar perangkat eksternal jauh lebih lambat di bandingkan prosessor

Interrupt & Siklus Instruksi #1

- Dengan memakai interrupt, processor dapat di pakai dalam mengeksekusi instruksi-instruksi lain operasi I/O yang sedang di laksanakan
- Ketika perangkat eksternal telah siap untuk dilayani, maka modul I/O untuk perangkat eksternal itu mengirimkan signal interrupt request ke prosessor.

Interrupt & Siklus Instruksi #2

Prosessor menanggapinya dengan menahan operasi program yang sedang di lakukannya, mencabangkannya ke suatu program untuk melayani perangkat I/O itu, yang di kenal dengan Interrupt Handler, dan kembali melaksanakan eksekusi mula-mula, setelah perangkat itu di layani.

Multiple Interrupt #1

1. Dengan tidak mengijinkan terjadinya interrupt lain pada saat suatu interupt sedang di proses. (interrupt lain di tangguhkan)

Keuntungannya:

Pendekatan tersebut cukup baik dan sederhana karena interrupt di tangani dalam urutan yang cukup ketat.

Kekurangannya:

Pendekatan ini tidak memperhitungkan prioritas relatif atau kebutuhan waktu kritis

Multiple Interrupt #2

2. Dengan mendefinisikan prioritas bagi interrupt dan mengijinkan interrupt berprioritas tinggi menyebabkan interrupt handler yang berprioritas lebih rendah untuk menginterupsi diri sendiri.

Fungsi I/O

Sebuah I/O dapat bertukar data secara langsung dengan CPU.

Sebuah I/O juga dapat bertukar data langsung dengan memori.

Pertukaran Data Antara I/O dan Memori

- Dalam kasus ini CPU memberikan otoritas kepada modul I/O untuk membaca dari atau menulis ke memori, sehingga perpindahan data terjadi tanpa terpaut dengan CPU
- Selama perpindahan seperti itu, modul I/O mengeluarkan perintah baca/ tulis ke memori, yang membebaskan CPU dari tanggung jawab pertukaran data
- Operasi seperti ini di kenal dengan DMA (Dirrect Memory Access)

Struktur Interkoneksi

- Komputer terdiri dari CPU Memori I/O
- Komponen bus/ lintasan yang menghubungkan berbagai modul di sebut dengan struktur interkoneksi

Struktur interkoneksi harus mendukung jenis perpindahan berikut ini: #1

1. Memori ke CPU

CPU membaca sebuah instruksi atau satuan data dari memori

2. CPU ke Memori

CPU menuliskan sebuah satuan data ke memori

Struktur interkoneksi harus mendukung jenis perpindahan berikut ini: #2

3. I/O ke CPU

CPU membaca data dari perangkat I/O melalui sebuah modul I/O

4. CPU ke I/O

CPU mengirimkan data ke perangkat I/O

5. I/O ke memori atau memori ke I/O

Pada kedua kasus ini sebuah modul I/O di izinkan untuk dapat bertukar data secara langsung tanpa melalui CPU dengan menggunakan DMA

Interkoneksi Bus

Bus adalah media transmisi yang dapat di gunakan bersama

Bila dua buah perangkat melakukan transmisi dalam waktu yang bersamaan, maka signal-signalnya akan bertumpang tindih dan menjadi rusak. Berarti harus hanya satu buah perangkat saja yang akan berhasil melakukan transmisi pada suatu saat tertentu.

Struktur Bus

Bus-bus yang menghubungkan komponen utama sistem (CPU,Memori, I/O) disebut dengan BUS SISTEM

Biasanya bus sistem terdiri dari 50 – 100 saluran yang terpisah

Klasifikasi Bus

Saluran Data:

memberikan lintasan bagi perpindahan data antara 2 modul sistem.

Saluran ini secara kolektif disebut BUS DATA

Saluran Alamat:

digunakan untuk menandakan sumber atau tujuan data pada bus data.

Saluran Kontrol :

di gunakan untuk mengontrol akses ke saluran alamat dan penggunaan data dan saluran alamat.

Elemen-elemen Rancangan BUS

A. Jenis

1. Dedicated

Suatu saluran bus di dedicated secara permanen diberi sebuah fungsi atau subset fisik komponen-komponen komputer

2. Multiplexed

Metode penggunaan saluran yang sama untuk berbagai keperluan

Keuntungan:

1. Dedicated:

Throughput yang tinggi, karena terjadi kemacetan yang kecil

2. Multiplexed:

Memerlukan saluran yang sedikit menghemat ruang dan biaya

Kerugian:

Dedicated : Meningkatnya ukuran dan biaya sistem

2. Multiplexed:

Rangkaian lebih kompleks, terjadi penurunan kinerja, kerena event-event tertentu yang menggunakan saluran bersama-sama tidak dapat berfungsi secara paralel

B. Metode Arbitrasi

Tersentralisasi : sebuah perangkat H/W (pengontrol bus arbiter) bertanggung jawab atas alokasi waktu

2. Terdistribusi

pada bus

tidak terdapat pengontrol sentral, tapi setiap modul terdiri dari access control logic dan modul-modul berkerja sama untuk memakai bus bersama-sama

C. Timing

1. Synchronous

terjadinya event pada bus ditentukan oleh clock

2. Asynchronous

terjadinya event pada bus di tentukan oleh event sebelumnya

D. Lebar Bus

Semakin lebar bus data, semakin besar bit yang dapat di transfer pada suatu saat

> Semakin lebar bus alamat, semakin besar range lokasi yang dapat di referensi

Jenis Transfer Data

- **4** Read
- **Write**
- Read modify write
- Read after write
- **Blok**

Bus PCI (Peripheral Component Interconnect) (1990)

- Merupakan bus yang tidak tergantung processor dan berbanwidth tinggi yang dapat berfungsi sebagai bus mezzanine/bus berkecepatan tinggi
- Mezzanine adalah bus berkecepatan tinggi yang sangat terintegrasi dengan sistem

Future Bus+

Future Bus+ adalah standard bus asinkron yang berkinerja tinggi

Syarat-syarat Future Bus #1

- Tidak tergantung pada arsitektur, processor dan teknologi tertentu
- Memiliki protokol transfer asinkron dasar
- mengizinkan protokol tersinkronisasi pada sumber untuk kebutuhan optional
- tidak berdasarkan pada teknologi tercanggih

Syarat-syarat Future Bus #2

- terdiri dari protokol-protokol paralel terdistribusi penuh dan arbitrasi yang mendukung baik protokol circuit switched maupun protokol split transactions
- Menyediakan dukungan bagi sistem-sistem yang faulttolerant dan yang memiliki reliabilitas tinggi
- menawarkan dukungan langsung terhadap memori berbasis cache yang dapat digunakan bersama
- memberikan definisi transportasi pesan yang kompatible

Syarat-syarat Future Bus #3

- Future bus+ mendukung bus-bus data 32,64, 128,256 bit
- Future bus+ mendukung baik model terdistribusi maupun tersentralisasi
- Future bus+ merupakan salah satu standar bus yang secara teknis paling kompleks
- Future bus+ merupakan spesifikasi bus yang dapat di gunakan untuk bus prosessor –memori atau yang dapat di gunakan dengan PCI untuk mendukung peripheral-peripheral berkecepatan tinggi.

Perbedaan PCI dan Future bus+

- PCI di tujukan bagi implementasi murah yang membutuhkan bidang fisik secara minimal
- * Future bus+ dimaksudkan untuk memberikan fleksibilitas yang tinggi dan fungsionalitas yang luas untuk memenuhi kebutuhan berbagai sistem yang berkinerja tinggi terutama sistemsistem yang mahal.

Selesai