國立中興大學附屬高級中學 112 學年度 第1 學期 第1 次興附盃 高一數學試題

- 一、多重選擇題(每題10分,共30分)(每題5個選項,其中至少有一個是正確的選項.所有選項均答對者,得10分;答錯1個選項者,得6分;答錯2個選項者,得2分;答錯多於2個選項或所有選項均未作答者,該題以零分計算)
- 【1】圓 $C: x^2 + y^2 = 1$,下列各點向圓C所引兩切線銳夾角為60°的點有那些?
- $(1) \ (2,0) \qquad (2) \ (1,3) \qquad (3) \ (-1,-1) \qquad (4) \ (1,\sqrt{3} \) \qquad (5) \ (-\sqrt{2},-\sqrt{2} \)$

Ans:1,4,5

- 【2】設 Γ : $x^2 + y^2 10x + 9 = 0$ 為坐標平面上的圓。試問下列哪些選項是正確的?
- (1) Г的圓心坐標為(5,0)
- (2) Γ上的點與直線 L: 3x+4y-15=0 的最遠距離等於 4
- (3)直線 L_1 : 3x+4y+15=0與 Γ 相切
- (4) Γ上恰有兩個點與直線 L_2 : 3x+4y=0 的距離等於 2
- (5) Γ上恰有四個點與直線 L_3 : 3x+4y-5=0 的距離等於 2

Ans:1,2,4

- 【3】坐標平面上有一以原點 O 為圓心的圓 C,交直線 x-y+1=0 於 Q,R 兩點。已知圓 C 上有一點 P 使得 $\triangle PQR$ 為一正三角形。請選出正確的選項。
- (1)O 點與 P 點皆在 QR 的中垂線上
- (2)P 點在第三象限
- (3) \overline{QR} 的中點坐標為 $(-\frac{1}{3}, \frac{2}{3})$
- (5)直線x-y-1=0 為圓 C 在 P 點的切線

Ans: 1,4

二、選填題(每題7分共70分)

說明:1.第A至J題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(4~19)。 2.第A至J題每題完全答對給7分。

- 【B】圓 $C: x^2 + y^2 2x + 4y 4 = 0$,直線 $L_1: 3x + 4y + 1 = 0$,直線 $L_2: 4x 3y + 5 = 0$,此三個圖形共有<u>(7)</u>個相異交點

Ans :4

【C】 $f(x) = x^4 - 3x^3 + 2x^2 + kx - 1$, $g(x) = x^3 + kx^2 + 2x + 3$,若 $f(x) \times g(x)$ 中偶次方項係數和為奇次方項係數和的 2 倍,且 k > 0,求 k = (8)

Ans: k=3

【D】
$$x = \frac{1}{\sqrt{3+\sqrt{8}}}$$
 , 求 $x^4 + 4x^3 + 4x^2 + 4x + 3 = \underline{\qquad (9)\sqrt{(10)}\qquad}$ (最簡根式)

 $Ans 4\sqrt{2}$

[E]
$$2x^4 - 5x^3 + 3x^2 - 4x + 7 = (ax + b)(x^2 + x + 2)(2x - 1) + c(x^2 + x + 2) + dx + e$$

 $- x + b + d + e = (11)(12)$

Ans: a+b+d+e=-3

【F】若將一多項式
$$f(x) = (x+2)^4 - 3(x+2)^3 + (x+2)^2 + (x+2) + 19$$
 表示成 $ax^4 + bx^3 + cx^2 + dx + e$ 的形式,其中 a , b , c , d , e 皆為實數,則 $b+c+d=$ _____ (13)(14) ____ 。

Ans:數對(a,b,c,d,e)=(1,5,7,1,17).

[G]
$$f(x) = x^7 - 50x^5 + 6x^4 + 4x^3 + 25x^2 - 30x + 6$$
, $x = (15)(16)$

Ans : –8

【H】設多項式
$$h(x)$$
 被 x^2-1 除後的餘式為 $3x+4$,並且已知 $h(x)$ 有因式 x ,若 $h(x)$ 被 $x(x^2-1)$ 除後的餘式為 px^2+qx+r ,求 $p^2-q^2+r^2=$ ____(17)___。

Ans:7

【I】如右圖,兩個同心圓,大圓半徑為 5,小圓半徑為 3,大圓有一內接三角形 ABC,其中 $\overline{AB} = \overline{AC}$, \overline{BC} 切小圓於 M ,且 \overline{AB} 交小圓於 P 、 Q 兩點,試求 \overline{PQ} 的長度為 (18)

【J】已知坐標平面上有一個圓 $x^2+y^2+2y-1=0$ 與兩條相異直線 $L_1:3x-4y=h$, $L_2:3x-4y=k$,已知這個圓與兩條直線分別交於 $A \times B$ 兩點及 $C \times D$ 兩點,若 $A \times B \times C \times D$ 恰好形成一個正方形,則h+k=_____(19)____。