

Department of Engineering Cybernetics

Systems Systems	ou Nonlinear C	ontroi
Academic contact during examination: Mikke Phone: +45 60 95 23 59	l Sørensen	
Examination date: December 10, 2016 Examination time: 09.00-13.00 Permitted examination support material: D – No printed or written materials allowed. NTNU type approved calculator with an empty memory allowed.		
Other information:		
Language: English Number of pages (front page excluded): 5 Number of pages enclosed:		
Informasjon om trykking av eksamensoppgave Originalen er:		Checked by:
1-sidig □ 2-sidig □ sort/hvit □ farger □	 Date	Signature
skal ha flervalgskjema □		

Problem 1 (17%)

Consider the system

$$\dot{x}_1 = -kx_1
\dot{x}_2 = -kx_2 - x_1^2 x_2$$

In all the questions except e) k is assumed to be a constant parameter.

- a [3%] Verify that the origin is the only equilibrium point of the system.
- **b** [4%] Classify the equilibrium point as a function of k using Lyapunov indirect method and explain intuitively the qualitative behavior of trajectories near the equilibrium point.
- c [3%] Based on the eigenvalues of the system, find conditions on k under which we can conclude exponential stability of the origin.
- **d** [3%] Is the system locally Lipschitz on \mathbb{R}^2 ?
- e [4%] Suppose that k(t) is a time-varying signal. Find conditions on k(t) under which we can conclude global exponential stability using Lyapunov direct method.

Problem 2 (16%)

Consider the system

$$\dot{x}_1 = -k_1 x_1 + x_2$$

$$\dot{x}_2 = -\phi(x_1) - (1 + \cos^2(t))x_2 + u$$

$$y = x_2$$

with $u \in \mathbb{R}$ and $y \in \mathbb{R}$ as the input and output, respectively, $x = [x_1, x_2]^T \in \mathbb{R}^2$ and $k_1 > 0$. The function ϕ satisfies the sector condition where $z\phi(z) \geq k_2z^2$ for all $z \in \mathbb{R}$ and for some $k_2 > 0$, and $\phi(0) = 0$. Hint: use $V(x) = \int_0^{x_1} \phi(z) dz + \frac{1}{2} x_2^2$ and the fact that $\frac{d}{dv} \int_0^v \phi(z) dz = \phi(v)$.

- **a** [3%] For zero input (i.e. u(t) = 0 for all t) show that the origin is globally asymptotically stable.
- **b** [3%] Show that the system from u to y is strictly passive.
- c [3%] Show that the system from u to y is also output strictly passive.
- **d** [3%] Show that the system is zero state observable.
- **e** [4%] Using V(x) as the Lyapunov function candidate, show that the system is input to state stable.

2

Problem 3 (12%)

Consider the system

$$\dot{x}_1 = \varepsilon((-1 + 1.5\sin(t)\cos(t))x_1 + x_2)$$

$$\dot{x}_2 = \varepsilon(-x_1 - (1 + 2\sin^2(t))x_2)$$

which also can be written as

$$\dot{x} = \varepsilon \begin{bmatrix} (-1 + 1.5\sin(t)\cos(t))x_1 + x_2 \\ -x_1 - (1 + 2\sin^2(t))x_2 \end{bmatrix} = \varepsilon f(t, x)$$

Use the averaging method to show that for a sufficient small $\varepsilon > 0$ the origin is the exponential stable. *Hint:* Check the appendix for integration by substitution and note that the system is π -periodic in t.

Problem 4 (13%)

Consider dynamical system Σ_1 given by

$$\dot{x}_1 = -x_1 + x_2
\dot{x}_2 = -x_1 - x_2 - x_2^3 + u_1
y_1 = x_2$$

and the system Σ_2 given by

$$\dot{\omega} = u_2$$
$$y_2 = \omega$$

- **a** [3%] Show that the system Σ_1 from u_1 to y_1 is output strictly passive using $V_1 = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$
- **b** [1%] Is the the system Σ_1 finite gain \mathcal{L}_2 stable? Justify your answer.
- c [3%] Is the system Σ_1 input strictly passive using $V_1 = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$? Justify your answer.
- **d** [3%] Now, suppose that we feedback connect Σ_1 and Σ_2 with

$$u_1 = -y_2$$
$$u_2 = y_1.$$

Is the overall system finite gain \mathcal{L}_2 stable? Justify your answer. *Hint*: use $V_2 = \frac{1}{2}\omega^2$.

e [3%] What can be concluded about the stability of the feedback connected system Σ_1 and Σ_2 . Justify your answer.

3

Problem 5 (32%)

Consider the following system

$$\dot{x}_1 = x_3 - x_2^6 + u$$

$$\dot{x}_2 = x_1 + x_3$$

$$\dot{x}_3 = x_3 + x_1 - |x_3|x_3$$

$$y = x_2$$

- **a** [3%] Find the relative degree r of this system. Is the system input-output linearizable?
- **b** [10%] Transform the system into the normal form

$$\dot{\eta} = f_0(\eta, \xi)$$

$$\dot{\xi} = A_c \xi + B_c \gamma(x) \left[u - \alpha(x) \right]$$

Specify the diffeomorphism $z = T(x) = \begin{bmatrix} \eta & \xi \end{bmatrix}^T$, the functions $\gamma(x)$, $\alpha(x)$ and $f_0(\eta, \xi)$ and the matrices A_c and B_c . In which domain is the transformation valid?

- **c** [4%] Find an input-output linearizing controller on the form $u = \alpha(x) + \beta(x)v$.
- **d** [4%] Find a controller $v = \delta(\xi)$ such that the external dynamics ξ is globally asymptotically stable at the origin.
- **e** [4%] Is the system minimum phase? *Hint:* If you were not able to solve **b** you may use the following equations for the internal dynamics: (It is not the correct internal dynamics equation, but it has the same property with respect to minimum phase)

$$\dot{\eta} = -\eta + \xi_1^2 + \xi_2^2$$

- **f** [2%] Is the closed-loop system $[\eta, \xi]^{\top}$ asymptotically stable at the origin? Justify your answer.
- **g** [2%] Is the closed-loop system $[\eta, \xi]^{\top}$ global asymptotically stable at the origin? Justify your answer.
- **h** [3%] Write the overall controller (both the input-output linearizing controller $u = \alpha(x) + \beta(x)v$ and the stabilizing controller $v = \delta(\xi)$ in the form $u = \mathcal{U}(x)$. Does the controller $u = \mathcal{U}(x)$ make the system globally asymptotically stable at the origin? Justify your answer.

4

Problem 6 (10%)

Consider the system,

$$\dot{x}_1 = x_1^5 + x_2$$

$$\dot{x}_2 = x_2^3 + x_1^2 + u$$

Use backstepping method to design a feedback controller for the system such that x=0 is asymptotically stable. *Hint:* you may start the first step by using $V_1(x_1)=\frac{1}{2}x_1^2$ and the virtual control $x_2=\phi(x_1)=-2x_1^5-x_1$ for $\dot{x}_1=x_1^5+x_2$.

Appendix: Formulae

$$\cos^{2}(t) = \frac{1}{2}(1 + \cos(2t))$$
$$\sin^{2}(t) = \frac{1}{2}(1 - \cos(2t))$$

Integral by substitution

$$\int \sin(\tau)\cos(\tau)d\tau = \int udu$$

where

$$u = \sin(\tau)$$
$$du = \cos(\tau)d\tau$$

Then

$$\int \sin(\tau)\cos(\tau)d\tau = \int udu = \left[\frac{1}{2}u^2\right] = \frac{1}{2}\sin^2(t)$$