Deep Neural Networks for Sound Type Classification

Xiaowei Jiang

May 23, 2016

Abstract

Here is Abstract

Contents

Inti	roduction	2
Bac	ekground and Motivation	2
2.1	9	2
2.2	ē .	2
		2
		2
23		_
2.0	V =	2
2.4		2
2.4	Toolbox.Cane	2
Thr	ree Types of CNN Architecture in Sound Type Classifi-	
		2
	,	2
-		2
ა.ა	Sigmoid Cross Entropy	3
Dat	a Augumentation	3
	9	3
4.2		3
4.3		3
1.0	10000100	•
Opt	timization Methods	3
5.1^{-}	"SGD" (Stochastic Gradient Descent)	3
5.2	·	
5.3	,	3
	2.1 2.2 2.3 2.4 Thi cati 3.1 3.2 3.3 Dat 4.1 4.2 4.3 Opt 5.1 5.2	2.2 Sound Type Classification 2.2.1 Introduction 2.2.2 Related works 2.3 Convolutional Neural Network Architectures in Sound Type Classification 2.4 Toolbox:Caffe Three Types of CNN Architecture in Sound Type Classification(LossFunctions) 3.1 One-Against-All 3.2 SoftmaxWithLoss 3.3 SigmoidCrossEntropy Data Augumentation 4.1 Overview and Motivation 4.2 Implementation 4.3 Results Optimization Methods 5.1 "SGD"(Stochastic Gradient Descent)

	5.5 "NAG" (Nesterovs accelerated gradient)	3 3
6	Conclusion	3
1	Introduction	
In	plain structure of this thesis Chapter 1 Chapter 2	
2	Background and Motivation	
2.	1 Two-ears System	
bri	ef introduction to two-ears system	
2.:	2 Sound Type Classification	
2.2	2.1 Introduction	
Inp Ta	out features sk	
2.2	2.2 Related works	
	sso, SVMs classification results otivation for DNN	
2.3	3 Convolutional Neural Network Architectures in Sou Type Classification	nd
ex	plain some basic concepts of CNN	
2.4	4 Toolbox:Caffe	
3	Three Types of CNN Architecture in Sound Ty Classification(LossFunctions)	/pe
3. :	1 One-Against-All	
dei	f., motivation, result	

3.2 SoftmaxWithLoss

def., motivation, result

3.3 SigmoidCrossEntropy

def., motivation, result introduction to loss function in CNN

4 Data Augumentation

4.1 Overview and Motivation

definition of data augumentation related works(try different parameters)

- 4.2 Implementation
- 4.3 Results
- 5 Dropout Layer

6 Optimization Methods

Discuss about different solver types(SGD,Adam,Adadelta,) related works

- 6.1 "SGD" (Stochastic Gradient Descent)
- 6.2 "AdaGrad" (Adaptive Gradient)
- 6.3 "Adam" (Adaptive Moment Estimation)
- 6.4 "AdaDelta"
- 6.5 "NAG" (Nesterovs accelerated gradient)
- 6.6 "RMSprop"
- 7 Conclusion