μφι Fachschaft MathPhysInfo

Mathematik-Vorkurs

Kapitel V: Relationen

24. September 2025

Sei X eine Menge. Eine (zweistellige) **Relation auf X** ist ein mathematisches Objekt, das mit zwei beliebigen Elementen von X zu einer Aussage kombiniert werden kann.

Sind R eine Relation auf X und $x, y \in X$ zwei Elemente, so notieren wir die sich ergebende Aussage mit

$$xRy$$
 (liest: ,,x steht in der Relation R zu y")

Satz

Seien X eine Menge und R, S zwei Relationen auf X.

$$R = S \iff (\forall x, y \in X : xRy \longleftrightarrow xSy)$$

Bemerkung:

Seien X eine Menge und R eine Relation auf X. Für die Relation R^{op} gilt

$$xR^{op}y : \iff yRx x, y$$

heißt die Umkehrrelation von R (englisch: "opposite relation").

Definition

Seien X eine Menge, R eine Relation auf X und $U \subseteq X$ eine Teilmenge.

$$xR|_{U}y:\iff xRy\ x,y\in U$$

ist die Relation auf U, die Einschränkung von R auf U oder auch die von X vererbte Relation.

Beispiel	

Seien X eine Menge und R eine Relation auf X, sowie $\forall x,y,z\in X.$ Dann heißt die Relation R

- (i) reflexiv: xRx
- (ii) **transitiv**: $(xRy \text{ und } yRz) \Longrightarrow xRz$
- (iii) symmetrisch: $xRy \Longrightarrow yRx$
- (iv) antisymmetrisch: $(xRy \text{ und } yRx) \Longrightarrow x = y$

Graphische Darstellung mit Richtung der Relation auf einer endlichen Menge:

←□ → ←□ → ← □ → □ ● の へ ○

Seien X eine Menge, R eine Relation auf X und E eine der vier Eigenschaften "reflexiv", "transitiv", "symmetrisch", "antisymmetrisch". Dann gilt:

- (i) Besitzt R die Eigenschaft E, so besitzt auch die Umkehrrelation R^{op} die Eigenschaft E.
- (ii) Besitzt R die Eigenschaft E, so besitzt für jede Teilmenge $U\subseteq X$ auch die Einschränkung $R|_U$ die Eigenschaft E

Sei X eine beliebige Menge, $\forall x, y, z \in X$. Eine Relation \leq auf X heißt **Ordnungsrelation** (partielle Ordnung oder Halbordnung), wenn gilt

- (i) Reflexivität:
- (ii) Transitivität:
- (iii) Antisymmetrie:

Eine (halb-)geordnete Menge ist ein Paar (X, \leq) , bestehend aus einer Menge X und einer Ordnungsrelation \leq auf X.

Beispiel	

Sei (X, \ge) eine geordnete Menge. Dann gilt:

- (i) Die $Umkehrrelation \leq ist$ ebenfalls eine Ordnungsrelation auf X, die sogenannte Umkehrordnung.
- (ii) Für jede Teilmenge $U\subseteq X$ ist die Einschränkung von \leq auf U ebenfalls eine Ordnungsrelation, die auf U induzierte Ordnung oder von X geerbte Ordnung

Ist (X, \leq) eine geordnete Menge, so heißen zwei Elemente $x, y \in X$ miteinander **vergleichbar**, wenn $x \leq y$ oder $y \leq x$. Die Ordnungsrelation heißt eine **Totalordnung**, genau dann wenn:

$$\forall x, y \in X : x \leq y \text{ oder } y \leq x$$

Ist \leq eine **Totalordnung** auf X, so heißt das Paar (X, \leq) eine **totalge-ordnete Menge**.

Beispie

Seien $a, b \in R$ mit $a \le b$. Dann heißen

- (i) offene Intervall
- (ii) abgeschlossene Intervall
- (iii) ganzzahliges Intervall
- (iii) halboffene Intervalle

Sei X eine geordnete Menge. Ein Element $a \in X$ heißt

- (i) **Minimum von X**, falls für jedes $x \in X$ gilt, dass $a \le x$.
- (ii) Maximum von X, falls für jedes $x \in X$ gilt, dass $x \le a$.
- (iii) **minimales Element von X**, falls es kein $x \in X$ gibt, für das x < a gälte.
- (iv) **maximales Element von X**, falls es kein $x \in X$ gibt, für das a < x gälte.

Sat

Sei X eine geordnete Menge. Sofern X ein kleinstes bzw. größtes Element enthält, ist dieses eindeutig bestimmt.

Beispiel	

Sei X eine geordnete Menge. Dann gilt:

- (i) Jedes kleinste Element von X ist auch ein minimales Element.
- (ii) Ist X totalgeordnet, ist auch jedes minimales Element ein kleinstes Element.

Analoge Aussagen gelten für größte und maximale Elemente.

Seien X eine geordnete Menge und $T \subseteq X$ eine Teilmenge.

Ein Element $x \in X$ heißt

- (i) **untere Schranke** für T, wenn für alle $t \in T$ gilt: $x \le t$
- (ii) **obere Schranke** für T, wenn für alle $t \in T$ gilt: $t \le x$

Die Teilmenge $T \subseteq X$ heißt

- (i) nach unten beschränkt (in X), wenn es in X mindestens eine untere Schranke für T gibt
- (ii) **nach oben beschränkt** (in X), wenn es in X mindestens eine obere Schranke für T gibt
- (iii) **beschränkt** (in X), wenn sie sowohl nach oben als auch nach unten beschränkt ist

Mathematik-Vorkurs 17 / 27

Seien X eine geordnete Menge und $T \subset X$ eine Teilmenge.

- (i) Ein Element $a \in X$ heißt **Infimum** von T , wenn a eine größte untere Schranke für T ist.
- (a ist eine untere Schranke für T und für jede weitere untere Schranke x gilt $x \le a$)
- (ii) Ein Element $a \in X$ heißt **Supremum** von T , wenn a eine kleinste obere Schranke für T ist.
- (a ist eine obere Schranke für T und für jede weitere obere Schranke x gilt $a \le x$)

Sei X eine Menge. Eine Relation \sim auf X heißt $\boldsymbol{\ddot{A}quivalenz relation},$ wenn

- (i) Reflexivität:
- (ii) Symmetrie:
- (iii) Transitivität:

Beispiel	

Seien X eine Menge, \sim eine Äquivalenzrelation auf X und $x \in X$. Die Menge aller "zu \times äquivalenten" Elemente

$$[x] := \{ y \in X | y \sim x \}$$

heißt die Äquivalenzklasse von x. Allgemein heißt eine Teilmenge $K \subseteq X$ eine Äquivalenzklasse (hinsichtlich \sim), wenn es ein Element $a \in X$ gibt, für das K = [a] ist. Ein solches Element a heißt ein **Vertreter** oder auch ein **Repräsentant** der Äquivalenzklasse K.

Definition

Seien X eine Menge und \sim eine Äquivalenzrelation auf X. Ein **Vertretersystem** (oder auch: **Repräsentantensystem**) für \sim ist eine Teilmenge $V \subseteq X$, die aus jeder Äquivalenzklasse genau ein Element enthält.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Beispiel	

Seien X eine Menge und \sim eine Äquivalenzrelation auf X. Die Menge aller Äquivalenzklassen bezüglich \sim heißt die **Faktormenge** (oder auch: **Quotientenmenge**) von X modulo \sim

$$X/\sim:=\{[x]|x\in X\}$$

(lies: ,,X modulo \sim ")

Die Abbildung $X \to X/\sim$, die jedem Element von X seine Äquivalenzklasse zuordnet, heißt die **(kanonische) Projektion** von X auf X/\sim

$$\pi: X \twoheadrightarrow X/\sim$$
,

$$x \mapsto [x]$$

Beispiel	

Seien X eine Menge, \sim eine Äquivalenzrelation auf X und $x,y\in X$. Dann sind äquivalent:

- (i) Es ist [x] = [y].
- (ii) Es gilt $x\sim y$.

Sei X eine beliebige Menge. Ein System von Teilmengen \mathbb{P} von X heißt **Partition** von X, wenn gilt:

- (i) Jedes Element von \mathbb{P} ist eine nichtleere Teilmenge von X.
- (ii) Es ist $X = \dot{\cup} \mathbb{P}$, d.h. X ist die disjunkte Vereinigung der Elemente von \mathbb{P} .

 $\implies \forall x \in X \ \exists ! P \in \mathbb{P} \ \text{mit} \ x \in P.$

Seien X eine Menge und \sim eine Äquivalenzrelation auf X. Dann ist die Faktormenge X/ \sim eine Partition von X.