Chapitre 16

Variables aléatoires

1. Variables aléatoires discrètes

1.1. Définitions

• Définition : notamme,nt avec la condition $\forall x \in X \ \Omega : X^{-1} \ x \in \mathcal{T}$

• Propriété : $\forall A \in \mathcal{P} \ X \ \Omega \ : X^{-1} \ A \in \mathcal{T}$

Démonstration

• Notations: $X \in A$, X = x, $X \ge a$

1.2. Loi de probabilité d'une variable aléatoire

a) Définition 1
$$P_X: \begin{cases} \mathcal{P} \ X \ \Omega \rightarrow 0, 1 \\ A \rightarrow P \ X \in A \end{cases}$$

- Propriété : P_X est une probabilité sur $X \Omega , \mathcal{P} X \Omega$ Démonstration

b) Définition 2
$$P_X: \left\{ egin{array}{ll} X \ \Omega \
ightarrow \ 0,1 \\ x \
ightarrow P \ X = x \end{array} \right.$$

c) Exercices traités

1.3. <u>Variables aléatoires de même loi</u>

- Définition, relation d'aquivalence induite.
- Notations

1.4. <u>Image</u> d'une variable aléatoire par une fonction

- Proposition : $u \ X$ est une variable aléatoire

Démonstration

2. Lois de probabilité discrètes usuelles

Pour chaque loi :

- ❖ justification du caractère « loi de probabilité »
- lacktriangledown modèle usuel, exemple

2.1. Lois finies

- a) Loi uniforme \mathcal{U} n
- b) Loi de Bernoulli \mathcal{B} p
- c) Loi binomiale $\overline{\mathcal{B}} n, p$
- d) Loi hypergéométrique \mathcal{H} N, n, p (elle n'est pas au programme de MP)

2.2. Lois discrètes infinies

- a) Loi géométrique \mathcal{G} p
 - <u>Proposition</u> caractérisation comme loi sans mémoire

Démonstration

$$\forall n,k \in \mathbb{N}^2 : P_{X>n} X = n+k = P X = k$$

- b) Loi de Poisson $\mathcal{P} \lambda$
 - Théorème approximation de la loi binomiale par une loi de Poisson

Démonstration

3. Espérance

- 3.1. Définitions
- 3.2. Formule de transfert
 - a) <u>Le théorème</u>

• Formule
$$E X = \sum_{x \in X \Omega} f x \cdot P X = x$$
 à connaître

- b) Exemples
- 3.3. Propriétés
 - a) <u>Linéarité</u>
 - Variable aléatoire centrée associée à X
 - b) Positivité (améliorée)
 - c) <u>Croissance</u>
- 3.4. Espérances des lois usuelles
 - Elles sont à connaître.

Démonstration

3.5. Inégalité de Markov

$$\bullet \quad \boxed{P \mid X \geqslant a \leqslant \frac{E \mid X}{a}}$$

Démonstration

4. Variance, écart-type

- 4.1. Moments
 - a) Définition : moment d'ordre r
 - b) Propriétés des moments d'ordre 2

<u>Propriété 1</u> Si une variable aléatoire admet un moment d'ordre 2, elle est d'espérance finie.

• Démonstration

Propriété 2 Inégalité de Cauchy-Schwarz

Si deux variables aléatoires X et Y admettent chacune un moment d'ordre 2, la variable aléatoire XY est d'espérance finie et E XY $^2 \leqslant E$ X^2 E Y^2 .

• Démonstration

- 4.2. Variance, écart-type
 - a) <u>Définition</u>
 - b) Propriétés de la variance
 - c) Exemple
- 4.3. Variances des lois uxuelles
 - Ces résultats sont à connaître.

Démonstration

4.4. Inégalité de Bienaymé-Tchebychev

$$P \mid X - E \mid X \mid \geqslant \varepsilon \leqslant \frac{V \mid X}{\varepsilon^2}$$

Démonstration

5. Couple et famille de variables aléatoires

- 5.1. Couple de variables aléatoires
 - a) Définition
 - b) Lois conjointes
 - Défintion

<u>Propriété</u> La loi conjointe de X et Y est entièrement déterminée par la famille $p_{i,j}$ \in 0,1 $\stackrel{I\times J}{=}$ où $p_{i,j}=P$ $X=x_i$ \cap $Y=y_j$.

- Démonstration
- Exemples
- c) Lois marginales
 - Définition
 - Elles sont données par les formules respectives:

$$\begin{aligned} &\forall i \in I: p_i = P \ X = x_i \ = \sum_{j \in J} p_{i,j} = \sum_{j \in J} P \quad X = x_i \ \cap \ Y = y_j \\ &\forall j \in J: q_j = P \ Y = y_j \ = \sum_{i \in I} p_{i,j} = \sum_{i \in I} P \quad X = x_i \ \cap \ Y = y_j \end{aligned}$$

- Démonstration
- Exemples
- d) <u>Lois conditionnelles</u>
 - Définitions
 - Liens entre lois conditionnelles, loi conjointe et lois marginales.

$$P \quad X = x \quad \cap \quad Y = y \quad = P \quad X = x \quad \times P_{X=x} \quad Y = y$$

$$P \quad X = x \quad = \sum_{y \in X \ \Omega} P \quad Y = y \quad \times P_{Y=y} \quad X = x$$

• Exemples

5.2. Indépendance des variables aléatoires

- a) Couple de variable aléatoire indépendantes
 - Définition
 - Caractérisation

Démonstration

- Conséquence : connaissance de la loi conjointe par les lois marginales
- Proposition : $\operatorname{si} X \operatorname{et} Y \operatorname{sont} \operatorname{indépendantes}$,

alors f X et g Y sont indépendantes. Démonstration

b) <u>Indépendance</u> d'une famille de variables aléatoires

- Définition.
- Caractérisation.

Théorème (lemme des coalitions)

Soit un vecteur aléatoire $~X_1,X_2,...,X_n~$ et $m\in~1,n-1$.

$$\mbox{Soit } f: \prod_{k=1}^m X_k \ \Omega \ \to E \ \mbox{et } g: \prod_{k=m+1}^n X_k \ \Omega \ \to E \, .$$

Si les variables aléatoires sont mutuellement indépendantes,

alors
$$f X_1,...,X_m$$
 et $g X_{m+1},...,X_n$ $g Y$ sont indépendantes.

- Démonstration admise
- c) Indépendance et espérance

Théorème

- \blacksquare Si X et Y sont deux variables aléatoires indépendantes d'espérance finies, alors XY est d'espérance finie égale à E XY = E X \times E(Y)
- \blacksquare Si $X_1, X_2, ..., X_n$ sont mutuellement indépendantes d'espérance finie, alors $\prod_{k=1}^n X_k$ est d'espérance finie et $E\left(\prod_{k=1}^n X_k\right) = \prod_{k=1}^n E(X_k)$.
- Démonstration admise
- d) Epreuves répétées indépendantes
 - Principe, exemples

5.3. Covariance

a) Définitions et diverse écriture

$$\begin{array}{l} \text{cov } X,Y \ = E \quad X - E \quad X \quad Y - E \quad Y \\ \\ \text{cov } X,Y \ = E \quad XY \quad - E \quad X \quad E \quad Y \\ \\ E(XY) = \sum_{x,y \ \in X \ \Omega \ \times Y\Omega} xyP \quad X = x \ \cap \ Y = y \end{array}$$

b) Propriétés immédiates

- Variance et covariance
- Cas où X et Y sont indépendantes ;
- c) Exemple
- d) Propriétés

<u>Propriété 1</u> Sur l'espace des variables aléatoires possédant des moments d'ordre 2, la covariance est une forme bilinéaire, symétrique et positive.

- Démonstration
- Attention! ce n'est pas un produit scalaire.

Propriété 2
$$|\cos X, Y| \leq \sigma X \sigma Y$$

- Démonstration
- e) Variance d'une somme finie de variables aléatoires

<u>Théorème</u> Soient $X, Y, X_1, X_2, ..., X_n$ des variables aléatoires discrètes possédant des moments d'ordre 2.

$$VX+Y=VX+VY+2$$
cov X,Y

- Démonstration
- Exemple
- f) Cas des variables indépendantes (bilan)

Théorème 1 Si X et Y sont deux variables aléatoires indépendantes, alors :

$$+$$
 cov $X,Y=0$

$$+ V X + Y = V X + V Y$$

• Démonstration

<u>Théorème 2</u> Si $X_1, X_2, ..., X_n$ sont deux à deux indépendantes, alors :

$$V\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} V X_i$$

• Démonstration

5.4. <u>Loi faible des grands nombres</u>

Théorème

Soit X_n une suite de variables aléatoires deux à deux indépendantes, de même loi, d'espérance m et admettant un moment d'ordre 2.

Soit
$$S_n = \sum_{k=1}^n X_k$$
. Alors, $\forall \varepsilon > 0$: $\boxed{P\left(\left|\frac{S_n}{n} - m\right| > \varepsilon\right) \xrightarrow[n \to +\infty]{} 0}$

• Démonstration

6. Fonctions génératrices

6.1. Définition

Propriété préliminaire Soit X une variable aléatoire à valeurs dans \mathbb{N} .

Soit la série entière $\sum P X = n t^n$.

- \blacksquare Son rayon de convergence vérifie $R \geqslant 1$.
- \blacksquare Elle converge normalement sur -1,1.
- \blacksquare Sa somme G_X est continue sur -R,R, et si R=1, sur -1,1.

• Démonstration

Définition Soit X une variable aléatoire à valeurs dans \mathbb{N} .

La fonction génératrice de X est définie : $G_X \ t = \sum_{n=0}^{+\infty} P \ X = n \ t^n$

6.2. Exemples : fonctions génératrices des lois usuelles

- Formules et démonstrations
- 📜 L'étudiant doit savoir calculer ces fonctions génératrices.

6.3. Utilisation de la fonction génératrice pour calculer les moments

a) Calcul de l'espérance

<u>Théorème</u> Soit X une variable aléatoire à valeurs dans $\mathbb N$. Alors :

- lacktriangleq X admet une espérance finie si et seulement si G_X est dérivable en 1.
- \blacksquare Dans ce cas : $E X = G_X' 1$

b) Calcul de la variance

<u>Théorème</u> Soit X une variable aléatoire à valeurs dans $\mathbb N$. Alors :

- lacksquare X admet un moment d'ordre 2 si et seulement si G_X est deux fois dérivable en 1.
- **♣** Dans ce cas : $V X = G_X^{"} 1 + G_X^{'} 1 G_X^{'} 1^2$.

6.4. Fonction génératrice d'une somme de variables indépendantes

Démonstration

- Généralisation à n variables aléatoires indépendantes.
- Exemples.