

เรื่อง ระบบถังขยะอัตโนมัติ Automatic Bin System

จัดทำโดย

ธนกฤต ศรีแก้ว รหัสนิสิต 65021666 ชูตระกูล แสนโซ้ง รหัสนิสิต 65024636 กฤตเมธ วันแรก รหัสนิสิต 65025637 วิลาวัลย์ เพ็ชรเอม รหัสนิสิต 65025783

เสนอ

อาจารย์ คมกริช มาเที่ยง

รายงานเล่มนี้เป็นส่วนหนึ่งของวิชาระบบสมองกลฝังตัว (226242)
สาขาวิศวกรรมคอมพิวเตอร์ คณะเทคโนโลยีสารสนเทศและการสื่อสาร
มหาวิทยาลัยพะเยา
ภาคเรียนที่ 2 ปีการศึกษา 2566

คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชาระบบสมองกลฝังตัว เพื่อให้ได้ศึกษาหาความรู้ในเรื่องการ ออกแบบระบบสมองกลฝังตัว เพื่อเป็นประโยชน์กับการเรียนในระดับอุดมศึกษาชั้นปีที่ 2

คณะผู้จัดทำได้เลือกหัวข้อระบบถังขยะอัตโนมัติในหารทำรายงาน เนื่องด้วยเป็นอุปกรณ์ที่ใกล้ตัว และมีการใช้งานในชีวิตประจำวันของทุกคน อีกทั้งทำให้ได้ศึกษาเกี่ยวกับการออกแบบระบบสมองกล ฝังตัวที่มีระบบพื้นฐานต่างๆ อีกด้วย ทั้งนี้ทางคณะผู้จัดต้องขอขอบพระคุณ อาจารย์คมกริช มาเที่ยง เป็นอย่างสูง ที่ให้ความรู้ คำแนะนำ และแนวทางในการศึกษา ค้นคว้า

คณะผู้จำทำหวังว่า รายงานเล่มนี้จะเป็นประโยชน์กับผู้อ่าน หรือนักศึกษา ที่กำลังหาข้อมูลในเรื่องการ ออกแบบระบบสมองกลฝังตัว หากมีข้อผิดพลาดประการใด คณะผู้จำขอน้อมรับไว้ และขออภัยมา ณ ที่นี้ด้วย

คณะผู้จัดทำ

สารบัญ

	หน้า
คำนำ	
สารบัญ	
สารบัญภาพ	IV
บทที่ 1 ที่มาและความสำคัญ	1
1.1 ที่มาและความสำคัญ	1
1.2 วัตถุประสงค์	1
1.3 ประโยชน์ที่คาดว่าจะได้รับ	2
บทที่ 2 เอกสารอ้างอิง	3
2.1 อุปกรณ์ที่ต้องใช้	3
2.1.1 บอร์ด ESP32	3
2.1.2 บอร์ดฐานสำหรับ ESP32 (ESP32 Base Board)	4
2.1.3 บอร์ดทดลองขนาดเล็ก (Breadboard)	4
2.1.4 E18-D80NK Sensor	5
2.1.5 IR Infrared Obstacle Detection Sensor	5
2.1.6 เซอร์โวมอเตอร์ MG996	6
2.1.7 Module ไฟ LED 3 สี	6
2.1.8 Active Buzzer	7
2.1.9 สายไฟต่อวงจร	7
2.1.10 ถังขยะแบบฝาปิดบานพับ	8
2.2 เครื่องมือที่ต้องใช้	8
2.2.1 Docker	8
2.2.2 Visual Studio Code	9
2.2.3 Flash Download Tool	9
2.2.4 PuTTY	9
บทที่ 3 วิธีการดำเนินงาน	10
3.1 การออกแบบระบบ	10
3.1.1 แนวคิดพื้นฐานของระบบ	10
3 1 2 การทำงาบของระบบโดยละเอียด	10

สารบัญ (ต่อ)

	หน้า
3.1.3 การเชื่อมต่อระหว่าง ESP32 และอุปกรณ์ต่างๆ	11
3.2 ขั้นตอนการเขียนโปรแกรมเพื่อลงบอร์ด ESP32	11
3.3 ขั้นตอนการติดตั้งอุปกรณ์ต่างๆ เข้ากับถังขยะ	17
3.4 การทดสอบการใช้งาน	24
3.4.1 การทดสอบการตรวจจับเพื่อเปิดปิดฝาถัง	24
3.4.2 การทดสอบการตรวจสอบสถานะความเต็มของขยะภายในถัง	26

สารบัญภาพ

รูปที่		หน้า
1.1	บอร์ด ESP32	3
1.2	แผนผังขาต่างๆ ของบอร์ด ESP32	3
2.0	บอร์ดฐานสำหรับ ESP32	4
3.0	บอร์ดทดลองขนาดเล็ก	4
4.0	E18-D80NK Sensor	5
5.0	IR Infrared Sensor	5
6.0	MG996 Servo Motor	6
7.0	Module ไฟ LED 3 สี	6
8.0	Active Buzzer	7
9.0	สายไฟต่อวงจร	7
10.0	ถังขยะแบบฝาปิดบานพับ	8
11.0	Docker	8
12.0	Visual Studio Code	9
13.0	PuTTY	9
14.0	แผนผังการเชื่อมต่อระหว่าง ESP32 และอุปกรณ์ต่างๆ	11
15.0	โปรแกรม Docker และ PowerShell	11
16.0	การใช้คำสั่ง cd ใน PowerShell	12
17.0	การใช้คำสั่ง docker run ใน PowerShell	12
18.0	การสร้างโฟลเดอร์โปรเจค	12
19.0	การตั้งค่ารุ่นให้เป็น ESP32 ที่เสร็จสิ้นแล้ว	12
20.1	การเปิดไฟล์โปรเจคใน Visual Studio Code	13
20.2	ส่วน include header file ที่เกี่ยวข้อง	13
20.3	ส่วนการกำหนดขา IR และขา Active Buzzer	13
20.4	ส่วนการกำหนดขา Servo และ ค่าต่างๆ ที่ใช้	14
20.5	ฟังก์ชันการแปลงมุมเซอร์โวมอเตอร์เป็นความกว้าง PWM	14
20.6	ส่วนการกำหนดขา IR ภายในถัง และขา LED	14
20.7	การกำหนดกลุ่มของขา input และ output	14
20.8	การตั้งค่า GPIO	14

สารบัญภาพ (ต่อ)

รูปที		หน้า
20.9	การสร้าง Timer สำหรับเซอร์โวมอเตอร์	15
20.10	0 การสร้าง MCPWM Generator สำหรับควบคุมเซอร์โวมอเตอร์	15
20.1	1 โปรแกรมการตรวจสอบขยะภายในถัง	15
20.12	2 โปรแกรมการตรวจสอบวัตถุหน้าถัง และเปิดปิดฝาถัง	16
21.0	การเลือกโหมดการทำงาน Flash Download Tool	16
22.0	เลือกไฟล์ที่ใช้แฟลชลงบอร์ด	17
	การเจาะรูเพื่อติดตั้งก้านดึง	
24.0	การติดตั้งก้านดึง	18
25.0	การติดตั้งก้านดึงที่เสร็จสมบูรณ์	18
26.0	การติดตั้งเซ็นเซอร์ E18-D80NK	19
	การติดตั้งเซอร์โวมอเตอร์เข้าที่ด้านหลังของถังขยะ	
28.0	ผูกเชือกระหว่างแขนของโซเวอร์มอเตอร์ กับก้านดึง	20
29.0	ติดตั้งเซ็นเซอร์ IR Infrared	20
30.0	ติดตั้ง Module LED	21
31.0	การรวบรวมสายไฟต่างๆ ของเซ็นเซอร์	21
32.0	การรวบรวมสายไฟต่างๆ เข้าส่วนที่ติดตั้งบอร์ด ESP32	22
33.0	การติดตั้งบอร์ด ESP32 และเชื่อมต่อสายไฟต่างๆ	22
34.0	ฝาเปิดปิดส่วนที่ติดตั้งบอร์ด ESP32 ขณะเปิด	23
35.0	ฝาเปิดปิดส่วนที่ติดตั้งบอร์ด ESP32 ขณะปิด	23
36.0	ปรับระยะของเซ็นเซอร์ E18-D80NK	24
37.0	ถังขยะเมื่อไม่มีวัตถุใดๆ อยู่บริเวณด้านหน้า	24
38.1	ถังขยะเมื่อตรวจพบวัตถุด้านหน้าในระยะ 1	25
38.2	ถังขยะเมื่อตรวจพบวัตถุด้านหน้าในระยะ 2	25
39.0	ถังขยะเมื่อภายในวางเปล่า	26
40.0	ไฟแสดงสถานที่เมื่อภายในถังขยะไม่เต็ม	26
41.0	ถังขยะเมื่อภายในเต็ม	27
42 0	ไฟแสดงสถานที่เมื่อภายในถังขยะเต็ม	27

าเทที่ 1

ที่มาและความสำคัญ

1.1 ที่มาและความสำคัญ

เนื่องในปัจจุบันระบบสมองกลฝังตัวถูกพัฒนาและใช้งานกันอย่างแพร่หลายในงานระบบขนาด เล็กที่พบเจอได้ในชีวิตประจำวัน เช่น อุปกรณ์อินเทอร์เน็ตในทุกสรรพสิ่ง (Internet of Things) ไปถึง ระบบขนาดใหญ่ หรือระบบที่เกี่ยวข้องกับเวลา และความปลอดภัยต่างๆ เช่น ระบบอุตสาหกรรม ระบบทางการแพทย์ต่างๆ ระบบยานพาหนะ เป็นต้น เพื่อช่วยอำนวยความสะดวก ความปลอดภัย และความน่าเชื่อถือในระบบงานต่างๆ

จากที่กล่าวข้างต้นนั้น ทางคณะผู้จัดทำจึงเล็งเห็นถึงความสำคัญของระบบสมองกลฝังตัวใน ปัจจุบัน และในอนาคต จึงมีความต้องการที่จะศึกษาค้นคว้า เกี่ยวกับการพัฒนา และการทำงานของ ระบบสมองกลฝังตัว โดยเลือกหัวข้อระบบ คือ ระบบถังขยะอัตโนมัติ

คณะผู้จัดทำได้เลือกทำระบบถังขยะอัตโนมัติ เนื่องด้วยเป็นสิ่งที่พบเห็น และใช้งานใน ชีวิตประจำวันของทุกคน เพื่อให้สามารถเข้าใจ มองเห็นถึงความสำคัญ และการนำไปใช้งานจริง อีก ทั้ง มีองค์ประกอบการทำงานของระบบอยู่ในหัวข้อพื้นฐานของระบบสมองกลฝังตัวที่ควรศึกษา เช่น การอ่านค่าจากเซนเซอร์ (Sensor) การตรวจสอบค่าต่างๆ เพื่อประมวลผลการทำงาน การควบคุม เซอร์โวมอเตอร์ (Servo Motor) และการแสดงค่า เป็นต้น เพื่อให้ได้ความรู้ความเข้าใจในเรื่องของ ระบบสมองกลฝังตัว สามารถนำความรู้ไปต่อยอดพัฒนาเพื่อประกอบอาชีพที่เกี่ยวข้องได้ในอนาคต

1.2 วัตถุประสงค์

- 1. เพื่อศึกษาหาความรู้เกี่ยวกับการทำงานของระบบสมองกลฝังตัว
- 2. เพื่อศึกษาหาความรู้เกี่ยวกับการพัฒนาระบบสมองกลฝังตัว
- 3. เพื่อศึกษาหาความรู้เกี่ยวกับการทำงานระหว่างเซนเซอร์ต่างๆ กับระบบสมองกลฝังตัว
- 4. เพื่อศึกษาหาความรู้เกี่ยวกับการควบคุมอุปกรณ์ต่างๆ โดยระบบสมองกลฝังตัว
- 5. เพื่อสร้าง และพัฒนาระบบสมองกลฝังตัวที่ใช้งานได้ในชีวิตประจำวัน

1.3 ประโยชน์ที่คาดว่าจะได้รับ

- 1. ได้ความรู้เกี่ยวกับการทำงานของระบบสมองกลฝังตัว
- 2. ได้ความรู้ความรู้เกี่ยวกับการพัฒนาระบบสมองกลฝังตัว
- 3. ได้ความรู้เกี่ยวกับการทำงานระหว่างเซนเซอร์ต่างๆ กับระบบสมองกลฝังตัว
- 4. ได้ความรู้เกี่ยวกับการควบคุมอุปกรณ์ต่างๆ โดยระบบสมองกลฝังตัว
- 5. สามารถมีระบบสมองกลฝังตัวที่ใช้ได้ในชีวิตประจำวัน ช่วยประหยัดค่าใช้จ่ายได้
- 6. สามารถนำความรู้ที่ได้ ไปต่อยอดในอนาคต

บทที่ 2 เอกสารอ้างอิง

จากการศึกษาค้นคว้าเรื่อง ระบบสมองกลฝังตัว การเลือกหัวข้อระบบถังขยะอัตโนมัติ ทางคณะ ผู้จัดทำได้ศึกษาเอกสาร และงานวิจัยที่เกี่ยวข้องดังต่อไปนี้

2.1 อุปกรณ์ที่ต้องใช้

2.1.1 บอร์ด ESP32

ESP32 เป็นไมโครคอนโทรลเลอร์ (Microcontroller) ที่รองรับการเชื่อมต่อ WiFi และ Bluetooth 4.2 BLE ในตัว ผลิตโดยบริษัท Espressif จากประเทศจีน

รูปที่ 1.1 บอร์ด ESP32

ร**ูปที่ 1.2** แผนผังขาต่างๆ ของบอร์ด ESP32

2.1.2 บอร์ดฐานสำหรับ ESP32 (ESP32 Base Board)

เป็นบอร์ดขยายขาต่างๆ สำหรับบอร์ด ESP32 ให้สามารถต่อสายไฟได้ง่ายยิ่งขึ้น มีขาจ่ายไฟ 5V เพิ่มเติม และยังสามารถจ่ายไฟ 6.5V - 9V เข้าที่บอร์ดฐานเพื่อแปลงแรงดันให้สามารถ จ่ายไฟที่เหมาะสมให้กับ ESP32 ได้อีกด้วย

รูปที่ 2.0 บอร์ดฐานสำหรับ ESP32

2.1.3 บอร์ดทดลองขนาดเล็ก (Breadboard)

เป็นอุปกรณ์ที่ใช้ในการต่อวงจรไฟฟ้าโดยไม่ต้องเชื่อมต่อวงจรแบบถาวร ช่วยให้ สามารถทดลองวงจร และสร้าง ปรับเปลี่ยน แก้ไขวงจรไฟฟ้าได้อย่างรวดเร็ว สะดวก

รูปที่ 3.0 บอร์ดทดลองขนาดเล็ก

2.1.4 E18-D80NK Sensor

เป็นเซนเซอร์ตรวจจับวัตถุที่ใช้หลักการสะท้อนของคลื่นอินฟาเรด สามารถ ตรวจจับวัตถุได้ในระยะ และยังกำหนดระยะในการทำงานโดยปรับค่าที่ Potentiometer ได้อีกด้วย โดยจะใช้สำหรับตรวจจับวัตถุหน้าถังขยะ

รูปที่ **4.0** E18-D80NK Sensor

2.1.5 IR Infrared Obstacle Detection Sensor

เป็นเซ็นเซอร์ใช้ตรวจจับวัตถุโดยใช้หลักการสะท้อนของคลื่นอินฟาเรดเช่นเดียวกัน กับ E18-D80NK Sensor ไม่สามารถปรับระยะการตรวจจับได้ แต่สามารถปรับความไวในการ ตรวจจับได้ โดยจะใช้สำหรับตรวจจับขยะภาพในถัง

รูปที่ 5.0 IR Infrared Sensor

2.1.6 เซอร์โวมอเตอร์ MG996

เป็นเซอร์โวมอเตอร์ที่สามารถหมุนได้ 0-180 องศา โดยใช้กระแสไฟที่ 5VDC ให้ แรงบิดสูงสุดที่ 12kg/cm โดยจะใช้สำหรับเปิดฝาของถังขยะ

รูปที่ **6.0** MG996 Servo Motor

2.1.7 Module ไฟ LED 3 สี

เป็นแผงวงจรรวมไฟ 3 สี ที่ใช้แรงดันระหว่าง 3.3V – 5V ใช้สำหรับแสดงสถานะ ของขยะภายในถังขยะ

รูปที่ 7.0 Module ไฟ LED 3 สี

2.1.8 Active Buzzer

เป็นลำโพงแบบแม่เหล็ก เปียโซที่มีวงจรกำเนิดความถี่ภายในตัว ใช้ไฟเลี้ยง 3.3V – 5V สามารถสร้างเสียงเตือนได้ โดยจะใช้สำหรับสร้างเสียงเตือนการตรวจพบวัตถุหน้าถังขยะ เพื่อเปิดฝา ถังขยะ

รูปที่ **8.0** Active Buzzer

2.1.9 สายไฟต่อวงจร

ใช้สำหรับเชื่อมต่ออุปกรณ์ต่างๆ เช่น ESP32 และเซ็นเซอร์ต่างๆ เข้าด้วยกัน

รูปที่ 9.0 สายไฟต่อวงจร

2.1.10 ถังขยะแบบฝาปิดบานพับ

ต้องใช้ถังขยะแบบฝาปิดบานพับที่สามารถปิดเปิดได้ เพื่อใช้สำหรับการเปิดปิดอัตโนมัติ ด้วยเซอร์โวมอเตอร์

รูปที่ 10.0 ถังขยะแบบฝาปิดบานพับ

2.2 เครื่องมือที่ต้องใช้

2.2.1 Docker

เป็นเครื่องมือแบบโอเพนซอร์ส (Open Source) ที่ช่วยจำลองสภาพแวดล้อม (environment) ในการรัน service หรือ server ตามหลักการสร้าง container เพื่อจัดการกับ library ต่างๆ อีกทั้งยังช่วยจัดการในเรื่องของ version control เพื่อง่ายต่อการจัดการกับปัญหา ต่างๆ

รูปที่ **11.0** Docker

2.2.2 Visual Studio Code

เป็น Text Editor และยังเป็น IDE อีกด้วย มีความนิยมมากในการนำมาใช้เขียนโปรแกรม และยังเป็นเครื่องมือฟรีที่ออกแบบมาให้ใช้งานได้ทั้งบน Windows, Linux และ MacOS

รูปที่ 12.0 Visual Studio Code

2.2.3 Flash Download Tool

พัฒนาโดย Espressif เป็นเครื่องมือที่ใช้ในการแฟลชโปรแกรมซอฟต์แวร์ลงบนชิป ESP8266 หรือ ESP32 โดยตรงผ่านทางการเชื่อมต่อ USB ระหว่างคอมพิวเตอร์ และบอร์ด ESP ด้วย ทำให้สามารถอัปโหลดโปรแกรม หรือแฟลชไฟล์ลงในบอร์ด ESP ได้อย่างง่ายดายโดยไม่จำเป็นต้องใช้ ผ่าน IDE หรือเครื่องมืออื่นๆ ที่ซับซ้อน ช่วยให้การพัฒนาโปรแกรมสำหรับ ESP มีความสะดวกและ รวดเร็วมาก

2.2.4 PuTTY

เป็นโปรแกรมโอเพนซอร์สที่ใช้ในการเชื่อมต่อกับเซิร์ฟเวอร์ หรืออุปกรณ์ที่ใช้โปรโตคอล SSH, Telnet, rlogin และระบบการเชื่อมต่อแบบพิเศษอื่นๆ ผ่านพอร์ต (Port)

รูปที่ 13.0 PuTTY

บทที่ 3

วิธีการดำเนินงาน

3.1 การออกแบบระบบ

3.1.1 แนวคิดพื้นฐานของระบบ

แนวคิดการทำงานของระบบถังขยะอัตโนมัตินี้ คือ เมื่อผู้ใช้อยู่บริเวณหน้าถังขยะ หรือ ภายในระยะการตรวจจับของเซ็นเซอร์ ถังขยะจะเปิดอัตโมนัติเป็นเวลา 3 วินาที และส่งเสียงแจ้งเตือน แต่หากผู้ใช้ยังอยู่บริเวณหน้าถังขยะ จะเปิดค้างไว้จนกว่าผู้ใช้จะเดินออกจากระยะตรวจจับ

อีกทั้งยังใช้เซ็นเซอร์เพื่อตรวจจับสถานะของขยะภายในถังว่าขยะเต็มหรือไม่ และจะแสดง สถานะผ่านหลอดไฟ LED ที่อยู่หน้าถังขยะ

3.1.2 การทำงานของระบบโดยละเอียด

ใช้เซ็นเซอร์ E18-D80NK ติดตั้งบริเวณด้านข้างของถังขยะ เพื่อตรวจจับผู้ใช้ หรือวัตถุ หากตรวจไม่พบจะส่งสัญญาณดิจิทัลสถานะ 1 และหากตรวจพบวัตถุส่งสัญญาณดิจิทัลสถานะ 0 เข้า สู่บอร์ด ESP32

หากมีการตรวจพบวัตถุจากเซ็นเซอร์ E18-D80NK บอร์ด ESP32 จะส่งสัญญาณ PWM ไปควบคุมเซอร์โวมอเตอร์จะดึงฝาถังขยะขึ้นเป็นเวลา 3 วินาที พร้อมส่งสัญญาณให้แก่ Active Buzzer ทำให้ส่งเสียงเตือน และหากตรวจไม่พบวัตถุจากเซ็นเซอร์ E18-D80NK บอร์ด ESP32 จะส่ง สัญญาณไปควบคุมเซอร์โวมอเตอร์ให้ปล่อยการดึงฝาถัง

ใช้เซ็นเซอร์ IR Infrared ติดตั้งบริเวณฝาถังด้านในเพื่อตรวจสถานะความเต็มของขยะ ภายใน ใช้หลักการคล้ายกับเซ็นเซอร์ E18-D80NK หากภายในมีปริมาณขยะน้อย จะไม่เข้าระยะของ การตรวจจับวัตถุ ส่งสัญญาณดิจิทัลสถานะ 1 เข้าสู่บอร์ด ESP32 หากภายในมีปริมาณขยะจำนวน มาก จนเข้าใกล้ฝาถัง และเข้าสู่ระยะการตรวจจับของเซ็นเซอร์ IR Infrared จะส่งสัญญาณดิจิทัล สถานะ 0 เข้าสู่บอร์ด ESP32

หากภายในถังมีขยะน้อย หรือยังไม่เข้าระยะการตรวจจับของ IR Infrared บอร์ด ESP32 จะส่งสัญญาณเพื่อเปิดไฟ LED สีเขียว แต่หากภายในถังมีใกล้เต็ม หรือเข้าสู่ระยะการตรวจจับของ IR Infrared บอร์ด ESP32 จะส่งสัญญาณเพื่อเปิดไฟ LED สีแดง

3.1.3 การเชื่อมต่อระหว่าง ESP32 และอุปกรณ์ต่างๆ

การเชื่อมต่อระหว่าง ESP32 และอุปกรณ์ต่างๆ เพื่อใช้ในระบบถังขยะอัตโนมัติ จะแสดง ผ่านแผนผังจำลองดังนี้

รูปที่ 14.0 แผนผังการเชื่อมต่อระหว่าง ESP32 และอุปกรณ์ต่างๆ

3.2 ขั้นตอนการเขียนโปรแกรมเพื่อลงบอร์ด ESP32

1. ทำการเปิดโปรแกรม Docker และ PowerShell หรือ Terminal ขึ้นมา

รูปที่ 15.0 โปรแกรม Docker และ PowerShell

2. เข้าไปที่ตำแหน่งที่ต้องการเก็บไฟล์ (File) ของโปรเจค (Project) ด้วยคำสั่ง cd

```
PS C:\Users\vrzo2> cd F:
PS F:\> cd .\EmbeddedProject\
PS F:\EmbeddedProject> |
```

รูปที่ 16.0 การใช้คำสั่ง cd ใน PowerShell

3. ใช้คำสั่ง docker run --rm -it -v "\${pwd}:/data" -w /data espressif/idf bash และรอจนกว่าจะเสร็จสิ้นดังรูปภาพ

```
Done! You can now compile ESP-IDF projects.
Go to the project directory and run:

idf.py build

root@467311b36f6a:/data#
```

รูปที่ 17.0 การใช้คำสั่ง docker run ใน PowerShell

4. ใช้คำสั่ง *idf.py create-project <ชื่อโปรเจค>* เพื่อสร้างโฟลเดอร์ (Folder) ของโปรเจค หากสร้างสำเร็จจะได้ผลลัพธ์ดังรูป

```
root@467311b36f6a:/data# idf.py create-project auto_bin
Executing action: create-project
The project was created in /data/auto_bin
root@467311b36f6a:/data# |
```

รูปที่ 18.0 การสร้างโฟลเดอร์โปรเจค

และเข้าไปที่โฟลเดอร์ของโปรเจคที่สร้างขึ้น

5. ใช้คำสั่ง idf.py set-target esp32 เพื่อตั้งให้เป็นรุ่นของ ESP32 และรอจนกว่าจะเสร็จ สิ้นได้ผลลัพธ์ดังรูป

```
-- Configuring done
-- Generating done
-- Build files have been written to: /data/auto_bin/build root@467311b36f6a:/data/auto_bin# |
```

ร**ูปที่ 19.0** การตั้งค่ารุ่นให้เป็น ESP32 ที่เสร็จสิ้นแล้ว

6. เปิด Visual Studio Code และเข้าไปที่โฟลเดอร์ของโปรเจค พร้อมเปิดไฟล์ <ชื่อโปร เจค.c> ที่อยู่ในโฟลเดอร์ main

รูปที่ 20.1 การเปิดไฟล์โปรเจคใน Visual Studio Code

7. ทำการเขียนโค้ด (Code) ของโปรแกรมดังนี้

```
main > C auto_bin.c > ② app_main(void)

1  #include <stdio.h>
2  #include "driver/gpio.h" //GPIO
3  #include "freertos/FreeRTOS.h" //FreeRTOS for vTaskDelay
4  #include "freertos/task.h"
5  #include "esp_log.h"
6  #include "driver/mcpwm_prelude.h" // PWM
```

รูปที่ 20.2 ส่วน include header file ที่เกี่ยวข้อง

```
8  // IR PIN CONFIG
9  #define IR_PIN GPIO_NUM_2
10  int val_ir = 0;
11
12  // BUZZER PIN CONFIG
13  #define BUZZER_PIN GPIO_NUM_4
```

รูปที่ 20.3 ส่วนการกำหนดขา IR และขา Active Buzzer

รูปที่ 20.4 ส่วนการกำหนดขา Servo และ ค่าต่างๆ ที่ใช้

```
// SERVO_COMPARE
static inline uint32_t example_angle_to_compare(int angle)
{
    return ((angle - SERVO_MIN_DEGREE) * (SERVO_MAX_PULSEWIDTH_US - SERVO_MIN_PULSEWIDTH_US) / (SERVO_MAX_DEGREE - SERVO_MIN_DEGREE) + SERVO_MIN_PULSEWIDTH_US);
}
int angle = 0;
```

รูปที่ 20.5 ฟังก์ชันการแปลงมุมเซอร์โวมอเตอร์เป็นความกว้าง PWM

```
// IR_IN_PIN CONFIG

#define IR_IN_PIN GPIO_NUM_5

#define GREEN_LED_PIN GPIO_NUM_17

#define RED_LED_PIN GPIO_NUM_16

int val_ir_inBin = 0;
```

รูปที่ 20.6 ส่วนการกำหนดขา IR ภายในถัง และขา LED

```
40 // INPUT PIN
41 #define GPIO_INPUT_PIN_SET ((1ULL<<IR_PIN) | (1ULL<<IR_IN_PIN))
42
43 // OUTPUT PIN
44 #define GPIO_OUTPUT_PIN_SET ((1ULL<<BUZZER_PIN) | (1ULL<<GREEN_LED_PIN) | (1ULL<<RED_LED_PIN))
```

รูปที่ 20.7 การกำหนดกลุ่มของขา input และ output

โค้ดที่กำลังแสดงทั้งหมดต่อไปนี้อยู่ในฟังก์ชัน app_main()

```
void app_main(void){

// GPIO INPUT CONFIG

gpio_config_t i_conf = {};

i_conf.intr_type = GPIO_INTR_DISABLE;

i_conf.mode = GPIO_MODE_INPUT;

i_conf.pin_bit_mask = GPIO_INPUT_PIN_SET;

i_conf.pull_down_en = 0;

i_conf.pull_up_en = 1;

gpio_config(&i_conf);

// GPIO OUTPUT CONFIG

gpio_config_t o_conf = {};

o_conf.intr_type = GPIO_INTR_DISABLE;

o_conf.mode = GPIO_MODE_OUTPUT;

o_conf.pin_bit_mask = GPIO_OUTPUT_PIN_SET;

o_conf.pull_down_en = 0;

o_conf.pull_up_en = 1;

gpio_config(&o_conf);
```

รูปที่ 20.8 การตั้งค่า GPIO

```
ESP_LOGI(TAG, "Create timer and operator");
mcpwm_timer_handle_t timer = NULL;
mcpwm_timer_config_t timer_config = {
   .group_id = 0,
    .clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT,
   .resolution_hz = SERVO_TIMEBASE_RESOLUTION_HZ,
.period_ticks = SERVO_TIMEBASE_PERIOD,
    .count_mode = MCPWM_TIMER_COUNT_MODE_UP
ESP_ERROR_CHECK(mcpwm_new_timer(&timer_config, &timer));
mcpwm_oper_handle_t oper = NULL;
mcpwm_operator_config_t operator_config = {
   .qroup_id = 0
ESP_ERROR_CHECK(mcpwm_new_operator(&operator_config, &oper));
ESP_LOGI(TAG, "Connect timer and operator");
ESP_ERROR_CHECK(mcpwm_operator_connect_timer(oper, timer));
mcpwm_comparator_config_t comparator_config = {
   .flags.update_cmp_on_tez = true,
ESP_ERROR_CHECK(mcpwm_new_comparator(oper, &comparator_config, &comparator));
```

รูปที่ 20.9 การสร้าง Timer สำหรับเซอร์โวมอเตอร์

รูปที่ 20.10 การสร้าง MCPWM Generator สำหรับควบคุมเซอร์โวมอเตอร์

```
// LOOP APP
while(1){
    // IR IN
    val_ir_inBin = gpio_get_level(IR_IN_PIN);
    printf("-- -IN BIN Value : %d ---\n", val_ir_inBin);
    if(val_ir_inBin == 0){
        printf("-> Bin status : RED!!\n");
        gpio_set_level(RED_LED_PIN, 1);
        gpio_set_level(GREEN_LED_PIN, 0);
    }else{
        printf("-> Bin status : GREEN\n");
        gpio_set_level(RED_LED_PIN, 0);
        gpio_set_level(RED_LED_PIN, 0);
        gpio_set_level(RED_LED_PIN, 0);
        gpio_set_level(RED_LED_PIN, 1);
}
```

รูปที่ 20.11 โปรแกรมการตรวจสอบขยะภายในถัง

```
// IR DETECTION
val_ir = gpio_get_level(IR_PIN);
printf("--- IR Value : %d ---\n", val_ir);
if(val_ir = 0){
    printf("-> Bin open!!\n");
    angle = 90;
    ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(comparator, example_angle_to_compare(angle)));
    gpio_set_level(BUZZER_PIN, 1);
    vTaskDelay(100 / portTICK_PERIOD_MS);
    gpio_set_level(BUZZER_PIN, 0);
    vTaskDelay(3000 / portTICK_PERIOD_MS);
}
else{
    printf("-> Bin close\n");
    angle = -90;
    ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(comparator, example_angle_to_compare(angle)));
}
printf("\n");

vTaskDelay(100 / portTICK_PERIOD_MS);
}

vTaskDelay(100 / portTICK_PERIOD_MS);
}
```

รูปที่ 20.12 โปรแกรมการตรวจสอบวัตถุหน้าถัง และเปิดปิดฝาถัง

- 8. ใช้คำสั่ง idf.py build เพื่อแปลงโค้ดภาษา C ในไฟล์โปรเจคให้เป็นภาษาเครื่องที่ ESP32 เข้าใจได้ และเมื่อเสร็จสิ้นแล้วจะได้ผลลัพธ์ดังรูป
- 9. ใช้โปรแกรม Flash Download Tool เพื่อแฟลชโปรแกรมลงบอร์ด โดยเลือก ChipType เป็น ESP32 และ WorkMode เป็น Develop

รูปที่ 21.0 การเลือกโหมดการทำงาน Flash Download Tool

เลือกไฟล์ที่ต้องการลง ได้แก่ bootloader.bin ลงในตำแหน่ง 0x1000, ชื่อโปรเจค.bin ลงในตำแหน่ง 0x10000, partition-table.bin ลงในตำแหน่ง 0x8000 ดังรูป และทำการแฟลชลงบอร์ด

F:\EmbeddedProject\auto_bin\build\bootloader\bootloader.bin		0x1000
F:\EmbeddedProject\auto_bin\build\auto_bin.bin	@	0x10000
F:\EmbeddedProject\auto_bin\build\partition_table\partition-table.bin	@	0x8000
	@)
	@)
	()
	@)

รูปที่ 22.0 เลือกไฟล์ที่ใช้แฟลชลงบอร์ด

3.3 ขั้นตอนการติดตั้งอุปกรณ์ต่างๆ เข้ากับถังขยะ

1. ทำการเจาะด้านหลังของฝาถัง เพื่อติดตั้งแท่งเหล็กสำหรับใช้เป็นก้านดึงในการเปิดปิดด้วย เซอร์โวมอเตอร์

รูปที่ 23.0 การเจาะรูเพื่อติดตั้งก้านดึง

รูปที่ 24.0 การติดตั้งก้านดึง

รูปที่ 25.0 การติดตั้งก้านดึงที่เสร็จสมบูรณ์

2. ติดตั้งเซ็นเซอร์ E18-D80NK เข้าที่บริเวณด้านข้างของถัง โดยหันด้านหน้าของเซ็นเซอร์ออก สู่ด้านหน้าของถัง

รูปที่ 26.0 การติดตั้งเซ็นเซอร์ E18-D80NK

3. ติดตั้งเซอร์โวมอเตอร์เข้าที่บริเวณด้านหลังของถังขยะ โดยให้ตรงกับบริเวณก้านดึงของฝาถัง

รูปที่ 27.0 การติดตั้งเซอร์โวมอเตอร์เข้าที่ด้านหลังของถังขยะ

4. ใช้เชือกผูกระหว่างแขนของโซเวอร์มอเตอร์ กับก้านดึงของฝาถังขยะ

รูปที่ 28.0 ผูกเชือกระหว่างแขนของโซเวอร์มอเตอร์ กับก้านดึง

5. ติดตั้งเซ็นเซอร์ IR Infrared เข้าที่บริเวณใต้ฝาถัง หรือภายในถังขยะ

รูปที่ 29.0 ติดตั้งเซ็นเซอร์ IR Infrared

6. ติดตั้ง Module LED เข้าที่บริเวณหน้าถัง

รูปที่ 30.0 ติดตั้ง Module LED

7. รวบรวมสายไฟต่างๆ ของเซ็นเซอร์ เข้าไปสู่ส่วนที่ติดตั้งบอร์ด ESP32

รูปที่ 31.0 การรวบรวมสายไฟต่างๆ ของเซ็นเซอร์

รูปที่ 32.0 การรวบรวมสายไฟต่างๆ เข้าส่วนที่ติดตั้งบอร์ด ESP32

8. ติดตั้งบอร์ด ESP32 และเชื่อมต่อสายไฟต่างๆ ตามแผนผังจำลองในรูปที่ 14

ร**ูปที่ 33.0** การติดตั้งบอร์ด ESP32 และเชื่อมต่อสายไฟต่างๆ

9. ติดฝาเปิดปิดส่วนที่ติดตั้งบอร์ด ESP32

รูปที่ 34.0 ฝาเปิดปิดส่วนที่ติดตั้งบอร์ด ESP32 ขณะเปิด

รูปที่ 35.0 ฝาเปิดปิดส่วนที่ติดตั้งบอร์ด ESP32 ขณะปิด

10. สามารถปรับระยะการตรวจจับของเซ็นเซอร์ E18-D80NK โดยใช้ไขควงได้ตามต้องการ หากหมุนตามเข็มนาฬิกาจะเป็นการเพิ่มระยะการตรวจจับ และหากหมุนทวนเข็มนาฬิกาจะเป็นการ ลดระยะการตรวจจับ

รูปที่ 36.0 ปรับระยะของเซ็นเซอร์ E18-D80NK

3.4 การทดสอบการใช้งาน

3.4.1 การทดสอบการตรวจจับเพื่อเปิดปิดฝาถัง

เมื่อมีไม่มีวัตถุใดๆ บริเวณหน้าถังขยะ ฝาถังก็จะปิดเป็นปกติ

รูปที่ 37.0 ถังขยะเมื่อไม่มีวัตถุใดๆ อยู่บริเวณด้านหน้า

เมื่อมีวัตถุ หรือผู้ใช้อยู่บริเวณหน้าถังในระยะการตรวจจับที่ปรับค่าไว้ จะส่งเสียงแจ้งเตือน และฝาถัง จะเปิดตลอด จนกว่าวัตถุนั้น ออกจากระยะการตรวจจับ

รูปที่ 38.1 ถังขยะเมื่อตรวจพบวัตถุด้านหน้าในระยะ 1

รูปที่ 38.1 ถังขยะเมื่อตรวจพบวัตถุด้านหน้าในระยะ 2

3.4.2 การทดสอบการตรวจสอบสถานะความเต็มของขยะภายในถัง

เมื่อถังขยะว่าง หรือไม่เต็ม จะแสดงไฟสถานะสีเขียวที่หน้าถัง

รูปที่ 39.0 ถังขยะเมื่อภายในวางเปล่า

รูปที่ 40.0 ไฟแสดงสถานที่เมื่อภายในถังขยะไม่เต็ม

เมื่อขยะที่อยู่ภายในถังใกล้เต็ม หรือเต็มแล้ว จะแสดงไฟสถานะสีแดงที่บริเวณหน้าถัง

รูปที่ 41.0 ถังขยะเมื่อภายในเต็ม

รูปที่ 42.0 ไฟแสดงสถานที่เมื่อภายในถังขยะเต็ม