Package 'ThreeArmedTrials'

December 16, 2022

```
Type Package
Title Design and Analysis of Clinical Non-Inferiority or Superiority
     Trials with Active and Placebo Control
Version 1.0-4
Date 2022-12-16
Maintainer Tobias Mütze <tobias.muetze@outlook.com>
Description Design and analyze three-arm non-inferiority or superiority trials
     which follow a gold-standard design, i.e. trials with an experimental treatment,
     an active, and a placebo control. Method for the following distributions are implemented:
     Poisson (Mielke and Munk (2009) <arXiv:0912.4169>), negative bino-
     mial (Muetze et al. (2016) <doi:10.1002/sim.6738>),
     normal (Pi-
     geot et al. (2003) <doi:10.1002/sim.1450>; Hasler et al. (2009) <doi:10.1002/sim.3052>),
     binary (Friede and Kieser (2007) <doi:10.1002/sim.2543>), nonparamet-
     ric (Muetze et al. (2017) <doi:10.1002/sim.7176>),
     exponential (Mielke and Munk (2009) <arXiv:0912.4169>).
Depends R (>= 3.0.0)
Imports stats, MASS, methods, numDeriv
Suggests testthat, knitr, rmarkdown
License GPL (>= 3)
NeedsCompilation yes
URL https://github.com/tobiasmuetze/ThreeArmedTrials
BugReports https://github.com/tobiasmuetze/ThreeArmedTrials/issues
RoxygenNote 7.1.1
Encoding UTF-8
VignetteBuilder knitr
LazyData true
Author Tobias Mütze [aut, cre] (<a href="https://orcid.org/0000-0002-4111-1941">https://orcid.org/0000-0002-4111-1941</a>),
     Tim Friede [ctb]
Repository CRAN
Date/Publication 2022-12-16 13:00:05 UTC
```

R topics documented:

	check_missing	2
	check_RET_arguments	2
	GElesions	
	is.naturalnumber	3
	loglikelihood_binary	
	opt_alloc_RET	4
	power_RET	5
	remission	7
	seizures	
	T2lesions	8
	test_RET	8
	ThreeArmedTrials	10
Index		12

 ${\tt check_missing}$

check_missing

Description

Check if all arguments are defined

Usage

```
check_missing(args = NULL, envir = parent.frame())
```

Arguments

args Character vector of arguments to be checked for existence.

envir Environment in which the arguments are defined.

check_RET_arguments

Description

Check arguments for their respective condition

Usage

```
check_RET_arguments(sig.level, power, Delta, n, allocation)
```

GElesions 3

Arguments

sig.level	A numeric value specifying the significance level (type I error probability)
power	A numeric value specifying the target power (1 - type II error probability)
Delta	A numeric value specifying the non-inferiority or superiority margin. Is between 0 and 1 in case of non-inferiority and larger than 1 in case of superiority.
n	The total sample size. Needs to be at least 7.
allocation	A (non-empty) vector specifying the sample size allocation (nExp/n, nRef/n, nPla/n)

GElesions

Total number of new galodinium-enhancing lesions.

Description

A (fictional) dataset containing the total number of new galodinium-enhancing lesions for different treatments for multiple sclerosis.

Usage

GElesions

Format

A data frame with 50 rows and 3 variables:

placebo Placebo groupreference Reference groupexperimental Experimental treatment group

is.naturalnumber

is.naturalnumber

Description

check if input is natural number

Usage

```
is.naturalnumber(x, tol = .Machine$double.eps^0.5)
```

Arguments

x numeric number to be checked

tol maximum accepted tolerance when checking if natural

opt_alloc_RET

 $loglikelihood_binary \\ loglikelihood_binary$

Description

log likelihood of Bernoulli function

Usage

```
loglikelihood_binary(p, xExp, xRef, xPla)
```

Arguments

p	numeric vector of probabilities with length 3
хЕхр	numeric vector of probabilities with length 3
xRef	numeric vector of probabilities with length 3
xPla	numeric vector of probabilities with length 3

	timal sample size for three-arm trials when analyzed with a Walde test
--	--

Description

Calculate optimal sample size allocation for Wald-type test for superiority or non-inferiority of the experimental treatment versus reference treatment with respect to placebo

Usage

```
\verb|opt_alloc_RET| (experiment, reference, placebo, Delta, distribution, h = NULL)| \\
```

Arguments

experiment	a numeric vector specifying the parameters of the experimental treatment group in the alternative hypothesis
reference	a numeric vector specifying the parameters of the reference treatment group in the alternative hypothesis
placebo	a numeric vector specifying the parameters of the placebo treatment group in the alternative hypothesis
Delta	a numeric value specifying the non-inferiority/superiority margin
distribution	a character specifying the distribution of the endpoints. Must must be either of "poisson", "negbin", "exponential", "normal"
h	Function measuring the efficacy; used to defined hypothesis

power_RET 5

Details

The arguments experiment, reference, and placebo define the parameters of the endpoint distribution for the respective groups:

distribution = "poisson": experiment, reference, and placebo must have length one and define the means.

distribution = "negbin": experiment, reference, and placebo must have length two and define the mean in the first entry and the shape parameter in the second entry.

distribution = "exponential": experiment, reference, and placebo must have length two and define the mean in the first entry and the probability for an uncensored observation in the second entry.

distribution = "normal": experiment, reference, and placebo must have length two and define the mean in the first entry and the variance in the second entry.

Value

Vector with optimal sample size allocation in the order (experiment, reference, placebo)

Examples

power_RET

Power related calculations for three-arm clinical trials

Description

Compute power, sample size, or level of significance for Wald-type test for non-inferiority or superiority of the experimental treatment versus reference treatment with respect to placebo.

Usage

```
power_RET(
  experiment,
  reference,
  placebo,
  Delta,
  sig_level = NULL,
  power = NULL,
  n = NULL,
  allocation = c(1/3, 1/3, 1/3),
  distribution = NULL,
  ...
)
```

6 power_RET

Arguments

a numeric vector specifying the parameters of the experimental treatment group experiment in the alternative hypothesis reference a numeric vector specifying the parameters of the reference treatment group in the alternative hypothesis placebo a numeric vector specifying the parameters of the placebo treatment group in the alternative hypothesis Delta a numeric value specifying the non-inferiority/superiority margin sig_level A numeric value specifying the significance level (type I error probability) A numeric value specifying the target power (1 - type II error probability) power The total sample size. Needs to be at least 7. n allocation A (non-empty) vector specifying the sample size allocation (nExp/n, nRef/n, nPla/n) A character specifying the distribution of the endpoints. Must must be either of distribution "binary", "poisson", "negbin", "exponential", "normal"

binary, poisson, negotin, exponent

Further arguments. See details.

Details

If the individual group sample sizes, i.e. n*allocation are not natural number, the parameters n and *allocation* will be re-calculated.

The additional parameter var_estimation is a character string specifying how the variance for the Wald-type test statistic is estimated in the Poisson and negative binomial model. Must be *RML* for restricted maximum-likelihood, or *ML* for unrestricted maximum-likelihood

Value

A list with class "power.htest" containing the following components:

The total sample size power A numeric value specifying the target power A numeric value specifying the non-inferiority or superiority margin. Delta sig.level A character string specifying the significance level type A character string indicating what type of Wald-type test will be performed allocation A vector with the sample size allocation (nExp/n, nRef/n, nPla/n) sig.level The significance level (Type I error probability) nExp A numeric value specifying the number of sample in the experimental treatment group nRef A numeric value specifying the number of sample in the reference treatment group nPla A numeric value specifying the number of sample in the placebo treatment group remission 7

Examples

```
power_RET(experiment = 15, reference = 17, placebo = 20,
    Delta = 0.8, sig_level = 0.025, power = 0.8,
    allocation = c(1, 1, 1) / 3,
    var_estimation = "RML",
    distribution = "poisson")
```

remission

Remission in clinical trial in patients with depression.

Description

A dataset indicating whether a patient went into remission defined as a HAM-D total score of <= 7.

Usage

remission

Format

A data frame with 88 rows and 3 variables:

```
placebo Placebo groupreference Reference groupexperimental Experimental treatment group
```

seizures

Number of seizures per patient.

Description

A (fictional) dataset containing the number of seizures per patient for different add-on treatments evaluating an anti-epileptic drug.

Usage

seizures

Format

A data frame with 18 rows and 3 variables:

```
pla Placebo groupref Reference groupexp Experimental treatment group
```

8 test_RET

Description

A (fictional) dataset containing the number of new and enlarging T2 lesions per patient for different treatments for multiple sclerosis.

Usage

T2lesions

Format

A data frame with 150 rows and 3 variables:

```
pla Placebo groupref Reference groupexp Experimental treatment group
```

test_RET

Wald-type test for three-arm trials

Description

Wald-type test for superiority/non-inferiority of the experimental treatment versus reference treatment with respect to placebo.

Usage

```
test_RET(xExp, xRef, xPla, Delta, ...)
```

Arguments

хЕхр	A (non-empty) numeric vector of data values from the experimental treatment group.
xRef	A (non-empty) numeric vector of data values from the reference treatment group.
xPla	A (non-empty) numeric vector of data values from the placebo group.
Delta	A numeric value specifying the non-inferiority or superiority margin. Is between 0 and 1 in case of non-inferiority and larger than 1 in case of superiority.
	Other named arguments such as distribution, var_estimation. See details for more information.

test_RET 9

Details

Additional parameters include distribution and var_estimation.

The parameter distribution is a character string and indicates whether a parametric model should be used. If not specified retention of effect hypothesis is tested using sample means and variances. The following options exist: "poisson" (Poisson distribution), "negbin" (negative binomial distribution), "normal" (normal distribution), "exponential" (censored exponential). "nonparametric" (non-parametric). If the parameter distribution is not specified the effect and the variance for the test statistic are estimated by the sample means and sample variances.

The parameter var_estimation defines how the variance is estimated in the parametric models "poisson" and "negbin". The following options exist: RML for the restricted maximum-likelihood estimator and ML (default) for the unrestricted maximum-likelihood estimator.

Value

A list with class "htest" containing the following components:

statistic The value of the Wald-type test statistic.
p.value The p-value for the Wald-type test.

method A character string indicating what type of Wald-type-test was performed.

estimate The estimated rates for each of the group as well as the maximum-likelihood

estimator for the shape parameter.

sample.size The total number of data points used for the Wald-type test.

References

I. Pigeot, J. Schaefer, J. Roehmel, D. Hauschke. (2008). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine. 30(6):883-99.

M. Hasler, R. Vonk, and LA. Hothorn. (2008). Assessing non-inferiority of a new treatment in a three-arm trial in the presence of heteroscedasticity. Statistics in Medicine, 27(4):490-503.

M. Mielke and A. Munk. (2009). The assessment and planning of non-inferiority trials for retention of effect hypotheses-towards a general approach. arXiv preprint arXiv:0912.4169.

T. Muetze, A. Munk, and T. Friede. (2016). *Design and analysis of three-arm trials with negative binomially distributed endpoints.* Statistics in Medicine, 35(4):505-521.

See Also

```
power_RET
```

Examples

```
# Negative binomially distributed endpoints
# Test for non-inferiority test. lambda_P=8, lambda_R = 4, lambda_E = 5, and phi = 1
# Delta = (lambda_P-lambda_E)/(lambda_P-lambda_R)
xExp <- rnbinom(60, mu = 5, size = 1)
xRef <- rnbinom(40, mu = 4, size = 1)
xPla <- rnbinom(40, mu = 8, size = 1)
Delta <- (8-5) / (8-4)
test_RET(xExp, xRef, xPla, Delta, var_estimation = 'RML', distribution = "negbin")</pre>
```

10 ThreeArmedTrials

```
test_RET(xExp, xRef, xPla, Delta, var_estimation = 'ML', distribution = "negbin")
# Poisson distributed endpoints
# Test for non-inferiority test. lambda_P=8, lambda_R = 4, lambda_E = 5
# Delta = (lambda_P-lambda_E)/(lambda_P-lambda_R)
xExp <- rpois(60, lambda = 5)
xRef <- rpois(40, lambda = 4)
xPla <- rpois(40, lambda = 8)
Delta <- (8-5) / (8-4)
test_RET(xExp, xRef, xPla, Delta, var_estimation = 'RML', distribution = "poisson")
test_RET(xExp, xRef, xPla, Delta, var_estimation = 'ML', distribution = "poisson")
# Censored exponential distributed endpoints
# Test for non-inferiority test. lambda_P=3, lambda_R = 1, lambda_E = 2
# Probability for uncensored observation: 0.9
# Delta = (lambda_P-lambda_E)/(lambda_P-lambda_R)
x_{exp} \leftarrow matrix(c(rexp(40, rate = 1/2), rbinom(40, size = 1, prob = 0.9)),
                 ncol = 2, byrow = FALSE)
x_ref \leftarrow matrix(c(rexp(40, rate = 1/1), rbinom(40, size = 1, prob = 0.9)),
                 ncol = 2, byrow = FALSE)
x_pla \leftarrow matrix(c(rexp(40, rate = 1/3), rbinom(40, size = 1, prob = 0.9)),
                 ncol = 2, byrow = FALSE)
Delta <- log(2/3) / log(1/3)
test_RET(xExp = x_exp,
                 xRef = x_ref,
                 xPla = x_pla,
                 Delta = Delta,
                 distribution = "exponential")
```

ThreeArmedTrials

Design and Analysis of Three-armed Clinical Non-Inferiority or Superiority Trials with Active and Placebo Control

Description

The package **ThreeArmedTrials** provides functions for designing and analyzing non-inferiority or superiority trials with an active and a placebo control. Non-inferiority and superiority are defined through the hypothesis $(\lambda_P - \lambda_E)/(\lambda_P - \lambda_R) \leq \Delta$ with the alternative hypothesis $(\lambda_P - \lambda_E)/(\lambda_P - \lambda_R) > \Delta$. The parameters λ_E , λ_R , and λ_P are associated with the distribution of the endpoints and smaller values of λ_E , λ_R , and λ_P are considered to be desirable. A detailed description of these parameters can be found in the help file of the individual functions. The margin Δ is between 0 and 1 for testing non-inferiority and larger than 1 for testing superiority.

A detailed discussion of the hypothesis can be found in Hauschke and Pigeot (2005).

The statistical theory for negative binomial distributed endpoint has been developed by Muetze et al. (2015).

Author(s)

Tobias Muetze <tobias.muetze@outlook.com>

ThreeArmedTrials 11

References

Hauschke, D. and Pigeot, I. 2005. "Establishing efficacy of a new experimental treatment in the 'gold standard' design." Biometrical Journal 47, 782–786. Muetze, T. et al. 2015. "Design and analysis of three-arm trials with negative binomially distributed endpoints." *Submitted*.

Index

```
* allocation
    opt_alloc_RET, 4
\ast datasets
    GElesions, 3
    remission, 7
    seizures, 7
    T2lesions, 8
* power
    power_RET, 5
* samplesize
    power_RET, 5
* test
    test_RET, 8
*\ wald type
    opt_alloc_RET, 4
    power_RET, 5
    test_RET, 8
check_missing, 2
check_RET_arguments, 2
GElesions, 3
is. natural number, \\ 3
loglikelihood_binary, 4
opt_alloc_RET, 4
power_RET, 5, 9
remission, 7
seizures, 7
T2lesions, 8
test_RET, 8
ThreeArmedTrials, 10
```