现代数学基础丛书

Gel' fond-Baker 方法在 丢番图方程中的应用

乐茂华 著

斜学出版社

1998

内 容 简 介

本书系统论述 Gel fond-Baker 方法在 Thue 方程、Thue-Mahler 方程、广义 Ramanujan-Nagell 方程、椭圆方程、超椭圆方程以及有理数域上的 S·单位方程中的应用、并对上述方程的历史背景、最新成果和尚待解决的问题作了全面的阐述、书中附有详细的文献目录,以便读者像进一步的研究。

本书可供高等学校数学系学生和教师阅读和参考。

图书在版编目(CIP)数据

Gel'fond-Baker 方法在丢番图方程中的应用/乐茂华著、北京、科学出版社、1998、10

(現代数学基础丛书/程民德主编): ISBN 7-03-006623-5

I.G···· I.乐··· ■. **漁勒范德**-贝克法-应用-丢番图方程IV. 0156、7

中国版本图书馆 CIP 数据核字(98)第 07908 号

特鲁克里亚 出版

並京东黄植根北南 16 号 郭政總码: 130717

北京科地亚印刷厂印刷 新华书店北京发行所发行 各地新华书店经售

定价:16:00元

(如有印装质量问题,我社负责调换(新欣))

《现代数学基础丛书》编委会

主 编:程民德

副主编: 夏道行 龚 昇 王梓坤 齐民友

编 委:(以姓氏笔划为序)

万哲先 王世强 王柔怀 叶彦谦

孙永生 庄圻泰 江泽坚 正泽培

陈希篇 张禾瑞 张恭庆 严志达

胡和生 姜伯驹 聂灵滔 莫绍揆

曹锡华 蒲保明

前 言

1966年,英国数学家 A. Baker 在超越数论方面作出了杰出的 贡献. 他成功地将 Gel'fond 和 Schneider 有关 Hilbert 第七问题的 著名结果推广到了一般的情况,并且对代数数对数线性型给出了可有效计算的下界。 Baker 的出色工作不但推动了超越数论的发展,同时也给数论中包括丢番图方程在内的很多研究领域带来了突破性的进展。近 30 年来,以上述工作为基础的 Gel'fond-Baker 方法在丢番图方程的研究中取得了一系列重要结果,日益成为该领域中的一个强有力的研究方法。目前。这一趋势在国内已经受到越来越多的关注。鉴于国内至今还没有这方面的专门书籍。作 者根据多年来收集的资料以及为此面写的礼记,在湛江师范学院 数学系 "数论与组合高级研讨班"部分讲义的基础上编写了本书。以供对此感兴趣的读者参考。

丢番图方程是一个非常活跃的研究领域,与此有关的文献资料浩如烟海。本书在力求内容的完整性和关联性的前提下,根据各类方程之间的内在联系,将有关的文献资料贯穿起来,以便读者能够对问题有个全面的了解。阅读本书除了需要具备大学数学系的代数、分析和初等数论的知识以外,还需要了解部分代数数论和超越数论方面的知识。这些内容在讨论丢番图方程时是必不可少的。本书的第一章对此作了简要的介绍,其中经常被引用的结果将以引理的形式给出。本书的其余各章依次介绍了Gel'fond-Baker 方法在 Thue 方程、Thue-Mahler 方程、广义 Ramanujan-Nagell 方程、椭圆方程、超椭圆方程、指数型超椭圆方程以及有理数域上的 S-单位方程中的应用情况,其中的主要结果都以定理的形式给出。由于在一般情况下,有关各类方程的最好结果的证明总是十分繁琐的,需要高度复杂的技巧和计算。因此,为了

突出 Gel'fond-Baker 方法所起到的关键作用,书中省略了定理的证明中对辅助性结果的讨论。同时,为了使读者对问题有个整体的了解,书中每小节都对所讨论方程的历史背景、最新结果以及尚待解决的问题进行了系统的阐述。另外,各章的末尾都附有详细的参考文献,以便读者作进一步的研究。本书除绪论部分以外,所有的公式、引理、定理、推论、问题和猜想分别按其所在的章节编号,参考文献按每章编号。

作者在学习和研究数论的过程中,得到了中国科学院王元院士、被兰科学院 A. Schinzel 院士、北京大学潘承彪教授、同济大学陆洪文教授和中国科学院数学研究所徐广善教授的热情帮助和指教;本书的写作受到了中山大学林伟教授和邓东皋教授、广州师范学院裴定一教授以及湛江师范学院暨教学系各位领导和老师的鼓励和支持。作者僅在此向他们表示衷心的感谢。同时,作者还要感谢法国 Paris VI 大学 M. Waldschmidt 教授、法国 Louis Pasteur 大学 M. Mignotte 教授、匈牙利 Kossuth Lajos 大学 K. Gyòry 教授、荷兰 Leiden 大学 R. Tijdeman 教授和印度 Tata 研究所 T. N. Shorey 教授提供的大量论文预印本和抽印本。这些宝贵的资料帮助作者及时了解到有关丢番图方程这一研究领域的最新动态。

本书的写作和出版分别得到国家自然科学基金、广东省自然 科学基金和国家自然科学基金委员会出版基金的资助.

最后,作者希望本书的出版能够有助于国内读者对丢番图方程及其研究方法的了解,同时,由于作者的水平所限,书中的缺点和不妥之处在所难免,切望读者不吝赐教,

乐茂华 1997 年 8 月于湛江师花学院

常用符号表

以下列出书中常用符号的定义,如果符号在个别地方有不同的含意,则将明确说明;未列入本表的符号均在使用时另行说明,

Ы	全体正整数的集合
2	整数环
Q	有理数域
E+.	实 数域
C	复数域
A	全体代数数的集合
F	全体素数的集合
jār'	全体奇索数的集合
P'	全体索数及其方幂的集合
IF' _q	q 元有限域
$R[X_1,X_2,\cdots,X_n]$	数环 R 上关于未定元 X₁, X₂, ···,
	X_n 的 n 元多项式环
$a \mid b$	整数α整除δ
$a \nmid b$	整数a不能整除b
$p^* \parallel b$	对于素数 p、正整数 k 以及整数 b,
	$p^{k} \mid b \perp p^{k+1} \mid b$
$gcd(a_1,a_1,\cdots,a_n)$	整数 a1,a2,…,a2的最大公因数
$lcm(a_1,a_2,\cdots,a_n)$	整数 a1,a2,…,a。的最小公倍数
$a \equiv b \pmod{m}$	整数 a 与 b 对模 m 同余
$a \not\equiv b \pmod{m}$	整数a与b对模m不同余
[a]	不超过实数 a 的最大整数
exp z	指数函数 e ^t

 $C_i(i=1,2,...)$ $C_i^*(i=1,2,\cdots)$ $C_{\epsilon}(a,b,\cdots,c)$ $(i=1,2,\cdots,c)$

可有效计算的绝对正常数 不可有效计算的绝对正常数 仅与参数 a,b,…,c 有关的可有效 计算的正常数 $C_i^*(a,b,\cdots,c)(i=1,2)$ 仅与参数 a,b,\cdots,c 有关的不可有 效计算的正常数

目 录

绪论	• 1
第一章 预备知识	• 10
§ 1.1 代数数······	• 10
§ 1.2 代数数域	- 14
§ 1-3 理想数······	• 19
§]. 4 理想类、理想类群····································	• 23
§ 1.5 二次域、二元二次型···································	25
§ 1.6 分解型····································	35
§ 1.7 代数数的有理逼近	37
§ 1.8 代数数对数线性型的下界估计	41
多考文献	. 49
第二章 Thue 方程、Thue-Mahler 方程······	59
§ 2.1 Thue 方程 ···································	59
§ 2.2 Thue 不等式	6 9
§ 2.3 广义 Thue 方程与 Thue 不等式	72
§ 2.4 Thue-Mahler 方程 ···············	74
§ 2.5 整数递推数列的多重值······	76
参考文献	83
第三章 广义 Ramanujan-Nagell 方程 ······	93
§ 3.1 方程 x²+D=p³ ····································	94
§ 3.2 方程 x²-D=p° ····································	99
§ 3.3 方程 x ² ±D=4p ⁿ ····································	105
§ 3.4 方程 D₁x²±D₂=∂p²,∂∈ {1,2,4}	110
§ 3.5 方程 $D_1x^2\pm D_2=k^n$	114
§ 3.5 方程 $x^2\pm D^n=p^n$ ····································	117

§ 3.7 方程 f(x)=k;	$p_{1}^{n_1} p_{2}^{n_2} \cdots p_{r}^{r}$	119
参考文献	***************************************	122
第四章 椭圆方程、超椭	圆方程	127
§ 4.1 椭圆方程······	•••••••••••••••••	127
§ 4.2 超椭圆方程···		132
§ 4.3 方程 x⁴-Dy²=	= 1	136
§ 4.4 方程 x'±1=1	Oy²	140
§ 4.5 三元 n 次方程	组	143
§ 4.6 方程 f(x,y)=	= 0	148
参考文献		152
第五章 指数型超椭圆力	7程	160
§ 5.1 方程 D ₁ x ² ±D	$_2 = \delta y^{\bullet}, \delta \in \{1,2,4\}$	16 0
§ 5.2 方程 x²±D™=	y"	168
§ 5.3 方程 $f(x) = y$	A	173
§ 5.4 整数递推数列	中的完全方幂······	178
§ 5.5 Catalan 猜想	*************************************	179
§ 5.6 Pillai 猜想 …	******************************	183
§ 5. 7 Erdős-Graham	ı 猜想 ······	187
§ 5.8 方程(x=-1)/	$(x-1)=y^n \cdots$	190
§ 5.9 方程(x*-1),	$/(x-1)=(y^{n}-1)/(y-1)$	197
§ 5.10 关于连续正常	整数的几个问题	199
参考文献	***************************************	204
第六章 S-单位方程···	*** ***	218
§ 6.1 方程 a*+b*=	£	218
§ 6.2 Jesmanowicz 🛭	青想	220
§ 6.3 方程 a ₁ x ₁ +a ₂ 2	$x_2 + \cdots + a_n x_n = 0$ ······	223
§ 6.4 Oesterlè-Mass	er abc-猜想 ······	227
参考文献	***************************************	229
人名索引	*** ***	233

绪 论

在数论中,通常将未知数个数多于方程个数,并且对未知数的取值加以某些限制(例如,限制为整数、正整数或有理数等)的方程和方程组统称为丢番图方程。早在公元三世纪初,古希腊数学家 Diophantus 就已经比较系统地研究过此类方程。我国最早的数学文献《周髀算经》也曾有过这方面的记载。因此,丢番图方程是数论中最古老的分支,历史上的很多著名数学问题(例如Fermat 猜想)都与此类方程有关。几百年来,Fermat,Euler,Legendre,Gauss,Dirichlet,Hilbert 等数学大师都曾对丢番图方程的研究有过卓越的贡献。这些开拓者的重要工作,不但丰富了丢番图方程的内容,同时也给代数数论、超越数论、代数几何等目前非常活跃的现代数学分支的产生和发展奠定了基础。

由于丢番图方程对解的特殊限制,在数论、代数、组合数学等讨论各种有限结构的数学分支中,有许多亟待解决面又相当困难的问题最终都可归结为某些丢番图方程的求解问题.因此,丢番图方程与上述数学分支之间的紧密联系是十分自然的.正是因为存在这种联系,关于丢番图方程的研究在本世纪,特别是近30年来,取得了前所未有的进展.

丢番图方程的种类异常繁多. 1920年, Dickson^[7]用了 800 多面的篇幅专门介绍了到本世纪初为止有关这方面的主要工作, 其复杂程度可见一斑. 尽管如此, 迄今讨论较多的单个的丢番图方程基本上都属于以下两个类型. 一类是多项式方程, 它通常可表成

 $f(x_1,x_2,\cdots,x_m)=0, x_1\in \Phi_1, x_2\in \Phi_2,\cdots,x_m\in \Phi_m$, (1) 其中 $f(X_1,X_2,\cdots,X_m)$ 是未定元 X_1,X_2,\cdots,X_m 的整系数多项式, $\Phi_i(i=1,2,\cdots,m)$ 是未知数 $x_i(i=1,2,\cdots,m)$ 取值的集合、如果当 $(x_1,x_2,\cdots,x_m)=(a_1,a_2,\cdots,a_m)$ 时(1)成立,则称它是方程(1)的一 组解. 当多项式 $f(X_1, X_2, \dots, X_m)$ 的次数等于 n 时, 方程(1)称为 m 元 n 次方程. 例如, 运用丢番图方程的语言, 著名的 Fermat 猜想可表述为:

猜想 A 当 n 是大于 2 的正整数时,方程

$$x'' + y'' = z'', x, y, z \in \mathbb{N}$$

无解(x,y,z).

当方程(1)的元数或次数大于 2 时,该方程通常称为多元方程或高次方程. 猜想 A 中的方程(2)是三元 n 次方程,它是一个典型的多元高次方程. 在一般情况下,方程的元数越多、次数越高,就越不容易解决.

如果方程(1)中多项式 $f(X_1,X_2,\cdots,X_n)$ 的某些项的指数位置也含有未知数,则称它是指数型方程。这是另一类讨论较多的丢番图方程。例如,Catalan^[5]在 1844 年曾经猜测:在全体正整数中,连续的完全方幂仅有 8 和 9. 上述猜想可表述为:

猜想 B 方程

$$x'' - y' = 1, x, y, m, n \in \mathbb{N}, m > 1, n > 1$$

$$(3)$$

$$(2)$$

$$(3)$$

此后,Cassels[4]又对方程(3)提出了以下较弱的猜想:

猜想 C 方程(3)仅有有限多组解(x,y,m,n).

上述两个猜想中的方程(3)是一个典型的指數型方程.显然,指數型方程通常要比相应的多项式方程更难解决,

对于一个具体的丢番图方程(1),我们通常需要解决下列问题:

问题 A 方程(1)是否有解 (x_1,x_2,\dots,x_n) ?

问题 B 当方程(1)有解时,它是否有无限多组解?

问题 C 当方程(1)有无限多组解时,是否能找到可表出它的所有解的公式?

问题 D 当方程(1)仅有有限多组解时,是否能具体求出它的全部解?

1900年, Hilbert 在巴黎召开的第二次国际数学家大会上作·2·

的著名演讲中提出了 23 个重要的数学问题,其中的第 10 问题就与上述的问题 A 有关,该问题可表述为:

问题 E 对于一般的整系数多项式 $f(X_1,X_2,\cdots,X_n)$,能不能给出仅有有限步运算的算法来判定方程

$$f(x_1, x_2, \dots, x_n) = 0, x_1, x_2, \dots, x_n \in \mathbb{Z}$$
 (4)

是否有解(x:,x2,…,x2)?

1970年,Matijasevic¹¹⁸运用数理逻辑方法对问题 E 给出了否定的回答,即证明了这样的算法是不存在的. 上述结果从一个侧面说明了求解丢番图方程的图准程度.

直到本世纪初,人们讨论丢番图方程的方法主要是以整除性、同余式、连分数、平方剩余、原根与指数等内容为基础的初等数论方法和以代数数域中代数整数环上理想数的基本性质为基础的代数数论方法(参见文献[19]).从本世纪初开始,两类新的数论方法在丢番图方程的研究中崭露头角,并且逐渐成为该领域的主要研究方法。它们分别是以代数数的有理滔近为基础的丢番图逼近方法和以代数数对数线性型的下界估计为基础的超越数论方法。以下我们简要地回顾一下这两类方法的起源。

设 $a \neq d(d \geq 2)$ 次代数数. 1844 年,Liouville^[17]证明了,对于任何正数 δ ,不等式

$$\left| a - \frac{x}{y} \right| < \frac{1}{y^{d+\ell}}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1$$
 (5)

仅有有限多组解(z,y). 上述结果称为 Liouville 定理. 它揭示了代数数有理逼近的基本特性:对于任何给定的代数数,不会有很多的有理数能很好地逼近它. 设 k 是使得当 o > k 时,不等式

$$\left| u - \frac{x}{y} \right| < \frac{1}{y^a}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1 \qquad (6)$$

仅有有限多组解(x,y)的最小正数、根据 Liouville 定理可知 $\kappa \le d$. 在此后的一段相当长的时间里,关于 κ 的上界一直是丢番图逼近方面的中心课题、1909年,Thue [29]进一步证明了 $\kappa \le d/2+1$. 根据这一结果可以推知:Thue 方程

$$f(x,y) = k_0 x_0 y \in \mathbb{S} \tag{7}$$

仅有有限多组解(x,y),这里f(X,Y)是二元 $n(n \ge 3)$ 次型, 是非零整数. 1955 年,Roth^[21]最终解决了上述问题. 他证明了: $\kappa \le 2$. 由于已知任何无理数 α 都有无限多个新近分数 π/y 满足

$$\left|\alpha - \frac{x}{y}\right| < \frac{1}{y^2}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1, \qquad (8)$$

因此 Roth 的结果是臻于至善的. 该结果通常称为 Roth 定理. 1970年,Schmidt^[22]将 Roth 定理推广到了多维的情况,由此可以得出一大类多元高次方程解数的有限性结果. 此类方法通常称为 Thue-Siegel-Roth-Schmidt 方法,有关它的基本原理可参考文献 [23,24],本书第 1. 8 节将简要地介绍这方面的结果. 这里应该指出,Thue-Siegel-Roth-Schmidt 方法在本质上是非实效的. 例如,运用 Roth 定理可以估计出 Thue 方程(7)的解数的可有效计算的上界^[4],但不能得出它的解(x,y)的上界.

早在 1748 年,Euler^[6]就已经预见到某些指数函数值和对数函数值的超越性。然而直到百年之后,人们才能借助 Liouville 定理构造出超越数的具体例子。此后,Hermite^[17]和 Lindernann^[16]分别证明了 Napier 常数 e 和圆周率 x 是超越数,其中后一结果解决了古希腊人提出的"化圆为方"问题。这些研究成果为近代数论的一个重要分支——超越数论奠定了基础。超越数论的进一步发展也与 Hilbert 的著名问题有关。Hilbert 的第七问题可表述为:

问题 F 当 a 为不等于 0 或 1 的代数数 ⋅ β 为非有理数的代数数时 ⋅ α 是不是超越数?

同时,Hilbert 还具体问及数 2 个和 e'=(-1) 一的超越性。由于当时对超越数的性质还知之甚少,所以入们普遍认为上述问题的解决要比 Fermat 猜想和 Riemann 猜想更晚。但是,事实却大大出乎人们的预料。1929年,Gel'lond^[6]首先证明了 e'是超越数,并且指出他的方法可以解决问题 F 在 β 属于虚二次域时的情况。次年,Ruzmin^[16]将 Gel'lond 的方法惟广到 β 属于实二次域的情况。从而证明了 2 个 是超越数。1934年,Gel'lond^[16]和

Schneider: ** 分别独立地解决了问题 F. 然而, Fermat 猜想直到最近才由 Wiles [33] 给出了证明, 至于 Riemann 猜想则至今尚未见到解决的迹象。

设在是全体代数数的集合。Gel'fond 和 Schneider 的结果可以等价地表述为:

命题 A 对于非零代数数 $a_1, a_2,$ 如果 $log a_1, log a_2$ 在有理数域 意上线性无关,则它们在心上也线性无关。

上述结果称为 Gel'fond-Schneider 定理、在方法上,Gel'fond 和 Schneider 关于该结果的证明是不同的,前者利用了指数函数的微分特性,后者则基于指数函数的乘法性质、这两种不同的思路及其推广形式分别称为 Gel'fond 途径和 Schneider 途径。它们对后来许多重要结果的产生有着深远的影响,Waldschmidt[35-16]对此作了详细的分析和比较、

1952 年, Gel'fond^[12]提出了以下问题:

问题 G 是否可将命题 A 中的结果推广到任意多个非零代数数的情况?

Gel'fond 指出这是一个相当困难而又非常有意义的问题,它的解决将对数论中的很多分支带来深刻的影响. 1966 年,Baker[11]完整地解决了问题 G,并且得到了更强的结果. 他用多变量辅助函数代替 Gel'fond[10]原来使用的单变量函数,并且引入了一种新的外播技巧,从而证明了:

命题 B 设 a₁,···, a_n 是非零代数数. 如果 loga₁,···, loga_n 在原上线性无关,则 1,loga₁,···, loga_n 在私上同样线性无关。

上述命题称为 Baker 定理,它是超越数论中最重要的结果之一,设 β_a , β_i ,…、 β_n 是非零代数数.此时,

$$\Lambda = \beta_0 + \beta_1 \log a_1 + \dots + \beta_n \log a_n \tag{9}$$

称为关于代数数 $1, a_1, \dots, a_n$ 的对数线性型, 从命题 B 可知: 当 $\log a_1, \dots, \log a_n$ 在每上线性无关时, 必有 $\Delta \neq 0$ 、在此条件下, Gel'-fond¹¹¹ 首先对 n=2 的情况给出了 $|\Delta|$ 的可有效计算的下界. 他证明了: 当 n=2 且 $\beta_0=0$ 时, 对于任何正数 δ 必有

$$\log|A| > -C_1(\partial_1 d_1 A)(\log B)^{5+\delta}. \tag{10}$$

其中 $d = [Q_1(a_1,a_2,\beta_1,\beta_2),Q_1,A,B$ 分别是两组代数数 a_1,a_2 以及 β_1,β_2 的高的最大值, $C_1(\delta,d,A)$ 是仅与 δ,d,A 有关的可有效计算的正常数. 1968 年,Baker [1] 1 将上述结果推广到了一般的情况,他证明了:

命題 C 当 $A \neq 0$ 时,对于任何正数 δ 必有 $\log |A| > -C_2(\delta,n,d,A)(\log B)^{n+1+\delta}$. (11)

其中 $d = [\mathfrak{D}(\alpha_1, \dots, \alpha_n, \beta_0, \beta_1, \dots, \beta_n): \mathfrak{D}], A, B 分别是代数数 <math>\alpha_1, \dots, \alpha_n$ 以及 $\beta_0, \beta_1, \dots, \beta_n$ 的高的最大值, $C_2(\delta_1 n, d, A)$ 是仅与 $\delta_1, \dots, \delta_n$ 有关的可有效计算的正常数.

上述结果在包括丢番图方程在内的许多数论问题中有着广泛的应用(参见文献[3]). 此类方法通常称为 Gel'food-Baker 方法,它是一类具有实效性的方法. 例如, Baker^[2]将命题 C 运用于 Thue 方程(7), 得到了该方程的解的可有效计算的上界. 又如, Tijdeman^[30]利用命题 C 的一个改进形式, 解决了有关 Catalan 方程(3)的猜想 C. 他证明了: 方程(3)仅有有限多组解(x,y,m,n), 而且这些解都满足 max(x,y,m,n)< C₁, 其中 C₂ 是可有效计算的绝对正常数. 从上述例子可知, Gel'fond-Baker 方法可以把很多目前人们最感兴趣的丢番图方程的求解范围,由无限缩小到可以有效计算的有限范围之内; 也就是说它解决了有关这些方程的求解问题 B, 并且为最终解决问题 D 创造了条件. 由此可见, Gel'fond-Baker 方法是研究丢番图方程的一个强有力的工具.

近 30 年来, Gel'fond-Baker 方法在丢番图方程, 特别是指数型方程的研究中不断获得卓有成效的应用. 10 年前, Shorey 和Tijdeman^[24] 曾经对此有过系统的论述. 此外, 文献[15], [20], [26], [28], [31], [32], [33]和[34]分别对近期各个阶段的工作进行了综述和总结. 本书将在上述文献的基础上, 着重介绍这方面的最新成果和尚特解决的问题. 纵观 30 年来的发展历程, 我们不难看到: 在早期的工作中,直接利用 Gel'fond-Baker 方法得到的上界通常是相当大的, 远远超出了现有的计算能力. 因面, 这些结果虽

然能够说明所讨论的方程的解的有限性,但是对解的完全确定则帮彻不大,近年来,随着该方法的基本原理中关键数据的不断改进、综合运用各类方法的技巧不断提高以及各种高效率的计算手段的普及,已经有越来越多的丢番图方程问题获得了彻底的解决。因此,这是现代数论中的一个前景十分广阔的研究领域。

参考文献

- [1] Baker A. Linear forms in the logarithms of algebraic numbers. L. Mathematika, 1966, 13, 204-216, L.; ibid. 1967, 14, 102-107; L.; ibid. 1967, 14, 220-228; N.; ibid. 1968, 15, 204-216.
- [2] Baker A. Contribution to the theory of diophantine equation 1: On the representation of integers by binary forms. Philos Trans Roy Soc London. 1953. A263:173-191.
- [3] Hake: A., Transcendental Number Theory, Cambridge, Cembridge University Press (1975)
- [4] Cassels, J. W. S., On the equation $a^1 + b^2 = 1$. Amer J Math. 1953, 75, 159 + 162.
- [5] Catalan E. Note extraite d'une lettre adressée à l'éditeur. Reine Angew Math. 1844.23:192.
- [6] Davenport H., Roth K. F., Rational approximation to algebraic number, Mathematika, 1955, 2, 160-167.
- [7] Dickson L. E. History of the Theory of Numbers Vol. 2. Carnegie Institution of Washington, 1920.
- [8] Euler L., Introduction to Analysis of the Iofinite, Book I. Berlin, Springer-Verlag, 1988, 80.
- [9] Gel'lond A. O. "Sur les nombres transcendants, C. R. Acad Sci Paris, 1929, 189; 1224—1226.
- [10] Gel'Iond A. O., Sur le septième problème de Hilbert, Izv Akad Nauk SSSR, 1931,7:523-630.
- [11] Gel'fond A. O., On the approximation of transcendental numbers by algebraic numbers. Bold Akad Nauk SSSR, 1935-2:177-182.
- [12] Uel'fond A. O., Transcendental and Algebraic Numbers, New York, Dover Publi-1969.
- [13] Hermite Ch. Sur la fonction exponentielle. C. R. Acad Sci Paris., 1873.77, 18-24.
 74-79.225-233.283-293.

- [14] Kuzmin R. O., On a new class of transcendental numbers, lav Akad Nauk SSSR, 1930, 3, 583 597.
- [15] 乐茂华,关于指数型丢番图方程的整数解,数学进展,1994,23,385—395。
- [15] Lindemann F. . Über die Zahl π. Mach Ann. 1882. 20, 213 225.
- [17] Liouville J. Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même reduccible à des irrationnelles algébriques. C R Acad Sci Paris 1844-18:883-885,910-911.
- [18] Mattjasević Yu., On Hitherr's tenth problem Dokl Akad Neak SSSR, 1970, 191, 270-282.
- [19] Mordell L. J. Diophantine Equations London Academic Press , 1969.
- [20] Ribenboim P. , Catalan's Conjecture Boston, MA, Academic Press Inc. 1994.
- [21] Roth K. F., Rational approximations to algebraic numbers. Mathematika, 1985.
 2, 1+20.
- [22] Schmidt W. M., Simultaneous approximation to algebraic numbers by rationals.

 Acta Math. 1970, 125; 189-201.
- [23] Schmidt W. M., Dinphantine Approximation, Lecture Notes in Math 785, Berlin; Springer-Verlag, 1980.
- [24] Schmidt W. M. Diophantine Approximation and Diophantine Equations. Lecture Notes in Math 1467. Berlin; Springer-Verlag. 1991.
- [25] Schneider Th., Transzendenzunterauchungen periodischer Funktion, J Reine Angew Math, 1934, 72, 65 69.
- [26] Shorey T. N., Applications of Baker's theory of linear forms in logarithms to exponential diophantine equations, In , Analytic Number Theory (Kyoto, 1993), Kyoto University, Kyoto, 1994, 48-60.
- [27] Shorey T. N., Tijdeman R., Exponential Diophantine Equations, Cambridge: Cambridge University Press, 1986.
- [28] Sprindžuk V. G. . Classical Diophantine Equations . Lecture Notes in Math 1559 . Berliu: Springer-Verlag . 1993.
- [29] Thue A., Über Annäherungswerte algebraischer Zahlen.) Reine Angew Math, 1909, 135, 284 395.
- [30] Tijdeman R. On the equation of Catalan, Acta Arith, 1976, 29:197-209.
- [31] Tijdeman R., The number of solutions of diophantine equations, In, Number Theory (Mollin R A.ed.), Berlin, Walter de Gruyter, 1990, 979—1001.
- [32] Tijdeman R. Diophantine equations and diophantine approximations. In Number Theory and Applications (Banif. AB, 1986). NATO Adv Sci Inst Sci C Math. Phys Sci 255. Dordrecht Kluwer Acad Publ 1989; 215—243.

- [33] Tijdeman R., Diophantine approximation and its applications, In, Diophantine Approximation and Abelian Varieties (Socsterberg, 1992), Lecture Notes in Math 1566, Berlin, Springer-Verlag, 1993, 13 = 20.
- [34] Tijdeman R., Roth's theorem, In: Diophantine Approximation and Abelian Varieties (Soesterberg, 1992). Lecture Notes in Meth 1666. Berlin: Springer-Verlag, 1993: 21-30.
- [35] Waldschmidt M. Sur les methodes de Schneider Gel'fond et Baker In Séminaire de Théorie des Nombres 1987 – 1988 (Talence 1987 – 1988). Univ Bordeaux 1. Tulence Exp No 30, 13pp.
- [36] Waldschmidt M. On the transcendence methods of Gel'fond and Schneider in several variables. In: New Advances in Transcendence Theory (Durham. 1986).

 Cambridge: Cambridge University Press, 1988; 375 398.
- [37] Waldschmidt M. Nouvelles méthodes pour minorer des combinaisons linéntes de logarithmes de nombres algébriques Sém Théor Nombres Bordeaux (2).1991.3. 129-185 [Erratum:ibid:1991.3:467.
- [38] Waldschmidt M., Constructions de fonctions auxiliairs. In: Approximations diophantinnes et nombres (transcendants (Luminy, 1990), Berlin; de Gruyter, 1992, 285 307.
- [39] Wiles A. Modular elliptic curves and Fermat's last theorem, Ann of Math(2), 1995,141,443-551.

第一章 预备知识

本章简要介绍代数数论和超越数论中的部分内容,其中除了已经注明出处的结果以外,其余内容的详细证明可参考文献[?]。[49],[66]和[108]中的有关章节。

§1.1 代数数

设 d 是正整数。

 $f(X) = a_0 X^2 + a_1 X^{d-1} + \dots + a_d, a_d \neq 0 \quad (1.1.1)$

是整系数多项式. 此时, d 称为 f(X)的次数, 记作 deg(f); a_c 和 a_d 分别称为 f(X)的首项系数和末项系数; f(X)的所有系数的绝对值 $|a_c|$, $|a_1|$, ..., $|a_d|$ 中的最大值称为 f(X) 的高. 记作 H_c 当 f(X) 的系数满足 $ged(a_0,a_1,...,a_d) = 1$ 时, f(X) 称为本原多项式.

如果 f(X)可表成两个次数小于 d 的有理系数多项式的乘积,则称 f(X) 在意上是可约的(简称可约的),否则是不可约的。已知当 f(X) 可约时,f(X) 必可表成两个次数小于 d 的整系数多项式的乘积。在一般情况下,目前还没有判定整系数多项式是否可约的简便方法。以下给出一个常用的判定可约性的结果,称为 Eisenstein 定理。

引理 1.1.1 如果存在素数 p 可使 $p[a_0,p]a_i(i=1,2,\cdots,d)$ 以及 $p^i[a_i, \emptyset] f(X)$ 必定是不可约的.

当 f(X) 不可约时,如果 $x=\alpha$ 是代数方程

$$f(x) = 0 \tag{1.1.2}$$

的根,则称 α 是 d 次代数数,此时,d 称为 α 的次数,记作 $deg(\alpha)$. 显然,一次代数数即为全体有理数.

$$g(X) = b_0 X^a + b_1 X^a + \cdots + b_{a}, \qquad (1.1.3)$$

拉中

$$b_i = \operatorname{sgn}(a_i) \frac{a_i}{\gcd(a_i, a_1, \cdots, a_d)}, i = 0, 1, \cdots, d, (1.1.4)$$

 $sgn(a_i)$ 表示 a_i 的符号. 从(1.1.4)可知 g(X)是适合 $b_i>0$ 以及 $gcd(b_i,b_1,\cdots,b_n)=1$ 的 d 次整系数不可约多项式,又从(1.1.2) 可知 $x=\alpha$ 也是代数方程

$$g(x) = 0 \tag{1.1.5}$$

的根,如此的g(X)称为代数数 α 的定义多项式,它是唯一确定的。

如果(1.1.3)中的 g(X)是 d 次代数数的定义多项式,则它的所有系数的绝对值 $|b_a|$, $|b_a|$, \cdots , $|b_a|$ 中的最大值称为 a 的高,记作 H(a). 当 $a \neq 0$ 时,显然有 deg(a) = deg(1/a) 以及 H(a) = H(1/a). 设 m 是正整数. 从(1.1.3)和(1.1.5)可得 $b_a(ma)^a + b_a m$ (ma)a = 0. 由此可知 ma 也是 a 次代数数,而且它的高满足

$$H(ma) \leqslant m^d H(a). \tag{1.1.6}$$

当 d 次代数数 a 的定义多项式的首项系数等于 1 时, a 称为 d 次代数整数. 显然, 一次代数整数即为全体整数. 在一般情况下, 从 (1.1.3)和(1.1.5)可得 $(b_0a)^a+b_0b_1(b_0a)^{a-1}+\cdots+b_0^{a-1}b_0=0$, 所以 b_0a 必为代数整数. 由此可知. 对于任何代数数 a, 必有适当的正整数 m, 可使 ma 是代数整数. 适此条件的最小正整数 m 称为 a 的代数分母, 记作 den(a). 从以上分析可知

$$den(a) \leq b_0 \leq H(a), \tag{1.1.7}$$

当 a.1/a 都是代数整数时,a 称为单位数,a 是单位数的充要条件是它的定义多项式的首项系数等于 1,末项系数等于 1或 -1.

当 g(X)是 d 次代数数 α 的定义多项式时,代数方程(1.1.5)的 d 个根 $x=\sigma,\alpha(i=1,2,\cdots,d)$ 互不相同,它们称为 α 的共轭数。 此时 g(X) 可表成

$$g(X) = b_o(X - \sigma_1 a)(X - \sigma_2 a) \cdots (X - \sigma_d a). \qquad (1.1.8)$$
 a 的所有共轭数的模 $|a_1 a|$, $|\sigma_2 a|$, \cdots , $|\sigma_d a|$ 中的最大值记 a

对于代数数 α,β .必有 $\overline{\alpha+\beta} \leqslant \overline{\alpha} + \overline{\beta}$ 以及 $\overline{\alpha\beta} \leqslant \overline{\alpha}$.

当 a 是非零代数数时,设 $d=\deg(\alpha), m=\deg(\alpha), a, =o, a(i=1,2,\cdots,d)$,其中 $\alpha_i=a$. 此时 $ma_i(i=1,2,\cdots,d)$ 都是代数整数,故有

$$\left| \prod_{i=1}^{d} ma_{i} \right| \geqslant 1; \qquad (1.1.9)$$

又因

$$\Big|\prod_{i=1}^d ma_i\Big| \leqslant m^d |\alpha| |\alpha|^{d-1}, \qquad (1.1.10)$$

故从(1.1.9)和(1.1.10)立得

$$|a| \ge m^{-d} [a]^{-d-1}.$$
 (1.1.11)

另外,由于

$$\boxed{a} \leqslant dH(a), \qquad (1.1.12)$$

所以当 $a\neq 0$ 时,从 $|1/a| \leq 1/a \leq dH(1/a) = dH(a)$ 可知

$$|a| \geqslant \frac{1}{dH(a)}.\tag{1.1.13}$$

设 α 是非零代数整数,g(X) 是它的定义多项式. 由于此时 b_0 = 1,并且从(1.1.3)和(1.1.8)可知

$$|b_j| \leqslant {d \choose j} \lceil a \rceil' \leqslant {2 \mid a \mid}^d, j = 1, 2, \cdots, d, \quad (1.1.14)$$

故有

$$H(a) \leqslant \left(2\left[\overline{a}\right]\right)^{d}. \tag{1.1.15}$$

从 $(1\cdot 1\cdot 15)$ 可知:对于给定的正整数 d 以及正数 A,适合 $\square \leq A$ 且次数不超过 d 的代数整数 α 仅有有限多个.

设
$$\zeta_d = e^{2\pi \sqrt{-1}/d}$$
. 此时 $x = \zeta_0(k=0,1,\cdots,d-1)$ 是代数方程
$$x^d - 1 = 0 \qquad (1.1.16)$$

的 d 个不同的根,统称为 d 次单位根。由于当 gcd(k,d)=1 时,对于任何小于 d 的正整数 t 都有 $G=1 \neq 0$,所以如此的 G 称为 d 次本原单位根。当 a 是非零代数整数时,如果 a 是单位根,则从 (1.1.16) 可知 a=1,否则必有 a>1. 关于 a 的下界,Schinzel 和 Zassenhaus a [91] 曾经提出:

猜想 1.1.1 如果 d 次非零代数整数 a 不是单位根,则必有 a $>1+C_1/d$.

这是一个迄今尚未解决的问题,有关这方面的结果在丢番图方程的研究中有着重要的应用(参见文献[17],[18]). 对此。 Schinzel 和 Zassenhaus [44]已经证明了,当 $d \ge 2$ 时,[a] $> 1 + C_2/2^2$. Blenksby 和 Montgomery [13], Stewatt [116] 分别将上述结果改进为 [a] > 1 + 1/52 d^2 log δd 以及 [a] > 1 + 1/10 $^4 d^2$ logd. 1979 年,Dobrowolski [26] 进一步证明了,对于任何正数 δ ,当 $d > C_3(\delta)$ 时,必有

$$\left[\overline{a} > 1 + \frac{1 - \delta}{d} \left(\frac{\log \log d}{\log d} \right)^{1}; \qquad (1.1.17)$$

并且由此推出

$$|\overline{a}| > 1 + \frac{1}{1200d} \left(\frac{\log\log d}{\log d}\right)^3.$$
 (1.1.18)

此后,Cantor 和 Straus^[20],Louboutin^[31]分别将(1.1.17)中的"1- δ "改进为"2- δ "以及"9/4- δ "、1993 年,Dubickas^[32]进一步改进为"64/ δ "、这是目前已知的最好结果。

对于一般的代数数 α ,当g(X)是它的定义多项式时,

$$M(a) = b_0 \prod_{i=1}^{d} \max(1, |a_i|), h(a) = \frac{1}{d} \log M(a),$$

(1.1.19)

分别称为 α 的 Mahler 測度和 Weil 高. 从(1.1.15),(1.1.19)可知, α 的高 $H(\alpha)$ 与 Weil 高 $h(\alpha)$ 之间有以下关系

$$\frac{1}{d}\log H(a) - \log 2 \leqslant h(a) \leqslant \frac{1}{d}\log H(a) + \frac{1}{2d}\log(d+1).$$

(1, 1, 20)

对于任何非负整数 m, 都有

$$h(a^n) = |m|h(a);$$
 (1.1.21)

对于代数数 α,β,必有

$$h(\alpha + \beta) \leq \log 2 + h(\alpha) + h(\beta) \cdot h(\alpha\beta) \leq h(\alpha) + h(\beta).$$
(1.1.22)

从(1.1.19)可知,当且仅当代数整数 a=0 或 a 是单位根时,h (a)=0. 对于正整数 d,设 $L(d)=\min\{h(a)|a$ 是非零且非单位根的 d 次代数整数),由于已知 $2^{1/d}$ 是 d 次代数整数, $h(2^{1/d})=(\log 2)/d$,故有 $L(d) \leq (\log 2)/d$. 1993 年,Lehmer 曾经提出(参见文献[69]),

问题 1.1.1 对于任何正整数 d,是否都有 $L(d)>C_1/d$?

显然,上述问题与 同 的下界有关. 1996 年, Voutier [126]证明了:当 d≥2 时,

$$L(d) > \frac{2}{d(\log 3d)^2}$$
 (1.1.23)

这是目前有关问题 1.1.1 的最好结果.

§1.2 代数数域

设 F 是由复数构成的非空集合. 如果 F 对于数的加法和乘法构成域,则称 F 是数域. 当 F ,G 都是数域时,如果 F 是 G 的子域,则称 G 是 F 的扩张,记作 G/F.

设 L 是 G 的子集 G 中包含 L 的最小于域称为 G 中由集合 L 生成的子域。当 F 是 数域 G 的于域而且 L 是 G 的子集时,G 中由集合 F U L 生成的子域称为 L 在数域 F 上生成的数域,记作 F (L) 如果 $L = \{a_1, a_2, \cdots, a_n\}$ 是有限集合,则 F(L) 称为 F 的有限生成扩张,记作 $F(a_1, a_2, \cdots, a_n)$,特别是当 n=1 时, $F(a_1)$ 称为 F 的单扩张。

如果 G/F 是数域 F 的扩张,则 G 是 F 上的向量空间,它的维数记作[G:F]. 当[G:F]有限时,G/F 称为有限次扩张,已知任

何有限次的有限扩张都是单扩张.

设 a 是 d 次代数数,集台

$$K = \{a_0 + a_1 \alpha + \dots + a_{d-1} \alpha^{d-1} | a_0, a_1, \dots, a_{d-1} \in \mathbb{Q} \}.$$
(1.2.1)

此时 K 是数域. 从(1.2.1)可知 K 是有理数域®的有限次扩张,它的次数[K: @]=d. 因此,K 称为由 a 生成的 d 次代数数域,记作 @(a). 当 $K\subseteq \mathbb{Z}$ 时,K 称为实域,否则称为虚域. 另外,当 σ_1a , σ_2a ,…, σ_da 是 a 的全体共轭数时,如果其中恰有 r_1 个实数和 r_2 对 共轭复数,则称 K 是 r_1+2r_2 型数域.

对于有限多个代数数 a_1,a_2,\cdots,a_n ,集合 $L=\mathbb{Q}(a_1,a_2,\cdots,a_n)$ 是© 的有限次扩张,所以 L/\mathbb{Q} 必为单扩张,即存在适当的代数数 a 可使 $L=\mathbb{Q}(a)$.

以下设 $K=\mathbb{Q}(a)$ 是d次代数数域。此时,K中的任何一个数 θ 都可唯一地表成

$$\theta = a_0 + a_1 a + \cdots + a_{d-1} a^{d-1}, a_0, a_1, \cdots, a_{d-1} \in \mathbb{Z}.$$
(1.2.2)

如此的 θ 仍为代数数,它的次数必为 d 的约数. 若将(1.2.2)中的 θ 看作是 α 的有理系数多项式,即 $\theta = \theta(\alpha)$. 设 K 到复数域心的 d 个映射 $\sigma_i(i=1,2,\cdots,d)$ 满足

$$\sigma_i$$
: $\sigma_i(\theta(a)) = \theta(\sigma_i a)$, $i = 1, 2, \cdots, d$. (1.2.3) 此时 $\sigma_i(i=1,2,\cdots,d)$ 称为 K 在 \mathbb{C} 中的 d 个嵌入. 由 (1.2.3) 定义 的 d 个数 $\theta(\sigma_i a)$ ($i = 1, 2, \cdots, d$) 通常记作 $\theta^{(i)}$ ($i = 1, 2, \cdots, d$). 显然, $\theta^{(i)}$ ($i = 1, 2, \cdots, d$)都是代数数,它们的次数都是 d 的约数. 对于给定的 $\theta^{(i)}$ ($1 \le j \le d$),它在 $\theta^{(i)}$, $\theta^{(2)}$, \cdots , $\theta^{(d)}$ 中恰 好出现 $d/\deg(\theta^{(i)})$ 次. 当 $\deg(\theta) = d$ 时, θ 称为 K 中的本原元.

对于 K 的两个嵌入 σ_i , σ_j (1 $\leq i$, $j \leq d$), 定义它们的乘积 $\sigma_i \sigma_j$ 是适合

$$\sigma_i \sigma_i(\theta) = \sigma_i(\sigma_i(\theta)), \theta \in K$$
 (1.2.4)

的映射. 显然, K 的 d 个嵌入对于嵌入的乘法构成群, 称为 K 的 Galois 群, 记作 Gal (K/\mathbb{Q}). 当 K 的 Galois 群是 Abel 群时, K 称

为 Abel 数域.

对于 K 中的数 θ .

$$T_{K_i}(\theta) = \sum_{i=1}^{d} \sigma_i(\theta) \cdot N_{M_i}(\theta) = \prod_{i=1}^{d} \sigma_i(\theta) \qquad (1.2.5)$$

分別称为 θ 的迹和范数. 已知 $T_{K/L}(\theta)$ 和 $N_{K/L}(\theta)$ 都是有理数: 特别是当 θ 为代数整数时,它们都是整数. 当 θ 是非零代数整数时,如果 θ 是 K 中的单位数,则必有 $|N_{K/L}(\theta)|=1$,否则 $|N_{K/L}(\theta)|\geqslant 2$. 另外,从 (1,2,5)可知

$$T_{K/i_1}(\theta_1 + \theta_2) = T_{K/i_2}(\theta_1) + T_{K/i_2}(\theta_2) + N_{K/i_2}(\theta_1\theta_2)$$

$$= N_{K/i_2}(\theta_1) \cdot N_{K/i_2}(\theta_2) \cdot \theta_1 \cdot \theta_2 \in K \quad (1.2.6)$$

以及

$$|N_{K,C}(\theta)| \leq [\theta]^d, \theta \in K. \tag{1.2.7}$$

对于 K 中的 d 个数 $\theta_1, \theta_2, \cdots, \theta_d$,

$$\Delta(\theta_1, \theta_2, \cdots, \theta_d) = \begin{vmatrix} \sigma_1(\theta_1) & \sigma_1(\theta_2) \cdots \sigma_1(\theta_d) \\ \sigma_2(\theta_1) & \sigma_2(\theta_2) \cdots \sigma_2(\theta_d) \\ \vdots \\ \sigma_d(\theta_1) & \sigma_d(\theta_2) \cdots \sigma_d(\theta_d) \end{vmatrix}^2$$
(1. 2. 8)

称为它们的判别式. $\Delta(\theta_1, \theta_2, \dots, \theta_d)$ 必为有理数 1特别是当 $\theta_i(i=1,2,\dots,d)$ 均为代数整数时,它是整数. 如果 K 中的两组数 $\theta_i(i=1,2,\dots,d)$ 和 $\eta_i(i=1,2,\dots,d)$ 适合

$$\theta_i = \sum_{j=1}^d a_{ij} \eta_j, i = 1, 2, \cdots, d,$$
 (1.2.9)

则它们的判别式有以下关系

$$\Delta(\theta_1,\theta_2,\cdots,\theta_d)=|\det A|^2\Delta(\eta_1,\eta_2,\cdots,\eta_d),$$
 (1.2.10)
其中 $a_{ij}(i,j=1,2,\cdots,d)$ 均为有理数, $\det A$ 是 d 阶矩阵 $A=(a_{ij})_d$ 的行列式.

设 $\theta_1, \theta_2, \dots, \theta_n$ 是 K 中的 n 个数. 如果 K 中的每个数都可唯一地表成 $\theta_1, \theta_2, \dots, \theta_n$ 在氧 上的线性组合,则称数组 $\{\theta_1, \theta_2, \dots, \theta_n\}$ 是 K 的一组基. $\theta_1, \theta_2, \dots, \theta_n$ 能够构成 K 的基的充要条件是:n=d 且 $\Delta(\theta_1, \theta_2, \dots, \theta_n) \neq 0$.

设 $\tau_1, \tau_2, \cdots, \tau_d$ 是 K 中的代数整数, 如果 $\{\tau_1, \tau_2, \cdots, \tau_d\}$ 是 K 的基,而且 K 中的每个代数整数都可唯一地表成 $\tau_1, \tau_2, \cdots, \tau_d$ 在 L 上的线性组合,则称它是 K 的一组整基. 已知 K 中必有整基,而且它的所有整基的判别式都相同,称为 K 的判别式,记作 Δ_K 由于整基的存在,K 中全体代数整数对于数的加法和乘法构成环,称为 K 中的代数整数环,记作 O_K 从本书以后各章的内容可知,很多丢番图方程问题的讨论,都要考虑 O_K 中代数整数的分解。

对于 K 中的数 θ ,

$$\Delta(\boldsymbol{\theta}) = \prod_{1 \leq i \leq j \leq d} (\boldsymbol{\sigma}_i(\boldsymbol{\theta}) - \boldsymbol{\sigma}_j(\boldsymbol{\theta}))^2 \qquad (1.2.11)$$

称为 θ 的判别式.从(1.2.11)可知:当且仅当 θ 是K中的本原元时, $\Delta(\theta)\neq 0$; $\Delta(\theta)$ 必为有理数;特别是当 θ 是代数整数时, $\Delta(\theta)$ 是适合 $\Delta_K|\Delta(\theta)$ 的整数.

设 r 是 K 中的代数整数,此时,

$$D(\tau) = \max_{1 \le i < j \le \beta} |\sigma_i(\tau) - \sigma_j(\tau)| \qquad (1.2.12)$$

称为τ的直径. 对于正整数 d,设

$$D_{d} = \min_{d \in g(\tau) = d} D(\tau), \qquad (1.2.13)$$

对此,Favard 曾经猜测:当 $d \ge 2$ 时,必有 $D(\tau) \ge \sqrt{3}$,而且 $\lim_{t \to \infty} D_t$ = 2. 这两个猜想已经分别被 Langevin,Reyssat 和 Rhin^[72]以及 Langevin^[21]证实.

对于给定的 K_*O_* 中所有的单位数对于数的乘法构成群,称为 K 的单位群,记作 U_K ,另外,K 中所有的单位根对于数的乘法构成有限循环群,称为 K 的单位根群,记作 W_K . 它是 U_K 的子群,通常用 ω_K 表示其中单位根的个数.

当 K 是 r_1+2r_2 型数域时,设 $r_K=r_1+r_2-1$. 此时存在 U_K 中 r_K 个单位数 $\eta_i(i=1,2,\cdots,r_K)$,可使 U_K 中的每个单位数 ρ 都可唯 一地表成

 $\rho = \xi \vec{r}_1 \vec{r}_2 \cdots \vec{r}_{i_k}, \xi \in W_K, k_1, k_2, \cdots, k_{r_k} \in \mathbb{C}.$ (1. 2. 14) 上述结果称为 Dirichler-Minkowski 单位定理,它在代数整数的分 解中有着重要的意义。(1,2,14)中的单位数组 $\{\eta_1,\eta_2,\cdots,\eta_n\}$ 称为 K的一个基本单位组 $\{r_n\}$ 称为单位群 U_K 的秩。

在 a 的全体共轭数 $o,a(i=1,2,\cdots,d)$ 中,设 $o_1a,\cdots,o_{r_1}a$ 是实数, $o_{r_1-1}a,\cdots,o_{r_1-r_2}a$ 分别与 $o_{r_1+r_2+1}a,\cdots,o_{r_1+2r_2}a$ 是共轭复数. 对于 K 的任何一个基本单位组 $\{\eta_1,\eta_2,\cdots,\eta_{r_K}\}$, r_K 阶行列式

$$\begin{aligned} & \left| \log |\sigma_{1}(\eta_{1})| - \log |\sigma_{1}(\eta_{2})| \cdots \log |\sigma_{1}(\eta_{r_{K}})| \\ & \left| \log |\sigma_{2}(\eta_{1})| - \log |\sigma_{2}(\eta_{2})| \cdots \log |\sigma_{2}(\eta_{r_{K}})| \\ & \left| \log |\sigma_{r_{K}}(\eta_{1})| - \log |\sigma_{r_{K}}(\eta_{2})| \cdots \log |\sigma_{r_{K}}(\eta_{r_{K}})| \end{aligned} \right.$$

$$(1.2.15)$$

的绝对值都是相等的,称为 K 的调整子,记作 R_K .已知当 $r_K > 0$ 时,必有 $R_K > 0$.

关于 R_K 的下界, $Z_{immert}^{[135]}$ 曾经证明,当 $r_K > 0$ 时, $R_K > 0$. 056. 目前这方面的最好结果是由 $S_{inv}^{[105]}$ 得到的,他证明了,当 K 是适合 $r_K > 0$ 的 $r_1 + 2r_2$ 型数域时,

$$R_{K} \ge 0.00136\omega_{K}e^{0.51r_{1}+0.57r_{2}}.$$
 (1.2.16)

另外,由于 K 的类数 h_K 必为正整数,故从(1.4.4)和(1.4.5)分别可得 R_K 的上界

$$R_{i} < \frac{24\omega_{K}}{2^{r_{1}+r_{2}\pi^{r_{1}}}} \left[\frac{e}{(d-1)\left(1 - \frac{1}{2}\log\pi + \frac{r_{2}}{d}\log2\right)} \right]^{d-1} \cdot \sqrt{|\Delta_{K}|} (\log|\Delta_{K}|)^{d-1}$$

$$(1.2.17)$$

以及

$$R_{K} < \frac{2^{r_{2}} \sqrt{\Delta_{K}|}}{\pi^{r_{2}} (d-1) 1} \left[\log \frac{2^{r_{2}} \sqrt{|\Delta_{K}|}}{\pi^{r_{2}}} \right]^{d-1}$$

$$\cdot \left[d - 1 + \log \frac{2^{r_{1}} \sqrt{|\Delta_{K}|}}{\pi^{r_{2}}} \right]^{r_{2}}.$$
 (1.2.18)

己知在 K 中存在适合

$$\frac{\max_{i=1,2,\cdots,d}}{\sum_{j=1,2,\cdots,r_{K}}} |\log |\sigma_{i}(\eta_{j})|| < C_{1}(d)R_{K}$$
 (1.2.19)

的基本单位组{ŋ,,ŋ,,...,ŋ,,},从(1.2.19)可知该基本单位组满足

$$\max \left\{ \left[\overline{\eta_1} \right], \left[\overline{\eta_2} \right], \cdots, \left[\overline{\eta_{r_K}} \right] \right\} < C_2(d, R_K), \quad (1.2.20)$$

对于 K 中的非零代数整数 θ , τ , 如果存在 K 中单位数 ρ , 可使 $\tau = \theta \rho$, (1.2.21)

则称 θ 与 τ 是相伴的 τ 是 θ 的相伴数 τ 显然 τ 相伴关系是一种等价关系。从(1.2.14),(1.2.19),(1.2.21)可知 t 必有满足

$$\max_{r=1,2,\cdots,d} \log \left| \frac{|a_r(\tau)|}{|N_{K/r}(\theta)|^{1/d}} \right| < C_3(d) R_E \qquad (1,2,22)$$

的相伴数で

§1.3 理想数

设 $K = \mathbb{Q}(\alpha)$ 是 A 次代数数域。由于在一般情况下,K 中代数整数的分解不是唯一的,因此有必要引入理想数的概念。

对于 K 中的代数整数 $\theta_1, \theta_2, \cdots, \theta_n$, 集合

 $\{\theta_1\eta_1+\theta_2\eta_2+\cdots+\theta_1\eta_1,\eta_2,\cdots,\eta_n\in O_K\}$ (1.3.1) 称为 O_K 中由 $\theta_1,\theta_2,\cdots,\theta_n$ 生成的理想数,记作 $[\theta_1,\theta_2,\cdots,\theta_n]$. 单由一个代数整数 θ 生成的理想数 $[\theta]$ 称为主理想数. 显然, K 中代数整数 生成的理想数都是 O_K 的子集,所以通常称为 O_K 中的理想数. 从(1.3.1)可知,主理想数 [1] 实际上就是 O_K 本身, 称为单位理想数,记作 I. 由零生成的主理想数 [0] 称为零理想数. 以下仅考虑同一 O_K 中的非零理想数.

设 $A = [\theta_1, \theta_2, \cdots, \theta_r], B = [\tau_1, \tau_2, \cdots, \tau_n].$ 当且仅当存在 O_k 中代数整数 $u_n, u_n (i = 1, 2, \cdots, n, j = 1, 2, \cdots, m)$ 可使

$$\theta_i = \sum_{j=1}^n u_{ij} \tau_j, \tau_j = \sum_{i=1}^n u_{ij} \theta_i, i = 1, 2, \cdots, n, j = 1, 2, \cdots, m$$

时,A 与 B 称为是相等的,记作 A = B. 从(1.3.2)可知,两个主理想数 $[\theta]$ 和 $[\tau]$ 相等的充要条件是

$$z = \theta \rho, \rho \in U_K. \tag{1.3.3}$$

对于上述的理想数 A, B, 理想数 $[\theta, z_1, \theta, z_2, \cdots, \theta, z_n, \cdots, \theta, z_n]$, θ , z_1 , θ , z_2 , \cdots , θ , z_n] 称为 A 与 B 的乘积,记作 AB. 理想数的乘法满足交换律和结合律。 k 个相同的理想数 A 的乘积记作 A^k , 并且规定 A^k = L, 对于 O_k 中的任何理想数 A, 都有

$$AI = IA = A. \tag{1.3.4}$$

对于理想数 A,B,如果存在理想数 C 可使 A=BC,则称 B 能整除 A,记作 B|A,否则 B|A. 当 B|A 时 B 称为 A 的因子. 理想数 B 能整除 A 的充要条件是 $A\subseteq B$. 从 (1.3.4) 可知: 任何理想数 A 都有因子 A 和 I.它们称为 A 的平凡因子. 仅有平凡因子的非单位理想数称为素理想数. 当 P 是素理想数时,如果 P|AB,则必有 P|A 或 P|B.

任何非单位理想数都可分解成为有限多个素理想数的乘积,如果不计乘积中素理想数的排列次序,则这种分解是唯一的,上述结果称为理想数的唯一分解定理.

当 $A = [\theta_1, \theta_2, \cdots, \theta_n], B = [\tau_1, \tau_2, \cdots, \tau_n]$ 时,理想数 $D = [\theta_1, \theta_2, \cdots, \theta_n, \tau_1, \tau_2, \cdots, \tau_n]$ 具有下列性质:

- (i) $D[A \coprod D]B_{\mathfrak{p}}$
- (ii) 如果理想数 C 满足 $C(A \cup D \cup C(B))$ 则必有 C(D);
- (iii) D 中的每个数 η 都可表成 $\eta = \theta + \tau$, 其中 θ . τ 分别是 A_1B 中的数.

如此的 D 称为理想数 A 与 B 的最大公因子,记作 gcd(A,B), 如果 gcd(A,B)=I,则称 A 与 B 是互素的. 另外,根据理想数的唯一分解定理也可定义最大公因子. 设 P_1,P_2,\cdots,P_n 是 A 和 B 的所有不同的素理想因子. 此时有

$$A = P_1^{i_1} P_2^{i_2} \cdots P_k^{i_k}, B = P_1^{i_1} P_2^{i_2} \cdots P_k^{i_k}, \qquad (1.3.5)$$

其中 s, t.(i=1,2, ···,k)是适当的非负整数,从(j. 3. 5)可知

$$\gcd(A,B) = P_i^l P_f^l \cdots P_k^{l_k}, \qquad (1.3.6)$$

其中 $l_i = \min(s_i, t_i) (i = 1, 2, \dots, k)$.

每个理想数 A 中都存在 d 个数 $\eta_1, \eta_2, \cdots, \eta_d$, 可使 A 中的任何 一数 θ 都可唯一地表成

 $\theta = a_1 q_1 + a_2 q_2 + \cdots + a_d q_d, a_1, a_2, \cdots, a_d \in \mathbb{Z}.$ (1.3.7) 如此的数组 $\{q_1, q_2, \cdots, q_d\}$ 称为 A 的一组基. 已知理想数 A 的基必为 K 的基. 而且同一理想数 A 的基有相同的判别式. 它称为 A 的判别式, 记作 $\Delta(A)$.

设 $\{\omega_1,\omega_2,\cdots,\omega_d\}$ 是 K 的一组整基, $\{\eta_1,\eta_2,\cdots,\eta_d\}$ 是理想数 A 的一组基. 由于 $\eta_1,\eta_2,\cdots,\eta_d$ 都是 O_K 中的代数整数,故有整数 a_i $(i,j=1,2,\cdots,d)$ 可使

$$\eta_i = \sum_{j=1}^d a_{ij} \omega_j, i = 1, 2, \cdots, d.$$
 (1.3.8)

此时,矩阵 $M=(a_n)_a$ 的行列式的绝对值与 K 的整基以及 A 的基的选择无关,它称为理想数 A 的范数,记作 N(A).当 $A=[\theta]$ 是主理想数时,

$$N([\theta]) = [N_{\kappa/2}(\theta)]. \tag{1.3.9}$$

对于理想数 A、B、必有 N(AB) = N(A)N(B). 同时从(1.2.10)、(1.3.8)可得

$$\Delta(A) = (N(A))^2 \Delta_k. \tag{1.3.10}$$

如果 O_K 中的代数整数 $q_* r$ 满足 $A^* [\eta - \tau]$,则称 $\eta = \tau$ 对模 A 同余 α 记作 $\eta = \tau$ (mod A). 根据上述的同余关系,可将 O_K 中的全体代数整数分成 N(A) 类,使得同类的数彼此对模 A 同余 α 不同类的数互不同余. 这些类统称为模 α 的剩余类.

对于理想数 A. 必有正整数 a 可使

$$A_{i}[a].$$
 (1.3.11)

当 A=I 时,(1,3,11) 中的 a=1; 当 $A\ne I$ 时,a>I. 对于素理想数 P,必有唯一的素数 p 适合 P; [p]. 如此的 p 称为 P 的相关素数。此时存在正整数 f 可使

$$N(P) = p'. (1.3.12)$$

因为对于 O_K 中任何代数整数 θ 都有

$$\theta^{N(P)} \equiv \theta(\bmod P), \qquad (1.3.13)$$

所以(1.3.12)中的了称为素理想数 P 的剩余类域次数。

设 p 是素数.Ox 中的主理想数[p]有以下分解式

$$[p] = P_1^{\epsilon_1} P_2^{\epsilon_2} \cdots P_d^{\epsilon_d}, e_1, e_2, \cdots, e_d \in \mathbb{N}, \qquad (1.3.14)$$

其中 P_1, P_2, \cdots, P_k 是不同的素理想数. (1.3.14)中的 g 称为 p 的分裂次数, $e_i(i=1,2,\cdots,g)$ 分别是 $P_i(i=1,2,\cdots,g)$ 的分岐指数。当 g=1 且 $e_1=1$ 时,[p]本身就是素理想数,此时称 p 在 K 中是惯性的。当 e_1,e_2,\cdots,e_r 中至少有一数大于 1 时,称 p 在 K 中是分歧的。素数 p 在 K 中分岐的充要条件是 $p|\Delta_K$ 由于从 (1.3.10) 可知 $N([p])=p^d$,故从 (1.3.14) 可得 $N(P_i)=p^{f_i}(i=1,2,\cdots,g)$,其中 $f_i(i=1,2,\cdots,g)$ 是适合

$$\sum_{i=1}^{n} e_i f_i = d. (1.3.15)$$

的正整数. 当 g=d 时,从(1.3.15)可得 $e_i=f_i=1(i=1,2,\cdots,g)$. 此时称 p 在 K 中是完全分裂的.

对于给定的非零整数 a 以及素数 p ,存在唯一的非负整数 k,可使 p' a 且 p''' a 。如此的 k 称为素数 p 在整数 a 中的阶,记作 ord,(a),并且规定 ord, $(0) = \infty$ 。根据理想数的唯一分解定理,阶的概念可以推广到素理想数的情况。对于给定的非零理想数 A 以及素理想数 P,存在唯一的非负整数 k,可使

$$A = f^{\prime\prime}A^{\prime} \,, \qquad (1.3.16)$$

其中 A'是适合 gcd(P,A')=I 的理想数、(1.3.16)中的 k 称为素理想数 P 在理想数 A 中的阶、记作 $ord_r(A)$,并且规定 $ord_r([0])$ = ∞ . 对于理想数 $A\setminus B$ 以及正整数 n,显然有

$$\operatorname{ord}_{P}(AB) = \operatorname{ord}_{P}(A) + \operatorname{ord}_{P}(B), \operatorname{ord}_{P}(A^{*})$$
$$= \operatorname{nord}_{P}(A). \tag{1. 3. 17}$$

设 $0 \neq O_k$ 中的非零代数整数. 对于主理想数 $[\eta]$, 阶 ord_k $([\eta])$ 通常记作 ord_k (η) . 因此从前面的规定可得 ord_k $(0) = \infty$. 显然,当且仅当 η 是单位数时,对于任何素理想数 P 都有 ord_k $(\eta) = 0$. 从(1.3.14) 可知,当 η 是整数时,

$$\operatorname{ord}_{P}(\eta) = \operatorname{eord}_{P}(\eta), \qquad (1.3.18)$$

其中 p 是 P 的相关素数 æ 是 P 的分歧指数.

设 $\theta \neq K$ 中代数数 $\omega = \text{den}(\theta)$. 已知 $\omega \theta \neq O_K$ 中的代数整数. 此时,

$$\operatorname{ord}_{P}(\theta) = \operatorname{ord}_{P}(\theta\theta) - \operatorname{ord}_{P}(\theta) \qquad (1.3.19)$$

称为素理想数 P 在 θ 中的阶。根据定义(1.3.19)可知; P ord $p(\theta)$ 可以取负整数值。当 ord $p(\theta) \ge 0$ 时, θ 称为 P-adic 整数; 特别是当 ord $p(\theta) = 0$ 时, θ 称为 P-adic 单位.

对于 O_k 中的非零代数整数 η , 从(1.1.12), (1.2.7) 和(1.3.9) 可知

$$N([\eta]) = \{N_{E^{\perp}}(\eta)\} \leqslant [\eta]^d \leqslant (dH(\eta))^d; (1.3.20)$$

又从(1.3.12)可知

$$N([\eta]) \geqslant (N(P))^{ad_{p}(\eta)} \equiv p^{fad_{p}(\eta)},$$
 (1.3.21)

结合(1.3.20)和(1.3.21)立得

$$\operatorname{ord}_{\mathcal{C}}(\eta) \leqslant \frac{d \log d H(\eta)}{f \log \rho}.$$
 (1.3.22)

于是.从(1.3.19)。(1.3.22)可知:对于任何非零代数数.9.必有 ord $_{c}(\theta)$ < $C_{1}(d)\log H(\theta)$. (1.3.23)

§1.4 理想类、理想类群

设 $K=\mathbb{Q}(a)$ 是d次代数数域。对于 O_K 中的理想数A,B',如果存在主理想数 $[\eta]$, $[\tau]$,可使

$$[\eta]A = [\tau]B, \qquad (1.4.1)$$

则称 A 与 B 是相似的,记作 $A \sim B$. 理想数的相似是一种等价关系. 理想数 A 是主理想数的充要条件是 $A \sim I$. 当 $A \sim B$ 且 $A' \sim B'$ 时,必有 $AA' \sim BB'$. 当 $AC \sim BC$ 时,可得 $A \sim B$.

根据相似性,可将 O_k 中的全体理想数分成若干类,使得同类的理想数皆相似,不同类的理想数互不相似,由相似的理想数组成的类称为理想类,包含单位理想数1的理想类称为主理想类.

当 K 是 r_1+2r_2 型数域时 $_1O_K$ 中的每个理想类中都有适当的

$$N(A) \leqslant M_{K_1} \tag{1.4.2}$$

其中

$$M_K = \left(\frac{4}{\pi}\right)^{r_2} \frac{d!}{d^d} \sqrt{|\Delta_K|} \qquad (1.4.3)$$

称为 K 的 Minkowski 常数. 由于范数 N(A) 都是正整数,而且仅有有限多个不同的理想数有相同的范数,故从(1.4.2),(1.4.3) 可知 O_K 中不同理想类的个数是有限的. 不同理想类的个数称为 K 的类数,记作 A_K .

显然,当且仅当 $h_K=1$ 时, O_K 是主理想整环.此时 O_K 中的理想数都是主理想数,唯一分解定理在 O_K 中成立.由此可知,类数的大小是衡量 O_K 中代数整数分解的复杂性的重要标准.因此,关于类数的上下界的估计一直是一个引人注目的课题. 1969 年, Siegel^[109]证明了:当 K 是 r_1+2r_2 型数域时,

$$h_{K}R_{K} < \frac{4\omega_{K}}{2^{r_{1}+r_{2}}\pi^{r_{2}}} \left[\frac{e}{(d-1)\left(1+\frac{1}{2}\log\pi+\frac{r_{2}}{d}\log2\right)} \right]^{d-1} \cdot \sqrt{|\Delta_{K}| \left(\log|\Delta_{K}|\right)^{d-1}}.$$

$$(1.4.4)$$

此后 Lenstra [78] 将上述结果改进为

$$h_{K}R_{K} < \frac{2^{r_{2}}\sqrt{|\Delta_{K}|}}{\pi^{r_{2}}(d-1)!} \left[\log \frac{2^{r_{2}}\sqrt{|\Delta_{K}|}}{\pi^{r_{2}}} \right]^{r_{2}} \cdot \left[d-1 + \log \frac{2^{r_{2}}\sqrt{|\Delta_{K}|}}{\pi^{r_{2}}} \right]^{r_{2}}.$$
 (1.4.5)

另外,Quême[91]还运用比较初等的方法证明了:

$$h_K < M_K^{1+(\log d)/\log 2}$$
. (1.4.6)

关于 h_K 的下界, $Stark^{[1]5]}$ 证明了: 当 K 是 $r_1 + 2r_2$ 型 Abel 数域时,

$$h_K R_K > \frac{\omega_K \sqrt{|\Delta_K|}}{2^{r_1+r_2+1}\pi^{r_2}} e^{2\Gamma(1/2)/8(\log 3)\Gamma(1/2)-21/6}$$

$$\min\left(\frac{1}{4\log|\Delta_K|}, \frac{1}{\pi|\Delta_K|^{1/d}}\right), \qquad (1.4.7)$$

其中 $\Gamma(z)$, $\Gamma'(z)$ 分别是 Euler Γ 函数及其导函数. 最近, 乐茂华[$^{(7)}$]对于 21 d 的情况改进了上述结果. 他证明了:

$$h_{K}R_{K} > \frac{\omega_{K}\sqrt{|\Delta_{K}|}}{2^{r_{1}+r_{2}}33\pi^{r_{2}}\log 4|\Delta_{K}|}.$$
 (1.4.8)

如果对于 K 中任意两个代数整数 θ , τ ,必有代数整数 η , δ 可使

$$\theta = \eta \tau + \delta, |N_{K/1}(\delta)| < |N_{K/2}(\tau)|, \qquad (1.4.9)$$

则称 K 是 Euclid 数域. 当 K 是 Euclid 数域时,必有 $h_K = 1$. 然而 当 $h_K = 1$ 时, K 不一定是 Euclid 数域.

设 \mathcal{A} , \mathcal{B} 是 \mathcal{O}_{K} 中的理想类. 如果存在理想类 \mathcal{C} , 可对任何的理想数 $A \in \mathcal{A}$ 以及 $B \in \mathcal{B}$ 都有 $AB \in \mathcal{C}$, 则称 \mathcal{C} 是 \mathcal{A} 与 \mathcal{B} 的 乘积. 记作 $\mathcal{A}\mathcal{B}$. 已知 \mathcal{O}_{K} 中的所有理想类对于理想类的乘法构成 Abel 群, 称为 K 的理想类群, 记作 $\mathcal{C}(K)$. 此时, 主理想类是 $\mathcal{C}(K)$ 的单位元, 记作 \mathcal{A} .

根据 Abel 群的基本性质可知:对于 O_{κ} 中的任何理想类 \mathscr{A} ,必有

$$\mathscr{A}^{h_K} = \mathscr{I}. \tag{1.4.10}$$

从(1.4.10)可知存在正整数 n 可使

$$\mathscr{A}^n = \mathscr{I}. \tag{1.4.11}$$

满足(1.4.11)的最小正整数 n 称为理想类 \mathscr{A} 的阶,记作(\mathscr{A}). 显然,正整数 n 满足(1.4.11)的充要条件是(\mathscr{A})|n.

§ 1.5 二次域、二元二次型

次数等于 2 的代数数域称为二次域,它是除有理数域外最简单的代数数域.二次域以及与它平行的二元二次型理论,在丢番图方程的讨论中有着十分重要的意义.

设 D 是无平方因数整数, $K=\mathbb{Q}(\sqrt{D})$, 此时 K 是二次域, 当

D<0时,K 是虚域,称为虚二次域:当 D>0 时,K 是实域,称为实二次域。由于任何二次代数数 α 都可表成 $\alpha=(a+b\sqrt{D})/c$,其中 a,b,c 是整数,D 是适当的无平方因数整数,所以当 D 取遍所有的无平方因数整数时,相应的 $\mathfrak{Q}(\sqrt{D})$ 取遍所有的二次域。

Κ 中的任何一数 θ 都可唯一地表成

$$\theta = \frac{a - b \sqrt{D}}{2}, a, b \in \mathbb{Q}_1 \tag{1.5.1}$$

 θ 是 O_K 中的代数整数的充要条件是(1.5.1)中的 a.b 为满足

$$\begin{cases} a \equiv b \pmod{2}, & \text{if } D \equiv 1 \pmod{4} \text{ Fit,} \\ a \equiv b \equiv 0 \pmod{2}, & \text{if } D \not\equiv 1 \pmod{4} \text{ By.} \end{cases}$$
 (1.5.2)

的整数.设

$$\omega(D) = \begin{cases} \frac{1 + \sqrt{D}}{2}, & \triangleq 1 \pmod{4} \text{ ft.} \\ \sqrt{D}, & \triangleq D \not\equiv 1 \pmod{4} \text{ ft.} \end{cases}$$
 (1.5.3)

从(1.5.1),(1.5.2)可知 $\{1,\omega(D)\}$ 是 K 的一组整基.于是从(1.5.3)可知K的判别式

$$\Delta_{K} = \begin{cases} D, & \text{if } D \equiv 1 \pmod{4} \text{ if }, \\ 4D, & \text{if } D \not\equiv 1 \pmod{4} \text{ if }. \end{cases}$$
 (1.5.4)

因为 $x = \sqrt{D}$ 是代数方程

$$x^2 - D = 0 ag{1.5.5}$$

的根,而且它的另一个根是 $x=-\sqrt{D}$,所以 K 的 Galois 群 Gal $(K/\mathfrak{Q})=\{\sigma_1,\sigma_2\}$,其中嵌入 σ_1,σ_2 满足

$$\sigma_1: \sigma_1\left(\frac{a+b\sqrt{\overline{D}}}{2}\right) = \frac{a+b\sqrt{\overline{D}}}{2},$$

$$\sigma_2: \sigma_2\left(\frac{a+b\sqrt{\overline{D}}}{2}\right) = \frac{a-b\sqrt{\overline{D}}}{2}. \tag{1.5.6}$$

从(1.5.1),(1.5.6)可知

$$T_{K/L}(\theta) = a N_{K/L}(\theta) = \frac{1}{4}(a^2 - Db^2).$$
 (1.5.7)

当D < 0时,因为 $r_i = 0$,故有

$$U_{K} = W_{K} = egin{cases} \left\{ \pm 1, \pm \frac{1 \pm \sqrt{-3}}{2}, \pm \frac{-1 \pm \sqrt{-3}}{2} \right\}, \le \Delta_{K} = -3$$
 的, $\left\{ \pm 1, \pm \sqrt{-1} \right\}, \\ \left\{ \pm 1, \pm \sqrt{-1} \right\}, \\ \left\{ \pm 1 \right\}, \end{cases} \qquad \qquad \le \Delta_{K} = -4$ 的, $\left\{ \pm 1 \right\}.$

当 D>0 时,由于 K 是实域,故有

$$W_{\kappa} = \{\pm 1\}, \tag{1.5.9}$$

又因 r_K=1.所以根据 Dirichlet-Minkowski 单位定理,从(1.5.9) 可知此时

$$U_K = \{\pm \eta^k\}, k \in \mathbb{Z}, \tag{1.5.10}$$

其中

$$\eta = \frac{u_1 + v_1 \sqrt{D}}{2}, \qquad (1.5.11)$$

这里 $(u,v)=(u,x_1)$ 是 Pell 方程

$$u^2 - Dv^2 = \pm 4, u, v \in \mathbb{Z}$$
 (1.5.12)

的一组适合 $u_1>0, v_1>0$ 以及 u_1+v_1 $\sqrt{D} \leqslant u+v_1\sqrt{D}$ 的解,其中 (u,v) 过方程(1.5.12)的所有正整数解,如此的 v 称为实工次域 K 的基本单位数,

已知当且仅当 D=-1,-2,-3,-7,-11 时,虚二次域 $\mathbb{Q}(\sqrt{D})$ 是 Euclid 数域;当且仅当 D=2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73 时,实二次域 $\mathbb{Q}(\sqrt{D})$ 是 Euclid 数域 $\mathbb{Q}^{(25)}$.

关于类数等于1的二次域, $Gauss^{[50]}$ 曾经提出以下三个著名的猜想。

猜想 1.5.1 当 $D \rightarrow -\infty$ 时, 虚二次域 $K = \mathbb{Q}(\sqrt{D})$ 的类数 $h_K \rightarrow \infty$.

猜想 1.5.2 对于任何给定的正整数 t_1 仅有有限多个虚二次域 K 可使 $h_K = t_3$ 特别是当 t = 1, 2, 3 时,仅有下列情况满足 $h_K = t_3$

猜想 1.5.3 存在无限多个类数等于 1 的实二次域.

上述的猜想 1.5.1 已被 Hecke^[62], Deuring^[27], Mordell^[66], Heilbronn^[64]等人证实;猜想 1.5.2 中 t=1 和 2 的情况已由 Baker^[416]和 Stark^[113,114]分别独立地解决了,他们的证明用到了 'el'fond-Baker 方法以及 Heegner^[63]的结果;猜想 1.5.2 的一般情况则是由 Goldfeld^[56], Gross 和 Zagier^[57]等人运用算术代数几何方法解决的. 据此,Oesterlé^[89]证明了:当 D<0 时,

$$h_{\kappa} > C_{1}(\log |\Delta_{\kappa}|) \prod_{\substack{\rho \mid \Delta_{\kappa} \\ \rho \neq |\Delta_{\kappa}|}} \left(1 - \frac{\left[2\sqrt{p}\right]}{p+1}\right), \quad (1.5.13)$$

其中 p 是素数, $[2\sqrt{p}]$ 表示不超过 $2\sqrt{p}$ 的最大整数. 关于 (1.5.13) 中的常数 C_1 , Oesterlé [85] 具体算出 $:C_1 \ge 1/7000$. 目前已知的最好结果是由陆洪文 [82] 得到的,他证明了 $:C_1 \ge 1/54$. 根据结果 (1.5.13),Mestre [84] 解决了猜想 1.5.2 中 t=3 时的情况,Arno [1],Wagner [127] 相继找出了所有类数等于 4.5.6 或 7 的虚二次域. 另外,猜想 1.5.3 是一个至今远未解决的难题,有关这方面的详细情况可参见文献 [83].

对于整数 a,设 $\chi(a)$ 是二次域 $K=\mathbb{Q}(\sqrt{D})$ 的特征函数, $L(s,\chi)$ 是 χ 的 Dirichlet L 函数. 已知 K 的类数 h_K 可表成

$$h_K = egin{cases} rac{\omega_K \sqrt{|\Delta_K|}}{2\pi} L(1,\chi), \stackrel{\text{d}}{=} D < 0$$
 时,
$$\frac{\sqrt{\Delta_K}}{2\log\eta} L(1,\chi), \qquad \stackrel{\text{d}}{=} D > 0$$
 时,

其中 $\omega_K = |W_K|$ 是 K 中不同单位权的个数. 由于从文献[66]的定理 12.13.3 可知

$$|L(1,\chi)| < 1 + \frac{1}{2}\log|\Delta_{\mathbf{K}}|.$$

故从(1.5.14)立得类数 bx 的上界

$$egin{aligned} h_{\kappa} < & \left\{ rac{\omega_{\kappa} \, \sqrt{|\Delta_{\kappa}|}}{2\pi} \Big(1 + rac{1}{2} \mathrm{log} |\Delta_{\kappa}| \Big) \, , \, \stackrel{\scriptscriptstyle def}{=} D < 0 \, \mathrm{B} \dagger \, , \ & \left\{ rac{\sqrt{\Delta_{\kappa}}}{2 \mathrm{log} \, 7} \Big(1 + rac{1}{2} \mathrm{log} \Delta_{\kappa} \Big) \, , & \stackrel{\scriptscriptstyle def}{=} D > 0 \, \mathrm{B} \dagger \, . \end{aligned}
ight.$$

设 D' 是非平方整数. 此时有适当的正整数 l 以及无平方因数整数 D 可使 $D' = Dl^2$. 如果整数 a,b,c 满足 b' - ac = D',而且当 D' < 0 时 a > 0,则称整系数多项式 $f(X,Y) = aX^2 + 2bXY + cY^2$ 是判别式等于 4D'的二元二次型,简称型,记作 $f = \{a, 2b, c\}$. 当 gcd(a, 2b, c) = 1 时,f 称为原型,否则为非原型。

设 $SL_2(\mathbb{Z})$ 是全体行列式等于 1 的二阶整数矩阵的集合。对于矩阵 $T=\left(egin{array}{cc} r & s \\ t & u \end{array}
ight)\in SL_2(\mathbb{Z})$,多项式

g(X,Y) = f(rX + sY, tX + uY)

也是判别式等于 4D 的型. 如此的型f 与 g 称为狭义相似的 3 记作 $f \approx g$. 型的狭义相似是一种等价关系. 当 $f \approx g$ 时 3 月 与 3 同为原型或非原型.

对于给定的判别式 4D',可将全体判别式等于 4D'的原型分成若干类,使得同类诸型皆狭义相似,不同类的型互不相似.如此分类所得的类数是有限的,记作 h(4D').已知二次域的代数整数环中的理想数与原型,二次型的类数与原型的类数之间有着对应的关系(参见文献[83]第二章).

以下通过原型表整数理论,给出一类基本的指数型丢番图方程的解公式,这些结果在以后各章的讨论中经常用到,其详细证明可参考文献[75],[76].

设 $D_1 \cdot D_2$ 是适合 $D_1 > 0$, $gcd(D_1 \cdot D_2) = 1$ 以及 $D_1 D_2 = D'$ 的整

数;k 是适合 gcd(k,D')=1 的整数, $\omega(k)$ 是 k 的不同素因数的个数,

$$\delta = \begin{cases} 1, & \exists \ 2! \ k \ \text{时}, \\ 4, & \exists \ 2! \ k \ \text{时}. \end{cases}$$

引理 1.5.1 当方程

$$D_i U^i = D_i V^i = 1, U, V \in \mathbb{Z}$$
 (1.5.15)

有解(U,V)时,如果方程

$$D_1 x^2 - D_2 y^2 = \delta k^*, x, y, z \in \mathcal{Z}, \gcd(x, y)$$

= 1, z > 0 (1.5.16)

有解(x,y,z),则它的所有解可分成 $2^{-(t)-1}$ 个解类,使得下列结果成立:

(i)每个解类 S 中恰有 1 组解 $(x,y,z)=(x_1,y_1,z_2)$ 满足

$$x_1 > 0, y_1 > 0, z_1 \leqslant z,$$
 (1.5.17)

$$1 < \left| \frac{x_1 \sqrt{D_1} + y_1 \sqrt{D_2}}{x_1 \sqrt{D_1} - y_1 \sqrt{D_1}} \right|$$

$$< (y_1 + y_1 \sqrt{D_1})^2, D' > 0, \qquad (1.5.18)$$

$$h(4D') \equiv 0(\bmod z_1), \qquad (1.5.19)$$

其中 z 过解类 S 中的所有解(x,y,z), u_1+v_1 \sqrt{D} 是 Pell 方程

$$u^2 - D^2 v^2 = 1, u, v \in \mathbb{Z}$$
 (1.5.20)

的基本解. 如此的 (x_1, y_1, z_1) 称为解类 S 中的最小解.

(ii)如果 (x_1,y_1,z_1) 是解类 S 中的最小解,则 S 中的任何一组解 (x_1,y_1z) 都可表成

$$z = z_1 t$$

$$x\sqrt{D_1} + y\sqrt{D_2}$$

$$= \begin{cases} \left[\frac{x_{\perp}\sqrt{D_{\perp}} + \lambda y_{\perp}\sqrt{D_{2}}}{\delta'}\right]' \left\{u + v \sqrt{D'}\right\}, \\ \stackrel{\text{def}}{=} D_{\perp} = 1 \text{ of } D_{\perp} > 1 \text{ fl } 2 \text{ ft } \text{ ft}, \\ \left[\frac{x_{\perp}\sqrt{D_{\perp}} + \lambda y_{\perp}\sqrt{D_{2}}}{\delta'}\right]' \left\{U \sqrt{D_{\perp}} + V \sqrt{D_{2}}\right\}, \\ \stackrel{\text{def}}{=} D_{\perp} > 1 \text{ fl } 2 \text{ ft } \text{ ft}, \end{cases}$$

(1, 5, 21)

其中 t 是正整数, $\lambda \in \{-1,1\}, (u,v), (U,V)$ 分别是方程 (1.5.20), (1.5.15)的解.

引理 1.5.2 当方程(1.5.15)无解时,如果方程(1.5.16)有解(x,y,z),则它的所有解可分成若干个解类,其类数不超过 $2^{\omega(t)-1}$,并且有:

(i) 每个解类 S 中恰有 1 组解(x,y,z) = (x,y,z) 满足(1.5.17),(1.5.)8)以及

$$h(4D') \equiv 0 \pmod{2a_1} \tag{1.5.22}$$

(ii)如果 (x_1,y_1,z_1) 是解类 S 中的最小解,则 S 中的任何一组解 (x_1,y_1,z_1) 都可表成

$$z = z_1 t', \frac{x \sqrt{D_1} + y \sqrt{D_2}}{\delta'}$$

$$= \left[\frac{x_1 \sqrt{D_1} + \lambda y_1 \sqrt{D_2}}{\delta'} \right]' (u + v \sqrt{D'}), \quad (1.5.23)$$

其中 t' 是正奇数, $\lambda \in \{-1,1\}, (u,v)$ 是方程(1.5.20)的解.

当 k 是适合 gcd(k,D')=1 的素数时,由于 $\omega(k)=1$,故从引理 1.5.1 和 1.5.2 直接可得:

推论 1.5.1 当 D 是奇数时,如果方程

$$D_1 x^2 - D_2 y^2 = 2^{z+2}, x, y, z \in \mathbb{Z}, \gcd(x, y)$$

= 1,z > 0 (1.5.24)

有解(x,y,z),则它有唯一的解 $(x,y,z)=(x_i,y_i,z_i)$ 满足(1.5.17),(1.5.18)以及

这里的 z 过方程(1. 5. 24)的所有解(x,y,z). 如此的(x,y,z) 称 为方程(1. 5. 24)的最小解、当方程(1. 5. 15)有解时,方程(1. 5. 24)的任何一组解(x,y,z)都可表成

$$z = z_{1}t, \frac{x\sqrt{D_{1} + y\sqrt{D_{2}}}}{2}$$

$$= \begin{cases} \left[\frac{x_{1}\sqrt{D_{1} + \lambda y_{1}}\sqrt{D_{2}}}{2}\right]'(u + v\sqrt{D'}), \\ \exists D_{1} = 1 \ \vec{\boxtimes} D_{1} > 1 \ \vec{\boxtimes} 2[t \ \vec{\bowtie}, \\ \left[\frac{x_{1}\sqrt{D_{1} + \lambda y_{1}}\sqrt{D_{2}}}{2}\right]'(U\sqrt{D_{1}} + V\sqrt{D_{2}}), \\ \exists D_{1} > 1 \ \vec{\boxtimes} 2[t \ \vec{\bowtie}, \end{cases}$$

$$(1.5.26)$$

其中 t 是正整数, $\lambda \in \{-1,1\}$, $\{u,v\}$, $\{U,V\}$ 分别是方程 $\{1.5,20\}$, $\{1.5,15\}$ 的解; 当方程 $\{1.5,15\}$ 无解时, 该方程的任何一组解 $\{x,y,z\}$ 都可表成

$$z = z_1 t', \frac{x \sqrt{D_1} + y \sqrt{D_1}}{2}$$

$$= \left[\frac{x_1 \sqrt{D_1} + \lambda y_1 \sqrt{D_2}}{2} \right]' (u + v \sqrt{D'}), \qquad (1.5.27)$$

其中 ℓ' 是正奇数 $\lambda \in \{-1,1\}, (u,v)$ 是方程 (1.5,20) 的解.

推论 1.5.2 设 ρ 是适合 ρ D' 的奇素数、如果方程

$$D_1 x^2 - D_2 y^2 = p^2, x, y, z \in \mathbb{Z}, \gcd(x, y)$$

= 1, z > 0 (1.5.28)

有解(x,y,z),则它有唯一的解 $(x,y,z)=(x_1,y_1,z_1)$ 满足(1.5.17),(1.5.18)以及<math>(1.5.25),这里的z过该方程的所有解(x,y,z),如此的 (x_1,y_1,z_1) 称为方程(1.5.28)的最小解.当方程

(1.5.15)有解时,方程(1.5.28)的任何一组解(x,y,z)都可表成

$$z = z_1 t, x \sqrt{D} + y \sqrt{D_2}$$

$$= \begin{cases} \left(x_1 \sqrt{D_1} + \lambda y_1 \sqrt{D_2} \right)' (u + v \sqrt{D'}), \\ & \exists D_1 = 1 \text{ 或 } D_1 > 1 \text{ 且 2} | t \text{ 时}, \\ \left(x_1 \sqrt{D_1} + \lambda y_1 \sqrt{D_2} \right)' (U \sqrt{D_1} + V \sqrt{D_2}), \\ & \exists D_1 > 1 \text{ 且 2} | t \text{ H}, \end{cases}$$

$$= \begin{cases} (x_1 \sqrt{D_1} + \lambda y_1 \sqrt{D_2})' (U \sqrt{D_1} + V \sqrt{D_2}), \\ & \exists D_1 > 1 \text{ 且 2} | t \text{ H}, \end{cases}$$

其中 t 是正整数, $\lambda \in \{-1,1\}$, (u,v), (U,V)分别是方程 (1.5,20), (1.5,15)的解; 当方程(1.5,15)无解时,该方程的任何一组解(x,y,z)都可表成

$$z = z_1 t', x \sqrt{D_1} + y \sqrt{D_2}$$

$$= \left(x_1 \sqrt{D_1} + \lambda y_1 \sqrt{D_2}\right)' \left(u + v \sqrt{D'}\right), \quad (1.5.30)$$

其中 ι' 是正奇数 $\lambda \in \{-1,1\}, (u,v)$ 是方程(1.5,20)的解.

推论 1. 5. 3 设 D_1 、 D_2 是互素的正整数 p 是适合 $p \mid D_1D_2$ 的奇素数. 如果方程

$$D_1 x^2 + D_2 y^2 = 4 p^{r_1} x, y, z \in \mathbb{Z}_1 \gcd(x, y)$$

= 1,z > 0 (1.5.31)

有解(x,y,z),则它有唯一的正整数解(z,,y,,z,)适合 z,≤z 以及

$$h(-4D_1D_2) \equiv \begin{cases} 0 \pmod{3z_1}, \stackrel{\text{def}}{=} \min(D_1, D_2) = 1 \text{ ft}, \\ 0 \pmod{6z_1}, \stackrel{\text{def}}{=} \min(D_1, D_2) > 1 \text{ ft}, \end{cases}$$

$$(1.5.32)$$

其中 z 过该方程的所有解(x,y,z). 如此的(x_1,y_1,z_1)称为方程(1.5.31)的最小解. 此时,该方程的任何一组解(x,y,z)都可表成

$$z = z_1 t, t \in \mathbb{N},$$
 $\begin{cases} 3 \nmid t, & \exists \min(D_1, D_2) = 1 \text{ 时,} \\ \gcd(6, t) = 1, \exists \min(D_1, D_2) > 1 \text{ 时,} \end{cases}$ (1.5.33)

$$\frac{x\sqrt{D_1}+y\sqrt{-D_2}}{2}$$

$$= \lambda_{1} \left[\frac{x_{1} \sqrt{D_{1}} + \lambda_{2} y_{1} \sqrt{-D_{2}}}{2} \right]', \lambda_{1}, \lambda_{2} \in \{-1, 1\}.$$
(1.5.34)

推论 1.5.4 设 D_1 , D_2 是互素的正整数, p 是适合 p 1 D_1D_2 的奇素数. 如果方程

$$D_1x^2 + D_2y^2 = 2p^c, x, y, z \in \mathbb{Z}, \gcd(x, y) = 1, z > 0$$
(1.5-35)

有解(x,y,z),则它必有唯一的正整数解 (x_i,y_i,z_i) 适合 $z_i \le z$ 以及

$$h(-4D_1D_2) \equiv 0 \pmod{2z_1},$$
 (1.5.36)

其中 z 过该方程的所有解(x,y,z). 如此的(x,y,z) 称为方程(1.5.35)的最小解. 此时,该方程的任何一组解(x,y,z)都可表成

$$z = z_1 t, t \in \mathbb{N}, 2 \mid t,$$
 (1.5.37)

$$\frac{x\sqrt{D_1} + y\sqrt{-D_2}}{\sqrt{2}}$$

$$= \lambda_1 \left[\frac{x_1\sqrt{D_1} + \lambda_2 y_1\sqrt{-D_2}}{\sqrt{2}} \right]' \cdot \lambda_1, \lambda_2 \in \{-1,1\}.$$

(1.5.38)

从上述结果可知:形如(1.5.16)的方程的所有解都可由有限 多个最小解生成,这些最小解的上界都与判别式等于 $4D_1D_2$ 的二元二次原型的类数 $h(4D_1D_2)$ 有关. 对于非平方整数 D',类数 h(4D') 有上界

$$h(4D') < \begin{cases} \frac{2\sqrt{|D'|}}{\pi} \left(1 + \frac{1}{2}\log|D'|\right), & \stackrel{\text{def}}{=} D' < 0 \text{ Bf}, \\ \frac{2\sqrt{D'}}{\log(u_1 + v_1/\sqrt{D'})} \left(1 + \frac{1}{2}\log D'\right), \stackrel{\text{def}}{=} D' > 0 \text{ Bf}. \end{cases}$$

$$(1.5.39)$$

§1.6 分解型

设 d 是大于 1 的正整数 f(X) 是可表成 (1.1.1) 的 d 次本原 多项式 如果 f(X) 在章 上是不可约的,则称相应的二元齐次多项式 $f(X,Y)=a_0X^d+a_1X^{d-1}Y+\cdots+a_dY^d$ 是一个二元 d 次原型 f 记作 $f=\{a_0,a_1,\cdots,a_d\}$ 。它是二元二次原型的推广 。设 x=a 是代数方程 (1.1.2) 的根 $(a,(a)(i=1,2,\cdots,d)$ 是 a 的全体共轭数 .此时,

$$H_{j} = \max(|a_{0}|, |a_{1}|, \dots, |a_{d}|),$$

$$\Delta_{f} = a_{0}^{2d-2} \prod_{1 \leq i \leq j \leq d} (\sigma_{i}\alpha - \sigma_{j}\alpha)^{2}$$
(1. 6. 1)

分别称为 f(X,Y)的高和判别式.

设 $GL_2(\mathbb{Z})$ 是全体行列式等于 ± 1 的二阶整数矩阵的集合. 对于 $T=\left(egin{array}{ccc} r & s \\ r & u \end{array}
ight)\in GL_2(\mathbb{Z})$,多项式

$$g(X,Y) = f(rX + sY, tX + uY)$$
 (1.6.2)

也是判别武等于 Δ_i 的二元 d 次原型. 如此的 f(X,Y),g(X,Y) 称为是广义相似的,记作 $f(X,Y)\sim g(X,Y)$. 二元 d 次原型的广义相似是一种等价关系. 根据广义相似性,可将所有判别式相同的二元 d 次原型分成若干类,使得同类诸型皆广义相似,不同类的型互不相似. 由相似的型组成的类称为等价类.

如果当 g(X,Y)过所有与 f(X,Y)广义相似的型时,都有 $H_f \leq H_s$,则称 f(X,Y)是其所在的等价类中的约化型. 设 f(X,Y)是二元 d 次约化型. 早在 1773 年,Lagrange [68] 已经证明: 当 d=2 时,

$$H_{\ell} < C_1(|\Delta_{\ell}|).$$
 (1. 6. 3)

1851 年, Hermite^[45]将上述结果推广到了 d=3 的情况. 1972 年, Birch 和 Merciman^[12]解决了一般的情况. 他们证明了: 当 d>3 时,

$$H_f < C_1'(d, |\Delta_f|).$$
 (1. 6. 4)

从(1.6.3),(1.6.4)可知:判别式等于给定整数的二元 d 次原型

等价类的个数是有限的.

$$H_f < C_2(d, |\Delta_L|)! \Delta_f|^{C_2(d, |\Delta_L|)},$$
 (1.6.5)

其中 Δ_L 是 α 的分裂域 L 的判别式. 1991 年,Evertse 和 Gyóry^[39]证明上界 (1. 6. 5) 在 $\alpha_n \neq 1$ 时也成立. 此后,Evertse^[36]还将上界 (1. 6. 4) 改进为

$$H_f < C_f^*(d, |\Delta_L|) |\Delta_f|^{21/(d-1)}.$$
 (1.6.6)

由于 Lewis 和 Mahler[79]已经给出了 H₁ 的下界

$$H_f \geqslant d^{-(-1/(2d-2))} |\Delta_f|^{1/(2d-2)},$$
 (1.6.7)

所以上界(1.6.6)是一个很强的结果。

设 a_1, a_2, \dots, a_n 是在Q 上线性无关的代数数, $K = Q(a_1, a_2, \dots, a_n)$ 是 d 次代数数域. 此时,

$$M(a_1, a_2, \dots, a_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n, x_1, x_2, \dots, x_n \in \mathbb{Z} \quad (1.6.8)$$

称为 K 的一个线性Z-模,简称模. 如果 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 中包含 K 的一组基,则称 $M(\alpha_1, \alpha_2, \cdots, \alpha_n)$ 是 K 中的完全模. 对于 K 的模 $M(\alpha_1, \alpha_2, \cdots, \alpha_n)$ 是 K 中的完全模. 对于 K 的模 $M(\alpha_1, \alpha_2, \cdots, \alpha_n)$ 是 K 既不是有理数域也不是虚二次域,可使 $M(\alpha_1, \alpha_2, \cdots, \alpha_n)$ 是 K 中是退化的,否则是非退化的.

设 $\sigma_i(i=1,2,\cdots,d)$ 是从 K 到C 的 d 个嵌入. 对于 K 中的数 θ , 设 $\theta^{(i)}=\sigma_i(\theta)(i=1,2,\cdots,d)$. 如果 $M(\sigma_1,\sigma_2,\cdots,\sigma_n)$ 是 K 的模,则有正整数 a 可使

$$f(X_1, X_2, \dots, X_n) = a \prod_{i=1}^{d} (a_i^{\alpha_i} X_i + a_2^{\alpha_i} X_2 - \dots + a_n^{\alpha_i} X_n)$$
(1.6.9)

为系数互素的 n 元 d 次 齐次整系数多项式,称为 K 上的 n 元 d 次模型、显然,以上提到的二元 d 次原型是它在 n=2 时的特例、

更一般地,如果系数互素的 n 元 d 次齐次整系数多项式 f · 36 ·

(X₁, X₂, ···, X_n)可表成

$$f(X_{11}X_{21}\cdots,X_{n}) = a \prod_{i=1}^{n} (\beta_{i1}X_{1} + \beta_{i2}X_{2} + \cdots + \beta_{in}X_{n}),$$
(1.6.10)

其中 a 是非零整数, $\beta_{ij}(i=1,2,\cdots,d;j=1,2,\cdots,n)$ 是代数数,则称它是 n 元 d 次分解型. 对于一般的分解型也可引入广义相似,等价类、约化型等概念,并且已经得到了与二元 d 次原型类似的结果(参见文献[34],[40],[41],[42],[60],[61]).

从(1.6.9)可知模型是一类分解型. 除此以外,还有以下两类讨论较多的分解型. 设 $M(a_1,a_2,\cdots,a_n)$ 是 K 的模,

$$M^{(i)}(a_1, a_2, \dots, a_n) = a_1^{(i)} X_1 + a_2^{(i)} X_2 + \dots + a_n^{(i)} X_n,$$

$$i = 1, 2, \dots, d. \qquad (1.6.11)$$

此时

$$D(X_1, X_2, \cdots, X_n) = \prod_{1 \le i < j \le d} (M^{(i)}(a_1, a_2, \cdots, a_n))$$

$$= M^{(j)}(a_1, a_2, \cdots, a_n))^2, a \in \mathbb{N}$$

$$(1.6.12)$$

称为关于代数数 a_1, a_2, \dots, a_n 的判别式型. 它是一类 n 元 d(d-1)/2 次分解型. 另外,当 $\{1, a_1, \dots, a_{d-1}\}$ 是 K 的一组整基时,从 (1, 2, 10)可知

$$\prod_{1 \leq i < j \leq d} (M^{(i)}(a_1, a_2, \cdots, a_{d-1}) - M^{(j)}(a_1, a_2, \cdots, a_{d-1}))^2
= I^2(X_1, X_2, \cdots, X_{d-1}) \Delta_{\mathcal{E}},$$
(1. 6. 13)

其中 $I(X_1, X_2, \dots, X_{d-1})$ 是整系数多项式。如此的 $I(X_1, X_2, \dots, X_{d-1})$ 称为关于整基 $\{1, \alpha_1, \dots, \alpha_{d-1}\}$ 的指标型。它是一类 d-1 元 (d-1)(d-2)/2 次分解型。

§ 1.7 代数数的有理逼近

设 α 是 $d(d \ge 2)$ 次代數数、1844 年,Liouville [30] 证明了。对于任何正数 δ ,不等式

$$\left| a - \frac{x}{y} \right| < \frac{1}{y^{d+\delta}}, x, y \in \mathcal{Z}, y > 0, \gcd(x, y) = 1$$

$$(1, 7, 1)$$

仅有有限多组解(x,y),上述结果称为 Liouville 定理,该定理揭示了代数数的有理逼近的基本特性,即任何给定的代数数都不会有很多的有理数能很好地逼近它,

设 κ 是使得当 υ>κ 时, 不等式

$$\left| a - \frac{x}{y} \right| < \frac{1}{y''}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1 \ (1.7.2)$$

仅有有限多组解(x,y)的最小正数. 根据 Liouville 定理可知 $\kappa \le d$. 此后, Thue, Siegel, Dyson, Gel'fond 等人相继改进了 κ 的上界 (参见文献[101]). 1955 年, Roth [92]证明了: $\kappa \le 2$. 上述结果称为 Roth 定理. 由于已知当 α 是无理数时, 存在 α 的无限多个新近分数 x/y 满足

$$\left| a - \frac{x}{y} \right| < \frac{1}{y^i}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1. (1.7.3)$$

因此 Roth 定理在一般情况下是攀于至善的,它是丢番图逼近方面最重要的结果之一. 另外, Lang^[10]和 Schmidt^[10]还分别进一步提出了以下猜想。

猜想 1.7.1 当 d>2 时,对于任何正数 δ ,不等式

$$\left| a - \frac{x}{y} \right| < \frac{1}{y^2 (\log y)^{1+\delta}}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1$$

仅有有限多组解(x,y).

猜想 1.7.2 当 d>2 时,不等式

$$\left|\alpha-\frac{x}{y}\right|<\frac{C_1(\alpha)}{y^2}, x,y\in\mathbb{Z}, y>1, \gcd(x,y)=1$$

无解(x,y).

这是两个至今尚未解决的问题,它们的解决必将对丢番图方 程的研究带来实破性的进展.

当 d>2 时,对于正数 δ ,设 $N(a,\delta)$ 是满足不等式

$$\left|\alpha - \frac{x}{y}\right| < \frac{1}{y^{2-\beta}}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1$$
(1.7.4)

的有理数 x/y 的个数. 1955 年,Davenport 和 Roth^[26]首先给出了 $N(\alpha, \delta)$ 的可有效计算的上界. 他们证明了: 当 $0 < \delta < 1$ 时,

$$N(\alpha,\delta) < e^{md^2/c^2}. \tag{1.7.5}$$

此后,Bombieri 和 van der Poorten Mueller 和 Schmidt a 0 < < < 1 的条件下,分别将上界(1.7.5)改进为

$$N(\alpha,\delta) < \frac{\max(0,\log h(\alpha))}{\log(1+\delta)} + \frac{10^8}{\delta^5} (\log 2d)^2 \log \frac{2500\log 2d}{\delta^2}$$

$$(1.7.6)$$

以及

$$N(\alpha,\delta) < \frac{\max(0,\log h(\alpha))}{\log(1+\delta)} + \frac{2\cdot 10^5}{\delta^5} (\log d)^2 \log \frac{200\log d}{\delta^2}.$$

$$(1.7.7)$$

另外,对于 $1 \le \delta \le d-2$ 的情况, Schmidt [166]证明了:

$$N(\alpha, \delta) < \frac{\max(0, \log h(\alpha))}{\log(1 + \delta)} + C_2(\alpha) \left(\frac{\log d}{\log(2 + \delta)} \right)^2 \cdot \left(1 + \frac{\log\log d}{\log(2 + \delta)} \right). \tag{1.7.8}$$

对于复数 θ ,设 $\|\theta\|$ 表示 θ 与最邻近的整数之间的差. 根据 Roth 定理可知:对于任何正数 δ ,仅有有限多个正整数 ν 可使

$$y^{t+\delta} \| y \boldsymbol{\alpha} \| < 1. \tag{1.7.9}$$

1970年,Schmidt^[98]对 Roth 定理作了重要的推广. 他证明了:如果代数数 $1,a_1,\cdots,a_n$ 在氧上线性无关,则对于任何正数 δ ,仅有有限多组非零整数 (y_1,y_2,\cdots,y_n) 可使

$$|y_1y_2\cdots y_n|^{1-\delta} ||y_1\alpha_1+y_2\alpha_2+\cdots+y_n\alpha_n|| < 1.$$
(1.7.10)

上述结果称为 Schmidt 定理. 该定理的提出使得诸如多元分解型方程等以往很难处理的丢番图方程问题的解决成为可能. 在此基础上, Schmidt [10]建立了有关代数数联立逼近的于空间理论. 由于

运用定量化的子空间理论,可以得出适合(1.7.10)的非零整数组 (y_1,y_2,\cdots,y_n) 个数的可有效计算的上界,所以它在讨论方程的解数问题时有着广泛的应用。有关子空间理论及其推广形式可参考文献[95],[96],[97],[100],[102],[103],[104],[105].另外,Bombieri^[15], Evertse^[35], Faltings^[44], Faltings 和 Wüstholz^[45], Ferretti^[46], van der Put^[122], Vojta^[123,124]等人还将以量化的子空间理论为基础的丢番图逼近方法与 Faltings^[43]有关 Abel 簇的算术代数几何方法相结合,对于著名的 Mordell 猜想(参见本书§ 4.6节)及其有关的结果给出了新的证明.

上述以 Roth 定理、Schmidt 定理为基础的丢番图逼近方法通常称为 Thue-Siegel-Roth-Schmidt 方法. 此类方法在本质上是非实效的. 例如,根据 Roth 定理可知仅有有限多个有理数 x/y 适合 (1.7.4),并且可以得到其个数的可有效计算的上界,但是却无法得到 $\max(|x|,|y|)$ 的上界. 这就使得该方法的应用受到了限制.

1964年,Baker^[2]对 Liouville 定理作出了实效性的推广. 他证明了:当d>2时,对于正数 δ ,存在可有效计算的常数 $C_3(\delta,a)$,可使不等式

$$\left| a - \frac{x}{y} \right| > \frac{C_3(\delta, a)}{y^{d-\delta}}, x, y \in \mathbb{Z}, y > 0, \gcd(x, y) = 1$$

$$(1.7.11)$$

成立. 上述结果称为实效的 Liouville 定理,这是目前仅有的一类实效性的丢番图通近定理. 30 多年来,Feldman,Osgood,Gyōry 和 Papp 等人相继改进了(1.7.11)中的常数 $C_3(\delta,a)$. 迄今有关这方面的最好结果是由 Bugeaud 和 Gyōry^[18]得到的. 设 $K=\mathbb{Q}(a)$. 他们证明了:当 $0<\delta \leq (3^{d+2\delta}d^{15d+2\delta}R_K\log\max(e,R_K))^{-1}$ 时,

$$C_3(\delta,a) > 2^{-2(d-1)/l} A^{-(d^2+1)(d+2)/l} e^{-R_K/l}, \qquad (1.7.12)$$
其中 $A = \max(e,h(a)),$

另外,文献[10],[21],[22],[23],[33]还分别对某些三次代数数·40,

给出了比较精确的结果.

1980 年, $Gyōry^{[ii]}$ 对于多个代数数的情况给出了实效性的 Liouville定理。设 $K = \mathbb{Q}(a_1, a_2, \cdots, a_n)$ 是 d 次代数数域。他证明了: 当 d > 2 且 $1, a_1, \cdots, a_n$ 在 \mathbb{Q} 上线性无关时,对于正数 δ ,必有

$$\|y_1a_1+y_2a_2+\cdots+y_ra_r\|>C_4(\delta,a_1,\cdots,a_r)y^{-(d-1-\delta)/r},$$
(1.7.14)

 $y_1, y_2, \dots, y_n \in \mathbb{S}, (y_1, y_2, \dots, y_n) \neq (0, 0, \dots, 0),$ 其中 $y = \max(\{y_{i+1}, | y_2|, \dots, | y_n|\}), t$ 适合 (1, 7, 13). 关于 (1, 7, 14)中的常数 $C_{\epsilon}(\delta, \alpha_1, \dots, \alpha_n)$, 目前已知的最好结果也是由 Rugeaud 和 Györy [18] 得到的. 设 $K_2 = \mathbb{Q}, K_1 = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$ $(i = 1, 2, \dots, n)$. 他们证明了: 当 $[K_i : K_{i-1}] \geqslant 3(i = 1, 2, \dots, n)$ 时, 对于适合 $0 < \delta < (3^{d+2\delta}d^{15d+2\delta}R_K\log\max(e, R_K))^{-1}$ 的正数 δ ,

$$C_4(\delta, a_1, \cdots, a_n) < (2n)^{-2(d-i)/i} A^{-(d^2+1)(i)d-2i/i} e^{-R\chi^{ik}},$$
(1.7.15)

其中 $A = \max(e, h(a_1), \dots, h(a_n)).$

§ 1.8 代数数对数线性型的下界估计

设 a_i , a_i , …, a_n 是不等于 0 或 1 的代数数 $_i \log a_i$ $(i=1,2,\dots,n)$ 分别是 a_i $(i=1,2,\dots,n)$ 的任意给定的对数值. 对于代数数 β_i , β_i , …, β_i ,

 $A = \beta_0 + \beta_1 \log \alpha_1 + \beta_2 \log \alpha_2 + \cdots + \beta_n \log \alpha_n$ (1.8.1) 称为关于代数数 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 的 α 维对数线性型,简称线性型。当 $\beta_0 = 0$ 时, Λ 称为齐次的,否则是非齐次的;特别是当 $\beta_0 = 0$ 且 β_1 , β_2, \cdots, β_n 均为整数时, Λ 称为有理的。本书在绪论中介绍了有关线性型的历史背景。本节将对 $\Lambda \neq 0$ 的情况,比较详细地介绍 $|\Lambda|$ 的下界估计及其 ρ -adic 形式,它们是 Gel' fond-Baker 方法的基本内容。

设 $K=\mathbb{Q}(a_1,a_2,\cdots,a_n,\beta_0,\beta_1,\cdots,\beta_n)$ 是 d 次代数数域; A=

 $\max(e, H(a_i))(i=1,2,\cdots,n)$,并且假定 $A_i \leq A_2 \leq \cdots \leq A_i$; $A = A_n$, $A' = A_{n-1}$, $B = \max(e, H(\beta_e), H(\beta_1), \cdots, H(\beta_n))$ 。本节假定线性型 $A \neq 0$.

1923年,Morduchai-Boltovskoj $^{(s)}$ 首先对比较一般的情况给出了 $[\Lambda]$ 的下界。他证明了:当n=1且 β_0 , β_1 均为整数时。

$$\log |A| > -C_1(d,A) \log B. \tag{1.8.2}$$

1935 年, Gel'fond [11]证明了: 当 A 是二维有理型时,

$$\log|\Lambda| > -C_{\tau}(d,\kappa,A)(\log B)^{\epsilon}, \qquad (1.8.3)$$

其中 κ 是适合 $\kappa > 5$ 的整数. 此后, $Gel'fond^{[51-52]}$ 又将条件" $\kappa > 5$ " 依次改进为" $\kappa > 3$ "和" $\kappa > 2$ ".

对于一般的正整数 n, Gel' (ond $^{(s)}$)给出了 Λ 的非实效的下界估计, 他证明了 : 当 Λ 是有理型时, 对于任何正数 δ , 必有

$$\log|A| > C'_1(n,d,\delta,A)B, \qquad (1.8.4)$$

关于|A|的可有效计算的下界首先是由 Baker 得到的. 1966 年,Baker $^{(3+1)}$ 证明了. 当 A 是齐次型时,

$$\log |\Lambda| > C_3(n,d,\kappa,A)(\log B)', \qquad (1.8.5)$$

其中 κ 是适合 $\kappa > 2n+1$ 的整数. 1968 年, Baker^[3] " "将结果 (1.8.5)推广到了非齐次型的情况,并且把条件" $\kappa > 2n+1$ "改进为

同年,Fel'dman^[46,47]进一步证明了:

$$\log |A| > -C_{\epsilon}(n,d)(\log A)^{C_{\epsilon}(n)}\log B. \tag{1.8.6}$$

设 $\Omega = (\log A_1)(\log A_2) \cdots (\log A_n), \Omega = \Omega/\log A_n$. 1975 年,Baker^(6,1)对下界(1.8.4)作了本质上的改进. 他证明了:

$$\log |\Lambda| > -C_4(n,d)\Omega(\log \Omega)\log B. \tag{1.8.7}$$

次年,van der Poorten⁽¹¹²⁾指出:(1.8.7)中的" $\log \Omega$ "项在某些情况下可换成" $\log \Omega$ "。根据这一思路,Baker^[a]在 1977 年得到了以下一般性的结果:

$$\log |A| > -C_1(n,d)\Omega(\log \Omega')\log B\Omega_1 \qquad (1.8.8)$$

特别是当 Λ 为有理型时,

$$\log|A| > -C_t(n,d)\Omega(\log\Omega')\log B, \qquad (1.8.9)$$

其中 $C_1(n,d) \leq (16nd)^{266n}$. 在此期间,Shorey [167], van der Poorten和 Loxton [126]等人分别对某些特殊情况改进了(1.8.8)和(1.8.9)中的常数 $C_2(n,d)$.

1980年,Waldschmid: 1281 对下界(1.8.8)作了很大的改进,他证明其中的" $\log \Omega$ "和" $\log B\Omega$ "两项分别可以换成" $\log \log A$ "和" $\log (B\log A)$ "。在文献[128]以及后来的工作中,通常用代数数 α 的 Well 高 $h(\alpha)$ 来代替高 $H(\alpha)$. 设

$$V_i = \max\left(h(a_i), \frac{|\log a_i|}{d}, \frac{1}{d}\right), i = 1, 2, \dots, n,$$

并且假定 $V_1 \leq V_2 \leq \cdots \leq V_n$; $V = V_n$, $V' = V_{n-1}$, $V'_1 = \max(1, V_n)$ ($i = 1, 2, \dots, n$), $W = \max(h(\beta_0), h(\beta_1), \dots, h(\beta_n)$). Waldschmidt 在文献 [128] 中证明了: 如果 E 是适合

$$1 < E \leq \min\left(e^{dV_1}, \frac{4dV_1}{\lceil \log a_1 \rceil}, \frac{4dV_2}{\lceil \log a_2 \rceil}, \cdots, \frac{4dV_s}{\lceil \log a_s \rceil}\right)$$

的正数,则必有

$$\log |\Lambda| > -\frac{C_8(n)d^{n-2}}{(\log E)^{n+1}} V_1 V_2 \cdots V_n (\log (dEV_{n-1}^+)) + (W_1 + \log (dEV_n^+)), \qquad (1.8.10)$$

其中 $C_8(n) \leq 2^{8n+51} n^{2n}$.

1988 年前后, Philippon 和 Waldschmidt^[90]与 Wüstholz^[132] 一分别独立地对 Baker 的下界(1.8.8)和(1.8.9)作了重要的改进, 他们证明其中的"logΩ""项是可以去掉的. 这一结果可表述为:

引理 1.8.1 当 A≠0 时,

 $\log |A| > -C_s(n,d)V_1V_2...V_s(W+\log V);$ (1.8.11) 特别是当 A 为有理型时,

$$\log |\Lambda| > C_{10}(n,d)V_1V_2\cdots V_nW. \qquad (1.8,12)$$

上述引理是目前在一般情况下已知的最好结果. 对于引理 1.8.1 中的常数 $C_{\mathfrak{g}}(n,d)$, Philippon 和 Waldschmidt [\mathfrak{so}]证明了:

$$C_2(n,d) \leq 2^{8n+51}n^{2n}d^{n+2}(1+\log d);$$
 (1.8.13)

对于常数 $C_{io}(n,d)$, Baker 和 Wüstholz^[11], Waldschmidt^[13]分别通过 Gel'fond 途径和 Schneider 途径证明了:

$$C_{30}(n,d) \le 18(n+1)!n^{n+1}(32d)^{n+1}\log(2nd)$$
 (1.8.14)

以及

$$C_{1e}(n,d) \leqslant \begin{cases} 2^{4n+12}n^{2n+8}d^{n+2}(1+\log d), & \exists g=1 \text{ pt.} \\ 2^{4n+32}n^{3n+8}d^{n+2}(1+\log d), & \exists g=2 \text{ pt.} \end{cases}$$

$$(1.8-15)$$

其中 $g = [\mathbb{R}(\log a_1, \log a_2, \cdots, \log a_n)]$.

对于有理型 A,Lang[16] 曾经提出以下猜想:

猜想 1.8.1 当 $\beta_0 = 0$, $\beta_i (i = 1, 2, \dots, n)$ 都是非零整数且 $\alpha_i (i = 1, 2, \dots, n)$ 都是正整数时,对于任何正数 δ ,必有

$$|A| > \frac{C_{11}(\delta)B}{(a_1 a_2 \cdots a_n) |\beta_1 \beta_2 \cdots \beta_n|^{1+\delta}}.$$
 (1.8.16)

显然,猜想 1.8.1 意味着下界(1.8.12)中的乘积"V₁V₂····V₂"可以在 $a_i(i=1,2,\cdots,n)$ 均为正整数的条件下换成和"V₁+V₂+····+V₂",这是一个非常大的改进,因此也是一个相当困难的问题。它的解决无疑会使包括丢番图方程在内的许多领域产生一大批全新的结果。

另外,从本书以下各章的内容可知,二维有理型的下界估计在 丢 番 图 方 程 中 有 着 广 迈 的 应 用. 对 此, Mignotte 和 Waldschmidt^[85], Laurent^[73]等人进行了深入的研究. 目前这方面的最好结果是由 Laurent, Mignotte 和 Nesterenko^[74]得到的,他们证明了:

引理 1.8.2 当 1 是二维有理型时,

$$\log |A| \geqslant -C_{12}(s)D^4V_1V_2\left(\max\left(\frac{1}{2},\frac{s}{D},\log B^i\right)\right)^2,$$
(1.8.17)

其中 D=d/t, t 适合(1.7.13), $B'=|\beta_1|/DV_1+|\beta_2|/DV_1$, 常数 s 和 $C_{12}(s)$ 可取下列数值:

特别是当 41.42 都是正数时,

$$\log |A| \geqslant -C_{13}(s')D'V_1V_2 \Big(\max \Big[\frac{1}{2}, \frac{s'}{D}, \log B' + 0.14 \Big] \Big)^2,$$
(1.8.13)

其中常数 s'和 $C_{1s}(s')$ 可取下列数值:

当 loga, ,loga, 都是正数时,

$$\log |\Lambda| \geqslant -\frac{C_{12}(s'')}{(\log E)^3} D^4 V_1 V_2$$

$$\cdot \left(\max \left(\frac{1}{2} \cdot \frac{s'' \log E}{D}, \log B' + \log \log E + 0.47 \right) \right)^2,$$
(1.8.19)

其中E适合

$$E = 1 + \min\left(\frac{DV_1}{\log a_1}, \frac{DV_2}{\log a_2}\right) \geqslant 2$$
.

常数 s"和 C1(s")可取下列数值:

$$\frac{\varepsilon''}{C_{14}(s'')}$$
 8 9 10 11 12 13 14 15 16 17 18 19 $C_{14}(s'')$ 39. 24 37. 04 35. 10 33. 87 32. 68 31. 68 30. 82 30. 07 29. 41 28. 83 25. 3027. 83

引理 1.8.3 设 o 是适合 a|=1 的 d 次代数数 b_1,b_2 是正整数 $A=b_1\log a-b_2\pi$ $\sqrt{-1}$. 当 $A\neq 0$ 时,

$$\log |A| \geqslant -8.87VW^2,$$
 (1.8.20)

其中 $V = \max(20.10.98|\log a| + dh(a)/2)$

$$W = \max\left(17, \frac{\sqrt{d}}{40}, \frac{d}{2}\log\left(\frac{b_1}{68.9} + \frac{b_2}{2V}\right) + 1.175d + 5.03\right).$$

根据引理 1.8.3,可得以下经常用到的一个结果:

定理 1.8.1 设 D_1,D_2 是互素的正整数,

$$k = D_1 + D_2,$$
 (1.8.21)

k 是大于 2 的正整数;又设

$$\epsilon = \sqrt{D_1} + \sqrt{-D_2}, \tilde{\epsilon} = \sqrt{D_1} - \sqrt{-D_2}.$$
 (1.8.22)

如果正整数 m 适台

$$\left|\frac{\boldsymbol{\varepsilon}^{m}-\bar{\boldsymbol{\varepsilon}}^{m}}{\boldsymbol{\varepsilon}-\bar{\boldsymbol{\varepsilon}}}\right|=1, \qquad (1.8.23)$$

则必有

$$m < 4 + 2563.43 \frac{\max(20.10.98|\log(\epsilon/\bar{\epsilon})| + \log\sqrt{k}}{\log\sqrt{k}}.$$
(1.8.24)

证. 从(1.8.21),(1.8.22)可知 $|\epsilon| = |\bar{\epsilon}| = \sqrt{k}$ 以及

$$|\epsilon - \bar{\epsilon}| = 2\sqrt{D_2} < 2\sqrt{k}$$
. (1.8.25)

设 $\alpha = \epsilon/\bar{\epsilon}$. 此时 α 适合 $|\alpha| = 1$, 并且从(1.8.22)可知 α 满足

$$ka^2 - 2(D_1 - D_2)a + k = 0.$$
 (1.8.26)

因为 $gcd(D_1,D_2)=1$,故有 $gcd(D_1+D_2,D_1-D_2)\leq 2$,并且从 (1.8.26)可知 a 不是单位根. 如果(1.8.23)成立,则有

$$|\varepsilon - \overline{\varepsilon}| = |\varepsilon|^m |\alpha^m - 1|. \tag{1.8.27}$$

当 | 4"-1 | ≥1/2 时,从(1.8.25),(1.8.27)可得

$$\frac{\sqrt{k^*}}{2} \leqslant |\epsilon - \bar{\epsilon}| < 2\sqrt{k}. \tag{1.8.28}$$

因为 k≥3,故从(1.8.28)可知 m<4.

$$t \leqslant m \tag{1.8.29}$$

的正整数±可使

$$|\alpha^{m}-1| > \frac{2}{\pi} |m\log \alpha - m\sqrt{-1}|.$$
 (1.8.30)

设 A=mloga-iπ √-1. 从(1.3.25),(1.8.27)和(1.8.30)可知

$$\log \pi \sqrt{k} - \log |A| > m \log \sqrt{k}. \tag{1.8.31}$$

由于 a 不是单位根,故有 $A\neq 0$ 、又从(1.8.26)可知[取(a);见]=2。 $\lceil \log a \rceil < 2\pi, h(a) = \log \sqrt{k}$.因此根据引理 1.8.3,从(1.8.29)可得

$$\log |A| > -8.87V_{5} \left(\max \left(17.7.38 + \log \left(\frac{m}{68.9} + \frac{m}{40} \right) \right) \right).$$
(1.8.32)

其中

$$V_0 = \max(20, 10, 98 |\log a| + h(a)). \tag{1.8.33}$$

如果 m 满足

7. 38 +
$$\log \left(\frac{m}{58.9} + \frac{m}{40} \right) \ge 17.$$

興必有 m≥381150. 同时,从(1.8.31),(1.8.32)可得

$$\frac{\log \pi \sqrt{k}}{\log \sqrt{k}} + 8.87 \left[\frac{21.96\pi}{\log \sqrt{k}} + 1 \right] (3.5524 + \log m)^2 > m.$$
(1.8.34)

因为 k≥3, 所以从(1.8.34)可得 m<300000 这一矛盾,故必有

7.
$$38 + \log \left(\frac{m}{68.9} + \frac{m}{40} \right) \le 17.$$
 (1. 8. 35)

于是从(1.8.32),(1.8.35)立得(1.8.24),定理证完。

最后介绍一下对数线性型下界估计的 p-adic 形式.

设 a_1, a_2, \cdots, a_n 是不等于 0 或 1 的代数数 b_1, b_2, \cdots, b_n 是非零整数 $C = a_1^{b_1} a_2^{b_2} \cdots a_n^{b_n} - 1$,

$$A' = b_1 \log a_1 + b_2 \log a_2 + \dots + b_n \log a_n. \qquad (1.8.36)$$

又设 $K = \mathbb{Q}(a_1, a_2, \cdots, a_n)$ 是 d 次代数数域,P 是 O_k 中的素理想数,p 是 P 的相关素数。由于当 $A' \neq 0$ 时,必有 $P \neq 0$ 以及 $\operatorname{ord}_P(P)$ $< \hookrightarrow$ 。因此将讨论 A' 的下界的方法推广到 p-adic 理论,可在 $\operatorname{ord}_P(P)$

 $(\Gamma)>0$ 的条件下得到 ord_r(Γ)的可有效计算的上界. 以下设 $B'=\max(3,|b_1|,|b_2|,\cdots,|b_n|)$, 并且假定 $a_i(i=1,2,\cdots,n)$ 是适合 ord_r(a_i-1)>0($i=1,2,\cdots,n$)的 P-adic 单位. 此时显然有 ord_r(Γ)>0.

当 n=1 时,从(1.3.23)可知

$$\operatorname{ord}_{F}(\Gamma) < C_{15}(d, a_{1}, p) \log B^{t}. \tag{1.8.37}$$

1940年, $Gel'fond^{(si)}$ 对于n=2的情况证明了:对于正数 δ ,如果 B' $>C_{\epsilon}'(\delta,A,\rho)$,则

$$\operatorname{ord}_{P}(\Gamma) < (\log B')^{1+\delta}.$$
 (1.8.38)

1967 年,Schinzel^[93]首先对此情况给出了 ord_P(P)的可有效计算的上界. 两年后,Coates^[24]根据 Baker 的工作,将上述结果推广到了一般的情况. 他证明了:对于适合 $0 < \delta \le 1$ 的正数 δ ,当 $B' > C_{16}$ $(n,d,p)(\delta^{-1}\log A)^{(2n+1)^2}$ 时,必有

$$\operatorname{ord}_{P}(\Gamma) < (\log B')^{\delta}. \tag{1.8.38}$$

此后, Sprindžuk^[111,112], Kaufman^[62], Baker 和 Coates^[9], van der Poorten^[113,119], 于坤瑞^[131,134]等人分别作了不同程度的改进. 目前,在一般情况下的最好结果是由于坤瑞^[131,11]得到的. 他通过Gel'fond 涂径证明了:

引理 1.8.4 设 $V_i = \max(h(a_i), |\log a_i|/10d, \log p)$ $(i=1,2, \dots, n)$,并且假定 $e \le V_i \le V_2 \le \dots \le V_n$,又设

$$\phi = 22000 \left(\frac{9.5(n+1)d}{\sqrt{\log p}} \right)^{2(n+1)} dp' V_1' V_2' \cdots V_n' \log(10nd \log V_n').$$

当 n≥2 时,

$$\operatorname{ord}_{P}(\Gamma) \leqslant d \operatorname{flog}(dB')$$
;

特别是当 6.=1 时,对于适合 0<8≤1 的正数 δ,

$$\operatorname{ord}_P(\Gamma) \leqslant d \max \left(\operatorname{plog} \frac{\operatorname{p}}{\delta V_n'}, \delta B' \right).$$

另外,董平平^[29-31], Bugeaud 和 Laurent^[19]通过 Schneider 途径分别证明了以下两个结果。

引理 1.8.5 设 $V_i = \max(h(a_i)/\log p, 1/d) \ (i=1,2,\dots,n)$,
48.

并且假定 $V_1 \leq V_2 \leq \dots \leq V_n$ 当 $n \geq 2$ 时,

$$\operatorname{ord}_{\rho}(\Gamma) < 2^{(n+1)2} n^{3n+5} f_{\rho} U,$$

其中 f_P 是素理想数 P 的剩余类域次数,

$$U = \max(d^{n-2}FGV_1''V_2''\cdots V_n'', d^2pGV_n''),$$

$$F = \frac{10\log(3ndp)}{\log p},$$

$$G = \max\left(2nF, \frac{\log B'}{\log p}\right).$$

特别是当 $a_i = a_i (i = 1, 2, \dots, n), a_i (i = 1, 2, \dots, n)$ 是适合 $a_i = 1$ (mod p)的整数时,

$$\operatorname{ord}_{p}(\Gamma) > \left(\frac{2p-1}{2p-2}\right)^{n-2} 9^{n+4} n^{3n+2} U'$$
,

其中 $U' = F'G'A'_1A'_2\cdots A'_n$, $A_i = \max(|\log a_i|, \log p)$ $(i = 1, 2, \dots, n)$,

$$F' = egin{cases} rac{2\log 8n}{\log 2}, \ rac{4\log (3n
ho)}{\log
ho}, G' = egin{cases} \max\left(rac{\log B''}{\log 2}, 6nF'
ight), oxtlength p = 2 oxtlength f, \ \max\left(rac{\log B''}{\log p}, 5nF'
ight), oxtlength p > 2 oxtlength f, \end{cases}$$

$$B'' = 7\max(|b_1|, |b_2|, \dots, |b_n|) / 10(n+1).$$

引理 1.8.6 当 n = 2 时,

$$\operatorname{ord}_{P}(\Gamma) < \frac{24dP(p^{f_{P}}-1)}{(p-1)(\log p)^{4}} \left(\frac{d}{f_{P}}\right)^{3} V_{1}^{*} V_{2}^{*}$$

$$\cdot \left(\max\left\{5, \frac{10f_{P}\log p}{d}, \log b + \log\log p + 0, 4\right\}\right)^{2},$$

其中

$$b = \frac{|b_1|f_p}{dV_2'''} + \frac{|b_2|f_p}{dV_1'''}, V_j''' = \max \left[h(\alpha_j), \frac{f_p \log p}{d}\right],$$

$$j = 1, 2.$$

参考文献

[1] Arno S. The imaginary quadratic fields of class number 4, Acta Arith, 1992, 60, 321 = 334.

- [2] Baker A. Rational approximations to certain algebraic numbers. Proc London Math Soc. 1964. 4:385 398.
- [3] Baker A., Linear forms in the logarithms of algebraic numbers 1.

 Mathematika, 1966, 13, 204 216; I sibid, 1967, 14, 102 107; I sibid, 1967, 14, 220 228; N sibid, 1968, 15, 204 216.
- [4] Baker A., A remark on the class number of quadratic fields, Bull London Marb Soc, 1969, 1:98-102.
- [5] Baker A. Imaginary quadratic fields with class number 2. Ann Math. 1971.94:
- [6] Baker A. A sharpening of the bounds for linear forms in logarithms I, Acta Arith, 1972, 21, 117-129; I sibid, 1973, 24, 33-36; I sibid, 3975, 27, 247-252.
- [7] Baker A. Transceodental Number Theory. Cambridge: Cambridge Univ Press. 1975.
- [6] Baker A. The theory of linear forms in logarithms. In Baker A. Masser D. M. eds. Transcendence Theory: Advances and Applications. Cambridge, 1976. London: Acadmic Press, 1977: 1 28.
- [9] Baker A., Coates J., Fractional ports of powers of rationals, Math Proc Cambridge Philos Soc. 1975, 77: 269 - 279
- [10] Baker A. "Stewart C. L. "On effective approximations to cubic irrationals. In;

 New Advances in Transcendence Theory, Cambridge: Cambridge Univ Press.

 1988:1-24.
- [11] Baker A., Wustholz G., Logarithmic forms and group varieties, J Reine Augew Math. 1993, 442; 19 62.
- [12] Birch B. J. Merriman J. R. Finiteness theorem for binary forms with given discriminant, Proc London Math Soc, 1972, 25:385-394.
- [13] Blankshy P. E., Montgomery H. L., Algebraic integers near the unit circle, Acta Arith, 1971, 18: 355-369.
- [14] Blass, J., Glass A. M., Manski D. K., Meronk D. B., Steiner R. P., Constants for lower Bounds for linear forms in the logarithms of algebraic numbers, 1; The general case. Acra Arith, 1990, 55:1-34; 1: The homogeneous rational case, ibid, 1990, 55:15-22; Corrigendum; ibid, 1993, 65:383.
- [15] Bombieri E., The Mordell conjecture revisited, Ann Scuola Norm Sup Pisa Cl Sci(4), 1990, 17, 635-640.
- [16] Bombieri E., van der Poorten A. J., Some quantitative results related to Roth's theorem. J. Austral Math Soc Ser A. 1988. 45; 233—248; Corrigenda; ibid., 1990, 48:154—155.

- [17] Bugeaud Y. .Györy G. .Bounds for the solutions of unit equations .Acta Arith. 1995.74:67-86.
- [18] Bugeaud Y., Györy G., bounds for the solutions of Thue-Mahler equations and norm form equations. Acta Arith, 1995-74; 273-292.
- [19] Bugeaud Y., Laurent M., Minoration effective de la distance p-adique entre puissances de nombres algébriques.] Number Theory, 1996, 61, 311 342.
- [20] Cantor D. C., Straus E. G. On a conjecture of D. H. Lohmer, Acta Arith. 1982. 42:97-100.
- [21] 陈建华,---类代数数的有效有理逼近,科学通报,1996,41:1543-1646.
- [27] Chen J-H. Rational approximations to some algebraic numbers and diophantine equations (1.). Abh. Math. Sem. Univ. Horoberg. to appear.
- [23] Christovsky G. V. "On the method of Thue-Siegel. Ann Math. 1983. 117, 325 + 382.
- [24] Coates J. An effective p-adic analogue of a theorem of Thue 1 Acta Arith. 1969,15,279-305, I sibid.1970,16,399-412; I sibid.1970,16,425-435.
- [25] Davenport H. Indefinite binary quadratic forms and Euclid's algorithm in real quadratic fields. Proc London Math Soc. 1951.53,65—82.
- [26] Devenport H., Roth K. F., Rational approximations to algebraic numbers.

 Mathematika, 1955, 2, 160-167.
- [27] Deuring M. Imaginar-quadratischer Zahlkorper mit der Klassenzahl (+), Math Z. 1933, 37, 405 415.
- [28] Debrowolski E. On a question of Lehmet and the number of irredocible factors of a polynomial. Acta Arith, 1979, 24, 391—401.
- [29] Dong P-P., Minoration de la distance p-néique entre éeux praduits de puissances de nombres algébriques, Problèmes Diophantiers 1989 1990, Publi Univ P et Mourie (Paris VI), 93, N°3, 9pp.
- [30] Dong P-P., Minorations de combinaisons Jinéaives de deux Jogarinmes padiques. Ann Fae Sci Toulouse, 1991, 12, 195-250.
- [31] Long P-P. Minorations de combinaisons linéaires de logarithmes p-ediques de nombres algébriques. C. R. Acad Sci. Paris. Ser. 1. Math., 1992, 315, 103 -- 106. Dissertationes Math. (Rosprawy Mat.) 1995, 343, 97 pp.
- [32] Dubichas A., On a conjecture of A. Schinzel and H. Zassenhaus, Acta Arith, 1993, 53, 15-20.
- [33] Easton D. Effective irrationality measures for certain algebraic numbers, Math. Comp. 1985. 46, 6)3 622.

- [34] Everuse J.-H., Estimates for discriminants and resultants of binary forms, Inc.

 Advances in Number Theory, Kingston, ON, 1991, New York, Oxford Sci Pul,

 Oxford Univ Press, 1993, 367 380.
- [35] Evertse J-H., The subspace theorem of W. M. Schmidt, In: Diophantine Approximation and Abelian Varieties, Soesterberg, 1992, Lecture Notes in Math 1866. Berlin, Springer-Verlag, 1993, 31 50.
- [36] Everise J-H., Estimates for reduced binary forms, Reine Angew Math, 1993, 434:159-190.
- [37] Evertse J-H., An explicit version of Faltings' product theorem and an improvement of Retb's theorem, Acta Arith, 1995, 73, 215-248.
- [38] Evertse J-H. An improvement of the quantitative subspace theorem.

 Compositio Math. 1996, 101, 225-311.
- [39] Evertse J-H. Györy K. .Effective fluiteness results for binary forms with given discriminant. Compositio Math. 1991, 79:169-204.
- [40] Evertse J-H. Györy K., Discriminant of decomposable forms, Ju: New Trends in Probability and Statistics, Vol 2, Palanga, 1991. Utreckt, VSP, 1992: 39-56.
- [41] Evertse J-H. Györy K. Effective finiteness theorems for decomposable forms of given discriminant. Acts Arith. 1992, 60: 233 277.
- [42] Everuse J-H.Györy K. "Lower bounds for resultants 1, Compositio Math. 1993, 88:1-23.
- [43] Faltings G., Endlichkeissatze f\u00fcr abelsche Vazietnten Zehlk\u00f6rpern, Jovent Math. 1983.73;349 366; Correction; ibid. 1984.75;381.
- [44] Faltings G. Diophantine approximation on abelian varieties. Ann of Math(2), 1991-133,549-576.
- [45] Faltings G., Wüsthniz G., Diophantine approximations on projective spaces.

 Invent Math, 1994, 116, 109-138.
- [46] Fel'demau N. I., Estimation of a linear forms in the logarithms of algebraic numbers. Mat Sharnik, 1968, 76, 304 319.
- [47] Fel'deman N. I., An improvement of the estimation of a linear forms in the logarithms of algebraic numbers. Mat Shornik, 1968, 77, 423-436.
- [48] Ferretti R., An effective version of Falrings' product theorem. Forum Math., to appear.
- [49] 冯克勤。代数数论人门,上海,上海科学技术出版社,1988.
- [50] Gouss C. F. Disquisitiones arithmericae, Pleisheer, Leipzig, 1801.
- [51] Gel'fond A. O. On the approximation of transcendental numbers by algebraic numbers. Dok! Acad Nauk SSSR, 1935, 2:177-182.

- [57] Gelifond A. O. On the approximation by algebraic numbers of the ratio of the logarithms of two algebraic numbers. [27] Abad Naok SSSR. 1939. 5-6:509-518.
- [53] Gel' (and A. O. Sur la divisibilité de la différence des puissances de deux nombres entiers par une puissance d'un idéal premier. Mat Shorntk. 1940, 49,7 -25.
- [54] Gel' fond A. O. The approximation of algebraic numbers by algebraic numbers and the theory of transcendental numbers. Uspehi Mat Nauk SSSR, 1949, 4, 19 -49.
- [55] Gel'fond A. O. , On the algebraic independence of transcendental numbers of tertain classes Uspehi Mat Nauk SSSR-1949.5.11-48.
- [86] Goldfeld D. M., The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann Schola Norm Sup Pisa, 1976, 4, 623 -- 663.
- [57] Gross B. Zagier D. Heegner points and derivatives of L series, lovent Math. 1986:84:225 329.
- [88] Gybry R., Sur les polynômes à coefficients ettiers et de distriminant donne 1.
 Acm Arith, 1973, 23; 419 426; F.; Publ Math Debrecen, 1974, 21; 125 144;
 ibid, 1976, 23; 141 165; N.; ibid, 1976, 25; 155 167; V.; Acta Math Acad Sci Hanger, 1978, 32; 175 196.
- [58] Gyory K. Explicit lower bounds for linear forms with algebraic coefficients.

 Arch Math (Basol) 1980, 35:438-446.
- [66] Györy K. On pairs of binary forms with given semi-resulant. Math Paumon. 1993.4:65-101.
- [81] Györy K., Upper bounds for the degrees of decomposable forms of given discriminant. Acta Arith. 1994. 66: 261 ~ 268.
- [62] Hecke E., Vurlesung über die Theorie der algebraishen Zahlen, Leipzig, Akademische Verlegegesellschaft, 1923.
- [63 Heegner K., Diophantische Analysis und Modulfunkrionen, Math. Z., 1952., 56; 227-253.
- [64] Heilbronn H. On the class number in imaginary quadratic fields. Quart J Math. Oxford Ser 2,1934,25,150-160.
- [65] Hermite C., Sur Unitroduction des variables continus dans la théorie des nombres J Reine Angew Math. 1851.41:191-216.
- [66] 作罗庚、數论导引、北京、科学出版社、1957。
- [67] Kaulman R. M. The evaluation of the linear forms of logarithms of algebraic numbers in the p adic metric. Vestuik Moskov Univ Ser 1, 1971, 26, 3-16.

- [58] Lagrange J. L., Réchesches d'arithmétiques, Nouv-Mém Acad Berlio, 1773, 265 —312.
- [69] Lang S. Report on deophentine approximations, Bull Soc Math France, 1965.
 \$3,177-192.
- [70] Lang S. Elliptic Curves Diophantine Analysis, Grund der Math Wiss 231. Berlin: Springer-Verlag. 1978.
- [71] Langevin M. "Solution des problèmes de Favard. Ann lost Fourier (Grenoble). 1988, 38(2): 1-10.
- [72] Langevin M., Reyssat E., Rhin G., Diamètres transfinis et problème de Favard, Ann inst Fourier (Grenoble), 1988, 38(1):1-15.
- [73] Laurent M., Linear forms in two logarithms and interpolation determinants,
 Acta Arith, 1994, 66, 181-199
- [74] Laurent M., Mignotte M., Nesterenko Yu V., Formes linéaires en deux logarithmes et déterminants d'interpolation.] Number Theory, 1995, 55, 285—321.
- [75] 乐茂华、关于二元二次原型表整数 1 。表示式类的复合,长春师范学院学报(自然科学版),1986、3(1);3—12; 1 方程 $D_1x^2 D_2y^2 = \delta k^2$ 的整数解,长沙铁道学院学报,1989、7(2);6—18.
- [75] Le M-H. Some exponential diophentine equations 1: The equation $D_1x^2 = D_2y^2 = \lambda k^2$, J Number Theory, 1995, 55: 209 221.
- [77] Le M-H. A lower bound for the class numbers of Abelian algebraic number fields with odd degree, Proc Amer Math Soc., 1995, 123; 1347—1350.
- [78] Lenstra H. W. Jr. Algorithms in algebraic number theory, Bull Amer Math. Soc. 1992, 26:211-244.
- [79] Lewis D. J. Mohler K. On the representation of integers by binary forms.

 Acta Atich 1951-6,323-263.
- [80] Liouville J. Sur des classes très étendoes de quantirés dont la valent n'est ni algébrique, ni même reductible à des strationnelles algébriques. C. R. Acad Sci. Paris 1844, 13,883—885, 910—911.
- [81] Louboutin R. "Sur la meaute de Mahlet d'un nombre algébrique, C R Acad Sci Paris Scr A. 1983, 296, 707-708.
- [82] Lu H.W. A note on Goldfeld-Gross-Zagier-Oesterle theorem, IHES/M/1986/
- [83] 随洪文,二次数域的高斯猜想,上海,上海科学技术出版社,1994.
- [84] Mestre J-F., La méthode dea graphes, Examples et applications, In., Proc Int. Conf on Class Number and Fundamental Units, Katata, 1986, 217-242.

- [95] Mignotte M. Waldschmidt M., Linear forms in two logarithms and Schneider's method I., Math Ann. 1978, 231, 241-267; I., Acta Arnh. 1985, 53, 251-287, II., Ann Fac Sci Toulouse, 1989, 9, 43-75.
- [86] Mordell L. J. On the Riemann hypothesis and imaginary quadratic fields with a given class number of London Math Soc. 1934.9;289—298.
- [67] Morduchai-Boltovskoj D. "Sur le logarithme d'un combre algébrique. CR Acad Set Paris 1932, 176, 724 – 727.
- [88] Mueller J., Schmidt W. M., On the number of good rational approximations to algebraic numbers, Proc. Amer. Math. Soc., 1989, 196, 859—865.
- [89] Oestetle J., Nombres de class des corps geadratiques imaginaires. Sem Bourbaki, 1983/1984. Exp 631.
- [90] Philippon P., Waldschmidt M., Lower bounds for linear forms in logarithms, In: Baker A, New Advance in Transcendence Theory, Cambridge, Cambridge Univ Press, 1988, 280-312.
- [91] Quême R. Relations d'inégalités ellectives en théorie algébrique des nombres. In: Séminaire de Théorie des Nombres. Talence. 1987/1988, Talence: Univ Bordesux 1.1990, Exp 19,19pp.
- [92] Roth K. F., Rational approximations to algebraic numbers. Mathematika, 1955, 2, 1-20. Corrigendom, ibid, 1955, 2, 158.
- [93] Schinzel A., On two theorems of Gel'fond and some of their applications, Aeta Arith, 1967, 13: 177 236.
- [94] Schinzel A., Zasseohaus H. A relinstnent of two theorems of Kronecker, Michigan Math J. 1965. 12.81-85.
- [95] Schlickewei H. F., Résultats quantitatils en approximation diophantienne, Astensque, 1992, No. 198/200(11), 319 – 331.
- [96] Schlickewei H. P., The quarititative subspace theorem for number theory, Compositio Math, 1992, 83, 245-273.
- [97] Schlickewei H. P. "Schmidt W. M., "The number of subspaces occurring in the p-adic subspace theorem in diophantine approximation...] Reine Angew Math., 1990,406,44-108.
- [98] Schmidt W. M., Simultaneous approximation to algebraic numbers by cationals. Acta Math. 1970, 125, 189-201.
- [99] Schmitt W. M. Norm form equations, Ann. of Math. 1972, 96, 528 531.
- [100] Schmidt W. M. "Simultaneous approximation to algebraic numbers by elements of a number field. Monatch Math. 1975, 79, 55—56.

- [101] Schmidt W. M., Diophantine Approximation, Lecture Notes Math 785, Berlin: Springer-Vorlag, 1980.
- [102] Schmidt W. M.: The subspace theorem in disphantine approximations.

 Compositio Math. 1989. 69: 121-173.
- [163] Schmidt W. M., On the number of good simultaneous approximation, to algebraic numbers, In, Int Symposium in Memory of Hue Loo Keng, Vol 1. Beijing, 1988, Berlin, Springer-Verlag, 1991, 249-264.
- [101] Schmidt W. M., Diophantine Approximations and Diophantine Equations.

 Lecture Notes Math 1467, Berlin, Springer-Verlag, 1991.
- [105] Schmidt W. M. Vojta's refinement of the subspace theorem. Trans Amer Math. Soc., 1993, 340, 705 731.
- [106] Schmidt W. M. The number of exceptional approximations in Roth's theorem.

 J Auszral Math Soc. Ser A. 1995. 59:375—383.
- [107] Shorey T. N. On linear forms in the logarithms of algebraic numbers, Acta Arith. 1976, 30, 27-42.
- [108] Shorey T. N., Tijdeman R. Exponential Diophantine Equations, Cambridge: Cambridge Univ Press, 1985.
- [109] Siegel C. L. Absehätaung von Einheiten Nacht Acad Wiss Göttingen Mach-Phys Kl. L. 1059,71-86.
- [110] Slavutskii 1.Sh. An estimator for the regulator of an algebraic number field.

 Math Slovaca, 1991, 41:311 314.
- [111] Sprindžuk V. G., Concerning Baker's theorem on linear forms in logarithms. Dokl Akad Nauk BSSR, 1967, 11, 767-769.
- [112] Sprindžuk V. G., Estimates of linear forms with p-adic logarithms of algebraic numbers. Venci Akad Navuk BSSR Scr Fiz-Mat Navuk, 1968, No4, 5-14.
- [113] Stark H. M., A complete determination of the complex quadratic fields with class number one Michigan Math J. 1967.14:1-27.
- [114] Stark H. M., A transcendence theorem for class number problems 1., Ann. Math. 1971.94;153-178; 1.; ibid, 1971.94;174-209.
- [115] Stark H. M. "Some effective cases of the Brauer-Siegel theorem, Invent Math., 1974, 23, 135-152.
- [116] Stewart C. L., Algebraic integers whose conjugates lie near the unit circle. Bull Soc Math France 1978, 105, 169-176.
- [117] van der Poorten A. J. On Baker's inequality for linear Jorms in logarithms.

 Math Proc Cambridge Philos Soc., 1976, 80: 233-248.

- [1]8] van der Poorten A. J., Hermite interpolation and p-adic exponential polynomials. J Austral Math Soc. 1976, 21, 12 = 26.
- [119] van der Poorten A. J. "Linear forms in logarithms in the p-adic case. In "Baker A. Masser D. W. eds., Transcendence Theory; Advances and Applications. London: Academic Press. 1977, 29-57.
- [126] van der Poorten A. J. Louton J. H. Computing the effective computable bound in Baker's inequality of linear forms in logarithms. Bull Austral Math Soc. 1976-15:33-57.
- [121] van der Poorten A. J. Loxton J. H. Multiplicative relations in number fields.

 Bull Austral Math Scc. 1977, 16:83-98.
- [122] van der Put M., The product theorem, In: Diophantine Approximation and Abelian Varieties, Soesterberg, 1992; Lecture Notes in Math 1566, Berlin: Springer-Verlag, 1993; 77-82.
- [123] Vojta P. A relinement of Schmidt's subspace theorem, Amer J Math. 1989. 111:489-518.
- [124] Vojta P. Applications of arithmetic algebraic geometry to diophantme approximations, In: Arithmetic Algebraic Geometry, Trento, 1991, Lecture Notes in Math 1853. Berlin: Springer-Verlag, 1993; 164-208.
- [125] Vojta P. "Siegel's theorem in the compact case. And of Math (2), 1991, 133, 509 —548.
- [126] Vontier P. M., An effective lower bound for the beight of algebraic numbers.

 Acta Arith. 1996, 74:81 -95.
- [127] Wagner C., Class number 5.6 and 7. Math Comp. 1995, 55, 785 866.
- [128] Waldschmidt M. A lower bound for linear forms in logarithms. Acta Arith. 1980.37,257-283.
- [129] Waldschmidt M., Lineor Independence of Logarithms of Algebraic Numbers, Maracience Lecture Notes, Madres, 1992.
- [130] Waldschmidt M., On the difference between two products of powers of algebraic numbers, In, Analytic Number Theory and Related Topics, Tokyo, 1991, River Edge, NJ, World Sci Pub, 1995, 127-138.
- [131] Waldschmidt M. Minorations de combinaisons linéaires de logarithmes de nombres algébriques Canada J Math 1993, 45:176-224.
- [132] Wüstholz G., A new approach to Baker's theorem on linear forms in logarithms I. In. Diophantine Approximations and Transcendence Theory. Sem Bonn, 1986. Locature Notes in Math 1290. Berlin, Springer-Verlag, 1987, 189—202; I., ibid. 203 211; II.; In. Baker A. ed., New Advances in Transcendence Theory. Combridge: Cambridge Univ Press, 1988, 399—110.

- [133] Yu K-R. Linear forms in logarithms in the p-adic case, in Baker A ed. New Advances in Transcendence Theory, Cambridge: Cambridge Univ Press, 1988; 411-434.
- [134] Yu K-R. Linear forms in p-sdic logarithms 1. Acta Arith, 1989, 53:107-186; 1. Compositio Math, 1990, 74:15-113; Erratum; ibid, 1990, 76:307; 1. ibid, 1994, 91:241-276.
- [135] Zimmert R. Ideale bleiner Norm in Idealblassen und eine Regulatorabachätzung Invent Math 1981 62, 367 380.

第二章 Thue 方程、Thue-Mahler 方程

设 f(X,Y)是二元 $n(n \ge 3)$ 次原型 k 是非零整数 ℓ 本章主要讨论方程

$$f(x,y) = k, x, y \in \mathbb{Z}$$

及其推广形式,这是一类基本而又重要的多项式方程,有关它的结果在其它类型丢番图方程的求解中有着广泛的应用。

§ 2.1 Thue 方程

设 n 是大于 2 的正整数 $f(X,Y) = a_0 X' + a_1 X''^{-1}Y + \cdots + a_n Y'$ 是二元 n 次原型 ; 又设 k 是非零整数 , $\omega(k)$ 表示 |k| 的不同素因数的个数 n 本节将讨论方程

$$f(x,y) = k, x, y \in \mathbb{Z}, \gcd(x,y) = 1.$$
 (2.1.1)

设 a1, a2, …, an 是代数方程

$$f(z,1) = 0 (2.1.2)$$

的全部根 · 已知它们都是 π 次代数数 · 如果(x,y)是方程(2.1.1)的一组适合 $y\neq 0$ 的解,则从(2.1.1)可得

$$a_0 \prod_{i=1}^n \left(\frac{x}{y} - a_i \right) = \frac{k}{y^n}. \tag{2.1.3}$$

从(2.1.3)可知,当|y|>1时,必有

$$\min_{r=1,2,\cdots,n} \left| \frac{x}{y} - a_r \right| < \frac{C_1(f,k)}{|y|^n}. \tag{2.1.4}$$

1909 年,Thue [137]证明了: 当 θ 是 n 次代数数时,对于任何正数 δ ,不等式

$$\left|\frac{x}{y}-\theta\right|<\frac{1}{y^{a/2+1+\delta}},x,y\in\mathbb{Z},\gcd(x,y)=1,y>0$$

(2.1.5)

仅有有限多组解(x,y). 因此,从(2.1.4),(2.1.5)可知方程(2.1.1)仅有有限多组解(x,y). 此后,方程(2.1.1)称为 Thue 方程. 本节将介绍有关此类方程的解数和解的上界的一些结果和问题。

设 $N_f(k)$ 是方程(2.1.1)的解(x,y)的个数、根据相似型的定义可知:当 $f(X,Y) \sim g(X,Y)$ 时,必有 $N_f(k) = N_g(k)$. 同时,从以上的分析可知 $\cdot N_f(k)$ 与形如(2.1.5)的不等式的解数有关、1955年,Davenport 和 Roth^[30]首先根据这一思路给出了 $N_f(k)$ 的可有效计算的上界,他们证明了:

$$N_f(k) < (4H_f)^{2\sigma^2} |k|^2 + e^{443\sigma^2}$$
 (2.1.6)

196] 年, Lewis 和 Mahler [84] 将上述结果改进为

$$N_f(k) < C_2(nH_f)^{C_1} + (C_1n)^{\omega(k)+1}.$$
 (2.1.7)

$$N_f(k) \leqslant n^{2a^2} (\delta n^2)^{R_f(k)}.$$
 (2.1.8)

此后,Dem'janenko^[38]和 Fujimori^[37]运用同类方法,分别对 n=3 以及 n>3 的情况改进了上界(2.1.8).

显然,上界(2.1.6),(2.1.7)和(2.1.8)都与f(X,Y)的系数以及[k]的大小有关、设 s_f 是f(X,Y)的系数 a_0,a_1,\cdots,a_n 中非零数的个数.Siegel^[114,125]先后对解数 $N_f(k)$ 提出了下列猜想:

猜想 2.1.1 $N_f(k) < C_t(n_1k)$.

猜想 2.1.2 $N_f(k) < C_e(s_f,k)$.

猜想 2.1.3 $N_f(k) < C_f(s_f)$.

1984年, Evertse^[45]运用丢番图逼近方法解决了猜想 2-1.1. 他证明了。

$$N_f(k) \leqslant 7^{n^3(2\pi(k)+2)}.$$
 (2.1.9)

1987年, Bornshieri 和 Schmidt[13]对上界(2.1.9)作了本质上的改。60。

进,他们证明了:

$$N_{I}(k) \leqslant (C_{0}n)^{a(k)+1};$$
 (2.1.10)

特别是当 n 充分大时, $N_f(1)$ \leq 215n. 在一般情况下,Tijdeman [136] 具体算出(2.1.10)中的常数 C_6 适合 $C_6 \leq$ 106. 由于当 f(X,Y) = $X'+(X-Y)(2X-Y)\cdots(nX-Y)$ 且 k=1 时,方程(2.1.1)至少有 n 组解(x,y) = $\{1,1\}$, $\{1,2\}$, \cdots , $\{1,n\}$, 所以上界(2.1.10)在 k=1 时已经臻于至善了。在这方面,Bombieri [17],Brindza [20],Brindza,van der Poorten 和 Waldschmidt [22],Evertse 和 Györy [54],Stewart [123],Langmann [72] 分别对各种情况给出了常数 C_6 的上界,

1988年, Mueller 和 Schmidt^[102]运用丢番图逼近方法解决了猜想 2.1.2. 他们证明了:

$$N_f(k) < C_g(n)s_f^2 |k|^{2/n}$$
 (2.1.11)

关于猜想 2.1.3、根据 Siegel 本人在文献[121]中的结果可知,该猜想在 $s_f = 2$ 且 $H_f > C_{13}(n,k)$ 时成立.1987年, Mueller 和 Schmidt ${}^{\pm 011}$ 证明了:当 $s_f = 3$ 且 n < 9 时该猜想成立.在一般情况下,情想 2.1.3 仍是一个远未解决的问题.

设 v_r(k)是同余式

$$f(z,1) \equiv 0 \pmod{|k|}, 1 \le z \le |k|$$
 (2.1.12)

的解数. 运用初等方法,通过讨论解数 $N_f(k)$ 与 $v_f(k)$ 之间的联系,也可得到形如(2.1.10)的上界. 在这方面,Evertse^[12]证明了: 当 $n \ge 6$ 且 $s_f = 2$ 时, $N_f(k) \le v_f(k) + 1$. 在一般的情况下,Mahler^[51]证明了: 当 $|k| > (450n^1H^2)^{n/(n-2)}$ 时, $N_f(k) \le 32nv_f(k)$. 最近,乐茂华^[80]进一步证明了: 当 $|k| \ge 10^{16}$ 时, $N_f(k) \le 6nv_f(k)$. 由于当 $\gcd(k,\Delta_f)=1$ 时,同余式(2.1.12)的解数 $v_f(k)$ 满足 $v_f(k)$ $\le n^{n''(k)}$. 因此从文献[51]中的结果可知: 当 $|k| \ge 10^{16}$ 时,如果 $\gcd(k,\Delta_f)=1$,则必有 $N_f(k) \le 6n^{n'(k)+1}$.

由于上述有关方程(2.1.1)解数有限性的证明主要依靠丢番图逼近方法,所以由此并不能得到该方程解的可有效计算的上界,1968年,Baker^[4.1]运用他在代数数对数线性型的下界估计方

面的开创性工作,成功地解决了这个问题,他证明了:

定理 2.1.1 方程(2.1.1)仅有有限多组解(x,y),而且这些解都满足 $\max(|x|,|y|) < C_{10}(n,H_I,k)$.

证 设 a_1, a_2, \dots, a_n 是代数方程(2.1.2)的全部根, $a = a_1, K = \mathfrak{Q}(a)$. 此时 K 是 n 次代数数域,对于任何的 $\theta \in K$, 设 $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n)}$ 是 θ 的全体共轭数.

设(x,y)是方程(2,1,1)的一组解. 不妨假定 $xy\neq 0$. 设

$$\beta_i = x - a_i y, i = 1, 2, \dots, n.$$
 (2.1.13)

从(2.1.13)可得

$$|a_0\beta_1\beta_2\cdots\beta_n| = |k|. \qquad (2.1.14)$$

因为 $n \ge 3$,故从(2.1.13)可知:存在适合 $1 \le s < t \le n$ 的整数 s,t 可使

$$x = \frac{\alpha_i \beta_i - \alpha_i \beta_i}{\alpha_i - \alpha_i}, y = \frac{\beta_i - \beta_i}{\alpha_i - \alpha_i}$$
 (2.1.15)

从(2.1.15)可得

$$\max(|x|, |y|) < C_{11}(H_f)\max(|\beta_f|, |\beta_f|)$$
 (2.1.16)

设 K 是 r_1+2r_2 型域, $r=r_1+r_2-1$. 从(1.2.19)可知 K 中存在满足

$$|\log |\eta_i^{(i)}|| < C_{12}(n, R_K),$$

 $j = 1, 2, \dots, n, l = 1, 2, \dots, r$ (2.1.17)

的基本单位组 $\{\eta_1,\eta_2,\dots,\eta_r\}$,其中 R_K 是 K 的调整子。同时,从 (1,2,22), (2,1,14)可知,存在适当的整数 $s_n(i=1,2,\dots,n;l=1,2,\dots,r)$ 可使

$$|\gamma_i| = |\beta_i \eta_1^{i_1} \eta_2^{i_2} \cdots \eta_r^{i_r}|, i = 1, 2, \cdots, n$$
 (2.1.18)

满足

$$|\log |Y_i^{(j)}|| < C_{13}(n, R_K, k), i, j = 1, 2, \dots, n$$
 (2.1.19)

设 $S_i = \max_{l=1,2,\cdots,r} |s_{il}| (i=1,2,\cdots,n)$. 又设 I 是适合 $1 \leq I \leq n$ 以及 $S_I = \max(S_1, S_2, \cdots, S_n)$ 的整数,从(2.1.18)可得

$$\log \left| \frac{\gamma_{I}^{(j)}}{\beta_{I}^{(j)}} \right| = s_{I1} \log |n_{1}^{(j)}| + s_{I2} \log |n_{2}^{(j)}| + \cdots + s_{Ir} \log |n_{r}^{(j)}|, j = 1, 2, \dots, n. \quad (2.1.20)$$

由于从(1.2.17)可知

$$R_K < C_{14}(n, H_f)$$
, (2.1.21)

所以根据 Cramer 法则,从(2,1,20),(2,1,21)可得

$$S_I < C_{15}(n, H_I) \left| \log \left| \frac{\gamma_I^{(J)}}{\beta_I^{(J)}} \right| \right|, \qquad (2.1.22)$$

其中

$$\left|\log\left|\frac{\gamma_I^{(J)}}{\beta_I^{(J)}}\right|\right| = \max_{j=1,2,\cdots,n} \left|\log\left|\frac{\gamma_I^{(j)}}{\beta_I^{(j)}}\right|\right|, 1 \leqslant J \leqslant n (2.1.23)$$

于是从(2.1.19),(2.1.22)可知:假如 S, 满足

$$S_I > C_{16}(n, H_I) \log \max(3, |k|),$$
 (2.1.24)

则存在适合 $1 \le J' \le n$ 的正整数 J',可使

$$\log |\beta_I^{(I)}| < C_{1I}(n, H_I, k) S_I \qquad (2.1.25)$$

此时,从(2.1.14),(2.1.25)可知:存在适合 $1 \le I' \le n$ 以及 $I' \ne I$ 的正整数 I',可使

$$\log \left| \frac{\beta_I^{(J')}}{\beta_I^{(J')}} \right| < + C_{16}(n, H_f, k) S_I. \tag{2.1.26}$$

由于 $n \ge 3$ 且 a_1, a_2, \dots, a_n 互不相同,故从(2.1.13)可知 β_1 , β_2, \dots, β_n 中至少有三个不同的数. 不妨假定 $\beta_1 = \beta_1, \beta_2 = \beta_2, \beta_3 \ne \beta_1$ 或 β_2 . 从(2.1.13)可得

$$(a_2^{(J')} - a_3^{(J')})\beta_1^{(J')} + (a_3^{(J')} - a_1^{(J')})\beta_2^{(J')} + (a_1^{(J')} - a_2^{(J')})\beta_3^{(J')} = 0.$$
(2.1.27)

为了简化记号,对于任何的 $\theta \in K$,以下一律用 θ 表示 $\theta^{(r)}$. 从 (2.1.18), (2.1.27)可得

$$\left| \left(\frac{\alpha_1 - \alpha_2}{\alpha_1 - \alpha_3} \right) \eta_1^{\mu_1} \eta_2^{\mu_2} \cdots \eta_r^{\mu_r} \frac{\gamma_1}{\gamma_2} - 1 \right| = \left| \frac{\alpha_2 - \alpha_3}{\alpha_1 - \alpha_3} \right| \left| \frac{\beta_1}{\beta_2} \right|,$$
(2. 1. 28)

其中 $u_1 = s_{2l} - s_{3l} (l = 1, 2, \dots, r)$. 设

$$\Lambda = \left| \left(\frac{a_1 - a_2}{a_1 - a_3} \right) \eta_1^{\mu_1} \eta_2^{\mu_2} \cdots \eta_r^{\mu_r} \frac{\gamma_3}{\gamma_2} - 1 \right|.$$

根据(2.1.26),从(2.1.28)可得

$$0 < \Lambda < e^{-c_{19}(s_i, H_f, \Lambda)S_f}. \tag{2.1.29}$$

同时,根据(1.8.5),从(2.1.17),(2.1.19)可知

$$\Lambda > (\max(3,|k|))^{-C_{20}(a,H_f)}e^{-\frac{1}{2}C_{10}(a,H_f,k)S_1}. \quad (2.1.30)$$

结合(2.1.29),(2.1.30)立得

$$S_{I} < \frac{2C_{20}(n, H_{I})}{C_{14}(n, H_{I}, k)} \log \max(3, |k|)$$
 (2.1.31)

这一与(2.1.24)矛盾的结果,由此可知

$$S_I < C_{16}(n, H_I) \log \max(3, |k|).$$
 (2.1.32)

于是从(2.1.16),(2.1.18),(2.1.19),(2.1.21),(2.1.32)可得 $\max(|x|,|y|) < C_{10}(n,H_{I},k)$. 定理证完:

关于定理 2.1.1 中的常数 $C_{16}(n,H_f,k)$, 文献[4:1]具体算出

$$C_{10}(n, H_f, k) < \exp((nH_f)^{(10n)^5} + (\log|k|)^{2n+1}).$$
(2.1.33)

此后, Baker, Fel'dman, Sprindžuk, Stark, Kotov, Gyöty 和 Papp 等人相继改进了上界(2.1.33). 目前已知的最好结果是由 Bugeaud 和 Györy^[25]得到的. 他们证明了:当 a 是代数方程(2.1.2)的根, $K=\mathbb{Q}(a)$ 时, 方程(2.1.1)的解(x,y)都满足

$$\max(|x|,|y|) < \exp(3^{r_K+27}(r_K+1)^{7r_K+19}n^{2n+6r_K+14}R_K + (\log\max(1,R_K))(R_K + \log(BH_f)))$$

以及

 $\max(|x|,|y|) < \exp(3^{2(n+1)}n^{18(n+1)}H_f^{2n-2}(\log H_f)^{2n-1}(\log B)),$ 其中 $B = \max(e,|k|)$. 另外,Brindza,Evertse 和 Györy^[2]还给出了方程(2.1.1)解的仅与 n, Δ_f ,k 有关的上界.

根据定理 2.1.1,可用以下方法来求解具体的 Thue 方程.设 (x,y)是方程 (2.1.1)的一组适合 $xy\neq 0$ 的解, a_1,a_2,\cdots,a_n 是代数 方程 (2.1.2)的全部根.从(2.1.4)可知必有适当的 $a_i(1 \leq j \leq n)$

$$\left|\frac{x}{y}-a_{t}\right|<\frac{C_{21}}{|y|^{\alpha}} \tag{2.1.34}$$

由于当 a_1 是虚数时 $|x/y-a_j| \ge |\operatorname{Im}(a_j)| > C_{22}$, 其中 $\operatorname{Im}(a_j)$ 是 a_j 的虚部, 故从 (2.1.34) 可得 $|y| \le C_{22}$. 因此, 当 $|y| > C_{22}$ 时, 适合 (2.1.34)的 a_1 必为实数,而且 x/y 是 a_j 的渐近分数。根据上述分析,任何具体的 Thue 方程的求解,都可分以下四个步骤来完成:

- (i) 通过直接的计算找出所有适合 $|y| \leq C_{22}$ 的解:
- (ii) 求出代数方程(2. 1.2)的全部实根及其简单连分数展开式,根据(2. 1.34)找出所有适合 $C_{22} < |y| \le C_{22}$ 的解;
- (iii) 运用丢番图逼近的有效算法(例如:Lenstra,Lenstra 和 Lovás $z^{[s_2]}$ 提出的 L^3 -算法),证明该方程没有适合 $C_{23} < |y| \le C_{24}$ 的解;
 - (iv) 根据定理 $2 \cdot I \cdot I$,证明该方程没有适合 $|y| > C_n$ 的解。

1989年,Tzanakis 和 de Weger[347]具体给出了上述步骤中各个常数的估计方法。由于这些常数的计算需要代数方程(2.1.2)的根以及相应代数数域中基本单位组的精确数值,所以上述方法比较适用于解决次数较低的 Thue 方程。对此,de Weger[22]给出了不少计算实例。最近,Bilu 和 Hanrot[15]改进了这些算法,使之适用于某些高次 Thue 方程。

设 a 是代数方程(2.1.2)的根, $K=\mathbb{Q}(a)$,从(2.1.18)可知,在一般的情况下,求解方程(2.1.1)的复杂程度与 r_K 的大小有关。由于当 n=3 或 4 时, r_K 适合 $1 \le r_K \le 3$,所以此时该方程比较容易解决,早在六十年代以前,人们已经运用初等数论方法和代数数论方法得到了不少结果,有关这方面的早期工作可参考文献[98]的第 24,25 章.

关于三次和四次 Thue 方程的研究,主要集中在 k=1 这一情况,此时方程(2,1,1)可写成

$$f(x,y) = 1, x, y \in \mathbb{Z}$$
 (2.1.35)

当 a=3 且 $\Delta_{\kappa} < 0$ 时, 已知 $r_{\kappa} = 1$. 对此,结合 Delaunay^[35]和

Nagell[106]的结果可知:

$$N_{J}(1) = \begin{cases} 5, \, \exists \, \Delta_{K} = -23 \, \text{ft}, \\ 4, \, \exists \, \Delta_{K} = -31 \, \vec{\text{od}} - 44 \, \vec{\text{ft}}, \end{cases}$$
 (2.1.36)

除此以外必有 $N_f(1) \le 3$. 如果二元三次原型 $f(X,Y) = a_0 X^3 + a_1 X^2 Y + a_2 X Y^3 + a_3 Y^3$ 适合 $a_0 = 1$ 以及 $a_3 = -1$,则称它是可逆的 . 此时方程(2.1.35) 显然有解(x,y)=(1,0)和(0,-1),它们称为该方程的平凡解 1993 年,Thomas [136] 运用 Gel' fond-Baker 方法证明了,如果二元三次原型 f(X,Y) 是可逆的,而且 $\Delta_K < 0$, $a_1 a_2 \neq 0$, $4a_2 - a_1^2 > 0$,则当

 $a_2 \ge \min(4.2 \cdot 10^4 |a_1|^{2.52}, 3.6 \cdot 10^{41} (4a_2 - a_1^2)^{1.1582})$ 时方程(2.1.35)仅有平凡解。

当 n=3 且 $\Delta_K>0$ 时,因为 $r_K=2$,所以此时方程(2.1.35)的求解比较困难。对此,Siegel^[120]证明了:当 Δ_K 充分大时, $N_f(1) \leq 18$. Evertse^[11]在一般情况下证明了: $N_f(1) \leq 12$ 。由于根据Baulin^[5],Ljunggren^[57],Avanesov^[1,3]等人的结果可知

$$N_f(1) = \begin{cases} 9. \pm \Delta_K = 49 \text{ BH,} \\ 6. \pm \Delta_K = 31.148.257 \text{ gš 361 BH;} \end{cases} (2.1.37)$$

而且尚未发现可使 $N_f(1) > 9$ 以及 $N_f(1) = 7$ 或 8 的 二元三次原型 f(X,Y),所以 Petho^[107]提出了以下猜想:

猜想 2.1.4 当 n=3 且 $\Delta_i > 0$ 时,必有 $N_i(1) \leq 9$ 以及 $N_i(1) \neq 7$ 或 8;特别是除了(2.1.37)中的情况以外,

$$N_f(1) \leq \begin{cases} 5, \, \text{当 } f(X,Y) \text{ 是可遂的,} \\ 3, \, \text{否则,} \end{cases}$$

类似于 $A_K < 0$ 的情况,运用 Gel'(ond-Baker 方法可以对某些适合 $A_K > 0$ 的二元三次可逆型 f(X,Y) 找出方程(2.1.35)的全部解,设 a 是大于 3 的正整数,1990年,Thomas [134]证明了,当 $f(X,Y) = X^3 - (a-1)X^2Y - (a+2)XY^2 - Y^3$ 时,如果 $a \ge 1.365 \cdot 10^7$,则方程(2.1.35)仅有解(x,y)=(1.0),(0,-1)和(-1.1),同时,Thomas 还猜测上述结果对 $a < 1.365 \cdot 10^7$ 的情况也

成立。这一猜想已在三年后被 Mignotte^[32]证实。由此可知。对于此类可逆型 f(X,Y),猜想 2.1.4 是正确的。另外, Mignotte 和 Tzenakis^[32]还用同样的方法。对于 $f(X,Y) = X^3 - aX^2Y - (a+1) XY^2 - Y^3$ 的情况基本上解决了猜想 2.1.4 他们证明了:如果 $a \ge 3.67 \cdot 10^{32}$,则此时方程(2.1.35)仅有解($x \cdot y$)=(1,6),(0,—1),(1,—1),(—a—1,—1)和(1,—a)。

$$f(X,Y) = X(X - g_1(a)Y)(X - g_2(a)Y) \cdots (X - g_{s-1}(a)Y) + (\lambda Y)^n,$$
 (2.1.38)

其中 a 是正整数, $\lambda \in \{-1, 1\}$. 对此,Thomas [136] 证明了,当 n=3 时,如果 $a > C_{2i}$,则方程(2.1.35)仅有解(x , y) = (1, 0),(0, λ),($\lambda g_1(a)$, λ)和($\lambda g_2(a)$, λ). 同时,Thomas 还提出了以下猜想:

猜想 2.1.5 当 n > 3 且 $a > C_n$ 时,如果 f(X,Y) 适合 (2.1.38),则方程(2.1.35)仅有解

此外,Gaal^[56],Gaal,Pethö 和 Pohst^[59],60],Gaal 和 Schulte^[61],Lettl 和 Pethö^[63], Lippok^[63], Mignotte, Pethō 和 Roth^[64], Pethö^[164],Pethö 和 Schulenberg^[120],Smart^[121],Steiner^[124],Steiner^[124],Steiner^[124], Stroeker 和 Tanakis^[130], Tanakis^[140],141],de Weger^[11-24],陈建华和 Voutier^[27]等人分别讨论了各类具体的三次,四次和六次 Thue 方程,其中大部分结果的证明都用到了 Gel'[ond-Baker 方法。

当 s_i 远小于 n 时,方程(2.1.1)称为 s_i 一缺项 Thue 方程,简称 s_i 项方程、设 a,b 是适合 a<b 的正整数,二项方程

是一类讨论较多的缺项 Thue 方程,早在 20 年代,Delone^[37]和 Nagell^[103]分别独立地运用代数数论方法证明了;当 n=3 时,方程 (2.1.39)至多有 L 组解(x,y),而且该解是可以有效计算的,此后,Ljunggren^[80]对于 n=4 的情况证明了同样的结果,1954 年,Domar^[39]证明了;当 $n \ge 5$ 时,方程(2.1.39)至多有 2 组解(x,y);特别是当 a=1 时,除了 b=2 以及 b=2 士1 且 n=5 或 6 以外,该方程至多有 L 组解(x,y),上述结果中有关 a=1 时的例外情况目前已经解决,根据 Darmon 和 Merel^[28]对于 Wiles^[247]的著名工作的推广可知;当 a=1 且 b=2 时,方程(2.1.39)仅有解(x,y)=(1,1),另外,从文献[70]可知;当 a=1,b=2 士1 且 n=5 或 6 时,方程(2.1.39)仅有解(x,y)=(1,5),另外,从文献[70]可知;当 a=1,b=2 士1 且 n=5 或 6 时,方程(2.1.39)仅有解(x,y)=(2.1),综上所述可知;当 a=1 时,该方程至多有1组解(x,y).

最近、Mignotte^[43],Bennett 和 de Weger^[13]等人在方程 (2.1.39)的研究中取得了重要进展 · Mignotte^[93]证明了:当n > 600时,如果 b = a + 1,则方程 (2.1.39)仅有解 (x, y) = (1, 1) . Bennett 和 de Weger^[13]证明了:除了 b = a + 1,2 $\leq a \leq \min(0.3n, 83)$ 且 $17 \leq n \leq 347$ 这类情况以外,方程 (2.1.39)至多有 1 组解 (x, y) . 上述结果的证明综合了丢番图逼近方法和 Gel'fond-Baker 方法 .

设 D 为非 n 次方幂正整数, $K=\mathbb{Q}(D^{1/n})$. 对于给定的 D,设集 合 $D(a,b)=\{(a,b)|a,b\in\mathbb{N},a< b,\gcd(a,b)=1,K=\mathbb{Q}((b/a)^{1/n})\}$. 显然,对于 D(a,b)中不同的数组(a,b),方程(2.1.39)的解都 与同一个代数数域 K 的算术性质有关。因此,Ljunggren [80.88]证明了:当 n=3 或 4 时,除了 n=3 且 D=2 或 20 以外,D(a,b) 中至多有 1 组 (a,b) 可使方程 (2.1.39) 有解 . af Ekenstam [1] 证明了:当 $n\geqslant 5$ 时,D(a,b) 中至多有 2 组不同的(a,b) 可使该方程有解。根据上述结果, $Hyyro^{(a)}$ 讨论了由此产生的指数型方程

$$|x^n - D^m y^n| = 1, x, y \in \mathbb{N}, m \in \mathbb{Z}, 0 \leqslant m < n.$$

他证明了:当n≥5 且 D≥2 时,方程(2.1.40)至多有1组解(x,y,m)适合

$$x \geqslant \begin{cases} 3, \, \exists \, n = 5 \text{ 햃 } 6 \text{ 时}, \\ 2, \, \sharp \text{ 它情况}. \end{cases}$$

最近。Langmann^[25]还讨论了类似的方程

$$|x^n - D^n y^n| = p, x, y, m \in \mathbb{N}, p \mid y,$$
 (2.1.41)

其中 p 是给定的素数,他证明了:当 n 是大于 3 的奇素数时,除了有限 3 个素数 p 以外,方程(2.1.41)至 3 有 n + 1 组解(x,y,m),在一般情况下,我们有以下猜想:

猜想 2.1.6 设 a,b,k,n 是给定的正整数 . 当 $n \ge 3$ 时,方程 $|a'x'-b'y'|=k,x,y\in \mathbb{N}, \gcd(x,y)=1$.

$$r,s \in \mathbb{Z}, 0 \leqslant r,s \leqslant n \tag{2.1.42}$$

至多有 noth组解(x,y,r,s).

§ 2.2 Thue 不等式

设 n 是大于 2 的正整数, $f(X,Y) = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n$ 是二元 n 次原型,对于正整数 k_1 不等式

$$|f(x,y)| \leqslant k, x, y \in \mathbb{C}$$
 (2.2.1)

称为 Thue 不等式,由于 Thue 不等式等价于有限多个 Thue 方程,所以它必定仅有有限多组解(x,y),并且根据定理 2.1.1 可知这些解都是可以有效计算的.

本节设 $N_f(k)$ 是不等式(2.2.1)的解(x,y)的个数 . 1929 年, Siegel^[126]曾经提出:

猜想 2-2-1 如果 f(X,Y)的系数中恰有 s_i 个非零数,则必有 $N_i(k) < C_1(s_i) k^{2i}$.

因为当整数 x,y 适合

$$\max(|x|,|y|) \le \left(\frac{k}{|a_0| + |a_1| + \dots + |a_n|}\right)^{1/n}$$
(2.2.2)

时,数组(x,y)都是不等式(2,2,1)的解,故从(2,2,2)可得 $N_f(k)$ $>C_2(H_f)k^{2/2}$ 。由此可知猜想 2,2,2 提出的上界中" $k^{2/n}$ "项是无法改进的。

设 A/ 是区域

$$|f(X,Y)| \leqslant 1, X, Y \in \mathbb{R} \tag{2.2.3}$$

的面积 .1934 年, $Mahler^{[69,1]}$ 运用丢番图逼近方法给出了解数 N_{ℓ} (A)的非实效的上界,他证明了。

$$|N_f(k) - A_f k^{2/\gamma}| < C_1^+(f) k^{1/(n-1)}$$
 (2. 2. 4)

从(2.2.4)可得

$$N_{c}(k) < C_{c}^{*}(f)k^{2/n} \tag{2.2.5}$$

最近, Thunder [138] 对于 n=3 的情况给出了形如(2.2.4)的可有效计算的上界. 他证明了: 当 n=3 时。

$$|N_f(k) - A_f k^{2/3}| < C_5 k^{29/44} (3 + \log k) \qquad (2.2.6)$$

从(2, 2, 4),(2, 2, 6)可知解数 $N_f(k)$ 与区域(2, 2, 3)的面积 A_f 有着密切的联系。对此,Bean^{[6] 和}证明了;当 $n \ge 3$ 时,对于任何二元 n 次原型 f(X,Y)都有

$$A_f \leqslant B\left(\frac{1}{3}, \frac{1}{3}\right) < 15.8998,$$
 (2.2.7)

其中

$$B(u,v) = \int_{0}^{L} z^{n-1} (1-z)^{n-1} dz$$

是 Euler Γ -函数,另外,Bean^[s-11]还深人研究了有关 A_i 的其它性质。这些结果对于讨论 Thue 不等式的解数有着重要的意义、

1987年,Schmidt^[113]在一般情况下给出了解数 $N_r(k)$ 的可有效计算的上界,他证明了:

$$N_f(k) < C_4 \sqrt{ns_f} k^{t/n} (1 + (\log k)^{1/n})$$
 (2.2.8)

同时,Schmidt 认为上界(2.2.8)中的"1+($\log k$)"项是可以去掉的。这一问题已在最近被 Thunder^[12s]解决。同年,Mueller^[89]。 Mueller 和 Schmidt^[11]分别对 $s_j=2$ 以及 $s_j=3$ 的情况证实了猜 想 2. 2. 1. 1988 年, Mueller 和 Schmidt [142] 将上界(2. 2. 8) 改进为

$$N_{I}(k) < C_{5}s_{I}^{2}k^{2/n}(1 + (\log k)^{1/n}).$$
 (2.2.9)

显然,上述结果与 Siegel 的猜想 2.2.1 仅差一个因子" $1+(\log k)^{1/n}$ ".

不等式(2, 2, 1)适合 gcd(x,y)=1 的解(x,y)称为本原的。设 $N'_{I}(k)$ 是(2, 2, 1)的本原解(x,y)的个数。

1937年, Siegel^[121]运用丢番图逼近方法证明了: 当 s₁=2 时, 如果

$$|a_0a_1|^{a/2-1} \ge 4k^{2n-2} (n \prod_{p|n} p^{1/(n-1)})^n,$$
 (2. 2. 10)

其中"门"表示"对 n 的不同素因数 p 求积",则不等式(2.2.1)至多有 1 组本原正整数解(x,y)。此后,Evertse^[42]运用同样的方法证明了,当 s_i =2 时,该不等式至多有 1 组本原正整数解(x,y)满足

$$\max(|a_n x^n|, |a_n y^n|) > C_{\beta}(n) k^{C_{\gamma}(n)},$$
 (2.2.11)

其中

$$C_6(n) \leqslant \begin{cases} 1152.2, & \exists n = 3 \text{ 时,} \\ 98.53, & \exists n = 4 \text{ H,} \\ n^2, & \exists n \geqslant 5 \text{ H.} \end{cases}$$
 (2. 2. 12)

Mueller^[v9]证明了:当 $s_i=2$ 且 $a_0>a_n>0$ 时,对于任何适合 $0<\delta<1$ 的正数 δ ,不等式(2.2.1)满足

$$x \ge \left(\frac{2k}{a_n^{1-2}\sigma}\right)^{1/(\alpha/2)-11} \tag{2.2.13}$$

的本原正整数解(x,y)的个数不超过 $6+C_7(\delta,a_0,k)/\log(n/2)$,其中 $\sigma=(a_0/a_0)^{1/2}$,

$$C_i(\delta, a_0, k) = 29 + \log \delta^{-1} + \log \left(1 + \frac{\log(2k)}{\log a_0}\right);$$
(2. 2. 14)

特別是当 $n \ge \max(10^{\epsilon}, 3\log k, \log a_{\delta})$ 时,该不等式至多有 5 组本原正整数解(x,y). 在一般情况下,Mueller $\mathbb{R}^{(\alpha)}$ 证明了:当 $n \ge 3s_{\delta}$ 时,不等式(2,2,1)满足

$$\min(|x|,|y|) \ge ((e^k s_f)^n (800(\log n)^3)^{2j} k)^{1/(n-3i_f)}$$
(2. 2. 15)

的本原解的个数不超过 $C_{\epsilon}(s_f + (s_f \log s_f) / \log((n/s_f) - 1))$. 由于不等式 (2, 2, 1)的本原解与代数数的有理逼近有着直接的联系。因此 Schmidt (116) 曾经提出:

猜想 2. 2. 2 $N'_f(k) < C_g(s_f)$.

这是一个迄今尚未解决的问题,从文献[101]中的结果可知: 当 $n \ge 9$, $s_f \le 3$ 且 $k \le H_f^{1-5/2}$ 时,该猜想是成立的.

另外, Mueller 和 Schmidt[16.]还讨论了更一般的不等式
$$|f(x,y)| \le k |\max(x,y)|^2, x, y \in \mathbb{Z}, \gcd(x,y) = 1,$$
 (2. 2. 16)

其中 γ 是适合 $0 < \gamma < n-2$ 的正数 · 他们证明了:当 $2(s_f-1) < n-\gamma$ 时,该不等式至多有 $C_{10}(n,\gamma)k'$ 组解(x,y),其中 $t=\max(2/(n-\gamma),1/(n-\gamma-2(s_f-1)))$.

§ 2.3 广义 Thue 方程与 Thue 不等式

设m,n 是适合 $n>m\geq 2$ 的正整数,K 是n 次代数数域, $f(X_1,X_2,\dots,X_n)$ "是 K 上的 m 元n 次模型、对于非零整数 k,方程

$$f(x_1, x_2, \dots, x_n) = k, x_1, x_2, \dots, x_n \in \mathbb{Z}, \gcd(x_1, x_2, \dots, x_n) = 1$$
(2. 3. 1)

是方程(2.1.1)的接广,称为广义 Thue 方程. 半个世纪以前, Siegel, Chabauty, Skolem, Nagell 等人就曾经讨论了它的一些特殊情况,有关这方面的早期工作可参考文献[98]的第 23 章.

1971年,Schmidt^[111]运用他在联立丢番图逼近方面的结果,给出了方程(2.3.1)的解数有限的充要条件。他证明了:如果方程(2.3.1)有解,则当且仅当 $f(X_1,X_2,\cdots,X_n)$ 在K上非退化时,它仅有有限多组解(x_1,x_2,\cdots,x_n).因此以下不妨假定 $f(X_1,X_2,\cdots,X_n)$ 是非退化的.对此,Schmidt 运用他提出的子空间理论,讨论了

方程(2.3.1)解数的可有效计算的上界.本节设 $N_r(k)$ 是方程(2.3.1)的解(x_1,x_2,\dots,x_n)的个数.1987年,Schmidt [111]证明了:

$$N_{\ell}(1) \leqslant (2n)^{2^{k \ln n^2}}. (2.3.2)$$

此后,Schmide¹¹¹²又对一般的情况证明了,当太>0时,

$$N_1(k) \leq C_1(m,n)C_2(m,n,k)$$
, (2.3.3)

其中

$$C_{1}(m,n) = \min\left(n^{2^{3m_{n}^{2}}, n^{(2n)^{2^{n-1}n}}}\right), C_{2}(m,n,k)$$

$$= \left(\frac{n}{m-1}\right)^{\frac{n}{m-1}} r_{m-1}(k^{n}), \qquad (2.3.4)$$

这里 $\omega(k)$ 是 k 的不同素因数的个数 $\alpha_{m-1}(k')$ 表示正整数 k' 的不同 m-1 元乘法分拆

$$k^n = k_1 k_2 \cdots k_{m-1}, k_1, k_2, \cdots, k_{m-1} \in \mathbb{N}$$

的个数、另外,Everest^[10]还给出了方程(2.3.1)适合 $\max(|x_1|, |x_2|, \dots, |x_n|) < C_s$ 的解数的渐近公式,最近,Evertse^[41]运用子空间理论的改进形式,将上述结果推广到了 $f(X_1, X_2, \dots, X_n)$ 是一般分解型的情况。

关于方程(2.3.1)解的上界、Schmidt、Schlickewei、Gyóry 等人运用丢番图逼近方法给出了一些非实效性的结果(参见文献 [65])-1978年、Gyóry 和 Papp [46] 首先运用 Gel'fond-Baker 方法给出了可有效计算的上界。目前有关这方面的最好结果是由Bugeaud 和 Györy [25] 得到的。设了 (X_1, X_2, \dots, X_m) 可表成(1.6.9), $K=@(a_1,a_2,\dots,a_m)$. Bugeaud 和 Györy 证明了:当 K 是 r_1+2r_2 型数域且 $[K_1@(a_1,a_2,\dots,a_{m-1}] \ge 3$ 时,方程(2.3.1)适合 $x_m \ne 0$ 的解 (x_1,x_2,\dots,x_m) 都满足

$$\max(|x_1|,|x_2|,\cdots,|x_m|) < |k|^{(n-1)/n} \exp(3^{r_K+2\delta}(r_K+1)^{2r_K+1\delta} n^{\delta n+1} R_K(\log \max(1,R_K)) (R_K + \log(AB))), (2.3.5)$$
其中 $A = \max(e,h(a_1),h(a_2),\cdots,h(a_m)), B = \max(e,|k|).$

另外, Everest 和 Győry^[41], Evertse 和 Győry^[50-52,55], Gaal, Perhő 和 Pohst^[59,46], Győry^[65,64], Langmann^[72-14], Smart^[125],

Voutier **等人还用同样的方法讨论了其它类型的分解型方程与方程组。

对于正整数人不等式

 $|f(x_1,x_2,\cdots,x_n)| \leq k,x_1,x_2,\cdots,x_n \in \mathbb{Z}$ (2.3.6) 称为广义 Thue 不等式。根据 Schmidt [111]关于广义 Thue 方程的结果可知: 当且仅当 $f(X_1,X_2,\cdots,X_n)$ 非退化时,不等式(2.3.6) 必定仅有有限多组解 (x_1,x_2,\cdots,x_n) . 1972 年,Schmidt [112]进一步证明了: 当 $f(X_1,X_2,\cdots,X_n)$ 非退化时,该不等式的解数与区域

 $|f(X_1,X_2,\cdots,X_n)| \leq 1,X_1,X_2,\cdots,X_n \in \mathbb{R}$ (2.3.7) 的体积有关,设 $N_r(k)$ 是不等式(2.3.6)的解(x_1,x_2,\cdots,x_n)的个数, A_r 是区域(2.3.7)的体积,已知 $N_r(k)$ 的大小与 $A_rk^{n/n}$ 相关,最近,Bean 和 Thunder^[12]给出了 A_r 的上界,他们证明了:

$$|\Delta_f^{(n+m)/n!}A_f| < C_4$$
. (2.3.8)

§ 2.4 Thue-Mahler 方程

设 n 是大于 2 的正整数, $f(X,Y) = a_n X^n + a_1 X^{n-1}Y + \cdots + a_n Y^n$ 是二元 n 次原型;又设 k 是非零整数, p_1, p_2, \cdots, p_n 是适合 p_1 $< p_2 < \cdots < p_n$ 的素数 . 1933 年,Mahler^[so, 1]推广了 Thue^[137]提出的丢番图逼近方法,从而证明了;方程

$$f(x,y) = kp_1^{x_1}p_2^{x_2}\cdots p_r^{x_r}, x, y, z_1, z_2, \cdots, z_r \in \mathbb{Z},$$

 $\gcd(x,y) = 1, z_1 \geqslant 0, z_2 \geqslant 0, \cdots, z_r \geqslant 0$ (2.4.1) 仅有有限多组解 (x,y,z_1,z_2,\cdots,z_r) . 因此,方程(2.4.1)称为

Thue-Mahler 方程,它是 Thue 方程的一类指数形式的推广。

设 $N_r(k, p_1, p_2, \dots, p_r)$ 是方程(2, 4, 1)的解($x_1, y_1, z_1, z_2, \dots, z_r$)的个数. 关于它的上界,Mahler[83: []证明了:

 $N_f(k,p_1,p_2,\cdots,p_r) < (C_1^*(f))^{r+\omega(r)+r},$ (2.4.2) 其中 $\omega(k)$ 是 |k| 的 不同 素 因 数 的 个 数 . 1961 年,Lewis 和 Mahler^[34] 最早给出了解数的可有效计算的上界,他们证明了,

$$N_f(k, p_1, p_2, \dots, p_c) < C_1(nH_f)^{C_2 - \sqrt{n}} + (C_2n)^{r-\omega(k)+1}.$$
(2.4.3)

根据 Tijdeman ⁴⁹ 的 计算,(2, 4, 3) 中的绝对常数 C₁, C₂, C₃ 都不超过 100.

1983 年,Evertse^[6] 首先给出了与 f(X,Y)的系数无关的解数上界,他证明了,当 k=1 时,

 $N_f(1,p_1,p_2,\cdots,p_r)\leqslant 7^{15(r_1^2)+15^2}+6\cdot 7^{2(r_2^2)(r-1)}$ 。(2. 4. 4)此后,Bombieri $^{1(r)}$ 对于一般的 k证明了:

$$N_f(k, p_1, p_2, \dots, p_r) \le (4n)^{27(r+\nu(k)+1)}.$$
 (2.4.5)

1991年, Stewart (129)对于充分大的 & 改进了上界(2.4.5), 他证明了:当|&|>C, 时,

$$N_f(k) \le 2(r+1)n^{1-\omega(k)}.$$
 (2.4.6)

显然,以上给出的解数上界都是相当大的.对此,Evertse 和Gyōry^{153,54},指出:除了有限多个二元,次原型的等价类以外,方程(2.4.1)解数的上界是可以大大缩小的.

1970 年,Coates 运用 Gel'fond-Baker 方法证明了;对于互素的整数x,y,如果 $f(x,y)\neq 0$,则正整数|f(x,y)|的最大素因数P(f(x,y))满足

 $P(f(x,y)) > C_5(n,H_f) \log \log \max(3,|x|,|y|)$. (2.4.7) 从(2.4.7)直接可知:方程(2.4.1)的解(x,y,z,,z₂,…,z_r)都满足 $\max(|x|,|y|) < C_6(n,H_f) \exp \exp \max(3,|k|,p_r)$.

(2.4.8)

此后, Kotov, Sprindźuk, Győry 和 Pɛpp 等人分别改进了上界 (2.4.8). 目前这方面的最好结果是由 Bugeaud 和 Győry [25] 得到的. 设α是代数方程(2.1.2)的根, $K=\mathfrak{Q}(a)$. 他们证明了:方程(2.4.1)的解(x,y,z_1,z_2,\cdots,z_r)都满足

$$\max(|x|,|y|,p_1^{\epsilon_1},p_2^{\epsilon_2},\cdots,p_r^{\epsilon_r}) < \exp(3^{n(2r-1)+2r} n^{2n(2r+1)+11}(r+1)^{5n(r+1)+15} p_r^{n(n+1)(n-2)} (\log p_r)^{m+2} R_K h_K (\log \max(e,R_K h_K))^2$$

$$(R_K + rh_K + \log(|k|H_f)))$$
 (2.4.9)

以及

$$\max(|x|,|y|,p_1^{s_1},p_2^{s_2},\cdots,p_r^{s_r}) < \exp$$

$$(2^{5n}3^{n(2r+1)-27}n^{3n+2n(7r+13)+13}(r+1)^{5n(r+1)+15}p_r^{n(n-1)(n-2)}$$

 $(\log p_i)^{nr+2}H_i^{2n-2}(\log \max(e_iH_i))^{2n-1}\log|k|)$, (2.4.10) 其中 h_K , R_K 分别是 K 的类数和调整子,此外,Brindza,Evertse 和 Györy^[21]还给出了该方程的解仅与 n, Δ_i , k, p, 有关的上界,上 述结果的证明都用到 Gel'fond-Baker 方法(参见文献[56])。另 外,Bombieri^[16]综合丢番图逼近和算术代数几何方法讨论了方程 (2.4.1)的上界。

对于某些系数较小的二元三次原型 f(X,Y) 以及较小的素数 p_1,p_2,\cdots,p_r , Tzanakis 和 de Weger 具体求出了方程(2.4.1)的全部解(x,y,z_1,z_2,\cdots,z_r). 从这些数值例子可知,在目前该方程的求解仍是个很复杂的计算问题.

设 $f(X_1,X_2,\cdots,X_n)$ 是 n 次代数数域 K 上的 n 元 n 次模型 . 方程

$$f(x_{1},x_{2},\cdots,x_{m}) = k p_{1}^{z_{1}} p_{2}^{z_{2}} \cdots p_{r}^{z_{r}}, x_{1}, x_{2}, \cdots, x_{m}, z_{1}, z_{2}, \cdots, z_{r} \geqslant 0, \cdots, z_{r} \geqslant 0, \cdots, z_{r} \geqslant 0$$

$$(2, 4, 11)$$

是方程(2.4.1)的直接推广,称为广义 Tbue-Mabler 方程. 关于它的解数,乐茂华[19]证明了:当 $f(X_1,X_2,\cdots,X_n)$ 非退化时,如果 $p_i \mid \Delta_f(i=1,2,\cdots,r)$,则方程(2.4.11)的解 $(x_1,x_2,\cdots,x_n,z_1,z_2,\cdots,z_n)$ 的个数不超过

$$(4(r+\omega(k))(n!)^2)^{2^{36n/n}(n!r)^6}h_K^{a(r+\omega(k))}.$$

对于该方程解的可有效计算的上界,至今尚未见到一般的结果, 关于这方面的非实效性结果可参考文献[56]和[65].

§ 2.5 整数递推数列的多重值

设 n 是正整数 a_1 a_2 \cdots a_n 是适合 $a_n \neq 0$ 的整数 . 常系数线 • 76 ·

性齐次递推关系

$$u_{m+n} = a \ u_{m+n-1} + a_2 u_{m-n-2} + \cdots + a_n u_m, m \ge 3$$
 (2.5.1)

称为 n 阶整数递推关系,简称递推关系。此时,多项式 $f(X) = X^n - a_1 X^{n-1} - a_2 X^{n-2} - \dots - a_n$ 称为递推关系(2.5.1)的特征多项式。代数方程

$$f(z) = 0 (2.5.2)$$

的根称为它的特征根。

设 u_1, u_1, \dots, u_{n-1} 是不全为零的整数,如果数列 $U = \{u_n\}_{n=1}^n$ 满足递推关系(2.5.1)以及初始值 $u_0, u_1, \dots, u_{n-1}, 则称 U$ 是整数递推数列,简称递推数列,同一个递推数列可以满足不同的递推关系,例如,当 $U = \{1\}_{n=0}^n$ 时,U 同时满足一阶递推关系

$$u_0 = [u_{m+1} = u_m, m \ge 0$$
 (2.5.3)

以及二阶递推关系

$$u_0 = 1, u_1 = 1, u_{m+2} = 2u_{m+1} - u_m, m \ge 0.$$
 (2. 5. 4)

如果(2.5.1)是逸推数列 $U = \{u_n\}_{n=1}^\infty$ 所满足的阶数最低的递推关系,则称它是U的最小递推关系,它是唯一存在的、此时,U称为 n 阶递推数列,递推关系(2.5.1)的特征多项式和特征根也称为递推数列U 的特征多项式和特征根,已知如果 g(X) 是数列U 所满足的另一递推关系的特征多项式,则必有 $f(X) \mid g(X)$.

当递推数列 $U = \{u_m\}_{n=0}^\infty$ 有 s 个不同的特征根 u_1, u_2, \dots, u_n 它们的重数分别是 e_1, e_2, \dots, e_n 时,U 中的每一项 $u_m(m \ge 0)$ 都可表成

$$u_m = \sum_{i=1}^{s} h_i(m) a_i^m, m \ge 0,$$
 (2.5.5)

其中 $h_i(X)(i=1,2,\cdots,s)$ 分别是次数等于 $e_i-1(i=1,2,\cdots,s)$ 的多项式,它们的系数仅与 a_1,a_2,\cdots,a_s 以及 u_1,u_1,\cdots,u_{s-1} 有关.

对于递推数列 $U=\{u_n\}_{n=0}^\infty$,如果存在非负整数 m_n 以及正整数t可使

$$u_{m-1} = u_m, m \geqslant m_0,$$
 (2.5.6)

则称 U 是循环的,否则是非循环的。已知当 U 的特征根都不是单位根,而且它的任何两个不同特征根的商也不是单位根时,U 本身

以及它的任何一个下标数字构成等差数列的子序列{u_{t+dm}}_{m=0}(l, d∈2, l≥0, d>0)都不是循环数列. 如此的递推数列 U 称为非退化的.

对于给定的整数 k,设 N(k)是适合

$$u_m = k \cdot m \geqslant 0 \tag{2.5.7}$$

的非负整数 m 的个数 M 当 N(k) > 1 时 M 称 为递推数列 $M = \{u_m\}_{m=0}^\infty$ 的一个多重值 M 显然 M 如果数列 M 存在多重值 M 方程

$$u_x = u_y, x, y \in \mathbb{Z}, 0 \le x < y$$
 (2.5.8)

必有解(x,y),反之亦然,本节主要讨论非退化递推数列的多重值。

当 n=1 时,如果递推数列 U 是非退化的,则必有 $a_1\neq 0$ 或士 1. 此时 U 显然没有多重值。

当 n=2 时,Mahler [261] 运用 p-adic 形式的丢番图逼近方法证明了:当 $m\to\infty$ 时, $|u_m|\to\infty$. 由此可知:对于任何整数 k, N(k) 都是有限的 \cdot 1930 年,Ward 曾经猜测: $N(k) \le 5$. 对此,Chowla,Dunton,Lewis,Loxton,Alter 和 Kubota 等人分别证明了该猜想的一些特殊情况 \cdot 1977 年,Kubota [262] 完整地解决了 Ward 猜想,并且给出了更强的结果,他证明了:对于任何整数 k,都有 $N(k) \le 4$. 1980 年,Beukers [14] 进一步证明了:除了满足

 $u_0 = 1, u_1 = -1, u_{m+2} = -u_{m+1} - 2u_m, m \ge 0 \quad (2.5.9)$ 的递推数列 $U = \{u_m\}_{m=0}^\infty$ 以外,都有 $N(k) \le 3$.

当 n=2 时,设 $D=a_1^2+4a_2$. 如果 $D\neq 0$,则相应的二阶递推数 列 $U=\{u_m\}_{m=0}^{\infty}$ 有两个不同的特征根

$$a_1 = \frac{1}{2}(a_1 + \sqrt{D}), u_2 = \frac{1}{2}(a_1 - \sqrt{D}), (2.5.10)$$

它们的重数都等于 1. 当 U 的初始值为 $u_0 = 0$ 以及 $u_1 = 1$ 时,从 (2.5.5),(2.5.10),可得

$$u_{-} = \frac{\alpha_{1}^{m} - \alpha_{2}^{m}}{\alpha_{1} - \alpha_{2}}, m \geq 0.$$
 (2.5.11)

这是一类最基本也是最重要的递推数列、由于著名的 Fibonacci
· 78 ·

数列是它的一个特例,所以此类递推数列称为广义 Fibonacci 数列,从本书第三章和第五章的讨论中可知,很多指数型丢番图方程的解数问题都与此类递推数列的多重值有关。

对于给定的正整数 k,设 N'(k)是适合

$$|u_{\alpha}| = k \cdot m \geqslant 0$$
 (2.5.12)

的非负整数 m 的个数 - 1991 年,乐茂华^[77]运用 Gel'fond-Baker 方法讨论了广义 Fibonacci 数列的多重值、他证明了。

定理 2.5.1 设工阶递推数列 U={u_z};;a,满足递推关系

$$u_0 = 0, u_1 = 1, u_{m+2} = a_1 u_{m-1} + a_2 u_m, m \geqslant 0, (2.5.13)$$

其中整数 a_1, a_2 适合 $gcd(a_1, a_2) = 1$ 以及 $a_2 \neq 0$ 或士1. 当 max $(|D|, |a_2|) > C_1$ 时,除了

- (i) 如果 $a_1 = \pm 1$ 或者 $a_1^2 + a_2 = \pm 1$,则 N'(1) = 2;
- (ii) 如果 $a_1^2 2a_2 = \pm 1$,则 $N'(\neg u_2 |) = 2$; 该两种情况以外,必有 $N'(k) \leq 1(k \in \mathbb{N})$.

证 因为 $gcd(a_1,a_2)=1$ 且 $a_2\neq 0$ 或士1,所以 $D=a_1^2+4a_2\neq 0$. 因此从(2.5.13)可知递推数列 $U=\{u_n\}_{n=0}^\infty$ 是广义 Fibonacci 数列,它的每一项 $u_n(m\geq 0)$ 都可表成(2.5.11).

当 D>0 时,由于 $-u_n$ |在 m>1 时是严格单调递增的,所以若有王整数 k 可使 N'(k)>1,则仅可能有 k=1 以及 $u_1=|u_2|=1$.此时,从(2.5.11)可得 $u_1=\pm 1$.

当 D<0,k=1 且 2|a, 时,如果 N'(1)>1,则从(2.5.11)可得

$$|u_m| = \left| \frac{a_1^m - a_2^m}{a_1 - a_2} \right| = 1, m > 1$$
 (2.5.14)

因为 $2|a_1$, 所以当 2|m 时, 必有 $2|u_m$. 因此(2.5.14)中的 m 必为 奇数. 此时 m 有奇素因数 p. 由于 $u_p|u_p$, 故从(2.5.14)可得

$$|u_{\nu}| = 1. (2.5.15)$$

当 p=3 时,从(2.5.11),(2.5.15)可得 $u_0=a_1^2+a_1a_2+a_2^2=(a_1+a_2)^2-a_1a_2=a_1^2+a_2=\pm 1$. 此时假如 n>3,则从(2.5.14)可得

$$|u_n| = |u_{n/3}| \left| \frac{\alpha_1^m - \alpha_2^m}{\alpha_1^{m/3} - \alpha_2^{m/3}} \right| = 1.$$
 (2.5.16)

因此 4元 14元 敌从(2.5.16)可知

$$|u_{ni_0}| = 1 (2.5.17)$$

以及

$$\frac{a_1^m - a_2^m}{a_1^{m/3} - a_2^{m/3}} = \left(a_1^{m/3} + a_2^{m/3}\right)^2 - \left(a_1 a_2\right)^{m/3}
= \left(a_1^{m/3} + a_2^{m/3}\right)^2 - \left(-a_2\right)^{m/3}
= \pm 1.$$
(2.5.18)

因为 $a_1^{(i)} + a_2^{(i)}$ 是整数, $a_2 \neq 0$ 或±1,m/3 > 1,所以根据文献[28], [68]中的结果,从(2.5.18)可得 m = 9, $a_2 = -2$ 以及

$$a_1^3 + a_2^3 = 3. (2.5.19)$$

由于 $\alpha_1^2 + \alpha_2^2 = a_1(a_1^2 + 3a_2) = a_2(a_1^2 - 6)$,故从(2.5.19)可得 $3|a_1|$ 以及 $9|a_1^2 + a_2^2$ 这一矛盾。因此 m = 3,而且当 $a_1^2 + a_2 = \pm 1$ 时,必有 N'(1) = 2.

当 ル=5 时,从(2.5.15)可得

$$\left(a_2 + \frac{3}{2}a_1^2\right)^2 - 20\left(\frac{a_1}{2}\right)^4 = \pm 1.$$
 (2.5.20)

根据文献[28]中的结果,从(2.5.20)可知此时 $\max(|D|,|a_2|) < C_1$.

当 p≥? 时,从(2.5.15)可得

$$\sum_{j=0}^{(p-1)/2} \frac{(p-j-1)! \, p}{(p-2j)! \, j!} D^{(p-1)/2-j} (-a_2)^j = \pm 1.$$

(2.5.21)

设

$$f(X,Y) = \sum_{j=0}^{(p-1)/2} \frac{(p-j-1)! p}{(p-2j)! j!} X^{(p-1)/2-j} Y^{j}. (2.5.22)$$

根据引理 1.1.1.从(2.5.22)可知 f(X,Y)是二元(p-1)/2 次原型. 因此,当 $p \ge 7$ 时,根据定理 2.1.1,从(2.5.21)可知

$$\max(|D^{\dagger}, |a_2|) < C_2(p). \tag{2.5.23}$$

同时,根据定理 1.8.1,从(2.5.10),(2.5.11)和(2.5.15)可得

结合(2.5.23),(2.5.24)立得 $\max |D|$, $|a_2|$) $< C_1$. 综上所述听知: 当 D < 0, k = 1 且 $2|a_1$ 时,如果 $\max (|D|, |a_2|) > C_1$,则除了情况(i),(ii)以外,必有 $N'(k) \le 1$. 运用上述方法,同理可证 D < 0, k = 1 且 $2|a_1$ 以及 D < 0 且 k > 1 时的情况,定理证完。

关于定理 2.5.1 中的常数 C_1 ,文献 [77] 具体算出 C_1 < exp exp exp 1000. 从该定理可知: 当 $\gcd(a_1,a_2)=1$ 且 $a_i\neq 0$ 或土1 时,除了两类已知的例外情况,仅可能有有限多个适此条件的广义 Fibonacci 数列有多重值,根据上述结果,我们有以下猜想:

猜想 2.5.1 当广义 Fibonacci 数列 $U = \{u_n\}_{n=0}^{\infty}$ 的最小递推 关系(2.5.13)满足 $\gcd(a_1,a_2)=1$ 以及 $a_2\neq 0$ 或士1 时,除了

- (i)如果 $a_1 = \pm 1$ 或者 $a_1' + a_2 = \pm 1$,则 N'(1) = 1;
- (ii)如果 $a_1^2+2a_2=\pm 1$,则 $N''(|u_2|)=2$; 这两种情况以外,对于任何正整数 k,都有 $N'(k) \leq 1$.

此外,广义 Fibonacci 数列还与其它数论问题有关,以下介绍一个椭圆模函数方面的例子,设函数

$$\Delta(z) = e^{2\pi i - \sqrt{-1}} \prod_{n=1}^{\infty} (1 - e^{2\pi i z} - \sqrt{-1})^{2n} = \sum_{n=1}^{\infty} z(n) z^n,$$
(2.5.25)

其中 $\tau(n)(n \in \mathbb{N})$ 称为 Ramanojan τ -函数,对于素数 ρ 以及非负数数 m,已知 $\tau(\rho^n)$ 满足

 $t(p^{m+2}) = t(p)t(p^{m-1}) - p^{1}t(p^{m}), m \ge 0. \quad (2.5.26)$ 设 $u_0 = 0, u_m = t(p^{m-1})(m \ge 0).$ 因为 t(1) = 1,故从(2.5.26)可知数列 $U = \{u_m\}_{m=0}^{\infty}$ 满足递推关系

$$u_0 = 0, u_1 = 1, u_{m+2} = \tau(p)u_{m+1} - p^{11}u_m, m \geqslant 0.$$

$$(2.5.27)$$

由此可知

$$\tau(p^n) = u_{m-1} = \frac{\lambda_p^{m+1} - \overline{\lambda}_p^{m+1} - }{\lambda_p - \overline{\lambda}_p}, m \ge 0, \quad (2.5.28)$$

其中

$$\lambda_{t} = \frac{1}{2} \left(\tau(p) + \sqrt{(\tau(p))^{2} - 4p^{11}} \right).$$

$$\overline{\lambda}_{t} = \frac{1}{2} \left(\tau(p) + \sqrt{(\tau(p))^{2} - 4p^{11}} \right).$$

1974 年, Deligne^[18]证明了:对于任何素数 p, 都有 | λ_p| = | λ̄_p| = p^{11/2}. 由此可知 | τ(p) | ≤ 2p^{11/2}, 从而解决了著名的 Ramanujan-Petersson 猜想 · 1987 年, Shorey^{[11/1}运用 Gel'fond-Baker 方法证明了: 当 τ(p) ≠ 0 时, 如果

$$\tau(p^n) = \tau(p^n), m, n \in \mathbb{N}, m < n,$$
 (2.5.29)
即必有 $\max(n,p) < C_n$

当 n > 2 时,人们对于 n 阶非退化递推数列的多重值有过大量的工作,有关这方而的详细情况可参考文献[56],[118],1982 年,van der Poorten 和 Schlickewei¹¹⁴ 证明了,对于任何正数 δ ,当 $m > C_s(\delta, U)$ 时,必有

$$|u_n| > A^{-(1-\delta)}$$
 (2.5.30)

其中 $A=\max(\lceil a_1\lceil,\lceil a_2\rceil,\cdots,\lceil a_r\rceil)$. 根据(2.5.30), Glass, Loxton和 van der Poorten^[a2]证明了,对于任何整数 k 以及非退化递推数列 U,N(k)都是有限的,关于 N(k)的上界, van der Poorten和 Schlickewei^[165]证明了; $N(0) < C_k(n)$, 其中 $C_5(n)$ 是 n 的指数函数。

对于正整数 a_1 设 P(a) 是 a_1 的最大素因素 a_1 1984 年 Evertse^[16]运用 p-adic 形式的丢番图遍近方法证明了,如果 $U = \{u_n\}_{n=0}^\infty$ 是非退化递推数列,则当 $n\to\infty$ 时,必有 $P(u_n)\to\infty$ 上 述结果从本质上改进了本节开头提到的 Mahler 的结果,由此可以得出很多有用的推论,例如,对于任何给定的素数 p_1,p_2,\cdots , p_n 从上述结果直接可知方程

$$|u_m| = p_1^{z_1} p_2^{z_2} \cdots p_r^{z_r}, m, z_i \in \mathbb{Z}, m \geqslant 0, z_i \geqslant 0, i = 1, 2, \cdots, r$$

$$(2.5, 31)$$

仅有有限多组解(m,z₁,z₂,…,z₂). 对干具体的数列 U,方程 (2.5.31)的求解通常是很困难的,目前只解决了几个极特殊的情

况(参见文献[23],[76],[96],[97])。同时,人们至今还无法解决以下问题。

猜想 2.5.2 对于任何非退化递推数列 $U = \{u_n\}_{n=1}^\infty$,当 $m \to \infty$ 时,必有 $P(\{u_n\})/m \to \infty$.

最后介绍一下广义 Fibonacci 数列的本原素因数问题。设 $U = \{u_m\}_{m=0}^\infty$ 是广义 Fibonacci 数列。如果素数 p 满足 $p \mid u_m$ 以及 $p \mid u_m$ ($i=1,2,\cdots,k-1$),则称 p 是项 u_n 的本原素因数。早在本世纪初,Birkhoff 和 Vandiver [16] 已经证明了:如果 U 的特征根是整数,则当 m > 6 时, u_m 都有本原素因数。此后,Carmichael [26] 证明了:如果 U 的特征根是实数,则当 m > 12 时, u_m 都有本原素因数。1977年,Stewart [127] 运用 Gel'fond-Baker 方法给出了一般性的结果,他证明了:当 $m > e^{152}$ 267时, u_m 都有本原素因数。1995年,Voutier [147] 找出了所有适合 $m \leq 30$ 且没有本原素因数的 u_m 。同时,他提出了以下猜想:

猜想 2.5.3 对于任何广义 Fibonacci 数列 $U = \{u_n\}_{n=0}^{\infty}$, 当 m > 30 时, u_n 都有本原素因数.

参考文献

- [1] at Ekenstam A. Contributions to the theory of the diophantine equation $Ax^a-By^a = C$. Dissertation Uppsala, Almqvist and Wiksells, 1959.
- [2] Avanesov E. T. Representation of integers by binary cubic forms of positive discriminant. Ivanov Gos Ped Inst Uceu Zap Fiz Met Nzuk Vyp. 1969, 67, 3-37 (Russian).
- (3] Avanesov È. T., A bound for number of representations of integers by binary cubic forms of positive discriminant. Acta Arith, 1972, 20, 17—3).
- [4] Baker A., Contributions to the theory of displantine equations 1. On the representation of integers by binary forms, Philos Trans Roy Soc London, 1968, A263, 173—191; I. The displantine equation $y^2 = x^3 + k$, ibid, 1968, A263, 192—208.
- [5] Baulin V. I. On an indeterminate equation of the third degree with least positive discriminant. Tul'sk Gos Fed Iost U'den Zap Fiz Mat Nack Vyp, 1960, 7, 138—170 (Russian).

- [6] Bean M. A., Ares of plane regions defined by binary forms. Ph. D. thesis. Univ of Waterloo. 1992.
- [7] Bean M. A., An isoperimetric inequality related to Thue's equation, Bull Amer Math Soc(NS), 1994-31, 204-207.
- [8] Bean M. A., An isoperimetric inequality for the area of plane regions defined by binney forms. Compositio Math. 1994. 92:115—131.
- [9] Bean M. A., The number of solutions of the Thue inequality, In; Number Theory (Halilax NS, 1994), CMS Conf Proc. 15, Amer Math Soc., Providence R1, 1995; 49—54.
- [10] Bean M. A., A note on the Thue inequality, Proc Amer Math Soc, 1995, 123; 1975-1979.
- [11] Bean M. A., Binary forms, hypergeometric functions and the Schwarz-Christoffel mapping formula, Trans Amer Math Soc, 1995, 347, 4959—4983.
- [12] Bean M. A. Thunder J. L. Inégalités isopérimétriques associées à des formes décomposables CR Acad Sei Paris Ser I Math. 1995.321,681 —684.
- [13] Bennett M. A., de Weger B. M. M. On the diophantine equation $|ux^n by^n| = 1$, to appear.
- [14] Benkers F. The multiplicity of hipary recurrences Compositio Math. 1980. 40: 251-267.
- [15] Bilu Yu. Haorot G., Solving Thue equations of high degree, Math Comp. to appear.
- [16] Birkhoff G. D., Vandiver H. S., On the integral divisors of a*-b*. Ann of Math.
 (2), 1904, 5, 173-180.
- [17] Bombieri E., On the Thue-Mahler equation, Incl. ecture Notes in Math 1290, Berlin: Springer-Verlag, 1987; 213—243; 1, Acta Arith, 1994, 67, 69—96.
- [18] Bombieri E. Effective diophantine approximation on G_m. Ann Scuola Norm Sup Pisa (N), 1993, 20, 61—89.
- [19] Bombieri E. Schmidt W. M. On Thue's equation, Invent Math. 1987, 88, 69-81.
- [20] Brindza B. On the number of solutions of Thue's equation, Int Sets, Graphs and Numbers (Budapest, 1991), Colloq Math Soc Janos Bolyai, 60, Amsterdam, North-Holland, 1992, 127—133.
- [21] Brindza B., Evertse J-H., Györy K., Bounds for the solutions of some diophantine equations in terms of discriminants, J Austral Math Soc Ser A, 1991, 51:3-26.
- [22] Brindza B., van der Poorten A. J., Waldschmidt M. On the distribution and number of solutions of Thuc's equation, to appear.

- [23] Huchmann J. "Györy K. "Mignotte M. "Tzunakis N. "Lowet bounds for P(x³).
 k) an elementary approach Publ Math Debrecon 1991 38:145—163.
- [24] Buggand Y., Gyory K., Bounds for the solutions of unit equations, Acta Arith, 1996, 74:67-80.
- [25] Bugeaud Y. "Györy K. "Bounds for the solutions of Thue-Mahler equations and morm form equations. Acre Arith, 1996-74: 273-292.
- [26] Carmichael R. D. On the numerical factors of the arithmetic forms $\star' \pm \beta''$ Anni of Math(2), 1913, 15, 30—70.
- [27] Chen J-H. Voutier P. M., Complete solution of the diophantine equation 24±1 + dy and a related family of quartic Thue equations. J. Number Theory. 1397.62.71 —99.
- [28] Cohn J. H. E. (On square Fibraneon numbers.) London Meth Soc. 1964, 39, 537.
 —640.
- [29] Darmon H., Merel L., Winding quotients and some variages of Fermat's Last Theorem, J. Reine Angew Math. to appear.
- [30] Davemport H., Roth K. F., Rational approximations to algebraic numbers, Mathematika 1955, 2, 150-167.
- [31] do Woger B. M. M., A diophantine equation of Antoniadis Ju; Number Theory and Applications (Banil, AB, 1988), NATO Adv Sci Inst Set C, Math Phys. Sci. 265, Dordrecht, Kluwer Acad Publ., 1989, 547—553.
- [32] de Weger B. M. M., Algorithms for Diophantine Equations, CW1 Tract 65.

 Amsterdam, Centrum voor Wiskunde en Informatica, 1989.
- [33] de Weger B. M. M., A hyperelliptic disphantine equation related to imaginary quadratic number fields with class number 2.] Reien Angew Math. 1992, 427, 137—136; Erratum abid. 1993, 441, 217—218.
- [54] de Weger H. M. M. A Thue equation with quadratic integers as variables. Math. Comp. 1995. 64:855 861.
- [33] Delaunay B. Oher die Darstellung der Zahlen durch die binäre kubische Formen mit negativer Discrimitante Math Z. 1930, 31, 1-26.
- [36] Deligne P. La conjecture de Weil Publ Math IHES, 1974, 43, 273-367.
- [37] Delone B. N. Solution of the indeterminate equation $z^2q + Y^2 = 1$, (zv Akad Nauk SSE(6):1922, 16:253—272.
- [36] Demijatienko V. A., Representations of numbers by a hinary cubic form, Mat Zametki, 1988, 44, 55—63, 155.
- [39] Dennar Y. On the diophenone equation $|Au'' lly'| = l_{10} \geqslant 5$, Math Scand, 1954, 2, 29 + 32.

- [40] Everest G. R., On the solution of the norm-form equation. Amer. J. Math. 1992. 114:667—682; Addendum, ibid. 1992. 114:787—783.
- [41] Everest G. R. "Györy K. "Counting solutions of decomposable form equations. Acta Arith 1997-79: 173--191.
- [42] Evertse J-H. On the equation $ax^a by^a = c$. Compositio Math. 1982.47, 289 = 815.
- [43] Evertae J-H., Upper bounds for the numbers of solutions of diaphantine equations, MIC Tracts 168, Ameterdam: Mathematisch Ceptrum, 1983, 125pp.
- [44] Evertse J-H. On the representation of imagers by binary cubic forms of positive discriminant, forest Math, 1993, 73: 117—138; Erratum, ibid, 1984, 75; 879.
- [45] Evenue J-H. On equations in Sturits and the Thue-Mahler equation, Invent Math. 1984.75,561—584.
- [45] Evertse J-H., On sums of S-units and linear recurrences. Compositio Muth. 1984.53, 225—244.
- [47] Evertse J-H., The number of solutions of decomposable form equations, inventional Math, 1995, 122, 559—60).
- [48] Evertse J-H. An improvement of quantitative subspace theorem. Compositio Math. 1996.1(1,225—3).
- [49] Evertse J-H., Gast f., Györy K., On the numbers of solutions of decomposable polynomial equations. Arch Math. 1989.52; 337—553.
- [50] Evertse J-H., Györy K., Decomposable form equations. In: New Advances in Transcendence Theory (Baker A), Cambridge: Cambridge Univ Press. 1988: 175—202.
- [51] Evertse J-H., Györy K., Finiteness collects for decomposable form equations.

 Acta Arith, 1988, 50, 357—279.
- [52] Evertse J. H., Györy K., On the numbers of solutions of weighted unit equations. Comp Math. 1988, 65, 329—354.
- [53] Evertse J-H. Györy K. Thue-Mahler equations with a small number of solutions. J Reine Angew Math, 1989, 399:60-80.
- [54] Evertse J-H., Györy K., Some results on Thue equations and Thue-Mahler equations. In, Computational Number Theory, Berlin, Walter de Gruyter Co. 1491, 295—302.
- [55] Evertse J-H., Györy K., The number of families of solutions of decomposable form equations. Acta Arith, 1997, 80, 367—394.
- [56] Evertse J-H., Györy K., Stewart C. L., Tijdeman R., S-cuit equations and their applications. In Baker A ed., New Advances in Transcendence Theory, Cambridge Cambridge Univ Press, 1988, 109—174.

- [57] Fujiman M. (O., the solutions of Thue equations, Tohoku Math J(2), 1994, 46, 523-539.
- [58] Gail 1. On the resolution of some diophantine equations. In Computational Number Theory, Berlin: Walter de Gruyter Co. 1991;261—280.
- [59] Gail I., Pethó A., Pohst M., On the tesolution of index form equations in biquadratic number fields I.I Number Theory, 1991-38, 18—34: E.; ibid, 1551-38, 35—51; Libid-1995, 53, 100—114.
- [60] Gazl I. Pethá A. Pohat M. Simultaneous representation of integers by a part of ternary quadratic forms, with an application to index form equations in quadric number fields. J. Number Theory, 1996, 57, 90—104.
- [61] Gaal I., Scholte N., Computing all power integral base of cubic fields, Math. Comp. 1989, 53:589—696.
- [62] Glass J. P. Loxton J. H. Ivan der Poorten A. J. Identifying a rational function C. R. Math. Rep. Acad. Sci. Canada, 1981, 3, 279—284.
- [63] Gyöty K., On the numbers of families of solutions of systems of decomposable form equations. Publ Math Debrecent 1995, 42, 55—101.
- [64] Györy K. Some recent applications of S-voit equations. Acta Arith. to appear,
- [65] Györy K., Mignotte M., Shorey T. N., On some arithmetical properties of weighted soms of S-cuits, Math. Pannous 1990, 1, 25-43.
- [56] Györy K. Papp Z. Z. Effective estimates for the integer solutions of norm form and discriminant form equations, Publ Math Debrecen, 1973, 25, 311—326.
- [67] Hyyro S. . Uber die Gleichung auf 63° = 2 und das Catalansche Problem, Ann. Acad Sci Fennicae Set A.1.,1964,355(32).
- [68] Ko C. .On the diophantine equation $x^2 = y^n + 1$, xy ≠ 0.Sci Sinica.1965.14,457—460.
- [69] Kubosa K. K. On a conjecture of Morgan Ward J. Acta Arith. 1977. 33; 11—25; 1; ibid. 1977. 33: 25—48; I. ibid. 1977. 33: 99—109.
- [70] Langmann K. Lésungsanzahl der Thue-Gleichung Compositio Math. 1993. 86; 101-105.
- [71] Langmann K., Eindeutigkeit der Lösungen der Gleichung $x^2 + y^2 = ap$. Compositio Math. 1993.88:25—38.
- [72] Langmann K., Zur Normformengleichung, Arch Math (Basel), 1993, 61, 352—366.
- [73] Langmann K. Lösungsanzahl der homogenen Normformengleichung Composition Math. 1991, 94:29—19.

- [74] Langmann K., Werreverhalten bolomorpher Funktionen auf Überlagerungen und zahlentheoretische Analogien Math Ann. 1994. 299; 127—153.
- [75] Langmarm K. Lösungsanzahl der Gleichung $|x^d-c^cy^d|=p$, Manuscripta Math. 1994, 84, 389—400.
- [76] Laurent M., Équations diophantiones exponemielles, Invent Math, 1984, 78, 299
 —327.
- [77] 乐茂华,一类三阶通惟数列的多重性,科学通报,1991,35:97]—972.
- 17%. Le M. H. A note on the disphantine equation $(x^n 1)/(x 1) = y^n + 1$. Math. Proc Cambridge Philos Soc. 1994, 115:385—389.
- [79] 乐茂华,关于广义 Thue-Mabler 方程的解数,数学学报,1998,39:156~159.
- [80] 乐茂华,关于 Thue 方程的解数,数学学报,1996,39:726-732.
- [81] Lebesgue V. A., Sur l'impossibilité, en combres entiere, de l'équation $x^n = y^2 + 1$. Nouv Ann Math (1).1850.9:178—181.
- [32] Lenstra A. K. , Lenstra Jr H. W. , Lovasz L. , Factoring polynomials with rational coefficients , Math. Ann., 1982, 261; 515—584.
- [83] Lettl G. Pethō A. Complete solution of a family of quartic Thue equations Abb. Math Sem Univ Hamburg 1995 . 65: 365-383.
- [34] Lowis D. J. Mahler K. On the representation of integers by binary forms. Artial Arith. 1960, 61335-363.
- [85] Lippok F. . On the representation of 1 by hinary cubic forms of positive discriminant.] Symbolic Comput. 1993. 15, 297—313.
- [85] Ljunggien W., Einige Eigenschaften der Einheitenteeller quadratischer und zein biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse von bestimmter Gleichungen vierten Grades. Det Norske Vid Akad Oslo Skrifter 1. 1935, No. 12.1—73.
- [87] Ljuuggien W. Einige Bemerkungen über die Darstellung gunzer Zahler durch binäre kuhische Formen mit positiver Diskriminante "Acta Math. 1942. 75; 1—21.
- [98] Liunggren W., On an improvement of a theorem of T. Nagell concerning the diophantine equation $Ax^3 + By^3 = C$, Math Scand. 1953, 1, 297-309.
- [89] Mahlet K., Zur Approximation algebrascher Zahlen 1. Math. Ano. 1933, 107,691 —736; L.; ihid. 1933, 108, 37--55; E.; Acta Math. 1934, 52, 91—166.
- [90] Mahler K., Eine arithmetische Eigenschaft der tekurrierenden Reihen, Mathematika B (Leiden), 1934, 3, 153-156.
- [41] Mahler K. "On Thue's theorem, Math Scand. 1984. 55:: 198-200.
- [92] Mignotte M., Verification of a conjecture of E. Thomas, J Number Theory, 1993, 41, 172—172.

- [93] Mignorte M., A note on the equation $ax^{\epsilon} by^{\epsilon} = \epsilon$, Acta Atith, 1996, 75: 287—295.
- [94] Mignorte M. Pethō A. Roth R. Complete solutions of a family of quartic Thee and index form equations Math Comp. 1996.65:341-354.
- [95] Mignorte M., Tzanakis N., On a family of cubics, J Number Theory, 1991, 39, 41 —49.
- [96] Mignotte M., Tzanokis N., Arithmetical study of tecurrence sequences. Acts
 Arith, 1991, 57, 357—364.
- [97] Mignotte M., Tzanakis N., Arithmetical study of a cettain ternaty recurrence sequences and related questions, Math. Comp. 1993.61, 901—913.
- [98] Mordeil L. J. Diophaotine Equations Loodon : Academic Press : 1965.
- [99] Mueller J., Counting solutions of $|ax'-by'| \le h$, Quart I Math Oxford Set (2), 1987, 38, 503—513.
- [100] Mueller J., A note on Thue's inequality with few coefficients, In: Advances in Number Theory, Kingston, ON, 1991, New York, Oxford Univ Press, 1993, 381—389.
- [101] Mueller J. Schmidt W. M., Thue equations and inequalities. J Reine Aogew Math, 1987, 379, 76—99.
- [102] Mueller J. Schmidt W. M. Thuc's equation and a conjecture of Siegel, Acta Math. 1988, 160, 207—247.
- [103] Mueller J. Schmidt W M. On the Newton polygon. Monatsh Math. 1992. 113. 33—50.
- [104] Mueller J., Schmidt W. M., The generalized Thue inequality, Composition Math. 1995, 96, 331 344.
- [105] Nagell T., Solution complète de quelques équation cuhiques à deux indéterminées.] de Math(9).1925.4:209-270.
- [106] Nagell T., Darstellungen ganzez Zahlen durch binate kuhische Formen mit negativer Disktiminante, Marb Z. 1928, 28; 10—29.
- [197] Petho A.. On the representation of L by binary cubic forms with positive discriminant. In: Number Theory, Ulm. 1987, Lecture Notes in Math 1380, New York, Springer-Verlag, 1989, 185—196.
- [108] Pethō A. Computational methods for the resolution of diophantine equations. In: Number Theory, Benli, AB. 1989: Berlin: Walter de Gruyter, 1990, 477—492.
- [109] Pethő A. . Complete solutions to families of quartic Third equations, Math. Comp. 1991. 57, 777—798.

- [110] Pethő A. "Schulenberg R. "Effektives Lösen von Thue Gleichungen "Publ Math Dehrecen "1987. 34, 189—196.
- [111] Schmidt W. M., Linearformen mit algebraischen Kneffizienten 1,] Number Theory, 1971, 3:253-277, 1; Math Ann. 1971, 191, 1-20.
- [112], Schmidt W. M. Norm form equations, Ann of Mach (2), 1972, 96, 526-551.
- [113] Schmidt W. M., Thue equations with lew coefficients, Trans Amer Math Soc., 1987, 303, 241-255.
- [114] Schmidt W. M., The number of solutions of norm form equations, In; Number Theory Vol. 1, Eudapest, 1987, Amsterdam, North-Holland, 1990, 965—978,
- [115] Schmidt W. M. The number of solutions of norm form equations. Trans Amer. Meth Sec., 1990.317, 197—227.
- [116] Schmidt W. M., Diophantine Approximations and Diophantine Equations.

 Lecture Notes in Math 1467, Berlin, Springer-Verlag, 1991.
- [117] Shorey T. N., Ramanujan and hinary recursive sequences, J. Indian Math. Soc., 1987.53, 147—157.
- [118] Shorey T. N., Tijdeman R., Exponential Diophantine Equations, Cambridge: Cambridge Univ Press, 1986.
- [119] Siegel C. L. , Approximation algebreischer Zahler., Math Z., 1921, 10, 173-213.
- [120] Siegel C. L., Über einige Anwendungen diephantischer Approximationen, Alih Preuss Akad Wiss Phys Math K1, 1929, No. 1, 70pp.
- [121] Siegel C. L. Die Gleichung $ax^2 by^2 = c$ Math Ana. 1937. 144: 57—68.
- [122] Silverman J. H., The Thue equation and height functions, In; Diophantine Approximations and Transcendental Numbers, Luminy, 1982, Boston MA Birkhäuser, Progr Math 31, 1983, 259—270.
- [123] Silverman J. H., Representations of integers by hinary forms and the rank of the Mordell-Weil group. Invent Math. 1983. 74:281 292.
- [124] Smart N. P. Solving a quartic discriminant form equation, Publ. Math. Debrecen, 1993, 43, 29—39.
- [125] Smart N. P.: The solution of triangularly connected decomposable form equations: Math Comp. 1995.64, 819—840.
- [126] Steiner R. P., On Mordell's equation: A problem of Stolarsky, Math Comp. 1986, 46:703-714.
- [127] Stewart C. L. Primitive divisors of Lucas and Lahmer numbers. In Baker A. , Masser D. W. , eds. Transcendence Theory: Advances and Applications. London; Academic Press, 1977, 79—92.

- [128] Stewart C. L. On the number of solutions of polynomial congenences and Thuc equations. J Amer Math Soc. 1991, 4:793—835.
- [129] Stewart C. L. Thue equations and elliptic curves. In ; Number Theory, Halidax NS, 1994; CMS. Conf. Proc. 15, Providence RI; Amer. Math. Soc., 1995; 375—385.
- [130] Stroeker R. J., On diophantine equations of type X⁴ 2aX²Y² bY¹ = 1. In: Number Theory and Applications, Banif AB, 1988, NATO Adv Sci Inst Ser C: Math Phys Sci. 265 Dordrecht; Kinwer Acad Publ, 1989, 547-553.
- [131] Strocker R. J. On quartic Thue equations with trivial solutions. Math Comp., 1989-52, 175-187.
- [132] Strocker R. J., On Thue equations associated with certain quartic number fields. In: Computational Number Theory, Debrecen, 1989, Berlin: Walter de Gruyter, 1991, 313—319.
- [133] Strocker R. J., Tzanakis N. On the application of Skolem's p-adic method to the solution of Thre equations, J. Noteber Theory, 1988, 29:166—195.
- [134] Thomas E. Complete solutions to a family of cubic diophantine equations, J. Number Theory, 1990, 34, 235—250.
- [135] Thomas E. . Solutions to certain lamilies of Thue equations.] Number Theory. 1993, 43, 319-369.
- [135] Thomas E. . Solutions to infinite families of complex cubic Thue equations.]

 Reine Angew Math. 1993, 441; 17—32.
- [137] Thue A. , Über Annäberungswerte Zahler , J Reine Angew Math . 1909 , 135 , 284
 —305.
- [138] Thurder J. L., The number of solutions to entire Thue inequalities, Acra Arith, 1994, 66, 237—243.
- [139] Thunder J. L. On Thue inequalities and a conjecture of Schmedt.] Number Theory, 1995, 52, 319—328.
- [140] Tijdeman R. The number of eclutions of diophantine equations, In; Number Theory Vol. 1. Banif AB, 1988, Berlin: Walter de Genytet, 1990, 979—1001.
- [141] Tzanakis N. On the disphantine equation $x^2 Dy^2 = k_1 \operatorname{Acta} Arith. 1986. 46$; 267—269.
- [142] Tzanakis N. Explicit solution of a class of quartic Three equations. Acta Arith, 1993.64, 273 283.
- [143] Tzanakis N., de Weger B. M. M., On the practical solutions of the Thue equation, I Number Theory, 1989, 31, 99—132.

- [144] van der Poorten A. J. "Schlickewei H. P. "The growth conditions for recurrence sequences, Macquarie Univ Math Report, 82 0041, Australia, North-Ryde, 1982.
- [145] van der Poorten A. J., Schlickewei H. P., Zeros of recurrence sequences, Bull Austral Math Soc., 1991, 44:215—223.
- [146] Voutier P. M., Effective and quantitative results on integral solutions of certain classes of diophantine equations, Ph D Thesis, Univ Colorado, Boulder, 1993.
- [147] Voutier P. M. Primitive divisors of Lucas and Lehmer sequences, Math Comp. 1995.64:869—888.
- [148] Wiles A. Modular elliptic turves and Fermat's last theorem. Ann of Math(2), 1995, 141, 443-551.

第三章 广义 Ramanujan-Nagell 方程

早在 1913年,Ramanujan[59]已经发现了方程

$$x^2 + 7 = 2^n \cdot x \cdot n \in \mathbb{N}$$

的 5 组解(x,n)=(1,3),(3,4),(5,5),(11,7),(181,15). 同时, Ramanujan 提出,该方程是否仅有已知的 5 组解? 1943 年, Ljunggren^[48]在挪威的数学杂志上再次介绍了 Ramanujan 的问题,引起了广泛的注意,五年后,Nagell^[58]运用代数数论方法完整地解决了上述问题,此后,Nagell^[58]这用英文重新发表了他的结果,由于上述方程的解与组合数学中诸如"超平面差集是否与Hall 差集有公共部分"等重要问题有着直接的联系(参见文献[1],[2],[15],[62]),所以尽管 Ramanujan 的问题已经解决多年,但是人们对它的兴趣一直延续至今。近 40 年来,Skolem,Chowla 和 Lewis, Chowla, Dunton 和 Lewis, Mordell, Hasse,Madhavarao,Mead, Udrescu, Hossein, Johnson, Mignotte,Turnwald,Bundschuh,Sakmar等人分别运用不同的方法证明了Nagell 的结果,有关这方面的详细情况可参见 Cohen^[17]和Ramasamy^[56]的综述文章。

设 D 是正整數、p 是适合 p | D 的素数 · 由于 Ramanujan 提出的著名问题以及 Nagell 对此的重要工作,方程

$$x^2 \pm D = p^n, \quad x, n \in \mathbb{N}$$

及其推广形式统称为广义 Ramanujan-Nagell 方程。这是一类基本而又重要的指数型方程,人们对它的解数和解的上界进行了大量的研究,取得了十分丰富的成果。本章将介绍 Gel'fond-Baker 方法在此类方程中的应用。

§ 3.1 方程 x²+D=p*

设 D 是正整数 p 是适合 p | D 的雾数 p 方程

$$x^2 + D = p^n, \quad x, n \in \mathbb{N}$$
 (3.1.1)

是一类最基本的广义 Ramanujan-Nagell 方程,本章开头提到的方程就是它在(D,p)=(7,2)时的特例。

对于给定的 D, p, ψ N(D, p)是方程(3.1.1)的解(x, n)的个数.由于 Mahler^[31]早已证明:当正整数 $x \rightarrow \infty$ 时, $x^2 + D$ 的最大素因数 $P(x^2 + D) \rightarrow \infty$.因此方程(3.1.1)的解数 N(D, p)必定是有限的.近 30 多年来,关于 N(D, p)的上界一直是丢番图方程中的一个引人注目的问题.

当 p=2 时,如果 $D\neq 7 \pmod{8}$,则方程(3.1.1)至多有 1 组解 (x,n), 因此以下仅须考虑 $D\equiv 7 \pmod{8}$ 的情况,此时方程 (3.1.1)的解都满足 n>2,所以它对应于方程

$$x^2 + D = 2^{n+2}, \quad x, n \in \mathbb{N}.$$
 (3.1.2)

显然,当方程(3.1.2)有解(x,n)时,方程

$$X^{z} + DY^{z} = 2^{z-2}, X, Y, Z \in \mathbb{Z}, \gcd(X, Y) = 1, Z > 0$$
(3.1.3)

有解(X,Y,Z)=(x,1,n). 设 (X_1,Y_1,Z_1) 是方程(3.1.3)的最小解. 根据推论 1.5.1 可知

$$n = Z_i t, t \in \mathbb{N}, \tag{3.1.4}$$

$$\frac{x + \sqrt{-D}}{2} = \lambda_1 \left(\frac{X_1 + \lambda_2 Y_1 \sqrt{-D}}{2} \right)^{1}, \lambda_1, \lambda_2 \in \{-1, 1\}.$$
(3.1.5)

从(3.1.4),(3.1.5)可知方程(3.1.2)有解(x,n)的充要条件是方程(3.1.3)有解(X,Y,Z),而且它的最小解(X,Y,Z)满足 Y,= 1. 当此条件满足时,方程(3.1.2)有解(x,n)=(X,Z),同时,如果(x,n)是方程(3.1.2)适合(x,n) ≠(X,Z,)的解,则必有大于 1

的正整数 t,可使 (3.1.4) 以及 (3.1.5) 在 $Y_1 = 1$ 时成立。在上述分析的基础上,Apéry ^[3] 运用代数数论方法证明了:当 $D \neq 7$ 时,必有 $N(D,2) \leq 2$ 。由于当 D = 23 或 $2^{r+2} + 1$,其中 r 是大于 1 的正整数时,方程 (3.1.2) 显然有解

$$(x,n) = \begin{cases} (3,3), (45,9), & \text{当} D = 23 \text{ 时,} \\ (1,r), (2^{r+1} - 1,2r), & \text{当} D = 2^{r+2} - 1 \text{ 时,} \end{cases}$$
 (3.1.6)

所以根据 Apéry 的结果可知(3.1.6)给出了该方程在这两种情况下的全部解,对于方程(3.1.2)的其它情况, Browkin 和 Schinzel^[9]曾经提出,

猜想 3.1.1 当 D≠23 或 2^{r+2}−1(r>1)时,必有 N(D,2)≤1.

设 $\alpha = (X_1 + \sqrt{-D})/(X_1 - \sqrt{-D})$. 因为已知当方程 (3.1.2)有解时, $Y_1 = 1$,故从(3.1.5)可知:当 $D \neq 23$ 或 $2^{r+2} - 1(r > 1)$ 时,如果 N(D,2) > 1,则必有大于 1 的奇数 t 适合(3.1.4)以及

$$|a'-1| \le \frac{\sqrt{D}}{2^{n/2}}.$$
 (3. 1. 7)

1967 年,Schinzel^[st]运用 Gel'fond 有关二维对数线性型的下界估计,根据(3.1.7)证明了:当 $D\neq 2^{r+2}-1$ 时,方程(3.1.2)至多有1组解(x,n)适合 a>78. 由此可知猜想 3.1.1 在 $D>2^{60}$ 时成立。另外,Tzanakis^[rz]对于 D<100 的情况找出了方程(3.1.2)的全部解。这一结果说明上述猜想在 D<100 时也成立。猜想 3.1.1 最终是由 Beukers^[rz]解决的,他运用有关超几何级数的丢番图通证方法证明了:当 $D\neq 23$ 或 $2^{r+2}-1(r>1)$ 时,必有 $N(D,2)\leqslant 1$. 至此,方程(3.1.1)在 p=2 时的解数问题已经全部解决。

当
$$p$$
 是奇素数时,如果 (x,n) 是方程 $(3.1.1)$ 的解,则方程 $X^2 + DY^2 = p^*, X, Y, Z \in \mathbb{Z}, \gcd(X,Y) = 1, Z > 0$ (3.1.8)

必有解(X,Y,Z)=(x,1,n). 设 (X_1,Y_1,Z_1) 是方程(3.1.8)的最

$$n = Z_1 t, t \in \mathbb{N}, \tag{3.1.9}$$

$$z + \sqrt{-D} = \lambda_1 (X_1 + \lambda_2 Y_1 / -D)' \lambda_1 \lambda_2 \in \{-1.1\}.$$
(3.1.10)

从(3.1.9)、(3.1.10)可知此时方程(3.1.1)有解(x,n)的充要条件是方程(3.1.8)有解(X,Y,Z)、而且它的最小解(X,Y,Z)满足 Y_1 =1. 当此条件成立时,方程(3.1.1)有解(x,n)=(X_1 ,Z)。同时,如果方程(3.1.1)有适合(x,n)≠(X,Z)的解(x,n),则必有大于1的奇数、,可使(3.1.9)以及

$$x + \sqrt{-D} = \lambda_1 (X_1 + \lambda_2 \sqrt{-D})', \lambda_1, \lambda_2 \in (-1,1)$$
(3.1.11)

成立.通过上述分析, $Ap\acute{e}ry^{\{i\}}$ 运用代数数论方法证明了,对于任何奇素数 $p,N(D,p) \leq 2$.由于当(D,p) = (2,3)成 $(3s^2+1,4s^2+1)$,其中s是正整数时,方程(3,1,1)显然有解

$$(x,n) = \begin{cases} (1,1), (5,3), & \triangleq (D,p) = (2,3) \text{ if }, \\ (s,1), (8s^{2} + 3s,3), & \triangleq (D,p) = (3s^{2} + 1, \\ 4s^{2} + 1) \text{ if }, \end{cases}$$

$$(3.1.12)$$

所以根据 Apèry 的结果可知、(3.1.12)给出了该方程在这两种情况下的全部解。

当 p 是奇素数、 $(D,p)\neq (2,3)$ 或 $(3s^2+1,4s^2+1)(s\in N)$ 时、数组(D,p)称为方程(3,1,1)的非例外情况。Alter 和 Kubota,Brown、Cohen、Inkeri、乐茂华等人运用初等数论方法、分别对某些特殊的非例外情况证明了, $N(D,p)\leq 1$ 。有关这方面的详细情况可参见文献[25]和[39]。

运用 Gel'fond-Baker 方法,从定理 5.3.1 可知:对于给定的正整数 D,方程

$$x^2 + D = y^*, x, y \in \mathbb{N}, n > 2$$
 (3.1.13)

的解(x,y,n)都满足 $n < C_1(D)$; 又从定理 4.2.1 可知: 对于给定的正整数 D,n,适合 (3.1.13)的 x,y 都满足 $\max(x,y) < C_2(D,n)$. 综上所述立得 $y < C_1(D)$. 1979 年,Bender 和 Herzberg $\mathbb{R}^{|G|}$ 根据这一思路证明了; 当 $p > C_1(D)$ 时,必有 $N(D,p) \le 1$. 上述结果说明,对于给定的 D,仅可能有有限多组非例外情况可使 N(D,p) > 1.

1985年,乐茂华^[56] 进一步运用 Gel'fond-Baker 方法证明了。

定理 3.1.3 当 (D,ρ) 是方程(3.1.1)的非例外情况时,如果 $\max(D,\rho) > C_i$,则必有 $N(D,\rho) \le 1$.

证 设 (X_1,Y_1,Z_1) 是方程(3.1.8)的最小解.已知方程(3.1.1)有解时,必有 $Y_1=1$.又设

$$\epsilon = X_1 + \sqrt{-D}, \bar{\epsilon} = X_1 + \sqrt{-D}.$$
 (3.1.14)

从(3.1.11)可知,如果 $N(D,\rho)>1$,则必有大于 L 的奇数 t 可使

$$\left|\frac{\boldsymbol{\epsilon}' - \bar{\boldsymbol{\epsilon}}'}{\boldsymbol{\epsilon} - \bar{\boldsymbol{\epsilon}}}\right| = 1. \tag{3. 1. 15}$$

根据定理 1.8.1,从(3.1.14),(3.1.15)可得

$$t < C_5.$$
 (3. **1.** 16)

由于已知 $N(D, p) \leq 2$, 所以(3.1.15)中的 t 必为奇素数.从(3.1.14),(3.1.15)可得

$$\sum_{i=0}^{n-1/2} \left(\frac{t}{2i+1} \right) (-D)^i X_1^{n-n-1} = \pm 1.$$
 (3. 1. 17)

因为(D, ρ)是非例外情况,所以从(3.1.17)可知 $t \neq 3$. 又从文献 [18]可知:当 t = 5 时,(3.1.17)不成立,因此 t 是适合 $t \geqslant 7$ 的奇素数.

烫

$$f(X,Y) = \sum_{i=0}^{n-15/2} \left(\frac{t}{2i+1}\right) X^{(i-1)/2-i} Y^{i}.$$
 (3. 1. 18)

由于 t 是奇素数, 新以根据引理 1.1.1.从(3.1.18)可知 f(X,Y) 是二元(t-1)/2 次原型. 同时,从(3.1.17)可知此时 Thue 方程

$$f(X,Y) = \pm 1, x, y \in \mathbb{Z} \tag{3.1.19}$$

有解 $(x,y)=(x_1^2,-D)$. 因为 $(t-1)/2 \ge 3$,故从定理 2.1.1 可得

$$\frac{p}{2} \leqslant \frac{p^{2_1}}{2} < \max(X_1^2, D) < C_6(t).$$
 (3.1.20)

结合(3.1.16),(3.1.20)立得 max(D,p)<C, 因此当 max(D,p) >C,时,必有 N(D,p)≤1. 定理证完。

显然,上述定理在除了有限多组非例外情况的条件下,给出了N(D,p)的最佳上界.至此,方程(3.1.1)的解数问题已经基本解决.关于定理 3.1.1 中的常数 C_* ,文献[25.1]具体算出: C_* <exp exp exp 1000,文献[35]又将此改进为 C_* < $10^{10^{10}}$.

由于至今没有发现可使 N(D,p)>1 的非例外情况(D,p),所以我们提出以下猜想:

猜想 3.1.2 对于方程(3.1.1)的例外情况(D,p),必有 N(D,p) \leq 1.

另外,根据定理 3.1.1 的证明过程还可以得到方程(3.1.1)的解的上界.由于从推论 1.5.2 可知方程(3.1.8)的最小解(X_1,Y_1,Z_1)满足 $h(-4D)\equiv 0 \pmod{Z_1}$,其中 h(-4D)是判别式等于 -4D的 二元二次原型的类数;又从文献 [23]的定理 12.10.1 和 12.14.3 可知

$$h(-4D) < \frac{2\sqrt{D}}{\pi} \log(4e^2D),$$
 (3.1.21)

故有

$$Z_1 < \frac{2\sqrt{D}}{\pi} \log(4e^2D).$$
 (3.1.22)

同时,从(3.1.9),(3.1.16)可得

$$n = Z_1 t < C_5 Z_1. \tag{3.1.23}$$

于是,结合(3.1.22),(3.1.23)立得:

推论 3.1.1 当 p 是 奇 索 数 时 , 方程 (3.1.1) 的 解 (x , n) 都 满 足

$$n < \frac{2C_5}{\pi} \frac{\sqrt{D}}{\log(4e^2D)};$$

特别是在猜想 3.1.2 成立的条件下,

$$n < \begin{cases} rac{6 \sqrt{D}}{\pi} \log(4e^2D), \oplus(D,p) & \text{是例外情况时,} \\ rac{2 \sqrt{D}}{\pi} \log(4e^2D), 否则. \end{cases}$$

设 D 是正整数, p 是适合 p | D 的素数, 本节讨论方程

$$x^2 - D = p^n, x, n \in \mathbb{N}.$$
 (3.2.1)

对于给定的 D, p, 设 N(D, p)是方程(3.2.1)的解(x, n)的个数.

当 p=2 时,如果 $D\neq 1 \pmod{8}$,则方程(3.2.1)显然至多有1组解.因此以下仅须考虑 $D\equiv 1 \pmod{8}$ 的情况.此时方程(3.2.1)的解(x,n)都满足 n>2,所以它对应于方程

$$x^2 - D = 2^{n-2}, x, n \in \mathbb{T}^7.$$
 (3. 2. 2)

又如 D 是平方数,则 $D=D_1^n$,其中 D_1 是正奇数.此时从(3.2.2)可得 $D_1=2^n-1$,而且该方程恰有 1 组解(x,n)=(2"+1,n).因此以下不妨假定 D 为非平方数.

显然,当方程(3.2.2)有解(x,n)时,方程

$$X^2 - DY^2 = 2^{2+2}, X, Y, Z \in \mathbb{Z}, \gcd(X, Y) = 1, Z > 0$$
(3.2.3)

有解(X,Y,Z) = (x,1,n). 设 (X_1,Y_1,Z_1) 是方程(3,2,3)的最小解,根据推论 1.5.1 可得

$$n = Z_1 t, t \in \mathbb{N}, \tag{3.2.4}$$

$$\frac{x+\sqrt{D}}{2} = \left(\frac{X_1 + \lambda Y_1 \sqrt{D}}{2}\right)^{\prime} (u+v\sqrt{D}), \lambda \in \{-1,1\},$$

$$(3, 2, 5)$$

其中(u,v)是 Pell 方程

$$u^2 - Dv^2 = 1, u, v \in \mathbb{Z}$$
 (3.2.6)

的解·由于已知方程(3.2.6)有无限多组解(u,v),故从(3.2.4),

(3.2.5)以及(3.1.4)。(3.1.5)可知方程(3.2.2)的求解要比(3.1.2)困难得多。

1980年, Beukers^[2]运用丢番图通近方法给出了方程(3, 2, 2)的解的精确上界。他证明了:方程(3, 2, 2)的解(x,n)都满足

$$n < 433 - \frac{10 \log D}{\log 2};$$
 (3.2.7)

特别是当 D<266时,

$$n < 14 - \frac{2\log D}{\log 2}. (3.2.8)$$

根据上述结果, Beukers^[7,1]证明了;如果 D 适合下列三种情况之一,即

$$D = 2^{\nu} - 3 \cdot 2^{r+1} + 1, r \in \mathcal{A}, r > 1; \qquad (3.2.9)$$

$$D = \left(\frac{2^{2r+1}-17}{3}\right)^2 - 32, r \in \mathbb{N}, r > 2; \qquad (3.2.10)$$

$$D = 2^{2r_1} + 2^{2r_1} - 2^{r_1+r_2+1} - 2^{r_1+1} - 2^{r_2+1} + 1,$$

$$r_1, r_2, \in \mathbb{N}, r_2 > r_1 + 1 > 2;$$
 (3.2.41)

则必有 $N(D,2) \le 4$, 否则 $N(D,2) \le 3$. 同时, Beukers 还借助计算机. 对于 D < 1000 的情况找出了方程(3.2.2)的全部解.

当 D 适合(3, 2, 9),(3, 2, 10)或(3, 2, 11)时,数组(D,2)称为方程(3, 2, 2)的例外情况,否则称为非例外情况,当(D,2)是例外情况时,已知方程(3, 2, 2)分别有解

$$(x,n) = \begin{cases} (2^r - 3,1), (2^r - 1,r), (2^r + 1,r + 1), \\ (3 \cdot 2^r - 1,2r + 1), & \text{ if } D \text{ if } A \text{ i$$

由于已知 $N(D,2) \leq 4$,所以当 D 适合(3.2.9)时,(3.2.12)给出了方程(3.2.2)的全部解,1992年,乐茂华^[32]根据上界(3.2.7)和(3.2.8),运用初等方法解决了另外两类例外情况的求解问题,他证明了:当 D 适合(3.2.10)或(3.2.11)时, $N(D,2) \leq 3$ 。由此可知(3.2.12)对所有例外情况给出了方程(3.2.2)的全部解,至此,该方程在例外情况下的求解问题已全部解决。

1990年, Beukers 对非例外情况提出了以下问题:

问题 3.2.1 当(D.2)是方程(3.2.2)的非例外情况时,是否有 $N(D,2) \leq 2$?

对此,乐茂华^[31]运用初等方法证明了,当(D,2)为非例外情况时,如果方程

$$u'^2 - Dv'^2 = -1, u', v', \in \mathbb{Z}$$
 (3.2.13)

有解(u',v'),则必有 $N(D,2) \le 2$. 关于方程(3,2,13)无解的情况,问题 3,2,1 至今还没有解决。

当 ρ 是奇素数时,如果 D 是平方数,则方程(3.2.1)至多有 1 组解(x,n),因此以下不妨假定 D 为非平方数,此时,如果方程(3.2.1)有解(x,n),则方程

$$X^2 - DY^2 = p^2, X, Y, Z \in \mathbb{Z}, \gcd(X, Y) = 1, Z > 0$$
(3. 2. 14)

显然有解(X,Y,Z)=(x,1,n). 设 (X_1,Y_1,Z_1) 是方程(3.2.14)的最小解,根据推论 1.5.2 可得

$$n = Z_1 t, t \in M,$$
 (3. 2. 15)

$$x + \sqrt{D} = (X_1 + \lambda Y_1 \sqrt{D})'(u + v \sqrt{D}), \lambda \in \{-1,1\},$$
(3. 2. 16)

其中(u,v)是方程(3.2.6)的解,设 $u_1+v_1\sqrt{D}$ 是方程(3.2.6)的基本解,又设

$$\varepsilon = X_1 + Y_1 \sqrt{D}, \ \tilde{\varepsilon} = X_1 - Y_1 \sqrt{D}, \quad (3.2.17)$$

$$\rho = u_1 + v_1 \sqrt{D} \cdot \bar{\rho} = u_1 - v_2 \sqrt{D}. \qquad (3.2.18)$$

由于方程(3.2.6)的解(u,v)都可表成

$$u + v \sqrt{D} = \pm (u_1 \pm v_1 \sqrt{D})^*, k \in \mathbb{Z}, k \ge 0,$$
(3. 2. 19)

故从(3.2.16),(3.2.17),(3.2.18),(3.2.19)可得

$$x + \delta \sqrt{D} = \epsilon' \rho^{-1}, \delta \in \{-1,1\}. \tag{3.2.20}$$

其中 k 是适合 $0 \le k \le l$ 以及 $\gcd(k,l) = 1$ 的整数,通过上述分析,Beukers [-1] 运用丢番图逼近方法证明了:对于任何奇素数 p,都有 $N(D,p) \le 4$,同时,由于经过大量的计算也没有发现可使方程 (3,2,1) 恰有 4 组解的数组(D,p),所以 Beukers [-1] 提出:

猜想 3.2.1 对于任何奇素数 p,必有 $N(D,p) \leq 3$. 当 D,p 适合

$$p = \begin{cases} 3, \\ 4s^2 + 1, \end{cases} D = \begin{cases} \left(\frac{3^r + 1}{4}\right)^2 - 3^r, 2 \end{cases} r, \\ \left(\frac{p^r - 1}{4s}\right)^2 - p^r, \end{cases} r, s \in \mathbb{N}, r > 1,$$

$$(3, 2, 21)$$

时,数组(D,p)称为方程(3,2,1)的例外情况,否则为非例外情况、当(D,p)是例外情况时,已知方程(3,2,1)分别有解

$$(x,n) = \begin{cases} \left[\frac{3^r - 7}{4}, 1 \right], \left[\frac{3^r + 1}{4}, r \right], \\ \left[2 \cdot 3^r - \frac{3^r + 1}{4}, 2r + 1 \right], \stackrel{\text{d}}{=} p = 3 \text{ B}, \\ \left[\frac{p^r - 1}{4s} - 2s, 1 \right], \left[\frac{p^r - 1}{4s}, r \right], \\ \left[2sp^r + \frac{p^r - 1}{4s}, 2r + 1 \right], \stackrel{\text{d}}{=} p = 4s^2 + 1 \text{ B}, \end{cases}$$

从(3.2.21),(3.2.22)可知,存在无限多组(D,p),可使 N(D,p) \geqslant 3. 因此猜想 3.2.1 是有关方程(3.2.1)解数的一个十分重要而 又相当困难的问题。

1991 年, 乐茂华[29]运用 Gel'fond-Baker 方法 基本上解决了猜 • 102 •

想 3.2.1. 他证明了:

定理 3.2.1 当 p 是奇素数时,如果 max(D,p)>C₁,则必有 N(D,p)≤3.

证 假如 N(D, p) > 3,则方程(3.2.1)必有 4 组解(x_i, n_i)(i = 1, 2, 3, 4)适合 $n_1 < n_2 < n_3 < n_4$,此时,从(3.2.15),(3.2.20)可得

$$n_{i} = Z_{1}t_{i}, \quad t_{i} \in \mathbb{N}, \quad i = 1, 2, 3, 4.$$

$$x_{i} + \delta_{i} \sqrt{D} = \epsilon^{t_{i}} \bar{\rho}^{t_{i}}, \delta_{i} \in \{-1, 1\},$$

$$i = 1, 2, 3, 4.$$

$$(3, 2, 24)$$

其中 $t_i(i=1,2,3,4)$ 适合 $t_1 < t_2 < t_3 < t_4$, t_4 , t_6 (i=1,2,3,4)是满足 $0 \le k_i \le t_6$ 以及 $gcd(k_i,t_i) = 1$ (i=1,2,3,4)的整数,运用初等方法,从(3. 2. 23),(3. 2. 24)可得

$$\log \rho < C_2(\log D)^2. \tag{3.2.25}$$

当(D,p)是例外情况时,从(3,2,21)可知,此时方程(3,2,14)的最小解 (X_1,Y_1,Z_1) 满足 $Z_1=1$;并且运用初等数论方法,从(3,2,21),(3,2,22),(3,2,24)可得

$$n_4 > D^{1/5}$$
. (3. 2. 26)

设 $a_1 = \epsilon/\epsilon$, $a_2 = \rho$. 从(3.2.17),(3.2.18)可知 a_1 , a_2 分别满足 $pa_1^2 - 2(x_1^2 + D)a_1 + p = 0$ 以及 $a_2^2 - 2a_1a_2 + 1 = 0$,故有

$$h(a_1) = \log p + \log \frac{\varepsilon}{\varepsilon}, h(a_2) = \log p. \qquad (3.2.27)$$

因为从推论 1. 5. 2 可知 $1 < \epsilon/\epsilon < \rho^2$,又从(3. 2. 21)可知 $\rho < D$,故从(3. 2. 25),(3. 2. 27)可得

$$h(a_1) < C_3 \log D$$
, $h(a_2) < C_4 (\log D)^2$. (3.2.28)

设 A=n₁loga₁-2k₄loga₂- 根据(1.8.12),从(3.2.28)可知

$$\log |A| > -C_5 (\log D)^3 \log n_4.$$
 (3. 2. 29)

另一方面,从(3.2.24)可得

$$|A| = \log \frac{x_4 + \sqrt{D}}{x_4 - \sqrt{D}} = \frac{2\sqrt{D}}{x_4} \sum_{i=0}^{\infty} \frac{1}{2i+1} \left(\frac{D}{x_4^2}\right)^i$$

$$<\frac{4\sqrt{D}}{x_4}<\frac{4\sqrt{D}}{p^{x_4/2}}.$$
 (3. 2. 30)

从(3.2.30)立得

$$\log |\Lambda| < \log 4 \sqrt{D} - \frac{n_4}{2} \log p.$$
 (3. 2. 31)

结合(3.2.29)和(3.2.31)可以算出

$$n_4 < C_6 (\log D)^3 (\log \log D)^2.$$
 (3. 2. 32)

于是,从(3.2.26),(3.2.32)可得 $D < C_{i}$ 由此可知:当 $\max(D, \phi) = D > C_{i}$ 时,必有 $N(D, \phi) \le 3$.

当(D, p)为非例外情况时,首先运用初等方法可知 $p \le p^{r_1} < \sqrt{D}$,又从实数的渐近分数的基本性质可知(3.2.24)中的 t_3, t_4 满足

$$t_3 + t_4 > \frac{1}{4} D^{1/34} \log \rho.$$
 (3. 2. 33)

同时,从(3.2.17),(3.2.18)可知

$$h(a_1) < \log p^{a_1} + \log p^2, h(a_2) = \log p.$$
 (3.2.34)

设 $\Lambda = t_4 \log a_1 - 2k_4 \log p$. 根据(1.8.12),从(3.2.24),(3.2.33),(3.2.34)可得

$$\log |\Lambda| > -C_t(\log \rho)^2 \log t_4. \tag{3.2.35}$$

同时,从(3.2.24)可知

$$|\log |\Lambda| < \log 4 \sqrt{D} - \frac{t_4}{2} \log p^{z_1}.$$
 (3.2.36)

结合(3.2.35),(3.2.36)可得

$$t_4 < C_4 (\log \rho)^2 (\log \log \rho)^2.$$
 (3. 2. 37)

因为 $t_3 < t_4$,故从(3.2.25),(3.2.33),(3.2.37)可以算出 $D < C_1$. 因此当 $\max(D,p) = D > C_1$ 且(D,p)为非例外情况时,必有N(D,p) ≤ 3 . 定理证完.

关于定理 3.2.1 中的常数 C:, 文献[29]具体算出:

$$C_i < egin{cases} 10^{100}, egin{cases} egin{cases} 10^{100}, egin{cases} egin{cases} egin{cases} D, p \end{pmatrix} 是例外情况时, \\ 10^{240}, 否则。 \end{cases}$$

此后,文献[30],[37]又分别改进为

$$C_i < \begin{cases} 10^{35}, & \oplus (D,p) \$$
是例外情况时, $10^{196}, & 否则:$

以及

$$C_1 \leqslant \begin{cases} 3478, & \exists (D,3) \, \mathbb{E} \, M \, \text{外情况时,} \\ 2 \cdot 10^9, & \exists (D,p)(p > 3) \, \mathbb{E} \, M \, \text{外情况时,} \\ 10^{65}, & 否则. \end{cases}$$

同时,根据定理 3.2.1 的证明过程还可以直接得出方程 (3.2.1)的解的上界;

推论 3.3.1 当 p 是奇景数时,方程(3.2.1)的解(x,n)都满足 $n < C_s \sqrt{D} (\log D)^s$.

另外,乐茂华^[25] 「□还运用 Gel'fond-Baker 方法证明了:当 p > D > 2^{40} 时, N(D,p) ≪ 2. 由于此时(D,p) 显然是方程(3. 2. 1) 的非例外情况,所以根据上述结果我们有以下猜想:

猜想 3. 2. 2 当 p 是奇素数时,如果(D,p)是方程(3. 2. 1)的非例外情况,则必有 $N(D,p) \leq 2$.

设 D 是正奇数, p 是适合 a) D 的奇素数,此时,方程

$$x^2 + D = 4p^n, x, n \in \mathbb{N}$$
 (3.3.1)

和

$$x^2 - D = 4p^n, x, n \in \mathbb{N}$$
 (3.3.2)

分别是(3.1.1)和(3.2.1)的推广,它们可用前两节据到的方法进行讨论。

首先考虑方程(3.3.1). 对于给定的 D_{*p} ,设 $N(D_{*p})$ 是方程(3.3.1)的解(x,n)的个数.由于当该方程有解(x,n)时,方程

$$X^2 + DY^2 = 4p^*, X, Y, Z \in \mathbb{Z}, gcd(X,Y) = 1, Z > 0$$
(3. 3. 3)

显然有解(X,Y,Z)=(x,1,n),所以根据引理 1.5.3 可得

$$n = Z_1 t, t \in \mathbb{N}, 3 \mid t,$$
 (3.3.4)

$$\frac{x+\sqrt{-D}}{2}=\lambda_1\left(\frac{X_1+\lambda_2Y_1\sqrt{-D}}{2}\right)',\lambda_1,\lambda_2\in\{-1,1\},$$
(3. 3. 5)

其中(X_1 , Y_1 , Z_1)是方程(3.3.3)的最小解.从(3.3.4),(3.3.5)可知:方程(3.3.1)有解(x,n)的充要条件是方程(3.3.3)有解(X,Y,Z),而且它的最小解(X_1 , Y_1 , Z_1)满足 Y_1 =1. 当此条件成立时,方程(3.3.1)有解(x,n)=(X_1 , Z_1).如果方程(3.3.1)有适合(x,n) \neq (X_1 , Z_1)的解(x,n),则必有大于1的正整数t可使(3.3.4)以及

$$\frac{x+\sqrt{-D}}{2}=\lambda_1\left(\frac{X_1+\lambda_2\sqrt{-D}}{2}\right)',\lambda_1,\lambda_2\in\{-1,1\}$$
(3.3.6)

成立.

根据上述分析,Skinner[63]解决了当 D,p 适合

$$D = 4p^r - 1, r \in \mathbb{N}$$
 (3.3.7)

时 方程(3.3.1)的求解问题 . 由于此时方程(3.3.3)的最小解 $(X_1,Y_1,Z_1)=(1,1,r)$,所以 Skinner 运用初等方法证明了:当 D, p 适合(3.3.7)时,方程(3.3.1)的全部解是

$$(x,n) = \begin{cases} (1,1),(5,2),(31,5), & \exists (D,p) = (11,3) \text{ 时,} \\ (1,1),(9,2),(559,7), & \exists (D,p) = (19,5) \text{ 时,} \\ (1,r),(2p'-1,2r), & 其它情况. \end{cases}$$

(3.3.8)

如果将(3.3.7)中的 D 看作是未知数,则从(3.3.1),(3.3.7)可得方程

$$x^2 = 4p^r - 4p^r + 1, x, n, r \in \mathbb{N}.$$
 (3.3.9)

显然,对于任何奇家数 p,方程(3.3.9)都有解(x,n,r)=(1,k,k), (2 p^k -1,2k,k),其中 k 是任意正整数.这些解称为方程(3.3.9)的平凡解.从(3.3.8)可知:该方程仅当 p=3 和 5 时,分别有非平 · 106 ·

凡解(x,n,r)=(31,5,1)和(x,n,r)=(559,7,1).

另外,组合数学中关于可逆 Abel 差集的某些关键问题都与形如(3.3.9)的方程

$$x^{2} = 2^{2a+2}p^{2n} - 2^{2a+2}p^{n+r} + 1.x.n.r \in \mathbb{N}.$$

$$n > r > \frac{n}{2}, a \in \mathbb{Z}, a \geqslant 0$$
(3. 3. 10)

以及

$$x^{2} = 2^{2a+2}p^{2a} - 2^{a+2}p^{a+r} + 1.x.n.r \in \mathbb{N},$$

$$r > n.a \in \mathbb{Z}.a \ge 0$$
 (3.3.11)

有关(参见文献[24],[50],[52])。对此,Ma^[19]曾经提出了以下两个猜想。

猜想 3.3.1 对于任何奇素数 ρ , 方程(3.3.10)均无解(x, a, n, r).

猜想 3.3.2 方程(3.3.11)仅当 p=5 时有解(x,a,n,r)=(49,3,1,2).

1996年,乐茂华和向青[46]运用初等数论方法完整地证实了猜想 3. 3. 1. 此后,郭永东[40]运用类似的方法,将上述结果推广到了 p 为一般正奇数的情况,此外,猜想 3. 3. 2 仍是一个尚未解决的问题,

对于一般的 D, p, 乐茂华[an] 运用丢番图 逼近方法和 Gel' [ond-Baker 方法证明了:

定理 3.3.1 当 $D\neq 4p'-1(r\in\mathbb{N})$ 时,必有 $N(D,p)\leqslant 2$;特別是当 $\max(D,p)>C_1$ 时, $N(D,p)\leqslant 1$.

证 假如 N(D,p)>2,则从本节前面的分析可知此时方程 (3.3.3)的般小解(X_i,Y_i,Z_i)满足 $Y_i=1$,而且方程(3.3.1)必有 2 组解(x_i,n_i)(i=1,2)可表成

$$n_i = Z_1 t_i, t_i \in \mathbb{N}, t_i > 1, 3 \mid t_i, i = 1, 2, \quad (3.3.12)$$

$$\frac{x_i + \sqrt{-D}}{2} = \lambda_i \left(\frac{X_1 + \lambda_{ii} \sqrt{-D}}{2} \right)^{i_i},$$

$$\lambda_{i_1}, \lambda_{i_2} \in \{-1, 1\}, i = 1, 2.$$
 (3. 3. 13)

不妨假定 $n_1 < n_2$,此时从(3.3.12)可知 $t_1 < t_2$. 如果 $2 \mid t_j (1 \le j \le 2)$,则从(3.3.1),(3.3.12)可得 $2p^{n_j t_1} - x_1 = D$,以及 $2p^{n_j t_2} + x_j = D_2$,其中 D_1 , D_2 是适合 $D_1 D_2 = D$ 的正奇数。由此可得

$$1 + D \leqslant X_1^2 + D = 4p^{Z_1} \leqslant 4p^{Z_1^2/2} = 4p^{Z_1/2}$$
$$= D_1 + D_2 \leqslant 1 + D. \qquad (3.3.14)$$

因为(3.3.14)仅当(t_i , D_i , D_i)=(2,1,D)时才能成立,而此时 D可表成(3.3.7)之形,所以在题设条件下必有 $2 \mid t_i (i=1,2)$ 以及 $2 \mid Z_i$.

根据文献[5],[18]中的结果可知:(3.3.13)中的 $t_1 \neq 5$ 成 7. 因为 $3 \nmid t_1$,故有 $t_1 \geq 11$. 同时,运用初等数论方法,从(3.3.13)可得

$$t_2 - t_1 \geqslant p^{2_1 t_1 - 1)/2}$$
 (3. 3. 15)

另外,因为 $t_i \ge 11$,所以根据文献[73]中有关丢番图逼近方面的结果,从(3,3,1),(3,3,12)可得

$$32 + 12t_1 > t_1 - t_1. (3.3.16)$$

结合(3.3.15),(3.3.16)立得

$$32 + 12t_1 > p^{2/\alpha_1 - 13/2} \tag{3.3.17}$$

因为 $p^{2} \ge 3$ 且 $t_i \ge 11$, 所以(3.3.17) 不可能成立。由此可知 N $(D,p) \le 2$.

此外,当 $\max(D,p)>C_1$ 时,运用定理 3.1.1 的证明方法可知此时(3.3.6)在t>1 时不成立、由此立得 $N(D,p)\leqslant 1$. 定理证完。

关于定理 3.3.1 中的常数 C_1 , 文献[33]具体算出 C_1 <exp exp exp 105. 由于至今还没有发现不能表成(3.3.7)的 $D_{1,p}$ 可使 $N(D_1,p) > 1$, 所以我们根据定理 3.3.1 有以下猜想:

猜想 3.3.3 当 D≠4p'-1(r∈N)时,必有 N(D,p)≤1.

以下讨论方程(3.3.2). 对于给定的 D,p,设 N'(D,p)是方程(3.3.2)的解(x,n)的个数.

首先考虑一类特殊情况,设q=p',其中,是正整数;又设定。是q元有限域GF(q)、已知P。上的某些编码问题都与方程

$$x^2 = 4q^n + 4q + 1, x, n \in \mathbb{N}$$
 (3.3.18)

有关. 对此,Bremner,Calderbank,Hanlon 和 Wolfskill^[1]证明了, 当q=3时,该方程恰有3组解(x,n)=(5,1),(7,2)和(11,3). 1982年,Calderbank^[12]对于一般的q提出了以下猜想:

猜想 3.3.4 当 $q \neq 3$ 时,方程(3.3.18)仅有解(x,n)=(2q+1,2).

1986年, Tzanakis 和 Wolfskill^[73]运用丢番图逼近方法给出了方程(3.3.18)解数的上界,次年,他们在文献[74]中完整地证实了猜想 3.3.4. 两年后,乐茂华^[28]运用同样的方法讨论了更一般的方程

$$x^{2} = 4q^{n} + 4q^{m} + 1, x, m, n \in \mathbb{N}, n > m > 1,$$

$$\gcd(m, n) = 1. \tag{3.3.19}$$

他证明了:对于任何奇素数的方幂 q,方程(3.3.19)均无解(x,m,n). 综合上述结果可知:当 D,p适合

$$D = 4p' + 1, r \in \mathbb{N} \tag{3.3.20}$$

时,如果 $(D,p)\neq (13,3)$,则方程(3,3,2)恰有1组解(x,n)=(2p'+1,2r).

1992年,乐茂华[34]运用 Gel'fond-Baker 方法,对一般的 D, p 给出了方程(3, 3, 2)解数的上界.已知对于以下两类特殊的 D, p, 即:

$$D = \left(\frac{3^{2r} + 1}{2}\right)^{2} - 4 \cdot 3^{2r}, p = 3, r \in \mathbb{N}, r > 1$$
(3. 3. 21)

以及

$$D = p^{2r_1} + p^{2r_2} - 2p^{r_1+r_2} - 2p^{r_1} - 2p^{r_2} + 1,$$

$$r_1, r_2 \in \mathbb{N}, r_1 > r_2,$$
(3.3.22)

方程(3.3.2)分别有解

(3.3, 23)

从(3.3.23)可知:存在无限多组(D,p)可使 $N'(D,p) \geqslant 3$. 同时, 文献[34]运用定理 3.2.1 的证明方法证明了:

$$N'(D,p) \leqslant \begin{cases} 5. \oplus D. p \text{ ide}(3.3.22) \text{ id}, \\ 4. \text{ eq}; \end{cases}$$
 (3.3.24)

特别是当 $\max(D,p) > C_1$,其中 $C_1 < 10^{60}$ 时,

$$N'(D, p) \leqslant \begin{cases} 4, \oplus D, p 适合(3, 3, 21) 或(3, 3, 22) 时, \\ 3, 否则. \end{cases}$$

(3.3.25)

由于至今还没有发现可使 N'(D,p)>3 的 D,p,所以我们对 N'(D,p)的上界有以下猜想。

猜想 3.3.5 对于任何的 D, p,必有 $N'(D, p) \leq 3$,特别是当 D, p 不满足(3.3.21)或(3.3.22)时, $N'(D, p) \leq 2$.

§ 3. 4 方程
$$D_1x^2 \pm D_2 = \delta p^*, \delta \in \{1,2,4\}$$

设 D_1,D_2 是互素的正整数 p 是适合 $p \mid D_1D_2$ 的素数 p 本节讨论方程

$$D_1x^2 + D_2 = \delta p^* \cdot x \cdot n \in \mathbb{N}$$
 (3.4.1)

以及

$$D_1x^2 - D_2 = \delta p^n, x, n \in N,$$
 (3.4.2)

其中 $\delta \in \{1,2,4\}$. 显然,本章前三节所讨论的方程分别是这两类方程在 $D_i = 1$ 且 $\delta = 1$ 或 4 时的特例.

当 δ=1 时,方程(3.4.1)可写成

$$D_1x^2 + D_2 = p^n, x, n \in \mathbb{N}. \tag{3.4.3}$$

从文献[6],[26],[47]中的结果可知:当 $D_t=1$ 时,如果(D,p)=(7,2),(2,3)或(6,7),则

$$(x,n) = \begin{cases} (1,3),(3,6), & \exists (D,p) = (7,2) \text{ 时,} \\ (1,1),(11,5), & \exists (D,p) = (2,3) \text{ 时,} \\ (1,1),(400,4), & \exists (D,p) = (6,7) \text{ 时,} \end{cases}$$

$$(3.4.4)$$

分别是方程(3.4.3)的全部解;否则该方程至多有 1 组解(x,π). 因此,根据§3.1节中的结果,方程(3.4.3)在 $\min(D_1,D_2)=1$ 时的解数问题已经基本解决。

当 $\min(D_1,D_2)>1$ 时,不妨假定 D_1 是无平方因子正整数 . 对于给定的 D_1,D_2,p 设 $N(D_1,D_2,p)$ 是方程(3.4.3)的解(x,n)的个数 . 如果 D_1,D_2,p 满足

$$p = 2 \cdot D_1 s^2 = 2^r - (-1)^{rD_2 - 11/2},$$

$$D_2 = 3 \cdot 2^r + (-1)^{rD_2 - 11/2}, r, s \in \mathbb{N}$$
(3.4.5)

或者

$$p \neq 2, 4D_1 s^2 = p' - (-1)^{(p'-1)/2},$$

$$4D_2 = 3p' + (-1)^{(p'-1)/2}, r, s \in \mathbb{N},$$
(3.4.6)

则称数组 (D_1,D_2,p) 是方程(3,4,3)的例外情况,否则为非例外情况、当 (D_1,D_2,p) 是例外情况时,方程(3,4,3)有解

从(3.4.7)可知:存在无限多组(D₁,D₂,p),可使 N(D₁,D₂,p)≥ 2.

对于一般的 D_1,D_2,p , Bender 和 Herzberg [6]运用代数数论方法和 Gel'fond-Baker 方法证明了,当 p 是奇素数时,如果 (D_1,D_2)

 $\neq (2, p'-2)$ 或(6, p'-6),其中,是正整数,则必有 $N(D_1, D_2, p)$ ≤ 2 ,特别是当 $p > C_1(D_1, D_2)$ 时, $N(D_1, D_2, p) \leq 1$. 此后,乐茂华(36)、[46]、[46]、[46] 对解数 $N(D_1, D_2, p)$ 的上界给出了比较完整的结果,这些结果可表述为:

定理 3.4. 1 当 min(D_1,D_2)>1 时,除了 N(3,5,2)=3 以外,必有 $N(D_1,D_2,p) \leq 2$,特别是 max(D_1,D_2)> C_2 且(D_1,D_2 ,p)为非例外情况时, $N(D_1,D_2,p) \leq 1$.

证 由于本定理对 p=2 以及 $p\neq2$ 这两类情况的证明过程基本上是相同的,所以这里仅给出 $p\neq2$ 时的情况.

当
$$p$$
 是奇素数时,如果方程(3.4.3)有解(x,n),则方程
$$D_1X^2 + D_2Y^2 = p^2, X, Y, Z \in \mathbb{Z}, \gcd(X,Y) = 1, Z > 0$$
 (3.4.8)

显然有解(X,Y,Z)=(x,1,n). 因此,根据推论 1.5.2 可知:方程 (3.4.3) 有解(x,n)的 充要条件是方程(3.4.8) 有解(X,Y,Z),而且它的最小解 (X_1,Y_1,Z_1) 满足 $Y_1=1$. 当此条件成立时,方程 (3.4.3) 有解 $(x,n)=(X_1,Z_1)$. 如果该方程有适合 $(x,n)\neq(X_1,Z_1)$ 的解(x,n),则必有大于 1 的奇数 t 可使

$$n = Z_1 t_1 x \sqrt{D_1} + \sqrt{-D_2} = \lambda_1 \left(X_1 \sqrt{D_1} + \lambda_2 \sqrt{-D_2} \right)',$$

$$\lambda_1, \lambda_2 \in \{-1, 1\}. \tag{3.4.9}$$

设

$$\epsilon = X_1 \sqrt{D_1} + \sqrt{-D_2}, \bar{\epsilon} = X_1 \sqrt{D_1} - \sqrt{-D_2}.$$
(3.4.10)

从(3.4.9)可得

$$\left|\frac{\boldsymbol{\epsilon}' - \bar{\boldsymbol{\epsilon}}'}{\boldsymbol{\epsilon} - \bar{\boldsymbol{\epsilon}}}\right| = 1. \tag{3.4.11}$$

于是,根据定理 1.8.1,从(3.4.11)可得

$$t < C_1$$
. (3.4.12)

从以上分析可知:如果 $N(D_1,D_2,\rho)>2$,则必有适合 $1<\iota_1<\iota_2$ 的 \cdot 112 \cdot

正奇数 4,14 可使

$$\left|\frac{\boldsymbol{\varepsilon}'_{i} - \bar{\boldsymbol{\varepsilon}}'_{i}}{\boldsymbol{\varepsilon} - \bar{\boldsymbol{\varepsilon}}}\right| = 1, \quad i = 1, 2, \tag{3.4.13}$$

并且从(3.4.12)可得

$$1 < t_1 < t_2 < C_1. \tag{3.4.14}$$

从(3.4.10)可知,存在实数 θ 适合

$$\varepsilon = \sqrt{p^{2_1}}e^{\delta - \overline{\epsilon}_1}, \bar{\varepsilon} = \sqrt{p^{2_1}}e^{-\delta - \overline{\epsilon}_1}. \qquad (3.4.15)$$

因为 $D_1X_1^2+D_2=p^{2_1}$,故从(3.4.10),(3.4.15)可得

$$0 < \sin\theta = \sqrt{\frac{D_2}{p^{2_1}}} < 1. \tag{3.4.16}$$

根据(3.4.16)可以假定 € 满足

$$0 < \theta < \frac{\pi}{2}$$
. (3. 4. 17)

同样,从(3.4.13),(3.4.15)可得

$$\left|\frac{\sin t_i \theta}{\sin \theta}\right| = p^{-2} t^{(i_i - 1)/2}, \quad i = 1, 2. \tag{3.4.18}$$

从(3.4.18)可推出

$$t_2 > \frac{\pi}{2 \arcsin \sqrt{D_2/p^{2_1 t_1}}}.$$
 (3. 4. 19)

于是,运用初等方法排除了几个较小的情况 (D_1,D_2,p) 之后,从(3.4.14)和(3.4.19)可得出矛盾.由此可知 $N(D_1,D_2,p)$ $\leq 2.$

另外,当(D_1 , D_2 ,p)为非例外情况时,从(3.4.11)可得 $t \ge 7$.于是运用定理 3.1.1的证明方法,从(3.4.10),(3.4.11),(3.4.12)可得 $\max(D_1,D_2) < C_2$.因此当 $\max(D_1,D_2) > C_2$ 时,必有 $N(D_1,D_2,p) \le 1$. 定理证完.

根据定理 3.4.1 可知:当(D_1 , D_2 ,p)是例外情况时,(3.4.7)给出了方程(3.4.3)的全部解.同时,对于非例外情况,我们有以下猜想:

猜想 3. 4.1 当 (D_1,D_2,p) 是方程(3.4.3)的非例外情况时, 必有 $N(D_1,D_2,p)$ ≤ 1 .

$$D_1x^2 + D_2 = 2p^4 \cdot x, n \in \mathbb{N}$$
 (3.4.20)

以及

$$D_1x^2 + D_2 = 4p^*, x, n \in \mathbb{N}. \tag{3.4.21}$$

对此,乐茂华[$^{(x)}$]运用与定理 3.4.1 相同的证明方法证明了:当 $\min(D_1,D_2)>1$ 时,方程(3.4.20)和(3.4.21)都至多有 2 组解(x,n).同时,运用该方法还可以进一步得到以下结果:当 D_1,D_2 , p 适合

$$2D_1 s^t = p^r - (-1)^{(p^r+1)/2},$$

$$2D_2 = 3p^r + (-1)^{(p^r+1)/2}, r, s \in \mathbb{N}$$
 (3.4.22)

时,方程(3.4.20)恰有2组解(x,n)=(x,r)和(($2p'+(-1)^{(p'+1)/2}$)x,3r);当(3.4.22)不成立且 $\max(D_1,D_2)>C$,时,该方程至多有1组解(x,n).根据上述结果,我们对这两个方程有下列猜想:

猜想 3.4.2 当 $min(D_1,D_2) > 1$ 且 D_1,D_2,p 不满足 (3.4.22)时,方程(3.4.20)至多有 1 组解(x,n).

猜想 3.4.3 当 $min(D_1,D_2)>1$ 时,方程(3.4.21)至多有 1 组解(x,n).

另外,运用定理 3.2.1 的证明方法,可以得到方程(3.4.2)的解数和解的上界,但是目前尚未见到有关这方面的一般性结果,对此我们有以下猜想,

猜想 3.4.4 方程(3.4.2)至多有 4 组解(x,n).

§ 3.5 方程
$$D_1x^2 \pm D_2 = k^n$$

设 $D_1 \cdot D_2$ 是互素的正整数 $\cdot k$ 是适合 k > 1 以及 $gcd(k, D_1D_2)$ = 1 的正整数 $\cdot \omega(k)$ 是 k 的不同素因数的个数 · 本节讨论的方程

$$D_1 x^2 + D_2 = k^*, x, n \in \mathbb{N}$$
 (3.5.1)

$$D_1x^2 - D_2 = k^*, x, n \in \mathbb{N}$$
 (3.5.2)

分别是方程(3.1.1)和(3.2.1)的另一类型的推广。

对于给定的 D_1,D_2,k , 设 $N(D_1,D_2,k)$ 是方程(3.5.1)的解 (x,n)的个数、当方程(3.5.1)有解(x,n)时,方程

$$D_1X^2 + D_2Y^2 = k^2, X, Y, Z \in \mathbb{Z}, \gcd(X,Y) = 1, Z > 0$$
(3.5.3)

显然有解(X,Y,Z)=(x,1,n). 根据引理 1.5.1 和 1.5.2 可知:当 21 k 时,如果方程(3.5.3)有解,则它的所有解可分成若干类,其类数不超过 $2^{*(4)-1}$. 当方程(3.5.3)的解(X,Y,Z)=(x,1,n)属于它的某个解类 S 时,必有

$$n = Z_1 t, \qquad t \in \mathbb{N}, \tag{3.5.4}$$

$$x \sqrt{D_1} + \sqrt{-D_2} = \lambda_1 (X_1 \sqrt{D_1} + \lambda_2 Y_1 \sqrt{-D_2})^{\dagger},$$

$$\lambda_1, \lambda_2 \in \{-1, 1\}, \qquad (3.5.5)$$

其中 (X_1, Y_1, Z_1) 是解类 S 的最小解 . 比较(3.1.9),(3.1.10),(3.4.9),(3.5.4),(3.5.5)可知 . 当 2(4 时,可以运用定理 3.1.1 和 3.4.1 的证明方法,在方程(3.5.3)的每个解类中讨论方程(3.5.1)的解数 .

对于非负整数 m_1 设 $F_{m_1}L_{m_2}$ 分别是第 m 个 Fibonacci 数和 Lucas 数 m 如果 24k 且 D_1, D_2, k 适合

$$4D_1s^2 = k' - (-1)^{(k'-1)/2}, 4D_2 = 3k' + (-1)^{(k'-1)/2}, r,s \in \mathbb{N}$$

$$(3.5.6)$$

或

$$D_{1}s^{2} = \frac{1}{4}F_{\alpha}, D_{2} = \begin{cases} \frac{3}{4}F_{\alpha} - F_{\alpha-1}, \\ \frac{3}{4}F_{\alpha} - F_{\alpha+1}, \end{cases} \quad k' = \begin{cases} F_{\alpha-2}, l, r, s \in \mathbb{N}, \end{cases}$$

(3, 5, 7)

则称数组 $(D_{i,j}D_{i,j}k)$ 是方程(3,5,1)的例外情况,否则为非例外情

况 . 1979 年,Bender 和 Herzberg^[a]证明了:当 $2|k \to D_1, D_2, k$ 满足某些条件时, $N(D_1, D_2, k) \leq 2^{n(k)}$. 1995 年,许太金和乐茂华^[zs]进一步证明了:当 $2|k \to max(D_1, D_2) > C_1$ 时,

$$N(D_1,D_2,k) \leq \begin{cases} 2^{a(k)-1}-1, & \text{当}(D_1,D_2,k)$$
 是例外情况时,
$$2^{a(k)-1}, & \text{否则}; \end{cases}$$
 (3.5.8)

而且方程(3.5.1)的解(ェ,n)都满足

$$n < \frac{10}{\pi} \sqrt{D_1 D_2} \log \left(\frac{1}{2e} \sqrt{D_1 D_2} \right).$$
 (3. 5. 9)

显然,上述结果中给出的解数上界都是与 k 有关的.因为至今还没有发现可使方程(3.5.1)有很多解的 D_1 , D_1 ,k,所以我们有以下猜想:

猜想 3.5.1 对于任何的 $D_1,D_2,k,$ 必有 $N(D_1,D_2,k) < C_2$.

由于目前已知的结果与上述猜想相差甚远, 特别是对 k 是偶复合数的情况几乎一无所知, 因此这是一个十分因难的问题. 最近, 郭永东和乐茂华[12] 运用初等方法解决了它的一个特殊情况. 他们证明了: 当 D_2 是素数时, $N(1,D_2,k) \leq 8$.

对于给定的 D_1,D_2,k ,设 $N'(D_1,D_2,k)$ 是方程(3.5.2)的解(x,n)的个数、此时,根据引理 1.5.1 和 1.5.2,运用定理 3.2.1 的证明方法可以得出解数 $N'(D_1,D_2,k)$ 的上界、例如,陈锡庚和乐茂华^[15]运用 Gel'fond-Baker 方法证明了;当 $2 \mid k$ 时,必有 $N'(1,D_2,k) \leq 3 \cdot 2^{*(1)-1} + 1$;特别是当 $\max(D_2,k) > 10^{66}$ 时, $N'(1,D_2,k) \leq 3 \cdot 2^{*(1)-1}$. 利用同样的方法,不难将上述结果推广到 $2 \mid k$ 且 $\min(D_1,D_2) > 1$ 的情况、对于方程(3.5.2)的解数,我们有类似的猜想:

猜想 3.5.2 对于任何的 D_1,D_2,k ,必有 $N'(D_1,D_2,k) < C_3$.

关于上述猜想,Mignotte^[st]曾经提出过 $D_1=1$ 时的问题。 1996年,乐茂华^[st]运用初等方法解决了它的一个特殊情况。他证明了: 当 D_2 是素数时, $N'(1,D_2,k)$ \leq 4.

§ 3.6 方程 $x^2 \pm D^m = p^m$

设 D 为非完全方幂的正整数 · p 是适合 p l D 的素数 · 本节 讨论方程

$$x^2 + D^n = p^n, x, m, n \in \mathbb{N}$$
 (3.6.1)

和

$$x^{2} - D^{m} = p^{n}, x, m, n \in \mathbb{N}.$$
 (3. 6. 2)

虽然这两个方程分别比方程(3.1.1)和(3.2.1)多了一个未知数。 但它们仍可用§3.1节和§3.2节中的方法来处理。

关于方程(3.6.1), Tanahashi^[60], Toyoizumi^[70,71], 孙琦和曹珍富^[68], 曹珍富^[13]等人运用初等敷论方法,分别对某些特殊的 D, p 讨论了它的可解性和解敷问题. 对于一般的 D, p, 乐茂华^[27,281]运用 Gel'fond-Baker 方法证明了:

定理 3.6.1 当 p=2 且 $D>C_1$ 时,方程(3.6.1)至多有 1 组解(x,m,n)适合 m>1;当 $p\neq 2$ 且 $\max(D_1p)>C_2$ 时,该方程至多有 2 组解(x,m,n),而且当(x,m,n)=(x_1,m_1,n_1)和(x_2,m_2,n_2)分别是这两组解时,必有 $m_1 \neq m_1$ (mod 2).

证 首先考虑 p=2 时的情况、设(x,m,n)是方程(3.6.1)适合 m>1 的解、由于此时 n>2,所以方程(3.6.1)可写成

$$x^2 + D^m = 2^{n+2}, x, m, n \in \mathbb{N}.$$
 (3. 6. 3)

因为 2|D,故必有 2|m. 另外,假如 2|n,则从(3.6.3)可得 $2^{n/2+1}+x=D_1^n$ 以及 $2^{n/2+1}-x=D_2^n$,其中 D_1 , D_2 是适合 $D_1D_2=D$ 的正奇數,由此可得

$$D_1^m + D_2^m = 2^{n/2+2}. (3.6.4)$$

由于 2 | m, 所以(3.6.4)不可能成立, 故必有 2 | n. 于是, 从(3.6.3)可知此时方程

$$X^{2} + DY^{2} = 2^{2+2}, X, Y, Z, \in \mathbb{Z}, \gcd(X,Y) = 1, Z > 0$$
(3. 6. 5)

有解 $(X,Y,Z)=(x,D^{(n-1)/2},n)$. 因此,根据推论 1.5.1 可得

$$n = Z_1 t_1 t \in \mathbb{M}, 2^{t} t_2$$
 (3. 6. 6)

$$\frac{x+D^{(m-1)/2}}{2} \frac{\sqrt{-D}}{2} = \lambda_1 \left(\frac{X_1 + \lambda_2 Y_1 \sqrt{-D}}{2} \right)^{\alpha},$$

$$\lambda_1, \lambda_2 \in \{-1,1\}, \qquad (3.6.7)$$

其中(X1,Y1,Z1)是方程(3.6.5)的最小解。

从上述分析可知:如果方程(3.6.3)有2组适合 n>1的解(x,m,n),则存在大于1的奇数 ι 可使(3.6.6)和(3.6.7)成立。设

$$\varepsilon = \frac{X_1 + Y_1 \sqrt{-D}}{2}, \tilde{\varepsilon} = \frac{X_1 - Y_1 \sqrt{-D}}{2}. \quad (3.6.8)$$

从(3.6.7),(3.6.8)可得

$$D^{(m-1)/2} = Y_1 \left| \frac{\epsilon' - \bar{\epsilon}}{\epsilon - \bar{\epsilon}} \right|. \tag{3.6.9}$$

运用初等数论方法,从(3.6.9)可得

$$\left|\frac{\vec{\epsilon}' + \vec{\epsilon}'}{\vec{\epsilon} - \vec{\epsilon}'}\right| = 1 \otimes t. \tag{3.6.10}$$

因为(3.6.10)在t=3或5时不成立,故有 $t\ge 7$. 同时,根据定理 1.8.1及其证明方法,从(3.6.10)可得

$$7 \le t < C_1.$$
 (3. 6. 11)

又从(3.6.10),(3.6.11)可知 $D < C_1$. 因此,当 $D > C_1$ 时,方程(3.6.3)至多有1组解(z_1m_1n)适合 m > 1. 同理可证 $p \ne 2$ 时的情况。定理证完。

从上述定理可以直接推得:

推论 3.6.1 当 $p=3 \pmod{4}$ 且 $\max(D,p)>C_2$ 时,方程 (3.6.1)至多有1组解(x,m,n).

1994年,曹珍富[14]讨论了比(3.6.1)更一般的方程

$$D_1x^2 + 2^nD_2 = p^n$$
, $x, m, n \in \mathbb{N}$, (3.6.12)

这里 D_1, D_2 是互素的正奇数, p 是适合 $p \mid D_1D_2$ 的奇素数. 他证明了:对于给定的 D_1, D_2, p, m , 当 $D_1D_2 \neq 3 \pmod{8}$ 且 $m \geq 3$ 时, 方

程(3.6.12)至多有2组解(x,n).然而,根据文献[44]可知上述结果是已知的,而且其中的限制条件均可略去,对此,乐茂华[41]运用 Gel'fond-Baker 方法给出了比较一般的结果,他证明了:对于给定的 D_1 , D_2 ,p 以及 $\delta \in \{0,1\}$,方程(3.6.12)至多有2组解(x,m,n)适合 $m \equiv \delta \pmod{2}$;特别是当 $\max(D_1,D_2,p) > C_1$ 时,除了一类已知的例外情况以外,该方程至多有1组解(x,m,n)适合 $m \equiv \delta \pmod{2}$.

同样,运用定理 3.2.1 的证明方法,可以得到方程(3.6.2)的解数的上界,不过目前尚未见到这方面的具体结果。另外,由于方程(3.6.1)和(3.6.2)分别是方程(5.2.1)和(5.2.9)的特例,所以根据文献[10],[11],[21]中的结果可以直接推出这两个方程的解的上界(参见 § 5.2 节).

§ 3.7 方程 $f(x) = kp_1^{n_1}p_2^{n_2}\cdots p_s^{n_s}$

设 $f(X) = a_0 X^m + a_1 X^{m-1} + \cdots + a_m \in 2[X]$ 是電 上不可约的 m(m>1) 次多项式,k 是正整数, p_1, p_2, \cdots, p_n 是适合 $p_1 < p_2 < \cdots < p_n$ 的素数;又设 q_1, q_2 分别是 a_0 和 k 的最大素因数, $p = \max(p_n, q_1, q_2)$ 。显然,本章前六节所讨论的方程都是方程

$$f(x) = k p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}, x \in \mathbb{N}, n_1, n_2, \cdots, n_r \in \mathbb{Z},$$

$$n_1 \ge 0, n_2 \ge 0, \cdots, n_r \ge 0$$
(3.7.1)

的特例,运用定理 2.1.1 的证明方法可得:

定理 3.7.1 方程(3.7.1)仅有有限多组解(x,n_1,n_2,\dots,n_s),而且这些解都满足 $\max(x,n_1,n_2,\dots,n_s)$, $< C_1(m,|\Delta_f|,p)$,其中 Δ_f 是 f(X)的判别式 .

证 由于 $a_0^{m-1}f(X) = (a_0X)^m + a_1(a_0X)^{m-1} + \cdots + a_0^{m-1}a_m$,所以不妨假定 $a_0=1$ 。同样,不妨假定 k=1。设 x=a 是代数方程 (1,1,2)的根。此时 $K=\mathbb{Q}(a)$ 是 n 次代数数域。设 Δ_K , O_K , h_K 分别是 K 的判别式,代数整数环和类数; 又设 a_1,a_2,\cdots,a_m 是 K 到心的 m 个嵌入, $a_i=a_i$ (a_i) $(i=1,2,\cdots,m)$,并且规定 $a_1=a_i$ 从

(3.7.1)可得

$$(x - a_1)(x - a_2)\cdots(x - a_n) = p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r} \quad (3.7.2)$$

设 P_1, P_2, \dots, P_r 是 O_K 中关于相伴素数 p_1, p_2, \dots, p_r 的所有不同的素理想数 . 从(1.3.15)可知 t 适合

$$t \leqslant ms. \tag{3.7.3}$$

设 $n = \max(n_1, n_2, \dots, n_n)$. 从(3.7.2)可得

$$[x - a_1] = P_1^{U_1} P_2^{U_2} \cdots P_i^{U_i}, \qquad (3.7.4)$$

其中 U_1,U_2,\cdots,U_l 是适合

$$0 \le U_i \le mn, j = 1, 2, \dots, t$$
 (3. 7. 5)

的非负整数、由于存在 O_k 中的代数整数 $\beta_j(j=1,2,\cdots,t)$ 可使 $P_i^k = [\beta_i](j=1,2,\cdots,t)$,故有

$$x - a_1 = \rho \gamma_0 \gamma_1^{a_1} \gamma_2^{a_2} \cdots \gamma_{i}^{a_i}, \qquad (3.7.6)$$

其中 ρ 是 Κ 中适合

$$|\log |a_i(\rho)|| < C_2(|\Delta_i|), i = 1, 2, \dots, m$$
 (3.7.7)

的单位数, γ_0 , γ_1 , γ_2 ,..., γ_i 分别是 O_K 中适合

$$|\log|\sigma_{i}(\gamma_{0})|| < C_{1}(t, |\Delta_{k}|) p_{i}, |\log|\sigma_{i}(\gamma_{j})|| < C_{1}(1, |\Delta_{k}|) \log|\sigma_{i}(\gamma_{j})|| < C_{2}(1, |\Delta_{k}|) \log|\sigma_{i}(\gamma_{j})|| < C_{3}(1, |\Delta_{k}|) \log|\sigma_{i}(\gamma_{j})|| < C_{4}(1, |\Delta_{k}|)$$

的代数整数,而且 $\gamma_j(j=1,2,\cdots,t)$ 分别与 $\beta_j(j=1,2,\cdots,t)$ 相结合, $\mu_i(j=1,2,\cdots,t)$ 是适合

$$U_j = u_j h_K + v_j, v_j \in \mathbb{Z}, 0 \leq v_j < h_K, j = 1, 2, \dots, t$$

$$(3.7.9)$$

的非负整数:

设 $\rho_i = \sigma_i(\rho), \gamma_{ij} = \sigma_i(\gamma, j) (i = 1, 2, \dots, m, j = 1, 2, \dots, t)$. 从 (3.7.6)可知

$$x - a_i = \rho_i \gamma_{i0} \gamma_{i1}^{a_1} \cdots \gamma_{il}^{a_l}, i = 1, 2, \cdots, m.$$
 (3.7.10)

因为 m>1,故从(3.7.10)可得

$$|a_1 - a_2| = |x - a_1| \left| \frac{\rho_2 \gamma_{20} \gamma_{21}^{\mu_1} \cdots \gamma_{2l}^{\mu_l}}{\rho_1 \gamma_{10} \gamma_{11}^{\mu_1} \cdots \gamma_{2l}^{\mu_l}} - 1 \right|.$$
 (3.7.11)

不妨假定 $|x-a_1| = \max_{x=1,2,\dots,n} |x-a_1|$. 从(3.7.2)可得

$$|x-a_1| \ge (p_1^{n_1} p_2^{n_2} \cdots p_1^{n_2})^{1/m} \ge p_1^{n/m}.$$
 (3. 7. 12)

由于 f(X)在Q 上不可约,故有 $a_1 \neq a_2$. 如果

$$\left|\frac{\rho_2 \gamma_{20} \gamma_{21}^* \cdots \gamma_{2l}^*}{\rho_1 \gamma_{10} \gamma_{11}^* \cdots \gamma_{1l}^*} - 1\right| \ge 1, \qquad (3.7.13)$$

则因

$$|a_1 - a_2| < C_5(|\Delta_K|),$$
 (3.7.14)

故从(3.7.11),(3.7.12)立得

$$n < C_6(m, |\Delta_K|). \tag{3.7.15}$$

如果(3.7.13)不成立,则有适合 $|b| \leq \max(u_1, u_2, \dots, u_i)$ 的整数 b,可使

$$\left|\frac{\rho_{2}\gamma_{20}\gamma_{21}^{\bullet}\cdots\gamma_{2l}^{\bullet}}{\rho_{1}\gamma_{10}\gamma_{11}^{\bullet}\cdots\gamma_{1l}^{\bullet_{l}}}-1\right| \geq \frac{1}{\pi}\left|\log\frac{\rho_{2}\gamma_{20}\gamma_{21}^{\bullet}\cdots\gamma_{2l}^{\bullet_{l}}}{\rho_{1}\gamma_{10}\gamma_{11}^{\bullet}\cdots\gamma_{1l}^{\bullet_{l}}}-b\log(-1)\right|.$$
(3.7.16)

根据(1.8.11),从(3.7.7),(3.7.8)和(3.7.16)可得

$$\log \left| \frac{\rho_2 \gamma_{20} \gamma_{21}^{\bullet} \cdots \gamma_{2l}^{\bullet}}{\rho_1 \gamma_{10} \gamma_{11}^{\bullet} \cdots \gamma_{1l}^{\bullet}} - 1 \right|$$

$$> -C_7(t, |\Delta_K|, \rho_t) \log \max (u_1, u_2, \cdots, u_t). \tag{3.7.17}$$

根据(3.7.12),将(3.7.17)代入(3.7.11)后得

$$\log |a_1 - a_2| + C_1(t, |\Delta_K|, p_1) \log \max(u_1, u_2, \dots, u_n) >$$

$$\log|x - a_1| > \frac{n}{m} \log p_1.$$
 (3.7.18)

因为从(3.7.3),(3.7.9)可知

$$\max(u_1, u_2, \dots, u_i) \leq \frac{1}{h_K} \max(U_1, U_2, \dots, U_i) \leq \frac{mn}{h_K},$$
(3.7.19)

故从(3.7.2),(3.7.14),(3.7.18)可知 n 満足

$$n < C_8(m, |\Delta_K|, p_i).$$
 (3.7.20)

于是,结合(3.7.15)和(3.7.20)立得 $n < C_s(m, |\Delta_K|, p_s)$,并且从(3.7.2)可知 $\max(x_1, n_1, n_2, \dots, n_s) < C_1(m, |\Delta_K|, p_s)$. 由于当 $a_0 = k = 1$ 时, $p = p_s$,故得本定理. 证完.

关于方程(3.7.1)的解(x,n_1,n_2,\cdots,n_r)的个数,Stewart^[67]证明了:当 k 充分大时,该方程至多有 $m^{\omega(k)+2}(s+1)$ 组解,其中 $\omega(k)$ 是 k 的 不同 素因 数 的 个 数 . 另一方面,Erdōs,Stewart 和 Tijdeman^[19]曾经指出:对于任何的 m,都有 m 次多项式 f(X)可使 方程(3.7.1)有很多解.在这方面,Moree 和 Stewart^[55]具体证明了:对于任何正数 δ ,当 k=1 且 $s>C_{10}(\delta)$ 时,存在适合 $a_0=1$ 的 m 次多项式 f(X),可使方程(3.7.1) 至少有 $\exp((m-\delta)s^{1/m}/(\log s)^{1-1/m})$ 组解(x,n_1,n_2,\cdots,n_r).

根据定理 3.7.1 虽然可得方程(3.7.1)的解和解数的可有效计算的上界,但是这些上界通常是相当大的. 因此,Pethō 和 de Weger^[58],Smart^[54] 66],Mertiman 和 Smart^[53] 等人分别对某些较小的 m, s 以及 p_1 , p_2 , \cdots , p_n , 给出了求得方程(3.7.1)的全部解的具体算法. 这些算法综合运用了 Gel'[ond-Baker 方法和丢番图通近方法,形成了当今计算数论中的重要内容.

参考文献

- [1] Alter R. On the nonexistence of close-packed double Hamming error-correcting codes on q=7 symbols. J Comput Sys Sci. 1968, 2, 169-176.
- [2] Alter R. On a diophantine equation related to perfect codes, Math Comp. 1971. 25:621—624.
- [3] Apéry R., Sur une equation diophantienne, C.R. Acad Sci. Paris Sèr. A, 1960, 251; 1263—1264.
- [4] Apéry R. "Sur une equation diophantienne, CR Acad Sci Paris Sèr A. 1960. 251, 1451—1452.
- [5] Baulin V. I., On an indeterminate equation of the third degree with least positive discriminant, Tol'sk Gos Ped Inst U'den Zap Fiz Mat Nauk Vyp, 1960, 7, 138—170(Russian).
- [6] Baoder E. A., Herzberg N. P., Some diophantine equations related to the quadratic form ax² + by², ln; Rota G-C ed., Studies in Algebra and Number Theory, San Diego: Academic Press, 1979, 219—272.
- [7] Beukers F., On the generalized Ramanujan-Nagell equation 1, Acta Arith, 1980, 38, 389-410; I. jibid, 1981, 39, 113-123.

- [8] Bremmer A., Calderbank R., Hanion P., Morton P., Wolfskill J., Two-weight ternary codes and the equation $y^2 = 4 \cdot 3^4 + 13$, J Number Theory, 1983, 16:212—234.
- [9] Browkin G., Schinzel A. On the equation 2" D = y², Bull Acad Polon Sci Ser Sci Math Astr Phys., 1960, 8, 311-318.
- [10] Bugeaud Y., On the diophantine equation $x^2 p^2 = \pm y^2$, Acta Arith, 1997, 80: 213—223.
- [11] Bugeaud Y. On the diophantine equation $x^2 2^n = \pm y^n$. Proc Amer Math Soc. 10 appear.
- [12] Calderbank R. On uniformly packed [n.n-k.4]codes over GF (q) and a class of caps in PG(k-1.q). J London Math Soc. 1982, 26, 365—384.
- [13] 曹珍萬,方程 x⁴+2"=y"和 Hugh Edgor 问题,科学课报,1986,31:555—556.
- [14] 曹珍富,关于丢番图方程 Cz²+2™D=4*,数学年刊,1994,15A,235—240.
- [15] Chen X-G. Le M-H., On the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=L^*$, Publ. Math. Debrecen, 1996, 49, 85—92.
- [16] Cahen E. L. A note on perfect double error-correcting codes on q symbols. Inform Control, 1964, 7, 381—384.
- [17] Cuhen E. L., On the Ramanujan-Negell equation and its generalizations. In: Number Theory, Banff, AB, 1988, Berlin, de Gruyter, 1990, 81—92.
- [18] Cohn J. H. E., Eight diophentine equations, Proc Landon Math Sec., 1966, 16, 153 —156, Addeodum.; ibid, 1957, 17, 381.
- [19] Erdős P., Stewart C. L., Tijdeman R., On the number of solutions of the equation x+y=x in S-units. Compositio Math, 1988, 88:37—56.
- [26] Goo Y-D. On the diophentine equation $x^2 = 2^{2a}k^{2a} 2^{2a}k^{a+a} + 1$. Discuss Math. 1995.16.10—14.
- [21] Guo Y-D. Le M-H., A note on the exponential diophantine equation $x^2 + 2^n = y^2$. Proc Amer Math Soc., 1995, 123, 3627—3629.
- [22] 郭永东,乐茂华、美于广义 Ramanujan-Nagell 方程 x²+D=k* 的解數,數學学 根,即将发表。
- [23] 华罗庚、数论导引、北京:科学出版社、1979-
- [24] Jungnickel D., Difference sets, In, Dinitz J. Sünson D. R. eds., Contemporary Design Theory, A Collection of Surveys, New York, Wiley, 1992, 241—324.
- [25] 乐茂华,关于广义 Ramarrujan-Nagell 方程 1,科学通报,1984,29,268—27], 1; ihid,1985,30:396; 1; 东北数学,1986,4:180—184.
- [26] 乐英华,--类虚二次域类数的可除性,科学通报,1987,32:124—727.

- [27] Le M-H., The diophantine equation $x^2 + D^2 = p^2$. Acta Atith, 1989, 52, 255—265.
- [28] Le M-H., The diophantine equation $x^2 = 4q^m + 4q^m + 1$, Proc Amer Math Soc. 1989, 106, 599—604.
- [29] Le M.H., On the generalized Ramanujan-Nagell equation $x^2 D = p^2$, Acta Arith, 1991, 58, 289—298.
- [30] 乐茂华,关于丢香图方程 $x^2-D=p^*$ 的解散,数学学报,1991,34,378—387.
- [31] Le M-H. On the number of solutions of generalized Ramanujan-Nageli equation $x^2 D = 2^{a+2}$. Acta Arith 1991 60:149—167.
- [32] Le M-H. On the generalized Ramanujan-Nageli equation $x^2 D = 2^{n+2}$. Trans. Amer Math Soc. 1992. 334, 809—825.
- [33] Le M-H., On the diophantine equation $x^2+D=4p^4$. J Number Theory, 1992, 41: 87—97.
- [34] Le M-H. On the diophantine equation $z^2 D = 4p^n$. J Number Theory, 1992.41: 257—271.
- [35] Le M-H. Sur le nombre de solutions de l'equation diophentienne $x^2 + D = p^a$, C. R. Acad Sci Paris Sér. 1. Math., 1993., 317., 135—138.
- [36] Le M-H., The diophentine equation $D_1x^2+D_2=2^{n+2}$, Acts Acid, 1993, 64, 29—41.
- [37] Le M-H. On the number of solutions of generalized Ramanujan-Negell equation $x^2 D = p^*$. Publ Math Debrecen , 1994, 45, 239—245.
- [38] Le M-H., On the diophentine equation $x^2 + D^2 = 2^{a+2}$, Common Math Univ St Pauli, 1994, 43, 127—133.
- [39] 乐茂华,关于指数型丢蓄图方程的整数解,数学进展,1994,23,385—395.
- [40] Le M-H., A note on the generalized Ramanujan-Nagell equation, J Number Theory, 1995, 50, 193—201.
- [41] Le M-H. A note on the number of solutions of the generalized Ramanujan-Negell equation $x^2+D=k^*$. Acta Arith. 1996. 78.11—18.
- [42] Le M-H., A note on the number of solutions of the generalized Ramanujan-Nageli equation $D_1x^2+D_2=4p^a$.] Number Theory, 1997, 62:100—106.
- [43] 乐茂华·关于丢香图方程 D₁x²+2=Dε=y* 的解散,数学进展,1997,26,43—49.
- [44] Le M-H. A note on the diophantine equation $(x^{-1})/(x-1) = (y^{-1})/(y-1)$, Trans Amer Math Soc, to appear.
- [45] Le M-H., On the number of solutions of the generalized Ramanujan-Nagell equation $D_1x^2+D_2=p^4$. Sém Théor Numbres Bordeaux, to appear.

- [46] Le M-H, Xiang Q. A result on Ma's conjecture. [Combin Theory. 1996.73A: 181—184.
- [47] Ljunggren W., Über die Gleichungen $1 + Dx^2 = 2y'$ und $1 + Dx^2 = 4y'$. Norske Vid Selsk Forh, 1944, Trondhjem 17, 93—96.
- [48] Ljunggren W., Oppgave nr 2. Norsk Mai Tidsskrift, 1945, 25, 29.
- [49] Me S-L., McFerland's conjecture on abelian difference sets with multiplier L. Designs Codes Cryptography. 1992, [1321—322.
- [50] Ma S-L., A survey of partial difference sets. Designs Codes Copprography, 1994, 4,221-251.
- [51] Mahlet K., On the greatest prime factor of $ax^a + by^a$, Nieuw Arch Wisk (3), 1953, 1, 113—122.
- [52] McFarland R. L. A family of difference sets in non-cyclic groups, J Combin Theory, 1973, A15, 1—10.
- [53] Merriman J. R., Smart N.P., The calculation of all algebraic integers of degree 3 with discriminant a product of powers of 2 and 3 cmfy, Publ Math Debrecen. 1993.43:195-205.
- [54] Mignette M., On the automatic resolution of certain diophancine equations, In.

 Proc EUROSAM 84, Lecture Notes Comput Sci. 174, Berlin, Springer-Verlag,
 1985; 378—385.
- [55] Moree P., Stewart C. L., Some Remamijan-Nagell equations with many solutions, Jodag Math (NS), 1990, §, 465-472.
- [56] Nagell T. Lesning til oppgave nr 2 Norck Mat Tidaskrift, 1948, 30, 62--64.
- [57] Nagelf T., The diophentine equation $x^2 + 7 = 2^{\circ}$. Ark Mat, 1960, 4, 185—187.
- [58] Pethő A., de Weger B. M. M., Products of prime powers in binary recurrence sequences 1.Math Comp. 1986, 47, 713-727, 1 ribid, 47, 729-739.
- [59] Ramanujan S. , Question 164, J Indian Math Soc. 1913, 5; 120.
- [60] Ramasamy A. M. S., Ramanujam's equation.] Ramanujan Math Soc., 1992, ?: 133—153.
- [61] Schinzel A., On two theorems of Gelf fond and some of their applications, Acta Arith, 1967, 13:177-236; Addendum; ibid, 1990, 56:181.
- [62] Shapiro H. S., Slotnick D. L., Or, the mathematical theory of ecror-correcting codes, J B M J Res Davelop, 1959, 3, 25-34.
- [63] Skinner C. The diophantine equation $x^2 = 4q^n 4q + 1$. Pacific J Math, 1989, 139, 303—309.
- [64] Smart N. P., A class of diophantine equations. Publ Math Debrecen, 1992, 41, 225-229.

- [65] Smart N. P. "Solving a quartic discriminant form equation, Publ Math Debrocen, 1993.43, 29—39.
- [66] Smart N. P., S-integral points on elliptic curves, Math Proc Cambridge Philos Soc. 1994, 116; 391—399.
- [67] Stewart C. L. On the number of solutions of polynomial congruences and Thue equations.] Amer Math Soc. 1991, 4:793-835.
- [68] 孙琦,曹珍富,关于方程 $x^2+D^m=p^m$ 和方程 $x^2+2^m=y^m$,四川大学学报〈自然科学版)、1988、25:164—169.
- [69] Tanahashi K. On the diophantine equation $x^2 + 7^4 = 2^n$ and $x^2 + 11^n = 3^n$, Predent Fac Cifu College Dent, 1977, 77—79.
- [70] Toyoizumi M. On the diophantine equation $x^2 + D^m = 2^n$. Comment Math Univ St. Pauli, 1979, 27:105—111.
- [71] Toyoizomi M. On the diophantine equation; $y^2+D^m=\rho^*$. Acta Arith. 1983. 42; 303—309.
- [72] Tzanakis N. On the diophantine equation $y^2 D = 2^k$. J Number Theory 1983. 17:144—164.
- [73] Tzanakis N. Wolfskill J., On the diophantine equation $y^2 = 4q^2 + 4q + 1$, J Number Theory, 1988, 23, 219—237.
- [74] Tzanakis N. Wolfskill J., The diophantine equation $x^2 = 4q^{\alpha/2} + 4q + 1$ with an application to coding theory, 1987, 26, 96—116.
- [75] Xu T-J. Le M-H. On the diophantine equation $D_1x^2 + D_2 = k^2$. Publ Math Debrecen. 1995. $47_1293 297$.

第四章 椭圆方程、超椭圆方程

设m,n是大于1的正整数,f(X)是m次整系数多项式.当mn=6时,方程

$$f(x) = y^*, x, y \in \mathbb{Z}$$

称为椭圆方程;当 mn>6 时,称为超椭圆方程.目前讨论较多的二元非齐次多项式方程大多属于这两种类型.本章主要介绍Gel'fond-Baker 方法在椭圆方程和超椭圆方程中的应用.

§4.1 椭圆方程

设 a_0,a_1,a_2,a_3,k 是适合 $a_0k\neq 0$ 的整数. 椭圆方程通常可表成

 $a_0X^3+a_1X^2+a_2X+a_2=kY^2,X,Y\in\mathbb{Z}.$ (4.1.1) 历史上,Fermat,Euler,Legendre 等数学大师都曾对此有过很多研究,有关这方面的早期工作可参考文献[27],[73].

设
$$x=36a_0kX+12a_1k$$
, $y=216a_0k^2Y$. 将此代入(4.1.1)可得 $x^3-ax-b=y^2$, x , $y\in\mathbb{Z}$, (4.1.2)

其中 $a=432(a_1^2-3a_0a_1)k^2$, $b=1728(a_1^2-27a_0^2a_1-3a_1)k^3$. 方程 (4.1.2) 称为椭圆方程 (4.1.1) 的 Weierstrass 形式. 1914 年, Mordell^[69]通过分析该方程与四次 Thue 方程的关系,讨论了它的解数的有限性. 对于二元四次原型 $g=g(X,Y)=b_0X^4+4b_1X^3Y+6b_2X^2Y^2+4b_1XY^3+b_2Y^4$,设

$$I_{2}(g) = b_{0}b_{4} - 4b_{1}b_{3} + 3b_{2}^{2}, I_{3}(g) = \begin{vmatrix} b_{0} & b_{1} & b_{2} \\ b_{1} & b_{3} & b_{3} \\ b_{2} & b_{3} & b_{4} \end{vmatrix};$$

$$(4. 1. 3)$$

又设多项式

$$u = u(X,Y) = -\frac{1}{144} \begin{vmatrix} \frac{\partial^2 g}{\partial X^2} & \frac{\partial^2 g}{\partial X \partial Y} \\ \frac{\partial^2 g}{\partial X \partial Y} & \frac{\partial^2 g}{\partial Y^2} \end{vmatrix}, v = v(X,Y)$$
$$= -\frac{1}{8} \begin{vmatrix} \frac{\partial g}{\partial X} & \frac{\partial g}{\partial Y} \\ \frac{\partial u}{\partial X} & \frac{\partial u}{\partial Y} \end{vmatrix}.$$

(4.1.4)

对于方程(4.1.2),设 $D=4a^3-27b^2$. Mordell^[66]证明了:当 $D\neq 0$ 时,如果(x,y)是方程(4.1.2)的一组解,则有适合

$$I_2(g) = 4a I_1(g) = 4b$$
 (4.1.5)

的二元四次原型 g=g(X,Y) 以及整数 r is 可使

$$g(r,s) = 1$$
, $u(r,s) = x$, $v(r,s) = 2y$. (4.1.6)

由于已知适合(4.1.5)的二元四次原型 g(X,Y) 仅有有限多个[**]; 又从 Thue^[100]的结果可知,对于给定的 g(X,Y),适合(4.1.6)中 第一个等式的整数(r,s)仅有有限多组.因此,当 $D\neq 0$ 时,方程 (4.1.2)仅有有限多组解(x,y). 此后,Siegel^[88]根据这一证明思 路,运用丢番图逼近方法给出了解的非实效性上界。

1968年,Baker^[2]运用代数数对数线性型的下界估计,给出了 Thue 方程的解的可有效计算的上界. 由于从(4.1.3),(4.1.5)可知(4.1.6)中g(X,Y)的系数仅与a,b有关,因此从上述分析可在 $D\neq 0$ 的情况下得出方程(4.1.2)解的可有效计算的上界. 同时, Baker^[2]还用更为直接的方式证明了上述结果:

定理 4.1.1 当 $D \neq 0$ 时,方程(4.1.2)的解(x,y)都满足 $\max(|x|,|y|) < C_1(A)$,其中 $A = \max(|a|,|b|)$.

证 设(x,y)是方程(4,1,2)的一组解. 当 xy=0 时,本定理显然成立. 因此以下仅须考虑 $xy\neq0$ 时的情况.

因为 $D\neq 0$,故有

$$x^3-ax-b=(x-a_3)(x-a_2)(x-a_3),$$
 (4.1.7)

其中 $\alpha_1, \alpha_2, \alpha_3$ 是互不相同的代数整数. 设 $K = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$. 由于 $|\Delta_K| < C_2(A)$, 故从(4.1.2), (4.1.7)可得

$$x - a_i = \frac{\gamma_i}{\delta_i} \beta_i^{\dagger}, i = 1, 2, 3,$$
 (4. 1. 8)

其中 β_i , γ_i , δ_i (i=1,2,3)是 O_K 中满足条件

$$\max(\left[Y_{i}\right],\left[\delta_{i}\right]) < C_{1}(A), i = 1, 2, 3 \qquad (4.1.9)$$

的代数整数.设

$$\lambda_i = \frac{\gamma_i}{\delta_i}, i = 1, 2, 3. \tag{4.1.10}$$

从(4.1.8),(4.1.10)可得

$$\begin{cases} \lambda_1 \beta_1^2 - \lambda_2 \beta_2^2 = \alpha_2 - \alpha_1, \\ \lambda_2 \beta_2^2 - \lambda_3 \beta_3^2 = \alpha_3 - \alpha_2, \\ \lambda_3 \beta_3^2 - \lambda_1 \beta_1^2 = \alpha_1 - \alpha_3. \end{cases}$$
(4.1.11)

设 $L = K(\lambda_1^{1/2}, \lambda_2^{1/2}, \lambda_3^{1/2})$,此时 $[L \cdot K] \leq 8$,并且从(4, 1, 9),(4, 1, 10)可知

$$|\Delta_i| < C_i(A). \tag{4.1.12}$$

又设 $\zeta = \delta_1 \delta_2 \delta_3$,

$$\epsilon_1 = \lambda_2^{1/2} \beta_2 - \lambda_3^{1/2} \beta_3, \epsilon_2 = \lambda_3^{1/2} \beta_3 - \lambda_2^{1/2} \beta_2, \epsilon_3 = \lambda_1^{1/2} \beta_1 - \lambda_2^{1/2} \beta_2.$$
(4.1.13)

此时从(4.1.9)可知

$$|\xi| < (C_1(A))^{-1};$$
 (4.1.14)

又从(4.1.10),(4.1.13)可知 ζει,ζει,ζει 是 ん 中満足

$$\zeta \epsilon_1 + \zeta \epsilon_2 + \zeta \epsilon_3 = 0 \qquad (4.1.15)$$

的代數整数. 因为 α_1 , α_2 , α_3 互不相同,所以从(4.1.13)可知 $\epsilon_1\epsilon_3\epsilon_3$ $\neq 0$. 因此 $\xi \epsilon_i (i=1,2,3)$ 分别可表成

$$\xi \varepsilon_i = \xi_i \eta_i^2, i = 1, 2, 3,$$
 (4.1.16)

其中 $\eta(i=1,2,3)$ 是 L 中的单位数, $\xi_i(i=1,2,3)$ 是 O_L 中适合

$$\max(\left[\xi_1, \xi_3, \xi_3\right]) < C_5(A) \qquad (4.1.17)$$

的非零代数整数.从(4.1.15),(4.1.16)可得

$$\xi_1 \left(\frac{\eta_1}{\eta_3}\right)^3 + \xi_2 \left(\frac{\eta_2}{\eta_3}\right)^3 = -\xi_3. \tag{4.1.18}$$

设 $\theta_1 = \eta_1/\eta_2$, $\theta_2 = \eta_2/\eta_1$. 从(4.1.18)可知此时(X,Y)=(θ_1,θ_2)是 L上的三次 Thue 方程

$$\xi_1 X^1 + \xi_2 Y^2 = -\xi_{11} X Y \in O_k \tag{4.1.19}$$

的解,由于从文献 [1:1] 可知,方程 (4.1.19) 的解 (X,Y) 都满足 $\max (X,Y) < C_{\ell}(d, [\xi_1], [\xi_2], [\xi_3])$,其中 d 是 L 的次数. 因此从 (4.1.12), (4.1.17), (4.1.18) 可知

$$\max\left(\left[\theta_{1}\right],\left[\theta_{2}\right]\right) < C_{7}(A), \tag{4.1.20}$$

于是从(4.1.8),(4.1.9),(4.1.10),(4.1.15),(4.1.20)可得|x| < $C_s(A)$,并且从(4.1.2)立得 $\max(|x|,|y|)$ < $C_t(A)$. 定理证完.

关于定理 4.1.1 中的常数 $C_1(A)$, 文献[2]具体算出 $C_1(A)$ < exp($10^sA^{10^s}$). 此后, Stark, Sprindžuk, Schmidt 等人分别作了改进,但是他们得到的结果基本上都是形如 $C_1(A)$ < exp($C_1A^{c_1}$)之形的上界(参见文献[91]). 1985 年, Lang [48] 根据函数域上椭圆曲线的几何性质,对于解的上界提出了以下猜想:

猜想 4.1.1 当 $D \neq 0$ 时,方程(4.1.2)的解(x,y)都满足 $\max(|x|,|y|) < C_0 A^{c_{12}}$.

另外, Zagier^[m]曾经对方程(4.1.2)的解的上界提出了比猜想 4.1.1 更强的猜想:

猜想 4.1.2 当 D ≠ 0 时, 方程(4.1.2)的解(x,y)都适合

$$\frac{\log|x|}{\log\max(e,|a|^{1/2},|b|^{1/3})} < 10 + o(1).$$

然面, Elkies 对上述猜想提出了反例(参见文献[111: Addendum]). 他证明了:存在无限多组适合 $D\neq 0$ 的整数 a,b,可 \cdot 130 \cdot

使方程(4.1.2)有满足

$$\frac{\log|x|}{\log\max(e,|a|^{1/2},|b|^{1/3})} > 12 + o(1)$$

的解(x,y),由此自然产生了以下猜想:

猜想 4.1.3 存在无限多组适合 D≠0 的整数 a、b,可使方程 (4.1.2)有满足

$$\frac{\log|x|}{\log\max(e,|a|^{1/2},|b|^{1/3})} > C_{14} + o(1).$$

对于给定的整数 a,b,Stroeker 和 Tzanakis^[61],Stroeker 和 de Weger^[93],Bilu^[6],Gebel,Pethō 和 Zimmer^[33],Tzanakis^[164]等人分别给出了求解方程(4.1.2)的具体算法,其中的关键步骤都与 Gel'fond-Baker 方法有关.

$$x^3 - b = y^2, x, y \in \mathbb{Z}$$
, (4.1.21)

称为 Mordell 方程. 这是一类重要的椭圆方程,文献[69]第 26 章详细介绍了这方面的早期工作. 1968 年, Baker[1:1]证明了:方程(4.1.21)的解(x,y)都满足 $\max(|x|,|y|) < \exp(10^{10}|b|^{10^4})$. 此后, $\operatorname{Stark}^{[91]}$ 进一步证明了:对于任何正数 δ_1 $\max(|x|,|y|) < \exp(C_{15}(\delta)|b|^{1+\delta})$. 另外,从文献[97]可知当 |b| 充分大时,方程(4.1.21)的解的上界还可以进一步改进.

设x,y是适合 $x^3 \neq y^2$ 的正整数。 $Hall^{[39]}$ 曾经对此提出了以下两个猜想。

猜想 4.1.4 $|x^3-y^2| > C_{14}x^{1/2}$.

猜想 4. 1. 5 对于任何适合 $\delta < 1/2$ 的正数 δ , $|x^3 - y^2| > C_{17}$ $(\delta)x^3$.

显然,上述猜想都与 Mordell 方程的解的上界有关,同时,它们还与其它数论问题有着密切的联系(参见文献[23],[29],[49],[70],[76]).

对于给定的非零整数 b,设 N(b)是方程(4.1.21)适合 gcd(x,y)=1的解(x,y)的个数. Stephens^[42], Mohanty 和 Ramasamy^[44],

Kihata^[43]等人分别找出了可使解数 N(b)很大的 b 值. 例如, 文献 [45]证明了, 存在无限 多个 b 值, 可使 $N(b) \ge 20$. 另外, Mohanty^[41], Lee 和 Vélez^[57]等人还讨论了方程(4.1.21)的可使 y 构成等差数列的解数.

关于一般的椭圆方程(4.1.2)的解数,Schmidt^[88]提出了以下 情想:

猜想 4. 1. 6 当 $D \neq 0$ 时,对于任何正数 ∂ ,方程(4. 1. 2)至多有 $C_{10}(\partial)A^{\delta}$ 组解(x,y)适合 $\gcd(x,y)$ =1.

设 $f(X) = X^3 - aX - b$, $\Delta_f = 16(4a^3 - 27b^2)$ 是 f(X)的判别式. 方程(4·1·2)与有理椭圆曲线 $E: f(X) = Y^2$ 的算术性质有着直接的联系. 设 f_E 是椭圆曲线 E 的导子. Szpiro [97·48] 曾经对此有过以下两个猜想.

猜想 4.1.7 $|\Delta_f| < f_{E^1}^{C_{11}}$.

猜想 4.1.8 对于任何正数 δ , $|\Delta_f| < C_m(\delta) f_{\delta}^{p+d}$.

这是两个迄今尚未解决的难题,已知对于某些类型的椭圆曲线 E,猜想 4.1.8 等价于。

猜想 4.1.9 如果 a,b,c 是适合

$$a + b + c = 0, a \equiv 1 \pmod{4},$$

 $c \equiv 0 \pmod{32}, \gcd(a,b) = 1$ (4.1.22)

的非零整数,G 是 |abc|的不同素因数的乘积,则对于任何正数 δ , 必有 $|abc/16|^2 < C_{21}(\delta)G^{4+\delta}$.

显然,上述的猜想 4.1.9 类似于 Oesterlè-Masser abc-猜想 (参见本书 \S 6.4 节),因此这是一个相当困难的问题.对此, Masser $[G^{2}]$ 证明了猜想 4.1.8 和 4.1.9 中的指数"6+8"是无法改进的.有关这些流想的背景和进展情况可参考文献 [99], [105].

§4.2 超椭圆方程

设m,n 是适合 $m \ge 2, n \ge 2$ 以及mn > 6 的正整数, $f(X) = a_0 X^m + a_1 X^{m-1} + \dots + a_m$ 是m 次整系数多项式, 此时, 方程

$$f(x) = y^{\prime}, x, y \in \mathbb{Z} \tag{4.2.1}$$

称为超椭圆方程. 早在本世纪 20 年代, Thue^[161], Landau 和 Ostrowski^[17], Siegel^[87]就已经开始讨论了此类方程. 综合上述结果可知:如果

- (i) $m \ge 2$,n > 3 且 f(X)至少有两个不同的根;或者
- (ii)m>3, n≥2且 f(X)至少有三个不同的根;

则方程(4.2.1)仅有有限多组解(x,y). 1964 年,LeVeque^[58]给出了该方程解数有限性的另一个必要条件. 设 a_1 , a_2 ,…, a_k 是多项式 f(X)的所有不同的根, e_1 , e_2 ,…, e_k 分别是它们的重数. 此时

$$f(X) = a_0(X - a_1)^{\epsilon_1}(X - a_2)^{\epsilon_2}\cdots(X - a_k)^{\epsilon_k}. \quad (4.2.2)$$
又设

$$m_i = \frac{n}{\gcd(e_i, n)}, i = 1, 2, \cdots, k.$$
 (4.2.3)

LeVeque 证明了:如果

(iii)数组(m_1, m_2, \dots, m_n)不是(2,2,1,1, \dots ,1)或(t,1,1, \dots ,1)的排列,其中 t 是大于 1 的正整数;则方程(4,2,1)仅有有限多组解(x,y).

1969年,Baker^[3]首先对于条件(i)或(ii)成立的情况,给出了该方程解的可有效计算的上界.他证明了:

定理 4.2.1 如果条件(i)或(ii)成立,则方程(4.2.1)的解(x,y)都满足 $\max(|x|,|y|) < C_1(m,n,H_I)$.

证 设 a_1, a_2, \dots, a_n 是多项式 f(X) 的全部根, $K = \mathbb{Q}(a_1, a_2, \dots, a_n)$. 此时,如果(x, y)是方程(4, 2, 1)的一组解,则有

$$a_0(x-a_1)(x-a_2)\cdots(x-a_m)=y^m.$$
 (4.2.4)

首先考虑条件(i)成立时的情况. 不妨假定 $\alpha_1 \neq \alpha_2$. 此时从(4.2.4)可知存在 O_K 中的代数整数 $\beta_i, \gamma_i, \delta_i (i=1,2)$ 适合

$$x - a_i = \frac{\gamma_i}{\delta_i} \beta_i^{\pi}, i = 1.2,$$
 (4.2.5)

其中 $Y_i, \delta_i (i=1,2)$ 满足

$$\max(\lceil Y_i \rceil, \lceil \delta_i \rceil) < C_2(m, H_f), i = 1, 2. \tag{4.2.6}$$

在(4.2.5)消去 ェ 后可得

$$\gamma_1 \delta_2 \beta_1 - \gamma_2 \delta_1 \beta_2 = (\alpha_2 - \alpha_1) \delta_1 \delta_2. \tag{4.2.7}$$

因为 $a_1 \neq a_2$,故从(4.2.7)可知此时(X,Y) = (β_1 , β_2)是 K 上的 n次 Thue 方程

 $\gamma_1 \delta_2 X^* - \gamma_2 \delta_1 Y^* = (a_2 - a_1) \delta_1 \delta_2, X, Y \in O_K$ (4.2.8) 的一组解.由于从文献[1:1]可知定理 2.1.1 中的结果可以推广到任意代数数域上去,所以根据该定理,从 (4.2.6), (4.2.8) 可得

$$\max(|\beta_1|, |\beta_2|) < C_3(m, n, H_f). \tag{4.2.9}$$

于是从 (4.2.1), (4.2.5), (4.2.9) 可知 $\max (|x|, |y|) < C_1$ (m, n, H_i) .

再考虑条件(ii)成立的情况. 不妨假定(4.2.4)中的 a_1, a_2, \dots, a_n 适合 $a_1 \neq a_2$ 以及 $a_2 \neq a_3$. 此时,运用定理 4.1.1 的证明方法亦可得 $\max(|x|,|y|) < C_1(m,n,H_i)$. 定理证完.

关于定理 4.2.1 中的常数 $C_1(m,n,H_f)$, 文献[3]具体算出: 当n=2时, $C_1(m,n,H_f)$ < exp exp exp $(m^{10m^3}H_f^{m^2})$; 当 $n\ge 3$ 时, $C_1(m,n,H_f)$ < exp exp $((5n)^{10}m^{10m^3}H_f^{m^2})$, 此后, Baker 和 Coates, Gyōry, Sprindžuk, Trelina, Kotov 等人相继对上述结果作了改进. 目前有关这方面的最好结果分别是由 Brindza [10], Poulakis [25-77], Voutier [100] 等人得到的. 综合他们的结果可知 $C_1(m,n,H_f)$ 不超过 m,n,H_f 的一重指数函数. 另外, 乐茂华[55] 运用初等方法, 对于一类无法直接用条件(i), (ii) 或(iii) 来判别的超椭圆方程, 证明了解数有限并给出了解的可有效计算的上界. 他证明了: 当 $n|m,a_0=1,a_1,\cdots,a_m$ 不全为零且其中第一个非零数与n 互素时, 方程(4.2.1) 仅有有限多个解(x,y), 而且这些解都满足 |x| < $(4mH_f)^{2m/n+1}$ 以及 |y| < $(4mH_f)^{4m^2/n^2+m/n+1}$.

关于方程(4.2.1)的解数,Evertse 和 Silverman^[10]证明了:当 $m \ge 3$,n = 2 且 $\int (X)$ 至少有 3 个不同的根时,该方程至多有 $7^{4-2+9m}h_K$ 组解(x, y);当 $m \ge 2$, $n \ge 3$ 且 $\int (X)$ 至少有 2 个不

同的根时,至多有 $17^{6n^2+m}n^{2m}h_K$ 组解; 其中 h_K 是代数数域 $K=\mathbb{Q}$ (a_1, a_2, \dots, a_m) 的类数.

设 f(X), g(Y) 分别是次数为 m, n 的整系数多项式。此时,方程

$$f(x) = g(y), x, y \in \mathbb{Z}$$
 (4. 2. 10)

是方程 (4.2.1) 的推广. 这是一类内容十分丰富的高次方程,除了椭圆方程和超椭圆方程以外, Ljunggren, Mordell, Macleod 和 Barrodale, Boyd 和 Kisilevsky, Schinzel, Cohn, Ponnudurai, Avanesov等人分别讨论了其它情况 (参见文献 [86] 第 6 章). 然而, 到目前为止尚未见到有关该方程的解和解数的一般性结果. 1961 年, Davenport, Lewis 和 Schinzel [25]证明了: 当|m-n|=1或 gcd (m,n)>1时, 方程 (4.2.10) 仅有有限多组解 (x,y). 1990 年, Cochrare [20] 对上述结果中的后一种情况作了补充. 他证明了: 当|n| 且 f(X), g(Y) 的首项系数 a, b 的商 a/b 是有理数的 m 次幂时, 如果方程 (4.2.10) 有无限多组解 (x,y), 则必有 g(Y)=f(h(Y)), 其中 h(Y) 是 n/m 次整系数多项式.

设 $f(X,Z) = a_0 X^m + a_1 X^{m-1} Z + \cdots + a_m Z^m$ 是二元 m 次原型. 方程

 $f(x,z) = y', x, y, z \in \mathbb{Z}, \gcd(x,z) = 1$ (4.2.11) 是方程(4.2.1) 的另一类推广。由于包括著名的 Fermat 猜想在 内的很多重要问题都与此类方程有关,所以这是一个相当困难的问题,目前只能解决一些很特殊的情况。

设 p_1, p_2, \dots, p_n 是适合 $p_1 < p_2 < \dots < p_n$ 的素数,集合 S = S (p_1, p_2, \dots, p_n) = $\{\pm p_1^n p_2^n \dots p_n^n | r_1, r_2, \dots, r_n$ 均为非负整数 $\}$. 1979 年,Kotov 和 Trelina [46] 证明了:当条件 (i) 或 (ii) 成立时,方程 (4.2.11) 仅有有限多组解 $\{x, y, z\}$ 适合 $z \in S$,而且这些解都满足 $\max(|x|,|y|,|z|) < \exp\exp(C_4(m,n,H_f)p_n)$. 1984 年,Brindza [16] 对于条件(iii) 成立的情况给出了同样的结果. 上述结果的证明都用到了 Gel'fond-Baker 方法,证明的具体过程基本上与定理 5.3.1 相同.

§ 4.3 方程 x⁴-Dy²=1

设 D 是无平方因数的正整数. 方程

$$x^4 - Dy^2 = 1, x, y \in \mathbb{N}$$
 (4.3.1)

是一类讨论较多的四次超椭圆方程. 50 多年来, Ljunggren, Mordell, Cohn, 柯召和孙琦、曹珍富等人分别运用初等数论方法和代数数论方法对它进行了大量的研究, 有关这方面的早期工作可参见文献[69]的第 28 章.

设 $u_1+v_1\sqrt{D}$ 是 Pell 方程

$$u^{2} - Dv^{2} = 1, u, v \in \mathbb{Z}$$
 (4.3.2)

的基本解. 1984 年,乐茂华[50]和朱卫三[112]分别独立地给出了方程(4.3.1)有解(x,y)的充要条件. 他们证明了:当且仅当方程(4.3.2)的基本解满足 ui 或 ui+Dui 为平方数时,方程(4.3.1)有解(x,y). 上述结果的证明用到了 Jacohi 符号的基本性质,此类方法称为柯召-Terjanian-Rotkiewicz 方法[45]. 此后,该方法被广泛用于讨论更一般的四次方程

$$D_1x^4 - D_2y^2 = \pm 1 \text{ ig } \pm 4.x, y \in \mathbb{N}, \gcd(x,y) = 1$$
(4.3.3)

的可解性,这里 D_1,D_2 是互素的正整数(参见文献[52],[53]).

1942年,Ljunggren^[59]运用代数数论方法证明了:对于给定的 D,方程(4.3.1)至多有 2 组解(x,y). 1989年,乐茂华^[51]运用 Gel' fond-Baker 方法对上述结果作了本质上的改进. 他证明了:

定理 4.3.1 当 D>C, 时,方程(4.3.1)至多有 1 组解(x,y).

证 假如方程(4.3.1)有 2 组解(x_1 , y_1)和(x_2 , y_2),不妨假定 $x_1 < x_2$.由于从文献[59]可知此时该方程没有其它解,所以运用文献[50]中的方法可以证明:存在奇素数 p,可使

$$x_2^2 + y_2 \sqrt{D} = (x_1^2 + y_1 \sqrt{D})^n. \tag{4.3.4}$$

从(4.3.4)可得

$$x_2 \equiv 0 \pmod{x_1}. \tag{4.3.5}$$

因为 $x_1^2-1=Dy_1^2$,故有正整数 $\delta \cdot d_1 \cdot d_2 \cdot y_1 \cdot y_{12}$ 适合

$$x_1^2 + 1 = \delta d_1 y_{11}^2, x_1^2 - 1 = \delta d_2 y_{12}^2,$$
 (4.3.6)

$$d_1d_2 = D_1\delta y_{11}y_{12} = y_{11}\delta = \begin{cases} 1. \pm 2|x_1| & \text{iff.} \\ 2. \pm 2|x_1| & \text{iff.} \end{cases}$$
 (4.3.7)

同时,从 $x_2^2-1=Dx_2^2$ 可得

$$x_1^2 - 1 = \delta d_1 y_2^2, x_2^2 - 1 = \delta d_2 y_{22}^2,$$
 (4.3.8)

其中 シュュ,シュュ是适合

$$\delta y_2, y_{22} = y_2 \tag{4.3.9}$$

的正整数.

设

$$a_1 = x_1 + y_{11} \sqrt{\delta d_1}, \bar{a}_1 = x_1 - y_{11} \sqrt{\delta d_1}, \quad (4.3.10)$$

$$a_2 = x_1 + y_{12} \sqrt{\delta d_2}, \bar{a}_2 = x_1 - y_{12} \sqrt{\delta d_2}.$$
 (4.3.11)

从(4.3.5),(4.3.8),(4.3.9)可知存在大于1的奇数 b₁,b₂可使

$$x_1 + y_{21} \sqrt{\delta d_1} = d_1^{b_1}, x_2 - y_{21} \sqrt{\delta d_1} = \bar{d}_1^{b_1}, \quad (4.3.12)$$

$$x_z + y_{22} \sqrt{\delta d_2} = d_{z'}^2, x_2 - y_{22} \sqrt{\delta d_2} = \bar{d}_{z'}^3.$$
 (4.3.13)

由于从(4.3.10),(4.3.11),(4.3.12),(4.3.13)可知

$$a_1 + \overline{a_1} = a_2 + \overline{a_2},$$
 (4.3.14)

$$a_1^{h_1} + \overline{a}_1^{h_1} = a_2^{h_2} + \overline{a}_2^{h_2};$$
 (4.3.15)

又从(4.3.6)可知 $a_1 \overline{a_1} = -1$ 以及 $a_2 \overline{a_2} = 1$,故从(4.3.14), (4.3.15)可得 $b_1 > b_1$ 以及

$$b_2 > a_1^2 (\log a_1) e^{-4/a_2^2}.$$
 (4.3.16)

设 $A=b_1\log a_1-b_2\log a_2$. 从(4.3.14),(4.3.15)可得

$$0 < \Lambda < \frac{2}{\sigma_2^{2b_\ell}}. (4.3.17)$$

同时,由于从(4.3.6),(4.3.10),(4.3.11)可知 $h(a_1) = \frac{1}{2} \log a_1$,

 $h(a_2) = \frac{1}{2} \log a_2$ 以及[Q(a_1, a_2):Q]=4,因此根据引理 1.8.1 可得

$$\log \Lambda > -C_2(\log a_1)(\log a_2)(\log b_2). \tag{4.3.18}$$

结合(4.3.17),(4.3.18)可得

$$b_2 < C_1 \log a_1;$$
 (4.3.19)

又从(4.3.16),(4.3.19)可得

$$a_1 < C_4.$$
 (4.3.20)

因为从(4.3.10),(4.3.11)可知 $d>4\sqrt{d_1d_2}=4\sqrt{D}$,于是从(4.3.20)立得 $D< C_1$,由此可知:当 $D> C_1$ 时,方程(4.3.1)至多有1组解(x,y). 定理证完.

关于定理 4.3.1 中的常数 C_1 , 文献[118]曾经宣布已经证明了 $C_1 < 2^{2376}$, 文献[51]具体算出 $C_1 < e^{44}$. 此后, 乐茂华^[53], Cipu^[17] 分别运用同样的方法证明了 $C_1 < 9$. 379 · 10⁶ 以及 $C_1 < e^{20.4}$. 由于长期以来仅知当 D=1785 时方程(4.3.1)有 2 组解(x, y), 所以文献[51]对于该方程的解数提出了以下猜想。

猜想 4.3.1 当 $D \neq 1785$ 时,方程(4.3.1)至多有1组解(x, y).

最近,Cipu^[16]根据引理 1. 8. 2,运用定理 4. 3. 1 的证明方法证实了上述猜想。同时,Cohn^[21 · 1]、孙琦和衰平之^[46]分别指出:运用文献[50]中已经证明了的关系式(4. 3. 4),也可从 Ljunggrep^[59]的结果中推知猜想 4. 3. 1 成立。由于从本书§1. 5 节可知方程(4. 3. 2)的基本解 $u_1+v_1\sqrt{D}$ 满足 $\log(u_1+v_1\sqrt{D})<\sqrt{D}\log D$,所以根据文献[50]中得到的有关方程(4. 3. 1)有解的充要条件可知:该方程的解(x,y)都满足 $\max(x,y)< D\sqrt[3]{D}$. 至此,方程(4. 3. 1)的求解问题已得到了圆满的解决。

运用定理 4.3.1 的证明方法还可以讨论其它形如 (4.3.3) 的四次方程的解数,以下介绍这方面的一些结果,

对于互素的正整数 D_1 , D_2 , 乐茂华 $^{[53]}$ 证明了: 当 \max (D_1 , \cdot 138 \cdot

 D_{i}) >2. 374·10¹⁶且 D_{i} 为平方数时,方程

$$D_1 x^4 - D_2 y^2 = 1, x, y \in \mathbb{N}$$
 (4. 3. 21)

至多有 1 组解 (x, y).

设力是正整数. Ujunggren[$^{(\omega)}$ 运用代数数论方法证明了:方程 $x^i - Dy^i = -1$, $x, y \in \mathbb{N}$ (4. 3. 22)

至多有 2 组解 (x, y); 特别是当 D=2 时,该方程恰有 2 组解 (x, y)=(1, 1) 和 (239, 13). 1994 年,陈建华[11]运用 Gel' fond-Baker 方法证明了,当 $D>C_5$ 时,该方程至多有 1 组解 (x, y). 最近,陈建华[11]、陈建华和 Voutier[16]运用丢番图逼近方法完整地解决了方程 (4, 3, 22) 的解数问题。他证明了,当 D>2 时,该方程至多有 1 组解 (x, y); 而且当 $D=a^2d$, a, d 是正整数,d 无平方因数时,该组解满足 $x+y^2\sqrt{D}=(u_1+v_1\sqrt{D})^2$,其中 (u_1, v_1) 是方程

$$u^{12} - Dv^{2} = -1, u^{\prime}, v^{\prime} \in \mathbb{Z}$$
 (4.3.23)

的最小正整数解。另外,陈建华^[15]还将上述结果推广到了一般的方程

$$D_1x^2 - D_2y^4 = -1, x, y \in \mathbb{N}.$$
 (4.3.24)

1942 年,Ljunggren[41]还用代数数论方法证明了。方程

$$x^4 - Dy^2 = -1.x_1y \in \mathbb{N}$$
 (4. 3. 25)

至多有 1 组解 (x, y). 显然、当 (x, y) 是该方程的解时、方程 (4.3.23) 有正整数解 $(u', v') = (x^2, y)$. 最近,Cohn^[22]运用 初等数论方法证明了:如果方程 (4.3.23) 的最小正整数解 (u_1, v_1) 可表成 $u_1' = b^2 k$,其中 b, k 是正整数, k 无平方因数、则方程 (4.3.25) 的解 (x, y) 适合

$$x^2 + y \sqrt{D} = (u_1 + v_1 \sqrt{D})^4$$
. (4.3.26)

设

$$\rho = u_1 + v_1' \sqrt{D}, \hat{\rho} = u_1' - v_1 \sqrt{D}, \quad (4.3.27)$$

从(4.3.26),(4.3.27)可得

$$x^2 = \frac{\rho^4 + \bar{\rho}^4}{2}.$$
 (4. 3. 28)

由于此时 & 必为正奇数, 而且方程 (4.3.25) 至多有1组解, 故从 (4.3.28) 可知 all x 以及

$$kz^2 = \frac{\rho^4 + \bar{\rho}^4}{\rho + \bar{\rho}},$$
 (4. 3. 29)

其中 2=x/bk. 文献 [22] 对于所有适合 $D<10^5$ 的 D 找出了方程 (4.3.25)的解,发现此时 (4.3.29)中的 k 都等于 1. 因此,Cohn^[22] 提出了以下两个猜想。

猜想 4.3.2 如果方程(4.3.25)有解(x,y),则(4.3.29)中的 k 必定等于 1.

猜想 4.3.3 设 (u_1, v_1) 是方程 (4.3.23) 的最小正整数解, ρ , ρ 适合 (4.3.27). 当 $2(u_1)$ 时,不存在大于 1 的奇数 k 以及正整数 z 满足 (4.3.29).

设 n 是大于 2 的 正整数, D 是无平方因数正整数, 方程

$$x^* - 1 = Dy^2, x, y \in \mathbb{N}$$
 (4.4.1)

以及

$$x^* + 1 = Dv^2, x, y \in \mathbb{N}$$
 (4.4.2)

是两类讨论较多的椭圆方程和超椭圆方程。本书上一节提到的方程(4.3.1)和(4.3.25)分别是它们在 n=4 时的特例。

设h(-D) 是虚二次域 $K=Q(\sqrt{-D})$ 的类数. 如果方程 (4.4.1) 有解 (x, y),则可得 O_K 中的理想数方程

$$[x]'' = [1 + y \sqrt{-D}][1 - y \sqrt{D}]. \tag{4.4.3}$$

由于从 (1.5.8) 可知此时 K 中的单位数的个数有限,而且当 $D \neq 1$ 或 3 时, K 仅有单位数 ± 1, 所以从 (4.4.3) 可知方程 (4.4.1) 比较容易解决. 对此, Nagell^[rel]证明了,当 D = 2 时,方程 (4.4.1) 仅当 n = 5 时有解 (x, y) = (3, 11),当 D > 2 且 n = 6 是适合 n > 3 以及 $n \nmid h$ (-D) 的奇素数时,该方程没有适合 $2 \mid x$ 的解 (x, y).因为从 (1.5.39) 可知类数 h(-D)满足h(-D) <

 $\sqrt{D}\log D$, 所以从上述分析可知: 当 n 是适合 $n > \sqrt{D}\log D$ 的奇素数时, 方程 (4.4.1) 没有适合 $2\nmid x$ 的解 (x, y).

设实二次域 $K = \mathbb{Q}(\sqrt{D})$. 由于从 (1.5.10) 可知 K 中存在无限多个单位数, 所以在利用上述方法来讨论方程 (4.4.2) 的过程中会遇到一定的困难. 运用 Gel'fond-Baker 方法可以对该方程得到与方程 (4.4.1) 同样的结果:

定**理 4.4.1** 当 n 是适合 $n > C_1 D (\log D)^2$ 的奇素数时,方程 (4.4.2) 没有适合 $2 \mid x$ 的解 (x, y).

证 设 (x, y) 是方程 (4.4.2) 的一组适合 2|x 的解,又设 h(D)是实二次域 $K=\mathbb{Q}(\sqrt{D})$ 的类数. 从 (1.5.39) 可知 $h(D) < \sqrt{D}$,所以当 n 是适合 $n > C_1 D (\log D)^2$ 的奇素数时,必有 $n \mid h(D)$,此时,从 (4.4.2) 可得

$$1 + y \sqrt{D} = (a + \lambda b \sqrt{D})^n (u + v \sqrt{D}),$$

$$\lambda \in \{-1,1\},$$

$$(4.4.4)$$

其中 (u, v) 是 Pell 方程

$$u^2 - Dv^2 = 1, u, v \in \mathbb{Z}$$
 (4.4.5)

的解, a, b 是适合

$$a^2 - Db^2 = -x \operatorname{,gcd}(a,b) = 1$$
 (4.4.6)

以及

$$1 < \left| \frac{a + b \sqrt{\overline{D}}}{a - b \sqrt{\overline{D}}} \right| < (u_1 + v_1 \sqrt{\overline{D}})^2 \qquad (4.4.7)$$

的正整数,这里 $u_1+v_1\sqrt{D}$ 是方程(4.4.5)的基本解.

设

$$\epsilon = a + b \sqrt{D}, \bar{\epsilon} = a - b \sqrt{D},$$
 (4.4.8)

$$\rho = u_1 + v_1 \sqrt{D}, \bar{\rho} = u_1 - v_1 \sqrt{D}. \tag{4.4.9}$$

由于从 (4.4.4) 可知

$$1 - y \sqrt{D} = (a - \lambda b \sqrt{D})(u - v \sqrt{D})$$
, (4.4.10)

所以结合(4.4.4)和(4.4.10),根据(4.4.7)可得

$$1 + y \sqrt{D} = \begin{cases} \varepsilon' \bar{\rho}', \\ -\bar{\varepsilon}' \rho', \end{cases} 1 - y \sqrt{D} = \begin{cases} \bar{\varepsilon}' \rho', \\ -\varepsilon' \bar{\rho}', \end{cases}$$

$$(4.4.11)$$

其中 s 是适合 0≪s<n 的整数. 从 (4. 4. 11) 立得

$$\epsilon^{n} \hat{\rho}' - (-\hat{\epsilon})^{n} \rho' = \pm 2.$$
 (4.4.12)

由于从 (4.4.5), (4.4.9) 可知 $\rho \bar{\rho} = 1$, 故从 (4.4.12) 可得

$$0 < \left| n \log \left(-\frac{\varepsilon}{\varepsilon} \right) - 2 s \log \rho \right| < \frac{4}{y \sqrt{D}} < \frac{4}{x^{n/2}}.$$
(4. 4. 13)

设 $\Lambda = n\log(-\epsilon/\bar{\epsilon}) - 2s\log p$. 由于从 (4.4.6), (4.4.7), (4.4.8), (4.4.9) 可知 $h(-\epsilon/\bar{\epsilon}) < \log p \sqrt{x}$, $h(p) = \log \sqrt{\rho}$, 又因 $0 \le s < n$, 所以根据引理 1.8.1 可得

 $\log |\Lambda| > -C_2(\log \rho \sqrt{x})(\log \sqrt{\rho})(\log n)$. (4.4.14) 结合 (4.4.13), (4.4.14) 立得

$$\frac{\log 4}{\log x} + C_2 \left(\frac{\log \rho \sqrt{x}}{\log x} \right) (\log \rho) (\log n) > n. \quad (4.4.15)$$

从(4.4.15)可以算出

$$n < C_1(\log \rho)^2$$
. (4.4.16)

由于从§1.5节可知 $\log \rho < \sqrt{D} \log D$,故从(4.4.16)立得 $n < C_1 D$ $(\log D)^2$. 因此,当 $n > C_1 D(\log D)^2$ 时,方程 (4.4.2) 没有适合 24x 的解 (x, y). 定理证完.

对于大于 1 的正整数 x 以及正奇数 n,设 $E_n(x) = (x^n \pm 1) / (x \pm 1)$. 当 n 是奇素数时,已知 $E_n(x)$ 的素因数 p 都满足 p=n 或 $p\equiv 1 \pmod{2n}$,而且当 $n|E_n(x)$ 时,必有 $n^2 \nmid E_n(x)$. 因此,当 D_n n 满足

$$gcd(n, D\varphi(D)) = 1$$
 (4.4.17)

时,方程(4.4.1)和(4.4.2)比较容易解决. 在此条件下, Euler, Lebesgue, Störmer, Nagell, Ljunggren, van der Waall 和 Robert

等人分别对 n=3 的情况,讨论了这两个方程的一些特殊情况. 1981 年,柯召和孙琦[12]运用初等数论方法完整地解决了这个问题. 他们证明了:当n=3,D>6 且n,D 满足条件(4, 4, 17)时,方程(4, 4, 1)和(4, 4, 2)均无解(x, y). 此后, Cohn[22]证明了同样的结果. 1988 年,乐茂华[54]运用初等方法证明了:当n=5,D>2 且n,D 满足条件(4, 4, 17)时,方程(4, 4, 1)和(4, 4, 2)均无解(x, y). 根据上述结果,我们有以下猜想:

猜想 4. 4. 1 当 D > 2.n 是大于 5 的奇素数且 n.D 满足条件 (4. 4. 17)时,方程 (4. 4. 1)和 (4. 4. 2)均无解 (x.y).

§ 4.5 三元 n 次方程组

设 D₁, D₂ 是大于 1 的正整数. 对于非零整数 k₁, k₂, Ljunggren, Kanagasabapathy 和 Ponnudurai, Jones, Veluppilai, Mohanty 和 Ramasamy 等人分别运用初等方法讨论了形如

$$\begin{cases} x^{2} - D_{1}y^{2} = k_{1}, \\ z^{2} - D_{2}y^{2} = k_{2}, \end{cases} x, y, z \in \mathbb{N}, \gcd(x, y) = \gcd(z, y) = 1$$

$$(4.5.1)$$

以及

$$\begin{cases} x^{2} - D_{1}y^{2} = k_{1}, \\ y^{2} - D_{2}z^{2} = k_{2}, \end{cases} x, y, z \in \mathbb{N}, \gcd(x, y) = \gcd(y, z) = 1$$

$$(4.5.2)$$

的三元二次方程组(参见文献[92]的第6章). 1969 年, Baker 和 Davenport [5] 首先将 Gel' (ond-Baker 方法引入了此类方程组的研究. 他们证明了: 当 $D_1=3$, $D_2=8$, $k_1=-2$, $k_2=-7$ 时, 方程组 (4.5.1) 仅有解 $(x_1,y_2)=(1,1,1)$ 和(19,11,31). 在一般情况下, 运用定理 4.3.1 的证明方法, 可以得出这两类方程组的解的可有效计算的上界.

定理 4.5.1 当 D_1, D_2 是大于 1 的无平方因数正整数时,方程组(4.5.1)和(4.5.2)仅有有限多组解(x,y,z),而且这些解都

满足 $\max(x,y,z) < C_1(A)$, 其中 $A = \max(D_1,D_2,|k_1|,|k_2|)$.

证 首先考虑方程组(4.5.1),设(x,y,z)是该方程组的一组 解, 此时、(z,y)和(z,y)分别是方程

$$x^2 - D_1 y^2 = k_1, x, y \in \mathbb{Z}, \gcd(x, y) = 1$$
 (4.5.3)

以及

$$z^2 - D_y y^2 = k_2, z, y \in \mathbb{Z}, \gcd(z, y) = 1$$
 (4.5.4)

的正整数解. 设 $u_{11}+v_{11}\sqrt{D_1}$ 和 $u_{21}+v_{21}\sqrt{D_2}$ 分别是 Pell 方程

$$u_1^2 - D_1 v_1^2 = 1, u_1, v_1 \in \mathbb{Z}$$
 (4.5.5)

以及

$$u_2^2 + D_2 v_2^2 = 1, u_2, v_2 \in \mathbb{Z}$$
 (4.5.6)

的基本解. 根据文献[75]中的结果可知:此时方程(4.5.3), (4.5.4)分别有适合

$$x_{11} + y_{11} \sqrt{D_1} < \sqrt{2u_{11}|k_1|}$$
 (4.5.7)

以及

$$z_{21} + y_{21} \sqrt{D_2} < \sqrt{2u_{21}|k_2|}$$
 (4.5.8)

的正整數解 (x_1,y_1) , (z_2,y_2) ,可使

$$x+y\sqrt{D_1} = \left(x_{11}+y_{11}\sqrt{D_1}\right)\left(x_{11}+v_{11}\sqrt{D_1}\right),$$
 (4.5.9)

$$z+y\sqrt{D_2}=\left(z_{21}+y_{21}\sqrt{D_1}\right)\left(u_2+v_2\sqrt{D_2}\right)$$
, (4.5.10)

其中 (u_1,v_1) , (u_2,v_2) 分别是方程(4,5,5),(4,5,5)的正整数解。

设

$$a_1 = x_{11} + y_{11}\sqrt{D_1}, \bar{a}_1 = x_{11} + y_{11}\sqrt{D_1}, \quad (4.5.11)$$

$$a_2 = z_{21} + y_{21}\sqrt{D_2}, \bar{a}_2 = z_{21} - y_{21}\sqrt{D_2},$$
 (4.5.12)

$$\rho_1 = u_{11} + v_{11}\sqrt{D_1}, \tilde{\rho}_1 = u_{11} - v_{11}\sqrt{D_1}, \quad (4.5.13)$$

$$\rho_2 = u_{21} + v_{21}\sqrt{D_1}, \overline{\rho_2} = u_{31} - v_{21}\sqrt{D_2}. \quad (4.5.14)$$

从(4.5.9),(4.5.10)可知,存在适当的非负整数点,虚可使

$$x + y \sqrt{D_1} = a_1 \rho_1^2, x - y \sqrt{D_1} = \bar{a}_1 \bar{\rho}_1^2, \quad (4.5.15)$$

$$z + y \sqrt{D_2} = a_2 \rho_2^2, z - y \sqrt{D_2} = \bar{a}_2 \bar{\rho}_2^2.$$
 (4.5.16)

从(4.5.15),(4.5.16)可得

$$y = \frac{a_1 \rho_1^{l_1} - \overline{a}_1 \overline{\rho}_2^{l_1}}{2\sqrt{D_1}} = \frac{a_2 \rho_2^{l_2} - \overline{a}_2 \overline{\rho}_2^{l_2}}{2\sqrt{D_2}}.$$
 (4. 5. 17)

设 $\delta = \overline{a_1} \overline{\rho_1}^{-1} \sqrt{D_2} - \overline{a_2} \overline{\rho_2}^{-1} \sqrt{D_1}$. 由于从(4.5.5),(4.5.6),(4.5.13),
(4.5.14)可知 $\rho_1 \overline{\rho_1} = \rho_2 \overline{\rho_2} = 1$,故从(4.5.17)可得

$$\left| \log \left[\frac{\alpha_1 \sqrt{D_2}}{\alpha_2 \sqrt{D_1}} \right] + t_1 \log \rho_1 - t_2 \log \rho_2 \right|$$

$$= \left| \frac{2\delta}{2\alpha_2 \rho_2 + \delta} \sum_{i=0}^{\infty} \frac{1}{2i+1} \left(\frac{\delta}{2\alpha_2 \rho_2 + \delta} \right)^{2i} \right|. \quad (4.5.18)$$

设 $t = \max(t_1, t_2)$. 从 (4. 5. 7),(4. 5. 8) 可知,假如 $\max(x, y, z) > C_1(A)$,则必有

$$t > C_2(A)$$
. (4.5.19)

设 $\Lambda = \log \left(a_1 \sqrt{D_2} / a_2 \sqrt{D_1} \right) + t_1 \log \rho_1 - t_2 \log \rho_2$. 从 (4.5.18),(4.5.19)可得

$$0 < |\Lambda| < \frac{C_3(A)}{\epsilon'}. \tag{4.5.20}$$

同时,根据引理 1.8.1,从(4.5.7),(4.5.8),(4.5.11)—(4.5.14) 可知

$$\log |\Lambda| > -C_4(\Lambda) \log t. \tag{4.5.21}$$

结合(4.5.20),(4.5.21)可得

$$t < C_2(A) \tag{4.5.22}$$

这一与(4.5.19)矛盾的结果. 因此,方程组(4.5.1)的解(x,y,z)都满足 $\max(x,y,z) < C_1(A)$. 同理可证方程组(4.5.2)的情况. 定理证完.

1984 年, Turk[109] 具体给出了上述定理中的常数 C₁(A). 另

外,Pinch^[78],Rickert^[86],Bennett^[6]等人还用丢番图逼近方法讨论 了方程组(4.5.1)和(4.5.2)的求解问题。

设 $b_0,b_1,b_2,c_0,c_1,c_2,k_1,k_2$ 是适合 $(b_1^2-4b_0b_2)(c_1^2-4c_0c_2)k_1k_2$ $\neq 0$ 的整数. 定理 4.5.1 的证明方法可以直接用来讨论一般的三元二次方程组

$$\begin{cases} b_0 x^2 + b_1 x y + b_2 y^2 = k_1, \\ c_0 x^2 + c_1 x z + c_2 z^2 = k_2, \end{cases} x, y, z \in \mathbb{Z}. \quad (4.5.23)$$

如果该方程组有无限多组解(x,y,z),则其中的每个方程都有无限多组解(x,y,z),则其中的每个方程都有无限多组解,故必有 $b_1^2-4b_2b_2>0$, $c_1^2-4c_0c_2>0$, $b_2c_2\neq0$,而且它们都是非平方数.从(4.5.23)可得

$$\begin{cases} (b_1x + 2b_2y)^2 - (b_1^2 - 4b_0b_2)x^2 = 4b_2k_1, \\ (c_1x + 2c_2z)^2 - (c_1^2 - 4c_0c_2)x^2 = 4c_2k_2; \end{cases} (4.5.24)$$

又从(4.5.24)可得

$$((b_1^2 - 4b_0b_2)x^2 + 4b_2k_1)((c_1^2 - 4c_0c_2)x^2 + 4c_2k_2)$$

$$= ((b_1x + 2b_2y)(c_1x + 2c_2x))^2. (4.5.25)$$

显然, 方程(4.5.25)是一个四次超椭圆方程. 因为多项式(层一4 b_0b_2) $X^2+4b_2k_1$ 和($c_1^2-4c_3c_2$) $X^2+4c_2k_2$ 都有两个不同的根,所以从文献[93]中的结果可知,如果方程组(4.5.23)有无限多组解,则必有

$$\frac{4b_1k_1}{b_1^2 - 4b_0b_2} = \frac{4c_2k_2}{c_1^2 - 4c_0c_2}.$$
 (4. 5. 26)

从(4.5.26)可知

$$\frac{b_2 k_1}{c_2 k_2} = \frac{b_1^2 - 4b_0 b_2}{c_1^2 - 4c_2 c_2},\tag{4.5.27}$$

而且 b_2k_1/c_2k_2 是有理数的平方. 当上述条件不成立时,运用定理 4.5.1 的证明方法可知该方程组仅有有限多组解(x,y,z),而且 这些解都满足 $\max(x_1y,z) < C_2(H)$,其中 $H = \max(|b_0|,|b_1|,|b_2|,|b_2|,|c_3|,|c_3|,|c_3|,|c_3|,|c_2|,|k_1|,|k_2|)$.

以下介绍Gel'fond-Baker 方法在指数型高次方程组中的一个应用. 1989 年, Ribenboim^[88]运用该方法讨论了方程

$$(x^{n}-1)(x^{1}+1) = y^{2}, x, y, m, n \in \mathbb{N}, x > 1, n > m \ge 1.$$

$$(4.5.28)$$

他证明了:方程(4.5.28)没有适合 2|x的解(x,y,m,n):该方程仅有有限多组适合 2|x的解,而且这些解都满足 $\max(x,y,m,n)$ < C_4 . 上述结果不难从定理 5.3.1 椎出. 设(x,y,m,n)是方程(4.5.28)的一组适合 2|x的解. 运用初等数论方法可得

$$\begin{cases} x^{n} + 1 = 2y_{1}^{2}, \\ (x^{n} + 1 = 2y_{2}^{2}, x, y_{1}, y_{2}, m, n \in \mathbb{N}, \\ x > 1, 2y_{1}y_{2} = y, n > m \geqslant 1. \end{cases}$$

$$(4.5.29)$$

最近,乐茂华^[60]完整地解决了方程组(4.5.29)的求解问题.他证明了:

定理 4.5.2 方程组(4.5.29)仅有解(x,y,m,n)=(7,20,1,2).

证 首先运用初等方法可知:方程组(4.5.29)的解(x,y,m,n)中的m,n 必定满足m=1 且 n=2 或者 m=2,n>2 且 $2 \nmid n$.

当 m=1 且 n=2 时,根据 Pell 方程

$$u^2 - 2v^2 = -1, u, v \in \mathbb{Z}$$
 (4. 5. 30)

的基本性质,从(4.5.29)可得(x,y,m,n)=(7,20,1,2).

当 n=2,n>2 且 2:n 时,从(4.5.29)可得

$$x^2 + 1 = 2y_1^2, (4.5.31)$$

$$x^n + 1 = 2y_2^2, n > 2.2 \{ n.$$
 (4.5.32)

根据方程(4.5.30)的解的基本性质,运用初等方法从(4.5.31)。 (4.5.32)可得

$$n \geqslant 482885.$$
 (4.5.33)

同时,从(4.5.32)可得

$$1 - 2y_2^2 = (-x)^{\bullet}. (4.5.34)$$

从(4.5.34)可知此时方程

$$X^2 - 2Y^2 = (-x)^2, X, Y, Z \in \mathbb{Z}, \gcd(X, Y) = 1, Z > 0$$
(4.5.35)

有解(X,Y,Z)=(I,y_2,n).由于已知实二次域 $Q(\sqrt{2})$ 的类数等于 1,所以运用定理 4.4.1的证明方法.从(4.5.34)可得 n < 482885 这一与(4.5.33)矛盾的结果.综上所述可知方程组(4.5.29)仅有解(x,y,m,n)=(7,20,1,2).定理证完.

§ 4.6 方程
$$f(x,y)=0$$

设力是正整数元次多项式

$$f(X,Y) = \sum_{\substack{0 \leqslant i,j \leqslant n \\ i+j \leqslant n}} a_{ij} X^i Y^j \in \mathbb{Q}[X,Y]. \tag{4.6.1}$$

此时,曲线

$$f: f(X,Y) = 0 (4.6.2)$$

称为有理代数曲线. 讨论有理代数曲线上有理点的基本性质是算术代数几何的主要内容之一,它与高次丢番图方程有着直接的联系.

对于给定的 n 次多项式(4.6.1),存在唯一的 n 次齐次多项式

$$F(X,Y,Z) = \sum_{\substack{i \leqslant i,j \leqslant a \\ i+j \leqslant a}} a_{ij} X^i Y^j Z^{a+j} \in \mathbb{Q}[X,Y,Z] \quad (4.6.3)$$

満足F(X,Y,1)=f(X,Y),如此的曲面

$$F: F(X,Y,Z) = 0$$
 (4.6.4)

称为曲线 f 的射影曲面. 同时, 曲线 f 称为曲面 F 的仿射曲线. 如果曲面 F 上的点 $\rho = \rho(X,Y,Z)$ 适合

$$\frac{\partial F}{\partial X}\Big|_{\rho} = \frac{\partial F}{\partial Y}\Big|_{\rho} = \frac{\partial F}{\partial Z}\Big|_{\rho} = 0, \qquad (4.6.5)$$

则称 ρ 是 F 的 奇点. 此时,

$$g_f = \frac{1}{2}(n-1)(n-2) - \sum_{p} u(p)$$
 (4. 6. 6)

称为有理代数曲线 f 的亏数,其中 $v(\rho)$ 是与曲面 F 上的奇点 ρ 有关的正整数," \sum_{ρ} "表示"对曲面 F 上的所有奇点 ρ 求和"。亏数 g_{ρ} 是个非负整数,它是衡量有理代数曲线 f 上有理点分布的复杂性

的重要标志.

包括椭圆方程和超椭圆方程在内的许多二元和三元齐次方程 分别是方程

$$f(x,y) = 0, x, y \in \mathbb{Z}$$
 (4. 6. 7)

以及

$$f(x,y) = 0, x, y \in \mathbb{Q}$$
 (4.6.8)

的特例. 当 $g_f = 0$ 时,f 称为单向曲线. 此时,如果方程(4.6.7)有解(x,y),则它必有无限多组解^[42]. 当 $g_f = 1$ 时,f 称为椭圆曲线. 对此,Mordell^[70]在 1922 年解决了 Poincaré^[40]提出的一个猜想,即证明了: 当 $g_f = 1$ 时,如果方程(4.6.8)有解(x,y),则方程(4.6.7)仅有有限多组解(x,y),方程(4.6.8)有无限多组解(x,y),而且该方程的所有解构成一个有限生成的 Abel 群. 同时,Mordell^[71]对亏数大于 1 的有理代数曲线提出了下列猜想:

猜超 4.6.1 当 $g_f > 1$ 时,方程(4.6.7)仅有有限多组解($x_f > y_f$).

猜想 4.6.2 当 $g_1 > 1$ 时、方程(4.6.8)仅有有限多组解(x_1 y).

1926年,Siegel^[23]运用丢番图逼近方法证实了猜想 4.6.1.此后,猜想 4.6.2 称为 Mordell 猜想,这是一个相当困难的问题,直到 1983年才由 Faltings^[24]运用算术代数几何方法加以解决,由于很多令人感兴趣的三元高次方程都与方程(4.6.8)有关,所以 Faltings 的工作使得这方面的研究获得了突破性的进展,例如,本书在前面提到的 Fermat 猜想就是要证明:当 n≥3 时,方程

 $x' + y' = z', x, y, z \in \mathbb{N}, \gcd(x, y, z) = 1$ (4.6.9) 无解(x, y, z). 设 F(X, Y, Z) = X' + Y' - Z', 此时, 曲面 F 的仿射 曲线是 f: f(X, Y) = X'' + Y'' - 1 = 0. 由于曲面 F 上没有奇点, 所 以当 $n \ge 4$ 时, 曲线 f 的亏数 $g_f = (n-1)(n-2)/2 > 1$. 因此, 根据 Falsings 的结果可知此时方程

$$x' + y' = 1, x, y \in \mathbb{Q}$$
 (4. 6. 10)

仅有有限多组解(x,y). 由此可知:对于给定的正整数 n,当 n≥4

时,方程(4.6.9)仅有有限多组解(x,y,z). 这是当时有关 Fermat 猜想的最好结果. 最近,Granville^[32],Darmon 和 Granville^[25]对上 述结果作了进一步的推广. 设 a,b,c 是互素的正整数,r,s,t 是大于 1 的正整数. 他们证明了:当 1/r+1/s+1/t < 1 时,方程

 $ax'+by'=cz',x,y,z\in\mathbb{N},\gcd(x,y,z)=1$ (4.6.11) 仅有有限多组解(x,y,z). 上述结果解决了 Tijdeman^[108]提出的一个猜想.

同时应该指出:由于 Faltings 在文献[32]中有关 Mordell 猜想的证明是非实效性的,所以由此无法得出方程(4.6.8)的解数和解的可有效计算的上界. 1990 年前后, Vojta^[112]将丢番图逼近方法和算术代数几何中的相交理论引入了 Mordell 猜想的研究,从而给出了一个实效性的证明. 此后, Bombieri^[5], Faltings^[23]等人进一步简化了 Vojta 的证明. 根据上述工作,可以对方程(4.6.8)的解数得出可有效计算的上界,有关这方而的进展情况可参考文献[34],[45],[113].

以下考虑(4.6.1)中的 f(X,Y)是在Q上不可约的 n 次整系数多项式的情况. 1970年,Baker 和 Coates [4] 运用 Gel' fond-Baker 方法证明了: 当 $g_f = 1$ 时,方程(4.6.7)的解(x,y)都满足 max (|x|,|y|) <exp exp exp $((2H_f)^{10^{10}})$. 1992年,Schmidt [91] 将上述结果改进为 $\max(|x|,|y|)$ <exp $(C,H_f^{(a)})$. 这是目前在 $g_f = 1$ 时已知的最好结果,它的证明用到了代数函数域的算术性质(多见文献[89],[90]). 另外,对于 $g_f > 1$ 的情况,这仍是一个尚未解决的问题.

设多项式 f(X,Y)中未定元 X,Y 的最高次数分别是 r,s. 1887年,Runge^[a7]运用代数函数的 Puiseux 展开式(参见文献 [84]),讨论了方程(4.6.7)解数的有限性问题. 他证明了:如果该方程有无限多组解(x,y),则下列条件必定同时成立:

- (i)f(X,Y)中未定元X,Y 的最高次项分别为 a_nX',a_nY' .
- (ii) f(X,Y) 中的每个项 $a_{rj}X'Y'$ 的次数都满足 $rj+si \leq rs$.
- (iii) f(X,Y) 中适合 $r_j + s_i = r_s$ 的项之和

$$h(X,Y) = \sum_{ij+n=n} a_{ij} X^{i} Y^{j}$$
 (4. 6. 12)

必为非零整数与Q 上不可约多项式的方幂的乘积,这里的 L(X) Y) 称为 f(X,Y) 的首型.

1969年, Schinzel[**]对 Runge 的结果作了重要改进,他指出上述的条件(iii)可以加强为:

(iii)'f(X,Y)的首型 h(X,Y)可表成 ag(X''',Y''''), 其中 a 是非零整数 *g(X,Y) 是二元一次原型或判别式小于 0 的二元二次原型 $*d=\gcd(x,s)$.

从上述结果可知,如果f(X,Y)不满足条件(i),(ii),(iii)或(iii)'中的任何一条,则方程(4.6.7)仅有有限多组解(x,y).设 $l=\min(x,s)$, $m=\max(x,s)$. 1983年,Hilliker 和 Straus^[13]证明了:此时方程(4.6.7)的解(x,y)都满足

$$\max(|x|,|y|) < \begin{cases} 4(H_l + 1)^2, & \leq l = 1 \text{ 时,} \\ (8mH_l)^{m^{2^{-1}}}, & \leq l > 1 \text{ 时.} \end{cases}$$
(4. 6. 13)

上述结果的证明用到了 Puiseux 展开式的定量形式——Eisenstein 定理(参见文献[29]). 最近, Walsh^[114]和 Grytczuk^[39]根据 Coates^[19], Hilliker 和 Straus^[41], Schmidt^[69], Dwork 和 van der Poorten^[28]等人有关 Eisenstein 定理中某些常数的估计改进了上界(4.6.13). 例如, Grytczuk^[39]证明了,如果 f(X,Y)中的未定元 不适合条件(i),则方程(4.6.7)的解(x,y)都满足

$$|x| \le (2^{17}r^3s^6H_f)^{\frac{16r^3(r-2)(r+2)}{r-2}},$$

$$|y| \le (2^{17}r^3s^6H_f)^{\frac{16r^5s^5(r+2)(r+2)}{r-2}};$$
(4. 6. 14)

如果条件(i)成立但条件(ii)或(iii)不成立,则有

$$|x| \leqslant \left(2^{12} l^3 m^6 H_f\right)^{16 l^3 m_f(r+2)(r+2)},$$

$$|y| \leqslant \left(2^{17} l^3 m^6 H_f\right)^{16 l^5 m_f(r+2)(r+3)}.$$
(4. 6. 15)

1922年, Skolem^[35]运用消元法重新证明了 Runge 的上述结果. 1991年, Grytczut 和 Schinzel^[40]完善了 Skolem 的证明,并且根据这一思路给出了方程(4.6.7)的解的另一类上界. 他们证明

了。如果 f(X,Y)中的未定元 X 不适合条件(i),则该方程的解(x,y)都满足

$$|x| \le \left((r+1)(s+1)(rs+1)^{2n}H_f \right)^{2n(n+1)^4},$$

$$|y| \le \left((r+1)(s+1)(rs+1)^{2n}H_f \right)^{2(n+1)^3},$$
(4. 6. 16)

如果条件(i)成立但条件(ii)不成立,则有

$$|x| < (4rsl)^{8rifd}H_f)^{98r^3r^4l^4fd^4+1/r},$$

$$|y| < (4rsl)^{8rs/d}H_f)^{98r^4r^2l^4fd^4+1/r},$$
(4.6.17)

如果条件(i),(ii)都成立但条件(iii)不成立,则有

$$|x| < ((rs)^{2n/d}H_f)^{5r^2f^2d^4/128+d^2fr},$$

$$|y| < ((rs)^{3ri/d}H_f)^{5r^2f^2d^4/124+d^2fr}.$$
(4. 6. 18)

参 考 文 献

- [1] Baker A., Contributions to the theory of diophantine equations 1; On the representation of integers by binary forms, Philos Trans Roy Soc London, 1963, A263; 173-191; I., The diophantine equation $y^2 = x^3 + k$, ibid, 1968, A263; 192-208.
- [2] Baker A. The diophantine equation $y^2 = ax^4 + bx^4 + cx + d$. Loadon Math Soc. 1968.43; t = 9.
- [3] Baker A., Bounds for the solutions of the hyperelliptic equation, Math. Proc. Cambridge Philos Soc., 1969, 55, 439-444.
- [4] Baker A., Coates J., Integer points on curves of genus 1, Math Proc Cambridge Philos Soc, 1970, 67, 595-602.
- [5] Baker A., Davemport H., The equations $3z^2-2=y^2$ and $8z^2-7=z^2$, Quart J Math Oxford Ser 2.1969, 20, 129-137.
- [6] Bennett M. A., Simultaneous rational approximation to pairs of algebraic numbers, In: Number Theory, Halifax, NS, 1994, CMS Coul Proc 15, Providence Rl: Amer Math Soc, 1995: 55-65.
- [7] Bennett M. A., Simultaneous rational approximation to binomial functions, Trans.

 Amer Math Soc., 1996, 348, 1717—1738.
- [8] Bilo Y., Effective analysis of integral points on algebraic curves, Israel J Math., 1995.90, 235 252.

- [9] Bombieri E. .The Mordell conjecture revisited, Ann Scuole Norm Sup Piza Cl Sci (4), 1990.17, 615-640.
- [10] Brindza B., On S-integral solutions of the equation y'' = f(x), Acta Math. Hungar, 1984, 44: 133-139.
- [11] Brindes B. Thue equations and multiplicative independence. In Loxton J Hed.

 Number Theory and Cryptography. Cambridge Cambridge Univ Press. 1990, 213

 220.
- [12] Brindza E., Evertse J-H., Györy K., Bounds for the solutions of some diophantine equations in terms of discriminants, J Austral Math Soc, Set A, 1991,51,8-26.
- [13] Chen J-H. A new solution of the diophantine equation $X^2 + 1 = 2Y^*$, J Number Theory, 1994, 43, 62-74.
- [14] Chen J-H. A note on the diopharmine equation $x^2 + 1 = dy^4$, Abh Meth Sem Univ Hamburg 1994 64, 1 10.
- [15] Chen]-H. On the diophantine equation $ax^4 + by^4 = -1$, Abb Math Sem Univ Hamburg to appear.
- [16] Chen J-H. Voutier P. Complete solution of the diophentine equation $X^2 + 1 = dY'$ and a related family of quartic Thue equations.] Number Theory, 1997, 62: 71-99.
- [17] Cipu M., Diophentine equations with at most one positive solution, Inst Math, Romanian Acad, Buourest, Preprint No. 19, 1995.
- [18] Cipu M. Diophantine equations with at most one positive solution, Manuscripta Math, 1997, 93, 349-356.
- [19] Coates J., Construction of rational functions on a curve, Math Proc Cambridge Philos Soc. 1970, 68: 105-123.
- [20] Cochrare T. The diophentine equation f(x) = g(y). Proc Amer Math Soc., 1990, 109, 573-578.
- [21] Cobn J. H. E., The disphantine equation $x^4 Dy^4 = 1$, Quart J Math Oxford (2), 1975, 26, 279 281; I. Acta Arith, 1997, 78, 401 403.
- [22] Cohn J. H. E., The diophentine equations $x^2 = Ny^2 \pm 1$, Quart J Math Oxford (2), 1991, 42, 27 30.
- [23] Cohn J. H. E. The diophentine equation x⁴+1=Dy², Math Comp. 1997, 56, 1347
 —1351.
- [24] Daniior L. V., The diophantine equation $x^3 y^2 = k$ and a conjecture of M. Hull, Mat Zamethi, 1984, 36, 457-458.

- [25] Decreon H. Granville A. On the equation $Z^{+}=F(x,y)$ and $Ax^{p}+By^{p}=Cx^{p}$. Bull Landon Math Soc , 1995, 27, 513 543.
- [26] Davenport H. Lewis D. J. , Schinzel A. , Equations of the form f(x) = g(y).

 Quart J Math. Oxford (2), 1961, 12, 304 = 312.
- [27] Dickson L. E., History of the Theory of Numbers, Vol. I., Washington, Carnegie Inst. 1920.
- [28] Dwork B. M., van der Poorten A. J., The Eisenstein constant, Duke Math J., 1992,65,23-43, Corrections, ibid., 1994,76,669-672.
- [29] Einenstein G., Über eine allgemeine Eigenschaff der Reihen-Entwichungen eller algebraischen Funktionen, Bericht Königl Preuss Akad Wiss Berlin, 1852, 414 443.
- [30] Erdős P., Woods A. C., On a problem of M. Hall, Bull Acad Serbe, 1989, 17:13 +22.
- [31] Evertse J-H. Silverman J. H. Uniform bounds for the number of solutions to Y¹ = f(X)-Math Proc Cambridge Philes Soc. 1986. 100, 237 248.
- [32] Faltings G. "Endlich Keitssätze für abelsche Varietäten über Zahfkörpern "Invent Math. 1983. 73:349 366 "Corrections "ibid. 1964, 75., 381.
- [33] Faltings G., Diophantine approximation on abelian varieties, Ann of Math (2), 1991,133:549-576.
- [34] Faltings G., Wüscholz G., Diophantine approximations on projective spaces.

 Invent Math. 1994, 116:109-136.
- [35] Gebel J. Pethō A. Zimmer H. G. Computing integral points on elliptic curves.

 Acta Arith, 1994, 68, 171-192.
- [36] Goldfeld D., Szpiro L., Bounds for the order of the Tate-Shafatevich group.

 Compositio Math, 1995, 97, 71 87.
- [37] Granville A. On the number of solutions to the generalized Fermat equation, In: Number Theory, Halifax, NS, 1994 CMS Conf. Proc. 15, Providence, RI: Amer. Math. Soc., 1993, 197 — 207.
- [38] Gross R., Silverman J. H., S-integer points on elliptic curves, Pacific J Math. 1995,167:263-288.
- [59] Grycezuk A., Matrices and diophantine equations, Dissertationes Math, to appear.
- [40] Grytezuk A., Schinzel A., On Runge's theorem about diophantine equations, Inc. Sets, Graphs and Numbers, Budapest, 1991, Colloq Math Soc Janos Bolyai, 50, North Holl Pub, 1992, 329-356.

- [41] Hall M. Jr. The diophantine equation x³ y² = k, In; Atkin A. O., Birch B. J. eds., Computers in Number Theory, Proc Sci Res Council Atles Symp. 2. Oxford, London, Academic Press, 1969; 173 198.
- [42] Hilbert D., Hurwitz A., Über die diopbentischen Gleichungen von Geschlecht Null. Acta Math, 1890, 4, 217 224.
- [43] Hilliker D. L. Straus E. G. Determination of bounds for the solutions to those diophantine equations that satisfy hypotheses of Runge's theorem, Trans Amer Math Soc. 1983, 280:637-657.
- [44] Hilliker D. L., Stroug E G., On Poiseux series whose curves pas through an infinity of algebraic lactice points, Bull Amer Math Soc, 1983, 8:59-62.
- [45] Hindry M., Sor les conjectures de Mordell et Lang (d'après Vojts, Faltings et Bombiezi). Astérisque, 1992, 209, 39-56.
- [46] Julia G. . Étude sur les formes binaires non quadratiques, Mem Acad Sci l'Inst France, 1917, 55, 1-293.
- [47] 柯召,外琦,关于丢書图方程 z ± l = Dy*, 中国科学,1981,,1453—1457.
- [48] Kihara S. On coprime integral solutions of $y^2 = x^3 + k$, Proc Japan Acad Set A Math Sci. 1987, 63:13-16.
- [49] Kotov S. V., Trelina L. A., S-ganze Punkte auf elliptischen Kurven, J Reine Angew Math, 1979, 306, 28-41.
- [50] Landan E. Ostrowski A. On the diophantine equation $ay^2 + by + c = dx^a$, Proc London Math Soc(2).1920.19.276 280.
- [51] Lang S., In: Arithmetic and Geometry, Vol 1, Progr Math. 35, Boston, MA, Birkhäuser Boston, 1983: 155-171.
- [52] Langevin M., Partie sans facteur cerré dun produit d'entiers vasins, In: Approximations Diophantinnes et Nombres Transcendants, Luminy, 1990, Berlin, Walter de Gruyter, 1992, 203-214.
- [53] 乐茂华,方程 z4-Dy²=1 有正整数解的充要条件,科学温报,1984,22:1407.
- [54] 乐茂华,关于丢香图方程 z*±1=Dy2. 东北數學,1988,4:309—315.
- [55] Le M-H., A note on the diophantine equation $x^{ij} Dy^i = 1$, Proc Amer Math Soc. 1989, 107, 27 34.
- [56] Le M-H. The solvability of diophantine equation $D_1x^2 D_2y^4 = 1$. Colloq Math., 1995.68.165 = 170.
- [57] Le M-H. On the diophentine equation $D_1x^4 + D_2y^2 = 1$, Acta Arith, 1996, 76:1 9.
- [58] 乐茂华,—类超椭圆曲线的整点个数、数学学报,1996,39,289—293.

- [59] 乐茂华,一类超椭圆方程的整数解,数学学根,1996,39,450-455.
- [60] Le M-H. On the diophentine equation $(x^{-1}+1)(x^{-1}+1)=y^{2}$, Acta Arith, 1997, 82:17-26.
- [61] Lee J-B., Vélez W. Y. Integral solutions in arithmetic progression for $y^2 = x^2 + k$. Period Math Hungar, 1992, 25:31-49.
- [62] LeVeque W J. On the equation $y^* = f(x)$, Acta Acith, 1964, 9, 209-219.
- [63] Ljunggren W., Über die Gleichung $x^4 Dy^2 = 1$. Arch Math Naturv. 1942, 45 (5), 61 70.
- [64] Ljunggren W., Zur Theorie der Gleichung $x^2+1=Dy^4$, Avh Noreke Vid Akad, 1942, 1. No. 5.27pp.
- [65] Ljunggren W., Einige Satze über unbestimmte Gleichungen von der Form $Ax^4 + Bx^2 + C = Dy^3$, Vid Akad Skr Norske Oslo, 1942, No. 9.
- [66] Masser D. W., Note on a conjecture of Szpiro, Astérisque, 1990, 183, 19-23.
- [67] Mohanty S. P., Integer points of $y^2 = x^3 4x + 1$, Number Theory, 1988, 30, 86 -93.
- [68] Mohanty S. P. Ramasamy A. M. S. On the number of coprime solutions of $y^2 = x^3 + k$, J Number Theory 1983, 17, 323 326.
- [69] Mordell L. J., Indeterminate equations of the third and fourth degrees, Quart J. Pure Appl Math, 1914, 45, 170—186.
- [70] Mordell L. J., Note on the integer solutions of the equations $Ey^2 = Ax^3 + Bx^2 + Cx + D$, Messenger Math, 1922, 51, 169 171.
- [71] Mordell L. J. On the integer solutions of the equation $ey^2 = ax^2 + hx^3 + cx + d$. Proc London Math Soc(2),1923,21,415-419.
- [72] Mordell L. J., On the rational solutions of the indeterminate equations of the third and fourth degrees, Math Proc Cambridge Philos Soc, 1923, 21, 179-192.
- [73] Mordell L. J., Diophantine Equations, London; Academic Press, 1969.
- [74] Nagell T., Sur l'impossibilite de quelques equations a deua indeterminess. Norsk Mat Forenings Skr(1), 1921, 13, 65 – 82.
- [75] Nagell T., Bernetkung über die Diophantische Gleichung $u^t Dv^2 = c$, Arch Math. 1952, 3:8–9.
- [76] Nair M. A note on the equation $x^3-y^6=k$, Quart J Math Oxford (2), 1978, 29, 483-487.
- [77] Nitaj A., La conjecture abc, Enseigh Math (2), 1996, 42:3-24.
- [78] Pinch R. G. E. Simultaneous Pellian equations, Math Proc Cambridge Philos Soc., 1988, 103:35-46.

- [79] Pintét Á., On the maghitude of integer points on elliptic curves, Bull Austral Math Soc. 1995, 52:195-199.
- [80] Poincaré H. . Sur les propriétés stithmétiques des couthes sigébiques. J Math (3),1901,7,161-233.
- [81] Poulakis D. Solutions entièrs de l'équation $Y^* = f(X)$. Sém Thèot Norobres Bordeaux(2), 1991, 3, 187 190.
- [82] Poulakis D., Points entiets sur les courbes hyperelliptiques, Acts Arith, 1992, 62, 25-43.
- [83] Poulakis D., Points entière et modèles des courbes algébriques, Monatsh Math, 1994, 118, 111 143.
- [84] Puiseux V. A. Recherches sur les fonctions algebriques, J Math. 1850, 15, 385-480.
- [85] Ribenboim F., Square elasses of (a*-1)/(a-1) and a*+1,四川大学学报(特集),1989,26:196~199.
- [86] Rickett J. H., Simultaneous rational approximations and related diophantine equations. Math Proc Cambridge Philos Soc, 1993, 113, 461-472.
- [87] Runge C., Über ganzzahlige Lösungeo von Gleichungen zwischen zwei Veranderlichen, J Reine Angew Math, 1887, 100, 425 435.
- [88] Schinzel A., An improvement of Runge's theorem on diophantine equations, Common Pontif Acad Sci. 1969, 2, 1-9.
- [89] Schmidt W. M., Eisenstein's theorem on power series expansions of algebraic functions. Acta Arith, 1990, 56:161-179.
- [90] Schmidt W. M., Construction and estimation of bases in function fields, J. Number Theory, 1991, 39, 181 224.
- [91] Schmidt W. M., Integer points on curves of genus 1, Compositio Math, 1992, 81, 33-59.
- [92] Shorey T. N., Tijdeman R., Exponential Dinphantine Equations, Cambridge; Cambridge Univ Press, 1986.
- [93] Siegel C. L. The integer solutions of the equation $y^2 = ax^a + bx^{a-1} + \cdots + k$.] London Math Soc, 1926, 1, 66 68.
- [94] Siegel C. L., Uher einige Anwendungen diophantischer Approximationen, Abh. Preuss Akad Wiss Phys-Math Kl, 1929, No. 1,70pp.
- [95] Skolem T., Über ganzzahlige Lösungen einer Klasse unbestimmten Gleichungen, Forenings Skr Set 1,1922, No. 10.
- [96] Sprindzuk V. G. , Classical Diophantine Equations, Lecture Notes in Math, 1559, Berlin , Springer-Verlag. 1993.

- [97] Stark H. M., Effective estimates of solutions of some diophantine equations. Acta Arith, 1973, 24:251-259.
- [98] Stephens N. On the number of coprime solutions of $y^2 = x^3 + k$. Proc Amer Math. Soc. 1975. 48: 325 327.
- [99] Strocker R. J., de Weger B. M. M., On elliptic diophantine equations that defy Thue's method; the case of the Ochoa cutve, Experiment Math, 1994, 3, 209 220.
- [100] Strocker R. J., Tzanskis N., Solving elliptic diophantice equations by estimating linear forms in elliptic logarithms. Acra Arith. 1994.67:177-196.
- [101] 孙琦,关于丢香图方程中的柯召-Terjanian-Rotkiewicz 方法,数学进展,1989, 18:1-4.
- [102] Sun Q., Yuan P-Z., On the diophentine equation $x^4 Dy^2 = 1$,数学进展,1996, 25,84.
- [103] Szpiro L., Seminaire sur les pincesux de courbes de genre au moins deux. Astérisque, 1981, 86, 44-78.
- [104] Szpiro L. Présentation de la théorie d'Arakélov Contemp Math. 1987. 67, 279 –293.
- [105] Szpiro L. Discriminant et conducteut des courbes elliptiques Astérisque 1990. 183:7-18.
- [106] Thue A. . Über Annäherungswerts algebraischer Zahlen. J Reine Angew Math. 1909.135, 284 305.
- [107] Thue A. Wher die Unlösbarkeit der Gleichung $ax^2 + bx + c = dy'$ in grossen ganzen Zahlen x und y, Arch Math Nature Kristiania, 1917, 34, Nr. 16.
- [108] Tijdeman R. Diophentine equations and diophentine approximations. In Mollin R A ed., Number Theory and Applications, Banff. AB, 1988, Dotdtecht; Kluwer Acad Publ. 1989, 215-243.
- [109] Turk J. Almost powers in short intervals, Arch Math. 1984, 43, 157-166.
- [110] Tzanakia N., Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms; the ease of quartic equations, Acta Arith, 1996, 75, 165—190.
- [111] Vojta P., On algebraic points on curves, Compositio Math, 1991, 78, 29-36.
- [112] Vojta P. "Siegel's theorem in the compact case. Ann of Math (2), 1991, 133, 509 -548.
- [113] Vojta P., A generalization of theorem of Faltings and Thue-Siegel-Roth-Wisting, J Amer Math Soc, 1992, 5, 763-804.

- [114] Voutier P. M. .Oo the number of S-integral solutions to $Y^* = f(X)$. Monatch Math. 1995.119, 125 139.
- [115] Vourier P. M., An upper bound for the size of integral solutions to Y'' = f(X),

 [Number Theory, 1995, 53: 247 27].
- [116] Walsh P. G., A quantitative version of Runge's theorem on diophantine equations. Acts Arith, 1992, 62:157-172; Corrections; ihid, 1995, 73:397-398.
- [117] Zagier D. Large integral points on elliptic curves, Math Comp. 1987, 48: 425 436; Addendum. ibid. 1988. 51, 375.
- [118] 朱卫三. $x^4-Dy^2=1$ 可解的充要条件,数学学报,1985,28:681—683.

第五章 指数型超椭圆方程

设m,n 是适合m>1,n>1 以及mn>4 的正整数;又设f(X) $\in \mathcal{I}[X]$ 是m 次多项式.如果m 或n 是未知数,则形如

$$f(x) = y^*$$

的方程及其推广形式统称为指数型超椭圆方程,很多近年来讨论较多的丢番图方程都属于这一类型,本章将介绍 Gel' fond-Baker方法在此类方程中的应用.

§ 5.1 方程
$$D_1x^2 \pm D_2 = \delta y^n, \delta \in \{1,2,4\}$$

设 D 是正整数. 方程

$$x^2 + D = y^n, x, y, n \in \mathbb{N}, \gcd(x, y) = 1, n > 2$$
 (5.1.1)

是一类最基本的指数型超椭圆方程. 近百年来, Lebesgue, Störmer, Nagell, Ljunggren, Blass, Steiner, Aigner, Brown, Cardell, Wren, Cohn 等人先后对此进行了大量的研究. 设(x,y,n), 是方程(5,1,1)的一组解. 如果 n 有大于 2 的真约数 d, 则 $(x,y^{n''},d)$ 也是它的解. 因此, 为了叙述简便, 这里用不同的 x 值来表示方程(5,1,1)的所有解.

首先考虑一类比较简单的情况. 现在假定 D 是适合 $D \neq 7$ (mod 8)的无平方因数正整数,而且虚二次域 $K = \mathbb{Q}(\sqrt{-D})$ 的类数 $h_K = 1$. 此时 O_K 中的代数整数满足唯一分解定理. 设 (x,y,n) 是方程(5.1.1)的一组解. 当 2|n| 时,从(5.1.1)可得 $y^{*/2} + x = D_1$ 以及 $y^{*/2} - x = D_2$,其中 D_1 , D_2 是适合 $D_1D_2 = D$ 以及 $D_1 > D_2$ 的正整数. 由此可得

$$x = \frac{D_1 - D_2}{2}, y^{\alpha/2} = \frac{D_1 + D_2}{2}.$$
 (5.1.2)

对于给定的 D,可从(5.1.2)求得方程(5.1.1)所有适合 2|n 的解。当 2(n 时,因为 n > 2,所以 n 必有奇素因数 p 此时(x, $y^{(r)}$,p)也是(5.1.1)的解。因此不妨假定 n 是奇素数。同时,从 n > 2 以及 $D \neq 7 \pmod{8}$ 可得 2|y,由于 $x + \sqrt{-D}$, $x - \sqrt{-D} \in O_K$,故从(5.1.1)可得 O_K 上的理想数方程

$$\left[x + \sqrt{-D}\right]\left[x - \sqrt{-D}\right] = \left[x\right]^{n}. \tag{5.1.3}$$

因为已知 2ty,所以 $gcd([x+\sqrt{-D}],[x-\sqrt{-D}])=I;$ 又因 $h_K=1$,故从(5.1.3)可得

$$x + \sqrt{-D} = (a + b \sqrt{-D})^n \vec{\mathbf{g}} \left(\frac{a' + b' \sqrt{-D}}{2} \right)^n,$$

$$D \equiv 3 \pmod{8}, \tag{5.1.4}$$

其中 a,b,a',b' 分别是适合

$$a^2 + Db^2 = y \cdot \gcd(a,b) = 1$$
 (5.1.5)

以及

$$a'^2 + Db'^2 = 4y, \gcd(a', b') = 1, a' \equiv b' \equiv 1 \pmod{2}$$
(5. 1. 6)

的整数.

因为 n 是奇素数,所以根据 Lucas 数的基本性质可知:(5.1.4)中的后一种情况仅当 n=3 时才可能成立。此时从(5.1.4)可得 $b'=\pm 1$ 以及 $3a'^2-D=\pm 8$. 于是从(5.1.4),(5.1.6)可知:当且 仅当存在正奇数 s 可使 $D=3s^2\pm 8$ 时,方程(5.1.1)有解(x,y,n) $=(s^3\pm s,s^2\pm 2,3)$ 适合(5.1.4)中的后一种情况。

对于(5.1.4)中的前一种情况,可得6=士1以及

$${\binom{n}{1}}a^{n-1} + {\binom{n}{3}}(-D)a^{n-1} + \dots + {\binom{n}{n}}(-D)^{(n-1)/2} = \pm 1.$$
(5.1.7)

因此从(5.1.4),(5.1.5)可知:此时方程(5.1.1)有解的充要条件是存在正整数 a 以及奇素数 n 满足(5.1.7). 当此条件成立时,该方程有解

$$x = \left| a^{n} + \left(\frac{n}{2} \right) (-D) a^{n+2} + \dots + \left(\frac{n}{n-1} \right) (-D)^{(n-1)/2} a \right|,$$

$$y = a^{2} + D.$$
(5.1.8)

运用初等数论方法,可得(5,1.7)成立的一些条件(参见文献[36], [37], [38], [108]). 根据这些条件,可在 $h_K=1$ 的情况下得出以下结果: 当 D=1, 3 或 43 时,方程(5,1.1)无解; 当 D=2, 11, 19 或 67 时,该方程分别仅有解(x,y,n)=(5,3,3), (x,y,n)=(4,3,3)和(58,15,3), (x,y,n)=(18,7,3)和(22434,55,5)以及(x,y,n)=(110,23,3)[14].

从本书§1.5节可知:当且仅当D=1,2,3,11,19,43.67或 163时,D满足 $D\neq 7 \pmod{8}$ 以及 $h_{\kappa}=1$.根据前面提到的结果,还须考虑D=163的情况。最近,乐茂华[166]运用 Gel'fond-Baker方法证明了此时方程(5.1.1)无解。利用这一方法,乐茂华[99]还证明了以下更一般的结果:

定理 5.1.1 设 D 是正整数 h(-4D) 是判别式等于-4D 的 二元二次原型的类数 . 当 $D\neq 7 \pmod{8}$ 且 n 是适合 $n \mid h(-4D)$ 的 奇素数时 , 必有

- (i)如果 n=3.则方程(5.1,1)仅当 $D=3a^2\pm1$,其中 a 是正整数时,有解 $(x,y,n)=(2a^3\pm a,4a^2\pm1,3)$.
- (ii) 如果 n=5,则仅当 D=19 或 341 时有解(x,y,n)=(22434,55,5)以及(x,y,n)=(2759646,377,5).
 - (iii)如果 n=7,则方程(5.1.1)无解(x,y,n).
- (iv)如果 n > 7,则必有 $n < C_1$,此时若方程(5.1.1)有解(x, y, n),则存在适合(5.1.7)以及

$$a = \left[\sqrt{D}\operatorname{ctg}\frac{k\pi}{n}\right], k \in \mathbb{N}, 1 \leqslant k \leqslant \frac{n-1}{2}, \quad (5.1.9)$$

$$\left| a - \sqrt{D} \operatorname{erg} \frac{k\pi}{n} \right| < \frac{4Dn}{\pi^2 \sqrt{(a^2 + D)^2 - D}}$$
 (5.1.10)

的正整数 a, 可使 x、y 满足(5.1.8).

证 因为 $D \not\equiv 7 \pmod{8}$ 且 $n \ge 3$, 所以方程(5.1.1)的解(x,y. · 152 ·

n)适合 21 v. 又因此时方程

$$X^2 + DY^2 = y^2, X, Y, Z \in \mathbb{Z}, gcd(X, Y) = 1, Z > 0$$
(5. 1. 11)

有解(X,Y,Z)=(x,1,n),所以根据引理 1.5.1 可知:当 n 是适合 $n\{h(-4D)$ 的奇素数时,必有

$$x + \sqrt{-D} = \lambda_1(a + \lambda_2 b \sqrt{-D})^a, \lambda_1, \lambda_2 \in \{-1,1\},$$

$$(5.1,12)$$

其中a,b是适合(5.1.5)的正整数,从(5.1.12)可得b=1且a,n满足(5.1.7),并且x,y适合(5.1.8).

当 n=3 时,从(5, 1, 7),(5, 1, 8)直接可得结论(i),当 n=5 或 7 时,从文献[13]和[14]分别可得结论(ii)和(iii).

当 n>7 时,设

$$\varepsilon = a + \sqrt{-D} \cdot \hat{\epsilon} = a - \sqrt{-D}.$$
 (5.1.13)

从(5, 1, 7), (5, 1, 13)可得

$$\left|\frac{\boldsymbol{\varepsilon}^{\mathbf{a}} - \bar{\boldsymbol{\varepsilon}}^{\mathbf{a}}}{\boldsymbol{\varepsilon} - \bar{\boldsymbol{\varepsilon}}}\right| = 1. \tag{5.1.14}$$

于是,根据定理 1.8.1,从(5.1.14)可知 $n < C_1$.

从(5.1.8),(5.1.13)可知存在实数β可使

$$\varepsilon = \sqrt{y}e^{\theta - \sqrt{1}}, \tilde{\varepsilon} = \sqrt{y}e^{-\theta - \sqrt{1}}.$$
 (5.1.15)

因为从(5.1.8)可得

$$0 < \sin \theta = \sqrt{\frac{D}{y}} < 1, \qquad (5.1.16)$$

所以不妨假定 θ 满足 0<θ<π/2. 又从(5.1.14)可知

$$0 < |\sin n\theta| = \sqrt{\frac{D}{y'}} < 1$$
, (5.1.17)

故从(5.1.16),(5.1.17)可得

$$n\theta = k\pi + \varphi, k \in \mathbb{N}, 1 \le k \le \frac{n-1}{2},$$
 (5.1.18)

其中φ是适合

$$|\sin \varphi| = \sqrt{\frac{D}{v^*}}, 0 < |\varphi| < \theta \qquad (5.1.19)$$

的实数,因为从(5.1,8),(5.1,16),(5.1,18)可知

$$a = \sqrt{y - D} = \sqrt{D} \operatorname{ctg} \theta = \sqrt{D} \operatorname{ctg} \left(\frac{k\pi}{n} + \frac{\varphi}{n} \right),$$
(5.1.23)

故从(5.1.17)。(5.1.20)可知正整数 a 适合(5.1.9)和(5.1.10)。 由此可得结论(iv)。定理证完。

综合运用上述方法,可以对较小的 D 求出方程(5.1.1)的全部解, 当 $D \le 100$ 时,目前已对除了

$$D = 7,15,18,23,25,28,31,39,45,47,55,60,$$

$$63,71,72,79,87,92,95,99,100 (5.1.21)$$

以外的 79 个 D 值解决了该方程的求解问题. 有关这方面的详细情况可参见文献[38]和[122].

从(5.1.21)可知,在这些尚未解决的情况中,包括了所有适合 $D \le 100$ 以及 $D = ? \pmod{8}$ 的 D 值. 这是因为当 $D = ? \pmod{8}$ 时,方程(5.1.1)可能有适合 2.y 的解,由于到目前为止还没有解决此类情况的有效而简便的方法,所以这是一个相当困难的问题,在这方面, $Cohn^{[38]}$ 曾经提出:

猜想 5.4.1 当 $\Omega = 7$ 时,方程(5.1.1)仅有适合 x = 1,3,5, 11 和 181 的解(x,y,n).

对此,从文献[108]可知:当 D=7 时,方程(5.1.1)没有适合 21 y的解(x, y, n). 最近,乐茂华[18]运用 Gel' fond-Baker 方法证明了:此时该方程仅有有限多组解(x, y, n)适合 21 y,而且这些解都满足 $n < 5 \cdot 10^{5}$ 以及 $y < \exp \exp \exp 30$. 此文中的方法还可以用来讨论其它 D 适合 $D = 7 \pmod{8}$ 的情况.

对于一般的正整数 D_1 设 d_k 是虚二次域 $K=\mathfrak{P}(\sqrt{-Q})$ 的类数. 1968 年,Aigner 管 曾经提出:

猜想 5.1.2 当 4 | D 且 D/4 无平方因数时,方程(5.1.1)没有可使 n 为适合 $n \ge 3$ 以及 $n(h_n)$ 的奇素数的解(x,y,n).

1993年,乐茂华^[60]运用 Gel' lond-Baker 方法基本上解决了上述猜想。他证明了:当 *D>C。*时,该猜想是正确的. 这一结果不准推广为以下更一般的定理.

定理 5.1.2 当 $D=2^{2n}D_1$,其中 m 是正整数 $_1D_1$ 是无平方因数正整数时,如果 $D>C_1$,则方程(5.1.1)没有适合 $_1>3$ 以及 gcd $(n,2h_E)=1$ 的解(x,y,n).

证 由于在题设条件下,方程(5.1.1)的解(x,y,n)都满足 2 $\{y$, $2\}$ n以及 $\gcd(n,h_k)=1$,故从本节前面的分析可得

$$x + 2^{n} \sqrt{-D_{1}} = \lambda_{1} \left[a + \lambda_{2} b \sqrt{-D_{1}} \right]^{n}, \lambda_{1}, \lambda_{2} \in \{-1,1\},$$

$$(5. 1. 22)$$

其中的 a,b 是适合

$$a^2 + D_1b^2 = \gamma \cdot \gcd(a,b) = 1$$
 (5.1.23)

的正整数. 因为 $2 \mid n$ 且 $D = 2^{2n}D_1$, 故从(5.1, 22)可知 $b = 2^n$ 且 a 满足(5.1, 7). 设 ϵ , ϵ 适合(5.1, 13). 从(5.1, 7)可知此时(5.1, 14)成立, 故从定理 1.8. 1 可得 $n < C_1$. 同时,由于从(5.1, 7)可知 $n \neq 5$, 故有 $n \ge 7$. 因此,根据定理 2.1.1,从(5.1,7)可得 $D \le \max(a^2, D) < C_1(n) < C_2$. 定理得证.

设 D_1, D_2 是互素的正整数 $.8 \in \{1, 2, 4\}$. 方程

$$D_1x^2 + D_2 = \delta y^*, x, y, n \in \mathbb{N}, \gcd(x, \delta y) = 1, n > 2$$

(5.1.24)

是方程(5.1.1)的自然推广.本节提到的方法都可以用来讨论此类方程,有关这方面的早期工作可参见文献[84],运用 Gel'[ond-Baker 方法得到的结果可参见文献[28],[29],[30],[79],[83],[84],[97].

设 $K=\mathbb{Q}(\sqrt{-D_1D_2})$, 讨论方程(5. 1, 24)的一个重要意义是它与类数 h_k 的可除性之间的联系, 例如, Cowles^[39], Gross 和 Rohrlich^[59], 陆洪文^[111]等人先后运用算术代数几何方法和代数数论方法证明了: 当 $D_k=1$ 且 D_k 是适合

 $1 - D_1 a^2 = 4k^n, a, k, n \in \Omega, k > 1, n > 1$ (5.1.25) 的无平方因数正整数时,如果 a=1 或者 k, n 均为奇素数,则必有 $h_k=0 \pmod{n}$. 文献[80]将适合(5.1.25)的整数组(a,k,n)看作是方程(5.1.24)在 $D_2=1$ 且 $\delta=4$ 时的一组解.于是,根据引理 1.5.1,运用初等方法得出了一般性的结果:当 $D_1>3$, $D_2=1$ 且 D_1 适合(5.1.25)时,必有

根据上述结果可以直接推知:对于任何正整数 n,存在无限多个虚二次域 K 可使 $h_K \equiv 0 \pmod{n}$,而且还可以具体构造出这样的虚二次域. 值得注意的是,在此之前有关该结果的非构造性证明要用到 Hilbert 类域论方面的知识[20x]. 关于方程(5.1.24)与虚二次域类数可除性方面的新近结果,可参见文献[28],[29],[30],[79],[83],[84],[86],[93],[97].

对于方程

$$x^2 - D = y^n, x, y, n \in \mathbb{N}, \gcd(x, y) = 1, y > 1, n > 2,$$
(5.1.27)

当 D 是平方数时,运用 Gel' fond-Baker 方法很容易证明该方程解数的有限性,并能具体算出解的上界. 此时 $D=a^2$,其中 a 是正整数. 设(x,y,a)是方程(5.1.27)的一组解. 如果 2|y,y则从(5.1.27)可得 $x+a=y_1^2$ 以及 $x-a=y_2^2$,其中 y_1,y_2 是适合 $y_1y_2=y$ 的正奇数. 由此可得

$$y^* - y_2^* = 2a. (5.1.28)$$

因为 $y_1^{n-1}-y_2^{n-2}y_2+\cdots+y_2^{n-1})>2\cdot 3^{n-1}$,故从(5.1. 28)立得 $n < C_2 \log D$.

如果 21y, 则从(5、1,2?)可得

$$|y_1^* - 2^{-2}y_2^*| = a_1 (5.1.29)$$

其中 y_1, y_2 是适合 $2y_1y_2=y$ 的正整数. 从(5.1.29)可知

$$0 < \left| n \log \frac{y_1}{y_2} - (n-2) \log 2 \right| < \frac{4a}{y_1^n + 2^{n-2}y_2^n}.$$
(5. 1. 30)

同时,根据(1.8.12)可知

$$\log \left| n \log \frac{y_i}{y_i} - (n-2) \log 2 \right| > -C_6(\log y_i)(\log n).$$
(5.1.31)

结合(5.1.30),(5.1.31)亦可得 n<Cslog D.

当 D 为非平方数时,由于方程(5.1.27)的求解过程通常会涉及实工次域②(\sqrt{D})中的单位数,所以这是一个比较困难的问题.此时,运用定理 3.2.1 的证明方法可知:该方程仅有有限多组解(x,y,n)适合 $2 \nmid y$,而且这些解都满足 $n < C_1 \sqrt{D} (\log D)^6$.

设 D_1, D_2 是互素的正整数, $\delta \in \{1, 2, 4\}$. 对于方程

$$D_1x^2 - D_2 = \delta y^*, x, y, \eta \in \mathcal{N}, \gcd(D_1x, D_2y)$$

= 1, y > 1, n > 2, (5.1, 32)

至今还未见到一般性的结果. 设 $D=D_1D_2$, $K=\mathbb{Q}(\sqrt{D})$. 该方程适合 $\gcd(n,h_K)=1$ 的解(x,y,n)显然与类数 h_K 的可除性有关. 例如,Tanahashi[176]和陆洪文[112]证明了: 当 D_1 无平方因数且 D_2 = 1 时,如果存在正整数 a,k,n 适合

$$D_1 a^2 - 1 = 4k^{2m}, k > 1, m > 1,$$
 (5. 1. 33)

则当 a=1 时,必有 $h_K=0 \pmod m$. 由于当 $D_2=1$ 且 D_1 适合(5.1.33)时,方程(5.1.32)在 $\delta=4$ 时有解(x,y,n)=(a,k,2m). 因此,乐茂华^[20] 根据引理 1.5.1,运用初等方法证明了,当 a>1 且 a,n 满足某些条件时,必有 $h_K=0 \pmod m$ 或 $h_K=0 \pmod m/2$. 根据这一结果,可以对任何正整数 n,构造出无限多个类数 h_K 满足 $h_K=0 \pmod n$ 的实工次域 K. 关于上述命题的非构造性证明是由 Osada I 运用代数数论方法得到的. 有关利用方程(5.1.32)来讨论实工次域类数可除性的新近结果可参见文献[31],[218],

[219],[220].

从总体来看,方程(5.1.1)和(5.1.27)除了与二次域类数的可除性问题有关以外,研究它们的另一项重要意义是讨论正整数中完全方幂的差.如果正整数 k 可表成 a²,其中 a,b 都是大于 1 的整数,则称 k 是一个完全方幂, 关于两个完全方幂的差, Erdōs 曾经提出以下两个猜想(参见文献 63)中的问题 D9);

猜想 5.1.3 存在无限多个正整数 D, 使得 D 不能表成两个完全方幂的差.

猜想 5.1.4 设 (a_i) 。是由全体完全方幂构成的递增数列,其中 $a_0=1$. 此时必有 $a_{n+1}-a_n>C_n$ "。 $(n=1,2,\cdots)$.

这是两个相当困难的问题,至今仍未见到解决的迹象.显然,若能证明对于给定的正整数 D.方程(5.1.1)和(5.1.27)均无解,则此时 D.不能表成含有平方数的两个完全方幂之差.这对于猜想5.1.3的解决有一定帮助.

设 D 为非完全方幂正整数,方程

$$x^{2} + D^{n} = y^{n}, x, y, m, n \in \mathbb{N}, \gcd(x, y) = 1, n > 1$$

(5, 2, 1)

是方程(5.1.1)的直接推广,由于该方程比(5.1.1)多了一个未知数,所以它的求解比较困难,目前仅对一些较小的力值找出了该方程的全部解(x,y,m,n),

当 D=2 时,方程(5.2.1)可写成

$$x^2 - 2^m = y^n, x, y, m, n \in \mathbb{N}, \gcd(x, y) = 1, n > 1.$$

(5, 2, 2)

对此,Ljunggren^[1:e7]证明了;方程(5.2.2)仅有解(x,y,m,n)=(5,3,1,3)适合 m=1. Nagell^[1:28]证明了;该方程仅有解(x,y,m,n)=(1],5,2,3)适合 m=2. Toyoizumi^[2:02]证明了;该方程仅有解(x,y,m,n)=(5,3,1,3)和(11,5,2,3)适合 n=3. 上述结果的证明用

到了初等数论方法和代数数论方法。1986年,曹珍富^[27]曾经宣布已经找出了方程(5.2.2)的全部解,但是迄今尚未见到该结果的详细证明。此后,Cohn^[36]运用初等方法证明了;方程(5.2.2)仅有解(x,y,m,n)=(5,3,1,3)和(7,3,5,4)适合2 | m. 乐茂华^[36]运用Gel' fond-Baker 方法证明了;方程(5.2.2)仅有有限多组解(x,y,m,n)适合2 | m.并且给出了这些解的可有效计算的上界。最近,乐茂华和郭永东 ^[51] 综合运用各种方法,完整地解决了该方程的求解问题。它们证明了;

定理 5. 2. 1 方程(5. 2. 2)仅有 4 组解(x,y,m,n)=(3,5,4,2),(5.3,],3),(7,3,5,4)和(11,5,2,3).

证 设(x,y,m,n)是方程(5.2.2)在题设以外的一组解. 从文献[35],[128]可知该解满足 2|m 以及m>4;又从文献[96]可知 n 是适合 $23 \le n < 43728$ 以及 $n = 7 \pmod{8}$ 的奇素数,而且

$$y = a^2 + 2^m, (5.2.3)$$

其中a是适合

$$\sum_{i=0}^{(n-1)/2} (-1)^{i} \binom{n}{2i} 2^{m(n-2i-1)/2} a^{2i} = 1$$
 (5. 2. 4)

的正奇数,

运用初等数论方法,从(5.2.4)可知 m 满足 3|m;又用定理 5.1.1 的证明方法可知(5.2.3)中的正奇数 a 满足

$$\left|\frac{2^{m/2}}{a} - tg\frac{k\pi}{n}\right| < \frac{\pi}{na^{n-1}}, k \in \mathbb{N}, 1 \leq k \leq \frac{n-1}{2}.$$
 (5. 2. 5)

由于借助计算机可以验证: 当n < 43728 且 $m/2 \le 99$ 时,任何正奇数 a 都不满足(5.2.5). 因此有 $m/2 \ge 102$,并且从(5.2.3)可知 $y > 2^{264}$. 于是,根据引理 1.8.3,从(5.2.4)可得 n < 3816.

另外,运用初等数论方法可知:如果(5.2.4)成立,则 Pell 方程

$$u^2 - nv^2 = 1, u, v \in \mathbb{Z}$$
 (5. 2. 6)

的基本解 $u_1 + v_1 \sqrt{n}$ 满足 $2^{n/2}|u_1$. 然而借助计算机可以验证:当 n 是适合 $n = 7 \pmod{8}$ 以及 n < 3816 时,方程(5.2.6)的基本解都不

满足上述条件,由此可知方程(5.2.2)仅有题设中给出的 4 组解,定理证完。

运用定理 5.2.1的证明中用到的方法,可以对一般的 D 讨论方程(5.2.1)的求解问题. 例如, Brown^[22,23]运用初等数论方法和代数数论方法证明了. 当 D=3 时, 方程(5.2.1)没有适合21 m的解(x,y,m,n). 但是人们至今尚未找出它的全部解. 对此我们有以下猜想:

猜想 5.2.1 当 D=3 时,方程(5.2.1)仅有解(x,y,m,n) = (46,13,4,3).

设 D_1,D_2 是互素的正整数,其中 $D_1>1,D_2>1,D_1$ 为非完全方幂;又设 $K=\mathbb{Q}\left(\sqrt{-D_1D_2}\right)$. 1995 年,乐茂华[91]运用 Gel'fond-Baker 方法讨论了更一般的方程

$$D_1x^2 + D_2^n = 4y', x, y, m, n \in \mathbb{N}, \gcd(D_1x, D_2y)$$

= 1.n > 1. (5.2.7)

他证明了:当 $\max(D_1,D_2) > C_1$ 时·方程(5.2.7)没有适合 n > 5 以及 $\gcd(n,h_K) = 1$ 的解(x,y,m,n); 当 $\max(D_1,D_2) < C_1$ 时,该方程适合 $\gcd(m,h_K) = 1$ 的解都满足 $n < C_2$. 关于上述结果中的常数,文献[93]具体算出: $C_2 < 3 \cdot 10^3$. 此后,Mignotte^[121]将此改进为 $C_2 < 52000$. 由于至今仍未发现方程(5.2.7)有适合 n > 5 以及 $\gcd(n,h_K) = 1$ 的解,所以我们有,

猜想 5. 2. 2 对于任何互素的正奇数 $D_1, D_2,$ 方程(5. 2. 7)都没有适合 n > 5 以及 $gcd(n,h_k) = 1$ 的解(x,y,m,n).

对于方程(5.2.1)的另一类推广

$$px^{2} + 2^{n} = y' \cdot x \cdot y \cdot m \in \mathbb{N}, \gcd(x, y)$$

$$= 1 \cdot p \in \mathcal{P}' \cdot (5.2.3)$$

Brown ^{26]}, Rabinowicz [144] 等人运用代数数论方法证明了:该方程仅有解(x,y,m,p)=(21,11,3,3)适合 p=3. 乐茂毕 "运用Gel'-lond-Baker 方法解决了它的一般情况,他证明了:方程(5, 2, 8)没有适合 p>3 的解(x,y,m,p).

关于方程

$$x^{2} - D^{m} = y^{n}, x, y, m, n \in \Pi, \gcd(x, y)$$

$$= 1, y > 1, n > 2,$$
(5. 2. 9)

因为利用现有方法进行讨论时会涉及实工次域@(√D)中的单位数,所以这是一个比较困难的问题,至今还未见到较为完整的结果.

当 D=2时,方程(5.2.9)可写成

$$x^{2} - 2^{n} = y^{n}, x, y, m, n \in \mathbb{N}, \gcd(x, y)$$
$$= 1, y > 1, n > 2. \tag{5.2.10}$$

对此.Rahinowicz^[143]运用代数数论方法证明了:该方程仅有解(x, y, m, n) = (71,17,7,3)适合 n = 3. 1995 年.郭永东和乐茂华^[61]运用 Gel'fond-Baker 方法给出了以下一般性的结果:

定理 5. 2. 2 方程(5. 2. 10)仅有有限多组解(x,y,m,n),而且这些解都满足 $n < C_3$.

证 设(x,y,m,n)是方程(5,2,10)的一组解,运用初等数论方法可知此时m,n 都是奇数.设 $K=\mathbb{Q}(\sqrt{2})$.因为 $h_k=1$ 且 2^k y,故从(5,2,10)可得

$$x + 2^{(n-1)/2} \sqrt{2} = (a - \lambda b \sqrt{2})^n (u + v \sqrt{2}),$$
$$\lambda \in \{-1,1\}, \qquad (5, 2, 11)$$

其中 a,b 是适合

$$a^2 - 2b^2 = y \cdot \gcd(a,b) = 1$$
 (5. 2. 12)

以及

$$1 < \frac{a-b\sqrt{2}}{a-b\sqrt{2}} < (3+2\sqrt{2})^2 \qquad (5.2.13)$$

的正整数,(u,v)是 Pell 方程

$$u^2 - 2v^2 = 1, u, v \in \mathbb{Z}$$
 (5. 2. 14)

的解.设

$$\epsilon = a - b \sqrt{2}, \bar{\epsilon} = a - b \sqrt{2},$$

$$\rho = 3 + 2\sqrt{2}, \bar{\rho} = 3 - 2\sqrt{2}.$$
 (5. 2. 15)

从(5.2.11)可得

$$x + 2^{(m-1)/2} \sqrt{2} = \begin{cases} \varepsilon^{\alpha} \overline{\rho}^{\alpha}, \\ \overline{\varepsilon}^{\alpha} \rho^{\alpha}, \end{cases}$$

$$x - 2^{(m-1)/2} \sqrt{2} = \begin{cases} \overline{\varepsilon}^{\alpha} \rho^{\alpha}, \\ \overline{\varepsilon}^{\alpha} \overline{\rho}^{\alpha}, \end{cases}$$
(5. 2. 16)

其中 s 是适合 3≤s≤n 的整数. 从(5. 2. 16)立得

$$\left|\varepsilon^*\bar{\rho}' - \bar{\varepsilon}^*\rho'\right| = 2^{(m+1)/2} \sqrt{2}. \tag{5.2.17}$$

设 $A=(\epsilon/\bar{\epsilon})^n-p^2$, 由于在 O_K 中的主理想数[2]= P^2 ,其中 P是 O_K 中的素理想数,故从(5.2.17)可得

$$ord_{\bullet}A = m + 2. (5.2.18)$$

同时,根据引理 1.8.3 和 4.8.5,从(5.2.12),(5.2.13),(5.2.15)可得

$$\log|\Lambda| > -C_4(\log \varepsilon)(\log n)^2 \tag{5.2.19}$$

以及

$$\operatorname{ord}_n \Lambda < C_n(\log \varepsilon)(\log n)^2, \tag{5.2.20}$$

于是从(5.2.18),(5.2.19),(5.2.20)可得 $n < C_3$. 又因从文献 [75]可知,当 $\max(x,y) > C_n(n)$ 时, $x^2 - y^n$ 的最大素因数 $P(x^2 - y^n)$ 满足 $P(x^2 - y^n) > C_2(n)$ ((log log X) (log log log X))^{1/2},其中 X = $\max(x,y)$. 因此从(5.2.10)以及 $n < C_2$ 可知该方程仅有有限多组解(x,y,m,n),而且这些解都是可以有效计算的. 定理证完.

关于定理 5. 2. 2 中的常数 C_1 , 文献[61]具体算出 C_1 < 2 • 10°. 此后,Bugeaud^[25]将此改进为 C_3 < 550000.

另外,乐茂华***运用同样的方法讨论了方程

$$x^{2} - 2^{n} = -y^{n}, x, y, m, n \in \mathbb{N}, \gcd(x, y)$$

$$= 1, n \ge 2.$$
(5.2.21)

他证明了:该方程仅有有限多组解(x,y,m,n),而且这些解都满足 $n < C_a$, 文献[25]具体算出该常数适合 $C_i < 730000$.

设 p 是给定的奇素数. 最近, Bugeaud^[24]运用定理 5. 2. 2 的证・172・

明方法,将上述结果推广到了方程

$$x^{2} - p^{n} = y^{n}, x, y, m, n \in \mathbb{N}, \gcd(x, y)$$

$$= 1, y > 1, n > 2$$
(5. 2. 22)

以及

$$x^{i} - p'' = -y^{i}, x, y, m, n \in \mathbb{N}, \gcd(x, y)$$
$$= 1, y > 1, n > 2.$$
 (5. 2. 23)

他证明了:当 $p=3 \pmod{4}$ 时,方程(5.2.22)和(5.2.23)仅有有限 多组解(x,y,m,n),而且这些解分别满足

$$n \le 4500000 p^2 (\log p)^2 \qquad (5.2.24)$$

以及

$$n \le 560000p^2(\log p)^2;$$
 (5.2.25)

当 $p=1 \pmod{4}$ 时,这两个方程仅有有限多组解(x,y,m,n)适合 2|m 或2 |y,而且这些解也分别满足(5.2.24)以及(5.2.25).

§ 5.3 方程
$$f(x) = y^*$$

设 $f(X) = a_0 X^m + a_1 X^{m-1} + \dots + a_m \in \mathbb{Z}[X]$ 是给定的 m(m > 1) 次多项式,k 是非零整数. 本章前两节讨论的方程显然都是方程

$$f(X) = ky^n, x, y \in \mathbb{Z}, |y| > 1, n \in \mathbb{N}, n > 2$$
 (5.3.1) 的特例. 这是一类基本而又重要的指数型超椭圆方程.

1976年,Tijdeman^[193]首先运用 Gel'fond-Baker 方法证明了: 当 f(X)至少有两个不同的有理数根时,方程(5.3.1)仅有有限多组解(x,y,n),而且这些解都满足 $n < C_1(m,|k|,H_i)$,此后,Schinzel 和 Tijdeman^[163]进一步得到了以下一般性的结果:

定理 5.3.1 当 f(X) 至少有两个不同的根时,方程(5.3.1) 仅有有限多组解(x,y,n),而且这些解都满足 $n < C_2(m,|k|,H_I)$.

证 不妨假定 $a_0=1$. 此时 f(X) 可表成

$$f(X) = (X - a_1)^{m_1} (X - a_2)^{m_2} \cdots (X - a_r)^{m_r}, \quad (5, 3, 2)$$

其中 a_1, a_2, \dots, a_r 是 f(X)的所有不同的根 m_1, m_2, \dots, m_r 是适合 $m_1 + m_2 + \dots + m_r = m$ 的正整数. 设(x, y, n)是方程(5, 3, 1)的一组

$$n > C_2(m, |k|, H_I)$$
 (5.3.3)

的解. 从(5.3.2)可得

$$(x-a_1)^{m_1}(x-a_2)^{m_2}\cdots(x-a_r)^{m_r}=ky^n. \qquad (5.3.4)$$

设 $K = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_r), h_K, O_K$ 分别是 K 的类数和代数整数环,又设 O_K 中的主理想数

$$\Delta = \left[k \prod_{1 \le i \le j \le k} (a_i - a_j) \right]. \tag{5.3.5}$$

因为 $k \neq 0$,所以 Δ 是非零理想数. 设 P_1, P_2, \dots, P_r 是 Δ 在 O_K 中所有不同的素理想因子. 由于 $P_1^{K}(j=1,2,\dots,t)$ 都是主理想数. 故有

$$P_{i}^{h_{K}} = [\theta_{i}], \theta_{i} \in O_{K}, j = 1, 2, \cdots, t.$$
 (5. 3. 6)

从(1.2.22),(5.3.5)可知,(5.3.6)中的 θ_i (j=1,2,...,t)满足

$$|\theta_j| < C_3(m, |k|, H_f), j = 1, 2, \dots, t.$$
 (5. 3. 7)

同时,从(5、3、4)可得

$$[(x-a_i)^{m_i}] = P_1^{i_{j_1}} P_2^{i_{j_2}} \cdots P_i^{i_n} A_i^{m_i}, i = 1, 2, \cdots, r,$$
(5. 3. 8)

其中 $A_i(i=1,2,\cdots,r)$ 是 O_K 中适合 $\gcd(A_i,\Delta)=I$ 的非零理想数, $s_{ij}(i=1,2,\cdots,r;j=1,2,\cdots,t)$ 是适合 $0 \leqslant s_{ij} \leqslant h_K$ 的整数.

根据定理的题设条件可知 $r \ge 2$. 对子 O_K 中的素理想数 P ,如果正整数 I_1 , I_2 可使 $P^{I_1} \| A_1^n$ 以及 $P^{I_2} \| A_2^n$,则必有 $n | I_1$ 以及 $n | I_2$. 因此从(5.3.8)可知 m_1 , m_2 适合 $m_1 | I_1$ 以及 $m_2 | I_2$. 由此可知

$$\frac{n}{\gcd(n,m_i)} \left| \frac{l_i}{m_i}, i = 1, 2.$$
 (5. 3. 9)

设

$$n' = \frac{n}{\gcd(n, \text{lcm}(m_1, m_2))}.$$
 (5. 3. 10)

根据(5.3.9),从(5.3.8),(5.3.10)可得

$$[x - \alpha_i] = P_i^{\alpha_i} P_i^{\alpha_i} \cdots P_i^{\alpha_i} B_i^{\alpha_i}, i = 1, 2, (5.3, 11)$$

其中 B_1, B_2 是 O_K 中的非零理想数, $s_{ij}(i=1,2,j=1,2,\cdots,t)$ 是适合 $0 \le s_{ij} < h_K$ 的整数. 由于

$$B_1^{\kappa_K} = [\beta_1], B_2^{\kappa_K} = [\beta_2], \beta_1, \beta_2 \in O_K, \beta_1, \beta_2 \neq 0,$$

$$(5.3.12)$$

故从(5.3.11)和(5.3.12)可得

$$(x - a_i)^{h_K} = \rho_i \, \eta_1^{\mu_{i1}} \, \eta_2^{\mu_{2i}} \, \cdots \, \eta_1^{\mu_{h}} \, \theta_1^{\mu_{i1}} \, \theta_2^{\mu_{i2}} \cdots \, \theta_i^{\mu_{d}} \, \beta_i^{\mu_i^{\prime}}, i = 1, 2,$$

$$(5. 3. 13)$$

其中 ρ, •ρ₂ 是 Οκ 中适合

$$\max(\left\lceil \rho_1 \right\rceil, \left\lceil \rho_2 \right\rceil) < C_4(m, |k|, H_f) \qquad (5.3.14)$$

的非零代数整数、 $\{\eta_1,\eta_2,\dots,\eta_\ell\}$ 是 K 的一组适合

$$\max\left(\left[\begin{array}{c|c} \eta_1 \end{array}, \left[\begin{array}{c} \eta_2 \end{array}, \cdots, \left[\begin{array}{c} \eta_\ell \end{array}\right]\right] < C_1(m, H_f) \qquad (5.3.15)$$

的基本单位数 $,u_{ij}(i=1,2;j=1,2,\cdots,t)$ 是适合 $0 \le u_{ij} < n'$ 的整数.

不妨假定
$$\beta_1 \geqslant \beta_2$$
. 设

$$\phi = \max \left(3, \boxed{\beta_1} \right). \tag{5.3.16}$$

又设 σ 是 K 到 \mathcal{D} 的满足 $|\sigma(\beta_1)| = \beta_2$ 的嵌入,

$$\tau_i = \sigma(x - a_i) = x - \sigma(a_i), i = 1, 2.$$
 (5.3.17)

因为从(5.3.10)可知

$$\frac{n}{\operatorname{lcm}(m_1, m_2)} \leqslant n' \leqslant n, \qquad (5.3.18)$$

故从(5.3.3)可得

$$n' > C_6(m, |k|, H_f).$$
 (5. 3. 19)

又因 | y | > 1, 故从(5.3.1),(5.3.19)可知

$$\log |x| > C_{\tau}(m, |k|, H_f)n > C_{\epsilon}(m, |k|, H_f)C_{\tau}(m, |k|, H_f).$$
(5. 3. 20)

于是从(5.3.13),(5.3.16),(5.3.17)和(5.3.20)可推得

$$|\tau_1^{h_K}| \ge 2^{-h_K} |x|^{h_K} > \left(\frac{\phi}{C_8(m, H_f)}\right)^{\frac{1}{n}},$$
 (5. 3. 21)

其中 $C_8(m,H_I)>1$.

假如
$$(x-a_1)^{h_K} = (x-a_2)^{h_K}$$
,则因 $a_1 \neq a_2$,故有
$$x-a_1 = (x-a_2)\zeta, \qquad (5.3.22)$$

其中 ξ 是次数不超过 h_K 的单位根. 当常数 $C_2(m,|k|,H_I)$ 充分大时,从(5. 3. 22)可得

$$\log |x| \leq \log \left((|a_1| + |a_2|) \csc \frac{\pi}{h_K} \right)$$

$$< C_{\mathfrak{f}}(m, |k|, H_f) C_{\mathfrak{f}}(m, |k|, H_f)$$

这一与(5, 3, 20) 矛盾的结果. 由此可知 $(x-a_1)^{b_K} \neq (x-a_2)^{b_K}$. 此时从(5, 3, 17)可得 $\tau_1^{b_K} \neq \tau_2^{b_K}$,故有

$$0 < |\tau_1^{h_K} - \tau_2^{h_K}| < C_0(m, H_I) |x|^{h_K - 1}.$$
 (5.3.23)

同时,根据引理 1.8.1,从(5.3.7),(5.3.14),(5.3.15),(5.3.16) 和(5.3.17)可得

$$\left| \left(\frac{\tau_2}{\tau_1} \right)^{h_K} - 1 \right| > \phi^{-C_{10}(m_*+k),f\ell_f)\log n}. \tag{5.3.24}$$

因为 $|\tau_1'^{\kappa} - \tau_2'^{\kappa}| = |\tau_1'^{\kappa}| |(\tau_2/\tau_1)^{\kappa} - 1|$,所以结合(5.3.21),(5.3.23),(5.3.24)可知

$$|x| < \phi^{C_{11}(m, (k), H_f) \log n}$$
 (5.3, 25)

又从(5.3,21),(5.3,23),(5.3,24)和(5.3,25)可得

$$\phi^{n'-C_{10}(m,|k|,H_f)\log n'} \leq |\tau_1^{h_K} - \tau_2^{h_K}| (C_8(m,H_f))^{n'}
\leq \phi^{C_{12}(m,|k|,H_f)\log n'} (C_8(m,H_f)^{n'}).$$
(5. 3. 26)

当常数 $C_2(m, |k|, H_I)$ 充分大时,从(5.3.19)和(5.3.26)可得

$$\phi < C_{11}(m, |k|, H_f).$$
 (5. 3. 27)

此时,从(5.3.18),(5.3.25)和(5.3.27)可得

$$\log|x| < C_{14}(m, |k|, H_f) \log n'. \tag{5.3.28}$$

结合(5.3.20)和(5.3.28)立得 $n < C_2(m, |k|, H_f)$ 这一与(5.3.3) 矛盾的结果. 因此方程(5.3.1)的解(x, y, n)都满足 $n < C_2(m, |k|, H_f)$. 又从定理 4.2.1 可知:对于给定的 n,该方程仅有有限多组解. 综上所述即得本定理. 证完.

1982年前后,Sprindžuk^[187],Turk^[243,264]等人具体算出了上述 定理中的常數 $C_2(m,|k|,H_i)$,例如,Turk^[204]证明了。

$$C_2(m,|k|,H_j) < \exp\left[\frac{C_{1i}m^2(\log(3H_f))^2}{\log(m\log(3H_f))}\right]$$

$$(\log(3|k|))(\log\log(3|k|))^2.$$

此后,Brindza,Evertse 和 Gyōry^[13]给出了仅与 m、|k|以及 f(X)的判别式 Δ_f 有关的上界,他们证明了:当 $a_0=1,k=1$ 且 f(X)在设上不可约时,方程(5.3.1)的解 (x_1,y_1,z_2) 都满足 $n < (6m^3)^{30n^3}$ $|\Delta_f|^{5n^2}$.

设 f(X,Y) 是二元 m 次原型, p_1,p_2,\cdots,p_r 是适合 $p_1 < p_2 < \cdots < p_r$ 的素數;又设集合 $S = \{\pm p_1^r p_2^p \cdots p_r^r | L_1, L_2, \cdots, L_r$ 是非负整数). 1977 年, Shorey, van der Poorten, Tijdeman 和 Schinzel [144]运用定理 5.3.1 的证明方法讨论了更一般的方程

$$f(x,y) = kx^n, x, z \in \mathbb{Z}, |z| > 1, y \in S, n \in \mathbb{N}, n > 2.$$
(5. 3. 29)

他们证明了:对于给定的正整数 d,如果 m>1 则方程(5.3.29)仅有有限多组解(x,y,z,n)适合 $gcd(x,y) \leq d$,而且这些解都满足 $n \leq C_{lis}(m,|k|,d,p_r,H_f)$. 另外, Brindza, Győry 和 Tijdeman^[20]还讨论了方程

$$f(x) = kwy^n, x, y, n \in \mathbb{Z}, |y| > 1, n > 1, w \in S.$$
(5. 3. 30)

他们证明了:该方程仅有有限多组解(x,y,w,n),而且这些解都满足

$$n \le C_{ij}(m_i H_f) ((r-1)^{r+1} q)^{C_{16}(m_i H_f)} (\log \max(3, |k|))$$

(log log max(3, |k|))²,

其中 $q = (\log p_1)(\log p_2) \cdots (\log p_r)$.

§ 5.4 整数递推数列中的完全方幂

如果数列(Fa)=0,{La}=0分别满足

$$F_n = 0, F_1 = 1, F_{m+2} = F_{m+1} + F_m, m \ge 0$$
 (5.4.1)

以及

 $L_0=2$, $L_1=1$, $L_{m+2}=L_{m+1}+L_m$, $m\geq 0$, (5.4.2)则称为 Fibonacci 数列和 Lucas 数列, 其中的 F_m , L_m ($m\geq 0$)分别称为第 m 个 Fibonacci 数和 Lucas 数. 1964年,Cohn^[14]和 Wylie^[2]4]分别独立地解决了《American Mathematical Monthly》上的一个公开问题. 他们证明了: 当且仅当 m=1, 2 和 12 时, F_m 是 平 方 数. 1969年,London 和 Finkelstein^[104] 找出了所有 Fibonacci 立方数. 此后,Steiner^[104],Lagarias 和 Weisser^[76],Robbins^[149]等人讨论了可表成高次完全方幂的 Fibonacci 数.

设 n 是大于 1 的整数. 由于 F_{n} L_{n} 满足

$$L_m^2 - 5F_m^2 = (-1)^m 4, m \ge 0, \qquad (5.4.3)$$

所以当 F_n 可表成 n 次方幂 $a^*(a \in \mathbb{N})$ 时,方程

$$x^{2} - (-1)^{n}4 = 5y^{2n}, x, y, n \in \mathbb{N}, n > 1$$
 (5.4.4)

必有解 $(x,y,n)=(L_m,a,n)$. 注意到方程(5,4,4)是指数型超椭圆方程(5,3,1)的特例. 1990年,乐茂华 $[a_1,1]$ 运用 Gel' fond-Baker 方法证明了,仅有有限多个 Fibonacci 数 F_m 可表成完全方幂;如果 F_m 可表成 n 次方幂,则必有 $n < 2^{2415}$ 以及 $m < \exp$ exp exp exp10. 同时,此文还对 Lucas 数 L_m 给出了类似的结果,显然,运用有关代数数对数线性型下界估计的新近结果,可以大大改进上述结果中的上界.

另外、 Finkelstein^[34,55], Robbins^[150,151], Steiner^[189], Williams^[212], 罗明^[114,115]等人分别找出了所有可表成 $a^2\pm 1$, a(a+1)/2 以及 $a^1\pm 1$ 之形的 Fibonacci 数和 Lucas 数.

设产是大于1的整数、 a_1, a_2, \cdots, a_r 是整数、 $\{u_n\}_{n=0}^\infty$ 是满足初、178、

始条件 u。, u,, · · · , u, - , 以及递推关系

 $u_{m+r}=a_1u_{m+r-1}+a_2u_{m+r-2}+\cdots+a_ru_m,m\geq 0(5.4.5)$ 的 r 阶非退化整数递推数列. André-Jannin^[4], Antoniadis^[5,6], Joó 和 Phong^[70], Nemes^[122], Nemes 和 Pethō^[130], Pethō^[134], 136], Ribenboim 和 McDaniel^[147], Robbins^[154], 153], Shorey 和 Stewart^[177], 179], Stewart^[190], Schlickewei 和 Schmidt^[144]等人讨论了形如

$$u_{m} = ky^{n} + g(y), y \in \mathbb{Z}, |y| > 1, m, n \in \mathbb{N}, n > 1,$$
(5.4.6)

的方程,其中 k 是给定的非零整数, $g(Y) \in \mathbb{Z}[Y]$ 是给定的 s 次多项式. 综合这些结果可知:如果递推关系(5.4.5)至少有两个不同的特征根,则方程(5.4.6)仅有有限多组解(y,m,n),而且这些解都满足 $n < C_1(r,a_1,a_2,\cdots,a_r,u_0,u_1,\cdots,u_{r-1},k,s_1H_s)$ 以及 $m < C_2(r,a_1,a_2,\cdots,a_r,u_0,u_1,\cdots,u_{r-1},k,s_1H_s)$.

§ 5.5 Catalan 猜想

长期以来,完全方幂在正整数中的分布情况一直是一个引人注目的数论问题,在有关这方面的诸多问题和猜想中,最为著名的当属 Catalan 猜想.

L844 年, Catalan^[33]曾经猜测:正整数 8 和 9 是唯一的两个连续的完全方幂,显然,上述猜想可表述为;

猜想 5.5.1 方程

 $x'' - y'' = 1, x, y, m, n \in \mathbb{N}, m > 1, n > 1 \quad (5, 5, 1)$ $\mathbf{Q}\mathbf{f}\mathbf{f}\mathbf{f}(x, y, m, n) = (3, 2, 2, 3).$

对此, Lebesgue, Nagell, Selberg, Obláth, LeVeque, Cassels, Hyyró, Hampel, Schinzel, Inkeri, 柯召, Chein, Rotkiewicz 等人先后运用初等方法进行了大量的研究。有关这方面的详细情况可参见文献[123]的第 30 章、[181]的第 12 章以及 Ribenboim 的专著[146]. 在早期的工作中, Lebesgue^[104]和柯召^[74]分别证明了, 方程

(5.5.1)没有适合 $2[n \, \text{的解}(x,y,m,n);$ 该方程仅有解(x,y,m,n) = (3.2.2.3)适合 2[m] 根据上述结果,Catalan 猜想尚未解决的部分可表述为:

猜想 5.5.2 方程

$$x^p - y^q = 1, x, y \in \mathbb{N}, p, q \in \mathbb{N}$$
 (5. 5. 2)

无解(x,y,p,q).

对于方程(5.5.2), Cassels $^{-32,+}$ 运用初等数论方法进行了深入的讨论. 他证明了:方程(5.5.2)的解(x,y,p,q)都满足

$$q|x, p|y.$$
 (5.5.3)

另外, Cassels [32,1]还提出了以下较弱的猜想:

猜想 5. 5. 3 方程(5. 5. 2)仅有有限多组解(x,y,p,q).

1976年, Tijdeman^[290]运用 Gel' fond-Baker 方法解决了猜想 5. 5. 3. 他证明了:

定理 5.5.1 方程(5.5.2)仅有有限多组解(x,y,p,q),而且这些解都满足 $\max(p,q) < C_1$ 以及 $x' < C_2$.

证 设(x,y,p,q)是方程(5.5.2)的一组解. 首先考虑

$$p > q \tag{5.5.4}$$

时的情况,此时从(5.5.2)可知

$$1 < x < y_i$$
 (5.5.5)

又根据(5.5.3)可得

$$x-1=\frac{y_1^q}{p}, \frac{x^q-1}{x-1}=py_2^q,$$
 (5.5.6)

$$y+1=\frac{x_1^p}{q}, \frac{y^q+1}{y+1}=qx_2^p,$$
 (5. 5. 7)

其中 x_1, x_2, y_1, y_2 是适合

$$x_1x_2 = x_1q[x_1,q]x_2,$$
 (5.5.8)

$$y_1y_2 = y.p(y_1.p)y_2$$
 (5.5.9)

的正整数,由于从(5.5.2),(5.5.6),(5.5.7)可得

$$2^{p}y_{1}^{pq} > (|y_{1}^{q}+1)|^{p} > x^{p} > |y_{1}^{q}+1|^{q} > \frac{x_{1}^{pq}}{(2q)^{q}},$$
(5.5.10)

故从(5.5.4).(○ 5.10)可知

$$x_1 < (4q)^{1/q} y_1 < 2y_1.$$
 (5. 5. 11)

从(5.5.6),(5.5.7)分别可得

$$\log x = \log \frac{y_1^q}{p} + \delta_1 \cdot \log y = \log \frac{x_1^p}{q} - \delta_2$$
. (5. 5. 12)

其中 8₁.8₂ 适合

$$0 < \delta_1 < \frac{2p}{y_1^s}, 0 < \delta_2 < \frac{2q}{x_1^s}.$$
 (5.5.13)

同时,从(5.5.2)可知

$$p\log x = q\log y + \delta_0. \tag{5.5.14}$$

其中 & 适合

$$0 < \delta_{\rm o} < \frac{2}{\nu^{\rm o}}.$$
 (5. 5. 15)

因为从(5.5.5),(5.5.6),(5.5.7)可知 q/xf<p/yf,所以从(5.5.12),(5.5.13),(5.5.14),(5.5.15)可得

$$0
(5.5.16)$$

设 $A = p \log p - q \log q + pq \log (x_1/y_1)$. 由于 A > 0, 被从(1.8.9) 可知

$$\log |A| > -C_1(\log p)(\log q)(\log \log p + \log \log q)$$

$$(\log \max(x_1, y_1))(\log pq). \tag{5.5.17}$$

因此,根据(5.5.4),(5.5.11),结合(5.5.16),(5.5.17)立得

$$\log 4p^2 + 2C_4(\log p)^4(\log(2y_1)) > q\log y_1. \quad (5.5.18)$$

因为从(5.5.9)可知 y₁≥p,故从(5.5.18)可得

$$q < C_4(\log p)^4. \tag{5.5.19}$$

另一方面,从(5.5.12),(5.5.13),(5.5.14),(5.5.15)可知

$$0 (5. 5. 26)$$

又从(5.5.6),(5.5.20)可得

$$0 < q \log q + p \log \frac{x_1^q}{y_1^q/p + 1} < \frac{4q}{x_1^p}.$$
 (5.5.21)

设 A' = qlogq = plog (- 1/(y1/p+1)). 根据(1.8.9), 从(5.3.4)可知

$$\log |A'| > = C_5(\log q)(\log \log q)(\log x_1^q)(\log p).$$

(5.5.22)

结合(5,5,21),(5,5,22)立得

$$\log (q + C_3 q(\log p)^2 (\log x_1) > p(\log x_1),$$
 (5. 5. 23)

因为从(5.5.8)可知 上≥4,故从(5.5.23)可得

$$p < C_{\nu}q(\log p)^{-1}$$
. (5. 5. 24)

于是,结合(5.5.19),(5.5.24)立得

$$p < C_I(\log p)^I$$
. (5.5.25)

从(5.5.25)可以算出 $p < C_1$. 同理可证: 当 p < q 时,必有 $q < C_1$. 由于已知 $\max(p,q) < C_1$.所以根据定理 4.2.1.从(5.5.2)可知 $x' < C_2$. 定理证完.

另外,运用初等数论方法和代数数论方法可以得到方程(5.5.2)的解的下界。在这方面, Inkeri¹⁶⁵, Glass, Meronk, Okada 和 Steiner · Mignotte^{-118,136}, Schwarz¹¹⁶⁵ 等人分别对某些较小的奇素数 p,q,证明了该方程无解。综合上述结果可知。方程(5.5.2)的解(x,y,p,q)都满足 $\min(p,q) \ge 97$. 最近, Mignotte 和 Roy 宣布可将上述下界改进为 $\min(p,q) \ge 10^{\frac{120}{120}}$. 根据有关 p,q 的下界, Aaltonen 和 Inkeri¹¹ 运用初等方法证明了。方程(5.5.2)的解 (x,y,p,q) 都满足 $x'' \ge 10^{\frac{100}{100}}$. 此外,Evertse¹⁰²运用丢番图逼近方法讨论了方程(5.5.1)的解数。他证明了,对于给定的正整数 m,n,

该方程至多有(mn)^{min(m,n)}组解. 有关这方面的详细情况可参见文献[146].

设 p_1, p_2, \dots, p_r 是适合 $p_2p_2 < \dots < p_r$ 的素数, $S = \{\pm p_1p_2^2 \dots p_r\}_{\Gamma_1, \Gamma_2, \dots, \Gamma_r}$ 是非负整数 $\}$. 1977 年,van der Poorten [200] 根据 (1, 8, 38) 对定理 5. 5. 1 进行了推广. 他证明了:方程

$$x^{m} - y^{n} = z^{i}, x, y, z, m, n \in \mathbb{N}, m > 1, m > 1, mn > 4,$$

$$i = lom(m, n)$$
(5.5.26)

仅有有限多组解(x,y,z,m,n,l)适合 $z \in S$,而且这些解都满足 $\max(m,n) < C_s(p,l)$ 以及 $z^* < C_s(p,l)$.由于方程(5,5,26)中的 l 是 m 与 n 的最小公倍数,所以该方程可写成

$$\left(\frac{x}{u}\right)^{n} - \left(\frac{y}{v}\right)^{r} = 1, \ x, y, u, v, m, n \in \mathbb{N}, \gcd(x, u) = \gcd(y, v)$$
$$= 1, m > 1, n > 1, mn > 4. \tag{5.5.27}$$

对此,Shorey和 Tijdeman^[161]运用同样的方法证明了:该方程仅有有限多组解(x,y,u,v,m,n)可使 x,y,u,v 中至少有一数属于 S,而且这些解都是可以有效计算的. 另外,Tijdeman^[261]还运用丢番图逼近方法。在 u,v,m,n 给定的条件下,给出了方程(5.5.27)的解的上界:

$$z < C_1^* e^{(\tau C_2^* \cdot (\log t)^3 / \sqrt{t})}, y < C_1^* e^{(\tau C_2^* \cdot (\log t)^4 / \sqrt{t})}, (5.5, 28)$$

$$\sharp \Phi t = \max(m, n).$$

方程(5.5.27)可以写成类似方程(5.5.1)的形式:

$$x^{n} - y^{n} = 1, \ x, y \in \mathbb{N}, x > 0, y > 0, m, n \in \mathbb{N},$$

 $m > 1, n > 1, mn > 4.$ (5.5.29)

对此,Shorey 和 Tijdeman 1817曾经提出:

猜想 5. 5. 4 方程(5. 5. 29)仅有有限多组解(x, y, m, n),面且这些解都是可以有效计算的。

这也是一个至今尚未解决的问题.

§ 5.6 Pillai 猜想

设 a.li,k 是给定的正整数,其中 a,b 满足 gcd(a,b)=1.1945

年、Pillai-16。曾经提出:

猜想 5.6.1 方程

$$ax^{n} - by^{n} = k, x, y, m, n \in 1, x > 1, y > 1,$$

$$m > 1, n > 1, mn > 4$$
(5. 6. 1)

仅有有限多组解(x,y,m,n)。

显然,Cassels 提出的猜想 5. 5. 3 是 Pillai 猜想在 a=b=k=1 时的特例。根据定理 5. 5. 1 可知此时该猜想是成立的。这是 Pillai 猜想已经被解决的唯一情况。1974 年,Cudnovskii ^[11]曾经宣布他已经能够证明。当 a=b=1 时,对于任何给定的正整数 k,方程(5. 6. 1)都仅有有限多组解(x,y,m,n)。然而迄今没有见到该结果的证明。因此,Pillai 猜想是一个目前远未解决的难题。

另外、Pillai 猜想还与数论及其相关领域中的很多重要问题有 发. 例如、Hall^[66]在讨论 T 型差集的存在性时提出:

猜想 5.6.2 方程

$$p'' = q' + 2, p, q \in \mathbb{R}^{+}, m, n \in \mathbb{N}, m > 1, n > 1$$
 (5. 6. 2)
仅有解 $(p, q, m, n) = (3, 5, 3, 2).$

上述猜想与猜想 5. G. 1 在 a=b=1 且 k=2 时的情况有关. 对此,根据文献[61]和[107]中的结果分别可知:方程(5. G. 2)仅有解 (p,q,m,n)=(3,5,3,2)适合 2(n) 该方程仅有有限多组解(p,q,m,n) 适合 2(m) 但是至今还不知道该方程是否仅有有限多组解 (p,q,m,n) 适合 2(m).

以下讨论方程(5, 6, 1)的一些较弱的形式。当 a, b, k, x, y 都是给定的正整数时, 方程(5, 6, 1)可写成

$$ax^{m} - by^{s} = k, m, n \in \mathbb{N}, m > 1, n > 1, mn > 4.$$
(5. 6. 3)

对此,Pillai [108]运用初等数论方法证明了;该方程仅有有限多组解 (m,n). 1985 年,Shorey [171]运用 Gel' fond-Baker 方法讨论了方程 (6,6,3)的解数. 他证明了:该方程至多有 9 组解(m,n)适合 ax'' > 9836. 1992 年,乐茂华[18]-证明了以下更一般的结果:

定理 5. 6. 1 当 min(x,y)>e 时,方程(5. 6. 3)至多有 3 组解 · 184 ·

(m,n).

证 假如方程(5.6.3)有 4 组解(m_i , n_i)(i=1,2,3,4). 不妨假定这些解满足 $m_1 < m_2 < m_3 < m_4$. 此时必有 $n_1 < n_2 < n_3 < n_4$. 运用初等数论方法,从

$$ax^{n_i} - by^{n_i} = k, i = 1, 2, 3, 4$$
 (5. 6. 4)

可得

$$x^{n_{j+1}-n_j} \equiv 1 \pmod{by^{n_j}}, y^{n_{j+1}-n_j}$$

$$\equiv 1 \pmod{ax^{n_j}}, j = 1, 2, 3. \tag{5.6.5}$$

从(5.6.5)可知

$$m_{j+1} - m_j = r u_j y^{n_j - n_j}, n_{j+1} - n_j$$

= $s v_j x^{m_j - m_j}, j = 1, 2, 3,$ (5. 6. 6)

其中 $u_j, v_i (j=1,2,3)$ 是适当的正整数 $\cdot r_i \cdot s$ 分别是适合

$$x' \equiv 1 \pmod{by^{a_1}}, y \equiv 1 \pmod{ax^{a_1}}$$
 (5. 6. 7)

的最小正整数.

因为从(5.6.4),(5.6.5),(5.6.6)可知

$$\log a x^{n_1} > \log b y^{n_2} > n_4 > n_4 - n_3 \geqslant x^{n_2 - n_2}$$

$$\geqslant x^{n_2 - n_1} > x^{a x^{n_1}} > x^{k_1}$$
(5. 6. 8)

故从(5,6,4),(5,6,8)可得

$$0 < \log \frac{a}{b} + m_i \log x - n_i \log y < \frac{k}{ax^{m_i} + by^{m_i}}. \quad (5.6.9)$$

设 $A = \log(a/b) + m_1 \log x - n_1 \log y$. 根据引理 1.8.1 可知

$$\log |A| > -C_1(\log \max(a,b))(\log x)(\log y)$$

$$(\log \max(m_x,n_t)). \tag{5.6.10}$$

结合(5,6,9),(5,6,10)立得

$$\max(m_1,n_1) < C_2(\log \max(a,b))(\log \max(x,y)).$$

(5.6.11)

另外,从(5.6.5),(5.6.6)可知

$$\max(m_{i_1}, n_{i_1}) > \max[r_{i_1}x^{m_{i_1}}y^{shy^{n_{i_1}}}, sby^{n_{i_1}}x^{rax^{n_{i_1}}}].$$
 (5. 6. 12)

因为 $min(x,y) \ge \ell$,故从(5.6.7),(5,6,11)和(5,6,12)可得矛盾.

由此可知方程(6.6.3)至多有3组解(m,n). 定理证完.

1993 年,Styer [1993]借助计算机对所有适合 $\max(a,b) \le 50,k \le 1000$ 的正整数 a,b,k 以及适合 $\max(x,y) \le 13$ 的素数 x,y,求出了方程(5,6,3)的全部解(m,n). 这些解都满足 $\max(m,n) \le 18$. 此项数值结果说明方程(5,5,3)的解(m,n)与给定的 a,b,k 相比不会很大. 因此定理 5,6,1 还有可能进一步改进. 在这方面,对于某些特殊的正整数 a,b,k,x,y,方程(5,6,3)的解数已经有了更精确的估计. 例如,LeVeque [1063]证明了:当 a=b=k=1 时,对于任何给定的正整数 x,y,方程(5,6,3)至多有 1 组解(m,n):Herschfeld a,b,k 证明了:当 a=b=1,x=2,y=3 且 k 充分大时,该方程至多有 1 组解(m,n). 这一结果被 Pillai [1283]推广到了一般的正整数 x,y 的情况,并且猜测该结果在 $k \ge 13$ 时都成立. 这一猜想已被 Stroeker 和 Tijdeman a,b,k 记录. 另外,Edgar a,b,k 已经出。对于给定的奇素数 a,a 以及正整数 a,b,k

$$p''' - q'' = 2^h, m, n \in 1^r$$
 (5. 6. 13)

有多少解(m,n)? 有关这个问题的最好结果是由 Scott^[166]得到的。他运用初等方法证明了:除了有限多组已知的(p,q,h)以外,方程(5,6,13)至多有 1 组解(m,n).

设x,y,k 是给定的正整数,不妨假定x>y,从文献[137]中的结果直接可知:方程

$$|x^{m} - y^{n}| = k, m, n \in \mathbb{N}$$
 (5. 5. 14)

仅有有限多组解(m,n). 对此,Scott^[166]进一步证明了:当x,y均为素数时,除了(x,y,k)=(3,2,1),(5,2,3),(3,2,5)这三种情况以外,该方程至多有 2 组解(m,n). 由于根据 Crawford 的计算结果可知:当 $\max(x^m,y^n) < 2^{32}$ 时,除了下列情况

$$(x,y,k) = (3,2,1), (5,2,3), (3,2,5), (13,3,10), (3,2,13),$$

$$(257,2,255),(65537,2,65535),$$
 $(5.6.15)$

方程(5, 6, 14)至多有)组解(m,n). 因此 Scott^[166]提出了以下猜想:

猜想 5.6.3 当 x,y 是适合 x>y 的素数时,除了(5.6.15)中的 11 种情况以外,方程(5.6.14)至多有 1 组解(m,n).

因为当 $x=2^2-1$ 是 Fermat 素数、y=2,k=x-2 时,方程(5.6.14)至少有 2 组解(m,n)=(1,1)和(1,2'+1),所以猜想 5.6.3 必须在已知仅有 5 个 Fermat 素数 3,5,17,257 和 65537 的条件下才有可能得到解决。由此可知这是一个非常困难的问题。

另外, Leech 曾经提出以下两个问题(参见文献[63]中的问题 D9):

问题 5. 6. 1 当 k = |x-y|时,方程(5. 6. 14)是否仅当(x,y) = (5.2)或(13.3)时有解(m,n) = (3.7)?

问题 5.6.2 当 k < x-y 时, 方程(5.6.14)是否有解(m.n)?

§ 5.7 Erdös-Graham 猜想

设 p 是奇素数,a 是适合 p/a 的整数. 根据初等数论中的 Fermat 定理和 Wilson 定理可知此时($a^{r-1}-1$)/p 和((p-1)) + 1)/p 都是整数,分别称为 Fermat 商和 Wilson 商. 本节将讨论有 关这两类整数的方程.

Erdös 和 Graham^[19]曾经提出:哪些奇素数 p 和正整数 a 可使相应的 Fermat 商与 Wilson 商之和等于 p 的方幂? 该问题运用方程的语言可表述为:

问题 5.7.1 方程

 $x^{p-1} + (p-1)! = p^n, x, n \in \mathbb{N}, p \in \mathbb{P}^* \quad (5.7.1)$ 有哪些解(x, p, n)?

对此,Brindza 和 Erdös[13]证明了:方程(5.7.1)仅有有限多组解(x,p,n),而且这些解都是可以有效计算的.1996年,乐茂华[14]运用 Gel'[ond-Baker 方法完整地解决了这个问题.他证明了:

定理 5.7.1 方程(5.7.1)仅有解(x,p,n)=(1,3,1),(1,5,2)和(5,3,3).

证 运用初等数论方法不难证明:该方程仅有解(x,p,n)=

(1.3.1)和(1.5.2)适合 x=1;如果(x,p,n)是它的一组适合 x>1的解,则 p 必为 Fermat 素数,即 $p=2^{2^n}+1$,其中 m 是非负整数;而且当 $m \le 1$ 时,该方程仅有解(x,p,n)=(5.3.3).

当 加>1时,运用初等数论方法可知

$$p+2 \le x < p^2, p-1 \le n < 2p.$$
 (5.7.2)

如果 p>2100,则根据引理 1.8.5,从(5.7.2)可得

$$\operatorname{ord}_{2}(p^{n} - x^{p-1}) < 2^{14}3^{12}(\log 2)^{2}(\log p)(\log x)$$

$$\cdot \left(\log \frac{7n}{30}\right) < 8 \cdot 10^{4}(\log p)^{3}. \tag{5.7-3}$$

(108 30)

同时,从(5.7.1)可知

ord_s(
$$p^n - x^{n-1}$$
) = ord_s($p - 1$)! = $p - 2$. (5.7.4)
千是,结合(5.7.3)和(5.7.4)立得 $p < 2^{6n}$ 这一矛盾,由此可知 $p < 2^{6n}$. 因为 p 是 Ferma: 素数,所以此时 p 仅可能取 17,257,65537

这三个数值,最后,运用初等方法可知方程(5.7.1)在这三种情况下均无解,定理证完.

最近,于坤瑞和刘德华^[2]5]也用 Gel'fond-Baker 方法证明了定理 5.7.1.

另外,Osada 和 Terai[132],Tétai[197]运用初等方法讨论了可表成完全方幂的 Fermat 商. 该问题可归结为方程

$$x^{p-1} - 1 = py^*, x, y, n \in \mathbb{N},$$

 $x > 1, y > 1, n > 1, p \in \mathbb{P}^*, p > 3$ (5. 7. 5)

的求解问题. 设(x,y,p,n)是方程(5.7.5)的解. 当 2|x|时,因为 p —1 是偶数,而且 $\gcd(x^{(p-1)/2}+1,x^{(p-1)/2}-1)=1$,故从(5.7.5)可得

$$x^{(p-1)/2} + 1 = \begin{cases} py_1^n \\ y_2^n \end{cases} x^{(p-1)/2} - 1 = \begin{cases} y_2^n \\ py_{1:1}^n \end{cases}$$
 (5. 7. 6)

其中 y_1, y_2 是适合 $y_1y_2=y$ 的正奇数. 根据文献[74]和[104]中的结果,从(5.7.6)可知方程(5.7.5)仅有解(x,y,p,n)=(2,3,7,2)适合 2(x 以及 2(n; 又从定理 5.5.1 可知:方程(5.7.5)仅有有限 多组解(x,y,p,n)适合 2(x 以及 2(n;

当 $2 \mid x$ 时,因为 $gcd(x^{(p-1)/2}+1,x^{(p-1)/2}-1)=2$,故 从 (5.7.5)可得

$$x^{(p-1)/2} + 1 = \begin{cases} 2^{n-1}py_1^n, \\ 2^{n-1}y_1^n, \\ 2py_1^n, \end{cases} x^{(p-1)/2} - 1 = \begin{cases} 2y_2^n, \\ 2py_2^n, \\ 2^{n-1}y_2^n, \\ 2^{n-1}py_2^n, \end{cases}$$

(5.7.7)

其中 y₁, y₂ 是适合 2y₁y₂=y 的正整数. 对于此类情况,目前尚未见到有关方程(5, 7, 5)的解数是否有限的一般性结果. 1993 年,乐茂华^[87]运用 Gel'fond-Baker 方法证明了以下结果:

定理 5.7.2 方程(5.7.5)仅有有限多组解(x,y,p,n)适合 2 +x 以及 $p=1 \pmod{4}$,而且这些解都满足 $p < C_1$ 以及 $x < C_2$.

证 设(x,y,p,n)是方程(5.7.5)的一组适合 2|x|以及 p=1 (mod 4)的解. 因为此时(p-1)/2 是偶数, $x^{(p-1)/2}+1=2$ (mod 4),并且从文献[127]可知方程

$$X^2 + 1 = 2Y^n, X, Y, n \in \mathbb{N}, X > 1, Y > 1, n > 1$$
(5.7.8)

无解(X,Y,n),所以从(5.7.7)可知此时仅须考虑以下情况

$$x^{(p-1)/2} + 1 = 2py_1^n, x^{(p-1)/2} - 1 = 2^{n-1}y_2^n.$$
 (5.7.9)

从(5.7.9)立得

$$py_1^* - 2^{n-2}y_2^* = 1. (5.7.10)$$

另外,从(5.7.9)还可得

$$x^{(p-1)/4}+1=\begin{cases}2^{n-2}z_1^n, & x^{(p-1)/4}-1=\begin{cases}2z_2^n, \\ 2z_2^n, \end{cases}$$

(5.7.11)

其中 z_1, z_2 是适合 $z_1z_2 = y_2$ 的正整数.从(5.7.11)可知 z_1, z_2 满足($2z_1$)" $-8z_2^2 = \pm 8$. (5.7.12)

从(5.7.12)可得

$$0 < \left| n \log \frac{2z_1}{z_2} - \log 8 \right| < \frac{32}{(2z_1)^n}. \tag{5.7.13}$$

设 A=nlog(2z1/z2]-log8. 根据引理 1.8.1 可知

$$\log |A| > -C_0(\log(2z_1))\log n.$$
 (5.7.14)

结合(5.7.13),(5.7.14)可得

$$n < C_4. \tag{5.7.15}$$

另外,根据定理 2.1.1,从(5.7.12)可知

$$\max\{2z_1,z_2\} < C_5(n). \tag{5.7.16}$$

因为 $z_1z_2 = y_2$,故从(5.7.15),(5.7.16)可得 $y_2 < C_6$.于是从(5.7.9),(5.7.15)可知

$$x^{(p-1)/2} < C_2. (5.7.17)$$

从(5.7.17)立得 p<C,以及 x<C, 定理证完.

§ 5.8 方程
$$\frac{x^n-1}{x-1}=y^n$$

设 & 是大于 1 的整数. 此时,任何给定的正整数 a 都可唯一地 表成

$$a = b_0 + b_1 k + \cdots + b_i k',$$
 (5.8.1)

其中 t 是非负整数 $,b_i(i=0,1,\cdots,t)$ 是适合 $0 \le b_i \le k-1$ 的整数. 此式称为 a 的 k-adic 表示. 当 (5.8.1) 中的 $b_i(i=0,1,\cdots,t)$ 都等于 1 时 ,a 称为 k-adic 重单位数. 从 (5.8.1) 可知如此的 a 满足

$$a = \frac{k^{r-1} - 1}{k - 1}.$$
 (5. 8. 2)

数论,群论以及组合数学中的很多重要问题都与重单位数中的完全方幂有关(多见文献[53],[62],[133]).从(5,8,2)可知此类问题可归结为方程

$$\frac{x^m - 1}{x - 1} = y^n, x, y, m, n \in \mathbb{N}, x > 1, y > 1, m > 2, n > 1$$
(5.8.3)

的求解问题.近 50 年来, Ljunggren, Nagell, Oblath, Inketi, Richter, Shorey 和 Tijdeman 等人对该方程进行了大量的研究, 有关这方面的早期工作可参见文献[181]的第十二章.

早在本世纪初,人们已经知道了方程(5.8.3)的 3 组解(x,y,m,m)=(7.20,4.2),(3,11,5,2)和(18.7,3,3).由于此后一直没有发现它有其它解,所以 Shorey 和 Tijdeman^[181]曾经提出:

猜想 5.8.1 方程(5.8.3)仅有解(x,y,m,n)=(7,20,4,2), (3,11,5,2)和(18,7,3,3).

这是一个非常困难的问题,目前,人们甚至还无法解决以下较弱的猜想。

猜想 5.8.2 方程(5.8.3)仅有有限多组解(x,y,m,n).

1976年,Shorey 和 Tijdeman^[180]根据运用 Gel' [ond-Baker 方法在超椭圆方程方面取得的结果证明了:在方程(5.8.3)的 4 个未知数 x,y,m,n 中至少有一个是给定的数或有给定的素因数时,该方程仅有有限多组解(x,y,m,n),而且这些解都是可以有效计算的. 1993年,乐茂华^[85]首先得到了方程(5.8.3)的没有上述限制的有限性结果. 他综合运用丢番图逼近方法和 Gel' fond-Baker 方法证明了:

定理 5.8.1 方程(5.8.3)仅有有限多组解(x,y,m,n)适合 $y \equiv 1 \pmod{x}$ 以及 x 是素数的方幂,而且这些解都满足 $x^* < C_1$.

证 设(x,y,m,n)是方程(5.8.3)的一组适合 $x^n > C_1,y=1$ (modx)以及 x 是素数方幂的解. 因为从文献[106]可知方程(5.8.3)仅有解(x,y,m,n)=(7,20,4,2)和(3,11,5,2)适合 2|n,所以该解必定满足 2|n,此时 n 必有素因数 p.由于(x,y^{n},m,p) 也是方程(5.8.3)的一组适合同样条件的解,因此不妨假定 n 是奇素数.同时,从文献[127]可知方程(5.8.3)仅有解(x,y,m,n)=(7,20,4,2)适合 4|m,所以当 2|m 时,必有 2|m.因为此时 gcd $1(x^{m/2}-1)/(x-1),x^{m/2}+1)=1$,故从(5.8.3)可得

$$\frac{x^{m/2}-1}{x-1}=y_1^n, x^{m/2}+1=y_2^n, \qquad (5.8.4)$$

其中 y_1, y_2 是适合 $y_1y_2 = y$ 的正整数. 根据定理 5. 5. 1, 从(5. 8. 4) 中的第二个等式可得 $x^n < C_i$ 这一矛盾,故必有 2 l m. 同理可知此时 x 不是平方数.

因为 : 是素数的方幂,故有素数 : 和正整数 : 可使

$$x = p'. \tag{5.8.5}$$

又因 $y=1 \pmod{x}$, 所以根据程几何级数的算术性质 $_{1}$ 运用丢番图 逼近方法 $_{1}$ 从 $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$ $_{7}$

$$x < n^{16/9}. \tag{5.8.6}$$

由于 21 m,故从(5.8.3)可得

$$\left(\frac{x^{(n-1)/2}-1}{x-1}\right)^2-x\left(\frac{x^{(n-1)/2}-1}{x-1}\right)^2=y^4. \quad (5.8.7)$$

从(5.8.7)可知此时方程

$$X^{2} - xY^{2} = y^{Z}, X, Y, Z \in \mathbb{Z}, \gcd(X, Y) = 1, Z > 0$$
(5. 8. 8)

有解

$$(X,Y,Z) = \left(\frac{x^{(m+1)/2}-1}{x-1}, \frac{x^{(m+1)/2}-1}{x-1}, n\right).$$
 (5. 8. 3)

因为 $2 \nmid y$ 且 x 为非平方数,所以根据引理 1.5.1,从(5.8.9)可知: 方程(5.8.8)有适合 $X_1 > 0, Y_1 > 0$,

$$1 < \left| \frac{X_1 + Y_1 \sqrt{x}}{X_1 - Y_1 \sqrt{x}} \right| < \left(u_1 + v_1 \sqrt{x} \right)^2 \quad (5.8.10)$$

以及

$$h(4x) \equiv 0 \pmod{Z_1} \tag{5.8.11}$$

的解 (X_1,Y_1,Z_1) 可使

$$n = Z_1 t_1$$
 (5.8.12)

$$\frac{x^{(n+1)/2}-1}{x-1}+\frac{x^{(n+1)/2}-1}{x-1}\sqrt{x}$$

$$= (X_1 + \lambda Y_1 \sqrt{x})'(u + v \sqrt{x}), \lambda \in \{-1,1\}, (5.8,13)$$

其中 t 是正整数 ,(u,v)是 Pell 方程

$$u^2 - xv^2 = 1, u, v \in \mathbb{Z}$$
 (5.8.14)

的解 $_{1}u_{1}+v_{1}\sqrt{x}$ 是方程(5.8.14)的基本解 $_{1}h(4x)$ 是判别式等于 $_{2}u_{1}+v_{2}$ 次原型的类数.

因为 n 是奇素数,故从(5.8.12)可知 t=1 或 n. 当 t=1 时,2.

• 192 •

=n. 根据文献[68]中的定理 12.10.1 和 12.14.3.从(5.8.6)。 (5.8.11)可得

$$n \le h(4x) < C_2 \sqrt{x} \log x < C_3 n^{5/9} \log n$$
. (5.8.15)

从(5.8.15)可以算出

$$n < C_{i}. \tag{5.8.16}$$

当t=n时, $Z_t=1$ 且有

$$X_1^2 - xY_1^2 = y \cdot X_1, Y_1 \in \{1\}, \gcd(X_1, Y_1) = 1, (6.8.17)$$

并且从(5.8.13)可得

$$\frac{x^{(m-1)/2}-1}{x-1} + \frac{x^{(m-1)/2}-1}{x-1} \sqrt{x}$$

$$= (X_1 + \lambda Y_1 / x)^n (u+v / x), \lambda \in \{-1,1\}.$$
 (5. 8. 18)

设

$$\varepsilon = X_1 + Y_1 \sqrt{x}, \quad \dot{\varepsilon} = X_1 - Y_3 \sqrt{x}, \quad \rho = u_1 + v_3 \sqrt{x},$$

$$\dot{\rho} = u_1 - v_1 \sqrt{x}. \quad (5.8.19)$$

从(5, 8, 10),(5, 8, 18)可知存在适合 a≤r≤n 的整数 r,可使

$$\frac{x^{(m+1)/2}-1}{x-1}+\frac{x^{(m-1)/2}-1}{x-1}\sqrt{x}=\epsilon^{n}\vec{\rho}\vec{\otimes}\vec{\epsilon}^{n}\rho.$$
(5.8.20)

从(5.8.20)可知

$$\frac{x^{(n+1)/2}-1}{x-1}-\frac{x^{(n-1)/2}-1}{x-1}\sqrt{x}=\hat{\epsilon}^{n}\rho^{n}\otimes\hat{\epsilon}^{n}\bar{\rho}^{n}.$$
(5.8.21)

结合(5.8.20),(5.8.21)立得

$$\varepsilon \vec{\rho} \left(\sqrt{x} - 1 \right) - \vec{\epsilon} \vec{\rho} \left(\sqrt{x} + 1 \right) = \pm 2. \quad (5.8.22)$$

设 $a_1 = \epsilon/\bar{\epsilon}$, $a_2 = \rho$, $a_3 = (\sqrt{x} + 1)/(\sqrt{x} - 1)$. 从 (5.8.20)、 (5.8.22)可得

$$0 < |n\log a_1 - 2r\log a_2 \pm \log a_1| < \frac{8}{v^{n/2}}.$$
 (5. 8. 23)

设 $A = n\log a_1 - 2r\log a_2 \pm \log a_3$. 因为 $0 \le r \le n$.并且从(5.8.10),(5.8.17),(5.8.19)可知 $h(a_1) \le \log p^2 \sqrt{y}$, $h(a_2) = \log p$ 以及

h(a₁)≤logx.所以根据引理 1.8.1 可得

$$\log |A| > = C_5 \left(\log \left(\left| \rho^{\varepsilon} | \sqrt{y} \right| \right) \left(\log \rho \right) \left(\log x\right) \left(\log 2n\right).$$

$$(5.8.24)$$

结合(5.8.23),(5.8.24)立得

$$\frac{\log 8}{\log \sqrt{y}} + C_5 \left(1 + \frac{2\log \rho}{\log \sqrt{y}}\right) (\log \rho) (\log x) (\log 2n) > n.$$

$$(5.8.25)$$

由于 $y \equiv 1 \pmod{x}$,故有 y > x;又从文献[68]中的定理 12.13.4 可知 $\log p < C_s \sqrt{x} \log x$. 因此从(5.8.6),(5.8.25)可知此时(5.8.16)亦成立.于是根据定理 5.3.1,从(5.8.3),(5.8.6),(5.8.16)可得 $m < C_s$ 以及 $x'' < C_s$ 这一矛盾,故必有 $x''' < C_s$. 定理证完.

此后,袁平之^[217]运用相同的方法去掉了上述定理中的"x 是素数方幂"这一条件,从而证明了:方程(5.8.3)仅有有限多组解(x_1y_1,m_1x_2)适合 $y=1\pmod{x}$,而且这些解都满足 $x'' < C_1$. 同时,他还对方程

$$\frac{x''+1}{x+1} = y'', x, y, m, n \in \mathbb{N}, x > 1.$$

$$y > 1, m > 1, 2 \mid m, n > 1 \qquad (5.8.26)$$

得到了同样的结果.

设 a 是大于 1 的整数 b 是与 a 互素的整数 a 根据初等数论中的 Euler 定理可知 $b^{(n)} \equiv 1 \pmod{a}$,其中 $\varphi(a)$ 是 a 的 Euler 函数 a 出此可知必有正整数 a 可使同余关系

$$b^a \equiv 1 \pmod{a} \tag{5.8.27}$$

成立,适合(5.8.27)的最小正整数 n 称为整数 b 对模 a 的次数. 1985 年,Edgar^[16]曾经证明,如果(x,y,m,n)是方程(5.8.3)的解,则其中的 m 必为 x 对模 y 的次数.同时,Edgar 提出以下猜想:

猜想 5.8.3 如果(x,y,m,n)是方程(5.8.3)的解,则其中的n 必为 y 对模 x 的次数.

显然,当(x,y,m,n)是方程(5,8,3)的解,其中n是素数时,如 - 194 -

果加不是 y 对模 x 的次数,则从 y'=1(mod x)立得 y=1(mod x), 压此,文献[88]根据定理 5. 8. 1 直接推知:方程(5. 8. 3)仅有有限多组解(x,y,m,n)满足 x 是素数方幂且 n 不是 y 对模 x 的次数, 同时,从文献[217]可知上述结果中的条件"x 是素数方幂"是可以去掉的。

1975 年, Cresenzo ** i 讨论了有关有限单群的方程 | p* - 2q* | = 1, p, q ∈ ℙ*, m, n ∈ □, m > 1, n > 1.

(5.8, 28)

他证明了:方程(5.8.28)除了(p,q,m,n)=(239,13,2.4)以外的解(p,q,m,n)都满足 m=n=2. 此后,施武杰发现了上述结果在证明过程中的一处漏洞,指出该方程还有解(p,q,m,n)=(3.5,5,2)不满足条件 m=n=2,而且其它不满足此条件的解(p,q,m,n)都适合 $p=3^{[195]}$.由于方程(5.8.28)适合 p=3 的解都满足

$$\frac{3^{n}-1}{3-1}=q^{n}, q \in \mathbb{P}^{+}, m, n \in \mathbb{N}, m > 2, n > 1,$$

(5.8.29)

因此孙琦^[lgs]曾经提出:

问题 5.8.1 方程(5.8.29)是否仅有解(q,m,n)=(5,5,2)?

因为方程(5.8.29)是方程(5.8.3)在x=3且 $y\in\mathbb{P}^*$ 时的特例,所以根据文献[180]中的结果可知,方程(5.8.29)仅有有限多组解(q,m,n). 乐茂华[52]运用定理 5.8.1 的证明方法,具体算出该方程的解(q,m,n)都满足 $q<10^{6+10^6},m<1.4\cdot10^{15}$ 以及 $n<1.2\cdot10^5$.

1991年,施武杰[list]在讨论 K, 单群的精细刻划时提了以下问题。

问题 5.8.2 方程

$$\rho^2 - 1 = 2^a 3^b q^a, \rho, q \in \mathbb{R}^n, \rho > 3, q > 3, a, b, n \in \mathbb{N}$$
(5. 8. 30)

以及方程组

$$\begin{cases}
2^{n} - 1 = p. \\
12^{n} + 1 = 3q^{n}, & p, q \in \mathbb{F}^{*}, p > 3, q > 3, m, n \in \mathbb{F}^{*}, \\
3^{n} + 1 = 4p, & p, q \in \mathbb{F}^{*}, p > 3, q > 3, m, n \in \mathbb{F}^{*}, \\
3^{n} - 1 = 2q^{n}, & (5.8.32)
\end{cases}$$

$$\begin{cases}
3^{n} + 1 = 4p^{n} \cdot \\
3^{n} - 1 = 2q, & p, q \in \mathbb{F}^{*}, p > 3, q > 3, m, n \in \mathbb{F}^{*}, \\
3^{n} - 1 = 2q.
\end{cases}$$

$$(5.8.33)$$

分别有哪些解? 是否仅有有限多组解?

由于问题 5.8.2 中的方程和方程组适合 n=1 的解都与Mersenne 素数,Fermat 素数以及其它有类似形状的素数有关。所以 这是一个非常困难的问题. 同时,因为方程组(5.8.31),(5.8.32),(5.8.33) 适合 n>1 的解(p,q,m,n)分别与方程(5.8.3),(5.8.26)的适合 z=2 或 3 的解(x,y,m,n)有关.而且方程(5.8.30)适合 n>1 的解也有如此性质,所以这些方程和方程组都仅有有限多组解适合 n>1 的,而且运用文献[92]中的方法可以具体算出这些解的上界.

另外,Edgar 还对方程(5.8.3)的素数解提出了以下更一般的问题(参见文献[63]的问题 D10)。

问题 5.8.3 方程(5.8.3)是否仅有解(x,y,m,n)=(3,5,5,2)适合 x(y∈ℙ*?

这也是一个迄今尚未解决的问题.

1986年、Shorey^[17]运用 Gel⁴ fond-Baker 方法证明了:方程 (5.8.3) 仅有有限多组解(x,y,m,n)可使 x 是 n 次方幂. 根据这一结果可以推知方程

$$\frac{x^{m}-1}{x-1} = y^{n}+1, x, y, m, n \in \mathbb{N},$$

$$x \ge 1, y \ge 1, m \ge 2, n \ge 2 \qquad (5.8.34)$$

仅有有限多组解(x,y,m,n). 对此方程 Shorey[170** 提出了以下・196・

问题:

问题 5.8.4 方程(5.8.34)有哪些解(x,y,m,n)?

1994年,乐茂华[89]根据有关二项 Thue 方程解数的结果解决了上述问题. 他证明了:方程(5.8.34)无解(x,y,m,n).

§ 5. 9 方程
$$\frac{x^n-1}{x-1} = \frac{y^n-1}{y-1}$$

设 k 是大干 1 的整数, N(k)表示方程

$$k = \frac{x^m - 1}{x - 1}, x, m \in \mathbb{N}, x > 1, m > 2$$
 (5. 9. 1)

的解(x,m)的个数. 1916 年,Ratat^[145]和 Goormaghtigh^[58]分别证明了:N(31)=2 以及 N(8191)=2. 同时,Goormaghtigh^[58]提出了以下猜想:

猜想 5.9.1 当 k≠31 或 8191 时,必有 N(k)≤1.

又设 N'(k)是方程(5.9.1)适合 $x \in \mathbb{P}$ 的解(x, m)的个数. 对此,Bateman 和 Stemmler[11]曾经提出:

猜想 5.9.2 当 k≠31 时,必有 N'(k)≤1.

这是两个迄今尚未解决的问题,具体的数值算例说明它们分别在 $k < 10^{10}$ 以及 $k < 10^{10}$ 时成立、1989 年,Shorey $\log k = 10^{10}$ 运用初等数论方法给出了 N(k) 有关 k-1 的不同素因数个数 $\omega(k-1)$ 的上界,他证明了;

$$N(k) \leqslant \begin{cases} \max(2\omega(k-1)-3.0), \\ \omega(k-1) \leqslant 4 \text{ 时,} \end{cases}$$
 当 $\omega(k-1) \leqslant 4 \text{ 时,}$

而且当 $k \neq 31$ 或 $8191, \omega(k-1) \leq 5$ 时,方程(5.9.1)至多有1组解 (x,m)适合 $2(m;特别是当 k 是奇素数时,必有 <math>N(k) \leq 1$. 另外, Loxton $\mathbb{N}(k) \leq 1$. 另外, $\mathbb{N}(k) \leq 1$. 另外, $\mathbb{N}(k) \leq 1$.

从(5.9.1)可知,当 N(k) > 1 时,方程

$$\frac{x^m-1}{x-1}=\frac{y^n-1}{y-1}, x,y,m,n \in N, x>y>1,n>m>2$$

(5.9.2)

有解(x,y,m,n)适合(x''-1)/(x-1)=k. 因此,上述的猜想 5.9.1和 5.9.2分别等价于以下两个猜想:

猜想 5.9.4 方程(5.9.1)仅有解(x,y,m,n)=(5,2,3,5)适合x,y∈3.

由于到目前为止对方程(5.9.2)的解知之甚少,所以关于以上两个猜想仅有一些很弱的结果. 根据文献[173: \mathbb{I}]中的分析,综合Kanold^[72], Davenport, Lewis 和 Schinzel^[43], Balasubramanian 和 Shorey^[73], Shorey^[160], Schinzel 和 Tijdeman^[163]等人的结果可知:如果方程(5.9.2)的 4 个未知数 x,y,m,n 中至少有两个是给定的,则该方程仅有有限多组这样的解(x,y,m,n). 然而,人们至今还无法解决以下问题:

问题 5.9. [当 x, y, m, n 中有一个数给定时, 方程(5.9.2) 是否仅有有限多组这样的解(x, y, m, n)?

对此,乐茂华[102]通过讨论广义 Ramanujan-Nagell 方程的解数,运用 Gel'fond-Baker 方法对于 m=3 的情况得到了以下结果。

定理 5.9.1 方程(5.9.2)仅有解(x,y,m,n)=(5,2,3,5)和(90,2,3,13)可使 m=3 且 v 是素数的方幂.

证 当 m=3 且 y 是素数方幂时,必有 y=p',其中 p 是素数, r 是正整数.从(5.9.2)可得

$$(p'-1)(2x+1)^2+(3p'+1)=4p''',n>3.$$
 (5.9.3)

现分以下四种情况进行讨论:

情况(i) 当
$$p=2$$
 且 $r=1$ 时,从(5.9.3)可得
($2x+1$)² + $7=2^{n+2},n>3.$ (5.9.4)

根据 Nagell 的著名结果,从(5.9.4)可知此时方程(5.9.2)仅有解(x,y,m,n)=(5,2,3,5)和(90,2,3,13).

情况(ii) 当 p=2 且 r>1 时,设 $D_1=2^r-1$, $D_2=3$. 2^r+1 . 从 (5. 9. 3)可知方程

$$D_1X^2 + D_2 = 2^{Z+2}, X_1Z \in Y^T$$
 (5.9.5)

有解(X,Z) = (2x+1,rn)适合 Z > 3r. 由于根据定理 3.4.1 可知此时方程(5.9,5)仅有解(X,Z) = (1,r)和 $(2^{-1},3r)$,故不可能.

情况(iii) 当 p 是 奇 素 数 且 $p' \equiv 1 \pmod{4}$ 时,设 $D_1 \equiv (p'-1)/4$, $D_2 \equiv (3p'+1)/4$. 从(5. 9. 3)可得

$$D_1(2x+1)^2 + D_2 = p^m, n > 3.$$
 (5. 9. 6)

从(5.9.6)可知此时方程

$$D_1X^1 + D_2 = p^2, X, Z \in \mathbb{I}$$
 (5. 9. 7)

有解(X,Z)=(2x+1,rn)适合 Z>3r. 然而,根据定理 3.4.1 可知此时方程(5.9,7)仅有解(X,Z)=(1,r)和(2p'+1,3r),故不可能.

情况(iv) 当 p 是奇素数且 $p' \equiv 3 \pmod{4}$ 时,设 $D_i = (p' - 1)/2$, $D_i = (3p' + 1)/2$. 从(5. 9. 3)可得

$$D_1(2x+1)^2 + D_2 = 2p^n, n > 3.$$
 (5. 9. 8)

从(5.9.8)可知此时方程

$$D_1 X^2 + D_2 = 2p^2, X, Z \in \mathbb{M}$$
 (5. 9. 9)

有解(X,Z)=(2x+1,rn)适合 Z>3r. 但是,运用 Gel'fond-Baker 方法可以证明此时方程(5,9,9)仅有解(X,Z)=(1,r)和(2p'+1,3r),故不可能. 综上所述立得本定理. 证完.

§ 5.10 关于连续正整数的几个问题

数论中有很多问题都与含有连续正整数的指数型超椭圆方程 有关,本节将介绍这方面的几个问题。

1875 年,Lucas^[112]曾经提出:是否仅有正整数 k=24 可使平方和 $1^2+2^2-\cdots+k^2$ 仍是平方数? 由于 $1^2+2^2+\cdots+k^3=k(k+1)$ (2k+1)/6,所以运用方程的语言,该问题可表述为:当 m=n=2 时,方程

$$x(x+1)\cdots(x+m) = (m+1)|y',x,y,m,n \in \mathbb{N},$$

$$x > 1, y > 1, n > 1$$
 (5.10.1)

是否仅有解(x, y, m, n) = (48, 140, 2, 2) 适合 2 | x? 1918 年, Watson^[211] 首先肯定地回答了这个问题, 此后, Ljunggren, 马德刚、徐肇玉和曹珍窟、Anglin, Cucurezeanu, Pintér 等人分别给吕了该结果的较为初等的证明(参见文献[63]中的问题 D3).

1939年, Erdős "对方程(5.10.1)提出了以下更一般的问题:

猜想 5. 10.1 方程(5. 10.1)仅有解(x, y, m, n) = (48.140, 2,2)适合(m, n) \neq (1.2).

对此, $Erd\ddot{o}s^{[n]}$ 运用初等方法证明了:方程(5, 10, 1)没有适合 m≥3 的解(x,y,m,n). 至此,猜想 5, 10, 1 尚未解决的部分可表述为:

猜想 5.10.2 方程

$$x(x+1) = 2y^{n}, x, y, n \in \mathbb{N}, x > 1, y > 1, n > 2$$
(5.10.2)

以及

$$x(x-1)(x+2) = 6y^n, x, y, n \in \mathbb{N}, x > 1, y > 1, n > 1$$
(5.10.3)

均无解(x,y,n).

1986 年,曹珍富^[26]运用初等数论方法证明了:方程(5.10.2) 没有适合 2[n] 的解(x,y,n). 1990 年,乐茂华^{[61] + 1}首先运用 Gel'-fond-Baker 方法讨论了猜想 5.10.2 中的两个方程. 他证明了:

定理 5.10.1 方程(5.10.2)和(5.10.3)分别仅有有限多组解(x,y,n),而且这些解都满足 $n < C_1$ 以及 $x < C_2$.

证 首先考虑方程(5.10.2). 设(x,y,n)是该方程的一组解. 由于 ged(x,x+1)=1,故从(5.10.2)可得

$$x = \begin{cases} y_1^x, \\ 2y_2^x, \end{cases} x + 1 = \begin{cases} 2y_2^x, \pm 2 \mid x \text{ if }, \\ y_1^x, \pm 2 \mid x \text{ if }, \end{cases}$$
 (5. 10. 4)

其中 y,, y₂ 是适合 y, y₂=y 的正整数. 从(5, 10, 4)立得

$$y_1^n - 2y_2^n = \pm 1.$$
 (5.10.5)

从(5.10.5)可知

$$0 < \left| \log \frac{y_1}{y_2} - \log 2 \right| < \frac{4}{y_1^2 + 2y_2^2}.$$
 (5. 10. 6)

设 $\Lambda = n\log(|y_1/y_2|) - \log 2$. 因为 $y_1 > y_2$. 故从引理 1.8.1 可知

$$\log|\Lambda| > -C_3(\log y_1)(\log n). \tag{5.10.7}$$

结合(5, 10, 6),(5, 10, 7)可得 $n < C_1$, 同时,根据定理 2, 2, 1, 从(5, 10, 5)可知 $y_1 < C_1(n)$. 于是从(5, 10, 2)可得 $x < \sqrt{2y'} + 1 < \sqrt{2y'} < C_5(n) < C_2$.

以下考虑方程(5, 10, 3), 设(x, y, n)是该方程的一组解,从(5, 10, 3)可得

$$x = d_1 y_1^*, x + 1 = d_2 y_2^*, x + 2 = d_3 y_1^*,$$
 (5.10.8)

其中 d_1, d_2, d_3 以及 y_1, y_2, y_3 分别是适合 $d_1d_2d_3=6$ 以及 $y_1y_2y_3=y$ 的正整数. 当 $d_2=1$ 或 2 时,从(5. 10. 8)可得

$$y_i^2 + 2y_i^2 = \pm 1, i, j \in \{1, 2, 3\}.$$
 (5. 10. 9)

此时,根据上节的分析,从(5.10.9)可知定理成立、当 d_2 =3 时,从(5.10.8)可得

$$y_i^n - 3y_2^n = \pm 1, i \in \{1, 3\}. \tag{5.10.10}$$

运用同样的方法,从(5.10.10)亦可得 $n < C_1$ 以及 $x < C_2$ 。定理证完。

关于定理 5.10.1 中的常數,文献[81:1]具体算出 C_1 <expexp ?以及 C_2 <exp exp exp exp exp 9. 此后, Terai^[194]改进为 C_1 < 4250 以及 C_2 < exp $10^{5.45 \cdot 10^4}$. 最近, Gyōry^[44] 根据 Darmon 和 Merel-^{42]}有关类 Fermat 方程以及 Bennett 和 de Weger^[12]关于二项 Thue 方程的结果,证明了方程(5.10.2)和(5.10.3)均无解. 至此,猜想 5.10.1 和 5.10.2 已被全部解决.

对于正整数 x,m,二项式系数

$${x+m \choose m+1} = \frac{x(x+1)\cdots(x-m)}{(m+1)!}.$$
 (5.10.11)

从(5.10.11)可知方程(5.10.1)可写成

$$\left\{\frac{x+m}{(m+1)} = y^n, x, y, m, n \in \mathbb{N}, x > 1, y > 1, n > 1.$$

(5.10.12)

设 a. 5. c 是给定的正整数. Brindza 「, 袁平之^[216]等人运用 Gel/-[ond-Baker 方法讨论了比(5. 10. 12)更一般的方程

$$a\left(\frac{x}{m}\right) = by^{\bullet} + c_{\bullet}x_{\bullet}y_{\bullet}m_{\bullet}n \in \mathcal{H}_{\bullet}x > m_{\bullet}y > 1, n > 1.$$
(5.10.13)

1938年, Rigge^[140]和 Erdös^[41]分别独立地运用初等方法证明了,多个连续正整数的乘积不可能是平方数,上述结果可表述为;方程

$$x(x+1)\cdots(x+m) = y_1x_1y_2m_2n \in \mathbb{N}, n > 1$$
(5.19.14)

没有适合 n=2 的解(x,y,m,n), 对于上述方程, Erdös, Johnson. ()blāth, Rigge 等人分别讨论了 n>2 时的情况(参见文献[123]的第 28 章). 1975 年, Erdös 和 Selfridge [10] 证明了: 方程(5.10.14) 无解(x,y,m,n). 从而完整地解决了该方程的求解问题.

设 k 是大于 1 的整数, 由于连续整数是等差数列的特殊情况。 所以方程

$$x(x+k)\cdots(x+km) = y', x, y, m, n \in \mathbb{N}, \gcd(x,k)$$

= 1, n > 1 (5.10.15)

是方程(5.10.14)的自然推广. 对此, Erdős [17.1] 曾经提出:

猜想 5.10.3 对于任何的 k, 方程 (5.10.15)的解(x,y,m,n) 都满足 $m < C_6$.

这是一个迄今尚未解决的问题. 对此, Marszalek [116]给出了 m 仅与 k 有关的上界. 他证明了: 方程(5, 10, 15)的解(x, y, m, n)都满足

此后, Shorey [173...16], Shorey 和 Tijdeman [184] 分别运用 Gelffond-Baker 方法改进了上界(5.10.16), 并且解决了猜想 5.10.3 的一 些特殊情况。例如、文献[173, \mathbb{F}]证明了: 当方程(5.10.15)的解(x,v,m,n)适合 $m \geq C_1$ 时,必有

$$m'$$
 $e^{i\log\log \log m_1/4\log\log\log \log n} < k.$ (5.10.17)

对于正整数 $m, x, 设[x]_x = x(x-1)\cdots(x-m+1)$. 此时,适合

$$[x]_{m} = \sum_{k=0}^{m} S(m,k) x^{k}, x^{m} = \sum_{k=0}^{m} S(m,k) [x]_{k} (5.10.18)$$

的两类整数 s(m,k)和 $S(m,k)(k=0,1,\cdots,m)$ 分别称为第一类和第二类 Stirling 数、从定义(5.10.18)可知它们与连续正整数的乘积有着密切的关系. Pimér [100.101], Brindza 和 Pintér [2] 运用 Gel'fond-Baker 方法分别讨论了这两类 Stirling 数中的完全方幂问题. 该问题可归结为某些形如(5.10.14)的方程的求解问题.

设 a_1, a_2, \cdots, a_n 以及 b_1, b_2, \cdots, b_n 分别是适合 $0 \le a_1 \le a_2 \le \cdots \le a_n$ 以及 $0 \le b_1 \le b_2 \le \cdots \le b_n$ 的整数. 方程

$$(x + a_1)(x + a_2)\cdots(x - a_m) = (y + b_1)(y + b_2)\cdots(y + b_n),$$

$$x, y \in \mathbb{N}$$
 (5. 10. 19)

是方程(5.10.14)的另一类型的推广.关于该方程的早期工作可参见文献[181]的第6章.近年来,Alemu^[s],Balasubramauian,Ramachandran 和 Shorey^[s],Barja^[16],Grytczuk^[sa],Kiss^[7],Pint-ér ^[42], Saradha 和 Shorey^[154-157], Saradha, Shorey 和 Tijdeman^[188-161],Shorey^[168,174],Shorey 和 Tijdeman^[188-161]等人对该方程进行了大量的研究,其中不少结果的证明都用到了 Gel'fond-Baker 方法.

最后介绍一下有关连续正整数齐次和的几个问题。对于方程 $1" + 2" + \cdots + x" = (x + 1)", x, m \in \mathbb{N}, x > 1$.

(5.10, 20)

Boweu 曾经提出(参见文献[63]中的问题 D7):

猜想 5.10.4 方程(5.10.20)仅有解(x,m)=(2,1).

这也是一个迄今尚未解决的问题. 对此, Schäffer^[162]运用初等方法证明了, 对于给定的 na, 方程(5.10.20)仅有有限多组解(x,

m).同时,他还提出了以下更一般的猜想,

猜想 5.10.5 方程

$$1''' + 2''' + \cdots + x''' = y'', x, y, m, n \in \mathbb{N}, x > 1, y > 1, n > 1$$
(5.10.21)

仅有解(x,y,m,n)=(24,70,2,2)适合 $(m,n)\neq(1,2),(3,2),(3,4)$ 或(5,2).

显然,上述猜想是本节开头提到的 Lucas 问题的另一类型的推广,由于齐次和 1"+2"+***+*** 可表成 x 的 m+1 次有理系数 多项式,其系数均为 Bernoulli 数. 因此, Györy, Tijdman 和 Voorhoeve^[45]运用定理 5. 3. 1 的证明方法证明了;对于给定的正整数 m,当 m≠1,2,3 或 5 时,方程(5. 10. 21)仅有有限多组解(x,y,m,n). 此外, Brindza^[15,18], Dilcher^[44], Gebel, Pethō 和 Zimmer^[56], Kano^[71], Moree^[124,126], Moree, te Riele 和 Urbanowicz^[126], Stroeker^[49], Stroeker 和 Tzanakis^[153], Urbanowicz^[26], Voorhoeve, Gyõry 和 Tijdeman^[270]等人还讨论了比(5. 10. 21)更一般的有关齐次和的方程。

参考文献

- [1] Ashtoneo M. Inkeri K. Catalan's equation x' y'' = 1 and related congruences. Math Comp. 1991. 56. 359 370.
- [2] Aigner A., Die diophaotische Gleichung $x^2 + 4D = y^p$ im Zusammenhang mit Klassenzahlen, Monatsh Math. 1968. 72:1-5.
- [3] Alemo Y. On the diophantine equation $x(x+1)\cdots(x+n)=y^2-1$. SINET. 1995. 18:1-22.
- [4] André-Jeannin R. On the equations $U_n = U_q x^2$, where q is odd, and $V_n = V_q x^2$, where q is even. Fibonecci Quart. 1992, 30: 133—135.
- [5] Antoniadis J. A., Generalized Fibonacci numbers and some diophantine equations, Fibonacci Quart, 1985, 23, 199—213.
- [6] Antoniadia J. A., Fihonacci and Lucas numbers of the form $3z^2 \pm 1$, Fibonacci Quart, 1985, 23, 300—307.
- [7] Balasubramanian R., Shorey T. N., On the equation $a(x^n-1)/(x-1) = b(y^n-1)/(y-1)$. Math Scaod, 1980, 46, 177—182.

- [8] Balasubramanian R., Shorey T. N., On the equation $f(x+1) \cdots f(x+k) = f(y+1) \cdots f(y-mk)$, lodag Math (NS), 1993.4; 257—267.
- [9] Balasubramanian R., Shorey T. N., Squares in products from a block of consecutive integers. Acta Arith. 1993.65, 213—220.
- [10] Barja Pèrez J., Molinelli J. M., Blanco Ferro A., Finiteness of the number of solutions of the diophantine equation $\begin{pmatrix} x \\ n \end{pmatrix} = \begin{pmatrix} y \\ 2 \end{pmatrix}$, Bull See Math Belg Sée A. 1993, 45: 39–43.
- [11] Bateman P. T. Stemmler R. M., Waring's problem for algebraic number fields and primes of the form (p'-1)/(p'-1) illinois J Math 1962, 6:142-156.
- [12] Bennett M. A., de Weger B. M. M., On the disphantine equation $|ax^*-by^*|=1$, to appear.
- [13] Blass J. On the diophantine equation $Y^2 + K = X^6$, Boll Amer Math Soc. 1974, 80:329.
- [14] Hlass J. Steiner R. On the equation $y^2 + k = x^7$, Utilitas Math. 1978. 13: 293-297.
- [15] Brindza B. On some generalizations of the dispharmine equation $1^4 + 2^4 + \cdots x^4 = y^2$. Acta Arith. 1984. 44: 99—107.
- [16] Briadza B. Power values of sums 1²+2⁴+···+x⁴. In Number Theory Vol. I., Budapest . 1987. Colloq Math. Soc. János. Bolyai. 51. Amsterdam. North-Holl-and., 1990, 595—611.
- [17] Brindza B. On a special superelliptic equation. Publ Math Debrecen, 1991, 39, 159-162.
- [18] Brindza B., Erdös P., On some diophantine problems involving powers and factorials.] Austral Math Soc Ser A. 1991. 51:1-7.
- [19] Brindza B., Evertse J-H., Györy K., Bounds for the solutions of some diophantine equations in terms of discriminants. J Austral Math Soc Ser A, 1991, 51:8—26.
- [29] Brindza B. "Győry K. "Tijdeman R. "The Fermat equation with polynomial values as base variables invent Math. 1985, 80, 139—151.
- [21] Brindza B., Pinter A., On the power values of Stirling numbers, Acta Arith, 1991.60, 169-175.
- [27] Brown E. Diophantine equations of the form $x^i + D = y^*$.] Reine Angew Math., 1975, 274/275, 385—389.
- [23] Brown E., Diophantine equation of the form $ax^2 Db^2 = y^p$, Reine Angew Math, 1977, 291, 113—127.

- [24] Bugeaud Y. . On the diophantine equation $x^2 = p^n = \pm y^n$. Acta Arith. 1997. 80; 213-223.
- [25] Buggaud Y. -Ou the diophetrine equation $x^2 2^n = \pm y^n$. Proc Amer Math Societo appear.
- [23] Cao Z-F. On the diophontine equation $x^{2r} = Dy^2 = 1$, Prov. Amer. Math. Soc. 1986. $68 \cdot 11 \cdot -16$.
- [27] 曹珍富、方程 ff + 27 = y* 和 Hugh Edgar 问题,科学通报,1986-31; 555—556。
- [28] 曾珍官,关于丢番图片程 Cu2+2*D= y*,科学通报,1992,37,2106.
- [29] 曾珍宮,关干丢番傳方程 Cx2+22mD+於,数学年刊(A 精),1994,15,235-240.
- [36] 曹珍富,关于唿二次域类数的可除性,数学学报,1994,37:50—52.
- [31] 曹珍富,丢番图方程与实工决划类数的可染性,数学学报。1994.37.525—631.
- [32] Cassels J. W. S. "On the equation of -5/= L. Amer J Math. 1953. 75; 159—162; L. Math Proc Cambridge Philos Soc. 1960. 56; 97—103.
- [33] Catalan S. Note extraite d'une lettre adressée à l'éditeur.] Reine Angew Math. 1844.27,192.
- [34] Cobo J. H. E. On square Fibonacci numbers. J London Math Soc. 1964, 39, 537—540.
- [35] Cohn J. H. E. , The diophantine equation x* + 2' = y'. Arch Math (Basel) . 1992, 59; 341—344.
- [36] Cohn J. H. E. "The diophantine equation x³ H· I ∃ = y⁴. Acta Arith , 1992 61 : 193 197.
- [37] Cohn J. H. E., The diophantine equation $x^2 + 3 = y^*$. Glasgow Math J. 1993. 35, 263—266.
- [38] Cohn J. H. E. The diophantine equation $x^2 + C = y^*$. Acta Acith. 1893. 65, 367—381.
- [39] Cowles M. J. On the divisiditity of class number of imaginary quadratic fields D. Number Theory 1980:12:113-115.
- [46]. Cresenzo P. A drophantine equation which arises in the theory of links groups.

 Adv Math. 1975.17, 25-29.
- [41] Cudnovskii G. V., Some analytic methods in the theory of diophantine approximations. Math Inst Acad Sci Ukrainian SSR Kiev, Preprint 74--9,1974.
- [42] Darmon H. Merel. L. Winding quotients and some variants of Fermat's Last Theorem. J. Reine Angew Math. to appear.
- [42] Laveoport H., Lewis D. J., Schmad A., Equations of the form f(x) = g(y), Quart J Math. 1961, 12, 364 512.

- [44] Dilcher K. On a diophantine equation involving quadratic characters. Compositio Math. 1986, 57: 383:-403.
- [45] Edgar H. On a theorem of Suryanarayana, In: Number Theory, New York: Pullman, 1971: 32-64.
- [46] Edgar H. Problems and some results concerning the diophantine equation 1-A. $+A^t+\cdots+A^{r-1}=p^{r}$, Rocky Mountain J Math 1985-15:327—329.
- [47] Erdős P., Note on the product of consecutive integers 1. J Landon Math Soc. 1939, 14, 194-198, 1.; bid, 1939, 14, 245-249; 1.; Indag Math, 1955, 17, 85-90.
- [48] Erdős P. "On a diophantine equation. J London Mach Soc. 1951. 26:176—178.
- [49] Erdős P. "Graham R. L. "Old and New Problems and Results in Combinatorial Number Theory "Geneva 1980.
- [50] Erdős P. "Selfridge J. L. "The product of consecutive integers is never a power, Illinois J Math. 1975. 19, 292—301.
- [51] Estes D. Guralnick R. Schacher M. Strous E. Equations in prime powers. Pacific J Math. 1985.118:359—367.
- [52] Evertse J-H., Upper Bounds for the Numbers of Solutions of Drophentine Equations. Math Centre Tract 168, Centr Math Comp Soc., Amsterdam, 1983.
- [53] Feit W., Some consequences of classification of finite simple groups. In.; Proc. Sympos Pure Math 37, Amer. Math. Soc., 1980; 175—181.
- [54] Finkelstein R. On Fibonacci numbers which are one more than a square J Reine Angew Math, 1973, 262/263, 171—178.
- [55] Finkelstein R. On Lucas numbers which are one more than a square Fibenacci Quart 1975.13:340—342.
- [56] Gebel J. Pethő A. Zimmer H. G. Computing integral poir is on elliptic autwes.

 Acta Arith 1994-67:17?—196.
- [57] Glass A. M. W. Meronk D. B. Okada T. Steiner R. P. A small contribution to Catalon's equation. J Number Theory, 1994, 47, 131—137.
- [58] Goormagbrigh R. L'Intermediaire des Mathématiciens 1917, 24, 88,
- [59] Gross B. Robrlich D. Some results on the Mordell Wed group of the Jarobian of the Fermat curve, Invent Math. 1978, 44:201-221.
- [60] Gryrezuk A. "On a conjecture of Erdős on binomial configurats, Studia Sci Math. Hungar, 1994, 29, 241-1244.
- [61] Guo Y-D. Le M-H. A note on the exponential diophantine equation $x^2 = 2^{\sigma} = y^{\sigma}$. Proc Amer Math Soc. 1995, 123, 5627—3629.

- [62] Guralmek R., Subgroups including the same permutation representation. J. Algebra, 1983, 81, 312-319.
- [63] Gay R. K. "Unsolved Problems in Number Theory, New York: Springer-Verlag., 1994.
- [64] Györy K. On the diophantine equation $\binom{n}{k} = x^t$. Acta Arith. 1997.80, 289—295.
- [65] Györy K., Tijdeman R., Voorhoeve M., On the equation $1^s + 2^s + \cdots + x^s = y^s$.

 Acta Atith, 1980, 37, 233 240.
- [66] Hall M. Jr. Combinatorial Theory London Blaisdell 1967.
- [67] Herschleld A., The equation $2^r + 3^r = d$, Bull Amer Math Soc (N S), 1936, 42; 231 234.
- [68] 华罗庚, 敷论导引,北京,科学出版社,1979.
- [69] Inkeri K. "On Catalan conjecture» J. Number Theory, 1990, 34:142-152.
- [70] Job J. Phong B. M. On two diophantine equations concerning Lucas sequences.

 Publ Math Debrecen. 1988.35; 301—307.
- [71] Kano H. On the equation $s(1^{*}+2^{*}+\cdots+x^{*})$ $\exists r=by^{r}$, Tokyo J Math. 1990. 13:441—448.
- [72] Kanold H-1. . Über eine diophantische Gleichungen Math Ann 1956 132:246—255.
- [73] Kiss P. Pure powers and power classes in recurrence sequences. Math Sloveca. 1994.44;525—529.
- [74] Ko C. On the diophantine equation $x^2 = y^a + 1 \cdot xy \neq 0$, Sci Sinica : 1964 : 14:457—460.
- [75] Kotov S. V. "Über die maximale Norm der Idealteiler des Polynoms $ax^m + \beta y^r$ mit algebraischen Koelfizienten "Acta Arith 1976. 31:219--230.
- [76] Lagarias J. C., Weisser D. P., Fibonacci and Lucas cubes. Fibonacci Quart. 1981. 19, 39-43.
- [77] Langevin M. , Quelques applications de nouveaux résulturs de van der Poorten. Sem Delange-Pisot-Poitou-Paris:1975/1976, Exp G12, Hpp.
- [78] 乐茂华,一类廊工火域类数的可除性,科学通报,1987,32,724~-727.
- [79] Le M-II. On the divisibility of the class number of the imaginary quadratic field $\mathbb{C}(-\sqrt{a^2-4k^n})$. Acta Math Sinica (N S).1989.5180—86.
- $\begin{bmatrix} 80 \end{bmatrix}$ 乐茂华,实工次域境 $\left(\sqrt{\left(\frac{1+4k^{2n}}{2n}\right)/a^{k}}\right)$ 类数的可除性、数学学报。1990、33:565 574.

- [81] 乐茂华.Baker 方法的若干应用 [,长沙铁道学院学报,1990,8(2),20-26;]; ibid,1990,8(3),65-74; I ,ibid,1991,9(1),95-100; N ,ibid,1997,9(2),87-92; V ,ibid,1992,10()),73-77; W ,ibid,1992,10(2),80-85; M ,ibid,1992,10(3),84-88; M ,1992,10(4),96-101; M ,ibid,1993,11(1),107-112, X ,ibid,1993,11(2),83-86; X ,ibid,1993,11(3),67-76; W,ibid,1993,11(4),52-55; W, 湖南师厄大学自然科学学报,1994,17(4),1-3; W,潜江师花学院学报(自然科学版),1995,16(1),1-5.
- [82] Le M-H. A note on the diophantine equation $ax^a by^a = k$. Indag Math (N S). 1992:3:185-191.
- [82] Le M-H. A diophantine equation concerning the divisibility of the class number for some imaginary quadratic fields and Math. (N.S.), 1993, 4:67-70.
- [84] Le M-H. On the diophantine equations $d_1x^2 + 2^{2n}d_2 = y'$ and $d_1x^2 + d_2 = 4y'$. Proc Amer Math Soc., 1993, 118, 67—70.
- [85] Le M-H. A note on the diophantine equation $(x^n-1)/(x-1)$, Acta Arith. 1994: 64:19-28.
- [86] Le M-II. A note on the diophantine equation $x^2 + 4D = y^2$. Monatsh Math. 1993. 116; 283—285.
- [87] Le M-H., A note on the diophantine equation $x^{p-1}-1=py^{q}$, C R Math Rep Acad Sci Canada 1993, 15: 121—124.
- [88] 乐茂华·关于丢番图方程(σ=−1)/(σ−1)=y*,数学学报,1993,36,590—599.
- [89] Le M-H. A note on the diophantine equation $(x^2-1)/(x-1) = y^2+1$, Math. Proc Cambridge Philos Soc. 1994. 116: 285—389.
- [90] Le M-H., The diophantine equation $x^2 + D^n = 2^{n+2}$. Comment Univ St Pauli, 1994.43:127—133.
- [91] Le M-H. On the diophantine equation 2"+ px² = y", Proc Amer Math Soc. 1995.
 123:231-236.
- [92] Le M-H. A diophantine equation noncerning finite groups. Pacific J Math., 1995. 169:335-342.
- [93] Le M-H. On the diophantine equation $D_1 x^2 + D_2 = 4y$. Monatch Math. 1995, 120.121 125.
- [94] Le M-H., On the diophantine equation $x^{p-1} + (p-1)^{-1} = p^p$, Publ. Math. Debrecen, 1996, 48: 145—149.
- [95] 乐茂华,一类超椭圆曲线的整点个数,数学学报,1996,39,289—293.
- [96] 乐茂华,关于丢番图方程上:±2"-y",数学进展,1996,25:328-333.
- 「97」 乐茂华,关于丢番图方程 Diu2+2*Dz=p2 的解数,数学进展,1997,26,43—49.

- ; 98 ; Le M-H. A note on the diophartim equation $x^2 + 7 = y^2$. Glasgow Math [-1997] 39: 59-163.
- [99] 乐龙华,美子丢各图方程 x2+D= y1.数学学报,1997,40,839、844.
- [100] Le M-H. A complete determination of solutions of the diophentine equation $x^* + D = y^* \text{ for } D \in \{-13.67.163\} \text{ to appear.}$
- [101] 1.c M-H. A note on the diophantice equation $D_1x^2 + D_2 = 2y^4$. Pull Math Delitecen 1997.51; [9] \sim 198.
- 102 Le M-H. On the disphagine equation $(x^i = 1) \cdot (x 1) = (y^i + 1)/(y 1)$. Trans Amer Math Soc. to appear.
- [103] 乐茂华,郭永东,关于姜香園方程 デ+2"ニア-刊字通程,1567,42;;255-1257。
- [104] Leliesgue V. A. "Sur l'impossibilité, en nombre « micros de l'équation x" = y" + 1. Nouv Ann Math (11, 1850, 9, 178—181.
- [105] LeVeque W. J. On the equation a' + b' = 1. Amor | Math. 1952. 74:325 + 331.
- [106] Ljonggren W. Noen settinger om abostemte likuinger av formen $(x^n 1)/(x 1) = y^n$. Norsk Mat Tidsskr. 1943. 25: 17 20.
- [107] Ljunggren W., Über einige Arzustangensgleichungen die auf interessante unbestimmte Gleichungen führen. Ark Mat Arst 1 vo. 213,29A(13):1--11.
- 1108. Ljunggren W. "On the diophantine equation $x^2 + D = e^2$. Norske Vid Selsk Forli Trondheim (1944,17(23)):93—86.
- [109]] London H. Finkelstein R. On Fibonson and Lucas numbers which are perfect powers Fibonson Quart. 1969, 7:426-481; Correction abid, 1970, 8, 248.
- [110] Lexton J. H. Some problems involving powers of unegers. Acta Arith, 19862, 46:113-123.
- [111] 結洪文·连分數与类數及其它·中国科學(A 稱)、1983、17:527—636。
- [112] 猛洪文,一类实工火爆类数的可除性,数学学报,3985,28,756--762,
- [113] Lucas E. Problem [180.Nouv Ann Math (2), 1875, 14, 336.
- [114] Leo M. On triangular Fibonacci numbers. Fibonacci Quart. 1989, 27, 98-108.
- [115] Luo M. On triangular Lucas numbers In: Applications of Fibonacci Numbers. Vol. 1. Winston-Salem : NC, 1990 : Dordrecht: Klower Acad Publ. 1991; 231 -- 215.
- [116] Marszalck R.. On the product of consecutive elements of an arithmetic progression. Monatsh Math. 1985, 100, 215—222.
- 117 McLamel W. L. Square Lehmer numbers Colloq Math. 1993.66, 85- -83.
- [118] Migrotte M. "Sur l'équation de Catalan. L. C. R. Acad. Sc. Paris. Sec. I. Mark., 1992, 314:165—168; 1.; Theor Comput. Sci., 1994, 123, 145—119.

- [119] Mignotte M., A criterion on Catalan's equation. J Number Theory. 1995. 52; 280-283.
- [120] Mignotte M. Mathematial Reviews, 96f; 11048.
- [121] Mignotte M. (On the diophantine equation $D_1x^2 + D_2^2 = 4y^2$, Portugal Math., 1997.54:457—460.
- [122] Mignotte M. de Weger B. M. M. On the diophantine equations $x^2 + 74 = y^2$ and $x^2 + 86 = y^3$. Glasgow Math J. 1996. 38: 77—85.
- [123] Mordell L. J. Diophantine Equations London Academic Press, 1969.
- [124] Moree P., On arithmetic progressions having only lew different prime factors in comparison with their length. Acta Arith. 1995. 70, 295-312.
- [125] Moree P. Diophantine equations of Erdős-Moser type Bull Austral Math Soci-1996-53,281- 292.
- [126] Moree P. ite Riele H. J. J. Utbanowicz J. Divisibity properties of integers xik satisfying $1^k + \dots + (x-1)^k = x^k$. Math Comp. 1994.63:799—816.
- [127] Nagell T. Note sur l'équation indéterminée $(x^n+1)/(x-1) = y^n$. Norsk Mat Tidaskr 1920-2:75-78.
- [128] Nagell T. Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Regiae Soc Sci Upsaliensis (4), 1955, 16(2):1-38.
- [129] Nomes 1. On the solution of the diophantine equation $G_* = P(x)$ with sieve algorithm. In: Computational Number Theory. Debrecen. 1989. Berlin: de Gruyter. 1991: 303—311.
- [130] Nemes I., l'ethō A., Polynomial values in linear recurrences, Publ Math Debrecen, 1984, 31, 229—233.
- [131] Osada H., Note on the class number of the maximal real subfield of a cyclotomic field. Manuscripta Math. 1987. 58:215—227.
- [132] Osada H. Terat N. Generalization of Lucas' theorem for Fermat's quotient C. R Math Rep Acad Sci Canada 1989.11,115—120.
- [133] Perlis R. On the class number of arithmetically equivalent fields. J Number Theory, 1978, 10, 489—509.
- [134] Pethō A., Petlect powers in second order linear recutrences, Number Theory, 1982, 15:5-13.
- [135] Pethō A., Full cubes in the Fibonacci sequence, Publ Math Debrecon, 1983, 36; 117-127.

- [136] Pethő A.: The Pell sequence contains only itivial perfect powers. In: Sets. Graphs and Numbers. Budapest, 1991. Colloq Math. Soc. János. Bolyai, 60. Amsterdam; North-Holland, 1992; 561—568.
- [137] Pillai S. S. , Or. the inequality $0 < a^s b^s \le n$.] lodian Math Soc (1), 1931, 19: 1-11.
- [138] Pillai S. S. On the equation $a^r + b^r = r$. Indian Math Soc (N S) 1936, 2, 99—122: Correction; ibid, 1937, 2, 215.
- [139] Pilla: S. S. ,Oo the equation $2^{x} + 3^{y} = 2^{x} + 3^{y}$, Bull Calcutta Muth Soc. 1945. 37; 15—20.
- [140] Piotèr Á., On some arithmetical properties of Stirling numbers. Publ Math Debrecen. 1992. 40, 91 95.
- [141] Pieter A., On a diophantine equation problem concerning Stirling numbers, Acta Math Hungar, 1994, 65; 361—364.
- [142] Pinter A. A note on the diophantine equation $\binom{r}{4} = \binom{y}{2}$. Publ Math Dehrecen 1995, 47, 411—415.
- [143] Rabinowicz S. The solution of $y^2 \pm 2^4 = x^3$, Proc Amer Math Soc. [976.62,]--5.
- [144] Rabinowicz S., The solution of $3y^2 \pm 2^2 = x^2$, Proc Amer Math Soc., 1978, 59: 213—218.
- [145] Ratat R., L'Intermediaire des Mathématiciens 1916.23:150.
- [146] Ribenboim P. Catalao's Conjecture Bosron MA: Academic Press Inc. 1994.
- [147] Ribenhoim P., McDeniel W. L., Square classes of Lucas sequences, Portugal Math. 1991. 48,469—473.
- [148] Rigge O., Über ein diophantisches Problem, K. Shan Math Kongr Helsing fors., 1938.
- [149] Robbins N., On Fibonacci numbers which are powers, Fibonacci Quart, 1978, 16:515-517; I ribid. 1983-21;215-218.
- [150] Robbius N., Fibonacci and Eness numbers of the form $\omega^2 1$, $\omega^3 \pm 1$. Fibonacci Quart 1981-19:369—373.
- [151] Robbins N., On Fibonacci numbers of the form px², where p is a prime, Fibonacci Quart, 1983, 21, 265—271.
- [152] Robbins N., Fibonacci numbers of the lorou px² ± 1, px³ ± 1, where p is a prime, ln; Applications of Fibonacci Numbers, San Jose, CA, 1986. Derdredt: Klower Acad Publ, 1988; 77—88.

- [153] Robbins N., Fibonacci numbers of the form cx^2 , where $1 \le c \le 1000$, Fibonacci Quart. 1990, 28:306 315.
- [154] Saradba N. Shorey T. N. The equation (z+1) (z+k) = (y+1) (y+mk)with m = 3.4, Indag Math (N S), 1991-2:489-516.
- [155] Saradha N., Shorey T. N. On the equation $(x+1)\cdots(x+k)=(y+1)\cdots(y+k)$ mk) Andag Math (N S) 1902, 3, 79—90.
- [156] Saradha N., Shorey T. N. On the equation x(x+d) = (x+(k-1)d) = y(y+1)dd) = (y+(mk-1)d), Indag Math (NS), 1992, $d_1 = 237 + 242$.
- [157] Saradba N., Shoray T. N. On the equation $x(x+d_1)\cdots(x+(k-1)d_1)=y(y+d_2)\cdots(y+(mk-1)d_2)$. Proc. Indian Acad Sci Math. Sci. 1994, 104, 1—12.
- [158] Saradba N. "Shorey T. N. "Tijdeman R. "Ou arithmetic progressions with equal products "Acta Arith, 1994, 68, 89—100.
- [159] Saradha N., Shorey T. N., Tijdeman R., Ou arithmetic progressious of equal lengths with equal products. Math Proc Cambridge Philos Soc, 1995, 117, 192—201.
- [160] Saradha N., Shorey T. N., Tijdeman R., On the equation $x(x+1)\cdots(x+k-1) = y(y+d)\cdots(y+(mk-1)d)$, m=1,2, Acta Arith, 1995, 71, 181—196.
- [151] Saradba N., Shorey T. N., Tijdeman R., On values of a polynomial of arithmetic progressions with equal products, Acta Arith, 1995, 1,67—76.
- [162] Schäffer J. J. The equation $1^p + 2^p + \dots + n^p = m^p$. Acta Math. 1956.95, 185 189.
- [153] Schinzel A., Tijdeman R., On the equation $y^* = P(x)$, Acta Arith, 1976, 31; 199–204.
- [164] Schlickewei H. P., Schmidt W. M., Equations au' = bu' satisfied by members of recurrence sequences, Proc Amer Math Soc. 1993.118:1043—1051.
- [155] Schwarz W. A note ou Catalan's equation Acta Arith 1995,72,277-279.
- [155] Scott R. On the equation p'-b'=c and a'+b''=c'. Number Theory, 1993. 14:158—165.
- 〔157〕 施政杰·关于单 K、-鮮·科学通报、1991、36、1281—1283。
- [158] Shorey T. N. On the equation $a(x^n-1)/(x-1) = b(y^n-1)/(y-1)(1)$, Hazdy-Ramanujan J. 1984. 7; 1—10.
- [159] Shorey T. N. On the ratio of values of a polynomial, Proc Indian Acad Sci (Math Sci), 1984, 93, 109—116.
- [170] Shorey T. N. (Or, the equation $x^q = (x^q + 1)/(x + 1)$. Indeg Math, 1935, 48: 345: -451.

- 171. Shorey T. N. On the equation $ar^n + bp' = k$ Indag Math. 1986. 48:353 -358.
- [172] Shorey T. V. Perfect powers in values of certain polynomials at integer points.

 Math Proc Cambridge Philos Soc. 1986, 99:135-207.
- 173] Shorey T. N. Some exponential diophantine equations (U), In, Baker A ed., New Advances in Transcendence Theory, Cambridge, Cambridge Univ Press, 1988; 352—355; U, In, Number Theory and Related Topics, Bombay, Tata Institute of Fundamental Research, 1988; 217—229.
- 174 Shorey T. N. -Perfect power in product of integers from a block of consecutive integers. Acta Arith. 1987, 40, 71 79.
- [173] Shorey T. N. Antegers with identical digits Acta Arith 1989, 53:187-205.
- [176] Shorey T. N. On a conjecture that a product of k consecutive positive integers is never equal to a product of mk consecutive positive integers except for 8, 9, 10 6! and related questions. In: Number Theory, Paris, 1992—1994, London Math Soc Lecture Note Ser 215, Cambridge; Cambridge Univ Press, 1995; 231—244.
- [177] Shorey T. N., Stewart C. L., On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers [1,1] London Math Soc(2), 1981, 23, 17—23.
- [178] Shorey T. N. Stewart C. L. On the disphantine equation $4x^2 + 6x^2y + y^2 + d$ and pure powers in recurrence sequences Math Scand 1983,52,24—36.
- [179] Shorey T. N., Stewart C. L., Pure powers in refurence sequences and some related diophantine equations. J Number Theory, 1987, 27, 324—352.
- [180] Shorey T. N. Tuccman R. New applications of diophantine approximations to diophantine equations. Math. Scand. 1976, 39:5—18.
- [181] Shotey T. N., Tijdeman R., Exponential Diophentine Equations, Cambridges Cambridge Univ Press, 1986.
- [182] Shorey T. N., Tijdeman R., Perfect powers in arithmetical progression. J. Madras Univ. 1988. H51; 173—180; 1 (Compositio Math. 1932, 82:107-117.
- [183] Shorey T. N., Tijdeman R., On the greatest prime factor of an arithmetical progression. In: A Tribute to Paul Erdös, Cambridge; Cambridge Line Press, 1590, 385—389; I., Acta Arith, 1990, 53, 499—504; ■. In: Approximations disphantismes of numbers transcendents, Lummy, 1990, Berlin; de Gruyter, 1992, 275—280.
- [184] Shorey T. N., Tijdeman R., Perfect powers in products of terms it, an arithmetical progression, Compresing Math. 1399, 75, 307-344; 1, thid, 1992. 82:119—136; 1: Acta Artta, 1992, 61:591—398.

- [185] Sharey T. N., Tijdeman R., On the number of prime factors of a finite arithmetical progression, Acta Arith. 1992, 67, 375—390.
- [186] Shorey T. N., van der Poorten A. L., Tijdeman R., Schinzel A., Applications of the Gel'Iond-Baker method to diophantine equations, In., Baker A., Masser D. W., eds., Transcendence Theory: Advances and Applications, London: Academic Press, 1977: 59 = 78.
- [187] Sprindžuk V. G. (Classical Diophantine Equations in Two Unknowns, Moskva: Nauka, 1982 (Russian).
- [188] Steiner R. (Oo nih powers in the Lucas and Fibonacci series, Fibonacci Quart, 1978, 16, 451, -458.
- [189] Steiner R. On Fibonacci numbers of the form a² + 1. In: A Collection of Manuscripts Related to the Fibonacci Sequence, Fibonacci Assoc. Santa Clara Cal., 1980, 208-210.
- [190] Stewart C. L. On some diophantine equations and related linear recurrence sequences. In: Théorie de Nomines, Prog Math. 1982, 22, 317—321.
- [191] Strocker R. J., On the sum of consecutive cubes being a perfect square. Gempositio Math. 1995.97:295—307.
- [192] Strocker R. J., Tijdeman R., Diophantine Equations Computational Methods in Number Theory Centr Math Comp Soc. Amsterdam 1982;321—369.
- [193] Stroeker R. J. Tzanakis N., Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith, 1994, 67:177—196.
- [194] Siyer R. Small two-variable exponential diophantine equations. Math. Comp., 1993,60;811—816.
- [198] 孙琦、有限群中一个未解决的丢番图方程、数学研究与评论。1986.6(2),20.

ľ

- [196] Tanahashi K., On certain class number of real quadratic fields, Inc. Characteristics of Arithmetic Fields, Proc Sympos Res Inst Math Sci. Kyoto Univ. Kyoto, 1975, 108-731 (Japanese).
- [197] Terai N. Generalization of Lucas' theorem for Fermat's quotient f . Tokyo J. Math. 1990, 13, 277—287.
- [198] Terai N. On a diophantine equation of Erdos. Proc Japar. Acad Ser A Math. Sci., 1994, 70; 213--217.
- [199] Tipleman R., Applications of the Cel'fond-Baker method to rational number theory. In: Topics in Number Theory, Proc Coul Debrecen 1974, Colloq Math. Soc János Bolyai 13, Amsterdam, North-Holland, 1976, 399—415.
- [200] Tijdeman R. On the equation of Catalan Acta Arith 1976, 29: 197-209.

- [201] Tijdeman R., On the Fermat-Catalan equation, Juhresher Deutsche Math. Verein, 1985, 87, 1-18.
- [202] Toyoizumi M. On the diaphantine equation $y^2 + D^* = p^*$. Acta Atth. 1983. 42: 363-369.
- [203] Turk J., Polynomial values and almost powers, Michigan Math J. 1983, 29: 213-220.
- [204] Turk J. On the difference between perfect powers. Acta Arith. 1986. 45:289—307.
- ¹205] Uehara T., On class numbers of imaginary quadratic and quartic fields. Arch Math. 1983. 41: 256-1260.
- [206] Urbanowicz J. Remarks on the equation $1^* + 2^* + \cdots + (x-1)^* = x^*$, Indag Math. 1988. 50:343-348.
- [267] Urhanowicz J. On the equation $f(1) \cdot 1^k + f(2) \cdot 2^k + \dots + f(x)x^k + R(x) = by^2$, Acta Arith 1988, 51:349—368.
- [208] Urhanowicz J., On diophantme equations involving sums of powers with qualitatic characters as coefficients. L. Compositio Math. 1994, 92: 249-271.
- [209] van der Poorten A. J., Effectively computable bounds for the solutions of certain diaphantine equations, Acta Arith, 1977, 33, 195-207.
- [210] Voorhoove M., Györy K., Tijdeman R., On the diophantine equation $1^* + 2^* + \cdots + x^* + R(x) = y^*$, Acta Arith.) 979.143, 1 8.
- [211] Watson N., The problem of the square pyramid, Messenger of Math, 1918/1919,48:1-22.
- [212] Williams H. C. On Fibonacci numbers of the form $k^2 + 1$, Fibonacci Quart, 1975, 13, 213-214.
- [213] Wolfskill J., Bounding squares in second order recurrence sequences, Acta Arith, 1989, 54, 127-145.
- [211] Wylie O. "Solumon of the problem. In the Fibonacci series $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$, the first, second and twelfth terms are squares. Are there any others? Amer Math Monthly, 1964, 71, 220—222.
- [215] Yu K-R. Alio D-H. A complete resolution of a problem of Erdős and Graham. Rocky Mountain J Math. 1996.26:1235-1244.
- [216] Yuan P-Z. On a special diophantine equation $a \begin{pmatrix} x \\ n \end{pmatrix} = by' + c$, Publ Math Debrecon, 1994, 44, 137—143.
- 〔217〕 **袁平之,关于丢番图方程**(x**-1)/(x-1)=y* 的一个油记,数学学报,1996,39,781-789.

- [218] 张贤科,实": 《关联的丢番图方程的解,科学通报,1991.36,1772-1775.
- [219] 张凯科·实工次域理想类群的子群的决定,科学通报,1991,36:1847-1849.

;

〔220〕 张贤科,实二次域的方程与半单和最小连分数,科学通报,1995,40,865-867.

第六章 S-单位方程

设 p_1, p_2, \dots, p_r 是适合 $p_1 < p_2 < \dots < p_r$ 的素数、 $S = S(p_1, p_2, \dots, p_r) = \{\pm p_1^{m_1} p_2^{m_2} \cdots p_r^{m_r} | m_1, m_2, \dots, m_r \ \ \,$ 均为非负整数 $\}$ 对于大于 1 的正整数 n,设 a_1, a_2, \dots, a_{n-1} 是互素的非零整数 - 本章主要 讨论形如

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = a_{n+1}x_{n+1}, x_1, x_2, \cdots, x_n, x_{n+1} \in S,$$

$$\gcd(x_1, x_2, \cdots, x_n, x_{n+1}) = 1$$

的方程。由于此类方程的未知数都在指数位置,因此称为纯指数型方程。

同时,集合 S 中任意两个数的商称为 S 单位,全体 S 单位的集合记作 S_{ij} ,由于上达方程等价于未知数为 S 单位的方程

 $a_1y_1 + a_2y_2 + \cdots + a_ry_r = a_{r+1}, y_1, y_2, \cdots, y_r \in S_r$, 所以该方程也称为有理数域上的 S 单位方程,简称 S 单位方程。

设 a,b,c 是两两互素的正整数:适合 b>a>1 以及 c>1. 方程

$$a^z + b^y = c^z, x, y, z \in \mathbb{N}$$
 (6.1.1)

是一类最基本的 S 单位方程 · 1933 年 · Mahler Fish i 运用 p-adic 形式的丢番图逼近方法证明了该方程仅有有限多组解(x · y · z)。 白于 Mahler 的方法是非实效的,所以无法得出解的可有效计算的上界 · 1940 年 · Gel'fond i · 最先给出了实效性的结果 · 运用 Gel'fond-Baker 方法可以证明 ·

定理 6.1.1 对于任何给定的正整数 a,b,c 方程(6.1.1)仅有有限多组解(x,y,z),而且这些解都满足 $\max(x,y,z) < C_1A^2(\log \cdot 213 \cdot$

 $A)^2(\log \log A)^2$.

证 设(x,y,z)是方程(6.1.1)的一组解 . 当 $x=\max(x,y,z)$ 且 b < c 时,从(6.1.1)可知:对于正整数 a 的任何素因数 p,都有

$$\operatorname{ord}_{\bullet}(c^{*} - b^{*}) \geqslant x. \tag{6.1.2}$$

同时,因为gcd(a,bc)=1,故从引理 L 8 4 可知

$$\operatorname{ord}_{\rho}(c^{z} - b^{x}) = \operatorname{ord}_{\rho}(b^{-y}c^{z} - 1) < C_{2} \frac{p^{2}}{\log p}(\log b)(\log c) (6.1.3)$$

 $(\log \log r)(\log \max(y,z)) < C_2 \frac{p^2}{\log p}(\log A)^2(\log \log A)(\log x).$

由于 $p \le a \le A$,所以结合(6.1.2),(6.1.3)可得

$$\max(x, y, z) = x < C_1 p^2 (\log A)^2 (\log \log A)^2$$

$$\leq C_1 A^2 (\log A)^2 (\log \log A)^2.$$

由此可知此时定理成立。同理可证 $x=\max(x,y,z)$ 且 b>c以及 $x\neq\max(x,y,z)$ 的情况。定理证完。

设 N 是绘定的正整数、运用初等数论方法和代数数论方法、可以对较小的 N 在 $\max(a,b,c) \leq N$ 的范围内具体找出方程 (6.1.1) 的全部解、例如,任建华和张建康^[2,1]、曹珍富^[6]分别对适合 $\max(a,b,c) \leq 16$ 的正整数 a,b,c 以及适合 $\max(a,b,c) \leq 97$ 的素数 a,b,c 给出了该方程的全部解(x,y,x).

当 a_1b_1c 是不同的素數时,运用初等方法可以对方程(6.1.1)的解数作出精确的估计。有关这方面的最好结果是由 Scott^[40]得到的。他证明了:当c=2时,除了(a_1b_1c)=(3,5,2)和(3,13,2)这两种情况以外,方程(6.1.1)至多有1组解(x_1y_1z);当 $c\neq 2$ 时,该方程至多有2组解(x_1y_1z)。最近,乐茂华^[21]对于一般的奇数c讨论了方程(6.1.1)的解数和解的上界。他运用初等方法证明了:当2(c时,方程(6.1.1)至多有 $2^{-(c)+1}$ 组解(x_1y_1z),其中 $\omega(c)$ 是c的不同素因数的个数,而且这些解都满足

$$2 < \frac{2ab}{\pi} \log(2eab); \qquad (6.1.4)$$

特别是当《是奇索数时》

$$z < \frac{2\sqrt{ab}}{\pi} \log(2r\sqrt{ab}). \tag{6.1.5}$$

1994年、Terai ⁵⁰⁴¹对于方程(6.1.1)的解数提出了以下猜想。

猜想 6.1.1 方程(6.4.1)至多有 1 组解(x,y,z)适合 x>1, y>1,z>1.

从文献[19].[40]中的分析可知: 当 c 是素数时, 猜想 6.1.1 是成立的, 在一般情况下,这仍是个尚未解决的问题。

设r.s 是适合 2|rs 以及 gcd(r,s)=1 的正整数。当业是大于 1 的正整数时,如果 a.b,c 是可表成

的正整数,则方程(6.1.1)显然有解(x,y,z)=(2.2.n). 对此,Terzi⁽²⁾,乐茂华⁽²⁾分别运用初等方法证明了:当n=3或 5.n 和 s 满足某些条件时,方程(6.1.1)仅有解(x,y,z)=(2.2.n). 上述结果支持了猜想 6.1.1 的正确性,同时,我们有以下较弱的猜想。

猜想 6.1.2 对于任何大于 1 的正整数 n,如果 a,b,c 满足 (6.1.6),则方程(6.1.1)仅有解(x,y,z)=(2,2,n).

另外,对于互素的正整数 a,b,Mignotte⁽²³⁾,Mabkhout ² 还讨论了方程

$$a^n - b^n = z^1, a, z \in \mathbb{N}.$$
 (6.1.7)

他们分别对所有适合 $a+b \le 16$ 以及 $a+b \le 25$ 的正整数 a,b, 找出了该方程的全部解(n,z).

§ 6.2 Jeśmanowicz 猜想

如果正整数 4,6 c 満足

$$a^2 + b^2 = c^2 \cdot \gcd(a,b) = 1,2[b,$$
 (6.2.1)

则称(a,b,c)是一组本原 Pythagoras 数或商高数,根据文献[17]中的定理 11.6.1 可知:任何一组本原 Pythagoras 数(a,b,c)都可表成

$$a = r^2 - s^2, b = 2rs, c = r^2 + s^2,$$
 (6. 2. 2)

其中心。是适合

$$r > s, \gcd(r,s) = 1, 2, rs$$
 (6.2.3)

的正整数:1956年,Jesmanowicz[18]曾经对此提出以下猜想:

猜想 6.2.1 如果(a,b,c)是本原 Pythagoras 数,则方程 (6.1.1)仅有解(x,y,z)=(2,2,2).

比较(6.1.6),(6.2.2)可知;猜想 6.2.1 是猜想 6.1.2 在 n=2 时的特例. 这是一个迄今尚未解决的问题. 对此,Jes manowicz。Sierpinski。Józeliak。Podsypanin。Dem'janenko,Grytczuk,Grelak,柯召和孙琦等人曾分别运用初等方法解决了一些特殊情况,有关这方面的早期工作可参见文献[21]. 以下介绍 Gel'fond-Baker 方法在该问题中的应用。

1993 年,Takakuwa^[45],Takakuwa 和 Asaeda^[43]运用代数数论方法证明了:当(6.2.2)中的正整数 r,s 满足 $2 \parallel r$,s = 3,不 无平方因数且虚二次域⑤($\sqrt{-3r/2}$)的类数是 2 的方幂时,方程(6.1.1)仅有解($x_1y_1z_2$)=(2.2.2). 1995 年,郭永东和乐茂华^[15]运用 Gel'lond-Baker 方法对上述结果作了较大的改进,他们证明了:

定理 6.2.1 当(6.2.2)中的正整数 r.s 满足 $2 \parallel r$.s=3 且 r \geqslant 6000 时.方程(6.1.1)仅有解(x,y.z)=(2,2,2).

证 首先·运用初等数论方法可知:在定理的题设条件下,如果(x,y,z)是方程(6,1,1)的一组适合(x,y,z) $\neq (2,2,2)$ 的解,则必有(2,x,y=1,2)z以及x>z. 此时,从(6,1,1)可得

$$a' + b = c'.$$
 (6.2.4)

由于 s=3, 敌从(6.2.2)可得 c=a+18 以及

$$\log c = \log a + \delta_1, \qquad (6.2.5)$$

其中 & 适合

$$0 < \delta_1 = \frac{18}{r^2} \sum_{k=0}^{\infty} \frac{1}{2k+1} \left(\frac{9}{r^2}\right)^{2k} < \frac{20}{r^2}. \tag{6.2.63}$$

又从(6.2.4)可知

$$z\log c - z\log a = \delta_2, \qquad (6.2.7)$$

其中 & 适合

$$0 < \delta_z = \frac{12r}{a^z + c^z} \sum_{k=0}^{\infty} \frac{1}{2k+1} \left(\frac{6r}{a^z + c^z} \right)^{2k} < \frac{8r}{a^z}. \quad (6.2.8)$$

另外,由于从(6, 2, 2),(6, 2, 4)可知 $9'^{-1} \equiv 1 \pmod{r}$,故有

$$x-z > \frac{\log(4r)}{\log 9}$$
 (6. 2. 9)

结合(6.2.5)-(6.2.9)可得

$$z = \frac{(x-z)\log a + \delta_2}{\delta_1} > \frac{r^2 \log(4r)}{20 \log 9} \log a. \quad (6.2.10)$$

设 A=zloge-zloga. 根据引理 1.8.4 可知

$$\log |\Lambda| > -C_1(\log a)(\log c)(\log x)^2. \tag{6.2.11}$$

于是从(6.2.7),(6.2.8),(6.2.11)可得

$$C_2(\log \epsilon)(\log x)^2 > x.$$
 (6.2.12)

从(6.2.12)可以算出

$$x < C_3(\log \epsilon) (\log \log \epsilon).$$
 (6.2.13)

最后,从(6.2.10)和(6.2.13)可以算出 r<6000. 定理证完。

1996年,乐茂华^[22]运用定理 6.2.1 的证明方法进一步证明了:当(5.2.2)中的正整数 r, s 满足 $2 \parallel r$, $s \approx 3 \pmod{4}$ 以及 $r \geqslant 81s$ 时, r 程(6.1.1)仅有解(x, y, z) = (2, 2, 2). 根据这一结果,定理 6.2.1 中的条件" $r \geqslant 6000$ "可改进为" $r \geqslant 243$ "、最近,Takakuwa ^[17] 利用上述结果并借助计算机证明了,当 $2 \parallel r$ 且 s = 3, 7, 11 或 15 时,猜想 6.2.1 成立

另外。Terai^[16]还对本原 Pythagoras 数提出了以下猜想:

猜想 6.2.2 如果本原 Pythagoras 数(a, b, c)可表成(6.2.2),则方程

$$x^2 + a^y = c^c, x, y, z \in \mathbb{N}$$
 (6.2.14)

仅有解(x,y,z)=(b,2,2).

对此,Terai^[49]运用代数数论方法证明了:当 a, c 是适合 a=1 (mod4), $a^2+1=2c$ 的奇素数,c 在虚二次域 $K=\emptyset$ ($\sqrt{-a}$)中完全分裂,而且 K 中主理想数[c]的素理想因子的阶 d 满足 d=1 或 2 d 时,猜想 6. 2. 2 或立 . 1995 年,乐茂华^[20]运用 Gel' fond-Baker 方法得出了较一般的结果、他证明了:当 $a>8 \cdot 10^6$, $a=\pm 3$ (mod8) 且 c 是奇素数的方幂时,方程(6. 2. 14)仅有解(x, y, z) = (b, 2, 2). 上述结果的证明过程基本上与定理 6. 2. 1 相同 .

§ 6.3 方程
$$a_1x_1+a_2x_2+\cdots+a_nx_n=0$$

设 k 是正整数 · 对于适合 $p_1 < p_2 < \dots < p_r$ 的素数 p_1, p_2, \dots, p_r ,设 $S^+ = S^+(p_1, p_2, \dots, p_r) = \{p_1^{m_1} p_2^{m_2} \dots p_r^{m_r} | m_1, m_2, \dots, m_r$ 均为非负整数 } · 十九世纪末,Størmer [45]讨论了方程

$$z - y = k_1 y_1 z \in S^+$$
 (6.3.1)

他根据 Pell 方程的基本性质证明了: 当 k=1 或 2 时,该方程仅有有限多组解(y,z). 设{ a_n } $_{n=0}^\infty$ 是将 S^+ 中所有的数按从小到大的顺序排列而成的数列 · 1918 年 · Pólya [38] 证明了: 当 $m\to\infty$ 时, $a_{m+1}/a_m\to 1$. 由此可知,对于任何给定的 k,方程(6. 3. 1)都仅有有限多组解(y,z). 此后,Siegel [41]和 Mahler [24,1]进一步给出了差 $a_{m+1}-a_m$ 的非实效性下界,他们证明了: 对于任何适合 $0<\delta<1$ 的正数 δ ,当 $m>C_1^*$ (δ)时,必有

$$a_{m+1} - a_m > a_m^{1-\delta}.$$
 (6.3.2)

1973年,Tijdeman[51]运用Gel'fond-Baker 方法证明了以下实效性的结果:

定理 6.3.1 当 a_∞≥3 时

$$a_{m+1} - a_m > \frac{a_m}{(\log a_m)^{C_1(p_r)}}.$$
 (6. 3. 3)

证 不妨假定 $a_{m+1} < 2a_m$. 根据数列 $\{a_m\}_{m=0}^\infty$ 的定义可知

$$a_{x} = p_1^{u_1} p_2^{u_2} \cdots p_{r+1}^{u_{r+1}} a_{x+1} = p_1^{u_1} p_2^{u_2} \cdots p_{r+1}^{u_{r+1}}$$
 (6. 3. 4)

其中 $u_{i_1}v_i(i=1,2,\cdots,r)$ 是适当的非负整数,从(6.3.4)可得

$$\frac{a_{m-1}}{a_m} - 1 = p_1^{\nu_1 - \nu_1} p_2^{\nu_2 - a_2} \cdots p_r^{\nu_r - a_r} - 1.$$
 (6. 3. 5)

因为

$$\max_{i=1,2,\dots,r} |v_i - u_i| \leqslant \max_{i=1,2,\dots,r} (u_i,v_i)$$

$$\leqslant \frac{\log a_{n+1}}{\log 2} < \frac{\log (2a_n)}{\log 2},$$

所以根据引理 1.8.1 可得

 $\log(p_1^{r_1-r_1}p_2^{r_2-r_2}\cdots p_r^{r_r-r_r}-1)>C_2(r,p_r)\log a_{sr}$ (6.3.6)由于从文献[35]可知 $p_r>r\log r$,故从(6.3.6)可知(6.3.3)成立:定理证完:

根据上述定理可以直接推出方程(6.3.1)的解的可有效计算的上界。

如果将(6.3.1)中的 & 看作未知数,则可得一般的方程

 $x + y = z_1 x_1 y_1 z \in S^-, \gcd(x_1 y_1 z) = 1.$ (6.3.7) 运用 Mahler [26.1] 的结果可知上述方程仅有有限多组解($x_1 y_1 z$),并且可得解的非实效性上界,1969 年,Coates [7] 运用 Gel' fond-Baker 方法给出了解的可有效计算的上界,他证明了:方程(6.3.7)的解($x_1 y_1 z$)都满足 $z < \exp(C_3 p_1)$. 这一结果的证明过程基本上与定理 6.1.1 相同。

设 a₁, a₂, a₃ 是互素的非零整数 · Sprindžuk, Győry, Lang, Kotov 和 Trelina 等人分别讨论了更一般的方程

$$a_1x_1 + a_2x_2 + a_3x_3 = 0$$
, $x_1, x_2, x_3 \in S$, $gcd(x_1, x_2, x_3) = 1$.

(6.3.8)

对此, $Győry^{[16]}$ 证明了:方程(6.3.8)仅有有限多组解(x_1,x_2,x_3),而且这些解都满足

 $\max(|x_1|,|x_2|,|x_3|) < \exp(r^{c_i} p_r^{i/3} \log A), \quad (6.3.9)$ 其中 $A = \max(3, |a_1|,|a_2|,|a_3|).$

关于方程(6.3.8)的解数,Evertse^{[113}运用 p-adic 形式的丢番·224·

图逼近方法证明了:该方程至多有 6 · 7^{2r+3} 组解(x_1, x_2, x_3). 由此可知方程(6.3.8)的解数与其中的系数 a_1, a_2, a_3 无关。同时,由于 Erdős, Stewart 和 Tijdernan^[16]对于 $a_1 = a_2 = a_3 = 1$ 这一情况证明了:存在适当的素数 p_1, p_2, \dots, p_r ,可使方程(6.3.8)至少有 $\sqrt[4]{2}$ 经原组解(x_1, x_2, x_3). 因此 Evertse 的上述结果已经相当接近于解数的最佳上界了,在这方面、Stewart 曾经提出以下猜想:

猜想 6.3.1 方程(6.3.8)至多有 $e^{r^{2/3}}$ 组解(x_1, x_2, x_3).

这里应该指出,以上给出的解数上界解是对任意的情况而言的,实际上,该方程在绝大多数的情况都不会有很多的解。例如,Evertse,Gyōry,Stewart 和 Tijdeman^{Ci21}证明了:对于给定的素数 $p_1, p_2, \cdots p_r$,除了有限多组互素的非零整数 (a_1, a_2, a_3) 以外,方程(6.3.8)至多有 2 组解 (x_1, x_2, x_3) .

设 n 是大于 3 的正整数, a₁₁ a₂, ··· , a_n 是互素的非零整数 . 方程

$$a_1x_1 + a_2x_2 + \dots - a_nx_n = 0, x_1, x_2, \dots, x_n \in S$$
(6. 3. 10)

是方程(5.3.8)的自然推广,称为 n 项 S 单位方程,简称 n 项方程,它与数论和群论中的很多重要问题有着密切的联系,所以受到广泛的关注(参见文献[13],[39]).

关于方程(6.3.10)的解数,Schlickewei^[36],Dubois 和 Rhin^[8] 分别运用 p-adic 形式的丢番图逼近方法证明了:该方程仅有有限 多组解(x_1,x_2,\cdots,x_n)适合 $\gcd(x_i,x_j)=1(1\leq i < j \leq n)$. 此后, van der Poorten 和 Schlickewei^[53]进一步证明了:该方程仅有有限 多组解(x_1,x_2,\cdots,x_n)满足

$$\gcd(x_{11}x_{2},\cdots,x_{n})=1 \qquad (6.3.11)$$

以及

$$a_{i_1}x_{i_1} + \dots + a_{i_m}x_{i_m} \neq 0, m < n, \{i_1, \dots, i_m\} \subset \{1, 2, \dots, n\}.$$

$$(6.3.12)$$

以上有关方程(6.3.10)的解数有限性的两个条件(6.3.11)和

(6.3.12)都是必要的,因为只要方程(6.3.10)有 1 组解,则它显然会有无限多组适合 $gcd(x_1,x_2,\cdots,x_n) > 1$ 的解 (x_1,x_2,\cdots,x_n) . 另外,例如当 $n=6,a_1=a_2=\cdots=a_n=1,S=S(2,3)$ 时,方程(6.3.10)有无限多组解

$$(x_1, x_2, x_1, x_4, x_1, x_6) = (2^{k_1+1}, 2^{k_1}, -2^{k_1} \cdot 3, -2^{k_1} \cdot 3, -2^{k_2}, 3^{k_2}, 3^{k_2}, -3^{k_2+2}), k_1, k_2 \in \mathbb{N}$$

$$(6.3.13)$$

满足(6.3.11)以及 $a_1x_1+a_2x_2+a_3x_3=a_4x_1+a_5x_5+a_6x_6=0$.

1990年,Schlickewei^[37]根据 Schmidt^[38]有关子空间理论的定量结果,在一般情况下给出了方程(6.3.10)的解数的可有效计算的上界,他证明了:该方程至多有(8(r+1)) 2^{26n-4} (r+1) 组解(x_1,x_2,\cdots,x_n)满足(6.3.11)和(6.3.12).

关于方程(6.3.10)的解的上界,目前只能对 n=4 且 $r \le 2$ 的情况给出实效性的结果。1983 年,Vojta [54]运用 Gel' fond-Baker 方法对于上述情况证明了:方程(6.3.10)适合条件(6.3.11)和(6.3.12)的解(x_1,x_2,x_3,x_4)都满足 $\max(|x_1|,|x_2|,|x_2|,|x_4|)$ $< C_6(A,p_1)$,其中 $A=\max(3,|a_1|,|a_2|,|a_3|,|a_4|)$,此后,Tijdeman 和 王 连 样[55],Skinner [42],莫 德 泽 和 Tijdeman [36],莫德泽[29]等人分别给出了一些具体的上界,这些结果的证明方法基本上与定理 6.1.1 相同,而且由此所得的上界通常是相当大的,在一般情况下,我们有以下猜想:

猜想 6.3.2 当 n>3 时,方程(6.3.10)适合条件(6.3.11)和 (6.3.12)的解 (x_1,x_2,\cdots,x_n) 都满足 $\max(|x_1|,|x_2|,\cdots,|x_n|)<\exp(r^{C_1}p^{C_2}\log A)$,其中 $A=\max(3,|a_1|,|a_2|,\cdots,|a_n|)$.

同时应该指出:当 n=4 时,Alex,Brenner,Foster 等人运用初等数论方法,对于 $r \le 3$ 以及较小的素数 p_1, p_2, p_3 找出了方程 (6.3.10)的全部解。例如,Alex 和 Foster [4]证明了:方程

$$1 + x_1 + x_2 = x_3, x_1, x_2, x_3 \in S^1 (2,3,7), x_1 \leqslant x_2,$$

$$(6,3,14)$$

恰有 174 组解 (x_1, x_2, x_3) , 其中最大的一组解是 (x_1, x_2, x_3) = (12096, 250047, 262144). 有关这方面的详细情况可参考文献

§ 6.4 Oesterlè-Masser abc - 猜想

设 a.b,c 是适合

$$a + b = c \cdot \gcd(a \cdot b \cdot c) = 1, a \le b$$
 (6.4.1)

的正整数;又设G是乘积abc的不同素因数的乘积。对此,Oesterle^[ra]曾经提出。

问题 6.4.1 对于适合(6.4.1)的正整数 a,b,c,是否存在可有效计算的绝对常数 C_i 使得 $c < G^{C_i}$?

另外, Masser[87]还进一步提出了以下猜想:

猜想 6.4.1 当正整数 a,b,c 适合(6.4.1)时,对于任何正数 δ 都有 $c < C,(\delta)G^{1-\delta}$.

上述猜想称为 Oesterlè-Masser abc -猜想.显然,假如能够证明该猜想成立,则包括著名的 Fermat 猜想在内的一大批数论难题都可以立刻获得解决(参见文献[9],[39],[43]). 因此这是一个很有意义但又非常困难的问题,目前只能得到一些很弱的结果. 1986 年, Stewart 和 Tijdeman^[43]运用 Gel'fond-Baker 方法证明了:

定理 6.4.1 当正整数 α, b, c 满足(6.4.1)时, 必有 logc < C, G^c₄.

证 设 4.6.c 分别有标准分解式

$$a = u_1^{a_1} u_2^{a_2} \cdots u_r^{a_r}, b = v_1^{a_1} v_2^{a_2} \cdots v_1^{a_r},$$

$$c = w_1^{a_1} w_2^{a_2} \cdots w_1^{a_r}.$$
(6. 4. 2)

因为从(6.4.1)可知 gcd(a,b,c)=1,所以(6.4.2)中的 u_1,u_2,\cdots , $u_r,v_3,v_2,\cdots,v_r,w_1,w_2,\cdots,w$. 是不同的素數, $a_1,a_2,\cdots,a_r,\beta_1,\beta_2,\cdots,\beta_r,\gamma_1,\gamma_2,\cdots,\gamma_r$. 是适当的正整数、此时

$$G = u_1 u_2 \cdots u_r v_1 v_2 \cdots v_r w_1 w_2 \cdots w_r. \tag{6.4.3}$$

对于正整数 n,设 p, 是第 n 个素数 $q_*=p_1p_2\cdots p_n$ 由于从文献[35]可知 $p_*>n\log n$. 所以有 $q_*>n''/2$. 因此从(6.4.3)可知

$$G > \frac{k^s}{2},$$
 (6.4.4)

其中をニアナsナだ。

设 $p = \max(u_1, u_2, \dots, u_r, v_1, v_1, \dots, v_r, w_1, w_2, \dots, w_r), B = \max(\beta_1, \beta_2, \dots, \beta_r).$ 因为 $a \leq b$,故从(6.4.2)可得

$$\log \frac{c}{2} \leqslant \log b = \sum_{i=1}^{r} \beta_i \log v_i \leqslant sB \log p < kB \log p.$$

$$(6.4.5)$$

同时,根据引理 1.8.4,从(6.4.2)可知

$$\beta_{i} = \operatorname{ord}_{v_{i}}(c - u) = \operatorname{ord}_{v_{i}}(u_{1}^{-a_{1}}u_{2}^{-a_{2}}\cdots u_{r}^{-a_{r}}w_{1}^{r_{1}}w_{2}^{r_{2}}\cdots w_{r}^{r_{r}} - 1)$$

$$< C_{5}(r + t)^{C_{4}(r + t)}p\log B, i = 1, 2, \cdots, s.$$
(6.4.6)

由于 r+t < k, p < G 以及 $\beta_i \le B(i=1,2,\cdots,s)$, 故从(6.4.4), (6.4.6)可得

$$B < C_7 G^{C_4}. \tag{6.4.7}$$

干是,从(6.4.5),(6.4.7)立得 $\log c < C \mid G^c$ 、定理证完。

关于定理 6.4.1 中的常数,文献[43]具体算出 $C_i \leq 15$. 此后。 Stewart 和于珅瑞[44]进一步改进为 $C_i \leq 2/3$.

另外,Stewart 和 Tijdeman^[43]指出猜想 6. 4. 1 中的上界是不能再改进的。因为他们证明了,存在无限多组适合(6. 4. 1)的正整数 $a_1b_1c_2$ 可使 $c>Ge^{(1-a)\sqrt{\log \log \log n}}$

对于适合(6.4.1)的正整数 a,b,c,设

$$\rho(a,b,c) = \frac{\log(abc)}{\log G}, \alpha(a,b,c) = \frac{\log c}{\log G}.$$
 (6.4.8)

显然,如果猜想 6.4.1 成立,则对于充分大的 c,必有 a(a,b,c)</br> $+\delta(\delta>0)$. 因此,寻找可使 p(a,b,c) 和 a(a,b,c)尽可能大的数组 (a,b,c)成了一个有意义的计算问题。 文献[5]和[31]分别将适合 $\rho(a,b,c)$ \geqslant 3.8 以及 a(a,b,c) \geqslant 1.4 的数组 (a,b,c)称为好的 abc-数例,对此,Nitaj^[51]通过讨论指数型方程

$$Ax^n - By^n = Cz_1x_1, y_1z_2, n \in \mathbb{N}, \gcd(x_1, y_1) = 1, n \geqslant 3$$
(6.4.9)

的解(x,y,z,n),找出了 26 组满足 $\rho(a,b,c) > 4$ 以及 $\alpha(a,b,c) > 1$. 49 的 abc -数例,这里 A,B,C 是给定的正整数.此后,Browkin和 Brzeziński $^{1/2}$ 找出了 90 组这样的数组,其中 $\rho(13 \cdot 19^6,2^{16} \cdot 5,3^{16} \cdot 11^2 \cdot 31) > 4$. 41901, $\alpha(2,3^{16} \cdot 109,23^5) > 1$. 62991.

设 n 是大于 2 的正整数 $.a_1,a_2,\cdots,a_n$ 是满足

$$a_1 + a_2 + \cdots + a_n = 0, \gcd(a_1, a_2, \cdots, a_n) = 1,$$

(6.4.10)

$$a_{i_1} + \cdots + a_{i_n} \neq 0, m < n, \{i_1, \cdots, i_n\} \subset \{1, \cdots, n\}$$

的非零整数;又设G是 $a_1a_2\cdots a_n$]的不同素因数的乘积。对此,Schmidt^[38]提出了比猜想 6. 4. 1 更一般的猜想:

猜想 6.4.2 当非零整数 a_1,a_2,\cdots,a_n 满足(6.4.10)时,对于任何正数 δ ,都有 $\max(|a_1|,|a_2|,\cdots,|a_n|) < C_2(n,\delta)G^{n-2+d}$

然而,Browkin 和 Brzeziński^[5]证明了:当n>3时,存在无限多组适合(6.4.10)的非零整数 a_1,a_2,\cdots,a_n ,可使 $\max(|a_1|,|a_2|,\cdots,|a_n|)>G^{2n-4-4}$. 因此 Schmidt 的猜想 6.4.2 是不正确的. 对此,Browkin 和 Brzeziński^[5]提出了以下猜想:

猜想 6. 4. 3 当非零整数 a_1,a_2,\cdots,a_n 満足 (6. 4. 10) 时,对于任何正数 δ ,都有 $\max(|a_1|,|a_2|,\cdots,|a_n|)$ $< C_{10}(n,\delta)G^{2n-\delta+\delta}$.

参考文献

- [1] Alex L. I., Foster L. L., Exponential diophantine equations, In: Théorie des Numbres, Quebec, PQ, 1987, Berlio, Walter de Gruyter, 1989; 1—6.
- [2] Alex L. J. Foster L. L. On the disphantine equation 1 + X + Y = Z. Rocky Mountain 3 Math. 1962.22, 11-62.
- [3] Alex L. J. Fester L. L. On the diophantine equation w+x+y=z with $w_{xyz}=2^{2}3^{2}$. Rev Mat Univ Complet Madrid, 1895, 8: 13-43.
- [4] Alex L. J. Foster L. L. On the diophantine equation 1+x+y=z with $xyz=2^{2/3}7^{2}$. Forum Math. 1995. 7:645—663.
- [5] Browkin J. , Brzeziński J. , Some rematks on abc-conjecture, Math Comp., 1994, 52, 931—936.
- [6] 曹珍富,美子 Diophantos 方程 a'+b'= c(1),科学通报,1985,31,1688-1690, (1),ihid,1988,33,237.

- [7] Costes J., An effective p-adic analogue of a theorem of Thue. Acta Atith. 1969. 15,279—305; I.; ibid. 1970, 16, 399—412.
- [8] Duhois E., Rhin G., Sur la majoration de formes linémires à coefficients algébriques téels et p-adiques. Démonstration d'une conjecture de K. Mahler, C. R. Acad Sci Patis, 1976, A282, 1211—1214.
- [9] Elkies N. D. ABC implies Mordell Internat Math Res Notices, 1991, (7), 99—109.
- [10] Erdős P., Stewart C. L., Tijdeman R., On the number of solutions of the equation x+y=x in S-units. Compositio Math. 1988, 66:37—56.
- [11] Evertse H-J., On equations in Sounits and the Thue-Mabler equation, lovest Math, 1984, 75, 561—584.
- [12] Evertse H-]. "Gyöty K. "Stewart C. L. "Tijdeman R. "On S-unit equations in two unknowns "Invent Math. 1988. 92, 461—477.
- [13] Evertse H-J., Gyory K., Stewart C. L., Tijdeman R., S-unit equations and their applications. In: Baker A ed., New Advances in Transcendence Theory, Cambridge: Cambridge Univ Press, 1988; 110—174.
- [14] Gel'fond A. O. "Sur la divisibilité de la difference des puissances de deux nombres entiers par une puissance d'un idéal premier "Mar Shornik "7,1940,49:7—25.
- [15] Goo, Y-D. Le M-H. A note on Jesmanowicz'conjecture concerning Pythagorean numbers. Common Math Univ St Pauli, 1995, 43, 225—228.
- [16] Győry K. On the number of solutions of linear relations in units of an algebraic number field. Comment Math Helv. 1979, 54, 583—600.
- [17] 华罗庚, 数论导引,北京:科学出版社,1979.
- [18] Jeśmanowicz L., Several remarks on Pythagoreso numbers, Wiadom Mai (2), 1955/1956, 1, 196-202 (Polish).
- [19] 乐茂华,关于丢番图方程 a'+b'=c',长春师花学院学报(自然科学版).1985.2 (2):50-62.
- [20] Le M-H., A note on the diophentine equation $x^2 + b^2 = c^2$, Acta Arith, 1995. 69: 253—257.
- [21] Le M-H. A note on Jesmanowicz' conjecture, Callog Math, 1995, 69, 47-51.
- [22] Le M-H. On Jesmanowicz' conjecture concerning Pythagorean numbers, Proc Japan Acad Ser A Math Sci. 1996, 72, 97—98.
- [23] Le M-H. A note on the diophantine equation $(m^3 3m)^2 + (3m^2 1)^2 = (m^2 + 1)^2$. Proc Japan Acad Set A Math Sci. 1997, 73, 148—149.
- [24] Le M-H. A note on the number of solutions of the diophentine equation $a^a + b^a = e^a$. Proc Japan Acad Ser A Math Scieto appear.

- [25] Malkhout M., Equations diophanticanes exponentielles, Thèse, Univ Louis Pasteur, Strasbourg: 1993-94pp.
- [26] Mahler K. Zur Approximation algebroischer Zahlen 1 Math Ann. 1933. 107: 891-730: 1 jibid. 1932. 108: 37:-55.
- [27] Masser D. W., Open problems, In: Analytic Number Theory, London: Imperial College, 1995, 27—35.
- [28] Mignotte M., On a class of equations of the form $a^a + b^a = z^2$, Rend Sem Fac Sci-Univ Caglian, 1992, 62, 15—19 (Italian).
- [29] 莫想律,具有四项的指数丢番图方程(1),数学学报,1994,37;482-490.
- [30] Ma D-Z., Tijdeman R., Exponential diophantine equations with four terms, Indag Meth(NS), 1992, 3147—57.
- [31] Nitaj A. , Un algorithme pour déterminer de bonnes relations abc, C R Acad Sci Paris Ser 1 Math. 1993, 317, 811—815.
- [32] Oesterlé J., Nouvelles approaches du Théorème Fermat. Sem Bonrbaki, 1987/ 1958. No. 694; 1—21.
- [33] Pôiya G. "Zur arithmetischen Untersochung der Polynome. Math Z. 1918, 1, 143

 —148.
- [34] 任理华,张建康,关于不定方程 a*+b*=c*,西北大学学报(自然科学版).1989. 19,12-22.
- [35] Rosser B., The n-th prime is greater than $n\log n$, Proc London Math Soc (2). 1938, 45:21-44.
- [36] Schlickewei H. P., Über die diophantische Gleichung $x_1 + x_2 + \cdots + x_n = 0$, Acta Arith, 1977, 33, 183—185.
- [37] Schlickewei H. P., An explicit upper bound for the number of solutions of the Sunit equations, Reine Angew Math, 1990, 405, 109—120.
- [38] Schmid: W. M., The subspace theorem in diophantine approximations. Compositio Math. 1989, 59:121—173.
- [39] Schmidt W. M. Diophantine Approximation and Diophantine Equations, Lecture
 Notes in Math 1467 Berlin, Springer-Verlag, 1991.
- [40] Scott R. On the equations $p^z b^y = c$ and $a^z + b^y = c^y$, Number Theory, 1993. 44:153—155.
- [41] Siegel C. L. Approximation algebraischer Zahlen, Math Z. 1921, 10:173--212.
- [42] Skinner C. ,On the diophantine equation $ap^z + bq^z = c + dp^zq^m$, J Number Theory , 1990, 35, 194—207.
- [43] Stewart C. L. Tipdeman R. On the Oesterle-Masser conjecture, Monatsh Math., 1986, 102, 251—257.

- [41] Stewart C. L. Yu K-R. On the abe conjecture. Math. Ann. 1991, 291, 225-236.
- [45] Størmer C. «Sur une equation indeterminéu»C R Acad Sci Paris «1898»127:752--
- [46] Takakuwa K. On a conjecture on Pythagorean numbers. I Proc Japan Acad Ser. A Math Sci., 1993, 69, 345—349.
- 47. Takakuwa K. A remark on Jelsmanowicz' conjecture. Proc Japan Acad Ser A Math Sci-1996,72,109—110.
- [48] Takakuwa K., Asaeda Y., On a conjecture on Pythagorean numbers 1, Proclama Acad Ser A Math Sci. 1993. 69: 252--255; 1: ibid. 1993. 69: 287-290.
- [49] Terai N. The diophantine equation $x^2 \cdot 1 q^m = p^n$. Acta Arith, 1993, 63:351—358.
- [50] Term N. The diophantine equation $a' + b' = c^*$ 1 Proc Japan Acad Set A Muth Sci. 1994. 70: 22-26: 1 Shid. 1995. 71: 109-110.
- [51] Tijdeman R., On integets with many small prime factors, Compositio Math. 1973, 26, 319—330.
- [52] Tijdeman R. Wang L-X. Sums of products of powers of given prime numbers.

 Pacific J Math. 1988. 132: 177--193.
- [33] van der Poorten A. J. Schlickewei H. P. The growth conditions for recurrence sequences. Macquarie Univ Math Report 82-0941, North Ryde, Australia, 1982.
- [54] Vojta P. Integral points on Varieties, Thesis, Harvard Univ. 1983.
- [55] Wang L-X. Four terms equations, Indag Math, 1989, 51, 355-361.

人名索引

以下按字母顺序,列出书中引用论著的作者姓名以及引文出现的章节,其中 § 0.0, § *.0, § *.**分别表示在绪论、第*章的前言以及第*章第**节中的引文。

A

Aaltonen M.	§ 5.5
al Ekenstam A.	§ 2. 1
Aigner A.	§ 5. 1
Alemu Y.	§ 5. 10
Alex L. J.	§ 6.3
Alter R.	§ 3. 0
André-Jeannin R.	§ 5.4
Antoniadis J. A.	§ 5.4
Apery R.	§ 3.1
Arno S.	§ 1.5
Asaeda Y.	§ 6.2
Avanesov È. T.	§ 2.1

B

\$0.0, \$1.0, \$1.5, \$1.7.
§ 1.8, § 2.1, § 4.1. § 4.2,
§ 4. 5, § 4. 6
§ 5. 9, § 5. 10
§ 5.10
§ 5.9

Baulin V. I.
Bean M. A.
Bender E. A.
Bennett M. A.
Beukers F.
Bilu Y.
Birch B. J.
Birkhoff G. D.
Blankshy P. E.
Blass J.
Bombieri E.
Bremner A.

Brindza B.

Browkin G.

Brown E.

Brzeziński J.

Bugeaud Y.

Buchmann L.

\$ 2, 1, \$ 3, 3

§ 2. 2. § 2. 3

\$ 3.1.53.4

\$ 2.1, \$ 4.5, \$ 5.10

\$ 2.5, \$ 3.1, \$ 3.2

§ 2. 1, § 4. 1

§ 1.6

§ 2.5

\$ 1.1

§ 5.1

§ 1.7, § 2.1, § 2.4, § 4.6

§ 3. 3

§ 2. 1, § 2. 4. § 4. 1, § 4. 2,

§ 5.3, § 5.7, § 5.10

§ 3. 1. § 6. 4

§ 5. 2

\$ 6.4

§ 2. 5

§ 1. 1, § 1. 7, § 1. 8, § 2. 1,

§ 2. 3. § 2. 4. § 3. 6. § 5. 2

 \mathbf{C}

Calderbank R.

Carmichael R. D.

Cassels J. W. S.

Cantor D. C.

曹珍富

§ 3. 3

§ 1. 1

§ 3. 6, § 5. 1, § 5. 2, § 5. 10,

§ 6. 1

§ 2. 5

§ 0.0, § 5.5

§ 0. 0, § 5. 5

Catalan E.

· 234 ·

陈建华	§ 1.7. § 2.1. § 4.3
陈锡庚	§ 3. 5
Chudonovsky G. V.	§ 1.7, § 5.6
Cipu M.	§ 4. 3
Coates J.	§ 1. 8, § 4. 6, § 6. 3
Cochrare T.	§ 4. 2
Cohen E. L.	§ 3. 0
Cohn J. H. E.	§ 2.5, § 3.1, § 3.3, § 4.3,
-	§ 4.4, § 5.1, § 5.2, § 5.4
Cowles M. J.	§ 5. 1
Cresenzo P.	§ 5.8
	D
Danilov L. V.	§ 4. 1
Darmon H.	§ 2.1, § 4.6, § 5.10
Davenport H.	§ 0.0, § 1.5, § 1.7, § 2.1,
	§ 4.2, § 4.5, § 5.9
de Weger B. M. M.	§ 2.1. § 2.4, § 3.7, § 4.1,
	§ 5.1, § 5.10
Delaunary B.	§ 2. 1
Deligne P.	§ 2. 5
Delone B. N.	§ 2. 1
Demijauenko V. A.	§ 2. 1
Deuring M.	§ 1. 5
Dickson L. E.	§ 0. 0. § 4. 1
Dilcher K.	§ 5. 10
Dobrowolski E.	§ 1. 1
Domar Y.	§ 2. 1
董平平	

Dubickas A.	§ 1. 1
Dubois E.	§ 6. 3
Dwork B. M.	§ 4.6
	Е
Easton D.	§ 1. 7
Edgar H.	§ 5. 6. § 5. 8
Eisenstein G.	§ 4. 6
Elkies N.D.	§ 6. 4
Erdös P.	§ 3.7, § 4.1, § 5.7, § 5.10,
	§ 6. 3
Estes D.	§ 5. 8
Everest G. R.	§ 2. 3
Evertse J-H.	§ J. 6, § 2. 1, § 2. 2, § 2. 3,
	§ 2.4, § 2.5, § 4.1, § 4.2,
	§ 5. 3, § 5. 5, § 6. 3
Eolet I	§ 0. 0
	T 1
	F .
Faltings G.	§ 1. 7. § 4. 6
Feit W.	§ 5. 8
Fel'dman N. 1.	§ 1. 8
Ferretti R.	§ 1. 7
Finkelstein R.	§ 5. 4
冯克勤	§ 1. 0
Foster L. L.	§ 6. 3
Fojimori M.	§ 2. 1

Gaal I.	§ 2. I, § 2. 3
Gauss C. F.	§ 1.5
Gebel J.	§ 4. 1. § 5. IO
Gel'fond A.O.	§ 0. 0, § 1. 8, § 6. I
Glass A. M. W.	§ 5. 5
Glass J. P.	§ 2. 5
Goldfeld D. M.	§ 1.5
Goormaghtigh R.	§ 5. 9
Graham R. L.	§ 5. 7
Granville A.	§ 4. 6
Gross B.	§ 1. 5, § 5. 1
Grytczuk A.	§ 4. 6. § 5. 10
郭永东	§ 3.3, § 3.5, § 3.6, § 5.2,
	§ 5. 6. § 6. 1
Guralnick R.	§ 5. 8
Guy R. K.	§ 5. 1, § 5. 6, § 5. 8, § 5. 10
Győry K.	§ 1.1, § 1.6, § 1.7, § 2.1,
	§ 2.3, § 2.4, § 2.5, § 4.1,
	§ 5.3, § 5.10, § 6.3

H

Hall M. Jr.	§ 4. l. § 5. 6
Hanlon P.	§ 3. 3
Hanrot G.	§ 2. 1
Hecke E.	§ 1. 5
Heegner K.	§ 1.5

Heilbronn H.	§ 1. 5
Hermite C.	§ 0.0. § 1.6
Herschfeld A.	§ 5. 6
Herzherg N. P.	§ 3.1, § 3.4
Hilbert D.	§ 4. 6
Hilliker D. L.	§ 4.6
Hindry M.	§ 4. 6
华罗庚	§ 1.0, § 3.1, § 5.8, § 6.2
Hurwitz A.	§ 4.6
Hyyrö S.	§ 2. 1
	I
Inkeri K.	§ 5. 5
	J
leśmanowicz I	
Jesmanowicz L. Joó I.	§ 6. 2
Joó I.	§ 6.2 § 5.4
Joó I. Julia G.	§ 6.2 § 5.4 § 4.1
Joó I.	§ 6.2 § 5.4
Joó I. Julia G.	§ 6.2 § 5.4 § 4.1
Joó I. Julia G.	§ 6. 2 § 5. 4 § 4. 1 § 3. 3
Joó I. Julia G.	§ 6. 2 § 5. 4 § 4. 1 § 3. 3
Joó I. Julia G. Jungnickel D.	§ 6.2 § 5.4 § 4.1 § 3.3
Joó I. Julia G. Jungnickel D. Kano H.	§ 6. 2 § 5. 4 § 4. 1 § 3. 3
Joó I. Julia G. Jungnickel D. Kano H. Kanold	§ 6. 2 § 5. 4 § 4. 1 § 3. 3 K § 5. 10 § 5. 9
Joó I. Julia G. Jungnickel D. Kano H. Kanold Kaufman R. M.	§ 6. 2 § 5. 4 § 4. 1 § 3. 3 K § 5. 10 § 5. 9 § 1. 8

• 238 •

Kotov S. V.	§ 4. 2. § 5. 2
Kubota K.K.	§ 2. 5
Kuzmin R.O.	§ 0. 0
L	
Lagarias J.C.	§ 5.4
Lagrange J. L.	§ 1. 6
Landau E.	§ 4.2
Lang S.	§ 1.2, § 1.7, § 4.1
Langevin M.	§ 1.2. § 4.1. § 5.5
Langmann K.	§ 2.1. § 2.3
Laurent M.	§ 1. 8, § 2. 5
乐茂华	§ 0. 0, § 1. 4, § 1. 5, § 2. 1,
	§ 2. 4, § 2. 5, § 3. 1, § 3. 2,
	§ 3. 3, § 3. 4, § 3. 5, § 4. 2,
	§ 4. 3, § 4. 4, § 4. 5, § 5. 1,
	§ 5. 2, § 5. 3, § 5. 4, § 5. 6,
	§ 5. 7, § 5. 8, § 5. 9, § 5. 10,
	§ 6.1, § 6.2
Lebesgue V. A.	§ 5.5
Lee J-B.	§ 4.1
Lenstra A. K.	§ 2. 1
Lenstra H. W. Jr	§ 1.4, § 2.1
Lettl G.	§ 2. 1
LeVeque W.J.	§ 4.2, § 5.6
Lewis D. J.	§ 1. 6, § 2. 1, § 2. 4, § 4. 2,
	§ 5.9
Lindemann F.	§ 0.0
Liouville J.	§ 0. 0. § 1. 7

§ 2. 1 Lippok F. § 5. 7 刘德华 \$ 2. 1, \$ 3. 0, \$ 3. 4, \$ 4. 3. Ljunggren W. \$ 5, 1, \$ 5, 2, \$ 5, 6, \$ 5, 8 35.4 London H. § 1, 1 Louboutin S. § 2. 1 Lovasz L. § 1.8, § 2.5, § 5.9 Loxfor J. H. § 1.5, § 5.1 陆洪文 § 5. 10 Lucas E. § 5.4 罗明 М § 3. 3 Ma S-L. § 6. 1 Mahkhout M. Mahler K. \$ 2.5, § 3.1, § 6.1, § 6.3 \$ 5.10 Marszalek R. \$4.1, \$6.4 Masser D. W.

 Ma S-L.
 \$ 3. 3

 Mabkhout M.
 \$ 6. 1

 Mahler K.
 \$ 1. 6

 \$ 2. 5.
 \$ 2. 5.

 Marszalek R.
 \$ 5. 10

 Masser D. W.
 \$ 4. 1.

 Matijasevič Y.
 \$ 0. 0

 McDanie W. L.
 \$ 5. 4

 McFarland R. L.
 \$ 3. 3

 Merel L.
 \$ 2. 1.

 Meronk D. B.
 \$ 5. 5

 Merriman J. R.
 \$ 1. 6.

 Mestre J-F.
 \$ 1. 5

 Mignotte M.
 \$ 1. 8.

§ 6. 1 § 1. 6 § 2. 1. § 2. 2. § 2. 4. § 2. 5. § 3. 1. § 6. 1. § 6. 3 § 5. 10 § 4. 1. § 6. 4 § 0. 0 § 5. 4 § 3. 3 § 2. 1. § 5. 10 § 5. 5 § 1. 6. § 3. 7 § 1. 5 § 1. 8. § 2. 1. § 2. 3. § 2. 4. § 2. 5. § 3. 5. § 5. 1. § 5. 2. § 5. 5. § 6. 1. § 6. 3

莫德泽	§ 6. 3
Mohanty S. P.	§ 4. 1
Montgomery H. l.,	§ 1. 1
Mordell L. J.	§ 0.0. § 1.5. § 2.1. § 2.3.
	§ 4.1, § 4.3, § 4.6, § 5.10
Morduchai-Boltovskoj D.	§ 1. 8
Moree P.	§ 3.7, § 5.10
Morton P.	§ 3.3
Mueller J.	§ 1.7, § 2.1, § 2.2
1	N
Nagell T.	§ 2.1, § 3.1, § 4.4, § 4.5,
	§ 5.2, § 5.8
Nair M.	§ 4. 1
Nemes I.	§ 5.4
Nesterenko Y. V.	§ 1. 8
Nitaj A.	§ 6. 4
•	0
Oesterlé J.	§ 1.5, § 6.4
Okada T.	§ 5. 5
Osada H.	§ 5. 1, § 5. 7
Ostrowski A.	§ 4. 2
· 1	P
Papp 2. 2.	§ 2.3
Perlis R.	§ 5.8

Pethö A. § 2. 1, § 2. 3, § 3. 7, § 4. 1. § 5.4, § 5.10 § 1.8 Philippon P. § 5.4 Phong B. M. § 5.6 Pillai S. S. § 4.5 Pinch R.G. E. Pintér Á. § 4.1, § 5.10 § 2.1. § 2.3 Pohst M. § 4.6 Poincare H. Pólya G. § 6. 3 § 4.2 Poulakis D. Puiseux V. A. § 4.6 Q Queme R. § 1.4 R Rabinowicz S. § 5. 2 Ramachandran R. § 5.10 Ramanujan S. § 3.0 § 3.0, § 4.1 Ramasamy A.M.S. Ratat R. § 5.9 § 6.1 任建华 Reyssat E. § 1. 1 § 1.1, § 6.3 Rhin G. § 0.0, § 4.5, § 5.4, § 5.5 Ribenboim P. Rickert J. H. § 4.5 Rigge (). § 5.10

- 242 -

Robbins N.	§ 5. 4
Rohrlich D.	§ 5. 1
Rosser B.	§ 6.3, § 6.4
Roth K. F.	§ a. o, § 1. 6. § 2. 1
Roth R.	ÿ 2. 1
Roy D.	§ 5. 5
Runge C.	§ 4. 6
_	
:	s
Satadha N.	§ 5. 10
Schacher M.	§ 5. 8
Schäffer J. J.	§ 5. £0
Schinzel A.	§ 1.1, § 1.8, § 3.1, § 4.2,
	§ 4. 6, § 5. 3, § 5. 9
Schlickewei H. P.	§ 2. 5, § 5. 4, § 6. 3
Schmidt W. M.	§ 0. 0, § 1. 6, § 2. 1, § 2. 2.
	§ 2.3, § 4.1. § 4.6, § 5.4,
	§ 6. 3. § 6. 4
Schneider T.	§ 0. 0
Schulenberg R.	§ 2. 1
Schulte N.	§ 2. I
Schwarz W.	§ 5. 5
Scott R.	§ 5. 5. § 6. 1
Selfridge J. L.	§ 5. 10
Shapiro H. S.	§ 3. o
施武杰	§ 5. 8
Shorey T. N.	§ 0.0, § 1.0, § 1.8, § 2.3,
	§ 2.4. § 2.5. § 4.2. § 4.5.
	§ 5.3. § 5.5, § 5.6, § 5.8,

	§ 5.9. § 5.10
Siegel C. L.	§ 1.4. § 2.1. § 2.2. § 4.1.
	§ 4.2, § 4.5, § 4.6, § 6.3
Silverman J. H.	§ 2.1. § 4.2
Skinner C.	§ 3. 3. § 6. 3
Skolem T.	§ 4. 6
Slavutskii I. S.	§ 1. 2
Slornick D. L.	§ 3. 0
Smart N. P.	§ 2. 1. § 2. 3, § 3. 7
Sprindžuk V. G.	§ 0, 0, § 1, 8, § 5, 3
Stark H. M.	§ 1.4.§ 1.5,§ 4.1
Steiner R. P.	§ 2.1, § 5.1, § 5.4, § 5.5
Stemmler R. M.	§ 5. 9
Stephens N.	§ 4. 1
Stewart C. L.	§ 1.1, § 1.7, § 2.1, § 2.4.
	§ 2.5, § 3.7, § 5.4, § 6.3
	§ 6. 4
Størmer C.	§ 6. 3
Straus E. G.	§ 1. I, § 4. 6, § 5, 8
Strøeker R. J.	§ 2.1, § 4.1, § 5.6, § 5.10
Styer R.	§ 5. ŝ
孙琦	§ 3. 5. § 4. 3. § 4. 4. § 5. 8
Szpira L.	§ 4. l
1	Γ

 Takakuwa K.
 \$ 6.2

 Tanahashi K.
 \$ 3.6, \$ 5.1

 te Riele H. J. J.
 \$ 5.10

 Terai N.
 \$ 5.7, \$ 5.10, \$ 5.1, \$ 6.2

Thomas E.	§ 2. 1
Thue A.	§ 0.0. § 2.1, § 2.4, § 4.1.
	§ 4. 2
Thunder J. L.	§ 2.2, § 2.3
Tijdeman R.	§ 0.0, § 1.0, § 2.1, § 2.4,
	§ 2.5, § 3.7, § 4.2, § 4.5.
	§ 4.6, § 5.3, § 5.5, § 5.6,
	§ 5.8, § 5.9, § 5.10, § 6.3,
	§ 6. 4
Toyoizumi M.	§ 3.6, § 5.2
Trelina L. A.	§ 4. 2
Turk J.	§ 4.4, § 5.3
Tzanakis N.	§ 2.1, § 2.4, § 2.5, § 3.1,
	§ 3.3, § 4.1. § 5.10
C	I
Uehara T.	§ 5. 1
Urbanowicz J.	§ 5. 10
v	,
van der Poorten A. J.	§ 1.7. § 1.8, § 2.1. § 2.5,
	§ 4.6. § 5.3, § 5.5, § 6.3
van der Put M.	§ 1.7
Vandiver H. S.	§ 2.5
Vélez W. Y.	§ 4. 1
Vojta P.	§ 1.7, § 4.1, § 4.6, § 6.3
Voorhoeve M.	§ 5. 10
Vontier P. M.	§ 1.1. § 2.1. § 2.3. § 2.5.
	• 245 •

W

Wagner C.

Waldschmidt M.

Walsh P.G.

王连祥

Watson N.

Weisser D. P.

Wiles A.

Williams H. C.

Wolfskill J.

Woods A.C.

Wüstholz G.

Wylie O.

§ 1.5

§ 0.0, § 1.8, § 2.1

§ 4. 6

§ 6. 3

§ 5.10

§ 5.4

§ 0. 0. § 2. 1

§ 5. 4

§ 3. 3

§ 4. 1

§ 1.7, § 1.8, § 4.6

§ 5.4

X

向青

许太金

§ 3. 3

§ 3. 5

Y

于坤瑞

袁平之

§ 1. 8, § 5. 7, § 6. 4

§ 5-8, § 5-10

 \mathbf{Z}

Zagier D.

§ 1.5, § 4.1

• 216 •

Zassenhaus H.	§ 1. 1
张建康	§ 6. 1
张贤科	§ 5. 1
朱卫三	§ 4.3
Zimmer H.G.	§ 4.1.§ 5.10
Zimmert R.	§ 1. 2