Populating Knowledge Graphs: The Confluence of Ontology and Large Language Models

Andrea Westerinen

andrea@ontoinsights.com, arwesterinen@gmail.com

1 November 2023 V1.1

Abstract

- In the past, populating ontology-based Knowledge Graphs (KGs) from unstructured text involved convoluted natural language analyses and custom code
- World has changed with the use of Large Language Models (LLMs)
- This talk explores one use case: population of a knowledge database from news article texts
 - Evolution of the Deep Narrative Analysis (DNA) application from employing spaCy APIs to OpenAI

Introduction

- Deep Narrative Analysis (DNA)
 - Research prototype designed to:
 - Create knowledge stores with data from text stored in RDF graphs
 - Enabling aggregation of textual information within and across documents
 - To efficiently compare and analyze collections of text
 - To understand patterns, trends, ...
 - Use cases:
 - Aid readers of news (in understanding how the reporting is "tuned")
 - Investigate/discover mis-/dis-information "flags"

• Features:

- Detailed text parse and graph storage for both drill-down and aggregate analyses
- Inclusion of definitional and contextual background information to aid readers of news and for reasoning/inference

DNA Architecture

DNA Architecture – Foundational Technologies

- Linguistic event theory, built into the DNA Ontology
 - Closely aligned with linguistic and syntactic patterns underlying LLMs
- Natural language processing
 - spaCy for named entity recognition, and extraction of quotations and sentences
 - LLMs for analysis of basic linguistic details, use of rhetorical devices and semantic role labelling, alignment with the ontology concepts and interpretations of a narrative by viewpoint

- Ontological reasoning and inference
- Graph analysis and machine learning and pattern recognition

DNA Usage via REST APIs

- DNA API definition
- dna/v1/repositories to create, delete or list the repositories of text in the database
- dna/v1/news to retrieve or retrieve/ingest a list of articles from newsapi.org
 - "Ingest" => parse, retrieve linguistic and ontology details, create KG and store the triples to specified repository
- dna/v1/narratives to ingest text provided in the API request
- dna/v1/narratives/graphs to retrieve the KG for an article/narrative for use in analysis or for review/edit, or to update one
- (In development) Analysis using graph/ML/pattern recognition tooling
 - Basic examples in the paper, <u>Translating Narratives to Knowledge Graphs</u>

Core Concepts in the DNA Ontology

Narratives and News in the Ontology

Development History 1

- Early versions based on spaCy, WordNet/FrameNet, dictionaries, ...
- Supported basic parse, ontology alignment and KG creation/storage
- Sentiment analysis difficult
- Attempted to address multi-lingual WordNets, RDF language tags, ...
- Problems:
 - Inability to address complexity of human language programmatically
 - Difficulty, time and expense of creating/customizing training data

Development History 2

- Evolution to spaCy plus LLMs (OpenAl APIs)
- Value proposition:
 - Obtaining linguistic details (similar to DNA's basic parse) with sentiment analysis at the narrative and sentence levels
 - With much simpler code base! (>50% code size reduction with expanded capabilities)
 - Identifying rhetorical devices in text
 - Capturing entity relationships using semantic role labeling
 - Capturing text's possible goals and interpretations
 - Improving mapping of text to the ontology
 - No need to exhaustively incorporate and extend synsets and frames

Code Evolution

Prompting

- All prompts in the file, query_openai.py, in dna directory
- Incorporates context, instruction and multiple-choice techniques
- Designed as a series of specific prompts ("chained" via the code)
 - Narrative analysis
 - Rhetorical devices and viewpoint interpretations
 - Sentence analysis
 - Linguistics (tense, voice, errors, ...)
 - Rhetorical devices
 - Event ontology mapping
- Designed to return JSON results that are easily mapped to the "top elements" in the ontology hierarchy

Prompt Example

- Context: You are a linguist and NLP expert, analyzing quotations from news articles.
- Input: Here is the text of a quotation from an article (ending with the string "**" which should be ignored): {quote_text} **
 - ** distinguish where input to be analyzed ends
- Specific instruction: For the text, indicate its sentiment ("positive", "negative" or "neutral") and create a summary in 8 words or less. Indicate the grade level that is expected of a reader to understand its semantics.
- Output: Return the response as a JSON object with keys and values as defined by {quote_format1}.

Example – Narrative Input

Narrative input via POST to the DNA RESTful API

```
def test_narratives_post_ok1(client):
    article_text = "John is a musician. When Mary goes to the grocery store, John practices guitar."
    req_data = json.dumps({
        "narrativeMetadata": {
            "title": "A narrative title",
            "published": "2022-07-14T17:32:28Z",
            "source": "Wall Street Journal",
            "url": "http://some-site.com/narrative",
            "length": len(article_text)},
            "narrative": article_text
}
```


Example – Narrative-Level Graph

Example – Sentence-Level Graph

- Sentences from the narrative stored in the InformationGraph
- Each narrative's graph is stored its own named graph
- Second sentence from the example: When Mary goes to the grocery store, John practices guitar.

```
:Sentence 80c8d290-63b7 a :Sentence : :offset 2 . -
:Sentence_80c8d290-63b7 :text "When Mary goes to the grocery store, John practices guitar." .-
:Mary a : Person .-
:Mary rdfs:label "Mary" .-
:Mary rdfs:comment "Needs disambiguation; See the web site, https://en.wikipedia.org/wiki/Mary" .-
:Mary :gender "female" .-
:Sentence 80c8d290-63b7 :mentions :Mary .-
:Sentence_80c8d290-63b7 :mentions :John .-
:Sentence_80c8d290-63b7 :sentence_person 3 ::sentiment · "neutral" . -
:Sentence 80c8d290-63b7 :voice "active" ; :tense "present" ; :summary "Mary shops, John practices quitar" .-
:Sentence 80c8d290-63b7 :grade level 2 .-
:Sentence 80c8d290-63b7 :has semantic :Event cc50d721-d839 .-
:Event cc50d721-d839 a :MovementTravelAndTransportation .-
:Event cc50d721-d839 :has active entity :Mary .-
:Event_cc50d721-d839 :has_location [ ::text "grocery store" ; a :Location ] .-
:Sentence 80c8d290-63b7 :has semantic :Event ea2c7644-3ff0 .-
:Event_ea2c7644-3ff0 a :ArtAndEntertainmentEvent .-
:Event ea2c7644-3ff0 :has active entity :John .-
:Event_ea2c7644-3ff0 :has_instrument [ :text "guitar" ; a :MusicalInstrument ] .-
```


Example – Rhetorical Devices

```
# :Sentence_0139e4a2-94d0 a :Sentence ; :offset 1 .
# :Sentence_0139e4a2-94d0 :text "U.S. Rep. Liz Cheney conceded defeat Tuesday in the Republican primary
# in Wyoming, an outcome that was a priority for former President Donald Trump as he urged GOP voters
# to reject one of his most prominent critics on Capitol Hill." .
```

```
# :Sentence_0139e4a2-94d0 :mentions geo:6252001 .
# :Sentence_0139e4a2-94d0 :mentions :Liz_Cheney .
# :Sentence_0139e4a2-94d0 :mentions :Tuesday .
# :Sentence_0139e4a2-94d0 :mentions :Republican .
# :Sentence_0139e4a2-94d0 :mentions :Wyoming .
# :Sentence_0139e4a2-94d0 :mentions :Donald_Trump .
# :Sentence_0139e4a2-94d0 :mentions :GOP .
# :Sentence_0139e4a2-94d0 :mentions :Capitol_Hill .
# :Sentence_0139e4a2-94d0 :sentence_person 3 ; :sentiment "negative".
# :Sentence_0139e4a2-94d0 :voice "active" ; :tense "past" ; :summary "Cheney loses Wyoming primary, Trump\'s
      priority achieved." .
# :Sentence_0139e4a2-94d0 :grade_level 12 .
# :Sentence_0139e4a2-94d0 :rhetorical_device {:evidence "The text refers to authority figures such as U.S. Rep.
      Liz Cheney and former President Donald Trump. [] "ethos"
                                                           text refers to a specific event, the Republican
# :Sentence_0139e4a2-94d0 :rhetorical_device {:evidence
      primary in Wyoming, to engage the reader. \ "kairos"
# :Sentence_0139e4a2-94d0 :rhetorical_device {:evidence The text uses wording that appeals to emotions
      such as the defeat of Liz Cheney and the victory being a priority for Donald Trump. [ "pathos"
```


Findings

- Successful POC => Improved parse and ontology creation correctness with LLMs
 - With less code and complexity
- Importance of exception handling and programmatic validation of results
 - Expect strange behaviors such as the sentence, "Joe is conservative", having no verb (!)
 - LLMs often generate unexpected information that must be accounted for in the JSON format (or LLMs happily return text with some embedded JSON)
 - => Requires further tuning of the prompts + validation
- When prompting:
 - Simplicity is best but not always possible
 - Keep all inputs/instructions/outputs together
 - Use consistent terminology

Findings and Research

- Inconsistencies occur but overall parse accuracy increased
 - Accuracy could be improved further using self-consistency (repeated) prompting
 - At the expense of cost and performance time
- Large prompts certainly affect performance time
 - And, OpenAI load influences response time
 - Good news is that OpenAI does handle "large" prompts without timeout
- Continuing research and tuning improvements for example:
 - Updated and expanded tests
 - Continued refinement of prompts and validation of results
 - Improved co-reference resolution across sentences
 - Increased use of background/context data
 - Move to a private/local LLM implementation
 - Deeper ontology drill-down (at present, only top-level subclasses of Agent and EventAndState included)
 - Investigate alternative analysis levels (at present, full article + sentences are analyzed today)

Backup Slides

