

Concours d'entrée 2011-2012

Physique

Durée: 2 h 3 Juillet 2011

I- [4 pts] Datation des roches par la méthode potassium - argon

Lors d'une éruption volcanique, la lave au contact de l'air perd de l'argon 40. À la date de l'éruption $(t_0=0)$, la lave ne contient donc pas d'argon. L'analyse d'un bloc de basalte non fissuré, à la date t, montre qu'il contient 1,4900 mg de potassium $40 \binom{40}{19} K$) et 0,0218 mg d'argon $40 \binom{40}{18} Ar$). Le potassium 40 est radioactif ; 89,3% de la masse du potassium 40 désintégré se transforme en calcium $40 \binom{40}{20} Ca$) et 10,7% en argon 40 par capture électronique, c'est-à-dire, la capture par le noyau d'un électron de la couche interne du nuage électronique en transformant un des protons du noyau en un neutron. Cette capture est accompagnée par l'émission de photons.

- 1. En précisant les lois utilisées, écrire les équations de ces deux transformations.
- 2. À quel genre de radioactivité ressemble la capture électronique ? Justifier la réponse.
- 3. Calculer l'énergie cinétique maximale E_C de la particule émise par la désintégration en calcium.
- 4. Calculer l'énergie emportée par les photons émis par la capture électronique.
- 5. En supposant que les atomes de potassium 40 et d'argon 40 ont la même masse, déterminer la masse de potassium 40 qui s'est désintégré entre les dates 0 et t.
- 6. Déterminer la date approximative de l'éruption.

La demi-vie du potassium 40 est $t_{1/2} = 1,26 \times 10^9$ ans. 1 u = $1,66 \times 10^{-27}$ kg = 931,5 MeV/c²; 1 MeV = $1,60 \times 10^{-13}$ J. masse des noyaux : Ar-40 : 39,952509 u ; K-40 : 39,953576 u ; Ca-40 : 39,951619 u; masse d'un électron : $m_e = 5,486 \times 10^{-4}$ u

II- [8 pts] Excitateur et oscillations forcées

On dispose d'un oscillateur élastique horizontal constitué d'un ressort, de raideur k = 29,24 N/m et de masse négligeable, attaché à un solide (S), de masse m = 150 g et de centre d'inertie G, qui peut glisser sur une tige horizontale. Un excitateur (E), attaché à l'extrémité libre P du ressort, permet de faire vibrer cette extrémité.(Fig.1)

A- Étude de l'excitateur électrique (E)

La fréquence de cet excitateur (E) peut être convenablement réglée. Les oscillations électriques peuvent être obtenues à l'aide du dispositif de la figure 2, où C = 3,0 mF et L est de valeur réglable.

- 1. À l'instant $t_0 = 0$ s, le condensateur (C) est chargé de Q_0 et on ferme l'interrupteur K. On peut, à l'aide d'un dispositif convenable, visualiser $u_C = u_{BM}$ et obtenir la courbe de la figure 3.
- a) Établir l'équation différentielle du second ordre en u_C.
- b) Calculer les énergies emmagasinées par (C) aux instants $t_0 = 0$ s et $t_1 = 0.3$ s.
- 2. Afin d'entretenir les oscillations, on ajoute, entre A et N un générateur D.
- a) Montrer que la tension u_{AN} vaut $u_{AN} = -ri$.
- b) Quelle valeur a-t-on alors donné à L?
- c) Déterminer, à partir des calculs précédents, la puissance moyenne fournie par D.

4 0 0,3\ 0,6\ 0,9\ -4 Fig.3

B) Étude de l'oscillateur

On met l'excitateur en marche à un instant pris comme instant initial $(t_0=0)$. À une date t, l'abscisse de G par rapport à sa position d'équilibre est x et sa vitesse est $\vec{v}=v\vec{i}$. Au cours des oscillations, (S) est supposé soumis à une force de frottement **faible** $\vec{f}=-h\,\vec{v}$, avec h=0.92 kg/s, à la tension du ressort $\vec{F}'=-kx\,\vec{i}$ et l'oscillateur subit la force \vec{F} exercée par l'excitateur : $\vec{F}=[F_0\sin(\omega'\,t)]\,\vec{i}$ avec $F_0=1.46$ N.

- 1. Montrer que l'équation différentielle du second ordre en x s'écrit : $\frac{d^2x}{dt^2} + \frac{h}{m} \frac{dx}{dt} + \frac{k}{m} x = \frac{F_0}{m} \sin(\omega t)$
- 2. Au bout d'un certain temps, les oscillations deviennent sinusoïdales. La solution de cette équation est de la forme $x = A \sin(\omega t + \phi)$. La fréquence de l'excitateur est réglée de telle sorte que l'amplitude X_m des oscillations soit maximale. Déterminer,
 - a) la valeur approchée de la pulsation ω'.
 - b) l'amplitude A et le déphasage φ.

III- [8 pts] Oscillations

A- Oscillations électriques

Le circuit de la figure ci-contre est alimenté par un générateur de tension constante E=6 V; C=1 μF et R est de valeur réglable. Chacun des deux commutateurs K_1 et K_2 a deux positions possibles 0 et 1. Considérer $u_R=u_{AB}$, la tension aux bornes du conducteur ohmique, et $u_C=u_{BM}$, la tension aux bornes du condensateur.

À $t_0 = 0$, le condensateur est initialement déchargé. Chacun des deux commutateurs K_1 et K_2 est à la position (0), et $u_{AM} = + E$.

- 1. Établir l'équation différentielle vérifiée par uc.
- 2. $u_C = A(1 e^{-\frac{t}{\tau}})$ est une solution de l'équation différentielle ci-dessus. Déterminer les expressions des constantes A et τ .
- 3. Déterminer, en fonction de R, l'instant t_1 pour lequel $u_C = +3$ V.
- 4. Lorsque la tension $u_C = u_{BM}$ atteint la valeur $u_C = +3$ V, un dispositif bascule les deux commutateurs aux positions (1) afin d'avoir $u_{AM} = -E$.
 - a) En considérant $t_0 = 0$, l'instant de passage des commutateurs en position (1), montrer que :

$$u_C = -E + (E + 3) e^{-\frac{t}{\tau}}$$
.

- b) À l'instant t_2 , la tension u_C prend la valeur $u_C = -3$ V. Déterminer t_2 en fonction de R.
- 5. Le dispositif ramène les commutateurs dans la position (0) lorsque u_C prend la valeur -3 V. Calculer R, sachant que $t_1 + t_2 = 0,60$ s.

B- Oscillations mécaniques

On dispose d'une tige AB de masse négligeable pouvant tourner autour d'un axe horizontal (Δ) passant par O et de deux particules, l'une de masse M = 25,0 g fixée en B (OB = d = 32,6 mm) et l'autre de masse m = 6,0 g, placée en C, qui peut coulisser le long de OA (OC = x). Cet ensemble constitue un pendule (P) de centre d'inertie G et de moment d'inertie I par rapport à (Δ). En O est fixé un ressort spiral de masse négligeable et de raideur $k = 2,0 \times 10^{-3}$ N/m. Lorsque l'abscisse angulaire de (P), par rapport à la verticale, est θ , ce ressort est déformé de θ et il emmagasine une énergie potentielle élastique $E_{pe} = 1/2$ k θ ².

On fait tourner (P) d'un angle faible et on l'abandonne sans vitesse à la date $t_0 = 0$. À une date t,

l'abscisse angulaire de (P) est θ et sa vitesse angulaire est $\dot{\theta} = \frac{d\theta}{dt}$. (g = 9,80 m/s²).

Le plan horizontal passant par O est le niveau de référence de l'énergie potentielle de pesanteur.

- 1. Montrer que (M + m) a = Md mx, où a = OG et que $I = mx^2 + Md^2$.
- 2. a) Montrer, en négligeant les forces de frottement, que l'équation différentielle du second ordre en θ

s'écrit :
$$\ddot{\theta} + \frac{k + (Md - mx)g}{mx^2 + Md^2}\theta = 0$$
. (Prendre $\sin\theta = \theta$ et $\cos\theta = 1 - \frac{1}{2}\theta^2$ pour θ faible en radian).

- b) i) Déterminer la condition qui doit être remplie par x, pour obtenir des oscillations harmoniques.
 - ii) Cette condition étant remplie, déterminer l'expression de la période propre T₀ de ces oscillations.
- iii) Calculer x pour $T_0 = 0,60$ s.
- 3. En réalité, les forces de frottement ne sont pas négligeables. Le moment de ces forces par rapport à (Δ) est $\Gamma = -\mu \dot{\theta}$, où μ est une constante positive.
- a) Déterminer, à la date t, la puissance due à ces forces de frottement.
- b) En déduire l'équation différentielle du second ordre en θ qui décrit ces oscillations pseudopériodiques.
- c) La solution de cette équation différentielle est : $\theta = 0.211e^{-(\mu/2I)t}\cos(10.42t 0.10)$. Déterminer μ sachant qu'au bout de 10 oscillations, l'amplitude des oscillations devient 60% de sa valeur initiale.

Concours d'entrée 2011-2012

Solution de Physique

Durée: 2 h 3 Juillet 2011

I- Datation des roches par la méthode potassium - argon

1- D	atation des roches par la methode potassium - argon	
Q		Note
1.	$^{40}_{19}\text{K} \longrightarrow ^{40}_{20}\text{Ca} + ^{a}_{z}\text{p}$. D'après les de conservation du nombre de charge et du nombre de masse:	11/2
	$A = 0 \text{ et } z = -1 \implies {}^{40}_{19} K \longrightarrow {}^{40}_{20} Ca + {}^{0}_{-1} e + {}^{0}_{0} \overline{v}$	
	$^{40}_{19}\text{K} + ^{0}_{-1}\text{e} \longrightarrow ^{40}_{18}\text{Ar} + \gamma + \text{R.X.}$	
2.	Elle ressemble à la désintégration β ⁺ car, dans le noyau, un proton se transforme en un neutron.	3/4
3.	Le défaut de masse : $\Delta m = m({}_{19}^{40}\text{K}) - m({}_{20}^{40}\text{Ca}) - m({}_{-1}^{0}\text{e})$;	3
	$\Delta m = 39,953576 - 39,951619 - 5,486 \times 10^{-4} = 1,408 \times 10^{-3} \text{ u}$;	
	l'énergie libérée : $\Delta m \times c^2 = 1,408 \times 10^{-3} \times 931,5 = 1,31 \text{ MeV}.$	
	$E_C(\beta^-) = \Delta m \times c^2 + E_C(K) - E_C(Ca) - E({}_0^0 \overline{v}); E_C(\beta^-) \text{ est maximale Pour } E({}_0^0 \overline{v}) = 0, E_C(K) = 0 \text{ et}$	
	$E_C(Ca) = 0 \text{ Ainsi } : E_C(\beta^-)_{max} = \Delta m \times c^2 = 1,31 \text{ MeV}.$	
4.	le défaut de masse : $\Delta m = m\binom{40}{19} K + m\binom{0}{-1} e - m\binom{40}{18} Ar$;	21/4
	$\Delta m = 39,953576 + 5,486 \times 10^{-4} - 39,952509 = 1,616 \times 10^{-3} \text{ u}$; l'énergie libérée : $\Delta m \times c^2 = 1,616 \times 10^{-1}$	
	3 ×931,5 = 1,505 MeV.	
5.	Masse du potassium 40 qui s'est transformée en argon = masse de l'argon = 0,0218 mg qui	21/4
	représente 10,7% de la masse m' du potassium qui s'est désintégré.	
	Ainsi m' = $0.0218 \frac{100}{10.7} = 0.2037 \text{ mg}$	
	10,1	21/
6.	La masse totale initiale du potassium 40 à la date de l'éruption est alors : $m_0 = 0.2037 + 1.4900 = 1.6027$	21/4
	1,6937 mg On sait que $m = m_0 e^{-\lambda t} \ln(m/m_0) = -\lambda t \Rightarrow -0,12814 = -\lambda t \Rightarrow -0,12814 = -0,693t/t_{1/2}$	
	On sait que in = $\frac{1}{100}$ in $\frac{1}{100}$ in $\frac{1}{100}$ ans $\frac{1}{100}$ = $\frac{1}{100}$ in $$	
	$-7 \cdot 1 - 0,1077 \cdot 1/2 - 2,55 \land 10$ dis	12
		12

II- A) Étude de l'excitateur

Q		Note
1.a	$u_{BM} = u_{BN} \Rightarrow u_C = L\frac{di}{dt} + ri$, mais $i = -\frac{dq}{dt} = -C\frac{du_C}{dt}$ et $\frac{di}{dt} = -C\frac{d^2u_C}{dt_2}$	3
	Et $u_C = -LC \frac{d^2 u_C}{dt_2} - rC \frac{du_C}{dt} \Rightarrow l'équation différentielle : \frac{d^2 u_C}{dt_2} + \frac{r}{L} \frac{du_C}{dt} + \frac{1}{LC} u_C = 0$	
1.b	Les énergies emmagasinées par le condensateur : ½ Cu ² _C	3
	$E(t_0) = \frac{1}{2} 3 \times 10^{-3} \times 16 = 24 \times 10^{-5} J$	
	et $E(t_1) = \frac{1}{2} 3 \times 10^{-3} \times 2,7^2 = 10,94 \times 10^{-5} J$	

2.a	D'après la loi d'additivité des tensions : $u_{BM} = u_{BA} + u_{AN} \Rightarrow u_C = -L C \frac{d^2 u_C}{dt^2} + ri + u_{AN} = 0$	21/4
	Ainsi, pour entretenir les oscillations, il faut que ri + $u_{AN} = 0 \Rightarrow u_{AN} = -ri$.	
2.b	Amortissement faible : $T \approx T_0 = 2\pi \sqrt{LC}$; $\left(\frac{0.3}{2\pi}\right)^2 = L \times 3 \times 10^{-3} \Rightarrow L = 0.76 \text{ H}.$	3
2.c	La puissance moyenne fournie par D doit compenser la puissance dissipée dans le circuit : $P_m = \frac{\Delta E}{\Delta t} \qquad P_m = (24 \times 10^{-3} - 10.94 \times 10^{-3})/0.3 = 4.35 \times 10^{-2} \ \mathrm{W}.$	21/4
		131/2

II- B) Étude de l'oscillateur

II- B) Étude de l'oscillateur		
Q		Note
1.	$\begin{split} \text{D'après la deuxième loi de Newton} : & \sum \vec{F} = \frac{d\vec{P}}{dt} : \frac{m d\vec{v}}{dt} = -kx \vec{i} - h \vec{v} + \vec{F} \sin(\omega' t) \vec{i} + m \vec{g} + \vec{R} , \text{par} \\ \text{projection} : & \frac{d^2 x}{dt^2} + \frac{h}{m} \frac{dx}{dt} + \frac{k}{m} x = \frac{F_0}{m} \sin(\omega' t) \\ \text{Ou } E_m &= \frac{1}{2} m v^2 + \frac{1}{2} k x^2 ; P = \frac{dE_m}{dt} = \vec{F} \cdot \vec{v} + \vec{f} \cdot \vec{v} ; m v \frac{dv}{dt} + k x \frac{dx}{dt} = F_0 v \sin\omega' t - h v^2 \\ & \Rightarrow \frac{d^2 x}{dt^2} + \frac{h}{m} \frac{dx}{dt} + \frac{k}{m} x = \frac{F_0}{m} \sin(\omega' t) \end{split}$	41/2
2.a	amplitude maximale, donc on est à la résonance d'amplitude	21/4
	$\omega' = \omega \approx \omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{29,24}{0,15}} = 13,96 \text{ rad/s}.$	
2.b	$\begin{split} \frac{dx}{dt} &= A\omega cos(\omega t + \phi) \text{ et } \frac{d^2x}{dt^2} = -A\omega^2 sin(\omega t + \phi), \text{ en remplaçant dans l'équation différentielle}: \\ -A\omega^2 sin(\omega t + \phi) &+ \frac{h}{m} A\omega cos(\omega t + \phi) + \frac{k}{m} Asin(\omega t + \phi) = \\ \frac{F_0}{m} sin(\omega t), \text{ mais } -A\omega^2 sin(\omega t + \phi) + \frac{k}{m} Asin(\omega t + \phi) = 0 \text{ car } \omega^2 = \frac{k}{m}. \\ Ainsi &\frac{h}{m} A\omega cos(\omega t + \phi) = \frac{F_0}{m} sin(\omega t) \\ \text{Cette relation est valable pour toute valeur de t:} \\ \text{l'amplitude } A &= \frac{F_0}{h\omega} = \frac{1,46}{0,92 \times 13,96} = 0,113 \text{ m} = 11,3 \text{ cm et le déphasage } \phi \text{ doit être } -\frac{\pi}{2} \text{ rad.} \end{split}$	33/4
		101/2

III- A Oscillations électriques

_		
Q		Note
1.	D'après la loi d'additivité des tensions: $u_{AM} = u_{AB} + u_{BM}$;	21/4
	$E = Ri + u_C; i = \frac{dq}{dt} = C\frac{du_C}{dt}; E = RC\frac{du_C}{dt} + u_C \Rightarrow \frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{E}{RC}.$	
2.	$\frac{du_C}{dt} = \frac{1}{\tau} A e^{-\frac{t}{\tau}} : \frac{1}{\tau} A e^{-\frac{t}{\tau}} + \frac{1}{RC} A (1 - e^{-\frac{t}{\tau}}) = \frac{E}{RC} \Rightarrow A = E \text{ et } \tau = RC.$	21/4
3.	$3 = 6(1 - e^{-\frac{t_1}{RC}}) \Rightarrow -\frac{t_1}{RC} = -0.693 \Rightarrow t_1 = 6.93 \times 10^{-7} \text{ R}.$	1½
	NC .	

4.a	D'après la loi d'additivité des tensions: $u_{AM} = u_{AB} + u_{BM}$; - $E = RC \frac{du_C}{dt} + u_C$;	3
	L'équation différentielle devient: $u_C = a + be^{\alpha t}$; $\frac{du_C}{dt} = \alpha be^{\alpha t}$; $\alpha be^{\alpha t} + \frac{a}{RC} + \frac{be^{\alpha t}}{RC} = -\frac{E}{RC}$ $\Rightarrow a = -E$; et $\alpha = -\frac{1}{RC}$; $t_0 = 0 \Rightarrow u_{C0} = 3$ V = $-E + b \Rightarrow b = E + 3 \Rightarrow u_C = -E + (E + 3)$ $e^{-\frac{t}{\tau}}$	
4.b	$-3 = -6 + (6+3) e^{-\frac{t_2}{RC}} \Rightarrow \frac{1}{3} = e^{-\frac{t_2}{RC}} \Rightarrow 1,099 = \frac{t_2}{RC} \Rightarrow t_2 = 1,099 \times 10^{-6} \text{ R}.$	11/2
5	$6.93 \times 10^{-7} \text{ R} + 1.099 \times 10^{-6} \text{ R} = 0.60 \text{ s} \Rightarrow \text{R} = 3.35 \times 10^{5} \Omega$	3/4
		111/4

III- B- Oscillations mécaniques

Q	Oscillations mécaniques	Note
1.		11/2
1.	Formule barycentrique : Montrer que $(M + m) OG = M OB + m OC$, Par projection :	172
	$(M + m)OG = Md - mx \Rightarrow (M + m)a = Md - mx$; et $I = mx^2 + Md^2$ car m et M sont des particules et	
	la tige de masse négligeable	
_		
2.a	L'énergie mécanique du système [(P), ressort, Terre] : $E_m = E_C + E_{P\acute{e}} + E_{Pg}$;	3
	$E_{Pg} = -(M+m)OG\cos\theta; \Rightarrow E_m = \frac{1}{2}(mx^2 + Md^2)\dot{\theta}^2 + \frac{1}{2}k\theta^2 - (M+m)g \ a \cos\theta.$	
	$\frac{dE_{m}}{dt} = 0, \frac{1}{2}(mx^{2} + Md^{2})2\dot{\theta}\ddot{\theta} + \frac{1}{2}k2\dot{\theta}\theta + (M+m)g a \dot{\theta}\sin\theta = 0. \text{ Avec } \dot{\theta} \neq 0, \text{ on obtient :}$	
	$(mx^2 + Md^2)\ddot{\theta} + k\theta + (M+m) g a \theta = 0. \Rightarrow \ddot{\theta} + \frac{k + (Md - mx)g}{mx^2 + Md^2}\theta = 0.$	
2.b.i	Il faut que $\frac{k + (Md - mx)g}{mx^2 + Md^2} > 0 \Rightarrow k + (Md - mx)g > 0 \Rightarrow mx < k/g + Md$	11/2
	\Rightarrow x < $(2 \times 10^{-3} / 9.8 + 25 \times 10^{-3} \times 32.6 \times 10^{-3}) / 6 \times 10^{-3} \Rightarrow$ x < 0.17 m	
2.b.ii		3/4
	L'expression de la période propre $T_0 = 2\pi \sqrt{\frac{mx^2 + Md^2}{k + (Md - mx)g}}$.	
2.b.iii	$(0.6)^2$ $6 \times 10^{-3} \text{ s}^2 + 25 \times 10^{-3} \cdot 32.6^2 \times 10^{-6}$	21/4
	Calculer x pour $T_0 = 0.60 \text{ s} \Rightarrow \left(\frac{0.6}{2\pi}\right)^2 = \frac{6 \times 10^{-3} \text{ x}^2 + 25 \times 10^{-3} \cdot 32.6^2 \times 10^{-6}}{2 \times 10^{-3} + (25 \times 10^{-3} \times 32.6 \times 10^{-3} - 6 \times 10^{-3} \text{ x})9.8}$	a.
	$9.12 \times 10^{-3} \left[2 + (0.815 - 6x)9.8\right] \times 10^{-3} = 6x^2 + 0.02657 \times 10^{-3}$	
	$9,12 \times 10^{-3} [2+7.987-58.8x] = 6x^2 +0.02657 \Rightarrow 0.09107-0.536x = 6x^2 +26.57 \Rightarrow 6x^2 +0.536x$	
	0,0645=0	
	\Rightarrow x ₁ = 0,0682 m = 6,82 cm et x ₂ = -0,157 à rejeter.	_
3.a	La puissance due à ces forces de frottement : $\mathbf{P} = \Gamma \dot{\theta} = -\mu \dot{\theta}^2$.	3/4
3.b	L'équation différentielle : $\frac{dE_m}{dt} = -\mu \dot{\theta}^2$; $(mx^2 + Md^2) \dot{\theta} \ddot{\theta} + k \dot{\theta} \theta + (M + m) g a \dot{\theta} \theta = -\mu \dot{\theta}^2$.	11/2
	$(mx^2 + Md^2) \ddot{\theta} + \mu \dot{\theta} + [k + (Md - mx)] g \theta = 0.$	
3.c	$\theta_{\text{max}}(10\text{T})/\theta_{\text{max}}(0) = e^{-(\mu/2\text{I})10\text{T}} \Rightarrow 0.6 = e^{-5\mu\text{T/I}}$	11/2
	$\Rightarrow -0.51 = -5 \mu \text{T/I}; \text{T} = 0.6 \text{ s et I} = 25 \times 10^{-3} \times 3.26^{2} \times 10^{-4} + 6 \times 10^{-3} \times 6.8^{2} \times 10^{-4} = 0.543 \times 10^{-4} \text{ kg} \cdot \text{m}^{2}.$	
	$\mu = 0.51 \times 0.543 \times 10^{-4} / (5 \times 0.6) = 9.23 \times 10^{-6} \text{ mN/s}.$	
		123/4
		12