Hawking Radiation as Seen by Observers

Bachelor thesis

Friedrich Hübner Universität Bonn

8. August 2018

- QFT in curved spacetime
 - Scalar field
 - Unruh detector
 - Minkowski space
- Static spacetime
 - Properties of the Wightman function
 - Observers
 - Static observer
 - General observer
 - Thermal

Massless scalar field in curved spacetime

- Spacetime metric: $g_{\mu\nu}$
- Lagrangian: $\mathcal{L} = -\frac{1}{2} \sqrt{|g|} g^{\mu \nu} \partial_{\mu} \phi \, \partial_{\nu} \phi$
- Klein-Gordon equation: $\nabla_{\mu}\nabla^{\mu}\phi=\frac{1}{\sqrt{|g|}}\partial_{\mu}\Big(\sqrt{|g|}g^{\mu\nu}\partial_{\nu}\phi\Big)=0$
- Scalar product: $(\phi|\psi) := i \int_{\Sigma} dS^{\mu} \, \phi^* \nabla_{\mu} \psi \psi \nabla_{\mu} \phi^*$
- ullet Orthonormal basis: $(u_i|u_j)=\delta_{ij},\;(u_i|u_j^*)=0,\;(u_i^*|u_j^*)=-\delta_{ij}$
- Quantisation: $\phi(\mathbf{x}) = \sum_i u_i a_i + u_i^* a_i^{\dagger}$

State of the QFT

- Vacuum: $a_i |0\rangle = 0$
- Problem: $u_i \rightarrow v_j, a_i \rightarrow b_j$: $b_i |0\rangle \neq 0$
 - → Need to guess state!
- Static spacetime: choose vacuum w.r.t. positive frequency modes: $u_i \sim e^{-i\omega t}$
- What does an observer see?

Greens functions

Vacuum:

- Wightman function $D^+(\mathbf{x}, \mathbf{x}') := \langle 0 | \phi(\mathbf{x}) \phi(\mathbf{x}') | 0 \rangle$
- $iD(\mathbf{x}, \mathbf{x}') := [\phi(\mathbf{x}), \phi(\mathbf{x}')] = 2i \operatorname{Im} D^{+}(\mathbf{x}, \mathbf{x}')$
- $D^{(1)}(\mathbf{x}, \mathbf{x}') := \langle 0 | \{ \phi(\mathbf{x}), \phi(\mathbf{x}') \} | 0 \rangle = 2 \operatorname{Re} D^{+}(\mathbf{x}, \mathbf{x}')$

Thermal:

- replace $\langle 0| \dots |0 \rangle$ by $\frac{1}{7} \operatorname{Tr} e^{-\beta H} \dots$
- D is c-number: $D_{\beta} = \overline{D}$
- $D_{\beta}^{(1)}(t, \vec{x}; t', \vec{x}') = \sum_{n} D^{(1)}(t i\beta n, \vec{x}; t', \vec{x}')$

Unruh detector

- Detector model: $c \cdot m(\tau)\phi(\mathbf{x}(\tau))$, $c \ll 1$
- Transition amplitude: $Q_{|0,0\rangle \to |E,\psi\rangle}(\tau) \sim \int_{-\infty}^{\tau} e^{iE\tau'} \langle \psi | \phi(\mathbf{x}(\tau')) | 0 \rangle d\tau'$
- Transition rate: $\frac{\mathrm{d}F_E}{\mathrm{d}\tau} = 2\mathrm{Re}\,\int_{-\infty}^0 \mathrm{d}\tau'\,e^{-iE\tau'}D^+(\mathbf{x}(\tau+\tau'),\mathbf{x}(\tau))$
- For constant rate: $\frac{\mathrm{d}F_E}{\mathrm{d}\tau} = \int_{-\infty}^{\infty} \mathrm{d}\tau \, e^{-iE\tau} D^+(\mathbf{x}(\tau),\mathbf{x}(0))$
- Interpretation: F_E is particle population for observer

Minkowski space

- Wightman function: $D^+(\mathbf{x},\mathbf{x}')=-rac{1}{4\pi^2}rac{1}{(t-t'-iarepsilon)^2-|ec{\mathbf{x}}-ec{\mathbf{x}'}|^2}$
- Static observer: $t(\tau) = \tau, \vec{x}(\tau) = const$
 - $D^+(\mathbf{x}(\tau), \mathbf{x}(0)) = -\frac{1}{4\pi^2} \frac{1}{(\tau i\varepsilon)^2}$
 - Fourier transform: $\frac{\mathrm{d}F_E}{\mathrm{d}\tau}=0$
 - → Inertial observer: vacuum contains no particles

image

Unruh effect

- Accelerating observer: $t(\tau) = 1/\alpha \sinh \alpha \tau$, $x(\tau) = 1/\alpha \cosh \alpha \tau$
 - $\bullet \ D^+(\mathbf{x}(\tau),\mathbf{x}(\tau')) = -\tfrac{\alpha^2}{16\pi^2} \tfrac{1}{\sinh^2 \frac{\alpha(\tau-\tau')}{2}}$
- Thermal state: $D_{\beta}^{+}(\mathbf{x},\mathbf{x}')=-rac{1}{4eta^{2}}rac{1}{\sinh^{2}\left(rac{\pi}{eta}\sqrt{(t-t'-iarepsilon)^{2}-|ec{x}-ec{x'}|^{2}}
 ight)}$
 - Static observer: $D^+_{eta}(\mathbf{x}(au),\mathbf{x}(au')) = -rac{1}{4eta^2}rac{1}{\sinh^2\left(rac{\pi}{eta}(au- au')
 ight)}$
- Set $\beta = 2\pi/\alpha$
- Accelerating observer: vacuum is a thermal state

Static spactimes

- Metric: $ds^2 = -\beta(\vec{x}) dt^2 + g_{ij}(\vec{x}) dx^i dx^j$
- Positive frequency solutions: $u_i(t, \vec{x}) = \frac{1}{\sqrt{2\omega_i}} e^{-i\omega_i t} A_i(\vec{x})$
- State of QFT vacuum: $a_i |0\rangle = 0$
- Normal coordinates $(a = \beta(0))$:

$$D^{+}(\mathbf{x},0) = -\frac{1}{4\pi^2} \frac{1}{a(t-i\varepsilon)^2 - |\vec{x}|^2} + \mathcal{O}(x^2)$$

Pole at $\mathbf{x} = \mathbf{x}'$

- Consider trajectory $\mathbf{x}(\tau)$, $\mathbf{x}(0) = 0$
- D^+ has second order pole at au=0: $\frac{1}{a(t(au)-iarepsilon)^2-|ec{\kappa}(au)|^2}$
- ε shift pole to upper half:
 - $a(t(\tau_{\varepsilon}) i\varepsilon)^2 |\vec{x}(\tau_{\varepsilon})|^2 = 0$
 - $\delta \tau = \frac{\mathrm{d} \tau_{\varepsilon}}{\mathrm{d} \varepsilon} \Big|_{\varepsilon=0} = iat(0) \pm \sqrt{-a^2 t(0)^2 + 1}$ $\rightarrow \delta \tau$ has positive imaginary part
- Only poles in the lower half contribute
 - \rightarrow drop pole at $\tau = 0$

Other singularities of D^+

- $D^{+}(\mathbf{x}, \mathbf{x}') = \langle 0 | \phi(\mathbf{x}) \phi(\mathbf{x}') | 0 \rangle$ satisfies $\nabla_{\mu} \nabla^{\mu} D^{+}(\mathbf{x}, \mathbf{x}') = 0$
- Define $A=1/D^+ \Rightarrow A\nabla_{\mu}\nabla^{\mu}A=2\nabla_{\mu}A\nabla^{\mu}A$
- $D^+ = \infty \Rightarrow A = 0 \Rightarrow \nabla_{\mu} A \nabla^{\mu} A = 0$ $\rightarrow D^+ = \infty$ is a lightlike hypersurface
- \bullet D^+ is singular on the lightcone
- Assume no more singularities

image

- → no singularities on timelike trajectories
- $D = [\phi(\mathbf{x}), \phi(\mathbf{x'})]$ is only non zero on lightcone
 - $\rightarrow D^+$ is real for all trajectories

Static observers

Lemma:

box

In a static spacetime a static observer does not observe any particles

$$\bullet \ t(\tau) = \tfrac{\tau}{\sqrt{\mathsf{a}}}$$

•
$$u_i = \frac{1}{\sqrt{2\omega_i}}e^{-i\omega_i t}A_i(\vec{x})$$

•
$$D^+(\mathbf{x}(\tau),\mathbf{x}(0)) = \sum_i \frac{1}{2\omega_i} e^{-i\omega_i \tau/\sqrt{a}} A_i(\vec{x}_0) A_i^*(\vec{x}_0)$$

$$\begin{split} \frac{\mathrm{d}F_E}{\mathrm{d}\tau} &= \sum_i \frac{1}{2\omega_i} A_i(\vec{x}_0) A_i^*(\vec{x}_0) \bigg(\int_{-\infty}^{\infty} \mathrm{d}\tau \, \mathrm{e}^{-iE\tau} \mathrm{e}^{-i\omega\tau/\sqrt{a}} \bigg) \\ &= \sum_i \frac{1}{2\omega_i} A_i(\vec{x}_0) A_i^*(\vec{x}_0) \delta \big(E + \omega/\sqrt{a} \big) = 0 \end{split}$$

General observers

Transition rate not constant:

$$\frac{\mathrm{d} F_E}{\mathrm{d} \tau} = 2 \mathrm{Re} \, \int_{-\infty}^0 \mathrm{d} \tau' \, e^{-i E \tau'} D^+ (\mathbf{x}(\tau + \tau'), \mathbf{x}(\tau))$$

- → can not use residuum theorem
- How to handle pole at $\tau' = 0$?
- ullet Expansion: $D^+(\mathbf{x}(au'),0)=-rac{1}{4\pi^2 au'^2}+W(au')$
- $\frac{1}{\tau'^2}$ term does not contribute
- $W(\tau')$ is non singular

Thermal case

Thermal Wightman function:

$$\begin{split} D_{\beta}^{+}(t(\tau'), \vec{x}(\tau'); 0) &= \sum_{n = -\infty}^{\infty} D^{+}(t(\tau') - i\beta n, \vec{x}(\tau'); 0) \\ &= \sum_{n = -\infty}^{\infty} -\frac{1}{4\pi^{2}(\tau' - i\beta\sqrt{a}n)^{2}} + \sum_{n = -\infty}^{\infty} W(\tau'(t - i\beta n); 0) \\ &= -\frac{1}{4\beta^{2}a} \frac{1}{\sinh^{2}(\frac{\pi}{\beta\sqrt{a}}\tau')} + W_{\beta}(\tau') \end{split}$$

- Static observers: $T = \frac{T_0}{\sqrt{a}}$ (Tolman effect)
- General: Corrections from $W_{\beta}(\tau')$
 - shift temperature?
 - non thermal?

Quellen

- C. S. Wu u. a. 'Experimental Test of Parity Conservation in Beta Decay'. In: Phys. Rev. 105 (4 1957), S. 1413-1415.
 doi:10.1103/PhysRev.105.1413.
 url:https://link.aps.org/doi/10.1103/PhysRev.105.1413.
- ccreweb.org/documents/parity/parity.html
- www.spektrum.de/lexikon/physik/paritaet/10923
- www.physi.uni-heidelberg.de/~menzemer/ KeyexperimentsWS1415/lamparth.pdf
- www.weltderphysik.de/gebiet/teilchen/news/2012/verletzung-derzeitsymmetrie-beobachtet/

Hawking Radiation as Seen by Observers

Bachelor thesis

Friedrich Hübner Universität Bonn

8. August 2018