Mathematical concepts for computer science

Mathematical concepts for computer science

Course Description

- This course introduces the **study of mathematical structures** that are fundamentally discrete in nature.
- It introduces linear algebra, graph theory and probability.
- The course is intended to cover the main aspects which are useful in **studying**, **describing and modeling** of objects and problems in the context of **computer algorithms and programming languages**.

- Logic is the systematic study of the form of valid inference, and the most general laws of truth.
- The logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system.

Therefore B

- Mathematical logic is a subfield of mathematics exploring the applications of formal logic to mathematics.
- The rules of logic specify the meaning of mathematical statements.
- Eg: "For every positive integer n, the sum of the positive integers not exceeding n is n(n+1)/2"

 Logic is the basis of all mathematical reasoning, and of all automated reasoning.

Applications

- Design of computing machines
- Specification of the systems
- Artificial intelligence
- Computer programming etc...

- What makes up a correct mathematical argument- Proof.
- Once we proved mathematical statement is true-Theorem.

- A Theorem is a major result
- A Corollary is a theorem that follows on from another theorem

 A Lemma is a small result (less important than a theorem)

Theorem

If m and n are any two whole numbers and

$$a = m^2 - n^2$$

$$b = 2mn$$

$$c = m^2 + n^2$$

then
$$a^2 + b^2 = c^2$$

Proof:

Theorem

If m and n are any two whole numbers and

$$a = m^{2} - n^{2}$$

 $b = 2mn$
 $c = m^{2} + n^{2}$
then $a^{2} + b^{2} = c^{2}$

Proof:

•
$$\mathbf{a^2 + b^2} = (m^2 - n^2)^2 + (2mn)^2$$

= $m^4 - 2m^2n^2 + n^4 + 4m^2n^2$
= $m^4 + 2m^2n^2 + n^4$
= $(m^2 + n^2)^2 = \mathbf{c^2}$

Corollary

a, b and c, as defined above, are a Pythagorean Triple

Proof:

From the Theorem $\mathbf{a^2 + b^2 = c^2}$, so a, b and c are a Pythagorean Triple

Lemma

If m = 2 and n = 1, then we get the Pythagorean triple 3, 4 and 5

Proof:

If m = 2 and n = 1, then

$$a = 2^2 - 1^2 = 4 - 1 = 3$$

$$b = 2 \times 2 \times 1 = 4$$

$$c = 2^2 + 1^2 = 4 + 1 = 5$$

Small result.

Propositions

A **proposition** is a declarative sentence (ie. A sentence that declares a fact) that is **either true or false**, but not both.

Declarative sentences are simply statements that relay information.

A **declarative sentence** states the facts or an opinion and lets the reader know something specific.

- Washington, D.C., is the capital of the United States of America.
 (True)
- Toronto is the capital of Canada. (False)
- 1 + 1 = 2. (True)
- 2 + 2 = 3. (False)

Propositions

Whether the following sentences are propositions?

- What time is it?
- Read this carefully.
- x + 1 = 2.
- x + y = z.

Propositions

Whether the following sentences are propositions?

Not declarative sentences

- What time is it?
- Read this carefully.

Neither true nor false

- x + 1 = 2.
- x + y = z.

Propositional variables

Propositional variables (or statement variables)

- Variables that represent propositions, just as letters are used to denote numerical variables.
- Conventional letters used for propositional variables are p, q,
 r, s,
- The **truth value** of a proposition is true, denoted by **T**, if it is a true proposition, and the truth value of a proposition is false, denoted by **F**, if it is a false proposition.

Propositional calculus or propositional logic

Propositional calculus

- The area of logic that deals with propositions is called the propositional calculus or propositional logic.
- It was first developed systematically by the Greek philosopher **Aristotle** more than 2300 years ago.

Compound propositions

Compound propositions

 New propositions, called compound propositions, are formed from existing propositions using logical operators.

 $p \Lambda q$

Negation of the proposition

DEFINITION

Let p be a proposition. The negation of p, denoted by ¬p (also denoted by not p), is the statement

"It is not the case that p."

The proposition ¬p is read "not p."

The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

Negation of the proposition

Find the negation of the proposition

"Michael's PC runs Linux"

and express this in simple English.

Negation of the proposition

Find the negation of the proposition

"Michael's PC runs Linux"

and express this in simple English.

Solution:

The negation is

"It is not the case that Michael's PC runs Linux."

This negation can be more simply expressed as

"Michael's PC does not run Linux."

Conjunction

DEFINITION

Let **p** and **q** be propositions. The **conjunction of p and q**, denoted by **p** Λ **q**, is the proposition "**p and q**." The conjunction p Λ **q** is **true when both p and q are true** and is **false otherwise**.

Find the conjunction of the propositions p and q where p is the proposition "Rebecca's PC has more than 16 GB free hard disk space" and q is the proposition "The processor in Rebecca's PC runs faster than 1 GHz."

Conjunction

Find the conjunction of the propositions p and q where p is the proposition "Rebecca's PC has more than 16 GB free hard disk space" and q is the proposition "The processor in Rebecca's PC runs faster than 1 GHz."

Rebecca's PC has more than 16 GB free hard disk space, and its processor runs faster than 1 GHz.

Disjunction

DEFINITION

Let **p** and **q** be propositions. The **disjunction of p and q**, denoted by **p V q**, is the proposition "**p or q**." The disjunction **p V q is false** when **both p and q are false** and is **true otherwise**.

"Students who have taken calculus or computer science can take this class." - inclusive or.

"Students who have taken calculus or computer science, but not both, can enroll in this class." - exclusive or.

Truth table

A **truth table** is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus.

Truth table sets out the **functional values of logical expressions** on each of their functional arguments, that is, for each combination of values taken by their logical variables.

Truth table

TABLE 1 The Truth Table for the Negation of a Proposition.

p	$\neg p$	
T	F	
F	T	

TABLE 2 The Truth Table for the Conjunction of Two Propositions.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

TABLE 3 The Truth Table for the Disjunction of Two Propositions.

p	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

Exclusive or

DEFINITION

Let \mathbf{p} and \mathbf{q} be propositions. The exclusive or of \mathbf{p} and \mathbf{q} , denoted by $\mathbf{p} \oplus \mathbf{q}$, is the proposition that is true when exactly one of \mathbf{p} and \mathbf{q} is true and is false otherwise.

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.				
$p \qquad q \qquad p \oplus q$				
T	T T F			
T	T F T			
F	F T T			
F F F				

Conditional Statements (implication)

DEFINITION

Let **p** and **q** be propositions. The conditional statement $\mathbf{p} \rightarrow \mathbf{q}$ is the proposition "if **p**, then **q**." The conditional statement **p** \rightarrow **q** is false when **p** is true and **q** is false, and true otherwise.

In the conditional statement $p \rightarrow q$, p is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).

"If I am elected, then I will lower taxes."

the Conditional Statement $p \rightarrow q$.			
p	q	$p \rightarrow q$	
T	T	T	
T	F	F	
F	T	T	
F	F	T	

TABLE 5 The Truth Table for

Conditional Statements (implication)

if 2 + 2 = 4 then x := x + 1, if x = 0 before this statement is encountered?

Conditional Statements (implication)

if 2 + 2 = 4 then x := x + 1, if x = 0 before this statement is encountered?

Solution:

Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence, x has the value 0 + 1 = 1 after this statement is encountered.

- The proposition $\mathbf{q} \rightarrow \mathbf{p}$ is called the **converse** of $\mathbf{p} \rightarrow \mathbf{q}$.
- The **contrapositive** of $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$.
- The proposition $\neg p \rightarrow \neg q$ is called the **inverse** of $p \rightarrow q$.

Write the truth table of converse, contrapositive and inverse

- The proposition $\mathbf{q} \rightarrow \mathbf{p}$ is called the **converse** of $\mathbf{p} \rightarrow \mathbf{q}$.
- The **contrapositive** of $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$.
- The proposition $\neg p \rightarrow \neg q$ is called the **inverse** of $p \rightarrow q$.

Only the **contrapositive** always has the **same truth value** as $p \rightarrow q$.

When two compound propositions always have the same truth value we call them equivalent, so that a conditional statement and its contrapositive are equivalent.

 The converse and the inverse of a conditional statement are also equivalent

What are the contrapositive, the converse, and the inverse of the conditional statement

"The home team wins whenever it is raining?"

 $p \rightarrow q$:- "If it is raining, then the home team wins."

 $p \rightarrow q$:- "If it is raining, then the home team wins."

- Contrapositive (¬q →¬p) -"If the home team does not win, then it is not raining."
- Converse (p → q)-"If the home team wins, then it is raining."
- Inverse (¬p →¬q)-"If it is not raining, then the home team does not win."

BICONDITIONALS

Let **p** and **q** be propositions. The **biconditional** statement $\mathbf{p} \leftrightarrow \mathbf{q}$ is the proposition "**p** if and only if **q**." The biconditional statement $\mathbf{p} \leftrightarrow \mathbf{q}$ is true when **p** and **q** have the **same truth** values, and is **false otherwise**.

Biconditional statements are also called **bi-implications**.

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.				
$p \qquad q \qquad p \leftrightarrow q$				
T	T	T		
T F F				
F T F				
F F T				

BICONDITIONALS

Let **p** be the statement "You can take the flight," and let **q** be the statement "You buy a ticket." Then **p** ↔ **q** is the statement "You can take the flight if and only if you buy a ticket."

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.				
$p \qquad q \qquad p \leftrightarrow q$				
T T T				
T F F				
F T F				
F F T				

Truth Tables of Compound Propositions

Construct the truth table of the compound proposition $(p \lor \neg q) \rightarrow (p \land q)$.

Truth Tables of Compound Propositions

Construct the truth table of the compound proposition $(p \lor \neg q) \rightarrow (p \land q)$.

TABLE 7 The Truth Table of $(p \lor \neg q) \to (p \land q)$.								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
T	T	F T T T						
T	F	T	T F F					
F	T	F	F F T					
F	F F T F F							

Precedence of Logical Operators

Priority in importance

 $(p \land q \lor r)$ means?

 $p \lor q \rightarrow r \text{ means } ?$

TABLE 8 Precedence of Logical Operators.			
Operator Precedence			
¬ 1			
^ 2 ∨ 3			
→ 4 ↔ 5			

Precedence of Logical Operators

Priority in importance

 $(p \land q \lor r)$ means $(p \land q) \lor r$ $p \lor q \rightarrow r$ means $(p \lor q) \rightarrow r$

TABLE 8 Precedence of Logical Operators.			
Operator Precedence			
_	1		
^ 2 ∨ 3			
$\overset{\rightarrow}{\leftrightarrow}$	4 5		

Logic and Bit Operations

- A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one).
- A variable is called a **Boolean** variable if its value is either true or false.
- Boolean variable can be represented using a bit.

Computer bit operations correspond to the logical connectives.

Truth Value	Bit
T	1
F	0

AND, and XOR.				
x	у	$x \vee y$	$x \wedge y$	$x \oplus y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

1 Table for the Rit Operators OR

Bit string

- A bit string is a **sequence of zero or more bits**.
- The length of this string is the number of bits in the string.
 - 1 01010011 is a bit string of length nine
- Find the bitwise **OR**, bitwise **AND**, and bitwise **XOR** of the bit strings **01 1011 0110** and **11 0001 1101**.

Bit string

- A bit string is a sequence of zero or more bits.
- The length of this string is the number of bits in the string.
 - 1 01010011 is a bit string of length nine
- Find the bitwise **OR**, bitwise **AND**, and bitwise **XOR** of the bit strings **01 1011 0110** and **11 0001 1101**.

```
01 1011 0110

11 0001 1101

11 1011 1111 bitwise OR

01 0001 0100 bitwise AND

10 1010 1011 bitwise XOR
```

Reference

 Rosen, Kenneth H., and Kamala Krithivasan. Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw-Hill Education, 2016.