Pré-relatório da segunda prática

Constante de Planck

João Vítor Lima de Oliveira Guilherme Aranha

Instituto de Física de São Carlos Universidade de São Paulo

August 28, 2025

Sumário

- 1. Motivação
- 2. Objetivos
- 3. Metodologia
- 4. Resultados esperados

Motivação

Motivação

Quantização da energia

Figure: Max Planck

Fonte: Retirado da internet.

Em 1900, Max Planck utiliza a ideia de quantização da energia para resovler a Catástrofe Ultravioleta.

$$E = h\nu \tag{1}$$

Catástrofe Ultravioleta

Figure: Gráfico Iradiancia x Comprimento de Onda para um corpo negro.

Fonte: Retirado da internet.

Objetivos

Objetivos

Objetivos

- Entender o princípio de funcionamento de um LED (light emitting diode).
- Estimar a constante de Planck h a partir da tensão de limiar (V_{min}) para a qual um LED passa a emitir luz.
- Comparar o valor de *h* obtido com aquele estabelecido na literatura e discutir a respeito.

Metodologia

Metodologia

Caracterização dos LED

Figure: Curvas espectrais de um LED de estado sólido Azul e uma lampada incandescente.

Fonte: Retirado de [Song and Choi, 2019].

Usaremos um espectrômetro para medir o comprimento de onda λ emitido por cada LED.

Caracterização dos LED

Figure: Curvas $I \times V$ de LEDs de diferentes cores.

Fonte: Retirado da internet.

Aumentaremos a tensão em 0.10 V até encontrarmos a tensão, V_{min} necessária para fazer o LED emitir Luz no visivel.

Energia mínima para excítar elétrons da banda de Valência para a banda de condução E_g está associado ao potencial aplicado pela equação.

$$E_g = eV_{min} \tag{2}$$

então,

$$V_{min} = \frac{E_g}{e} \tag{3}$$

usando a relação de Planck $E = h\nu$,

$$h\nu = eV_{min} \tag{4}$$

Método de ajuste Piecewise

Figure: Exemplo do método Piecewise.

curva Piecewise para encontrar o ponto onde V_{min} na curva $I \times V$. O valor estimatido de V_{min} é dado pela intersecção das funções lineares.

Usaremos o método de ajuste de

Fonte: Retirado da Internet.

Resultados esperados

Resultados esperados

Resultados

Esperamos conseguir um valor para a constante de Planck que esteja na mesma ordem de grandeza 10^{-34} ou perto do valor estabelecido de $6.62607015 \times 10^{-34} [\text{J}\cdot\text{s}]$. Faremos a analise do nossos resultados utilizando a equação,

$$h = \frac{eV_{min}}{\nu} \tag{5}$$

já que sabemos a frequência ν e a tensão mínima, V_{min} para diferentes LEDs. Com várias amostragens, seremos capazes de encontrar um valor aproximado de h.

References

Song, J. A. and Choi, C. Y. (2019).

Effects of blue light spectra on retinal stress and damage in goldfish (carassius auratus).

Fish Physiology and Biochemistry, 45(1):391–400.

Obrigado!