Detección de Rasgos en la Identificación de Letras Utilizando Bubbles

Intr. a Neurociencia Cognitiva y Computacional

Christian Cossio Mercado, Mailén Gómez Mayol, Miguel Martínez Soler

Departamento de Computación - FCEyN, UBA

31 de mayo de 2011

Objetivo del experimento

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Objetivo del experimento

- Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías
- ¿Cómo lo hacemos?

Todos Somos Sujetos

• Vamos a intentar identificar algunas letras. . .

Parte I

Revisión de Antecedentes

Feature Detection and Letter Identification (Pelli et al., 2006)

 Conceptos de la identificación de letras y metodología experimental

Feature Detection and Letter Identification (Pelli et al., 2006)

- Conceptos de la identificación de letras y metodología experimental
- Definición de complejidad (Attneave)

$$\mathsf{complejidad}(l) = \frac{\mathsf{perimetro}(l)^2}{\mathsf{superficie}(l)}$$

Feature Detection and Letter Identification (Pelli et al., 2006)

- Conceptos de la identificación de letras y metodología experimental
- Definición de complejidad (Attneave)

$$complejidad(l) = \frac{perímetro(l)^2}{superficie(l)}$$

• Relación eficiencia/complejidad

Figura: Eficiencia vs complejidad para distintas tipografías

Bubbles: a technique to reveal the use of information in recognition task (Gosselin & Schyns, 2001)

 Concepto de la técnica y del diseño del experimento

Bubbles: a technique to reveal the use of information in recognition task (Gosselin & Schyns, 2001)

- Concepto de la técnica y del diseño del experimento
- Generación de un estímulo

Figura: Generación de un estímulo

- Variables en juego
 - estímulo
 - dimensiones del estímulo
 - tamaño y cant. de burbujas
 - observadores

Bubbles: a technique to reveal the use of information in recognition task (Gosselin & Schyns, 2001)

- Concepto de la técnica y del diseño del experimento
- Generación de un estímulo

Figura: Generación de un estímulo

Variables en juego

Figura: Reconocimiento de expresión (ENEX) y género (GENDER)

Features for Identification of Uppercase and Lowercase Letters (Fiset et al., 2008)

 Uso de Bubbles para identificación de letras

Features for Identification of Uppercase and Lowercase Letters (Fiset et al., 2008)

- Uso de Bubbles para identificación de letras
- 54 letras Arial

Features for Identification of Uppercase and Lowercase Letters (Fiset et al., 2008)

- Uso de Bubbles para identificación de letras
- 54 letras Arial

Figura: Rasgos relevantes para humanos

- Humanos: Agregan 1 burbuja hasta llegar al 52 % de aciertos
- Obs.Ideal: Burbujas fijas, aumentan ruido hasta bajar al 52% de aciertos

Parte II

Diseño del Experimento

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Hipótesis

- El uso de tipografías ampliamente conocidas facilita el reconocimiento de letras, aún cuando la persona no se da cuenta de ello
- 2 La performance en el reconocimiento de las letras es inversamente proporcional a su complejidad
- Los rasgos de cada letra varían de acuerdo a la tipografía que se esté utilizando
- Habrá cambios en los rasgos de la 'n' por la incorporación de la 'ñ'
- Se obtendrá rasgos similares a los encontrados en la bibliografía
- Un observador ideal utilizará rasgos distintos a los que utiliza una persona para identificar letras

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Hipótesis

- El uso de tipografías ampliamente conocidas facilita el reconocimiento de letras, aún cuando la persona no se da cuenta de ello
- 2 La performance en el reconocimiento de las letras es inversamente proporcional a su complejidad
- Los rasgos de cada letra varían de acuerdo a la tipografía que se esté utilizando
- Habrá cambios en los rasgos de la 'n' por la incorporación de la 'ñ'
- Se obtendrá rasgos similares a los encontrados en la bibliografía
- Un observador ideal utilizará rasgos distintos a los que utiliza una persona para identificar letras

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Hipótesis

- El uso de tipografías ampliamente conocidas facilita el reconocimiento de letras, aún cuando la persona no se da cuenta de ello
- 2 La performance en el reconocimiento de las letras es inversamente proporcional a su complejidad
- Los rasgos de cada letra varían de acuerdo a la tipografía que se esté utilizando
- Habrá cambios en los rasgos de la 'n' por la incorporación de la 'ñ'
- Se obtendrá rasgos similares a los encontrados en la bibliografía
- Un observador ideal utilizará rasgos distintos a los que utiliza una persona para identificar letras

Elección de tipografías

Arial

ABCDEFGHIJKLMNÑOPQRSTUVWXYZ abcdefghijklmnñopqrstuvwxyz

Kunstler ARCDEFGKIJKLMNNOPORSTUVWXYX abcdefghijklmnnopgrstuvwxyx

Famosas

本学でも世牙で計画をLMNnelunaであるようでは、WXYZ るものdef8hiしたMMnaのPatatuvwXyZ

Elección de tipografías

Arial

Famosas

ABCDEFGHIJKLMNÑOPQRSTUVWXYZ abcdefghijklmnñopqrstuvwxyz

Kunstler ABCDEFGHIJKLMNNOPORSTUVWXYX abcdefghijklmnñopgrstuvwxyx

> 本多でも置牙で計画をLMNnaPYRSIWWXYZ *abC*def8hiJk/MMnoPatotUVWXYZ

Identificación de Rasgos

Figura: Uso relativo de los rasgos necesarios para identificar letras

Figura: Identificación de rasgos para la letra ñ

Generación de Estímulos

Figura: Armado del estímulo final

Primer Diseño del Experimento: Jueves 12/5

- 13 sujetos (Gracias a todos, nuevamente!)
- Pocos bloques y ensayos (5 x 100, t \approx 20min)
- Se completa una encuesta al terminar (performance, tipografías famosas)
- Muchas burbujas (todas las letras comienzan igual con la misma cantidad)
- Muy poca información :-((para la mayoría no se alcanza un valor cercano al 52 % de aciertos)

Primer Diseño del Experimento: Jueves 12/5

- 13 sujetos (Gracias a todos, nuevamente!)
- Pocos bloques y ensayos (5 x 100, t \approx 20min)
- Se completa una encuesta al terminar (performance, tipografías famosas)
- Muchas burbujas (todas las letras comienzan igual con la misma cantidad)
- Muy poca información :-((para la mayoría no se alcanza un valor cercano al 52 % de aciertos)
- Muchos gastos en golosinas :-P

Primer Diseño del Experimento: Jueves 12/5

- 13 sujetos (Gracias a todos, nuevamente!)
- Pocos bloques y ensayos (5 x 100, t \approx 20min)
- Se completa una encuesta al terminar (performance, tipografías famosas)
- Muchas burbujas (todas las letras comienzan igual con la misma cantidad)
- Muy poca información :- ((para la mayoría no se alcanza un valor cercano al 52 % de aciertos)
- Muchos gastos en golosinas :-P

Posible Solución: Ampliar la cantidad de ensayos y ajustar parámetros (bloques y burbujas)

Rediseño del Experimento

- Más bloques por sujeto (17 x 100, t \approx 1hr)
- Correcciones de errores menores (randoms, cantidad de burbujas, burbujas por banda)
- Mejora en la cantidad de burbujas inicial (mayor complejidad, mayor cantidad de burbujas iniciales)
- Filtrando casos en que no se llegó al 52 %

Rediseño del Experimento

- Más bloques por sujeto (17 x 100, t \approx 1hr)
- Correcciones de errores menores (randoms, cantidad de burbujas, burbujas por banda)
- Mejora en la cantidad de burbujas inicial (mayor complejidad, mayor cantidad de burbujas iniciales)
- Filtrando casos en que no se llegó al 52 %
- Se tiró los datos anteriores, reemplazando con los nuevos

Datos Finales

- 6 sujetos
- Edades entre 21-33 años
- Con estudios universitarios
- 1700 ensayos por persona

Datos Finales

- 6 sujetos
- Edades entre 21-33 años
- Con estudios universitarios
- 1700 ensayos por persona
- Para completar datos . . .

Datos Finales

- 6 sujetos
- Edades entre 21-33 años
- Con estudios universitarios
- 1700 ensayos por persona
- Para completar datos ... también fuimos sujetos (2500 ensayos)

Parte III

Resultados

16 / 27

Letras famosas

Burbujas/Tiempo vs. Complejidad

Rasgos Detectados

Rasgos para Ñ

Conclusiones

- Cantidad de respuestas necesarias (o estímulos a mostrar): 156.000= 3.9 días de experimentación continua.
- Resulta una técnica útil para el muestreo de espacios sin limitación en la cantidad de dimensiones

Lecciones Aprendidas

- Cantidad de respuestas necesarias (o estímulos a mostrar): 156.000= 3.9 días de experimentación continua.
- Resulta una técnica útil para el muestreo de espacios sin limitación en la cantidad de dimensiones

¿Cómo Seguimos?

Temas Pendientes

•

¿Cómo Seguimos?

Temas Pendientes

•

Trabajo Futuro

• Bubbles en habla (e.g., detección de rasgos para expresividad o emociones)

Detección de Rasgos en la Identificación de Letras Utilizando Bubbles

Intr. a Neurociencia Cognitiva y Computacional

Mailén Gómez Mayol, Miguel Martínez Soler, Christian Cossio Mercado

Departamento de Computación - FCEyN, UBA

31 de mayo de 2011

Gráficos

Burbujas vs. Complejidad

Tiempo de Respuesta vs. Complejidad