Conceitos Preliminares

Teoria da Computação – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- Noções Matemáticas
- Lógica

Sumário

Introdução

• Por que estudar Teoria da Computação?

Por que estudar TC?

• A prática tem relação intrínseca com a Teoria.

- Está projetando uma nova linguagem de programação: Gramáticas Livres de Contexto.
- Acredita que o problema que você quer resolver é difícil: que tal olhar na teoria da NP-Completude?
- Será que o problema que você quer resolver é possível de ser resolvido... Computabilidade pode ajudar a te responder.
- Casamento de padrões ou expressões regulares: Linguagens Formais e Autômatos.

- Precisa comparar as suas soluções com outras: que tal analisar o seu algoritmo?
- Seu algoritmo está lento? Tentou utilizar outro paradigma de projeto?

- Além dos motivos óbvios, ao estudar Teoria, você consegue enxergar um lado mais simples e elegantes dos modelos computacionais.
- Um design elegante e simples pode influenciar em uma aplicação elegante, eficiente e livre de erros.
- Um curso de Teoria reforça o lado estético, o que possibilita você criar sistemas mais belos.

- Estudar Teoria também ajuda a expandir a mente.
- Tecnologia fica ultrapassada dentro de anos, Teoria não.
- As habilidades de se expressar bem, resolver problemas, e saber quando você não pode resolver um problema de um determinado jeito são cruciais.
- Teoria trabalha com isso.

Subáreas

- Três das principais subáreas da Teoria da Computação são:
 - Teoria dos Autômatos.
 - ② Computabilidade.
 - Complexidade.
- Elas estão relacionadas por uma questão: "Quais são as capacidades e limitações dos computadores?"
- É claro que cada área vai interpretar e atacar esta indagação da sua própria forma.

Sumário

- Introdução
 - Complexidade Computacional
 - Teoria da Computabilidade

- Problemas computacionais vem em diferentes formas.
- Alguns são fáceis, outros médios e outros difíceis.
- Por exemplo: o problema da ordenação é dito fácil. Mesmo um computador fraco com um algoritmo eficiente pode ordenar milhões de números em pouco tempo.
- O problema do escalonamento, que consiste alocar recursos de modo a satisfazer restrições já é mais complicado. Se você tem milhares de recursos, a computação pode levar centenas de anos.

- O que faz alguns problemas mais difíceis do que os outros?
- Esta é a questão principal da área de Complexidade Computacional.
- Não é uma questão fácil. Problemas similares podem ter dificuldades bem distintas.

- Uma das principais contribuições desta área é a classificação de problemas em classes de complexidade.
- Através destas classes, podemos demonstrar que um determinado problema é difícil ao "compará-los" com outros problemas difíceis e verificar que são semelhantes.

- Uma vez identificado que um problema é difícil, o que pode ser feito?
- Desistir ?

- Se o problema é difícil não quer dizer que não existam instâncias que podem ser resolvidas eficientemente.
- Se um problema é difícil, você pode tentar outras abordagens, como algoritmos aproximados e heurísticos.
- Nem sempre precisamos da melhor resposta possível.

- Problemas difíceis também são úteis na prática.
- A área de Criptografia depende de problemas difíceis para garantir a segurança.

Sumário

- Introdução
 - Complexidade Computacional
 - Teoria da Computabilidade

Computabilidade

Computabilidade

- Na primeira metade do século XX, matemáticos como Kurt Gödel, Alonzo Church e Alan Turing descobriram que existem problemas que não podem ser resolvidos por computadores.
- Não importa quanto tempo você dê para eles, eles não irão conseguir resolver estes problemas.

Computabilidade

- Tome o problema de determinar se um enunciado matemático é verdadeiro ou falso.
- Se conseguíssemos resolver isso através de um computador, as coisas seriam bem mais simples.
- Parece até uma coisa natural, pois a computação está relacionada com a Matemática de certa forma.
- No entanto, n\u00e3o existe nenhum algoritmo que consegue resolver este prolema.

Computabilidade

- Complexidade Computacional e Computabilidade estão relacionadas, mas são diferentes.
- Complexidade Computacional: classifica os problemas e, graus de dificuldade.
- Computabilidade: classifica os problemas em resolvíveis ou não.

Teoria de Autômatos

Teoria de Autômatos

- A Teoria de Autômatos foca nas definições e propriedades dos modelos de computação.
- Estes modelos desempenham um papel muito importante em diversas áreas da computação.
 - Design de Hardware.
 - Processamento de palavras.
 - Tradutores.
 - Verificação Formal.
 - **.**..

- Neste curso, focaremos em computabilidade com algumas pinceladas de Complexidade Computacional.
- Teoria de Autômatos: Linguagens Formais e Autômatos (7°).

Sumário

Noções Matemáticas

Noções Matemáticas

- Antes de iniciar o nosso estudo em TC, precisamos revisar e abordar conceitos matemáticos básicos.
- Notações e ferramentas que vamos usar.

Sumário

- Noções Matemáticas
 - Conjuntos
 - Sequências e Tuplas
 - Funções
 - Relações
 - Grafos
 - Linguagens e Cadeias

Conjuntos

- Um conjunto é um grupo de objetos representado como uma unidade.
- Conjuntos podem ter objetos de tipos variados: números, símbolos, pessoas, . . .
- Objetos que estão em um conjunto são denominados de elementos.
- Uma forma de descrever quais elementos estão em um conjunto é utilizar a notação de chaves:

$$\{7, 21, 57\}$$

Notação (Pertinência)

- Os símbolos ∈ e ∉ são utilizados para denotar pertinência e não-pertinência de elementos em conjuntos.
- Ex: $7 \in \{7, 21, 57\}$.
- Ex: $8 \notin \{7, 21, 57\}$

Notação (⊆)

- ullet Dizemos que um conjunto A está contido em um conjunto B, se todo o elemento de A está em B.
- $\bullet \ \, \mathsf{Representamos} \ \, \mathsf{por} \, \, A \subseteq B. \\$

Notação (Igualdade)

- Dois conjuntos A e B são iguais se todo o elemento de A está em B e vice-versa.
- Em outras palavras, A = B, sse, $A \subseteq B$ e $B \subseteq A$.

Notação (⊊)

- Dizemos que um conjunto A está propriamente contido em um conjunto B, se todo o elemento de A está em B, mas B não é igual a A.
- Representamos por $A \subsetneq B$.

Notação (Ø)

- O conjunto vazio é aquele que não possui elementos.
- Representado por \emptyset .

- A ordem na descrição não importa.
- Repetições também são ignoradas. Conjuntos são indistinguíveis considerando repetições.
- Ex: $\{1,2,3\} = \{3,2,1\}.$
- Ex: $\{1, 1, 1, 1, 2, 3, 4\} = \{1, 2, 3, 4\}.$
- Multiconjuntos: levam em consideração repetições.

Definição (Cardinalidade)

- A cardinalidade corresponde ao número de elementos que um conjunto possui.
- Denotamos por |A|.
- $\bullet \ \, {\sf Em \ especial} \ \, |\emptyset| = 0.$

- Alguns conjuntos são finitos.
- Alguns conjuntos são infinitos.
- Ex: $|\{1,2,3,4\}|=4$.
- Ex: $\mathbb{N} = \{1, 2, 3, \ldots\}$ é infinito.
- Ex: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ é infinito.
- Ex: \mathbb{R} é infinito.
- Curiosidade: $|\mathbb{R}| > |\mathbb{Z}| = |\mathbb{N}|$.

- Outra maneira de definir conjuntos, é colocando uma propriedade sobre os elementos.
- Conjunto dos pares: $P = \{x | x = 2y \text{ com } y \in \mathbb{Z}\}$
- Conjunto dos ímpares: $I = \{x | x = 2y + 1 \text{ com } y \in \mathbb{Z}\}$
- Conjunto dos primos: $\Pi = \{x | x \in \mathbb{N} \land x > 1 \land \neg \exists y (y < x \land x \mod y = 0)\}$

Definição (União)

A união de dois conjuntos A e B corresponde a $C = \{x | x \in A \text{ ou } x \in B\}.$

A união de conjuntos é representada através do símbolo \cup

- Exemplo $\{1,2\} \cup \{2,3\} = \{1,2,3\}.$
- Em especial $A \cup \emptyset = A$.

Definição (Interseção)

A interseção de dois conjuntos A e B corresponde a $C = \{x | x \in A \text{ e } x \in B\}.$

A interseção de conjuntos é representada através do símbolo \cap .

- Exemplo $\{1,2\} \cap \{2,3\} = \{2\}.$
- Em especial $A \cap \emptyset = \emptyset$.

Definição (Complemento)

O complemento de um conjunto A é outro conjunto cujos elementos em consideração são exatamente aqueles que não estão em A.

Denotamos o complemento de A por \bar{A} .

Definição (Produto Cartesiano)

Se A e B são conjuntos, o produto cartesiano de A por B é dado por:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Notação (Produto Cartesiano)

$$\underbrace{A \times A \times A \dots A}_{k} = A^{k}$$

- Ex: \mathbb{R}^2 , o plano cartesiano.
- Ex: \mathbb{R}^3 , espaço tridimensional.
- Ex: \mathbb{R}^n .
- Ex: $\mathbb{N}^2 = \{(1,1), (1,2) \dots (2,1), (2,2) \dots \}$

Definição (Partes de um Conjunto)

As partes de um cojunto A, denotada por $\mathcal{P}(A)$, corresponde ao conjunto dos subconjuntos de A.

Se
$$|A|=n$$
, então $|\mathcal{P}(A)|=2^n$

 $\bullet \ \mathsf{Ex:} \ \mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Sumário

- Noções Matemáticas
 - Conjuntos
 - Sequências e Tuplas
 - Funções
 - Relações
 - Grafos
 - Linguagens e Cadeias

Sequências e Tuplas

Definição (Sequências)

Sequências de objetos são listas destes objetos. Diferentemente dos conjuntos, a ordem aqui importa, bem como as repetições.

Sequências e Tuplas

- Ex: $F = (1, 1, 2, 3, 5, 8, \ldots)$.
- Ex: $\Pi' = (2, 3, 5, 7, 11, \ldots)$.
- $\bullet \ \, \mathsf{Ex:} \,\, (1,1,1,1,1,1,1,1,1) \neq (1).$

Sequências e Tuplas

Notação

Tuplas Uma sequência de k elementos é denominado uma k-tupla.

- Ex: (7,21,57) é uma tripla.
- Ex: (1,4) é um par.
- \bullet Ex: (1,5,3,4,7,8,1) é uma 7-tupla.

Sumário

- Noções Matemáticas
 - Conjuntos
 - Sequências e Tuplas
 - Funções
 - Relações
 - Grafos
 - Linguagens e Cadeias

Funções

Funções são objetos matemáticos que mapeia elementos de um conjunto em outro.

Se f mapeia elementos de D em CD, denotamos por:

$$f: D \to CD$$

D é chamado de domínio e CD é chamado de contradomínio.

Para ser uma função, cada elemento de ${\cal D}$ deve ter exatamente 1 mapeamento.

- Ex: $f(x): \mathbb{N} \to \mathbb{N}$ com $x \mapsto x^2$. Então f(2)=4, f(3)=9, f(20)=400.
- Ex: $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ com $(x,y) \mapsto x$ mais y. Então +(2,2)=4, +(1,5)=6.

Definição

Funções Injetoras

- Se $x \neq y \rightarrow f(x) \neq f(y)$ a função é dita injetora.
- Ou seja, elementos diferentes do domínio são mapeados em elementos diferentes no contradomínio.

Definição

Funções Sobrejetoras

- $\bullet \ \, \mathsf{Seja} \,\, f:D\to CD \,\, \mathsf{e} \,\, \mathsf{o} \,\, \mathsf{conjunto} \,\, \mathsf{iamgem} \,\, I=\{f(x),x\in D\}.$
- f é dita sobrejetora quando |I|=|CD|, ou seja, todos os elementos do contradomínio foram mapeados.

Definição

Funções Bijetoras São aquelas que são Injetoras e Sobrejetoras.

Mapeamento um para um.

Sumário

- Noções Matemáticas
 - Conjuntos
 - Sequências e Tuplas
 - Funções
 - Relações
 - Grafos
 - Linguagens e Cadeias

Definição (Relações)

Uma relação ou predicado é um subconjunto de algum conjunto com alguma propriedade específica.

- Exemplos: $P \subseteq \mathbb{N}$ e $P := \{x | x \text{ \'e par}\}.$
- $\bullet <\subseteq \mathbb{N} \times \mathbb{N} \text{ e} <:= \{(a,b)|a < b\}.$

Notação

Relações Se R é uma relação e $x \in R$, dizemos que x vale, x é verdadeiro ou simplesmente x tem a propriedade R.

Sumário

- Noções Matemáticas
 - Conjuntos
 - Sequências e Tuplas
 - Funções
 - Relações
 - Grafos
 - Linguagens e Cadeias

Definição (Grafos)

Um grafo não dirigido, ou grafo simples, é uma dupla G=(V,E) sendo V o conjunto de vértices e $E\subseteq V\times V$ as arestas.

Definição (Subgrafo)

G'=(V',E') é um subgrafo de G(V,E), quando $V'\subseteq V$ e $E'\subseteq E.$

Noções Matemáticas

- Grafos também podem ser direcionados.
- Neste caso, a orientação das arestas faz diferença.

- Modelam vários problemas práticos.
- Teoria dos grafos estuda estes objetos.

Sumário

- Noções Matemáticas
 - Conjuntos
 - Sequências e Tuplas
 - Funções
 - Relações
 - Grafos
 - Linguagens e Cadeias

Definição (Alfabeto)

Um alfabeto é qualquer conjunto não vazio e finito de símbolos.

- Ex: $\Sigma = \{0, 1\}.$
- $\bullet \ \, \mathsf{Ex:} \, \, \Sigma = \{a, \dots, z, A, \dots, Z\}.$
- Ex: $\Gamma = \{0, 1, x, y, z\}.$

Definição (Cadeias, Palavras ou Strings)

Cadeias, palavras ou *strings* são sequências finitas de símbolos de alfabetos.

- \bullet Supondo $\Sigma = \{0,1\}$, então w = 01101101 é uma cadeia válida.
- Suponho $\Sigma = \{a, \dots, z\}$, então w = abracadabra é uma cadeia válida.

Notação (Tamanho de Cadeias)

Seja $w=w_1w_2w_3\dots w_n$ uma cadeia sobre o alfabeto $\Sigma.$ Denotamos |w|=n como o tamanho de n.

Em particular, a cadeia vazia, ϵ , tem tamanho $|\epsilon|=0$.

Notação (Concatenação)

Suponha cadeias $x=x_1x_2\dots x_n$ e $y=y_1y_2\dots y_m$ sobre o alfabeto $\Sigma.\ xy=x_1x_2\dots x_ny_1y_2\dots y_m$ denota a concatenação de x com y.

Em especial
$$\underbrace{xxx\dots x}_{k} = x^{k}$$
.

Notação (Inverso)

Seja $w=w_1w_2\dots w_n$ uma cadeia sobre o alfabeto Σ . $w^R=w_nw_{n-1}\dots w_1$ denota o inverso de w.

Definição (Ordem lexicográfica)

A ordem lexicográfica de cadeias da precedência para cadeias menores, e em caso de empate, segue-se a ordem do dicionário.

• Para $\Sigma = \{0,1\}$, a ordem lexicográfica sobre todas as palavras sobre o alfabeto Σ é:

$$(\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots)$$

Definição (Linguagem)

Uma linguagem L é um conjunto de palavras.

- Ex: $L_1 = \{ww^R | \text{ w \'e uma cadeia sobre } \Sigma\}$
- Ex: $L_1 = \{w | w = w^R\}$

Notação (Σ^*)

 Σ^* é a linguagem formada por todas as cadeias sobre o alfabeto $\Sigma.$

- $\bullet \ \, \mathsf{Para} \,\, \Sigma = \{0,1\}, \, \Sigma^* = \{\epsilon,0,1,00,01,10,11,\ldots\}.$
- $\begin{array}{l} \bullet \ \ \mathsf{Para} \ \Sigma = \{A,C,G,T\}, \\ \Sigma^* = \{\epsilon,A,C,G,T,AA,AC,AG,AT,\ldots\}. \end{array}$

Sumário

3 Lógica

Lógica

• Por que a lógica é importante?

Lógica

- Utilizamos lógica no dia a dia, na vida profissional e na pessoal.
- Elaboramos conceitos.
- Fazemos observações.
- Formalizamos teorias.
- Utilizamos raciocínio lógico para derivar conclusões a partir de premissas.
- Utilizamos demonstrações ou provas para convencer os outros que estamos corretos.

Proposições

- Na matemática, uma proposição é uma sentença que pode ser falsa ou verdadeira, mas nunca as duas.
- Por exemplo:
 - "6 é par" é uma proposição verdadeira.
 - "4 é ímpar" é uma proposição falsa.

Sumário

- 3 Lógica
 - Operadores Lógicos
 - Quantificadores
 - Definições
 - Teoremas
 - Provas
 - Técnicas de Prova

 Podemos combinar proposições para criar outras mais complexas através dos operadores lógicos.

Negação

Sejam p uma proposição.

- Não $p(\neg p)$ é verdadeiro quando p é falso.
- Não $p(\neg p)$ é falso quando p é verdadeiro.

Conjunção

- p e q $(p \land q)$ é verdadeiro quando p **e** q são verdadeiros.
- ullet Caso contrário, $p \wedge q$ é falso.

Disjunção

- p ou q $(p \lor q)$ é verdadeiro quando p **ou** q são verdadeiros.
- \bullet Caso contrário, $p\vee q$ é falso.

Implicação

- Se p então q $(p \Rightarrow q)$ é verdadeiro quando p é falso **ou** q é verdadeiro.
- Caso contrário, $p \Rightarrow q$ é falso.

Implicação

- Se p então q $(p \Rightarrow q)$ é verdadeiro quando p é falso **ou** q é verdadeiro.
- Caso contrário, $p \Rightarrow q$ é falso.
- ullet Se p é falso, dizemos que $p\Rightarrow q$ é $\emph{vacuamente}$ verdadeiro.

Bi-implicação

- p se, e somente se, q ($p \Leftrightarrow q$) é verdadeiro quando p e q são falsos ou p e q são verdadeiros.
- Caso contrário, $p \Leftrightarrow q$ é falso.
- Se $p \Leftrightarrow q$ é verdadeiro, dizemos que p e q são equivalentes.

Sumário

- 3 Lógica
 - Operadores Lógicos
 - Quantificadores
 - Definições
 - Teoremas
 - Provas
 - Técnicas de Prova

- Considere a afirmação "x é par".
- Não podemos dizer se esta afirmação é verdadeira ou falsa, pois não sabemos quem é \boldsymbol{x} .

- Existem três maneiras básicas de conseguir obter um valor verdade para a afirmação.
 - ① Dizer quem é x. x=6 por exemplo tornaria a afirmação verdadeira.
 - 2 Para todo x inteiro, x é par. O que tornaria a afirmação incorreta, pois nem todo inteiro é par.
 - lacktriangle Existe x inteiro, x é par. O que tornaria a afirmação correta, pois existe inteiros pares.

- As frases "para todo" e "existe" são chamados de quantificadores.
- Podemos utilizar os símbolos ∀ e ∃ para representá-los de maneira mais compacta.

• Talvez as coisas fiquem mais claras com uma definição matemática.

Definição (Número par)

Um número x é dito par se e somente se existe um inteiro y tal que x=2y.

ullet Ou seja, estamos definido que um inteiro x é par, se e somente se existe algum y que multiplicado por 2 é igual a x.

 Utilizando a mesma estratégia, podemos definir os números ímpares.

Definição (Número ímpar)

Um número x é dito ímpar se e somente se existe um inteiro y tal que x=2y+1.

- Os quantificadores podem ser aplicados à propriedades (relações).
- Seja $P\subseteq \mathbb{N}$ a relação dos inteiros pares e $I\subseteq \mathbb{N}$ a relação dos números ímpares.
 - Podemos dizer que $\exists x P(x)$ é verdadeiro?
 - ▶ Podemos dizer que $\exists x I(x)$ é verdadeiro?
 - ▶ Podemos dizer que $\forall x P(x)$ é verdadeiro?
 - ▶ Podemos dizer que $\forall x I(x)$ é verdadeiro?

Considerando os inteiros:

- O que $\forall x \exists y (x = 2y)$ quer dizer?
- ullet O que $\exists x\exists y(x=2y)$ quer dizer?
- $\bullet \ \ {\rm O} \ \ {\rm que} \ \ \forall x (\exists y (x=2y) \lor \exists y (x=2y+1)) \ \ {\rm quer} \ \ {\rm dizer}?$

• A ordem dos quantificadores também é muito importante.

Considerando < como a relação de menor entre inteiros:

- $\forall x \exists y (x < y)$ é verdadeiro?
- $\exists x \forall y (x < y)$ é verdadeiro?

Sumário

- 3 Lógica
 - Operadores Lógicos
 - Quantificadores
 - Definições
 - Teoremas
 - Provas
 - Técnicas de Prova

Definições

Definição (Definições)

Definições descrevem os objetos e noções que utilizamos. Uma definição pode ser simples, como a de conjuntos que utilizamos, ou complexa, como a de segurança em sistemas criptográficos.

Ao definir devemos utilizar uma linguagem livre de ambiguidades, para que ser bem claro sobre o que estamos falando.

Afirmações

Definição (Afirmações)

Afirmações matemáticas expressam que determinado objeto possui determinada propriedade.

Independente de serem verdadeiras ou falsas, também devem ser precisas.

Prova

Definição (Prova)

Uma prova é uma sequência válida de passos dedutivos chegando a uma conclusão.

Sumário

- 3 Lógica
 - Operadores Lógicos
 - Quantificadores
 - Definições
 - Teoremas
 - Provas
 - Técnicas de Prova

Teoremas

Definição (Teoremas)

Teoremas são enunciados matemáticos verdadeiros e que podem ser provados.

Lemas

- Existem teoremas complexos de obter a prova.
- Para facilitar, podemos provar afirmações menores.
- Estas afirmações são chamadas de Lemas.
- Utilizamos Lemas para concluir os teoremas de maneira mais simples.

Corolário

 Corolários são afirmações verdadeiras que decorrem imediatamente de um teorema.

Sumário

- 3 Lógica
 - Operadores Lógicos
 - Quantificadores
 - Definições
 - Teoremas
 - Provas
 - Técnicas de Prova

- Uma prova ou demonstração matemática pode ser vista como um argumento para convencer outra pessoa que algo é verdadeiro.
- Uma boa prova deve ser a mais didática possível.
- Algumas estruturas são comuns dependendo da afirmação a qual se quer provar.

Queremos provar que p é verdadeiro:

- Prove diretamente que p é verdadeiro.
- ullet Assuma que p é falso e chegue em uma contradição.

Queremos provar que $p \wedge q$ é verdadeiro:

ullet Prove diretamente que p vale e prove que q vale.

Queremos provar que $p \lor q$ é verdadeiro:

- ullet Assuma que p é falso e deduza que q obrigatoriamente tem que ser verdadeiro.
- Assuma q falso e deduza que p obrigatoriamente tem que ser verdadeiro.
- Prove que p é verdadeiro.
- Prove que q é verdadeiro.

Queremos provar que $p \Rightarrow q$ é verdadeiro:

- ullet Assuma que p vale e deduza que q também vale.
- \bullet Assuma q falso e deduza que p tem que ser falso também.

Queremos provar que $p \Leftrightarrow q$ é verdadeiro:

• Prove $p \Rightarrow q$ e prove $q \Rightarrow p$.

Queremos provar que $\exists x P(x)$ é verdadeiro:

ullet Basta encontrar um x que satisfaça a propriedade.

Queremos provar que $\forall x P(x)$ é verdadeiro:

ullet Não assuma nada sobre x e prove que P(x) vale.

ullet Por exemplo, vamos provar que, para todo inteiro x, se x é ímpar, então x+1 é par.

- ullet Como queremos mostrar que o resultado vale para qualquer x, não podemos assumir absolutamente nada sobre ele.
- Como o teorema diz respeito a uma implicação (se, então), assumimos a primeira parte e tentamos provar a segunda.

Demonstração.

 ${\sf Assuma}\ x\ {\sf impar}.$

Como x é ímpar, temos que existe um y tal que x = 2y + 1.

Adicionando 1 a ambos os lados, temos que x + 1 = 2y + 2.

Tome w = y + 1, substituindo temos: x + 1 = 2w.

Portanto x+1 é par.

Sumário

- 3 Lógica
 - Operadores Lógicos
 - Quantificadores
 - Definições
 - Teoremas
 - Provas
 - Técnicas de Prova

Prova por casos

A prova por casos divide a prova em diversos casos, transformando-a em múltiplas provas mais simples.

 Vamos pegar o seguinte teorema para ilustrar a técnica de prova por casos:

Teorema

Para qualquer inteiro x, o inteiro x(x+1) é par.

ullet Temos dois casos: x é par ou x é ímpar.

Demonstração.

Caso 1: $x \notin par$.

- Como x é par, temos que existe um y tal que x = 2y.
- Assim, temos que:

$$x(x+1) = 2y(2y+1)$$

- Tome w = 2(y+1).
- Assim:

$$x(x+1) = 2y(2y+1) = 2w$$

• Logo x(x+1) é par.

Demonstração.

Caso 2: $x \in \text{impar}$.

- Como x é ímpar, temos que existe um y tal que x = 2y + 1.
- Assim, temos que:

$$x(x+1) = (2y+1)(2y+2) = (2y+1)(y+1)2$$

- Tome w = (2y+1)(y+1).
- Assim:

$$x(x+1) = (2y+1)(2y+2) = (2y+1)(y+1)2 = 2w$$

• Logo x(x+1) é par.

Prova por Construção

Muitos teoremas afirmam a existência de um tipo particular de objeto.

Provas por construção mostram que é possível construir um objeto do referido tipo.

Exemplo

Um grafo k-regular é aquele que todos os nós tem grau k.

Teorema

Para qualquer n > 2 par, existe um grafo 3-regular com n nós.

Demonstração.

$$E = \{(i,i+1)|0 \leq i \leq n-2\} \cup \{n-1,0\} \cup \{(i,i+n/2)|0 \leq i \leq n/2-1\}$$

Prova por Contradição

Prova por Contradição

Assume-se que um teorema é falso. Uma vez concluído o absurdo, podemos concluir que o teorema é de fato verdadeiro.

Exemplo

Teorema

 $\sqrt{2}$ é irracional.

Demonstração.

Exemplo

Suponha $\sqrt{2}$ racional.

Logo $\sqrt{2} = \frac{n}{m}$, uma fração reduzida. Obviamente, n ou m é ímpar.

Elevando os dois lados ao quadrado temos:

 $2=\frac{n^2}{m^2}$, e portanto $n^2=2m^2$, então n^2 é par, e n também é.

Se n é par, temos n=2k para algum k.

Substituindo, temos $n^2=(2k)^2=4k^2$. Logo $4k^2=2m^2$ e portanto $m^2=2n^2$ o que torna m^2 par e consequentemente m par. Mas n e m não podem ser simultaneamente pares. Contradição.

 $\sqrt{2}$ tem que ser irracional.

Prova por Indução

Prova por Indução

Prova-se o caso base. Assume que a propriedade vale para todo k < n. Tentamos provar que vale para n utilizando as hipóteses de indução e o caso base.

Prova por Indução

Teorema

O n ésimo termo de uma P.A de razão r é $a_0 + rn$.

Demonstração.

Para n = 0, $a_0 = a_0$. Suponha que a propriedade vale para todo k < n.

Sabemos que $a_n = a_{n-1} + r$, pela definição da P.A. Aplicando a hipótese de indução sobre a_{n-1} , temos:

$$a_n = a_0 + r(n-1) + r = a_0 + rn$$