SC1007 Data Structures and Algorithms

Week 8: Hash Table & Graph Representation

College of Engineering
School of Computer Science and Engineering

Instructor: Luu Anh Tuan

Email: anhtuan.luu@ntu.edu.sg

Office: #N4-02b-66

Course schedule

Week	Lecture Topic	Tutorial	Lab	Assignment Deadline					
1	Introduction To Data Structure and Algorithm								
2	Linked List (LL) - Linear Search								
3	Analysis of Algorithm	T1	L1 - LL						
4	Stack and Queue (SQ) - Arithmetic Expression			AS1: LL					
5	Tree Traversal - Binary Search	T2	L2 - SQ	AS2: SQ					
6	AVL, Huffman coding		L3 - Tree 1	AS3: Tree					
7	Revision	T3	L4 - Tree 2	AS4: Tree 2					
	Recess Week – Lab Test 1 – 3 March 2022 (Thu)								
8	Hash Table + Graph Representation								
9	BFS, DFS		L5 - Hash Table + Graph						
10	Backtracking	T4	L6 - BFS, DFS	AS5 : Hash Table					
11	Dynamic Programming	T5	L7 - Backtracking	AS6 : Graph + BFS, DFS					
12	Bipartite Graph - Matching Problem	T6	L8 - DP	AS7 : Backtracking					
13	Revision			AS8 : DP					
14	Lab2 Test + Quiz – 21 April 2022 (Thu)								

Overview

- Hash Table
- Graph Terminology
- Graph Representation
 - Adjacency Matrix
 - Adjacency List

Hashing

- A typical space and time trade-off in algorithm
- To achieve search time in O(1), memory usage will be increased

What is hashing?

Direct-Address Table

- Assume that the keys of elements K drawn from the universe of possible keys U
- No two elements have the same key
- Search time is O(1) but ...
 - The array size is enormous
 - |U| >> |K|

Figure 4.1: Direct Address Table

What is hashing?

- To reduce the key space to a reasonable size
- Each key is mapped to a unique index (hash value/code/address)
- Search time remains O(1) on the average

```
hash function: {all possible keys} \rightarrow {0, 1, 2, ..., h-1}
```

- The array is called a hash table
- Each entry in the hash table is called a hash slot
- When multiple keys are mapped to the same hash value, a collision occurs
- If there are n records stored in a hash table with h slots, its load factor is $lpha=rac{n}{h}$

Hash Functions

- Must map all possible value within the range of the hash table uniquely
- Mapping should achieve an even distribution of the keys
- Easy and fast to compute
- Minimize collision
- 1. Modulo Arithmetic
- 2. Folding
- 3. Mid-square
- 4. Multiplicative Congruential Method
- 5. Etc.

Hash Functions

- 1. Modulo Arithmetic: $H(k) = k \mod h$
 - E.g. $h = 17 \& k = 37699 \rightarrow H(k) = 37699 \mod 13 = 12$
 - In practice, h should be a prime number, but not too close to any power of 2

2. Folding

- Partition the key into several parts and combine the parts in a convenient way
- Shift folding: Divide the key into a few parts and added up these parts
- $X = abc \rightarrow H(X) = (a + b + c) \mod h$
- E.g. $H(123456789) = (123 + 456 + 789) \mod 13 = 3$

Hash Functions

3. Mid-square

- The key is squared and the middle part of the result is used as the hash address
 - E.g. k=3121, $k^2 = 3121^2 = 9740641 \rightarrow H(k) = 406$

4. Multiplicative Congruential Method

- Pseudo-random number generator
 - $H(k) = (a \times k) \mod h$
 - E.g. k = 5, $a = 13 \rightarrow H(k) = (5 \times 6) \mod 13 = 4$

Collision Resolutions

- Closed Addressing Hashing a.k.a separate chaining
- Open Addressing Hashing
 - Linear Probing
 - Quadratic Probing
 - Double Probing

Closed Addressing: Separate Chaining

- Keys are not stored in the table itself
- All the keys with the same hash address are store in a separate list

- During searching, the searched element with hash address i is compared with elements in linked list H[i] sequentially
- In closed address hashing, there will be α number of elements in each linked list on average.

Closed Addressing: Separate Chaining

Time complexity in the worst-case analysis:

- When all elements are hashed to the same slot
- A linked list contains all n elements
- Its unsuccessful search takes n key comparisons, $\Theta(n)$
- Its successful search, assuming the probability of searching for each item is $\frac{1}{n}$

$$\frac{1}{n}\sum_{i=1}^{n}i=\frac{n+1}{2}=\Theta(n)$$

• It is just like a sequential search

Closed Address Hashing: Separate Chaining

Time complexity in the average-case analysis:

- All elements are equally likely hashed into h slots.
- Its unsuccessful search takes $\frac{n}{h}$ key comparisons, $\Theta(\alpha)$
- Its successful search takes 1 more than the number of comparisons done when the sought after item was inserted into the hash table
 - Before the ith item is inserted into the hash table, the average length of all lists is $\frac{l-1}{h}$
 - When the ith item is sought for, the no. of comparisons is $(1 + \frac{i-1}{h})$

 - Searching takes constant time averagely

• The average number of key comparisons over
$$n$$
 items
• If α is constant (n is proportional to n), then $\Theta(1)$
• Searching takes constant time averagely
$$= 1 + \frac{1}{n} \sum_{i=1}^{n} (1 + \frac{i-1}{h}) = \frac{1}{n} (\sum_{i=1}^{n} 1 + \frac{1}{h} \sum_{i=1}^{n} (i-1))$$

$$= 1 + \frac{1}{nh} \left(\frac{n}{2}(n-1)\right)$$

$$= 1 + \frac{n-1}{2h} = \Theta(1 + \alpha)$$

Open Addressing

- Keys are stored in the table itself
- α cannot be greater than 1
- When collision occurs, probe is required for the alternate slot
 - Ideally, the probing approach can visit every possible slot.
 - 1. Linear Probing: probe the next slot $H(k,i) = (k+i) \mod h$ where $i \in [0,h-1]$ eg. $H(k,i) = (k+i) \mod 7$ $k \in \{4,13,19,11\}$

Primary clustering:

- A long runs of occupied slots
- Average search time is increased

Open Addressing

2. Quadratic Probing

$$H(k,i) = (k + c_1i + c_2i^2) \bmod h$$
 where c_1 and c_2 are constants, $c_2 \neq 0$

- May not all hash table slots be on the probe sequence (selection of c_1 , c_2 , h are important)
 - Any prime number h choice will only have at most h/2 distinct probes
- For $h=2^n$, a good choice for the constants are $c_1=c_2=\frac{1}{2}$

eg.
$$H(k,i) = \left(k + \frac{1}{2}i + \frac{1}{2}i^2\right) \mod 8$$

$$k \in \{4, 13, 19, 11\}$$
 $\binom{(\frac{1}{2}i + \frac{1}{2}i^2) \mod 8}{3}$

- Secondary Clustering: if two keys have the same initial probe position, their probe sequences will be the same. This will form a clustering.
 - Inserting k=3 in the previous example.

Open Addressing

3. Double Hashing: a random probing method

 $H(k,i) = (k+iD(k)) \bmod h$ where $i \in [0,h-1]$ and D(k) is another hash function

• The hash table size *h* should be a prime number

eg.
$$H(k, i) = (k + iD(k)) \mod 7$$

 $D(k) = (k) \mod 3 + 1$
 $k \in \{0, 4, 13, 19, 11\}$

Time Complexity

Linear Probing

- Successful Search: $\frac{1}{2}(1 + \frac{1}{1-\alpha})$
- Unsuccessful Search: $\frac{1}{2} \left(1 + \left(\frac{1}{1-\alpha} \right)^2 \right)$

Double Hashing

- Successful Search: $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$
- Unsuccessful Search: $\frac{1}{1-\alpha}$

^{*}Proof can be found in The Art of Computer Programming by Knuth Donald (1973)

Delete A Key Under Open Addressing

- Leave the deleted key in the table
- Make a marker indicating that it is deleted
- Overwrite it when a new key is inserted to the slot
- May need to do a "garbage collection" when a large number of deletions are done
 - To improve the search time

Rehashing: Expanding the Hash Table

- As α increases, the time complexity also increases Solution:
- Increase the size of hash table (doubled)
- Rehash all keys into new larger hash table

Hash Table: Summary

- Closed-address Hashing : Separate Chaining: $O(\alpha)$ on average
- Open-address Hashing: $O(f(\frac{1}{1-\alpha}))$
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
- Delete keys
- Rehashing

- A graph G = (V, E) consists of two finite sets:
 - A set *V* of vertices/ nodes
 - |V| is the number of vertices
 - A set E of edges/arcs/links that connect the vertices
 - $E = \{(x, y) | x, y \in V\}$
 - | E | is the number of edges ranged from 0 to $\frac{|V|(|V|-1)}{2}$
 - Degree of a vertex is the number of edges incident to it
 - A tree is a special graph with no cycle

- If e = (x, y) is an edge in an undirected graph, then e is incident with x and y; x is adjacent to y and vice versa.
- If E is unordered, then G is undirected; otherwise, G is a directed graph.
- If e = (x, y) is an edge in a directed graph, then y can be reached from x through one edge, so target y is adjacent to source x (but it doesn't mean x is adjacent to y).

- A path is a sequence of distinct vertices, each adjacent to the predecessor (except for the first vertex). |V| = |E|+1
 ABDC
- A cycle is a path containing at least three vertices such that the last vertex on the path is the same as the first. |V| = |E|
 - O ABDCA

- An undirected graph is connected if there is a path from any vertex to any other vertex.
- A directed graph is strongly connected if there is a path from any vertex to any other vertex.
- A graph is cyclic if it contains one or more cycles; otherwise it is acyclic.
- A complete graph on n vertices is a simple undirected graph that contains exactly one edge between each pair of distinct vertices.

•
$$|E| = \frac{|V|(|V|-1)}{2}$$

Graph Applications

Maps

- V = {stations}
- E = {underground route}

Organic Chemistry

- V = {atoms}
- E = {bonds between atoms}

Electrical circuits

- V = {electrical devices}
- E = {linkage between devices}

Computer Networks

V = {computers}

E = {connections between computers}

- Aforl. (2014). A map of Singapore's Mass Rapid Transit (MRT) and Light Rail Transit (LRT) systems [Image]. Retrieved from https://commons.wikimedia.org/wiki/File:Singapore_MRT_and_LRT_System_Map.svg
- File: Electric circuit [Image]. (2013). Retrieved from https://pixabay.com/en/board-chip-circuit-electric-158973
- Chemistry-atoms [Image]. (2015). Retrieved from https://pixabay.com/en/pentanol-molecule-chemistry-atoms-867210/

Graph Representation

Adjacency Matrix

Adjacency List

Adjacency Matrix

• Use a matrix (2-D array) with size $|V| \times |V|$

```
typedef struct _graph{
        int vSize;
        int eSize;
        int **AdjM;
}Graph;
```

- $(u, v) \in E$ implies AdjM[u][v] = 1; Otherwise AdjM[u][v] = 0.
- If a graph is undirected, then AdjM is symmetric
 - AdjM[u][v] = AdjM[v][u]
- If a graph is directed, then AdjM[u][v] = 1 iff $(u, v) \in E$ but it does not imply $(v, u) \in E$ and AdjM[v][u] = 1.

Adjacency Matrix

```
typedef struct _graph{
    int vSize;
    int eSize;
    int **AdjM;
}Graph;
```

- access time for AdjM[u][v] is constant
- when graph is sparsely connected, most of the entries in AdjM are zeros

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	1	1	0	0	0	0	0	0	1	0
2	1	0	0	0	1	1	0	0	0	0	1	0
3	1	0	0	0	0	0		1	0	0	0	0
4	1	0	0	0	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0	0	0	0	0
6	0	1	0	0	0	0	0	0	1	1	0	0
7	0	0		0	0	0	0	0	0	0	0	0
8	0	0	1	0	0	0	0	0	0	0	0	1
9	0	0	0	0	0	1	0	0	0	0	0	0
10	0	0	0	0	0	1	0	0	0	0	0	0
11	1	1	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	1	0	0	0	2

Adjacency List

Use an array to represent the vertices

```
struct _listnode
{
        int id; //or weight
        struct _listnode *next;
};
typedef struct _listnode ListNode;
typedef struct _graph{
        int vSize;
        int eSize;
        ListNode **AdjL;
}Graph;
```

- For each vertex, use a linked list to represent the connections to other vertices
- Access time for AdjM[u][v] is linear
- Space complexity is lower, O(|V|+|E|)

Adjacency List

- Array size is |V|.
- Total number of nodes in link lists is 2 | E |

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 11$$

$$2 \rightarrow 11 \rightarrow 1 \rightarrow 5 \rightarrow 6$$

$$3 \rightarrow 1 \rightarrow 8 \rightarrow 7$$

$$4 \rightarrow 1$$

$$\rightarrow 2$$

$$6 \rightarrow 10 \rightarrow 9 \rightarrow 2$$

$$7 \rightarrow 3$$

$$8 \rightarrow 12 \rightarrow 3$$

$$9 \rightarrow 6$$

$$11 \rightarrow 2 \rightarrow 1$$

Represent Weighted Graphs

- In the array of adjacency lists, the weight can be stored as a data field in each list node
- In the adjacency matrices, the weight can be stored
 - The element at the u-th row and the v-th column can be defined as:

$$AdjM[u][v] = \begin{cases} W(u,v) & \text{if } (u,v) \in E \\ c & \text{otherwise} \end{cases}$$

• Constant c can be defined as 0 (weight as capacity) or some very large number ∞ (weight as cost)

Represent Weighted Graphs

	1	2	3	4
1	0	25	0	0
2	0	0	10	14
3	5	0	0	0
4	0	6	18	0

1
$$\rightarrow$$
 (2, 25)
2 \rightarrow (3, 10) \rightarrow (4, 14)
3 \rightarrow (1, 5)
4 \rightarrow (2, 6) \rightarrow (3, 18)

Summary

- Concepts and terminologies of graph, such as
 - A graph consists of a set of vertices and a set of edges
 - Directed vs. undirected graphs
 - The definitions of path and cycle, etc.
- Two data structures used to represent graphs:
 - Adjacency matrix
 - Array of adjacency lists
 - Their advantages and disadvantages for different applications

