CHUYÊN ĐỀ I: HỆ THỨC LƯỢNG TRONG TAM GIÁC

Họ tên học sinh: Lớp: 9B1/ Ngày: / ... / 20....

I. Bài tập vận dụng

Bài 1. Cho tam giác ABC vuông tại A, BC = 20cm. Biết tỉ số hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là 9: 16. Tính diện tích tam giác ABC.

Đáp án:

Vẽ đường cao AH.

Ta có
$$\frac{HB}{HC} = \frac{9}{16} \Rightarrow \frac{HB}{9} = \frac{HC}{16} = \frac{HB + HC}{9 + 16} = \frac{20}{25}$$

Suy ra HB =
$$\frac{9.20}{25}$$
 = 7,2 (cm); HC = $\frac{16.20}{25}$ = 12,8 (cm)

Xét ΔABC vuông tại A, đường cao AH ta có:

$$AB^2 = BC.BH = 20.7, 2 = 144 \implies AB = 12$$
 (cm);

$$AC^2 = BC.CH = 20.12, 8 = 256 \implies AC = 16$$
 (cm).

Vậy diện tích ΔABC là
$$S = \frac{1}{2}ABAC = \frac{1}{2} \cdot 12.16 = 96$$
 (cm²).

Bài 2. Cho tam giác vuông với các cạnh góc vuông có độ dài là 3 cm và 4 cm, kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và các đoạn thẳng mà nó chia ra trên cạnh huyền.

<u>Đáp án:</u>

Giả sử tam giác ABC có các cạnh góc vuông AB = 3cm, AC = 4cm, AH là đường cao.

Áp dụng định lí Pitago cho tam giác vuông ABC:

$$BC^2 = AB^2 + AC^2 = 3^2 + 4^2 = 25 \implies BC = 5 \text{ cm}$$

Áp dụng hệ thức lượng trong tam giác vuông ta có:

$$BA^2 = BH.BC \implies BH = \frac{BA^2}{BC} \implies BH = \frac{3^2}{5} \implies BH = \frac{9}{5} \text{ (cm)}$$

$$CA^{2} = CH.CB \Rightarrow CH = \frac{CA^{2}}{CB} \Rightarrow CH = \frac{4^{2}}{5} \Rightarrow CH = \frac{16}{5}$$
 (cm)

$$AH^2 = HB.HC \Rightarrow AH^2 = \frac{9}{5} \cdot \frac{16}{5} \Rightarrow AH = \frac{12}{5}$$
 (cm)

(Có thể tính đường cao AH bởi công thức $\frac{1}{AH^2} = \frac{1}{AB^2} + \frac{1}{AC^2}$)

Bài 3: Cho tam giác ABC cân tại A. Các tia phân giác của góc A và góc B cắt nhau tại O. Biết $OA = 2\sqrt{3}$ cm, OB = 2cm, tính độ dài AB.

<u>Đáp án:</u>

Qua A vẽ một đường thẳng vuông góc với AB cắt tia BO tại D.

Ta có
$$D + B_1 = 90^{\circ} AOD + B_2 = 90^{\circ}$$

mà
$$B_1 = B_2$$
 nên $AOD = D$

Do đó \triangle AOD cân tại A. Suy ra $AD = AO = 2\sqrt{3}$ (cm).

Vẽ AH \perp OD thì HO = HD.

Ta đặt
$$HO = HD = x$$
 thì $BD = 2x + 2$.

Xét \triangle ABD vuông tại A, đường cao AH, ta có $AD^2 = BD.HD$.

Suy ra $(2\sqrt{3})^2 = x(2x+2)$ Từ đó ta được phương trình:

$$2x^2 + 2x - 12 = 0 \iff (x - 2)(x + 3) = 0 \iff x = 2 \text{ hoăc } x = -3.$$

Giá trị x = 2 được chọn, giá trị x = -3 bị loại.

Do đó
$$BD = 2 + 2 + 2 = 6$$
 (cm). Suy ra:

$$AB = \sqrt{6^2 - (2\sqrt{3})^2} = \sqrt{24} = 2\sqrt{6}$$
 (cm).

Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Biết diện tích các tam giác ABH và ACH lần lượt là 54cm2 và 96cm2. Tính độ dài BC.

<u>Đáp án:</u>

Ta có
$$S_{ABH} = \frac{1}{2}AHBH = 54$$

Suy ra
$$AH.BH = 108$$
 . (1)

$$S_{ACH} = \frac{1}{2}AH.CH = 96 \text{ Suy ra } AH.CH = 192 .$$
 (2)

Từ (1) và (2) ta được: $AH^2.BH.CH = 108.192$.

Mặt khác $AH^2 = BH.CH$ (hệ thức 2). Suy ra $AH^4 = 12^4 \Rightarrow AH = 12$ (cm).

Ta có
$$S_{ABC} = 54 + 96 = 150$$
 (cm2) mà $S_{ABC} = \frac{1}{2}BCAH$ nên

$$\frac{1}{2}BCAH = 150$$

Suy ra BC =
$$\frac{150.2}{12}$$
 = 25 (cm).

- a) Tính diện tích hình thang;
- b) Qua O vẽ một đường thẳng song song với hai đáy, cắt AD và BC lần lượt tại M và N. Tính độ dài MN.

<u>Đáp án:</u>

a) • Xét \triangle ABD vuông tại A có AO \perp BD nên $OA^2 = OB.OD$ (hệ thức 2).

Do đó
$$OA^2 = 5,4.15 = 81 \Rightarrow OA = 9$$
 (cm).

• Xét \triangle ACD vuông tại D có OD \perp AC nên $OD^2 = OA.OC$ (hệ thức 2).

$$\Rightarrow$$
 OC = $\frac{\text{OD}^2}{\text{OA}} = \frac{15^2}{9} = 25$ (cm).

Do đó
$$AC = 25 + 9 = 34$$
 (cm); $BD = 5, 4 + 15 = 20, 4$ (cm).

Diện tích hình thang ABCD là: $S = \frac{ACBD}{2} = \frac{34.20, 4}{2} = 346, 8$ (cm2).

b) Xét
$$\triangle ADC$$
 có OM // CD nên $\frac{OM}{CD} = \frac{AO}{AC}$ (hệ quả của định lí Ta-lét). (1)

Xét ΔBDC có ON // CD nên
$$\frac{ON}{CD} = \frac{BN}{BC}$$
 (hệ quả của định lí Ta-lét). (2)

Xét ΔABC có ON // AB nên
$$\frac{AO}{AC} = \frac{BN}{BC}$$
 (định lí Ta-lét). (3)

Từ (1), (2), (3) suy ra
$$\frac{OM}{CD} = \frac{ON}{CD}$$

Do đó OM = ON.

Xét ΔAOD vuông tại O, OM \perp AD nên $\frac{1}{OM^2} = \frac{1}{OA^2} + \frac{1}{OD^2}$ (hệ thức 4).

Do đó
$$\frac{1}{OM^2} = \frac{1}{9^2} + \frac{1}{15^2} \Rightarrow OM \approx 7,7$$
 (cm).

Suy ra $MN \approx 7,7.2 = 15,4$ (cm).

Bài 6: Cho tam giác ABC cân tại A có các đường cao AH và BK. Chứng minh rằng:

$$\frac{1}{BK^2} = \frac{1}{BC^2} + \frac{1}{4AH^2}$$

Đán án:

Qua B kẻ đường thẳng vuông góc với BC cắt tia đối của tia AC tại D.

Vì \triangle ABC cân tại A nên đường cao AH đồng thời là đường trung tuyến \Longrightarrow BH = HC.

Xét
$$\triangle$$
 BCD có BH = HC (c/m trên); AH // BD (\perp BC)

⇒ CA = AD (t/c đường trung bình của tam giác).

Nên AH là đường trung bình của Δ BCD

$$\Rightarrow$$
 AH = $AH = \frac{1}{2}BD \Rightarrow$ BD = 2AH. (1)

Xét \triangle BCD có $DBC = 90^{\circ}$; BK \bot CD (K ∈ CD)

$$\Rightarrow \frac{1}{BK^2} = \frac{1}{BC^2} + \frac{1}{BD^2}$$
 (2)

Từ (1) và (2)
$$\Rightarrow \frac{1}{BK^2} = \frac{1}{BC^2} + \frac{1}{4AH^2}$$
 (đpcm)

Bài 7: Cho hình thang ABCD, $\hat{A} = \hat{D} = 90^{\circ} = \text{hai dường chéo vuông góc với nhau tại O. Cho biết AD = 12cm; CD = 16cm. Tính các độ dài OA, OB, OC, OD.$

Đáp án:

ΔADC vuông tại D, theo định lí Py-ta-go ta có:

$$AC^2 = AD^2 + DC^2 = 12^2 + 16^2 = 400$$
.

Suy ra AC = 20 (cm).

ΔADC vuông tại D, DO là đường cao nên

$$AD.DC = AC.DO$$
 (hệ thức 3).

Suy ra OD =
$$\frac{ADDC}{AC} = \frac{12.16}{20} = 9,6$$
 (cm).

Ta lại có $AD^2 = AC.AO$ (hệ thức 1) nên

$$OA = \frac{AD^2}{AC} = \frac{12^2}{20} = 7, 2 \text{ (cm)}.$$

Do đó OC = 20 - 7, 2 = 12,8 (cm).

Xét \triangle ABD vuông tại A, AO là đường cao nên $AO^2 = OB.OD$ (hệ thức 2).

$$\Rightarrow$$
 OB = $\frac{AO^2}{OD} = \frac{7.2^2}{9.6} = 5.4$ (cm).

Bài 8: Cho α là một góc nhọn. Chứng minh rằng:

a)
$$\sin \alpha < \tan \alpha$$
;

b)
$$\cos \alpha < \cot \alpha$$
.

<u>Đáp án:</u>

a) Ta có
$$\sin \alpha = \frac{AC}{BC} \tan \alpha = \frac{AC}{AB}$$
 mà BC > AB nên $\frac{AC}{BC} < \frac{AC}{AB}$

Do đó $\sin \alpha < \tan \alpha$;

b) Ta có
$$\cos \alpha = \frac{AB}{BC} \cot \alpha = \frac{AB}{AC}$$
 mà BC > AC nên $\frac{AB}{BC} < \frac{AB}{AC}$

Do đó $\cos \alpha < \cot \alpha$

Bài 9: Chứng minh định lí sin: Trong một tam giác nhọn, độ dài các cạnh tỉ lệ với sin của các góc đối diện:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Đáp án:

Vẽ đường cao CH.

Xét ΔACH vuông tại H ta có:
$$\sin A = \frac{CH}{AC}$$
 (1)

Xét ΔBCH vuông tại H ta có:
$$\sin B = \frac{CH}{BC}$$
 (2)

Từ (1) và (2) suy ra
$$\frac{\sin A}{\sin B} = \frac{CH}{AC} : \frac{CH}{BC} = \frac{BC}{AC} = \frac{a}{b}$$
. Do đó $\frac{a}{\sin A} = \frac{b}{\sin B}$

Chứng minh tương tự ta được $\frac{b}{\sin B} = \frac{c}{\sin C}$

$$V_{\hat{\mathbf{a}}\mathbf{y}} \frac{\mathbf{a}}{\sin \mathbf{A}} = \frac{\mathbf{b}}{\sin \mathbf{B}} = \frac{\mathbf{c}}{\sin \mathbf{C}}$$

Lưu ý: Nếu
$$\triangle ABC$$
 có thì ta vẫn có: $\frac{a}{\sin A} = \frac{b}{\sin B}$

Bài 10: Cho tam giác ABC vuông tại A, đường cao AH. Tính $\sin B$, $\sin C$ biết rằng:

a)
$$AB = 13 \text{ và } BH = 5;$$

b)
$$BH = 3 \text{ và } CH = 4.$$

<u>Đáp án:</u>

a) Tam giác ABC vuông tại A, đường cao AH ta có

$$AB^2 = BH.BC \implies BC = \frac{AB^2}{BH} = \frac{13^2}{5} = 33.8$$

Áp dụng định lý Pytago trong tam giác vuông ABC ta có:

$$AC = \sqrt{BC^2 - AB^2} = 31,2$$

$$SinB = \frac{AC}{BC} = \frac{31,2}{33,8} = \frac{12}{13}$$

$$SinC = \frac{AB}{BC} = \frac{13}{33,8} = \frac{5}{13}$$

b) Tam giác ABC vuông tại A, đường cao AH ta có

$$AH^2 = BH.CH = 3.4 \Rightarrow AH = 2\sqrt{3}$$

Tam giác ABH vuông. Theo định lý Pytago ta có

$$AB = \sqrt{HB^2 + AH^2} = \sqrt{3^2 + 12} = \sqrt{21}$$

$$SinB = \frac{AH}{AB} = \frac{2\sqrt{3}}{\sqrt{21}} = \frac{2}{\sqrt{7}}$$

Tam giác ABC vuông, BC = BH + HC = 3 + 4 = 7

Theo định lý Pytago ta có $AC = \sqrt{BC^2 - AB^2} = \sqrt{49 - 21} = \sqrt{28} = 2\sqrt{7}$

$$SinC = \frac{AB}{BC} = \frac{\sqrt{21}}{7}$$

Cách 2: Tam giác AHC vuông tại H; Theo định lý Pytago có $AC = \sqrt{AH^2 + HC^2} = \sqrt{12 + 16} = \sqrt{28}$

$$SinC = \frac{AH}{AC} = \frac{\sqrt{12}}{\sqrt{28}} = \sqrt{\frac{3}{7}} = \frac{\sqrt{21}}{7}$$

Bài 11: Cho tam giác ABC vuông tại A. Chứng minh rằng $\tan \frac{ABC}{2} = \frac{AC}{AB + BC}$

Đáp án:

Vẽ đường phân giác BD của \triangle ABC (D \in AC).

Theo tính chất đường phân giác của tam giác ta có : $\frac{AD}{DC} = \frac{AB}{BC} \Leftrightarrow \frac{AD}{AB} = \frac{DC}{BC}$

$$\Rightarrow \frac{AD}{AB} = \frac{AD + DC}{AB + BC} \Rightarrow \frac{AD}{AB} = \frac{AC}{AB + BC}.$$

Xét
$$\triangle$$
 ABD có $BAD = 90^{\circ} \implies \tan ABD = \frac{AD}{AB}$

$$\Leftrightarrow \tan \frac{ABC}{2} = \frac{AC}{AB + BC}$$

Vậy
$$\tan \frac{ABC}{2} = \frac{AC}{AB + BC}$$

Bài 12: Giải tam giác ABC biết $B = 35^{\circ}$; $C = 50^{\circ}$ và đường cao AH = 5,0cm.

Đáp án:

Ta phải tìm A AB, AC và BC.

$$A = 180^{\circ} - (B + C) = 95^{\circ}$$

• Xét ΔABH vuông tai H ta có:

$$AH = AB.sin B \Rightarrow AB = \frac{AH}{\sin B} = \frac{5.0}{\sin 35^{\circ}} \approx 8.7 \text{ (cm)}$$

$$BH = AH.cot \ B \approx 5, 0.cot \ 35^{\circ} \approx 7, 1$$
 (cm).

• Xét ΔACH vuông tại H ta có

$$AH = AC.sin C \Rightarrow AC = \frac{AH}{\sin C} = \frac{5.0}{\sin 50^{\circ}} \approx 6.5 \text{ (cm)}$$

$$CH = AH.cot \ C \approx 5, 0.cot \ 50^{\circ} \approx 4, 2$$
 (cm).

Do đó
$$BC = BH + CH = 7,1 + 4,2 = 11,3$$
 (cm).

Vậy
$$\hat{A} = 95^{\circ}$$
; AB = 8,7cm; AC = 6,5cm và BC = 11,3cm.

Bài 13: Cho tam giác ABC, AB = 14cm, AC = 11cm và $B = 40^{\circ}$.

Tính độ dài BC

Vẽ đường cao AH. Xét ΔABH vuông tại H có:

$$AH = AB.\sin B = 14.\sin 40^{\circ} \approx 9.0$$
 (cm).

$$BH = AB.cos B = 14.cos 40^{\circ} \approx 10,7$$
 (cm).

Xét ΔAHC vuông tại H có:

$$HC = \sqrt{AC^2 - AH^2} = \sqrt{11^2 - 9^2} \approx 6.3 \text{ (cm)}.$$

• Nếu C' nằm giữa B và H thì
$$BC' = BH - HC' \approx 10,7 - 6,3 = 4,4$$
 (cm).

II. Bài tập tự luyện

Bài 1: Cho \triangle ABC vuông tại A. Biết $\frac{AB}{AC} = \frac{5}{7}$. Đường cao AH = 15cm. Tính HB, HC.

Bài 2: Cho \triangle ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.

Bài 3: Cho \triangle ABC vuông tại A. Kẻ đường cao AH, tính chu vi \triangle ABC biết AH = 14cm, $\frac{HB}{HC} = \frac{1}{4}$.

Bài 4: Cho tam giác ABC vuông ở A, đương cao AH. Biết AB = 20cm, HC = 9cm. Tính độ dài AH.

Bài 5: Cho tam giác ABC vuông tại A có BD là phân giác góc B. Biết rằng AD = 1cm; BD = $\sqrt{10}$ cm. Tính độ dài cạnh BC.

Bài 6: Cho tam giác ABC , $B = 60^{\circ}$, BC = 8cm; AB + AC = 12cm . Tính độ dài cạnh AB.

Bài 7: Cho hình thang cân ABCD, đáy lớn CD = 10cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.

Bài 8:

a. Cho tam giác ABC có $B = 60^{\circ}, C = 50^{\circ}, AC = 35cm$. Tính diện tích tam giác ABC.

- b. Cho tứ giác ABCD có $A = D = 90^{\circ}$, $C = 40^{\circ}$, AB = 4cm, AD = 3cm. Tính diện tích tứ giác.
- c. Cho tứ giác ABCD có các đường chéo cắt nhau tại O. Cho biết AC=4,BD=5, $AOB=50^{\circ}$. Tính diện tích tứ giác ABCD.

Bài 9: Cho \triangle ABC vuông tại A, kẻ đường cao AH, chu vi \triangle AHB bằng 30cm, chu vi \triangle ACH bằng 4dm. Tính BH, CH và chu vi \triangle ABC.

Bài 10: Cho biết chu vi của một tam giác bằng 120cm. Độ dài các cạnh tỉ lệ với 8, 15, 17.

- a) Chứng minh rằng tam giác đó là một tam giác vuông.
- b) Tính khoảng cách từ giao điểm ba đường phân giác đến mỗi cạnh.

Bài 11: Cho tứ giác lồi ABCD có AB = AC = AD = 10 cm, $B = 60^{\circ}$ và $A = 90^{\circ}$

- a) Tính đường chéo BD.
- b) Tính các khoảng cách BH và DK từ B và D đến AC.
- c) Tính HK.
- d) Vẽ BE \perp DC kéo dài. Tính BE, CE và DC.

---- Hết ----

Liên hệ: Thầy Minh – SĐT: 036 350 3879 – Facebook: Lê Minh