ગણ સિદ્ધાંત

2.1 પ્રાસ્તાવિક

ગણ સિદ્ધાંતની ચર્ચા ધોરણ 8 અને 9માં કરવામાં આવી હતી. આ પ્રકરણમાં ગણ સિદ્ધાંતના તાર્કિક અભિગમ વિશે ચર્ચા કરીશું. આ વિભાગમાં અગાઉ મેળવેલ માહિતીનું પુનરાવલોકન કરીશું.

ગણ (Set) એ ગણિતમાં આવતાં અવ્યાખ્યાયિત પદો પૈકીનું એક પદ છે. ગણના **ઘટક (Element)** હોવું તે પણ અવ્યાખ્યાયિત પદ છે. ગણને અમુક વસ્તુઓના સુવ્યાખ્યાયિત સમૂહ તરીકે સ્વીકારીશું. ગણના સભ્યોને ધનુષ્કૌંષ $\{\}$ માં મૂકી દર્શાવાય છે; ઉદાહરણ તરીકે $A = \{a, b, c\}$, અહીં A ગણ છે અને તેના સભ્યો a, b, c છે. સામાન્ય રીતે A, B, C વગેરે સંકેતો ગણ માટે વપરાય છે અને તેના સભ્યો a, b, c, x, y, z વગેરેથી દર્શાવાય છે. ગણમાં આવેલ પદોને ગણના ઘટકો અથવા ગણના સભ્યો (Members) કહેવાય છે. જો x એ કોઈ ગણ Aનો સભ્ય (અથવા ઘટક) હોય, તો $x \in A$ (વંચાય : 'x belongs to A') લખીશું અને જો y એ ગણ Aનો સભ્ય ન હોય તો $y \notin A$ લખીશું. (વંચાય : 'y does not belong to A')

કેટલાક જાણીતા ગણ નીચે પ્રમાણે છે :

N = પ્રાકૃતિક સંખ્યાઓનો ગણ = {1, 2, 3, 4, 5,...}

Z =પૂર્શાંક સંખ્યાઓનો ગણ = {...-2, -1, 0, 1, 2, 3,...}

O = સંમેય સંખ્યાઓનો ગણ

R = વાસ્તવિક સંખ્યાઓનો ગણ

વળી, ગણ દર્શાવવા માટે બે રીતો છે:

(1) યાદીની રીત (Listing Method / Roster Form) : આ રીતમાં ગણના ઘટકોની નિશ્ચિત યાદી બનાવાય છે. બે ઘટકોને તેમની વચ્ચે અલ્પવિરામ મૂકી જુદા પાડવામાં આવે છે. ઉદાહરણ તરીકે $A = \{1, 11, 111, 1111\}$ ના ઘટકો 1, 11, 111, 1111 છે. યાદીની રીતે દર્શાવતાં, $N = \{1, 2, 3, ...\}$ અને $Z = \{....-2, -1, 0, 1, 2, ...\}$.

યાદીની રીતે ગણ લખતાં યાદીમાં ઘટકોનું પુનરાવર્તન કરવામાં આવતું નથી. ઉદાહરણ તરીકે BEGINNING શબ્દમાં આવતા અક્ષરોનો ગણ α હોય, તો $\alpha = \{B, E, G, I, N\}$. વળી યાદીમાં મૂકેલા ઘટકોના ક્રમનું મહત્ત્વ નથી.

જો ગણમાંના ઘટકોની યાદી વિશાળ હોય, તો ઘટકો પૈકી શરૂઆતના થોડા ઘટકો લખી ત્યાર બાદ ત્રણ ટપકાં અને અંતના થોડા ઘટકો લખી યાદીને ટૂંકાવવામાં આવે છે. ઉદાહરણ તરીકે 1000થી નાની યુગ્મ પ્રાકૃતિક સંખ્યાઓનો ગણ {2, 4, 6, 8,..., 996, 998}થી દર્શાવવામાં આવે છે. વળી, જો યાદીનો કોઈ અંત ન આવવાનો હોય તો છેલ્લે ત્રણ ટપકાં કરવામાં આવે છે.

(2) ગુણધર્મની રીત (ગણ સર્જનની રીત) (Property Method / Set Builder Form) : આ રીતમાં ગણના ઘટકો x ના કોઈ લાક્ષણિક ગુણધર્મ P(x) દ્વારા ગણની રજૂઆત કરવામાં આવે છે. આમ, $\{x \mid P(x)\} = \{x \mid x$ નો ગુણધર્મ} લખાય. આને આપેલ ગુણધર્મ P(x) ધરાવતા તમામ xનો ગણ તેમ વંચાય. ઉદાહરણ તરીકે સંમેય સંખ્યાઓના ગણ Qને દર્શાવવા માટે,

$$Q = \left\{ x \mid x = \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N} \right\}$$
 સંકેત વપરાય.

જો $M = \{x \mid x \text{ એ પૂર્ણાંક સંખ્યા છે. } -2 < x < 3\}, તો <math>M = \{-1, 0, 1, 2\}$

ફક્ત એક જ ઘટક ધરાવતા ગણને એકાકી ગણ (Singleton) કહેવાય છે. ઉદાહરણ તરીકે $\{-2\}$ એકાકી ગણ છે. ધારો કે $D = \{x \mid x \text{ એ યુગ્મ અવિભાજય સંખ્યા છે.}, અહીં 2 સિવાયની બધી જ યુગ્મ સંખ્યાઓ વિભાજય હોવાથી <math>D = \{2\}$. આથી D એ એકાકી ગણ છે.

જે ગણ એક પણ ઘટક ન ધરાવતો હોય તેવા ગણને ખાલી ગણ (Null Set) અથવા રિક્ત ગણ (Empty Set) કહે છે. ખાલી ગણને $\{\}$ અથવા \emptyset થી દર્શાવાય છે. ગુણધર્મની રીતે ગણ દર્શાવતાં એવું બને કે આપેલ ગુણધર્મ ધરાવતી એક પણ રાશિ અસ્તિત્વમાં ન હોય. આવા કિસ્સામાં એ ગણ ખાલી ગણ બનશે. ઉદાહરણ તરીકે $\{x \mid x^2 = -4; x \in \mathbf{R}\}$ એ ખાલી ગણ છે. કારણ કે દરેક વાસ્તવિક સંખ્યાનો વર્ગ અનુણ હોય છે. આથી ગણમાં દર્શાવેલ ગુણધર્મ ધરાવતી હોય એવી કોઈ સંખ્યા ન મળે.

જે ગણ ખાલી ગણ નથી તે અરિક્ત ગણ (Non-empty Set) છે.

2.2 સાર્વત્રિક ગણ

સાર્વત્રિક ગણ (Universal Set): ઘણી વખત આપણે એક કરતાં વધારે ગણની વાત કરતાં હોઈએ ત્યારે આ તમામ ગણના ઘટકો કોઈ એક નિશ્ચિત ગણના સભ્યો હોય છે. આ ગણને સાર્વત્રિક ગણ કહેવાય છે અને તેને U વડે દર્શાવાય છે. સાર્વત્રિક ગણનો આધાર સંદર્ભ પર રહેલો છે. જો કોઈ પૂર્ણાંક સંખ્યાઓના ગણનો વિચાર કરતાં હોઈએ તો સાર્વત્રિક ગણ તરીકે Z લેવાય; ધન વાસ્તવિક સંખ્યાના n-મૂળની ચર્ચા કરતી વખતે વાસ્તવિક સંખ્યાઓના ગણ Rને સાર્વત્રિક ગણ તરીકે લેવાય.

2.3 **Guoigi**

ઉપગણ (Subset) : જો ગણ Aનો પ્રત્યેક ઘટક ગણ Bનો પણ ઘટક હોય, તો ગણ Aને ગણ Bનો ઉપગણ કહેવાય. જો A એ Bનો ઉપગણ હોય, તો A ⊂ B લખાય.

તર્કના સંકેતમાં, પ્રત્યેક x માટે ($x \in A \Rightarrow x \in B$) $\Rightarrow A \subset B$ લખાય.

આપણે તેને $(\forall x, x \in A \Rightarrow x \in B) \Rightarrow A \subset B$ તરીકે પણ લખી શકીએ.

પ્રત્યેક પ્રાકૃતિક સંખ્યા પૂર્શાંક છે. આથી N \subset Z લખાય. આ જ રીતે Z \subset Q અને Q \subset R. ઉપગણના ખ્યાલને સમજવા નીચેનાં ઉદાહરણો જોઈએ :

$$\{1, 2, 4\} \subset \{1, 2, 3, 4, 5, 6\}$$

વળી, {1, 3, 9} ⊄ {1, 2, 4, 8, 9} કારણ કે, 3 ∈ {1, 3, 9} પરંતુ 3 ∉ {1, 2, 4, 8, 9}.

અહીં નોંધીએ કે કોઈ ગણ Aને અન્ય ગણ Bનો ઉપગણ સાબિત કરવા માટે જરૂરી છે કે Aના તમામ ઘટકો ગણ Bમાં આવેલ હોય પરંતુ A ⊄ B દર્શાવવા માટે Aનો કોઈ એક ઘટક Bમાં નથી તે સાબિત કરવું પૂરતું છે.

'જો ($\forall x, x \in A \Rightarrow x \in B$), તો $A \subset B$ 'નું સમાનાર્થી પ્રેરણ 'જો $A \not\subset B$ તો કોઈક x એવો મળે કે જેથી $x \in A$ અને $x \not\in B$ ' છે, કારણ કે $p \Rightarrow q$ અને $\neg q \Rightarrow \neg p$ તાર્કિકી સમાન છે તથા $p \Rightarrow q$ નું નિષેધ $\neg (p \Rightarrow q) = p \land (\neg q)$ છે.

પ્રમેય 2.1 : A ⊂ A

સાબિતી : સ્પષ્ટ છે કે, પ્રત્યેક x માટે $x \in A \Rightarrow x \in A$. આથી $A \subset A$.

પ્રમેય 2.2 : કોઈ પણ ગણ A માટે ∅ ⊂ A

સાબિતી : ધારો કે Ø ⊄ A,

આથી $\exists x, x \in \emptyset$ અને $x \notin A$.

પણ $x\in\emptyset$ શક્ય નથી કારણ કે \emptyset ખાલી ગણ છે. આમ, આપણી ધારણા $\emptyset\not\subset A$ ખોટી છે. આથી $\emptyset\subset A$.

ઉપરના બે પ્રમેયો ઉપરથી સ્પષ્ટ છે કે કોઈ પણ અરિક્ત ગણને ઓછામાં ઓછા બે ઉપગણો, Ø અને આપેલ ગણ પોતે હોય છે. આ બંને ઉપગણને અનુચિત ઉપગણો (Improper Subsets) કહેવાય છે. આપેલ ગણના અન્ય ઉપગણોને (જો હોય તો) ઉચિત ઉપગણો (Proper Subsets) કહેવાય છે.

જો ગણ A, ગણ Bનો ઉપગણ હોય, તો Bને Aનો અધિગણ (Super Set) કહેવાય. આ રીતે સાર્વત્રિક ગણ તમામ ગણોનો અધિગણ કહેવાય અને બધા જ ગણ સાર્વત્રિક ગણના ઉપગણો છે.

નીચેના કોષ્ટકમાં ગણના સભ્યોની સંખ્યા અને તેના ઉપગણોની સંખ્યાનો રસપ્રદ સંબંધ દર્શાવ્યો છે :

ાછા	ઉપગણો	સભ્યસંખ્યા (<i>n</i>)	ઉપગણોની સંખ્યા	ઉચિત ઉપગણોની સંખ્યા
Ø	Ø	0	$1 = 2^0$	0
{a}	Ø, {a}	1	$2 = 2^{1}$	2 - 2 = 0
{a, b}	\emptyset , $\{a\}$, $\{b\}$, $\{a, b\}$	2	$4 = 2^2$	4 - 2 = 2
{a, b, c}	Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} {a, b, c}	3	8 = 2 ³	8 - 2 = 6

વ્યાપક રીતે, જો કોઈ ગણમાં સભ્યોની સંખ્યા *n* હોય, તો તેના ઉપગણોની સંખ્યા 2" થાય અને જો *n* ≥ 1 તો તેના ઉચિત ઉપગણોની સંખ્યા 2" − 2 થાય છે.

ઘાત ગણ (Power Set) : કોઈ પણ ગણ A માટે, Aના તમામ ઉપગણોથી બનતા ગણને Aનો ઘાત ગણ કહેવાય છે અને તેને P(A)થી દર્શાવાય છે. ઉપર જણાવ્યા મુજબ જો Aમાં ઘટકોની સંખ્યા n હોય, તો P(A)ના ઘટકોની સંખ્યા 2^n થાય. ગણ Aનો ઘાત ગણ $P(A) = \{B \mid B \subset A\}$ થી દર્શાવી શકાય. P(A) માટે કેટલીક વખત સંકેત 2^A પણ વપરાય છે.

જુઓ કે કોઈ પણ ગણ A માટે $\emptyset \subset A$. આથી $\emptyset \in P(A)$, આમ **કોઈ પણ ગણનો ઘાત ગણ** ક્યારેય ખાલી ગણ ન હોય. ઉદાહરણ તરીકે જો $A = \{d, e, f\}$ હોય, તો

 $P(A) = \{\emptyset, \{d\}, \{e\}, \{f\}, \{d, e\}, \{d, f\}, \{e, f\}, \{d, e, f\}\}.$

વાસ્તવિક સંખ્યા ગણના ઉપગણો :

વાસ્તવિક સંખ્યા ગણ Rને કેટલાંક મહત્ત્વના ઉપગણો છે. થોડા ઉપગણોનાં ઉદાહરણ નીચે આપ્યાં છે : પ્રાકૃતિક સંખ્યાઓનો ગણ, $N = \{1, 2, 3,...\}$.

પૂર્ણીક સંખ્યાઓનો ગણ, $Z = {..., -3, -2, -1, 0, 1, 2,...}$.

સંમેય સંખ્યાઓનો ગણ, $Q = \{x \mid x = \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}\}.$

 $p \in \mathbb{Z}$ તથા $q \in \mathbb{N}$ હોય તેવી તમામ સંખ્યાઓ $\frac{p}{q}$ ને સંમેય સંખ્યાઓ કહે છે.

તમામ પ્રાકૃતિક સંખ્યાઓ અને પૂર્ણાંકો, ગણ Qના ઘટકો છે (કારણ કે આ સંખ્યાઓના છેદમાં 1 મૂકી શકાય. ઉદાહરણ તરીકે $3=\frac{3}{1}, -5=\frac{-5}{1}$ વગેરે.) વ્યાપક રીતે $n\in \mathbb{Z}$ તો $n=\frac{n}{1}\in \mathbb{Q}$. આથી સ્પષ્ટ રીતે,

$$N \subset Z \subset Q \subset R$$

પૂર્ણાં કોના ભાગાકાર તરીકે એટલે કે $\frac{p}{q}$ સ્વરૂપમાં ન દર્શાવી શકાય તેવી કેટલીક વાસ્તવિક સંખ્યાઓ $\sqrt{2}$, $\sqrt{5}$, π જેવી છે. આથી તેઓ Q ના ઘટકો નથી. આવી સંખ્યાઓ અસંમેય સંખ્યાઓ (Irrational Numbers) કહેવાય છે. તમામ અસંમેય સંખ્યાઓના ગણને I વડે દર્શાવાય છે. આમ, $I = \{x \mid x \in \mathbb{R}, x \notin Q\}$ એટલે કે I એ સંમેય ન હોય તેવી તમામ વાસ્તવિક સંખ્યાઓનો ગણ છે. અન્ય મહત્ત્વના Rના ઉપગણો અંતરાલ (Interval) છે.

અંતરાલ (Interval) : જો $a, b \in \mathbb{R}$ અને a < b હોય, તો ગણ $\{x \mid x \in \mathbb{R}, a < x < b\}$ ને વિવૃત્ત અંતરાલ (Open Interval) કહેવાય છે અને તે (a, b) વડે દર્શાવાય છે.

અહીં a અને b વચ્ચેની તમામ વાસ્તવિક સંખ્યાઓ (a, b)માં સમાયેલી છે, પરંતુ સંખ્યાઓ a અને b પોતે આ અંતરાલમાં આવેલ નથી.

જો $a, b \in \mathbb{R}$ અને a < b હોય, તો ગણ $\{x \mid x \in \mathbb{R}, a \le x \le b\}$ ને સંવૃત્ત અંતરાલ (Closed Interval) કહેવાય છે અને તે [a, b] વડે દર્શાવાય છે.

અહીં, [a, b] એ a અને b વચ્ચેની તમામ વાસ્તિવિક સંખ્યાઓ તેમજ a અને bને પણ સમાવે છે. a અને bને અંતરાલનાં અંત્યબિંદુઓ (End Points) કહેવાય છે.

અંતરાલમાં બેમાંથી એક અંત્યબિંદુ આવતું હોય તેવા અંતરાલો નીચે પ્રમાણે છે :

 $[a, b) = \{x \mid x \in \mathbb{R}, a \le x < b\}$ અને $(a, b] = \{x \mid x \in \mathbb{R}, a < x \le b\}$ આ સિવાયના અન્ય અંતરાલો નીચે આપેલા છે :

[0, ∞) = અનુણ વાસ્તવિક સંખ્યાઓનો ગણ

(-∞, 0) = ઋણ વાસ્તવિક સંખ્યાઓનો ગણ

 $(-\infty, \infty) = R$

 $(a, \infty) = \{x \mid x \in \mathbb{R}, x > a\}$

 $[a, \infty) = \{x \mid x \in \mathbb{R}, x \ge a\}$

 $(-\infty, a) = \{x \mid x \in \mathbb{R}, x < a\}$

 $(-\infty, a] = \{x \mid x \in \mathbb{R}, x \le a\}$

સંખ્યારેખા પર વિવિધ અંતરાલોનું નિરૂપણ નીચેની આકૃતિમાં આપેલ છે :

અહીં નોંધીએ કે અંતરાલ એ અનંત ગણ છે.

સંખ્યા (b-a) ને (a, b), [a, b], [a, b) અથવા (a, b] પ્રકારના અંતરાલની લંબાઈ કહેવાય છે.

સમાન ગણો (Equal Sets) : જો ગણ A તથા Bના તમામ ઘટકો તેના તે જ હોય, તો A તથા Bને સમાન ગણ કહે છે. આમ જો $\forall x, x \in A$ તો $x \in B$ અને જો $\forall x, x \in B$ તો $x \in A$ હોય, તો A = B. આમ, જો $A \subset B$ તથા $B \subset A$ તો A = B.

આ વ્યાખ્યા પરથી સ્પષ્ટ છે કે, ગણમાં ઘટકો કયા ક્રમમાં લખાયેલા છે તેનું મહત્ત્વ નથી. દાખલા તરીકે $A = \{a, b, c\}, B = \{b, c, a\}$ હોય, તો સહેલાઈથી જોઈ શકાય કે $A \subset B$ અને $B \subset A$. આથી A = B.

બે ગણોની સમાનતા આ પ્રમાણે પણ લખી શકાય :

જો $\forall x, x \in A \Rightarrow x \in B$ અને $\forall x, x \in B \Rightarrow x \in A$, તો અને તો જ A = B.

ઉદાહરણ 1 : સાબિત કરો કે $A \subset B$ અને $B \subset C \Rightarrow A \subset C$.

ઉકેલ : અહીં A \subset B હોવાથી $\forall x, x \in A \Rightarrow x \in B$

વળી, B \subset C હોવાથી $\forall x, x \in B \Rightarrow x \in C$

 $\therefore \forall x, x \in A \Rightarrow x \in C$

 \therefore A \subset C

આમ, 'ઉપગણ હોવું' સંબંધ **પરંપરિતતા (Transitivity)**નો ગુણધર્મ ધરાવે છે.

ઉદાહરણ $2: \alpha = \{x \mid x \text{ એ FELLOW શબ્દનો અક્ષર છે.}\}$

 $\beta = \{x \mid x \text{ એ FLOW શબ્દનો અક્ષર છે.}\}$, તો નીચેમાંથી કયું વિધાન સાચું છે ?

(a) $\alpha \subset \beta$ (b) $\alpha = \beta$ (c) $\beta \subset \alpha$ (d) આ પૈકી એક પણ નહિ.

ઉકેલ : આ બંને ગણોને યાદીની રીતે લખતાં, $\alpha = \{F, E, L, O, W\}$, $\beta = \{F, L, O, W\}$ સ્પષ્ટ રીતે $\beta \subset \alpha$ પરંતુ $\alpha \not\subset \beta$. આથી $\alpha \neq \beta$. આમ વિકલ્પ (c) $\beta \subset \alpha$ સત્ય છે.

ઉદાહરણ 3 : $A = \{x \mid x \in \mathbb{N}, x < 5\}$ અને $B = \{x \mid x \in \mathbb{N}, x^2 < 25\}$ હોય, તો A = B થાય તેમ સાબિત કરો.

ઉકેલ : રીત 1 : અહીં $A = \{1, 2, 3, 4\}$. વળી, $B = \{1, 2, 3, 4\}$ કારણ કે, $1^2 < 25, 2^2 < 25, 3^2 < 25, 4^2 < 25, 5^2 <math>\checkmark$ 25 વગેરે. સ્પષ્ટ છે કે A = B.

રીત 2: આ રીત થોડી અમૂર્ત છે.

ધારો કે $x \in A$

 $\therefore x < 5$ અને $x \in \mathbb{N}$

 $x^2 < 25$

(બંને તરફ વર્ગ લેતાં)

 $\therefore x \in B$

આમ, $\forall x, x \in A \Rightarrow x \in B$

 $\therefore A \subset B$ (i)

આથી ઊલટું, ધારો કે $x \in \mathbf{B}$

 $x^2 < 25$ (વર્ગમૂળ લેતાં)

|x| < 5

 $\therefore x < 5$ $(x \in \mathbb{N})$

 $\therefore x \in A$

 $\therefore \forall x, x \in B \Rightarrow x \in A$

 $\therefore \quad \mathbf{B} \subset \mathbf{A} \tag{ii}$

 $A \subset B$ અને $B \subset A$. આથી, A = B.

((i) અને (ii) ઉપરથી)

ઉદાહરણ 4 : જો $A = \{x \mid 4 < x^2 < 40, x \in N\}$ અને $B = \{x \mid 4 < x^3 < 40, x \in N\}$ તો સાબિત કરો કે $A \not\subset B$ અને $B \not\subset A$.

ઉકેલ : $x \in A$ માટે, $4 < x^2 < 40 < 49$

 $\therefore 2 < x < 7. \tag{x \in \mathbb{N}}$

આથી x = 3, 4, 5, 6 શક્ય છે.

તથા $3^2 = 9$, $4^2 = 16$, $5^2 = 25$, $6^2 = 36$ અને 9, 16, 25, 36 એ 4 અને 40 વચ્ચે આવેલ છે.

 \therefore A = {3, 4, 5, 6}

 $x \in B$ માટે $1 < 4 < x^3 < 40 < 64$

 $\therefore 1 < x < 4.$

આથી x = 2, 3 શક્ય છે તથા $2^3 = 8$, $3^3 = 27$ અને 8 અને 27 એ 4 અને 64 વચ્ચે આવેલ છે.

 \therefore B = {2, 3}

અહીં સ્પષ્ટ છે કે 4 ∈ A અને 4 ∉ B

∴ A ⊄ B

વળી, 2 ∈ B અને 2 ∉ A

∴ B ⊄ A.

स्वाध्याय 2.1

- 1. નીચેના ગણને યાદીની રીતે લખો :
 - (1) $\{x \mid x \text{ એ } 10$ થી નાની પ્રાકૃતિક સંખ્યા છે. $\}$
 - (2) $\{x \mid x^2 5x 6 = 0, x \in \mathbb{N}\}\$
 - (3) $\{x \mid x^2 5x 6 = 0, x \in \mathbb{R}\}$
 - (4) $\{x \mid x^3 x = 0, x \in Z\}$
 - (5) $\{x \mid -3 \le x \le 3, x \in Z\}$

- 2. $A = \{1, a, b\}$ ના તમામ ઉપગણોની યાદી બનાવો.
- 3. A = $\{a, b, c, d\}$, B = $\{a, b, c\}$, C = $\{b, d\}$. નીચેની શરતોનું પાલન કરતા તમામ ગણ X શોધો :
 - (1) $X \subset B, X \not\subset C$

- (2) $X \subset B$, $X \not\subset C$, $X \neq B$
- (3) $X \subset A, X \not\subset B, X \not\subset C$
- 4. સંખ્યાઓ પર ≤ સંબંધ નીચેના ગુણધર્મો ધરાવે છે :
 - (1) $a \le a, \forall a \in \mathbb{R}$

(સ્વવાચકતા)

(2) જો $a \le b$ અને $b \le a$, તો a = b, $\forall a, b \in \mathbb{R}$

(અસંમિતતા)

(3) જો $a \le b$ અને $b \le c$, તો $a \le c$, $\forall a, b, c \in \mathbb{R}$

(પરંપરિતતા)

આમાંનો કયો ગુણધર્મ P(A) પરનો સંબંધ ⊂ ધરાવે છે ?

5. $A = \{x \mid x = 2y - 1, y \in Z\}$, $B = \{x \mid x = 2y + 1, y \in Z\}$ હોય, તો A = B સાબિત કરો.

2.4 ગણક્રિયાઓ

ધારો કે U સાર્વત્રિક ગણ છે અને P(U) તેનો ઘાત ગણ છે. આપણે P(U) ઉપર ક્રિયાઓ વ્યાખ્યાયિત કરીશું અને તેમના ગુણધર્મોનો અભ્યાસ કરીશું.

(1) યોગક્રિયા (Union Operation) : ધારો કે A, B ∈ P(U). A અથવા Bમાં આવેલા તમામ ઘટકોને સમાવતો ગણ A અને Bનો યોગ ગણ (Union Set) કહેવાય અને તેને A ∪ Bથી દર્શાવાય છે. બે ગણોનો યોગ ગણ મેળવવાની ક્રિયાને યોગક્રિયા કહે છે.

આમ, $A \cup B = \{x \mid x \in A અથવા x \in B\}$.

અહીં 'અથવા' શબ્દમાં 'અને/અથવા' અભિપ્રેત છે. 'અથવા' શબ્દનો અર્થ સમાવેશ વિકલ્પ તરીકે Aમાં અથવા Bમાં હોય અથવા A અને B બંનેમાં હોય તેવા તમામ ઘટકોથી બનતો ગણ $A \cup B$ છે. આથી x એ A, B પૈકી ઓછામાં ઓછા એક ગણનો ઘટક છે. દાખલા તરીકે, ધારો કે $A = \{1, 2, 5\}$, $B = \{2, 3, 4, 5\}$ હોય, તો $A \cup B = \{1, 2, 3, 4, 5\}$.

A ∪ Bની વેન આકૃતિ યાદ હશે જ. આકૃતિ 2.2 માં રંગીન પ્રદેશ વડે A ∪ B દર્શાવેલ છે.

હવે, આપણે યોગક્રિયાનાં થોડાં મહત્ત્વનાં પરિણામોની ચર્ચા કરીશું. A, B, C, D ∈ P(U) લઈશું.

(1) યોગક્રિયા એ P(U) ઉપરની દ્વિક્ક્રિયા છે, એટલે કે જો A, B ∈ P(U), તો A ∪ B ∈ P(U).

 $x \in A \cup B \Rightarrow x \in A$ અથવા $x \in B$

 $A \in P(U), B \in P(U)$

- \therefore A \subset U, B \subset U
- $\therefore x \in U$
- \therefore (A \cup B) \subset U
- \therefore (A \cup B) \in P(U)

આ ક્રિયાને સંવૃત્તતાનો (Closure) ગુણધર્મ પણ કહેવાય છે.

આકૃતિ 2.2

(2) $A \subset (A \cup B)$ અને $B \subset (A \cup B)$

 $\forall x, x \in A \Rightarrow x \in (A \cup B)$ અને $\forall x, x \in B \Rightarrow x \in (A \cup B)$

- \therefore A \subset (A \cup B), B \subset (A \cup B)
- (3) સ્વયંઘાતી નિયમ (Idempotent Law) : A ∪ A = A

$$A \cup A = \{x \mid x \in A$$
અથવા $x \in A\}$
$$= \{x \mid x \in A\}$$
$$= A$$

(4) જો A ⊂ B અને C ⊂ D, તો (A ∪ C) ⊂ (B ∪ D)

ધારો કે $x \in A \cup C$

- $x \in A$ અથવા $x \in C$
- $x \in B$ અથવા $x \in D$

 $(A \subset B \text{ w-} l C \subset D)$

 $\therefore x \in B \cup D.$

આમ, $\forall x, x \in (A \cup C) \Rightarrow x \in (B \cup D)$

- \therefore (A \cup C) \subset (B \cup D)
- (5) क्रमनो नियम (Commutative Law) : A ∪ B = B ∪ A

$$A \cup B = \{x \mid x \in A \text{ અથવા } x \in B\}$$
$$= \{x \mid x \in B \text{ અથવા } x \in A\}$$
$$= B \cup A$$

(6) જૂથનો નિયમ (Associative Law) : (A ∪ B) ∪ C = A ∪ (B ∪ C)

$$(A \cup B) \cup C = \{x \mid x \in A \cup B \text{ અથવા } x \in C\}$$

$$= \{x \mid (x \in A \text{ અથવા } x \in B) \text{ અથવા } x \in C\}$$

$$= \{x \mid x \in A \text{ અથવા } (x \in B \text{ અથવા } x \in C)\}$$

$$= \{x \mid x \in A \text{ અથવા } x \in B \cup C\}$$

$$= A \cup (B \cup C)$$

આથી $A \cup (B \cup C)$ અથવા $(A \cup B) \cup C$ ને $A \cup B \cup C$ તરીકે લખી શકાય.

(7) A U Ø = A (આમ, Ø એ યોગક્રિયા માટે તટસ્થ ઘટક (Neutral Element) અથવા એકમ ઘટક (Identity Element) છે.)

ગુણધર્મ (2)માં દર્શાવ્યા મુજબ કોઈ પણ ગણ B માટે A \subset (A \cup B) થાય. હવે B = \emptyset લેતાં,

$$A \subset (A \cup \emptyset) \tag{i}$$

વળી, $A \subset A$, $\emptyset \subset A \Rightarrow (A \cup \emptyset) \subset (A \cup A)$ (ગુશધર્મ (4))

$$\Rightarrow (A \cup \emptyset) \subset A \qquad \qquad (3) (3) (3)$$

(i) અને (ii) પરથી,

$$A \cup \emptyset = A$$

અન્ય રીત :

 $A \subset (A \cup \emptyset) \ \vartheta \ \vartheta. \tag{i}$

હવે, ધારો કે $x \in A \cup \emptyset$.

 $x \in A$ અથવા $x \in \emptyset$

પરંતુ કોઈ પણ x માટે $x \in \emptyset$ સત્ય નથી.

 $\therefore x \in A$

$$\therefore \quad (A \cup \emptyset) \subset A \tag{ii}$$

$$\therefore A \cup \emptyset = A$$
 (i) del (ii)

(8) $A \cup U = U$

 $A \subset U$ અને $U \subset U$

(2) છેદક્રિયા (Intersection Operation) : જો A, B ∈ P(U) તો A તથા B બંનેમાં હોય તેવા તમામ ઘટકોથી બનતા ગણને A અને Bનો છેદ ગણ (Intersection Set) કહે છે તથા તેને સંકેત A ∩ B દ્વારા દર્શાવાય છે. બે ગણનો છેદ ગણ મેળવવાની ક્રિયાને છેદક્રિયા કહે છે.

આમ, $A \cap B = \{x \mid x \in A અને x \in B\}$.

આપણે નોંધીએ કે $A \cap B$ એ A અને B બંનેમાં સામાન્ય હોય તેવા તમામ ઘટકોથી બનતો ગણ છે. આકૃતિ 2.3 માં રંગીન પ્રદેશ $A \cap B$ દર્શાવે છે. U

છેદક્રિયાના કેટલાક ગુણધર્મો જોઈએ.

A, B, C, D ∈ P(U) લઈશું.

(1) છેદકિયા એ P(U) ઉપરની દિક્કિયા છે. ધારો કે x ∈ A ∩ B

 $x \in A$ અને $x \in B$

$$\therefore x \in U$$
 (A, B $\subset U$)

 \therefore (A \cap B) \subset U

 \therefore (A \cap B) \in P(U)

(2) $(A \cap B) \subset A$, $(A \cap B) \subset B$

આ પરિશામ દેખીતું છે.

(3) સ્વયંઘાતી નિયમ : A ∩ A = A

$$A \cap A = \{x \mid x \in A \text{ અને } x \in A\}$$
$$= \{x \mid x \in A\}$$
$$= A$$

આકૃતિ 2.3

```
(4)  \otimes A \subset B  અને  C \subset D  હોય, તો  (A \cap C) \subset (B \cap D) 
      ધારો કે x \in A \cap C
      x \in A અને x \in C
      x \in B અને x \in D
                                                                            (A \subset B, C \subset D)
      \therefore x \in B \cap D
      \therefore (A \cap C) \subset (B \cap D)
(5) ક્રમનો નિયમ : A ∩ B = B ∩ A
(6) જૂથનો નિયમ : A \cap (B \cap C) = (A \cap B) \cap C
ગુણધર્મો (5) અને (6) યોગક્રિયા માટે સાબિત કર્યા હતા તે મુજબ સાબિત કરી શકાય.
A \cap (B \cap C) અથવા (A \cap B) \cap C + A \cap B \cap C લખાય છે.
(7) \mathbf{A} \cap \emptyset = \emptyset
ગુણધર્મ (2)માં દર્શાવ્યા મુજબ, (A \cap \emptyset) \subset \emptyset
                                                                                               (i)
વળી. ∅ એ તમામ ગણોનો ઉપગણ છે. આથી વિશિષ્ટ કિસ્સામાં
\emptyset \subset (A \cap \emptyset)
                                                                                               (ii)
(i) અને (ii) પરથી, A \cap \emptyset = \emptyset
                                                          🛈 એ છેદક્રિયા માટે એકમ ઘટક છે.)
(8) A \cap U = A
ગુણધર્મ (2)માં દર્શાવ્યા મુજબ (A ∩ U) ⊂ A
                                                                                               (i)
વળી, A \subset A અને A \subset U
\therefore (A \cap A) \subset (A \cap U)
\therefore A \subset (A \cap U)
                                                                                               (ii)
(i) અને (ii) પરથી, A ∩ U = A
વિભાજનના નિયમ:
(1) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
      સાબિતી : x \in A \cap (B \cup C)
x \in A અને x \in B \cup C
     x \in A અને (x \in B) અથવા x \in C
\therefore (x \in A \text{ અને } x \in B) અથવા (x \in A \text{ અને } x \in C)
x \in A \cap B અથવા x \in A \cap C
\therefore x \in (A \cap B) \cup (A \cap C)
\therefore (A \cap (B \cup C)) \subset (A \cap B) \cup (A \cap C)
                                                                                               (i)
આ જ રીતે x \in (A \cap B) \cup (A \cap C) \Rightarrow x \in A \cap (B \cup C) સાબિત કરી શકાય એટલે કે,
      ((A \cap B) \cup (A \cap C)) \subset (A \cap (B \cup C)).
                                                                                              (ii)
```

(i) અને (ii) પરથી, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ આને છેદક્રિયાનું યોગક્રિયા પર વિભાજન કહે છે.

(2) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

પરિણામની સાબિતી ઉપરના પરિણામ (i) મુજબ જ આપી શકાય. આ નિયમને યોગક્રિયાના છેદક્રિયા પરના વિભાજનનો નિયમ કહે છે.

અલગ ગણ (Disjoint Sets) : જો બે અરિક્ત ગણ A અને Bનો છેદ ગણ ખાલી ગણ હોય, તો તેમને અલગ ગણ કહે છે.

અગત્યનું પરિણામ :

નીચેનાં વિધાનો તાર્કિક રીતે સમાન છે:

- (1) $A \subset B$
- (2) $A \cup B = B$
- $(3) A \cap B = A$

[નોંધ: $p \Leftrightarrow q, q \Leftrightarrow r, r \Leftrightarrow p$ એ નીચેના ક્રમને આધારિત સાબિત કરી શકાય. $p \Rightarrow q, q \Rightarrow r, r \Rightarrow p$. પરંપરિતતાના સિદ્ધાંત પ્રમાણે $(p \Rightarrow q \text{ અને } q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ વગેરે.]

અહીં સ્પષ્ટ છે કે,
$$B \subset (A \cup B)$$
 (i)

ધારો કે $x \in A \cup B$

 $\therefore x \in A$ અથવા $x \in B$

જો $x \in A$ તો $x \in B$ કારણ કે $A \subset B$

 $\therefore x \in B$ અથવા $x \in B$

$$\therefore x \in B$$
 (ii)

 \therefore (A \cup B) \subset B

∴ (i) અને (ii) પરથી, A ∪ B = B

બીજી રીત :

અહીં સ્પષ્ટ છે કે,
$$B \subset (A \cup B)$$

વળી, $A \subset B$ અને $B \subset B$

 \therefore (A \cup B) \subset (B \cup B)

$$\therefore \quad (A \cup B) \subset B \tag{ii}$$

 \therefore (i) અને (ii) પરથી, (A \cup B) = B

$(2) \Rightarrow (3)$

(i)

(i)

ધારો કે $x \in A$

 $\therefore x \in A \cup B$

$$\therefore x \in B \tag{A \cup B = B}$$

 $\therefore x \in A$ અને $x \in B$

 $\therefore x \in A \cap B$

$$\therefore A \subset (A \cap B) \tag{ii}$$

∴ (i) અને (ii) પરથી, A ∩ B = A

બીજી રીત :

આપણે જાણીએ છીએ કે $(A \cap B) \subset A$ (i)

વળી, $A \subset A$ અને $A \subset B$

 \therefore $(A \cap A) \subset (A \cap B)$

$$\therefore A \subset (A \cap B) \tag{ii}$$

(i) અને (ii) પરથી, (A ∩ B) = A

$(3) \Rightarrow (1)$

સ્પષ્ટ છે કે, $(A \cap B) \subset B$

 $\therefore A \subset B \qquad (A \cap B = A)$

આમ, આપણે પરિણામ (1), (2) અને (3) એ તાર્કિક રીતે સમાન છે, તેમ સાબિત કર્યું.

(3) પૂરકક્રિયા (Complementation) : ગણ A ∈ P(U) માટે Aમાં ન હોય તેવા Uના બધા જ ઘટકોના ગણને Aનો પૂરક ગણ (Complement of a set) કહેવાય છે અને તેને A' થી દર્શાવાય છે. કોઈ ગણનો પૂરક ગણ શોધવાની ક્રિયાને પૂરકક્રિયા કહેવાય છે.

અહીં $A' = \{x \mid x \in U$ અને $x \notin A\}$

પૂરકક્રિયા પ્રત્યેક ગણ Aને અનન્ય ગણ A' સાથે સાંકળે છે.

આ ક્રિયા P(U) ઉપરની એકીયક્રિયા (Unary Operation) છે.

આકૃતિ 2.4 માં રંગીન ભાગ ગણ A' ની વેન આકૃતિ દર્શાવે છે.

પૂરકક્રિયાના કેટલાક ગુણધર્મ નીચે આપેલા છે.

 $(1) \quad A' \in P(U).$

વ્યાખ્યા પરથી સ્પષ્ટ છે.

(2) $A \cap A' = \emptyset$, $A \cup A' = U$

પૂરકક્રિયાની વ્યાખ્યા પરથી ફલિત થાય છે કે,

 $x \in A \Rightarrow x \notin A'$ અને $x \in A' \Rightarrow x \notin A$

 \therefore A \cap A' = \emptyset

બીજું પરિણામ સાબિત કરવા માટે જુઓ કે, $A \subset U$, $A' \subset U$

$$\therefore \quad (A \cup A') \subset U \tag{i}$$

વધુમાં, જો $x \in U$ તો $x \in A$ અથવા $x \in A'$

 $\therefore x \in A \cup A'$

 $\therefore \quad U \subset (A \cup A') \tag{ii}$

આકૃતિ 2.4

- (i) અને (ii) પરથી, A ∪ A' = U
- (3) $\emptyset' = U, U' = \emptyset$. પ્રકક્રિયાની વ્યાખ્યા પરથી આ પરિણામો સ્પષ્ટ રીતે ફલિત થાય છે.
- (4) (A')' = A

આ પરિણામની સાબિતી સરળ છે. સ્વયં પ્રયત્ન કરી જુઓ.

દ'भोर्गनना नियमो (De Morgan's Laws) :

(1)
$$(A \cup B)' = A' \cap B'$$
 (2) $(A \cap B)' = A' \cup B'$

આ પરિણામો નીચે પ્રમાણે સાબિત કરી શકાય :

(1)
$$(A \cup B)' = \{x \mid x \in U, x \notin A \cup B\}$$

 $= \{x \mid x \in U \text{ ord} (x \notin A \text{ ord} x \notin B)\} \quad (\sim (p \lor q) = (\sim p) \land (\sim q))$
 $= \{x \mid x \in U \text{ ord} (x \in A' \text{ ord} x \in B')\}$
 $= A' \cap B'$

(2)
$$(A \cap B)' = \{x \mid x \in U \text{ whi } x \notin A \cap B\}$$

 $= \{x \mid x \in U \text{ whi } (x \notin A \text{ wad } x \notin B)\} \ (\sim (p \land q) = (\sim p) \lor (\sim q))$
 $= \{x \mid x \in U \text{ whi } (x \in A' \text{ wad } x \in B')\}$
 $= A' \cup B'$

તાર્કિક રીતે દ'મોર્ગનના નિયમો સરળતાથી સાબિત કરી શકાય. આપણે નિયમ (1)ની સાબિતી આપીશું.

$$x \in (A \cup B)' \Leftrightarrow x \notin A \cup B$$

 $\Leftrightarrow \neg (x \in A \cup B)$
 $\Leftrightarrow \neg (x \in A \text{ અધવા } x \in B)$
 $\Leftrightarrow \neg (x \in A) \text{ અને } \neg (x \in B)$ ($\neg (p \lor q) = (\neg p) \land (\neg q)$)
 $\Leftrightarrow x \notin A \text{ અને } x \notin B$
 $\Leftrightarrow x \in A' \text{ અને } x \in B'$
 $\Leftrightarrow x \in A' \cap B'$

- \therefore (A \cup B)' = A' \cap B'
- (4) તફાવત ગણ (Difference set) : A, B ∈ P(U) તો Aમાં હોય તથા Bમાં ન હોય તેવા તમામ ઘટકોથી બનતા ગણને A અને Bનો તફાવત ગણ કહે છે. તેને સંકેત A—Bથી દર્શાવાય છે. બે ગણનો તફાવત મેળવવાની ક્રિયાને તફાવત-ક્રિયા (Difference Operation) કહે છે.

અહીં,
$$A - B = \{x \mid x \in U, x \in A અને x \notin B\}$$

$$\therefore$$
 A - B = $\{x \mid x \in A \ અને x \in B'\}$

$$A - B = A \cap B'$$

આ ઉપરથી સ્પષ્ટ છે કે, $(A - B) \subset A$. વેન આકૃતિ 2.5 માં A - B અને B - A રંગીન પ્રદેશ વડે દર્શાવેલ છે.

આકૃતિ 2.5

ઉપરની વેન આકૃતિઓ પરથી સ્પષ્ટ છે કે, જો $A \neq B$ હોય, તો $A - B \neq B - A$ $A = \{1, 2, 3, 4, 5, 6\}, B = \{2, 4, 6, 8, 10\}$ તો $A - B = \{1, 3, 5\}, B - A = \{8, 10\}$ તફાવત ગણના કેટલાક ગુણધર્મો :

- (1) U A = A'. સ્વયં સ્પષ્ટ છે.
- (2) $A \subset B \Rightarrow A B = \emptyset$

A
$$-$$
 B = $\{x \mid x \in A \text{ અને } x \notin B\}$
= $\{x \mid x \in A \text{ અને } x \in B'\}$
= $\{x \mid x \in B \text{ અને } x \in B'\}$
= \emptyset

(5) સંમિત તફાવત ગણ (Symmetric Difference Set) : A, B ∈ P(U). A માં હોય અથવા Bમાં હોય પરંતુ A ∩ B માં ન હોય તેવા તમામ ઘટકોથી બનતા ગણને A તથા B નો સંમિત તફાવત-ગણ કહે છે તથા તેના માટેનો સંકેત A ∆ B છે.

આમ,
$$A \triangle B = (A \cup B) - (A \cap B)$$

A
$$\triangle$$
 B = (A - B) \cup (B - A) સાબિત કરીએ.

$$A \triangle B = (A - B) \bigcirc (B - A)$$
 extent set of .

 $(A \cup B) - (A \cap B) = (A \cup B) \cap (A \cap B)'$
 $= (A \cup B) \cap (A' \cup B')$
 $= ((A \cup B) \cap (A' \cup B')) \cap (A' \cap B') \cap (A' \cap B')$

 $= (A - B) \cup (B - A)$

આકૃતિ 2.6 માં રંગીન ભાગ સંમિત તફાવત A A B દર્શાવે છે :

A ∆ B આકૃતિ 2.6

ઉદાહરણ 5 : A = $\{x \mid x \in Z, x^3 - 4x = 0\}$. P(A) શોધો.

ઉકેલ : અહીં $x^3 - 4x = 0$

$$\therefore x(x^2-4)=0$$

$$\therefore x(x-2)(x+2)=0$$

$$x = 0, x = 2, x = -2$$

$$A = \{0, 2, -2\}$$

આથી, $P(A) = \{\emptyset, \{0\}, \{2\}, \{-2\}, \{0, 2\}, \{0, -2\}, \{2, -2\}, A\}$

ઉદાહરણ 6: U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A = {1, 3, 5, 7, 9}, B = {1, 5, 6, 8}, C = {1, 4, 6, 7} લઈ નીચેનાં પરિણામો ચકાસો :

(1)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(2)
$$(A \cup B)' = A' \cap B'$$

(3)
$$A - B = A \cap B'$$

(4)
$$A \triangle B = B \triangle A$$
. અહીં, $A \triangle B = (A \cup B) - (A \cap B)$ અને $B \triangle A = (B - A) \cup (A - B)$ લો.

(5)
$$A - C = A - (A \cap C)$$

ઉકેલ : (1) અહીં, B ∩ C = {1, 6}

$$\therefore$$
 A \cup (B \cap C) = {1, 3, 5, 6, 7, 9}

હવે,
$$A \cup B = \{1, 3, 5, 6, 7, 8, 9\}$$

$$A \cup C = \{1, 3, 4, 5, 6, 7, 9\}$$

$$(A \cup B) \cap (A \cup C) = \{1, 3, 5, 6, 7, 9\}$$

આમ,
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(2)
$$A \cup B = \{1, 3, 5, 6, 7, 8, 9\}$$

 $\therefore (A \cup B)' = \{2, 4, 10\}$
 $\exists a, A' = \{2, 4, 6, 8, 10\}$
 $\exists B' = \{2, 3, 4, 7, 9, 10\}$
 $\therefore A' \cap B' = \{2, 4, 10\}$

(4)
$$A \triangle B = (A \cup B) - (A \cap B)$$

when $A \cup B = \{1, 3, 5, 6, 7, 8, 9\}$
 $A \cap B = \{1, 5\}$
 $A \triangle B = \{3, 6, 7, 8, 9\}$
 $A \triangle B = \{3, 6, 7, 8, 9\}$
 $A \triangle B = \{6, 8\}$
 $A \cap B = \{6, 8\}$
 $A \cap B = \{3, 7, 9\}$

$$\therefore (B - A) \cup (A - B) = \{3, 6, 7, 8, 9\}$$

આથી, $A \Delta B = B \Delta A$

= -1ંય અહીં $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$ ની ચકાસણી પણ થઈ ગઈ.

(5)
$$A - C = \{3, 5, 9\}$$

 $A \cap C = \{1, 7\}$
 $A - (A \cap C) = \{3, 5, 9\}$
આમ, $A - C = A - (A \cap C)$

ઉદાહરણ 7 : સાબિત કરો કે
$$A - B = A - (A \cap B)$$

$$= (A \cap A') \cup (A \cap B')$$

$$= \emptyset \cup (A \cap B')$$

$$= A \cap B'$$

$$= A - B$$

(દ'મોર્ગનના નિયમ મુજબ) (વિભાજનનો નિયમ) ઉદાહરણ 8 : સાબિત કરો કે, $(A \cap B) \cup (A - B) = A$

ઉકેલ: આને વિભાજનના નિયમથી સાબિત કરી શકાય.

આપણે જાણીએ છીએ કે, $A - B = A \cap B'$

$$(A \cap B) \cup (A - B) = (A \cap B) \cup (A \cap B')$$

$$= A \cap (B \cup B')$$

$$= A \cap U$$

$$= A$$

ઉદાહરણ 9: જો $A\subset B$ હોય તો $B'\subset A'$ સાબિત કરો અને તેના પરથી તારવો કે,

 $A = B \iff A' = B'$.

ઉકેલ : અહીં આપ્યું છે કે, A ⊂ B

 $\forall x, x \in B' \implies x \in U$ અને $x \notin B$ $\implies x \in U$ અને $x \notin A$ $\implies x \in A'$

 $(A \subset B)$

 \therefore B' \subset A'

$$A = B \iff A \subset B અને B \subset A$$

$$\iff B' \subset A' અને A' \subset B'$$

$$\iff A' = B'$$

ઉદાહરણ 10 : જો A = $\{x \mid x \in \mathbb{R}, x^2 - 3x - 4 = 0\}$ અને B = $\{x \mid x \in \mathbb{Z}, x^2 = x\}$ હોય, તો (1) A \cup B (2) A \cap B (3) A Δ B શોધો.

ઉકેલ : $x \in A$ માટે,

$$x^2-3x-4=0$$

$$\therefore (x-4)(x+1)=0$$

$$x = 4$$
 અથવા $x = -1$

$$A = \{-1, 4\}$$

$$x \in B \text{ Hiz},$$

$$x^2 = x$$

$$\therefore x^2 - x = 0$$

$$\therefore x(x-1)=0$$

$$\therefore \quad x = 0 \text{ અથવા } x = 1$$

$$\therefore B = \{0, 1\}$$

હવે, (1)
$$A \cup B = \{-1, 0, 1, 4\}$$

(2)
$$A \cap B = \emptyset$$

(3)
$$A \Delta B = (A \cup B) - (A \cap B)$$

= $\{-1, 0, 1, 4\}$

ઉદાહરણ 11 : જો A = $\{4k+1 \mid k \in Z\}$, B = $\{6k-1 \mid k \in Z\}$, તો A \cap B શોધો. ઉકેલ : $k=0,\pm 1,\pm 2,...$ લેતાં,

આમ, A
$$\cap$$
 B = {..., 5, 17,...} = { $12k + 5 \mid k \in \mathbb{Z}$ } લાગે છે.

ચાલો, સાબિત કરીએ.

ધારો કે
$$x \in A \cap B$$
.

જો
$$k$$
 યુગ્મ હોય, તો $x = 6(2m) - 1 = 12m - 1$ $(k = 2m, m \in \mathbb{Z}$ લેતાં)

$$x - 1 = 12m - 2 = 2(6m - 1)$$
, જે 4નો ગુણક નથી.

$$\therefore$$
 કોઈ પણ $k' \in Z$ માટે $x - 1 \neq 4k'$

$$\therefore$$
 કોઈ પણ $k' \in Z$ માટે $x \neq 4k' + 1$

∴
$$x \notin A \cap B$$
. આમ, $x \in A \cap B$ ધારણાથી વિપરીત છે.

ધારો કે
$$k = 2m + 1, m \in \mathbb{Z}$$
.

$$\therefore x = 6(2m+1) - 1 = 12m + 5$$

$$= 12m + 4 + 1$$

$$= 4(3m+1) + 1 \in A$$
(i) URU
$$= (3m+1) \in Z$$

 \therefore જો $x \in A \cap B$ તો x = 12m + 5 $(m \in Z)$ સ્વરૂપનો હોય તે જરૂરી છે.

વળી,
$$12m + 5 = 4(3m) + 4 + 1 = 4(3m + 1) + 1 \in A$$
.

અને
$$12m + 5 = 12m + 6 - 1 = 6(2m + 1) - 1 \in B$$
.

$$\therefore 12m + 5 \in A \cap B$$

$$\therefore A \cap B = \{12k + 5 \mid k \in Z\}$$

स्वाध्याय 2.2

- **1.** જો $A = \{x \mid x \text{ એ } 5 \text{ કરતાં નાની પ્રાકૃતિક સંખ્યા છે.}$
 - $B = \{x \mid x \text{ એ } 15 \text{ કરતાં નાની અવિભાજય સંખ્યા છે.}\}, તો <math>A \cup B$ અને $A \cap B$ શોધો.
- 2. જો A = {1, 2, 3, 4, 5}, B = {1, 3, 5, 6}, C = {1, 2, 3}, U = {1, 2, 3, 4, 5, 6, 7, 8} તો નીચેનાં પરિણામો ચકાસો :

(1)
$$(A - B) \cup B = A \cup B$$

(2)
$$(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

- (3) $A (B C) = (A B) \cup (A \cap C)$
- (4) A Δ A = \emptyset તથા A Δ \emptyset = A
- (5) $A (B \cap C) = (A B) \cup (A C)$
- 3. A = {1, 3, 5, 7}, B = {2, 5, 7, 8} અને સાર્વત્રિક ગણ U = {1, 2, 3, 4, 5, 6, 7, 8} માટે દ'મોર્ગનના નિયમો ચકાસો.
- 4. જો A = {a, b, c, d, e} અને B = {c, d, e, f}, તો (1) A ∪ B (2) A ∩ B (3) A − B (4) B − A (5) A ∆ B શોધો.

*

2.5 ગણોનો કાર્તેઝિય ગુણાકાર

રોજબરોજના જીવનમાં ક્રમયુક્ત જોડ આપણને જોવા મળે છે. ક્રમયુક્ત જોડ સહેલાઈથી જોઈ શકાય છે. કોઈ સભાખંડની બેઠક-વ્યવસ્થાનો બેઠક-ક્રમાંક ક્રમયુક્ત જોડનું ઉદાહરણ છે. ઉદાહરણ તરીકે (A, 5) એટલે કે A મૂળાક્ષરવાળી હારમાં 5મી ખુરશી. તેને ક્રમયુક્ત જોડ (A, 5) તરીકે લખી શકાય. આપણે નોંધીએ કે, આ ક્રમયુક્ત જોડમાં હાર સૂચવતો મૂળાક્ષર પહેલા આવે અને ખુરશીનો ક્રમાંક સૂચવતી સંખ્યા બીજી આવે છે. આ ક્રમ અગત્યનો છે. વ્યવહારમાં તેને A5 લખાય છે.

પરીક્ષાના પરિણામ-પત્રકમાં (35, 100) દર્શાવે છે કે વિદ્યાર્થીનો બેઠક-ક્રમાંક 35 છે અને તેણે મેળવેલ ગુણ 100 છે, પરંતુ ક્રમયુક્ત જોડ (100, 35) દર્શાવે છે કે 100 નંબરનો બેઠક-ક્રમાંક ધરાવનાર વિદ્યાર્થીએ 35 ગુણ મેળવ્યા છે. અગાઉ દર્શાવ્યા પ્રમાણે $\{p, q\} = \{q, p\}$ પરંતુ $(p, q) \neq (q, p)$. અહીં, $\{p, q\}$ એ ગણ છે, તેમાં ક્રમનું મહત્ત્વ નથી. p અને q ગણ $\{p, q\}$ ના ઘટકો છે.

કાર્તેઝિય ગુણાકાર (Cartesian Product) : જો A અને B અરિક્ત ગણ હોય, તો જ્યાં $x \in A$ તથા $y \in B$ હોય તેવી તમામ ક્રમયુક્ત જોડીઓ (x,y)ના ગણને A તથા Bનો કાર્તેઝિય ગુણાકાર કહે છે તથા A અને Bના કાર્તેઝિય ગુણાકાર માટેનો સંકેત $A \times B$ (વાંચો : 'A cross B') છે.

આમ, $A \times B = \{(x, y) \mid x \in A, y \in B\}.$

જો $A = \emptyset$ અથવા $B = \emptyset$ તો $A \times B = \emptyset$ લેવાય છે. $A \times A$ ને આપણે A^2 દ્વારા દર્શાવીશું.

જે રીતે ક્રમયુક્ત જોડ (x, y) હોય છે તેમ ક્રમયુક્ત ત્રય અથવા ત્રિપુટી (Triplet) તથા ક્રમયુક્ત n-ટુપલ (n-tuple) $(x_1, x_2, x_3, ..., x_n)$ ની પણ વાત થઈ શકે. જો A, B અને C અરિક્ત ગણ હોય, તો તેમનો કાર્તેઝિય ગુણાકાર

 $A \times B \times C = \{(x, y, z) \mid x \in A, y \in B, z \in C\}$ તરીકે વ્યાખ્યાયિત થાય છે. $A \times A \times A = A^3$ લખવામાં આવે છે.

ઉદાહરણ 12 : $A = \{a, b, c\}, B = \{a, b\}, A \times B$ શોધો.

Gea: $A \times B = \{(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)\}$

ઉદાહરણ 13 : જો A = {1, 2, 3}, B = {2, 6, 7}, C = {2, 7}, હોય તો

 $A \times (B - C) = (A \times B) - (A \times C)$ સાબિત કરો.

ઉકેલ : અહીં $B - C = \{6\}$

 \therefore A × (B – C) = {(1, 6), (2, 6), (3, 6)}

તેમજ $A \times C = \{(1, 2), (1, 7), (2, 2), (2, 7), (3, 2), (3, 7)\}$

 \therefore (A × B) – (A × C) = {(1, 6), (2, 6), (3, 6)}.

આમ, $A \times (B - C) = (A \times B) - (A \times C)$

ઉદાહરણ $14: A \neq \emptyset$ અને $A \times B = A \times C$ તો સાબિત કરો કે B = C.

ઉકેલ : જો $B = C = \emptyset$ તો $A \times B = A \times C = \emptyset$ તથા B = C છે જ.

માત્ર $B = \emptyset$ કે માત્ર $C = \emptyset$ શક્ય નથી તે સ્પષ્ટ છે કારણ કે $A \neq \emptyset$.

ધારો કે, $B \neq \emptyset$, $C \neq \emptyset$.

 $A \neq \emptyset$ હોવાથી કોઈક $x \in A$ તો છે જ.

 \therefore હવે પ્રત્યેક $y \in B$ માટે, $(x, y) \in A \times B$

 \therefore $(x, y) \in A \times C$

 $(A \times B = A \times C)$

 $\therefore x \in A, y \in C$

આમ, $\forall y, y \in B \Rightarrow y \in C$

 \therefore B \subset C

તે જ રીતે, C \subset B સાબિત કરી શકાય.

 \therefore B = C

ઉદાહરણ 15 : $A = \{ 1, 2, 3, 4 \}$, $B = \{ (a, b) \mid a \neq b \}$ વિભાજય છે; $a, b \in A \}$, તો B ને યાદી સ્વરૂપે લખો.

ઉકેલ: અહીં 1 વડે 1, 2, 3, 4 વિભાજય છે. 2 વડે 2 તથા 4 વિભાજય છે. 3 વડે 3 તથા 4 વડે 4 વિભાજય છે.

આમ, B = { (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4) }

ઉદાહરણ $16: A \times A = B \times B$ તો સાબિત કરો કે A = B.

ઉકેલ : જો $A = \emptyset$ તો $\emptyset = B \times B \Rightarrow B = \emptyset$. આમ, A = B.

ધારો કે $A \neq \emptyset$. ધારો કે $x \in A$

 \therefore $(x, x) \in A \times A$

 \therefore $(x, x) \in B \times B$

 $(A \times A = B \times B)$

 $\therefore x \in B$

આમ, $\forall x, x \in A \Rightarrow x \in B$.

 \therefore A \subset B.

તે જ રીતે, B ⊂ A.

A = B

સ્વાધ્યાય 2.3

- 1. A = {1, 2, 3}, B = {4, 7}. A × B તેમજ B × A શોધો.
- 2. જો A = {1, 2, 3}, B = {3, 5}, C = {2, 6}, તો A × (B C) = (A × B) (A × C) ચકાસો.
- 3. $A = \{x \mid x \text{ એ 5 કરતાં નાની પ્રાકૃતિક સંખ્યા છે}, B = \{x \mid x = 3a 1, a \in A\}, A \times B શોધો.$

*

2.6 સાન્ત ગણના ઘટકોની સંખ્યા

સાન્ત ગણ Aના ઘટકોની સંખ્યાનો સંકેત n(A) છે તે યાદ કરીએ. જો A અને B અલગ ગણ હોય, તો સ્પષ્ટ છે કે, $n(A \cup B) = n(A) + n(B)$. તે જ રીતે જો $A \cap B = B \cap C = A \cap C = \emptyset$, તો $n(A \cup B \cup C) = n(A) + n(B) + n(C)$.

ઉદાહરણ તરીકે, જો $A = \{a, b, c\}, B = \{d, e, f\},$ તો $A \cup B = \{a, b, c, d, e, f\}$

અહીં, n(A) = 3, n(B) = 3 અને $A \cap B = \emptyset$

અને $n(A \cup B) = 6 = 3 + 3 = n(A) + n(B)$.

વેન આકૃતિ 2.7માં દર્શાવ્યા પ્રમાણે સ્પષ્ટ છે કે,

$$A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$$

અને A - B, $A \cap B$, B - A પરસ્પર અલગ ગણો છે.

આકૃતિ 2.7

$$\therefore n(A \cup B) = n(A - B) + n(A \cap B) + n(B - A)$$

$$eq(A - B) \cup (A \cap B) \Rightarrow eq(A - B) \cap (A \cap B) = \emptyset$$
(i)

$$\therefore n(A) = n(A - B) + n(A \cap B)$$

$$\therefore n(A - B) = n(A) - n(A \cap B)$$

તે જ રીતે,
$$n(B - A) = n(B) - n(A \cap B)$$

આ પરિણામોને (i)માં ઉપયોગ કરતાં,

$$n(A \cup B) = [n(A) - n(A \cap B)] + n(A \cap B) + [n(B) - n(A \cap B)]$$

= $n(A) + n(B) - n(A \cap B)$

- નોંધ વેન આકૃતિની મદદ વિના પણ A - B, B - A અને $A \cap B$ પરસ્પર અલગ ગણો છે, તેમજ તેમનો યોગ $A \cup B$ થાય તે સહેલાઈથી સાબિત કરી શકાય.

આ જ રીતે,
$$n(A \cup B \cup C) = n(A) + n(B \cup C) - n(A \cap (B \cup C))$$

= $n(A) + \{n(B) + n(C) - n(B \cap C)\} - n[(A \cap B) \cup (A \cap C)]$
= $n(A) + n(B) + n(C) - n(B \cap C) - n[(A \cap B) + n(A \cap C) - n(A \cap B \cap C)]$
= $n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$

ઉદાહરણ 17 : ગણ A તથા B માટે $n(A \cup B) = 75$, n(A) = 50, n(B) = 50, તો $n(A \cap B)$ શોધો.

ઉકેલ : આપણે જાણીએ છીએ કે, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

$$\therefore$$
 75 = 50 + 50 - $n(A \cap B)$

$$\therefore$$
 $n(A \cap B) = 100 - 75 = 25$

અન્ય રીતે, વેન આકૃતિ 2.8 જુઓ.

$$n(A - B) = a$$
, $n(A \cap B) = b$, $n(B - A) = c$

$$a+b+c=75$$

$$a + b = 50$$

$$b+c=50$$

$$\therefore a + b + b + c = 100$$

$$b + 75 = 100$$

$$\therefore$$
 $b=25$

આકૃતિ 2.8

ઉદાહરણ 18 : સાબિત કરો કે,

(1) અરિક્ત ગણો હોય તો, A - B અને $A \cap B$ અલગ ગણ છે.

(2)
$$A = (A - B) \cup (A \cap B)$$

(3)
$$n(A - B) = n(A) - n(A \cap B)$$

(4)
$$\Re B \subset A$$
, $\operatorname{cl} n(A - B) = n(A) - n(B)$

(5)
$$n(A') = n(U) - n(A)$$

Geq: (1)
$$(A - B) \cap (A \cap B) = (A \cap B') \cap (A \cap B)$$

$$= A \cap (B' \cap B)$$

$$= A \cap \emptyset$$

$$= \emptyset$$
(B \cap B' = \empty)

 \therefore જો અરિક્ત ગણો હોય તો, A-B તથા $A\cap B$ અલગ ગણ છે.

(2)
$$\text{V.M.} = (A - B) \cup (A \cap B) = (A \cap B') \cup (A \cap B)$$

$$= A \cap (B' \cup B)$$

$$= A \cap U$$

$$= A = \text{SI.MI.}$$

(3) પરિશામ (1) અને (2) પરથી,
$$n(A) = n(A - B) + n(A \cap B)$$

∴ $n(A - B) = n(A) - n(A \cap B)$

$$\therefore$$
 A \cap B = B

$$n(A - B) = n(A) - n(A \cap B)$$

$$= n(A) - n(B)$$
((3) UR(A)
$$= n(A) - n(B)$$

$$\therefore n(U) = n(A) + n(A')$$

$$\therefore n(A') = n(U) - n(A)$$

નોંધ : જો $A \subset B$, તો $n(A) \leq n(B)$.

સાન્ત ગણ A તથા B માટે $n(A \times B) = n(A) n(B)$.

ઉદાહરણ 19 : જો A = $\{1, 2, 3, 4\}$, B = $\{2, 4\}$ હોય, તો $n(A \times B) = n(A)$ n(B) ચકાસો.

$$\therefore$$
 A × B = {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4), (4, 2), (4, 4)}

$$\therefore n(A \times B) = 8$$

તેમજ
$$n(A) = 4$$
, $n(B) = 2$, $n(A \times B) = 8$

$$\therefore$$
 $n(A \times B) = n(A) n(B)$.

ઉદાહરણ 20 : A અને B એકાકી ગણો નથી અને $n(A \times B) = 21$. જો $A \subset B$, તો n(A) અને n(B) શોધો.

પરંતુ
$$n(A) \neq 1$$
, $n(B) \neq 1$

$$\therefore$$
 $n(A) = 3$ અને $n(B) = 7$ અથવા $n(A) = 7$ અને $n(B) = 3$.

પરંતુ
$$n(A) \le n(B)$$
 (A \subset B)

$$\therefore n(A) = 3, n(B) = 7$$

ઉદાહરણ 21 : 20 નર્તકોના એક જૂથમાં, 12 નર્તકો ભરતનાટ્યમ્ કરે છે, 4 નર્તકો ભરતનાટ્યમ્ અને કૂચિપૂડી બંને નૃત્યો કરે છે. ફક્ત કૂચિપૂડી નૃત્ય કરતાં નર્તકોની સંખ્યા શોધો.

ઉકેલ: ધારો કે A = ભરતનાટ્યમ્ કરતાં નર્તકોનો ગણ તથા B = કૂચિપૂડી કરતાં નર્તકોનો ગણ

$$\therefore$$
 $n(A) = 12, n(A \cap B) = 4, n(A \cup B) = 20$

હવે,
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

(નોંધ : પ્રત્યેક નર્તક ભરતનાટ્યમ્ અથવા કૂચિપૂડી નૃત્ય કરે છે.)

$$\therefore$$
 20 = 12 + $n(B)$ - 4

$$20 = n(B) + 8$$

$$\therefore n(B) = 12$$

આમ, કૂચિપુડી કરતાં નર્તકોની સંખ્યા 12 છે.

$$\therefore$$
 ફક્ત કૃચિપૂડી નૃત્ય-નર્તકોની સંખ્યા = $n(B) - n(A \cap B)$

$$= 12 - 4 = 8$$

ઉદાહરણ 22 : વ્યક્તિઓના એક જૂથમાં 28 વ્યક્તિઓને ગુજરાતી ચલચિત્રો ગમે છે, 30 વ્યક્તિઓને હિન્દી ચલચિત્રો ગમે છે, 42ને અંગ્રેજી ચલચિત્રો ગમે છે, 5ને ગુજરાતી તથા હિન્દી બંને ચલચિત્રો ગમે છે, 8ને હિન્દી તથા અંગ્રેજી ચલચિત્રો ગમે છે, 8ને ગુજરાતી તથા અંગ્રેજી ચલચિત્રો ગમે છે તેમજ 3 વ્યક્તિઓને ગુજરાતી, હિન્દી તથા અંગ્રેજી ચલચિત્રો ગમે છે. આ જૂથમાં ઓછામાં ઓછી કેટલી વ્યક્તિઓ હશે ?

6કેલ: ધારો કે G = ગુજરાતી ચલચિત્રો ગમતાં હોય તેવી વ્યક્તિઓનો ગણ
H = હિન્દી ચલચિત્રો ગમતાં હોય તેવી વ્યક્તિઓનો ગણ
E = અંગ્રેજી ચલચિત્રો ગમતાં હોય તેવી વ્યક્તિઓનો ગણ

હવે,
$$n(G) = 28$$
, $n(H) = 30$, $n(E) = 42$
 $n(G \cap H) = 5$, $n(E \cap H) = 8$, $n(G \cap E) = 8$, $n(G \cap E \cap H) = 3$
હવે, $n(G \cup E \cup H) = n(G) + n(H) + n(E) - n(G \cap H) - n(E \cap H) - n(G \cap E) + n(G \cap E \cap H)$

$$= 28 + 30 + 42 - 5 - 8 - 8 + 3$$

 $= 103 - 21 = 82$

કેટલીક વ્યક્તિઓને ચલચિત્ર જોવાનું ન પણ ગમતું હોય.

∴ જૂથમાં ઓછામાં ઓછી 82 વ્યક્તિઓ છે.

આકૃતિ 2.9

પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 23 : જો $A \cap B = A \cap C$, $A \cup B = A \cup C$, તો સાબિત કરો કે B = C $(B \neq \emptyset, C \neq \emptyset)$

રીત 1 : ધારો કે $x \in B$

(B ≠ \emptyset હોવાથી આ શક્ય છે.)

 $\therefore x \in A \cup B$

 $\therefore x \in A \cup C$

 $(A \cup B = A \cup C)$

હવે. બે શક્યતાઓ છે.

(1) $x \in A$ અથવા (2) $x \in C$

(1) $x \in A$

આમ, $x \in A$ અને $x \in B$

 $\therefore x \in A \cap B$

 $\therefore x \in A \cap C$

 $(A \cap B = A \cap C)$

 $\therefore x \in C$

$$(2) \quad x \in C \ \vartheta \ \%.$$

$$\therefore$$
 આમ, બંને કિસ્સાઓમાં $x \in C$

∴
$$\forall x, x \in B \Rightarrow x \in C$$
 સાબિત થયું.

$$\therefore$$
 B \subset C

તે જ રીતે દર્શાવી શકાય કે $C \subset B$.

આમ, B = C.

રીત 2 : આપણે જાણીએ છીએ કે, $X \subset Y \Rightarrow X \cup Y = Y$

$$(A \cap B) \subset B$$

હવે,
$$B = (A \cap B) \cup B$$

$$= (A \cap C) \cup B$$

$$(A \cap B = A \cap C)$$

$$= (A \cup B) \cap (B \cup C)$$

$$= (A \cup C) \cap (B \cup C)$$

$$(A \cup B = A \cup C)$$

$$= (A \cap B) \cup C$$

$$= (A \cap C) \cup C$$

$$= C$$

$$((A \cap C) \subset C)$$

રીત $3: X \subset Y \Rightarrow X = X \cap Y$ ના ઉપયોગથી પણ આ પરિણામ સાબિત કરી શકાય. સાબિતી જાતે આપો.

ઉદાહરણ 24 : સાબિત કરો A - B = A - C અને B - A = C - A, તો B = C. $(B \neq \emptyset, C \neq \emptyset)$

ઉકેલ : ધારો કે B $\not\subset$ C. આમ, $p \in$ B તથા $p \notin$ C થાય તેવો p મળે.

હવે, $p \in U$ હોવાથી $p \in A$ અથવા $p \notin A$.

(1) જો $p \in A$ હોય, તો $p \in A - C$ કારણ કે, $p \notin C$

$$\therefore p \in A - B$$

$$(A - B = A - C)$$

(2) જો $p \notin A$ હોય, તો $p \in B - A$

$$p \in C - A$$

$$(\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{A})$$

 \therefore $p \in C$, જે પક્ષથી વિપરીત છે.

આમ, બંને વિકલ્પો અશક્ય છે.

∴ B ⊄ C એ શક્ય ના બને.

$$\therefore B \subset C$$

તે જ રીતે C ⊂ B.

$$\therefore$$
 B = C

ઉદાહરણ 25 : સાબિત કરો કે $P(A) = P(B) \Rightarrow A = B$

તે જ રીતે $B \subset A$.

 $\therefore A = B$

ઉદાહરણ 26 : $n(A \times A) = 9$. $(a, b) \in A \times A$ તેમજ $c \in A$, તો ગણ A લખો.

ઉકેલ : ધારો કે n(A) = k

હવે, $n(A \times A) = k^2 = 9$

 $\therefore k = 3$

 $(a, b) \in A \times A$

 $\therefore a \in A, b \in A$

વધુમાં $c \in A$ આપેલું છે.

આમ, ગણ Aમાં 3 ઘટકો a, b, c આવેલાં છે; એટલે કે

 \therefore A = {a, b, c}

ઉદાહરણ 27 : A \cap B = \emptyset અને A \cup B = U તો સાબિત કરો કે A' = B.

ઉકેલ : ધારો કે $x \in B$

 $x \notin A$ size $A \cap B = \emptyset$

 $\therefore x \in A'$

$$\therefore \quad \mathbf{B} \subset \mathbf{A}' \tag{i}$$

ધારો કે $x \in A'$

 $\therefore x \notin A$

પરંતુ $x \in U$

$$\therefore x \in A \cup B \qquad (A \cup B = U)$$

 $x \in A$ અથવા $x \in B$

$$\therefore x \in B$$
 $(x \notin A)$

$$\therefore A' \subset B$$
 (ii)

(i) અને (ii) પરથી, A' = B.

સ્વાધ્યાય 2.4

- વિદ્યાર્થીઓના એક જૂથમાં 100 વિદ્યાર્થીઓ હિન્દી જાણે છે અને 50 વિદ્યાર્થીઓ અંગ્રેજી જાણે છે.
 25 વિદ્યાર્થીઓ બંને ભાષા જાણે છે. પ્રત્યેક વિદ્યાર્થી આમાંની ઓછામાં ઓછી એક ભાષા જાણે છે.
 આ જૂથમાં આવેલ વિદ્યાર્થીઓની સંખ્યા શોધો.
- 2. એક સોસાયટીના 600 રહીશો પૈકી, 500 ગુજરાતી સમાચારપત્ર વાંચે છે, 300 અંગ્રેજી સમાચારપત્ર વાંચે છે અને 50 બંને સમાચારપત્રો વાંચે છે. આ માહિતી સાચી છે ?

- 3. 50 વ્યક્તિઓના એક સર્વેક્ષણમાં એવું તારણ નીકળ્યું કે, 21 લોકોને ઉત્પાદન A ગમ્યું, 26 લોકોને ઉત્પાદન B ગમ્યું અને 29 લોકોને ઉત્પાદન C ગમ્યું. જો 14 લોકોને ઉત્પાદન A અને B બંને ગમ્યા હોય, 12 લોકોને C અને A ગમ્યા હોય, 14 લોકોને B અને C ગમ્યા હોય તથા 8 લોકોને ત્રણેય ઉત્પાદન ગમ્યાં હોય, તો ફક્ત ઉત્પાદન C ગમ્યું હોય તેવા લોકોની સંખ્યા શોધો. કેટલી વ્યક્તિને એક પણ ઉત્પાદન ન ગમ્યું ?
- 4. એક શાળામાં રમતગમતની ત્રણ ટીમો છે. બાસ્કેટબૉલની ટીમમાં 21 ખેલાડીઓ, હોકીની ટીમમાં 26 અને ફૂટબૉલની ટીમમાં 29 ખેલાડીઓ છે. જો 14 ખેલાડીઓ હોકી અને બાસ્કેટબૉલ બંને રમતા હોય, 15 ખેલાડીઓ હોકી અને ફૂટબૉલ રમતા હોય, 12 ખેલાડીઓ ફૂટબૉલ અને બાસ્કેટબૉલ રમતા હોય તથા 8 ખેલાડીઓ ત્રણેય રમતો રમતા હોય, તો ઓછામાં ઓછા કેટલા વિદ્યાર્થી રમતગમતમાં ભાગ લે છે ?
- A અને B સાર્વિત્રક ગણ Uના ઉપગણો છે. n(A) = 20, n(B) = 30, n(U) = 100, n(A ∩ B) = 10 હોય, તો n(A' ∩ B') શોધો.

*

स्वाध्याय 2

- 1. નીચેના ગણ યાદીની રીતે લખો :
 - (1) $A = \{x \mid x \text{ એ } 20 \text{ ધ} \}$ નાની અવિભાજય સંખ્યા છે}.
 - (2) $\beta = \{x \mid x \text{ એ અંગ્રેજી મુળાક્ષરોમાં સ્વર છે}\}.$
 - (3) $X = \{x \mid x \in \mathbb{N}, 5 < x < 11\}.$
 - (4) $X = \{x \mid x \in \mathbb{R}, x^2 1 = 0\}.$
 - (5) $X = \{x \mid x \in \mathbb{N}, x^2 + 3x + 2 = 0\}.$
- 2. નીચેના ગણ ગુણધર્મની રીતે લખો :
 - (1) $A = \{5, 10, 15, 20\}$
 - (2) $P = \{1, 3, 5,...\}$
- 3. જો A = {1, 3, 5, 7, 9}, B = {3, 7, 11} હોય, તો (1) A − B (2) B − A (3) A ∪ B મેળવો.
- 4. નીચેનાં પરિણામો સાબિત કરો :
 - (1) $(A B) \cup (B A) = (A \cup B) (A \cap B)$
 - (2) $A (B \cup C) = (A B) \cap (A C)$
 - (3) $A \cap (B C) = (A \cap B) (A \cap C)$
- 5. $U = \{x \mid x \in \mathbb{N}, 1 \le x \le 10\}, A = \{1, 3, 5, 7, 9\}, B = \{2, 5, 8\}, C = \{2, 7, 8, 10\}$ હોય, તો નીચેનાં વિધાનો ચકાસો :
 - (1) $(A \cup B)' = A' \cap B'$
 - (2) $(A \cap B)' = A' \cup B'$
 - (3) $A (B C) = (A B) \cup (A \cap C)$

EA	20	101	h
7 11			L

6.	ગણ $A = \{1, 5, 9\}$ ના તમામ ઉપગણોની યાદી બનાવો.					
7.	જો $A \cup B = A \cap B$ હોય, તો $A = B$ સાબિત કરો.					
8.		ગણ A, B, C માટે, A \cap B \neq Ø, B \cap C \neq Ø, A \cap C \neq Ø હોય, પરંતુ A \cap B \cap C = Ø				
	થાય તેવી વેન આકૃતિ દોરો.					
9.		જો A અને B સાર્વત્રિક ગણ Uના ઉપગણો હોય અને $n(A) = 20, n(B) = 30, n(U) = 80,$				
	$n(A \cap B) = 10$ હોય, તો $n(A' \cap B')$ શો					
10.		60 વિદ્યાર્થીઓના વર્ગમાં 35 વિદ્યાર્થીઓ કબડ્ડી રમતા હોય, 40 વિદ્યાર્થીઓ ખો-ખો રમતાં હોય				
	અને 20 વિદ્યાર્થીઓ બંને રમત રમતા હોય, તો	આ બનમાથા કાઇ પણ રમત ન રમતા હા	ય તવા			
11	વિદ્યાર્થીઓની સંખ્યા શોધો.					
11.	નીચેનાં વિધાનો સાબિત કરો :	14 - 4 (242) } 2 2 14 (22) 2 2 2 1 (2 22) at	7.21			
	(1) $A - \emptyset = A$, $\emptyset - A = \emptyset$ (2) $A \cup A = \emptyset$		ત છ.)			
10	(3) $A \subset B \Leftrightarrow A - B = \emptyset$ (4) $A - B = \emptyset$ (5) $A = B = \emptyset$					
12.	નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપે વિકલ્પ પસંદ કરીને માં લખો :	ાલા ાવકલ્યા (a), (b), (c) અથવા (d)નાથા	. યાગ્ય			
	(1) સ્તંભ Aમાં ગણ યાદીની રીતે અને સ્તંભ	Bમાં ગાગધર્મની ગીતે દર્શાવેલ છે :				
	A	B				
	(1) $\{L, A, T\}$ (A) $\{x \mid$	$oldsymbol{x}$ એ 4થી નાની પ્રાકૃતિક સંખ્યા છે. $oldsymbol{\}}$				
	(2) $\{-2, -1, 0, 1, 2\}$ (B) $\{x \mid$	x એ LATA શબ્દનો મૂળાક્ષર છે.}				
	(3) $\{1, 2, 3\}$ (C) $\{x \mid$	$x \in \mathbb{Z}, x^2 < 5\}$				
	નીચે પૈકીની કઈ જોડ યોગ્ય છે ?					
	(a) (1) - (A), (2) - (B), (3) - (C) (b) (1) - (B), (2) - (A), (3) - (C)					
	(c) (1) - (B), (2) - (C), (3) - (A)		3)			
	(2) A = 100થી નાની યુગ્મ સંખ્યાઓનો સમૂહ					
	B = 20મી સદીના ૨મતવીરોનો સમૂહ C = ઉમાશંકર જોષીએ લખેલ કવિતાઓને	ਮ ਸਕ				
	નીચેના પૈકી કયું વિધાન સત્ય છે ?	. u įe				
	(a) A અને B ગણ છે.	(b) B એ ગણ નથી.				
	(c) A અને C ગણ નથી.	(d) A, B અને C ગણ છે.				
	(3) $A = \{x \mid x \in \mathbb{Z}, x^4 - 16 = 0\}$ હોય,					
	(a) $A = \{-2, 2\}$	(b) $A = \{2\}$				
	(c) $A = \{-4\}$	(d) $A = \{-4, 4, -2, 2\}$				
	(4) $\Re A = \{y \mid y \in \mathbb{N}, y^3 - 27 = 0\}$	હોય, તો કર્યું વિધાન સત્ય છે ?				
	(a) $9 \in A$ (b) $-3 \in A$	(c) $3 \in A$ (d) $-9 \in A$				
	(5) $\Re B = \{x \mid x \in \mathbb{Z}, x^2 - 16 = 0\}$	હોય, તો ખરું વિધાન પસંદ કરો.				
	(a) $A \in \mathbb{R}$ (b) $-A \notin \mathbb{R}$	$(c) - 2 \in \mathbb{R}$ $(d) 2 \in \mathbb{R}$				

(6)	જો $B = \{\emptyset\}$ હોય, તો				
	(a) B ખાલી ગણ છે.	(b) B સાન્તગણ છે	Ò.		
	(c) B અનંત ગણ છે.	(d) B એ ગણ નથ	તી.		
(7)	$A = \{x \mid x \in \mathbb{N}, x^2 + 4 = 0\}$	ય, તો			
	(a) $A = \{-2, 2\}$ (b) $A = \{2\}$	(c) $A = \emptyset$	(d) $A = \{\emptyset$	}	
(8)	$\alpha = \{x \mid x \text{ એ ALPHA શબ્દનો મૂળ}$	ાક્ષ૨ છે.}			
	$\beta = \{x \mid x એ $				
	$\gamma = \{L, P, A, H\},\$				
	તો અસત્ય વિધાન પસંદ કરો.				
	(a) $\alpha = \gamma$ (b) $\beta = \{A, L\}$	α , P} (c) $\alpha = \beta$	(d) $\beta \cap \gamma$ 7	≠ Ø	
(9)	સ્તંભ Aમાં અમુક ગણ આપેલા છે અને	સ્તંભ Bમાં ઉપગણો આ ^પ	ો લાં છે :		
	સ્તંભ A	સ્તંભ B			
	(1) {1, 3, 5, 7,}	(A) {1, 19, 21}			
	(2) {2, 4, 6, 8,}	(B) {2, 5, 6, 8,	19}		
	(3) {1, 2, 3, 4,}	(C) {8, 28, 38}			
	જો સ્તંભ Aમાંના ત્રણ ગણને સ્તંભ Bમાં તેના ઉપગણ સાથે જોડીએ તો નીચેનામાંથી કઈ				
	જોડી યોગ્ય છે ?				
	(a) (1) - (C), (2) - (B), (3) - (A)				
	(c) (1) - (C), (2) - (A), (3) - (B)			²)	
(10)	ગણ $A = \{x \mid x \in \mathbb{N}, x^2 < 9\}$ ના ક			Ш	
44.45		(c) l	(d) 8	_	
(11)	વાસ્તવિક સંખ્યા ગણ R માટે નીચેના પૈ	9 9		Ш	
	(a) $N \subset R$	(b) $(a, b) \subset \mathbb{R}$;	a < b		
	(c) $\pi \notin R$	$(d)\emptyset\subsetR$			
(12)	$A = \{1, 5, 7\}, B = \{1, 10\}, C = \{1, 10\}, C$	1, 12,, 20} કયા ગણ -	ા ઉપગણ છે ?		
	(a) {1, 2, 3,, 20}	(b) {1, 3, 5,, 2	21}		
	(c) Ø	(d) {1, 11, 111, 1			
(13)	$A = \{1, 2, 3, 4\}, B = \{-1, 1, 0, -1\}$	$-2, 2$, C = {1, 3, 4}	કયા ગણનાં ઉપગણ	ા છે ?	
	()	() 5 0 03	(D		
	(a) [1, 4] (b) [-1, 4]		(d) $[-2, 4]$		
(14)	અંતરાલ (–1, 1] માટે નીચેના પૈકી કર્યુ	, વિધાન સાચું છે ?			
	$(a) -1 \in (-1, 1]$	(b) $0 \in (-1, 1]$			
	(c) $(-1, 1] = \{-1, 1\}$	(d) $(-1, 1] = \emptyset$			

(15) કઈ વેન આકૃતિમાં રંગીન પ્રદેશ ભાગ A ∩ B દર્શાવે છે ? U (b) (a) A B આકૃતિ 2.10 આકૃતિ 2.11 U U (c) (d) B A આકૃતિ 2.12 આકૃતિ 2.13 U (16) વેન આકૃતિ 2.14માં માટે ખરું વિધાન પસંદ કરો. B • 5 (a) $A = \{1, 3, 4, 7\}$ • 4 • 2 (b) $U = \{1, 2, ..., 7\}$ (c) $A \cup B = \{4, 7, 2, 6\}$ (d) $\mathbf{B} = \emptyset$ આકૃતિ 2.14 (17) વેન આકૃતિ 2.15 માટે કયું વિધાન ખરું નથી ? U (a) $A = \{c, d, f, g\}$. C (b) $\mathbf{B} = \emptyset$ · a (c) $U = \{a, b, c, d, e, f, g\}$ (d) $A \cup B = \{c, d, f, g\}$ આકૃતિ 2.15 $B = \{x \mid x \text{ એ } 5 \text{ sean } \text{મોટી અને } 18 \text{ sean } \text{નાની પ્રાકૃતિક સંખ્યા છે}\}, તો$ (a) A \cup B = {x | x એ 18થી નાની પ્રાકૃતિક સંખ્યા છે} (b) $A \cup B = \{-1, -2, 1, 2, 0, 18\}$ (c) $A \cup B = \emptyset$ (d) $A \cap B = \{1\}$ (19) નીચેના પૈકી કયું વિધાન ખરું છે ? $(A \neq B)$ (a) $A \cup (B \cup C) = A \cap (B \cup C)$ (b) $A \cup (B \cup C) = A \cup (B \cap C)$

(c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(d) $A \cap (B \cap C) = A \cap (B \cup C)$

(20)	$A = \{1, 3,$	$5, 7$, $B = \{2, 4, 6,\}$	8}, હોય, તો <i>n</i> (P	$(A \cap B)) = \dots$	
	(a) 1	(b) 2^8	(c) 8	(d) 8^2	
(21)	નીચેના પૈકી	કયું વિધાન ખરું છે ? (/	A ≠ B)		
	(a) (A ∩ E	$(B) \subset A$	(b) (A ∪	J B) ⊂ A	
	(c) (A ∪ B	$B \cap B = A$	(d) (A ∪	$(B) \subset B$	
(22)	જો $A \subset B$ લ	કોય, તો			
	(a) $A \cap B$	= Ø	(b) A ∩	B = A	
	(c) $A \cap B$	= B	(d) A ∪	B = A	
(23)	$U = \{x \mid x$	\in N, $x \le 10$ }, A =	: {1, 3, 5, 7, 9	$\{2, 4, 6, 8, 6\}$	10}, તો
	$(A \cup B)' =$	=			
	(a) U	(b) {2}	(c) Ø	(d) {1, 4,	7, 8}
(24)	વાસ્તવિક સંખ	યાઓના ગણ Rને સાર્વા	પ્રેક ગણ લઈએ ત	Q' =	
	(a) N			(d) R	
(25)	પ્રાકૃતિક સંખ્યા	ઓના ગશને સાર્વત્રિક ગષ્	ા લઈએ અને A =	$\{x \mid x-8=3\}, A'=.$	
	(a) N	(b) {5}	(c) N -	$\{5\}$ (d) $N - \{$	11}
(26)	U = [1, 5],	$A = \{x \mid x \in \mathbb{N}, x^2$	$-6x+5=0\}$	હોય, તો A' =	
	(a) {1, 5}	(b) (1, 5)	(c) [1, 5	(d) [-1, -	-5]
(27)	U = [1, 2],	$A = \{x \mid x \in N, x^2\}$	+ x - 2 = 0	હોય, તો A' =	
	(a) (1, 2]	(b) [1, 2]	(c) {1, 2	(d) (1, 2)	
(28)	નીચેના પૈકી	કઈ વેન આકૃતિમાં રંગીન	ા ભાગ (A ∩ B		
	(a)	U	(b)		U
		$\left(\begin{array}{c} \chi \\ \chi \end{array}\right)_{n}$		A	
	A	() B			
				B	
	_	આકૃતિ 2.16	•		
		ι	J	આકૃતિ 2.17	U
	(c)		(d)	A	
					В
	4	АВ			
		આકૃતિ 2.18	ı	આકૃતિ 2.19	

(29)	એક વસતીમાં 50 કુટુંબે	ો ગુજરાતી બોલે છે, 30	કુટુંબો હિન્દી બોલે છે ત	નથા 10 કુટુંબો ગુજરાતી	
	અને હિન્દી બંને ભાષાઓ બોલે છે. કેટલાં કુટુંબો બે પૈકી ઓછામાં ઓછી એક ભાષા બે				
	છે ?				
	(a) 80	(b) 90	(c) 70	(d) 60	
(30)	200 વિદ્યાર્થીઓના એક	ક છાત્રાલયમાં 5 <mark>0 વ</mark> િદ્યા	ાર્થીઓને ઈડલી ભાવે છે	, 75ને ઉપમા ભાવે છે	
	અને 35ને ઈડલી તેમજ	ડ ઉપમા બંને ભાવે છે.	કેટલા વિદ્યાર્થીઓને ઈ	ડલી કે ઉપમા બંનેમાંથી	
	કંઈ ભાવતું નથી ?				
	(a) 75	(b) 110	(c) 200	(d) 90	
(31)	વિદ્યાર્થીઓના એક સર્વે	ક્ષણમાં માલૂમ પડ્યું કે 🤅	21 વિદ્યાર્થીઓને વિનય	ન શાખા પસંદ પડી છે,	
	26ને વાણિજ્ય શાખા	પસંદ પડી છે અને 29	ને વિજ્ઞાન વિદ્યાશાખા	પસંદ પડી છે. જો 14	
	વિદ્યાર્થીને વિનયન અને વાણિજય બંને પસંદ પડી હોય, 10ને વિનયન અને વિજ્ઞાન બંને પસંદ				
	પડી હોય, 8ને વાણિજ્ય અને વિજ્ઞાન બંને પસંદ પડી હોય તથા 6ને ત્રણેય પસંદ પડી હોય,				
	ઉપરાંત દરેકને ઓછામાં ઓછી એક શાખા તો પસંદ પડી જ હોય, તો કુલ કેટલા વિદ્યાર્થીઓએ				
	સર્વેક્ષણમાં ભાગ લીધો	હોય ?			
	(a) 76	(b) 82	(c) 50	(d) 110	

સારાંશ

- 1. ગણ અવ્યાખ્યાયિત પદ
- 2. સાર્વત્રિક ગણ
- 3. ઉપગણ
- 4. બે ગણની સમાનતા
- 5. યોગ ગણ, યોગક્રિયા અને તેના ગુણધર્મો
- 6. છેદ ગણ, છેદક્રિયા અને તેના ગુણધર્મો
- 7. વિભાજનના નિયમ
- 8. પૂરક ગણ, પૂરકક્રિયા અને તેના ગુણધર્મો
- 9. દ'મોર્ગનના નિયમો
- 10. તફાવત ગણ અને સંમિત તફાવત
- 11. કાર્તેઝિય ગુણાકાર
- **12.** સંકેત n(A), n(A ∪ B), n(A ∪ B ∪ C)નાં સૂત્ર

બે ગણની વેન આકૃતિમાં ચાર પ્રદેશો બને છે. ત્રણ ગણની વેન આકૃતિમાં કુલ આઠ પ્રદેશો આવેલા છે. જેમાં ચાર ગણો આવેલા હોય તેવી વેન આકૃતિમાં કેટલા પ્રદેશો રચાય ? સામાન્ય રીતે ગણને વર્તુળથી વેન આકૃતિમાં દર્શાવવામાં આવે છે તો ચાર ગણો માટે આવી વેન આકૃતિ રચી શકાય ?