```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import math
dados = pd.read_csv("/content/sample_data/train.csv")
dados
     PassengerId
                  Survived
                            Pclass \
0
               1
1
                                 1
               2
                         1
2
               3
                         1
                                 3
3
               4
                         1
                                 1
4
               5
                                 3
                         0
                                 2
886
             887
                         0
                                 1
887
             888
                         1
                                 3
888
             889
                         0
                         1
                                 1
889
             890
890
             891
                                 3
                                                   Name
                                                            Sex
                                                                  Age
SibSp \
                               Braund, Mr. Owen Harris
                                                           male 22.0
0
1
     Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
1
2
                                Heikkinen, Miss. Laina
                                                        female 26.0
0
          Futrelle, Mrs. Jacques Heath (Lily May Peel)
3
                                                         female 35.0
1
4
                              Allen, Mr. William Henry
                                                           male 35.0
0
. .
886
                                 Montvila, Rev. Juozas
                                                           male 27.0
0
887
                          Graham, Miss. Margaret Edith female 19.0
0
888
              Johnston, Miss. Catherine Helen "Carrie"
                                                        female
                                                                  NaN
1
889
                                 Behr, Mr. Karl Howell
                                                           male 26.0
0
890
                                   Dooley, Mr. Patrick
                                                           male 32.0
                                 Fare Cabin Embarked
     Parch
                      Ticket
0
         0
                   A/5 21171
                               7.2500
                                         NaN
                                                    C
1
         0
                    PC 17599
                              71.2833
                                         C85
```

```
2
            STON/02. 3101282
                                 7.9250
                                                      S
         0
                                          NaN
3
                                                      S
         0
                       113803
                                53.1000
                                         C123
4
         0
                       373450
                                 8.0500
                                          NaN
                                                      S
                                                      S
886
         0
                       211536
                                13,0000
                                          NaN
                                                      S
887
                       112053
                               30.0000
                                          B42
         0
                                                      S
         2
                   W./C. 6607
                                          NaN
888
                               23.4500
889
                       111369
                                30.0000
                                         C148
                                                      C
         0
                                                      Q
890
         0
                       370376
                                7.7500
                                          NaN
[891 rows x 12 columns]
print(dados.columns)
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age',
'SibSp'
        Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')
dados.describe()
       PassengerId
                       Survived
                                      Pclass
                                                                 SibSp \
                                                      Age
                                               714.000000
        891.000000
                     891.000000
                                  891.000000
                                                           891.000000
count
        446.000000
                       0.383838
                                    2.308642
                                                29.699118
                                                             0.523008
mean
                                    0.836071
std
        257.353842
                       0.486592
                                                14.526497
                                                              1.102743
          1.000000
                       0.000000
                                    1.000000
                                                 0.420000
                                                              0.000000
min
25%
        223,500000
                       0.000000
                                    2.000000
                                                20.125000
                                                              0.000000
                                                28,000000
50%
        446.000000
                       0.000000
                                    3.000000
                                                             0.000000
        668.500000
                       1.000000
                                    3.000000
                                                38.000000
75%
                                                              1.000000
        891.000000
                       1.000000
                                    3,000000
                                                80,000000
                                                             8,000000
max
            Parch
                          Fare
       891.000000
                    891,000000
count
         0.381594
                     32,204208
mean
         0.806057
                     49.693429
std
         0.000000
                      0.000000
min
25%
         0.000000
                      7.910400
50%
         0.000000
                     14,454200
                     31.000000
75%
         0.000000
                    512.329200
         6.000000
max
#Eliminando colunas que não contribuem com o treinamento
dados = dados.drop(columns = ['PassengerId','Name','Ticket'])
valores nulos = dados.isnull().sum()
print(dados.isnull().sum())
               0
Survived
Pclass
               0
               0
Sex
            177
Age
```

```
SibSp
              0
Parch
              0
Fare
              0
Cabin
            687
Embarked
              2
dtype: int64
#Como mais de dois terços dos dados da coluna de cabine não contem
valores acreditamos que o ideal seria descartalo
dados = dados.drop(columns = ['Cabin'])
#Acreditamos que as colunas de Parch e SibSp contem informações
parecidas sendo mais útil e com objetico de reduzir a dimencionalidade
torna-las uma única contendo a quantidade de familiares
dados['Family'] = dados['Parch'] + dados['SibSp']
dados.drop(columns = ['Parch', 'SibSp'],inplace =True)
#renomeando os valores da coluna Sex e Pclass afim de passar o
hotenconder
Sex dic = {
    "male":0.
    "female":1
dados["Sex"] = dados["Sex"].map(Sex dic)
Pclass dic={
    1: "Upper"
    2: "Middle",
    3:"Lower"
dados["Pclass"] = dados["Pclass"].map(Pclass dic)
#quantidade de valores faltantes de idade para homens e mulheres
Man Na = dados.loc[(dados['Age'].isnull()) & (dados.Sex==0)]
Woman Na = dados.loc[(dados['Age'].isnull()) & (dados.Sex==1)]
Otd Man = Man Na.shape[0]
Qtd woman = Woman Na.shape[0]
print(f"{Qtd Man} {Qtd_woman}")
124 53
#Média de idade de homens e mulheres , cmo há uma diferencia razoável
foi optado por fazer uma substituição por classe dos valores faltantes
man mean = dados.loc[(dados.Sex==0)].Age.mean()
woman mean = dados.loc[(dados.Sex==1)].Age.mean()
print(f"{man_mean} {woman_mean}")
30.72664459161148 27.915708812260537
```

```
# Preencher os valores NaN na coluna 'Age' com a média calculada
porclasse
dados.loc[(dados['Age'].isna()) & (dados['Sex']==0), 'Age'] =
math.trunc(man mean)
dados.loc[(dados['Age'].isna()) & (dados['Sex']==1) , 'Age'] =
math.trunc(woman mean)
print(dados.isnull().sum())
Survived
Pclass
            0
Sex
            0
            0
Age
Fare
            0
Embarked
            2
Family
dtype: int64
contagem_embarked = dados['Embarked'].value_counts()
# Crie um gráfico de barras para visualizar a contagem
contagem_embarked.plot(kind='bar')
# Adicione rótulos e título ao gráfico
plt.xlabel('Porto de Embarque')
plt.ylabel('Quantidade de Passageiros')
plt.title('Contagem de Passageiros por Porto de Embarque')
# Exiba o gráfico
plt.show()
```



```
#devido a maior quantidade dentro do porto S os dois valores faltantes
em embarked serão direcionados para S
dados['Embarked'].fillna("S", inplace=True)
print(dados.isnull().sum())
Survived
            0
Pclass
            0
Sex
            0
            0
Age
Fare
Embarked
            0
Family
dtype: int64
#possivelmente esse grupo são os trabalhadores do titanic
class especial = dados.loc[((dados["Embarked"] == "S") &
(dados["Pclass"]=="Lower"))].shape[0]
print(f"{class especial}")
353
dados = pd.get dummies(dados, columns=['Pclass', 'Embarked'])
```

dados								
\	Survived	Sex	Age	Fare	Family	Pclass_Lower	Pclass_Middle	
ò	Θ	0	22.0	7.2500	1	1	0	
1	1	1	38.0	71.2833	1	0	0	
2	1	1	26.0	7.9250	0	1	0	
3	1	1	35.0	53.1000	1	0	0	
4	0	0	35.0	8.0500	0	1	0	
886	0	0	27.0	13.0000	0	0	1	
887	1	1	19.0	30.0000	0	0	0	
888	0	1	27.0	23.4500	3	1	0	
889	1	0	26.0	30.0000	0	0	0	
890	0	0	32.0	7.7500	0	1	0	
0 1 2 3 4 886 887 888 889 890	Pclass_Up	per 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0	Embark	ed_C Emb 0 1 0 0 0 0 0 1 0 0 1 0	arked_Q 0 0 0 0 0 0 0 0	Embarked_S		
[891 rows x 11 columns]								
<pre>plt.figure(figsize=(18, 6))</pre>								
<pre># Boxplot para a coluna 'Age' plt.subplot(1, 3, 1) plt.boxplot(dados['Age']) plt.title('Boxplot da Coluna Age') plt.ylabel('Age')</pre>								
# Bo	xplot para	a co	luna '	Family'				

```
plt.subplot(1, 3, 2)
plt.boxplot(dados['Family'])
plt.title('Boxplot da Coluna Family')
plt.ylabel('Family')

# Boxplot para a coluna 'Fare'
plt.subplot(1, 3, 3)
plt.boxplot(dados['Fare'])
plt.title('Boxplot da Coluna Fare')
plt.ylabel('Fare')

plt.tight_layout()
plt.show()
```



```
dados filtered = dados.copy()
# Lidando com outliers na coluna 'Fare'
q1 fare = dados['Fare'].quantile(0.25)
q3 fare = dados['Fare'].quantile(0.75)
igr fare = q3 fare - q1 fare
lower_bound_fare = q1_fare - 1.5 * iqr_fare
upper bound fare = q3 fare + 1.5 * igr fare
dados_filtered['Fare'] = dados['Fare'].apply(lambda x:
lower bound fare if x < lower bound fare else (upper bound fare if <math>x > lower bound fare if x > lowe
upper bound fare else x))
# Lidando com outliers na coluna 'family'
q1_family = dados['Family'].quantile(0.25)
q3 family = dados['Family'].quantile(0.75)
iqr_family = q3_family - q1_family
lower bound_family = q1_family - 1.5 * iqr_family
upper bound family = q3 family + 1.5 * igr family
dados filtered['Family'] = dados['Family'].apply(lambda x:
lower bound family if x < lower bound family else (upper bound family
if x > upper_bound_family else x))
```

```
# Lidando com outliers na coluna 'age'
q1 age = dados['Age'].quantile(0.25)
q3 age = dados['Age'].quantile(0.75)
igr age = g3 age - g1 age
lower_bound_age = q1_age - 1.5 * iqr_age
upper_bound_age = q3_age + 1.5 * iqr_age
dados filtered['Age'] = dados['Age'].apply(lambda x: lower bound age
if x < lower bound age else (upper bound age if <math>x > upper bound age
else x))
# Agora, 'dados filtered' contém as colunas 'Fare', 'Family' e 'Age'
com outliers tratados, enquanto todas as outras colunas permanecem
inalteradas.
plt.figure(figsize=(18, 6))
# Boxplot para a coluna 'Age'
plt.subplot(1, 3, 1)
plt.boxplot(dados filtered['Age'])
plt.title('Boxplot da Coluna Age')
plt.vlabel('Age')
# Boxplot para a coluna 'Family'
plt.subplot(1, 3, 2)
plt.boxplot(dados filtered['Family'])
plt.title('Boxplot da Coluna Family')
plt.ylabel('Family')
# Boxplot para a coluna 'Fare'
plt.subplot(1, 3, 3)
plt.boxplot(dados filtered['Fare'])
plt.title('Boxplot da Coluna Fare')
plt.ylabel('Fare')
plt.tight layout()
plt.show()
```



```
# Defina o tamanho da figura
plt.figure(figsize=(12, 6))
# Crie um subplot de grade 1x3 para os três gráficos de densidade
plt.subplot(1, 3, 1)
sns.histplot(dados filtered['Age'], kde=True, color='blue')
plt.xlabel('Age')
plt.ylabel('Densidade')
plt.title('Gráfico de Densidade para Age')
plt.subplot(1, 3, 2)
sns.histplot(dados_filtered['Fare'], kde=True, color='green')
plt.xlabel('Fare')
plt.ylabel('Densidade')
plt.title('Gráfico de Densidade para Fare')
plt.subplot(1, 3, 3)
sns.histplot(dados filtered['Family'], kde=True, color='red')
plt.xlabel('Family')
plt.ylabel('Densidade')
plt.title('Gráfico de Densidade para Family')
# Ajuste o layout para evitar sobreposição
plt.tight layout()
# Mostrar os gráficos
plt.show()
```



```
from imblearn.under sampling import RandomUnderSampler
# Separar as colunas de alvo (y) e características (X)
y = dados_filtered.iloc[:, 0] # Primeira coluna é o alvo
X = dados filtered.iloc[:, 1:] # Restantes colunas são
características
# Criar uma instância do RandomUnderSampler
rus = RandomUnderSampler(random state=42)
# Aplicar o Random Undersampling aos dados
X resampled, y resampled = rus.fit resample(X, y)
# Criar um novo DataFrame com os dados balanceados
dados_balanceados = pd.concat([y_resampled, X_resampled], axis=1)
dados balanceados
                                           Pclass Lower Pclass Middle
     Survived Sex
                                   Family
                     Age
                             Fare
0
                 1
                    26.0 26.0000
                                      2.0
                                                                      1
1
                    54.0
                          65,6344
                                      1.0
                                                                      0
2
                 0
                    30.0
                          23.4500
                                      2.5
                                                                      0
                   45.0
                         27.9000
                                      2.5
                                                                      0
3
                 1
                          10.5000
                                      0.0
                 1
                    54.5
                                                                      1
```

679	1	1 15	.0 7.2250	0.0	1	0			
680	1	1 54	.5 65.6344	1.0	0	0			
681	1	1 25	.0 26.0000	1.0	0	1			
682	1	1 19	.0 30.0000	0.0	0	0			
683	1	0 26	.0 30.0000	0.0	0	0			
0 1 2 3 4 679 680 681 682 683 [684 rows	o tama	0 1 0 0 0 1 1 1 columns	-0 0 0 0 1 1 0 0 1	arked_Q Em 0 0 0 0 0 0 0 0	barked_S				
<pre>plt.figure(figsize=(12, 6)) # Crie um subplot de grade 1x3 para os três gráficos de densidade plt.subplot(1, 3, 1) sns.histplot(dados_balanceados['Age'], kde=True, color='blue') plt.xlabel('Age') plt.ylabel('Densidade') plt.title('Gráfico de Densidade para Age (Balanceado)') plt.subplot(1, 3, 2) sns.histplot(dados_balanceados['Fare'], kde=True, color='green') plt.xlabel('Fare') plt.ylabel('Densidade') plt.title('Gráfico de Densidade para Fare (Balanceado)')</pre>									
<pre>plt.subplot(1, 3, 3) sns.histplot(dados_balanceados['Family'], kde=True, color='red') plt.xlabel('Family') plt.ylabel('Densidade') plt.title('Gráfico de Densidade para Family (Balanceado)')</pre>									

Ajuste o layout para evitar sobreposição
plt.tight_layout()

Mostrar os gráficos plt.show()


```
plt.figure(figsize=(10, 6)) # Define o tamanho da figura (opcional)

# Crie o scatterplot usando seaborn
sns.scatterplot(x='Age', y='Fare', hue='Survived',
data=dados_filtered)

# Adicione rótulos aos eixos e título ao gráfico
plt.xlabel('Idade (Age)')
plt.ylabel('Tarifa (Fare)')
plt.title('Scatterplot de Idade vs. Tarifa (com Sobrevivência como
Hue)')

# Exiba o gráfico
plt.show()
```

Scatterplot de Idade vs. Tarifa (com Sobrevivência como Hue)


```
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn.metrics import accuracy_score
X = dados.iloc[:, 1:] # Seleciona todas as colunas, exceto a
primeira, para os recursos
Y = dados["Survived"] # A variável de destino
# Divida os dados em conjunto de treinamento e conjunto de teste
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test size=0.3, random state=42)
# Crie uma instância do DecisionTreeClassifier
clf = DecisionTreeClassifier(random state=42) # Você pode ajustar
hiperparâmetros, se necessário
# Treine o modelo usando o conjunto de treinamento
clf.fit(X train, Y train)
# Faça previsões no conjunto de teste
Y pred = clf.predict(X test)
# Avalie o desempenho do modelo (por exemplo, usando a acurácia)
accuracy = accuracy_score(Y_test, Y_pred)
print(f'Acurácia do modelo: {accuracy:.2f}')
```

```
Acurácia do modelo: 0.77
from sklearn.tree import export graphviz
import pydotplus
from IPython.display import Image
nomes caracteristicas = X.columns.tolist()
# Exporte a árvore de decisão para um arquivo .dot com os nomes das
características
dot_data = export_graphviz(clf, out_file=None,
                           filled=True, rounded=True,
                           special characters=True,
                           feature names=nomes caracteristicas)
# Converta o arquivo .dot para um gráfico
graph = pydotplus.graph from dot data(dot data)
# Exiba a imagem da árvore de decisão (pode ser aberta no seu
visualizador de imagem padrão)
Image(graph.create png())
```



```
for i in range (2,10):
    # Divida os dados em conjunto de treinamento e conjunto de teste
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.3, random_state=42)

# Crie uma instância do DecisionTreeClassifier
    clf = DecisionTreeClassifier(max_depth = i , random_state=42) #
Você pode ajustar hiperparâmetros, se necessário

# Treine o modelo usando o conjunto de treinamento
    clf.fit(X_train, Y_train)
```

```
# Faca previsões no conjunto de teste
    Y pred = clf.predict(X test)
    # Avalie o desempenho do modelo (por exemplo, usando a acurácia)
    accuracy = accuracy score(Y test, Y pred)
    print(f'Acurácia do modelo pra profundidade {i} é:
{accuracy:.2f}')
Acurácia do modelo pra profundidade 2 é: 0.77
Acurácia do modelo pra profundidade 3 é: 0.81
Acurácia do modelo pra profundidade 4 é: 0.82
Acurácia do modelo pra profundidade 5 é: 0.80
Acurácia do modelo pra profundidade 6 é: 0.78
Acurácia do modelo pra profundidade 7 é: 0.79
Acurácia do modelo pra profundidade 8 é: 0.79
Acurácia do modelo pra profundidade 9 é: 0.78
# Crie uma instância do DecisionTreeClassifier
clf = DecisionTreeClassifier(max depth = 4 , random state=42) # Você
pode ajustar hiperparâmetros, se necessário
# Treine o modelo usando o conjunto de treinamento
clf.fit(X_train, Y_train)
# Faça previsões no conjunto de teste
Y pred = clf.predict(X test)
dot data = export graphviz(clf, out file=None,
                           filled=True, rounded=True,
                           special_characters=True,
                           feature names=nomes caracteristicas)
# Converta o arquivo .dot para um gráfico
graph = pydotplus.graph_from_dot_data(dot_data)
# Exiba a imagem da árvore de decisão (pode ser aberta no seu
visualizador de imagem padrão)
Image(graph.create png())
```



```
# Crie uma instância do DecisionTreeClassifier
clf = DecisionTreeClassifier(max depth = 4 , random state=42 ,
criterion = "gini") # Você pode ajustar hiperparâmetros, se
necessário
# Treine o modelo usando o conjunto de treinamento
clf.fit(X_train, Y_train)
# Faça previsões no conjunto de teste
Y pred = clf.predict(X test)
accuracy = accuracy score(Y test, Y pred)
print(f'Acurácia do modelo pra profundidade {4} e gini é:
{accuracy:.2f}')
clf = DecisionTreeClassifier(max depth = 4 , random state=42 ,
criterion = "entropy") # Você pode ajustar hiperparâmetros, se
necessário
# Treine o modelo usando o conjunto de treinamento
clf.fit(X_train, Y_train)
# Faça previsões no conjunto de teste
Y pred = clf.predict(X test)
accuracy = accuracy score(Y test, Y pred)
print(f'Acurácia do modelo pra profundidade {4} e entropy é:
{accuracy:.2f}')
Acurácia do modelo pra profundidade 4 e gini é: 0.82
Acurácia do modelo pra profundidade 4 e entropy é: 0.82
from sklearn.metrics import confusion matrix
cm = confusion matrix(Y test, Y pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```



```
X = dados_balanceados.iloc[:, 1:] # Seleciona todas as colunas,
exceto a primeira, para os recursos
Y = dados_balanceados["Survived"] # A variável de destino

for i in range (2,10):
    # Divida os dados em conjunto de treinamento e conjunto de teste
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.3, random_state=42)

# Crie uma instância do DecisionTreeClassifier
    clf = DecisionTreeClassifier(max_depth = i , random_state=42) #
Você pode ajustar hiperparâmetros, se necessário

# Treine o modelo usando o conjunto de treinamento
    clf.fit(X_train, Y_train)

# Faça previsões no conjunto de teste
    Y_pred = clf.predict(X_test)
```

```
# Avalie o desempenho do modelo (por exemplo, usando a acurácia)
   accuracy = accuracy score(Y test, Y pred)
    print(f'Acurácia do modelo pra profundidade balanceada {i} é:
{accuracy:.2f}')
print(" ")
X = dados filtered.iloc[:, 1:] # Seleciona todas as colunas, exceto a
primeira, para os recursos
Y = dados filtered["Survived"] # A variável de destino
for i in range (2,10):
   # Divida os dados em conjunto de treinamento e conjunto de teste
   X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test size=0.3, random state=42)
   # Crie uma instância do DecisionTreeClassifier
    clf = DecisionTreeClassifier(max_depth = i , random_state=42) #
Você pode ajustar hiperparâmetros, se necessário
   # Treine o modelo usando o conjunto de treinamento
   clf.fit(X train, Y train)
   # Faça previsões no conjunto de teste
   Y pred = clf.predict(X test)
   # Avalie o desempenho do modelo (por exemplo, usando a acurácia)
   accuracy = accuracy score(Y test, Y pred)
   print(f'Acurácia do modelo pra profundidade apenas filtrada {i} é:
{accuracy:.2f}')
Acurácia do modelo pra profundidade balanceada 2 é: 0.77
Acurácia do modelo pra profundidade balanceada 3 é: 0.76
Acurácia do modelo pra profundidade balanceada 4 é: 0.78
Acurácia do modelo pra profundidade balanceada 5 é: 0.77
Acurácia do modelo pra profundidade balanceada 6 é: 0.76
Acurácia do modelo pra profundidade balanceada 7 é: 0.76
Acurácia do modelo pra profundidade balanceada 8 é: 0.80
Acurácia do modelo pra profundidade balanceada 9 é: 0.80
Acurácia do modelo pra profundidade apenas filtrada 2 é: 0.77
Acurácia do modelo pra profundidade apenas filtrada 3 é: 0.81
Acurácia do modelo pra profundidade apenas filtrada 4 é: 0.82
Acurácia do modelo pra profundidade apenas filtrada 5 é: 0.79
Acurácia do modelo pra profundidade apenas filtrada 6 é: 0.77
Acurácia do modelo pra profundidade apenas filtrada 7 é: 0.80
Acurácia do modelo pra profundidade apenas filtrada 8 é: 0.74
Acurácia do modelo pra profundidade apenas filtrada 9 é: 0.75
```

```
# Divida os dados em conjunto de treinamento e conjunto de teste
X train, X test, Y train, Y test = train test split(X, Y,
test size=0.3, random state=42)
# Crie uma instância do DecisionTreeClassifier
clf = DecisionTreeClassifier(max depth = 4 , random state=42) # Você
pode ajustar hiperparâmetros, se necessário
# Treine o modelo usando o conjunto de treinamento
clf.fit(X_train, Y_train)
# Faça previsões no conjunto de teste
Y pred = clf.predict(X test)
dot_data = export_graphviz(clf, out_file=None,
                           filled=True, rounded=True,
                           special characters=True,
                           feature names=nomes caracteristicas)
# Converta o arquivo .dot para um gráfico
graph = pydotplus.graph from dot data(dot data)
# Exiba a imagem da árvore de decisão (pode ser aberta no seu
visualizador de imagem padrão)
Image(graph.create png())
```



```
for i in range(2, 11):
    # Divida os dados em conjunto de treinamento e conjunto de teste
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
    test_size=0.3, random_state=42)

# Crie uma instância do DecisionTreeClassifier
    clf = DecisionTreeClassifier(max_depth = 4, random_state=42,
    max_leaf_nodes=i) # Você pode ajustar hiperparâmetros, se necessário

# Treine o modelo usando o conjunto de treinamento
clf.fit(X_train, Y_train)
```

```
# Faça previsões no conjunto de teste
    Y pred = clf.predict(X test)
    # Avalie o desempenho do modelo (por exemplo, usando a acurácia)
    accuracy = accuracy score(Y test, Y pred)
    print(f'Acurácia do modelo pra numero de folhas {i} é:
{accuracy:.2f}')
Acurácia do modelo pra numero de folhas 2 é: 0.79
Acurácia do modelo pra numero de folhas 3 é: 0.77
Acurácia do modelo pra numero de folhas 4 é: 0.77
Acurácia do modelo pra numero de folhas 5 é: 0.81
Acurácia do modelo pra numero de folhas 6 é: 0.81
Acurácia do modelo pra numero de folhas 7 é: 0.81
Acurácia do modelo pra numero de folhas 8 é: 0.82
Acurácia do modelo pra numero de folhas 9 é: 0.82
Acurácia do modelo pra numero de folhas 10 é: 0.82
# Treine o modelo usando o conjunto de treinamento
clf.fit(X train, Y train)
# Faça previsões no conjunto de teste
Y pred = clf.predict(X test)
accuracy = accuracy_score(Y test, Y pred)
print(f'Acurácia do modelo pra profundidade {4} e entropy é:
{accuracy:.2f}')
Acurácia do modelo pra profundidade 4 e entropy é: 0.82
cm = confusion matrix(Y test, Y pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```



```
from sklearn.model_selection import cross_val_score

# Separar as colunas de alvo (y) e características (X)
X = dados_filtered.iloc[:, 1:] # Restantes colunas são
características
y = dados_filtered['Survived'] # Coluna alvo

# Criar uma instância do classificador de árvore de decisão
clf = DecisionTreeClassifier(max_depth=4, criterion='gini') #
Substitua com seus hiperparâmetros

# Realizar validação cruzada (por exemplo, 5-fold)
scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') # Use a
métrica adequada para o seu problema

# Imprimir os resultados
```

```
print("Acurácia média: {:.2f}%".format(scores.mean() * 100))
print("Desvio padrão: {:.2f}".format(scores.std()))
Acurácia média: 79.58%
Desvio padrão: 0.05
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, classification report
# Separar as colunas de alvo (y) e características (X)
X = dados filtered.iloc[:, 1:] # Restantes colunas são
características
y = dados_filtered['Survived'] # Coluna alvo
# Dividir os dados em conjuntos de treinamento e teste
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Variar os valores de max depth em um loop de 2 a 10
for max depth in range(2, 11):
    # Criar uma instância do classificador Random Forest com o
max depth atual
    clf = RandomForestClassifier(n estimators=100,
max depth=max depth, random state=42)
    # Treinar o modelo no conjunto de treinamento
    clf.fit(X train, y train)
    # Fazer previsões no conjunto de teste
    y pred = clf.predict(X_test)
    # Avaliar o desempenho do modelo
    accuracy = accuracy_score(y_test, y_pred)
    print("Acurácia do Random Forest (max depth={}): {:.2f}
%".format(max depth, accuracy * 100))
    # Exibir um relatório de classificação detalhado
    print("\nRelatório de Classificação
(max depth={}):".format(max depth))
    print(classification report(y test, y pred))
Acurácia do Random Forest (max depth=2): 78.21%
Relatório de Classificação (max depth=2):
              precision
                           recall f1-score
                                              support
           0
                   0.74
                             0.96
                                       0.84
                                                  105
                   0.91
                             0.53
           1
                                       0.67
                                                   74
                                       0.78
                                                  179
    accuracy
                   0.82
                             0.74
                                       0.75
                                                  179
   macro avg
```

weighted av	g	0.81	0.78	0.77	179
Acurácia do	Random	Forest	(max_dept	h=3): 81.01 ⁹	90
Relatório d		ificação ision			support
	0 1	0.79 0.84	0.91 0.66	0.85 0.74	105 74
accurac macro av weighted av	g	0.82 0.81	0.79 0.81	0.81 0.80 0.81	179 179 179
Acurácia do	Random	Forest	(max_dept	h=4): 80.459	96
Relatório d		ificação ision			support
	0 1	0.79 0.83	0.90 0.66	0.84 0.74	105 74
accurac macro av weighted av	g	0.81 0.81	0.78 0.80	0.80 0.79 0.80	179 179 179
Acurácia do	Random	Forest	(max_dept	h=5): 81.56 ⁹	96
Relatório d		ificação ision			support
	0 1	0.81 0.84	0.90 0.69	0.85 0.76	105 74
accurac macro av weighted av	g	0.82 0.82	0.80 0.82	0.82 0.80 0.81	179 179 179
Acurácia do	Random	Forest	(max_dept	h=6): 81.569	96
Relatório d		ificação ision			support
	0 1	0.80 0.85	0.91 0.68	0.85 0.75	105 74
accurac macro av weighted av	g	0.82 0.82	0.79 0.82	0.82 0.80 0.81	179 179 179
Acurácia do	Random	Forest	(max_dept	h=7): 82.12 ⁹	96

Relatório de	Classificação	(max dept	-h=7):	
netator 10 de	precision	recall 1		support
9 1	0.81 0.85	0.91 0.69	0.86 0.76	105 74
accuracy macro avg weighted avg	0.83 0.82	0.80 0.82	0.82 0.81 0.82	179 179 179
Acurácia do N	Random Forest	(max_depth	n=8): 82.12	%
Relatório de	Classificação precision	(max_dept		support
0 1	0.82 0.83	0.90 0.72	0.85 0.77	105 74
accuracy macro avg weighted avg	0.82 0.82	0.81 0.82	0.82 0.81 0.82	179 179 179
Acurácia do A	Random Forest	(max_depth	n=9): 82.12	%
Relatório de	Classificação precision	(max_dept		support
0 1	0.83 0.81	0.88 0.74	0.85 0.77	105 74
accuracy macro avg weighted avg	0.82 0.82	0.81 0.82	0.82 0.81 0.82	179 179 179
Acurácia do F	Random Forest	(max_depth	n=10): 82.6	8%
Relatório de	Classificação precision	(max_dept		support
0 1	0.83 0.82	0.89 0.74	0.86 0.78	105 74
accuracy macro avg weighted avg	0.83 0.83	0.81 0.83	0.83 0.82 0.83	179 179 179