ARHITECTURA SISTEMELOR DE CALCUL – SEMINAR 3

NOTIȚE SUPORT SEMINAR

Cristian Rusu

X = A + BC

Α	В	С	ВС	X

$$X = A + BC$$

Α	В	С	ВС	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$X = A + BC$$

Α	В	С	ВС	X
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

X = A + BC

Α	В	С	ВС	X
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

DESENAȚI CIRCUITUL, EX 2

 $X = A + BC + \overline{D}$

DESENAȚI CIRCUITUL, EX 2

 $X = A + BC + \overline{D}$

$$X = \overline{(\overline{A}\overline{B})(\overline{B} + C)}$$

=

_

_

_

=

$$X = \overline{(\overline{A}\overline{B})}(\overline{B} + C)$$

$$= \overline{(\overline{A}\overline{B})} + \overline{(\overline{B} + C)}$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

$$X = \overline{(\overline{A}\overline{B})}(\overline{B} + C)$$

$$= \overline{(\overline{A}\overline{B})} + \overline{(\overline{B} + C)}$$

$$= A\overline{B} + \overline{(\overline{B} + C)}$$

$$=$$

$$=$$

$$=$$

$$X = (\overline{A}\overline{B})(\overline{B} + C)$$

$$= (\overline{A}\overline{B}) + (\overline{B} + C)$$

$$= A\overline{B} + (\overline{B} + C)$$

$$= A\overline{B} + (\overline{B}\overline{C})$$

$$=$$

$$=$$

$$X = \overline{(\overline{A}\overline{B})}(\overline{B} + C)$$

$$= \overline{(\overline{A}\overline{B})} + \overline{(\overline{B} + C)}$$

$$= A\overline{B} + \overline{(\overline{B} + C)}$$

$$= A\overline{B} + \overline{(\overline{B}C)}$$

$$= A\overline{B} + (B\overline{C})$$

$$= A\overline{B} + \overline{(BC)}$$

$$X = \overline{(\overline{A}\overline{B})}(\overline{B} + C)$$

$$= \overline{(\overline{A}\overline{B})} + \overline{(\overline{B} + C)}$$

$$= A\overline{B} + \overline{(\overline{B} + C)}$$

$$= A\overline{B} + (\overline{B}\overline{C})$$

$$= A\overline{B} + (B\overline{C})$$

$$= A\overline{B} + B\overline{C}$$

$$X = \overline{(\overline{A} + C)(\overline{AB})}$$

__

_

__

$$X = \overline{(\overline{A} + C)(\overline{AB})}$$
$$= \overline{(\overline{A} + C) + (\overline{AB})}$$

_

_

_

_

$$X = \overline{(\overline{A} + C)(\overline{AB})}$$

$$= \overline{(\overline{A} + C) + (\overline{AB})}$$

$$= \overline{(\overline{A} + C) + (\overline{AB})}$$

$$=$$

$$=$$

$$=$$

$$X = \overline{(\overline{A} + C)(\overline{AB})}$$

$$= \overline{(\overline{A} + C)} + \overline{(\overline{AB})}$$

$$= \overline{(\overline{A} + C)} + \overline{(AB)}$$

$$= \overline{(\overline{A}\overline{C})} + \overline{(AB)}$$

$$=$$

$$=$$

$$X = \overline{(\overline{A} + C)(\overline{AB})}$$

$$= \overline{(\overline{A} + C) + (\overline{AB})}$$

$$= \overline{(\overline{A} + C) + (AB)}$$

$$= \overline{(\overline{A}\overline{C}) + (AB)}$$

$$= (A\overline{C}) + (AB)$$

$$= \overline{(AC) + (AB)}$$

$$X = \overline{(\overline{A} + C)(\overline{AB})}$$

$$= \overline{(\overline{A} + C)} + \overline{(\overline{AB})}$$

$$= \overline{(\overline{A} + C)} + \overline{(AB)}$$

$$= \overline{(AC)} + \overline{(AB)}$$

$$= \overline{(AC)} + \overline{(AB)}$$

- !(!A+!B) = AB
- !(!A!B) = A+B
- !(A+B+C) = !A!B!C
- !(ABC) = !A+!B+!C
- !(A+B)!A!B = !A!B
- !(AB)(!A+!B) = !A+!B
- !(A+B)(!A+!B) = !A!B
- !A!B!(AB) = !A!B
- C+!(CB) = 1
- !(AB)(!A+B)(!B+!B) = !A!B

$$(A + C)(AD + A\overline{D}) + AC + C$$

$$(A + C)(AD + A\overline{D}) + AC + C$$

 $(A + C)A(D + \overline{D}) + AC + C$ //distribuim, invers

$$(A + C)(AD + A\overline{D}) + AC + C$$

 $(A + C)A(D + \overline{D}) + AC + C$ //distribuim, invers
 $(A + C)A + AC + C$ //suma variabila si complement

$$(A + C)(AD + A\overline{D}) + AC + C$$

 $(A + C)A(D + \overline{D}) + AC + C$ //distribuim, invers
 $(A + C)A + AC + C$ //suma variabila si complement
 $A((A + C) + C) + C$ //distribuim, invers

$$(A + C)(AD + A\overline{D}) + AC + C$$

 $(A + C)A(D + \overline{D}) + AC + C$ //distribuim, invers
 $(A + C)A + AC + C$ //suma variabila si complement
 $A((A + C) + C) + C$ //distribuim, invers
 $A(A + C) + C$ //asociem, idempotent

$$(A+C)(AD+A\bar{D})+AC+C$$

 $(A+C)A(D+\bar{D})+AC+C$ //distribuim, invers
 $(A+C)A+AC+C$ //suma variabila si complement
 $A((A+C)+C)+C$ //distribuim, invers
 $A(A+C)+C$ //asociem, idempotent
 $AA+AC+C$ //distribuim

```
(A+C)(AD+A\overline{D})+AC+C

(A+C)A(D+\overline{D})+AC+C //distribuim, invers

(A+C)A+AC+C //suma variabila si complement

A((A+C)+C)+C //distribuim, invers

A(A+C)+C //asociem, idempotent

AA+AC+C //distribuim

A+(A+1)C //idempotent, identitate, factor
```

```
(A + C)(AD + A\overline{D}) + AC + C
(A + C)A(D + \overline{D}) + AC + C //distribuim, invers
(A + C)A + AC + C //suma variabila si complement
A((A+C)+C)+C //distribuim, invers
A(A + C) + C //asociem, idempotent
AA + AC + C //distribuim
A + (A + 1)C //idempotent, identitate, factor
A + C //identitate de doua ori
```

$$\bar{A}(A + B) + (B + AA)(A + \bar{B})$$

$$\bar{A}(A + B) + (B + AA)(A + \bar{B})$$

 $\bar{A}(A + B) + (B + A)(A + \bar{B}) //AA \text{ este } A$

$$\bar{A}(A + B) + (B + AA)(A + \bar{B})$$

 $\bar{A}(A + B) + (B + A)(A + \bar{B}) //AA$ este A
 $(A + B)(\bar{A} + A + \bar{B}) //$ factor A + B

$$\bar{A}(A + B) + (B + AA)(A + \bar{B})$$

 $\bar{A}(A + B) + (B + A)(A + \bar{B}) //AA$ este A
 $(A + B)(\bar{A} + A + \bar{B}) //$ factor A + B
 $(A + B)(1 + \bar{B}) //$ variabila sau complement

$$\bar{A}(A + B) + (B + AA)(A + \bar{B})$$

 $\bar{A}(A + B) + (B + A)(A + \bar{B})$ //AA este A
 $(A + B)(\bar{A} + A + \bar{B})$ // factor A + B
 $(A + B)(1 + \bar{B})$ // variabila sau complement
A + B // 1 sau orice este 1

- a) A+0=A
- b) !Ax0 = 0
- c) A+!A=1
- d) A+A=A
- e) A+AB=A
- f) A+!AB = A+B
- g) A(!A+B) = AB
- h) AB+!AB = B
- i) (!A!B+!AB) = !A
- $j) \quad A(A+B+C+...) = A$
- k) subpuncte
 - a) A+B
 - b) 1
 - c) 1
- $I) \quad A+A!A=A$

- m) AB+A!B=A
- n) !A+B!A = !A
- o) (D+!A+B+!C)B = B
- p) (A+!B)(A+B) = A
- q) C(C+CD) = C
- r) A(A+AB) = A
- s) !(!A+!A) = A
- $t) \quad !(A+!A) = 0$
- u) D+(D!CBA) = D
- v) !D!(DBCA) = !D
- w) AC+!AB+BC = AC+!AB
- (A+C)(!A+B)(B+C) = AB+!AC
- y) !A+!B+AB!C = !A+!B+!C
- $(A+B)^2+(A+B)^3+A+3!A+A^3=1$

MUX, EX 5 A

MUX, două intrări, un semnal s de selecție și o ieșire

I _o	I ₁	s ₀	Y
*	*	0	I_{O}
*	*	1	<i>I</i> ₁

- care este relaţia ieşire-intrare?
 - Y = ?

MUX, EX 5 A

MUX, două intrări, un semnal s de selecție și o ieșire

I _o	I ₁	S ₀	Y
*	*	0	I_{O}
*	*	1	<i>I</i> ₁

- care este relaţia ieşire-intrare?
 - $Y = I_0 \bar{s}_0 + I_1 s_0$

MUX, două intrări, un semnal s de selecție și o ieșire

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementați o poartă NOT cu un MUX

MUX, două intrări, un semnal s de selecție și o ieșire

I _o	I ₁	s ₀ (A)	Y
0	1	0	<i>I</i> ₁
0	1	1	I_{O}

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementați o poartă NOT cu un MUX: Y = NOT A

MUX, două intrări, un semnal s de selecție și o ieșire

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementați o poartă AND cu un MUX

MUX, două intrări, un semnal s de selecție și o ieșire

I _o	I ₁ (B)	s ₀ (A)	Y
0	В	0	$I_0(0)$
0	В	1	I ₁ (B)

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementați o poartă AND cu un MUX: Y = A AND B

MUX, două intrări, un semnal s de selecție și o ieșire

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementați o poartă OR cu un MUX

MUX, două intrări, un semnal s de selecție și o ieșire

I ₀ (B)	I ₁	s ₀ (A)	Y
В	1	0	I_0 (B)
В	1	1	I_1 (1)

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementați o poartă OR cu un MUX: Y = A OR B

• Y = S ? foo(X) : bar(Y)

cum implementăm "if"-ul de mai sus?

• Y = S ? foo(X) : bar(Y)

I ₀ foo(X)	l ₁ bar(Y)	S	Y
*	*	0	1,
*	*	1	I_{O}

• care e diferența cu un limbaj de programare?

• Y = S? foo(X): bar(Y)

l ₀ foo(X)	l ₁ bar(Y)	S	Y
*	*	0	<i>I</i> ₁
*	*	1	I_{O}

- care e diferența cu un limbaj de programare?
 - indiferent de valoarea lui S, se execută foo(X) și bar(Y)
 - doar că la ieșire vedem doar una dintre funcții (cea selectată de S)

vrem să accesăm un element al unui vector x_i

- · ce putem la intrări?
- ce este semnalul s?

vrem să accesăm x_i

- ce putem la intrări? punem vectorul x
- ce este semnalul s? punem index-ul i
- care este dimensiunea intrării?
- care este dimensiunea lui s?

vrem să accesăm x_i

- ce putem la intrări? punem vectorul x
- ce este semnalul s? punem index-ul i
- care este dimensiunea intrării? N
- care este dimensiunea lui s? ceil(log₂ N)

s ₀ (i)	Y
000	$I_0(x_0)$
001	$I_1(\mathbf{x}_1)$
010	$I_2(x_2)$
011	$I_3(x_3)$
100	$I_4(x_4)$
101	$I_5(x_5)$
110	$I_6(x_6)$
111	$I_7(x_7)$

- un MUX cu 4 intrări
 - automat ştim că semnalul s are doi biţi

avem la dispoziție un MUX cu 2 intrări

- un MUX cu 4 intrări
 - automat ştim că semnalul s are doi biţi

- un MUX cu 4 intrări
 - automat știm că semnalul s are doi biți

N - 1

MUX, EX 7 A

numarul nostru x este

deplasare normală cu 2 la dreapta

echivalent cu o împărțire la 22

deplasare aritmetică cu 2 la dreapta

echivalent cu o împărțire la 22

deplasare circulară cu 2 la dreapta

deplasare a unui numar x cu d poziții la dreapta

MUX, EX 7 C

- presupunem că x este pe
- deplasarea d este pe 5 biţi: d₄d₃d₂d₁d₀

definim 4 stări

• care sunt stranzițiile între aceste stări?

COUNTER 2 BIȚI, EX 12

•
$$q_0^{(t+1)} = !INC \times q_0^{(t)} + INC \times !q_0^{(t)}, q_1^{(t+1)} = !INC \times q_1^{(t)} + INC \times (q_1^{(t)} \otimes q_0^{(t)})$$

q ₁ ^(t)	$q_0^{(t)}$	q ₁ ^(t+1)	$q_0^{(t+1)}$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

aici INC e pe post de semnal Enable

COUNTER 2 BIȚI, EX 12

counter cod Gray

q ₂ ^(t)	q ₁ ^(t)	$q_0^{(t)}$	q ₂ ^(t+1)	q ₁ (t+1)	q ₀ ^(t+1)
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	1

•
$$q_0^{(t+1)} = !q_2^{(t)}!q_1^{(t)}!q_0^{(t)} + !q_2^{(t)}!q_1^{(t)}q_0^{(t)} + q_2^{(t)}q_1^{(t)}!q_0^{(t)} + q_2^{(t)}q_1^{(t)}q_0^{(t)}$$

= $q_2^{(t)}q_1^{(t)} + !q_2^{(t)}!q_1^{(t)}$

- $q_1^{(t+1)} = ...$
- $q_2^{(t+1)} = ...$