3D Part-Based Sparse Tracker with Automatic Synchronization and Registration

Ours

Adel Bibi, Tianzhu Zhang, Bernard Ghanem King Abdullah University of Science and Technology (KAUST)

Abstract

- We propose a part-based sparse tracker in a particle filter framework, where both motion and appearance models are formulated in 3D. The motion model is adaptive and directed according to a simple yet powerful occlusion handling paradigm.
- We propose an automated method to correct for nuisances in both synchronization and registration that may occur between RGB(D) pairs.
- Extensive experiments are conducted on a popular RGBD tracking benchmark. At the time of publication, our tracker ranks 1st among all other state-of-the-art RGBD trackers.

Problem Formulation

3D-Tracker: We learn K dictionaries using KSVD for each part and solve the following decomposable Lasso problem on the set of particles that do not violate the coherence structure between consecutive frames:

$$\underset{\mathbf{X}_{k};\forall k}{\text{minimize}} \sum_{k}^{K} \|\mathbf{D}_{k}\mathbf{X}_{k} - \mathbf{Y}_{k}\|_{F}^{2} + \lambda \|\mathbf{X}_{k}\|_{1,1} \; \; ; \; \; \mathbf{D}_{k} = [\hat{\mathbf{D}}_{1k}|\hat{\mathbf{D}}_{2k}|...|\hat{\mathbf{D}}_{Nk}|\mathbf{I}_{m_{k}}]$$

Occlusion Handling

Only point correspondences with a large $\{(\mathbf{x}_i^1, \mathbf{y}_i^2\}_{i=1}^p \text{ optical flow are considered.} \}$

$$j^* = \underset{j \in \mathcal{C}}{\operatorname{argmin}} \quad \sum_{i=1}^p \left(\hat{\mathbf{I}}_D^2(\mathbf{y}_i^2) - \mathbf{I}_D^j(\mathbf{y}_i^2) \right)^2$$

Correcting Registration Errors:

Experiments

Quantitative Results and Evaluation of Design Choices: We compare our method (and its variants) with state-of-the-art methods on Princeton RGBD benchmark [2].

Algorithm	Target type			Target Size		Movement		Occlusion		Motion Type	
Algorithm	Human	Animal	Rigid	Large	Small	Slow	Fast	Yes	No	Passive	Active
${f Ours_Manual}$	0.81	0.64	0.73	0.80	0.71	0.75	0.75	0.73	0.78	0.79	0.73
${ m Ours_Sync_Reg}$	0.74	0.66	0.70	0.77	0.65	0.76	0.68	0.67	0.76	0.75	0.69
Ours_Sync_Raw_Reg	0.68	0.58	0.71	0.76	0.61	0.74	0.64	0.62	0.74	0.75	0.64
$Ours_Raw_Sync_Raw_Reg$	0.64	0.57	0.67	0.71	0.58	0.73	0.60	0.57	0.73	0.72	0.61
Ours_One_Part_Manual	0.60	0.56	0.46	0.58	0.50	0.58	0.52	0.48	0.62	0.54	0.54
Table 1. Comparison between different variants of our proposed tracker											

Algorithm	$\mid \mathbf{Avg.} \mid$	Target Type			Target Size		Movement		Occlusion		Motion Type	
Aigoritiiii	Rank	Human	Animal	Rigid	Large	Small	Slow	Fast	Yes	No	Passive	Active
$\mathbf{Ours}_{-}\mathbf{Manual}$	2.27	0.81	0.64	0.73	0.80	0.71	0.75	0.75	0.73	0.78	0.79	0.73
$\mathbf{OAPF}[1]$	2.63	0.64	0.85	0.77	0.73	0.73	0.85	0.68	0.64	0.85	0.78	0.71
$\overline{\mathbf{RGBDOcc} + \mathbf{OF}[2]}$	2.81	0.74	0.63	0.78	0.78	0.70	0.76	0.72	0.72	0.75	0.82	0.70
$Ours_Sync_Reg$	3.72	0.74	0.66	0.70	0.77	0.65	0.76	0.68	0.67	0.76	0.75	0.69
$\mathbf{DS\text{-}KCF}[3]$	4.54	0.67	0.61	0.76	0.69	0.70	0.75	0.67	0.63	0.78	0.79	0.66
RGBD+OF[2]	5.27	0.64	0.65	0.75	0.72	0.65	0.73	0.66	0.60	0.79	0.74	0.66
$\mathbf{PCdet_flow}[2]$	7.27	0.51	0.52	0.73	0.63	0.56	0.74	0.53	0.55	0.64	0.75	0.53

Table2: Tracking results from the online evaluation for our tracker on both the manually and automatically synchronized and registered data compared with the top 5 trackers.

benchmark and baselines", ICCV2013.

[3] M. Camplani, "Real-time rgb-d tracking with depth scaling kernelised correlation filters and occlusion handleing", BMVC2015.

Acknowledgements. Research reported was supported by competitive funding from King Abdullah University of Science and Technology.