

HỆ THỐNG VÀO RA (INPUT & OUTPUT)

HỆ THỐNG VÀO RA

- Chức năng: trao đổi thông tin giữa máy tính với thế giới bên ngoài.
- Thao tác cơ bản:
 - Vào dữ liệu (Input)
 - Ra dữ liệu (Output)
- Các thành phần chính:
 - Các thiết bị ngoại vi
 - Các module I/O

ĐẶC ĐIỂM CỦA VÀO RA

- Tồn tại đa dạng các thiết bị ngoại vi khác nhau về:
 - Nguyên tắc hoạt động
 - Tốc độ
 - Khuôn dạng dữ liệu
- Tất cả các TBNV đều chậm hơn CPU và RAM.

CÁC THIẾT BỊ VÀO RA

- Chức năng: chuyển đổi dữ liệu giữa bên trong và bên ngoài máy tính.
- Phân loại:
 - □ TBNV giao tiếp người-máy.
 - TBNV giao tiếp máy-máy.
 - TBNV truyền thông.

CẤU TRÚC CHUNG CỦA TBNV

- Bộ chuyển đổi tín hiệu: chuyển đổi dữ liệu giữa bên ngoài và bên trong TBNV
- Bộ đệm dữ liệu: đệm dữ liệu khi truyền giữa môđun vào-ra và TBNV
- Khối logic điều khiển: điều khiển hoạt động của TBNV đáp ứng theo yêu cầu từ môđun vào-ra

MODULE VÀO/RA

- Điều khiển và định thời
- Trao đối thông tin với
 CPU
- Trao đổi thông tin với TBNV
- Đệm giữa bên trong máy tính với TBNV
- Phát hiện lỗi của TBNV

I/O Subsystem Block Diagram

CẤU TRÚC CHUNG CỦA MODULE VÀO RA

- Thanh ghi đệm dữ liệu: đệm dữ liệu trong quá trình trao đổi
- Các cổng vào-ra (I/O Port): kết nối với TBNV, mỗi cổng có một địa chỉ xác định
- Thanh ghi trạng thái/điều khiển: lưu giữ thông tin trạng thái/điều khiển cho các cổng vào-ra
- Khối logic điều khiển: điều khiển môđun vào-ra

CÁC PHƯƠNG PHÁP ĐỊA CHỈ HÓA CỔNG VÀO/RA

 Một số bộ xử lý chỉ quản lý một không gian địa chỉ duy nhất, gọi là không gian địa chỉ bộ nhớ.

CÁC PHƯƠNG PHÁP ĐỊA CHỈ HÓA CỔNG VÀO/RA

- Một số bộ xử lý quản lý 2 không gian địa chỉ tách biệt:
 - Không gian địa chỉ bộ nhớ.
 - Không gian địa chỉ vào ra.

Không gian	
đị a chỉ b ộ nh ớ	N bit
	000000
	000001
	000010
	000011
	000100
	000101
	111111

CÁC PHƯƠNG PHÁP ĐỊA CHỈ HÓA CỔNG VÀO/RA

- Vào/ra theo bản đồ bộ nhớ (Memory mapped IO)
- Vào/ra riêng biệt (IO mapped IO)

VÀO RA THEO BẢN ĐỒ BỘ NHỚ

- Cổng vào/ra được đánh địa chỉ theo không gian địa chỉ bộ nhớ
- Vào/ra giống như đọc/ghi bộ nhớ
- CPU trao đổi dữ liệu với cổng vào/ra thông qua các lệnh truy nhập dữ liệu bộ nhớ
- Có thể thực hiện trên mọi hệ thống

VÀO RA RIÊNG BIỆT

- Cổng vào/ra được đánh địa chỉ theo không gian địa chỉ vào/ra riêng biệt
- CPU trao đổi dữ liệu với cổng vào-ra thông qua các lệnh vào/ra chuyên dụng (IN, OUT)
- Chỉ có thể thực hiện trên các hệ thống có không gian địa chỉ vào/ra riêng biệt

CÁC PHƯƠNG PHÁP ĐIỀU KHIỂN VÀO RA

- Vào/ra bằng chương trình (Programmed IO)
- Vào/ra điều khiển bằng ngắt (Interrupt driven IO)
- Truy nhập bộ nhớ trực tiếp (Direct Memory Access)

VÀO/RA BẰNG CHƯƠNG TRÌNH

- Nguyên tắc chung: CPU điều khiển trực tiếp vào/ra bằng chương trình
 - Kiểm tra trạng thái của TBNV
 - Phát tín hiệu điều khiển đọc/ghi
 - Trao đổi dữ liệu
- Đặc điểm
 - Vào/ra do ý muốn của người lập trình
 - CPU trực tiếp điều khiển vào/ra
 - □ CPU đợi module vào/ra → Tốn thời gian của CPU

VÀO/RA BẰNG CHƯƠNG TRÌNH

- CPU yêu cầu thao tác vào/ra
- Module vào/ra thực hiện thao tác
- Module vào/ra thiết lập các bit trạng thái
- CPU kiểm tra các bit trạng thái:
 - Nếu chưa sẵn sàng thì quay lại kiểm tra
 - Nếu sẵn sàng thì chuyển sang trao đổi dữ liệu với Module vào/ra

VÀO/RA ĐIỀU KHIỂN BẰNG NGẮT

- CPU không phải đợi trạng thái sẵn sàng của môđun vào-ra, CPU thực hiện một chương trình nào đó.
- Khi môđun vào-ra sẵn sàng thì nó phát tín hiệu ngắt CPU
- CPU thực hiện chương trình con vào-ra tương ứng để trao đổi dữ liệu
- CPU trở lại tiếp tục thực hiện chương trình đang bị ngắt

VÀO/RA ĐIỀU KHIỂN BẰNG NGẮT

Chương trình đang thực hiện

HOẠT ĐỘNG VÀO DỮ LIỆU NHÌN TỪ MODULE VÀO/RA

- Module vào/ra nhận tín hiệu điều khiển đọc từ
 CPU
- Module vào/ra nhận dữ liệu từ TBNV, trong khi đó
 CPU làm việc khác
- Module vào/ra phát tín hiệu ngắt CPU
- CPU yêu cầu dữ liệu
- Module vào/ra chuyển dữ liệu đến CPU

HOẠT ĐỘNG VÀO DỮ LIỆU NHÌN TỪ CPU

- CPU phát tín hiệu điều khiển đọc
- CPU làm việc khác
- Cuối mỗi chu kỳ lệnh, kiểm tra tín hiệu ngắt
- Néu bị ngắt:
 - Cất ngữ cảnh
 - Thực hiện chương trình con ngắt để vào dữ liệu
 - Khôi phục ngữ cảnh của chương trình đang thực hiện

CÁC PHƯƠNG PHÁP NỐI GHÉP NGẮT

- Sử dụng nhiều đường yêu cầu ngắt
- Kiểm tra vòng bằng phần mềm
- Kiểm tra vòng bằng phần cứng
- Sử dụng bộ điều khiển ngắt

NHIỀU ĐƯỜNG YÊU CẦU NGẮT

- CPU phải có nhiều đường tín hiệu yêu cầu ngắt
- Hạn chế số lượng môđun vào-ra
- Các đường ngắt được quy định mức ưu tiên

KIỂM TRA VÒNG BẰNG PHẦN MỀM

- CPU thực hiện phần mềm hỏi lần lượt từng module vào/ra
- Chậm
- Thứ tự các môđun được hỏi vòng chính là thứ tự ưu tiên

KIỂM TRA VÒNG BẰNG PHẦN CỨNG

- CPU phát tín hiệu chấp nhận ngắt (INTA) đến môđun vào-ra đầu tiên
- Nếu môđun vào-ra đó không gây ra ngắt thì nó gửi tín hiệu đến môđun kế tiếp cho đến khi xác định được môđun gây ngắt
- Môđun vào-ra gây ngắt sẽ đặt vector ngắt lên bus dữ liệu
- CPU sử dụng vector ngắt để xác định nơi chứa chương trình con điều khiển ngắt

 Thứ tự các môđun vào-ra kết nối trong chuỗi xác định thứ tự ưu tiên.

BỘ ĐIỀU KHIỂN NGẮT LẬP TRÌNH ĐƯỢC

- PIC Programmable Interrupt Controller
- PIC có nhiều đường vào yêu cầu ngắt có quy định mức ưu tiên
- PIC chọn một yêu cầu ngắt không bị cấm có mức ưu tiên cao nhất gửi tới CPU

ĐẶC ĐIỂM CỦA VÀO/RA ĐIỀU KHIỂN BẰNG NGẮT

- Có sự kết hợp giữa phần cứng và phần mềm
 - Phần cứng: gây ngắt CPU
 - Phần mềm: trao đổi dữ liệu
- CPU trực tiếp điều khiển vào/ra
- CPU không phải đợi môđun vào/ra → hiệu quả sử dụng CPU tốt hơn

DIRECT MEMORY ACCESS (DMA)

- Vào-ra bằng chương trình và bằng ngắt do CPU trực tiếp điều khiển:
 - Chiếm thời gian của CPU
 - Tốc độ bị hạn chế vì phải chuyển qua CPU
- Để khắc phục dùng DMA
 - Thêm môđun phần cứng trên bus -> DMAC (DMA Controller)
 - DMAC điều khiển vào-ra không thông qua CPU

26

CÁC THÀNH PHẦN CỦA DMAC

- Thanh ghi dữ liệu: chứa dữ liệu trao đổi
- Thanh ghi địa chỉ: chứa địa chỉ ngăn nhớ dữ liệu
- Bộ đếm dữ liệu: chứa số từ dữ liệu cần trao đổi
- Logic điều khiển: điều khiể hoạt động của DMAC

HOẠT ĐỘNG DMA

- CPU "nói" cho DMA:
 - Vào hay ra dữ liệu
 - Địa chỉ thiết bị vào/ra
 - □ Địa chỉ đầu của mảng nhớ chứa dữ liệu → nạp vào thanh ghi địa chỉ
 - □ Số từ dữ liệu cần truyền → nạp vào bộ đếm dữ liệu
- CPU làm việc khác
- DMAC điều khiển trao đổi dữ liệu
- Sau khi truyền được một word thì:
 - nội dung thanh ghi địa chỉ tăng
 - nội dung bộ đếm dữ liệu giảm
- Khi bộ đếm dữ liệu = 0, DMAC gửi tín hiệu ngắt CPU để báo kết thúc DMA

CÁC KIỂU THỰC HIỆN DMA

- DMA truyền theo khối
 - DMAC sử dụng bus để truyền xong cả khối dữ liệu
- DMA chiếm chu kỳ
 - DMAC cưỡng bức CPU treo tạm thời từng chu kỳ bus
 - DMAC chiếm bus thực hiện truyền một word
- DMA trong suốt
 - DMAC nhận biết những chu kỳ nào CPU không sử dụng bus thì chiếm bus để trao đổi một word

CẤU HÌNH DMA

- Mỗi lần truyền, DMA sử dụng bus 2 lần
 - Giữa môđun vào-ra với DMAC
 - Giữa DMAC với bộ nhớ

CẤU HÌNH DMA

- DMAC điều khiển một hoặc vài môđun vào-ra
- Mỗi lần truyền, DMAC sử dụng bus 1 lần:
 - Giữa DMAC với bộ nhớ

CẤU HÌNH DMA

- Bus vào-ra tách rời, hỗ trợ tất cả các thiết bị cho phép DMA
- Mỗi lần truyền, DMAC sử dụng bus 1 lần:
 - Giữa DMAC với bộ nhớ

ĐẶC ĐIỂM CỦA DMA

- CPU không tham gia trong quá trình trao đổi dữ liệu
- DMAC điều khiến trao đối dữ liệu giữa bộ nhớ chính với môđun vào-ra (hoàn toàn bằng phần cứng) -> tốc độ nhanh
- Phù hợp với các yêu cầu trao đổi mảng dữ liệu có kích thước lớn

BỘ XỬ LÝ VÀO/RA

- Việc điều khiển vào-ra được thực hiện bởi một bộ xử lý vào-ra chuyên dụng
- Bộ xử lý vào-ra hoạt động theo chương trình của riêng nó
- Chương trình của bộ xử lý vào-ra có thế nằm trong bộ nhớ chính hoặc nằm trong một bộ nhớ riêng
- Hoạt động theo kiến trúc đa xử lý

NŐI GHÉP THIẾT BỊ NGOẠI VI

- Nối ghép song song
- Nối ghép nối tiếp

GHÉP NỐI SONG SONG

- Truyền nhiều bit song song
- Tốc độ nhanh
- Cần nhiều đường truyền dữ liệu

GHÉP NỐI NỐI TIẾP

- Truyền lần lượt từng bit
- Cần có bộ chuyển đổi từ dữ liệu song song sang nối tiếp hoặc/và ngược lại
- Tốc độ chậm hơn
- Cần ít đường truyền dữ liệu

CÁC CẦU HÌNH GHÉP NỐI

- Điểm tới điểm (Point to Point)
- Điểm tới đa điểm (Point to Multi-point)

CÁC CỔNG VÀO/RA THÔNG DỤNG TRÊN PC

- Các cổng PS/2: nối ghép bàn phím và chuột
- Cổng nối ghép màn hình (RS232)
- Cổng LPT (Line Printer)
- Cổng COM (Communication)
- Cổng USB (Universal Serial Bus)