Solutions

ON

Question 1 (2 + 2 = 4 marks)

a) Solve the following equation

$$9x^{2} - 16 = 0$$

$$9x^{2} = 16$$

$$= \pm \sqrt{\frac{16}{9}}$$

$$= \pm \frac{4}{3}$$

b) Consider the equation $ax^2 - 2x + 3 = 0$

Using the discriminant, determine the value(s) of α if there is just one real solution to the equation. (2 marks

(2 marks)

the equation. (2 marks)
$$\Delta = b^{2} - 4 \text{ ac} = 0 \quad \text{one real solution}$$

$$O = (-2)^{2} - 4 \text{ (a) (3)}$$

$$O = 4 - 12 \text{ a}$$

$$12 \text{ a} = 4$$

$$a = \frac{1}{3} \quad \text{(2 marks)}$$

Question 2 (2+2+4=8 marks)

Consider the function $f(x) = x^2 + 6x + 10$

a) Express f(x) in the form $(x + a)^2 + b$, where a and b are integers. (2 marks)

$$4(x) = (x + 3)^2 - 9 + 10$$

 $4(x) = (x + 3)^2 + 1$

b) Describe geometrically the transformations which map the graph of x^2 onto the graph of

Question 3 [1+3+2+2=8 marks]

A quadratic function is given by the formula $y = x^2 + 5x + \frac{21}{4}$. For the graph of the function:

(a) Determine the equation of the line of symmetry

(1 mark)

LOS =
$$\frac{x}{2a} = \frac{-b}{2a} = \frac{-5}{2}$$

(b) Determine the equation of the quadratic function in turning point form, i.e in the form $y = a(x-p)^2 + q$.

(3 marks)

$$y = x^{2} + 5x + \frac{21}{4}$$

$$y = (x + \frac{5}{2})^{2} - \frac{25}{4} + \frac{21}{4}$$

$$y = (x + 25)^{2} - 1$$

(c) Determine the coordinates of the x intercepts.

(2 marks)

$$(x + 2.5)^2 = 1$$

 $x = \pm \sqrt{1 - 2.5}$
 $x = -1.5$ or -3.5

(d) Hence sketch the curve, clearly showing all features of the graph

(2 marks)

Question 4 (3 + 3 = 6 marks)

(a) Line q is perpendicular to the line with the equation y = 2x - 3. Line q has the same x – intercept as the line with the equation x + 2y = 6. Determine the equation of line q.

$$y = 2x - 3$$
 $x + 2y = 6$ (3 marks)
 $m = 2$ $x + 2(0) = 6$

line of
$$m_{0y} = -\frac{1}{2}$$
 gradient x -inter $0 = -\frac{1}{2}(6) + b$ rule $b = 3$ $y = -\frac{1}{2}x + 3$

(b) For what value(s) of k is the line through the points (3, 2k+1) and (8, 4k-5) parallel to the x-axis. (3 marks)

Question 5 (1+1+1+1+2+4+4=14 marks)

The manager of a private bus company has worked out a model for the relation between the number of passengers carried each week and the profit, (in tens of \$), the company makes. If n

is the number of passengers carried, the profit is given by $P(n) = 2n - 2000 - \left(\frac{n}{100}\right)^{-1}$.

Can the relation P(n) be described as a function. Justify your answer.

yes _ vortical line test

(b) Describe the concavity of the relation. (1 mark)

(c)

(i) Calculate the profit for 1000 people.

$$P(1000) = 2(1000) - 2000 - (\frac{1000}{100})^2$$
 $P(1000) = 8 - 1000 \implies -$1000 \checkmark$

Calculate the profit for 1100 people. (ii)

(1 mark)

$$P(1100) = 2(1100) - 2000 - \left(\frac{1100}{1000}\right)^{2}$$

$$= $79$$

$$= $790$$

Comment on the profit you determined in (i) and (ii)

(2 mark)

(d) Determine the number of passengers needed to be carried each week that would give the maximum profit. State the maximum profit for this number of passengers.

LOS
$$x = \frac{-2}{2(\frac{10000}{10000})}$$
 (4 marks)
= 10000
P (10000) = 2 (10000) - 2000 - $(\frac{10000}{100})^2$
= 8000
Maximum number of pars evopes
10000
Maximum profit = \$80000

(e) Determine the simplified expression for P(n + 1) - P(n), and explain what this expression represents. (4 marks)

$$P(n) = 2n - 2000 - \frac{n^2}{10000}$$

$$P(n+1) = 2(n+1) - 2000 - \frac{(n+1)^2}{10000}$$

$$= \frac{10000}{10000} - 2 + \frac{n^2}{10000} - \frac{10000}{10000}$$

$$= \frac{2000 - 2N - 1}{10000}$$
Uhange in projit when number of parenger increase by

Question 6 (3 marks)

(a) The function $f(x) = (x-2)^2$ has a restricted domain of $\{x: x \in R, 0 < x \le 3\}$. State the range.

0 \le f(x) \le 4 \range with inequalities correct

(b) If $g(x) = 2^x$, state the value of g(3).

$$g(3) = 2^3$$
= 8 \ simple substitution

(c) State the range of $y = \sqrt{x+1}$.

Vrange

Question 7 (3, 3 = 6 marks)

For each of the following, state the domain and range:

a)

Domain { x: x ETR, 3EX LZ} / Range { y: y ETR, 72 Ly L7}

Vinequalities cores in both

Inequalities correction

2021 - Year 11 Maths Methods - Test 2

Ques	stion 8 (2, 2, 2 = 6 marks)
(a)	State the range produced when the domain for $f(x) = (x-2)^2$ is restricted to $0 \le x < 6$
(b)	
(c)	$\begin{cases} 2 & \text{ of } 1 $
	state which of P or Q is a function. Justify your answer.
	Pisa function correct fundia
	() X=1 and N=5 AND X=1 and y=7 (2
	X=1 and y=5 AND X=1 and y=7 (Is one to many)

explain Q is

Question 9 (2, 2, 2 = 6 marks)

State the natural domain and the corresponding range for each of the following: (Hint draw a sketch)

(a)
$$f(x) = 2x + 7$$

(b)
$$f(x) = \sqrt{x-9}$$

(c)
$$f(x) = \frac{1}{x-5}$$

Question 10_(2 + 4 = 6 marks)

Functions f and g are defined by $f(x) = 4x^2 - 4x + 5$ and $g(x) = 2x^2 - 8x + 6$.

(a) Determine the discriminant of f and the discriminant of g.

$$\Delta g$$
: $(-4)^2 - 4(4)5 = -64$
 Δg : $(-8)^2 - 4(2)(6) = 16$

State, with justification, the roots of both functions f and g. (b)