1. Обозначим выводимость в ИИВ «гильбертовского стиля» как \vdash_{u} , а выводимость в ИИВ «системы натурального (естественного) вывода» как \vdash_{e} .

Заметим, что хоть языки этих исчислений и отличаются, мы можем построить преобразование высказываний этих исчислений друг в друга: приняв $\bot\Rightarrow A\&\neg A$ и $\neg\alpha\Rightarrow(\alpha\to\bot)$. Будем обозначать высказывания в гильбертовском ИИВ обычными греческими буквами, а соответствующие им высказывания в ИИВ натурального вывода — буквами с апострофами: α',β',\ldots

(a) Пусть $\Gamma \vdash_{\mathbf{u}} \alpha$. Покажите, что $\Gamma \vdash_{\mathbf{e}} \alpha'$: предложите общую схему перестроения доказательства, постройте доказательства для одного случая базы и одного случая перехода индукции.

Общая схема: перебираем шаги доказательства в гильбертовом стиле и добавляем соответствующие шаги в естественном выводе в зависимости от происхождения этого шага.

База: рассмотрим случай $\gamma_1 \in \Gamma$. Тогда дерево вывода $\gamma_1 : \overline{\Gamma \vdash \gamma_1, \gamma_1 \in \Gamma}$

Переход: рассмотрим случай MP. Тогда дерево вывода γ_n : $\frac{\dots}{\Gamma \vdash \gamma_i \to \gamma_k} \qquad \frac{\dots}{\Gamma \vdash \gamma_i}$

(b) Пусть $\Gamma \vdash_{\mathbf{e}} \alpha'$. Покажите, что $\Gamma \vdash_{\mathbf{n}} \alpha$.

Докажем по индукции по высоте дерева.

Proof. **База**: n=1. Единственный случай — аксиома. Он очевиден.

Переход:

- і. $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$. По индукционному предположению $\Gamma, \varphi \vdash \psi$ и по теореме об индукции $\Gamma \vdash \varphi \to \psi$
- іі. $\dfrac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \& \psi}$. По индукционному предположению $\Gamma \vdash \varphi, \Gamma \vdash \psi$. Объединим два доказательства, припишем аксиому 3 $\varphi \to \psi \to \varphi \& \psi$ и применим дважды MP.
- і
іі. $\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$. По индукционному предположению
 $\Gamma \vdash \varphi \to \psi, \Gamma \vdash \varphi$. Объединим два доказательства, используем MP.

Прочие случаи аналогичны.

2. Рассмотрим \mathbb{N}_0 (натуральные числа с нулём) с традиционным отношением порядка как решётку. Каков будет смысл операций (+) и (\cdot) в данной решётке, есть ли в ней псевдодополнение, определены ли 0 или 1? Приведите несколько свойств

традиционных определений (+) и (\cdot) , которые будут всё равно выполнены при таком переопределении, и несколько свойств, которые перестанут выполняться.

$$a + b = \max(a, b)$$
 $a \cdot b = \min(a, b)$

Псевдополнения нет для произвольных элементов, т.к. $\min(a,c) \leq b$ не ограничивает сверху c для $a \leq b$. Для $a \nleq b$ $a \to b = b$.

$$\mathbf{0}$$
 это 0 , т.к. $\forall x \in \mathbb{N}_0 \ 0 \leq x$

1 нет, т.к.
$$1 + 1 \not \leq 1$$

Выполнены:

- (a) $a \cdot 0 = 0$
- (b) a + 0 = a
- (c) a + b + c = a + (b + c)
- (d) $a \cdot b \cdot c = a \cdot (b \cdot c)$
- (e) a + b = b + a
- (f) $a \cdot b = b \cdot a$

Не выполнены:

(a)
$$(a+b) \cdot c = a \cdot c + b \cdot c$$

- 3. Постройте следующие примеры:
 - (a) непустого частично-упорядоченного множества, не имеющего операций (+) и (\cdot) ни для каких элементов;

Такого не существует, т.к. $\forall a \ a \leq a$, следовательно в a+a все элементы сравнимы с a и при этом $a \in (a+a)$. Таким образом, наименьший -a. Аналогично можно сказать про \cdot .

• имеющего операцию (+) для всех элементов, но не имеющего (\cdot) для некоторых;

Следующий номер, но наоборот.

• имеющего операцию (\cdot) для всех элементов, но не имеющего (+) для некоторых.

 $\{1, 2, 3\}$, упорядоченное по делимости.

(b) • решётки, не являющейся дистрибутивной решёткой; \mathbb{N}_0 со стандартным порядком.

- дистрибутивной, но не импликативной решётки;
 - \mathbb{Z} и его конечные подмножества с отношением \subset , т.е. $\{X \mid X \subset \mathbb{Z}, |X| \in \mathbb{N}_0\}$. Дистрибутивность тривиальна из теории множеств, как и то, что это решетка. Нет $\{0\} \to \mathbb{Z}$, т.к. $\{c \mid \{0\} \cdot c \leq \mathbb{Z}\}$ есть все конечные подмножества, а среди них нет наибольшего.
- импликативной решётки без 0.

$$-\mathbb{N}_0, \leq$$

- 4. Покажите следующие тождества и свойства для импликативных решёток:
 - (a) ассоциативность: a + (b + c) = (a + b) + c и $a \cdot (b \cdot c) = (a \cdot b) \cdot c$; Тривиально из теории множеств.
 - (b) монотонность: пусть $a \leq b$ и $c \leq d$, тогда $a+c \leq b+d$ и $a \cdot c \leq b \cdot d$; $a \leq b \Rightarrow a \leq b+d, c \leq d \Rightarrow c \leq b+d$. Таким образом, $a+c \leq b+d$. Вторая часть аналогично.
 - (c) Законы поглощения: $a \cdot (a + b) = a$; $a + (a \cdot b) = a$;

i.
$$a \cdot (a+b) = a$$

$$a+b$$
 либо $=a$, либо $\leq a$. В обоих случаях $a\cdot(a+b)=a$

ii.
$$a + (a \cdot b) = a$$

$$a+b$$
 либо $=a$, либо $\geq a$. В обоих случаях $a+(a\cdot b)=a$

(d) $a \prec b$ выполнено тогда и только тогда, когда $a \rightarrow b = 1$;

$$a \rightarrow b = 1 \Leftrightarrow 1 \in \{c \mid a \cdot c < b\} \Leftrightarrow a \cdot 1 < b \Leftrightarrow a < b$$

(e) из $a \leq b$ следует $b \rightarrow c \leq a \rightarrow c$ и $c \rightarrow a \leq c \rightarrow b$;

$$a \cdot (b \to c) \le b \cdot (b \to c) \le c$$

 $b \to c \le a \to c$

$$c \cdot (c \to a) \le a \le b$$
$$c \to a \le c \to b$$

(f) из $a \leq b \rightarrow c$ следует $a \cdot b \leq c$;

$$a \le b \to c \Rightarrow \exists d : \begin{cases} d \ge a \\ b \cdot d \le c \end{cases} \Rightarrow b \cdot a \le c$$

Так как множество, из которого берется $b \cdot a$ есть подмножество " $b \cdot d$ "

(g)
$$b \leq a \rightarrow b$$
 u $a \rightarrow (b \rightarrow a) = 1$;

$$b \cdot a \le b$$
$$a \cdot b \le b$$
$$b \le a \to b$$

 $a \leq b \rightarrow a$ по пункту d.

(h)
$$a \to b \preceq ((a \to (b \to c)) \to (a \to c));$$

(i)
$$a \prec b \rightarrow a \cdot b \text{ if } a \rightarrow (b \rightarrow (a \cdot b)) = 1$$

(j)
$$a \to c \leq (b \to c) \to (a + b \to c)$$

5. Покажите, что импликативная решётка дистрибутивна.

Пусть $d = a \cdot b + a \cdot c$. Рассмотрим $a \to d$.

$$a \cdot b \le d \tag{1}$$

$$b \le a \to d \tag{2}$$

$$a \cdot c < d \tag{3}$$

$$c \le a \to d$$
 (4)

$$b + c \le a \to d \tag{5}$$

$$a \cdot (b+c) \le a \cdot (a \to d) \tag{6}$$

$$\leq d$$
 (7)

$$= a \cdot b + a \cdot c \tag{8}$$

- (1) и (3): по построению *d*
- (2) и (4): по определению \rightarrow
- (5): из (2) и (4)

Итого $a\cdot (b+c) \leq a\cdot b + a\cdot c$, покажем, что $a\cdot (b+c) \geq a\cdot b + a\cdot c$

$$a \cdot b < a \tag{9}$$

$$a \cdot b \le b \le b + c \tag{10}$$

$$a \cdot b \le a \cdot (b+c) \tag{11}$$

M3*37y2019

$$a \cdot c \le a \cdot (b+c) \tag{12}$$

$$a \cdot b + a \cdot c \le a \cdot (b + c) \tag{13}$$

- (12): аналогично (11)
- 6. Покажите, что в дистрибутивной решётке (всегда $(a+b)\cdot c = (a\cdot c) + (b\cdot c)$) также выполнено и $a+(b\cdot c)=(a+b)\cdot (a+c)$.

$$(a+b)\cdot(a+c) = (a+b)\cdot a + (a+b)\cdot c \tag{14}$$

$$= a + (a+b) \cdot c \tag{15}$$

$$= a + a \cdot c + b \cdot c \tag{16}$$

$$= a + b \cdot c \tag{17}$$

- (14): по дистрибутивности
- 7. Рассмотрим топологическое пространство $\langle X, \Omega \rangle$, упорядочим его топологию Ω отношением \subseteq . Покажите, что такая конструкция является псевдобулевой алгеброй, а если топология дискретная (любое подмножество X открыто), то булевой алгеброй.

Это решетка, т.к. топология замкнута по \cap, \cup и $a+b=a\cup b, a-b=a\cap b.$

Решетка импликативна, т.к. $c=a \to b \Rightarrow a \cap c \subset b \Rightarrow c=(b \cup (X \setminus a))^\circ$, а оно определено однозначно, т.е. \exists .

Ноль в этой решетке есть \emptyset , таким образом это псевдобулева алгебра.

$$a+(a\to 0)=a\cup\varnothing\cup(X\setminus a)^\circ\stackrel{\text{дискр.}}{=} a\cup(X\setminus a)=X=1$$

8. Докажите, что ИИВ корректно, если в качестве модели выбрать псевдобулеву алгебру, а функции оценок определить так:

$$\begin{bmatrix}
 \alpha & \beta & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta \\
 \hline
 & \alpha & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta & \beta
 \end{bmatrix} &= \begin{bmatrix}
 \alpha & \beta & \beta & \beta & \beta & \beta \\
 \hline
 & \alpha & \beta & \beta & \beta$$

Разберем случаи:

$[\![\alpha]\!]$	$\llbracket\beta\rrbracket$	$\llbracket \alpha \rrbracket \cdot \llbracket \beta \rrbracket$
0	0	0
0	1	0
1	0	0
1	1	1

$[\![\beta]\!]$	$\llbracket\alpha\rrbracket+\llbracket\beta\rrbracket$
0	0
1	1
0	1
1	1
$[\![\beta]\!]$	$\llbracket\alpha\rrbracket\to\llbracket\beta\rrbracket$
0	1
1	1
0	0
1	1
$\boxed{\llbracket\alpha\rrbracket\to 0}$	
1	
0	
	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} [\beta] \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ \alpha \end{bmatrix}$ $\begin{bmatrix} [\alpha] \end{bmatrix}$

Тогда несложно заметить, что с $V=\{0,1\}$ оценки на псевдобулевой алгебре эквивалентны оценкам обычной интуиционистской логики, а она корректна.

- 9. Пусть задано отношение npednopяdka R (транзитивное и pedphoeker но необязательно антисимметричное) на множестве A. Напомним несколько определений:
 - определим отношение $R^{=} := \{ \langle x, y \rangle \mid xRy \text{ и } yRx \};$
 - $[a]_{R^{=}} := \{x \mid aR^{=}x\}$ класс эквивалентности, порождённый элементом a;
 - фактор-множество $A/R^{=}:=\{[a]_{R^{=}}\mid a\in A\};$
 - на $A/R^{=}$ можно перенести отношение $R^{*}:=\{\langle [a],[b]\rangle\mid aRb\}.$

Покажите, что: отношение $R^=$ — отношение эквивалентности; если $x \in [a]_{R^=}$, $y \in [b]_{R^=}$ и aRb, то xRy; отношение R^* — отношение порядка на $A/R^=$.

 ${\it Proof.}$ Рефлексивность и симметричность очевидны из определения $R^=$.

 $\lhd xR^=y,yR^=z\Rightarrow xRy,yRz\Rightarrow xRz$ и аналогично $zRx\Rightarrow xR^=z$, получили транзитивность.

$$aRb, aR^{=}x, bR^{=}y \Rightarrow aRx, bRy.$$

$$\begin{cases} xRa \\ aRb \\ bRy \end{cases} \Rightarrow xRy$$

- Рефлексивность: $aR^*a \Leftarrow aRa$, что выполнено по рефлексивности R
- Антисимметричность: $aR^*b, bR^*a \Rightarrow aRb, bRa \Rightarrow a, b \in [a]_{R^=}$ и $\in [b]_{R^=}$, но классы эквивалентности не пересекаются $\Rightarrow a = b$.

- Транзитивность: по транзитивности R.
- 10. Покажем, что конструкция из определения алгебры Линденбаума действительно является решёткой:

wide, libelwidth=!, libelindent=0pt Покажите, что отношение (\approx) — отношение эквивалентности (напомним, что $\alpha \leq \beta$, если $\alpha \vdash \beta$, а $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$). Подсказка: воспользуйтесь предыдущим заданием.

Покажем, что ⊢ есть предпорядок.

- Рефлексивность: $\alpha \vdash \alpha$
- Транзитивность: $\alpha \vdash \beta, \beta \vdash \gamma$ верно по MP и теореме о дедукции. Также можно без них берем вывод β , приписываем вывод γ , но удаляем шаги $\beta \in \Gamma$.

 \vdash это предпорядок, а \approx есть его $R^=$. По предыдущему номеру \approx — отношение эквивалентности.

wiide, liibelwiidth=!, liibeliindent=0pt Покажите, что $[\alpha]_{\approx}\cdot[\beta]_{\approx}=[\alpha\ \&\ \beta]_{\approx}$. Для этого, например, можно показать:

- $\alpha \& \beta \leq \alpha$: $\alpha \& \beta \vdash \alpha$ очевидно (аксиома 4 и MP).
- если $\gamma \leq \alpha$ и $\gamma \leq \beta$, то $\gamma \leq \alpha \& \beta$; (аксиома 3 и MP дважды)
- операция однозначно определена для всех элементов решётки (то есть определена для всех классов эквивалентности и не зависит от выбора представителей). Подсказка: воспользуйтесь предыдущим заданием.

Покажем независимость от выбора представителей:

Если $\alpha \approx \gamma$, то $\alpha \& \beta \approx \gamma \& \beta$, т.к.:

M3*37y2019 4.3.2021

$$\alpha \& \beta \approx \gamma \& \beta \Leftarrow \begin{cases} \alpha \& \beta \vdash \gamma \& \beta \Leftarrow \begin{cases} \alpha \& \beta \vdash \alpha, \beta \\ \alpha \vdash \gamma \end{cases} \\ \gamma \& \beta \vdash \alpha \& \beta \Leftarrow \begin{cases} \alpha \& \beta \vdash \alpha, \beta \\ \alpha \vdash \gamma \end{cases} \\ \gamma \vdash \alpha \end{cases}$$

 $\beta \approx \gamma \Rightarrow \alpha \& \beta \approx \alpha \& \gamma$ аналогично.

Определенность для всех классов была показана в предыдущих пунктах.

wiiide, liiibelwiiidth=!, liiibeliiindent=0pt Покажите, что $[\alpha] + [\beta] = [\alpha \vee \beta]$.

- $\alpha \preceq \alpha \lor \beta$ и $\beta \preceq \alpha \lor \beta$ очевидно по аксиомам 6, 7.
- Если $\alpha \preceq \gamma$ и $\beta \preceq \gamma$, то $\alpha \lor \beta \preceq \gamma$

$$\begin{cases} \alpha \vdash \gamma \\ \beta \vdash \gamma \end{cases} \Rightarrow \begin{cases} \vdash \alpha \to \gamma \\ \vdash \beta \to \gamma \end{cases} \xrightarrow{\text{akc. 8, M.P.}} \alpha \lor \beta \vdash \gamma$$

• Независимость от выбора представителей Если $\alpha \approx \gamma$, то $\alpha \vee \beta \approx \gamma \vee \beta$, т.к.:

$$\alpha \vee \beta \approx \gamma \vee \beta \Leftarrow \begin{cases} \alpha \vee \beta \vdash \gamma \vee \beta \\ \gamma \vee \beta \vdash \alpha \vee \beta \end{cases}$$

$$\Gamma := \alpha \vee \beta, \alpha \rightarrow \gamma$$

$$\frac{\overline{\Gamma, \alpha \vdash \alpha} \quad \overline{\Gamma, \alpha \vdash \alpha \to \gamma}}{\frac{\Gamma, \alpha \vdash \gamma}{\Gamma, \alpha \vdash \gamma \vee \beta}} \quad \frac{\overline{\Gamma, \beta \vdash \beta}}{\Gamma, \beta \vdash \gamma \vee \beta} \quad \overline{\Gamma \vdash \alpha}$$

Аналогично для $\gamma \lor \beta \vdash \alpha \lor \beta$

wivde, livbelwivdth=!, livbelivndent=0pt Покажите, что $[\alpha] \to [\beta] = [\alpha \to \beta]$.

• $\alpha \& (\alpha \to \beta) \preceq \beta$ — по аксиомам 4, 5 и М.Р.

• Если $\alpha \& \gamma \preceq \beta$, то $\gamma \preceq \alpha \rightarrow \beta$

$$\alpha \& \gamma \to \beta \vdash \gamma \to \alpha \to \beta$$
$$\alpha \& \gamma \to \beta, \gamma \vdash \alpha \to \beta$$
$$\alpha \& \gamma \to \beta, \gamma, \alpha \vdash \beta$$

Это доказывается через аксиому 3 и M.P.

• Независимость от выбора представителей

Если $\gamma \approx \alpha$, то:

i.
$$\alpha \to \beta \approx \gamma \to \beta$$

$$\Gamma := \alpha \to \beta, \gamma \to \alpha$$

$$\overline{\Gamma, \gamma \vdash \gamma} \quad \overline{\Gamma, \gamma \vdash \gamma \to \alpha}$$

$$\overline{\Gamma, \gamma \vdash \alpha} \quad \overline{\Gamma, \gamma \vdash \alpha \to \beta}$$

$$\overline{\Gamma, \gamma \vdash \beta}$$

$$\overline{\Gamma \vdash \gamma \to \beta}$$

Аналогично
$$\gamma \to \beta \vdash \alpha \to \beta$$

$$\begin{split} \text{ii.} \quad \beta &\to \alpha \approx \beta \to \gamma \\ &\Gamma := \beta \to \alpha, \alpha \to \gamma \\ &\frac{\overline{\Gamma, \beta \vdash \beta} \quad \overline{\Gamma, \beta \vdash \beta \to \alpha}}{\overline{\Gamma, \beta \vdash \alpha} \quad \overline{\Gamma, \beta \vdash \alpha \to \gamma}} \\ &\frac{\Gamma, \beta \vdash \gamma}{\overline{\Gamma \vdash \beta \to \gamma}} \end{split}$$

wvde, lvbelwvdth=!, lvbelvndent=0pt Найдите классы эквивалентности для 0 и 1.

$$\forall \alpha \ 0 \leq \alpha$$

$$0 \vdash \alpha$$

$$\vdash 0 \to \alpha$$

$$\vdash 0 \to \neg \alpha$$

$$\vdash (0 \to \alpha) \to (0 \to \neg \alpha) \to \neg 0$$

Итого $\forall \alpha \ 0 \leq \alpha \Rightarrow \vdash \neg 0$. Докажем " \Leftarrow ".

Итого $[0]_{\approx}$ есть множество формул β , таких что $\vdash \neg \beta$.

$$\forall \alpha \ \alpha \leq 1$$

Рассмотрим $\alpha=\beta\to\beta$. По построению 1 получается $\beta\to\beta\vdash 1$. Рассмотрим такое доказательство. Если в нём используется $\beta\to\beta$ с обоснованием $\in\Gamma$, вставим доказательство $\beta\to\beta$ и удалим такой шаг. Доказательство останется верным, но не будет использовать факт $\beta\to\beta\in\Gamma$, следовательно $\vdash 1$.

Итого $\forall \alpha \ \alpha \leq 1 \Rightarrow \vdash 1$. Докажем " \Leftarrow ". Этот факт очевиден, т.к. доказательство $\vdash 1$ есть доказательство $\alpha \vdash 1$.