Linear trend: using time as a feature

Trend features

Linear trend

Let's consider a linear model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

Model linear trend using time passed since a reference time, t_0 , as feature $(t - t_0)$:

$$y_t = \beta_0 + \beta_1(t - t_0)$$

We typically set t_0 to the start time of the time series $t_0 = 0$:

$$v_t = \beta_0 + \beta_1 t$$
 This feature can capture trend.

Time	Daily Sales
2020-02-12	23
2020-02-13	30
2020-02-14	35
2020-02-15	30
2020-02-16	Ś
2020-02-17	Ś
2020-02-18	Ś

Time	Daily Sales	t (days)
2020-02-12	23	0
2020-02-13	30	1
2020-02-14	35	2
2020-02-15	30	3
2020-02-16	Ś	4
2020-02-17	Ś	5
2020-02-18	Ś	6

Time	Daily Sales	t (days)
2020-02-12	23	0
2020-02-13	30	1
2020-02-14	35	2
2020-02-15	30	3
2020-02-16	Ś	4
2020-02-17	Ś	5
2020-02-18	Ś	6

Note gaps in the time stamp

Time	Monthly Sales
2020-02-01	23
2020-03-01	30
2020-05-01	35
2020-07-01	30
2020-08-01	Ś
2020-09-01	Ś
2020-10-01	Ś

Time	Daily Sales	t (days)
2020-02-12	23	0
2020-02-13	30	1
2020-02-14	35	2
2020-02-15	30	3
2020-02-16	Ś	4
2020-02-17	Ś	5
2020-02-18	Ś	6

Note gaps in the time stamp

Time	Monthly Sales	t (months)
2020-02-01	23	0
2020-03-01	30	1
2020-05-01	35	3
2020-07-01	30	5
2020-08-01	Ś	6
2020-09-01	Ś	7
2020-10-01	Ś	8

Forecasting with just the time feature

		Target y	Features X	
	Time	У	t (days)	
2	2020-02-12	23	0	
2	2020-02-13	30	1	model.fit(X_train, y_train)
2	2020-02-14	35	2	
2	2020-02-15	30	3	(4) $(\hat{v}_{\tau+1})$
2	2020-02-16		4	
2	2020-02-17		5	model.predict $5 \rightarrow \hat{y}_{T+2}$
2	2020-02-18		6	$\begin{vmatrix} 6 \\ \hat{v}_{-1} \end{vmatrix}$
				(y_T+3)

Forecasting with just the time feature

Example: Linear regression with time feature

Implementation – Pandas & Numpy

1949-05-01 121 4.0

Implementation - sktime

from sktime.transformations.series.time_since import TimeSince

Implementation - sktime

transformer.transform(df) time_since_1949-01-01 00:00:00 time_since_1949-02-01 00:00:00 ds 1949-01-01 0 1949-02-01 1949-03-01 2 1949-04-01 3 1949-05-01

We can use the time elapsed, t, to model the trend.

Summary

In a linear model, using t, results in a linear trend.

Standard tree-based models will not be able to use this feature to extrapolate.