Sprawozdanie - informatyka w medycynie (IWM)	
Prowadzący:	Grupa:
dr hab. inż. Szymon Wilk	Grupa: $4L$
Temat Ćwiczeń:	•
Klasyfikacja naczyń krwionośnych	
Autorzy:	
$Daniel\ Zdancewicz[145317]$	

1 Wstęp

1.1 Technologia

Zastosowane technologie

- Server
 - Python 3.10
 - FastAPI
- Przetwarzanie obrazów
 - Numpy
 - sklearn
 - keras
- Klient
 - TypeScript
 - SolidJS

1.2 Opis funkcjonalności

- Wstępne przetwarzanie obrazu (rozmycia, wyostrzenia, normalizacja) 3.0
- Wyodrębnienie naczyń krwionośnych 3.0
- Poprawa, wygładzenia 3.0
- Wizualizacja naczyń względem oryginału 3.0
- Analiza skuteczności (accuracy, sensitivity, specificity) 3.0
- \bullet Wykorzystanie modelu głębokiej sieci neuronowej 5.0
- Analiza skuteczności sieci neuronowej
- Wizualizacja efektów użycia sieci neuronowej 5.0

2 Opis zastosowanych metod

2.1 Model tradycyjny (3.0 – obowiązkowy)

Kroki:

- 1. Ekstrakcja kanału zielonego
- 2. Wyostrzenie
- 3. Normalizacja histogramu
- 4. Alogrytm Sato
- 5. Założenie maski
- 6. Decyzja binarna z progiem 0.25

Uzasadnienie: Sato dawał najlepsze wyniki, normalizacja jest podstawowym krokiem

2.2 Model drzewa decyzyjnego (4.0 – dodatkowy)

Model - klasyfikator drzewiasty o głębokości 8 Przetwarzanie wczesne, takie same jak dla modelu tradycyjnego:

- Ekstrakcja kanału zielonego
- Wyostrzenie
- Normalizacja histogramu
- Alogrytm Sato
- Założenie maski
- pomniejszenie obrazu do skali 0.2 (oszczędzanie czasu)
- Wykorzystanie klasyfikatora na każdym pikselu

2.2.1 Trening Modelu

- Utworzenie generatora wycinków o wielkości 5
- Metryki treningowe jako pierwszych 3 momenty wycinków oraz wynik na podstawie maski eksperckiej

Uzasadnienie: Wykorzystanie klasyfikatora drzewiastego wspomaga przetwarzanie klasyczne

2.3 Model głębokiej sieci neuronowej (5.0 – dodatkowy)

Model - UNET - o dropouť
cie równym 0.1 i metodą aktywacji ReLU Wyuczony model osiągnął celność
 95.1%

2.3.1 Trening Modelu

- Zbiór obrazów DRIVE podzielony na zbiór treningowy i walidacyjny
- Obrazy podawane 3 kanałowe bezpośrednio do modelu
- Wczesne przetwarzanie obrazów treningowych przez przypadkowe
 - Rotacje
 - Przesunięcia
 - Przybliżenia
 - Sekcjonowanie
 - Obracania
 - Podbicia/obniżenia saturacji
 - Podbicia/obniżenia kontrastu

3 Aplikacja

Rysunek 1: Widok aplikacji

4 Wyniki eksperymentu

Rysunek 2: Analiza dla cukrzyka - $1\,$

Rysunek 3: Analiza ekspercka dla cukrzyka - 1

Rysunek 4: Analiza dla jaskra - $15\,$

Rysunek 5: Analiza ekspercka dla jaskra - 15

Rysunek 6: Analiza dla zdrowe - $2\,$

Rysunek 7: Analiza ekspercka dla zdrowe - $2\,$

Rysunek 8: Analiza dla jaskra - 10

Rysunek 9: Analiza ekspercka dla jaskra - $10\,$

Rysunek 10: Analiza dla cukrzyk - $3\,$

Rysunek 11: Analiza ekspercka dla cukrzyk - $3\,$