MEEN 644 - Homework 4

Logan Harbour April 11, 2019

1 Problem statement

Consider an incompressible laminar flow between two infinite parallel plates. Flow enters at constant velocity $u_{\rm in}$ and aconstant heat flux, $q' = 500 \text{ W/m}^2$ is applied to each wall. Height of channel 2H and length of channel L are 0.02 m and 2.0 m, respectively. Constant velocity $u_{\rm in}$ and temperature $T_{\rm in} = 25^{\circ}\text{C}$ is set as the inlet condition. Reynolds number is defined as $Re = 2\rho u_{\rm in}H/\mu$.

- 1. (10 points) Specify your boundary condition for u, v, P, and T.
- 2. (50 points) Write a finite volume method code to predict velocity, pressure, and temperature profiles for Re = 100. Employ the Power Law scheme to represent a solution to a 1-D convection-diffusion equation. Use the SIMPLE algorithm to link velocity and pressure fields. Use 10 uniformly sized CVs in the x-direction and 5 uniformly sized CVs in the y-direction. Declare convergence at R_u, R_v, R_P and $R_T < 10^{-6}$.
- 3. (10 points) Run your program with the 10×5 grid and tabulate $u, (P P_0)$, and T to check for symmetry. P_0 is the pressure at the outlet.
- 4. (30 points) Use a 180×54 grid to solve for u, v, P, and T.
 - (a) Plot $u/u_{\rm in}$ along the centerline of the channel (as a function of x).
 - (b) Plot u, v, and T at x = 0.8m m (as a function of y).
 - (c) Plot the Nusselt number as a function of stream-wise distance x from the channel entrance.

2 Preliminaries

2.1 Two-dimensional diffusion-convection

With two-dimensional diffusion and convection with constant material properties, we have the PDE

$$\begin{cases}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \\
\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial v}{\partial x} = -\frac{\partial P}{\partial x} + \mu \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial^2 u}{\partial y^2}, \\
\rho u \frac{\partial u}{\partial y} + \rho v \frac{\partial v}{\partial y} = -\frac{\partial P}{\partial y} + \mu \frac{\partial^2 v}{\partial x^2} + \mu \frac{\partial^2 v}{\partial y^2}.
\end{cases} \tag{1}$$

with the boundary conditions

$$\begin{cases} u(x, L_y) = 0, \\ \frac{\partial^2 u}{\partial x^2}|_{(L_x, y)} = 0, \\ u(x, 0) = 0, \\ u(0, y) = \frac{\text{Re}\mu}{\rho L_y}, \\ v(x, L_y) = 0, \\ v(L_x, y) = 0, \\ v(x, 0) = 0, \\ v(0, y) = 0, \end{cases}$$

$$(2)$$

2.2 Solving methodology

Using the SIMPLE algorithm, the problem is solved in the following order:

- 1. Explicitly fill the boundary conditions into the u and v solution vector in order to enforce them in all of the integrations that follow.
- 2. Guess a pressure field, p^* .
- 3. Use the guessed (or previously iterated) pressure field to obtain the velocity guesses, u^* and v^* , as discussed in 2.4.
- 4. Solve the pressure correction, p', as discussed in 2.5.
- 5. Compute the velocity corrections, u' and v', and correct the velocity and pressure field, as discussed in 2.6.
- 6. Correct for the u-velocity outflow boundary condition.
- 7. Check for convergence. If not converged, return to 2.
- 8. Solve the auxiliary temperature until convergence.

2.3 Domain discretization

The domain of size $L_x \times L_y$ is discretized into $N_x \times N_y$ uniformly sized control volumes with $\Delta x = L_x/N_x$ and $\Delta y = L_y/N_y$. The numbering for all variables begins at the origin at (i,j) = (0,0). The maximum index for each variable, ϕ , is defined as (M_x^{ϕ}, M_y^{ϕ}) .

Figure 1: An internal pressure control volume.

Figure 2: An internal u-velocity control volume.

Figure 3: An internal v-velocity control volume.

Figure 4: An internal temperature control volume.

2.4 Velocity guess

Define the Pechlet number on each boundary of a CV for variable ϕ centered at node $\phi_{i,j}$ as

$$P_{\rm bd}^{\phi_{i,j}} = \frac{F_{\rm bd}^{\phi_{i,j}}}{D_{\rm bd}^{\phi_{i,j}}}, \quad \text{where} \quad {\rm bd} = [n, e, s, w] \quad {\rm and} \quad \phi = [u, v].$$
 (3)

The integration of the x and y-momentum equations (generalizing again with $\phi = [u, v]$) using the power-law scheme results in the equation (for $i = 1, \dots, M_x^{\phi} - 1$, $j = 1, \dots, M_y^{\phi} - 1$)

$$a_{p}^{\phi_{i,j}}\phi_{i,j}^{*} = a_{n}^{\phi_{i,j}}\phi_{i,j+1}^{*} + a_{e}^{\phi_{i,j}}\phi_{i+1,j}^{*} + a_{s}^{\phi_{i,j}}\phi_{i,j-1}^{*} + a_{w}^{\phi_{i,j}}\phi_{i-1,j}^{*} + a_{b}^{\phi_{i,j}}, \tag{4a}$$

$$a_n^{\phi_{i,j}} = D_n^{\phi_{i,j}} \max \left[0, (1 - 0.1 | P_n^{\phi_{i,j}} |)^5 \right] + \max \left[-F_n^{\phi_{i,j}}, 0 \right], \tag{4b}$$

$$a_e^{\phi_{i,j}} = D_e^{\phi_{i,j}} \max \left[0, (1 - 0.1|P_e^{\phi_{i,j}}|)^5 \right] + \max \left[-F_e^{\phi_{i,j}}, 0 \right], \tag{4c}$$

$$a_s^{\phi_{i,j}} = D_s^{\phi_{i,j}} \max \left[0, (1 - 0.1 | P_s^{\phi_{i,j}} |)^5 \right] + \max \left[F_s^{\phi_{i,j}}, 0 \right], \tag{4d}$$

$$a_w^{\phi_{i,j}} = D_w^{\phi_{i,j}} \max \left[0, (1 - 0.1 | P_w^{\phi_{i,j}} |)^5 \right] + \max \left[F_w^{\phi_{i,j}}, 0 \right], \tag{4e}$$

$$a_p^{\phi_{i,j}} = a_n^{\phi_{i,j}} + a_e^{\phi_{i,j}} + a_s^{\phi_{i,j}} + a_w^{\phi_{i,j}}, \tag{4f}$$

$$a_b^{\phi_{i,j}} = \begin{cases} \Delta y(p_{i,j}^* - p_{i+1,j}^*), & \phi = u \\ \Delta x(p_{i,j}^* - p_{i,j+1}^*), & \phi = v \end{cases}$$
 (4g)

2.4.1 *u*-velocity guess update

In all discussion that follow, we are considering a u-CV defined by the central node $u_{i,j}$. For simplicity we will define the width of each u-CV as

$$\Delta x^{u_{i,j}} = \begin{cases} \Delta x \,, & 1 < i < M_x^u - 1 \\ \frac{3}{2} \Delta x \,, & \text{otherwise} \end{cases} , \tag{5}$$

and we will also define the y-distance from $u_{i,j}$ to the north and south pressure interfaces, respectively, as

$$\delta y_{p_n}^{u_{i,j}} = \begin{cases} \frac{1}{2} \Delta y \,, & j = M_y^u - 1 \,, \\ \Delta y \,, & \text{otherwise} \end{cases}$$
(6a)

$$\delta y_{p_s}^{u_{i,j}} = \begin{cases} \frac{1}{2} \Delta y \,, & j = 1 \,, \\ \Delta y \,, & \text{otherwise} \end{cases}$$
 (6b)

The diffusion coefficients are then defined as

$$D_n^{u_{i,j}} = \frac{\mu \Delta x^{u_{i,j}}}{\delta y_{p_n}^{u_{i,j}}},\tag{7a}$$

$$D_e^{u_{i,j}} = \frac{\mu \Delta y}{\Delta x},\tag{7b}$$

$$D_s^{u_{i,j}} = \frac{\mu \Delta x^{u_{i,j}}}{\delta y_{p_s}^{u_{i,j}}},\tag{7c}$$

$$D_w^{u_{i,j}} = \frac{\mu \Delta y}{\Delta x} \,. \tag{7d}$$

Lastly, the flow rates are defined as

$$F_n^{u_{i,j}} = \rho \Delta x^{u_{i,j}} \begin{cases} \frac{1}{6} \left(v_{0,j}^* + 3v_{1,j}^* + 2v_{2,j}^* \right), & i = 1\\ \frac{1}{6} \left(2v_{i,j}^* + 3v_{i+1,j}^* + v_{i+2,j}^* \right), & i = M_x^u - 1\\ \frac{1}{2} \left(v_{i,j}^* + v_{i+1,j}^* \right), & \text{otherwise} \end{cases}$$
(8a)

$$F_e^{u_{i,j}} = \rho \Delta y \begin{cases} u_{M_x^u,j}^*, & i = M_x^u - 1\\ \frac{1}{2} \left(u_{i+1,j}^* + u_{i,j}^* \right), & \text{otherwise} \end{cases},$$
 (8b)

$$F_s^{u_{i,j}} = \rho \Delta x^{u_{i,j}} \begin{cases} \frac{1}{6} \left(v_{0,j-1}^* + 3v_{1,j-1}^* + 2v_{2,j-1}^* \right), & i = 1\\ \frac{1}{6} \left(2v_{i,j-1}^* + 3v_{i+1,j-1}^* + v_{i+2,j-1}^* \right), & i = M_x^u - 1\\ \frac{1}{2} \left(v_{i,j-1}^* + v_{i+1,j-1}^* \right), & \text{otherwise} \end{cases}$$
(8c)

$$F_w^{u_{i,j}} = \rho \Delta y \begin{cases} u_{0,j}^*, & i = 1\\ \frac{1}{2} \left(u_{i-1,j}^* + u_{i,j}^* \right), & \text{otherwise} \end{cases}$$
 (8d)

2.4.2 v-velocity guess update

Similarly, we will consider a v-CV defined by the central node $v_{i,j}$. The width of each v-CV is defined as

$$\Delta y^{v_{i,j}} = \begin{cases} \Delta y \,, & 1 < j < M_y^v - 1 \\ \frac{3}{2} \Delta y \,, & \text{otherwise} \end{cases} , \tag{9}$$

and we will also define the x-distance from $v_{i,j}$ to the east and west pressure interfaces, respectively, as

$$\delta x_{p_e}^{v_{i,j}} = \begin{cases} \frac{1}{2} \Delta x \,, & i = M_x^v - 1\\ \Delta x \,, & \text{otherwise} \end{cases} , \tag{10a}$$

$$\delta x_{p_w}^{v_{i,j}} = \begin{cases} \frac{1}{2} \Delta x \,, & i = 1 \,, \\ \Delta x \,, & \text{otherwise} \end{cases}$$
 (10b)

The diffusion coefficients are then defined as

$$D_n^{v_{i,j}} = \frac{\mu \Delta x}{\Delta y} \,, \tag{11a}$$

$$D_e^{v_{i,j}} = \frac{\mu \Delta y^{v_{i,j}}}{\delta x_{p_e}^{v_{i,j}}},\tag{11b}$$

$$D_s^{v_{i,j}} = \frac{\mu \Delta x}{\Delta y} \,, \tag{11c}$$

$$D_w^{v_{i,j}} = \frac{\mu \Delta y^{v_{i,j}}}{\delta x_{p_w}^{v_{i,j}}} \,. \tag{11d}$$

Lastly, the flow rates are defined as

$$F_n^{v_{i,j}} = \rho \Delta x \begin{cases} v_{i,M_y^v}^*, & j = M_y^v - 1\\ \frac{1}{2} \left(v_{i,j+1}^* + v_{i,j}^* \right), & \text{otherwise} \end{cases}$$
(12a)

$$F_{e}^{v_{i,j}} = \rho \Delta y^{v_{i,j}} \begin{cases} \frac{1}{6} \left(u_{i,0}^* + 3u_{i,1}^* + 2u_{i,2}^* \right), & j = 1\\ \frac{1}{6} \left(2u_{i,j}^* + 3u_{i,j+1}^* + 2u_{i,j+2}^* \right), & j = M_y^v - 1,\\ \frac{1}{2} \left(u_{i,j}^* + u_{i,j+1}^* \right), & \text{otherwise} \end{cases}$$
 (12b)

$$F_s^{v_{i,j}} = \rho \Delta x \begin{cases} v_{i,0}^*, & j = 1\\ \frac{1}{2} \left(v_{i,j+1}^* + v_{i,j}^* \right), & \text{otherwise} \end{cases},$$
 (12c)

$$F_{w}^{v_{i,j}} = \rho \Delta y^{v_{i,j}} \begin{cases} \frac{1}{6} \left(u_{i-1,0}^* + 3u_{i-1,1}^* + 2u_{i-1,2}^* \right), & j = 1\\ \frac{1}{6} \left(2u_{i-1,j}^* + 3u_{i-1,j+1}^* + 2u_{i-1,j+2}^* \right), & j = M_y^v - 1\\ \frac{1}{2} \left(u_{i-1,j}^* + u_{i-1,j+1}^* \right), & \text{otherwise} \end{cases}$$
(12d)

2.5 Pressure correction solve

At convergence, u' = v' = p' = 0, therefore it is irrelevant as to how we find them. Subtracting (exact guessed) forms of Equation (4) one obtains

$$a_p^{u_{i,j}}u'_{i,j} = a_n^{u_{i,j}}u'_{i,j+1} + a_e^{u_{i,j}}u'_{i+1,j} + a_s^{u_{i,j}}u'_{i,j-1} + a_w^{u_{i,j}}u'_{i-1,j} + \Delta y(p'_{i,j} - p'_{i+1,j}),$$
(13a)

$$a_p^{v_{i,j}}v'_{i,j} = a_n^{v_{i,j}}v'_{i,j+1} + a_e^{v_{i,j}}v'_{i+1,j} + a_s^{v_{i,j}}v'_{i,j-1} + a_w^{v_{i,j}}v'_{i-1,j} + \Delta x(p'_{i,j} - p'_{i,j+1}).$$

$$(13b)$$

Drop the neighbor terms in the equations above (implying that velocity corrections are local) to obtain

$$u'_{i,j} = \frac{\Delta y}{a_p^{u_{i,j}}} (p'_{i,j} - p'_{i+1,j}), \qquad (14a)$$

$$v'_{i,j} = \frac{\Delta x}{a_p^{v_{i,j}}} (p'_{i,j} - p'_{i,j+1}). \tag{14b}$$

Integrate the continuity equation over a p-CV defined by the central node $p_{i,j}$ and substitute $u = u^* + u'$, $v = v^* + v'$, and the above Equations to obtain

$$a_p^{p'_{i,j}}p'_{i,j} = a_n^{p'_{i,j}}p'_{i,j+1} + a_e^{p'_{i,j}}p'_{i+1,j} + a_s^{p'_{i,j}}p'_{i,j-1} + a_w^{p'_{i,j}}p'_{i-1,j} + a_b^{p'_{i,j}},$$
(15a)

$$a_n^{p'_{i,j}} = \begin{cases} \rho \Delta x^2 / a_p^{v_{i,j}}, & j < M_y^p - 1\\ 0, & \text{otherwise} \end{cases}, \tag{15b}$$

$$a_e^{p'_{i,j}} = \begin{cases} \rho \Delta y^2 / a_p^{u_{i,j}}, & i < M_x^p - 1\\ 0, & \text{otherwise} \end{cases}, \tag{15c}$$

$$a_s^{p'_{i,j}} = \begin{cases} \rho \Delta x^2 / a_p^{v_{i,j-1}}, & j > 1\\ 0, & \text{otherwise} \end{cases}, \tag{15d}$$

$$a_w^{p'_{i,j}} = \begin{cases} \rho \Delta y^2 / a_p^{u_{i-1,j}}, & i > 1\\ 0, & \text{otherwise} \end{cases},$$
 (15e)

$$a_p^{p'_{i,j}} = a_n^{p'_{i,j}} + a_e^{p'_{i,j}} + a_s^{p'_{i,j}} + a_w^{p'_{i,j}}, (15f)$$

$$a_b^{p'_{i,j}} = \rho \left(\Delta y(u_{i-1,j}^* - u_{i,j}^*) + \Delta x(v_{i,j-1}^* - v_{i,j}^*) \right). \tag{15g}$$

2.6 Velocity and pressure correction

Lastly, the velocities are then updated using Equation (14) with

$$u_{i,j} = u_{i,j} + \frac{\Delta y}{a_p^{u_{i,j}}} (p'_{i,j} - p'_{i+1,j}), \quad i = 1, \dots, M_x^u - 1, \quad j = 1, \dots, M_y^u - 1,$$
(16a)

$$v_{i,j} = v_{i,j} + \frac{\Delta x}{a_p^{v_{i,j}}} (p'_{i,j} - p'_{i,j+1}), \quad i = 1, \dots, M_x^v - 1, \quad j = 1, \dots, M_y^v - 1,$$
 (16b)

and the pressures (take note of the relaxation parameter α_p) with

$$p_{i,j} = p_{i,j} + \alpha_p p'_{i,j}, \quad i = 1, \dots, M_x^p - 1, \quad j = 1, \dots, M_y^p - 1.$$
 (17)

2.7 System solver

The systems in Equations (4) and (15) are solved using the line-by-line method with TDMA as the matrix solver. In this method, a tri-diagonal system is formed as the terms from one of the dimensions are lagged. Consider the simple system

$$a_p^{i,j}\phi_{i,j} = a_n^{i,j}\phi_{i,j+1} + a_e^{i,j}\phi_{i+1,j} + a_s^{i,j}\phi_{i,j-1} + a_w^{i,j}\phi_{i-1,j} + a_h^{i,j}, \quad i = 1,\dots, N_x, \quad j = 1,\dots, N_y.$$
 (18)

Now, consider ϕ^* to be a *lagged* value of ϕ , i.e., it is known and is moved to the right hand side of each equation. In solving a single physical column i using the line-by-line method, the following system is solved:

$$a_p^{i,j}\phi_{i,j} = a_n^{i,j}\phi_{i,j+1} + a_e^{i,j}\phi_{i+1,j}^* + a_s^{i,j}\phi_{i,j-1} + a_w^{i,j}\phi_{i-1,j}^* + a_b^{i,j}, \qquad j = 1,\dots, N_y.$$

$$(19)$$

In solving a single physical row j using the line-by-line method, the following system is solved:

$$a_p^{i,j}\phi_{i,j} = a_n^{i,j}\phi_{i,j+1}^* + a_e^{i,j}\phi_{i+1,j} + a_s^{i,j}\phi_{i,j-1}^* + a_w^{i,j}\phi_{i-1,j} + a_b^{i,j}, \qquad i = 1,\dots, N_x.$$
 (20)

3 Results

3.1 Problem 3: 10×5 grid

The results requested for problem 3 follow in Tables 1, 2, and 3.

Table 1: The *u*-velocity solution with the 10×5 grid. A row corresponds to a *x*-position and a column corresponds to an *y*-position.

	1	2	3	4	5	6	7
1	$5.06931E{-3}$	$5.06931E{-3}$	$5.06931E{-3}$	$5.06931E{-3}$	$5.06931E{-3}$	$5.06931E{-3}$	5.06931E-3
2	0.00000E0	$3.02156E{-3}$	$6.10805E{-3}$	7.08733E - 3	$6.10805E{-3}$	$3.02156E{-3}$	0.00000E0
3	0.00000E0	$2.84164E{-3}$	$6.18930E{-3}$	7.28469E - 3	6.18930E - 3	$2.84164E{-3}$	0.00000E0
4	0.00000E0	2.81967E - 3	$6.19551E{-3}$	7.31618E - 3	$6.19551E{-3}$	2.81967E - 3	0.00000E0
5	0.00000E0	2.81677E - 3	$6.19585E{-3}$	$7.32132E{-3}$	$6.19585E{-3}$	2.81677E - 3	0.00000E0
6	0.00000E0	2.81636E-3	$6.19583E{-3}$	7.32217E - 3	6.19583E - 3	$2.81636E{-3}$	0.00000E0
7	0.00000E0	$2.81630E{-3}$	$6.19583E{-3}$	$7.32231E{-3}$	$6.19583E{-3}$	$2.81630E{-3}$	0.00000E0
8	0.00000E0	$2.81629E{-3}$	$6.19582E{-3}$	7.32233E-3	$6.19582E{-3}$	$2.81629E{-3}$	0.00000E0
9	0.00000E0	$2.81628E{-3}$	$6.19582E{-3}$	7.32234E-3	$6.19582E{-3}$	$2.81628E{-3}$	0.00000E0
10	0.00000E0	$2.81628E{-3}$	$6.19582E{-3}$	$7.32234E{-3}$	$6.19582E{-3}$	$2.81628E{-3}$	0.00000E0
11	0.00000E0	2.81628E-3	$6.19582E{-3}$	7.32234E-3	6.19582E - 3	2.81628E - 3	0.00000E0

Table 2: The $(P - P_0)$ solution with the 10×5 grid. A row corresponds to a x-position and a column corresponds to an y-position.

	1	2	3	4	5	6	7
1	$2.88374E{-1}$	2.88374E-1	$2.88353E{-1}$	$2.88346E{-1}$	$2.88353E{-1}$	$2.88374E{-1}$	2.88374E-1
2	$2.88374E{-1}$	$2.88374E{-1}$	$2.88353E{-1}$	$2.88346E{-1}$	$2.88353E{-1}$	$2.88374E{-1}$	$2.88374E{-1}$
3	$2.40648E{-1}$	2.40648E-1	$2.40651E{-1}$	$2.40653E{-1}$	$2.40651E{-1}$	$2.40648E{-1}$	2.40648E-1
4	$2.11749E{-1}$	2.11749E-1	2.11750E-1	2.11750E-1	2.11750E-1	$2.11749E{-1}$	2.11749E-1
5	$1.83440E{-1}$	1.83440E-1	$1.83440E{-1}$	$1.83440E{-1}$	$1.83440E{-1}$	$1.83440E{-1}$	1.83440E-1
6	$1.55208E{-1}$	1.55208E-1	$1.55208E{-1}$	$1.55208E{-1}$	$1.55208E{-1}$	$1.55208E{-1}$	1.55208E-1
7	$1.26987E{-1}$	$1.26987E{-1}$	1.26987E - 1	1.26987E - 1	1.26987E - 1	1.26987E - 1	1.26987E-1
8	$9.87671E{-2}$	9.87671E-2	$9.87671E{-2}$	$9.87671E{-2}$	$9.87671E{-2}$	$9.87671E{-2}$	$9.87671E{-2}$
9	$7.05479E{-2}$						
10	$4.23287E{-2}$	4.23287E-2	$4.23287E{-2}$	4.23287E-2	$4.23287E{-2}$	$4.23287E{-2}$	4.23287E-2
11	0.00000 E0	0.00000E0	0.00000 E0	0.00000E0	0.00000E0	0.00000 E0	0.00000E0
12	0.00000 E0	0.00000E0	0.00000 E0	0.00000E0	0.00000E0	0.00000 E0	0.00000E0

Table 3: The T solution with the 10×5 grid. A row corresponds to a x-position and a column corresponds to an y-position.

	1	2	3	4	5	6	7
1	26.64204	25.00000	25.00000	25.00000	25.00000	25.00000	26.64204
2	27.69621	26.05418	25.36548	25.17769	25.36548	26.05418	27.69621
3	28.84253	27.20050	25.72681	25.36877	25.72681	27.20050	28.84253
4	29.72586	28.08382	26.15140	25.63232	26.15140	28.08382	29.72586
5	30.44158	28.79955	26.60972	25.95974	26.60972	28.79955	30.44158
6	31.06105	29.41902	27.08232	26.33547	27.08232	29.41902	31.06105
7	31.62445	29.98241	27.56009	26.74529	27.56009	29.98241	31.62445
8	32.15448	30.51244	28.03926	27.17831	28.03926	30.51244	32.15448
9	32.66429	31.02226	28.51841	27.62677	28.51841	31.02226	32.66429
10	33.16165	31.51962	28.99712	28.08535	28.99712	31.51962	33.16165
11	33.65119	32.00915	29.47532	28.55050	29.47532	32.00915	33.65119
12	34.14073	32.49869	29.95352	29.01564	29.95352	32.49869	34.14073

3.2 Problem 4: 180×54 grid

The requirements for problem (b) part i and ii were combined into Figure ?? as seen below. With increasing grid refinement, both centerline velocity profiles approached towards the reference solution obtained from Roy et. al. In addition, a once-more-refined run is compared with 256x256 CVs with good agreement.

Figure 5: $u/u_{\rm in}$ plotted along the centerline of the channel for the 180 \times 54 grid.

Figure 6: u plotted at x=0.8 m for the 180×54 grid.

Figure 7: v plotted at x=0.8 m for the 180×54 grid.

Figure 8: T plotted at x=0.8 m for the 180×54 grid.

Figure 9: The Nusselt number plotted as a function of stream-wise distance for the 180×54 grid.

Code listing

For the implementation, we have the following files:

- Makefile Allows for compiling the c++ project with make.
- hwk4.cpp Contains the main() function that is required by C that runs the cases requested in this problem set.
- Problem.h Contains the header for the Problem class which is the main driver for a Flow2D::Problem.
- Variable.h Contains the Flow2D::Variable class, which is a storage container for a single variable (i.e., u).
- Problem.cpp Contains the run() functions that executes a Problem.
- Problem_coefficients.cpp Contains the functions for solving coefficients in a Problem.
- Problem_corrections.cpp Contains the functions for correcting solutions in a Problem.

- Problem_residuals.cpp Contains the functions for computing residuals in a Problem.
- Problem_solvers.cpp Contains the functions for sweeping and solving in a Problem.
- Matrix.h Contains the Matrix class which provides storage for a matrix with various standard matrix operations.
- TriDiagonal.h Contains the TriDiagonal class which provides storage for a tri-diagonal matrix including the TDMA solver found in the member function solveTDMA().
- Vector.h Contains the Vector class for one-dimensional vector storage.
- postprocess.py Produces the plots and tables in this report.

Makefile

hwk5.cpp

```
#include "Problem.h"
using namespace Flow2D;
int
main()
{
  // Problem wide constants
  double Lx = 2;
double Ly = 0.02;
  double cp = 4183;
double k = 0.609;
  double rho = 988.3;
  double mu = 0.001002;
  double Re = 100;
  double u_bc_val = Re * mu / (rho * Ly);
  double T_bc_val = 25;
  double q_bc_val = 500;
  // Standard inputs
  InputArguments input;
  input.Lx = Lx;
  input.Ly = Ly;
  input.cp = cp;
  input.k = k;
  input.mu = mu;
  input.rho = rho;
  input.u_ref = u_bc_val;
  input.L_ref = Lx;
  input.T_left = T_bc_val;
  input.u_bc = BoundaryCondition(\theta, \theta, \theta, u_bc_val); input.v_bc = BoundaryCondition(\theta, \theta, \theta, \theta);
  input.q_top_bot = q_bc_val;
  // Problem 3: check symmetry
std::cout << "Problem 3: check symmetry" << std::endl;</pre>
  Problem problem3(10, 5, input);
  problem3.run();
  problem3.save(Variables::u, "results/coarse_u.csv");
problem3.save(Variables::p, "results/coarse_p.csv");
```

```
problem3.save(Variables::T, "results/coarse_T.csv");

// Problem 4: 180x54 grid
std::cout << "Problem 4: 180 x 54 grid" << std::endl;
Problem problem4(180, 54, input);
problem4.run();
problem4.save(Variables::u, "results/fine_u.csv");
problem4.save(Variables::v, "results/fine_v.csv");
problem4.save(Variables::T, "results/fine_T.csv");
}</pre>
```

Problem.h

```
#ifndef PROBLEM_H
#define PROBLEM_H
#include <cmath>
#include <ctime>
#include <iomanip>
#include <iostream>
#include <map>
#include "Variable.h"
namespace Flow2D
using namespace std;
struct InputArguments
  double Lx, Ly;
  BoundaryCondition u_bc, v_bc;
  double T_left, q_top_bot;
  double L_ref, u_ref;
  double cp, k, mu, rho;
bool debug = false;
  double alpha_p = 0.7;
  double alpha_uv = 0.5;
  unsigned int max_main_its = 50000;
  unsigned int max_aux_its = 20000;
  double tol = 1.0e-6;
class Problem
public:
  Problem(const unsigned int Nx, const unsigned int Ny, const InputArguments & input);
  // Public access to printing and saving variable results
  void print(const Variables var,
             const string prefix = "",
             const bool newline = false,
             const unsigned int pr = 5) const
    variables.at(var).print(prefix, newline, pr);
  void save(const Variables var, const string filename) const { variables.at(var).save(filename); }
private:
  // Problem_corrections.cpp
  void correctMain();
  void correctAux();
  void pCorrect();
  void pBCCorrect();
  void TBCCorrect();
  void uCorrect();
  void uBCCorrect();
  void vCorrect();
  // Problem_coefficients.cpp
  void fillCoefficients(const Variable & var);
  void pcCoefficients();
  void TCoefficients();
  void uCoefficients();
  void vCoefficients();
  void fillPowerLaw(Coefficients & a,
                    const Coefficients & D,
                    const Coefficients & F,
                    const double & b = 0);
  // Problem_residuals.cpp
  void computeMainResiduals();
  void computeAuxResiduals();
  double pResidual() const;
  double TResidual() const;
  double velocityResidual(const Variable & var) const;
```

```
// Problem_solvers.cpp
   void solveMain();
   void solveAux();
   void solve(Variable & var);
  void sweepColumns(Variable & var, const bool west_east = true);
void sweepRows(Variable & var, const bool south_north = true);
void sweepRows(Variable & var, const bool south_north = true);
void sweepRow(const unsigned int i, Variable & var);
void sweepRow(const unsigned int j, Variable & var);
   void solveVelocities();
   // Quicker v^5 for velocityCoefficients() (yes, it's actually much faster...) static const double pow5(const double & v) { return v * v * v * v * v; }
protected:
   // Number of pressure CVs const unsigned int Nx, Ny;
  // Geometry [m]
const double Lx, Ly, dx, dy;
   // Material properties
   const double cp, k, mu, rho;
   // Residual references
const double L_ref, u_ref;
   // Other boundary conditions
   const double q_top_bot;
   // Mass inflow
   const double m_in;
   // Enable debug mode (printing extra output)
   const bool debug;
   // Maximum iterations
   const unsigned int max_main_its, max_aux_its;
   // Iteration tolerance
   const double tol;
   // Pressure relaxation
   const double alpha_p;
   // Number of iterations completed
   unsigned int main_iterations = 0;
   unsigned int aux_iterations = 0;
   // Variables
   Variable u, v, pc, p, T;
// Variable map
   map<const Variables, const Variable &> variables;
   // Whether or not we converged
   bool main_converged = false;
   bool converged = false;
   // Run start time
  clock_t start;
};
} // namespace Flow2D
#endif /* PROBLEM_H */
```

Variable.h

```
#ifndef VARIABLE_H
#define VARIABLE_H
#include "Matrix.h"
#include "TriDiagonal.h"
#include "Vector.h"
namespace Flow2D
using namespace std;
// Storage for boundary conditions
struct BoundaryCondition
  BoundaryCondition() {}
  BoundaryCondition(const double top, const double right, const double bottom, const double left)
   : top(top), right(right), bottom(bottom), left(left)
  double top = 0, right = 0, bottom = 0, left = 0;
// Storage for coefficients for a single CV
struct Coefficients
  double p = 0, n = 0, e = 0, s = 0, w = 0, b = 0;
  void print(const unsigned int pr = 5) const
  {
    cout << setprecision(pr) << scientific << "n = " << n << ", e = " << e << ", s = " << s
        << ", w = " << w << ", p = " << p << ", b = " << b << endl;
};
// Enum for variable types
enum Variables
{
 u,
 ν,
 pc,
 p,
T
};
// Conversion from variable type to its string
static string
VariableString(Variables var)
  switch (var)
    case Variables::u:
     return "u":
    case Variables::v:
     return "v":
    case Variables::pc:
     return "pc";
    case Variables::p:
      return "p";
    case Variables::T:
      return "T";
// General storage structure for primary and auxilary variables
struct Variable
  // Constructor for a primary variable
  Variable(const Variables name,
           const unsigned int Nx,
           const unsigned int Ny,
           const double alpha,
           const BoundaryCondition bc = BoundaryCondition())
    : name(name),
      string(VariableString(name)),
      Nx(Nx),
      Ny(Ny),
      Mx(Nx - 1),
```

```
My(Ny - 1),
w(1 / alpha),
      bc(bc),
      a(Nx, Ny),
      phi(Nx, Ny),
Ax(Nx - 2),
Ay(Ny - 2),
      bx(Nx - 2),
      by(Ny - 2)
    // Apply initial boundary conditions
    if (bc.left != 0)
    phi.setColumn(θ, bc.left);
if (bc.right != θ)
    phi.setColumn(Mx, bc.right);
if (bc.bottom != 0)
    phi.setRow(0, bc.bottom);
if (bc.top != 0)
      phi.setRow(My, bc.top);
  // Constructor for an auxilary variable (no solver storage)
Variable(const Variables name, const unsigned int Nx, const unsigned int Ny)
    : name(name), \ string(VariableString(name)), \ Nx(Nx), \ Ny(Ny), \ Mx(Nx-1), \ My(Ny-1), \ phi(Nx, Ny) \\
  }
  // Solution matrix operations
  void operator=(const double v) { phi = v; }
  \textbf{const double} \ \& \ \textbf{operator()(const unsigned int} \ i, \ \textbf{const unsigned int} \ j) \ \textbf{const} \ \{ \ \textbf{return phi(i, j);} \ \}
  \textbf{double } \& \ \textbf{operator()(const unsigned int } i, \ \textbf{const unsigned int} \ j) \ \{ \ \textbf{return phi(i, j);} \ \}
  void print(const string prefix = "", const bool newline = false, const unsigned int pr = 5) const
    phi.print(prefix, newline, pr);
  void save(const string filename) const { phi.save(filename); }
  void reset() { phi = 0; }
  // Coefficient debug
  void printCoefficients(const string prefix = "",
                            const bool newline = false,
                             const unsigned int pr = 5) const
    for (unsigned int i = 1; i < Nx - 1; ++i)
      for (unsigned int j = 1; j < Ny - 1; ++j)
         cout << prefix << "(" << i << ", " << j << "): ";
        a(i, j).print(pr);
    if (newline)
      cout << endl;</pre>
  // Variable enum name
  const Variables name;
  // Variable string
  const string string;
  // Variable size
  const unsigned int Nx, Ny;
  // Maximum variable index that is being solved
  const unsigned int Mx, My;
  // Relaxation coefficient used in solving linear systems
  const double w = 0;
  // Boundary conditions
  const BoundaryCondition bc = BoundaryCondition();
  // Matrix coefficients
  Matrix<Coefficients> a;
  // Variable solution
  Matrix<double> phi;
  // Linear system LHS for both sweep directions
  TriDiagonal < double > Ax, Ay;
  // Linear system RHS for both sweep directions
  Vector<double> bx, by;
};
} // namespace Flow2D
#endif /* VARIABLE_H */
```

Problem.cpp

```
#include "Problem.h"
namespace Flow2D
Problem:: Problem (\textbf{const unsigned int Nx, const unsigned int Ny, const Input Arguments \ \& \ input)
  : // Number of pressure CVs
    Ny(Ny),
    // Domain sizes
    Lx(input.Lx),
    Ly(input.Ly),
    dx(Lx / Nx),
    dy(Ly / Ny),
    // Residual references
    L_ref(input.L_ref),
    u_ref(input.u_ref),
    // Other boundary conditions
    q_top_bot(input.q_top_bot),
    // Mass inflow
    m_in(input.u_bc.left * input.rho * Ly),
    // Material properties
    cp(input.cp),
    k(input.k),
    mu(input.mu),
    rho(input.rho),
    // Enable debug
    debug(input.debug),
    // Solver properties
    max_main_its(input.max_main_its),
    max_aux_its(input.max_aux_its),
    tol(input.tol),
    alpha_p(input.alpha_p),
    // Initialize variables for u, v, pc (solved variables)
u(Variables::u, Nx + 1, Ny + 2, input.alpha_uv, input.u_bc),
v(Variables::v, Nx + 2, Ny + 1, input.alpha_uv, input.v_bc),
    pc(Variables::pc, Nx + 2, Ny + 2, 1),
    T(Variables::T, Nx + 2, Ny + 2, 1),
    // Initialize aux variables
    p(Variables::p, Nx + 2, Ny + 2)
  // Add into variable map for access outside of class
  variables.emplace(Variables::u, u);
  variables.emplace(Variables::v, v);
  variables.emplace(Variables::pc, pc);
  variables.emplace(Variables::p, p);
  variables.emplace(Variables::T, T);
 // T initial condition
T = input.T_left;
void
Problem::run()
  // Store start time
  start = clock();
  // Solve main variables
  for (unsigned int l = 0; l < max_main_its; ++l)</pre>
    solveMain();
    correctMain();
    computeMainResiduals();
    // Break out if we've converged
    if (main_converged)
      break;
  // Ensure main variables converged
  if (!main_converged)
    cout << "Main variables did not converge after " << max_main_its << " iterations!" << endl;</pre>
  // Solve aux variables
  for (unsigned int l = 0; l < max_aux_its; ++l)</pre>
```

```
solveAux();
correctAux();
computeAuxResiduals();

// Exit if everything is converged
if (converged)
    return;
}

// Oops. Didn't converge
cout << "Aux variables did not converge after " << max_aux_its << " iterations!" << endl;
}
// namespace Flow2D</pre>
```

Problem coefficients.cpp

```
#include "Problem.h"
namespace Flow2D
{
Problem::fillCoefficients(const Variable & var)
  if (var.name == Variables::pc)
    pcCoefficients();
  else if (var.name == Variables::T)
    TCoefficients();
  else if (var.name == Variables::u)
   uCoefficients();
  else if (var.name == Variables::v)
    vCoefficients();
  if (debug)
    cout << var.string << " coefficients: " << endl;</pre>
    var.printCoefficients(var.string, true);
}
void
Problem::pcCoefficients()
  for (unsigned int i=1; i< pc.Mx; ++i)
for (unsigned int j=1; j< pc.My; ++j)
      Coefficients & a = pc.a(i, j);
      if (i != 1)
        a.w = rho * dy * dy / u.a(i - 1, j).p;
      if (i != pc.Mx - 1)
        a.e = rho * dy * dy / u.a(i, j).p;
      if (j != 1)
        a.s = rho * dx * dx / v.a(i, j - 1).p;
      if (j != pc.My - 1)
        a.n = rho * dx * dx / v.a(i, j).p;
      a.p = a.n + a.e + a.s + a.w;
      a.b = rho * (dy * (u(i - 1, j) - u(i, j)) + dx * (v(i, j - 1) - v(i, j)));
}
void
Problem::TCoefficients()
{
  Coefficients D, F;
  for (unsigned int i = 1; i < T.Mx; ++i)
    for (unsigned int j = 1; j < T.My; ++j)
       // Diffusion coefficient
      \begin{array}{l} D.n = (j == T.My - 1~?~2*dx*k / dy: dx*k / dy); \\ D.e = (i == T.Mx - 1~?~2*dy*k / dx: dy*k / dx); \end{array}
      D.s = (j == 1 ? 2 * dx * k / dy : dx * k / dy);
      D.w = (i == 1 ? 2 * dy * k / dx : dy * k / dx);
      // Heat flows
      F.n = dx * cp * rho * v(i, j);
      F.e = dy * cp * rho * u(i, j);
      F.s = dx * cp * rho * v(i, j - 1);
F.w = dy * cp * rho * u(i - 1, j);
       // Compute and store power law coefficients
      fillPowerLaw(T.a(i, j), D, F);
}
void
Problem::uCoefficients()
  Coefficients D, F;
 double W, dy_pn, dy_ps, b;
  for (unsigned int i = 1; i < u.Mx; ++i)
```

```
for (unsigned int j = 1; j < u.My; ++j)
     {
       // Width of the cell
       W = (i == 1 || i == u.Mx - 1?3 * dx / 2 : dx);
       // North/south distances to pressure nodes
       dy_p = (j = u.My - 1? dy / 2: dy);
       dy_ps = (j == 1 ? dy / 2 : dy);
       // Diffusion coefficients
       D.n = mu * W / dy_pn;
       D.e = mu * dy / dx;
D.s = mu * W / dy_ps;
       D.w = mu * dy / dx;
       // Fast and west flows
       F.e = (i == u.Mx - 1 ? rho * dy * u(u.Mx, j) : rho * dy * (u(i + 1, j) + u(i, j)) / 2);
       F.w = (i == 1 ? \text{ rho} * dy * u(0, j) : \text{ rho} * dy * (u(i - 1, j) + u(i, j)) / 2);
       // North and south flows
       if (i == 1) // Left boundary
         F.n = rho * W * (v(0, j) + 3 * v(1, j) + 2 * v(2, j)) / 6;
F.s = rho * W * (v(0, j - 1) + 3 * v(1, j - 1) + 2 * v(2, j - 1)) / 6;
       else if (i == u.Mx - 1) // Right boundary
         F.n = rho * W * (2 * v(i, j) + 3 * v(i + 1, j) + v(i + 2, j)) / 6;
F.s = rho * W * (2 * v(i, j - 1) + 3 * v(i + 1, j - 1) + v(i + 2, j - 1)) / 6;
       else // Interior (not left or right boundary)
         F.n = rho * W * (v(i, j) + v(i + 1, j)) / 2;
F.s = rho * W * (v(i, j - 1) + v(i + 1, j - 1)) / 2;
       // Pressure RHS
       b = dy * (p(i, j) - p(i + 1, j));
        // Compute and store power law coefficients
       fillPowerLaw(u.a(i, j), D, F, b);
}
Problem::vCoefficients()
{
  Coefficients D, F;
  double H, dx_pe, dx_pw, b;
  for (unsigned int i = 1; i < v.Mx; ++i)
     for (unsigned int j = 1; j < v.My; ++j)
     {
       // Height of the cell
       H = (j == 1 || j == v.My - 1 ? 3 * dy / 2 : dy);
       // East/west distances to pressure nodes
dx_pe = (i == v.Mx - 1 ? dx / 2 : dx);
       dx_pw = (i == 1 ? dx / 2 : dx);
       // Diffusion coefficient
       D.n = mu * dx / dy;
       D.e = mu * H / dx_pe;
       D.s = mu * dx / dy;
       D.w = mu * H / dx_pw;
       // North and east flows
       F.n = (j == v.My - 1 ? rho * dx * v(i, v.My) : rho * dx * (v(i, j + 1) + v(i, j)) / 2);
       F.s = (j == 1 ? \text{ rho} * dx * v(i, 0) : \text{ rho} * dx * (v(i, j - 1) + v(i, j)) / 2);
       // East and west flows
       if (j == 1) // Bottom boundary
         F.e = rho * H * (u(i, 0) + 3 * u(i, 1) + 2 * u(i, 2)) / 6;
F.w = rho * H * (u(i - 1, 0) + 3 * u(i - 1, 1) + 2 * u(i - 1, 2)) / 6;
       else if (j == v.My - 1) // Top boundary
         F.e = rho * H * (2 * u(i, j) + 3 * u(i, j + 1) + u(i, j + 2)) / 6;
F.w = rho * H * (2 * u(i - 1, j) + 3 * u(i - 1, j + 1) + u(i - 1, j + 2)) / 6;
       else // Interior (not top or bottom boundary)
         F.e = rho * H * (u(i, j) + u(i, j + 1)) / 2;
F.w = rho * H * (u(i - 1, j) + u(i - 1, j + 1)) / 2;
```

Problem corrections.cpp

```
#include "Problem.h"
namespace Flow2D
{
Problem::correctMain()
 uCorrect();
 vCorrect();
  pCorrect();
 pBCCorrect();
  uBCCorrect();
void
Problem::correctAux()
 TBCCorrect();
}
void
Problem::pCorrect()
{
 // Set pressure correction back to zero
  pc.reset();
  if (debug)
    p.print("p corrected = ", true);
void
Problem::pBCCorrect()
{
  // Apply the edge values as velocity is set
  for (unsigned int i = 0; i <= pc.Mx; ++i)</pre>
    p(i, 0) = p(i, 1);
    p(i, pc.My) = p(i, pc.My - 1);
  for (unsigned int j = 0; j \le pc.My; ++j)
  {
    p(0, j) = p(1, j);
    p(pc.Mx, j) = p(pc.Mx - 1, j);
    p.print("p boundary condition corrected = ", true);
void
Problem::TBCCorrect()
{
  for (unsigned int j = 0; j <= T.My; ++j)  
T(T.Mx,\ j) = 2 * T(T.Mx - 1,\ j) - T(T.Mx - 2,\ j); for (unsigned int i = 0; i <= T.Mx; ++i)
    T(i, \theta) = T(i, 1) + q_{top_bot} * dy / (2 * k);
    T(i, T.My) = T(i, T.My - 1) + q_{top_bot} * dy / (2 * k);
}
void
Problem::uCorrect()
  for (unsigned int i = 1; i < u.Mx; ++i)
    for (unsigned int j = 1; j < u.My; ++j)

u(i, j) += dy * (pc(i, j) - pc(i + 1, j)) / u.a(i, j).p;
 if (debug)
    u.print("u corrected = ", true);
void
```

Problem residuals.cpp

```
#include "Problem.h"
namespace Flow2D
{
Problem::computeMainResiduals()
  const double Rp = pResidual();
  const double Ru = velocityResidual(u);
  const double Rv = velocityResidual(v);
  if (Ru < tol \&\& Rv < tol \&\& Rp < tol)
    if (debug)
      cout << "Main variables converged in " << main_iterations << " iterations" << endl;</pre>
    main_converged = true;
}
void
Problem::computeAuxResiduals()
{
  double RT = TResidual():
  // Still not converged
  if (RT > tol)
    return:
  // Converged, finish up
  converged = true;
  // Print the result
  const double Rp = pResidual();
  const double Ru = velocityResidual(u);
  const double Rv = velocityResidual(v);
  << aux_iterations << " aux iterations: ";
  cout << noshowpos << setprecision(1) << scientific;</pre>
  cout << "p = " << Rp;

cout << ", v = " << Rv;

cout << ", v = " << Rv;

cout << ", p = " << Rp;

cout << ", T = " << RT << endl;
double
Problem::pResidual() const
  for (unsigned int i = 1; i < pc.Mx; ++i)
    for (unsigned int j = 1; j < pc.My; ++j)
numer += abs(dy * (u(i - 1, j) - u(i, j)) + dx * (v(i, j - 1) - v(i, j)));
  return numer / (u_ref * L_ref);
double
Problem::TResidual() const
  double numer, numer_temp, denom = 0;
  for (unsigned int i = 1; i < T.Mx; ++i)
    for (unsigned int j = 1; j < T.My; ++j)
    {
      const Coefficients & a = T.a(i, j);
      numer_temp = a.p * T(i, j);
      numer_temp = a.p * i.i., j,,
denom += abs(numer_temp);
numer_temp -= a.n * T(i, j + 1) + a.e * T(i + 1, j);
numer_temp -= a.s * T(i, j - 1) + a.w * T(i - 1, j) + a.b;
      numer += abs(numer_temp);
  return numer / denom;
}
double
Problem::velocityResidual(const Variable & var) const
  double numer, numer_temp, denom = 0;
```

```
for (unsigned int i = 1; i < var.Mx; ++i)
    for (unsigned int j = 1; j < var.My; ++j)
    {
        const Coefficients & a = var.a(i, j);
        numer_temp = a.p * var(i, j);
        denom += abs(numer_temp);
        numer_temp -= a.n * var(i, j + 1) + a.e * var(i + 1, j);
        numer_temp -= a.s * var(i, j - 1) + a.w * var(i - 1, j) + a.b;
        numer += abs(numer_temp);
    }
    return numer / denom;
}
// namespace Flow2D</pre>
```

25

Problem solvers.cpp

```
#include "Problem.h"
namespace Flow2D
{
Problem::solveMain()
  ++main_iterations;
  if (debug)
    cout << endl << "Main iteration " << main_iterations << endl << endl;</pre>
    solve(u);
    solve(v);
    solve(pc);
}
void
Problem::solveAux()
  ++aux_iterations;
 if (debug)
    cout << endl << "Aux iteration " << aux_iterations << endl << endl;</pre>
  solve(T);
}
void
Problem::solve(Variable & var)
{
 if (debug)
  cout << "Solving variable " << var.string << endl << endl;</pre>
  // Fill the coefficients
fillCoefficients(var);
  // Solve west to east
  sweepColumns(var);
  // Solve south to north
  sweepRows(var);
  // Solve east to west
  sweepColumns(var, false);
    var.print(var.string + " sweep solution = ", true);
void
Problem::sweepRows(Variable & var, const bool south_north)
{
    cout << "Sweeping " << var.string << (south_north ? " south to north" : " north to south")</pre>
         << endl;
  // Sweep south to north
  if (south_north)
    for (int j = 1; j < var.My; ++j)
  sweepRow(j, var);
// Sweep north to south
  else
    for (int j = var.My - 1; j > 0; --j)
      sweepRow(j, var);
}
Problem::sweepColumns(Variable & var, const bool west_east)
  if (debug)
    cout << "Sweeping " << var.string << (west_east ? " east to west" : " west to east") << endl;</pre>
  // Sweep west to east
  if (west_east)
    for (int i = 1; i < var.Mx; ++i)
      sweepColumn(i, var);
  // Sweep east to west
  else
    for (int i = var.Mx - 1; i > 0; --i)
```

```
sweepColumn(i, var);
}
void
Problem::sweepColumn(const unsigned int i, Variable & var)
{
  if (debug)
    cout << "Solving " << var.string << " column " << i << endl;</pre>
  auto & A = var.Ay;
  auto & b = var.by;
  // Fill for each cell
  for (unsigned int j = 1; j < var.My; ++j)
     const Coefficients \& a = var.a(i, j);
    b[j-1] = a.b + a.w * var(i-1, j) + a.e * var(i+1, j); if (var.w != 1)
      b[j - 1] += a.p * var(i, j) * (var.w - 1);
     if (j == 1)
     {
      A.setTopRow(a.p * var.w, -a.n);
if (var.name != Variables::pc)
b[j - 1] += a.s * var(i, j - 1);
    else if (j == var.My - 1)
       A.setBottomRow(-a.s, a.p * var.w);
       if (var.name != Variables::pc)
         b[j - 1] += a.n * var(i, j + 1);
     else
       A.setMiddleRow(j - 1, -a.s, a.p * var.w, -a.n);
  if (debug)
    A.print("A =");
b.print("b =");
  // Solve
  A.solveTDMA(b);
  if (debug)
    b.print("sol =", true);
  // Store solution
  for (unsigned int j = 1; j < var.My; ++j)
  var(i, j) = b[j - 1];</pre>
void
Problem::sweepRow(const unsigned int j, Variable & var)
{
  if (debug)
    cout << "Solving " << var.string << " row " << j << endl;</pre>
  auto & A = var.Ax;
  auto & b = var.bx;
  // Fill for each cell
  for (unsigned int i = 1; i < var.Mx; ++i)
    const Coefficients & a = var.a(i, j); b[i - 1] = a.b + a.s * var(i, j - 1) + a.n * var(i, j + 1); if (var.w != 1)
      b[i - 1] += a.p * var(i, j) * (var.w - 1);
     if (i == 1)
     {
      A.setTopRow(a.p * var.w, -a.e);
if (var.name != Variables::pc)
         b[i - 1] += a.w * var(i - 1, j);
    else if (i == var.Mx - 1)
     {
       A.setBottomRow(-a.w, a.p * var.w);
       if (var.name != Variables::pc)
b[i - 1] += a.e * var(i + 1, j);
     else
```

```
A.setMiddleRow(i - 1, -a.w, a.p * var.w, -a.e);
}

if (debug)
{
    A.print("A =");
    b.print("b =");
}

// Solve
    A.solveTDMA(b);

if (debug)
    b.print("sol =", true);

// Store solution
for (unsigned int i = 1; i < var.Mx; ++i)
    var(i, j) = b[i - 1];
}
} // namespace Flow2D</pre>
```

Matrix.h

```
#ifndef MATRIX_H
#define MATRIX_H
#define NDEBUG
#include <cassert>
#include <fstream>
#include <vector>
using namespace std;
\ast Class that holds a N x M matrix with common matrix operations.
template <typename T>
class Matrix
public:
 Matrix() {}
 Matrix(const unsigned int N, const unsigned int M) : N(N), M(M), A(N, vector<T>(M)) {}
  // Const operator for getting the (i, j) element
  const T \& operator()(const unsigned int i, const unsigned int j) const
   assert(i < N \&\& j < M);
   return A[i][j];
  // Operator for getting the (i, j) element
  T & operator()(const unsigned int i, const unsigned int j)
  {
    assert(i < N \&\& j < M);
   return A[i][j];
  // Operator for setting the entire matrix to a value
  void operator=(const T v)
    for (unsigned int j = 0; j < M; ++j)
      setRow(j, v);
  // Prints the matrix
  void print(const string prefix = "", const bool newline = false, const unsigned int pr = 5) const
    if (prefix.length() != 0)
      cout << prefix << endl;</pre>
    for (unsigned int j = 0; j < M; ++j)
      for (unsigned int i = 0; i < N; ++i) cout << showpos << scientific << setprecision(pr) << A[i][j] << " ";
      cout << endl;</pre>
    if (newline)
      cout << endl;
  // Saves the matrix in csv format
  void save(const string filename, const unsigned int pr = 12) const
   ofstream f:
    f.open(filename);
    for (unsigned int j = 0; j < M; ++j)
    {
      for (unsigned int i = 0; i < N; ++i)
        if (i > 0)
          f << ",";
        f << setprecision(pr) << A[i][j];</pre>
      f << endl:
    f.close();
  // Set the j-th row to v
  void setRow(const unsigned int j, const T v)
    assert(j < M);</pre>
    for (unsigned int i = 0; i < N; ++i)
      A[i][j] = v;
```

```
}
// Set the i-th column to v
void setColumn(const unsigned int i, const T v)
{
   assert(i < N);
   for (unsigned int j = 0; j < M; ++j)
        A[i][j] = v;
}

private:
// The size of this matrix
   const unsigned int N = 0, M = 0;

// Matrix storage
   vector<vector<T>> A;
};
#endif /* MATRIX_H */
```

TriDiagonal.h

```
#ifndef TRIDIAGONAL_H
#define TRIDIAGONAL_H
#define NDEBUG
#include <cassert>
#include <fstream>
#include "Vector.h"
using namespace std;
* Class that holds a tri-diagonal matrix and is able to perform TDMA in place
 * with a given RHS.
template <typename T>
class TriDiagonal
public:
 TriDiagonal() {}
 TriDiagonal(const unsigned int N, const T v = 0): N(N), A(N, v), B(N, v), C(N - 1, v) {}
  // Setters for the top, middle, and bottom rows
  void setTopRow(const T b, const T c)
   B[0] = b;
   C[0] = c;
  void setMiddleRow(const unsigned int i, const T a, const T b, const T c)
   assert(i < N - 1 && i != 0);
   A[i] = a;
B[i] = b;
   C[i] = c;
  void setBottomRow(const T a, const T b)
  {
   A[N - 1] = a;
   B[N - 1] = b;
  // Prints the matrix
  void print(const string prefix = "", const bool newline = false, const unsigned int pr = 6) const
   if (prefix.length() != 0)
     cout << prefix << endl;</pre>
    for (unsigned int i = 0; i < N; ++i)
     cout << showpos << scientific << setprecision(pr) << (i > \theta ? A[i] : \theta) << " " << B[i] << " "
           << (i < N - 1 ? C[i] : 0) << endl;
   if (newline)
     cout << endl;
  // Saves the matrix in csv format
  void save(const string filename, const unsigned int pr = 12) const
    ofstream f;
    f.open(filename);
    for (unsigned int i = 0; i < N; ++i)
    {
     if (i > 0)
       f << setprecision(pr) << A[i] << ",";
      else
       f << "0"
         << ",";
      f << setprecision(pr) << B[i] << ",";
      if (i != N - 1)
       f << setprecision(pr) << C[i] << endl;
      else
       f << 0 << endl;
   f.close();
 }
  // Solves the system Ax = d in place where d eventually stores the solution
  void solveTDMA(Vector<T> & d)
    // Forward sweep
   T tmp = 0;
```

```
for (unsigned int i = 1; i < N; ++i)
{
    tmp = A[i] / B[i - 1];
    B[i] -= tmp * C[i - 1];
    d[i] -= tmp * d[i - 1];
}

// Backward sweep
d[N - 1] /= B[N - 1];
for (unsigned int i = N - 2; i != numeric_limits<unsigned int>::max(); --i)
{
    d[i] -= C[i] * d[i + 1];
    d[i] /= B[i];
}

protected:
// Matrix size (N x N)
unsigned int N = 0;

// Left/main/right diagonal storage
vector<T> A, B, C;
};
#endif /* TRIDIAGONAL_H */
```

Vector.h

```
#ifndef VECTOR_H
#define VECTOR_H
#define NDEBUG
#include <cassert>
#include <fstream>
#include <vector>
using namespace std;
 * Class that stores a 1D vector and enables printing and saving.
template <typename T>
class Vector
public:
  Vector(\textbf{const unsigned int}\ N)\ :\ v(N)\ ,\ N(N)\ \{\}
  Vector() {}
  const T \& operator()(const unsigned int i) const
    assert(i < N);</pre>
    return v[i];
  T & operator()(const unsigned int i)
  {
    assert(i < N);</pre>
    return v[i];
  const T & operator[](const unsigned int i) const
    assert(i < N);</pre>
    return v[i];
  T & operator[](const unsigned int i)
  {
    assert(i < N);</pre>
    return v[i];
  // Prints the vector
  void print(const string prefix = "", const bool newline = false, const unsigned int pr = 6) const
    if (prefix.length() != 0)
      cout << prefix << endl;
    for (unsigned int i = 0; i < v.size(); ++i)</pre>
      cout << showpos << scientific << setprecision(pr) << v[i] << " ";
    cout << endl:</pre>
    if (newline)
      cout << endl;</pre>
  }
  // Saves the vector
  void save(const string filename, const unsigned int pr = 12) const
    ofstream f;
    f.open(filename);
    for (unsigned int i = 0; i < v.size(); ++i)
  f << scientific << v[i] << endl;</pre>
    f.close();
  }
private:
  vector<T> v;
  const unsigned int N = \theta;
#endif /* VECTOR_H */
```

postprocess.py

```
import numpy as np
import matplotlib.pyplot as plt
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
Lx = 2
Ly = 0.02
cp = 4183
rho = 998.3
q = 500 \\ k = 0.609
# Problem 3 prints
# Load coarse results
u = np.loadtxt('results/coarse_u.csv', delimiter=',').T
p = np.loadtxt('results/coarse_p.csv', delimiter=',').T
T = np.loadtxt('results/coarse_T.csv', delimiter=',').T
print(p.shape)
# Normalize P
p \rightarrow p[p.shape[0] - 1, :]
for var in [u, p, T]:
    for i in range(var.shape[0]):
       line = '{} & '.format(i + 1)
        for j in range(var.shape[1]):
           if var is T:
    line += '{:.5f}'.format(var[i,j])
               line += '{:.5e}'.format(var[i,j])
            if j == var.shape[1] - 1:
               line += " \\\\'
            else:
               line += " & "
        print(line)
   print()
# Load refined results
u = np.loadtxt('results/fine_u.csv', delimiter=',').T
v = np.loadtxt('results/fine_v.csv', delimiter=',').T
T = np.loadtxt('results/fine_T.csv', delimiter=',').T
dx = Lx / (T.shape[0] - 2)
dy = Ly / (T.shape[1] - 2)
# Plot problem 4a
x_center = np.linspace(0, Lx, num = u.shape[0])
u_center = np.copy(u)[:, int(u.shape[1] / 2)]
u_center /= u_center[0]
fig, ax = plt.subplots(1)
fig.set_figwidth(6)
fig.set_figheight(3)
ax.plot(x\_center,\ u\_center,\ 'k')
ax.set_xlabel(r'$x$ (m)')
ax.set_ylabel('Centerline $u / u_{{\mathrm{{in}}}}$')
ax.grid()
fig.tight_layout()
fig.savefig('results/u_centerline.pdf', bbox_inches='tight')
# Plot problem 4b
for var, name in [(u, 'u'), (v, 'v'), (T, 'T')]:
   if name == 'T':
       y_8 = np.hstack((0, (np.linspace(dy / 2, Ly - dy / 2, num = var.shape[1] - 2)), Ly))
    else:
       y_8 = np.linspace(0, Ly, num = var.shape[1])
    var_8 = var[int(0.8 * var.shape[0] / Lx), :]
    fig, ax = plt.subplots(1)
```

```
fig.set_figwidth(6)
    fig.set_isymutin()
fig.set_figheight(3)
if name == 'y':
    ax.semilogy(y_8, var_8, 'k')
     else:
    ax.plot(y_8, var_8, 'k')
ax.set_xlabel(r'$y$ (m)')
ax.set_ylabel('${}(0.8$ m$, y)$'.format(name))
     ax.grid()
     fig.tight_layout()
     fig.savefig('results/{}_0p8.pdf'.format(name), bbox_inches='tight')
# Plot problem 4b
# Sample u at temperature nodes
uT = np.zeros(T.shape)
for i in range(1, T.shape[0] - 1):
    for j in range(u.shape[1]):
    uT[0, j] = u[0, j]
    uT[u.shape[0], j] = u[u.shape[0] - 1, j]
    uT[i, j] = (u[i - 1, j] + u[i, j]) / 2
# Compute Nusselt numbers
Nu = np.zeros(T.shape[0])
u_left = u[0, 0]
for i in range(T.shape[0]):
    Tw = T[i, 0]
    Tb = 0
     for j in range(1, T.shape[1] - 1):
    Tb += uT[i, j] * T[i, j]
Tb *= rho * cp * dy / (u_left * cp * Ly * rho)
Nu[i] = 2 * Ly * q / (k * (Tw - Tb))
x = np.hstack((0, (np.linspace(dx / 2, Lx - dx / 2, num = len(Nu) - 2)), Lx))
fig, ax = plt.subplots(1)
fig.set_figwidth(6)
fig.set_figheight(3)
ax.plot(x, Nu, 'k')
ax.set_xlabel(r'$x$ (m)')
ax.set_ylabel('Nu')
ax.grid()
fig.tight_layout()
fig.savefig('results/Nu.pdf', bbox_inches='tight')
```