## Title

D. Zack Garza

## **Contents**

 ${\bf 1} \quad {\bf Lecture} \ {\bf 15:} \ {\bf The} \ {\it L-} {\bf Polynomial}$ 

3

Contents 2

# **Lecture 15: The** *L***-Polynomial**

Recall that we had Z(t) + F(t) + G(t):

$$(q-1)F(t) = \sum_{0 \le \deg C \le 2g-2} q^{\ell(C)} t^{\deg(C)}$$
$$(q-1)G(t) = h \left( \frac{q^g t^{2g-1}}{1-qt} - \frac{1}{1-t} \right).$$

Note that F(t) is a polynomial of degree at most 2g-2, and clearing denominators in G(t) yields a polynomial of degree at most 2g

**Definition 1.0.1** (The *L*-polynomial)

The L-polynomial is defined as

$$L(t) := (1-t)(1-qt)Z(t) = (1-t)(1-qt)\sum_{n=0}^{\infty} A_n t^n \in \mathbb{Z}[t].$$

It turns out that the degree bound of 2g is sharp, and the coefficients closer to the middle are most interesting:

#### Theorem 1.0.2(?).

Let  $K/\mathbb{F}_q$  be a function field of genus  $g \geq 1$ , then

a. 
$$\deg L = 2q$$
.

b. 
$$L(1) = h$$

a. 
$$\deg L = 2g$$
.  
b.  $L(1) = h$   
c.  $L(t) = q^g t^{2g} L\left(\frac{1}{qt}\right)$ .

d. Writing 
$$L(t) = \sum_{j=1}^{2g} a_j t^j$$
,

- $a_0 = 1$  and  $a_{2g} = q^g$ .
- For all  $0 \le j \le g$ , we have  $a_{2g-j} = q^{g-j}a_j$ .
- $a_1 = |\Sigma_1(K/\mathbb{F}_q)| (q+1)$ , which notably does not depend on g.

• Write 
$$L(t) = \prod_{j=1}^{2g} (1 - \alpha_j t) \in \mathbb{C}[t]^{a}$$

e. The  $\alpha_j \in \mathbb{Z}^b$  (which were a priori in  $\mathbb{C}$ ) and can be ordered such that for all  $1 \leq j \leq g$ , we have  $a_j a_{g+j} = q$ .

f. If 
$$L_r(t) = (1-t)(1-q^r t)Z_r(t)$$
 then  $L_r(t) = \prod_{j=1}^{2g} (1-\alpha_j^r t)$ , where  $K_r$  is the constant extension  $K\mathbb{F}_{q^r}/\mathbb{F}_{q^r}$ 

Note that the  $\alpha_i$  are reciprocal roots.

 $Proof\ (of\ a).$ 

We saw from Z(t) = F(t) + G(t) that  $\deg L \leq 2g$ . Equality will follow from the proof of (d) part 1, since this would imply that  $a_{2g} = q^g \neq 0$ .

 $Proof\ (of\ b).$ 

Our formula Z(t) = F(t) + G(t) and Schmidt's theorem (showing  $\delta = 1$ ) gives

$$L(t) = (1-t)(1-qt)F(t) + \frac{h}{q-1} \left( q^g t^{2g-2} (1-t) - (1-qt) \right),$$

where we've expanded G but not F because it involves various  $\ell(D)$  which are difficult to compute. It is some polynomial though, and we can evaluate L at 1 to get L(1) = h. Thus the class number is the sum of the coefficients!

Proof (of c).

This follows easily from the functional equation for Z(t), which we already established using the Riemann-Roch theorem:

$$Z(t) = q^{g-1}t^{2g-2}Z\left(\frac{1}{qt}\right).$$

We can compute

$$\begin{split} q^g t^{2g} L\left(\frac{1}{qt}\right) &= q^g t^{2g} \left(1 - \frac{1}{qt}\right) \left(1 - \frac{1}{t}\right) Z\left(\frac{1}{qt}\right) \\ &= q^{g-1} t^{2g-2} (1-t) (1-qt) Z\left(\frac{1}{qt}\right) \\ &= (1-t) (1-qt) Z(t) \\ &\coloneqq L(t), \end{split}$$

where we've distributed one q and two ts in the first steps.

Lecture 15: The L-Polynomial

4

<sup>&</sup>lt;sup>a</sup>The polynomial isn't monic, but rather has a constant coefficient, so this expansion is somewhat more natural than (say)  $\prod (t - \alpha)$ .

 $<sup>{}^{</sup>b}\overline{\mathbb{Z}}$  denotes the algebraic integers.

<sup>&</sup>lt;sup>c</sup>This is the first hint at the Riemann hypothesis: if for example they all had the same complex modulus, this would force  $|a_j| = \sqrt{q}$ . Thus proving that they all have the same absolute value is 99% of the content!

 $Proof\ (of\ d).$ 

Using the functional equation from (c), we can write

$$L(t) = q^{g} t^{2g} L\left(\frac{1}{qt}\right) = \left(\frac{a_{2g}}{q^{g}}\right) + \left(\frac{a_{2g-1}}{q^{g-1}}\right) t + \dots + (a_{0}q^{g}) t^{2g},$$

where we're correcting by enough in t but not enough in q and seeing what we get. Equating coefficients, for  $0 \le j \le g$  we have

$$a_{2g-j} = q^{g-j}a_j. (1)$$

Using the fact that  $A_0$  is the number of effective degree zero divisors, which is only zero, we have  $A_0 = 1$  and we can multiply formal power series to obtain

$$L(t) = a_0 + a_1 t + \dots + a_{2g} t^{2g} = (1 - t)(1 - qt) \sum_{n=0}^{\infty} A_n t^n$$
$$= \left(1 - (q+1)t + qt^2\right) (1 + A_1 t + A_2 t^2 + \dots)$$
$$= 1 + (A_1 - (q+1))t + \dots$$

From this, we can read off

- $L(0) = a_0 = 1$
- $a_1 = A_1 (q+1) = \Sigma_1(K/k) (q+1)$   $a_{2g} = a_{2g-0} = q^{g-0}a_0 = a^g$  by taking j = 0 in eq. 1, and thus  $\deg L = 2g$ .

Proof (of e (the most interesting!)).

Consider the reciprocal polynomial

$$L^{\perp}(t) := t^{2g} L\left(\frac{1}{t}\right) = t^{2g} + a_1 t^{2g-1} + \dots + q^g.$$

The original polynomial had  $\mathbb{Z}$  coefficients and constant term 1, so this polynomial is monic and has a nonzero constant term. Thus its roots are patently nonzero algebraic integers in  $\bar{\mathbb{Z}}^{\bullet}$ .

If 
$$L^{\perp}(t) = \prod_{j=1}^{2g} (t - \alpha_j)$$
, then

$$L(t) = t^{2g} L^{\perp} \left(\frac{1}{t}\right) = \prod_{j=1}^{2g} (1 - \alpha_j t)$$

and if the roots of L(t) are  $r_i$ , then the roots of  $L^{\perp}(t)$  are the reciprocal roots  $1/r_i$  and vice-versa. This shows the first assertion that  $r_i \in \mathbb{Z}$  as well.

The most interesting part is what follows. Making the substitution t = qu and using (c) we

get

$$L^{\perp}(t) = \prod_{j=1}^{2g} (t - \alpha_j)$$

$$:= t^{2g} L\left(\frac{1}{t}\right)$$

$$= q^{2g} u^{2g} L\left(\frac{1}{qu}\right)$$
 by (c).

Using u = t/q, we can write

$$q^{g}L(u) = q^{g} \prod_{j=1}^{2g} (1 - \alpha_{j}u)$$

$$= q^{g} \prod_{j=1}^{2g} \left(1 - \frac{\alpha_{j}}{q}t\right)$$

$$= q^{g} \prod_{j=1}^{2g} \frac{\alpha_{j}}{q} \prod_{j=1}^{2g} \left(t - \frac{1}{\alpha_{j}}\right)$$

$$= \prod_{j=1}^{2g} \left(t - \frac{q}{\alpha_{j}}\right),$$

where we've pulled out a factor of  $-\alpha_j/q$  and in the last step we've used that  $\prod_{j=1}^{2g} \alpha_j = q^g$ .

This follows because the  $\alpha_j$  are the roots of  $L^{\perp}$ , which has even degree, so the product of all of the roots is equal to the constant term of  $L^{\perp}$ , which is the leading term of L, which we showed was  $q^g$ .

This says that if we take these roots  $\alpha_j$  as a multiset and replace each  $\alpha_j$  with  $q/\alpha_j$ , we get the same multiset back. I.e., this multiset is stable under the involution

$$\mathbb{C}^{\times} \to \mathbb{C}^{\times}$$
$$z \mapsto \frac{q}{z}.$$

This almost pairs up the elements of this finite set of roots, except it may have fixed points. The complex numbers  $\alpha$  such that  $\alpha = q/\alpha$  are precisely  $\pm \sqrt{q}$ . So group the  $\alpha_i^{-1}$  into

- k pairs of nonfixed points, where  $\alpha_i \neq q/\alpha_i$ ,
- m points such that  $\alpha_i = \sqrt{q}$ ,
- n points such that  $\alpha_i = -\sqrt{q}$ .

So we'd like to show that m and n are both even, so when we're pairing roots with reciprocals these get paired with themselves. We know 2k + m + n = 2g, so m + n is even. We also know

that

$$q^{g} = \prod_{j=1}^{2g} \alpha_{j}$$

$$= q^{k} (\sqrt{q})^{m} (-\sqrt{q})^{n}$$

$$= (-1)^{n} q^{k + \frac{m}{2} + \frac{n}{2}}$$

$$= (-1)^{n} q^{g}.$$

This forces n to be even, and since m = 2g - 2k - n, m must be even as well.

 $Proof\ (of\ f).$ 

We used Dirichlet's character-style decomposition of Z(t) in Schmidt's theorem, and we'll use it again here. Write

$$L_r(t^r) = (1 - t^r)(1 - q^r t^r) Z_r(t^r)$$

$$= (1 - t^r)(1 - q^r t^r) \prod_{\xi \in \mu_r} Z(\xi t)$$

$$= (1 - t^r)(1 - q^r t^r) \prod_{\xi \in \mu_r} \frac{L(\xi t)}{(1 - \xi t)(1 - q\xi t)}$$

$$= \prod_{\xi \in \mu_r} L(\xi t),$$

where we've used that

$$\prod_{\xi \in \mu_r} \frac{1}{1 - \xi t} = 1 - t^r$$

$$\prod_{\xi \in \mu_r} \frac{1}{1 - q\xi t} = 1 - q^r t^r$$

which leads to all of the denominators canceling. We can then expand  $L_r(t^r)$  as a product to compute

$$L_r(t^r) = \prod_{\xi \in \mu_r} L(\xi t)$$

$$= \prod_{\xi \in \mu_r} \prod_{j=1}^{2g} (1 - \alpha_j q t)$$

$$= \prod_{j=1}^{2g} \prod_{\xi \in \mu_r} (1 - \alpha_j q t)$$
 since these are finite products
$$= \prod_{j=1}^{2g} (1 - \alpha_j^r t^r).$$

From this we can conclude that  $L_r(t) = \prod_{j=1}^{2g} (1 - \alpha_j^r t)$ , since  $t^r$  is just an indeterminate and these are all identities of polynomials.

### Corollary 1.0.3(?).

Suppose  $K/\mathbb{F}_q$  is genus  $g \geq 1$  and  $L(t) = \prod_{j=1}^{2g} (1 - \alpha_j t)$ . Then for all  $r \in \mathbb{Z}^{\geq 0}$ , we have a nice expression for  $N_r$ :

$$N_r := |\Sigma_1(K_r/\mathbb{F}_{q^r})| = q^r + 1 - \sum_{j=1}^{2g} \alpha_j^r.$$

Proof(?)

Let  $L_r(t) = \sum_{j=1}^{2g} a_{j,r} = \prod_{j=1}^{2g} (1 - \alpha_j^r t)$ , so  $a_{1,r} = -\sum_{j=1}^{2g} \alpha_j^r$ . Then using (d) part 3, we can write

$$|\Sigma_1(K_r/\mathbb{F}_{q^r})| = q^r + 1 + a_{1,r} = q^r + 1 - \sum_{i=1}^{2g} \alpha_j^r.$$

This follows from consider  $\prod (1-\alpha_j^r t)$ , where extracting the  $t^1$  coefficient involves choosing  $-\alpha_j^r$  once and 1 from all of the remaining terms, and then you sum over the disjoint possibilities.

**Remark 1.0.4:** We'd really like to compute the coefficients of the L polynomials, since we can solve a polynomial equation to get the roots. But the Galois groups of these polynomials may not be solvable, so the term  $\sum \alpha_j^r$  will in general be some symmetric function in the complex roots. Note that any symmetric polynomial in the roots is also a symmetric polynomial in the coefficients.

#### Corollary 1.0.5(?).

For  $K/\mathbb{F}_q$  a function field, define

$$S_r := N_r - (q^r + 1) = -\sum_{j=1}^{2g} \alpha_j^r.$$

Note that  $N_r = |\Sigma(K_r/\mathbb{F}_{q^r})|$  is the number of  $\mathbb{F}_{q^r}$ -rational point. Then

a. 
$$L'(t)/L(t) = \sum_{r=1}^{\infty} S_r t^{r-1}$$
.

b.  $a_0 = 1$ , and for all  $1 \le i \le g$ ,

$$ia_i = S_i a_0 + S_{i-1} a_1 + \dots + S_1 a_{i-1}.$$

**Remark 1.0.6:** What's the usefulness here? If you only have the coefficients of the L polynomials, taking the logarithmic derivative gives access to these quantities  $S_r$ . The second formula is a recursive expression for the  $a_i$  in terms of the  $S_i$ . So you can compute the coefficients of the L polynomial by counting  $\mathbb{F}_{q^r}$ -rational points on your curve (or places on your function field) for  $r = 1, 2, \dots, g$ . Similarly, if you have all of the coefficients for a Z polynomial, you can solve for the  $S_i$ .

Proof (of a).

Essentially just a computation. Logarithmically differentiating both sides of  $L(t) = \prod_{j=1}^{2g} (1 - \alpha_j t)$  and expanding in a geometric series yields

$$\frac{L'(t)}{L(t)} = \sum_{j=1}^{2g} \frac{-\alpha_j}{a - \alpha_j t}$$

$$= \sum_{j=1}^{2g} (-\alpha_j) \sum_{r=0}^{\infty} (\alpha_j t)^r$$

$$= \sum_{r=1}^{\infty} \left(\sum_{j=1}^{2g} (-\alpha_j^r)\right) t^{r-1}$$

$$= \sum_{r=1}^{\infty} S_r t^{r-1}.$$

Proof (of b).

Clearing denominators and equating coefficients in  $L'(t) = L(t) \sum_{r=1}^{\infty} S_r t^{r-1}$  yields the result immediately, since the  $ia_i$  are what appear as coefficients in the derivative of a formal power series, whereas the RHS is a Cauchy product.

**Remark 1.0.7:** The moral: to compute zeta functions, you don't have to enumerate divisors and compute dimensions of Riemann-Roch spaces. Note that the Riemann-Roch theorem tells us something interesting about these dimensions, but doesn't compute the dimension outright! Instead, it suffices to compute  $\mathbb{F}_{q^r}$ -rational points for  $r \leq g$ .

A few lectures ago we discussed the places on a hyperelliptic function field, including a place at infinity. Computing the zeta function of a hyperelliptic curve involves plugging in x-values and determining

• If it's a nonzero square,