#### Beschreibung

# Informationssystem

## 5 Gebiet der Erfindung

Die Erfindung betrifft ein Informationssystem auf der Basis einer Gesichtsfelderfassungsvorrichtung, die sichtbares Licht aus dem natürlich wahrgenommenen Gesichtsfeld eines Auges erfaßt, und ein entsprechendes Verfahren zum Zurverfügungstellen von Informationen.

# Verwandte Anmeldungen

- Aus den deutschen Offenlegungsschriften DE 196 31 414 A1 und DE 15 197 28 890 sind optische Vorrichtungen bekannt, die eine Aufnahme des Netzhautreflexbildes und eine Überlagerung von Zusatzbildern im Auge ermöglichen. In zwei deutschen Patentanmeldungen, deren Einreichungstag und Anmelder mit dem dieser Anmeldung | übereinstimmen, werden sowohl Weitergestaltungen dieser optischen 20 Vorrichtungen als auch Systeme beschreiben. Vorrichtungen ergänzen oder gar ersetzen. Insbesondere werden darin die Justierung der obengenannten optischen Vorrichtung sowie ein System beschrieben, das auf neue Art und Weise auch in der Lage ist, Bilder auf ein Auge zu Projizieren. Letzteres System 25 basiert auf einer Projektion eines Bildes auf die Netzhaut des Auges, die gleichzeitig, jedoch nacheilend zu einer scanartigen Erfassung des Netzhautreflexbildes erfolgt.
- 30 Da die in den obengenannten Anmeldungen beschriebenen Vorrichtungen und Systeme bevorzugt in Form einer Brille ausgestaltet sind, werden sie nachfolgend der Einfachheit halber auch als Brillensystem bezeichnet. Diese Bezeichnung impliziert Einschränkung. Selbstverständlich sind auch andere Ausführungsformen solcher Vorrichtungen und Systeme in den unten 35

20

30

35

beschriebenen Zusammenhängen anstelle des "Brillensystems" gleichfalls anwendbar.

In der DE 196 31 414 A1 werden zahlreichen Anwendungsmöglichkeiten des darin offenbarten Brillensystems angesprochen, ohne daß diese 5 genauer beschrieben werden konnten. Ein Miterfinder ursprünglichen Brillensystems hat jetzt in Zusammenarbeit mit Forschungsteam die Anwendungsmöglichkeiten erwähnten Brillensysteme genauer untersucht . Aus Überlegungen der wirtschaftlichen Implementierbarkeit sind Weiterbildungen und 10 Abänderungen der bisher offenbarten Brillensysteme entstanden, die im Rahmen dieser und zwei weiterer Patentanmeldungen desselben Einreichungstags und desselben Anmelders angemeldet werden. Zu den vom Forscherteam entwickelten Systemmerkmale, die in vielen der beschriebenen Ausführungsformen wiederkehren, gehören, daß das System:

- ein Hornhautreflexbild des Auge mindest teilweise erfaßt;
- ein Teil des auf das Auge einfallenden Lichtes mittels einer sphärischen oder sphärisch wirkenden Reflektionsschicht in eine Sensorvorrichtung lenkt:
- das Netzhautbild über den Oxidierungsgrad der Netzhautzäpfen und/oder der Netzhautstäbchen ermittelt;
- lediglich eine partielle Erfassung eines Netzhautreflexbildes vornimmt; und/oder
- 25 eine Gesichtsfelderfassungsvorrichtung umfaßt, die sichtbares Licht aus dem natürlich wahrgenommenen Gesichtsfeld erfaßt, ohne ein Netzhautreflexbild zu erfassen.

Zwecks Verfahrensökonomie wurde der Inhalt dieser Patentanmeldungen nicht nach diesen Systemmerkmalen aufgeteilt. Stattdessen betrifft jede dieser drei Anmeldungen ein jeweiliges, zusammenfassendes Grundkonzept. Diese sind:

die Ausführung des Brillensystems als Informationssystem, das Informationen in Abhängigkeit von einem natürlich wahrgenommenen Gesichtsfeld eines Menschen zur Verfügung stellt;

- die Ausführung des Brillensystems als Informationssystem, das Informationen in Abhängigkeit von aus einem Auge erfaßten Signale zur Verfügung stellt, diese jedoch nicht in das Auge projiziert, aus dem die Signale erfaßt worden sind; und
- die Ausführung des Brillensystems als Informationssystem, das Informationen in Abhängigkeit von aus einem Auge erfaßten Signale zur Verfügung stellt, wobei die Informationen zumindest teilweise in das Auge projiziert, die Signale jedoch nicht in der aus der DE 196 31 414 A1 bekannten Weise erfaßt werden.

15

Es sei zu erwähnen, daß viele Anwendungen der konzipierten Brillensysteme auf einer Kombination mehrerer der obengenannten Grundkonzepte basieren, wodurch eine natürliche Verflechtung der zugehörigen drei Anmeldungen entsteht. Dementsprechend besteht eine gewisse Redundanz zwischen diesen drei Anmeldungen. Jedoch wird bei Detailfragen, die sich primär mit nur einem der Systemkonzepte beschäftigen, hiermit explizit quer auf die dieses Grundkonzept betreffende Anmeldung verwiesen.

# 20 Stand der Technik / Technischer Hintergrund

Es sind viele Fälle aus dem Alltag bekannt, bei dem es nützlich und/oder wünschenswert wäre. sofort über Informationen verfügen, die über unser persönliches Sinnesempfindungen hinausgehen. Beispiele hierfür sind das Suchen einer Unterputz-Elektroleitung in einer Wand, die Navigation in einer fremden Stadt, das Sammeln von Wildpilzen und Untersuchen eines möglicherweise gefährlichen Objekts mittels eines ferngesteuerten Roboters.

30

35

25

Die starke Abhängigkeit von sehenden Menschen an ihre Sehempfindungen trägt deutlich bei. dazu daß zusätzliche Informationen nur schwer zur Verfügung gestellt werden können. Denn die Tatsache, daß sehende Menschen vorwiegend mit den Augen wahrnehmen, macht es in vielen Fällen erforderlich, daß die

Zusatzinformationen entweder über die Augen zugespeist oder anhand der gesehenen Informationen ermittelt werden. Bei einer Zuspeisung über die Augen muß jedoch die Ausrichtung der Augen genaustens berücksichtigt werden, um ein richtiges "Plazieren" und ein "Verwackeln" oder "Verwischen" der zugespeisten Informationen zu vermeiden. Zudem sollen die Informationen in vielen Fällen ohne gezielte Bewegung der Augenäpfel zugänglich gemacht werden; ein Autofahrer mag zwar eine Landkarte auf seinem Schoß haben, möchte aber ungern von der Straße wegschauen müssen.

10

15

20

25

30

35

5

Durch ihre Bindung an feste Medien, z.B. Papier, CRT- und LCD-Bildschirme, u.s.w., sind bisherige visuelle Informationssysteme nicht in der Lage gewesen, die Komfortbedürfnisse eines sehenden Menschen ausreichend nachzukommen. Nicht visuellen Informationssystemen fehlte bisher die für sehende Menschen selbstverständliche Kopplung an das Gesehene.

Näheres zum Stand der Technik enthält die DE 196 31 414 Al, deren Einleitung mehrere moderne Informationssysteme, insbesondere aus dem Militärbereich, beschreibt.

#### Zusammenfassung der Erfindung

Das Ziel der Erfindung liegt darin, ein Informationssystem zur Verfügung zu stellen, dessen Informationsdarbeitung den natürlichen Bedürfnissen eines sehenden Menschen auf bisher unerreichte Art und Weise nachkommt. Es ist ein weiteres Ziel der Erfindung, ein derartiges Informationssystem zu schaffen, das gengenüber dem Stand der Technik hinsichtlich Implementierbarkeit und Wirtschaftlichkeit verbessert worden ist. Ziel der Erfindung ist auch, entsprechende Verfahren zum Zurverfügungstellen von Informationen zu schaffen.

Erfindungsgemäß wird dieses Ziel durch das Informationssystem gemäß Anspruch 1 und das Verfahren zum Zurverfügungstellen von

35

Informationen gemäß Anspruch 13 erreicht. Bevorzugte Ausführungen der Erfindung sind in den Unteransprüchen beschrieben.

In seiner allgemeinsten Form umfaßt' das erfindungsgemäße Informationssystem eine Signalerfassungsvorrichtung, die von einem -5 eine Netzhaut aufweisenden Auge zurückreflektierte Signale erfaßt, eine Informationsvorrichtung und eine Ausgabevorrichtung, die in Zusammenarbeit mit der Informationsvorrichtung Informationen in Korrelation mit den erfaßten Signalen zur Verfügung stellt. Bevorzugt werden die Informationen in Abhängigkeit von den 10 erfaßten Signalen und/oder in Abhängigkeit von aus dem natürlich wahrgenommenen Gesichtsfeld erfaßtem, sichtbarem Licht Verfügung gestellt.

Als Signalerfassungsvorrichtung dient vorzugsweise eines der oben 15 besprochenen Brillensysteme, bei dem eine scannende Abtastvorrichtung ein Netzhautreflexbild der Netzhaut mindestens teilweise erfaßt. Eine Abwandlung dieser Abtastvorrichtung, die an Hornhaut des Auges reflektiertes Licht anstelledes 20 Netzhautreflexbildes erfaßt. ist insbesondere bei Infrarotanwendungen vorteilhaft, da die Hornhaut Licht mit einer Wellenlänge von ca. 1,1  $\mu$ m stark reflektiert. Auch über die Erfassung der chemischen Veränderung der Stäbchen und/oder Zäpfchen ist es grundsätzlich möglich, entsprechend verwertbare Aussagen über das auf die Netzhaut einfallende Bild zu machen. .25

Die Erfinder dieser Erfindung haben auch festgestellt, daß eine der Erfassung aus dem Auge zurückreflektierter komplementäre Erfassung des Gesichtsfelds besondere Vorteile mit sich bringt. Zwecks einer solchen komplementären Erfassung umfaßt die Gesichtsfelderfassungsvorrichtung und/oder die Informationsvorrichtung des erfindungsgemäßen Informationssystems bevorzugt eine im wesentlichen konfokal zum Auge angeordnete, spärisch oder spärisch wirkende Reflektionsschicht, die ein Teil des auf das Auge gerichteten Lichtes in eine Sensorvorrichtung zur

Erfassung ablenkt. Aufgrund des im Vergleich zum Netzhaut- oder Hornhautreflex um ein Vielfaches höheren Reflektionsgrads der Reflektionsschicht wird bei gleich empfindlichen Photosensoren ein wesentlicher Lichtgewinn erzielt. Auch ließen sich entsprechend kostengünstige Photosensoren in der Sensorvorrichtung verwenden. Es kann also Vorteile mit sich bringen, wenn das auf das Auge fallende Licht nicht nur, nur teilweise oder gar nicht über das Netzhautreflex erfaßt wird.

10 Je nach Zielanwendung müssen nicht sämtliche räumliche Bereiche Gesichtsfelds erfaßt werden. Beispielsweise bei Anwendung, bei der Zusatzinformationen bezüglich eines mit dem angepeilten Objektes durch das erfindungsgemäße Informationssystem zur Verfügung gestellt werden, könnte es 15 ausreichen, das auf die Netzhautgrube (Fovea) fallende Licht zu erfassen und einer Mustererkennung oder sonstiger Analyse zu unterziehen. Denn ein mit dem Auge angepeiltes Objekt wird typischerweise auf die Netzhautgrube, die den Bereich des schärfsten Sehens darstellt, abgebildet. Somit wäre die Erfassung des auf diesen Teil der Netzhaut fallenden Lichtes möglicherweise 20 ausreichend, um genügend viele charakterisierende Objektmerkmale ermitteln zu können.

Sinnvoll ist auch, wenn nur ein beschränkter Spektralbereich des auf das Auge fallenden Lichtes erfaßt wird. Wird, zum Beispiel das auf ein Auge fallende Infrarotlicht erfaßt, so kann auch bei Nacht die Orientierung des Auge bestimmt und/oder wertvolle Informationen aus dem Gesichtsfeld gewonnen werden.

Dementsprechend können jegliche Einschränkungen bezüglich der Erfassung des auf ein Auge fallenden Lichtes sinnvoll sein. Insbesondere werden Einschränkungen des erfaßten Spektralbereiches, des erfaßten Gesichtsfeldbereiches und der erfaßten Sehzeitabschnitte ggf. angewandt.

5

Zwecks der redundanten oder stereoskopischen Bilderfassung kann die dafür bestimmte Vorrichtung des erfindungsgemäßen Informationssystems derart ausgelegt sein, das auf mehrere Augen fallende Licht zu erfassen. Je nach Anwendungsgebiet müssen die Augen nicht zwangläufig einem einzelnen Person gehören. Zum möglich, Beispiel wäre es die von den Augen Feuerwehrmänner wahrgenommenen Bilder zuzüglich Positions- und aus Infrarotspektralanalyse der Bilder Brandstärkeninformationen auf Monitore in einer Einsatzzentrale einzuspielen.

In der Ophthamologie wird zwischen den Begriffen "Gesichtsfeld" und "Blickfeld" unterschieden. Ein Gesichtsfeld ist der Teil eines Raumes, der mit unbewegtem Auge erfaßt werden kann. Ein Blickfeld ist das Gebiet, das mit den Augen erfaßt werden kann. Somit ist hier, wie im übrigen, das Gesichtsfeld als Verursacher des auf ein Auge natürlich fallenden Lichtes zu verstehen.

#### Die Gesichtsfelderfassung

20

25

30

35

5

10

15

Aufgrund der Einbindung einer Gesichtsfelderfassungsvorrichtung ist das Informationssystem in der Lage, sichtbares Licht aus dem dem Auge zugeordneten Gesichtsfeld in eine Qualität. d.h. mit einer Empfindlichkeit, einer Auflösung, einer Schärfe, u.s.w., zu erfassen, die die natürliche Wahrnehmung des Auges bei weitem übersteigt. Zudem ist es durch die erfindungsgemäße Korrelation des Informationzurverfügungstellens mit den von der Signalerfassungsvorrichtung erfaßten Signalen möglich. entsprechende Teile des erfaßten Lichts bei einer im Laufe des Informationzurverfügungstellens auftretende Bearbeitung so zu behandeln, als wären sie aus dem Auge erfaßte Reflexbilder, d.h. als wären sie das tatsächlich Gesehene. Eine derartige Ausführung des erfindungsgemäßen Informationssystems kombiniert somit die Vorteile eines Informationssystem, das hochwertige Gesichtsfeldinformationen direkt aus dem Gesichtsfeld gewinnt, mit

10

15

20

35

den Vorteilen eines Informationssystems, das tatsächlich gesehene Gesichtsfeldinformationen aus dem Auge gewinnt.

Die Korrelation des Informationzurverfügungstellens mit den aus zurückreflektierten. erfaßten Signalen dem Auge beispielsweise dadurch erfolgen, daß mehrere Bildpunkte eines Augenreflexbildes, z.B. eines Hornhaut- oder Netzhautreflexbildes, erfaßt werden. die über eine Auswertevorrichtung entsprechenden Bildpunkten aus dem erfaßten Gesichtsfeld in Verbindung gebracht werden. Auch eine über die erfaßten Signale festgestellte Blickrichtung des Auges kann dazu dienen, eine Korrelation zwischen aus dem erfaßten Gesichtsfeld gewonnenen Gesichtsfeldinformationen und dem tatsächlich schaffen. Wie unten beschrieben wird, kann die Korrelation jedoch auch darin bestehen, gewonnene Gesichtsfeldinformationen in eine mit dem Gesehenen korrelierte Art und Weise auf die Retina zu projizieren.

Selbstverständlich muß die Gesichtfelderfassungsvorrichtung nicht auf eine Erfassung des Gesichtsfeldes beschränkt sein, sondern kann auch eine teilweise oder komplette Erfassung des Blickfeldes umfassen, die eine mindestens partielle Erfassung des Gesichtsfeldes beinhaltet.

25 Die hohe Qualität des aus dem Blick- bzw. Gesichtsfeld erfaßten Bildes | kann auch als Grundlage für eine übersensorische Informationsdarbietung dienen. Zum Beispiel könnten Gesichtsfeldinformationen aus dem erfaßten Blickfeldlicht derart gewonnenen und auf die Netzhaut projiziert werden, daß das vom 30 Auge wahrgenommene Bild mindestens teilweise schärfer, näher, weitwinkliger oder auf sonstige Art und Weise übersinnlich wirken.

Die Erfindung sieht eine Informationsquelle vor, die eine Datenbank, eine Sensorik, eine Informationsnetzanbindung und/oder eine Auswertevorrichtung umfassen kann.

10

Eine besonders interessante Ausführungsform der Erfindung umfaßt eine Sensorik als Informationsquelle. Denn hiermit kann eine übersinnliche Wahrnehmung in Verbindung mit dem Gesehenen gebracht werden. Bei dem erwähnten Beispiel des Suchens einer Elektroleitung könnte die erfindungsgemäße Informationsquelle Magnetfeldsensoren, die in der Lage sind, metallische Leitung bezüglich eines bekannten Koordinatensystems, beispielsweise das erfaßte Blickfeld, zu lokalisieren. Somit wäre es zum Beispiel mittels geeigneter Bildverarbeitungsssoftware möglich, den Verlauf Elektroleitungen mittels einer wie in den oben vorhanderer Patentanmeldungen erwähnten beschriebenen Projektion eines Zusatzbildes auf das vom Auge gesehene Bild zu überlagern.

Sämtliche Arten von bekannten Sensoren eignen sich zur Anwendung 15 als Informationsquelle, insbesondere dann, wenn der Sensor anhand des erfaßten Lichtbildes aktiviert bzw. abgefragt wird. Zum Beispiel wäre es bei der Prüfung einer integrierten elektronischen Schaltung möglich, daß nach gezielten Anblick einer Leitung auf einem Schaltplan der Schaltung und einem Tastensdruck die Position 20 dieser Leitung auf einem fertigen Chip berechnet wird, so daß die Stromund Spannungswerte der Leitung mittels einer berührungslosen Meßgerät erfaßt und dem Anwender über das Brillensystem dargestellt werden.

25

30

35

Ein Beispiel für ein eine Datenbank und eine Informationsnetzanbindung umfassendes Informationssystem wäre ein betriebsinternes Postverteilungssystem, bei dem Barcodeaufklebern versehen sind, die die jeweilige Akte eindeutig kennzeichnen. Soll eine Akte betriebsintern verschickt werden, gibt der Absender beispielsweise die Durchwahl des Empfängers und einen die Akte bezeichnenen Code mittels einer Software ein, die diese Daten in einer Datenbank auf einer der vielen bekannten Weisen entsprechend abspeichert. Bei einer späteren Sortierung der Akte wird der kennzei chnende Barcode über das

Postverteilungsangestellten getragene Brillensystem beispielsweise bei gezieltem Blick und Tastenklick erfaßt und durch eine Erkennungsvorrichtung oder -software erkannt. Per Funkverbindung mit einem betriebsinternen Datennetz werden die der Akte zugeordneten, postverteilungsrelevanten Daten aus der Datenbank geholt und über eine geeignete Ausgabevorrichtungen nach evtl. Aufbereitung an den Postverteilungsangestellten, beispielsweise als Ansage über Kopfhörer "Hr. Schmidt, Finanzwesen, Gebäude G, 3. Stock, Zimmer 310", mitgeteilt.

10

5

Unter Auswertevorrichtung sind sämtliche Arten von Auswertevorrichtungen zu verstehen, insbesondere Bildverarbeitungsvorrichtungen. Solche Auswertevorrichtungen sind auch in den obigen Beispielen zur Sprache gekommen.

15

20

25

30

35

Erfindungsgemäß können die Informationen taktil, visuell, hörbar, riechbar und/oder geschmacklich zur Verfügung gestellt werden. Es gehört zur Aufgabe der Erfindung, eine Informationsdarbietung zu ermöglichen, die den Bedürfnissen eines sehenden Menschens auf bisher unerreichte Art und Weise nachzukommen. Hierzu kann gehören, daß die Informationen dem Menschen in geeigneter Weise, das heißt unter Ausnutzung eines oder mehrerer der fünf Sinne, zur Verfügung gestellt werden können. Die Informationen können jedoch auf beliebige Art und Weise zur Verfügung gestellt werden und bedürfen keinen bestimmten Adressant. Beispielsweise können die Informationen einem weiteren System zur Vefügung gestellt werden oder durch eine optische oder akustische Ausgabevorrichtung in die Umgebung ausgestrahlt werden. Schon durch die erfindungsgemäße Abhängigkeit zwischen dem Zurverfügungstellen von Informationen und dem auf das Auge fallenden Lichtbild wird erreicht, daß der vom sehenden Menschen erwartete Zusammenhang zwischen Gesehenem und zur Verfügung gestellten Informationen besteht.

Diese Abhängigkeit wird von der erfindungsgemäßen Vorrichtung bei der Ermittlung der Informationen, bei dem Zurverfügungstellen der

Information oder während beider dieser inhärenten Vorgängen berücksichtigt. Beispiele für eine Berücksichtigung dieser: Abhängigkeit bei der Ermittlung der Informationen sind oben angegeben. Beim Zurverfügungstellen der Informationen kann diese Abhängigkeit zum Beispiel dadurch berücksichtigt werden, daß die Informationen mittels einer Rückprojektion in das Auge auf eine Art und Weise in das gesehene Bild eingeblendet werden, daß ein zeitlicher, farblicher, räumlicher, kontrastbezogener, sonstiger sinnvoller Zusammenhang zwischen den Informationen und dem gesehenen Bild hergestellt wird. Insbesondere kann die Abhängigkeit darin bestehen, daß das erfaßte Lichtbild dazu verwendet wird, die Lage und Orientierung des Augapfels festzustellen, so daß ein zwecks eines Zurverfügungstellens der Informationen auf das Auge projiziertes Bild bei einer Bewegung des Auges festzustehen scheint, sich bei einer Bewegung des Auges mitzubewegen scheint oder sich auch bei einer Bewegung des Auges entsprechend einem vorgegebenen Verlauf zu bewegen scheint. Insbesondere läßt sich die Auswirkung der Sakkadenbewegungen des Auges auf diese Vorgänge berücksichtigen bzw. kompensieren.

20

30

35

10

15

Selbstverständlich müssen die Informationen nicht unbedingt einem Menschen sondern können auch einem anderen System zur Verfügung gestellt werden.

#### 25 Tracking

Es ist also mit erfindungsgemäße Informationssystem möglich, die Lage und Ausrichtung mindestens eines Auges schnell, genau und mit geringem Aufwand zu ermitteln, z.B. mit einer Bestimmungsrate von 100 Hz, einer Positionsgenauigkeit von wenigen Mikrometern und einer Vorrichtung in tragbarer Bauweise. Unter Anwendung des erfindungsgemäßen Informationssystems bei der dynamischen Bestimmung der Orientierung des Auges kann die Verarbeitung derart rasch erfolgen, daß die Genauigkeit durch die Sakkadenbewegungen des Auges nicht verfälscht wird. Dies wird dadurch erreicht, daß

25

30

das Informationsystem eine das Auge nicht berührende Signalerfassungsvorrichtung aufweist, die vom Auge zurückreflektierte Signale erfaßt. Reflektierbare Signale, Beispiel Schall- oder elektromagnetische Signale, erlauben eine hochfrequente Erfassung, so daß die Verarbeitungsgeschwindigkeit. hauptsächlich von einer vom Informationssystem umfaßten Auswertevorrichtung bestimmt wird. Auf dem Gebiet signalverarbeitenden Hardware sind jedoch erhebliche Fortschritte in den letzten Jahren bezüglich der Arbeitsgeschwindigkeit, des 10 Stromverbrauchs und der Systemgröße erzielt worden. Die Erforschungen der Erfinder haben ergeben, daß Informationssystem durch eine derartige Gestaltung die erstrebte Verarbeitungsgeschwindigkeit erreichen kann.

Typischerweise dient ein Teil des Informationssystems selbst als 15 Referenzkoordinatensystem. Allerdings ist auch möglich, daß das Informationssystem lediglich ein Bezugskoordinatensystem in einem Referenzkoordinatensystem anderen darstellt, und daß das Verhältnis zwischen dem Bezugskoordinatensystem und dem 20 Referenzkoordinatensystem beispielsweise durch die Auswertevorrichtung oder einen anderen Mechanismus ermittelt wird.

Bevorzugt erfaßt die Signalerfassungsvorrichtung vom Auge zurückreflektiertes Licht. Licht bildet ein vorzügliches Medium zur Übertragung der vom Auge zurückreflektierte Signale, da die Einsatzfähigkeit des Auge ein Vorhandensein von Licht voraussetzt. Allerdings ergibt sich eine Überlagerung der vom Licht aus dem Gesichtsfeld übertragenen Gesichtsfeldsignalinformationen mit der Augenreflexsignalinformation, die durch die Reflektion am Auge entsteht. Diese unterschiedlichen Informationen lassen sich jedoch unter Anwendung bekannter Signalverarbeitungsmethoden unterscheiden und sinnvoll zur Bestimmung der Orientierung des Auge verwenden. Dies ist insbesondere dann der Fall, wenn das Signalübertragungsmedium aus einer zumi Informationssystem

10

15

20

25

30

35

gehörenden Signalquelle stammt, das das Medium vor seiner Reflektion am Auge mit einem vorgegebenen Signal beaufschlagt.

Ähnlich kann die Erfassung von Signalen aus anderen Signalübertragungsmedien als Licht auch vorteilhaft sein. sind Bauteile zur Erzeugung und Erfassung Schallwellen in verschiedenen kostengünstigen und Auführungen am Markt erhältlich. Solche Bauteile lassen sich auch als integrierte einer Elemente integrierten Schaltung verwirklichen. Ähnliche Überlegungen gelten den nicht sichtbaren Frequenzbereichen von elektromagnetischen Wellen.

0bwoh1 nicht vollständig erforscht, ist es denkbar, daß ein Informationssystem mit einer Mehrzahl an -Signalerfassungsvorrichtungen, die Signale aus unterschiedlichen oder Spektralbereichen erfassen. verbesserte Systemeigenschaften aufweisen könnte. Diese Erkenntnis liegt den Überlegungen zugrunde, daß die Auswertevorrichtung im Falle einer Unterbelastung auch andere Systemaufgaben übernehmen könnte, und daß die von der Auswertevorrichtung vorgenommene Signalbearbeitung stark vom Informationsgehalt des zu bearbeitenden Signals abhängt. So brächte es Vorteile, das Informationssystem auf Signalerfassung zu basieren, die zur Bewertung nur wenig Arbeitsleitung von der Auswertevorrichtung beansprucht, jedoch allein evtl. nicht die Basis für eine ausreichende Genauigkeit liefert, und diese bearbeitungsarme Signalerfassung derart durch die Ergebnisse einer genauen und bearbeitungsintensiven, jedoch nur intermittierend durchzuführenden Signalerfassung zu ergänzen bzw. kalibrieren, daß die notwendige Genauigkeit zu jeder Zeit erreicht wird.

Sinnvoll hat sich eine Netzhautreflexerfassung erwiesen, bei dem das Netzhautreflex natürlichen oder künstlichen Lichts als aus dem Auge zurückreflektiertes Signal intermittierend oder partiell erfaßt wird. Eine vollständige Erfassung des Netzhautreflexes ist

10

15

sowohl zeit- als auch arbeitsintensiv. Andererseits ist eine Erfassung des Netzhautreflexes insofern sinnvoll, als sie eine direkte Ermittlung des wahrgenommen Gesichtsfelds in Relation zur Netzhaut erlaubt. Denn, wie oben erwähnt, eine Aufbereitung des erfaßten Netzhautreflexes läßt sowohl Netzhautmerkmale, wie z.B. die Fovea centralis oder der blinde Fleck, als auch das Reflexbild des auf das Auge fallenden Lichts erkennen. Auch das in der Aderhaut vorhandene Blutgefäßnetz wird bei entsprechender Aufbereitung des Netzhautreflexbildes sichtbar, was eine sehr gute Grundlage zur Bestimmung der Orientierung des Augapfels liefert. Wird das Netzhautreflex deshalb intermittierend oder partiell erfaßt, so läßt sich der Bearbeitungsaufwand reduzieren, während auf eine genaue Ermittlung der Relation des wahrgenommenen Gesichtsfelds zur Netzhaut nicht verzichtet wird. Selbstverständlich lassen sich Netzhautmerkmale ohne eine Netzhautreflexerfassung verfolgen. Beispielsweise lassen sich die Blutgefäße der Aderhaut über ihren im Infrarotbereich sichtbaren Wärmeausstrahlung erkennen.

20 Die vorliegende Erfindung wird nachstehend anhand der Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher beschrieben. Es werden viele Merkmale der Erfindung im engen Zusammenhang des jeweiligen. konkret dargestellten Ausführungsbeispiels erläutert. Selbstverständlich läßt sich jedes einzelnen Merkmal der Erfindung mit jedem anderen Merkmal 25 kombinieren, soweit die resultierende Kombination nicht zu einem für den Fachmann als sofort unsinnig erkennbaren Ergebnis führt. Diese Aussage betrifft nicht die Bestimmung des gewerblichen Schutzbereichs dieser Patentanmeldung/Patent sofern Schutzbereich nach anwendbarem Recht durch die Ansprüche verliehen 30 wird.

Es zeigen:

Figur 1 ein Informationssystem gemäß einem ersten Ausführungsbeispiel der Erfindung;

Figur 2 eine detaillierte Ansicht eines Auges im Querschnitt;

5

- Figur 3 eine bekannte Ausführungsform eines interaktiven Brillensystems, bei der eine Signalerfassungsvorrichtung in Form einer scannenden Augenabtastvorrichtung vorgesehen ist;
- Figur 4 eine bekannte Ausführungsform einer interaktiven Brille, bei der eine Ausgabevorrichtung in Form einer scannenden Projektionsvorrichtung vorgesehen ist;
- Figur 5A eine interaktive Brille gemäß einem ersten 15 Ausführungsbeispiel;
  - Figur 5B eine Detailzeichung einer in der Figur 5 dargestellten kombinierten Signalerfassungs- und Projektionsvorrichtung;
- 20 Figur 6A eine interaktive Brille gemäß einem zweiten Ausführungsbeispiel;
  - Figur 6B eine Detailzeichung einer in der Figur 6A dargestellten kombinierten Signalerfassungs- und Projektionsvorrichtung;

25

- Figur 7A eine interaktive Brille gemäß einem dritten Ausführungsbeispiel;
- Figur 7B eine Detailzeichung einer in der Figur 7A dargestellten 30 kombinierten Signalerfassungs- und Projektionsvorrichtung;
  - Figur 8 eine interaktive Brille gemäß einem vierten Ausführungsbeispiel;

30

Figur 9 eine interaktive Brille gemäß einem fünften Ausführungsbeispiel;

Figur 10A eine Draufsicht einer Brille gemäß einem sechsten 5 Ausführungsbeispiel;

Figur 10B eine Frontansicht einer Brille gemäß einem sechsten Ausführungsbeispiel;

Figur 11A das natürlich wahrgenommene Gesichtsfeld eines Benutzers eines gemäß einem siebten Ausführungsbeispiel gestalteten Informationssystems;

Figur 11B das natürlich wahrgenommene Gesichtsfeld eines Benutzers 15 eines gemäß einem siebten Ausführungsbeispiel gestalteten Informationssystems;

Figur 11C eine schemenhafte Darstellung eines Abtastmusters;

20 Figur 11D eine schemenhafte Darstellung eines abgeänderten Abtastmuster;

Figur 12A das natürlich wahrgenommene Gesichtsfeld eines Benutzers eines gemäß einem achten Ausführungsbeispiel gestalteten Informationssystems;

Figur 12B das natürlich wahrgenommene Gesichtsfeld eines Benutzers eines gemäß einem achten Ausführungsbeispiel gestalteten Informationssystems;

Figur 12C das natürlich wahrgenommene Gesichtsfeld eines Benutzers eines gemäß einem achten Ausführungsbeispiel gestalteten Informationssystems;

25

35

Figur 12D das natürlich wahrgenommene Gesichtsfeld eines Benutzers eines gemäß einem achten Ausführungsbeispiel gestalteten Informationssystems;

Figur 12E das natürlich wahrgenommene Gesichtsfeld eines Benutzers eines gemäß einem achten Ausführungsbeispiel gestalteten Informationssystems;

Figur 13A das natürlich wahrgenommene Gesichtsfeld eines Benutzers 10 eines gemäß einem neunten Ausführungsbeispiel gestalteten Informationssystems;

Figur 13B das natürlich wahrgenommene Gesichtsfeld eines Benutzers eines gemäß einem neunten Ausführungsbeispiel gestalteten Informationssystems;

Figur 14A ein erfindungsgemäßes Informationssystem gemäß einem zehnten Ausführungsbeispiel;

20 Figur 14B ein erfindungsgemäßes Informationssystem gemäß einem zehnten Ausführungsbeispiel;

Die Figur 15 ein erfindungsgemäßes Informationssystem gemäß einem elften Ausführungsbeispiel;

Die Figur 16 eine schematische Darstellung eines erfindungsgemäßen Informationssystems gemäß einem zwölften Ausführungsbeispiel; und

Figure 17 ein optisches System gemäß einem dreizehnten 30 Ausführungsbeispiel.

In der Beschreibung der Figuren werden ähnliche oder identische Gegenstände mit ähnlich oder gleich endenden Bezugsziffern bezeichnet. Viele der abgebildeten Gegenstände weisen symmetrische oder komplementäre Komponenten auf, die durch einen

Zusatzbuchstaben, beispielsweise "L" für links und "R" für rechts, nach dem Bezugsziffer unterschieden werden. Betrifft die Aussage jede einzelne Komponente einer solchen symmetrischen oder komplementären Gruppierung, wird auf den Zusatzbuchstaben in manchen Fällen der Übersichtlichkeit halber verzichtet.

#### Figur 1

5

Figur 1 zeigt ein Informationssystem 100 gemäß einem ersten Ausführungsbeispiel der Erfindung. Das Informationsystem 100 ist 10 in Form eines interaktiven Brillensystems 120 bzw. einer interaktiven Brille 120 ausgeführt, die zwei optische Vorrichtungen 150 umfaßt. Bevorzugt befinden sich die optischen Vorrichtungen 150 jeweilig auf einer Innenseite eines linken 121L oder rechten 121R Bügelteils der Brille 120. Je 15 nach Anwendungsbereich sind auch andere, die Sicht nicht störende Anordnungen der optischen Vorrichtungen, z.B. im Bereich eines über die Nasenwurzel eines Beneutzers verlaufenden Nasenstegs 122 der Brille 120, sinnvoll.

20

25

30

Die optische Vorrichtung 150 der Brille 120 ist über Verbindungsleitungen 101 an eine Prozessoreinheit angeschlossen. Sind Photodetektoren und/oder Lichtquellen von den optischen Vorrichtungen umfaßt, dienen die Verbindungsleitungen zur Übertragung von elektrischen Detektor- bzw. Steuersignale. Die Photodetektoren bzw. Lichtquellen können jedoch in der Prozessoreinheit 140 angeordnet und über lichtleitende Verbindungsleitungen 101 an die optischen Vorrichtungen 150 der Brille 120 angeschlossen werden. Dies trägt zur Gewichtsreduktion der Brille 120 bei.

# Figur 2

Figur 2 zeigt zwecks Verständnis der Erfindung eine detaillierte 35 Ansicht eines Auges 280 im Querschnitt. Das Auge 280, das in einer

10

15

20

25

30

aus Schädelknochen gebildeten Augenhöhle 20 (lat. Orbita) im Kopf eines Menschen untergebracht und hier im Sinne eines Augapfels 280 zu verstehen ist, besteht aus einer von einer lichtdurchlässigen Hornhaut 283 (lat. Kornea) und einer sichtlich weißen Lederhaut 28 (lat. Sklera) umgebenen Kammer. Die Lederhaut 28 ist auf seiner dem Inneren des Auges 280 zugewandten Seite von einer Aderhaut 287 (lat. Choroidea) überzogen, die auf seiner ebenfalls inneren Seite eine lichtempfindliche Netzhaut 281 (lat. Retina) trägt und diese mit Blut versorgt. Durch ihre Pigmentierung verhindert die Aderhaut 287 eine Steuung des darauffallenden Lichts, die das Sehvermögen stören könnte.

Das Gewebe der Netzhaut 281 umfaßt zwei Arten von Photorezeptorzellen, nämlich Stäbchen und Zapfen (beide nicht dargestellt), die dem Menschen den Sehsinn ermöglichen. Diese Photorezeptorzellen absorbieren das durch eine Augenlinse 282 gebündelte Licht in einem Wellenlängenbereich von ca. 380-760 nm und verwandeln es durch eine Reihe von chemischen Reaktionen in elektrische Nervensignale. Die Signale der verschiedenen Nervenzellen der Netzhaut 281 werden dann über einen Sehnerv 25 an das Gehirn weitergeleitet und dort zu einem wahrnehmbaren Bild verarbeitet. Die zahlreichen, ca. 120 Millionen zählenden und stark lichtempfindlichen Stäbchen sind auf die Signalaufnahme im Dämmerlicht (sogenanntes skotopisches Sehen) spezialisiert und liefern ein Graustufenbild. Die ca. 6,5 Millionen, vergleichsweise weniger lichtempfindlichen Zapfen dagegen sind für das Farbsehen bei Tageslicht (sogenanntes photopisches Sehen) zuständig. Bei der Lichtabsorbtion findet eine Oxidierung von Pigmenten in den Photorezeptorenzellen statt. Zur Regenerierung der Pigmente bedarf es bei den Zapfen ca. 6 Minuten und bei den Stäbchen ca. 30 Minuten. Eine Betrachtungsdauer von ca. 200 msec ist notwendig, bis der Sehreiz über die Photorezeptoren einsetzt und eine Informationsaufnahme über die Netzhaut 281 erfolgt.

Die Netzhaut 281 weist eine Vertiefung 286 auf, die durch ihre im Vergleich zur übrigen Netzhaut höher Dichte an Zapfen als etwas pigmentiert erscheint. stärker Diese Vertiefung üblicherweise Sehgrube 286 (Fovea centralis) genannt wird, liegt in einem als "gelber Fleck" (lat. Makula) bekannten Bereich der Netzhaut und stellt den Bereich des schärfsten Sehens dar. Die Fovea centralis 286 ist nur mit Zapfen besetzt, weist eine sehr hohe Zapfendichte auf und beansprucht lediglich ca. 0,01% der Netzhautoberfläche. An der mit dem Bezugszeichen 10 gekennzeichneten Stelle vis-à-vis der Linse 282 tritt das Sehnerv 25 durch eine siebartige Öffnung in der Lederhaut 28 in das Innere des Auges ein. Diese Stelle 288 weist keine Photorezeptorzellen auf, weshalb sie als "blinder Fleck" bezeichnet wird.

Die von der Hornhaut 283 und der Lederhaut 28 gebildeten Kammer 15 ist durch eine verformbare Linse 282 und einen muskelösen Strahlenkörper 23 (auch Ziliarkörper genannt), der die Linse 282 trägt; unterteilt. Der zwischen der Linse 282 und der Netzhaut 281 liegende Teil der Kammer, der ca. 2/3 des Augapfels ausmacht, bildet einen sogenannten Glaskörper 21, ein gallertiges Gebilde, 20 das zu über 98% aus Wasser besteht und die Netzhaut 281 stützt und schützt. Der als Vorderkammer 22 bezeichnete, zwischen der Hornhaut 283 und der Linse 282 liegende Teil der Kammer enthält eine Flüssigkeit, die die Hornhaut 283 ernährt. In ihrer Urform bricht die Linse 282 25 das auf das Auge fallende typischerweise derart, daß das ferne Gesichtsfeld auf die Netzhaut 281 scharf abgebildet wird. Durch Anspannung/Entspannung der Muskeln des Ziliarkörper 23 kann die Form und somit auch die Brechungscharakteristik der Linse 282 über einen breiten Bereich 30 um beispielsweise eine scharfe Abbildung verändert werden, nahliegender Gegenstände des Gesichtsfelds auf die Netzhaut 281 zu ermöglichen. Dieser Vorgang läuft in den meisten Fällen für den betroffenen Menschen unbewußt ab.

15

20

Unmittelbar vor der Linse 282 befindet sich in der Vorderkammer 22 eine aus gefärbtem Gewebe bestehende Blende 285 veränderbaren Durchmessers, die den Lichteinfall auf die lichtempfindlichen Teile des Auges 280 reguliert und dem Auge 280 seine charakteristische Färbung verleiht. Diese Blende 285 wird deshalb als Regenbogenhaut 285 (lat. Iris) bezeichnet. Aufgrund der geringen Lichtrückstrahlung der Linse 282, des Glaskörpers 21 und der Netzhaut 281 erscheint der zentrale Bereich der Iris 285 schwarz und wird Pupille 284 bezeichnet. Auch die Regulierung der Pupillengröße läuft für den Menschen unbewußt ab.

Das Auge 280 ist über sechs teils parallel, teils schräg zueinander verlaufende Muskeln 24 an die Schädel verbunden, die ein Schwenken des Auges 280 und folglich eine Änderung der Blickrichtung ermöglichen. Das binokular, ohne Bewegung der Augen 280 erfaßte Gesichtsfeld umfaßt horizontal ca. 170° und vertikal ca. 110°. Werden die Augen 280 bewegt, kann ein binokulares Blickfeld von horizontal ca. 290° und vertikal ca. 190° erfaßt werden. Der von der Fovea centralis 286 erfaßten Bereich des schärften Sehens umfaßt lediglich ca. 1°. Eine fiktive Achse durch die Mitte dieses Bereichs wird als Sehachse bezeichnet und entspricht der Blickrichtung. Auch eine Rotation des Auges um die Sehachse wird durch die Muskeln 24 ermöglicht.

Die sechs Muskeln 24 sind für sämtliche Augenbewegungen zuständig. 25 einer Betrachtung eines Fixpunkts finden sogenannte Mikrotremors des Auges 280 statt, bei denen das Augen 280 leicht um eine vorübergehende Erschöpfung der chemischen Reaktionfähigkeit der betroffenen Photorezeptorzellen 30 gleichbleibenden Reiz zu vermeiden. eines Während Blickrichtungswechsels oder einer Kopfbewegung finden sogenannte Sakkadenbewegungen statt, mit deren Hilfe die Fovea centralis 286 auf ihr neues Fixationsziel gerichtet bzw. auf ihr bisheriges Fixationsziel gehalten wird. Bei dieser sehr komplex ablaufenden Bewegung wird das Auge 280 unwillentlich mit einer kleinen 35

15

20

Amplitude von bis zu mehreren zehn Grad und einer extrem schnellen Winkelgeschwindigkeit von bis zu mehreren hundert Grad pro Sekunde hin und her bewegt. Bei der Verfolgung eines sich bewegenden Objekts erreicht das Auge 280 Winkelgeschwindigkeiten von lediglich eins bis zwei hundert Grad pro Sekunden.

Zum Schutz des Augapfels 280 hat der Mensch bewegliche Hautfalten, nämlich ein Oberlid 27a und ein Unterlid 27b, die ein Schließen der Augenhöhle 20 gegen äußere Einflüsse ermöglicht. Die Lider 27a und 27b schließen sich reflektorisch bei einfallenden Fremdkörpern und starker Blendung. Darüber hinaus sorgen die Lider 27a und 27b durch regelmäßigen, meist unwillkürlichen Lidschlag für einen gleichmäßig auf der Hornhaut 283 verteilten Tränenfilm, der die äußere Oberfläche der Hornhaut 283 vor einem Austrocknen wahrt und wäscht. Die Lider 27a und 27b weisen auch Wimpern 27c auf, die das Auge 280 ebenfalls vor Staub schützen. Eine Bindehaut 26 kleidet den Raum zwischen den Lidern 27a bzw. 27b, der Aughöhle 20 und dem Augapfel 280 aus. Die Bindehaut 26 geht einerseits in die Lidinnenseite über, andererseits in die Hornhaut 283, und stellt einen zweiten Schutzwall gegen das Eindringen von Keimen und Fremdkörpern dar.

#### Figur 3

Figur 3 zeigt eine bekannte Ausführungsform des wie oben beschriebenen, interaktiven Brillensystems bzw. Brille 320, bei der eine Signalerfassungsvorrichtung in Form einer scannenden Augenabtastvorrichtung 350D vorgesehen ist. Dabei stellt die linke Bildhälfte eine Draufsicht auf den Kopf eines Benutzers 302 samt Brille 320 mit rechtem Bügelteil 321R dar, während die rechte Bildhälfte ein durch den linken Bügelteil 321L verlaufenden Querschnitt der Brille 320 wiedergibt. Außer der zur interaktiven Brille 320 gehörenden Vorrichtungen sind in der Figur 3 keine weiteren Komponenten der erfindungsgemäßen Informationssystem 100 abgebildet.

Gemäß der abgebildeten Ausführungsform werden auf das Auge 380 fallende Lichtstrahlen 333a und 333b, die beispielsweise aus dem Gesichtsfeld stammen, von der Linse 382 auf der Netzhaut 381 als Bild scharf abgebildet und von ihr als 5 zusammenhängendes Netzhautreflexbild zurückreflektiert. Ein so zurückreflektierter Lichtstrahl 331 passiert in ungekehrte Richtung erneut die Linse 382, wird über zwei, zum Spiegelsystem der Brille 320 gehörende konkave Spiegel 322 und 323 fokussiert und wie abgebildet auf eine 10 Augenabtastvorrichtung 350D gelenkt. Die Augenabtastvorrichtung 350D umfaßt. eine Signalerfassungsvorrichtung 351 in Form eines Fotodetektors 351, der den von der Netzhaut 381 zurückreflektierten Lichtstrahl 331 erfaßt, sowie zwei bewegliche Flachspiegel 352H und 352V, die eine horizontale bzw. vertikale Ablenkung des Lichtstrahls 331 auf den 15 Fotodetektor 351 bewirken. Gemäß der Ausführung der Figur 3 umfaßt die Brille 320 zusätzlich eine Lichtfalle 324, die einen Lichteinfall aus unerwünschten Einfallsrichtungen verhindert. Zur Vereinfachung des Spiegelsystem der Brille 320 kann der Spiegel 323 durch eine verspiegelte Innenoberflache des Brillenglases verwirklicht werden. Allerdings muß die Oberfläche eine bestimmte Form aufweisen, um eine Erfassung des gesamten Netzhautreflexbildes auch bei einer eventuellen verdrehten Stellung des Auges 380 zu ermöglichen. Dies schränkt wiederum die Gestaltungsmöglichkeiten der Brille 320 ein. 25

Durch die Kombination eines punktförmigen Detektors 351 mit entsprechender Steuerung der Flachspiegel 352H und 352V erfolgt eine serielle punktuelle Abtastung des Netzhautreflexbildes als Bildpunktfolge. Bevorzugt wird die Netzhaut 381, wie in der DE 196 31 414 A1 und der DE 197 28 890 beschrieben, mit einem kreis-, spiral- oder ellipsenförmigen Scanmuster abgetastet. Dies hat den Vorteil, daß die Flachspiegel 352 ohne rückartigen Bewegungen angetrieben werden können, und daß eine höhere Bildpunktdichte

(Anzahl der Bildpunkte pro Flächeneinheit der Netzhaut) im Bereich der Fovea centralis 286 sich erfassen läßt.

Dem Aufnahmevorgang vorgeschaltet wird - soweit noch nicht in einem vorhergenden Projektionsvorgang geschehen - vorzugsweise ein geeigneter Synchronisationsvorgang zur Bestimmung der momentanen Sehachse, damit der Scanvorgang augenzentriert durchgeführt werden kann.

## 10 Figur 4

5

15

20

Figur 4 zeigt eine bekannte Ausführungsform der wie oben beschriebenen, interaktiven Brille 420, bei der eine Ausgabevorrichtung in Form einer scannenden Projektionsvorrichtung 450P vorgesehen ist. Dabei stellt die linke Bildhälfte eine Draufsicht auf den Kopf eines Benutzers 402 samt Brille 420 mit rechtem Bügelteil 421R dar, während die rechte Bildhälfte ein durch den linken Bügelteil 421L verlaufenden Querschnitt der Brille 420 wiedergibt. Außer der zur interaktiven Brille 420 gehörenden Vorrichtungen sind in der Figur 4 keine weiteren der erfindungsgemäßen Komponenten Informationssystem 100 abgebildet.

Gemäß der abgebildeten Ausführungsform umfaßt die scannende Projektionsvorrichtung 450P eine einen Projektionslichtstrahl 432 25 emittierende Lichtquelle 453, beispielsweise eine Laserdiode oder eine über ein Linsensystem fokusierte LED, sowie zwei bewegliche Flachspiegel 454H und 454V. Der Projektionslichtstrahl 432 wird über die beweglichen Flachspiegel 454H und 454V Spiegelsystem der Brille 420 gelenkt, das zwei konkave Spiegel 422 30 und 423 umfaßt, die den Projektionslichtstrahl 432 auf die Linse 482 eines Auges 480 und schließlich auf die Netzhaut 481 wirft. Zur Vereinfachung des Spiegelsystem der Brille 420 kann der Spiegel 423 eine verspiegelte Innenoberflache durch Brillenglases verwirklicht werden. Allerdings muß die Oberfläche 35

eine bestimmte Form aufweisen, um eine Projektion auf alle Bereiche der Netzhaut 481 auch bei einer eventuellen verdrehten Stellung des Auges 480 zu ermöglichen. Dies schränkt wiederum die Gestaltungsmöglichkeiten der Brille 420 ein. Zur Vermeidung störender Lichteinfälle läßt sich die Brille 420 mit einer Lichtfalle 424 ausstatten, die Lichteinfälle aus unerwünschten Einfallsrichtungen verhindert.

Durch die Kombination einer punktförmigen Lichtquelle 453 mit entsprechender Steuerung der Flachspiegel 452H und 452V, die 10 jeweils horizontale eine bzw. vertikale Ablenkung des Projektionslichtstrahls 432 bewirken, erfolgt eine serielle punktuelle Projektion eines Bildes. Bevorzugt erfolgt die Projektion, wie in der DE 196 31 414 A1 und der DE 197 28 890 beschrieben, mit einem kreis-, spiral- oder ellipsenförmigen 15 Scanmuster. Dies hat den Vorteil, daß die Flachspiegel 452 ohne rückartigen Bewegungen angetrieben werden können, und daß sich eine höhere Bildpunktdichte im Bereich der Fovea centralis 286 auf die Netzhaut 481 projizieren läßt.

20

#### Projektion

Der Grad der Wahrnehmung eines in das Auge 480 projizierten Bildes kann im Verhältnis zum natürlich wahrgenommenen Bild durch die 25 Helligkeit der projizierten Bildpunkte gesteuert werden. Allerdings ist die retinale Wahrnehmung ein zutiefst komplexer Vorgang, bei der auch psychologische Effekte eine sehr starke Rolle spielen. Hier wird auf die einschlägige Fachliteratur verwiesen.

30

35

Vereinfacht läßt sich jedoch sagen, daß die Retina 481 sich auf die Helligkeit des insgesamt auf sie fallenden Lichtes einstellt. Es ist zum Beispiel bekannt, daß das geringe Leuchten der Uhr eines Radioweckers, das bei Tageslicht gar nicht wahrgenommen wird, bei dunkler Nacht ein ganzes Zimmer zu erleuchten scheinen

10

15

25

30

35

kann. Andersherum ist das starke Scheinwerferlicht entgegenkommender Fahrzeuge bei Tageslicht kaum wahrnehmbar. Es wird also die Helligkeit eines einzelnen Bildpunktes in Relation zu den ansonsten wahrgenommenen Bildpunkte empfunden. Auch lokal betrachtet, funktioniert die Retina 481 ähnlich. Übersteigt die Helligkeit eines auf einen Gebiet der Retina 481 projizierten Bildpunkt die Helligkeit des ansonsten auf dieses Gebiet fallenden Lichtes um ca. 10%, so wird effektiv lediglich der projizierte Bildpunkt anstelle des sonstigen Lichts von diesem Gebiet der Retina 481 wahrgenommen. Aufgrund psychologischer Effekte kann der genaue Wert statt bei 10% auch zwischen 5%-10%, 10%-15% oder gar 15%-20% liegen.

Dem Projektionsvorgang vorgeschaltet wird - soweit noch nicht in einem vorhergenden Scanvorgang geschehen - bei Bedarf vorzugsweise ein geeigneter Synchronisationsvorgang zur Bestimmung der momentanen Sehachse, damit der Projektionsvorgang augenzentriert durchgeführt werden kann.

#### 20 Figur 5

Figur 5A zeigt eine interaktive Brille 520 gemäß einem ersten bevorzugten Ausführungsbeispiel, bei der eine Signalerfassungs- und Projektionsvorrichtung 550 im Bereich des Nasenstegs 522 an die Brille 520 angebracht ist. Gemäß der Detailzeichung 5B umfaßt die kombinierte Signalerfassungs- und Projektionsvorrichtung 550 sowohl eine Projektionsvorrichtung 553 als auch eine Signalerfassungsvorrichtung, die zusammen in einem schützenden Gehäuse 558 untergebracht sind. lichtdurchlässiges Fenster 559 in einer Außenwand des Gehäuses 558 gelingen Lichtstrahlen 530 in das Innere des Gehäuses 558 und umgekehrt. Das Abschließen des Gehäuses 558 durch das Fenster 559 verhindert jedoch, daß Staub, Schweiß und andere Fremdstöffe den Betrieb der kombinierte Signalerfassungsund Projektionsvorrichtung 550 stört.

10

15

20

Analog den beschriebenen Systemen gemäß Fig. 3 und 4 werden Lichtstrahlen 530, 530a, 530b erfaßt bzw. projiziert. interaktive Brille 520 läßt sich jedoch in ihrem Aufbau dadurch vereinfachen, daß die im Stand der Technik getrennten Spiegel 352 bzw. 452 zur vertikalen bzw. horizontalen Ablenkung des jeweiligen Lichtstrahls 331 bzw. 432 durch einen Taumelspiegel 552 bzw. 554 ersetzt wird. Zwecks einer kompakten Bauweise teildurchlässiger Spiegel 556 dazu dienen, separate Strahlengänge innerhalb des Gehäuses 558 für das durch das Fenster 559 fallende bzw. projizierte Licht 530 zu ermöglichen. Bevorzugt wird die Innenseite des Brillenglases mit einer für aus dieser Richtung Strahlen stark reflektierenden Oberfläche einfallenden versehen, die als Spiegel für den Strahlengang zwischen dem Auge 580 und dem kombinierten Signalerfassungsund Projektionsvorrichtung 550 verwendet. Dies trägt zu einer Reduzierung der notwendigen Komponenten bei und führt in der abgebildeten Ausführungsform zu einem vereinfachten, lichtstarken Strahlengang 530, bei dem der Lichtstrahl 530 zwischen Auge 580 und Projektions- bzw. Signalerfassungsvorrichtung 553 bzw. 551 lediglich dreimal reflektiert wird. Wie oben beschrieben, ergibt sich jedoch hieraus eine Einschränkung der Gestaltungsmöglichkeiten der Brille 520.

Die für eine Taumelbewegung des Spiegels 552, 554 notwendige 25 Bewegungsfreiheit läßt sich beispielsweise durch eine kardanische oder federnde Aufhängung des Spiegels 552, 554 erreichen. Mögliche Ausführungsarten eines derartigen Taumelspiegels sind dem Fachmann beispielsweise aus dem Gebiet der Mikrotechnik bekannt. Weitere 30 Lösungen des vorliegenden Ablenkungsproblems, bei der jeweilige Lichtstrahl 530 auf der Basis elektrochromer. holographischer, elektroholographischer · oder sonstiger Lichtbrechungs- oder Lichtreflektionsmechanismen gelenkt wird, sind ohne weiteres denkbar und ebenfalls anwendbar.

Obwohl die interaktive Brille 520 in einer minimalistischen Ausführungsform gezeigt ist, bei der eine kombinierte Signalerfassungs- und Projektionsvorrichtung 550 lediglich für das linke Auge 580 vorgesehen ist, ist es selbstverständlich, daß eine spiegelverkehrt gebaute, zweite kombinierte Signalerfassungs- und Projektionsvorrichtung 550 im Bereich der rechten Hälfte des Nasenstegs 522 für das nicht dargestellte rechte Auge bei Bedarf vorgesehen werden kann.

#### 10 Figur 6

15

20

25

30

35

Figur 6A zeigt in Form einer Abänderung der in den Figuren 5A und 5B dargestellten Brille 520 eine interaktive Brille 620 gemäß einem zweiten bevorzugten Ausführungsbeispiel, bei der die linke kombinierte Signalerfassungs- und Projektionsvorrichtungen 650L in dem zwischen dem linken Brillenglas 624L und dem linken Bügelteil 621L liegenden Bereich und die rechte kombinierte Signalerfassungs- und Projektionsvorrichtungen 650R in zwischen dem rechten Brillenglas 624R und dem linken Bügelteil 621R liegenden Bereich angeordnet sind.

Eine solche Anordnung der kombinierte Signalerfassungs-Projektionsvorrichtungen 650L, 650R gegenüber den jeweiligen Brillengläsern 624L, 624R und den jeweiligen Augen 680 ist normalerweise mit der Notwendigkeit verbunden, entweder mehrere Spiegel entlang des Strahlengangs 630 vorzusehen (vgl. Spiegel 322 und 323 in Figur 3) oder dem jeweiligen Brillenglas 624L, 624R eine besondere Form zu verleihen, um eine Erfassung aller Bereiche der Netzhaut 681 zu gewährleisten. Dies schränkt jedoch die Gestaltungsmöglichkeiten der Brille 620 erheblich ein. Um dieses Problem zu umgehen, sieht die interaktive Brille 620 gemäß Figur 6 Brillengläser 624L, 624R vor, deren Innenseite mit jeweiligen holographischen Beschichtung 623L, 623R versehen sind. Solche holographischen Beschichtung 623 sind in der Lage, eine beliebige Reflektionstopologie zu emulieren. Zum Beispiel kann

eine holographisch beschichtete, flache Oberfläche wie eine sphärisch gekrümmte Oberfläche wirken. Ebenso kann eine holographisch beschichtete, sphärisch gekrümmte Oberfläche wie eine flache Oberfläche wirken. Die Änderung der effektiven Reflektionstopologie hängt lediglich vom holographischen Inhalt der Beschichtung ab. Gemäß der Abbildung sind die holographischen Beschichtungen 623L und 623R spiegelsymmetrisch zueinander ausgebildet und angeordnet.

Figur 6B enthält eine Detailzeichnung der kombinierte Signalerfassungs- und Projektionsvorrichtungen 650L. Analog der in der Figur 5B dargestellten kombinierten Signalerfassungs- und Projektionsvorrichtung 550 umfaßt sie ein Gehäuse 658, eine Projektionsvorrichtung 653 und eine Signalerfassungsvorrichtung 651, jeweilige Taumelspiegel 652 und 654, einen teildurchlässigen Spiegel 656 und ein Gehäusefenster 659.

# Figur 7

Ähnlich den Figuren 6A und 6B zeigt Figur 7A in Form einer 20 Abänderung der in den Figuren 5A und 5B dargestellten Brille 520 eine interaktive Brille 720 gemäß einem dritten bevorzugten Ausführungsbeispiel, bei der die linke kombinierte Signalerfassungs- und Projektionsvorrichtungen 750L in zwischen dem linken Brillenglas 724L und dem linken Bügelteil 721L 25 liegenden Bereich und die rechte kombinierte Signalerfassungs- und Projektionsvorrichtungen 750R in dem zwischen Brillenglas 724R und dem linken Bügelteil 721R liegenden Bereich angeordnet sind.

30

35

Figur 7B enthält eine Detailzeichnung der kombinierte Signalerfassungs- und Projektionsvorrichtungen 750L. Analog der in der Figur 5B dargestellten kombinierten Signalerfassungs- und Projektionsvorrichtung 550 umfaßt sie ein Gehäuse 758, eine Projektionsvorrichtung 753 und eine Signalerfassungsvorrichtung

10

15

20

751, jeweilige Taumelspiegel 752 und 754, einen teildurchlässigen Spiegel 756 und ein Gehäusefenster 759.

Das oben angesprochene Problem des Strahlengangs 730 wird bei diesem Ausführungsbeispiel durch besonders ausgestaltete Pads 725L und 725R platzsparend gelöst. Typischerweise werden Brillen 720 entweder durch den Nasensteg 722 oder durch sogenannte Pads 725 auf der Nasenwurzel gestützt. In ihrem handelsüblichen Gestalt sind Pads relativ flach, Teicht gekrümmt und oval. Zudem sind sie entweder schwenkbar oder taumelnd an einem vom Nasensteg 722 ausgehenden Vorsprung gelagert, um ein angenehmes Anliegen der Pads an die Seitenflächen der Nasenwurzel zu gewährleisten. Im abgebildeten Ausführungsbeispiel sind die Pads 725 als formfeste, längliche Einheiten ausgebildet, die im Bereich des Nasenstegs 722 von der Brille 720 in Richtung Auge 780 herausragen. Auf ihrer jeweiligen, der Nase zugewandten länglichen Seite bilden die Pads 725 die sich auf die Nasenwurzel stützende Aufliegefläche. In ihrem der Brille 720 gegenüber liegenden Endbereich weisen die Pads 725 auf der jeweilig dem Auge zugewandten Seite eine Tragfläche auf, die mit einem Spiegel oder einer spiegelnden Beschichtung, beispielsweise einer Metallbeschichtung oder einer holographischen Beschichtung, versehen ist.

Obwohl das Gestell der Brille 720, einschließlich die Pads 725, eine im Prinzip feste Form aufweist, treten sowohl quasi-25 statische. z.B. durch Materialermüdung und/oder Temperaturänderungen, als auch dynamische Verformungen Gestells auf. Insbesondere beim Aufsetzen der Brille 720 und bei erschütterungsreichen Aktivitäten ergeben sich Veränderungen der relativen Anordnung der jeweiligen Brillenkomponenten zueinander. 30 Auch ist die relative Anordnung der Brille 720 gegenüber dem Auge 780 keine Konstante. Demgemäß muß sowohl das optische System der Brille 720, d.h. diejenigen Systemkomponenten, die zur optischen Signalerfassung bzw. zur optischen Projektion beitragen, als auch ein eventuell daran angeschlossenes Verarbeitungssystem derart 35

konzipiert und ausgelegt sein, daß solche Anordnungsveränderungen berücksichtigt und/oder kompensiert werden können bzw. keine außerordentlichen Betriebsstörungen verursachen. Dies gilt für alle Arten von interaktiven Brillensystemen.

5

10

Erfindungsgemäß läßt sich das zuvor angesprochene Problem insbesondere durch eine geeignete Signalverarbeitung der erfaßten und der zu erzeugenden Signale bewältigen. Es können auch fest am Brillengestell in der Nahe des üblichen Strahlengangs 730 angebrachte optische Markierung von der Signalerfassungsvorrichtung 751 zwecks Eichung ihres optischen Systems regelmäßig oder bei Bedarf mit erfaßt werden.

#### Figur 8

15

20

Figur 8 zeigt in Form einer Abänderung der in den Figuren 5A und 5B dargestellten Brille 520 eine interaktive Brille gemäß einem vierten bevorzugten Ausführungsbeispiel, bei der die Signalerfassungsvorrichtung 851 der kombinierten Signalerfassungsund Projektionsvorrichtungen 850 in der Lage ist, das Hornhautreflexbild mindestens partiell zu erfassen.

25

Die Hornhaut ist normalerweise rotationssymmetrisch zur Sehachse ausgebildet. Strahlen, die senkrecht auf einen zentralen Bereich der Hornhaut fallen, sind somit konfokal zum optischen System des Auges 880 und bilden die Basis des von der Netzheut 881 tatsächlich wahrgenommenen Bildes.Zudem besteht die Hornhaut 883 zum größten Teil aus Wasser und weist aus diesem Grunde einen sehr hohen Reflektionsgrad bei einer Wellenlänge von ca. 1,1  $\mu$ m auf. Da diese Wellenlänge im infraroten Spektralbereich liegt, eignet sich eine Erfassung des Hornhautreflexbildes vorwiegend für Infrarotanwendungen, beispielsweise bei Nachtsichtgeräten. Allerdings finden Reflektionen nicht nur an der äußeren, konkaven Hornhautoberfläche, sondern auch im Inneren der Hornhaut statt. Zudem bewirkt die Hornhaut 883 aufgrund ihrer Struktur keine

35

30

spiegelartige, sondern eine diffuse Reflektion, die mit zunehmender Tiefe des Reflektionsereignisses im Inneren der Hornhaut diffuser wird.

Um ein sinnvolles Hornhautreflexbild zu erhalten, werden im 5 abgebildeten Ausführungsbeispiel effektiv nur diejenigen Strahlen, die senkrecht auf einen zentralen Bereich der Hornhaut fallen, erfaßt. Dies wird durch mehrere Maßnahmen erreicht. Erstens weist das vor dem Auge gelagerte Brillenglas 824, dessen dem Auge 880 zugewandte Seite mit einer für aus dieser Richtung einfallenden 10 Strahlen stark reflektierenden Oberfläche 823 versehen ist, eine besonders gestaltete Form auf, die das senkrecht von der Hornhaut reflektierte Licht derart bündelt, daß es als beinah parallel verlaufende Lichtstrahlen 834 auf die Signalerfassungsvorrichtung 851 fällt, während nicht senkrecht von der Hornhaut reflektiertes 15 Licht in eine andere Richtung gelenkt wird. Alternative kann das Brillenglas 824 andersartig gestaltet sein, jedoch eine teilsdurchlässige holographisch reflektierende Schicht 823 aufweisen, die ebenfalls eine derartige Bündelung des senkrecht von der Hornhaut reflektierten Lichtes bewirkt, daß es als beinah 20 parallel verlaufende Lichtstrahlen 834 · auf die Signalerfassungsvorrichtung 851 fällt, während nicht senkrecht von der Hornhaut reflektiertes Licht in eine andere Richtung gelenkt wird. Zweitens wird eine Blende 857 kurz vor Signalerfassungsvorrichtung 851 vorgesehen, die eine Erfassung 25 derjenigen Lichtstrahlen verhindert. deren Einfallswinkel außerhalb einem engen Einfallswinkelbereich der wie oben beschriebenen, beinah parallel verlaufenden Lichtstrahlen 834 liegt.

30

35

#### Figur 9

Figur 9 zeigt in Form einer Abänderung der in den Figuren 5A und 5B dargestellten Brille 520 eine interaktive Brille gemäß einem fünften bevorzugten Ausführungsbeispiel, bei der ein sphärisches oder sphärisch wirkendes teildurchlässiges spiegelndes Zusatzelement 929 zwischen dem Brillenglas 924 und dem Auge 980 angeordnet ist. Bevorzugt ist das Zusatzelement 929 konfokal zum optischen System des Auges 980 angeordnet.

5

10

15

20

Der Reflektionsgrad eines solchen Zusatzelements 929 läßt sich an die Bedürfnisse des Informationssystems anpassen. Es kann zwischen einem hohen Reflektionsgrad, was eine sehr gute Erfassung auf das Auge 980 gerichteter Lichtstrahlen 933a-933c ermöglicht, und einem niedrigen Reflektionsgrad, was eine Beeinträchtigung der durch das erfolgenden Wahrnehmung vermeidet, gewählt werden. Auge 980 Bevorzugt weist das Zusatzelement 929 einen niedrigen (beispielsweise unter 10%), über seine gesamte Reflektionsfläche homogen Reflektionsgrad auf. Dahingegen weisen reflektierende Organe des Auges 980, zum Beispiel die Kornea 983 oder die Retina 981, zum Teil sehr starke örtliche Reflektionsabhängigkeiten. Ähnliche Aussagen betreffen die spektralen Reflektionsabhängigkeiten des Zusatzelements bzw. reflektierenden Organe des Auges 980. Während das Zusatzelement 929 bevorzugt derart ausgebildet werden kann, daß es einen homogenen Reflektionsgrad über alle relevanten Spektralbereiche aufweist, weisen die verschiedene Organe des Auges 980 sehr unterschiedliche Absorbtionsgrade auf, die in vielen Fällen auch starke örtliche Schwankungen unterworfen sind.

25

30

Außer der Teilreflektion soll das Zusatzelement 929 möglichst keine Auswirkung auf das darauf fallende Licht ausüben. Aus diesem Grund wird das Zusatzelement 929 bevorzugt aus einem homogenen lichtdurchlässigen und ungefärbten Material und mit einer in Richtung der auf den Augenmittelpunkt gerichteten Lichtstrahlen konstanten Dicke gefertigt. Durch das Aufbringen einer Antireflexbeschichtung auf der dem Auge 980 zugewandten Seite des Zusatzelements 929 läßt sich eine verbesserte Lichtdurchlässigkeit erzielen.

Die reflektierende Kontur eines solchen Zusatzelements 929 ist wohl definiert, und kann dem Informationssystem demgemäß als bekannte Information zur Verfügung gestellt werden, während die Kontur der relevanten reflektierenden Organe des Auges 980 erst ermittelt werden muß. Letzteres kann mit zum Teil nicht unerheblichem Aufwand verbunden sein. Die Erfassung auf das Auge 980 gerichteter Lichtstrahlen 933a-933c über ein solches Zusatzelement 929 kann somit hochwertige Bilder des Blickfeldes liefern.

10

Im abgebildeten Ausführungsbeispiel werden effektiv nur diejenigen Strahlen, die senkrecht auf das Zusatzelement 929 fallen, erfaßt. Dies wird durch die folgenden Maßnahmen erreicht:

Aufgrund der teilsreflektierenden Oberfläche des Zusatzelements 15 929 wird ein entsprechender Teil derjenigen Strahlen 933a-933c, die senkrecht auf die Oberfläche des Zusatzelements 929 fallen, senkrecht zurückreflektiert, während andere Strahlen von der Oberfläche des Zusatzelements 929 gemäß dem Reflektionsgesetz "Einfallswinkel gleich Reflektionswinkel" entsprechend schräg 20 zurückreflektiert werden. Die senkrecht zur Oberfläche des Zusatzelements 929 zurückreflektierten Lichtstrahlen legen den gleichen Weg zurück, den sie gekommen sind, und treffen somit auf das dem Auge vorgelagerte Brillenglas 924. Die dem Auge 980 zugewandte Seite des Brillenglases 924 ist mit einer für aus 25 Richtung einfallenden Strahlen stark reflektierenden Oberfläche 923 versehen, und weist eine besonders gestaltete Form oder eine besonderes ausgebildete Beschichtung auf, die die senkrecht vom Zusatzelement reflektierten Lichtstrahlen derart bündelt, daß sie als beinah parallel verlaufende Lichtstrahlen 934 30 auf die Signalerfassungsvorrichtung 951 fallen, während nicht senkrecht vom Zusatzelement reflektierte Lichtstrahlen in eine andere Richtung gelenkt werden. Desweiteren wird eine Blende 957 kurz vor der Signalerfassungsvorrichtung 951 vorgesehen, die eine 35 Erfassung derjenigen Lichtstrahlen verhindert, deren

25

30

35

Einfallswinkel außerhalb einem engen Einfallswinkelbereich der wie oben beschriebenen, beinah parallel verlaufenden Lichtstrahlen 934 liegt.

5 Soll das über das Zusatzelement 929 erfaßte Bild des Gesichtsfeldes die Grundlage für eine mit dem tatsächlich wahrgenommenen Gesichtsfeld korrelierte Projektionen, so muß die Korrelation zwischen dem erfaßten Licht und dem wahrgenommenen Gesichtsfeld ermittelt werden. Gemäß dem dargestellten fünften Ausführungsbeispiel wird diese Korrelation durch eine bevorzugte 10 konfokale Anordnung des Zusatzelements 929 zum optischen System des Auges 980 erreicht. Es wird deshalb bevorzugt, daß das Zusatzelement 929 über eine justierbare Aufhängung derart an der Brille befestigt ist, daß sich die Position des Zusatzelements 929 sowohl in vertikaler als auch in zwei horizontalen Richtungen 15 nachjustieren läßt.

Konfokalität ist im grundegenommen dann gegeben, wenn das Zusatzelement 929, optisch gesehen, rotationssymmetrisch zur Sehachse und mit einem Abstand zur Linse 982 angeordnet ist, daß der optische Mittelpunkt des optischen Systems des Auges mit dem Mittelpunkt der durch das sphärische oder sphärisch wirkende Zusatzelement definierten Kugel übereinstimmt. Die Sehachse läßt sich zu diesem Zwecke ausreichend über die Ausrichtung der Pupille 984 bestimmen, die durch ihre scharfe Konturen leicht erkennbar ist, und deren Ausrichtung aufgrund ihrer runden Form licht bestimmbar ist. Zudem ist aufgrund der spärischen oder sphärisch wirkenden Form des Zusatzelements 929 keine Schwenkung des Zusatzelements 929 um die möglichen Schwenkachsen des Auges 980 notwendig, um Konfokalität zu gewährleisten. Denn auch bei einer Verdrehung des Auges bleibt durch eine entsprechende vertikale und/oder horizontale Verschiebung des Zusatzelements 929 zumindest ein wesentlicher Teil des Zusatzelements 929, optisch gesehen, rotationssymmetrisch zur Sehachse. Was den Abstand zur Linse 982 betrifft, gibt es verschiedene Möglichkeiten, den notwendigen

Abstand zu bestimmen. Zum Beispiel kann eine optische oder akustische Vermessung der Hörnhaut 983 vorgenommen werden, deren Krümmung einen sehr guten Richtwert für die richtige Anordnung des Zusatzelements 929 angibt. Es können auch Netzhaut- oder Hornhautreflexbilder zumindest partiell erfaßt werden, und anhand eines Vergleichs der Reflexbilder mit dem über das Zusatzelement 929 erfaßten Licht der richtige Abstand bestimmt werden.

Aufgrund der sphärischen oder sphärisch wirkenden Realisierung, beispielsweise durch eine holographische Beschichtung, der teilsreflektierenden Oberfläche des Zusatzelements 929 sowie durch diese konfokale Anordnung des Zusatzelements zum Auge 980 sind lediglich diejenigen Strahlen 933a-933c, die senkrecht auf die Oberfläche des Zusatzelements 929 fallen, konfokal zum optischen System des Auges 980 und stimmen somit mit den auf die Netzhaut fallenden Strahlen überein.

#### Figur 10

30

Figur 10 zeigt eine Draufsicht (Fig. 10A) und eine Frontansicht 20 10B) (Fig. einer Brille 1020 gemäß einem sechsten Ausführungsbeispiel, bei dem zwei Sensorvorrichtung 1061R und 1061L, beispielsweise zwei Festkörper-Kameras, zum Beispiel CCDoder TTL-Kameras, zwecks weiterer Signalerfassung, insbesondere aus dem sichtbaren Blickfeld, vorgesehen sind. Die Figur 10B zeigt 25 auch das linke und rechte Auge 1080L bzw. 1080R eines möglichen Trägers 1002 der Brille 1020. Der Übersichtlichkeit halber sind jedoch keine anderen Merkmale des Benutzers 1002 in der Figur 10B dargestellt.

Um das Auftreten einer Parallaxe zwischen den von der jeweiligen Kamera 1061R, 1061L und dem ihr zugeordneten Auge erfaßten bzw. wahrgenommenen Bildern zu vermeiden, sollen die Kameras 1061 den Augen bezüglich ihrer "Sehachsen" möglichst achsengleich

Augen bezüglich ihrer "Sehachsen" möglichst achsengleich 35 angeordnet sein. In Anbetracht der Systemgröße solcher Festkörper-

Kameras 1061 hat es sich beim heutigen Stand der Technik als sinnvoll erwiesen, die Kameras 1061 wie abgebildet im vorderen Bereich der jeweiligen Bügelteile 1021L, 1021R anzuordnen. Auch eine Montage im Bereich des Nasenstegs 1022, z.B. in den Pads 1025, ist sinnvoll. Nach einer weiteren Miniaturisierung werden die Festkörper-Kameras 1061 im Brillengestell über den jeweiligen Brillengläser 1024L, 1024R angeordnet werden können, um eine weitere Achsengleichheit zu erreichen. Es ist absehbar, daß oder andersartige Lichterfassungssysteme in der Festkörper-Zukunft in das Brillenglas 1024, das selbstverständlich auch ein Kunststoff oder sonstiger lichtdurchlässiger Stoff sein kann, werden eingebaut werden können. Eine solche Anordnung der Kameras würde eine mit dem 1061 jeweiligen Auge 1080L. achsengleiche, beinah konfokale Signalerfassung ermöglichen.

15

20

10

Bei einer achsenungleichen Anordnung der Sensorvorrichtungen 1061 zu den jeweiligen Augen 1080L, 1080R sollen die aus den Sensorvorrichtungen 1061 gewonnenen Informationen gegebenenfalls in Korrelation mit den Augen 1080 gebracht werden. Eine solche Korrelation ist insbesondere dann wichtig, wenn die Sensorvorrichtungen 1061 durch Kameras 1061 realiziert werden, und ein Überlagerungsbild anhand aus den Kameras 1061 gewonnener Bildinformationen in das jeweilige Auge 1080L, 1080R projiziert werden sollen.

25

30

35

Wird das von den Kameras 1061 aufgenommene Bild einfach auf das jeweilige Auge 1080L, 1080R projiziert, so kommt es zur sogenannten Parallaxe, bei der das "Gesichtsfeld" der jeweiligen Kamera 1061L, 1061R nicht mit dem natürlich wahrgenommenen Gesichtsfeld übereinstimmt. Insbesondere bei einer von der Ruhestellung abweichenden Verdrehung der Augen 1080 oder bei im näheren Gesichtsfeld liegenden Gegenständen würde die Parallaxe bei einer Überlagerung zu einer abnormalen Wahrnehmung führen. Denn in solchen Fällen läge die Sehachse des Auges 1080 schräg zur "Sehachse" der jeweiligen Kamera 1061L, 1061R.

15

20

25

30

35

Bei der Korrelation in diesem Sinne wird nur der Teil des von den Kameras 1061 erfaßten Bildes in das jeweilige Auge 1080L, 1080R projiziert, der in entsprechender "Korrelation" zur Sehachse des jeweiligen Auges 1080L, 1080R liegt. Im einfachsten Fall wird Signalerfassungsvorrichtung die 1051 ein zumindest partielles Reflexbild des Gesichtsfeldes vom jeweiligen Auge 1080L, 1080R erfaßt. Kennzeichnende Bildpunkte, die sowohl im erfaßten Reflexbild als auch in den von den Kameras 1061 erfaßten Bilder aufzufinden sind, dienen dann als Referenzpunkte für eine perspektivisch richtige Projektion der von den Kameras 1061 erfaßten Bildinformationen auf das Auge 1080. Ähnlich können die aus dem Auge 1080 erfaßten Signale dazu dienen, die Blickrichtung des jeweiligen Auges 1080L, 1080R bezüglich dem Koordinatensystem der Brille 1020 zu bestimmen, um aus diesen Winkelinformationen eine mathematisch basierte Korrelation zu durchführen.

Allerdings ist eine Korrelation auch bei Systemanwendungen sinnvoll, bei denen die Augen 1080 an der Wahrnehmung des Gesichtsfeldes verhindert werden. Dies ist beispielsweise bei der Anwendung einer geschlossenen, sogenannten "virtual reality" Brille 1020 (wie abgebildet, allerdings mit lichtundurchlässigen Gläsern 1024) der Fall, bei der den Augen 1080 lediglich ein künstlich erzeugtes Bild präsentiert wird. Im einem solchen Fall könnte die besprochene Korrelation zum Beispiel darin bestehen, daß die Blickrichtung des Auges 1080 wie oben beschrieben erfaßt wird, und daß ein der Orientierung des jeweiligen Auges 1080L, 1080R entsprechendes, virtuell erzeugtes Bild hineinprojiziert wird. Allerdings dient hier die Brille 1020 als Koordinatensystem. Wird jedoch noch die Lage und Orientierung der Brille 1020, beispielsweise anhand der von der Kameras 1061 erfaßten Bildern, ermittelt, so kann eine Korrelation zwischen dem jeweiligen Auge 1080L, 1080R und der Umgebung hergestellt werden. Ein solches System ließe sich beispielsweise in einem virtuellen Erlebnishaus, ähnlich einem Geisterhaus, anwenden. Jedem, der gerade auf einem

Laufbahn geht, könnte zum Beispiel ein virtuelles Bild in die Augen projiziert werden, das ihm das Gefühl verleiht, er liefe auf schwimmenden Baumstämmen inmitten eines wilden Flüsses.

Es soll an dieser Stelle hervorgehoben werden, dass das vorstehend 5 anhand der Figuren 5 bis 10 beschriebene Informationssystem nicht unbedinat mit einer kombinierten Signalerfassungs-Projektionsvorrichtung arbeiten muß. Es ist gleichermaßen möglich, mit einer Ausführung des Systems zu arbeiten, bei der die 10 Signalerfassungsvorrichtung von der Projektionsvorrichtung getrennt ist bzw. bei dem eine der beiden Vorrichtungen fehlt.

### Figur 11

15 Gemäß einem siebten Ausführungsbeispiel umfaßt das erfindungsgemäße Informationssystem Mittel, die das Bereitstellen einer Fernglasfunktion ermöglichen. Die Figuren 11A und 11B stellt den wahrnehmbaren Effekt der Fernglasfunktion an einen Benutzer dar. Figur 11A zeigt das natürlich wahrgenommene Gesichtsfeld 1190 eines Benutzers eines gemäß dem siebten Ausführungsbeispiel 20 gestalteten Informationssystems. Obwohl das Gesichtfeld 1190 horizontal ca. 170° und vertikal ca. 110° der Umgebung einschließt, bildet lediglich ein kleiner Bereich 1191 von wenigen Grad um die Sehachse herum den Bereich des schärfsten Sehens 1191.

25

30

35

Durch seine Erfassung von Licht aus dem Gesichtsfeld und die zuvor beschriebene Möglichkeit einer Projektion von Bildinformationen in das Auge kann das Informationssystem derart ausgestaltet werden, daß dieser Bereich 1191 beispielsweise auf Knopfdruck nach entsprechender Bearbeitung der erfaßten Bildpunkte mittels einer Informationsvorrichtung umfaßten Auswertevorrchtung optisch vergrößert auf den Bereich des schärfsten Sehens 1191 projiziert wird. Wie zuvor beschrieben, kann der Grad Wahrnehmung eines so projizierten Bildes im Verhältnis zum natürlich wahrgenommenen Bild durch Helligkeit die der

10

15

20

25

30

projizierten Bildpunkte gesteuert werden. Wird das Gesichtsfeldlicht beispielsweise als Reflexbild aus dem Auge erfaßt, so gewährleistet eine räumliche oder zeitliche Trennung der Erfassung und der Projektion, daß die Projektion die Erfassung nicht beeinflußt.

Bei einem handelsüblichen Fernglas geht dadurch, daß das gesamte Gesichtsfeld vergrößert dargestellt wird, den räumlichen Bezug zur Umgebung verloren. Als Konsequenz ist eine durch ein Fernglas schauende Person nicht in der Lage, sich gleichzeitig dabei fortzubewegen. Dieses Phenomen ist wohl bekannt.

Dadurch, daß das erfindungsgemäße Informationssystem durch seine Erfassung von Signalen aus dem Auge die Sehachse bzw. die Position der Fovea centralis relativ zum optischen System der Brille ermitteln kann, ist das Informationssystem in der Lage, diesen Nachteil eines handelsüblichen Fernglases zu vermeiden. Zum kann die Projektion auf eine wie in Figur Beispiel 11B dargestellte Art erfolgen, bei der lediglich ein kleiner, im natürlichen Gesichtsfeld unmittelbar um die Sehachse liegender Bereich 1191 vergrößert auf die Fovea centralis projiziert wird, keine projizierten Bildinformationen dem restlichen Gesichtsfeld überlagert werden. Somit bleibt die vom Benutzer peripher wahrgenommene Szene trotz teleskopischer Darbietung des relevantesten Bereichs des Gesichtsfeldes gleich. Um diesen Effekt zu erzielen, muß die Helligkeit der in das Auge hineinprojizierten Bildinformationen selbstverständlich so gewählt werden, daß das gewünschte Wahrnehmungsverhältnis zwischen dem natürlichen und dem projizierten Bild entsteht. Dieses System hat auch den Vorteil, daß der für die Vergrößerung bildverarbeitungsmäßig notwendige Aufwand in Grenzen gehalten wird, denn es wird nur ausgewählter Bildbereich 1191 des Gesichtsfeldes 1190 bearbeitet.

Gemäß einer nicht dargestellten, eleganten Ausführungsform wird 35 ein Vergrößerungsbild derart in das Auge hineinprojiziert, daß das WO 02/31580

projizierte Bild in einem ringförmigen Grenzbereich zwischen dem Bereich des schärfsten Sehens 1191 und dem restlichen Bereich der Netzhaut mit zunehmender Nähe zur Sehachse stärker vergrößert wird. Dabei wird am äußeren Rande gar nicht vergrößert und am inneren Rande mit dem gleichen "Zoomfaktor" vergrößert, wie das in das Innere des Rings, d.h. auf die Fovea centralis, projizierte Vergrößerungsbild. Bei entsprechend gewählter Helligkeit der projizierten Bildinformationen entsteht somit ein weicher Übergang zwischen der peripheren Szene und dem teleskopisch Gesehenen.

10

25

30

35

Die Figuren 11C und 11D stellen schemenhaft dar, wie eine Vergrößerung des auf die Fovea centralis natürlich fallenden Bildes durch eine Abänderung eines Abtastmusters 1138, 1139 bei der Abtastung eines Reflexbildes erreicht werden kann. Obwohl Projektionsmuster 1137 und Abtastmuster 1138, 1139 in den Figuren 15 11C und 11D der Erläuterung halber in einer gemeinsamen Ebene . dargestellt sind. kann es bei dem erfindungsgemäßen Informationssystem durchaus sein, daß auf die Netzhaut projiziert wird, während die Abtastung beispielsweise von der Hornhaut 20 erfolgt.

Figur 11C stellt ein typisches Abtastmuster 1138 schematisch dar, das das Gesichtsfeld reflektierende Gebiet 1189 der Hornhaut oder Netzhaut abtastet. Bei diesem stark vereinfachten Beispiel wird der Verständlichkeit halber davon ausgegangen, daß die jeweiligen Bildpunkte des sequentiell abgetasteten Bildes nach eventueller bildverarbeitender Aufbereitung ihrer Reihenfolge nach als korrespondierende Bildpunkte des sequentiell in das Auge projizierten Bildes zurückprojiziert werden. Im dargestellten Beispiel stimmt das Abtastmuster 1138 somit mit Projektionsmuster 1137 trotz eventueller räumlicher oder zeitlicher Trennung des Abtast- und des Projektionsstrahls überein. Ist eine Vergrößerung eines zentralen Bereichs des Gesichtsfeldes erwünscht, so kann die Abtastung gemäß einem abgeänderten Abtastmuster 1139 erfolgen, das in jenem zentralen

WO 02/31580

Bereich eine Erhöhung der Dichte der abgetasteten Bildpunkte bewirkt. Werden diese mit erhöhter Dichte aufgenommenen Bildpunkte bei der Projektion korrespondierend, jedoch mit geringerer Dichte zurückprojiziert, so ergibt sich ein vergrößertes Bild.

5

10

15

20

25

# Figur 12

Gemäß einem achten Ausführungsbeispiel stellt das erfindungsgemäße Informationssystem ein Führungssystem dar. Zu diesem Zweck umfaßt die Informationsvorrichtung des Informationssysteme Lagesensoren, beispielsweise Beschleunigungsmeßvorrichtungen oder GPS-Empfänger, sowie eine Datenbank oder Datenbankanbindung, die Orientierungsdaten liefert. Eine derartige Datenbank läßt sich beispielsweise über einen die Daten tragenden CD-ROM, einen DVD oder ein anderes austauschbares Speichermedium in Verbindung mit entsprechenden Lesegerät realisieren. Verfahren und Vorrichtungen | Gewinnung zur von Ortungsinformationen, die beispielsweise den Standort bestimmen oder deren Bestimmung ermöglichen, durch eine Kombination solcher Orientierungsdaten mit aus den Lagesensoren gewonnenen Daten sind bekannt. In einer typischen Vorrichtung umfassen die Orientierungsdaten Karteninformationen, die in Zusammenhang mit aus den Lagesensoren gelieferten Signalen zur Ortsbestimmung verwendet werden. Die Herstellung einer Korrelation . oder einer Abhängigkeit beispielsweise bei der Gewinnung oder der Darstellung solcher Ortungsinformationen zwischen aus dem Auge erfaßten Signalen oder aus dem Gesichtsfeld erfaßten Licht und dem Zurverfügungstellen der Informationen übersteigt das Fachnotorische jedoch bei weitem.

Die Figuren 12A bis 12E zeigen das wahrgenommene Gesichtsfeld 1290 eines Benutzers eines gemäß dem achten Ausführungsbeispiel gestalteten Informationssystems. Bei einem solchen Informationsbzw. Führungsssystem wird das erfaßte Gesichtsfeldlicht in Anbetracht der gewonnenen Ortungsinformationen mittels einer Mustererkennung unter Berücksichtigung der für den ermittelten

15

Aufenthaltort zur Verfügung stehenden Daten ausgewertet. Dabei werden für den ermittelten Aufenthaltort zu erwartende Orientierungshinweise, wie markante Bauten, Seitenstraße, o. ä., erkannt, so daß eine beispielsweise visuelle oder akustische Führung bzw. Identifizierung ggf. erfolgen kann.

Im dargestellten Beispiel gemäß Figur 12A dient das Führungssystem der Navigation. Dabei wir beispielsweise anhand einer berechneten oder vorgegebenen Route, zur Verfügung stehender Karteninformation und des momentanen Aufenthaltortes festgestellt, daß in die übernächste Straße auf der rechten Seiten eingebogen werden soll. Diese Straße wird auf der Basis des erfaßten Gesichtsfeldlichts mittels einer Mustererkennung erkannt, woraufhin ein auf die Straße weisender Hinweispfeil per Projektion unter Berücksichtung der durch das System ermittelten Blickrichtung ortsgetreu in das Gesichtfeld eingeblendet wird. Ähnlich könnte das Führungssystem dem Verkehrsteilnehmer akustische Mitteilungen liefern, beispielsweise "Rechts abbiegen nach 50m" oder "Jetzt rechts".

Im in den Figuren 12B und 12C dargestellten Beispiel dient das 20 Führungssystem der Information. Zum Beispiel kann einem Benutzer Information über seine unmittelbare Umgebung wahlweise Verfügung gestellt werden. Gemäß Figur 12B schaut ein das Informationssystem benutzender Tourist ein markantes Gebäude an und betätigt eine physikalisch vorhandene oder virtuell in das 25 Gesichtsfeld eingeblendete Aktivierungstaste. Das Gebäude wird anschließend anhand des ermittelten Aufenthaltortes und einer auf das erfaßte Gesichtsfeldlicht basienden Mustererkennung oder eines die Kopfrichtung bestimmenden elektronischen Kompasses bestimmt, woraufhin Informationen zu dem Gebäude zur Verfügung gestellt 30 werden. Diese können aus einer Datenbank oder sonstiger Informationsquelle stammen und ließen sich beispielsweise interaktiv über ein kontextabhängiges Menü, das die zur dem jeweiligen Gebäude zur Auswahl stehenden Informationen visuell oder akustisch auflistet, auswählen. Die Selektion könnte über 35

eine Sprachsteuerung oder durch eine Fixierung mit den Augen erfolgen. Näheres zur augengesteuerten Menüführung wird in einem späteren Abschnitt dieser Beschreibung erläutert.

Gemäß Figur 12B werden historische Daten per Projektion in das 5 Gesichtsfeld eingeblendet. Dabei ermittelt das System aus dem erfaßten Gesichtfeldlicht eine geeignete Einblendestelle. beispielsweise vor einem eintönigen Dach oder vor dem Himmel. Entsprechend der Einblendstelle werden die Daten eingeblendet. Typischerweise wird die Fovea centralis vorerst nicht auf die 10 Einblendstelle gerichtet sein, weshalb die eingeblendeten Daten vorerst als unscharfe periphere Erscheinung wahrgenommen werden. Erst durch eine entsprechende Schwenkung der Blickrichtung gemäß Figur 12C werden die ortsfest eingeblendeten Daten auf die Fovea centralis abgebildet. Wird der Blick auf ein anderes vom System 15 erkanntes Gebäude gerichtet, so können sich die eingeblendeten Information gemäß den Figuren 12D und 12E ändern. In den Figuren stellt der Kreis 1290 das wahrgenommene Gesichtsfeld dar, während der Kreis 1291 den von der Fovea centralis erfaßten Bereich des Gesichtsfeldes kennzeichnet. 20

Durch eine wie in der Figur 1 dargestellte, kompakte und tragbare Bauweise könnte ein solches Orientierungssystem von einem Füßgänger, einem Radfahrer, einem Motorradfahrer oder einem sonstigen Fahrzeugfahrer getragen werden.

### Figur 13

25

Gemäß einem in den Figuren 13A und 13B dargestellten, neunten 30 Ausführungsbeispiel fungiert das erfindungsgemäße Informationssystem als Fahrhilfe. Die Figuren zeigen das wahrgenommene Gesichtsfeld 1390 eines Benutzers eines solchen Systems.

25

30

35

Bevorzugt umfaßt Informationsvorrichtung die des Informationssystems einen Abstandssensor, beispielsweise einen oder akustischen Abstandsmeßgerät Radarvorrichtung, oder ist an ein entsprechendes abstandmeßendes System angeschlossen, das den Abstand zwischen einem Fahrzeug und sich in Fahrtrichtung vor dem Fahrzeug befindlichen Gegenständen ermittelt. Bei einer stereoskopischen Erfassung von Licht aus dem Gesichtsfeld könnte der Abstand mittels einer Paralaxeberechnung ermittelt werden, bei der die Änderung der Position des Gegenstands in einem jeweilig links und rechts erfaßten Bild Auskunft über den Abstand vermittelt.

Wird zum Beispiel | über eine ebenfalls. Informationsvorrichtung umfaßte Auswertevorrichtung festgestellt, daß das Fahrzeug sich auf Kollisionskurse mit dem Gegenstand 15 befindet, so kann beispielsweise ein Warnzeichen 1395 in den Bereich des schärfsten Sehens 1391 und ein Warnkreis 1394 um den gefährlichen Gegenstand mittels einer wie zuvor beschriebenen Projektion eingeblendet werden. Befindet sich der Gegenstand außerhalb oder am Rande des Bereichs des peripheren Sehens, so 20 kann ein weiteres Warnzeichen 1395a darauf hinweisen, wo der Gefahr sich birgt. Dies ist in der Figur 13A dargestellt.

Über Sensoren oder dem erfaßten Gesichtsfeldlicht lassen sich auch andere der Fahrsicherheit relevanten Informationen ermitteln. Zum Beispiel könnte eine Auswertevorrichtung die Fahrbahnmarkierungen innerhalb des Gesichtsfeldes liegenden Fahrbahn Mustererkennung erkennen und daraus die höchstmögliche Geschwindigkeit, insbesondere bei Kurven, berechnen. Stellt das Informationssystem selbstständig oder durch Anbindung an das Instrumentensystem eines Fahrzeug fest, daß das Fahrzeug diese errechnete Höchstgeschwindigkeit überschritten hat, so kann ein Warnzeichen 1395 in den Bereich des schärfsten Sehens 1391 eingeblendet werden. Dies ist in der Figur 13B dargestellt. Der Vorteil einer Einblendung des Warnzeichens 1395 im Bereich des

schärfsten Sehens 1391 liegt darin, daß das Zeichen 1395 dort erscheint, wo das Auge hinschaut, und leitet dem Auge deshalb nicht dazu, von der vorliegenden Szene wegzuschauen. Aus diesem Grunde soll die Helligkeit eingeblendeter Zeichen so gewählt werden, daß die Zeichen transluzent erscheinen. Auf die Gefahr kann auch akustisch hingewiesen werden.

## Figur 14

10 Figuren 14A und 14B zeigen ein erfindungsgemäßes Informationssystem gemäß einem zehnten Ausführungsbeispiel, das die Möglichkeiten eines komplexen, vielseitigen Informationsystem verdeutlicht. Im konkret dargestellten Beispiel weist dargestellte Informationsystem eine mobile Feuerwehrleitzentrale 15 1410, die einen Kommandopult 1412 umfaßt. sowie mehrere Helmsysteme 1411 auf.

Jedes der Helmsysteme 1411 umfaßt eine wie zuvor beschriebene Signalerfassungsvorrichtung sowie Gesichtsfelderfassungsvorrichtung. Wahlweise kann jedes der 20 Helmsysteme 1411 mit einer Projektionsvorrichtung, Infrarotsensoren und/oder Lagesensoren ausgestattet werden. Sie können auch mit weiteren Sensoren ausgestattet werden, die beispielsweise eine Bestimmung der Luftqualität ermöglichen. Zu Kommunikationszwecken ist jeder der Helme 1411 beispielsweise mit 25 Funkübertragungssystem ausgestattet. das mit Leitzentrale 1410 bzw. dem Kommandopult 1412 kommuniziert, und das durch sein Senden und Empfangen von Informationen sowohl Aufgaben Informationsvorrichtung einer als auch Aufgaben 30 Ausgabevorrichtung übernimmt.

Bevorzugt werden die von den jeweiligen Helmen 1411 erfaßten. Gesichtsfeldbilder, die auf der Basis der aus den Augen erfaßten Signale mit dem tatsächlich wahrgenommenen Gesichtsfeld des jeweiligen Feuerwehrmanns in Übereinstimmung gebracht werden

können, an den Kommandopult 1412 übertragen und dort auf Monitore dargestellt. Zwecks einer Reduktion der zu übertragenden Datenmengen könnten Bediener des Kommandopults 1412 ebenfalls ein projizierendes Brillensystem tragen, damit lediglich die auf den Bereich der Fovea centralis des Bedieners fallenden Bilddaten in hoher Auflösung übertragen bzw. erfaßt werden müssen. In das Auge des Bedieners könnte ein korreliertes Gesichtsfeldbild eines einzelnen Feuerwehrmanns. oder ein Mosaik mehrerer Bilder hineinprojiziert werden. Dabei könnte der Bediener genau das sehen, was der Feuerwehrmann sieht, oder ein sich in Abhängigkeit von seinen eigenen Augenbewegungen veränderndes Bild aus dem Blickfeld des Feuerwehrmanns zur Verfügung gestellt bekommen.

Bei einer etwaigen Projektionen könnte dem Bediener und/oder dem Feuerwehrmann zusätzliches Information in das projizierte Bild 15 hineingeflochten werden. Beispielsweise könnte Lagesensoren bzw. Infrarotsensoren gewonnene Orientierungs- bzw. Temperaturinformationen in das Gesichtsfeld hineingeblendet werden. Die stetige Einblendung bestimmter Himmelsrichtungen, wie Nord und West, sowie von höhen Angaben wäre sowohl dem dem 20 gesehenen Geschehen entfernten Bediener als auch dem durch Rauch und Qualm verschleierten Feuerwehrmann eine hilfreiche Bezugsangabe.

25 Durch eine entsprechende Aufbereitung der erfaßten Lageinformationen könnte aufgrund der inhärenten Vernetzung der Systemkomponenten jedem Feuerwehrmann die Position Kollegen, beispielsweise mit einem kennzeichnendem "X", oder die Lage und Schwere der gesichteten oder auf sonstige Art erfaßten Feuerherde, beispielsweise mit einem der Feuerstärke entsprechend 30 farbig gekennzeichneten Punkt , eingeblendet werden. Dies würde die Feuerbekämpfung erleichtern und die Wahrscheinlichkeit eines versehentlichen Verletztens eines hinter Rauch oder einer Wande unsichtbaren Kollegen verringern.

5

# Figur 15

5

10

15

Die Figur 15 zeigt ein erfindungsgemäßes Informationssystem gemäß einem elften Ausführungsbeispiel, bei dem das Informationsystem dem Bedienen eines externes System, beispielsweise eines zur Bewegung von gefährlichen Gegenständen ausgelegten, ferngesteuerten Roboters 1570, dient.

Gemäß der Abbildung umfaßt der auf Räder beweglicher Robot 1570 eine Kammeravorrichtung 1571 sowie einen Greifarm 1572. Der Roboter 1570 ist beispielsweise über eine Funkverbindung mit einem von einem Benutzer 1502 getragenen Brillensystem 1520 verbunden. Die über die Kameravorrichtung 1571 mono- oder stereoskopisch erfaßten Bilder ließen sich mit einer vom Brillensystem 1520 umfaßten Projektionsvorrichtung mono- bzw. stereoskopisch auf die Netzhaut des Benutzers 1502 projizieren. Bei einer stereoskopischen Projektion wäre ein räumliches Sehen gewährleistet.

Verfügt die Kameravorrichtung 1571 über eine makroskopische 20 Objektiv, die ein breiteres "Gesichtsfeld" aufweist, als das Gesichtsfeld des Benutzers 1502, so kann das vom Benutzer 1502 gesehene Gesichtsfeld durch eine entsprechende Auswahl eines Bildausschnitts aus dem von der Kameravorrichtung 1571 gelieferten Bild, wie zuvor beschrieben, in Abhängigkeit von den erfaßten 25 Augenbewegen des Benutzers 1502 mit dem fernen Bild in Korrelation gehalten werden. Ansonsten ließe sich die Kameravorrichtung 1571 in Korrelation mit den Augenbewegungen schwenken. Es können auch über Lagesensoren die Bewegungen des Kopfes des Benutzers 1502 30 derart erfaßt werden, daß die Kameravorrichtung in Korrelation mit den Kopfbewegungen mitschwenkt. Das erfindungsgemäße Informationssystem bietet somit ein unerreichtes Maß an visueller Echtheit bei der Wahrnehmung einer entfernten Szene, was die Steuerung eines solchen externen Systems 1570 erheblich erleichtert. 35

Durch das Anbringen einer Mikrofon, insbesondere einer in Abhängigkeit der Kopfposition oder der Blickrichtung ausgerichteten Richtmikrofon, an das externe System in Verbindung mit einer Kopfhöreranordnung am Brillensystem läßt sich eine weitere sensorische Dimension realisieren.

Um eine weitere Bedienung des Roboters 1570 zu ermöglichen, ist ein manuell bedienbarer Steuerknüppel 1525 beispielsweise über ein Kabel 1526 mit dem Brillensystem 1520 verbunden. Hierdurch ließe sich zum Beispiel den Greifarm 1572 oder die Fahrtrichtung des Roboters 1570 in mehrere Richtungen steuern.

### Figur 16

15

20

25

30

10

5

Die Figur 16 stellt ein erfindungsgemäßes Informationssystem gemäß einem zwölften Ausführungsbeispiel schematisch dar, bei dem ein Brillensystem 1620 als universelle Fernbedienung für ein oder mehrere Geräte fungiert, zum Beispiel ein Computer 1675, ein Videorekorder 1676, einen Drucker 1677, einen Diaprojektor 1678 und/oder ein Telefon 1679.

Im dargestellten System stellt das Brillensystem 1620 eine in zwei Richtungen übertragende Schnittstelle zwischen einem Benutzer 1602 und dem zu bedienenden Gerät 1675-1679. Zuerst muß das Gerät 1675-1679 erkannt werden. Dies erfolgt im Sinne der Erfindung grundsätzlich über ein Anvisieren des zu bedienenden Geräts 1675-1679 mit der Fovea centralis. Die Identität des anvisierten Geräts 1675-1679 läßt sich entweder mit oder ohne die Mithilfe des Geräts 1675-1679 bestimmen. Im folgenden wird davon ausgegangen, daß sowohl das Gerät 1675-1679 als auch die Brille 1620 mit den für die beschriebenen Vorgänge notwendigen Signalempfangs- bzw. - sendevorrichtung ausgestattet werden.

15

20

25

30

Wird die Identität mit der Mithilfe des Geräts 1675-1679 bestimmt, so strahlt dieses Gerät 1675-1679 entweder in mehr oder minder regelmäßigen Intervallen ein Kennsignal aus, beispielsweise ein Infrarot- oder Ultraschallsignal, oder es wird von einer von der Brille 1620 ausgestrahlten Aufforderungssignal aufgefordet, ein Kennsignal auszustrahlen. Das Aufforderungssignal muß lokalisiert in Richtung Blickrichtung ausgestrahlt werden, um ein Ansprechen anderer Geräte zu vermeiden. Das vom Gerät 1675-1679 ausgestrahlte Kennsignal wird von der Brille erkannt, woraus auf die Identität des Gerätes geschlossen wird.

Wird die Identität ohne die Mithilfe des Geräts 1675-1679 bestimmt, so nimmt die Brille 1620 in Zusammenarbeit mit einer Datenbank oder sonstige Informationsquelle 1640, die Mustererkennungsdaten für die jeweilig ansprechbaren Geräte 1675-1679 enthält, eine Mustererkennung des anvisierten Bereichs des Gesichtsfelds vor.

Anhand der Identität des Geräts 1675-1679 wird ein der möglichen Funktionen des Geräts angepaßtes Menü in das Gesichtsfeld des Benutzers 1602 ggf. auf Tastendruck oder Augenzwinkern ortsfest eingeblendet. Ist die Funktionalität der Brille nicht ohne weiteres bekannt. werden SO zuerst die entsprechenden Informationen aus einer Datenbank oder einer sonstigen .Informationsquelle 1640, beispielsweise durch standardisierte Abfrage des Geräts selbst, in Kenntnis gebracht. Hier kann eine in das Abfragesignal eingebettete Identifizierung des Geräts dafür sorgen, daß lediglich das gewünscht Gerät auf die Abfrage antwortet. Dadurch, daß das Menü ortsfest in das Gesichtsfeld eingeblendet wird, kann der Benutzer 1602 das ggf. hierarchische Menü durch geringfügige Augenbewegungen wie ein Computermenü bedienen.

Nachdem die gewünscht Funktion ausgewählt worden ist, wird ein der 35 Funktion entsprechendes Signal von der Brille 1620 an das Gerät WO 02/31580 PCT/EP00/09843

- 51 -

1675-1679 gesandt. Hier kann eine in das Signal eingebettete Identifizierung des Geräts dafür sorgen, daß lediglich das gewünscht Gerät auf das Signal reagiert.

5 Auf diese Art und Weise könnte mit geringer Hardwareaufwand eine schnelle und einfache Bedienung vieler Geräte erzielt werden.

# Figur 17

Die Figuren 17 zeigt ein optisches System gemäß einem dreizehnten Ausführungsbeispiel, bei dem ein Kippspiegel 1755 ein Umschalten zwischen einer Aufnahme aus dem Gesichtsfeld und einer Aufnahme aus dem Auge 1780 oder einer Projektion auf die Netzhaut 1781 ermöglicht.

15

20

25

30

Der Vorteil dieses optischen Systems liegt darin, daß die gleichen Taumelspiegel 1754H und 1754V für eine Aufnahme aus Gesichtsfeld und für eine Projektion auf die Netzhaut 1781 verwendet werden kann, und daß der Strahlengang für eine Aufnahme aus dem Gesichtsfeld und der Strahlengang für eine Aufnahme aus dem Auge 1780 bzw. eine Projektion auf die Netzhaut 1781 dementsprechend zum Großteil identisch sind. So wird schon durch das optische System eine hohe Korrelation zwischen dem aus dem Gesichtsfeld erfaßte Licht und den aus dem Auge erfaßten Signale bzw. eine hohe Korrelation zwischen dem aus dem Gesichtsfeld erfaßte Licht und dem auf die Netzhaut projizierte Bild erzielt. Das heißt, es werden keine zusätzliche Korrelationsfehler dadurch versucht, daß die besprochenen Strahlengänge über verschiedene Taumelspiegel verlaufen, die unterschiedliche Rotationscharakteristika aufweisen könnten. Für Lichterfassung aus dem Gesichtsfeld und Lichterfassung aus dem Auge kann sogar die gleiche Lichterfassungvorrichtung 1751 verwendet werden. Lediglich durch die Reflektion am Brillenglas 1724 und das optische System des Auges 1780 kann die Korrelation negativ beeinflußt werden.

# Nicht-dargestellte Ausführungsbeispiele

Ergänzend zu den in den Figuren dargestellten Ausführungsbeispielen werden nachstehend weitere möglichen Ausführungsformen des erfindungsgemäßen Informationssystem zwecks einem besseren Verständnis der Erfindung beschrieben.

# TV / Zeitung

30

35

Bisherige elektronische Bücher bzw. Zeitungen haben den Nachteil, 10 zu schwer und/oder zu unhandlich zu sein, und können außerdem nur eine begrentze Informationsmenge pro Seite darstellen. tragbare Videound Fernsehgeräte sind schwer und/oder : unhandlich.Wird das erfindungsgemäße Informationssystem derart ausgebildet, daß das Zuverfügungstellen von Informationen eine 15 Projektion von Bildinformationen in das Auge umfaßt, so lassen verschiedene visuell bezogene Medien, beispielsweise elektronische Bücher oder Zeitungen, Fernsehen oder Videospiele, durch das Informationssystem verwirklichen. Dabei wird 20 erfindungsgemäße Informationssystem zum Beispiel, wie beschreiben, in Form einer tragbaren Brille realiziert, die über eine Kabel-, Infrarot- oder Funkverbindung beispielsweise an ein Informationsnetz, eine tragbare Speichervorrichtung, zum Beispiel ein CD-ROModer DVD-Lesegerät, oder eine sonstige Informationsquelle angeschlossen werden kann. 25

Ein Vorteil einer derartigen Ausbildung des erfindungsgemäßen Informationssystems liegt darin, daß seine Erfassung von Signalen aus dem Auge in Zusammenhang mit seiner Gesichtsfelderfassung eine Projektion ermöglicht, bei dem der projizierte Text bzw. die projizierte Bilder im Raum fixiert zu sein scheint. Zu diesem Zweck umfaßt die Informationsvorrichtung eine Auswertevorrichtung, die die Korrelation der Sehachse zum Blickfeld ermittelt, und die die Projektion entsprechend steuert, so daß die auf das Auge projizierten Informationen vis-à-vis dem Blickfeld trotz

Bewegungen des Auges unbeweglich zu sein scheinen. Die Ermittlung der Korrelation der Sehachse zur Umgebung kann auch durch in der Brille angebrachte Lagesensoren unterstützt werden.

Der virtuelle Ort der Fixierung kann beispielsweise über eine 5 Fixierung mit den Augen in Zusammenhang mit einem Augenzwinkern oder Tastendruck oder auch automatisch, zum Beispiel mittels einer bildverarbeitenden Auswertung des Blickfelds, die ein möglichst inhaltsarmes Gebiet des Blickfelds ermittelt, festgelegt werden. Die störende Wirkung des durch die Projektion der Informationen 10 nicht notwendigerweise abgedeckten, natürlichen Gesichtsfeldes ließe sich durch ein farbkomplementäres "Auswischen" verringern, bei dem komplementärfarbige Bildpunkte anhand des aus dem Gesichtsfeld erfaßten Lichts ermittelt werden, deren korrelierte Projektion auf die jeweilig zugeordnete Gebiete der Netzhaut den 15 natürlichen Hintergrund durch Farbaddition als weiß erscheinen läßt. Ist ein schwarzer Hintergrund erwünscht, so muß, wie zuvor beschrieben, die empfundene Gesamthelligkeit der Projektion die empfundene Gesamthelligkeit des natürlichen Gesichtsfeldes um ca. 10% bis 20% überschreiten, damit auch die hellsten Punkte des 20 natürlichen Gesichtsfeldes als schwarz empfunden werden.

Zu Bedienungszwecken könnten Bildinformationen, die virtuelle Bedienungsknöpfe darstellen, derart in das Auge hineinprojiziert werden, daß sie in der Nähe des Textes bzw. Bildes im Gesichtsfeld 25 ebenso fixiert erscheinen. Somit ließe sich das virtuelle Informationsmedium mittels Anvisieren des entsprechenden Bedienungsknopfes mit der Fovea centralis plus Tastendruck oder Augenzwinkern fernbedienen, d.h. Umblattern, Vorspulen. 30 Zurückspulen, o.ä. Ähnlich könnte ein Zugriff auf Lexika, Datenbanken, u.s.w. durch das Anvisieren von dargestellten Wörtern oder Bildteile ermöglicht werden. Anstatt Bedienungsknöpfe ließe sich das Informationssystem beispielsweise auch über Menüführung bedienen, bei der Bedienmenüs bei der Betrachtung bestimmter Bildbereich "aufspringen", um ein augengesteuertes 35

10

15

Auswählen aus dem ggf. hierarchisch aufgebauten Menü zu ermöglichen.

Ein weiterer Vorteil einer derartigen Ausbildung des erfindungsgemäßen Informationssystems liegt darin, daß die für eine ausreichende momentane Darstellung notwendige Datenmenge bei weitem geringer ist, als die Datenmenge, die für hochauflösende Darstellung des gesamten Gesichtsfeldes notwendig wäre. Dies liegt der Tatsache zugrunde, daß das Informationssystem den Bereich des schärfsten Sehens kennt. Somit müssen nur diejenigen Teile der Projektion mit hoher Auflösung erfolgen, die den Bereich der Fovea centralis betreffen. Auf sonstige Gebiete der Netzhaut genügt eine Projektion mit geringer Bildpunktdichte. Dementsprechend reduziert sich die für eine momentane Darstellung notwendige Datenmenge, was deutliche Systemvorteile mit sich bringt. Insbsondere läßt sich die empfundene Größe des projizierten Bildes beliebig wählen, ohne unbearbeitbar große Datenmengen zur Präsentation momentanen Bildes die Folge sind.

Ist das projizierte Bild größer als das Gesichtsfeld, dann 20 bestimmt die momentane Sehachse den Bildausschnitt. Die Projektion erfolgt derart, daß der aktuelle Bildausschnitt den gesamten aktiven Bereich der Netzhaut füllt. Durch Augenbewegung können weitere Ausschnitte des Bildes in das Gesichtsfeld hineingebracht werden. Ist das projizierte Bild kleiner als das Gesichtsfeld, so 25 muß lediglich auf einen beschränkten Teil der Netzhaut projiziert werden. Wird der natürliche Gesichtfeldhintergrund ausgeblendet. so ändert sich dieser bei Augenbewegungen. Insbesondere bei fernsehoder kinoartigen Informationsdarstellungen ist eine das Gesichtsfeld genau füllende 30 Projektion bevorzugt.

Werden Signale aus beiden Augen eines Benutzers erfaßt, so kann die Projektion stereoskopisch erfolgen, wobei jedem Auge ein derart geringfügig unterschiedliches Bild zugespeist wird, daß das

10

15

25

30

35

Gehirn ein dreidimensionales Gesamtbild wahrzunehmen glaubt. Somit ließe eine optimale System-Mensch-Schnittstelle beispielsweise für 3D-Fernsehen. 3D-Videospiele, Anwendungen oder sonstige, insbesondere interaktive. 3D-Anwendungen verwirklichen. Bevorzugt umfaßt das Informationssystem weitere Bedienelemente, zum Beispiel ein Steuerknuppel, Pedal oder Lenkrad, die eine Navigation bzw. Perspektivwechsel innerhalb des dargestellten virtuellen Bildes oder eine sonstige Beeinflüssung der Informationsdarbietung oder eines mit der Informationssystem verbunden Systems ermöglicht. Wie zuvor beschrieben, kann auch das Auge selbst als Bedienelement fungieren.

Unter entsprechender Anwendung der vorstehend für die Positionierung einer elektronischen Zeitung an einem virtuellen Ort erforderlichen Maßnahmen ist es gleichermaßen möglich, dem Träger des erfindungsgemäßen Informationssystems andere Orientierungshilfen auf die Netzhaut zu spielen, wie z.B. einen künstlichen Horizont.

# 20 Ophthamologische Anwendungen / Sehhilfen

Aufgrund ihrer Erfassung aus dem Auge zurückreflektierter Signale eignet sich das erfindungsgemäße Informationssystem hervorragend zur Ausgestaltung als ophthamologisches System. Zum Beispiel läßt sich das erfindungsgemäße Informationssystem als Positioniersystem die ophthamologische Chirugie, insbesondere für die ophthamologische Laserchirugie, realisieren. Auch als ophthamologisches Diagnosesystem, Sehhilfesystem und/oder Sehfehlerkorrektursystem findet das erfindungsgemäße Informationssystem beispielsweise Anwendung.

Die meisten Strukturen oder Organe des Auges sind im Vergleich zu manuellen Bewegungen sehr klein. Erkrankungen und Beschädigungen dieser Strukturen bzw. Organe betreffen häufig nur einen kleinen, mikroskopischen Bereich. Im Gegensatz zu vielen anderen

25

Körperpartien lassen sich die Augen jedoch nicht fixieren, was die Behandlung evtl. Erkrankungen oder Verletzungen des Auges besondere erschweren.

5 Aufgrund der Fähigkeit des erfinderungsgemäßen Informationssystems, Bewegungen des Auges genau verfolgen und Informationen bezüglich der augenblicklichen Stellung des Auge auch anderen Systemen zur Verfügung stellen zu können, lassen sich diese Schwierigkeiten durch ein therapeutisches System auf der Basis des erfinderungsgemäßen Informationssystems überwinden. Zum 10 Beispiel das therapierende System derart mit erfindungsgemäßen Informationssystem zwecks Informationsaustausch verbunden sein, daß Informationen bezüglich der augenblicklichen Stellung des Auge dem therapierenden System zur Verfügung gestellt werden, so daß eine punktgenaue automatisierte Therapie des Auges 15 auch bei bewegten Augen erfolgen kann.

Gemäß einem anderen Ausführungsbeispiel wird ein therapierender Laserstrahl über das optische System des erfindungsgemäßen Informationssystem gelenkt. Eine Laserbehandlung des Auges, insbesondere der Netzhaut, kann somit auf gleiche Art wie eine wie zuvor beschriebene Projektion erfolgen. Beispielsweise können krankhafte Adern der Aderhaut dadurch verödet werden, daß ein photoempfindliches Mittel eingespritzt oder eingenommen wird, und daß krankhafte Stellen der Aderhaut über mehreren Zehn Sekunden punktgenau bestrahlt werden. Eine derartige Therapie läßt sich mit Hilfe der erfindungsgemäßen Informationssystem präzis ausführen.

Um als Sehhilfe- und/oder Sehfehlerkorrektursystem Anwendung zu finden, umfaßt die Ausgabevorrichtung des Informationssystems eine Projektionvorrichtung, die sichtverbessernde Bildinformationen auf die Netzhaut projiziert. Zudem wird die Informationsvorrichtung eine Auswertevorrichtung umfassen, die die sichtverbessernde Bildinformationen anhand des aus dem Gesichtsfeld erfaßten Lichts ermittelt. Die sichtverbessernden Bildinformationen werden

10

15

20

25

30

35

bevorzugt derart in Korrelation mit den aus dem Auge erfaßten Signalen auf die Retina projiziert, daß das wahrgenommene Gesichtsfeld und die projizierten Bildinformationen als einheitliches Bild wahrgenommen werden. Im Extremfall werden die sichtverbessernden Bildinformationen derart auf die Retina projiziert, daß das ansonsten natürlich wahrgenommene Gesichtsfeld vom Auge gar nicht wahrgenommen wird. Wie zuvor beschrieben, kann der Grad der Wahrnehmung eines so projizierten Bildes im Verhältnis zum natürlich wahrgenommenen Bild durch die Helligkeit der projizierten Bildpunkte gesteuert werden.

Durch ein derartiges Informationssystem läßt sich beispielsweise eine Sehfehlerkorrektur für Kurz- oder Weitsichtige sowie bei Farbsehschwäche durchführen. Bei der Korrektur einer Kurz- bzw. Weitsichtigkeit kann das Informationssystem auf eine (quasi-)festen Korrektur eingestellt werden, eine veränderbare Korrektur ermöglichen, oder sich dynamisch auf den Sehfehler automatisch einstellen. Die Korrektur erfolgt über ein ggf. einstellbares optisches Fokussiersystem innerhalb der Projektionsvorrichtung oder durch bildverarbeitende Maßnahmen. Letzteres läßt sich mit geringem Systemaufwand realisieren.

Implementierungen mit (quasi-)fester oder veränderbarer Korrektur sind durch ihre inhärente Ähnlichkeit zu ähnlichen optischen Systemen für den Fachmann ohne weitere Erklärung verständlich. Eine Realisierung mit einer dynamischen, automatischen Korrektur natürlichen Abbildungsfehlers umfaßt neben beschriebenen Korrelation eine weitere Abhängigkeit zu den vom Auge erfaßten Signalen. Insbesondere wird ein Netzhautreflexbild erfaßt, das durch Vergleich mit dem aus dem Gesichtsfeld erfaßten Licht und/oder durch eine bildverarbeitende Auswertung Auskunft über die Schärfe des auf der Netzhaut. abgebildete Bild liefert. Entsprechend wird das aus Gesichtsfeld erfaßte Licht in sichtverbessernde Bildinformationen aufbearbeitet und auf die Retina projiziert. Durch Ausgabe des so

ermittelten Korrekturwertes kann das Informationssystem als Diagnosesystem fungieren.

Durch seine Erfassung aus dem Auge zurückreflektierter Signale und aus dem Gesichtsfeld stammenden Lichtes ist das erfindungsgemäße 5 Informationssystem mittels einer entsprechend programmierten Auswertevorrichtung in der Lage, Auskunft über viele ophthamologisch relevanten Eigenschaften des Auge zu geben. Zum lassen sich Schielwinkel, Beispiel Primär-Positionen Gesichtsfeldbestimmungen 10 auch mit Farben, Schwellwerttests, standardisierte Testverfahren für Glaukomadiagnose, Prüfungen von Netzhautfunktionen (beispielsweise ERG und VEP) ausgewälten Orten und Prüfungen der rezeptiven Felder durchführen bzw. bestimmen. Die hierzu zu erfassende Signale aus dem Auge, die hierzu notwendigen Gesichtsfeldreize und die hierzu notwendigen 15 Bearbeitungsalgorithmen wählt der Fachmann auf der Basis seiner Fachkenntnis und unter Berücksichtigung der vorstehend beschriebenen Erfindung entsprechend aus.

Während beispielsweise die Sehschärfe sich durch eine Auswertung aus dem Auge zurückreflektierter Signale feststellen und anschließend korrigieren läßt, setzt die Korrektur manch anderer Sehfehler eine systemunabhängige Feststellung des Fehlers, zum Beispiel durch einen Augenarzt, voraus. Eine passende Einstellung der durch das Informationssystem vorgenommenen Korrektur kann rekursiv oder einfach durchgeführt werden.

Bei einem rekursiven Einstellvorgang wird eine Korrektur gemäß vorheriger Einstellung vom Informationssystem vorgenommen während das Sehvermögen der fehlsichtigen Person getestet wird. Anhand der Ergebnisse der Tests wird eine neue Einstellung des Informationssystems gewählt. Dieser Vorgang wird wiederholt durchgeführt, bis der Sehfehler ausreichend kompensiert worden ist. In diesem Sinne fungiert das Informationssystem gleichwohl

als Diagnosesystem; denn anhand der bestkorrigierenden Endeinstellung kann der Sehfehler bestimmt werden.

Bei einem einfachen Einstellvorgang wird das Sehvermögen der fehlsichtigen Person ohne jeglicher Kompensation getestet. Anhand der Ergebnisse der Tests wird eine passende Einstellung des Informationssystems gewählt, das im späteren Einsatz das aus dem Gesichtsfeld erfaßte Licht dann gemäß dieser Einstellung in sichtverbessernde Bildinformationen aufbearbeitet und auf die Retina projiziert. Bei der Aufbereitung werden, der Einstellung, d.h. dem ursprünglichen Sehfehler, entsprechend, beispielsweise bestimmte Spektralkomponenten oder bestimmte Bereiche Gesichtsfeldes hervorgehoben oder durch sonstige bildverarbeitenden Maßnahmen verändert.

15

20

25

30

35

10

5

Für Nachtblinde kann zum Beispiel eine Sehhilfe durch das erfindungsgemäße Informationssystem dadurch verwirklicht werden, aus dem Gesichtsfeld, beispielsweise durch stark lichtempfindliche Photodetektoren, erfaßte Licht stark verstärkt auf die Retina projiziert wird. Dabei können die Zapfen derart angeregt werden, daß ein überwiegend farbiges, photopisches Sehen statt ein skotopisches Sehen stattfindet. Es wird auch die maximal erlaubte Helligkeit der einzelnen projizierten Bildpunkte auf einen vorgegebenen Schwellwert beschränkt, um ein Blenden durch hell leuchtende Gegenstände wie Straßenlaternen und entgegenkommenden Autos zu vermeiden. Ein solches System eignet sich also auch als Anti-Blend-System. Denn wird die Helligkeit des Gesichtsfelds gehoben, während die "übermäßige" Helligkeit einzelner Punkte unverändert bleibt, so werden die "übermäßig" helle Punkte nicht mehr "übermäßig" als hell empfunden. Umfaßt die Informationsvorrichtung auch Infrarotsensor, der Infrarotlicht aus dem Gesichtsfeld erfaßt, so lassen sich zusätzliche einfarbige Bildinformationen bezüglich des Gesichtsfelds bei Nacht oder Nebel gewinnen, die in den sichtbaren Spektralbereich transformiert werden können, um die schon mittels

WO 02/31580 PCT/EP00/09843

- 60 -

der Gesichtfelderfassungsvorrichtung und der Auswertevorrichtung gewonnen Bildinformationen aufzuwerten.

Auch im Allgemeinen kann das erfindungsgemäße Informationssystem dazu geeignet sein, die Sehfähigkeit zu verbessern. Beispielsweise bei starken oder schwachen Kontrasten oder bei geringer Helligkeit Gesichtsfeld können in ihrer Helligkeit Bildinformationen in das Auge projiziert werden. um eine verbesserte Sehfähigkeit zu ermöglichen.

10

15

20

5

#### He1me

Die Integration des erfindungsgemäßen Informationssystem in einem Feuerwehrmannhelm wurde oben erläutert. Ähnliche Ausgestaltungen, beispielsweise als Soldaten-, Fahrer-, Kranfahrer-, Sportler- oder Pilotenhelm oder -brille sind ebenfalls denkbar.

Ein Soldatenhelm bzw. -brille auf der Basis des erfindungsgemäßen Informationssystem könnte dem Soldaten zum Beispiel bei der Orientierung und/oder bei der Zielsuche behilflich sein. In einem solchen Fall umfaßt die Informationsvorrichtung Informationssystem bevorzugt Sensoren und/oder Funkempfänger, eine · übersinnliche Wahrnehmung der Umgebung und/oder das Empfangen von Informationen von einer Kommandozentrale ermöglichen. Ausgabevorrichtung wird Informationen bevorzugt visuelle, hörbar oder taktil, zum Beispiel in Form kurzer elektrischer Reizströme an der Haut, zur Verfügung stellen. Letzteres verwendet werden, einen Soldaten unmittelbar über die Richtung eines von hinten zubewegenden Fremdobjekts zu informieren.

30

25

Als Nachtsichtgerät würde das Informationssystem neben der Erfassung von sichtbarem Licht aus dem Gesichtsfeld auch Infrarotlicht aus dem Gesichtsfeld erfassen. Wie zuvor beschrieben. können Bildinformationen solch erfaßtem aus

WO 02/31580

Infrarotlicht gewonnen und bei der Aufwertung von in das Auge zu projizierenden Bildinformationen eingesetzt werden.

die Informationsvorrichtung beispielsweise einen Weist GSP-Empfänger auf, so könnte der Helm Positionsinformationen oder Orientierungshilfen auf die Netzhaut projizieren. erfolgt die Projektion solcher Informationen ins Auge ähnlich der Projektion einer elektronischen Zeitung. Das heißt, es wird eine Ablenkung des Soldaten dadurch vermieden, daß das Bild der Informationen im Raum oder vis-à-vis einer neutralen Stellung des fixiert zu sein scheint. Auch eine Anpassung Bildinformationen an den dahinter wahrgenommenen Hintergrund zwecks einer möglichst guten Lesbarkeit findet durch eine zur Informationsvorrichtung gehörende Auswertevorrichtung statt.

15

20

25

30

10

Auch wenn eine Funk- oder sonstige Datenübertragung vom Soldaten aus an eine Kommandozentrale aus strategischen Tarnungsgründen generell zu vermeiden gilt, könnte in bestimmten Fällen auch eine Übertragung von mit den Augenbewegungen des Soldaten korrelierte Gesichtfelddaten an eine Kommandozentrale sinnvoll sein.

In einer für Soldaten besonders interessanten Ausführungsform umfaßt die Informationsvorrichtung eine oder mehrere Kameras, die Bilder von außerhalb des Gesichtsfeldes erfassen. Die so gewonnenen Bildinformationen werden dann über eine Projektionsvorrichtung auf die Retina projiziert. Das auf das Gesichtsfeldbild projizierte Zusatzbild könnte zum Beispiel als Bild im Bild als kleines Bild in die Ecke des natürlichen oder projizierten Gesichtsfeldbildes projiziert werden oder Längstreifen am unteren Rand erscheinen. Dabei dient die Erfassung von Signalen aus dem Auge zusammen mit der Gesichtsfelderfassung dazu, die projizierten Bilder in Korrelation mit den Bewegungen des Auges zu halten.

Beim Kranfahrer wäre es ebenfalls hilfreich, Zusatzbilder aus anderen Perspektiven in das Gesichtsfeld hineinzuprojizieren. Gleichfalls könnte das erfindungsgemäße Informationssystem umfassen, mit deren Hilfe Entfernungs- oder Zusatzsensoren Gewichtsinformationen ermittelt werden, um in das Gesichtsfeld · hineinprojiziert zu werden. Solche Informationen beispielsweise auch beim Anblick der Last in Kombination mit einem Tastenklick hörbar oder visuell zur Verfügung gestellt werden. Dabei dient das aus dem Gesichtsfeld ermittelte Licht als Grundlage der Bilderkennung während die Signale aus dem Auge wie zuvor beschrieben eine Korrelation des erfaßten Gesichtsfelds zur Sehachse ermöglichen.

Einem Piloten könnte das erfindungsgemäße Informationssystem viele verschiedenen Informationen zur Verfügung stellen. Durch eine 15 Anbindung an das Informationssystem des Flugzeugs könnten zum Beispiel relevante Daten wie Flughöhe, Geschwindigkeit oder Flugrichtung oder auch ein künstlicher Horizont in Gesichtsfeld des Piloten wie beschrieben eingeblendet werden. Beim Anflug könnten zudem Landehilfeinformationen eingeblendet werden, 20 die einen virtuellen Landekorridor darstellen, oder Höhen- oder Richtungskorrekturwerte angeben. Bei militärischer Anwendung können dem Pilot Freund/Feind- und Zielhilfeinformationen zur Verfügung gestellt werden. Hier spielt die Blickrichtung des Piloten sowohl bei der räumlichen Einblendung der Informationen 25 als auch bei der Informationsauswahl eine Rolle. Der Pilot möchte, daß ein Flugkörper, den er mit den Augen anvisiert, identifizert wird. Falls die Idenifizierung visuell erfolgt, möchte er, daß die Einblendung keine relevanten Bereiche seines Gesichtsfeldes 30 überdecken. Dabei sind die gegenläufige Anforderungen berücksichtigen, daß die relevanten Bereiche des Gesichtsfeldes typischerweise auf der Fovea centralis abgebildet werden, aber auch, daß nur diejenigen Bilder, die auf die Fovea centralis projiziert werden, scharf abgebildet werden. Es muß also eine 35 intelligente Einblendung erfolgen, bei der die relevanten Bereiche

15

20

25

30

35

des Gesichtsfelds zum Beispiel über eine Bilderkennung und nicht lediglich über die Ausrichtung der Fovea centralis erkennt werden. In diesem Zusammenhang kann erfindungsgemäße das Informationssystem auch als Untersystem zum Informationssystem des Flugzeugs fungieren und diesem Informationenen zur Verfügung stellen. So könnten beispielsweise Informationen darüber, wo der Pilot hinschaut, vom erfindungsgemäßen Informationssystem an das Flugzeuginformationssystem geliefert werden und Zielerfassung beitragen. Im Ernstfall könnte das Informationsystem feindliche Radarstellung über Sensoren orten und ihre Position mit dem dazugehörigen Gelände dreidimensional darstellen.

Sportlern könnten durch das erfindungsgemäße Informationssystem wie in den vorhergehenden Beispielen verschiedene Informationen zur Verfügung gestellt werden. Mittels einer Projektion von Informationen in das Auge könnten beispielsweise Orientierungshilfen, Geschwindigkeitsinformation und/oder aufgewertete Gesichtfeldinformationen, die eine bessere Sicht bei Dämmerung, Nacht, Regengischt oder Nebel ermöglichen. Verfügung gestellt werden. Insbesondere bei gehaltsarmen Informationen eignet sich ein nicht visuelles Zurverfügungstellen der Informationen. Ähnlich den vorhergehenden Beispielen kann ein von einem Sportler getragenes erfindungsgemäßes Informationssystem als Untersystem eines Sportgerätes oder eines Fahrzeuges fungieren.

### Reine Informationssysteme

Eine übersinnliche Wahrnehmung läßt sich durch Ausführungsformen des erfindungsgemäßen Informationsystems erzielen, bei den die Informationsvorrichtung einen oder mehrere Sensoren beispielsweise Magnetfelddetektoren, Drucksensoren, Thermometer, Spektralsensoren, optische oder akustische Interferenzmeßgeräte umfaßt. Insbesondere durch eine Überlagerung einer in das Auge projizierten, bildlichen Darstellung der aus den Sensoren

10

. 15

20

25

30

gewonnenen Informationen auf das natürliche Gesichtsfeld entspricht die Darstellung den Bedürfnissen eines sehenden Menschen. Dabei kann das erfindungsgemäße Informationssystem als Bestandteil, insbesondere als Präsentationseinrichtung, einer komplexen Meßeinrichtung auftreten.

Als Beispiel eines solchen Systems gilt ein mit empfindlichen Magnetsensoren ausgestattetes Brillensystem, das in der Lage ist, stromführende oder metallische Gegenstände in Relation zur Brille zu orten. Werden solche georteten Gegenstände mittels einer wie zuvor beschriebenen Projektion ortsgetreu im natürlichen Gesichtsfeld farbig gekennzeichnet, so ließen sich beispielsweise unter Putz verlaufende Wasser- oder Stromleitungen sehr leicht auffinden. Ein ein solches Brillensystem tragender Monteur würde den Verlauf der Leitungen sozusagen "an der Wand gepinselt" sehen.

Wird ein zwei- oder dreidimensionales Array oder sonstige einoder mehrdimensionale Verteilung der Sensoren gewählt, so können auch beispielsweise sehr komplexe Vektorfelder Gradientenverläufe einem Betrachter bildlich über den dazugehörigen Gegenstand oder Anordnung sichtbar gemacht werden. Zum Beispiel könnte eine Anordnung von Drucksensoren um ein Testobjekt in einem Windtunnel herum Druckinformationen liefern, durch das erfindungsgemäße Informationsystem wie die beschrieben derart aufbereitet und in die Augen eines Betrachters, der das Testobjekt durch ein Fenster beobachtet, projiziert, daß er die durch das Testobjekt entstehenden Druckgradienten anhand entsprechender farbiger Kennzeichnung der Druckwerte dort sieht, wo sie vorhanden sind. Einem Schweißer könnten mittels einer Infrarotkamera gewonnenen Temperaturinformationen derart in sein Gesichtsfeld dargestellt werden. daß örtliche die Oberflächentemperatur entlang den bearbeiteten Gegenstände erkenntlich ist.

10

Ähnlich können Spektralsensoren dazu verwendet werden, einem Benutzer Auskunft über genaue Farbwerte Materialzusammensetzungen zu geben. Hier bietet es sich auch an, die ermittelten Informationen, in Abhängigkeit davon, wo der Benutzer hinschaut, genau hörbar zu präsentieren. Zusammenarbeit mit einer Datenbank und einer Mustererkennung könnte ein solches System zum Beispiel dazu verwendet werden, · Pilze oder Pflanzen zumindest annähernd zu identifizieren, indem der Benutzer bestimmte Teile des Pilzes bzw. der Pflanze auf Systemaufforderung anschaut bzw. den Sensoren zuwendet.

# Zusammenfassung

Im folgenden werden anhand von Merkmalsgruppen die wesentlichen
Punkte nochmals zusammengefasst, die jeweils für sich und in
Kombination miteinander die Erfindung in besonderer Weise
kennzeichnen:

- 1. Informationssystem mit
- 20 einer Signalerfassungsvorrichtung, die von einem eine Netzhaut aufweisenden Auge zurückreflektierte Signale erfaßt;
  - eine Gesichtsfelderfassungsvorrichtung, die sichtbares Licht aus einem der Netzhaut zugeordneten Gesichtsfeld erfaßt, ohne ein Netzhautreflexbild der Netzhaut zu erfassen;
- 25 eine Informationsvorrichtung; und
  - einer Ausgabevorrichtung, die Informationen in Zusammenarbeit mit der Informationsvorrichtung, in Abhängigkeit vom erfaßten Licht und in Korrelation mit den erfaßten Signalen zur Verfügung stellt.

- 2. Informationssystem nach Punkt 1, wobei
- die Informationsvorrichtung eine Auswertevorrichtung umfaßt, die Bildinformationen bezüglich des Gesichtsfeldes aus dem erfaßten Licht gewinnt; und

10

15

- die Ausgabevorrichtung eine Projektionsvorrichtung umfaßt, die die Bildinformation auf die Netzhaut derart in Korrelation mit den erfaßten Signalen projiziert, daß ein natürlich wahrgenommenes Gesichtsfeld und die projizierten Bildinformationen von der Netzhaut als einheitliches Bild wahrgenommen werden.
- 3. Informationssystem nach einem der vorhergehenden Punkte, wobei die besagte Abhängigkeit eine zeitliche oder räumliche Korrelation zwischen dem Zurverfügungstellen der Informationen und dem erfaßten Licht umfaßt.
- 4. Informationssystem nach einem der vorhergehenden Punkte, wobei die besagte Abhängigkeit eine mindestens einen Informationsschlüssel liefernde Musterkennung umfaßt, und die Informationsschlüssel einer durch die Informationsvorrichtung gestützten Informationsabfrage dienen.
- 5. Informationssystem nach einem der vorhergehenden Punkte, wobei die Signalerfassungsvorrichtung eine scannende Vorrichtung umfaßt, die in einem ersten Scanvorgang eine mindestens partielle Erfassung des Netzhautreflexbildes aufnimmt und in einem späteren Scanvorgang eine weniger umfangreiche Erfassung des Netzhautreflexbildes vornimmt.
- 25 6. Informationssystem nach einem der Punkte 1-4, wobei die Signalerfassungsvorrichtung das Netzhautreflexbild nur teilweise oder gar nicht erfaßt.
- 7. Informationssystem nach einem der vorhergehenden Punkte, wobei die Gesichtsfelderfassungsvorrichtung eine sphärisch oder sphärisch wirkende Reflektionsschicht aufweist, die ein Teil des auf das Auge gerichteten Lichts in eine Sensorvorrichtung zur Erfassung ablenkt.

8. Informationssystem nach einem der vorhergehenden Punkte, wobei die Gesichtsfelderfassungsvorrichtung und/oder die Signalerfassungsvorrichtung das Hornhautreflexbild des Auges mindestens teilweise erfaßt.

5

9. Informationssystem nach einem der vorhergehenden Punkte, wobei die Signalerfassungsvorrichtung und die Gesichtsfelderfassungsvorrichtung als tragbare Einheit ausgeführt sind.

10

- 10. Informationssystem nach einem der vorhergehenden Punkte, wobei die Ausgabevorrichtung die Informationen taktil, visuell, hörbar, riechbar und/oder geschmacklich zur Verfügung stellt.
- 11. Informationssystem nach einem der vorhergehenden Punkte, wobei die Informationsvorrichtung eine Datenbank, eine Sensorik, eine Informationsnetzanbindung und/oder eine Auswertevorrichtung.
- 12. Informationssystem nach einem der vorhergehenden Punkte, 20 wobei das Informationssystem in tragbarer Form ausgeführt wird.
  - 13. Verfahren zum Zurverfügungstellen von Informationen mit den Schritten:
  - Erfassung von Signalen, die von einem eine Netzhaut aufweisenden Auge zurückreflektiert worden sind;
    - Erfassung von sichtbarem Licht aus einem der Netzhaut zugeordneten Gesichtsfeld, ohne ein Netzhautreflexbild der Netzhaut zu erfassen; und
- Zurverfügungstellen der Informationen in Zusammenarbeit mit 30 einer Informationsvorrichtung, in Abhängigkeit vom erfaßten Licht und in Korrelation mit den erfaßten Signalen.
  - 14. Verfahren nach Punkt 13, mit den Schritten:
- Gewinnung von Bildinformationen bezüglich des Gesichtsfeldes 35 aus dem erfaßten Licht; und

- Projektion der Bildinformation auf die Netzhaut derart in Korrelation mit den erfaßten Signalen, daß das natürlich wahrgenommene Gesichtsfeld und die projizierten Bildinformationen von der Netzhaut als einheitliches Bild wahrgenommen werden.

5

15. Verfahren nach Punkt 13 oder 14, wobei die besagte Abhängigkeit eine zeitliche oder räumliche Korrelation zwischen dem Zurverfügungstellen der Informationen und dem erfaßten Licht umfaßt.

10

16. Verfahren nach einem der Punkte 13-15, wobei die besagte Abhängigkeit eine mindestens einen Informationsschlüssel liefernde Musterkennung umfaßt, und die Informationsschlüssel einer durch die Informationsvorrichtung gestützten Informationsabfrage dienen.

15

20

30

- 17. Verfahren nach einem der Punkte 13-16, wobei die Signalerfassung Scanvorgänge umfaßt, wobei in einem ersten Scanvorgang eine mindestens partielle Erfassung des Netzhautreflexbildes erfolgt und in einem späteren Scanvorgang eine weniger umfangreiche Erfassung des Netzhautreflexbildes vorgenommen wird.
- 18. Verfahren nach einem der Punkte 13-16, wobei die Signalerfassung das Netzhautreflexbild nur teilweise oder gar 25 nicht erfaßt.
  - 19. Verfahren nach einem der Punkte 13-18, wobei die Erfassung von sichtbarem Licht über eine sphärisch oder sphärisch wirkende Reflektionsschicht erfolgt, die ein Teil des auf das Auge gerichteten Lichts in eine Sensorvorrichtung zur Erfassung ablenkt.
  - 20. Verfahren nach einem der Punkte 13-19, wobei die Erfassung von sichtbarem Licht und/oder die Signalerfassung eine mindestens partielle Erfassung des Hornhautreflexbildes des Auges umfaßt.

21. Verfahren nach einem der Punkte 13-20, wobei das Zurverfügungstellen der Informationen taktil, visuell, hörbar, riechbar und/oder geschmacklich zur Verfügung stellt.

5

- 22. Verfahren nach einem der Punkte 13-21, wobei die Informationsvorrichtung eine Datenbank, eine Sensorik, eine Informationsnetzanbindung und/oder eine Auswertevorrichtung ist.
- 23. Verfahren zur Überspielung von optischer Information auf die menschliche Netzhaut unter Verwendung eines vorzugsweise seriell arbeitenden, ein auf die Netzhaut einfallendes Bild aufnehmenden Scansystems und eines Informations-Projektionssystems, wobei der Abtast- und Projektionsstrahl ein vorbestimmtes Bewegungsmuster aufweist und wobei die Information vorzugsweise von den Signalen des Scanystems abhängt, dadurch gekennzeichnet, daß der Projektionsvorgang bei laufendem Abtastvorgang erfolgt;
- 24. Verfahren nach Punkt 23, bei dem nach einem partiellen 20 Abtasten des Bildes ein partieller Projektionsvorgang abläuft.
- 25. Vorichtung zur Durchführung des Verfahrens nach Punkt 23 oder 24, mit einem vorzugsweise seriell arbeitenden Scansystems, mit dem ein auf die Netzhaut einfallendes Bild aufnehmbar ist, und mit einem Informations-Projektionssystem, wobei der Abtast- und Projektionsstrahl mittels einer Steuereinrichtung entsprechend einem vorbestimmten Bewegungsmuster steuerbar ist, gekennzeichnet durch eine Einrichtung, die den Projektionsvorgang bei laufendem Abrastvorgang erlaubt.

30

26. Vorrichtung zur Überspielung von optischer Information auf die menschliche Netzhaut unter Verwendung eines seriell arbeitenden Scan- und Projektionssystems mit vorbestimmtem Bewegungsmuster des Abtast- und Projektionsstrahls, bei der der

WO 02/31580 PCT/EP00/09843

- 70 -

Strahl (846) des projizierten Lichts dem Strahl (843) des aufgenommenen Lichts nacheilt.

- 27. Vorrichtung nach Punkt 26, bei der der minimale zeitliche Versatz zwischen Aufnahme und Projektion eines Bildpunkts im wesentlichen der Verarbeitungszeit des zuvor aufgenommenen Bildsignals entspricht.
- 28. Vorrichtung nach Punkt 26 oder 27, bei der das Scan- und das 10 Projektionssystem einen gemeinsamen oder unterschiedlichen Strahlengang haben.
- 29. Vorrichtung nach Punkt 26 zur Überspielung von optischer Information auf die menschliche Netzhaut unter Verwendung eines seriell arbeitenden Scan- und Projektionssystems mit vorbestimmtem Bewegungsmuster des Abtast- und Projektionsstrahls, dadurch gekennzeichnet, daß die Bewegungsmuster (1502a, 1502b) des Abtast- und des Projektionsstrahls zueinander versetzt sind.
- 20 30. Vorrichtung nach Punkt 29, bei der die Bewegungsmuster des Abtast- und des Projektionsstrahls zueinander um einen vorbestimmten kleinen Winkel versetzt sind.
- 31. Vorrichtung nach Punkt 29, bei der die Bewegungsmuster des 25 Abtast- und des Projektionsstrahls zueinander um einen vorbestimmten kleinen Abstand (11VA) radial versetzt sind.
  - 32. Vorrichtung nach einem der vorangehenden Punkte, bei der das Scan- und das Abtastsystem getrennte Strahlengänge haben.
  - 33. Vorrichtung nach einem der vorangehenden Punkte, bei der das Scansystem das auf die Netzhaut einfallende Bild an einer der Netzhaut vorgeschalteten Stelle (929) des optischen Systems abtastet.

30

- 34. Vorrichtung nach einem der vorangehenden Punkte, bei der das Bewegungsmuster des Abtast- und Projektionsstrahls einer Spirale entspricht.
- 5 35. Vorrichtung nach einem der vorangehenden Punkte, bei der das Bewegungsmuster des Abtast- und Projektionsstrahls einem Kreis- oder Ellipsenscan entspricht.
- 36. Vorrichtung nach einem der vorangehenden Punkte, unter
  Verwendung einer konstanten Abtastgeschwindigkeit, oder einer konstanten Winkelgeschwindigkeit des Abtast- und Projektionsstrahls, oder einer an die Dichte der Rezeptoren im menschlichen Auge angepassten Geschwindigkeit, so dass die pro Zeiteinheit von den Projektionsstrahlen überstrichenen Rezeptoren im wesentlichen konstant ist.
  - 37. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Analyse des Sehvermögens eines Patienten, indem mittels der Projektionseinheit auf der Netzhaut bzw. auf ausgewählten Bereichen der Netzhaut ein vorbestimmtes Muster bzw. eine vorbestimmte Musterverteilung generiert wird.
- 38. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Analyse der Bewegungsmuster und/oder der Rauschfelder und/oder des räumlichen Sehvermögens eines Auges eines Patienten, indem für Prüfzwecke mittels der Projektionseinheit auf der Netzhaut Random-Dot-Muster generiert werden.
  - 39. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Bestimmung von Anomalien der Augapfel-Motorik, indem in das System eine Einrichtung zur Bestimmung und Überwachung der Lage und/oder Orientierung des Augapfels integriert ist.

40. Verwendung und/oder Ausbildung zur Bestimmung des Schielwinkels, indem eine Einrichtung zur Bestimmung und Überwachung des Augenmittelpunkts beider Augen integriert ist.

5

10

- 41. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Aufdeckung von parasysympathischen/sympathischen Efferenzen, indem die Pupillomotorik mittels einer Detektoreinrichtung überwacht und ausgewertet wird.
- 42. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte als Synoptophor oder Synoptometer ohne Apparatekonvergenz.

- 43. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte als Einrichtung zur Bestimmung der Zyklodeviation.
- 20 44. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte als Phasendifferenzhaploskop.
- 45. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte als Einrichtung zur sichtachsenidentischen Detektion von Pnorien bei unterschiedlichen Blickrichtungen.
- 46. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Funktionsprüfung der Netzhaut, unter Heranziehung eines Muster-Elektro-Retinogramms (ERG) und einer Korrellationseinrichtung, mit der ein auf die Netzhaut gespieltes Bild in Korrellation mit dem tatsächlich ermittelten ERG bringbar ist.

47. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Messung der Kontrast-Empfindlichkeit des Sehvermögens eines Patienten vorzugsweise in Abhängigkeit von der Ortsfrequenz.

5

- 48. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Rauschfeldampimetrie.
- 10 49. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte zur Bestimmung der Ausdehnung und der Lage zentraler Gesichtsfelddefekte (Skotome).
- 50. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte als VEP (Visual Enabling for Precision Surgery)-Gerät.
- 51. Verwendung und/oder Ausbildung der Systeme und/oder Verfahren nach einem der vorstehenden Punkte als SLO (Scanning Laser Ophthalmoloskop)-Gerät.

#### **Ansprüche**

- 1. Informationssystem mit
- einer Signalerfassungsvorrichtung, die von mindestens einem eine Netzhaut aufweisenden Auge zurückreflektierte Signale erfaßt;
  - eine Gesichtsfelderfassungsvorrichtung, die sichtbares Licht aus einem der Netzhaut zugeordneten Gesichtsfeld erfaßt, ohne ein Netzhautreflexbild der Netzhaut zu erfassen:
- 10 eine Informationsvorrichtung; und
  - einer Ausgabevorrichtung, die Informationen in Zusammenarbeit mit der Informationsvorrichtung, in Abhängigkeit vom erfaßten Licht und in Korrelation mit den erfaßten Signalen zur Verfügung stellt.

15

- Informationssystem nach Anspruch 1, wobei
- die Informationsvorrichtung eine Auswertevorrichtung umfaßt,
   die Bildinformationen bezüglich des Gesichtsfeldes aus dem erfaßten Licht gewinnt; und
- 20 die Ausgabevorrichtung eine Projektionsvorrichtung umfaßt, die die Bildinformation auf die Netzhaut derart in Korrelation mit den erfaßten Signalen projiziert, daß ein natürlich wahrgenommenes Gesichtsfeld und die projizierten Bildinformationen von der Netzhaut als einheitliches Bild wahrgenommen werden.

25

3. Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die besagte Abhängigkeit eine zeitliche oder räumliche Korrelation zwischen dem Zurverfügungstellen der Informationen und dem erfaßten Licht umfaßt.

30

35

4. Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die besagte Abhängigkeit eine mindestens einen Informationsschlüssel liefernde Musterkennung umfaßt, und die Informationsschlüssel einer durch die Informationsvorrichtung gestützten Informationsabfrage dienen.

10

- 5. Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die Signalerfassungsvorrichtung eine scannende Vorrichtung umfaßt, die in einem ersten Scanvorgang eine mindestens partielle Erfassung des Netzhautreflexbildes aufnimmt und in einem späteren Scanvorgang eine weniger umfangreiche Erfassung des Netzhautreflexbildes vornimmt.
- 6. Informationssystem nach einem der Ansprüche 1-4, wobei die Signalerfassungsvorrichtung das Netzhautreflexbild nur teilweise oder gar nicht erfaßt.
- Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die Gesichtsfelderfassungsvorrichtung eine sphärisch oder sphärisch wirkende Reflektionsschicht aufweist, die ein Teil des auf das Auge gerichteten Lichts in eine Sensorvorrichtung zur Erfassung ablenkt.
- Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die Gesichtsfelderfassungsvorrichtung und/oder die Signalerfassungsvorrichtung das Hornhautreflexbild des Auges mindestens teilweise erfaßt.
- Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die Signalerfassungsvorrichtung und die Gesichtsfelderfassungsvorrichtung als tragbare Einheit ausgeführt sind.
  - 10. Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die Ausgabevorrichtung die Informationen taktil, visuell, hörbar, riechbar und/oder geschmacklich zur Verfügung stellt.
    - 11. Informationssystem nach einem der vorhergehenden Ansprüchen, wobei die Informationsvorrichtung eine Datenbank, eine Sensorik, eine Informationsnetzanbindung und/oder eine Auswertevorrichtung.

30

5

10

25

30

- 12. Informationssystem nach einem der vorhergehenden Ansprüchen, wobei das Informationssystem in tragbarer Form ausgeführt wird.
- 13. Verfahren zum Zurverfügungstellen von Informationen mit den Schritten:
  - Erfassung von Signalen, die von einem eine Netzhaut aufweisenden Auge zurückreflektiert worden sind;
  - Erfassung von sichtbarem Licht aus einem der Netzhaut zugeordneten Gesichtsfeld, ohne ein Netzhautreflexbild der Netzhaut zu erfassen: und
  - Zurverfügungstellen der Informationen in Zusammenarbeit mit einer Informationsvorrichtung, in Abhängigkeit vom erfaßten Licht und in Korrelation mit den erfaßten Signalen.
- 15 14. Verfahren nach Anspruch 13, mit den Schritten:
  - Gewinnung von Bildinformationen bezüglich des Gesichtsfeldes aus dem erfaßten Licht; und
- Projektion der Bildinformation auf die Netzhaut derart in Korrelation mit den erfaßten Signalen, daß das natürlich wahrgenommene Gesichtsfeld und die projizierten Bildinformationen von der Netzhaut als einheitliches Bild wahrgenommen werden.
  - 15. Verfahren nach Anspruch 13 oder 14, wobei die besagte Abhängigkeit eine zeitliche oder räumliche Korrelation zwischen dem Zurverfügungstellen der Informationen und dem erfaßten Licht umfaßt.
  - 16. Verfahren nach einem der Ansprüche 13-15, wobei die besagte Abhängigkeit eine mindestens einen Informationsschlüssel liefernde Musterkennung umfaßt, und die Informationsschlüssel einer durch die Informationsvorrichtung gestützten Informationsabfrage dienen.
- 17. Verfahren nach einem der Ansprüche 13-16, wobei die Signalerfassung Scanvorgänge umfaßt, wobei in einem ersten 35 Scanvorgang eine mindestens partielle Erfassung des

Netzhautreflexbildes erfolgt und in einem späteren Scanvorgang eine weniger umfangreiche Erfassung des Netzhautreflexbildes vorgenommen wird.

- 5 18. Verfahren nach einem der Ansprüche 13-16, wobei die Signalerfassung das Netzhautreflexbild nur teilweise oder gar nicht erfaßt.
- 19. Verfahren nach einem der Ansprüche 13-18, wobei die Erfassung von sichtbarem Licht über eine sphärisch oder sphärisch wirkende Reflektionsschicht erfolgt, die ein Teil des auf das Auge gerichteten Lichts in eine Sensorvorrichtung zur Erfassung ablenkt.
- 15 20. Verfahren nach einem der Ansprüche 13-19, wobei die Erfassung von sichtbarem Licht und/oder die Signalerfassung eine mindestens partielle Erfassung des Hornhautreflexbildes des Auges umfaßt.
- 20 21. Verfahren nach einem der Ansprüche 13-20, wobei das Zurverfügungstellen der Informationen taktil, visuell, hörbar, riechbar und/oder geschmacklich zur Verfügung stellt.
- 22. Verfahren nach einem der Ansprüche 13-21, wobei die Zinformationsvorrichtung eine Datenbank, eine Sensorik, eine Informationsnetzanbindung und/oder eine Auswertevorrichtung.



**ERSATZBLATT (REGEL 26)** 

2/18



3/18



WO 02/31580 PCT/EP00/09843









8 / 18





**ERSATZBLATT (REGEL 26)** 

9/18







## 11 / 18



12/18





13/18















## 16 / 18



17/18



**ERSATZBLATT (REGEL 26)** 

# 18 / 18

Fig. 17



#### INTERNATIONAL SEARCH REPORT

PCT/EP 00/09843

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G02B27/01 A61E A61B3/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 G02B A61B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category <sup>4</sup> Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US 5 815 741 A (OKUYAMA) 1-4.29 September 1998 (1998-09-29) 8-10. 12-16. 20,21 column 4, line 33 - line 38; figure 1A column 9, line 31 - line 35; figure 8 A DE 196 31 414 A (DAIMLER-BENZ) 5,7,19 19 February 1998 (1998-02-19) cited in the application abstract column 8, line 33 - line 42; figures 1-4 Α DE 197 28 890 A (DAIMLER-BENZ) 5,17 4 February 1999 (1999-02-04) cited in the application column 4, line 29 - line 36; claim 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: \*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international invention \*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents and accomplication below the best and accomplication. document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 1 June 2001 12/06/2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340–2040, Tx. 31 651 epo ni, Fax: (+31-70) 340–3016 Soulaire, D

# INTERNATIONAL SEARCH REPORT Information on patent family members

In mational Application No PCT/EP 00/09843

| Patent document cited in search report | : | Publication date | Patent family member(s)                                                         | Publication date                                                   |
|----------------------------------------|---|------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| US 5815741                             | Α | 29-09-1998       | JP 8179223 A                                                                    | 12-07-1996                                                         |
| DE 19631414                            | A | 19-02-1998       | AU 4453397 A<br>WO 9805992 A<br>EP 0917661 A<br>JP 2000515645 T<br>US 6227667 B | 25-02-1998<br>12-02-1998<br>26-05-1999<br>21-11-2000<br>08-05-2001 |
| DE 19728890                            | Α | 04-02-1999       | WO 9903013 A<br>EP 1000376 A                                                    | 21-01-1999<br>17-05-2000                                           |

### INTERNATIONALER RECHERCHENBERICHT

In attonales Aktenzeichen PCT/EP 00/09843

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 G02B27/01 A61B3/12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

### B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klasslfikatlonssystem und Klassifikatlonssymbole )  $IPK\ 7\ G02B\ A61B$ 

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erfordertich unter Angabe der in Betracht kommenden Teile                                               | Betr. Anspruch Nr.      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| x          | US 5 815 741 A (OKUYAMA)<br>29. September 1998 (1998-09-29)                                                                                      | 1-4,<br>8-10,<br>12-16, |
|            | Spalte 4, Zeile 33 - Zeile 38; Abbildung<br>1A                                                                                                   | 20,21                   |
|            | Spalte 9, Zeile 31 - Zeile 35; Abbildung 8                                                                                                       |                         |
| 4          | DE 196 31 414 A (DAIMLER-BENZ) 19. Februar 1998 (1998-02-19) in der Anmeldung erwähnt Zusammenfassung Spalte 8, Zeile 33 - Zeile 42; Abbildungen | 5,7,19                  |
|            | 1-4                                                                                                                                              |                         |
| i          | -/                                                                                                                                               |                         |
|            |                                                                                                                                                  |                         |
|            |                                                                                                                                                  |                         |

| Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen                                                                     | X Siehe Anhang Patentfamille                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Besondere Kategorien von angegebenen Veröffentlichungen :                                                                                   |                                                                                                                                                                                                            |
| 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist                     | T Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum<br>oder dem Prioritätsdatum veröffentlicht worden ist und mit der<br>Anmeldung nicht kollidiert, sondern nur zum Verständnis des der |
| "E" älteres Dokument, das jedoch erst am oder nach dem internationalen<br>Anmeldedatum veröffentlicht worden ist                            | Theorie angegeben ist                                                                                                                                                                                      |
| "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-                                                            | "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung<br>kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf<br>erfinderischer Tätigkelt beruhend betrachtet werden    |
| soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)  "O" Veröffentlichung die sieh auf eine aus die ausgeführt) | erfinderischer Tätigkeit beruhend betrachtet werden  "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet             |
| eine Benutzung, eine Ausstellung oder andern McGnahmen                                                                                      | Veröffentlichungen dieser Ketegorie in Vertigderen anderen                                                                                                                                                 |
| dem beanspruchten Prioritätsdatum veröffentlicht worden ist                                                                                 | diese Verbindung für einen Fachmann naheiligend ist  *&" Veröffentlichung, die Mitglied derselben Patentfamilie ist                                                                                        |
| Datum des Abschlusses der Internationalen Recherche                                                                                         | Absendedatum des internationalen Recherchenberichts                                                                                                                                                        |
| 1. Juni 2001                                                                                                                                | 12/06/2001                                                                                                                                                                                                 |
| Name und Postanschrift der Internationalen Recherchenbehörde<br>Europäisches Patentamt, P.B. 5818 Patentiaan 2<br>NL – 2280 HV Rijswijk     | Bevollmächtigter Bediensteter                                                                                                                                                                              |
| Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                        | Soulaire, D                                                                                                                                                                                                |
| Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)                                                                                                 | <u> </u>                                                                                                                                                                                                   |

### INTERNATIONALER RECHERCHENBERICHT

PCT/EP 00/09843

|              | ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN                                                                                      |            | <del></del>        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|
| Kategorie°   | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme                                       | nden Teile | Betr. Anspruch Nr. |
| A            | DE 197 28 890 A (DAIMLER-BENZ) 4. Februar 1999 (1999-02-04) in der Anmeldung erwähnt Spalte 4, Zeile 29 - Zeile 36; Anspruch 1 |            | 5,17               |
|              |                                                                                                                                |            |                    |
|              |                                                                                                                                |            |                    |
|              |                                                                                                                                |            |                    |
|              |                                                                                                                                |            |                    |
|              |                                                                                                                                |            |                    |
|              |                                                                                                                                |            | -                  |
|              | •                                                                                                                              |            |                    |
|              |                                                                                                                                | į          |                    |
| blatt PCT/se | /210 (Fortsetzung von Blatt 2) (Julii 1992)                                                                                    |            |                    |

### INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 00/09843

| Im Recherchenberich<br>ngeführtes Patentdokur |   | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie                                               | Datum der<br>Veröffentlichung                                      |
|-----------------------------------------------|---|-------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| US 5815741                                    | Α | 29-09-1998                    | JP 8179223 A                                                                    | 12-07-1996                                                         |
| DE 19631414                                   | A | 19-02-1998                    | AU 4453397 A<br>WO 9805992 A<br>EP 0917661 A<br>JP 2000515645 T<br>US 6227667 B | 25-02-1998<br>12-02-1998<br>26-05-1999<br>21-11-2000<br>08-05-2001 |
| DE 19728890                                   | Α | 04-02-1999                    | WO 9903013 A<br>EP 1000376 A                                                    | 21-01-1999<br>17-05-2000                                           |

Formblatt PCT/ISA/210 (Anhang Patentfamille)(Juli 1892)