Основная мысль: если удалось найти два треугольника ABC и $A_1B_1C_1$ такие, что $AB||A_1B_1, BC||B_1C_1, AC||A_1C_1$, то прямые AA_1, BB_1, CC_1 пересекаются в одной точке, которая является центром гомотетии, переводящей один треугольник в другой.

1. Пусть A_1, B_1, C_1 — середины сторон BC, AC, AB соответственно треугольника ABC; точка P — произвольная точка плоскости. Пусть P_a — точка симметричная точке P относительно A_1 ; точки P_b, P_c определим аналогично. Докажите, что прямые AP_a, BP_b, CP_c пересекаются в одной точке.

2. Вписанная окружность треугольника ABC касается сторон в точках A_1 , B_1 , C_1 . Обозначим A_0 , B_0 , C_0 — середины «малых» дуг описанной окружности треугольника ABC. Докажите, что прямые A_0A_1 , B_0B_1 , C_0C_1 конкурентны.

3. Докажите утверждение, показанное на рисунке.

4 (\clubsuit). Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны. Докажите, что большие диагонали исходного шестиугольника пересекаются в одной точке.

5 (�). Докажите, что три точки(см. рисунок) лежат на одной прямой.

