Course Outcome 1

Design and build a simple relational database system and demonstrate competence with the fundamentals tasks involved with modelling, designing and implementing a database.

PROGRAM 1

AIM: Creation a database, S2MCA and Two tables, Department and Employee using DDL commands and perform insertion, selection using where condition, logical operation using DML commands.

1. Creates a new database named S1MCA.

```
MariaDB [(none)]> CREATE DATABASE S2MCA;
Query OK, 1 row affected (0.002 sec)
MariaDB [S2MCA]> show databases;
```

2. Selects a specific database to perform operations within.

```
MariaDB [s1mca]> use S2MCA;
Database changed
```

3. Create a table to store employee information with primary key and foreign key constraints.

MariaDB [S2MCA]> create table Employee(employee_id int primary key,first_name varchar(50),last_name varchar(50),department_id int,salary decimal(10,2),foreign key (department_id) references Department(department_id));
Query OK, 0 rows affected (0.049 sec)

4. Create a table to store department information with primary key .

MariaDB [S2MCA]> create table Department(department_id int primary key,department_namevarchar(50)); Query OK, 0 rows affected (0.013 sec)

5. Insert data into the department table.

MariaDB [S2MCA]> insert into Department

values(1,'HR'),(2,'Finance'),(3,'IT'),(4,'Marketing'),(5,'Operations'),(6,'Sales'),(7,'Research'),(8,'Engineer ing'),(9,'Customer Service'),(10,'Administration'),(11,'Logistics'),(12,'Quality

Control'),(13,'Production'),(14,'Distribution'),(15,'Legal'),(16,'Purchasing'),(17,'Public

Relations'),(18,'Advertising'),(19,'Human Resources'),(20,'Information Technology');

Query OK, 20 rows affected (0.006 sec)

Records: 20 Duplicates: 0 Warnings: 0

6. Insert data into the employee table.

MariaDB [S2MCA]> insert into Employee

values(1,'John','Doe',1,50000.00),(2,'Jane','Smith',2,60000.00),(3,'Alice','Johnson',3,70000.00),(4,'Bob','Williams',1,55000.00),(5,'Sarah','Lee',4,62000.00),(6,'Michael','Brown',3,72000.00),(7,'Lisa','Taylor',2,65000.00),(8,'Kevin','Clark',1,58000.00),(9,'Amanda','Martinez',4,60000.00),(10,'Eric','Anderson,3,75000.00),(11,'Emily','Wilson',2,58000.00),(12,'Ryan','Garcia',3,67000.00),(13,'Samantha','Martinez',1,56000.00),(14,'David','Lee',4,64000.00),(15,'Jessica','Brown',3,69000.00),(16,'Andrew','Johnson',2,62000.00),(17,'Lauren','White',1,57000.00),(18,'Christopher','Lopez',4,61000.00),(19,'Kimberly','Young',3,73000.00),(20,'Mathew','Hall',2,64000.00);

Query OK, 20 rows affected (0.008 sec)

Records: 20 Duplicates: 0 Warnings: 0

7. Use DISTINCT to select unique department names.

MariaDB [S2MCA]> select distinct department_name from Department;

++
department_name
++
HR
Finance
IT
Marketing
Operations
Sales
Research
Engineering
Customer Service
Administration
Logistics
Quality
Control
Production
Distribution
Legal
Purchasing
Public
Relations
Advertising
Human Resources
Information Technology
++

8. Select all columns from the employee table.

MariaDB [S2MCA]> select * from Employee;

4		L	L	+	+
	employee_id	' first_name 	' last_name +	 department_id	salary
İ	1	 John	Doe	1	50000.00
	2	Jane	Smith	2	60000.00
	3	Alice	Johnson	3	70000.00
	4	Bob	Williams	1	55000.00
-	5	Sarah	Lee	4	62000.00
-	6	Michael	Brown	3	72000.00
	7	Lisa	Taylor	2	65000.00
	8	Kevin	Clark	1	58000.00
	9	Amanda	Martinez	4	60000.00
	10	Eric	Anderson	3	75000.00
	11	Emily	Wilson	2	58000.00
	12	Ryan	Garcia	3	67000.00
	13	Samantha	Martinez	1	56000.00
	14	David	Lee	4	64000.00
	15	Jessica	Brown	3	69000.00
	16	Andrew	Johnson	2	62000.00
	17	Lauren	White	1	57000.00
	18	Christopher	Lopez	4	61000.00
	19	Kimberly	Young	3	73000.00
ĺ	20	Mathew	Hall	2	64000.00
+		+	+	+	+

9. Select specific columns (first_name, last_name) from the employee table.

MariaDB [S2MCA]> select first_name,last_name from Employee;

+	++
first name	last name
+	++
John	Doe
Jane	Smith
Alice	Johnson
Bob	Williams
Sarah	Lee
Michael	Brown
Lisa	Taylor
Kevin	Clark
Amanda	Martinez
Eric	Anderson
Emily	Wilson
Ryan	Garcia
Samantha	Martinez
David	Lee
Jessica	Brown
Andrew	Johnson
Lauren	White
Christopher	Lopez
Kimberly	Young
Mathew	Hall
1	

10. Select employees earning more than \$60,000.

MariaDB [S2MCA]> select * from Employee where salary>60000;

employee_id first_name last_name department_id salary	+		+	+	+	++
5 Sarah Lee 4 62000.00 6 Michael Brown 3 72000.00 7 Lisa Taylor 2 65000.00 10 Eric Anderson 3 75000.00 12 Ryan Garcia 3 67000.00 14 David Lee 4 64000.00 15 Jessica Brown 3 69000.00 16 Andrew Johnson 2 62000.00 18 Christopher Lopez 4 61000.00 19 Kimberly Young 3 73000.00		employee_id	first_name	last_name	department_id	salary
	+	5 6 7 10 12 14 15 16 18	Sarah Michael Lisa Eric Ryan David Jessica Andrew Christopher Kimberly	Lee Brown Taylor Anderson Garcia Lee Brown Johnson Lopez Young	4 3 2 3 3 4 3 4 3	62000.00 72000.00 65000.00 75000.00 67000.00 64000.00 69000.00 62000.00 61000.00

11. Select employees in the HR department(dept_id =1)

+				+	
+	4 8	Kevin	Doe Williams Clark Martinez White	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50000.00 55000.00 58000.00 56000.00

12. Add a new column (hired) to the employee table and insert values.

MariaDB [S2MCA]> alter table Employee add hired Date;

Query OK, 0 rows affected (0.073 sec) Records: 0 Duplicates: 0 Warnings: 0

MariaDB [S2MCA]> update Employee set hired='2023-05-12' where department id=1;

Query OK, 5 rows affected (0.003 sec) Rows matched: 5 Changed: 5 Warnings: 0

MariaDB [S2MCA]> update Employee set hired='2012-02-10' where department id=2;

Query OK, 5 rows affected (0.003 sec) Rows matched: 5 Changed: 5 Warnings: 0

MariaDB [S2MCA]> update Employee set hired='2002-01-18' where department id=3;

Query OK, 6 rows affected (0.004 sec) Rows matched: 6 Changed: 6 Warnings: 0

MariaDB [S2MCA]> update Employee set hired='2023-05-12' where department id=4;

Query OK, 4 rows affected (0.005 sec) Rows matched: 4 Changed: 4 Warnings: 0

MariaDB [S2MCA]> select * from Employee;

+	++	+	+	+	++
employee_id	first_name	last_name	department_id	salary	hired
+	+	+	+		++
1	John	Doe	1	50000.00	2023-05-12
2	Jane	Smith	2	60000.00	2012-02-10
3	Alice	Johnson	3	70000.00	2002-01-18
4	Bob	Williams	1	55000.00	2023-05-12
5	Sarah	Lee	4	62000.00	2023-05-12
6	Michael	Brown	3	72000.00	2002-01-18
7	Lisa	Taylor	2	65000.00	2012-02-10
8	Kevin	Clark	1	58000.00	2023-05-12
9	Amanda	Martinez	4	60000.00	2023-05-12
10	Eric	Anderson	3	75000.00	2002-01-18
11	Emily	Wilson	2	58000.00	2012-02-10
12	Ryan	Garcia	3	67000.00	2002-01-18
13	Samantha	Martinez	1	56000.00	2023-05-12
14	David	Lee	4	64000.00	2023-05-12
15	Jessica	Brown	3	69000.00	2002-01-18
16	Andrew	Johnson	2	62000.00	2012-02-10
17	Lauren	White	1	57000.00	2023-05-12
18	Christopher	Lopez	4	61000.00	2023-05-12
19	Kimberly	Young	3	73000.00	2002-01-18
20	Mathew	Hall	2	64000.00	2012-02-10
+		+	+		++

13. Select employees hired after January 1, 2023.

MariaDB [S2MCA]> select * from Employee where hired>"2023-01-01";

employee_id	first_name	last_name	+ department_id +	salary	hired
1	John Bob Sarah Kevin Amanda Samantha David Lauren	Doe Williams Lee Clark Martinez Martinez Lee Uhite Lopez	1 1 1 4 1 1 4 1 1 4	50000.00 55000.00 62000.00 58000.00 60000.00 56000.00 64000.00 57000.00	2023-05-12 2023-05-12

14. Write a query to retrieve all employees with a salary greater than \$50,000.

MariaDB [S2MCA]> select * from Employee where salary>50000;

employee_id	first_name	last_name	department_id	salary	hired
2	Jane	Smith] 2	60000.00	2012-02-10
3	Alice	Johnson	3	70000.00	2002-01-18
4	Bob	Williams	1	55000.00	2023-05-12
1 5	Sarah	Lee	4	62000.00	2023-05-12
1 6	Michael	Brown	3	72000.00	2002-01-18
7	Lisa	Taylor	2	65000.00	2012-02-10
8	Kevin	Clark	1	58000.00	2023-05-12
9	Amanda	Martinez	4	60000.00	2023-05-12
10	Eric	Anderson	3	75000.00	2002-01-18
11	Emily	Wilson	2	58000.00	2012-02-10
12	Ryan	Garcia	3	67000.00	2002-01-18
13	Samantha	Martinez	1	56000.00	2023-05-12
14	David	Lee	4	64000.00	2023-05-12
15	Jessica	Brown	3	69000.00	2002-01-18
16	Andrew	Johnson	2	62000.00	2012-02-10
17	Lauren	White	1	57000.00	2023-05-12
18	Christopher	Lopez	4	61000.00	2023-05-12
19	Kimberly	Young	3	73000.00	2002-01-18
20	Mathew	Hall	2	64000.00	2012-02-10
+	+	+	+	+	++

15. Find all employees whose department ID is not equal to 3.

MariaDB [S2MCA]> select * from Employee where department id!=3;

employee_id	first_name	last_name	department_id	salary	hired
1	John	Doe	1	50000.00	2023-05-12
2	Jane	Smith	2	60000.00	2012-02-10
4	Bob	Williams	1	55000.00	2023-05-12
5	Sarah	Lee	4	62000.00	2023-05-12
7	Lisa	Taylor	2	65000.00	2012-02-10
8	Kevin	Clark	1	58000.00	2023-05-12
9	Amanda	Martinez	4	60000.00	2023-05-12
11	Emily	Wilson	2	58000.00	2012-02-10
13	Samantha	Martinez	1	56000.00	2023-05-12
14	David	Lee	4	64000.00	2023-05-12
16	Andrew	Johnson	2	62000.00	2012-02-10
17	Lauren	White	1	57000.00	2023-05-12
18	Christopher	Lopez	4	61000.00	2023-05-12
20	Mathew	Hall	2	64000.00	2012-02-10

16. Retrieve employees with a salary greater than \$50,000 and who belong to department ID 2.

MariaDB [S2MCA]> select * from Employee where salary>50000 and department id=2;

employee_id	first_name	 last_name	department_id	+	++ hired
7 11 16	Jane Lisa Emily Andrew Mathew	Smith Taylor Wilson Johnson Hall	2 2 2	65000.00 58000.00 62000.00	2012-02-10 2012-02-10 2012-02-10 2012-02-10 2012-02-10

17. Select all employees who belong to department ID 1 or 2.

MariaDB [S2MCA]> select * from Employee where department_id=1 or department_id=2;

_	+					
	employee_id	_	_	department_id		hired
		John Jane Bob Lisa Kevin Emily Samantha Andrew Lauren Mathew	Doe Smith Williams Taylor Clark Wilson Martinez Johnson White Hall	1 2 1 2 1 2 1 2 1 2 1 2	50000.00 60000.00 55000.00 65000.00 58000.00 58000.00 56000.00 62000.00 57000.00	2023-05-12 2012-02-10 2023-05-12 2012-02-10 2023-05-12 2012-02-10 2023-05-12 2012-02-10 2023-05-12 2023-05-12 2023-05-12
-	+	+	+		+	++

18. Write a query to fetch the first name, last name, and department name of employees from the "employees" and "departments" tables, joining them based on the department ID.

MariaDB [S2MCA]> select first_name,last_name,department_name from Employee,Department where Employee.department id=Department.department id;

John	first_name	last_name	+
Mathew Hall Finance	Jane	Smith Johnson Williams Lee Brown Taylor Clark Martinez Anderson Wilson Garcia Martinez Lee Brown Johnson White Lopez Young	Finance

19. Write a query to retrieve the first name, last name, and department name of all employees who belong to the "IT" department

MariaDB [S2MCA]> select first_name,last_name,department_name from Employee,Department where Employee.department id=Department.department id and Department.department name="IT";

+	+	+
first_name	last_name	department_name
Alice Michael Eric Ryan Jessica Kimberly	Johnson Brown Anderson Garcia Brown Young	IT IT IT IT IT IT
+	+	+

20. Find employees who have the same salary.

MariaDB [S2MCA]> select * from Employee where salary in(select salary from Employee e where Employee.employee id >e.employee id);

		·	<u> </u>			
		_	_	department_id	-	hired
_	9 16 11 2 8 20 5	Amanda Andrew Emily Jane Kevin Mathew Sarah David	Martinez Johnson Wilson Smith Clark Hall Lee Lee	4 2 2 2 2 1 2 4	60000.00 62000.00 58000.00 60000.00 58000.00 64000.00 62000.00	2023-05-12 2012-02-10 2012-02-10 2012-02-10 2023-05-12 2023-05-12 2023-05-12 2023-05-12
_		+	+	+	+	+

21. Drop the salary column from the employee table.

MariaDB [S2MCA]>alter table Employee drop salary; Query OK, 0 rows affected (0.008 sec)

Records: 0 Duplicates: 0 Warnings: 0
MariaDB [S2MCA]> select * from Employee;

employee_id	first_name	last_name	department_id	hired
1	John	Doe	1	2023-05-12
2	Jane	Smith	2	2012-02-10
3	Alice	Johnson	3	2002-01-18
4	Bob	Williams	1	2023-05-12
5	Sarah	Lee	4	2023-05-12
6	Michael	Brown	3	2002-01-18
7	Lisa	Taylor	2	2012-02-10
8	Kevin	Clark	1	2023-05-12
9	Amanda	Martinez	4	2023-05-12
10	Eric	Anderson	3	2002-01-18
11	Emily	Wilson	2	2012-02-10
12	Ryan	Garcia	3	2002-01-18
13	Samantha	Martinez	1	2023-05-12
14	David	Lee	4	2023-05-12
15	Jessica	Brown	3	2002-01-18
16	Andrew	Johnson	2	2012-02-10
17	Lauren	White	1	2023-05-12
18	Christopher	Lopez	4	2023-05-12
19	Kimberly	Young	3	2002-01-18
20	Mathew	Hall	2	2012-02-10

22. Delete a row from employee where department-id =4.

MariaDB [S2MCA]> delete from Employee where department_id=4; Query OK, 0 rows affected (0.001 sec)

MariaDB [S2MCA]> select * from Employee;

		L	L	L	L
	employee_id	first_name	last_name	department_id	hired
 	1 2 3 4 6 7 8 10 11	John Jane Alice Bob Michael Lisa Kevin Eric Emily Ryan	Doe Smith Johnson Williams Brown Taylor Clark Anderson Wilson Garcia	department_id 1 2 3 1 3 2 1	2023-05-12 2012-02-10 2002-01-18 2023-05-12 2002-01-18 2012-02-10 2023-05-12 2023-05-12 2002-01-18 2012-02-10 2012-02-10
	13 15 16 17 19 20	Samantha Jessica Andrew Lauren Kimberly Mathew	Martinez Brown Johnson White Young Hall	1 3 2 1 3	2023-05-12 2002-01-18 2012-02-10 2023-05-12 2002-01-18 2012-02-10

23. Delete employee table from the database

MariaDB [S2MCA]> drop table Employee; Query OK, 0 rows affected (0.011 sec) MariaDB [S2MCA]> select * from Employee; ERROR 1146 (42S02): Table 's2mca.employee' doesn't exist

24. Deletes an existing database (S2MCA).

MariaDB [S2MCA]> drop database S2MCA; Query OK, 1 row affected (0.034 sec) MariaDB [(none)]> show databases;

+-		-+
	Database	
+-		-+
	information_schema	
	mysql	
	performance_schema	
	phpmyadmin	
	s1mca	
	s2mca	
	s3mca	
	student	
	test	
+-		-+

AIM: Perform Alter commands, Join operations, Update commands, order by clause, Like operator using DML commands

1. Create tables named Employee (with Emp_ID as primary key and Dept_ID as foreign key) and Department (with Dept_ID as primary key).

MariaDB [(none)]> CREATE DATABASE S2MCA;

Query OK, 1 row affected (0.001 sec)

MariaDB [(none)]> use S2MCA;

Database changed

MariaDB [S2MCA]> create table Department(department_id int primary key,department_name varchar(50));

Query OK, 0 rows affected (0.011 sec)

MariaDB [S2MCA]> create table Employee(employee_id int primary key,first_name varchar(50),last_name varchar(50),department_id int,email varchar(50),foreign key (department_id) references Department(department_id));

MariaDB [S2MCA]> insert into Department

values(1,'HR'),(2,'Finance'),(3,'IT'),(4,'Marketing'),(5,'Sales'),(6,'Operations'),(7,'Research'),(8,'Develop ment'),(9,'Customer Service'),(10,'Administration');

Query OK, 10 rows affected (0.003 sec)

Records: 10 Duplicates: 0 Warnings: 0

MariaDB [S2MCA]> insert into Employee (employee_id, first_name, last_name, email, department_id) values (101, 'John', 'Doe', 'john.doe@email.com', 1), (102, 'Jane', 'Smith',

'jane.smith@email.com', 2), (103, 'Robert', 'Johnson', 'robert.johnson@email.com', 1), (104,

'Mary', 'Jones', 'mary.jones@email.com', 3), (105, 'Michael', 'Brown', 'michael.brown@email.com',

4),(106,'Jennifer', 'Davis', 'jennifer.davis@email.com', 5),(107, 'David',

'Martinez', 'david.martinez@email.com', 6), (108, 'Lisa', 'Rodriguez', 'lisa.rodriguez@email.com', 7), (109, 'William', 'Taylor', 'william.taylor@email.com', 8), (110, 'Sarah', 'Thomas',

'sarah.thomas@email.com', 9);

Query OK, 10 rows affected (0.005 sec)

Records: 10 Duplicates: 0 Warnings: 0

2. Add a new column named "Salary" to the Employee table with the data type DECIMAL (10,2).

MariaDB [S2MCA]> alter table Employee add salary decimal(10,2);

Query OK, 0 rows affected (0.006 sec)

Records: 0 Duplicates: 0 Warnings: 0

3. Alter the Department table to rename the column "DepartmentName" to "DeptName".

MariaDB [S2MCA]> ALTER TABLE Department CHANGE COLUMN department_name DeptName VARCHAR(50);

Query OK, 0 rows affected (0.006 sec) Records: 0 Duplicates: 0 Warnings: 0

4. Update the email of the employee with EmployeeID 102 to "jane.smith@example.com".

MariaDB [S2MCA]> UPDATE Employee SET Email = 'jane.smith@example.com'WHERE employee_id = 102;

Query OK, 1 row affected (0.003 sec) Rows matched: 1 Changed: 1 Warnings: 0

5. Provide an example of an INNER JOIN between the Employee table and the Department table on the common column "DepartmentID".

MariaDB [S2MCA]> select e.employee_id, e.first_name, e.last_name, e.email, d.DeptName from Employee e inner join Department d on e.department id = d.department id;

employee_id first_name last_name email	+		+	+	+	+
102 Jane Smith jane.smith@example.com Finance 103 Robert Johnson robert.johnson@email.com HR 104 Mary Jones mary.jones@email.com IT 105 Michael Brown michael.brown@email.com Marketing 106 Jennifer Davis jennifer.davis@email.com Sales 107 David Martinez david.martinez@email.com Operations 108 Lisa Rodriguez lisa.rodriguez@email.com Research 109 William Taylor william.taylor@email.com Development	employee	e_id	first_name 	last_name	email	DeptName
		102 103 104 105 106 107 108 109	Jane Robert Mary Michael Jennifer David Lisa William	Smith Johnson Jones Brown Davis Martinez Rodriguez Taylor	jane.smith@example.com robert.johnson@email.com mary.jones@email.com michael.brown@email.com jennifer.davis@email.com david.martinez@email.com lisa.rodriguez@email.com william.taylor@email.com	Finance HR HR HR Harketing Sales Operations Research Development

6. Perform a LEFT JOIN between the Employee table and the Department table to display all employees regardless of whether they are assigned to a department or not.

select e.employee_id, first_name, last_name, e.email, d.DeptName from Employee e left join Department id = d.department id:

 ++		+		, 		·
employee_id	first_name	last_name	department_id	email	salary	DeptName
101	John	Doe	1	john.doe@email.com	50000.00	HR
102	Jane	Smith	2	jane.smith@example.com	65000.00	Finance
103	Robert	Johnson	1	robert.johnson@email.com	50000.00	HR
104	Mary	Jones	3	mary.jones@email.com	54000.00	IT
105	Michael	Brown	4	michael.brown@email.com	70000.00	Marketing
106	Jennifer	Davis	5	jennifer.davis@email.com	90000.00	Sales
107	David	Martinez	6	david.martinez@email.com	75000.00	Operations
108	Lisa	Rodriguez	7	lisa.rodriguez@email.com	66000.00	Research
109	William	Taylor	8	william.taylor@email.com	88000.00	Development
110	Sarah	Thomas	9	sarah.thomas@email.com	80000.00	Customer
1				l I		Service
++		+	+	<u> </u>		++

7. Write a SQL query to calculate the total number of employees in each department.

MariaDB [S2MCA]> select d.department_id, d.DeptName, COUNT(e.employee_id) as TotalEmployees from Department d left join Employee e on d.department_id = e.department_id group by d.department_id, d.DeptName;

<u></u>	<u> </u>	L
department_id	DeptName	TotalEmployees
1	HR Finance IT Marketing Sales Operations Research Development Customer Service Administration	2 1 1 1 1 1 1 1 1 1
+	+	++

8. Retrieve the concatenation of the FirstName and LastName columns for all employees in the Employee table.

MariaDB [S2MCA]> select concat(first_name, ' ', last_name) as FullName from Employee;

++
FullName
++
John Doe
Jane Smith
Robert Johnson
Mary Jones
Michael Brown
Jennifer Davis
David Martinez
Lisa Rodriguez
William Taylor
Sarah Thomas
++

9. Write a query that uses the WHERE clause to select all employees whose FirstName is "Jennifer".

MariaDB [S2MCA]> SELECT * FROM Employee WHERE first name = 'Jennifer';

+	-+ first_name	+ last_name	+	email	++ salary
106	Jennifer	Davis	,	jennifer.davis@email.com	90000

10. Use the ORDER BY clause to sort the records in the Employee table based on the LastName column in ascending order.

MariaDB [S2MCA]> select * from Employee order by last name asc;

•	•	•	department_id	+	salary
105 106 101 103 104 107 108 102 109 110	Michael Jennifer John Robert Mary David Lisa Jane William Sarah	Brown Davis Doe Johnson Jones Martinez Rodriguez Smith Taylor Thomas	4 5 1 1 3 6 7 2 8	michael.brown@email.com jennifer.davis@email.com john.doe@email.com robert.johnson@email.com mary.jones@email.com david.martinez@email.com lisa.rodriguez@email.com jane.smith@example.com william.taylor@email.com sarah.thomas@email.com	50000.00 50000.00 54000.00 75000.00 66000.00

11. Provide an example of using the LIKE operator to select all employees whose last names start with the letter "S".

MariaDB [S2MCA]> SELECT * FROM Employee WHERE last_name LIKE 'S%';

employee_id	first_name	last_name	department_id	email	salary
102	Jane	Smith	2	jane.smith@example.com	65000.00

12. Write a query using the IN operator to select all employees whose DepartmentID is either 7, 8, or 9.

MariaDB [S2MCA]> SELECT * FROM Employee WHERE department_id IN (7, 8, 9);

+	+	+	+		+
employee_id	 first_name	 last_name	 department_id 	email	salary
108 109 110	Lisa William Sarah	Rodriguez Taylor Thomas	7 8 9	lisa.rodriguez@email.com william.taylor@email.com sarah.thomas@email.com	88000.00

AIM: Creation of a database COMPANY, and tables using DDL commands including integrity constraints. Populate the tables with DML commands.

DDL COMMANDS

1. The employees table stores the data of employees.

MariaDB [S2MCA]>create table employees(employee_id int,first_name varchar(30),last_name varchar(30),email varchar(30),phone int,hire_date date,job_id int,salary int,manager_id int,department_id int,primary key(employee_id),foreign key(job_id) references jobs(job_id),foreign key(department_id) references departments(department_id));

MariaDB [S2MCA]>INSERT INTO employees (employee_id, first_name, last_name, email, phone, hire_date, job_id, salary, manager_id, department_id) VALUES (1, 'John', 'Doe', 'john.doe@example.com', '1555555655', '1996-01-15', '1', 70000, 1, 1),(2, 'Jane', 'Smith', 'jane.smith@example.com', 1855555655', '1995-03-20', '2', 80000, 1, 2),(3, 'Bob', 'Johnson', 'bob.johnson@example.com', '1678564907', '1997-05-10', '3', 60000, 1, 3),(4, 'Alice', 'Fay', 'alice.fay@example.com', "1678564967', '1995-07-25', '4', 65000, 2, 4),(5, 'David', 'Grant', 'david.grant@example.com', '1045625781', '1996-09-05', '5', 75000, 2, 5),(6, 'Eva', 'Whalen', 'eva.whalen@example.com', '9845674314', '1997-11-15', '6', 90000, 3, 6),(7, 'Michael', 'Taylor', 'michael.tayLor@example.com', '9812998744', '1996-12-30', '7', 100000, 1, 7);

2. The jobs table stores the job data including job title and salary range.

MariaDB [S2MCA]>create table jobs(job_id int,job_title varchar(50),min_salary int,max_salary int,primary key(job_id));

MariaDB [S2MCA]>INSERT INTO jobs (job_id, job_title, min_salary, max_salary) VALUES (1, 'Software Engineer', 60000, 100000),(2, 'Database Administrator', 65000, 110000),(3, 'Marketing Specialist', 50000, 90000),(4, 'Financial Analyst', 55000, 95000),(5, 'HR Manager', 4500, 5000),(6, 'Sales Representative', 48000, 85000),(7, 'Shipping Clerk', 45000, 55000);

3. The departments table stores department data.

MariaDB [S2MCA]>create table departments(department_id int,department_name varchar(30),location_id int,primary key(department_id),foreign key(location_id) references locations(location_id));

MariaDB [S2MCA]>INSERT INTO departments (department_id, department_name, location_id) VALUES (1, 'IT Department', 1),(2, 'Finance Department', 2),(3, 'Marketing Department', 3),(4, 'HR Department', 4),(5, 'Sales Department', 5),(6, 'Operations Department', 6),(7, 'R&D Department', 7),(8, 'Shipping', 4),(11, 'Administration', 7);

4. The dependents table stores the employee's dependents.

MariaDB [S2MCA]>create table dependents(dependent id int, first name varchar(30), last name

varchar(30),relationship varchar(30),employee_id int,primary key(dependent_id),foreign key(employee id)references employees(employee id));

MariaDB [S2MCA]>INSERT INTO dependents (dependent_id, first_name, last_name, relationship, employee_id) VALUES(1, 'Emma', 'Doe', 'Child', 1),(2, 'Alex', 'Smith', 'Spouse', 2),(3, 'Olivia', 'Johnson', 'Child', 3),(4, 'Liam', 'Fay', 'Child', 4),(5, 'Sophia', 'Grant', 'Spouse', 5),(6, 'Noah', 'Whalen', 'Child', 6),(7, 'Ava', 'Taylor', 'Child', 7);

DML COMMANDS

1. The locations table stores the location of the departments of the company.

MariaDB [S2MCA]>create table locations(location_id int,street_address varchar(50),postal_code int,city varchar(50),state varchar(30),country_id int,primary key(location_id),foreign key(country_id) references countries(country_id));

MariaDB [S2MCA]>INSERT INTO locations (location_id, street_address, postal_code, city, state, country_id) VALUES (1, '123 Main St', '12345', 'New York', 'NY', 1),(2, '456 Oak St', '67890', 'Los Angeles', 'CA', 2),(3, '789 Pine St', '98765', 'Chicago', 'IL', 3),(4, '321 Elm St', '54321', 'Houston', 'TX', 1),(5, '654 Maple St', '13579', 'San Francisco', 'CA', 2),(6, '987 Birch St', '24680', 'Miami', 'FL', 3),(7, '555 Pineapple Ln', '54321', 'Honolulu', 'HI', 4);

2. The countries table stores the data of countries where the company is doing business.

MariaDB [S2MCA]>create table countries(country_id int,country_name varchar(30),region_id int,primary key(country_id),foreign key(region_id)references regions(region_id));

MariaDB [S2MCA]>INSERT INTO countries (country_id, country_name, region_id) VALUES (1, 'America', 1),(2, 'England', 3),(3, 'Australia', 2),(4, 'UK', 3),(5, 'India', 5),(6, 'Canada', 2),(7, 'Switzerland', 3);

3.The regions table stores the data of regions such as Asia, Europe, America, and the Middle East and Africa. The countries are grouped into regions.

MariaDB [S2MCA]>create table regions(region_id int,region_name varchar(30),primary key(region_id));

MariaDB [S2MCA]>insert into regions values(1,"Asia"),(2,"Europe"),(3,"America"),(4,"Middle east"),(5,"Africa");

Question 4

1. Write a query to display all the countries.

MariaDB [S2MCA]> SELECT * FROM countries;

+	+	++
country_id	country_name	region_id
+	+	++
1	America	1
2	England	3
3	Australia	2
4	UK	3
5	India	5
6	Canada	2
7	Switzerland	3

2. Write a query to display specific columns like email and phone number for all the employees.

MariaDB [S2MCA]> select email, phone from employees;

+	++
email	phone
+	++
john.doe@example.com	123
jane.smith@example.com	234
bob.johnson@example.com	345
alice.fay@example.com	456
david.grant@example.com	567
eva.whalen@example.com	678
michael.tayLor@example.com	789
+	++

3. Write a query to display the data of employee whose last name is "Fay".

MariaDB [S2MCA]> SELECT * FROM employees WHERE last name = 'Fay';

employee_id	+ first_name	last_name	+ email	+ phone	+ hire_date	+ job_id	salary	manager_id	department_id
4	Alice	Fay	alice.fay@example.com	1678564967	1995-07-25	4	65000	2	4

4. Write a query to find the hire date for employees whose last name is "Grant" or "Whalen".

MariaDB [S2MCA]> SELECT last_name,hire_date FROM employees WHERE last_name = 'Grant' OR last_name = 'Whalen';

last_name	+ hire_date -+	
Grant Whalen	1996-09-05 1997-11-15	İ

5. Write a query to display name of the employee who is shipping clerk.

MariaDB [S2MCA]> select first name ,last name from employees where job id='7';

first_name	++ last_name ++
Michael	
+	++

6. Write a query to get all the employees who work for department 8.

employee_id first_name last_name	+	phone	+ hire_	_date	+ job_id	+ salary	+ manager_id	department	+ _id
2 Jane Smith	jane.smith@example.com	1855555655	1995-	-03-20	2	180000	1		8

7. Write a query to display the departments in the descending order.

MariaDB [S2MCA]> SELECT * FROM departments ORDER BY department id DESC;

+	-	++
department_id	department_name	location_id
+		++
11	Administration	7
8	Shipping	4
7	R&D Department	7
6	Operations Department	6
5	Sales Department	5
4	HR Department	4
3	Marketing Department	3
2	Finance Department	2
1	IT Department	1
+		++

8. Write a query to display all the employees whose last name starts with "K".

MariaDB [S2MCA]>SELECT * FROM employees WHERE last name LIKE 'K%';

-		<u></u>				L	L
employee id first name	last name email	phone	hire date	job id	salary	manager id	department id
2 Jane 10 Junaih	Khanna jane.smith@example.com Khan jack.white@example.com				60000 40000	•	2 10

9.Display name of the employees whose hire dates are between 1995 and 1997.

MariaDB [S2MCA]>SELECT first_name, last_name FROM employees WHERE hire_date BETWEEN '1995-01-01' AND '1997-12-31':

+	++
first_name	last_name
+	++
John	Doe
Jane	Smith
Bob	Johnson
Alice	Fay
David	Grant
Eva	Whalen
Michael	Kayle
+	++

10. Write a query to display jobs where the maximum salary is less than 5000.

MariaDB [S2MCA]> SELECT * FROM jobs WHERE max salary < 5000;

+	+	++
job_id job_title		
5 HR Manager		1
+	+	++

11. Write a query to display email address in lower case.

MariaDB [S2MCA]> SELECT LOWER(email) AS lowercase email FROM employees;

++
lowercase_email
++
john.doe@example.com
jane.smith@example.com
bob.johnson@example.com
alice.fay@example.com
david.grant@example.com
eva.whalen@example.com
<pre> michael.taylor@example.com </pre>
++

12. Write a query to display name of the employees who were hired in 1995.

MariaDB [S2MCA]> SELECT first_name, last_name FROM employees WHERE YEAR(hire_date) = 1995;

first_name	++ last_name ++
Jane Alice +	Smith

13. Write a query to insert an employee "Paul Newton" in department 11.

MariaDB [S2MCA]> INSERT INTO employees (employee_id, first_name, last_name, email, phone, hire_date, job_id,salary, manager_id, department_id)VALUES (8, 'Paul', 'Newton', 'paul.newton@example.com', '1278965736', '2023-06-11', 1, 60000, 5, 11);
Ouery OK, 1 row affected (0.004 sec)

MariaDB [S2MCA]> select * from employees;

employee_id	first_name	last_name	email	phone	hire_date	job_id	salary	manager_id	department_id	
	John Jane Bob Alice David Eva Michael Paul	Doe Smith Johnson Fay Grant Whalen Kayle Newton	john.doe@example.com jane.smith@example.com bob.johnson@example.com alice.fay@example.com david.grant@example.com eva.whalen@example.com michael.tayLor@example.com paul.newton@example.com	1555555655 1855555655 1678564907 1678564967 1045625781 2147483647 2147483647 1278965736	1996-01-15 1995-03-20 1997-05-10 1995-07-25 1996-09-05 1997-11-15 1996-12-30 2023-06-11	1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1	70000 80000 60000 65000 75000 90000 100000 60000	1 1 2 1 2 1 2 1 3 1 3 1	6 7	<u> </u>
+			+			++				+

14. Write a query to delete the shipping department.

MariaDB [S2MCA]> DELETE FROM departments WHERE department_name = 'Shipping'; Query OK, 0 rows affected (0.01 sec)

MariaDB [details]> select * from departments;

+		++
department_id	department_name	location_id
1	HR Department	1 2 3 4 5 6 7 4 7
T		T

AIM:Apply DCL and TCL commands to impose restrictions on database.

DDL

1. Create an employee table with the attributes specified above (set E ID as the primary key).

create table Employee(E_id int primary key,E_name varchar(50),E_gender varchar(50),E_salary int,E branch varchar(50));

2. Insert the given values into the attributes.

insert into Employee

values('E1','A','M',12500,'B1'),('E2','B','F',15000,'B4'),('E3','C','M',36574,'B3'),('E4,'D','F',35674,'B2'),('E5','E','F',46572,'B3'),('E6','F','M',43564,'B4'),('E7','G','M',65431,'B2');

MariaDB [s3mca]> select * from Employee;

E_id E_name E_gender E_salary E_branch E1	4				
E2	E_id	E_name	E_gender	E_salary	E_branch
E7 G M 65431 B2	E2 E3 E4 E5	B C D E	F M F	15000 36574 35674 46572	B4 B3 B2 B3
<u> </u>	E7	G	M 	65431	B2

3. Delete all rows from the table and free the space containing the table (TRUNCATE). Redo question 2.

MariaDB [s3mca]> truncate table Employee;

Query OK, 0 rows affected (0.014 sec)

MariaDB [s3mca]> select * from Employee;

Empty set (0.000 sec)

MariaDB [s3mca]> insert into Employee

values('E1','A','M',12500,'B1'),('E2','B','F',15000,'B4'),('E3','C','M',36574,'B3'),('E4','D','F',35674,'B2'),('E5','E','F',46572,'B3'),('E6','F','M',43564,'B4'),('E7','G','M',65431,'B2');

Query OK, 7 rows affected (0.003 sec)

Records: 7 Duplicates: 0 Warnings: 0

MariaDB [s3mca]> select * from Employee;

	ı	_ L	1	+	,	
	_	_	•	E_salary	E_branch	_
	E1 E2 E3 E4 E5	A	M F M F F M	12500 15000 36574 35674 46572 43564 65431	B1	
-	+	+	+	+	++	H

DML

1. Select all attributes of the EMP table.

MariaDB [s3mca]> select * from Employee;

_				L		L
	E_id		E_name	E_gender	E_salary	E_branch
 	E1 E2 E3 E4 E5 E6	 	B C	M F M F F M	12500 15000 36574 35674 46572 43564 65431	B4
+		-+-		+	+	++

2. Retrieve the average salary of the employees.

MariaDB [s3mca]> select avg(E salary) from Employee;

+		-+
avg	g(E_salary)	
+		-+
1	36606.8333	
+		_ +

3. Retrieve the name of the employee with the minimum salary.

MariaDB [s3mca]> select E name,min(E salary) from Employee;

```
+-----+
| E_name | min(E_salary) |
+-----+
| A | 12500 |
```

4. Retrieve the name of the employee with the maximum salary.

MariaDB [s3mca]> select E name,max(E salary) from Employee;

+			-+			-+
	E_{\perp}	_name		max(E_	_salary)	
+-			+-			-+
	G				65431	
- 1			- 1			- 1

5. Find the total number of employees.

MariaDB [s3mca]> select count(*) from Employee;

```
+----+
| count(*) |
+-----+
| 7 |
```

6. Calculate the total amount of salary.

MariaDB [s3mca]> select sum(E salary) from Employee;

7. Find the total number of employees segregated based on branches.

MariaDB [s3mca]> select E branch,count(*) from employee group by E branch;

E_branch count(*)	
+	-+
B1 1	
B2 2	
B3 2	
B4 2	
+	-+

8. Find out the name of the employee having a salary > 15,000.

MariaDB [s3mca]> select E name from Employee where E salary>15000;

```
+----+
| E_name |
+----+
| C |
| D |
| E |
| F |
| G |
```

9. Display the names of the employees in ascending order.

MariaDB [s3mca]> select E name from Employee order by E name asc;

+.			-+
	$\mathbf{E}_{_}$	name	
+.			-+
	Α		
	В		
	С		
	D		
	Ε		
	F		
	G		
+.			-+

10. Display the names of the employees in descending order.

MariaDB [s3mca]> select E_name from Employee order by E_name desc;

```
| E_name | +----+ | G | F | | E | | D | | | C | | B | | A | |
```

11. Find names of the employees belonging to the same branch. (Hint: GROUP BY, HAVING).

MariaDB [s3mca]> SELECT E_name, E_branch FROM employee WHERE E_branch IN (SELECT E_branch FROM employee GROUP BY E_branch HAVING COUNT(*) > 1)ORDER BY E_branch, E_name;

+.	+		+
 +.	E_name	E_branch	
	,		'
	D	B2	
	G	B2	
	C	В3	1
ĺ	E	В3	İ
Ì	В	В4	Ì
İ	F	В4	i
Ϊ.			

12. List names and salaries of the employees whose salary is more than the average salary of the employees.

MariaDB [s3mca]> select E_name,E_salary from employee where E_salary>(select avg(E_salary) from employee);

+	++
E_name	E_salary
C	36574
E	46572
F	43564
G	65431
+	++

13. Create a view named name of employee whose salary is greater than the average salary.

MariaDB [s3mca]> create view name_of_employee as select E_salary from Employee where E_salary>(select avg(E_salary) from Employee); Query OK, 0 rows affected (0.009 sec)

MariaDB [s3mca]> select * from name of employee;

```
| E_salary |
+-----+
| 36574 |
| 46572 |
| 43564 |
| 65431 |
```

14. The name of the employee who is in branch B2 or male.

MariaDB [s3mca]> select E name from Employee where E branch="B2" or E gender="M";

15. The name of the employee who is in branch B3 and female.

MariaDB [s3mca]> select E_name from Employee where E_branch="B3" and E_gender="F";

+-			-+
	E	name	
+-			+
	Ε		
+-			+

16. The name of the employee who is in branch B2 but not male.

MariaDB [s3mca]> select E_name from Employee where E_branch="B2" and E_gender="F";

```
| E_name | +----+ | D | +----+
```

DCL

1. Grant user access privileges to a database. (GRANT).

In SQL, the GRANT command is used to grant specific privileges or permissions to a user or a group of users on a database object such as a table, view, or stored procedure.

The syntax for the GRANT command:

GRANT privilage_name ON object_name TO user_or_role;

Where:

privilege_name is the specific permission being granted, such as SELECT, INSERT, UPDATE, DELETE, or ALL.

object_name is the name of the database object (e.g., table, view, stored procedure) on which the permission is being granted.

user or role is the user or role to whom the permission is being granted.

2. Revoke permissions from the user. (REVOKE).

In SQL, the REVOKE command is used to revoke previously granted privileges or permissions from a user or a group of users on a database object. This command essentially removes the specified privileges from the user or group.

The syntax for the REVOKE command:

REVOKE privilege name ON object name FROM user or role;

Where:

privilege_name is the specific permission being revoked, such as SELECT, INSERT, UPDATE, DELETE, or ALL.

object_name is the name of the database object (e.g., table, view, stored procedure) from which the permission is being revoked.

user_or_role is the user or role from whom the permission is being revoked.

TCL

1. Save all transactions to the database. (COMMIT).

In SQL, the COMMIT command is used to save all transactions made within a transaction block to the database. When you execute a COMMIT command, all changes made within the current transaction are permanently saved to the database, and the transaction is

completed. This means that the changes become visible to other users and transactions.

2. Undo transactions that have not already been saved to the database. (Rollback). In SQL, the ROLLBACK command is used to undo transactions that have not already been saved to the database. When you execute a ROLLBACK command, all changes made within the current transaction are discarded, and the database is reverted to its state before the transaction began.

3. Roll the transaction back to a certain point without rolling back the entire transaction. (Savepoint).

In SQL, a savepoint is a point within a transaction to which you can roll back without rolling back the entire transaction. Savepoints are used to create intermediate points in a transaction, allowing you to undo changes made after a specific savepoint while keeping changes made before that savepoint intact.

The syntax for creating a savepoint is:

SAVEPOINT savepoint_name;

AIM: Application of views and joins for query optimization.

1. Create two tables officers and student. Insert some record into both tables.

mysql>create table officers(officer id int,officer name varchar(50),address varchar(50),primary key(officer id));

Query OK, 0 rows affected (0.40 sec)

mysql> create table student(student id int,student name varchar(50),course varchar(50), primary key(student id)); Query OK, 0 rows affected (0.38 sec)

mysql> insert into officers values (1,"Ajeet","Goa"),(2,"Deepika","Lucknow"), (3,"Vimal","Delhi"),(4,"Rahul","Mumbai");

Query OK, 4 rows affected (0.18 sec)

Records: 4 Duplicates: 0 Warnings: 0

mysql> insert into student

values(1,"Aryan","Java"),(2,"Rohini","Hadoop"),(3,"Manu","MongoDB");

Query OK, 3 rows affected (0.14 sec)

Records: 3 Duplicates: 0 Warnings: 0

2.Perform join operations over the tables.

mysql> SELECT officers.officer name, officers.address, student.course FROM officers -> INNER JOIN student ON officers.officer id = student.student id;

officer_name	+- +-	address	+-	course	-+ -+
Ajeet Deepika Vimal	İ	Lucknow	İ	Java Hadoop MongoDB	

mysql> SELECT officers.officer name, officers.address, student.course, student.student name FROM officers RIGHT JOIN student ON officers.officer id = student.student id;

_		+	
Ajeet Deepika	Goa Lucknow	Java Hadoop MongoDB +	Aryan Rohini

mysql> SELECT * FROM officers INNER JOIN student ON officers.officer_id = student.student id;

officer_id	officer_name	address	student_id 	student_name	course
2	Ajeet Deepika Vimal	Goa Lucknow Delhi	2	Aryan Rohini Manu	Java Hadoop MongoDB

mysql> SELECT * FROM officers RIGHT JOIN student ON officers.officer_id = student.student id;

officer_id	+ officer_name +	+ address +	+ student_id +	-+ student_name -+	++ course
2	Ajeet Deepika Vimal	Goa Lucknow Delhi] 2	Aryan Rohini Manu	Java Hadoop MongoDB

3.Perform view operation in any table.

mysql> CREATE VIEW officer_view AS SELECT officer_id, officer_name, address FROM officers; Query OK, 0 rows affected (0.12 sec)

mysql> select *from officer view;

+		+	_
officer_id	officer_name	address	
2 3	Ajeet Deepika Vimal Rahul	Goa Lucknow Delhi Mumbai	•
++		++	-

Course Outcome 2

Apply PL/SQL for processing databases.

PROGRAM 6

AIM: Basics of PL/SQL

set serveroutput on;

1. Write a program to add two numbers

```
DECLARE
a integer;
b integer;
BEGIN
a:=&a;
b:=&b;
dbms output.put line('sum is:' || (a+b));
END;
OUTPUT
Enter value for a: 3
old 7: a:=&a;
new 7: a:=3;
Enter value for b: 6
old 8: b:=&b;
new 8: b:=6;
sum is: 9
PL/SQL procedure successfully completed.
```

2. Write a program to find largest of 3 numbers

```
set serveroutput on;
DECLARE
a integer;
b integer;
c integer;
BEGIN
a:=&a;
b:=&b;
c:=&c;
IF a>b and a>c
THEN
dbms_output.put_line('largest: ' || a);
ELSIF b>c
THEN
dbms_output.put_line('largest: ' || b);
```

```
ELSE
dbms output.put line('largest: ' || c);
END IF;
END;
OUTPUT
Enter value for a: 1
old 6: a:=&a;
new 6: a:=1;
Enter value for b: 2
old 7: b:=&b;
new 7: b:=2;
Enter value for c: 3
old 8: c:=&c;
new 8: c:=3;
largest: 3
PL/SQL procedure successfully completed.
```

3. Write a program to check whether given number is even or odd

```
set serveroutput on;
DECLARE
n integer;
mod integer;
a integer;
BEGIN
n:=&n;
a:=mod(n,2);
if a=0
then
dbms output.put line(n || 'is even');
dbms output.put line(n \parallel 'is odd');
END IF;
END;
OUTPUT
Enter value for n: 3
old 6: n:=&n;
new 6: n:=3;
3 is odd
PL/SQL procedure successfully completed.
```

AIM: Create a function to print annual salary of the employees in HR department.

CODE:

```
create table empl(emp id number,name varchar(20),dept varchar(20),sal number);
insert into empl values(101,'Bobby','HR',25000);
insert into empl values(102,'George','HR',32000);
insert into empl values(103, 'James', 'Hardware', 55000);
insert into empl values(104, 'David', 'Hardware', 65000);
insert into empl values(105, 'Sona', 'Marketing', 20000);
insert into empl values(106, 'Saira', 'HR', 21000);
insert into empl values(107,'Fawaz','Software',50000);
SQL> CREATE OR REPLACE FUNCTION CALC TOT SAL RETURN NUMBER IS
   S NUMBER := 0;
  BEGIN
  FOR A IN (SELECT SAL FROM EMPL WHERE DEPT = 'HR') LOOP
   S := S + A.SAL;
  END LOOP;
  DBMS OUTPUT.PUT LINE('ANNUAL SALARY: ' || (S * 12));
  RETURN S;
  END;
Function created.
OUTPUT
SQL> SELECT CALC TOT SAL FROM DUAL;
CALC_TOT SAL
   78000
ANNUAL SALARY: 936000
```

AIM: Create a cursor to print employee name of employees whose salary is greater than 50000.

CODE:

```
SQL> DECLARE
 CURSOR curs work IS
 SELECT name
  FROM worker
  WHERE sal > 50000;
  v ename worker.name%TYPE; -- Variable to hold employee name
  BEGIN
 OPEN curs work;
 LOOP
 FETCH curs work INTO v ename;
 EXIT WHEN curs work%NOTFOUND;
 DBMS OUTPUT.PUT LINE('Employee Name: ' || v ename);
 END LOOP;
 CLOSE curs work;
 END;
OUTPUT
```

Employee Name: Rahul

Employee Name: Meenu

PL/SQL procedure successfully completed.

AIM: Construct a Trigger code for a table in database

CODE:

```
create table worker as select *from empl;
CREATE OR REPLACE TRIGGER salary update trigger
BEFORE UPDATE OF sal ON worker
FOR EACH ROW
DECLARE
    old salary worker.sal%TYPE;
    new salary worker.sal%TYPE;
BEGIN
    old salary := :OLD.sal;
    new salary := :NEW.sal;
    DBMS OUTPUT.PUT LINE('Salary difference: ' || (new salary - old salary));
END;
OUTPUT
```

SQL> update worker set sal=50000 where EMP ID=102; Salary difference: 18000

1 row updated.

SQL> SELECT * FROM worker;

EMP_ID NAME	DEPT	SAL
101 Bobby	HR 	25000
102 George 103 James	HR Hardware	50000 55000
103 James 104 David	Hardware Hardware	65000
105 Sona	Marketing	20000
106 Saira	HR	21000
107 Fawaz	Software	50000

7 rows selected.

AIM: Write a PL/SQL Procedure to list all even and odd number between 1 and 20

CODE:

```
SQL> create or replace procedure eve odd is
  i number;
  BEGIN
      FOR i IN 1..20 LOOP
        IF MOD(i, 2) = 0 THEN
           dbms output.put line(i||' IS EVEN');
        ELSE
           dbms output.put line(i||' IS ODD');
        END IF;
     END LOOP;
 END;
Procedure created.
OUTPUT
SQL> execute eve odd;
1 IS ODD
2 IS EVEN
3 IS ODD
4 IS EVEN
5 IS ODD
6 IS EVEN
7 IS ODD
8 IS EVEN
9 IS ODD
10 IS EVEN
11 IS ODD
12 IS EVEN
13 IS ODD
14 IS EVEN
15 IS ODD
16 IS EVEN
17 IS ODD
18 IS EVEN
19 IS ODD
20 IS EVEN
```

PL/SQL procedure successfully complete.

AIM: Write A PL/SQL Procedure to find factorial of a number.

CODE:

```
set serveroutput on;
CREATE OR REPLACE PROCEDURE factorial(num number) is
res NUMBER;
BEGIN
res := 1;
FOR i IN 1..num LOOP
res := res * i;
END LOOP;
dbms_output.put_line(res);
END;
/
Procedure created.
```

OUTPUT

```
SQL> execute factorial(4);
24
PL/SQL procedure successfully completed.
```

Course Outcome 3

Comparison between relational and non-relational (NoSQL) databases and the configuration of NoSQL Databases. Apply CRUD operations and retrieve data in NoSQL environment.

PROGRAM 12

AIM: Installation and configuration of NoSQL database- MongoDB

MongoDB is a cross-platform, document oriented NoSql database that provides, high performance, high availability, and easy scalability. MongoDB works on concept of collection and document.

STEP 1:

Navigate to the official MongoDB website.

STEP 2:

Under the products section, click on the Community server version. Make sure that the specifications to the right of the screen are correct. At the time of writing, the latest version is 4.4.5. Ensure that the platform is Windows, and the package is MSI. Go ahead and click on download.

STEP 3:

You can find the downloaded file in the downloads directory. Install the software step by step.

STEP4:

create an environment variable for the executable file so that we don't have to change the directory structure every time we want to execute the file.

STEP 5:

After creating an environment path, download mongosh and install. we can open the command prompt and type mongod. An instance of mongodb server is started. Now take another terminal and type mongosh. This creates a client instance of mongodb in your local system.

```
| Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Company | Comp
```

```
"Note of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company
```

Step 6:

You can start creating new databases and use them.

PROGRAM 13

AIM: Compare relational and non-relational databases.

1. Create a student table/collection with columns/fields for name, age, and city.

SQL

CREATE TABLE students (sname VARCHAR(100), sage INT, scity VARCHAR(100));

MongoDB

```
test> use college
switched to db college
college> db.createCollection("students")
{ ok: 1 }
```

2.Insert a new row/document into the students table/collection with the following information: Name: John Doe, Age: 25, City:New York.

SOL

```
INSERT INTO students (sname, sage, scity) VALUES ('Akhila','22','Kochi'); INSERT INTO students (sname, sage, scity) VALUES ('Anu','23','Kottayam'); INSERT INTO students (sname, sage, scity) VALUES ('Binu','22','Ernakulam'); INSERT INTO students (sname, sage, scity) VALUES ('Pooja','21','Alappuzha'); INSERT INTO students (sname, sage, scity) VALUES ('Jency','20','Pattimattam'); INSERT INTO students (sname, sage, scity) VALUES ('John Doe', 25, 'New York'); INSERT INTO students (sname, sage, scity) VALUES ('Vishal','23','Piravom');
```

MongoDB

```
college> db.students.insert({sname:'Akhila',sage:'22',scity:'Kochi'})
{
   acknowledged: true,
   insertedIds: { '0': ObjectId('6602339b68ed4179038bf202') }
}
college> db.students.insert({sname:'Anu',sage:'23',scity:'Kottayam'})
{
   acknowledged: true,
   insertedIds: { '0': ObjectId('6602339b68ed4179038bf203') }
}
college> db.students.insert({sname:'Binu',sage:'22',scity:'Ernakulam'})
{
   acknowledged: true,
   insertedIds: { '0': ObjectId('6602339b68ed4179038bf204') }
}
college> db.students.insert({sname:'Pooja',sage:'21',scity:'Alappuzha'})
{
   acknowledged: true, insertedIds: { '0': ObjectId('6602339b68ed4179038bf205') }
}
college> db.students.insert({sname:'Jency',sage:'20',scity:'Pattimattam'})
```

```
acknowledged: true,
insertedIds: { '0': ObjectId('6602339b68ed4179038bf206') }
college> db.students.insert({sname:'John Doe',sage:'25',scity:'New York'})
acknowledged: true,
insertedIds: { '0': ObjectId('6602349268ed4179038bf207') }
college> db.students.insert({sname:'Vishal',sage:'23',scity:'Piravom'})
acknowledged: true, insertedIds: { '0': ObjectId('6602349268ed4179038bf207') }
3. Retrieve all data from the students table/collection.
```

```
SQL
```

SELECT * FROM students;

```
MongoDB
```

```
college> db.students.find().pretty()
 id: ObjectId('6602339b68ed4179038bf202'),
 sname: 'Akhila',
 sage: '22',
 scity: 'Kochi'
   id: ObjectId('6602339b68ed4179038bf203'),
  sname: 'Anu',
  sage: '23',
  scity: 'Kottayam'
  },
   id: ObjectId('6602339b68ed4179038bf204'),
   sname: 'Binu',
  sage: '22',
  scity: 'Ernakulam'
  },
   id: ObjectId('6602339b68ed4179038bf205'),
  sname: 'Pooja',
  sage: '21',
  scity: 'Alappuzha'
   id: ObjectId('6602339b68ed4179038bf206'),
   sname: 'Jency',
```

```
sage: '20',
scity: 'Pattimattam'
},
id: ObjectId('6602349268ed4179038bf207'),
sname: 'John Doe',
sage: '25',
scity: 'New York'
 id: ObjectId('6602429168ed4179038bf208'),
sname: 'Vishal',
sage: '23',
scity: 'Piravom'
]
```

4. Update the age of a student named John Doe to 30 in the students table/collection, assuming there's already a record/document for him.

```
SOL
```

UPDATE students SET age = 30 WHERE name = 'John Doe';

MongoDB

```
college> db.students.update({sname:"John Doe"},{$set:{sage:30}})
DeprecationWarning: Collection.update() is deprecated. Use updateOne, updateMany, or
bulkWrite.
  acknowledged: true,
  insertedId: null,
  matchedCount: 1,
  modifiedCount: 1,
  upsertedCount: 0
  college> db.students.find()
   id: ObjectId('6602339b68ed4179038bf202'),
   sname: 'Akhila',
   sage: '22',
   scity: 'Kochi'
   },
     id: ObjectId('6602339b68ed4179038bf203'),
    sname: 'Anu',
    sage: '23',
    scity: 'Kottayam'
```

```
id: ObjectId('6602339b68ed4179038bf204'),
    sname: 'Binu',
   sage: '22',
   scity: 'Ernakulam'
   },
    id: ObjectId('6602339b68ed4179038bf205'),
   sname: 'Pooja',
   sage: '21',
   scity: 'Alappuzha'
     id: ObjectId('6602339b68ed4179038bf206'),
   sname: 'Jency',
   sage: '20',
   scity: 'Pattimattam'
     id: ObjectId('6602349268ed4179038bf207'),
     sname: 'John Doe',
    sage: 30,
     scity: 'New York'
    id: ObjectId('6602429168ed4179038bf208'),
   sname: 'Vishal',
   sage: '23',
   scity: 'Piravom'
  1
5.Get all details of students whose age is older than 25.
```

```
SQL
```

```
SELECT * FROM students WHERE age > 25;
```

```
MongoDB
```

```
college> db.students.find({sage:{$gt:25}})
   id: ObjectId('6602349268ed4179038bf207'),
  sname: 'John Doe',
  sage: 30,
  scity: 'New York'
```

6.Get the name of students whose names begin with the letter 'V'.

SQL

SELECT name FROM students WHERE name LIKE 'V%';

```
MongoDB
```

```
college> db.students.find({sname:/^V/},{"sname":1})
[
     {
        id: ObjectId('6602429168ed4179038bf208'),
        sname: 'Vishal'
      }
      ]
```