Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

	• Se acorda 10 puncte din oficiu. Nota finala se calculeaza prin imparțirea punctajului obținut la EECTUL I (30 d.	e puncte)
1.	$\log_2(5+\sqrt{17}) + \log_2(5-\sqrt{17}) = \log_2((5+\sqrt{17})(5-\sqrt{17})) =$	2p
	$=\log_2 8 =$	2p
	-2	1p
2.	$= 3$ $4! = 24, C_4^1 = 4, A_5^1 = 5$	2n
	$4!-C_4^1$	3р
	$\frac{4! - C_4^1}{A_5^1} = 4$	2p
3.	Dreapta de ecuație $x = 2$ este axă de simetrie a parabolei	2p
	Dacă $A(x_1,0)$ și $B(5,0)$ sunt punctele de intersecție, atunci $\frac{x_1+5}{2}=2$, deci $x_1=-1$	3р
4.	$2^{x+3} = 2^{-2}$	2p
	x + 3 = -2	1p
	$x = -5 \in \mathbb{Z}$	2p
5.	Panta dreptei d este egală cu $\frac{1}{2}$	2p
	$v_{\rm p} - v_{\rm d}$	
	Panta dreptei AB este $m_{AB} = \frac{y_B - y_A}{x_B - x_A} = -2$	1p
	Decoarece $m_d \cdot m_{AB} = \frac{1}{2} \cdot (-2) = -1$, se deduce $AB \perp d$	2p
6.	√3	
	$\sin 60^\circ = \frac{\sqrt{3}}{2}$	2 p
	$\frac{AB}{\sin C} = 2R$	2
		2 p
	$R = \frac{AB}{2 \cdot \sin C} = 2\sqrt{3}$	1p
SUB	SIECTUL al II-lea (30 d	le puncte)
a)	$\frac{(z+y)}{(x+y)} = x + y + z - 2$	2p
	x*(y*z) = x + y + z - 2	2p
	Finalizare	1p
b)	x*e = e*x = x + e - 1	2p
	$x + e - 1 = x$, pentru orice $x \in \mathbb{R}$	2 p
	Finalizare: $e=1$	1p
c)	$x \circ y = \frac{1}{2}(xy - x - y + 1 + 2) = \frac{1}{2}(xy - x - y + 1) + 1$	3 p
	Finalizare	2p
d)	$\frac{1}{2} \cdot (2^x - 1) \cdot 2 + 1 = 1$	2p
		2 p
	$2^x = 1$	1p

x = 0

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

	, ,		
e)	$\begin{cases} x + y = 3 \\ 4x + y = 6 \end{cases}$	3p 2p	
	x=1 și $y=2$	2 p	
f)	$(x * y) \circ z = \frac{1}{2} (xz + yz - x - y - 2z + 4)$	2p	
	$(x \circ z) * (y \circ z) = \frac{1}{2} (xz - x - z + 3) * \frac{1}{2} (yz - y - z + 3) = \frac{1}{2} (xz + yz - x - y - 2z + 4)$	2p	
	Finalizare	1p	
CIIDI	CHDIECTH -11111-		

	Finalizare	1p
SUB	SUBIECTUL al III-lea (30 de pr	
a)	$\int 1+2+a=6$	
	$\begin{cases} 2+a+1=6\\ a+1+2=6 \end{cases}$	3р
	a+1+2=6	25
	a=3	2p
b)	$(a^2 + 5 3a + 2 3a + 2)$	
	$A^{2} = \begin{pmatrix} a^{2} + 5 & 3a + 2 & 3a + 2 \\ 3a + 2 & a^{2} + 5 & 3a + 2 \\ 3a + 2 & 3a + 2 & a^{2} + 5 \end{pmatrix}$	2
	$\begin{vmatrix} 3a+2 & 3a+2 & a^2+5 \end{vmatrix}$	2p
	$\left(a^2+5 0 0\right)$	
	$(a^2+5)I_3 = \begin{vmatrix} 0 & a^2+5 & 0 \end{vmatrix}$	1p
	$ (a^2 + 5)I_3 = \begin{pmatrix} a^2 + 5 & 0 & 0 \\ 0 & a^2 + 5 & 0 \\ 0 & 0 & a^2 + 5 \end{pmatrix} $	
	$(3a+2)B = \begin{bmatrix} 0 & 3a+2 & 3a+2 \\ 3a+2 & 0 & 3a+2 \end{bmatrix}$	
	$(3a+2)B = \begin{pmatrix} 0 & 3a+2 & 3a+2 \\ 3a+2 & 0 & 3a+2 \\ 3a+2 & 3a+2 & 0 \end{pmatrix}$	1p
	Finalizare: $A^2 - (a^2 + 5)I_3 = (3a + 2)B$	1p
c)	Suma elementelor matricei A^2 este $3a^2 + 18a + 27$	3р
	$3a^2 + 18a + 27 = 0 \Rightarrow a = -3$	2 p
d)	$\int x + 2y - 3z = 6$	
	Pentru $a = -3$, sistemul este $\begin{cases} 2x - 3y + z = 6 \end{cases}$	1p
	-3x + y + 2z = 6	
	Adunând ecuațiile, se obține $0 = 18$	3 p
	Sistemul (S) este incompatibil	1p
e)	$\int x + 2y = 6$	
	Pentru $a = 0$, sistemul este $\begin{cases} 2x + z = 6 \end{cases}$	2p
	y + 2z = 6	
	Soluția sistemului este (2, 2, 2)	3р
f)	$\det B = 2 \neq 0 \Rightarrow B$ este inversabilă	2p
	$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	_
	$\begin{pmatrix} -1 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$	
	$B^* = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \ B^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$	3 p
	$\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix}$	
	$\left[\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{array}\right]$	
		<u> </u>