

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY RAMAPURAM CAMPUS DEPARTMENT OF MATHEMATICS

Year/Sem: II/III

Branch: Common to All branches

Unit 4 – Fourier Transforms

1. The Fourier Transforms of f(x) = 1 in a < x < b is

(a)
$$F[f(x)] = \frac{1}{is\sqrt{2\pi}}[e^{ibs} - e^{ias}]$$

(b)
$$F[f(x)] = \frac{1}{\sqrt{2\pi}} [e^{ibs} - e^{ias}]$$

(c)
$$F[f(x)] = \frac{1}{i\sqrt{\pi}} \left[e^{ibs} - e^{ias} \right]$$

(d)
$$F[f(x)] = \frac{1}{is\sqrt{2\pi}} [e^{ias} - e^{ibs}]$$

Solution:
$$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{a}^{b} 1. e^{isx} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{isx}}{is} \right]_{a}^{b} = \frac{1}{is\sqrt{2\pi}} \left[e^{ibs} - e^{ias} \right]$$

Ans: a

2. The Fourier Transforms of $f(x) = e^{-a|x|}$, a > 0 is

(a)
$$\sqrt{\frac{1}{2\pi}} \left[\frac{a}{a^2 + s^2} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{a}{a^2 + s^2} \right]$ (c) $\sqrt{\frac{1}{\pi}} \left[\frac{1}{a^2 + s^2} \right]$ (d) $\sqrt{\frac{2a}{\pi}} \left[\frac{s}{a^2 + s^2} \right]$

Solution:
$$F\left[e^{-a|x|}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a|x|} e^{isx} dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{a} (\cos sx + i\sin sx) e^{-a|x|} dx$$
$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{a} \cos sx \, e^{-ax} dx = \sqrt{\frac{2}{\pi}} \left[\frac{a}{a^{2} + s^{2}}\right]$$

Ans: b

3. If
$$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx = F(s)$$
, then $F[\int_{a}^{x} f(x) dx] =$

(a)
$$\frac{1}{is}F(s)$$
 (b) $-\frac{1}{2is}F(s)$ (c) $-\frac{1}{is}F(s)$ (d) $-\frac{2}{is}F(s)$

Solution:

Let
$$\int_a^x f(x)dx = g(x)$$
 i.e., $f(x)dx = g'(x)$
If $F[g(x)] = G(s)$, $F[g'(x)] = -isG(s)$

1

$$F[f(x)] = -isF[g(x)] = -\frac{1}{is}F(s)$$

Ans: c

4. The Fourier Transforms of $f(x) = e^{ikx}$, a < x < b is

(a)
$$\frac{1}{i(ks)\sqrt{2\pi}} \left[e^{i(ks)b} - e^{i(ks)a} \right]$$

(b)
$$\frac{1}{i(k-s)\sqrt{2\pi}} [e^{i(k-s)b} - e^{i(k-s)a}]$$

(c)
$$\frac{2}{i(k+s)\sqrt{\pi}} [e^{i(k+s)b} - e^{i(k+s)a}]$$

$$(\mathbf{d})\frac{1}{i(k+s)\sqrt{2\pi}}[e^{i(k+s)b}-e^{i(k+s)a}]$$

Solution:

$$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$$

$$F[e^{ikx}] = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{ikx} e^{isx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{i(k+s)x} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{i(k+s)x}}{i(k+s)} \right]_{a}^{b} = \frac{1}{i(k+s)\sqrt{2\pi}} \left[e^{i(k+s)b} - e^{i(k+s)a} \right]$$

Ans:d

5. The Fourier Transforms of f(x) = 1, $|x| \le a$ is

(a)
$$\sqrt{\frac{2}{\pi}} \left(\frac{\sin as}{s} \right)$$
 (b) $\sqrt{\frac{1}{\pi}} \left(\frac{\sin as}{s} \right)$ (c) $\sqrt{\frac{1}{2\pi}} \left(\frac{\cos as}{s} \right)$ (d) $\sqrt{\frac{2}{\pi}} \left(\frac{\cos as}{s} \right)$

Solution:

$$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-a}^{a} 1. e^{isx} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{isx}}{is} \right]_{-a}^{a} = \frac{1}{is\sqrt{2\pi}} \left[e^{isa} - e^{-ias} \right]$$

$$= \frac{1}{is\sqrt{2\pi}} [2i\sin as] = \sqrt{\frac{2}{\pi}} \left(\frac{\sin as}{s}\right)$$

Ans:a

6. If f(x) = 1 and F[f(x)] =

$$\sqrt{\frac{2}{\pi}} \left(\frac{\sin as}{s} \right)$$
 then by Parseval's Identity, $\int_{-\infty}^{\infty} \left(\frac{\sin as}{s} \right)^2 ds$ is

- (a) $2\pi a$
- (b) πa
- (c) π/c
- (d) 2π

Solution:

$$\int_{-a}^{a} 1 dx = \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} \left(\frac{\sin as}{s} \right)^{2} ds$$

$$2a = \frac{2}{\pi} \int_{-\infty}^{\infty} \left(\frac{\sin as}{s}\right)^2 ds = \int_{-\infty}^{\infty} \left(\frac{\sin as}{s}\right)^2 ds = \pi a$$

7. If
$$F_s[x f(x)] = -\frac{d}{ds}F_c[f(x)]$$
, then $F_s[x e^{-ax}]$ is

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{as}{(a^2 + s^2)^2} \right]$$
 (b) $\sqrt{\frac{1}{\pi}} \left[\frac{2as}{(a^2 + s^2)^2} \right]$ (c) $\sqrt{\frac{2}{\pi}} \left[\frac{2as}{(a^2 + s^2)^2} \right]$ (d) $\sqrt{\frac{2}{\pi}} \left[\frac{2\pi}{(a^2 + s^2)^2} \right]$

(b)
$$\sqrt{\frac{1}{\pi}} \left[\frac{2as}{(a^2+s^2)^2} \right]$$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2as}{\left(a^2 + s^2\right)^2} \right]$$

(d)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2\pi}{\left(a^2 + s^2\right)^2} \right]$$

Solution:

$$F_{s}[x e^{-ax}] = -\frac{d}{ds} F_{c}[e^{-ax}]$$

$$= -\frac{d}{ds} \sqrt{\frac{2}{\pi}} \left[\frac{a}{(a^{2}+s^{2})} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{2as}{(a^{2}+s^{2})^{2}} \right]$$

Ans:c

8. If
$$F_c[x f(x)] = \frac{d}{ds} F_s[f(x)]$$
, then $F_c[x e^{-ax}]$ is

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{a^2}{(a^2 + s^2)^2} \right]$$

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{a^2}{(a^2 + s^2)^2} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{s^2}{(a^2 + s^2)^2} \right]$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{a^2 - s^2}{(a^2 - s^2)^2} \right]$$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{a^2 - s^2}{(a^2 - s^2)^2} \right]$$
 (d) $\sqrt{\frac{2}{\pi}} \left[\frac{a^2 - s^2}{(a^2 + s^2)^2} \right]$

Solution:
$$F_c[x e^{-ax}] = \frac{d}{ds} F_s[e^{-ax}]$$

= $\frac{d}{ds} \sqrt{\frac{2}{\pi}} \left[\frac{s}{(a^2 + s^2)} \right] = \sqrt{\frac{2}{\pi}} \left[\frac{a^2 - s^2}{(a^2 + s^2)^2} \right].$

Ans: d

9. If
$$f(x) = e^{-ax}$$
 and $F_c[x e^{-ax}] = \sqrt{\frac{2}{\pi}} \left[\frac{a}{(a^2 + s^2)} \right]$
then by Parseval's Identity $\int_0^\infty \frac{1}{(a^2 + s^2)^2} ds$ is

(a)
$$\frac{\pi}{4a^3}$$

(b)
$$\frac{\pi}{a^3}$$

(c)
$$\frac{\pi}{2a^2}$$

(a)
$$\frac{\pi}{4a^3}$$
 (b) $\frac{\pi}{a^3}$ (c) $\frac{\pi}{2a^2}$ (d) $\frac{3\pi}{4a^3}$

Solution:

$$\int_0^\infty |F_c[s]|^2 ds = \int_0^\infty |f(x)|^2 dx$$

$$\frac{2a^2}{\pi} \int_0^\infty \frac{1}{(a^2 + s^2)^2} ds = \int_0^\infty e^{-2ax} dx$$

$$\int_0^\infty \frac{1}{(a^2 + s^2)^2} ds = \frac{\pi}{4a^3}$$

Ans: a

10. If
$$f(x) = e^{-ax}$$
 and $F_s[e^{-ax}] = \sqrt{\frac{2}{\pi}} \left[\frac{s}{(a^2 + s^2)} \right]$

then by Parseval's Identity $\int_0^\infty \frac{s^2}{(a^2+s^2)^2} ds$ is

$$(a)\frac{\pi}{4a^3}$$

(b)
$$\frac{\pi}{4a}$$

(c)
$$\frac{\pi}{2a^2}$$

(a)
$$\frac{\pi}{4a^3}$$
 (b) $\frac{\pi}{4a}$ (c) $\frac{\pi}{2a^2}$ (d) $\frac{3\pi}{4a^3}$

Solution:

By Parseval's Identity,

$$\int_0^\infty |F_c[s]|^2 ds = \int_0^\infty |f(x)|^2 dx$$

$$\frac{2}{\pi} \int_0^\infty \frac{s^2}{(a^2 + s^2)^2} ds = \int_0^\infty e^{-2ax} dx$$

$$\int_0^\infty \frac{s^2}{(a^2 + s^2)^2} ds = \frac{\pi}{4a}$$

Ans: b

11. If
$$\frac{2}{\pi} \int_0^\infty \frac{10}{(s^2+4)(s^2+25)} ds = \int_0^\infty e^{-7x} dx$$
,

then
$$\int_0^\infty \frac{dx}{(x^2+4)(x^2+25)} =$$
(a) $\frac{\pi}{120}$ (b) $\frac{\pi}{160}$

(a)
$$\frac{\pi}{120}$$
 (b) $\frac{\pi}{160}$ (c) $\frac{\pi}{140}$ (d) $\frac{3\pi}{180}$

(c)
$$\frac{\pi}{140}$$

(d)
$$\frac{3\pi}{100}$$

Solution:

$$\int_0^\infty \frac{dx}{(s^2+4)(s^2+25)} = \frac{\pi}{20} \int_0^\infty e^{-7x} dx = \frac{\pi}{140}$$

Ans: c

12. If
$$\int_0^\infty e^{-ax} \cos bx \, dx = \frac{a}{(a^2 + b^2)}$$
, then FCT of $f(x) = 3e^{-5x} + 5e^{-2x}$ is

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{25}{(25+s^2)} + \frac{10}{(4+s^2)} \right]$$

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{25}{(25+s^2)} + \frac{10}{(4+s^2)} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{5}{(25+s^2)} + \frac{20}{(4+s^2)} \right]$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{10}{(25+s^2)} + \frac{15}{(4+s^2)} \right]$$
 (d) $\sqrt{\frac{2}{\pi}} \left[\frac{15}{(25+s^2)} + \frac{10}{(4+s^2)} \right]$

(d)
$$\sqrt{\frac{2}{\pi}} \left[\frac{15}{(25+s^2)} + \frac{10}{(4+s^2)} \right]$$

Solution:

$$F_{c}[f(x)] = 3F_{c}[e^{-5x}] + 5F_{c}[e^{-2x}]$$

$$= \sqrt{\frac{2}{\pi}} \left\{ 3 \left[\frac{5}{(5^{2}+s^{2})} \right] + 5 \left[\frac{2}{(2^{2}+s^{2})} \right] \right\}$$

$$= \sqrt{\frac{2}{\pi}} \left[\frac{15}{(25+s^{2})} + \frac{10}{(4+s^{2})} \right]$$

Ans: d

13. By Fourier Transforms identity, if

$$\frac{2ab}{\pi} \int_0^\infty \frac{1}{(s^2 + a^2)(s^2 + b^2)} ds = \int_0^\infty e^{-(a+b)x} dx \ ,$$

Then
$$\int_0^\infty \frac{1}{(x^2+a^2)(x^2+b^2)} dx$$
 is
 (a) $\frac{\pi}{2ab(a+b)}$ (b) $\frac{\pi}{2b(a+b)}$ (c) $\frac{\pi}{2a(a+b)}$ (d) $\frac{\pi}{2ab(a-b)}$

Solution:

$$\int_0^\infty \frac{1}{(s^2 + a^2)(s^2 + b^2)} ds = \frac{\pi}{2ab} \int_0^\infty e^{-(a+b)x} dx ,$$

$$= \frac{\pi}{2ab(a+b)}$$

Ans: a

14. If
$$F_c\left[\frac{e^{-ax}}{x}\right] = -\frac{1}{\sqrt{2\pi}}\log(a^2 + s^2)$$
 then $F_c\left[\frac{e^{-ax} - e^{-bx}}{x}\right]$ is

(a) $\frac{1}{\sqrt{2\pi}}\log\left(\frac{b^2}{a^2 + s^2}\right)$ (b) $\frac{1}{\sqrt{2\pi}}\log\left(\frac{b^2 + s^2}{a^2 + s^2}\right)$ (c) $\frac{1}{\sqrt{2\pi}}\log\left(\frac{a^2}{a^2 + s^2}\right)$ (d) $\frac{1}{\sqrt{2\pi}}\log\left(\frac{b^2 - s^2}{a^2 + s^2}\right)$

Solution:

$$F_{c}\left[\frac{e^{-ax} - e^{-bx}}{x}\right] = -\frac{1}{\sqrt{2\pi}}\log(a^{2} + s^{2}) + \frac{1}{\sqrt{2\pi}}\log(b^{2} + s^{2})$$
$$= \frac{1}{\sqrt{2\pi}}\log\left(\frac{b^{2} + s^{2}}{a^{2} + s^{2}}\right)$$

Ans:b

15. If
$$F_s\left[\frac{e^{-ax}}{x}\right] = -\sqrt{\frac{2}{\pi}}tan^{-1}\left(\frac{a}{s}\right)$$
 then $\int_0^\infty \left(\frac{e^{-ax}-e^{-bx}}{x}\right)\sin sx \, dx$ is

(a) $\left(tan^{-1}\left(\frac{a}{s}\right)-tan^{-1}\left(\frac{b}{s}\right)\right)$ (b) $\left(tan^{-1}\left(\frac{b}{s}\right)+tan^{-1}\left(\frac{a}{s}\right)\right)$

(c) $\left(tan^{-1}\left(\frac{b}{s}\right)-tan^{-1}\left(\frac{a}{s}\right)\right)$ (d) $\left(tan^{-1}\left(\frac{a}{s}\right)+tan^{-1}\left(\frac{b}{s}\right)\right)$

Solution:

$$F_{c}\left[\frac{e^{-ax}-e^{-bx}}{x}\right] = \sqrt{\frac{2}{\pi}}\left(\tan^{-1}\left(\frac{b}{s}\right) - \tan^{-1}\left(\frac{a}{s}\right)\right)$$

$$\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \left(\frac{e^{-ax}-e^{-bx}}{x}\right) \sin sx \, dx = \sqrt{\frac{2}{\pi}}\left(\tan^{-1}\left(\frac{b}{s}\right) - \tan^{-1}\left(\frac{a}{s}\right)\right)$$

$$\int_{0}^{\infty} \left(\frac{e^{-ax}-e^{-bx}}{x}\right) \sin sx \, dx = \left(\tan^{-1}\left(\frac{b}{s}\right) - \tan^{-1}\left(\frac{a}{s}\right)\right)$$

Ans: c

16. If
$$f(x) = \frac{2a}{\pi} \int_0^\infty \frac{\cos sx}{s^2 + a^2} ds$$
 (where $f(x) = e^{-ax}$, $a > 0$)

then by Inverse Fourier Transform $\int_0^\infty \frac{\cos mx}{x^2+a^2} dx$ is

(a)
$$\frac{\pi}{2a}e^{-m}$$

(b)
$$\frac{\pi}{2m} e^{-max}$$

$$(c)\frac{\pi}{4a}e^{-ma}$$

(a)
$$\frac{\pi}{2a}e^{-ms}$$
 (b) $\frac{\pi}{2m}e^{-ma}$ (c) $\frac{\pi}{4a}e^{-ma}$ (d) $\frac{\pi}{2a}e^{-ma}$

Solution:

$$\int_0^\infty \frac{\cos sx}{x^2 + a^2} ds = \frac{\pi}{2a} e^{-ax}$$

By changing the dummy variables of integration s=x and x=m then

$$\int_0^\infty \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-ma}$$

Ans:d

17. If
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{s \sin sx}{s^2 + a^2} ds$$
 (where $f(x) = e^{-ax}, a > 0$)

then by Inverse Fourier Transform $\int_0^\infty \frac{x \sin mx}{x^2 + a^2} dx$ is

(a)
$$\frac{\pi}{2}e^{-am}$$

(b)
$$\frac{\pi}{2m} e^{-m}$$

(c)
$$\frac{\pi}{4a}e^{-m}$$

(a)
$$\frac{\pi}{2}e^{-am}$$
 (b) $\frac{\pi}{2m}e^{-ma}$ (c) $\frac{\pi}{4a}e^{-ma}$ (d) $\frac{\pi}{2a}e^{-ma}$

Solution:

$$\int_0^\infty \frac{s \sin sx}{x^2 + a^2} ds = \frac{\pi}{2} e^{-ax}$$

By changing the dummy variables of integration s=x and x=m then

$$\int_{0}^{\infty} \frac{x \sin mx}{x^2 + a^2} dx = \frac{\pi}{2} e^{-am}$$

Ans: a

18. If
$$\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$$
, then $F_S\left[\frac{1}{x}\right]$ is

(a)
$$\sqrt{\frac{2}{\pi}}$$

(b)
$$\sqrt{\frac{\pi}{2}}$$

(c)
$$\sqrt{\frac{1}{\pi}}$$

(a)
$$\sqrt{\frac{2}{\pi}}$$
 (b) $\sqrt{\frac{\pi}{2}}$ (c) $\sqrt{\frac{1}{\pi}}$ (d) $\sqrt{\frac{1}{2\pi}}$

Solution:
$$F_S\left[\frac{1}{x}\right] = \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{1}{x} \sin sx \, dx$$

Put
$$sx = \theta$$
 then $\frac{1}{x} = \frac{s}{\theta}$

$$dx = \frac{d\theta}{s}$$
, then $F_s\left[\frac{1}{x}\right] = \sqrt{\frac{\pi}{2}}$

Ans: b

19. If
$$\int_0^\infty e^{-ax} \cos bx \, dx = \frac{a}{(a^2+b^2)}$$
, then FCT of $f(x) = e^{-2x} + 3e^{-x}$ is

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2}{(24+s^2)} + \frac{3}{(9+s^2)} \right]$$

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2}{(24+s^2)} + \frac{3}{(9+s^2)} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{1}{(25+s^2)} + \frac{2}{(4+s^2)} \right]$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2}{(4+s^2)} + \frac{3}{(1+s^2)} \right]$$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2}{(4+s^2)} + \frac{3}{(1+s^2)} \right]$$
 (d) $\sqrt{\frac{2}{\pi}} \left[\frac{5}{(25+s^2)} + \frac{1}{(4+s^2)} \right]$

Solution:

$$F_c[f(x)] = F_c[e^{-2x}] + 3F_c[e^{-x}]$$

$$\sqrt{\frac{2}{\pi}} \left\{ \left[\frac{2}{(4+s^2)} \right] + 3 \left[\frac{1}{(1+s^2)} \right] \right\}$$

$$= \sqrt{\frac{2}{\pi}} \left[\frac{2}{(4+s^2)} + \frac{3}{(1+s^2)} \right]$$

Ans:c

20. The Fourier sine Transforms of f(x) = 1, 0 < x < 1 is

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{\cos s}{s} \right]$$

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{\cos s}{s} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{1 + \cos s}{s} \right]$ (c) $\sqrt{\frac{1}{\pi}} \left[\frac{2 - \cos s}{s} \right]$ (d) $\sqrt{\frac{2}{\pi}} \left[\frac{1 - \cos s}{s} \right]$

$$F_s[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin sx \ dx = \sqrt{\frac{2}{\pi}} \int_0^1 \sin sx \ dx =$$

$$\sqrt{\frac{2}{\pi}} \left[-\frac{\cos sx}{s} \right]_0^1 = \sqrt{\frac{2}{\pi}} \left[\frac{1 - \cos s}{s} \right]$$

$$= \frac{1}{is\sqrt{2\pi}} [2i\sin as] = \sqrt{\frac{2}{\pi}} \left(\frac{\sin as}{s}\right)$$

Ans:d

21. If
$$\int_0^\infty e^{-ax} \sin bx \, dx = \frac{b}{(a^2 + b^2)}$$
, then FST of $f(x) = e^{-2x} + 3e^{-x}$ is

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{s}{(4+s^2)} + \frac{3s}{(1+s^2)} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{s}{(25+s^2)} + \frac{2s}{(4+s^2)} \right]$

(b)
$$\sqrt{\frac{2}{\pi}} \left[\frac{s}{(25+s^2)} + \frac{2s}{(4+s^2)} \right]$$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2}{(4+s^2)} - \frac{3}{(1+s^2)} \right]$$

(c)
$$\sqrt{\frac{2}{\pi}} \left[\frac{2}{(4+s^2)} - \frac{3}{(1+s^2)} \right]$$
 (d) $\sqrt{\frac{2}{\pi}} \left[\frac{5s}{(25+s^2)} + \frac{s}{(4+s^2)} \right]$

Solution:

$$F_s[f(x)] = F_c[e^{-2x}] + 3F_c[e^{-x}]$$

$$\sqrt{\frac{2}{\pi}} \left\{ \left[\frac{s}{(4+s^2)} \right] + 3 \left[\frac{s}{(1+s^2)} \right] \right\}$$

$$= \sqrt{\frac{2}{\pi}} \left[\frac{s}{(4+s^2)} + \frac{3s}{(1+s^2)} \right]$$

Ans:a

22. The Fourier cosine Transforms of f(x) = 1, 0 < x < 1 is

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{\cos s}{s - a} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{\sin s}{s} \right]$ (c) $\sqrt{\frac{1}{\pi}} \left[\frac{\cos s}{s} \right]$ (d) $\sqrt{\frac{2}{\pi}} \left[\frac{1 - \sin s}{s} \right]$
Solution: $F_c[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos sx \, dx = \sqrt{\frac{2}{\pi}} \int_0^1 \cos sx \, dx$

$$= \sqrt{\frac{2}{\pi}} \left[\frac{\sin sx}{s} \right]_0^1 = \sqrt{\frac{2}{\pi}} \left[\frac{\sin s}{s} \right]$$

Ans:b

23. If
$$\frac{2}{\pi} \int_0^\infty \frac{s}{(s^2+4)(s^2+25)} ds = \int_0^\infty e^{-4x} dx$$
,
then $\int_0^\infty \frac{x \, dx}{(x^2+4)(x^2+25)} =$
(a) $\frac{\pi}{12}$ (b) $\frac{\pi}{16}$ (c) $\frac{\pi}{14}$ (d) $\frac{\pi}{8}$

Solution:

$$\int_0^\infty \frac{sds}{(s^2+4)(s^2+25)} = \frac{\pi}{2} \int_0^\infty e^{-4x} dx = \frac{\pi}{8}$$

Put s=x.

Ans: d

24. By Fourier Transforms identity, if $\frac{2ab}{\pi} \int_0^\infty \frac{1}{(s^2+a^2)(s^2+b^2)} ds = \int_0^\infty e^{-(a+b)x} dx$,

Then
$$\int_0^\infty \frac{1}{(x^2+9)(x^2+16)} dx$$
 is

(a) $\frac{\pi}{162}$ (b) $\frac{\pi}{186}$ (c) $\frac{\pi}{168}$ (d) $\frac{\pi}{816}$

$$\int_0^\infty \frac{1}{(s^2+3^2)(s^2+4^2)} ds = \frac{\pi}{2(3)(4)} \int_0^\infty e^{-7x} dx = \frac{\pi}{168}$$

Ans: $ce^{-7x}dx$

25. The Fourier Transforms of f(x) = 1 in 1 < x < 2 is

(a)
$$F[f(x)] = \frac{1}{is\sqrt{2\pi}} [e^{i2s} - e^{is}]$$

(b)
$$F[f(x)] = \frac{1}{\sqrt{2\pi}} [e^{is} + e^{i2s}]$$

(c)
$$F[f(x)] = \frac{1}{i\sqrt{\pi}} [e^{ib} - e^{ia}]$$

(d)
$$F[f(x)] = \frac{1}{is\sqrt{2\pi}}[e^{is} - e^{i2s}]$$

Solution: $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$ $= \frac{1}{\sqrt{2\pi}} \int_{1}^{2} 1 \cdot e^{isx} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{isx}}{is} \right]_{1}^{2} = \frac{1}{is\sqrt{2\pi}} [e^{i2s} - e^{is}]$

Ans: a