Derivadas Investigando o Código das Variações

Prof. Pedro Bonfim de Assunção Filho pedro.filho@ifg.edu.br

Instituto Federal de Goiás IFG

12 de junho de 2025

▶ Isaac Newton (1643-1726). "Se eu vi mais longe, foi por estar sobre ombros de gigantes"

► Gottfried Wilhelm Leibniz (1646 - 1716). "Mais importante que as invenções é como foram inventadas."

Funções

- Definição. Uma função é uma relação entre dois conjuntos f : X → Y, que asssocia cada elemento do conjunto X chamado domínio a um único elemento no outro conjunto Y chamado contra-domínio.
- **Exemplo:** $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + 1$.

Funções

- **Exemplo:** $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$
- **Exemplo:** $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \log_b(x)$, b > 0.
- **Exemplo:** $f: \mathbb{R} \to \mathbb{R}$, $f(x) = a^x$, a > 0.
- ▶ Um pouco mais geral, $a_0, a_1, a_2, ..., a_n \in \mathbb{R}$ e $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ Polinômio de grau n.

Noção de Limite

 $ightharpoonup \grave{\mathrm{A}}$ medida que $n \to \infty$, o perímetro do polígono se aproxima de $2\pi r$.

Perímetro $\approx n \cdot 2r \sin\left(\frac{\pi}{n}\right) \xrightarrow{n \to \infty} 2\pi r$

Uma definição não rigorosa

Dizemos que o limite de f(x) quando x tende a x_0 é L e denotamos:

$$\lim_{x\to x_0} f(x) = L$$

Se os valores de f(x) se aproxima de L quando x se aproxima de x_0 .

Considerando uma sequência (x_k) com a distância $|x_k-x_0|$ se aproximando de zero. $|x_k-x_0|\to 0$ a medida que k cresce. Assim, $|f(x_k)-L|\to 0$.

No caso polinomial é sempre verdade que:

$$\lim_{x\to x_0} p(x) = p(x_0).$$

Exemplo:
$$p(x) = x^2 - 5x + 6$$

Limite, continuidade e derivadas

Seja $f: D \to \mathbb{R}$ uma função definida em um subconjunto $D \subseteq \mathbb{R}$, e seja x_0 um ponto de acumulação de D. Dizemos que f tem limite $L \in \mathbb{R}$ quando x tende a x_0 , e escrevemos

$$\lim_{x \to x_0} f(x) = L,$$

se, para todo $\epsilon>0$, existe $\delta>0$ tal que, se $0<|x-x_0|<\delta$ e $x\in D$, então

$$|f(x)-L|<\epsilon.$$

Definição do limite: $L = \lim_{x \to x_0} f(x)$ [Burden, 2013].

Continuidade

Considere a função $f:[a,b] \to \mathbb{R}$.

- ightharpoonup se $x_0 = a \Rightarrow \lim_{x \to a^+} f(x) = f(a)$
- ightharpoonup se $x_0 = b \Rightarrow \lim_{x \to b^-} f(x) = f(b)$
- ▶ se $x_0 \in (a, b)$ $\Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$ $\Rightarrow f$ é contínua em $x_0 \in [a, b]$
- ▶ f é contínua em [a, b] se for contínua em todo $x_0 \in [a, b]$.
- ▶ Se f é contínua em [a, b] escrevemos $f \in C[a, b]$.

Derivada

Derivada

Limite que define a derivada

A derivada de uma função $f: \mathbb{R} \to \mathbb{R}$ em um ponto $x \in \mathbb{R}$ é definida pelo limite:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Interpretação:

Limite que define a derivada

A derivada de uma função $f:\mathbb{R}\to\mathbb{R}$ em um ponto $x\in\mathbb{R}$ é definida pelo limite:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Interpretação:

Razão incremental (taxa de variação média).

Limite que define a derivada

A derivada de uma função $f:\mathbb{R}\to\mathbb{R}$ em um ponto $x\in\mathbb{R}$ é definida pelo limite:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Interpretação:

- Razão incremental (taxa de variação média).
- Inclinação da reta tangente ao gráfico de f no ponto x.

Limite que define a derivada

A derivada de uma função $f: \mathbb{R} \to \mathbb{R}$ em um ponto $x \in \mathbb{R}$ é definida pelo limite:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Interpretação:

- Razão incremental (taxa de variação média).
- lnclinação da reta tangente ao gráfico de f no ponto x.
- ► Se o limite existe, f é diferenciável em x.

Derivada

Considere a função $f:[a,b] \to \mathbb{R}$.

- ▶ A derivada de f em $x_0 \in (a, b)$ é dada por $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ quando o limite existe.
- Se f possuir derivada em todo $x_0 \in (a, b)$ dizemos que ela é derivável em (a, b). Escrevemos $f \in C^1(a, b)$.
- A derivada nos extremos do intervalo será dada por $f'(a) = \lim_{x \to a^+} \frac{f(x) f(a)}{x a}$, $f'(b) = \lim_{x \to b^-} \frac{f(x) f(b)}{x b}$, se os limites existem.

Relação entre derivada e continuidade

Theorem

Se a função f possui derivada em x_0 então ela é contínua em x_0 .

Observações:

As derivadas de ordens mais altas definem-se recursivamente:

$$f^{(n)}(x) = (f^{(n-1)})'(x), \quad n \ge 2.$$

O conjunto de funções n vezes derivável em (a, b) é denotado por $C^n(a, b)$.

Teorema de Rolle

Theorem (Teorema de Rolle)

Seja f uma função contínua em [a, b] e derivável em (a, b). Se

$$f(a)=f(b)$$

então existe um número $c \in (a,b)$ tal que

$$f'(c) = 0.$$

Teorema do Valor Médio (Lagrange)

Theorem (Teorema do Valor Médio)

Seja f uma função contínua em [a,b] e derivável em (a,b). Então existe um número $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema de Taylor

Theorem (Teorema de Taylor)

Sejam $n \ge 0$ inteiro e f uma função n vezes continuamente derivável em [a,b] que possui derivada de ordem n+1 em (a,b). Se $x_0,x\in [a,b]$ então

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x; x_0)$$

e existe um número ξ entre x_0 e x tal que

$$R_n(x;x_0)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}.$$

Expansão de Taylor

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x; x_0)$$

O polinômio de Taylor de ordem n de f centrado em x_0 :

$$T_n(x; x_0) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

O termo $R_n(x; x_0)$ é o resto (ou erro de truncamento).

Exemplo: $f(x) = e^x$

Lembretes:

- $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n \approx 2,718281828459045...$
- $f^{(k)}(x) = e^x$

Polinômio de Taylor:

$$T_n(x; x_0) = e^{x_0} \sum_{k=0}^n \frac{(x - x_0)^k}{k!}$$

Resto:

$$R_n(x; x_0) = \frac{e^{\xi}}{(n+1)!} (x - x_0)^{n+1}$$

Gráficos de Taylor para e^x

Ordem n = 0 centrada em $x_0 = 0$.

Exemplo: $f(x) = \ln x$

Lembretes:

- In x contínua e infinitamente derivável em $(0, +\infty)$
- $f^{(k)}(x) = \frac{(-1)^{k+1}(k-1)!}{x^k}, k \ge 1$

Polinômio de Taylor:

$$T_n(x; x_0) = \ln x_0 + \sum_{k=1}^n \frac{(-1)^{k+1} (x - x_0)^k}{k x_0^k}$$

Resto:

$$R_n(x;x_0) = \frac{(-1)^{n+2}}{(n+1)\xi^{n+1}}(x-x_0)^{n+1}$$

Gráficos de Taylor para In x

Ordem n = 0 centrada em $x_0 = 1.5$.

Observações

- Podemos usar os polinômios de Taylor para aproximar os valores de uma função não elementar na vizinhança de um ponto onde conhecemos os valores exatos da função e suas derivadas.
- ▶ O intervalo onde essas aproximações são apropriadas depende da função que está sendo estudada.
- ▶ É possível usar a fórmula correspondente ao resto para obter uma estimativa do nível de erro cometido nessas aproximações.

Referências

▶ R.L. Burden e J.D. Faires, Análise Numérica. Trad. 8a Edição, Cengage Learning, 2013.