Big Data Analysis Application and Practice (XAI605) PCA & MDS

2023 Spring

Instructor: Sejun Park

Geometric embedding

- Goal: embed given data to Euclidean space
 - PCA (Principal component analysis)
 - High-dimensional data to Low-dimensional affine space
 - MDS (Multidimensional scaling)
 - Distance between data to Euclidean space

- Goal: find a best affine approximation of data $x_1, \ldots, x_n \in \mathbb{R}^p$
 - What is the best approximation?
 - i.e., measure of quality of approximation?

Mathematical objective

$$\min_{\beta,\mu,U} L := \sum_{i=1}^{n} ||x_i - (\mu + U\beta_i)||^2$$

- Data: $X = [x_1, \dots, x_n] \in \mathbb{R}^{p \times n}$
- Low-dim. representation: $\beta = [\beta_1, \dots, \beta_n] \in \mathbb{R}^{n \times k}$, $\sum_{i=1}^n \beta_i = 0$
- Bias: $\mu \in \mathbb{R}^p$
- Low-dim. basis: $U = [u_1, \dots, u_k] \in \mathbb{R}^{p \times k}$
- Our basis is orthonormal: $||u_i|| = 1$, $u_i^\top u_j = 0$ for all $i \neq j$ (or $U^\top U = I$)

Finding optimal solution

First-order optimality condition under fixed basis (U)

$$\min_{\beta,\mu,U} L := \sum_{i=1}^{n} ||x_i - (\mu + U\beta_i)||^2$$

$$\frac{\partial L}{\partial \mu} = -2\sum_{i=1}^{n} (x_i - \mu - U\beta_i) = 0 \iff \hat{\mu} = \frac{1}{n}\sum_{i=1}^{n} x_i$$

$$\frac{\partial L}{\partial \beta_i} = (x_i - \mu - U\beta_i)^{\top} U = 0 \iff \beta_i = U^{\top} (x_i - \mu)$$

Finding optimal solution

Reformulate the objective

$$L = \sum_{i=1}^{n} \|x_i - (\hat{\mu} + U\beta_i)\|^2$$

$$= \sum_{i=1}^{n} \|x_i - \hat{\mu} - UU^{\top}(x_i - \mu)\|^2$$

$$= \sum_{i=1}^{n} \|y_i - UU^{\top}y_i\|^2 \quad (y_i := x_i - \hat{\mu})$$

Finding optimal solution

•
$$Y = [y_1, ..., y_n]$$

$$\arg \min_{U} \sum_{i=1}^{n} ||y_i - UU^{\top}y_i||^2$$

$$= \arg \min_{U} \operatorname{Tr}((Y - UU^{\top}Y)^{\top}(Y - UU^{\top}Y))$$

$$= \arg \min_{U} \operatorname{Tr}(Y^{\top}(I - UU^{\top})^{\top}(I - UU^{\top})Y)$$

$$= \arg \min_{U} \operatorname{Tr}(Y^{\top}(I - UU^{\top})^2Y)$$

$$= \arg \min_{U} \operatorname{Tr}(Y^{\top}(I - UU^{\top})^2Y)$$

$$= \arg \min_{U} \operatorname{Tr}(Y^{\top}(I - UU^{\top})Y)$$

$$= \arg \min_{U} \operatorname{Tr}(Y^{\top}(I - UU^{\top})Y)$$

$$= \arg \max_{U} \operatorname{Tr}(YY^{\top}(I - UU^{\top})Y)$$

$$= \arg \max_{U} \operatorname{Tr}(YY^{\top}UU^{\top})$$

$$= \arg \max_{U} \operatorname{Tr}(U^{\top}YY^{\top}UU^{\top})$$

Finding optimal solution

$$\arg\min_{U} \sum_{i=1}^{n} \|y_i - UU^{\top}y_i\|^2 = \arg\max_{i=1} \operatorname{Tr}(U^{\top}YY^{\top}U)$$
$$= \arg\max_{i=1} \sum_{i=1}^{n} u_i^{\top} \hat{\Sigma} u_i$$

$$\hat{\Sigma} := \frac{1}{n} Y Y^{\top} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}) (x_i - \hat{\mu})^{\top}$$
or
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu}) (x_i - \hat{\mu})^{\top}$$

Finding optimal solution

Top-k eigenvectors of the covariance matrix are the solution

$$\arg\min_{U} \sum_{i=1}^{n} \|y_i - UU^{\top} y_i\|^2 = \arg\max_{u_1, \dots, u_k} \sum_{i=1}^{k} u_i^{\top} \hat{\Sigma} u_i$$

- Finding optimal solution
 - Top-k eigenvectors of the covariance matrix are the solution

$$\arg\min_{U} \sum_{i=1}^{n} \|y_i - UU^{\top} y_i\|^2 = \arg\max_{u_1, \dots, u_k} \sum_{i=1}^{k} u_i^{\top} \hat{\Sigma} u_i$$

Or equivalently, we can choose top-k left singular vector of Y

$$\hat{\Sigma} := \frac{1}{n} Y Y^{\top} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}) (x_i - \hat{\mu})^{\top}$$

$$Y = \hat{U}\hat{S}\hat{V}^{\top}$$

- Finding optimal solution
 - Optimal low-dimensional representation

$$\beta_i = \hat{U}_k^\top y_i$$
$$\beta = \hat{U}_k^\top Y = \hat{S}_k \hat{V}_k^\top$$

SVD-based algorithm

- Compute $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and compute $Y = [x_1 \hat{\mu}, \dots, x_n \hat{\mu}]$
- For $q=\min\{p,n\}$, compute $\hat{U}\in\mathbb{R}^{p\times q}, \hat{S}\in\mathbb{R}^{q\times q}, \hat{V}\in\mathbb{R}^{n\times q}$ using SVD so that $Y=\hat{U}\hat{S}\hat{V}^{\top}$
- Choose entries corresponding to top-k singular values: $\hat{U}_k \in \mathbb{R}^{p \times k}$, $\hat{S}_k \in \mathbb{R}^{k \times k}, \hat{V}_k \in \mathbb{R}^{n \times k}$
- Return $\hat{\mu}, U \leftarrow \hat{U}_k, \beta \leftarrow U^\top Y$

SVD-based algorithm

- Compute $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and compute $Y = [x_1 \hat{\mu}, \dots, x_n \hat{\mu}]$
- For $q=\min\{p,n\}$, compute $\hat{U}\in\mathbb{R}^{p\times q}, \hat{S}\in\mathbb{R}^{q\times q}, \hat{V}\in\mathbb{R}^{n\times q}$ using SVD so that $Y=\hat{U}\hat{S}\hat{V}^{\top}$
- Choose entries corresponding to top-k singular values: $\hat{U}_k \in \mathbb{R}^{p \times k}$, $\hat{S}_k \in \mathbb{R}^{k \times k}, \hat{V}_k \in \mathbb{R}^{n \times k}$
- Return $\hat{\mu}, U \leftarrow \hat{U}_k, \beta \leftarrow U^\top Y$

 We will later discuss improving the running time of PCA by approximating SVD using the power iteration

Example: eigenfaces (p = 2914)

Hugo Chavez

Tony Blair

George W Bush

Colin Powell

Ariel Sharon

Colin Powell

Gerhard Schroeder

George W Bush

Ariel Sharon

George W Bush

Donald Rumsfeld

- Average face
 - Mu in PCA

Example: reconstruction (k = 50)

Example: reconstruction (k = 100)

Example: reconstruction (k = 150)

Hugo Chavez Tony Blair George W Bush Colin Powell Ariel Sharon Colin Powell Gerhard Schroeder George W Bush George W Bush Ariel Sharon George W Bush Donald Rumsfeld

Example: reconstruction (k = 200)

Example: original images

Hugo Chavez Ariel Sharon

Approximation loss incurred by PCA

$$\sum_{i=1}^{n} ||y_i - UU^\top y_i||^2 = \text{Tr}(YY^\top (I - UU^\top))$$

$$= \text{Tr}(YY^\top) - (U^\top YY^\top U))$$

$$= n \sum_{i=1}^{p} \lambda_i - n \sum_{i=1}^{k} \lambda_i$$

$$= n \sum_{i=k+1}^{p} \lambda_i$$

Variance explained by PCA

Total variation is an informal measure of "spread" of data

Total variation:
$$\operatorname{Tr}(\hat{\Sigma}) = \sum_{i=1}^{p} \hat{\lambda}_i$$

Variance explained by PCA:
$$\frac{\sum_{i=1}^k \hat{\lambda}_i}{\operatorname{Tr}(\hat{\Sigma})}$$

Given some threshold, we can choose #principal components satisfying

$$rac{\sum_{i=1}^k \hat{\lambda}_i}{\operatorname{Tr}(\hat{\Sigma})} \geq \mathsf{threshold}$$

 Goal: given distance between data, represent data in Euclidean space preserving the distance

• Goal: given a squared distance matrix $D=[d_{ij}^2]$, find

$$X = [x_1, \dots, x_n]$$
 satisfying

$$d_{ij}^2 = ||x_i - x_j||^2 = x_i^\top x_i + x_j^\top x_j - 2x_i^\top x_j$$

 We first assume that a given matrix D is computed from data in Euclidean space

Key observation: Suppose that X satisfies the below

$$H := I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$$
$$-\frac{1}{2} H D H = (XH)^{\top} (XH)$$

Then, the squared distance between data represented by X matches with D

$$d_{ij}^2 = ||x_i - x_j||^2 = x_i^\top x_i + x_j^\top x_j - 2x_i^\top x_j$$

Proof of key observation

• If $X=[x_1,\ldots,x_n]$ and $Z=[z_1,\ldots,z_n]$ satisfies $X^\top X=Z^\top Z$, then $\|x_i-x_j\|^2=\|z_i-z_j\|^2$ for all i,j

$$X^{\top}X = [x_i^{\top}x_j]$$

$$||x_i - x_j||^2 = x_i^{\mathsf{T}} x_i + x_j^{\mathsf{T}} x_j - 2x_i^{\mathsf{T}} x_j$$

$$D_X := [\|x_i - x_j\|^2]$$

$$= \operatorname{diag}(X^\top X) \mathbf{1}^\top + \mathbf{1} \operatorname{diag}(X^\top X)^\top - 2X^\top X$$

- Proof of key observation
 - $D_X = D_{XH}$

$$XH = [x_1 - \mu, \dots, x_n - \mu]$$

Proof of key observation

- Suppose that $-\frac{1}{2}HD_ZH := (XH)^\top (XH)$
- Then $(ZH)^{\top}(ZH) = (XH)^{\top}(XH)$

$$\left(\operatorname{diag}(Z^{\top}Z)\mathbf{1}^{\top}\right)H = 0$$
$$H\left(\mathbf{1}\operatorname{diag}(Z^{\top}Z)^{\top}\right) = 0$$

Proof of key observation

- Suppose that $-\frac{1}{2}HD_ZH := (XH)^\top (XH)$
- Then $(ZH)^{\top}(ZH) = (XH)^{\top}(XH)$

$$-\frac{1}{2}HD_ZH = -\frac{1}{2}H\left(\operatorname{diag}(Z^{\top}Z)\mathbf{1}^{\top} + \mathbf{1}\operatorname{diag}(Z^{\top}Z)^{\top} - 2Z^{\top}Z\right)H$$
$$= HZ^{\top}ZH$$
$$= (ZH)^{\top}(ZH)$$

Key observation: Suppose that X satisfies the below

$$H := I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$$
$$-\frac{1}{2} H D H = (XH)^{\top} (XH)$$

Then, the squared distance between data represented by X matches with D

Remark

- Suppose that D is generated from data $Z = [z_1, \dots, z_n]$
- Then for MDS, we only require inner product, instead of the distance

$$-\frac{1}{2}HDH = HZ^{\top}ZH$$

In kernel MDS, we use inner product; we will see this later

Remark2

For the exact representation, we need n dimension for an n x n matrix D

Eigendecomposition-based algorithm

- Compute $\hat{K} = -\frac{1}{2}HDH$
- Compute the Eigendecomposition $\hat{K} = \hat{V} \hat{\Lambda} \hat{V}^{\top}$
- Compute $\hat{\Lambda}_k \in \mathbb{R}^{k \times k}$, $\hat{V}_k \in \mathbb{R}^{n \times k}$ corresponding to the top-k eigenvalues
- Return $\hat{\Lambda}_k^{1/2} \hat{V}_k^{\top}$

Duality of PCA and MDS

- PCA solution = MDS solution
 - If D is from data (say Z) from Euclidean space

- Low-dimensional representation of PCA satisfies
 - $Y = XH = \hat{U}\hat{S}\hat{V}^{\top}$
 - \hat{U}_k : chosen principal components (left singular vectors)

$$\beta = \hat{U}_k^{\top} Y = \hat{S}_k \hat{V}_k^{\top}$$

MDS solution is given by right singular vectors

$$X = \hat{S}\hat{V}^{\top}$$

Metric

- d is a metric if it satisfies the following conditions
 - $d(x,x) = 0 \quad \forall x$
 - $d(x,y) > 0 \quad \forall x \neq y$
 - d(x,y) = d(y,x)
 - d(x,z) = d(y,x) + d(y,z)

Non-metric MDS

- We can also consider the setup: D is not exactly the squared distance matrix
 - e.g., some measurement noise can be added
 - We may use other notion of distance that is not a metric

$$\arg\min_{X} \sum_{i,j} (\|x_i - x_j\|^2 - d_{ij}^2)$$

We will study non-metric MDS later

Condition for Euclidean embedding

- What if D is from data in Euclidean space
- Can we check whether D can be represented by Euclidean data or not?

	BOST	ИХ	DC	MIAM	CHIC	SEAT	SF	LA	DENV
BOSTON	0	206	429	1504	963	2976	3095	2979	1949
NY	206	0	233	1308	802	2815	2934	2786	1771
DC	429	233	0	1075	671	2684	2799	2631	1616
IMAIM	1504	1308	1075	0	1329	3273	3053	2687	2037
CHICAGO	963	802	671	1329	0	2013	2142	2054	996
SEATTLE	2976	2815	2684	3273	2013	0	808	1131	1307
SF	3095	2934	2799	3053	2142	808	0	379	1235
LA	2979	2786	2631	2687	2054	1131	379	0	1059
DENVER	1949	1771	1616	2037	996	1307	1235	1059	0

Condition for Euclidean embedding

- What if D is from data in Euclidean space
- Can we check whether D can be represented by Euclidean data or not?

Theorem D can be represented by Euclidean data if and only if -HDH is positive semi-definite

• $M \in \mathbb{R}^{n \times n}$ is positive semi-definite if $x^{\top} M x \geq 0 \ \forall x \in \mathbb{R}^n$

Singular value decomposition

- A Typical singular value decomposition algorithm of an m x n matrix requires $O(mn^2)$ flops
 - This is based on variants of QR decomposition and linear algebra techniques

This computes all left/right singular vectors and all singular values

An iterative algorithm for finding the largest eigenvalue & corresponding eigenvector

We can use this for efficiently computing top-k singular values/vectors

$$M = USV^{\top} \Longrightarrow M^{\top}M = V(S^{\top}S)V^{\top}, MM^{\top} = U(SS^{\top})U^{\top}$$

- Power iteration for finding the largest eigenvalue & corresponding eigenvector of $A \in \mathbb{R}^{n \times n}$
 - Initialize $b^{(0)} \in \mathbb{R}^n$ (you can choose any)
 - Repeat $b^{(t+1)} \leftarrow Ab^{(t)}/\|Ab^{(t)}\|$, $t \leftarrow t+1$ until $\|b^{(t)} b^{(t-1)}\| < \varepsilon$
 - ε is typically choosen as a very small constant (e.g., $\varepsilon = 10^{-6}$)
 - Largest eigenvalue: $Ab^{(t)}/\|Ab^{(t)}\|$, corresponding eigenvector: $b^{(t)}$

- Power iteration for finding the second largest eigenvalue & corresponding eigenvector of $A \in \mathbb{R}^{n \times n}$
 - Find the largest eigenvalue/vector λ_1, b_1 of A using the power iteration
 - $A_2 \leftarrow A \lambda_1 b_1 b_1^{\mathsf{T}}$
 - Find the largest eigenvalue/vector λ_2, b_2 of A_2 using the power iteration
 - λ_2, b_2 are the second largest eigenvalue/vector of A

We can generalize this to find top-k eigenvalues/vectors

Complexity for finding the largest eigenvalue/vector

- Required #iterations= $O(\frac{\log(n/\varepsilon)}{\log(\lambda_1/\lambda_2)})$
- Each iteration requires $O(n^2)$ FLOPS (matrix-vector product)
- Total complexity= $O(\frac{n^2 \log(n/\varepsilon)}{\log(\lambda_1/\lambda_2)})$

- Complexity for finding the largest eigenvalue/vector
 - Required #iterations= $O(\frac{\log(n/\varepsilon)}{\log(\lambda_1/\lambda_2)})$
 - Each iteration requires $O(n^2)$ FLOPS (matrix-vector product)
 - Total complexity= $O(\frac{n^2 \log(n/\varepsilon)}{\log(\lambda_1/\lambda_2)})$

• For SVD, we additionally require a matrix-matrix product

$$M = USV^{\top} \Longrightarrow M^{\top}M = V(S^{\top}S)V^{\top}, MM^{\top} = U(SS^{\top})U^{\top}$$

Power iteration vs. SVD

- Naïve multiplication of an n x m matrix and an m x n matrix requires $O(mn^2)$ FLOPS
 - $O(n^3)$ if m=n

- Naïve multiplication of an n x m matrix and an m x n matrix requires $O(mn^2)$ FLOPS
 - $O(n^3)$ if m = n
- What happens in theory?

Rather surprisingly, this complexity is not optimal, as shown in 1969 by Volker Strassen, who provided an algorithm, now called Strassen's algorithm, with a complexity of $O(n^{\log_2 7}) \approx O(n^{2.8074})$. [14] Strassen's algorithm can be parallelized to further improve the performance. [citation needed] As of December 2020, the best matrix multiplication algorithm is by Josh Alman and Virginia Vassilevska Williams and has complexity $O(n^{2.3728596})$. [15] It is not known whether matrix multiplication can be performed in $n^{2+o(1)}$ time. This would be optimal, since one must read the n^2 elements of a matrix in order to multiply it with another matrix.

1	upper bound					
k	on $\omega(k)$					
0.30298	2					
0.31	2.000063					
0.32	2.000371					
0.33	2.000939					
0.34	2.001771					
0.35	2.002870					
0.40	2.012175					
0.45	2.027102					
0.50	2.046681					
0.5302	2.060396					
0.55	2.070063					
0.60	2.096571					
0.65	2.125676					
0.70	2.156959					
0.75	2.190087					
0.80	2.224790					

	1 1
k	upper bound
	on $\omega(k)$
0.85	2.260830
0.90	2.298048
0.95	2.336306
1.00	2.375477
1.10	2.456151
1.20	2.539392
1.30	2.624703
1.40	2.711707
1.50	2.800116
1.75	3.025906
2.00	3.256689
2.50	3.727808
3.00	4.207372
4.00	5.180715
5.00	6.166736

Table 2: Upper bounds from [17] on the exponent of the multiplication of an $n \times n^k$ matrix by an $n^k \times n$ matrix, obtained by analyzing the second power of the Coppersmith-Winograd tensor.

- Initial idea for decreasing matrix multiplication cost
 - Consider the square matrix multiplication, i.e., m=n
 - Suppose that $n = 2^k$

The Strassen algorithm partitions A,B and C into equally sized block matrices

$$A = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}, \quad B = egin{bmatrix} B_{11} & B_{12} \ B_{21} & B_{22} \end{bmatrix}, \quad C = egin{bmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{bmatrix}, \ (A, B, C \in \mathbb{R}^{2^k imes 2^k}, A_{ij}, B_{ij}, C_{ij} \in \mathbb{R}^{2^{k-1} imes 2^{k-1}}) \end{pmatrix}$$

$$egin{bmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{bmatrix} = egin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- Initial idea for decreasing matrix multiplication cost
 - Consider the square matrix multiplication, i.e., m=n
 - Suppose that $n = 2^k$

Complexity of $2^k \times 2^k$ matrix multiplication

$$= O(8 \times \text{Complexity of } 2^{k-1} \times 2^{k-1} \text{ matrix multiplication})$$

$$= O(8^k) = O(2^{3k}) = O(n^3)$$

The Strassen algorithm defines instead new matrices:

$$egin{aligned} M_1 &= (A_{11} + A_{22})(B_{11} + B_{22}); \ M_2 &= (A_{21} + A_{22})B_{11}; \ M_3 &= A_{11}(B_{12} - B_{22}); \ M_4 &= A_{22}(B_{21} - B_{11}); \ M_5 &= (A_{11} + A_{12})B_{22}; \ M_6 &= (A_{21} - A_{11})(B_{11} + B_{12}); \ M_7 &= (A_{12} - A_{22})(B_{21} + B_{22}), \end{aligned}$$

using only 7 multiplications (one for each M_k) instead of 8.

$$egin{bmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{bmatrix} = egin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \ M_2 + M_4 & M_1 - M_2 + M_3 + M_6 \end{bmatrix}.$$

Complexity of $2^k \times 2^k$ matrix multiplication

$$= O(7 \times \text{Complexity of } 2^{k-1} \times 2^{k-1} \text{ matrix multiplication})$$

$$= O(7^k) = O(2^{k \log_2 7}) = O(n^{\log_2 7})$$

$$= O(n^{2.8073549...})$$

For practice session

- You should bring your laptop!!!
- You will use google colab in practice session
 - I will provide you a jupyter notebook file with some empty entries
 - And you will fill those entries in the next week