- (2) Iの値を求めよ.
- 4. $B_1 = \{(x,y) \mid 1 \le x^2 + y^2 \le 4\}$, $f(x,y) = \frac{1}{4} \left(x^2 + y^2 \log(x^2 + y^2)\right)$ と する. xyz空間内における関数 z = f(x,y) の B_1 上のグラフを A_1 とする. 即ち, $A_1 = \{(x,y,z) \mid z = f(x,y), \ 1 \le x^2 + y^2 \le 4\}$ である. このとき, A_1 の曲面積 S を求めよ.
- 5. $B_2 = \{(x,y) \mid x^2 + y^2 \le 2, \ y \ge 0\}$ とする. xyz 空間内における関数 $z = 3 x^2 y^2$ の B_2 上のグラフを A_2 とする. 即ち, $A_2 = \{(x,y,z) \mid z = 3 x^2 y^2, \ x^2 + y^2 \le 2, \ y \ge 0\}$ である. さらに,z 成分が正であるような A_2 の単位法線ベクトルを n とする. このとき,ベクトル場 $f(x,y,z) = \left(\frac{x}{z}, \frac{y}{z}, 1\right)$ の A_2 上の面積分 $\iint_{A_2} f \cdot n \, dS \left(=\iint_{A_2} f \cdot dS\right)$ の値を求めよ.
- **6.** xy 平面において,(0,0) から (1,0) に至る線分を Γ_1 ,(1,0) から (1,1) に至る線分を Γ_2 ,(1,1) から (0,1) に至る線分を Γ_3 ,(0,1) から (0,0) に至る線分を Γ_4 とし, $\Gamma = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4$ とする.このとき, Γ に沿ったベクトル場の線積分 $I = \int_{\Gamma} \left(e^{x^2-y^2}\sin(2xy) y\right) dx + \left(e^{x^2-y^2}\cos(2xy) + x\right) dy$ の値をグリーンの定理を用いて求めよ.