9 リーマン積分可能性 の解答例

演習 9.1 任意の $\varepsilon > 0$ に対して、区間 [a,b] の分割

$$\Delta$$
: $a = x_0 < x_1 < \cdots < x_n = b$

を $|\Delta|=\max_{1\leq i\leq n}(x_i-x_{i-1})<rac{arepsilon}{f(b)-f(a)}$ となるようにとる. $M_i=\sup_{x_{i-1}\leq x\leq x_i}f(x),$ $m_i=\inf_{x_{i-1}\leq x\leq x_i}f(x)$ とすると, f は単調増大なので $M_i=f(x_i),$ $m_i=f(x_{i-1})$ である. よって,

$$\overline{S}(\Delta) - \underline{S}(\Delta) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))|\Delta| = (f(b) - f(a))|\Delta| < \varepsilon.$$

従って $\inf_{\Delta}(\overline{S}(\Delta)-\underline{S}(\Delta))=0$ となり, f は [a,b] においてリーマン積分可能である.

演習 9.2 $M=\sup_{a\leq x\leq b}f(x),\, m=\inf_{a\leq x\leq b}f(x)$ とする. もし M=m ならば, f(x) は [a,b] において定数関数なので、明らかにリーマン積分可能である. 以下, M>m とする. まず, a< c< b の場合について証明する. 任意の $\varepsilon>0$ に対し、

$$0 < \delta' < \min \left\{ \frac{\varepsilon}{4(M-m)}, \ c-a, \ b-c \right\}$$

となる正の数 δ' をとる. f は閉区間 $[a,c-\delta'],[c+\delta',b]$ において一様連続だから, ある δ_1,δ_2 が存在して,

$$\forall x, y \in [a, c - \delta'], \quad |x - y| < \delta_1 \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2(b - a - 2\delta')},$$

$$\forall x, y \in [c + \delta', b], \quad |x - y| < \delta_2 \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2(b - a - 2\delta')}$$

を満たす $(b-a-2\delta'>b-a-(c-a)-(b-c)=0$ に注意¹). そこで, $\delta=\min\{\delta_1,\delta_2\}$ とし, [a,b] の分割 Δ を,

$$\Delta$$
: $a = x_0 < x_1 < \dots < x_{l-1} = c - \delta' < x_l = c + \delta' < \dots < x_n = b$

 $^{^{1}}$ 分母は単に b-a でも良いので、その場合はこの注意は不要です.

かつ $|\Delta| < \delta$ となるようにとる. 仮定より f(x) は有界閉区間 $[x_{i-1}, x_i]$ $(i = 1, \ldots, n, t$ ただし $i \neq l)$ において最大値, 最小値をとるから,

$$f(\xi_i) = M_i = \sup_{x_{i-1} \le x \le x_i} f(x), \quad f(\eta_i) = m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$$

を満たす $\xi_i, \eta_i \in [x_{i-1}, x_i]$ (i = 1, ..., n, ただし $i \neq l)$ が存在し, $|\xi_i - \eta_i| \leq |\Delta| < \delta$ である. 従って、

$$\overline{S}(\Delta) - \underline{S}(\Delta)
= \sum_{i=1}^{l-1} (M_i - m_i)(x_i - x_{i-1}) + (M_l - m_l)(x_l - x_{l-1}) + \sum_{i=l+1}^{n} (M_i - m_i)(x_i - x_{i-1})
= \sum_{i=1}^{l-1} (f(\xi_i) - f(\eta_i))(x_i - x_{i-1}) + (M_l - m_l)(2\delta') + \sum_{i=l+1}^{n} (f(\xi_i) - f(\eta_i))(x_i - x_{i-1})
< \sum_{i=1}^{l-1} \frac{\varepsilon}{2(b - a - 2\delta')}(x_i - x_{i-1}) + \sum_{i=l+1}^{n} \frac{\varepsilon}{2(b - a - 2\delta')}(x_i - x_{i-1}) + (M - m)(2\delta')
< \frac{\varepsilon}{2}
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

よって, f は [a,b] でリーマン積分可能である.

a=c の場合は、任意の $\varepsilon>0$ に対し、 $0<\delta'<\min\left\{rac{arepsilon}{4(M-m)},\;b-a
ight\}$ となる正の数 δ' をとる.f は閉区間 $[a+\delta',b]$ において一様連続だから、ある δ が存在して、

$$\forall x, y \in [a + \delta', b], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2(b - a - \delta')}$$

を満たす. そして [a,b] の分割 Δ を,

$$\Delta$$
: $a = x_0 < x_1 = a + \delta' < \dots < x_n = b$

かつ $|\Delta|<\delta$ となるようにとればよい. c=b の場合も同様にして証明することができる.