

Неопределенный интеграл. Общие приемы и методы интегрирования

Определение. Пусть $-\infty \le a < b \le +\infty$ и на (a,b) заданы функции f(x) и F(x). Функция F(x) называется *первообразной* функции f(x) на (a,b), если

$$\forall x \in (a, b) \hookrightarrow F'(x) = f(x).$$

Теорема 1. (О структуре множества первообразных.) Пусть функция F(x) является первообразной функции f(x) на (a,b). Тогда функция $F(x)_1$ является первообразной функции f(x) на (a,b) в том и только в том случае, если $\exists C \in \mathbb{R} : \forall x \in (a,b) \hookrightarrow F_1(x) = F(x) + C$.

Определение. Неопределенным интегралом $\int f(x)dx$ называется множество всех первообразных функции f(x).

Теорема 2. Пусть функция F(x) является первообразной функции f(x). Тогда неопределенный интеграл функции f(x) — это множество функций вида F(x) + C, где $C \in \mathbb{R}$ — произвольная константа: $\int f(x)dx = F(x) + C$: $C \in \mathbb{R}$, что для краткости записывают в виде

$$\int f(x)dx = F(x) + C.$$

Замечание. Операция взятия дифференциала d и операция взятия неопределенного интеграла \int являются взаимно обратными.

Теорема 3. (Свойства линейности неопределенного интеграла). Если функции $f_1(x)$ и $f_2(x)$ имеют первообразные на $(a,b), \alpha_1 \in \mathbb{R}, \alpha_2 \in \mathbb{R}, \alpha_1^2 + \alpha_2^2 \neq 0$, то на (a,b)

$$\int (\alpha_1 f_1(x) + \alpha_2 f_2(x)) dx = \alpha_1 \int f_1(x) dx + \alpha_2 \int f_2(x) dx.$$

Теорема 4. (Метод интегрирования по частям.) Пусть на (a,b) заданы дифференцируемые функции u(x) и v(x). Тогда на (a,b)

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x).$$

Теорема 5. Если функция f непрерывна на отрезке [a, b], то для любой ее первообразной F имеет место формула

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

(Формулы для основных неопределенных интегралов.)

1.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq 1, x > 0;$$
 6. $\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C, x \neq \frac{\pi}{2} + \pi k;$

6.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C, x \neq \frac{\pi}{2} + \pi k;$$

2.
$$\int \frac{dx}{x+a} = \ln|x+a| + C, \quad x \neq -a;$$

2.
$$\int \frac{dx}{x+a} = \ln|x+a| + C$$
, $x \neq -a$; 7. $\int \frac{dx}{x^2+a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$, $a > 0$;

3.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
, $a > 0, a \neq 1$;

3.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
, $a > 0, a \neq 1$; 8. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$, $|x| < a$;

$$4. \int \sin x dx = -\cos x + C;$$

9.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \quad x \neq \pm a;$$

$$5. \int \cos x dx = \sin x + C;$$

10.
$$\int \frac{dx}{x^2 + a} = \ln \left| x + \sqrt{x^2 + a} \right| + C, \ x^2 > -a.$$

Задачи для работы в классе

Вычислить производную функции y = f(x). Указать область существования производной.

- **1.** Найти какую-либо первообразную F(x) функции $f(x) = 1/\sqrt{x}, x \in (0, +\infty),$ и ее неопределенный интеграл.
- **2.** Для функции $f(x)=1/x, x\in (-\infty,0),$ найти первообразную F(x), график которой проходит через точку (-2,2).
- 3. Найти интеграл:

(a)
$$\int (x - 2e^x) dx$$
. (f) $\int \operatorname{tg}^2 x dx$.

(f)
$$\int tg^2 x dx$$
.

(k)
$$\int \frac{dx}{2 + \cos^2 x}$$
, $|x| < \frac{\pi}{2}$.

(b)
$$\int \frac{(\sqrt{x} - 2\sqrt[3]{x})^2}{x} dx$$
. (g) $\int 3^x \cdot 5^{2x} dx$. (l) $\int \frac{x^7 dx}{\sqrt{1 - x^{16}}}$.

(g)
$$\int 3^x \cdot 5^{2x} dx.$$

$$(1) \int \frac{x^7 dx}{\sqrt{1 - x^{16}}}$$

$$\text{(c)} \int \frac{dx}{x^4 + 4x^2}.$$

(c)
$$\int \frac{dx}{x^4 + 4x^2}$$
. (h) $\int (3x - 5)^{10} dx$. (m) $\int \ln x dx$.

(m)
$$\int \ln x dx$$

(d)
$$\int \frac{\sqrt{x^2 - 3} - 3\sqrt{x^2 + 3}}{\sqrt{x^4 - 9}} dx$$
. (i) $\int x^2 \sqrt[5]{5x^3 + 1} dx$.

(i)
$$\int x^2 \sqrt[5]{5x^3 + 1} dx$$
.

(n)
$$\int x \sin x dx.$$

(e)
$$\int \cos^2 \frac{x}{2} dx.$$

(j)
$$\int \operatorname{tg} x dx$$
.

(o)
$$\int x^2 e^x dx.$$

- **4.** Частица массой m, движущиеся горизонтально, с начальной скоростью v_0 попадает на поверхность, где на нее действует сила вязкого трения $F = \alpha v$. Найти зависимость пройденного частицей пути от времени.
- 5. Тело начинает падать с высоты H под действием силы тяжести. В процессе падения оно испытывает сопротивление, пропорциональное скорости. Определить время падения.