Kapitel 3: Filter im Ortsraum

Prof. Ingrid Scholl Bildverarbeitung WS 2018/2019

3. Kapitel: Filter im Ortsraum

- Was ist ein Filter
- Glättungsfilter (Summenfilter)
- Kantenfilter (Differenzenfilter)
- Nicht lineare Filter

Was ist ein Filter (im Ortsraum)?

Beispiel: Glättung eines Bildes f

Glättung: Berechnung eines Mittelwertes aus einer ROI

Größe des Filters bestimmt das räumliche Ausmaß der ROI (z.Bsp. 3x3, 5x5, 7x7, ..., (2n+1)x(2m+1)), muß nichtquadratisch sein

Filterkoeffizienten werden je nach Anwendung berechnet

Was ist ein Filter (im Ortsraum)?

:H AACHEN JNIVERSITY OF APPLIED SCIENCE Glättung: Berechnung eines Mittelwertes aus einer (5x5)-ROI

- Eine Filterung ist keine Punktoperation.
- Ein 2D-Filter berücksichtigt eine Menge von benachbarten Pixeln um den Bildpunkt (x,y). Diese Nachbarschaft (ROI) ist i.d.R. um den Bildpunkt (x,y) herum und hat eine Größe von 3x3, 5x5, 7x7 und allgemein (2n+1)x(2m+1).
- Der Filter besteht aus Filterkoeffizienten. Diese werden je nach Anwendung definiert.
- Die Filterung wird für jeden Bildpunkt (x,y) ausgeführt und liefert einen gefilterten Wert, der in einem neuen Bild an der Stelle (x,y) gespeichert wird.

Faltung – Beispiel Glättung

Filtermatrix h der Größe $(2k+1) \times (2k+1)$ wird auf jedes Pixel (x,y) im Bild f angewendet:

Faltung
$$(f * h)(x, y) = \sum_{v=-k}^{k} \sum_{u=-k}^{k} f(x-u, y-v) \cdot h(u, v)$$

Nachteil: gefiltertes Bild ist kleiner (Randprobleme der Dicke k)

Original f

5x5-Glättungsfilter h

Geglättetes Bild

Faltung (Konvolution) im Ortsraum

Faltung erzeugt ein neues Bild f_{neu} durch eine gewichtete Summe von Bildelementen in f:

$$f_{neu} = (f * h)(x, y) = \sum_{v = -k}^{k} \sum_{u = -k}^{k} f(x - u, y - v) \cdot h(u, v)$$
Originalbild Gewichtungsfunktion Filtermaske

Die Gewichtungsfunktion h heißt Faltungsfunktion (oder Konvolutionsfunktion oder auch Filtermaske)

* ist der **Faltungsoperator**

Woher kommt die Rotation in der Faltung?

Berechnen Sie die Faltung eines 3x3 Bildes f mit einer 3x3 Filtermaske h für den Bildpunkt x=2 und y=2:

$$f_{neu} = (f * h)(x + k + 1, y + k + 1) = \sum_{v=1}^{2k+1} \sum_{u=1}^{2k+1} f(x + k + 1 - u, y + k + 1 - v) \cdot h(u, v)$$

$$\begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{pmatrix} * \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} (2,2) = \sum_{v=1}^{3} \sum_{u=1}^{3} f(x+k+1-u, y+k+1-v) \cdot h(u,v)$$
mit x=2, y=2, k=1

bei einem 3x3 Filter h

$$= \sum_{v=1}^{3} \sum_{u=1}^{3} f(2+2-u,2+2-v) \cdot h(u,v)$$

$$= \sum_{v=1}^{3} \sum_{u=1}^{3} f(4-u,4-v) \cdot h(u,v)$$

Woher kommt die Rotation in der Faltung?

$$\begin{pmatrix}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{pmatrix} * \begin{pmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{pmatrix} (x, y) = \sum_{v=1}^{3} \sum_{u=1}^{3} f(x+2u, y+2u, y+2u$$

$$= \sum_{v=1}^{3} \sum_{u=1}^{3} f(4-u,4-v) \cdot h(u,v)$$

Bewirkt in der Formel die Drehung um 180°

$$h = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix}$$

$$= \sum_{v=1}^{3} f(3,4-v) \cdot h(1,v) + f(2,4-v) \cdot h(2,v) + f(1,4-v) \cdot h(3,v)$$

$$= f(3,3) \cdot h(1,1) + f(2,3) \cdot h(2,1) + f(1,3) \cdot h(3,1)$$

$$+ f(3,2) \cdot h(1,2) + f(2,2) \cdot h(2,2) + f(1,2) \cdot h(3,2)$$

$$+ f(3,1) \cdot h(1,3) + f(2,1) \cdot h(2,3) + f(1,1) \cdot h(3,3)$$

$$= f_{11} \cdot h_{33} + f_{12} \cdot h_{32} + f_{1,3} \cdot h_{31}$$

$$+ f_{21} \cdot h_{23} + f_{22} \cdot h_{22} + f_{23} \cdot h_{21}$$

$$+ f_{31} \cdot h_{13} + f_{32} \cdot h_{12} + f_{33} \cdot h_{11}$$

Praktische Anwendung der Faltung:

Hier kann man erkennen, dass der Filter h um 180° gedreht auf das Bild gelegt wird und die übereinanderliegenden Bild- und Filterkoeffizienten miteinander multipliziert und aufsummiert werden.

Beispiel: Faltung berechnen

```
>> h180 = imrotate(h, 180)
h180 =
     5
     4
     3
>> T.*h180
ans =
    50
          300
                560
    48
          459
                 656
    42
          104
                 85
>> sum(sum(ans))
ans =
        2304
```

```
>> h = [1 2 3; 8 9 4; 7 6 5]
h =
     1
>> I = [10 50 80; 12 51 82; 14 52 85]
T =
    10
          50
                80
    12
          51 82
          52
                85
    14
>> f = imfilter(I,h,'conv')
         565
f =
                    1350
                                 1237
        1006
                    2304
                                 1998
         971
                    2144
                                 1720
```

Normalerweise ist h normiert, d.h. sum(sum(h)) = 1.0

Abhilfe bei Randproblemen

Randproblem:

Durch die Faltung mit einem Filter gibt es an den Bildrändern Probleme, da die Berechnung der Faltung davon ausgeht, daß die Filtermaske mittig auf das zu faltende Pixel gesetzt wird.

Lösung des Randproblemes:

- Bild wird um 2k Spalten und 2k Zeilen kleiner
- Randbereiche werden auf konstantem Wert gesetzt
- Randbereiche erhalten den Originalwert
- Bild wird periodisch fortgesetzt

Lineare Filter in MATLAB

I = imread('coins.png'); % Einlesen des Bildes coins.png in I
h = ones(5,5) / 25; % erzeugt einen 5x5-Filter mit Koeff.=1/25
I2 = imfilter(I,h, 'conv'); % Faltung des Bildes I mit dem Filter h
imshow(I), title('Original Image'); % Bild anzeigen
imshow(I2), title('Geglaettes Bild');

5x5-Glättungsfilter

Geglättetes Bild

Eigenschaften der Faltung

Faltungsoperator *, Funktionen f_1 und f_2 , Skalare a_1 , a_2 , a und b

Linear:
$$h*(a_1f_1 + a_2f_2) = a_1 \cdot h*f_1 + a_2 \cdot h*f_2$$

Verschiebungsinvariant (ortsunabhängig):

$$h * f(m+a,n+b) = [h * f](m+a,n+b)$$

Kummutativ (Reihenfolge nicht wichtig):

$$[h_1 * h_2](m,n) = [h_2 * h_1](m,n)$$

Assoziativ (steigert die Effizienz):

$$h_1 * ([h_2 * h_3](m,n)) = [h_1 * h_2](m,n) * h_3(m,n)$$

Eigenschaften der Faltung

Assoziativ (steigert die Effizienz):

$$h_1 * ([h_2 * f](m,n)) = [h_1 * h_2](m,n) * f(m,n)$$

Seien h_1 , h_2 Filter der Größe K x K und f ein Bild der Größe M x N. Wieviele Multiplikationen fallen nach dem Assoziativgesetz an?

$$h_2 * f \to K \cdot K \cdot M \cdot N = K^2 \cdot M \cdot N$$
$$h_1 * (h_2 * f) \to K^2 \cdot M \cdot N + K^2 \cdot M \cdot N = 2K^2 \cdot M \cdot N$$

$$h_1 * h_2 \to K \cdot K \cdot K \cdot K = K^2 \cdot K^2 = K^4$$
$$(h_1 * h_2) * f \to K^4 + K^2 \cdot M \cdot N$$

$$K^4 + K^2 \cdot M \cdot N < 2K^2 \cdot M \cdot N$$

$$K^4 < K^2 \cdot M \cdot N$$

$$K^2 < M \cdot N$$

Filtergroesse << Bildgroesse

Glättungsfilter

Rechteckfilter: Mittelwertsfilter:

$$h = h_{col} \cdot h_{row} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Gauß- bzw. Binomialfilter:

$$h = h_{col} \cdot h_{row} = (B_n)^T \cdot B_n$$

$$h = h_{col} \cdot h_{row} = (B_2)^T \cdot B_2 = \frac{1}{4} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \cdot \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Separable Filter

 Binomialfilter und Rechteckfilter sind separabel, d.h. anstatt einer 2D-Filterung kann man zwei 1D-Filterungen ausführen:

$$B_{2} \cdot (B_{2})^{T} = \frac{1}{4} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \cdot \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

• Schnelle Berechnung durch Ausnutzung des separablen Filters: $(f * B_2) * B_2^T$

Normierungsfaktoren für Binomialfilter B_n der Ordnung n sind 2^{-n} für 1D-Filter und 2^{-2n} für 2D-Filter. Anstatt einer Abbildung auf Fließkommazahlen, Filterung und Division kann die Filterung vollständig in ganzen Zahlen durchgeführt werden. Die Division wird dann als Shift-Operation um n bzw. 2n Stellen durchgeführt.

Gauß- und Binomialfilter

n	f	Binomialkoeffizienten (Pascal`sches Dreieck)	σ^2
0	1	1	0
1	1/2	1 1	1/4
2	1/4	1 2 1	1/2
3	1/8	1 3 3 1	3/4
4	1/16	14641	1
5	1/32	1 5 10 10 5 1	5/4
6	1/64	1 6 15 20 15 6 1	3/2

$$h = h_{col} \cdot h_{row} = B_n \cdot (B_n)^T$$

Beispiel: n=2

$$\leftarrow (B_2)^T = \frac{1}{4} \cdot \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$$

$$B_2 = \frac{1}{4} \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

1D-Gaußkurve:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

2D Gausskurve

 2D-Gaußfunktion entsteht durch die Matrixmultiplikation zweier 1D-Gaußfunktionen mit η = 0, somit auch separabel

$$f(x, y) = \frac{1}{\sigma \sqrt{2\pi}} \exp^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$

Filtergröße K x K mit:

$$K = 2 \cdot \lceil 3\sigma \rceil + 1$$

σ bestimmt den Radius der glockenförmigen Gaußfunktion

2D-Gausskurven

MATLAB: Filter erzeugen und Bild filtern

```
% Zeilenvektor
x = [1 \ 4 \ 6 \ 4 \ 1];
y = [1; 4; 6; 4; 1];
                         % Spaltenvektor
h = y*x
                         % Spaltenvektor*Zeilenvektor
h = h/(16*16)
sum(h)
sum (sum (h))
                    % Kontrolle: Ergebnis = 1.0
% Faltung Bild I mit Filter h, 3.ter Parameter 'conv'
% steht für "convolution" = Faltung
I3 = imfilter(I,h,'conv');
figure; imshow(I3);
                         % Anzeigen des Bildes
```

Kantenextraktion

Logische Kette: "Kanten erkennen bedeutet ... "

- ⇒ Grauwertunterschiede
- ⇒ Änderungen der Grauwerte
- ⇒ Grauwertdifferenzen
- ⇒ Grauwertdifferenzen mit verschiedenen Richtungen
- ⇒ Richtungsabhängige Ableitungen in Bildern

Kanten- und Liniendetektion durch lineare Filter

- Glättungsfilter unterdrücken hohe Grauwertunterschiede
- Kantenfilter verstärken die hohen Grauwertunterschiede (kleine Strukturen)

Kantenfilter basieren auf der n-ten Ableitung. Hier: Ableitungsfilter 1. Ordnung im Diskreten:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x,y) - f(x - \Delta x, y)}{\Delta x}$$

$$\approx \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$\approx \frac{f(x + \Delta x, y) - f(x - \Delta x, y)}{2\Delta x}$$

Rückwärtsgradient

Vorwärtsgradient

Symmetrischer Gradient

Kanten- und Liniendetektion durch lineare Filter

Beispiel: Erzeuge einen symmetrischen Gradienten, der vertikale Kanten erkennt:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+\Delta x,y) - f(x-\Delta x,y)}{2\Delta x}$$

$$\approx \frac{f(x+1,y) - f(x-1,y)}{2}$$

$$\approx \frac{1}{2} \left(1 \cdot f(x+1,y) + 0 \cdot f(x,y) + \left(-1\right) \cdot f(x-1,y) \right)$$

Symmetrischer Gradient
$$h = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$$

Kanten- und Linienfilter

Laplacefilter basiert auf der 2.ten Ableitung:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x) - f(x) - [f(x) - f(x - \Delta x)]}{(\Delta x)^2}$$
$$= \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{(\Delta x)^2}$$

Beispiel Laplace-Operator:

$$L = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Kanten- und Linienfilter

 Glättung mit der Binomialmaske und anschliessende Subtraktion vom Originalbild

$$L = 4(B_2 - I) = \frac{1}{4} \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 0 \end{vmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

$$f * L$$

Kanten- und Linienfilter

Sobeloperatoren:

extrahieren Kanten mit Vorzugsrichtungen und gleichzeitiger Glättung

$$\begin{bmatrix} S_1 = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} \qquad S_3 = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$S_3 = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$

$$S_{2} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \qquad S_{4} = \begin{pmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$S_4 = \begin{pmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Weitere Kantenfiltertechniken

- 1. Marr-Hildreth edge detector
- 2. Canny edge detector

Berücksichtigen zusätzlich:

- Eigenschaften der Kanten
- Rauschen im Bild

[1980] Marr, D and Hildreth, E.: "Theory of Edge Detection", Proc. R. Soc. Lond., vol. B207, pp. 187-217, 1980.

Grundlagen des Kantendetektors nach Marr und Hildreth:

- Grauwertunterschiede sind nicht von der Bildauflösung abhängig, so daß die Erkennung von Kanten Operatoren von verschiedenen Größen benötigt
- Ein plötzlicher Grauwertsprung (=Kante) führt zu einem Peak in der 1.ten Ableitung oder zu einem Nulldurchgang (zero crossing) in der 2.ten Ableitung

Eigenschaften des Marr und Hildreth Kantendetektors:

- Operator muss sich in der Größe verändern können:
 - Große Filtermasken detektieren verschmierte Kanten,
 - kleine Filtermasken detektieren feine Details.
- Differenzenoperator der 1.ten oder 2.ten Ableitung

Marr Hildreth Filter ist die 2.te Ableitung der Gaußfunktion oder der Laplace-Operator der Gaußfunktion:

$$\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2} \quad \text{mit} \quad G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Berechnung der 2.ten Ableitung der Gaußfunktion:

$$\nabla^{2}G(x,y) = \frac{\partial^{2}G(x,y)}{\partial x^{2}} + \frac{\partial^{2}G(x,y)}{\partial y^{2}} \quad \text{mit} \quad G(x,y) = e^{\frac{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}{2\sigma^{2}}}$$

$$= \frac{\partial}{\partial x} \left[\frac{-x}{\sigma^{2}} e^{\frac{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}{2\sigma^{2}}} \right] + \frac{\partial}{\partial y} \left[\frac{-y}{\sigma^{2}} e^{\frac{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}{2\sigma^{2}}} \right]$$

$$= \left[\frac{x^{2}}{\sigma^{4}} - \frac{1}{\sigma^{2}} \right] \cdot e^{\frac{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}{2\sigma^{2}}} + \left[\frac{y^{2}}{\sigma^{4}} - \frac{1}{\sigma^{2}} \right] \cdot e^{\frac{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}{2\sigma^{2}}}$$

$$= \left[\frac{x^{2} + y^{2} - 2\sigma^{2}}{\sigma^{4}} \right] \cdot e^{\frac{-x^{2}+y^{2}}{2\sigma^{2}}} \quad \text{Laplacian of Gaussian}$$

LoG mit
$$\sigma = \sqrt{2}$$

Negative Log = Mexican Hat Function

Approximation des negativen LoG Filter h =

$$g(x, y) = \left[\nabla^2 G(x, y)\right] * f(x, y)$$

$$g(x, y) = \nabla^2 \left[G(x, y) * f(x, y) \right]$$
1. Gauss-Filterung

Laplace-Filterung aus dem Ergebnis der Gaussfilterung

Negative Log = Mexican Hat Function

- 1. Filtere das Originalbild mit einem $n \times n$ Gauss-Tiefpaßfilter mit $n > 6\sigma$ (99,7% der Bilddaten sind +-3 σ um den Mittelwert)
- 2. Berechne die Laplace-Filterung auf das Ergebnis aus Schritt 1, z.Bsp. mit dem 3x3 Laplace-Filter
- Suche die Nulldurchgänge (Zero Crossings) aus dem Bild aus Schritt 2

25x25 Gauss-Filter bei σ =4.0

3x3 Laplace-Filter
h =
 1 1 1

Algorithmus Zero Crossing Pixel:

- 3. Untersuche die 3x3 Umgebung um ein Pixel. Falls einer der folgenden Fälle eintritt, wird das Pixel als Zero Crossing Pixel markiert:
 - Fall 1: Vorzeichenwechsel links-rechts
 - Fall 2: Vorzeichenwechsel oben-unten
 - Fall 3: Vorzeichenwechsel über die Diagonale links oben – rechts unten
 - Fall 4: Vorzeichenwechsel über die Diagonale rechts oben – links unten

```
% Marr Hildreth Edge Detection in Matlab:
BW = edge(I,'zerocross',thresh,h)
[BW, thresh] = edge(I, 'zerocross',...)
```



```
% Bild einlesen und verbessern
I = imread('gehirnschnitt.bmp');
I = rgb2gray(I);
I = imadjust(I, stretchlim(I),[]);
figure, imshow(I,[]);
% LoG
[BW, thresh] =
edge (I, 'log', [], 6*std2(I)/255);
thresh
figure, imshow(BW);
imwrite(I, 'gehirnschnitt adjusted.jpg');
imwrite(BW, 'gehirnschnitt log.jpg');
```


[1986] Canny, John, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, 1986, pp. 679-698

Algorithmus:

- 1. Rauschunterdrückung durch eine Gauß-Filterung
- 2. Berechnung des Gradientenbetrages:

$$g(x, y) = \sqrt{G_x^2 + G_y^2}$$

```
hy = fspecial('sobel');
hx = hy';
Gy = imfilter(double(I), hy, 'replicate');
Gx = imfilter(double(I), hx, 'replicate');
grad mag = sgrt(Gx.^2 + Gy.^2);
```

Berechnung der Gradientenrichtung:

$$g(x, y) = \tan^{-1} \left(G_y / G_x \right)$$

Ein Kantenpunkt ist ein Pixel, das ein lokales Maximum in der Richtung des Gradienten aufweist.

Algorithmus:

- 3. Untersuche für jedes aus Schritt 2 detektierte Kantenpixel, ob der Gradientenbetrag ein lokales Maximum ist. Alle anderen Kantenpixel werden auf Null gesetzt. Es bleiben dann nur Kanten mit der Dicke 1 übrig, die entlang der stärksten Gradientengrate laufen. Hierbei berücksichtigt der Algorithmus 2 Schwellwerte T1 und T2:
 - Starke Kantenpixel: Gradientenbetrag des Gratpixel > T2
 - Schwache Kantenpixel: T1 < Gradientenbetrag des Gratpixel <= T2
- 4. Algorithmus verbindet starke Kantenpixel, wenn es einen Pfad aus der 8-er Nachbarschaft von schwachen Kantenpixeln gibt (Edge linking)


```
>> [g, t] = edge(I, 'canny');
   0.0438 0.1094
>> figure, imshow(g,[]);
```


Nicht lineare Filter

- Z.Bsp. Median, Maximum, Minimum innerhalb einer lokalen Umgebung
- Keine lineare Multiplikation der Filterkoeffizienten mit dem Bild (keine Faltung möglich)
- Beispiel: Median-Filter der Größe 3x3

Beispiel: 3x3 Median Filterung

147	176	185	113	74	104	106	174	203	110	58
204	155	162	145	98	118	122	207	233	111	61
211	171	182	163	95	105	116	161	167	96	64
185	142	155	140	89	111	102	136	136	79	68
127	8 ;	128	118	110	119	103	181	195	100	60
87	114	190	118	80	114	118	188	200	100	47
73	155	184	78	57	124	131	117	106	104	79
106	124	117	86	146	164	125	94	78	104	85
127	8	69	178	255	178	100	84	76	50	48
90	7	84	221	246	147	73	58	49	78	137
40	2	74	181	189	121	41	35	109	207	238

```
I = imread('klinikum_gray.tif');
figure; imshow(I);
I2 = imcrop(I,[166 129 10 10]);
imtool(I2)
I3 = medfilt2(I2); // 3x3 Median Filterung
imtool(I3)
```

3x3 Umgebung:

{147, 204, 211, 176, 155, 171, 185, 162, 182} **3x3 Umgebung sortiert**:

{147, 155, 162, 171, 176, 182, 185, 204, 211} **Median**:

Wert in der Mitte der sortierten Menge = 176

	0	155	145	98	98	98	106	122	111	61	0
	155	176	163	145	105	105	118	167	167	110	61
	155	71	155	145	111	105	118	136	136	96	64
	127	155	142	128	111	105	116	136	136	96	64
	87	128	128	118	114	110	118	136	136	100	60
	86	127	118	118	114	114	119	131	117	100	60
	87	117	118	117	114	124	124	118	104	100	79
	88	117	117	117	146	131	124	100	94	79	50
	88	90	88	146	178	147	100	78	78	78	50
	40	77	84	181	181	147	84	73	76	78	50
	0	40	74	84	147	73	41	41	49	78	0

Matlab: Nicht lineare Filter

```
% Column filtering example
I = imread('tire.tif');
imshow(I), title('Original')
fun1 = @imagestd;
fun2 = @colstd;
disp('Column Filtering')
```

Function Handle: fun1 = @imagestd; Die Funktion imagestd ist in der Datei imagestd.m gespeichert


```
I2 = nlfilter(I, [3 3], fun1);
```

```
toc
figure, imshow(I2),title('STD using Non-Linear Filtering')
tic
```

```
I3 = colfilt(I,[3 3],'sliding',fun2);
```

toc

tic

figure, imshow(I3), title('STD using Column Filtering')

STD using Non-Linear Filtering

Matlab: Function Handle Funktionen

```
function y = imagestd(x)
%IMAGESTD berechnet die Standardabweichung von einem Bildblock
%x ist eine Matrix
y = uint8(round(std2(x)));
function y = colstd(x)
%COLSTD berechnet die Standardabweichung von einem Block, der
spaltenweise %verarbeitet wird; x ist ein Vektor
y = uint8(round(std(double(x))));
```

Matlab: Blockweise Filterung

```
% Block processing example of an averaging filter
I = imread('tire.tif');
% Create a handle to the function BLKAVG.
% Where BLKAVG is an M-file function which computes:
% y = uint8(mean2(x)*ones(size(x)));
fun = @blkavq;
% For more information on function handles
% type at the command prompt 'doc function handles'
```

```
I2 = blkproc(I, [8 8], fun);
imshow(I), title('Original')
figure
imshow(I2), title('Distinct Blocks Averaged')
```

Original

Distinct Blocks Averaged

Matlab: Übergabe weiterer Parameter bei **Function Handles**

```
% Block processing example of an averaging filter
I = imread('tire.tif');
% Function Handle:
fun = @blkavq;
T = 0.5;
% additional input parameter T to the function handle
```

I2 = blkproc(I, [8 8], fun, T);

```
imshow(I), title('Original')
figure
imshow(I2), title('Distinct Blocks Averaged')
% Function Handle blkavq.m:
function y = blkavq(x, T)
y = uint8 (mean2(x) *T*ones(size(x)));
```

Original

Distinct Blocks Averaged

3. Kapitel: Zusammenfassung

Filter

Glättungsfilter

Faltungsoperatoren:

- Mittelwertsfilter
- Binomialbzw. Gaussfilter

Kantenfilter

Faltungsoperatoren:

- Einfache Differenzenfilter
 - 1. Ableitung
- Filter 2.ter Ableitung Laplace Filter
- Sobel

Algorithmen, die Faltungen verwenden:

- Marr Hildreth Operator
- Canny Edge Operator

Nicht lineare Filter

- Median
- Minimum
- Maximum (nicht über Faltung berechenbar!)

Vielen Dank für die Aufmerksamkeit!

FH Aachen
Fachbereich Elektrotechnik und Informationstechnik
Prof. Ingrid Scholl
Eupenerstr. 70
52066 Aachen
T +49. 241. 6009 52177
scholl@fh-aachen.de
www.fh-aachen.de