

Informer & Applications

Al6103 Deep Learning and Applications Presentation

Group Project in Deep Learning

Presenter:

Wang Yu Tian (G2204884F)

Group Member:

Zhao YuHan (G2204624C)

Wang Qi Yue (G2204708F)

Koo Chia Wei (G2202810D)

Eugene Ho (G2204889B)

CONT ENTS

Transformer \rightarrow Informer

Problems happended in LSTF

LSTF: Long series time-series forecasting

(a) Sequence Forecasting.

(b) Run LSTM on sequences.

PART 02 Model Informer

Summary of Model

Honor Time

Win best paper in 2021 AAAI

replace the canonical self-attention. achieves O(Llog L) time complexity achieves O(Llog L) memory usage on dependency alignments.

privilege dominating attention scores in J-stacking layers sharply reduce space complexity to O((2-e)Llog L),

acquire long sequence output with only one forward step needed, avoiding cumulative error spreading during the inference phase.

2.1 Informer Structure

2.2 Probsparse Self-attention

$$A(Q, K, V) = Softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

$$A(q_i, K, V) = \sum_{i} \frac{k(q_i, K_j)}{\sum_{l} k(q_i, K_l)} V_j = E_p(k_j | q_i) [V_j]$$

2.2 Probsparse Self-attention

2.3 Stacked Decoder

3.1 WTH Experiment

Models	Informer				Informerstack			
Optimizers	Adam			Adammax		Adam	Adammax	
Loss	MSE	L1 loss	HuberL1	MSE	HuberL1	MSE	MSE	HuberL1
Function								
Metric	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE
	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE
WTH	0.311	0.326	0.320	0.305	0.303	0.319	0.326	0.317
	0.366	0.344	0.356	0.360	0.346	0.363	0.373	0.356

3.2 Global Temparature Experiment

- The dataset was obtained from data.world and generated by Berkeley Earth
- Global land and ocean temperature using monthly data from 1850 to 2015
 - Remove data prior to 1850 due to empty entries
- Training set (60% 1195), validation set (20% 398), testing set (20% 398)
- Forecast for a time horizon ~20 months
- Multivariate Forcasting
- The dataset includes **8 variables**:
 - 1. LandAverageTemperature
 - 2. LandAverageTemperatureUncertainty-95% Interval
 - 3. LandMaxTemperature
 - 4. LandMaxTemperatureUncertainty-95% Interval
 - 5. LandMinTemperature
 - 6. LandMinTemperatureUncertainty-95% Interval
 - 7. LandAndOceanAverageTemperature (Target)
 - 8. LandAndOceanAverageTemperatureUncertainty

3.2 Global Temparature Experiment

Experiment No.	Epoch	Learning Rate Decay	Sequence, Label,	Test Error, MSE	Test Error, MAE	
		per Epoch	Prediction Length			
1	100	0.5 (50%)	[96,48,24]	0.401	0.493 Shorter > Longer	
2	100	0.05 (5%)	[96,48,24]	0.302	0.391	
3	100	0.05 (5%)	[48,24,12]	0.141	0.288	
4	10 (Early Stoppage,	0.05 (5%)	[48,24,12]	0.165	0.313	
	Patience = 3)			Comparable	Performance	

- Lowering learning rate decay for longer epochs result in an increase in validation loss, indicating overfitting possibility
- Experiment 2's Validation Loss < Experiment 3, benefits to reduce learning rate decay
- Shorter sequence, label and prediction outperform longer ones
- Training and validating loss decrease drastically at early epoch < 15
- Validation loss may plateau or increase during higher epochs, indicating diminishing returns on model performance.
- Early Stoppage with Patience = 3 can achieve similar performance as model trained in 100 epochs

3.3 Stock Experiment

Experiment No.	Epoch	Learning Rate Decay per Epoch	Sequence, Label, Prediction Length	Test Error, MSE	Test Error, MAE
1	5 (Early Stoppage, Patience = 3)	0.05 (5%)	[96,48,24]	0.168	0.339
2	10 (Early Stoppage, Patience = 3)	0.05 (5%)	[48,24,12]	0.0934	0.237
3	13 (Early Stoppage, Patience = 3)	0.05 (5%)	[24,12,6]	0.0379	0.152
4	100	0.05 (5 %)	[24,12,6]	0.0371	0.151

Comparable Performance

- Dataset from Singapore Exchange Limited Stock Exchange (S68.SI) from Nov 2000 to Dec 2017
- The dataset includes **4 variables**:
 - 1. Market Open Price
 - 2. Market Close Price (**Target**)
 - 3. Low Price (Per Day)
 - 4. High Price (Per Day)
- No financial crisis indicator, remove all datapoint prior to Nov 2000 and after Dec 2017
- Performance from early stoppage are comparable to model that is trained for 100 epochs
- Model trained with 4 features is unable to forecast and predict accurately
- Trends generated by the model are inconsistent with the ground truth
- Require **additional financial indicators** (Price-to-earning Ratio, Debt-to-earning ratio and etc.)

Conclusion and Prospect

3 conclusions:

- 1. Different datasets: different optimization methods and loss functions
- 2. high epochs: reducing the learning rate → increase the risk of higher validation loss [performs well in predicting regular time series trends]
- 3. poorly in predicting complex time series trends [achieve relatively good results in a short number of epochs]

Overall, we achieved the expected performance of the informer model.

Prospect: Our outlook is to construct algorithms that can accurately predict both short-term and long-term time series trends in a short amount of time.

Thanks for your listening

