Construction of Pseudo-potentials for the Projector Augmented-Wave (PAW) Method

PHYS 760 Assignment 2

Make Your Own PAW Pseudopotentials

Hiroyuki Kumazoe Kumamoto University

I. Background

- Pseudo-wave function (RRKJ2)
- Local pseudo-potential
- Nonlocal operator and overlap operator
- Generalized eigen-equation
- Transferability
- Estimation of plane-wave cutoff energies

Pseudo-Wave Function (RRKJ2)

• The pseudo-wave functions are defined by,

$$P_{\text{PS},lj}(r) = \alpha_1 r \, j_l(q_1 r) + \alpha_2 r \, j_l(q_2 r) + \alpha_3 F_{lj}(r) + \alpha_4 \tilde{F}_{lj}(r)$$
Rappe-Rabe-Kaxiras-Joanopoulos **RRKJ2 term correction term**

The correction functions satisfy the following conditions.

$$F_{lj}(r_{c}) = F_{lj}^{(1)}(r_{c}) = F_{lj}^{(2)}(r_{c}) = 0, \quad F_{lj}^{(3)}(r_{c}) = C_{3}, \quad F_{lj}^{(4)}(r_{c}) = C_{4}$$

$$\tilde{F}_{lj}(r_{c}) = \tilde{F}_{lj}^{(1)}(r_{c}) = \tilde{F}_{lj}^{(2)}(r_{c}) = \tilde{F}_{lj}^{(3)}(r_{c}) = 0 \quad \tilde{F}_{lj}^{(4)}(r_{c}) = \tilde{C}_{4}$$

- α_1 and α_2 are determined by the conditions of the continuous first and second derivatives of RRKJ2 term at $r = r_c$
- α_3 and α_4 are determined by the conditions of the continuous third and fourth derivatives of $P_{\text{PS},li}(r)$ at $r = r_{\text{c}}$

- (n, l) = quantum numbers
- j = reference number / using several reference energies improves transferability

Pseudo-Wave Function (RRKJ2)

•
$$P_{\text{PS},lj}(r) = \alpha_1 r j_l(q_1 r) + \alpha_2 r j_l(q_2 r) + \alpha_3 F_{lj}(r) + \alpha_4 \tilde{F}_{lj}(r)$$

RRKJ2 term correction term

• l = 3 (d-orbital), j = 0 (all-electron eigen-energy) // default reference energy

Local Pseudo-potential

• We choose the following functions as a local potential:

$$V_{\text{local}}(r) = \begin{cases} V_0 \exp[p(r)] & r \le r_{\text{local}} \\ V_{\text{AE}}(r) & r > r_{\text{local}} \end{cases},$$
$$p(r) = \alpha_4 r^4 + \alpha_6 r^6 + \alpha_8 r^8 + \alpha_{10} r^{10} + \alpha_{12} r^{12}$$

• The coefficients $\{\alpha_{2i}\}$ are determined by the conditions of the continuous derivatives at $r = r_{local}$ (m = 1, ..., 4)

$$V_{AE}^{(m)}(r_{local}) = \frac{d^m}{dr^m} (V_0 \exp[p(r)]) \bigg|_{r=r_{local}}$$

Non-local Operator and Overlap Operator

Local function

$$|\chi_{lj}\rangle = (\varepsilon_{lj} - \hat{T} - V_{local})|P_{PS,lj}\rangle$$

Basis function

$$|\beta_{lj}\rangle = \sum_{k} (\mathbf{B}_{l}^{-1})_{kj} |\chi_{lk}\rangle, \quad B_{l,jk} = \langle P_{\mathrm{PS},lj} |\chi_{lk}\rangle$$

Augmentation charge

$$q_{l,jk}(r) = \langle P_{\text{AE},lj} \middle| P_{\text{AE},lk} \rangle - \langle P_{\text{PS},lj} \middle| P_{\text{PS},lk} \rangle$$

Nonlocal operator

$$q_{l,jk}(r) = \langle P_{\text{AE},lj} | P_{\text{AE},lk} \rangle - \langle P_{\text{PS},lj} | P_{\text{PS},lk} \rangle$$
rator
$$\hat{V}_{\text{NL}} = \sum_{l,j,k} D_{l,jk} |\beta_{lj}\rangle \langle \beta_{lk}|, \quad D_{l,jk} = B_{l,jk} + \varepsilon_{lk} q_{l,jk}$$
All-electron detail

Overlap operator

$$\hat{S} = 1 + \sum_{l,j,k} q_{l,jk} \left| \beta_{lj} \right\rangle \left\langle \beta_{lk} \right|$$

- (n, l) = quantum numbers
- j, k = reference number

Generalized Eigen-equation

• We construct pseudo-potentials and functions given all-electron functions, $P_{AE,lj}$ and potentials, V_{AE}

$$P_{\text{AE},lj}$$
 and $V_{\text{AE}} \longrightarrow P_{\text{PS},lj}$, V_{local} , \hat{V}_{NL} and \hat{S}

• Now, we solve generalized eigen-equations given pseudo-potentials (V_{local} , \hat{V}_{NL} and \hat{S})

$$[\hat{T} + V_{\text{local}}(r) + \hat{V}_{\text{NL}}] P_{\text{PS},nl}(r) = \varepsilon_{nl} \, \hat{S} \, P_{\text{PS},nl}(r)$$

$$V_{\text{local}}, \, \hat{V}_{\text{NL}} \text{ and } \hat{S} \longrightarrow \varepsilon_{nl} \text{ and } P_{\text{PS},nl}$$

• And make sure that generalized eigen-equations have the same eigen-energies as the AE eigen-energies and that the corresponding eigen-functions coincide with the AE eigen-functions outside the cutoff radius

$$\varepsilon_{nl} = \varepsilon_{nl}^{(0)}$$
 and $P_{\text{PS},nl} = P_{\text{AE},nl}^{(0)} \ (r > r_c)$

- (n, l) =quantum numbers
- j = reference number

Generalized Eigen-equation

- The normalized wavefuntions for 5d orbital.
- $P_{\text{AE},nl}^{(0)}(r)$: the all-electron wavefunction solved by the all-electron Schrödinger equation
- $P_{PS,nl}(r)$: the pseudo-wave function solved by the generalized eigen-energy.

- (n, l) = quantum numbers
- j = reference number

$$\varepsilon_{nl}^{(0)} = -0.8619636$$
 $\varepsilon_{nl} = -0.8619648$

Transferability

• A simple way to get a feeling for the transferability of a pseudo-potential is to compare logarithmic derivatives of all-electron and pseudo-wave functions

$$\zeta_l(\varepsilon, R) = \frac{d}{dr} (\ln R_{nl}(r, \varepsilon)) \bigg|_{r=R}$$

- (n, l) =quantum numbers
- j = reference number

Estimation of Plane-wave Cutoff Energies (E_{cut})

Plane-wave cut-off for wave functions is dictated by kinetic-energy error

An error in the total energy associated with the cutoff energy, $E_{\rm cut}$ for the pseudo-wavefunctions is estimated as,

$$\Delta E_l(E_{\rm cut}) = \int_{\sqrt{E_{\rm cut}}}^{\infty} q^2 \left| \bar{P}_{\rm PS,nl}^{(0)}(q) \right|^2 dq,$$

where

$$\bar{P}_{\mathrm{PS},nl}^{(0)}(q) = \sqrt{\frac{2}{\pi}} \int_0^\infty P_{\mathrm{PS},nl}^{(0)}(r) j_l(qr) qr dr$$

- (n, l) =quantum numbers
- j = reference number

Estimation of Plane-wave Cutoff Energies ($E_{\text{cut}}^{\text{dens}}$)

• Firstly, we define the compensation functions called G-function

$$g_l(r) = \alpha_1 j_l(q_1 r) + \alpha_2 j_l(q_2 r) + \alpha_3 F_{lj}(r) + \alpha_4 \tilde{F}_{lj}(r)$$
original term by Kresse correction term

• The coefficients q_i and α_i are chosen by

$$\frac{d}{dr} j_l(q_i r) \bigg|_{r=r_{\text{comp}}} = 0$$

$$g_l(r_{\text{comp}}) = \frac{d^m}{dr^m} g_l(r) \bigg|_{r=r_{\text{comp}}} = 0 \quad (m = 2, 3)$$

$$\int_0^{r_{\text{comp}}} g_l(r) r^{l+2} dr = 1$$

• We use a ratio f_{comp} to define the cutoff radius r_{comp} :

$$r_{\text{comp}} = \frac{\max_{\text{reference}} r_{\text{c}}}{f_{\text{comp}}}, \quad 1.1 \le f_{\text{comp}} \le 1.6 \quad (\because r_{\text{comp}} < \max_{\text{reference}} r_{\text{c}})$$

Estimation of Plane-wave Cutoff Energies ($E_{\text{cut}}^{\text{dens}}$)

Plane-wave cut-off for electron density is dictated by augmented charge

G-function

$$g_l(r) = \alpha_1 j_l(q_1 r) + \alpha_2 j_l(q_2 r) + \alpha_3 F_{lj}(r) + \alpha_4 \tilde{F}_{lj}(r)$$

Augmentation function (radial direction)

$$Q_{l,jk}(r) = r^2 g_l(r) \int_0^{r_c} [P_{AE,lj}(r) P_{AE,lk}(r) - P_{PS,lj}(r) P_{PS,lk}(r)] r^l dr$$

• Next, we estimate the augmentation functions and their Fourier components:

$$\bar{Q}_{l,jk}^{L}(q) = q^2 \int_0^\infty Q_{l,jk}(r) j_L(qr) dr \quad (L = 0, 2, \dots, 2l)$$

• The cutoff energy for the electron density is estimated from $\bar{Q}_{l,jk}^L(q)$. But we need not estimate $\bar{Q}_{l,jk}^L(q)$ for all references. j = k = 1 should be fine for each l.

- (n, l) = quantum numbers
- j = reference number

Estimation of Plane-wave Cutoff Energies ($E_{\text{cut}}^{\text{dens}}$)

• $\bar{Q}_{l,jk}^{L}(q) = q^2 \int_0^\infty Q_{l,jk}(r) j_L(qr) dr$ $(L = 0, 2, \dots, 2l)$

II. Algorithm

- Algorithm (1) All-electron calculation
- Algorithm (2) Pseudo-potential
- Algorithm (3) Estimation

Algorithm (1) – All-electron Calculation

Scalar relative AE SE given reference energy

Output: wave function, $P_{AE,nl}$

Pseudo-potential Part

- (n, l) = quantum numbers
- j = reference number

Algorithm (2) – Pseudo-potential

- (n, l) = quantum numbers
- j = reference number

Algorithm (3) – Estimation

- (n, l) = quantum numbers
- j = reference number