CARBOHYDRATE

Polyhydroxy aldehyde (aldose) or ketone (ketose) containing at least one chiral center

MonoSaccharides

Further hydrolysis is not possible (simple sugar). Ex: Glucose, Fructose, Ribose

OligoSaccharides

Yields two to ten monosaccharides. Ex: Sucrose, Maltose, Lactose

PolySaccharides

Yields a large number of monosaccharides units.Ex: Starch, Cellulose, Glycogen

Preparation:-

Sucrose $\xrightarrow{H+}$ Glucose + Fructose

Starch + nH₂O → Glucose

Chemical properties

Glucose

GLUCOSE /

Cyclic structure of glucose

[α-D(+)- Glucose] (Fischer Formula)

α-D-(+)-Glycopyranose (Haworth structure)

Some Important Polysaccharides

Cellulose

It is found in plants. It contains β -D- glucose units connected vice glycosidic linkage

Starch

Polymer of α -glucose with two components **amylose** (15-20%) and **amylopectin** (80-85%)

Glycogen

This is known as animal starch. It is present in liver, muscle and brain. It's structure is similar to amylopectin.

11. BIOMOLECULES

PROTEINS

Polymer of α-amino acids that contain -NH₂ and -COOH group

CLASSIFICATION OF PROTEINS

On the Relative Number of -NH, and -COOH Group

- 1. **Neutral**: equal no. of -NH₂ and -COOH group.
- 2. Basic: More no. of -NH₂ then -COOH group.
- 3. Acidic: more no. of-COOH than-NH₂ group.

On the Basis of Place of Synthesis

- 1. **Essential amino acids** cannot be synthesized in the body.
- 2. **Non-essential amino acids** are synthesized in the body.

On the Basis of Shape

- 1. Fibrous: fibre like structure.
- 2. **Globular** protein.

Denaturation of Protein /

When a protein in its native form is subjected to physical change, globules unfold, and proteins loses it's biological activity.

