Week	Dates	Book chapters	Topic
1	March 1–4	1 and 2	Electromagnetic model, field concepts. Vector algebra, vector analysis.
2	March 8–11	3	Electrostatics. Coulomb's law, scalar potential, electric dipole, permittivity, conductors and insulators, capacitance, electrostatic energy and forces.
3	March 15– 18	4 and 5	Static electric currents, Ohm's law, conductivity. Magnetostatics, Biot-Savart's law, vector potential, permeability, magnetic dipole, inductance.
4	March 22– 25	6	Faraday's law, Maxwell equations for dynamic electromagnetic fields. Complex representation of time-harmonic fields.
5	March 29 – April 1	7	Plane waves in lossless and lossy media. Attenuation of waves, Wave reflection from planar interfaces. Brewster angle.
6	April 6–8	(8,9) 10	Electromagnetic radiation. Fields generated by a Hertzian dipole.

Week	Dates	Book chapters	Topic
1	March 1–4	1 and 2	Electromagnetic model, field concepts. Vector algebra, vector analysis.
2	March 8–11	3	Electrostatics. Coulomb's law, scalar potential, electric dipole, permittivity, conductors and insulators, capacitance, electrostatic energy and forces.
3	March 15– 18	4 and 5	Static electric currents, Ohm's law, conductivity. Magnetostatics, Biot-Savart's law, vector potential, permeability, magnetic dipole, inductance.
4	March 22– 25	6	Faraday's law, Maxwell equations for dynamic electromagnetic fields. Complex representation of time-harmonic fields.
5	March 29 – April 1	7	Plane waves in lossless and lossy media. Attenuation of waves, Wave reflection from planar interfaces. Brewster angle.
6	April 6–8	(8,9) 10	Electromagnetic radiation. Fields generated by a Hertzian dipole.

Quantities, dimension, measures, units

<

fifty meters

50 m

1	-	100
10	deca	10 ¹
100	hehto	10 ²
1000	kilo	10 ³
1000000	mega	106
1000000000	giga	10 ⁹
100000000000	tera	1012

1	-	100
0,1	deci	10 ⁻¹
0,01	centi	10-2
0,001	milli	10 ⁻³
0,000001	micro	10 ⁻⁶
0,00000001	nano	10 ⁻⁹
0,00000000001	pico	10 ⁻¹²

Distances: large and small

• 1 meter: 10⁰ m

• Helsinki: 10⁴ m

• to Australia: 10⁷ m

• to Pluto: 10^{13} m

• light year: 10¹⁶ m

• Milky Way: 10²¹ m

• distant galaxies: 10²⁶ m

• 1 meter: 10⁰ m

• thick hair: 10⁻⁴ m

• cell: 10⁻⁵ m

resolution of microscope:

10⁻⁷ m

• nanotech: 10⁻⁹ m

• atoms: 10⁻¹⁰ m

nucleus of an atom:

10⁻¹⁵ m

Dynamics of distances

Dynamics of time

• second	10^0 s
• Day	$10^5 s$
• year	$3 \cdot 10^7 \text{s}$
 Louis XIV (Sun King in France) 	10^{10}s
first humans	$10^{13} s$
• Universe	$4 \cdot 10^{17} \text{s}$
 wing cycle of a honey bee 	5· 10 ⁻³ s
 cell phone cycle 	10 ⁻⁹ s
 Planck time 	5· 10 ⁻⁴⁴ s

Del/Nabla operations

Cartesian coordinates

$$\nabla f = \overline{\mathbf{a}}_x \frac{\partial}{\partial x} f + \overline{\mathbf{a}}_y \frac{\partial}{\partial y} f + \overline{\mathbf{a}}_z \frac{\partial}{\partial z} f$$

$$\nabla \times \overline{f} = \begin{vmatrix} \overline{a}_x & \overline{a}_y & \overline{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix}$$

$$\nabla \cdot \overline{f} = \frac{\partial}{\partial x} f_x + \frac{\partial}{\partial y} f_y + \frac{\partial}{\partial z} f_z$$

$$\nabla^2 f = \frac{\partial^2}{\partial x^2} f + \frac{\partial^2}{\partial y^2} f + \frac{\partial^2}{\partial z^2} f$$

Cylindrical coordinates

$$\nabla f = \overline{a}_r \frac{\partial}{\partial r} f + \overline{a}_\phi \frac{1}{r} \frac{\partial}{\partial \phi} f + \overline{a}_z \frac{\partial}{\partial z} f$$

$$\nabla \times \overline{f} = \frac{1}{r} \begin{vmatrix} \overline{\mathbf{a}}_r & r\overline{\mathbf{a}}_{\phi} & \overline{\mathbf{a}}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ f_r & rf_{\phi} & f_z \end{vmatrix}$$

$$\nabla \cdot \overline{f} = \frac{1}{r} \frac{\partial}{\partial r} (r f_r) + \frac{1}{r} \frac{\partial}{\partial \phi} f_{\phi} + \frac{\partial}{\partial z} f_z$$

$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

$\begin{array}{c|c} z & \overline{a}_R \\ p & \overline{a}_{\overline{\phi}} \\ \hline \theta & R & \overline{a}_{\theta} \\ \hline \psi & & y \\ \end{array}$

Spherical coordinates

$$\nabla f = \overline{\mathbf{a}}_{R} \frac{\partial}{\partial R} f + \overline{\mathbf{a}}_{\theta} \frac{1}{R} \frac{\partial}{\partial \theta} f + \overline{\mathbf{a}}_{\phi} \frac{1}{R \sin \theta} \frac{\partial}{\partial \phi} f$$

$$\nabla \times \overline{f} = \frac{1}{R^2 \sin \theta} \begin{vmatrix} \overline{\mathbf{a}}_R & R \overline{\mathbf{a}}_\theta & R \sin \theta \overline{\mathbf{a}}_\phi \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ f_R & R f_\theta & R \sin \theta f_\phi \end{vmatrix}$$

$$\nabla \cdot \overline{f} = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 f_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta f_\theta) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \phi} f_\phi$$

$$\nabla^2 f = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial f}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

Coordinate transformations: vector \overline{f}

$Cartesian \leftrightarrow Cylindrical$

$$x = r\cos\phi, \quad y = r\sin\phi, \quad z = z,$$

$$r = \sqrt{x^2 + y^2}$$
, $\phi = \tan^{-1}\left(\frac{y}{x}\right)$, $z = z$.

$$\begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_r \\ f_\phi \\ f_z \end{pmatrix}.$$

$$\begin{pmatrix} f_r \\ f_{\phi} \\ f_z \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix}.$$

Cartesian \leftrightarrow Spherical

 $x = R \sin \theta \cos \phi$, $y = R \sin \theta \sin \phi$, $z = R \cos \theta$,

$$R=\sqrt{x^2+y^2+z^2}, ~~\theta=\tan^{-1}\left(\frac{\sqrt{x^2+y^2}}{z}\right), ~~\phi=\tan^{-1}\left(\frac{y}{x}\right)$$

$$\begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{pmatrix} \begin{pmatrix} f_R \\ f_\theta \\ f_\phi \end{pmatrix},$$

$$\begin{pmatrix} f_R \\ f_\theta \\ f_\phi \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{pmatrix} \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix}$$

Cylindrical \leftrightarrow Spherical

$$r = R \sin \theta$$
, $\phi = \phi$, $z = R \cos \theta$,

$$R = \sqrt{r^2 + z^2}, \quad \theta = \tan^{-1}\left(\frac{r}{z}\right), \quad \phi = \phi.$$

$$\begin{pmatrix} f_r \\ f_{\phi} \\ f_z \end{pmatrix} = \begin{pmatrix} \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \\ \cos\theta & -\sin\theta & 0 \end{pmatrix} \begin{pmatrix} f_R \\ f_{\theta} \\ f_{\phi} \end{pmatrix}$$

$$\begin{pmatrix} f_R \\ f_{\theta} \\ f_{\phi} \end{pmatrix} = \begin{pmatrix} \sin \theta & 0 & \cos \theta \\ \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} f_r \\ f_{\phi} \\ f_z \end{pmatrix}$$

Formulas for vector integral calculus

Cartesian coordinate system

$$\overline{d\ell} = \overline{\mathbf{a}}_x \, dx + \overline{\mathbf{a}}_y \, dy + \overline{\mathbf{a}}_z \, dz$$

$$\overline{dS_x} = \overline{a}_x \, dy \, dz$$

$$\overline{dS_y} = \overline{a}_y dx dz$$

$$\overline{dS_z} = \overline{a}_z dx dy$$

$$dV = dx dy dz$$

Cylindrical coordinate system

$$\overline{d\ell} = \overline{a}_r dr + \overline{a}_{\phi} r d\phi + \overline{a}_z dz$$

$$\overline{dS_r} = \overline{a_r} r d\phi dz$$

$$\overline{dS_{\phi}} = \overline{a}_{\phi} dr dz$$

$$\overline{dS_z} = \overline{\mathbf{a}}_z r dr d\phi$$

$$dV = r dr d\phi dz$$

Spherical coordinate system

$$\overline{d\ell} = \overline{a}_R dR + \overline{a}_\theta R d\theta + \overline{a}_\phi R \sin \theta d\phi$$

$$\overline{dS_R} = \overline{a}_R R^2 \sin \theta \, d\theta \, d\phi$$

$$\overline{dS_{\theta}} = \overline{a_{\theta}} R \sin \theta dR d\phi$$

$$\overline{dS_{\phi}} = \overline{a_{\phi}} R dR d\theta$$

$$dV = R^2 \sin \theta \, dR \, d\theta \, d\phi$$

Gauss' law
$$\int_{\mathcal{T}} \nabla \cdot \overline{f} \, dV = \oint_{\mathcal{T}} \overline{f} \cdot \overline{dS}$$

Stokes' law
$$\int\limits_{S}\nabla\times\overline{f}\cdot\overline{dS}=\oint\limits_{C}\overline{f}\cdot\overline{d\ell}$$

Physical constants

$$\epsilon_0 = 8.854 \cdot 10^{-12} \frac{\text{As}}{\text{Vm}}$$

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$$

$$k_B = 1.38 \cdot 10^{-23} \frac{J}{K}$$

$$e = 1.60 \cdot 10^{-19} \,\mathrm{C}$$

Fields?

- Scalar fields (temperature, potential, charge density)
- Vector fields (wind velocity, current, electric/magnetic field)

Fields?

- Scalar fields (temperature, potential, charge density)
- Vector fields (wind velocity, current, electric/magnetic field)

quantities, dimensions, units!

SI unit system: m,kg,s,A

Visualization of a scalar field (two variables)

$$F(x, y) = \sin(xy^2) + 2e^{-(x^2 + 2y^2)}$$

Visualization of a vector field (two variables)

$$\mathbf{G}(x,y) = \mathbf{a}_x \left[\sin(xy^2) + 2e^{-(x-1)^2 - 2(y-1)^2} \right] + \mathbf{a}_y \cos(xy^2)$$

 $StreamDensityPlot\left[\left\{2\,\mathsf{Exp}\left[-\left(\left(\mathsf{x}-\mathsf{1}\right)^{\,2}+2\,\left(\mathsf{y}-\mathsf{1}\right)^{\,2}\right)\,\right]+\mathsf{Sin}\left[\mathsf{x}\,\mathsf{y}^{2}\right],\,\mathsf{Cos}\left[\mathsf{x}\,\mathsf{y}^{2}\right]\right\},\,\left\{\mathsf{x},\,-\mathsf{1},\,\mathsf{3}\right\},\,\left\{\mathsf{y},\,-\mathsf{1},\,\mathsf{3}\right\},\,\mathsf{ColorFunction}\rightarrow\,\mathsf{"Pastel"}\right]$

$$\mathbf{G}(x,y) = \mathbf{a}_x \left[\sin(xy^2) + 2e^{-(x-1)^2 - 2(y-1)^2} \right] + \mathbf{a}_y \cos(xy^2)$$

Gradient of a scalar field

$$F(x, y) = \sin(xy^2) + 2e^{-(x^2 + 2y^2)}$$

$$\nabla F(x,y) = \mathbf{a}_{x} \left(y^{2} \cos(xy^{2}) - 4x e^{-(x^{2} + 2y^{2})} \right) + \mathbf{a}_{y} \left(2xy \cos(xy^{2}) - 8y e^{-(x^{2} + 2y^{2})} \right)$$

Gradient of a scalar field

$$F(x, y) = \sin(xy^2) + 2e^{-(x^2 + 2y^2)}$$

$$\nabla F(x,y) = \mathbf{a}_x \Big(y^2 \cos(xy^2) - 4x e^{-(x^2 + 2y^2)} \Big) + \mathbf{a}_y \Big(2xy \cos(xy^2) - 8y e^{-(x^2 + 2y^2)} \Big)$$

