問題 18. (i)  $\Rightarrow$  (ii) (3.6) より, すぐに従う.

(ii)  $\Rightarrow$  (iii) 任意の  $\mathfrak{m}$  に対して、ある  $\mathfrak{n} \in \operatorname{Spec} B$  が存在して、 $f^* : \operatorname{Spec} B \to \operatorname{Spec} A$  とすれば、 $f^*(\mathfrak{n}) = \mathfrak{m}$  となる。また、f が全射であることから、

$$\mathfrak{m}^e = f(\mathfrak{m})B = f(f^*(\mathfrak{m}))B = f(f^{-1}(\mathfrak{m}))B = \mathfrak{n}B = \mathfrak{n}$$

となるので、 $\mathfrak{m} \neq (1)$  が成り立つ.

(iii)  $\Rightarrow$  (iv)  $x \in M \setminus \{0\} \$  とする.  $M' = Ax \$  とすれば,

$$0 \longrightarrow M' \longrightarrow M$$

が完全列であって、Bが平坦であることから、

$$0 \longrightarrow M' \otimes_A B \longrightarrow M \otimes_A B$$

も完全となる。 ゆえに、 $M'\otimes_A B\neq 0$  を示せば十分である。  $f:A\to Ax$  を自然なものとすれば、 $A/\ker f\cong M'$  となる。 ここで、 $\ker f\neq A$  より、ある  $\mathfrak{m}\in \operatorname{Max} A$  が存在して、 $A\to B$  から $A/\mathfrak{m}\to B/\mathfrak{m}^e$  が導かれる。このとき、

$$M' \otimes_A B = A/\mathfrak{m} \otimes_A B = B/\mathfrak{m}B = B/\mathfrak{m}^e$$

となる. (iii) より、 $\mathfrak{m}^c \neq (1)$  なので、 $M_B' = M' \otimes_A B \neq 0$  が成り立つ.

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M_B$$

が完全になる. В が平坦であることから,

$$0 \longrightarrow M' \otimes_A B \longrightarrow M \otimes_A B \longrightarrow M_B \otimes_A B$$

は完全列である。さらに、 $M\otimes_A B$  は B-加群であって、射による元の対応も 2.13 の条件を満たすので、 $M_B\to M_B\otimes_A B$  は単射である。ゆえに、 $M'\otimes_A B=0$  となるが、(iv) より、 $M'=\ker f=0$  となるので、f は単射である。

(v)  $\Rightarrow$  (i)  $\mathfrak{a}$  を A の任意のイデアルとする.  $M=A/\mathfrak{a}$  とすれば, (v) より,  $A/\mathfrak{a}=M \to M \otimes_A B=B/\mathfrak{a}^e$  は単射なので,  $\mathfrak{a}^{ec} \subseteq \mathfrak{a}$  が成り立つ. 逆は (1.17) より, 自明に成り立つ.

問題 19.  $M \rightarrow N$  を単射とする. g は忠実平坦なので、

$$0 \longrightarrow M_B \longrightarrow M_B \otimes_B C \longrightarrow \operatorname{coker}(M_B \to M_B \otimes_B C) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow N_B \longrightarrow N_B \otimes_B C \longrightarrow \operatorname{coker}(N_B \to N_B \otimes_B C) \longrightarrow 0$$

は各行が完全な可換図式である。また、 $M_B\otimes_B C=M\otimes_A C$  であることと、 $g\circ f$  が平坦であることから、 $M_B\otimes_B C\to N_B\otimes_B C$  は単射である。ゆえに、上の図式に対して蛇の補題を使えば、 $0\to M_B\to N_B$  は完全になり、これは f が平坦であることを示している。

問題 20. (3.10) より,  $B_{\mathfrak{p}}$  は平坦  $A_{\mathfrak{p}}$  加群であって, f から自然に環の射  $A_{\mathfrak{p}} \ni a/s \mapsto f(a)/s \in B_{\mathfrak{p}}$  が得られる. また,  $B_{\mathfrak{q}}$  は  $B_{\mathfrak{p}}$  の局所化なので, 3.3 より, 平坦  $A_{\mathfrak{p}}$  加群であり, 自然な射  $B_{\mathfrak{p}} \ni b/s \mapsto b/s \in B_{\mathfrak{q}}$  が存在するので, 環の射  $A_{\mathfrak{p}} \to B_{\mathfrak{q}}$  が得られる. この射により, 次の図式は可換図式になる.



したがって,



も可換であり、これより、 $\operatorname{Spec} A_{\mathfrak{p}} \to \operatorname{Spec} B_{\mathfrak{q}}$  が  $f^*$  の制限として得られる。あとは、 $g:A_{\mathfrak{p}} \to B_{\mathfrak{q}}$  が忠実平坦であることを示せば十分である。 $A_{\mathfrak{p}}$  の極大イデアルは  $\mathfrak{p}A_{\mathfrak{p}}$  であって、 $\mathfrak{p}=f^{-1}(\mathfrak{q})$  なので、 $g(\mathfrak{p}A_{\mathfrak{p}})\subseteq\mathfrak{q}B_{\mathfrak{q}}$  が成り立つ。したがって、g は忠実平坦であり、3.16 より、 $\operatorname{Spec} B_{\mathfrak{q}} \to \operatorname{Spec} A_{\mathfrak{p}}$  は全射になる。