OPTIMIZING TERASCALE MACHINE LEARNING PIPELINES WITH Keystone

Apache

Evan R. Sparks, UC Berkeley AMPLab

with Shivaram Venkataraman, Tomer Kaftan, Michael Franklin, Benjamin Recht

WHAT'S A MACHINE LEARNING PIPELINE?

A STANDARD MACHINE LEARNING PIPELINE

Right?

A STANDARD MACHINE LEARNING PIPELINE

That's more like it!

ABOUT KEYSTONEML

- Software framework for building scalable end-to-end machine learning pipelines on Apache Spark.
- Helps us understand what it means to build systems for robust,
 scalable, end-to-end advanced analytics workloads and the patterns that emerge.
- Example pipelines that achieve **state-of-the-art** results on **large scale datasets** in computer vision, NLP, and speech **fast**.
- Open source software, available at: http://keystone-ml.org/

SIMPLE EXAMPLE: TEXT CLASSIFICATION

val predictorPipeline = Trim andThen LowerCase() andThen
 Tokenizer() andThen
 NGramsFeaturizer(1 to conf.nGrams) andThen
 TermFrequency(x => 1) andThen
 (CommonSparseFeatures(conf.commonFeatures), training) andThen
 (NaiveBayesEstimator(2), training, labels) andThen
 MaxClassifier

Once estimated - apply these steps to your production data in an online or batch fashion.

NOT SO SIMPLE EXAMPLE: IMAGE CLASSIFICATION


```
val predictor = PixelScaler andThen
   GrayScaler andThen
   new Cacher andThen
   new SIFTExtractor(scaleStep = conf.scaleStep) andThen
   new BatchPCATransformer(pca) andThen
   new FisherVector(gmm) andThen
   FloatToDouble andThen
   MatrixVectorizer andThen
   NormalizeRows andThen
   SignedHellingerMapper andThen
   (new LeastSquaresEstimator, trainingData, trainingLabels)
```

5,000 examples, 40,000 features, 20 classes

Pleasantly parallel featurization and evaluation.

7 minutes on a modest cluster.

Achieves performance of Chatfield et. al., 2011

EVEN LESS SIMPLE: IMAGENET

Edges Color **Texture** Resize Grayscale Gabor LCS Wavelets SIFT PCA PCA PCA Fisher Vector Fisher Vector Fisher Vector Weighted Block **Linear Solver** Top 5 Classifier

<100 SLOC

1,200,000 examples 64,000 features.

90 minutes on 100 nodes.

Upgrading the solver for higher precision means changing I LOC.

Adding 100,000 more texture features is easy.

OPTIMIZING KEYSTONEML PIPELINES

High-level API enables rich space of optimizations

Automated ML operator selection.

Auto-caching for iterative workloads.

KEYSTONEML OPTIMIZER

- Sampling-based cost model projects resource usage
 - CPU, Memory, Network
- Utilization tracked through pipeline.
 - Decisions made to minimize total cost of execution.
- Catalyst-based optimizer does the heavy lifting.

Stage	n	d	size (GB)	
Input	5000	Im pixel IPEG	0.4	
Resize	5000	260k pixels	3.6	
Grayscale	5000	260k pixels	1.2	
SIFT	5000	65000×128	309	
PCA	5000	65000×80	154	
FV	5000	256×64×2	1.2	
Linear Regression	5000	20	0.0007	
Max Classifier	5000		0.00009	

CHOOSING A SOLVER

- Datasets have a number of interesting degrees of freedom.
 - Problem size (n, d, k)
 - sparsity (nnz)
 - condition number
- Platform has degrees of freedom:
 - Memory, CPU, Network, Nodes
- Solvers are predictable!

Objective:
$$\min_{X} |AX - B|_2^2 + \lambda |X|_2^2$$

Where:

$$A \in \mathbb{R}^{n \times d}$$

$$X \in \mathbb{R}^{d \times k}$$

$$B \in \mathbb{R}^{n \times k}$$

CHOOSING A SOLVER

- Three Solvers
 - Exact, Block, LBFGS
- Two datasets
 - Amazon >99% sparse, n=65m
 - TIMIT dense, n=2m
- Exact solve works well for small # features.
- Use LBFGS for sparse problems.
- Block solver scales well to big dense problems.
 - Hundreds of thousands of features.

SOLVER PERFORMANCE

- Compared KeystoneML with:
 - VowpalWabbit specialized system for large, sparse problems.
 - SystemML general purpose, optimizing ML system.
- Two problems:
 - Amazon Sparse text features.
 - Binary TIMIT Dense phoneme data.
- High Order Bit:
 - KeystoneML pipelines featurization and adapts to workload changes.

DECIDING WHAT TO SAVE

- Pipelines Generate Lots of intermediate state.
 - E.g. SIFT features blow up a 0.42GB VOC dataset to 300GB.
- Iterative algorithms —> state needed many times.
- How do we determine what to save for later and what to reuse, given fixed resource budget?
- Can we adapt to workload changes?

CACHING PROBLEM

- Output is computed via depthfirst execution of DAG.
 - Caching "truncates" a path after first visit.
- Want to minimize execution time.
 - Subject to memory constraints.
- Picking optimal set is hard!

Cache set	Time	Memory	
ABCDE	140s	340g	
В	140s	200g	
А	180s	50g	
{}	240s	0g	

Dataset	Training Examples	Features	Raw Size (GB)	Feature Size (GB)
Amazon	65 million	100k (sparse)	14	89
TIMIT	2.25 million	528k	7.5	8800
ImageNet	1.28 million	262k	74	2500
VOC	5000	40k	0.43	1.5

Dataset	KeystoneML Accuracy	Reported Accuracy	KeystoneML Time (m)	Reported Time (m)	Speedup over Reported
Amazon	91.6%	N/A	3.3	N/A	N/A
TIMIT	66.1%	66.3%	138	120	0.87×
ImageNet	67.4%	66.6%	270	5760	21×
VOC	57.2%	59.2%	7	87	I2×

- Tested three levels of optimization
 - None
 - Auto-caching only
 - Auto-caching and operator-selection.
- 7x to 15x speedup

QUESTIONS?

Project Page

http://keystone-ml.org/

Code

http://github.com/amplab/keystone

Training

http://goo.gl/axbkkc

BACKUP SLIDES

SOFTWARE FEATURES

- Data Loaders
 - CSV, CIFAR, ImageNet, VOC, TIMIT, 20 Newsgroups
- Transformers
 - NLP Tokenization, n-graph
 parsing*
 - Images Convolution, Gr FisherVector*, Pooling, W
 - Speech MFCCs*
 - Stats Random Features, Normalization, Scaling*,
 Signed Hellinger Mapping, FFT
 - Utility/misc Caching, Top-K classifier, indicator label mapping, sparse/dense encoding transformers.
- Estimators
 - Learning Block linear models, Linear Discriminant Analysis, PCA, ZCA Whitening, Naive Bayes*, GMM*

- Example Pipelines
 - NLP Amazon Product Review
 Classification, 20 Newsgroups, Wikipedia

, CIFAR, VOC, ImageNet

Just 11k Lines of Code, 5k of which are Tests or JavaDoc.

Evaluation Metrics

- Binary Classification
- Multiclass Classification
- Multilabel Classification

* - Links to external library

KEY API CONCEPTS

TRANSFORMERS


```
abstract class Transformer[In, Out] {
  def apply(in: In): Out
  def apply(in: RDD[In]): RDD[Out] = in.map(apply)
  ...
}
```

TYPE SAFETY HELPS ENSURE ROBUSTNESS

ESTIMATORS

```
RDD[Input] Stimator S
```

```
abstract class Estimator[In, Out] {
  def fit(in: RDD[In]):Transformer[In,Out]
  ...
}
```

CHAINING

val featurizer: Transformer[String, Vector] = NGrams(2) then Vectorizer

COMPLEX PIPELINES

val pipeline = (featurizer thenLabelEstimator LinearModel).fit(data, labels)