2022 年上海市松江区中考数学一模试卷

2022.1

一、选择题(本大题共6题,每题4分,满分24分)

【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上】

- 1. 已知 $\sin a = \frac{\sqrt{3}}{2}$, 那么锐角 a 的度数是()
 - (A) 30° ;
- (B) 45° ; (C) 60° ;
- 2. 已知在 $Rt \triangle ABC$ 中, $\angle C = 90^{\circ}$,AB = c ,AC = b ,那么下列结论一定成立的是(
- (A) $b = c \tan A$; (B) $b = c \cot A$; (C) $b = c \sin A$; (D) $b = c \cos A$.
- 3. 已知二次函数 $y = ax^2 + bx + c (a \neq 0)$ 的图像如图所示, 那么下列判断正确的是()
- (A) b > 0, c > 0; (B) b > 0, c < 0; (C) b < 0, c > 0; (D) b < 0, c < 0.

- 4. 已知 $\bar{a} = 2\bar{b}$,那么下列判断**错误**的是(
 - (A) $\vec{a} 2\vec{b} = 0$; (B) $\vec{b} = \frac{1}{2}\vec{a}$; (C) $|\vec{a}| = 2|\vec{b}|$; (D) $\vec{a} / /\vec{b}$.

- 5. 如图,已知点G 是 $\triangle ABC$ 的重心, 那么 S_{ABC} 等于()

- (A)1:2; (B)1:3; (C)2:3; (D)2:5.
- 6. 下列四个命题中, 真命题的个数是(
 - (1) 底边和腰对应成比例的两个等腰三角形相似;
 - (2) 底边和底边上的高对应成比例的两个等腰三角形相似;
 - (3) 底边和一腰上的高对应成比例的两个等腰三角形相似;
 - (4) 腰和腰上的高对应成比例的两个等腰三角形相似.
 - (A) 1;
- (B) 2;
- (C) 3;
- (D) 4.

二、填空题(本大题共12题,每题4分,满分48分)

[在答题纸相应题号后的空格内直接填写答案]

- 7. 已知 $\frac{x}{y} = 2$, 那么 $\frac{2x y}{x + 2y} =$ _______.
- 8. 把抛物线 $v = x^2 + 1$ 向右平移 1 个单位,所得新抛物线的表达式是
- 9. 已知两个相似三角形面积的比是4:9,那么这两个三角形周长的比是
- 10. 已知线段 AB = 8, $P \neq AB$ 的黄金分割点, $A \neq B$, 那么 $A \neq B$ 的长是
- 11. 在平面直角坐标系 xOy 中, 已知点 A 的坐标为 (2,3) ,那么直线 OA 与 x 轴夹角的正 切值是
- 12. 如果一个二次函数图像的对称轴是直线 *x* = 2 , 且沿着 *x* 轴正方向看,图像在对称轴左侧部分是上升的, 请写出一个符合条件的函数解析式______.
- 14. 如图,码头 A 在码头 B 的正东方向,它们之间的距离为 10 海里。一货船由码头 A 出发,沿北偏东 45° 方向航行到达小岛 C 处,此时测得码头 B 在南偏西 60° 方向,那么码头 A 与小岛 C 的距离是 海里(结果保留根号).

- 15. 如图,已知在梯形 ABCD 中,AB//CD ,AB = 2CD , 设 $\overline{AB} = \overline{a}$, $\overline{AD} = \overline{b}$,那 么 \overline{AE} 可以用 \overline{a} 、 \overline{b} 表示为_______.
- 17. 我们知道: 四个角对应相等,四条边对应成比例的两个四边形是相似四边形。如图,已 知梯形 ABCD中,AD//BC,AD=1,BC=2,E、F分别是边 AB、CD上的点,

18. 如图,已知矩形 ABCD中,AD=3,AB=5,E 是边 DC 上一点,将 $\triangle ADE$ 绕点 A 顺时针旋转得到 $\triangle AD'E'$,使得点 D 的对应点 D' 落在 AE 上,如果 D'E' 的延长线恰好 经过点 B,那么 DE 的长度等于

三、解答题(本大题共7题,满分78分)

[将下列各题的解答过程,做在答题纸的相应位置上]

- 19. (本题满分 10 分, 第 (1) 小题 6 分, 第 (2) 小题 4 分) 已知一个二次函数图像的顶点为(1,0), 与 y 轴的交点为(0,1)。
 - (1) 求这个二次函数的解析式;
 - (2) 在所给的平面直角坐标系 xOy 中, 画出这个二次函数的图像.

20. (本题满分 10 分, 第 (1) 小题 5 分, 第 (2) 小题 5 分)

如图,已知平行四边形 ABCD 中, G 是 AB 延长线上一点,联结 DG ,分别交 AC 、 BC 于点 E 、 F ,且 AE : EC = 3 : 2 .

- (1) 如果 AB = 10, 求 BG 的长;
- (2) 求 $\frac{EF}{FG}$ 的值.

21. (本题满分 10 分, 第 (1) 小题 5 分, 第 (2) 小题 5 分)

如图, 已知 $\triangle ABC$ 中, AB = AC = 12, $\cos B = \frac{3}{4}$, $AP \perp AB$, 交BC 于点P。

- (1) 求 CP 的长;
- (2) 求 $\angle PAC$ 的正弦值。

22. (本题满分 10 分)

某货站沿斜坡 AB 将货物传送到平台 BC。一个正方体木箱沿着斜坡移动, 当木箱的底部到达点 B 时的平面示意图如图所示。已知斜坡 AB 的坡度为 1:2.4,点 B 到地面的距离 BE=1.5 米,正方体木箱的棱长 BF=0.65 米,求点 F 到地面的距离。

23. (本题满分 12 分, 第(1)小题 6 分, 第(2)小题 6 分)

已知: 如图,梯形 ABCD 中, DC / /AB , AC = AB ,过点 D 作 BC 的平行线交 AC 于点 E 。

- (1) 如果 $\angle DEC = \angle BEC$, 求证: $CE^2 = ED \cdot CB$;
- (2) 如果 $AD^2 = AE \cdot AC$, 求证: AD = BC.

第23题图

24. (本题满分 12 分, 第 (1) 小题 4 分, 第 (2) 小题 8 分)

已知直线 $y=-\frac{2}{3}x+2$ 与x 轴交于点 A ,与y 轴交于点 B , 抛物线 $y=-\frac{2}{3}x^2+bx+c$ 经过 A 、 B 两点。

- (1) 求这条抛物线的表达式;
- (2) 直线 x=t 与该抛物线交于点 C ,与线段 AB 交于点 D (点 D 与点 A 、 B 不重合),与 x 轴交于点 E ,联结 AC 、 BC 。

① 当
$$\frac{DE}{CD} = \frac{AE}{OE}$$
时,求 t 的值;

② 当CD平分 $\angle ACB$ 时,求 $\triangle ABC$ 的面积。

第24题图

25. (本题满分 14 分, 第 (1)、(2) 各小题 4 分, 第 (3) 小题 6 分)
如图,已知△ABC中,∠ACB=90°,AB=6,BC=4,D是边AB上一点(与点A、

B 不重合), DE 平分 $\angle CDB$, 交边 BC 于点 E, $EF \perp CD$, 垂足为点 F。

- (1) 当 $DE \perp BC$ 时,求DE的长;
- (2) 当 \triangle CEF 与 \triangle ABC 相似时,求 \angle CDE 的正切值;
- (3) 如果 $\triangle BDE$ 的面积是 $\triangle DEF$ 面积的 2 倍, 求这时 AD 的长。

2022 年上海市松江区中考数学一模试卷 答案

一、选择题: 1-6: CDDABC

二、填空题: 7-18:

7	$\frac{3}{4}$	8	$y = x^2 - 2x + 2$	9	2:3	10	$4\sqrt{5} - 4$
11	$\frac{3}{2}$	12	$y = -x^2 + 4x$	13	3 米	14	$5\sqrt{6} + 5\sqrt{2}$
15	$\frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}$	16	2	17	$\frac{\sqrt{2}}{2}$	18	$\frac{9}{4}$

三、解答题

19. (1)
$$y = x^2 - 2x + 1$$

(2) 略

20. (1) BG = 5;

(2) $\frac{4}{5}$;

21. (1) 2;

(2) $\frac{1}{8}$;

22. 点 F 到地面的距离为 2.1 米。

23.(1) 略;(2) 略.

24. (1) $y = -\frac{2}{3}x^2 + \frac{4}{3}x + 2$; (2) ① t = 2; ② $S_{\triangle ABC} = \frac{5}{4}$.

25. (1) $\sqrt{5}$; (2) 1 或 $\frac{2}{5}\sqrt{5}$; (3) $\frac{11}{3}$.