ECUACIONES LINEALES

$$y + p(x)y = Q(x)$$

$$y + p(x)y = Q(x)$$

Bernoulle!

10. $y \ln y dx + (x - \ln y)dy = 0$ soil $2x \ln y = \ln^2 y + C$

11. $\frac{dy}{dx}$ - 1 y cot 2x = 1 - 2x cot 2x - 2 csc 2x sol. y = x + cos 2; = 4 sep 2x

En los ejercicios del 1 al 20 resuelve la ecuación lineal correspondiente por el método de variación de parámetros $y = y_h + y_\rho$.

sol y = e 'In(e + e =)+ (e = =

1.
$$y'+y\cos x = senx\cos x$$

sol.
$$y = senx - 1 + Ce^{-senx}$$

Sug. transforma la ecuación vía $\cos y = v$. sol. $\cos y = \frac{1}{2} \sin y$

2.
$$3x^2y - 6x^3 - y^2 + 2xy + (2x^2 - xy)\frac{dy}{dx} = 0$$

$$\int_{0}^{\infty} ds \cos(x - 0) ds = \frac{C}{x}$$

$$\int_{0}^{\infty} ds \cos(x - 0) ds = \frac{C}{x}$$

14. $\frac{dt}{dt} + t \sec \theta = \cos \theta$

$$3. \frac{dy}{dx} - y \tan x = \sec x$$

sol
$$y = \sec x(C + x)$$

$$4. y' = \frac{1}{xseny + 2sen2y}$$

sol.
$$x = Ce^{-\cos y} - 4(\cos y - 1)$$

$$5. \frac{dy}{dx} + \frac{1}{x}y = 3x$$

sol.
$$y = x^2 + Cx^{-1}$$

147

6.
$$(x^2 - x - 2)y' + 3xy = x^2 - 4x + 4$$

sol.
$$y = \frac{1}{4} \frac{(x-2)^2}{x+1} + C \frac{1}{(x+1)(x-2)^2}$$

$$7. y' + xy = \cos x$$

sol.
$$y = e^{-\frac{x^2}{2}} \int e^{\frac{x^2}{2}} \cos x dx + Ce^{-\frac{x^2}{2}}$$

8.
$$x \frac{dy}{dx} = y + x^3 + 3x^2 - 2x$$

sol.
$$y = \frac{1}{2} (x^3 + 6x^2 - 4x \ln x + Cx)$$

9.
$$\frac{dy}{dx} + y \cot x = 5e^{\cos x}$$

sol.
$$ysenx = -5e^{\cos x} + C$$

10.
$$y \ln y dx + (x - \ln y) dy = 0$$

sol.
$$2x \ln y = \ln^2 y + C$$

11.
$$\frac{dy}{dx} - 2y \cot 2x = 1 - 2x \cot 2x - 2 \csc 2x$$

sol.
$$y = x + \cos 2x + C \sin 2x$$

12.
$$seny \frac{dy}{dx} = cos x (2 cos y - sen^2 x)$$
 somit a some a la ovienza a CC in 1 lab sociologica de la C

Sug: transforma la ecuación vía $\cos y = v$. $\operatorname{sol.} \cos y = \frac{1}{2} \operatorname{sen}^2 x - \frac{1}{2} \operatorname{sen} x + \frac{1}{4} + C e^{-2 \operatorname{sen} x}$

13.
$$y' = (10 - y) \cosh x$$

sol.
$$y = 10 + Ce^{-senhx}$$

14.
$$\frac{dr}{d\theta} + r \sec \theta = \cos \theta$$

TH' Magge as 102

sol.
$$(\sec \theta + \tan \theta)r = \theta - \cos \theta + C$$

15.
$$\frac{dy}{dx} + y = \frac{1 - e^{-2x}}{e^x + e^{-x}}$$

16. $ydx - 4(x + y^6)dy = 0$

sol.
$$y = e^{-x} \ln(e^x + e^{-x}) + Ce^{-x}$$

$$sol. \ x = 2y^6 + Cy^4$$

17.
$$x^2y'+x(x+2)y=e^x$$

sol.
$$y = \frac{1}{2x^2}e^x + \frac{C}{x^2}e^{-x}$$

18.
$$x \frac{dy}{dx} + 4y = x^3 - x$$

sol.
$$y = \frac{1}{7}x^3 - \frac{1}{5}x + Cx^{-4}$$

19.
$$x^2y'+xy=1$$

sol.
$$y = x^{-1} \ln x + Cx^{-1}$$

20.
$$x \frac{dy}{dx} + 3y = \frac{senx}{x^2}, \quad x \neq 0$$

sol.
$$x^3y = -\cos x + C$$

En los problemas 21 a 27 resuelve la ecuación diferencial dada sujeta a la condición inicial que se da.

21.
$$\frac{dy}{dx} = \frac{y}{y-x}$$
, $y(5) = 2$

sol.
$$x = \frac{1}{2}y + \frac{8}{y}$$

22.
$$x(x-2)y'+2y=0$$
, $y(3)=6$

$$sol. y = \frac{2x}{x-2}$$
we have a problem of the pro

23.
$$(x+1)\frac{dy}{dx} + y = \ln x$$
, $y(1) = 10$

sol.
$$(x+1)y = x \ln x - x + 21$$

24.
$$L\frac{di}{dt} + Ri = E$$
; L, R, yE constantes. $i(0) = i_0$ sol. $i = \frac{E}{R} + \left(i_0 - \frac{E}{R}\right)e^{-\frac{Ri}{L}}$

sol.
$$i = \frac{E}{R} + \left(i_o - \frac{E}{R}\right)e^{-\frac{Rt}{L}}$$

25.
$$y'+(\tan x)y = \cos^2 x$$
, $y(0) = -1$ sol. $y = senx \cos x - \cos x$

sol.
$$y = senx \cos x - \cos$$

26.
$$y' + \frac{5y}{9x} = 3x^3 + x$$
, $y(-1) = 4$

sol.
$$y = \frac{27}{41}x^4 + \frac{9}{23}x^2 - \frac{2782}{943}x^{-\frac{5}{9}}$$

27.
$$y' + \frac{1}{x-2}y = 3x$$
; $y(3) = 4$

sol.
$$y = x^2 - x - 2$$

28. Sean y_1 y y_2 dos soluciones distintas de la ecuación

$$y'+P(x)y=0$$

Demostrar que existe una constante C tal que $y_1 = Cy_2$.

29. Problema de mayor esfuerzo

Sean y_1 y y_2 dos soluciones distintas de la ecuación

$$y'+P(x)y=Q(x)$$

- (a) Demostrar que $y = y_1 + C(y_2 y_1)$ es la solución general de la misma ecuación.
- (b) ¿Cuál debería ser la relación entre las constantes C_1 y C_2 para que la combinación lineal $C_1y_1 + C_2y_2$ sea la solución general de la ecuación dada?
- (c) Demuestre que si y_3 es una tercera solución distinta de y_1 y y_2 , entonces $\frac{(y_2 y_1)}{(y_3 y_1)}$ es constante.
- 30. Demuestre que la ecuación diferencial

$$y'+P(x)y=Q(x)y\ln y$$

$$h=(\xi)x \quad 0=\chi(\xi-\chi(\xi-\chi)), \quad \xi\xi$$

puede resolverse haciendo ln y = v. Resuelva

$$y' + 3y = x^2 y \ln y. \qquad \text{Sol } \ln y = e^{\frac{1}{3}x^3} \left[C - 3 \int e^{-\frac{1}{3}x^3} dx \right]$$

31. Resolver la siguiente ecuación diferencial $\cos y \frac{dy}{dx} + seny = x^2 \text{ sug.}$

$$200 - x = 200 \text{ where } = \left(\frac{d}{dx} \text{ seny} = \cos y \frac{dy}{dx}\right) = -(0)y(-x) \text{ soon } = (x \text{ that } + 1) = 2x$$

Sol.
$$seny = x^2 - 2x + 2 + Ce^{-x}$$

18. r = 11 = 2 - 31

 $\mathcal{I} + x - {}^2x = \{ los$

ทด์ที่ของออกใน ประเทศเหลื

 $\Gamma = A \left(X \right)_{G} + A$

En los problemas del 1 al 6 resuelve la ecuación de Bernoulli dada.

1.
$$x \frac{dy}{dx} + y = \frac{1}{y^2}$$

sol.
$$y^3 = 1 + Cx^{-3}$$

$$2. \frac{dy}{dx} = y(xy^3 - 1)$$

sol.
$$y^{-3} = x + \frac{1}{3} + Ce^{3x}$$

$$3. x^2 \frac{dy}{dx} + y^2 = xy$$

$$sol e^{\frac{x}{y}} = Cx$$

4.
$$y' + xy = \frac{x}{y^3}$$
 $y \neq 0$

sol.
$$y^4 = 1 + Ce^{-2x^2}$$

5.
$$y'+y = xy^3$$

sol.
$$\frac{1}{y^2} = Ce^{2x} + x + \frac{1}{2}$$

6.
$$(1-x^3)\frac{dy}{dx} - 2(1+x)y = y^{\frac{5}{2}}$$

sol.
$$y^{-3/2} = -\frac{3}{4(1+x+x^2)} + \frac{C(1-x)^2}{1+x+x^2}$$

En los problemas 7 a 10 resuelve la ecuación diferencial dada, sujeta a la condición inicial que se indica.

7.
$$x^2 \frac{dy}{dx} - 2xy = 3y^4$$
, $y(1) = \frac{1}{2}$

sol.
$$y^{-3} = -\frac{9}{5}x^{-1} + \frac{49}{5}x^{-6}$$

8.
$$xy(1 + xy^2)\frac{dy}{dx} = 1$$
, $y(1) = 0$

8.
$$xy(1+xy^2)\frac{dy}{dx}=1$$
, $y(1)=0$ sol $x^{-1}=2-y^2-e^{-\frac{y^2}{2}}$, la ecuación es de Bernoulli en la variable x .

9.
$$y' + \frac{1}{x}y = \frac{y^2}{x}$$
, $y(-1) = 1$

sol.
$$y=1$$

10.
$$2\cos x dy = (y \sin x - y^3) dx$$
, $y(0) = 1$

sol.
$$\sec x = y^2 (\tan x + 1)$$

No puse of Lagrange of Clarraut. Deso agregar.