Nom:	Prénom :	TD:	Note:
Les questions suivantes sont indépendantes.			
Donner un exemple de suit mais de manière concise).	te de rationnels de Cauchy mais qui ne	converge pas dans \mathbb{Q} (on j	justifiera intégralement
Prouver qu'une suite de Cauchy est bornée.			
Donner un équivalent simp	ole des suites suivantes et conclure quan	nd à la nature de la série de	e terme général associé.
$u_n = \ln\left(1 + \tan\left(\frac{1}{n}\right)\right)$			
$v_n = 1 - \left(1 + \frac{1}{n^{\alpha}}\right)^{-\frac{1}{n}}, \alpha \in$	\mathbb{R} ,		
$w_n = \ln\left(\cos(\frac{1}{n})\right) \ln\left(\sin(\frac{1}{n})\right)$))		

Pour $n \in \mathbb{N}$, $n > 1$, et $a \ge 0$ un réel, on définit		
$u_n = \frac{a^n n!}{n^n}.$		
Donner la nature de la série de terme général u_n lorsque $a \neq e$.		
Lorsque $a = e$, montrer que $\frac{u_{n+1}}{u_n} \ge 1$ à partir d'un certain rang.		
En déduire alors la nature de la série de terme général u_n .		
Soient a_n et b_n deux suites strictement positives telles que $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$.		
Montrer qu'il existe $M > 0$ telle que $a_n \leq Mb_n$.		
Montrer que si la série de terme général b_n converge, alors celle de terme général a_n aussi.		
Montrer que si la série de terme général a_n diverge, alors celle de terme général b_n aussi.		

