Actividad 5 - Programación Lineal Entera en GLPK

David de los Santos Boix 28 de abril de 2017

Ejercicio 8

Se considera la familia F formada por cada cuadrado contenido en el primer cuadrante que contiene a los puntos (1,2) y (2,3), tiene los lados paralelos a los ejes coordenados y su esquina superior derecha pertenece a la recta y=2x-4. Hallar el cuadrado de F que tiene mínimo perímetro.

Para ello definimos las siguientes variables:

- 1. x_i, y_i son las coordenadas de los puntos del cuadrado en el primer cuadrante.
- 2. Con las 8 primeras restricciones establecemos que sean paralelos a los ejes coordenados.
- 3. Con la siguiente restricción hacemos que el punto 4, el superior derecha, pase por la recta indicada.

 $Min(x_2-x_1)+(y_4-y_2)+(x_4-x_3)+(y_3-y_1)$

- 4. Con las 4 siguientes restricciones forzamos a que los puntos estén dentro del cuadrado.
- 5. Por último definimos que esté en el primer cuadrante.

$$egin{array}{lll} y_1-y_2&=0\ y_3-y_4&=0\ y_3-y_1&>0\ y_4-y_2&>0\ x_1-x_3&=0\ x_2-x_4&=0\ x_2-x_1&>0\ x_4-x_3&>0\ \end{array} \ egin{array}{lll} z_4-y_4&=4\ x_1&\leq 1\ y_1&\leq 2\ x_4&\geq 2\ y_4&\geq 3\ x_i,y_i&i=1,2,3,4\ x_i,y_i&\geq 0 \end{array}$$

library(Rglpk)

```
## Loading required package: slam
## Using the GLPK callable library version 4.47
x8 <- Rglpk_read_file(file = "ejercicio8.mod",type = "MathProg",verbose = F)
sol.x8 = Rglpk_solve_LP(x8$objective, x8$constraints[[1]], x8$constraints[[2]], x8$constraints[[3]], x8
sol.x8$optimum
## [1] 7
sol.x8$solution
## [1] 1.0 3.5 1.0 3.5 2.0 2.0 3.0 3.0</pre>
```

He tenido que cambiar de ">" a ">=" dado que al cargar el fichero con esa desigualdad estricta el paquete no lo reconoce. Eso no puede ser debido a que el punto no puede ser sí mismo, no sería un cuadrado, sería un punto. De todas formas el problema resuelve de forma idéntica al anterior.

Ejercicio 12

Un tribunal de Selectividad está planificando la valoración que se hará de las tres partes que consta el examen: Lengua, Ciencias e Idiomas. Quieren dar valoraciones sobre 10, de forma que la de Ciencias sea mayor o igual a la de Lengua más la de Idiomas. Admás ninguna de las valoraciones puede ser inferior a 2. Formular el problema de determinar aquella planificación factible que conceda una mayor valoración a la parte de Idiomas.

Max i

l + c + i = 10

```
c - (l+i) \ge 0 \\ l, c, i \quad lengua, ciencias, idiomas \end{bmatrix} l, c, i \quad lengua, ciencias, idiomas \end{bmatrix} l, c, i \quad \ge 2 library(Rglpk)  x12 \leftarrow Rglpk\_read\_file(file = "ejercicio12.mod", type = "MathProg", verbose = F)  sol.x12 = Rglpk\_solve_LP(x12$objective, x12$constraints[[1]], x12$constraints[[2]], x12$constraints[[3]] sol.x12$optimum  
## [1] 3 sol.x12$solution  
## [1] 2 5 3
```