Abschlussprüfung 2017 an den Realschulen in Bayern

1 P

□ 69 %

□ 41 %

Prüfungsdauer: 150 Minuten

Mathematik II

Name:			Vornar	ne:				
Klasse	Platzziffer:			ffer:	Punkte:			
	Aufgabe A	1			Hau	upttermin		
A 1.0	die Temperatu	ır des Geträ	nks y °C. Die	Funktion f m	it der Gleichu	ch x Minuten beträng $y = 90 \cdot 0.94^x$ mersten 20 Minuten.		
A 1.1	Ergänzen Sie die Wertetabelle auf Ganze gerundet und zeichnen Sie sodann den Graphen zu f in das Koordinatensystem ein.							
	X	0	5	10	15	20		
	$90 \cdot 0,94^{x}$							
	90							
	50	2		0		20 x 2		
A 1.2	Geben Sie an,	um wie viel	Prozent das Ge	tränk pro Min	ute kälter wird.			
A 1.3	Ermitteln Sie i des Getränks n		-	nach wie viel	en Minuten di	e Temperatur		
A 1.4			ie Temperatur ie den zutreffe		nach sechs M			

□ 31 %

□ 36 %

A 2.0 Das Rechteck ABCD mit $\overline{AB} = 12 \text{ cm}$ und $\overline{BC} = 7 \text{ cm}$ ist die Grundfläche der Pyramide ABCDS (siehe Zeichnung). Die Spitze S liegt senkrecht über dem Mittelpunkt E der Strecke [AD] mit $\overline{ES} = 7 \text{ cm}$. Der Punkt F ist der Mittelpunkt der Strecke [BC].

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Berechnen Sie das Maß φ des Winkels SFE sowie die Länge der Strecke [FS].

Ergebnisse: $\varphi = 30,26^{\circ}$; $\overline{FS} = 13,89 \text{ cm}$

2 P

A 2.2 Der Punkt P liegt auf der Strecke [EF] mit $\overline{EP} = 5 \text{ cm}$. Für Punkte M_n auf der Strecke [FS] gilt: $\overline{FM_n}(x) = x \text{ cm}$ mit x < 13,89 und $x \in IR^+$. Die Punkte M_n sind die Mittelpunkte von Strecken $[Q_nR_n]$ mit $R_n \in [CS]$, $Q_n \in [BS]$ und $[Q_nR_n] \parallel [BC]$.

Die Punkte P, R_n und Q_n sind die Eckpunkte von Dreiecken PR_nQ_n . Zeichnen Sie das Dreieck PR_1Q_1 für x=3 in das Schrägbild zu A 2.0 ein. A 2.3 Der Punkt M₂ auf der Strecke [FS] liegt senkrecht über dem Punkt P.

Zeichnen Sie M_2 und das Dreieck PR_2Q_2 in das Schrägbild zu A 2.0 ein.

Bestimmen Sie sodann durch Rechnung den zugehörigen Wert für x und die Länge der Strecke $[R_2Q_2]$. $[Ergebnis: \overline{R_2Q_2} = 2,92 \text{ cm}]$

3 P

A 2.4 Das Dreieck PR₂Q₂ ist die Grundfläche der Pyramide PR₂Q₂F.

Ermitteln Sie rechnerisch den prozentualen Anteil des Volumens der Pyramide PR_2Q_2F am Volumen der Pyramide ABCDS.

A 3.0 Die Figur ABCD dient als Schnittvorlage für eine Glasscheibe (siehe Skizze).

Der Kreisbogen \widehat{CD} hat den Punkt B als Mittelpunkt und den Radius $r = \overline{BC}$.

Es gilt:
$$\overline{AB} = 50.0 \text{ cm}$$
; $\overline{BC} = 60.0 \text{ cm}$;

$$\angle CBA = 90^{\circ}; \angle BAD = 120^{\circ}.$$

Runden Sie im Folgenden auf eine Stelle nach dem Komma.

A 3.1 Berechnen Sie die Länge der Strecke [DA].

Teilergebnis:
$$\angle DBA = 13.8^{\circ}$$
; Ergebnis: $\overline{DA} = 16.5 \text{ cm}$

3 P

A 3.2 Die Glasscheibe wird aus einer quadratischen Glasplatte herausgeschnitten. Dazu bewegt sich ein Laserschneider mit einer Geschwindigkeit von 30 cm pro Sekunde entlang des Kreisbogens \widehat{CD} und der Strecke [DA].

Berechnen Sie die hierfür benötigte Zeit.

Abschlussprüfung 2017 an den Realschulen in Bayern

2 P

Haupttermin

Prüfungsdauer: 150 Minuten

Aufgabe B 1

Mathematik II

R 1 0	Die Parabal n varläuft durch die Punkte D(3 0) und O(5 0) Sie het eine Glei					
D 1.0	Die Parabel p verläuft durch die Punkte $P(-3 0)$ und $Q(5 0)$. Sie hat eine Glei-					
	chung der Form $y = a \cdot x^2 + 0.5x + c$ mit $G = IR \times IR$ und $a \in IR \setminus \{0\}, c \in IR$.					
	Die Gerade g hat die Gleichung $y = -0.1x - 2$ mit $\mathbb{G} = \mathbb{I}\mathbb{R} \times \mathbb{I}\mathbb{R}$.					
B 1.1	Zeigen Sie durch Berechnung der Werte für a und c, dass die Parabel p die Gleichung $y=-0.25x^2+0.5x+3.75$ hat.					
	Zeichnen Sie sodann die Gerade g sowie die Parabel p für $x \in [-4, 7]$ in ein					
	Koordinatensystem ein.					
	Für die Zeichnung: Längeneinheit 1 cm; $-5 \le x \le 8$; $-5 \le y \le 5$	4 P				
B 1.2	Punkte $A_n(x \mid -0.25x^2 + 0.5x + 3.75)$ auf der Parabel p und Punkte $B_n(x \mid -0.1x - 2)$					
	auf der Geraden g haben dieselbe Abszisse x.					
	Sie sind zusammen mit Punkten C_n und D_n für $x \in]-3,74;6,14[$ die Eckpunkte von					
	Parallelogrammen $A_n B_n C_n D_n$.					
	Die Punkte C_n liegen ebenfalls auf der Geraden g. Dabei ist die Abszisse x der Punkte					
	C_n jeweils um 2 größer als die Abszisse x der Punkte B_n .					
	Zeichnen Sie die Parallelogramme $A_1B_1C_1D_1$ für $x=-2$ und $A_2B_2C_2D_2$ für $x=3$ in					
	das Koordinatensystem zu B 1.1 ein.	2 P				
B 1.3	Berechnen Sie die Länge der Strecken $\left[A_{\scriptscriptstyle n}B_{\scriptscriptstyle n}\right]$ in Abhängigkeit von der Abszisse x der					
	Punkte A _n .					
	Ergebnis: $\overline{A_n B_n}(x) = (-0.25x^2 + 0.6x + 5.75) LE$	2 P				
B 1.4	Überprüfen Sie rechnerisch, ob es unter den Parallelogrammen $A_n B_n C_n D_n$ ein Paralle-					
	logramm mit einem Flächeninhalt von 13 FE gibt.					
B 1.5	$\label{eq:continuous} \text{Unter den Parallelogrammen } A_{\scriptscriptstyle n} B_{\scriptscriptstyle n} C_{\scriptscriptstyle n} D_{\scriptscriptstyle n} \ \ \text{gibt es die Rauten } A_{\scriptscriptstyle 3} B_{\scriptscriptstyle 3} C_{\scriptscriptstyle 3} D_{\scriptscriptstyle 3} \ \ \text{und } A_{\scriptscriptstyle 4} B_{\scriptscriptstyle 4} C_{\scriptscriptstyle 4} D_{\scriptscriptstyle 4} .$					
	Berechnen Sie die x-Koordinaten der Punkte A_3 und A_4 auf zwei Stellen nach dem					
	Komma gerundet. Teilergebnis: $\overline{B_n C_n} = 2{,}01 LE$					
		4 P				

B 1.6 Begründen Sie, dass es unter den Parallelogrammen $A_n B_n C_n D_n$ kein Rechteck gibt.

Abschlussprüfung 2017

Prüfungsdauer: 150 Minuten

Mathematik II

Aufgabe B 2 Haupttermin B 2.0 Gegeben ist das Dreieck ABC mit $\overline{AB} = 10 \text{ cm}$, $\overline{AC} = 8 \text{ cm}$ und $\overline{BC} = 9.5 \text{ cm}$. Der Punkt D ist der Fußpunkt des Lotes vom Eckpunkt A auf die Seite [BC] (siehe Skizze). Runden Sie im Folgenden auf zwei Stellen \times M nach dem Komma. B 2.1 Zeichnen Sie das Dreieck ABC und die Strecke [AD]. 1 P B 2.2 Berechnen Sie das Maß β des Winkels CBA, das Maß ε des Winkels BAD und die Länge der Strecke [AD]. [Ergebnisse: $\beta = 48,36^{\circ}$; $\epsilon = 41,64^{\circ}$] 3 P B 2.3 Der Punkt G auf der Verlängerung der Strecke [BC] über C hinaus ist ein Eckpunkt des Dreiecks ABG. Der Winkel BAG hat das Maß 70°. Zeichnen Sie das Dreieck ABG und berechnen Sie die Länge der Strecke [CG]. 4 P B 2.4 Im Dreieck ABD berührt der Inkreis k die Seite [AB] im Punkt E und die Seite [AD] im Punkt F. Zeichnen Sie den Inkreis k mit seinem Mittelpunkt M und die Strecken [ME] und [MF] in die Zeichnung zu B 2.1 ein. 2 P B 2.5 Berechnen Sie das Maß φ des Winkels AMB und den Inkreisradius $r = \overline{ME}$. [Ergebnisse: $\varphi = 135^\circ$; r = 2,06 cm] 3 P

B 2.6 Berechnen Sie den Flächeninhalt A des Flächenstücks AEF, das vom Kreisbogen FE sowie von den Strecken [EA] und [AF] begrenzt wird.

4 P