Sequential Monte Carlo For Amortized Variational Inference

Declan McNamara

Department of Statistics University of Michigan

August 9, 2023

Collaborators

Jeffrey Regier

Jackson Loper

Outline

- Background
 Variational Inference
 Amortized Variational Inference
- 2. SMC-Wake Forward KL Objective Experiments

Background

Bayesian Inference

• Given a generative model $p(\theta, x)$, the posterior distribution (density) can be computed by Bayes' rule via

$$p(\theta \mid x) = \frac{p(\theta, x)}{p(x)}.$$

Bayesian Inference

• Given a generative model $p(\theta, x)$, the posterior distribution (density) can be computed by Bayes' rule via

$$p(\theta \mid x) = \frac{p(\theta, x)}{p(x)}.$$

• The evidence $p(x) = \int p(\theta, x) d\theta$ is usually computationally intractable, so we resort to approximate Bayesian methods.

Variational Inference

• Variational inference (VI) uses optimization to select a parametric distribution $q_{VI} \in \mathcal{Q}$ to approximate the posterior distribution $p(\theta \mid x)$.

Variational Inference

- Variational inference (VI) uses optimization to select a parametric distribution $q_{VI} \in \mathcal{Q}$ to approximate the posterior distribution $p(\theta \mid x)$.
- The choice of the objective function *L* is an area of active research.

Variational Inference

- Variational inference (VI) uses optimization to select a parametric distribution $q_{VI} \in \mathcal{Q}$ to approximate the posterior distribution $p(\theta \mid x)$.
- The choice of the objective function *L* is an area of active research.
- What if we want to perform VI for x_1, \ldots, x_n , for n large?

• Amortized VI fits an *inference network* f that maps observations $x \in \mathcal{X}$ to variational distributions $q \in \mathcal{Q}$.

- Amortized VI fits an *inference network* f that maps observations $x \in \mathcal{X}$ to variational distributions $q \in \mathcal{Q}$.
- Ideally, f(x) defines a distribution "close" to the posterior $p(\theta \mid x)$ for each $x \in \mathcal{X}$.

Example

• Suppose that the variational family Q is taken to be a bivariate Gaussian distribution on 2-dimensional θ .

Example

- Suppose that the variational family Q is taken to be a bivariate Gaussian distribution on 2-dimensional θ .
- For each observation x, a neural network f would have 5 scalar outputs that define a distribution on θ ,

$$f(x) = (\mu_1, \mu_2, \sigma_1, \sigma_2, \rho) \mapsto \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

Objectives |

We let $q_{\phi}(\theta \mid x)$ denote an amortized variational posterior, corresponding to a neural network with parameters ϕ .

Objectives

$$q^{ ext{VI}}(heta) = \operatorname*{argmin}_{oldsymbol{q} \in \mathcal{Q}} \ \ L(oldsymbol{q}(heta), \pi(heta), oldsymbol{p}(oldsymbol{x} \mid heta))$$

Objectives

$$egin{aligned} q^{ ext{VI}}(heta) &= rgmin_{q \in \mathcal{Q}} \quad L(q(heta), \pi(heta), p(x \mid heta)) \ &\downarrow \ q_{\phi}^{ ext{AVI}}(heta) &= rgmin_{\phi \in \Phi} \quad rac{1}{n} \sum_{i=1}^n L(q_{\phi}(heta \mid x_i), \pi(heta), p(x_i \mid heta)) \end{aligned}$$

SMC-Wake

The Forward KL Divergence

• We target minimization of the forward KL divergence

$$L(q, \pi, p) = \mathrm{KL}\Big[p(\theta \mid x)||q(\theta \mid x)\Big].$$

The Forward KL Divergence

• We target minimization of the forward KL divergence

$$L(q, \pi, p) = KL\left[p(\theta \mid x)||q(\theta \mid x)\right].$$

 VI often uses the evidence lower bound (ELBO) to target the reverse KL divergence.

Forward vs. Reverse KL

Image source: https://agustinus.kristia.de/techblog/2016/12/21/forward-reverse-kl/

Particle Approximations

• Estimating the forward KL objective

$$\mathbb{E}_{
ho(heta \mid x)} \log rac{
ho(heta \mid x)}{q_{\phi}(heta \mid x)}$$

or its gradient

$$-\mathbb{E}_{p(\theta\mid x)}
abla_{\phi}\log q_{\phi}(\theta\mid x)$$

requires sampling from the exact posterior.

Particle Approximations

• Estimating the forward KL objective

$$\mathbb{E}_{
ho(heta \mid x)} \log rac{
ho(heta \mid x)}{q_{\phi}(heta \mid x)}$$

or its gradient

$$-\mathbb{E}_{p(\theta\mid x)}
abla_{\phi}\log q_{\phi}(\theta\mid x)$$

requires sampling from the exact posterior.

• The "Wake" algorithm uses self-normalized importance sampling (IS) to estimate the objective.

Particle Approximations

• Estimating the forward KL objective

$$\mathbb{E}_{
ho(heta \mid x)} \log rac{
ho(heta \mid x)}{q_{\phi}(heta \mid x)}$$

or its gradient

$$-\mathbb{E}_{p(\theta\mid x)}
abla_{\phi}\log q_{\phi}(\theta\mid x)$$

requires sampling from the exact posterior.

• We propose using tools from the Sequential Monte Carlo (SMC) literature to estimate this objective.

SMC

 SMC uses a series of intermediate distributions to transition a weighted particle set from a base distribution to a target distribution

SMC

- SMC uses a series of intermediate distributions to transition a weighted particle set from a base distribution to a target distribution
- Weighted samples from the base distribution are resampled, extended, and reweighted.

SMC

- SMC uses a series of intermediate distributions to transition a weighted particle set from a base distribution to a target distribution.
- Weighted samples from the base distribution are resampled, extended, and reweighted.
- While SMC is commonly used for state-space models, it can be used to target *any* distribution.

Likelihood-Tempered SMC

• Auxiliary variables $\theta_1, \ldots, \theta_{T-1}$ are introduced, with θ_T the target for inference.

Likelihood-Tempered SMC

- Auxiliary variables $\theta_1, \ldots, \theta_{T-1}$ are introduced, with θ_T the target for inference.
- Likelihood-tempered SMC imposes the joint distribution

$$p(\theta_k, x) \propto \pi(\theta_k) p(x \mid \theta_k)^{\tau_k}$$
.

Likelihood-Tempered SMC

- Auxiliary variables $\theta_1, \ldots, \theta_{T-1}$ are introduced, with θ_T the target for inference.
- Likelihood-tempered SMC imposes the joint distribution

$$p(\theta_k, x) \propto \pi(\theta_k) p(x \mid \theta_k)^{\tau_k}$$
.

• Temperatures satisfy $0 = \tau_1 < \cdots < \tau_T = 1$.

SMC-Wake

 Our proposed algorithm, SMC-Wake, trains the inference network using gradient updates

$$-rac{1}{n}\sum_{i=1}^n \mathbb{E}_{
ho(heta\mid x_i)}
abla_\phi \log q_\phi(heta\mid x_i).$$

SMC-Wake

 Our proposed algorithm, SMC-Wake, trains the inference network using gradient updates

$$-rac{1}{n}\sum_{i=1}^n \mathbb{E}_{p(heta\mid \mathsf{x}_i)}
abla_\phi \log q_\phi(heta\mid \mathsf{x}_i).$$

 Each expectation is estimated using particles sets constructed by SMC.

SMC-Wake

 Our proposed algorithm, SMC-Wake, trains the inference network using gradient updates

$$-rac{1}{n}\sum_{i=1}^n \mathbb{E}_{p(heta\mid x_i)}
abla_{\phi} \log q_{\phi}(heta\mid x_i).$$

- Each expectation is estimated using particles sets constructed by SMC.
- Gradients estimated in this way are *consistent* as the number of particles $K \to \infty$.

Convergence

Lemma (Del Moral, 2004)

Let K be the number of particles used by likelihood-tempered SMC, and $\hat{P}(\theta_T)$ the empirical distribution at the final step. Then as $K \to \infty$,

$$\mathrm{KL}(\mathbb{E}\big[\hat{P}(\theta_T)\big] \mid\mid p(\theta\mid x)) \to 0$$

Consistent Gradient Estimation

Theorem

Let

$$egin{aligned} \psi &= \mathbb{E}_{p(heta \mid \mathbf{x})}
abla_{\phi} \log q_{\phi}(heta \mid \mathbf{x}), \ \hat{\psi} &= \mathbb{E}_{\hat{P}(heta_T)}
abla_{\phi} \log q_{\phi}(heta \mid \mathbf{x}), \end{aligned}$$

where \hat{P} is a (random) discrete distribution resulting from an instance of SMC-Wake. Suppose that $|\nabla_{\phi}\log q_{\phi}(\theta\mid x)|\leq M$ (in each dimension), and that $\mathbb{E}(\hat{P}(\theta_T))$ is absolutely continuous with respect to $p(\theta\mid x)$. Then $\mathbb{E}(\hat{\psi})-\psi\to 0$ as $K\to\infty$.

Experiment – Two Moons

$$egin{aligned} heta_1, heta_2 \stackrel{\textit{iid}}{\sim} \textit{U}(-1,1), \ a &\sim \textit{U}\left(-rac{\pi}{2}, rac{\pi}{2}
ight), \ r &\sim \mathcal{TN}\left(0.1, 0.01^2; 0
ight), \ p &= (r\cos(a) + 0.25, r\sin(a)), \ ext{and } x^\top = p + \left(-rac{| heta_1 + heta_2|}{\sqrt{2}}, rac{- heta_1 + heta_2}{\sqrt{2}}
ight). \end{aligned}$$

Two Moons Posterior

Experiments – Two Moons

• We sample 100 iid data points from the "two-moons" model.

Experiments – Two Moons

- We sample 100 iid data points from the "two-moons" model.
- We train an inference network using SMC-Wake.

Experiments – Two Moons

- We sample 100 iid data points from the "two-moons" model.
- We train an inference network using SMC-Wake.
- We use the class Neural Spline Flows (NSP) as the variational family \mathcal{Q} .

Results – SMC-Wake

Competing Methods

Wake-phase training

ullet Uses self-normalized importance sampling with q_ϕ as a proposal to estimate the gradient

$$-\mathbb{E}_{p(\theta\mid x)}
abla_{\phi}\log q_{\phi}(\theta\mid x)$$

Defensive-Wake

• A variant that proposes with equal probability from either q_{ϕ} or the prior for importance sampling.

Results – Competitors

27 / 28

Discussion

SMC-Wake improves on wake-phase training by

• Removing the pathology of proposing from and optimizing q_{ϕ} .

Discussion

SMC-Wake improves on wake-phase training by

- Removing the pathology of proposing from and optimizing q_{ϕ} .
- Utilizing the likelihood more effectively via tempering to construct high-quality particle approximations.

Additional Results

Additional Results

Additional Results

PROVABGS

• The Probabilisitc Value-Added Bright Galaxy Survey (PROVABGS) simulator is a forward model of galaxy spectra using 12 parameters.

PROVABGS'

- The Probabilisitc Value-Added Bright Galaxy Survey (PROVABGS) simulator is a forward model of galaxy spectra using 12 parameters.
- We simulate from this forward model by sampling from a prior on the parameters, and subsequently
 - Add realistic noise.
 - Normalize out a magnitude parameter.

Inference For Galaxy Spectra

 Our PROVABGS emulator thus generates galaxy spectra from 11 distinct cosmological parameters.

Inference For Galaxy Spectra

- Our PROVABGS emulator thus generates galaxy spectra from 11 distinct cosmological parameters.
- We add Gaussian noise to the emulator outputs, and aim to perform inference over these parameters using SMC-Wake.

PROVABGS

Results

Normalizing Flows

Source: https://gebob19.github.io/normalizing-flows/