Метод обратной матрицы

Пусть задана $(m \times n)$ -игра Γ двух игроков, A и B, c матрицей стратегий C.

Пусть $\mathbf{x}=(x_1,x_2,...,x_m)\in S_m,\ \mathbf{y}=(y_1,y_2,...,y_n)\in S_n$ — смешанные стратегии игроков A и В соответственно.

Тогда множества индексов $A_{\mathbf{x}} = \{i \mid i \in A, x_i > 0\}$, $B_{\mathbf{y}} = \{j \mid j \in B, y_j > 0\}$, где $A = \{1, 2, ..., m\}$, $B = \{1, 2, ..., n\}$, называются спектрами стратегий \mathbf{x} и \mathbf{y} (в спектр включаются только стратегии, реализуемые с ненулевыми вероятностями.

Чистая стратегия $i \in A \ (j \in B)$ игрока A (B) называется существенной, если существует оптимальная стратегия $\mathbf{x}^* = (x_1^*, x_2^*, ..., x_m^*) \in S_m \ (\mathbf{y}^* = (y_1^*, y_2^*, ..., y_n^*) \in S_n)$ этого игрока, для которой $x_i^* > 0 \ (y_j^* > 0)$.

Спектр A^* (B^*) любой оптимальной стратегии \mathbf{x}^* (\mathbf{y}^*) состоит лишь из существенных стратегий.

Стратегия \mathbf{x} (\mathbf{y}) игрока \mathbf{A} (\mathbf{B}) называется **вполне смещанной**, если ее спектр состоит из множества всех чистых стратегий игрока, т.е. $A_{\mathbf{x}} = A$ ($B_{\mathbf{y}} = B$).

Ситуация равновесия в игре $(\mathbf{x}^*, \mathbf{y}^*)$ называется **вполне смешанной**, если стратегии $\mathbf{x}^*, \mathbf{y}^*$ – вполне смешанные.

Игра Г называется <u>вполне смешанной</u>, если каждая ситуация равновесия в ней является вполне смешанной.

Теорема 1. Вполне смешанная игра $(m \times n)$ -игра Γ имеет единственную ситуацию равновесия $(\mathbf{x}^*, \mathbf{y}^*)$ и квадратную матрицу (m = n); если цена игры $\upsilon \neq 0$, то матрица \mathbf{C} невырожденная и

$$\mathbf{x}^* = \frac{\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}, \ \mathbf{y}^* = \frac{\mathbf{u}\mathbf{C}^{-1}}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}, \ \upsilon = \frac{1}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}},$$
(1)

где вектор $\mathbf{u} = (1, 1, ..., 1) \in \mathbb{R}^m$.

Метод Брауна-Робинсон

В первой партии оба игрока произвольно выбирают некоторые чистые стратегии.

В партии k каждый игрок выбирает чистую стратегию, максимизирующую его ожидаемый выигрыш относительно наблюдаемой эмпирической смешанной стратегии противника, рассчитанной за предыдущие (k-1) партий.

Пусть в течение первых k шагов первый игрок использовал каждую i-ю стратегию $\tilde{x}_i[k]$ раз, а второй использовал каждую j-ю стратегию $\tilde{y}_i[k]$ раз.

В следующей, (k+1)-й партии игроки используют свои стратегии с номерами i[k] j[k], исходя из оптимизации оценок верхней и нижней цен игры:

$$\overline{\upsilon}[k] = \max_{i \in A} \sum_{j \in B} c_{ij} \widetilde{y}_j[k] = \sum_{j \in B} c_{i[k+1]j} \widetilde{y}_j[k],$$

$$\underline{\nu}[k] = \min_{j \in B} \sum_{i \in A} c_{ij} \tilde{x}_i[k] = \sum_{i \in A} c_{ij[k+1]} \tilde{x}_i[k].$$

Усреднение по k шагам алгоритма:

$$\frac{1}{k}\overline{\upsilon}[k] = \frac{1}{k}\max_{i\in\mathcal{A}}\sum_{j\in\mathcal{B}}c_{ij}\tilde{y}_{j}[k] = \frac{1}{k}\sum_{j\in\mathcal{B}}c_{i[k+1]j}\tilde{y}_{j}[k],$$

$$\frac{1}{k}\underline{\upsilon}[k] = \frac{1}{k}\min_{j\in\mathcal{S}}\sum_{i\in\mathcal{A}}c_{ij}\tilde{x}_i[k] = \frac{1}{k}\sum_{i\in\mathcal{A}}c_{ij[k+1]}\tilde{x}_i[k].$$

Оценки смешанных стратегий игроков А и В определяются векторами

$$\tilde{\mathbf{x}}[k] = \left(\frac{\tilde{x}_1[k]}{k}, \frac{\tilde{x}_2[k]}{k}, \dots, \frac{\tilde{x}_m[k]}{k}\right), \qquad \tilde{\mathbf{y}}[k] = \left(\frac{\tilde{y}_1[k]}{k}, \frac{\tilde{y}_2[k]}{k}, \dots, \frac{\tilde{y}_n[k]}{k}\right).$$

(2)

Пример

Пусть (3×3)-игра Г задана матрицей

$$\mathbf{C} = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Расчет по формулам

$$\mathbf{x}^* = \frac{\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}, \ \mathbf{y}^* = \frac{\mathbf{u}\mathbf{C}^{-1}}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}, \ \upsilon = \frac{1}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}},$$

дает аналитическое решение

$$\mathbf{x}^* = \left(\frac{1}{2}, \frac{1}{2}, 0\right), \ \mathbf{y}^* = \left(\frac{1}{4}, \frac{1}{8}, \frac{5}{8}\right), \ \upsilon = 1, 5.$$

Пусть на первом шаге игроки выбрали x_1, y_1 . $\mathbf{C} = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ Учитывая, что игрок A выбрал x_1 ,

игрок В мог получить один из выигрышей (2, 1, 3).

Учитывая, что игрок В выбрал y_1 ,

игрок А мог получить один из выигрышей (2, 3, 1).

Следовательно, на втором этапе: x_2 и y_2 .

Первые шаги алгоритма Брауна-Робинсона

№пп	Выбор А	Выбор В	Выигрыш А			Проигрыш В			1	1
			x_1	x_2	x_3	y_1	y_2	y_3	$\frac{1}{k}\bar{v}[k]$	$\frac{1}{k}\underline{v}[k]$
1	x_1	y_1	2	3	1	2	1	3	3	1
2	<i>x</i> ₂	y_2	3	3	3	5	1	4	3/2	1/2
3	x_2	y_2	4	3	5	8	1	5	5/3	1/3
4	x_3	y_2	5	3	7	9	3	6	7/4	3/4
5	<i>x</i> ₃	y_2	6	3	9	10	5	7	9/5	5/5
6	<i>x</i> ₃	y_2	7	3	11	11	7	8	11/6	7/6
7	<i>x</i> ₃	y_2	8	3	13	12	9	9	13/7	9/7
8	<i>x</i> ₃	y_3	11	4	14	13	11	10	14/8	10/8
9	<i>x</i> ₃	y_3	14	5	15	14	13	11	15/9	11/9
10	<i>x</i> ₃	y_3	17	6	16	15	15	12	17/10	12/10
11	x_1	y_3	20	7	17	17	16	15	20/11	15/11
12	x_1	y_2	21	7	19	19	17	18	21/12	17/12

Результаты расчетов для первых 12 шагов

$$\tilde{\mathbf{x}}[12] = \left(\frac{1}{4}, \frac{1}{6}, \frac{7}{12}\right), \quad \tilde{\mathbf{y}}[12] = \left(\frac{1}{12}, \frac{7}{12}, \frac{1}{3}\right)$$

Погрешность

$$\varepsilon[12] = \min_{k} \frac{1}{12} \overline{\upsilon}[12] - \max_{k} \frac{1}{12} \underline{\upsilon}[12] = \frac{1}{3}$$

Антагонистические игры с непрерывным ядром.

Пусть функция выигрыша (ядро) антагонистической игры, заданной на единичном квадрате непрерывна:

$$H(x,y) \in C(\Pi), \ \Pi = [0,1] \times [0,1].$$

Тогда существуют нижняя и верхняя цены игры, и

$$h = \overline{h} \equiv \max_{F} \min_{y} E(F, y) = \min_{G} \max_{x} E(x, G) \equiv \underline{h},$$

а для среднего выигрыша игры имеют место равенства

$$E(x,G) = \int_{0}^{1} H(x,y) dG(y), E(F,y) = \int_{0}^{1} H(x,y) dF(x),$$

где F(x), G(y) — произвольные вероятностные меры выбора стратегий для обоих игроков, заданные на единичном интервале.

Выпукло-вогнутая игра всегда разрешима в чистых стратегиях.

Выпукло-вогнутные игры

1 АНАЛИТИЧЕСКОЕ РЕШЕНИЕ

Пусть функция ядра имеет вид

$$H(x,y) = ax^2 + by^2 + cxy + dx + ey.$$

Если выполняются условия

$$H_{xx} = 2a < 0, H_{yy} = 2b > 0,$$

то игра является выпукло-вогнутой.

Для нахождения оптимальных стратегий найдем частные производные функции ядра по каждой переменной:

$$H_x = 2ax + cy + d$$
, $H_y = 2by + cx + e$.

После приравнивания производных к 0, получим

$$x = -\frac{cy+d}{2a}, \ y = -\frac{cx+e}{2b}.$$

 $T.к. \ x, y$ должны быть неотрицательными,

$$\psi(y) = \begin{cases} -\frac{cy+d}{2a}, & y \ge -\frac{d}{c}, \\ 0, & y < -\frac{d}{c}. \end{cases}, \qquad \varphi(x) = \begin{cases} -\frac{cx+e}{2b}, & x \le -\frac{e}{c}, \\ 0, & x > -\frac{e}{c}. \end{cases}$$

Совместное решение этой системы дает аналитическое решение

$$h = H(x^*, y^*)$$
.

2 ЧИСЛЕННОЕ РЕШЕНИЕ

(метод аппроксимации функции выигрышей на сетке)

Введем параметр разбиения N и

$$\forall N=1,2,...,$$

зададим аппроксимацию функции ядра на единичном квадрате

$$H^{(N)} = (H_{ij}^{(N)}), H_{ij}^{(N)} = H(i/N, j/N), i, j = 0,...,N.$$

Рассматривая каждую $H^{(N)}$ как матрицу

конечной антагонистической игры двух лиц,

найдем оптимальные смешанные стратегии

(по теореме Неймана о минимаксе они всегда существуют):

$$X^{(N)} = (x_0^{(N)}, ..., x_N^{(N)}), Y^{(N)} = (y_0^{(N)}, ..., y_N^{(N)}).$$

Ожидаемый выигрыш:

$$h^{(N)} = \sum_{i=0}^{N} \sum_{j=0}^{N} H_{ij}^{(N)} x_i^{(N)} y_j^{(N)} ,$$

а в пределе для исходной непрерывной задачи:

$$h = \lim_{N \to \infty} h^{(N)} .$$