Начала теории групп

Опр: 1. Группа - это множество G, на котором задана бинарная операция $: G \times G \to G$, обычно называемая умножением, которая должна удовлетворять свойствам, называемыми аксиомами группы:

1) Ассоциативность:

$$\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

2) Существование нейтрального элемента:

$$\exists e \in G : \forall g \in G, g \cdot e = e \cdot g = g$$

где e - нейтральный элемент или ещё его называют единицей в группе G;

3) Существование обратного элемента:

$$\forall a \in G. \ \exists b \in G: a \cdot b = b \cdot a = e$$

где b - обратный элемент к элементу a.

Обозначение: $b = a^{-1}$;

Опр: 2. Подмножество $H\subseteq G$ называется <u>подгруппой</u>, если $e\in H$ и $\forall a,b\in H,\,ab^{-1}\in H.$

Утв. 1.

$$\forall a, b \in H, ab^{-1} \in H \Leftrightarrow \begin{cases} \forall a, b \in H, & ab \in H \\ \forall a \in H, & a^{-1} \in H \end{cases}$$

П

 $(\Rightarrow) \ \forall a,b \in Hab^{-1} \in H \Rightarrow \forall b \in H, \ eb^{-1} = b^{-1} \in H, \ \forall a,b^{-1} \in H, \ a(b^{-1})^{-1} = ab \in H.$

 $(\Leftrightarrow) \ \forall a,b \in H, \ ab \in H, \ a^{-1} \in H \Rightarrow b^{-1} \in H, \ \Rightarrow ab^{-1} \in H.$

Rm: 1. Подгруппа это подмножество, которое само является группой относительно той же операции.

Опр: 3. Подгруппы $H = \{e\} \subseteq G, H = G \subseteq G$ называются несобственными. Группы отличные от несобственных называются собственными.

 \mathbf{Rm} : 2. В любой группе G всегда есть несобственные подгруппы.

Пример подгруппы: $G = (\mathbb{Z}, +)$, тогда $H = \{-1, 1\}$ - не подгруппа, поскольку не содержит 0. При этом это является группой относительно умножения.

Как проверить, что $H \subseteq G$ является подгруппой? Необходимо проверить свойства группы, при этом ассоциативность проверять не нужно, потому что H это подмножество G, в котором для любых элементов выполнено свойство ассоциативности.

Пример подгрупп: Пусть $G=(\mathbb{Z},+)$, тогда $H=n\mathbb{Z}$, где n - фиксировано, $n\in\mathbb{Z}_{>0}$.

- $1) \ n=0 \Rightarrow n\mathbb{Z}=0=\{e\};$
- $2) \ n=1 \Rightarrow n\mathbb{Z}=\mathbb{Z};$
- 3) $n=2 \Rightarrow n\mathbb{Z}=2\mathbb{Z}$ чётные;

Таким образом, мы можем прийти к следующему предложению.

Утв. 2. Любая подгруппа в $(\mathbb{Z},+)$ имеет вид $n\mathbb{Z}, n \in \mathbb{Z}_{\geq 0}$.

Rm: 3. $n \in \mathbb{Z}_{\geq 0}$, поскольку подгруппа, например, $-3\mathbb{Z}$ совпадает с подгруппой $3\mathbb{Z}$.

- (⇐) Ясно, что $n\mathbb{Z}$ подгруппа.
- (\Rightarrow) Пусть $H\subseteq G$ некоторая подгруппа. Если $H=\{0\},$ то n=0. Если $H\neq\{0\},$ то:

$$\exists a \in H, a \neq 0 \Rightarrow \pm a \in H \Rightarrow \exists a \in H, a > 0$$

Пусть $n \in \mathbb{N}$ - наименьшее, лежащее в $H \Rightarrow n\mathbb{Z} \subseteq H$. Разделим $a \in H$ с остатком на n:

$$a = nq + r, \, 0 \le r < n, \, r = a - nq \in H \Rightarrow r = 0$$

так как n - минимальный положительный $\Rightarrow H = n\mathbb{Z}$, поскольку каждый элемент подгруппы H представим в виде nq для некоторого $q \in \mathbb{Z}$.

Опр: 4. Пусть (G, \circ) и (H, *) - группы, тогда <u>гомоморфизм</u> $\varphi \colon G \to H$ это отображение вида:

$$\forall a, b \in G, \, \varphi(a \circ b) = \varphi(a) * \varphi(b)$$

Утв. 3. Для гомоморфизма будет верно:

- 1) $e_G \in G$, $e_H \in H \Rightarrow \varphi(e_G) = e_H$;
- 2) $\varphi(a^{-1}) = \varphi(a)^{-1}$;

- 1) $\forall a \in G, \ \varphi(a) = \varphi(a \circ e_G) = \varphi(a) * \varphi(e_G) \Rightarrow \varphi(a)^{-1} * \varphi(a) = \varphi(a)^{-1} * \varphi(a) * \varphi(e_G) \Rightarrow e_H = \varphi(e_G);$
- 2) $\forall a \in G, \ \varphi(a \circ a^{-1}) = \varphi(e_G) \Rightarrow \varphi(a)^{-1} * e_H = \varphi(a)^{-1} = \varphi(a)^{-1} * \varphi(a) * \varphi(a^{-1}) = e_H * \varphi(a^{-1}) = \varphi(a^{-1});$

Порядок элемента группы

Опр: 5. Возведение элемента $g \in G$ в степень $n \in \mathbb{Z}$: $g^n = \begin{cases} \underbrace{g \cdot \ldots \cdot g}_n, & n > 0 \\ \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|n|}, & n < 0. \end{cases}$ e, n = 0

Утв. 4. Свойства возведения в степень:

- 1) $q^n \cdot q^m = q^{n+m}$;
- 2) $(q^n)^m = q^{nm}$;

1) Рассмотрим возможные случаи:

(1)
$$n, m > 0 \Rightarrow g^n g^m = \underbrace{g \cdot \dots \cdot g}_{n} \cdot \underbrace{g \cdot \dots \cdot g}_{m} = \underbrace{g \cdot \dots \cdot g}_{n+m} = g^{n+m};$$

$$(2) \ n, m < 0 \Rightarrow g^n g^m = \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|n|} \cdot \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|m|} = \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|n| + |m|} = \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|n+m|} = g^{nm};$$

$$(3) \ n > |m| > 0, m < 0 \Rightarrow g^n g^m = \underbrace{g \cdot \ldots \cdot g}_{n} \cdot \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|m|} = \underbrace{g \cdot \ldots \cdot g}_{n-|m|} \cdot \underbrace{e \cdot \ldots \cdot e}_{|m|} = \underbrace{g \cdot \ldots \cdot g}_{n+m} = g^{n+m};$$

$$(4) |m| > n > 0, m < 0 \Rightarrow g^n g^m = \underbrace{g \cdot \ldots \cdot g}_{n} \cdot \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|m|} = \underbrace{e \cdot \ldots \cdot e}_{n} \cdot \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|m|-n} = \underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_{|m+n|} = g^{n+m};$$

- (5) $n, m = 0 \Rightarrow g^n g^m = ee = e = g^{n+m}$
- 2) Отметим, что $(g^n)^{-1} = g^{-n}$, поскольку:

$$g^n \cdot g^{-n} = g^{-n} \cdot g^n = g^{n-n} = g^0 = e$$

Рассмотрим возможные случаи:

(1)
$$m > 0 \Rightarrow (g^n)^m = \underbrace{g^n \cdot \dots \cdot g^n}_{m} = g^{n+n+\dots+n} = g^{nm};$$

$$(2) \ m < 0 \Rightarrow (g^n)^m = \underbrace{(g^n)^{-1} \cdot \dots \cdot (g^n)^{-1}}_{|m|} = \underbrace{g^{-n} \cdot \dots \cdot g^{-n}}_{|m|} = g^{-n-n-\dots-n} = g^{-|m|n} = g^{mn};$$

(3)
$$m = 0 \Rightarrow (g^n)^0 = e = g^{n \cdot 0} = g^{nm};$$

Если мы возьмем элемент $q \in G$ и начнём возводить в степени, то возможны две ситуации:

- 1) Все q^n различны при разных $n \in \mathbb{Z}$;
- 2) Существуют повторения: $g^k = g^l$ при некоторых $k > l, k, l \in \mathbb{Z}$. В этом случае, если домножить левую и правую части на g^{-l} , то получим:

$$m = k - l \in \mathbb{N}, g^m = g^{k-l} = e$$

Опр: 6. <u>Порядок элемента</u> $g \in G$ это наименьшое $m \in \mathbb{N}$ для которого $g^m = e$ или ∞ , если такого m не существует.

Обозначение: o(g) или $\operatorname{ord}(g)$.

Примеры порядков элементов:

1) **Цикл длины** $l: \sigma = (i_1, i_2, \dots, i_l) \in S_n$. Элементы орбиты: $i_1 \to i_2 \to \dots \to i_l \to i_1$, все остальные элементы: $i \to i$. Каков порядок такой подстановки? Под действием σ каждый элемент сдвигается в следующий по циклу \Rightarrow можем применить подстановку несколько раз, тогда:

$$\sigma^m = \varepsilon \Leftrightarrow m : l \Rightarrow \operatorname{ord}(\sigma) = l$$

2) **Произвольная подстановка** $\sigma \in S_n$: По теореме о разложении на независимые циклы, будет верно:

$$\sigma = \sigma_1 \cdot \ldots \cdot \sigma_s \Rightarrow \sigma^m = \sigma_1^m \cdot \ldots \cdot \sigma_s^m, \ \sigma^m = \varepsilon \Leftrightarrow \sigma_1^m = \ldots = \sigma_s^m = \varepsilon \Leftrightarrow m : l_1, l_2, \ldots l_s$$

где l_1, \ldots, l_s - их длины \Rightarrow у нас несколько непересекающихся орбит разных длин и чтобы найти порядок σ мы должны найти наименьшее $m \in \mathbb{N}$, которое делится на длины всех этих орбит:

$$\operatorname{ord}(\sigma) = [l_1, \dots, l_s] = \operatorname{HOK}(l_1, \dots, l_s)$$

3) $G = (\mathbb{Z}, +)$, тогда: $\forall a \in \mathbb{Z}, a \neq 0 \Rightarrow \operatorname{ord}(a) = \infty, \operatorname{ord}(0) = 1$;

Утв. 5. (Свойства порядка) Пусть $g \in G$ - элемент группы, $\operatorname{ord}(g) = m \in \mathbb{N}$ или ∞ , тогда:

- 1) $q^n = e \Leftrightarrow n : m$ или n = 0;
- 2) $q^k = q^l \Leftrightarrow k \equiv l \pmod{m}$ или k = l;

1) При $\operatorname{ord}(g) = \infty$ это очевидно, поскольку $g^0 = e$, а остальные $g^n, n \neq 0$ это другие элементы группы. При $\operatorname{ord}(g) = m \in \mathbb{N}$, поделим n с остатком: $n = mq + r, 0 \leq r < m$, тогда:

$$g^{n} = g^{mq+r} = (g^{m})^{q} \cdot g^{r} = e^{q} \cdot g^{r} = e \cdot g^{r} = g^{r}$$
$$g^{n} = e \Leftrightarrow g^{r} = e \Leftrightarrow r = 0 \Leftrightarrow n : m$$

где второе верно, поскольку m - наименьшее натуральное для которого $g^m = e$, а $0 \le r < m$;

2) Воспользуемся результатами предыдущего пункта:

$$g^k = g^l \Leftrightarrow g^{k-l} = e \Leftrightarrow k-l : m \vee k - l = 0 \Leftrightarrow k \equiv l \; (\bmod \; m) \vee k = l$$

таким образом, что для конечного, что для бесконечного порядка мы доказали равносильность;

Изоморфизм групп

Вспомним немного про изоморфизм. Пусть $(G,\circ),\,(H,*)$ - группы. $\varphi\colon G\to H$ - гомоморфизм:

$$\forall a, b \in G, \ \varphi(a \circ b) = \varphi(a) * \varphi(b)$$

Опр: 7. <u>Изоморфизм</u> это биективный гомоморфизм.

Утв. 6. Для изоморфизма $\varphi \colon G \to H$ верно:

$$\exists \varphi^{-1} \colon H \to G, \forall c, d \in H, \varphi^{-1}(cd) = \varphi^{-1}(c)\varphi^{-1}(d)$$

 \square Поскольку φ - биекция, то $\exists \, \varphi^{-1} \colon H \to G$. Тогда:

$$\forall c, d \in H, \ \varphi(\varphi^{-1}(c * d)) = c * d = \varphi(\varphi^{-1}(c)) \circ \varphi(\varphi^{-1}(d)) = \varphi(\varphi^{-1}(c) \circ \varphi^{-1}(d)) \Rightarrow$$
$$\Rightarrow \varphi^{-1}(c * d) = \varphi^{-1}(c) \circ \varphi^{-1}(d)$$

так как φ - биекция.

Rm: 4. Таким образом, изоморфизм это обратимый гомоморфизм, и обратный к нему также будет гомоморфизмом.

Опр: 8. Группы G и H изоморфны, если существует изоморфизм: $\varphi \colon G \to H$.

Обозначение: $G \simeq H$.

Пример изоморфизма: $G=(\mathbb{R},+),\,H=(\mathbb{R}^{\times},\cdot),\,\varphi\colon G\to H,\,\forall a\in\mathbb{R},\,\varphi(a)=e^a,\,$ тогда:

$$\forall a, b \in \mathbb{R}, \ \varphi(a+b) = e^{a+b} = e^a e^b = \varphi(a)\varphi(b)$$

Следовательно, φ - гомоморфизм. $\forall c \in \mathbb{R}^{\times}, \ \varphi^{-1}(c) = \ln(c) \Rightarrow \varphi$ - изоморфизм и $G \simeq H$.

С точки зрения теории групп это одна и та же группа, и все утверждения, доказанные для одной из них, также будут верны и для другой.

Опр: 9. Эндоморфизм это гомоморфизм в себя: $\varphi \colon G \to G$.

Опр: 10. Автоморфизм это изоморфизм в себя: $\varphi \colon G \xrightarrow{\sim} G$.

Очевидно, что каждая группа одинакова сама с собой, но важно понять, сколькими способами можно отождествить группу с собой. Есть группы у которых почти нет автоморфизмов (когда отождествить группу с собой можно единственным способом), а есть группы для которых это можно сделать несколькими способами (аналог замены координат в группе).

Ядро и образ

Опр: 11. Если $\varphi \colon G \to H$ это гомоморфизм, то:

1) Ядром φ называется множество:

$$\ker \varphi = \{ a \in G \mid \varphi(a) = e_H \}$$

2) Образом φ называется множество:

$$\operatorname{Im} \varphi = \{ b \in H \mid \exists a \in G \colon \varphi(a) = b \}$$

Рис. 1: Образ и ядро оператора φ .

Упр. 1. Пусть $\varphi \colon G \to H$ - гомоморфизм, тогда:

- 1) φ изоморфизм \Leftrightarrow Im $\varphi = H$, ker $\varphi = \{e_G\}$;
- 2) $\ker \varphi \subseteq G$, $\operatorname{Im} \varphi \subseteq H$ подгруппы;

П

1) (\Rightarrow) φ - изоморфизм, тогда φ - биекция:

$$\forall b \in H, \exists a \in G \colon \varphi(a) = b \Rightarrow H \subseteq \operatorname{Im} \varphi \Rightarrow \operatorname{Im} \varphi = H$$

$$\forall a \in G, \ \varphi(a \circ e_G) = \varphi(e_G \circ a) = \varphi(a) = \varphi(a) * \varphi(e_G) = \varphi(e_G) * \varphi(a) \Rightarrow$$

$$\Rightarrow \varphi(e_G) = e_H \Rightarrow \ker \varphi = \{e_G\}$$

 (\Leftarrow) Іт $\varphi=H\Rightarrow \varphi$ - сюръекция. Поскольку $\ker \varphi=\{e_G\}\Rightarrow \varphi(e_G)=e_H,$ тогда:

$$\forall a, b \in G, \varphi(a) = \varphi(b) \Rightarrow \varphi(a \circ a^{-1}) = \varphi(b \circ a^{-1}) \Rightarrow e_H = \varphi(e_G) = \varphi(b \circ a^{-1}) \Rightarrow$$
$$\Rightarrow b \circ a^{-1} \in \ker \varphi \Rightarrow b \circ a^{-1} = e_G \Rightarrow b \circ a^{-1} \circ a = e_G \circ a \Rightarrow b = a$$

Следовательно, φ - биекция;

2) Проверим, что $\ker \varphi \subseteq G$ это подгруппа G:

$$\forall a, b \in \ker \varphi, \ \varphi(a \circ b) = \varphi(a) * \varphi(b) = e_H \cdot e_H = e_H \Rightarrow a \circ b \in \ker \varphi$$

$$\forall a \in \ker \varphi, \, \varphi(a) = e_H \Rightarrow \varphi(a)\varphi(a^{-1}) = e_H \varphi(a^{-1}) \Rightarrow \varphi(e_G) = e_H = \varphi(a^{-1}) \Rightarrow a^{-1} \in \ker \varphi$$

Проверим, что $\operatorname{Im} \varphi \subseteq H$ это подгруппа H:

$$\forall a, b \in \operatorname{Im} \varphi, \ \exists \, c, d \in G \colon \varphi(c) = a, \ \varphi(d) = b \Rightarrow \varphi(c \circ d) = a * b$$

$$a * b \in H, \ c \circ d \in G, \ \varphi(c \circ d) = a * b \Rightarrow a * b \in \operatorname{Im} \varphi$$

$$\forall a \in \operatorname{Im} \varphi, \ \exists \, c \in G \colon \varphi(c) = a, \ a \in H, \ c \in G \Rightarrow \exists \, a^{-1} \in H, \ \exists \, c^{-1} \in G \Rightarrow$$

$$a * a^{-1} = a^{-1} * a = \varphi(c) * a^{-1} = a^{-1} * \varphi(c) = e_H \Rightarrow$$

$$\Rightarrow \varphi(c^{-1}) * \varphi(c) * a^{-1} = \varphi(c^{-1}) * e_H \Rightarrow \varphi(e_G) * a^{-1} = a^{-1} = \varphi(c^{-1}) \Rightarrow a^{-1} \in \operatorname{Im} \varphi$$

Примеры групп

- 1) Числовые аддитивные группы: $(\mathbb{R},+)$, $(\mathbb{Q},+)$, $(\mathbb{Z},+)$, $(\mathbb{C},+)$ это всё примеры бесконечных групп, $(\mathbb{Z}_n,+)$ пример конечной аддитивной группы. Все эти группы коммутативны;
- 2) Числовые мультипликативные группы: $(\mathbb{Z}^{\times}, \cdot) = \{-1, 1\}, (F^{\times}, \cdot)$, где $F^{\times} = F \setminus \{0\}$ и F любое поле, $(\mathbb{Z}_{n}^{\times}, \cdot)$, где $\mathbb{Z}_{n}^{\times} = \{\overline{k} \mid (k, n) = 1\}$. Все эти группы коммутативны;
- 3) **Группа подстановок**: S_n симметрическая группа, $A_n \subseteq S_n$ группа четных подстановок или знакопеременная группа (alternating group);
- 4) Группа Клейна:

$$V_4 = \{id, (12)(34), (13)(24), (14)(23)\} \subseteq S_4$$

Для подстановок длины 4 все пары независимых циклов оказываются подгруппой. Каждый элемент обратен сам к себе, а произведение двух подстановок равняется третьей. Это уникальное свойство S_4 . Например, в S_5 пары независимых циклов уже не образуют подгруппу;

- 5) Группа матриц (по умножению):
 - (1) $GL_n(F) = \{A \in \operatorname{Mat}_{n,n} \mid \det(A) \neq 0\}$ полная линейная группа над полем F;
 - (2) $SL_n(F) = \{A \in \operatorname{Mat}_{n,n} \mid \det(A) = 1\} \subseteq GL_n(F)$ специальная линейная группа над полем F;

$$(3) D_n(F) = \left\{ A \in \operatorname{Mat}_{n,n} \middle| A = \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\}$$
 диагональные матрицы.

Заметим, что на диагонали должны стоять ненулевые элементы для обратимости;

$$(4) B_n(F) = \left\{ A \in \operatorname{Mat}_{n,n} \middle| A = \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix} \right\} \text{ верхнетреугольные матрицы.}$$

Заметим, что на диагонали должны стоять ненулевые элементы для обратимости, над диагональю - произвольные элементы;

(5)
$$U_n(F) = \left\{ A \in \operatorname{Mat}_{n,n} \middle| A = \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\}$$
 унитреугольные матрицы;

6) Группа кватернионов: $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}, i^2 = j^2 = k^2 = -1$, определим умножение по цепочке:

$$ij = k, jk = i, ki = j, ji = -k, ik = -j, kj = -i$$

Рис. 2: Умножение в группе кватернионов.

Если идти против часовой стрелки, то перемножение соседних элементов даст следующий элемент со знаком +, если перемножать по часовой стрелке, то со знаком минус;

Циклические группы

Пусть $g \in G$, рассмотрим множество, состоящее из всех степеней g: $H = \{g^n \mid n \in \mathbb{Z}\}$. Это множество замкнуто относительно умножения и взятия обратного элемента, то есть это подгруппа G.

Опр: 12. Множеством всех степеней элемента $g \in G$ называется множество: $H = \{g^n \mid n \in \mathbb{Z}\} \subseteq G$.

Обозначение: $H=\langle g \rangle$. Если $\operatorname{ord}(g)=m$, то $H=\langle g \rangle_m$. Если $\operatorname{ord}(g)=\infty$, то $H=\langle g \rangle_\infty$.

Rm: 5. Множество $H = \langle g \rangle$, $g \in G$ также ещё называется <u>пиклической подгруппой</u> G и это самая маленькая подгруппа, содержащая элемент g в том смысле, что она лежит в любой другой подгруппе, содержащей g. Действительно, если в подгруппе $K \subseteq G$ есть g, то там же есть и e, подгруппа замкнута относительно операции на ней $\Rightarrow g \cdot g \in K \Rightarrow$ и все степени g.

Пример циклической подгруппы: $G = (\mathbb{Z}, +), g = 2 \Rightarrow \langle g \rangle = 2\mathbb{Z}.$

Опр: 13. Группа G называется <u>циклической группой</u>, если $G = \langle g \rangle$ для некоторого $g \in G$.

Опр: 14. Элемент $g \in G = \langle g \rangle$ называется <u>порождающим элементом</u> циклической группы G.

Rm: 6. Порождающий элемент, вообще говоря, определен неоднозначно в циклической группе.

Примеры циклических групп:

1) (\mathbb{Z} , +) - бесконечная циклическая группа, $\mathbb{Z} = \langle 1 \rangle_{\infty} = \langle -1 \rangle_{\infty}$, в данном случае 1 или -1 будут порождающими элементами;

2) ($\mathbb{Z}_m,+$) - конечная циклическая группа, $\mathbb{Z}_m=\langle 1 \mod m \rangle_m;$

Упр. 2. Найти все порождающие элементы в группе $(\mathbb{Z}_m, +)$.

Обозначение: порядок произвольного множества M:

- (1) |M| = число элементов в M, если M конечно;
- (2) $|M| = \infty$, если M бесконечно;

Rm: 7. В случае конечных множеств, мощность и порядок множеств это одно и то же, в случае бесконечного множества мощность отлична от порядка, поскольку существуют бесконечные множества разной мощности, но с точки зрения порядка нам это не интересно.

Утв. 7. (Свойство порядка циклических подгрупп)

$$\operatorname{ord}(g) = |\langle g \rangle|$$

 \square Циклическая подгруппа состоит из всех степеней элемента g, её порядок это количество различных элементов, то есть количество различных степеней. По свойству порядка 2):

$$g^k \neq g^l \Leftrightarrow k \not\equiv l \pmod{m} \lor k \neq l$$

Если $\operatorname{ord}(g) < \infty$, то количество различных степеней равно количеству остатков при делении на m или, что тоже самое, количеству классов вычетов и равно m:

$$m=\operatorname{ord}(g)\Rightarrow e,g,g^2,\ldots,g^{m-1}$$
 - попарно различны

В самом деле, если $g^k = g^l, \, k > l$, то $g^{k-l} = e$, если k-l < m, то получаем противоречие с определением порядка. С другой стороны, если $k \in \mathbb{Z}$, то:

$$k = mq + r, \ 0 \le r < m \Rightarrow$$

$$\Rightarrow g^k = g^{mq+r} = (g^m)^q g^r = g^r, \ 0 \le r \le m-1 \Rightarrow |\langle g \rangle| = \operatorname{ord}(g) = m < \infty$$

Если $\operatorname{ord}(g) = \infty$, то все степени различны при разных показателях \Rightarrow циклическая группа будет бесконечной $\Rightarrow |\langle g \rangle| = \operatorname{ord}(g) = \infty$.

Теорема 1. Все циклические подгруппы одного порядка изоморфны друг другу.

- \square Пусть $G = \langle g \rangle$. Рассмотрим два случая:
 - 1) $\operatorname{ord}(g)=\infty\Rightarrow \varphi\colon (\mathbb{Z},+)\to G,\ \varphi(n)=g^n.$ Очевидно, что φ взаимнооднозначно:
 - (1) <u>Инъективность</u>: следует из свойства порядка 2): $g^k = g^l \Leftrightarrow k = l;$
 - (2) Сюръективность: следует из того, что $\forall a \in G, \exists n \in \mathbb{Z} \colon g^n = a;$

Проверим свойство согласованности изоморфизма с операциями в обеих группах:

$$\forall k,l \in \mathbb{Z}, \, \varphi(k+l) = g^{k+l} = g^k \cdot g^l = \varphi(k) \cdot \varphi(l)$$

Следовательно, φ - изоморфизм $\Rightarrow G \simeq \mathbb{Z}$;

2) $\operatorname{ord}(g) = m \in \mathbb{N} \Rightarrow \varphi \colon (\mathbb{Z}_n, +) \to G, \, \varphi(\overline{n}) = g^n, \, \text{где } \overline{n} = (n \bmod m).$ Проверим корректность определения, поскольку один и тот же класс вычетов может иметь разных представителей:

$$\overline{n} = \overline{k} \Rightarrow n \equiv k \pmod{m} \Rightarrow g^n = g^k$$

Следовательно, отображение определено корректно. Проверим биективность:

- (1) Инъективность: следует из свойства порядка 2): $g^k = g^l \Leftrightarrow k \equiv l \pmod{m} \Leftrightarrow \overline{n} = \overline{l};$
- (2) Сюръективность: следует из того, что $\forall a \in G, \exists \overline{n} \in \mathbb{Z}_n : g^n = a$, либо это можно сразу понять из инъективности функции на конечных множествах;

Проверим свойство согласованности изоморфизма с операциями в обеих группах:

$$\forall \overline{k}, \overline{l} \in \mathbb{Z}_n, \ \varphi(\overline{k} + \overline{l}) = \varphi(\overline{k} + \overline{l}) = g^{k+l} = g^k \cdot g^l = \varphi(\overline{k}) \cdot \varphi(\overline{l})$$

Следовательно, φ - изоморфизм $\Rightarrow G \simeq \mathbb{Z}_n$;

Rm: 8. В частности теорема говорит, что любая бесконечная циклическая подгруппа изоморфна $(\mathbb{Z}, +)$, а любая циклическая группа порядка m изоморфна \mathbb{Z}_m .

Пример: Рассмотрим $\mathbb{U}_m=\{\varepsilon_0=1,\varepsilon_1,\ldots,\varepsilon_{m-1}\},$ где $\varepsilon_k=\cos\frac{2\pi k}{m}+i\sin\frac{2\pi k}{m},$ тогда:

$$\varepsilon_k = (\varepsilon_1)^k \Rightarrow \mathbb{U}_m = \langle \varepsilon_1 \rangle_m \Rightarrow \mathbb{U}_m \simeq \mathbb{Z}_m, \ \varepsilon_k \leftrightarrow k \ \mathrm{mod} \ m = \overline{k}$$

Теорема 2. Пусть G это циклическая группа, тогда:

- 1) Любая подгруппа $H \subset G$ также будет циклической;
- 2) Если $|G| = \infty$, то тогда либо $|H| = \infty$, либо $H = \{e\}$;
- 3) Если $|G| = m \in \mathbb{N}$, то тогда |G| : |H|, где H подгруппа;
- 4) Если $|G| = m \in \mathbb{N}$, то тогда $\forall d \in \mathbb{N} : m : d, \exists !$ подгруппа $H \subset G : |H| = d$;
- \square Пусть $G = \langle g \rangle$, тогда:
 - 1) Либо $H = \{e\} \Rightarrow$ доказано, либо $\exists n \in \mathbb{Z}, n \neq 0 \colon g^n \in H \Rightarrow \exists n > 0 \colon g^n \in H$, при n < 0 можно взять обратный элемент: $(g^n)^{-1} = g^{-n} \in H$. Возьмем наименьшее $n \in \mathbb{N} \colon g^n \in H$, тогда:

$$\forall k \in \mathbb{Z}, \ k = nq + r, \ 0 \le r < n \Rightarrow g^k = (g^n)^q \cdot g^r \Rightarrow$$
$$\Rightarrow g^r = (g^n)^{-q} \cdot g^k, \ (g^n)^{-q} \in H \Rightarrow g^k \in H \Leftrightarrow g^r \in H \Leftrightarrow r = 0 \Leftrightarrow k \vdots n$$

где предпоследнее верно в силу того, что $n \in \mathbb{N}$ - наименьшее для которого $g^n \in H$, а r < n. Следовательно, $H = \langle g^n \rangle$. В частности, подгруппа H является циклической;

- 2) $|G| = \infty \Rightarrow$ либо $H = \{e\}$, если g = e, либо $H = \{\dots, g^{-2n}, g^{-n}, e, g^n, g^{2n}, \dots\}$, но поскольку группа бесконечна, то все степени в H разные $\Rightarrow |H| = \infty$;
- 3) $|G|=m=|\langle g\rangle|=\mathrm{ord}(g)\Rightarrow g^m=e\in H\Rightarrow m$: $n,\,m=n\cdot d$, где $n\in\mathbb{N}$ наименьший чтобы $g^n\in H$, по аналогии с пунктом 1), тогда: $H=\langle g^n\rangle$ и он будет состоять из следующих элементов:

$$(g^n)^0 = e, (g^n)^1 = g^n, (g^n)^2 = g^{2n}, \dots, (g^n)^{d-1} = g^{n(d-1)}, (g^n)^d = g^{nd} = g^m = e \Rightarrow$$
$$\Rightarrow H = \langle g^n \rangle = \{e, g^n, g^{2n}, \dots, g^{n(d-1)}\} \Rightarrow |H| = d \Rightarrow |G| : |H|$$

4) Пусть $d \mid m, d > 0$ - произвольный делитель m больше 0, предъявим подгруппу H в группе G порядка d. Положим $n = \frac{m}{d}$ и рассмотрим $H = \langle g^n \rangle$, тогда:

$$H = \{e, g^n, g^{2n}, \dots, g^{n(d-1)}\} \Rightarrow |H| = d$$

Из пункта 3) видно, что $H = \langle g^n \rangle$ это единственная подгруппа порядка d, иначе другая подгруппа должна быть порождена другим элементом g^k и тогда k - другой делитель числа m, но тогда $m = k \cdot p$, где $p \neq d$. То есть порождающий элемент g^n подгруппы H однозначно определяется по d;

Смежность классов и теорема Лагранжа

Пусть G - группа, $H \subseteq G$ - подгруппа.

Опр: 15. Смежность слева элементов $g_1,g_2\in G$ по подгруппе $H\colon g_1\underset{H}{\sim} g_2,$ если $\exists\, h\in H\colon g_1\cdot h=g_2.$

Если H фиксированно, то знак H под эквивалентность писать не будем.

Утв. 8. Смежность слева это отношение эквивалентности.

1) Рефлексивность:

$$\forall g \in G, \, g \cdot e = g, \, e \in H \Rightarrow g \sim g$$

2) Симметричность:

$$g_1 \sim g_2 \Rightarrow \exists h \in H : g_1 \cdot h = g_2 \Rightarrow h^{-1} \in H, g_2 \cdot h^{-1} = g_1 \cdot h \cdot h^{-1} = g_1 \cdot e = g_1 \Rightarrow g_2 \sim g_1$$

3) Транзитивность:

$$g_1 \sim g_2, g_2 \sim g_3 \Rightarrow \exists h, h' \in H : g_1 \cdot h = g_2, g_2 \cdot h' = g_3 \Rightarrow g_1 \cdot \underbrace{h \cdot h'}_{\in H} = g_2 \cdot h' = g_3 \Rightarrow g_1 \sim g_3$$

Соответственно, отношение эквивалентности на множестве разбивает его на попарно непересекающиеся классы эквивалентности.

Опр: 16. Девым смежным классом элемента $g \in G$ по подгруппе H называется подмножество в G:

$$g \cdot H = \{g \cdot h \mid h \in H\}$$

 \mathbf{Rm} : 9. Вся группа G разбивается на попарно непересекающиеся левые смежные классы.

Лемма 1.

- 1) $\forall g,g'\in G$, либо $g\cdot H=g'\cdot H$, либо их смежные классы не пересекаются: $g\cdot H\cap g'\cdot H=\varnothing$;
- $2) \ \forall g \in G, \ |g \cdot H| = |H|;$

1) Если $g \cdot H \cap g' \cdot H \neq \emptyset$, то:

$$\exists\, h,h'\in H\colon g\cdot h=g'\cdot h'\Rightarrow g=g'\cdot h'\cdot h^{-1}\Rightarrow g\cdot H=g'\cdot \underbrace{h'\cdot h^{-1}}_{\in H}\cdot H=g'\cdot H$$

где $h' \cdot h^{-1} \cdot H$ это просто перестановка элементов $H \Rightarrow h' \cdot h^{-1} \cdot H = H \Rightarrow g \cdot H = g' \cdot H$;

2) Поскольку $g \cdot H = \{g \cdot h \mid h \in H\} \Rightarrow |g \cdot H| \leq |H|$. Если $g \cdot h = g \cdot h'$, то умножим на g^{-1} слева, тогда: $h = h' \Rightarrow |g \cdot H| = |H|$, поскольку < это на случай, если совпадут $g \cdot h$ для разных h;

Обозначение: Множество всех левых классов G по группе H принято обозначать как G/H:

$$G/H = \{g \cdot H \mid g \in G\}$$

Опр: 17. <u>Индексом</u> подгруппы $H \subseteq G$ называется число левых смежных классов в G по подгруппе H.

Обозначение: |G/H| = (G: H) = [G: H].

 ${\bf Rm}$: 10. Аналогично можно определить отношение смежности справа по подгруппе H

Опр: 18. Смежность справа элементов $g_1, g_2 \in G$ по подгруппе $H: g_1 \sim g_2$, если $\exists h \in H: h \cdot g_1 = g_2$.

Опр: 19. Правым смежным классом элемента $g \in G$ по подгруппе H называется подмножество в G:

$$H{\cdot}g=\{h{\cdot}g\mid h\in H\}$$

Упр. 3. Количество правых смежных классов по подгруппе H равно количеству левых смежных классов по подгруппе H.

Пример: $G = (\mathbb{Z}, +)$ это циклическая группа, значит всякая подгруппа тоже циклическая, следовательно она порождена каким-то одним элементом $m \Rightarrow H = m \cdot \mathbb{Z}, m \in \mathbb{Z}_{>0}$, тогда:

$$k \sim l \Leftrightarrow \exists n \in \mathbb{Z} \colon k + n \cdot m = l \Leftrightarrow k \equiv l \pmod{m}$$

Получается, что отношение смежности (кроме случая с 0, когда числа просто совпадают) это отношение сравнимости по модулю m. Следовательно, смежные классы это классы вычетов по модулю m и множество смежных классов это просто множество классов вычетов:

$$\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m \Rightarrow (\mathbb{Z} \colon m\mathbb{Z}) = m$$

Теорема 3. (Лагранжа) Пусть G - конечная группа, а $H \subseteq G$ - подгруппа, тогда: $|G| = |H| \cdot (G \colon H)$.

- 1) $\forall g \in G$ существует взаимнооднозначное соответствие: $H \to g \cdot H, \, h \mapsto g \cdot h$ биекция:
 - (1) <u>Инъективность</u>: $g \cdot h_1 = g \cdot h_2 \Rightarrow g^{-1} \cdot g \cdot h_1 = h_1 = h_2$;
 - (2) Сюръективность: Очевидна по определению смежного класса: $\forall v \in g \cdot H, \exists h \in H : g \cdot h = v;$

Таким образом, получили биекцию и в частности $|H| = |g \cdot H|;$

2) Поскольку $|G| < \infty$, то рассмотрим множество:

$$G/H = \{g_1 \cdot H, g_2 \cdot H, \dots, g_s \cdot H\}, \ s = (G \colon H) \Rightarrow G = g_1 \cdot H \sqcup g_2 \cdot H \sqcup \dots \sqcup g_s \cdot H$$

Рис. 3: Разбиение группы G на смежные классы.

Таким образом, поскольку классы не пересекаются, мы получим:

$$|G| = |g_1 \cdot H| + |g_2 \cdot H| + \dots + |g_s \cdot H| = \underbrace{|H| + |H| + \dots + |H|}_{s} = |H| \cdot s = |H| \cdot (G : H)$$

Rm: 11. Также можно было воспользоваться леммой, которую мы рассмотрели ранее.

Следствие 1. Пусть G - конечная группа, а $H \subseteq G$ - подгруппа, тогда: |G| : |H|.

 \square Очевидно: $|G|=|H|\cdot (G\colon H)\Rightarrow \frac{|G|}{|H|}=(G\colon H)\in \mathbb{N}\Rightarrow |G|\ \vdots\ |H|.$

Следствие 2. $\forall g \in G, |G| : \operatorname{ord}(g)$.

 \square Возьмем $H=\langle g \rangle$, тогда $\operatorname{ord}(g)=|H|\Rightarrow$ применим предыдущее следствие и получим требуемое. \blacksquare

Следствие 3. $|G| = n \Rightarrow \forall g \in G, g^n = e.$

Пусть $\operatorname{ord}(g)=m$, тогда по следствию 2 верно: $m\mid n,\, n=m\cdot d\Rightarrow g^n=(g^m)^d=e^d=e$.

Пусть $m \in \mathbb{N}$, рассмотрим функцию Эйлера:

$$\varphi(m) = \{k \in 1, \dots, m-1 \mid (m,k) = 1\}$$

Известна следующая теорема из теории чисел.

Теорема 4. (Эйлера) $\forall k \in \mathbb{Z}, (m,k) = 1 \Rightarrow k^{\varphi(m)} \equiv 1 \pmod{m}.$

 \square Рассмотрим $\mathbb{Z}_m^{\times}=\{\overline{k}\mid (k,m)=1\},$ тогда $|\mathbb{Z}_m^{\times}|=\varphi(m)$ по определению. По следствию 3:

$$\forall \overline{k} \in \mathbb{Z}_m^{\times}, \, \overline{k}^{\varphi(m)} = \overline{1} \Rightarrow k^{\varphi(m)} \equiv 1 \; (\bmod \; m)$$

Также с помощью теоремы Лагранжа можно вывести малую теорему Ферма.

Следствие 4. (Малая теорема Ферма) Пусть p - простое число и $\overline{a} \in \mathbb{Z}_p$, тогда $\overline{a}^p = \overline{a}$.

 \square Рассмотрим группу $G = (\mathbb{Z}_p \setminus \{0\}, \times), |G| = p-1$, тогда по следствию 3:

$$\forall \overline{a} \in \mathbb{Z}_p^{\times}, \ \overline{a}^{p-1} = \overline{1} \Rightarrow \overline{a}^p = \overline{a} \cdot \overline{a}^{p-1} = \overline{a} \cdot \overline{1} = \overline{a}$$

Но это будет выполнено и для $0 \Rightarrow$ равенство выше верно $\forall \overline{a} \in \mathbb{Z}_p$.

Следствие 5. Пусть p - простое число, $|G| = p \Rightarrow G$ это циклическая группа, порождается любым неединичным элементом. Более точно: $G \simeq \mathbb{Z}_p$, в частности, G коммутативна.

□ По следствию 2:

$$\forall g \in G \setminus \{e\}, |G| = p : |\langle g \rangle| \Rightarrow |\langle g \rangle| \in \{1, p\}$$

Но $|\langle g \rangle| \ge 2$, так как $e \ne g$, $e \in \langle g \rangle$, $g \in \langle g \rangle \Rightarrow |\langle g \rangle| = p \Rightarrow \langle g \rangle = G$. Коммутативность следует из коммутативности цикличных групп (циклические группы всегда коммутативны).

Из теоремы Лагранжа также можно доказать для конечных групп равенство числа левых смежных классов и правых смежных классов, поскольку:

$$|gH| = |H| = |Hg| \Rightarrow \frac{|G|}{|gH|} = \frac{|G|}{|H|} = \frac{|G|}{|Hg|}$$

Также отметим, что при этом разбиение на левые смежные классы и правые смежные классы могут не совпадать, но если G - абелева, то gH = Hg, $\forall g \in G$.

Пример несовпадения левых и правых смежных классов: Рассмотрим $G = S_3$, |G| = 6 - это самая маленькая неабелева группа.

Рассмотрим подгруппу: $H = A_3$ это группа всех четных подстановок (все циклы длины 3 без транспозиций) в ней совпадут левые и правые смежные классы, поскольку $(G\colon H)=2$, так как |G|=6, а четных подстановок в ней 3. Поскольку A_3 - всегда смежный класс единицы (и левый, и правый), то:

- 1) Левый смежный класс: Половина чётные, половина нечётные;
- 2) Правый смежный класс: Тоже самое всего два класса: половина чётные, половина нечётные;

Рассмотрим подгруппу: $H = \langle (12) \rangle = \left\{ e, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}$, тогда её смежные классы будут устроены так:

- 1) Левые: $H = \{e, (12)\}, g = (13), (13)(12) = (123); g = (23), (23)(12) = (132);$
- 2) Правые: $H = \{e, (12)\}, g = (13), (12)(13) = (132); g = (23), (12)(23) = (123);$

Упр. 4. Обратное утверждение к теореме Лагранжа не верно: пусть G - конечная группа и d - делитель числа |G|. Тогда в группе G есть подгруппа H у которой порядок равен d, то есть |H|=d. Привести контрпример.