Бонусная задача 3

Ковалев Алексей

Введем предикат $Q_n(x,y)$, который означает, что x=y+n. При n=0 он означает, что x=y. При четных $n\neq 0$ он может быть выражен формулой

$$\exists z \forall a \forall b \big((a=x) \land (b=z) \lor (a=z) \land (b=y) \to Q_{\frac{n}{2}}(a,b) \big)$$

При нечетных n этот предикат может быть выражен формулой

$$\exists z \forall a \forall b \big((S(a) = x) \land (b = z) \lor (a = z) \land (b = y) \to Q_{\frac{n-1}{2}}(a, b) \big)$$

Проеврить, что $Q_n(x,y)$ действительно выражается приведенными выше формулами можно по индукции. База: при n=0 предикат выражается формулой x=y. Переход: пусть предположение индукции выполнено для всех k < n. Для четных n формула истинна тогда и только тогда, когда $Q_{\frac{n}{2}}(x,z)$ – истина и $Q_{\frac{n}{2}}(z,y)$ – истина, что по предположению индукции означает $x=z+\frac{n}{2}$ и $z=y+\frac{n}{2}$. Отсюда получаем, что формула истинна тогда и только тогда, когда x=y+n, то есть она действительно задает предикат $Q_n(x,y)$. Аналогично для нечетных n. Для произвольного $n \neq 0$ предикат $Q_n(x,y)$ может быть выражен формулой

$$\exists z \forall a \forall b \big((a=x) \wedge (b=z) \vee (S(a)=x) \wedge (b=z) \vee (a=z) \wedge (b=y) \rightarrow Q_{\left \lfloor \frac{n}{2} \right \rfloor}(a,b) \big)$$

Тот факт, что эта формула задает $Q_n(x,y)$ аналогично может быть доказан по индукции. Пусть L(n) – длина формулы, которая выражает предикат $Q_n(x,y)$. Тогда для некоторой константы c

$$L(n) = L\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + c$$

Значит $L(n) = O(\log n)$. При этом предикат $P_n(x)$ может быть выражен как $Q_n(x,0)$, то есть для предиката $P_n(x)$ существует формула длины $O(\log n)$, выражающая его.