Introduction to Analysis Lecture 1

Haoming Wang

18 June 2019

This is the Lecture note for the Introduction to Analysis class in Fall 2019.

1 Real number

Definition 1. Let $S \subseteq \mathbb{R}$ and $r \in \mathbb{R}$, we say that

- 1. *r* is an upper (lower) bound of *S* if $\forall s \in S, r \geq (\leq)s$;
- 2. r is the greatest (least) element of S if r is an upper (lower) bound of S and $r \in S$, denoted by $r = \max S(\min S)$.
- 3. r is the least upper (greatest lower) bound of S if r is the least (greatest) element of the set of upper (lower) bound of S, denoted by $r = \sup S(\inf S)$.

Remark 1. r is a least upper bound of S means any element of S which is smaller than r is not an upper bound of S, that is $\forall \epsilon > 0$, $\exists s \in S$, s.t. $r - \epsilon < s \le r$.

We write $\sup S = \infty$ (inf $S = -\infty$) if and only if S has no upper (lower) bound. If this is the case we say $\sup S(\inf S)$ does not exist. We say S is bounded from above (below) iff S has an upper (lower) bound.

Definition 2 (Dedekind Cut). Let $A, B \subseteq \mathbb{R}$, we say that (A, B) is a Dedekind cut if

- 1. $A, B \neq \emptyset$;
- 2. $A \cup B = \mathbb{R}$;
- 3. $\forall a \in A, b \in B, a < b$.

We usually call A(B) the lower (upper) part of (A, B).

We assume that \mathbb{R} has the **Dedekind's Gapless Property**: If (A, B) is a Dedekind cut of \mathbb{R} , then exactly one of the following happens:

- 1. max *A* exists but min *B* does not;
- 2. min *B* exists but max *A* does not.

We call max A in 1. (or min B in 2.) the **cutting** of (A, B).

Exercise 1. We may define Dedekind cuts on \mathbb{Q} and \mathbb{Z} similarly, does Dedekind Gapless Property hold for \mathbb{Q} and \mathbb{Z} ?

Proof. 1. Let $A := \{q \in \mathbb{Q} | q^2 < 2\}$, $B := \{q \in \mathbb{Q} | q^2 > 2\}$. It is direct to see that $A, B \neq \emptyset$.

If $\exists r \in \mathbb{Q}$, s.t. $r^2 = 2$, then $\exists p, q \in \mathbb{N}$, s.t. r = p/q and p, q are not both even. Then $p^2/q^2 = 2 \Rightarrow p^2 = 2q^2 \Rightarrow p^2$ is even $\Rightarrow p$ is even $\Rightarrow p^2$ can be divided by $4 \Rightarrow q^2$ can be divided by $4 \Rightarrow q^2$ can be divided by $4 \Rightarrow q^2$ is even, which leads to a contradiction. Thus $\forall r \in \mathbb{Q}, r^2 \neq 2$. Thus $A \cup B = \mathbb{Q}$.

Finally $\forall q_a \in A, q_b \in B$ one has $q_a^2 < 2 < q_b^2 \Rightarrow q_a < q_b$. Thus (A, B) is a Dedekind cut of Q. It is direct to see that (A, B) has no Dedekind's gapless property:

For example, if $p \in A$, then $p \in \mathbb{Q}$ and $p^2 < 2$, put $\epsilon = 2 - p^2$, then we should find a $q \in \mathbb{Q}$ such that $q^2 < 2$ and q > p, which means

$$p^2 < q^2 < 2$$

we consider there exists a function r of p, ϵ , such that r > 0 and $r \in \mathbb{Q}$, and put q = p + r, thus q > p and $q \in \mathbb{Q}$, we now prove that $q^2 < 2$. Since

$$2 - q^2 = 2 - (p^2 + r^2 + 2pr) = \epsilon - r^2 - 2pr$$

We now try to find a suitable structure of r to make $r^2 + 2pr < \epsilon$. Since p > 0 and $\epsilon = 2 - p^2$, $0 < \epsilon < 2$. Consider $r = \epsilon/2$ then

$$r^2 = \frac{\epsilon^2}{4} = \frac{\epsilon}{2} \cdot \frac{\epsilon}{2} < \frac{\epsilon}{2}.$$

Consider $r = \epsilon/((2p+1)2) < \epsilon/2$ and

$$2pr=2p\cdot\frac{\epsilon}{(2p+1)2}<\frac{\epsilon}{2},$$

then we have $r^2 + 2pr < \epsilon$ and

$$q^2 < 2$$
,

by defining

$$q = p + \frac{\epsilon}{2(2p+1)} = \frac{3p^2 + 2p + 2}{4p + 2},$$

thus there is no maximal element in *A* and correspondingly, there is no minimal element in *B* as well.

Theorem 1 (Weierstrass Theorem). *Let* $\emptyset \neq S \subseteq \mathbb{R}$, *if* S *has an upper bound, then* $\sup S$ *exists.*

Proof. Let *B* be the set of all upper bound of *S*, and define $A := \mathbb{R} \setminus B$.

CLAIM 1: (A, B) is a Dedekind cut of \mathbb{R} :

- 1. $S \neq \emptyset \Rightarrow \forall s \in S, s-1 \notin B \Rightarrow s-1 \in A \Rightarrow A \neq \emptyset$; And S has an upper bound $\Rightarrow B \neq \emptyset$;
- 2. $A = \mathbb{R} \backslash R \Rightarrow A \cup B = \mathbb{R};$
- 3. If $\exists a \in A, b \in B$, s.t. $a \ge b$ where b is an upper bound of S while a is not, thus $\exists s' \in S$, s.t. $a < s' \le b < a$, which leads to a contradiction. Thus $\forall a \in A, b \in B$ one has a < b.

CLAIM 2: min *B* exists:

If min $B \not\exists$, then by Dedekind's gapless property, max $A \exists$, denoted by a_0 . $a_0 \in A \Leftrightarrow a_0 \notin B \Leftrightarrow a_0$ is not an upper bound of $S \Leftrightarrow \exists s_0 \in S$, s.t. $a_0 < s$. Choose $x \in \mathbb{R}$ such that $a_0 < x < s_0$, thus max $A < x \Rightarrow x \in B \Rightarrow x$ is an upper bound of S but $x < s_0$ which leads to a contradiction.

Exercise 2 (Archimedean Property). *Show that* $\forall r \in \mathbb{R}, r > 0 \Rightarrow \exists n \in \mathbb{N}$, s.t. n > r. (or say $\exists n \in \mathbb{N}$, s.t. 1/n < r).

Proof. Let $r \in \mathbb{R}$, $S := \{n \in \mathbb{N} | n \le r\}$, since $r > 0, 0 \in S \Rightarrow S \ne \emptyset$. Then $S \subseteq \mathbb{R}$ and S is bounded above (by r), thus S has a least upper bound in \mathbb{R} , let $s = \sup S$.

Now consider the number s-1. Since s is the supremum of S, s-1 cannot be an upper bound of S by definition. Thus $\exists m \in S$ such that

$$m > s - 1 \Rightarrow m + 1 > s$$

But as $m \in \mathbb{N}$, it follows that $m+1 \in \mathbb{N}$. Because m+1 > s, it follows that $m+1 \notin S$ and so m+1 > r. Furthermore, for $\forall r > 0, 1/r > 0$ then $\exists n \in \mathbb{N}$, s.t. $n > 1/r \Rightarrow 1/n < r$.

2 Sequence

Definition 3 (Convergence). Let $a_n (n \in \mathbb{N})$ be a sequence in \mathbb{R} and $l \in \mathbb{R}$, we say that a_n converges to l as $n \to \infty$ if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \ge N, |a_n - l| < \epsilon$, denoted by $a_n \to l$ (as $n \to \infty$).

If such l exists, we call it the limit of $\{a_n\}$ and denote is as $\lim_{n\to\infty} a_n = l$, and call $\{a_n\}$ a convergent sequence; otherwise we call it a **divergent** sequence. Furthermore, we say $\lim_{n\to\infty} a_n = \infty$ if $\forall M > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N, a_n \geq M$.

Exercise 3. Show that

- 1. $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} a_n = m \Rightarrow l = m$;
- 2. $a_n(n \in \mathbb{N})$ is convergent $\Rightarrow \{a_n | n \in \mathbb{N}\}$ is bounded;
- 3. *if* $a_n < b_n$ *for all* $n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = l$, $\lim_{n \to \infty} b_n = m \Rightarrow l \leq m$.

Proof. 1. $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} a_n = m \Rightarrow$ for $\forall \epsilon > 0$, $\exists N, M \in \mathbb{N}$, s.t. $\forall n \geq N$ one has $|a_n - l| < \epsilon/2$ and $\forall n \geq M$ has $|a_n - m| < \epsilon/2$, thus for $\forall n \geq \max\{N, M\}$, has

$$|l - m| = |l - a_n + a_n - m| \le |a_n - l| + |a_n - m| < \epsilon$$

holds for $\forall \epsilon > 0 \Rightarrow l = m$.

2. Suppose $a_n \to l$ as $n \to \infty$, then given an $\epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ we have $|a_n - l| < \epsilon \Rightarrow l - \epsilon < a_n < l + \epsilon$, thus a_n has upper bound

$$\max\{a_1,\cdots,a_{n-1},l+\epsilon\},\$$

and lower bound

$$\min\{a_1,\cdots,a_{n-1},l-\epsilon\}.$$

3. if l > m, let $\epsilon = l - m$, then $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ has $|a_n - l| < \epsilon/2$ and $|b_n - m| < \epsilon/2$ thus

$$a_n < \frac{l+m}{2} < b_n,$$

which leads to a contradiction, thus $l \leq m$.

Remark 2. Changing or removing finitely many terms in $a_n (n \in \mathbb{N})$ does not effect a_n 's being convergent (and its limit)/ divergent.

Proposition 1. If $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} b_n = m$ then

- 1. $\lim_{n\to\infty}(a_n\pm b_n)=l\pm m$;
- 2. $\lim_{n\to\infty} a_n b_n = lm$;
- 3. if $m \neq 0$ and $b_n \neq 0$ for all but finitely many n then $\lim_{n\to\infty} a_n/b_n = l/m$.

Proof. 1. For $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$, $|a_n - l| \leq \epsilon/2$ and $\exists M \in \mathbb{N}$, s.t. $\forall n \geq M$, $|b_n - m| \leq \epsilon/2$, thus $\forall n \geq \max\{N, M\}$, one has

$$|(a_n \pm b_n) - (l \pm m)| = |(a_n - l) \pm (b_m - m)|$$

$$\leq |a_n - l| + |b_n - m|$$

$$\leq \epsilon,$$

thus $(a_n \pm b_n) \to l \pm m$ as $n \to \infty$.

2. Since a_n , b_n are convergent, thus they are bounded. Choose C > 0 such that $|b_n| \le C$ for all $n \in \mathbb{N}$ and $|l| \le C$, then for $\forall \epsilon > 0$, $\exists N, M \in \mathbb{N}$, s.t. $\forall n \ge N$ one has $|a_n - l| \le \epsilon/(2C)$ and $\forall n \ge M$ has $|b_n - m| \le \epsilon/(2C)$, thus $\forall n \ge \max\{N, M\}$ one has

$$|a_nb_n - lm| = |a_nb_n - lb_n + lb_n - lm|$$

$$\leq |a_n - l| \cdot |b_n| + |b_n - m| \cdot |l|$$

$$\leq (|a_n - l| + |b_n - m|) \cdot |C|$$

$$\leq \epsilon$$

thus $a_n b_n \to lm$.

3. all we need to show is $\lim_{n\to\infty} 1/b_n = 1/m$ which is trivial.