Matrix exponential and Stability

AE 353 Spring 2023 Bretl

$$\begin{bmatrix} \dot{q} & = r - c_2 \sin q \\ \downarrow & \downarrow \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} v \\ (r - c_2 \sin q)/c_1 \end{bmatrix}$$

$$\dot{x} = Ax + Bu$$

$$A = \begin{bmatrix} 0 \\ c_2/c_1 \end{bmatrix} = \begin{bmatrix} v \\ \sqrt{c_2/c_1} \end{bmatrix}$$

$$\downarrow V$$

$$\begin{bmatrix} \dot{q} \\ \dot{q} \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} q - \pi \\ V \end{bmatrix} + \begin{bmatrix} 0 \\ V \\ V \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} V \\ (c_{2}V_{1})(q - \pi) + (V_{0}) T^{2} \end{bmatrix}$$

$$\begin{bmatrix} \dot{q} \\ \dot{q} \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} c_{2}V_{1} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ q \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ 0 \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ 0 \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ 0 \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \begin{bmatrix} V \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} V_{0} \\ 0$$

closed-loop system
$$\dot{x} = \dot{A}x + B(-Kx)$$

$$= (A-BK)x$$

CAN WE PREDICT WHAT WILL HAPPEN WITHOUT SIMULATION?

$$\dot{x} = (\alpha - bk)x \quad \leftarrow \quad \times (t) = e \quad (\alpha - bk)t \\
\dot{x} = (\alpha - bk)x \quad \leftarrow \quad \times (t) = e \quad \times (\omega)$$

$$\dot{x} = 3x \\
\dot{x} = 3x \\
\dot{x} = 4x \\
\dot{x} = 1 + m + \frac{1}{2}m^2 + \frac{1}{6}m^3 + \dots = \frac{2m}{k=0} \\
\dot{x} = 4 - Bk)x \quad \leftarrow \quad \times (t) = e \quad \times (\omega)$$

$$\dot{x} = Fx$$

$$\dot{x} = Fx$$

$$\dot{x} = A - Bk)x \quad \leftarrow \quad \times (t) = e \quad \times (\omega)$$

$$\dot{x} = Fx$$

$$\dot{x} = A - Bk)x \quad \leftarrow \quad \times (t) = e \quad \times (\omega)$$

$$\dot{x} = A - Bk \\
\dot{x} = A - Bk$$

																								-
'AN	WE	TRI	ETI	CT	W	-LAT	L	91L	1	HAT	PP	EN	3	wit	HO	VT	FI)	1D.	NC	7	×C	-) '	?	

CAN WE PRETICT WHAT WILL HAPPEN WITHOUT FINDING X47? The closed-loop system x = (A-BK) x is asymptotically stable if and only if all eigenvalues of A-BK have negative real part.