Datasheet

N-channel 650 V, 56 mΩ typ., 42 A MDmesh M5 PowerMOSFETs in TO-247 and TO-247 long leads packages

Features

AM01475v1_noZen

Order code	V _{DS}	R _{DS(on)} max.	I _D
STW57N65M5	650 V	63 mΩ	42 A
STWA57N65M5	050 V	03 11122	42 A

- Extremely low R_{DS(on)}
- Low gate charge and input capacitance
- · Excellent switching performance
- 100% avalanche tested

Applications

Switching applications

Description

These devices are N-channel Power MOSFETs based on the MDmesh M5 innovative vertical process technology combined with the well-known PowerMESH horizontal layout. The resulting products offer extremely low on-resistance, making them particularly suitable for applications requiring high power and superior efficiency.

Product status links			
STW57N65M5			
STWA57N65M5			

Product summary			
Order code STW57N65M5			
Marking	57N65M5		
Package TO-247			
Packing Tube			
Order code	STWA57N65M5		
Marking	57N65M5		
Package TO-247 long leads			
Packing Tube			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
I-	Drain current (continuous) at T _C = 25 °C	42	_
l _D	Drain current (continuous) at T _C = 100 °C	26.5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	168	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range		°C
T _J	Operating junction temperature range	-55 to 150	°C

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 42$ A, $di/dt \le 400$ A/ μ s, V_{DS} (peak) $< V_{(BR)DSS}$, $V_{DD} = 400$ V.
- 3. $V_{DS} \le 520 \ V$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	0.5	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	50	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T _J max.)	7	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	960	mJ

DS9413 - Rev 3 page 2/15

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified.

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	650			V
I	Zana mata waltana duain ayunant	V _{GS} = 0 V, V _{DS} = 650 V			1	
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 650 V, T _C = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 21 A		56	63	mΩ

^{1.} Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	4200	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	115	-	pF
C _{rss}	Reverse transfer capacitance		-	9	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 520 V, V _{GS} = 0 V		303	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related			93	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A		1.3	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 21 A, V _{GS} = 0 to 10 V		98	-	nC
Q _{gs}	Gate-source charge	(see Figure 15. Test circuit for gate charge	-	23	-	nC
Q _{gd}	Gate-drain charge	behavior)	-	40	-	nC

C_{O(tr)} is an equivalent capacitance that provides the same charging time as C_{OSS} while V_{DS} is rising from 0 V to the stated value.

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(v)}	Voltage delay time	V _{DD} = 400 V, I _D = 28 A,	-	73	-	ns
t _{r(v)}	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	15	-	ns
t _{f(i)}	Current fall time	(see Figure 16. Test circuit for inductive load switching and diode recovery times and Figure 19. Switching time waveform)		12	-	ns
t _{c(off)}	Crossing time			19	-	ns

DS9413 - Rev 3 page 3/15

C_{O(er)} is an equivalent capacitance that provides the same stored energy as C_{OSS} while V_{DS} is rising from 0 V to the stated value

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		42	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		168	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 42 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 42 A, di/dt = 100 A/µs,	-	418		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V	-	8		μC
I _{RRM}	Reverse recovery current	(see Figure 16. Test circuit for inductive load switching and diode recovery times)	-	40		Α
t _{rr}	Reverse recovery time	I _{SD} = 42 A, di/dt = 100 A/µs,	-	528		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V, T _J = 150 °C	-	12		μC
I _{RRM}	Reverse recovery current	(see Figure 16. Test circuit for inductive load switching and diode recovery times)	-	44		Α

^{1.} Pulse width is limited by safe operating area.

DS9413 - Rev 3 page 4/15

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

DS9413 - Rev 3 page 5/15

Figure 7. Typical reverse diode forward characteristics

Figure 8. Typical gate charge characteristics

Figure 9. Typical capacitance characteristics

Figure 10. Normalized gate threshold vs temperature

Figure 11. Normalized on-resistance vs temperature

Figure 12. Typical output capacitance stored energy

DS9413 - Rev 3 page 6/15

DS9413 - Rev 3 page 7/15

AM01471v1

3 Test circuits

Figure 16. Test circuit for inductive load switching and diode recovery times

AM01470v1

Figure 17. Unclamped inductive load test circuit

Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

DS9413 - Rev 3 page 8/15

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 package information

Figure 20. TO-247 package outline

0075325_10

DS9413 - Rev 3 page 9/15

Table 8. TO-247 package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70
aaa		0.04	0.10

DS9413 - Rev 3 page 10/15

4.2 TO-247 long leads package information

HEAT-SINK PLANE aaa _₋ E3 øΡ M-A2-Q A1. -b3 b2

Figure 21. TO-247 long leads package outline

BACK VIEW 8463846_5

DS9413 - Rev 3 page 11/15

Table 9. TO-247 long leads package mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
E	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
M	0.35		0.95
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25
aaa		0.04	0.10

DS9413 - Rev 3 page 12/15

Revision history

Table 10. Document revision history

Date	Version	Changes
17-Dec-2012	1	First release.
13-Dec-2013	2	 Modified: Figure 1 Added: MOSFET dv/dt ruggedness parameter in Table 2 and note 3 Modified: test conditions C_{o(er)} and C_{o(tr)} in Table 5 Updated: the entire Section 2.1: Electrical characteristics (curves) except Figure 14: Switching losses vs gate resistance Updated: Section 4: Package mechanical data Minor text changes
26-Feb-2024	3	Modified I _{AR} value in Table 3. Avalanche characteristics. Updated Section 4: Package information. Minor text changes.

DS9413 - Rev 3 page 13/15

Contents

1	Electrical ratings				
2					
	2.1	Electrical characteristics (curves)	5		
3	Test circuits				
4	Pac	Package information			
	4.1	TO-247 package information	9		
	4.2	TO-247 long leads package information	11		
Re	/ision	history	13		

DS9413 - Rev 3 page 14/15

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

DS9413 - Rev 3 page 15/15