Klausur "Mathematik II für Informatik/Wirtschaftsinformatik" WS 2015/16 (Prof. Dr. Thomas Streicher)

1. Aufgabe (Analog zu Mathe II SS2015, daher wird im Kurs die alternative 2. Aufgabe behandelt)

(12 Punkte)

Geben Sie für jede der folgenden Reihen sämtliche $x \in \mathbb{R}$ an, für welche diese jeweils konvergieren.

(a)
$$\sum_{n=0}^{\infty} (-1)^n \cdot x^{n+10}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n} (x+1)^n$$

(a)
$$\sum_{n=0}^{\infty} (-1)^n \cdot x^{n+10}$$
 (b) $\sum_{n=1}^{\infty} \frac{2^n}{n} (x+1)^n$ (c) $\sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{k!} \cdot x^n \right)$

2. Aufgabe (4. Aufgabe aus Mathe I im SS 2015)

(10 Punkte)

Welche der folgenden Folgen sind konvergent, welche divergent? Beweise Sie Ihre Antwort und im Falle der Konvergenz berechnen Sie den Grenzwert.

(a)
$$a_n := \frac{n^3 + n^2 \sqrt{n} + 1}{5n^3 - 2n^2 - 2n - 1}$$

(b)
$$b_n := \frac{n!}{2^n}$$

(c)
$$c_0 := \frac{1}{4}, c_{n+1} := c_n^2 + \frac{1}{4}$$

Hinweis: Zeigen Sie, dass (c_n) von oben durch $\frac{1}{2}$ beschränkt ist und monoton wächst.

3. Aufgabe (Analog zu Mathe II SS2015, daher wird im Kurs die alternative 4. Aufgabe behandelt)

(13 Punkte)

(a) Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) := \begin{cases} 0 & \text{, wenn } x = 0 \\ x \cdot \sin\left(\frac{1}{x}\right) - y^2 & \text{, sonst.} \end{cases}$$

- (a₁) Geben Sie die partiellen Ableitungen von f an, für alle Punkte $(x, y) \in \mathbb{R}^2$ mit $x \neq 0$.
- (a₂) Existieren auch die partiellen Ableitungen $\partial_x f(0, y)$ bzw. $\partial_y f(0, y)$, für beliebige $y \in \mathbb{R}$? Wenn ja, geben Sie
- (b) Betrachten Sie die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ mit $g(x,y) = x^2 y^2$. Zeigen Sie, dass g kein Extremum auf der Menge $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ besitzt.

4. Aufgabe (3. Aufgabe aus Mathe II im WS 2010)

(10 Punkte)

Sei $D := \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ und } y > 0\} \text{ und } f : D \to \mathbb{R}, f(x, y) := \frac{1}{x} + \frac{1}{y} + x + y.$

- (a) Bestimmen Sie Lage und Art der lokalen Extrema.
- (b) Besitzt f auch globale Extrema?

5. Aufgabe (Exakt aus Mathe II SS2015 übernommen, alternative dazu ist 6. Aufgabe)

(10 Punkte)

Sei $f: \mathbb{R} \to \mathbb{R}$ zweimal differenzierbar und $K \subseteq \mathbb{R}$ eine kompakte Menge. Zeigen Sie, dass f Lipschitz-stetig auf K ist.

6. Aufgabe (Mathe I SS 2015: (e), (f), (k) und (I) aus 5. Aufgabe)

(16 Punkte)

Entscheiden Sie, welche der folgenden Aussagen wahr oder falsch sind. Geben Sie außerdem jeweils einen Beweis oder ein Gegenbeispiel an.

- (a) Eine reelle Folge konvergiert genau dann, wenn sie genau einen Häufungswert hat.
- (b) Seien (a_n) und (b_n) konvergente reelle Folgen mit $a_n < b_n$ für alle $n \in \mathbb{N}$. Dann gilt $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$.
- (c) Jede konvergente Folge ist beschränkt.
- (d) Wenn $(a_n) \in O(b_n)$, dann auch $(b_n) \in o(a_n)$.

7. Aufgabe (Analog zur 4. Aufgabe aus Mathe II SS2015, alternative dazu ist 8. Aufgabe)

(15 Punkte)

(a) Sei I ein abgeschlossenes Intervall mit $0 \in I$. Zeigen Sie, dass das Anfangswertproblem

$$\begin{cases} y'(t) = y(t) \cdot \cos(t) \cdot \sin(t), \ t \in I \\ y(0) = 0, \end{cases}$$

eine eindeutige Lösung besitzt.

Hinweis: Verwenden Sie den Satz von Picard-Lindelöf.

(b) Lösen Sie das Anfangswertproblem

$$\begin{cases} y'(t) = t^2 \cdot y(t) \\ y(0) = 1, \end{cases}$$

mittels Trennung der Variablen.

(c) Geben Sie ein Fundamentalsystem der Differentialgleichung $y'(t) = A \cdot y(t)$ an, wobei

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hinweis: Es gibt ein kleines $n_0 \in \mathbb{N}$, sodass für alle $n \ge n_0$ die Matrix A^n eine Nullmatrix ist.

8. Aufgabe (4. Aufgabe aus Mathe II im WS 2010, angepasst an Notation aus aktueller Vorlesung)

(10 Punkte)

Bestimmen Sie die Lösung des Anfangswertproblems

$$y'(t) = t \cdot y(t) - e^{\frac{t^2}{2}}, \quad y(0) = 0$$

mittels Variation der Konstanten.

9. Aufgabe (Multiple Choice)		(10 Punkte)	
Entscheiden Sie, welche der folgenden Aussagen wahr und welche falsch sind. Sie müssen Ihre Antwort nicht begründen. Für jede korrekte Antwort wird 1 Punkt vergeben. Es gibt keine Minuspunkte. Sollten Sie eine Antwort korrigieren, kennzeichnen Sie eindeutig , welche Antwort gewertet werden soll. Im Zweifel wird die falsche Antwort gewertet.			
(a)	Das Innere des Abschlusses einer Teilmenge A von $\mathbb R$ ist immer gleich A .	Wahr	Falsch
(b)	Ist $f:[a,b] \to \mathbb{R}$ stetig, so ist f integrierbar.		
(c)	Jede stetige Funktion $f:(0,1] \to \mathbb{R}$ ist beschränkt.		
(d)	Ist $f:[a,b]\to\mathbb{R}$ integrierbar, so ist f auch differenzierbar.		
(e)	Sei $f:[0,\infty)\to\mathbb{R}_0^+$ stetig und monoton fallend. Dann konvergiert die Reihe $\sum_{n=0}^\infty f(n)$ genau dann, wenn $\int_0^\infty f(x)dx<\infty$.		
(f)	Wenn $\nabla f(x) = 0$, dann hat f in x ein lokales Extremum.		
(g)	Wenn $f:[a,b] \to \mathbb{R}$ stetig ist, dann existiert ein $c \in [a,b]$ mit $\int_a^b f(x) dx = f(c) \cdot (b-a)$.		
(h)	Ist $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius $r > 0$, dann konvergiert die Reihe für $x = r$.		
(i)	Die Reihe $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ konvergiert gegen ln(2).		
(j)	Die Menge $\mathbb{R}\setminus\mathbb{Z}$ ist eine offene Teilmenge von $\mathbb{R}.$		