Προηγμένα Θέματα Βάσεων Δεδομένων

Εξαμηνιαία Εργασία

Αριθμός Ομάδας: 8

Ονοματεπώνυμο – Αριθμός Μητρώου:

- Αριστείδης Τζιαπούρας 03119703
- Βίκτωρας Γιαννάκη 03119707

Link Github: https://github.com/ntua-el19707/advancedDatabasedSystem/tree/main

Ζητούμενο 1

Έχοντας λάβει τους απαραίτητους πόρους από τον Ωκεανό και ακολουθώντας τα βήματα για την εγκατάσταση και μορφοποίηση του περιβάλλοντος εργασίας, οι web εφαρμογές των HDFS, YARN, Spark History Server είναι πλέον προσβάσιμες και διαθέσιμες. Στο περιβάλλον εργασίας υπάρχουν 2 κόμβοι, ο Master και ο Worker

HDFS

YARN

Spark History Server

Το βασικό σύνολο δεδομένων αποτελείται από 2 μικρότερες βάσεις οι οποίες παρουσιάζουν τα εγκλήματα που έγιναν από το 2010 – 2019 και 2020 – Σήμερα αντίστοιχα τα οποία βρίσκονται εδώ:

- https://catalog.data.gov/dataset/crime-data-from-2010-to-2019
- https://catalog.data.gov/dataset/crime-data-from-2020-to-present

Στο νέο Dataframe έχει γίνει συνένωση των 2 συνόλων και έχει τα εξής χαρακτηριστικά:

Αριθμός Γραμμών: 2925275

Τύπος Δεδομένων:

```
Number of Rows:
                 2925275
root
  -- DR_NO: string (nullable = true)
  -- Date Rptd: timestamp (nullable = true)
 -- Date OCC: timestamp (nullable = true)
 -- TIME OCC: string (nullable = true)
  -- AREA : string (nullable = true)
  -- AREA NAME: string (nullable = true)
  -- Rpt Dist No: string (nullable = true)
  -- Part 1-2: string (nullable = true)
  -- Crm Cd: string (nullable = true)
  -- Crm Cd Desc: string (nullable = true)
  -- Mocodes: string (nullable = true)
  -- Vict Age: integer (nullable = true)
  -- Vict Sex: string (nullable = true)
  -- Vict Descent: string (nullable = true)
  -- Premis Cd: string (nullable = true)
  -- Premis Desc: string (nullable = true)
  -- Weapon Used Cd: string (nullable = true)
  -- Weapon Desc: string (nullable = true)
  -- Status: string (nullable = true)
  -- Status Desc: string (nullable = true)
  -- Crm Cd 1: string (nullable = true)
  -- Crm Cd 2: string (nullable = true)
  -- Crm Cd 3: string (nullable = true)
 -- Crm Cd 4: string (nullable = true)
  -- LOCATION: string (nullable = true)
  -- Cross Street: string (nullable = true)
  -- LAT: double (nullable = true)
  -- LON: double (nullable = true)
```

Στο Query 1 ζητείται η εύρεση των 3 μηνών με τον πιο ψηλό αριθμό καταγεγραμμένων εγκλημάτων κάθε χρόνο και η θέση του κάθε μήνα στην κατάταξη εκείνου του έτους.

Η υλοποίηση του Query 1, έγινε με 2 διαφορετικούς τρόπους, ο πρώτος με DataFrame και ο δεύτερος με SQL APIs. Και στις 2 περιπτώσεις χρησιμοποιήθηκαν 4 Spark Executors και παρακάτω παρουσιάζονται τα αποτελέσματα που προκύπτουν από την εκτέλεση αλλά και ο χρόνος εκτέλεσης των 2 υλοποιήσεων.

Μέτρηση	DataFrame	DataFrame	SQL	SQL
	4 Executors	4 Executors	4 Executors	4 Executors
1	39.67sec	1.3min	36.01sec	1.2min
2	36.50sec	1.2min	38.29sec	1.4min
3	34.93sec	1.1min	39.02sec	1.2min
4	34.65sec	1.1min	38.32sec	1.2min
5	35.25sec	1.2min	37.87sec	1.3min
6	34.79sec	1.1min	39.65sec	1.3min
7	35.02sec	1.1min	39.12sec	1.3min
8	34.65sec	1.2min	38.12sec	1.2min
Average	35.68sec	1.1625min	38.30sec	1.26min =
Time		=69.75sec		75.75sec

Παρατηρούμε ότι ο μέσος χρόνος εκτέλεσης του SQL API είναι παρόμοιος συγκριτικά με τον χρόνο εκτέλεσης του DataFrame.

Αποτελέσματα για Query 1

+	+	+		+
Year	Month	Total	Crimes	#
2010	1		19515	1
2010	3		18131	2
2010	:	İ	17856	
2011	1	İ	18133	1
2011	:	İ	17283	2
2011	10	İ	17034	
2012	1		17943	1
2012	8		17661	2
2012	5		17502	3
2013	8		17440	1
2013	1		16820	2
2013	7		16644	3
2014	7		13584	1
2014	10		13433	2
2014	8		13356	3
2015	10		19218	1
2015	8		19011	2
2015	7		18709	3
2016	10		19659	1
2016	8		19490	2
2016	7		19448	3
2017	10		20431	1
2017	7		20192	2
2017	1		19833	3
2018	5		19970	1

2017	1	19833	3
2018	5	19970	1
2018	7	19874	2
2018	8	19761	3
2019	7	19121	1
2019	8	18979	2
2019	3	18854	3
2020	1	18495	1
2020	2	17255	2
2020	5	17204	3
2021	10	19303	1
2021	7	18659	2
2021	8	18374	3
2022	5	20416	1
2022	10	20269	2
2022	6	20198	3
2023	8	19712	1
2023	7	19673	2
2023	1	19627	3
+	<u></u>		+

Στο Query 2 ζητείται να ταξινομηθούν τα 4 διαφορετικά τμήματα της ημέρας(Πρωί, Απόγευμα,Βράδυ,Νύχτα) ανάλογα με τον αριθμό των καταγεγραμμένων εγκλημάτων που συνέβησαν στον δρόμο(STREET).

Η υλοποίηση του Query 2 έγινε με 3 διαφορετικούς τρόπους, ο πρώτος με DataFrame, ο δεύτερος με SQL API και ο τρίτος με RDD API. Και στις 3 περιπτώσεις χρησιμοποιήθηκαν 4 Spark Executors και παρακάτω παρουσιάζονται τα αποτελέσματα που προκύπτουν από την εκτέλεση αλλά και ο χρόνος εκτέλεσης των 3 υλοποιήσεων.

Μέτρηση	DataFrame	DataFrame	SQL	SQL	RDD	RDD
	4	4	4	4	4	4
	Executors	Executors	Executors	Executors	Executors	Executors
1	37.29sec	1.7min	38.86sec	1.8min	82.70sec	2.4min
2	35.64sec	1.6min	37.09sec	1.7min	86.25sec	2.5min
3	40.32sec	1.5min	28.49sec	1.4min	78.99sec	2.1min
4	41.49sec	1.8min	30.54sec	1.9min	93.37sec	2.4min
5	37.21sec	1.8min	41.57sec	1.9min	83.90sec	2.4min
6	37.12sec	1.7min	32.82sec	1.7min	75.64sec	2.3min
7	36.06sec	1.8min	26.06sec	1.1min	89.18sec	2.5min
8	41.75sec	1.8min	36.51sec	1.7min	85.25sec	2.4min
Average	38.36sec	1.7125min	33.99sec	1.65min	84.41sec	2.375min
Time		=102.5sec		=99sec		=142.5sec

Αυτό που παρατηρούμε από τις μετρήσεις είναι πως και πάλι η υλοποίηση με DataFrame και SQL δίνουν παρόμοια αποτελέσματα ως προς τον χρόνο εκτέλεσης ενώ αντίθετα, η υλοποίηση με RDD είναι πολύ πιο αργή, καθώς χρειάζεται διπλάσιο χρόνο συγκριτικά με τα άλλα.

Αποτελέσματα για Query 2

Στο Query 3 ζητείται να βρεθεί σε φθίνουσα σειρά η καταγωγή των καταγεγραμμένων θυμάτων στο Los Angeles το 2015 σε 6 περιοχές, τις 3 με το ψηλότερο και στις 3 με το χαμηλότερο εισόδημα ανά νοικοκυριό

Για αυτό το Query, εκτός από το βασικό Data-Set: Los Angeles Crime Data, χρειάζονται επίσης τα δευτερεύοντα Dataset για το Median Household Income by ZIP Code για το 2015 και το revgecoding.csv για αντιστοίχιση ενός ζεύγους συντεταγμένων σε μια διεύθυνση, τα οποία υπάρχουν εδώ:

• http://www.dblab.ece.ntua.gr/files/classes/data.tar.gz

Η υλοποίηση του Query 3 έγινε με SQL API. Η εκτέλεση έγινε 3 φορές με διαφορετικό αριθμό από Spark Executors,με 2,με 3 και με 4 αντίστοιχα. Παρακάτω παρουσιάζονται τα αποτελέσματα που προκύπτουν από την εκτέλεση αλλά και ο μέσος χρόνος εκτέλεσης των 3 μετρήσεων.

Μέτρηση	SQL	SQL	SQL	SQL	SQL	SQL
	2 Executors	2 Executors	3 Executors	3 Executors	4 Executors	4 Executors
1	37.22sec	1.3min	34.21sec	1.2min	32.55sec	1.2min
2	37.19sec	1.1min	33.53sec	1.2min	33.10sec	1.2min
3	36.75sec	1.2min	31.73sec	1.1min	33.24sec	1.2min
4	38.58sec	1.3min	46.06sec	1.4min	34.21sec	1.3min
5	34.97sec	1.2min	35.75sec	1.3min	33.54sec	1.1min
6	35.38sec	1.3min	34.67sec	1.2min	33.59sec	1.1min
7	35.28sec	1.2min	35.25sec	1.2min	34.30sec	1.3min
8	37.43sec	1.2min	35.26sec	1.3min	34.94sec	1.3mn
Average	36.6sec	1.2375min=	35.81sec	1.2375min=	33.68sec	1.2125min=
Time		74.25sec		74.25sec		72.75sec

Παρατηρούμε ότι όσο αυξάνεται ο αριθμός των executors, ο χρόνος εκτέλεσης του Query μειώνεται ελάχιστα αλλά σε καμία περίπτωση δεν είναι ανάλογος του αριθμού των Executors. Δηλαδή με διπλάσιους Executors,από 2 σε 4 Spark Executors, ο χρόνος εκτέλεσης μειώθηκε 3 Seconds

Αποτέλεσμα Εκτέλεσης QUERY 3

+	+	+	+
Zip Code	#	Vict Descent	victim_category
+	+	+	++
90013	8457	В	
90013	6728	н	Hispanic/Latin/Me
90013	5259	l W	White
90013	2348	0	Other
90013	897	A	Other Asian
90013	768	X	Unknown
90013	96	к	Korean
90013	89	с	Chinese
90013	67	F	Filipino
90013	52] 3	Japanese
90013	18	I	American Indian/A
90013	13	v	Vietnamese
90013	3	l z	Asian Indian
90013	2	l s	Samoan
90013	2	υ	Hawaiian
90013	2	P	Pacific Islander
90013	1	L	Laotian
90013	1	G	Guamanian
90021	7263	н	Hispanic/Latin/Me
90021	3536	l W	White
90021	3249	В	Black
90021	1716	0	Other
90021	753	x	Unknown
90021	452	A	Other Asian
90021	93	к	Korean
90021	52	с	Chinese
90021	22	F	Filipino
90021	16	I	American Indian/A
90021	10] 3	Japanese
90021	10	v	Vietnamese
90021	4	P	Pacific Islander
90021	4	l z	Asian Indian
90021	1	G	Guamanian
90021	1	υ	Hawaiian
90058	4665	н	Hispanic/Latin/Me
90058	1322	в	Black
90058	279	W	White

90058		В	:
90058	279	W	White
90058		0	Other
90058	106	Х	Unknown
90058	42	А	Other Asian
90058	6	K	Korean
90058	3	D	Cambodian
90058	2	F	Filipino
90058	2	C	Chinese
90058	2	I	American Indian/A
90077	785	W	White
90077	247	0	Other
90077	100	н	Hispanic/Latin/Me
90077	54	В	Black
90077	45	X	Unknown
90077	43	A	Other Asian
90077	2	C	Chinese
90077	1	K	Korean
90272	1758	W	White
90272	445	0	Other
90272	224	н	Hispanic/Latin/Me
90272	211	X	Unknown
90272	84	В	Black
90272	65	A	Other Asian
90272	6	С	Chinese
90272	3	F	Filipino
90272	2	K	Korean
90272	1	I	American Indian/A
91436	3580	W	White
91436	1551	0	Other
91436	641	H	Hispanic/Latin/Me
91436	295	В	Black
91436	139	А	Other Asian
91436	44	Х	Unknown
91436	5	F	Filipino
91436	4	K	Korean
91436	4	С	Chinese
91436	2	U	Hawaiian
91436	2	Р	Pacific Islander
91436	2	I	American Indian/A
91436	1	J	Japanese

Στο Query 4 ζητείται να βρεθεί:

- 1) A) Ο αριθμός των καταγεγραμμένων εγκλημάτων που έγιναν με πυροβόλο όπλο (1xx) ανά χρονιά, μαζί με την μέση απόσταση του αστυνομικού τμήματος που ανέλαβε την έρευνα.
 - B) Ο αριθμός τέτοιων εγκλημάτων που ανέλαβε ο κάθε αστυνομικός σταθμός ταξινομημένο σε φθίνουσα σειρά, μαζί με την μέση απόσταση των εγκλημάτων
- 2) Α) Ο αριθμός των καταγεγραμμένων εγκλημάτων που έγιναν με πυροβόλο όπλο (1xx) ανά χρονιά, μαζί με την μέση απόσταση του πλησιέστερου αστυνομικού τμήματος
 - B) Ο αριθμός τέτοιων εγκλημάτων που θα αναλάμβανε ο κάθε πλησιέστερος αστυνομικός σταθμός ταξινομημένο σε φθίνουσα σειρά, μαζί με την μέση απόσταση των εγκλημάτων

Για αυτό το Query, εκτός από το βασικό Data-Set: Los Angeles Crime Data, χρειάζονται επίσης το δευτερεύον Dataset LA Police Stations όπου βρίσκονται οι συντεταγμένες του κάθε αστυνομικού σταθμού

• https://geohub.lacity.org/datasets/lahub::lapd-police-stations/explore

Η υλοποίηση του Query 4 έγινε με SQL API. Η εκτέλεση έγινε 3 φορές με διαφορετικό αριθμό από Spark Executors,με 2,με 3 και με 4 αντίστοιχα. Παρακάτω παρουσιάζονται τα αποτελέσματα που προκύπτουν από την εκτέλεση αλλά και ο χρόνος εκτέλεσης των 3 μετρήσεων.

Query 4.1 Αποτέλεσμα Εκτέλεσης QUERY 3

+	+	+
year	average_distance	count
2010	16.656527733269883	5304
	17.130008356255697	4617
•	17.82669250762691	4121
2013	18.17947340222288	3787
2014	11.367572520663321	2457
2015	18.399574332889284	4407
2016	17.99578778201601	5002
2017	18.098020611682575	5044
2018	17.71577819582119	4632
2019	17.712188784071895	4574
2020	18.394293287173173	5496
2021	18.12688112902872	5951
2022	18.00779823624805	6058
2023	18.13320450561431	5309
+	+	+

_		
division	average_distance	count
•	9.385629843529065 43.892796636535586	
HOLLYWOOD	11.942783822408574 5.347552660899223	9594
DEVONSHIRE	30.696743873501077 8.525161831416845	3963
VAN NUYS	9.603534433688283	3662
WILSHIRE	22.992561218999324 21.880865669863763	
WEST VALLEY	6.781817019999322	2378
+	14.854213071301885 +	2098 +

Μέτρηση	SQL	SQL	SQL	SQL	SQL	SQL
	2 Executors	2 Executors	3 Executors	3 Executors	4 Executors	4 Executors
1	54.81sec	1.8min	56.50sec	1.9min	58.46sec	2.1min
2	58.39sec	1.8min	54.82sec	1.8min	53.91sec	2.0min
3	59.76sec	2.1min	52.99sec	1.7min	61.18sec	1.9min
4	56.55sec	1.8min	57.19sec	1.9min	57.28sec	2.1min
5	58.30sec	1.9min	64.05sec	2.1min	56.04sec	1.9min
Average	57.56sec	1.88min	57.11sec	1.88min	57.37sec	2.00min
Time		=112.8sec		=112.8sec		=120 sec

Σε αυτή την περίπτωση δεν βλέπουμε οποιαδήποτε βελτίωση του χρόνου εκτέλεσης ανάλογα με τον αριθμό των Executors

Query 4.2

+	+	++
year	average_distance	count
2010	2.434235131073048	8212
2011	2.46100507843099	7232
2012	2.5055255743371387	6532
2013	2.4555437568989595	5838
2014	2.3915472779761844	4586
2015	2.3872613200248236	6763
2016	2.4281950357376467	8100
2017	2.391618932774625	7786
2018	2.4082079737438598	7413
2019	2.4294088109777405	7129
2020	2.383615837920021	8487
2021	2.352716378850509	9745
2022	2.3120803748064067	10025
2023	2.270586785715524	8583
	L	

division	average_distance	count
+		+
77TH STREET	1.720516809530909	13295
SOUTHWEST	;	11183
SOUTHEAST	2.213211553395432	10859
NEWTON	1.5691528311018892	7142
WILSHIRE	2.445609338096738	6232
HOLLENBECK	2.638149080357802	6150
HOLLYWOOD	2.003464451832188	5317
HARBOR	3.8995576321257572	5299
OLYMPIC	1.663148125434012	5080
RAMPART	1.3967648289758168	4679
VAN NUYS	2.9533148232235624	4585
FOOTHILL	3.6007589003843794	4367
!	1.0197110483325327	
NORTH HOLLYWOOD	2.7302047146999158	3304
NORTHEAST	3.754395584281293	3088
WEST VALLEY		
MISSION		2654
PACIFIC	3.70082473460895	2515
	3.0413726498688973	2186
DEVONSHIRE	2.981839678996518	1220
WEST LOS ANGELES	2.769236423329846	1013
+	+	+

Μέτρηση	SQL	SQL	
	Execution	Spark	
	Time	History	
1	567.59sec	10min	
2	550.33sec	12min	
Average	558.96sec	11min	
Time			

Για τα Query 3 και 4a, χρησιμοποιούμε τα διαφορετικά είδη Join που υπάρχουν. Οι χρόνοι εκτελέσεων του κάθε τρόπου για κάθε Query εμφανίζονται πιο κάτω

Αυτά που χρησιμοποιήθηκαν είναι τα:

BROADCAST, MERGE, SHUFFLE_HASH, SHUFFLE_REPLICATE_NL

Επίσης όλες οι μετρήσεις έγιναν με 4 Spark Executors

Query 3

	SQL	SQL	SQL	SQL	SQL
Μέτρηση	4	4	4 Executors	4 Executors	4 Executors
	Executors	Executors	MERGE	SHUFFLE_HASH	SHUFFLE_REPLICATE_NL
		BROADCAST			
1	44.40sec	52.49sec	47.94sec	67.20sec	3768sec = 62.8min

	SQL	SQL	SQL	SQL	SQL
Μέτρηση	4	4	4 Executors	4 Executors	4 Executors
	Executors	Executors	MERGE	SHUFFLE_HASH	SHUFFLE_REPLICATE_NL
		BROADCAST			
1	1.7min	2min	1.8min	2.4min	1.1h

Παρατηρούμε ότι ο χρόνος εκτέλεσης με BROADCAST και MERGE JOIN είναι πανομοιότυπος. Το SHUFFLE_HASH χρειάζεται λίγο περισσότερο χρόνο και τέλος για το SHUFFLE_REPLICATE_NL ο χρόνος εκτέλεσης είναι τεράστιος.

BROADCAST

```
|== Physical Plan ==\nAdaptiveSparkPlan (38)\n+- Project (37)\n +- Sort (36)\n +- Exchange (35)\n +- Project (34)\n +- BroadcastHashJoin Inner Bui Idleft (33)\n :- BroadcastExchange (12)\n : +- Union (11)\n : -- Filter (5)\n : +- TakeOrderedAndProject (4)\n : +- Project (3)\n : +- Filter (2)\n : +- Filter (2)\n : +- Scan csv (1)\n : +- Filter (77)\n : +- Filter (19)\n : +- TakeOrderedAndProject (9)\n : +- Project (8)\n +- Project (8)\n +- BroadcastHashJoin Inner Bui Allegare (32)\n +- Exchange (31)\n +- Exchange (31)\n +- HashAggregate (30)\n +- BroadcastHashJoin Inner Bui Allegare (32)\n +- Filter (77)\n : +- Filter (77)\n : +- Filter (77)\n : +- Filter (19)\n : +- BroadcastHashJoin Inner Bui Allegare (31)\n : +- HashAggregate (30)\n +- HashAggregate (30)\n : +- HashAggregate (30)\n : +- HashAggregate (30)\n : +- HashAggregate (20)\n : +- Union (21)\n : -- Filter (16)\n : -- Filter (14)\n : : +- Scan csv (13)\n : -- Filter (18)\n : -- Filter (16)\n : -- Filter (16)\n : +- Filter (20)\n +- Scan csv (19)\n +- Scan csv (19)\n +- Filter (26)\n +- Filter (26)\n +- Scan csv (25)\n\n\n(1) Scan csv \nOutput [3]: Zip Code#373, Community#374, Estimated Median Income#375]\nBatched: false\nLocation: InMemoryFileIndex [hdfs://okeanos-master:54310/L4_income_2015.csv]\nPushedFilters: [IsNotNull(Community), StringContains(Community), Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Scan csv (19)\n -- Sc
```

MERGE

```
== Physical Plan ==\nAdaptiveSparkPlan (44)\n+- Project (43)\n +- Sort (42)\n +- Exchange (41)\n +- Project (31)\n : +- Exchange (12)\n : +- Union (11)\n : :

-- Project (3)\n : +- Filter (10)\n : +- TakeOrderedAndProject (9)\n : +- Filter (7)\n : +- Sort (88)\n +- Sort (36)\n +- Exchange (35)\n : +- Sort (35)\n : +- Sort (35)\n : +- Sort (37)\n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     +- Project (40)\n
: :- Filter (5)\n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     +- SortMergeJoin Inner (39)\n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               +- HashAggre
            (36)\n
+- SortMergeJoin Inner (32)\n
: +- HashAggregate (25)\n
:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   :- Sort (27)\n
: +- Exchange (24)\n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      +- Project (33)
: +- Exchange (26)\n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      +- HashAggregate (23)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      :- Filter (15)\n
                                                                                                                                                                                                                                                                                                                              +- Union (22)\n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .
:- Filter (17)\n
                                                                                                          : +- Scan csv (14)\n
                                                                                                                                                                                                                                                                                                                                            :- Filter (19)\n
                                                                                                                    : +- Filter (21)\n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (20)\n
Sort (31)\n +- Filter (2)\n +- Exchange (30)\n +- Filter (29)\n +- Filter
```

SHUFFLE_HASH

```
== Physical Plan ==\nAdaptiveSparkPlan (40)\n+- Project (39)\n +- Sort (38)\n +- Exchange (37)\n
                                                                                                                                                                  +- ShuffledHashJoin Inner Buil
                                                                                                                                +- Project (36)\n
                             - Exchange (12)\n : +- Union (11)\n : :- Filter (5)\n Project (3)\n : : +- Filter (2)\n : : +-
                                                                                                                                                         : +- TakeOrderedAndProject (4)\n
                                                                                                                                    : : +- |a|
+- Scan csv (1)\n
+- Filter (7)\n
                  :- Exchange (
: +- Project (3)\n
                                                                                                                : +- Scan csv (1)\n
: +- Filter (7)\n
+- Exchange (32)\n
                                          +- TakeOrderedAndProject (9)\n
  +- Scan csv (6)\n
                                       +- Exchange (34)\n
+- Project (30)\n
                                                                                                                                                                                    +- HashAggrega
                                                                                                                                                                            nasnAggrega
:- Exchange (
:
te (31)\n
25)\n
                                      : +- HashAggregate (24)\n
gregate (22)\n
                                                                                                                                                                       : +- Scan csv (15)\n
        +- Filter (20)\n
                                                                                    +- Scan csv (19)\n
                                                                                                                                                +- Exchange (28)\n
 +- Filter (20)\n +- Exchange (28)\n +- Filter (27)\n +- Exchange (28)\n +- Filter (27)\n +- Scan csv (26)\n\n\n(1) Scan csv \nOutput [3]: [Zip Code#373, Community#374, Estimated Median Income#375]
nBatched: false\nLocation: InMemoryFileIndex [hdfs://okeanos-master:54310/LA_income_2015.csv]\nPushedFilters: [IsNotNull(Community), StringContains(Community,Los Angeles (
```

SHUFFLE_REPLICATE_NL

```
|== Physical Plan ==\nAdaptiveSparkPlan (36)\n+- Project (35)\n +- Sort (34)\n +- Exchange (33)\n +- Project (32)\n +- CartesianProduct Inner (31)\n : -- Filter (2)\n : +- Scan csv (1)\n : +- TakeOrderedAndProject (4)\n : +- TakeOrderedAndProject (9)\n : +- Project (8)\n : +- Filter (19)\n : +- Scan csv (6)\n +- HashAggregate (30)\n +- HashAggregate (20)\n +- HashAggregate (20)\n : +- Project (27)\n +- CartesianProduct Inner (26)\n : +- Filter (19)\n : +- Scan csv (6)\n +- HashAggregate (30)\n +- HashAggregate (20)\n : +- Exchange (22)\n : +- HashAggregate (21)\n : +- Scan csv (12)\n : +- Scan csv (12)\n : -- Filter (15)\n : : +- Scan csv (14)\n : : -- Filter (17)\n : : -- Filter (17)\n : +- Scan csv (18)\n : +- Scan csv (19)\n : +- S
```

Query 4.1

Μέτρηση	SQL 4 Executors	SQL 4 Executors BROADCAST	SQL 4 Executors MERGE	SQL 4 Executors SHUFFLE_HASH	SQL 4 Executors SHUFFLE_REPLICATE_NL
1	60.76sec	62.20sec	54.06sec	60.26sec	64.22sec

Μέτρηση	SQL 4 Executors	SQL 4 Executors	SQL 4 Executors MERGE	SQL 4 Executors SHUFFLE_HASH	SQL 4 Executors SHUFFLE_REPLICATE_NL
		BROADCAST			
1	2.3min	2.0min	2.7min	2.6min	2min

Παρατηρούμε ότι οι όλοι οι χρόνοι κυμαίνονται στα ίδια επίπεδα. Με SHUFFLE_REPLICATE_NL ο χρόνος εκτέλεσης είναι σημαντικά μικρότερος συγκριτικά με το Query 3

BROADCAST

MERGE

```
+ |== Physical Plan ==\nAdaptiveSparkPlan (21)\n+- Project (28)\n +- SortMergeJoin Inner (19)\n :- Sort (14)\n : +- Exchange (13)\n : +- HashAggregate (12)\n : +- Exchange (11)\n : +- HashAggregate (12)\n : +- Scan csv (11)\n : -- Filter (2)\n : +- Scan csv (11)\n : -- Filter (4)\n : +- Scan csv (3)\n : -- Filter (6)\n : +- Filter (6)\n : +- Scan csv (5)\n : +- Scan csv (5)\n : +- Filter (8)\n : +- Filter (8)\n : +- Scan csv (7)\n +- Sort (18)\n +- Exchange (17)\n +- Filter (18)\n +- Scan csv (15)\n \n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\n\n(1)\
```

SHUFFLE_HASH

SHUFFLE REPLICATE NL

```
|== Physical Plan ==\nAdaptiveSparkPlan (17)\n+- Project (16)\n +- CartesianProduct Inner (15)\n :- HashAggregate (12)\n : +- Exchange (11)\n : +- HashAggregate (10)\n : +- Union (9)\n : :- Filter (2)\n : :+- Scan csv (1)\n : :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filter (4)\n :- Filte
```