# Final Rivew - Part I

## **Basic Graph Theory**

Be sure to memorize the terminologies well.

#### HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

April 18, 2022



Terminology 000000

# **Terminology**

Terminology •000000

## **Graph Definition**

A graph G := (V, E) consists of set of vertices V(G) and edges E(G), together with a relation indicating each edge incident with one or two vertices. Two vertices are called adjacent if they are connected by at least one edge.

## Simple Graph

An edge with just one end is called a **loop**. Two distinct edges with the same ends are parallel. A graph without loops or parallel edges is called **simple**.



# Terminology

Terminology

There are two important relations and for graphs. Hmm, perhaps give some examples?

## Isomorphism

An **isomorphism** between simple graph G and H is a bijection  $f: V(G) \to V(H)$  such that  $uv \in E(G) \Leftrightarrow f(u) f(v) \in E(H)$ . In other words, f **preserves the structure** of G and H. If such f exists, we say G is isomorphic to H, or  $G \cong H$ .

Isomorphism is an **equivalence** relation between graphs.

## Subgrpah

If  $V(H) \subset V(G)$  and  $E(H) \subset E(G)$  and G and H shares the same incidence relation, we say H is a subgraph of G, or  $H \subset G$ .

This forms a **partial order** between graphs.

←□ → ←□ → ← □ →

2/23

 Terminology
 Connectivity
 Matching
 Farewell

 ○○○○○
 ○○○○○
 ○○○○

# Terminology

## Complement

The **complement**  $\overline{G}$  of a simple graph G is the simple graph with vertex set V(G) defined by  $uv \in E(\overline{G})$  iff  $uv \notin E(G)$ . Note that given graph G = (V, E), we have  $\overline{G} = (V, (V) - E)$ .

A graph G is said to be **self-complementary** if  $G \cong \overline{G}$ .

## **Null Graph**

The **null graph** is the graph whose vertex set and edge set are empty, namely  $G = (\emptyset, \emptyset)$ .

# Clique

A clique in a graph is a set of pairwise adjacent vertices.

4 D > 4 B > 4 B > 4 B > 9 Q

# Exercise

Terminology

1. Given a graph G as follows:



See the questions in last semester's exam!



HamHam (UM-SJTU JI)

# Standard Graph

# Complete Graph

A complete graph with n vertices  $K_n := (V, E)$  satisfies  $E = \binom{V}{2}$ . If a subgraph of a graph is complete, its vertices are called a clique in this graph.

#### Path

Terminology 0000€00

A path with n vertices is  $P_n := (\{v_i\}_{i=1}^n, \{v_i v_{i+1}\}_{i=1}^{n-1})$ , where  $i \neq j \Rightarrow v_i \neq v_j$ .

# Cycle

A **cycle** with n vertices is  $C_n := (\{v_i\}_{i=1}^n, \{v_iv_{i+1}\}_{i=1}^{n-1} \cup \{v_nv_1\}),$  where  $i \neq j \Rightarrow v_i \neq v_j$ .

Are  $C_1$  and  $C_2$  still simple graphs?

# The Handshaking Theorem

Undirected graph:

$$2|E| = \sum_{v \in V} \deg(v)$$

Directed graph:

$$|E| = \sum_{v \in V} \mathsf{deg}^+(v) = \sum_{v \in V} \mathsf{deg}^-(v)$$

#### Remark:

- A vertex is said to be isolated if it has degree zero.
- A vertex is said to be pendant if it has degree one.
- $deg^+(v)$ : in-degree of a vertex v
- deg<sup>-</sup>(v): out-degree of a vertex v



HamHam (UM-SJTU JI)

## Exercise

Terminology 000000

A little bit tricky exercise! But possible to appear in the exam!

- 2. Which of the following statements about graphs are correct?
- (A)  $C_5$  is self-complementary.
- (B)  $P_4$  is self-complementary
- (C)  $K_{2,2}$  is induced in  $C_4$ .
- (D)  $C_1$  is induced in  $K_5$ .

#### Answer:



7/23

# Walks and Connectivity

#### Definition

A walk W in G is a sequence of vertices  $\{v_i\}_{i=0}^n$  and edges  $\{e_i\}_{i=1}^n$  so that  $e_i$  is incident with  $v_{i-1}$  and  $v_i$ .

- W is called **closed** if  $v_n = v_0$
- The length of W is its number of edges n
- G is connected if  $\forall u, v \in V(G)$ , there is a walk from u to v
- A walk is generally **not** a graph, why?

# Components

#### Definition

A component of a graph G is a **maximal connected subgraph** in G. In other words, it is not contained in any other connected

The number of components of G is denoted as comp(G).

#### **Theorem**

subgraphs.

Every vertex is in a **unique** component.

#### Note

If a graph G isn't connected, it may be useful to consider its components.

### Cuts

## Definition(substraction)

Given G = (V, E),  $S \subset E$ ,  $X \subset V$ , then  $G - S := (V, E \setminus S)$  and  $G - X := (V \setminus X, \{e \in E : e \text{ not incident with } x \in X\})$ .

#### **Definition**

- $e \in E$  is a **cut-edge** or **bridge** if no cycle contains e
- $v \in V$  is a **cut-vertex** if comp (G v) > comp(G)

What happens when we delete an edge or vertex?

- If e is a cut-edge, comp (G e) = comp(G) + 1
- If e is not, comp (G e) = comp(G)
- Further, comp  $(G v) \le \text{comp}(G) + \text{deg}(v) 1$

## Induced subgraph

Please remember to delete both the vertexes and the edges!

4日 → 4日 → 4 目 → 4目 → 9 へ ○

## Exercise

- 3. A graph G is called k-regular if all vertices of G have the same degree k.
  - (i) Show that a k-regular bipartite graph has no cut-edge for  $k \ge 2$ .
- (ii) Show that a k-regular bipartite graph has a perfect matching for k > 1.

(Take from Homework 6)



# **Bipartation**

## **Bipartation**

A bipartation of G is a partition (A, B) of V(G) so that every edge is **incident** with one vertex in A and one in B. G is called **bipartite** if it admits a bipartation.

A complete bipartite graph or biclique  $K_{m,n}$ , is a simple bipartite graph with every edges in A and that in B are adjacent to each other, where |A| = m, |B| = n.

#### Exercise

For which values of n are the following graphs bipartite?

$$i)K_n$$

$$i)K_n$$
  $ii)C_n$   $iii)W_n$ 

$$iv)Q_n$$

4 D F 4 B F 4 B F

# Bipartation

#### **Theorem**

For every graph G, the following are equivalent:

- $\bullet$  G is bipartite
- $\bullet$  G has no cyle of odd length
- $\bullet$  G has no closed walk of odd length
- $\bullet$  G has no induced cycle of odd length.

#### Proof.

(iiii)  $\Rightarrow$  (ii). We show the contrapositive, i.e.,  $\neg$  (ii)  $\Rightarrow \neg$  (iiii). Suppose G has a cycle of odd length, choose a shortest cycle  $C \subset G$ . Note that C is induced, otherwise  $\exists e \in E(G) \setminus E(C)$ , with ends x, y. But now either  $C_1$  or  $C_2$  is an odd cycle of shorter length, contradiction.

13/23

# Matching

### Definition

M does not contain a loop and no two edges in M are incident with a common vertex.

A matching in a graph G = (V, E) is a subset of edges M such that

- A matching is **maximal** if it is not contained in another matching.
- A matching is **maximum** if its size is the largest among all matching.
- A matching M is perfect if  $\forall v \in G$ ,  $\deg_M(v) > 1$ .



# **Group Transversals**

This is what xrz wrote...

#### **Definition**

For subgroups  $H, K \leq G$ , the coset intersection graph  $\Gamma_{H,K}^G$  contains vertices of all left cosets of H in G and right cosets of K in G. aH and Kb are adjacent iff  $aH \cap Kb \neq \emptyset$ .

#### **Theorem**

A coset intersection graph is always a disjoint union of complete bipartite graphs.



Matching

# Neighbors and Covers

## **Neighbors**

For  $X \subset V(G)$ , its **neighbors** N(X) is

 $N(X) := \{ v \in V(G) \setminus X \mid v \text{ is adjacent to a vertex in } X \}$ 

Furthermore, we denote  $N(x) := N(\{x\})$ .

#### Cover

The edges  $S \subset E(G)$  covers  $X \subset V(G)$  if every  $x \in X$  is incident to some  $e \in S$ .

The vertices  $X \subset V(G)$  covers  $S \subset E(G)$  if every  $e \in S$  is incident to some  $v \in X$ .

4 D > 4 B > 4 E > 4 E > 9 Q P

## Hall's Theorem

#### Hall's Theorem

Let G be a finite bipartite graph with bipartation (A, B). There exists a matching covering A iff there does not exist  $X \subset A$  with |N(X)| < |X|.

## Interesting Example

Given a sequence of (not necessarily distinct) sets  $S_1, S_2, \ldots, S_m$ there exists a sequence of distinct elements  $x_1, x_2, \dots, x_m$  such that  $x_i \in S_i$  for all i = 1, 2, ..., m if and only if **Hall's condition** holds. State Hall's condition in this context.

For every k = 1, 2, ..., m, the union of any k sets has at least k elements, that is

$$|\bigcup_{i\in I} S_i| \ge |I| \text{ for all } I \subset \{1,\ldots,m\}$$

## Exercise

4. Let G be a bipartite graph with bipartation (A, B), and G has no isolated vertices. If the minimum degree of vertices in A is no less than the maximum degree of vertices in B, show that there exists a matching covering A.



# Kőnig-Egerváry Theorem

#### Vertex Cover

A vertex cover of a graph G is a set  $X \subset V(G)$  if every  $e \in E(G)$  is incident with a vertex in X. The vertices in X cover E(G).

## Kőnig-Egerváry Theorem

Given a finite bipartite graph G,  $\alpha'(G) = \beta(G)$ , where  $\alpha'(G)$  the size of the largest matching and  $\beta(G)$  is the size of the smallest vertex cover.

#### Fulkerson Theorem

Kőnig-Egerváry theorem implies Dilworth theorem (and vice versa).



## **Farewell**

- Take a look at last semester's final paper, but it is less helpful than mid.
- Take quiz!!! If you want that 9 points!!!
- Join piazza!!! If you want that 1 point!!!
- Check homework! No solution this time
- Be confident! The exam will be easy!

The *Discrete Mathematics* is a course about **how to compute**. If you find any thing in this course **abstract**, find a **concrete** example to make an analogy. And, last but not the least, there will be a day for you to translate all things we have covered in this course into **codes**.

Thank you for your support for the whole semester! I really learn a lot within these 10 weeks of retaking this course. Hope to see you offline in the summer semester!

HamHam (UM-SJTU JI) Final Rivew - Part I

20 / 23

# 你比小瓜子更可爱儿



你赶不上due子

# Good Luck For Your Exam!





How to 4010e ...?

## Reference

- Content from Runze Cai's Slides.
- Content from Ve203-2021-fall Final RC by Xue Runze.
- Exericses from Ve203-2021-fall Final Exam.
- Exercises from Ve203-2021-summer Final Exam.
- Exercises from Ve203-2022-spring Homework 6.
- Exercises from Ve203-2020-fall Assignment 9.
- Cute paintings of Hamham from Wang Ruizhe.

