SANATE TRACE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

FRESHMAN ENGINEERING DEPARTMENT

Assignment

UNIT IV

QUANTUM MECHANICS & FREE ELECTRON THEORY

1	Explain de- Broglie hypothesis.
	OR
	Define matter waves? Explain their properties.
2	State and explain Heisenberg's uncertainty principle.
3	Interpret the significances of wave function.
4	Derive Schrodinger time independent wave equation.
5	Derive Schrodinger dependent wave equation.
6	Discuss the particle in a one dimensional potential well and determine the
	energy and wave equation of a free particle.
7	Explain the classical free electron theory of metals with advantages and
	drawbacks.
8	Derive the conductivity of a metal based on quantum free electron theory.
9	What is a Fermi level? Explain the Fermi-Dirac distribution function for
	electrons in a metal. Discuss the variation with temperature.
10	Derive an equation for density of energy states in a material.

Problems

1	Estimate the de- Broglie wavelength associated with an electron with
	energy 2000 eV.
2	Calculate the wavelength associated with an electron raised to a potential
	of 1600 V and 100 V.
3	Estimate the velocity and kinetic energy of an electron of wavelength
	1.66×10^{-10} m.
4	An electron is bound in a one dimensional infinite well having a width of
 	1×10^{-10} m. Estimate the energy values in the ground state and the first
	three excited states.

5	An electron is bound in a one dimensional box having size of $4 \times$
	$10^{-10} m$. What will be its minimum energy.
6	An electron is confined to a in a one dimensional potential box of $2A^0$
	length. Estimate the energies corresponding to the second and fourth
	quantum states(in eV).
7	Find the temperature at which there is 1% probability that a state with
'	energy 0.5 eV is above Fermi energy.
8	At what temperature we can expect a 10% probability that electrons in
	silver have energy which is 1% above the Fermi energy? The Fermi
	energy of silver is 5.5 eV.
9	The following data given for copper:
	i) Density = $8.92 \times 10^3 kgm^{-3}$ (iii) Resistivity = $1.73 \times 10^8 \Omega m$
	and
	ii) Atomic weight = 63.5.
	Estimate the mobility and the average time collision of electrons in
	copper obeying classical laws.
10	Calculate the electrical resistivity of sodium at 0° C.It has 25.33×10^{27}
	electrons per unit volume and has a mean free time of $3.1 \times 10^{14} \ s$.
11	The relaxation time of conducting electrons in a material is $3 \times 10^{-14} s$. If
	the density of electron is 5.8×10^{28} electrons per m^3 . Find the resitivity
	of the material and mobility of the electron.
12	A uniform silver has a resistivity $1.54 \times 10^{-8} \ \Omega m$ at room temperature.
1	For an electric field along the wire of 1 volt/cm, compute the average drift
	velocity of an electron assuming that there is
	5.8×10^{28} electrons per m^3 . Also calculate the mobility.

Constants:

Mass of electron =
$$9.1 \times 10^{-31} kg$$

Planck's constant
$$=6.626 \times 10^{-34} Js$$

Charge of electron $=1.6 \times 10^{-19} C$
 $1~eV=1.6 \times 10^{-19} J$