Algebraische Zahlentheorie II Sommersemester 2022

Dr. Katharina Hübner basierend auf Alexander Schmidts AZT2-Skript von 2014

Inhaltsverzeichnis

1	Gal	oiskohomologie	1
	1.1	Die Abhängigkeit von der Auswahl des separablen Abschlusses	1
	1.2	Additive Theorie	2
	1.3	Multiplikative Theorie – Hilberts Satz 90	4
	1.4	Multiplikative Theorie – die Brauergruppe	5
	1.5	Die Brauergruppe eines lokalen Körpers	7

1 Galoiskohomologie

Wir untersuchen Kohomologie der additiven und der multiplikativen Gruppe des separablen Abschlusses als Modul unter der absoluten Galoisgruppe.

1.1 Die Abhängigkeit von der Auswahl des separablen Abschlusses

Sei K ein Körper und $\overline{K}_1, \overline{K}_2$ zwei separable Abschlüsse von K. Dann existiert ein (unkanonischer) K-Isomorphismus

$$\varphi: \overline{K}_1 \xrightarrow{\sim} \overline{K}_2.$$

Dieser induziert einen Isomorphismus

$$\varphi^*: G_2 = G(\overline{K}_2/K) \quad \stackrel{\sim}{\longrightarrow} \quad G_1 = G(\overline{K}_1/K),$$
$$\sigma \quad \longmapsto \quad \varphi^{-1} \circ \sigma \circ \varphi.$$

Nun sei $\dagger \in \{+, \times\}$. Dann ist \overline{K}_i^{\dagger} ein diskreter $G(\overline{K}_i/K)$ -Modul, i=1,2. Das Paar $\varphi^*: G_2 \xrightarrow{\sim} G_1, \ \varphi: \overline{K_1} \to \overline{K_2}$ ist kompatibel und wir erhalten einen Isomorphismus

$$H^i(G_1, \overline{K}_1^{\dagger}) \xrightarrow{\sim} H^i(G_2, \overline{K}_2^{\dagger}) \quad \forall i.$$

Ist nun

$$\varphi': \overline{K}_1 \xrightarrow{\sim} \overline{K}_2$$

ein weiterer K-Isomorphismus, so erhalten wir das kommutative Diagramm

$$\begin{array}{ccc} H^i(G_1,\overline{K}_1^\dagger) & \stackrel{(\varphi^*,\varphi)}{\longrightarrow} & H^i(G_2,\overline{K}_2^\dagger) \\ \parallel & & \downarrow ((\varphi'\circ\varphi^{-1})^*,\varphi'\circ\varphi^{-1}) \\ H^i(G_1,\overline{K}_1^\dagger) & \stackrel{(\varphi'^*,\varphi')}{\longrightarrow} & H^i(G_2,\overline{K}_2^\dagger) \end{array}$$

Nun ist $(\varphi' \circ \varphi^{-1})^*$ ein innerer Automorphismus von G_2 , also gilt nach Satz 1.18 in Kapitel 3.2:

$$((\varphi' \circ \varphi^{-1})^*, \varphi' \circ \varphi^{-1}) = \mathrm{id}_{H^i(G_2, \overline{K}_2^{\dagger})}.$$

Wir erhalten daher einen kanonischen Isomorphismus

$$H^i(G(\overline{K}_1/K_1), \overline{K}_1^{\dagger}) \xrightarrow{\sim} H^i(G(\overline{K}_2/K_2), \overline{K}_2^{\dagger})$$

für alle i.

Man benutzt oft die invarianten Schreibweisen

$$H^{i}(K, \mathbb{G}_{a}) = H^{i}(G(\overline{K}/K), \overline{K}^{+})$$

 $H^{i}(K, \mathbb{G}_{m}) = H^{i}(G(\overline{K}/K), \overline{K}^{\times}).$

1.2 Additive Theorie

Satz 1.1. Sei L|K eine Galoiserweiterung mit Gruppe G. Dann gilt

$$H^i(G, L^+) = 0 \qquad \forall i \ge 1.$$

Beweis. Wegen

$$H^{i}(G, L^{+}) = \lim_{K \subset K' \subset L} H^{i}(G(K'|K), K'^{+})$$

sei ohne Einschränkung L|K endlich . Dann ist wegen der Existenz einer Normalbasis L^+ ein induzierter G-Modul.

Korollar 1.2. Ist L|K endlich, so gilt $\hat{H}^i(G, L^+) = 0 \quad \forall i \in \mathbb{Z}$.

Beweis. L^+ ist induziert, also kohomologisch trivial.

Sei nun K ein Körper der Charakteristik p > 0 und \overline{K} ein separabler Abschluss. Das Polynom $f(X) = X^p - X$ ist separabel, daher ist der Homomorphismus(!)

$$\wp: \overline{K} \longrightarrow \overline{K}$$

$$x \longmapsto x^p - x$$

surjektiv. Der Kern von \wp besteht aus den Nullstellen von f, d.h.

$$\ker(\wp) = \mathbb{F}_p \subset \overline{K}^+$$

(der Primkörper). Wir erhalten somit eine kurze exakte Folge von G_K -Moduln

$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow \overline{K}^+ \stackrel{\wp}{\longrightarrow} \overline{K}^+ \longrightarrow 0$$

Aus der langen exakten Kohomologiefolge und 1.1 erhalten wir

Korollar 1.3. ("Artin-Schreier-Theorie"). Sei K ein Körper der Charakteristik p > 0. Dann gilt

$$H^{i}(G_{K}, \mathbb{Z}/p\mathbb{Z}) = \begin{cases} \mathbb{Z}/p\mathbb{Z} & i = 0\\ K^{+}/\wp K^{+} & i = 1\\ 0 & i \geq 2. \end{cases}$$

Bemerkung. Es gilt

$$H^1(G_K, \mathbb{Z}/p\mathbb{Z}) = \text{Hom}(G_K, \mathbb{Z}/p\mathbb{Z}).$$

D.h. die Elemente $\neq 0$ in $H^1(G_K, \mathbb{Z}/p\mathbb{Z})$ entsprechen surjektiven Homomorphismen

$$G_K \to \mathbb{Z}/p\mathbb{Z}$$
.

Dies entspricht den folgenden Daten:

- eine zyklische Teilerweiterung K'|K von $\overline{K}|K$ vom Grad p
- ein Isomorphismus $G(K'|K) \cong \mathbb{Z}/p\mathbb{Z}$, d.h. ein ausgezeichneter Erzeuger von G(K'|K).

Daher misst $\dim_{\mathbb{F}_p} H^1(G_K, \mathbb{Z}/p\mathbb{Z})$ die maximale Anzahl linear unabhängiger zyklischer Erweiterungen vom Grad p.

Beispiel. Sei \mathbb{F}_q , $q = p^f$, ein endlicher Körper. Dimensionszählung in der exakten Folge

$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{F}_q \stackrel{\wp}{\longrightarrow} \mathbb{F}_q \longrightarrow H^1(G_{\mathbb{F}_q}, \mathbb{Z}/p\mathbb{Z}) \longrightarrow 0$$

liefert

$$\dim_{\mathbb{F}_a} H^1(G_{\mathbb{F}_a}, \mathbb{Z}/p\mathbb{Z}) = 1,$$

d.h. \mathbb{F}_q hat genau eine zyklische Erweiterung vom Grad p. (Das wußten wir sowieso schon).

Bemerkung. Dies läßt sich von $\mathbb{Z}/p\mathbb{Z}$ auf $\mathbb{Z}/p^n\mathbb{Z}$ verallgemeinern. Die Rolle von \overline{K}^+ wird dann von den "Wittvektoren" übernommen.

1.3 Multiplikative Theorie – Hilberts Satz 90

Satz 1.4. (Hilberts Satz 90)

Sei L|K eine Galoiserweiterung mit Gruppe G. Dann gilt

$$H^1(G, L^{\times}) = 0.$$

Beweis. Wie vorher reduziert man auf den Fall L|K endlich. Sei $a:G\to L^\times$ eine Derivation. Für $c\in L^\times$ setzen wir

$$b = \sum_{g \in G} a(g) \cdot g(c).$$

Wegen der linearen Unabhängigkeit der Charaktere

$$L^{\times} \to L^{\times}, \quad c \mapsto gc$$

für $g \in G$ (siehe Algebra-Vorlesung) existiert ein $c \in L^{\times}$, so dass $b \neq 0$. Für $\tau \in G$ erhalten wir

$$a(\tau q) = a(\tau) \cdot \tau(a(q))$$

also

$$a(\tau)^{-1}a(\tau g) = \tau(a(g)).$$

Und daher:

$$\begin{split} \tau(b) &=& \sum_{g \in G} \tau(a(g)) \cdot \tau g(c) \\ &=& \sum_{g \in G} a(\tau)^{-1} a(\tau g) \cdot \tau g(c) \\ &=& a(\tau)^{-1} \ b. \end{split}$$

 \rightarrow $a(\tau) = b/\tau(b) \quad \forall \tau \rightarrow a \text{ ist innere Derivation.}$

Korollar 1.5 (klassischer Hilbertscher Satz 90). Sei L|K eine endliche Galoiserweiterung mit zyklischer Gruppe G. Sei σ ein Erzeuger von G. Dann ist jedes $x \in L^{\times}$ mit $N_{L|K}(x) = 1$ von der Form $x = y/\sigma y$ für ein $y \in L^{\times}$.

Beweis. G zyklisch \Longrightarrow

$$\hat{H}^{-1}(G, L^{\times}) \cong H^1(G, L^{\times}) = 0.$$

Es folgt
$$\ker(N_G) = I_G L^{\times} = (1 - \sigma) \cdot L^{\times}$$
.

Sei n eine natürliche Zahl prim zu char(K). Dann ist das Polynom x^n-a für jedes $a \in \overline{K}^{\times}$ separabel, also der Homomorphismus $\overline{K}^{\times} \xrightarrow{\cdot n} \overline{K}^{\times}$, $x \mapsto x^n$, surjektiv. Wir erhalten eine exakte Folge (die "Kummer-Folge") von G_K -Moduln

$$0 \longrightarrow \mu_n \longrightarrow \overline{K}^{\times} \stackrel{\cdot n}{\longrightarrow} \overline{K}^{\times} \longrightarrow 0.$$

Nach Hilberts Satz 90 folgt

Korollar 1.6 ("Kummer-Theorie").

$$H^1(G_K, \mu_n) \cong K^{\times}/K^{\times n}$$
.

Nun nehmen wir an, dass eine primitive n-te Einheitswurzel ζ_n in K liegt. Wir erhalten einen Isomorphismus von G_K -Moduln

$$\mathbb{Z}/n\mathbb{Z} \xrightarrow{\sim} \mu_n, \quad 1 + n\mathbb{Z} \longmapsto \zeta_n,$$

und folglich einen (von der Wahl von ζ abhängenden) Isomorphismus

$$\operatorname{Hom}(G_K, \mathbb{Z}/n\mathbb{Z}) \cong H^1(G_K, \mu_n) = K^{\times}/K^{\times n}.$$

Für ein $\overline{x} \in K^{\times}/K^{\times n}$ sei $\varphi_{\overline{x}} : G_K \to \mathbb{Z}/n\mathbb{Z}$ der assoziierte Homomorphismus. $U_{\overline{x}} := \ker(\varphi_{\overline{x}}) \subset G_K$ ist ein offener Normalteiler und es gilt

$$G_K/U_{\bar{x}} \stackrel{\sim}{\longrightarrow} \frac{n}{d} \mathbb{Z}/n\mathbb{Z} \subset \mathbb{Z}/n\mathbb{Z}$$

$$|\langle \mathbb{Z}/d\mathbb{Z}|$$

für einen Teiler $d \mid n$. Nun gilt

$$\overline{K}^{U_{\overline{x}}} = K\left(\sqrt[n]{x}\right)$$

wobei $x \in K^{\times}$ ein Vertreter von $\overline{x} \in K^{\times}/K^{\times n}$ ist. Der zu $\frac{n}{d} + n\mathbb{Z}$ zugehörige Erzeuger der zyklischen Gruppe $G_K/U_{\bar{x}}$ ist der Körperautomorphismus

$$\begin{array}{ccc} K\left(\sqrt[n]{x}\right) & \longrightarrow & K\left(\sqrt[n]{x}\right), \\ \sqrt[n]{x} & \longmapsto & \zeta_n^{\frac{n}{d}} \cdot \sqrt[n]{x}. \end{array}$$

D.h: Der Körper zu $\overline{x} \in K^{\times}/K^{\times n}$ ist kanonisch, der assoziierte Erzeuger der zyklischen Gruppe $G(K(\sqrt[n]{x})|K)$ hängt von der Wahl der primitiven Einheitswurzel ζ_n ab.

 \ddot{U} bungsaufgabe: Man verifiziere diese Behauptungen und überlege sich, wie die Situation im Fall der Artin-Schreier-Theorie

$$\operatorname{Hom}(G_K, \mathbb{Z}/p\mathbb{Z}) \Longrightarrow K/\wp K, \quad p = \operatorname{char}(K) > 0$$

aussieht.

1.4 Multiplikative Theorie – die Brauergruppe

Definition. Sei L|K eine Galoiserweiterung mit Gruppe G. Die Gruppe

$$Br(L|K) = H^2(G, L^{\times}).$$

heißt relative Brauergruppe von L/K und

$$Br(K) = Br(\overline{K}|K) = H^2(G_K, \overline{K}^{\times})$$

heißt die (absolute) Brauergruppe von K.

Erinnerung: Ist G eine Gruppe, $H \subset G$ ein Normalteiler und A ein G-Modul mit $H^i(H, A) = 0$, $i = 1, \ldots, n-1$, so haben wir eine exakte Folge

$$0 \longrightarrow H^n(G/H, A^H) \xrightarrow{\inf} H^n(G, A) \xrightarrow{res} H^n(H, A).$$

Ist nun M|L|K ein Turm von Galoiserweiterungen und $A=M^{\times}$, so folgt mit Hilberts Satz 90, dass die Inflation

$$Br(L|K) \longrightarrow Br(M|K)$$

injektiv ist. Wir können die Formel

$$H^{2}(G_{K}, \overline{K}^{\times}) = \underset{K \subseteq L \subset \overline{K}}{\varinjlim} H^{2}(G(L|K), L^{\times})$$

daher in der Form

$$Br(K) = \varinjlim_{K \subseteq L \subset \overline{K}} Br(L|K) = \bigcup_{K \subset L \subset \overline{K}} Br(L|K)$$

schreiben. Die obige exakte Folge liest sich

$$0 \longrightarrow Br(L|K) \longrightarrow Br(K) \longrightarrow Br(L).$$

Definition. Man sagt, dass ein $x \in Br(K)$ in einer Erweiterung L|K zerfällt, wenn das Bild von x in Br(L) gleich 0 ist.

Bemerkungen. Ist L|K galoissch, so besteht Br(L|K) gerade aus den $x \in Br(K)$, die über L zerfallen.

- Jedes $x \in Br(K)$ zerfällt in einer endlichen Erweiterung.

Zwischenbemerkung: Woher die Terminologie? Es gibt einen Isomorphismus

$$Br(K) \cong \left\{ \begin{array}{l} \text{endlich-dimensionale zentrale} \\ \text{einfache } K - \text{Algebren} \end{array} \right\} / \text{gewisse Äquivalenz relation} \sim$$

Ein $A \in Br(K)$ zerfällt über L wenn $A \otimes_K L \sim M_n(L)$ für ein n. Trivialerweise gilt falls $K = \overline{K}$:

$$Br(K) = H^2(G_K, \overline{K}^{\times}) = H^2(\{1\}, \overline{K}^{\times}) = 0.$$

Satz 1.7. Sei K ein endlicher Körper. Dann gilt Br(K) = 0.

Beweis. Sei L|K eine endliche Erweiterung. Dann ist G = G(L|K) zyklisch. Weil L^{\times} endlich ist, gilt

$$h(G, L^{\times}) = 1;$$

also

$$#H^2(G, L^{\times}) = #H^1(G, L^{\times}) = 1.$$

Dies zeigt Br(L|K) = 0 für jede endliche Erweiterung L|K und somit

$$Br(K) = \bigcup_{L} Br(L|K) = 0.$$

Bemerkung. Verschieben in die andere Richtung liefert: $\hat{H}^0(G, L^{\times}) = 0$, d.h. $K^{\times} = L^{\times G} = N_G L^{\times}$. Mit anderen Worten: Für jede endliche Erweiterung L|K endlicher Körper ist die Normabbildung

$$N_{L|K}: L^{\times} \longrightarrow K^{\times}$$

surjektiv.

1.5 Die Brauergruppe eines lokalen Körpers

Dieser Abschnitt ist angelehnt an Denis Vogels Zahlentheorievorlesung vom Sommersemester 2021. Es sei K ein nichtarchimedischer lokaler Körper. Unser Ziel ist die Konstruktion eines natürlichen Isomorphismus

$$inv_K : Br(K) \to \mathbb{Q}/\mathbb{Z},$$

der sogenannten Invariantenabbildung.

Lemma 1.8. Für eine endliche Gruppe G und ein projektives System $(A_i)_{i\in\mathbb{N}}$ kohomologisch trivialer G-Moduln ist auch $\varprojlim_i A_i$ kohomologisch trivial.

Satz 1.9. Sei L/K eine endliche zyklische Erweiterung und G = Gal(L/K). Dann gilt

$$\mid \hat{H}^n(G, L^{\times}) \mid = \begin{cases} [L:K], & n \text{ gerade} \\ 1 & n \text{ ungerade} \end{cases}$$

Insbesondere ist |Br(L|K)| = [L:K].

Beweis. Nach Satz 1.10 in Kapitel 4 ist $\hat{H}^n(G, L^{\times}) \cong \hat{H}^{n+2}(G, L^{\times})$ für alle $n \in \mathbb{Z}$. Nach Hilberts Satz 90 is $|\hat{H}^1(G, L^{\times})| = 1$ Es reicht also zu zeigen, dass der Herbrandindex

$$h(G, L^{\times}) = \frac{|\hat{H}^{0}(G, L^{\times})|}{|\hat{H}^{1}(G, L^{\times})|}$$

gleich [L:K] ist.

Sei σ in Erzeuger von G und es sei |G| = n also $G = \{1, \sigma, \dots, \sigma^{n-1}\}$. Nach dem Satz vom primitiven Element gibt es $a \in L^{\times}$ mit L = K(a). Dann ist $\{\sigma^i a\}_{i=1,\dots n-1}$ eine Basis von L und insbesondere sind die $\sigma^i a$ linear unabhängig über \mathcal{O}_K . Nach Multiplikation mit einem Element von K können wir annehmen, dass $a \in \mathcal{O}_L$. Wir betrachten den G-Untermodul

$$M := \bigoplus_{i=0}^{n-1} \sigma^i a \mathcal{O}_K \subseteq \mathcal{O}_L.$$

Es ist $M \cong \mathcal{O}_K[G]$. Außerdem ist M abgeschlossen in \mathcal{O}_L und $(\mathcal{O}_L : M) < \infty$, denn M und \mathcal{O}_L haben beide Rang n und \mathcal{O}_L ist endlich erzeugt. Daraus folgt, dass M offen in \mathcal{O}_L ist. Das bedeutet, dass es $N \in \mathbb{N}$ gibt mit $\pi_K^N \mathcal{O}_L \subseteq M$, wobei π_K eine Uniformisierende von K ist.

Wir setzen für $i \ge 0$

$$A_i := 1 + \pi_K^{N+i} M \subseteq \mathcal{O}_L^{\times}.$$

Die A_i bilden eine offene Umgebungsbasis der 1 in \mathcal{O}_L^{\times} . Wir behaupten, dass A_i ein G-Untermodul von endlichem Index ist. Um zu zeigen, dass es ein G-Untermodul ist, berechnen wir für $x, y \in M$ und $\sigma \in G$:

$$(1 + \pi_K^{N+i}x)(1 + \pi_K^{N+i}y) = 1 + \pi_K^{N+i}(x + y + \pi_K^{N+i}xy) \in A_i$$

$$(1 - \pi_K^{N+i}x)^{-1} = 1 + \pi_K^{N+i}(x + \sum_{j=1}^{\infty} x^{j+1}(\pi_K^{N+i})^j) \in A_i \quad (\mathcal{O}_L \text{ vollständig})$$

$$\sigma(1 + \pi_K^{N+i}x) = 1 + \pi_K^{N+i}\sigma(x) \in A_i$$

Außerdem ist $(\mathcal{O}_L^{\times}: A_i) < \infty$, da A_i offen in \mathcal{O}_L^{\times} und \mathcal{O}_L^{\times} kompakt ist.

Die G-Moduln A_i/A_{i+1} sind kohomologisch trivial, da wir folgende Isomorphismen haben (k ist der Restklassenkörper von K):

$$A_i/A_{i+1} \xrightarrow{\sim} M/\pi_K M$$
$$1 + \pi_K^{N+i} x + A_{i+1} \mapsto x + \pi_K M,$$

$$M/\pi_K M \xrightarrow{\sim} k[G]$$

$$\sigma^i a + \pi_K M \mapsto \sigma^i.$$

Mithilfe der exakten Folgen

$$0 \to A_i/A_{i+} \to A_0/A_{i+1} \to A_0/A_i \to 0$$

und Induktion schließen wir, dass A_0/A_i für alle i kohomologisch trivial ist. Wegen Lemma 1.8 ist daher $A_0 = \varprojlim_i A_0/A_i$ kohomologisch trivial.

Wir wollen nun den Herbrandindex $h(G, L^{\times}) = h(L^{\times})$ bestimmen. Weil er multiplikativ in kurzen exakten Folgen ist (Satz 1.12 aus Kapitel 4), bekommen wir aus der exakten Folge

$$0 \to \mathcal{O}_L^{\times} \to L^{\times} \stackrel{v_L}{\to} \mathbb{Z} \to 0$$

die Gleichung

$$h(L^{\times}) = h(\mathcal{O}_L^{\times})h(\mathbb{Z}) = h(\mathcal{O}_L)[L:K].$$

Außerdem ist $h(\mathcal{O}_L/A_0) = 1$, da A_0 endlichen Index in \mathcal{O}_L hat (siehe Satz 1.13 aus Kapitel 4). Deshalb ist $h(\mathcal{O}_L^{\times}) = h(A_0)$ und das ist 1, weil A_0 kohomologisch trivial ist. Daraus folgt

$$h(G, L^{\times}) = [L : K].$$

Lemma 1.10. Sei L/K eine unverzweigte Erweiterung und $G = \operatorname{Gal}(L/K)$. Dann sind \mathcal{O}_L^{\times} und $U_L^{(1)}$ kohomologisch triviale G-Moduln.

Beweis. Für eine abgeschlossene Untergruppe $H \subseteq G$ ist

$$H^{i}(H, \mathcal{O}_{L}^{\times}) = H^{i}(\operatorname{Gal}(L/L^{H}), \mathcal{O}_{L}^{\times}) = \varprojlim_{L/M/L^{H}} H^{i}(\operatorname{Gal}(M/L^{H}), \mathcal{O}_{M}^{\times}),$$

wobei der projektive Limes über alle Zwischenerweiterungen $L/M/L^H$ läuft mit M/L^H endlich. Die analoge Aussage gilt für $U_L^{(1)}$. Damit haben wir uns auf den Fall endlicher Erweiterungen zurückgezogen. Wir können also im Folgenden annehmen, dass L/K endlich ist.

Sei ℓ/k die zu L/K gehörige Restklassenkörpererweiterung. Wir betrachten die Filtrierung

$$\ldots \subset U_L^{(2)} \subset U_L^{(1)} \subset \mathcal{O}_L^{\times}$$

Es ist

$$U_L^{(i-1)}/U_L^{(i)} \cong \ell^+ \cong k^+[G],$$

wobei wir für den zweiten Isomorphismus benutzt haben, dass L/K unverzweigt ist und damit $G=\operatorname{Gal}(L/K)=\operatorname{Gal}(\ell/k)$. Damit ist $U_L^{(i-1)}/U_L^{(i)}$ induziert, also kohomologisch trivial. Per Induktion folgt mithilfe der exakten Folge

$$1 \to U_L^{(i-1)}/U_L^{(i)} \to U_L^{(1)}/U_L^{(i)} \to U_L^{(1)}/U_L^{(i-1)} \to 1$$
,

dass $U_L^{(1)}/U_L^{(i)}$ kohomologisch trivial ist für alle $i\geq 1$ und damit nach Lemma 1.8 auch $U_L^{(1)}.$

Um einzusehen, dass \mathcal{O}_L^\times kohomologisch trivial ist, untersuchen wir die exakte Folge

 $1 \to U_L^{(1)} \to \mathcal{O}_L^{\times} \to \ell^{\times} \to 1.$

Wir wissen schon, dass $U_L^{(1)}$ kohomologisch trivial ist. Außerdem ist ℓ^{\times} kohomologisch trivial, denn $H^1(G,\ell^{\times})=H^1(\mathrm{Gal}(\ell/k),\ell^{\times})=0$ nach Hilberts Satz 90. Weil G zyklisch ist, reicht es daher zu zeigen, dass der Herbrandindex

$$h(G, \ell^{\times}) = \frac{|\hat{H}^0(G, \ell^{\times})|}{|\hat{H}^1(G, \ell^{\times})|}$$

trivial ist. Dies ist der Fall, weil ℓ^{\times} endlich ist (siehe Satz 1.13 aus Kapitel 4). Das gleiche Argument zeigt, dass die Kohomologiegruppen $H^i(H,\ell^{\times})$ für jede Untergruppe H von G verschwinden. Insgesamt schließen wir mit obiger exakter Folge, dass \mathcal{O}_L^{\times} kohomologisch trivial ist.

Korollar 1.11. Sei L/K eine endliche unverzweigte Erweiterung. Dann ist die Norm

$$N_{L/K}: \mathcal{O}_L^{\times} \to \mathcal{O}_K^{\times}$$

surjektiv.

Beweis. Weil \mathcal{O}_L^{\times} kohomologisch trivial ist, gilt

$$0 = \hat{H}^0(\operatorname{Gal}(L/K), \mathcal{O}_L^{\times}) = \mathcal{O}_K^{\times}/N_{L/K}\mathcal{O}_L^{\times}.$$

Für eine unverzweigte Erweiterung L/K mit Galoisgruppe $G=\operatorname{Gal}(L/K)$ und Bewertung $v:L^{\times}\to\mathbb{Z}$ konstruieren wir nun die Invariantenabbildung

$$inv_{L/K}: Br(L/K) \to \mathbb{Q}/\mathbb{Z}.$$

Die exakte Folge

$$1 \to \mathcal{O}_L^{\times} \to L^{\times} \xrightarrow{v} \mathbb{Z} \to 0$$

diskreter G-Moduln gibt uns wegen der kohomologischen Trivialität von \mathcal{O}_L^{\times} einen Isomorphismus

$$Br(L/K) = H^2(G, L^{\times}) \xrightarrow{\sim} H^2(G, \mathbb{Z}).$$

Nun betrachten wir die exakte Folge

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0.$$

10

Weil \mathbb{Q} eindeutig teilbar ist, ist es kohomologisch trivial und wir erhalten einen Isomorphismus

$$H^2(G,\mathbb{Z}) \stackrel{\sim}{\longleftarrow} H^1(G,\mathbb{Q}/\mathbb{Z}) = \text{Hom}(G,\mathbb{Q}/\mathbb{Z}).$$

Weil L/K unverzweigt ist, haben wir $G = \operatorname{Gal}(\ell/k)$ und $\operatorname{Gal}(\ell/k)$ wird topologisch erzeugt vom Frobeniusautomorphismus, der $x \in \ell$ auf x^q schickt, wobei q = #k. Es gibt also einen eindeutig bestimmten Frobeniusautomorphismus Frob $_{L/K}$ auf L, der den Frobeniusautomorphismus auf ℓ induziert und dieser ist ein topologischer Erzeuger der Gruppe G. Wir definieren

$$\eta: H^1(G, \mathbb{Q}/\mathbb{Z}) = \operatorname{Hom}(G, \mathbb{Q}/\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}, \qquad \varphi \mapsto \varphi(\operatorname{Frob}_{L/K}).$$

Diese Abbildung ist injektiv, da $\text{Frob}_{L/K}$ die Gruppe G topologisch erzeugt und mit Hom(G,-) die stetigen Homomorphismen gemeint sind.

Definition. Die Komposition

$$inv_{L/K}: Br(L/K) = H^2(G, L^{\times}) \cong H^2(G, \mathbb{Z}) \cong H^1(G, \mathbb{Q}/\mathbb{Z}) \hookrightarrow \mathbb{Q}/\mathbb{Z}$$

heißt Invariantenabbildung.

Lemma 1.12. Sei M/L/K ein Turm unverzweigter Erweiterungen. Dann kommutiert das Diagramm

$$Br(L|K) \xrightarrow{inv_{L/K}} \mathbb{Q}/\mathbb{Z}$$

$$\downarrow_{\inf} \qquad \qquad \parallel$$

$$Br(M/K) \xrightarrow{invM/K} \mathbb{Q}/\mathbb{Z}.$$

Beweis. Alle in der Definition der Invariantenabbildung vorkommenden Abbildungen sind funktoriell, ebenso die Inflation. \Box

Satz 1.13. Es existiert ein eindeutig bestimmter Isomorphismus

$$inv_K: Br(K^{nr}|K) \xrightarrow{\sim} \mathbb{Q}/\mathbb{Z}$$

(nämlich $inv_K = inv_{k^{nr}/K}$), so dass für alle endlichen Galoiserweiterungen L/K in K^{nr} das Diagramm

$$Br(L|K) \xrightarrow{inv_{L|K}} \frac{1}{[L:K]} \mathbb{Z}/\mathbb{Z}$$

$$\downarrow \inf \qquad \qquad \downarrow$$

$$Br(K^{nr}|K) \xrightarrow{\sim} \mathbb{Q}/\mathbb{Z}$$

kommutiert.

Beweis. Für eine endliche unverzweigte Erweiterung L/K ist die Galoisgruppe $G=\operatorname{Gal}(L/K)$ endlich zyklisch und wird vom Frobeniusautomorphismus $\operatorname{Frob}_{L/K}$ erzeugt. Wir können somit einen Homomorphismus $f\in\operatorname{Hom}(G,\mathbb{Q}/\mathbb{Z})=H^1(G,\mathbb{Q}/\mathbb{Z})$ definieren dadurch, dass

$$f(\operatorname{Frob}_{L/K}) = \frac{1}{[L:K]} + \mathbb{Z}.$$

Insbesondere ist das Bild von $inv_{L/K}$ gleich $\frac{1}{[L:K]}\mathbb{Z}/\mathbb{Z}$. Da $\inf_{L/K}$ injektiv ist, ist

 $\operatorname{im}(\operatorname{inv}_{L/K}) \cong \operatorname{Br}(L|K) \cong H^1(G,\mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}(\mathbb{Z}/[L:K]\mathbb{Z},\mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}/[L:K]\mathbb{Z},$ das heißt

$$\operatorname{im}(\operatorname{inv}_{L|K}) = \frac{1}{[L:K]} \mathbb{Z}/\mathbb{Z}.$$

Das Diagramm in der Aussage des Satzes kommutiert wegen Bemerkung 1.12. Außerdem ist inv_K surjektiv, da

$$Br(K^{\text{nr}}|K) = \bigcup_{K^{\text{nr}}/L/K \text{ endl.}} Br(L|K)$$

und es zu jedem $n \in \mathbb{N}$ eine unverzweigte Erweiterung L/K vom Grad n gibt. Außerdem folgt daraus, dass inv_K durch $inv_{L/K}$ für endliche unverzweigte Erweiterungen L/K eindeutig bestimmt ist.

Theorem 1.14. Sei L/K eine endliche separable Erweiterung. Dann existiert ein kanonischer Homomorphismus

$$res: Br(K^{nr}|K) \to Br(L^{nr}|L),$$

so dass das folgende Diagramm kommutiert:

$$Br(K^{\text{nr}}|K) \xrightarrow{res} Br(L^{\text{nr}}|L)$$

$$\downarrow^{inv_K} \qquad \downarrow^{inv_L}$$

$$\mathbb{O}/\mathbb{Z} \xrightarrow{\cdot [L:K]} \mathbb{O}/\mathbb{Z}.$$

Ist L/K galoissch, so kann der Kern von res kanonisch mit einer zyklischen Untergruppe der Ordnung [L:K] von Br(L|K) identifiziert werden.

Beweis. Wir setzen $\Gamma_K := \operatorname{Gal}(K^{\operatorname{nr}}/K)$ und $\Gamma_L := \operatorname{Gal}(L^{\operatorname{nr}}/L)$. Es ist $L^{\operatorname{nr}} = LK^{\operatorname{nr}}$. Insbesondere haben wir eine natürliche Inklusion $\varphi : \Gamma_L \hookrightarrow \Gamma_K$. Wir betrachten das Diagramm

$$Br(K^{\mathrm{nr}}|K) \xrightarrow{v_K} H^2(\Gamma_K, \mathbb{Z}) \xrightarrow{\delta^{-1}} H^1(\Gamma_K, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\eta_K} \mathbb{Q}/\mathbb{Z}$$

$$\downarrow^{res} \qquad \qquad \downarrow^{e_{L/K} \cdot res} \qquad \downarrow^{e_{L/K} \cdot res} \qquad \downarrow^{e_{L/K} f_{L/K} = [L:K]}$$

$$Br(L^{\mathrm{nr}}|L) \xrightarrow{v_L} H^2(\Gamma_L, \mathbb{Z}) \xrightarrow{\delta^{-1}} H^1(\Gamma_K, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\eta_L} \mathbb{Q}/\mathbb{Z}.$$

Dieses kommutiert wegen $v_L|_{K^{nr}} = e_{L/K}v_K$ und $\operatorname{Frob}_L|_{K^{nr}} = \operatorname{Frob}_K^{f_{L/K}}$. Daraus folgt die erste Behauptung.

Für eine endliche Galoiserweiterung L/K ist $L^{\rm nr}/K$ galoissch (das liegt an der Maximalität von $L^{\rm nr}/L$; für $\sigma \in G_K$ ist $\sigma L^{\rm nr}$ unverzweigt über $\sigma L = L$ und somit enthalten in $L^{\rm nr}$). Wir erhalten ein kommutatives Diagramm mit exakten Zeilen

$$0 \longrightarrow \frac{1}{[L:K]} \mathbb{Z}/\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot [L:K]} \mathbb{Q}/\mathbb{Z}$$

$$\sim \uparrow \qquad inv_K \uparrow \sim \qquad inv_L \uparrow \sim$$

$$0 \longrightarrow \ker(res) \longrightarrow Br(K^{\operatorname{nr}}|K) \xrightarrow{res} Br(L^{\operatorname{nr}}|L)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow Br(L|K) \xrightarrow{\operatorname{inf}} Br(L^{\operatorname{nr}}|K) \xrightarrow{res} Br(L^{\operatorname{nr}}|L),$$

woraus sich die zweite Behauptung ergibt.

Korollar 1.15. Sei L/K eine endliche Galoiserweiterung. Dann ist Br(L|K) zyklisch der Ordnung [L:K].

Beweis. Wir beweisen das per Induktion nach n = [L:K]. Für n = 1 ist die Aussage klar und für n > 1 und L/K zyklisch folgt sie aus dem Satz 1.14 und Satz 1.9. Falls L/K nicht zyklisch ist, finden wir eine nichttiviale galoissche Zwischenerweiterung L/M/K, denn die absolute Galoisgruppe eines lokalen Körpers ist auflösbar. Nach Induktionsvoraussetzung ist |Br(L|M)| = [L:M] und |Br(M|K)| = [M:K]. Außerdem haben wir die exakte Folge

$$0 \to Br(M|K) \to Br(L|K) \to Br(L|M)$$
.

also

$$|Br(L|K)| \le |Br(M|K)| \cdot |Br(L|M)| = [M:K] \cdot [L:M] = [L:K].$$

Wegen Satz 1.14 enthält Br(L|K) aber eine zyklische Untergruppe der Ordnung [L:K], muss also gleich dieser zyklischen Untergruppe sein.

Theorem 1.16. Es existiert ein eindeutig bestimmer Isomorphismus

$$inv_K : Br(K) \to \mathbb{Q}/\mathbb{Z},$$

so dass für jede endliche separable Erweiterung L|K das Diagramm

$$Br(K) \xrightarrow{res} Br(L)$$

$$\downarrow^{inv_K} \qquad \downarrow^{inv_L}$$

$$\mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot [L:K]} \mathbb{Q}/\mathbb{Z}$$

kommutiert und für jede endliche Galoiserweiterung L/K das Diagramm

$$0 \longrightarrow Br(L/K) \xrightarrow{\inf} Br(K) \xrightarrow{res} Br(L)$$

$$\downarrow^{inv_{L/K}} \qquad \downarrow^{inv_{K}} \qquad \downarrow^{inv_{L}}$$

$$0 \longrightarrow \frac{1}{[L:K]} \mathbb{Z}/\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot [L:K]} \mathbb{Q}/\mathbb{Z}$$

kommutiert.

Beweis. Wegen Korollar 1.15 ist für eine endliche galoissche Erweiterung L/K der Kern der Restriktion

$$res: Br(K^{nr}|K) \to Br(L^{nr}|L),$$

gleich Br(L/K) (siehe Theorem 1.14). Das heißt wir können Br(L/K) kanonisch als Untergruppe von $Br(K^{nr}|K)$ auffassen. Außerdem ist

$$Br(K) = \bigcup_{L/K \text{ endl. gal.}} Br(L|K),$$

das heißt inf : $Br(K^{nr}|K) \to Br(K)$ is ein Isomorphismus. Wir können also in Satz 1.13 die maximal unverzweigte Erweiterung K^{nr} von K durch einen separablen Abschluss K^{sep} von K ersetzen. Dann folgt die Behauptung.

Korollar 1.17. Sei L/K endlich separabel. Dann kommutiert das Diagramm

$$Br(L) \xrightarrow{cor} Br(K)$$

$$inv_L \downarrow \qquad \qquad \downarrow inv_K$$

$$\mathbb{Q}/\mathbb{Z} = \mathbb{Q}/\mathbb{Z}.$$

Beweis. Betrachte das Diagramm

$$Br(K) \xrightarrow{res} Br(L) \xrightarrow{cor} Br(K)$$

$$\downarrow^{inv_K} \qquad \downarrow^{inv_L} \qquad \downarrow^{inv_K}$$

$$\mathbb{Q}/\mathbb{Z} \xrightarrow{\cdot [L:K]} \mathbb{Q}/\mathbb{Z} \xrightarrow{\varphi} \mathbb{Q}/\mathbb{Z},$$

wobei φ so gewählt ist, dass das Diagramm kommutiert. Da $cor \circ res = [L:K]$, muss φ die Identität sein.

Korollar 1.18. Sei M/L/K ein Turm endlicher Galoiserweiterungen. Dann kommutiert das Diagramm

$$Br(L|K) \stackrel{\text{inf}}{\longleftrightarrow} Br(M|K) \xrightarrow{res} Br(M|L)$$

$$\downarrow^{inv_{L/K}} \qquad \downarrow^{inv_{M/K}} \qquad \downarrow^{inv_{M/L}}$$

$$\frac{1}{[L:K]} \mathbb{Z}/\mathbb{Z} \stackrel{\cdot}{\longleftrightarrow} \frac{1}{[M:L]} \mathbb{Z}/\mathbb{Z}.$$

Beweis. Das rechte Quadrat kommutiert wegen Theorem 1.16 und das linke wegen Bemerkung 1.12. $\hfill\Box$

Definition. Sei L/K eine endliche Galoiserweiterung. Das Element

$$inv_{L/K}^{-1}(\frac{1}{[L:K]} + \mathbb{Z}) \in Br(L|K)$$

heißt Fundamentalklasse von ${\cal L}/{\cal K}.$