실 그 보고 그 으 어 정보통계학과 백재욱 교수

제3강 (3장)

일워배치법

- 3.1 일원배치의 구조모형
- 3.2 분산분석
- 3.3 분산분석 후의 추정
- 3.4 반복수가 같지 않은 실험
- 3.5 랜덤모형

정보통계학과 백재욱 교수

제3강 일원배치법

3.1 일원배치의 구조모형

3.1 일원배치의 구조모형

가장 중요한 요인(인자)이 반응치에 어떤 영향을 미치는지 알고 싶다.

- **1** 모수인자(고정인자)
 - 관심의 대상이 되는 반응온도가, 예를 들어 80℃, 100 ℃, 120 ℃ 로 고정된 인자
 - 인자의 수준에 따라서 반응치의 모평균이 달라지는가?
 - 반응치에 대한 최적조건은 무엇인가?
- ② 변량인자(랜덤인자)
 - 선정된 반응온도, 예를 들어 80℃, 100℃, 120℃ 가 많은 반응온도 중 일부인 경우 반응온도는 변량인자이다.
 - 온도(인자)의 특정한 수준은 기술적으로 의미를 가지지 못한다.
 - 온도를 A라고 하는 경우 A의 분산 σ^2_A 로 A의 효과를 파악한다.

3.1 일원배치의 구조모형

〈표 3-1〉 일원배치법의 구조모형

		실험의 반복	합계	평균
	A_1	$x_{11} x_{12} \cdots x_{1r}$	$T_{1.}$	$\bar{x}_{1.}$
인자의	A_2	$x_{21} x_{22} \cdots x_{2r}$	$T_{2.}$	$\bar{x}_{2.}$
수준	•	•	•	•
	A_a	$x_{a1} x_{a2} \cdots x_{ar}$	$T_{a.}$	\bar{x}_a .
			T	$ar{ar{x}}$

3.1 일원배치의 구조모형

□ 모형

$$x_{ij} = \mu_i + \epsilon_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

- 모수모형의 경우 $\sum \alpha_i = 0$ 이라고 가정함

오차 ϵ_{ij} 에 대한 가정

■ 정규성: 오차의 분포는 정규분포를 따른다.

■ 독립성: 오차들은 서로 독립이다.

■ 불편성: 오차의 기대값은 0으로 치우침이 없다.

■ 등분산성: 오차의 분산은 인자의 수준과 실험의 반복에 관계없이 일정하다.

제3강 일원배치법

3.2 분산분석

12 귀무가설

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$

- 수준 효과 간 차이가 없다

3 대립가설

 H_1 : α_i 모두 0인 것은 아니다.

■ 어떤 수준 효과 간 차이가 있다

4 변동 및 자유도의 분해

$$x_{ij} - \bar{x} = (\bar{x}_{i.} - \bar{x}) + (x_{ij} - \bar{x}_{i.})$$
 총 변동 α_i 에 기인하는 변동 잔차변동 $\sum_i \sum_j (x_{ij} - \bar{x}_j)^2 = \sum_i r(\bar{x}_{i.} - \bar{x}_j)^2 + \sum_i \sum_j (x_{ij} - \bar{x}_{i.})^2$ $SS_T = SS_A + SS_E$ 자유도: $ar - 1 = a - 1 + a(r - 1)$

5 변동의 간단한 표현

$$SS_{T} = \sum_{i} \sum_{j} x_{ij}^{2} - CT, \quad CT = \frac{T^{2}}{ar}$$

$$SS_{A} = \sum_{i} \frac{T_{i}^{2}}{r} - CT$$

$$SS_{E} = SS_{T} - SS_{A}$$

〈표 3-3〉 분산분석표

요인	제곱합	자유도	평균제곱	F_0	F(a)
A	SS_A	a-1	MS_A	$rac{MS_A}{MS_E}$	F(a-1, a(r-1); a)
E	SS_E	a(r-1)	MS_E		
T	SS_T	ar-1			

앞의 가설에 대한 검정방법

- 만약 검정통계량 ' $F_0 > F(a-1,a(r-1);\alpha)$ '이면 유의수준 α 에서 귀무가설 기각
- 유의확률을 구하여 '유의확률 p 값〈유의수준α'이면 대립가설 채택

예 3.1 납품업체 A_1 , A_2 , A_3 , A_4 간 마모도에 유의한 차이가 있는가?

<표 3-4> 마모도 검사자료

			반	T _{i.}			
	A_1	1.93	2.38	2.20	2.25	8.76	2.19
납품	A_2	2.55	2.72	2.75	2.70	10.72	2.68
업체	A_3	2.40	2.68	2.32	2.28	9.68	2.42
	A_4	2.33	2.38	2.28	2.25	9.24	2.31
		38.4	2.40				

풀이

《분산분석표》

요 인	제곱합	자유도	평균제곱	F_0	F(0.01)
A	0.5240	3	0.1747	8.78 **	5.95
E	0.2386	12	0.0199		
T	0.7626	15			

검정통계량 F_0 의 값 8.78 > F(3,12; 0.01) = 5.95

→ 귀무가설 기각

(어떤 납품업체들 간에는 직물 마모도 간 차이가 있다)

3.2 분산분석 R 실습

a1 = c(1.93, 2.38, 2.20, 2.25)

a2 = c(2.55, 2.72, 2.75, 2.70)

a3 = c(2.40, 2.68, 2.32, 2.28)

a4 = c(2.33, 2.38, 2.28, 2.25)

wear = c(a1, a2, a3, a4)

group = c("a1", "a2", "a3", "a4")

group \leftarrow rep(group, c(4, 4, 4, 4))

wear.dat <- data.frame(group, wear)</pre>

tapply(wear, group, sum)

a1 a2 a3 a4

8.76 10.72 9.68 9.24

tapply(wear, group, mean)

a1 a2 a3 a4

2.19 2.68 2.42 2.31

boxplot(wear ~ group)

aov.out = aov(wear ~ group, data=wear.dat)

summary(aov.out)

Df Sum Sq Mean Sq F value Pr(>F)

group 3 0.5240 0.17467 8.785 0.00235 **

Residuals 12 0.2386 0.01988

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

제3강 일원배치법

3.3 분산분석 후의 추정

3.3 분산분석 후의 추정

lacktriangle 각 수준에서 모평균 μ_i 의 추정

일원배치법의 경우 각 수준에서 μ_i 신뢰구간 : $\bar{x_i}$ $\pm t(\phi_E; \frac{\alpha}{2})\sqrt{\frac{MS_E}{r}}$

- 예 3.2 (예 3.1)의 직물마모도 예에서 각 수준에서의 직물마모도 모평균의 95% 신뢰구간을 구하라.
- 신뢰구간의 폭이 $t(12; 0.025)\sqrt{\frac{MS_E}{r}} = 2.179\sqrt{\frac{0.0199}{4}} = 0.1537$ 이므로 각각의 수준에서 직물 마모도의 모평균의 95% 신뢰구간은 다음과 같다.

 μ_1 : 2.19 \pm 0.1537 = (2.0363, 2.3437)

 μ_2 : 2.68 \pm 0.1537 = (2.5263, 2.8337)

 μ_3 : 2.42 \pm 0.1537 = (2.2663, 2.5737)

 μ_4 : 2.31 ± 0.1537 = (2.1563, 2.4637)

3.3 분산분석 후의 추정

최소유의차 검정

• 일원배치에서 두 수준 A_i 와 A_j 에서 모평균의 차이인 $\mu_i - \mu_j$ 의 $100(1-\alpha)\%$ 신뢰구간 :

$$(\overline{x_i} - \overline{x_j}) \pm t(\phi_E; \frac{\alpha}{2}) \sqrt{MS_E \frac{2}{r}}$$

$$t(\phi_E; \frac{\alpha}{2})$$
 $MS_E \frac{2}{r}$ 를 최소유의차(least significant differense, LSD)라고 부름

정보통계학과 백재욱 교수

제3강 일원배치법

3.4 반복수가 같지 않은 실험

◆ 모형

$$x_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

$$i = 1, ..., \alpha \quad j = 1, ..., r_i$$

$$SS_A = \sum_i \frac{T_i^2}{r_i} - CT$$

<표 3-5> 반복수와 같지 않은 일원배치법의 분산분석표

요 인	제곱합	자유도	평균제곱	${F}_0$	F(a)
A	SSA	a-1	MS_A	$\frac{MS_A}{MS_E}$	F(a-1, N-a:a)
E	SS_E	N-a	MS_E		
T	SS_T	N-1			

 A_i 수준에서의 모평균 μ_i 의 95% 신뢰구간 : $\bar{x}_{i.} \pm t(\phi_E; 0.025)\sqrt{\frac{MS_E}{r_i}}$

예 3.2 다음 4종류의 식단에 따른 식이요법이 혈액응고시간에 영향을 주는가?

<표 3-6> 혈액응고시간 자료

실험의 반복									
인	A_1	62 60 63 59 61							
자	A_2	63 67 71 64 65 66							
자의수준	A_3	68 66 71 67 68 68							
준	A_4	56 62 60 61 63 64							

	실험의 반복							합계	평균	
6	 - -	A_1	-3	-5	-2	-6	-4		-20	-4
ス	十 11	A_2	-2	2	6	-1	0	1	6	1
수	-	A_3	3	1	6	2	3	3	18	3
쿤	<u>z</u>	A_4	-9	-3	-5	-4	-2	-1	-24	-4

자료변환 $y_{ij} = x_{ij} - 65$

풀이 가설의 설정

 $H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$

(식이요법에 따라 혈액응고 시간에 차이가 없다)

 H_1 : α_i 가 모두 0인 것은 아니다.

(식이요법에 따라 혈액응고 시간이 모두 같은 것은 아니다)

풀이(계속) 제곱합의 계산

$$CT = \frac{T^2}{N} = \frac{(-20)^2}{23} = 17.3913$$

$$SS_T = \sum_i \sum_j x^2_{ij} - CT = (-3)^2 + (-5)^2 + \dots + (-1)^2 - 17.3913$$

$$= 322.6087$$

$$SS_A = \sum_i \frac{T_i^2}{r_i} - CT = \left[\frac{(-20)^2}{5} + \frac{6^2}{6} + \frac{18^2}{6} + \frac{(-24)^2}{6} \right] - 17.3913$$

$$= 218.6087$$

$$SS_F = SS_T - SS_A = 322.6087 - 218.6087 = 104$$

풀이(계속) 자유도의 계산

$$\phi_T = N - 1 = 22$$

$$\phi_A = a - 1 = 3$$

$$\phi_E = \phi_T - \phi_A = 19$$

풀이(계속)

<분산분석표>

요 인	제곱합	자유도	평균제곱	F_0	F(0.01)
A	218.6087	3	72.8696	13.31**	5.01
E	104.0000	19	5.4737		
T	322.6087	22			

- 검정통계량 F_0 의 값 13.31 > F(3,19; 0.01) = 5.01

→ 귀무가설 기각

(식이요법에 따라 혈액응고 시간이 다 똑같은 것은 아니다) 추후분석 필요!

 A_i 수준에서의 모평균 μ_i 의 95% 신뢰구간 : $\bar{x}_{i.} \pm t(\phi_E; 0.025)\sqrt{\frac{MS_E}{r_i}}$

$$r_1$$
=5, r_2 = r_3 = r_4 =6, $t(19;\ 0.025)=2.093이고 MS_E =5.4737을 대입하면$

•
$$\mu_1$$
의 95% 신뢰구간: $61 \pm 2.093 \cdot \sqrt{\frac{5.4737}{5}} \leftrightarrow 61 \pm 2.1899 = (58.811, 63.189)$

•
$$\mu_2$$
의 95% 신뢰구간 : $66 \pm 2.093 \cdot \sqrt{\frac{5.4737}{6}} \leftrightarrow 66 \pm 1.9991 = (64.001, 67.999)$

- μ₃의 95% 신뢰구간 : 68 ± 1.9991=(66.001, 69.999)
- μ_4 의 95% 신뢰구간 : 61 ± 1.9991=(59.001, 62.999)

 μ_1 과 μ_2 는 겹치지 않음, μ_2 과 μ_3 는 겹침, ...

제3강 일원배치법

3.5 랜덤모형

랜덤모형

실험일,원료로트,블록,원자재의 배치(batch)등과 같이 요인(인자)의 수준이 고정되지 않고 랜덤하게 뽑아 시험하는 랜덤요인의 구조모형

랜덤모형

* 가설
$$H_0: \sigma^2_A = 0$$
 (랜덤요인이 동질적이다) $H_1: \sigma^2_A > 0$ (랜덤요인이 이질적이다)

*
$$Var(x_{ij}) = Var(\alpha_i) + Var(\varepsilon_{ij})$$

= $\sigma^2_A + \sigma^2_E$ (3.31)

랜덤모형 기여율
$$\varrho = \frac{\sigma^2_A}{\sigma^2_A + \sigma^2_E} \times 100\%$$

$$E(MS_A) = \sigma_E^2 + r\sigma_A^2$$

$$E(MS_E) = \sigma_E^2$$

$$\widehat{\sigma_E^2} = MS_E$$

$$\widehat{\sigma_A^2} = \frac{1}{r}(MS_A - MS_E)$$

총분산의 추정치
$$\hat{V}ar(x_{ij}) = \hat{\sigma}_A^2 + \hat{\sigma}_E^2$$

기여율
$$\varrho$$
의 추정치 : $\hat{\varrho} = \frac{\hat{\sigma}_A^2}{\hat{V}ar(x_{ij})} \times 100\%$

예 3.5 수백 개의 배치(batch)에서 5개의 배치를 랜덤하게 선택하고, 선택된 배치에서 3개의 시료를 채취한 후 정제하여 순도를 측정하였다. 배치(batch) 간 차이가 있는가?

<표 3-8> 배치자료에 의한 화학약품의 순도

batch	1	74	76	75
	2	68	71	72
	3	75	77	77
	4	72	74	73
	5	79	81	79

					$T_{i.}$
	1	-1	1	0	0
	2	-7	-4	-3	-14
batch	3	0	2	2	4
	4	-3	-1	-2	-6
	5	4	6	4	14

자료변환 $y_{ij} = x_{ij} - 75$

풀이 가설의 설정

 $H_0: \sigma^2_A = 0$ (배치 간에 산포가 존재하지 않는다)

 $H_1: \sigma^2_A > 0$ (배치 간에 산포가 존재한다)

풀이(계속) 제곱합의 계산

$$CT = \frac{(-2)^2}{15} = 0.27$$

$$SS_T = \sum_{i} \sum_{j} y^2_{ij} - CT = (-1)^2 + 1^2 + \dots + 4^2 - 0.27 = 165.73$$

$$SS_A = \sum_{i} \frac{T_i^2}{r} - CT = \frac{1}{3} [0^2 + (-14)^2 + 4^2 + (-6)^2 + 14^2] - 0.27$$

$$= 147.74$$

$$SS_F = SS_T - SS_A = 165.73 - 147.74 = 17.99$$

풀이(계속) 자유도의 계산

$$\phi_T = ar - 1 = 15 - 1 = 14$$
 $\phi_A = a - 1 = 5 - 1 = 4$
 $\phi_E = \phi_T - \phi_A = 10$

풀이(계속)

<분산분석표>

요 인	제곱합	자유도	평균제곱	F_0	F(0.01)
A	147.74	4	36.94	20.52**	5.99
E	17.99	10	1.80		
T	165.73	14			

검정통계량 F_0 의 값 20.52 >> F(4,10;0.01) = 5.91

→ 귀무가설 기각

(배치간의 산포가 존재하여 배치가 동질적이 아님)

풀이(계속) 기여율 추정치 계산

$$\begin{split} \widehat{\sigma_E^2} = MS_E &= 1.80 \\ \widehat{\sigma_A^2} = \frac{1}{3}(MS_A - s_E^2) = \frac{1}{3}(36.94 - 1.80) = 11.71 \\ \widehat{Var}(x_{ij}) &= \widehat{\sigma_A^2} + \widehat{\sigma_E^2} = 11.71 + 1.80 = 13.51 \\ \widehat{\rho} &= \frac{\widehat{\sigma_A^2}}{\widehat{Var}(x_{ij})} \times 100\% = \frac{11.71}{13.51} \times 100\% = 86.7\% \end{split}$$

→ 데이터의 총 분산 중에서 86.7%는 순수하게 배치간의 산포 탓으로 설명할 수 있음 (13.3%만이 배치 내의 오차의 산포에 기인함)

R 실습

b1 < -c(74, 76, 75)

b2 < -c(68, 71, 72)

b3 < -c(75, 77, 77)

b4 < -c(72, 74, 73)

b5 < -c(79, 81, 79)

y < -c(b1, b2, b3, b4, b5)

x < -c("b1", "b2", "b3", "b4",

<u>"b5")</u>

x < - rep(x, c(3, 3, 3, 3, 3))

 $boxplot(y \sim x)$

anova \leftarrow aov $(y \sim x)$

summary(anova)

Df Sum Sq Mean Sq F value Pr(>F)

x 4 147.7 36.93 20.52 8.25e-05 ***

Residuals 10 18.0 1.80

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

크게왹나 등풍

다음시간 안내

제4강 (4장)

이원배치법