

Modelo Relacional

- Relembrando...
- O modelo conceptual, como vimos para o modelo ER, define um modelo para a BD independente do tipo de base de dados.
- Modelo Relacional baseado no conceito de tabela, também chamado de tabela.
- Entidades-tipo e relacionamentos no modelo ER podem ser mapeados em tabelas no modelo relacional.
- Um modelo relacional pode ser depois implementado num SGBD baseado na linguagem SQL (como veremos também depois).

IMP.GE.190.0

DEPARTAMENTO CIÊNCIA
E TECNOLOGIA

Modelo Relacional – Conceitos base

Modelo relacional representa uma base de dados como um conjunto de tabelas em que uma relação é uma tabela. No modelo relacional encontramos os seguintes conceitos:

IMP.GE.190.0

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Modelo Relacional – Conceitos base

FUNCIONARIO						
F_ident	F_nome	F_morada	F_salario	F_dt_nasc		
1163	Fatima Leal	Porto	750 €	12/08/1974		
1164	Manuela Nunes	Lisboa	1760 €	28/07/1987		
1165	Antonio Pacheco	Coimbra	750 €	06/03/1980		
1166	Luís Borges	Faro	635 €	04/04/2000		
1167	Tiago Sousa	Bragança	750 €	06/10/1990		

IMP.GE.190.0

DEPARTAMENTO CIÊNO E TECNOLOGIA

Modelo Relacional – Conceitos

- Uma tabela é um conjunto de linhas não ordenados e que são representados em forma de tabela. A tabela tem um esquema associado definido por um nome e sequência de atributos.
- Contudo, vamos utilizar o termo tabela para a noção de tabela:
 - Evita a dúvida entre o relacionamento no modelo ER e tabela no modelo Relacional
 - Termo utilizado para designar/implementar uma tabela no contexto concreto de um de SGBD relacional baseados em SQL.
- Atributo identifica uma característica/propriedade de uma tabela.
- Domínio é o tipo de dados.

IMP.GE.190.0

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Modelo Relacional – Conceitos

- tabela → tabela
- linha linha → atributos
- Atributo → coluna
- Domínio → tipo de dados
- Um esquema de tabela/tabela R(A₁, A₂, ..., A_n) é composto por uma tabela de nome R e com uma lista de atributos A₁, A₂, ..., A_n.
- Cada atributo A_i é o nome do papel desempenhado num domínio D no esquema de tabela R.
- O grau de uma tabela é o número n de atributos que o esquema que define a tabela possui.

Modelo Relacional – Conceitos

FUNCIONARIO							
<u>ident</u>	nome morada salario dt_na						
1163	Fatima Leal	Porto	750 €	12/08/1974			
1164	Manuela Nunes	Lisboa	1760 €	28/07/1987			
1165	Antonio Pacheco	Coimbra	750 €	06/03/1980			
1166	Luís Borges	Faro	635 €	04/04/2000			
1167	Tiago Sousa	Bragança	750 €	06/10/1990			

 $t_4[nome] = ?$

Qual o valor correspondente?

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Modelo Relacional: Ordenação

- Ordenação de linhas numa tabela
- Uma tabela é definida por um conjunto de linhas.
- As linhas de uma tabela não possuem nenhuma ordenação

tabela A			
<u>ident</u> nome			
1163	Fatima Leal		
1164	Manuela Nunes		
1165	Antonio Pacheco		
1166	Luís Borges		
1167	Tiago Sousa		

tabela B			
ident nome			
1167	Tiago Sousa		
1165 Antonio Pacheco			
1163	Fatima Leal		
1164	Manuela Nunes		
1166	Luís Borges		

IMP.GE.190.0

BEPARTAMENTO CIÊNCIA
E TECNOLOGIA

Modelo Relacional: Ordenação

- Ordenação dos valores dentro de uma linha
- Uma linha é uma lista ordenada de valores. Então a ordem dos valores é importante.

tabela A				
<u>ident</u> nome				
1163	Fatima Leal			
1164	Manuela Nunes			
1165	Antonio Pacheco			
1166	Luís Borges			
1167	Tiago Sousa			

tabela N				
nome	<u>ident</u>			
Fatima Leal	1163			
Manuela Nunes	1164			
Antonio Pacheco	1165			
Luís Borges	1166			
Tiago Sousa	1167			

Modelo Relacional: Valores

- A cada atributo está associado a um domínio de valores.
- Os valores de um atributo são atómicos e podem incluir o valor especial
 NULL para denotar a ausência de valor definido.

IMP.GE.190.0

DEPARTAMENTO CIÊNCI E TECNOLOGIA

Modelo Relacional: Restrições

- Restrição de domínio especifica que o valor de cada atributo tem que ser um valor atómico dentro de um domínio em todos os linhas da tabela
- Restrição de chave especifica que todos os valores de um conjunto são distintos.
 Todas as linhas de uma tabela devem ser distintas.
- Duas linhas não podem ter a mesma combinação de valores para os seus atributos.

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Modelo Relacional: Chaves e Superchaves

Superchave: subconjunto de atributos de uma tabela para a qual todos os linhas são diferentes. Permite identificar de forma única os linhas de uma tabela. Todas as tabelas têm por defeito uma superchave – o conjunto de todos os atributos da tabela.

FUNCIONARIO					
<u>ident</u>	nome	morada	salario	dt_nasc	
	V				
	Ĭ				

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Modelo Relacional: Chaves e Superchaves

■ Chave: conjunto de atributos mínimo capaz de garantir que cada linha é único.

FUNCIONARIO					
<u>ident</u>	nome	morada	salario	dt_nasc	

IMP.GE.190.0

DEPARTAMENTO CIÊNCE
E TECNOLOGIA

Modelo Relacional: Chaves e Superchaves

- Um esquema R pode ter mais que uma chave. Cada uma delas é intitulada de chave candidata.
- Assim, uma tabela pode ter várias chaves, mas apenas uma deve ser designada como a chave primária da tabela.
- A escolha da chave primária de uma tabela é arbitrária, mas no entanto é usual escolher a chave com o menor número de atributos.
- No esquema de uma tabela, a chave primária é representada sublinhada.

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Modelo Relacional: Restrições de Integridade

- Integridade de domínio: Os valores de um atributo devem pertencer ao domínio do atributo.
- Integridade da chave: Não podem existir dois linhas de uma tabela com valores iguais na chave primária.
- Integridade de entidade: Os valores da chave primária não podem ser NULL.
- Integridade referencial: Um linha que referencia outra tabela tem de referenciar um linha existente nessa outra tabela (chave externa).

IMP.GE.190.0

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

- Chave externa ou chave estrangeira
- Consideremos o exemplo:

Um funcionário trabalha num departamento. Os departamentos controlam vários projetos. Cada projeto apenas está associado a um departamento e ficou definido que um funcionário apenas participa num projeto de cada vez.

> DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Quais chaves primárias?

Quais chaves estrangeiras?

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

- Neste exemplo Empresa as chaves externas não fazem parte da chave primária de nenhuma das tabelas.
- Se nem todos os funcionários têm um supervisor, podemos ter valores NULL para o atributo FUNCIONÁRIO.Supervisor.

CIÊNCIA

- INSCRIÇÃO tem 2 chaves externas: NumMec (chave primária de ALUNO) e CodCadeira (chave primária de CADEIRA).
- Por sua vez, o par (NumMec, CodCadeira) é a chave primária de INSCRIÇÃO.

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

IMP.GE.190.0

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Modelo Relacional: Consistência de Dados

Quais são os problemas que identificas nesta base de dados? O que está em causa?

Modelo Relacional: Restrições de Integridade

- Por isso as restrições são muito importantes. Relembrando:
- Integridade de domínio: o valor de um atributo faz parte do domínio do atributo.
- Integridade de entidade: o valor da chave primária não pode ser NULL (sob pena de não conseguirmos identificar registos).
- Integridade de chave: dois registos da mesma tabela não podem ter valores iguais para uma chave primária.
- Integridade referencial: um valor definido para um atributo que seja chave externa deve referir-se a uma chave primária da tabela a que a chave externa se refere.

IMP.GE.190.0

DEPARTAMENTO CIÊNCE E TECNOLOGIA

Modelo Relacional: Restrições de

de entidade

Base de dados Relacional

- Esquema da base de dados = {esquema de tabelas}
- Estado da base de dados = {conteúdo das tabelas}
- Esquema relacional de uma base de dados:
 - Conjunto de esquemas de todas as suas tabelas
 - Conjunto de restrições de integridade
- Restrições de integridade
 - Uma base de dados deve satisfazer sempre as restrições de integridade.
 Quando isso não acontece, diz-se que a base de dados está num estado inválido.
- Existem três operações básicas que podem violar as restrições de integridade:
 - Insere (INSERT)
 - Remove (DELETE)
 - Atualiza (UPDATE)

Base de dados Relacional: Operações

- INSERE(T, r): insere novo registo r na tabela T
- **REMOVE(T, k):** remove registo (que já exista) com chave primária k de T
- ACTUALIZA(T, k, r): atualiza registo com chave primária k em T pelo registo r com a mesma chave primária (pode ser vista como uma remoção seguida de uma inserção)
- Estas operações irão corresponder às formas mais simples dos comandos SQL INSERT, DELETE, e UPDATE (a explorar nas próximas aulas).

IMP.GE.190.0

DEPARTAMENTO CIÊNCI E TECNOLOGIA

Operações e restrições de integridade

- As operações consideradas podem ser inválidas se violarem restrição de integridade:
- INSERE(T, r): insere novo registo r na tabela T pode violar qualquer um dos tipos de restrições (domínio, entidade, chave, referencial).
- REMOVE(T,k): remove registo (que já exista) com chave primária k de T pode violar a integridade referencial se existir uma referência a k por via de uma chave externa.
- ACTUALIZA(T,k,r): atualiza registo com chave primária k em T pelo registo r com a mesma chave primária — pode violar qualquer um dos tipos de restrição.
- Exemplos de como estas operações violam as restrições de integridade

Operações e restrições de intenridade

Fatima Leal | February 21, 2021

04

05

				ALUNO			
		- E	N_MEC	N_CC	nome	curso	
INS	CRIÇÃO		1163	13222768	Fatima Leal	LI	
1EC	Cod_Cad		1164	12666789	Manuela Nunes	LI	
3	03		1165	34888675	Antonio Pacheco	LI	
4	04		1166	65888740	Luís Borges	SIpG	
	04		1167	56888403	Tiago Sousa	SIpG	
	03				CADEIRA		
	05		4	Cod Cad		ocente	
ın le:	ie r[N_MEC]	= 1163		03		atima	

Exemplos:

- INSERE(ALUNO, r) tal que r[N_MEC] = 1163
- REMOVE(CADEIRA, 03)
- INSERE(INSCRIÇÃO, r) com r[N_MEC] = 999999
- ACTUALIZA(ALUNO,1163, r) com r[N_CC] = 'ABCDE'
- INSERE(ALUNO, r) com r[N_MEC] = NULL

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Fatima

Fernando

FPC

AC

Operações e restrições de integridade

- INSERE(ALUNO, r) tal que r[N_MEC] = 1163 violaria integridade de chave p/ALUNO.
- **REMOVE(CADEIRA, 03)** violaria integridade referencial p/ INSCRIÇÃO.CodCad.
- INSERE(INSCRIÇÃO, r) com r[N_MEC] = 999999 violaria integridade referencial p/ INSCRIÇÃO.N_MEC.
- ACTUALIZA(ALUNO,1163, r) com r[N_CC] = 'ABCDE' violaria a integridade de domínio p/ ALUNO.NumCC.
- INSERE(ALUNO, r) com r[N_MEC] = NULL violaria a integridade de entidade p/ALUNO.

SGBDs e restrições de integridade

- Um SGBD deverá rejeitar uma operação que viole restrições de integridades, assinalando o erro.
- SGBDs maduros normalmente suportam todos os tipos de restrições de integridade que consideramos (domínio, entidade, chave, referencial).
- Há no entanto excepções que se prendem com escolhas feitas p/implementação de SGBDs, tipicamente por questões de complexidade de implementação/contexto de uso/desempenho. Por exemplo:
 - SQLite não valida restrições de domínio.
 - Versões antigas de MySQL não tinham suporte p/integridade referencial.

Do conhecimento à prática.