Ayudantía 2 - Teorema de Thévenin y Norton Electrónica y Electrotecnia

Pedro Morales Nadal

Edicson Solar Salinas

pedro.morales1@mail.udp.cl © +56 9 30915977 edicson.solar@mail.udp.cl © +56 9 92763279

Ingeniería Civil en Informática y Telecomunicaciones

2 de septiembre de 2025

¿Qué veremos?

- Potencia
- Divisor de voltaje
- Teoremas de Thévenin y Norton
- Encontrar circuitos equivalentes
- Calcular diferencia de potencial entre 2 puntos

Potencia

En circuitos nos ayuda a estimar la energía entregada, absorbida o disipada por los componentes del mismo, lo denotamos como P.

$$P = V \cdot I = I^2 \cdot R = \frac{V^2}{R}$$

Donde:

- P es potencia en Watts
- V es voltaje en Volts
- *I* es corriente en *Amperes*
- R es resistencia en Ohms

Circuito divisor de voltaje

Configuración eléctrica formada típicamente por dos resistencias en serie conectadas a una fuente de voltaje

Thévenin y Norton

- Métodos para simplificar circuitos eléctricos complejos
- Facilitan la evaluación rápida de voltaje y corriente
- Son equivalentes entre sí y fácilmente intercambiables

Circuitos equivalentes

Circuito equivalente de Thévenein

Un circuito se reduce a una fuente de tensión (V_{TH}) en serie con una resistencia equivalente (R_{TH})

Circuito equivalente de Norton

Un circuito se reduce a una fuente de corriente (I_N) en paralelo con una resistencia equivalente (R_N)

Pasos para encontrar circuitos equivalentes

- 1 Retirar la carga
- 2 Calcular resistencia equivalente
 - 2.a Si hay fuente de tensión: cortocircuito
 - 2.b Si hay fuente de corriente: circuito abierto
- 3 Calcular voltaje entre terminales abiertas: Thévenin
- 4 Calcular corriente entre terminales cortocircuitadas: Norton
- 5 Dibujar circuito equivalente
- 6 (Opcional) Preguntar ahora si hay dudas

Ejemplo híper fome

Nota: Si necesitar ver algo porque son paranoicos y no creen, dejamos una simulación en EveryCircuit **AQUÍ**

Potencia máxima

La potencia es máxima cuando $R_{TH} = R_L$ Considerando $P = V \cdot I$

$$P_{max} = V_{R_L} \cdot I_N$$

$$= I_N \cdot R_L \cdot I_N$$

$$= \frac{V_{TH}}{R_{TH} + R_L} \cdot R_L \cdot \frac{V_{TH}}{R_{TH} + R_L}$$

$$= \left(\frac{V_{TH}}{R_{TH} + R_L}\right)^2 \cdot R_L$$

$$= \left(\frac{V_{TH}}{2R_{TH}}\right)^2 \cdot R_{TH}$$

$$= \frac{V_{TH}^2}{4R_{TH}}$$

Ejercicio 1 Algebraico

Encuentre el circuito equivalente de Thévenin y su corriente de Norton en función de V_1, R_1, R_2, R_3 y R_4

Ejercicio 2

Demuestre que el valor de la resistencia de carga (\mathbf{X}) para que exista la máxima transferencia de potencia es $\frac{R_3\left[R_1R_2+R_4(R_1+R_2)\right]}{(R_1+R_2)(R_4+R_3)+R_1R_2}$ y que el valor de dicha

potencia es
$$\left(\frac{(R_1+R_2)R_3}{R_1R_2+(R_1+R_2)(R_3+R_4)} \times \left(V_1 + I_2R_4 - \frac{I_1R_1R_2}{R_1+R_2}\right)\right)^2 \cdot 0.25 \mathbf{X}^{-1}$$

Ejercicio 3

Obtener el equivalente de Thévenin entre los terminales A y B, para el siguiente circuito

¿DUDAS?

CHAO GENTE

