考研题目本

五狗砸

2020年9月29日

目录

1	微积	}	2
	1.1	一元函数微分	2
	1.2	一元函数积分	12
	1.3	多元函数微积分学	18

微积分 1

1.1 一元函数微分

Example 1.1. 设
$$f'(x)$$
 连续, $f(0) = 0, f'(0) \neq 0$,求 $\lim_{x \to 0} \frac{\int_0^{x^2} f(x^2 - t) dt}{x^3 \int_0^1 f(xt) dt}$ 令 $x^2 - t = u, xt = u$
$$\lim_{x \to 0} \frac{\int_0^{x^2} f(x^2 - t) dt}{x^3 \int_0^1 f(xt) dt} = \lim_{x \to 0} \frac{-\int_{x^2}^0 f(u) du}{x^3 \int_0^x f(u) \frac{du}{x}} = \lim_{x \to 0} \frac{\int_0^{x^2} f(u) du}{x^2 \int_0^x f(u) du}$$

$$= \lim_{x \to 0} \frac{2x f(x^2)}{2x \int_0^x f(u) du + x^2 f(x)}$$

$$= \lim_{x \to 0} \frac{2f(x^2)}{2 \int_0^x f(u) du + x f(x)}$$

$$= \lim_{x \to 0} \frac{4x f'(x^2)}{3 f(x) + x f'(x)}$$

$$= \lim_{x \to 0} \frac{4f'(x^2)}{3 f(x) - f(0)} = 1$$

Example 1.2.
$$Arr \lim_{x o 0} rac{rac{x^2}{2} + 1 - \sqrt{1 + x^2}}{(\cos x - e^{x^2})\sin x^2}$$

Example 1.2. 求 $\lim_{x\to 0} \frac{\frac{x^2}{2}+1-\sqrt{1+x^2}}{(\cos x-e^{x^2})\sin x^2}$ 利用泰勒展开, $\sqrt{1+x^2}=1+\frac{1}{2}x^2-\frac{1}{8}x^4+o(x^4)$, $\cos x=1-\frac{1}{2}x^2+\frac$ $o(x^2)e^{x^2} = 1 + x^2 + o(x^2)$, 因此

$$\lim_{x \to 0} \frac{\frac{x^2}{2} + 1 - \sqrt{1 + x^2}}{(\cos x - e^{x^2})\sin x^2} = \lim_{x \to 0} \frac{\frac{x^4}{8} + o(x^4)}{-\frac{3}{2}x^4 + o(x^4)} = -\frac{1}{12}$$

Example 1.3. 求
$$\lim_{n \to \infty} \tan^n(\frac{\pi}{4} + \frac{2}{n})$$
 因为 $\lim_{x \to \infty} f(x) = A \Rightarrow \lim_{n \to \infty} f(n) = A$

Example 1.4. suppose $y_n = \left\lceil \frac{(2n)!}{n!n^n} \right\rceil^{\frac{1}{n+1}}$. Compute $\lim_{n \to \infty} y_n$

$$\begin{split} \ln y_n &= \frac{1}{n+1} \ln \frac{(2n)!}{n!n^n} = \frac{1}{n+1} \ln \frac{(2n)(2n-1) \dots (n+1)}{n^n} \\ &= \frac{1}{n+1} \sum_{k=1}^n \ln (1+\frac{k}{n}) = \frac{n}{n+1} \left(\frac{1}{n} \sum_{k=1}^n \ln (1+\frac{k}{n}) \right) \end{split}$$

Hence

$$\begin{split} \lim_{n \to \infty} y_n &= \lim_{n \to \infty} \frac{n}{n+1} \left(\frac{1}{n} \sum_{k=1}^n \ln(1+\frac{k}{n}) \right) \\ &= 1 \cdot \int_0^1 \ln(1+x) dx = x \ln(1+x)|_0^1 - \int_0^1 \frac{x}{1+x} dx \\ &= \ln 2 - 1 + \ln 2 = \ln \frac{4}{e} \end{split}$$

Example 1.5. 已知 $x\to 0$ 时, $e^{-x^4}-\cos(\sqrt{2}x^2)$ 与 ax^n 是等价无穷小,试求 a,n

$$e^{-x^4} = 1 - x^4 + \frac{x^8}{2} + o(x^8)$$
$$\cos(\sqrt{2}x^2) = 1 - x^4 + \frac{x^8}{6} + o(x^8)$$

Hence $a = \frac{1}{3}, n = 8$

Example 1.6. 设
$$f(x)=\frac{\sqrt{1+\sin x+\sin^2 x}-(\alpha+\beta\sin x)}{\sin^2 x}$$
,且点 $x=0$ 是 $f(x)$ 的可去间断点,求 α,β

由极限存在可知, $\alpha = 1$, 泰勒展开

Example 1.7. let $f(x)=\lim_{n\to\infty} \frac{2x^n-3x^{-n}}{x^n+x^{-n}}\sin\frac{1}{x}$

$$f(x) = \begin{cases} 2\sin\frac{1}{x}^{x} & x < -1\\ -\frac{1}{2}\sin\frac{1}{x} & x = -1\\ -3\sin\frac{1}{x} & -1 < x < 0\\ -3\sin\frac{1}{x} & 0 < x < 1\\ -\frac{1}{2}\sin\frac{1}{x} & x = 1\\ 2\sin\frac{1}{x}^{x} & x > 1 \end{cases}$$

x = 0 是第二类间断点, $x = \pm 1$ 是第一类间断点

Example 1.8. 设
$$f(1)=0, f'(1)=a$$
,求极限 $\lim_{x\to 0} \frac{\sqrt{1+2f(e^{x^2})}-\sqrt{1+f(1+\sin^2x)}}{\ln\cos x}$ 由 $f(1)=0, f'(1)=a$ 可知, $f'(1)=\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}=\lim_{t\to 0} \frac{f(1+t)}{t}=a$

$$\begin{split} \lim_{x \to 0} \frac{\sqrt{1 + 2f(e^{x^2})} - \sqrt{1 + f(1 + \sin^2 x)}}{\ln \cos x} &= \frac{2f(e^{x^2}) - f(1 + \sin^2 x)}{-\frac{1}{2}x^2 \left[\sqrt{1 + 2f(e^{x^2})} + \sqrt{1 + f(1 + \sin^2 x)}\right]} \\ &= \lim_{x \to 0} \frac{f(1 + \sin^2 x) - f(e^{x^2})}{x^2} \\ &= \lim_{x \to 0} \left[\frac{f(1 + \sin^2 x)}{\sin^2 x} \cdot \frac{\sin^2 x}{x^2} - \frac{f(e^{x^2})}{e^{x^2} - 1} \cdot \frac{e^{x^2} - 1}{x^2} \right] \\ &= -a \end{split}$$

Example 1.9. 设 f(x) 在 x=0 的某邻域内二阶可导,且 $\lim_{x\to 0} \frac{f(x)}{x}=0$, $f''(0)\neq 0$

- 1. 若 $0 < \alpha < 1$
- 2. 若 $\alpha > 1$
- 3. $若 \alpha = 1$ $\beta = f''(0)$

Example 1.10. 设
$$f(x)$$
 在 $(-\infty, +\infty)$ 上有定义,且 $f'(0) = 1$, $f(x+y) = f(x)e^y + f(y)e^x$,求 $f(x)$

$$\begin{split} f'(x) &= \lim_{y \to 0} \frac{f(x+y) - f(x)}{y} \\ &= \lim_{y \to 0} \frac{f(x)e^y + f(y)e^x - f(x)}{y} \\ &= \lim_{y \to 0} \left[f(x)\frac{e^y - 1}{y} + e^x \frac{f(y) - f(0)}{y} \right] \\ &= f(x) + e^x f'(0) = f(x) + e^x \end{split}$$

即 $f'(x) - f(x) = e^x$, 因此 $f(x) = e^x(x+C)$, 又 f(0) = 0, C = 0, $f(x) = xe^x$

Example 1.11. 已知函数
$$f(x) = \begin{cases} x & x \leq 0 \\ \frac{1}{n} & \frac{1}{n+1} < x \leq \frac{1}{n} \end{cases}$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{\frac{1}{n}}{x} \left(\frac{1}{n+1} < x \leq \frac{1}{n} \right)$$

而 $1 \leq \frac{\frac{1}{n}}{x} < \frac{n+1}{n}$,由夹逼准则得 $f'_{+}(0) = 1$,因此 f'(0) = 1

Example 1.12. 设 f(x) 是可导的偶函数,它在 x = 0 的某邻域内满足

$$f(e^{x^2}) - 3f(1 + \sin x^2) = 2x^2 + o(x^2)$$

求曲线 y = f(x) 在点 (-1, f(-1)) 处的切线方程

由

$$\lim_{x \to 0} \frac{f(e^{x^2}) - 3f(1 + \sin x^2) - 2x^2}{x^2} = 0$$

得

$$f(0) - 3f(1) = 0 \Rightarrow f(1) = 0$$

变形

$$\lim_{x \to 0} \left(\frac{f(e^{x^2})}{e^{x^2} - 1} \cdot \frac{e^{x^2} - 1}{x^2} - \frac{3f(1 + \sin x^2)}{\sin x^2} \cdot \frac{\sin x^2}{x^2} - 2 \right) = 0$$

有
$$f'(1) - 3f'(1) - 2 = 0 \Rightarrow f'(1) = -1$$

Example 1.13. 若 y=f(x) 存在单值反函数,且 $y'\neq 0$,求 $\frac{d^2x}{dy^2}$ 根据反函数的求导法则 $\frac{dx}{dy}=\frac{1}{y'}$,于是

$$\frac{d^2x}{dy^2} = \frac{d}{dy}\left(\frac{dx}{dy}\right) = \frac{d}{dx}\left(\frac{dx}{dy}\right)\frac{dx}{dy}$$

因为 $\frac{1}{y'}$ 是以 x 为变量的函数

Example 1.14. 设函数 $f(x) = \arctan x - \frac{x}{1+ax^2}$,且 f'''(0) = 1,求 a 泰勒展开

$$f(x)=\arctan x-\frac{x}{1+ax^2}=\left(x-\frac{x^3}{3}+\dots\right)-x(1-ax^2+\dots)$$

$$=(a-\frac{1}{3})x^3+\dots$$

因此 f'''(0)/3! = a - 1/3, a = 1/2

Example 1.15. 设 f(x) 在 [a,b] 上连续且 f(x) > 0,证明存在 $\xi \in (a,b)$ 使得

$$\int_a^\xi f(x)dx = \int_\xi^b f(x)dx = \frac{1}{2}\int_a^b f(x)dx$$

令 $F(x) = \int_a^x f(t)dt - \int_x^b f(t)dt$,则 F(x) 在 [a,b] 上连续,且

$$F(a)F(b) = -\left[\int_{a}^{b} f(t)dt\right]^{2} < 0$$

故由连续函数的零点定理知: 在 (a,b) 内存在 ξ 使得 $F(\xi)=0$,即 $\int_a^\xi f(x)dx=\int_{\xi}^b f(x)dx$

Example 1.16. 设 f(x), g(x) 在 [a, b] 上连续,证明存在 $\xi \in (a, b)$ 使得

$$g(\xi) \int_{a}^{\xi} f(x)dx = f(\xi) \int_{\xi}^{b} g(x)dx$$

令 $F'(x)=g(x)\int_a^x f(x)dx-f(x)\int_x^b g(x)dx=(\int_a^x f(t)dt\int_b^x g(t)dt)'$,可取辅助函数 $F(x)=\int_a^x f(t)dt\int_x^b g(t)dt$ 。则 F(a)=F(b)=0,则存在 $\xi\in(a,b)$ 使得 $F'(\xi)=0$

Example 1.17. 设实数 a_1,\dots,a_n 满足关系式 $a_1-\frac{a_2}{3}+\dots+(-1)^{n-1}\frac{a_n}{2n-1}=0$,证明方程 $a_1\cos x+a_2\cos 3x+\dots+a_n\cos(2n-1)x=0$ 在 $(0,\frac{\pi}{2})$ 内至少有一实根

令 $f(x)=a_1\cos x+a_2\cos 3x+\cdots+a_n\cos(2n-1)x$,但 f(x) 在 $[0,\frac{\pi}{2}]$ 内不满足零点定理,因此考虑 $f'(x)=a_1\cos x+a_2\cos 3x+\cdots+a_n\cos(2n-1)x$,则 $f(x)=a_1\cos x+\frac{a_2}{3}\sin 3x+\cdots+\frac{a_n}{2n-1}\sin(2n-1)x$,则 $f(0)=f(\pi/2)=0$

Example 1.18. 试确定方程 $e^x = ax^2(a > 0)$ 的根的个数,并指出每个根所在的范围

若直接令 $f(x) = e^x - ax^2$, f'(x) 的符号不易判断。又 x = 0 不是方程的根,于是方程可化为等价方程 $\frac{e^x}{a^2} = a$

$$\diamondsuit f(x) = \frac{e^x}{x^2} - a$$
, 由 $f'(x) = \frac{x-2}{x^3}e^x = 0$ 得 $x = 2$

Example 1.19. 已知方程 $\frac{1}{\ln(1+x)} - \frac{1}{x} = k$ 在区间 (0,1) 内有实根,确定常数 k 的取值范围

$$\diamondsuit f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x} - k, \ x \in (0,1], \ \$$
則

$$f'(x) = \frac{(1+x)\ln^2(1+x) - x^2}{x^2(1+x)\ln^2(1+x)}$$

因为 $x^2(1+x)\ln^2(1+x) > 0$,因此只讨论 $g(x) = (1+x)\ln^2(1+x) - x^2$.

$$g'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$$

$$g''(x) = \frac{2\ln(1+x)}{1+x} + \frac{2}{1+x} - 2 = \frac{2\ln(1+x) - 2x}{1+x}$$

因此当 $x \in (0,1)$ 时,g''(x) < 0,而 g'(0) = 0,因此 g(x) 递减

Example 1.20. 设 f(x) 在 [0,3] 上连续,在 (0,3) 内可导,且 f(0) + f(1) + f(2) = 3, f(3) = 1,证明存在 $\xi \in (0,3)$ 使得 $f'(\xi) = 0$

因为 f(x) 在 [0,3] 上连续,所以在 [0,2] 内必有最大值 M 和最小值 m,于是 $m \le f(0) \le M, m \le f(1) \le M, m \le f(2) \le M$,故

$$m \le \frac{f(0) + f(1) + f(2)}{3} \le M$$

由介值定理,至少存在一点 $\eta \in [0,2]$ 使

$$f(\eta) = \frac{f(0) + f(1) + f(2)}{3} = 1$$

因此 $f(\eta)=f(3)=1$,由罗尔定理知,必存在 $\xi\in(\eta,3)\subset(0,3)$ 使得 $f'(\xi)=0$

Example 1.21. 设 f(x) 在 [0,2] 上连续,在 (0,2) 内具有二阶导数且 $\lim_{x\to \frac{1}{2}} \frac{f(x)}{\cos \pi x} = 0$, $2\int_{1/2}^1 f(x) dx = f(2)$, 证明存在 $\xi \in (0,2)$ 使得 $f''(\xi) = 0$ f(0.5) = 0, 因此

$$f'(0.5) = \lim_{x \to 0.5} \frac{f(x) - f(0.5)}{x - 0.5} = \lim_{x \to 0.5} \frac{f(x)}{\cos \pi x} \frac{\cos \pi x}{x - 0.5} = \lim_{x \to 0.5} \frac{f(x)}{\cos \pi x} \lim_{x \to 0.5} \frac{\cos \pi x}{x - 0.5} = 0$$

再由 $2\int_{0.5}^{2} f(x)dx = f(2)$,用积分中值定理 $\exists \xi_1 \in [0.5, 1]$ 使得 $2f(\xi_1)0.5 = f(2)$,即 $f(\xi) = f(2)$,在 $[\xi_1, 2]$ 上应用罗尔定理, $\exists \xi_2 \in (\xi_1, 2)$ 使 $f'(\xi_2) = 0$ 再在 $[0.5, \xi_2]$ 上对 f'(x) 应用罗尔定理,知 $\exists \xi \in (0.5, \xi_2)$,使 $f''(\xi) = 0$

Example 1.22. 设 f(x) 在 [0,1] 上连续,(0,1) 内可导,且

$$f(1) = k \int_{0}^{\frac{1}{k}} xe^{1-x} f(x) dx, k > 1$$

证明: 在 (0,1) 内至少存在一点 ξ 使 $f'(\xi) = (1 - \xi^{-1})f(\xi)$

- 1. ξ 換为 x, $f'(x) = (1 x^{-1})f(x)$
- 2. 变形 $\frac{f'(x)}{f(x)} = 1 x^{-1}$
- 3. 两边积分 $\ln f(x) = x \ln x + \ln C$
- 4. 分离常数 $\ln\frac{xf(x)}{e^x}=\ln C$,即 $xe^{-x}f(x)=C$,可令辅助函数 $F(x)=xe^{-x}f(x)$

由积分中值定理,存在 $\xi_1 \in [0, \frac{1}{k}]$ 使得 $f(1) = \xi_1 e^{1-\xi_1} f(\xi_1)$,即 $1 \times e^{-1} f(1) = \xi_1 e^{-\xi_1} f(\xi_1)$ 。因此 F(x) 满足在 $[\xi_1, 1]$ 内的罗尔定理,因此存在 ξ 使得 $f'(\xi) = (1 - \xi^{-1}) f(\xi)$

Example 1.23. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 $f(a) = f(b) = \lambda$,证明存在 $\xi \in (a,b)$ 使得 $f'(\xi) + f(\xi) = \lambda$

- 1. ξ 换为 x, $f'(x) + f(x) = \lambda$ 这是关于 f(x) 的一阶线性微分方程
- 2. 解微分方程 $f(x) = e^{-x}(\lambda e^x + C)$
- 3. 分离常数 $[f(x) \lambda]e^x = C$,可令辅助函数 $F(x) = [f(x) \lambda]e^x$ F(a) = F(b) = 0,因此存在 $\xi \in [a, b]$ 使得 $F'(\xi) = 0$

Example 1.24. 设 f(x) 在 [a,b] 上连续,在 (a,b) 上可导,求证: 存在 $\xi \in (a,b)$ 使得 $f(b)-f(a)=\xi \ln \frac{b}{a}f'(\xi)$

可变形为

$$\frac{f(b)-f(a)}{\ln b - \ln a} = \xi f'(\xi)$$

令 $F(x) = \ln x$, 由柯西中值定理, 存在 $\xi \in (a,b)$ 使得

$$\frac{f(b)-f(a)}{\ln b-\ln a}=\frac{f'(\xi)}{F'(\xi)}=\xi f'(\xi)$$

Example 1.25. 设 f(x) 在 [-1,1] 上具有三阶连续导数,且 f(-1)=0,f(1)=1,f'(0)=0,证明:在 (-1,1) 内存在一点 ξ 使得 $f'''(\xi)=3$

泰勒展开
$$f(x)=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+\frac{1}{3!}f'''(\xi)x^3,\xi\in(0,x)$$
,则
$$0=f(-1)=f(0)+\frac{1}{2}f''(0)-\frac{1}{6}f'''(\xi_1),-1<\xi_1<0$$

$$1=f(1)=f(0)+\frac{1}{2}f''(0)+\frac{1}{6}f'''(\xi_2),0<\xi_2<1$$

两式相减得

$$\frac{f'''(\xi_1) + f'''(\xi_2)}{2} = 3$$

由介值定理可证存在 $\xi \in [\xi_1, \xi_2]$ 有 $f'''(\xi) = \frac{f'''(\xi_1) + f'''(\xi_2)}{2} = 3$

Example 1.26. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,0 < a < b,求证存在 $\xi, \eta \in (a,b)$ 使得 $f'(\xi) = \frac{f'(\eta)}{2n}(a+b)$

根据拉格朗日中值定理至少存在一个 $\xi \in (a,b)$ 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

只要再证存在 $\eta \in (a,b)$ 使得 $\frac{f(b)-f(a)}{b-a} = \frac{f'(\eta)}{2\eta}(a+b)$ 即

$$\frac{f(b) - f(a)}{b^2 - a^2} = \frac{f'(\eta)}{2n}$$

只要用柯西中值定理

Example 1.27. 已知函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0) = 0, f(1) = 1,证明

- 1. 存在 $\xi \in (0,1)$ 使得 $f(\xi) = 1 \xi$
- 2. 存在两个不同的点 $\eta,\zeta\in(0,1)$ 使得 $f'(\eta)f'(\zeta)=1$

$$\Rightarrow F(x) = f(x) - 1 + x, \ \ \mathbb{M} \ F(0) = -1, F(1) = 1$$

对 $[0,\xi],[\xi,1]$ 分别用拉格朗日中值定理,则

$$f'(\eta)f'(\zeta) = \frac{f(\xi) - f(0)}{\xi - 0} \frac{f(1) - f(\xi)}{1 - \xi} = \frac{f(\xi)}{\xi} \frac{1 - f(\xi)}{1 - \xi} = \frac{1 - \xi}{\xi} \frac{\xi}{1 - \xi} = 1$$

Example 1.28. \overrightarrow{x} if $\frac{\tan x}{x} > \frac{x}{\sin x}, 0 < x < \frac{\pi}{2}$

$$f(x) = \sin x \tan x - x^2$$

$$f'(x) = \sin x + \tan x \sec x - 2x$$

$$f''(x) = \cos x + \sec^3 x + \tan^2 x \sec x - 2$$

$$f'''(x) = -\sin x + 5\sec^3 x \tan x + \tan^3 x \sec x = \sin x (5\sec^4 x - 1) + \tan^3 x \sec x > 0$$

Example 1.29. 设 a > 0, b > 0,证明不等式

$$a \ln a + b \ln b \ge (a+b)[\ln(a+b) - \ln 2]$$

令 $f(x)=x\ln x$,则 $f'(x)=\ln x+1,$ $f''(x)=\frac{1}{x}>0$,即曲线 y=f(x) 在 $(0,+\infty)$ 是凹的,故对任意 a>0, b>0,有

$$\frac{f(a) + f(b)}{2} \ge f(\frac{a+b}{2})$$

代入得

$$\frac{a\ln a + b\ln b}{2} \ge \frac{a+b}{2}\ln \frac{a+b}{2}$$

Example 1.30. 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} \le \ln(1+\frac{1}{n}) < \frac{1}{n}$ 由拉格朗日定理,存在 $\xi \in (n,n+1)$

$$\ln(1 + \frac{1}{n}) = \ln(n+1) - \ln n = \frac{1}{\xi}$$

$$\frac{1}{n+1} < \frac{1}{\xi} < \frac{1}{n}$$

Example 1.31. 设 f(x) 在 [0,1] 上二阶可导,且 f(0) = f(1) = 0,f(x) 在 [0,1] 上的最小值等于 -1,证明:至少存在一点 $\xi \in (0,1)$ 使 $f''(x) \geq 8$ 存在 $a \in (0,1)$, f'(a) = 0, f(a) = -1,将 f(x) 在 x = a 泰勒展开

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(\xi)}{2!}(x-a)^2 = -1 + \frac{f''(\xi)}{2}(x-a)^2 (\xi \in (a,x) \text{ or } (x,a))$$

$$\begin{split} f(0) &= 0 = -1 + \frac{f''(\xi_1)}{2}a^2, 0 < \xi_1 < a \\ f(1) &= 0 = -1 + \frac{f''(\xi_2)}{2}(1-a)^2, a < \xi_2 < 1 \end{split}$$

若
$$0 < a < \frac{1}{2}$$
,则 $f''(\xi_1) > 8$ 若 $\frac{1}{2} < a < 1$,则 $f''(\xi_2) > 8$

Example 1.32. 设函数 f(x) 在 [0,1] 上二阶可导,且 $\int_0^1 f(x) dx = 0$,则当 f''(x) > 0 时

$$f(x) = f(0.5) + f'(0.5)(x - 0.5) + \frac{f''(\xi)}{2}(x - 0.5)^2$$

积分

$$0 = f(0.5) + f'(0.5) \int_0^1 (x - 0.5) dx + \frac{f''(\xi)}{2} \int_0^1 (x - 0.5)^2 dx$$
$$= f(0.5) + \frac{1}{2} f''(\xi) \int_0^1 (x - 0.5)^2 dx$$

因此 f(0.5) < 0

Example 1.33. 设函数 f(x) 在点 x=0 可导,且 f(0)=0,求 $\lim_{x\to 0} \frac{f(1-\cos x)}{\tan^2 x}$

$$\begin{split} \lim_{x \to 0} \frac{f(1 - \cos x)}{\tan^2 x} &= \lim_{x \to 0} \frac{f(1 - \cos x) - f(0)}{1 - \cos x} \frac{1 - \cos x}{\tan 2^x} \\ &= f'(0) \cdot \frac{1}{2} \end{split}$$

Example 1.34. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 $f(a) \cdot f(b) > 0$, $f(a) \cdot f(\frac{a+b}{2}) < 0$, 证明: 对任意实数 k, 存在 $\xi \in (a,b)$ 使得 \((f'(\xi)=kf(\xi))\)

Example 1.35. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 1,证明:存在两点 $\xi, \eta \in (a,b)$ 使

$$(e^{2a} + e^{a+b} + e^{2b})[f(\xi) + f'(\xi)] = 3e^{3\eta - \xi}$$

$$\begin{split} &(e^{2a} + e^{a+b} + e^{2b})[f(\xi) + f'(\xi)] = 3e^{3\eta - \xi} \\ &\Leftrightarrow (e^{2a} + e^{a+b} + e^{2b})[f(\xi) + f'(\xi)]e^{\xi} = 3e^{3\eta} \\ &\Leftrightarrow (e^{2a} + e^{a+b} + e^{2b})[e^x f(x)]'|_{x=\xi} = e^{3x}|_{x=\eta} \end{split}$$

令 $g(x) = e^{3x}$,则由拉格朗日中值定理

$$g'(\eta) = \frac{g(b) - g(a)}{b - a}$$

即 $3e^{3\eta}=\frac{e^{3b}-e^{3a}}{b-a}$. 令 $f(x)=e^xf(x)$,由拉格朗日中值定理,存在 $\xi\in(a,b)$ 使得

$$\frac{e^b f(b) - e^a f(a)}{b - a} = e^{\xi} [f(\xi) + f'(\xi)] = \frac{e^b - e^a}{b - a}$$

两边同乘 $e^{2a} + e^{a+b} + e^{2b}$ 得

$$\frac{e^{3b}-e^{3a}}{b-a}=(e^{2a}+e^{a+b}+e^{2b})e^{\xi}[f(\xi)+f'(\xi)]$$

1.2 一元函数积分

Example 1.36. 求不定积分 $\int \frac{2^x \cdot 3^x}{9^x - 4^x} dx$

$$\int \frac{2^x \cdot 3^x}{9^x - 4^x} dx = \int \frac{\left(\frac{3}{2}\right)^x}{\left(\frac{3}{2}\right)^{2x} - 1} dx = \frac{1}{\ln \frac{3}{2}} \int \frac{d\left[\left(\frac{3}{2}\right)^x\right]}{\left[\left(\frac{3}{2}\right)^{2x}\right] - 1}$$
$$= \frac{1}{2(\ln 3 - \ln 2)} \ln \left| \frac{\left(\frac{3}{2}\right)^x - 1}{\left(\frac{3}{2}\right)^x + 1} \right|$$

Example 1.37. $\vec{x} \int \frac{dx}{\cos x \sqrt{\sin x}}$

$$\int \frac{dx}{\cos x \sqrt{\sin x}} = \int \frac{\cos x dx}{(1-\sin^2 x) \sqrt{\sin x}} = 2 \int \frac{d(\sqrt{\sin x})}{1-(\sqrt{\sin x})^4} = 2 \int \frac{dt}{1-t^4}$$

$$\int \left(\frac{1}{1+t^2} + \frac{1}{1-t^2}\right) dt$$

Example 1.38.
$$\vec{x} \int \frac{dx}{\sqrt{x(4-x)}}$$

$$\int \frac{dx}{\sqrt{x(4-x)}} = \int \frac{2d(\sqrt{x})}{\sqrt{4-x}} = 2\arcsin\frac{\sqrt{x}}{2} + C$$

Example 1.39. $\vec{x} \int \frac{1}{1+e^x} dx$

$$\int \frac{1}{1+e^x} dx = \int \frac{e^x}{e^x (1+e^x)} dx = \int \left(\frac{1}{e^x} - \frac{1}{e^x + 1}\right) de^x$$

Example 1.40. $\vec{x} \int \frac{xe^x}{\sqrt{e^x - 1}} dx$ $\Rightarrow \sqrt{e^x - 1} = t, x = \ln(1 + t^2)$

$$\int \frac{xe^x}{\sqrt{e^x - 1}} = 2 \int \ln(1 + t^2) dt$$

Example 1.41. $\vec{x} \int \frac{dx}{x^4(1+x^2)}$

$$\int \frac{dx}{x^4(1+x^2)} = \int \frac{1+x^2-x^2}{x^4(1+x^2)} dx$$

Example 1.42.
$$\overrightarrow{x} \int \frac{3x^2 - x + 4}{x^3 - x^2 + 2x - 2} dx$$

$$x^3 - x^2 + 2x - 2 = (x^2 + 2)(x - 1), \ \ \diamondsuit$$

$$\frac{3x^2 - x + 4}{x^3 - x^2 + 2x - 2} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 2}$$

Example 1.43. $\vec{x} \int \frac{dx}{1 + \sin x}$

$$\int \frac{dx}{1+\sin x} = \int \frac{1-\sin x}{\cos^2 x} = \int \frac{dx}{\cos^2 x} - \int \frac{\sin x}{\cos^2 x} = \tan x - \frac{1}{\cos x} + C$$

Example 1.44. 求 $I_n = \int \tan^n x dx$ 的递推公式

$$\begin{split} I_n &= \int \tan^{n-2} x (\sec^2 x - 1) dx = \int \tan^{n-2} x \sec^2 x dx - \int \tan^{n-2} x dx \\ &= \frac{1}{n-1} \tan^{n-1} x - I_{n-2} \end{split}$$

Example 1.45. 求
$$\lim_{n\to\infty}\int_0^1\frac{x^n}{1+x}dx$$
 对于 $0\leq x\leq 1$,有 $0\leq \frac{x^n}{1+x}\leq x$,则

$$0 \le \int_0^1 \frac{x^n}{1+x} dx \le \int_0^1 x^n dx = \frac{1}{n+1}$$

因此由夹逼定理, $\lim_{n\to\infty} \int_0^1 \frac{x^n}{1+x} dx = 0$

Example 1.46. $\ \ \ \ \ \lim_{n \to \infty} n(\frac{1}{1+n^2}+\cdots+\frac{1}{n^2+n^2})$

$$\lim_{n \to \infty} n(\frac{1}{1+n^2} + \dots + \frac{1}{n^2 + n^2}) = \lim_{n \to \infty} \left[\frac{1}{(\frac{1}{n})^2 + 1} + \dots + \frac{1}{(\frac{n}{n})^2 + 1} \right] \cdot \frac{1}{n}$$

$$= \int_0^1 \frac{1}{1+x^2} dx = \arctan \Big|_0^1 = \frac{\pi}{4}$$

Example 1.47. 证明下列不等式

$$\frac{\sqrt{\pi}}{80}\pi^2 < \int_0^{\frac{\pi}{4}} x\sqrt{\tan x} dx < \frac{\pi^2}{32}$$

当
$$0 < x < \frac{\pi}{4}$$
 时, $0 < x < \tan x < 1$,则

$$\int_{0}^{\frac{\pi}{4}} x^{3/2} dx < \int_{0}^{\frac{\pi}{4}} x \sqrt{\tan x} dx < \int_{0}^{\frac{\pi}{4}} x dx$$

Example 1.48.
$$\vec{x} \int_{2}^{3} \frac{\sqrt{3+2x-x^{2}}}{(x-1)^{2}} dx$$

$$\begin{split} \int_{2}^{3} \frac{\sqrt{3+2x-x^{2}}}{(x-1)^{2}} dx &= \int_{2}^{3} \frac{\sqrt{4-(x-1)^{2}}}{(x-1)^{2}} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sqrt{4-4\sin^{2}t}}{4\sin^{2}t} 2\cos t dt \\ &= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^{2}t}{\sin^{t}} dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (\csc^{2}t-1) dt = -\cot t |\frac{\pi}{\frac{2}{6}} - t|^{\frac{\pi}{2}}_{\frac{\pi}{6}} = \sqrt{3} - \frac{\pi}{3} \end{split}$$

Example 1.49.
$$\Rightarrow \int_{0}^{\ln 2} \sqrt{1 - e^{-2x}} dx$$

$$\int_{0}^{\ln 2} \sqrt{1 - e^{-2x}} dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \cdot \frac{\cos t}{\sin t} dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sin t} dt - \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin t dt$$

$$= -\ln(\csc t + \cot t)|_{\frac{\pi}{6}}^{\frac{\pi}{2}} - \frac{\sqrt{3}}{2} = \ln(2 + \sqrt{3}) - \frac{\sqrt{3}}{2}$$

Example 1.50.
$$\vec{x} \int_0^3 \arcsin \sqrt{\frac{x}{1+x}} dx$$

$$\Rightarrow \arcsin \sqrt{\frac{x}{1+x}} = t, \quad \text{if } \sin^2 u = \frac{x}{1+x}, x \cos^2 u = \sin^2 u, x = \tan^2 u$$

$$\begin{split} \int_0^3 \arcsin \sqrt{\frac{x}{1+x}} dx &= \int_0^{\frac{\pi}{3}} u d(\tan^2 u) = (u \cdot \tan^2 u) \bigg|_0^{\frac{\pi}{3}} - \int_0^{\frac{\pi}{3}} 1 \cdot \tan^2 u du \\ &= \pi - \int_0^{\frac{\pi}{3}} (\sec^2 u - 1) du = \pi - \tan u \bigg|_0^{\frac{\pi}{3}} + \frac{\pi}{3} \\ &= \frac{4}{2}\pi - \sqrt{3} \end{split}$$

Example 1.51.
$$\vec{x} I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx$$

Remark. 一般地,有如下结论:作变换 x = a + b - t

$$I = \int_a^b f(x)dx = \int_a^b f(a+b-t)dt$$

从而 $I = \frac{1}{2} \int_a^b [f(x) + f(a+b-x)] dx$

Example 1.52. 求
$$I=\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$$
 令 $x=\frac{\pi}{2}-t$,则

$$\begin{split} I &= \int_0^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} (\sin^2 x - \sin x \cos x + \cos^2 x) dx \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 - \frac{1}{2} \sin 2x) dx = \frac{\pi - 1}{4} \end{split}$$

Remark. 要求 $I=\int_0^{\frac{\pi}{2}}f(\sin x,\cos x)dx$,可作变换 $x=\frac{\pi}{2}-t$,则 $I=\int_0^{\frac{\pi}{2}}f(\cos x,\sin x)dx$

Example 1.53. $R = \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$

$$I = \int_0^{\pi} \frac{(\pi - t)\sin t}{1 + \cos^2 t} dt = \pi \int_0^{\pi} \frac{\sin t}{1 + \cos^2 t} dt - I$$

Remark. 一般地, $I=\int_0^\pi x f(\sin x) dx=\int_0^\pi (\pi-t) f(\sin t) dt=\pi \int_0^\pi f(\sin t) dt-I$

$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx, a, b > 0 = \int_{0}^{1} \left[f_{a}^{b} x^{t} dt \right] dx = \int_{a}^{b} \left[\int_{0}^{1} x^{t} dx \right] dt$$
$$= \ln \frac{b+1}{a+1}$$

Example 1.55. 设
$$f(x) = \int_0^x \frac{\sin t}{\pi - t} dt$$
,求 $\int_0^\pi f(x) dx$

$$\begin{split} \int_0^\pi f(x) dx &= \int_0^\pi f(x) d(x-\pi) \\ &= (x-\pi) f(x) |_0^\pi - \int_0^\pi (x-\pi) f'(x) dx \\ &= - \int_0^\pi (x-\pi) \frac{\sin x}{\pi - x} dx = 2 \end{split}$$

Example 1.56. 证明
$$\int_{1}^{a} f(x^2 + \frac{a^2}{x^2}) \frac{dx}{x} = \int_{1}^{a} f(x + \frac{a^2}{x}) \frac{dx}{x}$$

$$\begin{split} \int_{1}^{a} f(x^{2} + \frac{a^{2}}{x^{2}}) \frac{dx}{x} &= \frac{1}{2} \int_{1}^{a^{2}} f(t + \frac{a^{2}}{t}) \frac{dt}{t} \\ &= \frac{1}{2} \int_{1}^{a} f(t + \frac{a^{2}}{t}) \frac{dt}{t} + \frac{1}{2} \int_{a}^{a^{2}} f(t + \frac{a^{2}}{t}) \frac{dt}{t} \end{split}$$

 $\diamondsuit t = \frac{a^2}{u}$

$$\begin{split} \frac{1}{2} \int_{a}^{a^{2}} f(t + \frac{a^{2}}{t}) \frac{dt}{t} &= \int_{a}^{1} f(\frac{a^{2}}{u} + u) \frac{u}{a^{2}} \left(-\frac{a^{2}}{u^{2}} \right) du \\ &= \int_{1}^{a} f(u + \frac{a^{2}}{u}) \frac{1}{u} du \end{split}$$

Example 1.57. 设 f(x) 在 [a,b] 上有二阶连续导数,又 f(a)=f'(a)=0,证明:

$$\int_a^b f(x)dx = \frac{1}{2} \int_a^b f''(x)(x-b)^2 dx$$

利用分部积分

$$\begin{split} \int_{a}^{b} f(x) dx &= \int_{a}^{b} f(x) d(x-b) = -\int_{a}^{b} f'(x) (x-b) d(x-b) \\ &= -\frac{1}{2} \int_{a}^{b} f'(x) d(x-b)^{2} = \frac{1}{2} \int_{a}^{b} f''(x) (x-b)^{2} dx \end{split}$$

Example 1.58. 设 f(x) 在 [a,b] 上有二阶连续导数且 f(a) = f(b) = 0, $M = \max_{[a,b]} |f''(x)|$,证明 $\left| \int_a^b f(x) dx \right| \leq \frac{(b-a)^2}{12} M$

$$\begin{split} \int_{a}^{b} f(x) dx &= \int_{a}^{b} f(x) d(x-a) = -\int_{a}^{b} f'(x) (x-a) d(x-b) \\ &= \int_{a}^{b} f''(x) (x-a) (x-b) dx + \int_{a}^{b} f'(x) (x-b) dx \\ &= \int_{a}^{b} f''(x) (x-a) (x-b) dx + \int_{a}^{b} (x-b) df(x) \\ &= \int_{a}^{b} f''(x) (x-a) (x-b) dx - \int_{a}^{b} f(x) dx \end{split}$$

则

$$\int_a^b f(x)dx = \frac{1}{2} \int_a^b f''(x)(x-a)(x-b)dx$$

因此

$$\begin{split} \left| \int_a^b f(x) dx \right| &\leq \frac{1}{2} M \int_a^b (x-a)(b-a) dx \\ &= \frac{1}{4} M \int_a^b (x-a)^2 dx = \frac{(b-a)^3}{12} M \end{split}$$

Example 1.59. 设 f(x) 在 [a,b] 上连续且严格单调增,证明:

$$(a+b)\int_{a}^{b} f(x)dx < 2\int_{a}^{b} x f(x)dx$$

$$\label{eq:final_eq} \diamondsuit F(x) = (a+x) \int_a^x f(t) dt - 2 \int_a^x t f(t) dt, (a < x \le b)$$

$$\begin{split} \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{\sqrt{|x-x^2|}} dx &= \int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{x-x^2}} dx + \int_{1}^{\frac{3}{2}} \frac{1}{\sqrt{x^2-x}} dx \\ &= \int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{\frac{1}{4}-(x-\frac{1}{2})^2}} dx + \int_{1}^{\frac{3}{2}} \frac{1}{\sqrt{(x-\frac{1}{2})^2-\frac{1}{4}}} dx \\ &= \arcsin(2x-1) \bigg|_{\frac{1}{2}}^{1} + \ln\left[(x-\frac{1}{2})+\sqrt{(x-\frac{1}{2})-\frac{1}{4}}\right] \bigg|_{1}^{\frac{3}{2}} \end{split}$$

Example 1.61.
$$\vec{x} \int e^x \frac{1+\sin x}{1+\cos x} dx$$

$$\int e^x \frac{1+\sin x}{1+\cos x} dx = \int e^x (1+\sin x) \frac{1}{2\cos^2\frac{x}{2}} dx = \int e^x d\tan\frac{x}{2} + \int e^x \tan\frac{x}{2} dx$$
$$= e^x \tan\frac{x}{2} + C$$

Example 1.62. 设 f(x) 为非负连续函数, 当 $x \ge 0$ 时, 有 $\int_0^x f(x)f(x-t)dt =$ $e^{2x} - 1$, $\Re f(x)$

 $f(x) \int 0^x f(u) du = e^{2x-1}$, 令 $F(x) = \int_0^x f(t) dt$, 则有 F'(x) F(x) = e^{2x-1} , F(0) = 0, 两边积分, 得

$$\frac{1}{2}F^2(x) = \frac{1}{2}e^{2x} - x + C$$

由 F(0) = 0 得, $C = -\frac{1}{2}$. 因此 $F^2(x) = e^{2x} - x - 1$,故

$$f(x) = F'(x) = \frac{e^{2x} - 1}{\sqrt{e^{2x} - 2x - 1}}$$

Example 1.63. 设 $f(x) = \int_{1}^{x} \frac{\ln t}{1+t} dt(x>0), \ g(x)$ 连续,且 $f(x) + f(\frac{1}{x}) =$ $\int_0^1 g(xt)dt, \ \ \vec{\Re} \ g(x)$ $\int_0^1 g(xt)dt = \tfrac{1}{x} \int_0^x g(t)dt, \ \ \ \vec{\nabla}$

$$\int_0^1 g(xt)dt = \frac{1}{x} \int_0^x g(t)dt, \quad X$$

$$f(\frac{1}{x}) = \int_0^{\frac{1}{x}} \frac{\ln t}{1+t} dt = \int_0^x \frac{\ln \frac{1}{u}}{1+\frac{1}{u}} (-\frac{1}{u^2}) du = \int_1^x \frac{\ln u}{u(1+u)} du$$

因此 $f(x) + f(\frac{1}{x}) = \int_1^x \frac{\ln t}{t} dt$, 于是 $\int_0^x g(t) dt = x \int_1^x \frac{\ln t}{t} dt$,

$$g(x) = \int_{1}^{x} \frac{\ln t}{t} dt + \ln x = \frac{1}{2} \ln^{2} x + \ln x$$

Example 1.64. 设 f(x) 在 $[0, +\infty)$ 上连续且单调增加,证明:对任意 a, b > 0, 恒有

$$\begin{split} \int_a^b x f(x) dx &\geq \frac{1}{2} \left[b \int_0^b f(x) dx - a \int_0^a f(x) dx \right] \\ \diamondsuit F(x) &= x \int_0^x f(t) dt, \quad \text{MJ } F'(x) = \int_0^x f(t) dt + x f(x) \\ F(b) - F(a) &= \int_a^b F'(x) dx = \int_a^b \left[\int_0^x f(t) dt + x f(x) \right] dx \\ &\leq \int_a^b [x f(x) + x f(x)] dx = 2 \int_a^b x f(x) dx \end{split}$$

多元函数微积分学 1.3