Exercises for 5.11-5.12

1.	Add missing items (Hint: lines 6 and 11 are one of the more useful the-
	orems of sentential logic):

4 \/ E	. \/ E
1. $\neg \forall x \neg Fx$	$\vdash \neg \forall x \neg Fx$
2. $\neg \exists x F x$	$\vdash \neg \exists x F x$
3. <i>Fa</i>	$\vdash Fa$
4. <i>Fa</i>	$\vdash \exists x F x$
5.	⊢4,⊃I
6.	⊢
7.	$\vdash \neg \exists x Fx \supset \neg Fa$
8. $\neg \exists x F x$	⊢ ¬Fa
9. ¬∃ <i>xFx</i>	⊢8,∀I
10.	$\vdash \neg \exists x Fx \supset \forall x \neg Fx$
11.	⊢
12.	$\vdash \neg \forall x \neg Fx \supset \neg \neg \exists x Fx$
13. $\neg \forall x \neg Fx$	$\vdash \neg \neg \exists x Fx$
14. $\neg \forall x \neg Fx$	$\vdash \exists x F x$

2. Suppose it is true that $\forall x [(Fx \lor Gx) \supset Hx]$, and suppose that Fa, where a is a constant. It follows that Ha. Turn this into a derivation. Here are the first two lines:

1.	1						-	٧	x	L	(1	Ľ	x	, ,	V	C	π.	x)	-		1 :	Ľ.				•	٠.	•	٠	•	•	•	· I	or	е	n	11	S	г
2.	Δ					ı	—	F	'a	,								•																. 1	or	e	n	1i	S	е
 		 	 																	-	 -			 	-	 -							-		-					
 		 	 																	•	 •			 	•	 •							•		•					

3.	ever	yone is grumpy	. Tui is hi	rn this into ingry, Gx	a deriva means x	tion. Here a	ryone is hungry, are the first two the conclusion
	1.	Γ	⊢	$\forall x (Hx \supset$	Gx)		premise
	2.	$\forall x H x$	⊢	$\forall x H x$			A
4.	a de		c me				e's turn this into constant. Hint:

	here are no dragons. Formalize this. Let Dx mean that x is a mythical creature. Hint: derive somes you to use \neg I.	
1. Γ	$\vdash \forall x (Dx \supset Mx)$ premi	ise
2. Δ	$\vdash \neg \exists x M x$ premi	ise
3. $\exists x Dx$	$\vdash \exists x D x$	Α.
4. <i>Da</i>	$\vdash Da$	A
5. Γ	$\vdash Da \supset Ma$	∀E
6. Prove $\vdash \forall x (Fx)$	$\exists \forall yGy) \supset \forall x \forall y(Fx \supset Gy).$ get rid of the quantifiers, and then put them back of	
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\neg \forall y G y) \neg \forall x \forall y (F x \neg G y).$	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \exists \forall x \forall y(Fx \exists Gy).$ get rid of the quantifiers, and then put them back of	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \exists \forall x \forall y(Fx \exists Gy).$ get rid of the quantifiers, and then put them back of	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \supset \forall x \forall y(Fx \supset Gy).$ get rid of the quantifiers, and then put them back of	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \supset \forall x \forall y(Fx \supset Gy).$ get rid of the quantifiers, and then put them back of	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \supset \forall x \forall y(Fx \supset Gy).$ get rid of the quantifiers, and then put them back of	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \supset \forall x \forall y(Fx \supset Gy).$ get rid of the quantifiers, and then put them back of	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \supset \forall x \forall y(Fx \supset Gy).$ get rid of the quantifiers, and then put them back of	on
6. Prove $\vdash \forall x (Fx)$ (Hint: use $\forall E$ to using $\forall I$.)	$\exists \forall yGy) \supset \forall x \forall y(Fx \supset Gy).$ get rid of the quantifiers, and then put them back of	on

5. Consider: dragons are mythical creatures; but there are no mythical