# CIS 6930 Topics in Computing for Data Science Week 6a: Recurrent Neural Networks (2) Encoder-Decoder Models

9/30/2021 & 10/5/2021 Yoshihiko (Yoshi) Suhara

2pm-3:20pm

#### This Week & Next Week

• Thu 10/7 Midterm exam (written exam **on campus**)

Time: 2pm-3:20pmLocation: LBR 252

Fall Break

#### Week 6!

- Week 1: Deep Learning Basics (Thu 9/9)
- Week 2: AutoEncoder (Tue 9/14)
- Week 3: Convolutional Neural Networks (Thu 9/16)
- ◆ Week 4: GAN (Tue 9/21)
- Week 5: Word embeddings: Word2vee, GloVe (Thu 9/23)
- Week 6: Recurrent Neural Networks (Tue 9/28, Thu 9/30)
- Week 7: Review/Project pitch & Mid-term (Tue 10/5, Thu 10/7)
- Fall Break
- ..

# **Recap: Recurrent Neural Networks (1)**

# Recurrent Neural Networks for Sequential Input

- Inspired by Hopfield Network (1982)
- "Simple" Recurrent Neural Networks
  - Jordan Net (1986)
  - Elman Net (1990)



**Jordan Net** 



input value
input
value
input
value
input
input
input
value
input value
input value
input value

**Hopfield Network** 

**Elman Net** 

# Unfolding RNN Backpropagation Through Time (BPTT)



### **RNN Cell for Sequential Data**

RNN = Elman Net

Input value + previous hidden state → Next hidden state



$$h_t = anh( \underline{W_{ih}} x_t + b_{ih} + \underline{W_{hh}} h_{(t-1)} + b_{hh})$$
 $W_h ig[ x_t; h_{(t-1)} ig] + b_h$ 
Another notation

# **Text Classification Example**

Input: "Deep Learning is great"

Label: positive



Any other options?

# Where to Attach Output Layer?

• Where?



# **RNN Application Patterns**



#### What's the issue with RNNs?

- Not a very good design for a long sequence
  - Later input values have higher impact on the last hidden state
  - Gradient vanishing problem



# LSTM: Cell State + Gating Mechanism







# Long-short Term Memory (LSTM) Cell [Hochreiter and Schmidhuber 1997]





$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{t-1} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{t-1} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{t-1} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{t-1} + b_{ho}) \ c_t &= f_t \odot c_{t-1} + i_t \odot g_t \ h_t &= o_t \odot anh(c_t) \end{aligned}$$

# Agenda (1st Half)

- Advanced topics (contd.)
  - o GRU
  - Stacked GRU/LSTM
  - Bidirectional GRU/LSTM
- Hands-on Session
- Assignment 3

# Link to the previous slide deck

- <a href="https://github.com/suhara/cis6930-fall2021/blob/main/slides/cis6930-week6a-recurrent-neural-networks-1.pdf">https://github.com/suhara/cis6930-fall2021/blob/main/slides/cis6930-week6a-recurrent-neural-networks-1.pdf</a>

# Agenda (2nd Half)

- Encoder-Decoder Models (aka seq2seq Models)
- Decoding Algorithms
- Attention mechanism

# **RNN Application Patterns**



Recap

#### **Autoencoders**

• Encoder-decoder models that learn to reconstruct the original data



# Encoder-Decoder Model aka Sequence-to-sequence (seq2seq) Model

- Input: Variable length sequence
- Output: Variable length sequence



#### **Encoder Model + Decoder Model**

Two different RNN models



# **Example 1: Response Generation**



# **Example 1: Response Generation**



# **Example 1: Response Generation**



# **Example 2: Machine Translation**



# **Example 3: Text Summarization**



#### What Can We Do with Encoder-Decoder Models?

- Almost anything! (even classification!)
- .... as long as you have a sufficient amount of parallel data (input-output pairs)



# **Check: Input & Output**

- Token ID → One-hot vector → Dense vector → RNN
- RNN → Output layer + softmax → Token ID



## **Training Encoder-Decoder Models: Training Data**

- Training data: Pairs of text sequences (called a parallel corpus)
  - e.g., ("How are you?", "I am good")



# Training Encoder-Decoder Models: "Teacher Forcing"

Train the model to output ground-truth outputs



# **Decoding Algorithms**

# What does the output layer do at each step?



#### **Exhaustive Search is Intractable!**

- We want to find the best sequence  $\underset{X}{\operatorname{argmax}} P(X) = \underset{X}{\operatorname{argmax}} \prod_{t=1}^{t} P(x_t | x_{1:t-1})$
- Number of candidates: V<sup>N</sup>
  - for a sequence length of N and a vocabulary size of V



Ν

# **Decoding Algorithm (i.e., Approximate Search)**

- Greedy Search
- Beam Search
- Top-k Sampling (covered in Week 8-9)
- Nucleus Sampling (covered in Week 8-9)

# **Greedy Search**

Always choose the token with the highest probability



# **Greedy Search**

Always choose the token with the highest probability



# **Greedy Search**

Always choose the token with the highest probability



# When Does the Decoder Stop?

When it selects the dummy symbol for the end of sequence (e.g., EOS)



### **Beam Search**

Select top-k candidates at each step and grow the search tree





# Beam Search (k = 3)

k is often called "beam width"

Choose top-k tokens



# **Step 2: Calculate Next Token Probability**



### **Step 2: Calculate Next Token Probability**



# **Step 2: Calculate Next Token Probability**



### **Step 3: Choose Top-3 Candidates**



#### **Candidate ranking**

1: "I am ..." 0.24 2: "not bad ..." 0.1805 3: "good" 0.16

### **Repeat the Steps**



#### **Update the Candidate List**



#### **Update the Candidate List**



### **Update the Candidate List**



Key message:

The **same model** can return **a different sequence** with a different decoding algorithm

Greedy: "I am good"

Beam Search (k=2): "good" Beam Search (k=3): "not bad"

# **Summary: Decoding Algorithm**

- Greedy Search
  - Time complexity: O(N)
- Beam Search
  - Time complexity: O(k N)
  - Common choice: Beam width = 5 ~ 10

# **Key Concept**

Encoder-Decoder Model



# **Questions?**

# **Attention Mechanism**

### What's the issue with Encoder-Decoder Models?

- Not a very good design for long input/output sequence even with LSTM/GRU
  - o e.g., dependency b/w the beginning of input & the end of output



### Attention Mechanism [Bahdanau, Cho, and Bengio ICLR 2016]

 Additional input to the decoder based on the alignments b/w encoder and decoder steps



#### **Attention Mechanism: Intuition**

"Direct" connections between any steps in the encoder/decoder model



# **Attention Mechanism: Attention Layer**



# **Attention Layer in Depth**



# **Attention Weight Analysis**





# **Alignment Score Options**

|                          | Name                      | Alignment score function                                                                                                                                                            | Citation     |
|--------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Original →  ransformer → | Content-base attention    | $score(s_t, \mathbf{h}_i) = cosine[s_t, \mathbf{h}_i]$                                                                                                                              | Graves2014   |
|                          | Additive(*)               | $score(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\mathbf{s}_t; \mathbf{h}_i])$                                                                           | Bahdanau2015 |
|                          | Location-Base             | $\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \mathbf{s}_t)$<br>Note: This simplifies the softmax alignment to only depend on the target position.                            | Luong2015    |
|                          | General                   | $score(s_t, h_i) = s_t^{T} \mathbf{W}_a h_i$<br>where $\mathbf{W}_a$ is a trainable weight matrix in the attention layer.                                                           | Luong2015    |
|                          | Dot-Product               | $score(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{\top} \boldsymbol{h}_i$                                                                                              | Luong2015    |
|                          | Scaled Dot-<br>Product(^) | $score(s_t, h_i) = \frac{s_t^T h_i}{\sqrt{n}}$<br>Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state. | Vaswani2017  |

# **Self-Attention** Mechanism for Text Classification



### **Takeaway**

- Encoder-Decoder Models (aka seq2seq Models)
  - Many applications: Response Generation, Machine Translation, Text Summarization, etc.
- Decoding Algorithms
  - Greedy Search
  - Beam Search
- Attention mechanism
  - Alignment scores
  - Self-attention mechanism

#### **Next Week**

- Tue 10/5 Review session & initial discussion about term projects
  - Quick survey: Do you have any ideas in your mind? (Text? Image? or else?)

Thu 10/7 Midterm exam (written exam on campus)

Time: 2pm-3:20pm

Location: TBA

Fall Break!