Если колебательная система одновременно участвует в двух (или более) независимых колебательных движениях, возникает задача - <u>найти результирующее колебание</u>. В случае однонаправленных колебаний под этим понимается нахождение уравнения результирующего колебания; в случае взаимно перпендикулярных колебаний - нахождение траектории результирующего колебания.

<u>Сложение двух колебаний одного направления</u> (сонаправленных колебаний)

$$x_1 = A_1 \cos(\omega_1 t + \alpha_1) \ x_2 = A_2 \cos(\omega_2 t + \alpha_2)$$

можно провести с помощью метода векторных диаграмм (Рисунок 9) вместо сложения двух уравнений.

На Рисунке 2.1 показаны векторы амплитуд ${\bf A}_1(t)$ и ${\bf A}_2(t)$ складываемых колебаний в произвольный момент времени t, когда фазы этих колебаний соответственно равны $\varphi_1(t) = \omega_1 t + \alpha_1$ и $\varphi_2(t) = \omega_2 t + \alpha_2$. Сложение

колебаний сводится к определению $x_{per} = x_1 + x_2$. Воспользуемся тем фактом, что на векторной диаграмме сумма проекций складываемых векторов равна проекции векторной суммы этих векторов.

Результирующему колебанию $\mathbf{x}_{\text{рез.}} = \mathbf{x}_1 + \mathbf{x}_2$ соответствует на векторной диаграмме вектор амплитуды $\mathbf{A}(t) = \mathbf{A_1}(t) + \mathbf{A_2}(t)$ и фаза $\varphi(t) = \varphi_1(t) + \varphi_2(t)$.

Рисунок 2.1 – Сложение сонаправленных колебаний.

Величина вектора A(t) может быть найдена по теореме косинусов:

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\phi_1(t) - \phi_2(t))}$$

Фаза результирующего колебания задается формулой:

$$tg\phi(t) = \frac{A_1 \sin \phi_1(t) + A_2 \sin \phi_2(t)}{A_1 \cos \phi_1(t) + A_2 \cos \phi_2(t)}$$

Если частоты складываемых колебаний ω_1 и ω_2 не равны, то и фаза $\phi(t)$, и амплитуда $\mathbf{A}(t)$ результирующего колебания будут изменяться с течением времени. Складываемые колебания называются *некогерентными* в этом случае.

Сложение взаимно перпендикулярных колебаний

1. Модель, на которой можно продемонстрировать сложение взаимно перпендикулярных колебаний, представлена на Рисунке 2.3. Маятник (материальная точка массой m) может совершать колебания по осям ОХ и ОУ под действием двух сил упругости, направленных взаимно перпендикулярно.

Рисунок 2.3

Складываемые колебания имеют вид:

$$x = A_x \cos(\omega_x t + \alpha_x)$$
 $y = A_y \cos(\omega_y t + \alpha_y)$

Частоты колебаний определяются как $\omega_{\rm x} = \sqrt{\frac{k_{\rm x}}{m}}$, $\omega_{\rm y} = \sqrt{\frac{k_{\rm y}}{m}}$, где $k_{\rm x}$, $k_{\rm y}$ - коэффициенты жесткости пружин.