1. Problemas de valores propios

Definición: Sea χ un espacio de funciones definidas sobre el mismo intervalo I. Un operador diferencial lineal L sobre χ se llama **simétrico** si:

$$\int_{I} [f_1(x)(Lf_2)(x) - f_2(x)(Lf_1)(x)] dx = 0$$

para cualesquiera funciones f_1 y f_2 en χ .

Definición: Sea σ una función definida sobre I con la propiedad de que $\sigma(x)>0$ para toda x en I. Dos funciones, f_1 y f_2 , también definidas sobre I, se llaman **ortogonales con peso** σ sobre I si:

$$\int_{I} f_1(x) f_2(x) \sigma(x) dx = 0$$

Si $\sigma(x)=1$, entonces f_1 y f_2 simplemente se llaman **ortogonales**. Un conjunto de funciones que son ortogonales a pares, se llama un **conjunto ortogonal**.

Definición: Sea un operador diferencial sobre un espacio χ de funciones definidas sobre (a,b). Una ecuación de la forma

$$(Lf)(x) + \lambda \sigma(x)f(x) = 0, \quad a < x < b \tag{1}$$

donde λ es un parámetro y σ es una función dada tal que $\sigma(x)>0$ para todo x en (a,b) se llama un **problema de valores propios**. Los números λ para los que existe solución distinta de 0 en χ se llaman **valores propios** y sus correspondientes soluciones se llaman **funciones propias**.

Teorema: Si el operador L del problema de valores propios (1) es simétrico, entonces:

- 1. Todos los valores propios λ son reales;
- 2. Los valores propios forman una secuencia infinita $\lambda_1 < \lambda_2 < ... < \lambda_n < ...$ tal que $\lambda_n \to \infty$ cuando $n \to \infty$;
- 3. Funciones propias asociadas con distintos valores propios son ortogonales con peso σ en (a,b).

2. Problemas de Sturm-Liouville

Definición: Sea [a,b] un intervalo finito, sean p,q y σ funciones de valores reales, y sean $\kappa_1,\kappa_2,\kappa_3$ y κ_4 números reales tales que:

- 1. La función p es continuamente diferenciable en [a,b] y p(x)>0 para todo x en [a,b];
- 2. Las funciones q y σ son continuas en [a,b] y $\sigma(x)>0$ para todo x en [a,b];
- 3. Los parámetros κ_1 y κ_2 no son ambos cero y κ_3 y κ_4 no son abos cero.

Un problema de valores propios de la forma

$$[p(x)f'(x)]' + q(x)f(x) + \lambda \sigma(x)f(x) = 0, \quad a < x < b,$$
(2)

con las condiciones de frontera:

$$\kappa_1 f(a) + \kappa_2 f'(a) = 0$$

$$\kappa_3 f(b) + \kappa_4 f'(b) = 0$$

se llama un **problema regular de Surm-Liouville** (S-L).

Teorema: El operador

$$Lf = (pf')' + qf$$

definido en el lado izquierdo de la ecuación (2) es simétrico.

Corolario: Los valores propios y las funciones propias de un problema S-L tienen las propiedades descritas por el Teorema de la sección anterior.