4.1 Numerical Differentiation

The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

This formula gives an obvious way to generate an approximation to $f'(x_0)$; simply compute

$$f'(x) \approx \frac{f(x_0+h)-f(x_0)}{h}$$
.

Example 1 Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

$$\frac{f(1.8+h)-f(1.8)}{h}$$

with h = 0.1 gives

$$\frac{\ln 1.9 - \ln 1.8}{0.1} = \frac{0.64185389 - 0.58778667}{0.1} = 0.5406722.$$

Bound for approximation error:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi).$$

For small values of h, the difference quotient $[f(x_0 + h) - f(x_0)]/h$ can be used to approximate $f'(x_0)$ with an error bounded by M|h|/2, where M is a bound on |f''(x)| for x between x_0 and $x_0 + h$. This formula is known as the forward-difference formula if h > 0 (see Figure 4.1) and the backward-difference formula if h < 0.

Because $f''(x) = -1/x^2$ and $1.8 < \xi < 1.9$, a bound for this approximation error is

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321.$$

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar manner and the results are shown in Table 4.1.

Table 4.1

h	f(1.8 + h)	$\frac{f(1.8+h) - f(1.8)}{h}$	$\frac{ h }{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
0.05	0.61518564	0.5479795	0.0077160
0.01	0.59332685	0.5540180	0.0015432

Since f'(x) = 1/x, the exact value of f'(1.8) is $0.55\overline{5}$, and in this case the error bounds are quite close to the true approximation error.

Three-Point Formulas

Three-Point Endpoint Formula

•
$$f'(x_0) = \frac{1}{2h}[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)] + \frac{h^2}{3}f^{(3)}(\xi_0),$$
 (4.4)

where ξ_0 lies between x_0 and $x_0 + 2h$.

Three-Point Midpoint Formula

•
$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi_1),$$
 (4.5)

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

Five-Point Formulas

Five-Point Midpoint Formula

•
$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi),$$
 (4.6)

where ξ lies between $x_0 - 2h$ and $x_0 + 2h$.

Five-Point Endpoint Formula

•
$$f'(x_0) = \frac{1}{12h} [-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)] + \frac{h^4}{5} f^{(5)}(\xi), \tag{4.7}$$

where ξ lies between x_0 and $x_0 + 4h$.

Example 2 Values for $f(x) = xe^x$ are given in Table 4.2. Use all the applicable three-point and five-point formulas to approximate f'(2.0).

We can use the endpoint formula (4.4) with h = 0.1 or with h = -0.1

$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)]$$

Ignie	4.2
х	f(x)
1.8	10.889365
1.9	12.703199
2.0	14.778112
2.1	17.148957
2.2	19.855030

Table /12

Endpoint with
$$h = 0.1$$
: $\frac{1}{0.2}[-3f(2.0) + 4f(2.1) - f(2.2)] = 22.032310.$

Endpoint with
$$h = -0.1$$
: $\frac{1}{-0.2}[-3f(2.0) + 4f(1.9) - f(1.8)] = 22.054525$.

Using the midpoint formula (4.5) with h = 0.1 gives

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)]$$

Midpoint with
$$h = 0.1$$
: $\frac{1}{0.2}[f(2.1) - f(1.9)] = 22.228790$.

Midpoint with
$$h = 0.2$$
: $\frac{1}{0.4}[f(2.2) - f(1.8)] = 22.414163$.

The only five-point formula for which the table gives sufficient data is the midpoint formula (4.6) with h = 0.1. This gives

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)]$$

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)]$$

$$\frac{1}{1.2}[f(1.8) - 8f(1.9) + 8f(2.1) - f(2.2)] = \frac{1}{1.2}[10.889365 - 8(12.703199) + 8(17.148957) - 19.855030]$$

$$= 22.166999$$

The true value in this case is $f'(2.0) = (2+1)e^2 = 22.167168$, so the approximation errors are actually:

Three-point endpoint with h = 0.1: 1.35×10^{-1} ;

Three-point endpoint with h = -0.1: 1.13×10^{-1} ;

Three-point midpoint with h = 0.1: -6.16×10^{-2} ;

Three-point midpoint with h = 0.2: -2.47×10^{-1} ;

Five-point midpoint with h = 0.1: 1.69×10^{-4} .

Verify?

[Three-Point Midpoint Formula for Approximating f'']

Second Derivative Midpoint Formula

• $f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi), \tag{4.9}$

for some ξ , where $x_0 - h < \xi < x_0 + h$.

Example 3 In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of $f(x) = xe^x$ at x = 2.0. Use the second derivative formula (4.9) to approximate f''(2.0).

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)]$$

Solution The data permits us to determine two approximations for f''(2.0). Using (4.9) with h = 0.1 gives

$$\frac{1}{0.01}[f(1.9) - 2f(2.0) + f(2.1)] = 100[12.703199 - 2(14.778112) + 17.148957]$$
$$= 29.593200,$$

[Three-Point Midpoint Formula for Approximating f'']

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)]$$

and using (4.9) with h = 0.2 gives

$$\frac{1}{0.04}[f(1.8) - 2f(2.0) + f(2.2)] = 25[10.889365 - 2(14.778112) + 19.855030]$$
$$= 29.704275.$$

Because $f''(x) = (x + 2)e^x$, the exact value is f''(2.0) = 29.556224. Hence the actual errors are -3.70×10^{-2} and -1.48×10^{-1} , respectively.

 Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.	х	f(x)	f'(x)
	0.5	0.4794	
	0.6	0.5646	
	0.7	0.6442	

The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exercise 1, and find error bounds using the error formulas.

a. $f(x) = \sin x$

Solution:

The approximations are in the following tables.

(a)	x	Actual Error	Error Bound
	0.5	0.0255	0.0282
	0.6	0.0267	0.0282
	0.7	0.0312	0.0322

Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	х	f(x)	f'(x)
	-0.3	-0.27652	
	-0.2	-0.25074	
	-0.1	-0.16134	
	0	0	

The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exercise 6, and find error bounds using the error formulas.

a.
$$f(x) = e^{2x} - \cos 2x$$

Solution:

x	f(x)	f'(x)	x	Actual Error	Error Bound
-0.3 -0.2 -0.1 0.0	-0.27652 -0.25074 -0.16134 0.0	$\begin{array}{c} -0.06030 \\ 0.57590 \\ 1.25370 \\ 1.97310 \end{array}$	-0.3 -0.2 -0.1 0.0	0.028638 0.014097 0.013577 0.026900	0.029692 0.014846 0.014130 0.028260

EXERCISE SET 4.1

 Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.	Х	f(x)	f'(x)
	0.5 0.6 0.7	0.4794 0.5646 0.6442	

b.	X	f(x)	f'(x)
	0.0	0.00000	
	0.2	0.74140	
	0.4	1.3718	

Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables.

a.	х	f(x)	f'(x)
	-0.3	1.9507	
	-0.2	2.0421	
	-0.1	2.0601	

b.	х	f(x)	f'(x)
	1.0	1.0000	
	1.2	1.2625	
	1.4	1.6595	

The data in Exercise 1 were taken from the following functions. Compute the actual errors in Exercise 1, and find error bounds using the error formulas.

a.
$$f(x) = \sin x$$

b.
$$f(x) = e^x - 2x^2 + 3x - 1$$

The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exercise 2, and find error bounds using the error formulas.

a.
$$f(x) = 2\cos 2x - x$$

b.
$$f(x) = x^2 \ln x + 1$$

Use the most accurate three-point formula to determine each missing entry in the following tables.

a.	х	f(x)	f'(x)
	1.1	9.025013	
	1.2	11.02318	
	1.3	13.46374	
	1.4	16.44465	

b.	x	f(x)	f'(x)
	8.1	16.94410	
	8.3	17.56492	
	8.5	18.19056	
	8.7	18.82091	

c.	х	f(x)	f'(x)
	2.9	-4.827866	
	3.0	-4.240058	
	3.1	-3.496909	
	3.2	-2.596792	

18. Consider the following table of data:

х	0.2	0.4	0.6	0.8	1.0
f(x)	0.9798652	0.9177710	0.808038	0.6386093	0.3843735

- a. Use all the appropriate formulas given in this section to approximate f'(0.4) and f''(0.4).
- b. Use all the appropriate formulas given in this section to approximate f'(0.6) and f''(0.6).