

UM EECS 270 F22 Introduction to Logic Design

23. Review

Timing Diagrams

Causality Arrow

 t_{pHL}^{NAND}

gives NAND gate propagation delay from input to output when <u>output</u> is changing from H to L

Multiple paths from input to output

Bi-Stable Circuit & Ring Oscillator

This circuit is bi-stable

This circuit is known as a ring-oscillator

$$t_{period} = t_{pHL}^{g1} + t_{pLH}^{g2} + t_{pHL}^{g3} + t_{pHL}^{g1} + t_{pLH}^{g2} + t_{pLH}^{g3}$$

Assume all gate delays are 1ns:

$$t_{period} = 6ns$$
 $f_{osc} = \frac{1}{6ns} = 166MHz$

- Base set: $B_2 = \{0, 1\}$
- One unary operation: NOT or COMPLEMENT: $(x', \bar{x}, \neg x)$
- Two binary operations: AND (⋅, ∧), OR (+, ∨)
- Postulates (axioms):

Postulate	Defines	A	В
P1	Switching Variables	$x = 0 \text{ iff } x \neq 1$	$x = 1 \text{ iff } x \neq 0$
P2	NOT	0'=1	1'= 0
Р3		$0 \cdot 0 = 0$	1 + 1 = 1
P4	AND / OR	$1 \cdot 1 = 1$	0 + 0 = 0
P5		$0 \cdot 1 = 1 \cdot 0 = 0$	0+1=1+0=1

• Duality: $0 \leftrightarrow 1, \leftrightarrow +$

(Some) Theorems

	A	Name	В
T1	$x \cdot 1 = x$	Identities	x + 0 = x
T2	$x \cdot 0 = 0$	Null Elements	x + 1 = 1
Т3	$x \cdot x = x$	Idempotency	x + x = x
T4		Involution $(x')' = x$	
T5	$x \cdot x' = 0$	Complements	x + x' = 1
Т6	$x \cdot y = y \cdot x$	Commutativity	x + y = y + x
T7	$x \cdot (x + y) = x$	Absorption	$x + (x \cdot y) = x$
T8	$x \cdot (x' + y) = x \cdot y$	No Name	$x + (x' \cdot y) = x + y$
Т9	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$	Associativity	(x+y) + z = x + (y+z)
T10	$x \cdot (y+z) = x \cdot y + x \cdot z$	Distributivity	$x + (y \cdot z) = (x + y) \cdot (x + z)$
T11	$x \cdot y + x' \cdot z + y \cdot z = x \cdot y + x' \cdot z$	Consensus	$(x + y) \cdot (x'+z) \cdot (y + z)$ = $(x + y) \cdot (x'+z)$
T12	$f(x_1, \dots, x_n, 0)$	De Morgan's $f(x_1, \cdot, +)' = f(x_1', \cdot, +)$, x'_n , 1,0, +,·)

Switching Functions

- $f(x_1, x_2, ..., x_n)$ is a mapping from $B_2^n \to B_2$
- f can be specified by many equivalent expressions or by tables of combinations (truth tables)
- Elementary functions:
 - A minterm m_i is an AND term of n literals
 - A maxterm M_i is an OR term of n literals

Ex: 4 variables A, B, C, D

- $m_5(A, B, C, D) = A'BC'D$ (0101) $M_5(A, B, C, D) = A + B' + C + D'$ (0101)
- $m_i = 1$ for exactly one combination of variables, and 0 for all others
- $M_i = 0$ for exactly one combination of variables, and 1 for all others
- $m_i = M_i'$

Canonical Forms

- Canonical Sum-of-Products (SOP)
 - Also known as Disjunctive Normal Form (DNF)
 - Sum of minterms (those for which f = 1)
 - Shorthand: $\sum (...)$
- Canonical Product-of-Sums (POS)
 - Also known as Conjunctive Normal Form (CNF)
 - Product of maxterms (those for which f = 0)
 - Shorthand: ∏(...)

Canonical Forms

- Canonical Sum-of-Products (SOP)
 - Also known as Disjunctive Normal Form (DNF)
 - Sum of minterms (those for which f = 1)
 - Shorthand: $\sum (...)$
- Canonical Product-of-Sums (POS)
 - Also known as Conjunctive Normal Form (CNF)
 - Product of maxterms (those for which f = 0)
 - Shorthand: ∏(...)

Decimal	xyz	f
0	000	1
1	001	0
2	010	1
3	011	1
4	100	0
5	101	0
6	110	1
7	111	1

$$f(x,y,z) = \sum_{x,y,z} (0,2,3,6,7)$$

$$f(x,y,z) = x'y'z' + x'yz' + x'yz + xyz' + xyz$$

$$f(x,y,z) = \prod_{x,y,z} (1,4,5)$$

$$f(x,y,z) = (x+y+z')(x'+y+z)(x'+y+z')$$

Decimal	xyz	f
0	000	1
1	001	0
2	010	d
3	011	1
4	100	0
5	101	d
6	110	1
7	111	1

$$f(x,y,z) = \sum_{x,y,z} (0,3,6,7) + d(2,5)$$

$$f(x, y, z) = \prod_{x,y,z} (1,4) \frac{d(2,5)}{d(2,5)}$$

On-Set =
$$\{0, 3, 6, 7\}$$

Off-Set = $\{1, 4\}$
Don't-Care-Set = $\{2, 5\}$

Code Word Representation of Product Terms

Variables: $u \ v \ w \ x \ y \ z$

Code Word	Product Term	#minterms "covered"
001101	u'v'wxy'z	$1\{m_{13}\}$
0-1-01	u'wy'z	$2^2 = 4 \{ m_9, m_{13}, m_{25}, m_{29} \}$

#minterms covered by code word = $2^{\text{#missing literals}}$

Boole's (Shannon's) Expansion Theorem

- Decomposition of a switching function of n variables into functions of n − 1 variables
 - $f(x_1, x_2, ..., x_n) = x_1' f(0, x_2, ..., x_n) + x_1 f(1, x_2, ..., x_n)$ - $f(x_1, x_2, ..., x_n) = [x_1' + f(1, x_2, ..., x_n)][x_1 + f(0, x_2, ..., x_n)]$
- The functions resulting from fixing x are referred to as co-factors
 - $f(0, x_2, ..., x_n)$ is the negative cofactor of f wrt x_1
 - $f(1, x_2, ..., x_n)$ is the positive cofactor of f wrt x_1
- Notation:
 - $f_{x_1'} = f(0, x_2, ..., x_n)$
 - $f_{x_1} = f(1, x_2, ..., x_n)$

Switching Functions of 2 Variables

$$f(x,y) = a_0 m_0 + a_1 m_1 + a_2 m_2 + a_3 m_3$$

$a_3a_2a_1a_0$	f(x,y)	Name	Symbol	Unique?
0000	0	Inconsistency		#
0001	x'y'	NOR	$x \downarrow y$	
0010	x'y	Inhibition		
0011	x'	NOT		
0100	xy'	Inhibition		
0101	y'	NOT		
0110	x'y + xy'	XOR	$x \oplus y$	#
0111	x' + y'	NAND	$x \uparrow y$	
1000	xy	AND	$x \cdot y = x \land y = xy$	#
1001	xy + x'y'	XNOR / EQV	$x \odot y$	
1010	у	Transfer		
1011	x' + y	Implication	$x \rightarrow y$	
1100	\boldsymbol{x}	Transfer		#
1101	x + y'	Implication	$y \rightarrow x$	
1110	x + y	OR	$x + y = x \lor y$	#
1111	1	Tautology		#

Properties of XOR (modulo-2 Addition)

- Commutativity: $x \oplus y = y \oplus x$
- Associativity: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- Distributivity: $x(y \oplus z) = xy \oplus xz$
- Relationship to XNOR: $(x \oplus y)' = x \odot y$
 - XNOR is "equal"
 - XOR is "not equal"
- Conditional Complementation:

$$s \oplus x = \begin{cases} x & \text{if } s = 0 \\ x' & \text{if } s = 1 \end{cases}$$

- Parity: Value of $f = x_1 \oplus x_2 \oplus ... \oplus x_n$
 - Remains unchanged if an even number of variables are complemented
 - Is complemented if an odd number of variables are complemented
- Any identity f(X) = g(X) can be re-expressed as $f(X) \oplus g(X) = 0$

Functional Completeness

- A set of operations is functionallycomplete (or universal) iff every switching function can be expressed entirely by means of operations from this set
- The following are functionally-complete operation sets
 - $-\{+,\cdot,'\}$ (by definition)
 - {+,'} (by De Morgan's theorem)
 - {·,'} (by De Morgan's theorem)
 - {NAND}: $x \uparrow y = x' + y'$ UM EECS 270 Fall 2022

Representation of Numbers

- Positional
- Radix: 2, 4, 8, 10, 16 (and any other!)
- Unsigned
- Signed:
 - Signed Magnitude
 - Ones' Complement
 - Two's Complement

Final Circuit:

$$S = A \oplus B \oplus C_{i}$$

$$C_{o} = AB + (A \oplus B)C_{i}$$

- This circuit is called a Full Adder (FA)
- After all that design work, we really just have 2 HAs with an OR gate

• To make an n-bit adder, simply cascade Full Adders to make a Ripple

Carry Adder:

- What about subtraction hardware?
 - Could design subtractor hardware using process similar to adder design
 - Simpler way: re-use our addition hardware! A B = A + (-B)

(-B)??? How do we represent negative numbers?

Ripple-carry Adder/Subtractor with Overflow Detection

$$\overline{ADD}/SUB = 0 \rightarrow S = A + B$$

$$\overline{ADD}/SUB = 1 \rightarrow S = A - B$$

$$OF = 1 \rightarrow Overflow$$

UM EECS 270 Fall 2022

- Equal if
$$a_3 = b_3$$
 AND $a_2 = b_2$ AND $a_1 = b_1$ AND $a_0 = b_0$

- Which gate performs an equality comparison?
 - XNOR!

$$EQ = (a_3 \circ b_3) \cdot (a_2 \circ b_2) \cdot (a_1 \circ b_1) \cdot (a_0 \circ b_0)$$

How many gates are required to implement an *n*-bit "parallel" comparator?

A B

A⊙B

Assume
$$n = 2^k$$

#gates = $2^k + 2^{k-1} + 2^{k-1} + \dots 2^0$
= $2^{k+1} - 1$

= 2n - 1

- Want to design a signal, AgrB, that is 1 iff A > B (A and B are 4-bit numbers). Under what logic conditions is A > B?
 - $A > B \text{ if } a_3 = 1 \text{ and } b_3 = 0$
 - $A > B \text{ if } a_2 = 1 \text{ and } b_2 = 0 \text{ and } a_3 = b_3$
 - $A > B \text{ if } a_1 = 1 \text{ and } b_1 = 0 \text{ and } a_2 = b_2 \text{ and } a_3 = b_3$
 - $A > B \text{ if } a_0 = 1 \text{ and } b_0 = 0 \text{ and } a_1 = b_1 \text{ and } a_2 = b_2 \text{ and } a_3 = b_3$

$$AgrB = a_3 \cdot \overline{b_3} +$$

$$(a_3 \circ b_3) \cdot a_2 \cdot \overline{b_2} +$$

$$(a_3 \circ b_3) \cdot (a_2 \circ b_2) \cdot a_1 \cdot \overline{b_1} +$$

$$(a_3 \circ b_3) \cdot (a_2 \circ b_2) \cdot (a_1 \circ b_1) \cdot a_0 \cdot \overline{b_0}$$

Decoder Circuit

Symbol:

Encoders

- Most common encoder maps a 2ⁿ one-hot code to an n-bit binary number, where the binary number represents the input number that is asserted
- What if all input signals are deasserted? Requires additional output, usually called A (active) that is asserted if at least one input is asserted

i_3	i_2	i ₁	i_0	01	O ₀	Α
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	_	1
0	1	0	0	1	0	1
1	0	0	0	1	1	1
а	II ot	hei	ſS	d	d	d

$$o_1 = i_3 + i_2$$
 $o_0 = i_3 + i_1$
 $A = i_3 + i_2 + i_1 + i_0$

Multiplexer (Mux)

- A mux is a digital switch
- The output copies one of n data inputs, depending on the value of the select inputs
- Implementation:

$$q = s_1' s_0' d_0 + s' s_0 d_1 + s_1 s_0' d_2 + s_1 s_0 d_3$$

Product terms are mutually exclusive!

 A demux connects an input signal to one of several output signals, depending on the value of the select signals

S ₁	s_0	y 0	y ₁	y ₂	y ₃
0	0	IN	0	0	0
0	1	0	IN	0	0
1	0	IN 0 0 0	0	IN	0
1	1	0	0	0	IN

2-to-4 Decoder						
ΕN	i_1	i_0	00	01	02	O ₃
0	X	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

- How to implement?
 - TT should look very familiar...
 - Use a decoder!

Tri-State Gates

C	Q		
0	High Impedance	$\rightarrow D \longrightarrow$	- Q
1	D	→ D	Q

Other tri-state devices:

Tri-state Inverter

Active low Tri-state Buffer

Active low
Tri-state Inverter

С	Q
0	D
1	High Impedance

S	R	Q^+	QB^+	Function
0	0	Q	QB	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	0	0	Invalid

Cross-Coupled NOR Gates

S	R	Q^+	QB^+	Function
0	0	Q	QB	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	0	0	Invalid

Latch Names and Symbols

Edge-Triggered D Flip-flop

Leader transparent

D	CLK	Q	QB
0		0	1
1		1	0
X	0	Last Q	Last QB
X	1	Last Q	Last QB

"Double-door" analogy

Follower transparent

UM EECS 270 Fall 2022

- Sequential Circuit Components:
 - Next state logic (combinational): next state = f(current state, inputs)
 - Memory (sequential): stores state in terms of state variables
 - Output logic (combinational):
 - **Moore Output**: output = g(current state)

• **Mealy Output**: output= g(current state, inputs)

Sequential Circuit Analysis

Goal: Given a sequential circuit, describe the circuit's behavior

- The transition/output table shows the next state and output for every current state/input combination
 - Entries of the table are obtained from the transition equations and the output equations

Transition Equations:

$$Q_0^+ = D_0 = EN \oplus Q_0$$

$$Q_1^+ = D_1 = EN \cdot (Q_0 \oplus Q_1) + \overline{EN} \cdot Q_1$$

Output Equation:

$$QTR = Q_0 \cdot Q_1$$

Transition/Output Table:

	rent ate l	input L EN		output I	
Q_1	Q_0	0	1	QTR	
0	0	00	01	0	
0	1	01	10	0	
1	0	10	11	0	
1	1	11	00	1	
$Q_1^+ Q_0^+$ next state					

 State labels are a one-to-one mapping from state encodings to state names

Q_1	Q_0	State name
0	0	Α
0	1	В
1	0	С
1	1	D

 The state/output table has the same format as the transition table, but state names are substituted in for state encodings

Transition/Output Table:

	l			
Q_1	Q_0	0	1	QTR
0	0	00	01	0
0	1	01	10	0
1	0	10	11	0
1	1	11	00	1
		Q_1^{\dagger}	Q_0^+	

State/Output Table:

	E	l		
S	0	1	QTR	
Α	Α	В	0	
В	В	С	0	
C	С	D	0	
D	D	Α	1	
S [†]				

- A state diagram is a graphical representation of the information in the state/output table
- Nodes (or vertices) represent states
 - Moore machines: output values are written in state node
- Arcs (or edges) represent state transitions
 - Labeled with a transition expression
 - when an arc's transition expression evaluates to 1 for a given input combination, that arc is followed to the next state
 - Mealy machines: output values (or expressions) are written on arcs

State/Output Table:

	E	1		
S	0	1	QTR	
Α	Α	В	0	
В	В	С	0	
C	С	D	0	
D	D	Α	1	

State Diagram:

Sequential Design Example

- Problem description: design a Moore sequential circuit with one input IN and one output OUT, such that OUT is one iff IN is 1 for three consecutive clock cycles
- State table:

	<u> </u>	I		
S	0	1	OUT	
zero1s	zero1s	one1	0	
one1	zero1s	two1s	0	
two1s	zero1s	three1s	0	
three1s	zero1s	three1s	1	
$-$ S $^+$				

State Assignments

– What is the minimum number of state variables needed to encode four states?

2

– In general, if we have n states, what is the minimum number of state variables needed to encode those states? $\lceil \log_2 n \rceil$

State name	Q_1	Q_0
zero1s	0	0
one1	0	1
two1s	1	0
three1s	1	1

These state assignments may seem rather arbitrary – that's because they are! We will soon see the impact that state assignments have on our final circuit...

Transition/output table

State/Output Table:

	l I	I		
S	0	1	OUT	
zero1s	zero1s	one1	0	
one1	zero1s	two1s	0	
two1s	zero1s	three1s	0	
three1s	zero1s	three1s	1	
S ⁺				

two1s three1s

Transition/Output Table:

		ı II	N	ı
Q_1	Q_0	0	1	OUT
0	0	00 00	01	0
0	1	00	01 10 11 11	0
1	0	00	11	0
1	1	00	11	1
		Q_1^{\dagger}	Q_0^+	

Choose FF type:

Using D flip-flops will simplify things (as we'll see below...)

Excitation table

- Shows FF input values required to create next state values for every current state/input combination
- If we're designing with D FFs, entries in excitation/output table are the same as those in transition/output table!
 - Because of D FF characteristic equation: Q⁺ = D

Excitation Logic

Excitation/Output Table:

_I IN _I							
Q_1	Q_0	0	1	OUT			
0	0	00	01 10	0			
0	1	00	10	0			
1	0	00	11	0			
1	1	00	11	1			
		D_1	D_0				

$$D_1 = IN' \cdot 0 + IN \cdot (Q_1' \cdot Q_0')'$$
$$= IN \cdot (Q_1 + Q_0)$$

$$D_0 = IN' \cdot 0 + IN \cdot (Q_1' \cdot Q_0)'$$
$$= IN \cdot (Q_1 + Q_0')$$

Output Logic

$$OUT = Q_1 \cdot Q_0$$

Circuit:

Excitation Equations:

$$D_1 = IN \cdot (Q_1 + Q_0)$$

$$D_0 = IN \cdot (Q_1 + Q_0')$$

$$OUT = Q_1 \cdot Q_0$$

AND/OR ⇔ NAND/NAND

Covering

- \bigcirc = input combinations for which g outputs 1
- = input combinations for which f outputs 1

f covers gf=1 whenever g=1

 $f \geq g$

Implicants

- \bigcirc = input combinations for which g outputs 1
- \bigcirc = input combinations for which f outputs 1
- \bigcirc = input combinations for which h outputs 1

If g is a product term $\& g \le f$, Then g is an **implicant** of f. Space of all 2ⁿ input combinations (minterms)

- Removing a literal from any product term (any implicant) makes it cover twice as many minterms.
 - Removing a literal "grows" the term
 - ex. 3 variables: ab'c covers 1 minterm

ab' ac each cover 2 minterms b'c

ab'c is an implicant of f.

Any way of removing a literal makes ab'c no longer imply f. So ab'c is a **prime implicant** of f.

UM EECS 270 Fall 2022

Implicant: Any product term that
 implies a function F (i.e., if, for
 some input combination,
 product term P = 1, then F = 1
 for the same input
 combination)

Prime Implicant: An implicant such that if one literal is removed, the resulting product term no longer implies F

Essential Prime Implicant: A prime implicant that covers a minterm that is not covered by any other prime implicants

These are only a few of the implicants of this function...

Theorem: The minimal SOP of a function is a sum of prime implicants

Tabular Generation of Prime Implicants (Quine-McCluskey Procedure)

- Main Theorems:
 - Adjacency: x' p + x p = p (create "larger" implicants)
 - Absorption: p + x p = p (delete subsumed implicants)
- Procedure:
 - Arrange product terms in groups such that all terms in one group have the same number of 1s in their binary representation, their Group Index
 - Starting from minterms, arrange groups in ascending-index order
 - Apply adjacency theorem to product terms from adjacent groups only
 - Remove subsumed product terms using absorption theorem
- Product term representation: $p=p_np_{n-1}\dots p_2p_1$ where

$$p_{_{i}} = \begin{cases} 0 & \text{if ith variable appears complemented} \\ 1 & \text{if ith variable appears uncomplemented} \\ - & \text{if ith variable does not appear} \end{cases}$$

QM Example Generation of Prime Implicants

$$F = \sum_{A,B,C,D,E} (1,3,15,17,19,29,31)$$

index	minterm	A	B	C	D	E	implicant	A	B	C	D	E
1	1	0	0	0	0	1						
2	3	0	0	0	1	1						
	17	1	0	0	0	1						
3	19	1	0	0	1	1						
4	15	0	1	1	1	1						
	29	1	1	1	0	1						
5	31	1	1	1	1	1						

QM Example Generation of Prime Implicants

$$F = \sum_{A,B,C,D,E} (1,3,15,17,19,29,31)$$

implicant	A	B	C	D	E	implicant	A	B	C	D	E
$\sqrt{1,3}$	0	0	0	_	1	$P_3:1,3,17,19$	_	0	0	_	1
$\sqrt{1,}17$	-	0	0	0	1						
√ 3,19	_	0	0	1	1						
$\sqrt{17,19}$	1	0	0	_	1						
P_1 : 15,31	-	1	1	1	1						
P ₂ : 29,31	1	1	1	-	1						

$$P_1 = BCDE$$
 $P_2 = ABCE$ $P_3 = B'C'E$

QM Example Minimization by Set Covering

$$F = \sum_{A,B,C,D,E} (1,3,15,17,19,29,31)$$

PIs (Variables)

			P_1	P_{2}	P_3
			BCDE	ABCE	B'C'E
		1			1
70	$\widehat{\mathbf{S}}$	3			1
ims	\sin	15	1		
Minterms	(Constraints)	17			1
Mir	ons	19			1
-	\bigcirc	29		1	
		31	1	1	

Registers

- A collection of two or more D flip-flops with a common clock is called a register
- Used to store a collection of bits

 Adding a mux at the input of each D FF allows for loading new value or storing current value

Parallel Counter

- Would like all state variables to run on the same clock signal
- Examining the binary code yields an easy implementation:

- Under what condition does each bit toggle?
- When all bits of lesser significance are 1!
- This is true no matter how many bits in the counter

Parallel Counter with Enable, Load, and Reset

- New counter inputs
 - RESET: reset all state variables to 0
 - ENABLE:

enable = $1 \rightarrow \text{count}$, enable = $0 \rightarrow \text{hold}$

- LOAD: set state variables to load input values
- New inputs are synchronous
 - Their effects are not seen until the clock edge

Shift Registers

A shift register
 allows for the shifting
 of its bits by one bit
 position on every
 clock edge

Using Shift Registers as Counters

• *n*-bit **ring counter**

- Implemented with an *n*-bit shift register with the serial out bit fed into the serial in input
- Counts through sequence of n one-hot encodings

RESET	Y0	Y1	Y2	Y3
1	Х	Х	Х	X
0	1	0	0	Q
0	0	1	0	0
0	0,	0	1	Ō
0	0	0	0	1
0	1	0	0	0

n-bit Johnson counter

 Implemented with an n-bit shift register with the complement of the serial out bit fed into the serial in input

An n-bit Johnson Counter has 2n states in its counting sequence

Data vs. Control State

- Not all bits are equal!
- Some bits have meaning only in the context of other bits, e.g.,
 - Positional weight (numbers)
 - Codes (ASCII, Unicode, Colors, ...)
- Multi-bit "words" represent data
- Single bits represent control
- Data state >> control state (think 64-bit numbers)
- Encoding sequential circuits that involve data at the single-bit level:
 - Leads to the so-called state explosion,
 - Loses the semantics (meaning) of data, and is
 - Unnecessary

Register Transfer Level (RTL)

- Datapath: Computation on "wide" signals
 - Arithmetic (Add, Subtract, Multiply, Count, etc.)
 - Logical (Shift right/left, Arith Shift, bit-wise, etc.)
 - Other (Clear, load, hold)
- Controller: Orchestrating Datapath operations

Structure of RTL Sequential Circuit

A "Cash Register"

- Function:
 - Compute total price of a number of items
- Inputs:
 - X: W-bit unsigned integer
 - C: Clear
 - A: Add
 - T: Total
- Output:
 - **Total**: W-bit sum of added numbers
- Spec:
 - -C = 1 clears Total
 - -A = 1 adds next **X**
 - T = 1 displays **Total**
 - C, A, and T are one-hot

Designing the Datapath

- Required Components:
 - Register to store input X: AREG
 - Register to store output **Total**: TREG
 - Register to store intermediate sums: SREG
 - Adder
- Component functionality:
 - AREG: Load (A.LD)
 - TREG: Load (T.LD) and Clear (T.CLR)
 - SREG: Load (S.LD) and Clear (S.CLR)
- Datapath Architecture:

Detailed Datapath

$$\mathbf{A}^+ = A.LD?\mathbf{X}:\mathbf{A}$$
 $\mathbf{S}^+ = S.CLR?\mathbf{0}: \left(S.LD?(\mathbf{S} + \mathbf{A}):\mathbf{S}\right)$ $\mathbf{T}^+ = T.CLR?\mathbf{0}: \left(T.LD?\mathbf{S}:\mathbf{T}\right)$

Designing the Controller

Controller State Diagram

Setup and Hold Times

Positive Level-Sensitive D Latch

- To set, S must be held at 1 for at least 2 NOR delays
- S = D & C
- D must change to 1 at least 2 NOR delays before C goes to 0 (closes the latch)

Setup and Hold Times

- By insuring that the D input is stable for a specified minimum length of time before (setup) and after (hold) the appropriate clock edge we eliminate metastability!
- Assume that setup and hold times are provided. They can be calculated, but the analysis is tricky.
- Which clock edge?
 Edge that "closes" the latch

64

Setup and Hold Constraints

Positive Edge-Triggered D Flip-Flop

Combinational Delay Model

Gate Implementation of Example

	D_0	D_1
EN	$\left[\left[\delta_p^{ extit{ iny EN} o D_0}, \Delta_p^{ extit{ iny EN} o D_0} ight] ight]$	
Q_0	$\left[\left[\delta_p^{ extit{Q}_0 o extit{D}_0}, \Delta_p^{ extit{Q}_0 o extit{D}_0} ight] ight.$	$[\delta_{ ho}^{ extit{Q}_0 o extit{D}_1}$, $\Delta_{ ho}^{ extit{Q}_0 o extit{D}_1}]$
Q_{1}	$[\delta_{ ho}^{ extit{Q}_{1} ightarrow extit{D}_{0}}$, $\Delta_{ ho}^{ extit{Q}_{1} ightarrow extit{D}_{0}}]$	$[\delta_{ ho}^{ extit{Q}_{1} ightarrow extit{D}_{1}}$, $\Delta_{ ho}^{ extit{Q}_{1} ightarrow extit{D}_{1}}]$

From *EN*

$$\begin{bmatrix}
\delta_p^{EN \to D_0}, \Delta_p^{EN \to D_0}
\end{bmatrix} = \begin{bmatrix} 4,6 \end{bmatrix} \\
[\delta_p^{EN \to D_1}, \Delta_p^{EN \to D_1}] = \begin{bmatrix} 4,5 \end{bmatrix}$$

From Q₀

$$\begin{bmatrix}
\delta_{\rho}^{Q_0 \to D_0}, \Delta_{\rho}^{Q_0 \to D_0} \end{bmatrix} = [4, 6] \\
[\delta_{\rho}^{Q_0 \to D_1}, \Delta_{\rho}^{Q_0 \to D_1}] = [8, 10]$$

$$\begin{array}{c|ccc} & D_0 & D_1 \\ \hline EN & [4,6] & [4,5] \\ Q_0 & [4,6] & [8,10] \\ Q_1 & [\infty, \infty] & [4,10] \\ \end{array}$$

From Q₁

$$\left[\delta_{p}^{Q_1 \rightarrow D_1}, \Delta_{p}^{Q_1 \rightarrow D_1}\right] = \left[4,10\right]$$

Detailed Timing Analysis

	D_0	D_1
EN	[4,6]	[4,5]
LIV	[4,0]	[4,5]
Q_0	[4,6]	[8,10]
$Q_{_1}$	$[\infty, -\infty]$	[4,10]

Departure times (from FFs): $d_0 = D_0 = d_1 = D_1 = t_0^{C \to Q} = 4$ ns

$$a_{0} = \min(t_{p}^{C \to Q} + \delta_{p}^{Q_{0} \to D_{0}}, t_{p}^{C \to Q} + \delta_{p}^{Q_{1} \to D_{0}})$$

$$= \min(4 + 4, 4 + \infty)$$

$$= 8 \text{ ns}$$

$$A_{0} = \max(t_{p}^{C \to Q} + \Delta_{p}^{Q_{0} \to D_{0}}, t_{p}^{C \to Q} + \Delta_{p}^{Q_{1} \to D_{0}})$$

$$= \min(4 + 8, 4 + 4)$$

$$= 8 \text{ ns}$$

$$A_{1} = \max(t_{p}^{C \to Q} + \Delta_{p}^{Q_{0} \to D_{1}}, t_{p}^{C \to Q} + \Delta_{p}^{Q_{0} \to D_{1}})$$

$$= \max(4 + 6, 4 + -\infty)$$

$$= \max(4 + 6, 4 + -\infty)$$

$$= 10 \text{ ns}$$

$$a_{1} = \min(t_{p}^{C \to Q} + \delta_{p}^{Q_{0} \to D_{1}}, t_{p}^{C \to Q} + \delta_{p}^{Q_{1} \to D_{1}})$$

$$= \max(4 + 8, 4 + 4)$$

$$= 8 \text{ ns}$$

$$A_{1} = \max(t_{p}^{C \to Q} + \Delta_{p}^{Q_{0} \to D_{1}}, t_{p}^{C \to Q} + \Delta_{p}^{Q_{0} \to D_{1}})$$

$$= \max(4 + 10, 4 + 10)$$

$$= 14 \text{ ns}$$

Detailed Timing Analysis (Cont'd)

	D_0	D_1			
EN	[4 6]	[4 []			
LIV	[4,0]	[+,2]			
Q_0	[4,6]	[8,10]			
Q_1	$[\infty, -\infty]$	[4,10]			

$$a_0 = 8 \text{ ns}$$

$$a_1 = 8 \text{ ns}$$

Hold Requirement

$$a \ge H$$

$$a_0 \ge H \checkmark$$

$$a_1 \ge H \checkmark$$

$$A_0 = 10 \text{ ns}$$

$$A_1 = 14 \text{ ns}$$

Setup Requirement

$$A \leq P - S \Longrightarrow P \geq A + S$$

$$P \ge A_0 + S = 10 + 4 = 14$$
 ns

$$P \ge A_1 + S = 14 + 4 = 18$$
 ns

Unsigned vs. Signed Multiplication

$$P = Q \times M$$

Unsigned

$$M = 2^3 m_3 + 2^2 m_2 + 2^1 m_1 + 2^0 m_0$$

$$P = Q \times 2^{0} m_{0} + Q \times 2^{1} m_{1} + Q \times 2^{2} m_{2} + Q \times 2^{3} m_{3}$$

Signed

$$M = -2^{3} m_{3} + 2^{2} m_{2} + 2^{1} m_{1} + 2^{0} m_{0}$$

$$P = Q \times 2^{0} (m_{-1} - m_{0}) + Q \times 2^{1} (m_{0} - m_{1}) + Q \times 2^{2} (m_{1} - m_{2}) + Q \times 2^{3} (m_{2} - m_{3})$$

Sequential Multiplier V2.0

Logical vs. Arithmetic Right Shift

Logical Shift

Arithmetic Shift

Multiplier V2.0 Execution Trace

Multiplier V2.0 Execution Trace

Controller State Diagram

Generate/Propagate Equations Depth(P,G) (1, 1) (2, 3)(3, 5) $g_0 = a_0 b_0$ $\boldsymbol{p}_0 = \boldsymbol{a}_0 + \boldsymbol{b}_0$ $G_{1,0} = g_1 + p_1 g_0$ $g_1 = a_1b_1$ $P_{1.0} = p_1 p_0$ $G_{3,0} = G_{3,2} + P_{3,2}G_{1,0}$ $p_1 = a_1 + b_1$ $P_{3.0} = P_{3.2}P_{1.0}$ $g_2 = a_2 b_2$

$$egin{align*} egin{align*} egin{align*}$$

$$p_3 = a_3 + b_3$$
 $q_4 = a_4 b_4$

$$egin{aligned} m{p}_4 &= m{a}_4 + m{b}_4 \ m{g}_5 &= m{a}_5 m{b}_5 \end{aligned} egin{aligned} m{G}_{5,4} &= m{g}_5 + m{p}_5 m{g}_4 \ m{P}_{5,4} &= m{p}_5 m{p}_4 \end{aligned}$$

$$p_5 = a_5 + b_5$$
 $q_6 = a_6 b_6$

$$p_6 = a_6 + b_6$$
 $q_7 = a_7 b_7$
 $q_{7,6} = q_7 + p_7 q_6$
 $q_{7,6} = p_7 p_6$

 $p_7 = a_7 + b_7$

$$P_{3,0} = P_{3,2}P_{1,0}$$

$$egin{aligned} oldsymbol{P_{7,0}} &= oldsymbol{P_{7,4}} oldsymbol{P_{3,0}} \ & oldsymbol{G_{7,4}} &= oldsymbol{G_{7,6}} + oldsymbol{P_{7,6}} oldsymbol{G_{5,4}} \end{aligned}$$

 $G_{7.0} = G_{7.4} + P_{7.4}G_{3.0}$

 $P_{7.4} = P_{7.6}P_{5.4}$

Delays in the GP "Parallel Prefix"

Level	Bit-Range Width	Δ_{P}	Δ_{G}
1	1	1	1
2	2	2	3
3	4	3	5
4	8	4	7
5	16	5	9

Options for Carry Computation ——

Carry Dependency Tree (which carry propagates to which other carry)

Detecting Equivalent States Merger Table

PS	NS, z		
	x = 0	<i>x</i> = 1	
Α	<i>E</i> ,0	D,1	
В	F,0	<i>D</i> ,0	
С	<i>E</i> ,0	B,1	
D	F,0	B,0	
E	C,0	<i>F</i> ,1	
F	<i>B</i> ,0	C,0	

