Project Pegasus: Identificando perfis de reprovação na disciplina de Lógica de Programação usando os Mapas Auto-Organizáveis de Kohonen (SOM)

Introdução

Este experimento foi desenvolvido por Vilson Rodrigues Câmara Neto. Um problema recorrente na Universidade Federal do Rio Grande do Norte (UFRN) é a dificuldade dos estudantes em compreender lógica de programação. Visto tal problemática, foi realizado este experimento com os estudantes da Escola de Ciências e Tecnologia (ECT) da UFRN, de forma tentar identificar padrões de reprovação de alunos que já cursaram a disciplina em anos anteriores e usaram a plataforma LoP. Foi realizado um tratamento dos dados para unir as tabelas do LoP com as submissões por semana e a sua situação final. Com essa base de dados foi escolhido o algoritmo de redes neurais, Mapas Auto-Organizáveis.

Proposto por Teuvo Kohonen em 1982, a rede neural artificial (RNA) de aprendizado não-supervisionado, SOM, busca diminuir a dimensionalidade de um grupo de dados mas mantendo as relações reais, e ao fim, um conjunto de multidimensões vira um conjunto bidimensional, adicionando valores de forma que os similares fiquem próximos. Diferente de outras RNA's que usam aprendizagem de correção de erros, a rede SOM utiliza aprendizagem competitiva. Os princípios do aprendizado competitivo são:

- Um conjunto de neurônios que são todos iguais, exceto por alguns pesos sinápticos distribuídos aleatoriamente e que, portanto, respondem diferentemente a um determinado conjunto de padrões de entrada;
- Um limite imposto à "força" de cada neurônio;
- Um mecanismo que permite aos neurônios competir pelo direito de responder a um determinado subconjunto de entradas, de modo que apenas um neurônio de saída (ou apenas um neurônio por grupo) esteja

ativo (por exemplo, "ativado") de cada vez. O neurônio que vence a competição é chamado de neurônio "vencedor leva tudo" .

Os neurônios individuais da rede aprendem a se especializar em conjuntos de padrões semelhantes e, assim, tornam-se "detectores de recursos" para diferentes classes de padrões de entrada. Quando um exemplo é apresentado à rede, sua distância euclidiana para os vetores de peso é calculada. O neurônio no qual o vetor de peso é mais semelhante à entrada é chamado de melhor unidade correspondente ou vencedor. Os pesos do vencedor e dos neurônios próximos a ele são ajustados para o vetor de entrada. A taxa de aprendizagem da rede diminui ao passar das iterações/épocas. A fórmula de atualização dos pesos para um neurônio v com vetor de peso **Wv(s)** é:

$$W_v(s+1) = W_v(s) + heta(u,v,s) \cdot lpha(s) \cdot (D(t) - W_v(s))$$

Figura 1: Fórmula de atualização dos pesos dos Mapas Auto-Organizáveis

sendo s o índice das etapas, t o índice na amostra de treinamento, u é o índice do vencedor para a entrada D, a(s) é a taxa de aprendizado que diminui com o tempo e U(u,v,s) é a função de vizinhança que fornece a distância entre o neurônio u e o neurônio v na etapa s.

Figura 2: Representação do funcionamento dos Mapas Auto-Organizáveis

Metodologia

A base de dados contém as submissões de questões durante 18 semanas e a situação final dos alunos que cursaram a disciplina em semestres anteriores, ficou dividido como: 0 para reprovados e 1 para aprovados.

O motivo de utilizar as submissões é poder visualizar como as interação do aluno como a plataforma LoP influenciam no seu resultado final na disciplina.

Como é uma RNA de aprendizado não-supervisionado, então existe apenas o processo de treinamento. Foram utilizados 948 ocorrências, que corresponde a toda a base de dados, com os alunos que cursaram entre 2017.2 e 2019.1.

Foi aplicada uma normalização MinMaxScaler a fim de evitar que pesos altos influenciem seus adjacentes, deixando os valores entre 0 e 1.

O objetivo é tentar visualizar através de grafos, como o aluno está em relação aos semestres anteriores nas mesmas condições. Para isso foram definidos 3 critérios para visualização: até 10% de reprovados no neurônio vencedor do estudante a cor escolhida para o nó do grafo é verde, ou seja, uma região segura com base no passado; entre 10% e 20% de reprovados, o nó é amarelo; e acima de 20% de reprovados, o estudante estaria em uma situação perigosa, o nó terá cor vermelha.

Outras formas de visualização apresentadas são: exibição dos pesos de um neurônio escolhido, gráfico de superfície e gráfico de pizza.

Códigos

Figura 3: Modelo da rede SOM

Figura 4: Parâmetros de treinamento

```
# matriz de zeros para contador de reprovados
MContRe = np.zeros((tamanhoXdaRede,tamanhoYdaRede))
# matriz de zeros para contador de aprovados
MContAp = np.zeros((tamanhoXdaRede,tamanhoYdaRede))
# matriz de zeros para o número total de alunos
MContT = np.zeros((tamanhoXdaRede,tamanhoYdaRede))

cont = 0;

for x in X_train:
    pos = som.winner(x)
    if (Y_train[cont] < 5): #Reprovado
        MContRe[pos] += 1
    if (Y_train[cont] >= 5): #Aprovado
        MContAp[pos] += 1
    MContT[pos] += 1
    cont = cont+1
```

Figura 5: Gerador das matrizes

Como temos o output (a nota) dos estudantes dos semestre anteriores, podemos marcar em uma coordenada numa matriz de zeros se a condição for satisfeita, que nesse caso, foram de aprovação para nota final maior ou igual a 5, e reprovação para menor que 5, também foi computada todas as ocorrências.

Resultados

A rede treinada gerou o mapa visto nas figuras a seguir, uma tendo todas as ocorrências e outra apenas dos situação de reprovados. Vemos que a SOM foi eficiente em reduzir a dimensionalidade do problema e transformar em um problema bi dimensional, mantendo características do problema inicial.

		icontri	.asty	/pe(ir	t))								
]]	118	14	245	197	54	16	5467	0	387	405	104	100	36]
	23	78	42	16	246	180	92	184	211	31	64	99	33]
[123	56	8	129	65	34	105	151	282	128	49	76	30]
[98	77	409	14	96	221	241	111	213	108	117	93	43]
[115	146	45	211	54	189	36	65	148	77	85	92	48]
[65	98	95	244	115	16	19	137	57	39	32	66	32]
[121	47	81	103	101	74	68	48	54	81	13	27	65]
[35	57	62	90	78	31	53	30	65	56	77	58	26
[29	90	56	80	63	84	26	74	6	113	68	43	40
]	73	21	13	57	69	44	62	21	55	38	127	38	48
]	36	29	59	47	48	61	70	104	59	69	39	75	69
Ī	12	66	0	44	44	57	88	54	72	47	69	6	65
[75	94	25	40	65	34	22	62	41	45	62	57	26
			Re.ast						227	20 D.L.			
]	5	13	98	101	15	1	4177 F (3) (3) (4)	0	231	138	37	0	0.00
]	5	13 34	98 7	101	15 59	101	36	120	103	20	0	0	0
]]	5 3 3	13 34 2	98 7 0	101 0 15	15 59 22	101 16	36 51	120 71	103 84	20 19	0 0	0	9
]]	5 3 3 19	13 34 2 40	98 7 0 163	101 0 15 0	15 59 22 20	101 16 41	36 51 130	120 71 77	103 84 85	20 19 34	0 0 17	0 0	0 0
]]]	5 3 3 19 55	13 34 2 40 76	98 7 0 163 1	101 0 15 0 33	15 59 22 20 13	101 16 41 14	36 51 130 7	120 71 77 16	103 84 85 64	20 19 34 0	0 0 17 0	0 0 0	0 0 0
]]]]	5 3 3 19 55 12	13 34 2 40 76 0	98 7 0 163 1	101 0 15 0 33 105	15 59 22 20 13 34	101 16 41 14 1	36 51 130 7 9	120 71 77 16 4	103 84 85 64 0	20 19 34 0 26	0 0 17 0 0	0 0 0 0	0 0 0 0
]]]]]	5 3 3 19 55 12	13 34 2 40 76 0 6	98 7 0 163 1 12 26	101 0 15 0 33 105	15 59 22 20 13 34 20	101 16 41 14 1 18	36 51 130 7 9	120 71 77 16 4 8	103 84 85 64 0	20 19 34 0 26 30	0 0 17 0 0	0 0 0 0 1 0	0 0 0 0
	5 3 3 19 55 12 18 0	13 34 2 40 76 0 6	98 7 0 163 1 12 26 0	101 0 15 0 33 105 18	15 59 22 20 13 34 20 14	101 16 41 14 1 18 0	36 51 130 7 9 0	120 71 77 16 4 8 0	103 84 85 64 0 0	20 19 34 0 26 30 31	0 0 17 0 0 0	0 0 0 1 0	0 0 0 0
	5 3 19 55 12 18 0	13 34 2 40 76 0 6 14 0	98 7 0 163 1 12 26 0	101 0 15 0 33 105 18 14 0	15 59 22 20 13 34 20 14	101 16 41 14 1 18 0 7	36 51 130 7 9 0	120 71 77 16 4 8 0	103 84 85 64 0 0 14	20 19 34 0 26 30 31 39	0 17 0 0 0	0 0 0 1 0 1	0 0 0 0 0
	5 3 3 19 55 12 18 0 0	13 34 2 40 76 0 6 14 0	98 7 0 163 1 12 26 0 0	101 0 15 0 33 105 18 14 0	15 59 22 20 13 34 20 14 14 0	101 16 41 14 1 18 0 7 6	36 51 130 7 9 0 0	120 71 77 16 4 8 0 0	103 84 85 64 0 0 14 0	20 19 34 0 26 30 31 39	0 0 17 0 0 0 0 0	0 0 0 1 0 1 0	0 0 0 0 0 0 4 13
	5 3 3 19 55 12 18 0 0	13 34 2 40 76 0 6 14 0 0	98 7 0 163 1 12 26 0 0	101 0 15 0 33 105 18 14 0 0	15 59 22 20 13 34 20 14 14 0	101 16 41 14 1 18 0 7 6	36 51 130 7 9 0 0 0	120 71 77 16 4 8 0 0	103 84 85 64 0 0 14 0 33	20 19 34 0 26 30 31 39 0 8	0 0 17 0 0 0 0 0 66	0 0 0 1 0 1 0 1	0) 0) 0) 0) 0) 0) 4) 13) 26]
	5 3 3 19 55 12 18 0 0	13 34 2 40 76 0 6 14 0	98 7 0 163 1 12 26 0 0	101 0 15 0 33 105 18 14 0	15 59 22 20 13 34 20 14 14 0	101 16 41 14 1 18 0 7 6	36 51 130 7 9 0 0	120 71 77 16 4 8 0 0	103 84 85 64 0 0 14 0	20 19 34 0 26 30 31 39	0 0 17 0 0 0 0 0	0 0 0 1 0 1 0	0 0 0 0 0 0 0 4 13

Figura 6: Matrizes de total de ocorrências e a de apenas reprovados

Grafo da situação de um estudante ao longo de 18 semanas. O grafo que é do tipo direcional facilita ver a trajetória que ele segue ao interagir com a plataforma LoP.

Figura 7: Grafo de um aluno

Também foi desenvolvida uma visualização para identificar os pesos de um neurônio específico, aqui vemos um exemplo de um.

Figura 8: Especificação de um neurônio

O gráfico de superfície permite a visualização das regiões onde tem a maior concentração de reprovados.

Figura 9: Gráfico de superfície com ocorrência de reprovados

E por fim, o gráfico de pizza mostrando como cada neurônio está dividido entre aprovados e reprovados.

Figura 10: Gráfico de pizza com distribuição das porcentagens de reprovados e aprovados em cada neurônio

Este trabalho é uma tentativa de entender os perfis de reprovação dos alunos. Dado os resultados obtidos, pode-se dizer que foi satisfatório mas pode evoluir bem mais ainda. A rede SOM trabalhou bem em dimensionar em 2D o que era um problema em 18D. Permitindo assim, melhorar o processo de visualização dos resultados.

Link: https://github.com/vilsonrodrigues/PegasusProject