Pismeni ispit - 22. travnja 2015.

- 1. (8 bodova) Zadan je vremenski kontinuiran signal $f(t) = \begin{cases} 1, & \text{za } t < 0, \\ e^{-2t}, & \text{za } t \geq 0. \end{cases}$
 - a) (2 boda) Odredite vremenski diskretan signal f(n) koji dobijemo očitavanjem vremenski kontinuiranog signala f(t) s periodom očitavanja T_s .
 - b) (2 boda) Odredite vremenski diskretan signal $f_{ad}(n)$ koji dobijemo aproksimacijom derivacije metodom silazne diferencije, ako je period očitavanja T_s .
 - c) (2 boda) Odredite vremenski diskretan signal $f_d(n)$ koji dobijemo očitavanjem generalizirane derivacije vremenski kontinuiranog signala f(t) s periodom očitavanja T_s .
 - d) (2 boda) Izračunajte energiju greške $E_g = \sum_{n=-\infty}^{\infty} |f_d(n) f_{ad}(n)|^2$ aproksimacije derivacije metodom silazne diferencije.
- **2.** (8 bodova) Zadan je vremenski diskretan signal $f(n) = \cos(\frac{\pi}{2}n)(\mu(n) \mu(n-4))$.
 - a) (3 boda) Odredite vremenski diskretnu Fourierovu transformaciju zadanog signala (DTFT).
 - b) (2 boda) Je li dobiveni spektar periodičan ili aperiodičan? Ako je periodičan, koliki mu je osnovni period?
 - c) (3 boda) Odredite koeficijente vremenski diskretnog Fourierovog reda (DTFS) vremenski diskretnog signala $g(n) = \cos(\frac{\pi}{2}n)$.
- 3. (8 bodova) Zadan je spektar vremenski kontinuiranog signala $F(j\omega) = j \left[-\mu(\omega + 2\pi) + 2\mu(\omega) \mu(\omega 2\pi) \right]$
 - a) (3 boda) Odredite vremenski kontinuiran signal f(t).
 - b) (2 boda) Odredite spektar $G(j\omega)$ vremenski kontinuiranog signala g(t) = f(t-4).
 - c) (3 boda) Izvedite Parsevalovu relaciju za vremenski kontinuiranu Fourierovu transformaciju (CTFT).
- **4.** (8 bodova) Zadan je spektar vremenski kontinuiranog signala $F(j\omega) = (\omega + \pi)(\mu(\omega + \pi) \mu(\omega)) + (-\omega + \pi)(\mu(\omega) \mu(\omega \pi))$.
 - a) (2 boda) Možemo li očitati odgovarajući signal u vremenskoj domeni tako da ne dođe do aliasinga u frekvencijskoj domeni? Ako da, objasnite zašto da i odredite minimalnu frekvenciju očitavanja tako da ne dođe do aliasinga, a ako ne objasnite zašto ne.
 - b) (2 boda) Ako signal f(t) očitamo frekvencijom $\omega_s = \frac{3\pi}{2}$, skicirajte amplitudni spektar očitanog kontinuiranog signala.
 - c) (2 boda) Ako signal f(t) očitamo frekvencijom $\omega_s = 3\pi$, skicirajte amplitudni spetar očitanog kontinuiranog signala.
 - d) (2 boda) Objasnite postupak rekonstrukcije kontinuiranog signala iz očitanog kontinuiranog signala u vremenskoj i frekvencijskoj domeni.
- 5. (8 bodova) Zadani su vremenski kontinuirani signali f(t) i g(t) za koje vrijedi g(t) = f(at), a > 0.
 - a) (2 boda) Ako je energija signala f(t) konačna i iznosi E_f , odredite energiju signala g(t) = f(at), E_g (izvedite izraz).
 - b) (3 boda) Odredite energiju vremenski kontinuiranog signala $h(t) = \frac{\sin(10t)}{10t}$.
 - c) (3 boda) Ako je signal f(t) periodičan s osnovnim periodom T_0 te ako je njegova snaga konačna i iznosi P_f , odredite snagu signala g(t) = f(at), P_g (izvedite izraz).

Pismeni ispit - 22. travnja 2015.

- 1. (8 bodova) Zadan je vremenski kontinuiran signal $f(t) = \begin{cases} 1, & \text{za } t < 0, \\ e^{-4t}, & \text{za } t \geq 0. \end{cases}$
 - a) (2 boda) Odredite vremenski diskretan signal f(n) koji dobijemo očitavanjem vremenski kontinuiranog signala f(t) s periodom očitavanja T_s .
 - b) (2 boda) Odredite vremenski diskretan signal $f_{ad}(n)$ koji dobijemo aproksimacijom derivacije metodom silazne diferencije, ako je period očitavanja T_s .
 - c) (2 boda) Odredite vremenski diskretan signal $f_d(n)$ koji dobijemo očitavanjem generalizirane derivacije vremenski kontinuiranog signala f(t) s periodom očitavanja T_s .
 - d) (2 boda) Izračunajte energiju greške $E_g = \sum_{n=-\infty}^{\infty} |f_d(n) f_{ad}(n)|^2$ aproksimacije derivacije metodom silazne diferencije.
- **2.** (8 bodova) Zadan je vremenski diskretan signal $f(n) = \cos(\frac{3\pi}{2}n)(\mu(n) \mu(n-4))$.
 - a) (3 boda) Odredite vremenski diskretnu Fourierovu transformaciju zadanog signala (DTFT).
 - b) (2 boda) Je li dobiveni spektar periodičan ili aperiodičan? Ako je periodičan, koliki mu je osnovni period?
 - c) (3 boda) Odredite koeficijente vremenski diskretnog Fourierovog reda (DTFS) vremenski diskretnog signala $g(n) = \cos(\frac{3\pi}{2}n)$.
- 3. (8 bodova) Zadan je spektar vremenski kontinuiranog signala $F(j\omega) = j \left[-\mu(\omega + \pi) + 2\mu(\omega) \mu(\omega \pi) \right]$
 - a) (3 boda) Odredite vremenski kontinuiran signal f(t).
 - b) (2 boda) Odredite spektar $G(j\omega)$ vremenski kontinuiranog signala g(t) = f(t-5).
 - c) (3 boda) Izvedite Parsevalovu relaciju za vremenski kontinuiranu Fourierovu transformaciju (CTFT).
- **4. (8 bodova)** Zadan je spektar vremenski kontinuiranog signala $F(j\omega) = (\omega + 2\pi)(\mu(\omega + 2\pi) \mu(\omega)) + (-\omega + 2\pi)(\mu(\omega) \mu(\omega 2\pi))$.
 - a) (2 boda) Možemo li očitati odgovarajući signal u vremenskoj domeni tako da ne dođe do aliasinga u frekvencijskoj domeni? Ako da, objasnite zašto da i odredite minimalnu frekvenciju očitavanja tako da ne dođe do aliasinga, a ako ne objasnite zašto ne.
 - b) (2 boda) Ako signal f(t) očitamo frekvencijom $\omega_s = 3\pi$, skicirajte amplitudni spektar očitanog kontinuiranog signala.
 - c) (2 boda) Ako signal f(t) očitamo frekvencijom $\omega_s = 6\pi$, skicirajte amplitudni spetar očitanog kontinuiranog signala.
 - d) **(2 boda)** Objasnite postupak rekonstrukcije kontinuiranog signala iz očitanog kontinuiranog signala u vremenskoj i frekvencijskoj domeni.
- 5. (8 bodova) Zadani su vremenski kontinuirani signali f(t) i g(t) za koje vrijedi g(t) = f(at), a > 0.
 - a) (2 boda) Ako je energija signala f(t) konačna i iznosi E_f , odredite energiju signala g(t) = f(at), E_g (izvedite izraz).
 - b) (3 boda) Odredite energiju vremenski kontinuiranog signala $h(t) = \frac{\sin(20t)}{20t}$.
 - c) (3 boda) Ako je signal f(t) periodičan s osnovnim periodom T_0 te ako je njegova snaga konačna i iznosi P_f , odredite snagu signala g(t) = f(at), P_g (izvedite izraz).

Pismeni ispit - 24. travnja 2014.

- 1. (9 bodova) Zadan je vremenski kontinuiran signal $f(t) = t^2 (\mu(t+5) \mu(t-5))$.
 - a) (2 boda) Izračunajte energiju signala.
 - b) (2 boda) Izračunajte i skicirajte prvu derivaciju signala.
 - c) (2 boda) Očitajte signal i njegovu prvu derivaciju s periodom očitavanja $T_s=2.$
 - d) (3 boda) Iz očitaka signala izračunajte prvu derivaciju signala pomoću aproksimacije derivacije silaznom diferencijom.
- 2. (9 bodova) Vremenski kontinuiran periodičan signal zadan je slikom.
 - a) (5 bodova) Odredite i skicirajte amplitudni i fazni spektar signala za $k \in \{-3, -2, -1, 0, 1, 2, 3\}$
 - b) (2 boda) Objasnite Gibbsovu pojavu. Navedite primjer signala kod kojeg se javlja i primjer signala kod kojeg se ne javlja Gibbsova pojava.
 - c) (2 boda) Pokažite da za vremenski kontinuirane realne signale f(t) za koje postoji CTFS vrijedi

$$f(t) = \sum_{k=-\infty}^{\infty} F_k e^{jk\omega_0 t} = F_0 + \sum_{k=1}^{\infty} 2|F_k| \cos(k\omega_0 t + \angle F_k).$$

- 3. (9 bodova) Spektar vremenski kontinuiranog signala f(t) je $F(j\omega)=e^{-2|\omega|}$.
 - a) (3 boda) Odredite signal f(t).
 - b) (3 boda) Izračunajte energiju signala.
 - c) (3 boda) Signal f(t) očitali smo s periodom očitavanja $T_s = 1 \,\text{ms}$. Koliko točaka očitanog signala moramo uzeti ako želimo numerički odrediti spektar s rezolucijom od $f_0 = 5 \,\text{Hz}$?
- 4. (9 bodova) Zadan je vremenski diskretan signal $f(n) = \begin{cases} 3^{-n}, & \text{za } n > 1 \\ 0, & \text{inače} \end{cases}$
 - a) (4 boda) Odredite amplitudni i fazni spektar signala (nije potrebno skicirati).
 - b) (2 boda) Izračunajte vrijednost amplitudnog i faznog spektra za $\Omega = \frac{\pi}{2}$.
 - c) (3 boda) Pokažite da je spektar vremenski diskretnog aperiodičnog signala periodičan s osnovnim periodom 2π .
- 5. (9 bodova) Vremenski kontinuiran signal f(t) očitan je u osam točaka s frekvencijom očitavanja $f_s = 1 \,\text{kHz}$, te je dobiven vremenski diskretan signal $f(n) = \{\underline{-3}, -1, 1, 3, -3, -1, 1, 3\}$.
 - a) (5 bodova) Izračunajte DFT u osam točaka vremenski diskretnog signala f(n).
 - b) (2 boda) Odredite frekvenciju Ω na kojoj amplitudni spektar DFT-a vremenski diskretnog signala f(n) poprima maksimum.
 - c) (2 boda) Qdredite dominantnu spektralnu komponentu vremenski kontinuiranog signala f(t).

Pismeni ispit - 24. travnja 2014.

- 1. (9 bodova) Zadan je vremenski kontinuiran signal $f(t) = t^2(\mu(t+7) \mu(t-7))$.
 - a) (2 boda) Izračunajte energiju signala.
 - b) (2 boda) Izračunajte i skicirajte prvu derivaciju signala.
 - c) (2 boda) Očitajte signal i njegovu prvu derivaciju s periodom očitavanja $T_s=3.$
 - d) (3 boda) Iz očitaka signala izračunajte prvu derivaciju signala pomoću aproksimacije derivacije silaznom diferencijom.
- 2. (9 bodova) Vremenski kontinuiran periodičan signal zadan je slikom.
 - a) (5 bodova) Odredite i skicirajte amplitudni i fazni spektar signala za $k \in \{-3, -2, -1, 0, 1, 2, 3\}$.
 - b) (2 boda) Objasnite Gibbsovu pojavu. Navedite primjer signala kod kojeg se javlja i primjer signala kod kojeg se ne javlja Gibbsova pojava.
 - c) (2 boda) Pokažite da za vremenski kontinuirane realne signale f(t) za koje postoji CTFS vrijedi

$$f(t) = \sum_{k=-\infty}^{\infty} F_k e^{jk\omega_0 t} = F_0 + \sum_{k=1}^{\infty} 2|F_k|\cos(k\omega_0 t + \angle F_k).$$

- 3. (9 bodova) Spektar vremenski kontinuiranog signala f(t) je $F(j\omega)=e^{-4|\omega|}$.
 - a) (3 boda) Odredite signal f(t).
 - b) (3 boda) Izračunajte energiju signala.
 - c) (3 boda) Signal f(t) očitali smo s periodom očitavanja $T_s = 1 \, \text{ms}$. Koliko točaka očitanog signala moramo uzeti ako želimo numerički odrediti spektar s rezolucijom od $f_0 = 10 \, \text{Hz}$?
- **4.** (9 bodova) Zadan je vremenski diskretan signal $f(n) = \begin{cases} 4^{-n}, & \text{za } n > 1 \\ 0, & \text{inače} \end{cases}$.
 - a) (4 boda) Odredite amplitudni i fazni spektar signala (nije potrebno skicirati).
 - b) (2 boda) Izračunajte vrijednost amplitudnog i faznog spektra za $\Omega=\frac{\pi}{2}.$
 - c) (3 boda) Pokažite da je spektar vremenski diskretnog aperiodičnog signala periodičan s osnovnim periodom 2π .
- 5. (9 bodova) Vremenski kontinuiran signal f(t) očitan je u osam točaka s frekvencijom očitavanja $f_s = 1 \,\text{kHz}$, te je dobiven vremenski diskretan signal $f(n) = \{\underline{-4}, -2, 2, 4, -4, -2, 2, 4\}$.
 - a) (5 bodova) Izračunajte DFT u osam točaka vremenski diskretnog signala f(n).
 - b) (2 boda) Odredite frekvenciju Ω na kojoj amplitudni spektar DFT-a vremenski diskretnog signala f(n) poprima maksimum.
 - c) (2 bộda) Odredite dominantnu spektralnu komponentu vremenski kontinuiranog signala f(t).

Međuispit (grupa A) - 24. travnja 2013.

- **1.** (9 bodova) Zadani su signali $x_1(t) = 2^{-t} \mu(t)$ i $x_2(n) = \sin(\frac{\pi}{2}n)$.
 - a) (2 boda) Definirajte totalnu energiju i totalnu snagu vremenski kontinuiranog signala.
 - b) (2 boda) Izračunajte totalnu energiju i totalnu snagu signala $x_1(t)$.
 - c) (2 boda) Definirajte totalnu energiju i totalnu snagu vremenski diskretnog signala.
 - d) (3 boda) Izračunajte totalnu energiju i totalnu snagu signala $x_2(n)$.
- **2.** (9 bodova) Zadan je vremenski kontinuirani signal $x(t) = e^{3t} (\mu(t) \mu(t-6))$.
 - a) (4 boda) Postoji li vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t)? Ako postoji, pokažite zašto postoji, a ako ne postoji, pokažite zašto ne postoji!
 - b) **(5 bodova)** Ako transformacija postoji izračunajte je (nije potrebno računati amplitudu i fazu), a ako ne postoji, pokažite da Fourierov integral divergira!
- **3.** (9 bodova) Zadan je vremenski diskretan signal $x(n) = 3^{-|n|}$, gdje je $n \in \mathbb{Z}$.
 - a) (4 boda) Izračunajte vremenski diskretnu Fourierovu transformaciju (DTFT) signala x(n).
 - b) (2 boda) Odredite amplitudni i fazni spektar.
 - c) (3 boda) Odredite na kojim frekvencijama Ω amplitudni spektar $|X(e^{j\Omega})|$ poprima minimalne, a na kojima maksimalne vrijednosti.
- **4.** (9 bodova) Vremenski kontinuiran signal x(t) perioda T=7 zadan je slikom.
 - a) (4 boda) Odredite rastav signala x(t) u vremenski kontinuirani Fourierov red (CTFS).
 - b) (2 boda) Navedite svojstvo simetričnosti spektra X_k realnog signala x(t). Pokažite da dobiveni spektar X_k zadovoljava taj uvjet!
 - c) (3 boda) Skicirajte amplitudni i fazni spektar X_k za $-3 \le k \le 3$.

- **5.** (9 bodova) Promatramo vremenski diskretan signal konačnog trajanja oblika $x[n] = \{\underline{-2}, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, -2, 0, 2, \dots\}$ gdje se uzorak $\{-2, 0, 2\}$ ponavlja m-puta. Neka je trajanje signala $N = 3m, m \in \mathbb{N}$.
 - a) (2 boda) Izračunajte diskretnu Fourierovu transformaciju DFT_N signala x[n] u N točaka.
 - b) (1 bod) Za koje k je transformacija signala X[k] različita od nule?
 - c) (2 boda) Korištenjem spektra X[k] raspišite signal x[n] kao zbroj kosinusoida.
 - d) (2 boda) Ako je promatrani signal x[n] dobiven očitavanjem vremenski kontinuiranog signala x(t) s frekvencijom očitavanja $f_S = 10 \,\text{kHz}$ koje spektralne komponente se nalaze u signalu x(t)?
 - e) (2 boda) Odredite periodičan vremenski kontinuirani signal x(t) dobiven idealnom rekonstrukcijom iz signala x[n].

Međuispit (grupa B) - 24. travnja 2013.

- **1.** (9 bodova) Zadani su signali $x_1(t) = 3^{-t} \mu(t)$ i $x_2(n) = \cos(\frac{\pi}{3}n)$.
 - a) (2 boda) Definirajte totalnu energiju i totalnu snagu vremenski kontinuiranog signala.
 - b) (2 boda) Izračunajte totalnu energiju i totalnu snagu signala $x_1(t)$.
 - c) (2 boda) Definirajte totalnu energiju i totalnu snagu vremenski diskretnog signala.
 - d) (3 boda) Izračunajte totalnu energiju i totalnu snagu signala $x_2(n)$.
- **2.** (9 bodova) Zadan je vremenski kontinuirani signal $x(t) = e^{2t} (\mu(t) \mu(t-8))$.
 - a) (4 boda) Postoji li vremenski kontinuirana Fourierova transformacija (CTFT) signala x(t)? Ako postoji, pokažite zašto postoji, a ako ne postoji, pokažite zašto ne postoji!
 - b) **(5 bodova)** Ako transformacija postoji izračunajte je (nije potrebno računati amplitudu i fazu), a ako ne postoji, pokažite da Fourierov integral divergira!
- 3. (9 bodova) Zadan je vremenski diskretan signal $x(n) = 2^{-|n|}$, gdje je $n \in \mathbb{Z}$.
 - a) (4 boda) Izračunajte vremenski diskretnu Fourierovu transformaciju (DTFT) signala x(n).
 - b) (2 boda) Odredite amplitudni i fazni spektar.
 - c) (3 boda) Odredite na kojim frekvencijama Ω amplitudni spektar $|X(e^{j\Omega})|$ poprima minimalne, a na kojima maksimalne vrijednosti.
- **4.** (9 bodova) Vremenski kontinuiran signal x(t) perioda T=7 zadan je slikom.
 - a) (4 boda) Odredite rastav signala x(t) u vremenski kontinuirani Fourierov red (CTFS).
 - b) (2 boda) Navedite svojstvo simetričnosti spektra X_k realnog signala x(t). Pokažite da dobiveni spektar X_k zadovoljava taj uvjet!
 - c) (3 boda) Skicirajte amplitudni i fazni spektar X_k za $-3 \le k \le 3$.

- **5.** (9 bodova) Promatramo vremenski diskretan signal konačnog trajanja oblika $x[n] = \{\underline{-3}, 0, 3, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0, -3, 0,$
 - a) (2 boda) Izračunajte diskretnu Fourierovu transformaciju DFT_N signala x[n] u N točaka.
 - b) (1 bod) Za koje k je transformacija signala X[k] različita od nule?
 - c) (2 boda) Korištenjem spektra X[k] raspišite signal x[n] kao zbroj kosinusoida.
 - d) (2 boda) Ako je promatrani signal x[n] dobiven očitavanjem vremenski kontinuiranog signala x(t) s frekvencijom očitavanja $f_S = 10 \,\text{kHz}$ koje spektralne komponente se nalaze u signalu x(t)?
 - e) (2 boda) Odredite periodičan vremenski kontinuirani signal x(t) dobiven idealnom rekonstrukcijom iz signala x[n].

Međuispit (grupa A) - 26. travnja 2012.

- 1. (9 bodova) Zadan je vremenski kontinuiran signal $x(t) = \cos(100t) + \cos(200t)$.
 - a) (4 boda) Odredite razvoj signala x(t) u vremenski kontinuirani Fourierov red (CTFS). Skicirajte amplitudni i fazni spektar signala.
 - b) (3 boda) Iz SPEKTRA izračunajte snagu signala.
 - c) (2 boda) Za koje frekvencije očitavanja je očitavanje signala x(t) jednoznačno?
- **2.** (9 bodova) Zadan je vremenski kontinuiran signal $x(t) = e^{-4t} \mu(t) + 5e^{5t} \mu(-t)$.
 - a) (3 boda) Odredite generaliziranu derivaciju zadanog signala.
 - b) (3 boda) Izračunajte vremenski kontinuiranu Fourierovu transformaciju (CTFT) zadanog signala.
 - c) (3 boda) Izračunajte energiju zadanog signala.
- **3.** (9 bodova) Promatramo vremenski diskretan periodičan signal x(n) perioda 6. Šest uzoraka jednog perioda počevši od koraka n = 0 su $\{-6, 3, 0, 0, 3, 0\}$.
 - a) (2 boda) Odredite razvoj signala x(n) u vremenski diskretan Fourierov red (DTFS).
 - b) (2 boda) Navedite svojstvo simetričnosti spektra X_k realnog signala x(n). Pokažite da dobiveni X_k zadovoljava taj uvjet!
 - c) (3 boda) Izračunajte numeričke vrijednosti spektra X_k za $k \in \{0, 1, 2, 3, 4, 5\}$.
 - d) (2 boda) Skicirajte amplitudni i fazni spektar X_k
- **4.** (9 bodova) Jedan period vremenski diskretne Fourierove transformacije (DTFT) nekog vremenski diskretnog signala x(n) jest $X(e^{j\Omega}) = \Omega + 3\pi, -\pi < \Omega \le \pi.$
 - a) (4 boda) Odredite vremenski diskretan signal x(n).
 - b) (3 boda) Odredite energiju signala x(n).
 - c) (2 boda) Odredite vremenski diskretnu Fourierovu transformaciju (DTFT) signala $y(n) = e^{j3\pi n}x(n)$.
- 5. (9 bodova) Zadan je vremenski kontinuiran signal $x(t) = \cos(100t) + \cos(200t)$.
 - a) (1 bod) Skicirajte amplitudni spektar vremenski kontinuirane Fourierove transformacije (CTFT) zadanog signala.
 - b) (1 bod) Ako signal očitamo s kružnom frekvencijom $\omega_S = 600$ skicirajte amplitudni spektar kontinuiranog očitanog signala $x(t) \operatorname{comb}_{T_S}(t)$.
 - c) (2 boda) Počevši od koraka n=0 odredite prvih šest očitaka signala x(t) uz $\omega_S=600$. Iz tih očitaka izračunajte diskretnu Fourierovu transformaciju u šest točaka (DFT₆).
 - d) (2 boda) Kojim frekvencijama vremenski kontinuiranog signala odgovaraju članovi spektra X(1) i X(3) dobiveni pod c)?
 - e) (1 bod) Kolika je spektralna rezolucija ω_0 spektra pod c)?
 - f) (2 boda) Koliko treba biti trajanje signala za spektralnu rezoluciju $\omega_0=10$?

Međuispit (grupa B) – 26. travnja 2012.

- 1. (9 bodova) Zadan je vremenski kontinuiran signal $x(t) = \cos(200t) + \cos(400t)$.
 - a) (4 boda) Odredite razvoj signala x(t) u vremenski kontinuirani Fourierov red (CTFS). Skicirajte amplitudni i fazni spektar signala.
 - b) (3 boda) Iz SPEKTRA izračunajte snagu signala.
 - c) (2 boda) Za koje frekvencije očitavanja je očitavanje signala x(t) jednoznačno?
- **2.** (9 bodova) Zadan je vremenski kontinuiran signal $x(t) = e^{-3t} \mu(t) + 6e^{6t} \mu(-t)$.
 - a) (3 boda) Odredite generaliziranu derivaciju zadanog signala.
 - b) (3 boda) Izračunajte vremenski kontinuiranu Fourierovu transformaciju (CTFT) zadanog signala.
 - c) (3 boda) Izračunajte energiju zadanog signala.
- 3. (9 bodova) Promatramo vremenski diskretan periodičan signal x(n) perioda 6. Šest uzoraka jednog perioda počevši od koraka n = 0 su $\{-6, 0, 3, 0, 0, 3\}$.
 - a) (2 boda) Odredite razvoj signala x(n) u vremenski diskretan Fourierov red (DTFS).
 - b) (2 boda) Navedite svojstvo simetričnosti spektra X_k realnog signala x(n). Pokažite da dobiveni X_k zadovoljava taj uvjet!
 - c) (3 boda) Izračunajte numeričke vrijednosti spektra X_k za $k \in \{0, 1, 2, 3, 4, 5\}$.
 - d) (2 boda) Skicirajte amplitudni i fazni spektar X_k
- **4.** (9 bodova) Jedan period vremenski diskretne Fourierove transformacije (DTFT) nekog vremenski diskretnog signala x(n) jest $X(e^{j\Omega}) = \Omega + 2\pi, -\pi < \Omega \le \pi.$
 - a) (4 boda) Odredite vremenski diskretan signal x(n).
 - b) (3 boda) Odredite energiju signala x(n).
 - c) (2 boda) Odredite vremenski diskretnu Fourierovu transformaciju (DTFT) signala $y(n) = e^{j3\pi n}x(n)$.
- 5. (9 bodova) Zadan je vremenski kontinuiran signal $x(t) = \cos(200t) + \cos(400t)$.
 - a) (1 bod) Skicirajte amplitudni spektar vremenski kontinuirane Fourierove transformacije (CTFT) zadanog signala.
 - b) (1 bod) Ako signal očitamo s kružnom frekvencijom $\omega_S = 1200$ skicirajte amplitudni spektar kontinuiranog očitanog signala x(t) comb $_{T_S}(t)$.
 - c) (2 boda) Počevši od koraka n=0 odredite prvih šest očitaka signala x(t) uz $\omega_S=1200$. Iz tih očitaka izračunajte diskretnu Fourierovu transformaciju u šest točaka (DFT₆).
 - d) (2 boda) Kojim frekvencijama vremenski kontinuiranog signala odgovaraju članovi spektra X(1) i X(3) dobiveni pod c)?
 - e) (1 bod) Kolika je spektralna rezolucija ω_0 spektra pod c)?
 - f) (2 boda) Koliko treba biti trajanje signala za spektralnu rezoluciju $\omega_0=10$?