- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

27 giugno 2017

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

- 1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è A: derivabile ovunque B: iniettiva C: surgettiva D: convessa E: invertibile per $x \in [-2, -1]$
- 2. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a A: \sqrt{e} B: N.A. C: $-\frac{1}{2}$ D: 1 E: $\frac{1}{2}$
- 3. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono A: N.A. B: $t^2e^{t^2} + c$ C: $e^t(t-1) + c$ D: $t\log(t) + c$ E: N.E.
- 4. Inf, min, sup e max dell'insieme

$$A = \{x^2 : x \in B\}, \text{ dove } B = \{x \in \mathbb{R} : \frac{1}{e} < e^x < e^2\}$$

valgono

A: N.A. B:
$$\{-\infty, N.E., 2, 2\}$$
 C: $\{0, N.E., 4, 4\}$ D: $\{0, 0, 4, N.E.\}$ E: $\{-1, N.E., 2, N.E.\}$

5. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

$$A: +\infty$$
 B: N.A. C: N.E. D: 0 E: 1

6. La funzione
$$f(x) = \begin{cases} \frac{x \pi}{3.1415} & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: è derivabile, ma non continua. B: N.A. C: non è né continua né derivabile. D: è continua e derivabile. E: è continua, ma non derivabile.

7. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A:
$$\alpha > 0$$
 B: $0 < \alpha < 1$ C: $\alpha \ge e$ D: $\alpha > \pi$ E: N.A.

8. L'integrale

$$\int_{-1}^{1} |1-x|^2 dx$$

vale

9. Il polinomio di Taylor di ordine 1 per $f(x) = \cos^2(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

A:
$$-3\left(x - \frac{\pi}{18}\right)$$
 B: $\frac{3}{4} - \frac{3}{2}\sqrt{3}\left(x - \frac{\pi}{18}\right)$ C: $\cos\left(\frac{\pi}{18}\right) - \left(x - \frac{\pi}{18}\right)\sin\left(\frac{\pi}{18}\right)$ D: $3x + \frac{\pi}{18}$ E N.A.

10. Dati i numeri complessi z=2+i e w=1-3i, qual è il risultato di $\frac{z}{w}$?

A:
$$(2+i)(3i+1)$$
 B: N.A. C: $\frac{5-2i}{\sqrt{10}}$ D: $\frac{5-2i}{10}$ E: $\frac{7i-1}{10}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

27 giugno 2017

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	0	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10		\bigcirc				

1. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: N.E. B: 1 C: N.A. D: 0 E: $+\infty$

2. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A: N.A. B: $0 < \alpha < 1$ C: $\alpha > \pi$ D: $\alpha \ge e$ E: $\alpha > 0$

3. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono

A:
$$e^t(t-1) + c$$
 B: N.A. C: N.E. D: $t \log(t) + c$ E: $t^2 e^{t^2} + c$

4. Il polinomio di Taylor di ordine 1 per $f(x) = \cos^2(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale

Il polinomio di Taylor di ordine 1 per
$$f(x) = \cos^2(3x)$$
 nel punto $x_0 = \frac{\pi}{18}$ vale

A: $\frac{3}{4} - \frac{3}{2}\sqrt{3}\left(x - \frac{\pi}{18}\right)$ B: N.A. C: $-3\left(x - \frac{\pi}{18}\right)$ D: $\cos\left(\frac{\pi}{18}\right) - \left(x - \frac{\pi}{18}\right)\sin\left(\frac{\pi}{18}\right)$ E: $3x + \frac{\pi}{18}$

5. Dati i numeri complessi z=2+i e w=1-3i, qual è il risultato di $\frac{z}{w}$?

A:
$$\frac{7i-1}{10}$$
 B: $\frac{5-2i}{\sqrt{10}}$ C: $(2+i)(3i+1)$ D: $\frac{5-2i}{10}$ E: N.A.

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

B: surgettiva C: iniettiva D: derivabile ovunque E: invertibile per $x \in$ A: convessa [-2, -1]

7. L'integrale

$$\int_{-1}^{1} |1 - x|^2 \, dx$$

vale

B: 3/2 C: 5/3 D: 5/2 E: 0 A: N.A.

8. Inf, min, sup e max dell'insieme

$$A = \{x^2 : x \in B\}, \text{ dove } B = \{x \in \mathbb{R} : \frac{1}{e} < e^x < e^2\}$$

valgono

$$\text{A:} \ \{-1, N.E., 2, N.E.\} \\ \quad \text{B:} \ \{0, 0, 4, N.E.\} \\ \quad \text{C:} \ \text{N.A.} \\ \quad \text{D:} \ \{-\infty, N.E., 2, 2\} \\ \quad \text{E:} \ \{0, N.E., 4, 4\} \\ \quad \text{$$

9. La funzione $f(x) = \begin{cases} \frac{x \pi}{3.1415} & \text{per } x < 0 \\ \vdots & \ddots \end{cases}$

A: è derivabile, ma non continua. B: è continua, ma non derivabile. C: N.A. D: non E: è continua e derivabile. è né continua né derivabile.

10. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a

A:
$$-\frac{1}{2}$$
 B: N.A. C: \sqrt{e} D: 1 E: $\frac{1}{2}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

27 giugno 2017

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	0	\bigcirc	0	0	\bigcirc
10		\bigcirc	\bigcirc	\bigcirc	

- 1. Data $f(x) = \sqrt{e^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a A: \sqrt{e} B: N.A. C: $\frac{1}{2}$ D: $-\frac{1}{2}$ E: 1
- 2. Il polinomio di Taylor di ordine 1 per $f(x) = \cos^2(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale A: $\frac{3}{4} \frac{3}{2}\sqrt{3}\left(x \frac{\pi}{18}\right)$ B: $3x + \frac{\pi}{18}$ C: $\cos\left(\frac{\pi}{18}\right) \left(x \frac{\pi}{18}\right)\sin\left(\frac{\pi}{18}\right)$ D: N.A. E: $-3\left(x \frac{\pi}{18}\right)$
- 3. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: N.A. B: N.E. C: $+\infty$ D: 0 E: 1

- 4. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono A: N.E. B: $e^t (t-1) + c$ C: $t \log(t) + c$ D: $t^2 e^{t^2} + c$ E: N.A.
- 5. L'integrale

$$\int_{-1}^{1} |1 - x|^2 \, dx$$

vale

A: 3/2 B: 5/3 C: 0 D: 5/2 E: N.A.

- 6. Dati i numeri complessi z=2+i e w=1-3i, qual è il risultato di $\frac{z}{w}$? A: N.A. B: (2+i)(3i+1) C: $\frac{5-2i}{10}$ D: $\frac{7i-1}{10}$ E: $\frac{5-2i}{\sqrt{10}}$
- 7. Inf, min, sup e max dell'insieme

$$A = \{x^2 : x \in B\}, \text{ dove } B = \{x \in \mathbb{R} : \frac{1}{e} < e^x < e^2\}$$

valgono

A: N.A. B: $\{0, N.E., 4, 4\}$ C: $\{-\infty, N.E., 2, 2\}$ D: $\{-1, N.E., 2, N.E.\}$ E: $\{0, 0, 4, N.E.\}$

8. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A: $\alpha > \pi$ B: $\alpha \ge e$ C: $\alpha > 0$ D: $0 < \alpha < 1$ E: N.A.

9. La funzione $f(x) = \begin{cases} \frac{x \pi}{3.1415} & \text{per } x < 0\\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: è continua e derivabile. C: è continua, ma non derivabile. D: non è né continua né derivabile. E: è derivabile, ma non continua.

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è

A: derivabile ovunque B: convessa C: invertibile per $x \in [-2, -1]$ D: surgettiva E: iniettiva

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

27 giugno 2017

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	0	0	0
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	0	0	\bigcirc
0	\bigcirc	0	0	\bigcirc
0	0	0	\bigcirc	\bigcirc

1. La funzione $f(x) = \begin{cases} \frac{x \pi}{3.1415} & \text{per } x < 0\\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è continua, ma non derivabile. B: non è né continua né derivabile. C: N.A. D: è derivabile, ma non continua. E: è continua e derivabile.

- 2. Il polinomio di Taylor di ordine 1 per $f(x) = \cos^2(3x)$ nel punto $x_0 = \frac{\pi}{18}$ vale A: N.A. B: $\cos\left(\frac{\pi}{18}\right) \left(x \frac{\pi}{18}\right) \sin\left(\frac{\pi}{18}\right)$ C: $3x + \frac{\pi}{18}$ D: $-3\left(x \frac{\pi}{18}\right)$ E: $\frac{3}{4} \frac{3}{2}\sqrt{3}\left(x \frac{\pi}{18}\right)$
- 3. Data $f(x)=\sqrt{\mathrm{e}^{\cos(x)}}$. Allora $f'(\frac{\pi}{2})$ è uguale a A: $-\frac{1}{2}$ B: \sqrt{e} C: N.A. D: 1 E: $\frac{1}{2}$
- 4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|x|}$ è A: invertibile per $x \in [-2, -1]$ B: iniettiva C: convessa D: derivabile ovunque E: surgettiva
- 5. Dato $\alpha \geq 0$, la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{\alpha}{n}\right)^n}{n^{e}}$$

converge per

A: N.A. B:
$$\alpha > 0$$
 C: $0 < \alpha < 1$ D: $\alpha > \pi$ E: $\alpha \ge e$

6. L'integrale

$$\int_{-1}^{1} |1-x|^2 dx$$

vale

7. Il limite

$$\lim_{x \to +\infty} (x^2 + 2) (\log (x^2 + 1) - \log x^2)$$

vale

A: 0 B: N.A. C: N.E. D: 1 E:
$$+\infty$$

- 8. Per t > 0 le soluzioni dell'equazione differenziale $x'(t) = te^t$ sono A: $e^t(t-1) + c$ B: $t^2e^{t^2} + c$ C: N.E. D: $t \log(t) + c$ E: N.A.
- 9. Inf, min, sup e max dell'insieme

$$A = \{x^2 : x \in B\}, \text{ dove } B = \{x \in \mathbb{R} : \frac{1}{e} < e^x < e^2\}$$

valgono

A:
$$\{0,0,4,N.E.\}$$
 B: $\{-\infty,N.E.,2,2\}$ C: $\{0,N.E.,4,4\}$ D: $\{-1,N.E.,2,N.E.\}$ E. N.A.

10. Dati i numeri complessi z = 2 + i e w = 1 - 3i, qual è il risultato di $\frac{z}{w}$?

A:
$$\frac{5-2i}{10}$$
 B: $\frac{5-2i}{\sqrt{10}}$ C: $(2+i)(3i+1)$ D: N.A. E: $\frac{7i-1}{10}$

27 giugno 2017

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	•	
2	0	\bigcirc	•	\bigcirc	\bigcirc	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	•	
6	0	\bigcirc	\bigcirc	\bigcirc	•	
7	0	\bigcirc	\bigcirc	\bigcirc	•	
8	0	\bigcirc	\bigcirc	•	\bigcirc	
9	0	•	0	0	0	
10	0	\bigcirc	\bigcirc	\bigcirc		

27 giugno 2017

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	•	
7	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	•	0	\bigcirc	\bigcirc	
9	0	•	0	\bigcirc	\bigcirc	
10		\bigcirc	\bigcirc	\bigcirc	\bigcirc	

27 giugno 2017

(Cognome)								-			(No	me)			=	(Numero di matricola)												

0	0	0	•	0
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	•
0	•	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	•
0	\bigcirc	\bigcirc		\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	•
0	\bigcirc	\bigcirc	\bigcirc	•
0	0	•	\bigcirc	\bigcirc
0	\bigcirc	•	\bigcirc	\bigcirc

27 giugno 2017

(Cognome)									(Nome)									(Numero di matricola)												

1	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	•	
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	•	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	•	\bigcirc	
8	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	•	\circ	0	\bigcirc	0	
10						

27 giugno 2017

PARTE B

1. Data la funzione

$$f(x) = \frac{x^3 + x^2 + 10x + 1}{x^2 + 1},$$

determinare il più grande intervallo contenente l'origine su cui f risulta invertibile. Calcolare inoltre, se possibile, la derivata della funzione inversa f^{-1} nel punto 1.

Soluzione Si ha

$$f'(x) = \frac{x^4 - 7x^2 + 10}{(x^2 + 1)^2}$$

e quindi f'(0)=10>0. Allora il più grande intervallo contenente l'origine su cui f risulta invertibile è quello contenente l'origine in cui $f'(x)\geq 0$. Adesso $x^4-7x^2+10\geq 0$ quando $x^2\geq 5$ o $x^2\leq 2$, quindi se $x\geq \sqrt{5},\, x\leq -\sqrt{5}$ o $-\sqrt{2}\leq x\leq \sqrt{2}$. Di questi l'unico intervallo che contiene l'origine è $-\sqrt{2}\leq x\leq \sqrt{2}$.

Abbiamo che f(0) = 1 e x = 0 rientra nell'intervallo, quindi esiste la funzione inversa $f^{-1}(y)$ nel punto y = 1. Con la formula di derivazione della funzione inversa, ne possiamo calcolare la derivata. Abbiamo

$$(f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{10}.$$

Figura 1: grafico approssimativo di f(x)

2. Risolvere per ogni $\alpha \in \mathbb{R}$ il problema di Cauchy

$$\begin{cases} y''(x) + \alpha^2 y(x) = x^2 \\ y(0) = y'(0) = 0. \end{cases}$$

Soluzione Se $\alpha \neq 0$ le soluzioni dell'equazione omogenea sono date da

$$y_0(x) = A\cos(\alpha x) + B\sin(\alpha x)$$

Per trovare la soluzione particolare, partiamo da un polinomio di secondo grado $y_1(x) = ax^2 + bx + c$ e vediamo che $a = \frac{1}{\alpha^2}$, b = 0, $c = -\frac{2}{\alpha^4}$, quindi la soluzione generale diventa

$$y(x) = A\cos(\alpha x) + B\sin(\alpha x) + \frac{x^2}{\alpha^2} - \frac{2}{\alpha^4}$$

e sostituendo le condizioni iniziali si ottiene $A=\frac{2}{\alpha^4}$ e B=0. La soluzione dell'equazione differenziale per $\alpha \neq 0$ è

$$y(x) = \frac{2\cos(\alpha x) - 2}{\alpha^4} + \frac{x^2}{\alpha^2}$$

Per $\alpha=0$, integrando semplicemente due volte, e imponendo le condizioni iniziali si ottiene immediatamente

$$y = \frac{x^4}{12}$$

3. Data la funzione

$$F(x) = \int_0^x \frac{\log(1+t^2)}{t\sqrt{3-t}} \, dt$$

determinare l'insieme di definizione.

Soluzione Sicuramente per x > 3 la funzione F non è definita, per la presenza di $\sqrt{3-t}$ nell'integrale. I punti in cui l'integrando va controllato sono i due punti in cui il denominatore si annulla, ovvero t=0 e t=3. Per $t\to 3^-$ abbiamo che

$$\frac{\log(1+t^2)}{t\sqrt{3-t}} \sim \frac{1}{\sqrt{3-t}}$$

e quindi la funzione risulta integrabile fino a x=3. Quando $t\to 0$ abbiamo, usando il teorema dell'Hopital

$$\lim_{t \to 0} \frac{\log(1+t^2)}{t\sqrt{3-t}} = \lim_{t \to 0} \frac{\frac{2t}{1+t^2}}{\sqrt{3-t} - \frac{t}{2\sqrt{3-t}}} = 0.$$

4. Data la funzione $f(x) = \int_0^x \frac{\sin(t)}{t} dt$, dimostrare che il limite

$$\lim_{x \to 0^{-}} \frac{2f(x) - f(2x)}{x - f(x)}$$

esiste ed è finito e eventualmente calcolarlo.

Soluzione Si vede immediatamente che il limite ha la forma indeterminata del tipo $\frac{0}{0}$. Per vedere se esiste proviamo ad applicare il teorema dell'Hopital. Dobbiamo calcolare

$$\lim_{x \to 0^{-}} \frac{2f'(x) - 2f'(2x)}{1 - f'(x)} = \lim_{x \to 0^{-}} \frac{2\frac{\sin(x)}{x} - 2\frac{\sin(2x)}{2x}}{1 - \frac{\sin(x)}{x}}$$

che continua ad essere una forma indeterminata. Sapendo però che lo sviluppo al secondo ordine in un intorno dell'origine di $\sin(x)$ vale $\sin(x) = x - \frac{x^3}{6} + o(x^3)$ abbiamo

$$\frac{\sin(x)}{x} = 1 - \frac{x^2}{6} + o(x^2)$$
 e $\frac{\sin(2x)}{2x} = 1 - \frac{2x^2}{3} + o(x^2)$

 ${\bf e}$ quindi

$$\lim_{x \to 0^{-}} \frac{2\frac{\sin(x)}{x} - 2\frac{\sin(2x)}{2x}}{1 - \frac{\sin(x)}{x}} = \lim_{x \to 0^{-}} \frac{\left(2 - \frac{x^{2}}{3}\right) - \left(2 - \frac{4x^{2}}{3}\right) + o(x^{2})}{1 - \left(1 - \frac{x^{2}}{6}\right) + o(x^{2})} = \lim_{x \to 0^{-}} \frac{x^{2} + o(x^{2})}{\frac{x^{2}}{6} + o(x^{2})} = 6.$$

Il teorema dell'Hopital ci garantisce allora che il limite cercato esiste, e vale 6 (e quindi è finito)