Resultados Complementares

Nesta seção é abordado resultados complementares da Seção 5 do artigo *Calibração de Distância em Métodos de Acesso Métrico por meio de Realimentação de Relevância*. Em nosso segundo experimento abordamos sobre o efeito da inclusão da função de distância ponderada no método de acesso métrico, como complemento, realizamos também esta análise sobre um *Toy Dataset* com 50.000 elementos gerada por distribuição gaussiana, adicionando também a análise comparando o número de cálculos de distâncias e acessos ao disco entre ponderar constantemente a realização de cada consulta e ponderar em períodos intervalados a cada cinquenta consultas. Na Figura 1 é possível observar que a ponderação não constante da função de distância possui uma pequena variação menor de realizações de cálculos. A razão de não ter grande diferença acontece pois em ambos os casos como não ocorre uma reindexação da árvore métrica, a árvore métrica é recalculada para o ultimo vetor pesos informado como parâmetro para a consulta.

Figura 1 — Comparação dos cálculos de distâncias e acessos a disco entre a função de distância padrão e ponderação da função de distância.

Na Tabela 4 comparamos a **acurácia** (ACC) e **F1-score** (F1) obtidas entre a base de dados original e a base dados após a realização de um ciclo de RR, demonstrando como a realimentação de relevância que aprende um vetor de pesos consegue aprimorar um espaço métrico, aplicando uma melhor semântica na organização dos elementos. Para isto, é realizado a validação cruzada de até 10 pastas utilizando o classificador KNN. É possível observar que a RR consegue um ganho considerável na maioria das combinações, obtendo 83,75% de acurácia no extrator GLCM com um ganho de 47% em comparação ao não uso de Realimentação de Relevância na base de COVID-19.

labela 4. Acuracia e F1-Score por desc	ritor de textura, sem RR e com RR Desvio
Padrão	

Dataset	Extrator	Sem RR		RR Desvio Padrão		Ganho (%)	
		ACC (%)	F1 (%)	ACC (%)	F1 (%)	ACC (%)	F1 (%)
COREL-1000	Gray Hist	54,55	53,61	57,11	56,18	5	5
	Gray Hist	80	80,62	80	80,33	0	0
	GLCM	57,12	57,04	83,75	83,78	47	47
COVID-19	FOS	66,29	66,12	73,75	72,89	11	10
	SFM	68,04	67,65	80,58	80,12	18	18
	LTE	58,83	58,22	70,58	68,9	20	18
	Gray Hist	63,5	66,07	69	67,36	9	2
	GLCM	60	61,57	71,25	65,09	19	6
BUSI-BREAST	FOS	58,75	61	61,87	62,36	5	1
	SFM	57,49	61	67,5	68,52	17	12
	LTE	65,62	66,19	70,71	69,88	8	6

Em nosso terceiro experimento realizamos a análise da técnica RR Desvio Padrão através de ciclos de realimentação calculando o *Mean Average Precision* nas *top* 10 e 20 imagens considerando todos elementos das bases de imagens analisadas (COREL-1000, COVID-19 e BUSI-BREAST). Como complemento a esta análise, realizamos o *Mean Average Precision* nas *top* 10 e 20 imagens em todas as bases de imagens analisando o aprimoramento da precisão separados por cada classe de cada base de imagens. Na Figura 2 é possível observar que a técnica consegue aprimorar ou empatar a precisão em todas as classes analisadas, nunca piorando a precisão.

Figura 2 - Mean Average Precision das top 10 e 20 imagens por classe nas bases de imagens em análise.

Em nosso último experimento realizamos a visualização das bases de imagens utilizando T-SNE comparando o espaço métrico original com o espaço métrico transformado pela RR Desvio Padrão sobre a base de imagens de COVID. Em complemento a esta análise, realizamos a visualização comparando os espaços métricos transformados em todas as bases de imagens analisadas (COREL-1000, COVID-19, BUSI-BREAST), sendo possível observar o melhoramento semântico obtido pela técnica como apresentado na Figura 3.

Figura 3 - Visualização da modificação do espaço métrico obtido pela técnica RR Desvio Padrão após 5 ciclos de realimentação, em cada base de imagens em análise.