Data: /results.csv

File crawl_data: /crawl_data.ipynb

Data Information:

- c	f.info									
≺bou	nd method DataFrame	.info	of		Player	Nation	Pos	Squad	Age	Playing_Time_MP \
0	Aaron Cresswell	eng	ENG	DF,FW	West Ham	33.0	11			
1	Aaron Ramsdale	eng	ENG	GK	Arsenal	25.0	6			
2	Aaron Wan-Bissaka	eng	ENG	DF	Manchester Utd	25.0	22			
3	Aaron Hickey	sct	SC0	DF	Brentford	21.0	9			
4	Aaron Ramsey	eng	ENG	MF,FW	Burnley	20.0	14			
488	Yves Bissouma	ml	MLI	MF	Tottenham	26.0	28			
489	Zeki Amdouni	ch	SUI	FW	Burnley	22.0	34			
490	Álex Moreno	es	ESP	DF	Aston Villa	30.0	21			
491	Đorđe Petrović	rs	SRB	GK	Chelsea	23.0	23			
492	Łukasz Fabiański	pl	POL	GK	West Ham	38.0	10			
	Playing Time Start	s Pl	aying	g Time	Min Performance	Ast Per	formance G-PK	\		
9	,	4	, ,		436	_ 	_ 0			
1		6		!	540	0	0			
2	2	10		1	780	2	0			
3		9			713	0	0			
4		5			527	0	0			
188	2	16		2	268	0	0			
489	2	.7		1	953	1	4			
190	1	1		10	031	0	2			
491	2	2		1	987	0	0			
492		7			721	0	0			
490	4			10	9	28.6				
491	5				ð 1	.00.0				
492	2					.00.0				

- Gồm 493 cầu thủ, mỗi cầu thủ có 172 thuộc tính, chia làm 20 đội bóng ở ngoại hạng anh.

TOP 3 CẦU THỦ CÓ ĐIỂM CAO - THẤP NHẤT Ở MỖI CHỈ SỐ:

path: /result2_1.txt Ånh minh họa:

Chỉ số: Playing_Time_MP					
Top 3 cầu thủ có điểm cao nhấ	ất:				
Player Playing_Time_	MP				
André Onana	38				
Bernd Leno	38				
Carlton Morris	38				
Top 3 cầu thủ có điểm thấp nh	nất:				
Player Playing_Time_M	1P				
Alex Iwobi	2				
Ionuț Radu	2				
Matheus Nunes					

TRUNG VỊ MỖI CHỈ SỐ, TRUNG BÌNH VÀ ĐỘ LỆCH CHUẨN MỖI CHỈ SỐ CHO CÁC CẦU THỦ TRONG TOÀN GIẢI VÀ CỦA MỖI ĐỘI:

Ånh minh họa:

	Team	Median of Age	Mean of Age	Std of Age	Median of Playing_Time_MP	Mean of Playing_Time_MP	Std of Playing_Time_MP	Median of Playing_Time_Starts	Mean of Playing_Time_Starts	Std of Playing_Time_Starts
0	all	25.0	25.498986	4.127355	23.0	22.657201	10.136975	16.0	16.941176	11.167179
1	West Ham	27.5	28.272727	3.869069	23.5	23.363636	10.825655	21.0	19.000000	13.511900
2	Arsenal	24.0	24.761905	2.547641	27.0	26.809524	10.191266	18.0	19.857143	13.093073
3	Manchester Utd	25.5	25.269231	4.414138	22.0	21.500000	10.052860	15.0	16.038462	11.039858
4	Brentford	26.0	25.800000	3.593976	26.0	22.960000	10.346014	15.0	16.720000	10.883933
5	Burnley	24.0	24.071429	3.838678	16.0	20.392857	9.346575	14.0	14.928571	10.014540
6	Everton	26.0	26.347826	4.858064	28.0	23.304348	11.561829	23.0	18.173913	13.720099
7	Brighton	23.5	24.785714	5.698324	20.0	20.928571	8.751417	15.0	14.892857	8.603786
8	Bournemouth	24.5	25.038462	3.538144	25.5	22.076923	11.852166	13.0	16.038462	12.732575
9	Crystal Palace	25.5	25.166667	4.280051	22.5	22.458333	9.477567	17.5	17.416667	10.993740
10	Fulham	27.0	27.904762	3.360130	29.0	27.238095	7.993152	18.0	19.904762	10.084170
11	Luton Town	26.0	26.320000	3.051229	23.0	22.840000	9.163696	16.0	16.720000	10.159232
12	Newcastle Utd	25.5	26.125000	4.875070	21.0	22.875000	8.679373	14.5	17.333333	10.773021
13	Liverpool	24.0	25.318182	3.822071	28.0	25.863636	8.993624	17.0	18.954545	8.283531
14	Chelsea	22.0	23.000000	3.905125	23.0	21.880000	9.404432	18.0	16.720000	11.066165
15	Sheffield Utd	24.0	25.166667	4.259540	14.5	18.800000	10.584308	11.0	13.933333	10.550154
16	Nott'ham Forest	25.5	25.900000	3.880544	20.0	19.000000	9.955071	15.0	13.933333	8.642052
17	Tottenham	25.5	25.125000	3.530150	27.5	23.750000	10.927628	15.5	17.416667	12.693431
18	Manchester City	27.0	26.000000	4.024922	29.0	24.952381	9.351343	24.0	19.904762	11.330952
19	Aston Villa	26.0	25.956522	3.548089	27.0	24.173913	11.109587	20.0	18.130435	12.392462
20	Wolves	24.0	24.680000	4.422669	25.0	22.480000	11.930773	11.0	16.720000	13.358892

Path: /result2_2.csv

Solution:

```
# trung vị của mỗi chỉ số, trung bình và độ lệch chuẩn của mỗi chỉ số cho các cầu thủ tr
numeric_columns = df.select_dtypes(include='number').columns
results2_2 = pd.DataFrame()
all_stats = {
    'Team': 'all'
for col in numeric_columns:
   all_stats[f'Median of {col}'] = df[col].median()
   all_stats[f'Mean of {col}'] = df[col].mean()
   all_stats[f'Std of {col}'] = df[col].std()
results2_2 = pd.concat([results2_2, pd.DataFrame([all_stats])], ignore_index=True)
for team in df['Squad'].unique():
    team_stats = {
        'Team': team
   team_data = df[df['Squad'] == team]
    for col in numeric columns:
       team_stats[f'Median of {col}'] = team_data[col].median()
        team_stats[f'Mean of {col}'] = team_data[col].mean()
        team_stats[f'Std of {col}'] = team_data[col].std()
    results2 2 = pd.concat([results2 2, pd.DataFrame([team_stats])], ignore_index=True)
results2_2.to_csv('results2_2.csv', index=False)
```

HISTOGRAM PHÂN BỐ CỦA MÕI CHỈ SỐ CỦA CÁC CẦU THỦ TRONG TOÀN GIẢI VÀ MÕI ĐỘI

path: /result2_3/ Ånh minh họa:


```
output_dir = 'result2 3'
if not os.path.exists(output dir):
    os.makedirs(output dir)
for col in numeric columns:
    plt.figure(figsize=(10, 6))
    sns.histplot(df[col], kde=True, bins=30)
    plt.title(f'Distribution of {col} - All Players')
    plt.xlabel(col)
    plt.ylabel('Frequency')
    plt.grid(True)
   plt.tight layout()
    name = normalize(col)
    plt.savefig(os.path.join(output_dir, f'all_players_{name}.png'))
    plt.close()
for team in df['Squad'].unique():
    team data = df[df['Squad'] == team]
    team dir = os.path.join(output dir, team)
    if not os.path.exists(team dir):
        os.makedirs(team dir)
    for col in numeric columns:
        plt.figure(figsize=(10, 6))
        sns.histplot(team data[col], kde=True, bins=30)
        plt.title(f'Distribution of {col} - {team}')
        plt.xlabel(col)
        plt.ylabel('Frequency')
        plt.grid(True)
        plt.tight_layout()
        name = normalize(col)
        plt.savefig(os.path.join(team dir, f'{team} {name}.png'))
        plt.close()
```

ĐỘI BÓNG CÓ PHONG ĐỘ CAO NHẤT: ARSENAL

ĐỘI BÓNG CÓ CHỈ SỐ CAO NHẤT Ở MÕI CHỈ SỐ:

Path: /result2_4.txt

Ånh minh họa:

```
Teams with the highest score in each stat:
     Playing Time MP: Manchester Utd
     Playing Time Starts: Manchester Utd
     Playing Time Min: Manchester Utd
     Performance Ast: Aston Villa
     Performance G-PK: Manchester City
     Performance PK: Chelsea
     Performance CrdY: Fulham
     Performance CrdR: Sheffield Utd
     Expected xG x: Manchester City
11
     Expected npxG x: Manchester City
12
     Expected xAG: Manchester Utd
13
     Progression PrgC: Manchester City
     Progression PrgP: Manchester City
14
15
     Progression PrgR: Arsenal
     Per 90 Minutes Gls: Wolves
17
     Per 90 Minutes Ast: Tottenham
     Per 90 Minutes G+A: Fulham
18
19
     Per 90 Minutes G-PK: Wolves
     Per 90 Minutes G+A-PK: Fulham
20
21
     Per 90 Minutes xG: Bournemouth
22
     Per 90 Minutes xAG: Manchester City
23
     Per 90 Minutes xG+xAG: Bournemouth
24
     Per 90 Minutes npxG: Bournemouth
25
     Per 90 Minutes npxG+xAG: Bournemouth
26
     Performance GA: Luton Town
27
     Performance GA90: Bournemouth
28
     Performance SoTA: Luton Town
29
     Performance Saves: Manchester Utd
     Performance Save%: Burnley
31
     Performance W: Manchester City
32
     Performance D: West Ham
33
     Performance L: Luton Town
     Performance CS: Arsenal
35
     Performance CS%: Manchester City
     Penalty_Kicks PKatt: Fulham
     Penalty Kicks PKA: Fulham
```

```
best_teams_by_stat = {}
for col in df.columns[5:]:
   max_idx = df[col].idxmax()
   best_team = df.loc[max_idx, 'Squad']
   best_teams_by_stat[col] = best_team
```

K-MEANS PHÂN LOẠI CÁC CẦU THỦ THÀNH CÁC NHÓM GIỐNG NHAU:

```
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import numpy as np
numerical columns = df.select dtypes(include=['float64', 'int64']).columns
data = df[numerical columns].fillna(-999) # Thay NaN bằng giá trị -999
scaler = StandardScaler()
data scaled = scaler.fit transform(data)
if np.isnan(data_scaled).sum() == 0:
    kmeans = KMeans(n clusters=9, random state=42)
    df['Cluster'] = kmeans.fit predict(data scaled)
    with open("player clusters.txt", "w") as f:
        for cluster in range(9):
            f.write(f"Cluster {cluster}:\n")
            cluster players = df[df['Cluster'] == cluster]['Player'].tolist()
            for player in cluster players:
                f.write(f"- {player}\n")
            f.write("\n")
else:
    print("Error: Data contains NaN values after scaling.")
```

nhận xét:

- Dù có chia làm bao nhiêu nhóm thì luôn có 1 nhóm gồm toàn các thủ môn.
- Việc chọn số lượng nhóm nên phụ thuộc vào mục đích ban đầu (chia theo vị trí, đánh giá vị trí dựa trên chỉ số,...)

SỬ DỤNG PCA, GIẢM CHIỀU DỮ LIỆU CÒN 2 CHIỀU VÀ PHÂN CỤM THÀNH 6 CLUSTERS:


```
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
numerical columns = df.select dtypes(include=['float64', 'int64']).columns
data = df[numerical columns].fillna(-999)
scaler = StandardScaler()
data scaled = scaler.fit transform(data)
pca = PCA(n components=2)
data_pca = pca.fit_transform(data_scaled)
kmeans = KMeans(n clusters=6, random state=42)
df['Cluster'] = kmeans.fit predict(data scaled)
plt.figure(figsize=(8, 6))
plt.scatter(data_pca[:, 0], data_pca[:, 1], c=df['Cluster'], cmap='viridis', s=50)
plt.title('KMeans Clustering on 2D PCA-Reduced Data')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.colorbar(label='Cluster')
plt.grid(True)
plt.show()
```

BIỂU ĐỒ RADAR CHART ĐỂ SO SÁNH CÁC CẦU THỦ:

Solution:

```
from math import pi

from sklearn.preprocessing import MinMaxScaler

def radar_chart(df, player1, player2, attributes):
    # Läy dữ liệu của hai cầu thủ
    player1_data = df[df['Player'] ==
    player1][attributes].values.flatten()
    player2_data = df[df['Player'] ==
    player2][attributes].values.flatten()
    print(player1_data, player2_data)

# Chuẩn hóa dữ liệu về khoảng 0-1 để để so sánh
    data = np.array([player1_data, player2_data])
    scaler = MinMaxScaler()
    data_normalized = scaler.fit_transform(data)

# Dữ liệu chuẩn hóa của 2 cầu thủ
```

```
player1 data = data normalized[0]
   player2 data = data normalized[1]
   labels = attributes
   num vars = len(labels)
   angles = np.linspace(0, 2 * np.pi, num vars,
endpoint=False).tolist()
   player1 data = np.concatenate((player1 data, [player1 data[0]]))
   player2 data = np.concatenate((player2 data, [player2 data[0]]))
   angles += angles[:1]
   fig, ax = plt.subplots(figsize=(6, 6), subplot kw=dict(polar=True))
   ax.fill(angles, player1 data, color='blue', alpha=0.15)
   ax.plot(angles, player1 data, color='blue', linewidth=2,
label=player1)
   ax.fill(angles, player2 data, color='red', alpha=0.15)
   ax.plot(angles, player2 data, color='red', linewidth=2,
label=player2)
   ax.set xticks(angles[:-1])
   ax.set xticklabels(labels)
   plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
   plt.title(f"Comparison between {player1} and {player2}")
   plt.show()
player1 = "Mohamed Salah"
player2 = "Erling Haaland"
attributes = ["Expected xG x", "Performance G-PK", "Playing Time Min"]
```

```
if player1 not in df['Player'].values:
    print(f"Player {player1} not found in the dataset.")
elif player2 not in df['Player'].values:
    print(f"Player {player2} not found in the dataset.")
else:
    # Vē biểu đô radar so sánh hai cầu thủ
    radar_chart(df, player1, player2, attributes)
```