In the name of Allah the Most Gracious the Most Merciful

Waseem Amir (20)

Tooba Rafique (04)

Mehwish Naz (08)

Naila Rasheed (47)

Kamran sajjad (38)

M. Rizwan (53)

Nazia Aslam (61)

Presented by: Group # 02

MOSESTEST

Moses Test

- Another test for equality of dispersion parameters was proposed by Moses.
- Moses test dose not assume the equality of location parameter.

Assumptions

- The data consist of 2 random samples $X_1, X_2, ..., X_n \& Y_1, Y_2, ..., Y_n$ from papulation 1 and 2 respectively.
- The population distribution are continuous, are measured on at least interval scale.
- The two samples are independent.

General procedure

1. Hypotheses

➤ Two sided

 $H_o: \sigma_1 = \sigma_2$

 H_1 : $\sigma_1 \neq \sigma_2$

≻One sided

lower tail: $H_o: \sigma_1 \geq \sigma_2$

 H_1 : $\sigma_1 < \sigma_2$

upper tail: $H_o: \sigma_1 \leq \sigma_2$

 $H_1: \sigma_1 > \sigma_2$

2. Level of Significance

$$\alpha = 0.05$$

3. Test statistic

$$T = S - \frac{m_1 (m_1 + 1)}{2}$$

4. Calculation

- Divide the both observations in to sub-samples of k equal size randomly.
- For each sample compute sum of squares (SS).
- Arrange SS in ascending order and assign ranks.
- Find S and T

5. Critical Region

➤ Two sided:

$$w_{\alpha/2} \le T \le w_{1-\alpha/2}$$
 where $w_{1-\alpha/2} = n_1 n_2 - w_{\alpha/2}$

► Lower Tail:

$$T < w_{\alpha}$$

➤ Upper Tail:

$$T > w_{1-\alpha}$$
 where $w_{1-\alpha} = n_1 n_2 - w_{\alpha}$

Example 3.6

Check whether these data provide sufficient evidence to indicate a difference in dispersion between the two populations represented by the observed samples using 5% level of significance.

X values 26	30	32	17	21	27	26	44
35	14	16	18	17	23	29	16
13	36	28	23	24	34	52	35

Y values 47	66	51	44	80	65	58
65	61	64	51	56	76	58
61	48	55	68	59	60	58

1. Hypotheses:

$$H_o$$
: $\sigma_1 = \sigma_2$
 H_1 : $\sigma_1 \neq \sigma_2$

2. Level of significance:

$$\alpha = 0.05$$

3. Test statistic:

$$T = S - \frac{m_1 (m_1 + 1)}{2}$$

4. Calculations:

Let K=4 then, $m_1 = 6$ & $m_2 = 5$ (discard 1 value)

Random subdivision of the X observations

Sub samples	Observations			Sum of Squares	
1	26	32	35	24	78.75
2	26	36	18	23	172.75
3	18	16	30	13	166.75
4	35	27	29	29	38.75
5	52	17	14	17	978.00
6	21	44	23	34	341.00

Random subdivision of the Y observations						
Sub samples		Sum of Squares				
1	60	58	48	61	106.75	
2	80	58	58	61	336.75	
3	54	56	51	51	113.00	
4	55	44	66	65	317.00	
5	59	76	68	47	465.00	

Sum of Squares & corresponding ranks						
SS	Rank	SS	Rank			
(X group)		(Y group)				
38.75	1	106.75	3			
78.75	2	113.00	4			
166,75	5	317.00	7			
172.75	6	336.75	8			
341.00	9	465.00	10			
978.00	11					
Total	34					

$$T = S - \frac{m_1(m_1+1)}{2}$$

$$T = 34 - \frac{6(6+1)}{2} = 13$$

5. Critical Region:

$$w_{\alpha/2} \le T \le w_{1-\alpha/2}$$

where
$$w_{1-\alpha/2} = n_1 n_2 - w_{\alpha/2}$$

6. Decision

$$w_{\alpha/2} \le T \le w_{1-\alpha/2}$$

 $w_{\alpha/2}$ =4 using $n_1 = 6 \& n_2 = 5$ (Table A.7)
 $w_{1-\alpha/2}$ =26 using $w_{1-\alpha/2} = n_1 n_2 - w_{\alpha/2}$

$$w_{\alpha/2} \le T \le w_{1-\alpha/2}$$

 $4 \le 13 \le 26$ do not reject H_o

Advantages

• It does not depend on assumptions of equal location parameter (median).

Disadvantages

- > Inefficient
- Different people applying the test will obtain different values because of a random process.
- ➤ One sub-division may lead to significant results where another does not.

Mou rank