# Implementing Logistic Regression Models in Excel



Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

#### Overview

Set up a logistic regression to predict whether a stock will rise or fall

Solve this logistic regression in Excelusing Solver

Contrast this solution to a rule-based approach

Extend the logistic regression to include multiple explanatory variables

Attempt a far more difficult task - predicting future returns using logistic regression

### Logistic Regression in Excel

#### Google stock - up or down?

Use data from Yahoo finance

Using returns of correlated stocks

#### **Linear regression**

Excel's forecast function

Uses linear regression

#### Multiple X variables

**Extend logistic model** 

Easier to do than rule-based

#### Rule-based approach

If S&P 500 up, Google up too

Simple rule, works well

#### Logistic regression

Implement in Solver

Use MLE to find A,B

#### Much harder problem

Next period prediction

Any chance of getting rich?

#### Demo

Implement Logistic Regression in Excel

### Logistic Regression in Excel

#### Google stock - up or down?

Use data from Yahoo finance

Using returns of correlated stocks



Cause
Changes in S&P 500



**Effect**Changes in price of Google Stock

### Never Regress Non-Stationary Data



Smoothly trending data will lead to poor quality regression models

#### Convert Prices to Returns

$$y'_{12} = \log y_2 - \log y_1$$

$$x'_{12} = \log x_2 - \log x_1$$

Regress y' and x'

**Log Differences** 

$$y'_{12} = (y_2 - y_1)/y_1$$
  
 $x'_{12} = (x_2 - x_1)/x_1$   
Regress y' and x'

**Returns** 

Take first differences of smooth data converting either to log differences or returns

```
y = Returns on
Google stock
(GOOG)
```

```
x = Returns
on S&P 500
(S&P500)
```

| DATE       | GOOG   | S&P500  |
|------------|--------|---------|
| 2017-02-01 | 813.67 | 2316.10 |
| 2017-01-01 | 796.79 | 2278.87 |
|            |        |         |
|            |        |         |
|            |        |         |
| 2005-01-01 | 97.71  | 1181.27 |

Download prices from Yahoo finance



Sort date from oldest to newest to calculate returns



Label GOOG returns as binary (1,0)

### Logistic Regression in Excel

#### Google stock - up or down?

Use data from Yahoo finance

Using returns of correlated stocks

#### Rule-based approach

If S&P 500 up, Google up too

Simple rule, works well



Cause

Changes in S&P 500



**Effect** 

Changes in price of Google Stock

# Rule-based Binary Classifier



```
x = Returns
on S&P 500
(S&P500)
```

```
y = Returns on Google stock
(GOOG)
```

Rule: If S&P500 is up, then GOOG will be up too



y = Returns on Google stock (GOOG)

Rule: If S&P500 is down, then GOOG will be down too



Label S&P500 returns as binary (1,0)



Apply our rule and assign S&P500's labels to GOOG

| DATE       | ACTUAL | PREDICTED |
|------------|--------|-----------|
| 2005-01-01 | NA     | NA        |
| 2005-02-01 | 0      | 1         |
| 2005-03-01 | 0      | 0         |
|            |        |           |
| 2017-01-01 | 1      | 1         |
| 2017-02-01 | 1      | 1         |

Compare GOOG's actual labels vs. predicted labels

### Logistic Regression in Excel

#### Google stock - up or down?

Use data from Yahoo finance

Using returns of correlated stocks

#### **Linear regression**

**Excel's forecast function** 

Uses linear regression

#### Rule-based approach

If S&P 500 up, Google up too

Simple rule, works well

#### Odds from Probabilities

$$Odds(p) = \frac{p}{1-p}$$

#### Odds of an Event

$$p = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{I}{1 + e^{A + Bx}}$$

#### Odds of an Event

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{1}{1 + e^{A + Bx}}$$

Odds(p) = 
$$\frac{p}{1-p}$$
 =  $e^{A + Bx}$ 



Represent all n points as  $(x_i,y_i)$ , where i = 1 to n

### Using Linear Regression

y = Returns on Google stock for current month x = Returns on S&P 500 for current month known\_y's = Returns on Google stock for all months

known\_x's = Returns on S&P 500 for all months

Predict GOOG's returns using forecasting

### Using Linear Regression



Label GOOG predicted returns as binary (1,0)

## Using Linear Regression

| DATE       | ACTUAL | PREDICTED |
|------------|--------|-----------|
| 2005-01-01 | NA     | NA        |
| 2005-02-01 | 0      | 1         |
| 2005-03-01 | 0      | 0         |
|            |        |           |
| 2017-01-01 | 1      | 1         |
| 2017-02-01 | 1      | 1         |

Compare GOOG's actual labels vs. predicted labels

### Logistic Regression in Excel

#### Google stock - up or down?

Use data from Yahoo finance

Using returns of correlated stocks

#### **Linear regression**

Excel's forecast function

Uses linear regression

#### Rule-based approach

If S&P 500 up, Google up too

Simple rule, works well

#### Logistic regression

Implement in Solver

Use MLE to find A,B



Represent all n points as  $(x_i,y_i)$ , where i = 1 to n

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

P(y) = Probability of Google going up in the current month i

x = Returns on S&P 500 for current month

Use logistic regression to find probabilities (assuming A, B = 0)

LL= In L = 
$$\sum_{i=1}^{n} [y_i ln(p_i) + (1-y_i) ln(1-p_i)]$$

Calculate the log likelihood

#### Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Use Excel's Solver to calculate A, B, maximizing the log likelihood

Excel options ——— Add-ins ——— Solver Add-in

Install Solver as an add-in to Excel

Set target cell

Choose a function (max., min., value)

Choose cells to change

**Define constraints** 

Solver parameters



Keying in solver parameters

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solver gives the values of A, B while maximizing the log likelihood

### Rule-based or ML-based?

**ML-based** 

**Rule-based** 

**Dynamic** 

Static

**Experts optional** 

**Experts required** 

Corpus required

**Corpus optional** 

**Training step** 

No training step

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

P(y) = Probability of Google going up in the current month i

x = Returns on S&P 500 for current month

Recalculate probabilities, using the new values of A, B



Label probabilities from the logistic regression as binary (1,0)

| DATE       | ACTUAL | PREDICTED |
|------------|--------|-----------|
| 2005-01-01 | NA     | NA        |
| 2005-02-01 | 0      | 1         |
| 2005-03-01 | 0      | 0         |
|            |        |           |
| 2017-01-01 | 1      | 1         |
| 2017-02-01 | 1      | 1         |

Compare GOOG's actual labels vs. predicted labels of probabilities from logistic regression

### Logistic Regression in Excel

#### Google stock - up or down?

Use data from Yahoo finance

Using returns of correlated stocks

#### **Linear regression**

Excel's forecast function

Uses linear regression

#### Multiple X variables

**Extend logistic model** 

Easier to do than rule-based

#### Rule-based approach

If S&P 500 up, Google up too

Simple rule, works well

### **Logistic regression**

Implement in Solver

Use MLE to find A,B

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

P(y) = Probability of Google going up in the current month i

x = Returns on S&P 500 for current month

Recalculate probabilities, using the new values of A, B

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

P(y) = Probability of Google going up in the current month i

x = Returns on S&P 500 for current month

Recalculate probabilities, using the new values of A, B

## Multiple X Variables - Easy



## Logistic Regression in Excel

#### Google stock - up or down?

Use data from Yahoo finance

Using returns of correlated stocks

#### **Linear regression**

Excel's forecast function

Uses linear regression

#### Multiple X variables

**Extend logistic model** 

Easier to do than rule-based

#### Rule-based approach

If S&P 500 up, Google up too

Simple rule, works well

#### Logistic regression

Implement in Solver

Use MLE to find A,B

#### Much harder problem

Next period prediction

Any chance of getting rich?

### A Much Harder Problem

Very difficult problem to solve - quant hedge funds are very interested in the answer

# Summary

Logistic regression can be easily implemented in Excel using Solver

Applying this to explaining stock returns yields similar results to a rule-based approach

Multiple explanatory variables are far easier to add in the logistic approach