Q10

1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9
•••				
196	38.2	3.7	13.8	7.6
197	94.2	4.9	8.1	9.7
198	177.0	9.3	6.4	12.8
199	283.6	42.0	66.2	25.5
200	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [ ]: class Linear_Regression_Gradient_Descent:

    def __init__(self):
        self.slope = 0
        self.intercept = 0

    def fit(self, X , y , L=.0001 , n = 1000 ):
        # starting params
        m = 0
        c = 0
        L = .0001 # ;earning param
        n = 1000 # iterations
```

```
for i in range(n):
                    y_pred = X*m + c
                    D_m = -2/n * (X * (y - y_pred)).sum()
                    D_c = -2/n * (y - y_pred).sum()
                    m -= L * D_m
                    c -= L * D_c
                self.slope = m
                self.intercept = c
            def predict(self, X):
                return self.slope*X + self.intercept
In [ ]: X_train, X_test, y_train, y_test = train_test_split(data["Radio"] , data["Sales"],r
In [ ]: model = Linear_Regression_Gradient_Descent()
        model.fit(X_train, y_train)
In [ ]: preds = model.predict(X_test)
        print(f"MSE : {mean_squared_error(y_test, preds)}")
        print(f"R2 score : {r2_score(y_test, preds)}")
       MSE: 34.02575687759605
       R2 score : -0.730772515216807
In [ ]: print("Line")
        print(f"Slope : {model.slope}")
        print(f"Intercept : {model.intercept}")
       Line
       Slope: 0.47989071486978124
```

Intercept: 0.09238662391493048