

IPv6 Core Functionality

Jeffrey L Carrell

Hewlett Packard Enterprise

Networking & Big Data
Instructor/Course Developer

jeff.carrell@teachmeipv6.com Twitter: @JeffCarrell v6

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrel

1

IPv6 Core Functionality

- IPv6 Introduction
- IPv6 Address Architecture
- IPv6 Header
- ICMPv6 and IPv6 Neighbor Discovery Protocol
- IPv6 Address Autoconfiguration
- IPv6 in Wireshark

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrell

2

IPv6: Trivia

- In modern day operating systems, is IPv6 an enabled protocol? **YES!**
- Generally, will an IPv6 enabled interface have more than one IPv6 address assigned to it?

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrel

3

3

IPv6 Brief History

- Fall 1992 IPv4 addresses will run out someday
- Oct 1993 DHCP RFC 1531 easier IPv4 address management
- Dec 1993 IPng RFC 1550 basic specification for next version IP
- May 1994 NAT RFC 1631 temporary solution before IPng available
- Dec 1995 RFC 1883 Basic specifications of IPv6
- Feb 1996 RFC 1918 Private Iv4 addresses
- Dec 1998 RFC 2460 Full IPv6 defined
- May 2005 RFC 3927 APIPA (IPv4)

4

Comparing IPv4 & IPv6 Addresses

- IPv4 addresses $2^{32} = 4,294,967,296$
- IPv6 addresses 2¹²⁸ = 340,282,366,920,938,463,463,374,607,431,768,211,456
 - which is 340 undecillion
 - 340 trillion trillion trillion
 - 79,228,162,514,264,337,593,543,950,336 times more v6 addresses than v4
- If IP addresses weighed one gram each:
 - IPv4 = half the Empire State Building
 - IPv6 = 56 billion earths

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrel

5

5

What is an IPv6 Address?

- IPv6 addresses are very different than IPv4 addresses in the size, numbering system, and delimiter between the numbers
 - 128bit -vs- 32bit
 - · colon-hexadecimal -vs- dotted-decimal
 - colon and double colon -vs- period (or "dot" for the real geeks)

Valid IPv6 addresses are comprised of hexadecimal numbers (0-9 & a-f), with colons separating groups of four numbers, with a total of eight groups

(each group is known as "quibble" or "hextet")

2001:0db8:1010:61ab:f005:ba11:00da:11a5

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carre

7

7

IPv6 default for subnet

- Based on the default definition an IPv6 address is logically divided into two parts: a 64-bit network prefix and a 64-bit interface identifier (IID)
- Therefore, the default subnet size is /64
- 2001:0db8:1010:61ab:f005:ba11:00da:11a5/64

 64bits for Network Identifier 64bits for Interface Identifier Prefix Length
- A single /64 network yields 18 billion-billion possible addresses

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrell

8

9

Address types

Address Type	IPv4	IPv6		
Unicast - One-to-one communication	Yes	Yes		
Broadcast - One-to-many communication local	Yes	No		
Multicast - One-to-many communication local/remote	Yes	Yes		
Anycast - One-to-many communication nearest	Yes	Yes		

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carre

11

11

Address scopes

Address Scope	IPv4	IPv6	
Link-Local - Not routable	Yes (is temp, APIPA)	Yes	
Global Unicast - Routable to Internet	Aka public	Yes	
Unique Local - Routable only within domain	Aka private RFC 1918	RFC 4193	

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrell

12

13

Interface ID from Random Number

- RFC4941 Privacy Extensions for Stateless Address Autoconfiguration in IPv6
- Initial IID is derived based on mathematical computation to create a "random 64bit number" and appended to prefix to create a GUA
- An additional but different 64bit number is computed, appended to prefix, and tagged "temporary" for a 2nd GUA
- Temporary GUA should be re-computed on a frequent basis
- Temporary GUA is used as primary address for communications, as it is considered "more secure"

15

15

Lifetime states of an IPv6 address

- Tentative address is in process of verification for uniqueness and is not yet available for regular communications
- Valid address is valid for use in communication based on Preferred and Deprecated status
- Preferred address is usable for all communications
- Deprecated address can still be used for existing sessions, but not for new sessions
- Invalid an address is no longer available for sending or receiving

 PMG Basics VI.O Copyright © 2020 Jeffrey L Carrel

16

IPv4	IPv6
ARP Request	Neighbor Solicitation
ARP Reply	Neighbor Advertisement
Router Solicitation	Router Solicitation
Router Advertisement	Router Advertisement
Gratuitous ARP	Duplicate Address Detection
ARP Cache	Neighbor Cache

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrel

17

17

IPv6 Neighbor Discovery Protocol

- Neighbor Discovery Protocol (NDP) is defined in RFC 4861
- NDP provides the following basic IPv6 functions per node
 - Discover what link they are one
 - Learn link prefix addresses
 - Discover the on-link router
 - · Discover on-link neighbors
 - Keep track of active neighbors

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrell

18

NDP ICMPv6 message types

- ICMPv6 type 133 Router Solicitation (RS)
- ICMPv6 type 134 Router Advertisement (RA)
- ICMPv6 type 135 Neighbor Solicitation (NS)
- ICMPv6 type 136 Neighbor Advertisement (NA)

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrel

19

19

IPv6 autoconfiguration options

Address Autoconfiguration Method	RA (Ty	IPv6 pe 134) ags O Flag	ICM RA (Typ ICMPv6 Prefix A Flag	Option Info	Prefix Derived from	Interface ID Derived from	Other Configuration Options	# of IPv6 Addr
Link-Local (always configured)	N/A	N/A	N/A	N/A	Internal (fe80::)	M-EUI-64 or Privacy	Manual	1
Manual	Off	Off	Off	On	Manual	Manual	Manual	2 (LL, Manual)
SLAAC	Off	Off	On	On	RA	M-EUI-64 or Privacy	Manual	3 (LL, IPv6, IPv6 temp)
Stateful (DHCPv6)	On	N/R	Off	On	DHCPv6	DHCPv6	DHCPv6	2 (LL, DHCPv6)
Stateless DHCPv6	Off	On	On	On	RA	M-EUI-64 or Privacy	DHCPv6	3 (LL, IPv6, IPv6 temp)
Combination Stateless & DHCPv6	On	N/R	On	On	RA and DHCPv6	M-EUI-64 or Privacy and DHCPv6	DHCPv6	4 (LL, IPv6, IPv6 temp, DHCPv6)

21

Key difference in DHCP/DHCPv6

- Default gateway
 - DHCP configurable Router option in scope
 - DHCPv6 no configurable Router option in scope (possible future, but no client OS support yet)
- An IPv6 node derives its default gateway from the router's Link-Local address when the L flag is set in the Prefix information field of an RA

(! not from the network prefix !)

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrell

22

Duplicate Address Detection (DAD)

- When a node initially assigns an IPv6 address to its interface, it must check whether the selected address is unique
- If unique, the address is configured on interface
- To verify uniqueness, the node sends a multicast Neighbor Solicitation message with the:
 - dest MAC of 33:33:<last 32bits of IPv6 mcast addr>
 - dest IPv6 addr of ff02::1:ff<last 24bits of proposed IPv6 addr>
 - source IPv6 of "::" (IPv6 unspecified addr)

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carre

23

23

IPv4 & IPv6 Routing protocols

IPv4	IPv6	
Static Route	Static Route	
RIP v1/v2	RIPng	
OSPFv2	OSPFv3	
EIGRP	EIGRP for IPv6	
IS-IS	IS-IS for IPv6	
BGP4	MP-BGP	

Routing protocols generally run separate: "Ships in the Night"

IPv6 Basics v1.0 - Copyright © 2020 Jeffrey L. Carrell

24

25

27

29

31

33

35

37

