Overview Vector addition on a GPU Work items and work groups

Assignment Project Exam Help https://eduassistpro.github.

Add WeChatedu_assist_pr

Lecture 15: GPU threads and k

Previous lecture

Assignment Project Exam Help In the last lecture we started looking at General Purpose GPU prog

- https://eduassistpro.github.
- Thread scheduling is performed in hardware.
- Programmable using Charlet (the du_assist_programmable using Charlet edu_assist_programmable edu_assist_programmable
- Device discovery performed at run time (cf. the displayDevices.c example).

Today's lecture

Assignment Project Exam Help

Today we will see how to perform vector addition on a GPU:

- https://eduassistpro.github.
- Work items are the basic unit of concurr
- · And Into Mre Charts edu_assist_pr
- How to set the work group size.

Communication between host and device GPU kernels
Copying data between device and host

Vector addition

Code on Minerva: vectorAddition.c, vectorAddition.cl and helper.h

Assignment Project Exam Help Once again use vector addition as our first worked example:

https://eduassistpro.github.

```
tor( i=0; i<N; i++ )

c[i] = a[i] + b[i];

where vacard, band each heatel edu_assist_prediction and computer indexing differ by o
```

This is a map/data parallel problem with no data dependencies.

Host and device

Assignment Project Exam Help

Assu https://eduassistpro.github.

If the initial data is only accessible to the CPU, must to the GPU to the CPU. The cliculations the CPU. The CPU to the CPU.

• This requires **explicit communication**, somewhat similar to the distributed memory model.

¹Some modern GPUs support **unified memory** — see next lecture.

Typical program structure

Assignment Project Exam Help

Send problem

- thttps://eduassistpre.github.
 calculations on (CPU)
 the device that edu_assist_pre
 Return results Ve Chat edu_assist_pre
 - from device to the host.

Contexts and command queues

A Secilements that the platform and a suitable device.

eue.

The https://eduassistpro.github.

```
cl_device_id device;
cl_context context = simpleOpenContext_GPU(&device);

cl_ixt_sdd_s; WeChat edu_assist_
cl_command_queue queue = clCreateCommandQueue(context device,0,&status);

cl... // Use the GPU.
clReleaseCommandQueue(queue);
clReleaseContext(context);
```

Device memory allocation

Assignment Project Exam Help

Simil

Can https://eduassistpro.github.

```
cl_mem_device_a = clCreateBuffer(

context

CL_miv(lab_oviv) cl_melloct_lockt, assist_pi

N*sizeof(float), // Size in bytes.

host_a, // Copy from this host array.

&status // Error status.

);
```

Similar for device_b, device_c.

clCreateBuffer() usage

Assignment Project Exam Help

• The flag CL_MEM_READ_ONLY refers to how the device accesses

https://eduassistpro.github.

- The flag CL_MEM_COPY_HOST_PTR
- existing host array (the 4th argue of the first data eyel u_assist_pr CL_MEM_WRITE_ONLY and the $4^{\rm th}$ argument is NULL.
- status is set to CL_SUCCESS if the operation was successful, otherwise some other error code.

GPU kernel

Assignment Project Exam Help

Kernels are functions that execute on the device.

https://eduassistpro.github.

Use st

```
1    __kernel
2  void Act Add Wichi hat* ectoal assist_p
3  {
4    int gid = get_global_id(0);
5    c[gid] = a[gid] + b[gid];
6 }
```

OpenCL kernels

Assignment Project Exam Help

- https://eduassistpro.github.
- get_global_id() returns the (globa

 Age dis two eight at the end assist_process.

¹CUDA kernels are preceded __global__ (if they are callable by the host).

Building a kernel

Assignment Project (Exam). Help

• Allows optimisation for the device that executes it.

Requhttps://eduassistpro.github.

- Start with the program as a char* string (typically read from file ending in .cl).
- clCreateProgramWithSource()
- Build (compile and link) using clBuildProgram().
- Oreate a kernel using clCreateKernel().

Building a kernel with helper.h

Ast implify this except, the first been contained and the left composition of the contained and the left contained

For th

```
context, // Same as before.

devicedd WeChat edu_assist_pro.github.

Add WeChat edu_assist_pro.github.

Context, // Same as before.

Same as defore assist_pro.github.

Context, // Same as before.

Context, // Use kernel.
```

It also includes some basic error handling.

Setting kernel arguments

Assignment Project Exam Help

```
kehttps://eduassistpro.github.

kehttps://eduassistpro.github.

sizeof(cl_mem), // The size of the argument.

kdevice_a // The value.

Add WeChat edu_assist_procession of the argument.
```

This is repeated for argument 1 (\rightarrow device_b) and argument 2 (\rightarrow device_c) for the vector addition example.

Starting a kernel in OpenCL¹

Asternation of the commendation of the commend

```
1 // Will cover this later.
2 size_ i
<sup>3</sup> work https://eduassistpro.github.
5
 // Place the kernel onto the command queue.
7 status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL
    iAcedes W. echateedu, nu assist
```

There are many arguments; we will cover some lat

Note that size_t is an unsigned integer.

In CUDA: kernel<<<workGroupSize,indexSpaceSize>>>(...).

Copying data between device and host¹

```
To get the result (device) back to the hot (host c), enjure possible to the hot (host
```

Note this is a **blocking** communication call - **it will not return until the copy has finished** — like MPI_Send()/MPI_Recv().

¹In CUDA: cudaMemcpy(...,cudaMemcpyDeviceToHost).

Copying data from host to device¹

A stwice to clear the properties of the properti

statu = c

² stathttps://eduassistpro.github.

- Copies from host to device.
- · Articlus Wrechait edu_assist_pr
- The device memory always come argument list.

¹In CUDA: cudaMemcpy(...,cudaMemcpyHostToDevice).

Work item hierarchy Specifying work groups and NDRange What group size to use?

Work items

Assignment Project Exam Help

The work item is the unit of concurrent execution. It usually

https://eduassistpro.github.

As thr

is (essentially) no overhead in launchin

• Napolem Wysucrimate edu_assist_protection of the physical cores.

Normally issue as many threads as the problem requires.

Work item hierarchy

A STS legan script of the large of the scenario of the scenari

Inste

- https://eduassistpro.github.
 Communication (including synchronisation) only possible
 - within a work group.

Add WeChat edu_assist_pr

n-dimensional range².

¹Threads and thread blocks in CUDA.

² Grid in CUDA.

Hierarchy of work items: 2D example

Specifying the *n*-dimensional range NDRange

Assignment Projectos Exam Help A 2-dimensional example:

```
1 size_ g
2 size https://eduassistpro.github.
3 statu = c
globalSize, workGroupSize, 0, NULL, NULL);
```

- · And ck* Wresin that needu_assist_pr
- In work groups of 8*16.

OpenCL 2.0 allows X and Y to be arbitrary, but in earlier versions they must be multiples of the work group size (8 and 16 here).

Once in a kernel, can get the **global** indices using

```
Assignment Project Exam Help

get_gobal_id(0); // Varies from 0 to Y-1 inc.
```

Similhttps://eduassistpro.github.

```
a get_local_id(0); // Varies from 0 to 7 inc.

2 get_local_id(1): // Varies from 0 to 15 inc.

Add WeChat edu assist p
```

Can also get the number of work items in a group or in th NDRange using get_local_size() and get_global_size():

```
get_local_size (1); // Returns 16.
get_global_size(0); // Returns X.
```

What group size to use?

A Devices have a maximum prork group size they can support. Help

- size_t maxWorkItems;
- 2 clGet

Note https://eduassistpro.github.

Other factors may suggest using work group size I

maximand d WeChat edu_assist_properties will look at one of these next time.

Passing NULL as the work group argument lets OpenCL try to determine a suitable size automatically.

Summary and next lecture

Assignment Project Exam Help

- https://eduassistpro.github.
- Group into work groups, within whi possible d WeChat edu_assist_pr

Next time we will look at the different memory types on a GPU.