EM

thedanielschwartz

June 2019

1 CNN

- CNNs need to use the same knowledge at all locations in the image
 - Ties weights of feature detectors so that features learned at one location are available at other locations
 - Convolutional capsules share knowledge across locations to include part-whole relationships to characterize a familiar shape
 - * Aim of capsules is to make good use of this underlying linearity for dealing with viewpoint variations and improving segmentation decisions
 - Capsule high-dimensional coincidence filtering
 - * Familiar object can be detected by looking for agreement between votes for its pose matrix
 - * Votes come from parts that have been detected
 - · Part produces a vote by multiplying its own pose matrix by a learned transformation matrix representing that viewpoint between the part and the whole
 - $\cdot\,$ As viewpoint changes, pose matrices of parts and whole change in a coordinated way

2 Assigning parts to whole

- Use fast iterative process "routing-by-agreement"
 - * Updates probability with which a part is assigned to a whole
 - * Based on the proximity of the vote coming from that part of the votes coming from other
 - * parts assigned to that whole
 - * Powerful segmentation principle that allows knowledge of familiar shapes to derive segmentation

3 Difference between capsule and CNN

- Activation of a capsule is based on a comparison between multiple incoming pose predictions
- Standard net is comparison between single incoming activity vector and learned weight vector

4 How Capsules Work

- NNs use simple non-linearities where a non-linear function is applied to the scalar output of a linear filter
- Capsules use complicated non-linearities that convert a whole set of actiavation probabilities and poses of capsules in one layer to activation probabilities and poses of capsules in next layer

5 Architecture

- $-\ 5\mathrm{x}5$ Convolutional layer with 32 channels and stride of 2 with ReLU non-linearity
- Several layers of capsules
 - * Set of capsules in layer L, Ω_L
 - * Each capsule has:
 - · 4x4 pose matrix, M
 - · Activation probability, a
 - * Between layers:
 - · 4x4 trainable matrix, W
 - · These matrices and two learned biases per capsule are stored and learned discriminatively
 - * Activations of primary capsules are produced by applying sigmoid function to weighted sums of same set of lower-layer ReLUs

6 EM Process

- * Pose matrix of capsule i in layer L is transformed by W_{ij} to cast a vote in $V_{ij} = M_i W_{ij}$ for the pose matrix of capsule j
- * Poses and activations of all capsules in layer L+1 are calculated by using non-linear routing procedure
 - · Input: V_{ij} and a_i for all $i \in \Omega_L, j \in \Omega_{L+1}$
 - · Steps (Expectation Maximization):

- \cdot Iteratively adjusts the means, variances, and activation probabilities of capsules in layer L+1
- . Assigns probabilities between all capsules $i \in \Omega_L$ and $\mathbf{j} \in \Omega_{L+1}$
- * Each capsule in the higher-layer corresponds to a Gaussian
- * Each pose of the active capsule in the lower-layer (vector) corresponds to a data-point
- $\ast\,$ Use Minimum Description Length principle to choose whether to activate a higher-level capsule
 - · Choice 0: Do not activate it
 - · Pay a fixed cost of $-\beta_{\mu}$ per data point for describing poses of all lower-level capsules assigned to higher-level capsules
 - · Cost is the negative log probability density of the data-point under an improper uniform prior
- * Choice 1: Activate higher-layer capsule
 - · Pay a fixed cost of $-\beta_a$ for coding its mean and variance
 - · Use negative log probability density of that datapoint's vote under the Gaussian distribution fitted by whatever higher-level capsule it gets assigned to
- Dynamic routing is performed by two adjacent layers of capsules (higher-level and lower-level)
 - * Complete routing between one pair of layers before starting routing between next pair of layers
 - * Routing process has strong resemblance to fitting mixture of Gaussians using EM
 - · Higher-level capsules play role of Gaussians
 - · Means of activated lower-level capsules for a single input image play role of datapoints
 - * Procedure 1: Routing algorithm
 - · Returns activation and pose of capsules in layer L+1 given activation and votes of capsules in layer L

6.1 EM Algorithm

- Alternates between E-step and M-step
 - $\ast\,$ E-step: used to determine for each data point, probability which it is assigned to each of the Gaussians
 - · Assignment probabilities act as weights
 - · Adjusts assignment probabilities for each datapoint to minimize "free energy"
 - \cdot Free Energy: expected energy minus the entropy

- · Can minimize expected energy by assigning each datapoint with probability 1 to whichever Gaussian gives the lowest energy (highest probability density)
- \cdot Maximize entropy by assigning each data point with equal probability to every Gaussian ignoring the energy
- · Boltzmann Distribution: Assigning probabilities proportional to exp(E) (best trade-off)
- \cdot M-step: finds the mean of these weighted data points and variance about the mean
- \cdot Adjusts each Gaussian to maximize the sum of the weighted log probabilities that the
- · Gaussian would generate the datapoints assigned to it
- Negative log probability density of a datapoint under a Gaussian can be treated like the energy of a physical system that
 M-step is minimizing the expected energy where expectations are take using assignment probabilities
- · Mixing proportions are set to fraction of data assigned to Gaussian

6.2 Softmax function

- * Computes distribution that minimizes free energy when logits are viewed as negative energies
 - · Minimizing free energy: Using softmax in routing procedure to recompute assignment probabilities
 - · Refitting Gaussian model of each capsule provided the logits of softmax are based on same energies as are optimized when refitting Gaussians
 - · Energies used are negative log probabilities of votes from lower capsule to higher

6.3 Spread Loss

- * Make training less sensitive to initialization and hyper-parameters
- * Equivalent to hinge loss with m = 1
- * Maximizes gap between activation of target class and activation of other classes

6.4 General Capsule viewpoint

* Unit is not activated based on matching score with a filter (fixed or dynamically changed during inference)

- * A capsule is activated only if the transformed poses coming from the layer below match each other
 - · Fewer parameters
 - · Generalizes better

6.5 Mixtures of Transforming Gaussians

- * Normally Gaussians only have a subset of datapoints assigned to it but all see the same data
- * View capsules in higher layer as Gaussians and means of active lower-layer capsules as the dataset, each Gaussian sees a dataset in which different datapoints have been transformed by transformation matrices
 - · Matrices are different for different Gaussians
 - \cdot Transformation matrices learn discriminatively in an outer loop
 - · They are restricted to dynamic routing to modifying the means and variances of Gaussians
 - · Prevents solution where transformation matrices collapse to zero and transformed data points are identical

6.6 Mixtures of Switchable Transforming Gaussians

- · Each transforming Gaussian has an activation parameter which is its probability of being switched on for a given dataset
- · Probability is determined by "description length" (energy)
- \cdot Difference in two description lengths is then put through a logistic function