最後に,電磁場中の電子を考え,Dirac 方程式の非相対論的極限 $(|p| \ll c)$ が Schrödinger 方程式であることを示す.Dirac 方程式は

$$i\hbar \frac{\partial}{\partial t} \psi = (c\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta mc^2)\psi \tag{0.0.1}$$

である. ここに電磁場を次のように導入する.

$$\begin{cases} \boldsymbol{p} \to \boldsymbol{p} + e\boldsymbol{A}(e > 0) \\ \phi = 0 \end{cases}$$
 (0.0.2)

これを用いると

$$i\hbar \frac{\partial}{\partial t} \psi = (c\boldsymbol{\alpha} \cdot (\boldsymbol{p} + e\boldsymbol{A}) + \beta mc^2)\psi$$
 (0.0.3)

である. ここで,解の形を

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} = \begin{pmatrix} \psi_a \\ \psi_b \end{pmatrix} \tag{0.0.4}$$

とする. これを式 (0.0.3) に代入する.

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \psi_a \\ \psi_b \end{pmatrix} = \begin{pmatrix} 0 & c\boldsymbol{\sigma} \cdot (\boldsymbol{p} + e\boldsymbol{A}) \\ c\boldsymbol{\sigma} \cdot (\boldsymbol{p} + e\boldsymbol{A}) & 0 \end{pmatrix} \begin{pmatrix} \psi_a \\ \psi_b \end{pmatrix} + \begin{pmatrix} mc^2 & 0 \\ 0 & -mc^2 \end{pmatrix} \begin{pmatrix} \psi_a \\ \psi_b \end{pmatrix}$$
(0.0.5)

$$= c\boldsymbol{\sigma} \cdot (\boldsymbol{p} + e\boldsymbol{A}) \begin{pmatrix} \psi_b \\ \psi_a \end{pmatrix} + mc^2 \begin{pmatrix} \psi_a \\ -\psi_b \end{pmatrix}$$
 (0.0.6)

また、粒子のエネルギーを静止質量エネルギー (mc^2) と非相対論的エネルギーの項 (ε_{NR}) に分け、

$$\varepsilon \sim mc^2 + \varepsilon_{\rm NR}$$
 (0.0.7)

波動関数の時間発展を次のように記述する.

$$\begin{pmatrix} \psi_a \\ \psi_b \end{pmatrix} = \begin{pmatrix} \psi_a^0 \\ \psi_b^0 \end{pmatrix} e^{-i\frac{mc^2}{\hbar}t}$$
 (0.0.8)

この表式を用いると式 (0.0.3) の左辺は

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \psi_a \\ \psi_b \end{pmatrix} = i\hbar \left[\frac{\partial}{\partial t} \begin{pmatrix} \psi_a^0 \\ \psi_b^0 \end{pmatrix} \right] e^{-i\frac{mc^2}{\hbar}t} + mc^2 \begin{pmatrix} \psi_a^0 \\ \psi_b^0 \end{pmatrix} e^{-i\frac{mc^2}{\hbar}t}$$
(0.0.9)

となる. これより、

$$i\hbar \left[\frac{\partial}{\partial t} \begin{pmatrix} \psi_a^0 \\ \psi_b^0 \end{pmatrix} \right] e^{-i\frac{mc^2}{\hbar}t} + mc^2 \begin{pmatrix} \psi_a^0 \\ \psi_b^0 \end{pmatrix} e^{-i\frac{mc^2}{\hbar}t} = c\boldsymbol{\sigma} \cdot (\boldsymbol{p} + e\boldsymbol{A}) \begin{pmatrix} \psi_b \\ \psi_a \end{pmatrix} + mc^2 \begin{pmatrix} \psi_a \\ -\psi_b \end{pmatrix}$$
(0.0.10)

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \psi_a^0 \\ \psi_b^0 \end{pmatrix} = c\boldsymbol{\sigma} \cdot (\boldsymbol{p} + e\boldsymbol{A}) \begin{pmatrix} \psi_b^0 \\ \psi_a^0 \end{pmatrix} - 2mc^2 \begin{pmatrix} 0 \\ \psi_b^0 \end{pmatrix}$$
(0.0.11)

が得られる.