

Redes de Computadores

Relatório 1º Trabalho Laboratorial

Mestrado Integrado em Engenharia Informática e Computação

<u>3MIEIC01</u> | <u>Grupo 6</u>

Sumário

Contexto

Este é o 1º trabalho laboratorial da unidade curricular Redes de Computadores e baseia se na implementação de um protocolo de ligação de dados com mecanismo de controlo de erros Stop and Wait.

Conclusões

O projeto foi concluído com sucesso visto o trabalho desenvolvido ser capaz de efetuar o pretendido, isto é, a transferência de ficheiros entre dois computadores com o uso de portas de série, com uma robustez suficiente que permite o envio de qualquer tipo de ficheiros auxiliado de um mecanismo de controlo de erros, assegurando se assim que uma desconexão temporária da ligação ou a existência de um curto circuito não perturbam o envio da informação.

Introdução

Este trabalho tem como principal objetivo a implementação de um protocolo de transferência de dados que permita o envio de informação entre dois computadores através de uma porta de série RS-232.

Neste relatório serão apresentadas todas as escolhas tomadas durante o desenvolvimento deste projeto, sendo este estruturado da seguinte forma:

- Arquitetura: Funcionamento do protocolo e da sua interface;
- Estrutura do código: API, principais funções e sua relação com a arquitetura e principais estruturas de dados,;
- Casos de uso principais: Identificação dos principais casos de uso e sequências de chamada de funções;
- Protocolo de ligação lógica: Identificação dos principais aspetos funcionais e descrição da sua estratégia de implementação;
- **Protocolo de aplicação**: Identificação dos principais aspetos funcionais e descrição da sua estratégia de implementação;
- Validação: Descrição dos testes efetuados;
- Eficiência do protocolo de ligação de dados: caracterização estatística da eficiência do protocolo, feita com recurso a medidas sobre o código desenvolvido. A caracterização teórica de um protocolo Stop&Wait, que deverá ser usada como termo de comparação, encontra-se descrita nos slides de Ligação Lógica das aulas teóricas;
- Conclusões: síntese da informação apresentada nas seções anteriores; reflexão sobre os objectivos de aprendizagem alcançados.

Arquitetura

O código desenvolvido divide-se em duas camadas bem definidas: a camada de ligação de dados e a camada da aplicação.

A camada de ligação de dados assegura-se apenas do funcionamento da transferência de tramas assim como do estabelecimento e terminação da ligação, não existindo qualquer distinção entre pacotes de controlo e de dados. Esta trata de todos os mecanismos necessários como stuffing/destuffing, proteção de tramas, eventuais retransmissões, etc.

A camada da aplicação não conhece os detalhes do protocolo de ligação de dados, apenas a forma como acede ao serviço. Esta efetua o processamento dos pacotes a transportar em tramas de informação, usando o protocolo para os enviar e sem se preocupar como esta transferência é efetuada.

A interface protocolo-aplicação permite assim a troca de informação entre os dois computadores da forma pretendida.

Estrutura do código

API - Principais funções e sua relação com a arquitetura

De forma a estabelecer a comunicação entre as duas camadas referidas anteriormente foram desenvolvidas quatro funções que formam a API protocolo-aplicação:

```
int llopen(char *porta, enum openAS modoAbertura);
  int llwrite(int fd, char * buffer, int length);
  int llread(int fd, char * buffer);
  int llclose(int fd);
```

Principais estruturas de dados

De modo que o protocolo de ligação de dados saiba se tem de correr as funções llopen() e llclose() no modo emissor ou receptor, foi criada a seguinte estrutura que é passada como argumento na função llopen():

enum openAS {TRANSMITTER, RECEIVER};

Casos de uso principais

Existem dois casos de uso principais sendo estes:

- Correr o programa como emissor (sender.c). Neste caso os argumentos especificados serão a porta de série e o ficheiro a transmitir, ex:

./sender /dev/ttyS0 pinguim.gif

- Correr o programa como recetor (receiver.c). Os argumentos especificados serão a porta de série e o nome do ficheiro a receber, ex:

./receiver /dev/ttyS0 pinguimCopy.gif

A sequência de chamada das principais funções no caso do emissor e suas finalidades são as seguintes:

- fopen(), abrir o ficheiro que pretendemos transmitir;
- fseek(), obter tamanho do ficheiro;
- llopen(), estabelecer ligação com o recetor;
- llwrite(), enviar a informação do ficheiro;
- fclose(), fechar o ficheiro;
- llclose(), terminar a ligação.

No caso do recetor:

- fopen(), criar o ficheiro que pretendemos receber;
- llopen(), estabelecer ligação com o emissor;
- llread(), receber a informação do ficheiro;
- fwrite(), escrever para o ficheiro criado os dados recebidos;
- fclose(), fechar o ficheiro;
- llclose(), terminar a ligação.

Protocolo de ligação lógica

Foram desenvolvidos os seguintes principais aspetos funcionais:

- Estabelecimento da ligação: Através da função llopen();
- Envio de dados: Através da função llwrite();
- Receção de dados: Através da função llread();
- Terminação da ligação: Através da função llclose();
- Stuffing e destuffing de dados: Através das funções stuff() e deStuff();
- Controlo de erros: Através do cálculo do BCC2 e com as funções calcBCC2(), stuffBCC2(), deStuffBCC2().
- Mecanismo de retransmissão: Através da função atende().

Os extratos de código que retratam estas funcionalidades encontram se no Anexo I.

Protocolo de aplicação

Foram desenvolvidos os seguintes principais aspetos funcionais:

- Criação dos pacotes de controlo para sinalizar o início e o fim da transferência do ficheiro;
- Criação dos pacotes de dados contendo fragmentos do ficheiro a transmitir;
- Envio (sender.c) e receção (receiver.c) dos pacotes de controlo e de dados;
- Leitura da informação do ficheiro a transmitir (sender.c) e consequente escrita após receção para um novo ficheiro (receiver.c);

Os extratos de código que retratam estas funcionalidades encontram se no Anexo II.

Validação

De modo a verificar o correto funcionamento do código desenvolvido foram feitos vários testes sendo que todos foram completados com sucesso. De entre os testes efetuados destacam se:

- Envio de diferentes tipos de ficheiros (.gif, .jpeg, .png, .h, .txt, ...);
- Envio de ficheiros com diversos tamanhos;
- Variação do tamanho das tramas enviadas;
- Interrupção da ligação entre as portas de série;
- Criação de ruído na ligação.

Eficiência do protocolo de ligação de dados

- Variação de FER (Frequência/Probabilidade de erro no envio de trama)
- Variação do tamanho de trama I
- Variação de baudrate (C)
- Variação de tempo de propagação

Estes 4 testes foram registados e tratados dados concretos de maneira a estudar melhor o envio. Foram repetidas medições pelo menos duas vezes sempre de maneira a ter resultados mais fiáveis.

Teste de FER

	VARIA	R FER			%	ERRO	BCC1	% EI	RRO BCC	2 Ten	ipo (s)	Tem	po Médio	Nº REJs	S (R	/C)
Tamanho	Ficheiro	10968 Byte 38400		es		0			0	3.1	66155	2	165040	0	0.73	10
Baudra	te (C)				0		U		3.1	63943	3	3.165049	0	0.72	0.7219	
Tamanho '	Trama I	256	Byte	es	2		2		3.1	58761	2	3.231854	0	0.707		
Nº Tra	imas	44				2			2	3.3	04947		.231034	2	0.70	,,
											23992			1		
						5			5		23067	3.4	97123333	4	0.65	34
										-	44311	-		8	-	
					_	10			10		30432 31031	2.5	67893667	9	0.64	04
						10			10	_	62939	5.5	0/69300/	7	0.04	04
5 10		71233 78936		(s) o	3.4					/						
				Tempo	3.3		and the latest the same of the									
					3.1	0	1	2	3	4	5	6	7	8	9	1

Através da criação de uma função que gera uma variável booleana (true ou false) mediante um número entre 0 e 100, criámos uma probabilidade de BCC1 e BCC2 conterem erros com o retorno dessa função. Com os resultados conclui-se que estes possíveis erros aumentam ligeiramente o tempo de envio, diminuindo S (R/C).

Teste de Variação de tamanho trama I

Fazendo uso da macro $Trama_l$ Size controlámos o tamanho de cada trama I. Após a realização de testes conclui-se que quanto maior for a trama, mais rápido é o envio (melhoramento não linear), resultando assim um valor de S(R/C) significativamente melhor. A relação aparenta ser hiperbólica (y=(1/x)).

Teste de variação de baudrate (C)

VARIAR BA	UDRATE	(C)		BAUDRATE (C)	Tempo (s)	Tempo Médio	S (R/C)	
A STATE OF THE PARTY OF THE PAR		Bytes			50.300991		100 100 100 100	
Tamanho Trama I	256	Bytes		2400	50.301438	50.3012145	0.726821417	
Nº Tramas	44			4000	25.163836	25.452222	0.726457626	
ERRO BCC1	0	%		4800	25.162568	25.163202		
ERRO BCC2	0	%		9600	12.581629	12.581104	0.726486324 0.725110809	
				9000	12.580579	12.561104		
				38400	3.151423	3.1512425		
				30400	3.151062	5.1512425		
				57600	2.103446	2.102951	0.724378901	
			37000		2.102456	2.102331	0.72 1370301	
				115200	1.059607	1.057577	0.720199727	
				X0.73.73.73.73	1.055547			
4800 25.: 9600 12.: 38400 3.1: 57600 2.1	012145 163202 581104 512425 02951 57577	Tempo (s)	60 50 40 30 20 10	0 20000	40000 600	00 80000	100000 120	

Variando o baudrate (C - capacidade da ligação, bit/s) utilizando a macro do programa, conseguimos observar que quanto maior o baudrate, mais rápido é o envio. No entanto, não se verifica uma variação significativa de S, pois apesar de C crescer, R também cresce em proporções muito semelhantes. A relação aparenta ser hiperbólica (y=(1/x)).

Teste de variação de Tempo de propagação

· · · · · · · · · · · · · · · · · · ·	ARIAR	T_PROP			Tempo Atraso (s) Tempo	(s) Te	empo Médio	S (R/C)	
	nho Ficheiro 10968		Bytes		and the second s	7.6549		111111111111111111111111111111111111111	100000000000000000000000000000000000000	
Tamanho Trama I 256		Bytes		0.1	7.6548	78	7.654902	0.298501535		
Nº Tra	mas	44			0.2	12.1549	955	12.1551405	0.187986309	
ERRO E	CC1	0	%		0.2	12.155	326	12.1331403	0.167960509	
ERRO BCC2		0	%		0.5	25.654		25.6551715	0.089065863	
Baudrat	te (C)	38400			0.5	25.655		25,0551715	0.003003003	
					1	48.1552		48.155274	0.04745067	
						0.39.60000000	48.155262		maistria Eli	
					2	93.155		93.1558835	0.024528778	
0.5 2	25.6 48.1	551405 551715 .55274 558835	Tempo (s)	80 70 60 50		,				
			E	40						
			1	30						
				20						
				10						
	1		1		0					
				0					14	
					0 0.5	1		1.5	2 2	

Fazendo uso da função usleep() da biblioteca unistd.h, introduzimos um atraso (em μ s) em cada chamada de llwrite (cada envio de trama I). Com os valores registados e gráfico traçado, podemos observar que a relação entre o atraso em segundos e o tempo de envio é linear.

Em cima estão descritos gráficos com o tempo em y. Em baixo podem ser vistos os 4 gráficos mas com S=R/C no lugar do tempo(s). Deste modo podemos também ver como se relaciona a eficiência do envio com os valores variados de cada teste.

Teste de FER

Teste de Variação de tamanho trama I

Teste de variação de baudrate (C)

Teste de variação de Tempo de propagação

Conclusões

A solução implementada divide se em duas camadas, camada de ligação de dados, sendo esta a de mais baixo nível e que faz a interação direta com a porta de série, apenas se assegurando com o mecanismo de transferência de dados, e, camada da aplicação, camada de mais alto nível que trata da parte de recolher a informação do ficheiro a enviar assim como de criar o ficheiro recebido, utilizando o protocolo de ligação de dados para fazer a transferência.

Os testes efetuados permitiram também ter uma noção prática do tipo de erros e atrasos que podem ser encontrados, que limitam a eficiência das transferências.

O grupo considera que todos os objetivos de aprendizagem foram alcançados e bem consolidados ficando assim com um bom conhecimento acerca de canais de comunicação, controlo da ligação de dados e modelos de erro e atraso.

Anexos

Anexo I - Protocolo de ligação lógica

llopen

```
int llopen(char *porta, enum openAS modoAbertura)
 modo = modoAbertura;
 int fd = open(porta, O_RDWR | O_NOCTTY);
 if (fd < 0)
   perror (porta);
   exit(-1);
 if (modo == TRANSMITTER)
   if (tcgetattr(fd, &oldtio) == -1)
     perror("tcgetattr");
     exit(-1);
   bzero(&newtio, sizeof(newtio));
   newtio.c cflag = BAUDRATE | CS8 | CLOCAL | CREAD;
   newtio.c iflag = IGNPAR;
   newtio.c oflag = OPOST;
   newtio.c lflag = 0;
   newtio.c cc[VTIME] = 0; /* inter-character timer unused */
   newtio.c cc[VMIN] = 0; /* blocking read until 5 chars received */
```

```
tcflush(fd, TCIOFLUSH);
if (tcsetattr(fd, TCSANOW, &newtio) == -1)
perror("tcsetattr");
 exit(-1);
char SET[5];
SET[0] = FLAG;
SET[1] = A ANS;
SET[2] = C_SET;
SET[3] = (A\_ANS ^ C\_SET);
SET[4] = FLAG;
unsigned char byte;
(void) signal (SIGALRM, atende); // instala rotina que atende
   write(fd, &SET[i], 1);
 printf("SET sent\n");
  alarm(3);
  flag = FALSE;
  int state = Start;
 while (state != STOP && !flag)
   read(fd, &byte, 1); // read byte
   handleStateOfEstablishment(&state, byte, C UA);
} while (flag && conta < 4);</pre>
if (flag && conta == 4)
```

```
printf("UA received\n");
   alarm(0);
   flag = FALSE;
   conta = 1;
else if (modo == RECEIVER)
 tcgetattr(fd, &oldtio);
 bzero(&newtio, sizeof(newtio));
 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD;
 newtio.c_iflag = IGNPAR;
 newtio.c_oflag = 0;
 newtio.c lflag = 0; /* set input mode (non-canonical, no echo,...) */
 newtio.c_cc[VTIME] = 0; /* inter-character timer unused */
 newtio.c cc[VMIN] = 1; /* blocking read until 5 chars received */
 tcflush(fd, TCIOFLUSH);
 tcsetattr(fd, TCSANOW, &newtio);
 unsigned char byte;
 int state = Start;
 while (state != STOP)
   read(fd, &byte, 1); // read byte
   handleStateOfEstablishment(&state, byte, C_SET);
 printf("SET received\n");
 char UA[5];
 UA[0] = FLAG;
 UA[1] = A_ANS;
 UA[2] = C_UA;
 UA[3] = (A\_ANS ^ C\_UA);
 UA[4] = FLAG;
```

```
for (size_t i = 0; i < 5; i++)
    write(fd, &UA[i], 1);

printf("UA sent\n");
}
else
   return -1;

return fd;
}</pre>
```

llwrite

```
int llwrite(int fd, char *buffer, int length)
 size t dataNewSize = 0;
 size t BCC2NewSize = 0;
 unsigned char *BCC2 = (unsigned char *)malloc(sizeof(unsigned char *));
 char *dataStuffed = stuff(buffer, length, &dataNewSize, BCC2);
 char *newBCC2 = stuffBCC2(*BCC2, &BCC2NewSize);
 int tramaSize = 5 + dataNewSize + BCC2NewSize;
 char I[tramaSize];
 I[0] = FLAG;
 I[1] = A ANS;
 if ((Ns % 2) == 0) I[2] = C_Ns0;
 else I[2] = C_Ns1;
 I[3] = I[1] ^ I[2];
 for (size_t i = 0; i < dataNewSize; i++)</pre>
   I[4 + i] = dataStuffed[i];
 for (size_t i = 0; i < BCC2NewSize; i++)</pre>
   I[4 + dataNewSize + i] = newBCC2[i];
 I[tramaSize - 1] = FLAG;
```

```
int tramaSent = FALSE;
 (void) signal (SIGALRM, atende); //instala rotina que atende interrupcao
     write(fd, &I[i], 1);
   alarm(3);
   flag = FALSE;
   unsigned char byte;
   int state = Start;
   if ((Ns % 2) == 0)
     while (state != STOP && !flag)
          read(fd, &byte, 1); // read byte
         handleStateOfTransmissionSender(&state, byte, C RR Nr1,
C_REJ_Nr1);
          if (state == C RR)
             printf("RR received\n");
             tramaSent = TRUE;
          if (state == C REJ)
             flag = TRUE;
```

```
while (state != STOP && !flag)
           read(fd, &byte, 1); // read byte
           handleStateOfTransmissionSender(&state, byte, C_RR_Nr0,
C_REJ_Nr0);
           if (state == C_RR) {
               tramaSent = TRUE;
           if (state == C_REJ) {
              printf("REJ received\n");
               flag = TRUE;
 } while (!tramaSent || (flag && conta < 4));</pre>
   alarm(0);
   flag = FALSE;
 printf("\n");
 Ns++;
 return length;
```

llread

```
int llread(int fd, char *buffer)
{
   // RECEIVE I
   unsigned char byte;
   int state = Start;
   char data[MAX_LEN] = "";
   size_t dataSize = 0;
   int nrByteReceived = 0;
```

```
int descartarTrama = FALSE;
while (state != STOP)
 read(fd, &byte, 1); // read byte
 nrByteReceived++;
  if (state == DATA && byte != FLAG)
   data[dataSize] = byte;
   dataSize++;
  if (nrByteReceived == 3)
   if (((Nr % 2) == 1) && byte == C Ns1)
     descartarTrama = TRUE;
   else if (((Nr % 2) == 0) && byte == C Ns0)
      descartarTrama = TRUE;
  if (descartarTrama)
   if ((Nr % 2) == 1)
     handleStateOfTransmissionReceiver(&state, byte, C Ns1);
     handleStateOfTransmissionReceiver(&state, byte, C Ns0);
   if ((Nr % 2) == 1)
     handleStateOfTransmissionReceiver(&state, byte, C Ns0);
     handleStateOfTransmissionReceiver(&state, byte, C Ns1);
  if (dataTransferOver)
   if (byte == C_DISC)
      disconnect = 1;
```

```
printf("# FINAL BYTE: 0x%02x\n", byte);
if (disconnect == 1)
 size t dataNewSize = 0;
 char *dataDeStuffed = deStuff(data, dataSize, &dataNewSize);
 char BCC2Received = dataDeStuffed[dataNewSize - 1];
 char BCC2Calculated = calcBCC2(dataDeStuffed, dataNewSize - 1);
 if (BCC2Received == BCC2Calculated)
   unsigned char RR[5];
   RR[0] = FLAG;
   if ((Nr % 2) == 1)
      RR[2] = C RR Nr1;
   RR[3] = RR[1] ^ RR[2];
   RR[4] = FLAG;
     write(fd, &RR[i], 1);
   if (descartarTrama != TRUE)
      if (!TramaAlreadyReceived)
```

```
for (int i = 0; i < dataNewSize - 1; i++)</pre>
     buffer[i] = dataDeStuffed[i];
     printf("%x |", buffer[i]);
   if (buffer[0] == '3')
     dataTransferOver = TRUE;
    TramaAlreadyReceived = FALSE;
    return dataNewSize - 1;
   TramaAlreadyReceived = FALSE;
 TramaAlreadyReceived = TRUE;
unsigned char REJ[5];
REJ[0] = FLAG;
REJ[1] = A_ANS;
if ((Nr % 2) == 1)
 REJ[2] = C_REJ_Nr1;
 REJ[2] = C REJ Nr0;
REJ[4] = FLAG;
```

```
for (size_t i = 0; i < 5; i++)
    write(fd, &REJ[i], 1);

return REJ_SENT;
}
}</pre>
```

llclose

```
int llclose(int fd)
 if (modo == RECEIVER)
   int state = Start;
   unsigned char byte;
   char DISC[5];
   DISC[0] = FLAG;
   DISC[1] = A_SND;
   DISC[2] = C DISC;
   DISC[3] = DISC[1] ^ DISC[2];
   DISC[4] = FLAG;
     write(fd, &DISC[i], 1);
   printf("DISC sent\n");
   state = Start;
   while (state != STOP)
     read(fd, &byte, 1); // read byte
     handleStateOfTermination(&state, byte, C_UA);
   printf("UA received\n");
   sleep(1);
   tcsetattr(fd, TCSANOW, &oldtio);
   close(fd);
```

```
return fd;
else if (modo == TRANSMITTER)
 char DISC[5];
 DISC[0] = FLAG;
 DISC[1] = A ANS;
 DISC[2] = C_DISC;
 DISC[3] = DISC[1] ^ DISC[2];
 DISC[4] = FLAG;
   write(fd, &DISC[i], 1);
 printf("DISC sent\n");
  int state = Start;
 unsigned char byte;
  while (state != STOP)
   read(fd, &byte, 1); // read byte
   handleStateOfTermination(&state, byte, C DISC);
  printf("DISC received\n");
 char UA[5];
 UA[0] = FLAG;
 UA[1] = A SND;
  UA[2] = C_UA;
  UA[3] = UA[1] ^ UA[2];
  UA[4] = FLAG;
   write(fd, &UA[i], 1);
  sleep(1);
```

```
if (tcsetattr(fd, TCSANOW, &oldtio) == -1)
{
    perror("tcsetattr");
    exit(-1);
}
return fd;
}
else
return -1;
}
```

stuff

```
char *stuff(const char *dados, size_t currentSize, size t *newSize,
unsigned char *BCC2)
 char *temp = (char *)malloc(2 * currentSize * sizeof(char));
 *BCC2 = dados[0];
 for (size t i = 0; i < currentSize; i++)</pre>
     *BCC2 ^= dados[i];
   char byteAtual = dados[i];
   if (byteAtual == FLAG)
     temp[t] = ESCAPE;
     temp[t + 1] = xorFLAG;
   else if (byteAtual == ESCAPE)
     temp[t] = ESCAPE;
     temp[t + 1] = xorESCAPE;
     temp[t] = byteAtual;
```

```
t++;
}

*newSize = t;
dados++;
return temp;
}
```

deStuff

```
char *temp = (char *)malloc(currentSize * sizeof(char));
for (size t i = 0; i < currentSize; i++)</pre>
 char byteAtual = dados[i];
  if (byteAtual == ESCAPE)
    char proximoByte = dados[i + 1];
    if (proximoByte == xorFLAG) //It was a FLAG
     temp[t] = FLAG;
    else if (proximoByte == xorESCAPE) //It was a ESCAPE
      temp[t] = ESCAPE;
   temp[t] = byteAtual;
```

```
}
*newSize = t;
return temp;
}
```

calcBCC2

```
char calcBCC2(const char *dados, size_t currentSize)
{
  char BCC2 = dados[0];
  for (size_t i = 1; i < currentSize; i++)
    BCC2 ^= dados[i];
  return BCC2;
}</pre>
```

stuffBCC2

```
char *stuffBCC2(const unsigned char BCC2, size t *newSize)
 char *temp;
 if (BCC2 == FLAG)
   *newSize = 2;
   temp = (char *)malloc(2 * sizeof(char *));
   temp[0] = ESCAPE;
   temp[1] = xorFLAG;
 else if (BCC2 == ESCAPE)
   *newSize = 2;
   temp = (char *)malloc(2 * sizeof(char *));
   temp[0] = ESCAPE;
   temp[1] = xorESCAPE;
   *newSize = 1;
   temp = (char *)malloc(sizeof(char *));
   temp[0] = (char)BCC2;
```

```
return temp;
}
```

deStuffBCC2

```
unsigned char *deStuffBCC2(const unsigned char *BCC2)
 unsigned char *temp;
 unsigned char primeiroByte = BCC2[0];
 if (primeiroByte == ESCAPE)
   unsigned char segundoByte = BCC2[1];
   if (segundoByte == xorFLAG) //It was a FLAG
     temp = (unsigned char *)malloc(sizeof(unsigned char *));
     temp[0] = FLAG;
   else if (BCC2[1] == xorESCAPE) //It was a ESCAPE
     temp = (unsigned char *)malloc(sizeof(unsigned char *));
     temp[0] = ESCAPE;
   temp = (unsigned char *)malloc(sizeof(unsigned char *));
   temp[0] = primeiroByte;
 return temp;
```

atende

```
int flag = FALSE, conta = 1;

void atende(int sig) // atende alarme
{
    printf("alarme # %d\n", conta);
    flag = TRUE;
    conta++;
}
```

Anexo II - Protocolo de aplicação

Criação dos pacotes de controlo para sinalizar o início e o fim da transferência do ficheiro e envio

```
char startControl[10] = "20";
char endControl[10] = "30";
int controlLengt;
if (fileSize < 256)</pre>
 append(startControl, '1');
 append(startControl, (unsigned char)fileSize);
  append(endControl, '1');
  append(endControl, (unsigned char)fileSize);
  controlLengt = 4;
else if (fileSize < 65536 && fileSize >= 256)
 append(startControl, '2');
  append(startControl, (unsigned char)(fileSize >> 8));
  append(startControl, (unsigned char)fileSize);
  append(endControl, '2');
  append(endControl, (unsigned char)(fileSize >> 8));
  append(endControl, (unsigned char)fileSize);
  controlLengt = 5;
else if (fileSize < 16777215 && fileSize >= 65536)
  append(startControl, '3');
  append(startControl, (unsigned char)(fileSize >> 16));
  append(startControl, (unsigned char)(fileSize >> 8));
  append(startControl, (unsigned char)fileSize);
  append(endControl, '3');
  append(endControl, (unsigned char)(fileSize >> 16));
```

```
append(endControl, (unsigned char)(fileSize >> 8));
append(endControl, (unsigned char)fileSize);
controlLengt = 6;
}
else
{
  printf("File Size too big!\n");
  return 1;
}
```

```
// Send Start Control Package

int llwrite_return_value;

llwrite_return_value = llwrite(fd, startControl, controlLengt);
  if(llwrite_return_value == -1)
  {
    printf("Timeout!\n");
    return -1;
}
```

```
// Send End Control Package

llwrite_return_value = llwrite(fd, endControl, controlLengt);

if(llwrite_return_value == -1)
    {
        printf("Timeout!\n");
        return -1;
    }
}
```

Criação dos pacotes de dados contendo fragmentos do ficheiro a transmitir e envio

```
char *fileInfo = (char *)malloc(fileSize);
fread(fileInfo, sizeof(char), fileSize, filefd);
int nrIterationsNeeded = fileSize / TRAMA I SIZE;
int remainderBytes = fileSize % TRAMA I SIZE;
int nrFileByte = 0;
for (; i < nrIterationsNeeded; i++)</pre>
  char data[2 * TRAMA_I_SIZE + 4];
 data[0] = 1;
 data[1] = i % (TRAMA I SIZE - 1);
 data[2] = TRAMA I SIZE / 256;
   data[4 + j] = fileInfo[nrFileByte];
   nrFileByte++;
  llwrite_return_value = llwrite(fd, data, (TRAMA I SIZE + 4));
  if(llwrite_return_value == -1)
     printf("Timeout!\n");
if (remainderBytes)
  char data[remainderBytes + 10];
  data[0] = 1;
```

```
data[1] = i % (TRAMA_I_SIZE - 1);
  data[2] = 0; // é preciso alterar de acordo com valor definido em
cima (256)
  data[3] = remainderBytes;

for (int j = 0; j < remainderBytes; j++)
{
    data[4 + j] = fileInfo[nrFileByte];
    nrFileByte++;
}

llwrite_return_value = llwrite(fd, data, 4 + remainderBytes);

if(llwrite_return_value == -1)
{
    printf("Timeout!\n");
    return -1;
}
}</pre>
```

Leitura da informação do ficheiro a transmitir

```
// Get File Bytes
char *fileInfo = (char *)malloc(fileSize);
fread(fileInfo, sizeof(char), fileSize, filefd);
```

Receção dos pacotes de controlo e escrita para um novo ficheiro

```
if (llread_return_value == -1)
    return 1;
} while (llread_return_value != 0);
```