ARM 프로세서의 Cache와 MMU

교육목표

- □ Cache와 Write Buffer에 대하여 이해한다.
- □ Memory Management Unit(MMU)에 대해서 이해한다.
- □ Tightly Coupled Memory(TCM)에 대해서 이해한다.

DSA56v10 Cached ARM 프로세서

CP15 레지스터 (ARM920T)

Register	용도	비고	
0	ID code register	Opcode_2=0	
0	Cache type register	Opcode_2=1	
1	Control Register	Cache, MMU enable, Endian Clock, 제어 등	
2	Translation table base register		
3	Domain access control register		
5	Fault status register		
6	Fault address register		
7	Cache operation register	Cache control	
8	TLB operation register		
9	Cache lockdown register		
10	TLB lockdown register		
13	FSCE PID register	Fast Context Switching Extension	
14	Debug support register	DCC enabled	
4, 11, 12	Reserved		

CP15 레지스터 (XScale)

Register	용도	비고
0	ID code register	Opcode_2=0
0	Cache type register	Opcode_2=1
1	Control Register	Cache, MMU enable, Endian Clock, 제어 등
2	Translation table base register	
3	Domain access control register	
5	Fault status register	
6	Fault address register	
7	Cache operation register	Cache control
8	TLB operation register	
9	Read buffer operation	
10	TLB lockdown register	
13	FSCE PID register	Fast Context Switching Extension
14	Debug support register	
15	Test & Clock control	
11, 11, 12	Reserved	

DSA56v10 Cached ARM 프로세서

DSA56v10 Cached ARM 프로세서

목 가 Cache를 가진 ARM 프로세서 □ Cache와 Write Buffer Memory Management Unit (MMU) Tightly Coupled Memory (TCM)

Cache의 성능

- □ 프로세서가 읽고자 하는 명령이나 데이터가 Cache 내에 존재(Cache Hit) 하는 회수가 많아야 Cache의 성능이 우수하다.
- □ CPU가 데이터나 명령을 읽고자 하는데 Cache 내에 원하는 명령이나 데이터가 없으면(Cache Miss), Cache 제어기는 시스템 메모리 장치에서 line 크기 만큼 명령이나 데이터를 읽어 Cache 메모리에 저장(Line Fill) 한다.
 - ❖ Cache Line : Cache가 관리하는 최소한의 데이터 단위
 - ▶ 4 word, 8 word 정도의 크기를 가진다.
 - ❖ Cache miss 가 많으면 시스템 성능이 떨어 진다.

DSA56v10 Cached ARM 프로세서

Cache Lockdown

- □ Cache의 일정 부분을 update 되지 않도록 한다.
 - ❖ 중요한 명령이나 데이터를 항상 Cache에 있도록 하여 성능 증가 및 보장
- □ Victim counter가 지정한 위치에 가지 않도록 하여 가능
 - ❖ ARM core의 경우 CP15의 register 9번으로 제어
 - ♣ Lockdown वा

MOV r2, #lockdown_base<<26 ; victim pointer ガタ MCR p15, 0, r2, c9, c0, 1 ; write lcache victim and lockdown base

□ Cache flush 전에는 반듯이 Lockdown을 해제 하여야 한다.

DSA56v10 Cached ARM 프로세서

13

Cache Flush

- □ Cache의 내용과 메모리의 내용이 다른 경우 Cache를 비우고 새로 데이터를 메모리에서 읽어와야 한다.
 - ❖ Self modifying code가 사용된 경우
 - ❖ MPU나 MMU의 값이 변경된 경우
- □ Cache Flush 및 Invalidate는 CP15 레지스터에 의해서 한다.

MCR p15, 0, r0, c7, c7, 0 ; Invalidate ID cache

DSA56v10 Cached ARM 프로세서

Write Buffer □ Core와 버스의 서로 다른 속도차 극복 ❖ Core speed로 write buffer에 데이터를 write ▷ Write 후 CPU는 다른 작업 처리 가능 ❖ Bus speed로 write buffer의 내용이 메모리로 write ❖ Write buffer는 FIFO 형태의 구조를 가진다 Processor Write Buffer DRAM DSA56v10 Cached ARM 프로세서

Write Buffer와 Cache

■ Write Through

- CPU가 특정 주소에 명령이나 데이터를 write하는 경우, 해당하는 명령이나 데이터가 Cache 메모리에 있을 때, Cache 메모리와 외부 메모리에 모두 쓰기 동작을 한다.
- ❖ Write buffer를 거치지 않고 메모리에 저장

■ Write Back

- ❖ CPU가 특정 주소에 명령이나 데이터를 write하는 경우, 해당하는 명령이나 데이터가 Cache 메모리에 있을 때, Cache 메모리에만 쓰기 동작을 하고, 외부의 메모리에는 나중에 기록 된다.
- ❖ Write buffer를 사용한다.

DSA56v10 Cached ARM 프로세서

도 다 Cache를 가진 ARM 프로세서 Cache와 Write Buffer Memory Management Unit (MMU) Tightly Coupled Memory (TCM)

MMU의 필요성

- □ Dynamic 한 메모리 관리
 - ❖ 프로그램 실행 중에 수시로 access permission 관리, cacheable / bufferable 특성의 변환 가능
- □ Virtual address를 지원한다.

DSA56v10 Cached ARM 프로세서

20

MMU의 구성

- □ Translation Lookaside Buffer (TLB)
 - ❖ 최근에 사용된 Virtual address를 physical address로 변화하는 정보와 access permission에 대한 정보를 저장하고 있는 일종의 Cache
- □ Translation Table Walking Logic
 - ❖ TLB를 update 하고 관리하는 기능을 가진 logic
- □ Access Control Logic

DSA56v10 Cached ARM 프로세서

21

ARM 프로세서의 Cache와 MMU

Translation Table

- □ Physical 메모리에 있는 translation 정보를 가지고 있는 Table
- Level 1 Translation Table
 - ❖ 4096개의 32비트 translation table entry
 - ▶ 4GB 메모리를 virtual address 1MB 단위로 나누어 관리
 - ▶ Virtual address 비트 [31:20]로 정렬
 - ❖ Physical memory에 대한 1MB section 단위의 address translation 정보와 access control 정보를 가지거나, 레벨 2 table에 대한 주소 정보를 가진다.
- □ Level 2 Translation Table
 - ❖ 64KB(large page), 4KB(small page), 1KB(tiny page) 단위의 translation table을 정보를 가지고 있다.
 - ❖ 각 translation table에는 address translation 정보와 access control 정보를 가진다.

DSA56v10 Cached ARM 프로세서

22

Translation Lookaside Buffer (TLB)

- □ 최근에 사용된 Virtual address를 physical address로 변화하는 정보와 access permission에 대한 정보를 저장하고 있는 일종의 Cache
- □ TLB가 Virtual 어드레스에 대한 translation table entry를 가지고 있으면 access control logic이 access 가능을 판단
 - ❖ 접근이 허용되면 virtual address를 physical address로 변환 후 access
 - ❖ 접근의 허용이 않 되면 CPU에 Abort 구동
- □ TLB에 virtual 어드레스에 대한 정보가 없으면 translation table walking logic에서 table 정보를 physical 메모리에서 읽어 TLB update

DSA56v10 Cached ARM 프로세서

23

ARM 프로세서의 Cache와 MMU

Cache와 Write Buffer 제어

- □ Section 또는 page 별로 Cache와 Write Buffer의 사용여부 결정
 - Cacheable
 - ▶ Page 내의 데이터가 Cache될 수 있음을 나타낸다
 - Bufferable
 - ▶ Page 내의 데이터가 write buffer에 write될 수 있음을 나타낸다.
 - ❖ Memory mapped I/O 장치의 경우에는 Cache와 Write Buffer가 반드시 disable 되어 있어야 한다.
- □ Cacheable 과 Bufferable에 의한 메모리 시스템 특징

С	В	의 미	Cache의 Write 동작
0	0	Cache 불가, 쓰기 버퍼 불가	
0	1	Cache 불가, 쓰기 버퍼 동작	
1	0	Cache 동작, 쓰기 버퍼 불가	Write-through Cache
1	1	Cache 동작, 쓰기 버퍼 동작	Write-back Cache

DSA56v10 Cached ARM 프로세서

28

Access Permission

- □ Section 또는 page 별로 메모리의 access permission 제한
 - ❖ Access 권한은 각 descriptor의 AP 정보와 S(System) 비트와 R(Rom) 비트에 의해서 제어
 - ▶ S, R비트는 control 레지스터의 비트 8과 9이다
 - ❖ Access가 불가하면 permission fault가 발생

AP	S	R	Access Permission	
			Supervisor	User
00	0	0	No access	No access
00	1	0	Read only	No access
00	0	1	Read only	Read only
00	1	1	Rese	erved
01	х	Х	Read / Write	No Access
10	х	х	Read / Write	Read only
11	Х	Х	Read / Write	Read / Write
XX	1	1	Rese	erved

DSA56v10 Cached ARM 프로세서

29

Domain Control

- □ MMU의 Access는 기본적으로 "DOMAIN"의 의해서 제어 된다.
 - ❖ 개별적인 Access permission을 갖도록 제어 하는데 사용
 - ❖ 16개까지의 domain 지정 가능
 - ▶ DACR(Domain Access Control Register)는 각 domain 별로 2비트씩 할당
- □ Domain 과 Access Permission

Domain	의미	설 명
00	No Access	모든 access에 대하여 domain fault 발생
01	Client	Page Table의 Section descriptor 나 page descriptor의 AP(Access Permission) 비트 정보를 따른다.
10	Reserved	Reserved (No Access)
11	Manager	Page Table의 Section descriptor 나 page descriptor의 AP(Access Permission) 비트 정보를 무시하고 무조건 access를 허용한다.

DSA56v10 Cached ARM 프로세서

30

ARM 프로세서의 Cache와 MMU

목 차 Cache를 가진 ARM 프로세서 Cache와 Write Buffer Memory Management Unit (MMU) □ Tightly Coupled Memory (TCM)

ARM 프로세서의 Cache와 MMU

TCM 초기화 □ Programmer's Model ❖ CP15의 control register (c1)를 사용한다. □ Instruction/Data TCM의 초기화 1 Enable TCM / Load mode ② TCM에서 사용 될 명령 또는 데이터를 TCM 메모리에 저장 ; Initialize pointer MOV r0, #0 r1, =ImageTop; Initialize pointer; define end of code image LDR MRC p15, 0, t2, c1, c0, 0 ; read control register ORR r2, r2, #&C0000 MCR p15, 0, r2, c1, c0, 0 ; enable Instruction TCM and Load Mode CopyLoop ; load 8 registers from main memory LDMIA r0, {r2 - r9} STMIA r0!, Pr2 – r9} ; store 8 registers into instruction TCM CMP r1, r0 ; cjheck if limit reached BGT ; Repeat if more to do CopyLoop DSA56v10 Cached ARM 프로세서 34

질의 응답 DSA56v10 Cached ARM 프로세서

ARM 프로세서의 Cache와 MMU