2D polymerization strategies: synthesis of graphdiyne film

Hao He

2021. 8. 15

0. Content

- 1. Overview of Graphdiyne
 - 1.1 Graphynes: structures
 - 1.2 GDY: properties & applications
 - 1.3 GDY: synthesis
 - 1.4 From real to ideal GDY film
- 2. Microscopic control
 - 2.1 New reaction mechanism
 - 2.2 Monomer-substrate alignment effect
- 3. Macroscopic control
 - 3.1 Confined 2D spatial distribution of catalyst
 - 3.2 Confined 2D spatial distribution of catalyst & monomer
 - 3.3 Confined 2D spatial distribution of temperature
- 4. Conclusion
 - 4.1 Prototype for 2D polymerization strategies
 - 4.2 Problems: poor quality

1.1 Graphynes: structures

Chem. Commun. 2010, 46, 3256-3258.

1.1 Graphynes: structures

Chem. Rev. 2018, 118, 7744-7803.

1.2 GDY: properties & applications

2D porous material		
Properties:	Applications:	
1. triangle pore side length: 3.8 Å		
- 3.8 Å < CH ₄ /CO	1. gas absorption/separation	
- 3.8 Å > H ₂ O/H ₂		
- 3.8 Å > metal ions	2. ion battery (ion passway)	
2. sp π-bond:		
- metal coordination	3. catalysis carrier	
- π-π interaction		
- inhibitive ability for free radical	4. radical scavenger	
- hydrophobic	5. H ₂ O purification	

Chem. Rev. 2018, 118, 7744-7803.

1.2 GDY: properties & applications

2D semiconductor		
Properties:	Applications:	
1. bandgap: 0.44 – 1.47 eV	1. electronic device	
2. mobility: 10 ⁴ cm ² V ⁻¹ s ⁻¹ (DFT)	2. photosensor3. vapor detector	
high photothermal conversion efficiency	4. photothermal therapy (PTT)	

1.3 GDY: synthesis

The only strategy: solution-phase synthesis

hexaethynylbenzene (HEB)

1.3 GDY: synthesis

Cu is oxidized to Cu ions in a basic solvent

Chem. Commun. 2010, 46, 3256-3258.

1.4 From real to ideal GDY film

1. High quality 2. μm² area 3. Layer control 4. Easy to transfer

Chem 2020, 6, 1-19.

1.4 From real to ideal GDY film

Ideal GDY film	Synthesis strategies
Microscopic:	Microscopic:
1. High quality	
side reaction/defect (selectivity)domain size (nucleation site)	2.1 new reaction mechanism
- relative rotation	2.2 monomer-substrate alignment effect
Macroscopic:	Macroscopic:
2. μm² area	3 flat & confined 2D reaction interface:
	spatial distribution of
3. Layer control	3.1 catalyst
	3.2 monomer
	3.3 temperature
4. Easy to transfer	
(compared with Cu)	

2.1 New reaction mechanism

Chem 2020, 6, 1-19.

2.2 Monomer-substrate alignment effect

- 1. high quality
- 2. triple-layer

- 1. hard to transfer
- 2. area: too small

Sci. Adv. 2018, 4, eaat6378.

3.1 Confined 2D spatial distribution of catalyst

1. μm^2 area

1. random layer number

Chem. Commun. 2010, 46, 3256-3258.

- 1. controllable [Cu²⁺]
- 2. arbitrary substrate

- 0. not flat
- 1. area: too small

Substrate = glass, Si, Al, Ag...

2. random layer number

Chem. Commun. 2018, 54, 6004-6007.

monomer **

3.1 Confined 2D spatial distribution of catalyst

Cu ions release from Cu foil (not because of electrochemical reaction)

(EDL)

- 1. triple-layer
- 2. wafer-scale area

Chem **2021**, 7, 1-13.

3.2 Confined 2D spatial distribution of catalyst & monomer

liquid-liquid interface: unstable & interdiffusion layer

1. easy to transfer

- 1. poor quality
- 2. area: too small
- 3. random layer number

J. Am. Chem. Soc. **2017**, 139, 3145–3152.

3.3 Confined 2D spatial distribution of temperature

- 1. triple-layer
- 2. μm² area
- 3. easy to transfer
- 4. cat. free

Adv. Funct. Mater. 2020, 30 20011396.

4. Conclusion

4.1 Prototype for 2D polymerization strategies

Ideal GDY film	Synthesis strategies
Microscopic:	Microscopic:
1. High quality	
side reaction/defect (selectivity)domain size (nucleation site)	2.1 new reaction mechanism
- relative rotation	2.2 monomer-substrate alignment effect
Macroscopic:	Macroscopic:
2. μm² area	3 flat & confined 2D reaction interface:
	spatial distribution of
3. Layer control	3.1 catalyst
	3.2 monomer
	3.3 temperature
4. Easy to transfer	
(compared with Cu)	

4. Conclusion

4.2 Problems: poor quality

J. Phys. Chem. C 2016, 120, 10605-10613.

Graphene alignment (3L)

NaCl microwave (3L)

EDL (3L)

Sci. Adv. 2018, 4, eaat6378. Adv. Funct. Mater. 2020, 30 20011396.

Chem **2021**, 7, 1-13.

