Necessary and Sufficient Condition for a Solution

1/1 point (graded)

In the above video lecture, we verified the following result:

Computing the gradient of

$$R_{n}\left(heta
ight)=rac{1}{n}\sum_{t=1}^{n}rac{\left(y^{\left(t
ight)}- heta\cdot x^{\left(t
ight)}
ight)^{2}}{2},$$

we get

$$abla R_n\left(heta
ight) = A heta - b\left(=0
ight) \quad ext{where } A = rac{1}{n}\sum_{t=1}^n x^{(t)}{\left(x^{(t)}
ight)}^T, \, b = rac{1}{n}\sum_{t=1}^n y^{(t)}x^{(t)}.$$

Now, what is the necessary and sufficient condition that $A\theta-b=0$ has a unique solution?

- ullet None of A's entries is 0.
- ullet A is invertible. \checkmark
- ullet A's dimension is the same as that of heta's

Solution:

For any square matrix A, $A\theta-b=0$ has a unique solution $\theta=A^{-1}b$ if and only if A is invertible.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem