

Environment-specific amino acid substitution tables: Tertiary templates and prediction of protein folds

IOHN OVERINGTON, DAN DONNELLY, MARK S. JOHNSON, ANDREJ ŠALI, AND TOM L. BLUNDELL

ICRF Unit of Structural Molecular Biology, Department of Crystallography, Birkbeck College, University of London, Malet Street, London WCIE 7HX, UK

(Received August 14, 1991; Accepted October 3, 1991)

Abstract

The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of humologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chain. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with *Protein Science*. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of sligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment.

Keywords: data-base searching; profiles; residue conservation; sequence alignment; structure prediction; templates

The basis of the acceptance or rejection of amino acid mutations in evolution cannot be fully understood without knowledge of the tertiary structure and function of a protein. A recent study (Overington et al., 1990) established the nature of the structural constraints that led to invariance or restrictive variation at equivalent positions in families of proteins. In this paper we extend our analysis and its applications. In particular we make available the revised substitution tables in computer readable form on the diskette associated with *Protein Science*.

Protein structures and structural parameters

Our analysis relies on a data base of homologous, aligned three-dimensional structures (Table 1); all the alignments were performed with the computer program COMPARER (Sali & Blundell, 1990). An example of an alignment used in the study is shown in Figure 1. In this figure, the standard one-letter amino acid code has been modified to concisely show the local environment and conformation of each residue. Homologous families were selected from the Brookhaven Protein Data Bank (PDB) (Bernstein

et al., 1977) using the results of previous studies in our laboratory (the list presented in Table 1 is in no way meant to be complete and exhaustive). We included some rather poorly refined structures in our data base in order to increase the counting statistics. Analysis of the distribution of unusual environments (for example the impossible + \$\phi\$ conformation for proline) showed that these tended to occur in the poorly refined data sets. However, the contribution of such structures to the overall substitusion tables is very small. The average pairwise sequence identity of these families varies from around 80% for the y-crystallins to around 25% for the globins. In total the present data base contains 21,651 residues and 79,983 pairwise residue substitutions. Analysis of the number of substitutions as a function of percentage sequence identity of the compared proteins shows that 60% of the substitution data comes from sequences that are 20-40% identical. The families include most known classes of secondary and supersecondary structures and so should be representative of protein structures in general.

The structural features considered in our analysis included:

Residue type, Twenty-one amino acids were considered. Cystine and cysteine were considered to be dif-

Reprint requests to: Tom L. Blundell, ICRF Unit of Structural Molecular Biology, Department of Crystallography, Birkback College, University of London, Malet Street, London WC1E 7HX, UK.

Table 1. Protein structures in the Brookhaven alignment data base?

PDB code	Name	Suction	Resolution (Å)	Rossin (%)
1. Aspartic				
2APP	Penicillopepsin (Fenicilium jantkinellum)	323	₹,\$	13.8
2A##	Rhizopuspapsin (Rhizopus chinensis)	325	1.8	14.3
20888	Chymosin (Bes taurus)	323	2.2	18.8
2REN	Resin (Homo supiers)	3.83	2.8	19.6
SPEF	Propin (Sus scrafa)	326	2.6	18.0
AAPE	Endoshiapepsin (Endockia parasitica)	330	2.1	37.8
2. Azesin/s	dastocyanin			
(A23)	Azuria (Pseudomonus aeruginosa)	126	2.7	3.5
1PAZ	Pseudosmirin (Alcaligenes Juecalis)	120	1.5	15,9
IPCY	Plastocyanin (Populus nigra italica)	89	1.6	17.0
2AZA	Axaris (Alcaliganes denitrificans)	129	2.5	35.7
25CA	Plastocyania (Enteromorpha prolifero)	98	3.8	(1,3
Calcium	binding protein			
3CLN	Calmodulin (Rattus ratius)	143	2.2	37.5
37790	Troponin C (Meleagris gallopavo)	161	2.0	\$8.5
4. Carbonic	; antrydrase			
1CAZ	Carbonic anhydrase II (Homo supiens)	259	2.0	\$7.3
20A8	Carbonic subydrase B (Homa squient)	255	2.0	19.3
5. Cysteins	proteinase			
2403	Actinisin (Actinida chinensis)	218	3.7	18.3
9888	Papain (Carica papaya)	212	1.8	16.1
6. Cytocim	sing-b			
RECB	Playocytochrome h ₂ (Succharamyees cerevisiae)	92	2.4	38.8
385C	Cytochrome-b ₅ (Escherichia coli)	1506	\$,4	16.4
7. Cytischie	me-c			
HOOR	Cytochrome-e (Gryza sativa)	111	8.8	19.0
2020	Cytochrome-e ₂ (Rhodospirillum rubrum)	112	2.0	17.2
SCYT	Cytochrome-c (Thunnus alalunga)	103	\$.3	15.9
8. Cysochry				
1003	Cyrochrinne-c ₃ (Appropagier vinelandii)	83	2.3	29
391C	Cytestwones-c ₃₅ ; (Pseudomanas aeruginosa)	82	1.6	19.8
9. Dibydra	foliste reductave			
IDHF	Dihydrofolate reductase (Homo sapient)	386	2.3	\$7.6
313FR	Dihydrofolats reductass (Lactobacillus casei)	362	\$17	35.2
4058	Dibydrofolate reductase (Escherichia coli)	159	\$.7	35.2
SDFR	Dihydrofolate reductase (Gallus gallus)	186	8.7	18.8
10. Ferredos				
EFDX	Ferredoxin (Peptomoccus aerogenes)	54	2.8	28.6
48101	Ferradoxin (Azotobacter vinelandii)	106	3.9	28.2
	nding S-barrel			
1008	Glycolate exidene (Spinacia obraces)	369	2.6	18.9
1808	Flavocytochnome b ₂ (Saccharomyces cerevisine)	402	2.4	18.8
12. Flavodos				
137% (Playendoxin (Denulfovihela vulgaris)	147	2.8	150
3FX34	Flavodinin (Chairidiam sp.)	138	8.8	21.4
y-crysia;				
ROOK	y-II crystillin (Bas towns)	174	\$.65	23
ZGCR	y-IV crystallin (Bos taurus)	373	2.3	14.3
14. Globia				
1800	Erythrocropsin (Chironomus thummi thummi)	136	1,4	19.0
IMBA	Myoglobin (Aplysia limnocia)	146	1.6	19,3
1PM8	Myoglodia (Sur scrofu)	133	2.5	18.5
23-88-88	Hemoglobia (Homo sapiens) a-chain	141	1.7	36.0
28888	Hermoglobin (Homo sapiero) 8-chain	146	1,7	16.0
21.311	Leghemoglobin (Lupinus luteum)	153	2.0	150000038
21.113	Hemoglobia (Psiromyzon marinus)	(49)	2.0	\$4.2
2848638	Hemoglobin (Equus conglius) a-chain	141	1.7	23.0
28888	Hemoglobin (<i>Equas caballus</i>) 3-chain	146	1.7	23.0
43485	Mayoylobin (Physeler caloden)	153	2.0	17.2
	dehyde philisphate dehydrogenase		Accept.	27.4.
IGDI	Chyceraldehyde 3-phosphate dehydrogenase (Bacillus stearcahermophilus)	334	1.8	87.7
IGPD	Objects identified 3-phosphate dehydrogen ase (Hamarus americanus)	333	2.9	8277
30P0	Glyceraldehyde 3-phosphate dehydrogenwse (Nomo sepjens)	334	3.5	33.0
*	A second was some was to a state of the second with the second	10.000	4.0	
				(continued)

Table 1. Continued

PDB code	Wansx	Tronsciona	Resolution (À)	Stance (%)
lš. Hemory:				
18884Q	Hemorythrin (Themiste dyscrittom)	113	2.0	-17.3
284888	Myohemerythrin (Themiste zestericvia)	118	13	15.8
	globulin constant domain		• • • • • • • • • • • • • • • • • • • •	,
1893	Immunoglobolin FAS CL1 (Muz musculus)	162	2,6	19.0
1833	Immusoglobalis FAB CH1 (Mus musculus)	95	2.6	19.0
(FC)	Immunoglobulin PC CH2 (Homo sapiens)	304	2.9	22.9
(FC)	Immunoglobulin FC CH3 (Homo supiens)	383	3.9	22.0
28/84	Immuneglobulin FAB ECL CL1 (Hamo sapiens)	300	1.9	18.8
2834	Imminoglobulia FAB EOL CRI (Hamo septens)	103	1.8	18.9
28483.	Immunoglobulis RV-HEL FAB CHI (Mus musculus)	97	2.3	24.5
	Jobulia variable domain	7.5	2000	9554.495
1831	Immunglobulin FAS LV (Mus musculus)	383	2.6	19,0
1833	Immunagjohniin FAS HV (Mus musculus)	123	2.6	39.0
REI	immunoglobulin Bence-Jones LV (Homo supiera)	807	2.8	23.0
28/84	Immunoglobalin PAR KOL LV (Hamo sapiens)	146	1.9	18.9
28/84	Immunoglobalin FAB KOL NV (Homo septent)	126	1.9	18.9
2856	Immunoglobulin HY-HEL FAB LY (Max musculus)	110	2.3	24.5
EHFL		116	2.5	
28HE	Immunoglobulin HY-HEL FAB WV (Mas musculus)	154		24.5
	Immunoglobulia Bence-Jones LV (Homo sapiens)		1.6	14.9
3PA8	Immunogiobulia A-FAB LV (Homo sopiens)	163	2.0	
3FAB	lmmunoglobulin λ-FAB HV (Homo supiens)	117	3.0	333
	se terine proteinate inhibitor		2.00	
1070	Third domain ovomuscuid inhibitor (Cururnix coturnix japonica)	56	1.9	2.2. 3:
2070	Third domain overmuciid inhibitin (Lophura nyithemera)	56	1.3	19.9
1768	Pancreatic secretory trypsin inhibitor (Sus scrafu)	33	1.58	18.6
	nalace dehydrogenase	88.		ala o
11.DB	Lactate dehydrogeniss (Bacillus stearothermophilus)	294	3.8	28.6
23.33X	Lactate dehydrogenuse (Mus musculus)	333	3.0	28.6
43/482385	Malate debydrogenase (Sus scrofa)	334	2.5	\$6.7
51.D18	Laciate dehydrogenase (Sur secufa)	333	2.7	16.6
81.088	Lactate dehydrogenase (Squalis aconthics)	329	2.8	20.2
ii. Lymaeym				
CLEAS	o-lactallesmin (Popio cynescephalux)	\$37	1.3	22.0
13.23	Lysosyme (Homo sepiens)	130	3.5	38.7
BEZT	Lysozyme (Callus gallus)	129	2.0	25.4
28.22	Lysaxyme (Meleogrie gollopava)	133	2.2	45%, 2
	tic binding protein			
21.8P	Leacine bisding protein (Escherichia coll)	346	2.8	21.3
SFIA	Lea/Ge/Val binding protein (Escherkhie cali)	344	2.4	17.9
	fractokissse			
PFN	Phospholoucsokinase (Escherichia coll)	320	2.4	16.5
499%	Phospholeuctokinase (Bacillus stearothermophilus)	319	2.4	16.9
M. Phospho	lipase A ₂			
1882	Phospholipase A ₂ (Bos taucus)	123	1.77	\$7.8
1928	Phospholipase A ₂ (Sus scroju)	124	2.6	23.1
1992	Phospholipase A ₇ (Crossius aurex)	122	2.5	\$7.8
is. Photosyi	thetic reaction center			
PRC	Phinosymbolic reaction center (Rhodopseudomones viridis)	834	2.3	§9.3
1808	Photosynthetic reaction center (Rhodobacter sphaeroides)	848	2.4	26,0
	pe serine proceiness inhibitors			
2012	Barley seed chymotrypsia inhibitor (Hardeum vulgere)	\$3	2,0	\$9.8
38038	Sgiss (Hirudo malicinulis)	3 8	3.7	17.8
7. Represso			, =	
2080	Cro repressor (phage 434)	63	2.8	39.3
1889	Repressor (phage 434)	83	2.0	39.3
OBD	X repressor (bastariophage 8)	80	2.5	24.2
ss. Rubredo		*-00	5.0	S. 1000
RDG	on - Kuhredovin (Desuljavibria gigus)	52	3.4	13.6
38XN	Rabredoxin (Desulfovibrio valgeris)	5/2	1.3	24.2
	NORMAN AND MARKACE AND CONTRACT OF CONTRACT AND	26.66	11 5 6 6	4.5

(continued)

Table 1. Continued

PDB code	Name	Bresiden	Resolution (Å)	$R_{\rm theory}$ (%)
29. Retrovir	si proteinase	19.000		
2888	Rous sarcoma proteinuse	332	2.6	19.0
SHYP	HFV-1 proteinase	33	2.3	\$8.9
30. Šerino pi	otzinase (basterial)			
2ALP	a-lytic proteinase (Lysobucier entymogenes)	198	1.7	13.1
2865	Proteinase A (Streptomyces grisms)	383	3.5	12.6
38GB	Proteinase B (Streptomyces griseus)	385	318	12.5
II. Seriae pi	oteinase (mammalian)			
HANE	Nestrophil elastase (Homo sapiens)	.238	8.8	16.4
ISGT	Trypsia (Streptomyces griteus)	223	8.2	16.1
STON	Tonin (Bottue rottus)	227	8.8	19.6
MRM	Veypsin (Rottus rattus)	223	2.3	16.9
2GCH	y-chymotrypsin (Box tourus)	228	1.7	18.1
288A	Kailikrein A (Sur scrafa)	232	2.0	22.9
28°3'N	Trypsin (Ros taurus)	223	1.5	19.3
7838	Puncreatic clastese (Sus verafic)	240	1.6	16.9
3892	Mass cell proteinese (Ratius certus)	224	1.9	19.1
32. Serine pa	meinaus (subrilisia)			
188C	Subsilizie: Cartaberg (Bacillus subsilicia)	274	2.5	26.6
188T	Subsilisin BPN (Bacillus amylolique/aciens)	375	2.5	44.8
ETEC	Therminese (Thermoactinomyves valgaris)	279	2.2	17.9
28°8X	Projeknase K (Tristicachium album timber)	279	1.8	16.7
33. Snake to	8833			
ECIX	a-cohrataxin (Naja naja siamensis)	73	2.8	
INXB	Neurotoxic b (Laticanda semifasclata)	62	3.38	24.6
34. Triose pl	dephase isomerase			
ITIM	Yriose phosphate inomerase (Gallus gallus)	347	2.5	
IYPI	Triose phospitate isomerase (Saccharomyces cerevisiae)	247	1.9	21.0

^{*}To save space the references for the terriary structure determination are not shown; this information is available on request from the authors.

ferent residues as they have distinct preferences for both local environment and differences in the patterns of accepted mutations. The assignment as a cystine was defined on the basis of a 2.5-Å sulfurto-sulfur atom distance cutoff.

- 2. Main-chain conformation and secondary structure. Residues with the unusual positive φ main-chain angle were assigned first. α-helices and β-strands were then defined using the SSTRUC program of David Smith, which implements the algorithm of Kabsch and Sander (1983). The 3₁₀ and α-helices were treated equivalently; in our sample 3₁₀ helices make up around 10% of all helical residues. Finally, residues as yet undefined were classified as coil. The cis-peptide conformation was also examined; the small number of examples and its almost exclusive restriction to the N-terminal side of proline in the alignment data base made us include it with the coil class.
- Solvent accessibility. Side-chain accessibilities were calculated by the method of Lee and Richards

- (1971); residues with side chains of relative accessibility less than 7% (Hubbard & Blundell, 1987) were defined as inaccessible. Calculations were usually performed on the entire molecule. However, for the alignments of subunits (for example, the immunoglobulins), residue accessibilities were calculated for isolated domains. Essential prosthetic groups and ligands were included in the calculations; enzyme substrates, inhibitors, etc. were excluded from the analysis.
- 4. Side-chain interactions. Specific interactions of a side chain, for example hydrogen bonding, jonic interactions, and covalent bonding, were examined. These were divided into three classes: interactions between two side chains, interactions between a side chain and a main-chain carbonyl, and interactions between a side-chain and a main-chain amide hydrogen (see Kinemage 1 for an example). As side-chain atoms are generally not reliably determined by crystallography, hydrogen bond formation was defined based on the criterion of a donor-acceptor distance ≤3.5 Å. Hydrogen and covalent bonds to

Fig. 1. A section of the alignment of sequences of scrine proteinases achieved by comparing the three-dimensional structures using COMPABER (Sali & Blundell, 1989). The coordinates of the three-dimensional structures were obtained from the Brookhaven Protein Data Bank (PDB) (Betratein et al., 1977) (PDB codes: FDW, rat tonin; 2PKA, portine kaliferin; FTRM, rat trypsin; 2PTN, portine trypsin; 2GCH, burden y-chymotrypsin; HIST, portine classase; 1HNE, human mintrophil classase; 1RP2, rat mast refi proteinase-II; and ISGT, Surprompers gripsus trypsin). The alignment is numbered according to the structure of y-chymotrypsin. The amino acid code is the standard one-letter code formatted using the following convencion: Italia for positive main-chain of angle; apparease for solvent-inaccessible and lowerase for solvent-accessible residues; boild for hydrogen bonds to main-chain carbonyl oxygen; tide (*) for side-chain-side-chain should be main-chain carbonyl oxygen; tide (*) for side-chain-side-chain hydrogen bonds; disulfide-bonded cystine tosidues are shown with a codilla (;); on peptide oxidues are shown with a brave. The consensus secondary structure is shown below the alignment: a for n-belical positions; 3 for 3-10 halical positions; 3 for 3-5-sheet positions; 6 for positions with a positive main chain a torsion angle. Postscript files for all of the formatted alignments are available from the authors on request.

essential hetatom groups were classed as side-chainside-chain interactions.

Substitution tables

All the above features (amino acid type [21 classes], accessibility (2 classes), side-chain interactions [8 classes], and main-chain conformation [4 classes]) were used to classify the local environment of a residue. The environ-

ment-specific substitution tables were then generated by accumulating substitutions observed in homologous structures. To simplify the analysis, the environment of the replacement residue was not considered; only its amino acid type was considered. This corresponds to many practical applications where only one of the three-dimensional structures of the compared proteins is known. However, for the selection of key residues that characterize a particular local conformation, the conformation of

both compared structures must be defined. Also, further subgroups of conformational classes in the nonhelical and strand regions can usefully be considered (C. Topham, A. McLeod, F. Eisenmenger, J.P. Overington, M.S. Johnson, & T.L. Blundell, unpubl. results).

To study the role of structural features in the conservation of amino acids, we have summed the substitution frequencies into selected marginal distributions, e.g., all the residues in a particular type of secondary structure irrespective of the accessibility and hydrogen bonding properties. It is convenient to display the data as 21 by 22 probability tables, where the values are the probability of observing each replacement amino acid type (row titles) given that a residue (column title) was in a particular environment in a homologous protein. The conservation probability $(P_{\rm cont.})$ is then the probability that a residue will not be substituted by any other residue type.

The summing of this table over all structural dimensions gives a substitution table independent of the environment, analogous to the substitution tables of Dayhoff et al. (1983) and others. Comparison of this global table to other established scoring matrices (M.S. Johnson & J.P. Overington, unpubl. results) shows that it is most similar to the Dayhoff and McLachlan (McLachlan, 1971) matrices, both of which are likewise derived from analysis of naturally observed substitution frequencies.

The tables for main-chain residue classes are all well populated except for the positive & class, which is clas-

sically disallowed for residues with side chains (Ramachandran & Sasisekharan, 1968). Examination of the probability tables for α - and β -classes (Tables 2, 3) shows that in general the β -class is more conserved than the α class; to check that this was not an artifact of sample bias (the α -families contributing heavily to the more distant pairwise comparisons), we examined families in which there are appreciable amounts of both α - and β -secondary structure. In these cases, it is observed that the α -regions are indeed less conserved than the S-regions, often by around 10-15% in sequence identity levels. This is no doubt related to the greater fraction of residues buried in β -sheets than in α -helices, reinforced by common supersecondary structure motifs where parallel &-shorts tend to form a buried core, packed between amphiphilic w-helices.

It is for the accessible/inaccessible classes (Tables 4, 5; Kinemage 2) that the largest differences in patterns of accepted mutations occur; for all residues a buried position is more conserved than a surface position, but not all residues are equal in their response to an inaccessible environment. The residues that undergo the largest increases in conservation (Fig. 2) are generally polar, for example, aspartic acid and histidine. Buried hydrophobic amino acids show generally smaller increases in conservation, but the hydrophobic nature of the replacement residue is strongly conserved. However, there are a number of unexpected features of this comparison. The analogous

Table 2. Substitution probability table for a residues"

	A	C	D	8	ş:	G	Н	1	K	L	M	N	ys.	Q	B	\$	T	Ÿ	18.	¥	3
A	0.335	0.007	6.090	9.399	0.030	0.177	0.037	0.077	0,096	0.038	0.683	0.103	0.308	0.090	0.088	6.163	6.120	0.098			
C	0.000	0.901	0.000	9,000	0.000	0,000	0.000	0.004	0.001	9.800	$\langle (x x), (t)$	0.003	9.600	0.006	9.008	0.004	0.902	0.000	0.007	0.000	0.000
							0.027														
							9.028														
							0.009														
							0.017														
							0,571														
							0.003														
							0.034														
							0.004														
							0.000														
							0.054														
Ş	0.022	0.000	3.036	0.035	8,005	0.026	0.011	0.009	0.020	0.00	0.880	0.033	0.424	0.933	9.616	0.039	0.013	0.009	0.002	0.000	0.000
							0.031														
18	0.019	0.013	0.012	0.023	0.4808	0.008	0.019	0.910	9,067	0.009	9,004	9.018	0.033	0.028	8.348	0.030	0.019	0.008	0.007	0.018	8.018
3	0.086.	0.023	0.073	0.047	9.032	0.079	0.033	0.020	0.043	0.020	0.009	0.089	0.082	9.089	8.3853	0.284	9.096	0.028	0.605	0.020	0.054
T	0.043	0.007	8,039	9.033	0.030	0.038	0.014	9.026	0.032	0.015	0.026	0.007	0.928	0.046	0.035	0.085	0.266	0.037	0.016	0.034	0.000
V	0.088	9.000	0.008	0.021	0.069	0.022	0.044	0.878	0.025	0.111	0.006	0.018	0.825	0.037	0.035	0.3929	0.060	8.350	0.612	0.043	0.162
80	0.009	0.000	0.003	0.300	0.022	0.004	0.007	0.008	0.012	0.00%	0.030	0.003	0.003	0.006	9.004	9.002	0.007	9,003	6.588	0.084	0.000
ŝ,	0.009	0.000	0.00%	9.8836	0.036	9.006	0.029	0.034	0.007	0.013	6.033	0.033	0.003	6.020	0.019	6.007	0.017	0.086	0.078	0.377	0.027
Š	0.000	0.000	9,003	999.0	0.003	9.004	0.003	9.802	0.002	0.002	0.004	9.999	0.000	0.004	0.003	0.008	0.004	0.010	0.000	0.005	0.297
•••	0.028	4000.0	9,043	0.074	0.039	9,029	9,917	0.022	0.950	6.033	0.033	0.033	0.045	0.039	0.028	0.947	0.034	0.032	0.692	0.023	ØØ.0

The standard one-letter amino acid code is used with the exception of C for systime (the disuffice-bonded form) and I for cysteine (the free thiol form). The values in the table give the probability of a substitution of a residue at the top of a column, by all other residues or at the site of an insertion/deletion; thus, the columns sum to 1.0.

Yable 3. Substitution probability table for β residues

	A	C	44	<u> </u>	1.	G	3-8		K			N	Þ	Q	18	S	Ţ	¥	88.	Y	j
	9.275										0.074	0.04)	0.035	0.030	9,080	0.057	0.058	83385	0.014	0.031	3.08
C	0.886	6.910	0.000	0.818	0.014	0.000	(XX). (X	0.003	9.008	0.000	9.000	6.000	0.3880	0.008	0.918	0.002	8.003	9.00	0.000	0.000	0.02
0	0.008	0.000	0.350	0.889	0.008	0.933	0.014	0,017	0.038	0.806	9.000	0.095	0.040	0.020	0.010	0.026	0.020	0.013	0.008	0.012	0.30
E.	0.038	0.915	0.034	0.192	0.004	0.035	0.021	0.912	0.071	9,809	9.037	0.039	0.028	0.036	0.053	0.018	0.036	0.088	0.002	0.035	9.00
p	0.020	0.022	8.033	0.4835	6.398	0.008	9.023	0.033	0.037	0.046	0.023	0.008	0.012	0.008	9.035	0.020	9.013	0.023	0.071	0,096	9.03
G					0.935																
R					0.008																
	0.030	0.036	0.044	0.023	0.089	0.020	9.017	0.358	0.023	9.165	6.077	\$2,025	0.012	0.080	6,033	0.021	0.026	0.139	0.043	0.034	0.03
K.	0.024	0.011	0.023	0.099	0.013	0.007	9,079	8.913	0.399	0.017	0.635	0.060	0.052	0.060	6.339	0.026	0.057	0.010	0.004	2.017	0.04
L.	0.057	6.000	9.627	0.033	0.111	8.923	0.031	0.143	0.033	0.459	0.169	0.031	0.038	0.036	0.038	0.025	0.028	0.139	0.098	0.044	9.06
	0.026																				
																				100	
į.					6.001																
Q					0.008																
\$					0.007									7							
3					0.029																
Ĭ.					0.021																
Ÿ.					0.074																
W					0.048																
Ÿ					0.113																
\$					0.003																
w	6:013	9.000	0.021	0.007	0.692	3 (806	3.923	0.032	0.013	0.094	200.0	0.023	0.007	0.008	0.015	0.838	0.007	9.3838	800,0	0.889	8,000

pairs aspartic acid/asparagine and glutamic acid/glutamine are opposite in their behavior; buried aspartic acid residues are highly conserved, whereas the increase in conservation for asparagine is far less marked. The trend for the glutamyl pair is puzzlingly reversed. These conclusions are based on 584 substitutions for buried aspartic acid residues, 329 for buried asparagines, 189 for buried glutamic acids, and 377 for buried asparagines (full data are available in the supplementary material). Profine residues are highly conserved when buried; to replace a buried profine by any other residue, a hydrogen bond must be made to the newly exposed amide proton. Glycine sim-

Yable 4. Substitution tuble for accessible residues

	A	C	Ð	E	¥	£3-	\$ \$	\$	К	U	34	N	39	Q	R	S	T	٧	88	Y	ŝ
À.	0.224	0.013	0.035	0.088	0.031	0.067	0.048	0.083	0.088	0.050	0.087	0.039	8.087	0.073	0.082	0.074	0.039	0,079	0.033	0.935	0.121
C	0.002	0.739	0.003	-0.006	0.012	0.333	0.001	0.0034	0.303	0.000	(), (XX)	800.0	0.001	0.005	0.098	0.004	3(00.1)	0.000	0.001	9.000	0.000
Ω	0.044	9.007	0.284	9.681	0.016	9.883	0.036	0.033	0.034	0.012	0.022	0.094	0.047	0.032	0.025	0.054	0.044	0.023	0.084	9.023	0.930
5	0.032	9.829	0.079	9.231	0.016	0.028	0.026	0.028	0.033	0.019	0.033	0.038	0.637	0.071	0.049	0.033	0.044	0.634	0.010	9.627	800.0
3:	0.010	0.039	0.098	0.008	0.294	0.004	0.023	0.046	440.9	8.047	0.033	0.012	0.006	0.010	0.009	6.011	0.013	838.0	0.993	0.073	0.000
(iè	0.073	0.000	0.086	0.047	0.020	0.435	0.042	0.024	0.033	0.028	0.039	0.073	0.034	0.034	0.040	0,064	9.637	0.039	0.043	0.036	0.038
3-8	0.013	0.003	9.023	0.034	0.024	0.010	0.284	0.009	0.023	0.011	0.020	0.033	0.008	9.029	0.023	0.013	9.012	0.026	0.014	0.025	0.023
3	0.014	0.016	9.017	0.014	0.038	9.896	0.030	0.238	0.015	0.080	8,948	0.038	0.909	0.009	0.033	0.919	0.023	0.975	9.018	0,030	0.008
X	0.082	0.007	0.939	9.672	0.032	9.827	0.068	0.039	0.284	0.050	9.877	0.055	0.648	6,077	0.122	92843	0.059	0.044	0.037	9,635	0.053
3.	0.038	0.000	0.018	9,697	0.097	0.013	0.024	9.094	0.035	0.311	0.141	0.030	0.030	0.028	0.027	0.019	0.029	0.073	0.064	0.033	0.015
M	6.010	0.000	0.003	9.4835	0.085	9.008	0.003	9,029	0.011	0.030	0.167	0.004	0.003	0.037	0.005	0.003	0.007	0.003	0.004	833,0	0.015
N	0.041	0.007	0.080	0.641	9.022	\$48.6	0.087	0.031	0.042	0.033	0.024	0.239	0.089	0.080	0.031	0.050	0.031	0.023	9.008	0.036	9.839
3.	9.653	0.000	9.039	0.036	0.000	0.927	0.018	0.017	0.034	0.036	0.014	0.018	0.482	9,021	0.026	0.937	6.031	0.939	9.018	0.008	Ø.015
Q	0.040	0.013	0.038	0.080	0.088	0.823	0.042	0.917	0.686	0.026	0.073	0.032	6,689	6.233	0.038	0.032	0.642	0.038	0.007	0.033	0.023
8	0.625	0.023	0.015	9.433	0.030	0.017	0.033	0.017	0.062	0.039	0.015	0.022	0.018	0.087	9.248	0.026	0.028	0.002	0.022	9.023	0.000
4	(2.168)	0.883	0.088	9,659	0.044	9.97%	0.057	9,651	-0.062	0.043	0.026	0.036	0.070	0.072	0,079	0.290	0.138	0.057	0.025	0.059	0.053
3.	9.954	0.080	0.049	0:058	-9.082	0.029	0.037	0.039	0.058	0.039	0.049	$\mathfrak{G}_{\mathcal{A}}(S) \otimes S$	0.042	0.3886	0.033	0.099	9.266	0.061	9.623	0.04)	0.013
Š	0.001	0.000	9.833.8	0.033	9.646	0.920	0.038	9.348	0.933	0.027	0.053	0.018	-0.020	9,043	6.633	0.928	0.644	0.269	9.023	0.049	9,093
W	8.883	0.900	0.833	9.000	0.049	0.888	0.006	9.939	0.000	0.087	0.803	0.003	9.008	$O_{i}(0)$	8.608	0.003	6.004	0.003	0.423	0.038	O (XX)
¥	6.014	03380	0.003	0.648	43.885	0.612	0.034	0.928	6.007	0.023	0.026	0:023	0.003	0.032	0.024	0.018	0.019	0.028	6.168	0.335	0.023
Ĵ.	0.002	0.000	0.003	0.000	9,001	$303.0 \circ$	0.0002	$\otimes \cdot \otimes \otimes$	8.002	43,4301	0.003	9.003	0.000	0.903	0.001	0.002	0.001	0.8807	0.3000	0.003	0.341
	0.086	0.093	0.633	6.072	9.043	0.089	0.088	8.843	0.883	6.073	0.048	0.483	689.0	0.050	6.686	0.087	9,650	0.057	0.023	820.0	0.091

Table 5. Substitution probability table for inaccessible residues

	A:	C	0	83	\$7	G	34	į	×	Ĺ	54	N	§2-	Q	22	S.	Ž.	¥	W	γ	.3
A	9.428	8.022	0.023	0.095	0.036	0.075															
C																		0.000			
83	0.012	0.000	0,775	0.042	0.002	0.3888	0.004	0.007	0.000	0.002	0.003	0.112	0.004	0.933	0.000	9.66	0.005	0.008	(883.0)	9.488	0.000
ξ.	6.037	0.009	0.011	0.460	9.6954	0.008	0.000	0.009	0.000	0,003	0.009	9.03&	0.000	0.064	0.015	0.009	(60.0)	0.000	0.000	(03.0)	0.00
Ş.	0.022	0.014	0.004	0.011	9,493	0.006	0.015	0.045	0.000	0.073	0.036	0.000	0.016	0.003	60000	0.012	0.013	0.033	9,938	0.343	0.013
0	8,979	0.000	0.016	0.037	0.000	0.732	0.000	61018	0.000	0.007	0.035	0.009	0,004	0.013	0.923	820.0	0.032	8093.03	0.005	0.00%	0.003
33	0.003			****		5															
٤																		0.135			
8	0.014																				
٤,	0.048																				
M	0.039																				
38	0.033																				
ķ.		4.5.4.4.4.	0.414.0															0.007			
Q																					
8	0.013																				
3																		0.037			
Г	~																	0.025			
Ÿ.	8.116																				
W	0.006	121.2.2.	4																		
3.	0.013											20.									
3	9.006																				
•••	57.000	0.930	8.000	0.0003	0.000	55,572.3	0.000	25.351.2	COSSIN	\$3155.533	VOLUMA.	garsa.	2276552	CHOCKS	50,0000	MARKS 8	10.000	101030	12.40000	10.0756	3225.55

itarly undergoes a large change in conservation when buried; the most conserved glycine residues tend to be those that are both buried and in the unusual +\$\phi\$ conformation.

Applications of substitution pattern data

Tertiary templates and the inverse folding problem

Given at least one three-dimensional structure one can estimate the frequency of occurrence of each amino acid for each position in a fold, as suggested by Overington et al. (1990). In this way we can construct a simple

Fig. 2. Comparison of conservation probabilities $(P_{\rm cont.})$ for surface (circle) and buried (open square) positions. The standard one-letter amine acid code is used with the exception of C for cystine and 3 for cystolic.

sequence template for a tertiary structure, a tertiary template. For an alternative definition see Ponder and Richards (1987).

Figure 3 shows the sequence variability expected on the basis of the three-dimensional structure for 15 residues from the C-terminus of the G helix of the globin terminus erythrocruorin (1ECD) (5teigemann & Weber, 1979). The residues at positions 97, 100, 103, and 104 are buried (the classic i, i+3, i+4 spacing for an α -helix). As can be seen, the residues that are most conserved in this region are the nonpolar residues making up the buried face of this amphipathic helix. It is these residues that are of the greatest utility in data-base searching and alignment studies.

Figure 4A shows a conventional search for sequences related to IECD, whereas Figure 4B shows the same search using the environmental-specific tables for scoring. As can be seen, the profiling method is more discriminating in the identification of true globin sequences. The standard jumbling test for significance in alignment studies can be further enhanced using the expected patterns for residue variance (M.S. Johnson & J.P. Overington, unpubl. results). A related procedure has been proposed by Eisenberg and coworkers (Bowie et al., 1991; Lütthy et al., 1991).

These procedures represent an approach to identifying the sequences that are compatible with a fold (Ponder & Richards, 1987), generally termed the "inverse protein folding problem." The testiary templates can be used to search the data base of sequences for other sequences that

Fig. 3. Example of environment-specific scores used in template generation. At The sequence and local structural restraints for part of the Chironomus thummi thummi globin structure (PDB data set 1ECD) (Strigemann & Weber, 1979). Buried positions are emphasized by builets underscath the sequence. The extent of the a-helix (defined using the DSSF program of Kabach & Sander [1983]) is also shown. Numbering is as in the PCB data set 1ECD. By The predicted substitution patterns for residues in the observed environmental class.

are likely to adopt the same fold. This approach should allow a large proportion of new sequences to be associated with known folds, even though overall sequence similarities for pairs of sequences may not be statistically significant indicators of homology.

Another problem, which involves relating a sequence to a three-dimensional fold, is to test if a protein is correctly folded. Such tests will be very important for protein structure prediction in the future. It is well documented that potential energy-based methods are poor discriminators between correctly folded and misfolded protein structures (Novotny et al., 1984). More successful attempts to identify correctly folded proteins have included analysis and comparison of structural features such as the ratio of buried polar and surface nonpolar atoms (Baumann et al., 1989, Novotny et al., 1988). In our approach we test whether the pattern of residue variation observed

in homologous sequences is consistent with the fold predicted in the modeling (Overington et al., 1990; C. Topham, A. McLeod, F. Eisenmenger, J.P. Overington, M.S. Johnson, & T.L. Blundell, unpubl. results).

Prediction

A single sequence is often used to predict the secondary and/or the tertiary structure of a protein of interest. Because the general fold of a protein family is conserved, the use of aligned homologous sequences can result in more accurate consensus predictions. We have attempted to use our substitution data in an alternative way to predict secondary structure from aligned homologous proteins.

The patterns of sequence variation are clearly dependent on the physical environment of a residue in the

Fig. 4. Comparison of sequence-based and template-based data-base searching. At The results of a search of the PIR data base using the sequence of Chironomic thannel trythrocrossin (an atypical globin) as a probe and the Dayhoff 250PAM matrix to score residue comparisons. The data represent nonglobin sequences, and the squeres represent globin sequences. The vertical axis is the number of charved comparisons with a given alignment score (shown on the horizontal axis). As is apparent, many globins are within the region of nonglobin sequences. Bt The same search but with environment-specific substitution patterns used for the residue acorting. The environment at each position was classified into one of right classes (four for secondary atrocurse and two for accessibility). Position-dependent substitution profiles were then used to scan the data base. As can be seen, the globins are more clearly differentiated from the nonglobins using the position-dependent scoring scheme. Most of the globin sequences that are within the cluster of nonglobins are partial sequences, and so acorting and assessment are more difficult.

Fig. 5. Prediction of a helical segments in an alignment of homsodomain sequences using Fourier analysis of substitution patterns. Underneath the alignment is shown the extents of the helical segments found by X-ray crystallography (Kissinger et al., 1998).

folded protein; therefore, the residue variation in an alignment can be used to infer the local environment of a residue (see Kinemage 3). The analysis of the relative strengths of structural features as constraints has shown that solvent accessibility is the major single factor. Amphipathic α -helices and β -sheets have distinctive periodicity in the pattern of residue accessibility, and so this can be used to identify such regions from alignments.

We have calculated substitution patterns for surface and buried residues in α -helices and combined the use of these with Fourier analysis (Eisenberg et al., 1984) to identify periodicity indicative of amphipathic secondary structural elements (D. Donnelly, J.P. Overington, & T.L. Blundell, unpubl. results). Although, in principle, the Fourier conservation method is equally applicable to β -strands, it is more useful for α -helices. This is due to the higher propensity for α -helices to be amphipathic.

Figure 5 shows the α -helical regions predicted using substitution patterns for several homeodomain sequences and compares the prediction with the experimentally observed helices. The prediction correctly identifies all three α -helical regions, although their precise limits are not well defined. An improvement in the prediction accuracy can be achieved by analysis of other features within the alignment, for example, the conservation of helix-capping residues at the termini of helices (D. Donnelly, J.P. Overington, & T.L. Blundell, unpubl. results).

Conclusion

The study of residue substitutions as a function of local environment has highlighted the clear differences observed for various local structural constraints. In each position of a protein fold, the local environment constrains the accepted mutations to those that will not disrupt function and structure. The most conserved positions are in the solvent-inaccessible core of the protein and especially the buried polar residues within the core. It is the conservation at these positions that will provide the most powerful recognition of homology between two sequences.

Acknowledgments

We thank the Imperial Cancer Research Pund, the Science and Engineering Research Council, Pfizer, and Merck Sharp and Dohme for financial support. We are grateful to Janet Thornton, Alasdair MacLeod, Chris Topham, Pameia Thomas, and many other colleagues for comments.

References

- Baumann, G., Frömmel, C., & Sander, C. (1989). Polarity as a criterism in protein design. Protein Eng. 3, 339-334.
- Bernstein, F.C., Koetzis, T.E., Williams, G.J.R., Meyer, E.E., Jr., Brice, M.D., Bodgers, J.R., Kennard, G., Shimanouchi, Y., & Tanumi, Y. (1977). The protein data bank: A computer based archival file for macromolecular structures. J. Mol. Biol. 112, 535-542.
- Bowie, J.U., Lithy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science 251, 164-170.
- Dayhoff, M.O., Barker, W.C., & Hunn, L.T. (1983). Establishing homologies in proteins. Mathods Enzymol. 91, 524-546.
- Eisenberg, D., Weiss, R.M., & Terwilliger, T.D. (1984). The helical hydropholic moment: A measure of the amphiphilicity of a helix. Nature 399, 199-303.
- Hubbard, T.I.P. & Blundell, C. (1987). Comparison of the solvent-isascessible cores of homologous proteins: Definitions useful for protein modeling. Practic Eng. 1, 159-171.
- Kabsch, W. & Sander, C. (1983). Distingary of protein secondary sinucture: Pattern recognition of hydrogen-bunded geometrical features. *Biopolymers* 22, 2877–2837.
- Kissinger, C.R., Liu, B., Marrin-Bianco, E., Kornberg, T.B., & Pabo, C.O. (1990). Crystal structure of an engralled homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 63, 579-590.
- Lee, S. & Bichards, P.M. (1971). The interpretation of protein structures: Estimation of static accessibility. J. Mat. Biol. 23, 378-400.
- Listby, R., McLachian, A.D., & Eisenberg, D. (1991). Secondary structure-based profiles: Use of structure-conserving searing tables in searching protein sequence databases for structural similarities. Proteins 16, 229-239.
- McLachian, A.D. (1971). Tests for comparing related amino acid sequences: Cytochrome c and sytochrome c551. J. Mol. Biol. 8, 409-424.
- Movotny, I., Brucocleri, R., & Karphus, M. (1984). An analysis of incorrectly folded protein models: Implications for structure predictions. J. Mol. Biol. 177, 783–818.
- Novemy, J., Rashin, A.A., & Bruccoleri, R. (1988). Criteria that discriminate between native precrims and incorrectly fished maskis. Proteins 4, 19-30.
- Overington, J.P., Johnson, M.S., Šuli, A., & Blundell, T.L. (1990). Tertiery structural constraints on protein evolutionary diversity. Proc. S. Soc. Lond. Ser. B. 241, 132-145.
- Ponder, I. & Richards, F.M. (1987). Tertiary samples for proximal Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775-791.
- Ramschandran, G.N. & Sasisskharun, V. (1968). Conformation of polypoptides and process. Adv. Protein Chem. 23, 283-438.
- Šali, A. & Bissidell, T.L. (1990). The definition of ropelagical equivalence in homologous and analogous structures: A procedure layobying comparison of local properties and relationships. J. Mol. Biol. 272, 493-442.
- Steigenson, W. & Weber, E. (1979). Structure of erythrocraerin in different ligand states refined at 1.4 Å resolution. J. Mol. Biol. 127, 309-338.