6 反馈和负反馈放大电路

本章学习的意义

前几章以及学习了很多放大电路,但还有现实问题待解决

- 1)放大电路的稳定性不够;
- 2) 放大电路的输入和输出电阻不理想;
- 3)放大电路的带宽不满足实际需求;
- 4)如何减少放大电路的非线性失真与噪声?

6 反馈和负反馈放大电路

本章主要内容

- 6.1 反馈的基本概念及类型
- 6.2 负反馈对放大电路性能的影响
- 6.3 负反馈放大电路的分析及近似计算
- 6.4 负反馈放大电路的自激振荡及消除

游戏

再来一次?

闭眼

快速将笔穿过手指环

规则: 一手拿笔,一手扣圈, 两手平举,准备好

OK: 快速将笔穿过手指环

上页

后退

实际问题举例1

实际问题举例2

课堂教学

作业或提问

实际问题举例3

水位控制

无人驾驶汽车, 可以自动控制与前车距离

- 6.1.1 反馈的基本概念
 - 1. 什么是反馈

直流电流负反馈电路

反馈过程

输出电流I_{CO}发生变化

输入回路 反馈网络 输出回路

在 $R_{\rm E}$ 上产生压降 $U_{\rm EO} \approx I_{\rm CO} R_{\rm E}$ 的变化

使放大元件的输 入UBE产生变化

抑制输出电流 I_{CQ} 的变化

直流电流负反馈可以 稳定输出电流 I_{CO}

总结:稳定Q点的机理

输出量

反馈的定义:

把放大电路的输出量(电压或电 流)的一部分或全部

经过反馈网络,

反馈网络

返送到输入回路一个反馈量(电压或电流

反馈量与原来的外加输入量进行比较

得到一个净输入量加到某一放大器件的真正的输入端

以影响放大电路性能。

电路有无反馈?

判断准则: 是否存在反馈网络

观察电路的输出信号能否被返送回输入端,并且能够影响电路的净输入

放大元件:	输入端	输出端
双极型晶体管	В, Е	C, E
单极型晶体管	G, S	D, S
双极型晶体管组成 的差分放大电路	B1, B2	C1, C2
运放电路	同相端 反相端	输出端

以下电路有无反馈?

- A 有反馈
- B 无反馈
- c 无法确定

- A 有反馈
- B 无反馈
- c 无法确定

(c)

- A 有反馈
- B 无反馈
- c 无法确定

思考:

以下电路<mark>有无</mark>反馈?

无反馈网络

R 为负载, 电路的输出不会影响输入

上页 下页 后退

反馈电路方框图

$$\dot{A} = \dot{X}_0 / \dot{X}_{id}$$

$$\dot{F} = \dot{X}_{\rm f} / \dot{X}_{\rm o}$$

$$\dot{X}_{\mathrm{id}} = \dot{X}_{\mathrm{i}} - \dot{X}_{\mathrm{f}}$$

上页

后退

闭合环路

开环放大电路

闭环放大电路

2.交流反馈与直流反馈

(1) 直流反馈——反馈作用仅在直流通路中存在

(2) 交流反馈—— 在交流通路中存在的反馈

增加旁路电容C后, R_f 只对直流起反馈作用。

3. 正反馈与负反馈

(1) 正反馈——反馈信号加强输入信号的作用,使 净输入信号大于原输入信号的反馈。

正反馈往往把放大器转变为振荡器

如音响的啸叫:话筒-放大器-喇叭-空间-话筒, 形成一个环路

(2) 负反馈——反馈信号削弱输入信号的作用,使净输入信号小于原输入信号。

负反馈改善放大电路的性能

负反馈广泛应用于电子技术、自控等领域之中。

推波助澜

(2) 负反馈——反馈信号削弱输入信号的作用,使净输入信号小于原输入信号。

负反馈改善放大电路的性能

负反馈广泛应用于电子技术、自控等领域之中。

负反馈 — 控制论的基础

"控制论之父" ------诺伯特·维纳 (Norbert Wiener)

"控制论之父"----维纳

· 诺伯特·维纳 (Norbert Wiener)

- · 维纳一生发表论文240多篇,著作14本,于1964年荣获美国总统授予的国家科学勋章。他的主要著作有《控制论》(1948)、《维纳选集》(1964)、《维纳数学论文集》(1980)等。
- 1964年3月18日,因心脏病猝发逝世,终年70岁。

逆耳之言是负反馈, 顺耳之言是正反馈; 前者使系统稳定, 后者导致系统不稳甚至失控

思考:

如何区分电路的正负反馈?

4. 瞬时极性法判断正负反馈

判断方法:

- a. 在输入端加入对地瞬时极性为正的电压u₁。
- b. 根据放大电路的工作原理,标出 $u_0 \setminus u_F$ 的瞬时极性。
- c. 判断反馈信号是增强还是削弱输入信号。

- d. 反馈信号削弱了输入信号 $(u_{Id} < u_{I})$ 为负反馈。
- e. 反馈信号增强了输入信号 $(u_{Id}>u_{I})$ 则为正反馈。

例1 判断图示电路反馈的 极性。

解:

假设uI的瞬时极性为正。即

$$u_{\rm I}>0$$

那么

$$u_{\rm O}>0$$
 $u_{\rm F}>0$

$$u_{\mathrm{Id}} = u_{\mathrm{I}} - u_{\mathrm{F}} < u_{\mathrm{I}}$$

净输入信号小于输入信号,所以为负反馈。

例2 判断图示电路反馈的 极性。

解: 假设 $u_{\rm I} > 0$

那么

$$u_{\rm O} < 0$$

$$u_{\rm F} < 0$$

$$u_{\rm Id} = u_{\rm I} - u_{\rm F} > u_{\rm I}$$

净输入信号大于输入信号,所以为正反馈。

总结

反馈---

把放大电路的<mark>输出量(电压或电流)的一部分或全部,</mark> 经过反馈网络,

返送到输入回路一个反馈量(电压或电流),

反馈量与原来的外加输入量进行比较,

得到一个净输入量加到某一放大器件的真正的输入端,以影响放大电路性能。

反馈的分类:

(1) 反馈信号的类型

直流反馈
反馈--- 交流反馈
交直流反馈

还有其它分类?

(2) 反馈对放大电路的影响

下面一节将要学习

- 6.1.2 负反馈放大电路的四种基本类型
- 1. 电压反馈和电流反馈
- a. 电压反馈

特点

反馈信号的来源输出电压

反馈信号与输出电压成正比

方框 \dot{X}_{id} 放大电路 R_L \dot{U}_O \dot{C}_C

b. 电流反馈

c. 判断电压和电流反馈的方法

令输出电压为零 ($u_0=0$)

若反馈信号 $\dot{X}_{\rm f}=\dot{F}\dot{U}_{\rm O}=0$,则为电压反馈

若反馈信号 $\dot{X}_f = \dot{F}\dot{U}_O \neq 0$,则为电流反馈

例1 判断图示电路反馈的类型。

例2 判断图示电路反馈的类型。

令输出电压为零 $(u_0=0)$

2. 串联反馈和并联反馈

a. 串联反馈

特点

反馈网络串联于输入回路

反馈信号为电压

反馈信号与输入电压串联

为什么用电压 分析?

串联电路电流处处相同

b. 并联反馈

方框图

特点

反馈网络并联于输入回路

为什么用电流 分析?

反馈信号为电流

并联电路电压处处相同

反馈信号与输入电流并联

例1 判断图示电路反馈的类型。

例2 判断图示电路反馈的类型。

并联反馈

3. 负反馈放大电路的四种基本类型

(主要指交流反馈)

3. 负反馈放大电路的四种基本类型

电压串联负反馈 电压并联负反馈 电流并联负反馈

6.1.3 负反馈放大电路举例

a. 判断反馈网络

寻找输入与输出回路的共有网络

反馈网络

b. 负反馈的组态判断

- (a) 反馈网络F与 R_L 并联,属电压反馈
- (b) 反馈电压 u_F 与输入电压 u_I 串联于电路的输入端,属<mark>串联</mark>反馈

c. 判断反馈极性 利用瞬时极性法 当u_I>0时

$$u_0 > 0$$

$$u_{\rm F} > 0$$

$$u_{\rm Id} = u_{\rm I} - u_{\rm F} < u_{\rm I}$$

负反馈

电压串联负反馈

d. 电压负反馈的作用

能够稳定输出电压

稳定输出电压的原理

(如果) $U_{\rm o}$ \downarrow \longrightarrow $U_{\rm f}$ \downarrow \longrightarrow $U_{\rm id}$ \uparrow \longrightarrow $I_{\rm b}$ \uparrow

由运算放大器组成的电压跟随器电路

电压串联负反馈

2. 反馈

a. 判断反馈网络

b. 负反馈的组态判断

(a) F与RL并联于电路的输出端,属电压反馈

(b) 反馈电流i_F与输入电流i_I并联于基本电路的输入端,属并联反馈。

c. 判断反馈极性

利用瞬时极性法

$$u_{\rm O} < 0$$

反馈信号的 极性也为负

削弱了输入信号

$$i_{\mathrm{Id}} = i_{\mathrm{I}} - i_{\mathrm{F}} < i_{\mathrm{I}}$$

负反馈

电压并联负反馈

上页 下页 后退

稳定输出电压

稳定输出电压的原理

(如果)
$$U_{\rm o} \downarrow \longrightarrow I_{\rm f} \downarrow \longrightarrow I_{\rm id} (=I_{\rm b}) \uparrow \longrightarrow I_{\rm c} \uparrow \longrightarrow U_{\rm o} \uparrow$$

e. 当电阻R₁=0时

$$i_{\mathrm{id}} = i_{\mathrm{b}} = \frac{u_{\mathrm{s}}}{r_{\mathrm{be}}}$$

净输入电流的大小, 与反馈电流*i*,无关。

电路无反馈作用

故需要RI电阻存在

上页 下页 后退

由运算放大器组成的电压并联负反馈电路

3 反馈

a. 判断反馈网络

反馈网络F

b. 负反馈的组态判断

- (b) u_F 与 u_I 串联作用于运放的输入回路,属 串联反馈。

c. 负反馈的判断 利用瞬时极性法

$$u_{0}>0$$

$$u_{\rm F} > 0$$

$$u_{\rm Id} = u_{\rm I} - u_{\rm F} < u_{\rm I}$$

负反馈

电流串联负反馈

d. 电流串联负反馈的作用

稳定输出电流

 $\begin{array}{c|c} & & & i_{\mathrm{O}} \\ & & & \\ & u_{\mathrm{Id}} \\ & & &$

稳定输出电流的机理

$$I_{
m O} \downarrow \qquad U_{
m f} \downarrow \qquad U_{
m id} \uparrow \qquad U_{
m O} \uparrow$$

反馈 输入回路 输出回路 R_1 i_{Id} + $R_{
m L}$ u_{0} $u_{\rm S}$ R_2 R_3 a. 判断反馈网络

反馈网络F

此处是反馈吗?

- A 是
- 图 否

上页

提交

后退

反馈 输入回路 输出回路 R_1 i_{Id} + $R_{
m L}$ u_{0} $u_{\rm S}$ R_2 R_3 a. 判断反馈网络 地线,不是 反馈 反馈网络F

- (a) 令 $u_0=0$, $i_F\neq 0$, 属电流反馈。
- (b) i_F 与 i_I 并联作用于运放的输入回路,属并联反馈。

c. 判断反馈极性 利用瞬时极性法 当u_I>0时

$$u_{\rm O}$$
<0

反馈信号极性为负

削弱了输入信号

负反馈

电流并联负反馈

d. 电流并联负反馈的作用

稳定输出电流

稳定输出电流的机理

$$I_{\rm O} \downarrow \longrightarrow I_{\rm f} \downarrow \longrightarrow I_{\rm id} \uparrow \longrightarrow I_{\rm O} \uparrow$$

• 总结

电压负反馈稳定输出电压

电流负反馈稳定输出电流

与接入方式是串联还是并联无关

总结

上页(

后退

电压与电流反馈的判别:

与负载所在电极比较:同极为"压", 异极为"流"

电压与电流反馈的判别:

对于运放构成的反馈放大电路:

负载与反馈网络并联----电压反馈

负载与反馈网络串联----电流反馈

电流 反馈 模拟电子技术基础

模拟电子技术基础

上页 下页

后退

反馈极性的判别方法

• 串联反馈—原极性与反馈极性 相同---负反馈 而 相反---正反馈

韭

负

"串同并反"

• 并联反馈——原极性与反馈极性 相同---正反馈 而 相反---负反馈

正

反馈类型判断: P199 题5.5

教材第三版 P219 题6.5

反馈类型判断:教材二版P199 题5.5

教材第三版 P219 题6.5

电压并联负反馈

直流反馈

本级反馈

上页 下页 后退

电压并联负反馈

交直流反馈

电流串联负反馈

交直流反馈

电压串联正反馈

交直流反馈

运放A₁同 相端与反 相端互换

电流串联 负反馈

级间反馈

交直流反馈

本级反馈

1) $R_1 - R_2 - R_{B1}$

电流并联负反馈

直流反馈

级间反馈

 $2)R_{\rm F}-R_{\rm E1}$

电压串联负反馈

交直流反馈

级间反馈

电压并联 负反馈

电流串联 负反馈

反馈类型判断

(c)

电压串联 负反馈

上页

下页

后退

负反馈放大电路的一般表达式

方框图

图中

开环增益

$$\dot{A} = \dot{X}_0 / \dot{X}_{id}$$

闭环增益

$$\dot{A}_{\rm f} = \dot{X}_{\rm o} / \dot{X}_{\rm i}$$

反馈系数

$$\dot{F} = \dot{X}_{\rm f} / \dot{X}_{\rm o}$$

净输入信号
$$\dot{X}_{id} = \dot{X}_i - \dot{X}_f$$

由以上各式得

$$\dot{X}_0 = \dot{A}(\dot{X}_i - \dot{X}_f)$$

将 $\dot{X}_f = \dot{F} \dot{X}_o$ 代入上式得

$$\dot{X}_0 = \dot{A}(\dot{X}_1 - \dot{F}\dot{X}_0)$$

$$\dot{X_0} = \frac{\dot{A}\dot{X_i}}{1 + \dot{A}\dot{F}}$$

闭环增益

$$\dot{A}_{f} = \frac{\dot{X}_{o}}{\dot{X}_{i}} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

··· **AF**——<mark>环路增益</mark>

环路增益AF的意义

在图示电路中

$$\dot{X}_{0} = \dot{A} \dot{X}_{id}$$

所以

$$\dot{X}_{\rm f} = \dot{F}\dot{X}_{\rm o} = \dot{F}\dot{A}\dot{X}_{\rm id}$$

即反馈信号是净输入信号的AF倍

负反馈放大电路的放大倍数的一般表达式

$$\dot{A}_{f} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

即 闭环放大倍数下降到开环放大倍数的1/(1+AF)

D=1+AF 称为反馈深度

a. 放大倍数下降的原因

由于

$$\dot{X}_{\mathrm{id}} = \dot{X}_{\mathrm{i}} - \dot{X}_{\mathrm{f}}$$

$$\dot{X}_{\rm f} = \dot{F}\dot{X}_{\rm o} = \dot{F}\dot{A}\dot{X}_{\rm id}$$

故

$$\dot{X}_{id} = \frac{\dot{X}_i}{1 + \dot{A}\dot{F}}$$

即引入负反馈之后,电路的净输入信号降为原输入信号的1/(1+AF)。

b. 对负反馈放大电路放大倍数的一般表达式讨论

$$\dot{A}_{\rm f} = \frac{A}{1 + \dot{A}\dot{F}}$$

(a) 当
$$|1+\dot{A}\dot{F}|$$
 >1 时 $|\dot{A}_{\rm f}| < |\dot{A}|$

电路引入负反馈

(b) 当
$$|1+\dot{A}\dot{F}|$$
 <1 时 $|\dot{A}_{\rm f}| > |\dot{A}|$

电路引入正反馈

(c) 当
$$|1+\dot{A}\dot{F}|$$
 =1 时 $|\dot{A}_{\rm f}|=|\dot{A}|$

电路没有反馈

$$(d)$$
 当 $1+\dot{A}\dot{F}$ >>1 时 称为深反馈

$$\dot{A}_{\rm f} = \frac{\dot{A}}{1 + \dot{A}\dot{F}} \approx \frac{1}{\dot{F}}$$

上页下页后记

闭环放大倍数 $A_{\rm f}$ 只取决于反馈系数F

主要特点

- a. 便于设计、分析和计算放大电路
- b. 提高了闭环放大倍数的稳定性

e. 当
$$\left|1+\dot{A}\dot{F}\right|=0$$
 时

$$\dot{A}_{f} = \frac{\dot{X}_{o}}{\dot{X}_{i}} = \frac{\dot{A}}{1 + \dot{A}\dot{F}} = \infty$$

上式成立的条件
$$\left\{egin{array}{c} X_{
m i}=0 \ X_{
m o}
ot=0 \end{array}
ight.$$

即电路没有输入,但仍有一定的输出。

电路产生了自激振荡

思考题

1.在深负反馈的条件下,由于闭环放大倍数

$$\dot{A}_{\rm f} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

与管子参数几乎无关,因此可以任意选用晶体管来组成放大级,管子的参数也就没有什么意义了。这种说法对吗?