Clase 14 Regresión lineal múltiple.

DBT 845 - Investigación reproducible y análisis de datos biotecnológicos con R.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

31 May 2022

PLAN DE LA CLASE

1.- Introducción

- Modelo de regresión lineal múltiple.
- Estudio de caso: transformación de variable respuesta.
- Pruebas de hipótesis.
- El problema de la multicolinealidad
- ¿Cómo seleccionar variables?
- ¿Cómo comparar modelos?
- Interpretación regresión lineal múltiple con R.

2.- Práctica con R y Rstudio cloud.

- Realizar análisis de regresión lineal múltiple.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato html.

REGRESIÓN LINEAL MÚLTIPLE

Sea Y una variable respuesta continua y X_1, \ldots, X_p variables predictoras, un modelo de regresión lineal múltiple se puede representar como,

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

 β_0 = Intercepto. $\beta_1 X_{i1}, \beta_2 X_{i2}, \beta_p X_{ip}$ = Coeficientes de regresión estandarizados.

ESTUDIO DE CASO ALIMENTACION MOLUSCOS FILTRADORES

Dieta microencapsulada en mitilidos.

time	sample	replicate	particle concentration
0	mussel	a	400
5	mussel	а	320
10	mussel	a	280
0	control	a	160
5	Control	a	120
10	Control	a	120

Fuente: Willer and Aldridge 2017

TASA DE ACLARACIÓN (PROXY DE CONSUMO DE PARTÍCULAS).

Problemas: Concentración es discreta y relación es no lineal.

Tips: $stat_smooth(method='loess',formula=y\sim x, se=T)$

Dr. José Gallardo Matus

EVALUACION SUPUESTOS.

TRANSFORMACIÓN DE VARIABLE RESPUESTA.

Regresión lineal sobre Log10(Tasa de aclaración).

Tips: $stat_smooth(method='lm',formula=y\sim x, se=F)$

Dr. José Gallardo Matus Clase 14 Regresión lineal múltiple.

PRUEBAS DE HIPÓTESIS REGRESIÓN LINEAL MÚLTIPLE

Intercepto.

Igual que en regresión lineal simple.

Modelo completo.

Igual que en regresión lineal simple.

Coeficientes.

Uno para cada variable y para cada factor de una variable de clasificación.

INTERPRETACIÓN COMO REGRESIÓN LINEAL MULTIPLE

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.6440298	0.0355452	74.385053	0.0000000
time	-0.0022153	0.0010054	-2.203443	0.0298584
samplemussel	-0.0769430	0.0449615	-1.711309	0.0901242
time:samplemussel	-0.0119008	0.0012717	-9.358133	0.0000000

$$R^2 = 0.87$$
, p-val = $1.0691926 \times 10^{-28}$

Dr. José Gallardo Matus

INTERPRETACIÓN COMO ANCOVA

anova(lm.full) %>% kable()

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
time	1	3.391944	3.391944	245.84687	0
sample	1	4.590457	4.590457	332.71466	0
time:sample	1	1.208266	1.208266	87.57466	0
Residuals	100	1.379698	0.013797	NA	NA

COMPARACIÓN CON REGRESIÓN LINEAL SIMPLE

Crea dos modelos de regresión lineal simple

```
reg_mussel <- lm(log_microparticle_concentration ~ time, data=mussel)  

reg_control <- lm(log_microparticle_concentration ~ time, data=control)  

R^2 - regM = 0.87, p-val = 1.0691926 \times 10^{-28}  
R^2 - regMoluscos = 0.78, p-val = 2.0490325 \times 10^{-22}
```

 $R^2 - regControl = 0.39$, $p-val = 2.0849643 \times 10^{-5}$

ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE: PROBLEMAS

Para p variables predictoras existen N modelos diferentes que pueden usarse para estimar, modelar o predecir la variable respuesta.

Problemas

- ¿Qué hacer si las variables predictoras están correlacionadas?.
- ¿Cómo seleccionar variables para incluir en el modelo?.
- ¿Qué hacemos con las variables que no tienen efecto sobre la variable respuesta?.
- Dado N modelos ¿Cómo compararlos?, ¿Cuál es mejor?.

DATOS SIMULADOS PARA REG. LINEAL MÚLTIPLE

100 datos simulados de 3 variables cuantitativas continuas.

Υ	X1	X2
2.81	0.55	0.18
1.01	-0.84	-2.57
1.84	0.03	0.19
2.93	0.52	1.98
1.29	-1.73	-4.25
1.98	-0.28	-0.86

MULTICOLINEALIDAD

Correlaciones >0,80 es problema.

FACTOR DE INFLACIÓN DE LA VARIANZA (VIF).

- VIF es una medida del grado en que la varianza del estimador de mínimos cuadrados incrementa por la colinealidad entre las variables predictoras.
- mayor a 10 es evidencia de alta multicolinealidad

```
lm1<- lm(Y~X1+X2)
vif(lm1) %>%
  kable(digits=2, col.names = c("VIF"))
```

	VIF
X1	10.6
X2	10.6
/\Z	10.0

¿CÓMO RESOLVEMOS MULTICOLINEALIDAD?

- ► Eliminar variables correlacionadas, pero podríamos eliminar una variable causal..
- Transformar una de las variables: log u otra..
- Reemplazar por variables ortogonales: Una solución simple y elegante son los componentes principales (ACP)..

COMPARACIÓN: MODELO COMPLETO 0

Crea modelo de regresión múltiple
lm0<- lm(Y~X1+X2)</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.0569644	0.0404396	50.865151	0.0000000
X1	0.5356269	0.1317168	4.066505	0.0000971
X2	0.0730690	0.0408696	1.787858	0.0769216

$$R^2 = 0.79$$
, p - $val = 4.4295606 \times 10^{-34}$

COMPARACIÓN: MODELO REDUCIDO 1

Crea modelo de regresión simple variable X1 lm1<- lm(Y~X1)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.049298	0.0406597	50.40121	0
X1	0.759739	0.0408995	18.57574	0

$$R^2 = 0.78$$
, p - $val = 7.108665 \times 10^{-34}$

COMPARACIÓN: MODELO REDUCIDO 2

Crea modelo de regresión simple variable X2 $lm2 <- lm(Y \sim X2)$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.0678250	0.0434322	47.61041	0
X2	0.2312349	0.0135089	17.11726	0

$$R^2 = 0.75$$
, p - $val = 3.3098905 \times 10^{-31}$

CRITERIOS PARA COMPARAR MODELOS.

Existen diferentes criterios para comparar modelos.

- ► Anova de residuales (RSS).
- Criterios que penalizan incrementar el número de parámetros estimados (más variables predictoras):
 - a) Akaike Information Criterion (AIC).
 - b) Bayesian Information Criterion (BIC).
- En todos los casos mientras menor es el valor de RSS, AIC o BIC mejor es el modelo.
- No necesariamente los resultados son equivalentes entre criterios.

COMPARACIÓN USANDO RESIDUALES.

anova(lm0, lm1, lm2) %>% kable()

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
97	15.48007	NA	NA	NA	NA
98	15.99018	-1	-0.5101139	3.196436	0.0769216
98	18.11910	0	-2.1289130	NA	NA

COMPARACIÓN USANDO AIC Y BIC.

AIC = -2 * log - likelihood + 2 * K

BIC = -2 * log - likelihood + log(n) * K

K= número de parámetros a estimar.

	df	AIC
lm0	4	105.2260
lm1	3	106.4682
lm2	3	118.9673

	df	BIC
lm0	4	115.6467
lm1	3	114.2837
lm2	3	126.7828

PRÁCTICA ANÁLISIS DE DATOS.

► El trabajo práctico se realiza en Rstudio.cloud. Guía 14 Regresión lineal multiple

RESUMEN DE LA CLASE

- Elaborar hipótesis para una regresión lineal múltiple.
- Realizar análisis de covarianza.
- Interpretar coeficientes.
- Evaluar supuestos: multicolinealidad.
- Comparar modelos: residuales, AIC, BIC.