Amdahl's Law

Contents:

- What is Amdahl's Law? Who was Gene Amdahl?
- What Kinds of Problems Do We Solve With Amdahl's Law?
- How Do We Solve These Amdahl's Law Problems?

What is Amdahl's Law?

Amdahl's law is an expression used to find the maximum expected improvement S to an overall system when only part of the system (f_E) is improved by a factor f_I . Amdahl's Law is often used in parallel computing to predict the theoretical maximum speedup using multiple processors.

Why Do We Use Amdahl's Law?

- **→** ESTIMATE SYSTEM PERFORMANCE...
- → Performance Improvement Problems!!

Who Was Gene Amdahl?

Gene Myron Amdahl (November 16, 1922 – November 10, 2015) was an American computer architect and high-tech entrepreneur, chiefly known for his work on <u>mainframe computers</u> at <u>IBM</u> and later his own companies, especially <u>Amdahl Corporation</u>. He formulated <u>Amdahl's Law</u>...

What Kinds of Problems Do We Solve With Amdahl's Law?

→ Performance Improvement Problems!!

Amdahl's Law Equation:

Speedup =
$$\frac{1}{(1 - \text{fraction enhanced}) + (\text{fraction enhanced/factor of improvement})}}{(f_E) \qquad (f_E) \qquad (f_I)$$

Divide Problem Space Into Three Cases:

1. Given: f_F and f_I Find: S

2. Given: S and f_F Find: f_I

3. Given: S and f_I Find: f_E

Case 1: Given: f_E and f_I Find: S

If we know f_E and f_I , then we use the Speedup equation (above) to determine S.

Example: Let a program have 40 percent of its code enhanced (so $f_E = 0.4$) to run 2.3 times faster (so $f_I = 2.3$). What is the overall system speedup S?

Step 1: Setup the equation:
$$S = ((1 - f_E) + (f_E / f_I))^{-1}$$

Step 2: Plug in values & solve $S = ((1 - 0.4) + (0.4 / 2.3))^{-1}$
 $= (0.6 + 0.174)^{-1} = 1 / 0.774$
 $= 1.292$

Case 2: Given: S and f_E Find: f_I

Example: Let a program have 40 percent of its code enhanced (so $f_E = 0.4$) to yield a system speedup 4.3 times faster (so S = 4.3). What is the factor of improvement f_I of the portion enhanced?

Case #1:

Can we do this? In other words, let's determine if by enhancing 40 percent of the system, it is possible to make the system go 4.3 times faster ...

Step 1: Assume the limit, where $f_I = infinity$, so $S = ((1 - f_E) + (f_E / f_I))^{-1} \rightarrow S = 1 / (1 - f_E)$

Step 2: Plug in values & solve $S = ((1-0.4))^{-1} = 1/0.6 = 1.67$.

Step 3: So S = 1.67 is the **maximum possible speedup**, and we cannot achieve S = 4.3!!

Oops, that one didn't work so well ... let's try another example

Case 2: Given: S and f_E Find: f_I

A different case: Let's determine if by enhancing 40 percent of the system, it is possible to make the system go 1.3 times faster ...

Step 1: Assume the limit, where
$$f_I = infinity$$
, so $S = ((1 - f_E) + (f_E / f_I))^{-1} \rightarrow S = 1 / (1 - f_E)$

Step 2: Plug in values & solve
$$S = ((1-0.4))^{-1} = 1/0.6 = 1.67$$
.

Step 3: So
$$S = 1.67$$
 is the maximum possible speedup, and we can achieve $S = 1.3$!!

Step 4: Solve speedup equation for
$$f_I$$
: $1/S = (1 - f_E) + (f_E / f_I)$ [invert both sides]

$$1/S - (1 - f_E) = f_E / f_I$$
 [subtract $(1 - f_E)$]

$$(1/S - (1 - f_E))^{-1} = f_I / f_E$$
 [invert both sides]

$$f_E \cdot (1/S - (1-f_E))^{-1} = f_I \qquad \text{ [multiply by } f_E \text{]}$$

Step 5: Plug in values & solve:
$$f_I = f_E \cdot (1/S - (1 - f_E))^{-1}$$

$$= 0.4 \cdot (1/1.3 - (1 - 0.4))^{-1}$$

$$= 0.4 / (0.769 - 0.6) = 2.367$$

Step 6: Check your work:
$$S = ((1 - f_E) + (f_E / f_I))^{-1} = (0.6 + (0.4/2.367))^{-1} = 1.3$$

Case 3: Given: S and f_I Find: f_E

Example: Let a program have a portion f_E of its code enhanced to run 4 times faster (so $f_I = 4$), to yield a system speedup 3.3 times faster (so S = 3.3). What is the fraction enhanced (f_E) ?

Step 1: Can this be done? Assuming f_I = infinity, $S = 3.3 = ((1 - f_E))^{-1}$ so minimum $f_E = 0.697$ Yes, this can be done for maximum f_I , so let's solve the equation to determine actual f_E

Step 2: Solve speedup equation for f_E : $S = ((1 - f_E) + (f_E / f_I))^{-1}$ [state the equation] $3.3 = ((1 - f_E) + (f_E / 4))^{-1}$ [plug in values]

 $(1 - f_E) + f_E/4 = 1/3.3 = 0.303$ [invert both sides]

 $1 - 0.75f_E = 0.303$ [regroup]

 $0.75f_E = 1 - 0.303 = 0.697$ [commutativity]

 $f_E = 0.697 / 0.75 = 0.929$ [divide by 0.75]

Step 3: Check your work: $S = ((1 - f_E) + (f_E / f_I))^{-1} = (0.071 + (0.929/4))^{-1} = 3.3$