Digital Circuits and Systems* Lab Report I PTEX Teacher: Song Zhou. TA: Yuan Xu

实验1 门电路逻辑功能及性能测试

张逸凯 171840708 (转专业到计科, 非重修) Department of Computer Science and Technology Nanjing University zykhelloha@gmail.com

需要填写的部分:

这一部分是把实验手册里需要填写的部分都拿出来,方便助教哥批改的.

门电路功能验证:

输入	输 出	输 出	
S1 S0	74HC00	74LS00	
0 0	1	1	
0 1	1	1	
1 0	1	1	
1 1	0	0	
逻辑表达式	Y=A'+B' Y=A'+B'		
逻辑功能	取 AB 的与非	取 AB 的与非	
	值	值	
	同时输入两个高电平,则输出一个低电平,		
	否则输出高电平的电路		

备注:测试了两块芯片: 74HC00 和 74LS00

附加测试: 为什么输入端不能悬空? 当A接地, 高电平, 悬空, A B并接时候的

输出验证:

输入电平		输出电压 V	
Α	В	74LS00	74HC00
接地	0	5.21	4.85
	1	5.21	4.85
高电平	0	4.82	5.21
	1	0.04	0.01
悬空	0	4.90	5.21
	1	0.04	5.20
A、B 并接	0	4.88	5.21
	1	0.04	0.01

分析:多余输入端悬空时,从实验结果看在另一个输入为高电平时,74LS00和74HC00输出的电压不同,所以多余的输入端不能悬空。

三态门逻辑功能测试 (验收)

输入电平			输出电压		
I1	A1	A2	B2	Y1/Y2	Y3
		L	L	0.02	5.19
	L	L	Н	0.03	5.19
	Н	Н	L	5.17	5.19
L		Н	Н	5.19	0.01
_		L	L	0.03	5.18
		L	Н	0.03	5.18
		Н	L	5.18	0.0
		Н	Н	5.18	5.19
		L	L	0.03	5.19
	L	L	Н	0.03	5.17
	_	Н	L	0.03	5.19
Н		Н	Н	0.03	5.18
''	н	L	L	5.19	5.19
		L	Н	5.18	0.02
		Н	L	5.18	5.18
		Н	Н	5.19	0.03

分析: 电路中的使能端能够控制 A1, A2 其中一个反相器被使能,被禁止的三态门相当于没有被接入电路。

测试三种不同系列反相器 74LS04, 74HC04, 74HC14 电压传输特性

输入	输出 Vo(V)					
V_{i}	74LS04	74LS04	74HC04	74HC04	74HC14	74HC14
(V)	(上升)	(下降)	(上升)	(下降)	(上升)	(下降)
0.0	4.77	4.75	5.20	5.19	5.18	5.19
0.4	4.77	4.744	5.19	5.19	5.19	5.19
0.8	4.24	4.26	5.20	5.19	5.19	5.19
1.0	1.13	1.46	5.19	5.19	5.19	5.19
1.05	0.07	0.06	5.19	5.19	5.19	5.19
1.1	0.06	0.06	5.19	5.19	5.19	5.19
1.15	0.06	0.06	5.19	5.19	5.18	5.19
1.2	0.06	0.06	5.19	5.19	5.19	5.19
1.25	0.06	0.06	5.19	5.19	5.19	5.19
1.3	0.06	0.06	5.19	5.19	5.19	5.19
1.35	0.06	0.06	5.19	5.19	5.19	5.19
1.4	0.06	0.06	5.19	5.20	5.19	5.19
1.6	0.06	0.06	5.19	5.20	5.18	5.19
2.0	0.06	0.06	2.82	2.83	5.19	5.19
2.05	0.06	0.06	2.85	2.82	5.19	5.19
2.1	0.06	0.06	2.66	2.74	5.19	5.19
2.15	0.06	0.06	2.66	2.73	5.19	5.19
2.2	0.06	0.06	2.65	2.59	2.04	1.87
2.3	0.06	0.06	2.57	2.52	0.02	0.02
2.4	0.06	0.06	2.55	2.43	0.02	0.02
2.8	0.06	0.06	2.18	2.21	0.02	0.02
2.85	0.06	0.06	2.13	0	0.02	0.02
2.9	0.06	0.06	2.07	0	0.02	0.02
2.95	0.06	0.06	0	0	0.02	0.02
3.0	0.06	0.06	0	0	0.02	0.02
3.1	0.06	0.06	0	0	0.02	0.02
3.2	0.06	0.06	0	0	0.02	0.02
3.6	0.06	0.06	0	0	0.02	0.02
4.0	0.06	0.06	0	0	0.02	0.02
4.4	0.06	0.06	0	0	0.02	0.02
4.6	0.06	0.06	0	0	0.02	0.02
4.8	0.06	0.06	0	0	0.02	0.02
5.0	0.06	0.06	0	0	0.02	0.02

备注: 已经把四张表格整合成了一张表格

电压传输特性曲线

分析: 比较电压传输特性: 相比 74LS01 和 74HC04, 施密特反相器在较小的电压变化范围内完成电压的高低转化, 受外界噪音影响较小。

	74LS04	74HC04	74HC14
输出高电平(V _{OH})	4.77	5.19	5.18
输出低电平(V _{OL})	0.06	2.2	2.0
输入高电平 (V _{IH})	1.4	3	2.4
输入低电平 (V _{IL})	0.75	2.5	2.3
低态直流噪声容限	0.69	0.3	0.3
高态直流噪声容限	3.3	2.19	2.78

分析: 直流噪声容限: 确保由输出所产生的低电压最高值,总是比可靠地解释为"低"的输入最高值还要低;而输出所产生的高电压最低值,总是比可靠地解释为"高"的输入最低值还要高。

由 PPT 以及老师上课所讲的可以计算出.

- 逻辑电平和噪声容限
 - V_{OHmin}: 输出为高态时的最 小输出电压。
 - V_{OLmax}: 输出为低态时的最 大输出电压。
 - V_{IHmin}:保证能被识别为高态的最小输入电压。
 - V_{ILmax}:保证能被识别为低态的最大输入电压。

测量空载电流 Ica和 Ica(选做实验)

	输出		
	74HC00	74LS00	
I _{CCL}	0.48	2.81	
I _{CCH}	0.44	3.38	

比较一下 TTL 逻辑门与 CMOS 逻辑门的异同点。

TTL 和 CMOS 逻辑功能相同,但是对于有效电压的范围不同。 输出的电平范围也不同,比如说输出高电平时,TTL 器件最高电平为 4.8, CMOS 器件为 5.19.。

TTL 集成电路使用 TTL 管,也就是 PN 结。功耗较大,驱动能力强,一般工作电压 +5V . 而 CMOS 集成电路使用 MOS 管,功耗小,工作电压范围很大,一般速度也低。

CMOS 电路不使用的输入端不能悬空,会造成逻辑混乱。TTL 电路不使用的输入端悬空为高电平。CMOS 集成电路电源电压可以在较大范围内变化,因而对电源的要求不像 TTL 集成电路那样严格。TTL 是电流控制器件,而 CMOS 是电压控制器件。

说明三态门的特性及其应用

三态门有三种输出状态: 输出高电平、输出低电平和高阻状态,前两种状态为工作状态,后一种状态为禁止状态。当三态门使能端为 Ø 时,输出为高阻态,为 1 时输出由其他输入决定。

三态门不是具有三种逻辑值。在工作状态下,三态门的输出可为逻辑'0'或者逻辑'1';在禁止状态下,其输出呈现高阻态,相当于开路。

三态门是一种扩展逻辑功能的输出级,也是一种控制开关。主要是用于总线的连接,因为总线只允许同时只有一个使用者。通常在数据总线上接有多个器件,每个器件通过 OE/CE 之类的信号选通。如器件没有选通的话它就处于高阻态,相当于没有接在总线上,不影响其它器件的工作。

说明斯密特反相器的特性及其应用

施密特反相器也有两个稳定状态,但与一般触发器不同的是,施密特反相器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特反相器有不同的阈值电压。

它是一种阈值开关电路,具有突变输入—输出特性的门电路。这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。

利用施密特反相器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为 边沿很陡的矩形脉冲信号。输入的信号只要幅度大于 vt+,即可在施密特反相器的输出端得 到同等频率的矩形脉冲信号。

当输入电压由低向高增加,到达 V+ 时,输出电压发生突变,而输入电压 Vi 由高变低,到达 V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是适用的.

附录 (实验要求与题目)

一、实验目的

- 1. 掌握了解 CMOS、TTL 系列门电路的逻辑功能。
- 2. 熟悉门电路基本性能参数的测试方法。
- 3. 熟悉实验箱的使用和掌握实验测试设备的操作方法。

二、实验仪器及器件

- 1. 实验仪器: 数电实验箱、数字万用表
- 2. 器件:

74LS00 四路二输入端与非门 1片 74HC00 四路二输入端与非门 1片 74LS04 六路反相器 1片 74HC04 六路反相器 1片 74HC14 六路斯密特反相器 1片 74HC15 三态门 1片

三、实验步骤

本实验所用到的集成电路的引脚功能图见附录。选择实验用的集成电路,按自己设计的实验接线图接好连线,特别注意 Vcc 接电源线、GND 接地。线连接好后经检查无误方可通电实验。

1. 门电路功能验证

任选 74HC00 中任意一个两输入与非门,验证与非门电路的功能:输入端 A、B 分别接逻辑电平开关 S1、S2,输出端 Y 接电平指示灯发光二极管 L1,芯片 7 脚接地,

14 脚接电源。改变逻辑电平开关 S1、S2 的电平状态,观察发光二极管 L1 的状态,并将输出状态填入表中:

2. 三态门逻辑功能测试

根据下图,将74HC125中两个三态门的输出端Y1和Y2连接到74HC00一个与非门输入端B1,74HC125的使能端C1、C2分别接到74HC04反相器输出端O1和输入端I1,74HC04输入端I1、74HC125的输入端A1和A2以及74HC00的另一个输入端B2分别连接到逻辑电平开关上。测试当输入端逻辑电平设置为不同值时,三态门输出端Y1/Y2和与非门输出Y3的电压值,并把测量到的数据填入下表中。

3. 测试三种不同系列反相器 74LS04、74HC04、74HC14 电压传输特性

门电路的输出电压 V_0 随输入电压 V_i 而变化的曲线 $V_o = f(V_i)$ 称为门的电压传输特性,通过它可读得门电路的一些重要参数,如输出高电平 V_{OH} 、输出低电平 V_{OL} 、关门电平 V_{OFF} 、开门电平 V_{ON} 、阈值电平 V_T 及直流噪声容限等值。

(1)将反相器04的输入端1脚连接到电位器的输出,调整电位器,严格按照上升和下降次序连续输入相应的电压值;把万用表测试量程换到20V,测量输出端2脚的电压,画出74LS04、74HC04、74HC14的电压传输特性曲线(两人一组,同时使用两只万用表)。

注:如果输出电压不在密集测量区域发生跳变,请调整跳变点附近输入电压的变化幅度为0.05V。

注:如果输出电压不在密集测量区域发生跳变,请调整跳变点附近输入电压的变化幅度为0.05V。

在同一张图上分别画出 74LS04、74HC04、74HC14 电压传输特性曲线(包括上升和下降两种情形)

- (2) 比较电压传输特性曲线,说明各自的特性。
- (3) 从传输特性曲线计算出 74LS04、74HC04、74HC14 三种门电路的电压特性:
- 4. 测量空载电流Iccl和Icch(选做实验)
- (1)与非门处于不同的工作状态,电源提供的电流是不同的。 I_{CCL} 是指所有输入端接高电平时,输出端空载时,电源提供器件的电流。 I_{CCH} 是指输出端空截,所有输入端接地,电源提供给器件的电流。通常 $I_{CCL}>I_{CCH}$,它们的大小标志着器件静态功耗的大小,器件的最大功耗为 $P_{CCL}=V_{CC}I_{CCL}$ 。

拆除 14 脚与+5V 电源的连线,将万用表量程设置成直流电流 20mA,并将万用表的"+" 极连接到+5V,万用表的"-"极连接到 14 脚,拆除负载 L1。分别设置 S1=S2=0 和 S1=S2=1,读出万用表中的数值,并记录下来。

接如下电路图, 分别测试 74HC00 和 74LS00 的空载电流 Iccl 和 Icch。

四、实验报告

- 1、记录、整理实验结果,并对结果进行分析。
- 2、比较一下 TTL 逻辑门与 CMOS 逻辑门的异同点。
- 3、说明三态门的特性及其应用
- 4、说明斯密特反相器的特性及其应用