

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW

III ETAP WOJEWÓDZKI

18 stycznia 2013

Ważne informacje:

- 1. Masz 120 minut na rozwiązanie wszystkich zadań.
- 2. W każdym zadaniu zaznacz kółkiem wybraną odpowiedź A, B, C lub D.
- 3. Pisz długopisem lub piórem, nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz inną odpowiedź.
- 4. Na końcu arkusza jest zamieszczony układ okresowy pierwiastków i tabela rozpuszczalności.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	35	100%
Uzyskana liczba punktów		%
Podpis osoby sprawdzającej		

UCZESTNIKU!

Przed Tobą test wielokrotnego wyboru stanowiący 10 zadań zamkniętych oraz 5 zadań otwartych. Uważnie czytaj każde zadanie zamknięte i zdecyduj, która z podanych odpowiedzi jest według Ciebie poprawna. Pamiętaj, że tylko jedna jest prawdziwa.

Podczas pracy korzystaj z układu okresowego pierwiastków chemicznych oraz tablicy rozpuszczalności soli i wodorotlenków, zastosuj również liczbę Avogadra $N_A = 6.02 \cdot 10^{23}$, oraz objętość molową gazów w warunkach normalnych V = 22.4 dm³/mol.

Powodzenia!

• Informacja do zadań: 1 i 2

Joasia przeprowadziła doświadczenie według poniższego opisu:

Do probówki wlała 5 cm³ kwasu masłowego, dolała 5 cm³ alkoholu etylowego i ostrożnie dodawała kroplami 1 cm³ stężonego kwasu siarkowego(VI), cały czas mieszając zawartość probówki. Następnie wstawiła probówkę z mieszaniną do łaźni wodnej o temperaturze 80 °C na około 10 minut, po czym przelała zawartość probówki do zlewki zawierającej 20 cm³ wody destylowanej.

- 1. Wskaż poprawny opis obserwacji przeprowadzonych przez Joasię.
 - A. Zanika zapach alkoholu i przykry zapach kwasu. Pojawiła się substancja o zapachu ananasów, która praktycznie nie rozpuszcza się w wodzie.
 - B. Nie obserwuję zmian, utrzymuje się zapach mieszaniny taki jak przed doświadczeniem.
 - C. Nie wyczuwam zapachu alkoholu ani przykrego zapachu kwasu, ale pojawia się charakterystyczny zapach octu.
 - D. Zanika zapach alkoholu i przykry zapach kwasu. Wszystkie składniki mieszaniny są dobrze rozpuszczalne w wodzie.
- 2. Nazwij produkt organiczny powstały w doświadczeniu Joasi.
 - A. etanian metylu
 - B. metanian butylu
 - C. butanian etylu
 - D. etanian butylu

• Informacja do zadań 3 i 4

Zaprojektuj doświadczenie, które pozwoli na identyfikacją białka obecnego w badanym roztworze. W tym celu masz do dyspozycji odczynniki: woda destylowana, roztwór siarczanu(VI) miedzi(II), zasada sodowa, kwas azotowy(V), kwas siarkowy(VI), etanol.

3. Wybierz schemat doświadczenia, który w poprawny sposób ilustruje przeprowadzenie reakcji biuretowej.

- **4.** Wskaż poprawny opis obserwacji, jakich można dokonać, przeprowadzając reakcję biuretową.
 - A. Białko ścięło się, a roztwór zabarwił się na kolor niebieski.
 - B. Białko ścięło się i zabarwiło się na kolor żółty.
 - C. Powstał klarowny roztwór o barwie różowofioletowej.
 - D. Białko ścięło się, a roztwór pozostał bezbarwny.
- **5.** Poda nazwę kwasu, o którym mówi podany tekst: "Stężony roztwór tego kwasu w temperaturze 25 °C i pod ciśnieniem 1013 hPa jest oleistą, bezbarwną cieczą o gęstości większej od gęstości wody. Ma właściwości higroskopijne."

A. kwas azotowy(V)

C. kwas fosforowy(V)

B. kwas siarkowy(VI)

D. kwas siarkowy(IV)

6. Freony – związki prawdopodobnie niszczące warstwę ozonową są związkami:

A. wegla, wodoru, tlenu

C. chloru, fluoru, bromu

B. węgla, wodoru, chloru

D. węgla, chloru, fluoru

7. Wskaż aminokwasy w kolejności występowania reszt aminokwasowych w cząsteczce tripeptydu o wzorze:

CH₃CH(NH₂)CONHCH₂CONHCH₂COOH

A. alanina, alanina, glicyna

C. glicyna, walina, alanina

B. walina, glicyna, alanina

D. alanina, glicyna, glicyna

8. Nazwij <u>główny</u> produkt reakcji zachodzącej między bromowodorem a pent-1-enem tworzący się zgodnie z regułą Markownikowa.

A. 1-bromopentan

C. 2-bromopent-1-en

B. 2-bromopentan

D. 1-bromopent-1-en

• Informacja do zadania 9

Uczniowie na zajęciach koła chemicznego badali zachowanie się mydła w wodzie.

Mateusz wprowadził stearynian sodu do probówki z wodą destylowaną.

Filip wprowadził stearynian sodu do probówki z woda pobrana ze studni.

Łukasz wprowadził stearynian wapnia do probówki z wodą destylowaną.

- **9.** Przyporządkuj chłopcom zapisane obserwacje, jakie poczynili podczas wykonanych przez siebie badań.
 - Obserwacje 1.: Po wprowadzeniu wiórków mydła do wody i wytrząsaniu zawartości probówki obserwuję, że mydło nie rozpuszcza się
 - Obserwacje 2.: Po wprowadzeniu wiórków mydła do wody i wytrząsaniu zawartości probówki powstała piana, a roztwór stał się mętny.
 - Obserwacje 3.: Po wprowadzeniu wiórków mydła do wody i wytrząsaniu zawartości probówki powstała piana, roztwór stał się mętny, a po chwili pojawił się kłaczkowaty osad.
 - A. Mateusz obserwacje 1; Filip obserwacje 2 ; Łukasz obserwacje 3
 - B. Mateusz obserwacje 2; Filip obserwacje 3 ; Łukasz obserwacje 1
 - C. Mateusz obserwacje 1; Filip obserwacje 3 ; Łukasz obserwacje 2
 - D. Mateusz obserwacje 3; Filip obserwacje 2; Łukasz obserwacje 1
- **10.** Wybierz poprawnie zapisane równanie reakcji odpowiedzialnej za efekt kopcenia płomienia podczas spalania glicerolu.
 - A. $2C_3H_5(OH)_3 + O_2 \rightarrow 6C + 8H_2O$
 - B. $C_3H_5(OH)_3 + 2O_2 \rightarrow 3CO + 4H_2O$
 - C. $2C_3H_5(OH)_3 + 7O_2 \rightarrow 6CO_2 + 8H_2O$
 - D. $C_3H_6(OH)_2 + O_2 \rightarrow 3C + 4H_2O$

Przed Tobą 5 zadań otwartych. Rozwiąż je, stosując zasady matematyki i właściwe prawa chemiczne. Masy molowe pierwiastków i związków chemicznych wyrażaj w wartościach liczb całkowitych. Nie używaj korektora ani ołówka, błędne zapisy przekreśl. Każde rozwiązanie zadania powinno znaleźć się na odpowiednich stronach w karcie odpowiedzi (obliczenia pomocnicze również).

Powodzenia!

Zadanie 11. (3pkt)

W laboratorium chemicznym przeprowadzono doświadczenie według poniższego opisu.

Do kolby zawierającej 2 g tripalmitynianu glicerolu dolano 10 cm³ zasady sodowej o stężeniu 20% oraz 1 cm³ alkoholu etylowego. Ogrzewano zawartość kolby do wrzenia przez 10 minut, dolewając porcje wody, tak aby nie zmieniła się objętość reagującej mieszaniny. W celu wydzielenia produktu reakcji do powstałej kleistej masy dolano 5 cm³ nasyconego roztworu chlorku sodu, wymieszano i ostudzono. Zebrano z powierzchni powstały związek chemiczny i wprowadzono go do probówki zawierającej 5 cm³ nasyconego roztworu chlorku wapnia i wymieszano.

Zapisz w formie cząsteczkowej równania reakcji zachodzących w kolbie i w probówce. Nazwij związki chemiczne powstałe w kolbie i w probówce.

Równania reakcji:
kolba:
probówka:
Nazwy związków chemicznych powstałych w:
kolbie:
probówce:
Zadanie 12. (4pkt) Wykonano eksperyment według schematu:
2,016 dm³ mieszaniny etanu i etenu > 0,896 dm³ gazu
woda bromowa —
Zanotowano obserwacje: Intensywnie pomarańczowa woda bromowa zmieniła barwę na bladopomarańczową

Oblicz liczbę cząsteczek gazu będącego w mieszaninie wyjściowej, który nie przereagował z wodą bromową.

Zapisz równanie zachodzącej reakcji, stosując wzory strukturalne lub półstrukturalne związków organicznych.

Przyjmując 100% wydajność reakcji, oblicz, w jakim stosunku masowym wyrażonym najmniejszymi liczbami całkowitymi, pozostawał etan do etenu w mieszaninie gazowej wprowadzanej do kolby. Objętości gazów mierzono w warunkach normalnych.

	czei	nia:																										
7 04	onic	. 12	(E.,	J-4)							••••	• • • • •	• • • •		•••		• • • •		•••		• • •		•••				•••	
rze tyle	dsta	e 13. wior go) z	y zia	poni Irna	iżej kul	so kur	che	ma ziai	t il	ust	ruje	up	oros	szcz	zon	ıy	pro	oce	s p	roc	luk	cji	et	ane	olu	(a	lkc	ho
Prze etylo	dsta	wior	y zia	poni Irna	iżej kul	so kur	che	ma ziai	t il	ust	ruje	up	oros T=	szcz	zon	ıy	pro	oce	s p	roc	duk	cji T	et	ane	olu	(a	lkc	ho
Prze etyle ziai kuk Nap Obli alko kuko	dsta oweg rno curyo isz r icz r holu	wior go) z	zia zia znik znik znik znik	poni irna , <i>T</i> a rea robi ego zav	kul = 14 nkcj nio o s	i sokur 40°; ji c ezb stęż raja	echerydz cydz cego cego cego cego cego cego cego cego	ma ziai sk mic ną iu go	t il nego rob zny do 10% 61,;	ustro. ia rch wy	enzy prze pro-	ur vmy, 1. edst duk	T=	= 20	zon	y g n n n z w z n	proglul a soyyd nas	che ajn	d dza ema ośc uży	roże ncie cią	dże, 2	. T: 0% w t	et = 3:	3,6	olu kş	(a eta	lko uno oztve	oho l l wo
Przetylo zian kuk Nap Obli alko kuku	edsta oweg rno curyo isz r icz r holu uryd edne	wior go) z pa dzy dzy ówna nasę i etyl ziane	zia zia rnik ania sk ow ego	poniarna a rea robi ego zav sca j	kul = 14 nkcj nio o s	i sokur 40°; ji c ezb stęż raja	echerydz cydz cego cego cego cego cego cego cego cego	ma ziai sk mic ną iu go	t il nego rob zny do 10% 61,;	ustro. ia rch wy	enzy prze pro-	ur vmy, 1. edst duk	T=	= 20	zon	y g n n n z w z n	proglul a soyyd nas	che ajn	d dza ema ośc uży	roże ncie cią	dże, 2	. T: 0% w t	et = 3:	3,6	olu kş	(a eta	lko uno oztve	oho l l wo
Prze Prze ziar kuk Nap Obli Nap Obli ko kuk i ko K K K K K K K K K K K K K K K K K K	dsta oweg rno curyo isz r holu uryd edne	wior go) z pa dzy dzy równa nasę i etyl ziane	zia zia rnik ania sk ow ego niej	ponii irna i, T rea robi ego zav sca j ji:	kul = 14 nkej nio o s po j	ji c ezt stęż prz	echerydz °C hen oędi iżeni ąceg	ma ziai sk nic ną iu go nki	t il nego rob zny do 10% 61,;	ustro. ia ych wy 6, a 2%	enzy prze pro- nas ski	urymy, 1. edst duk stęp robi	T=	= 20 rion rani	zon	ny g h n z w z n iar	glul a s yyd nas na	che ajn e	s p dza ema ośc uży daj	roże ncie cią vteg W	dze, 22. 10 go	. T: 0% w tam	et = 33	3,6 1 pr	kş roc do	(a eta g rœsie esie kła	lko oztv e z	oho l wo iar ośc

Ol	bli	cze	nia	ι:														
																		L
																		_
																		_
																		_

Odpowiedź:	 	

Zadanie 14. (5pkt)

Izomeria to zjawisko polegające na tym, że cząsteczki mające ten sam wzór sumaryczny różnią się budową czyli sposobem połączenia atomów. Związki chemiczne o takim samym wzorze sumarycznym ale różnych wzorach strukturalnych nazywamy izomerami.

Próbkę pewnego związku organicznego o masie 8,8 g stanowiącej 0,1 mola, który praktycznie nie jest rozpuszczalny w wodzie spalono całkowicie i otrzymano 8,9 dm³ tlenku węgla(IV) o gęstości 1,978 g/dm³ oraz 7,2 g pary wodnej. Ustal wzór sumaryczny spalonego związku, a następnie zaproponuj i zapisz wzór strukturalny lub półstrukturalny tego związku (jednego izomeru) i nazwij go.

Wzór sumaryczny:	
Wzór strukturalny:półstrukturalny)	
Nazwa związku:	

Zadanie 15. (8pkt)

Na zajęciach koła chemicznego otrzymaliście próbkę ścieku, w którym podejrzewa się obecność jonów: baru, magnezu, ołowiu(II), cynku(II).

Zaprojektuj doświadczenie, tak aby potwierdzić obecność wymienionych jonów w ścieku. Twój projekt musi zawierać:

- a) rysunek schemat eksperymentu każdego badania z opisem użytego szkła i odczynników,
- b) analizę zapewniającą wydzielenie ze ścieku kolejno czterech substancji <u>tylko</u> <u>jednej</u> substancji podczas każdego badania,
- c) równanie reakcji w formie jonowej skróconej dla każdego badania.

Dysponujesz szkłem laboratoryjnym: pipety, probówki, zlewki, lejki i sączki.

Dysponujesz odczynnikami – stężonymi wodnymi roztworami: octanu sodu, siarczanu(VI) sodu, siarczku amonu, jodku potasu, węglanu potasu.

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE (TEMP. 291-298K)

	Na ⁺	K ⁺	NH ₄ ⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Ag ⁺	Cu ²⁺	Zn ²⁺	A1 ³⁺	Mn ²⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Sn ²⁺	Sn ⁴⁺
OH_	r	r	r	s	s	s	r	n	n	n	n	n	n	n	n	s	n	n
F ⁻	S	r	r	S	S	S	S	r	0	S	S	s	S	S	S	S	r	r
C1 ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Br ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
I -	r	r	r	r	r	r	r	n	0	r	0	0	0	S	0	S	S	r
S ²⁻	r	r	r	0	0	0	0	n	n	n	0	n	0	n	n	n	n	n
SO ₃ ²⁻	r	r	r	S	S	S	S	S	S	S	0	s	0	S	0	S	0	0
SO ₄ ²⁻	r	r	r	r	s	S	n	S	r	r	r	r	r	r	0	n	r	r
NO ₃	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	0	r
C103	r	r	r	r	r	r	r	r	r	X	X	Х	Х	X	Х	r	X	X
PO ₄ 3-	r	r	r	S	n	n	n	n	S	S	S	s	S	S	S	n	0	r
CO ₃ ²⁻	r	r	r	S	n	n	n	n	S	S	0	S	0	S	0	n	0	0
HCO ₃	s	r	r	s	S	S	0	0	0	0	0	s	0	S	0	0	Х	Х
SiO ₃ ²⁻	r	r	0	n	n	0	n	n	n	n	n	n	n	n	n	n	0	0
CrO ₄ ²⁻	r	r	r	r	s	S	n	n	S	S	0	S	0	0	S	n	0	0

- r substancja dobrze rozpuszczalna
- s substancja słabo rozpuszczalna (osad wytrąca się ze stężonego roztworu)
- n substancja praktycznie nierozpuszczalna
- o substancja w roztworze wodnym nie istnieje
- x związek nie istnieje

BRUDNOPIS