Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{4}{s^2 + s - 2}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$R(s) \longrightarrow G(s) \longrightarrow H(s)$$

A. (0.5p) Determine the overall closed-loop transfer

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{4}{s^2 + s - 2}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, v = Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

Systems Theory - Midterm exam

April 13, 2022

April 13, 2022

Systems Theory - Midterm exam

April 13, 2022

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{4}{s^2 + s - 2}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$G(s) \qquad \qquad H(s) \qquad Y(s)$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{4}{s^2 + s - 2}$$

 $G(s) = \frac{4}{s^2 + s - 2}$ **A**. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

- **A**. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B**. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input $r(t) = 2, t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A**. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B**. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input $r(t) = 2, t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A**. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B**. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input $r(t) = 2, t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A**. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B**. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input $r(t) = 2, t \ge 0$.

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{5}{s^2 + s + 4}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

A. (0.5p) Determine the overall closed-loop transfer

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{5}{s^2 + s + 4}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

A. (0.5p) Determine the overall closed-loop transfer

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

Systems Theory - Midterm exam

April 13, 2022

April 13, 2022

Systems Theory - Midterm exam

April 13, 2022

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{5}{s^2 + s + 4}$$

 $G(s) = \frac{s}{s^2 + s + 4}$ **A.** (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du

B. (0.4p) Is this system stable? Why?

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{5}{s^2 + s + 4}$$

 $G(s) = \frac{s}{s^2 + s + 4}$ **A.** (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

$$G(s) = \frac{1}{s+1}, \quad H(s) = \frac{k}{s}$$

A. (0.5p) Determine the overall closed-loop transfer

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

A. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).

B. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input $r(t) = 3, t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

A. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).

B. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 3, $t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

A. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).

B. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input $r(t) = 3, t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

A. (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).

B. (1p) Choose a value for k so that the closed-loop system is stable explain your choice using the root locus. For this value of k, determine the steady-state error for a step input $r(t) = 3, t \ge 0$.

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t) and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 - s + 3}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du)

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t) and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 - s + 3}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du)

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

Systems Theory - Midterm exam

April 13, 2022

April 13, 2022

Systems Theory - Midterm exam

April 13, 2022

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t) and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 - s + 3}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du)

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t) and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 - s + 3}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y = Cx + Du)

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{9}{s^2}, \ H(s) = ks$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is overdamped (or critically damped).

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 2, $t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 2, $t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 2, $t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 2, $t \ge 0$.

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 + 4s + 4}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y =Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 + 4s + 4}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y =Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{4}{s^2}, \ H(s) = ks$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

Systems Theory - Midterm exam

April 13, 2022

Systems Theory - Midterm exam

April 13, 2022

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 + 4s + 4}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y =Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{4}{s^2}, \ H(s) = ks$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

Name and group:

This exam is closed-books. Write your name on every page. Write clearly and legibly. Explain your work in words.

P1 (1p). Consider a system with the input signal u(t)and the output y(t) described by the transfer function:

$$G(s) = \frac{2}{s^2 + 4s + 4}$$

A. (0.6p) Determine a state-space model for this system in the standard matrix form: ($\dot{x} = Ax + Bu$, y =Cx + Du

B. (0.4p) Is this system stable? Why?

P2 (1p). Consider the closed-loop system in the figure, where k > 0 and:

$$G(s) = \frac{4}{s^2}, \ H(s) = ks$$

A. (0.5p) Determine the overall closed-loop transfer function.

B. (0.5p) Determine the values of the parameter k so that the closed-loop system is underdamped.

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 4, $t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 4, $t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 4, $t \ge 0$.

P3 (2p). Consider the closed-loop system in the figure, where:

- **A.** (1p) Sketch the root locus for $k \in [0, \infty)$ (there are no breakaway or breakin points).
- **B.** (1p) Choose a value for k so that the closed-loop system underdamped and explain your choice using the root locus. For this value of k, determine the steady-state error for a step input r(t) = 4, $t \ge 0$.