1 For $n \ge 1$ let $f_n: [1,2] \to \mathbb{R}$ be defined as follows: for any $x \in [1,2]$,

$$f_1(x) = 0$$
, $f_{n+1}(x) = \sqrt{x + f_n(x)}$, $\forall n \ge 1$.

Prove that $\{f_n\}_{n\geq 1}$ converges uniformly to $f(x) = \frac{1+\sqrt{1+4x}}{2}$.

Solution Fix $x \in [1, 2]$. Notice that 2 is an upper bound for $f_n(x)$. We will show this by induction.

Base step:

$$2 - f_1(x) = 2 > 0 \implies 2 \ge f_1(x)$$

Inductive step:

Suppose we have $2 \ge f_n(x)$. We wish to show that $2 \ge f_{n+1}(x)$.

$$2 - f_{n+1}(x) = 2 - \sqrt{x + f_n(x)} = \frac{4 - x - f_n(x)}{2 + \sqrt{x + f_n(x)}} \ge \frac{2 - f_n(x)}{2 + \sqrt{x + f_n(x)}} \ge 0 \implies 2 \ge f_{n+1}(x)$$

Hence the inductive step holds.

Next, we will show that $f_n(x)$ is monotonically increasing.

$$f_{n+1}(x) - f_n(x) = \sqrt{x + f_n(x)} - f_n(x)$$

$$= \frac{x + f_n(x) - f_n^2(x)}{\sqrt{x + f_n(x)} + f_n(x)}$$

$$\geq \frac{2 + f_n(x) - f_n^2(x)}{\sqrt{x + f_n(x)} + f_n(x)}$$

$$= \frac{(2 - f_n(x))(1 + f_n(x))}{\sqrt{x + f_n(x)} + f_n(x)} \geq 0$$

Since $f_n(x)$ is monotonically increasing and bounded above by 2, it converges pointwise to f(x). Moreover, since f_n is continuous for all $n \ge 1$ (each f_n where $n \ge 2$ a composition of continuous functions) [1,2] is compact, by Dini's theorem, f_n converges uniformly to f as $n \to \infty$.

As $\lim_{n\to\infty} f_n(x)$ exists for all $x\in[1,2]$, $\sqrt{x+f_n(x)}$ converges to $\sqrt{x+f(x)}$ since it is a composition of continuous functions. Thus,

$$f_{n+1}(x) = \sqrt{x + f_n(x)} \implies f(x) = \sqrt{x + f(x)} \implies f(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$

2 For $n \ge 1$ let

$$f_n \colon [0,\infty) \to \mathbb{R}, \quad f_n(x) = \frac{nx^2 + 1}{nx + 1}.$$

Study the pointwise and uniform convergence of f_n on each of the intervals $[0,\infty)$, $(0,\infty)$, $[1,\infty)$.

Solution $[0, \infty)$:

When x = 0, we have $f_n(0) = 1$, so $f_n(0) \xrightarrow{n \to \infty} f(0) = 1$.

For x > 0, we have

$$f_n(x) = \frac{x^2 + \frac{1}{n}}{x + \frac{1}{n}} \xrightarrow{n \to \infty} f(x) = \frac{x^2}{x} = x$$

Thus, f(x) is not continuous, so $f_n(x)$ cannot converge uniformly to f(x) on this interval. (0,1):

From the above calculation, we have that $f_n(x) \xrightarrow{n \to \infty} f(x) = x$. Moreover,

$$d(f_n, f) = \sup_{x \in [0, \infty)} |f_n(x) - f(x)| = \sup_{x \in [0, \infty)} \left| \frac{1 - x}{nx + 1} \right| \ge 1$$

Thus, f converges pointwise on $x \in (0, \infty)$, but it does not converge uniformly. $[1, \infty)$:

The calculation from the first case still holds, so we have that f(x) = x. Note that

$$(f_n(x) - x)' = -\frac{n+1}{(nx+1)^2} \le 0$$

so $f_n(x) - x$ is decreasing for all x. So, since $f_n(x) - x \le 0$, $|f_n(x) - x|$ is increasing for all $x \ge 1$. Thus,

$$d(f_n, f) = \sup_{x \in [1, \infty)} |f_n(x) - x| = \lim_{x \to \infty} |f_n(x) - x| = \lim_{x \to \infty} \left| \frac{\frac{1}{x} - 1}{n + \frac{1}{x}} \right| = \frac{1}{n}$$

Then by the Archimedean principle, it is clear that f_n converges uniformly to f on $[1, \infty)$.

3 Given a metric space (X,d), let C(X) denote the set of bounded and continuous functions $f: X \to \mathbb{R}$. For $f,g \in C(X)$, we define

$$d(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$

- a. Prove that (C(X), d) is a metric space.
- b. Show that C(X) is complete, connected, but not compact.

Solution a. C(X) is clearly non-empty. One such function in C(X) is $f(x) \equiv 0$. Then we need to show that d is a metric.

 $d(f,g) \geq 0$ clearly since it is the supremum of an absolute value.

$$d(f,g) = 0 \iff \sup_{x \in X} |f(x) - g(x)| = 0 \iff |f(x) - g(x)| = 0 \iff f(x) = g(x) \ \forall x \in X \iff f = g(x) = f(x) = g(x)$$

$$\begin{split} d(f,g) &= \sup_{x \in X} |f(x) - g(x)| \\ &= \sup_{x \in X} |(f(x) - h(x)) + (h(x) - g(x))| \\ &\leq \sup_{x \in X} |f(x) - h(x)| + \sup_{x \in X} |h(x) - g(x)| = d(f,h) + d(h,g) \end{split}$$

b. Let $\{f_n\}_{n\geq 1}$ be a Cauchy sequence of functions in C(X). Fix $x\in X$. Then $\{f_n(x)\}_{n\geq 1}$ is Cauchy in \mathbb{R} . As \mathbb{R} is complete, $f_n(x)\xrightarrow{n\to\infty} f(x)\in \mathbb{R}$. This applies for all x, so hence, f_n converges pointwise to f. We now show that f belongs to C(X).

To show that f is continuous, since all the f_n are continuous, it suffices to show that they converge uniformly to f.

Fix $\varepsilon > 0$. Then as $\{f_n\}_{n \geq 1}$ is Cauchy, there exists $N_1 \in \mathbb{N}$ such that for all $n, m \geq N$, we have

$$d(f_n, f_m) = \sup_{x \in X} |f_n(x) - f_m(x)| < \frac{\varepsilon}{100}.$$

for all $x \in X$. Taking $m \to \infty$ yields

$$d(f_n, f) = \sup_{x \in X} |f_n(x) - f(x)| \le \frac{\varepsilon}{100} < \varepsilon$$

for all $x \in X$. Thus, $f_n \xrightarrow{n \to \infty} f$ uniformly, so f is continuous on X. Since $f_n \xrightarrow{n \to \infty} f$ uniformly, there exists $N \in \mathbb{N}$ such for all $n \geq N$, we have that

$$d(f_n, f) = \sup_{x \in X} |f_n(x) - f(x)| < 1 \implies 1 - f_n(x) \le f(x) \le 1 + f_n(x)$$

for all $x \in X$. But $f_n(x) \in C(X)$, so there exists M such that $|f_n(x)| \leq M$. Thus,

$$1 - M \le f(x) \le 1 + M$$

so f is bounded. Hence, $f \in C(X)$, so (C(X), d) is complete.

We wish to show that C(X) is connected. Let $f, g \in C(X)$, and define

$$\gamma\colon [0,1]\to C(X),\ \gamma(t)=(1-t)f+tg$$

Note that $\gamma(0) = f$ and $\gamma(1) = g$. It suffices to show that γ is continuous on [0, 1].

Note that for all $t \in [0,1]$, $\gamma(t) \in C(X)$. Indeed, it is continuous because it is a sum and product of continuous functions, and it is bounded because f and g are both bounded. We now wish to prove that γ is continuous.

As g and f are bounded, there exists $M \in \mathbb{R}$ such that $|f(x)| \leq \frac{M}{2}$ and $|g(x)| \leq \frac{M}{2}$ for all $x \in X$.

Fix $\varepsilon > 0$, $t_0 \in [0,1]$, and choose $\delta = \frac{\varepsilon}{2M}$. Then if $|t - t_0| < \delta$, we have

$$\begin{split} d(\gamma(t),\gamma(t_0)) &= \sup_{x \in X} |\gamma(t)(x) - \gamma(t_0)(x)| \\ &= \sup_{x \in X} |(1-t)f(x) + tg(x) - (1-t_0)f(x) - t_0g(x)| \\ &= \sup_{x \in X} |f(x)(t_0-t) + g(x)(t-t_0)| \\ &= |t-t_0| \sup_{x \in X} |g(x) - f(x)| \\ &\leq |t-t_0| \left(\sup_{x \in X} |g(x)| + \sup_{x \in X} |f(x)|\right) \\ &\leq \frac{\varepsilon}{2M} \cdot M < \varepsilon \end{split}$$

Thus, C(X) is path connected $\implies C(X)$ is connected.

Lastly, C(X) is not compact. Consider the sequence $\{f_n\}_{n\geq 1}$ with $f_n\equiv n$. The sequence clearly does not admit a convergent subsequence, so C(X) is not sequentially compact $\implies C(X)$ is not compact.

4 Consider the subset of C([0,1]) defined as follows:

$$X = \{f : [0,1] \to \mathbb{R} \mid f(0) = 0 \text{ and } |f(x) - f(y)| \le |x - y|\}.$$

Prove that X is compact.

Solution We first show that X is uniformly bounded. Let $f \in X$. Then $|f(x) - f(0)| = |f(x)| \le |x - 1| \le 1$ for all $x \in [0, 1]$. Thus, X is uniformly bounded.

We now show that X is equicontinuous. Fix $\varepsilon > 0$ and choose $\delta = \frac{\varepsilon}{2}$. Then for all $f \in X$ and all $x, y \in [0, 1]$ with $|x - y| < \delta$,

$$|f(x) - f(y)| \le |x - y| \le \frac{\varepsilon}{2} < \varepsilon$$

Thus, X is equicontinuous.

Hence, by Arzelà–Ascoli, X is sequentially compact $\implies X$ is compact.

- **5** Let X and Y be two metric spaces and let $f: X \to Y$ be a function. Assume A and B are open subsets of X such that f is continuous on A and f is continuous on B.
 - a. Show that f is continuous on $A \cup B$.
 - b. Is this result still true if A and B were both closed subsets of X?
 - c. Is the result true for the union of an infinite number of open sets?
 - d. Is the result true for the union of an infinite number of closed sets?
- **Solution** a. Let $x_0 \in A \cup B$. Assume without loss of generality that $x_0 \in A$. Fix $\varepsilon > 0$

Then as A is open, there exists δ_1 such that $B_{\delta_1}^X(x_0) \subseteq A$. As f is continuous on A, there exists δ_2 such that for all $x \in B_{\delta_2}^X(x_0) \cap A$, we have $f(x) \in B_{\varepsilon}^Y(f(x_0))$. Choose $\delta = \min\{\delta_1, \delta_2\}$. The $B_{\delta}^X(x_0) \subseteq A$, so for all $x \in A \cup B$ such that $x \in B_{\delta}^X(x_0)$, we have $f(x) \in B_{\varepsilon}^Y(f(x_0))$.

We can apply the same argument, but with A and B switched. Hence, f is continuous on $A \cup B$.

b. Yes. Let $x_0 \in A \cup B$. Assume without loss of generality that $x \in A$.

Let $\{x_n\}_{n\geq 1}\subseteq A\cup B$ be such that $x_n\xrightarrow{n\to\infty}x_0$. Let $\{a_n\}_{n\geq 1}$, where a_n is the subsequence containing all x_n such that $x_n\in A$. Similarly, let $\{b_n\}_{n\geq 1}$ be the subsequence containing all x_n such that $x_n\in A$. If $\{b_n\}_{n\geq 1}$ has finitely many terms, then there exists $N\in\mathbb{N}$ such that if $n\geq N$, $x_n\in A$. Then $f(x_n)\xrightarrow{n\to\infty}f(x_0)$, since f is continuous on A.

If $\{a_n\}_{n\geq 1}$ has finitely many terms, then we can apply the same argument as above with a_n , b_n and A, B switched.

If both subsequences have infinitely many terms, then we have that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = x_0$ by uniqueness of limits, so $x_0 \in A \cap B$. Then as f is continuous on both A and B, we have that

$$\left.\begin{array}{c}
a_n \xrightarrow{n \to \infty} x_0 \\
b_n \xrightarrow{n \to \infty} x_0
\end{array}\right\} \implies x_n \xrightarrow{n \to \infty} x_0$$

Hence f is continuous $A \cup B$.

- c. Yes. We can apply the same argument: x_0 must belong to one open set, say A, so we can fit an open ball in A. As f is continuous on A, we can make δ small enough so that $B_{\delta}^X(x_0) \subseteq A$ and $f(B_{\delta}^X(x_0)) \subseteq B_{\varepsilon}^Y(f(x_0))$.
- d. No. Consider $f: \mathbb{R} \to \mathbb{R}$, with f(0) = 0 and f(x) = 1 otherwise. Then f is continuous on $\{0\}$ and $\left[\frac{1}{n}, \infty\right)$ for all $n \ge 1$.

But $\{0\} \cup \bigcup_{n=1}^{\infty} \left[\frac{1}{n}, \infty\right) = [0, \infty)$, and f is clearly not continuous at x = 0.

- **6** Let $f: [0,1] \to \mathbb{R}$ be a function with Darboux's property such that for any $y \in \mathbb{R}$, the set $f^{-1}(\{y\})$ is closed. Prove that f is continuous.
- **Solution** Suppose f is discontinuous at $x_0 \in [0,1]$. Then there exists $\varepsilon_0 > 0$ such that for all $\delta > 0$, there exists x_δ such that $|x_0 x_\delta| < \delta$ but $|f(x_0) f(x_\delta)| \ge \varepsilon_0$. Assume without loss of generality that this implies

$$f(x_{\delta}) \ge \varepsilon_0 + f(x_0)$$

If we parametrize δ as $\frac{1}{n}$, then we get a sequence $\{x_n\}_{n\geq 1}$ with $x_n \xrightarrow{n\to\infty} x_0$ and $f(x_n) \geq \varepsilon_0 + f(x_0)$.

As $f(x_0) < \varepsilon_0 + f(x_0) \le f(x_n)$, then by the Darboux property, there exists $y_n \in (x_n, x_0)$ (or $y_n \in (x_0, x_n)$ if $x_n > x_0$) such that $f(y_n) = \varepsilon_0 + f(x_0)$. Note that $y_n \xrightarrow{n \to \infty} x_0$ also.

Since $\{y_n\}_{n\geq 1}\subseteq f^{-1}(\{\varepsilon_0+f(x_0)\})$ closed, we have that $y_n\xrightarrow{n\to\infty}x_0\in f^{-1}(\{\varepsilon_0+f(x_0)\})$ by completeness and uniqueness of limits. But this implies that $f(x_0)=\varepsilon_0+f(x_0)=f(x_0)$, which is a contradiction. Hence, f is continuous.

In the case that $f(x_{\delta}) \leq -\varepsilon_0 + f(x_0)$, the same argument applies, but with inequalities switched around.

- 7 Let $f, g: [a, b] \to [a, b]$ be two continuous functions such that $f \circ g = g \circ f$. Show that there exists $x_0 \in [a, b]$ such that $f(x_0) = g(x_0)$.
- **Solution** Assume $f(x) \neq g(x)$ for all $x \in [a, b]$. Assume without loss of generality that f(x) < g(x).

By Brouwer's fixed point theorem, there exists $x_0 \in [0,1]$ such that $f(x_0) = x_0$. Then define

$$x_1 = g(x_0) = g(f(x_0)) = f(g(x_0)) = f(x_1)$$

 $x_2 = g(x_1) = g(f(x_1)) = f(g(x_1)) = f(x_2)$

Repeating this process inductively yields a sequence $\{x_n\}_{n\geq 1}$ such that

$$x_{n+1} = g(x_n)$$
$$x_n = f(x_n)$$

for all $n \ge 1$. Also, as g(x) > f(x), we have that $x_{n+1} = g(x_n) > f(x_n) = x_n$. So x_n is monotonically increasing. Moreover, as each $x_n \in [a,b]$, x_n is bounded above by a. Thus, the sequence must converge. Call its limit x. Since [a,b] is compact, we have by uniqueness of limits that $x \in [a,b]$. Since f and g are continuous on [a,b], we have

$$\lim_{n \to \infty} g(x_n) = g(x) = f(x) = \lim_{n \to \infty} f(x_n)$$

as desired.

If g(x) < f(x), then the argument would be the same, but x_n would be decreasing instead. However, it would be bounded below by a and we would get the same result.