

Global United Technology Services Co., Ltd.

Report No.: GTS201903000162F01

FCC REPORT

Applicant: Computime Ltd.

Address of Applicant: 6/F, Bldg 20E, Phase 3, Hong Kong Science Park, 20

Science Park East Ave, Shatin, New Territories, Shatin, Hong

Kona

Computime Electronics (Shenzhen) Company Limited Manufacturer/Factory:

Address of Yuekenguangyu Industrial Park, Kanggiao Road 88#,

Danzhutou Community, Nanwan Street office, Longgang Manufacturer/Factory:

District, Shenzhen, China.

Equipment Under Test (EUT)

Product Info: ZigBee-Ready RF Transceiver

Model No.: CTL2607

FCC ID: 2AAUQ-CTL2607

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: March 05, 2019

Date of Test: March 06- March 14, 2019

Date of report issued: March 15, 2019

PASS * Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Report No.	Version No.	Date	Description
GTSE15070148201	00	September 11, 2015	Original
GTS201903000162F01	01	March 15, 2019	Decrease output power

Prepared By:	Tiger. Cha	Date:	March 15, 2019
	Project Engineer	_	
Check By:	Reviewer	Date:	March 15, 2019

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	100	NTENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	7
	5.6	ADDITIONAL INSTRUCTIONS	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED PEAK OUTPUT POWER	11
	7.3	CHANNEL BANDWIDTH	13
	7.4	Power Spectral Density	
	7.5	BAND EDGES	
	7.5.		
	7.5.2		
	7.6	Spurious Emission	
	7.6.		
	7.6.2		
8	TES	T SETUP PHOTO	43
۵	ELIT	CONSTRUCTIONAL DETAILS	43

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes	
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)	
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)	
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)	
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB				
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

• • • • • • • • • • • • • • • • • • •	
Product Info:	ZigBee-Ready RF Transceiver
Model No.:	CTL2607
Serial No.:	DNT2183-1917-00001
Test sample(s) ID:	GTS201903000162-1
Sample(s) Status	Engineer sample
Hardware version:	CTL2607 REV1.0
Software version:	MCU:WTS10U190411,
	zigbee: em260-spi-ecc-with-standalone-bootloader_4.3.hex
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	PCB Antenna
Antenna gain:	-0.32dBi (Declared by manufacturer)
Power supply:	DC 3.0V
i owoi cappiy.	20 0.0 0

Operation Frequency each of channel								
Channel Frequency Channel Frequency Channel Frequency Chan						Channel	Frequency	
11	2405MHz	15	2425MHz	19	2445MHz	23	2465MHz	
12	2410MHz	16	2430MHz	20	2450MHz	24	2470MHz	
13	2415MHz	17	2435MHz	21	2455MHz	25	2475MHz	
14	2420MHz	18	2440MHz	22	2460MHz	26	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2440MHz
The Highest channel	2475MHz and 2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
MEILI	DC POWER SUPPLY	MCH-305A	011121168

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional instructions

Software (Used for test) from client

Test software Built-in by manufacturer, power set default

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 27 2018	June. 26 2019

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019		
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is -0.32dBi, Reference to the appendix II for details.

7.2 Conducted Peak Output Power

Measurement Data

Frequency (MHz)	Peak Output Power (dBm)	Limit(dBm)	Result
2405	9.72		
2440	10.13	20	PASS
2475	10.13	30	PASS
2480	0.87		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

2405MHz

#VBW 8 MHz

Span 10 MHz eep 1 ms (601 pts)

2440MHz 2480

≢Res BN 3 MH:

Copyright 2000-2012 Agilent Techno

7.3 Channel Bandwidth

Measurement Data

Frequency (MHz)	Channel Bandwidth (MHz)	Limit(KHz)	Result
2405	1.620		
2440	1.608	. 500	Dana
2475	1.586	>500	Pass
2480	1.566		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

2405MHz

2475MHz

2440MHz 2480MHz

7.4 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm/3kHz)	Result	
2405	-4.75			
2440	-4.30	9.00	Door	
2475	-4.88	8.00	Pass	
2480	-15.03			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

2405MHz

2440MHz 2480MHz

7.5 Band edges

7.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

Highest channel(2475MHz)

Highest channel(2480MHz)

7.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to					
	2500MHz) data was showed.					
Test site:	Measurement D	istance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above 4CH=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	RMS	1MHz	3MHz	Average	
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Value	
	Above 1	CH-	54.0	0	Average	
	Above	GHZ	74.0	0	Peak	
	Tum Table	7 1 1		Antenna Am > Preamplifie		
Test Procedure:	determine the 2. The EUT was antenna, whis tower. 3. The antenna ground to des horizontal an measuremen 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Bas 6. If the emission limit specified the EUT wou 10dB margin average met 7. The radiation And found th	ta 3 meter case position of the position of the set 3 meters che was mount theight is varietermine the moderation of the moderation of the set of the moderation of the set of the moderation of	mber. The taken he highest races away from the ted on the toped from one maximum value arizations of the tion, the EUT tuned to height and from 0 decorated from 10 decorated	ole was rotate liation. The interference of a variable of a variable of the field see antenna are was arranged onts from 1 magness to 360 mode. The description of the mode was 10 mode was 10 mode was 10 mode and the me emissions one using period in X, Y, Z is worse case of the interference of the mode was 10 mode in X, Y, Z is worse case of the interference of the mode was 10 mode in X, Y, Z is worse case of the interference of the interfere	ed 360 degrees to be-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find anction and DdB lower than the peak values of a that did not have eak, quasi-peak or	

Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel: 2405MHz

Horizontal:

Vertical:

Test channel: 2475MHz

Horizontal:

Vertical:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
2483.500	29.32	27.66	5. 47	24.80	37.65	54.00	-16.35	Average
2483.500	39.41	27.66	5. 47	24.80	47.74	74.00	-26.26	Peak
2500.000	20.91	27.70	5. 49	24.86	29.24	54.00	-24.76	Average
2500.000	32.43	27.70	5. 49	24.86	40.76	74.00	-33.24	Peak

Test channel: 2480MHz

Horizontal:

Vertical:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 26 of 43

7.6 Spurious Emission

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel (2475MHz)

30MHz~25GHz

Highest channel (2480MHz)

30MHz~25GHz

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector		RBW		Value	
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600H	z Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KI	Ηz	30KH	z Quasi-peak	
	30MHz-1GHz	Qı	uasi-peak	100k	Ήz	300KF	Iz Quasi-peak	
	Ab 2002 4 OLL-		Peak	1MI	Ηz	3MHz	z Peak	
	Above 1GHz		Peak	1MHz		10Hz	Average	
Limit: (Spurious Emissions)	Frequency 0.009MHz-0.490MHz		Limit (uV/m)		Value		Measurement Distance	
(2400/F(KHz)		QP		300m	
	0.490MHz-1.705MH		Iz 24000/F(KHz)		QP		300m	
	1.705MHz-30MHz		30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz	<u> </u>	150		QP			
	216MHz-960MH	Z	200		QP		3m	
	960MHz-1GHz		500	500		QP	3111	
	Above 1GHz		500		Average			
			5000		Peak			
Limit: (band edge)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.							

	antenna, tower.	which was m	nounted on th	e top of a va	riable-height	antenna
	3. The antenna height is varied from one meter to four meters above to ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make measurement.					
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.					
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.					
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					
Test mode: Test environment: Test voltage:	Bandwid 6. If the em limit spec EUT wou margin w average Refer to sec Refer to sec Temp.: AC 120V, 6	th with Maximission level oblified, then tealed be reported would be re-teamethod as spection 6.0 for detail 25 °C	num Hold Mo f the EUT in p sting could be d. Otherwise sted one by c pecified and the etails	de. Deak mode we stopped and the emission one using peaken reported	vas 10dB low d the peak vans that did no ak, quasi-pea in a data she	er than the alues of the thave 10 ak or eet.

Measurement data:

■ Below 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ Below 1GHz

Horizontal:

Vertical:

■ Above 1GHz

Test channel:	Lowest
---------------	--------

Horizontal:

Vertical:

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle

Horizontal:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
4880.000	26.02	31.48	8.66	37.75	28.41	54.00	-25.59	Average
4880.000	34.44	31.48	8.66	37.75	36.83	74.00	-37.17	Peak
7320.000	22.27	36.17	11.72	35.60	34.56	54.00	-19.44	Average
7320.000	31.94	36.17	11.72	35.60	44.23	74.00	-29.77	Peak
9760.000	22.29	38.07	14.25	35.03	39.58	54.00	-14.42	Average
9760.000	30.91	38.07	14.25	35.03	48.20	74.00	-25.80	Peak -
12200.000	23.16	38.62	15.14	36.31	40.61	54.00	-13.39	Average
12200.000	31.26	38.62	15.14	36.31	48.71	74.00	-25.29	Peak

Vertical:

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest(2475MHz)

Horizontal:

Vertical:

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel: Highest(2480MHz)

Horizontal:

Vertical::

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----