Introducción PyArt

Visualización de variables de un radar de doble polarización

Introducción al manejo de datos de radar meteorológico

Para esta actividad práctica se cuenta con una Notebook de Python que les permitirá leer, explorar y graficar datos de radar.

Para el análisis se les proveerá de dos archivos en formato CF/Radial:

Caso 1: 15/01/2011@1820Z, radar meteorológico EEA INTA Anguil (La Pampa) http://wrd.mgm.gov.tr/db/radar-details.aspx?l=en&r=2980

Caso 2: 15/02/2010@2110Z, radar meteorológico EEA INTA Anguil (La Pampa) http://wrd.mgm.gov.tr/db/radar-details.aspx?l=en&r=2980

Ambos corresponden a un escaneo en volumen con un rango máximo de 240 kilómetros.

Repetir el análisis para ambos casos.

- 1. Utilizando la herramienta Py-ART realizar la lectura del archivo y ubicar si contenido en una estructura llamada "radar". Explorar el contenido del objeto mediante la sentencia radar.info().
- 2. Graficar el esquema de escaneo del radar de Anguil con el que fue generado este set de datos (azimuth y elevación de antena). Extraer los valores de cada elevación y calcular la altura del haz en función de la distancia al radar asumiendo el modelo 4a/3.
- 3. Generar una figura con paneles múltiples que muestre los PPI de las primeras cuatro elevaciones para la variable reflectividad horizontal.
- 4. Seleccionar un sector de la imagen con presencia de celdas convectivas y generar una figura de cuatro paneles correspondiente a los PPI de 0.5°, 2°, 3° y 5° para las variables disponibles.
- 5. A partir del análisis del ítem 4), identificar una dirección apropiada (radial o azimut) y generar una figura con cuatro paneles que contengan los cortes verticales de las variables disponibles.