March 11, 2015

(a) A mean zero unit variance random variable X has a Laplace distribution if its pdf is $f(x) = \frac{1}{2}e^{-|x|}$.

Algorithm to generate such random variable:

- ▶ $u \sim U(0,1)$
- ▶ $X \sim F_U^{-1}(u)$, where

$$F_X(x) = \begin{cases} 1 - \frac{1}{2}e^{-x}, & x \ge 0\\ \frac{1}{2}e^{-x}, & x < 0 \end{cases}$$

$$F_U^{-1}(u) = \begin{cases} \log(2u), \ 0 < u \le \frac{1}{2} \\ -\log(2(1-u)), \ \frac{1}{2} \le u < 1. \end{cases}$$

(b) Algorithm to generate $Y \sim N(\mu, \sigma)$ random variables using the result above.

Assume that there exists $\epsilon \in (0,1]$ such that $\epsilon \frac{f_Y(X_k)}{f_X(X_k)} \leq 1$.

Algorithm (Acceptance-Rejection)

- ▶ Set k=1
- Sample two independent random variables X_k and $U_k \sim U(0,1)$
- If $U_k \leq \epsilon \frac{f_Y(X_k)}{f_X(X_k)}$, then accept $Y = X_k$ as sample from $N(\mu, \sigma)$. Otherwise, reject X_k , increment k by 1 and go back to previous step.

(c) Let U and V be two independent standard Gaussian random variables. Prove that the ratio $\frac{U}{V}$ is a Cauchy random variable.

Proof Let $Z = \frac{U}{V}$ then cdf of Z is given by

$$F_{Z}(z) = P(\frac{U}{V} \le z),$$

$$= P(U \le zV | V > 0) + P(U \ge zv | V < 0),$$

$$= \int_{0}^{\infty} \left(\int_{-\infty}^{zv} f_{U}(u) \right) f_{V}(v) dv + \int_{-\infty}^{0} \left(\int_{zv}^{-\infty} f_{U}(u) \right) f_{V}(v) dv.$$

Then, the pdf of Z is given by

$$f_{Z}(z) = \frac{dF_{Z}(z)}{dz},$$

$$= \int_{0}^{\infty} v f_{U}(zv) f_{V}(v) dv + \int_{-\infty}^{0} v f_{U}(zv) f_{V}(v) dv,$$

$$= 2 \int_{0}^{\infty} v f_{U}(zv) f_{V}(v) dv = \frac{1}{\pi(1+z^{2})}$$

- (c) Algorithm to generate Cauch random variavle:
 - ► Generate samples from independent standard Gaussian random variables U and V.
 - ▶ Compute the samples $Z = \frac{U}{V}$.

(a) Consider the Nadaraya-Watson estimator $\hat{g}(x)$ for E[Y|X=x] which is derived as following:

$$g(x) = E[Y|X = x] = \frac{\int yf(y,x)dy}{f(x)},$$

using the KDE for both f(y,x) and f(x)

$$\hat{f}(y,x) = \frac{1}{n} \sum_{i=1}^{n} \kappa_h(y - Y_i) \kappa_H(x - X_i),$$

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \kappa_H(x - X_i),$$

and the fact that $\int z \kappa_h(z) dz = 0$, we obtain

$$\hat{g}(x) = \frac{\sum_{i=1}^{n} \kappa_H(x - X_i) Y_i}{\sum_{i=1}^{n} \kappa_H(x - X_i)}.$$

(a) Optimal rate of convergence Note we have

$$Y_i = g(X_i) + \epsilon_i,$$

$$Y_i = g(x) + (g(X_i) - g(x)) + \epsilon_i,$$

where $E(\epsilon_i|X_i)=0$ and $E(\epsilon_i^2|X_i=x)=\sigma^2(x)$. Therefore, the estimator can be written as

$$\hat{g}(x) = g(x) + \frac{\hat{m}_1(x)}{\hat{f}_X(x)} + \frac{\hat{m}_2(x)}{\hat{f}(x)},$$

where

$$\hat{m}_1(x) = \frac{1}{n} \sum_{i=1}^n \kappa_H(x - X_i)(g(X_i) - g(x)),$$

$$\hat{m}_1(x) = \frac{1}{n} \sum_{i=1}^n \kappa_H(x - X_i)\epsilon_i.$$

(a) Optimal rate of convergence If d = 1, we can show that

$$E(\hat{m}_1(x)) = \frac{1}{h} \int k \left(\frac{x-u}{h}\right) (g(u) - g(x)) f(u) du$$

$$= \int k(z) (g(x+hz) - g(x)) f(x+hz) dz$$
(Taylor expansion)
$$= h^2 B(x) f(x) \int k(z) z^2 dz + o(h^2),$$

where $B(x) = \frac{1}{2}g''(x) + \frac{g'(x)}{f(x)}f'(x)$. Similarly, we can obtain $Var(\hat{m}_1(x)) = O(\frac{1}{nh})$.

(a) Optimal rate of convergence

$$E(\hat{m}_2(x)) = 0,$$

$$Var(\hat{m}_2(x)) = \frac{1}{nh^2} \int k \left(\frac{x-u}{h}\right)^2 \sigma^2(u) f(u) du$$

$$= \frac{1}{nh} \int k(z) \sigma^2(x+hz) f(x+hz) dz$$
(Taylor expansion)
$$= \frac{\sigma^2(x) f(x)}{nh} \int k(z)^2 dz + o(h^2),$$

The asymptotic mean square error(AMSE) when d=1 is

$$\left(h^2B(x)\right)^2\left(\int k(z)z^2dz\right)^2+\frac{\sigma(x)^2f_X(x)}{nh}\left(\int k(z)^2dz\right).$$

(a) Optimal rate of convergence In General, the asymptotic mean square error(AMSE) is given by

$$\left(\sum_{j=1}^d h_j^2 B_j(x)\right)^2 \left(\int k(z)z^2 dz\right)^2 + \frac{\sigma(x)^2 f_X(x)}{n|H|} \left(\int k(z)^2 dz\right)^d,$$

where $B_j(x) = \frac{1}{2} \partial_{x_j}^2 g(x) + f(x)^{-1} \partial_{x_j} g(x) \partial_{x_j} f(x)$ and the optimal value for h is proportional to $N^{-\frac{1}{d+4}}$.