<u>Alternate Solution (Not taking induced emf into consideration)</u>:

If induced emf is not taken into account, there is no induced current, so the net force acting on the combined mass of the young man and rod is

 $F_{N} = BIL - mg\sin\theta .$

0.2 BIL $0.2 mg \sin \theta$

0.1

And we have instead

where

 $dv/dt = \alpha,$ $\alpha = BIL/m - g\sin\theta.$

 $v(t) = \alpha t$

and $v_s = v(t_s) = \alpha t_s$

 $t_f = \frac{2v_s \sin \dot{e}}{g} = \frac{2\alpha t_s \sin \dot{e}}{g}.$

 $\iota_f = \frac{}{g} = \frac{}{g}$ Therefore,

 $w = (v_s \cos \dot{e})t_f = \frac{\alpha^2 t_s^2 \sin 2\dot{e}}{\sigma},$

giving

 $t_s = \frac{1}{\alpha} \sqrt{\frac{gw}{\sin 2\dot{e}}}$ 0.5

and

 $t_f = \sqrt{\frac{2w\tan\theta}{g}} \ . \tag{0.5}$

Hence,

$$T = t_s + t_f = \frac{1}{\alpha} \sqrt{\frac{gw}{\sin 2\dot{e}}} + \sqrt{\frac{2w \tan \theta}{g}} = \frac{\sqrt{wg}}{\alpha} \left[\frac{1 + 2\left(\frac{\alpha}{g}\right) \sin \theta}{\sqrt{\sin 2\dot{e}}} \right].$$

where $\alpha = BIL/m - g\sin\theta$.

The values of the parameters are: B=10.0 T, I= 2424 A, L=2.00m, R=1.0 Ω , g=10 m/s², m=80 kg, and w=1000 m. Then,

 $T = \frac{100}{\alpha} \frac{\left[1 + 0.20\alpha \sin \theta\right]}{\sqrt{\sin 2\dot{e}}}$ where $\alpha = 606 - 10\sin \theta$

0.3

2

For θ within the range (~0, 0.52) radian the time *T* is within 11 s.

However, there is another constraint, i.e. the length of rail D. Let D_s be the distance travelled during the time interval t_s

$$D_s = \frac{gw}{2\alpha \sin 2\theta} = \frac{5000}{\alpha \sin 2\theta}$$

which is plotted below

It is necessary that $D_s \le D$, which means θ must range between 0.11 and 1.43 radians.

In order to satisfy both conditions, θ must range between 0.11 & 0.52 radians.

Labeling:	
0.1 each axis	
Unit:	
0.1 each axis	
Proper Range in	
θ:	
0.1 lower limit	
(more than 0,	
less than 0.5),	
0.2 upper limit	
(more than 0.52	
and less than 0.8)	
Proper shape of	
curve: 0.2	
Accurate	
intersection at	
$\theta = 0.52$: 0.4	1.3
Labeling:	
0.1 each axis	
Unit:	
0.1 each axis	
Proper Range in	
θ:	
0.1 lower limit	
(more than 0.08,	
less than 0.11),	

Accurate intersection at $\theta = 0.11:0.4$

0.1 upper limit

(more than 0.52 and less than 1.5)

Proper shape of curve: 0.2

0.5

1.2

Question 3 - Marking Scheme

(a) Since
$$W(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/(2RT)}$$
,

$$\bar{v} = \int_0^\infty v \ W(v) \ dv =$$

$$= \int_0^\infty v \ 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/(2RT)} \ dv$$

$$= \int_0^\infty 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \int_0^\infty v^3 e^{-Mv^2/(2RT)} \ dv$$

$$= 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \int_0^\infty v^3 e^{-Mv^2/(2RT)} \ dv$$

$$= 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} \frac{4R^2T^2}{2M^2}$$

$$= \sqrt{\frac{8RT}{\pi M}}$$

Marking Scheme:

Performing the integration correctly: Simplifying

1 mark 0.5 marks

Subtotal for the section

1.5

<u>marks</u>

(b) Assuming an ideal gas, PV = NkT, so that the concentration of the gas molecules, n, is given by

$$n = \frac{N}{V} = \frac{P}{k T}$$

the impingement rate is given by

$$J = \frac{1}{4} n \overline{v}$$

$$= \frac{1}{4} \frac{P}{k T} \sqrt{\frac{8 R T}{\pi M}}$$

$$= P \sqrt{\frac{8 R T}{16 k^2 T^2 \pi M}}$$

$$= P \sqrt{\frac{N_A k}{2 k^2 T \pi M}}$$

$$= P \sqrt{\frac{1}{2 k T \pi m}}$$

$$= \frac{P}{\sqrt{2 \pi m k T}}$$

where we have note that $R = N_A$ k and $m = \frac{M}{N_A}$ (N_A being Avogadro number).

Marking Scheme:

Using ideal gas formula to estimate concentration of gas molecules:		0.7
marks		0.4
Simplifying expression:		0.4
marks		
Using $R = N k$, and the formula for m ;	(0.2 mark each)	0.4
marks		
Subtotal for the section		1.5

marks

(c) Assuming close packing, there are approximately 4 molecules in an area of $16 r^2$ m². Thus, the number of molecules in $1 m^2$ is given by

$$n_1 = \frac{4}{16 (3.6 \times 10^{-10})^2} = 1.9 \times 10^{18} \text{ m}^{-2}$$

However at (273 + 300) K and 133 Pa, the impingement rate for oxygen is

$$J = \frac{P}{\sqrt{2 \pi mkT}}$$

$$= \frac{133}{\sqrt{2 \pi \left(\frac{32 \times 10^{-3}}{6.02 \times 10^{23}}\right) (1.38 \times 10^{-23})573}}$$

$$= 2.6 \times 10^{24} \text{ m}^{-2} \text{ s}^{-1}$$

Therefore, the time needed for the deposition is $\frac{n_1}{J} = 0.7 \ \mu s$

The calculated time is too short compared with the actual processing.

Marking Scheme:

Estimation of number of molecules in 1 m ² :	0.4 marks
Calculation the impingement rate:	0.6 marks
Taking note of temperature in Kelvin	0.3 marks
Calculating the time	0.4 marks
Subtotal for the section	1.7

<u>marks</u>

(d) With activation energy of 1 eV and letting the velocity of the oxygen molecule at this energy is v_I , we have

$$\frac{1}{2} m v_1^2 = 1.6 \times 10^{-19} \text{ J}$$

 $\Rightarrow v_1 = 2453.57 \text{ ms}^{-1}$

At a temperature of 573 K, the distribution of the gas molecules is

We can estimate the fraction of the molecules with speed greater than 2454 ms^{-1} using the trapezium rule (or any numerical techniques) with ordinates at 2453, 2453 + 500, 2453 + 1000. The values are as follows:

Velocity, v	Probability, <i>W(v)</i>
2453	1.373 x 10 ⁻¹⁰
2953	2.256 x 10 ⁻¹⁴
3453	6.518 x 10 ⁻¹⁹

Using trapezium rule, the fraction of molecules with speed greater than 2453 ms⁻¹ is given by

fraction of molecules =
$$\frac{500}{2} \left[(0.373 \times 10^{-10}) + (2 \times 2.256 \times 10^{-14}) + (6.518 \times 10^{-19}) \right]$$

 $f = 3.43 \times 10^{-8}$

Thus the time needed for the deposition is given by 0.7 $\mu s/(3.43 \text{ x } 10^{-8})$ that is 20.4 s

Marking Scheme

Computing the value of the cut-off energy or velocity:

marks

Estimating the fraction of molecules

Correct method of final time

Correct value of final time

Subtotal for the section

0.6

marks

2.8

<u>marks</u>

(e) For destructive interference, optical path difference = $2 d = \frac{\lambda'}{2}$ where $\lambda' = \frac{\lambda_{\text{air}}}{n}$ is the wavelength in the coating.

The relation is given by:

$$d = \frac{\lambda_{\text{air}}}{4 n}$$

Plugging in the given values, one gets d = 105 or 105.2 nm.

Derive equation:

Finding the optical path length marks	0.2
Knowing that there is a phase change at the reflection marks	0.5
Putting everything together to get the final expression marks	0.6
Subtotal:	1.3 marks
Computation of <i>d</i> : Getting the correct number of significant figures: Subtotal:	0.6 marks 0.6 marks 1.2 marks
Subtotal for Section	2.5 marks
TOTAL	10 marks