

Agenda

- **01** The Game of Chess
- **02** Setting up the Code
- **03** Building the Engine
 - Minimax Algorithm
 - Alpha-Beta Pruning
 - Further Improvements

The Game of Chess

What is Chess?

- Two-player, zero-sum strategy game
- Turn-based
- Perfect information
- Played on 8x8 board
- Different piece types
- Objective: Checkmate opponents king
- Multiple ways to win or draw

Questions

- Infinitely many possible games?
- Is chess solved?

Initial position

The Game of Chess

What is Chess?

- Two-player, zero-sum strategy game
- Turn-based
- Perfect information
- Played on 8x8 board
- Different piece types
- Objective: Checkmate opponents king
- Multiple ways to win or draw

Questions

- Infinitely many possible games?
- Is chess solved?

Checkmate

The Game of Chess

What is Chess?

- Two-player, zero-sum strategy game
- Turn-based
- Perfect information
- Played on 8x8 board
- Different piece types
- Objective: Checkmate opponents king
- Multiple ways to win or draw

Questions

- Infinitely many possible games? No (drawing rules)
- Is chess solved? No, computer chess is booming!

Checkmate

Setting up the Code

Python-Chess library

- Rules implementation
- Objects:
 - Board
 - Piece
 - Move
- Methods:
 - Legal-move generation
 - Determine game end

Simple Heuristics

Random moves

Make a random legal move

Attacking moves

Look for checkmate → check → capture

Limiting moves

Minimize the opponent's legal moves

		Black				
		Random	Attacking	Limiting		
White	Random	7:82:11	0:79:21	1:51:48		
	Attacking	30:69:1	7:89:4	6:81:13		
	Limiting	43:57:0	9:85:6	4:84:12		

Problem: These engines only see one move ahead. → **Solution: Minimax**

Minimax Algorithm

What is the Minimax Algorithm?

- Adversarial search method from game theory for minimizing the maximum possible loss
- Optimal? Yes, assuming best opponent play for deterministic, fully observable two-playergames → Nash equilibrium
- More complicated scenarios possible
- Requirements: Initial state, Operators,
 Terminal test, Evaluation function

Exemplary chess game tree:

Minimax - Implementation

```
def minimax(board, depth): *
    # check terminal condition
    if board.is game over() or depth == 0:
         return evaluate(board)
    #maximizing player
    if board.turn: # white to move
         max_eval = float('-Inf')
         for move in board.legal_moves:
              evaluation = minimax(board, depth-1)
              max_eval = max(max_eval, evaluation)
         return max eval
    # minimizing player
    else: # black to move
         min eval = float('Inf')
         for move in board.legal moves:
              evaluation = minimax(board, depth-1)
              min eval = min(min eval, evaluation)
              return min eval
```


^{*} Pseudocode

Negamax Algorithm

```
def minimax(board, depth): *
       # check terminal condition
       if board.is game over() or depth == 0:
              return evaluate(board)
       #maximizing player
       if board.turn: # white to move
              max eval = float('-Inf')
              for move in board.legal moves:
                      evaluation = minimax(board, depth-1)
                     max eval = max(max eval, evaluation)
              return max eval
       # minimizing player
       else: # black to move
              min eval = float('Inf')
              for move in board.legal moves:
                     evaluation = minimax(board, depth-1)
                     min eval = min(min eval, evaluation)
                     return min eval
```

* Pseudocode

What is Negamax?

- Variant of Minimax that relies on zero-sum property
- Both players are maximizing, but sign is switching
- Simplified Implementation

```
def negamax(board, color, depth): *
  # check terminal condition
  if board.is_game_over() or depth == 0:
        return color * evaluate(board)

# call negamax recursively with switched color
    max_eval = float('-Inf')
    for move in board.legal_moves:
        evaluation = negamax(board, -color, depth-1)
        max_eval = max(max_eval, -evaluation)
    return max_eval
```

Minimax - Analysis

Algorithmic complexity

- Number of nodes grows exponentially
- Impractical to search complete tree → Specify depth m
- Effective branching factor b ~ 30
 - \rightarrow Time complexity: O(b^m)
 - → Space complexity: O(bm)
- Complexity is highly dependent on position
- Lower bound: Shannon number 10¹²⁰

Speed is determined by two factors: Evaluation function * # evaluation calls

Search depth	Average # of terminal nodes	
1	30	
2	900	
3	27,000	
4	810,000	
5	24 million	
6	729 million	
7	22 billion	
8	656 billion	
9	20 trillion	
10	590 trillion	

Evaluation Function

Considerations

Problem: accuracy vs. speed

My approach:

- Step 1: Convert board to Numpy array
- Step 2: Assign piece values and take sum
- The second step can be sped up with Numba

Possible improvements:

- Speed up also the first step (with Cython)
- Positional aspects (e.g. center control, doubled pawns, knight at the rim is dim)
- Dynamic aspects (e.g. centralize king in endgame)

Speed Improvement with Numba

	Numba		Improve-
	No	Yes	ment
Step 1: Convert_to_numeric()	4.1	N/A	N/A
Step 2: Compute_evaluation()	2.9s	0.28s	90%
Total: evaluate_board()	7.5s	5.2s	30%

Alpha-Beta Pruning

What is it?

- Avoid processing subtrees that have no effect on the search result
- Preserves completeness and optimality of minimax

How does it work?

- Two new parameters:
 - α: the best value for MAX seen so far (used in MIN nodes and assigned to MAX nodes)
 - β: The best value for MIN seen so far (used in MAX nodes and assigned in MIN nodes)
- Prune whenever α ≥ β

Goal of pruning:

Reduce number of evaluations

Alpha-Beta Pruning - Analysis

Algorithmic complexity

- Preserves completeness and optimality
- Complexity depends on move-ordering
- Worst-case: No improvement
- Best-case: time-complexity = $O(b^{m/2})$ → doubles search depth
- Good moves should come first

Move ordering

- Random ordering
- Captures first
- Killer Heuristic (move that caused beta cutoff in sibling node)

53

eval. calls by pruning and ordering:

Depth	No pruning	Pruning No ordering	Pruning Random	Pruning Captures 1st
1	39	39	39	39
2	1,689	243	166	117
3	63,455	5,927	5,762	1,514
4	2,625,675	24,831	38,427	8,762

Alpha-Beta Pruning - Implementation

```
def negamax(self, board, color, depth, alpha, beta): *
    # check terminal condition
    if board.is game over() or depth == 0:
          return color * evaluate(board)
    # random move ordering
     legal moves = list(board.legal_moves)
     random.shuffle(legal moves)
    # call negamax recursively with switched sign
    max_eval = float('-Inf')
    for move in legal moves:
           evaluation = negamax(board, -color, depth-1, -beta, -alpha)
                   max_eval = max(max_eval, -evaluation)
         alpha = max(alpha, max_eval)
         if alpha >= beta:
                   break
    return max eval
```


* Pseudocode

Opening Book and Endgame Tablebase

Opening Book

- Many similar possibilities at beginning of game
- Chess openings are well developed theory
- Save time
- Especially beneficial vs humans

Endgame Tablebase

- Endgames are completely solved because it is manageable with limited number of pieces
- Steer into winning game
- Depth to mate (DTM) vs depth to zero (DTZ)

Further Ideas for Improvement

Possible Improvements:

- Compiled programming language
- Quiescence search (uneven tree development) to prevent horizon effect
- Transposition tables to avoid evaluating the same position multiple times
- More sophisticated evaluation function (positional, dynamic aspects)

Modern Chess Engines:

- Monte Carlo Tree search
- Neural networks
- Reinforcement Learning

Sources

- https://python-chess.readthedocs.io/en/latest/index.html
- https://www.chessprogramming.org/Minimax
- https://www.chessprogramming.org/Negamax
- https://www.chessprogramming.org/Alpha-Beta
- https://www.chessprogramming.org/Move_Ordering
- https://www.chessprogramming.org/Killer_Heuristic
- https://www.chessprogramming.org/Opening_Book
- https://www.chessprogramming.org/Endgame_Tablebases
- https://www.chessprogramming.org/Quiescence_Search
- https://www.freecodecamp.org/news/simple-chess-ai-step-by-step-1d55a9266977/
- https://byanofsky.com/2017/07/06/building-a-simple-chess-ai/
- https://www.youtube.com/watch?v=l-hh51ncgDI&list=WL&index=7&t=0s
- https://www.slideshare.net/RohitVaidya3/how-i-taught-a-computer-to-play-chess
- https://www.slideshare.net/myemon/aiminimax-algorithm-and-alpha-beta-reduction
- https://en.wikipedia.org/Minimax