Optimization and Computational Linear Algebra for Data Science Lecture 2: Linear transformations

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 Linear transformations

Definition 1.1 (Linear transformation)

A function $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear if

- (i) for all $v \in \mathbb{R}^m$ and all $\alpha \in \mathbb{R}$ we have $L(\alpha v) = \alpha L(v)$ and
- (ii) for all $v, w \in \mathbb{R}^m$ we have L(v+w) = L(v) + L(w).

Notice that $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear if and only if $L(\alpha v + w) = \alpha L(v) + L(w)$ for all $v, w \in \mathbb{R}^m$ and all $\alpha \in \mathbb{R}$.

Proposition 1.1

The set $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ of all linear transformations from \mathbb{R}^m to \mathbb{R}^n is a vector space.

Proposition 1.2

If $L: \mathbb{R}^m \to \mathbb{R}^n$ and $M: \mathbb{R}^n \to \mathbb{R}^k$ are two linear transformations, then the composite function $M \circ L: \mathbb{R}^m \to \mathbb{R}^k$ is also linear.

Theorem 1.1 (Equality on a basis implies equality everywhere)

Let L and M be two linear transformations from \mathbb{R}^m to \mathbb{R}^n . Let (v_1, \ldots, v_m) be a basis of \mathbb{R}^m and suppose that for all $i \in \{1, \ldots, m\}$ we have

$$L(v_i) = M(v_i).$$

Then L = M, i.e. L(v) = M(v) for all $v \in \mathbb{R}^m$.

2 Matrix representation

From Theorem 1.1 we know that a linear transformation $L: \mathbb{R}^m \to \mathbb{R}^n$ is uniquely characterized by the image $L(v_1), \ldots, L(v_m)$ of any basis (v_1, \ldots, v_m) of the input space.

We consider the canonical basis (e_1, \ldots, e_m) of \mathbb{R}^m and encode L by a $n \times m$ matrix (that we will write also L) whose columns are $L(e_1), \ldots, L(e_m)$:

$$L = \begin{pmatrix} | & | & | \\ L(e_1) & L(e_2) & \cdots & L(e_m) \\ | & | & | \end{pmatrix} = \begin{pmatrix} L_{1,1} & L_{1,2} & \cdots & L_{1,m} \\ L_{2,1} & L_{2,2} & \cdots & L_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n,1} & L_{n,2} & \cdots & L_{n,m} \end{pmatrix}$$

where we write $L(e_j) = \begin{pmatrix} L_{1,j} \\ L_{2,j} \\ \vdots \\ L_{n,j} \end{pmatrix}$. The matrix L is called the (canonical) matrix of the linear

transformation L. We denote by $\mathbb{R}^{n \times m}$ the set of all $n \times m$ matrices.

Example 2.1 (Homothety). Let $\lambda \in \mathbb{R}$. The mapping (called "homothety of ratio λ ")

$$L: \mathbb{R}^n \to \mathbb{R}^n$$

$$x \mapsto \lambda x$$

is linear. The canonical matrix of L is

$$\begin{pmatrix} \lambda & 0 & 0 & \cdots & 0 \\ 0 & \lambda & 0 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}.$$

In the case where $\lambda = 1$, L is simply the identity, its matrix is called the identity matrix and denoted by

$$\operatorname{Id}_{n} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Definition 2.1 (Matrix product)

Let $L \in \mathbb{R}^{n \times m}$ and $M \in \mathbb{R}^{k \times n}$. The product ML is the $k \times m$ matrix defined by

$$(ML)_{i,j} = \sum_{r=1}^{n} M_{i,r} L_{r,j}$$
 for all $1 \le i \le k$, $1 \le j \le m$.

For $x \in \mathbb{R}^n$, we define the matrix-vector product $Mx \in \mathbb{R}^k$ by

$$(Lx)_i = \sum_{r=1}^n M_{i,r} x_r, \qquad 1 \le i \le k.$$

Notice that this corresponds – if we see the vector $x \in \mathbb{R}^n$ as a $n \times 1$ matrix – to the matrix product between M and x.

Proposition 2.1

Let $M \in \mathbb{R}^{n \times m}$. Then for all $x \in \mathbb{R}^m$, M(x) = Mx.

Proposition 2.2 (Matrix product means composition of linear transformations)

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ and $M: \mathbb{R}^n \to \mathbb{R}^k$ be two linear transformations whose matrices are also denoted by $L \in \mathbb{R}^{n \times m}$ and $M \in \mathbb{R}^{k \times n}$. Then the $k \times m$ matrix ML is the matrix of the linear transformation $M \circ L: \mathbb{R}^m \to \mathbb{R}^k$.

Proposition 2.3

Let $A \in \mathbb{R}^{p \times q}$, $B \in \mathbb{R}^{q \times r}$ and $C \in \mathbb{R}^{r \times s}$. Then

$$(AB)C = A(BC).$$

Proposition 2.4 (Matrix inverse)

Let $M \in \mathbb{R}^{n \times n}$. Assume that there exists a matrix $M^{-1} \in \mathbb{R}^{n \times n}$ such that

$$MM^{-1} = \operatorname{Id}_n$$
 or, such that $M^{-1}M = \operatorname{Id}_n$.

Then $MM^{-1} = M^{-1}M = \operatorname{Id}_n$ and M^{-1} is the unique matrix that verifies this property. We say that M is invertible and the matrix M^{-1} is called the inverse of M.

Remark 2.1. $M \in \mathbb{R}^{n \times n}$ is invertible if and only if the linear transformation associated to M is a bijection. In that case, M^{-1} is the matrix associated to the inverse transformation.

3 Kernel and image

Definition 3.1 (Kernel)

The kernel $\operatorname{Ker}(L)$ (or nullspace) of a linear transformation $L: \mathbb{R}^m \to \mathbb{R}^n$ is defined as the set of all vectors $v \in \mathbb{R}^m$ such that L(v) = 0, i.e.

$$\operatorname{Ker}(L) \stackrel{\text{def}}{=} \{ v \in \mathbb{R}^m \, | \, L(v) = 0 \}.$$

Definition 3.2 (Image)

The image Im(L) (or column space) of a linear transformation $L: \mathbb{R}^m \to \mathbb{R}^n$ is defined as the set of all vectors $u \in \mathbb{R}^n$ such that there exists $v \in \mathbb{R}^m$ such that L(v) = u. Im(L) is also the Span of the columns of the matrix representation of L.

Proposition 3.1

 $\operatorname{Ker}(L)$ and $\operatorname{Im}(L)$ are subspaces of respectively \mathbb{R}^m and \mathbb{R}^n . We have

$$L \text{ injective } \iff \operatorname{Ker}(L) = \{0\}$$

and

$$L \text{ surjective } \iff \operatorname{Im}(L) = \mathbb{R}^m.$$

Application: Solutions of a linear system.

We are interested into solving the system of equations in $x = (x_1, \dots, x_m) \in \mathbb{R}^m$

$$\begin{cases}
 a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_m = y_1 \\
 \vdots \\
 a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_m = y_n
\end{cases}$$
(1)

where $a_{i,j} \in \mathbb{R}$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$. If we define the matrix $A \in \mathbb{R}^{n \times m}$ by $A_{i,j} = a_{i,j}$ the system (1) can be rewritten as

$$Ax = y$$
.

Solving (1) precisely mean « finding the inverse image of y by A ». From the definition of Im(A) we get that **the equation** Ax = y **admits (at least) a solution** x_0 **if and only if** $y \in \text{Im}(A)$.

We suppose now to be in that case. We would now like to know if there are other solutions. Let x be another solution to Ax = y. By subtraction we get

$$A(x - x_0) = y - y = 0.$$

This means that $(x-x_0) \in \text{Ker}(A)$: any solution of Ax = y can therefore be written as $x = x_0 + v$ with $v \in \text{Ker}(A)$. Conversely, one can verify easily that any vector of this form is a solution. We conclude that if the equation Ax = y admits a solution x_0 , then the set of **all** solutions is

$$x_0 + \operatorname{Ker}(A) \stackrel{\text{def}}{=} \{x_0 + v \mid v \in \operatorname{Ker}(A)\}.$$

In particular, x_0 is the unique solution if and only if $Ker(A) = \{0\}$.

