

NOV 21 2002

PATENT & TRADEMARK OFFICE

ATTORNEY DOCKET NO. 14114.0325U2

RECEIVED

NOV 29 2002

TECH CENTER 1600/2900

SEQUENCE LISTING

<110> Rosely M. Zancope-Oliveira
Timothy J. Lott
Leonard W. Mayer
Errol Reiss
George S. Deepe

b1 b2
<120> NUCLEIC ACIDS OF THE M ANTIGEN GENE OF
HISTOPLASMA CAPSULATUM, ANTIGENS, VACCINES, AND ANTIBODIES,
METHODS AND KITS FOR DETECTING HISTOPLASMOSIS

<130> 14114.0325U2

<140> 09/674,195
<141> 2000-10-26<150> PCT/US99/09151
<151> 1999-04-27<150> 60/083,676
<151> 1998-04-30

<160> 13

<170> FastSEQ for Windows Version 4.0

SuB C
<210> 1
<211> 3862
<212> DNA
<213> Histoplasma capsulatum

<220>
<221> misc_feature
<222> 3258
<223> n = g, a, c or t(u)

<400> 1
ggatcctgct ggctccgata actttgcttt atccaagggt ctcggcgaat gccaggtgcc 60
atcgatctat attttgaagt ttatcacctc aatggcttca ccccatgacg caccctttat 120
tttatatttc attcatcttc tctgtggcaa acatgcaggt atgcgagctc tggaccctgg 180
ggtgtggccc ttgatgcata tggtttattt atagccccc ggaagccctg gcctgttaaa 240
tttggacct cctcccccca ttctttccaa acttcgtgcg tccgtttccc attttcccccc 300
tccccatttg ggttccctat aggccactgc gtgctccact caagaagggt cccagtcaat 360
ttggcccta ccctctccaa cactatctgc atatgtaata tatatcgata tctaaactgcc 420
attgattatt tgtcttcttc agcatcttt tgtctcgagc aagcttactc cacgttcaat 480
tcagggggta aaaatgcgggt cgctcaagct tataactcgcc tcggcgggtg ttgtttctgc 540
agcctgtccc tacatgtcag gggagatgcc tagcggtcag aaaggcccccc tcgatcgccg 600
ccatgacact ctctccgacc ctacggacca gtttcttagc aagttttaca ttgacgatga 660
acagtcgggtg ctaacaacgg acgtgggtgg tcccatcgag gaccaacaca gcctgaaggc 720
tggaaataga gggccaaactc tacttgagga ttttatcttc cgccagaaga ttcaacactt 780
tgatcatgag agggtatgtta gataaaaaat atgtgaccgt gttgcaaatac cgctaattca 840
attttacgca ggttcctgag cgccgcgtcc atgctcgagg agctggtgcc catggcgtat 900

tcacatccta taataactgg tcgaatatca cagccgcata cttcttgaac gcggcaggaa 960
 agcagacacc agtattcgtg cggtttctta cagtcgtgg tagcagaggc agtgttact 1020
 ctgctcgca tatccacgga ttgcgacc cgtctgtatac cgtatgaaggc aattttggta 1080
 agcattatat cgtgttagtc atactcataa cagcacaaca aatatgaata caaaccagg 1140
 acctaggctg actactcggc aatgttagata tcgtcgaaa caacgttcca gtcttctca 1200
 ttcaggacgc tattcaattc cctgattga ttcacgctgt caagccgaa ccagacagt 1260
 aaattccccca ggctgcaact gcacatgata cggcatggg tttcctcagc cagcagccc 1320
 gctcattgca tgcccttcc tggcaatgt caggacatgg aatccctcgc tcaatgcgtc 1380
 atgttcatgg gtggggcgtc cataccttcc gacttgcac cgacgaggc aactcgac 1440
 tggtcaagtt tcgctgaaag accctccaag gaagagcggg cctggtatgg gaagaggcac 1500
 aggctctgg cggaaagaat cccgacttcc atcgacaaga cctctggat gccattgaat 1560
 ctggaaaggta ccctgagtgg gaggttaagat atgattcccc caaatcatta gttctgac 1620
 tggttctctg ctctgtcggt tgctctttc gtcttttct atatcttcaa ctaagactga 1680
 ctatataac gtttactca tatagctggg ctttcaattt gtgaatgaag cagatcaatc 1740
 caagtttgat ttgcatttat tagatccac caaaatcatc ccagaagaac ttgttcctt 1800
 caccccaatc gaaaaaatgg ttttgaaccg aaaccaaaa agttattttc ccgaaaactga 1860
 gcagatcatg gttggccac cccttatata ttttgaatata gaatacatgt atagcttagat 1920
 gaagcgtata tctaaatata ttccacagt tccaaaccagg tcatgttagt cgccgaatcg 1980
 atttcacgga tgacccttg ctccaggggcc gcttgtactc ctacccatgc actcaattga 2040
 atcgccatgg aggtccaaac ttccgagcaac tgccgatcaa cagacccccc atcccatcc 2100
 ataacaacaa tcgcacggt gctggtaagg tacttctcac ctaccatgtc aacctccatc 2160
 ttgacccatcg cgtttgtat agagtattaa catccccgtc tgcacaggac aaatgttcat 2220
 ccctctaaac acggccgcat atacacccaa ctcaatgagc aacggattcc cacaacaagc 2280
 caaccggacc cataacagag gattttcac cgcacctggg cgtatggtaa atggaccact 2340
 agtgcgcgag ctccagccga gcttcaacga cgtctgtcc caaccgcgtc tcttctacaa 2400
 ctcactcactg gtcttcgaga agcaattccct cgtcaacgccc atgcgttcc aaaactccca 2460
 cgtgcggagt gaaaccgtgc gtaagaacgt catcatccag ctgaaccgcg tcgacaacga 2520
 cctcgcccgcc cgctcgccgc tagtctcgg cgtcaaccc ccatccccgg accaaacctt 2580
 ctaccacaac aaggcaaccc tccccatcgg cacccatcgg acgaatctcc tgccgctcga 2640
 cgggctgaaa atcgccctcc tgacaagaga cgacggtagc ttcacgatcg cggagcagct 2700
 cggggccgcg ttaaacagcg ccaacaacaa agtagatatac gtcctagtg gctcatcgct 2760
 tgatccccaa cgccggcgta acatgaccta ttccggccgac gacggctcga tcttcgatgc 2820
 cgtatcgatc gtcggccggcc tgctcacgag cgcctcaacg caataacccaa gaggtcgccc 2880
 gctcaggatt attacggatg catacgcgtt tggaaagccc gttggccgcg tcggtgacgg 2940
 tagcaatgaa gcccctcgatc acgtccttat gggcgctgg ggggatgcgt cgaatgggct 3000
 ggaccagccc ggtgtgtata ttccaacga tggatgtgag gcttacgtt gaaatgtt 3060
 ggacggattt acggcatatc ggttcttggaa tcgggtcccg ttggatagaa gcttggatgt 3120
 aggttgggg cgcaaatatg ggttactac ccccccccccc cccctttttt ttttctttt 3180
 ctgtttttcc atctttgggtt gaggtatatac tgcagatatac agtaaattgc gtttacgaaa 3240
 gcccgggtca agcttcanga ggcctaatta atttgaagag gaggttgaag tggaaatctt 3300
 gtgtactat aataatttat aataactaat aacttataat taatgtctat tgtaatttcc 3360
 tctcacattc aatctatatt tgatccttgc ctttgcgtt tggatataa taagccaaga 3420
 gagacaaataa atgatagatt aacaaataat tgcacaccca ataggccttc cctcactgata 3480
 tcagatatta tctatcatgt tggatgtata cctcaaaaat gccacaagct tgcctgatat 3540
 tgaatattta tggatgtaa atgttagggaa gaggttacca tccaaataac cagaaaaacaa 3600
 tggttttagct taaaatctca ctaagggtgg tcgtgtctat ttggatggc tgccggcaagc 3660
 tgactatctg ataaaaatgt ctgtatttcc gcttacgac gcatgtttagt acttgcata 3720
 atagataaaa cctgaacgat ttggcccttg ttggggaaaa taggggttag gggggcgagc 3780
 tacatatcat tcccatatga ccaaaaacta aaatagatataat atatataat atatataat 3840
 acaacacccctt caaaaaggat cc 3862

<210> 2
<211> 707
<212> PRT
<213> Histoplasma capsulatum

<400> 2
Met Pro Ser Gly Gln Lys Gly Pro Leu Asp Arg Arg His Asp Thr Leu
1 5 10 15
Ser Asp Pro Thr Asp Gln Phe Leu Ser Lys Phe Tyr Ile Asp Asp Glu
20 25 30
Gln Ser Val Leu Thr Thr Asp Val Gly Gly Pro Ile Glu Asp Gln His
35 40 45
Ser Leu Lys Ala Gly Asn Arg Gly Pro Thr Leu Leu Glu Asp Phe Ile
50 55 60
Phe Arg Gln Lys Ile Gln His Phe Asp His Glu Arg Val Pro Glu Arg
65 70 75 80
Ala Val His Ala Arg Gly Ala Gly His Gly Val Phe Thr Ser Tyr
85 90 95
Asn Asn Trp Ser Asn Ile Thr Ala Ala Ser Phe Leu Asn Ala Ala Gly
100 105 110
Lys Gln Thr Pro Val Phe Val Arg Phe Ser Thr Val Ala Gly Ser Arg
115 120 125
Gly Ser Val Asp Ser Ala Arg Asp Ile His Gly Phe Ala Thr Arg Leu
130 135 140
Tyr Thr Asp Glu Gly Asn Phe Asp Ile Val Gly Asn Asn Val Pro Val
145 150 155 160
Phe Phe Ile Gln Asp Ala Ile Gln Phe Pro Asp Leu Ile His Ala Val
165 170 175
Lys Pro Gln Pro Asp Ser Glu Ile Pro Gln Ala Ala Thr Ala His Asp
180 185 190
Thr Ala Trp Asp Phe Leu Ser Gln Gln Pro Ser Ser Leu His Ala Leu
195 200 205
Phe Trp Ala Met Ser Gly His Gly Ile Pro Arg Ser Met Arg His Val
210 215 220
Asp Gly Trp Gly Val His Thr Phe Arg Leu Val Thr Asp Glu Gly Asn
225 230 235 240
Ser Thr Leu Val Lys Phe Arg Trp Lys Thr Leu Gln Gly Arg Ala Gly
245 250 255
Leu Val Trp Glu Glu Ala Gln Ala Leu Gly Gly Lys Asn Pro Asp Phe
260 265 270
His Arg Gln Asp Leu Trp Asp Ala Ile Glu Ser Gly Arg Tyr Pro Glu
275 280 285
Trp Glu Leu Gly Phe Gln Leu Val Asn Glu Ala Asp Gln Ser Lys Phe
290 295 300
Asp Phe Asp Leu Leu Asp Pro Thr Lys Ile Ile Pro Glu Glu Leu Val
305 310 315 320
Pro Phe Thr Pro Ile Gly Lys Met Val Leu Asn Arg Asn Pro Lys Ser
325 330 335
Tyr Phe Ala Glu Thr Glu Gln Ile Met Phe Gln Pro Gly His Val Val
340 345 350
Arg Gly Ile Asp Phe Thr Asp Asp Pro Leu Leu Gln Gly Arg Leu Tyr
355 360 365

Ser Tyr Leu Asp Thr Gln Leu Asn Arg His Gly Gly Pro Asn Phe Glu
370 375 380
Gln Leu Pro Ile Asn Arg Pro Arg Ile Pro Phe His Asn Asn Asn Arg
385 390 395 400
Asp Gly Ala Gly Gln Met Phe Ile Pro Leu Asn Thr Ala Ala Tyr Thr
405 410 415
Pro Asn Ser Met Ser Asn Gly Phe Pro Gln Gln Ala Asn Arg Thr His
420 425 430
Asn Arg Gly Phe Phe Thr Ala Pro Gly Arg Met Val Asn Gly Pro Leu
435 440 445
Val Arg Glu Leu Ser Pro Ser Phe Asn Asp Val Trp Ser Gln Pro Arg
450 455 460
Leu Phe Tyr Asn Ser Leu Thr Val Phe Glu Lys Gln Phe Leu Val Asn
465 470 475 480
Ala Met Arg Phe Glu Asn Ser His Val Arg Ser Glu Thr Val Arg Lys
485 490 495
Asn Val Ile Ile Gln Leu Asn Arg Val Asp Asn Asp Leu Ala Arg Arg
500 505 510
Val Ala Leu Ala Ile Gly Val Glu Pro Pro Ser Pro Asp Pro Thr Phe
515 520 525
Tyr His Asn Lys Ala Thr Val Pro Ile Gly Thr Phe Gly Thr Asn Leu
530 535 540
Leu Arg Leu Asp Gly Leu Lys Ile Ala Leu Leu Thr Arg Asp Asp Gly
545 550 555 560
Ser Phe Thr Ile Ala Glu Gln Leu Arg Ala Ala Phe Asn Ser Ala Asn
565 570 575
Asn Lys Val Asp Ile Val Leu Val Gly Ser Ser Leu Asp Pro Gln Arg
580 585 590
Gly Val Asn Met Thr Tyr Ser Gly Ala Asp Gly Ser Ile Phe Asp Ala
595 600 605
Val Ile Val Val Gly Gly Leu Leu Thr Ser Ala Ser Thr Gln Tyr Pro
610 615 620
Arg Gly Arg Pro Leu Arg Ile Ile Thr Asp Ala Tyr Ala Tyr Gly Lys
625 630 635 640
Pro Val Gly Ala Val Gly Asp Gly Ser Asn Glu Ala Leu Arg Asp Val
645 650 655
Leu Met Ala Ala Gly Gly Asp Ala Ser Asn Gly Leu Asp Gln Pro Gly
660 665 670
Val Tyr Ile Ser Asn Asp Val Ser Glu Ala Tyr Val Arg Ser Val Leu
675 680 685
Asp Gly Leu Thr Ala Tyr Arg Phe Leu Asn Arg Phe Pro Leu Asp Arg
690 695 700
Ser Leu Val
705

<210> 3
<211> 8
<212> PRT
<213> Histoplasma capsulatum

<400> 3
Ser Asp Pro Thr Asp Gln Phe Leu
1 5

<210> 4
<211> 15
<212> PRT
<213> Histoplasma capsulatum

<400> 4
Asp Phe Ile Phe Arg Gln Lys Ile Gln His Phe Asp His Glu Arg
1 5 10 15

B1
<210> 5
<211> 9
<212> PRT
<213> Histoplasma capsulatum

<400> 5
Thr Leu Gln Gly Arg Ala Gly Leu Val
1 5

<210> 6
<211> 16
<212> PRT
<213> Histoplasma capsulatum

<400> 6
Ala Gln Ala Leu Gly Gly Lys Asn Pro Asp Phe His Arg Gln Asp Leu
1 5 10 15

<210> 7
<211> 6
<212> PRT
<213> Histoplasma capsulatum

<400> 7
Ser Gly Arg Tyr Pro Glu
1 5

<210> 8
<211> 10
<212> PRT
<213> Histoplasma capsulatum

<400> 8
Phe Asp Phe Asp Leu Leu Asp Pro Thr Lys
1 5 10

<210> 9
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; M antigen-specific oligonucleotide

<400> 9
Ile Ile Pro Glu Glu Leu Val Pro Phe Thr Pro Ile Gly Lys
1 5 10

<210> 10
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; sense amplification primer

<220>
<221> misc_feature
<222> 3
<223> r = a or g

<220>
<221> misc_feature
<222> 6, 12, 15
<223> y = c or t

<220>
<221> misc_feature
<222> 9
<223> v = g, c or a

<400> 10
aaraayccvg aytty

<210> 11
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; anti-sense amplification primer

<220>
<221> misc_feature
<222> 3, 9
<223> n = g, a, c or t(u)

\$1
<220>
<221> misc_feature
<222> 6
<223> d = g or a

<220>
<221> misc_feature
<222> 12
<223> r = a or g

<400> 11
tttnccdatng traa

14

<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; sense cDNA amplification primer

<400> 12
cggaatcctc cgaccctacg ga

22

<210> 13
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; anti-sense cDNA amplification primer

<400> 13
accaagcttc tatccaacgg gaaccga

27