Cluster and Cloud Computing – Lectures 9-10
Cloud Computing &
Professor Richard O. Sinnott & Yao Pan
rsinnott@unimelb.edu.au

Overview

- Cloud benefits
 - Cloud marketing!?
- The various flavours of cloud computing
 - Introduction to #aaS?
- Break
 - Demonstration of University of Melbourne Research Cloud
- Workshops on Thursday/Friday
 - Workshop: Scripting the Cloud and Ansible
 - Pre-recorded, watch videos and Q&A in workshops

Life before cloud computing

Capacity vs Utilization curves 8

Life before cloud computing...ctd

Figure 2. (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c) Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and possible negative press result in a permanent loss of a portion of the revenue stream.

Cloud-busting? (~2009)

- To buy or not to buy that is the question...?
 - ScotGrid (www.scotgrid.ac.uk)

On-Demand Instances United States Europe Standard On-Demand Instances Linux/UNIX Usage Windows Usage 1.7Gb memory/160GB disk \$0.11 per hour \$0.135 per hour 7.5Gb memory/850GB disk \$0.44 per hour \$0.54 per hour \$0.88 per hour \$1.08 per hour 15Gb memory/1690GB disk Linux/UNIX Usage Windows Usage riigii CEO Oli Delliuliu fiistulices Medium \$0.22 per hour \$0.32 per hour Extra Large \$0.88 per hour \$1.28 per hour Amazon Flastic Block Store United States Europe Amazon EBS Volumes \$0.11 per GB-month of provisioned storage \$0.11 per 1 million I/O requests

Data Transfer

Internet Data Transfer

The pricing below is based on data transferred "in" and "out" of Amazon EC2.

Data Transfer In	
All Data Transfer	\$0.10 per GB
Data Transfer Out	
First 10 TB per Month	\$0.17 per GB
Next 40 TB per Month	\$0.13 per GB
Next 100TB per Month	\$0.11 per GB
Over 150 TB per Month	\$0.10 per GB

• \$1=£0.69 (back then!)

Amazon EBS Snapshots to Amazon S3 (priced the same as Amazon S3)

- £0.30*6,700,676 CPU hours
 - = £2,010,202 for just compute on-demand + data + networking + ...?
- Now...???

\$0.18 per GB-month of data stored

\$0.012 per 1,000 PUT requests (when saving a snapshot)
\$0.012 per 10,000 GET requests (when loading a snapshot)

- https://aws.amazon.com/ec2/pricing/

AWS EC2 Pricing (just EC2!)

On demand

 pay for compute capacity used; no long-term commitments; increase/decrease as required

Spot pricing

 when have flexibility in using resources, e.g., get resources to run my jobs when price drops below...

Saving plans

- Longer term arrangements, need to use regularly

Dedicated Hosts

Physical dedicated servers; can use own licensed software

Reserved instances

 for applications with known usage patterns, e.g., fixed reserve resources in given availability zone

Cloud Computing: A Definition

- NIST definition: "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."
 - » National Institute of Standards and Technology (http://dx.doi.org/10.6028/NIST.SP.800-145)
- Focus of today is to get you up and running on the Cloud and explore the technologies related to the underlined
 - Later lecture will do compare/contrast with AWS
 - ...and then how do Clouds actually work (hypervisors etc)

The Most Common Cloud Models

Deployment Models

Delivery Models Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Essential Characteristics

- On-demand self-service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service

Public Clouds

Pros

- Utility computing
- Can focus on core business
- Cost-effective
- "Right-sizing"
- Democratisation of computing

Cons

- Security
- Loss of control
- Possible lock-in
- Dependency of Cloud provider continued existence

Pros

- Control
- Consolidation of resources
- Easier to secure
- More trust

Cons

- Relevance to core business?
 - e.g., Netflix to Amazon
- Staff/management overheads
- Hardware obsolescence
- Over/under utilisation challenges

Hybrid Clouds

Examples

Eucalyptus, VMWare vCloud Hybrid Service

Pros

- Cloud-bursting
 - Use private cloud, but burst into public cloud when needed

Cons

- How do you move data/resources when needed?
- How to decide (in real time?) what data can go to public cloud?
- Is the public cloud compliant with PCI-DSS (Payment Card Industry – Data Security Standard)?

Delivery Models

Separation of Responsibilities

Public SaaS examples

- Ubiquitous to the world we live in...
 - Gmail
 - Sharepoint
 - Salesforce.com CRM
 - On-live
 - Gaikai
 - Microsoft Office 365
 - Some definitions include those that do not require payment, e.g., ad-supported sites

Public PaaS Examples

Cloud Name	Language and Developer Tools	Programming Models Supported by Provider	Target Applications and Storage Options
Google App Engine	Python, Java, Go, PHP + JVM languages (scala, groovy, jruby)	MapReduce, Web, DataStore, Storage and other APIs	Web applications and BigTable storage
Salesforce.com's Force.com	Apex, Eclipsed- based IDE, web- based wizard	Workflow, excel- like formula, web programming	Business applications such as CRM
Microsoft Azure	.NET, Visual Studio, Azure tools	Unrestricted model	Enterprise and web apps
Amazon Elastic MapReduce	Hive, Pig, Java, Ruby etc.	MapReduce	Data processing and e-commerce
Aneka	.NET, stand-alone SDK	Threads, task, MapReduce	.NET enterprise applications, HPC

Infrastructure As A Service (IaaS)

- Primary focus of this course...
- Many providers
 - Amazon Web Services (Market leader)
 - http://aws.amazon.com
 - Oracle Public Cloud
 - https://cloud.oracle.com/
 - Rackspace Cloud
 - www.rackspace.com
 - CenturyLink, CloudSigma, DigitalOcean, DimensionData, GoGrid, Helio, Internap, Joyent, ProfitBricks, Verizon, ...
 - Melbourne Research Cloud/Openstack
 - https://dashboard.cloud.unimelb.edu.au/

UniMelb Research Cloud

- Based on OpenStack
 - Open source cloud technology (more later lecture)
- Many associated/underpinning services
 - Compute Service (code-named Nova)
 - Image Service (code-named Glance)
 - Block Storage Service (code named Cinder)
 - Object Storage Service (code-named Swift)
 - Security Management (code-named Keystone)
 - Orchestration Service (code-named Heat)
 - Network Service (code-named Neutron)
 - Metering Service (code-named Ceilometer)

– ...

Cost Comparison

See also https://www.infoworld.com/article/3237566/cloud-pricing-comparison-aws-vs-azure-vs-google-vs-ibm.html

NeCTAR/ARDC/UniMelb Research Cloud

- National eResearch Collaboration Tools and Resources (NeCTAR – www.nectar.org.au)
 - \$50m+\$10m+\$10m+\$72m (Australian Research Data Commons)... federal funding
 - Originally lead by University of Melbourne
 - Had four key strands
 - National Servers Program
 - Research Cloud Program
 - OpenStack IaaS
 - 4Gb-64Gb (mostly Linux flavours)
 - 30,000 physical servers available across different availability zones
 - » Being upgraded continually!
 - eResearch Tools Program
 - Virtual Laboratories Program
 - Astro,
 - Genomics,
 - Humanities,
 - Climate,
 - Nano-,
 - ...endocrine genomics

Data Infrastructures

- Research Data Services (RDS)
 project to establish data
 storage resources across
 Australia
 - ~100 Petabytes national data storage
 - Victoria Node (VicNode)
 - UniMelb, UniMonash for Vic-wide "nationally significant data sets"
 - Used by many diverse communities

UniMelb Cloud Activities

- Petascale Campus Initiative
 - https://research.unimelb.edu.au/infrastructure /petascale-campus-initiative
- Research Computing Services
 - https://research.unimelb.edu.au/infrastructure /research-computing-services
- Melbourne eResearch Group
 - https://www.eresearch.unimelb.edu.au

UniMelb Research Cloud

BREAK