



*FIG. 1a*



*FIG. 2*







FIG. 3a



FIG. 3b



FIG. 4



FIG. 5



FIG. 6

|   |   |   |   |
|---|---|---|---|
| R | G | R | G |
| G | B | G | B |
| R | G | R | G |
| G | B | G | B |

FIG. 7a

|    |    |    |    |
|----|----|----|----|
| Ye | Cy | Ye | Cy |
| G  | Mg | G  | Mg |
| Ye | Cy | Ye | Cy |
| G  | Mg | G  | Mg |

FIG. 7b

```

If( IN[17]=1 or IN[16]=1) then
    OUT[9..0]=0x3FF;
else
    OUT[9..0]=IN[15..6];
end if;

```

```

If( IN[17]=1 or IN[16]=1 or IN[15]=1) then
    OUT[7..0]=0xFF;
else
    OUT[7..0]=IN[14..7];
end if;

```



FIG. 8





FIG. 10a



FIG. 10b



HORIZONTAL  
INTERPOLATION ↓



NORMAL MODE

$$g_{12} = \frac{-R_{10} + 2G_{11} + 2R_{12} + 2G_{13} - R_{14}}{4}$$

SIMPLE MODE

$$g_{12} = \frac{G_{11} + G_{13}}{2}$$



FIG. 10d

FIG. 10c

## OUTPUT OF HORIZONTAL INTERPOLATION

|     |     |     |
|-----|-----|-----|
| 901 | G02 | 903 |
| B01 | b02 | B03 |

|     |     |     |
|-----|-----|-----|
| r11 | R12 | r13 |
| G11 | g12 | G13 |
|     |     |     |

|     |     |     |
|-----|-----|-----|
| 921 | 922 | 923 |
| B21 | B22 | B23 |

VERTICAL  
INTERPOLATION ↓

|     |     |     |
|-----|-----|-----|
| r01 | r02 | r03 |
| 901 | G02 | 903 |
| B01 | b02 | B03 |

$$b_{12} = \frac{b_{02} + b_{22}}{2}$$

|     |     |     |
|-----|-----|-----|
| r11 | R12 | r13 |
| G11 | g12 | G13 |
| b11 | b12 | b13 |

SIMPLE MODE

|     |     |     |
|-----|-----|-----|
| r21 | r22 | r23 |
| 921 | 922 | 923 |
| B21 | B22 | B23 |

COLOR ADJUSTMENT  
(NORMAL MODE) ↓

|      |      |      |
|------|------|------|
| r̄01 | r̄02 | r̄03 |
| 901  | G02  | 903  |
| B01  | b02  | B03  |

|      |     |      |
|------|-----|------|
| r̄01 | R02 | r̄03 |
| 901  | G02 | 903  |
| B01  | b02 | B03  |

$$\bar{b}_{12} = \frac{b_{02} - G_{02} + b_{22} - G_{22}}{2} - g_{12}$$

|     |     |     |
|-----|-----|-----|
| r11 | R12 | r13 |
| G11 | g12 | G13 |
| b11 | b12 | b13 |

|     |     |     |
|-----|-----|-----|
| r11 | R12 | r13 |
| G11 | g12 | G13 |
| B11 | b12 | B13 |

|      |      |      |
|------|------|------|
| r̄21 | r̄22 | r̄23 |
| 921  | 922  | 923  |
| B21  | B22  | B23  |

|      |     |      |
|------|-----|------|
| r̄21 | R22 | r̄23 |
| 921  | G22 | 923  |
| B21  | b22 | B23  |

FIG. 10e

OUTPUT OF HORIZONTAL INTERPOLATION

|           |           |           |           |           |           |
|-----------|-----------|-----------|-----------|-----------|-----------|
| $Y_{e00}$ | $cy_{00}$ | $y_{e01}$ | $Cy_{01}$ | $Y_{e02}$ | $cy_{02}$ |
|           |           |           |           |           |           |
|           |           |           |           |           |           |
| $G_{10}$  | $mg_{00}$ | $g_{11}$  | $Mg_{11}$ | $G_{12}$  | $mg_{12}$ |
| $Y_{e20}$ | $cy_{20}$ | $y_{e21}$ | $Cy_{21}$ | $Y_{e22}$ | $cy_{22}$ |
|           |           |           |           |           |           |

VERTICAL  
INTERPOLATION ↓

|           |           |           |           |           |           |
|-----------|-----------|-----------|-----------|-----------|-----------|
| $Y_{e00}$ | $cy_{00}$ | $y_{e01}$ | $Cy_{01}$ | $Y_{e02}$ | $cy_{02}$ |
| $g_{00}$  | $mg_{00}$ | $g_{01}$  | $mg_{01}$ | $g_{02}$  | $mg_{02}$ |
| $y_{e10}$ | $cy_{10}$ | $y_{e11}$ | $Cy_{11}$ | $y_{e12}$ | $cy_{12}$ |
| $G_{10}$  | $mg_{10}$ | $g_{11}$  | $Mg_{11}$ | $G_{12}$  | $mg_{12}$ |
| $Y_{e20}$ | $cy_{20}$ | $y_{e21}$ | $Cy_{21}$ | $Y_{e22}$ | $cy_{22}$ |
| $g_{20}$  | $mg_{20}$ | $g_{21}$  | $mg_{21}$ | $g_{22}$  | $mg_{22}$ |

COLOR ADJUSTMENT  
(NORMAL MODE) ↓

|                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $\overline{ye_{00}}$ | $\overline{cy_{00}}$ | $\overline{ye_{01}}$ | $\overline{cy_{01}}$ | $\overline{ye_{02}}$ | $\overline{cy_{02}}$ | $\overline{ye_{00}}$ | $\overline{cy_{00}}$ | $\overline{ye_{01}}$ | $\overline{Cy_{01}}$ | $\overline{ye_{02}}$ | $\overline{cy_{02}}$ |
| $\overline{g_{00}}$  | $\overline{mg_{00}}$ | $\overline{g_{01}}$  | $\overline{mg_{01}}$ | $\overline{g_{02}}$  | $\overline{mg_{02}}$ | $\overline{ye_{10}}$ | $\overline{cy_{10}}$ | $\overline{ye_{11}}$ | $\overline{cy_{11}}$ | $\overline{ye_{12}}$ | $\overline{cy_{12}}$ |
| $\overline{g_{10}}$  | $\overline{mg_{10}}$ | $\overline{g_{11}}$  | $\overline{mg_{11}}$ | $\overline{g_{12}}$  | $\overline{mg_{12}}$ | $\overline{ye_{20}}$ | $\overline{cy_{20}}$ | $\overline{ye_{21}}$ | $\overline{cy_{21}}$ | $\overline{ye_{22}}$ | $\overline{cy_{22}}$ |
| $\overline{g_{20}}$  | $\overline{mg_{20}}$ | $\overline{g_{21}}$  | $\overline{mg_{21}}$ | $\overline{g_{22}}$  | $\overline{mg_{22}}$ |                      |                      |                      |                      |                      |                      |

$$ye_{11} = \frac{ye_{01} + ye_{21}}{2}$$

$$cy_{11} = \frac{Cy_{01} + Cy_{21}}{2}$$

SIMPLE MODE

$$a = g_{11} + Mg_{11} - ye_{11} - cy_{11}$$

$$\overline{ye_{11}} = ye_{11} + \frac{a}{4}$$

$$\overline{cy_{11}} = cy_{11} + \frac{a}{4}$$

$$\overline{g_{11}} = g_{11} - \frac{a}{4}$$

$$\overline{Mg_{11}} = Mg_{11} - \frac{a}{4}$$

FIG. 10f



FIG. 10g



FIG. 10h



FIG. 10i



FIG. 10j



FIG. 10k



FIG. 10l



FIG. 11a



FIG. 11b

FIG. 12a



FIG. 12b



FIG. 12b



FIG. 13a



FIG. 14



FIG. 15





FIG. 19



FIG. 21



FIG. 20



FIG. 22



FIG. 23a



FIG. 23b



FIG. 23c





*FIG. 25*



*FIG. 26*





FIG. 28



FIG. 29



FIG. 30



FIG. 31



FIG. 32



FIG. 33a



FIG. 33b



FIG. 34





FIG. 36a





FIG. 37a



FIG. 37b



FIG. 38



FIG. 39a



FIG. 39b



FIG. 40



FIG. 41a



FIG. 41b



FIG. 42a



FIG. 42b



FIG. 42c



FIG. 42c



FIG. 42d



FIG. 45



FIG. 46a



FIG. 46b



*FIG. 47*



*FIG. 49*



*FIG. 50*





FIG. 48



FIG. 52