

IIC1253 — Matemáticas Discretas — 1' 2017

TAREA 2

Publicación: Viernes 17 de Marzo.

Entrega: Viernes 24 de Marzo hasta las 10:15 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en LATEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Si usa más de una hoja para una misma pregunta corchetelas.
- Junte las respuestas a preguntas distintas usando un clip (no un corchete).
- Debe entregar una copia escrita durante la ayudantía asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Sea a, b, c, \ldots, z las letras del alfabeto y considere el conjunto de todas las palabras de una o mas letras. Por ejemplo, 'perro', 'matematicas', 'tematica', 'a', 'mat' y 'tam' son palabras en el dominio de todas las palabras (note que las palabras no tienen porque tener un significado). Dado dos palabras u y v, considere el predicado $x \leq y$ con los siguientes dominios:

- El dominio de las "palabras y prefijos" donde $u \leq v$ es verdadero si u es un prefijo de v (asuma que toda palabra es prefijo de si misma). Por ejemplo, 'mat' \leq 'matematicas' es verdadero y 'tematica' \leq 'matematicas' es falso.
- El dominio de las "palabras y subpalabras" donde $u \leq v$ es verdadero si u es una subpalabra de v (asuma que toda palabra es subpalabra de si misma). Por ejemplo, 'tematica' \leq 'matematicas' es verdadero y 'tam' \prec 'matematicas' es falso.

Dado estos dominios, responda las siguientes preguntas sobre lógica de predicados sobre el predicado $x \prec y$.

1. Para la formula en lógica de predicados:

$$\alpha := \forall x. \forall y. \neg (y \leq x) \lor (\forall z. z \leq x \lor \neg (z \leq y))$$

explique el significado de α y evalúe si α es verdadera o falsa sobre cada uno de los dominios.

2. Encuentre una formula β tal que β sea verdadera sobre el dominio de las "palabras y prefijos" pero sea falsa sobre el dominio de las "palabras y subpalabras". Explique su respuesta.

Pregunta 2

Suponga que se tiene un grupo de n mujeres m_1, \ldots, m_n y n hombre h_1, \ldots, h_n . Para el grupo de mujeres se cuenta con una relación de amistad que viene dado por una lista L_m de pares (m_i, m_j) lo cual significa que " m_i y m_j son amigas" (la relación es bidireccional, esto es, m_i es amiga de m_j y viceversa). Asimismo, se cuenta con una relación de amistad para el grupo de hombres dado por una lista L_h de pares (h_i, h_j) que significa que " h_i y h_j son amigos".

Por ejemplo, suponga que se cuenta con 4 mujeres y 4 hombres con las siguientes relaciones de amistad:

- lista_m = $(m_1, m_2), (m_1, m_4), (m_2, m_3), (m_3, m_4)$ y
- lista_h = $(h_1, h_3), (h_1, h_4), (h_2, h_4), (h_2, h_3).$

Un emparejamiento E entre el grupo de mujeres y hombres es un listado de pares (m_i, h_j) tal que cada mujer es emparejada con exactamente un hombre y no pueden haber mujeres que estén emparejadas con el mismo hombre y viceversa. Por ejemplo, en el caso del grupo de 4 mujeres y 4 hombres, un posible emparejamiento es el siguiente:

$$emp = (m_1, h_4), (m_2, h_2), (m_3, h_3), (m_4, h_1)$$

Decimos que un emparejamiento E es *perfecto* para las relaciones de amistad L_m y L_h si las siguientes dos condiciones se cumplen:

- 1. para toda pareja (m_i, h_j) en E y para toda amistad (m_i, m_k) en L_m , existe un hombre h_l tal que (m_k, h_l) son pareja en E y (h_j, h_l) son amigos en L_h .
- 2. para toda pareja (m_i, h_j) en E y para toda amistad (h_j, h_l) en L_h , existe una mujer m_k tal que (m_k, h_l) son pareja en E y (m_i, m_k) son amigas en L_m .

En otras palabras, el emparejamiento E es perfecto para L_m y L_h si para cada pareja (m_i, h_j) en E se cumple que cada amiga de m_i esta emparejada con un amigo de h_j (condición 1) y cada amigo de h_j esta emparejado con una amiga de m_i (condición 2). Por ejemplo, uno puede verificar que en nuestro ejemplo emp es un emparejamiento perfecto para lista_m y lista_h.

Dado dos listados de relaciones de amistad L_m y L_h , el problema consiste en determinar si existe un emparejamiento perfecto para L_m y L_h . Por ejemplo, en el caso de nuestro ejemplo \mathtt{lista}_m y \mathtt{lista}_h sabemos que la respuesta es positiva dada la existencia de \mathtt{emp} .

Para cualquier grupo de n mujeres y n hombres, y cualquier relación de amistad L_m y L_h , construya un conjunto de formulas proposicionales Σ tal que existe un emparejamiento perfecto para L_h y L_m si, y solo si, Σ es satisfacible.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.