

3-3-2.원과 직선의 위치관계 천재(이준열)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2020-03-05
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[원과 직선의 위치 관계]

원 $x^2 + y^2 = r^2$ 과 직선 y = mx + n의 위치 관계는

이차방정식 $x^2 + (mx+n)^2 = r^2$

즉, $(m^2+1)x^2+2mnx+n^2-r^2=0$ 의 판별식 D의 부호에 따라

- $D > 0 \Leftrightarrow$ 서로 다른 두 점에서 만난다.
- $D=0 \Leftrightarrow$ 한 점에서 만난다.(접한다)
- $D < 0 \Leftrightarrow$ 만나지 않는다.

[기울기가 주어진 원의 접선의 방정식]

원 $x^2+y^2=r^2$ 에 접하고, 기울기가 m인 접선의 방정식은 $y = mx \pm r\sqrt{m^2 + 1}$

[원 위의 한 점에서의 접선의 방정식]

원 $x^2+y^2=r^2$ 위의 점 $P(x_{\scriptscriptstyle 1}\,,y_{\scriptscriptstyle 1}\,)$ 에서의 접선의 방정식은 $x_1x + y_1y = r^2$

기본문제

- **1.** 원 $x^2+y^2=16$ 과 직선 y=x+k가 서로 다른 두 점에서 만날 때, 실수 k의 값의 범위는?
 - (1) $-3\sqrt{2} < k < 3\sqrt{2}$ (2) -4 < k < 4
- - $3 4\sqrt{2} < k < 4\sqrt{2}$ 4 5 < k < 5
 - (5) $-5\sqrt{2} < k < 5\sqrt{2}$

- **2.** 원 $x^2 + y^2 = 4$ 과 직선 y = -x + k가 한 점에서 만 날 때, 양의 실수 k의 값은?
 - 1 1
- ② $\sqrt{2}$

- 3 2
- (4) $2\sqrt{2}$
- (5) 3

- ① (7) y₁
- ③ (다) $\frac{x_1}{y_1}$
- ④ (라) $x_1^2 y_1^2$

[예제]

- **3.** 원 $x^2 + y^2 = 5$ 에 접하고 기울기가 2인 제 2사분 면을 지나는 직선의 방정식은?
- ① y = x + 5
- ② $y = x + \sqrt{5}$
- ③ y = x + 1
- (4) $y = 2x + \sqrt{5}$
- (5) y = 2x + 5

- **4.** 다음은 원 $x^2+y^2=r^2$ 위의 점 $P(x_1,y_1)$ 에서의 접선의 방정식이 $x_1x+y_1y=r^2$ 임을 설명하는 과정 이다. (가)~(마)에 들어갈 내용으로 옳지 않은 것은?
- (i) $x_1y_1 \neq 0$ 일 때,

직선 OP의 기울기는 $\frac{(7)}{x_1}$ 이고, 직선 OP는 점 P를 지나는 접선에 수직이므로

구하는 접선의 기울기는 $-\frac{(\Box)}{y_{\scriptscriptstyle 1}}$

그러므로 접선의 방정식은 $y-y_1=-(\Gamma)(x-x_1)$

즉 $x_1x+y_1y=$ (라)

그런데 점 $P(x_1, y_1)$ 은 원 위의 점이므로

 $x_1^2 + y_1^2 = \boxed{(\Box +)}$

따라서 $x_1y_1 \neq 0$ 일 때, 원의 접선의 방정식은 $x_1x + y_1y = r^2$

- (ii) $x_1y_1 = 0$ 일 때,
- $x_1 = 0$ 이면 점 P의 좌표는 $(0, \pm r)$ 이므로 접선의 방정식은 $y = \pm r$
- $y_1 = 0$ 이면 점 P의 좌표는 $(\pm r, 0)$ 이므로 접선의 방정식은 $x = \pm r$

따라서 $x_1y_1 = 0$ 일 때, 원의 접선의 방정식은 $x_1x + y_1y = r^2$

② (나) x₁

⑤ (□) r²

- **5.** 원 $x^2 + y^2 = 8$ 에 접하고, 직선 y = x + 2와 평행한 제 2사분면을 지나는 직선의 방정식은?
 - (1) y = x 4
- ② y = x + 4
- y = x 2
- (4) y = -x + 4
- ⑤ y = -x + 2

[문제]

- **6.** 원 $x^2+y^2=5$ 위의 점 (2,1)에서의 접선의 방정 식은?
 - ① y = -2x + 5
- ② y = -2x
- y = -2x 5
- y = 2x 3
- ⑤ y = 2x 5

[예제]

7. 점 (-3,0)에서 원 $x^2+y^2=3$ 에 그은 접선의 방 정식은? (단, 접선의 기울기는 양수)

①
$$y = \frac{\sqrt{2}}{2}x - \frac{3\sqrt{2}}{2}$$

①
$$y = \frac{\sqrt{2}}{2}x - \frac{3\sqrt{2}}{2}$$
 ② $y = \frac{\sqrt{2}}{2}x + \frac{3\sqrt{2}}{2}$

(3)
$$y = \frac{\sqrt{2}}{2}x - \frac{2\sqrt{2}}{2}$$
 (4) $y = \frac{\sqrt{2}}{2}x + \frac{2\sqrt{2}}{2}$

(5)
$$y = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}$$

8. 점 (0,5)에서 원 $x^2+y^2=10$ 에 그은 접선의 방 정식은? (단, 접선의 기울기는 양수)

①
$$y = \frac{\sqrt{6}}{2}x + 5$$
 ② $y = \frac{\sqrt{6}}{3}x + 5$

$$y = \sqrt{6}x + 5$$

③
$$y = \sqrt{6}x + 5$$
 ④ $y = \frac{\sqrt{6}}{2}x - 5$

(5)
$$y = \frac{\sqrt{6}}{3}x - 5$$

평가문제

[소단원 확인 문제]

9. 원 $x^2+y^2=13$ 위의 점 (3,2)에서의 접선의 방

①
$$y = -\frac{1}{2}x + 6$$

①
$$y = -\frac{1}{2}x + 6$$
 ② $y = -\frac{1}{2}x + \frac{13}{2}$

$$y = -\frac{3}{2}x + 6$$

③
$$y = -\frac{3}{2}x + 6$$
 ④ $y = -\frac{3}{2}x + \frac{13}{2}$

$$(5) y = -\frac{3}{2}x + 7$$

[소단원 확인 문제]

10. 원 $x^2+y^2=5$ 에 접하고, 직선 x-2y+3=0과 수직인 제 1사분면을 지나는 직선의 방정식은?

①
$$y = 2x + 5$$

②
$$y = 2x$$

$$y = -2x + 5$$

(4)
$$y = -2x$$

⑤
$$y = -2x - 5$$

[소단원 확인 문제]

11. $\Re x^2 + y^2 = 5$ 위의 점 (2, -1)에서의 접선의 방 정식은?

①
$$y = -2x + 5$$

②
$$y = -2x + 3$$

$$y = 2x + 5$$

(4)
$$y = 2x$$

⑤
$$y = 2x - 5$$

[소단원 확인 문제]

12. 점 (-7,-1)에서 원 $x^2+y^2=25$ 에 그은 접선의 방정식은? (단, 접선의 기울기는 양수)

①
$$y = \frac{4}{3}x + \frac{25}{3}$$
 ② $y = \frac{4}{3}x + \frac{22}{3}$

②
$$y = \frac{4}{3}x + \frac{22}{3}$$

$$3 y = \frac{4}{3}x + \frac{19}{3}$$

③
$$y = \frac{4}{3}x + \frac{19}{3}$$
 ④ $y = \frac{2}{3}x + \frac{11}{3}$

[소단원 확인 문제]

- **13.** 원 $x^2+y^2+4x-2y+4=0$ 과 직선 y=x+k가 서로 다른 두 점에서 만날 때, 실수 k의 값의 범위
 - ① $3 \frac{\sqrt{2}}{2} < k < 3 + \frac{\sqrt{2}}{2}$
- $3 \sqrt{2} < k < 3 + \sqrt{2}$
- $\bigcirc 4 2 < k < 2$
- (5) $3-2\sqrt{2} < k < 3+2\sqrt{2}$

[중단원 연습 문제]

- **14.** 원 $x^2+y^2=2$ 위의 점 (1,-1)에서의 접선의 방 정식은?
 - ① y = -x 2
- $\bigcirc y = -x$
- $\Im y = x$
- y = x 2
- ⑤ y = x 4

[중단원 연습 문제]

- **15.** 원 $x^2 + y^2 = 10$ 에 접하고 기울기가 3인 제 2사 분면을 지나는 직선의 방정식은?
 - (1) y = 3x + 4
- ② y = 3x + 7
- 3 y = 3x + 10
- y = 3x 7
- ⑤ y = 3x 10

[중단원 연습 문제]

- **16.** 원 $x^2+y^2=16$ 과 직선 y=2x+k가 서로 다른 두 점에서 만날 때, 실수 k의 값의 범위는?
 - ① $-5\sqrt{5} < k < 5\sqrt{5}$ ② $-4\sqrt{5} < k < 4\sqrt{5}$
 - $3 3\sqrt{5} < k < 3\sqrt{5}$
- $(4) 2\sqrt{5} < k < 2\sqrt{5}$
- (5) $-\sqrt{5} < k < \sqrt{5}$

[중단원 연습 문제]

- **17.** 원 $x^2+y^2=8$ 과 직선 x-y+k=0이 만나지 않 도록 하는 자연수 k의 최솟값은?
 - 5
- 2 4
- ③ 3
- **(4)** 2
- **⑤** 1

[중단원 연습 문제]

- **18.** 원 $(x+2)^2+(y-1)^2=4$ 위의 점과 직선 4x-3y-4=0 사이의 거리의 최댓값을 M, 최솟값 을 m이라고 할 때, M+m의 값은?

- (4) 7

[중단원 연습 문제]

- **19.** 점 (0,5)에서 원 $x^2+y^2=5$ 에 그은 두 접선과 x축으로 둘러싸인 부분의 넓이는?
- ② 12
- (4) 13

[중단원 연습 문제]

- **20.** 원 $x^2+y^2=5$ 와 직선 3x-y+5=0이 서로 다른 두 점 A, B에서 만날 때, 원 $x^2+y^2=5$ 위의 점 A, B에서의 두 접선의 교점의 좌표는?
 - $\bigcirc (-2,1)$
- $\bigcirc (-2,2)$
- (3)(-3,0)
- \bigcirc (-3,1)
- (5)(-3,2)

[대단원 종합 문제]

- **21.** 점 (4,0)에서 원 $(x-1)^2+(y+3)^2=1$ 에 그은 두 접선이 이루는 각을 이동분하는 직선 중 제 2사 분면을 지나는 직선의 방정식은?
 - (1) y = x 4
- ② y = x 2
- y = -x
- y = -x + 2
- 5 y = -x + 4

[대단원 종합 문제]

- **22.** 원점 \bigcirc 와 원 $x^2+y^2-4x+8y+16=0$ 위의 점 P에서 선분 OP의 길이의 최댓값과 최솟값의 차는?
 - ① 2
- 2 4
- 3 6
- **4** 8
- **⑤** 10

[대단원 종합 문제]

- **23.** 점 (3,2)에서 원 $(x-2)^2+(y+1)^2=4$ 에 그은 두 접선의 기울기의 곱은?
- $\bigcirc -\frac{2}{3}$
- $3\frac{1}{3}$
- $4\frac{4}{3}$

- **24.** 원 $x^2 + y^2 4ax + 2ay + a^2 10 = 0$ 과 3x-4y-5=0의 두 교점 A, B에서 $\overline{AB}=2\sqrt{5}$ 일 때, 실수 *a*의 값은?
 - 1 2
- 2 1
- $\Im 0$
- \bigcirc -1
- (5) -2

정답 및 해설

1) [정답] ③

[해설] 원의 중심인 원점과 직선 y=x+k,

즉 x-y+k=0 사이의 거리가 원의 반지름의 길이인 4보다 작아야 하므로

$$\frac{|k|}{\sqrt{2}} < 4, |k| < 4\sqrt{2}$$

 $-4\sqrt{2} < k < 4\sqrt{2}$

2) [정답] ④

[해설] $y = -x + k = x^2 + y^2 = 4$ 에 대입하면

$$x^2 + (-x+k)^2 = 4$$

$$-2x^2-2kx+k^2-4=0$$

원과 직선이 접해야 하므로

이 이차방정식의 판별식을 D라 하면

$$\frac{D}{4} = (-k)^2 - 2 \times (k^2 - 4) = -k^2 + 8 = 0$$

 $k^2 - 8 = 0$, $\stackrel{\triangle}{=} (k + 2\sqrt{2})(k - 2\sqrt{2}) = 0$

따라서 구하는 실수 k의 값은

k > 0이므로 $k = 2\sqrt{2}$

3) [정답] ⑤

[해설] 구하는 직선의 y절편을 k라고 하면 직선의 방 정식은 y=2x+k

원의 중심인 원점과 직선 y=2x+k,

즉 2x-y+k=0 사이의 거리가 원의 반지름의 길이 $\sqrt{5}$ 와 같아야 하므로

$$\frac{|k|}{\sqrt{5}} = \sqrt{5}, |k| = 5$$

k=5 또는 k=-5

따라서 구하는 직선의 방정식은 제 2사분면을 지나므로 y=2x+5

4) [정답] ④

[해설] (i) $x_1y_1 \neq 0$ 일 때,

직선 OP의 기울기는 $\frac{y_1}{x_1}$ 이고, 직선 OP는 점 P

를 지나는 접선에 수직이므로

구하는 접선의 기울기는 $-\frac{x_1}{y_1}$

그러므로 접선의 방정식은 $y-y_1=-\frac{x_1}{y_1}(x-x_1)$

 $Arr x_1 x + y_1 y = x_1^2 + y_1^2$

그런데 점 $P(x_1,y_1)$ 은 원 위의 점이므로 ${x_1}^2+{y_1}^2=r^2$

따라서 $x_1y_1 \neq 0$ 일 때, 원의 접선의 방정식은 $x_1x + y_1y = r^2$

(ii) $x_1y_1 = 0$ 일 때,

 $x_1 = 0$ 이면 점 P의 좌표는 $(0, \pm r)$ 이므로 접선

의 방정식은 $y=\pm r$

 $y_1 = 0$ 이면 점 P의 좌표는 $(\pm r, 0)$ 이므로 접선의 방정식은 $x = \pm r$

따라서 $x_1y_1=0$ 일 때, 원의 접선의 방정식은 $x_1x+y_1y=r^2$

5) [정답] ②

[해설] 구하는 직선의 y절편을 k라고하면

직선 y=x+2와 평행하므로 직선의 방정식은 y=x+k

원의 중심인 원점과 직선 y=x+k,

즉 x-y+k=0 사이의 거리가 원의 반지름의 길

이 $2\sqrt{2}$ 와 같아야 하므로

$$\frac{|k|}{\sqrt{2}} = 2\sqrt{2}$$
, $|k| = 4$

k = 4 + k = -4

따라서 구하는 직선의 방정식은 제 2사분면을 지 나므로 y=x+4

6) [정답] ①

[해설] 원 위의 점 (2,1)에서의 접선의 방정식은 2x+y=5, 즉 y=-2x+5

7) [정답] ②

[해설] 접점을 $P(x_1,y_1)$ 이라 하면 점 P에서의 접선의 방정식은

$$x_1x + y_1y = 3$$

.....(7

접선 ⊙은 점 (-3,0)을 지나므로

 $-3x_1 = 3$, $-3x_1 = -1$

또 점 $P(x_1, y_1)$ 은 원 위의 점이므로

$$x_1^2 + y_1^2 = 3$$

.....

 $x_1 = -1$ 을 ©에 대입하면

$$(-1)^2 + y_1^2 = 3$$
, $= y_1 = \pm \sqrt{2}$

구하는 접선의 방정식은

$$-x + \sqrt{2}y = 3$$
 $\pm \frac{1}{2}$ $-x - \sqrt{2}y = 3$

$$\ \, \stackrel{\textstyle \frown}{\lnot} \ \, y = \frac{\sqrt{2}}{2} x + \frac{3\sqrt{2}}{2} \ \, \underbrace{ \ \, \Xi \, \succeq \, } \ \, y = - \, \frac{\sqrt{2}}{2} x - \frac{3\sqrt{2}}{2}$$

따라서 접선의 기울기는 양수이므로

$$y = \frac{\sqrt{2}}{2}x + \frac{3\sqrt{2}}{2}$$

8) [정답] ①

[해설] 접점을 $P(x_1,y_1)$ 이라 하면 점 P에서의 접선의 방정식은

$$x_1x + y_1y = 10$$

..... (

접선 ⊙은 점 (0,5)를 지나므로

또 점 $P(x_1, y_1)$ 은 원 위의 점이므로

$$x_1^2 + y_1^2 = 10$$

····· (L

 $y_1 = 2$ 을 \bigcirc 에 대입하면

$$x_1^2+2^2=10$$
, 즉 $x_1=\pm\sqrt{6}$ 구하는 접선의 방정식은 $\sqrt{6}\,x+2y=10$ 또는 $-\sqrt{6}\,x+2y=10$ 따라서 접선의 기울기는 양수이므로 $y=\frac{\sqrt{6}}{2}\,x+5$

9) [정답] ④

[해설] 원 위의 점 (3,2)에서의 접선의 방정식은 $3x+2y=13, \ \copy{2mm} \ \ y=-\frac{3}{2}x+\frac{13}{2}$

10) [정답] ③

[해설] 구하는 직선의 기울기를 m, y절편을 k라고 하면

$$\frac{1}{2}m = -1$$
, $\frac{1}{2}m = -2$

그러므로 구하는 직선은 y=-2x+k, 즉 2x+y-k=0

원과 직선은 접하므로 원점에서 직선까지의 거리 는 $\sqrt{5}$, 즉 $\frac{|-k|}{\sqrt{2^2+1^2}} = \sqrt{5}$, |-k|=5

따라서 k=5 또는 k=-5이고 구하는 직선은 제 1사분면을 지나므로 y=-2x+5

11) [정답] ⑤

[해설] 원 위의 점 (2,-1)에서의 접선의 방정식은 2x-y=5, 즉 y=2x-5

12) [정답] ①

[해설] 접점을 $P(x_1,y_1)$ 이라 하면 점 P에서의 접선의 방정식은

$$x_1x + y_1y = 25 \qquad \cdots$$

접선 \bigcirc 은 점 (-7,-1)을 지나므로 $-7x_1-y_1=25$, 즉 $y_1=-7x_1-25$

또 점 $P(x_1, y_1)$ 은 원 위의 점이므로

$$x_1^2 + y_1^2 = 25$$

 $y_1 = -7x_1 - 25$ 을 ©에 대입하면

 $x_1^2 + (-7x_1 - 25)^2 = 25$, $= x_1^2 + 7x_1 + 12 = 0$

 $(x_1+4)(x_1+3)=0$,

 $x_1 = -4$, $y_1 = 3$ $\pm \frac{1}{2}$ $x_1 = -3$, $y_1 = -4$

구하는 접선의 방정식은

-4x+3y=25 또는 -3x-4y=25

즉 $y = \frac{4}{3}x + \frac{25}{3}$ 또는 $y = -\frac{3}{4}x - \frac{25}{4}$

따라서 접선의 기울기는 양수이므로

$$y = \frac{4}{3}x + \frac{25}{3}$$

13) [정답] ③

[해설] $x^2+y^2+4x-2y+4=0$ 을 변형하면 $(x+2)^2+(y-1)^2=1$ 이므로 원의 중심의 좌표는

(-2,1)이고 반지름의 길이는 1이다.

원의 중심인 점 (-2,1)과 직선 y=x+k, 즉 x-y+k=0 사이의 거리가 원의 반지름의 길

즉 x-y+k=0 사이의 거리가 원의 반지름의 이인 1보다 작아야 하므로

$$\frac{|k-3|}{\sqrt{2}} < 1, |k-3| < \sqrt{2}$$
$$3 - \sqrt{2} < k < 3 + \sqrt{2}$$

14) [정답] ④

[해설] 원 위의 점 (1,-1)에서의 접선의 방정식은 x-y=2, 즉 y=x-2

15) [정답] ③

[해설] 구하는 직선의 y절편을 k라고하면 직선의 방 정식은 y=3x+k

원의 중심인 원점과 직선 y=3x+k,

즉 3x-y+k=0 사이의 거리가 원의 반지름의 길이 $\sqrt{10}$ 과 같아야 하므로

$$\frac{|k|}{\sqrt{10}} = \sqrt{10}, |k| = 10$$

k=10 또≒ k=-10

따라서 구하는 직선의 방정식은 제 2사분면을 지 나므로 y=3x+10

16) [정답] ②

[해설] 원의 중심인 원점과 직선 y=2x+k,

즉 2x-y+k=0 사이의 거리가 원의 반지름의 길이인 4보다 작아야 하므로

$$\frac{|k|}{\sqrt{5}} < 4, |k| < 4\sqrt{5}$$
$$-4\sqrt{5} < k < 4\sqrt{5}$$

17) [정답] ①

[해설] 원의 중심인 원점과 직선 x-y+k=0 사이의 거리가 원의 반지름의 길이인 $2\sqrt{2}$ 보다 커야 하므로

$$\frac{|k|}{\sqrt{2}}$$
> $2\sqrt{2}$, $|k|$ >4, k >4 또는 k < -4 따라서 자연수 k 의 최솟값은 5

18) [정답] ②

[해설] 원의 중심의 좌표는 (-2,1), 반지름은 2에서 원 위의 점과 직선 사이의 거리의 최댓값은

(원의 중심과 직선 사이의 거리)+(반지름)

원 위의 점과 직선 사이의 거리의 최솟값은

(원의 중심과 직선 사이의 거리)—(반지름)이므로

$$M = \frac{|4 \times (-2) - 3 \times 1 - 4|}{\sqrt{4^2 + (-3)^2}} + 2 = \frac{|-15|}{5} + 2 = 5$$

$$m = \frac{|4 \times (-2) - 3 \times 1 - 4|}{\sqrt{4^2 + (-3)^2}} - 2 = \frac{|-15|}{5} - 2 = 1$$

따라서 *M*+*m* = 6

19) [정답] ③

[해설] 접점을 $P(x_1,y_1)$ 이라 하면 점 P에서의 접선의

방정식은

$$x_1x + y_1y = 5$$

..... (7)

접선 \bigcirc 은 점 (0,5)를 지나므로

 $5y_1 = 5$, -9 = 1

또 점 $P(x_1, y_1)$ 은 원 위의 점이므로

$$x_1^2 + y_1^2 = 5$$

 $y_1 = 1$ 을 \bigcirc 에 대입하면

$$x_1^2 + 1^2 = 5$$
, $- x_1 = \pm 2$

점 (0,5)에서 원 $x^2+y^2=5$ 에 그은 두 접선의 방정식은 2x+y=5 또는 -2x+y=5

즉 y = -2x + 5 또는 y = 2x + 5

각각의 x절편은 $\left(\frac{5}{2},0\right)$, $\left(-\frac{5}{2},0\right)$ 이므로

삼각형의 넓이는 $\frac{1}{2} \times \left(\frac{5}{2} + \frac{5}{2}\right) \times 5 = \frac{25}{2}$

20) [정답] ④

[해설] 3x-y+5=0에서 y=3x+5

$$x^2+y^2=5$$
에 $y=3x+5$ 를 대입하면 $x^2+(3x+5)^2=5$, $10x^2+30x+20=0$

$$= x^2 + 3x + 2 = 0, (x+2)(x+1) = 0$$

(1) 현 위의 점 (-2,-1)에서의 접신은
$$-2x-y=5$$
, 즉 $y=-2x-5$

$$-x+2y=5$$
, $= \frac{1}{2}x+\frac{5}{2}$

즉 두 직선의 교점은 $-2x-5 = \frac{1}{2}x + \frac{5}{2}$ 에서

$$\frac{5}{2}x = -\frac{15}{2}$$
, $x = -3$, $y = 1$

따라서 두 접선의 교점의 좌표는 (-3,1)

21) [정답] ⑤

[해설] $(x-1)^2 + (y+3)^2 = 1$ 에서 원의 중심은 (1, -3)

점 (4,0)에서 원 $(x-1)^2+(y+3)^2=1$ 에 그은 두 접선이 이루는 각을 이동분하는 직선은

점 (4,0)과 원의 중심 (1,-3)을 지나거나

점 (4,0)과 원의 중심 (1,-3)을 지나는 직선과 수직이고 점 (4,0)을 지난다.

(i) 점 (4,0)과 원의 중심 (1,-3)을 지날 때,

$$y = \frac{-3-0}{1-4}(x-4), \stackrel{r}{r} y = x-4$$

(ii) 점 (4,0)과 원의 중심 (1,-3)을 지나는 직 선과 수직이고 점 (4,0)을 지날 때,

점 (4,0)과 원의 중심 (1,-3)을 지나는 직선의 기울기는 1이므로

y = -(x-4), = y = -x+4

직선은 제 2사분면을 지나므로 y=-x+4

22) [정답] ②

[해설] $x^2+y^2-4x+8y+16=0$ 을 변형하면

$$(x-2)^2 + (y+4)^2 = 2^2$$

원의 중심의 좌표는 (2, -4), 반지름은 2에서 선분 OP의 길이의 최댓값은

(원의 중심과 원점 사이의 거리)+(반지름),

선분 OP의 길이의 최솟값은

(원의 중심과 원점 사이의 거리)-(반지름)이므로 최댓값과 최솟값의 차는

2×(반지름)

따라서 원점 O와 원 $x^2+y^2-4x+8y+16=0$ 위의 점 P에서 선분 OP의 길이의 최댓값과 최솟 값의 차는 4

23) [정답] ①

[해설] 접선의 기울기를 m이라 하면 기울기가 m이 π 점 π 점 π 지수는 지선의 방정식은

$$y-2=m(x-3)$$
, $\equiv mx-y-3m+2=0$

원의 중심의 좌표가 (2,-1)이므로 원과 직선이 접하려면

$$\frac{|2m+1-3m+2|}{\sqrt{m^2+(-1)^2}} = 2$$

$$\frac{|-m+3|}{\sqrt{m^2+1}} = 2$$
, $|-m+3| = 2\sqrt{m^2+1}$

양변을 제곱하면

$$m^2 - 6m + 9 = 4m^2 + 4$$
, $3m^2 + 6m - 5 = 0$

근과 계수의 관계에 의하여 점 (3,2)에서 원 $(x-2)^2+(y+1)^2=4$ 에 그은 두 접선의 기울기

의 곱은
$$-\frac{5}{3}$$

24) [정답] ④

[해설] $x^2 + y^2 - 4ax + 2ay + a^2 - 10 = 0$ 을 변형하면

$$(x-2a)^2 + (y+a)^2 = 4a^2 + 10$$

원의 중심은 (2a, -a), 반지름은 $\sqrt{4a^2 + 10}$

한편 원 $x^2+y^2-4ax+2ay+a^2-10=0$ 과 직선 3x-4y-5=0은 두 점에서 만나고

원의 중심에서 직선까지의 거리는

$$\frac{|3 \times 2a - 4 \times (-a) - 5|}{\sqrt{3^2 + (-4)^2}} = \frac{|10a - 5|}{\sqrt{25}} = |2a - 1| \circ |$$

므로 다음 그림과 같다.

원의 중심에서 직선까지의 수선의 발을 점 H, 원 의 중심을 점 C라고 하면 피타고라스 공식에 의 해

$$\overline{CA}^2 = \overline{AH}^2 + \overline{HC}^2$$

$$\begin{split} \left(\sqrt{4a^2+10}\right)^2 &= \sqrt{5^2} + |2a-1|^2 \\ & \ \, \stackrel{\triangle}{=} \ \, 4a^2+10=5+4a^2-4a+1 \, , \ \, 4a=-4 \\ \text{따라서} \ \, a=-1 \end{split}$$

