Folgen, Grenzwerte 1

Definition Folge: Eine (reelle) Folge ist eine Abbildung $a : \mathbb{N} \to \mathbb{R}$, also eine Vorschrift, die jeder natürlichen Zahl n das n-te Folgenglied $a(n) \in \mathbb{R}$ zuordnet. Wir schreiben a_n für das n-te Folgenglied und (a_n) für die Folge.

Definition Grenzwert: Eine Zahl $a \in \mathbb{R}$ heißt Grenzwert der Folge (a_n) wenn gilt: $\forall \epsilon > 0 \,\exists n_0 \in \mathbb{N} \,\forall n > n_0 : |a_n - a| < \epsilon$

Besitzt eine Folge (a_n) eine Grenzwert a - auch Limes genannt - so sagt man, die Folge konvergiert gegen a und schreibt dafür $\lim_{n\to\infty} a_n = a$ oder $(a_n) \to a$ für $a\to\infty$.

Andere Formulierung: a heißt Grenzwert der Folge (a_n) , wenn in jeder (noch so kleinen) ϵ -Umgebung von a fast alle Elemente der Folge liegen.

Definition Beschränktheit: Eine Folge (a_n) heißt beschränkt, wenn es eine Zahl $S \in \mathbb{R}$ gibt, mit $|a_n| \leq S$ für alle $n \in \mathbb{N}$.

Satz: Jede konvergente Folge ist beschränkt.

Lemma (Dreiecksungleichung): Für $x, y \in \mathbb{R}$ gilt: $|x + y| \le |x| + |y|$

Satz: Falls $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$, so gilt:

- $(1) \lim_{n \to \infty} (a_n + b_n) = a + b$
- $(2) \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- (3) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$, falls $b, b_n \neq 0$