

#### République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Tunis El Manar

École nationale d'ingéngieurs de Tunis



# Département de Génie Civil

# RAPPORT DE MÉMOIRE DE BÉTON PRÉCONTRAINT

# CONCEPTION ET ETUDE D'UN PONT DE TYPE VIPP AVEC ENTRETOISES INTERMEDIAIRES

Réalisé Par

Fares FRIKHA
Hamza MAAOUI

Classe

3 Année Génie Civil 2

Encadré Par

M. Mhamed Ali KARRAY

# Remerciements

C'est avec un grand plaisir qu'on réserve cette page, en signe de gratitude et de profonde reconnaissance, afin d'exprimer nos vifs remerciements à toute personne ayant contribué au bon déroulement de cette mémoire et son achèvement dans les meilleures conditions.

On remercie en premier lieu Monsieur « Mhamed Ali KARRAY » pour nous avoir fait l'honneur de diriger notre mémoire de Béton Précontraint, pour toute l'attention qu'il nous a porté, pour son assistance permanente et pour n'avoir épargné aucun effort pour nous mettre sur la bonne voie.

Aussi nos remerciements vont aux cadres du département de génie civil de l'ENIT, qui nous ont permis de réaliser cette mémoire pour consolider nos connaissances théoriques.

# Table des matières

| ln       | trod | uction | générale                                             | 1  |
|----------|------|--------|------------------------------------------------------|----|
| 1        | Les  | donné  | ees du projet                                        | 2  |
|          | 1.1  | Introd | luction                                              | 3  |
|          | 1.2  | Préser | ntation de projet                                    | 3  |
|          | 1.3  | Géom   | étrie des poutres                                    | 3  |
|          | 1.4  | Carac  | téristiques des matériaux                            | 5  |
|          |      | 1.4.1  | Acier                                                | 5  |
|          |      | 1.4.2  | Béton                                                | 6  |
| <b>2</b> | Cal  | cul de | la précontrainte                                     | 8  |
|          | 2.1  | Calcu  | l de la précontrainte en phase d'exploitation finale | 9  |
|          |      | 2.1.1  | Calcul des sollicitations normales en service        | 9  |
|          |      | 2.1.2  | Calcul du nombre de câbles                           | 10 |
|          |      | 2.1.3  | Vérification des conditions de coffrage en béton     | 10 |
|          | 2.2  | Dimer  | nsionnement de la première famille de câbles         | 10 |
|          |      | 2.2.1  | Calcul de la précontrainte minimale                  | 10 |
|          |      | 2.2.2  | Calcul du nombre de câbles                           | 11 |
|          |      | 2.2.3  | Vérification des conditions de coffrage en béton     | 11 |
|          | 2.3  | Dimer  | nsionnement de la deuxième famille de câble          | 11 |
|          |      | 2.3.1  | Tracé des câbles moyens                              | 12 |
| 3        | Eva  | luatio | n des pertes de précontrainte                        | 13 |
|          | 3.1  | Introd | luction                                              | 14 |
|          | 3.2  | Pertes | s instantanées 1er famille                           | 14 |
|          |      | 3.2.1  | Perte par frottement                                 | 14 |
|          |      | 3.2.2  | Calcul de la perte par rentrée d'ancrage             | 15 |
|          |      | 3.2.3  | Calcul des pertes par déformations élastiques        | 16 |
|          | 3.3  | Perte  | instantané deuxième famille                          | 19 |
|          |      | 3.3.1  | Perte par rentrée d'ancrage                          | 19 |

|   | 4.2                         | 4.1.3<br>Vérific                                    | Combination quasi-Permanente                                                       | 29                   |  |  |
|---|-----------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|----------------------|--|--|
|   | 4.2                         | 4.1.3<br>Vérific<br>phase                           | Combination quasi-Permanente                                                       | 28<br>29<br>30<br>30 |  |  |
|   | 4.2                         | 4.1.3<br>Vérific                                    | Combination quasi-Permanente                                                       | 29                   |  |  |
|   | 4.2                         | 4.1.3                                               | Combination quasi-Permanente                                                       |                      |  |  |
|   |                             |                                                     | •                                                                                  |                      |  |  |
|   |                             | 1.1.2                                               | Combination Frequence                                                              | 28                   |  |  |
|   | 4.1.2 Combinaison Fréquente |                                                     |                                                                                    |                      |  |  |
|   |                             | 4.1.1                                               | Combinaison rare                                                                   | 27                   |  |  |
|   | 4.1                         | Vérific                                             | cation de contraintes de compression et de traction en phase finale d'exploitation | 27                   |  |  |
| 4 | Vér                         | ificatio                                            | on de contraintes de compression et de traction                                    | <b>26</b>            |  |  |
|   | 3.8                         | Forces                                              | probable initiale et finale                                                        | 25                   |  |  |
|   | 3.7                         |                                                     | on finale probable                                                                 | 24                   |  |  |
|   | 3.6                         |                                                     | on initiale probable                                                               | 24                   |  |  |
|   | 3.5                         |                                                     | Totales                                                                            | 23                   |  |  |
|   |                             | 3.4.4                                               | Pertes différées totales                                                           | 23                   |  |  |
|   |                             | 3.4.3                                               | Pertes par relaxation de l'acier                                                   | 22                   |  |  |
|   |                             | 3.4.2                                               | Pertes par fluage du béton                                                         | 21                   |  |  |
|   |                             | 3.4.1                                               | Pertes par retrait final du béton                                                  | 21                   |  |  |
|   | 3.4                         | Pertes                                              | différées                                                                          | 21                   |  |  |
|   |                             | 3.3.2 Calcul des pertes par déformations élastiques |                                                                                    |                      |  |  |

# Table des figures

| 1.1 | Section transversale d'une partie du tablier                                               | 3  |
|-----|--------------------------------------------------------------------------------------------|----|
| 1.2 | Contraintes admissibles pour un ouvrage de classe I en phase d'exécution et d'exploitation |    |
|     | 6                                                                                          |    |
| 4.1 | Section du béton en traction                                                               | 30 |

# Liste des tableaux

| 1.1  | Tableau recapitulatif des caracteristiques de la section                              | 4  |
|------|---------------------------------------------------------------------------------------|----|
| 1.2  | Tableau récapitulatif des caractéristiques géométriques de la poutre                  | 4  |
| 1.3  | Les caractéristiques du toron                                                         | 5  |
| 1.4  | Les caractéristiques du béton                                                         | 6  |
| 2.1  | Câblage des aciers longitudinaux                                                      | 12 |
| 3.1  | Pertes par frottement pour la 1 ère famille                                           | 14 |
| 3.2  | Pertes par recul d'ancrage de la 1 ère famille                                        | 15 |
| 3.3  | Pertes par echonnement                                                                | 16 |
| 3.4  | Gainsuite à l'application de mise en tension de la deuxième famille                   | 17 |
| 3.5  | Gain suite à l'application du poids propre                                            | 17 |
| 3.6  | Gain suite à l'application de la superstructure                                       | 18 |
| 3.7  | Perte instantanné total                                                               | 18 |
| 3.8  | Perte instantanné 2eme famille                                                        | 19 |
| 3.9  | Perte par rentrée d'ancrage 2eme famille                                              | 19 |
| 3.10 | Pertes par mise en tension échelonnée à partir de 60 jours pour la deuxième famille   | 20 |
| 3.11 | Gain suite à l'application du poids propre (poutre avec hourdis) à partir de 60 jours |    |
|      | d'âge du béton pour la première famille                                               | 20 |
| 3.12 | Gain suite à l'application du poids propre (poutre avec hourdis) à partir de 60 jours |    |
|      | d'âge du béton pour la première famille                                               | 20 |
| 3.13 | Pertes par retrait final du béton                                                     | 21 |
| 3.14 | Pertes par fluage du béton                                                            | 22 |
| 3.15 | Pertes par relaxation de l'acier                                                      | 22 |
| 3.16 | Pertes différés totales                                                               | 23 |
| 3.17 | Pertes totales                                                                        | 23 |
| 3.18 | Tension initiale probable                                                             | 24 |
| 3.19 | Tension finale probable                                                               | 24 |
| 3.20 | Forces initiales et finales                                                           | 25 |

| 4.1 | Vérification des contraintes de traction en phase de construction    | 27 |
|-----|----------------------------------------------------------------------|----|
| 4.2 | Vérification des contraintes de Compression en phase de construction | 27 |
| 4.3 | Contraintes normales de traction sous combinaison rare               | 28 |
| 4.4 | Contraintes normales de compression sous combinaison rare            | 29 |
| 4.5 | Contraintes normales de traction sous combinaison fréquente          | 29 |
| 4.6 | Contraintes normales de compression sous combinaison fréquente       | 29 |

# Introduction générale

Dans le cadre de notre formation à l'ENIT, nous étions amené à élaborer un mémoire de béton précontraint dont le but est de faire le dimensionnement de la précontrainte des poutres d'un pont à poutres préfabriquées en béton précontraint par post-tension à travées indépendantes (VIPP).

Dans tout le projet, un calcul manuel pour le dimensionnement des câbles du précontraint est réalisé, en suivant les normes. Pour ce faire, la démarche suivante est adoptée :

Le premier chapitre va être consacré à la présentation détaillée du projet et par la suite le calcul et l'estimation des différentes charges et des contraintes admissible du béton.

Dans le deuxième chapitre, un pré dimensionnement de la précontrainte des deux familles de câbles est présenté.

Pour le troisième chapitre, un calcul détaillé des pertes instantanées et différées que subissent les câbles moyens des deux familles est explicité. Ce calcul de perte a ensuite permis de redimensionner la précontrainte en calculant les nouvelles valeurs des tensions initiale et finales d'un toron T15S.

Dans le quatrième chapitre, la vérification de la section médiane en phase d'exploitation est présentée sous sous combinaisons :

- Quasi-permantes
- Fréquentes
- Rares

Et concernat le dernier chapitre on va Vérifier la section la plus sollicitée d'une poutre principale vis-à-vis de la flexion à l'ELU en phase d'exploitation.

# LES DONNÉES DU PROJET

# Plan

| 1 | Introduction                   | 3 |
|---|--------------------------------|---|
| 2 | Présentation de projet         | 3 |
| 3 | Géométrie des poutres          | 3 |
| 1 | Caractéristiques des matériaux | 5 |

# 1.1 Introduction

Dans ce chapitre, on va fournis une description qui prote sur les caractéristiques des matériaux utilisés pour la conception, les contraintes admissible de dimensionnement et les actions de charges qui lui sont appliquées. Ces actions sont tirées du travail fait lors de la mémoire d'ouvrage d'art.

# 1.2 Présentation de projet

Le projet à entamer c'est une conception et étude d'un pont VIPP situé sur la route reliant Radés à l'ouvrage haubané Radés La-Goulette. L'ouvrage est un pont à poutres sous chaussée de type VIPP constitué des poutres identiques préfabriquées, précontraintes par post-tension moyennant deux familles de câbles. Ces poutres, de longueur 38 m et de portée 43 m, sont solidarisées entre elles par un hourdis et par des entretoises intermédiaires. Le tablier est formé par une chaussée avec une largeur roulable  $L_r = 13m$  ( $L_{ch} = 12.5m$ ) et des deux trottoirs chacun de largeur  $L_{tr} = 1m$ .

# 1.3 Géométrie des poutres

La conception du pont étudié comporte 5 poutres à talon dont la géométrie est déterminée dans la partie du mémoire de l'ouvrage d'art. La figure suivante présente la section et les dimension des poutres adoptées.



Figure 1.1: Section transversale d'une partie du tablier

Le tableau ci-dessous récapitule toutes les valeurs trouvées de la section.

Tableau 1.1: Tableau récapitulatif des caractéristiques de la section

| Longueur da tablier                   | Lc (m)  | 43   |
|---------------------------------------|---------|------|
| Largeur de tablier                    | lt (m)  | 15   |
| Largeur roulable                      | Lr (m)  | 13   |
| Largeur chargeable                    | Lch (m) | 12.5 |
| Nombre de voie                        | Nv      | 4    |
| Larguer de trottoir                   | Ltr (m) | 1    |
| Hauteur de la poutre                  | hp (m)  | 2.5  |
| Hauteur de l'hourdis                  | hd (m)  | 0.21 |
| Hauteur de l'entretoise               | he (m)  | 2    |
| Epaisseur de l'âme                    | ba (m)  | 0.25 |
| Epaisseur de talon                    | bta (m) | 0.7  |
| Hauteur de talon                      | h1 (m)  | 0.25 |
| Hauteur de talon                      | h2 (m)  | 0.2  |
| Entraxe des poutres                   | b0 (m)  | 3.1  |
| Largeur de la table de<br>compression | bt (m)  | 2.4  |

Le tableau suivant résume les caractéristiques géométriques de la section des poutres qui sont des poutres VIPP.

Tableau 1.2: Tableau récapitulatif des caractéristiques géométriques de la poutre

| Poutre sans houris         |        | Poutre avec hourdis |      |
|----------------------------|--------|---------------------|------|
| <b>A</b> (m <sup>2</sup> ) | 1.0025 | A (m2)              | 1.32 |
| V (m)                      | 1.07   | V (m)               | 1.11 |
| V' (m)                     | 1.22   | V' (m)              | 1.39 |
| ρ                          | 0.522  | ρ                   | 0.51 |

# 1.4 Caractéristiques des matériaux

#### 1.4.1 Acier

Sachant que la précontrainte des poutres préfabriquées du VIPP étudié est dimensionnée en classe I et qu'elle est constituée de deux familles de câbles de type 12T15S :

- La première famille est mise en tension de façon échelonnée à 14 jours d'âge du béton et ancrée aux abouts des poutres préfabriquées quand elles sont encore sur leurs cintres.
- La deuxième famille est mise en tension de façon échelonnée à 60 jours d'âge du béton et ancrée dans l'hourdis au niveau des sections  $x = \frac{L_c}{8}$  et  $x = \frac{7L_c}{8}$ .

Un toron de la précontrainte est de type T15S de section égale à  $150\ mm^2$  et de diamètre de leurs gaines égale à  $10.7\mathrm{mm}$ , ces câbles sont constitués de 12 torons de type T15S ayant les caractéristiques suivantes :

Tableau 1.3: Les caractéristiques du toron

| Rentrée d'ancrage                  | g (m)                 | 0.006  |
|------------------------------------|-----------------------|--------|
| Hygrométrie du milieu ambiant      | $ ho_h(\%)$           | 50     |
| Coefficient e frottement en courbe | f (rad-1)             | 0.18   |
| Coefficient de perte en ligne      | rd m-1                | 0.002  |
| Section de 12T15S                  | A (m2)                | 0.0018 |
| Diamètre de gaine                  | φ (m)                 | 0.08   |
| Force de précontrainte initiale    | $Pi^{T15S}$ (MN)      | 0.2    |
| Force de précontrainte finale      | $Pf^{T15S}$ (MN)      | 0.16   |
| Limite d'élasticité garantie       | $f_{peg} (MPa)$       | 1655   |
| Resistance a la rupture garantie   | $f_{prg} (MPa)$       | 1860   |
| Tension a l'origine                | $\sigma_{p0} \ (MPa)$ | 1488   |
| Module d'élasticité                | Ep (MPa)              | 190000 |

#### 1.4.2 Béton

Les caractéristiques du béton sont généralement les suivantes :

Resistance a la compression à 28 jours (MPa)

Resistance a la traction à 28 jours (MPa)

Resistance a la compression à 14 jours (MPa)

Resistance a la traction à 14 jours (MPa)

Resistance a la compression à 60 jours (MPa)

Resistance a la traction à 60 jours (MPa)

34.19

Resistance a la traction à 60 jours (MPa)

3.24

Tableau 1.4: Les caractéristiques du béton

Pour le calcul des caractéristiques, on a utilisé ces formules suivantes :

— Pour  $f_{cj}$ < 60 MPa :

$$f_{tj} = 0.6 + 0.06 f_{cj}$$

— Pour  $f_{cj}$ < 40 MPa :

$$f_{cj} = \frac{j}{4.76 + 0.83j} f_{c28}$$

Sachant que notre ouvrage est dimensionné en classe I, on a déterminé les contraintes admissibles du béton en phase de la construction et en phase d'exploitation.



**Figure 1.2:** Contraintes admissibles pour un ouvrage de classe I en phase d'exécution et d'exploitation

# • Phase d'exécution :

— Contrainte en traction :

$$\bar{\sigma}_1 = \bar{\sigma}_2' = -0.7 * f_{tj} = -1.855 \text{MPa}$$

— Contrainte en compression :

$$\bar{\sigma}'_1 = \bar{\sigma}_2 = 0.6 * f_{cj} = 20.51 \text{MPa}$$

# • Phase d'exécution :

— Pour combinaison rare et fréquente :

$$\bar{\sigma}_1 = \bar{\sigma}_2' = 0 \text{MPa}$$
 
$$\bar{\sigma}_1' = \bar{\sigma}_2 = 0.6 * f_{cj} = 26.39 \text{MPa}$$

— Pour combinaison quasi permanente :

$$\bar{\sigma}_1=\bar{\sigma}_2'=0 \mathrm{MPa}$$
 
$$\bar{\sigma}_1'=\bar{\sigma}_2=0.5*f_{cj}=23.995 \mathrm{MPa}$$

# CALCUL DE LA PRÉCONTRAINTE

# Plan

| 1 | Calcul de la précontrainte en phase d'exploitation finale | 9  |
|---|-----------------------------------------------------------|----|
| 2 | Dimensionnement de la première famille de câbles          | 10 |
| 9 | Dimensionnement de la deuvième famille de gâble           | 11 |

# 2.1 Calcul de la précontrainte en phase d'exploitation finale

Cette partie est consacrée au dimensionnement de la précontrainte nécessaire pour la première famille de câbles d'une poutre principale en phase provisoire de construction.

#### 2.1.1 Calcul des sollicitations normales en service

Les sollicitations étudiées sont des charges réparties sur toute la poutre. Pour déterminer les sollicitations dues à cette charge, on n'a pas besoin des lignes d'influences. Le problème se réduit à déterminer les sollicitations d'une charge répartie sur toute une poutre sur appui simple.

Par suite, à mi travée, les moments respectifs dus aux charges permanentes, charge de la superstructure et charge d'exploitation sont les suivants :

Soit 
$$\begin{cases} g: \text{ poids propre de poutre et hourdis} \\ g': \text{ poids de superstructure} \\ gq: \text{ charge variable} \end{cases}$$

$$M_{\text{max}} = M_g + M_{g'} + M_q = \left( (25.0625 + 16.275 + 31.98) * \frac{L^2}{8} + 18344.26 \right) * 10^{-3} = 35.28 MNm$$

$$M_{\text{min}} = M_g + M_{g'} = (25.0625 + 16.275 + 31.98) * \frac{L^2}{8} * 10^{-3} = 16.95 \text{MNm}$$

Ainsi,

$$\Delta_M = M_{\text{max}} - M_{\text{min}} = 18.33 MNm$$

On a,

$$P_{I} = \frac{\Delta_{M} + \frac{I}{V'} * \bar{\sigma}_{2}' + \frac{I}{V} * \bar{\sigma}_{1}}{\rho * h} = 14.47MN$$

$$P_{II} = \frac{M_{\text{max}} + \frac{I}{V'} * \bar{\sigma}_2'}{\rho * h + V' - d'} = 15.81 MN$$

On a

$$P_I \leq P_{II} => \text{ section sur critique}$$

Or d' est la distance minimale entre le barycentre des câbles et les fibres extrêmes, inférieure,  $d'>2\Phi$  d'où on prend d'=16cm

D'ou:

$$\begin{cases}
P_{\text{min}} = P_{II} = 15.81MN \\
et \\
e_0 = -(V' - d') = -1.06m
\end{cases}$$

#### 2.1.2 Calcul du nombre de câbles

Le nombre des câbles pour la première famille est

$$N = E\left(\frac{P_I}{P^{12T5s}}\right) = 14.11 => 16 \text{ cables}$$

Soit

$$P_{\text{reel}} = 16 * 7 * 0.16 = 17.92 \text{MN}$$

# 2.1.3 Vérification des conditions de coffrage en béton

La section est sur-critique soumise à deux moments extrêmes positifs. Alors la section minimale du béton vérifie les relations suivantes :

$$\begin{cases} \left(\frac{I}{V}\right)_{\min} = \frac{P_{\text{reel}} * \rho * h}{\bar{\sigma}_2 - \frac{V}{V'} \bar{\sigma}_2'} = 0.75 \text{ m}^3 < \left(\frac{I}{V'}\right)_{\text{reel}} = 0.8 \text{ m}^3 \\ \left(\frac{I}{V'}\right)_{\min} = \frac{\Delta_M}{\bar{\sigma}_2' - \bar{\sigma}_1'} = 0.69 \text{ m}^3 < \left(\frac{I}{V'}\right)_{\text{reel}} = 0.71 \text{ m}^3 \end{cases}$$

Ainsi, le coffrage est bien vérifié pour la précontrainte  $(P_{relle}, e_0)$  choisie.

# 2.2 Dimensionnement de la première famille de câbles

### 2.2.1 Calcul de la précontrainte minimale

En phase de construction, la poutre est soumise seulement à son poids propre.

Le moment maximal, à mi-travée, est :

$$M_{\text{max}} = M_g = \left( (25.0625) * \frac{L^2}{8} \right) * 10^{-3} = 5.79 MNm$$

$$M_{\text{min}} = 0$$

Ainsi,

$$\Delta_M = M_{\text{max}} - M_{\text{min}} = 579MNm$$

On a:

$$P_{I} = \frac{\Delta_{M} + \frac{I}{V'} * \bar{\sigma}'_{2} + \frac{I}{V} * \bar{\sigma}_{1}}{\rho * h} = 7.18MN$$

$$P_{II} = \frac{M_{\text{max}} + \frac{I}{V'} * \bar{\sigma}_2'}{\rho * h + V' - d'} = 1.94MN$$

On a

$$P_{II} \leq P_{I} =>$$
 section sous critique

D'ou

$$e_0 = \rho V' * \left(1 - \frac{B * \bar{\sigma}_1}{P_I}\right) = -1.11 \text{ m}$$

## 2.2.2 Calcul du nombre de câbles

Le nombre des câbles pour la première famille est :

$$N = E\left(\frac{P_I}{P^{12T5s}}\right) = 5.13 => 6$$
 cables

Soit

$$P_{\text{reel}} = 6 * 7 * 0.2 = 8.4 \text{MN}$$

### 2.2.3 Vérification des conditions de coffrage en béton

La section est sous critique. Alors la section minimale du béton vérifie les relations suivantes :

$$\begin{cases} \left(\frac{I}{V}\right)_{\min} = \frac{\Delta_M}{\bar{\sigma}_2 - \bar{\sigma}_1} = 0.25m^3 < \left(\frac{I}{V'}\right)_{\text{reel}} = 0.8 \\ \left(\frac{I}{V'}\right)_{\min} = \frac{\Delta_M}{\bar{\sigma}_2' - \bar{\sigma}_1'} = 0.25m^3 < \left(\frac{I}{V'}\right)_{\text{reel}} = 0.71m^3 \end{cases}$$

Ainsi, le coffrage est bien vérifié pour la précontrainte  $(P_{relle}, e_0)$  choisie.

# 2.3 Dimensionnement de la deuxième famille de câble

Pour le ferraillage de la poutre, le calcul nous a donné 6 câbles pour la première famille et 16 câbles en total. De ce fait, on peut conclure que la deuxième famille est de 10 câbles.

Les câbles de la première phase sont tous ancrés à l'about contrairement à ceux de la deuxième famille qui sont relevés en travée, ancrés dans l'hourdis et mis en tension sur la section complète poutre et hourdis.

Afin de déterminer l'excentricité du câble moyen des deux familles ainsi que de la deuxième famille, on va déterminer tout d'abord une disposition des câbles tout en respectant les dispositions constructives par les règles du BPEL 99.

On a une largeur du talon égale à 0.7 m donc on peut mettre 4 câbles de 8 cm de diamètre par lit, par suite la disposition est la suivante sachant que  $d' = \Phi$  comme supposer dès le début.

Cette disposition nous permet de conclure que l'excentricité du câble moyen de la deuxième famille ainsi que celle du câble moyen des deux familles sont égales et sachant que l'excentricité de la première famille était calculée par rapport au centre de gravité de la poutre seule, on calcule celle de la première famille par rapport au centre de gravité de la poutre avec hourdis.

$$e_{1(1emefamille)} = -\left[\mid e_{o(1erefamille)}\mid + \left(V'_{poutre+hourdis} - V'_{poutre}\right)\right] = -1.28 \text{ m}$$

Et selon la disposition de câbles, on peut calculer l'excentricité de la deuxième famille comme suit :

$$e_{o(2emefamille)} = -\left[V' - (1.5\Phi)\right] + 3\left[V' - 2.5\Phi\right]/4 = -1.15m$$

Dans ce tableau on récapitule le câblage des deux familles :

Tableau 2.1: Câblage des aciers longitudinaux

| 1ere famille                |       | 2eme famille            |       |  |
|-----------------------------|-------|-------------------------|-------|--|
| Précontrainte réel (MN) 8.4 |       | Précontrainte réel (MN) | 11.2  |  |
| Nombre de câble             | 6     | Nombre de câble         | 10    |  |
| Excentricité (m)            | -1.06 | Excentricité (m)        | -1.15 |  |

## 2.3.1 Tracé des câbles moyens

- Pour la première famille : On trace le câble moyen de la première famille dont le montage est poutre seule.
- Pour la deuxième famille : On trace le câble moyen de la deuxième famille dont le montage est poutre avec hourdis.

# EVALUATION DES PERTES DE

# PRÉCONTRAINTE

| _            | 1  |   |   |
|--------------|----|---|---|
| $\mathbf{P}$ | I۶ | ì | ì |

| 1 | Introduction                       | 14 |
|---|------------------------------------|----|
| 2 | Pertes instantanées 1er famille    | 14 |
| 3 | Perte instantané deuxième famille  | 19 |
| 4 | Pertes différées                   | 21 |
| 5 | Pertes Totales                     | 23 |
| 6 | Tension initiale probable          | 24 |
| 7 | Tension finale probable            | 24 |
| 8 | Forces probable initiale et finale | 25 |

# 3.1 Introduction

Tout le long de ce chapitre, le calcul des différents types de pertes que subit un câble de précontrainte est présenté. Cette étude des pertes est basée sur des calculs manuels en appliquant les règles étudiées pendant le cours de Béton Précontraint.

Les pertes de tension instantanées et différées sont estimées dans les deux câbles moyens de la première et la deuxième famille au niveau de la section médiane du montage (poutre principale + hourdis). Ensuite, la tension initiale et la tension finale dans respectivement le câble moyen de la première famille et le câble moyen de la deuxième famille, au niveau de cette section médiane sont déduites.

# 3.2 Pertes instantanées 1er famille

Ce type de pertes ne dépend pas du temps et est souvent observé pendant la première période de mise en tension.

## 3.2.1 Perte par frottement

La perte par frottement en section médiane est donnée par l'expression suivante :

$$\Delta \sigma_{\varphi}(x) = \sigma_{P0} * \left(1 - e^{-f*(\alpha(x) + \varphi x)}\right)$$

La valeur du tension à l'origine est donné égale à 1488 MPa.

Les coefficients de frottement f et  $\Phi$  sont respectivement égales à  $0.18rd^{-1}$  et  $0,002m^{-1}$ .

Angle entre la tangente au câble dans la section considérée :  $\alpha(x) = 0.006 * x$ 

**Tableau 3.1:** Pertes par frottement pour la 1 ère famille

| f                | 0.18  |          | $\sigma_{p0}$ |
|------------------|-------|----------|---------------|
| $f_i$            | 0.002 | $\alpha$ | perte         |
| 0                | 0     | 0        | 0             |
| $\frac{l_c}{8}$  | 5.375 | 0.03225  | 23.889        |
| $\frac{l_c}{4}$  | 10.75 | 0.0645   | 47.386        |
| $\frac{l_c}{2}$  | 21.5  | 0.129    | 93.23         |
| $\frac{3l_c}{4}$ | 32.25 | 0.1935   | 137.58        |

| $\frac{7l_c}{8}$ | 37.625 | 0.2257 | 159.2  |
|------------------|--------|--------|--------|
| $l_c$            | 43     | 0.258  | 180.48 |

# 3.2.2 Calcul de la perte par rentrée d'ancrage

— Si d>x::

$$\Delta \sigma_{\varphi}(x) = \sigma_{P0} * e^{-K(x)} \left( 1 - e^{-2*(k(d) + k(x))} \right)$$

— Sinon :

$$\Delta \sigma_{\varphi}(x) = 0$$

Avec,

Avec 
$$k(x)=f*\alpha(x)+\varphi x$$
 
$$d=\sqrt{\frac{g^{*E_p}}{\sigma_{P0^*k}}}$$
 
$$k=f*\frac{\alpha(L)}{L}+\varphi=0.00308=15.95$$

Tableau 3.2: Pertes par recul d'ancrage de la 1 ère famille

| X                | $\sigma_{\varphi}(x)$ |
|------------------|-----------------------|
| 0                | 138.46                |
| $\frac{1l_c}{8}$ | 92.59                 |
| $\frac{l_c}{4}$  | 46.75                 |
| $\frac{l_c}{2}$  | 0                     |
| $\frac{3l_c}{4}$ | 0                     |
| $\frac{7l_c}{8}$ | 0                     |
| $l_c$            | 0                     |

### 3.2.3 Calcul des pertes par déformations élastiques

3.2.3.1 Pertes par mise en tension échelonnée de la première famille de câblesà 14jours d'âge de béton pour la première famille

$$\Delta \sigma_e(x) = 0.5 * E * \frac{\Delta \sigma_b^p(x, e)}{E_{ib}}$$

Avec,

Avec 
$$\Delta \sigma_b^p(x, e) = \frac{P}{B} + \frac{P * e_i^2}{I}$$

Pour la première famille :

$$E_{14} = 11000 \left(\sqrt{f_{c14}}\right)^{\frac{1}{3}} = 35701.99 \text{MPa}$$

Tableau 3.3: Pertes par echonnement

| e(x)        | $\Delta \sigma$ Pertes (MPa) |            |
|-------------|------------------------------|------------|
| -3E-16      | 8,37487537                   | 22,2848407 |
| -0,46352656 | 11,0289897                   | 29,3472163 |
| -0,79415625 | 16,1656796                   | 43,015517  |
| -1,056725   | 22,1690061                   | 58,9898653 |
| -0,78770625 | 16,0396424                   | 42,6801426 |
| -0,45385156 | 10,9193495                   | 29,055473  |
| 0,0129      | 8,37693103                   | 22,2903106 |

• Gain suite à l'application de mise en tension de la deuxième famille de câbles à 60 jours d'âge de béton pour la première famille (montage : poutre avec hourdis) : La première étape fut de calculer la position du câble moyen de la première famille par rapport au centre de gravité de la poutre avec hourdis :

$$e_{1(1emefamille)} = -\left[\mid e_{o(1erefamille)}\mid + \left(V'_{poutre+hourdis} - V'_{poutre}\right)\right] = -1.28 \text{ m}$$
 
$$\Delta\sigma_e(x) = 0.5 * E * \frac{\Delta\sigma_b^p(x,e)}{E_{ib}}$$

Avec,

$$\text{Avec}\,\Delta\sigma_b^p(x,e) = \frac{P}{B} + \frac{P*e_i^2}{I}$$
 
$$E_{60} = 11000\left(\sqrt{f_{c60}}\right)^{\frac{1}{3}} = 38830.89\text{MPa}$$

Tableau 3.4: Gainsuite à l'application de mise en tension de la deuxième famille

| e(x)        | $\Delta\sigma$ | Gain (MPa) |
|-------------|----------------|------------|
| -0,17       | 11,6425005     | 28,4834457 |
| -0,63352656 | 17,7770684     | 43,4917019 |
| -0,96415625 | 26,4775144     | 64,7773943 |
| -1,226725   | 35,9523348     | 87,9575978 |
| -0,95770625 | 26,2733448     | 64,2778921 |
| -0,62385156 | 17,5767014     | 43,0015031 |
| -0,1829     | 11,7174814     | 28,6668869 |

• Gain suite à l'application du poids propre (poutre avec hourdis) à partir de 60 jours d'âge du béton pour la première famille :

$$\Delta \sigma_e(x) = 0.5 * E * \frac{\Delta \sigma_b^p(x, e)}{E_{ib}}$$

Avec,

$$\Delta \sigma_b^p(x,e) = \frac{M_g * e_0}{I}$$

$$M_g = g * x * \frac{l - x}{2}$$

Tableau 3.5: Gain suite à l'application du poids propre

| Mg         | $\Delta\sigma$ | Gain (MPa)  |
|------------|----------------|-------------|
| 0          | 0              | 0           |
| 4,17993174 | -3,89426145    | -20,724606  |
| 7,16559727 | -10,1599344    | -54,069466  |
| 9,55412969 | -17,2357202    | -91,7256108 |
| 7,16559727 | -10,0919666    | -53,7077528 |

| 4,17993174 | -3,83478963 | -20,4081069 |
|------------|-------------|-------------|
| 0          | 0           | 0           |

• Gain suite à l'application du poids se superstructure à partir de 60 jours d'âge du béton pour la première famille :

$$\Delta \sigma(\mathbf{x}) = 0.5 * E * \frac{\Delta \sigma_b^g(x, e)}{E_{ib}}$$

$$\text{Avec } \Delta \sigma_b^p(x, e) = \frac{M_g' * e_0}{I}$$

$$M_{g'} = g * x * (l - x)/2$$

Tableau 3.6: Gain suite à l'application de la superstructure

| Mg'        | $\Delta \sigma$ | Gain (MPa)  |
|------------|-----------------|-------------|
| 0          | 0               | 0           |
| 3,23372766 | -3,01272407     | -14,7412942 |
| 5,54353313 | -7,86004722     | -38,4593032 |
| 7,3913775  | -13,3340994     | -65,2439045 |
| 5,54353313 | -7,80746518     | -38,2020186 |
| 3,23372766 | -2,96671478     | -14,5161702 |
| 0          | 0               | 0           |

Pour la première famille la perte totale est :

$$\Delta\sigma(x) = \Delta\sigma_{\rho}(x) + \Delta\sigma_{q}(x) + \Delta\sigma_{e}(x)$$

Tableau 3.7: Perte instantanné total

| Perte par déformation élastique totale | Perte instantanné total |
|----------------------------------------|-------------------------|
| 50,7682864                             | 189,229843              |
| 37,373018                              | 153,857871              |

| 15,2641421  | 109,405438 |
|-------------|------------|
| -10,0220522 | 83,2071628 |
| 15,0482632  | 152,627444 |
| 37,132699   | 196,342242 |
| 50,9571975  | 231,44196  |

# 3.3 Perte instantané deuxième famille

Tableau 3.8: Perte instantanné 2eme famille

| Abscisse         | x      | α       | $\sigma(\mathrm{MPa})$ |
|------------------|--------|---------|------------------------|
| 0                | 0      | 0       | 0                      |
| lc/8             | 5,125  | 0,03075 | 22,7868566             |
| m lc/4           | 10,25  | 0,0615  | 45,2168466             |
| m lc/2           | 20,5   | 0,123   | 89,0284952             |
| $3\mathrm{lc}/4$ | 30,75  | 0,1845  | 131,478615             |
| 7lc/8            | 35,875 | 0,21525 | 152,206376             |
| lc               | 41     | 0,246   | 172,609518             |

# 3.3.1 Perte par rentrée d'ancrage

Tableau 3.9: Perte par rentrée d'ancrage 2eme famille

| k(x)     | Perte (MPa) |
|----------|-------------|
| 0        | 138,461557  |
| 0,015785 | 94,728256   |
| 0,03157  | 51,0185587  |
| 0,06314  | 0           |
| 0,09471  | 0           |
| 0,110495 | 0           |
| 0,12628  | 0           |

# 3.3.2 Calcul des pertes par déformations élastiques

Tableau 3.10: Pertes par mise en tension échelonnée à partir de 60 jours pour la deuxième famille

| e(x)        | $\Delta\sigma$ | σ          |
|-------------|----------------|------------|
| 0,1149      | 11,3839454     | 27,8508891 |
| -0,40304531 | 13,8420738     | 33,8647148 |
| -0,77915625 | 21,1655387     | 51,7816145 |
| -1,105875   | 31,3093631     | 76,5985404 |
| -0,86525625 | 23,4975091     | 57,4867937 |
| -0,53219531 | 15,8314957     | 38,731847  |
| -0,0573     | 11,2205782     | 27,4512104 |

**Tableau 3.11:** Gain suite à l'application du poids propre (poutre avec hourdis) à partir de 60 jours d'âge du béton pour la première famille

| e1          | mg         | $\delta\sigma$ | σ           |
|-------------|------------|----------------|-------------|
| -0,2849     | 0          | 0              | 0           |
| -0,23304531 | 3,77366162 | -1,29328552    | -6,3280612  |
| -0,60915625 | 6,4086043  | -5,74094318    | -28,0905023 |
| -0,935875   | 8,26233281 | -11,3713393    | -55,6400965 |
| -0,69525625 | 5,56118555 | -5,68595442    | -27,8214417 |
| -0,36219531 | 2,5025335  | -1,33294986    | -6,52213927 |
| -0,1127     | -1,6948375 | 0,28089439     | 1,37441955  |

**Tableau 3.12:** Gain suite à l'application du poids propre (poutre avec hourdis) à partir de 60 jours d'âge du béton pour la première famille

| N/L?  | Λ -             | _        | Perte            | Perte totale | Contrainte |
|-------|-----------------|----------|------------------|--------------|------------|
| Mg'   | $\Delta \sigma$ | $\sigma$ | totale élastique | instantané   | initiale   |
| 0     | 0               | 0        | 27,850           | 166,312      | 1288,687   |
| 2,939 | -1,007          | -4,929   | 22,60            | 140,1        | 1314,87    |
| 5,098 | -4,51           | -22,09   | 1,600            | 97,835       | 1357,16    |
| 6,71  | -9,248          | -45,748  | -24,299          | 64,733       | 1390,265   |

| 5,0393 | -5,155 | -25,212 | 4,485  | 135,967 | 1319,933 |
|--------|--------|---------|--------|---------|----------|
| 2,931  | -1,149 | -7,695  | 24,548 | 176,043 | 1278,296 |
| 0      | 0      | 0       | 28,899 | 201,437 | 1253,56  |

# 3.4 Pertes différées

## 3.4.1 Pertes par retrait final du béton

La perte par retrait du béton est donnée par la formule simplifiée suivante :

$$\Delta \sigma_r = \mathrm{E}_\mathrm{p} \varepsilon_\mathrm{r}$$

Avec,

$$\varepsilon_{\rm r} = \frac{\varepsilon_0}{1+20\frac{A_{\rm p}}{B}} \text{ où } \left\{ \begin{array}{l} A_{\rm p} = 0.0018 \text{ m}^2 \\ \\ B = 1.32 \text{ m}^2 \end{array} \right.$$

$$\varepsilon_0 = (100 - \rho_h) \left( 6 + \frac{80}{10 + 3r_m} \right) 10^{-6} = 6.4810^{-4}$$

Les valeurs des pertes pour les deux familles de câbles est données dans le tableau suivant :

Tableau 3.13: Pertes par retrait final du béton

|                       | Première famille | Deuxième famille |
|-----------------------|------------------|------------------|
| n câbles              | 6                | 10               |
| $A_p(m^2)$            | 0.0108           | 0.018            |
| $arepsilon_r$         | 0.00055          | 0.00050          |
| $\Delta_r(	ext{MPa})$ | 104.5            | 95               |

### 3.4.2 Pertes par fluage du béton

La perte par fluage du béton est donnée par la formule suivante :

$$\Delta \sigma_f = \frac{\mathrm{E_p}}{\mathrm{E_{ib}}} \left( \sigma_{\mathrm{min}} + \sigma_{\mathrm{max}} \right)$$

Avec,

$$\sigma_{\min} = \frac{P_f}{B} + \frac{P_f e_0^2}{I} + \frac{M_g + M_g \prime}{I} e_0$$

$$\sigma_{max} = \frac{P_i}{B} + \frac{P_i {e_0}^2}{I} + \frac{M_g}{I} e_0$$

Tableau 3.14: Pertes par fluage du béton

| $\sigma_{ m min}$ | $\sigma_{ m max}$ | $\sigma$ 1er famille | $\sigma$ 2em famille |
|-------------------|-------------------|----------------------|----------------------|
| 0,15952144        | 0,19940179        | 1,9101292            | 1,75621557           |
| -4,84349467       | -2,58668352       | 39,5421616           | 36,355949            |
| -14,5347813       | -7,98363795       | 119,839249           | 110,182889           |
| -25,911176        | -14,3193543       | 214,100132           | 196,848456           |
| -14,4166322       | -7,91867103       | 118,864736           | 109,2869             |
| -4,74010195       | -2,52982218       | 38,6893163           | 35,571824            |
| 0,15956059        | 0,19945074        | 1,91059805           | 1,75664665           |

# 3.4.3 Pertes par relaxation de l'acier

La perte par relaxation est donnée par la formule suivante :

$$\Delta \sigma_{\rho} = 6 * \rho_{1000} \left[ \frac{\sigma_{\rm in}}{f_{\rm prg}} - \mu_0 \right] \sigma_{\rm in}$$

Avec,

$$\mu_0 = 0.43$$

$$\rho_{1000} = 2.5\%$$

Le tableau présente le calcul des pertes par relaxation pour les deux familles :

Tableau 3.15: Pertes par relaxation de l'acier

| $\sigma$ 1er famille | $\sigma$ 2eme famille |
|----------------------|-----------------------|
| 47,5654128           | 50,8083312            |
| 52,6062392           | 54,6181496            |
| 59,2272738           | 61,0028304            |
| 63,2786836           | 66,2019102            |
| 52,7852181           | 55,2380849            |
| 46,5761998           | 49,3202911            |

| 41,8139159 45,8728766 |
|-----------------------|
|-----------------------|

### 3.4.4 Pertes différées totales

La perte différée totale est tout simplement la somme des trois pertes explicitées précédemment :

$$\Delta\sigma_d(\mathbf{x}) = \Delta\sigma_r + \frac{5}{6} * \Delta\sigma_\rho + \Delta\sigma_f$$

Le tableau suivant illustre les valeurs des pertes différés totales :

Tableau 3.16: Pertes différés totales

|                          | Première famille | Deuxième famille |
|--------------------------|------------------|------------------|
| $x = \frac{L}{2}(m)$     | 18.5             | 17.5             |
| $\Delta \sigma_d(x)$ MPa | 285.854          | 358.837          |

# 3.5 Pertes Totales

La perte totale est tout simplement la somme des pertes instantanées et des pertes différées :

$$\Delta \sigma_p(\mathbf{x}) = \Delta \sigma_i + \Delta \sigma_d$$

Le tableau suivant illustre les valeurs des pertes totales :

Tableau 3.17: Pertes totales

| 1re fam    | 2eme fam   |
|------------|------------|
| 335,277816 | 305,408937 |
| 341,738565 | 316,992896 |
| 383,100748 | 353,854194 |
| 454,539531 | 411,751279 |
| 419,979861 | 386,249305 |
| 378,345058 | 348,42611  |
| 372,697488 | 336,419191 |

# 3.6 Tension initiale probable

La tension initiale d'un T15S peut être calculer moyennant la formule suivante :

$$\sigma_{in} = \sigma_{p0} - \sigma_i = 1488 - \sigma_i$$

Le tableau suivant illustre les valeurs des tention initiale totales :

Tableau 3.18: Tension initiale probable

| 1er famille | 2eme famille |
|-------------|--------------|
| 1265,77016  | 1288,68755   |
| 1301,14213  | 1314,87818   |
| 1345,59456  | 1357,16439   |
| 1371,79284  | 1390,26544   |
| 1302,37256  | 1319,06933   |
| 1258,65776  | 1278,24596   |
| 1223,55804  | 1253,56485   |

# 3.7 Tension finale probable

La tension finale d'un T15S peut être calculer moyennant la formule suivante :

Tableau 3.19: Tension finale probable

| 1er famille | 2eme famille |
|-------------|--------------|
| 1119,72218  | 1149,59106   |
| 1113,26144  | 1138,0071    |
| 1071,89925  | 1101,14581   |
| 1000,46047  | 1043,24872   |
| 1035,02014  | 1068,7507    |
| 1076,65494  | 1106,57389   |
| 1082,30251  | 1118,58081   |

# 3.8 Forces probable initiale et finale

Tableau 3.20: Forces initiales et finales

| Force initiale 1er | E C 1 1 C :11            | Force initiale 2eme | Force finale 2em |
|--------------------|--------------------------|---------------------|------------------|
| famille            | Force finale 1er famille | famille             | famille          |
| 2,27838628         | 2,01549993               | 2,3196376           | 2,06926391       |
| 2,34205583         | 2,00387058               | 2,36678072          | 2,04841279       |
| 2,42207021         | 1,92941865               | 2,4428959           | 1,98206245       |
| 2,46922711         | 1,80082884               | 2,50247778          | 1,8778477        |
| 2,3442706          | 1,86303625               | 2,3743248           | 1,92375125       |
| 2,26558396         | 1,9379789                | 2,30084272          | 1,991833         |
| 2,20240447         | 1,94814452               | 2,25641673          | 2,01344546       |

# VÉRIFICATION DE CONTRAINTES DE

# COMPRESSION ET DE TRACTION

# Plan

| 1 | Vérification de contraintes de compression et de traction en phase      |    |
|---|-------------------------------------------------------------------------|----|
|   | finale d'exploitation                                                   | 27 |
| 2 | Vérification de la section médiane du montage vis-à-vis de la flexion à |    |
|   | l'ELUR en phase finale d'exploitation                                   | 30 |

# 4.1 Vérification de contraintes de compression et de traction en phase finale d'exploitation

### 4.1.1 Combinaison rare

### 4.1.1.1 Contraintes normales de traction

$$\sigma_1'(V) = \frac{P_f}{B} + \frac{P_f e_0 * V}{I} + \frac{M_t}{I} V$$

$$\sigma_2 \left(-V'\right) = \frac{P_i}{B} + \frac{P_i e_0 * (-V')}{I} + \frac{M_t}{I} \left(-V'\right)$$

Tableau 4.1: Vérification des contraintes de traction en phase de construction

| x                                                    | 0       | 5.375   | 10.75   | 21.5    | 32.25   | 37.625  | 43      |
|------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| Pi(1ère famille)                                     | 2.732   | 2.761   | 2.790   | 2.794   | 2.720   | 2.693   | 2.659   |
| e0                                                   | 0.000   | -0.490  | -0.839  | -1.113  | -0.822  | -0.465  | 0.033   |
| Pi*e0 =                                              | 0.000   | -1.353  | -2.341  | -3.109  | -2.236  | -1.252  | 0.088   |
| Mg                                                   | 0.000   | 1.469   | 2.519   | 3.358   | 2.519   | 1.469   | 0.000   |
| $\sigma'_1(v) =$                                     | 3.480   | 3.767   | 3.936   | 4.093   | 4.072   | 3.897   | 3.576   |
| $\overline{\sigma_1}' = -1.8855 \mathrm{MPa}$        | vérifié |
| $\sigma 2 \left(-\mathbf{v}'\right)$                 | 3.480   | 3.819   | 3.051   | 2.854   | 2.665   | 2.815   | 3.139   |
| $\overline{oldsymbol{\sigma}_2} = -1.8855 	ext{MPa}$ | Vérifié |

# 4.1.1.2 Contraintes normales de compression

$$\sigma_{1}(V) = \frac{P_{f}}{B} + \frac{P_{f}e_{0} * V}{I} + \frac{M_{t}}{I}V$$

$$\sigma'_{2}(-V') = \frac{P_{i}}{B} + \frac{P_{i}e_{0} * (-V')}{I} + \frac{M_{t}}{I}(-V')$$

Tableau 4.2: Vérification des contraintes de Compression en phase de construction

| х                                          | 0       | 5.375   | 10.75   | 21.5    | 32.25   | 37.625  | 43      |
|--------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| Pi(1ère famille)                           | 2.732   | 2.761   | 2.790   | 2.794   | 2.720   | 2.693   | 2.659   |
| e0                                         | 0.000   | -0.490  | -0.839  | -1.113  | -0.822  | -0.465  | 0.033   |
| Pi*e0 =                                    | 0.000   | -1.353  | -2.341  | -3.109  | -2.236  | -1.252  | 0.088   |
| Mg                                         | 0.000   | 1.469   | 2.519   | 3.358   | 2.519   | 1.469   | 0.000   |
| $\sigma'_1(v) =$                           | 3.480   | 4.194   | 4.776   | 5.153   | 4.390   | 3.821   | 3.139   |
| $\overline{\sigma_1}' = \mathbf{20.51MPa}$ | vérifié |
| $\sigma 2 \left(-\mathbf{v}'\right)$       | 3.480   | 3.767   | 3.936   | 4.093   | 4.072   | 3.897   | 3.576   |
| $\overline{\sigma_2} = \mathbf{20.51MPa}$  | Vérifié |

### 4.1.2 Combinaison Fréquente

### 4.1.2.1 Contraintes normale de traction

$$\sigma_1'(V) = \frac{P_f}{B} + \frac{P_f e_0 * V}{I} + \frac{M_t'}{I} V$$

$$\sigma_2 \left(-V'\right) = \frac{P_i}{B} + \frac{P_i e_0 * (-V')}{I} + \frac{M_t}{I} \left(-V'\right)$$

Tableau 4.3: Contraintes normales de traction sous combinaison rare

| X                                                | 0       | 5.375   | 10.75   | 21.5    | 32.25   | 37.625  | 43      |
|--------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| $\sigma_1'(v)$                                   | 1.339   | 10.677  | 6.403   | 2.948   | 6.641   | 10.587  | 1.206   |
| $\overline{\sigma_1}' = \mathbf{0MPa}$           | vérifié |
| $\sigma 2 \left(-\mathbf{v}'\right)$             | 3.580   | 3.401   | 9.829   | 14.093  | 8.83    | 2.976   | 3.667   |
| $\overline{oldsymbol{\sigma}_2} = 0\mathbf{MPa}$ | Vérifié |

## 4.1.2.2 Contraintes normales de compression

$$\sigma_{1}(V) = \frac{P_{f}}{B} + \frac{P_{f}e_{0} * V}{I} + \frac{M_{t}'}{I}V$$

$$\sigma_{2}'\left(-V'\right) = \frac{P_{i}}{B} + \frac{P_{i}e_{0} * \left(-V'\right)}{I} + \frac{M_{t}}{I}\left(-V'\right)$$

Tableau 4.4: Contraintes normales de compression sous combinaison rare

| x                                           | 0       | 5.375   | 10.75   | 21.5    | 32.25   | 37.625  | 43      |
|---------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| $\sigma 1' (y = -v')$                       | 5.741   | 4.557   | 5.749   | 6.595   | 4.535   | 3.920   | 5.776   |
| $\overline{\sigma'_1} = 26.39 \mathrm{MPa}$ | Vérifié |
| $\sigma 2(y = v)$                           | 1.339   | 11.732  | 8.214   | 5.362   | 8.452   | 11.642  | 1.206   |
| $\overline{\sigma_2} = 26.39 MPa$           | Vérifié |

# 4.1.3 Combination quasi-Permanente

#### 4.1.3.1 Contraintes normale de traction

$$\begin{split} \sigma_1'(V) &= \frac{P_f}{B} + \frac{P_f e_0 * V}{I} + \frac{M_t'}{I}V \\ \sigma_2\left(-V'\right) &= \frac{P_i}{B} + \frac{P_i e_0 * \left(-V'\right)}{I} + \frac{M_t}{I}\left(-V'\right) \end{split}$$

Tableau 4.5: Contraintes normales de traction sous combinaison fréquente

| X                                                 | 0       | 5.375   | 10.75   | 21.5    | 32.25   | 37.625  | 43      |
|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| $\sigma 1(v) =$                                   | 1.339   | 10.677  | 6.403   | 2.948   | 6.641   | 10.587  | 1.206   |
| $\overline{oldsymbol{\sigma}_1} = -0\mathbf{MPa}$ | Vérifié |
| $\sigma 2' \left( y = -v' \right)$                | 3.580   | 4.128   | 11.078  | 16.574  | 10.079  | 3.704   | 3.667   |
| $\overline{\sigma_2} = 0 \mathrm{MPa}$            | Vérifié |

#### 4.1.3.2 Contraintes normales de compression

$$\sigma_{1}(V) = \frac{P_{f}}{B} + \frac{P_{f}e_{0} * V}{I} + \frac{M'_{qp}}{I}V$$

$$\sigma'_{2}(-V') = \frac{P_{i}}{B} + \frac{P_{i}e_{0} * (-V')}{I} + \frac{M_{qp}}{I}(-V')$$

Tableau 4.6: Contraintes normales de compression sous combinaison fréquente

| X                                       | 0       | 5.375   | 10.75   | 21.5    | 32.25   | 37.625  | 43      |
|-----------------------------------------|---------|---------|---------|---------|---------|---------|---------|
| $\sigma 1' (y = -v')$                   | 5.741   | 4.557   | 5.749   | 6.595   | 4.535   | 3.920   | 5.776   |
| $\overline{\sigma'_1} = 24 \text{MPa}$  | Vérifié |
| $\sigma 2(y = v)$                       | 1.339   | 11.310  | 7.490   | 4.397   | 7.728   | 11.220  | 1.206   |
| $\overline{\sigma_2} = 24 \mathrm{MPa}$ | Vérifié |

# 4.2 Vérification de la section médiane du montage vis-à-vis de la flexion à l'ELUR en phase finale d'exploitation

Le dépassement de l'état limite ultime conduit à la ruine de la structure. En effet, au-delà de cet état, la résistance du béton et de l'acier est atteinte, la sécurité n'est plus garantie et la structure risque de s'effondre. D'où il est nécessaire de vérifier la structure à l'ELU.

Dans ce chapitre, on va vérifier la section médiane du tablier, en phase finale d'exploitation.

## 4.2.1 Armatures passives longitudinales

Ferraillage de peau : sur toute la périphérie et pour toutes les classes d'au moins  $3cm^2/m$ . Section minimal :

$$\frac{4B_t}{1000} \le A_s \le \frac{7B_t}{1000}$$



Figure 4.1: Section du béton en traction

On a opté pour  $3\text{HA}25 \rightarrow \text{As} = 0.001473 \text{ m}^2$ 

$$y_u = \frac{A_p f_{pu} + A_s f_{su} - f_{bu} (b - b_0) h_0}{0.8 b_0 f_{bu}} = 0.48 \text{ m}$$

### 4.2.2 Détermination du moment résistant

L'expression du moment résistant de la section est comme suit :

$$\bar{M}_{u} = \frac{A_{p}f_{pu}\left(d_{p} - \frac{h_{0}}{2}\right)\left(b - b_{0}\right) + \left(d_{p} - 0.4y_{u}\right)\left(0.8y_{u}b_{0}\right)}{\left(b - b_{0}\right)h_{0} + 0.8y_{u}b_{0}} + \frac{A_{s}\sigma\left(d_{s} - \frac{h_{0}}{2}\right)\left(b - b_{0}\right) + \left(d_{s} - 0.4y_{u}\right)\left(0.8y_{u}b_{0}\right)}{\left(b - b_{0}\right)h_{0} + 0.8y_{u}b_{0}}$$

Avec

$$\varepsilon_b = 0.0035$$

$$\varepsilon_s = \frac{3.5}{y_u} (d_s - y_u) = 0.019$$

$$\varepsilon_e = \frac{f_{pu}}{E_p} = 0.0075$$

$$\sigma_s = f_{su} = 347.82 \text{MPa}$$

On a:

$$M_{u\,{
m max}} = 1.35 M_{
m per} \ + 1.5 \left( M_{
m expl} \ + M_{trot} 
ight) = 22.5 {
m MN} \cdot {
m m}$$
 
$$\bar{M}_u = 60.63 MN.m$$

On doit vérifier que :  $\bar{M}_u \geq M_{u \max} = >$  vérifié

# Conclusion générale

Ce projet conclut tous les connaissances théoriques acquises durant cette année universitaire, il nous a permis de mieux comprendre le dimensionnement de la précontrainte ainsi que les vérifications à faire.

Tous les calculs sont faits selon notre notes de cours et en respectant les règles BPEL 99.

Nous avons trouvés quelques difficultés dans la vérification vis-à-vis de la flexion à l'ELUR en phase finale d'exploitation. Nous avons essayées de résoudre ces problèmes selon nos connaissances.

| Chapitre 4. | Vérification de contraintes de compression et de traction |
|-------------|-----------------------------------------------------------|
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |
|             |                                                           |