Homework 4

Max marks: 40

Due on Oct 1st, 2021, 9 AM, before class.

Problem 1 Hazard problem:Design $a \quad x_3\bar{x}_4 = x_3 \oplus x_4.$ hazard free SOP for f(A, B, C, D) $\sum m(0,1,4,5,6,7,9,11,14,15)$

$f = hx_1 + \bar{h}\bar{x}_1$ (1)

$$= \bar{x}_1 \oplus h \tag{2}$$

$$= \bar{x}_1 \oplus (x_3 \oplus x_4) \tag{3}$$

Solution

$$\begin{array}{c|c|c} \underline{\text{The K-map for } f \text{ is}} \\ \hline & \bar{A} & | & A \\ \hline & \bar{B} & | & \bar{B} \\ \hline \\ \bar{C} & \underline{\bar{D}} & | & 1 & 1 & 0 & 0 \\ \hline & D & | & 1 & 1 & 0 & 1 \\ \hline & C & \underline{\bar{D}} & | & 0 & 1 & 1 & 1 \\ \hline & \bar{D} & | & 0 & 1 & 1 & 0 \\ \hline \end{array}$$

Cost(f) = 2 XOR gates + (2+2) inputs each =6. Max fan-in = 2.

Problem 3 Find the minimum-cost circuit for the function $f(x_1,\ldots,x_4)$ $\sum m(0,4,8,13,14,15)$. Assume that the input variables are available in uncomplemented form only. (Hint: Use functional decomposition.)

$f = \bar{A}B + BC + ACD + \bar{A}\bar{C} + A\bar{B}D + \bar{B}\bar{C}D$

Solution

The K-map for f is

Cost(f) = 6 AND gates + 2*3 + 3*3 inputs to AND gates + 1 OR gate + 6 inputs = 28.

Problem 2 Find realizathesimplesttion of the function $f(x_1,\ldots,x_4)$ $\sum m(0,3,4,7,9,10,13,14),$ thatassumingthe logic gates have a maximum fan-in of two.

		\bar{x}_1	$ x_1 $		-	Row pattern
		\bar{x}_2	x	2	\bar{x}_2	
\bar{x}_3 _	\bar{x}_4	1	1	0	1	$\bar{g} = x_1 x_2$
	x_4	0	0	1	0	$ \qquad g = x_1 x_2 .$
x_3		0	0	1	0	g
	\bar{x}_4	0	0	1	0	g
Col p	oattern	$h = \bar{x}_3 \bar{x}_4$	h	\bar{h}	h	

Solution

The K-map for f is

		$ \bar{x}_2 \rangle$	$\begin{vmatrix} 1 & x \end{vmatrix}$	2 z	\bar{x}_1 \bar{x}_2	Row pattern
\bar{x}_3 _	\bar{x}_4	1	1	0	0	$\bar{g} = \bar{x}_1$
	x_4	0	0	1	1	$g = x_1$
x_3 _	**4	1	1	0	0	\bar{g}
3	\bar{x}_4	0	0	1	1	g
Col pattern		$ \bar{h} $	\bar{h}	h	h	

Write f in terms of g,

$$f = \bar{x}_3 \bar{x}_4 \bar{g} + \overline{\bar{x}_3 \bar{x}_4} g \tag{4}$$

$$f = \overline{x}_{3}\overline{x}_{4}\overline{g} + \overline{\overline{x}_{3}}\overline{x}_{4}g$$

$$= \overline{x_{3} + x_{4}}\overline{g} + \underbrace{(x_{3} + x_{4})}_{h_{2}}g$$
(5)

$$=\bar{h}_2\bar{g}+h_2g\tag{6}$$

$$= \overline{h_2 \oplus g} \tag{7}$$

$$= \overline{(x_3 + x_4) \oplus (x_1 x_2)} \tag{8}$$

Cost(f) = 1 OR gate + 2 inputs for OR gate +1 AND gate + 2 inputs for AND gate + 1 XORgate + 2 inputs for XOR gate + 1 NOT gate + 1 input to NOT gate = 11.

Writing f in terms of column pattern $h = \bar{x}_3 x_4 +$

Problem 4 Use functional decomposition to find the best implementation of the function $f(x_1, ..., x_5) = \sum m(1, 2, 7, 9, 10, 18, 19, 25, 31) + D(0, 15, 20, 26)$. How does your implementation compare with the lowest-cost SOP implementation? Give the costs.

Solution

The K-map for f is given in Table 1.

We try writing $\bar{x}_1 = 1$ half of f in terms of Row patterns $g = x_3$, and $x_1 = 1$ half of f in terms normal K-map grouped terms,

$$f = \bar{x}_1 \underbrace{\left(\underbrace{(\bar{x}_4 x_5 + x_4 \bar{x}_5)}_{h} \bar{x}_3 + \underbrace{x_4 x_5}_{h_2} x_3 \right)}_{h} + \underbrace{x_1 \bar{x}_2 \bar{x}_3 x_4 + x_2 x_3 h_2 + x_2 \bar{x}_3 h}_{2} + \bar{x}_1 h \bar{x}_3 + \bar{x}_1 h_2 x_3 + \underbrace{x_1 \bar{x}_2 \bar{x}_3 x_4 + x_2 x_3 h_2}_{+ x_2 \bar{x}_3 h}$$

 $\operatorname{Cost}(h) = 1+2=3$. $\operatorname{Cost}(h_2) = 1+2=3$. Total Cost of $f = \operatorname{Cost}(h) + \operatorname{Cost}(h_2) + 5$ AND gates + 4*3 input per gate +4 inputs to AND gates +1 OR gate +5 inputs = 3+3+5+12+4+1+5=33. Normal grouping is shown in Table 2.

$$f = \bar{x}_3 x_4 \bar{x}_5 + x_1 \bar{x}_3 \bar{x}_4 \bar{x}_5 + x_1 x_3 x_4 x_5 + x_1 \bar{x}_2 \bar{x}_3 x_4 + x_2 x_3 x_4 x_5 + x_2 \bar{x}_3 \bar{x}_4 x_5$$
 (9)

Cost(f) = 6 AND gates +(3+5*4) inputs to AND gates)+1 OR gate+6 inputs to the OR gate=36.

		\bar{x}_1				Row pattern	$ x_1 $				Row pattern
		\bar{x}_2	2	x			\bar{x}_2		$ x_2 $		
		\bar{x}_3	x_3		\bar{x}_3		\bar{x}_3		x_3	\bar{x}_3	
\bar{x}_4	\bar{x}_5	d	0	0	0	0	0	d	0	0	0
	x_5	1	0	0	1	$\bar{g} = \bar{x}_3$	0	0	0	1	$g_2 = x_2 \bar{x}_3$
x_4		0	1	d	0	$g = x_3$		0	1	0	$g_3 = \bar{x}_2 \oplus x_3$
	\bar{x}_5	1	0	0	1	$\bar{g} = \bar{x}_3$		0	0	d	$g = \bar{x}_3$
Col pa	ttern	$h = x_4 \oplus x_5$	$h_2 = x_4 x_5$	0	h		$h_3 = x_4$	0	$h_2 = x_2 x_4$	h	

Table 1: K-map for Problem 4.

Table 2: K-map for Problem 4.