IDENTITIES IN ITERATED RASCAL TRIANGLES

PETRO KOLOSOV

ABSTRACT. In this manuscript we show new binomial identities in iterated rascal triangles. In particular, iterated rascal numbers are closely related to (1,q)-binomial coefficients. Finally, we state an open conjecture about the relation between iterated rascal numbers and (p,q)-binomial coefficients.

Contents

1.	Definitions]
2.	Introduction	2
3.	Conclusions	2
Re	ferences	2

1. Definitions

Definition 1.1. Iterated rascal number

$$\binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{m} \tag{1.1}$$

Date: July 1, 2024.

 $2010\ Mathematics\ Subject\ Classification.\ 11B25,\ 11B99.$

Key words and phrases. Pascal's triangle, Rascal triangle, Binomial coefficients, Binomial identities, Binomial theorem, Generalized Rascal triangles, Iterated rascal triangles, Iterated rascal numbers .

 $Sources: \ \verb|https://github.com/kolosovpetro/IdentitiesInRascalTriangle| \\$

Definition 1.2. (1,q)-Binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}^{q} = \begin{cases} q & \text{if } k = 0, n = 0 \\ 1 & \text{if } k = 0 \\ 0 & \text{if } k > n \end{cases}$$

$$\begin{bmatrix} \binom{n-1}{k} \rceil^{q} + \binom{n-1}{k-1} \rceil^{q}$$
(1.2)

2. Introduction

test figure

n/k								7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	5	4	1			
5	1	5	7	7	5	1		
6	1	6	9	10	9	6	1	
0 1 2 3 4 5 6 7	1	7	11	13	13	11	7	1

Table 1. Rascal triangle generated by $\binom{n}{k}_1$. See the OEIS sequence [1].

3. Conclusions

Conclusions of your manuscript.

REFERENCES

[1] Sloane, N. J. A. The Rascal triangle read by rows. Entry A077028 in The On-Line Encyclopedia of Integer Sequences, 2002. https://oeis.org/A077028.

Version: Local-0.1.0

SOFTWARE DEVELOPER, DEVOPS ENGINEER

 $Email\ address:$ kolosovp94@gmail.com URL: https://kolosovpetro.github.io