Introduktion til Programmering og Problemløsning (PoP)

Jon Sporring
Department of Computer Science
2020/09/04

UNIVERSITY OF COPENHAGEN

Alt på computeren er relateret til binære tal Et heksal ciffer

Decimal:

- Base 10
- Alphabet $-\{0,1,...,9\}$ Alphabet $-\{0,1\}$ 117.42

$$v = \sum_{i=-m}^{n} d_i 10^i$$

Binær:

- Base 2
- $d_n d_{n-1} \cdots d_0 \cdot d_{-1} d_{-2} \cdots d_{-m}$ $b_n b_{n-1} \cdots b_0 \cdot b_{-1} b_{-2} \cdots b_{-m}$ 101.11

Et oktal ciffer

$$v = \sum_{i=-m}^{n} b_i 2^i,$$

Dec	Bin	Oct	Hex	Dec	Bin	Oct	Hex
0	0	0	0	32	100000	40	20
1	1	1	1	33	100001	41	21
2	10	2	2	34	100010	42	22
3	11	3	3	35	100011	43	23
4	100	4	4	36	100100	44	24
5	101	5	5	37	100101	45	25
6	110	6	6	38	100110	46	26
7	111	7	7	39	100111	47	27
8	1000	10	8	40	101000	50	28
9	1001	11	9	41	101001	51	29
10	1010	12	a	42	101010	52	2a
11	1011	13	b	43	101011	53	2b
12	1100	14	c	44	101100	54	2c
13	1101	15	d	45	101101	55	2d
14	1110	16	e	46	101110	56	2e
15	1111	17	f	47	101111	57	2f
16	10000	20	10	48	110000	60	30
17	10001	21	11	49	110001	61	31
18	10010	22	12	50	110010	62	32
19	10011	23	13	51	110011	63	33
20	10100	24	14	52	110100	64	34
21	10101	25	15	53	110101	65	35
22	10110	26	16	54	110110	66	36
23	10111	27	17	55	110111	67	37
24	11000	30	18	56	111000	70	38
25	11001	31	19	57	111001	71	39
26	11010	32	1a	58	111010	72	3a
27	11011	33	1b	59	111011	73	3b
28	11100	34	1c	60	111100	74	3c
29	11101	35	1d	61	111101	75	3d
30	11110	36	1e	62	111110	76	3 e
31	11111	37	1f	63	111111	77	3f

Dividér med 2 algoritmen

Fra binær til decimal

$$v = \sum_{i=-m}^{n} b_i 2^i,$$

Fra decimal til binær

11 div
$$2 = 5$$
, 11 rem $2 = 1$
5 div $2 = 2$, 5 rem $2 = 1$
2 div $2 = 1$, 2 rem $2 = 0$
1 div $2 = 0$, 1 rem $2 = 1$

• UNIVERSITY OF COPENHAGEN

Octal og Hexadecimale tal

Octaltal:

Base: 8

Alphabet: {0,1,2,3,4,5,6,7}

Octalciffer svarer til 3 bit:

10111₂ -> 010 111₂ -> 27₈

Hexadecimale tal:

Base: 16

Alphabet: {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

Octalciffer svarer til 4 bit:

 $10111_2 \rightarrow 0001 \ 0111_2 \rightarrow 17_{16}$

Typer definerer formen på klodsen

Type:	int	float	char	string	float	float
Værdi:	3	3.0	'3'	"3"	3e0	3.0e0

Metatype	Type name	Description
Boolean	bool	Boolean values true or false
Integer	<u>int</u>	Integer values from -2,147,483,648 to 2,147,483,647
	byte	Integer values from 0 to 255
	sbyte	Integer values from -128 to 127
	int8	Synonymous with sbyte
	uint8	Synonymous with byte
	int16	Integer values from -32768 to 32767
	uint16	Integer values from 0 to 65535
	int32	Synonymous with int
	uint32	Integer values from 0 to 4,294,967,295
	int64	Integer values from -9,223,372,036,854,775,808 to
		9,223,372,036,854,775,807
	uint64	Integer values from 0 to 18,446,744,073,709,551,615
Real	<u>float</u>	64-bit IEEE 754 floating point value from $-\infty$ to ∞
	double	Synonymous with float
	single	A 32-bit floating point type
	float32	Synonymous with single
	decimal	A floating point data type that has at least 28 significant digits
Character	<u>char</u>	Unicode character
	string	Unicode sequence of characters
None	unit	The value ()
Object	obj	An object
Exception	exn	An exception

Type	syntax	Examples	Value
int, int32	<int hex="" or=""></int>	3, 0x3	3
	<int hex="" or="">l</int>	31, 0x31	
uint32	<int hex="" or="">u</int>	3u	3
	<int hex="" or="">ul</int>	3ul	
byte, uint8	<int hex="" or="">uy</int>	97uy	97
	' <char>'B</char>	'a'B	
byte[]	" <string>"B</string>	"a\n"B	[97uy; 10uy]
	@" <string>"B</string>	@"a\n"B	[97uy; 92uy; 110uy]
sbyte, int8	<int hex="" or="">y</int>	Зу	3
int16	<int hex="" or="">s</int>	3s	3
uint16	<int hex="" or="">us</int>	3us	3
int64	<int hex="" or="">L</int>	3L	3
uint64	<int hex="" or="">UL</int>	3UL	3
	<int hex="" or="">uL</int>	3uL	
float, double	<float></float>	3.0	3.0
	<hex>LF</hex>	0x013fLF	9.387247271e-323
single, float32	<float>F</float>	3.0F	3.0
	<float>f</float>	3.0f	3.0
	<hex>lf</hex>	0x013flf	4.4701421e-43f
decimal	<float int="" or="">M</float>	3.0M,3M	3.0
	<float int="" or="">m</float>	3.0m,3m	
string	" <string>"</string>	"a \"quote\".\n"	a "quote". <newline></newline>
	@" <string>"</string>	@"a ""quote"".\n"	a "quote".\n.
	"" <string>""</string>	"""a "quote".\n"""	a "quote".\n

ASCII, Latin1, UTF8 og Kodesider

Character	Escape sequence	Description
BS	\b	Backspace
LF	\n	Line feed
CR	\r	Carriage return
HT	\t	Horizontal tabulation
\	\\	Backslash
11	\"	Quotation mark
,	\'	Apostrophe
BEL	\a	Bell
FF	\f	Form feed
VT	\v	Vertical tabulation
	\uXXXX, \UXXXXXXX, \DDD	Unicode character

x0+0x	00	10	20	30	40	50	60	70
00	NUL	DLE	SP	0	@	P	•	p
01	SOH	DC1	!	1	A	Q	a	q
02	STX	DC2	"	2	В	R	b	r
03	ETX	DC3	#	3	C	S	С	s
04	EOT	DC4	\$	4	D	T	d	t
05	ENQ	NAK	%	5	E	U	e	u
06	ACK	SYN	&	6	F	V	f	v
07	$_{ m BEL}$	ETB	,	7	G	W	g	w
08	$_{\mathrm{BS}}$	CAN	(8	H	X	h	x
09	$_{ m HT}$	EM)	9	I	Y	i	y
0A	$_{ m LF}$	SUB	*	:	J	Z	j	\mathbf{z}
0B	VT	ESC	+	;	K	[k	{
0C	$\mathbf{F}\mathbf{F}$	FS	,	<	L	\	1	
0D	CR	GS	_	=	M]	m	}
0E	SO	RS		>	N	^	n	~
0F	SI	US	/	?	0	_	О	DEL

	x0+0x	80	90	A0	B0	C0	D0	E0	F0
	00			NBSP	0	À	Đ	à	ð
	01			i	±	Á	Ñ	á	ñ
	02			¢	2	Â	Ò	â	ò
	03			£	3	Ã	Ó	ã	ó
	04			¤	•	Ä	Ô	ä	ô
	05			¥	μ	Å	Õ	å	õ
ľ	06				¶	Æ	Ö	æ	ö
	07			§	•	Ç È	×	ç	÷
	08				ه		Ø	è	ø
	09			© a	<u>د</u> 1	É	Ù	é	ù
	0a			a	Q	Ê	Ú	ê	ú
	0b			«	»	Ë	Û	ë	û
	0c			_	$\frac{1}{4}$	Ì	Ü	ì	ü
	0d			SHY	1 1 2 3 4	Í	Ý	í	ý
	0e			R	$\frac{3}{4}$	Î	Þ	î	þ
	0f			-	į	Ϊ	ſŝ	ï	ÿ

Table C.1: ASCII

Operatorer og præcedens

Operatorer og typer

```
3 + 4

3.0 + 4.0

3 + 4.0

5 / 2

5 % 2

2 * (5 / 2) + 5 % 2

2.0 ** 3.0

pown 2 3

"hej " + "med " + "dig"
```


Operatorer og præcedens

Operatorer og typer	Præcendens og association
3 + 4	exp 0.0
3.0 + 4.0	exp 1.0
<u>3 + 4.0</u>	(exp 0.0) + 1.0
5 / 2	2.0 **(3.0 ** 4.0)
5 % 2	(<u>2.0 / 3.0)/ 4.0</u>
2 * (5 / 2) + 5 % 2	
2.0 ** 3.0	
pown 2 3	
"hej " + "med " + "dig"	

Operator	Associativity	Description
+ <expr>, -<expr>,</expr></expr>	Left	Unary identity, negation, and bitwise negation operator
~~~ <expr></expr>		
f <expr></expr>	Left	Function application
<expr> ** <expr></expr></expr>	Right	Exponent
<expr> * <expr>,</expr></expr>	Left	Multiplication, division and remainder
<expr> / <expr>,</expr></expr>		
<expr> % <expr></expr></expr>		
<expr> + <expr>,</expr></expr>	Left	Addition and subtraction binary operators
<expr> - <expr></expr></expr>		
<expr> ^^^ <expr></expr></expr>	Right	bitwise exclusive or
<expr> &lt; <expr>,</expr></expr>	Left	Comparison operators, bitwise shift, and bitwise 'and'
<pre><expr> &lt;= <expr>,</expr></expr></pre>		and 'or'.
<pre><expr> &gt; <expr>,</expr></expr></pre>		
<pre><expr> &gt;= <expr>,</expr></expr></pre>		
<pre><expr> = <expr>,</expr></expr></pre>		
<pre><expr> &lt;&gt; <expr>,</expr></expr></pre>		
<expr> &lt;&lt;&lt; <expr>,</expr></expr>		
<pre><expr> &gt;&gt;&gt; <expr>,</expr></expr></pre>		
<pre><expr> &amp;&amp;&amp; <expr>,</expr></expr></pre>		
<pre><expr>     <expr> ,</expr></expr></pre>		
<expr> &amp;&amp; <expr></expr></expr>	Left	Boolean and
<expr>    <expr></expr></expr>	Left	Boolean or



## String slicing, boolske værdier og operatorer

### Resumé

#### I video har du hørt om:

- Talsystem (decimal, binære, octale, hexadecimal)
- En kort gennemgang af Absalonsiderne
- En gennemgang af den første arbejdsseddel
- En kort introduction til imperative programmering