

There are two reasons A and Y can be associated

ightharpoonup A causal path: $A \rightarrow Y$

There are two reasons A and Y can be associated

► A causal path: $A \rightarrow Y$

- ightharpoonup A causal path: $A \rightarrow Y$
- ► A backdoor path involving

 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$ ▶ or blocked colliders $A \rightarrow \boxed{C} \leftarrow Y$

- ightharpoonup A causal path: $A \rightarrow Y$
- ► A backdoor path involving

 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$ ▶ or blocked colliders $A \rightarrow C \leftarrow Y$

- ▶ A causal path: $A \rightarrow Y$
- ► A backdoor path involving
 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$
 - ▶ or blocked colliders $A \rightarrow C \leftarrow Y$

- ightharpoonup A causal path: $A \rightarrow Y$
- ► A backdoor path involving
 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$
 - ▶ or blocked colliders $A \rightarrow C \leftarrow Y$

- ightharpoonup A causal path: $A \rightarrow Y$
- ► A backdoor path involving

 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$ ▶ or blocked colliders $A \rightarrow C \leftarrow Y$

There are two reasons A and Y can be associated

- ► A causal path: $A \rightarrow Y$
- A backdoor path involving
 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$
 - ▶ or blocked colliders $A \to \boxed{C} \leftarrow Y$

To block this backdoor path, condition on C (a confounder)

There are two reasons A and Y can be associated

- ightharpoonup A causal path: $A \rightarrow Y$
- ► A backdoor path involving
 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$
 - ▶ or blocked colliders $A \rightarrow C \leftarrow Y$

To block this backdoor path, condition on C (a confounder)

► Analyze within subgroups defined by C

There are two reasons A and Y can be associated

- ightharpoonup A causal path: $A \rightarrow Y$
- ► A backdoor path involving
 - ▶ unblocked forks $A \leftarrow C \rightarrow Y$
 - ▶ or blocked colliders $A \to C \leftarrow Y$

To block this backdoor path, condition on C (a confounder)

► Analyze within subgroups defined by C

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

► The collider blocks the path

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

- ► The collider blocks the path
- \triangleright X_1 is independent of X_2
 - ► (Sprinklers On) is uninformative about (Raining)

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Suppose I have sprinklers on a timer.

We say Y is a **collider** along the path $X_1 \rightarrow Y \leftarrow X_2$

- ► The collider blocks the path
- \triangleright X_1 is independent of X_2
 - ► (Sprinklers On) is uninformative about (Raining)
- ► Conditioning on Y opens the path
 - ▶ If the grass is wet (conditional on Y = 1), then either (Sprinklers On) or (Raining)

¹Example from Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Conditioning on an ancestor closes an open path

Conditioning on an collider **opens** a closed path

$$X_1$$
 X_2
 Y

Conditioning on an ancestor closes an open path

Example

- X is your parent's education
- A is your education
- *Y* is your pay

Conditioning on an collider **opens** a closed path

Example

- X_1 is sprinklers on
- X_2 is rain
- *Y* is wet grass

Conditioning on an ancestor closes an open path

Example

- X is your parent's education
- A is your education
- *Y* is your pay

In the population, A and Y are related

Conditioning on an collider **opens** a closed path

Example

- X_1 is sprinklers on
- X_2 is rain
- Y is wet grass

In the population, X_1 and X_2 are independent

Conditioning on an ancestor closes an open path

Example

- X is your parent's education
- A is your education
- *Y* is your pay

In the population,
A and Y are related
Within strata of X,
A and Y are independent

Conditioning on an collider **opens** a closed path

Example

- X_1 is sprinklers on
- $-X_2$ is rain
- Y is wet grass

In the population, X_1 and X_2 are **independent** Within strata of Y, X_1 and X_2 are **related**

How to find adjustment variables to identify causal effects

Goal:

Block all backdoor paths so treatment A and outcome Y are associated only by the causal path

How to find adjustment variables to identify causal effects

Goal:

Block all backdoor paths so treatment A and outcome Y are associated only by the causal path

Backdoor path: Any sequence of edges $A \leftarrow nodes \rightarrow Y$

Blocked if it contains an adjusted variable along a fork

$$\begin{array}{c}
A \leftarrow \boxed{C} \rightarrow Y \\
A \leftarrow \boxed{C} \leftarrow \cdots \rightarrow Y \\
A \leftarrow \cdots \rightarrow \boxed{C} \rightarrow Y
\end{array}$$

Blocked if it contains an unadjusted collider

$$A \rightarrow C \leftarrow Y$$

Find adjustment sets that identify the effect of A on Y

Find adjustment sets that identify the effect of A on Y

Find adjustment sets that identify the effect of A on Y

We can block the backdoor path in several ways:

▶ Condition on X_1 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$

Find adjustment sets that identify the effect of A on Y

- ▶ Condition on X_1 : $A \leftarrow \boxed{X_1} \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ▶ Condition on X_2 : $A \leftarrow X_1 \rightarrow \boxed{X_2} \rightarrow X_3 \rightarrow Y$

Find adjustment sets that identify the effect of A on Y

- ► Condition on X_1 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ► Condition on X_2 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ► Condition on X_3 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$

Find adjustment sets that identify the effect of A on Y

- ▶ Condition on X_1 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ► Condition on X_2 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ► Condition on X_3 : $A \leftarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow Y$
- ► Any combination of the above

Find 3 sufficient adjustment sets to identify $A \rightarrow Y$

Find 3 sufficient adjustment sets to identify $A \rightarrow Y$

Answer: $\{X_2\}, \{X_1, X_3\}, \{X_1, X_2, X_3\}$

What is the smallest adjustment set that identifies $A \rightarrow Y$?

What is the smallest adjustment set that identifies $A \rightarrow Y$?

Answer: The empty set! Don't condition on anything. The collider X_2 already blocks the path.

Learning goals for today

By the end of class, you will be able to

- ► Formalize causal assumptions in Directed Acyclic Graphs (DAGs)
- ► Use DAGs to find a sufficient adjustment set of variables within which a statistical association is causal