Data Mining

Inference 2 (Bayes)

Santiago Alonso-Díaz

Tecnólogico de Monterrey EGADE, Business School

Data

Marketing:

- Input_{costs}, Input_{marketing}
- Metrics_{CAC}, Metrics_{CLV}
- Output_{Costumersnew}

CAC: consumer acquisition costs, CLV: consumer life value (in sales for the company)

$\textbf{Hypotheses} \neq \textbf{Data}$

What generated Costumers_{new}?

How about this model for the hypothesis that sales and marketing expenses work?

$$Costumers_{new} = \beta(Cost_{sales} + Cost_{marketing})$$

- β is not data (CAC could be a prior).
- ullet embodies our hypothesis that costs \mapsto costumers.
- How can we estimate β|data?

Table of contents

1 Bayesian Inference

2 References

Bayesian Inference

Two inferential approaches

Approach 1: max. p(DatalH) Given HB, the data covers most of HB. Pick HB

Approach 2: max. p(HIData) Given the data, HA covers more data. Pick HA

Figure: Maximize data or hypotheses (or both).

What is Bayesian inference?

Estimate the probability of hypotheses given the data:

p(Hypotheses|Data)

In our example, we want $p(\beta|Costumers_{new}, Cost_{sales}, Cost_{marketing})$

$$Costumers_{new} = \beta(Cost_{sales} + Cost_{marketing})$$

In Bayesian inference we obtain a probability distribution of β .

But let's go to Python for the basics of Bayesian inference. The next sessions we would see how to obtain β of regressions (frequentist and bayesian).

Bayes and Marketing

Go to minute 16 to 26 Go to minute 3:55

References