XGBOOST

Stanley Perez, Yiqing Guo, Dean Papadopoulos, Seungmin Kim

Overview

- Dataset
- Data Processing
- Model Implementation
- Model Optimization

Dataset Used

- The dataset used looks to see why 30% of patients miss their scheduled appointments.
- With over 110,000 records and 14 variables this dataset looks at Brazilian healthcare data.
- For this model we decided to analyze the Hipertension variable.
- Source: <u>Medical Appointment No Shows | Kaggle</u>

Data Processing

#Run correlation matrix to see which columns are relevant
df.corr()

	PatientId	AppointmentID	Age	Scholarship	Hipertension	Diabetes	Alcoholism	Handcap	SMS_received
PatientId	1.000000	0.004039	-0.004139	-0.002880	-0.006441	0.001605	0.011011	-0.007916	-0.009749
AppointmentID	0.004039	1.000000	-0.019126	0.022615	0.012752	0.022628	0.032944	0.014106	-0.256618
Age	-0.004139	-0.019126	1.000000	-0.092457	0.504586	0.292391	0.095811	0.078033	0.012643
Scholarship	-0.002880	0.022615	-0.092457	1.000000	-0.019729	-0.024894	0.035022	-0.008586	0.001194
Hipertension	-0.006441	0.012752	0.504586	-0.019729	1.000000	0.433086	0.087971	0.080083	-0.006267
Diabetes	0.001605	0.022628	0.292391	-0.024894	0.433086	1.000000	0.018474	0.057530	-0.014550
Alcoholism	0.011011	0.032944	0.095811	0.035022	0.087971	0.018474	1.000000	0.004648	-0.026147
Handcap	-0.007916	0.014106	0.078033	-0.008586	0.080083	0.057530	0.004648	1.000000	-0.024161
SMS_received	-0.009749	-0.256618	0.012643	0.001194	-0.006267	-0.014550	-0.026147	-0.024161	1.000000

X.drop(columns = []'PatientId','AppointmentID','ScheduledDay','AppointmentDay','No-show', 'Scholarship','SMS_received',

```
# create dummy variable for male and female
df = pd.get_dummies(df, columns= ['Gender'])
```

'Neighbourhood', 'Hipertension'], axis = 1, inplace = True)

X = df.copy()

y = df['Hipertension'].copy()

- Run correlation matrix
- Dummy variables for gender column
- Drop columns that had negative correlation to target column (Hypertension) & were non numeric

First run through with XGBoost

```
#Run our colleague's model
                                                                                                                                                           20000
                                                                                                                                                           17500
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.25, random_state = 42 )
                                                                                                                                21440
                                                                                                                                                           15000
clf = xgb.XGBClassifier(objective='binary:logistic', seed = 0,early_stopping_rounds =10,eval_metric='aucpr')
                                                                                                                                                           12500
clf.fit(X train, y train, eval set=[(X test,y test)])
                                                                                                                                                           10000
print(f'The training dataset has {len(X_train)} records.')
                                                                                                                                                           7500
print(f'The testing dataset has {len(X_test)} records.')
                                                                                                                                                           5000
y_predicted = clf.predict(X_test)
                                                                                                                                                           2500
cm = confusion_matrix(y_test,y_predicted)
                                                                                                                                    Predicted label
cmd = ConfusionMatrixDisplay(confusion matrix=cm)
cmd.plot()
                                                                                                                         print(matthews_corrcoef(y_test,y_predicted))
plt.show()
                                                                                                                      0.48092689684388445
```

Matthew's Coefficient Score - 0.4809268 Training Dataset - 82,895 Testing Dataset - 27,632

Grid Search

```
estimator = xgb.XGBClassifier(
   objective= 'binary:logistic',
   nthread=4,
   seed=42
parameters = {
    'max depth': range (2, 10, 1),
    'n estimators': range(60, 220, 40),
    'learning_rate': [0.1, 0.01, 0.05]
grid search = GridSearchCV(
   estimator=estimator,
   param_grid=parameters,
   scoring = 'roc_auc',
   n jobs = 10,
   cv = 10,
    verbose=True
```

```
print(grid_search.best_estimator_)
```

```
grid_search.fit(X, y)
```

Fitting 10 folds for each of 96 candidates, totalling 960 fits

Optimized Model Results

Training Data - 82,895 Testing - 27,632

First Model - Matthew's Coefficient Score - 0.4809268

Model after implementing Grid Search Matthew's Coefficient Score - 0.484427

