

🗖 April 26–30, Palanga

demarcation • EN • v1.0

Demarcation

For a long time the island of Bytopia was ruled by the fair king Byteasar. But after the sudden death of the king, his two sons—twins Biteon and Byteon—could not come to an agreement which one of them should ascend the throne. Therefore they decided to divide the island into two provinces to rule them independently.

figures are congruent if one can be transformed into the other using a combination of reflections, rotations and translations.) Coordinates of the polygon vertices and the endpoints of the dividing segment are integers.

The king's sons asked you to verify whether such a division is possible.

Task

Given the shape of the island, determine if it can be partitioned by a horizontal or vertical segment into two congruent pieces. If it can, find one such segment.

Input

The first line of the input contains a single integer N, the number of vertices. The ith of the next N lines contains a pair of integers X_i and Y_i which are the coordinates of the ith vertex. The vertices are given in order, i.e. line segments $(X_1, Y_1) - (X_2, Y_2), (X_2, Y_2) - (X_3, Y_3), \ldots, (X_{N-1}, Y_{N-1}) - (X_N, Y_N)$ and $(X_N, Y_N) - (X_1, Y_1)$ are all sides of the polygon. Furthermore, no two consequtive line segments in this list are both vertical or both horizontal.

Output

Your program should output a single line. If it is possible to divide the island into congruent parts with a horizontal or vertical segment, which endpoints are (x_1, y_1) and (x_2, y_2) , print 4 integers x_1, y_1, x_2 and y_2 , separated by spaces. Either $x_1 = x_2$ or $y_1 = y_2$ must hold.

If a suitable division cannot be found, output a single word NO.

April 26–30, Palanga

demarcation • EN • v1.0

Examples

Input	Output	Comments
10	1 2 3 2	Note that there is more than one correct
0 0		answer in this example.
1 0		
1 1		
3 1		
3 5		
2 5		
2 3		
1 3		
1 2		
0 2		

Input	Output	Comments
6	NO	In this case there is no way to divide the
0 0		island into two congruent parts.
1 0		
1 1		
2 1		
2 2		
0 2		
0 2		

Scoring

Subtask 1 (? points). $4 \le N \le 100~000$. Any horizontal or vertical line that divides the polygon divides it into exactly two parts.

Subtask 2 (? points). $4 \le N \le 200$.

Subtask 3 (? points). $4 \le N \le 4000$.

Subtask 4 (? points). $4 \le N \le 100~000$.

Constraints

Time limit: 0.5 s.

Memory limit: 256 MB.