

Projeto de Máquinas

Elementos auxiliares de potência

Prof. Eduardo Furlan 2023

Embreagem

Exemplos de embreagens

Fonte: engineeringlearn.com (2023)

Embreagem automotiva

Fonte: commons.princeton.edu (2023)

Embreagem automotiva

Fonte: x-engineer.org (2023)

Embreagem automotiva

Embreagem

- Dispositivo que conecta gradual e suavemente dois componentes rotativos
- Com velocidades angulares distintas
- Em relação a uma linha de centro comum
- Trazendo os dois componentes para uma mesma velocidade angular após seu acionamento

Alguns tipos comuns de embreagem

(b) Tipo aro; sapatas internas de expansão.

(c) Tipo cinta.

(d) Tipo disco.

(e) Tipo cone.

(f) Tipo de contato positivo.

- 1. Selecionar o tipo mais adequado à aplicação
 - Considerar as restrições de projeto
 - Dimensionais
 - Geométricas
- 2. Selecionar o par de materiais de atrito em função de
 - Modo de falha dominante
 - Condições operacionais
 - Tempo de resposta do acionamento

- 3. Para a velocidade e tempo de resposta desejados
 - Determinar o torque necessário para acelerar ou desacelerar o dispositivo
 - Considerar os efeitos inerciais de todas as massas significativas
 - Que influenciam na velocidade angular da embreagem
- 4. Estimar a energia dissipada como calor na zona de contato de atrito
- 5. Determinar a distribuição de pressão sobre as superfícies de contato por atrito

6. Em função da pressão máxima (p_{max}), estimar a pressão em qualquer ponto da interface de atrito

7. Determinar a

- Força de acionamento
- Torque de atrito
- Reações nos mancais
- Em função desses valores, considerando o fator de segurança especificado
 - Determinar dimensões
 - Fazer a seleção dos materiais adequados

- 8. Caso a configuração não atenda às especificações
 - Operacionais
 - Confiabilidade
 - Fazer as alterações necessárias, por meio de um processo iterativo, até que todos os requisitos sejam atendidos
 - Verificar também se a taxa de calor produzido devido ao atrito excede a taxa de resfriamento

Manivela

Biela-manivela com deslizador

Biela-manivela com deslizador

Biela-manivela com deslizador

• Converter o movimento rotativo em linear ou vice-versa

Figura 4.15 | Representação cinemática e física de um mecanismo biela-manivela com deslizador

Biela-manivela

Manivela lateral

• Eixo de manivela com carga em balanço

Manivela de disco

- Variação da manivela lateral
 - Utilizada quando o curso é pequeno

(b) Manivela de disco.

Manivela central

• Manivela com carga entre mancais

- 1. Considerando as especificações de operação e configuração geral do sistema
 - Elaborar um esboço inicial para o projeto
- 2. Determinar, ao longo de um ciclo completo
 - Deslocamentos
 - Velocidades
 - Acelerações
- 3. Conceber a geometria básica para o eixo de manivela considerando função e restrições dimensionais

- 4. Analisar as forças globais sobre o mecanismo em todas as fases cinemáticas
 - Forças de superfície
 - Forças de corpo
- 5. Calcular e representar todas as forças agindo durante cada fase no eixo de manivela
- 6. Avaliar os pontos críticos e determinar em cada uma das seções críticas
 - Forças
 - Momentos

7. Falhas

- Em função de
 - Regiões de concentração
 - Tensões
 - Natureza cíclica das cargas agindo sobre um eixo de manivela
- Os elementos estruturais são susceptíveis a
 - Falha por fadiga
 - Por fratura frágil ou
 - Por escoamento

(continua)

(continuação do passo 7)

- Aplicações de eixos de manivelas utilizam
 - Mancais de rolamento
 - Mancais de deslizamento (mais comum)
 - A falha pode ser dada por
 - Desgaste adesivo
 - Desgaste abrasivo
 - Desgaste corrosivo
 - Desgaste por fadiga superficial
 - Desgaste por contato
 - Desgaste por aderência
 - Escoamento
 - Fratura frágil (pouca deformação antes da fratura)

8. Material

- Fazer pré-seleção do material para o eixo
 - Ferro fundido
 - Aço fundido
 - Aço trabalhado
 - Outros
- Avaliar o melhor processo de fabricação

- 9. Selecionar um fator de segurança de projeto
- 10. Determinar as tensões para os modos de falha prováveis
- 11. Através de um processo iterativo
 - Determinar as dimensões que satisfaçam
 - As especificações de projeto
 - Que forneçam uma vida útil adequada

"suaviza" as flutuações de velocidade angular e de torque

- Reservatório de energia cinética em máquinas girantes
- Principal função controlar as flutuações de
 - Velocidade angular
 - Torque

- O torque motriz (T_m) é positivo quando
 - Seu sentido coincide com o sentido da rotação do eixo
 - O acionador fornece energia ao sistema
- O torque de carga (T_c) é positivo quando
 - O sentido é o mesmo da rotação
 - O sistema está fornecendo energia à carga

Curvas de torque motriz e de carga

Curvas sobrepostas do torque motriz e do torque de carga

Volante - torques

- Durante os instantes de tempo em que o torque motriz fornecido excede o torque de carga necessário
 - A massa do volante é acelerada
 - E a energia cinética é armazenada no volante
- Durante os instantes em que o torque de carga excede o torque motriz fornecido
 - A massa do volante é desacelerada
 - E parte da energia cinética do volante é perdida

Principais vantagens do volante

- Redução da amplitude de flutuação da velocidade
- Redução do pico do torque motriz necessário
- Tensões reduzidas em eixos, acoplamentos e demais componentes do sistema
- Energia automaticamente armazenada ou retirada conforme a necessidade

Equação do movimento

Coeficiente de flutuação de velocidade³⁶

Nível necessário de uniformidade na velocidade	C_f	
Muito uniforme		
Sistemas de controle giroscópio	\leq 0,003	
Discos rígidos		
Uniforme	0,003-0,012	
Geradores de CA		
Máquinas de fiação		
Alguma flutuação aceitável		
Máquinas-ferramenta	0,012-0,05	
Compressores, bombas		
Flutuação moderada aceitável		
Misturadoras de concreto	0,05-0,2	
Escavadeiras		
Grandes flutuações aceitáveis	>0,2	
Trituradoras		
Prensas puncionadoras		

Montagem de conjunto

- Todos os dispositivos projetados e/ou selecionados atuarão de forma conjunta
- Haverá um processo de montagem, união desses dispositivos de forma a se respeitar tolerâncias e ajustes
- Projetar uma base que sirva de apoio para o conjunto, considerando os esforços transferidos
 - Forças
 - Momentos

- Uma vez definidas as dimensões dos componentes
 - Modelar cada parte
 - Incluindo a base ou proteção da máquina
 - Produção dos desenhos correspondentes
 - Dimensões
 - Tolerâncias
 - Dimensionais
 - Geométricas
 - Matéria-prima
 - Demais informações pertinentes ao projeto

- Formar e a selecionar materiais
 - Devem satisfazer os requisitos funcionais
 - Suportar as cargas sem que ocorra uma falha
 - Manter a precisão dimensional necessária
 - Ao longo da vida de projeto prescrita
 - A um custo aceitável

- Finalizado cada um dos componentes
 - É realizado o conjunto de montagem
 - São especificadas todas as relações de vínculos e restrições entre os componentes considerando
 - Coaxilidade de componentes cilíndricos
 - Faces paralelas ou coplanares
 - Eixos paralelos ou arestas paralelas entre si

Desenhos

- Desenhos de conjunto
 - Vistas geradas na projeção ortogonal
 - Vistas em corte
 - Detalhes
 - Lista de componentes

5	2	Parafuso	Latão
4	1	Mola	Aço
3	1	Botão	PVC
2	.1	Tampa	PVC
1	1	Base	PVC
N	QT	Descrição Norma	Material

Modelos 3D

- A partir dos modelos 3D, podemos produzir
 - Modelos realistas com inserção de textura e cores
 - Possível utilização de animações
 - Vista explodida renderizada de um conjunto de montagem de um dispositivo para eixo

Mercado e fabricantes

- Mercado: fabricantes de freios e embreagens
 - Catálogos com informações sobre torque e potência
 - Diferentes modelos de embreagens
 - Procedimento de seleção desses elementos de máquinas
 - Baseado no torque e na potência
 - De acordo com
 - A aplicação desejada
 - Outros aspectos relacionados ao produto final em desenvolvimento
- O projetista deve estar atento a essas recomendações e fatores de serviço, de acordo com o fabricante

Referências

BUDYNAS, R. G. Elementos De Maquinas De Shigley. 8ª edição. [S. l.]: AMGH, 2011.

COLLISN, J. A.; BUSBY, H. R.; STAAB, G. H. Projeto Mecânico de Elementos de Máquinas: uma Perspectiva de Prevenção da Falha. 2ª edição. [S. l.]: LTC, 2019.

LOBO, Y. R. de O.; JÚNIOR, I. E. de O.; ESTAMBASSE, E. C.; SHIGUEMOTO, A. C. G. Projeto de máquinas. Londrina: Editora e Distribuidora Educacional S.A., 2019.

NORTON, R. L.; BOOKMAN, E.; STAVROPOULOS, K. D.; AGUIAR, J. B. de; AGUIAR, J. M. de; MACHNIEVSCZ, R.; CASTRO, J. F. de. Projeto de Máquinas: Uma Abordagem Integrada. 4ª edição. [S. l.]: Bookman, 2013.

https://github.com/efurlanm/teaching/

Prof. Eduardo Furlan 2023

