# Bayesian inference for deterministic epidemic models

### Luiz Max F. de Carvalho [lmax.fgv@gmail.com]

School of Applied Mathematics, Getulio Vargas Foundation (FGV), Rio de Janeiro. Presented at "XLII Congresso Nacional de Matemática Aplicada e Computacional" (CNMAC)





- Pick a prior measure  $\pi(\theta)$ ;
- Study its **pushforward** through  $\mathcal{M}(x;)$ ;



• Compute  $p(\Theta \mid y)$ .



#### **Authors**

This is joint work with Márcio Bastos, Daniel Villela, Leo Bastos and Flávio Coelho

- Complex models need careful prior elicitation; Induced prior
  - On the basic reproductive number;
  - On the peak height and final epidemic size.
- A few mathematical tricks we can use to make models more robust or easier to fit and/or analyse;
  - ♦ Equations in log space;
  - $\diamond$  Approximate parametrisation in terms of  $R_0$ .

## There is no such thing as an 'uniformative' prior!

Consider

$$p_{\beta}(x) = \frac{1}{1 + \exp(-\beta_0 + \beta_1 x)}$$



For more details, see, e.g. Seaman III et al. (2012).



Consider a Susceptible-Infectious-Removed (SIR) model:

$$\begin{array}{ll} \frac{dS}{dt} & = & -\beta \frac{SI}{N}, \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I, \\ \frac{dR}{dt} & = & \gamma I, \end{array}$$

where  $S(t) + I(t) + R(t) = N \,\forall t$ ,  $\beta$  is the transmission (infection) rate and  $\gamma$  is the recovery rate. The basic reproductive number is

$$R_0 = \frac{\beta N}{\gamma}.\tag{1}$$



# Motivating application: Influenza in a boarding school

In 1978, 512 out of 763 lads got came down with the flu.



#### Gamma priors on the rates

Suppose the *a priori* uncertainty about parameters can be represented by Gamma (shape/scale) distributions:  $\gamma \sim \text{Gamma}(k_{\gamma}, \theta_{\gamma})$  and  $\beta \sim \text{Gamma}(k_{\beta}, \theta_{\beta})$ . The pdf of  $R_0$  is given by (Clancy et al. (2008)):

$$f_{R_0}(r \mid k_\beta, \theta_\beta, k_\gamma, \theta_\gamma, N) = \frac{(N\theta_\beta \theta_\gamma)^{k_1 + k_2}}{\mathcal{B}(k_\beta, k_\gamma)(N\theta_\beta)^{k_\beta} \theta_\gamma^{k_\gamma}} r^{k_\beta - 1} (\theta_\gamma r + N\theta_\beta)^{-(k_\beta + k_\gamma)}, \quad (2)$$

where  $\mathcal{B}(a,b)=\Gamma(a+b)/\Gamma(a)\Gamma(b)$  is the Beta function. The expectation of the Gamma ratio distribution is then

$$E[R_0] = rac{N heta_eta}{ heta_\gamma} rac{k_eta}{(k_\gamma - 1)},$$

which is defined only for  $k_{\gamma} > 1$ . The variance can be computed as

$$\mathsf{Var}(R_0) = \left(\frac{N\theta_\beta}{\theta_\gamma}\right)^2 \frac{(k_\beta + k_\gamma - 1)k_\beta}{(k_\gamma - 2)(k_\gamma - 1)^2},$$

and only exists for  $k_{\gamma} > 2$ . The mode is

$$\frac{N\theta_{\beta}}{\theta_{\gamma}} \frac{k_{\beta} - 1}{(k_{\gamma} + 1)}.$$
 (3)



Now, take  $\gamma \sim \text{Log-normal}(\mu_{\gamma}, \sigma_{\gamma})$  and  $\beta \sim \text{Log-normal}(\mu_{\beta}, \sigma_{\beta})$ . It is straightforward to show that the induced distribution on  $R_0$  is a log-normal distribution with parameters  $\mu_{R_0} = \ln N + \mu_{\beta} - \mu_{\gamma}$  and  $\sigma_{R_0} = \sigma_{\beta}^2 + \sigma_{\gamma}^2$ . Under the justification of employing a non-informative prior, researchers might be tempted to choose  $\mu_{\beta} = \mu_{\gamma} = 0$  and  $\sigma_{\beta} = \sigma_{\gamma} = 100$ , say<sup>1</sup>.

This apparently non-informative choice of hyperparameters leads to a prior on  $R_0$  for which  $E[R_0] = N + \exp(10^4)$  and  $\Pr(R_0 > 100) = 0.49$ , which are not reasonable. In general, under log-normal priors for the rates, we have

$$\begin{split} E[R_0] &= \exp\left(\ln N + \mu_\beta - \mu_\gamma + \frac{\sigma_\beta^2 + \sigma_\gamma^2}{2}\right), \\ \text{Var}\left(R_0\right) &= \left[\exp\left(\sigma_\beta^2 + \sigma_\gamma^2\right) - 1\right] \exp\left(2\{\ln N + \mu_\beta - \mu_\gamma\} + \frac{\sigma_\beta^2 + \sigma_\gamma^2}{2}\right). \end{split}$$

<sup>&</sup>lt;sup>1</sup>See e.g. Ho et al. (2018), section 5.1.

#### Half-normal priors on the rates

A further choice of priors for positive quantities is the half-normal (truncated at zero). Let

$$eta \sim \mathsf{Normal}^+(\mu_{eta}, \sigma_{eta}),$$
 $\gamma \sim \mathsf{Normal}^+(\mu_{\gamma}, \sigma_{\gamma}),$  (4)

and  $R_0 = \beta/\gamma$  i.e., taking N=1 for simplicity. This gives

$$f_{R_{\mathbf{0}}}(r) = \exp\left(-\frac{\left(\mu_{\beta}/r - \mu_{\gamma}\right)^{2}}{2\left(\sigma_{\beta}^{2}/r^{2} + \sigma_{\gamma}^{2}\right)}\right) \frac{\sqrt{2}\Gamma\left(1, \frac{m(r)^{2}}{2\nu(r)}\right)\nu(r) + \left(2\sqrt{\pi} - \Gamma\left(\frac{1}{2}, \frac{m(r)^{2}}{2\nu(r)}\right)\right)m(r)\sqrt{\nu(r)}}{2\pi\sigma_{\beta}\sigma_{\gamma}\sqrt{2}[1 - F_{\beta}(0)][1 - F_{\gamma}(0)]},$$

with

$$m(r) = \frac{\mu_{\beta}\sigma_{\gamma}^{2}r + \mu_{\gamma}\sigma_{\beta}^{2}}{\sigma_{\gamma}^{2}r^{2} + \sigma_{\beta}^{2}},$$
$$v(r) = \frac{\sigma_{\beta}^{2}\sigma_{\gamma}^{2}}{\sigma_{\gamma}^{2}r^{2} + \sigma_{\beta}^{2}}.$$

#### Nae moments!

$$E\left[R_0^t\right] = \infty \text{ for all } t \geq 1$$



### Prior on $R_0$

- 'Non-informative': means and variances equal to 1;
- 'Informative':  $E[\beta] = 2$ ,  $Var(\beta) = 1$ ,  $E[\gamma] = 0.4$ ,  $Var(\gamma) = 0.5^2$ ,



'Noninformative'



'Informative'







Now, we would like to know what the final epidemic size would be. This is  $\lim_{t\to\infty} R(t) := R(\infty)$ , which leads to  $S(\infty) = N - R(\infty)$ . To compute  $S(\infty)$ , first write

$$\frac{dI}{dS} = -1 + \frac{N}{R_0 S},\tag{5}$$

which gives

$$I(t) = -S(t) + \frac{N}{R_0} \log S(t) + C,$$
 (6)

where C can be determined from the initial conditions (Miller, 2012) and thus:

$$S(\infty) = I(0) + S(0) + \frac{N}{R_0} \log \left( \frac{S(\infty)}{S(0)} \right)$$
 (7)

$$R(\infty) = N - S(\infty) \tag{8}$$

Letting  $a = R_0/N$  and  $b = N - \log S(0)$ , we arrive at the following expression for  $S(\infty)$ :

$$S(\infty) = -\frac{1}{a}W\left(-ae^{-b}\right),\tag{9}$$

where W is the Lambert product log function.



To find the maximum value of I(t), i.e., the peak size,  $I_{\text{max}}$ , we need to solve  $\frac{dI}{dt} = 0$ :

$$I(\beta S - \gamma) = 0 \implies \bar{S} = \frac{1}{R_0}.$$
 (10)

Plugging  $\bar{S}$  into equation (6) gives

$$I_{\text{max}} = S(0) + I(0) - \frac{1}{R_0} \log S(0) - \frac{1}{R_0} + \frac{1}{R_0} \log \frac{1}{R_0},$$
 (11)

$$= S(0) + I(0) - \frac{1}{R_0} \left[ 1 + \ln(S(0)R_0) \right]. \tag{12}$$

Making the approximation  $S(0) + I(0) \approx S(0) \approx N$ , we get

$$I_{\text{max}} = N - \frac{\log R_0 + 1}{R_0},\tag{13}$$

for the number of individuals that are infectious at the peak.



For the SEIR model the system is

$$\begin{array}{ll} \frac{dS}{dt} & = & -\beta S(I+\epsilon E), \\ \frac{dE}{dt} & = & \beta S(I+\epsilon E)-\kappa E, \\ \frac{dI}{dt} & = & \kappa E-\alpha I, \\ \frac{dR}{dt} & = & \alpha I, \end{array}$$

with  $S(0) = S_0$ ,  $E(0) = E_0$ , I(0) = R(0) = 0 and S(t) + E(t) + I(t) + R(t) = N. Under this model  $S(\infty)$  can be calculated using the expression in (9) by writing

$$b = R_0 - \log S(0) - \frac{\epsilon \beta}{N} (N - S(0)),$$
  

$$R_0 = \frac{\beta N}{\gamma} + \frac{\beta N \epsilon}{\kappa} = \beta N \left( \frac{\kappa + \gamma \epsilon}{\gamma \kappa} \right).$$

Writing Y(t) = E(t) + I(t) (Feng. 2007):

$$Y_{\text{max}} = S(0) + Y(0) - \frac{1}{R_0} [1 + \ln(S(0)R_0)].$$

# Example: I<sub>max</sub> under different priors





The posterior is

$$p(\theta \mid \mathbf{y}) \propto L(\mathbf{y} \mid \theta)\pi(\theta)$$

What happens if we look at <sup>2</sup>

$$p_{\alpha}(\theta \mid \mathbf{y}) \propto L(\mathbf{y} \mid \theta)^{\alpha_{1}} \pi(\theta)^{\alpha_{2}}$$

and let  $\alpha_i$  vary on  $[0, \infty)$ .



<sup>&</sup>lt;sup>2</sup>See Kallionen et al. 2023 for more details.



#### Power-scaling sensitivity

Posterior ECDF depending on amount of power-scaling (alpha).

Overlapping lines indicate low sensitivity.

Wider gaps between lines indicate greater sensitivity. Estimates with Pareto-k values > 0.5 may be inaccurate.





High school calculus gives

$$\begin{array}{rcl} \frac{d \log S}{dt} & = & -\beta I, \\ \frac{d \log I}{dt} & = & \beta S - \gamma, \\ \frac{d \log R}{dt} & = & \frac{\gamma I}{R}, \end{array}$$

which is useful if you want to keep I(t)>0 but keep a simple likelihood, i.e., use a log-normal likelihood. This is more numerically stable and plays nicer with the ODE solver.



Ran 100 chains under the 'regular' and 'log' parametrisations. Computed the effective sample size



## Or does it?





If we take the ratio:

$$\frac{dS}{dR} = \frac{-\beta SI}{\gamma I} = -\mathcal{R}_0 S \tag{14}$$

It can be integrated to  $S(t) = S_0 e^{-\mathcal{R}_0 R}$ . We can then substitute into the standard  $\frac{dR}{dt}$  to get

$$\frac{dR}{dt} = \gamma \left( N - R - S_0 e^{-\mathcal{R}_0 R} \right) \tag{15}$$

An approximate solution can be obtained by assuming  $R_0R$  remains small for then  $e^{-R_0R} \approx 1 - (\mathcal{R}_0R) + (\mathcal{R}_0R)^2$  and (15) reduces to the first order quadratic ODE

$$\frac{dR}{dt} \approx \gamma \left( N - S_0 + [S_0 \mathcal{R}_0 - 1]R - (S_0 \mathcal{R}_0^2 / 2)R^2 \right)$$
 (16)

which takes the standard solution

$$R(t) = \frac{1}{R_0^2 S_0} \{ (S_0 R_0) - 1 + \alpha \tanh[(\alpha \gamma t/2) - \phi] \}$$
 (17)

where the amplitude  $\alpha = \sqrt{[S_0 \mathcal{R}_0 - 1]^2 + 2S_0 I_0 \mathcal{R}_0^2}$ , and the phase  $\phi = \tanh^{-1}\{(S_0 \mathcal{R}_0 - 1)/\alpha\}$ .



- LMC would like to thank FGV EMAp for financial support and Charles Margossian (Flatiron), Américo Cunha (Princeton/UERJ), Erik Volz (Imperial College London) and Philip O'Neill (Nottingham) for stimulating discussions;
- If this piqued your insterested, keep an eye on https://github.com/maxbiostat/RO\_uncertainty;



- Clancy, D., O'Neill, P. D., et al. (2008). Bayesian estimation of the basic reproduction number in stochastic epidemic models. *Bayesian Analysis*, 3(4):737–757.
- Feng, Z. (2007). Final and peak epidemic sizes for SEIR models with quarantine and isolation. *Mathematical Biosciences & Engineering*, 4(4):675.
- Ho, L. S. T., Crawford, F. W., Suchard, M. A., et al. (2018). Direct likelihood-based inference for discretely observed stochastic compartmental models of infectious disease. *The Annals of Applied Statistics*, 12(3):1993–2021.
- Miller, J. C. (2012). A note on the derivation of epidemic final sizes. *Bulletin of Mathematical Biology*, 74(9):2125–2141.
- Seaman III, J. W., Seaman Jr, J. W., and Stamey, J. D. (2012). Hidden dangers of specifying noninformative priors. *The American Statistician*, 66(2):77–84.