Ledure 24

Today's topics: Newton's method (2) L'Hopital's Rule

Read Ch 5.5 Ex 5.5.1 - 5.5.20 Eol 22 Ed 17-22 and project due Fri Tutorial today - group work.

Recall: Newton's Method.

- · NM uses tangent line to approximate f(x) and therefore its not.
- · What could go wrong?

" NM fails."

 $4 f'(x_1) = 0$ => pm undefined.

f'(a) changes drostically near >> =) NM unstable.

What if for is linear?

· NM works in 1 step!

(didn't really need NM)

One more type of root finding problem.

-> Use NM to approximate \$\frac{3}{500}.

Post finding??

f(x). = \$500 is a root of f(x).

.. use NM on f(x) to approximate \$500.

Initial guess x1=2

(Since 28 = 256 and 38 is way

 $f'(x) = 8x^{7}.$

$$\alpha_2 = 2 - \frac{2^8 - 5\infty}{8(27)} \simeq 2.23828...$$

. 25 = 2.174559, is actual \$ 500 = 2.1745593.

Back to limits - a reflection.

Some limits could be found immediately:

$$\lim_{\Omega\to 1} (x) = 1, \quad \lim_{\Omega\to \infty} 1 = 0, \quad \lim_{\Omega\to 0} \frac{x}{25} = 0$$

Others regulard more work:

$$\lim_{X\to\infty} \frac{3x^2+1}{2x^2-3} = \frac{p_0}{p_0}, \quad \lim_{X\to 3} \frac{x^2-9}{2x-3} = \frac{n_0}{p_0}$$

(divide by highest power)

(factorite)

Limits of the form
$$\frac{6}{0}$$
 or $\frac{6}{100}$ are called indeterminate forms.

(says nothing about limit).

Eg!. $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$ (was $\frac{9}{0}$).

 $\lim_{x \to 0} \frac{x}{\sqrt{x}} = 0$ (was $\frac{9}{0}$)

 $\lim_{x \to 0} \frac{x}{\sqrt{x}} = 0$ (was $\frac{9}{0}$)

 $\lim_{x \to 0} \frac{x}{\sqrt{x}} = 0$ (one) (was $\frac{9}{0}$)

 $\lim_{x \to 0} \frac{x}{\sqrt{x}} = 0$ (one) (was $\frac{9}{0}$)

So far we've resolve indeferminate forms by rewriting them. - not always possible!

$$\overline{Eg}$$
. $\overline{\lim} \frac{\sin(\omega)}{\infty}$ $(\frac{\circ}{\circ})$. $\frac{1}{\sin} \frac{\ln(\omega)}{\infty}$ $(\frac{\circ}{\circ})$. $\frac{1}{\sin} \frac{\ln(\omega)}{\infty}$ $(\frac{e}{e})$ $\frac{1}{\sin} \frac{\ln(\omega)}{\infty}$ $\frac{1}{\sin} \frac{1}{\cos} \frac{1$

It turns out derivatives can help....

L'Hopital's Rule

If
$$f(x) \to 0$$
 and $g(x) \to 0$ as $x \to a$ (or $\pm i0$) or $\pm i0$ f(x) \pm

a)
$$\lim_{\delta \to 0} \frac{\sin(\alpha)}{\alpha}$$
 $\left(\frac{6}{6} \text{ form}\right)$
 $\stackrel{\text{(#)}}{=} \lim_{\delta \to 0} \frac{\cos(\alpha)}{1} = \frac{\cos(\alpha)}{1} = 1$

b)
$$\lim_{\Omega \to \infty} \frac{\ln(\Omega)}{\Omega}$$
 $(\frac{\partial}{\partial \Omega})$ $(\frac$

Note: Pualuate derivatures of numerator and denominator separately.

(keep distinct from quotient rule)

Example: exponential vs polynomial

Compute
$$\lim_{x\to\infty} \frac{x^2}{e^x}$$
. $\left(\frac{\infty}{A}\right)$

= 0

= 0 by repeated l'Hapital

=) exponentials outpace any
polynomial as 21 > 10.