

Shirpur Education Society's

R. C. PATEL INSTITUTE OF TECHNOLOGY, SHIRPUR

7

7

An Autonomous Institute

(Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere)

आर. सी. पटेल इन्स्टिट्यूट ऑफ टेक्नॉलॉजी, शिरपूर

(स्वायत्त महाविद्यालय)

Programme: B.TECH (AIML)/B.TECH (COMP)/B.TECH (DATA SCI.)/B.TECH (EXTC)/B.TECH (ELECT)/B.TECH (MECH)/B.TECH (CIVIL)

Year: I / Semester I (Exam Year: 2023-2024)

Subject: Mathematics- I (RCP23FCBS101) Max Marks: 60

END SEMESTER EXAMINATION-ODD SEM-I (AY: 2023-2024)

Instructions:

- 1. This question paper contains 3 pages
- 2. Answer to each new question to be started on a fresh page.
- 3. Figure in right hand side indicates full marks.
- 4. All Questions are Compulsory.
- 5. Assume suitable data wherever required but justify it.
- 6. Support your answers with neat, labelled diagrams, wherever necessary.

Determine the values of λ for which the following equations are consistent. Also solve the system for these values of λ .

$$x + 2y + z = 3$$

$$x + y + z = \lambda$$

$$3x + y + 3z = \lambda^{2}$$

Show that every square matrix can be uniquely expressed as the sum of Hermitian and
11
. Skew-Hermitian matrix.

Reduce the following matrix to echelon form and hence find it's rank.

i.
$$\begin{bmatrix} 3 & 2 & 1 & 4 \\ -1 & 3 & 2 & 2 \\ 2 & 5 & 3 & 6 \end{bmatrix}$$

ii. If
$$x^4 + y^4 = 5a^2xy$$
, find $\frac{dy}{dx}$.

2. 2

15

7

- a.
 - i. Solve by using Demoivre's theorem, $x^4 x^3 + x^2 x + 1 = 0$.

7

- ----- OR -----
- ii. Using De Moivre's Theorem, prove that $\cos^6\theta + \sin^6\theta = \frac{1}{8}(3\cos 4\theta + 5)$.

7

8

7

7

- Prove that $sin^{-1} x = -i \log(ix + \sqrt{1 x^2})$ and hence prove that
- b. $\sin^{-1}(\sinh x) = \tan^{-1}(\tanh x) \frac{i}{4}\log(\cosh^2 x + \sinh^2 x)$
- 3.3
- a. 7
 - If z = f(x, y), $x = e^{u} + e^{-v}$, $y = e^{-u} e^{v}$, prove that $\frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial v}.$
 - ----- OR -----
 - If u = f(r) where $r = \sqrt{x^2 + y^2 + z^2}$, prove that
- ii. $u_{xx} + u_{yy} + u_{zz} = f''(r) + \frac{2}{r}f'(r) .$
- b. **8**
 - Fit a parabola $y = a + bx + cx^2$ to the following data

 - Using Newton-Raphson method, find the root of the equation $e^x 4x = 0$ by taking initial condition $x_0 = 2.1$. Perform three iterations.
- 4. 4
- a. Expand $tan^{-1}(x)$ in powers of (x-1).

b.

If
$$u = \csc^{-1} \sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}}$$

8

8

Using Euler's theorem for homogeneous functions, prove that
i.

i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{12} \tan u$$

ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial x^2} = \frac{\tan u}{144} (13 + \tan^2 u)$$

----- OR -----

ii. Find the extreme values of $x^3 + 3xy^2 - 3x^2 - 3y^2 + 7$.

Page 3 of 3