Аттестационное тестирование в сфере профессионального образования

Специальность: 010300.62 – Математика. Компьютерные науки

Дисциплина: Дифференциальные уравнения

Время выполнения теста: 90 минут

Количество заданий: 32

Требования ГОС к обязательному минимуму содержания основной образовательной программы

 Индекс
 Дисциплина и ее основные разделы
 Всего часов

 ОПД.Ф
 Федеральный компонент
 3520

 ОПД.Ф.03Дифференциальные уравнения:
 220

Понятие дифференциального уравнения; поле направлений, решения; интегральные кривые, векторное поле; фазовые кривые. Уравнения с разделяющимися переменными, однородные уравнения, уравнения в полных дифференциалах, интегрирующий множитель, линейное уравнение, уравнение Бернулли, метод введения параметра, уравнения Лагранжа и Клеро. Задача Коши: теорема существования и единственности решения задачи Коши (для системы уравнений, для уравнения любого порядка). Продолжение решений; линейные системы и линейные уравнения любого порядка; интервал существования решения линейной системы (уравнения). Линейная зависимость функций и определитель Вронского; формула Лиувилля . Остроградского; фундаментальные системы и общее решение линейной однородной системы (уравнения); неоднородные линейные системы (уравнения); Метод вариации постоянных; решение однородных линейных систем и уравнений с постоянными коэффициентами. Решение неоднородных линейных уравнений с постоянными коэффициентами и неоднородностями специального вида (квазимногочлен). Непрерывная зависимость решения от параметра; дифференцируемость решения по параметру, устойчивость по Ляпунову; теорема Ляпунова об устойчивости по первому приближению и ее применение; фазовые траектории двумерной линейной системы с постоянными коэффициентами; особые точки, седло, узел, фокус, центр. Первые интегралы; уравнения с частными производными первого порядка; связь характеристик с решениями; задача Коши; теорема существования и единственности решения задачи Коши (в случае двух независимых переменных).

Тематическая структура АПИМ

N ДЕ	Наименование дидактической единицы ГОС	N за- да- ния	Тема задания
1	Понятие дифференциального уравнения. Основные приемы интегрирования	1	Классификация дифференциальных уравнений. Порядок дифференциального уравнения.
		2	Классификация обыкновенных дифференциальных уравнений первого порядка

Стр. 1 из 17 26.10.2012 11:39

		3	Уравнения с разделяющимися переменными
		4	Уравнения, приводимые к уравнениям с разделяющимися переменными.
		5	Однородные уравнения
		6	Уравнения в полных дифференциалах. Интегрирующий множитель
		7	Линейное уравнение первого порядка, метод вариации постоянной
		8	Уравнение Бернулли
	Задача Коши	9	Постановки задач Коши для обыкновенных дифференциальных уравнений
2		10	Теорема существования и единственности решения задачи Коши для обыкновенного дифференциального уравнения первого порядка
		11	Задача Коши для уравнения первого порядка
		12	Задача Коши для уравнения второго порядка
	Линейные системы дифференциальных уравнений	13	Определитель Вронского системы векторных функций
		14	Фундаментальная система решений и общее решение линейной однородной системы дифференциальных уравнений с постоянными коэффициентами
3		15	Частное решение линейной неоднородной системы дифференциальных уравнений с постоянными коэффициентами и неоднородностями специального вида
		16	Задача Коши для линейной системы дифференциальных уравнений с постоянными коэффициентами
	Линейные дифференциальные уравнения любого порядка	17	Определитель Вронского системы n функций
4		18	Линейная зависимость и независимость функций
T		19	Характеристический многочлен линейного однородного дифференциального уравнения с постоянными коэффициентами

Стр. 2 из 17 26.10.2012 11:39

		20	Фундаментальная система решений и общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами
		21	Решение неоднородных линейных дифференциальных уравнений с постоянными коэффициентами и неоднородностями специального вида
		22	Метод вариации постоянных построения решений неоднородных линейных дифференциальных уравнений
	Устойчивость по Ляпунову	23	Определение устойчивости по Ляпунову
5		24	Теорема об устойчивости по первому приближению
		25	Фазовые траектории двумерной линейной системы
		26	Классификация особых точек
6	Уравнения с частными производными первого порядка	27	Характеристики и первые интегралы линейного однородного дифференциального уравнения с частными производными первого порядка
		28	Характеристики и первые интегралы квазилинейного дифференциального уравнения с частными производными первого порядка
		29	Общее решение линейного однородного дифференциального уравнения с частными производными первого порядка
		30	Общее решение квазилинейного дифференциального уравнения с частными производными первого порядка
		31	Задача Коши для линейного однородного дифференциального уравнения с частными производными первого порядка
		32	Задача Коши для квазилинейного дифференциального уравнения с частными производными первого порядка

Демонстрационный вариант

Стр. 3 из 17 26.10.2012 11:39

ЗАДАНИЕ N 1 (\square - выберите несколько вариантов ответа)

Среди записанных ниже дифференциальных уравнений уравнениями первого порядка **не являются** ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$(x + y^2)dy + (2xy + x^2)dx = 0$$

2)
$$y' + 2xy''' = 3y$$

3)
$$y'' + 2y' - 3y = \sin x$$

4)
$$y'^3 + 2xy = y^2$$

ЗАДАНИЕ N 2 (• - выберите один вариант ответа)

Дифференциальное уравнение $y' - x(y^2 + 1) = 0$ является ...

ВАРИАНТЫ ОТВЕТОВ:

1) однородным

линейным уравнением

- 2) относительно функции y(x) и ее производных
- 3) уравнением с разделяющимися переменными
- 4) уравнением Бернулли

ЗАДАНИЕ N 3 (• - выберите один вариант ответа)

Общее решение дифференциального уравнения $y'(1+x^2) = xy$ может быть записано в виде ...

ВАРИАНТЫ ОТВЕТОВ:

$$1) \quad y = C \cdot (1 + x^2)$$

2)
$$y^2 = C \cdot (1 + x^2)$$

3)
$$y^2 = C \cdot \sqrt{1 + x^2}$$

4)
$$y^2 \cdot (1 + x^2) = C$$

ЗАДАНИЕ **N 4** (• - выберите один вариант ответа)

С помощью замены неизвестной функции $y(x) = x \cdot z(x)$ уравнение $(x^2 + y^2)y' = 2xy$ сводится к следующему уравнению с разделяющимися

переменными относительно функции z(x): ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$xz'(z^2+1)=z^3-z$$

2)
$$xz'(z^2+1)=z-z^3$$

3)
$$xz'(z+1) = z - z^3$$

4)
$$xz'(z^2+1)=z^2-z$$

ЗАДАНИЕ N 5 (• - выберите один вариант ответа)

С помощью замены неизвестной функции $y(x) = x \cdot z(x)$ однородное уравнение (x + 2y)dx = xdy сводится к следующему уравнению с разделяющимися переменными ...

ВАРИАНТЫ ОТВЕТОВ:

$$1) \quad (1+2z)dx = xdz$$

$$2) \quad (1+z)dx = dz$$

$$3) \quad (1+z)dx = xdz$$

4)
$$(1+x)dx = zdz$$

ЗАДАНИЕ N 6 (• выберите один вариант ответа)

Среди указанных ниже функций интегрирующим множителем для дифференциального уравнения $2xy \ln y dx + (x^2 + y^2) dy = 0$ является ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\mu(x,y) = \frac{1}{y^2}$$

$$2) \quad \mu(x,y) = y$$

3)
$$\mu(x,y) = \frac{1}{y}$$

2)
$$\mu(x, y) = y$$

4) $\mu(x, y) = \frac{1}{x}$

ЗАДАНИЕ N 7 (• - выберите один вариант ответа)

Применяя метод вариации постоянной, общее решение линейного уравнения $y' = y \cos x + \sin x$ следует искать в виде ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$y = C(x) \cdot \cos x$$

$$2) \quad y = C(x) \cdot e^{\cos x}$$

3)
$$y = C(x) \cdot e^{-\sin x}$$

4)
$$y = C(x) \cdot e^{\sin x}$$

ЗАДАНИЕ N 8 (• - выберите один вариант ответа)

Уравнение Бернулли $y' - 2xy = x^2y^2$ приводится к линейному относительно функции z(x) и ее производной путем замены ...

ВАРИАНТЫ ОТВЕТОВ:

$$1) \quad z(x) = \frac{1}{y(x)}$$

$$z(x) = \frac{1}{y^2(x)}$$

3)
$$z(x) = y^2(x)$$

4)
$$z(x) = x^2 \cdot y^2(x)$$

ЗАДАНИЕ N 9 (• выберите один вариант ответа)

Задача Коши для уравнения четвертого порядка $y^{(IV)}(x) - y(x) = 0$ может быть поставлена заданием ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$y(0) = y^0$$

2)
$$y(0) = y^0, y'(0) = y^1, y''(0) = y^2,$$

 $y'''(0) = y^3$

3)
$$y'(0) = y^1, y''(0) = y^2, y'''(0) = y^3$$

3)
$$y'(0) = y^1, y''(0) = y^2, y'''(0) = y^3$$
 4) $y(0) = y^0, y'(0) = y^1, y''(1) = y^2, y'''(1) = y^3$

ЗАДАНИЕ N 10 (• выберите один вариант ответа)

Наибольшим промежутком, на котором теорема существования и единственности решения задачи Коши гарантирует существование и единственность решения задачи

$$\frac{dy}{dx} = y^2, \quad y(0) = 1$$

рассматриваемой при $(x,y) \in D$, где $D = [-1,1] \times [0,2]$ — замкнутый прямоугольник, является промежуток ...

ВАРИАНТЫ ОТВЕТОВ:

1) [0,2]

 $2) \quad \left[-\frac{1}{4}, \frac{1}{4} \right]$

3) [-1,1]

 $4) \quad \left[-\frac{1}{2}, \frac{1}{2} \right]$

ЗАДАНИЕ N 11 (- введите ответ)

В точке x=2 значение функции y(x), являющейся решением задачи Коши

$$\begin{cases} xy' = 2y \\ y(1) = 2 \end{cases}$$

равно ...

ВАРИАНТЫ ОТВЕТОВ:

ЗАДАНИЕ N 12 (• выберите один вариант ответа)

В точке x = 4 значение функции y(x), являющейся решением задачи Коши

$$\begin{cases} y'' - y' = 1 \\ y(0) = 1, \quad y'(0) = -1 \end{cases}$$

равно ...

ВАРИАНТЫ ОТВЕТОВ:

1) -3

2) 0

3) -2

4) -1

Модуль определителя Вронского системы вектор-функций

010300.62 Дифференциальные уравнения

$$\Psi_1(t) = \begin{pmatrix} e^t \cos 2t \\ -2e^t \sin 2t \end{pmatrix}, \quad \Psi_2(t) = \begin{pmatrix} -e^t \cos 2t \\ 2e^t \sin 2t \end{pmatrix} \text{ pabeh } \dots$$

ВАРИАНТЫ ОТВЕТОВ:

$$1) \quad |\Delta(t)| = 0$$

$$|\Delta(t)| = 2e^{2t}$$

3)
$$|\Delta(t)| = 2e^t \cdot |\sin t \cos t|$$

4)
$$|\Delta(t)| = 2e^{2t} \cdot |\sin t \cos t|$$

ЗАДАНИЕ № 14 (• - выберите один вариант ответа)

Фундаментальная система решений линейной однородной системы дифференциальных уравнений

$$\begin{cases}
\frac{dx}{dt} = x - y \\
\frac{dy}{dt} = -x + y
\end{cases}$$

может быть записана в виде ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\Psi_1(t) = \begin{pmatrix} e^t \\ e^t \end{pmatrix}$$
, $\Psi_2(t) = \begin{pmatrix} e^{-2t} \\ -e^{-2t} \end{pmatrix}$ 2) $\Psi_1(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\Psi_2(t) = \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix}$

2)
$$\Psi_1(t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\Psi_2(t) = \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix}$

3)
$$\Psi_1(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\Psi_2(t) = \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix}$ 4) $\Psi_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\Psi_2(t) = \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}$

4)
$$\Psi_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $\Psi_2(t) = \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}$

ЗАДАНИЕ N 15 (○ - выберите один вариант ответа)

Частное решение линейной неоднородной системы дифференциальных уравнений

$$\begin{cases} \frac{dx}{dt} = 2y - te^{-t} \\ \frac{dy}{dt} = -2x \end{cases}$$

следует искать в виде ...

Стр. 8 из 17

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}_{q} = \begin{pmatrix} At^{2} \\ Bt^{2} \end{pmatrix} \cdot e^{-t}$$

2)
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}_{y} = \begin{pmatrix} At + B \\ Ct + D \end{pmatrix} \cdot e^{-t}$$

3)
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}_{u} = \begin{pmatrix} At + B \\ 0 \end{pmatrix} \cdot e^{-t}$$

4)
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}_{t} = \begin{pmatrix} At \\ Bt \end{pmatrix} \cdot e^{-t}$$

ЗАДАНИЕ № 16 (• выберите один вариант ответа)

Компонента y(t) решения задачи Коши

$$\begin{cases} \frac{dx}{dt} = -x + y, & x(0) = 1\\ \frac{dy}{dt} = x - y, & y(0) = -3 \end{cases}$$

равна ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$y(t) = -1 - 2e^{-2t}$$

2)
$$y(t) = -3e^{-2t}$$

3)
$$y(t) = 1 - 4e^{-2t}$$

4)
$$y(t) = -2 - e^{-2t}$$

ЗАДАНИЕ N 17 (• - выберите один вариант ответа)

Модуль определителя Вронского системы функций $\{e^x, \operatorname{ch} x\}$ равен ...

ВАРИАНТЫ ОТВЕТОВ:

$$1) \quad |\Delta(x)| = 0$$

$$2) \quad |\Delta(x)| = \operatorname{ch} x$$

3)
$$|\Delta(x)| = e^x$$

4)
$$|\Delta(x)| = 1$$

ЗАДАНИЕ N 18 (- выберите один вариант ответа)

010300.62 Дифференциальные уравнения

Среди функций $y_1(x) = e^x$, $y_2(x) = \cosh x$, $y_3(x) = \sinh x$, являющихся решениями дифференциального уравнения y'' - y = 0 на отрезке $a \le x \le b$, линейно независимые системы образуют ...

ВАРИАНТЫ ОТВЕТОВ:

1) все функции
$$\{e^x, \operatorname{ch} x, \operatorname{sh} x\}$$
 линейно независимы

2)
$$^{\text{ТОЛЬКО}}\left\{ \cosh x, \sinh x \right\}$$

3)
$$\{e^x, \operatorname{ch} x\}$$
, $\{e^x, \operatorname{sh} x\}$ $\{\operatorname{ch} x, \operatorname{sh} x\}$ 4) $\{\operatorname{ch} x, \operatorname{ch} x\}$ $\{e^x, \operatorname{ch} x\}$ $\{e^x, \operatorname{sh} x\}$

4) только
$$\{e^x, \operatorname{ch} x\}$$
 и $\{e^x, \operatorname{sh} x\}$

ЗАДАНИЕ N 19 (• - выберите один вариант ответа)

Характеристический многочлен $P(\lambda)$, соответствующий однородному дифференциальному уравнению y''' + y'' + y' = 0, имеет вид ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$P(\lambda) = \lambda^3 + \lambda + 1$$

$$P(\lambda) = \lambda^3 + 2\lambda^2 + 1$$

3)
$$P(\lambda) = \lambda^2 + \lambda + 1$$

4)
$$P(\lambda) = \lambda^3 + \lambda^2 + \lambda$$

ЗАДАНИЕ № 20 (• выберите один вариант ответа)

Общее решение однородного линейного дифференциального уравнения y'' + 4y = 0может быть записано в виде ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$y(x) = C_1 \sin 2x + C_2 \cos 2x$$

2)
$$y(x) = C_1 e^{2x} + C_2 e^{-2x}$$

3)
$$y(x) = C_1 \sin 2x + C_2 \sin(-2x)$$

$$4) \quad y(x) = C_1 \sin x + C_2 \cos x$$

ЗАДАНИЕ N 21 (• - выберите один вариант ответа)

Частное решение $\tilde{y}(x)$ дифференциального уравнения $y'' + 4y = 2e^x \cos 2x$ следует

26.10.2012 11:39 Стр. 10 из 17

010300.62 Дифференциальные уравнения

искать в виде ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\tilde{y}(x) = e^x \cdot A \cos 2x$$

$$2) \quad \tilde{y}(x) = A\sin 2x + B\cos 2x$$

3)
$$\tilde{y}(x) = e^x \cdot (A\sin 2x + B\cos 2x)$$

4)
$$\tilde{y}(x) = e^x \cdot (A \sin x + B \cos x)$$

ЗАДАНИЕ N 22 (• выберите один вариант ответа)

Применяя метод вариации постоянных, решение неоднородного дифференциального уравнения $y'' + \frac{1}{x}y' = -\frac{1}{x}$ следует искать в виде $y(x) = C_1(x) + C_2(x) \cdot \ln x$, где функции $C_1(x)$, $C_2(x)$ определяются путем решения системы ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\begin{cases} C_1' + C_2' \ln x = 0 \\ C_1' + C_2' \cdot \frac{1}{x} = -\frac{1}{x} \end{cases}$$

2)
$$\begin{cases} C_1' + C_2' \ln x = 0 \\ C_2' = -\frac{1}{x} \end{cases}$$

3)
$$\begin{cases} C_1 + C_2 \ln x = 0 \\ C_2 = -1 \end{cases}$$

4)
$$\begin{cases} C_1' + C_2' \ln x = 0 \\ C_2' = -1 \end{cases}$$

ЗАДАНИЕ N 23 (• - выберите один вариант ответа)

Укажите недостающую часть определения

Стационарное решение $x = \frac{\pi}{2}$ задачи Коши

$$\frac{dx}{dt} = \cos x \cdot x(1) = \frac{\pi}{2}$$

устойчиво по Ляпунову, если ... : что для $\forall x (1)$ такого, что $\left| x(1) - \frac{\pi}{2} \right| < \delta$, для

$$\forall \, t \geq 1 \, \exists \, x(t)$$
 — решение задачи такое, что $\left| x(t) - \frac{\pi}{2} \right| < \varepsilon$.

ВАРИАНТЫ ОТВЕТОВ:

Стр. 11 из 17 26.10.2012 11:39

1)
$$\exists \varepsilon > 0$$
 и $\exists \delta(\varepsilon) > 0$

2)
$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon)$$

3)
$$\exists \varepsilon > 0$$
 и $\forall \delta(\varepsilon) > 0$

4)
$$\forall \varepsilon > 0$$
 и $\forall \delta(\varepsilon) > 0$

ЗАДАНИЕ N 24 (• - выберите один вариант ответа)

Из теоремы об устойчивости по первому приближению следует асимптотическая устойчивость по Ляпунову нулевого решения задачи Коши для системы ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\begin{cases} x_1 = -x_1 + x_2^2, \\ x_2 = 2x_2 \end{cases}$$

2)
$$\begin{cases} x_1 = x_1 + x_2^2, \\ x_2 = 2x_2 \end{cases}$$

3)
$$\begin{cases} \overset{\bullet}{x_1} = x_1 + x_2^2, \\ \overset{\bullet}{x_2} = -2x_2 \end{cases}$$

4)
$$\begin{cases} \overset{\bullet}{x_1} = -x_1 + x_2^2, \\ \overset{\bullet}{x_2} = -2x_2 + x_1^2 \end{cases}$$

ЗАДАНИЕ N 25 (- выберите один вариант ответа)

Качественное поведение траекторий на фазовой плоскости (фазовый портрет) для системы уравнений

$$\begin{cases} \mathbf{x}_1 = x_1, \\ \mathbf{x}_2 = 2x_2, \end{cases}$$

имеет вид ...

(стрелками обозначено направление движения вдоль фазовых траекторий с ростом t

ВАРИАНТЫ ОТВЕТОВ:

Стр. 12 из 17 26.10.2012 11:39

ЗАДАНИЕ № 26 (• - выберите один вариант ответа)

Точка покоя $x_1 = x_2 = 0$ системы уравнений

$$\begin{cases} \bullet \\ x_1 = x_1, \\ \bullet \\ x_2 = 2x_2, \end{cases}$$

является ...

ВАРИАНТЫ ОТВЕТОВ:

1) неустойчивым узлом

2) устойчивым фокусом

3) центром

4) устойчивым узлом

ЗАДАНИЕ N 27 (• выберите один вариант ответа)

Характеристиками уравнения

$$\frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$$

является семейство кривых $\, \dots \,$, где $_{C}$ – произвольная постоянная.

Стр. 13 из 17 26.10.2012 11:39

ВАРИАНТЫ ОТВЕТОВ:

1)
$$x + \frac{y^2}{2} = C$$

2)
$$y - \frac{x^2}{2} = C$$

3)
$$y + \frac{x^2}{2} = C$$

4)
$$x - \frac{y^2}{2} = C$$

ЗАДАНИЕ N 28 (- выберите один вариант ответа)

Система для характеристик квазилинейного уравнения

$$e^{z} \frac{\partial z}{\partial x} + e^{x} \frac{\partial z}{\partial y} = e^{x+z}$$

имеет вид ...

ВАРИАНТЫ ОТВЕТОВ:

1)
$$e^z dx = e^x dy = e^{x+z} dz$$

$$2) \quad e^{z} dx = e^{x} dy = -e^{x+z} dz$$

3)
$$\frac{dx}{e^z} = \frac{dy}{e^x} = \frac{dz}{e^{x+z}}$$

4)
$$\frac{dx}{e^z} = \frac{dy}{e^x} = -\frac{dz}{e^{x+z}}$$

ЗАДАНИЕ N 29 (- выберите один вариант ответа)

Общее решение уравнения

$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = 0$$

может быть записано в виде z = f(t(x, y)), где f(t) – произвольная дифференцируемая функция, а аргумент t(x, y) равен ...

В двумерном случае характеристики уравнения

$$A(x,y)\frac{\partial z}{\partial x} + B(x,y)\frac{\partial z}{\partial y} = 0$$

определяются из обыкновенного дифференциального уравнения

$$\frac{dx}{A(x,y)} = \frac{dy}{B(x,y)}$$

(см. [3] стр. 228), которое для заданного уравнения имеет вид

$$\frac{dx}{x^2} = \frac{dy}{y^2} \quad \Longrightarrow \quad -\frac{dy}{y^2} + \frac{dx}{x^2} = 0 \; ; \quad \text{его первый интеграл} \quad \frac{1}{y} - \frac{1}{x} = C \; .$$

Следовательно, общее решение имеет вид $z = f\left(\frac{1}{y} - \frac{1}{x}\right)$, где f – произвольная

дифференцируемая функция.

Правильный ответ: $\frac{1}{y} - \frac{1}{x}$

Литература:

- 1. Петровский, И. Г. Лекции по теории обыкновенных дифференциальных уравнений : учеб. / И. Г. Петровский. М. : УРСС, 2003. 272 с.
- 2. Эльсгольц, Л. Э. Дифференциальные уравнения : учеб. / Л. Э. Эльсгольц. М. : УРСС, 2008. 320 с.
- 3. Тихонов, А. Н. Дифференциальные уравнения : учеб. / А. Н. Тихонов, А. Б. Васильева, А. Г. Свешников. М. : ФИЗМАТЛИТ, 2005. 256 с.
- 4. Филиппов, А.Ф. Сборник задач по дифференциальным уравнениям : учеб. пособ. / А. Ф. Филиппов. М. : УРСС, 2011. 240 с.

ВАРИАНТЫ ОТВЕТОВ:

1)
$$\frac{1}{y} - \frac{1}{x}$$

2)
$$x^3 + y^3$$

3)
$$x^3 - y^3$$

4)
$$\frac{1}{y} + \frac{1}{x}$$

ЗАДАНИЕ № 30 (• выберите один вариант ответа)

Общее решение z(x,y) уравнения

$$x^2 \frac{\partial z}{\partial x} - y^2 \frac{\partial z}{\partial y} = z^2$$

26.10.2012 11:39

может быть представлено в неявной форме в виде \dots , где f – произвольная дифференцируемая функция.

Системой уравнений для характеристик квазилинейного уравнения с частными производными первого порядка

$$a_1(x_1,...,x_n,u)\frac{\partial u}{\partial x_1}+...+a_n(x_1,...,x_n,u)\frac{\partial u}{\partial x_n}=a(x_1,...,x_n,u)$$

называется система обыкновенных дифференциальных уравнений следующего вида (см. [3] стр. 238)

$$\frac{dx_1}{a_1(x_1,...,x_n,u)} = ... = \frac{dx_n}{a_n(x_1,...,x_n,u)} = \frac{du}{a(x_1,...,x_n,u)}.$$

Первым интегралом этой системы называется соотношение $\varphi(x_1,...,x_n,u)=C$, выполняющееся тождественно на интегральной кривой системы (см. [3] стр.234, 238).

Стр. 15 из 17

Система для характеристик рассматриваемого уравнения имеет вид

$$\frac{dx}{x^2} = -\frac{dy}{y^2} = \frac{dz}{z^2};$$

ее независимые первые интегралы $\frac{1}{y} + \frac{1}{x} = C_1$, $\frac{1}{z} + \frac{1}{y} = C_2$.

Следовательно, общее решение представимо в неявной форме в виде

$$f\left(\frac{1}{y} + \frac{1}{x}, \frac{1}{z} + \frac{1}{y}\right) = 0,$$

где f – произвольная дифференцируемая функция.

Правильный ответ:
$$f\left(\frac{1}{y} + \frac{1}{x}, \frac{1}{z} + \frac{1}{y}\right) = 0$$

Литература:

- 1. Петровский, И. Г. Лекции по теории обыкновенных дифференциальных уравнений : учеб. / И. Г. Петровский. М. : УРСС, 2003. 272 с.
- 2. Эльсгольц, Л. Э. Дифференциальные уравнения : учеб. / Л. Э. Эльсгольц. М. : УРСС, 2008. 320 с.
- 3. Тихонов, А. Н. Дифференциальные уравнения : учеб. / А. Н. Тихонов, А. Б. Васильева, А. Г. Свешников. М. : ФИЗМАТЛИТ, 2005. 256 с.
- 4. Филиппов, А.Ф. Сборник задач по дифференциальным уравнениям : учеб. пособ. / А. Ф. Филиппов. М. : УРСС, 2011. 240 с.

ВАРИАНТЫ ОТВЕТОВ:

1)
$$f\left(\frac{1}{y} + \frac{1}{x}, \frac{1}{z} + \frac{1}{y}\right) = 0$$

2)
$$f(x^3 + y^3, x^3 + z^3) = 0$$

3)
$$f\left(\frac{1}{y} - \frac{1}{x}, \frac{1}{z} - \frac{1}{y}\right) = 0$$

4)
$$f(x^3 - y^3, x^3 - z^3) = 0$$

ЗАДАНИЕ N 31 (______ - введите ответ)

Функция $_{\mathcal{Z}(\mathfrak{X},\mathfrak{Y})}$, являющаяся решением задачи Коши

$$y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0,$$
$$z|_{y = -2x} = y^{2}$$

принимает в точке (-1;7) значение ...

ВАРИАНТЫ ОТВЕТОВ:

Стр. 16 из 17 26.10.2012 11:39

ЗАДАНИЕ N 32 (______ - введите ответ)

Функция $_{\mathcal{Z}(\mathfrak{X},\mathfrak{Y})}$, являющаяся решением задачи Коши

$$\frac{1}{x^2} \frac{\partial z}{\partial x} - \frac{1}{y^2} \frac{\partial z}{\partial y} = \frac{1}{z^2},$$

$$z\big|_{x=3y} = 2y,$$

принимает в точке (-1;1) значение ...

ВАРИАНТЫ ОТВЕТОВ:

Стр. 17 из 17 26.10.2012 11:39