

3V CD Headphone-stereo Power Amplifier

The LA4534M is a low noise, low distortion headphonestereo power IC designed for use in a portable CD.

Features

- Less current drain.
- Accept 16Ω load drive.
- Excellent voltage reduction characteristic.
- Excellent ripple rejection.
- Power switch function and built-in muting circuit.
- Low noise (7µV), low gain (11dB).

Package Dimensions

unit:mm

3086A-MFP10S

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	Quiescent time	4.5	V
Allowable power dissipation	Pd max		300	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		3.0	V
Operating supply voltage range	V _{CC} op		1.6 to 4.0	V
Recommended load impedance	RL		16 to 32	Ω

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LA4534M

Operating Characteristics at Ta = 25°C, R_L =16 Ω , Rg=600 Ω

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	Offic
Quiescent current	Icco1	V _{CC} =2.4V, Quiescent time		5.4	10	mA
	I _{CCO} 2	V _{CC} =4.5V, pin 10 to GND		1.1	2.0	mA
	I _{CCO} 3	V _{CC} =4.5V, pin 1 to GND			1.0	μΑ
Voltage gain	VG1	V _{CC} =2.4V, f=1kHz, V _O =-10dBm	9	11	13	dB
	VG2	V _{CC} =1.6V, f=1kHz, V _O =-20dBm	9	11	13	dB
Voltage gain variations	∆VG1	V _{CC} =2.4V, f=1kHz, V _O =-10dBm			1.0	dB
	ΔVG2	V _{CC} =1.6V, f=1kHz, V _O =-20dBm			1.0	dB
Total harmonic distortion	THD	V _{CC} =2.0V, f=1kHz, P _O =1mW		0.08	0.24	%
Output power	PO	V _{CC} =3.0V, f=1kHz, THD=10%	25	50		mW
Crosstalk	СТ	V_{CC} =2.4V, f=1kHz, Rg=1k Ω , V_{O} =-10dBm	40	50		mW
Ripple rejection	SVRR	V_{CC} =1.6V, f=100Hz, Rg=1k Ω , V_{R} =-20dBm, BPF=100Hz	50	70		dB
Output noise voltage	V _{NO}	V_{CC} =4.5V, Rg=1k Ω , BPF=20Hz to 20kHz		7	20	μV
Power off effect	V _{O(off)}	V _{CC} =1.6V, f=100Hz, Pin 1 to GND, V _{IN} =-10dBm			-80	dBm
Mute effect	V _{O(MT)}	V _{CC} =1.6V, f=100Hz, Pin 10 to GND, V _{IN} =-10dBm			-80	dBm
Power on current sensitivity	I1 _(on)	V _{CC} =1.5V, V5≥0.85V		0.05	1.0	μА
Power off voltage sensitivity	V1(off)	V _{CC} =1.5V, V5≤0.1V	0.5	0.6		V
Mute off current sensitivity	I10 _(off)	V _{CC} =1.5V, V5≥0.85V		0.2	1.0	μΑ
Mute on voltage sensitivity	V10 _(on)	V _{CC} =1.5V, V5≤0.1V	0.5	0.65		V

Note : Quiescent current is the current flowing into pin 6. The current flowing into pin 1 and pin 10 is at the maximum value and calculated from the equation $(V \text{ pin-}0.5V)/16[V/k\Omega]$, increasing total current.

Equivalent Circuit Block Diagram

Test Circuit

Sample Application Circuit

