$20241027 \ \mathrm{MATH3301} \ \mathrm{NORE} \ 6[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Int	roduction	3
2	The	e Fundamental Theorem of Finite Abelian Group	3
	2.1	Preliminaries	3
	2.2	Finite Abelian Group with Unique Prime Divisor	5
	2.3	Finite Abelian Group with Multiple Prime Divisors	5
3	Jordan Canonical Form		6
	3.1	Preliminaries	6
	3.2	Finite Complex Matrix with Unique Eigenvalue	7
	3.3	Finite Complex Matrix with Multiple Eigenvalues	8

1 Introduction

This note introduces two similar systematical ways to decompose certain structures into the direct products of smaller structures.

2 The Fundamental Theorem of Finite Abelian Group

2.1 Preliminaries

First, we propose Cauchy's Theorem.

Theorem 2.1. (Cauchy's Theorem)

Let G be an Abelian group of order n, and p be a prime divisor of n.

There exists $g \in G$, such that $\operatorname{ord}(g) = p$.

Here, $\operatorname{ord}(g)$ is the smallest positive integer μ such that $g^{\mu} = e$.

Proof. We prove this theorem by the strong form of mathematical induction.

Basis Step: When n = p, G is cyclic, so G has a generator g with $\operatorname{ord}(g) = p$.

Inductive Hypothesis: For all $k \in \mathbb{N}$, for all $1 \leq l \leq k$, when n = lp, assume that there exists $g \in G$, such that $\operatorname{ord}(g) = p$.

Inductive Step: When n = (l+1)p, G has a nontrivial proper subgroup H.

Case 1: If p divides |H|, then there exists $h \in H$, such that $\operatorname{ord}(h) = p$.

There exists $h \in G$, such that $\operatorname{ord}(h) = p$.

Case 2: If p divides |G/H|, then there exists $qH \in G/H$, such that $\operatorname{ord}(qH) = p$.

Notice that $g^p H = (gH)^p = H$, so $h = g^p \in H$.

There exists $g' = g^{\operatorname{ord}(h)} \in G$, such that $\operatorname{ord}(g') = p$.

To conclude, the statement is true for all n = kp. Quod. Erat. Demonstrandum.

Then, we reduce a finite Abelian group G with $\forall g \in G, g^p = e$.

Theorem 2.2. (The Recognition Theorem[2])

Let G be an Abelian group,

and H, K be two subgroups of G.

- (1) HK is a subgroup of G.
- (2) $\sigma: H \times K \to HK, (h, k) \mapsto hk$ is a homomorphism.
- (3) σ is an isomorphism if and only if $H \cap K = \{e\}$.

Proof. We may divide our proof into three parts.

Part 1: In this part, we prove HK is a subgroup of G.

$$e = ee \in HK$$

$$hkh'k' = hh'kk' \in HK$$

$$k^{-1}h^{-1} = h^{-1}k^{-1} \in HK$$

Hence, HK is a subgroup of G.

Part 2: In this part, we prove $\sigma: H \times K \to HK$, $(h, k) \mapsto hk$ is a homomorphism.

$$(h,k) \mapsto hk$$
$$(h',k') \mapsto h'k'$$
$$(hh',kk') \mapsto hh'kk' = hkh'k'$$

Part 3: In this part, we prove σ is an isomorphism if and only if $H \cap K = \{e\}$. Assume that $H \cap K$ only contains the identity e.

$$hk = h'k' \implies h'^{-1}h = k'k^{-1} \in H \cap K = \{e\}$$
$$\implies (h, h') = (k, k')$$

Hence, the surjective homomorphism σ is injective, σ is an isomorphism. Assume that $H \cap K$ contains some nonidentity element g.

$$(g, g^{-1}) \mapsto gg^{-1} = e$$

 $(e, e^{-1}) \mapsto ee^{-1} = e$

Hence, σ fails to be injective, σ is not an isomorphism.

Quod. Erat. Demonstrandum.

Proposition 2.3. Let G be an Abelian group of order n, and p be a prime divisor of n.

If $\forall g \in G, g^p = e$, then $\forall g \in G, \exists H \leq G, G \cong H \times \langle g \rangle$.

Here, $\langle g \rangle = \{ g^k \in G : k \in \mathbb{Z} \}.$

Proof. Assume to the contrary that for some $x \in G$, such H doesn't exist.

That is, the maximum of the following set is strictly less than n/p:

$$\mathcal{H} = \{ |H| \in \mathbb{Z} : H \le G \text{ and } x \notin H \}$$

Take a maximal H, the index [G:H] > p, so $G \setminus \left(\bigcup_{k=0}^{p-1} x^k H\right) \neq \emptyset$.

Take $y \in G \backslash \left(\bigcup_{k=0}^{p-1} x^k H \right)$ and construct $K = H \langle y \rangle$.

On one hand, $y \in K$ and $y \notin H$ and $K \supseteq H$, so |K| > |H|.

On the other hand, assume to the contrary that $x \in K$, so x is equal to some hy^{μ} .

Case 1: If $\mu \equiv 0 \pmod{p}$, then $x = h \in H$ is a contradiction.

Case 2: If $\mu \not\equiv 0 \pmod{p}$, then $y = x^{\mu^{-1}} h^{-\mu^{-1}} \in x^{\mu^{-1}} H$ is a contradiction.

Now $x \notin K$, so $K \in \mathcal{H}$, contradicting to the maximality of H.

Quod. Erat. Demonstrandum.

Remark: For this case, there exists $(g_k)_{k=0}^{l-1}$ in G, such that $G \cong \prod_{k=0}^{l-1} \langle g_k \rangle$.

2.2 Finite Abelian Group with Unique Prime Divisor

Next, we reduce a finite Abelian group G with unique prime divisor.

Proposition 2.4. Let G be an Abelian group of order n, and p be the unique prime divisor of n.

For all $g \in G$, g has maximal order p^{β} implies $\exists H \leq G, G \cong H \times \langle g \rangle$.

Proof. We prove this theorem by mathematical induction.

Basis Step: When n = p, G is cyclic, so $\exists \{e\} \leq G, G = \langle g \rangle \cong \{e\} \times \langle g \rangle$.

Inductive Hypothesis: For all $\gamma \in \mathbb{N}$, when $n = p^{\gamma}$, assume that for all $g \in G$, g has maximal order p^{β} implies $\exists H \leq G, G \cong H \times \langle g \rangle$.

Inductive Step: When $n = p^{\gamma+1}$, for all $g \in G$ with maximal order p^{β} :

Case 1: If $n = p^{\beta}$, then G is cyclic, so $\exists \{e\} \leq G, G = \langle g \rangle \cong \{e\} \times \langle g \rangle$.

Case 2: If $n > p^{\beta}$, then $G \setminus \langle g \rangle \neq \emptyset$. Take $h \in G \setminus \langle g \rangle$. WLOG, assume that $\operatorname{ord}(h) = p$.

In $G/\langle h \rangle$, as $\langle g \rangle \cap \langle h \rangle = \{e\}$, the coset $g\langle h \rangle$ must have order p^{β} .

There exists $\widetilde{H} \leq G/\langle h \rangle$, such that $G/\langle h \rangle \cong \widetilde{H} \times \langle g \langle h \rangle \rangle$.

This gives a subgroup $H = \pi^{-1}(\widetilde{H})$ of G,

where $\pi: G \to G/\langle h \rangle$ is the natural projection.

Note that $H \cap \langle g \rangle = \{e\}$, so $\exists H \leq G, G = H \langle g \rangle \cong H \times \langle g \rangle$.

Quod. Erat. Demonstrandum.

Remark: For this case, there exists $(g_k)_{k=0}^{l-1}$ in G, such that $G \cong \prod_{k=0}^{l-1} \langle g_k \rangle$. Assume that each $\operatorname{ord}(g_k) = p^{\alpha_k}$, then $G \cong \prod_{k=0}^{l-1} \mathbb{Z}_{p^{\alpha_k}}$.

2.3 Finite Abelian Group with Multiple Prime Divisors

Proposition 2.5. Let G be an Abelian group of order n,

and p,q be two distinct prime divisors of n.

For all p-subgroup H and q-subgroup K, $H \cap K = \{e\}$.

Here, p-subgroup means a subgroup with unique prime divisor p.

Proof. For all $q \in G$:

$$g \in H \cap K \implies g \in H \text{ and } g \in K$$

 $\implies \operatorname{ord}(g) = p^s \text{ and } \operatorname{ord}(g) = q^t$
 $\implies g = g^{xp^s}g^{yq^t} = e$

Quod. Erat. Demonstrandum.

Remark: Hence, G is the Cartesian product of p-subgroups.

3 Jordan Canonical Form

3.1 Preliminaries

First, we propose Cauchy's Theorem.

Theorem 3.1. (Cauchy's Theorem)

Let A be a complex matrix of order n, and λ be an eigenvalue of A.

There exists $\mathbf{u} \in \mathbb{C}^n$, such that $\operatorname{ord}(\mathbf{u}) = 1$.

Here, ord(**u**) is the smallest positive integer μ such that $(\lambda I - A)^{\mu}$ **u** = **0**.

Proof.

 λ is an eigenvalue of $\mathcal{A} \implies A\mathbf{u} = \lambda \mathbf{u}$ has a nontrivial solution $\mathbf{u} \in \mathbb{C}^n$

 \implies There exists $\mathbf{u} \in \mathbb{C}^n$, such that $\operatorname{ord}(\mathbf{u}) = 1$

Quod. Erat. Demonstrandum.

Then, we triangularize a finite complex matrix A with $\forall \mathbf{u} \in \mathbb{C}^n$, $(\lambda I - A)\mathbf{u} = \mathbf{0}$.

Theorem 3.2. (The Recognition Theorem[2])

Let A be a complex matrix of order n,

and V, W be two invariant subspaces of A.

- (1) V + W is an invariant subspace of A.
- (2) $\sigma: V \times W \to V + W, (\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} + \mathbf{w}$ is a homomorphism.
- (3) σ is an isomorphism if and only if $V \cap W = \{0\}$.

Proof. We may divide our proof into three parts.

Part 1: In this part, we prove V + W is an invariant subspace of A.

$$\mathbf{0} = \mathbf{0} + \mathbf{0} \in V + W$$

$$\mathbf{v} + \mathbf{w} + \mathbf{v}' + \mathbf{w}' = \mathbf{v} + \mathbf{v}' + \mathbf{w} + \mathbf{w}' \in V + W$$

$$\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w} \in V + W$$

$$A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w} \in V + W$$

Hence, V + W is an invariant subspace of A.

Part 2: In this part, we prove $\sigma: V \times W \to V + W$, $(\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} + \mathbf{w}$ is a homomorphism.

$$\begin{aligned} (\mathbf{v}, \mathbf{w}) &\mapsto \mathbf{v} + \mathbf{w} \\ (\mathbf{v}', \mathbf{w}') &\mapsto \mathbf{v}' + \mathbf{w}' \\ (\mathbf{v} + \mathbf{v}', \mathbf{w} + \mathbf{w}') &\mapsto \mathbf{v} + \mathbf{v}' + \mathbf{w} + \mathbf{w}' = \mathbf{v} + \mathbf{w} + \mathbf{v}' + \mathbf{w}' \end{aligned}$$

Part 3: In this part, we prove σ is an isomorphism if and only if $V \cap W = \{0\}$. Assume that $V \cap W$ only contains the identity $\mathbf{0}$.

$$\mathbf{v} + \mathbf{w} = \mathbf{v}' + \mathbf{w}' \implies -\mathbf{v}' + \mathbf{v} = \mathbf{w}' - \mathbf{w} \in V \cap W = \{\mathbf{0}\}$$

$$\implies (\mathbf{v}, \mathbf{v}') = (\mathbf{w} + \mathbf{w}')$$

Hence, the surjective homomorphism σ is injective, σ is an isomorphism. Assume that $V \cap W$ contains some nonidentity element \mathbf{u} .

$$(\mathbf{u}, -\mathbf{u}) \mapsto \mathbf{u} - \mathbf{u} = \mathbf{0}$$

 $(\mathbf{0}, -\mathbf{0}) \mapsto \mathbf{0} - \mathbf{0} = \mathbf{0}$

Hence, σ fails to be injective, σ is not an isomorphism.

Quod. Erat. Demonstrandum.

Proposition 3.3. Let A be a complex matrix of order n, and λ be an eigenvalue of A.

If
$$\forall \mathbf{u} \in \mathbb{C}^n$$
, $(\lambda I - A)\mathbf{u} = \mathbf{0}$, then $\forall \mathbf{u} \in \mathbb{C}^n$, \exists invariant $V \leq \mathbb{C}^n$, $\mathbb{C}^n \cong V \times \langle \mathbf{u} \rangle$.
Here, $\langle \mathbf{u} \rangle = \left\{ \sum_{l=0}^{k-1} c_l (\lambda I - A)^l \mathbf{u} \in \mathbb{C} : k \in \mathbb{Z} \text{ and } (c_l)_{l=1}^{k-1} \text{ in } \mathbb{C} \right\}$.

Proof. We may divide our proof into two cases.

Case 1: If $\mathbf{u} = \mathbf{0}$, then take $V = \mathbb{C}^n$.

Case 2: If $\mathbf{u} \neq \mathbf{0}$, then expand \mathbf{u} into a basis of \mathbb{C}^n and take the span of the rest as V. Quod. Erat. Demonstrandum.

Remark: For this case, there exists $(\mathbf{u}_k)_{k=0}^{l-1}$ in \mathbb{C}^n , such that $\mathbb{C}^n = \prod_{k=0}^{l-1} \langle \mathbf{u}_k \rangle$.

3.2 Finite Complex Matrix with Unique Eigenvalue

Next, we reduce a finite complex matrix with unique eigenvalue.

Proposition 3.4. Let A be a complex matrix of order n, and λ be the unique eigenvalue of A.

If some $\mathbf{u} \in \mathbb{C}^n$ has maximal order β , then \exists invariant $V \leq \mathbb{C}^n$, $\mathbb{C}^n \cong V \times \langle \mathbf{u} \rangle$.

Proof. We prove this theorem by mathematical induction.

Basis Step: When n = 1, \mathbb{C} is cyclic, so \exists invariant $\{0\} \leq \mathbb{C}$, $\mathbb{C} \cong \{0\} \times \langle \mathbf{u} \rangle$.

Inductive Hypothesis: For all $\gamma \in \mathbb{N}$, when $n = \gamma$, assume that for all $\mathbf{u} \in \mathbb{C}^n$, \mathbf{u} has a maximal order β implies \exists invariant $V \leq \mathbb{C}^n$, $\mathbb{C}^n \cong V \times \langle \mathbf{u} \rangle$.

Inductive Step: When $n = \gamma + 1$, for all $\mathbf{u} \in \mathbb{C}^n$ with maximal order β :

Case 1: If $n = \beta$, then \mathbb{C}^n is cyclic, so $\exists \{\mathbf{0}\} \leq G, G \cong \{\mathbf{0}\} \times \langle \mathbf{u} \rangle$.

Case 2: If $n > \beta$, then $\mathbb{C}^n \setminus \langle \mathbf{u} \rangle \neq \emptyset$. Take $\mathbf{v} \in \mathbb{C}^n \setminus \langle \mathbf{u} \rangle$. WLOG, assume that $\operatorname{ord}(\mathbf{v}) = 1$. In $\mathbb{C}^n / \langle \mathbf{v} \rangle$, as $\langle \mathbf{u} \rangle \cap \langle \mathbf{v} \rangle = \{\mathbf{0}\}$, the coset $\mathbf{u} + \langle \mathbf{v} \rangle$ must have order β .

There exists $\widetilde{V} \leq \mathbb{C}^n/\langle \mathbf{u} \rangle = \{\mathbf{u}\}$, such that $\mathbb{C}^n/\langle \mathbf{u} \rangle = \widetilde{H} \times \langle \mathbf{u} \langle \mathbf{v} \rangle \rangle$. This gives an invariant subspace $V = \pi^{-1}(\widetilde{V})$ of \mathbb{C}^n , where $\pi : \mathbb{C}^n \to \mathbb{C}^n/\langle \mathbf{v} \rangle$ is the natural projection. Note that $V \cap \langle \mathbf{u} \rangle = \{\mathbf{0}\}$, so \exists invariant $V \leq \mathbb{C}^n$, $\mathbb{C}^n = V + \langle \mathbf{u} \rangle \cong V \times \langle \mathbf{u} \rangle$. Quod. Erat. Demonstrandum.

Remark: For this case, there exists $(\mathbf{u}_k)_{k=0}^{l-1}$ in \mathbb{C}^n , such that $\mathbb{C}^n \cong \prod_{k=0}^{l-1} \langle \mathbf{u}_k \rangle$. Assume that each $\operatorname{ord}(\mathbf{u}_k) = \alpha_k$, then $\mathbb{C}^n \cong \prod_{k=0}^{l-1} \mathbb{C}_{\lambda}^{\alpha_k}$.

3.3 Finite Complex Matrix with Multiple Eigenvalues

Proposition 3.5. Let A be a complex matrix of order n, and λ, μ be two distinct eigenvalues of A. For all λ -invariant subspace V and μ -invariant subspace W, $V \cap W = \{\mathbf{0}\}$. Here, λ -invariant subspace V with unique eigenvalue λ .

Proof. For all $\mathbf{u} \in \mathbb{C}^n$:

$$\mathbf{u} \in V \cap W \implies \mathbf{u} \in V \text{ and } \mathbf{u} \in W$$

 $\implies (\lambda I - A)^s \mathbf{u} = \mathbf{0} \text{ and } (\mu I - A)^t \mathbf{u} = \mathbf{0}$
 $\implies \mathbf{u} = f(A)(\lambda I - A)^s \mathbf{u} + g(A)(\mu I - A)^t \mathbf{u} = \mathbf{0}$

Quod. Erat. Demonstrandum.

Remark: Hence, \mathbb{C}^n is the Cartesian product of λ -invariant subspaces.

References

- $[1]\,$ H. Ren, "Template for math notes," 2021.
- [2] A. Piro, "The fundamental theorem for finite abelian groups: A brief history and proof."