MCV4U

CALCULUS & VECTORS

January 2, 2024

Alexandru Stan

Alexandru Stan Table of Contents

Contents

1	Vect	Vectors			
	1.1	Vector Addition and Substraction	5		
	1.2	Scalar Multiplication	6		
	1.3	Properties of Vectors	6		
	1.4	Vectors as Forces	6		
	1.5	Vectors as Velocity	6		
	1.6	Vectors in R2	6		
	1.7	Algebraic Vectors in R3	6		
	1.8	Dot Product and Cross Product	6		
	1.9	Application of Dot and Cross Product	6		
	1.10	Scalar and Vector Projections	6		
2	Line	es and Planes	6		
_		Vector, Parametric, and Symmetric Equations of a Line	6		
	2.2	Vector and Parametric Equations of a Plane	6		
	2.3	Cartesian (Scalar) Equation of a Plane	6		
	2.4	Intersection of a Lines and Planes	6		
	2.5	Intersection of Two Planes	6		
	2.6	Intersection of Three Planes	6		
	2.0	Intersection of Timee Planes	О		
3	Lim	its and Continuity	6		
	3.1	Introduction to Limits	6		
	3.2	Special Limits with Trigonometric Functions	6		
	3.3	Asymptotes and Holes	6		
	3.4	Continuity	6		
4	Der	Derivatives			
	4.1	Slope of a Curved Line	6		
	4.2	The Derivative Function	6		
	4.3	Differentiability	6		
	4.4	Increasing/Decreasing Functions	6		
	4.5	The Chain, Product, and Quotient Rules	6		
	4.6	Higher Order Derivatives	6		
5 Curve Sketching		ve Sketching	6		
Ŭ		Points of Inflection	6		
		Curve Sketching Process Given a Function	6		
_			_		
6		lications of Derivatives	6		
		Velocity and Acceleration	6		
	6.2	Optimization With an Equation Given	6		
	6.3	Optimization With no Equation loosely dashed-latexGiven	6		

2 2 of 6

Alexandru Stan	Table of Contents
NEXALIULU SLALL	Table of Contents

7	Exponential and Trigonometric Functions	6
	7.1 Exponential Functions and Euler's Number	6

3 of 6

Alexandru Stan Vectors

1 Vectors

Vectors are mathematical entities that extend our understanding beyond the one-dimensional quantities. Unlike scalar values that only have magnituide, vectors incorporate both magnitude and direction, offering a versatile toolkit for describing dynamic systems. Below are some examples of vectors and scalar quantites.

- Scalar Quantities: Mass, Temperature, Time, Distance, Speed, Energy, Work, Power, Pressure, Volume, Density
- Vector Quantities: Displacement, Velocity, Acceleration, Force, Momentum, Weight

When written in mathematical equations, vectors are usually represented via a a symbol with a vector indicator (i.e \vec{v}) or via a jointery of the two points (i.e \vec{AB} is a vector from point A to point B) Vectors can also be represented in many other ways, but the most common ways are: algebraically, numerically, and geometrically. Below are examples of each:

- Algebraically: $\vec{a} = \langle x, y \rangle$
- Numerically: $\vec{a} = [a, b, c]$ (Can also be written as a column matrix)
- Geometrically:

 $4 ext{ of } 6$

Alexandru Stan Vectors

1.1 Vector Addition and Substraction

 $5\ \mathrm{of}\, 6$

Alexandru Stan Vectors

- 1.2 Scalar Multiplication
- 1.3 Properties of Vectors
- 1.4 Vectors as Forces
- 1.5 Vectors as Velocity
- 1.6 Vectors in R2
- 1.7 Algebraic Vectors in R3
- 1.8 Dot Product and Cross Product
- 1.9 Application of Dot and Cross Product
- 1.10 Scalar and Vector Projections

2 Lines and Planes

- 2.1 Vector, Parametric, and Symmetric Equations of a Line
- 2.2 Vector and Parametric Equations of a Plane
- 2.3 Cartesian (Scalar) Equation of a Plane
- 2.4 Intersection of a Lines and Planes
- 2.5 Intersection of Two Planes
- 2.6 Intersection of Three Planes

3 Limits and Continuity

- 3.1 Introduction to Limits
- 3.2 Special Limits with Trigonometric Functions
- 3.3 Asymptotes and Holes
- 3.4 Continuity

4 Derivatives

- 4.1 Slope of a Curved Line
- 4.2 The Derivative Function
- 4.3 Differentiability
- 4.4 Increasing/Decreasing Functions
- 4.5 The Chain, Product, and Quotient Rules

6 of 6

- 4.6 Higher Order Derivatives
- 5 Curve Sketching