Elaborato di **Calcolo Numerico**

Anno Accademico 2016/2017

Gabriele Puliti - 5300140 - gabriele.puliti@stud.unifi.it Luca Passaretta - - -

August 29, 2017

Capitoli

1	Cap	itolo 1																ţ
	1.1	esercizio	1															,
	1.2	esercizio	2															!
	1.3	esercizio	3															(
	1.4	esercizio	4															(
	1.5	esercizio	5															,
	1.6	esercizio	6															8
2	Gra	fici																
	2.1	esercizio	4															

1 Capitolo 1

1.1 esercizio 1

Sapendo che il metodo iterativo è convergente a x^* allora per definizione si ha:

$$\lim_{k \to +\infty} x_k = x^*$$

inoltre per definizione di Φ si calcola il limite:

$$\lim_{k \to +\infty} \Phi(x_k) = \lim_{k \to +\infty} x_{k+1} = x^*$$

infine ipotizzando che la funzione Φ sia uniformemente continua è possibile calcolare il limite:

$$\lim_{k \to +\infty} \Phi(x_k) = \Phi(\lim_{k \to +\infty} x_k) = \Phi(x^*)$$

dai due limiti si ha la tesi:

$$\Phi(x^*) = x^*$$

1.2 esercizio 2

Dal momento che le variabili intere di 2 byte in Fortran vengono gestite in Modulo e Segno, la variabile numero, inizializzata con

integer*2 numero

varia tra $-32768 \le \text{numero} \le 32767 \ (-2^{15} \le \text{numero} \le 2^{15} - 1)$. Durante la terza iterazione del primo ciclo for si arriva al valore massimo rappresentabile tramite gli interi a 2 byte, alla quarta iterazione si avrà quindi la somma del numero in modulo e segno:

$$(32767)_{10} + (1)_{10} = (011111111111111111)_{2,MS} + (0000000000000001)_{2,MS} =$$

= $(1000000000000000)_{2,MS} = (-32768)_{10}$

Nel secondo ciclo for durante la quinta iterazione, al numero viene sottratto 1:

$$(-32768)_{10} - (1)_{10} = (10000000000000000)_{2,MS} - (00000000000000000)_{2,MS} = (01111111111111111)_{2,MS} = (32767)_{10}$$

Da cui si spiega l'output del codice.

1.3 esercizio 3

Per definizione si ha che la precisione di macchina u per arrotondamento e' data da:

$$u = \frac{1}{2}b^{1-m}$$

Se b = 8, m = 5 si ha:

$$u = \frac{1}{2} \cdot 8^{1-5} = \frac{1}{2} \cdot 8^{-4} = 1, 2 \cdot 10^{-4}$$

1.4 esercizio 4

Il codice seguente:

```
format long e;
2
   h=zeros(12,1);
   f = z e ros(12,1);
5
6
   for i=1:12
        h(i) = power(10, -i);
8
   end
9
   for j = 1:12
10
        f(j)=\lim (0,v(j));
11
12
   end
13
   f
14
15
   function p=lim(x,y)
16
        p = (\exp(x+y) - \exp(x))/y;
17
18
   end
```

restituisce questo risultato (assumendo che $f(x) = e^x$ e $x_0 = 0$):

h	$\Psi_h(0)$
10^{-1}	1.051709180756477e + 00
10^{-2}	1.005016708416795e+00
10^{-3}	1.000500166708385e+00
10^{-4}	1.000050001667141e + 00
10^{-5}	1.000005000006965e+00
10^{-6}	1.000000499962184e+00
10^{-7}	1.000000049433680e+00
10^{-8}	$9.999999939225290\mathrm{e}\text{-}01$
10^{-9}	1.000000082740371e+00
10^{-10}	1.000000082740371e+00
10^{-11}	1.000000082740371e+00
10^{-12}	$1.000088900582341e{+00}$

si può notare che al diminuire del valore h, la funzione $\Psi_h(0)$ approssima sempre meglio il valore f'(0), come si può vedere dal plot 1.

1.5 esercizio 5

Per dimostrare le due uguaglianze è necessario sviluppare in serie di taylor f(x) fino al secondo ordine:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2 f''(x_0)}{2} + O((x - x_0)^2)$$

Da cui possiamo sostituire con i valori di x = x + h e x = x - h:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2)$$

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2)$$

Andando a sostituire questi valori si ottiene, nel primo caso:

$$\frac{f(x_0 + h) - f(x_0 + h)}{2h} =$$

$$= \frac{(f(x_0) + hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2)) - (f(x_0) - hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2))}{2h} =$$

$$= \frac{2hf'(x_0) + O(h^2)}{2h} = f'(x_0) + O(h^2)$$

nel secondo caso:

$$\frac{f(x_0 + h) - 2f(x_0) - f(x_0 + h)}{h^2} =$$

$$= \frac{f(x_0) + hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2) - 2f(x_0) + f(x_0) - hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2)}{h^2} =$$

$$= \frac{h^2 f''(x_0) + O(h^2)}{h^2} = f''(x_0) + O(h^2)$$

Abbiamo quindi dimostrato che:

$$\frac{f(x_0+h) - f(x_0+h)}{2h} = f'(x_0) + O(h^2)$$
$$\frac{f(x_0+h) - 2f(x_0) - f(x_0+h)}{h^2} = f''(x_0) + O(h^2)$$

1.6 esercizio 6

2 Grafici

2.1 esercizio 4

Figure 1: Esercizio 1.4

