HW 1

Pranav Tikkawar

January 27, 2024

1. -

- Suppose A, B, and C are sets.
- Assume $(A \subseteq B)(B \subseteq C)(C \subseteq A)$
- Need $(B \subseteq A)(C \subseteq B)(A \subseteq C)$
- Since $(B \subseteq C)\&(C \subseteq A)$ Then $(B \subseteq A)$
- Since $(B \subseteq A)\&(A \subseteq B)$ Then A = B
- Since $(C \subseteq A)\&(A \subseteq B)$ Then $(C \subseteq B)$
- Since $(C \subseteq B) \& (B \subseteq C)$ Then B = C

2. -

- Suppose $x \in (A \cup B) \cap C$
- Need $x \in A \cup (B \cap C)$
- Since $x \in (A \cup B) \cap C$ Then $\{x \in (A \cup B) : x \in C\}$
- Since $x \in (A \cup B)$ Then $\{x \in A \text{ or } x \in B\}$
- Case 1: $(x \in A) \& (x \in C)$
 - Since $x \in A$ then $x \in A \cup (B \cap C)$
- Case $2 (x \in B) \& (x \in C)$
 - Since $x \in B \& x \in C$ Then $x \in B \cup C$
 - Since $x \in B \cup C$ Then $x \in A \cup (B \cap C)$
- An Example of this is A = [1,2,3], B = [2,3], C = [3]

3. -

- Suppose $x \in A^c B^c$
- Need $x \in (A B)^c$
- Need $x \notin (A B)$
- Need $x \notin A : x \in B$
- Since $x \in A^c B^c$ Then $x \in A^c : x \notin B^c$

• Since $x \in A^c : x \notin B^c$ Then $x \notin A : x \in B$ as desired

4. -

- Prove $Q_{\leq a} \subseteq Q_{\leq b}$ iff $a \leq b$
- Part 1: Proving if $Q_{\leq a} \subseteq Q_{\leq b}$ then $a \leq b$
- Assume $Q_{\leq a} \subseteq Q_{\leq b}$
- Need $a \leq b$
- Suppose $x \in Q_{\leq a}$
- Since a is a rational number and $\exists x : x = a$ Then $a \in Q_{\leq a}$
- Since $a \in Q_{\leq a}$ and $Q_{\leq a} \subseteq Q_{\leq b}$ Then $a \in Q_{\leq b}$
- \bullet Since $a\in Q_{\leq b}$ and the definiton of $Q_{\leq b}$ is $\{r\in Q: r\leq b\}$ Then $a\leq b$
- Part 2: Proving if $a \leq b$ then $Q_{\leq a} \subseteq Q_{\leq b}$
- Assume $a \leq b$
- Need $Q_{\leq a} \subseteq Q_{\leq b}$
- \bullet Since a and b are rational then $a \in Q_{\leq a}$ and $b \in Q_{\leq b}$
- \bullet Since a is a rational number and $a \leq b$ then $a \in \mathbb{Q}$: $a \leq b$ and $a \in Q_{\leq b}$
- Suppose $x \in Q_{\leq a}$ Then $x \leq a$
- since $x \leq a$ and $a \in Q_{\leq b}$ Then $x \in Q_{\leq b}$
- Since $x \in Q_{\leq b}$ Then $Q_{\leq a} \subset Q + \leq b$