Real-Time Drowsiness Detection with Deep Learning YOLO Model

Rithika Krishna Perugupallia, Momtanu Chakrabortyb

Department of Computer Science^a, Department of Biological and Agricultural Engineering^b University of California, Davis | Email: rperugupalli@ucdavis.edu, mchakraborty@ucdavis.edu

METHODS

GOAL

Develop a robust deep learning model for realtime drowsiness detection from video streams to enhance road safety and prevent accidents.

MOTIVATION

- Safety Enhancement: Drowsy driving accounts for approximately 328,000 crashes annually, contributing to around 109,000 injuries and 6,400 fatalities every year, underscoring the need for improved detection systems. 96% of drivers recognize drowsy driving as dangerous but less than 30% believe that they will be pulled over.
- Limitations of Traditional Methods: Although traditional computer vision and sensor methods can be used, they can be intrusive and not effective.
- Non-Intrusive Technology: Deep learning offers a non-intrusive alternative, with technologies capable of detecting driver fatigue equated to a blood alcohol content of 0.08% after more than 20 hours of wakefulness.
- Real-Time Detection: Drivers are three times more likely to crash when fatigue, emphasizing the need for systems that can provide real-time alerts and prevent accidents.

Data Preparation Split data into Obtain dataset with Shuffle dataset to remove 80% training drowsy and nonbias in training and 20% testing drowsy images (different lighting demographics, and Data annotation/labeling in angles) YOLO v8 format with classes 0 (drowsy) and 1 (nondrowsy) Model training and evaluation with YOLO Interpret model Visualize model's Test model performance prediction

RESULTS

- **Precision** = 0.993 = 99.3% of the detections made by the model were correct
- **Recall** = 0.987 = 98.7% of all instances of "drowsy" and "non_drowsy" present in the test images were detected by the model.
- mAP50 = 0.987 = model's accuracy in prediction for both classes

FUTURE WORK

- Expand Model Capabilities:
 - Use LSTM or GRU models to analyze temporal patterns like blink duration and frequency.
 - Integrate temporal data for detecting micro-sleeps and prolonged eye closures.
- Multimodal Approach:
 - Combine spatial detection (YOLO for eyes and face) with temporal analysis (LSTM for blink sequences).
 - Enable robust classification of drowsiness using both spatial and time-series data.

FACIAL LANDMARKS

Eyes

*Blink rate, eye closure duration and pupil dilation. *Detection of "micro-sleeps" or prolonged eye closures.

Eyebrows

Movement patterns, indicating

Head Position

*Nodding or tilting, which may signal drowsiness..

Facial Expression

Other Factors to consider

Prolonged Eye Closure Duration (PERCLOS)

Measures the percentage of time the eyes are at least 80% closed over a given interval.

Higher PERCLOS values strongly

Reduced Blink Rate

A slower blinking rate can indicat fatigue as alertness decreases.

Irregular Blink Timing

rate can indicate

Drowsy individuals may exhibit inconsistent intervals between blinks compared to regular,

Incomplete Blinks

Blinks where the eyelids fail to fully close, often due to reduced muscle control during fatigue.

Micro-sleeps Brief, involuntary eye closures

Brief, involuntary eye closures (lasting 2–10 seconds) indicatin extreme drowsiness.

Delayed Blink Reopening

Eyes take longer than usual to ful reopen after blinking

Frequent Blinking Bursts

An increased number of blinks in a short time as the body attempts to regain alertness.

Asymmetric Blinking

Uneven or uncoordinated movement of the eyelids, ometimes occurring during fatigue

Slow Eyelid Movement (SELM)

Sluggish motion of the eyelids during the blink process, often coupled with prolonged closure.

References

- Yogesh, R., Ritheesh, V., Reddy, S., & Rajan, R. G. (2022, July). Driver drowsiness detection and alert system using YOLO. In 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES) (pp. 1-6). IEEE.
- https://www.nhtsa.gov/risky-driving/drowsy-driving
- Saini, V., & Saini, R. (2014). Driver drowsiness detection system and techniques: a review. International Journal of Computer Science and Information Technologies, 5(3), 4245-4249.
- Jocher, G. (2020, May 18). YOLOv8 Documentation. Docs.ultralytics.com. https://docs.ultralytics.com/