

The IceCube Neutrino Observatory is the world's largest neutrino detector, located at the geographic South Pole, close to the Amundsen-Scott South Pole Station.

optical sensors deployed deep in the Antarctic Ice, covering a volume of 1 km³.

On top of this, 81 IceTop

detector stations spread over 1 km² are located on the Antarctic plateau.

DeepCore
8 strings with
a denser spacing.

Eiffel Tower 324 m

UGent members:

S. Verpoest, A. Porcelli, D. Ryckbosch

Cosmic rays

Cosmic ray air shower detection with energies from (1 - 1000) x 10⁶ GeV

Hybrid detection technique:

- Ultra relativistic cosmic ray interacts with atmosphere
 -> secondary particles
- Energy reconstruction using particle density distribution seen by IceTop
- Many relativistic muons can reach the detector simultaneously
 -> muon bundle
- Mass sensitivity from high-energy muon bundle through IceCube

Thesis subjects

- IceTop + InIce: influence of hadronic interaction models used in air shower simulations
- **IceTop:** Calibration of the absolute energy scale of the IceTop detector.

Bedrock

Cosmic ray event

IceCube Gen 2

IceTop

Increased InIce volume 1 km³ -> 10 km³

Additional new surface detectors:

- Scintillators above •
 snowed-in IceTop tanks
- -> measure ionization losses from charged particles na Air-Cherenkov Telescopes
- Imaging Air-Cherenkov Telescopes •
 -> measure Cherenkov
 radiation of air shower
 - IceCube
- Radio antennas •
- -> measure radio waves from air showers

Thesis subjects

IceTop + Scintillators •

analysis on the muon component in hadronic interaction models with very inclined showers

• IceTop + IceACT + Radio Antennas • analysis on the electromagnetic component $(e^{\pm} + \gamma)$ in hadronic interaction models with multiple detectors

Energy spectrum

Average mass

