

Sistemas Embarcados

Sistemas Embarcados

Definições:

 "Uma combinação de hardware e software, e frequentemente outras partes elétricas e/ou mecânicas, projetado para executar função específica. Em alguns casos, fazem parte de um produto ou sistema maior..." (Barr and Ganssle, 2003)

• "São sistemas de processamento de informações embarcados em produtos." (Marwedel, P.; 2011)

Sistemas Embarcados

Definições:

- "Sistema microprocessado no qual o computador é completamente encapsulado ou dedicado ao dispositivo ou sistema que ele controla ... realiza um conjunto de tarefas predefinidas, geralmente com requisitos específicos ... pode-se otimizar o projeto reduzindo tamanho, recursos computacionais e custo do produto." (Heath, 2002)
- "Cyber-Physical Systems (CPS) are integrations of computation and physical processes". (Lee, 2007)

Aplicações

- Aviação
- Indústria Automotiva
- Telecomunicações
- Robótica
- Automação (Industrial/Comercial/Residencial)
- Eletrodomésticos
- Etc.

Características

- Aplicação bem definida e pré-definida (Contrário aos dispositivos de propósito geral)
- Restrições de memória
- Restrições de tempo-real (Deadline: Hard/Soft real-time)
- Confiabilidade (Tolerância a falhas / Segurança)
- Eficiência energética (operar com baterias)
- Baixo custo (produtos)

Classificação de Sistemas Embarcados

- Sistemas similares à Computadores de propósito geral
 - Video games, Tablets*, Smartphones*
- Sistemas de Controle
 - Controle em malha fechada de sistemas em tempo-real
 - Controle de vôo, controle de combustão do motor, reator nuclear
- Processamento de Sinais
 - Decodificador de TV digital, Radar, Sonar
- Comunicação e Redes
 - Telefone celular*, Roteadores

Funções Gerais do Sistema Embarcado

- Algoritmos de controle
- Lógica sequencial
- Processamento de Sinais
- Interfaces específicas baseadas na aplicação
- Resposta a falhas

Componentes da Arquitetura

Componentes da Arquitetura

Hardware

- Elemento(s) de Processamento
- Periféricos
 - Dispositivos de Entrada e Saída
 - Interfaces com Sensores e Atuadores
 - Interfaces de comunicação (Protocolos)
- Memória
- Barramento

Software

- Sistema (OS, RTOS, Compiladores, Simuladores, Emuladores, Ferramentas de Debug, etc)
- Aplicação

Arquiteturas de Hardware

- Microcontroladores (Ex: PIC, AVR, MSP)
- Processadores de Propósito Geral GPPs (Ex: Intel, ARM, Athlon)
- DSPs Digital Signal Processors (Ex: TMS___)
- FPGAs Field Programmable Gate Arrays
- ASICs Application Specific Integrated Circuits
- SoCs System-on-Chip
- MPSoCs Multiple Processor System-on-Chip

Software Embarcado

- Correção Lógica
- Correção Temporal
 - Algo correto no tempo errado n\u00e3o tem validade
- Tratar concorrência física (conexão com o mundo externo)
- Confiabilidade e tolerância a falhas são críticas
- Funcionalidade específica para um fim

Software Embarcado

- Multi-tarefa e Concorrência
 - Tratar de várias entradas e saídas e múltiplos eventos que ocorrem independentemente uns dos outros
 - A separação de tarefas simplifica a programação mas exige a mudança constante (multi-tarefa) para que todos os casos sejam tratados
 - Na concorrência, temos a necessidade de executar várias tarefas ao mesmo tempo

Desafios no desenvolvimento de Sistemas Embarcados

- Que tipo de hardware é necessário para o sistema?
 - Que tamanho de palavra do processador?
 - Quanta memória é necessário?
- Como podemos atender aos requisitos de tempo?
 - Hardware mais rápido?
 - Software mais otimizado?
- Como minimizar o consumo de energia?
 - Gerenciar módulos de hardware
 - Combinar tarefas para minimizar o acesso à memória

Projeto de um Sistema Embarcado

Multi-Objetivo
Confiabilidade
Preço Acessível
Segurança
Escalabilidade
Vida Útil

Multidisciplinar
Hardware eletrônico
Software
Hardware Mecânico
Algoritmos de Controle
Interação humana

Ciclo de Vida
Requisitos
Design
Fabricação
Distribuição
Logística
Suporte

Exemplos de Kits de Desenvolvimento

Microcontroladores

Arduino Uno

- Microcontrolador ATmega328
- Clock Speed 16 MHz
- Tensão: 5V
- 14 Pinos Digitais I/O Pins (6 PWM)
- 6 Entradas Analógicas
- 32 KB Flash Memory (ATmega328)
- 2 KB SRAM
- 1 KB EEPROM

Microcontrolador + GPP

Arduino Yún

Microcontroller ATmega32u4

- Operating Voltage 5V
- Input Voltage (recommended) 5V via microUSB or PoE 802.3af
- Input Voltage (limits) 6-20V
- Digital I/O Pins 14
- PWM Channels 7
- Analog Input Channels: 6 (plus 6 multiplexed on 6 digital pins)
- DC Current per I/O Pin 40 mA
- DC Current for 3.3V Pin 50 mA
- Flash Memory: 32 KB (ATmega32u4) of which 4 KB used by bootlo
- SRAM: 2.5 KB (ATmega32u4)
- EEPROM 1 KB (ATmega32u4)
- Clock Speed: 16 MHz

Embedded Linux machine

- MIPS 24K processor operating at up to 400 MHz
- DDR2 64MB Ram and 16MB SPI Flash
- Complete IEEE 802.11bgn 1x1 AP or router
- USB 2.0 host/device
- poE compatible 802.3af
- MicroSD card support

DSP

TMS320C5515 DSP Evaluation Module

- TMS320C5515 fixed point low power DSP
- On board embedded JTAG emulation to enable the true plug-andplay functionality through just an A-to-mini B USB cable and compatibility of external JTAG emulation interface
- TLV320AIC3204 32-bit programmable low power stereo codec
- OLED color LCD display (128x128 pixels)
- Stereo line in (2) /out (1), headphone out (1) and microphone in (L/R)
- Integrated Flash and mobile SDRAM
- I2C and SPI EEPROMs
- High speed USB 2.0 slave port
- MMC/SD slot, CE-ATA connector, RS232 interface
- 10 user defined push button switches
- Analog front end connectors
- Two expansion connectors for memory cards
- External oscillator socket
- Battery Holder (For 2 AAA, not included)
- Jog dial
- +5V universal power supply

System-on-Chip (GPP + GPU)

BeagleBone Black

- Processor: Sitara AM3358BZCZ100 1GHz, 2000 MIPS
- Graphics Engine: SGX530 3D, 20M Polygons/S
- SDRAM Memory: 512MB DDR3L 606MHZ
- Onboard Flash: 4GB, 8bit Embedded MMC
- Debug Support: Optional Onboard 20-pin CTI JTAG, Serial Header
- HiSpeed USB 2.0 Client Port: Access to USB0, Client mode via min
- Serial Port UARTO access via 6 pin 3.3V TTL Header.
- Ethernet 10/100, RJ45
- SD/MMC Connector microSD , 3.3V
- User Input: Reset Button, Boot Button, Power Button
- Video Out: 16b HDMI
- Audio Via HDMI Interface, Stereo
- Expansion Connectors:
 - McASPO, SPI1, I2C, GPIO(65), LCD, GPMC, MMC1, MMC2, 7 AIN(1.8V MAX), 4 Timers, 3 Serial Ports, CANO, EHRPWM(0,2), XDMA Interrupt, Power button, Expansion Board ID_{19}

System-on-Chip (GPP + GPU)

Raspberry Pi 2 B

- Processador: Quad-Core ARM Cortex-A7
- Clock 900 MHz
- GPU: Dual Core VideoCore IV Multimedia Co-Processor (OpenGL ES 2.0), OpenVG, H. 264 Decoder
- Memory 1GB LPDDR2
- OS: Linux / Windows (SD Card)
- Ethernet 10/100
- Video: HDMI (1.3 e 1.4)
- Áudio out
- USB 2.0 x 4
- GPIO (40 pin) (+3.3V e +5V)
- Camera and Display Connector

System-on-Chip (GPP + GPU)

- NVIDIA JETSON TK1
- Tegra K1 SOC
 - NVIDIA Kepler GPU with 192 CUDA cores
 - NVIDIA 4-Plus-1™ quad-core ARM® Cortex-A15 CPU
- 2 GB memory
- 16 GB eMMC
- Gigabit Ethernet
- USB 3.0
- SD/MMC
- miniPCle
- HDMI 1.4
- SATA
- Line out/Mic in
- RS232 serial port
- Expansion ports for additional display, GPIOs, and high-bandwidth camera interface
- Power supply and cables
- Micro USB-USB

FPGA + GPP + Microcontrolador (SoC)

- DE0-Nano-SoC
- FPGA Device
 - Altera Cyclone® V SE 5CSEMA4U23C6N device
 - Serial configuration device EPCS128
 - USB-Blaster II onboard for programming; JTAG Mode
 - 2 push-buttons, 4 slide switches, 8 green user LEDs
 - Three 50MHz clock sources from the clock generator
 - Two 40-pin expansion header
 - One Arduino expansion header (Uno R3 compatibility)
 - One 10-pin Analog input expansion header.
 - A/D converter, 4-pin SPI interface with FPGA
- HPS (Hard Processor System)
 - 925MHz Dual-core ARM Cortex-A9 processor
 - 1GB DDR3 SDRAM (32-bit data bus)
 - 1 Gigabit Ethernet PHY with RJ45 connector
 - USB OTG Port, USB Micro-AB connector
 - Micro SD card socket
 - Accelerometer (I2C interface + interrupt)
 - UART to USB, USB Mini-B connector
 - Warm reset button and cold reset button
 - One user button and one user LED

Bibliografia

- Heath, S. (2002). Embedded Systems Design, Newnes.
- Barr, M. and Ganssle, J. (2003). Embedded Systems
 Dictionary, CMPBooks
- Lee, E. A. (2007). Computing foundations and practice for cyber-physical systems: A preliminary report.
 Technical Report UCB/EECS-2007-72, EECS Department, University of California, Berkeley.
- Mardwedel, P. (2011). Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. 2nd Edition, Springer.