

MEMBROS

- Augusto Ferreira Guilarducci 20.1.4012
- Caio Monteiro de Oliveira 20.1.4110
- Gabriel Catizani Faria Oliveira 20.1.4004
- Guilherme Augusto Anício Drummond do Nascimento 20.1.4007
- lago de Castro Andrade 20.1.4011
- Pablo Martins Coelho 20.1.4113
- Paulo Vitor de Castro Magalhães Correa 20.1.4036
- Pedro Lucas Damasceno Silva 20.1.4003
- Rafael Augusto Freitas Oliveira 20.1.4038
- Robson Novato Lobão 20.1.4018

DADOS ESCALARES

- Tipos primitivos de dados
 - int, char, bool
- Se assemelha a Álgebra Linear
 - A parte de um todo
 - Escalar de uma matriz ou vetor
- Exemplos:
 - um único valor de um vetor de inteiros
 - O char nome do struct Pessoa

Dados Escalares			Dados Espaciais			
Inscrição	Nota	Estado	Cidade	Curso	Latitude	Longitude
00467354	47,8	MG	VIÇOSA	ADMINISTRAÇÃO	-20º 45' 14"	-42º 52' 55"
00085820	52,0	MG	UBERLÂNDIA	DIREITO	-18° 55' 07''	-48° 16' 38''
00015022	51,0	MG	ALFENAS	ENGENHARIA CIVIL	-21° 25' 45''	-45° 56' 50'
00403068	8,0	MG	VARGINHA	ENGENHARIA QUÍMICA	-21° 33' 05''	-45° 25' 49''
00130230	36,3	MG	UBERABA	MEDICINA VETERINÁRIA	-19° 44' 54''	-47° 55' 55"

DADOS ESPACIAIS

• Os dados espaciais consistem em objetos espaciais compostos por pontos, linhas, regiões, retângulos, superfícies, volumes, e até mesmo dados de dimensão superior que inclui o tempo

REPRESENTANDO DADOS ESPACIAIS

• Uma abordagem para a representação de dados espaciais é separá-los estruturalmente dos dados escalares, <u>mantendo uma ligação apropriada entre os</u> <u>dois</u>. Isso leva a uma maior condição maior para a recuperação dos dados

espaciais.

EXEMPLO DE DADOS ESPACIAIS:

• 1° exemplo) Dados geográficos ou georreferenciados são dados espaciais em que a dimensão espacial está associada à sua localização na superfície da terra, num determinado instante ou período de tempo

• Cidades, rios, estradas, municípios, estados, coberturas de safras, cadeias de montanhas.

EXEMPLOS DE DADOS ESPACIAIS

• 2° exemplo) Sistema CAD (Computer-Aided Design)

EXEMPLOS DE DADOS ESPACIAIS

•3° exemplo) Bancos de dados espaciais de aplicações Web

- Tinder:

- SnapChat:

- Coleção organizada de dados estruturados
 - representados por tabelas
- Armazenados eletronicamente
 - computadores, nuvem, local host
- SGBD
 - Sistema de Gerenciamento de Banco de Dados
- Linguagem SQL
 - create, select from, where
- Vários tipos de BDs

BANCOS DE DADOS ESPACIAIS

- •Especializados em dados espaciais e geográfico
 - coordenadas, CEPs, pontos
- •Capaz de guardar dados geométricos
 - polígonos, áreas, metragens
- •E informacionais
 - Moradores, bairro, cidade
- •SIG
 - Sistema de Informação Geográfica
 - Gerencia os dados, e apresenta as informações

SIG - COMPONENTES

- Base de Dados
 - Contém as informações de uma região
- Software
 - Por onde o usuário acessa as informações
 - Precisa de um SGBD
 - Capaz de manipular, capturar, analisar, pesquisar e visualizar informações
- Hardware
 - Onde os dados serão armazenados
 - Conteúdo processado
 - Cliente-Servidor
 - Stand-Alone
- Regras

SIG - IMPLANTAÇÃO

- Captura de Dados
 - Planilhas, textos, imagens
 - Armazenadas de forma matricial ou vetorial
- Armazenamento e gerenciamento
 - Analiza o que é redundante
 - Associa dados de diferente fontes
 - Logradouros e CEPs
- Análise
 - Capacidade de fazer buscas
 - Associar buscas mais amplas
 - "Região com áreas para plantio em Ibirité"
 - Análise de proximidade e Overlay

SIG - APLICABILIDADE

- Google Maps
 - Fácil utilização
 - Linux, Windows e Mac
 - Navegador
 - Gama alta de informações
 - "Cinema mais próximo da minha localização"
 - Utilidade de Lazer
 - Street View
 - "Que tal um passeio pelas Pirâmides de Gizé?"
 - Previsão
 - "Qual o horario do onibus?"
- Meio ambiente

ESTRUTURA DE DADOS ESCALARES

- O que é uma estrutura de dados escalares?
 - O significado de escalar

- Exemplos de estruturas de dados escalares:
 - Árvore binária de busca;
 - Árvore AVL;
 - Árvore splay;
 - Árvore 2-3;
 - Árvore B;
 - Árvore TRIE;

ESTRUTURA DE DADOS ESPACIAIS

- O que é um estrutura de dados espacial?
 - As diferenças entre uma estrutura escalar e espacial

- Exemplos de estruturas espaciais:
 - Quadtrees;
 - Grid;
 - Árvores KD;
 - Árvore de intervalo;
 - Árvore de busca prioritária;
 - Árvore BSP;
 - Árvore R;

ESTRUTURA DE DADOS ESPACIAIS

- Consulta por Intervalo;
- Realiza a busca por um espaço de N dimensões, a fim de encontrar um, ou um grupo de elementos, que esteja dentro, ou próximo, da área buscada;

DADOS VETORIAIS

• O dado **Vetorial** constitui uma maneira de representar **elementos** do mundo real dentro do ambiente SIG.

REPRESENTAÇÃO VETORIAL

- Pontos (nodos): árvores, postes, restaurantes, etc.
- Linhas (arcos): rios, avenidas, ferrovias, etc.
- Áreas (polígonos): terrenos, cidades, estados, florestas, etc.

DADOS MATRICIAIS

 O dado Matricial é composto por linhas e colunas de pixels, onde cada pixel representa uma região do mundo real.

REPRESENTAÇÃO MATRICIAL

ÁRVORE DE QUADRANTE – O QUE É?

Método de organização de dados em um espaço de quatro quadrantes. Em similaridade com a árvore binária.

Funciona bem para localizar pixels em imagens bidimensionais.

ÁRVORE DE QUADRANTE – O QUE É?

• De forma técnica: a árvore de quadrante é um termo que descreve uma classe de uma estrutura de dados hierárquicos cuja propriedade em comum é que são baseados no princípio de decomposição recursiva do espaço.

ÁRVORE DE QUADRANTE – COMO FUNCIONA?

- 1. O espaço bidimensional é dividido em 4 caixas.
- 2. Se uma caixa tem um ou mais pontos nela, construa um objeto filho, armazenando nele o espaço bidimensional da caixa
- 3. Se uma caixa não possui pontos, não crie um filho para ela
- 4. Faça recursão para todos os filhos.

ÁROVORE DE QUADRANTE— BREVE HISTÓRIA

Raphael Finkel, cientista da computação e professor na Universidade de Kentucky

Experiência

Professor
University of Kentucky
set. de 1986 – o momento · 35 anos 4 meses

• Proposto inicialmente em 1974 por:

Jon Bentley, PhD em ciência da computação pela universidade da Carolina do Norte e professor na CMU

Jon Bentley foi professor de James Gosling na CMU, estudante que mais tarde viria a criar a linguagem de programação Java.

ÁRVORE DE QUADRANTE — BREVE HISTÓRIA

- Proposto para resolver o problema da "retrieval on composite keys".
- O encontro de chaves únicas já funcionava bem para árvores binárias.
- Questão proposta: "Encontre todas as cidades que estão a 300 milhas de Chicago ou ao norte de Seattle"
- Estrutura de dados proposta para lidar com questões como essa: Árvore de quadrante.

TIPOS

- Tipos de dados representáveis:
 - Áreas
 - Pontos
 - Linhas
 - Curvas
- Tipos de árvores de quadrante:
 - Region
 - Point
 - Point-Region
 - Edge
 - Polygon Map
 - Compressed

- Partições bidimensionais
- Tipo de TRIE
- Raiz da árvore representa a região inteira
- Cada nó interno possui quatro filhos, sendo cada um um quadrante de um subplano

1	1	0	0
1	1	1	0
0	0	1	0
0	0	0	0

1	1	0	0
1	1	1	0
0	0	1	0
0	0	0	0

1	1	0	0
1	1	1	0
0	0	1	0
0	0	0	0

R	F	G
	Н	1
	J	K
	L	М

1	1	0	0
1	1	1	0
0	0	1	0
0	0	0	0

B	F	G
	H	
	J	K
	L	M

POINT

- Adaptada de uma árvore binária, possui quatro ramificações ao invés de duas
- Centro de divisão é um ponto
- Complexidade O (log n) de tempo
- Altura da árvore é sensível e depende da ordem de inserção

POINT-REGION

- Similar à region
- Difere quanto ao tipo de valor armazenado sobre as células
- Armazenam uma lista dos pontos que existem na célula de uma folha

EDGE

- Armazena linhas ao invés de pontos
- Consegue fazer aproximação de curvas
- Atingem o nível máximo de decomposição próximo aos cantos/vértices

POLYGON MAP

- Armazena coleções de polígonos
- Possui vértices ou bordas isolados
- Pode ser de três tipos, a depender do tipo de informação armazenada

COMPRIMIDAS

- Descrita por Sariel Har-Peled
- Elaborada para solucionar os problemas:
 - Armazenar muitos nós vazios ao armazenar todos os nós correspondentes a uma célula subdividida
 - Longas ramificações onde nós intermediários possuem apenas um pai e um filho
- Altura sensível aos dados inseridos

APLICAÇÕES

- Geração de malhas triangulação de um conjunto de pontos para qual o próximo processamento pode ser executado.
- Indexação Espacial consultas de pontos e consultas de intervalo.
- Game of Life de Conway o exemplo mais bem conhecido de autômato celular.
- Processamento de Imagens

APLICAÇÕES

Fora da área de geoprocessamento

- Ecografias
- Videochamadas
- Games
- Programas: 3D StudioMax
- Fotografias e Imagens (Compressão de Imagens)

PSEUDOCÓDIGO - ESTRUTURAS

```
struct XY {
    float x;
    float y;
    function __construct(float _x, float _y) { ... }
struct AABB {
    XY center;
    float halfDimension;
    function __construct(XY center, float halfDimension) { ... }
    function containsPoint(XY point) { ... }
    function intersectsAABB(AABB other) { ... }
```

PSEUDOCÓDIGO - CLASS

```
class QuadTree {
    constant int QT_NODE_CAPACITY = 4;
    AABB boundary;
    Array of XY [size = QT_NODE_CAPACITY] points;
    QuadTree* northWest;
    QuadTree* northEast;
    QuadTree* southWest;
    QuadTree* southEast;
    function __construct(AABB _boundary) { ... }
    function insert(XY p) { ... }
    function subdivide() { ... }
    function queryRange(AABB range) { ... }
```

PSEUDOCÓDIGO - INSERÇÃO

```
class QuadTree {
    function insert(XY p) {
       if (!boundary.containsPoint(p))
            return false;
       if (points.size < QT NODE CAPACITY & northWest = null) {
            points.append(p);
           return true;
        if (northWest = null)
            subdivide();
       if (northWest→insert(p)) return true;
       if (northEast→insert(p)) return true;
       if (southWest→insert(p)) return true;
       if (southEast→insert(p)) return true;
       return false;
```

PSEUDOCÓDIGO – INTERVALO DE PESQUISA

```
class QuadTree {
    function queryRange(AABB range) {
        Array of XY pointsInRange;
        if (!boundary.intersectsAABB(range))
            return pointsInRange;
        for (int p = 0; p < points.size; p++) {</pre>
            if (range.containsPoint(points[p]))
                pointsInRange.append(points[p]);
        if (northWest = null)
            return pointsInRange;
        pointsInRange.appendArray(northWest→queryRange(range));
        pointsInRange.appendArray(northEast→queryRange(range));
        pointsInRange.appendArray(southWest→queryRange(range));
        pointsInRange.appendArray(southEast→queryRange(range));
        return pointsInRange;
```

FONTES

- Quadtree aberto. In: Wikipédia: a enciclopédia livre. Disponível em: https://en.wikipedia.org/wiki/Quadtree Acesso em: 21 dez 2021.
- FINKEL, Raphael; BENTLEY, Jon. Quad Trees: A Data Structure for Retrieval on Composite Keys. Research Gate, [S. I.], p. 1 5, 10 mar. 1974. DOI 10.1007/BF00288933. Disponível em: https://www.researchgate.net/publication/220197855_Quad_Trees_A_Data_Structure_for_Retrieval_on_Composite_Keys. Acesso em: 28 dez. 2021.
- QUADTREE vs Spatial partitioning. Produção: Marcus Mathiassen. [S. l.: s. n.], 2016. Disponível em: https://www.youtube.com/watch?v=YkqjVNrksZg&t=4s. Acesso em: 28 dez. 2021.
- QUADTREE Explanation. Produção: William Manning. [S. l.: s. n.], 2014. Disponível em: https://www.youtube.com/watch?v=jxbDYxm-pXg. Acesso em: 28 dez. 2021.
- SAMET, Hanan. The Quadtree and Related Hierarchical Data Structures. Computing Surveys, [S. l.], p. 1 23, 2 jun. 1984. Disponível em: http://www.cs.umd.edu/~hjs/pubs/SameCSUR84-ocr.pdf. Acesso em: 28 dez. 2021.
- Spatial Data Structures Sarnet, Hanan Computer Science Departament and Institute of Advanced Computer Studies And Center for Automation Research:
 University of Maryland, College Park; supported in part by the National Science Foundation under Grant IRI{9017393. Appears in Modern Database Systems: The Object Model, Interoperability, and Beyond, W. Kim, ed., AddisonWesley/ACM Press, Reading, MA, 1995, 361-385.
- O QUE É BANCO DE DADOS GEOGRÁFICO, EOS Consultores, 2019. Disponivel em: https://www.eosconsultores.com.br/o-que-e-um-banco-de-dados-geograficos/ Acessado em: 30 de dezembro de 2021.
- O QUE É UM BANCO DE DADOS?, Oracle, 2014. Disponivel em: https://www.oracle.com/br/database/what-is-database/. Acessado em: 30 de dezembro de 2021.
- 15.2. Spatial Data Structures, Open DSA, 2021, Disponível em: https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/Spatial.html. Acessado em: 30 de dezembro de 2021.