Singel Cell RNA-seq: Technologies and Experimental Approaches

Kévin Lebrigand UCAGenomix, Nice-Sophia-Antipolis

- lebrigand@ipmc.cnrs.fr
- @kevinlebrigandRoscoff, 18 juin 2018

Methods of the year 2013 (Nature Methods)

Why single cell profiling?

Stop measuring gene average as in bulk, Population sequencing yields average values, Changes in subpopulation might remain undetected,

Why single cell profiling?

Why single cell profiling?

- Understanding heterogeneous tissues,
- Identification of **cell types** and **cell states**
- Identification and analysis of rare cell types
- Changes in cellular composition
- Dissection of temporal changes

Sandberg et al., Nature Methods, 2014 mRNA libraries 100 ng total RNA (10.000 cells)

Single cell mRNA libraries

10 pg total RNA (<<1pg mRNA)

- Highly efficient library preparation techniques
- Elimination of PCR amplification bias
- Spike-in ERCC molecules to evaluate yield and capture efficiency
- Use of Unique Molecular Identifiers to monitor the number of molecules:
 - Random multimers to reduce cloning biases during small RNAs profiling (Jayaprakash, NAR, 2011)
 - Detection of rare DNA mutations (Ståhlberg et al, NAR, 2016)
 - Improved accuracy of molecule counting

ERCC spike-ins

ERCC (Externals RNA Controls Consortium) spikes is 92 polyadenylated RNA molecules

- different sequences and lengths,
- no homology with known genome sequences,
- 2 mixes (mix1 and mix2) with the 92 sequences but in different amounts
- relative amounts of spikes in mix1 and mix2 from 1 to 10e6

Scatter plot of read counts for each ERCC transcript in 2 RNA-seq libraries Jiang et al., Gen.Res. (2015)

Single Cell capture efficiency Arguel et al., NAR (2016)

Unique Molecular Identifier (Islam et al., Nature Methods, 2014)

UMIs : Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Meth 9, 72-74 (2012) **UMIs for single cell transcriptome:** Islam, S. et al. Quantitative single-cell RNA-seq with UMI . Nat Methods 11, (2014).

Unique Molecular Identifier (Islam et al., Nature Methods, 2014)

UMIs: Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Meth 9, 72-74 (2012) **UMIs for single cell transcriptome:** Islam, S. et al. Quantitative single-cell RNA-seq with UMI. Nat Methods 11, (2014).

Unique Molecular Identifier (Islam et al., Nature Methods, 2014)

UMI allow a more precise profiling

UMIs: Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Meth 9, 72-74 (2012) **UMIs for single cell transcriptome:** Islam, S. et al. Quantitative single-cell RNA-seq with UMI. Nat Methods 11, (2014).

To measure sequences in individual cells, need methods that capture one cell at a time

Manual Cell sorting

http://www.nature.com/nprot/journal/v6/n5/images_article/nprot.2011.322-F2.jpg

Laser Capture Microdissection

LCM: laser capture microdissection

http://www.genomemedicine.com/content/figures/gm247-2-l.jpg

FACS Cell Sorting

FACS: fluorescence activated cell sorting

http://www.flowlab-childrens-harvard.com/yahoo site admin/assets/images/principle123.285181420 std.gif

Microfluidics: Fluidigm C1

- Limiting factor is size of capture chambers (96 chips: 5-10µm, 10-17µm, >17µm)
- 800 cells chip (10-17 µm diameter cells)
- ScriptHub: protocols for running SMARTer, SmartSeq2, CEL-seq, STRT, ... openApp Chip for custom protocols development

Microfluidics: Droplets-based approaches, Macosko et al., Klein et al., Cell, 2015

- water-in-oil droplets to capture cells with prebarcoded (BC+UMIs) beads,
- really really high throughput (40,000 cells),
- No cell size issue

Scaling Single Cell Transcriptomics (Svensson et al., Nature Methods, 2017)

Tang et al., 2009

Protocol

- Total RNA is isolated and fragmented,
- Converted to cDNA by using an **oligodT** primer with a specific anchor sequence,
- Second strand synthesis using a polyT primer with another anchor sequence,
- PCR amplified from primers against the two anchor sequences.

<u>Drawback</u>

- Premature termination of RT reduces transcript coverage at the 5' end
- Introduction of a polyA tail in addition to its own polyA sequence at the 3' end of the input RNA causes a loss of strand information in the resulting double-stranded cDNA

STRT: Single cell tagged reverse transcription, Islam, Nat.Prot. (2012) @ Linnarsson's lab

Protocol

- based on template switching,
- 5' end cDNA tagged N5 UMI,
- biotin is introduced at both the 3' and 5' ends via the use of biotinylated primers.
- enzymatic cleavage leads to the selection of only the 5' fragments for library construction.
- sequencing and analysis shows 5' read bias

SMART-Seq, Ramskold (2012), SMART-seq2, Picelli (2014) @ Sandberg's lab

SMART= Switching Mechanism at the end of the 5'-end of the RNA Transcript

Protocol

- Based on template switching mechanism,
- Anchor a 5' universal seq. along with Locked nucleic acid by reverse transcription,
- cDNA is then PCR amplified,
- Tagmentation is used to construct libraries,
- Generate full transcript coverage

Drawback

No UMIs

Cell expression by linear amplification and sequencing (CEL-seq, CEL-seq2)

Protocol

- OligodT primer containing the 5' Illumina adaptor, a cell barcode, and a T7promoter (**CEL-seq2 add UMI**),
- RT and second-strand synthesis,
- cDNA from all the cells is pooled and amplified by in vitro transcription from the T7 promoter,
- RNA fragmentation, Illumina adaptor ligated at 3' end
- RNA is reverse transcribed, library is prepared then sequencing,
- Sequencing of the 3'terminal fragments

A cost effective 5' selective single cell transcriptome profiling approach

- UMIs inside Fluidigm C1, PCR bias removal (molecules couting)
- 60k transcripts in HEK (homogeneity of chemistry)
- Illumina and Ion Torrent sequencing (no paired-end required)
- Capture efficiency 26% (ERCC spike-ins)
- Sequences 5' end of transcripts → TSS identification

Now available on ScriptHub (Fluidigm)

Single-cell mRNA Seq with Integrated Barcoding mRNA Sequencing

Arguel et al.

Pascal Barbry - UCA Genomix - IPMC, CNRS - University of Cote d'Azur

Arguel et al., Nucleic Acid Research, 2016

Drop-seq / inDROP: droplets-based scRNA-seq (Mascosko et al., Klein et al., CELL, may 2015)

Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets

Evan Z. Macosko¹, ², ³, ♣ · №, Anindita Basu⁴, ⁵, Rahul Satija⁴, ⁶, ʔ, James Nemesh¹, ², ³, Karthik Shekhar⁴, Melissa Goldman¹, ², Itay Tirosh⁴, Allison R. Bialas⁸, Nolan Kamitaki¹, ², ³, Emily M. Martersteck⁵, John J. Trombetta⁴, David A. Weitz⁵, ¹₀, Joshua R. Sanes⁵, Alex K. Shalek⁴, ¹¹, ¹², Aviv Regev⁴, ¹³, ¹⁴, Steven A. McCarroll¹, ², ³, ♣ · №

- droplets encapsulation of cells and barcoded beads
- 3' selective single cell RNA-seq
- 12bp cell barcode and 8bp UMI
- capture efficiency 12.5%
- 44,808 mouse retinal cells
- identification of 39 differents cell types

PCR cell UM handle barcode

10X Genomics Chromium

Experimental approaches comparison

			UMI					
Lab (Ref) Name of approach	Region sequenced	Design	Counting / error correction	Capture efficiency (ERCC)	Amplification	Barcoding	Device	Sequencer
This approach	5'	N4H4	Unique (a) / edit distance (b)	26%	PCR	PCR pre-fragmentation	C1	Illumina
Linnarsson (10) STRT-seq	5'	N5	Unique start (c) / percentile (d)	48% (e)	PCR	Tagmentation custom barcoded transposons	C1	Illumina
Linnarsson (7) STRT-seq			Unique start (c) / percentile + (df	22% (b)				
Amit (13) Mars-seq	Close to 3'	N4	edit distance (b)	2 – 3%	Isothermal	RT	Plates	Illumina
McCarol (16) Drop-seq	Close to 3'	N8	edit distance (b)	12.8%	PCR	RT	Microdroplets	Illumina
Kirschner (17) InDrop	Close to 3'	N6	(g)	7.1%	Isothermal	RT	Microdroplets	Illumina
Yanai (15) Cel-seq	Close to 3'	No	none	6%	Isothermal	RT	Plates	Illumina
Yanai (15) Cel-seq2	Close to 3'	N6	none	22% in C1	Isothermal	RT	Plates, C1	Illumina
Smartseq2	Internal (a)	No	-	n.d.	PCR	-	Tubes	Illumina

Arguel et al., NAR, 2016