Vzorce pro výpočty zobrazení

V trochu jiném značení než jsme měli na cvičení. Pokud chcete symboliku stejnou jako na cvičení, nahraďte u za φ , v za λ a ψ za δ a dosazujte v radiánech.

azimutální zobrazení

Gnómonická projekce

$$\varepsilon = v$$
, $\rho = R \cdot tg\psi$

Stereografická projekce

$$\varepsilon = v$$
, $\rho = 2R \cdot tg \frac{\psi}{2}$

Ortografická projekce

$$\varepsilon = v$$
, $\rho = R \cdot \sin \psi$

Lambertovo zobrazení

$$\varepsilon = v$$
, $\rho = 2R \cdot \sin \frac{\psi}{2}$

Postelovo zobrazení

$$\varepsilon = v$$
, $\rho = R \cdot \psi$

válcová tečná

Marinovo zobrazení

$$x = R \cdot v$$
, $v = R \cdot u$

Lambertovo zobrazení

$$x = R \cdot v$$
, $y = R \cdot \sin u$

Braunovo zobrazení

$$x = R \cdot v$$
, $y = 2R \cdot tg \frac{u}{2}$

Mercatorovo zobrazení

$$x = R \cdot v$$
, $y = R \cdot \ln\left(\cot\frac{\psi}{2}\right)$

válcová sečná

Behrmannovo zobrazení

$$x = R \cdot v \cdot \cos u_0$$
, $y = R \cdot \sin u \cdot \frac{1}{\cos u_0}$, pro $u_0 = 30^{\circ} z.\check{s}$.

Gallovo zobrazení

$$x = r \cdot v \cdot \cos u_0, \ y = r \cdot (1 + \cos u_0) \cdot tg \frac{u}{2},$$

pro $u_0 = 45^{\circ} z.\check{s}.$

Čtvercové plochojevné

$$x = R \cdot v \cdot \cos u_0$$
, $y = R \cdot \sin u \cdot \frac{1}{\cos u_0}$, pro takové u_0 , kde $\cos u_0 = \sqrt{\frac{2}{\pi}}$

nepravá

Sansonovo zobrazení

$$x = R \cdot v \cdot \cos u$$
, $y = R \cdot u$

Werner-Stabovo zobrazení

$$\varepsilon = \frac{R \cdot \cos u \cdot v}{\rho} \,, \ \rho = R \cdot \psi$$

kuželová

Ptolemaiovo zobrazení

$$\varepsilon = v \cdot n$$
, $\rho = R \cdot \operatorname{tg} \psi_0 + R \cdot (u_0 - u)$, $n = \cos \psi_0$, pro $u_0 = 30^{\circ} z.\check{s}$.

Lambertovo zobrazení

$$\varepsilon = v \cdot n$$
, $\rho = 2R \cdot \frac{\sin \frac{\psi}{2}}{\cos \frac{\psi_0}{2}}$, $n = \cos^2 \frac{\psi_0}{2}$, pro $u_0 = 30^\circ z.\check{s}$.