Convex optimization - Homework 3 - LAPASSAT Louis

We consider the following problem (LASSO):

$$\min_{w} \frac{1}{2} ||Xw - y||_{2}^{2} + \lambda ||w||_{1},$$

where $w \in \mathbb{R}^d$, $X = (x_1, ..., x_n) \in \mathbb{R}^{n \times d}$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$ and $\lambda > 0$.

Question 1:

We first rewrite (LASSO) problem like so:

$$\min_{w,z} \frac{1}{2} ||Xw - y||_2^2 + \lambda ||z||_1$$
s.t. $z = w$

Hence the Lagrangian is:

$$L(w, z, \nu) = \frac{1}{2}||Xw - y||_2^2 + \lambda||z||_1 + \nu^T(w - z),$$

where $\nu \in \mathbb{R}^d$. So the dual function is:

$$g(\nu) = \inf_{w,z} \left(\frac{1}{2} ||Xw - y||_2^2 + \nu^T w \right) + \left(\lambda ||z||_1 - \nu^T z \right).$$

As the first part is independent of z, and the second part is independent of w, the minimizers can be found by minimizing both part separately, over w and z respectively. Starting with z we have:

$$\inf_{z} \lambda ||z||_{1} - \nu^{T}z \Longleftrightarrow -\sup_{z} \nu^{T}z - \lambda ||z||_{1} = \begin{cases} 0 & \text{if } ||\nu||_{\infty} \leq \lambda \\ -\infty & \text{otherwise} \end{cases}.$$

Now for w we have:

$$\inf_{w} \frac{1}{2} ||Xw - y||_2^2 + \nu^T w.$$

Since the function is convex, we can just consider derivative with respect to w in order to get the infimum.

$$\nabla_w L(w, z, \nu) = X^T (Xw - y) + \nu$$
 and $\nabla^2_w L(x, z, \nu) = X^T X$.

Since $X^TX \geq 0$ we know that a stationary point is a global minima. Therefore w^* solves:

$$\nabla_w L(w, z, \nu)|_{w^*} = 0 \iff X^T X w^* = X^T y - \nu,$$

and if X has independent columns: $w^* = (X^T X)^{-1} (X^T y - \nu)$. Finally the dual problem is given by:

$$\max_{\nu} g(\nu) \Longleftrightarrow \max_{\nu} \quad \frac{1}{2} ||Xw^* - y||_2^2 + \nu^T w^*$$
s.t. $||\nu||_{\infty} \le \lambda$ (D)

Now we want to simplify and transform (D) into a general Quadratic Problem (QP). To do so let's first replace w^* , then drop all terms that do not depend on ν (the arg max remain the same):

$$\frac{1}{2}||Xw^* - y||_2^2 + \nu^T w^* \Longrightarrow -\frac{1}{2}\nu^T (X^T X)^{-1} \nu + \nu^T (X^T X)^{-1} X^T y.$$

louislapassat@orange.fr

Convex optimization - Homework 3 - LAPASSAT Louis

So (D) is equivalent to the following minimization problem:

$$\min_{\boldsymbol{\nu}} \quad \frac{1}{2} \boldsymbol{\nu}^T (X^T X)^{-1} \boldsymbol{\nu} - \boldsymbol{\nu}^T (X^T X)^{-1} X^T y \\ \text{s.t.} \quad ||\boldsymbol{\nu}||_{\infty} \leq \lambda$$

Now we only have to transform the constraints:

$$||\nu||_{\infty} \le \lambda \iff -\lambda \le \nu_i \le \lambda \quad \forall i = 1, .., d \iff \begin{bmatrix} I_d \\ -I_d \end{bmatrix} \nu \le \lambda \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix},$$

where I_d is the $d \times d$ identity matrix. Finally the problem can be rewritten like so:

$$\min_{v} v^{T}Qv + p^{T}v$$
s.t. $Av \le b$ (QP) ,

where
$$Q = \frac{1}{2}(X^TX)^{-1}$$
, $p = -(X^TX)^{-1}X^Ty$, $A = \begin{bmatrix} I_d \\ -I_d \end{bmatrix}$ and $b = [\lambda, .., \lambda]^T \in \mathbb{R}^{2d}$.