$Co5_So5_$ 反常积分的审敛法 Γ 函数

第五章 定积分

第五节 反常积分的审敛法 Γ函数*

目录

- 一、无穷限反常积分的审敛法
- 二、无界函数的反常积分的审敛法
- 三、Γ函数
 - 1. Γ 函数的定义
 - ο 2. Γ 函数的几个重要性质

一、无穷限反常积分的审敛法

定理 1 设函数 f(x) 在区间 $[a, +\infty)$ 上连续, 且 $f(x) \ge 0$. 如果函数

$$F(x) = \int_{a}^{x} f(t)dt$$

在 $[a, +\infty)$ 上有界,则反常积分 $\int_a^{+\infty} f(x)dx$ 收敛

定理 2 (比较审敛原理) 设函数 f(x), g(x) 在区间 $[a, +\infty)$ 上连续. 如果 $0 \le f(x) \le g(x)$ $(a \le x \le +\infty)$,并且 $\int_a^{+\infty} g(x) dx$ 收敛,那么 $\int_a^{+\infty} f(x) dx$ 也收敛;如果 $0 \le g(x) \le f(x)$ $(a \le x \le +\infty)$,并且 $\int_a^{+\infty} g(x) dx$ 发散,那么 $\int_a^{+\infty} f(x) dx$ 也发散

定理 **3** (比较审敛法 **1**) 设函数 f(x) 在区间 $[a, +\infty)$ (a > 0) 上连续,且 $f(x) \ge 0$. 如果存在常数 M > 0 及 p > 1,使得

$$f(x) \le \frac{M}{x^p}$$
 $(a \le x < +\infty)$

,那么反常积分 $\int_a^{+\infty} f(x) dx$ 收敛;如果存在常数 N > 0,使得

$$f(x) \ge \frac{N}{x}$$
 $(a \le x < +\infty)$

,那么反常积分 $\int_{a}^{+\infty} f(x)dx$ 发散

证明:根据反常积分

$$\int_{a}^{+\infty} \frac{dx}{x^{p}} \quad (a > 0)$$

当p > 1 时收敛, 当 $p \le 1$ 时发散可证

定理 4 (极限审敛法 1) 设函数 f(x) 在区间 $[a, +\infty)$ (a > 0) 上连续,且 $f(x) \ge 0$. 如果存在常数 p > 1,使得

$$\lim_{x \to +\infty} x^p f(x) = c < +\infty$$

,那么反常积分 $\int_a^{+\infty} f(x) dx$ 收敛; 如果

$$\lim_{x \to +\infty} x f(x) = d > 0 \quad (\vec{x} \lim_{x \to +\infty} x f(x) = +\infty)$$

,那么反常积分 $\int_a^{+\infty} f(x)dx$ 发散

定理 5 设函数 f(x) 在区间 $[a, +\infty)$ 上连续. 如果反常积分

$$\int_{a}^{+\infty} |f(x)| \, dx$$

收敛,那么反常积分

$$\int_{a}^{+\infty} f(x)dx$$

也收敛

延伸:通常称满足定理 5 条件的反常积分 $\int_a^{+\infty} f(x)dx$ 绝对收敛. 于是,定理 5 可简单地表达为:绝对收敛的反常积分 $\int_a^{+\infty} f(x)dx$ 必定收敛

二、无界函数的反常积分的审敛法

定理 **6** (比较审敛法 **2**) 设函数 f(x) 在区间 (a,b] 上连续,且 $f(x) \ge 0$,x = a 为 f(x) 的瑕点. 如果存在常数 M > 0 及 q < 1,使得

$$f(x) \le \frac{M}{(x-a)^q} \quad (a < x \le b)$$

,那么反常积分 $\int_a^b f(x)dx$ 收敛; 如果存在常数 N>0, 使得

$$f(x) \ge \frac{N}{x - a}$$
 $(a < x \le b)$

,那么反常积分 $\int_a^b f(x)dx$ 发散

证明:根据反常积分

$$\int_{a}^{b} \frac{dx}{(x-a)^{q}}$$

当0 < q < 1 时收敛,当q ≥ 1 时发散可证

定理 7 (极限审敛法 2) 设函数 f(x) 在区间 (a,b] 上连续,且 $f(x) \ge 0$,x = a 为 f(x) 的瑕点. 如果存在常数 0 < q < 1,使得

$$\lim_{x \to a^+} (x - a)^q f(x) = c < +\infty$$

,那么反常积分 $\int_a^b f(x)dx$ 收敛; 如果

$$\lim_{x \to a^+} (x - a)f(x) = d > 0 \quad (\vec{\boxtimes} \lim_{x \to a^+} (x - a)f(x) = +\infty)$$

,那么反常积分 $\int_a^b f(x)dx$ 发散

三、Г函数

1. Г函数的定义

$$\Gamma(s) = \int_0^{+\infty} e^{-x} x^{s-1} dx \quad (s > 0)$$

2. Г函数的几个重要性质

1. 递推公式

$$\Gamma(s+1) = s\Gamma(s) \quad (s>0)$$

- 2. 当 $s \to 0^+$ 时, $\Gamma(s) \to +\infty$
- 3. 余元公式

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)} \quad (0 < s < 1)$$

4. 在 $\Gamma(s) = \int_0^{+\infty} e^{-x} x^{s-1} dx$ 中,作代换 $x = u^2$,有

$$\Gamma(s) = 2 \int_0^{+\infty} e^{-u^2} u^{2s-1} du \tag{1}$$

再令 2s - 1 = t 或 $s = \frac{1+t}{2}$,即有

$$\int_0^{+\infty} e^{-u^2} u^t du = \frac{1}{2} \Gamma(\frac{1+t}{2}) \quad (t > -1)$$

在式 (1) 中,另 $s = \frac{1}{2}$,得

$$2\int_{0}^{+\infty} e^{-u^{2}} du = \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

从而

$$\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$