- 1. True or false: When an OSPF router sends its link information, it is sent only to those nodes directly attached neighbors. Explain the reason.
- A: False, OSPF router sends its link information to all other routers, not only to those nodes directly attached neighbors.
- 2. Will a BGP router always choose the loop-free route with the shortest AS path length? State your reason.
- A: No, BGP router還會考量其他因素如origin code, local preference, MED來確保最好的 路由選擇。
- 3. It is preferable to send SNMP messages in unreliable UDP datagram. Why do you think the designers of NMP chose UDP rather than TCP as the transport protocol of choice for SNMP?
- A: 為了做到分布式管理以及多種大量資料傳輸的效率,UDP能在SNMP條件下正常運作。

4. Use the Dijkstra's link-state algorithm to find the least-cost paths from Node 1 to all other nodes of the following graph. The number above each link is the associated cost of the link. Show your results step by step.

A:

Step	N'	D(2), p(2)	D(3), p(3)	D(4), p(4)	D(5), p(5)	D(6), p(6)
0	1	1, 1	5, 1	4, 1	inf	inf
1	12		4, 2	4, 1	2, 2	inf
2	125		3, 5	3, 5		6, 5
3	1253			3, 5		5, 3
4	12534					5, 3
5	125346					

forward node	cost	path
2	1	1, 2
3	3	1, 2, 5, 3
4	3	1, 2, 5, 4
5	2	1, 2, 5
6	5	1, 2, 5, 3, 6

5. Consider the network fragment shown below. x has only two attached neighbors, w and y. w has a minimum-cost path to destination u (not shown) of 5, and y has a minimum-cost path to u of 6. The complete paths from w and y to u (and between w and y) are not shown. Assume all link costs have strictly positive integer values.

- a. Give x's distance vector for destinations w, y and u.
- b. Discuss the condition where a link-cost change for either c(x,w) or c(x,y) will trigger x to inform its neighbors of a new minimum-cost path to u after executing the distance-vector algorithm.

A: a. Dx(w) = 2, Dx(y) = 4, Dx(u) = 7

Step	N'	D(w), p(w)	D(y), p(y)	D(u), p(u)
0	X	2, x	5, x	inf
1	XW		4, w	7, w
2	xwy			

b.

當c(x, y)變更

如果 c(x, y) < 1 則路徑改由 $x \rightarrow y \rightarrow u$, cost = c(x, y) + 6

如果 c(x, y) >= 1 則路徑不變 cost = 7

當c(x, y)變更

如果 c(x, y) <= 6 則路徑不變 cost = 7

如果 c(x, y) > 6 則路徑改由 $x \rightarrow y \rightarrow u$, cost = 11