Abstract Interpretation and **Applications**

Professor Ing. Dr.-Ing. Dr. Dr.-Ing. E.h.

Patrick COUSOT

École Normale Supérieure, Département d'Informatique 45 rue d'Ulm, 75230 Paris cedex 05, France

cousot@ens.fr http://www.di.ens.fr/~cousot

Naturwiss.-Techn. Fakultät I, Universität des Saarlandes June 29, 2001

Ich fühle mich zutiefst geehrt, die mir zugeteilte Ehrendoktorwürde entgegen zu nehmen.

Content

• Semantics (5 mn)
• Abstract interpretation (15 mn)
 Applications of Abstract interpretation
• Syntax (5 mn) 52
• Semantics (5 mn) 59
• Program transformation (5 mn)
• Type systems (5 mn) 70
• Model checking (5 mn) 80
Static program analysis (5 mn)
• Abstract program testing (5 mn)
• Conclusions and References

Introduction

Software Costs

- The cost of software is:
 - \bullet huge (e.g. 5 to 15 % of the cost of a plane),
 - increasing rapidly with the size of software (frequently 1 up to 40 000 000 lines!);

Software Costs

- The cost of software is:
 - huge (e.g. 5 to 15 % of the cost of a plane),
 - increasing rapidly with the size of software (frequently 1 up to 40 000 000 lines!);
- How to cut down costs and enhance software quality?
 - ...
 - Automate the reasonings about software (the early idea of using computers to reason about computers);
 - ...

Reasoning About Programs

We must be able to reason about programs:

- to design programs;
 - manually: e.g. coding,
 - automatically: e.g. program generation;

Reasoning About Programs

We must be able to reason about programs:

- to design programs;
 - manually: e.g. coding,
 - automatically: e.g. program generation;
- to manipulate programs:
 - manually: e.g. modification of a reused program,
 - automatically: e.g. compilation;

Reasoning About Programs

We must be able to reason about programs:

- to design programs;
 - · manually: e.g. coding,
 - automatically: e.g. program generation;
- to manipulate programs:
 - manually: e.g. modification of a reused program,
 - automatically: e.g. compilation;
- to check program correctness:
 - manually: e.g. debuggers,
 - automatically: e.g. analyzers, provers.

Basis for Reasoning about Programs: Semantics

• The semantics of a computer system is the description of the behavior of this computer system when running in interaction with its environment.

Undecidability

• All

questions about the semantics of a program are undecidable

Undecidability

 All (interesting) questions about the semantics of a program (written in a non trivial computer language) are undecidable (i.e. cannot be always and fully automatically answered with a computer in finite time);

Undecidability

- All (interesting) questions about the semantics of a program (written in a non trivial computer language) are undecidable (i.e. cannot be always and fully automatically answered with a computer in finite time);
- Examples of undecidable questions:
 - Is my program bug-free? (i.e. correct with respect to a given specification);
 - Can a program variable take two different values during execution?

Consider simple specifications or programs (hopeless);

- Consider simple specifications or programs (hopeless);
- Consider decidable questions only or semi-algorithms (e.g. model-checking);

- Consider simple specifications or programs (hopeless);
- Consider decidable questions only or semi-algorithms (e.g. model-checking);
- Ask the programmer to help (e.g. theorem proving);

- Consider simple specifications or programs (hopeless);
- Consider decidable questions only or semi-algorithms (e.g. model-checking);
- Ask the programmer to help (e.g. theorem proving);
- Consider approximations to handle practical complexity limitations (the whole purpose of abstract interpretation).

Semantics

• The semantics of a language defines the semantics of any program written in this language;

- The semantics of a language defines the semantics of any program written in this language;
- The semantics of a program provides a formal mathematical model of all possible behaviors of a computer system executing this program (interacting with any possible environment);

- The semantics of a language defines the semantics of any program written in this language;
- The semantics of a program provides a formal mathematical model of all possible behaviors of a computer system executing this program (interacting with any possible environment);
- Any semantics of a program can be defined as the solution of a fixpoint equation;

- The semantics of a language defines the semantics of any program written in this language;
- The semantics of a program provides a formal mathematical model of all possible behaviors of a computer system executing this program (interacting with any possible environment);
- Any semantics of a program can be defined as the solution of a fixpoint equation;
- All semantics of a program can be organized in a hierarchy by abstraction.

Example: Trace semantics

Examples of computation traces

• Finite (C1+1=):

• Erroneous (C1+1+1+1...):

• Infinite (C+0+0+0...):

Behaviors =


```
\mathbf{Behaviors} = \{ \bullet \mid \bullet \text{ is a final state} \}
```


In general, the equation has multiple solutions.

Least Fixpoints: Intuition

- In general, the equation has multiple solutions.
- Choose the least one for the partial ordering:
 - « more finite traces & less infinite traces ».

Abstract Interpretation

The Theory of Abstract Interpretation

• **Abstract interpretation** is a theory of conservative approximation of the semantics of computer systems.

The Theory of Abstract Interpretation

- **Abstract interpretation** is a theory of conservative approximation of the semantics of computer systems.
 - **Approximation:** observation of the behavior of a computer system at some level of abstraction, ignoring irrelevant details;

The Theory of Abstract Interpretation

- **Abstract interpretation** is a theory of conservative approximation of the semantics of computer systems.
 - **Approximation:** observation of the behavior of a computer system at some level of abstraction, ignoring irrelevant details;
 - Conservative: the approximation cannot lead to any erroneous conclusion.

Usefulness of Abstract Interpretation

• Thinking tools: the idea of abstraction is central to reasoning (in particular on computer systems);

Usefulness of Abstract Interpretation

- Thinking tools: the idea of abstraction is central to reasoning (in particular on computer systems);
- Mechanical tools: the idea of effective approximation leads to automatic semantics-based program manipulation tools.

Intuition behind abstraction

Approximations of an [in]finite set of points;

Approximations of an [in]finite set of points: From Below

Approximations of an [in]finite set of points: From Above

Intuition Behind Effective Computable Abstraction

Effective computable approximations of an [in]finite set of points; Signs

Effective computable approximations of an [in]finite set of points; Intervals

Effective computable approximations of an [in]finite set of points; Octagons

Effective computable approximations of an [in]finite set of points; Polyhedra

$$\begin{cases} 19x + 78y \le 2000 \\ 20x + 01y \ge 0 \end{cases}$$

Effective computable approximations of an [in]finite set of points; Simple congruences

Effective computable approximations of an [in]finite set of points; Linear congruences

Effective computable approximations of an [in]finite set of points; Trapezoidal linear con-

gruences

Intuition Behind Sound/Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?

- Is the operation 1/(x+1-y) well defined at run-time?
- Concrete semantics:

- Is the operation 1/(x+1-y) well defined at run-time?
- Concrete semantics: yes

- Is the operation 1/(x+1-y) well defined at run-time?
- Testing :

- Is the operation 1/(x+1-y) well defined at run-time?
- Testing: You never know!

- Is the operation 1/(x+1-y) well defined at run-time?
- Abstract semantics 1:

- Is the operation 1/(x+1-y) well defined at run-time?
- Abstract semantics 1: I don't know

- Is the operation 1/(x+1-y) well defined at run-time?
- Abstract semantics 2:

- Is the operation 1/(x+1-y) well defined at run-time?
- Abstract semantics 2: **yes**

Basic Elements of Abstract Interpretation Theory

Abstraction α

Concretization γ

The Abstraction α is Monotone

The Concretization γ is Monotone

The $\gamma \circ \alpha$ Composition

The $\alpha \circ \gamma$ Composition

$$\alpha \circ \gamma(Y) = Y$$

Galois Connection 1

$$\langle P, \subseteq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle$$
iff

- $\bullet \alpha$ is monotone
- $\bullet \gamma$ is monotone
- $\bullet X \subseteq \gamma \circ \alpha(X)$
- $\bullet \ \alpha \circ \gamma(Y) \sqsubseteq Y$

¹ formalizations using closure operators, ideals, etc. are equivalent.

Abstract domain α Concrete domain

Function Abstraction

$$F^{\sharp} = \alpha \circ F \circ \gamma$$

Abstract domain α Concrete domain

Function Abstraction

$$F^{\sharp} = \alpha \circ F \circ \gamma$$

$$\langle P, \subseteq \rangle \xrightarrow{\gamma} \langle Q, \sqsubseteq \rangle \Rightarrow$$

$$\langle P \xrightarrow{\mathsf{mon}} P, \dot{\subseteq} \rangle \xrightarrow{\lambda F^{\sharp} \cdot \gamma \circ F^{\sharp} \circ \alpha} \langle Q \xrightarrow{\mathsf{mon}} Q, \dot{\sqsubseteq} \rangle$$

$$\lambda F \cdot \alpha \circ F \circ \gamma \qquad \langle Q \xrightarrow{\mathsf{mon}} Q, \dot{\sqsubseteq} \rangle$$

Fixpoint Abstraction

 γ Approximation relation \square

Ifp
$$F \sqsubseteq \gamma(\operatorname{Ifp} F^\sharp)$$

Fixpoint Abstraction

Ifp
$$F \sqsubseteq \gamma(\operatorname{Ifp} F^\sharp)$$

Exact/Approximate Fixpoint Abstraction

Exact Abstraction:

$$\alpha(\operatorname{Ifp} F) = \operatorname{Ifp} F^\sharp$$

Exact/Approximate Fixpoint Abstraction

Exact Abstraction:

$$\alpha(\operatorname{Ifp} F) = \operatorname{Ifp} F^\sharp$$

Approximate Abstraction:

$$\alpha(\operatorname{Ifp} F) \sqsubseteq^{\sharp} \operatorname{Ifp} F^{\sharp}$$

Exact Fixpoint Abstraction

$$\alpha \circ F = F^{\sharp} \circ \alpha \implies \alpha(\operatorname{Ifp} F) = \operatorname{Ifp} F^{\sharp}$$

A Few References on Foundations

- [1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In *4th POPL*, pages 238–252, Los Angeles, CA, 1977. ACM Press.
- [2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6^{th} POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.
- [3] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511–547, 1992.

Applications of Abstract Interpretation

(1) Exact Abstractions

Application to Syntax

The Semantics of Syntax

• Grammar:

$$X := aY \mid bY$$

$$Y := cY \mid d$$

The Semantics of Syntax

• Grammar:

$$X := aY \mid bY$$
$$Y := cY \mid d$$

• Equations:

$$\mathcal{X} = \{ay \mid y \in \mathcal{Y}\} \cup \{by \mid y \in \mathcal{Y}\}\$$

$$\mathcal{Y} = \{cy \mid y \in \mathcal{Y}\} \cup \{d\}$$

The Semantics of Syntax

• Grammar:

$$X := aY \mid bY$$

$$Y := cY \mid d$$

• Equations:

$$\mathcal{X} = \{ay \mid y \in \mathcal{Y}\} \cup \{by \mid y \in \mathcal{Y}\}$$
$$\mathcal{Y} = \{cy \mid y \in \mathcal{Y}\} \cup \{d\}$$

• Transformer *F*:

$$F(\langle \mathcal{X}, \mathcal{Y} \rangle) = \\ \langle \{ay \mid y \in \mathcal{Y}\} \cup \{by \mid y \in \mathcal{Y}\}, \{cy \mid y \in \mathcal{Y}\} \cup \{d\} \rangle$$

$$\mathcal{X}^0 = \emptyset$$
$$\mathcal{Y}^0 = \emptyset$$

$$\mathcal{X}^{0} = \emptyset$$

$$\mathcal{Y}^{0} = \emptyset$$

$$\mathcal{X}^{1} = \{ay \mid y \in \mathcal{Y}^{0}\} \cup \{by \mid y \in \mathcal{Y}^{0}\} = \emptyset$$

$$\mathcal{Y}^{1} = \{cy \mid y \in \mathcal{Y}^{0}\} \cup \{d\} = \{d\}$$

$$\mathcal{X}^{0} = \emptyset$$

$$\mathcal{Y}^{0} = \emptyset$$

$$\mathcal{X}^{1} = \{ay \mid y \in \mathcal{Y}^{0}\} \cup \{by \mid y \in \mathcal{Y}^{0}\} = \emptyset$$

$$\mathcal{Y}^{1} = \{cy \mid y \in \mathcal{Y}^{0}\} \cup \{d\} \qquad = \{d\}$$

$$\mathcal{X}^{2} = \{ay \mid y \in \mathcal{Y}^{1}\} \cup \{by \mid y \in \mathcal{Y}^{1}\} = \{ad, bd\}$$

$$\mathcal{Y}^{2} = \{cy \mid y \in \mathcal{Y}^{1}\} \cup \{d\} \qquad = \{cd, d\}$$

$$\mathcal{X}^{0} = \emptyset$$

$$\mathcal{Y}^{0} = \emptyset$$

$$\mathcal{X}^{1} = \{ay \mid y \in \mathcal{Y}^{0}\} \cup \{by \mid y \in \mathcal{Y}^{0}\} = \emptyset$$

$$\mathcal{Y}^{1} = \{cy \mid y \in \mathcal{Y}^{0}\} \cup \{d\} \qquad = \{d\}$$

$$\mathcal{X}^{2} = \{ay \mid y \in \mathcal{Y}^{1}\} \cup \{by \mid y \in \mathcal{Y}^{1}\} = \{ad, bd\}$$

$$\mathcal{Y}^{2} = \{cy \mid y \in \mathcal{Y}^{1}\} \cup \{d\} \qquad = \{cd, d\}$$

$$\mathcal{X}^{3} = \{ay \mid y \in \mathcal{Y}^{2}\} \cup \{by \mid y \in \mathcal{Y}^{2}\} = \{acd, ad, bcd, bd\}$$

$$\mathcal{Y}^{3} = \{cy \mid y \in \mathcal{Y}^{2}\} \cup \{d\} \qquad = \{ccd, cd, d\}$$

$$\dots \dots$$

• • •

$$\mathcal{X}^{n} = \{ay \mid y \in \mathcal{Y}^{n-1}\} \cup \{by \mid y \in \mathcal{Y}^{n-1}\}$$

$$= \{ac^{n-2}d, \dots, acd, ad, bc^{n-2}d, \dots, bcd, bd\}$$

$$\mathcal{Y}^{n} = \{cy \mid y \in \mathcal{Y}^{n-1}\} \cup \{d\}$$

$$= \{c^{n-1}d, \dots, ccd, cd, d\}$$

• • • • • •

$$\mathcal{X}^{n} = \{ay \mid y \in \mathcal{Y}^{n-1}\} \cup \{by \mid y \in \mathcal{Y}^{n-1}\}$$

$$= \{ac^{n-2}d, \dots, acd, ad, bc^{n-2}d, \dots, bcd, bd\}$$

$$\mathcal{Y}^{n} = \{cy \mid y \in \mathcal{Y}^{n-1}\} \cup \{d\}$$

$$= \{c^{n-1}d, \dots, ccd, cd, d\}$$

• • • • • • •

• Ifp $F = \langle \mathcal{X}^{\infty}, \mathcal{Y}^{\infty} \rangle$ where:

$$\mathcal{X}^{\infty} = \bigcup_{n \ge 0} \mathcal{X}^n = \{ac^n d, bc^n d \mid n \ge 0\}$$

$$\mathcal{Y}^{\infty} = \bigcup_{n \ge 0} \mathcal{Y}^n = \{c^n d \mid n \ge 0\}$$

 $\bullet \ \mathsf{FIRST}(\langle \mathcal{X}, \ \mathcal{Y} \rangle) = \langle \mathsf{FIRST}(\mathcal{X}), \ \mathsf{FIRST}(\mathcal{Y}) \rangle$

- $\mathsf{FIRST}(\langle \mathcal{X}, \mathcal{Y} \rangle) = \langle \mathsf{FIRST}(\mathcal{X}), \; \mathsf{FIRST}(\mathcal{Y}) \rangle$
- $FIRST(\mathcal{X}) = \{a \mid ax \in \mathcal{X}\}$

- $\bullet \ \mathsf{FIRST}(\langle \mathcal{X}, \ \mathcal{Y} \rangle) = \langle \mathsf{FIRST}(\mathcal{X}), \ \mathsf{FIRST}(\mathcal{Y}) \rangle$
- $FIRST(\mathcal{X}) = \{a \mid ax \in \mathcal{X}\}$
- $\gamma(Y) = \{ax \mid a \in Y, x \text{ is any sentence}\}$

- $\mathsf{FIRST}(\langle \mathcal{X}, \mathcal{Y} \rangle) = \langle \mathsf{FIRST}(\mathcal{X}), \; \mathsf{FIRST}(\mathcal{Y}) \rangle$
- $FIRST(\mathcal{X}) = \{a \mid ax \in \mathcal{X}\}$
- $\bullet \ \gamma(Y) = \{ax \mid a \in Y, x \text{ is any sentence}\}$
- $\langle \mathsf{Set} \ \mathsf{of} \ \mathsf{sentences}, \ \subseteq \rangle \xrightarrow{\gamma} \langle \mathsf{Set} \ \mathsf{of} \ \mathsf{symbols}, \ \subseteq \rangle$

- $\mathsf{FIRST}(\langle \mathcal{X}, \mathcal{Y} \rangle) = \langle \mathsf{FIRST}(\mathcal{X}), \; \mathsf{FIRST}(\mathcal{Y}) \rangle$
- $FIRST(\mathcal{X}) = \{a \mid ax \in \mathcal{X}\}$
- $\bullet \ \langle \mathsf{Set} \ \mathsf{of} \ \mathsf{sentences}, \ \subseteq \rangle \xrightarrow{\gamma} \ \langle \mathsf{Set} \ \mathsf{of} \ \mathsf{symbols}, \ \subseteq \rangle$
- $F^{\sharp} = \mathsf{FIRST} \circ F \circ \gamma$ is given by the equations:

$$\begin{split} X &= \mathsf{FIRST}(\{ay \mid y \in \gamma(Y)\} \cup \{by \mid y \in \gamma(Y)\}) \\ &= \{a,b \mid \exists y \in \gamma(Y)\} = \{a,b \mid \exists y \in Y\} = \{a,b \mid Y \neq \emptyset\} \\ Y &= \mathsf{FIRST}(\{cy \mid y \in \gamma(Y)\} \cup \{d\}) = \{c \mid Y \neq \emptyset\} \cup \{d\} \end{split}$$

$$\mathcal{X}^0 = \emptyset$$
$$\mathcal{Y}^0 = \emptyset$$

$$\mathcal{X}^{0} = \emptyset$$

$$\mathcal{Y}^{0} = \emptyset$$

$$\mathcal{X}^{1} = \{a, b \mid Y^{0} \neq \emptyset\} = \emptyset$$

$$\mathcal{Y}^{1} = \{c \mid Y^{0} \neq \emptyset\} \cup \{d\} = \{d\}$$

$$\mathcal{X}^{0} = \emptyset$$

$$\mathcal{Y}^{0} = \emptyset$$

$$\mathcal{X}^{1} = \{a, b \mid Y^{0} \neq \emptyset\} = \emptyset$$

$$\mathcal{Y}^{1} = \{c \mid Y^{0} \neq \emptyset\} \cup \{d\} = \{d\}$$

$$\mathcal{X}^{2} = \{a, b \mid Y^{1} \neq \emptyset\} = \{a, b\}$$

$$\mathcal{Y}^{2} = \{c \mid Y^{1} \neq \emptyset\} \cup \{d\} = \{c, d\}$$

$$\mathcal{X}^{0} = \emptyset$$

$$\mathcal{Y}^{0} = \emptyset$$

$$\mathcal{X}^{1} = \{a, b \mid Y^{0} \neq \emptyset\} = \emptyset$$

$$\mathcal{Y}^{1} = \{c \mid Y^{0} \neq \emptyset\} \cup \{d\} = \{d\}$$

$$\mathcal{X}^{2} = \{a, b \mid Y^{1} \neq \emptyset\} = \{a, b\}$$

$$\mathcal{Y}^{2} = \{c \mid Y^{1} \neq \emptyset\} \cup \{d\} = \{c, d\}$$

$$\mathcal{X}^{3} = \{a, b \mid Y^{2} \neq \emptyset\} = \{a, b\}$$

$$\mathcal{Y}^{3} = \{c \mid Y^{2} \neq \emptyset\} \cup \{d\} = \{c, d\}$$

$$\mathcal{X}^{0} = \emptyset
\mathcal{Y}^{0} = \emptyset
\mathcal{X}^{1} = \{a, b \mid Y^{0} \neq \emptyset\} = \emptyset
\mathcal{Y}^{1} = \{c \mid Y^{0} \neq \emptyset\} \cup \{d\} = \{d\}
\mathcal{X}^{2} = \{a, b \mid Y^{1} \neq \emptyset\} = \{a, b\}
\mathcal{Y}^{2} = \{c \mid Y^{1} \neq \emptyset\} \cup \{d\} = \{c, d\}
\mathcal{X}^{3} = \{a, b \mid Y^{2} \neq \emptyset\} = \{a, b\}
\mathcal{Y}^{3} = \{c \mid Y^{2} \neq \emptyset\} \cup \{d\} = \{c, d\}$$

• The abstraction is exact so $FIRST(Ifp F) = Ifp F^{\sharp}$.

Syntax Analysis

• Refined semantics:

Syntax Analysis

• Refined semantics:

Abstraction to classical grammar semantics:

$$[\lambda, X := \alpha/\gamma \cdot \beta/\delta, \eta] \longrightarrow \lambda\gamma\delta\eta$$
, if terminal

Syntax Analysis

• Refined semantics:

Abstraction to classical grammar semantics:

$$[\lambda, X := \alpha/\gamma \cdot \beta/\delta, \eta] \longrightarrow \lambda\gamma\delta\eta$$
, if terminal

Abstraction to Earley algorithm:

$$[\lambda, X := \alpha/\gamma \cdot \beta/\delta, \eta] \longrightarrow [X := \alpha \cdot \beta, \gamma, \mathsf{FIRST}(\delta)]$$

Application to Semantics

Trace Semantics (Once Again)

Example 1 of Semantics Abstraction

Trace semantics

Denotational semantics

Natural semantics

Example 2 of Semantics Abstraction

(Small-Step) Operational Semantics

Example 3 of Semantics Abstraction

Partial Correctness / Invariance Semantics

Lattice of Semantics

Example 4: Hoare logic for partial correctness

The approximation in Hoare logic

For partial correctness:

- Non-terminating behaviors are forgotten;
- The order in which intermediate states may successively appear in a computation is forgotten.

The approximation in Hoare logic

For partial correctness:

- Non-terminating behaviors are forgotten;
- The order in which intermediate states may successively appear in a computation is forgotten.

Conservative approximation:

Does the program always terminate?

The approximation in Hoare logic

For partial correctness:

- Non-terminating behaviors are forgotten;
- The order in which intermediate states may successively appear in a computation is forgotten.

Conservative approximation:

Does the program always terminate? I don't know;

The approximation in Hoare logic

For partial correctness:

- Non-terminating behaviors are forgotten;
- The order in which intermediate states may successively appear in a computation is forgotten.

Conservative approximation:

- Does the program always terminate? I don't know;
- If variable x has always been 0 in the past and is assigned the value 1, will variable y be eventually assigned the value 1?

The approximation in Hoare logic

For partial correctness:

- Non-terminating behaviors are forgotten;
- The order in which intermediate states may successively appear in a computation is forgotten.

Conservative approximation:

- Does the program always terminate? I don't know;
- If variable x has always been 0 in the past and is assigned the value 1, will variable y be eventually assigned the value 1?
 don't know.

Application to Program Transformation

Principle of Online Program Transformation

Principle of Online Program Transformation

Principle of Online Program Transformation

(2) Approximate Abstractions

Application to Type Systems

Syntax of the Lambda Calculus

$$\mathbf{x},\mathbf{f},\ldots\in\mathbb{X}$$
 : variables $e\in\mathbb{E}$: expressions $e:=\mathbf{x}$ variable abstraction $|e_1(e_2)|$ application $|\mu\mathbf{f}\cdot\boldsymbol{\lambda}\mathbf{x}\cdot e|$ recursion $|\mathbf{f}\cdot\boldsymbol{\lambda}\mathbf{x}\cdot e|$ one $|e_1-e_2|$ difference $|e_1\cdot\mathbf{e}_2:e_3|$ conditional

Semantic Domains

² $[\mathbb{U} \mapsto \mathbb{U}]$: continuous, \perp -strict, Ω -strict functions from values \mathbb{U} to values \mathbb{U} .

Standard Denotational and Collecting Semantics

The denotational semantics is:

$$S[\bullet] \in \mathbb{E} \mapsto S$$

 A concrete property P of a program is a set of possible program behaviors:

$$P \in \mathbb{P} \stackrel{\mathsf{def}}{=} \wp(\mathbb{S})$$

 The standard collecting semantics is the strongest concrete property:

$$\mathbb{C}[\bullet] \in \mathbb{E} \mapsto \mathbb{P} \qquad \mathbb{C}[e] \stackrel{\mathsf{def}}{=} \{\mathbb{S}[e]\}$$

Church/Curry Monotypes

• Simple types are monomorphic:

$$m \in \mathbb{M}^{\scriptscriptstyle{\mathsf{C}}}, \quad m ::= \mathsf{int} \mid m_1 {\hspace{-1pt}\rightarrow\hspace{-1pt}} m_2 \qquad \mathsf{monotype}$$

• A type environment associates a type to free program variables:

$$H \in \mathbb{H}^{\mathsf{c}} \stackrel{\mathsf{def}}{=} \mathbb{X} \mapsto \mathbb{M}^{\mathsf{c}}$$
 type environment

Church/Curry Monotypes (continued)

• A typing $\langle H, m \rangle$ specifies a possible result type m in a given type environment H assigning types to free variables:

$$\theta \in \mathbb{I}^{c} \stackrel{\mathsf{def}}{=} \mathbb{H}^{c} \times \mathbb{M}^{c}$$
 typing

An abstract property or program type is a set of typings;

$$T \in \mathbb{T}^{\mathsf{c}} \stackrel{\mathsf{def}}{=} \wp(\mathbb{I}^{\mathsf{c}})$$
 program type

Concretization Function

The meaning of types is a program property, as defined by the concretization function γ^c : ³

• Monotypes $\gamma_1^c \in \mathbb{M}^c \mapsto \wp(\mathbb{U})$:

$$\begin{split} \gamma_{\scriptscriptstyle 1}^{\scriptscriptstyle \mathsf{C}}(\mathsf{int}) &\stackrel{\mathsf{def}}{=} \mathbb{Z} \cup \{\bot\} \\ \gamma_{\scriptscriptstyle 1}^{\scriptscriptstyle \mathsf{C}}(m_1 \mathop{\Rightarrow} m_2) &\stackrel{\mathsf{def}}{=} \{\varphi \in [\mathbb{U} \mapsto \mathbb{U}] \mid \\ \forall \mathsf{u} \in \gamma_{\scriptscriptstyle 1}^{\scriptscriptstyle \mathsf{C}}(m_1) : \varphi(\mathsf{u}) \in \gamma_{\scriptscriptstyle 1}^{\scriptscriptstyle \mathsf{C}}(m_2) \} \\ & \cup \{\bot\} \end{split}$$

³ For short up/down lifting/injection are omitted.

• type environment $\gamma_2^c \in \mathbb{H}^c \mapsto \wp(\mathbb{R})$:

$$\gamma_2^{\mathsf{c}}(H) \stackrel{\mathsf{def}}{=} \{ \mathsf{R} \in \mathbb{R} \mid \forall \mathsf{x} \in \mathbb{X} : \mathsf{R}(\mathsf{x}) \in \gamma_1^{\mathsf{c}}(H(\mathsf{x})) \}$$

• type environment $\gamma_2^c \in \mathbb{H}^c \mapsto \wp(\mathbb{R})$:

$$\gamma_2^{\mathsf{c}}(H) \stackrel{\mathsf{def}}{=} \{\mathsf{R} \in \mathbb{R} \mid \forall \mathsf{x} \in \mathbb{X} : \mathsf{R}(\mathsf{x}) \in \gamma_1^{\mathsf{c}}(H(\mathsf{x}))\}$$

• typing $\gamma_3^c \in \mathbb{I}^c \mapsto \mathbb{P}$:

$$\gamma_{\scriptscriptstyle 3}^{\scriptscriptstyle \mathsf{C}}(\langle H,\ m\rangle) \stackrel{\mathsf{def}}{=} \{\phi \in \mathbb{S} \mid \forall \mathsf{R} \in \gamma_{\scriptscriptstyle 2}^{\scriptscriptstyle \mathsf{C}}(H) : \phi(\mathsf{R}) \in \gamma_{\scriptscriptstyle 1}^{\scriptscriptstyle \mathsf{C}}(m) \}$$

• type environment $\gamma_2^c \in \mathbb{H}^c \mapsto \wp(\mathbb{R})$:

$$\gamma_2^{\mathsf{c}}(H) \stackrel{\mathsf{def}}{=} \{\mathsf{R} \in \mathbb{R} \mid \forall \mathsf{x} \in \mathbb{X} : \mathsf{R}(\mathsf{x}) \in \gamma_1^{\mathsf{c}}(H(\mathsf{x}))\}$$

• typing $\gamma_3^c \in \mathbb{I}^c \mapsto \mathbb{P}$:

$$\gamma_{\scriptscriptstyle 3}^{\scriptscriptstyle \mathsf{C}}(\langle H,\ m\rangle)\stackrel{\mathsf{def}}{=} \{\phi\in\mathbb{S}\mid \forall \mathsf{R}\in\gamma_{\scriptscriptstyle 2}^{\scriptscriptstyle \mathsf{C}}(H):\phi(\mathsf{R})\in\gamma_{\scriptscriptstyle 1}^{\scriptscriptstyle \mathsf{C}}(m)\}$$

• program type $\gamma^c \in \mathbb{T}^c \mapsto \mathbb{P}$:

$$\gamma^{\mathsf{c}}(T) \stackrel{\mathsf{def}}{=} \bigcap_{\theta \in T} \gamma^{\mathsf{c}}_{3}(\theta)$$
 $\gamma^{\mathsf{c}}(\emptyset) \stackrel{\mathsf{def}}{=} \mathbb{S}$

Program Types

Galois connection:

$$\langle \mathbb{P}, \subseteq, \emptyset, \mathbb{S}, \cup, \cap \rangle \xrightarrow{\gamma^{\mathsf{c}}} \langle \mathbb{T}^{\mathsf{c}}, \supseteq, \mathbb{I}^{\mathsf{c}}, \emptyset, \cap, \cup \rangle$$

Program Types

Galois connection:

$$\langle \mathbb{P}, \subseteq, \emptyset, \mathbb{S}, \cup, \cap \rangle \xrightarrow{\gamma^{\mathsf{c}}} \langle \mathbb{T}^{\mathsf{c}}, \supseteq, \mathbb{I}^{\mathsf{c}}, \emptyset, \cap, \cup \rangle$$

• Types T[e] of an expression e:

$$\mathbf{T}[\![e]\!] \subseteq \alpha^{\mathsf{c}}(\mathbf{C}[\![e]\!]) = \alpha^{\mathsf{c}}(\{\mathbf{S}[\![e]\!]\})$$

Program Types

Galois connection:

$$\langle \mathbb{P}, \subseteq, \emptyset, \mathbb{S}, \cup, \cap \rangle \xrightarrow{\gamma^{\mathsf{c}}} \langle \mathbb{T}^{\mathsf{c}}, \supseteq, \mathbb{I}^{\mathsf{c}}, \emptyset, \cap, \cup \rangle$$

• Types $\mathbf{T}[e]$ of an expression e:

$$\mathbf{T}[\![e]\!] \subseteq \alpha^{\mathsf{c}}(\mathbf{C}[\![e]\!]) = \alpha^{\mathsf{c}}(\{\mathbf{S}[\![e]\!]\})$$

Typable Programs Cannot Go Wrong

$$\Omega \in \gamma^{\mathsf{c}}(\mathsf{T}[\![e]\!]) \quad \Longleftrightarrow \quad \mathsf{T}[\![e]\!] = \emptyset$$

Application to Model Checking

Objective of Model Checking

- 1) Built a model M of the computer system;
- 2) Check (i.e. prove enumeratively) that the model satisfies a specification given (as set of traces φ) by a (linear) temporal formula: $M \subseteq \varphi$ or $M \cap \varphi \neq \emptyset$;

Objective of Model Checking

- 1) Built a model M of the computer system;
- 2) Check (i.e. prove enumeratively) that the model satisfies a specification given (as set of traces φ) by a (linear) temporal formula: $M \subseteq \varphi$ or $M \cap \varphi \neq \emptyset$;

Abstract interpretation is involved:

- To prove that the model and specification are correct abstractions of the computer system (often taken for granted);
- Checking is an abstraction;
- Soundness/completeness/refinement arguments.

Implicit Abstraction Involved in Model Checking

Spurious traces: ___,__, ;

Kozen's μ -calculus is closed under this abstraction.

Soundness

For a given class of properties, soundness means that:

Any property (in the given class) of the abstract world must hold in the concrete world;

Example for Unsoundness

All abstract traces are infinite but not the concrete ones!

Completeness

For a given class of properties, completeness means that:

Any property (in the *given class*) of the concrete world must hold in the abstract world;

Example for Incompleteness

All concrete traces are finite but not the abstract ones!

On the Soundness/Completeness of Model-Checking

Model checking is sound and complete (for the model);

On the Soundness/Completeness of Model-Checking

- Model checking is sound and complete (for the model);
- This is due to restrictions on the models and specifications (e.g. closure under the implicit abstractions);

On the Soundness/Completeness of Model-Checking

- Model checking is sound and complete (for the model);
- This is due to restrictions on the models and specifications (e.g. closure under the implicit abstractions);
- There are models/specifications (bidirectional traces) for which:
 - The implicit abstraction is incomplete (POPL'00),
 - Any abstraction is incomplete (Ranzato, Esop'01).

Application to Static Program Analysis

What is static program analysis?

 Automatic static/compile time determination of dynamic/runtime properties of programs;

What is static program analysis?

- Automatic static/compile time determination of dynamic/runtime properties of programs;
- Basic idea: use effective computable approximations of the program semantics;
 - Advantage: fully automatic, no need for error-prone user designed model or costly user interaction;
 - Drawback: can only handle properties captured by the approximation.

Static Analysis

 Objective: automatically extract information on the runtime behavior of a program from its text;

- Objective: automatically extract information on the runtime behavior of a program from its text;
- Method: use abstract interpretation to derive an abstract semantics which is effectively computable by a computer (from the standard semantics);

- Objective: automatically extract information on the runtime behavior of a program from its text;
- Method: use abstract interpretation to derive an abstract semantics which is effectively computable by a computer (from the standard semantics);
- Application: analyze the behavior of software before executing it in the real world;

- Objective: automatically extract information on the runtime behavior of a program from its text;
- Method: use abstract interpretation to derive an abstract semantics which is effectively computable by a computer (from the standard semantics);
- Application: analyze the behavior of software before executing it in the real world;
- Usefulness: essential for safety critical software (as found in planes, launchers, nuclear plants, ...).

Example of Effective Abstractionsof Infinite Sets of Infinite Trees

Binary Decision Graphs:

Tree Schemata:

$$\{a^n b | n \in \mathbb{N}\}$$

Note that E is the equality relation.

Principle of Verification by Static Analysis

Program to be analyzed:

```
x := 1;
1:
    while x < 10000 do
2:
    x := x + 1
3:
    od;
4:</pre>
```


Equations (abstract interpretation of the semantics):

```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
         while x < 10000 dc
2:
         od;
4:
```


Resolution by chaotic increasing iteration:

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
           while x < 10000 do
2:
                        \mathbf{x} := \mathbf{x} + \mathbf{1}
\begin{cases} X_1 = \emptyset \\ X_2 = \emptyset \\ X_3 = \emptyset \\ X_4 = \emptyset \end{cases}
```



```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x}:=\mathbf{x}+\mathbf{1} \begin{cases} X_1=[1,1] \\ X_2=\emptyset \\ X_3=\emptyset \\ X_4=\emptyset \end{cases}
```



```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
           while x < 10000 dc
2:
                        \mathbf{x} := \mathbf{x} + \mathbf{1}
\begin{cases} X_1 = [1, 1] \\ X_2 = [1, 1] \\ X_3 = \emptyset \\ X_4 = \emptyset \end{cases}
```



```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
           while x < 10000 do
2:
                        \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 1] \\ X_3 = [2, 2] \\ X_4 = \emptyset \end{cases}
```



```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
           while x < 10000 do
2:
                        \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 2] \\ X_3 = [2, 2] \\ X_4 = \emptyset \end{cases}
```


Increasing chaotic iteration: convergence!

```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 2] \\ X_3 = [2, 3] \\ X_4 = \emptyset \end{cases}
```


Increasing chaotic iteration: convergence!!

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 3] \\ X_3 = [2, 3] \\ X_4 = \emptyset \end{cases}
```


Increasing chaotic iteration: convergence !!!

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 3] \\ X_3 = [2, 4] \\ X_4 = \emptyset \end{cases}
```


Increasing chaotic iteration: convergence !!!!

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 do
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 4] \\ X_3 = [2, 4] \\ X_4 = \emptyset \end{cases}
```


Increasing chaotic iteration: convergence !!!!!

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 do
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 4] \\ X_3 = [2, 5] \\ X_4 = \emptyset \end{cases}
```


Increasing chaotic iteration: convergence !!!!!!

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 5] \\ X_3 = [2, 5] \\ X_4 = \emptyset \end{cases}
```


Increasing chaotic iteration: convergence !!!!!!!

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 do
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 5] \\ X_3 = [2, 6] \\ X_4 = \emptyset \end{cases}
```


Convergence speed-up by widening:

```
\begin{cases} X_1 = [1,1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1,1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \qquad \begin{cases} X_1 = [1,1] \\ X_2 = [1,+\infty] \end{cases} \Leftarrow \text{widening} \\ X_3 = [2,6] \\ X_4 = \emptyset \end{cases}
```



```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
           while x < 10000 dc
2:
                        \mathbf{x} := \mathbf{x} + \mathbf{1}
\begin{cases} X_1 = [1, 1] \\ X_2 = [1, +\infty] \\ X_3 = [2, +\infty] \\ X_4 = \emptyset \end{cases}
```



```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
           while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 9999] \\ X_3 = [2, +\infty] \\ X_4 = \emptyset \end{cases}
```



```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 9999] \\ X_3 = [2, +100000] \\ X_4 = \emptyset \end{cases}
```


Final solution:

```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
          while x < 10000 dc
2:
                       \mathbf{x} := \mathbf{x} + \mathbf{1} \\ \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 9999] \\ X_3 = [2, +10000] \\ X_4 = [+10000, +10000] \end{cases}
```


Result of the interval analysis:

```
\begin{cases} X_1 = [1, 1] \\ X_2 = (X_1 \cup X_3) \cap [-\infty, 9999] \\ X_3 = X_2 \oplus [1, 1] \\ X_4 = (X_1 \cup X_3) \cap [10000, +\infty] \end{cases}
x := 1;
1: {x = 1}
        while x < 10000 do
2: \{x \in [1, 9999]\}
                                                              \begin{cases} X_1 = [1, 1] \\ X_2 = [1, 9999] \\ X_3 = [2, +10000] \\ X_4 = [+10000, +10000] \end{cases}
3: \{x \in [2, +10000]\}
        od;
4: \{x = 10000\}
```


Checking absence of runtime errors with interval analysis:

```
x := 1;
1: \{x = 1\}
while x < 10000 do
2: \{x \in [1,9999]\}
x := x + 1
3: \{x \in [2,+10000]\}
od;
4: \{x = 10000\}
```


Application to Abstract Program Testing

 Static analysis: specification derived automatically from the program (e.g. using the language specification for run-time errors);

Static Analysis versus Abstract Testing

- Static analysis: specification derived automatically from the program (e.g. using the language specification for run-time errors);
- Abstract testing: specification given by the programmer.


```
read(n);
f := 1;
while (n <> 0) do
    f := (f * n);
    n := (n - 1)
od;
```

■ user program


```
read(n);
 f := 1;
 while (n <> 0) do
    f := (f * n);
    n := (n - 1)
 od;
sometime true;;
```

■ user program

user specification


```
0: \{ n: [-\infty, +\infty]?; f: [-\infty, +\infty]? \} static analyzer inference
  read(n);
1: { n:[0,+\infty]; f:[-\infty,+\infty]? }
 f := 1:
2: \{ n: [0,+\infty]; f: [1,+\infty] \}
  while (n <> 0) do
    3: \{ n: [1,+\infty]; f: [1,+\infty] \}
     f := (f * n);
    4: \{ n: [1,+\infty]; f: [1,+\infty] \}
     n := (n - 1)
    5: \{ n: [0, +\infty]; f: [1, +\infty] \}
  od:
6: { n:[0,0]; f:[1,+\infty] }
                                              user program
sometime true;;
                                              user specification
```



```
0: \{ n: [-\infty, +\infty]?; f: [-\infty, +\infty]? \}
  read(n);
1: { n:[0,+\infty]; f:[-\infty,+\infty]? }
 f := 1:
2: \{ n: [0,+\infty]; f: [1,+\infty] \}
  while (n <> 0) do
    3: \{ n: [1,+\infty]; f: [1,+\infty] \}
      f := (f * n);
    4: \{ n: [1,+\infty]; f: [1,+\infty] \}
      n := (n - 1)
    5: \{ n: [0,+\infty]; f: [1,+\infty] \}
  od;
6: \{ n:[0,0]; f:[1,+\infty] \}
sometime true;;
```

- static analyzer inference
- definite error

- no error
- potential error

- **■** user program
- user specification

Which properties can be handled? (examples)

Invariance/set of states properties: absence of runtime
 errors (overflows, division by zero, null pointer dereferenc ing, etc);

Which properties can be handled? (examples)

Invariance/set of states properties: absence of runtime
 errors (overflows, division by zero, null pointer dereferenc ing, etc);

Trace properties: accuracy of floating point computations, inevitable reaction to events, properties specified by the CTL temporal logic/the μ -calculus;

Which properties can be handled? (examples)

Invariance/set of states properties: absence of runtime
 errors (overflows, division by zero, null pointer dereferenc ing, etc);

Trace properties: accuracy of floating point computations, inevitable reaction to events, properties specified by the CTL temporal logic/the μ -calculus;

Temporal properties: termination, execution time, etc;

Types of analyzers

 Universal analyzers: based on general purpose approximations of wide spectrum properties to check common specifications for widely used programming languages (e.g. absence of runtime errors in C/ADA);

Types of analyzers

- Universal analyzers: based on general purpose approximations of wide spectrum properties to check common specifications for widely used programming languages (e.g. absence of runtime errors in C/ADA);
- Special purpose analyzers: based on specific approximations of problem specific properties to check user oriented specifications for a well-defined application (e.g. execution time on a given computer).

Conclusions and References

Conclusion

Future Objectives:

- Abstract interpretation as a thinking tool: a basis for reasoning about programs (from semantics to compilation, ...);
- Abstract interpretation applied to mechanical tools: scale up for large-scale industrialization;

Short Introductive Survey on Abstract Interpretation (with Numerous References)

[4] P. Cousot. Abstract interpretation based formal methods and future challenges. In R. Wilhelm, editor, « *Informatics* — 10 Years Back, 10 Years Ahead », volume 2000 of LNCS, pages 138–156. Springer-Verlag, 2001.

THE END

