Lecture 20

 $\varphi_{k} = \varphi_{k}^{(1)} - \varphi_{k}^{(2)} \quad \forall k$ $\varphi(n) \longrightarrow f(n) \quad \forall n \quad \text{as } k \longrightarrow \infty$ $\text{To show: } \left\{ |\varphi_{k}| \right\} \quad \text{is an in creaming sequelle.}$ $\psi_{k} = \varphi_{k}^{(1)} + \varphi_{k}^{(2)}.$ $|\varphi_{k}| = \varphi_{k}^{(1)} + \varphi_{k}^{(2)}.$ $|\varphi_{k}| = \varphi_{k}^{(1)} - \varphi_{k}^{(2)}.$ $|\varphi_{k}| = \varphi_{k$

Theorem: Suppose f is a measurable funtion on IRd.

Then there exists a sequence of step funtions

{ } \text{V}_k \text{S} \text{Converges pointwise to f almost every where.}

ie, { n \ \text{V}_k(n) +> f(n) \} has measure zero.

Littlewood's Hhree principles.

TEvery set is nearly a finite union of intervals.

- 2) Every funtion is nearly continuous.
- 3 Every Convergent sequence is nearly uniformly Convergent.

Def: A sequence of functions $\{f_n\}$, $f_n: E \to R$, $E \in \mathbb{R}^d$, is said to be uniformly Convergent on E to $f: E \to R$, if for given E > 0, there exists $N \in \mathbb{N}$ (independent of ∞) such that $|f_n(x) - f_n(x)| < \varepsilon$, $\forall n \ge \mathbb{N}$ & $\forall \cdot x \in E$.

Theorem (3 od principle) (Egoror)

Suppose $\{f_k\}_{k\in S}^{\infty}$ is a sequence of measurable functions defined on a measurable set E with $m[E]<\infty$ & armune that $f_k \to f$ pointwise almost everywhere on E. Given E>0, there exists a blosed set $A_E \subseteq E$ such that $m(E \setminus A_E) \subseteq E$ & $f_k \to f$ uniformly on A_E .

Theorem (Lusin) (2nd principle) Suppose of is measuable & finite valued ME je, f: E→R measuble & m (E) <00. Then for every £76 There exists a closed set $F_{\varepsilon} \subseteq E$ such that $m(E|F_{\epsilon}) \leq \epsilon$ & f| the sustriction map is Continuous. is Continuous. f|: Fe → R, f(a) = f(a) H x = Fe C E. =) [15] { a E E | f & vot Continuent n] C E 1 Fe.)

It principle alrealy stated.

Interprinciple alrealy stated.

Given the E EIRd measurable set. $4m(E) < \infty$, which there exists a finite union $F = \bigcup_{j=1}^{n} \theta_{ij}$ of closed cuber such that $f = \int_{0}^{\infty} df df$ and $f = \int_{0}^{\infty} df df df$ and $f = \int_{0}^$

The Labergue integral. f(x) Sfrajdz The general notion of the Lebergue integral on Rd will be Riemann interta defined in a step-by-step fashion D Single funtions. Bounded fautions suppored on a set of finite (3) Non-negative funtions (4) Integrable functions. Let $\varphi = \sum_{k=1}^{\infty} a_k \chi_{E_k}$ be a simple function where Ex ere medurable sets of finite measure & ax are constants. The Canonical form of & is the unique decomposition $\varphi = \sum_{k \in I} a_k \mathcal{K}_{E_k}$, where a_k are distinct & the sets Ex one disjoint.

Remarks Let $\varphi = \sum_{k=1}^{N} a_k X_k$ be a simple function. k=1 $Sange(\varphi) = \begin{cases} y \in \mathbb{R} / y = \varphi(\pi) \text{ for now } z \in \mathbb{R}^{d}. \end{cases}$ $= \left\{ \begin{array}{ll} C_{1}, C_{2}, - \cdot, C_{m} \\ \end{array} \right\}$ where $C_{j} = \alpha_{k_{j}}$ distinct.