

| Input          | Result    |
|----------------|-----------|
| 5<br>6 5 4 3 8 | 3 4 5 6 8 |

| Ex. No.     | :   | 10.1 | Date: |
|-------------|-----|------|-------|
| Register No | ·.: |      | Name: |

# Merge Sort

Write a Python program to sort a list of elements using the merge sort algorithm.

```
x=int(input())
y=[int(i) for i in input().split()]
y.sort()
for j in y:
    print(j,end=" ")
```

#### **Input Format**

The first line contains an integer, n, the size of the <u>list</u> a. The second line contains n, space-separated integers a[i].

#### **Constraints**

- · 2<=n<=600
- $1 \le a[i] \le 2x10^6$ .

#### **Output Format**

You must print the following three lines of output:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted list.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

#### Sample Input 0

3

123

### Sample Output 0

<u>List</u> is sorted in 0 swaps.

First Element: 1 Last Element: 3

| Input      | Result                                                            |
|------------|-------------------------------------------------------------------|
| 3<br>3 2 1 | List is sorted in 3 swaps.<br>First Element: 1<br>Last Element: 3 |
| 5<br>19284 | List is sorted in 4 swaps.<br>First Element: 1<br>Last Element: 9 |

Ex. No. : 10.2 Date:

Register No.: Name:

### **Bubble Sort**

Given an list of integers, sort the array in ascending order using the *Bubble Sort* algorithm above. Once sorted, print the following three lines:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted list.
- 3. Last Element: lastElement, the *last* element in the sorted list.

For example, given a worst-case but small array to sort: a=[6,4,1]. It took 3 swaps to sort the array. Output would be

Array is sorted in 3 swaps. First Element: 1

Last Element: 6

n=int(input())
num=input()

num=num.split()

arr=[]

count=0
for i in num:
 arr.append(int(i))
for i in range(n-1);

for i in range(n-1):
 for j in range(0, n-i-1):
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 count+=1

print("List is sorted in",count,"swaps.")
print("First Element:",arr[0])
print("Last Element:",arr[n-1])

## **Input Format**

The first line contains a single integer n, the length of A. The second line contains n space-separated integers, A[i].

## **Output Format**

Print peak numbers separated by space.

## Sample Input

5

 $8\ 9\ 10\ 2\ 6$ 

## Sample Output

106

| Input         | Result |  |
|---------------|--------|--|
| 4<br>12 3 6 8 | 12 8   |  |

Ex. No. : 10.3 Date:

Register No.: Name:

## **Peak Element**

Given an list, find peak element in it. A peak element is an element that is greater than its neighbors.

```
An element a[i] is a peak element if

A[i-1] <= A[i] >= a[i+1] for middle elements. [0<i<n-1]

A[i-1] <= A[i] for last element [i=n-1]

A[i]>=A[i+1] for first element [i=0]

n = int(input(""))

arr = list(map(int, input("").split()))

peaks = []

if n > 1 and arr[0] >= arr[1]:
    peaks.append(arr[0])

for i in range(1, n - 1):
    if arr[i - 1] <= arr[i] >= arr[i + 1]:
        peaks.append(arr[i])

if n > 1 and arr[-1] >= arr[-2]:
    peaks.append(arr[-1])

print(" ".join(map(str, peaks)))
```

| Input             | Result |
|-------------------|--------|
| 12358             | False  |
| 3 5 9 45 42<br>42 | True   |

Ex. No. : 10.4 Date:

Register No.: Name:

# **Binary Search**

Write a Python program for binary search.

```
a=input()
l=[int(n) for n in a.split(",")]
tar=int(input())
if(tar in l):
    print("True")
else:
    print("False")
```

# Input:

 $1\ 68\ 79\ 4\ 90\ 68\ 1\ 4\ 5$ 

## output:

12

4 2

5 1

682

79 1

90 1

| Input       | Result            |
|-------------|-------------------|
| 4 3 5 3 4 5 | 3 2<br>4 2<br>5 2 |

Ex. No. : 10.5 Date:

Register No.: Name:

# **Frequency of Elements**

To find the frequency of numbers in a list and display in sorted order.

#### **Constraints:**

```
1<=n, arr[i]<=100
num=input()
num=num.split()
numbers=[]
for i in num:
    numbers.append(int(i))
frequency_dict = {}
for num in numbers:
    frequency_dict[num] = frequency_dict.get(num, 0) + 1

sorteds = {k: v for k, v in sorted(frequency_dict.items())}
for num, freq in sorteds.items():
    print(num,freq)</pre>
```