Complicating the RHS of the Linear Model

Fundamental Techniques in Data Science with R

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

Outline

Categorical Predictors

Dummy Coding
Significance Testing for Dummy Codes

Moderation

Categorical Moderators

Categorical Predictors

Most of the predictors we've considered thus far have been *quantitative*.

- Continuous variables that can take any real value in their range
- Interval or Ratio scaling

We often want to include grouping factors as predictors.

- These variables are qualitative.
 - Their values are simply labels.
 - There is no ordering of the categories.
 - Nominal scaling

How to Model Categorical Predictors

We need to be careful when we include categorical predictors into a regression model.

• The variables need to be coded before entering the model

Consider the following indicator of major:

$$X_{maj} = \{1 = Law, 2 = Economics, 3 = Data Science\}$$

 What would happen if we naïvely used this variable to predict program satisfaction?

How to Model Categorical Predictors

How to Model Categorical Predictors

```
partSummary(out1, -1)
Residuals:
  Min 10 Median 30 Max
-1.303 -0.313 -0.113 0.342 1.342
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.33200 0.12060 -2.753 0.00664
majN 2.04500 0.05582 36.632 < 2e-16
Residual standard error: 0.5582 on 148 degrees of freedom
Multiple R-squared: 0.9007, Adjusted R-squared: 0.9
F-statistic: 1342 on 1 and 148 DF, p-value: < 2.2e-16
```

Dummy Coding

The most common way to code categorical predictors is *dummy coding*.

- A G-level factor must be converted into a set of G-1 dummy codes.
- Each code is a variable on the dataset that equals 1 for observations corresponding to the code's group and equals 0, otherwise.
- The group without a code is called the reference group.

Example Dummy Code

Let's look at the simple example of coding biological sex:

	sex	male
1	female	0
2	male	1
3	male	1
4	female	0
5	male	1
6	female	0
7	female	0
8	male	1
9	female	0
10	female	0

Example Dummy Codes

Now, a slightly more complex example:

	drink	juice	tea
1	juice	1	0
2	coffee	0	0
3	tea	0	1
4	tea	0	1
5	tea	0	1
6	tea	0	1
7	juice	1	0
8	tea	0	1
9	coffee	0	0
10	juice	1	0

Using Dummy Codes

To use the dummy codes, we simply include the G-1 codes as G-1 predictor variables in our regression model.

$$Y = \beta_0 + \beta_1 X_{male} + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_{juice} + \beta_2 X_{tea} + \varepsilon$$

- The intercept corresponds to the mean of Y for the reference group.
- Each slope represents the difference between the mean of Y in the coded group and the mean of Y in the reference group.

First, an example with a single, binary dummy code:

```
## Read in some data:
cDat <- readRDS("../data/cars_data.rds")

## Fit and summarize the model:
out2 <- lm(price ~ mtOpt, data = cDat)</pre>
```

Interpretations

- The average price of a car without the option for a manual transmission is $\hat{\beta}_0 = 23.84$ thousand dollars.
- The average difference in price between cars that have manual transmissions as an option and those that do not is $\hat{\beta}_1 = -6.6$ thousand dollars.

Fit a more complex model:

```
out3 <- lm(price ~ front + rear, data = cDat)
partSummary(out3, -1)
Residuals:
   Min 10 Median
                          30
                                Max
-14.050 -6.250 -1.236 3.264 32.950
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.63000 2.76119 6.385 7.33e-09
front -0.09418 2.96008 -0.032 0.97469
rear 11.32000 3.51984 3.216 0.00181
Residual standard error: 8.732 on 90 degrees of freedom
Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829
F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05
```

Interpretations

- The average price of a four-wheel-drive car is $\hat{\beta}_0 = 17.63$ thousand dollars.
- The average difference in price between front-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_1 = -0.09$ thousand dollars.
- The average difference in price between rear-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_2 = 11.32$ thousand dollars.

Include two sets of dummy codes:

Interpretations

- The average price of a four-wheel-drive car that does not have a manual transmission option is $\hat{\beta}_0 = 21.72$ thousand dollars.
- After controlling for drive type, the average difference in price between cars that have manual transmissions as an option and those that do not is $\hat{\beta}_1 = -5.84$ thousand dollars.
- After controlling for transmission options, the average difference in price between front-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_2 = -0.26$ thousand dollars.
- After controlling for transmission options, the average difference in price between rear-wheel-drive cars and four-wheel-drive cars is $\hat{\beta}_3 = 10.52$ thousand dollars.

For variables with only two levels, we can test the overall factor's significance by evaluating the significance of a single dummy code.

For variables with more than two levels, we need to simultaneously evaluate the significance of each of the variable's dummy codes.

```
summary(out4)$r.squared - summary(out2)$r.squared
[1] 0.1767569
anova(out2, out4)
Analysis of Variance Table
Model 1: price ~ mtOpt
Model 2: price ~ mtOpt + front + rear
 Res.Df RSS Df Sum of Sq F Pr(>F)
 91 7668.9
 89 6151.6 2 1517.3 10.976 5.488e-05 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

For models with a single nominal factor is the only predictor, we use the omnibus F-test.

MODERATION

Moderation

So far we've been discussing additive models.

- Additive models allow us to examine the partial effects of several predictors on some outcome.
 - The effect of one predictor does not change based on the values of other predictors.

Now, we'll discuss moderation.

- Moderation allows us to ask when one variable, X, affects another variable, Y.
 - We're considering the conditional effects of X on Y given certain levels of a third variable Z.

In additive MLR, we might have the following equation:

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \varepsilon$$

This additive equation assumes that X and Z are independent predictors of Y.

When *X* and *Z* are independent predictors, the following are true:

- *X* and *Z* can be correlated.
- β_1 and β_2 are *partial* regression coefficients.
- The effect of X on Y is the same at all levels of Z, and the effect of Z on Y is the same at all levels of X.

Additive Regression

The effect of *X* on *Y* is the same at **all levels** of *Z*.

Moderated Regression

The effect of *X* on *Y* varies **as a function** of *Z*.

The following derivation is adapted from Hayes (2017).

- When testing moderation, we hypothesize that the effect of X on Y varies as a function of Z.
- We can represent this concept with the following equation:

$$Y = \beta_0 + f(Z)X + \beta_2 Z + \varepsilon \tag{1}$$

The following derivation is adapted from Hayes (2017).

- When testing moderation, we hypothesize that the effect of X on Y varies as a function of Z.
- We can represent this concept with the following equation:

$$Y = \beta_0 + f(Z)X + \beta_2 Z + \varepsilon \tag{1}$$

• If we assume that *Z* linearly (and deterministically) affects the relationship between *X* and *Y*, then we can take:

$$f(Z) = \beta_1 + \beta_3 Z \tag{2}$$

• Substituting Equation 2 into Equation 1 leads to:

$$Y=\beta_0+(\beta_1+\beta_3Z)X+\beta_2Z+\varepsilon$$

Substituting Equation 2 into Equation 1 leads to:

$$Y = \beta_0 + (\beta_1 + \beta_3 Z)X + \beta_2 Z + \varepsilon$$

• Which, after distributing *X* and reordering terms, becomes:

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ + \varepsilon$$

Testing Moderation

Now, we have an estimable regression model that quantifies the linear moderation we hypothesized.

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z + \varepsilon$$

- To test for significant moderation, we simply need to test the significance of the interaction term, *XZ*.
 - Check if $\hat{\beta}_3$ is significantly different from zero.

Interpretation

Given the following equation:

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 Z + \hat{\beta}_3 X Z + \hat{\varepsilon}$$

- $\hat{\beta}_3$ quantifies the effect of Z on the focal effect (the $X \to Y$ effect).
 - For a unit change in Z, $\hat{\beta}_3$ is the expected change in the effect of X on Y.
- $\hat{\beta}_1$ and $\hat{\beta}_2$ are conditional effects.
 - Interpreted where the other predictor is zero.
 - For a unit change in X, $\hat{\beta}_1$ is the expected change in Y, when Z = 0.
 - For a unit change in Z, $\hat{\beta}_2$ is the expected change in Y, when X = 0.

Still looking at the diabetes dataset.

- We suspect that patients' BMIs are predictive of their average blood pressure.
- We further suspect that this effect may be differentially expressed depending on the patients' LDL levels.

Visualizing the Interaction

We can get a better idea of the patterns of moderation by plotting the focal effect at conditional values of the moderator.

Categorical Moderators

Categorical moderators encode *group-specific* effects.

• E.g., if we include *sex* as a moderator, we are modeling separate focal effects for males and females.

Given a set of codes representing our moderator, we specify the interactions as before:

$$Y_{total} = \beta_0 + \beta_1 X_{inten} + \beta_2 Z_{male} + \beta_3 X_{inten} Z_{male} + \varepsilon$$

$$\begin{aligned} Y_{total} &= \beta_0 + \beta_1 X_{inten} + \beta_2 Z_{lo} + \beta_3 Z_{mid} + \beta_4 Z_{hi} \\ &+ \beta_5 X_{inten} Z_{lo} + \beta_6 X_{inten} Z_{mid} + \beta_7 X_{inten} Z_{hi} + \varepsilon \end{aligned}$$


```
## I.oa.d. d.a.t.a.:
socSup <- readRDS(pasteO(dataDir, "social_support.rds"))</pre>
## Focal effect:
out3 <- lm(bdi ~ tanSat, data = socSup)
partSummary(out3, -c(1, 2))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.4089 5.3502 4.562 1.54e-05
tanSat
        -0.8100 0.3124 -2.593 0.0111
Residual standard error: 9.278 on 93 degrees of freedom
Multiple R-squared: 0.06742, Adjusted R-squared: 0.05739
F-statistic: 6.723 on 1 and 93 DF, p-value: 0.01105
```

```
## Estimate the interaction:

out4 <- lm(bdi ~ tanSat * sex, data = socSup)

partSummary(out4, -c(1, 2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.8478 6.2114 3.356 0.00115

tanSat -0.5772 0.3614 -1.597 0.11372

sexmale 14.3667 12.2054 1.177 0.24223

tanSat:sexmale -0.9482 0.7177 -1.321 0.18978

Residual standard error: 9.267 on 91 degrees of freedom

Multiple R-squared: 0.08955,Adjusted R-squared: 0.05954

F-statistic: 2.984 on 3 and 91 DF, p-value: 0.03537
```

Visualizing Categorical Moderation

$$\begin{split} \hat{Y}_{BDI} &= 20.85 - 0.58 X_{tsat} + 14.37 Z_{male} \\ &- 0.95 X_{tsat} Z_{male} \end{split}$$

$\hat{Y}_{BDI} = 28.10 - 1.00X_{tsat} - 1.05Z_{male}$

References

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.