Assignment 1

Rajbir Malik

2017CS10416

Theorem

```
\forall \  \, \text{exptree e} \  \, \text{mk\_big (eval(e))} = \text{stackmc li (compile e)}
```

Proof

We shall be proving the theorem by applying induction on the height of exptree.

Base Case

The base case height for exptree is 0. In this case the tree e, is just N(x) for some int. In this case,

$$eval(e) = x, and$$

$$compile(e) = [CONST(mk_big x)]$$

which after evaluation with stackmc would give

stackmc li (compile e) =
$$(mk_big x)$$

Thus, with this we can conclude

```
mk_big (eval(e)) = stackmc li (compile e)
```

Inductive Hypothesis

Now, we assume that \forall exptree e with height(e) $\leq k$ the above theorem is satisfied, i.e. mk_big (eval(e)) = stackmc li (compile e), where $k \geq 0$.

Inductive Step

Now, let e be an exptree with height = k + 1.

Now, since $k \geq 0$, height of $e \geq 1$.

This ensures that e is of the form

```
(BIN of exptree*exptree)

or

(UN of exptree)
```

, where BIN and UN are binary and unary operations respectively.

Case 1 (Binary Operation)

Now, e is of the form BIN(el, er). Since, el and er are subtrees of e their height is going to be $\leq k$. Thus, our induction hypothesis holds for these trees. Therefore,

```
mk_big (eval(er)) = stackmc li (compile er) = mk_big xr (say)
mk_big (eval(el)) = stackmc li (compile el) = mk_big xl (say)
```

Also,

Now, for LHS,

$$eval(e) = eval(el) ** eval(er), and so$$

 $eval(e) = xl ** xr$

where ** is the syntactic representation of BIN.

Now, for RHS

```
stackmc 11 (compile e) = stackmc 11 (compile el)@(compile er)@[BIN]
```

And, by the definition of stackmc, since compile el represents a complete tree, its values mk_big xl will be prepended to stack. The same goes for compile er. And, therefore,

```
stackmc l1 (compile e) = stackmc ((mk_big xr)::(mk_big xl)::l1) [BIN]
```

Now, following the definition of stackme, the above expression evaluates to,

```
stackmc l1 (compile e) = BIN (mk_big x1) (mk_big xr), which is same as BIN (mk_big xl) (mk_big xr) = mk_big (xl ** xr) = mk_big (eval(e)
```

and, hence induction holds.

Case 2 (Unary Operation)

With most properties same as above and e as UN(e'), by induction hypothesis,

Also,

Now, for LHS,

$$eval(e) = #eval(e'),$$

 $eval(e) = #x$

where # is the syntactic representation of UN.

Now, for RHS

```
stackmc l1 (compile e) = stackmc l1 (compile e')@[BIN]
```

And, by the definition of stackmc, since compile e' represents a complete tree, its values mk_big x' will be prepended to stack. And, therefore,

```
stackmc l1 (compile e) = stackmc ((mk_big x')::l1) [BIN]
```

Now, following the definition of stackmo, the above expression evaluates to,

```
stackmc l1 (compile e) = UN (mk_big x'), which is same as
UN (mk_big x') = mk_big (#xr) = mk_big (eval(e)
```

and, hence induction holds.

Thus, induction holds, and thus the theorem is correct.

Note

We have used some properties which are cleared here

- UN (mk_big x') = mk_big (#xr), from definition of UN in bigint
- BIN (mk_big xl) (mk_big xr) = mk_big (xl ** xr), from definition of BIN in bigint
- List li is assumed to be an arbitrary bigint list.