CS452 HW11

Yuting Chen

	IUTING Chen
9.16 Prove that TRBF & SPALE (n).	7
Using the space hierarchy theorem.	
If g is a space-constructible which means $I^n \rightarrow I^{g(n)}$	an be computed in space O(q(n),-f(n))= O(q(n))
then, SPALE (fin)) & SPALE (gun).	
There exists a language L which is solvable in linear	spau, but it can't be solved by sub-linear spau.
Assume TQBF & SPALE (n3).	,
TRBF is space complete, then L should be reduced t	o Tabf in log space.
So, L & SPACE ((nº) \$ + log(n))	
That's contradiction.	
Thus, Tabf & spale (11).	
9.19	
For this problem, we can solve by an polynomial tim	u that will be assigned for an nondeterministic polynomia
time class through a nondeterministic Turing Machine.	
Sinc, USAT SpSAT	
⇒ \$ & USAT if and only if the formula having variab	ks X, y.
φ(x) Λ φ(y) Λ " X +y" is satisfiable.	
Rewrite it, use A.V. negation operators such that	
X + y & Vin Xi + y; & Vin Xi ((xi n Vi)) v (xi	Λ Y _i)).
Thus, USAT E PSAT.	,
9.20	
As we know that an oracle A exists such that	$t P^{A} \neq MP^{A}$ and $L_{A} \notin P^{A}$.
For a given oracle A. La should be defined as Lo	1 = 1 W: W= X for some X & A 3.
Then La is in NPA. So La ∉ CONPA will have to proo-	
	s assigned to MP class by a nondeterministic Twing Machine
The oracle Tm m as follow.	7
On input w:	

- . Cambate give) and put it on the braile tape.
- >. Test the oracle If g(w) & SAT, then accept. 3. Otherwise, reject.
- The argument indicates that if C is a class and s is C-complete, then $C \subseteq P^s$.
- As PSAT = up SAT 40. LOND & PSAT
- Thus, an oracle C exists for which NPC + 6NPC.
- 9.21
 - (A) An oracle problem SAT will be NP complete problem. Noted LENP and PALE NP.
 - ⇒ This implies that L and PA, K ⊆ NP as it can be reduced in polynomial time by SAT. LO, NP & PSAT.
 - As we know L = NP. PAILE NP.

 - This implies Land PAIR & MP it can reduced in Polynomial time by SAT. - LIENP = PSAT) that also can be reduced in polynomial SAT.
- Assume LONP = MP. Then, the polynomial collapsed to either NP or LONP.
- The union operation is thene between NP and LONP.
- > NP = PSAT and UNP = PSAT. Union is completed in the polynomial time.
- Thus, NP V WMP = PSAT, 1
- (b) An oracle problem SAT will be NP complete problem.
- Noted L & NP and PALE NP.
- ⇒ This implies that L and PA, K ≤ NP as it can be reduced in polynomial time by SAT. LO, NP & PSAT
- As we know L = NP. PAILE NP.
- This implies Land PAIK & NP it can reduced in Polynomial time by SAT.

$\neg L(ENP \le PSAT)$ that also can be reduced in polynomial SAT.
Go, for each and every NP complete problem there is LOMP complete problem.
> NP ≤ PSAT and LONP ≤ PSAT.
If NP + WNP.
So, union is not computed in the polynomial time
Thus, MUDAP & P'SAT, I
10.19
Assume an encoding of SAT in which inputs can be a Boolean input variable X2 or value 0 or 1.
Assume every Boolean formula with same Number of injuts (x,0,1) has same size.
Let a formula & with n variables X1, X2Xn be input.
It would have the same size as 1, xzxn.
Suppose that SAT & BPP.
Assume there is a probabilistic polynomial time Turing Machine M that with probability at least to
owtputs, the correct answer on any input of size k.
The Turing Machine as follow:
Dn inpvt φ.
. Initialize φ' to be φ.
2. Let be 1-to n, $\phi^0 \leftarrow \phi'$ with X_K set to 0.
3. Run M with (b',y), y is a new random string.
4. If M accept, keep Xx Set to D in of.
J. If M reject, change of, let xx to 1 not 0.
6. Uheak the current setting for n variables satisfies the f.
7. If so, accept. Else, reject.
If ϕ not satisfiable, there will be no setting of the variables that will satisfy ϕ , so reject.
If ϕ satisfiable, the probability that a run of M in any particular iteration outputs the correct answer
立, k is the size of φ.
Since $\phi' \neq \phi$.(size), so probability of fail does not change.

Sinux ϕ is at least the number of variables $\pm F < \pm n$. The probability that any of n runs of M make error is at most $\pm n < \pm n$. Thus, it's a ramdomized that decides SAT with one—sides error. \Rightarrow SAT \in RP.					