

Universidade Eduardo Mondlane

Exames de Admissão -2013

Exame:	Matemática	Nº Questões:	57
Duração:	120 minutos	Alternativas por questão:	5

INSTRUÇÕES

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer 1. outra folha adicional, incluindo este enunciado.
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do 2. rectângulo por cima da letra. Por exemplo, pinte assim A, se a resposta escolhida for A

 A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha
- 3. primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica.

1.	A intersecção do conjunto de todos os números naturais múltiplos de 10 com o conjunto de todos os números naturais múltiplos de:						naturais
	A. 2	njunto de todos os nui B. 3	neros naturais m C. 5	D. 30	E. 1	50	
2.	Escolha um número r						
	A. 3,277	B327	C. 0		D. $\sqrt{2}$	E. -3π	
3.	O preço de um artigo	, primeiro, aumenta 🤅	30%, e depois, di	minui 30%. Em q	ue percentager	n se altera o preço in	icial do
	artigo pelo resultado	•					
	A. 4%		C. 16%		20%	E. Não há alte	
4.	Sejam <i>m</i> e <i>n</i> o númo			` '	ivamente. Cons	sidere a relação dada	pela lei
		nados (m,n) que cons					
	A. $(-3; 2), (-2)$; 3), (4; 2), (6; 3)	B. (-3; 2),(4	4; 3), (6; 2), (6; 3)	C.	(4; 2),(4; 3), (6; 2), (6; 3)
_	D. (-3; 3),(-2	; 2), (6; 2), (6; 3)	E. (4; 2),(4;	3), (-3; 2), (6; 3)			
5.	Simplificando a expre	ssão $(a+b)\left(\frac{1}{a}-\frac{1}{b}\right)$:	$\left(\frac{1}{b^2} - \frac{1}{a^2}\right)$, obtén	n-se:			
	A. 2 <i>ab</i>	B. <i>a</i> – <i>b</i>	C. <i>ab</i>	D.	a+b	E. <i>−ab</i>	
6.	A expressão $\frac{\sqrt{a\sqrt{a^3}}}{\sqrt[3]{a^2} \cdot \sqrt[4]{a}}$						
	A expressão $\frac{\sqrt{a\sqrt{a^3}}}{\sqrt{a^3}}$	é equivalente a:	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	_ 1	$-\frac{1}{2}$
	$\sqrt[3]{a^2 \cdot \sqrt[4]{a}}$	_	A. a ³	B. <i>a</i> ²	C. a 4	D. a ⁴ E.	a^{-2}
7.	A expressão $(\sqrt{5}-3)^2$	$(14+6\sqrt{5})$ é igual a:					
	A. 8	B. 256	C. 9	D.	4	E. 16	
8.	A. 8 O número $\left[\left(7\sqrt{7} \right)^{\frac{1}{3}} + \right]$	(1)-5] (. 2	_ 2	. 4	
	O número $\left \left(7\sqrt{7} \right)^{-\frac{1}{3}} \right $	$3^{\frac{1}{10}}$ $\left \frac{1}{\sqrt{10}} - \sqrt{\frac{1}{10}} \right $	é igual a:	A. ${21}$	B. $-{21}$	$C. {21}$	
	\	$\left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\sqrt{7} \right) \left(\sqrt{3}\right)$	8	D 10	_ 4		
	L	7		D. $-\frac{1}{21}$	E. $-\frac{1}{21}$		
9.	Sabe-se que a área de	um quadrado e o seu	ı perímetro são ex	xpressos pelo mes	mo número. Ei	ntão, a medida do lac	lo deste
	quadrado é igual a: A. 1	B. 4	C. 2	D	2,5	E. 3	
10.	O volume do polígono			D.	2,3	2	
10.	o voiame ao pongone		••			3	
	A. 38	B. 40 C.	46 D.	48 E.	54		
						ار	
						6	
11.	Se a relação dos volui		27 , então a relaç	ão das superfícies	destas bolas é:		
	A. 1:3	B. 1:27	C. 1:3	$\sqrt{3}$ D.	1:9	E. 1:81	
12.	0	·	$x^{49}(2-x)^{51}$				
	O conjunto das soluçõ	es da desigualdade ()	$\frac{1}{(x^2-3x+2)^{100}} \ge 0$:			
	A. [0;1[∪]1;2[∪]2	2;+∞[B. [0; 2 [C.]-∞;0]∪[2;+∞	∘[D.	$[0;1[\cup]1;2[$	E. Ø
13.	Numa turma, 12 alun	os são meninas. A pro	porção de menina	as e rapazes é 2:3	. O número de	alunos na turma é:	
	A. 18	B. 30	C. 24	1	D. 28	E. 22	

14.

15.

20.

Sendo a função $y = \frac{2}{x\sqrt{2-x}}$, então o seu domínio é:

A. $\{x \in R : x < 2\}$

- B. $\{x \in R : 0 < x < 2\}$
- C. $\{x \in R : x > 2\}$

- D. $\{x \in R : x < 2 \land x \neq 0\}$
- E. $\{x \in R : x < 2 \land x > 0\}$
- A inequação $\frac{x-1}{(2x+4)(3-x)} \ge 0$ tem solução:
 - A. $\{x \in R : x < -2 \lor 1 < x < 3\}$
- B. $\{x \in R : x \le -2 \lor 1 < x < 3\}$ C. $\{x \in R : x < -2 \lor 1 < x \le 3\}$

- D. $\{x \in R : x > 3 \lor -2 \le x < 1\}$
- E. $\{x \in R : x < -2 \lor 1 \le x < 3\}$
- Determine o comprimento da linha poligonal ABCD na figura sabendo que cada quadrado da 16. rede mede de lado 1 cm.

B. $\sqrt{23}$ cm

E. $\sqrt{5} + \sqrt{10} + 2\sqrt{2}$ cm

- 17. A solução da equação $3^x - 7^x = 0$ é:

- A. $\log_3 7$ B. $\log_7 3$ C. $\frac{3}{7}$ D. $\frac{7}{3}$ Sejam a e b números reais positivos. Se $\log_2(\log_5 a) = \log_5(\log_2 b) = 0$, então a + b é igual a: 18.

- A. 7 B. 2 C. 5 D. 10 E. 2⁵

 Numa progressão aritmética de 21 termos e razão 7, a soma do termo do meio e do seu antecedente é igual ao último 19. termo. Então o último termo é:
 - A. 137
- B. 147
- C. 157
- E. 210
- Para o triângulo ABD dado na figura são verdadeiras as igualdades AC = BC = DC, C
 - pertence ao lado BD, e $\angle ADB = 35^{\circ}$. Então $\angle ABC$ é igual a:
- B. 65°
- $C. 70^{\circ}$
- E. 145°

- Os números que exprimem o lado, a diagonal, e a área de um quadrado formam uma progressão aritmética, nesta ordem. 21. A diagonal do quadrado mede:
 - A. $2\sqrt{2}$
- B. $2\sqrt{2}-1$ C. $2+\sqrt{2}$ D. $4-\sqrt{2}$

- 22. Duas circunferências de centros A e B, respectivamente, são tangentes entre si no ponto E e tangentes à recta r nos pontos C e D, respectivamente. Sabendo que seus raios medem 4 cm e 1 cm, pode-se concluir que o segmento CD mede:

- A. 2 cm B. 3 cm C. 4 cm D. 5 cm
- E. $3\sqrt{2}$ cm

- 23. A solução da equação $\log_2(x-3) + 2\log_4 3^{\log_3 x} = 2$ é:
 - A. $S = \left\{4, \frac{9}{2}\right\}$ B. $S = \{3, 4\}$ C. $S = \{-1, 4\}$ D. $S = \{4\}$ E. $S = \{3\}$

- A recta 3x+2y-12=0 intercecta os eixos coordenados $Ox \in Oy$ nos pontos $A \in B$, respectivamente. O ponto médio 24. M do segmento AB é:
 - A. M(3,2)
- B. M(-2,2) C. M(-2,3) D. M(2,3)
- E. M(1,2)
- 25. O triângulo ABC é equilátero e o seu lado mede 6 cm. A equação da recta que contém o lado
 - A. $y = \sqrt{3}(x-3)$
 - $B. \quad y = \sqrt{3}(3-x)$ D. $y = 3(\sqrt{3} - x)$ E. $y = 3(x - \sqrt{3})$
- $C. \quad y = \sqrt{3}(x+3)$

- Se $\frac{x}{y} = \frac{2}{3}$ então $\frac{6x 2y}{3x + y}$ é igual a: $\begin{array}{c|c}
 A. & 2 \\
 D. & \frac{2}{3}
 \end{array}$ 26.

- Se durante o processo de secagem as frutas perdem 80% do seu peso, que quantidade de fruta fresca é preciso secar para 27. preparar 1 quilo de fruta seca?
 - A. 1.2 kg
- C. 2 kg
- D. 8 kg
- E. 4 kg

C. 3

- Se uma raiz da equação $x^2 + ax + 1 = 0$ é quatro vezes maior do que outra, então o parâmetro a da equação é igual a: 28.
- C. ±4
- D. ± 2
- E. ± 2.5

- 29. O produto das raízes da equação |3+x|=2 é igual a:
- B. 5
- C. -4
- D. 4
- E. -3

Exame de admissão de Matemática - 2013

Página 3 of 4

L'Aame	de admissao de iviatemadea = 2013			1 agnia 3 01 4
30.	A soma de todas as raízes da equação $x^2 - \sqrt{x^2}$	- 4 á igual a ·		
		C. 2	D2	E. 0
21	Se $2 < x < 3$ e $-2 < y < -1$ então pode-se garan	C. Z		E. 0
31.				p] a.f
	A.]-6;2[B.]-6;-2[D.]-4;-1[E.]-2;6[
32.	Resolvendo a desigualdade $x - \frac{25}{3} \le 0$, obtemos	s o conjunto:		
			ا دا الحال	
	A. $[-5,0[\cup [5;+\infty[$ B. $]-\infty;-5] \cup [5;+$		0[∪]0,5] D.	-5]∪]0;5] E.]0;5]
33.	Se $\lg 2 = a$ então a grandeza $\log_2 400$ é igual a	ı:		
	A. $1-2a$ B. $\frac{20}{a}$	$C = 1 \pm \frac{2}{3}$	D = Aa	$E = 2 \pm \frac{2}{3}$
				a a
34.	Qual dos números seguintes faz parte do contra	adomínio da função	y = 2senx + 3?	
	A1 B2	C. 0	D. 4	E. 6
35.	Considere a função $f(x) = senx$, definida no so	egmento [0; 2π] e a i	função constante $g(x) = c$	$com -1 \le c \le 1$. O conjunto
	dos pontos de intersecção dos gráficos de duas	funções $g(x)$ e $f(x)$	•	
		possui dois element		C. é vazio
	D. possui três elementos E.	é um subconjunto d	o conjunto {1,2,3}	
36.				
20.	A raiz da equação $sen2x - cos x = 0$ que perter	ice ao intervalo $\left \frac{n}{2}\right $;	$\pi \mid \mathbf{\acute{e}:}$	
		_	_	<i>5</i> –
	A. $\frac{\pi}{2}$ B. $\frac{3\pi}{4}$	C. $\frac{2\pi}{2}$	D. $\frac{\pi}{3}$	E. $\frac{5\pi}{6}$
37.			3	<u> </u>
37.	Se $x + y = 2$ e $xy = -4$ então o valor da express			
•		C. 12	D. 10	E. 16
38.	Qual é a negação da expressão lógica $\exists x \in R : f$	* *		
	A. $\exists x \in R : f(x) \neq 0$ B. $\exists x \in R : f(x) < 0$	C. $\forall x \in R : f(x)$	$(x) \neq 0$ D. $\forall x \in R : f(x)$	$(x) = 0 E. \exists x \in R : f(x) > 0$
39.	Sejam dadas as funções $f(x) = 2x$ e $g(x) = 1$	-x. O valor $f[g(0)+$	1] é igual a:	
				E4
40.	A. 2 B. 4 À direita está representado o gráfico de uma	função quadrática	$y = ax^2 + bx + c$, cuios par	râmetros ^ y
	satisfazem as desigualdades:	, , , , , , , , , , , , , , , , , , , ,	, , . , j j	
	A. $a > 0, b > 0, c < 0$ B. $a > 0$	0, b < 0, c > 0	C. $a < 0, b < 0, c > 0$	X
	D. $a < 0, b > 0, c < 0$ E. $a <$	<i>'</i>	,,, -	
	D. u < 0, 0 > 0, 0 < 0	0,0 < 0,0 < 0		/ 1
41.	Sabendo que a função quadrática $f(x) = x^2 + 2$	lny 2 atingo o sou r	nínimo no nonto x 1 oc	plaula a andanada da nanta da
	* *	.px − 3 attilge 0 seu 1	minimo no ponto $x=1$, ca	ncuie a ordenada do ponto do
	gráfico de f com abcissa $x = 2$.			
	A3 B. 5	C1	D. 2	E. 4 <i>v</i> ↑
42.	O gráfico ao lado representa a função:			y 1
	A. $y = 1 - x - 1 $ B. $y = 1 - x - 1 $. 11 C . 11	- 1: v : 1	
				-2 -1
	D. $y = -1 + x - 1 $ E. $y = -1 - x $	c-1		
43.	Se a e b são raizes diferentes da equação x^2 –	5x-1=0, então a gr	andeza $a^{-1} + b^{-1}$ é igual a	
	A8 B. 8	C5	D. 5	E. 4,5
44.	Todas as soluções da inequação $x^{-1} < 0.25$ form	nam o conjunto:		
	A.]-∞;4[B.]0;4[D $1-\infty$: 0[\cup]4	$4: +\infty$ [E]-4:0[
45.	Seja dada uma função $y = f(x)$ definida em R			
43.		•	• •	•
	e o gráfico da função f têm pelo menos um por		- · ·	
	A. injectiva B. sobrajectiva	C. contínua	D. crescente	E. decrescente
46.	O domínio de definição da função $f(x) = \lg(\lg x)$	x) é:		
	A. $]0; +\infty[$ B. $]1; +\infty[$	C. 1-∞: 0.1	D. 10: 0.1[E. $10.1:+\infty$
17				· 1 - 1 - 1 - 1
47.	O conjunto imagem (o contradomínio) da funça			
	A. $[0; +\infty[$ B. $[-1; 1]$	C. [0; 4]	D. [0; 2]	E.] $-\infty$; $+\infty$ [
48.	Escolha afirmação falsa:			
	A. O domínio da função $y = senx$ é R		B. O conjunto imagem o	da função $y = tgx$ é $[-1; 1]$
	C. A função $y = \lg x$ é crescente no seu domín	nio		da função $y = 2^{-x}$ é $]0; +\infty[$
	E. A função $y = \cos x$ é decrescente no inter-			
	, , ,	- J ~, · · · L		

49.

- **A sequência** $a_1, a_2, a_3, ...$ **em que** $a_k = -(0.5)^{-k} (k \in R)$ **é:**
 - A. progressão aritmética crescente

- B. progressão geométrica crescente
- C. progressão geométrica decrescente
- D. progressão geométrica que não é crescente nem decrescente
- E. uma sequência que não é progressão aritmética nem geométrica
- 50. O termo geral a_n da sequência $-1, \frac{5}{2}, -\frac{25}{6}, \frac{125}{24}, -\frac{625}{120}, ...$ (a sequência começa de a_1) é:

- B. $\frac{(-5)^n}{(n-1)!}$ C. $\frac{(-5)^{n-1}}{n!}$ D. $\frac{(-1)^{n+1}5^n}{n!}$ E. $\frac{(-1)^n5^{n-1}}{(n-1)!}$
- O maior número natural n para o qual se verifica a desigualdade $2+4+6+...+2n \le 100$, é: 51.
- B. 11

- 52. O valor da derivada da função $y = \frac{\ln x}{x}$ no ponto $x_0 = e^2$ é igual a:
- B. $\frac{1-2e}{e^4}$ C. $\frac{3}{e^4}$
- D. $\frac{1-e}{1+e^2}$ E. $-\frac{1}{e^4}$

- Seja dada uma função y = f(x) definida em R . A afirmação verdadeira é: 53.
 - A. Se a função f é contínua em A, então ela admite derivada em todos os pontos $x \in R$.
 - B. Se x = 1 é ponto máximo da função f, então a derivada nesse ponto, f'(1), é diferente de zero.
 - C. Se f'(1) = 0, então x = 1 é abcissa do ponto máximo ou do ponto mínimo da função f.
 - D. Se f'(x) > 0 para todo o $x \in R$, então o gráfico da função f intersecta o eixo Ox.
 - E. Se em todos os pontos $x \in R$ existe a derivada f'(x), então a função f é contínua em R.
- 54. Para a função f, representada na figura ao lado, o ponto de abscissa x = 3:
 - não é ponto de descontinuidade
 - B. é ponto de descontinuidade eliminável
 - C. é ponto de descontinuidade não-eliminável de 1^a espécie
 - D. é ponto de descontinuidade não-eliminável de 2^a espécie
 - E. nenhuma das alternativas anteriores

- 55. Para a função f(x) = |x| é correcto afirmar que:
 - A. não existe $\lim_{x\to 0+} f(x)$ e $\lim_{x\to 0-} f(x)$

- B. existe $\lim_{x \to 0} f(x)$ e $\lim_{x \to 0} f(x)$ que não são iguais
- C. no ponto x = 0 a função f é contínua e f'(0) = 0.
- D. no ponto x = 0 a função f é contínua e f'(0) = 1.
- E. no ponto x = 0 a função f é contínua mas não existe f'(0).
- 56. Na figura é dado o gráfico da derivada y = f'(x) da função y = f(x). Em que ponto do intervalo [-6;3] a função y = f(x) atinge o seu mínimo?
- B. 0.5 C. –4
- D. 2
- E. 3

- 57. Na figura ao lado está representado o gráfico da função derivada y = f'(x). Em relação a função
 - y = f(x) é correcto afirmar que:

 - A. x = 2 é ponto de máximo da função f B. no intervalo]2;3[a função f é decrescente C. x = 1 é ponto de máximo da função f D. no intervalo] $-\infty$;1[a função f é decresc en
- D. no intervalo $]-\infty;1[$ a função f é decresc ente
- E. x = 1, x = 2 e x = 3 são pontos extremos da função f

