Answers

A-4

Practice Exercises: 1. (f) 2. (a) 3. (d) 4. (e) 5. No 6. Yes 7. No 8. 2 9. 13

10. 10.9 **11.**
$$-\frac{1}{12}$$
 12. 8 **13.** -17 **14.** 0.9 **15.** $-\frac{3}{2}$ **16.** 6 **17.** $-\frac{1}{2}$ **18.** 7.6

19. All real numbers **20.** No solution **21.** −6

Section 1.2

Your Turn: Evaluating and Solving Formulas: 1. 227.5 miles **2.** y = 2A - x

3.
$$n = \frac{B-3m}{4}$$
 4. $b = \frac{2a}{ac+1}$

Practice Exercises: 1. False **2.** True **3.** True **4.** False **5.** 10.75 meters per cycle **6.** $t = \frac{d}{60}$

7.
$$x = 26 - y$$
 8. $a = Tb$ 9. $x = \frac{3y}{2}$ 10. $x = \frac{y - b}{m}$ 11. $q = 3A - p - r$ 12. $w = \frac{P - 2l}{2}$

13.
$$r^2 = \frac{S}{4\pi}$$
 14. $r = \frac{d}{t}$ **15.** $y = \frac{x}{a^2 + z}$ **16.** 62 inches **17.** 12 ft

Section 1.3

Your Turn: Five Steps for Problem Solving: 1. 20,500 thousand metric tons

2. -13, -12, -11 **Basic Motion Problems:** 1.
$$\frac{2}{3}$$
 hr, or 40 min

Practice Exercises: 1. Familiarize 2. Translate 3. Solve 4. Check 5. State 6. \$68.68 7. 6, 8 8, 215 units 9, 42, 43 10, 12°, 60°, 108° 11, 110 sec

Section 1.4

Your Turn: Inequalities: 1. No 2. No 3. Yes Inequalities and Interval Notation:

- 1. (-4,3] 2. $(-\infty,-7)$ 3. (6,11] 4. $(8,\infty)$ Solving Inequalities:
- 1. $\{x \mid x > -6\}$, or $(-6, \infty)$; \leftarrow 1. $\{x \mid x$
- 5. $\{x \mid x \le 4\}$, or $(-\infty, 4]$; $\xrightarrow{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8}$ Applications and Problem Solving:
- **1.** More than \$1046.02 in sales; $\{S \mid S > 1046.02\}$ **2.** More than 25 guests; $\{g \mid g > 25\}$

Practice Exercises: 1. (d) 2. (a) 3. (e) 4. (f) 5. (c) 6. (b) 7. No 8. Yes 9. No

- **19.** Times more than 170 hours; $\{t \mid t > 170\}$
- **20.** Scores greater than or equal to 92; $\{S \mid S \ge 92\}$
- **21.** Times less than 40 hours; $\{t \mid t < 40\}$

Sect D. A

Section 2.2

Your Turn: Identifying Functions: 1. Not a function 2. A function 3. Not a function

- **4.** A function Finding Function Values: **1.** g(0) = 3, g(-1) = 7, g(a+2) = -4a-5
- 2. 7 3. h(1) = -2, h(-1) = 4 4. 36π cm² ≈ 113.04 cm² Graphs of Functions:

The Vertical-Line Test: 1. Yes Applications of Functions and Their Graphs:

1. Approximately 1000 for-profit hospitals

Practice Exercises:

- 1. function; domain; range 2. vertical; function 3. output 4. A function
- **5.** Not a function **6.** 14 **7.** 14 **8.** 4a-11 **9.** 5 **10.** 150 cm²

11.

12.

13. A function 14. Not a function 15. Approximately 248 hospitals

Section 2.3

Your Turn: Finding Domain and Range: 1. Domain: $\{-4, -2, 2, 4\}$; range: $\{-2, 0, 1, 3\}$

- **2.** Domain: $\{x \mid -5 \le x \le 4\}$; range: $\{y \mid -5 \le y \le 1\}$ **3. a)** 1; **b)** $\{x \mid x \ge -3\}$; **c)** 1; **d)** $\{y \mid y \ge 0\}$
- **4.** $\{x | x \text{ is a real number } and x \neq 4\}$ **5.** All real numbers

Practice Exercises: 1. function **2.** relation **3.** domain **4.** range **5. a)** 3; **b)** {-3, 0, 2, 4};

- **c)** -3; **d)** $\{-3, -2, 1, 3\}$ **6. a)** 1; **b)** all real numbers; **c)** 2, 4 **d)** $\{y | y \le 2\}$
- 7. a) 4; b) $\{x \mid -4 \le x \le 5\}$; c) 0; d) $\{y \mid -2 \le y \le 4\}$ 8. All real numbers

Section 2.4

Your Turn: The Sum, Difference, Product, or Quotient of Two Functions:

1.
$$3x^2 - x + 4$$
 2. -8 **3.** $2t^2 + 7t - 4$ **4.** $-\frac{7}{2}$ **Determining Domain:**

1. $\{x \mid x \text{ is a real number } and \ x \neq 0\}$ **2.** $\{x \mid x \text{ is a real number } and \ x \neq 2 \text{ and } x \neq 7\}$

Practice Exercises: 1. (c) 2. (d) 3. (a) 4. (b) 5. 6 6. 2 7. $-x^3 + 3x^2 - x + 3$ 8. $\frac{3}{5}$

9. 18 **10.**
$$9-6x+x^2$$
 11. $\frac{a^2+1}{3-a}$, $a \ne 3$ **12.** -14 **13.** $\{x \mid x \text{ is a real number}\}$

14. $\{x | x \text{ is a real number}\}$ 15. $\{x | x \text{ is a real number } and x \neq 0\}$

16.
$$\{x \mid x \text{ is a real number } and x \neq 1\}$$
 17. $\{x \mid x \text{ is a real number } and x \neq -2\}$

18. $\{x \mid x \text{ is a real number } and \ x \neq 3\}$ **19.** $\{x \mid x \text{ is a real number } and \ x \neq -4 \text{ and } x \neq 8\}$

20. $\{x \mid x \text{ is a real number } and \ x \neq 1 \text{ and } x \neq 3\}$

Section 2.5

Your Turn: The Constant b: The y-Intercept: 1. (0,13) 2. (0,-9.5) 3. (0,3)

The Constant m: Slope: 1. $\frac{2}{5}$ 2. 9 3. $-\frac{1}{2}$ Applications: 1. 15 min/page

2. 1.5 cups/pie

Practice Exercises: 1. y-intercept 2. slope 3. down 4. slope-intercept form

5.
$$\left(0, -\frac{1}{2}\right)$$
 6. $\left(0, -1\right)$ 7. 3 8. 1 9. -5 10. Slope: $\frac{3}{8}$; y-intercept: $\left(0, -6\right)$

11. Slope: $\frac{3}{2}$; y-intercept: (0,3) 12. Slope: 1; y-intercept: (0,-9)

13. Slope: $-\frac{1}{3}$; y-intercept: $\left(0, \frac{2}{3}\right)$ 14. $1\frac{1}{6}$ miles per minute 15. $\frac{1}{20}$ mile per minute

Section 2.6

Your Turn: Graphing Using Intercepts:

1.

2.

Graphing Using the Slope and the y-Intercept:

1.

2.

Horizontal Lines and Vertical Lines:

1.

2.

Slope is not defined.

Slope is 0.

Parallel Lines and Perpendicular Lines: 1. Not parallel 2. Perpendicular

Practice Exercises: 1. vertical 2. parallel 3. -1 4. rise; run

6.

7.

8.

9.

Slope is 0.

Slope is not defined.

11. Parallel 12. Not parallel 13. Perpendicular 14. Perpendicular

Section 2.7

Your Turn: Finding an Equation of a Line When the Slope and the y-Intercept Are Given: 1. y = -7x + 5 2. f(x) = 4x - 10 Finding an Equation of a Line When the

Slope and a Point Are Given: 1. $y = \frac{2}{3}x - \frac{35}{3}$ 2. y = -x + 7 Finding an Equation of a

Line When Two Points Are Given: 1. $y = -\frac{1}{2}x + \frac{1}{2}$ 2. y = -x + 5

Finding an Equation of a Line Parallel or Perpendicular to a Given Line Through a

Point Not on the Line: 1. $y = -\frac{2}{5}x + \frac{33}{5}$ 2. y = -2x - 9

Applications of Linear Functions: 1. $e(t) = -\frac{1}{2}t + \frac{49}{2}$; \$17,500

2. h(p) = -15p + 250; 25 headbands

Practice Exercises: 1. (d) 2. (b) 3. (a) 4. (c) 5. y = -4x + 8 6. $f(x) = \frac{1}{2}x - 1$

7.
$$y = 6x - 18$$
 8. $y = -\frac{1}{2}x - 7$ 9: $y = \frac{1}{3}x + \frac{13}{3}$ 10. $y = 2x - 5$ 11. $y = x - 2$

12.
$$y = \frac{4}{5}x - 9$$
 13. a) $C(t) = 22.95t + 150$; **b)** \$517.20 **14. a)** $N(x) = 34x + 150$;

b) 524 students

1