









## Complete Chaos is Impossible!









































upper bound

For every coloring it works.

For some coloring it doesn't.







#### Head



### Tail





## $\mathbb{P}\{\exists \ monochromatic \ \mathsf{K_k}\} < 1$

# $\mathbb{P}\{igcup A ext{ is monochromatic}\} < 1$

 $A \subset V, |A| = k$ 

$$\mathbb{P}\{\bigcup_{A\subset V, |A|=k} A \text{ is monochromatic}\}$$

 $\sum$   $\mathbb{P}$ {A is monochromatic}

 $A\subset V, |A|=k$ 

# $\mathbb{P}\{A \text{ is monochromatic}\}$

#### $\mathbb{P}{A \text{ is monochromatic}}$

 $\mathbb{P}\{A \text{ is red}\} + \mathbb{P}\{A \text{ is blue}\}$ 

=

 $\mathbb{P}\{A \text{ is monochromatic}\}\$ 

=

 $\mathbb{P}{A \text{ is red}} + \mathbb{P}{A \text{ is blue}}$ 

=

 $2\mathbb{P}\{A \text{ is red}\}$ 



$$\mathbb{P}\{A \text{ is red}\}$$

 $\mathbb{P}\{A \text{ is monochromatic}\}$ 

 $\mathbb{P}{A \text{ is red}} + \mathbb{P}{A \text{ is blue}}$ 

 $2\mathbb{P}\{A \text{ is red}\}$ 

$$\mathbb{P}\{A \text{ is monochromatic}\}$$

$$\mathbb{P}\{A \text{ is red}\} + \mathbb{P}\{A \text{ is blue}\}$$

 $2\left(\frac{1}{2}\right)^{\binom{k}{2}}$ 

$$\mathbb{P}\{\bigcup_{A\subset V, |A|=k} A \text{ is monochromatic}\}$$

$$A \subset V, |A| = k$$

 $A \subset V, |A| = k$ 

 $\sum$   $\mathbb{P}$ {A is monochromatic}

$$\mathbb{P}\{\bigcup_{A\subset V:|A|=k}A \text{ is monochromatic}\}$$

$$A \subset V, |A| = k$$

 $ightharpoonup \mathbb{P}\{A \text{ is monochromatic}\}$ 

 $\binom{n}{k} 2 \left(\frac{1}{2}\right)^{\binom{k}{2}}$ 

$$A \subset V, |A| = k$$

 $A \subset V, |A| = k$ 

$$\binom{n}{k} 2 \left(\frac{1}{2}\right)^{\binom{k}{2}} < \frac{2^{k/2+1}}{k!} \frac{n^k}{2^{k^2/2}} < 1$$

$$\binom{n}{k} 2 \left(\frac{1}{2}\right)^{\binom{k}{2}} < \frac{2^{k/2+1}}{k!} \frac{n^k}{2^{k^2/2}} < 1$$

$$n < 2^{k/2}$$





Frank Plumpton Ramsey 1903 – 1930