```
In [ ]: import pandas as pd
         import numpy as np
        import matplotlib.pyplot as plt
         import seaborn as sns
In [ ]: df=pd.read csv('/content/drive/MyDrive/datasets/weight-height.csv')
        df.sample(5)
Out[]:
               Gender
                         Height
                                   Weight
         4986
                 Male 71.644419 190.063286
          480
                 Male 69.736087 185.524260
         4880
                 Male 72.153511 196.538474
         9405
              Female 68.238296 146.865810
         9203 Female 63.683083 131.593043
```

In []: | df.shape

Out[]: (10000, 3)

In []: sns.distplot(df['Height'])

<ipython-input-21-26dbcd94f059>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['Height'])

Out[]: <Axes: xlabel='Height', ylabel='Density'>


```
In [ ]: | sns.boxplot(df['Height'])
Out[ ]: <Axes: ylabel='Height'>
             80
                                                9
             75
             70
          Height
             60
             55
                                                8
In [ ]:
         df.describe()
Out[]:
                      Height
                                  Weight
          count 10000.000000 10000.000000
          mean
                   66.367560
                               161.440357
            std
                    3.847528
                                32.108439
           min
                   54.263133
                                64.700127
           25%
                   63.505620
                               135.818051
           50%
                   66.318070
                               161.212928
           75%
                   69.174262
                               187.169525
           max
                   78.998742
                               269.989699
         print('upperlimit'),df['Height'].mean() + 3*df['Height'].std()
In [ ]:
         upperlimit
Out[]: (None, 77.91014411714093)
```

In []: print('lowerlimit'),df['Height'].mean() - 3*df['Height'].std()

lowerlimit

Out[]: (None, 54.82497539250156)

```
In [ ]: df[(df['Height']>77.9) | (df['Height']<54.8)]</pre>
```

Out[]:

	Gender	Height	Weight
994	Male	78.095867	255.690835
1317	Male	78.462053	227.342565
2014	Male	78.998742	269.989699
3285	Male	78.528210	253.889004
3757	Male	78.621374	245.733783
6624	Female	54.616858	71.393749
9285	Female	54.263133	64.700127

```
In [ ]: new_df=df[(df['Height']<77.9) & (df['Height']>54.8)]
    new_df
```

Out[]:

	Gender	Height	Weight
0	Male	73.847017	241.893563
1	Male	68.781904	162.310473
2	Male	74.110105	212.740856
3	Male	71.730978	220.042470
4	Male	69.881796	206.349801
9995	Female	66.172652	136.777454
9996	Female	67.067155	170.867906
9997	Female	63.867992	128.475319
9998	Female	69.034243	163.852461
9999	Female	61.944246	113.649103

9993 rows \times 3 columns

```
In [ ]: new_df.shape
```

Out[]: (9993, 3)

```
In [ ]: sns.boxplot(new_df['Height'])
```

Out[]: <Axes: ylabel='Height'>


```
In [58]: #Z-score Method
df["z_score"]=(df['Height']-df['Height'].mean()) / (df['Height'].std())
df.head()
```

Out[58]:

	Gender	Height	Weight	z_score
0	Male	73.847017	241.893563	1.943964
1	Male	68.781904	162.310473	0.627505
2	Male	74.110105	212.740856	2.012343
3	Male	71.730978	220.042470	1.393991
4	Male	69.881796	206.349801	0.913375

In [61]: df[df['z_score']>3]

Out[61]:

	Gender	Height	Weight	z_score
994	Male	78.095867	255.690835	3.048271
1317	Male	78.462053	227.342565	3.143445
2014	Male	78.998742	269.989699	3.282934
3285	Male	78.528210	253.889004	3.160640
3757	Male	78.621374	245.733783	3.184854

```
In [62]: | df[df['z_score']<-3]</pre>
Out[62]:
                 Gender
                            Height
                                     Weight
                                               z_score
           6624
                 Female 54.616858 71.393749 -3.054091
           9285
                 Female 54.263133 64.700127 -3.146027
In [66]:
          df[(df['z_score']>3) | (df['z_score']<-3)]
Out[66]:
                 Gender
                            Height
                                      Weight
                                                z_score
            994
                    Male 78.095867 255.690835
                                               3.048271
           1317
                    Male 78.462053 227.342565
                                               3.143445
           2014
                    Male 78.998742 269.989699
                                               3.282934
           3285
                    Male 78.528210 253.889004
                                               3.160640
           3757
                    Male 78.621374 245.733783
                                               3.184854
           6624
                  Female 54.616858
                                   71.393749 -3.054091
           9285
                 Female 54.263133
                                    64.700127 -3.146027
In [71]:
          last_df=df[(df['z_score']<3) & (df['z_score']>-3)]
          last df
Out[71]:
                 Gender
                            Height
                                      Weight
                                                z_score
              0
                    Male 73.847017 241.893563
                                               1.943964
              1
                    Male 68.781904 162.310473
                                               0.627505
              2
                    Male 74.110105 212.740856
                                               2.012343
              3
                    Male 71.730978 220.042470
                                               1.393991
              4
                    Male 69.881796 206.349801
                                               0.913375
                  Female 66.172652 136.777454 -0.050658
           9995
                  Female 67.067155 170.867906
           9996
                                               0.181830
                  Female 63.867992 128.475319 -0.649655
           9997
           9998
                  Female 69.034243 163.852461
                                               0.693090
           9999
                  Female 61.944246 113.649103 -1.149651
          9993 rows × 4 columns
In [77]:
          Upperlimit=df['Height'].mean() + 3*df['Height'].std()
          Lowerlimit=df['Height'].mean() - 3*df['Height'].std()
In [78]: | Upperlimit
Out[78]: 77.91014411714093
In [79]:
         Lowerlimit
Out[79]: 54.82497539250156
```

```
In [86]: | df['Height']=np.where(
              df['Height']>Upperlimit,
              Upperlimit,
              np.where(
                  df['Height']<Lowerlimit,</pre>
                  Lowerlimit,
                  df['Height']
              )
In [83]: last df.shape
Out[83]: (9993, 4)
In [84]: df['Height'].describe()
Out[84]: count
                   10000.000000
         mean
                      66.367321
         std
                       3.846314
         min
                      54.824975
         25%
                      63.505620
         50%
                      66.318070
         75%
                      69.174262
         max
                      77.910144
         Name: Height, dtype: float64
```