Pompe à palettes ★

B2-13

Question 1 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

En utilisant la décomposition du vecteur cinématique, on a : $\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}$.

$$\overrightarrow{V\left(B,2/1\right)} = \overrightarrow{\lambda}(t)\overrightarrow{i_1}.$$

$$\overrightarrow{V\left(B,1/0\right)} = \overrightarrow{V\left(A,1/0\right)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega\left(1/0\right)} = -\lambda(t)\overrightarrow{i_1} \wedge \dot{\theta}(t)\overrightarrow{k_0} = \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$$

$$\left\{ \mathcal{V}\left(2/0\right) \right\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_{\mathcal{B}}.$$

Question 2 Déterminer $\overrightarrow{\Gamma(B,2/0)}$.

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \lambda(t) \ddot{\theta}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta}^2(t) \overrightarrow{i_1}.$$