ESE5001 Environmental Engineering Principles Chemical Principles Practice Questions

1. Units and unit conversion exercises

- (a) Vinyl chloride (C_2H_3Cl) is a confirmed carcinogen that is sometimes found in drinking water. If it is present in drinking water at a level of 80 ppb, what is the mass concentration of vinyl chloride in water (in $\mu g/L$)?
- (b) The maximum contaminant level for cadmium in drinking water is 0.005 mg/L. Convert this mass concentration into a mass fraction in units of parts per million (ppm).
- (c) A brochure from a municipal water supply agency lists the following average concentrations of selected ions in drinking water:

$$\begin{array}{lll} Fe^{3+} & 0.02 \text{ mg L}^{-1} \\ Ca^{2+} & 9.8 \text{ mg L}^{-1} \\ Mg^{2+} & 1.8 \text{ mg L}^{-1} \\ K^{+} & 0.6 \text{ mg L}^{-1} \\ Na^{+} & 4.6 \text{ mg L}^{-1} \end{array}$$

Compute the molarity and normality of each of these species.

2. River Water Quality

Given the characteristics listed below for a "typical" river, determine the following parameters related to drinking water quality. The water temperature is 25°C.

- (a) Total hardness (meq/L)
- (b) Carbonate hardness (meg/L)
- (c) Noncarbonate hardness (meq/L)
- (d) Total dissolved solids (mg/L)
- (e) Alkalinity (meq/L)
- (f) Ionic Strength (M)
- (g) pH
- (h) Check the electroneutrality balance.

Species	Concentration (mg/L)	Species	Concentration (mg/L)
Ca ²⁺	15	CO_3^{2-}	0.0085
Mg^{2+}	4.1	SO_4^{2-}	11.2
Na ⁺	6.3	Cl	7.8
K^{+}	2.3	NO_3	1
H^+	0.32 (μg/L)	SiO ₂	13.1
HCO ₃	58.4		

3. Nitrogen dissolved in water

- (a) Determine the mass concentration of N₂ in water at 20 °C when the water is in equilibrium with the atmosphere.
- (b) Compare your result with the equilibrium mass concentration of O_2 in water exposed to the atmosphere: 9.1 mg/L at 20 °C. Explain.

4. Window cleaner chemistry

One of the active ingredients in window cleaner is ammonium hydroxide (NH₄OH). Consider the following situation: 10^{-3} moles of ammonium hydroxide is added to pure water to form 1 L of solution. The solution is placed into a 1 L glass jar and sealed (without any air space). The ammonium hydroxide fully dissolves to NH₄⁺ and OH⁻. The liberated ammonium ion is weak acid (pK_A = 9.23). Determine he equilibrium pH of the liquid.

5. Elementary reaction kinetics

- (a) A species in a batch reactor undergoes first-order decay with a rate constant of 0.3 h⁻¹. How much time must pass before the species concentration is reduced to 10% of its initial value?
- (b) A species undergoes first-order decay in a batch reactor. Three hours after the reactor is sealed, the species concentration is 20% of its initial value. What is the rate constant?
- (c) Two reactants, A and B, are placed in a batch reactor where they undergo the following elementary reaction:

$$A + B \rightarrow products$$

The initial concentrations are [A] = 0.1 M and [B] = 0.001 M. The reaction rate constant is $3 \text{ M}^{-1} \text{ h}^{-1}$. What are the steady-state concentrations of [A] and [B]?

(d) For the conditions in part (c), what is the characteristics time to achieve steady-state in the reactor?

6. Redox stoichiometry

Often, wastewater is disinfected with hypochlotous (HOCl) before discharging it to the environment. To avoid damaging the receiving waters, the disinfection step is often followed by a "dechlorination" step: bisulfate (HSO₃-) is added to the water to react with excess hypochlorous acid. The overall reaction is

$$HOCl + a HSO_3^- \rightarrow b Cl^- + c SO_4^{2-} + d X$$

where the letters a – d represent stoichiometric coefficients and the symbol X represents a chemical element or compound.

- (a) Give the oxidation states of the following elements: Ch in HOCl; Cl in Cl⁻; S in HSO₃⁻; S in SO₄²⁻.
- (b) Determine the stoichiometryc coefficients, a c.
- (c) What is the unknown species, X and its stoichiometric coefficient d?

7. Biochemical Oxygen Demand

An experiment was conducted in a batch reactor to measure the BOD in a water sample. The water sample was placed in a reactor and the dissolved oxygen

content (DO) was measured as a function of time. The measurement data are presented below. Use these data to answer the following questions.

Time	DO (mg/L)
0	10
1	8.7
2	7.6
3	6.8
4	6.2
5	5.7
6	5.3
7	5.0
8	4.8
9	4.6
10	4.5
15	4.1
∞	4.0

- (a) What is the ultimate BOD of the sample (BOD_u)?
- (b) What is the 5-day BOD of the sample (BOD_5) ?
- (c) What is the reaction rate constant, k, for BOD degradation?

8. Batch reactor kinetics: Sequential first-order reactions

A batch reactor is initially filled with water that contains species A at concentration A_o . Except for this species, the water is pure. After the reactor is sealed, the following chemical reactions occur:

$$A \rightarrow B$$
 $R_1 = k_1 [A]$ $B \rightarrow C$ $R_2 = k_2 [B]$

- (a) Derive an explicit equation that yields the concentration of species A as a function of time.
- (b) Fluid is kept in the batch reactor for a time period T. Write a mathematical condition for T that, if satisfied, would permit the approximation $[A](T) \approx A_o$. [Hint: T = 0 is unnecessarily restrictive.]

Assume for the remainder of the problem that $[A](T) \approx A_o$. Also assume that the reaction rate constants satisfy the condition $k_1 \ll k_2$. (3 marks)

- (c) Write a governing equation that describes the rate of change of [B].
- (d) Derive an explicit expression for the steady-state concentration of [B].
- (e) What is the characteristic time required for the steady-state solution in (d) to be attained?
- (f) Derive an explicit equation for the time-dependent concentration of [B].

SOLUTIONS

1. Units and unit conversion exercises

1 a) Mass Concentration of GH3Cl in H2O

$$= \left(\frac{90 \times 10^{-9} \text{ g GH3Cl}}{\text{ g H2O}}\right) \left(\frac{10^{9} \text{ ug}}{\text{ g}}\right) \left(\frac{1 \text{ kg H2O}}{\text{ kg}}\right) \left(\frac{1 \text{ kg H2O}}{\text{ L H2O}}\right)$$

$$= \left(\frac{80 \times 10^{-9} \text{ g GH3Cl}}{\text{ g H2O}}\right) \left(\frac{10^{9} \text{ ug/L}}{\text{ kg}}\right) \left(\frac{1 \text{ kg H2O}}{\text{ L H2O}}\right)$$

$$= \left(\frac{10^{9} \text{ ug/L}}{\text{ L H2O}}\right) \left(\frac{1 \text{ ug/L}}{\text{ los mg Gl}}\right) \left(\frac{1 \text{ g Cd}}{\text{ los mg Gl}}\right) \left(\frac{10^{9} \text{ los mg Gl}}{\text{ los mg Gl}}\right) \left(\frac{1 \text{ g Cd}}{\text{ los mg Gl}}\right) \left(\frac{10^{9} \text{ los mg Gl}}{\text{ los$$

2. River Water Quality

mu mu are	malities Itivalent — Cazt calculal	ness is de s of multi- cations and Mg ed s follo	present i	ations I	1-
	ides Co	Mass neutration mg L-1]	MW; [g mor]	Mi [mol L-1]	[eq L-1]
Ca2 Ma	z+	15 4.1	40 24	3.75 x10 4	7.5 × 10-4 3.42×10-4
The	refore T	me total ha	urdness i	Z =	1.1×10^{-3}
		TH = 1.1 me	q L-1		
	bonate	hardness it is of continued to the third sum. It is can line this can species are	is greate se, the n e as follow	s set equer than to ormalitics vs:	al to This nt, Then of the
	(0.0085	mg) (1 mmol) (60 mg)	(2) + (5)	~ NHW3	
€:		= 0.96 me		71 (11	
(d We lis	can as led are me forn e) Thu	sume that filterable— of filtera is, TDS is	r none of (althing ible part found b	the comp h Sioz m ides, This	is neglected
		+4.1 + 6.3 + 1 +11.2 + mg L-1	2.3 +0.67 + 7.8 + 1 + 1	0.32×10 ⁻³ + 5 3.1] mg L ⁻¹	84 +0.0085

(e) Alkalinity is defined as:

ALK =
$$[0H] + [H\omega_3] + 2[Co_3^2] - [H+]$$
 eq L⁻¹

In this case:

 $[H+] = (0.32 \text{ Lig})(\frac{10}{10^6} \text{ Mg})(\frac{1 \text{ mole}}{1 \text{ g}}) = 3.2 \text{ x} 10^{-7} \text{ M}$
 $[0H] = \frac{10^{-14} M^2}{[H+]} = \frac{10^{-14} M^2}{3.2 \text{ x} 10^{-7} M} = 3.13 \text{ x} 10^{-8} \text{ M}$
 $[H\omega_3^-] = (58.4 \text{ mg})(\frac{1}{10^3} \text{ mg})(\frac{1 \text{ mol}}{61 \text{ g}}) = 9.57 \text{ x} 10^{-4} \text{ M}$
 $[C03^2] = (0.0085 \text{ mg})(\frac{1}{10^3} \text{ mg})(\frac{1 \text{ mol}}{60 \text{ g}}) = 1.42 \text{ x} 10^{-7} \text{ M}$

Thus:

$$ALV = [3.13 \times 10^{-8} + 9.57 \times 10^{-4} + 1.42 \times 10^{-7} - 3.2 \times 10^{-7}] \text{ eq}$$

$$ALV = 0.96 \text{ meq L}^{-1}$$

Where C: is the molar concentration of species in the importance of species

28

- 2c) NCH = TH CH = 1.1 0.96 meg/L = 0.14 meg/LNon carbonate hardness = 0.14 meg/L
 - pH is defined as (g) PH = - logio (molar concentration of #+) From part (d) we know [H+] = 3.2 x 10 7 M. Therefore: PH = - log [3.2x10-7] = 6.5
 -) The following condition must be met for the electroneutrality principle to be satisfied: (h) E Cilzil = Scilzil
 for all
 anions for all
 cations

We can use the volues calculated in part (e) for Ci and Zi.

For anions:

$$\leq C_1 + \frac{1}{2} \left((9.57 \times 10^{-4})(1) + (1.42 \times 10^{-7})(2) + (1.17 \times 10^{-4})(2) + (2.20 \times 10^{-4})(1) + (1.61 \times 10^{-5})(1) \right) M$$

= 1.43 × 10⁻³ M

For cations $\leq c_{1} = \left\{ (3.75 \times 10^{-4})(2) + (1.71 \times 10^{-4})(2) + (2.74 \times 10^{-4})(1) + (5.90 \times 10^{-5})(1) + (1.20 \times 10^{-5})(3) \right\} M$ = 1.46 x10-3M

Therefore, we have satisfied electroneutrality to within < 1%.

3. Nitrogen dissolved in water

(a) The equilibrium concentration of Nz in water is determined by Henry's constant: $C_{W} = K_{H,g} P_{g}$ Where: $K_{H,g} = 0.00067 M | atm$ $P_{g} = 0.78 atm$ Therefore: $C_{W} = (0.00067 \frac{M}{atm}) (0.78 atm)$ $= 5.2 \times 10^{-4} M$ In terms of mass concentration: $C_{W} = (5.2 \times 10^{-4} \text{ moles}) (28 \frac{g}{mol})$ $C_{W} = 1.46 \times 10^{-2} g = 15 \text{ mg L}^{-1}$ (b) Even though the Henry's constant for pxygen is twice that for nitrogen, since there is more nitrogen in air there is more nitrogen to exposed to the atmosphere.

4. Window cleaner chemistry

My NH4CR = 10-3mol NHOH SHHOT+OH-NA4+ 2 H++ NH3(44) Unknowns: [H+], [OH-], [NH4+], [NH309)] we can use the following equations to find The unknowns:

Kw = [OH][H+] -> equilibrium [NH4+] + [NH3(aq)] = 10-3M mass conservation $\frac{[H^{+}][NH_{3}(q_{3})]}{[NH_{4}^{+}]} = K_{\alpha} = 10^{-\rho K_{\alpha}} = 10^{-9.23}$ $\xrightarrow{NH_{4}^{+}} = K_{\alpha} = 10^{-\rho K_{\alpha}} = 10^{-9.23}$ [H+]+[NH4+]=[OH] -> electroneutrality We can write the terms in the electroneutrality equation as functions of (HT) and knowly constants only: $\frac{1}{10^{-3}M} = \frac{10^{-3}M - 10^{-3}M - 10^{-3}M}{10^{-3}M - 10^{-3}M} = \frac{10^{-3}M + 10^{-3}M}{10^{-3}M + 10^{-3}M} = \frac{10^{-3}M + 10^{-3}M}{10^{-3}M + 10^{-3}M} = \frac{10^{-3}M + 10^{-3}M}{10^{-3}M + 10^{-3}M} = \frac{10^{-3}M + 10^{-3}M}{10^{-3}M} = \frac{10^{-3}M}{10^{-3}M} = \frac{$ Plugging back into electroneutrality: $[H+] + \frac{10^{-3}M[I+I]}{Ka + (H+I)} = \frac{Kw}{[H+I]}$ $Ka = 10^{-9.23}$ $K_{w} = 10^{-14}$ Rearranging: $[H^{+}]^{3} + (K_{2} + 10^{-3} M)[H^{+}]^{2} - K_{W}[H^{+}] - K_{4} K_{W} = 0$ Using an equation solver or computer spreadsheet to do trial and error, we get: $[H^+] = 8.32 \times 10^{-11} \text{ M}$ pH = 10.1

5. Elementary reaction kinetics

(a) First-order decay of a species with concentration C can be described by the following expression: $\frac{dC}{dt} = -leC, \text{ where } k = 0.3 \text{ h}^{-1} \text{ in this case.}$ This expression can be integrated to solve for C(t): $\frac{dC}{dt} = -leC \Rightarrow \frac{dC}{C} = -ledt \Rightarrow \int_{0}^{cut} \frac{dC}{C} = -left$ We want to solve for t such that $C = 0.10 C_0$: $0.10 = e^{-let} \Rightarrow t = \frac{ln(0.10)}{-0.3} = 7.7 \text{ h}$

(b) We can use the same solution to c(t) for first-order decay we found in (a):

c(t)=coe-kt

We know That, at t = 3 h, $C(t) = 0.20 C_0$. Therefore: $0.20 = e^{-\frac{1}{2}k(3)}$ $\Rightarrow k = \frac{\ln(0.2)}{-3} = 0.54 \text{ h}^{-1}$

(c) In this case, for every mole of A that reacts one mole of B also reacts, since there is less B Than A to begin with the reaction will proceed until B is depleted, and mentioned will be at steady state. At That point Bss = 0M

Ass = Ao-Bo = 0.1-0.001 = 0.099 M

(d) Considering the system from part (c) where A+B. -> products, we can express the rates as: $\frac{d[A]}{dL} = \frac{d[B]}{dL} = -le[A][B]$

From This, The characteristic time for removal of 4 is: $T_A = [A]_o = \frac{1}{k[B]_o} = \frac{1}{(3)(0.00)}h = 330h$

And the characteristic time for removal of B is: $B = \begin{bmatrix} B \end{bmatrix}_0 = \frac{1}{k[A]_0} = \frac{1}{(3)(0.1)}h = 3.3h$

But there can't be 2 characteristic times to describe the same sustem. Note that all of B is consumed in the reaction, but only 1% of t. With respect to the reaction is not important, so TA is not meaningful. Hence:

T=TB = 33h

6. Redox stoichiometry

3.39 Redox storchrometry

Given the following redox rxn:

HOCI + aHsq₃ \rightarrow bCI + csq₄ + dx

a) Oxidation state of

CI in HOCI is +1

CI - is -1

S in HSQ₃ \uparrow is +4

S in SQ₄ \uparrow is +6

b)	Doing a balance of	d elements on each side of equation:	
	left.	Right	
		b = 1	
	In surray, a=b=c;	& a = 1 = 1 = 1	And the second s
<i>c</i>)	We notice that co not H.= Substituting a, b & HOCI + 1	S and 0 are balance in the Eq.2. But $c in redox eq.1;$ $HSO_3^- \rightarrow cl^- + SO_4^{t-} + dX$	
	and the second s	H+ H in eqn: Left right H: 2 d :- d=2	
- : ·	In summary:		-
		charge on both side of equation is balance + HSO3 - C1 + SO42 + ZH+	J
	charge on	left is -1 & right is -1 mode the right guess for x !	

7. Biochemical Oxygen Demand

$$\frac{DO(6)-00(t)}{600_{10}} = 1 - exp(-kt)$$

$$\frac{1}{600_{10}}$$

$$exp(-kt) = 1 - \left[\frac{DO(0)-DO(t)}{600_{10}}\right]$$

$$= 1 + \left[\ln\left(\frac{B00_{10}}{000_{10}} - DO(0) + DO(t)\right] - \ln\left(\frac{B00_{10}}{000_{10}}\right)\right]$$

$$k = \frac{1}{t} \left[\ln\left(\frac{B00_{10}}{000_{10}} - DO(0) + DO(t)\right]\right] - \left(\frac{t}{t}\right)$$

$$\frac{t(d)}{000_{10}} \frac{DO(0)}{000_{10}} - \frac{1}{1000_{10}} \frac{1}{1000_{10$$

8. Batch reactor kinetics: Sequential first-order reactions

2 seguntial 1st order reactions:
$ \begin{array}{cccc} A & \xrightarrow{\prime} & B & R_1 = K_1 [A] \\ B & \xrightarrow{2} & C & R_2 = K_2 [B] \end{array} $
a) $\frac{d(A)}{dt} = -R_1 = -k_1(A)$ given $[A](0) = A_0$
$\Rightarrow [A](t) = A_0 \exp(-kt)$
b) In order for [A](T) ≈ Ao, T must be much less than I, to dwarters to tome of rus.
ie T«Y > T« +
Note: When $T \ll k$, $\Rightarrow Tk_1 \ll 1$ then motherativally $(A)(T) = (A_0)(T) = (A_0)(1-k_1T) \simeq (A_0)$
Assuming (A)(t) = Ao & ki < kz for port c-f
$\frac{d(B)}{dt} = R_1 - R_2 = k_1(A) - k_2(B)$
$\exists \begin{bmatrix} d(B) = k_1 A_0 - k_2 (B) \end{bmatrix} \therefore (A)(t) \triangleq A_0$
d) At steady state, $\frac{d(B)}{dt} = 0$
$\Rightarrow \begin{bmatrix} CB \end{bmatrix}_{55}^{\pm} = \frac{k_1 A_0}{k_2}$
e) The rate of charge of [8] has the form:
de = S-LC where S= kAo, L= k2
Therefore $\chi = \frac{1}{k_2}$ (see pools 620-621 of text)