Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Introduction 1-1

Throughput: Internet scenario

- per-connection endend throughput: $min(R_c, R_s, R/10)$
- in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link *R* bits/sec

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Delay versus Throughput

Suppose:

A link, call it T3, has capacity/bandwidth = 45 million bits per sec

A CD, compact disc, has capacity 500 megabytes of data.

A file of size = $500*2^20*8*1000$ bits ≈ 4 terabytes of data

Time to transfer file on the T3 link = $(500*2^20*8*1000)/(45 \text{ million bits per sec}) = 93206 \text{ s} = 25 \text{ hours}$ Throughput of T3 = 45 million bits per sec

Time to transfer file using 1000 CDs with overnight shipment = 24 hours

Throughput of $1000 \text{ CDs} = (500*2^20*8*1000)/(24*60*60) = 48545185.1852 = 48.5 \text{ million}$

Suppose Host A wants to send a large file to Host B. The path from Host A to Host B has three links, of rates $R_1 = 500$ kbps, $R_2 = 2$ Mbps, and $R_3 = 1$ Mbps.

- a. Assuming no other traffic in the network, what is the throughput for the file transfer?
- b. Suppose the file is 4 million bytes. Dividing the file size by the throughput, roughly how long will it take to transfer the file to Host B?
- c. Repeat (a) and (b), but now with R_2 reduced to 100 kbps.