

HLS12VGA-A

0.12' VGA Micro-LED Panels 规格书

> V1.9 2025-04-08

HLS12VGA-A

640*480 µLED display with QSPI interface

产品特性

- 硅基微显示芯片
 - -- 0.18微米CMOS工艺
 - -- 主动驱动技术
- 640*480分辨率
 - -- 可视面积: 0.12 英寸
 - -- 像素尺寸: 3.75μm×3.75μm
 - -- 总像素数: 640(+16+8)*480(+16)
- 数字视频信号
 - --支持 SPI/QSPI 输入

- 内建多种测试图案
- 支持像素单元恒流源驱动
- -- 像素恒流源大小支持内部和外 部调节
- -- 电流密度可达 100A/cm²(最大电流>4A)
 - SPI串行通信接口

目录

1.	产品说明	4
	1.1 特性参数	4
	1.2 芯片尺寸	5
2.	连接器管脚分配	6
3.	SPI/QSPI 数据通讯格式说明	9
	3.1 Summary	9
	3.2 单色 1 线 SPI 模式	9
	3.2.1 单色 8bit 显示模式	9
	3.2.2 单色 4 bit 显示模式	
	3.3 4 线 QSPI 模式	10
	3.3.1 单色 8 bit 显示模式	10
	3.3.2 单色 4bit 显示模式	
	3.4 SPI 显示局部更新	10
	3.4.1 Command 和行地址模式	11
4.	SPI 配置寄存器说明	12
	4.1 SPI 配置寄存器功能	12
	4.2 SPI 写寄存器时序	12
	4.3 SPI 读寄存器时序	12
	1.4 不可连续读写	12
5.	内部寄存器配置说明	14
	5.1 功能说明	
	5.2 寄存器说明	
6.	功能介绍	
J.	5.1 上下电时序	
	5.2 模组点亮流程说明	19

6.	.3 亮度调节说明	19
7.	产品结构图纸	21
8.	产品操作与存储	22

1. 产品说明

HLS12VGA-A产品是采用具有自主知识产权的高效率、硅基微显示驱动芯片,其可使用在显示产品上,支持单色显示,满足 VGA分辨率显示要求。

HLS12VGA-A 硅基微显示采用纯数字驱动方案,支持 8bit 数据并行输入。 采用 0.18 微米 CMOS 工艺制造,通过 2 线串行编程接口,可实现显示方向、显示位置、自建测试等功能的控制和调整;接口电平 1.8V CMOS 标准,可广泛应用于各种微型化、高分辨率的近眼显示系统中。

1.1 特性参数

HLS12VGA-A 微显示芯片特性参数如表 1-1 所示

表 1-1 特性参数

	77.1	
	Product	HLS12VGA-A
♦	尺寸(Inch)	0.12'
♦	颜色	Green
•	分辨率	640*480
♦	有效像素	656*496
•	Pixel 尺寸 (um*um)	3.75*3.75
•	显示区尺寸 (mm*mm)	2.49*1.86
♦	灰度级别	外围驱动决定
•	亮度(nits)	8,000,000
•	PPI	6800
•	IO 供电电源	1.8V
•	数字内核供电电源	0.9V
\	像素阵列电源	1.8V
•	动态范围(对比度)	100,000: 1
\	功耗(mW)	<100
♦	VCOM	-0.6V~-2V(根据实际亮度需求决定)
♦	电流密度	100A/cm ² (最大总电流 4A)
•	刷新率(Hz)	57Hz 或 114Hz (默认 57Hz)
♦	响应时间	ns
•	寿命(h)	100,000
♦	接口类型	SPI/QSPI
	4	比战流了知此到壮大阳八哥

1.2 芯片尺寸

芯片分辨率为 640(+16)×480(+16),其中右边还预留 8 列 dummy 像素,不能用作正常显示,仅限于测试使用,像素单元尺寸为 3.75μm×3.75μm,其排列示意图如图 1-1 所示,每个像素单元结构完全相同。整个芯片的尺寸为 3.445mm×3.090mm,显示区共有(640+16)×(480+16)个像素组成,其中 AA 区的尺寸为 2.46mm×1.86mm,芯片尺寸示意图如图 1-2 所示,其中阴极环(即图 1-2 中的深绿色区域)的宽度为 160μm,阴极环距离 AA 区的间距均为 70μm。

图1-1像素排列示意图

图1-2芯片尺寸示意图

2. 连接器管脚分配

HLS12VGA-A 连接器管脚 PIN 定义,如表 2-1:

表 2-1 管脚分配

编号	名称	功能描述
P1	VCC 1V8	1.8V 电源(1.7V~1.9V)
1	SLA	I2C 地址选择
2	SCL	I ² C 串行通讯时钟线,SCL 不用时也必须上拉
3	VCC 0V9	ASICS 0.9V 电源(0.85V ~ 0.95V)
4	RST	VGA 复位信号
5	GND	地
6	GND	地
7	GND	地
8	IO1	SPI/QSPI 数据输入输出
	101	单线模式 MISO/IO1
9	SDA	I ² C 串行通讯数据线, SDA 不用时也必须上拉
10	IO0	SPI/QSPI 数据输入输出
10		单线模式 MOSI/IO0
11	CS	位选信号
12	IO3	QSPI 数据输入输出
13	SPI_SCK_F/SCLK	时钟信号
14	IO2	QSPI 数据输入输出
P2	VCOM	共阴极,默认-1.4V(-1 V~-2V)

注意:

- 1. 模组断电以后, SCL 及 SDA 会被拉到低电平;
- 2. 不需要使用主控 I²C,但 SCL 与 SDA 都需要硬件上拉,模组的寄存器 都通过 SPI 接口配置;

Vcom 客户可根据不同的应用场景,选择不同的 Vcom, 不同的 Vcom 对应不同的亮度曲线。如下图:

APL 10% 最高亮度 加散热				
Vcom (V)	I (mA)	L (Wnit)	T(℃)	
1	31.4	282	25	
1.1	39.8	334.6	26.3	
1.2	50.2	391.2	27.5	
1.3	70.1	484.2	29.3	
1.4	85	544.7	31	
1.5	105.7	620.8	38.7	
1.6	127.1	689.6	40.6	
1.7	152.7	761.8	52.3	
1.8	180.1	830.5	58.4	
1.4(寄存器 40)	41	330		

极限值范围参考如下图:

项目	最小值	典型值	最大值	单位	备注
环境/运行温度	-30		70	${\mathbb C}$	
储存温度	-40	20	85	$^{\circ}$	
VCC_1.8V	1.7	1.8	1.9	V	
VCC_0.9V	0.85	0.9	0.95	V	
VCOM	-1	-1.4	-2	V	
VIH 高电平输入电压	0.65*VIO	-	VIO	V	VIO 即 VCC_1.8V
VIL 低电平输入电压	-0.3	-	0.3*VIO	V	
VOH 高电平输出电压	1.35	-	1	V	
VOL 低电平输出电压	-	-	0.45	V	
IL IO 漏电流	-	-	16	μА	
ESD(空气放电)	-	-	±10	KV	
ESD(接触放电)	-	-	±2	KV	

三路电源电流及总功耗上下限:

- (1) Vcom 电流我们芯片最大支持到 1A,建议不要超过 300mA, AR 眼镜上不能加散热,建议不超过 45mA; Vcom 电流值是只有上限没有下限的,下限取决于客户寄存器的设定。(例如,客户寄存器设定 1,那么 Vcom 电流值就只有 1mA 左右)
- (2)1.8V 总电流=逻辑芯片部分消耗电流+与 Vcom 形成的像素电路消耗电流;

逻辑芯片耗电流@APL10%				
频率	0.9V 耗电流/mA	1.8V 耗电流/mA		
57Hz	30-40	8-12		

三路电源对地阻抗值范围(上限、下限):

电源	0.9V 对地阻抗	1.8V 对地阻抗	Vcom 对地阻抗	单位
范围	100~500	1k~10k	>100k	Ω
	注: 以上阻抗	测试,红表笔接地,	黑表笔接电源信号	

3. SPI/QSPI 数据通讯格式说明

3.1 Summary

支持一线 SPI 或者四线 QSPI GRAY256 (单色 8bit)显示数据,支持一线 SPI 或者四线 QSPI GRAY16 (单色 4bit)显示数据。

使用 SPI/QSPI 发送显示数据,每次 CS 拉低发送的显示数据量需要是每行数据量的整数倍,即每次 CS 拉低每次至少发送 640 字节显示数据。

3.2 单色 1 线 SPI 模式

3.2.1 单色 8bit 显示模式

图 3-1 单色 8bit1 线 SPI 显示模式时序示意

单色 8bit 1 线 SPI 显示模式时序如图 3-1 所示。先发送 8bit 命令 0x02,接着发送 24bit 命令 0x002C00/0x003C00,接着每 8bit 发送一个像素数据(先发送高位)。共发送 640*480 个像素数据后结束这一帧的数据发送。

3.2.2 单色 4 bit 显示模式

数据。

3.3 4 线 QSPI 模式

3.3.1 单色 8 bit 显示模式

图 3-2 单色 4 线 QSPI 8 bit 单色时序示意

单色 8 bit 时序示意如图 3-2 所示。先发送 8bit 命令 0x32,接着发送 24bit 命令 0x002C00/0x003C00,单色 8 bit 则是两个时钟周期发送一个像素数据。

3.3.2 单色 4bit 显示模式

其时序与单色 8bit 显示模式相同,唯一区别 8bit 显示 QSPI 传输模式下需 2个 sclk 周期传输一个像素数据,而 4bit 显示只需 1个 sclk 周期传输一个像素数据。

3.4 SPI 显示局部更新

支持 SPI 发送局部几行显示数据格式功能。即 SPI 可以刷新特定的行显示数据。

图 3-3. SPI 局部行格式要求

SPI 局部行格式要求如图 3-3 所示。其形式为:发送命令及行地址→间隔等等待时间→发送命令及视频数据→间隔等待时间→发送命令及行地址......。也支持发送一次行地址,连续发送多次视频数据,地址芯片内部递增:发送命令及行地址→间隔等等待时间→发送命令及视频数据→间隔等待时间→发送视频数据.....。

其中间隔等待时间至少为 1us。数据必须以行为单位。time 时间至少为 3ns。

3.4.1 Command 和行地址模式

图 3-4. SPI 发送行地址时序

SPI 发送行地址时序如图 3-4 所示。先发送 8bit command 0x02,接着发送 24bit 0x002A00,接着发送 16bit ADDR1 地址,接着发送 16bit ADDR2 地址。其中 ADDR1 地址表示起始行,如 640x480 分辨率共有 480 行,行地址编号为 0-479,即第一行是 0,第 480 行是 479。ADDR2 值是终止行。

4. SPI 配置寄存器说明

4.1 SPI 配置寄存器功能

可以通过 SPI 配置 256 个 8bit 寄存器功能。其中 SDA0 为输入,SDA1 用作 SPI 读输出。

4.2 SPI 写寄存器时序

图 4-1 SPI 写寄存器时序

SPI 写寄存器时序如图 4-1 所示。CS 拉低后,SDA0 发送命令 0x78,再发送寄存器地址,接着发送寄存器值,SDA1 未用。

4.3 SPI 读寄存器时序

图 4-2 SPI 读寄存器时序

SPI 读寄存器时序如图 4-2 所示。CS 拉低后,SDA0 发送命令 0x79,再发送寄存器地址,接着 SDA1 返回 8Bit 寄存器值。返回寄存器的值先发送高位。

4.4 不可连续读写

只支持一次写(或一次读)一个寄存器的操作。

5. 内部寄存器配置说明

5.1 功能说明

(1) SPI/QSPI显示输入数据格式:

支持 SPI/QSPI GRAY256, SPI/QSPI GRAY16 的显示输入数据格式。最高支持 80M。

- (2) 支持水平镜像与垂直镜像;
- (3) 支持 PWM 亮度调节:

当显示输入为 Gray256 格式时,支持 8 级 PWM 亮度调节; 当显示输入为 Gray16 格式时,支持 64 级 PWM 亮度调节。

- (4) 支持内部 GAMMA 校正;
- (5) 支持内部 DEMURA 校正。

5.2 寄存器说明

所有寄存器都使用 SPI 接口配置,寄存器的读写方法详见 SPI 协议说明。

SPI 寄存器	Bit 位	描述	默认值
0x00	[2:0]	选择视频格式: 010: GRAY256, 1xx: GRAY16	0x02
	[7:3]	Keep 0	
0x01	[7:0]	Keep 0xe0	0xe0

	T		
0x02	[7:0]	Keep 0x01	0x01
0x03	[7:0]	Keep 0x28	0x28
0x04	[7:0]	Keep 0x14	0x14
0x05-0x19	[7:0]	只读,保持默认值	0x00- 0xff
0x1a	[7:0]	Keep 0xff	0xff
	[7]	demura 功能使能。 0: 功能关闭。1:功能开启	0x00
Ox1b	[6:4]	asic 自测试图像: 0: 关闭自测试; 1: 屏幕对角线的两条交叉亮线; 2: 屏幕对角线的两条交叉暗线; 3: 8个相互交叉的灰度条; 4: 从左至右依次递增的 10 个纵向灰度条,最大灰度由 Demura 校正基准亮度 ref 值确定; 5: 从上至下依次递增的 10 个横向灰度条,最大灰度由 Demura 校正基准亮度 ref 值确定; 6: 棋盘格; 7: 屏幕最外一圈不闭合的亮线。	
	[3:2]	Keep 0	
	[1:0]	Panel IIC 地址设定 (根据硬件连接方法,若 SLA 不是接地,则需要在初始化时设置这两位的值,	

	否则模拟亮度调节会有问题):	
	01: 8 位 IIC 地址为 0x12(SLA=1)	
[7]	Keep 0	0x00
[6:5]	Keep 0	
F.43	垂直镜像功能。	
[4]	0: 功能关闭。1:功能开启	
507	水平镜像功能。	
[3]	0: 功能关闭。1:功能开启	
[2:0]	Keep 0	
	PWM 亮度调节寄存器:	
	Gray256 视频输入时:	
	[7:5]= (0-7),[4:0]=31 时,实现 PWM 调光的 0-	
[7:0]	7级亮度。	0xff
XC	Gray16 视频输入时:	
	[7:3]=(0-63),[2:0]=7 时,实现 PWM 调光的 0-	
	63 级亮度。	
[7:0]	Keep 0x05	0x05
	显示画面水平方向平移设置寄存器:	
[7:0]	左右各 8 列 dummy 像素,有效数值为 0-16,默	0x08
	认值为8,此时画面居中。	
	[6:5] [4] [3] [7:0]	[6:5] Keep 0 垂直镜像功能。 0: 功能关闭。1:功能开启 水平镜像功能。 0: 功能关闭。1:功能开启 [2:0] Keep 0 PWM 亮度调节寄存器: Gray256 视频输入时: [7:5]=(0-7), [4:0]=31 时, 实现 PWM 调光的 0-7 级亮度。 Gray16 视频输入时: [7:3]=(0-63), [2:0]=7 时, 实现 PWM 调光的 0-63 级亮度。 [7:0] Keep 0x05 显示画面水平方向平移设置寄存器: [7:0] 左右各8列 dummy 像素,有效数值为 0-16,默

0x20	[7:0]	显示画面垂直方向平移; 上下各 8 行 dummy 像素,有效数值为 0-16,默 认值为 8,此时画面居中。	0x08
0x21	[7:0]	Keep 0xff	0xff
0x22	[7:0]	Keep 0xff	0xff
0x23	[7:0]	模拟亮度调节寄存器,范围 0x00~0xff	0xff
0x24	[7:0]	只读,保持默认值	0x00- 0xff

6. 功能介绍

6.1 上下电时序

如图 6-1 和图 6-2 为芯片上电时序图和下电时序图

图 6-1 上电时序

图 6-2 下电时序

注意:

- (1)ASIC_INIT 表示 asic 芯片的自初始化阶段,这个阶段不需要发送任何设置;
- (2)PANEL_INIT 表示去配置 SPI 寄存器阶段,根据实际需要比如设置初始 亮度、Panel IIC 地址、方向等添加这部分代码;
 - (3)VGA 表示使用 SPI/QSPI 给模组送显示数据阶段;
- (4)COM 表示是给模组提供的负压,只有给负压模组才能点亮,具体负压 为多少需要根据亮度需要去设置:

6.2 模组点亮流程说明

以 Gray256 格式为例,按照"图 6-1"说明给模组上电,然后在时序图的 VGA 阶段按照"图 3-2"的 SPI 时序说明,用 SPI/QSPI 给模组送显示数据,即可使用最高亮度配置点亮屏;

注意: 仅验证屏是否能点亮是不需要发送初始化数据的,即不需要设置任何 panel 或者 asic 寄存器。

6.3 亮度调节说明

可使用 0x23 寄存器去调节亮度:

- 1.对应寄存器值的范围 0~255;
- 2.通过 0x23 调节亮度是非线性调节方式,所以寄存器值递增对应亮度不 是均匀变化的,参考 10 级亮度对应 0x23 的寄存器值如下:

亮度等级	寄存器 0x23 设置值
0	1
1	4

2	7
3	10
4	14
5	18
6	22
7	27
8	32
9	40

7. 产品结构图纸

产品结构图如图 7-1 所示。

8. 产品操作与存储

清洁:建议使用干净的布或镜头纸来擦拭;不可采用任何腐蚀性的化学药品进行清洗。

静电防护:产品内部芯片采用 CMOS 工艺制成,对静电比较敏感,建议在远离带电或者具有除静电设备的区域使用;操作人员可以穿戴相关防静电服饰。

注意事项: 建议使用防护手套进行产品的操作;

不可暴露在有酸、碱等腐蚀性化学试剂的环境;

不可在液体中浸没;

避免产品接触到锐利的物品及外力的撞击。

储存方法:产品在过高或者过低温度下工作可能会缩短寿命,甚至会损毁产品。建议存放的环境为:

室温: 25℃上下波动 5℃ 环境: 干燥的密封容器中静止: 避免撞击