数列の極限

項がどこまでも限りなく続く数列を無限数列という. 今後単に数列といえば無限数列を意味するものとする. 無限数列においては、n が増大するに従って、その第n項がどのようになっていくかを知ることが重要である. ∞ は無限大を表す記号であり、その意味するところとし ては「どんな数よりも大きい」という概念であって,数 としては扱わない点に注意.

2.1 収束·発散

次の数列を考える.

(a)
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$$

(b) $1, 4, 9, 16, \dots, n^2, \dots$

(b) 1, 4, 9, 16, ...,
$$n^2$$
,

(c) 4, 1,
$$-4$$
, -11 , ..., $5-n^2$, ...

(d)
$$1, -1, 1, -1, \ldots, (-1)^{n-1}, \ldots$$

(a) について. 数列 $a_n = \frac{1}{n}$ は、n が大きくなるに従っ て、一定の値 A=0 に近づいていく.このことを a_n は A=0 に収束するといい,

 $\lim a_n = 0 \quad \sharp \, \sharp \, \sharp \, k \quad n \to \infty \, \, \mathfrak{O} \, \xi \, \sharp \, a_n \to 0$

と書く. 数列が収束しないとき,発散するという.

(b) について. 数列 $b_n = n^2$ は, n が大きくなるに従っ て、限りなく大きくなっていく. このことを b_n は正の 無限大に発散するといい,次のように書く.

 $\lim_{n\to\infty}b_n=+\infty\ \text{\sharp \hbar if $n\to\infty$ \it{O} \it{L} $\it{\tilde{\sharp}}$ $b_n\to+\infty$.}$

(c) について. 数列 $c_n = 5 - n^2$ は, あるところから先 の項は負の数であり、nが大きくなるに従って、その絶 対値 $|c_n|$ は限りなく大きくなっていく. このことを, c_n は負の無限大に発散するといい,次のように書く.

 $\lim c_n = -\infty \ \sharp \, \mathsf{tk} \, \, \mathsf{lk} \, \, n \to \infty \, \, \mathfrak{O} \, \mathsf{Lf} \, \, c_n \to -\infty.$

(d) について. 数列 $d_n = (-1)^{n-1}$ は、1, -1 が交互に 現れ,項が一定の値に近づかないので発散する.しかし, 正・負の無限大に発散するわけでもない. このようなと き,数列 d_n に極限はない,あるいは振動するという.

定理 2.1 -

2 つの収束する数列 $\{a_n\}$ と $\{b_n\}$ に対して,次 が成り立つ.

1)
$$\lim_{n \to \infty} ka_n = k \lim_{n \to \infty} a_n$$
 (k は定数)

2)
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

3)
$$\lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n)$$

4)
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \quad (\lim_{n \to \infty} b_n \neq 0 \text{ のとき})$$

例.
$$\lim_{n\to\infty} \frac{2n+1}{3n-2} = \lim_{n\to\infty} \frac{2+\frac{1}{n}}{3-\frac{2}{n}} = \frac{2}{3}$$
.

2.2 極限の不定形

正の無限大に発散する 2 つの数列 $\{a_n\}$, $\{b_n\}$ が与えら れたとき, すなわち $\lim a_n = +\infty$ かつ $\lim b_n = +\infty$ のとき、明らかに

$$\lim_{n \to \infty} (a_n + b_n) = +\infty, \quad \lim_{n \to \infty} (a_n b_n) = +\infty$$

が成り立つ *1 . しかし,

$$\lim_{n \to \infty} (a_n - b_n), \quad \lim_{n \to \infty} \frac{a_n}{b_n}$$

についてはいろいろな場合がある. このような場合を不 定形という. 以下の例題で見るように, 若干の工夫に よってその極限を求めることが可能であることも多い.

例題 2.2 -

次の極限を求めよ.

(1)
$$\lim_{n \to \infty} (4n^2 - n^3)$$
 (2) $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n})$

この例題でもわかるように,不定形の極限では「次数 が一番大きい項」の影響が最も大きく、極限はその項に を理解しておくことは重要である.

定理 2.3 -

収束する数列 $\{a_n\}$, $\{b_n\}$ について, その極限値 を $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$ とするとき,

- 2) 数列 $\{c_n\}$ がすべての n に対して $a_n \leq c_n \leq b_n$ を満たしていて、さらに A = B ならば、数列 $\{c_n\}$ も収束して $\lim_{n\to\infty} c_n = A$.

 $^{^{*1}}$ これは片方が $+\infty$ に発散し、もう片方は正の極限値に収束す る場合でも成り立つ. しかし, もう片方が負の極限値に収束す る場合は $-\infty$ となるので、注意が必要である.

この定理の2)は「はさみうちの定理」と呼ばれ、直接 計算しづらい極限を求める際に役に立つ定理である. 図 1 は, $a_n = 1 - \frac{1}{n^2}$, $b_n = 1 + \frac{1}{n}$ としたものを図示し ている. 数列 a_n および b_n はそれぞれ関数 $y=1-\frac{1}{x^2}$, $y=1+\frac{1}{r}$ の曲線上に乗っている. 数列 c_n はこの 2 つ の曲線に間にある以上,この図が示しているように,そ の極限値は a_n, b_n の同一の極限値にならざるを得ない.

図1 はさみうちの定理

例題 2.4

極限値 $\lim_{n\to\infty}\frac{1}{n}\sin\frac{n\pi}{6}$ を求めよ.

2.3 等比数列 $a_n = ar^{n-1}$ の極限について

a>0 のとき, 等比数列 $a_n=ar^{n-1}$ の極限は,

- 1) r > 1 ならば $\lim_{n \to \infty} ar^{n-1} = +\infty$,
- 2) r = 1 to it $\lim_{n \to \infty} ar^{n-1} = 1$, 3) -1 < r < 1 to it $\lim_{n \to \infty} ar^{n-1} = 0$,
- 4) $r \le -1$ ならば $\lim ar^{n-1}$ は極限を持たない.

a < 0 のときは 1) の極限が $-\infty$ になる. また, r = 0のときは場合分けが不要で、すべての場合の極限値が 0 になる.

雑な説明をすれば、正の数rが1よりも大きかった ら,rを掛ける毎にどんどん大きくなっていくし,逆に 1 よりも小さかったら、r を掛ける毎にどんどん小さく なっていく,ということ. 1 は当然ずっと変わらないが, 大きくなるか小さくなるかの分水嶺となっている.rが 負の数のときは、 $\S 2.1$ の d_n のように振動していて、絶 対値が1よりも小さければ振動しつつ0に収束していく が、1以上だったら収束できないことは想像しやすい.

例題 2.6 -

次の極限を求めよ.

$$\lim_{n \to \infty} \frac{3^n + 2^{n+1}}{2^{2n} - 3^n}$$

例題 2.7 -

 $a_1 = 0, a_{n+1} = \frac{1}{2}a_n + 1$ によって定義される数

2.4 まとめ

- 数列の極限 (収束・発散)
- 数列の極限の計算・はさみうちの定理

2.5 演習問題

- (1) すべてのn に対して $a_n < b_n$ であるが、 $\lim a_n =$ $\lim b_n$ となる数列の組を一例挙げよ.
- (2) 一般項が次の式で表される数列の極限を調べよ.

(a)
$$\frac{2n-1}{5n+1}$$
 (b) $\frac{2n^2+n}{n^2-6}$ (c) $\frac{7n-3}{3n^2+4n}$

(3) 一般項が次の式で表される数列の極限を調べよ.

(a)
$$2n^3 - 4n$$
 (b) $\sqrt{n+1} - \sqrt{n-1}$

(4) 次の無限等比数列の極限を調べよ.

(a)
$$3, 9, 27, 81, \dots$$
 (b) $-\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \dots$ (c) $8, -12, 18, -27, \dots$

(5) 一般項が次の式で表される数列の極限を調べよ.

(a)
$$\frac{5^n - 2^n}{3^n}$$
 (b) $\frac{2^{n+1}}{3^n + 2^n}$ (c) $\frac{(-2)^n + 3^n}{3^n - (-2)^n}$

(6) $r \neq -1$ のとき,数列 $\frac{r^n}{1+r^n}$ の極限を調べよ.

2.5.1 ヒント

- (1) このノートの中にもその一例の組が現れている.
- (2) 分子分母を、n の次数が一番高いもので割ってから、 $\lim_{n\to\infty}\frac{1}{n}=0$ を使う. (3) 例題 2.2 を真似る. (4) 公 比 r は (第 2 項) ÷ (第 1 項) で求まる. (5) 例題 2.6 を真 似る. (6) 定理 2.5 を利用し、場合分けする.