CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - -LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost	
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c
⇒cB	A→c	← AcbB	B→ca
⇒ ccbB	B→cbB	\Leftarrow AB	B→cbB
⇒ ccbca	B→ca	\Leftarrow S	S→AB

Top-Down: Backtracking

Backtracking

 $S \rightarrow cAd \mid c$ $A \rightarrow a \mid ad$

Input: cad

 $S \rightarrow cAd \mid c$ $A \rightarrow ad \mid a$

For some grammars, rule ordering is crucial for backtracking parsers, e.g $S \rightarrow aSa$, $S \rightarrow aa$

Transition Diagram

$$S \rightarrow cAa$$
 S: $C \rightarrow A \rightarrow a$
 $A \rightarrow cB \mid B$ A: $C \rightarrow B \rightarrow bcB \mid \epsilon$ B: $C \rightarrow B \rightarrow bcB \mid \epsilon$

Predictive Top-Down Parser

- Knows which production to choose based on single lookahead symbol
- Need LL(1) grammars

First L: reads input Left to right

Second L: produce Leftmost derivation

- 1: one symbol of lookahead

- Can't have left-recursion
- Must be left-factored (no left-factors)
- Not all grammars can be made LL(1)

Leftmost derivation for

$$E \rightarrow E + E$$
 $E \Rightarrow E + E$
 $E \rightarrow E * E$ $\Rightarrow id + E$
 $E \rightarrow (E)$ $\Rightarrow id + E * E$

$$E \rightarrow -E$$

$$E \rightarrow id$$

$$E \Rightarrow E + E$$

$$\Rightarrow$$
 id + E

$$\Rightarrow$$
 id + E * E

$$\Rightarrow$$
 id + id * E

$$\Rightarrow$$
 id + id * id

$$E \Rightarrow^*_{lm} id + E \setminus^* E$$

Predictive Parsing Table

Productions		
1	$T \rightarrow F T'$	
2	T ' → ε	
3	T' → * F T'	
4	$F \rightarrow id$	
5	$\mathbf{F} \rightarrow (\mathbf{T})$	

	*	()	id	\$
T		T → F T'		$T \rightarrow F T'$	
T'	T' → * F T'		Τ' → ε		Τ' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Trace "(id)*id"

Stack	Input	Output
\$T	(id)*id\$	
\$T'F	(id)*id\$	T → F T'
\$T')T((id)*id\$	$\mathbf{F} \rightarrow (\mathbf{T})$
\$T')T	id)*id\$	
\$T')T'F	id)*id\$	T → F T'
\$T')T'id	id)*id\$	F → id
\$T')T')*id\$	
\$T'))*id\$	Τ' → ε

Trace "(id)*id"

Stack	Input	Output
\$T'	*id\$	
\$T'F*	*id\$	T' → * F T'
\$T'F	id\$	
\$T'id	id\$	F → id
\$T'	\$	
\$	\$	Τ' → ε

Table-Driven Parsing

```
stack.push($); stack.push($);
a = input.read();
forever do begin
  X = stack.peek();
  if X = a and a = $ then return SUCCESS;
  elsif X = a and a != \$ then
    pop X; a = input.read();
  elsif X != a and X \in \mathbb{N} and M[X,a] then
    pop X; push right-hand side of M[X,a];
  else ERROR!
end
```

Predictive Parsing table

- Given a grammar produce the predictive parsing table
- We need to to know for all rules $A \rightarrow \alpha \mid \beta$ the lookahead symbol
- Based on the lookahead symbol the table can be used to pick which rule to push onto the stack
- This can be done using two sets: FIRST and FOLLOW

FIRST and FOLLOW

$$a \in \text{FIRST}(\alpha) \text{ if } \alpha \Rightarrow^* a\beta$$

if $\alpha \Rightarrow^* \epsilon \text{ then } \epsilon \in \text{FIRST}(\alpha)$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A a\beta$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A \gamma a\beta$
and $\gamma \Rightarrow^* \epsilon$

Conditions for LL(1)

- Necessary conditions:
 - no ambiguity
 - no left recursion
 - Left factored grammar
- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. First(α) \cap First(β) = \emptyset
 - 2. $\alpha \Rightarrow * \epsilon \text{ implies } !(\beta \Rightarrow * \epsilon)$
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$

ComputeFirst(\alpha: string of symbols)

```
// assume \alpha = X_1 X_2 X_3 \dots X_n
if X_1 \in T then First[\alpha] := \{X_1\}
else begin
  i:=1; First[\alpha] := ComputeFirst(X_1)\{\varepsilon};
   while X_i \Rightarrow^* \epsilon do begin
     if i < n then
        First[\alpha] := First[\alpha] \cup ComputeFirst(X_{i+1})\{\varepsilon};
     else
       First[\alpha] := First[\alpha] \cup \{\epsilon\};
     i := i + 1;
   end
end
```

ComputeFirst(\alpha: string of symbols)

```
// assume \alpha = X_1 X_2 X_3 \dots X_n
if X_1 \in T then First[\alpha] := \{X_1\}
else begin
  i:=1; First[\alpha] := ComputeFirst(X_1)\{\varepsilon};
  while X_i \Rightarrow^* \epsilon do begin
    if i < n then
       First[\alpha] := First[\alpha] \cup ComputeFirst(X_{i+1}) \setminus \{\varepsilon\};
     else
      First[\alpha] := First[\alpha] \cup \{\epsilon\}; break;
  i := i + 1;
                           Recursion in computing FIRST
  end
                           causes problems when faced with
end
                           left-recursive grammars
```

ComputeFirst; modified

```
foreach X \in T do First[X] := X;
foreach p \in P : X \rightarrow \varepsilon do First[X] := \{\varepsilon\};
repeat foreach X \in \mathbb{N}, p: X \to Y_1 Y_2 Y_3 \dots Y_n do
   begin i:=1;
     while Y_i \Rightarrow^* \varepsilon and i \le n do begin
       First[X] := First[X] \cup First[Y_i] \setminus \{\epsilon\};
       i := i+1;
     end
    if i = n+1 then First[X] := First[X] \cup \{\epsilon\};
    else First[X] := First[X] \cup First[Y_i];
until no change in First[X] for any X;
```

18

ComputeFirst; modified

```
foreach X \in T do First[X] := X;
foreach p \in P : X \to \varepsilon do First[X] := \{\varepsilon\};
repeat foreach X \in \mathbb{N}, p: X \to Y_1 Y_2 Y_3 \dots Y_n do
   begin i:=1; Non-recursive FIRST computation
    while Y_i \Rightarrow^* works with left-recursive grammars.
      First[X] := Computes a fixed point for FIRST[X]
      i := i+1; for all non-terminals X in the grammar.
                    But this algorithm is very inefficient.
    end
   if i = n+1 then First[X] := First[X] \cup \{\epsilon\};
   else First[X] := First[X] \cup First[Y_i];
until no change in First[X] for any X;
```

ComputeFollow

```
Follow(S) := \{\$\};
repeat
 for each p \in P do
     case p = A \rightarrow \alpha B\beta begin
       Follow[B] := Follow[B] \cup ComputeFirst(\beta)\{\epsilon};
       if \varepsilon \in First(\beta) then
        Follow[B] := Follow[B] \cup Follow[A];
     end
    case p = A \rightarrow \alpha B
       Follow[B] := Follow[B] \cup Follow[A];
until no change in any Follow[N]
```

Example First/Follow

$$S \rightarrow AB$$

$$A \rightarrow c \mid \epsilon$$

Not an LL(1) grammar

$$B \rightarrow cbB \mid ca$$

$$First(A) = \{c, \epsilon\}$$

$$Follow(A) = \{c\}$$

$$First(B) = \{c\}$$

$$Follow(A) \cap$$

$$First(cbB) =$$

$$First(c) = \{c\}$$

$$First(ca) = \{c\}$$

$$Follow(B) = \{\$\}$$

$$First(S) = \{c\}$$

$$Follow(S) = \{\$\}$$

ComputeFirst on Left-recursive Grammars

- ComputeFirst as defined earlier loops on leftrecursive grammars
- Here is an alternative algorithm for ComputeFirst
 - 1. Compute non left-recursive cases of FIRST
 - 2. Create a graph of recursive cases where FIRST of a non-terminal depends on another non-terminal
 - 3. Compute Strongly Connected Components (SCC)
 - 4. Compute FIRST starting from root of SCC to avoid cycles
- Unlike top-down LL parsing, bottom-up LR parsing allows left-recursive grammars, so this algorithm is useful for LR parsing

ComputeFirst on Left-recursive Grammars

•
$$S \rightarrow BD \mid D$$

•
$$D \rightarrow d \mid Sd$$

$$FIRST_0[A] := \{a, b\}$$

$$FIRST_0[C] := \{\}$$

$$FIRST_0[B] := \{b\}$$

$$FIRST_0[S] := \{b, d\}$$

$$FIRST_0[D] := \{d\}$$

•
$$A \rightarrow CB \mid a$$

•
$$C \rightarrow Bb \mid \varepsilon$$

•
$$B \rightarrow Ab \mid b$$

Compute
Strongly
Connected
Components

2 SCCs: e.g. consider B-A-C

$$FIRST[B] := FIRST_0[B] + FIRST[A]$$

$$FIRST[A] := FIRST_0[A] + FIRST[C]$$

$$FIRST[C] := FIRST_0[C] + FIRST_0[B]$$

$$FIRST[C] := FIRST[C] + \{\epsilon\}$$

Converting to LL(1)

$$S \rightarrow AB$$

$$A \rightarrow c \mid \epsilon$$

$$B \rightarrow cbB \mid ca$$

Note that grammar

$$S \rightarrow cAa$$

$$A \rightarrow cB \mid B$$

$$B \rightarrow bcB \mid \epsilon$$

Verifying LL(1) using F/F sets

$$S \rightarrow cAa$$

$$A \rightarrow cB \mid B$$

$$B \rightarrow bcB \mid \epsilon$$
First(A) = {b, c, \epsilon}

 $First(B) = \{b, \epsilon\}$

 $First(S) = \{c\}$

 $Follow(A) = \{a\}$

 $Follow(B) = \{a\}$

Building the Parse Table

- Compute First and Follow sets
- For each production $A \rightarrow \alpha$
 - foreach a ∈ First(α) add A → α to M[A,a]
 - If ε ∈ First(α) add A → α to M[A,b] for each b in Follow(A)
 - If ε ∈ First(α) add A → α to M[A,\$] if \$ ∈ Follow(α)
 - All undefined entries are errors

Revisit conditions for LL(1)

- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. $First(\alpha) \cap First(\beta) = \emptyset$
 - 2. $\alpha \Rightarrow * \epsilon \text{ implies } !(\beta \Rightarrow * \epsilon)$
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$
- No more than one entry per table field

Error Handling

- Reporting & Recovery
 - Report as soon as possible
 - Suitable error messages
 - Resume after error
 - Avoid cascading errors
- Phrase-level vs. Panic-mode recovery

Panic-Mode Recovery

- Skip tokens until synchronizing set is seen
 - Follow(A)
 - garbage or missing things after
 - Higher-level start symbols
 - First(A)
 - garbage before
 - Epsilon
 - if nullable
 - Pop/Insert terminal
 - "auto-insert"
- Add "synch" actions to table

Summary so far

- LL(1) grammars, necessary conditions
 - No left recursion
 - Left-factored
- Not all languages can be generated by LL(1) grammar
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LL(1) grammars can be parsed by simple predictive recursive-descent parser
 - Alternative: table-driven top-down parser