

Change Detection Algorithm with Hardware Constraints

Prof. Ingo Sander $^1$ , Postdoc Marcello Costa $^2$  October 1, 2024 —  $^1$ KTH Royal Institute of Technology,  $^2$ Cisb-Saab



### Contents

Problem Introduction and Background

Change Detection Algorithm: 2D-AR(n) on Synchronous MoC

CASE I: Change Detection on CARABAS-II



### Change Detection on Synchronous MoC $\rightarrow$ rapid data analysis:

- 1. Elementary Change Detection Model:  $\rightarrow$  Low complexity and power consumption, memory requirements, and parallelized structure<sup>1</sup>
- 2. **Time-series methods**<sup>2</sup>  $\rightarrow$  ARIMA, PCA, SVM, Random Forest, NN, K-means, GLM, EM, SVD, XGboost, LSTM,..
- 3. Temporal dataset: Ultra-wideband (UWB) SAR  $\rightarrow$  stable scatters in time, random motions of targets in the clutter as a first-order autoregressive AR(1) process

<sup>&</sup>lt;sup>1</sup>Rabhi *et al.*, "Patterns and skeletons for parallel and distributed computing," Springer Science & Business Media, 2003.

<sup>&</sup>lt;sup>2</sup>Wu, Suya, et al. "Quickest Change Detection for Unnormalized Statistical Models," *IEEE Trans. on Inf. Theory*, v. 70, n. 2, pp. 1220-1232, 2024.



### Problem Introduction and Background

#### Time series Prediction:

$$\hat{Y}_t = f(X_t, Y_{t-1}, Y_{t-2}, \dots, Y_{t-p}) + \epsilon_t,$$
 (1)



### Combinational solution: 1-lag

| X <sub>t</sub> | $Y_{t-1}$ | Change    |
|----------------|-----------|-----------|
| 0              | 0         | No change |
| 0              | 1         | No change |
| 1              | 0         | Change    |
| 1              | 1         | No change |

Note: Anomaly = 1, background = 0.





Change Detection Algorithm: 2D-AR(n) on Synchronous MoC



## Time-Spatial Implementation:



Synchronous Model of Computation



**Synchronous MoC**<sup>5</sup>: Synchronized parallel components, running in successive computation steps, where all components perform some quantum of computation.

- 1. Output is synchronous with input
- 2. Internal actions are instantaneous





<sup>&</sup>lt;sup>5</sup>Albert Benveniste and Gérard Berry. "The synchronous approach to reactive and real-time systems," *Proceedings of the IEEE*, 79(9):1270–1282, September 1991.



### Change Detection Algorithm: 2D-AR(n) on Synchronous MoC

### Change Detection with AR Model

► ForSyDe Framework<sup>5</sup>/Haskell

### Synchronuous MoC constructors:

- Combinational → zipWithSY, mapSY
- Delay → delaySY
- Sequential → mooreSY, mealySY

### Parallel stencil computation

Data.Massiv.ArrayFramework<sup>6</sup>



<sup>&</sup>lt;sup>5</sup>https://forsyde.github.io/

<sup>6</sup>https://hackage.haskell.org/package/massiv



## Extension: n-lags Model

- Hardware efforts  $\times$  detection performance are balanced over high-parallelized Sync MoC structure by [N, k] selection, enabling fast data analysis.
- Extension for a Markov chain in multitemporal (n-lags) improves the detection performance (considering relevant statistical dependencies), replicating the elementary MoC structure.





## *n*-lags Model

Markov-chain: all states are observable and probabilities converge over time (dependencies are included)

$$r_{i,j}[n] = \sum_{k} r_{i,k}[n-1]P_{k,j}$$

$$\begin{cases} r_{i,j}[n] \to & \text{Prediction going to state } i \text{ to } j \\ r_{i,k}[n-1] \to & \text{recursion from state } i \text{ to } k \\ P_{k,j} \to & \text{Transition probability from state } k \text{ to } j \end{cases}$$



where  $r_{i,j}[n] \Rightarrow \hat{y}'_t$  for each incremental lag.



## Proposition: n-lags 2D-AR Model on Markov-Chain.

Let  $r_{i,j}[n]$  be the prediction extracted from a Markov chain. For change detection, Let  $\tilde{r}_{i,j}^{\ell}[n]$  denote the set of interest involving AR(1) subject to the lowest probability. Then we will the unique sequence

$$\tilde{r}_{i,j}^{\ell}[n] = \bigcup_{i=0}^{\ell-1} \min\{r_{i,j}[n] \setminus \tilde{r}_{i,j}^{\ell}[n]\},\tag{2}$$

which represents the most likely available lags to detect changes anomalies in  $r_{i,j}[n]$  with minimum false alarms.

## Synchronous MoC on ForSyDe









## CARABAS-II dataset<sup>7</sup>:

- 24 images: magnitude VHF (20 – 90 MHz) SAR HH-polarized with 1 m resolution  $(2 \times 3 \text{ km}^2)$
- 4 Targets position: S1, K1, F1, and AF1
- 6 passes: 3 Flight directions under ground RFI sources ON/OFF
- Application: Through-foliage detection



Ulander, L.M., et al. "Change detection for low-frequency sar ground surveillance," IEE Proceedings-Radar, Sonar and Navigation, 152(6), pp. 413-420, 2005.



| Exp.<br>No. | Surveillance<br>image<br>Mission Pass |   | Reference image  Mission Pass |   | Known<br>Targets | Area [km <sup>2</sup> ] |
|-------------|---------------------------------------|---|-------------------------------|---|------------------|-------------------------|
| 1           | 2                                     | 1 | 3                             | 1 | 25               | 6                       |
| 2           | 3                                     | 1 | 4                             | Ŕ | 25               | 6                       |
| 3           | 4                                     | 1 | 5                             | 1 | 25               | 6                       |
| 4           | 5                                     | 1 | 2                             | 1 | 25               | 6                       |
| 5           | 2                                     | 2 | 4                             | 2 | 25               | 6                       |
| 6           | 3                                     | 2 | 5                             | 2 | 25               | 6                       |
| 7           | 4                                     | 2 | 2                             | 2 | 25               | 6                       |
| 8           | 5                                     | 2 | 3                             | 2 | 25               | 6                       |
| 9           | 2                                     | 3 | 5                             | 3 | 25               | 6                       |
| 10          | 3                                     | 3 | 2                             | 3 | 25               | 6                       |
| 11          | 4                                     | 3 | 3                             | 3 | 25               | 6                       |
| 12          | 5                                     | 3 | 4                             | 3 | 25               | 6                       |
| 13          | 2                                     | 4 | 3                             | 4 | 25               | 6                       |
| 14          | 3                                     | 4 | 4                             | 4 | 25               | 6                       |
| 15          | 4                                     | 4 | 5                             | 4 | 25               | 6                       |
| 16          | 5                                     | 4 | 2                             | 4 | 25               | 6                       |
| 17          | 2                                     | 5 | 4                             | 5 | 25               | 6                       |
| 18          | 3                                     | 5 | 5                             | 5 | 25               | 6                       |
| 19          | 4                                     | 5 | 2                             | 5 | 25               | 6                       |
| 20          | 5                                     | 5 | 3                             | 5 | 25               | 6                       |
| 21          | 2                                     | 6 | 5                             | 6 | 25               | 6                       |
| 22          | 3                                     | 6 | 2                             | 6 | 25               | 6                       |
| 23          | 4                                     | 6 | 3                             | 6 | 25               | 6                       |
| 24          | 5                                     | 6 | 4                             | 6 | 25               | 6                       |
| Total       |                                       |   |                               |   | 600              | 144                     |

### Campaign sample data: $2 \times 0.5$ km (15%)



Include all lags y(t-n) to improve the prediction model





### Best pairs



#### **Decision Criteria**







$$2 \times 0.5 \text{ km}^2 (15\%)$$
;  $N = 40$ ;  $AR(n)$ ,  $n = [1, 6]$ 





## Energy-Complexity Performance

|                          | AR(1) |      | AR(n)/6 |                                          |  |
|--------------------------|-------|------|---------|------------------------------------------|--|
| Instance                 | GLRT  | CFAR | sf      | q-ECDF                                   |  |
| Complexity Runtime (sec) | ,     | ,    | ,       | $\frac{\mathcal{O}(N^2 \log N^2)}{7.00}$ |  |

Note: sf = spatial filtering stage with averaging filter.



IL2232 - Project Change Detection





<sup>&</sup>lt;sup>10</sup>Vinholi, J.G., et al., 'Change Detection Based on Convolutional Neural Networks Using Stacks of Wavelength-Resolution Synthetic Aperture Radar Images," in IEEE TGRS, vol. 60, pp. 1-14, 2022.

<sup>&</sup>lt;sup>11</sup>Palm, B.G., et al., "Wavelength-Resolution SAR Ground Scene Prediction Based on Image Stack," Sensors 2020, 20(7).
Embedded systems
IL2232 - Project Change Detection

### Conclusions

- The generalized *n*-lags model has potential detection improvement over high-parallelized structure.
- Embedded SW application for heterogeneous architectures: CPUs, GPU or FPGA.
- Notes:

$$\tilde{r}_{i,j}^{\ell}[n] = \bigcup_{i=0}^{\ell-1} \min\{r_{i,j}[n] \setminus \tilde{r}_{i,j}^{\ell}[n]\} \to \text{Generalized model},$$

$$\begin{cases}
\ell = 1 \Rightarrow \text{best bi-temporal AR}(1) \\
\ell | \min PFA \Rightarrow \ell < k
\end{cases}$$



## Next Steps

1. Target architectures

2. Parallel scheduling

3. Test performance

