MATH 255 Cheat Sheet

Lecture Notes 1

Definitions

- 1. Cluster/limit point : Every ε -neighbourhood of x contains a point of S, i.e. every neighbourhood contains infinitely many points, i.e. there exists a sequence in S which converges to x.
- 2. Closed set \iff contains all its cluster points
- 3. Interior point, i.e. $x \in S^o$ if $\exists \varepsilon$ such that $B(x, \varepsilon) \subseteq S$
- 4. Isolated point if $\exists \varepsilon$ s.t. $B(x, \varepsilon) \cap S = \{x\}$
- 5. Boundary point if $\forall \varepsilon, B(x, \varepsilon) \cap S \neq \emptyset$ and $B(x, \varepsilon) \cap S^c \neq \emptyset$
- 6. Closure of a set $\overline{S} = S \cup \partial S = S \cup S'$
- 7. Compact if $\{G_{\alpha}\}_{\alpha\in I}$ is an open cover of S, \exists a finite subcover s.t. $S\subseteq G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$
- 8. Continuity:

Results

- 1. K_n a sequence of compact sets s.t. $K_{n-1} \subseteq K_n$, then the intersection of all K_n is compact and non-empty.
- 2. Perfect \implies uncountable.

Lecture Notes 2 - Metric Spaces Definitions

- 1. Metric space X:
 - (a) $d(x,y) \ge 0 \forall x, y \in X$
 - (b) $d(x, y) = 0 \iff x = y$
 - (c) d(x, y) = d(y, x)
 - (d) $d(x,y) \le d(x,z) + d(z,y) \forall x,y,z \in X$
- 2. Open ball in X: $B(x,\varepsilon) := \{y \in X : d(x,y) < \varepsilon\}$
- 3. S open in X if $\forall x \in S, \exists \varepsilon > 0$ s.t. $\{y \in X \mid d(x,y) < \varepsilon\} \subseteq S$
- 4. Perfect in X if closed and every point is a cp.
- 5. $E \subseteq X$ is bounded if $\exists x \in X$ and R > 0 s.t. $\forall y \in E, \ d(x, y) < R$.
- 6. S is dense in X if $\overline{S} = X$, i.e. every $x \in S$ is a cp of X, i.e. $\forall x \in X, \forall \varepsilon > 0, \exists$ a point of S in $B(x, \varepsilon)$.
- 7. X is separable if it has a countable dense subset.
- 8. $x \in X$ is a condensation point if $\forall \varepsilon > 0$, \exists uncountably many points of X in $B(x, \varepsilon)$.
- 9. $K \subseteq X$ is **sequentially compact** if every infinite subset E of K has a cluster point in K. That is, every sequence in K has a subsequence converging in K.
- 10. A set $S \subseteq X$ is **totally bounded** if $\forall \varepsilon > 0$, \exists finitely many $x_n \in S$ s.t. $S \subseteq B(x_1, \varepsilon) \cup ... \cup B(x_N, \varepsilon)$.
- 11. A collections of subsets of E labeled as \mathcal{F} has the **FIP** if whenever $F_1, ..., F_n \in \mathcal{F}$, we have

$$\bigcap_{i=1}^n F_i \neq \emptyset$$

Results

- 1. The union of arbitrary open sets is open.
- 2. The union of finitely many closed sets is closed.
- 3. The intersection of arbitrary closed sets is closed.
- 4. The intersection of finitely many open sets is open.
- 5. $E \subseteq Y \subseteq X$. Then E is open relative to $Y \iff \exists G$ open in X s.t. $E = G \cap Y$.
- f: E → ℝ is continuous on E if the inverse image of any open set in ℝ is open relative to E.
- 7. $K \subseteq Y \subseteq X$ Then K is compact relative to X \iff it is compact relative to Y.
- 8. Compact \implies closed & bounded (in any metric space).
- 9. Closed subsets of compact sets are compact.
- 10. F closed, K compact $\implies F \cap K$ compact.
- 11. Sequentially Compact \iff Compact.
- 12. $K \subseteq X$, K is compact \iff K is closed and every collection \mathcal{F} of closed subsets of K which has the FIP satisfies $\cap_{F \in \mathcal{F}} F_i \neq \emptyset$
- 13. Totally bounded \implies separable.
- 14. Sequentially compact \implies separable.

Lecture Notes 3 - Sequences & Continuous Functions in Metric Spaces

- 1. a_n converges to a if $\forall \varepsilon > 0$, $\exists N$ s.t. $n \geq N \implies d(a_n, a) < \varepsilon$
- 2. X a compact metric space \implies every sequence in X has a convergent subsequence to a point in X.
- 3. $p_n \in X$ cpt m.s. then the set of subsequential limits is closed.
- 4. Cauchy sequence: A sequence p_n in a metric space (X,d) is Cauchy if for every $\varepsilon > 0$, $\exists N$ s.t. $n \ge m \ge N \implies d(p_n,p_m) < \varepsilon$
- 5. Convergent \implies Cauchy.
- 6. X cpt \implies every Cauchy sequence converges to a point in X.
- 7. Complete m.s. if every Cauchy sequence converges.
- 8. $E \subseteq X$, $f: E \to Y$, $\lim_{n \to p} f(x) = q$ if $\forall \varepsilon > 0, \exists \delta$ s.t.

$$d_X(x,p) < \delta \implies d_Y(f(x),q) < \varepsilon$$

- 9. $\lim_{x\to p} f(x) = q \iff \forall p_n \neq p \text{ s.t. } \lim_{n\to\infty} p_n = p$, we have $\lim_{n\to\infty} f(p_n) = q$.
- 10. $f: X \to Y$ cts at p $\forall \varepsilon > 0, \exists \delta > 0$ s.t. if $d_X(x, p) < \delta \implies d_Y(f(x), f(p)) < \varepsilon$.
- 11. $f: X \to Y$ is cts \iff \forall open set $V \in Y$, $f^{-1}(V)$ is open in X.
- 12. $f: X \to Y$ is cts $\iff \forall p_n \to p \in X$, we have $f(p_n) \to f(p) \in Y$.

- 13. Let X cpt m.s., if $f: X \to Y$ is cts, then $f(X) \subseteq Y$ is cpt.
- 14. $f: X \to Y$ is **Uniformly continuous** if $\forall \varepsilon, \ \exists \delta > 0$ s.t. $\forall p, q \in X$

$$d_X(p,q) < \delta \implies d_Y(f(p),f(q)) < \varepsilon$$

- 15. X cpt and $f: X \to Y \implies f$ uniformly cts.
- 16. Contraction: X a complete m.s. and $f: X \to X$ s.t. for $0 < \alpha < 1$,

$$d(f(x), f(y)) \le \alpha d(x, y) \ \forall x, y \in X$$

17. The Banach Fixed Point Theorem: Let f a contraction on a complete metric space. Then there exists a unique $x \in X$ such that f(x) = x.

Lecture Notes 4 - Normed Vector Spaces

1. Minkowsky inequality: Let $x = (x_1, ..., x_N)$, $y = (y_1, ..., y_N) \in \mathbb{R}^n$ and let $1 \le p < \infty$ then,

$$\left(\sum_{n=1}^{N} (|x_n| + |y_n|)^p\right)^{1/p} \le \left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p} + \left(\sum_{n=1}^{N} |y_n|^p\right)^{1/p} = ||x||_p + ||y||_p$$

2. Holder Inequality: let x, y be as above, $1 < p, q < \infty$ be conjugate exponents $(p^{-1} + q^{-1} = 1)$ then,

$$\sum_{n=1}^{N} |x_n| |y_n| \le \left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p} \left(\sum_{n=1}^{N} |y_n|^q\right)^{1/q} = \|x\|_p \|y\|_q$$

- 3. $\|\cdot\|_A$ and $\|\cdot\|_B$ are **equivalent norms** if $\exists c_1, c_2 > 0$ s.t. $\forall x \in X$, $\|x\|_A \le c_1 \|x\|_B$ and $\|x\|_B \le c_2 \|x\|_A$
- 4. All norms are equivalent in \mathbb{R}^N and on finite v.s.
- 5. $T: X \to Y$ is bounded if $\exists c > 0$ s.t. $\|T(x)\|_Y \le c\|x\|_X \ \forall x \in X$.
- 6. $T: X \to Y$, TFAE:
 - a) T is bounded
 - b) T is cts at all points in X
 - c) T is cts at x = 0
- 7. X f.d. v.s. $\implies T: X \to Y$ is bounded.
- 8. Operator norm: $||T||_{op} = \sup_{x \neq 0} \frac{||T(x)||_Y}{||x||_X} = \sup_{\|x\|_Y = 1} ||T(x)||_Y = \inf\{c \geq 0 \mid ||T(x)||_Y \leq c ||x||_X \forall x\}$
- 9. $F: X \to Y, U \subseteq X$ open, $p \in U$, then F is differentiable at p if \exists bounded linear operator $T: X \to Y$ s.t.

$$\lim_{h \to 0} \frac{\|F(p+h) - F(p) - T(h)\|_{Y}}{\|h\|_{Y}} = 0$$

Then, T is the **derivative** of F at p.

Lecture Notes 5 - Infinite Series

- 1. $\sum_{k=1}^{\infty} a_k$ converges \iff the sequence of partial sums s_n converges, where $s_n := a_1 + ... + a_n$.
- 2. Geometric series $\sum_{k=0}^{\infty} r^n$ converges to $\frac{1}{1-r}$ if r < 1, diverges o.w.
- 3. Harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges.
- 4. p-series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges $\iff 1 .$
- 5. $\sum a_k$ converges $\implies \lim_{k\to\infty} a_k = 0$.
- 6. Cauchy criterion for convergence: $\sum a_k$ converges $\iff \forall \varepsilon > 0, \ \exists M \in \mathbb{N} \text{ s.t.}$ $m > n > M \implies |s_m s_n| = |a_{n+1} + \dots + a_m| < \varepsilon$
- 7. Direct comparison test: $0 \le a_k \le b_k \ \forall k > K$, then
 - a) $\sum b_k$ converges $\Longrightarrow \sum a_k$ converges.
 - b) $\sum a_k$ diverges $\Longrightarrow \sum b_k$ diverges.
- 8. Limit comparison test 1: $0 < a_k, b_k$ s.t. $r = \lim_{k \to \infty} a_k/b_k$
 - a) $r \neq 0$: $\sum a_k$ converges $\iff \sum b_k$ converges.
 - b) r = 0: $\sum b_k$ converges $\Longrightarrow \sum a_k$ converges.
- 9. Limit comparison test 2: a_k, b_k s.t. $r = \lim_{k \to \infty} |a_k|/|b_k|$
 - a) $r \neq 0$: $\sum a_k$ converges abs. $\iff \sum b_k$ conv. abs.
 - b) r = 0: $\sum b_k$ converges abs. $\implies \sum a_k$ converges abs.
- 10. $\sum a_k$ converges \implies every regrouping converges.
- 11. Absolute convergence \implies convergence

- 12. Ratio test: let $a_k \neq 0$, s.t. $\lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|} = r$, then if
 - a) r < 1, $\sum a_k$ converges abs. b) r > 0, $\sum a_k$ diverges.
 - c) r = 0, inconclusive.
- 13. Alternating series test: $a_k \ge 0$ non-increasing converging to 0. Then $\sum (-1)^{k+1} a_k$ converges.
- 14. **Dirichlet's test**: a_k a decreasing sequence s.t. $\lim_{n\to\infty} a_k = 0$ and b_k s.t. the partial sums of b_k are bounded. Then $\sum a_k b_k$ converges.
- 15. Abel's test: a_k a convergent monotone sequence, $\sum b_k$ converges, then $\sum a_k b_k$ converges.
- 16. a_k converges absolutely \implies every rearrangement of a_k converges to the same point.
- 17. a_k converges conditionally, α any real number. Then there exists a rearrangement of a_k which converges to α .

Lecture Notes 6 - Integration

- 1. Tagged partition \dot{P} on [a,b] is defined as $\{[x_{i-1},x_i],t_i\}_{i=0}^n$ where t_i is the point chosen for the subinterval.
- 2. $\|\dot{P}\| = \max\{[x_{i-1}, x_i]\}_{i=0}^n$
- 3. Riemann sum $S(f, \dot{P}) := \sum_{i=1}^{n} f(t_i)(x_i x_{i-1})$.

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \int_{a}^{b} f(x) dx$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$

4. $f \in R[a, b]$ if $\exists L \in \mathbb{R}$ s.t. $\forall \varepsilon > 0, \exists \delta_{\varepsilon}$ s.t. if $||\dot{P}|| < \delta_{\varepsilon}$,

$$|S(f, \dot{P}) - L| < \varepsilon$$

Then, L is the *unique* integral.

- 5. Let $f, g \in R[a, b]$, then
 - a) $\int_a^b kf = k \int_a^b f$
 - b) $\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$
 - c) $f(x) \le g(x) \forall x \in [a, b] \implies \int_a^b f \le \int_a^b g \ 6$
- 6. $f \in R[a, b] \implies f$ bounded on [a, b]
- 7. Cauchy criterion: $f \in R[a,b] \iff \forall \varepsilon > 0, \exists \mu_{\varepsilon} \text{ s.t. if } \|\dot{P}\|, \|\dot{Q}\| < \mu_{\varepsilon}, \text{ then}$

$$|S(f, \dot{P}) - S(f, \dot{Q})| \le \varepsilon$$

8. Squeeze: $f \in R[a,b] \iff \forall \varepsilon > 0, \exists \alpha, \omega \in R[a,b] \text{ s.t.}$

$$\alpha(x) \le f(x) \le \omega(x) \quad \forall x \in [a, b]$$

and such that

$$\int_{a}^{b} (\omega - \alpha) < \varepsilon$$

- 9. $f:[a,b]\to\mathbb{R}$ cts $\Longrightarrow f\in R[a,b]$.
- 10. $f \in R[a, b] \implies \forall c \in [a, b], \ f|_{[a, c]} \land f|_{[c, b]}$ are Riemann integrable and in particular

$$\int_a^b f = \int_a^c f + \int_c^b f$$