

Fig. 3

Transform the time domain noisy speech signal input to frequency domain

STEP 1	 Estimate a first speech periodogram set the mask at - 13dB of the speech power estimate the noise periodogram compute the speech+masked noise periodogram update the number of block for time averaging calculate the forgetting factor for noise psd updating
STEP 2	calculate the input power (speech periodogram + noise psd)
STEP 3	Compute the Wiener filter
STEP 4	update the noise psd
STEP 5	- Estimate the signal-to-noise ratio - compute the Higher order Wiener filter - estimate the current speech periodogram
STEP 6	- determine the amplification level at each band - amplify the Wiener filter
STEP 7	Choose a value for the noise reduction level at the output
STEP 8	compute the final Wiener filter and multiply it with the input to produce the output estimate

Transform the frequency domain estimated output to time domain

Fig. 4

Fig. 5