Travaux pratiques – TP 11 —

# Cinétique d'une réaction de saponification par conductimétrie

#### Au programme



#### Savoirs

- ♦ Relever les indications sur le risque associé au prélèvement, au mélange et au stockage des produits chimiques et adopter une attitude responsable lors de leur utilisation.
- ♦ Suivi cinétique de transformations chimiques.
- ♦ Suivi en continu d'une grandeur physique.



#### Savoir-faire

- ♦ Établir une loi de vitesse à partir du suivi temporel d'une grandeur physique.
- ♦ Exploiter les résultats d'un suivi temporel de concentration pour déterminer les caractéristiques cinétiques d'une réaction.
- ♦ Proposer et mettre en œuvre des conditions expérimentales permettant la simplification de la loi de vitesse.
- ♦ Déterminer la valeur d'une énergie d'activation.



# I | Objectifs

- $\diamond$  Utiliser une méthode conductimétrique pour vérifier un ordre global et pour déterminer la valeur d'une constante de vitesse k.
- ♦ Se placer dans des conditions expérimentales de proportions stœchiométriques.
- ♦ Déterminer une énergie d'activation.

## II

## S'approprier



#### Introduction

La réaction de saponification est l'hydrolyse basique (en présence d'ions OH<sup>-</sup>) des esters, cette réaction permet la synthèse des savons. Le savon, produit domestique utilisé depuis des milliers d'années est à l'origine un mélange de graisse animale fondue et de cendres. En 1823, Eugène Chevreul, chimiste français, découvre que les triesters présents dans les corps gras, réagissent avec la soude (base qui était jadis apportée par les cendres) pour former le savon.

# B Le principe de la conductimétrie

Cette méthode repose sur l'existence d'ions en solution et sur leur capacité à faciliter le passage d'un courant. La nature des ions et leurs concentrations modifient la conductance G du système (grandeur

qui est l'inverse de la résistance R) exprimée en S (Siemens). Plus le milieu est propice au passage du courant, plus la conductance est élevée. Celle-ci est reliée à trois paramètres principaux :

- 1) la conductivité  $\sigma$  du système
- 2) la longueur  $\ell$
- 3) la section S de la cellule

La conductance s'exprime alors selon

$$G = \frac{\sigma S}{\ell}$$

Ainsi, on ne parle pas de conductance de la solution, puisque la conductance dépend de la cellule de mesure et de sa géométrie. L'unité de conductivité est le  $S \cdot m^{-1}$ ; le quotient  $K = \ell/S$  est appelé constante de cellule. Ainsi, on a  $G = \sigma/K$ . La mesure de la conductance s'effectue avec un conductimètre, qui est en fait un ohmmètre.

La conductivité  $\sigma$  de la solution peut alors s'exprimer par la loi de Kohlrausch, exprimée sous une forme avec la chage de l'ion:



#### Loi de KOHLRAUSCH

$$\sigma = \sum_{i} \lambda_{i} |z_{i}| [X_{i}]$$

- $\diamond \lambda_i$  la conductivité molaire ionique de l'ion  $X_i$  (en  $S \cdot m^2 \cdot mol^{-1}$ ) donnée dans les tables
- $\diamond$   $z_i$  la charge de l'ion  $\mathbf{X}_i$
- $\diamond$  [X<sub>i</sub>] la concentration de l'ion X<sub>i</sub>



#### **Important**

La conductivité  $\sigma$  de la solution prend en compte tous les ions présents dans la solution. Il faut donc faire l'inventaire des ions en solution avec soin.

En supposant que l'on ne fait varier que d'une unique espèce ionique (et donc conductrice) dans la solution, on pourra noter  $c = [X_i]$  la concentration de cette espèce. La **courbe d'étalonnage** est alors la représentation graphique de  $\sigma = f(c)$  obtenue avec l'ensemble des points de coordonnées  $(c_i; \sigma_i)$ où  $\sigma_i$  sont les conductivités des différentes solutions étalons  $S_i$  de concentration  $c_i$ . Connaissant la conductivité  $\sigma_0$  de la solution  $S_0$  inconnue, on en déduit grâce à la courbe d'étalonnage la concentration molaire  $c_0$  de la solution  $S_0$ .



## III Analyser



#### Données numériques utiles



| Ions                                                                  | $\mathrm{HO}^-$ | $\mathrm{CH_3CO_2}^-$ | Na <sup>+</sup> | Élément                     | Na | С  | О  | Н |
|-----------------------------------------------------------------------|-----------------|-----------------------|-----------------|-----------------------------|----|----|----|---|
| $\lambda(\mathrm{mS}\!\cdot\!\mathrm{m}^2\!\cdot\!\mathrm{mol}^{-1})$ | 19,86           | 4,09                  | 5,01            | Masse molaire $(gmol^{-1})$ | 23 | 12 | 16 | 1 |

- $\diamond$  Densité de l'éthanoate d'éthyle pur : d = 0.90;
- $\diamond$  Constante des gaz parfaits :  $R = 8.314 \,\mathrm{J\cdot K^{-1} \cdot mol^{-1}}$

III. Analyser 3

## B Préliminaires

La réaction étudiée ici est la saponification de l'éthanoate d'éthyle par la soude à température ambiante. C'est une réaction totale et lente.

$$H_3C$$
  $\longrightarrow$   $O$   $\longrightarrow$   $O$ 

Par souci de simplicité, on notera par la suite la réaction :  $RCOOR' + OH^- \rightarrow RCOO^- + R'OH$ 

III.B.1 Rappels de chimie organique

1 Quelle est la classe fonctionnelle (ou famille) de l'éthanoate d'éthyle? Quelle est son groupe caractéristique? Quelle est sa formule semi-développée? Nommer les deux produits obtenus.

III.B.2 Choix de la méthode d'étude

(2) Justifier que la conductimétrie soit une méthode particulièrement adaptée pour le suivi cinétique de cette réaction.

III.B.3 Sécurité

(3) On peut voir ces pictogrammes sur les étiquettes des flacons : que signifient-t-ils ? quelles précautions faut-il prendre ? Vous pourrez consulter

http://www.inrs.fr/media.html?refINRS=ED%204406



# C Étude théorique de la cinétique

On cherche à vérifier que cette réaction est d'ordre global 2 avec un ordre partiel de 1 par rapport à chacun des réactifs.

- 4 Écrire la loi de vitesse correspondante.
- (5) Les conditions expérimentales sont choisies pour que l'on soit dans les proportions stœchiométriques. De plus à l'instant initial, il n'y a pas encore de produits. Ainsi,

$$[RCOOR']_0 = [OH^-]_0 = c_0$$
 et  $[RCOO^-]_0 = [R'OH]_0 = 0$ 

Simplifier, dans ces conditions, la loi de vitesse précédente.

- (6) Faire un tableau d'avancement sur les concentrations aux instants t = 0, t quelconque, et  $t \to \infty$  (noté  $t_{\infty}$ ) sachant que la réaction est supposée **totale**. On introduira pour plus de commodité d'écriture x l'avancement volumique  $x = \xi/V$ .
- 7 Déterminer une équation différentielle vérifiée par x. Puis intégrer cette équation à l'aide de la méthode de séparation des variables pour obtenir x en fonction de t explicitement. Quel graphe faudrait-il tracer, connaissant x(t), pour vérifier que la réaction est bien d'ordre 2?
- (8) Exprimer en fonction des concentrations des différentes espèces  $X_i$  et de leurs conductivités molaires ioniques  $\lambda_i$ , la conductivité  $\sigma_0$  de la solution à l'instant initial, celle  $\sigma_{\infty}$  à un temps infini, et enfin  $\sigma$  à l'instant t. N'oubliez pas les ions sodium.

$$\frac{\sigma_0 - \sigma_\infty}{\sigma - \sigma_\infty} = \frac{c_0}{c_0 - x}$$

(10) En déduire que si la vitesse est bien telle qu'elle a été supposée (c'est-à-dire suivant une loi d'ordre global 2), la relation suivante doit être vérifiée :

$$\frac{\sigma_0 - \sigma_\infty}{\sigma - \sigma_\infty} = c_0 kt + 1$$

(11) Sachant que l'on va mesurer les conductivités, quel graphe doit-on tracer pour obtenir une droite si l'ordre de la réaction est bien de 2? Comment pourra-t-on en déduire la constante de vitesse de la réaction?

# ${ m IV}^{ig|}$ Réaliser

## A Protocole expérimental



Solutions disponibles .

- $\diamond Soude \qquad \qquad (Na^{+} + OH^{-}) \qquad \qquad 0,100 \, \text{mol} \cdot L^{-1} \; ;$
- $\diamond$ Éthanoate (ou acétate) d'éthyle (RCOOR') 0,100  $\mathrm{mol}\cdot\mathrm{L}^{-1}$  ;
- $\diamond \ \, \text{Acétate de sodium} \qquad \qquad (\text{RCOO}^- + \text{Na}^+) \qquad \qquad 5,0 \times 10^{-2} \, \text{mol} \cdot \text{L}^{-1} \; .$



Matériel disponible —

- ♦ Verrerie usuelle :
  - $\triangleright$  bécher (100 mL, 150 mL, 250 mL)  $\triangleright$  pipettes jaugées (10,0 mL, 20,0 mL)
  - $\triangleright$  fioles jaugées (50,0 mL, 100,0 mL)  $\triangleright$  éprouvettes graduées (10 mL, 50 mL)
- ♦ Conductimètre.
- ♦ Agitateur magnétique.
- ♦ Thermomètre, chronomètre, ordinateur avec regressi.

#### 1 Discuter de la nécessité d'étalonner le conductimètre.

IV.A.1 Détermination de  $\sigma_0$  et de  $\sigma_{\infty}$ 

- $\boxed{2}$   $\sigma_0$  ne peut pas être déterminée précisément à partir du mélange réactionnel pris à t=0. Pourquoi?
- 3 Afin de déterminer précisément  $\sigma_0$ , réaliser une solution équivalente au milieu réactionnel initial mais dont la conductivité n'évolue pas. Expliquer votre démarche et votre protocole expérimental.
- $\boxed{4}$   $\sigma_{\infty}$  est également difficile à déterminer précisément à partir du mélange réactionnel. **Pourquoi**?
- $\boxed{5}$  Afin de déterminer précisément  $\sigma_{\infty}$ , réaliser une solution équivalente au milieu réactionnel final mais dont la conductivité n'évolue pas. Expliquer votre démarche et votre protocole expérimental.

V. Valider 5

## $oxed{\mathbf{B}}$

#### Suivi conductimétrique à température ambiante

Activité Capytale 1 disponible.



1) Prélever 50 mL de soude mesurés avec une fiole jaugée et mettre en place le dispositif d'agitation et le régler pour que la vitesse soit faible et ne touche pas à l'électrode.



#### Rappel -

Il est préférable de faire des mesures de conductimétrie sans agitation. Mais ici ce n'est pas possible car il faut que les concentrations soient uniformes en solution. Pour que la perturbation soit moindre, il ne faut pas changer la vitesse d'agitation au cours de la réaction.

- 2) Ajouter alors le volume adéquat d'éthanoate d'éthyle mesuré avec une fiole jaugée pour que les solutions soient introduites dans les proportions stœchiométriques et mettre en route le chronomètre.
- 3) Toutes les 30 secondes, relever la conductivité de la solution au cours du temps et ce pendant 20 min environ. Rentrez vos valeurs sur Capytale.
- 6 Faire un schéma du dispositif expérimental.



#### Valider

### A Exploitation des mesures

- 7 Expliquer l'allure décroissante de la courbe  $\sigma = f(t)$ .
- 8 Tracer le graphe nécessaire à la vérification de l'ordre 2.
- 9 Conclure quant à l'ordre global de la vitesse de la réaction étudiée.
- 10 En déduire la valeur de la constante de vitesse à la température ambiante en précisant son unité.

## B Influence de la température; énergie d'activation

Les mêmes expériences ont été réalisées à des températures différentes grâce à des bains thermostatés. Les valeurs des constantes de vitesse selon la température ont été rapportées dans le tableau suivant, où l'unité de la constante de vitesse k est celle trouvée dans la partie précédente (exploitation des mesures) avec le temps en secondes.

| $\theta$ (°C) | Ambiante      | 35        | 40        | 45        |
|---------------|---------------|-----------|-----------|-----------|
| k (SI)        | Votre valeur! | $0,\!188$ | $0,\!257$ | $0,\!356$ |

- 11 Rappeler la loi d'Arrhénius;
- Taire la régression linéaire (sur régressi ou sur votre calculatrice) nécessaire à la détermination de l'énergie d'activation de cette réaction; Préciser son unité.

1. 1d22-2446511