

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

similar to bagging

- 1. Bootstrap samples
- 2. At each split, bootstrap variables
- 3. Grow multiple trees and vote or average

at each potential split, only a subset of variables is considered.

Pros:

1. Accuracy

Cons:

- 1. Speed slow
- 2. Interpretability
- 3. Overfitting

so it's very important to use cross validation when using random forests

The ensemble model

Forest output probability
$$p(c|\mathbf{v}) = rac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$

http://www.robots.ox.ac.uk/~az/lectures/ml/lect5.pdf

this link doesn't work

Iris data

```
105 samples
 4 predictors
 3 classes: 'setosa', 'versicolor', 'virginica'
No pre-processing
Resampling: Bootstrap (25 reps)
Summary of sample sizes: 105, 105, 105, 105, 105, 105, ...
Resampling results across tuning parameters:
 mtry Accuracy Kappa Accuracy SD Kappa SD
      0.9 0.9 0.03
                          0.04
   0.9 0.9 0.03 0.05
      0.9 0.9 0.03
                          0.05
                                                                                5/10
```

Getting a single tree

getTree(modFit\$finalModel,k=2) get the second tree

				h variable								
				used	and							
	left daughter	right daughter	split	split var <mark>split</mark>	where point		prediction	each	2011	; c	1	an l
1	2	3		4	0.70	1	0	eacii	LOW	TS	_	SPI
2	0	0		0	0.00	-1	1					
3	4	5		4	1.70	1	0					
4	6	7		3	4.95	1	0					
5	8	9		3	4.85	1	0					
6	0	0		0	0.00	-1	2					
7	10	11		4	1.55	1	0					
8	12	13		1	5.95	1	0					
9	0	0		0	0.00	-1	3					
10	0	0		0	0.00	-1	3					
11	0	0		0	0.00	-1	2					
12	0	0		0	0.00	-1	2					
13	0	0		0	0.00	-1	3					

Class "centers"

```
irisP <- classCenter(training[,c(3,4)], training$Species, modFit$finalModel$prox)
irisP <- as.data.frame(irisP); irisP$Species <- rownames(irisP)
p <- qplot(Petal.Width, Petal.Length, col=Species,data=training)
p + geom_point(aes(x=Petal.Width,y=Petal.Length,col=Species),size=5,shape=4,data=irisP)</pre>
```


Predicting new values

```
pred <- predict(modFit,testing); testing$predRight <- pred==testing$Species
table(pred,testing$Species)</pre>
```

```
pred setosa versicolor virginica
setosa 15 0 0
versicolor 0 14 1
virginica 0 1 14
```

Predicting new values

qplot(Petal.Width, Petal.Length, colour=predRight, data=testing, main="newdata Predictions")

Notes and further resources

Notes:

- · Random forests are usually one of the two top performing algorithms along with boosting in prediction contests.
- · Random forests are difficult to interpret but often very accurate.
- · Care should be taken to avoid overfitting (see rfcv funtion)

Further resources:

- Random forests
- · Random forest Wikipedia
- Elements of Statistical Learning