Table 3: Properties of the z-Transform

Property	Sequence	Transform	ROC	
	$x[n]$ $x_1[n]$ $x_2[n]$	$X(z) X_1(z) X_2(z)$	R R_1 R_2	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2	
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R except for the possible addition or deletion of the origin	
Scaling in the z-Domain	$e^{j\omega_0 n}x[n]$ $z_0^nx[n]$ $a^nx[n]$	$X(e^{-j\omega_0}z)$ $X\left(\frac{z}{z_0}\right)$ $X(a^{-1}z)$	R z_0R Scaled version of R (i.e., $ a R = $ the set of points $\{ a z\}$ for z in R)	
Time reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} where z is in R)	
Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$ where z is in R)	
Conjugation	$x^*[n]$	$X^*(z^*)$	R	
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2	
First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$	
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$	
Differentiation in the z -Domain	nx[n]	$-z\frac{dX(z)}{dz}$	R	
Initial Value Theorem If $x[n] = 0$ for $n < 0$, then				

 $x[0] = \lim_{z \to \infty} X(z)$

Table 4: Some Common z-Transform Pairs

Signal	Transform	ROC
1. $\delta[n]$	1	All z
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$6\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r