Table 1. Identification of peptides in AfC fractions.

Protein extract	CssI (AnrP440134)	Hydrophobin (AnrP57221)	GAPDH (AnrP539502)	Enolase (AnrP7789)	Catalases and IMDH B
Diffusate	KVAQEIINPGPK	FPVPDDITVK	AGISLNPNFVK	NVNETIGPALIK	Not detected
		ATYAGDVTDIDEGILAGTLK	TAAQNIIPSSTGAAK	VNQIGTLTESIQAAK	
			NILGYTEDDVVSSDLNGDER	TSDFQIVGDDLTVTNPGR	
2				WLTYEQLADLYK	
Сеп	VAQELINFGPK	FPVPDDITVK	Not detected	Not detected	FGFDLLDPTK (Catalase
Surrace		ATYAGDVTDIDEGILAGTLK			B peptide
caposcu					AnrP977704)
					LX1AEX2ALR (IMDH B
					peptide)
сен жан	KVAQELINEGEK	FPVPDDITVK 3-12	AGISLNPNFVK	Not detected	TGPSLLEDQIAR
	VACEL INFGEK	ATTAGUVTULDEGILAGTIK	TAAQNIIPSSTGAAK		(Catalase A peptide
	SISFQLDCR	30-50	NILGYTEDDVVSSDLNGDER		AnrP145557) ~ ~
	EGAEQSAPQAEHSTK		VPTSNVSVVDLTCR		
	VVTTPYTCDQVK		YDTTHGQFK		
			GTIETYDQGLIVNGK		
Peptides	KVAQEIINPGPKVVTT	PVPDDITVKQATEKCGD	TEDDVVSSDLNGDERS	KNVNETIGPALIKENID	DEEDOLRFGFDLLDPTKIVP
used for Ab	KEGAEQSAPQAEHSTK	ATYAGDVTDIDEGIL	FKGTIETYDQGLIVNGKK	Ħ	RIDNDLARRVARAIGV
ы описион					

Table 2. Biochemical characteristics of CssI.

	Complete	N-terminus	C-terminus
WW	28179.92	13960.38	14236.54
Residues	260	130	130
Strongly Basic (+) Amino Acids (K, R)	25	10	15
Strongly Acidic (-) Amino Acids (D, E)	33	9	24
Hydrophobic Amino Acids (A, I, L, F, W, V)	89	55	34
Polar Amino Acids (N, C, Q, S, T, Y)	70	36	34
Isolectric Point	5.081	7.626	4.760
Charge at pH 7.0	-7.634	0.892	-8.617

Table 3. Sequence of peptides chosen for the production of multiple antigenic peptides and antisera against selected target proteins

Peptide 1	Peptide 2	ENO-2	ENO-1	CAT-B-2	CAT-B-1	HYD-2	HYD-1	GAP-B-2	GAP-B-1	Peptide name
KVAQEIINPGPKVVTT (SEQ ID NO:7)	KEGAEQSAPQAEHSTK (SEQ ID NO:8)	TSDFQIVGDDLTVTNPGR (SEQ ID NO:14)	KNVNETIGPALIKENID (SEQ ID NO:13)	RIDNDLARRVARAIGV (SEQ ID NO:16)	DEEDQLRFGFDLLDPTKIVP (SEQ ID NO:15)	ATYAGDVTDIDEGIL (SEQ ID NO:10)	PVPDDITVKQATEKCGD (SEQ ID NO:9)	TEDDVVSSDLNGDERS (SEQ ID NO:11)	FKGTIETYDQGLIVNGKK (SEQ ID NO:12)	Peptide sequence
CssI	CssI	Enolase	Enolase	Catalase B	Catalase B	hydrophobin	hydrophobin	GAPDH B	GAPDH B	Parental protein
‡	‡	•	‡	‡	‡	‡	‡	‡	‡	Reactivity vs AfC*
‡	++ +	+	1	‡	‡	+	‡	‡	‡	Reactivity vs AfM*

*Reactivity of sera raised against the peptide against the surface of AfC or AfM

Table 4. Analysis of the ability of anti-IMDH B IgG to bind the surface of clinical isolates.

	7			
Strain Number	Original	Pathogenicity	Anti IMDH-B intensity	B intensity
	Supsti atum	disease):	Conidia	Mycelium
Isolate 46640	Human Lung	Aspergilloma	‡	‡
IHEM 1246	Outdoor air		+	+
IHEM 2494	Human sputum	Allergic	‡	‡
		Bronchopulmonar		
		Aspergillosis		
IHEM 2739	Human sinus	Mycotic sinusitis	++++	‡
IHEM 2895	Human	Bronchitis	+++	+
-	bronchoaspiration			
	(fungal ball)			
IHEM 3007	Human lung	Pulmonary	1	‡
		aspergillosis		
IHEM 4184	Human lung biopsy	Aspergillosis (heart	•	‡
		transplant)		
IHEM 4185	Human bone	Aspergillosis (heart	1	+
		transplant)		
IHEM 4187	Human bronchial	Aspergillosis (liver	+	+
	secretions	transplant)		
IHEM 4699	Human	Aspergillosis (bone	‡	+
	bronchoaspiration	marrow transplant)		•
IHEM 4750	Human lung from	Aspergillosis (liver	+++	ND
	autopsy	transplant)		
THEM 4756	Human sputum	Aspergillosis	1	+
		(marrow transplant		

- Figure 1. The predicted protein sequences of CssI (A), hydrophobin (B), GAPDH-B (C), enclase (D), catalase B (E), catalase A(F), and isopropylmalate dehydrogenase B (G). X_1 is S or A and X_2 is L or I.
- A
 MLASFQFCILPRTYRTLLCSAGAGPLLIIQFVTVASALALAPTAVVARQGAAAFVTVNSIDVCPKKVAQEIINPGPKVVTTP
 YTCDQVKLGHGLDVSYYNFDIEPLTKDTFPYCKALKVFDNEGCLGFPTLWIPLESPLEDKCIPEHYFSDEVKSISFQLDCRE
 DAPVKKEPYGPKEGAEQSAPQAEHSTKQDAQQGSHQGQEVQNSPKQEARQGSRPAEAAPKQEQEAEQASEAAPEKKASNPAD
 SLGLGELTKVLGFR
- <u>D</u>
 VRFPVPDDITVKQATEKCGDQAQLSCCNKATYAGDVTDIDEGILAGTLKNLIGGGSGTEGLGLFNQCSKLDLQSPIIGIPIQ
 DLVNQKCKQNIACCQNSPSDAVRFP
- C
 MATPKVGINGFGRIGRIVGLNSLSHGVDVVAVNDPFIEVHYAAYMLKYDTTHGQFKGTIETYDQGLIVNGKKIRFYAEKD
 PSQIPWSETGAAYIVESTGVFTTKEKASAHLKGGAKKVIISAPSADAPMFVMGVNNTTYTSDIQVLSNASCTTNCLAPLA
 KVINDKFGIVEGLMTTVHSYTATQKVVDAPSNKDWRGGRTAAQNIIPSSTGAAKAVGKVIPSLNGKLTGMAMRVPTSNVS
 VVDLTCRLEKGASYDEIKQAIKAASEEGELKNILGYTEDDVVSSDLNGDERSSIFDAKAGISLNPNFVKLVAWYDNEW
- D
 MPISKIHARSVYDSRGNPTVEVDVATETGLHRAIVPSGASTGQHEAHELRDGDKTQWGGKGVLKAVKNVNETIGPALIKENI
 DVKDQSKVDEFLNKLDGTANKSNLGANAILGVSLAVAKAGAAEKGVPLYAHISDLAGTKKPYVLPVPFQNVLNGGSHAGGRL
 AFQEFMIVPDSAPSFSEALRQGAEVYQKLKALAKKKYGQSAGNVGDEGGVAPDIQTAEEALDLITEAIEQAGYTGK
 IKIAMDVASSEFYKADVKKYDLDFKNPESDPSKWLTYEQLADLYKSLAAKYPIVSIEDPFAEDDWEAWSYFYKTSDFQIVGD
 DLTVTNPGRIKKAIELKSCNALLLKVNQIGTLTESIQAAKDSYADNWGVMVSHRSGETEDVTIADIAVGLRSGQIKTGAPCR
- E
 MRLTFIPSLIGVANAVCPYMTGELNRRDEISDGDAAAATEEFLSQYYLNDNDAFMTSDVGGPIEDQNSLSAGERGPTLLEDF
 IFRQKIQRFDHERVPERAVHARGAGAHGVFTSYGDFSNITAASFLAKEGKQTPVFVRFSTVAGSRGSSDLARDVHGFATRFY
 TDEGNFDIVGNNIPVFFIQDAILFPDLIHAVKPRGDNEIPQAATAHDSAWDFFSQQPSTMHTLLWAMSGHGIPRSF
 RHVDGFGVHTFRFVTDDGASKLVKFHWKSLQGKASMVWEEAQQTSGKNPDFMRQDLHDAIEAGRYPEWELGVQIMDEEDQLR
 FGFDLLDPTKIVPEEFVPITKLGKMQLNRNPRNYFAETEQVMFQPGHIVRGVDFTEDPLLQGRLFSYLDTQLNRHGGPNFEQ
 LPINQPRVPVHNNNRDGAGQMFIPLNPHAYSPKTSVNGSPKQANQTVGDGFFTAPGRTTSGKLVRAVSSSFEDVWS
 QPRLFYNSLVPAEKQFVIDAIRFENANVKSPVVKNNVIIQLNRIDNDLARRVARAIGVAEPEPDPTFYHNNKTADVGTFGTK
 LKKLDGLKVGVLGSVQHPGSVEGASTLRDRLKDDGVDVVLVAERLADGVDQTYSTSDAIQFDAVVVAAGAESLFAASSFTGG
 SANSASGASSLYPTGRPLQILIDGFRFGKTVGALGSGTAALRNAGIATSRDGVYVAQSVTDDFANDLKEGLRTFKF
- E
 MATKIAGGLHRAQEVLQNTSSKSKKLVDLERDTADAHTQQPLTTDHGVRVSNTDQWLRVTNDRRTGPSLLEDQIAREKIHRF
 DHERIPERVVHARGTGAFGNFKLKESIEDLTYAGVLTDTSRNTPVFVRFSTVQGSRGSADTVRDVRGFAVKFYTDEGNWDIV
 GNNIPVFFIQDAVKFPDFVHAVKPEPHNEVPQAQTAHNNFWDFVYLHPEATHMFMWAMSDRAIPRSYRMMQGFGVN
 TFALVNKEGKRHFVKFHWIPHLGVHSLVWDEALKLGGQDPDFHRKDLMEAIDNKAYPKWDFAIQVIPEEKQDDFEFDILDAT
 KIWPENLVPLRVIGELELNRNVDEFFPQTEQVAFCTSHIVPGIDFTDDPLLQGRNFSYFDTQISRLGINWEELPINRPVCPV
 LNHNRDGQMRHRITQGTVNYWPNRFEAVPPTGTKGSGVGGGFTTYPQRVEGIKNRALNDKFREHHNQAQLFYNSMS
 EHEKLHMKKAFSFELDHCDDPTVYERLAGHRLAEIDLELAQKVAEMVGAPIPAKALKQNHGRRAPHLSQTEFIPKNPTIASR
 RIAIIIGDGYDPVASTGLKTAIKAASALPFIIGTKRSAIYATEDKTSSKGIIPDHHYDGQRSTMFDATFIPGGPHVATLRQN
 GQIKYWISETFGHLKALGATGEAVDLVKETLSGTLHVQVASSQSPEPVEWYGVVTAGGKQKPESFKESVQILKGAT
- G
 MVTTYNILVLPGDGIGPEVMTEAVKVLKVFENEHRKFNLRQELIGGCSIDAHGKSVTEEVKKAALESDAVLFAAVGGPKW
 DHIRRGLDGPEGGLLQLRKAMDIYANLRPCSASSPSASIAKEFSPFRQEVIEGVDFVVVRENCGGAYFGKKIEEEDYAMD
 EWGYSEREIQRITRLX1AEX2ALRHNPPWPVISLDKANVLASSRLWRRVVEKTMTTEYPQVKLVHQLADSASLILATNPRALN
 GVILADNTFGDMISDQAGSIVGTLGVLPSASLDGLPSETRKRTNGLYEPTHGSAPTIAGQNIANPVAMILCVALMFRYSLDM
 ETEAQRIEKAVQGVLDAGIRTPDLGGKSGTNEVGDAIVAALOGSS

Figure 3. Alignment of the predicted protein sequences for GAPDH-A (AfA), GAPDH-B (AfB) and GAPDH-C (AfC).

igure 6

Fig. 7

Fig. 10

Fig. 11

Figure 12

Figure 13

Fig. 14

IMDHB1:	3	SYNIVVFAGDHCGPEVSSVLRVIEKCRDDATFNLQDQLLGGVSSIDATGSPLTDEA 58 +YNI+V GD GPEV + VL+V E + FNL+ +L+GG S IDA G +T+E
IMDHB2:	4	TYNILVLPGDGIGPEVMTEAVKVLKVFENEHRKFNLRQELIGGCS-IDAHGKSVTEEV 60
IMDHB1:	59	LNAAKNADAVLLGAIGGPKWGTGAVRPEQGLLRLRKEMGTFGNLRPCNFAAPSLV 113 AA +DAVL A+GGPKW G PE GLL+LRK M + NLRPC+ ++PS
IMDHB2:	61	KKAALESDAVLFAAVGGPKWDHIRRGLDGPEGGLLQLRKAMDIYANLRPCSASSPSASIA 120
IMDHB1:	114	-DGSPLRPEVCRGVDFNIIRELTGGIYFGDRKEDDGSGFAMDTEPYSRAEIERITRLAAH 172 + SP R EV GVDF ++RE GG YFG + E++ +AMD YS EI+RITRL+A
IMDHB2:	121	KEFSPFRQEVIEGVDFVVVRENCGGAYFGKKIEEEDYAMDEWGYSEREIQRITRLSAE 178
		LALQHNPPLPVWSLDKANVLATSRLWRKTVTEVMAKEFPQLKVEHQLIDSAAMIMVKEPR 232 +AL+HNPP PV SLDKANVLA+SRLWR+ V + M E+PQ+K+ HQL DSA++I+ PR
		TALRHNPPWPVISLDKANVLASSRLWRRVVEKTMTTEYPQVKLVHQLADSASLILATNPR 238
		KLNGIVVTSNLFGDIISDEASVIPGSLGLLPSASLSGIP-DGKTKVNGIYEPIHGSAPDI 291 LNG+++ N FGD+ISD+A I G+LG+LPSASL G+P + + + NG+YEP HGSAP I
		ALNGVILADNTFGDMISDQAGSIVGTLGVLPSASLDGLPSETRKRTNGLYEPTHGSAPTI 298
		AGKGIVNPVAAILSVAMMMQYSLNRMDDARAIETAVRNVIEAGIRTADIGGKSTTSEVGD 351 AG+ I NPVA IL VA+M +YSL+ +A+ IE AV+ V++AGIRT D+GGKS T+EVGD
IMDHB2:	299	AGQNIANPVAMILCVALMFRYSLDMETEAQRIEKAVQGVLDAGIRTPDLGGKSGTNEVGD 358
IMDHB1:	352	AVAAELE 358 A+ A L+
IMDHB2:	359	AIVAALQ 365

Fig. 15: Anti-GAP-B-2 (GAPDH)

Fig. 16 IHEM 3133

pre

BLAST OF SEQ ID NO:36 AGAINST:

```
Candida orf:
```

>orf19.7080 orf10262:179916-178795:e 1122 bp, 373 aa, contig 244073 bp Length = 1122

Score = 335 bits (860), Expect = 1e-92Identities = 185/368 (50%), Positives = 246/368 (66%), Gaps = 9/368 (2%)

- Query: 2 VTTYNILVLPGDGIGPEVMTEAVKVLKVFEN---EHRKFNLRQELIGGCSIDAHGKSVT 57 V T I VLPGD +G E++ EA+KVLK E + +F+ + LIGG +IDA G +
- VKTKTITVLPGDHVGTEIVNEAIKVLKAIEAATPYQKIQFDFKHHLIGGAAIDATGVPLP 186 Sbjct: 7
- Query: 58 EEVKKAALESDAVLFAAVGGPKWDHIRRGLDGPEGGLLQLRKAMDIYANLRPCSASSPSA 117 ++ ++A SDAVL AVGGPKW G PE GLL++RK +++YAN+RPC+ +S S
- Sbjct: 187 DDALESAKSSDAVLLGAVGGPKWG---TGTVRPEQGLLKIRKELNLYANIRPCNFASDSL 357
- Query: 118 SIAKEFSPFRQEVIEGVDFVVVRENCGGAYFGKKIEEEDY----AMDEWGYSEREIQRI 172 E SP + EV++G + ++VRE GG YFG++ E+E+ A D Y+ E+ RI
- Sbjct: 358 L---ELSPLKAEVVKGTNLIIVRELVGGIYFGERQEQEESEDKKTAWDTEKYTVDEVTRI 528
- Query: 173 TRLSAEIALRHNPPWPVISLDKANVLASSRLWRRVVEKTMTTEYPQVKLVHQLADSASLI 232 TR++A +AL+HNPP P+ SLDKANVLASSRLWR+ V+K ++ E+P + + HQL DSA++I
- Sbjct: 529 TRMAAFMALQHNPPLPIWSLDKANVLASSRLWRKTVDKVISEEFPALSVQHQLIDSAAMI 708
- Query: 233 LATNPRALNGVILADNTFGDMISDQAGSIVGTLGVLPSASLDGLPSETRKRTNGLYEPTH 292 L NP LNG+I+ N FGD+ISD+A I G+LG+LPSASL LP
- Sbjct: 709 LIQNPTKLNGIIITSNMFGDIISDEASVIPGSLGLLPSASLASLPD--TNTAFGLYEPCH 882
- Query: 293 GSAPTIAGQNIANPVAMILCVALMFRYSLDMETEAQRIEKAVQGVLDAGIRTPDLGGKSG 352
- GSAP + N NP+A IL A M R SLD EA+ +E+AV+ VLD+GIRT DL G S Sbjct: 883 GSAPDLPA-NKVNPIATILSAASMLRLSLDCVKEAEALEEAVKQVLDSGIRTADLRGTSS 1059

Query: 353 TNEVGDAI 360 T EVGDAI

Sbjct: 1060TTEVGDAI 1083

Candida seq orf10262:179916-178795

VKTKTITVLPGDHVGTEIVNEAIKVLKAIEAATPYQKIQFDFKHHLIGGAAIDATGVPLPDDALESAKSSDAVL LGAVGGPKWGTGTVRPEQGLLKIRKELNLYANIRPCNFASDSLLELSPLKAEVVKGTNLIIVRELVGGIYFGER QEQEESEDKKTAWDTEKYTVDEVTRITRMAAFMALQHNPPLPIWSLDKANVLASSRLWRKTVDKVISEEFPALS VQHQLIDSAAMILIQNPTKLNGIIITSNMFGDIISDEASVIPGSLGLLPSASLASLPDTNTAFGLYEPCHGSAP DLPANKVNPIATILSAASMLRLSLDCVKEAEALEEAVKQVLDSGIRTADLRGTSS1060TTEVGDAI

BLAST OF SEQ ID NO:36 AGAINST:

```
Elrond pep
```

A. nidulans

>AnrP4374925 LE3B_ASPNG 3-isopropylmalate dehydrogenase B (Beta-IPM dehyd Length = 370

Score = 597 bits (1540), Expect = e-171Identities = 295/364 (81%), Positives = 326/364 (89%), Gaps = 1/364 (0%)

- TYNILVLPGDGIGPEVMTEAVKVLKVFENEHRKFNLRQELIGGCSIDAHGKSVTEEVKKA 63 Query: 4 +YNILVLPGDGIGPEVM EA K+L +F +F + ELIGGCSID HGKSVT+ V A
- Sbjct: 5 SYNILVLPGDGIGPEVMAEATKILSLFNTSTVRFRTQTELIGGCSIDTHGKSVTQAVLDA 64
- Query: 64 ALESDAVLFAAVGGPKWDHIRRGLDGPEGGLLQLRKAMDIYANLRPCSASSPSASIAKEF 123 A+ SDAVLFAAVGGPKWDHIRRGLDGPEGGLLQ+RKAMDIYANLRPCS SPS IA++F
- Sbjct: 65 AVSSDAVLFAAVGGPKWDHIRRGLDGPEGGLLQVRKAMDIYANLRPCSVDSPSREIARDF 124
- Query: 124 SPFRQEVIEGVDFVVVRENCGGAYFGKKIEEEDYAMDEWGYSEREIQRITRLSAEIALRH 183 SPFRQ+VIEGVDFVVVRENCGGAYFGKK+EE+DYAMDEWGYS EIQRITRLSAE+ALRH
- Sbjct: 125 SPFRQDVIEGVDFVVVRENCGGAYFGKKVEEDDYAMDEWGYSASEIQRITRLSAELALRH 184
- Query: 184 NPPWPVISLDKANVLASSRLWRRVVEKTMTTEYPQVKLVHQLADSASLILATNPRALNGV 243 +PPWPVISLDKANVLASSRLWRRVVEKTM+ EYPQVKLVHQLADSASLI+ATNPRALNGV
- Sbjct: 185 DPPWPVISLDKANVLASSRLWRRVVEKTMSEEYPQVKLVHQLADSASLIMATNPRALNGV 244
- Query: 244 ILADNTFGDMISDQAGSIVGTLGVLPSASLDGLPSE-TRKRTNGLYEPTHGSAPTIAGQN 302 ILADNTFGDM+SDQAGS+VGTLGVLPSASLDGLP +++ +GLYEPTHGSAPTIAG+N
- Sbjct: 245 ILADNTFGDMVSDQAGSLVGTLGVLPSASLDGLPKPGEQRKVHGLYEPTHGSAPTIAGKN 304
- Query: 303 IANPVAMILCVALMFRYSLDMETEAQRIEKAVQGVLDAGIRTPDLGGKSGTNEVGDAIVA 362 IANP AMILCVALMFRYS +ME EA++IE AV+ VLD GIRT DLGG +GT E GDA+VA
- Sbjct: 305 IANPTAMILCVALMFRYSFNMEAEARQIEAAVRTVLDKGIRTSDLGGSTGTREFGDAVVA 364

Query: 363 ALQG 366 AL+G

Sbjct: 365 ALKG 368

>AnrP4374925 niger seq

MSEKSYNILVLPGDGIGPEVMAEATKILSLFNTSTVRFRTQTELIGGCSIDTHGKSVTQA VLDAAVSSDAVLFAAVGGPKWDHIRRGLDGPEGGLLQVRKAMDIYANLRPCSVDSPSREI ARDFSPFRQDVIEGVDFVVVRENCGGAYFGKKVEEDDYAMDEWGYSASEIQRITRLSAEL ALRHDPPWPVISLDKANVLASSRLWRRVVEKTMSEEYPQVKLVHQLADSASLIMATNPRA LNGVILADNTFGDMVSDQAGSLVGTLGVLPSASLDGLPKPGEQRKVHGLYEPTHGSAPTI AGKNIANPTAMILCVALMFRYSFNMEAEARQIEAAVRTVLDKGIRTSDLGGSTGTREFGD AVVAALKGEL

BLAST OF SEQ ID NO:36 AGAINST:

BLASTP:temp_job2_pep_6_AnrP3711474

>AnrP3711474 hypothetical protein [Aspergillus oryzae]

Length = 364

Score = 375 bits (963), Expect = e-104 Identities = 195/367 (53%), Positives = 260/367 (70%), Gaps = 10/367 (2%)

Query: 2 VTTYNILVLPGDGIGPEVMTEAVKVLKVFE-NEHRKFNLRQELIGGCSIDAHGKSVTEEV 60 +++YNI+V GD GPEV EA+KVL+ E N FNL+ L+GG SIDA G +T+E

Sbjct: 1 MSSYNIVVFGGDHCGPEVTAEAIKVLRAVEKNRDVTFNLQDHLLGGASIDATGSPLTDEA 60

Query: 61 KKAALESDAVLFAAVGGPKWDHIRRGLDGPEGGLLQLRKAMDIYANLRPCSASSPSASIA 120 AA +DAVL A+GGPKW G PE G+L+LRK M + NLRPC+ ++PS

Sbjct: 61 LNAAKNADAVLLGAIGGPKWG---TGAVRPEQGILKLRKEMGTFGNLRPCNFAAPSLV-- 115

Query: 121 KEFSPFRQEVIEGVDFVVVRENCGGAYFGKKIEEED--YAMDEWGYSEREIQRITRLSAE 178
E SP R +V GV+F ++RE GG YFG++ E++ YAMD YS EI+RI RL+A

Sbjct: 116 -ESSPLRADVCRGVNFNIIRELTGGIYFGERKEDDGSGYAMDTEPYSRAEIERIIRLAAH 174

Query: 179 IALRHNPPWPVISLDKANVLASSRLWRRVVEKTMTTEYPQVKLVHQLADSASLILATNPR 238 +AL+H+PP PV SLDKANVLA+SRLWR+VV + M E+PQ+K+ HQL DSA++I+ NPR

Sbjct: 175 LALQHDPPLPVWSLDKANVLATSRLWRKVVTEVMAKEFPQLKIEHQLIDSAAMIMVKNPR 234

Query: 239 ALNGVILADNTFGDMISDQAGSIVGTLGVLPSASLDGLPSETRKRTNGLYEPTHGSAPTI 298 LNG+++ N FGD+ISD+A I G+LG+LPSASL G+P + + NG+YEP HGSAP I

Sbjct: 235 QLNGIVVTSNLFGDIISDEASVIPGSLGLLPSASLSGIP-DGNSKVNGIYEPIHGSAPDI 293

Query: 299 AGQNIANPVAMILCVALMFRYSLDMETEAQRIEKAVQGVLDAGIRTPDLGGKSGTNEVGD 358 AG+ I NPVA IL VA+M +YS + EA+ IE+AV V+++G+RT D+GGK+ T EVGD

Sbjct: 294 AGKGIVNPVAAILSVAMMMQYSFGLFAEARAIEQAVSNVIESGVRTGDIGGKATTAEVGD 353

Query: 359 AIVAALQ 365

A+ A L+

Sbjct: 354 AVAAELE 360

Oryzae seq >AnrP3711474

MSSYNIVVFGGDHCGPEVTAEAIKVLRAVEKNRDVTFNLQDHLLGGASIDATGSPLTDEA LNAAKNADAVLLGAIGGPKWGTGAVRPEQGILKLRKEMGTFGNLRPCNFAAPSLVESSPL RADVCRGVNFNIIRELTGGIYFGERKEDDGSGYAMDTEPYSRAEIERIIRLAAHLALQHD PPLPVWSLDKANVLATSRLWRKVVTEVMAKEFPQLKIEHQLIDSAAMIMVKNPRQLNGIV VTSNLFGDIISDEASVIPGSLGLLPSASLSGIPDGNSKVNGIYEPIHGSAPDIAGKGIVN PVAAILSVAMMMQYSFGLFAEARAIEQAVSNVIESGVRTGDIGGKATTAEVGDAVAAELE KLLK

BLAST OF SEQ ID NO:36 AGAINST:

```
BLASTP:temp_job2_pep_9_AnrP4379986
>AnrP4379986 conserved hypothetical protein [Aspergillus nidulans
          FGSC A4
         Length = 357
 Score = 149 \text{ bits } (376), \text{ Expect} = 1e-36
 Identities = 113/369 (30%), Positives = 186/369 (49%), Gaps = 27/369 (7%)
Query: 1 MVTTYNILVLPGDGIGPEVMTEAVKVLKVFENEHRKFNLRQELIGGCS--IDAHGKSVTE 58
          M TY I +P DGIGPEV+ V VLK ++ + F+L + S
Sbjct: 1 MAKTYRIATIPADGIGPEVIDAGVIVLKALADKLQSFSLDFTHLDWSSETFKATGKYIPD 60
Query: 59 EVKKAALESDAVLFAAVGGPKW-DHIRRGLDGPEGGLLQLRKAMDIYANLRPCSASSPSA 117
                 ++DA+LF AVG P DHI G L + +
                                                     YAN+R
Sbjct: 61 GGLEVLKKNDAILFGAVGAPDVPDHISLW----GLRLAICQPFQQYANVR-----PTR 109
Query: 118 SIAKEFSPFRQEVIEGVDFVVVRENCGGAYFGK----KIEEEDYAMDEWGYSEREIQRI 172
                SP R+
                         +D+V+VREN G Y G+ +
                                                  + A + +S + ++RI
Sbjct: 110 VLRGTQSPLRKCNTGDLDWVIVRENSEGEYAGQGGRSHRGHPWEVATEVAIFSRQGVERI 169
Query: 173 TRLSAEIALRHNPPWPVISLDKANVLASSRLWRRVVEKTMTTEYPQVKLVHQLADSASLI 232
           R + E A + P + K+N + V + ++P+V + L D+ +
Sbjct: 170 MRFAFETAAK-RPRKLLTVVTKSNAQRNGMVLWDEVANIVAKDFPEVTMDKMLVDAMTTR 228
Query: 233 LATNPRALNGVILADNTFGDMISDQAGSIVGTLGVLPSASLDGLPSETRKRTNGLYEPTH 292
            P +L+ I+A N D++SD A ++ G++G+ P+++LD ++ ++EP H
Sbjct: 229 MVLKPESLD-TIVASNLHADILSDLAAALAGSIGIAPTSNLD----PTRQNPSMFEPIH 282
Query: 293 GSAPTIAGQNIANPVAMILCVALMFRYSLDMETEAQRIEKAVQGVLDAGIRTPDLGGKSG 352
          GSA I G+ IANPVA A M + L + A ++ + V+ V ++GI T DLGG +
Sbjct: 283 GSAFDITGKGIANPVATFWTAAEMLEW-LGEKDAADKLMQCVESVCESGILTADLGGTAT 341
Query: 353 TNEVGDAIV 361
          T EV A+V
Sbjct: 342 TKEVTSAVV 350
 Nidulans seq >AnrP4379986
```

MAKTYRIATIPADGIGPEVIDAGVIVLKALADKLQSFSLDFTHLDWSSETFKATGKYIPD GGLEVLKKNDAILFGAVGAPDVPDHISLWGLRLAICQPFQQYANVRPTRVLRGTQSPLRK CNTGDLDWVIVRENSEGEYAGQGGRSHRGHPWEVATEVAIFSRQGVERIMRFAFETAAKR PRKLLTVVTKSNAQRNGMVLWDEVANIVAKDFPEVTMDKMLVDAMTTRMVLKPESLDTIV ASNLHADILSDLAAALAGSIGIAPTSNLDPTRQNPSMFEPIHGSAFDITGKGIANPVATF WTAAEMLEWLGEKDAADKLMQCVESVCESGILTADLGGTATTKEVTSAVVEEINRLN

26/29

Figure 22

BLAST OF SEQ ID NO:36 AGAINST:

>gnl|TIGR_222929|contig:1772:c_posadasii Coccidioides posadasii C735 unfinished fragment of genome Length = 119053

Score = 286 bits (732), Expect(2) = e-128 Identities = 146/233 (62%), Positives = 173/233 (74%), Gaps = 24/233 (10%)

Query: 160 AMDEWGYSTTEIQXXXXXXXXXXXXHDPPWPVISLDKANVLASSRLWRRVVENTISVEYP 219 AMDEWGYST E+Q HDPPWPVIS+DKANVLASSRLWRRVVE T++ E+P

Sbjct: 33806 AMDEWGYSTQEVQRIARLAAHVALRHDPPWPVISMDKANVLASSRLWRRVVEKTLTTEFP

Query: 220 QVKLVHQLADSASLIMATDPRVLNGVILADNTFGDMLSDQAGSLIGTLGVLPSASLDGLP 279

QVK HQLADSASLIMAT+PR LNGV+LADNTFGDMLSDQAGS++G+LGVLPSASL G+P Sbjct: 33626 QVKFSHQLADSASLIMATNPRSLNGVLLADNTFGDMLSDQAGSIVGSLGVLPSASLSGIP

Query: 280 HPGKQE--KVRGLYEPTHGSAPT------IAGKNIANPTAMILC 315 +++ K LYEPTHGSAPT

Sbjct: 33446 GEKRKDGKKSYALYEPTHGSAPT*VNCDLWMINTARKANRLD*CRIAGKNVANPLAMILC

VSLMFRYSFNMENEARQIEDAVRAVLDRGLRTPDLGGNSSTQEFGDAVVAALQ 368 Query: 316

V++MFRYSFNME EA+ IE+AV A L+ G+RTPDLGG + T + G+A+VA ++ Sbjct: 33266 VAMMFRYSFNMEPEAKAIENAVTATLEAGIRTPDLGGKAGTTDVGNAIVAHIK 33108

Query: 4 TRAYNILVLPGDGIGPEVMAEAIKVLRTFNSSSMQFHLQEELIGGISIDTHGHSVTQPXX 63

++ YNIL LPGDGIGPE+MAEAIKVL+ F+S ++ F+L+ ELIGG SID HG +T Sbjct: 34383 SKTYNILTLPGDGIGPEIMAEAIKVLQAFSSPNLNFNLRNELIGGCSIDAHGTPITDAVK

Query: 64 XXXXXXXXXXXXXGGSKVDHIRRGLDGPEGGLLQVRKAMDIYANLRPCSVDVPSREIAR 123

GG K D RRGL+GPEGGLLQ+RK +D+Y N+RPCS DV Sbjct: 34203 QAALESDAVLFASVGGPKWDSSRRGLEGPEGGLLQLRKVLDVYGNVRPCSTDV-CASVSR

DFSPFRQEVIEGVDFVVVRENCGGAYFGKKVEEENY 159 Query: 124

+FSP+R EV+EGVDFVV+RENCGGAYFGK VE+E+Y

Sbjct: 34026 EFSPYRTEVVEGVDFVVLRENCGGAYFGKXVEDEDY 33919

Coccidioides 2

SKTYNILTLPGDGIGPEIMAEAIKVLQAFSSPNLNFNLRNELIGGCSIDAHGTPITDAVKQAALESDAVL FASVGGPKWDSSRRGLEGPEGGLLQLRKVLDVYGNVRPCSTDVCASVSREFSPYRTEVVEGVDFV VLRENCGGAYFGKXVEDEDYAMDEWGYSTQEVQRIARLAAHVALRHDPPWPVISMDKANVLASSR LWRRVVEKTLTTEFPQVKFSHQLADSASLIMATNPRSLNGVLLADNTFGDMLSDQAGSIVGSLGVLP SASLSGIPGEKRKDGKKSYALYEPTHGSAPT*VNCDLWMINTARKANRLD*CRIAGKNVANPLAMILC VAMMFRYSFNMEPEAKAIENAVTATLEAGIRTPDLGGKAGTTDVGNAIVAHIK

Figure 23 SEQ ID NO:36 against: Cryptococcus >chr01b.b3501.031220.C11 (289426 bp) Length = 289426

Score = 183 bits (465), Expect(3) = 3e-68 Frame = +3Identities = 113/258 (43%), Positives = 144/258 (55%), Gaps = 39/258 (15%) FGKKIE--EEDYAMDEWGYSEREIQRITRLSAEIALRHNPPWPVISLDKANVLASSRLWR 205 Ouerv: 148 FG++ E +E A D+ YS+ EI+RITR++A+IAL PP P+ S+DKANVLA+SRLWR Sbjct: 173334 FGERQETNDEGVAWDQCIYSKPEIERITRVAAQIALAAEPPLPITSVDKANVLATSRLWR 173513 RVVEKTMTTEYPQVKLVHQLADSASLILATNPRALNGVILADNTFGDM----- 253 + V + M EYPQ+KL HQL DSA++I+ NPR LNGV+L +N FGDM Sbjct: 173514 KTVSELMAKEYPQLKLEHQLVDSAAMIMIANPRKLNGVLLTENMFGDM*VLSMVTKYRC* 173693 Query: 254 -----ISDQAGSIVGTLGVLPSASLDGLPSETRKRTNGLYE-----PTHGS 294 SA+ L+P LΡ Sbjct: 173694 VCVVFLTKAPSSPAPLVSSLLRLSPVPPTLSLPPWVSMSRTSIFPFLTYPN*PLCSIHGS 173873 APTIAGQNIANPVAMILCVALMFRYSLDMETEAQRIEKAVQGVLDAG-----IRTPDLG 348 AP IAGQ IANP+ IL A+M RYSL EA IE+AVQ VLD+ Sbjct: 173874 APDIAGQGIANPIGTILSAAMMLRYSLGKGREAALIEQAVQKVLDSAESGGFDYRTKDLG 174053 GKSGTNEVGDAIVAALQG 366 Query: 349 G+ T EVGD +V L+G Sbjct: 174054 GQRSTKEVGDKVVEVLKG 174107 Query: 15 IGPEVMTEAVKVLKVFENEHR-KFNLRQELIGGCSIDAHGKSVTEEVKKAALESDAVLFA 73 IGPEV+ EAV+VL+ N K +L+ GG +ID HG + +E KA E+DAVL Sbjct: 172844 IGPEVVAEAVRVLETIVNHSDLKLDLKSYDFGGAAIDNHGVPLPDETLKACKEADAVLMG 173023 Query: 74 A-----VGGPKWDHIRRGLDGPEGGLLQLRKAMDIYANLRPCSASSPS 116 VGGPKW G PE G+L+LRK + +YAN+RP A+ S Sbjct: 173024 ACDFLAIRIKS*TA*KGSVGGPKWGV---GPVRPEQGILKLRKELGLYANIRP--ANFAS 173188 Query: 117 ASIAKEFSPFRQEVIEGVDFVVVRENCGG 145 S+ K SP +++ G D +V+RE GG Sbjct: 173189 ESLLKR-SPLKEDTARGTDIIVLRELIGG 173272 ILADNTFGDMISDQAGSIVGTLGVLPSASLD-----GLPS---ETRKRTNGLYEPTH 292 Query: 244 +L + +GD++SD + ++G LG+ PS ++ G PS K ++E H Sbjct: 238292 LLIPHRYGDILSDLSAGLIGGLGLTPSGNIGKVSLSHDYGSPSIELTGDK*DASIFEAVH 238471 GSAPTIAGQNIANPVAMILCVALMFR----- 318 Query: 293 GSAP I G+ +ANP A++L +M R Sbjct: 238472 GSAPDIEGKGLANPTALLLSSLMMLR*VTQIPSVIVPALYPSVPDHTHPLARNVADLFVH 238651 YSLDMETEAQRIEKA---VQG-------VLDAGIRTPDLGGKSGTNEVGD 358 + + A +IEKA V G + + T DLGGK+GT E D Query: 319 Sbjct: 238652 RHMSLYELADKIEKAALSVSGTPWLFHTFEMLIQVS*TIAEGKAITRDLGGKAGTKEYTD 238831 Query: 359 AIVAAL 364 AI++ T Sbjct: 238832 AILSKL 238849 Query: 95 LQLRKAMDIYANLRPCSASSPSASIAKEFSPFRQEVIEGVDFVVVRENCGGAYFGKKIEE 154 L LR+ ++AN+RPC SI +P+ + V+ V++REN G Y G IE Sbjct: 237609 LTLRRTFSLFANVRPC-----VSIKGYKTPY-----DNVNTVLIRENTEGEYSG--IEH 237749 Query: 155 E 155 Sbjct: 237750 E 237752 Ouerv: 5 YNILVLPGDGIGPEVMTEAVKVLK 28 Y + ++PGDGIGPE+ ++ K Sbjct: 237256 YTVTLIPGDGIGPEIANSVKQIFK 237327 Query: 4 TYNILVLPGDGIG 16 ++ I VLPGDGIG Sbjct: 172752 SFKITVLPGDGIG 172790

Figure 24 Clustalw of sequences of figure 18-22

nidulans (see figure 21) nidulans (see figure 19) oryzae (see figure 20) (see figure 22) figure 18) coccidioides BLASTP: temp_job2_pep_4_AnrP4374925 candida (see BLASTP: temp job2 pep 6 AnrP3711474 BLASTP: temp job2 pep 9 AnrP4379986 CLUSTAL W (1.82) multiple sequence alignment Sequence: USERPROTEIN:2_job7_2 USERPROTEIN: 1_job6_1 Sequence: Sequence: Sequence: Sequence:

temp_job2_pep_4_AnrP4374925 temp_job2_pep_6_AnrP3711474 temp_job2_pep_9_AnrP4379986 1_job6_1 2_job7_2

CSIDTHGKSVTQAVLDAAVSSDAVLFAAVGGPKWDHIRRGLDGPEGGLLQ ASIDATGSPLTDEALNAAKNADAVLLGAIGGPKWG----TGAVRPEQGILK ETFKATGKYIPDGGLEVLKKNDAILFGAVGAPDVP-----DHISLWGLRLA AAIDATGVPLPDDALESAKSSDAVLLGAVGGPKWG---TGTVRPEQGLLK CSIDAHGTPITDAVKQAALESDAVLFASVGGPKWDSSRRGLEGPEGGLLQ :::: * ::: * :: * .: *

VRKAMDIYANILRPCSVDSPSREIARDFSPFRQDVIEGVDFVVVRENCGGA LRKEMGTFGNILRPCNFAAPSL---VESSPIRADVCRGVNFNIIRELTGGI ICQPFQQYANVRPTRVLRGTQ-----SPLRKCNTGDLDWVIVRENSEGE IRKEINIYANIRPCNFASDSL---LELSPLKAEVVKGTNLIIVRELVGGI LRKVLDVYGNVRPCSTDVCAS-VSREFSPYRTEVVEGVDFVVLRENCGGA : : : : : : * * * * YFG-----KKVEEDDYAMDEWGYSASEIQRITRLSAELALRHDPPWPVIS
YFGERKEDDGSG---YAMDTEPYSRAEIERIIRLAAHLALQHDPPLPVWS
YAGQGGRSHRGHPWEVATEVAIFSRQGVERIMRFAFETAAKR-PRKLLTV
YFGERQEQEESEDKKTAWDTEKYTVDEVTRITRMAAFWALQHNPPLPIWS
YFG-----KXVEDEDYAMDEWGYSTQEVQRIARLAAHVALRHDPPWPVIS

24
figure
from
Continuation
25 (
Figure

temp_job2_pep_4_AnrP4374925 temp_job2_pep_6_AnrP3711474 temp_job2_pep_9_AnrP4379986 1_job6_1 2_job7_2	LDKANVLASSRLWRRVVEKTMSEEYPQVKLVHQLADSASLIMATNPRALN LDKANVLATSRLWRKVVTEVMAKEFPQLKIEHQLIDSAAMIMVKNPRQLN VTKSNAQRNGMVLWDEVANIVAKDFPEVTMDKMLVDAMTTRMVLKPESLD LDKANVLASSRLWRKTVDKVISEEFPALSVQHQLIDSAAMILIQNPTKLN MDKANVLASSRLWRRVVEKTLTTEFPQVKFSHQLADSASLIMATNPRSLN : *:*. : : : * *: : : * *:
temp_job2_pep_4_AnrP4374925 temp_job2_pep_6_AnrP3711474 temp_job2_pep_9_AnrP4379986 1_job6_1 2_job7_2	GVILADNTFGDMVSDQAGSLVGTLGVLPSASLDGLPKPGEQRKVHGLY GIVVTSNLFGDIISDEASVIPGSLGLLPSASLSGIPDGNSKVNGIY -TIVASNLHADILSDLAAALAGSIGIAPTSNLDPTRQNPSMF GIIITSNMFGDIISDEASVIPGSLGLLPSASLASLPDTN-TAFGLY GVLLADNTFGDMLSDQAGSIVGSLGVLPSASLSGIPGEKRKDGKKSYALY :::** :::** ::::
temp_job2_pep_4_AnrP4374925 temp_job2_pep_6_AnrP3711474 temp_job2_pep_9_AnrP4379986 1_job6_1 2_job7_2	EPTHGSAPTIAGKNIANPTAMILCVALMFRYSFNWEAEARQIEAAVRTVL EPIHGSAPDIAGKGIVNPVAAILSVAMMQYSFGLFAEARAIEQAVSNVI EPIHGSAFDITGKGIANPVATFWTAAEMLEWLG-EKDAADKIMQCVESVC EPCHGSAPDLPAN-KVNPIATILSAASMIRLSLDCVKEAEALEEAVKQVL EPTHGSAPT
<pre>cemp_job2_pep_4_AnrP4374925 cemp_job2_pep_6_AnrP3711474 cemp_job2_pep_9_AnrP4379986 _job6_1 ciob7_2</pre>	DKGIRTSDLGGSTGTREFGDAVVAALKG ESGVRTGDIGGKATTAEVGDAVAAELE- ESGILTADLGGTATTKEVTSAVV DSGIRTADLRGTSSTTEVGDAI