Teoria da Computação Elementos de Matemática Discreta Relações

Prof. Jefferson Magalhães de Morais

2 de março de 2021

Definição

 Uma relação R sobre dois conjuntos A e B é definida como um subconjunto de A × B

$$\therefore R \subseteq A \times B$$

- O conjunto de todas as relações definíveis sobre $A \times B$ é dado por $2^{A \times B}$
- Uma relação de um conjunto A sobre o mesmo conjunto A, portanto A^2 , é uma endorrelação ou autorrelação
- Exemplo
 - $R_1 = \{(a, b) \mid a, b \in \mathbb{N} \text{ e } a > b\}$, sobre $\mathbb{N} \times \mathbb{N}$, contém, entre infinitos outros, os elementos (2, 1), (7, 4) e (9, 3)
 - $R_2 = \{(x, y, z) \mid x, y, z \in \mathbb{Z} \text{ e } x^2 = y^2 + z^2\}$, sobre $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, contém os elementos (0, 0, 0), (5, 4, 3), (-10, 8, -6), etc

- Notação infixa: aRb é uma relação de um elemento a ∈ A e b ∈ B
- Os conjuntos A e B recebem, respectivamente, os nomes domínio e co-domínio (ou contradomínio) da relação R
- Relação binária: seus elementos levam o nome de pares ordenados
- Relação n-ária: seus elementos são chamados de ênuplas ordenadas
- Observe os casos
 - Dado os conjuntos A_1, A_2, \ldots, A_n , elementos de $A_1 \times A_2 \times \ldots \times A_n$ têm a forma (a_1, a_2, \ldots, a_n) , onde $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$
 - Em casos particulares, as ênuplas recebem nomes especiais: n=2: pares; n=3: triplas; n=4: quádruplas; n=5: quíntuplas; n=10: décuplas; etc

 O conjunto é fechado em relação a uma operação se da aplicação dessa operação a quaisquer membros desse conjunto resultarem sempre elementos que também são membros do mesmo conjunto

Exemplo

- Considere o conjunto dos números inteiros $\mathbb Z$ e naturais $\mathbb N$ e as operações binárias
 - Z é fechado em relação as operações soma e subtração
 - N não é fechado em relação a operação subtração
 - ullet $\mathbb N$ é fechado em relação a operação soma

- O fecho transitivo de R, que é uma endorrelação em A, é denotado por R⁺ e obedece
 - Se $(a, b) \in R$, então $(a, b) \in R^+$
 - **2** Se $(a, b) \in R^+$ e $(b, c) \in R^+$, então $(a, c) \in R^+$
- ullet O **fecho transitivo e reflexivo** denotado por R^* , é tal que

$$R^* = R^+ \cup \{(a, a) \mid a \in A\}$$

- **Exemplo**: $A = \{1, 2, 3, 4, 5\}$ e $R = \{(1, 2), (2, 3), (3, 4), (1, 5)\}$
 - $R^* = \{(1,1), \underline{(1,2)}, (1,3), (1,4), \underline{(1,5)}, (2,2), \underline{(2,3)}, (2,4), (3,3), \underline{(3,4)}, (4,4),$