

Statistics Ex 7.3 Q17

Answer:

We may prepare the table as shown:

Marks:	Mid value (x_i) :	No. of students: (f_i)	$d_i = x_i - A$ $= x_i - 25$	$u_i = \frac{1}{h}(d_i)$ $= \frac{1}{10}(d_i)$	$f\mu_i$	$f_i d_i$	$f_i x_i$
0-10	5	20	-20	-2	-40	-400	100
10-20	15	24	-10	-1	-24	-240	360
20-30	25	40	0	0	0	0	1000
30-40	3.5	36	10	1	36	360	1260
40-50	45	20	20	2	40	400	900
		$\sum f_i = 140$			$\sum f_i u_i = 12$	$\sum f_i d_i = 120$	$\sum f_i x_i = 362$

(i) Direct method

We know that mean,
$$\overline{X} = \frac{\sum f_i X_i}{\sum f_i}$$

$$= \frac{3620}{140}$$

= 25.857 Hence, the mean is 25.857.

(ii) Short-cut method

Let the assumed mean A = 25.

We know that mean,
$$\overline{X}=A+\left(\frac{1}{N}\sum f_id_i\right)$$

$$=25+\left(\frac{1}{140}\times(120)\right)$$

$$=25+\frac{120}{140}$$

$$=25+0.857$$

$$=25.857$$

Hence, the mean is 25.857.

(iii) Step deviation method

Let the assumed mean A = 25 and h = 10.

We know that mean,
$$\overline{X}=A+h\bigg(\frac{1}{N}\sum f_iu_i\bigg)$$

$$=25+10\bigg(\frac{1}{140}\times (12)\bigg)$$

$$=25+\frac{120}{140}$$

$$=25+0.857$$

$$=25.857$$

Hence, the mean is 25.857.

Statistics Ex 7.3 Q18
Answer:

It is given that mean = 62.8 and N = 50

Let the assumed mean A = 50 and h = 20.

Class	$Midvalue(x_i)$:	$frequency(f_i)$:	$d_i = x_i - A$ $= x_i - 50$	$u_i = \frac{1}{h}(d_i)$ $= \frac{1}{20}(d_i)$	$f_i u_i$
0-20	10	5	-40	-2	-10
20-40	30	f_1	-20	-1	$-f_1$
40-60	50	10	0	0	0
60-80	70	f_2	20	1	f_2
80 -100	90	7	40	2	14
100-120	110	8	60	3	24
		$\sum f_i = 30 + f_1 + f_2$			$\sum f_i u_i = 28 - f_1 + f_2$

$$\sum f_i = 50$$

$$30 + f_1 + f_2 = 50$$

$$f_1 = 20 - f_2 \qquad \dots (1)$$

We know that mean,
$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i \right)$$

Now, we have
$$\sum f_i = 30 + f_1 + f_2$$
 , $\sum f_i u_i = 28 - f_1 + f_2$, $h = 20$ and $A = 50$

Putting the values in the above formula, we have

$$62.8 = 50 + 20 \left(\frac{1}{30 + f_1 + f_2} \times (28 - f_1 + f_2) \right)$$
$$62.8 - 50 = 20 \left(\frac{1}{30 + f_1 + f_2} \times (28 - f_1 + f_2) \right)$$

$$12.8(30+f_1+f_2)=20(28-f_1+f_2)$$

$$32.8f_1 - 7.2f_2 = 176$$
(2)

Putting the value of f_1 in (2), we get

$$32.8(20-f_2)-7.2f_2=176$$

$$32.8 \times 20 - 32.8 f_2 - 7.2 f_2 = 176$$

$$656 - 176 = 40 f_2$$

$$f_2 = \frac{480}{40}$$

$$=12$$

Putting the value of f_2 in (1), we get

$$f_1 = 20 - 12$$

$$= 8$$

Hence, the missing frequency $f_1 = 8$ and $f_2 = 12$.

****** END ******