

MACHINE INTELLIGENCE COMMUNITY

Brief Recap

- Data-driven learning
- Deep learning models biological neurons
- Learn weights through backpropagation
- Cost/Loss/Objective functions
- Stochastic vs. Batch Gradient Descent
- What's a computation graph?
- What's backpropagation?

A few things neural nets can do

Optical character recognition LeNet5 1993

Atari DQN Mnih 2014 (Deep Mind)

Current Limitations of Neural Networks

- Supervised learning requires lots of labeled data (10⁵, 10⁶,...)
- Expensive computation power
- Training time (weeks or months)
- Catastrophic Forgetting
 - Forgetting old parameters when learning new tasks and domains
- Unsupervised learning
- Model-based reinforcement learning
 - Interpretability of learned representations

What is Deep Learning?

- Artificial neuron single unit of computation
- Artificial neural network graph of connected artificial neurons
- **Deep neural network** artificial neural network with more than 2 hidden layers
- Deeply nested composite functions for approximating functions from data
- Goal: learn an approximate function that can generalize to new data

Artificial Neurons

- Used to model nonlinear data
 - Nonlinear data cannot be approximated with simple linear equation (e.g. y = mx + b)
- A neuron is a linear equation composed into a nonlinear one (like sigmoid)

$$\sigma(\theta_0 x_0 + \dots + \theta_n x_n)$$

Artificial Neuron in PYTORCH

Create a linear equation

```
>> import torch.nn as nn
>> an = nn.Linear(4,1)
>> an
Linear (4 -> 1)
```

Weights and bias of neuron

Nonlinearity

- Pass sum of all inputs (x in equations below) into a activation function
- Draw nonlinear decision boundary
 - Line in 2D
 - Hyperplane in dimensions greater than 2D
- Handle nonlinear data

Linear Boundary

Nonlinear Boundary

Logical XOR

- Used for simple logical expressions
 - Simple circuits/networks could not compute XOR, leading to Al Winter
- Logical AND and OR are linearly separable
 - You can draw a linear boundary between classes
 - With 2 dimensions, boundary is a line; with >2 dimensions, it is a hyperplane

Logical AND:

Logical OR:

Logical XOR cont.

- XOR is not linearly separable in two dimensions
 - Simple set of linear equations composed into nonlinear function cannot compute XOR
 - Can be separated if transformed through different dimensions

Not linearly separable:

Linearly Separable:

Logical XOR cont.

- Solution: Compose expression that can compute XOR and separate classes
 - Causes zero class to collapse to left of boundary

XOR Logical Circuit

XOR Computation Graph

High Dimensional and Nonlinear Data

- Simple linear functions can't model nonlinear data
- e.g. XOR because it is higher-order function
- e.g. Space of all natural images of doggos

Dimensionality and Vectorization

Vectorization in PYTÖRCH

Create a random 2x2 image

```
>> import torch
>> image = torch.randn(2,2)
>> image

0.0044 -0.7816
0.6725 0.0016
[torch.FloatTensor of size 2x2]
```

Vectorize image

```
>> image.view(1,4)

0.0044 -0.7816  0.6725  0.0016
[torch.FloatTensor of size 1x4]
```


Activation Functions: Overview

- Used to keep, map, and represent features of the input data that linear models fail to
 - Determine activation functions with rate code interpretation on firing rate of the neurons
- Nonlinearity, differentiability, and monotonicity; they matter for the particular classification task used used for activation function choice
 - Use these to make sure initialization is done correctly, as training depends on the output ranges of the activation function chosen

Activation Functions: Logistic Sigmoid

- Takes a number and "squashes" it into range [0, 1]
 - Large negatives approach 0 and large positives approach 1
- Good for interpreting firing rate of a neuron, but:
 - Saturates and kills gradient
 - Makes you be more careful when initializing weights
 - Output is not zero-centered
 - Affects efficiency of gradient descent

$$\sigma(x) = 1/(1 + e^{-x})$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Activation Functions: Hyperbolic Tangent (TanH)

- Takes a number and "squashes" it into range [-1, 1]
 - Large negatives approach -1, large positives approach 1
- Converges quicker than sigmoid function, and has better accuracy, but:
 - ReLU trains much faster
 - ReLU has same training error
 - Overshadowed by ReLU

$$tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}} = 2\sigma(2x) - 1$$

$$tanh'(x) = 1 - tanh^2(x)$$

Activation Function: Rectified Linear Unit (ReLU)

- Takes a number and either floors it at 0 or leaves it be
 - All negatives or 0 become 0, and positives retain their value
- Reduces chance for vanishing gradient problem, and increases data sparsity
 - Sparsity of data allows for information disentangling, easier linear separability, among others
 - Also trains much faster because of simplicity of the function
 - However, can cause network to "die". Not differentiable at point (0, 0).

$$f(x) = \max(0, x)$$
$$f'(x) = \begin{cases} 0 & for \ x < 0 \\ 1 & for \ x > 0 \end{cases}$$

ReLU Function in PYTORCH

Apply Sigmoid pointwise

```
>> import torch.nn.functional as F
>> activation = F.sigmoid(image)
```

>> activation

Variable containing:

```
0.5011 0.3140
0.6621 0.5004
```

[torch.FloatTensor of size 2x2]

Apply ReLU pointwise

```
>> activation = F.relu(image)
>> activation
```

Variable containing:

```
0.0044 0.0000
0.6725 0.0016
```

[torch.FloatTensor of size 2x2]

Perceptron

An artificial neuron

- Each neuron has weights associated with its inputs, and an activation function to delinearize linear data produced by its associated algorithm
- o Biases are assigned to each layer, to help fit the data without changing the function's shape

Multilayer Perceptron (MLP)

MLP in **PYT** bRCH

Define fully-connected network

```
>> import torch.nn as nn
>> net =
nn.Sequential(nn.Linear(4, 2),
nn.Sigmoid(), nn.Linear(2, 2))
>> net
Sequential (
   (0): Linear (4 -> 2)
   (1): Sigmoid ()
   (2): Linear (2 -> 2)
)
```

Feedforward feature vector

```
>> from torch.autograd import Variable
>> image = Variable(image. view(1,4))
>> net(image)
Variable containing:
   0.0817   0.3724
[torch.FloatTensor of size 1x2]
```


More detailed view of MLP

Matrix Representation

Activations from first hidden layer

Computation Graph Representation

$$y = Ax + b \cdot x + c$$

$$\theta_0^{(i)} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.1} \xrightarrow{0.13} \bigvee J$$

$$-0.2^* \nabla J \xrightarrow{0.5} \xrightarrow{0.5} \xrightarrow{0.3^* \nabla J} \xrightarrow{0.3} \xrightarrow{0.3} \xrightarrow{0.5^* \nabla J} \xrightarrow{0.5^* \nabla$$

q: -0.02

 $f(x) = \theta x_0 + \theta x_1$

 $x_0^{(i)} -0.2$

 $0.1*\nabla J$

Static Computation Graphs (SCG)

- Generally, a static computation graph does static declaration to define whole graph first
 - Once defined, it cannot be changed during computation
- Steps:
 - Define an architecture
 - Run data through graph to train the weights
- Good for computational efficiency, but will run into trouble when architecture needs to be changed (e.g. recurrent neural nets)
- Also, language to define computational graph is very complex
 - TensorFlow currently most popular for using static computation graph

Dynamic Computation Graphs (DCG)

- Used for weird looking data e.g. graph data, tree data, jagged arrays
 - Separate execution and definition of the computation graph
 - Less invasive library, or syntax
- Allows for architectural changes, so works well for recurrent neural nets, for example
- Currently, PyTorch is the most popular framework for dynamic computation graphs and is becoming the standard in industry

Additional Resources

Andrew Ng's deeplearning.ai course:

https://www.coursera.org/learn/neural-networks-deep-learning/lecture/Cuf2f/welcome

PyTorch 60minute Blitz:

http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Efficient Backprop by Yann LeCun:

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

BUMIC GitHub Link:

https://github.com/bumic/workshops

Shoutout to our Sponsors

Boston University Computer Science

Boston University SPARK!

Boston University Software Application and Innovation Lab

Upcoming Events

MIC Paper signup: https://goo.gl/iAm6TL
BUMIC Projects signup: https://goo.gl/GmP9oK

MIT MIC reading group:

Paper: Deepface

Location: MIT 56-154 (building 56, room 154)

Date: 10.05.17 Time: 5 PM

BU MIC reading group:

Paper: Character-level Convolutional Networks for

Text Classification

Date: 10.06.17 Time: 7 PM

Next workshop:

Location: BU Hariri Seminar Room

Date: 10.10.17 Time: 7 PM

