尚德机构

计算机系统结构

讲师: 孙小涵

讲师介绍

▶ 主讲老师: 孙小涵 (尚德机构-小涵老师)

> 主讲课程: 计算机类、数学类

➤ 邮箱: sunxiaohan@sunlands.com

课程章节

计算机系统结构

第1章 计算机系统结构概论

第2章 数据表示、寻址方式与指令系统

第3章 存储、中断、总线与I/O系统

第4章 存储体系

第5章 标量处理机

第6章 向量处理机

第7章 多处理机

第8章 数据流计算机和归约机

第4章 存储体系

第2章 数据表示、寻址方式与指令系统

4.2虚拟存储器

本节主要内容:

3种虚拟管理方式的原理、地址映像规则、映像表机构、地址变换过程、各 自的优点和问题。

段页式虚拟存储器

页式虚拟存储器

用FIFO、LRU、OPT算法页面替换的过程模拟

堆栈型替换算法定义、种类

PFF替换算法、分析虚拟存储器,综合评估和改进页式虚拟存储器性能的办法。

4.2.1虚拟存储器的管理方式(填空)

根据存储映像算法的不同,可有多种不同的存储管理方式的虚拟存储器,其中主要有段式、页式和段页式3种。

1.段式管理(填空)

程序都有模块性,一个复杂的大程序总可以分解成多个在逻辑上相对独立的模块。这些模块可以是主程序、子程序或过程,也可以是数据块。

为了进行段式管理,每道程序在系统中都有一个段(映像)表来存放该道程序各段装入主存的状况信息。

1.段式管理

图 4-6 段式管理的定位映像机构及地址的变换过程

1.段式管理

段式中每个段独立,有利于程序员灵活实现段的链接,段的扩大、缩小和修改,而不影响到其他的段;

每段只包含一种类型的对象,如过程或是数组、堆栈、标量等集合,易于针对其特定类型实现保护;

把<mark>共享</mark>的程序或数据单独构成一个段,从而易于实现多个用户、进程对共用段的管理,等等。

口诀: 独一共

- 1、根据所用的存储映像算法,虚拟存储器管理方式主要有段式、()
 -) 三种。1204 1504

1、根据所用的存储映像算法,虚拟存储器管理方式主要有段式、 () 和 () 三种。1204 1504

答案: 页式 段页式

2、一个复杂的大程序可以分解成多个在逻辑上相对独立的模块,这些模块可以是主程序、()或()也可以是数据块。1710

2、一个复杂的大程序可以分解成多个在逻辑上相对独立的模块,这些模块可以是主程序、()或()也可以是数据块。1710

答案: 子程序 过程

2.页式管理(填空)

页式存储是把主存空间和程序空间都机械地等分成固定大小的页(页面大小随计算机而异,一般在512B到几KB之间),按页顺序编号。与段式一样,计算机是采用多道程序方式工作的。

2.页式管理

图 4-1 采用页式存储后 D 道程序仍可装入

3.段页式管理(填空)

段页式=段表+页表

3.段页式管理

图 4-9 段页式管理的定位映像机构及其地址的变换过程

1、虚拟存储器的页式管理是把()空间和()空间机械等分成固定大小的页,按页顺序编号。1804

1、虚拟存储器的页式管理是把()空间和()空间机械等分成固定大小的页,按页顺序编号。1804

答案: 主存 程序

2、段页式虚拟存储器的内部地址映像表机构有()和()两部分。 0807

2、段页式虚拟存储器的内部地址映像表机构有 () 和 () 两部分。 0807

答案: 断表 页表

1.地址的映像和变换(单选)

页式虚拟存储器是采用页式存储和管理的主存一辅存存储层次。 地址的映像是将每个虚存单元按某种规则(算法)装入(定位于)实主

存,建立起多用户虚地址NS与实(主)存地址np之间的对应关系。

由于是把大的虚存空间压缩到小的主存空间,主存中的每一个页面位置应可对应多个虚页,能对应多少个虚页与采用的映像方式有关。

2.全相联映像

图 4-11 全相联映像

3.相联目录表法(单选)

把页表压缩成只存放已装入主存的那些虚页(用基号b和标识)与实页位置(nv)的对应关系,如图4-12所示,该表最多为2nv行。我们称它为相联目录表法,简称目录表法。该表采用按内容访问的相联存储器构成。

按内容访问相联的不同于按地址访问的

图 4-12 目录表法

随机存储器

4.页面替换算法 (填空)

替換算法的确定主要看主存是否有高的命中率,也要看算法是否便于实现,辅助软、硬件成本是否低。

目前已研究过多种替换算法,如随机算法、先进先出算法、近期最少使用(近期最久未用过)算法等。

- 4.页面替换算法(了解原理)
 - (1) 随机算法 (Random, RAND)是用软的或硬的随机数产生器产生主存中要被替换页的页号。

这种算法简单, 易于实现

- 4.页面替换算法(了解原理)
 - (2) 先进先出算法 (First-In First-Out, FIFO)是选择最早装入主存的页作为被替换的页。

这种算法实现方便,只要在操作系统为主存管理所设的主存页面表中给每个实页

配一个计数器字段

图 4-14 主存页面表

- 4.页面替换算法(了解原理)
 - (3) 近期最少使用算法 (Least Recently Used, LRU)是选择近期最少访问的页作为被替换页。

4.页面替换算法

【例】设有一道程序,有1~5页,执行时的页地址流(即依次用到的程序页页号) 为

2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

若分配给该道程序的主存有3页,图4-15所示为分别用FIFO、LRU、OPT这3种替换算法对这3页的使用和替换过程。其中用*号标记出按所用算法选作下次应被替换的页号。

4.页面替换算法(填空)

结论1命中率与所选用替换 算法有关。LRU算法要优 于FIFO算法。命中率也与 页地址流有关。

图 4-15 3 种替换算法对同一页地址流的替换过程

4.页面替换算法(填空)

结论2命中率与分配给程序的主存页数有关。

图 4-15 3 种替换算法对同一页地址流的替换过程

5.堆栈型替换算法

设A是长度为L的任意一个页地址流,t为已处理过t-1个页面的时间点,n为分配给该地址流的主存页数,Bt (n)表示在t时间点、在n页的主存中的页面集合,表示到t时间点已遇到过的地址流中相异页的页数。如果替换算法满足下式,则是堆栈型的替换算法。

$$n < L_t$$
, 时, $B_t(n) \subset B_t(n+1)$
 $n \ge L_t$, 时, $B_t(n) = B_t(n+1)$

- 5.堆栈型替换算法
 - 1、LRU算法在庄村中保留的是n个最近使用的页,他们又总是包含在n+1个最近使用的页中,所以LRU算法是堆栈型算法。
 - 2、OPT算法也是堆栈型算法

4.2.3页式虚拟存储器实现中的问题

1.页面失效的处理(单选)

要访问的虚页不在实际主存中时,就会发生页面失效。

4.2.3页式虚拟存储器实现中的问题

- 2.提高虚拟存储器等效访问速度的措施
- (1)存储层次的等效访问时间是TA=HT1+(1-H)T2,式中,H为主存命中率,T1、T2分别是主、辅存访问时间。
- (2)要提高存储层次等效访问速度,可采取的措施有:
- ①当等效访问时间远大于主存访问周期时,可采取提高主存命中率的方法;
- ②当主存命中率H已经很高时,可提高主存的访问速度,以降低T1;
- ③加快内部地址映像和变换,如采用快-慢表层次,增大快表命中率等。

4.2.3页式虚拟存储器实现中的问题

3.影响主存命中率和CPU效率的某些因素

程序()流、()以及分配给程序的实页数(主存容量)不同都会影响命中率。

4.2.3页式虚拟存储器实现中的问题

3.影响主存命中率和CPU效率的某些因素

程序地址流、替换算法以及分配给程序的实页数(主存容量)不同都会影响命中率。

1、虚拟存储器地址变换是指()1910

A:将实地址变换成虚地址

B:静态再定位时将程序的逻辑地址变换成主存的实地址

C:程序执行时将虚地址变换成对应的实地址

D:将指令的符号地址变换成二进制地址

1、虚拟存储器地址变换是指()1910

A:将实地址变换成虚地址

B:静态再定位时将程序的逻辑地址变换成主存的实地址

C:程序执行时将虚地址变换成对应的实地址

D:将指令的符号地址变换成二进制地址

答案: C

2、不属于堆栈型替换算法的是()1910

A:近期最久未使用算法

B:OPT算法

C:先进先出算法

D:近期最少使用算法

2、不属于堆栈型替换算法的是()1910

A:近期最久未使用算法

B:OPT算法

C:先进先出算法

D:近期最少使用算法

答案: C

3、页式虚拟存储器中的CPU要用到的指令或数据不在()时会发生

() 。1910

3、页式虚拟存储器中的CPU要用到的指令或数据不在 () 时会发生 ()。1910

答案: 主存 页面失效

4、虚拟存储器的页式管理是把()空间和()空间机械等分成固定大小的页,按页顺序编号。1804

4、虚拟存储器的页式管理是把()空间和()空间机械等分成固定大小的页,按页顺序编号。1804

答案: 主存 程序

4.3高速缓冲存储器

本节主要内容:

cache存储器的组成与工作原理,与虚拟存储器对比

全相联、直接、组相联地址映像规则

cache块替换的原理

各种替换算法装入或替换的过程图,计算cache的块命中率 cache存储器的等效访问速度与cache容量及速度的关系

4.3.1工作原理和基本结构

高速缓冲(Cache)存储器是为弥补主 存速度的不足,在处理机和主存之间设 置一个高速、小容量的Cache,构成 Cache—主存存储层次,使之从CPU角 度来看,速度接近于 Cache,容量却是 主存的。

1.全相联映像和变换

主存中任意一块都可映像装入到Cache中任意一块位置,

2.直接映像及其变换

把主存空间按Cache大小等分成区,每区内的各块只能按位置一一对应到Cache的相应块位置上

3.组相联映像及其变换

全相联映像和直接映像的优、 缺点正好相反,那么能否将两 者结合, 采用一种映像规则, 既能减少块冲突概率,提高 Cache空间利用率,又能使地 址映像机构及地址变换速度比 全相联的简单和快速

组相联映像指的是各组之间是 直接映像,而组内各块之间是 全相联映像。

3.组相联映像及其变换

【1204真题】有一个Cache-主存存储层次,主存共8个块(0~7),Cache有4个块(0~3),采用组相联映像,组内块数为2块,替换算法为LRU算法。

1. 画出主存、Cache空间块的映像对应关系示意图;

【1204真题】有一个Cache-主存存储层次,主存共8个块(0~7),Cache有4个块(0~3),采用组相联映像,组内块数为2块,替换算法为LRU算法。

1. 画出主存、Cache空间块的映像对应关系示意图;

主存的第 0、1、4、5 块只可映象装入或替换 Cache 中的第 0、1 块内容。主存的第 2、3、6、7 块只可映象装入或替换 Cache 中的第 2、3 块内容。

- 1. Cache存储器的透明性分析及解决办法(填空、简答)
 - 一般可有写回法和写直达法两种。

写回法也称为抵触修改法。它是在CPU执行写操作时,信息只写入Cache,仅当需要替换时,才将改写过的Cache块先写回主存,然后再调人新块。

- 1. Cache存储器的透明性分析及解决办法(填空、简答)
 - 一般可有写回法和写直达法两种。

写直达法也称存直达法。它是利用Cache存储器在处理机和主存之间的 直接通路,每当处理机写入Cache的同时,也通过此通路直接写入主存。

2.Cache的取算法(单选)

Cache所用的取算法基本上是按需取进法,即在Cache块失效时才将要访问的字所在 的块取进。

适当选择好Cache的容量、块的大小、组相联的组数和组内块数,是可以保证有较高的命中率的。

2.Cache的取算法

为了便于硬件实现,通常在访问主存第〖块(无论是否已取进Cache)时,只预取顺序的第i + 1块。

何时取进该块,可有恒预取和不命中时预取两种方法。恒预取是只要访问到主存第i块,无论Cache是否命中,恒预取第i + 1块。不命中时预取则是只当访问主存第i块在Cache不命中时,才预取主存中的第Z + 1块。Amdahl 470 V/8就采用不命中时预取方法。

2.Cache的取算法

采用预取法并非一定能提高命中率,它还和块的大小及预取开销的大小有关。

3.Cache存储器的性能分析

评价Cache存储器的性能主要是看命中率的高低,而命中率与块的大小、块的总数(即Cache的总容量)、采用组相联时组的大小(组内块数)、替换算法和地址流的簇聚性等有关。

Cache本身的速度与容量都会影响 Cache存储器的等效访问速度。

【1904真题】考虑一个1000个字的程序,其访问虚存的地址流为16、219、136、156、332、480、503、868、916、999。若页面大小为200字,主存容量为400字,采用FIFO替换算法,请按访存的各个时刻,写出其虚页地址流,计算主存命中率。

【1904真题】考虑一个1000个字的程序,其访问虚存的地址流为16、219、136、156、332、480、503、868、916、999。若页面大小为200字,主存容量为400字,采用FIFO替换算法,请按访存的各个时刻,写出其虚页地址流,计算主存命中率。

页面大小为200字,主存容量为400字,可知实存页数为2。根据虚存的地址流,可得其虚页地址流为:

0,1,0,0,1,2,2,4,4,4

采用 FIFO 替换算法替换时的实际装入和替换过程如答 27 图所示。

虚地址	16	219	136	156	332	480	503	868	916	999
虚页地址	0	1	0	0	1	2	2	4	4	4
n=2	0	0*	0*	0*	0*	2	2	2*	2*	2*
		1	1	1	1	1*	1*	4	4	4
			Н	Н	Н		Н		Н	Н

其中: "*"标记的是候选替换的虚页号, H表示命中。

命中率H=6/10=60%

【1710真题】采用LRU替换算法的页式虚拟存储器共有9页空间准备分配给A、B 两道程序。已知B道程序若给其分配4页时,命中率为8/15;若分配5页时,命中率可达10/15。现在给出A道程序的页地址流为2、3、2、1、5、2、4、5、3、2、5、2、1、4、5。

【1710真题】采用LRU替换算法的页式虚拟存储器共有9页空间准备分配给A、B 两道程序。已知B道程序若给其分配4页时,命中率为8/15;若分配5页时,命中率可达10/15。现在给出A道程序的页地址流为2、3、2、1、5、2、4、5、3、2、

5、2、1、4、5。

命中	(n=4)			Н			Н		Н		Н	Н	Н			Н
								3	3	1	1	1	1	4	3	3
	23					3	3	1	1	2	4	4	4	3	5	2
堆栈内容					3	2	1	5	2	4	5	3	3	5	2	1
			2	3	2	1	5	2	4	5	3	2	5	2	1	4
	20	2	3	2	1	5	2	4	5	3	2	5	2	1	4	5
	1址流	2	3	2	1	5	2	4	5	3	2	5	2	1	4	5

4.4 三级存储体系

本节主要内容:

三级存储体系的组织,要求达到"领会"层次

4.4.1 物理地址Cache

物理地址Cache是由"Cache—主存"和"主存—辅存"两个独立的存储层次组成,

4.4.2 虚地址Cache

虚地址Cache是将Cache—主存—辅存直接构成三级存储层次形式,其组成形式如图

4.4.3 全Cache

全Cache是最近出现的组织形式,尚不成熟,尚未商品化。它没有主存,只用Cache 与辅存中的一部分构成"Cache-辅存"存储体系。Cache存储系统的等效访问时间要接近于Cache的,容量是虚地址空间的容量。图4-34是在多处理机实现的一种方案。

- 走在成功的道路上
- 1、()是评价存储体系性能的重要指标
- A、命中率
- B、平均率
- C、覆盖率
- D、非命中率

1、()是评价存储体系性能的重要指标

A、命中率

B、平均率

C、覆盖率

D、非命中率

答案: A

讲解: 命中率是评价存储体系性能的重要指标。

2、组相联映象、LRU替换的Cache存储器,不影响Cache命中率的是() 1410

A:增加Cache中的块数

B:增大主存容量

C:增大组的大小

D:增大块的大小

2、组相联映象、LRU替换的Cache存储器,不影响Cache命中率的是() 1410

A:增加Cache中的块数

B:增大主存容量

C:增大组的大小

D:增大块的大小

答案: B

3、Cache存储器常用的地址映像方式是() 1304

A:全相联映像

B:页表法映像

C:组相联映像

D:段页表映像

3、Cache存储器常用的地址映像方式是() 1304

A:全相联映像

B:页表法映像

C:组相联映像

D:段页表映像

答案: C

尚德机构

▶ 答疑时间

尚德机构

► THANK YOU ⁴

