$20250123~{\rm MATH}4302~{\rm NOTE}~1[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: $+852\ 5693\ 2134;\ +86\ 19921823546;$

Contents

1	Introduction	3
2	Principal Ideal Domain	3
3	Unique Factorization Domain, Euclidean Domain	7

1 Introduction

This note aims to prove the following relation:

Euclidean Domain \subseteq Principal Ideal Domain \subsetneq Unique Factorization Domain

Actually we may prove the following as well:

Euclidean Domain ⊋ Principal Ideal Domain

However, the proof is not simple, so we don't include it here. We list the definitions of nonzero commutative ring with unity, integral domain and field.

Definition 1.1. (Nonzero Commutative Ring with Unity)

Let R be a set with two operations $(r,s) \mapsto r + s, (r,s) \mapsto rs$. If:

- (1) $\forall r, s \in R, r+s=s+r$.
- (2) $\forall r, s, t \in R, (r+s) + t = r + (s+t).$
- (3) $\exists 0 \neq 1, \forall r \in R, 0 + r = r$.
- $(4) \ \forall r \in R, \exists s \in R, s+r = 0.$
- (5) $\forall r, s \in R, rs = sr$.
- (6) $\forall r, s, t \in R, (rs)t = r(st).$
- (7) $\exists 1 \neq 0, \forall r \in R, 1r = r.$
- (8) $\forall \lambda \in R, \forall r, s \in R, \lambda(r+s) = \lambda r + \lambda s.$

Then R is a nonzero commutative ring with unity.

Definition 1.2. (Zero Divisor and Integral Domain)

Let R be a nonzero commutative ring with unity.

If $r \neq 0$ and $\exists s \neq 0, rs = 0$, then r is a zero divisor.

If every $r \neq 0$ is not a zero divisor, then R is an integral domain.

Definition 1.3. (Unit and Field)

Let R be a nonzero commutative ring with unity.

If $r \neq 0$ and $\exists s \neq 0, rs = 1$, then r is a unit.

If every $r \neq 0$ is a unit, then R is a field.

2 Principal Ideal Domain

Definition 2.1. (Maximal Ideal)

Let R be a nonzero commutative ring with unity, and \mathfrak{p} be a proper ideal of R. If there is no ideal strictly between \mathfrak{p} and R, then \mathfrak{p} is maximal.

Proposition 2.2. \mathfrak{p} is maximal iff R/\mathfrak{p} is a field.

Proof. We may divide our proof into two parts.

"if" direction: Assume that R/\mathfrak{p} is a field.

As R/\mathfrak{p} is a nonzero commutative ring with unity, \mathfrak{p} is proper.

As $\forall a \notin \mathfrak{p}$, $xa \equiv 1 \pmod{\mathfrak{p}}$ has a solution, $\langle a \rangle + \mathfrak{p} = R$, so \mathfrak{p} is maximal.

"only if" direction: Assume that p is maximal.

As \mathfrak{p} is proper, R/\mathfrak{p} is a nonzero commutative ring with unity.

As $\forall a \notin \mathfrak{p}, \langle a \rangle + \mathfrak{p} = R$, $xa \equiv 1 \pmod{\mathfrak{p}}$ has a solution, so R/\mathfrak{p} is a field.

Quod. Erat. Demonstrandum.

Definition 2.3. (Prime Ideal)

Let R be a nonzero commutative ring with unity, and \mathfrak{p} be a proper ideal of R. If \mathfrak{p}^c is closed under multiplication, then \mathfrak{p} is prime.

Proposition 2.4. \mathfrak{p} is prime iff R/\mathfrak{p} is an integral domain.

Proof. We may divide our proof into two parts.

"if" direction: Assume that R/\mathfrak{p} is an integral domain.

As R/\mathfrak{p} is a nonzero commutative ring with unity, \mathfrak{p} is proper.

As $\forall a, b \notin \mathfrak{p}, ab \not\equiv 0 \pmod{\mathfrak{p}}, ab \notin \mathfrak{p}$, so \mathfrak{p} is prime.

"only if" direction: Assume that \mathfrak{p} is prime.

As \mathfrak{p} is proper, R/\mathfrak{p} is a nonzero commutative ring with unity.

As $\forall a, b \notin \mathfrak{p}, ab \notin \mathfrak{p}, ab \not\equiv 0 \pmod{\mathfrak{p}}$, so R/\mathfrak{p} is an integral domain.

Quod. Erat. Demonstrandum.

Example 2.5. As Field \subseteq Integral Domain, Maximal Ideal \subseteq Prime Ideal.

Proposition 2.6. a is a unit in R iff $1 \in \langle a, t \rangle$ in R[t].

Proof. We may divide our proof into two parts.

"if" direction: Assume that $1 \in \langle a, t \rangle$, i.e., $\exists x(t), y(t) \in R[t], ax(t) + ty(t) = 1$.

The constant term projection is $\exists x_0 \in R, ax_0 = 1$, where $a, x_0 \neq 0$, so a is a unit.

"only if" direction: Assume that a is a unit, i.e., $\exists x_0 \in R, ax_0 = 1$.

Embed this into R[t], $\exists x_0, 0 \in R[t]$, $1 = ax_0$, so $1 \in \langle a, t \rangle$.

Quod. Erat. Demonstrandum.

Proposition 2.7. R is an integral domain iff $\langle t \rangle$ is prime in R[t].

Proof. We may divide our proof into two parts.

"if" direction: Assume that $\langle t \rangle$ is prime in R[t], i.e., $\forall a(t), b(t) \notin \langle t \rangle, a(t)b(t) \notin \langle t \rangle$.

The constant term projection is $\forall a_0, b_0 \neq 0, a_0b_0 \neq 0$, so R is an integral domain. "only if" direction: Assume that R is an integral domain, i.e., $\forall a_0, b_0 \neq 0, a_0b_0 \neq 0$. Embed this into R[t], $\forall a(t), b(t) \notin \langle t \rangle, a(t)b(t) \notin \langle t \rangle$, so R is an integral domain. Quod. Erat. Demonstrandum.

Example 2.8. In $\mathbb{Z}[t]$, Maximal Ideal $\not\supseteq$ Prime Ideal, as:

- (1) $\langle t \rangle \subseteq \langle 2, t \rangle \subseteq \mathbb{Z}[t]$, so $\langle t \rangle$ is not maximal.
- (2) \mathbb{Z} is an integral domain, so $\langle t \rangle$ is prime.

Definition 2.9. (Prime Element)

Let R be a nonzero commutative ring with unity, and p be a nonzero nonunit element of R. If $\langle p \rangle$ is prime, then p is prime.

Definition 2.10. (Irreducible Element)

Let R be a nonzero commutative ring with unity, and p be a nonzero nonunit element of R. If p is not a product of nonunit elements, then p is irreducible.

Proposition 2.11. In integral domain, **Prime Element** \subseteq **Irreducible Element**.

Proof. For all prime element $p \in R$, assume that p = ab, where $a, b \in R$. As p|ab, p|a or p|b, so we may assume WLOG that p|a with quotient c. As R is an integral domain, bc = 1, so this nonzero nonunit element p is irreducible. Quod. Erat. Demonstrandum.

Example 2.12. In \mathbb{Z}_6 , Prime Element $\not\subseteq$ Irreducible Element, as:

- (1) $\langle 2 \rangle^c = \mathbb{Z}_6^{\times}$ is closed under multiplication, so 2 is prime.
- (2) $2 = 2 \cdot 4$, where 2, 4 are nonunit, so 2 is reducible.

Example 2.13. In $\mathbb{Z}[\sqrt{-3}]$, Prime Element $\not\supseteq$ Irreducible Element, as:

- (1) $\frac{1\pm\sqrt{-3}}{2} \notin \mathbb{Z}[\sqrt{-3}]$ and $\frac{(1+\sqrt{-3})(1-\sqrt{-3})}{2} \in \mathbb{Z}[\sqrt{-3}]$, so 2 is not prime.
- (2) $\overline{B}(0,2) \cap \mathbb{Z}[\sqrt{-3}] = \pm \{0,1,\sqrt{-3},1+\sqrt{-3},1-\sqrt{-3},2\}$, so 2 is irreducible.

Definition 2.14. (Principal Ideal and Principal Ideal Ring)

Let R be a nonzero commutative ring with unity.

If an ideal \mathfrak{a} is generated by some element a, then \mathfrak{a} is principal.

If every ideal \mathfrak{a} is principal, then R is a principal ideal ring.

Proposition 2.15. In principal ideal ring, every irreducible element p generates a maximal ideal $\mathfrak{p} = \langle p \rangle$.

Proof. For all ideal $\mathfrak{a} = \langle a \rangle$, assume that $\mathfrak{a} \supseteq \mathfrak{p}$.

As a|p, for some $b \in R$, p = ab.

As p is irreducible, a is a unit, $\mathfrak{a} = R$, or b is a unit, $\mathfrak{a} = \mathfrak{p}$.

Hence, this proper ideal $\mathfrak p$ is maximal. Quod. Erat. Demonstrandum.

Example 2.16. In $\mathbb{Z}[t]$, an irreducible element does not necessarily generate a maximal ideal, for the same reason given in **Example 2.8.**.

Example 2.17. In $\mathbb{Z}[t]$, a maximal ideal is not necessarily generated by an irreducible element, as:

- (1) $\langle 2 \rangle$ is maximal in \mathbb{Z} , so $\langle 2, t \rangle$ is maximal in $\mathbb{Z}[t]$.
- (2) $\forall a(t) \in \mathbb{Z}[t], a(t)|2 \implies a(t) \in \pm \{1, 2\}, \text{ so } \langle 2, t \rangle \text{ is not principal.}$

Definition 2.18. (Principal Ideal Domain)

Let R be an integral domain.

If R is a principal ideal ring, then R is a principal ideal domain.

Example 2.19. In principal ideal domain, the followings are equivalent:

- (1) p is a nonzero maximal ideal.
- (2) p is a nonzero prime ideal.
- (3) \mathfrak{p} is generated by a prime element p.
- (4) \mathfrak{p} is generated by an irreducible element p.

Proposition 2.20. In principal ideal ring, for all ascending chain of ideals:

$$\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \mathfrak{a}_3 \subseteq \cdots$$

The chain stops increasing after some \mathfrak{a}_m :

$$\mathfrak{a}_m = \mathfrak{a}_{m+1} = \mathfrak{a}_{m+2} = \cdots$$

Proof. Define the following subset of R:

$$\mathfrak{a} = \bigcup_{n=1}^{+\infty} \mathfrak{a}_n$$

- (1) $0 \in \mathfrak{a}_1, 0 \in \mathfrak{a}$.
- (2) $\forall a_s \in \mathfrak{a}_s \subseteq \mathfrak{a}_{\text{Max}\{s,t\}}, \forall a_t \in \mathfrak{a}_t \subseteq \mathfrak{a}_{\text{Max}\{s,t\}}, a_s + a_t \in \mathfrak{a}_{\text{Max}\{s,t\}} \subseteq \mathfrak{a}.$
- (3) $\forall a_s \in \mathfrak{a}_s, -a_s \in \mathfrak{a}_s \subseteq \mathfrak{a}$.
- (4) $\forall \lambda \in R, \forall a_s \in \mathfrak{a}_s, \lambda a_s \in \mathfrak{a}_s \subseteq \mathfrak{a}$.

As R is a principal ideal ring, \mathfrak{a} has a generator a.

This a belongs to some \mathfrak{a}_m , so the chain stop increasing after this \mathfrak{a}_m . Quod. Erat. Demonstrandum.

Example 2.21. In $\mathbb{R}^{\mathbb{N}}$, there exists a strictly increasing chain of ideals:

$$\langle \mathbf{e}_1 \rangle \subsetneq \langle \mathbf{e}_1, \mathbf{e}_2 \rangle \subsetneq \langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle \subsetneq \cdots$$

3 Unique Factorization Domain, Euclidean Domain

Definition 3.1. (Factorization Tree and Factorization Domain)

Let R be an integral domain. If a binary tree T satisfies the following properties:

- (1) When a node a is reducible, then $a = a_1 a_2$, where a_1, a_2 are children of a.
- (2) When a node a is irreducible, then a has no child.

Then T is a factorization tree.

If every factorization tree is finite, then R is a factorization domain.

Proposition 3.2. Let R be an integral domain.

R is a factorization domain iff for all ascending chain of principal ideals:

$$\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \langle a_3 \rangle \subseteq \cdots$$

The chain stops increasing after some $\langle a_m \rangle$:

$$\langle a_m \rangle = \langle a_{m+1} \rangle = \langle a_{m+2} \rangle = \cdots$$

Proof. It suffices to notice that a binary tree is finite iff every chain is finite.

Quod. Erat. Demonstrandum.

Definition 3.3. (Unique Factorization Domain)

Let R be a factorization domain. If for all associated irreducible factorizations:

$$p_1p_2\cdots p_m \sim q_1q_2\cdots q_n$$

We have m=n, and for some $\sigma \in S_n$, $(p_1, p_2, \dots, p_m) \sim \sigma * (q_1, q_2, \dots, q_n)$, then R is a unique factorization domain.

Proposition 3.4. Let R be a factorization domain.

R is a unique factorization domain iff every irreducible element is prime.

Proof. We may divide our proof into two parts.

"if" direction: Assume that every irreducible element is prime.

For all associated irreducible factorization:

$$p_1p_2\cdots p_m \sim q_1q_2\cdots q_n$$

- (1) As p_1 is prime and $q_{\sigma(1)}$ is irreducible, $p_1, q_{\sigma(1)}$ are associated.
- As R is an integral domain, we may cancel $p_1, q_{\sigma(1)}$ and repeat the argument.
- (2) According to well-ordering principle, this cancellation program terminates.

We end up with m=n, and for some $\sigma \in S_n$, $(p_1, p_2, \dots, p_m) \sim \sigma * (q_1, q_2, \dots, q_n)$.

"only if" direction: Assume that R is a unique factorization domain.

For all irreducible element p, for all elements a, b, take the irreducible factorizations:

$$a = a_1 a_2 \cdots a_m$$
 and $b = b_1 b_2 \cdots b_n$

As R is a unique factorization domain:

$$p|ab \implies p|a_1a_2\cdots a_mb_1b_2\cdots b_n \implies p|\text{some }a_k \text{ or }p|\text{some }b_l \implies p|a \text{ or }p|b$$

Hence, p is prime. Quod. Erat. Demonstrandum.

Example 3.5. Principal Ideal Domain \subseteq Unique Factorization Domain, as:

- (1) In principal ideal domain, the ascending chain criterion for ideals holds.
- (2) In principal ideal domain, every irreducible element is prime.

Example 3.6. Principal Ideal Domain *⊉* **Unique Factorization Domain**, as:

- (1) $\langle 2, t \rangle$ is not principal, so $\mathbb{Z}[t]$ is not a principal ideal domain.
- (2) $\mathbb{Z}, \mathbb{Q}[t]$ are unique factorization domains, so does $\mathbb{Z}[t]$.

Definition 3.7. (Euclidean Domain)

Let R be an integral domain.

If there is a monotone degeree function Deg : $R \to \{-\infty, 0, 1, 2, \cdots\}$, such that for all $a, b \in R$, with $b \neq 0$, for some $q, r \in R$:

$$a = qb + r$$
 and $Deg(r) < Deg(b)$

Proposition 3.8. Euclidean Domain ⊂ Principal Ideal Domain.

Proof. For all nonzero ideal \mathfrak{b} of an Euclidean domain R,

there exists a nonzero element b with smallest degree $Deg(b) \geq 0$.

For all $a \in R$, b must divide a, otherwise the remainder $r = a - qb \in \mathfrak{b}$,

having a smaller degree Deg(r) < Deg(b), will contradict the definition of b.

This means $\mathfrak{b} = \langle b \rangle$ is principal, so R is a principal ideal domain.

Quod. Erat. Demonstrandum.

References

 $[1]\,$ H. Ren, "Template for math notes," 2021.