Đại Học Quốc Gia Thành phố Hồ Chí Minh Trường Đại Học Công Nghệ Thông Tin

Phân tích ảnh hưởng của các chỉ số sức khỏe đến tiến triển bệnh đái tháo đường

DS304.L21 – Phân tích và thiết kế thực nghiệm

NHÓM 9

Giảng viên hướng dẫn

TS. Đỗ Trọng Hợp

Nhóm sinh viên thực hiện

Thái Minh Triết **19522397** Chu Hà Thảo Ngân **19521882** Võ Tuấn Anh **19521226**

Nội dung thuyết trình

Giới thiệu chung Tổng quan bộ dữ liệu Tiền xử lý dữ liệu Phân tích hồi quy Đánh giá mô hình Kết luận

1. Đặt vấn đề

- Đái tháo đường được xem là một căn bệnh phổ biến trong cộng đồng.
- Ở Mỹ có xu hướng gia tăng ngày càng cao với con số ước tính lên đến 79 triệu người trưởng thành mắc bệnh.
- Trong đó 50% người mắc đái tháo đường không biết mình có bệnh vì chưa có triệu chứng rõ ràng.

1. Đặt vấn đề

- Đái tháo đường là một căn bệnh rối loạn chuyển hóa trong hormone tuyến tuy dẫn đến thiếu hụt lượng insuline trong máu.
- Các tiêu chuẩn để chẩn đoán bệnh đái tháo đường hiện nay cần dựa vào nhiều chỉ số và quá trình phức tạp. Vì thế việc chẩn đoán phụ thuộc vào các chỉ số này từ cơ thể.
- Cần phải có bộ dữ liệu với các chỉ số y tế liên quan để đánh giá phần nào tình hình của bệnh, giúp tăng hiệu quả và giảm đi chi phí cho quá trình chuẩn đoán.

2. Mục tiêu nghiên cứu

- Phân tích ảnh hưởng giữa các yếu tố là chỉ số y tế liên quan lên tiến triển bệnh.
- Xem xét sự tương tác giữa các yếu tố được thu thập từ các bệnh nhân bộ dữ liệu có sẵn.
- Xây dựng các mô hình hồi quy và đánh giá kết quả dự đoán của các mô hình.

3. Ứng dụng

- Cho phép sử dụng trong các chương trình chuẩn đoán sớm bằng các thông số cơ thể. Giúp giảm đi chi phí trong quá trình chuẩn đoán.
- Dùng trong các hệ khuyến nghị đưa ra chế độ ăn uống hoặc điều trị phù hợp với mỗi cá nhân. Giúp gia tăng hiệu quả cho việc điều trị

Tổng quan bộ dữ liệu

Thông tin chung về bộ dữ liệu

❖ Tên bộ dữ liệu

Diabetes dataset

❖ Nguồn thu nhập

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

* Kích thước của bộ dữ liệu

442 dòng x 11 cột

* Tác giả

Bradley Efron, Trevor Hastie, Iain Johnstone và Robert Tibshirani,
 Đại học Stanford, Hoa Kỳ

Thông tin chung về bộ dữ liệu

Thông tin thuộc tính:

- AGE: độ tuổi của bệnh nhân
- SEX: giới tính của bệnh nhân (1 Nam; 2 Nữ)
- BMI: body mass index (chỉ số khối cơ thể)
- BP: average blood pressure (giá trị huyết áp trung bình)
- **S1**: tổng lượng cholesterol trong huyết thanh (tc total serum cholesterol)
- **S2**: giá trị lipoprotein tỷ trọng thấp (ldl low-density lipoproteins)
- **S3**: giá trị lipoprotein tỷ trọng cao (hdl high-density lipoproteins)
- S4: tỉ lệ giữa cholesterol toàn phần so với lượng HDL (tch total cholesterol / HDL)
- **S5**: mức triglyceries có trong huyết thanh có thể ghi nhận (ltg possibly log of serum triglycerides level)
- S6: chỉ số mức đường huyết (glu blood sugar level)
- Y: giá trị định lượng về tiến triển bệnh của bệnh nhân sau 1 năm kể từ thời điểm ghi nhận

Thống kê mô tả bộ dữ liệu

	AGE	SEX	BMI	ВР	S1	S2	S3	S4	S5	S6	Υ
count	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000
mean	48.518100	1.468326	26.375792	94.647014	189.140271	115.439140	49.788462	4.070249	4.641411	91.260181	152.133484
std	13.109028	0.499561	4.418122	13.831283	34.608052	30.413081	12.934202	1.290450	0.522391	11.496335	77.093005
min	19.000000	1.000000	18.000000	62.000000	97.000000	41.600000	22.000000	2.000000	3.258100	58.000000	25.000000
25%	38.250000	1.000000	23.200000	84.000000	164.250000	96.050000	40.250000	3.000000	4.276700	83.250000	87.000000
50%	50.000000	1.000000	25.700000	93.000000	186.000000	113.000000	48.000000	4.000000	4.620050	91.000000	140.500000
75%	59.000000	2.000000	29.275000	105.000000	209.750000	134.500000	57.750000	5.000000	4.997200	98.000000	211.500000
max	79.000000	2.000000	42.200000	133.000000	301.000000	242.400000	99.000000	9.090000	6.107000	124.000000	346.000000

❖ Nhận xét:

- Thuộc tính BMI, S3, S4 và S5 có phân bố dữ liệu theo xu hướng quan hệ tuyến tính với Y. BMI, S4 và S5 càng tăng, S3 càng nhỏ thì khả năng tiến triển bệnh nhanh hơn.
- Các thuộc tính còn lại phân bố hỗn loạn và ít có quan hệ tuyến tính với thuộc tính Y.
- Thuộc tính S4 và S2 xuất hiện các điểm dữ liệu ngoại lệ trên biểu đồ, có thể gây ảnh hưởng tới hiệu suất các mô hình hồi quy.

Biểu đồ phân tán giữa các thuộc tính định lượng

Nhận xét:

- Thuộc tính S2 và S1 thể hiện rõ ràng quan hệ tuyến tính.
- Một số cặp thuộc tính có quan hệ tuyến tính: S2
 và S4, S3 và S4, S6 và S5.
- Các biểu đồ còn lại thì phân bố hỗn loạn và không theo một quy luật cụ thể.
- Bệnh nhân có chỉ số BMI và S5 thấp thì tiến triển bệnh chậm, khi hai chỉ số này cùng tăng thì bệnh có khả năng thể tiến triển nhanh hơn. Mặt khác, ở biểu đồ của S3 so với BP, S3 cao nhưng BP thấp thì bệnh tiến triển nhẹ, S3 thấp nhưng BP cao cho thấy bệnh tiến triển nhanh.

Biểu đồ hệ số tương quan

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

❖ Nhận xét:

- Thuộc tính Y tương quan mạnh với thuộc tính
 BMI và S5 với hệ số tương quan lần lượt là 0.59
 và 0.57.
- Thuộc tính S1 và S2 có tính tương quan dương rất mạnh với nhau với hệ số tương quan là 0.9, một số thuộc tính cũng có độ tương quan tốt như S2 và S4 (coef = 0.66), S4 và S5 (coef = 0.62).
- Thuộc tính S3 hầu hết có quan hệ nghịch biến (tương quan âm) với các thuộc tính còn lại, trong đó tương quan âm mạnh nhất là với thuộc tính S4 với hệ số tương quan là -0.74.

Biểu đồ phân phối giá trị thuộc tính Y

Biểu đồ phân phối giá trị thuộc tính BMI

Tiền xử lý dữ liệu

Xử lý ngoại lệ

Biểu đồ hộp của các thuộc tính định lượng

❖ Nhận xét:

- Các thuộc tính BMI, S1, S2, S3, S4, S5 và S6 xuất hiện những điểm dữ liệu bất thường.
- Để loại bỏ chúng, dựa vào công thức rút ra từ biểu đồ hộp và tiến hành như sau:
 - Đối với outlier bên trái biểu đồ hộp: Loại bỏ các điểm dữ liệu nhỏ hơn Q1-1.5*IQR
 - Đối với outlier bên phải biểu đồ hộp: Loại bỏ các điểm dữ liệu lớn hơn Q3+1.5*IQR Trong đó:

Q1 là tứ phân vị thứ 25 Q3 là tứ phân vị thứ 75 IQR là hiệu của Q3 và Q1

Xử lý ngoại lệ

Biểu đồ phân tán của thuộc tính S2 so với Y trước và sau khi tiền xử lý

Phân chia tập train và test

Sử dụng hàm **createDataPartition** có sẵn trong **R** để chia tập huấn luyện và tập kiểm thử với tỉ lệ: **80% train – 20% test**.

Kích thước của các tập dữ liệu sau khi chia train test

Bộ dữ liệu	Kích thước tập train	Kích thước tập test
Trước khi tiền xử lý	355	87
Sau khi tiền xử lý	327	80

Phân tích hồi quy

Tổng quan về phân tích hồi quy

- Là phương pháp thống kê mạnh mẽ cho phép xem xét mối tương quan giữa các biến số trong việc đo lường.
- Quá trình thực hiện hồi quy cho phép xác định được yếu tố nào đáng quan tâm nhất và những yếu tố nào có thể bỏ qua, hay sự ảnh hưởng, tương tác lẫn nhau của các yếu tố.
- Hai thuật ngữ cần nắm vững trong phân tích hồi quy:
 - Biến độc lập
 - Biến phụ thuộc

Trường hợp 1: Khi không xảy ra tương tác giữa các yếu tố Trường hợp 2: Khi xảy ra tương tác của các yếu tố với SEX

Trường hợp 3: Khi xảy ra tương tác của các yếu tố với S4
Trường hợp 4: Khi xảy ra tương tác giữa các yếu tố còn lại

Trường hợp 1: Khi không xảy ra tương tác giữa các yếu tố

av <- aov(Y~AGE+SEX+BMI+BP+S1+S2+S3+S4+S5+S6,data=train/train_p) summary(av)

Trước khi tiền xử lý

Sau khi tiền xử lý

```
Df Sum Sq Mean Sq F value Pr(>F)
AGE
                  85855
                         85855 28.653 1.58e-07 ***
SEX
                    252
                                 0.084
                                           0.772
BMI
                        591812 197.514 < 2e-16 ***
                 591812
BP
                 104605
                        104605 34.911 8.30e-09 ***
                   5132
                           5132
                                1.713
S1
                                          0.191
S2
                   4662
                           4662
                                1.556
                                          0.213
S3
                        173465
                                57.893 2.68e-13 ***
                173465
                  1210
                                 0.404
S4
                          1210
                                           0.526
S5
                          50637
                                16.900 4.93e-05 ***
                  50637
                   4458
                          4458
                                 1.488
                                           0.223
Residuals
            344 1030730
                           2996
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Df Sum Sq Mean Sq F value Pr(>F)
                70622
                        70622 24.021 1.53e-06 ***
AGE
SEX
                               0.001 0.98169
BMI
             1 464953
                       464953 158.147 < 2e-16 ***
                        91331 31.065 5.35e-08 ***
ΒP
             1 91331
S1
                 1124
                         1124
                                0.382 0.53685
                                0.254 0.61481
S2
                  746
                          746
             1 223592
                               76.052 < 2e-16 ***
                       223592
S4
                  358
                          358
                                0.122 0.72744
S5
                20759
                                7.061 0.00828 **
                        20759
                  661
                                0.225 0.63580
                          661
Residuals
           316 929043
                         2940
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Khi không xảy ra tương tác, các thuộc tính AGE, BMI, BP và S5 ảnh hưởng đến tiến triển bệnh tiểu đường với mức ý nghĩa alpha=0.05.
- Các thuộc tính còn lại có p_value > 0.05 cho thấy chúng không ảnh hưởng đến tiến triển bệnh, trong đó SEX và S4 có p_value cao nhất.
 - -> Cần xem xét tương tác của chúng với các thuộc tính còn lại.

Trường hợp 2: Khi xảy ra tương tác của các yếu tố với SEX

av <- aov(Y~(AGE+BMI+BP+S1+S2+S3+S5+S6)*SEX,data=train/train_p) summary(av)

Trước khi tiền xử lý

Df Sum Sq Mean Sq F value Pr(>F) AGE 85855 29.032 1.34e-07 *** BMI1 591789 591789 200.115 < 2e-16 *** 1 98099 98099 33.172 1.90e-08 *** 5402 S15402 1.827 0.177416 7923 S22.679 0.102591 7923 1 147757 147757 49.965 9.06e-12 *** S5 47191 15.958 7.96e-05 *** 1 47191 3657 3657 1.237 0.266911 SEX 1 33132 33132 11.204 0.000909 *** AGE: SEX 1 16983 16983 5.743 0.017101 * BMI:SEX 9617 9617 3.252 0.072228 . BP:SEX 1313 0.444 0.505624 1313 0.036 0.850020 S1:SEX 106 106 6128 S2:SEX 2.072 0.150940 6128 S3:SEX 74 0.025 0.874516 S5:SEX 776 0.262 0.608866 776 S6:SEX 425 425 0.144 0.704953 Residuals 337 996590 2957 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Sau khi tiền xử lý

```
Df Sum Sq Mean Sq F value
                                        Pr(>F)
                         70622 24.333 1.33e-06 ***
AGE
BMI
                        464743 160.132 < 2e-16 ***
              1 86284
                         86284 29.730 1.02e-07 ***
ΒP
                 1359
S1
                          1359
                                 0.468 0.494335
                 2053
                                0.707 0.401000
S2
                          2053
              1 192796
                        192796
                                66.430 9.13e-15 ***
S3
                                7.612 0.006145 **
S5
              1 22091
                         22091
                   369
                                 0.127 0.721790
S6
                32870
SEX
                         32870
                               11.326 0.000861 ***
                                6.415 0.011813 *
                18617
AGE: SEX
                         18617
BMI:SEX
                  6800
                                 2.343 0.126872
                          6800
BP:SEX
                   519
                                 0.179 0.672724
S1:SEX
                   614
                                 0.212 0.645764
S2:SEX
                  1687
                          1687
                                 0.581 0.446379
                  2718
S3:SEX
                                 0.936 0.333951
                          2718
S5:SEX
                   157
                           157
                                 0.054 0.816196
S6:SEX
                  2096
                          2096
                                 0.722 0.396099
Residuals
            309 896796
                          2902
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

- Thuộc tính SEX cho thấy ảnh hưởng đến tiến triển bệnh với mức ý nghĩa alpha = 0.05.
- Tương tác giữa AGE với SEX cũng có ảnh hưởng.

Trường hợp 3: Khi xảy ra tương tác của các yếu tố với S4

av <- aov(Y~(AGE+BMI+BP+S1+S2+S3+S5+S6)*S4,data=train/train_p) summary(av)

Trước khi tiền xử lý

		Huoc	NIII U	en xu	ıy	
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
AGE	1	85855	85855	27.968	2.22e-07	***
BMI	1	591789	591789	192.779	< 2e-16	***
BP	1	98099	98099	31.956	3.36e-08	***
S1	1	5402	5402	1.760	0.185547	
S2	1	7923	7923	2.581	0.109082	
S3	1	147757	147757	48.133	2.05e-11	***
S5	1	47191	47191	15.373	0.000107	***
S6	1	3657	3657	1.191	0.275845	
S4	1	599	599	0.195	0.659068	
AGE:S4						
BMI:S4	1	10028	10028	3.267	0.071591	
BP:S4	1	169	169	0.055	0.814705	
S1:S4						
S2:S4	1	386	386	0.126	0.723111	
S3:S4	1	182	182	0.059	0.807668	
S5:S4	1	3702	3702	1.206	0.272916	
S6:S4	1	9221	9221	3.004	0.083984	
Residuals	337	1034516	3070			
Signif. co	des:	0 (***,	0.001 '	**' 0.01	<pre>'*' 0.05</pre>	'.'0.1''

Sau khi tiền xử lý

	DI	Sum Sq	Mean Sq	F value	Pr(>F)	
AGE	1	70622	70622	23.338	2.14e-06	***
BMI	1	464743	464743	153.583	< 2e-16	***
BP .	1	86284	86284	28.514	1.81e-07	***
31	1	1359	1359	0.449	0.50329	
52	1	2053	2053	0.678	0.41079	
33	1	192796	192796	63.713	2.85e-14	***
35	1	22091	22091	7.301	0.00727	**
56	1	369	369	0.122	0.72731	
54	1	345	345	0.114	0.73595	
AGE:S4	1	6128	6128	2.025	0.15574	
BMI:S4	1	5028	5028	1.662	0.19836	
BP:S4	1	268	268	0.088	0.76637	
S1:S4	1	14	14	0.005	0.94559	
S2:S4	1	10	10	0.003	0.95391	
33:S4	1	1404	1404	0.464	0.49630	
S5:S4	1	4644	4644	1.535	0.21635	
S6:S4	1	9999	9999	3.304	0.07007	
Residuals	309	935035	3026			

• Thuộc tính S4 và các tương tác với nó không cho thấy ảnh hưởng đến tiến triển bệnh với mức ý nghĩa 0.05.

Trường hợp 4: Khi xảy ra tương tác giữa các yếu tố

av <- aov(Y~AGE*BMI*BP*S1*S2*S3*S5*S6+AGE*SEX,data=train/train_p) summary(av)

Trước khi tiền xử lý

	11400			. . ,		
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
AGE	1	85855	85855	28.663	5.59e-07	***
BMI	1	591789	591789	197.571	< 2e-16	***
BP	1	98099	98099	32.751	1.12e-07	***
S1	1	5402	5402	1.804	0.182355	
S2	1	7923	7923	2.645	0.107038	
S3	1	147757	147757	49.329	2.77e-10	***
S5	1	47191	47191	15.755	0.000137	***
S6	1	3657	3657	1.221	0.271858	
SEX	1	33132	33132	11.061	0.001238	**
AGE:BMI	1	9377	9377	3.131	0.079915	
AGE:BP	1	11912	11912	3.977	0.048883	*
BMI:BP	1	21859	21859	7.298	0.008123	**
AGE:S1	1	2	2	0.001	0.979064	
BMI:S1	1	10422	10422	3.479	0.065098	
BP:S1	1	208	208	0.069	0.792619	
AGE:S2	1	8377	8377	2.797	0.097623	
BMI:S2	1	523	523	0.175	0.676877	
BP:S2	1	85	85	0.028	0.866446	
S1:S2	1	469	469	0.157	0.693186	
AGE:S3	1	1185	1185	0.396	0.530743	

• • •

Sau khi tiền xử lý

				-		
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
AGE	1	70622	70622	23.261	7.81e-06	***
BMI	1	464743	464743	153.076	< 2e-16	***
BP	1	86284	86284	28.420	1.10e-06	***
S1	1	1359	1359	0.448	0.50567	
S2	1	2053	2053	0.676	0.41368	
S3	1	192796	192796	63.503	1.91e-11	***
S5	1	22091	22091	7.276	0.00872	**
S6	1	369	369	0.121	0.72853	
SEX	1	32870	32870	10.827	0.00156	**
AGE:BMI	1	4782	4782	1.575	0.21357	
AGE:BP	1	147	147	0.048	0.82652	
BMI:BP	1	21990	21990	7.243	0.00887	**
AGE:S1	1	293	293	0.096	0.75700	
BMI:S1	1	1316	1316	0.433	0.51244	
BP:S1	1	129	129	0.043	0.83726	
AGE:S2	1	875	875	0.288	0.59298	
BMI:S2	1	5232	5232	1.723	0.19351	
BP:S2	1	347	347	0.114	0.73628	
S1:S2	1	159	159	0.052	0.81972	
AGE:S3	1	92	92	0.030	0.86254	

 \bullet

- Có sự khác nhau về ảnh hưởng của các yếu tố và các tương tác ở bộ dữ liệu trước và sau khi tiền xử lý
- Ở tập train, thuộc tính S1 không ảnh hưởng đến tiến triển bệnh (p_value=0.182355>0.05) nhưng khi tương tác với BMI và S5 thì ảnh hưởng (p value=0.015230<0.05)

Simple Linear Regression

Multiple Linear Regression

Polynomial Regression

Elastic Net Regression – Ridge Regression – Lasso Regression

Simple Linear Regression

Trên tập huấn luyện trước khi tiền xử lý

```
Call:
lm(formula = Y ~ BMI, data = train)
Residuals:
             1Q Median
                                      Max
    Min
-162.809 -43.569 -7.261 48.156 152.338
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -107.096 20.376 -5.256 2.55e-07 ***
             9.846 0.764 12.887 < 2e-16 ***
BMI
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 62.89 on 353 degrees of freedom
Multiple R-squared: 0.3199, Adjusted R-squared: 0.318
F-statistic: 166.1 on 1 and 353 DF, p-value: < 2.2e-16
```

Trên tập huấn luyện sau khi tiền xử lý

```
Call:
lm(formula = Y ~ BMI, data = train_p)
Residuals:
             1Q Median
                                      Max
    Min
-156.418 -45.526 -7.454 47.302 157.173
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -100.1405 21.8255 -4.588 6.39e-06 ***
             9.4412 0.8184 11.536 < 2e-16 ***
BMI
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 62.74 on 325 degrees of freedom
Multiple R-squared: 0.2905, Adjusted R-squared: 0.2883
F-statistic: 133.1 on 1 and 325 DF, p-value: < 2.2e-16
```

Simple Linear Regression

Trên tập huấn luyện trước khi tiền xử lý

$$Y = -107.096 + 9.846 * BMI$$

R-squared = 0.3199
Adjusted R-squared = 0.318
RMSE = 62.7097

Trên tập huấn luyện sau khi tiền xử lý

$$Y = -100.1405 + 9.4412 * BMI$$

R-squared = 0.2905 Adjusted R-squared = 0.2883 RMSE = 62.5494

Multiple Linear Regression

Trên tập huấn luyện trước khi tiền xử lý

```
Call:
lm(formula = Y ~ SEX + BMI + BP + S1 + S2 + S5 + S6, data = train)
Residuals:
                   Median
    \mathtt{Min}
                                       Max
-152.851 -38.319 -0.824 36.942 149.420
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -320.7058
                       29.6318 -10.823 < 2e-16 ***
            -21.9590
                         6.5182 -3.369 0.00084 ***
              4.9575
                         0.8188
                                6.055 3.65e-09 ***
                         0.2497 4.208 3.29e-05 ***
              1.0507
             -1.0232
                         0.2523
                               -4.055 6.19e-05 ***
              0.8703
                         0.2622
                                3.319 0.00100 **
             71.9213
                         8.7834
                               8.188 5.12e-15 ***
              0.3715
                         0.2944
                               1.262 0.20784
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 54.54 on 347 degrees of freedom
Multiple R-squared: 0.4972, Adjusted R-squared: 0.4871
F-statistic: 49.03 on 7 and 347 DF, p-value: < 2.2e-16
```

Trên tập huấn luyện sau khi tiền xử lý

```
Call:
lm(formula = Y \sim SEX + BMI + BP + S1 + S3 + S5, data = train_p)
Residuals:
                                ЗQ
    Min
                   Median
                                        Max
-149.543 -37.501 -0.557 35.273 141.916
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -215.9629
                        44.5227 -4.851 1.93e-06 ***
SEX
            -22.8206
                         6.8001 -3.356 0.000886 ***
BMI
                         0.8783 4.655 4.74e-06 ***
              4.0890
              1.3396
                         0.2709
                                4.945 1.23e-06 ***
             -0.1542
S1
                         0.1181 -1.306 0.192529
             -1.1371
                         0.3262 -3.486 0.000560 ***
                         8.6748 6.243 1.36e-09 ***
              54.1603
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 53.93 on 320 degrees of freedom
Multiple R-squared: 0.4838,
                                  Adjusted R-squared: 0.4741
F-statistic: 49.98 on 6 and 320 DF, p-value: < 2.2e-16
```

Multiple Linear Regression

Trên tập huấn luyện trước khi tiền xử lý

 $\mathbf{Y} = -320.7058 - 21.9590 * SEX + 4.9575 * \mathbf{BMI} + 1.0507 * \mathbf{BP} - 1.0232 * \mathbf{S1} + 0.8703 * \mathbf{S2} + 71.9213 * \mathbf{S5} + 0.3715 * \mathbf{S6}$

R-squared = 0.4972 Adjusted R-squared = 0.4871 RMSE = 53.9186 Trên tập huấn luyện sau khi tiền xử lý

Y = -215.9629 - 22.8206 * SEX + 4.0890 * BMI + 1.3396 * BP - 1.542 * S1 - 1.1371 * S3 + 54.1603 * S5

R-squared = 0.4838 Adjusted R-squared = 0.4741 RMSE = 53.3535

Polynomial Regression

Trên tập huấn luyện trước khi tiền xử lý

```
Call:
lm(formula = Y \sim AGE + BP + BMI + S3 + SEX + I(AGE^2) + I(S5^2) +
    I(S3^2) + I(AGE * SEX) + I(BMI * BP) + I(S1 * S2 * S3 * S5)
    I(BMI * S1 * S5) + I(BMI * S2 * S5) + I(AGE * S2 * S3 * S6) +
    I(BMI * S1 * S2 * S3 * S5) + I(AGE * BP * S3 * S5 * S6),
    data = train)
Residuals:
     Min
              1Q
                   Median
-141.774 -37.239
                  -4.278 34.056 142.793
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
                           5.822e+02 1.603e+02 3.631 0.000326 ***
(Intercept)
AGE
                          -4.194e+00 1.497e+00 -2.802 0.005378 **
BP
                          -3.800e+00 1.333e+00 -2.851 0.004630 **
BMI
                          -9.096e+00 4.660e+00 -1.952 0.051797 .
S3
                          -4.029e+00 1.788e+00 -2.254 0.024850 *
                          -7.898e+01 2.348e+01 -3.363 0.000858 ***
I(AGE^2)
                           1.928e-02 1.490e-02 1.294 0.196462
I(S5^2)
                           6.541e+00 2.762e+00 2.368 0.018431 *
I(S3^2)
                           2.170e-02 1.296e-02 1.674 0.095126 .
I(AGE * SEX)
                           1.103e+00 4.586e-01 2.405 0.016708 *
I(BMI * BP)
                           1.473e-01 4.599e-02 3.203 0.001491 **
I(S1 * S2 * S3 * S5)
                          -1.270e-05 9.678e-06 -1.312 0.190352
I(BMI * S1 * S5)
                          -8.057e-03 3.735e-03 -2.157 0.031720 *
I(BMI * S2 * S5)
                           7.455e-03 4.012e-03 1.858 0.064044
                          -1.541e-06 1.210e-06 -1.273 0.203986
I(AGE * S2 * S3 * S6)
I(BMI * S1 * S2 * S3 * S5) 6.639e-07 3.585e-07 1.852 0.064908
I(AGE * BP * S3 * S5 * S6) 8.688e-07 3.069e-07 2.831 0.004916 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 52.69 on 338 degrees of freedom
Multiple R-squared: 0.543,
                                Adjusted R-squared: 0.5213
F-statistic: 25.1 on 16 and 338 DF, p-value: < 2.2e-16
```

Trên tập huấn luyện sau khi tiền xử lý

```
Call:
lm(formula = Y \sim AGE + BMI + S3 + SEX + S5 + I(BP^2) + I(AGE *
    SEX) + I(BMI * BP) + I(BP * S1 * S3 * S6) + I(AGE * BMI *
    S1 * S3) + I(BMI * S2 * S5 * S6) + I(BP * S1 * S2 * S3 *
    S6), data = train_p)
Residuals:
                                        Max
     Min
               1Q
                    Median
-142.038 -37.410
                            34.083 133.681
                    -0.199
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
                          2.947e+02 1.329e+02 2.218 0.027300 *
(Intercept)
                          -2.731e+00 1.053e+00 -2.594 0.009927 **
AGE
BMI
                          -1.548e+01 5.445e+00 -2.842 0.004776 **
                          -2.081e+00 1.026e+00 -2.028 0.043409 *
SEX
                          -9.272e+01 2.422e+01 -3.829 0.000155 ***
                                                4.005 7.76e-05 ***
                           4.012e+01 1.002e+01
I(BP^2)
                          -1.931e-02 8.467e-03 -2.281 0.023212 *
I(AGE * SEX)
                           1.431e+00 4.810e-01
                                                 2.976 0.003147 **
I(BMI * BP)
                           1.841e-01 5.534e-02
                                                3.326 0.000985 ***
I(BP * S1 * S3 * S6)
                           6.006e-07 5.372e-07
                                                 1.118 0.264405
I(AGE * BMI * S1 * S3)
                          2.929e-06 2.529e-06
                                                1.158 0.247655
I(BMI * S2 * S5 * S6)
                           2.103e-05 1.936e-05
                                                 1.086 0.278230
I(BP * S1 * S2 * S3 * S6) -5.426e-09 3.016e-09 -1.799 0.072951
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 52.78 on 314 degrees of freedom
                                  Adjusted R-squared: 0.4964
Multiple R-squared: 0.5149,
F-statistic: 27.78 on 12 and 314 DF, p-value: < 2.2e-16
```

Polynomial Regression

Trên tập huấn luyện trước khi tiền xử lý

Trên tập huấn luyện sau khi tiền xử lý

```
\mathbf{Y} = 582.2 - 4.194 * \mathbf{AGE} - 3.18 * \mathbf{BP} - 9.096 * \mathbf{BMI} - 4.029 * \mathbf{S3} - 78.98 * \mathbf{SEX} + (1.928e - 02) * \mathbf{AGE}^2 + 6.541 * \mathbf{S5}^2 + (2.170e - 02) * \mathbf{S3}^2 + 1.103 * \mathbf{AGE}^* \mathbf{SEX} + (1.473e - 01) * \mathbf{BMI}^* \mathbf{BP} + (-1.270e - 05) * \mathbf{S1}^* \mathbf{S2}^* \mathbf{S3}^* \mathbf{S5} + (-8.057e - 03) * \mathbf{BMI}^* \mathbf{S1}^* \mathbf{S5} + (7.455e - 03) * \mathbf{BMI}^* \mathbf{S2}^* \mathbf{S5} + (-1.541e - 06) * \mathbf{AGE}^* \mathbf{S2}^* \mathbf{S3}^* \mathbf{S6} + (6.639e - 07) * \mathbf{BMI}^* \mathbf{S1}^* \mathbf{S2}^* \mathbf{S3}^* \mathbf{S5} + (8.688e - 07) * \mathbf{AGE}^* \mathbf{BP}^* \mathbf{S3}^* \mathbf{S5}^* \mathbf{S6}
```

```
\mathbf{Y} = 294.7 - 2.731 * \mathbf{AGE} - 15.48 * \mathbf{BMI} - 2.081 * \mathbf{S3} - 92.72 * \mathbf{SEX} + 40.12 * \mathbf{S5} + (-1.931e - 02) * \mathbf{BP}^2 + 1.431 * \mathbf{AGE*SEX} + (1.841e - 01) * \mathbf{BM*BP} + (6.006e - 07) * \mathbf{BP*S1*S3*S6} + (2.929e - 06) * \mathbf{AGE*BMI*S1*S3} + (2.103e - 05) * \mathbf{BMI*S2*S5*S6} + (-5.426e - 09) * \mathbf{BP*S1*S2*S3*S6}
```

R-squared = 0.543
Adjusted R-squared = 0.5213
RMSE = 51.4093

R-squared = 0.5149
Adjusted R-squared = 0.4964
RMSE = 51.7186

Ridge Regression

Trên tập huấn luyện trước khi tiền xử lý

```
11 x 1 sparse Matrix of class "dgCMatrix"
                        s1
(Intercept) -148.67220469
AGE
               0.12349837
SEX
              -8.51972205
BMI
               3.27742361
               0.72694871
S1
               0.02000633
S2
              -0.03983784
S3
              -0.54474454
               4.07225690
S5
              25.39873274
S6
               0.49832477
```

Trên tập huấn luyện sau khi tiền xử lý

```
11 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) -1.447451e+02
             1.147955e-01
AGE
SEX
            -9.351097e+00
BMI
             3.051928e+00
ΒP
             8.154471e-01
             2.035922e-03
S1
S2
            -6.766365e-02
            -6.811350e-01
S4
             4.990239e+00
             2.890386e+01
S6
             3.586102e-01
```

Lambda tốt nhất: 63.87225 R-squared = 0.4763 Adjusted R-squared = 0.4748 RMSE = 56.5607 Lambda tốt nhất: 56.88734 R-squared = 0.4684 Adjusted R-squared = 0.4667 RMSE = 55.5186

Lasso Regression

Trên tập huấn luyện trước khi tiền xử lý

Lambda tốt nhất: 8.845581

R-squared = 0.4698

Adjusted R-squared = 0.4683

RMSE = 56.5129

Trên tập huấn luyện sau khi tiền xử lý

Lambda tốt nhất: 7.87825 R-squared = 0.4592 Adjusted R-squared = 0.4575 RMSE = 55.5805

Elastic Net Regression (alpha = 0.05)

Trên tập huấn luyện trước khi tiền xử lý

Trên tập huấn luyện sau khi tiền xử lý

Lambda tốt nhất: 48.09499
R-squared = 0.4774
Adjusted R-squared = 0.4759
RMSE = 56.5372

Lambda tốt nhất: 39.03005 R-squared = 0.469 Adjusted R-squared = 0.4674 RMSE = 55.3056

Đánh giá mô hình hồi quy

Kết quả đánh giá mô hình

Kết quả đánh giá Adjusted R-Squared của các mô hình trên tập huấn luyện

Tên mô hình	Adjusted R	-Squared	RMSE			
Ten mo minn	Trước khi tiền xử lý	Sau khi tiền xử lý	Trước khi tiền xử lý	Sau khi tiền xử lý		
Simple Linear Regression	0.3180	0.2883	62.7097	62.5494		
Multiple Linear Regression	0.4871	0.4741	53.9186	53.3535		
Polynomial Regression	0.5213	0.4964	51.4093	51.7186		
Ridge Regression	0.4748	0.4667	56.5607	55.5186		
Lasso Regression	0.4683	0.4575	56.5129	55.5805		
Elastic Net Regression	0.4759	0.4674	56.5372	55.3056		

❖ Nhận xét:

- Các mô hình trên tập dữ liệu huấn luyện trước khi tiền xử lý có kết quả Adjusted R-Squared tốt hơn so với sau khi tiền xử lý. Còn khi xét độ đo RMSE thì hầu hết mô hình phạm ít lỗi hơn khi sử dụng dữ liệu đã qua xử lý.
- Độ đo đánh giá Adjusted R-Squared cao nhất trước và sau khi tiền xử ý trên tập dữ liệu huấn luyện đều thuộc về mô hình Polynomial Regression với kết quả lần lượt là 0.5213 và 0.4964. Điều đó cho thấy mô hình Polynomial Regression có mức độ tương thích tốt hơn so với các mô hình còn lại trên tập dữ liệu huấn luyện.
- Độ đo đánh giá Adjusted R-Squared thấp nhất trước và sau khi tiền xử lí trên tập dữ liệu huấn luyện đều thuộc về mô hình **Simple Linear Regression** với kết quả lần lượt là **0.318** và **0.2883**. Điều đó cho thấy mô hình Simple Linear Regression chưa phù hợp trên tập dữ liệu huấn luyện.

Kết quả đánh giá mô hình

Kết quả đánh giá Adjusted R-squared của các mô hình trên tập kiểm thử

Tên mô hình	Adjusted R	-Squared	RMSE			
ien mo ninn	Trước khi tiền xử lý	Sau khi tiền xử lý	Trước khi tiền xử lý	Sau khi tiền xử lý		
Simple Linear Regression	0.4334	0.5099	61.1129	59.0436		
Multiple Linear Regression	0.5795	0.4998	52.5026	56.5038		
Polynomial Regression	0.5499	0.5669	53.9409	52.7150		
Ridge Regression	0.5354	0.4833	58.0027	59.6312		
Lasso Regression	0.5486	0.4792	56.9988	58.5861		
Elastic Net Regression	0.5395	0.4863	57.8680	59.2369		

❖ Nhận xét:

- Đa số mô hình trên tập dữ liệu kiểm thử trước khi tiền xử lí có kết quả tốt hơn so với sau khi tiền xử lí, riêng mô hình Simple Linear Regression và Polynomial Regression sau khi tiền xử lí lại có hiệu suất cao hơn so với trước khi tiền xử lí.
- Độ đo đánh giá Adjusted R-Squared cao nhất trên tập dữ liệu kiểm thử trước khi tiền xử lí thuộc về mô hình Multiple Linear Regression với kết quả là 0.5795 và sau khi tiền xử lí thuộc về mô hình Polynomial Regression với kết quả là 0.5669.
- Độ đo đánh giá Adjusted R-Squared thấp nhất trên tập dữ liệu kiểm thử trước khi tiền xử lí thuộc về mô hình Simple Linear Regression với kết quả là 0.4334 và sau khi tiền xử lí thuộc về mô hình Lasso Regression với kết quả là 0.4792.

Mô hình tốt nhất

Mô hình đạt hiệu suất tốt nhất trên tập kiểm thử là mô hình Multiple Linear Regression trên tập dữ liệu chưa qua tiền xử lý.

$$Y = -320.7058 - 21.9590 * SEX + 4.9575 * BMI + 1.0507 * BP$$

- $1.0232 * S1 + 0.8703 * S2 + 71.9213 * S5 + 0.3715 * S6$

Mô hình tốt nhất

Biểu đồ thể hiện mối quan hệ giữa giá trị dự đoán và giá trị kiểm thử Mô hình Multiple Linear Regression

Kết luận

Kết luận

- Kết quả đánh giá Adjusted R-Squared nhìn chung khá thấp do các thuộc tính ít có quan hệ tuyến tính với Y và có nhiều outlier.
- Việc loại bỏ các điểm dữ liệu ngoại lệ có thể giảm hiệu suất của mô hình.
- Có những yếu tố khi sử dụng đơn lẻ thì không có ảnh hưởng đến kết quả, điển hình trong bộ dữ liệu là hai thuộc tính SEX và S1, nhưng khi kết hợp với yếu tố khác có thể ảnh hưởng tới kết quả.
- Không chỉ chú ý tới các yếu tố có ảnh hưởng tới kết quả mà cần phải quan tâm tới tương tác giữa các yếu tố.
- Để mô hình đạt hiệu suất cao thì cần phải liên tục thực nghiệm trên nhiều yếu tố và tương tác khác nhau, cân nhắc xử lý các điểm dữ liệu bất thường,...

Cảm ơn thầy và các bạn đã lắng nghe!

