Lab10: 최대 전력 전달 조건

학번:

이름:

1. 다음 회로에서 R_2 의 저항 값을 x라고 하고 R_2 에서 소모되는 전력을 P_2 라고 할 때,

- (1) R_2 에서 소모되는 전력 P_2 를 x에 대한 식으로 구하고 P_2 의 최대 값과 이 때 R_2 의 저항 값 x를 구하시오 (1점)
- (2) R_2 에서 소모하는 전력이 최대가 될 때, R_1 이 소모하는 전력을 구하고 그 크기를 R_2 가 소모하는 전력과 비교하시오 (1점)

$$I = \frac{9}{2700 + x}$$

$$P_2 = I^2 \cdot x = \left(\frac{9}{2700 + x}\right)^2 \cdot x = \frac{81x}{(2700 + x)^2}$$

$$\frac{dP_2}{dx} = \frac{81(2700 + x)(2700 - x)}{(2700 + x)^4} \Rightarrow \frac{81(2700 + x)(2700 - x)}{(2700 + x)^4} = 0 \Rightarrow 2700 - x = 0 \Rightarrow x = 2700$$

$$P_2 = \frac{81 \cdot 2700}{(2700 + 2700)^2} = \frac{218700}{5400^2} = \frac{218700}{29160000} \approx 0.0075 \,\text{W} = 7.5 \,\text{mW}$$

전력 P_2 는 $x=2700\Omega$ 일 때 최대가 된다. 이때 최대 전력은 7.5 mW이다.

$$x = 2700 \Rightarrow R_1 = R_2 = 2700 \,\Omega$$

$$I = \frac{9}{2700 + 2700} = \frac{9}{5400} = 0.001667 \,\text{A}$$

 $P_1 = I^2 \cdot R_1 = (0.001667)^2 \cdot 2700 \approx 0.0075 \, \text{W} = 7.5 \, \text{mW}$, $P_1 = 7.5 \, \text{mW}$ 로 P_2 와 동일하다 따라서 P_2 가 최대가 되는 순간, 두 저항은 동일한 전력을 소모한다.

2. LTspice를 이용하여 아래 회로를 설계하고, R_2 의 저항 값이 $0.5k\Omega$ 에서 $10k\Omega$ 까지 $0.1k\Omega$ 간격으로 변할 때, Simulation을 통해 각 저항 R_1 , R_2 양단에 인가되는 전압을 구하고, 각 저항 R_1 , R_2 에 흐르는 전류 값을 이용하여, 각 저항에서 소모하는 전력 $P_1(R_1$ 이 소모), $P_2(R_2$ 가 소모)을 구하여 아래의 표를 채우시오 (3점)

R ₂	Simulation 값			
	V_{R1}	V_{R2}	P ₁	P ₂
0.5 kΩ	7.59V	1.41V	21.36mW	3.96mW
1.0 kΩ	6.57V	2.43V	15.98mW	5.92mW
2.0 kΩ	5.17V	3.83V	9.90mW	7.33mW
3.0 kΩ	4.26V	4.74V	6.73mW	7.48mW
4.0 kΩ	3.63V	5.37V	4.87mW	7.22mW
5.0 kΩ	3.16V	5.84V	3.69mW	6.83mW
7.5 kΩ	2.38V	6.62V	2.10mW	5.84mW
10.0 kΩ	1.91V	7.09V	1.36mW	5.02mW