Summary Report: The threshold effect of institutional quality on sovereign debt and economic stability

Alejandro Ouslan

2025-04-16

Contents

T	Summary	1
2	Data sources	1
3	Methodology	1
4	Results	2
5	Conclusions	3

1 Summary

The paper "Threshold Effects of Inequality on Economic Growth in the US States:"[1] look to find the effects of inequality on the economic growth of the US states. Key points:

• At first physical capital is higher relative to that on human capital, but in later stages this is flipped

•

2 Data sources

3 Methodology

- They use a theoretical frame work of Galor and Moav [2]
- The study make use of 48 states from 1948 to 2014.
- The dependent variable of Growth is the annual growth rate of real per capita state income. (BEA)
- They deflated the data using the CPI from the FRED database.
- From FRED they also obtained the GINI
- Their model que be summarize ice in the following formula:

$$y_{it} = \mu_i + \beta_2 x_{it} I(q_{it} \le \gamma) + \beta x_{it} I(q_{it} > \gamma) + \theta' z_{it} + e_{it}$$

$$\tag{1}$$

- $-I(\cdot)$ is an indicator function
- $-q_{it}$ is the threshold variable (HKC or HKH),
- γ is the threshold parameter that divides the equation into different regimes
- $-z_{it}$ is the set of growth determinants (LY0, POPG, HKH or HKC)

- $-x_{it}$ is the measure of income inequality (GINI).
- $e_i t$ is the error term $e_i t \sim N(0, \sigma^2)$
- Their Hypothesis is threshold effects

$$H_0: \beta_i = \beta_2$$

$$H_1: \beta_1 \neq \beta_2$$

• the leas square estimator of parameter γ is obtained by:

$$\hat{\gamma} = argminS_1(\gamma) \tag{2}$$

item their F-statistic is contracted as:

$$F_1 = \frac{S_0 - S_1(\gamma)}{\hat{\sigma}^2} \tag{3}$$

4 Results

Table 1: Threshold model estimates using HKH and HKC measures

TI 111 M 111 / WWD						
Threshold	Model 1 (HKH)		Model 2 (HKC)			
Estimation						
Ŷ	-6.7	-6.724		-8.399		
LM stat.	32.32 0.001		35.17 0.001			
<i>p</i> -value						
Growth	$HKH \leq \hat{\gamma}$	HKH > γ̂	$HKC \leq \hat{\gamma}$	$HKC > \hat{\gamma}$		
Equation						
\widehat{GINI}_{it}	0.0682**	-0.0249*	0.0855**	-0.0291**		
	(0.031)	(0.014)	(0.034)	(0.012)		
HKH_{it-1}	0.0121***	0.0265***	0.0149***	0.0155***		
	(0.004)	(0.007)	(0.005)	(0.003)		
$POPG_{it-1}$	0.0277	0.0395	0.0599	-0.0443		
	(0.084)	(0.073)	(0.081)	(0.056)		
LYO_{it-1}	-0.0254***	-0.0124***	-0.0248***	-0.0201***		
	(0.004)	(0.002)	(0.004)	(0.004)		
Constant	0.1880***	0.2640***	0.2235***	0.2551***		
	(0.031)	(0.051)	(0.046)	(0.037)		
Observations	1419	1749	1223	1945		

Note: The dependent variable is GROWTH," i.e., the annual growth rate of real per capita state income, and \widehat{GINI} is the instrumented measure of inequality. The robust standard errors reported in parentheses. ***, **, * indicates significant at 1%, 5% and 10% level, respectively.

Figure 1: Caption for Table 1

5 Conclusions

The conclusions are as follow:

- 1. This model tend to suggest that while the effect is positive below a certain threshold of the ratio of human to physical capital, the effect turns negative thereafter
- 2. analysis shows that while the effect of inequality on growth is significantly positive at lower levels of development, this effect turns significantly negative at higher levels of development

[1]

References

- [1] Oğuzhan Çepni, Rangan Gupta, and Zhihui Lv. "Threshold effects of inequality on economic growth in the US states: the role of human capital to physical capital ratio". In: *Applied Economics Letters* 27.19 (2020), pp. 1546–1551.
- [2] Oded Galor and Omer Moav. "From Physical to Human Capital Accumulation: Inequality and the Process of Development". In: *The Review of Economic Studies* 71.4 (Oct. 2004), pp. 1001-1026. ISSN: 0034-6527. DOI: 10.1111/0034-6527.00312. eprint: https://academic.oup.com/restud/article-pdf/71/4/1001/18328304/71-4-1001.pdf. URL: https://doi.org/10.1111/0034-6527.00312.