Hayashi Econometrics

Chapter 2 Lage Sample Theory 2.1 Basic Limit Theorem (1) Convergence in Probability- $\lim_{n\to\infty} \Pr(|\mathbb{Z}_n-a|>\xi)=0 \Rightarrow "\mathbb{Z}_n \xrightarrow{P} \mathbb{R}"$ Vector form: lim Pr(12nK-QK|>2)=0 VK [Every element converges in probability] (2) Convergence Almost Surely to hat Pr (lim Zn=2)=1 = "Zn as 2" and success of A office * (3) Convergence in Mean Square lim E[(Zn-a)=]=0 (4) Convergence in Distribution Def. [Zn] converges in distribution to a random scalar Z of the cdf. Fn of Z_n converges to the c.d.f. of F of Z at every continuity point of F. " $Z_n \overset{d}{\to} Z$ " Tips. For convergence in distribution, element-by-element convergence A convergence for vector sequence. * Multivariate Convergence in Distribution Theorem: Let {Zn3 be a sequence of K-dimentional random vectors. Then:
"Zn d Z" ("N'Zn) X'Z for any K-dimentional vector of real numbers." (5) Convergence in distribution and in moments Let den be the s-th moment of In and landen = as where Is is finite. Then: "Zn & Z" > "as is the 5-th moment of Z". (6) Relationship between Convergences See Amemiya Notes. (7) CM Turke rate of a second $Z_n \xrightarrow{P} 2 \Rightarrow \alpha(Z_n) \xrightarrow{P} \alpha(Z)$; $Z_n \xrightarrow{P} Z \Rightarrow \alpha(Z_n) \xrightarrow{P} \alpha(Z)$ i. Particularly: xn Ps p, yn Ps + > xn + yn Ps p+o; xnyn Ps po; yn >+; Yn P > Yn' P P. [Causter-part of Slutzky's Theorem] (8) Slutzky (a) xn x, yn Pa > xn+yn x+a (b) $x_n \xrightarrow{d} x$, $y_n \xrightarrow{P} 0 \Rightarrow x_n y_n x_n \xrightarrow{P} 0$ In particular, if XNN(0, E), then. Anxn & N(0, AIA') (C) Xn d x, An PA => Anxn d Ax (d) Xn d x, An PA => Xn'An Xn d x'A'X

prerequisite for Delta Method is that xn is a consistent estimation rivalent When Zn-Xn->0, then we say In and Xn are asymptotically equivalent Zn ~ xn, or Zn= xn+07 (10) Delta Method (Proof) Delta Method 前提. Suppose [xn] is a sequence of K-dimensional random vectors such that **然是阳一致** Xn P>β and Fn(Xn-β) d> Z. Suppose ac). R" → R" has continuous first derivative 佐村. ALB) - Dack) with A(b) denoting the TXK matrix of first deprerequisite Asymptotic Variance Then In [a(Xn)-a(b)] a> A(b) Z. [Another edition, See Hansen ⇒ A(B)· Avar(b) A(B) (11) CLT and LLN Estimator 🔻 > A(b) Avar(b) A(b) WLLN: Zn= +\(\mathbb{Z}\): \(\mathbb{Z}\) = \(\mathbb{Z}\): \(\mathbb{Z}\ [Kolmogorov] 前提, 这i i.i.d, E(zi)=U. Another version. "lim E(Zn)=u, lim Var(Zn)=0"=" Zn ->" [Chebychev] (Proof) Lindeberg-Levy CLT: Let {Zi} be i.i.d. F(Zi)=U, Var(Zi)=E. Then, In(Zn-U)= In [Z(Zi-U)] & N(O, Z) 2.2 Basic Concepts in Time-Series (1) Stationary Processes 1 Strict Stationary Def. A stochastic process [Zi] is (strictly stationary) of f(Zi, Ziz, ... Zir) = f(Zirth, Zizth, ..., Zirth) Vij, K. [What matters for distribution is the relative position in the sequence.] Varticularly, all mean, variance and existing moments are the same across i. $S.S \Rightarrow W.S$ f(Zi)=f(Zj) ∀ i,j. Tips. Any transformation of stationary process (When pariamo e.g. i.i.d; constant series and coparionres Tips: Joint Stationarity of element-wise Stationarity are finite.) 2 Covariance Stationarity Def. A stochastic process [Zi] is weakly stationary if: (i) E(Zi) = M <00 (ii) Cov(Zi, Zi-j) = r(j) depends only on j but not i. Particularly: Var (Zi) = 5260. j th order autocovariance $P_j: P_j = Cov(Z_j, Z_{i-j})$ $P_j = P_{-j}$ j th order autocorrelation coefficient $P_0: P_0 = \frac{\sigma_0}{\sigma_0} = \frac{Cov(Z_i, Z_{i-j})}{Var(Z_i)}$ * 3 Ergodicity Meaning: Def. A stationary process [Zi] is ergodic if, for any two bounded functions Asymptotically f: R and g. R -> R, Independent. lim | E[f(Zi, ..., Zith) f(Zi+n,..., Zi+n+e)] = | E[f(Zi, ..., Zitk)] | E[f(Zitn, ..., Zith)]

Stationary + Ergodic => Ergodic Stationary Process Ergodic Theorem. Let {Zi} be a stationary and ergodic process with E(Zi)=M. Then, Zn=nIZi MS> U Generalization of Kolmogorov's LLN [Serial dependence is allowed, but not e.g. AR(1) Zi=C+PZi-1+Ei, 1P|<| asymptotically.]

[Eijis ind white noise (2) Martingale 1) Def A scalar process {Zi} is called a morriagale w.r.t. [xi] if E(Zi | Ni-1, Ni-2, ...) = Zi-1 for i > 2 information set Particularly, {Zi} is a martingale if E(Zi(Zi-1, Zi-2, ...) = Zi-1 for i>2 @ Det. [gi] with Elgi)=0 is m.d.s if Egilgi-1, gi-2, ..., go)=0 for i>2 Properties of m.ds. (a) Cumulative sum {Zi} is a martingale. W.N. is a covariance [2] is martingale, first difference of [2] is m.d.s. NUgi, gi-j)=0 Vi, j+0. Here white it fill and a charge quality stationary process with some specific \mu and cov (3) White Noise Processes 特定 to, Cov T Def. A covariance-stationary process {Zi} is white noise if E(Zi)=0 and 10 Covariance-Stationary- Cov(Zi, Zi-j)=0 for j=0. Process. White Noise + Independent > Independent White Noise * (4) Random Walks Def. A random walk, {Zi}, is a sequence of cumulative sums. Z,=g,, Z,=g,+g,,..., Zi=g,+g,+...+gi, ... Properties: a) sum of independent white noise process. b) martingale Proof C) FD is white moise (independent) (5) ARCH Processes Autoregressive Conditional Heteroskedastic process

↑ Independent White Noise ⇒ stationary m.d.s. with finite variance

⇒ White noise

Def. A process [gi] is said to be an ARCH(1) if it can be written as
gi= 13+dgi. Ei where { Ei} is i.i.d with mean zero and unit variance.
Properties in west many have been the and visit and
a) ARCH(1) is m.d.s.
b) Conditional second moment is function of its own history of process
E(gilgi-1, gi-2,, gi)= g tagi-1 [Own Conditional heteroskedasticity]
C) Strictly stationary and engalic of 121<1
and Elgi)= 1 (under Stationarity)
Till Told " A scalar Trippess of Sit is called so marrie help with the of
(b) CLT for Ergodic Stationary m.d.s.
Let Ediz be a vector m.d.s. that is stationary and engadic with
E(gigi)=I. Let g=nZgi. Then,
$\overline{fn} \overline{g} = \frac{1}{\sqrt{m}} \Sigma g_i d > N(0, \Sigma)$
Editor 20-07 to 122
2.3 Large-Sample Distribution of OLS
Tips: (1) Model Setting
A 2.3 only restrict $A = 2.1$ (Linearity) $3i = xi\beta + 5i$ E(8i)=0
the writemporameous H 1.2 2 1/21 July Explane and Sedumory
relationship between A 2.3 All regressors are predetermined. E(Xik Ei)=0 \(\frac{1}{2}ik \) \(E[\frac{1}{2}i-\frac{1}{2}i\)\)=0
the error term and A 2.4 E(xixi) is nonoingular Ex
the regressors. A 2.5 [gi] is m.d.s., E(gigi) is nonsingular. S=Avar(g) = E(gigi)
A2.5 is stronger When X includes a constant:
than A2.3. E(Ei)=0, Cov(Xck, Ei)=0, E(Ei gi-1, gi-2,)=0, E(Ei Ei-1, E1-2,)
(2) OLS Estimator
O Proposition 2.1
(a) Under A2.1~2.4 Plimb=B.
From (b) Under A2.1~2.5 Fn(b-B) $\frac{d}{d}$ N(0, Avar(b)) Awar(b)= $Z_{xx}S_{xx}S_{xx}S = E(3i3i)$
Fn(b-B) d N(0, Avar(b)) Awar(b)= Zxx S Zxx S=E(gigi)
(c) $\hat{A}_{var}(b) = \hat{S}_{xx} \hat{S} \hat{S}_{xx} \hat{S}_{xx} = \hat{n} \hat{X}_{x} \hat{S} = \hat{n} \hat{\Sigma}_{i} \hat{z}_{i} \hat{z}_{i}$
(3) Consistent estimation of S
Proof to (a) Estimation of error variance
Under A2.1~2.4, $S = \frac{1}{m-k} \sum_{i=1}^{k} $
(b) Estimation of $S = E(E_i^2 x_i x_i^2)$ Choice $I: \hat{S} = \frac{1}{n} I \hat{E}_i^2 x_i x_i^2$ Where $\hat{E}_i = \frac{1}{2} i x_i^2 \hat{\beta}$ Consistent
Choice S= n 2 2 i xixi Where Ex = 3 xiB Consistent

In matrix notation: $\hat{S} = \frac{x'Bx}{n}$... Avar(b) = $n \cdot (x'x)^{-1}(x'Bx)(x'x)^{-1}$ Choice 2: $\hat{S} = \frac{1}{n} \sum_{(1-P_{i})} \frac{e^{i}}{1-P_{i}} x_{i} x_{i}^{2}$ d=1 or 2 $P_{i} = x_{i}^{2}(x'x)^{-1} x_{i} = \frac{x'Bx}{n}$. 2.4 Hypothesis Testing (1) t-test $H_0: \beta_k = \overline{\beta_k} \qquad \overline{f_n(b_k - \overline{\beta_k})} \xrightarrow{d} N(0, A_{Var}(b_k))$ $t_k = \frac{f_n(b_k - \overline{\beta_k})}{J_{Avar}(b_k)} = \frac{b_k - \overline{\beta_k}}{J_{Avar}(b_k)} \xrightarrow{s_E(b_k)} \frac{d}{s_E(b_k)} N(0, 1) \qquad S_E(b_k) = \frac{1}{J_n} (S_{xx} - S_{xx} - S_{xx}) + \frac{1}{J_n} (S_{xx} - S$ (2) Wald-test O For linear restriction Ho: RB=r R: #rxk W=n.(Rb-r)'[R[Avar(b)]R']'(Rb-r) & \$12 3 For nonlinear hypothesis #a: restriction for Ho, dimension of act. Ho: $a(\beta) = 0_{20 \text{ in HO}}$ Let $A(\beta) = \frac{\partial a(\beta)}{\partial \beta}$ In [alb)-a(B)] -d>N(O, A(B) Avar(b) A(B)') In alb' [Alb) Avarlb) Alb'] Inalb) de Nº Ha (3) Consistency of Test Power: Prob of rejecting null when it is false. Consistency of Test: A test is consistent against a set of Assume nich Satisfies the null, if the power against any particular memil \delta_{I}^{n} is true unity as n-so for any assumed significance level. (4) Asymptotic Local Power D_Local Alternatives [Pitman drift] Tips: 假定 $S_{\ell}^{(n)}$ 为有值 $S_{\ell}^{(n)} = \overline{S_{\ell}} + \overline{\int_{n}^{\infty}} \left(\widehat{S_{\ell}}(\widehat{w}) - S_{\ell}^{(n)} \right) + \overline{\int_{Avar}(\widehat{S_{\ell}}(\widehat{w}))_{\ell\ell}} + \overline{\int_{Avar}(\widehat{S_{\ell}}(\widehat{w}))_{\ell\ell}} + \overline{\int_{Avar}(\widehat{S_{\ell}}(\widehat{w}))_{\ell\ell}} + \overline{\int_{Avar}(\widehat{S_{\ell}}(\widehat{w}))_{\ell\ell}} \right)$ Also see Hansen (8.20) P(tn>c|Hi) · 、此越大, Asymptotic Power 越太 · · · Efficient GMM 的 priver最大! 事成. Index the parameter by sample size so that the asymptotic distribution of the Statistic is continuous in a localizing parameter |So larger \mu, larger 2.6 Implication of Homoskedosticity

A 2.7 (Conditional Homoskedosticity) $E(\mathcal{E}_i^2|\mathcal{X}_i) = \sigma^2$ the largest power! asymptotic power. So Def. F = (Rb-r)'[R(Vand)x))R'] (Rb-r)/#r SSRR-SSRu)/#r (1) F - statistic

(2) Implication to S estimation $S = \mathbb{Z}_{k} \times E(\mathcal{E}_{i}^{2} \mathcal{A}_{i} \mathcal{X}_{i}^{\prime}) = E[E(\mathcal{E}_{i}^{2} \mathcal{X}_{i} \mathcal{X}_{i}^{\prime} | \mathcal{X}_{i})] = \sigma^{2} E(\mathcal{X}_{i} \mathcal{X}_{i}^{\prime}) = \sigma^{2} \mathbb{Z}_{xx}$ 1, \$ = \$ = Sxx = 5 Sxx Avar(b) = 5 Sxx = n.8.(XX) (3) Implication to F and Wald W is numerically identical to #r.F. 2.7 Testing Conditional Homoskedasticity [White, 1980] (Sketch Proof) Choose \(\psi\) be a vector collecting unique and nonconstant Step 1. Chouse KXK Symmetric matrix Mix! elements of xixi. Step 2. Under some matrix B [Variance matrix estimator]* n. C'B'Cn d stim) where Cn=n\(\subsection \(\frac{1}{2}\)-S')\(\psi_i\)-30 m is dimension of Cn. For certain choice B, n. Cn B Cn = nR2 where R2 is from Reg e: on constant and 4i.
...nr2 d 200m. [Under homospedasticity] 2.10 Testing for Serial Correlation *Idea: When regressors include a constant, A 2.5 implies error term is a scala m.d.s. it error is serially correlated. Az.5 should fail. (1) Serial Correlation of univariate time-series Setting. A sample of size n, {Z, Z, ..., Zn} drawn from a scalar Covariance-Stationary Process Def. Sample j th order autocoraciance $\hat{z}_j = \frac{1}{n}\sum_{t=j+1}^{n}(Z_t - Z_n)(Z_t - Z_n)$ $Z_n = \frac{1}{n}\sum_{t=j+1}^{n}Z_t$ j-th order autocorrelation coefficient $\hat{p}_j = \frac{\hat{r}_j}{\hat{z}_j}$ Proof Proposition 2.9 & Proof (Under Ergodic) Suppose iZ_{i} can be written as $M+\xi_{t}$, ξ_{t} stationary m.d.s. with $E(\xi_{t}^{2}|\xi_{t+1},\xi_{t+2},\cdots)=\sigma^{2}$. Then $\inf d \to N(0,\sigma^{4}I_{p})$, $\inf d \to N(0,I_{p})$. $\star B_{DX}-P_{i}erre\ Q:\ n \neq \hat{f}_{i}^{2} = \sum (f_{i}\hat{f}_{j})^{2} d \to \mathcal{N}^{2}(p)$ $f_{i}\hat{f}_{j} = \frac{\hat{f}_{i}}{1/f_{m}} d \to N(0,I_{p})$ Ligurg-Box $Q:\ n(n+x)\sum_{j=1}^{p}n_{j} = \sum_{n=j}^{n_{12}}(f_{n}\hat{f}_{j})^{2} d \to \mathcal{N}^{2}(p)$

	(2) Serial Autocorrelation Calculated from Residuals
	m.d.s. Ge: Ne- x6B R= Ne- x6b Pi= To Exer P E(Gesti)
	(2) Serial Autocorrelation Calculated from Residuals m.d.s. Ge: ηε- χέβ,
	1) When regressors are strictly exprenous
	$\mathfrak{m} \widehat{\mathcal{F}}_{i} = \mathfrak{m} \widehat{\mathcal{F}}_{i} - \frac{1}{n} \underbrace{\frac{n}{2} (\alpha_{t-j} \cdot \varepsilon_{t} + \alpha_{t} \cdot \varepsilon_{t-j})' \mathfrak{f}_{n}(b-\beta)' (\frac{n}{n} \Sigma \alpha_{t} \alpha_{t+j}) (b-\beta)}_{(b-\beta)}$
	Then regressors are strictly exogenous In $\hat{f}_j = \int_{\mathbb{R}} \hat{f}_j - \frac{1}{n} \sum_{t=j+1}^{n} (x_{t-j} \cdot \varepsilon_t + x_t \cdot \varepsilon_{t-j})' \int_{\mathbb{R}} (b-\beta)' (\frac{1}{n} \sum_{t=j+1}^{n} x_t x_{t-j}') (b-\beta)$ If $E(x_{t-j} \cdot \varepsilon_t) + E(x_t \cdot \varepsilon_{t-j}) = 0$ [$E(x_t \cdot \varepsilon_s) = 0$ $\forall t_i s$], then second term $\rightarrow 0$,
	In of in the con use of to confute & Statistic.
_	@ When regressors are predetermined, but not strictly exogenous
Tork 20	We need to modify the Q statistic. > stronger than A2.5
Merit pus +	Hadditional assumptions: OE(St/St-1, St-2,, xt, xt-1,)=0
Cariomet a Con-	@ E(St St-1, St-2,, xt, xt-1,)=52>0
	Proposition 2.10 Prop
1. 14 - 16 25	* In $f \to N(0, \sigma^4. (Ip-\phi))$ In $\rho \to N(0, Ip-\phi)$
	where $\phi_{jk} = E(\chi_t \xi_{t-j}) E(\chi_t \chi_t)^T E(\chi_t \xi_{t-k})/\sigma^2$
1613672	modified Box-Pierce $Q = n \cdot \hat{e}'(I_P - \hat{\phi})^{-1}\hat{e} \stackrel{d}{=} \mathcal{X}^2(P)$
	where $\emptyset = \overline{\mathcal{M}}_{j} S_{x} \overline{\mathcal{M}}_{k}/S^{2} S^{2} = n + \sum_{t} \mathcal{L}_{t} \overline{\mathcal{M}}_{j} = n + \sum_{t \neq j} x_{t} \cdot \mathcal{L}_{t-j}$
	Modified B P $Q = n \cdot P'(I_P - \phi)^{-1} \hat{P} \xrightarrow{d} \alpha^2 P$
in making *	* 2.12 Time Regressions
	(1) Detting same make the first of the same the
	Not Stationary. $g_t = 2 + 8t + E_t$ Et independent white noise
	$\eta_t = \chi_t' \beta + \epsilon_t \qquad \chi_{t=(1,t)'}, \beta = (2,8)'$
maria de 2002 de	(2) Asymptotics for OLS Estimator
	$b = \begin{bmatrix} \hat{\alpha} \\ \hat{\delta} \end{bmatrix} = (\Sigma x_t x_t^i)^i (\Sigma x_t y_t) \qquad b - \beta = (\Sigma x_t x_t^i)^i (\Sigma x_t \xi_t) \xrightarrow{P} 0$ $\Sigma x_t x_t^i = \begin{bmatrix} n & m \cdot (n+1)/2 \\ n \cdot (n+1)/2 & n - (n+1)/2 \end{bmatrix}$
	$\sum x_t x_t = \frac{\sum x_t x_t}{\sum x_t (x_t)/2} - \frac{\sum x_t (x_t)/2}{\sum x_t (x_t)/2}$
and min	oblem: a, o nowe outforent rates of convergence, respectively, In and no.
	Considering In = [ont] In (b-B) = In (ZX+Xt) (ZX+Et) = [In (ZX+Xt) tin] (tin ZX+
1	$= Q_n^{-1} v_n$
	Proposition 2.11 Droof [Homoskedasticity] The key assumption
	$f_n(b-\beta) \xrightarrow{d} N(o, \sigma^2 R^{-1})$. If the key assumption for this to hold
	Vo A 21 25 A
)	* 和前: Auxiliary Regression-Based Test 凝煌版设
- XXXII 18-100	reg et on Xt, et-1, et-2,, pet-p f test for coefficients of et-i to
	reg et on χ_t , et-1, et-2,, let-P F test for coefficients of et-i to $Q \stackrel{\wedge}{\sim} P \cdot F \stackrel{\wedge}{:} P \cdot F \stackrel{d}{\to} \mathcal{N}^2(P) [P] \stackrel{\wedge}{\sim} P \cdot F = (n-\#\chi_t - P) \stackrel{P}{\to} P \stackrel{\wedge}{\to} $
	$\Rightarrow n R^2 = \frac{1}{1 + \frac{P \cdot F}{n - 124 \cdot P}} \cdot P \cdot F \xrightarrow{P} P \cdot F $ (Breusch-Godfrey Test)
	п

	Chapter 3 Single-Equation GMM
1.333.4	3.1 Endogeneitra
	Det We som that a regressor is endogenous if it is not predeterminal,
	i.e., if it does not satisfy the orthogonality condition.
X2. 37. L-83	OSimultaneity Bias
	@ Errors in-Variables med 1 1-
	3.3 The General Formulation
	(1) A3.1 (linearity) $\Im i = ZiS + Zi$
- 2	A 3.2 (ergodic stationary) hi is vector of instruments. Wi is unique and
	nonconstant elements of (Mi, Zi, Ki). Ewil is jointly stationary and ergidic
	A 3.3 (orthogonality conditions) All the K variables in Xi are predetermined
	in the sense that they are all orthogonal to current error term:
	E(xik 2i)=0 V i and K E[xi(yi-zis)]=0 E(gi)=0, gi=xisi
	Predatermined regressors should be included in instruments Xi.
	A 3.4 (rank condition for identification) E(xizi) is of full column
	rank (2). Denote it by Ixz.
	Thum. Out & Grantige = U Sta le School
	Survose these exists a solution to Ax=b. Then this linear system has
	only one solution iff A is of full column rank.
	(2) Identification
	(2) Identification $E(g_i)=0 \Rightarrow E[x_i y_i-z_i'\tilde{S})]=0 \Rightarrow E(x_iz_i')\tilde{S}=E(x_iz_i')$
	$\widetilde{S}=\widetilde{S}$ is a solution [As assumed], $E(\widetilde{x}_i \tilde{z}_i)$ is full eduran rank $\Rightarrow \widetilde{S}=\widetilde{S}$ is unitary
	(3) Order condition number of
	O A necessary condition for identification: Instruments should be larger than number of
10 1	K>L. [Order condition] # orthogenous variables Farameters
Say at the late	(工具变量数大子内生变量数)
W. S.	② K>L: overidentified K=L: just identified K <l: th="" unidentified<=""></l:>
- 11	(4) Assumption for Asymptotic Normality
	A 3.5 (gi is m.d.s. with finite second moments) Let gi = xizi. Epi3 is a
	m.d.s. [E(qi)=0], E(qiqi) is nonsingular. Let S=Avar(q)=E(qiqi)
	Implications:
Dr A L	O {2i} is m.d.s. @ Sufficient condition for A3.5: ElEi 2i-1, &1, xi, xi-1;
was ad	(x,)=0 3 [gi] is not serially correlated
	CANT OF THE PROPERTY AND

	$ \begin{aligned} & \exists_i = \chi_i(\exists_i - \exists_i \delta) = \chi_i z_i \\ & \exists_i = \chi_i(\exists_i - \exists_i \delta) = \chi_i z_i z_i \\ & \exists_i = \chi_i z_i z_i z_i z_i z_i z_i z_i z_i z_i z$
	3.4 GMM Defined
	(1) Method of Moments
	Basic Principle: Choose parameters so that the corresponding sample moments
	are also equal to zero.
	1 Population formula and Sample analogue
	$E(g(w_i;\mathcal{S})) \Rightarrow g(w_i;\mathcal{S}) = g_n(\mathcal{S}) = \frac{1}{n} \sum g(w_i;\mathcal{S})$
	$g_{n}(\hat{S}) = S_{xy} - S_{xz} \hat{S}$ $S_{xy} = \frac{1}{n} \sum x_i \hat{z}_i$ $S_{xz} = \frac{1}{n} \sum x_i \hat{z}_i$
	@ MM (When K=L) and IV Estimator
·	* $\hat{\mathcal{S}}_{IV} = \hat{\mathcal{S}}_{XZ} \hat{\mathcal{S}}_{XY} = (\hat{n} \hat{\mathcal{S}}_{Xi} \hat{\mathcal{S}}_{i})^{-1} (\hat{n} \hat{\mathcal{S}}_{Ri} \hat{\mathcal{S}}_{i}) [\hat{\mathcal{S}}_{IV}] = 0$
	When $Z_i = x_i$, $\hat{S}_{IV} = \hat{S}_{OIS}$.
the Thora	(2) Generalized Method of Moments (When K>L)
	Problem: In overidentification case, system $gn(\tilde{b})=0$ many have no solution.
	Solution: Minimize distance in the sense of quadratic form.
	O GMM Estimator & Proof
	Det Let weighting matrix w be KKK, symmetric, p.ol. w PW, walso
	Symmetric, P.d The GMM Estimator of 8 , $\hat{S}(\hat{W})$ is:
	$\star \hat{S} = (\hat{\omega}) \equiv \underset{\sim}{\operatorname{argmin}} J(\hat{S}, \hat{\omega}) \star J(\hat{S}, \hat{\omega}) \equiv n \cdot \underset{\sim}{\operatorname{gal}} \hat{S} / \hat{\omega} \hat{g}_{n}(\hat{S})$
oracovice of the	⇒ Ŝlŵ)=(SxzŴSxz) Sxz BWSxy
	@ Sampling Error
	\$(\hat{w}) - 8 = (Sxz \hat{w} Sxz) Sxz \hat{w} \bar{g} . \bar{g} = \frac{1}{m} \Sxi\tize = g_m(8)
	3.5 Large Sample Properties of GMM
	(1) Assume that Distanting & Providence
Marin S.	O Consistency &(W) => 8
_9_0b9an	② Asymptotic Normality In $(\hat{S}(\hat{w}) - S) \xrightarrow{d} N(0.Aver(\hat{S}(\hat{w})))$
	Avar(BLW)) = (\(\Siz\) \(\Siz\) \(S=E(\frac{1}{2}\frac{1}{2}\frac{1}{2}\) \(S=E(\frac{1}{2}\frac{1}{2}\frac{1}{2}\)
	B Consistent Estimate of Avar(S(W))
	Avar (S(W))=(S'xz WSxz) Sxz WSwS (Sxz (Sxz WSxz)
	12) Error Variance
	Êi=Bi-Ziŝ
	(3) Hypothesis Testing
	1 t- statistics
20 20	Ho: Se= Se te= \int_{\hat{\hat{\hat{\hat{\hat{\hat{\hat{\hat
	@Wald-Statistics

vi	(1) 時に (8) 11 = (3) 11 = (3) 11 (3) 11 (3) 11 = (3) 11 (3) 11 = (3) 11 (3) 11 = (3) 11 (3) 11 = (3) 11 (3) 11 = (3) 11 (3) 11 = (3) 11 (3) 1	-
	a) For linear tromsform	
	Ho: R8=r	
Delic Court II	$W = n \cdot (R\hat{S}(\hat{W}) - r)' [R[Avar(\hat{S}(\hat{W}))]R']' (R\hat{S}(\hat{W}) - r) \xrightarrow{d} \mathcal{R}^2(\#r)$	
	b) For Apparal Casa	
	11 010	
	$W = n \cdot \alpha(\hat{S}(\hat{w}))' \{A(\hat{S}(\hat{w}))[A(\hat{S}(\hat{w}))]A(\hat{S}(\hat{w}))' \} (\hat{S}(\hat{w})) \xrightarrow{d} \mathcal{N}^{2}(Ha)$	
	(A) Fatimation of C	
	$S = E(SiSi) = E(\pi \chi'_1 \Sigma_i)$ $\hat{S} = \frac{1}{n} \sum \pi \chi'_1 \hat{\Sigma}_i$ $\hat{S} \xrightarrow{P} S$	
	(5) Efficient GMM	
	1 Proposition 3.5	
so an establish	A lower bound for asymptotic vaciance of GMM estimator is given $(Z_{rs}'S'\Sigma_{xz})^{-1}$. It's achieved if $\hat{W}=S^{-1}$, $\hat{S}(\hat{S}^{-1})$: Efficient GMM, $\hat{S}(\hat{S}^{-1})=(S_{rz}'\hat{S}^{-1}S_{rs})^{-1}(S_{rz}'\hat{S}^{-1}S_{rs})$ $Avar(\hat{S}(\hat{S}^{-1}))=(\Sigma_{rz}'\hat{S}^{-1}\Sigma_{xz})^{-1}\Sigma_{xz}'\hat{S}^{-1}S_{rz}(\Sigma_{xz}'\hat{S}^{-1}\Sigma_{xz})^{-1}=(\Sigma_{xz}'\hat{S}^{-1}\Sigma_{xz})^{-1}$	Ьд
- Will or whan	@Two-step efficient GMM	-
	Step 1: Choose W = Six (or I), compute S(W), Ei=Ji-ZiS(W)	
(8)	Step 2: Let ĝi = xi \(\hat{\xi}\), \(\bar{\gamma} = \frac{1}{n} \bar{\chi} \alpha \hat{\hat{\xi}} \\ \alpha \\ \alph	
	Step 2: Let $\hat{g}_i = \chi_i \hat{\xi}_i$, $\hat{g}_i = \frac{1}{2} \hat{\chi}_i \hat{\xi}_i$, $\hat{g}_i^* = \hat{g}_i - \overline{g}$, \star Then $\hat{W}^* = (\frac{1}{2} \hat{z} \hat{g}_i^* \hat{g}_i^*)^{-1}$ $\hat{W} = (\frac{1}{2} \hat{z} \hat{g}_i \hat{g}_i^*)^{-1}$ Two options, contessed or a Choose $\hat{W} = \hat{W}^*$ or \hat{W}_{u} , compute $\hat{S}(\hat{W})$. 3 Asymptotic Power	mcexterx
	$t_{\ell} = \frac{J_{n}(\hat{S}_{\ell}(\hat{\omega}) - S_{\ell}^{(n)})}{J_{n}^{2}} + \frac{J_{n}^{2}}{J_{n}^{2}} + \frac{S_{\ell}^{(n)} - S_{\ell}^{(n)}}{J_{n}^{2}} + \frac{S_{\ell}^{(n)}}{J_{n}^{2}} + \frac{S_{\ell}^{(n)} - S_{\ell}^{(n)}}{J_{n}^{2}} $	5.50
	- N(M,1) .: Asymptotic power: @ Prob (1x1 xtap) where X~N(M	
A CONTRACTOR OF THE CONTRACTOR	: A Var(S(W)) + > u1 > power 1. Power is maximized when we	use
	efficient GMM estimator.	
	3.6 Testing Overidentifying Restrictions	
∄-'n∑8i when 8-8.	8. J(S, S-1)= m. \(\overline{g}'\)\(S-1\overline{g} = (\overline{g})'\)\(S-1\overline{m}\)\(\overline{g}\)\(\o	- J.
1 200	(1) Proposition 3.6	
	** J(ŝ(ŝ-1),ŝ-1) = n. 8n(ŝ(ŝ-1))'ŝ-18n(ŝ(ŝ-1)) d 2 (K-L)	
	Lemma, $v \xrightarrow{\omega'} d N(0, I) \pi$ is $L \times L$ idenjotent mostrix with rank g . Then $V'\pi v \xrightarrow{d} \mathcal{N}_q^2$	
	Tips. Specification test for all restrictions.	

(2) Testing Subsets of Orthogonality Conditions

Divide k instruments into two groups $\chi_i = [\chi_i] \chi_{i2}$ are suspect. We wish to test E(Xiz Ei)=0. Testable of K, >2. Proposition 3.7 Assume Elxuzi) is of full column rank. Then for any consistent estimator 3 of S and S .. of S .. C = J - J. d = (K-K) where Ji=n.ginl8)(311) Ginl8) *Two-step procedure to get C-Statistics * (3) Hypothesis Testing by Likelihood-Ratio Principle Restricted Efficient GMM, \$[\$-") = argmin J(\$, \$-") subject to Ho $LR = J(\bar{S}(\hat{S}^{-1}), \hat{S}^{-1}) - J(\hat{S}(\hat{S}^{-1}), \hat{S}^{-1}) \xrightarrow{\hat{S}_{d}} \hat{\mathcal{N}}(\alpha)$ Proposition 3.8 (a) W and LR have some asymptotic distribution. (b) 1R-WP>0 (C) If restrictions are linear, RS=r, LR=W numerically. ·LR is invariance but Wis not, · If WTS Plim W + S', LR is not asymptotically Chi-Squared. But W will still be asymptotically Chi-Squared. · Need to use some St throughly. 3.8 Implication of Conditional Homoskedasticity A 3.7 (Conditional homospedasticity) $E(\varepsilon_i^2|x_i) = \sigma^2$ $E(f_if_i') = E(x_i x_i' x_i') = \sigma^2 E(x_i x_i') = S \qquad \hat{S} = \hat{\sigma}^2 + \bar{z} x_i x_i' = \hat{\sigma}^2 S_{xx}$ LI) Efficient GMM -> 2SLS Avar(82515) = 02 (Zxx Exx Zxx)" (2) Sorgan's Statistic $J(\widetilde{S}, (\widehat{\sigma}^2 \cdot S_{NN})^{-}) = n \cdot \frac{(S_{NJ} - S_{NL}\widetilde{S})'S_{NN}^{-1}(S_{NJ} - S_{NL}\widetilde{S})}{S^2} \xrightarrow{d} \mathcal{N}^2(K-L)$

* Conclusion: Different estimators under GMM Framework $K=L \rightarrow IV$ estimator $\hat{S}_{IV}=S_{XZ}^{-1}S_{XY}$ $X=Z \rightarrow OLS$ estimator $\hat{S}_{OLS}=S_{XZ}^{-1}S_{XY}$ $W=S^{-1}$ Efficient GMM $\hat{S}=(S_{XZ}^{-1}\hat{S}^{-1}S_{XZ})^{-1}S_{XZ}^{-1}S_{XY}$ $W=S^{-1}$, homo 2SLS estimator $\hat{S}_{2SLS}=(S_{XZ}^{-1}\hat{S}_{XX}^{-1}S_{XZ}^{-1}S_{XX}^{-1}S_{$ General GMM [Without assumption of linearity] (See Housen) (1) Settings $E(g_i(\beta))=0$ $J(\beta)=ng_n'\hat{w}_ng_n$ $g_n=\frac{1}{n}\Sigma g_i(\beta)$ $F.O.C:\frac{\partial g_n(\beta)}{\partial \beta}.\hat{w}_n.g_n(\beta)=0$ * (2) Asymptotic Distribution $\frac{1}{2\pi} \frac{\mathbb{Z}_{3}(\beta)}{\mathbb{Z}_{3}(\beta)} \stackrel{d}{\longrightarrow} N(0, \underline{S})$, $S = \overline{F}(\frac{1}{3}i(\beta)\frac{1}{3}i(\beta))$ $\frac{1}{3\pi} \frac{\mathbb{Z}_{3}(\beta)}{\mathbb{Z}_{3}(\beta)} \stackrel{d}{\longrightarrow} N(0, \underline{S})$, $\frac{1}{3\pi} \frac{\mathbb{Z}_{3}(\beta)}{\mathbb{Z}_{3}(\beta)} \stackrel{d}{\longrightarrow} N(0, \underline{S})$, where $\frac{1}{3\pi} \frac{\mathbb{Z}_{3}(\beta)}{\mathbb{Z}_{3}(\beta)} \stackrel{d}{\longrightarrow} \frac{\mathbb{Z}_{3}(\beta)}{\mathbb{Z}_{3}(\beta)} \stackrel{d}{\longrightarrow} N(0, \underline{S})$, where $\frac{1}{3\pi} \frac{\mathbb{Z}_{3}(\beta)}{\mathbb{Z}_{3}(\beta)} \stackrel{d}{\longrightarrow} \frac{\mathbb{Z}_{3}(\beta)}{\mathbb{Z}_{3}$ $\begin{array}{ll}
\text{In } (\hat{\beta})' \hat{W} [\mathcal{J}_{m}(\beta) + \frac{\partial \mathcal{J}_{m}(\beta)}{\partial \beta} (\hat{\beta} - \beta)] = 0 \\
\text{In } (\hat{\beta} - \beta) = - [G_{m}(\beta)' \hat{W} G_{m}(\beta)]' G_{m}(\beta)' \hat{W} \mathcal{J}_{m}(\beta) \cdot \text{In } \xrightarrow{d} \mathcal{N}(0, V) \\
V = A_{Var}(\hat{\beta}) \hat{\beta}(\hat{W}) = [G_{m}(\beta) W G_{m}(\beta)]' G_{m}(\beta) W \mathcal{S}_{m}(\beta) [G_{m}(\beta) W G_{m}(\beta)]'
\end{array}$ * * * 3.10 Conditional Moment Restrictions (See Housen) (1) Settings stronger than E(gilp))=0 For any function of (xi), gi= p(xi) ei(B), E(gi(B))=0. . Any function of it, will define a moment condition, and consequently, a GMM estimator. Duestion: What moment condition should me choose? (2) Selection of best instrument Optimal instrument approach (Champerlain, 1967) $Ri = E\left[\frac{2}{30} \operatorname{ei}(\beta) | \chi_i \right] \quad \sigma_i^2 = E\left(\operatorname{ei}(\beta) | \chi_i \right]$ $\tilde{\Sigma}_i = E\left[\operatorname{ei}(\beta) | \ell_i(\beta) | \chi_i \right]$ Fi = - Ri 5i gn(b) = - Ri Ii eilf)

= Demailson	$\hat{S} = \begin{bmatrix} \frac{1}{n} \sum \hat{\mathcal{E}}_{i_1} \hat{\mathcal{E}}_{i_1} \chi_{i_1} \chi_{i_1} & \cdots & \frac{1}{n} \sum \hat{\mathcal{E}}_{i_m} \hat{\mathcal{E}}_{i_m} \chi_{i_m} \chi_{i_m} \\ \vdots & \vdots & \vdots \\ \frac{1}{n} \sum \hat{\mathcal{E}}_{i_m} \hat{\mathcal{E}}_{i_1} \chi_{i_m} \chi_{i_1} & \cdots & \frac{1}{n} \sum \hat{\mathcal{E}}_{i_m} \hat{\mathcal{E}}_{i_m} \chi_{i_m} \chi_{i_m} \end{bmatrix}$ $\hat{S} = \frac{P - S}{S}$
and make the	
	4.3 Large-Sample Theory
	(1) Test
	J~ 22(Zmkn-Zmlm) C~ 22(Zkm-Zkim)
	(2) Error moments
	Let Éim= Jim- Zim Sm. Sm - Sm
	Define omn= n Z Eim Ein, omn= El Gim Ein) then omn > omn.
The Hart	$\hat{S} \xrightarrow{P} S$ / Using \hat{S}^{-1} , $\hat{S}(\hat{S}^{-1})$ is an efficient GMM Estimator.
	(3) Asymptotic Variance
	Avar (8(3-1) = (Zxx 5-1/2xx)
	Avar (8(5'))=(Sxz 5'Sxz)
	4.4. Single Equation vs. Multiple-Equation
	Tati appointable & Fortium to single
3	Single GMM Multiple GMM
	(1) Equation by Equation Estimator
	S(W) = (Sna W Son) Sca WSon
	Only difference: $\hat{W} = \begin{bmatrix} \hat{W}_{11} & \hat{O} \\ \hat{O} & \hat{W}_{mm} \end{bmatrix}$ choose a diagonal matrix extraod from \hat{W} for joint estimation.
September 1	A Equation by Equation GMM is a particular multiple GMM.
	(2) When once they esquivalent?
K AND	Case 1: Lm=Km Vm. All the equations are just-identified namerically
0	(asa). When equations are unrelated in the souse that
7 ZALEXON	E(EimEih Xim Xih) -0 Vm+h.
	S'= Plim W = [E(Ei xi xi xi)] = Plim W
200	$E(\underbrace{\varepsilon_{im}\varepsilon_{ih}}_{\text{Xim}}\underbrace{\chi_{im}}_{\text{Xih}})=0 \forall m \neq h.$ $S^{-1}=\underset{i \neq 0}{\text{Plim}}_{\hat{W}} \hat{W} = \begin{bmatrix} \varepsilon(\varepsilon_{i1}^{2}\chi_{i1}\chi_{i1}^{2})^{-1} & \vdots & \vdots \\ \varepsilon(\varepsilon_{i1}^{2}\chi_{i1}\chi_{i1}^{2})^{-1} \end{bmatrix} = \underset{i \neq 0}{\text{Plim}}_{\hat{W}} \hat{W}^{*}$
4.14	$: \hat{\mathcal{W}} - \hat{\mathcal{S}}^{-1} \xrightarrow{P}_{0} , \text{fn } \hat{\mathcal{S}}(\hat{\mathcal{W}}) - \text{fn } \hat{\mathcal{S}}(\hat{\mathcal{S}}^{-1}) \xrightarrow{P}_{0} .$
	$\hat{S}(\hat{W}^{\dagger})$ and $\hat{S}(\hat{S}^{-1})$ are asymptotically equivalent.
	(3) Weakness of joint estimation
	O Seperate estimation has better finite-sample performance.
	12) The consistency of joint estimation presumes that the model is correctly specific
	Biases due to a local misspecification contaminate the rest of the system
	The same of a man margery remain contistance one less of the
	4 F Householdageisten and SID
-	4.5 Homoskedasticity and SUR
	(1) Settings.
	A4.7 E(Sim Eih Xim, Xih) = Omh

```
Kronecker product: A & B = [and -and]
                                                 S = E(SiSi) = \begin{bmatrix} \sigma_{i1} & E(Xi_1 Xi_1) & \sigma_{im} & E(Xi_1 Xi_m) \\ \vdots & \vdots & \vdots \\ \sigma_{m1} & E(Xi_1 Xi_1) & \sigma_{mm} & E(Xi_1 Xi_m) \end{bmatrix}
S = E(SiSi) \quad \hat{\Sigma} = \begin{bmatrix} \sigma_{i1} & \sigma_{im} \\ \vdots & \vdots \\ \sigma_{m1} & \sigma_{im} \end{bmatrix} = E(SiSi) \quad \hat{\Sigma} = \begin{bmatrix} \hat{\sigma}_{i1} & \hat{\sigma}_{im} \\ \vdots & \vdots \\ \hat{\sigma}_{m1} & \sigma_{im} \end{bmatrix} = \frac{1}{m} \hat{Z} \hat{E}i \hat{E}i
                                                         Let \chi_i be the common set of instruments. \chi_i = \chi_{i1} = \chi_{i2} = \cdots = \chi_{im}.

g_i = g_i \otimes \chi_i = \begin{bmatrix} g_{i1} & \chi_i \\ \vdots & g_{im} & \chi_i \end{bmatrix} 
S = \sum_{\text{Mixing}} \otimes E(\chi_i \chi_i') 
S' = \sum_{\text{Ki}} \otimes \left[ g_{im} \cdot \chi_i \right]^{-1} 
g_i = g_i \otimes \chi_i = \begin{bmatrix} g_{i1} & \chi_i \\ \vdots & g_{im} & \chi_i \end{bmatrix}
g_i = g_i \otimes \chi_i = \begin{bmatrix} g_{i1} & \chi_i \\ \vdots & g_{im} & \chi_i \end{bmatrix}
g_i = g_i \otimes \chi_i = g_i \otimes \chi_i = g_i \otimes g_i
g_i = g_i \otimes \chi_i = g_i \otimes g_i
g_i = g_i \otimes \chi_i = g_i \otimes g_i
g_i = g_i \otimes \chi_i = g_i \otimes g_i
g_i = g_i \otimes \chi_i = g_i \otimes g_i
g_i = g_i \otimes g_i \otimes g_i
g_i = g_i \otimes g_i
                                                                                     .. For efficient GMM: Wmh= &mh. ( \frac{1}{n} \sum \chi_n')
(2) SUR Regression
                                                                        Acoume: Xi=union of (ZiI, ..., Zim) = E(Zim. Eih)=0
                                                                                                             We claim here that the predetermined regressors satisfy "cross" orthogonalities.
                       033LS (More general than SUR)
                                                                             When we only have A 4.7 but not E(Zim·Eih)=0. Vm h3

$\hat{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\partial}\frac{\partial}{\p
                                                                                               Where Amh = (n ZZimXi)(n ZXiXi) (n ZXiZih)

\hat{C}_{mh} = (\frac{1}{n} \sum_{i} \sum_{i} \sum_{m} \chi_{i}') (\frac{1}{n} \sum_{i} \chi_{i} \chi_{i}')^{-1} (\frac{1}{n} \sum_{i} \chi_{i}')^{-1} 
                 3 SUR Regression
                                                                             In SUR setting: X1=Xiz= = xim, A4.7, E(Zim. Eih)=0

Âmh = n Z Zim Zih Cmh = n Z Zim Jih Amh = E(Zim Zih)
```

& Shotch Proof of Amh. Let D(K×Lm) be first Lm columns of Ix, Zim=DXi.

3 SUR and OLS

(a) When equations one all just identified, Zim=Xi Vm, then SUR is simply equation-by-equation DLS

(b) SUR is more efficient than equation by equation OLS.

4.6 Common Coefficients

(1) Settings

A 4.1' Yim=Zim 8+ Eim 8 is common to all equations

When SHR condition + Some IV across equations: $\hat{S} = \hat{\Xi} \mathcal{O}(\frac{1}{n} \Sigma X_i X_i')$.

```
\frac{\mathcal{J}_{i}(w_{i}, \mathcal{E})}{\mathcal{J}_{i}(w_{i}, \mathcal{E})} = \begin{bmatrix} x_{i} & (y_{i} - z_{i}) & E(y_{i}) \\ \vdots & \vdots & \vdots \\ x_{i} & (y_{i} - z_{i}) & E(y_{i}) \end{bmatrix} = \begin{bmatrix} E(x_{i} \cdot y_{i}) \\ \vdots \\ E(x_{i} - y_{i}) \end{bmatrix} = \begin{bmatrix} E(x_{i} \cdot z_{i}) & E(x_{i} \cdot z_{i}) \\ \vdots \\ E(x_{i} - z_{i}) & E(y_{i} - z_{i}) \end{bmatrix} = 0
              ZKmx1 [E(Ni) ] [E(Ni) Zxz [E(Ni) Zti)] Now Ixz is stocked [E(Nim Zim)]
          A 4.4' Ixz is of full column rank.
      (2) GMM Estimator

Sxy = [\frac{1}{n}\infty\ki_1 \cong i_1] \ Sxz = [\frac{1}{n}\infty\ki_1 \infty\ki_1] \\ \frac{1}{n}\infty\ki_1 \cong i_1] \\ \frac{1}{n}\infty\ki_1 \cong i_1] \\ \frac{1}{n}\infty\ki_1 \cong i_1] \\ \frac{1}{n}\infty\ki_1 \cong i_1] \\ \frac{1}{n}\infty\ki_1 \cong i_2 \cong i_1 \infty\ki_1] \\ \frac{1}{n}\infty\ki_1 \cong i_2 \cong i_1 \infty\ki_2 \cong i_1] \\ \frac{1}{n}\infty\ki_1 \cong i_2 \cong i_1 \infty\ki_2 \cong i_2 \cong i_1 \infty\ki_2 \cong i_2 \cong i_1 \infty\ki_2 \cong i_2 \cong i_2 \cong i_2 \cong i_1 \infty\ki_2 \cong i_2 \
                       S(W)=[ Z E { [ + E z m xim) Wmh ( n Z xin zih) } ] [ Z E [ ( n E z zim xim) Wowh ( n Z xih zih) ]
       (3) Homospedasticity and RE Estimator

Under homospedasticity we have: \hat{S} = \hat{\Sigma} \mathcal{B}(\frac{1}{n} \Sigma \mathcal{X}_i \mathcal{X}_i)

\hat{S}(\hat{S}^{-1}) = [\Sigma \Sigma \hat{S} \hat{G}^{mh} \cdot (\frac{1}{n} \Sigma Z_{im} \mathcal{X}_i) (\frac{1}{n} \Sigma \mathcal{X}_i \mathcal{X}_i)^{-1} (\frac{1}{n} \Sigma \mathcal{X}_i Z_{ih})^{\frac{1}{2}}]^{-1}
                                                  · [ ZZ [ 3mh. ( # ZZim Xi) ( # ZXiXi) " ( # Z Xi Jih) ]
                            This is 3SLS with common coefficients.
         (4) RE Estimator
                           Assume SUR condition and homo. Also the set of instruments is same across
                                                                                                                                                                                                                                                        equations
                          Spe=[ZZômh(hEZimZih)] ZZômh(hZZim Zih)
                             Avar(BAE)=[ZZomhE(ZimZih)] 3= \(\hat{\Sin}\)
          (5) Pooled OLS
                         Using W= Im Q ( n Zaixi).
                            Spals = (ZE Zim Zim) Z ZZim. Jim
                            moment conditions exploited here: E(Zi, Ei+ ... + Zim · Eim)=0
         (b) Beautified formulas

3i = [3i] Zi = [Zi] Ei = [Zi]

MKI [7im] MKL [Zim] MKI [Zim]
                     Avar(BRE) = (E(Z(Z+Zi))-1
                                 Épois = (n ZZiZi) n ZZij; Avar(Spois)=[ElZiZi)] [E[ZiZi][[ZiZi]]
Conclusion different estimators under GMM Framework widingers Equation by - Equation Estimator
                                                                  in=3" Efficient GMM
                                                                    Homo > 3SLS \frac{E(Zim : Eih)=0}{Same IV} SUR \frac{Common Goef}{Sume IV} RE \frac{\hat{W}=I_mB(\frac{1}{m}Enink)^{\frac{1}{m}}}{Same IV} Some IV \hat{W}=\hat{S}^{-1} (WLS) OLS
Multiple-Equation_
           GMM
                                                                                                                                                                                          Some# of regressors
```

	Chapter 5 Panel Data
11133	A longitudinal or panel data set has multiple observations for a number
Assume i.i.d.	of cross-section units.
	5.1 The error-components model
	(1) Assumptions
	Bilmx1), Zilmx2), Eilmx1)
Same IV	O ji=Zi8+Ei @ [ji, Zi] i.i.d. @ SUR: ElZim: Eih)=O i.e. E(Ei@Xi)=O
	Xi=union of (Zi,, Zim) 4 E(ZiBAi) full orlumn rank 5 E(EiEi/Xi)=E(EiEi)= 5
	$OEGiJ_i$) nonsingular.
	(2) Error Components
. 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Orthogonality conditions: E(Zimdi)=0 + E(Zim·Jih)=0
O to as	Lat for for her last the asymptosition comment that have been
WESTER OF	(3) Group Means == extract deviations from group means 1 m - 1/m 7
in the sector	Define. Annihilator matrix of 2m: Q=Im-1m(1m1m) 1'm=Im-m1m1m-Im-
	(3) Group Means ODefine. Annihilator matrix of 1m: Q=Im-1m(1m1m) 1m = Im-m1m1m-Im-[imm] Ti = Q Ji = [Jim-3] = Ji-1m-Ji where Ji=m1mJi=m Zim Group mean
	(4) Reparameterization
	To separate common regressors: Zi=(Fi 1mbi), S=[P]
	One of the intercepts needs to be dropped from Fi and included in bi
	[FE] Identification condition: ELBEi & Di) is of full adresses rank.
Til Talescan	
fin]	Jim = fim \bit + di + di + Jim fin is the mith row of Fi.
C (A)	Event I am when I am don't better In- outline the late 2 leads
t m Asserti	5.2 Fixed-Effect Estimator
	(1) Formula :0 .0
	X 7 i = X Fi P + X ImDi F + X Im O i + X / i - g / X Im -2 / X is symmetric and XX X
	$Q_{ji} = QF_{i}\beta + Q_{1m}b_{i}b + Q_{1m}Q_{i} + Q_{1}b_{i}$ $\Rightarrow Q_{ji} = Q_{F_{i}}\beta + Q_{1i} \qquad \qquad$
i frank	$\sqrt{\hat{\beta}_{FE}} = (\hat{F}'\hat{F})^{-1}(\hat{F}'y) = (\frac{1}{\pi}\Sigma\hat{F}_{i}\hat{F}_{i})^{-1}\frac{1}{\pi}\Sigma\hat{F}_{i}'\hat{g}_{i} = (\frac{1}{\pi}\Sigma\hat{F}_{i}'\hat{g}_{i})^{-1}\frac{1}{\pi}\Sigma\hat{F}_{i}'\hat{g}_{i}$
	The state of the s

(2) Large - Sample Properties Vin (βFE-β) d> N(O, Avar(βFE)) Avar(βFE)=[E(F. F.)] E[F. E(J. J.) F.][E(F. F.)] ** Proof. O Elfi & Mi) = El Z & Bomh fim Jih) # Bomh = (m,h) element of Q = \(\frac{\pi}{2}\)\(\frac}\)\(\frac{\pi}{2}\)\(\frac{\pi}{2}\)\(\frac{\pi}{2}\)\(\frac{\pi @ ELFINITIE = ELFIELTITIE (3) When 1/1 is spherical Assumption: Enini)=on Im > Elnini)=on & Then Aur (PFE)= on [Elfifi)] (4) FE vs. RE 1 Compacision FE doen't use : Elfim. Qi) = 0 Vm, Elbi. Qi)=0, Elbi. Jim)=0 Vm. Define SRE = [PRE] PRE is efficient but PRE is not. @ Hausmann Specification Test Let &= BFE-BRE. Fin is asymptotically normal and Avan(&)= Avan(BFE) Avan(B . We have test. H= n. 9' (Avar(8)) 1/2 of N#B For rows with missing values, we replace them with all zeroes Unbalanced Panel (1) Zeroing Out Missing Observations

Ji of m is in the sample difor simplicity Tips. 私法观测的 either all the elements of (Fim, fim) 那行加、全取零 observable or none is observable] · Di=FiB+di bit+di Di+Mi In balanced case, di=\$1 100 Redafine R = Im-di(didi) di' = Im-mididi' (Mi=didi) Rdi=0

Pi = R Ji = [din Jin-din Ji] where Ji = Mi di Ji = mi × (Sum of Jim f Deviation of Jim where $g_i = m_i di g_i = m_i \times (Sum of gim for observable m)$ from group mean Tips 对不图i, Q(i)不图!!! over copailable obs (2) Asymptotics Assumption: E(fim- Mih | di) = 0 No selectivity bias. for different i, Q(i) is different Now. Fix & 1 = 5 En gin dim din fim lih E(FiRAi)=ZZElEmh dim dih fim Aih) = 0 ZZE[Pmh dim dih E(fim Aih) =0