O Problema do Bebedouro

Aluno(a):		Turma:
Professor(a):		
	Enunciado do Problema	
Um bebedouro será construído na forma de um prisma reto cuja altura mede 7 m e cujas bases são trapézios. Cada trapézio tem base menor e laterais de medidas sempre iguais a 1 m. Se x representa a medida, em radianos, do ângulo entre uma lateral e uma altura de cada um dos dois trapézios congruentes usados na construção do bebedouro, quanto deve ser x para que a forma do bebedouro correspondente tenha o maior volume V possível?		

[01] (a) Para se familiarizar com o problema, na Parte 1 da atividade, digite alguns valores para x, observando o formato correspondente do bebedouro e o valor do seu volume V. Anote os valores que você digitou na tabela abaixo (acrescente mais linhas, caso sejam necessárias). Atenção: neste momento, você não precisa se preocupar em determinar o valor de x que maximiza o volume V. Isto será feito mais adiante.

X	V

- (b) Você digitou algum valor para x que foi recusado pelo programa? Em caso afirmativo, escreva quais foram estes valores.
 - (c) Os valores de x = 30, x = -2, x = 0, x = 1.5707 e x = 1.5708 são recusados pelo programa? Por que sim? Por que não?
- [02] O problema em questão pode ser modelado por uma função real f de domínio D.
 - (a) Vá para a Parte 2 da atividade (clique no link no topo da Parte 1). Habilite a opção "Rastro" e arraste o ponto M. O programa irá marcar alguns pontos do gráfico da função f. Habilite então a opção "Gráfico" para ver o gráfico da função f. Copie à mão este gráfico aqui.
 - (b) Determine o domínio D da função f e uma expressão para f(x), isto é, determine o conjunto D de todos os valores de x para os quais o problema "tem sentido" e, para valores de x em D, uma expressão para f(x). Confira sua resposta usando o programa: digite os dados nos campos correspondentes e, então, pressione o botão "Conferir!" para conferir sua resposta. Para fins de comparação, o programa sempre desenhará o gráfico da função que você especificou. **Importante:** você não deve resolver este item por "tentativa e erro". Pegue lápis e papel e, usando seus conhecimentos de geometria, tente obter o domínio D e uma expressão para f(x). Use então o programa para conferir sua resposta. Anote o seu raciocínio nesta folha.
 - (c) Você acertou a função e o domínio de primeira? Em caso negativo, quantas tentativas você usou até o programa lhe dizer que você acertou a resposta? O que você estava errando?
- [03] É possível demonstrar que existe um único número real p em D que maximiza o volume V do bebedouro. Usando a Parte 1 da atividade (através de "tentativa e erro"), determine uma aproximação do valor deste p ótimo com duas casas decimais corretas.
- [04] Quantos bebedouros diferentes com volume igual a 5 m³ podem ser construídos? Justifique sua resposta!
- [05] Quantos bebedouros diferentes com volume igual a 7 m³ podem ser construídos? Justifique sua resposta!
- [06] É possível construir um bebedouro com volume igual a 10 m³? Por que sim? Por que não?

[07] Será que é possível determinar o ponto p ótimo cuja aproximação você calculou no Item [03]? A resposta é sim! É possível demonstrar que o único número real p em D que maximiza o volume V do bebedouro satisfaz a equação

$$7\cos^2(x) - 7\sin(x) - 7\sin^2(x) = 0.$$

Resolva esta equação e determine o valor de p. Compare com sua resposta para o Item [03]. Dica: use a identidade trigonométrica fundamental $\cos^2(x) + \sin^2(x) = 1$ e faça a troca de variável $u = \sin(x)$. **Importante:** não se preocupe, neste momento, em saber como a equação acima foi obtida. Caso você faça a disciplina "Cálculo Diferencial e Integral" na universidade, você aprenderá técnicas matemáticas que permitem deduzir esta equação.

[08] Qual é a imagem da função f que você estabeleceu no item [02] (b)? Em quais intervalos a função f é crescente? E decrescente?

[09] Existe algum valor de x em D que minimiza a função que você estabeleceu no item [02] (b)? Por que sim? Por que não?