In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv('cars.csv')
df
```

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize	Make
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0	VW
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0	VW
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0	VW
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0	VW
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5	VW
99182	10663	А3	2020	16999	Manual	4018	Petrol	145	49.6	1.0	Audi
99183	10664	А3	2020	16999	Manual	1978	Petrol	150	49.6	1.0	Audi
99184	10665	А3	2020	17199	Manual	609	Petrol	150	49.6	1.0	Audi
99185	10666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.4	Audi
99186	10667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.4	Audi

In [3]:

df.columns

Out[3]:

```
In [4]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99187 entries, 0 to 99186
Data columns (total 11 columns):
     Column
                   Non-Null Count Dtype
     Unnamed: 0
                   99187 non-null
 0
                                   int64
 1
     model
                   99187 non-null object
 2
     year
                   99187 non-null
                                   int64
 3
     price
                   99187 non-null
                                   int64
 4
     transmission 99187 non-null
                                   object
 5
     mileage
                   99187 non-null
                                   int64
 6
     fuelType
                   99187 non-null
                                   object
                   99187 non-null
 7
     tax
                                   int64
 8
     mpg
                   99187 non-null float64
 9
                   99187 non-null float64
     engineSize
 10 Make
                   99187 non-null object
dtypes: float64(2), int64(5), object(4)
memory usage: 8.3+ MB
In [8]:
df['fuelType'].value_counts()
Out[8]:
Petrol
            54928
            40928
Diesel
Hybrid
             3078
Other
              247
Electric
Name: fuelType, dtype: int64
In [9]:
x=df[['Unnamed: 0','year', 'price','mileage','tax']]
y=df['fuelType']
In [*]:
d={"fuelType":{'Petrol':1,'Diesel':2,'Hybrid':3,'Other':4,'Electric':5}}
df=df.replace(df)
print(df)
In [24]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.70)
```

```
In [25]:
```

```
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[25]:

RandomForestClassifier()

Depth of Tree

```
In [26]:
```

```
parameters={"max_depth":[1,2,3,4,5],"min_samples_leaf":[5,23,45,76,78],'n_estimators':[10]
```

Cross Validate

```
In [27]:
```

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[27]:
```

Score

```
In [28]:
```

```
grid_search.best_score_
```

Out[28]:

0.6242959549411162

In [29]:

```
rfc_best=grid_search.best_estimator_
```

In [30]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes','No'],filled
```

Out[30]:

```
[Text(2232.0, 1630.80000000000002, 'SibSp <= 0.5\ngini = 0.488\nsamples = 7
9\nvalue = [53, 72]\nclass = No'),
  Text(1116.0, 543.599999999999, 'gini = 0.464\nsamples = 61\nvalue = [37,
64]\nclass = No'),
  Text(3348.0, 543.599999999999, 'gini = 0.444\nsamples = 18\nvalue = [16,
8]\nclass = Yes')]</pre>
```

SibSp <= 0.5 gini = 0.488 samples = 79 value = [53, 72] class = No

gini = 0.464 samples = 61 value = [37, 64] class = No gini = 0.444 samples = 18 value = [16, 8] class = Yes

In []: