18.745 Introduction to Lie Algebras

October 21, 2010

Lecture 13 — Structure Theory of Semisimple Lie Algebras II

Prof. Victor Kac Scribe: Benjamin Iriarte

Throughout this lecture, let \mathfrak{g} be a finite dimensional semisimple Lie Algebra over an algebraically closed field \mathbb{F} of characteristic 0.

So far, we have proved:

- 1. The Killing form K of \mathfrak{g} is non-degenerate.
- 2. The algebra \mathfrak{g} contains a Cartan subalgebra \mathfrak{h} . Furthermore, \mathfrak{h} is abelian and diagonalizable on \mathfrak{g} , and we have:

$$\mathfrak{g}=\mathfrak{h}\oplus\left(igoplus_{lpha\in\Delta}\mathfrak{g}_lpha
ight),$$

where,

$$\begin{split} \mathfrak{g}_{\alpha} &= \{ a \in \mathfrak{g} | [h,a] = \alpha(h)a \text{ for all } h \in \mathfrak{h} \}, \\ \Delta &= \{ \alpha \in \mathfrak{h}^* | \alpha \neq 0 \text{ and } \mathfrak{g}_{\alpha} \neq 0 \}, \\ [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] &\subseteq \mathfrak{g}_{\alpha+\beta}, \text{ which is } 0 \text{ if } \alpha + \beta \notin \Delta \cup \{0\}, \text{ where } \mathfrak{g}_0 = \mathfrak{h}. \end{split}$$

- 3. The restriction $K|_{\mathfrak{g}_{\alpha}\times\mathfrak{g}_{-\alpha}}$, *i.e.* K(a,b) with $a\in\mathfrak{g}_{\alpha}$ and $b\in\mathfrak{g}_{-\alpha}$, is non-degenerate, so it induces a pairing between \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$. In particular, we have $\dim\mathfrak{g}_{\alpha}=\dim\mathfrak{g}_{-\alpha}$.
- 4. The restriction $K|_{\mathfrak{h}\times\mathfrak{h}}$ is non-degenerate, hence we have an isomorphism $\nu:\mathfrak{h}\to\mathfrak{h}^*$ given by $\nu(h)(h')=K(h,h')$ for all $h,h'\in\mathfrak{h}$. The map ν induces a bilinear form on \mathfrak{h}^* by $K(\alpha,\beta)=\beta\left(\nu^{-1}(\alpha)\right)=\alpha\left(\nu^{-1}(\beta)\right)$ for all $\alpha,\beta\in\mathfrak{h}^*$. We proved that $K(\alpha,\alpha)\neq 0$ if $\alpha\in\Delta$.
- 5. For all $\alpha \in \Delta$, $e \in \mathfrak{g}_{\alpha}$ and $f \in \mathfrak{g}_{-\alpha}$, we have:

$$[e, f] = K(e, f)\nu^{-1}(\alpha).$$

Now, given $\alpha \in \Delta$, pick non-zero $E \in \mathfrak{g}_{\alpha}$ and $F \in \mathfrak{g}_{-\alpha}$ such that $K(E,F) = \frac{2}{K(\alpha,\alpha)}$. Let $H = \frac{2\nu^{-1}(\alpha)}{K(\alpha,\alpha)}$. Then, we can check that:

$$[H, E] = 2E,$$

 $[H, F] = -2F,$
 $[E, F] = H.$

The choice of E and F is possible by 3 and the last claim of 4. We only verify the first equality, the second being analogous and the third coming from 5. We have:

$$\left[\frac{2\nu^{-1}(\alpha)}{K(\alpha,\alpha)},E\right] = \frac{2\alpha\left(\nu^{-1}(\alpha)\right)}{K(\alpha,\alpha)}E = \frac{2K(\alpha,\alpha)}{K(\alpha,\alpha)}E = 2E,$$

where the first equality comes from $\nu^{-1}(\alpha) \in \mathfrak{h}$ and $E \in \mathfrak{g}_{\alpha}$.

If we now let $\mathfrak{a}_{\alpha} = \mathbb{F}E + \mathbb{F}F + \mathbb{F}H$, then \mathfrak{a}_{α} is isomorphic to $\mathfrak{sl}_{2}(\mathbb{F})$ via:

$$E \to \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, F \to \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, H \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Lemma 1.1 (Key Lemma for $\mathfrak{sl}_2(\mathbb{F})$). Let \mathbb{F} be a field of characteristic 0. Let π be a representation of $\mathfrak{sl}_2(\mathbb{F})$ in a vector space V over \mathbb{F} and let $v \in V$ be a non-zero vector such that $\pi(E)v = 0$ and $\pi(H)v = \lambda v$ for some $\lambda \in \mathbb{F}$ (such vector is called a singular vector of weight λ).

Then:

- a) $\pi(H)\pi(F)^n v = (\lambda 2n)\pi(F)^n v$ for any $n \in \mathbb{Z}_{>0}$.
- **b)** $\pi(E)\pi(F)^n = n(\lambda n + 1)\pi(F)^{n-1}v$ for any $n \in \mathbb{Z}_{\geq 1}$.
- c) If dim $V < \infty$, then $\lambda \in \mathbb{Z}_{\geq 0}$, the vectors $\pi(F)^j v$ for $0 \leq j \leq \lambda$ are linearly independent, and $\pi(F)^{\lambda+1}v = 0$.
- *Proof.* a) We prove this by induction on n. For n = 0, the result is given to us. Suppose it holds for n = k 1 for some k > 0. Then:

$$\pi(H)\pi(F)^{k}v = \pi(F)\pi(H)\pi(F)^{k-1}v + [\pi(H), \pi(F)]\pi(F)^{k-1}v$$

$$= \pi(F)(\lambda - 2(k-1))\pi(F)^{k-1}v + \pi([H, F])\pi(F)^{k-1}v$$

$$= (\lambda - 2(k-1))\pi(F)^{k}v + \pi(-2F)\pi(F)^{k-1}v$$

$$= (\lambda - 2(k-1))\pi(F)^{k}v - 2\pi(F)^{k}v$$

$$= (\lambda - 2k)\pi(F)^{k}v.$$

This completes the induction.

Exercise 13.1. b) Again, we use induction on n. For the case n=1, we have $\pi(E)\pi(F)v=\pi(F)\pi(E)v+[\pi(E),\pi(F)]v=0+\pi([E,F])v=\pi(H)v=\lambda v$. Suppose the result holds for n=k-1 for some k>1. Then:

$$\begin{split} \pi(E)\pi(F)^k v &= \pi(F)\pi(E)\pi(F)^{k-1}v + [\pi(E),\pi(F)]\pi(F)^{k-1}v \\ &= \pi(F)(k-1)\left(\lambda - (k-1) + 1\right)\pi(F)^{k-2}v + \pi\left([E,F]\right)\pi(F)^{k-1}v \\ &= (k-1)\left(\lambda - (k-1) + 1\right)\pi(F)^{k-1}v + \pi(H)\pi(F)^{k-1}v \\ &= (k-1)\left(\lambda - (k-1) + 1\right)\pi(F)^{k-1}v + (\lambda - 2(k-1))\pi(F)^{k-1}v \\ &= k(\lambda - k + 1)\pi(F)^{k-1}v. \end{split}$$

This completes the proof.

c) Suppose $\lambda \notin \mathbb{Z}_{\geq 0}$. Then, the term $n(\lambda - n + 1)$ is non-zero for all $n \geq 1$. Hence, by induction, we get $\pi(F)^n v \neq 0$ for all $n \in \mathbb{Z}_{\geq 0}$. But by **a**), this implies that all vectors $\pi(F)^n v$ are

eigenvectors of $\pi(H)$ with distinct eigenvalues. This allows us to conclude dim $V=\infty$, therefore proving the first claim. If now, $\lambda \in \mathbb{Z}_{\geq 0}$, by the same argument we see that the vectors $\pi(F)^n v$ are linearly independent for $0 \leq n \leq \lambda$, and moreover, if $\pi(F)^{\lambda+1} v \neq 0$, then by induction we see that $\pi(F)^n v \neq 0$ for all $n > \lambda + 1$, and so there are infinitely many linearly independent vectors. Hence, if dim $V < \infty$, then $\pi(F)^{\lambda+1} v = 0$, proving the last two claims.

Exercise 13.2. Using the notation of the Key Lemma for $\mathfrak{sl}_2(\mathbb{F})$, if v instead satisfies that $\pi(F)v = 0$ and $\pi(H)v = \lambda v$, then we have:

- a) $\pi(H)\pi(E)^n v = (\lambda + 2n)\pi(E)^n v$ for any $n \in \mathbb{Z}_{>0}$.
- b) $\pi(F)\pi(E)^n = -n(\lambda + n 1)\pi(E)^{n-1}v$ for any $n \in \mathbb{Z}_{\geq 1}$.
- c) If dim $V < \infty$, then $-\lambda \in \mathbb{Z}_{\geq 0}$, the vectors $\pi(E)^j v$ for $0 \leq j \leq -\lambda$ are linearly independent, and $\pi(F)^{-\lambda+1}v = 0$.

Proof. It is enough to check that the function $\psi(E) = F$, $\psi(F) = E$, $\psi(H) = -H$, is an automorphism of \mathfrak{a}_{α} . Indeed:

$$[\psi(H), \psi(E)] = 2\psi(E),$$

 $[\psi(H), \psi(F)] = -2\psi(F),$
 $[\psi(E), \psi(F)] = \psi(H).$

Thus, the Key Lemma shows that if $\pi(\psi(E))v = 0$ and $\pi(\psi(H))v = \lambda'v$ with $\lambda' \in \mathbb{F}$, then:

- a) $\pi(\psi(H))\pi(\psi(F))^n v = (\lambda' 2n)\pi(\psi(F))^n v$ for any $n \in \mathbb{Z}_{>0}$.
- **b)** $\pi(\psi(E))\pi(\psi(F))^n = n(\lambda' n + 1)\pi(\psi(F))^{n-1}v$ for any $n \in \mathbb{Z}_{\geq 1}$.
- c) If dim $V < \infty$, then $\lambda' \in \mathbb{Z}_{\geq 0}$, the vectors $\pi(\psi(F))^j v$ for $0 \leq j \leq \lambda'$ are linearly independent, and $\pi(\psi(F))^{\lambda'+1}v = 0$.

Now, let $\lambda' = -\lambda$ and evaluate ψ to obtain the result.

Theorem 1.2. The root space decomposition of \mathfrak{g} with respect to a Cartan Subalgebra \mathfrak{h} and the set of roots Δ satisfy the following properties:

- a) dim $\mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \Delta$.
- **b)** If $\alpha, \beta \in \Delta$, then $\{\beta + n\alpha\}_{n \in \mathbb{Z}} \cap (\Delta \cup \{0\})$ is a finite connected string $\{\beta p\alpha, \beta (p 1)\alpha, \ldots, \beta, \ldots, \beta + (q 1)\alpha, \beta + q\alpha\}$, where $p, q \in \mathbb{Z}_{\geq 0}$ and $p q = \frac{2K(\alpha, \beta)}{K(\alpha, \alpha)}$.
- c) If $\alpha, \beta, \alpha + \beta \in \Delta$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.
- **d)** If $\alpha \in \Delta$, then $n\alpha \in \Delta$ if and only if n = 1 or n = -1.

- Proof. a) Suppose that $\dim \mathfrak{g}_{\alpha} > 1$ for some $\alpha \in \Delta$, then $\dim \mathfrak{g}_{-\alpha} > 1$ by non-degeneracy of the restriction $K|_{\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}}$, property 3 above. Consider the adjoint representation of the subalgebra $\mathfrak{a}_{\alpha} = \mathbb{F}E + \mathbb{F}F + \mathbb{F}H$ on \mathfrak{g} . In particular, recall $H = \frac{2\nu^{-1}(\alpha)}{K(\alpha,\alpha)}$. Since $\dim \mathfrak{g}_{-\alpha} > 1$, there exists a non-zero vector $v \in \mathfrak{g}_{-\alpha}$ such that K(E,v) = 0. Hence, $(\operatorname{ad} E)v = [E,v] = K(E,v)\nu^{-1}(\alpha)=0$. But $(\operatorname{ad} H)v = [H,v] = \frac{2[\nu^{-1}(\alpha),v]}{K(\alpha,\alpha)} = \frac{-2\alpha(\nu^{-1}(\alpha))v}{K(\alpha,\alpha)} = \frac{-2K(\alpha,\alpha)v}{K(\alpha,\alpha)} = -2v$. Hence, $\dim \mathfrak{g} = \infty$ by the Key Lemma, which yields a contradiction.
- b) Let q be the largest integer such that $\beta+q\alpha\in\Delta\cup\{0\}$. Notice $q\geq0$. Pick a non-zero vector $v\in\mathfrak{g}_{\beta+q\alpha}$. Then, (ad E)v=0 since it lies in $\mathfrak{g}_{\beta+(q+1)\alpha}$. Also, (ad H) $v=(\beta+q\alpha)(H)v=\begin{pmatrix} 2K(\alpha,\beta)\\ K(\alpha,\alpha) \end{pmatrix}+2q \end{pmatrix}v$. Hence, by the Key Lemma: $\lambda:=\frac{2K(\alpha,\beta)}{K(\alpha,\alpha)}+2q\in\mathbb{Z}_{\geq0}$ and (ad F) jv are non-zero vectors for $0\leq j\leq\lambda$. But (ad F) $^jv\in\mathfrak{g}_{\beta+(q-j)\alpha}$, so $\beta+q\alpha,\beta+(q-1)\alpha,\ldots,\beta+(q-\lambda)\alpha\in\Delta\cup\{0\}$. Define $p:=-(q-\lambda)=q+\frac{2K(\alpha,\beta)}{K(\alpha,\alpha)}$. Let p' be the largest integer for which $\beta-p'\alpha\in\Delta\cup\{0\}$. Again, notice $p'\geq0$. Pick a non-zero vector $v'\in\mathfrak{g}_{\beta-p'\alpha}$. Then, (ad F)v'=0 and (ad H) $v'=\begin{pmatrix} 2K(\alpha,\beta)\\ K(\alpha,\alpha) \end{pmatrix}-2p' \end{pmatrix}v'$. By the corollary of the Key Lemma, we conclude that $-\lambda':=2p'-\frac{2K(\alpha,\beta)}{K(\alpha,\alpha)}\in\mathbb{Z}_{\geq0}$ and that $\beta-p'\alpha,\beta-(p'-1)\alpha,\ldots,\beta-(p'+\lambda')\alpha\in\Delta\cup\{0\}$. Define $q':=-(p'+\lambda')=p'-\frac{2K(\alpha,\beta)}{K(\alpha,\alpha)}$. Since q and p' are the largest integers for which $\beta+q\alpha\in\Delta\cup\{0\}$ (resp. $\beta-p'\alpha\in\Delta\cup\{0\}$), we conclude that $q\geq q'$ and $p'\geq p$. Hence, $\frac{2K(\alpha,\beta)}{K(\alpha,\alpha)}=p-q\leq p'-q'=\frac{2K(\alpha,\beta)}{K(\alpha,\alpha)}$, showing that $p=p',q=q',p,q\in\mathbb{Z}_{\geq0}$.
- c) Pick the largest integers p and q such that $\beta p\alpha, \beta + q\alpha \in \Delta \cup \{0\}$. Pick a non-zero vector $v \in \mathfrak{g}_{\beta-p\alpha}$. Then, $(\operatorname{ad} F)v = 0$ and $(\operatorname{ad} H)v = \left(\frac{2K(\alpha,\beta)}{K(\alpha,\alpha)} 2p\right)v$. By the corollary of the Key Lemma, $(\operatorname{ad} E)^j v \neq 0$ for $0 \leq j \leq 2p \frac{2K(\alpha,\beta)}{K(\alpha,\alpha)} = p + q$. But $q \geq 1$ since $\alpha + \beta \in \Delta$, so $(\operatorname{ad} E)^{p+1}v$ is a non-zero vector. Its corresponding root is $\alpha + \beta$, and $(\operatorname{ad} E)^p v \in \mathfrak{g}_\beta$, so $[E,\mathfrak{g}_\beta] \neq 0$. Hence, $[\mathfrak{g}_\alpha,\mathfrak{g}_\beta] = \mathfrak{g}_{\alpha+\beta}$ since $\dim \mathfrak{g}_{\alpha+\beta} = 1$.
- d) Let $\beta = n\alpha$, $n \neq 0$. Then, $\frac{2K(\alpha,\beta)}{K(\beta,\beta)} = \frac{2n}{n^2} = \frac{2}{n} \in \mathbb{Z}$. Hence, either n = 2, 1, -1 or -2. However, $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\alpha}] = 0$ by a) (resp. $[\mathfrak{g}_{-\alpha},\mathfrak{g}_{-\alpha}] = 0$), so 2α (resp. -2α) is not a root because otherwise, c) would imply that $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\alpha}] = \mathfrak{g}_{2\alpha}$ (resp. $[\mathfrak{g}_{-\alpha},\mathfrak{g}_{-\alpha}] = \mathfrak{g}_{-2\alpha}$).

Exercise 13.3. Let $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{F})$. We know K is non-degenerate, so \mathfrak{g} is semisimple. We will find all possibilities for p and q in the proof above. Suppose \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} with associated root system Δ . Under an inner automorphism σ of \mathfrak{g} , the Cartan subalgebra \mathfrak{h} is sent to a conjugate Cartan Subalgebra $\mathfrak{h}' := \sigma(\mathfrak{h})$, and Δ is sent to the root system Δ' consisting of all linear functionals on \mathfrak{h}' of the form $\alpha\sigma^{-1}$ with $\alpha \in \Delta$. Hence, we have the root space decomposition $\mathfrak{g} = \mathfrak{h}' \oplus \left(\bigoplus_{\alpha' \in \Delta'} \mathfrak{g}_{\alpha'}\right)$, where $\mathfrak{g}_{\alpha'} = \{a \in \mathfrak{g} | [h, a] = \alpha'(h)a$ for all $h \in \mathfrak{h}'\}$. However,

inner automorphisms preserve the trace and we can check that $K(\alpha, \beta) = K(\alpha \sigma^{-1}, \beta \sigma^{-1})$, so the values of p and q are independent of the choice of Cartan subalgebra.

To construct \mathfrak{h} , take a diagonal matrix $a = \text{diag } (a_1, a_2, \dots, a_n) \in \mathfrak{g}$ all of whose diagonal entries are distinct. By the extension of Exercise 3 in Lecture 7 to $\mathfrak{sl}_n(\mathbb{F})$, a is regular in \mathfrak{g} . Hence, \mathfrak{g}_0^a is a Cartan subalgebra of \mathfrak{g} , so let $\mathfrak{h} = \mathfrak{g}_0^a$. As $(\mathbf{ad}\ a)^N e_{i,j} = (a_i - a_j)^N e_{i,j}$ for all $N \geq 0$, we see that \mathfrak{h} is

precisely the set of diagonal matrices of \mathfrak{g} . A basis for \mathfrak{h}^* is given by $\{\varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_3, \dots, \varepsilon_{n-1} - \varepsilon_n\}$, where $\varepsilon_i(b) = b_i$ for any $b = \text{diag } (b_1, b_2, \dots, b_n) \in \mathfrak{h}$ and $i \in \{1, \dots, n\}$. We can check that:

$$\mathfrak{g}_{\varepsilon_i-\varepsilon_j}=\mathbb{F}e_{i,j} \text{ for all } i,j\in\{1,\ldots,n\},\,i\neq n.$$

Hence, the set $\Delta := \{\varepsilon_i - \varepsilon_j | i, j \in \{1, \dots, n\}, i \neq j\}$ is a root system for \mathfrak{g} . For no pair of roots $\alpha, \beta \in \Delta$ it is true that $\beta + 3\alpha \in \Delta \cup \{0\}$. Thus, the only possibilities for (q, p) are (2, 0), (1, 1), (0, 2), (1, 0), (0, 1), (0, 0).

When n=2, we can only have (q,p)=(2,0),(0,2). Let $\alpha:=\varepsilon_1-\varepsilon_2$. Then $\Delta=\{\pm\alpha\}$, so $\alpha=\alpha+(0)\alpha,\ 0=\alpha-(1)\alpha,\ -\alpha=\alpha-(2)\alpha$ and we have $\alpha,0,-\alpha\in\Delta\cup\{0\}$, giving all possible values for p and q.

If n=3, we can only have (q,p)=(2,0),(0,2),(1,0),(0,1). We have the pairs (2,0) and (0,2) by the previous case. Now, letting $\beta:=\varepsilon_1-\varepsilon_3$ and $\gamma:=\varepsilon_2-\varepsilon_3$ so that $\Delta:\{\pm\alpha,\pm\beta,\pm\gamma\}$, we see that $\alpha-\beta,\alpha\in\Delta\cup\{0\}$ but $\alpha-2\beta,\alpha+\beta\notin\Delta\cup\{0\}$, and similar relations hold among α,γ and β,γ by symmetry.

If $n \ge 4$, we can only have (q, p) = (2, 0), (0, 2), (1, 0), (0, 1), (0, 0). The first four pairs come from the previous two cases. The fifth pair (0, 0) occurs if we let $\delta = \varepsilon_3 - \varepsilon_4$ and then notice that $\alpha - \delta, \alpha + \delta \notin \Delta \cup \{0\}$.

In general, let $\alpha_{ij} := \varepsilon_i - \varepsilon_j$ for all $i, j \in \{1, ..., n\}$ with $i \neq j$. Then, for all multisets $\{i, j, k, l\} \subseteq \{1, ..., n\}$:

if $\{i, j\} \cap \{k, l\} = 2$, then α_{ij} and α_{kl} are related by pairs (2, 0), (0, 2);

if $\{i, j\} \cap \{k, l\} = 1$, then α_{ij} and α_{kl} are related by pairs (1, 0), (0, 1);

if $\{i, j\} \cap \{k, l\} = 0$, then α_{ij} and α_{kl} are related by the pair (0, 0).