

MSc. Music and Acoustic Engineering

Musical Acoustics - A.Y. 2020/2021

H7 - Eigenfrequency Study of a Marimba Bar

Authors' IDs: 10743504, 10751919,

January 21, 2021

1 Constructing the mesh

Figure 1: Profiles of the lower surface of a marimba bar with the depth of the arching varying from 1 to 9 mm.

Our aim in this homework is to study the dependency of the modes of a marimba bar on the depth a of the arching. Fig. 1 shows how we modelled the profiles: the cutaway is sinusoidal in shape and varies from 1 to 9 mm in depth in steps of 1 mm. The model for the bar was implemented in Comsol with a length of 10 cm, a height of 2.5 cm and a width of 2.5 cm. The depth a was defined as a global parameter in order to perform a parametric study of the eigenfrequencies. The values of the Young moduli, shear moduli and Poisson coefficients were taken from [1], considering Honduran mahogany as our material of choice. Ideally, the most sought after instruments of this kind are made of rosewood; however, for this material, it is harder to find measurements of all of the nine relevant parameters that are needed to completely characterize it. Fig. 2 shows the profiles of the generated meshes.

Figure 2: Profiles of the Comsol mesh for all values of a used in the parametric study.

2 Eigenfrequencies

As mentioned in the previous section, a parametric eigenfrequency study was performed, with the values we already reported for a and with free boundary conditions. The first five eigenfrequencies obtained from this study for each value of a are reported in Tab. 1. They are also reported as functions of a in Fig. 3.

a [cm]	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$f_1[kHz]$	5.9071	5.7717	5.6294	5.4788	5.3202	5.1534	4.9770	4.7969	4.6076
$f_2[\mathrm{kHz}]$	8.1063	8.0827	7.8760	7.5803	7.2655	6.9319	6.5852	6.2287	5.8557
$f_3[\mathrm{kHz}]$	8.4015	8.1523	8.0464	8.0000	7.9430	7.8755	7.7968	7.7086	7.6096
$f_4[\mathrm{kHz}]$	12.2164	12.3037	12.3886	12.4762	12.5592	12.6413	12.7214	12.7876	12.5428
$f_5[\mathrm{kHz}]$	14.0013	13.8828	13.7447	13.5885	13.4160	13.2263	13.0134	12.7992	12.8797

Table 1: First five eigenfrequencies of the bar for each value of a.

Figure 3: The five lowest eigenfrequencies plotted as functions of a.

3 Inharmonicity

Lastly, we compute the inharmonicity of the sets of eigenfrequencies obtained before. The inharmonicity is a descriptor defined as:

$$I = \sum_{n=2}^{N} \left| \frac{f_n}{f_{n-1}} - m_n \right|,$$

$$m_n = \arg \min_{m} |f_n - m f_{n-1}|, \ m \in \mathbb{N}^+,$$

where N=5 in our case. The values of I we computed are reported in Fig. 4.

Figure 4: Inharmonicity as a function of a.