Daniel Hanks Jr

IST697-Exercise 10: Word Association

#Set working directory

setwd("D:\Documents\IST687")

#load rdata

 $load ("D: \Documents \IST687 \term Doc Matrix.rdata")$

#get summary of termDocMatrix

summary(termDocMatrix)

#Get first rows of termDocMatrix *(Note that terms are rows and documents are columns)

head(termDocMatrix)

R Console																	23						
1	Doc	:3																					^
Terms	1	2	3	4 5	6	7	8 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
analysis	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	1	0	1	1	1	1	0	0	1	
applications	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
code	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
computing	0	0	1	1 0	1	1	1 1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
data	1	1	0	0 2	0	0	0 0	0	1	2	1	1	1	0	1	0	0	0	0	0	0	0	
examples	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Docs																							
Terms	25	2	6	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	
analysis	0)	0	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
applications	0)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	
code	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
computing	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
data	0)	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	0	1	0	0	1	
examples	0)	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
Docs																							
Terms	46	4	7	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	
analysis	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
applications	1	- 1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
code	0)	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
computing	0		0	0	0	0		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
data	1		1	0	0	1	0	0	0	1	1	0	0	1	1	0	1	0	1	0	1	1	
examples	0		1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
	Doc	:3																					
<																							> .:

#create tData variable with transposed data set *(Note that terms are now columns and docs are rows)
tData <- t(termDocMatrix)

#install arules package

install.packages("arules")

#load library

library("arules")

#install arulesViz package

install.packages("arulesViz")

#load arulesViz library

library(arulesViz)

ruleset <- apriori(tData,parameter=list(support=0.05,confidence=.5))

```
> ruleset <- apriori(tData,parameter=list(support=0.05,confidence=.5))
Apriori
Parameter specification:
 confidence minval smax arem aval originalSupport support minlen maxlen
       0.5 0.1 1 none FALSE
                                            TRUE 0.05 1 10
 target ext
  rules FALSE
Algorithmic control:
 filter tree heap memopt load sort verbose
   0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 7
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[21 item(s), 154 transaction(s)] done [0.00s].
sorting and recoding items ... [21 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 done [0.00s].
writing ... [20 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
Warning message:
In asMethod(object):
  matrix contains values other than 0 and 1! Setting all entries != 0 to 1.
```

#look at rules of ruleset

summary(ruleset)

```
> summary(ruleset)
set of 20 rules
rule length distribution (lhs + rhs):sizes
2 3
15 5
  Min. 1st Qu. Median Mean 3rd Qu. Max.
  2.00 2.00 2.00 2.25 2.25 3.00
summary of quality measures:

        support
        confidence
        lift

        Min. :0.05195
        Min. :0.5217
        Min. : 1.238

1st Qu.:0.05844 1st Qu.:0.6868 1st Qu.: 1.974
Median: 0.07143 Median: 0.7500 Median: 3.414
Mean :0.08571 Mean :0.7767 Mean : 5.623
3rd Qu.:0.09091 3rd Qu.:0.8917 3rd Qu.: 8.304
Max. :0.22078 Max. :1.0000 Max. :19.250
mining info:
data ntransactions support confidence
tData
          154 0.05
```

Plot(ruleset)

inspect(ruleset)

#Rules 3 and 4 show the highest lift, meaning these are the most interesting #rules. LHS and RHS occurr less frequently and support and confidence are #high, with the series/time association occurring 100% of the time. This is #useful to find frequent itemsets.