

CIRCUITOS ELÉCTRICOS

Problemas resolvidos

Circuitos Eléctricos - 2019/2020

1 — As tensões indicadas nos terminais do circuito abaixo são relativas a um nó de referência não representado. Calcule o valor da tensão nodal v_x e a potência fornecida pela fonte de 6V.

1: calculo de v_x

$$v_y = v_3 + 10 \iff v_y = (3)(2) + 10 = 16V$$

 $v_y - v_x = 6 \iff v_x = v_y - 6 = 10V$

III-3

Circuitos Eléctricos - 2019/2020

$$i_8 = \frac{10-2}{8} = 1A$$

$$P_{a6} = V \times I = 6 \times 1 = 6$$
 É a potência absorvida!

$$P_{f6} = -6W$$

2 - Calcule Req (o valor de todas as resistências é 10Ω)

$$R_{eq} = (16//5) + (16//5) = 7.62\Omega$$

111-7

Circuitos Eléctricos - 2019/2020

3 – Usando Análise de Malhas calcule a potência fornecida pela fonte dependente.

1º Passo: identificar as malhas do circuito e atribuir correntes de malha...

III-9

Circuitos Eléctricos - 2019/2020

2º Passo: identificar super-malhas e malhas com fontes de corrente na periferia

3º Passo: marcar tensões nas resistências...

III-11

Circuitos Eléctricos - 2019/2020

4º Passo: Aplicar KVL à malha e super-malha...

- ●Temos de escrever:
- uma equação para a malha 2;
- uma equação para a super-malha.

Malha 2:
$$-60 - v_x + 6i_a = 0$$

Super-malha:
$$-6i_a + v_x - v_y + v_z + v_w = 0$$

5º Passo: Exprimir tensões em função das correntes de malha...

 $v_{w} = 4(i_3 - i_4)$

III-13

Circuitos Eléctricos - 2019/2020

6º Passo: Resolver equações...

Sabendo que

$$i_4 = 5A$$

$$i_a = i_1$$

$$i_3 - i_1 = 4$$

e substituindo tudo nas equações da malha 2 e da super-malha...

$$\begin{cases} 2i_1 + i_2 = 30 \\ 4i_1 - 2i_2 + 4i_3 = 35 \\ i_3 - i_1 = 4 \end{cases}$$

$$\begin{cases} i_1 = 6.58A \\ i_2 = 16.83A \\ i_3 = 10.58A \end{cases}$$

7º Passo: Calcular o que é pedido...

A potência absorvida pela fonte dependente é

$$P_{a6} = VxI = (6i_a)(i_2 - i_3)$$
$$= (6x6.58)(16.58 - 10.58)$$
$$= 236.9W$$

A potência fornecida é

$$P_{f6} = -P_{a6} = -236.9W$$

III-15

Circuitos Eléctricos - 2019/2020

- 4 Usando teorema da sobreposição calcule
- a) O valor de i_x
- b) O valor que deverá ter a fonte de corrente, para que i_x diminua para metade do valor obtido em a)

a) Desactivemos primeiro a fonte de corrente...

Usando KVL:
$$-v_x - 4 + 3i_{x1} + 5v_x = 0$$

Substituindo:
$$v_x = -1i_{x1} \implies i_{x1} - 4 + 3i_{x1} - 5i_{x1} = 0$$

 $i_{x1} = -4A$

III-17

Circuitos Eléctricos - 2019/2020

a) ... e agora anulamos a fonte de tensão de 4V.

Aplicando KCL:

$$i_{x2} + \frac{v_x}{1} = I$$

e sabendo que:

$$\frac{v_x - 5v_x}{3} = i_{x2} \Leftrightarrow v_x = -\frac{3}{4}i_{x2}$$

substituindo...

$$i_{x2} - \frac{3}{4}i_{x2} = I \Leftrightarrow i_{x2} = 4I$$
 $i_{x2} = 8A$

a) Aplicamos o Teorema da Sobreposição para obter i_x

$$i_x = i_{x1} + i_{x2} = -4 + 8 = 4A$$

III-19

Circuitos Eléctricos - 2019/2020

b) Para obter metade do valor anterior de i_x ...

$$i_x = i_{x1} + i_{x2} = -4 + 4I = 4/2$$

$$I = 1.5A$$

5 - Calcule v_6 pelo Teorema da Sobreposição

A aplicação do Teorema da Sobreposição não obriga que se considere o efeito individual de cada uma das fontes. Por vezes é mais útil agrupar fontes e considerar o efeito de cada grupo. Este exemplo ilustra este ponto.

III-21

Circuitos Eléctricos - 2019/2020

1º Passo: consideremos o efeito só das fontes de corrente

2º Passo: ... e agora apenas o efeito da fonte de tensão

III-23

Circuitos Eléctricos - 2019/2020

6 — Usando o Teorema da Sobreposição, determine o intervalo de valores da corrente I_X que garante que a potência dissipada em qualquer uma das resistências do circuito não ultrapassa os 250mW.

1º Passo: comecemos por calcular os limites das correntes em cada uma das resistências.

$$P_1 = 100(i_1)^2 < 250mW \iff |i_1| < 50mA$$

$$P_2 = 64(i_2)^2 < 250mW \iff |i_2| < 62.5mA$$

III-25

Circuitos Eléctricos - 2019/2020

2º Passo: consideremos agora só a fonte de tensão

$$i_{11} = i_{21} = \frac{6}{100 + 64} = 36.6 mA$$

3º Passo: consideremos agora só a fonte de corrente

Aplicando a fórmula do divisor de corrente:

$$i_{12} = -\frac{64}{100 + 64}I_X = -0.39I_X$$

$$i_{22} = \frac{100}{100 + 64} I_X = 0.61 I_X$$

III-27

Circuitos Eléctricos - 2019/2020

4º Passo: aplicamos agora o Teorema da Sobreposição

$$i_1 = i_{11} + i_{12} = 36.6 - 0.39I_X$$

$$i_2 = i_{21} + i_{22} = 36.6 + 0.61I_X$$

5° Passo: finalmente obtemos os limites de I_X para cada resistência

Resistência de 100Ω

$$i_1 = 36.6 - 0.39I_X$$

Sabendo que

$$|i_1| < 50 mA$$
 ou $-50 < i_1 < 50$

Obtém-se

$$-34.4mA < I_x < 222.1mA$$

Resistência de 64Ω

$$i_2 = 36.6 + 0.61I_X$$
 $|i_2| < 62.5mA$
 $-62.5 < i_2 < 62.5$

$$-162.5mA < I_x < 42.5mA$$

O intervalo de valores permissível para I_X será pois:

$$-34.4mA < I_X < 42.5mA$$

III-29

Circuitos Eléctricos - 2019/2020

7 — Calcule a potência dissipada na resistência de 1M. Comece por simplificar o circuito usando sucessivas transformações de fontes.

Recordando a Transformação de fontes...

III-31

Circuitos Eléctricos - 2019/2020

Circuitos Eléctricos - 2019/2020

8 – Usando transformação de fontes, determine o valor máximo de V e o valor máximo de I.

Circuitos Eléctricos - 2019/2020

$$(200V)/(60\Omega) = \frac{20}{6}A$$

III-37

Circuitos Eléctricos - 2019/2020

Circuitos Eléctricos – 2019/2020

... finalmente obtemos os valores máximos de Ve de I

• Se $R = \infty$ (circuito aberto) $\Rightarrow I = 0$

$$V_{\text{max}} = 255.4V$$

• Se
$$R = \theta$$
 (curto-circuito) $\Rightarrow V = \theta$

$$I_{\text{max}} = \frac{255.4}{48.8} = 5.23A$$

Relembrando...

→ Resistência em paralelo com fonte de tensão

Aplicando KVL ao circuito:

$$-v_S + R_S i_L + v_L = 0$$
$$v_L = -R_S i_L + v_S$$

• ... igual à fonte real de tensão!

 Do ponto de vista dos terminais A e B, o circuito é equivalente a uma fonte real de tensão.

III-41

Circuitos Eléctricos - 2019/2020

Relembrando...

→ Resistência em série com fonte de corrente

• Aplicando KCL ao nó superior:

$$i_L = -i_i + i_S = -\frac{1}{R_i} v_L + i_S$$

• ... igual à fonte real de corrente!

 Do ponto de vista dos terminais A e B, o circuito é equivalente a uma fonte real de corrente.

9 – Calcular I. Simplificar primeiro o circuito usando transformações de fontes.

$$-6 + 29I - 51v_x + v_x + 9 = 0$$

$$v_x = 2I$$

De onde se tira

$$I = 43.2 mA$$

10 – Calcular v_I . Simplificar primeiro o circuito usando transformações de fontes.

Circuitos Eléctricos - 2019/2020

III-49

Circuitos Eléctricos - 2019/2020

$$v_1 = -\frac{2}{2+24} (34v_1 - 0.6)$$

Donde

$$v_1 = 12.8 mV$$

