Problemas Tema 4: Determinantes. Sistemas de Cramer

EP4.26. - Encontrar los valores de a y b para que el sistema tenga solución única.

$$\begin{cases}
2x + 3y - z = 11 \\
x - 2y + 2z = 1
\end{cases}$$

$$\begin{cases}
3x + 8y + az = 21 \\
-5x + 7y - 5z = -6 \\
-3x + by - 11z = 6
\end{cases}$$

$$\begin{cases}
2 & 3 & -1 & 11 \\
1 & -2 & 2 & 1 \\
3 & 8 & a & 21 \\
-5 & 7 & -5 & -6 \\
-3 & b & -11 & 6
\end{cases}$$

$$\begin{cases}
A(5 \times 3) \Rightarrow R_A \le 3 \\
(A/B)(5 \times 4) \Rightarrow R_B \le 4 \\
\text{ni} = 3
\end{cases}$$

Tener solución única significa ser compatible y determinado $\Rightarrow R_A = R_B = 3$

Matriz del sistema:

Escogemos un menor de orden 1 no nulo: $M_1(F1,C1) = |2| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F2-C2: $\longrightarrow M_2 = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} \neq \mathbf{0} \implies R_A \ge 2$

Orlamos $M_2 \neq \mathbf{0}$ con F4-C3: $\longrightarrow M_3 = \begin{vmatrix} 2 & 3 & -1 \\ 1 & -2 & 2 \\ -5 & 7 & -5 \end{vmatrix} = \begin{vmatrix} 2 & 7 & 2 \\ 1 & 0 & 0 \\ -5 & -3 & 2 \end{vmatrix} \neq 0 \implies R_A = 3$

Matriz ampliada:

Hasta el momento se van cumpliendo las condiciones para tener solución única.

La última condición es que $R_B=3$. Para que esto ocurra todos los menores orlados orden 4 que calculemos en la matriz ampliada a partir del $M_3\neq 0$ deberán ser 0: $M_4^1=\mathbf{0}$, $M_4^2=\mathbf{0}$

Orlamos
$$M_3 \neq 0$$
 con F3-C4: $\longrightarrow M_4^1 = \begin{vmatrix} 2 & 3 & -1 & 11 \\ 1 & -2 & 2 & 1 \\ 3 & 8 & a & 21 \\ -5 & 7 & -5 & -6 \end{vmatrix} = \begin{vmatrix} 2 & 7 & 2 & 9 \\ 1 & 0 & 0 & 0 \\ 3 & 14 & a+8 & 18 \\ -5 & -3 & 2 & -1 \end{vmatrix} = -20(a+4)$

$$\longrightarrow M_4^2 = \begin{vmatrix} 2 & 3 & -1 & 11 \\ 1 & -2 & 2 & 1 \\ -5 & 7 & -5 & -6 \\ -3 & b & -11 & 6 \end{vmatrix} = 40(b-13) \longrightarrow R_B = 3 \text{ si}$$

$$-20(a+4) = 0 \longrightarrow a = -4$$

$$40(b-13) = 0 \longrightarrow b = 13$$

EP4.27. - Estudiar el sistema según valores del parámetro a

$$\begin{cases} ax + z + t = 1 \\ ay + z - t = 1 \\ ay + z - 2t = 2 \\ az - t = 0 \end{cases} \qquad \begin{cases} a \quad 0 \quad 1 \quad 1 \quad 1 \\ 0 \quad a \quad 1 \quad -1 \quad 1 \\ 0 \quad a \quad 1 \quad -2 \quad 2 \\ 0 \quad 0 \quad a \quad -1 \quad 0 \end{cases} \qquad \begin{cases} A(4 \times 4) \Rightarrow R_A \le 4 \\ (A/B)(4 \times 5) \Rightarrow R_B \le 4 \\ \text{ni} = 4 \end{cases}$$

Por ser A cuadrada estudiamos su determinante que es el único menor de orden 4:

$$M_4 = |A| = \begin{vmatrix} a & 0 & 1 & 1 \\ 0 & a & 1 & -1 \\ 0 & a & 1 & -2 \\ 0 & 0 & a & -1 \end{vmatrix} = a^2 \begin{vmatrix} 1 & 1 & -1 \\ 1 & 1 & -2 \\ 0 & a & -1 \end{vmatrix} \stackrel{F2 \to F2 - F1}{=} a^2 \begin{vmatrix} 1 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & a & -1 \end{vmatrix} = a^3$$

Casas

i) Si
$$a \neq 0$$
 \Rightarrow $R_A = 4$
$$\begin{cases} R_B = 4 \text{ ó 5} \\ R_B \leq 4 \end{cases} \Rightarrow R_B = 4 \begin{cases} \mathbf{ni} = 4 \\ R_A = 4 \\ R_B = 4 \end{cases} \text{ ni} = R_A = R_B \text{ Comp. Det.}$$

$$\mathbf{z} = \frac{1}{a^3} \begin{vmatrix} a & 0 & \mathbf{1} & 1 \\ 0 & a & \mathbf{1} & -1 \\ 0 & a & \mathbf{2} & -2 \\ 0 & 0 & \mathbf{0} & -1 \end{vmatrix} = \frac{-\mathbf{1}}{a} \qquad \mathbf{t} = \frac{1}{a^3} \begin{vmatrix} a & 0 & 1 & \mathbf{1} \\ 0 & a & 1 & \mathbf{1} \\ 0 & a & 1 & \mathbf{2} \\ 0 & 0 & a & \mathbf{0} \end{vmatrix} = -\mathbf{1}$$

ii) Si
$$a = 0 \Rightarrow M_4 = 0$$
 que es el único menor orden 4. Sustituimos
$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

Escogemos un menor de orden 1 no nulo: $M_1(F1, C3) = |1| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F2-C4: $\longrightarrow M_2 = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \neq \mathbf{0} \implies R_A \geq 2$

Todos los menores orlados de orden 3 son 0 por tener una columna de ceros: $\Rightarrow R_A = 2$

Matriz ampliada:
$$R_B = \begin{cases} 2 & 6 \\ 3 \end{cases}$$
 Debemos partir de $M_2 = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \neq \mathbf{0}$

Orlamos
$$M_2 \neq \mathbf{0}$$
 con F3-C4: $\longrightarrow M_3 = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & -3 & 1 \end{vmatrix} \neq 0 \implies R_B = 3 \quad R_B \neq R_A$ Incomp.

EP4.28. - ¿Qué se puede decir en cada uno de los casos siguientes? ¿Por qué?

a1) Sistema de ecuaciones lineales con $R_A = 3$ ne = 3 ni=4 $R_B = ?$

$$R_A = R_B = 3 \Rightarrow$$
 Compatible $R_A = R_B = ni \Rightarrow$ Determinado

a2) Sistema de ecuaciones lineales con $R_A=2$ ne = 2 ni=? $R_B=3$

$$\begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{cases} A(2 \times ni) \Rightarrow R_A \leq 2 \\ (A/B)(2 \times (ni+1)) \Rightarrow R_B \leq 2 \end{cases}$$
 El dato $R_B = 3$ no es posible en este sistema. $R_B = 3$ no es posible en este sistema.

a3) Sistema homogéneo de ecuaciones lineales con $R_A=?$, ne = 4, ni=3, $R_B=3$

a4) Sistema de ecuaciones lineales con $R_A=4$ ne = 4 ni=5 $R_B=3$

Datos imposibles: $R_{B} = \begin{cases} R_{A} & \text{\'o} \\ R_{A} + 1 \end{cases}$

Con R_A : rango de la matriz del sistema R_B : rango de la matriz ampliada: ne: n° de ecuaciones ni: n° de incógnitas

EP4.30. - Discutir y si se puede resolver los siguientes sistemas por Cramer:

a1)
$$\begin{cases} x + y + z = 1 \\ 3x - 4y = 5 \\ 7x - y - 3z = 8 \end{cases} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & -4 & 0 & 5 \\ 7 & -1 & -3 & 8 \end{pmatrix} \begin{cases} A(3 \times 3) \Rightarrow R_A \le 3 \\ (A/B)(3 \times 4) \Rightarrow R_B \le 3 \\ \text{ni} = 3 \end{cases}$$

$$M_3 = |A| = \begin{vmatrix} 1 & 1 & 1 \\ 3 & -4 & 0 \\ 7 & -1 & -3 \end{vmatrix} \neq 0 \implies R_A = 3 \implies R_A = R_B = 3 \longrightarrow Comp.$$
 $\Rightarrow \text{Deter.}$

S. Cramer
$$x = \frac{27}{23}$$
 $y = -\frac{17}{46}$ $z = \frac{9}{46}$

a2)
$$\begin{cases} x + y + 2z + u = 0 \\ 2x + 3y - z - 2u = 0 \\ 4x + 5y - 3z = 0 \end{cases}$$
 Homogéneo \Rightarrow Compatible
$$\begin{cases} 1 & 1 & 2 & 1 \\ 2 & 3 & -1 & -2 \\ 4 & 5 & -3 & 0 \end{cases}$$

$$\begin{cases} A(3 \times 4) \Rightarrow R_A \le 3 \\ (A/B)(3 \times 5) \Rightarrow R_B \le 3 \\ \text{ni} = 4 \end{cases}$$

$$\begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & -1 \\ 4 & 5 & -3 \end{vmatrix} = -6 \neq 0 \Rightarrow R_A = 3 \Rightarrow \begin{cases} R_A = R_B = 3 \rightarrow Comp. \\ ni = 4 \end{cases} \Rightarrow Indeter.$$

Sist. Equivalente de Cramer:
$$\begin{cases} x + y + 2z = -u \\ 2x + 3y - z = 2u \\ 4x + 5y - 3z = 0 \end{cases} \qquad \begin{pmatrix} 1 & 1 & 2 & -u \\ 2 & 3 & -1 & 2u \\ 4 & 5 & -3 & 0 \end{pmatrix}$$

$$x = \frac{1}{-6} \begin{vmatrix} -u & 1 & 2 \\ 2u & 3 & -1 \\ 0 & 5 & -3 \end{vmatrix} = -5u \qquad y = \frac{1}{-6} \begin{vmatrix} 1 & -u & 2 \\ 2 & 2u & -1 \\ 4 & 0 & -3 \end{vmatrix} = 4u \qquad z = \frac{1}{-6} \begin{vmatrix} 1 & 1 & -u \\ 2 & 3 & 2u \\ 4 & 5 & 0 \end{vmatrix} = 0 \qquad (x, y, z, u) = (-5u, 4u, 0, u)$$

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \neq 0 \quad \text{y} \quad \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0 \Rightarrow R_A = 2 \quad \Rightarrow \quad \begin{aligned} R_A &= R_B = 2 \rightarrow Comp. \\ \text{ni} &= 3 \end{aligned} \right\} \rightarrow \text{Indeter}.$$

Sistema equivalente de Cramer:
$$\begin{cases} x = -z \\ y = -z \end{cases} \quad \begin{pmatrix} 1 & 0 & -z \\ 0 & 1 & -z \end{pmatrix} \quad \text{Solución} \quad \begin{cases} x = -z \\ y = -z \\ z = z \end{cases}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 5 & -2 \\ 1 & -7 & -7 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ 2 & 5 & -7 \\ 1 & -7 & 0 \end{vmatrix} \neq 0 \implies R_A = 3 \implies R_A = R_B = 3 \longrightarrow Comp.$$
 Solve the sum of th

S. Cramer
$$\Rightarrow x = \frac{33}{8}, y = \frac{-11}{14}, z = \frac{37}{56}$$

b1)
$$\begin{cases} x + 2y + 2z = 2 \\ 3x - 2y - z = 5 \\ 2x - 5y + 3z = -4 \\ x + 4y + 6z = 0 \end{cases} \quad (A/B) = \begin{pmatrix} 1 & 2 & 2 & 2 \\ 3 & -2 & -1 & 5 \\ 2 & -5 & 3 & -4 \\ 1 & 4 & 6 & 0 \end{pmatrix} \quad \begin{cases} A(4 \times 3) \Rightarrow R_A \le 3 \\ (A/B)(4 \times 4) \Rightarrow R_B \le 4 \\ \text{ni} = 3 \end{cases}$$

$$\begin{vmatrix} 1 & 2 & 2 & 2 \\ 3 & -2 & -1 & 5 \\ 2 & -5 & 3 & -4 \\ 1 & 4 & 6 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & -8 & -7 & -1 \\ 2 & -9 & -1 & -8 \\ 1 & 2 & 4 & -2 \end{vmatrix} = 0$$
 $\Rightarrow R_A = R_B$
$$\begin{vmatrix} 1 & 2 & 2 \\ 3 & -2 & -1 \\ 2 & -5 & 3 \end{vmatrix} \neq 0 \Rightarrow R_A = 3$$
 \Rightarrow Deter

Sistema equivalente de Cramer:
$$\begin{cases} x+2y+2z=2\\ 3x-2y-z=5\\ 2x-5y+3z=-4 \end{cases}$$
 $x=2, y=1, z=-1$

b2)
$$\begin{cases} 2x + 5y + 2z = 6 \\ x + 2y + z = 2 \\ 3x + 7y + 3z = 7 \\ 4x + 9y + 5z = 9 \end{cases} (A/B) = \begin{pmatrix} 2 & 5 & 2 & 6 \\ 1 & 2 & 1 & 2 \\ 3 & 7 & 3 & 7 \\ 4 & 9 & 5 & 9 \end{pmatrix} \begin{cases} A(4\times3) \Rightarrow R_A \le 3 \\ (A/B)(4\times4) \Rightarrow R_B \le 4 \\ \text{ni} = 3 \end{cases}$$

$$\begin{vmatrix} 2 & 5 & 2 \\ 1 & 2 & 1 \\ 4 & 9 & 5 \end{vmatrix} \neq 0 \implies R_A = 3 \qquad \begin{vmatrix} 2 & 5 & 2 & 6 \\ 1 & 2 & 1 & 2 \\ 3 & 7 & 3 & 7 \\ 4 & 9 & 5 & 9 \end{vmatrix} \neq 0 \implies R_A = 4 \qquad R_A \neq R_B \Rightarrow \textbf{Incompatible}$$

b3)
$$\begin{cases} x + 2y - z = 0 \\ 2x + 5y + 2z = 0 \\ x + 4y + 7z = 0 \\ x + 3y + 3z = 0 \end{cases}$$
 Homogéneo \Rightarrow Compatible $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 5 & 2 \\ 1 & 4 & 7 \\ 1 & 3 & 3 \end{pmatrix}$
$$\begin{cases} A(4 \times 3) \Rightarrow R_A \le 3 \\ (A/B)(4 \times 4) \Rightarrow R_B \le 4 \\ \text{ni} = 3 \end{cases}$$

$$\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} \neq 0 \qquad \begin{vmatrix} 1 & 2 & -1 \\ 2 & 5 & 2 \\ 1 & 4 & 7 \end{vmatrix} = 0 \qquad \begin{vmatrix} 1 & 2 & -1 \\ 2 & 5 & 2 \\ 1 & 3 & 3 \end{vmatrix} = 0 \qquad \Rightarrow \begin{array}{c} R_A = R_B = 2 \\ ni = 3 \end{array} \qquad \text{Indeterminado}$$

b4)
$$\begin{cases} x + y + z = \mathbf{0} \\ 2x - 2y - z = \mathbf{0} \\ x + 3y + 5z = 2 \\ 5x + 3y + 6z = 4 \end{cases} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & -2 & -1 & 0 \\ 1 & 3 & 5 & 2 \\ 5 & 3 & 6 & 4 \end{pmatrix} \begin{cases} A(4 \times 3) \Rightarrow R_A \le 3 \\ (A/B)(4 \times 4) \Rightarrow R_B \le 4 \\ \text{ni} = 3 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & -2 & -1 & 0 \\ 1 & 3 & 5 & 2 \\ 5 & 3 & 6 & 4 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -4 & -3 & 0 \\ 0 & 2 & 4 & 2 \\ 0 & -2 & 1 & 4 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 2 & 4 & 2 \\ 0 & -4 & -3 & 0 \\ 0 & -2 & 1 & 4 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 2 & 4 & 2 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 6 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 2 & 4 & 2 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

 $R_A = 3 \neq R_B = 4$ Incompatible

E4.31. - Discutir los sistemas según valores de m y resolverlos cuando sea posible.

a1)
$$\begin{cases} mx + y + z = 1 \\ x + my + z = 2 \\ x + y + mz = -1 \end{cases} \qquad \begin{cases} m & 1 & 1 & 1 \\ 1 & m & 1 & 2 \\ 1 & 1 & m & -1 \end{cases} \qquad \begin{cases} A(3 \times 3) \Rightarrow R_A \le 3 \\ (A/B)(3 \times 4) \Rightarrow R_B \le 3 \\ \text{ni} = 3 \end{cases}$$

Por ser cuadrada estudiamos su determinante que es el único menor de orden 3:

$$M_{3} = |A| = \begin{vmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{vmatrix} = \begin{vmatrix} 0 & 1-m & 1-m^{2} \\ 0 & m-1 & 1-m \\ 1 & 1 & m \end{vmatrix} = (1-m)^{2} \begin{vmatrix} 1 & 1+m \\ -1 & 1 \end{vmatrix} = (m-1)^{2} \cdot (m-2)$$

Casos:

i) Si
$$m \neq 1, -2 \implies M_3 \neq 0 \implies R_A = 3$$

$$\begin{cases} R_B = 3 \text{ ó } 4 \\ R_B \leq 3 \end{cases} \implies R_A = R_B = 3 = ni \quad \text{Comp. Det.}$$

$$x = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 2 & m & 1 \\ -1 & 1 & m \end{vmatrix}}{(m-1)^{2} \cdot (m+2)} = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & m-1 & 0 \\ -1-m & 1-m & 0 \end{vmatrix}}{(m-1)^{2} \cdot (m+2)} = \frac{(m-1)\begin{vmatrix} 1 & 1 \\ -1-m & -1 \end{vmatrix}}{(m-1)^{2} \cdot (m+2)} = \frac{m}{(m-1) \cdot (m+2)}$$

$$y = \frac{\begin{vmatrix} m & 1 & 1 \\ 1 & 2 & 1 \\ 1 & -1 & m \end{vmatrix}}{(m-1)^{2} \cdot (m+2)} = \frac{\begin{vmatrix} m & 1 & 1-m \\ 1 & 2 & 0 \\ m+1 & 0 & 0 \end{vmatrix}}{(m-1)^{2} \cdot (m+2)} = \frac{2(m+1)}{(m-1) \cdot (m+2)}$$

$$z = \frac{\begin{vmatrix} m & 1 & 1 \\ 1 & m & 2 \\ 1 & 1 & -1 \end{vmatrix}}{(m-1)^{2}(m+2)} = \frac{\begin{vmatrix} m-1 & 0 & 1+m \\ 1-m & 2 & 1 \\ 0 & -1 & m \end{vmatrix}}{(m-1)^{2}(m+2)} = \frac{(m-1)\begin{vmatrix} 1 & 0 & 1+m \\ 0 & 2 & m+2 \\ 0 & -1 & m \end{vmatrix}}{(m-1)^{2}(m+2)} = \frac{3m+2}{(m-1)(m+2)}$$

ii)
$$m = 1$$
 ($M_3 = 0$ único menor orden 3) Sustituimos
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |1| \neq 0 \implies R_A \geq 1$

Todos los menores de orden 2 en la matriz del sistema son 0: $M_2 = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0 \implies R_A = 1$

$$R_{B} = \begin{cases} 1 \text{ ó} \\ 2 \end{cases} \quad \text{Orlamos } M_{1} \neq \mathbf{0} \quad \text{con F2-C4} \longrightarrow M_{2}^{1} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \neq \mathbf{0} \quad \Rightarrow \quad R_{B} = \mathbf{2}$$

$$R_{A} = \mathbf{1} \neq R_{B} = \mathbf{2} \quad \text{Incompatible}$$

iii)
$$m = -2$$
 ($M_3 = 0$ único menor orden 3) Sustituimos
$$\begin{pmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \\ 1 & 1 & -2 & -1 \end{pmatrix}$$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |-2| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F2-C2 \longrightarrow $M_2 = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} \neq \mathbf{0} \implies \mathbf{R}_A \geq \mathbf{2}$

Orlamos $M_2 \neq 0$ con F3-C3 $\longrightarrow M_3 = 0$ NO hay más menores orlados orden 3 $\Rightarrow R_A = 2$

$$R_{B} = \begin{cases} 2 \text{ ó} \\ 3 \end{cases} \quad \text{Orlamos } M_{2} \neq \mathbf{0} \text{ con F3-C4} \longrightarrow M_{3}^{1} = \begin{vmatrix} -2 & 1 & 1 \\ 1 & -2 & 2 \\ 1 & 1 & -1 \end{vmatrix} \neq \mathbf{0} \implies R_{B} = \mathbf{3}$$

$$R_{A} = \mathbf{2} \neq R_{B} = \mathbf{3} \quad \text{Incompatible}$$

a2)
$$\begin{cases} (m+2)x + y + z = m-1 \\ mx + (m-1)y + z = m-1 \\ (m+1)x + (m+1)z = m-1 \end{cases} A/B = \begin{pmatrix} m+2 & 1 & 1 & m-1 \\ m & m-1 & 1 & m-1 \\ m+1 & 0 & m+1 & m-1 \end{pmatrix} \begin{cases} A(3\times3) \Rightarrow R_A \le 3 \\ (A/B)(3\times4) \Rightarrow R_B \le 3 \\ \text{ni} = 3 \end{cases}$$
$$M_3 = |A| = \begin{vmatrix} m+2 & 1 & 1 \\ m & m-1 & 1 \\ m+1 & 0 & m+1 \end{vmatrix} = \begin{vmatrix} m+1 & 1 & 1 \\ m-1 & m-1 & 1 \\ 0 & 0 & m+1 \end{vmatrix} = (m+1)(m-1) \begin{vmatrix} m+1 & 1 \\ 1 & 1 \end{vmatrix} = m(m+1)(m-1)$$

$$M_3 = |A| = \begin{vmatrix} m+2 & 1 & 1 \\ m & m-1 & 1 \\ m+1 & 0 & m+1 \end{vmatrix} = \begin{vmatrix} m+1 & 1 & 1 \\ m-1 & m-1 & 1 \\ 0 & 0 & m+1 \end{vmatrix} = (m+1)(m-1) \begin{vmatrix} m+1 & 1 \\ 1 & 1 \end{vmatrix} = m(m+1)(m-1)$$

Casos:

i) Si
$$m \neq 0, 1, -1 \Rightarrow M_3 \neq 0 \Rightarrow R_A = 3$$

$$\begin{cases} R_B = 3 \text{ ó } 4 \\ R_B \leq 3 \end{cases} \Rightarrow R_A = R_B = 3 = ni \text{ Comp. Det.}$$

$$x = \frac{\binom{m-1}{1} \binom{1}{1} \binom{m-1}{1}}{\binom{m-1}{1} \binom{m+1}{1}} = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 0 & m-2 & 0 \\ 0 & -1 & m \end{vmatrix}}{\binom{m-1}{m} \binom{m-1}{1} \binom{m-1}{1}} = \frac{\binom{m-2}{1} \binom{1}{1} \binom{1}{1}}{\binom{m-1}{1}} = \frac{m-2}{m+1}$$

$$\mathbf{y} = \frac{\binom{m-1}{m} \binom{m+2}{m} \binom{1}{1} \binom{1}{m+1}}{m(m-1)(m+1)} = \frac{\binom{2}{m} \binom{0}{m} \binom{0}{m}}{m(m+1)} = \frac{2m}{m(m+1)} = \frac{2}{m+1}$$

$$z = \frac{\binom{m-1}{m} \binom{m+2}{m} \binom{1}{m-1}}{\binom{m+1}{m+1} \binom{0}{m+1}} = \frac{\begin{vmatrix} 1 & 1 & 0 \\ -1 & m-1 & 0 \\ m+1 & 0 & 1 \end{vmatrix}}{\binom{m+1}{m+1}} = \frac{1}{\binom{m-1}{m+1}} = \frac{1}{\binom{m+1}{m+1}}$$

ii) m = 0 (
$$M_3$$
 = 0 único menor orden 3) Sustituimos $\begin{pmatrix} 2 & 1 & 1 & -1 \\ 0 & -1 & 1 & -1 \\ 1 & 0 & 1 & -1 \end{pmatrix}$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |2| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F2-C2 \longrightarrow $M_2 = \begin{vmatrix} 2 & 1 \\ 0 & -1 \end{vmatrix} \neq \mathbf{0} \implies \mathbf{R}_A \geq \mathbf{2}$

Orlamos $M_2 \neq 0$ con F3-C3 $\longrightarrow M_3 = 0$ NO hay más menores orlados orden 3 $\Rightarrow R_A = 2$

$$R_B = \begin{cases} 2 & M_2 = \begin{vmatrix} 2 & 1 \\ 0 & -1 \end{vmatrix} \neq \mathbf{0}$$

Orlamos
$$M_2 \neq \mathbf{0}$$
 con F3-C4: $\longrightarrow M_3^1 = \begin{vmatrix} 2 & 1 & -1 \\ 0 & -1 & -1 \\ 1 & 0 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 0 \\ 0 & -1 & -1 \\ 1 & 1 & 0 \end{vmatrix} = 0$

No hay mas menores orlados orden $3 \Rightarrow R_B = 2$ $R_B = R_A < ni$ C. Indeterminado

Sistema de Cramer equivalente con matriz del sistema $\begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$: $\begin{cases} 2x + y = -1 - z \\ -y = -1 - z \end{cases}$ $\begin{cases} x = -1 - z \\ y = 1 + z \\ z = z \end{cases}$

iii) m = 1 (
$$M_3 = 0$$
 único menor orden 3) Sustituimos $\begin{pmatrix} 3 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix}$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |3| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F2-C2 \longrightarrow $M_2 = \begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix} \neq \mathbf{0} \implies \mathbf{R}_A \geq \mathbf{2}$

Orlamos $M_2 \neq 0$ con F3-C3 $\longrightarrow M_3 = 0$ NO hay más menores orlados orden 3 $\Rightarrow R_A = 2$

$$R_B = \begin{cases} 2 \\ 3 \end{cases}$$
 pero por ser homogéneo el sistema $R_B = R_A < ni$ C. Indeterminado

Sistema de Cramer equivalente con matriz del sistema $\begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$: $\begin{cases} 3x + y = -z \\ x = -z \end{cases}$ $\begin{cases} x = -z \\ z = z \end{cases}$

iv) m = -1 (
$$M_3 = 0$$
 único menor orden 3. Sustituimos
$$\begin{pmatrix} 1 & 1 & 1 & -2 \\ -1 & -2 & 1 & -2 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |1| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F2-C2 \longrightarrow $M_2 = \begin{vmatrix} 1 & 1 \\ -1 & -2 \end{vmatrix} \neq \mathbf{0} \implies \mathbf{R}_A \geq \mathbf{2}$

Orlamos $M_2 \neq 0$ con F3-C3 $\longrightarrow M_3 = 0$ NO hay más menores orlados orden 3 $\Rightarrow R_A = 2$

$$R_{B} = \begin{cases} 2 \\ 3 \end{cases} \qquad \text{Orlamos } M_{2} \neq \mathbf{0} \text{ con F3-C4:} \longrightarrow M_{3}^{1} = \begin{vmatrix} 1 & 1 & -2 \\ -1 & -2 & -2 \\ 0 & 0 & -2 \end{vmatrix} \neq 0 \implies R_{B} = \mathbf{3}$$

 $R_A = 2 \neq R_B = 3$ Incompatible

a3)
$$\begin{cases} mx + y + z + t = 1 \\ x + my + z + t = m \\ x + y + mz + t = m^2 \end{cases} \begin{pmatrix} m & 1 & 1 & 1 & 1 \\ 1 & m & 1 & 1 & m \\ 1 & 1 & m & 1 & m^2 \end{pmatrix} \begin{cases} A(3 \times 4) \Rightarrow R_A \le 3 \\ (A/B)(3 \times 5) \Rightarrow R_B \le 3 \\ \text{ni} = 4 \end{cases}$$

$$M_{3}(C1,C2,C3) = \begin{vmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{vmatrix} = \begin{vmatrix} 0 & 1-m & 1-m^{2} \\ 0 & m-1 & 1-m \\ 1 & 1 & m \end{vmatrix} = (1-m)^{2} \begin{vmatrix} 1 & 1+m \\ -1 & 1 \end{vmatrix} = (m-1)^{2} \cdot (m+2)$$

Casos:

i) Si
$$m \neq 1, -2 \implies M_3 \neq 0 \Rightarrow R_A = 3$$

$$\begin{cases} R_B = 3 \text{ ó } 4 \\ R_B \leq 3 \end{cases} \Rightarrow R_A = R_B = 3 < ni \text{ Comp. Indet.}$$

Sistema equivalente de Cramer:
$$\begin{cases} mx + y + z = 1 - t \\ x + my + z = m - t \\ x + y + mz = m^2 - t \end{cases} A/B = \begin{pmatrix} m & 1 & 1 & 1 - t \\ 1 & m & 1 & m - t \\ 1 & 1 & m & m^2 - t \end{pmatrix}$$

$$x = \frac{\begin{vmatrix} 1-t & 1 & 1 \\ m-t & m & 1 \\ m^2-t & 1 & m \end{vmatrix}}{(m-1)^2(m+2)} = \frac{\begin{vmatrix} 1-t & 1 & 1 \\ m-1 & m-1 & 0 \\ m^2-1 & 0 & m-1 \end{vmatrix}}{(m-1)^2(m+2)} = \frac{(m-1)^2 \begin{vmatrix} 1-t & 1 & 1 \\ 1 & 1 & 0 \\ m+1 & 0 & 1 \end{vmatrix}}{(m-1)^2(m+2)} = \frac{-t & 0 & 1}{1 & 1 & 0} = \frac$$

$$\mathbf{y} = \frac{\begin{vmatrix} m & 1-t & 1 \\ 1 & m-t & 1 \\ 1 & m^2-t & m \end{vmatrix}}{(m-1)^2(m+2)} = \frac{\begin{vmatrix} m & 1-t & 1 \\ 1-m & m-1 & 0 \\ 1-m & m^2-1 & m-1 \end{vmatrix}}{(m-1)^2(m+2)} = \frac{(m-1)^2 \begin{vmatrix} m & 1-t & 1 \\ -1 & 1 & 0 \\ -1 & m+1 & 1 \end{vmatrix}}{(m-1)^2(m+2)} = \frac{\begin{vmatrix} m & 1-t & 1 \\ -1 & 1 & 0 \\ -1 & m+1 & 1 \end{vmatrix}}{(m+2)} = \frac{1-t}{(m+2)}$$

$$z = \frac{\begin{vmatrix} m & 1 & 1-t \\ 1 & m & m-t \\ 1 & 1 & m^2-t \end{vmatrix}}{(m-1)^2(m+2)} = \frac{\begin{vmatrix} m & 1 & 1-t \\ 1-m & m-1 & m-1 \\ 1-m & 0 & m^2-1 \end{vmatrix}}{(m-1)^2(m+2)} = \frac{(m-1)^2 \begin{vmatrix} m & 1 & 1-t \\ -1-m & 0 & t \\ -1 & 0 & m+1 \end{vmatrix}}{(m-1)^2(m+2)} = \frac{-(m+1)^2+t}{(m+2)}$$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |1| \neq 0 \implies R_A \geq 1$

Todos los menores de orden 2 tanto en la matriz del sistema como en la ampliada son 0: $M_2 = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$

$$R_A = 1 = R_B < ni$$
 Compatible Indet. $x + y + z + t = 1 \rightarrow \begin{cases} x = 1 - y - z - t \\ y = y \\ z = z \\ t = t \end{cases}$

iii)
$$m = -2$$
 ($M_3 = 0$) Sustituimos
$$\begin{pmatrix} -2 & 1 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \end{pmatrix}$$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |-2| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F2-C2 \longrightarrow $M_2 = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} \neq \mathbf{0} \implies \mathbf{R}_A \geq \mathbf{2}$

Orlamos $M_2 \neq 0$ con F3-C3 $\longrightarrow M_3 = 0$ ¿hay más menores orlados orden 3? SI

Orlamos
$$M_2 \neq \mathbf{0}$$
 con F3-C4 \longrightarrow $M_3^1 = \begin{vmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & 1 \end{vmatrix} \neq \mathbf{0} \implies \mathbf{R}_A = \mathbf{3}$

$$\begin{cases} R_B = 3 \text{ ó } 4 \\ R_B \le 3 \end{cases} \Rightarrow R_B = 3 \qquad R_A = R_B = 3 < ni \qquad \text{Compatible Indet.}$$

Sistema equivalente de Cramer: $\begin{cases} -2x + y + t = 1 - z \\ x + 2y + t = -2 - z \\ x + y + t = 4 + 2z \end{cases}$ $\begin{cases} x = 1 + z \\ y = 2 + z \\ z = z \\ t = 1 \end{cases}$

EP4.32. - Dados los sistemas homogéneos encontrar los valores de los parámetros para que tengan solución distinta de la solución trivial.

Esto querrá decir que han de tener infinitas soluciones \Rightarrow han de ser indeterminados. $R_A = R_B < ni$

$$|A| = \begin{vmatrix} a & 1 & -1 \\ 1+a & 4 & 0 \\ 3+4a & 14 & 0 \end{vmatrix} = (-1) \begin{vmatrix} 1+a & 4 \\ 3+4a & 14 \end{vmatrix} = 2(a-1)$$

Casos:

i)
$$a \neq 1 \longrightarrow M_3 \neq 0 \longrightarrow R_A = R_B = 3 = ni$$
 Compatible Det. \Rightarrow Solución única trivial

ii)
$$a=1 \longrightarrow M_3 = 0 \longrightarrow R_A = R_B < 3 = ni$$
 Compatible Indet. \Rightarrow Infinitas soluciones

$$\begin{vmatrix} 4 & -2 \\ 2 & -2 \end{vmatrix} \neq 0$$
 El rango al menos es 2. Vamos a exigir que no sea 3.

Orlamos
$$M_2 \neq 0$$
 con F3- C3 $\longrightarrow M_3 = \begin{vmatrix} 4 & -2 & a \\ 2 & -2 & 1 \\ 6 & -b & 3 \end{vmatrix} = 2 \begin{vmatrix} 0 & 2 & a-2 \\ 1 & 0 & 1 \\ 0 & 6-b & 0 \end{vmatrix} = 2(2-a)(b-6)$

Orlamos
$$M_2 \neq 0$$
 con F3-C3 $\longrightarrow M_3^1 = \begin{vmatrix} 4 & -2 & a \\ 2 & -2 & 1 \\ 8 & -4 & b \end{vmatrix} = 2 \begin{vmatrix} 0 & 2 & a-2 \\ 1 & -2 & 1 \\ 0 & 4 & b-4 \end{vmatrix} = -4(b-2a)$

Ambos menores orlados de orden 3 han de valer O para que el rango no sea 3

$$(4-2a)(b-6) = 0 b-2a = 0$$

$$(4-2a)(2a-6) = 0 b = 2a$$

$$a = 2 a = 3$$

Si a = 2; b = 4 y
$$R_A$$
 = 2
$$\begin{cases} 4x - 2y + 2z = 0 \\ 2x - 2y + z = 0 \end{cases}$$
 S.C.I.
$$\begin{cases} 4x - 2y = -2z \\ 2x - 2y = -z \end{cases} \rightarrow \begin{cases} x = -\frac{1}{2}z \\ y = 0 \\ z = z \end{cases}$$

Si a = 3; b = 6 y R_A = 2
$$\begin{cases} 4x - 2y + 3z = 0 \\ 2x - 2y + z = 0 \end{cases}$$
 S.C.I.
$$\begin{cases} 4x - 2y = -3z \\ 2x - 2y = -z \end{cases}$$
 $\begin{cases} y = -\frac{1}{2}z \\ z = z \end{cases}$

EP4.33. - Discutir y resolver los sistemas según los parámetros.

Escogemos un menor de máximo orden posible:

$$\mathbf{M}_{3} = |A| = \begin{vmatrix} a & b & 1 \\ 1 & ab & 1 \\ 1 & b & a \end{vmatrix} = \begin{vmatrix} a & b & 1 \\ 1-a & ab-b & 0 \\ 1-a & 0 & a-1 \end{vmatrix} = (1-a) \begin{vmatrix} a & b & 1 \\ 1 & -b & 0 \\ 1 & 0 & -1 \end{vmatrix} = (1-a) \begin{vmatrix} a+1 & 0 & 1 \\ 1 & -b & 0 \\ 1 & 0 & -1 \end{vmatrix} = -b(1-a)(a+2)$$

Casos:

i)
$$a \neq 1, -2 \atop b \neq 0$$
 $\longrightarrow M_3 \neq 0 \longrightarrow R_A = R_B = 3 = ni$ Compatible Det. \Rightarrow Solución única $x = \frac{a-b}{(a+2)(a-1)}$ $y = \frac{ab+b-2}{b(a+2)(a-1)}$ $z = \frac{a-b}{(a+2)(a-1)}$

ii)
$$a=1$$
 $\longrightarrow M_3=0$ Sustituimos $\begin{pmatrix} 1 & b & 1 & 1 \\ 1 & b & 1 & b \\ 1 & b & 1 & 1 \end{pmatrix}$ $\longrightarrow R_A=1$ todos los menores orden 2 son 0

En la ampliada: $M_2 = \begin{vmatrix} 1 & 1 \\ 1 & b \end{vmatrix} = b - 1$

Si
$$b \neq 1 \longrightarrow M_2 \neq 0$$
 $R_A = 1 \neq R_B = 2$ Incompatible

iii)
$$a = -2 \longrightarrow M_3 = 0$$
 Sustituimos
$$\begin{pmatrix} -2 & b & 1 & 1 \\ 1 & -2b & 1 & b \\ 1 & b & -2 & 1 \end{pmatrix}$$

Elegimos un menor de orden 1 no nulo: $M_1(F1,C1) = |-2| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1 \neq \mathbf{0}$$
 con F3-C3 \longrightarrow $M_2^1 = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 3 \neq \mathbf{0}$ $R_A = 2$

Orlamos
$$M_2^1 \neq \mathbf{0}$$
 con F2-C4 $\longrightarrow M_3^1 = \begin{vmatrix} -2 & 1 & 1 \\ 1 & 1 & b \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 2+b & 1 & b \\ 0 & -2 & 1 \end{vmatrix} = -3(b+2)$

Si
$$b \neq -2 \longrightarrow M_3^1 \neq 0$$
 $R_A = 2 \neq R_B = 3$ Incompatible

Si
$$b = -2 \longrightarrow \begin{pmatrix} -2 & -2 & 1 & 1 \\ 1 & 4 & 1 & -2 \\ 1 & -2 & -2 & 1 \end{pmatrix}$$
 $M_3^1 = \mathbf{0}$ $R_A = R_B = 2 < ni$ C. Indet. \Rightarrow Infinitas sol.

$$\begin{cases}
-2x + z = 1 + 2y \\
x - 2z = 1 + 2y
\end{cases} \begin{cases}
x = -1 - 2y \\
y = y \\
z = -1 - 2y
\end{cases}$$

iv)
$$b = 0 \longrightarrow M_3 = 0$$
 Sustituimos $\begin{pmatrix} a & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & a & 1 \end{pmatrix}$

Elegimos un menor de orden 1 no nulo: $M_1^1(F3,C1) = |1| \neq 0 \implies R_A \geq 1$

Orlamos
$$M_1^1 \neq \mathbf{0}$$
 con F3-C3 \longrightarrow $M_2^2 = \begin{vmatrix} 1 & 1 \\ 1 & a \end{vmatrix} = a - 1$

Si
$$a \neq 1 \longrightarrow M_2^2 \neq 0$$
 $R_A = 2$

Orlamos
$$M_2^2 \neq \mathbf{0}$$
 con F1-C4 $\longrightarrow M_3^2 = \begin{vmatrix} a & 1 & 1 \\ 1 & 1 & 0 \\ 1 & a & 1 \end{vmatrix} = \begin{vmatrix} a & 1 & 1 \\ 1 & 1 & 0 \\ 1-a & a-1 & 0 \end{vmatrix} = 2(a-1) \neq \mathbf{0}$ $R_B = 3$

$$R_A = 2 \neq R_B = 3$$
 Incompatible

Si $a=1 \longrightarrow$ ya estudiado en ii)

b)
$$\begin{cases} ax + ay = 1 & ni = 2 \\ bx + by = 1 & A (3x2) \to R_A \le 2 \\ cx + cy = 1 & A/B (3x3) \to R_B \le 3 \end{cases} \begin{pmatrix} a & a & 1 \\ b & b & 1 \\ c & c & 1 \end{pmatrix}$$
 C1=C2

- i) Caso trivial a=b=c=0 Incompatible
- ii) a ó b ó c no nulos $\Rightarrow R_A = 1$

Si a=b=c
$$\Rightarrow R_B = 1$$
 Comp. Indeterm.

En cualquier otro caso Incompatible

c)
$$\begin{cases} x + y + z = a & ni = 3 \\ x + y + z = b & R_A \le 3 \\ x + y + z = c & R_B \le 3 \end{cases} \begin{pmatrix} 1 & 1 & 1 & a \\ 1 & 1 & 1 & b \\ 1 & 1 & 1 & c \end{pmatrix} \rightarrow R_A = 1 \rightarrow \begin{cases} a = b = c & \rightarrow R_B = 1 \\ \text{en cualquier otro caso} & R_B = 2 \end{cases}$$

 $\begin{cases} \text{Si } a = b = c & \rightarrow & R_A = R_B = 1 < ni & \rightarrow & \textbf{\textit{C.Ind.}} \\ \text{en cualquier otro caso} & R_A \neq R_B & \rightarrow & \textbf{Incomp.} \end{cases}$