3: Functional paradigm (II)

Programming Languages, Technologies and **Paradigms**

Introduction to Functional Programming

PART I: Types in Functional Programming

- 1. Functional types. Algebraic types.
- 2. Predefined types.
- 3. Polymorphism: genericity, overloading and coercion. Inheritance in Haskell.

PART II: Models of computation in functional programming.

Operational model.

PART III: Advanced features

- 5. Anonymous functions and composition.
- 6. Iterators and compressors (foldl, foldr).

Operational model

- A functional program consists of:
 - A list of equations defining functions (possibly with additional equations defining types)
 - An initial expression (without free variables)
- The execution of a functional program consists of the evaluation of the initial expression
- The evaluation itself consists of a sequence of reduction steps

Operational model

- We use the notion of *substitution* to formalize the parameter passing as a matching from the expression to be evaluated against the (left-hand side of) equation *l=r* which is used in the reduction step.
- A substitution σ is a mapping from variables into expressions such that $\sigma(x) \neq x$ holds for a finite set of variables.
- Substitutions are then represented by just giving the non-trivial bindings $\{x_1 \rightarrow t_1, ..., x_n \rightarrow t_n\}$ with $x_i \neq t_i$. Example: $\sigma = \{x \rightarrow 1, y \rightarrow 0\}$ is a substitution
- The identity or 'empty' substitution is denoted by ϵ

Operational model

• The application $\sigma(e)$ of a substitution σ to an expression e is called instantiation

Example 1: Example 2
$$\sigma = \{x \rightarrow 1, y \rightarrow 0\} \qquad \sigma = \{x \rightarrow s(y), y \rightarrow 0\}$$

$$e = f(x,g(y)) \qquad e = f(x,y)$$

$$\sigma(e) = f(1,g(0)) \qquad \sigma(e) = f(s(y),0)$$

- A redex is an instance σ(I) of a left-hand side I of an equation I = r
 (or I | c = r for conditional equations)
- The expression e reduces to e' if:
 - It contains a redex $\sigma(I)$ of an equation $I \mid c = r$
 - The condition c holds (i.e., it reduces to True) after applying σ to it
 - e' is obtained as the replacement of $\sigma(I)$ by $\sigma(r)$ in e
- Expressions that cannot be further reduced are called normal forms

Example:

```
\underline{\text{sixtimes 1}} \rightarrow \text{double (triple 1)}
```

Redex

Equation:

sixtimes x = double (triple x)

Substitution:

Example:

Redex

```
\underline{\text{sixtimes 1}} → double (\underline{\text{triple 1}}) → double (3*1)
```

Equation:

triple
$$y = 3 * y$$

Substitution:

Example:

```
sixtimes 1 → double (triple 1)

→ double (3*1)

→ double 3
```

Equation:

predefined: product

Example:

```
sixtimes 1 → double (triple 1)

→ double (3*1)

→ double 3

→ 3+3

Redex

Equation:

double x = x+x

Substitution:

\{x\rightarrow 3\}
```

Example:

```
sixtimes 1 → double (triple 1)

→ double (3*1)

→ double 3

→ 3+3

→ 6

Redex
```

Equation:

predefined: addition

Example:

```
sixtimes 1 → double (triple 1)

→ double (3*1)

→ double 3

→ 3+3

→ 6
```

Normal form

Functional Program

List of equations: add 0 x = x add (S x) y = S (add x y)Initial Expression: add (add 0 0) 0

Functional Program

Functional Program

Does the chosen redex match the left-hand side of an equation by means of some substitution?

Functional Program

Functional Program

Evaluation

 The evaluation of an expression proceeds by applying successive reduction steps until a normal form is reached

Evaluation

- The evaluation of an expression proceeds by applying succesive reduction steps until a normal form is reached
- The final result may depend on the selected reduction strategy

Evaluation modes

□ Given a function call:

$$f e_1 \cdots e_k$$

We can distinguish two essential evaluation modes:

- Eager evaluation
- Lazy evaluation

Evaluation modes

■ Eager evaluation (call-by-value): first evaluate the arguments; then use an equation defining the function f

```
sixtimes 1 → double (triple 1)

→ double (3*1)

→ double 3

→ 3+3

→ 6
```

Evaluation modes

 Lazy evaluation (call-by-name): the arguments are evaluated only if this is necessary to apply some of the equations defining f

```
\frac{\text{sixtimes 1}}{\Rightarrow} \quad \frac{\text{double (triple 1)}}{\Rightarrow} \\
\frac{\text{(triple 1)}}{\Rightarrow} + \text{(triple 1)} \\
\frac{3*1}{\Rightarrow} + \text{(triple 1)} \\
\frac{3}{\Rightarrow} + \frac{3*1}{\Rightarrow} \\
\frac{3+3}{\Rightarrow} \\
\frac{3+3}{
```

Evaluation Modes

Which strategy is more efficient?

It depends on the program!

Sometimes eager evaluation is more efficient than lazy evaluation

Evaluation Modes

Which strategy is more efficient?

It depends on the program!

Sometimes lazy evaluation is more efficient than eager evaluation

Evaluation Modes

Which strategy is more efficient?

It depends on the program!

Sometimes lazy evaluation is as efficient as eager evaluation

Possible outcomes of the evaluation process:

- \square The evaluation process can be:
 - Successful: it terminates and yields a value

sixtimes $1 \rightarrow 6$

- \square The evaluation process can be:
 - Successful: it terminates and yields a value
 - □ Failed: it terminates but no value is obtained

tail(x:xs) = xs

The expression

tail []

is a **normal form** but it is not a value.

- \square The evaluation process can be:
 - Successful: it terminates and yields a value
 - Failed: it terminates but no value is obtained
 - Incomplete: it does not terminate

```
loop = loop
```

mult 0 x = 0

An incomplete evaluation sequence:

mult 0 loop \rightarrow mult 0 loop $\rightarrow \cdots$

Lazy evaluation

With lazy evaluation we can avoid nontermination

mult
$$0 x = 0$$

mult
$$0 loop \rightarrow 0$$

Lazy evaluation

 With lazy evaluation we can deal with infinite data structures

```
from n = n:from (n+1)

sel 0 (x:xs) = x

sel n (x:xs) = sel (n-1) xs
```

The expression **from 0** denotes an infinite list containing all natural numbers

Lazy evaluation

```
sel 1 (\underline{\text{from 0}})

⇒ \underline{\text{sel 1 (0:from (0+1))}}

⇒ \underline{\text{sel (1-1) (from (0+1))}}

⇒ \underline{\text{sel 0 (from (0+1))}}

⇒ \underline{\text{sel 0 ((0+1):from (0+1+1))}}

⇒ \underline{\text{0+1}}

⇒ 1
```

With lazy evaluation we can evaluate expressions involving infinite values

Exercise

Indicate the reduction sequence of the expression:

inorder [2,6,1]

with both lazy and eager evaluation