LINEAR ALGEBRA FOR AI/ML

JIAUL PAIK

Principal Component Analysis (PCA)

Data Reduction

• Summarization of data with many (p) variables by a smaller set of (k) derived (latent, composite) variables.

Data Presentation: Key questions?

- Do we need a all n-dimension space to view data?
- Better presentation (new axes) than original axes?
- How to find the 'best' low dimension space that conveys maximum useful information?
- One answer: Find "Principal Components"

Principal Components

 All principal components (PCs) start at the origin

First PC is direction of maximum variance

 Subsequent PCs are orthogonal to 1st PC and describe maximum residual variance

The Goal

Summarize the underlying variance-covariance structure of a large set of variables through a few linear combinations of these variables.

Trick: Rotate Coordinate Axes

- Suppose we have p features x₁,...,x_p.
- Our goal is to develop a new set of p axes (linear combinations of the original p axes) in the directions of greatest variability:
- This is accomplished by rotating the axes.

Principal Component Analysis (PCA)

- Takes a data matrix of n objects by p variables
- Variables may be correlated, and summarizes it by uncorrelated axes
 - That are linear combinations of the original p variables
 - The first k components display as much as possible of the variation among objects.

Geometric Rationale of PCA

- Objects are points in a multidimensional space with an axis for each of the p variables
- The centroid of the points is defined by the mean of each variable
- The variance of each variable is the average squared deviation of its *n* values around the mean of that variable.

$$V_{i} = \frac{1}{n-1} \sum_{m=1}^{n} (X_{im} - \overline{X}_{i})^{2}$$

Geometric Rationale of PCA

 Covariance: degree to which the variables are linearly correlated to each other

Generalization to p-dimensions

- The algebra for finding principal axes readily generalizes to p variables
 - PC 1 is the direction of maximum variance in the p-dimension
 - PC 2 is in the direction of the next highest variance, subject to the constraint that it has zero covariance with PC 1.
 - PC 3 is in the direction of the next highest variance, subject to the constraint that it has zero covariance with both PC 1 and PC 2
 - and so on... up to PC p

Covariance: An Important Issue

- Covariance among variables makes sense if they are measured in the same units
 - variables with high variances will dominate the principal components
- It is avoided by standardizing each variable to unit variance and zero mean.

$$X_{im}' = \frac{\left(X_{im} - \overline{X_i}\right)^{\text{Mean variable } i}}{\text{SD}_i}$$
 Standard deviation of variable i

Covariance vs Correlation

- Covariances between the standardized variables are correlations
- After standardization, each variable has a variance of 1
- Correlations can be also calculated from the variances and covariances:

Correlation co-eff.
$$r_{ij} = \frac{C_{ij}}{\sqrt{V_i V_j}}$$
 Variance of variables of variables of variables variables.

• First step is to calculate the matrix of variances and covariances (or correlations) among every pair of the *p* variables

Square, symmetric matrix

• Diagonals are the variances, off-diagonals are the co-variances.

Variance-covariance Matrix

In matrix notation, this is computed as (assuming you have zero mean matrix)

$$S = X^T X$$

where X is the n x p data matrix, with each variable centered

Variance-covariance Matrix

• Sum of the diagonals of the variance-covariance matrix is called the trace

• It represents the total variance in the data

Trace = 12.9091

- Finding the principal axes involves Eigen analysis of the covariance matrix (S)
- The eigenvalues of S are solutions (λ) to the characteristic equation

$$|\mathbf{S} - \lambda \mathbf{I}| = 0$$

• The eigenvalues, λ_1 , λ_2 , ... λ_p are the variances of the coordinates on each principal component axis

 The sum of all p eigenvalues equals the trace of S (the sum of the variances of the original variables).

$$\lambda_1 = 9.8783$$

 $\lambda_2 = 3.0308$

Note: $\lambda_1 + \lambda_2 = 12.9091$

Trace = 12.9091

- Each eigenvector consists of p values which represent the "contribution" of each variable to the principal component axis
- Eigenvectors are uncorrelated (orthogonal)
 - their dot-products are zero.

Projecting Data to Lower Dimension

Projecting Data to Lower Dimension

Contribution of Principal Component

 $\lambda_1 = 9.8783$ $\lambda_2 = 3.0308$ Trace = 12.9091

PC 1 displays

9.8783/12.9091 = 76.5% of the total variance

PCA: Running Example

$$(v - v_{mean})/sd(v)$$

_	_	Zero Mean Data	
Raw Data		X	V
X	У	0.69	0.49
2.5	2.4		
0.5	0.7	-1.31	-1.21
2.2	2.9	0.39	0.99
1.9	2.2	0.09	0.29
3.1	3.0	1.29	1.09
2.3	2.7	0.49	0.79
2.0	1.6	0.19	-0.31
1.0	1.1	-0.81	-0.81
1.5	1.6	-0.31	-0.31
1.1	0.9	-0.01	-0.01
		-0.71	-1.01

Calculate the covariance matrix

```
cov = .616555556 .61544444
.615444444 .716555556
```

• Calculate the eigenvectors and eigenvalues of the covariance matrix

• Reduce dimensionality and form feature vector

the eigenvector with the *highest* eigenvalue is the *principle component* of the data set.

- Once eigenvectors are found from the covariance matrix, the next step is to
 - order them by eigenvalue, highest to lowest.
 - this gives you the components in order of significance.

• Feature Vector: Feature Vector = (eig₁ eig₂ eig₃ ... eig_n)

We can either form a feature vector with both of the eigenvectors:

or, we can choose to leave out the smaller, less significant component and only have a single column:

Final Data

X	У
=========	=======
827970186	175115307
1.77758033	.142857227
992197494	.384374989
274210416	.130417207
-1.67580142	209498461
912949103	.175282444
.0991094375	349824698
1.14457216	.0464172582
.438046137	.0177646297
1.22382056	162675287

How many axes are needed?

• Does the $(k+1)^{th}$ principal axis represent more variance than would be expected by chance?

 A common "rule of thumb" when PCA is based on correlations is that axes with eigenvalues > 1 are worth interpreting

What are the assumptions of PCA?

- Assumes relationships among variables are linear
 - Points in p-dimensional space has linear dimensions that can be effectively summarized by the principal axes

• If the structure in the data is non-linear, the principal axes will not be an efficient and informative summary of the data.

