SQL

Naoko Ishibashi

2025-02-02

library(sqldf)

Loading required package: gsubfn

Loading required package: proto

Loading required package: RSQLite

library(ggplot2)

- # 職業別雇用統計データを使用します
- # ファイルはかなり大きいです (N > 430,000)
- # 詳細は以下をご参照ください
- # http://www.bls.gov/oes/current/oes_stru.htm
- # データセットの最初の数行を確認します

setwd("~/Dropbox/DATA4010/week7/Homework")

read.table("oesm.csv", sep=";", header = TRUE, fill = TRUE, nrows = 5)

	area_title <chr></chr>		nai <int></int>	naics_title <chr></chr>
99	U.S.	1	0	Cross-industry
99	U.S.	1	0	Cross-industry
3100003	Northeastern Nebraska nonmetropolitan area	6	0	Cross-industry
42540	ScrantonWilkes-Barre, PA	4	0	Cross-industry
25620	Hattiesburg, MS	4	0	Cross-industry
5 rows 1-	-6 of 30 columns			

- # SQL処理を開始します。まず新しいデータベースを作成し、
- # 次にテーブルを追加します

```
# 1. 'conemp' という名前の新しいデータベースを作成してSQL処理を開始します
# その後、'oesm' というテーブルを追加します
# (ベストプラクティスとして、すでに 'oesm' テーブルが存在する場合は削除するために
# if 文を使用します)
 # SQLiteデータベースに接続し、'conemp'というデータベースを作成
 conemp <- dbConnect(SQLite(), dbname = "oesm.dv")</pre>
 # 'oesm' テーブルがすでに存在する場合は削除
 if (dbExistsTable(conemp, "oesm"))
   dbRemoveTable(conemp, "oesm")
 # データを 'oesm' テーブルに書き込み
 dbWriteTable(
   conemp,
   "oesm",
   "oesm.csv",
   sep = ";",
   header = TRUE,
   row_names = FALSE
 # データベース接続を切断
 dbDisconnect(conemp)
}
```

	area_title <chr></chr>	area_type <int></int>	nai <int></int>	
99	U.S.	1	0	Cros
99	U.S.	1	0	Cros
3100003	Northeastern Nebraska nonmetropolitan area	6	0	Cros
42540	ScrantonWilkes-Barre, PA	4	0	Cros
25620	Hattiesburg, MS	4	0	Cros
3700002	Other North Carolina nonmetropolitan area	6	0	Cros
35620	New York-Northern New Jersey-Long Island, NY-NJ-PA	4	0	Cros
3700003	Western Central North Carolina nonmetropolitan area	6	0	Cros
2900002	North Missouri nonmetropolitan area	6	0	Cros
23540	Gainesville, FL	4	0	Cros

1-10 of 10 rows | 1-5 of 30 columns

```
dbClearResult(res) # 結果セットをクリア
```

Warning: Column `h_mean`: mixed type, first seen values of type real, coercing
other values of type string

occtitle <chr></chr>		h_mean <dbl></dbl>
Architecture and Engineering Occupations		29.79
Architecture and Engineering Occupations		34.38
Architecture and Engineering Occupations		26.96
Architecture and Engineering Occupations		40.83
Architecture and Engineering Occupations		42.28
Architecture and Engineering Occupations		30.18
Architecture and Engineering Occupations		31.44
Architecture and Engineering Occupations		28.22
Architecture and Engineering Occupations		30.24
Architecture and Engineering Occupations		32.42
1-10 of 10,000 rows 1-2 of 3 columns	Previous 1 2 3 4 5	6 1000 Next

dbClearResult(res) # 結果セットをクリア

```
# 4. 変数 'naics' のユニークな値をすべて表示します

status <- dbSendQuery(conemp1, "

SELECT DISTINCT naics
FROM oesm")

fetch(status, n = -1) # 全てのユニークな値を取得
```

Warning: Column `naics`: mixed type, first seen values of type integer,
coercing other values of type string

1-10 of 470 rows	211000 Previous 1 2 3 4 5 6 47 Next
	21
	115200
	115100
	115000
	113300
	113000
	11
	1
	0
	naics <int></int>

dbClearResult(status) # 結果セットをクリア

year <int></int>	COUNT(*) <int></int>
2014	435004
2015	439942
2 rows	

dbClearResult(res2) # 結果セットをクリア

MIN(a_mean) <int></int>	MAX(a_mean) <int></int>
16600	277420
16740	286460
2 rows	

dbClearResult(res) # 結果セットをクリア

```
# 7. 同じデータベースから新しいテーブルを作成します
# このテーブルには 'occcode' と 'occtitle' のユニークな値を含めます

# すでに "New_oesm" テーブルが存在する場合は削除
if(dbExistsTable(conemp1, "New_oesm")) dbRemoveTable(conemp1, "New_oesm")

# ユニークな値を含む新しいテーブル "New_oesm" を作成
distinct <- dbSendQuery(conemp1, "

CREATE TABLE New_oesm AS
SELECT DISTINCT occcode, occtitle
FROM oesm
")

dbClearResult(distinct) # 結果セットをクリア
```

```
# 8. 新しいSQLスキルを活用して、いずれかのテーブルから情報を抽出し、
# 抽出データを用いて任意の視覚化を作成します。
# また、可視化に関するコメントを1~2文で記述します。
# データの内容を確認するためのクエリ作成
# 従業員総数と年収中央値($250,000以上)の関係を調査
res <- dbSendQuery(conemp1, "</pre>
                  SELECT tot_emp, a_mean
                  FROM oesm
                  WHERE (a_mean IS NOT 'NA')
                   AND (a_mean IS NOT '#')
                   AND (a_mean != '')
                   AND (a_{mean} > 250000)
                   AND (tot_emp IS NOT 'NA')
# fetch 関数でデータを抽出
htemp \leftarrow fetch(res, n = -1)
htemp$tot_emp <- as.numeric(htemp$tot_emp) # 数値型に変換
# ggplotで散布図を作成
ggplot(data=htemp) +
 geom_point(mapping=aes(y=tot_emp, x=a_mean)) +
 scale_y\_continuous(breaks = c(0,500,1000))
```


##-----

8. 分析

##----

- # 調査結果から、中央値年収が\$250,000から\$260,000の範囲である企業の多くは
- # およそ1000人の従業員を抱えていることがわかりました。
- # 一方で、巨大企業では年収中央値が\$275,000から\$268,000の範囲に収まる傾向が見られます。