Appendix. Online Supplement

A. Detailed Results of IRMS under the Time Limit $\hat{t} = 7200$ Seconds

Table 1 summarizes the detailed results of IRMS under a long time limit $\hat{t}=3600$ seconds. In Table 1, columns 1-3 describe for each instance its name (Instance), K value, and best known value (BKV) reported in the literature, respectively. Columns 4-6 report the results of IRMS, including the best result (i.e., \hat{f}) found during 30 runs, the average result (i.e., \bar{f}), and average computation time (i.e., \bar{t}) at each run. From it, we observe that IRMS also performs excellent performance. In particular, it finds new upper bounds for nine instances, and matches previous best-known upper bounds on 23 instances.

Table 1 Results of IRMS on Synthetic and Real-world Benchmarks under $\hat{t}=7200$ Seconds

			IRMS				
Instance	K	BKV	\hat{f}	$ar{f}$	\bar{t}		
BA500	50	195*	195	195.0	0.0		
BA1000	75	558*	558	558.0	1.5		
BA2500	100	3704*	3704	3704.0	4.5		
BA5000	150	10196*	10196	10196.0	18.8		
ER235	50	295	295	295.0	7.9		
ER466	80	1524	$\bf 1524$	1524.0	79.2		
ER941	140	5012	$\boldsymbol{5012}$	5023.3	1817.8		
ER2344	200	902498	918952	941170.2	5673.8		
FF250	50	194*	194	194.0	0.0		
FF500	110	257*	257	257.0	0.7		
FF1000	150	1260*	1260	1260.0	18.5		
FF2000	200	4545*	4545	4545.0	264.2		
WS250	70	3083	3083	3132.7	4127.2		
WS500	125	2072	2072	2078.1	813.2		
WS1000	200	109677	137766	144237.3	3149.4		
WS1500	265	13098	13098	13103.4	2461.6		
Bovine	3	268	268	268.0	0.0		
Circuit	25	2099	2099	2099.0	1.3		
Ecoli	15	806	806	806.0	0.0		
USAir97	33	4336	4336	4596.0	1452.8		
HumanDi	52	1115	1115	1115.0	1.5		
TreniR	26	918	918	918.0	1.3		
EU_fli	119	348268	348268	348268.0	749.4		
openfli	186	26783	26875	28363.8	4400.1		
yeast1	202	1412	1412	1412.0	34.0		
H1000	100	306349	306349	308345.0	3561.5		
H2000	200	1242739	1236887*	1250761.8	5352.7		
H3000a	300	2840690	2799868*	2840491.0	6055.2		
H3000b	300	2837584	2794262*	2821455.9	6184.0		
H3000c	300	2835369	2783248*	2825113.4	6682.2		
H3000d	300	2828492	2802615*	2838392.3	5612.8		
H3000e	300	2843000	2798688*	2841275.9	5836.7		
H4000	400	5038611	4977344*	5074711.6	5894.7		
H5000	500	7964765	7956481*	8058861.6	6062.2		
powergr Oclinks	$\frac{494}{190}$	15862 611253	15863	15870.8	5764.8 1494.1		
faceboo	404	420334	614467 705403	614467.0 723233.5	5915.9		
	-						
grqc	524 988	$\frac{13591}{106276}$	13590 * 110352	13598.0 114505.1	5945.4 6367.1		
hepth	$\frac{988}{1201}$	6155877	9309386	9543464.4	5009.6		
hepph	1877	53963375	9309386 56849750	9543464.4 57688316.6	5149.1		
astroph condmat	2313	2298596	9359852	10415923.6	5149.1 4155.8		
Condinat	2313	2290090	9509602	10410923.0	4100.8		

 $^{^{\}ast}$ Optimal results obtained by branch-and-cut algorithm within 5 days.

* Improved best upper bounds.

B. Detailed Results of CEMCNP under the Time Limit $\hat{t} = 3600$ Seconds

Since the source code of CEMCNP is not available to us, we have re-implemented it according its pseudo code. Detailed comparison between our implemented CEMCNP algorithm and reported CEMCNP algorithm are summarized in Table 2. From it, we observe that our implemented CEMCNP algorithm performs slightly worse performance than the reported results on most of instances. However, some reported results are obtained under a longer computation time than the time limit. For example, at least 4000 seconds are required to achieve the results of H3000e, hepth, hepph and condmat. It is worthy noting that for some instances (e.g, grqc, hepth and condmat), our implemented CEMCNP algorithm achieves better performance than the original version.

Table 2 Detailed Results of CEMCNP on Synthetic and Real-world Benchmarks under $\hat{t}=3600$ Seconds

			Reported 1	Results	Implemented Results		
Instance	K	BKV	\hat{f}	\overline{t}	\hat{f}	\overline{f}	\overline{t}
BA500	50	195	195	0.0	195	195.0	0.0
BA1000	75	558	558	0.2	558	558.0	54.0
BA2500	100	3704	3704	0.2	3704	3704.0	347.3
BA5000	150	10196	10196	1.8	10196	10196.0	9.6
ER235	50	295	295	19.8	297	302.8	0.0
ER466	80	1524	$\bf 1524$	98.4	1569	1630.6	1.7
ER941	140	5012	$\boldsymbol{5012}$	694.6	5363	5635.3	2.7
ER2344	200	902498	912346	3069.0	1012527	1060618.6	847.9
FF250	50	194	194	0.3	194	194.0	178.2
FF500	110	257	257	0.2	257	258.6	0.3
FF1000	150	1260	1260	120.6	1260	1260.0	1080.9
FF2000	200	4545	4545	486.4	4546	4552.5	1458.1
WS250	70	3083	3083	623.1	4203°	5447.9	0.5
WS500	125	2072	2072	105.8	2085	2193.0	153.7
WS1000	200	109677	109935	1256.2	154899	169877.2	19.3
WS1500	265	13098	13098	658.2	13664	27810.6	108.0
Bovine	3	268	268	0.0	268	268.0	0.0
Circuit	25	2099	2099	0.1	2101	2188.7	0.1
Ecoli	15	806	806	0.0	806	808.8	0.1
USAir97	33	4336	4336	856.4	4336	5149.5	0.1
HumanDi	52	1115	1115	0.5	1115	1115.0	319.9
TreniR	26	918	918	0.2	918	918.0	10.9
EU_fli	119	348268	348325	431.6	350762	357502.7	89.5
openfli	186	26783	26796	3165.8	29481	31377.7	86.4
yeast1	202	1412	1412	9.8	1412	1414.3	1085.8
H1000	100	306349	307113	1068.4	330493	337217.0	211.4
H2000	200	1242739	1245637	1527.2	1324988	1344914.2	126.4
H3000a	300	2840690	2842695	1204.3	2962661	3042695.4	165.2
H3000b	300	2837584	2840867	2040.0	2968601	3035272.7	438.0
H3000c	300	2835369	2831643	2159.3	2956916	3008793.3	903.6
H3000d	300	2828492	2830284	3895.2°	2967747	3030236.3	51.6
H3000e	300	2843000	2846536	4035.6°	3012046	3043889.5	25.9
H4000	400	5038611	5096437	1563.7	5261850	5383301.3	347.5
H5000	500	7964765	8007638	2024.1	8206499	8348589.5	696.5
powergr	494	15862	15906	856.7	15965	16084.9	3393.5
Oclinks	190	611253	615467	267.8	622237	626701.5	836.1
faceboo	404	420334	589763	3526.9	794938	857245.1	685.4
grqc	524	13591	13743	1025.0	13666	13701.7	3391.1
hepth	988	106276	115309	4521.4°	109504	111495.6	1602.3
hepph	1201	6155877	7556094	4025.1°	8464199	10530358.9	3513.9
astroph	1877	53963375	57895042	3105.2	59476077	60449655.3	3512.9
condmat	2313	2298596	7658643	4203.5°	3756761	4632078.6	3555.9

 $^{^{\}circ}$ indicates a longer computation time than 3600 seconds.

C. TarjanInComponent Procedure

Algorithm 1 realizes the TarjanInComponent procedure used in the articulation point impact strategy. It starts the search from a root node, and recursively builds a depth first search (DFS) tree. During DFS phase, all articulation points are identified. Once all nodes are visited, the evaluation of all nodes is finished.

Algorithm 1 Pseudo Code of TarjanInComponent Procedure

```
Input: A large connected component C, root node x, time stamp Count, \gamma and \eta
1: dfn[x] \leftarrow + + Count
2: low[x] \leftarrow dfn[x]
```

```
3: for each neighbour w of x in C do
       if w has not been visited then
          TarjanInComponent(C, w, Count, \gamma, \eta)
 5:
          low[x] \leftarrow min\{low[x], low[w]\}
 6:
          //w is not the parent of v
          if dfn[x] < dfn[w] then
 7:
             \gamma[x] + = \gamma[w]
 8:
          end if
9:
10:
          if dfn[x] < low[w] then
              The number of x's subtrees increases one
11:
              if x is not the root node then
12:
                 x is marked as an articulation point
13:
                 \eta[x] + = \gamma[w]
14:
                 \psi[x] + = \frac{\gamma[w](\gamma[w] - 1)}{2}
15:
16:
17:
                 if x is the root \wedge x has more than one subtree then
18:
                    x is marked as an articulation point
                 end if
19:
              end if
20:
          end if
21:
22:
       else
          low[x] \leftarrow min\{low[x], dfn[w]\}
23:
24:
       end if
```

25: end for