		Calcol	o integrale —	Scheda di esercizi n. 5
12	Aprile	2022 —	- Compito n.	$00206 - \square \square \blacksquare \blacksquare \square \square \blacksquare \blacksquare \square$
			(T. 1 - T.)	

Istruzioni: le prime due caselle (V / F)permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \boxtimes).

Nome:				
Cognome:				
Cognome.				
Matricola:				

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

- 1) Dire se le seguenti affermazioni sono vere o false
- 1A) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = 4x^2 - 6x + 5$ non è integrabile. 1B) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione f(x) = |x - 2| non è integrabile.
- **1C)** La funzione $f(x) = \frac{x+4}{x-3}$ è integrabile su ogni
- intervallo chiuso e limitato di \mathbb{R} . **1D)** La funzione $f(x) = \frac{x^2 16}{x 4}$ è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .
- **2**) Sia

$$F(t) = \int_0^t t e^{-2x^4} dx.$$

- **2A)** La funzione F(t) non è derivabile per ogni tin \mathbb{R} .
- **2B)** Si ha F'(0) = 0.
- **2C)** La funzione F(t) è una funzione pari.
- **2D)** La funzione F(t) è crescente per t > 0.

- 3) Dire se le seguenti affermazioni sono vere o false
- **3A)** La funzione $x^3 \sin(x^4)$ si integra per sostituzione.
- **3B)** La funzione $x^6 \sin(x)$ si integra per sostituzione.
- **3C)** La funzione $x^{13} \sin(x^2)$ si integra per parti prima, e per sostituzione poi.
- **3D)** La funzione $f(x) = x^{12} \arctan(x)$ si integra per sostituzione prima, e per parti poi.
- 4) Dire se le seguenti affermazioni sono vere o false
- **4A)** Si ha

$$\int_{2}^{23} \frac{dx}{x} = \ln\left(\frac{2}{23}\right).$$

4B) Si ha

$$\int_{42}^{48} \frac{dx}{x-6} = \ln\left(\frac{7}{6}\right).$$

4C) Si ha

$$\int_{8}^{14} \frac{dx}{6-x} = -\ln(4).$$

4D) Si ha

$$\int_0^1 \frac{dx}{3x - 14} = \ln\left(\frac{11}{14}\right).$$

5)

a1) - a2) Trovare una primitiva di
$$f(x) = \frac{1}{x^2 - 6x + 9}$$
 e calcolare $\int_4^5 f(x) \, dx$.

b1) - b2) Trovare una primitiva di
$$g(x) = \frac{1}{x^2 - 11x + 28}$$
 e calcolare $\int_8^9 g(x) dx$

b1) - b2) Trovare una primitiva di
$$g(x) = \frac{1}{x^2 - 11x + 28}$$
 e calcolare $\int_8^9 g(x) \, dx$.

c1) - c2) Trovare una primitiva di $h(x) = \frac{1}{x^2 - 12x + 72}$ e calcolare $\int_6^{12} h(x) \, dx$.

d1) - d2) Trovare una primitiva di $k(x) = \frac{2x - 14}{x^2 - 15x + 54}$ e di $j(x) = \frac{x^3}{4 + x^2}$.

d1) - **d2)** Trovare una primitiva di
$$k(x) = \frac{2x - 14}{x^2 - 15x + 54}$$
 e di $j(x) = \frac{x^3}{4 + x^2}$.

6) Trovare le primitive di

a1)
$$x e^{4x}$$
, **a2)** $e^x \sin(4x)$, **b1)** $\sin^2(2x)$, **b2)** $\cos^3(5x)$,

c1)
$$(2x+9)e^x$$
, **c2)** $(7x^2-2x+2)e^x$, **d1)** $x^6 \ln(5x)$, **d2)** $4x \arctan(2x)$.

Soluzioni del compito 00206

1) Dire se le seguenti affermazioni sono vere o false

1A) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = 4x^2 - 6x + 5$ non è integrabile. **Falso:** Dal momento che la funzione $f(x) = 4x^2 - 6x + 5$ è una funzione continua, è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .

1B) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione f(x) = |x-2| non è integrabile.

Falso: Dal momento che la funzione f(x) = |x - 2| è una funzione continua, è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .

1C) La funzione $f(x) = \frac{x+4}{x-3}$ è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .

Falso: Dal momento che la funzione è illimtata (sia superiormente che inferiormente) in ogni intervallo chiuso e limitato che contenga x=3 al suo interno (ad esempio: l'intervallo [2,4]), la funzione non è integrabile su tali intervalli.

1D) La funzione $f(x) = \frac{x^2 - 16}{x - 4}$ è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .

Vero: Dal momento che $x^2 - 16 = (x - 4)(x + 4)$, si ha, se $x \neq 4$,

$$f(x) = \frac{x^2 - 16}{x - 4} = \frac{(x - 4)(x + 4)}{x - 4} = x + 4.$$

Ne consegue che la funzione f(x) coincide, in tutti punti tranne x=4, con la funzione continua g(x)=x+4, che è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} ; dunque, anche la funzione f(x) è integrabile su tali intervalli.

$$F(t) = \int_0^t t e^{-2x^4} dx.$$

2A) La funzione F(t) non è derivabile per ogni t in \mathbb{R} .

Falso: Dal momento che la funzione $f(x) = x e^{-2x^4}$ è una funzione continua, per il teorema fondamentale del calcolo integrale la funzione F(t) è derivabile, e si ha

$$F'(t) = f(t) = t e^{-2t^4} \quad \forall t \in \mathbb{R}.$$

2B) Si ha F'(0) = 0.

Vero: Dato che $F'(t) = t e^{-2t^4}$ (si veda la domanda 2A), si ha F'(0) = 0.

2C) La funzione F(t) è una funzione pari.

Vero: Dal momento che la funzione $f(x) = x e^{-2x^4}$ è una funzione dispari, la funzione F(t) è una funzione pari. Infatti,

$$F(-t) = \int_0^{-t} x e^{-2x^4} dx = \begin{bmatrix} y = -x \\ dy = -dx \end{bmatrix} = -\int_0^t (-y) e^{-2(-y)^4} dy = \int_0^t y e^{-2y^4} dy = F(t).$$

2D) La funzione F(t) è crescente per $t \geq 0$.

Vero: Dato che $F'(t) = t e^{-2t^4}$ (si veda la domanda 2A), si ha $F'(t) \ge 0$ per $t \ge 0$, e quindi la funzione F(t) è crescente su tale insieme.

3A) La funzione $x^3 \sin(x^4)$ si integra per sostituzione.

Vero: Infatti, definendo $y = x^4$, da cui $dy = 4x^3 dx$, si ha

$$\int x^3 \sin(x^4) \, dx = \frac{1}{4} \int \sin(y) \, dy \,,$$

che è un integrale immediato.

3B) La funzione $x^6 \sin(x)$ si integra per sostituzione.

Falso: No, si integra per parti. Infatti, derivando il termine polinomiale x^6 e integrando la funzione trigonometrica, si ha

$$\int x^6 \sin(x) \, dx = -x^6 \cos(x) + 6 \int x^5 \cos(x) \, dx \, .$$

Il procedimento continua 5 volte, finché non si arriva ad un integrale immediato (di sin(x) o di cos(x)).

3C) La funzione $x^{13} \sin(x^2)$ si integra per parti prima, e per sostituzione poi.

Falso: No, è il contrario. Infatti, definendo $y = x^2$, da cui dy = 2x dx, si ha

$$\int x^{13} \sin(x^2) dx = \int (x^2)^6 \sin(x^2) x dx = \frac{1}{2} \int y^6 \sin(y) dy,$$

e l'ultimo integrale si svolge per parti (si veda la domanda 3B).

3D) La funzione $f(x) = x^{12} \arctan(x)$ si integra per sostituzione prima, e per parti poi.

Falso: No, è il contrario. Infatti, integrando il monomio e derivando l'arcotangente, si ha

$$\int x^{12} \arctan(x) dx = \frac{x^{13}}{13} \arctan(x) - \frac{1}{13} \int \frac{x^{13}}{1 + x^2} dx.$$

L'ultimo integrale si svolge per sostituzione, ponendo $y=1+x^2$, da cui $dy=2x\,dx$. Si ha

$$\int \frac{x^{13}}{1+x^2} dx = \int \frac{(x^2)^6}{1+x^2} x dx = \frac{1}{2} \int \frac{(y-1)^6}{y} dy,$$

e quest'ultimo integrale, dopo aver sviluppato la potenza del binomio, è la somma di 7 integrali immediati.

4A) Si ha

$$\int_{2}^{23} \frac{dx}{x} = \ln\left(\frac{2}{23}\right).$$

Falso: Infatti, si ha

$$\int_{2}^{23} \frac{dx}{x} = \ln(|x|) \Big|_{2}^{23} = \ln(23) - \ln(2) = \ln\left(\frac{23}{2}\right) \neq \ln\left(\frac{2}{23}\right).$$

4B) Si ha

$$\int_{42}^{48} \frac{dx}{x-6} = \ln\left(\frac{7}{6}\right).$$

Vero: Infatti,

$$\int_{42}^{48} \frac{dx}{x-6} = \ln(|x-6|) \Big|_{42}^{48} = \ln(42) - \ln(36) = \ln\left(\frac{7}{6}\right).$$

4C) Si ha

$$\int_{8}^{14} \frac{dx}{6-x} = -\ln(4).$$

Vero: Infatti,

$$\int_{8}^{14} \frac{dx}{6-x} = -\int_{8}^{14} \frac{dx}{x-6} = -\ln(|x-6|) \Big|_{8}^{14} = -\ln(8) + \ln(2) = -\ln(4).$$

4D) Si ha

$$\int_0^1 \frac{dx}{3x - 14} = \ln\left(\frac{11}{14}\right).$$

Falso: Infatti, con la sostituzione y = 3x - 14, da cui dy = 3 dx, si ha

$$\int_0^1 \frac{dx}{3\,x-14} = \frac{1}{3} \int_{-14}^{-11} \frac{dy}{y} = \frac{\ln(|y|)}{3} \Big|_{-14}^{-11} = \frac{\ln(11) - \ln(14)}{3} = \frac{1}{3} \, \ln\left(\frac{11}{14}\right) \neq \ln\left(\frac{11}{14}\right).$$

a1) - a2) Trovare una primitiva di
$$f(x) = \frac{1}{x^2 - 6x + 9}$$
 e calcolare $\int_4^5 f(x) dx$.

b1) - b2) Trovare una primitiva di
$$g(x) = \frac{1}{x^2 - 11x + 28}$$
 e calcolare $\int_8^9 g(x) dx$.

c1) - c2) Trovare una primitiva di
$$h(x) = \frac{1}{x^2 - 12x + 72}$$
 e calcolare $\int_6^{12} h(x) dx$.

d1) - d2) Trovare una primitiva di
$$k(x) = \frac{2x - 14}{x^2 - 15x + 54}$$
 e di $j(x) = \frac{x^3}{4 + x^2}$.

Soluzione:

a1) - a2) Osserviamo che si ha $x^2 - 6x + 9 = (x - 3)^2$. Pertanto,

$$\int \frac{dx}{x^2 - 6x + 9} = \int \frac{dx}{(x - 3)^2} = -\frac{1}{x - 3},$$

e quindi

$$\int_{4}^{5} \frac{dx}{x^2 - 6x + 9} = -\frac{1}{x - 3} \Big|_{4}^{5} = -\frac{1}{2} + 1 = \frac{1}{2}.$$

b1) - b2) Osserviamo che si ha $x^2 - 11x + 28 = (x - 7)(x - 4)$. Cerchiamo dunque $A \in B$ tali che

$$\frac{1}{(x-7)(x-4)} = \frac{A}{x-7} + \frac{B}{x-4}.$$

Moltiplicando una volta per x-7 e una volta per x-4 si ottiene

$$\frac{1}{x-4} = A + B \frac{x-7}{x-4}$$
 e $\frac{1}{x-7} = A \frac{x-4}{x-7} + B$.

Scegliendo x=7 nella prima e x=4 nella seconda, si trova $A=\frac{1}{3}=-B$, cosicché

$$\frac{1}{x^2 - 11x + 28} = \frac{1}{(x - 7)(x - 4)} = \frac{1}{3(x - 7)} - \frac{1}{3(x - 4)},$$

da cui segue che

$$\int \frac{dx}{x^2 - 11x + 28} = \int \left[\frac{1}{3(x - 7)} - \frac{1}{3(x - 4)} \right] dx = \frac{\ln(|x - 7|) - \ln(|x - 4|)}{3} = \frac{1}{3} \ln\left(\left|\frac{x - 7}{x - 4}\right|\right).$$

Pertanto,

$$\int_{8}^{9} \frac{dx}{x^2 - 11x + 28} = \frac{1}{3} \ln \left(\left| \frac{x - 7}{x - 4} \right| \right) \Big|_{8}^{9} = \frac{1}{3} \left[\ln \left(\frac{2}{5} \right) - \ln \left(\frac{1}{4} \right) \right] = \frac{1}{3} \ln \left(\frac{8}{5} \right).$$

c1) - c2) Osserviamo che si ha $x^2 - 12x + 72 = (x - 6)^2 + 36$. Possiamo allora scrivere

$$x^{2} - 12x + 72 = 36\left[1 + \left(\frac{x-6}{6}\right)^{2}\right],$$

e quindi si ha

$$\int \frac{dx}{x^2 - 12x + 72} = \frac{1}{36} \int \frac{dx}{1 + \left(\frac{x - 6}{6}\right)^2}.$$

Con la sostituzione $y = \frac{x-6}{6}$, da cui $dy = \frac{dx}{6}$, si ha

$$\int \frac{dx}{x^2 - 12x + 72} = \frac{1}{6} \int \frac{dy}{1 + y^2} = \frac{1}{6} \arctan(y) = \frac{1}{6} \arctan\left(\frac{x - 6}{6}\right).$$

Si ha pertanto

$$\int_6^{12} \frac{dx}{x^2 - 12x + 72} = \frac{1}{6} \arctan\left(\frac{x - 6}{6}\right)\Big|_6^{12} = \frac{\arctan(1) - \arctan(0)}{6} = \frac{\pi}{24}.$$

d1) Osserviamo che si ha

$$\frac{2x-14}{x^2-15x+54} = \frac{2x-15}{x^2-15x+54} + \frac{1}{x^2-15x+54} \, .$$

Dal momento che al numeratore compare la derivata del denominatore, si ha

$$\int \frac{2x - 15}{x^2 - 15x + 54} \, dx = \ln(|x^2 - 15x + 54|) \, .$$

Per calcolare il secondo integrale, osserviamo che si ha $x^2 - 15x + 54 = (x - 9)(x - 6)$. Con conti analoghi a quelli visti nello svolgimento dell'esercizio **b1)** - **b2)** si ha che

$$\frac{1}{x^2 - 15x + 54} = \frac{1}{(x - 9)(x - 6)} = \frac{1}{3(x - 9)} - \frac{1}{3(x - 6)},$$

cosicché

$$\int \frac{dx}{x^2 - 15x + 54} = \int \left[\frac{1}{3(x-9)} - \frac{1}{3(x-6)} \right] dx = \frac{1}{3} \ln \left(\left| \frac{x-9}{x-6} \right| \right).$$

Mettendo insieme i risultati trovati, si ha

$$\int \frac{2x - 14}{x^2 - 15x + 54} = \ln(|x^2 - 15x + 54|) + \frac{1}{3} \ln\left(\left|\frac{x - 9}{x - 6}\right|\right).$$

d2) Scriviamo

$$\frac{x^3}{4+x^2} = \frac{x^3+4x-4x}{4+x^2} = x - \frac{4x}{4+x^2}.$$

Abbiamo quindi

$$\int \frac{x^3}{4+x^2} \, dx = \int \left[x - \frac{4x}{4+x^2} \right] dx = \frac{x^2}{2} - \int \frac{4x}{4+x^2} \, dx \, .$$

Per calcolare l'ultimo integrale, poniamo $y = 4 + x^2$, da cui dy = 2x dx, e otteniamo

$$\int \frac{4x}{4+x^2} dx = \int \frac{2dy}{y} = 2 \ln(|y|) = 2 \ln(x^2+4),$$

dove si è tolto il modulo dato che la funzione $x^2 + 4$ è positiva. In definitiva,

$$\int \frac{x^3}{4+x^2} dx = \frac{x^2}{2} - 2 \ln(x^2 + 4).$$

6) Trovare le primitive di

a1)
$$x e^{4x}$$
, **a2**) $e^x \sin(4x)$, **b1**) $\sin^2(2x)$, **b2**) $\cos^3(5x)$, **c1**) $(2x+9)e^x$, **c2**) $(7x^2-2x+2)e^x$, **d1**) $x^6 \ln(5x)$, **d2**) $4x \arctan(2x)$.

Soluzione:

a1) Integriamo per parti, derivando x e integrando e^{4x} . Si ha

$$\int x e^{4x} dx = \frac{x}{4} e^{4x} - \frac{1}{4} \int e^{4x} dx = \frac{x}{4} e^{4x} - \frac{1}{16} e^{4x} = \frac{4x - 1}{16} e^{4x}.$$

a2) Integriamo per parti, derivando $\sin(4x)$ e integrando l'esponenziale. Si ha

$$\int e^x \sin(4x) \, dx = e^x \sin(4x) - 4 \int e^x \cos(4x) \, dx.$$

Per calcolare l'ultimo integrale, operiamo per parti, derivando $\cos(4x)$ e integrando l'esponenziale. Si ha

$$\int e^x \cos(4x) \, dx = e^x \cos(4x) + 4 \int e^x \sin(4x) \, dx.$$

Mettendo insieme i risultati, si ha

$$\int e^x \sin(4x) dx = e^x [\sin(4x) - 4\cos(4x)] - 16 \int e^x \sin(4x) dx,$$

da cui si ricava (portando l'integrale a secondo membro a sinistra)

$$\int e^x \sin(4x) dx = \frac{e^x}{17} [\sin(4x) - 4\cos(4x)].$$

b1) Integriamo per parti, derivando e integrando $\sin(2x)$. Si ha

$$\int \sin^2(2x) \, dx = \int \sin(2x) \sin(2x) \, dx = -\frac{1}{2} \sin(2x) \cos(2x) + \int \cos^2(2x) \, dx.$$

Ora si ha

$$\int \cos^2(2x) \, dx = \int \left[1 - \sin^2(2x)\right] dx = x - \int \sin^2(2x) \, dx \, .$$

Si ha dunque

$$\int \sin^2(2x) \, dx = -\frac{1}{2} \sin(2x) \cos(2x) + x - \int \sin^2(2x) \, dx \, .$$

Portando a sinistra una parte dell'integrale a destra si ottiene

$$2\int \sin^2(2x) \, dx = -\frac{1}{2} \sin(2x) \cos(2x) + x \,,$$

da cui segue che

$$\int \sin^2(2x) \, dx = \frac{x}{2} - \frac{1}{4} \sin(2x) \cos(2x) \, .$$

b2) Osserviamo che si ha

$$\cos^3(5 x) = \cos^2(5 x) \, \cos(5 x) = [1 - \sin^2(5 x)] \, \cos(5 x) \, .$$

Pertanto, con la sostituzione $y = \sin(5x)$, da cui $dy = 5\cos(5x) dx$, si ha

$$\int \cos^3(5x) \, dx = \int \left[1 - \sin^2(5x)\right] \cos(5x) \, dx = \frac{1}{5} \int (1 - y^2) \, dy = \frac{1}{5} \left[y - \frac{y^3}{3}\right],$$

e quindi

$$\int \cos^3(5x) \, dx = \frac{\sin(5x)}{5} - \frac{\sin^3(5x)}{15} \, .$$

c1) Integriamo per parti, derivando il binomio e integrando l'esponenziale. Si ha

$$\int (2x+9) e^x dx = (2x+9) e^x - 2 \int e^x dx = (2x+7) e^x.$$

c2) Sappiamo che si ha

$$\int (7x^2 - 2x + 2) e^x dx = Q(x) e^x,$$

dove Q(x) è un polinomio di secondo grado tale che $Q(x)+Q'(x)=7x^2-2x+2$. Se $Q(x)=a\,x^2+b\,x+c$ è un generico polinomio di secondo grado, si ha

$$Q(x) + Q'(x) = a x^{2} + (2a + b) x + (b + c),$$

e imponendo che si abbia $Q(x) + Q'(x) = 7x^2 - 2x + 2$ si ha che deve essere

$$a = 7$$
, $2a + b = -2$, $b + c = 2$,

da cui si ricava facilmente che

$$a = 7$$
, $b = -16$, $c = 18$,

e quindi

$$\int (7x^2 - 2x + 2) e^x dx = (7x^2 - 16x + 18) e^x.$$

d1) Integriamo per parti, derivando il logaritmo e integrando x^6 . Si ha

$$\int x^6 \ln(5x) \, dx = \frac{x^7}{7} \ln(5x) - \frac{1}{7} \int x^7 \frac{5}{5x} \, dx = \frac{x^7}{7} \ln(5x) - \frac{x^7}{49} = \frac{x^7}{49} [7 \ln(5x) - 1] \, .$$

d2) Integriamo per parti, integrando il monomio e derivando l'arcotangente. Si ha

$$\int 4x \arctan(2x) dx = 2x^2 \arctan(2x) - \int \frac{4x^2}{1+4x^2} dx.$$

Per calcolare l'ultimo integrale, aggiungiamo e togliamo 1 al numeratore:

$$\int \frac{4x^2}{1+4x^2} dx = \int \frac{1+4x^2-1}{1+4x^2} dx = \int \left[1 - \frac{1}{1+4x^2}\right] dx = x - \int \frac{dx}{1+4x^2}.$$

L'ultimo integrale si calcola ponendo $y=2\,x,$ da cui $dy=2\,dx$ per ottenere

$$\int \frac{dx}{1+4x^2} = \frac{1}{2} \int \frac{dy}{1+y^2} = \frac{\arctan(y)}{2} = \frac{\arctan(2x)}{2}.$$

In definitiva, si ha

$$\int 4x \arctan(2x) dx = 2x^2 \arctan(2x) - x + \frac{\arctan(2x)}{2}.$$