HOMEWORK 6

LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE)

Proposition 4.18. Let $(x_j)_{j=1}^{\infty}$ and $(y_j)_{j=1}^{\infty}$ be sequences in \mathbb{Z} such that $x_j \leq y_j$ for all $j \in \mathbb{N}$. Then for all $k \in \mathbb{N}$, $\sum_{j=1}^k x_j \leq \sum_{j=1}^k y_j$.

Proof. Let P(k) be the statement, " $\sum_{j=1}^{k} x_j \leq \sum_{j=1}^{k} y_j$." Let's observe P(1).

Base. $\sum_{j=1}^{1} x_j \leq \sum_{j=1}^{1} y_j$. $x_1 \leq y_1$, thus P(1) holds.

Successor. Assume P(n) holds. That is, $\sum_{j=1}^{n} x_j \leq \sum_{j=1}^{n} y_j$. Consider

 $\sum_{j=1}^{n+1} x_j$ and $\sum_{j=1}^{n+1} y_j$. By definition, we can rewrite this as $\sum_{j=1}^{n} x_j + x_{n+1}$

and $\sum_{j=1}^{n} y_j + y_{n+1}$. By induction, we know $\sum_{j=1}^{n} x_j \leq \sum_{j=1}^{n} y_j$, and we know

 $x_{n+1} \leq y_{n+1}$, thus by proposition 2.7(ii), $\sum_{j=1}^{n+1} x_j \leq \sum_{j=1}^{n+1} y_j$. We have proven that the proposition holds by induction.

Proposition 4.30. For all $k, m \in \mathbb{N}$, where $m \geq 2$,

$$f_{m+k} = f_{m-1}f_k + f_m f_{k+1}.$$

Proof. Let P(k) be the statement " $f_{m+k} = f_{m-1}f_k + f_m f_{k+1}$." Let's observe P(1) and P(2).

Base 1.k = 1. $f_{m-1}f_1 + f_mf_2$. By definition, we can rewrite this as $f_{m-1} \cdot 1 + f_m \cdot 1 = f_{m-1} + f_m = f_{m+1}$. Thus P(1) holds.

Base 2.k = 2. $f_{m-1}f_2 + f_m f_3$. By definition, we can rewrite this as $f_{m-1} \cdot 1 + f_m \cdot 2 = f_{m-1} + f_m + f_m = f_{m+1} + f_m = f_{m+2}$. Thus P(2) holds.

Successor. Assume P(k) holds for all k = 1, 2, ..., n for some $n \ge 2$. That is, $f_{m+k} = f_{m-1}f_k + f_m f_{k+1}$. Consider

 $f_{m-1}f_{(n+1)} + f_mf_{(n+1)+1} = f_{m-1}f_{(n+1)} + f_mf_{n+2}$. By definition, we can rewrite this as $f_{m-1}(f_n + f_{n-1}) + f_m(f_{n+1} + f_n)$. After distributing

Date: February 27, 2017.

and commuting, we have $f_{m-1}(f_n + f_{n-1}) + f_m(f_{n+1} + f_n) = f_{m-1}f_n + f_{m-1}f_{n-1} + f_mf_{n+1} + f_mf_n = (f_{m-1}f_n + f_mf_{n+1}) + (f_{m-1}f_{n-1} + f_mf_n) = f_{m+n} + f_{m+n-1}$ by induction. By definition we have $f_{m+n} + f_{m+n-1} = f_{m+(n+1)}$. Thus P(n+1) holds and we have proven the proposition by the principle of induction.

Proposition 4.31. For all $k \in \mathbb{N}$, $f_{2k+1} = f_k^2 + f_{k+1}^2$.

Proof. Let P(k) be the statement " $f_{2k+1} = f_k^2 + f_{k+1}^2$." Let's observe P(1).

Base. k=1. $f_{2+1} = f_3 = f_1^2 + f_{1+1}^2 = 1 + 1 = 2$. Thus P(1) holds. **Successor.** Assume P(k) holds for k=1,2,...,n for some $n \in \mathbb{N}$. Consider $f_{(n+1)}^2 + f_{(n+1)+1}^2 = f_{(n+1)}^2 + f_{(n+2)}^2$. By definition we can rewrite this as $(f_{n+1} + f_n)^2 + f_{(n+1)}^2 = f_{n+1}^2 + 2f_{n+1}f_n + f_n^2 + f_{n+1}^2$. By induction, we have $f_{n+1}^2 + 2f_{n+1}f_n + f_n^2 + f_{n+1}^2 = f_{n+1}^2 + f_n^2 + 2f_{n+1}f_n + f_n^2 + f_{n+1}^2 = f_{2n+1}^2 + f_{n+1}^2 + f_{n+1}^2 = f_{2n+1}^2 + f_{n+1}^2 = f_{2n+1}^2 + f_{n+1}^2 + f_{n+1}^2 = f_{2n+1}^2 + f_{n+1}^2 + f$

Proposition 5.1. Let A,B,C be sets.

- (i) $A \subseteq A$.
- (ii) If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.
 - (i) For any $x \in A$, then $x \in A$. Therefore $A \subseteq A$.
- (ii) Let $x \in A$, since $A \subseteq B$ we get $x \in B$. Since $B \subseteq C$, this implies $x \in C$.

 \square

Proposition 5.4. Let A,B,C be sets.

- (i) A = A.
- (ii) if A = B then B = A.
- (iii) if A = B and B = C then A = C.
- *Proof.* (i) For any $x \in A$, then $x \in A$. Therefore $A \subseteq A$. Also, for any $x \in A$, then $x \in A$. Therefore $A \subseteq A$. Thus, A = A.
- (ii) It is given to us that $\overline{A} \subseteq B$ and $B \subseteq A$. For any $x \in B$, then $x \in A$. Therefore $B \subseteq A$. Also, for any $x \in A$, then $x \in B$. Therefore $A \subseteq B$. Thus, B = A.
- (iii) It is given to us that $A \subseteq B$ and $B \subseteq A$. It is also given to us that $B \subseteq C$ and $C \subseteq B$. Because $A \subseteq B$ and $B \subseteq C$, we have

that $A \subseteq C$ by proposition 5.1.	Because $C \subseteq B$ and $B \subseteq A$, we have
that $C \subseteq A$ by proposition 5.1.	Thus by definition we have that A =
C.	

 ${\bf Sources.} \\ {\bf http://zimmer.csufresno.edu/\ sdelcroix/sol111home6.pdf}$