- 1. Let A be a set and define P(A) to be the set of all subsets of A. Let C be a fixed subset of the set A and define relation R on the set P(A) by XRY if and only if $X \cap C = Y \cap C$. Prove that this is an equivalence relation.
- 2. Let A be a set and let P be a partition of the set A i.e. $P = \{A_1, A_2, \dots A_n\}$ where
 - i) $A_i \subset A$,
 - ii) $\emptyset \notin P$
 - iii) $A_1 \cup A_2 \cup \ldots \cup A_n = A$
 - iv) $A_i \cap A_j = \emptyset$ when $i \neq j$.

For $x, y \in A$ we say that xRy if and only if $x \in A_i$ and $y \in A_i$ for the same i. Prove this is an equivalence relation.

- 3. Prove or disprove: The relation R defined on the set \mathbb{Z} by xRy if and only if xy > 0 is an equivalence relation.
- 4. Find all the x that satisfy the following equation. (Hint: Use Fermat's Little theorem and notice that if x_0 is a solution then it's entire residue class is a solution.)

$$x^{86} \equiv 2 \pmod{7}$$

5. Prove that every integer of the form 5n+3 for $n \in \mathbb{Z}$, $n \ge 1$, cannot be a perfect square.