Fiche TD N 1 (Systèmes linéaires, Esapces vectoriels)

Année Univ. 2017–2018

Filière: SMIA (S2)

Destribuée mardi 13 mars 2018 Responsable: S. NAJIB

I. Systèmes Linéaires

Exercice 1

Par la <u>méthode de substitution</u>, puis par la <u>méthode de Gauss</u>, résoudre les systèmes linéaires suivants:

s systemes linearies survants:
$$\begin{cases} 2x + y - 2z &= 10 \\ 3x + 2y + 2z &= 1 \\ 5x + 4y + 3z &= 4 \end{cases} \begin{cases} 2y + z &= 2 \\ 2x + y + z &= -1 \\ x - 3y + 2z &= -1 \end{cases}$$
$$\begin{cases} 2x_1 + x_2 - 2x_3 + 3x_4 &= 1 \\ 3x_1 + 2x_2 - x_3 + 2x_4 &= 4 \\ 3x_2 + 3x_3 - 3x_4 &= 5 \end{cases} \begin{cases} x_1 - x_2 + x_3 - 2x_4 &= 2 \\ 2x_1 - 2x_2 + 2x_3 - 2x_4 &= 2 \\ -x_1 + x_2 + 2x_3 - 4x_4 &= 4 \\ -x_3 + 2x_4 &= -2 \end{cases}$$

Exercice 2

On donne dans \mathbb{R} le système linéaire (S_a) d'inconnues x, y, z:

$$\begin{cases} x - y + az &= a \\ 2x - y + 6z &= a^2 + 1 \\ 3x - 2y + (a + 12)z &= a \end{cases}$$

- 1) Trouver a pour que le système (S_a) soit compatible.
- 2) Résoudre le système (S_a) pour chacune des valeurs de a trouvées.

Exercice 3

On considère le système linéaire (S) suivant:

$$\begin{cases} x - 2y + z = 4 \\ y - z = -1 \\ y - 3z = -3 \end{cases}$$

- 1) Donner la forme matricielle de (S) (AX = B)
- 2) Montrer que A est inversible et calculer son inverse.
- 3) Résoudre le système (S).

II. Espaces vectoriels

Exercice 1

On définit sur l'ensemble $\mathbb{R}^{\mathbb{N}}$ des suites réelles les deux lois \top et * suivantes:

Si $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ deux suites réelles $\lambda\in\mathbb{R}$ on a:

$$(U_n)_n \top (V_n)_n = (U_n + V_n)_n$$

et

$$\lambda * (U_n)_n = (\lambda U_n)_n.$$

Montrer que le triplet $(\mathbb{R}^{\mathbb{N}}, \top, *)$ est un espace vectoriel sur \mathbb{R} .

Exercice 2

On munit l'ensemble \mathbb{R}^2 de l'addition habituelle notée + et de la loi externe définie par:

$$\alpha * (x, y) = (-\alpha x, -\alpha y)$$

Le triplet $(\mathbb{R}^2, +, *)$ est-il un \mathbb{R} -espace vectoriel?

Exercice 3

Soit E un \mathbb{R} -espace vectoriel.

On munit le produit cartésien $E \times E$ de l'addition usuelle: (x, y) + (x', y') = (x+x', y+y') et de la multiplication externe par les complexes définie par:

$$(a+ib).(x,y) = (ax - by, ax + by).$$

Montrer que $E \times E$ est alors un \mathbb{C} -espace vectoriel. Celui-ci est appelé complexifié de E.

Exercice 4

Parmi les ensembles suivants reconnaître ceux qui sont des sousespaces vectoriels.

E₁ =
$$\{(x,y) \in \mathbb{R}^2 / x \le y\}$$
, $E_2 = \{(x,y,z) \in \mathbb{R}^3 / x \le y\}$
 $E_3 = \{f \in \mathfrak{F}(\mathbb{R},\mathbb{R}) / f(1) = 0\}$, $E_4 = \{f \in \mathfrak{F}(\mathbb{C},\mathbb{C}) / f \text{ s'annule}\}$
 $E_5 = \{f \in \mathfrak{F}(\mathbb{R},\mathbb{R}) / f \text{ est impaire}\}$, $E_6 = \{(u_n) \in \mathbb{R}^{\mathbb{N}} / (u_n) \text{ est bornee}\}$, $E_7 = \{(u_n) \in \mathbb{R}^{\mathbb{N}} / (u_n) \text{ convergente}\}$.

Exercice 5

Soit $w \in \mathbb{C}$. On note $w.\mathbb{R} = \{wx / x \in \mathbb{R}\}.$

- 1) Montrer que $w.\mathbb{R}$ est un sous-espace vectoriel de \mathbb{C} vu comme \mathbb{R} -espace vectoriel.
- 2) A quelle condition $w.\mathbb{R}$ est-il un sous-espace vectoriel de \mathbb{C} vu comme \mathbb{C} -espace vectoriel?

Exercice 6

Soit $a, b \in \mathbb{R}$. On considère l'ensemble:

$$E = \{(x, y, z) \in \mathbb{R}^3 / x + y + z + az^2 = b\}.$$

Donner une condition nécessaire et suffisante sur a et b pour que E soit un sous-espace vectoriel de $(\mathbb{R}^3, +, .)$.

Exercice 7

Soient F et G deux sous-espaces vectoriels de E.

- 1) Montrer que $F \cap G = F + G \iff F = G$.
- 2) Montrer que $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.

Exercice 8

Soient A et B deux parties d'un espace vectoriel E.

- 1) Comparer $Vect(A \cap B)$ et $Vect(A) \cap Vect(B)$.
- 2) Montrer que $Vect(A \cup B) = Vect(A) + Vect(B)$.
- 3) Montrer que $Vect(Vect(A) \cup Vect(B)) = Vect(A \cup B)$.

Exercice 9

Soient
$$F = \{(x, y, z) \in \mathbb{R}^3 / x + y - z = 0\}$$

et $G = \{(a - b, a + b, a - 3b) / a, b \in \mathbb{R}\}.$

- 1) Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2) Déterminer $F \cap G$.

Exercice 10

On considère les vecteurs $v_1 = (1, 0, 0, 1), v_2 = (0, 0, 1, 0), v_3 = (0, 1, 0, 0), v_4 = (0, 0, 0, 1)$ et $v_5 = (0, 1, 0, 1)$ dans \mathbb{R}^4 .

- 1) $Vect(v_1, v_2)$ et $Vect(v_3)$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 2) Même question pour $Vect(v_1, v_3, v_4)$ et $Vect(v_2, v_5)$.

Exercice 11

1) Etudier l'indépendance linéaire des familles suivantes dans les espaces vectoriels mentionnés.

$$F_1 = \{(3,2), (3,-2)\} \text{ dans } (\mathbb{R}^2,+,.)$$

$$F_2 = \{(3,2), (3,-2), (1,1)\} \text{ dans } (\mathbb{R}^2,+,.)$$

$$F_3 = \{(1,1,1), (2,1,1), (2,-1,1)\} \text{ dans } (\mathbb{R}^3,+,.)$$

$$F_4 = \{(2,1,1,1), (4,0,2,3), (2,-1,1,2)\} \text{ dans } (\mathbb{R}^4,+,.).$$

2) Montrer que les vecteurs (1,1,1),(2,1,0),(3,2,2),(0,1,0) engendrent \mathbb{R}^3 . Ces vecteurs sont-ils linéairement indépendants?

Exercice 12

1) On considère les vecteurs de \mathbb{R}^3 :

$$u = (1, 2, -1), v = (1, 1, 1) \text{ et } w = (0, 1, 1).$$

- (a) Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- (b) Décomposer les vecteurs (3,4,5) et (x,y,z) dans cette nouvelle base.
- 2) Dans \mathbb{R}^3 , on considère les deux sous-espaces vectoriels:

$$E = Vect\{(2, 3, -1), (1, -1, -2)\}$$

et

$$F = Vect\{(3,7,0), (5,0,-7)\}$$

Montrer que E = F.

Exercice 13

Dans \mathbb{R}^3 , on considère l'ensemble:

$$E = \{(x, y, z) \in \mathbb{R}^3 / x - y + 2z = 0 \text{ et } 3x + z = 0\}$$

- 1) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2) Donner une base de E. En déduire dimE.
- 3) Le sous-espace vectoriel E est-il une droite vectorielle, un hyperplan de \mathbb{R}^3 ?

Exercice 14

Dans \mathbb{R}^4 , on considère les deux ensembles:

$$E = \{(x, y, z, t) \in \mathbb{R}^4 / x - 2y + t = 0\}$$

et

$$F = \{(x, y, z, t) \in \mathbb{R}^4 / 3x + 2z = 0\}$$

- 1) Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 , et donner une base de E.
- 2) Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 , et donner une base de F.
- 3) Donner une base de $E \cap F$. En déduire dim $(E \cap F)$.
- 4) Déterminer $\dim(E+F)$. Les deux espaces E et F sont-ils supplémentaires dans \mathbb{R}^4 ?

Exercice 15

On considère le système linéaire suivant:

$$\begin{cases} x + 3y + 2z &= 3\\ 2x - y + z &= 0\\ 3x + 2y + 3z &= -1 \end{cases}$$

1) Sans résoudre, l'ensemble des solutions de ce système est-il un sousespace vectoriel de $(\mathbb{R}^3, +, .)$? 2) Montrer que l'ensemble des solutions du système homogène associé à ce système est un sous-espace vectoriel de $(\mathbb{R}^3, +, .)$. Expliciter une base de cet espace, et déterminer sa dimension.

Exercice 16

Soit $E = \mathbb{R}_3[X]$ le \mathbb{R} -espace vectoriel $\{P \in \mathbb{R}[X]/ \deg(P) \leq 3\}$ et $(1, X, X^2, X^3)$ sa base canonique.

On pose
$$F = \{P \in E / P(1) = P(2) = 0\}$$
 et $G = \{P \in E / P(1) = P'(1) = 0\}$.

- 1) Montrer que F et G sont des sous-espaces vectoriels de E.
- 2) Montrer que $\{(X-1)(X-2), X(X-1)(X-2)\}$) est une base de F. En déduire la dimension de F.
- 3) Montrer que $\{(X-1)^2, X(X-1)^2\}$) est une base de G. En déduire la dimension de G.
- **4)** Trouver une base et la dimension de $F \cap G$.
- 5) Calculer la dimension de F + G.

Exercice 17

Dans le \mathbb{R} -espace vectoriel $E = \mathfrak{F}(\mathbb{R}, \mathbb{R})$: l'ensemble des fonctions numériques d'une variable réelle, on considère les deux ensembles:

$$F = \{ f \in E/f \text{ est paire} \}$$

et

$$G = \{ f \in E/f \text{ est impaire} \}$$

Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de E.

Exercice 18

Soit
$$F = \{ f \in \mathfrak{F}(\mathbb{R}, \mathbb{R}) / f(0) + f(1) = 0 \}.$$

- 1) Montrer que F est un sous-espace vectoriel de $\mathfrak{F}(\mathbb{R},\mathbb{R})$.
- 2) Déterminer un supplémentaire de F dans $\mathfrak{F}(\mathbb{R},\mathbb{R})$.