Math 109 HW3

Neo Lee

02/14/2023

Problem 6.5

(i)

Proposition 1. $A \subseteq B \Leftrightarrow A \cup B = B$.

Proof. $(\Rightarrow; A \cup B \subseteq B) \ \forall x \in A \cup B, x \in B \text{ because } A \subseteq B.$

 $(\Rightarrow; B \subseteq A \cup B)$ By definition, $\forall y \in B, y \in B \cup S$ for any arbitrary set S. Therefore, $B \subseteq A \cup B$.

Since $A \cup B \subseteq B$ and $B \subseteq A \cup B$, $A \cup B = B$, and (\Rightarrow) is proved.

(\Leftarrow) By definition, $\forall z \in A, z \in A \cup S$ for any arbitrary set S, which means $A \subseteq A \cup S$. Hence, $A \subseteq A \cup B$, which is equivalent to $A \subseteq B$. □

(ii)

Proposition 2. $A \subseteq B \Leftrightarrow A \cap B = A$.

Proof. $(\Rightarrow; A \cap B \subseteq A)$ By definition, $\forall x \in A \cap B, x \in A$, thus $A \cap B \subseteq A$.

 $(\Rightarrow; A \subseteq A \cap B) \ \forall y \in A, x \in A \cap B \text{ because } A \subseteq B.$

Since $A \cap B \subseteq A$ and $A \subseteq A \cap B$, $A \cap B = A$, and (\Rightarrow) is proved.

 (\Leftarrow) By definition, $(B \cap S) \subseteq B$ for any arbitrary set S. Hence, $A = A \cap B \subseteq B$.

Problem 6.6

Proposition 3. If $A \cap B \subseteq C$ and $x \in B$, then $x \notin A - C$.

Proof. Assume to the contrary that if $A \cap B \subseteq C$ and $x \in B$, then $x \in A - C$. It means that $x \in A$ and $x \notin C$. Since $A \cap B \subseteq C$, $x \notin C \Rightarrow x \notin A \cap B$. We know $x \in A$ and $x \notin A \cap B$, therefore, $x \in A \cap B^c$. It means $x \in B^c \Rightarrow x \notin B$, which contradicts that $x \in B$.

Problem 6.7

Proposition 4. For subsets of a universal set $U, A \subseteq B$ if and only if $B^c \subseteq A^c$.

Proof. $A \subseteq B$ means that for an arbitrary x, if $x \in A$, then $x \in B$. Logically, it is equivalent to its contrapositive, which states for an arbitrary x, if $x \notin B$, then $x \notin A$. $x \notin B$ can be written as $x \in B^c$, and $x \notin A$ can be written as $x \in A^c$. Therefore, the entire statement can be rewritten as for an arbitrary x, if $x \in B^c$, then $x \in A^c$, which is the definition of $B^c \subseteq A^c$. Hence, $A \subseteq B \Leftrightarrow B^c \subseteq A^c$.

Problem 7.1

- (i) \mathbb{Z}^+ . Let n = m, $n, m \in \mathbb{Z}^+$ and m < n.
- (ii) {1}. It is apparent that $\forall n \in \mathbb{Z}^+, 1 \leq n$. For $m \neq 1$, n = 1 is a counterexample to $\forall n \in \mathbb{Z}^+, m \leq n$.
- (iii) \mathbb{Z}^+ . Let $n = m, n, m \in \mathbb{Z}^+$ and m < n.
- (iv) \emptyset . Let m = n + 1, $\forall m \in \mathbb{Z}^+, m \not\leq n$.

Problem 7.2

(i)

Proposition 5. Disproving $\forall m, n \in \mathbb{Z}^+, m \leq n$ means proving $\exists m, n \in \mathbb{Z}^+, m > n$.

Proof. Let m = 3 and n = 2, m > n.

(ii)

Proposition 6. $\exists m, n \in \mathbb{Z}^+, m \leq n$.

Proof. Let m = 2 and n = 3, $m \le n$.

(iii)

Proposition 7. $\forall m \in \mathbb{Z}^+, \exists n \in \mathbb{Z}^+, m \leq n.$

Proof. Let n = m. $\forall m \in \mathbb{Z}^+, m = n \Rightarrow m \leq n$.

(iv)

Proposition 8. $\exists m \in \mathbb{Z}^+, \forall n \in \mathbb{Z}^+, m \leq n.$

Proof. Let m = 1. $\forall n \in \mathbb{Z}^+, m \leq n$.

(v)

Proposition 9. $\forall n \in \mathbb{Z}^+, \exists m \in \mathbb{Z}^+, m \leq n.$

Proof. Let m = 1. $\forall n \in \mathbb{Z}^+, m \leq n$.

(vi)

Proposition 10. Disproving $\exists n \in \mathbb{Z}^+, \forall m \in \mathbb{Z}^+, m \leq n \text{ means proving } \forall n \in \mathbb{Z}^+, \exists m \in \mathbb{Z}^+, m > n.$

Proof. Let m = n + 1. $\forall n \in \mathbb{Z}^+, m > n$.

Problem 7.4

(i)

Proposition 11. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y = 0.$

Proof. Let y = -x. $\forall x \in \mathbb{R}, x + y = x - x = 0$.

(ii)

Proposition 12. Disproving $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x+y=0 \text{ mean proving } \forall y \in \mathbb{R}, \exists x \in \mathbb{R}, x+y\neq 0.$

Proof. Let x = -y + 1. $\forall y \in \mathbb{R}, y + x = y - y + 1 = 1 \neq 0$.

(iii)

Proposition 13. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy = 0.$

Proof. Let y = 0. $\forall x \in \mathbb{R}, xy = x \cdot 0 = 0$.

(iv)

Proposition 14. $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, xy = 0.$

Proof. Let y = 0. $\forall x \in \mathbb{R}, xy = x \cdot 0 = 0$.

(v)

Proposition 15. Disproving $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy = 1 \text{ means proving } \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, xy \neq 1.$

Proof. Let x = 0. $\forall y \in \mathbb{R}, xy = 0 \cdot y = 0 \neq 1$.

(vi)

Proposition 16. Disproving $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, xy = 1 \text{ means proving } \forall y \in \mathbb{R}, \exists x \in \mathbb{R}, xy \neq 1.$

Proof. Let x = 0. $\forall y \in \mathbb{R}, xy = 0 \cdot y = 0 \neq 1$.

(vii)

Proposition 17. $\forall n \in \mathbb{Z}^+$, (n is even or n is odd).

Proof. $\forall n \in \mathbb{Z}^+$, n is either even or n is not even. By definition, if n is not even, then n is odd, which logically means n ie even or n is odd.

(viii)

Proposition 18. Disproving $(\forall n \in \mathbb{Z}^+, n \text{ is even})$ or $(\forall n \in \mathbb{Z}^+, n \text{ is odd})$ means proving $(\exists n \in \mathbb{Z}^+, n \text{ is odd})$ and $(\exists n \in \mathbb{Z}^+, n \text{ is even})$.

Proof. For the first half of the statement, let n = 1, then n is odd, which proves $(\forall n \in \mathbb{Z}^+, n \text{ is odd})$. For the second half of the statement, let n = 2, then n is even, which proves $(\exists n \in \mathbb{Z}^+, n \text{ is even})$. \square

Problem 7.7

Proposition 19. For sets $A, B, C, D, (A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

Proof. Let $(x,y) \in (A \times B) \cup (C \times D)$. It means $(x,y) \in (A \times B)$ or $(x,y) \in (C \times D)$. If $(x,y) \in (A \times B)$, then indeed $x \in (A \cup C)$ and $y \in (B \cup D)$. If $(x,y) \in (C \times D)$, then again $x \in (A \cup C)$ and $y \in (B \cup D)$. Hence, $\forall (x,y) \in (A \times B) \cup (C \times D), (x,y) \in (A \cup C) \times (B \cup D)$.

For the counterexample, let $A = \{1\}, B = \{2\}, C = \{3\}, D = \{4\}.$ $(A \times B) \cup (C \times D) = \{(1, 2), (3, 4)\}$ while $(A \cup C) \times (B \cup D) = \{(1, 2), (1, 4), (3, 2), (3, 4)\}.$

Page 115 Problem 4

Proposition 20. $A \cap B = A \cap C$ and $A \cup B = A \cup C$ if and only if B = C.

Proof. (\Rightarrow)

$$B = B \cap (A \cup B) \quad (\because B \subseteq A \cup B) \tag{1}$$

$$= B \cap (A \cup C) \quad (\because A \cup B = A \cup C) \tag{2}$$

$$= (B \cap A) \cup (B \cap C) \tag{3}$$

$$= (A \cap B) \cup (B \cap C) \tag{4}$$

$$= (A \cap C) \cup (B \cap C) \quad (:A \cap B = A \cap C)$$
 (5)

$$= (A \cup B) \cap C \tag{6}$$

$$= (A \cup C) \cap C \quad (\because A \cup B = A \cup C) \tag{7}$$

$$=C \quad (: C \subseteq A \cup C) \tag{8}$$

Hence, B = C.

(\Leftarrow) This is apparent because we only need to substitute B with C, then we will get $A \cap B = A \cap C$ and $A \cup B = A \cup C$.

Page 117 Problem 13

(i)

Proposition 21. $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

$$(x,y) \in A \times (B \cup C) \Leftrightarrow x \in A \text{ and } y \in (B \cup C)$$
 (9)

$$\Leftrightarrow x \in A \text{ and } (y \in B \text{ or } y \in C)$$
 (10)

$$\Leftrightarrow (x \in A \text{ and } y \in B) \text{ or } (x \in A \text{ and } y \in C)$$
 (11)

$$\Leftrightarrow (x,y) \in (A \times B) \cup (A \times C). \tag{12}$$

(ii)

Proposition 22. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Proof.

$$(x,y) \in (A \times B) \cap (C \times D) \Leftrightarrow (x,y) \in (A \times B) \text{ and } (x,y) \in (C \times D)$$
 (13)

$$\Leftrightarrow x \in A \text{ and } y \in B \text{ and } x \in C \text{ and } y \in D$$
 (14)

$$\Leftrightarrow (x \in A \text{ and } x \in C) \text{ and } (y \in B \text{ and } y \in D)$$
 (15)

$$\Leftrightarrow (x,y) \in (A \cap C) \times (B \cap D) \tag{16}$$