吉林大学

2012~2013学年第二学期《高等数学AII》试卷

2013 年 6 月 27 日

_	 三	四	总分
/H //			

1. 曲线 $y = \sqrt{x}$ 与 $y = 1, x = 4$ 所围成平面图形的面积 $S =$	E	曲线 $y = \sqrt{x}$ 与 $y = 1$	1, x = 4 所围成平面图形的面积 $S = ($) .
--	---	-----------------------------	-----------------------------	-----

- (A) $\frac{14}{3}$. (B) $\frac{5}{3}$. (C) $\frac{10}{3}$. (D) $\frac{16}{3}$.

2. 设直线
$$L_1: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$$
 与 $L_2: \left\{ \begin{array}{ll} x-y=6, \\ 2y+z=3. \end{array} \right.$ 则 L_1 与 L_2 的

夹角为().

- (A) $\frac{\pi}{6}$. (B) $\frac{\pi}{4}$. (C) $\frac{\pi}{3}$. (D) $\frac{\pi}{2}$.

3. 由方程
$$x^2 + \frac{y^2}{2} + \frac{z^2}{3} = 1$$
 所表示的二次曲面为 () .

- (A) 椭球面.
- (B) 椭圆锥面.
- (C) 椭圆柱面. (D) 椭圆抛物面.

4.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{3xy}{x^2 + y^2} = ($$
).

- (A) $\frac{3}{2}$.
- (B) 0.
- (C) $\frac{6}{5}$. (D) 不存在.

5. 如果
$$f(x, y)$$
 在点 (x_0, y_0) 处的两个偏导数都存在,则().

- (A) f(x, y)在点 (x_0, y_0) 的某个邻域内有界.
- (B) f(x, y)在点 (x_0, y_0) 的某个邻域内可微.

(C) $f(x, y_0)$ 在点 x_0 处连续, $f(x_0, y)$ 在点 y_0 处连续.						
(D) $f(x, y)$ 在点 (x_0, y_0) 处连续.						
6. 设 $I_1 = \iint_D (x+y)^2 d\sigma$, $I_2 = \iint_D (x+y)^3 d\sigma$. 其中区域 D 是由 x 轴、 y 轴及						
直线 $x + y = 1$ 所围成的闭区域.则 I_1 与 I_2 的大小关系为().						
(A) $I_1 > I_2$.	(B) $I_1 < I_2$.					
(C) $I_1 = I_2$.	(D) 根据所给条件不能确定.					
得 分 二、填空题(共 6 道小题,每小题 3 分,满分 18 分).						
1. $\int_0^1 \frac{\mathrm{d}x}{(2-x)\sqrt{1-x}} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$						
2. 设向量 $\mathbf{a} = (3, 2, \lambda)$, $\mathbf{b} = (-1, 4, -5)$,且 $\mathbf{a} \perp \mathbf{b}$,则常数 $\lambda =$						
3. 在 Oxz 面上的抛物线 $z^2 = 5x$ 绕	x 轴旋转一周所生成的旋转曲面的					
方程为						
4. 由方程 $xy - yz + zx = e^z$ 所确定	E的隐函数 $z = z(x, y)$ 在点 $(1, 1)$ 处					
的全微分为						
5. 如果曲面 $z = \frac{x^2}{2} + y^2$ 的切平面 !	与平面 $2x + 2y - z = 0$ 平行,则切点					
的坐标为						
6. $\int_0^1 x^2 dx \int_x^1 e^{-y^2} dy = $	·					

得分

三、按要求解答下列各题(共4道小题,每小题8分,满分32分).

1. 当 k 为何值时,反常积分 $\int_2^{+\infty} \frac{\mathrm{d}x}{x(\ln x)^k}$ 收敛?

2. 设 f, φ 是 $C^{(2)}$ 类函数, $z = yf(\frac{x}{y}) + x\varphi(\frac{y}{x})$, 求: $(1) \frac{\partial z}{\partial y}$; $(2) x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial x \partial y}$.

3. 计算
$$I = \iint_D (xy + |x^2 + y^2 - 2|) d\sigma$$
, 其中区域 $D = \{(x,y)|x^2 + y^2 \leqslant 3\}$.

4. 设函数
$$f(x,y,z)$$
连续, 且 $f(x,y,z)=\sqrt{x^2+y^2}+z$ $\iint_{\Omega}f(x,y,z)\mathrm{d}V$, 其中区域 $\Omega=\{(x,y,z)|\sqrt{x^2+y^2}\leqslant z\leqslant 1\}$,求 $f(x,y,z)$ 的表达式.

得分

四、按要求解答下列各题(共4道小题,每小题8分,满分32分).

1. 求摆线
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t) \end{cases} (0 \leqslant t \leqslant 2\pi) \text{ 的全长.}$$

2. 在曲线 $y = x^2 (x \ge 0)$ 上某点A处作一切线,使之与曲线及x轴所围图形D的面积为 $\frac{1}{12}$,试求: (1) 切点A的坐标; (2) 由上述平面图形D绕x轴旋转一周所形成的旋转体的体积.

3. 求函数 $f(x,y) = x^2 + y^2 - xy - 3y$ 在闭区域 $D = \{(x,y)|\ 0 \le y \le 4 - x, 0 \le x \le 4\}$ 上的最大值和最小值.

4. 设函数 $f(x,y,z)=xy^2-xyz+z^3$. 求: (1)函数在点(1, 1, 2)处的梯度; (2)在点(1, 1, 2)处沿方向 ${\pmb l}=(\frac{1}{2}\,,\frac{\sqrt{2}}{2}\,,\frac{1}{2})$ 的方向导数.