Vanadium Oxide-based electrochromic devices for display applications

By

Ranjithvel M (MM22M017)

M.Tech. Scholar

Guide

Prof. Parasuraman Swaminathan

Department of Metallurgical and Materials Engineering

Problem statement

AC – 30% of total energy used

Transmittance is lower

Methodology

Selection of Electrochromic material

- Various oxidation states
- +5 +4
- +3
 - +2
- Whether the phases shows electrochromism ? yes
- Layered structure more advantageous
- Multiple colour grey, green, yellow
- Stable oxides
- Good structural integrity adhesion

Vanadium pentoxide - V₂O₅

Structural optimization

- Nanowires, nanosheets, nanorods which is better?
- Thin films increases transmittance
- Larger surface area
- Pores for ion intercalation
- Is it feasible to obtain this structures using other methods?
 yes, annealing plays a crucial role

Thin Nanosheet films

Challenges in Lithium

- Hazardous
- Require glove box
- Increasing price
- Environmental impact
- Recycling issues

Alkali metals – a suitable alternative

Selection of electrolytes

- Optimum ionic sizes compatibility with structures
- Easily ionized
- Number of electron transfer high is good
- High theoretical capacity
- Last but nor least ecofriendly

NaCl, KCl, CaCl₂

Novelty

Macroporous nanosheet

- More active surface area
- More electron transfer per site
- No deposition for counter electrode
- **Eco-friendly electrolyte**

Results

Electrolyte	Q (mC cm ⁻²)		ΔΤ (%)	ΔΟD	η (cm²C ⁻¹)	+ (c)	R (%)	DI
	Q_{ox}	\mathbf{Q}_{red}	Δ1 (70)	ДОО	η (cm-C -)	t _a (s)	K (70)	PI
NaCl	32.12	36.05	11.0	0.284	7.88	6.16	89	1.28
KCI	23.36	28.84	24.8	0.527	18.27	11.52	81_	1.58
CaCl ₂	26.80	28.43	36.6	0.715	25.14	6.77	94	3.71

- Achieved comparable EC properties to Lithium
- Lower power usage
- Easy integration with other technology

