Analysis I: Homework III

Thomas Fleming

Fri 10 Sep 2021 12:58

Solution (18). As [a,b] is compact, we see f is uniformly continuous. Hence, there is a $\delta > 0$ such that for all $\varepsilon > 0$ and $x,y \in [a,b]$ we find $|x-y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

Fix $\varepsilon > 0$, and define the following sequence. Let $y_0 = a$ and $y_i = \max\{a + \delta \cdot i, b\}$ for $i \geq 0$. Then, we see $\{[y_{i-1}, y_i] : i \in \mathbb{N}\}$ is a cover and there is a $n \geq 0$ such that $y_n = b$, hence $y_m = b$ for $m \geq n$ and we see $\{[y_{i-1}, y_i] : 1 \leq i \leq n\}$ is a finite subcover. Define

$$g: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) = \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}} (x - y_i) + f(y_i), \quad \text{for } x \in [y_{i-1}, y_i].$$

We see g is simply the piecewise linear interpolation of f on the y_i 's and it is well defined (the endpoints agree for each closed interval). Hence, for all $x \in [a,b]$ there is an $i \geq 1$ such that $x \in [y_{i-1},y_i] = [y_{i-1},y_{i-1}+\delta] = [y_i-\delta,y_i]$, hence $|y_{i-1}-x|<\delta$ and $|y_i-x|<\delta$ so we see $|f(y_{i-1})-f(x)|<\frac{\varepsilon}{3}$ and $|f(y_i)-f(x)|<\frac{\varepsilon}{3}$. Then, either $f(y_{i-1})\leq g(x)\leq f(y_i)$ or $f(y_i)\leq g(x)\leq f(y_{i-1})$ as g is the linear interpolation between these two points. Then, we see $|f(y_i)-g(x)|\leq |f(y_i)-f(y_{i-1})|$. Hence, we find

$$|g(x) - f(x)| \le |f(y_i) - g(x)| + |f(x) - f(y_i)|$$

$$\le |f(y_i) - f(y_{i-1})| + \frac{\varepsilon}{3}$$

$$\le |f(y_i) - f(x)| + |f(x) - f(y_{i-1})| + \frac{\varepsilon}{3}$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$

1. It suffices to assume $m(S) < \infty$, because for all sets of infinite measure, we can choose a subset of finite measure $S'\subseteq S$ and $S \cap (a,b) \supseteq S' \cap (a,b)$, so $m(S \cap (a,b)) \ge m(S' \cap (a,b))$. Then assuming m(S) finite, for $\varepsilon = \frac{1}{3}m(S)$, we find an open U with $S \subseteq U$ and $m(U \setminus S) < \varepsilon = \frac{1}{3}m(S)$. Hence, $m(U) < \frac{4}{3}m(S)$. As U is open it is the countable union of disjoint intervals (a_i, b_i) and m(U) =

$$\sum_{i=1}^{\infty} \frac{3}{4} \left(b_i - a_i \right) < m \left(S \right).$$

Suppose $m(S \cap (a_i, b_i)) \leq \frac{3}{4}(b_i - a_i)$ for all the intervals (a_i, b_i) . Then,

$$m(S) = \sum_{i=1}^{\infty} m(S \cap (a_i, b_i))$$

$$\leq \sum_{i=1}^{\infty} \frac{3}{4} m(a_i, b_i)$$

$$= \sum_{i=1}^{\infty} \frac{3}{4} (b_i - a_i)$$

$$\leq m(S) \, f.$$

Hence, we have at least one (a_i, b_i) such that $m(S \cap (a_i, b_i)) > \frac{3}{4}(b_i - a_i)$.

2. First, note that $S \cap (r+S) = \{s-r \in S : s \in S\}$, and suppose $S \cap (r+S) \cap (a,b) = \emptyset.$

That is, for all $s \in S \cap (a,b)$, we have $s+r \not\in S \cap (a,b) \subseteq (a,b)$. Hence, $s \in (b-r,b) \subseteq (b-\frac{1}{4}(b-a),b) = (\frac{1}{4}a+\frac{3}{4}b,b)$. But, we see $m\left(\left(\frac{1}{4}a + \frac{3}{4}b, b\right)\right) = \frac{1}{4}(b-a) < \frac{3}{4}(b-a).$

 $\sum_{i=1}^{\infty} (b_i - a_i) < \frac{4}{3}m(S)$. Hence,

$$S \cap (r+S) \cap (a,b) \neq \emptyset$$
.

For each $x\in\left[-\frac{1}{4}\left(b-a\right),\frac{1}{4}\left(b-a\right)\right]$, note that we have some $s\in S$ such that $s+x\in S$ or $s-x\in S$ since $S\cap(r+S)$ is nonempty, $0\leq r\leq \frac{1}{4}\left(b-a\right)$. Denote $s+x=\overline{s}$ and $s-x=\hat{s}$. If $\overline{s}\in S$, then $\overline{s}-s=x\in S-S$. Otherwise, if $\hat{s} \in S$, then $s - \hat{s} = x \in S - S$. Hence, $\left[-\frac{1}{4} \left(b - a \right), \frac{1}{4} \left(b - a \right) \right] \subseteq S - S$.