Movie review Classification Model

Overview:

This project aims to develop a Machine Learning model which can accurately classify the movie reviews into positive and negative reviews.

Dataset:

The dataset was collected from Kaggle named IMDB Reviews. The dataset consists of nearly 50,000 rows having a Positive- 24884 and Negative-24698 rows.

Link: https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews/data?select=IMDB+Dataset.csv

Steps:

1. Data Collection and Preprocessing:

The Cleaning steps include following.

- Clecking all reviews are of English Language
- Removing Emojis, Hashtags, Emojis, and URL
- Expanding the Contractions
- Remove punctuation and numbers
- Word Tokenization
- Stopword Removal
- Lemmatization
- 2. Exploratory Data Analysis (EDA)
- 3. Embedding Techniques: Testing various embedding techniques
- 4. Model Building: Testing various models and choosing the best performing one.
- 5. Model Optimization and Hyperparameter Tuning: Performing Optimization on the best model.
- 6. Model testing: Testing with a live example

Model Selection:

Various models were trained and tested the evaluation crietria was based on the F1 score, Precision and Recall of the model. Below give are the evaluation scores of models.

1. Logistic Regression Model:

• **Accuracy:** 0.7833

• **F1-Score:** 0.7719

• **Precision:** 0.8088

• Recall: 0.7383

• AUC-ROC: 0.7830

Logistic Regression stands out with the highest accuracy and F1-Score, making it the most balanced model. Its high precision indicates it's good at minimizing false positives, but the recall shows it might miss some true positives.

2. SVM:

• **Accuracy:** 0.7767

• **F1-Score:** 0.7616

• **Precision:** 0.8106

• Recall: 0.7181

• AUC-ROC: 0.8558

SVM has slightly lower accuracy and F1-Score compared to Logistic Regression, but it excels with the highest precision and a strong AUC-ROC, indicating it's very effective at distinguishing between classes, especially when precision is critical.

3. Random Forest Model:

• **Accuracy:** 0.7733

• **F1-Score:** 0.7655

• **Precision:** 0.7872

Recall: 0.7450

• **AUC-ROC:** 0.7731

Random Forest is close to SVM in terms of F1-Score and accuracy. It offers a good balance but doesn't excel in any particular area. It's a solid, reliable model but may not capture the best of both precision and recall.

4. Naive Bayes Model:

• Accuracy: 0.7667

• **F1-Score:** 0.7619

• **Precision:** 0.7724

• **Recall:** 0.7517

• **AUC-ROC:** 0.7666

Naive Bayes performs consistently with accuracy and F1-Score, making it a decent choice for simpler tasks. However, it slightly lags behind SVM and Logistic Regression in terms of precision and recall.

5. Layered Neural Network:

• **Accuracy:** 0.66

• **F1-Score:** 0.6483

• **Precision:** 0.6667

• Recall: 0.6309

• AUC-ROC: 0.8549

Layered Neural Network shows significant weaknesses, with lower accuracy and F1-Score . Despite a decent AUC-ROC , it struggles with both precision and recall , indicating it's not capturing the complexity of the data well.

6. Bidirectional LSTM Model:

• **Accuracy:** 0.66

• **F1-Score:** 0.6483

• **Precision:** 0.6667

• Recall: 0.6309

• **AUC-ROC:** 0.5331

Bidirectional LSTM shares similar issues with the Layered Neural Network, performing the weakest overall with an AUC-ROC of 0.5331, suggesting it's not well-suited for this task or requires further tuning and optimization.