$$\Lambda_c^+$$

$$I(J^P) = 0(\frac{1}{2}^+)$$
 Status: ***

The parity of the Λ_c^+ is defined to be positive (as are the parities of the proton, neutron, and Λ). The quark content is $u\,d\,c$. The spin J has not actually been measured. Results of an analysis of $p\,K^-\,\pi^+$ decays (JEZABEK 92) are consistent with the expected J=1/2.

We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.

Λ_c^+ MASS

Our value in 2004, 2284.9 \pm 0.6 MeV, was the average of the measurements now filed below as "not used." The BABAR measurement is so much better that we use it alone. Note that it is about 2.6 (old) standard deviations above the 2004 value.

The fit also includes $\Sigma_c - \Lambda_c^+$ and $\Lambda_c^{*+} - \Lambda_c^+$ mass-difference measurements, but this doesn't affect the Λ_c^+ mass. The new (in 2006) Λ_c^+ mass simply pushes all those other masses higher.

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
2286.46	5±0.14	OUR	FIT			·	
2286.46	5±0.14	Į.	4891	¹ AUBERT,B	05 S	BABR	$\Lambda K_S^0 K^+$ and $\Sigma^0 K_S^0 K^+$
• • • \	We do	not use	the follo	wing data for averag	ges, fi	ts, limits	s, etc. • • •
2284.7	± 0.6	± 0.7	1134	AVERY	91	CLEO	Six modes
2281.7	±2.7	±2.6	29	ALVAREZ	90 B	NA14	$pK^-\pi^+$
2285.8	± 0.6	± 1.2	101	BARLAG	89	NA32	$pK^-\pi^+$
2284.7	± 2.3	±0.5	5	AGUILAR			$pK^-\pi^+$
2283.1	±1.7	± 2.0	628	ALBRECHT	88C	ARG	$pK^-\pi^+$, $p\overline{K}^0$, $\Lambda 3\pi$
2286.2	±1.7	± 0.7	97	ANJOS	88B	E691	$pK^-\pi^+$
2281	± 3		2	JONES	87	HBC	$pK^-\pi^+$
2283	± 3		3	BOSETTI	82	HBC	$pK^-\pi^+$
2290	± 3		1	CALICCHIO	80	HYBR	$pK^-\pi^+$

 $^{^1}$ AUBERT,B 05S uses low-Q $\Lambda K_S^0 \, K^+$ and $\Sigma^0 \, K_S^0 \, K^+$ decays to minimize systematic errors. The error above includes systematic as well as statistical errors. Many cross checks and adjustments to properties of the BABAR detector, as well as the large number of clean events, make this by far the best measurement of the Λ_C^+ mass.

$\it \Lambda_c^+$ MEAN LIFE

Measurements with an error $\ge 100\times 10^{-15}$ s or with fewer than 20 events have been omitted from the Listings.

<u>VALUE</u> (10^{-15} s)	EVTS	DOCUMENT ID		TECN	COMMENT
200 \pm 6 OUR AVER	AGE Err	ror includes scale f	actor	of 1.6.	See the ideogram below.
$204.6 \pm \ 3.4 \pm \ 2.5$	8034	LINK	02C	FOCS	$ ho K^- \pi^+$
$198.1 \pm \ 7.0 \pm \ 5.6$	1630	KUSHNIR	01	SELX	$\Lambda_c^+ \rightarrow p K^- \pi^+$
HTTD. / /DDC LDL (2017	Da 1		Cuan	+J. 7/17/2000 10.1F
HTTP://PDG.LBL.C	3OV	Page 1		Crea	ted: 7/17/2008 18:15

$179.6\pm$	6.9 ± 4.4					$e^+e^-pprox \ \varUpsilon(4S)$				
215 ± 1	6 ± 8	1340	FRABETTI	93 D	E687	$\gamma \operatorname{Be}, \Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$				
• • We do not use the following data for averages, fits, limits, etc. • • •										
180 ±3	0 ±30	29	ALVAREZ	90	NA14	γ , $\Lambda_c^+ \rightarrow pK^-\pi^+$				
200 ±3	0 ±30	90	FRABETTI	90	E687	$\gamma \operatorname{Be}, \Lambda_c^+ \to p K^- \pi^+$				
196 $^{+2}_{-2}$	3 0	101	BARLAG	89	NA32	$pK^{-}\pi^{+}$ + c.c.				
220 ± 3	0 ± 20	97	ANJOS	88 B	E691	$pK^{-}\pi^{+}$ + c.c.				

Λ_c^+ DECAY MODES

Nearly all branching fractions of the Λ_c^+ are measured relative to the $pK^-\pi^+$ mode, but there are no model-independent measurements of this branching fraction. We explain how we arrive at our value of $\mathrm{B}(\Lambda_c^+\to pK^-\pi^+)$ in a Note at the beginning of the branching-ratio measurements, below. When this branching fraction is eventually well determined, all the other branching fractions will slide up or down proportionally as the true value differs from the value we use here.

 $\begin{array}{ccc} & & & & & & \\ \mathsf{Mode} & & \mathsf{Fraction} \; \left(\Gamma_{i} / \Gamma \right) & & \mathsf{Confidence} \; \mathsf{level} \end{array}$

Hadronic modes with a p: S = -1 final states

```
p\overline{K}^0
\mathsf{\Gamma}_1
                                                               (2.3 \pm 0.6)\%
        pK^-\pi^+
\Gamma_2
                                                        [a] (5.0 \pm 1.3)\%
     p\overline{K}^{*}(892)^{0}
                                                        [b] (1.6 \pm 0.5)\%
         \Delta(1232)^{++}K^{-}
                                                              (8.6 \pm 3.0) \times 10^{-3}
      \Lambda(1520)\pi^{+}
                                                        [b] (1.8 \pm 0.6)\%
          pK^-\pi^+ nonresonant
                                                              (2.8 \pm 0.8)\%
        p\overline{K}^0\pi^0
                                                              (3.3 \pm 1.0)\%
Γ<sub>8</sub>
        p\overline{K}^0\eta
                                                              (1.2 \pm 0.4)\%
        p\overline{K}^{0}\dot{\pi}^{+}\pi^{-}
                                                              (2.6 \pm 0.7)\%
      pK^{-}\pi^{+}\pi^{0}
                                                              (3.4 \pm 1.0)\%
      pK^*(892)^-\pi^+
                                                        [b] (1.1 \pm 0.5)\%
      p(K^-\pi^+)_{\text{nonresonant}}\pi^0
                                                              ( 3.6 \pm 1.2 ) %
      \Delta(1232)\overline{K}^{*}(892)
\Gamma_{14} p K^{-} \pi^{+} \pi^{+} \pi^{-}
                                                              (1.1 \pm 0.8) \times 10^{-3}
\Gamma_{15} p K^- \pi^+ \pi^0 \pi^0
                                                                                               TROPPO INPROBABILI
                                                              (8 \pm 4) \times 10^{-3}
\Gamma_{16} p K^- \pi^+ 3\pi^0
```

Hadronic modes with a p: S = 0 final states

Hadronic modes with a hyperon: S = -1 final states

```
\Lambda \pi^+
                                                                              (1.07 \pm 0.28)\%
        \Lambda\pi^+\pi^0
\Gamma_{24}
                                                                              (3.6 \pm 1.3)\%
           \Lambda \rho^+
                                                                            < 5
                                                                                                                       CL=95%
\Gamma_{26} \Lambda \pi^{+} \pi^{+} \pi^{-}
                                                                            (2.6 \pm 0.7)\%
\Gamma_{27} \Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow
                                                                              (7 \pm 4) \times 10^{-3}
              \Sigma(1385)^-\pi^+\pi^+ , \Sigma^{*-} 
ightarrow
                                                                        (5.5 \pm 1.7) \times 10^{-3}
\Gamma_{29}
                                                                           (1.1 \pm 0.5)\%
            \Sigma(1385)^+
ho^0 , \Sigma^{*+}
ightarrow \Lambda\pi^+
                                                                          (3.7 \pm 3.1) \times 10^{-3}
\Gamma_{30}
                                                                      < 8
                                                                                                     \times 10^{-3}
           \Lambda\pi^+\pi^+\pi^- nonresonant
                                                                                                                       CL=90%
        \Lambda \pi^+ \pi^+ \pi^- \pi^0 total
\Gamma_{32}
                                                                           (1.8 \pm 0.8)\%
              \Lambda \pi^+ \eta
                                                                    [b] (1.8 \pm 0.6)\%
                  \Sigma(1385)^{+}\eta
\Gamma_{34}
                                                                      [b] (8.5 \pm 3.3) \times 10^{-3}
            \Lambda \pi^+ \omega
\Gamma_{35}
                                                                    [b] ( 1.2 \pm 0.5 ) %
           \Lambda\pi^{+}\pi^{+}\pi^{-}\pi^{0} , no \eta or \omega
             \Lambda \pi^{+} \pi^{+} \pi^{-} \pi^{0}, no \eta or \omega < 7 \times 10^{-3} 

K^{+} \overline{K}^{0} ( 4.7 \pm 1.5 ) \times 10^{-3} 

\Xi (1690)^{0} K^{+}, \Xi^{*0} \to \Lambda \overline{K}^{0} ( 1.3 \pm 0.5 ) \times 10^{-3}
                                                                                                                       CL=90%
        \Lambda K^{+} \overline{K}^{0}
\Gamma_{37}
                                                                                                                           S = 1.2
\Gamma_{38}
```

```
\Sigma^0 \pi^+
\Gamma_{39}
                                                                 (1.05\pm\ 0.28)\%
       \Sigma^+\pi^0
\Gamma_{40}
                                                                 (1.00 \pm 0.34)\%
      \Sigma^+ \eta
                                                                 (5.5 \pm 2.3) \times 10^{-3}
       \Sigma^+\pi^+\pi^-
                                                                 (3.6 \pm 1.0)\%
       \Sigma^+ 
ho^0
                                                                < 1.4
                                                                                                   CL=95%
      \Sigma^- \pi^+ \pi^+
                                                                 (1.9 \pm 0.8)\%
                                                                 (1.8 \pm 0.8)\%
       \Sigma^0\pi^+\pi^+\pi^-
                                                                 (8.3 \pm 3.1) \times 10^{-3}
      \Sigma^{+} \pi^{+} \pi^{-} \pi^{0}
       \Sigma^+\omega
                                                           [b] (2.7 \pm 1.0)\%
       \Sigma^+\, {\it K}^+\, {\it K}^-
                                                                 ( 2.8~\pm~0.8 ) \times\,10^{-3}
       \Sigma^+ \, \phi \Xi(1690)^0 \, K^+ , \, \Xi^{*0} \, 
ightarrow
                                                           [b] (3.2 \pm 1.0) \times 10^{-3}
                                                                 (8.2 \pm 3.1) \times 10^{-4}
                \Sigma^+ K^-
          \Sigma^{+}K^{+}K^{-} nonresonant
                                                                                    \times 10^{-4}
                                                                < 7
                                                                                                   CL=90%
      \equiv^0 K^+
                                                                 (3.9 \pm 1.4) \times 10^{-3}
\Gamma_{54} \Xi^- K^+ \pi^+
                                                                 (5.1 \pm 1.4) \times 10^{-3}
       \Xi(1530)^0 K^+
                                                           [b] (2.6 \pm 1.0) \times 10^{-3}
\Gamma_{55}
                  Hadronic modes with a hyperon: S = 0 final states
       \Lambda K^+
                                                                (5.0 \pm 1.6) \times 10^{-4}
```

Doubly Cabibbo-suppressed modes

$$\Gamma_{63} p K^{+} \pi^{-}$$
 < 2.3 × 10⁻⁴ CL=90%

Semileptonic modes

Inclusive modes

I 67	e' anytning	(4.5	\pm 1.7) %
Γ ₆₈	pe^+ anything	(1.8	± 0.9) %
Γ ₆₉	Λe^+ anything			
Γ_{70}	p anything	(50	± 16) %
Γ_{71}	p anything (no Λ)	(12	± 19) %
Γ_{72}	p hadrons			
Γ_{73}	n anything	(50	± 16) %

$$\Gamma_{74}$$
 n anything (no Λ) (29 \pm 17)% Γ_{75} Λ anything (35 \pm 11)% Γ_{76} Σ^{\pm} anything [d] (10 \pm 5)% Γ_{77} 3prongs (24 \pm 8)%

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton number (L) violating modes

$$\Gamma_{78}$$
 $p \mu^+ \mu^ C1$ < 3.4 $\times 10^{-4}$ $CL=90\%$ Γ_{79} $\Sigma^- \mu^+ \mu^+$ L < 7.0 $\times 10^{-4}$ $CL=90\%$

- [a] See the note on " Λ_c^+ Branching Fractions" below.
- [b] This branching fraction includes all the decay modes of the final-state resonance.
- [c] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [d] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 16 branching ratios uses 30 measurements and one constraint to determine 11 parameters. The overall fit has a $\chi^2=15.2$ for 20 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₂₃	96								
<i>x</i> ₂₆	97	93							
<i>X</i> 37	82	83	80						
<i>x</i> ₃₉	95	98	92	82					
<i>x</i> ₄₂	91	87	89	75	86				
^X 46	69	66	70	57	66	63			
<i>x</i> ₄₉	87	83	85	71	82	93	60		
^X 50	84	80	81	69	79	90	58	84	
^X 54	93	96	90	80	94	85	64	81	78
	x_2	<i>x</i> ₂₃	<i>x</i> ₂₆	<i>x</i> ₃₇	<i>x</i> ₃₉	<i>x</i> ₄₂	<i>x</i> ₄₆	<i>x</i> ₄₉	<i>×</i> 50

A REVIEW GOES HERE - Check our WWW List of Reviews

1 BRANCHING RATIOS

Hadronic modes with a p: S = -1 final states -

$\Gamma(p\overline{K}^0)/\Gamma(pK^{-\eta})$	r ⁺)					Γ_1/Γ_2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.47±0.04 OUR AVE	RAGE					
$0.46 \!\pm\! 0.02 \!\pm\! 0.04$	1025	ALAM	98	CLE2	$e^+e^-pprox \Upsilon(4S)$	
$0.44 \pm 0.07 \pm 0.05$	133	AVERY	91	CLEO	e^+e^- 10.5 GeV	
$0.55 \!\pm\! 0.17 \!\pm\! 0.14$	45	ANJOS	90	E691	$\gamma\mathrm{Be}\ 70 ext{}260\ \mathrm{GeV}$	
$0.62\!\pm\!0.15\!\pm\!0.03$	73	ALBRECHT	88C	ARG	e^+e^- 10 GeV	

 $\Gamma(pK^-\pi^+)/\Gamma_{\text{total}}$

 Γ_2/Γ

See the note on " Λ_c^+ Branching Fractions" above.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.050 ± 0.013 OUR FIT	•				
0.050 ± 0.013		PDG	02		See note at top of ratios

• • • We do not use the following data for averages, fits, limits, etc. • • •

$\Gamma(\rho \overline{K}^*(892)^0)/\Gamma(\rho K^-\pi^+)$

 Γ_3/Γ_2

Created: 7/17/2008 18:15

Unseen decay modes of the $\overline{K}^*(892)^0$ are included.

VALUE	_EVTS	DOCUMENT ID		TECN	COMMENT
0.31±0.04 OUR AVE	RAGE				
$0.29\!\pm\!0.04\!\pm\!0.03$		⁶ AITALA	00	E791	π^- N, 500 GeV
$0.35^{+0.06}_{-0.07}\pm0.03$	39	BOZEK	93	NA32	$\pi^-\mathrm{Cu}$ 230 GeV
$0.42 \!\pm\! 0.24$	12	BASILE	81 B	CNTR	$pp \rightarrow \Lambda_c^+ e^- X$

• • We do not use the following data for averages, fits, limits, etc. • •

 0.35 ± 0.11 BARLAG 90D NA32 See BOZEK 93

 $^{^2}$ JAFFE 00 assumes that a \overline{D} meson and an antiproton in opposite hemispheres tags for a \varLambda_c^+ in the hemisphere of the \overline{p} . The fraction of such $\overline{D}\,\overline{p}$ events with a $\varLambda_c^+\to p\,K^-\,\pi^+$ decay then gives the $p\,K^-\,\pi^+$ branching fraction. See the paper for assumptions, caveats, etc.

³ To extract $\Gamma(pK^-\pi^+)/\Gamma_{\text{total}}$, we use $B(\overline{B}\to \Lambda_c^+X)\cdot B(\Lambda_c^+\to pK^-\pi^+)=(0.28\pm0.06)\%$, which is the average of measurements from ARGUS (ALBRECHT 88C) and CLEO (CRAWFORD 92).

⁴ ALBRECHT 920 measures B($\overline{B} \rightarrow \Lambda_c^+ X$) = (6.8 \pm 0.5 \pm 0.3)%.

⁵ CRAWFORD 92 measures B($\overline{B} \rightarrow \Lambda^+_C X$) = (6.4 ± 0.8 ± 0.8)%.

 $^{^6}$ AITALA 00 makes a coherent 5-dimensional amplitude analysis of 946 \pm 38 \varLambda_c^+ \to $pK^-\pi^+$ decays.

Γ(Δ(1232) ⁺⁺	$-K^-$)/ $\Gamma(pK^-\pi$	r ⁺)				Γ_4/Γ_2
<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID			COMMENT	
0.17±0.04 OUR	R AVERAGE Erro	r includes scale f				
$0.18 \pm 0.03 \pm 0.0$		⁷ AITALA	00	E791	π^- N, 500 GeV	
$0.12^{+0.04}_{-0.05}\pm0.0$	5 14	BOZEK	93	NA32	π^- Cu 230 GeV	
0.40 ± 0.17	17	BASILE	81 B	CNTR	$pp \rightarrow \Lambda_c^+ e^- X$	
⁷ AITALA 00	makes a coherent	5-dimensional a	amplit	ude anal	ysis of 946 \pm 38	$\Lambda_c^+ \rightarrow$
$ ho K^- \pi^+$ de						C
$\Gamma(\Lambda(1520)\pi^+$	$\Gamma(\rho K^- \pi^+)$					Γ_5/Γ_2
	ecay modes of the	$\Lambda(1520)$ are inclu	ıded.			<i>3,</i> 2
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.35±0.08 OUR		⁸ AITALA	00	E701	= M 500 C-M	
$0.34 \pm 0.08 \pm 0.0$			00	E791	π^- N, 500 GeV	
$0.40^{+0.18}_{-0.13}\pm0.0$	9 12	BOZEK	93	NA32	π^- Cu 230 GeV	
⁸ AITALA 00	makes a coherent	5-dimensional a	amplit	ude anal	ysis of 946 \pm 38	$\Lambda_c^+ \rightarrow$
$ ho K^- \pi^+$ de	cays.					
$\Gamma(\rho K^-\pi^+ \text{no})$	$nresonant)/\Gamma(p$	$\kappa^-\pi^+$				Γ_6/Γ_2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	- 0/ - 2
0.55±0.06 OUR						
$0.55 \pm 0.06 \pm 0.06$	4	⁹ AITALA	00	E791	π^- N, 500 GeV	
$0.56^{+0.07}_{-0.09}\pm0.0$	5 71	BOZEK	93	NA32	π^- Cu 230 GeV	
⁹ AITALA 00	makes a coherent	5-dimensional a	amplit	ude anal	vsis of 946 \pm 38	$\Lambda^+ \rightarrow$
$pK^-\pi^+$ de					,	С
$\Gamma(ho\overline{K}^0\pi^0)/\Gamma$	$(nK^{-}\pi^{+})$					Γ_7/Γ_2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	17/12
0.66±0.05±0.0	· · · · · · · · · · · · · · · · · · ·	ALAM	98	CLE2	$e^+e^-\approx \Upsilon(4S)$	3)
		, CE, CIVI	30	CLLZ	c c /c / (15	
$\Gamma(p\overline{K}^0\eta)/\Gamma(p$						Γ_8/Γ_2
VALUE	ecay modes of the <u>EVTS</u>	n are included. <u>DOCUMENT ID</u>		TECN	COMMENT	
0.25±0.04±0.0		AMMAR	95		$e^+e^-\approx \Upsilon(45)$	5)
r(<u>~</u> V0_+)/[(= <i>K</i> ==+)					Г. /Г.
VALUE	$)/\Gamma(\rho K^-\pi^+)$	DOCUMENT ID		TECN	COMMENT	Γ_9/Γ_2
0.51±0.06 OUR	<u>EVTS</u> R AVERAGE	<u>DOCUMENT ID</u>		TECIV	COMMENT	
$0.52 \pm 0.04 \pm 0.0$		ALAM	98	CLE2	$e^+e^-\approx \Upsilon(4S)$)
$0.43 \pm 0.12 \pm 0.0$		AVERY	91		$e^{+}e^{-}$ 10.5 $\hat{\text{GeV}}$	
$0.98 \pm 0.36 \pm 0.06$	8 12	BARLAG	90 D	NA32	π^- 230 GeV	
$\Gamma(\rho K^-\pi^+\pi^0$	$)/\Gamma(ho K^-\pi^+)$				1	Γ_{10}/Γ_{2}
<u>VALUE</u>		DOCUMENT ID		TECN		101.5
0.67±0.04±0.1		ALAM	98		$e^+e^-\approx \gamma(45)$	5)
			-		(,

Γ(pK*(892)-π+) Unseen decay m	*	(π^{-}) $(*(892)^{-}$ are inc	luded		Γ ₁₁ ,	/Γ ₉
<u>VALUE</u>		DOCÚMENT ID			COMMENT	
0.44 ± 0.14	17	ALEEV	94	BIS2	<i>nN</i> 20–70 GeV	
$\Gamma(ho(\kappa^-\pi^+)_{ m nonres})$, .	` '			Γ _{12/}	/Γ ₂
VALUE		DOCUMENT ID				
$0.73\pm0.12\pm0.05$	67	BOZEK	93	NA32	π^- Cu 230 GeV	
$\Gamma(\Delta(1232)\overline{K}^*(892))$	-	DOCUMENT ID		TECN	_	3/Г
VALUE seen	35	AMENDOLIA			·	
$\Gamma(ho K^-\pi^+\pi^+\pi^-)$		+)			Γ ₁₄ ,	/Γ ₂
VALUE		DOCUMENT ID				
0.022 ± 0.015		BARLAG	90 D	NA32	π^- 230 GeV	
$\Gamma(\rho K^-\pi^+\pi^0\pi^0)$	*	*			Γ _{15/}	/Γ ₂
<u>VALUE</u>		DOCUMENT ID			<u>COMMENT</u>	
$0.16 \pm 0.07 \pm 0.03$	15	BOZEK	93	NA32	π^- Cu 230 GeV	
$\Gamma(ho K^- \pi^+ 3\pi^0)/\Gamma$	` ,	DOCUMENT ID		TECN	Γ ₁₆ /	/Γ ₂
	_	_				
$0.10\pm0.06\pm0.02$	8	BOZEK	93	NA32	π^- Cu 230 GeV	
——— Ha	adronic mod	des with a p : s	S = 0) final s	states ———	
$\Gamma(\rho\pi^+\pi^-)/\Gamma(\rho K$	$(-\pi^{+})$				Γ _{17/}	/Γ ₂
VALUE		DOCUMENT ID			COMMENT	
0.069 ± 0.036		BARLAG	90 D	NA32	π^- 230 GeV	
$\Gamma(\rho f_0(980))/\Gamma(\rho F)$ Unseen decay m		$f_0(980)$ are includ	led.		Γ _{18/}	/Γ ₂
VALUE		DOCUMENT ID		TECN	COMMENT	
0.055 ± 0.036		BARLAG	90 D	NA32	π^- 230 GeV	
$\Gamma(\rho\pi^+\pi^+\pi^-\pi^-)$	/Γ(<i>pK</i> -π ⁺	•			Γ ₁₉ /	/Γ ₂
<u>VALUE</u>		DOCUMENT ID				
0.036 ± 0.023		BARLAG	900	NA32	π^- 230 GeV	
$\Gamma(\rho K^+ K^-)/\Gamma(\rho K)$ VALUE	-	DOCUMENT ID		TECN	COMMENT	/Γ ₂
<u>VALUE</u> 0.015±0.006 OUR A\	/ERAGE Er	ror includes scale	facto	r of 2.1.	COMMENT	
$0.014 \pm 0.002 \pm 0.002$	676	ABE	02 C	BELL	$e^+e^-pprox ~ \Upsilon(4S)$	
$0.039 \pm 0.009 \pm 0.007$	214	ALEXANDER	96 C	CLE2	$e^+e^-\approx \Upsilon(4S)$	
• • • We do not use	the following	data for averages	s, fits,	limits,	etc. • • •	
$0.096 \pm 0.029 \pm 0.010$	30	FRABETTI	93н	E687	$\gamma{ m Be},\overline{\it E}_{\gamma}$ 220 GeV	
$0.048\!\pm\!0.027$		BARLAG			π^- 230 GeV	
HTTP://PDG.LBI	GOV	Page 8		Creat	red: 7/17/2008 18	:15

$\Gamma(\rho\phi)/\Gamma(\rho K^-\pi^+)$)					Γ_{21}/Γ_2
Unseen decay m						
VALUE	<u>EVTS</u>	DOCUMENT ID)	<u>TECN</u>	<u>COMMENT</u>	
0.0164±0.0032 OUR						- (-)
$0.015 \pm 0.002 \pm 0.002$					$e^+e^-\approx \gamma$	
$0.024 \pm 0.006 \pm 0.003$	3 54	ALEXANDE	₹ 96c	CLE2	$e^+e^-pprox \gamma$	^(4 <i>S</i>)
• • • We do not use t	the following	g data for averag	es, fits,	limits, e	etc. ● ● ●	
0.040 ± 0.027		BARLAG	90 D	NA32	π^- 230 GeV	/
$\Gamma(pK^+K^-\text{non-}\phi)$	•	•	2	TECN	COMMENT	Γ_{22}/Γ_2
VALUE		DOCUMENT II				2(16)
$0.007 \pm 0.002 \pm 0.002$	344	ABE	02C	BELL	$e^+e^-pprox \gamma$	(45)
Hadron	ic modes	with a hypero	n: <i>S</i> =	= -1 fi	nal states -	
$\Gamma(\Lambda\pi^+)/\Gamma(\rho K^-\pi^-)$	+)					Γ_{23}/Γ_2
VALUE					COMMEN	V <i>T</i>
0.214±0.016 OUR I 0.204±0.019 OUR I		includes scale fa	ctor of	1.1.		
0.204 ± 0.019 GGR 7) LINK		05F FC	DCS γ nuclei	us, $\overline{\it E}_{\gamma} pprox$
$0.18 \pm 0.03 \pm 0.04$		ALBREO	`UT	02 45	180 $^{\circ}$	GeV
$0.18 \pm 0.03 \pm 0.04$ $0.18 \pm 0.03 \pm 0.03$	8.				EO e ⁺ e ⁻	
• • • We do not use t						10.5 GeV
< 0.33	90	ANJOS			γ Be 70-	
< 0.16	90	ALBREC	CHT	88C AF	$RG e^+e^-$	10 GeV
$\Gamma(\Lambda\pi^+\pi^0)/\Gamma(pK^-)$	$\pi^+)$					Γ_{24}/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID				
$0.73\pm0.09\pm0.16$	464	AVERY	94	CLE2	$e^+e^-\approx \gamma$	$(3S), \Upsilon(4S)$
$\Gamma(\Lambda ho^+)/\Gamma(ho K^-\pi^-)$	•					Γ_{25}/Γ_2
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT	
<0.95	95	AVERY	94 C	CLE2 e	$e^+e^-pprox \gamma(3)$	$(3S), \Upsilon(4S)$
$\Gamma(\Lambda\pi^{+}\pi^{+}\pi^{-})/\Gamma(\Lambda\pi^{+}\pi^{-})$	$pK^-\pi^+$					Γ_{26}/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.525 ± 0.032 OUR FIT						
0.522±0.032 OUR AV						
$0.508 \pm 0.024 \pm 0.024$	1356	LINK	05F	FOCS	γ nucleus, \overline{E} , 180 GeV	$\gamma \approx$
$0.65\ \pm0.11\ \pm0.12$	289	AVERY			$e^{+} \frac{180}{e^{-}} \frac{\text{GeV}}{10.5}$ (
$0.82 \pm 0.29 \pm 0.27$	44	ANJOS	90	E691	$\gamma\mathrm{Be}$ 70–260	GeV
$0.94 \ \pm 0.41 \ \pm 0.13$	10				π^- 230 GeV	
$0.61 \pm 0.16 \pm 0.04$	105	ALBRECHT	88C	ARG	$e^{+}e^{-}$ 10 Ge	٠V
$\Gamma(\Sigma(1385)^{+}\pi^{+}\pi^{-}$, Σ^{*+} $ ightarrow$	$\Lambda \pi^+)/\Gamma(\Lambda \pi^-)$	$^{+}\pi^{+}\pi^{-}$	-)		Γ_{27}/Γ_{26}
VALUE		DOCUMENT ID		CO CO	<u>OMMENT</u>	
$0.28 \pm 0.10 \pm 0.08$		LINK	05F F0	OCS γ	nucleus, $\overline{\it E}_{\gamma}$ \approx	$pprox 180~{\sf GeV}$
					·	

```
\Gamma(\Sigma(1385)^-\pi^+\pi^+,\Sigma^{*-}\to\Lambda\pi^-)/\Gamma(\Lambda\pi^+\pi^+\pi^-)
                                                                                                          \Gamma_{28}/\Gamma_{26}
                                            DOCUMENT ID
                                                                        TECN COMMENT
0.21\pm0.03\pm0.02
                                                                 05F FOCS \gamma nucleus, \overline{\it E}_{\gamma} \approx 180~{\rm GeV}
                                            LINK
\Gamma(\Lambda\pi^+\rho^0)/\Gamma(\Lambda\pi^+\pi^+\pi^-)
                                                                                                          \Gamma_{29}/\Gamma_{26}
0.40\pm0.12\pm0.12
                                                                 05F FOCS \gamma nucleus, \overline{E}_{\gamma} \approx 180 \text{ GeV}
                                            LINK
\Gamma(\Sigma(1385)^+ \rho^0, \Sigma^{*+} \to \Lambda \pi^+)/\Gamma(\Lambda \pi^+ \pi^+ \pi^-)
                                                                                                          \Gamma_{30}/\Gamma_{26}
                                                                        TECN COMMENT
0.14 \pm 0.09 \pm 0.07
                                                                 05F FOCS \gamma nucleus, \overline{\it E}_{\gamma} \approx 180~{\rm GeV}
                                            LINK
\Gamma(\Lambda \pi^+ \pi^+ \pi^- \text{ nonresonant})/\Gamma(\Lambda \pi^+ \pi^+ \pi^-)
                                                                                                          \Gamma_{31}/\Gamma_{26}
 < 0.3
                                            LINK
                                                                 05F FOCS \gamma nucleus, \overline{E}_{\gamma} \approx 180 \text{ GeV}
\Gamma(\rho \overline{K}{}^{0}\pi^{+}\pi^{-})/\Gamma(\Lambda\pi^{+}\pi^{+}\pi^{-})
                                                                                                           \Gamma_9/\Gamma_{26}
                                                DOCUMENT ID
                                                                            TECN COMMENT

    • • We do not use the following data for averages, fits, limits, etc.

2.6 \pm 1.2
                                                ALEEV
                                                                            SPEC n nucleus, 50 GeV/c
4.3 \pm 1.2
                                  130
                                                ALEEV
                                                                            BIS2
                                                                                       nC 40-70 GeV
                                                                     84
\Gamma(\Lambda \pi^+ \pi^+ \pi^- \pi^0 \text{total}) / \Gamma(\rho K^- \pi^+)
                                                 DOCUMENT ID
                                                                            TECN COMMENT
                                            <sup>10</sup> CRONIN-HEN..03
                                                                           CLE3 e^+e^- \approx \Upsilon(4S)
0.36\pm0.09\pm0.09
 ^{10} CRONIN-HENNESSY 03 finds this channel to be dominately \Lambda\eta\pi^+ and \Lambda\omega\pi^+; see
\Gamma(\Lambda\pi^+\eta)/\Gamma(pK^-\pi^+)
                                                                                                           \Gamma_{33}/\Gamma_{2}
        Unseen decay modes of the \eta are included.
                                                                            TECN
                                 EVTS
0.36 ± 0.07 OUR AVERAGE
                                                CRONIN-HEN..03
                                                                            CLE3
                                                                                       e^+e^-\approx \Upsilon(4S)
0.41 \pm 0.17 \pm 0.10
                                    11
                                                                            CLE2
0.35\pm0.05\pm0.06
                                  116
                                                AMMAR
\Gamma(\Sigma(1385)^+\eta)/\Gamma(pK^-\pi^+)
                                                                                                           \Gamma_{34}/\Gamma_{2}
        Unseen decay modes of the \Sigma(1385)^+ and \eta are included.
                                                DOCUMENT ID
                                 EVTS
                                                                           TECN COMMENT
0.17 \pm 0.04 \pm 0.03
                                                                           CLE2
                                                                                      e^+e^-\approx \Upsilon(4S)
                                                                     95
                                                AMMAR
\Gamma(\Lambda\pi^+\omega)/\Gamma(\rho K^-\pi^+)
                                                                                                           \Gamma_{35}/\Gamma_2
        Unseen decay modes of the \omega are included.
                                                                            TECN COMMENT
                                                CRONIN-HEN..03 CLE3 e^+e^- \approx \Upsilon(4S)
0.24\pm0.06\pm0.06
\Gamma(\Lambda\pi^+\pi^+\pi^-\pi^0, no \eta or \omega)/\Gamma(pK^-\pi^+)
                                                DOCUMENT ID
                                                                          CLE3 e^+e^-\approx \Upsilon(4S)
 <0.13
                                 90
                                                CRONIN-HEN..03
                                                                             Created: 7/17/2008 18:15
```

$\Gamma(\Lambda K^+ \overline{K}^0)/\Gamma(\rho K^-)$	$^{-}\pi^{+})$					Γ_{37}/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT	
0.093 ± 0.018 OUR FIT 0.131 ± 0.020 OUR AVI	Error ind	cludes scale facto	or of	1.7.		
$0.142 \pm 0.018 \pm 0.022$		LINK	05F	FOCS	γ nucleus, $\overline{\it E}$	$\overline{\epsilon}_{\gamma}pprox$ 180 GeV
$0.12 \pm 0.02 \pm 0.02$		AMMAR			$e^+e^-\approx 1$	
$\Gamma(\Xi(1690)^0 K^+, \Xi^*$	$*^0 \rightarrow \Lambda \overline{K}$	$\overline{K}^{0})/\Gamma(\Lambda K^{+}\overline{K}^{0})$)			Γ_{38}/Γ_{37}
VALUE	EVTS	DOCUMENT ID	*	TECN	COMMENT	
0.28±0.07 OUR AVER	AGE				_	
$0.32 \pm 0.10 \pm 0.04$ 84		LINK			γ nucleus, \overline{E}	
$0.26 \pm 0.08 \pm 0.03$	93	ABE	02 C	BELL	$e^+e^-pprox \gamma$	(4 <i>S</i>)
$\Gamma(\Lambda K^+ \overline{K}^0)/\Gamma(\Lambda \pi^+)$	⊦)					Γ_{37}/Γ_{23}
VALUE 0.43 ±0.08 OUR FIT	EVT.	<u>DOCUMEI</u>	NT ID		TECN COMM	1ENT
0.43 \pm 0.08 OUR FIT 0.395 \pm 0.026 \pm 0.036						
		-				
$\Gamma(\Sigma^0\pi^+)/\Gamma(\rho K^-\tau)$						Γ_{39}/Γ_2
<u>VALUE</u> 0.210±0.018 OUR FIT	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT	
0.210 ± 0.016 OUR AVI						
$0.21 \pm 0.02 \pm 0.04$	196	AVERY	94	CLF2	$e^+e^-pprox \gamma$	$(35). \Upsilon(45)$
$0.17 \pm 0.06 \pm 0.04$		ALBRECHT				
$\Gamma(\Sigma^0\pi^+)/\Gamma(\Lambda\pi^+)$						Γ_{39}/Γ_{23}
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
0.98 ± 0.05 OUR FIT 0.98 ± 0.05 OUR AVI						
$0.977 \pm 0.015 \pm 0.051$	33k	AUBERT	07 U	BABR	$e^+e^-pprox \gamma$	(45)
$1.09 \pm 0.11 \pm 0.19$	750				γ nucleus, $\overline{\it E}$	
$\Gamma(\Sigma^+\pi^0)/\Gamma(ho K^-\pi^0)$	τ ⁺)					Γ_{40}/Γ_{2}
VALUE	•	DOCUMENT ID)	TEC	<u>COMMENT</u>	
$0.20\pm0.03\pm0.03$	93	KUBOTA	93	CLE	$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\Sigma^+\eta)/\Gamma(\rho K^-\pi^-)$	+)					Γ_{41}/Γ_{2}
Unseen decay mo		η are included.				- 41/ - 2
VALUE	<u>EVTS</u>	DOCUMENT ID				
$0.11 \pm 0.03 \pm 0.02$	26	AMMAR	95	CLE	$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\Sigma^{+}\pi^{+}\pi^{-})/\Gamma(p)$	$(K^-\pi^+)$					Γ_{42}/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID)	TEC	<u>COMMENT</u>	
0.73±0.08 OUR FIT 0.68±0.09 OUR AVER	AGE					
$0.74 \pm 0.07 \pm 0.09$	487	KUBOTA	93	CLE	$e^+e^-\approx$	$\Upsilon(4S)$
$0.54^{+0.18}_{-0.15}$	11	BARLAG			$2 \pi^{-}$ Cu 230	` ,
-0.15	11	DANLAG	92	. 11/43	∠ // Cu 23() Gev

$\Gamma(\Sigma^+ \rho^0)/\Gamma(\rho K^-$	$\pi^+)$					Γ_{43}/Γ_{2}
, , ,	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.27	95	KUBOTA	93	CLE2	$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\Sigma^-\pi^+\pi^+)/\Gamma(\Sigma^-\pi^+\pi^+)$	•					Γ_{44}/Γ_{42}
VALUE		DOCUMENT ID	0.45		<u>COMMENT</u>	200 6 1/
$0.53\pm0.15\pm0.07$	56	FRABETTI	94E	E687	γ Be, E_{γ} 2	220 GeV
$\Gamma(\Sigma^0\pi^+\pi^0)/\Gamma(\rho R)$	*	DOCUMENT ID	-	TECN (COMMENT	Γ_{45}/Γ_2
0.36±0.09±0.10	· · · · · · · · · · · · · · · · · · ·					$\Gamma(3S), \Upsilon(4S)$
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,			
$\Gamma(\Sigma^0\pi^+\pi^+\pi^-)/\Gamma$. ,					Γ_{46}/Γ_2
<u>VALUE</u> 0.17±0.04 OUR FIT	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$0.21 \pm 0.05 \pm 0.05$	90	AVERY	94	CLE2		,
$\Gamma(\Sigma^0\pi^+\pi^+\pi^-)/\Gamma$	$-(\Lambda\pi^+\pi^+\pi^+\pi^-)$	-)				Γ_{46}/Γ_{26}
VALUE	<u>EVTS</u> <u>Do</u>	OCUMENT ID	<u>TE</u>	CN CO	MMENT	
0.31±0.08 OUR FIT 0.26±0.06±0.09	480 LI	NK 05	F FC)CS ~ :	nucleus -	pprox 180 GeV
0.20 ± 0.00 ± 0.09	400 LI	WK 03	- 10	/C3 · / I	indcieds, L_{γ}	\sim 100 GeV
$\Gamma(\Sigma^+\omega)/\Gamma(\rho K^-\pi)$ Unseen decay m	r^+) nodes of the ω	are included.				Γ_{48}/Γ_{2}
VALUE		DOCUMENT ID		TECN	COMMENT	
$0.54 \pm 0.13 \pm 0.06$	107	KUBOTA	93	CLE2	$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\Sigma^+ K^+ K^-)/\Gamma(E^+ K^-)$	$\rho K^- \pi^+$					Γ_{49}/Γ_2
, , ,	,	DOCUMENT ID		TECN	COMMENT	- 49/ - 2
0.057±0.008 OUR FI	<u>T</u>					
$0.070\pm0.011\pm0.011$	59	AVERY	93	CLE2	$e^+e^-\approx 1$	10.5 GeV
$\Gamma(\Sigma^+K^+K^-)/\Gamma(K^-)$	$\Sigma^+\pi^+\pi^-)$					Γ_{49}/Γ_{42}
VALUE 0.078±0.009 OUR FI	,	DOCUMENT ID		TECN	COMMENT	
0.078±0.009 OUR FI 0.074±0.009 OUR AV						
$0.076 \pm 0.007 \pm 0.009$	246	ABE	02C	BFLI	e^+e^-pprox	$\Upsilon(4S)$
$0.071 \pm 0.011 \pm 0.011$	103	LINK			γ nucleus,	
$\Gamma(\Sigma^+\phi)/\Gamma(pK^-\pi)$	r+)					Γ_{50}/Γ_{2}
Unseen decay m	nodes of the ϕ	are included.				1 50/12
<u>VALUE</u> 0.063±0.011 OUR FI		DOCUMENT ID		TECN	COMMENT	
$0.069 \pm 0.023 \pm 0.016$	26	AVERY	93	CL E2	$e^+e^-pprox 1$	10 5 CeV
		AVEITI	93	CLLZ	€ € ~.	
$\Gamma(\Sigma^+\phi)/\Gamma(\Sigma^+\pi^+)$	π^-					Γ_{50}/Γ_{42}
Unseen decay m	nodes of the ϕ	are included. <u>DOCUMENT ID</u>		TECN	COMMENT	
0.087±0.012 OUR FI	Т	BOCOMENT ID		1201	COMMENT	
0.086±0.012 OUR AV					ı	22 (- 2)
$0.085 \pm 0.012 \pm 0.012$	129 57	ABE			$e^+e^-\approx$, ,
$0.087 \pm 0.016 \pm 0.006$	57	LINK	UZG	ruc5	γ nucleus,	≈ 100 GeV
HTTP://PDG.LBL	GOV	Page 12		Creat	ed: 7/17/	2008 18:15

$\Gamma(\Xi(1690)^0 K^+, \Xi^*$	0 → Σ≒	$^+K^-)/\Gamma(\Sigma^+\pi^+$	π^{-}		Γ_{51}/Γ_{42}
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.023 ± 0.005 OUR AVE	RAGE				
$0.023 \pm 0.005 \pm 0.005$	75	ABE	02 C	BELL	$e^+e^-pprox ~ \varUpsilon(4S)$
$0.022\!\pm\!0.006\!\pm\!0.006$	34	LINK	02 G	FOCS	γ nucleus, $pprox$ 180 GeV
$\Gamma(\Sigma^+K^+K^-)$ nonres	sonant),	$\Gamma(\Sigma^+\pi^+\pi^-)$			Γ ₅₂ /Γ ₄₂
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.018	90	ABE	02 C	BELL	$e^+e^-pprox ~ \gamma(4S)$
• • • We do not use th	e followir	ng data for average	s, fits,	limits,	etc. • • •
<0.028	90	LINK	02G	FOCS	γ nucleus, \approx 180 GeV
$\Gamma(\Xi^0 K^+)/\Gamma(\rho K^- \tau)$	r ⁺)				Γ_{53}/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.078 \pm 0.013 \pm 0.013$	56	AVERY	93	CLE2	$e^+e^-pprox 10.5~\text{GeV}$
$\Gamma(\Xi^-K^+\pi^+)/\Gamma(\rho E^-)$	K-π+)				Γ ₅₄ /Γ ₂
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.102±0.010 OUR FIT	Error ir	ncludes scale factor	of 1.1	L.	
0.098 ± 0.021 OUR AVE	RAGE	Error includes scale	facto	r of 1.3.	See the ideogram below.
$0.14\ \pm0.03\ \pm0.02$	34	ALBRECHT	95 B	ARG	$e^+e^-pprox 10.4\;{ m GeV}$
$0.079 \pm 0.013 \pm 0.014$	60	AVERY	93	CLE2	$e^+e^-pprox 10.5\;{\sf GeV}$
$0.15 \pm 0.04 \pm 0.03$	30	AVERY	91	CLEO	$e^{+}e^{-}$ 10.5 GeV
WEIGHTED A 0.098±0.021 (ed by 1.3)			

$\Gamma(\Xi(1530)^0K^+)/\Gamma$	$(\rho K^-\pi^+)$					Γ_{55}/Γ_2
Unseen decay mo	des of the Ξ	$(1530)^0$ are incl	uded.			
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT	
0.052±0.014 OUR AVE						
$0.05 \ \pm 0.02 \ \pm 0.01$	11	ALBRECHT	95 B	ARG	$e^+e^-pprox 10$.4 GeV
$0.053 \pm 0.016 \pm 0.010$	24	AVERY	93	CLE2	$e^+e^-pprox 10$.5 GeV
-/	1.5					
$\Gamma(\Xi^-K^+\pi^+)/\Gamma(\Lambda^-)$						Γ_{54}/Γ_{23}
VALUE	<u>EVTS</u>	<u>DOCUMENT</u>	⁻ ID		CN COMMEN	IT
0.47 ±0.04 OUR FIT						
$0.480\pm0.016\pm0.039$	2665 ± 84	AUBERT		07 ∪ BA	$ABR e^+e^-$	$\approx T(4S)$
——— Hadron	nic modes v	vith a hyperor	n: <i>S</i>	= 0 fin	al states —	
$\Gamma(\Lambda K^+)/\Gamma(\Lambda \pi^+)$						Γ_{56}/Γ_{23}
VALUE	<u>EVTS</u>	<u>DOCUMEN</u>	T ID		ECN COMME	NT
0.047±0.009 OUR AVE	ERAGE Erro	or includes scale	facto	r of 1.8.		
$0.044 \pm 0.004 \pm 0.003$	1162 ± 101	AUBERT		07U B	ABR e^+e^-	$\approx \Upsilon(4S)$
$0.074 \pm 0.010 \pm 0.012$	265	ABE		02C B	ELL e ⁺ e ⁻	$\approx \Upsilon(4S)$
$\Gamma(\Lambda K^+\pi^+\pi^-)/\Gamma(\Lambda K^+\pi^-)$	$(4\pi^+)$					Γ_{57}/Γ_{23}
VALUE	•	DOCUMENT ID		TECN	COMMENT	·
$<4.1 \times 10^{-2}$	90	AUBERT			<u> </u>	(45)
$\Gamma(\Sigma^0 K^+)/\Gamma(\Sigma^0 \pi^+)$		DOCUMENT	ID	TEC	N COMMEN	Γ ₅₈ /Γ ₃₉
VALUE	<u>EVTS</u>	<u>DOCUMENT</u>	<u>ID</u>		<u>COMMEN</u>	33, 33
<u>VALUE</u> 0.040±0.006 OUR AVE	ERAGE					Τ
VALUE 0.040±0.006 OUR AVE 0.038±0.005±0.003	ERAGE 366 ± 52	AUBERT	C)7∪ BAI	BR e ⁺ e ⁻ ≈	τ
VALUE 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008	EVTS ERAGE 366 ± 52 75		C)7∪ BAI		Γ $\simeq \Upsilon(4S)$ $\simeq \Upsilon(4S)$
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^0 K^+ \pi^+ \pi^-)/\Gamma$	ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$	AUBERT ABE	C	070 BAI	BR $e^+e^- \approx$ LL $e^+e^- \approx$	τ
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^{0}K^{+}\pi^{+}\pi^{-})/\Gamma_{VALUE}$	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $CL\%$	AUBERT ABE	C	D7U BAI D2C BEI	BR e ⁺ e [−] ≈ LL e ⁺ e [−] ≈	r r r r r r r r r r
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^0 K^+ \pi^+ \pi^-)/\Gamma$	ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$	AUBERT ABE	C	D7U BAI D2C BEI	BR e ⁺ e [−] ≈ LL e ⁺ e [−] ≈	r r r r r r r r r r
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^{0}K^{+}\pi^{+}\pi^{-})/\Gamma_{VALUE}$ <2.0 × 10 ⁻²	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $\frac{CL\%}{90}$	AUBERT ABE	C	D7U BAI D2C BEI	BR e ⁺ e [−] ≈ LL e ⁺ e [−] ≈	$\begin{array}{c} T \\ \mathcal{E} \Upsilon(4S) \\ \mathcal{E} \Upsilon(4S) \\ \hline \Gamma_{59}/\Gamma_{39} \\ \hline \Gamma_{(4S)} \end{array}$
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^{0} K^{+} \pi^{+} \pi^{-})/\Gamma$ $VALUE$ <2.0 × 10 ⁻² $\Gamma(\Sigma^{+} K^{+} \pi^{-})/\Gamma(\Sigma^{-1} K^{-1} K^{-1})/\Gamma(\Sigma^{-1} K^{-1} K^{-1} K^{-1})/\Gamma(\Sigma^{-1} K^{-1} K$	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $-\frac{CL\%}{90}$ $+\pi^{+}\pi^{-})$	AUBERT ABE DOCUMENT ID AUBERT	07U	D7U BAI D2C BEI <u>TECN</u> BABR	BR $e^+e^- \approx$ LL $e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$	r r r r r r r r r r
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^{0}K^{+}\pi^{+}\pi^{-})/\Gamma_{VALUE}$ <2.0 × 10 ⁻²	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $\frac{CL\%}{90}$	AUBERT ABE DOCUMENT ID AUBERT	07U	TECN TECN TECN	BR $e^+e^- \approx$ LL $e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$	r r r r r r r r r r
$\begin{array}{c} \frac{VALUE}{0.040\pm0.006\ OUR\ AVI}\\ 0.040\pm0.006\ OUR\ AVI\\ 0.038\pm0.005\pm0.003\\ 0.056\pm0.014\pm0.008\\ \hline \Gamma(\Sigma^0K^+\pi^+\pi^-)/\Gamma\\ \frac{VALUE}{<2.0\times10^{-2}}\\ \hline \Gamma(\Sigma^+K^+\pi^-)/\Gamma(\Sigma^-VALUE)\\ 0.047\pm0.011\pm0.008\\ \hline \end{array}$	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $CL\%$	AUBERT ABE DOCUMENT ID AUBERT DOCUMENT ID ABE	07U	TECN TECN TECN	BR $e^+e^- \approx$ LL $e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$	r r r r r r r r r r
$VALUE$ 0.040 ± 0.006 OUR AVE $0.038\pm0.005\pm0.003$ $0.056\pm0.014\pm0.008$ $\Gamma(\Sigma^{0}K^{+}\pi^{+}\pi^{-})/\Gamma_{VALUE}$ $<2.0\times10^{-2}$ $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\Sigma_{VALUE}$ $0.047\pm0.011\pm0.008$ $\Gamma(\Sigma^{+}K^{*}(892)^{0})/\Gamma_{C}$	EVTS ERAGE 366 ± 52 75 ($\Sigma^{0}\pi^{+}$) $\frac{CL\%}{90}$ $E^{+}\pi^{+}\pi^{-}$) $\frac{EVTS}{105}$ ($\Sigma^{+}\pi^{+}\pi^{-}$	AUBERT ABE DOCUMENT ID AUBERT DOCUMENT ID ABE	07U	TECN BELL	BR $e^+e^- \approx$ LL $e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$	r r r r r r r r r r
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^{0}K^{+}\pi^{+}\pi^{-})/\Gamma_{VALUE}$ <2.0 × 10 ⁻² $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\Sigma_{VALUE}$ 0.047±0.011±0.008 $\Gamma(\Sigma^{+}K^{*}(892)^{0})/\Gamma_{Unseen decay model}$	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $-\frac{CL\%}{90}$ $E^{+}\pi^{+}\pi^{-})$ $EVTS$ 105 $(\Sigma^{+}\pi^{+}\pi^{-})$ des of the K	AUBERT ABE DOCUMENT ID AUBERT DOCUMENT ID ABE *(892)0 are incl	07U 02C	D7U BAI D2C BEI TECN BABR TECN BELL	BR $e^+e^- \approx$ LL $e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$	r r r r r r r r r r
$VALUE$ 0.040 ± 0.006 OUR AVE $0.038\pm0.005\pm0.003$ $0.056\pm0.014\pm0.008$ $\Gamma(\Sigma^{0}K^{+}\pi^{+}\pi^{-})/\Gamma_{VALUE}$ $<2.0\times10^{-2}$ $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\Sigma_{VALUE}$ $0.047\pm0.011\pm0.008$ $\Gamma(\Sigma^{+}K^{*}(892)^{0})/\Gamma_{C}$	EVTS ERAGE 366 ± 52 75 ($\Sigma^{0}\pi^{+}$) $\frac{CL\%}{90}$ $E^{+}\pi^{+}\pi^{-}$) $\frac{EVTS}{105}$ ($\Sigma^{+}\pi^{+}\pi^{-}$	AUBERT ABE DOCUMENT ID AUBERT DOCUMENT ID ABE	07U 02C	TECN TECN BELL	BR $e^+e^- \approx$ LL $e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$	Γ_{59}/Γ_{39} Γ_{60}/Γ_{42} Γ_{61}/Γ_{42}
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^{0} K^{+} \pi^{+} \pi^{-})/\Gamma$ $VALUE$ <2.0 × 10 ⁻² $\Gamma(\Sigma^{+} K^{+} \pi^{-})/\Gamma(\Sigma^{VALUE}$ 0.047±0.011±0.008 $\Gamma(\Sigma^{+} K^{*}(892)^{0})/\Gamma$ Unseen decay motivates $VALUE$ 0.078±0.018±0.013	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $CL\%$ 90 $E^{+}\pi^{+}\pi^{-})$ $EVTS$ 105 $(\Sigma^{+}\pi^{+}\pi^{-})$ odes of the K $EVTS$ 49	AUBERT ABE DOCUMENT ID AUBERT DOCUMENT ID ABE *(892)0 are incl DOCUMENT ID LINK	07U 02C	TECN TECN BELL	BR $e^+e^- \approx$ LL $e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$	Γ_{59}/Γ_{39} Γ_{60}/Γ_{42} Γ_{61}/Γ_{42}
$VALUE$ $0.040\pm0.006 \text{ OUR AVI}$ $0.038\pm0.005\pm0.003$ $0.056\pm0.014\pm0.008$ $\Gamma(\Sigma^{0}K^{+}\pi^{+}\pi^{-})/\Gamma_{VALUE}$ $<2.0\times10^{-2}$ $\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\Sigma_{VALUE}$ $0.047\pm0.011\pm0.008$ $\Gamma(\Sigma^{+}K^{*}(892)^{0})/\Gamma_{Unseen decay mode NALUE}$ $0.078\pm0.018\pm0.013$ $\Gamma(\Sigma^{-}K^{+}\pi^{+})/\Gamma(\Sigma_{US})$	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $CL\%$ 90 $C+\pi^{+}\pi^{-})$ $CL\%$ C	AUBERT ABE DOCUMENT ID AUBERT AUBERT AUBERT AUBERT (892)0 are incl DOCUMENT ID LINK	07U 02C uded.	TECN BELL TECN BELL	BR $e^+e^- \approx$ $LL e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{\gamma}$ nucleus, \approx	r r r r r r r r r r
$VALUE$ 0.040±0.006 OUR AVE 0.038±0.005±0.003 0.056±0.014±0.008 $\Gamma(\Sigma^{0} K^{+} \pi^{+} \pi^{-})/\Gamma$ $VALUE$ <2.0 × 10 ⁻² $\Gamma(\Sigma^{+} K^{+} \pi^{-})/\Gamma(\Sigma^{VALUE}$ 0.047±0.011±0.008 $\Gamma(\Sigma^{+} K^{*}(892)^{0})/\Gamma$ Unseen decay motivates $VALUE$ 0.078±0.018±0.013	EVTS ERAGE 366 ± 52 75 $(\Sigma^{0}\pi^{+})$ $CL\%$ 90 $E^{+}\pi^{+}\pi^{-})$ $EVTS$ 105 $(\Sigma^{+}\pi^{+}\pi^{-})$ odes of the K $EVTS$ 49	AUBERT ABE DOCUMENT ID AUBERT DOCUMENT ID ABE *(892)0 are incl DOCUMENT ID LINK	07U 02C uded. 02G	TECN BELL TECN FOCS	BR $e^+e^- \approx$ $LL e^+e^- \approx$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{e^+e^- \approx \gamma}$ $\frac{COMMENT}{\gamma}$ nucleus, \approx	r_{4S} r_{4S} r_{4S} r_{59}/Γ_{39} r_{60}/Γ_{42} r_{61}/Γ_{42} r_{62}/Γ_{61}

Doubly Cabibbo-suppressed modes —

$\Gamma(\rho K^+\pi^-)/\Gamma(\rho I$	$K^-\pi^+)$				Γ_{63}/Γ_2
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.0046	90	LINK	05K	FOCS	$R = (0.05 \pm 0.26 \pm 0.02)\%$

Semileptonic modes

$\Gamma(\Lambda \ell^+ \nu_\ell)/\Gamma(p K^- \pi^+)$

 Γ_{64}/Γ_{2}

We average here the averages of the next two data blocks.

<u>VALUE</u>	DOCUMENT ID		COMMENT	
0.41 ± 0.05 OUR AVERAGE				
0.42 ± 0.07	PDG	02	Our $\Gamma(\Lambda e^+ u_e)/\Gamma(pK^-\pi^+)$	
0.39 ± 0.08	PDG	02	Our $\Gamma(\Lambda\mu^+\nu_\mu)/\Gamma(pK^-\pi^+)$	

$\Gamma(\Lambda e^+ \nu_e)/\Gamma(pK^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT TO COMMENT

U.TZ_U.UI OUN AVENAGE			
0.43 ± 0.08	^{11,12} BERGFELD		()
0.38 ± 0.14	^{12,13} ALBRECHT	91G ARG	e^+e^-pprox 10.4 GeV
11 DEDCEELD 04	(+ - 4 +x)	D(4+ 4	+) (4.07 0.00

¹¹ BERGFELD 94 measures $\sigma(e^+e^- \to \Lambda_c^+ \rm X) \cdot B(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (4.87 \pm 0.28 \pm 0.69) \, \rm pb.$

DOCUMENT ID _____ TECN COMMENT

$\Gamma(\Lambda\mu^+\nu_\mu)/\Gamma(\rho K^-\pi^+)$

 Γ_{66}/Γ_2

Created: 7/17/2008 18:15

0.39 ± 0.08 OUR AVERAGE			
0.40 ± 0.09	^{14,15} BERGFELD	94 CLE2	$e^+e^-pprox ~ \varUpsilon(4S)$
0.35 ± 0.20	^{15,16} ALBRECHT	91G ARG	$e^+e^-pprox 10.4\;{\sf GeV}$

 $pK^-\pi^+$) = (11.2 ± 1.3) pb, which is the weighted average of measurements from ARGUS (ALBRECHT 96E) and CLEO (AVERY 91).

¹⁶ ALBRECHT 91G measures $\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot B(\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_\mu) = (3.91 \pm 2.02 \pm 0.90)$ pb.

Inclusive modes —

$\Gamma(e^+ \text{ anything})/\Gamma_{\text{total}}$ VALUE $O.045 \pm 0.017$ VELLA OLDE OLD

 $^{^{12}}$ To extract $\Gamma(\varLambda_c^+\to \varLambda e^+\nu_e)/\Gamma(\varLambda_c^+\to p\,K^-\pi^+)$, we use $\sigma(e^+e^-\to \varLambda_c^+\,{\rm X})\cdot {\rm B}(\varLambda_c\to p\,K^-\pi^+)=(11.2\pm 1.3)$ pb, which is the weighted average of measurements from ARGUS (ALBRECHT 96E) and CLEO (AVERY 91).

¹³ ALBRECHT 91G measures $\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot B(\Lambda_c^+ \rightarrow \Lambda_e^+ \nu_e) = (4.20 \pm 1.28 \pm 0.71) \text{ pb.}$

^{0.64)} pb. $^{15} \text{ To extract } \Gamma(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) / \Gamma(\Lambda_c^+ \to p \, K^- \, \pi^+) \text{, we use } \sigma(e^+ \, e^- \to \Lambda_c^+ \, \text{X}) \cdot \text{B}(\Lambda_c \to p \, K^- \, \pi^+) \text{.}$

$\Gamma(pe^+ \text{ anything})/\Gamma_{\text{total}}$				Γ ₆₈ /Γ
VALUE	DOCUMENT ID			
0.018±0.009		82	MRK2	e ⁺ e ⁻ 4.5-6.8 GeV
¹⁷ VELLA 82 includes protons	from Λ decay.			
$\Gamma(\Lambda e^+ \text{ anything})/\Gamma_{\text{total}}$				Γ ₆₉ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •
0.011 ± 0.008	¹⁸ VELLA	82	MRK2	$e^{+}e^{-}$ 4.5–6.8 GeV
18 VELLA 82 includes \varLambda 's from	$_{ m 1}~\Sigma^{ m 0}$ decay.			
$\Gamma(p \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₇₀ /Γ
0.50±0.08±0.14	19 CRAWFORD	92	CLEO	$e^{+}e^{-}$ 10.5 GeV
¹⁹ This CRAWFORD 92 value in but account is taken of this	ncludes protons from	Λ ded		
$\Gamma(p \text{ anything (no } \Lambda))/\Gamma_{\text{tota}}$	I			Γ ₇₁ /Γ
VALUE	DOCUMENT ID			•
$0.12\pm0.10\pm0.16$	CRAWFORD	92	CLEO	$e^{+}e^{-}$ 10.5 GeV
$\Gamma(n \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₇₃ /Γ
0.50±0.08±0.14				$e^{+}e^{-}$ 10.5 GeV
²⁰ This CRAWFORD 92 value dent, but account is taken of	includes neutrons fr	om /	decay. T	
$\Gamma(n \text{ anything (no } \Lambda))/\Gamma_{\text{total}}$	I			Γ ₇₄ /Γ
VALUE	DOCUMENT ID			
$0.29\pm0.09\pm0.15$	CRAWFORD	92	CLEO	$e^{+}e^{-}$ 10.5 GeV
$\Gamma(p \text{ hadrons})/\Gamma_{\text{total}}$				Γ ₇₂ /Γ
<u>VALUE</u>	DOCUMENT ID			<u> </u>
• • • We do not use the following				
0.41 ± 0.24	ADAMOVICH	87	EIVIUL	γ A 20–70 GeV/ c
$\Gamma(\Lambda \text{ anything})/\Gamma_{\text{total}}$				Γ ₇₅ /Γ
<u>VALUE</u> <u>EVTS</u> 0.35±0.11 OUR AVERAGE E	<u>DOCUMENT ID</u> rror includes scale fa			<u>COMMENT</u> ee the ideogram below
$0.59 \pm 0.10 \pm 0.12$	CRAWFORD			e^+e^- 10.5 GeV
0.49 ± 0.24	ADAMOVICH			γ A 20–70 GeV/ c
0.23 ± 0.10 8	²¹ ABE	86	HYBR	20 GeV γ <i>p</i>

 21 ABE 86 includes Λ 's from Σ^0 decay.

$\Gamma(\Sigma^{\pm}$ anything)/Γ _{total}				Γ ₇₆ /Γ		
VALUE	<u>EVTS</u>	DOCUMENT ID	TE	CN COMMENT			
0.1 ± 0.05	5	ABE	86 HY	BR 20 GeV γ p			
$\Gamma(3\text{prongs})/\Gamma_{to}$	otal				Γ ₇₇ /Γ		
VALUE		DOCUMENT ID	TECN	COMMENT			
$0.24 \pm 0.07 \pm 0.04$		KAYIS-TOPAK.03	CHRS	$ u_{\mu}$ emulsion, $\overline{\it E}$	=27 GeV		
	I	Rare or forbidden	modes -				
$\Gamma(\rho\mu^+\mu^-)/\Gamma_{\rm te}$					Γ ₇₈ /Γ		
	ne $\Delta \mathit{C}{=}1$ weal	k neutral current. All	owed by h	iigher-order elect	roweak inter-		
actions. <u>VALUE</u>	CL% EVTS	DOCUMENT ID	TE	CN COMMENT			
$< 3.4 \times 10^{-4}$	90 0	KODAMA	95 E6	53 π^- emulsion	on 600 GeV		
$\Gamma(\Sigma^-\mu^+\mu^+)/\Gamma_{\text{total}}$ A test of lepton-number conservation.							

 $< 7.0 \times 10^{-4}$

DOCUMENT ID

KODAMA

TECN

E653

 π^- emulsion 600 GeV

Created: 7/17/2008 18:15

95

1/2 DECAY PARAMETERS

See the note on "Baryon Decay Parameters" in the neutron Listings.

$\alpha \text{ FOR } \Lambda_c^+ \to \Lambda \pi^+$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.91 ± 0.15 OUR AV	ERAGE				
$-0.78\!\pm\!0.16\!\pm\!0.19$		LINK	06A	FOCS	γ A, $\overline{\it E}_{\gamma} pprox$ 180 GeV
$-0.94\pm0.21\pm0.12$	414	²² BISHAI			$e^+e^-\approx \Upsilon(4S)$
-0.96 ± 0.42		ALBRECHT	92	ARG	e^+e^-pprox 10.4 GeV
$-1.1\ \pm0.4$	86	AVERY	90 B	CLEO	$e^+e^-pprox 10.6~{ m GeV}$

 22 BISHAI 95 actually gives $\alpha{=}-0.94^{+}0.21^{+}0.12_{-}0.06^{-}0.06$, chopping the errors at the physical limit -1.0. However, for $\alpha\approx-1.0$, some experiments should get unphysical values $(\alpha < -1.0)$, and for averaging with other measurements such values (or errors that extend below -1.0) should *not* be chopped.

$\alpha \; {\rm FOR} \; \varLambda_c^+ \to \; \varSigma^+ \pi^0$

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$-0.45\pm0.31\pm0.06$	89	BISHAI	95	CLE2	$e^+e^- \approx \Upsilon(4S)$

$\alpha \text{ FOR } \Lambda_c^+ \to \Lambda \ell^+ \nu_\ell$

The experiments don't cover the complete (or same incomplete) $M(\Lambda \ell^+)$ range, but we average them together anyway.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.86 ± 0.04 OUR AVER	RAGE				
$-0.86\!\pm\!0.03\!\pm\!0.02$	3201	²³ HINSON	05	CLEO	$e^+e^-pprox~ \varUpsilon(4S)$
$-0.91\!\pm\!0.42\!\pm\!0.25$		²⁴ ALBRECHT	94 B	ARG	e^+e^-pprox 10 GeV
\bullet \bullet We do not use the	e followii	ng data for averages	s, fits,	limits,	etc. • • •
$-0.82 ^{+ 0.09 + 0.06}_{- 0.06 - 0.03}$	700	²⁵ CRAWFORD	95	CLE2	See HINSON 05
$-0.89 ^{+0.17}_{-0.11} ^{+0.09}_{-0.05}$	350	²⁶ BERGFELD	94	CLE2	See CRAWFORD 95

²³ HINSON 05 measures the form-factor ratio $R \equiv f_2/f_1$ for $\Lambda_c^+ \to \Lambda e^+ \nu_e$ events to be $-0.31\pm0.05\pm0.04$ and the pole mass to be $2.21\pm0.08\pm0.14$ GeV/c², and from these calculates α , averaged over q^2 , where $\langle q^2 \rangle = 0.67 \, (\text{GeV/c})^2$.

Λ_c^+ , $\overline{\Lambda}_c^-$ CP-VIOLATING DECAY ASYMMETRIES

$$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$$
 in $\Lambda_c^+ \to \Lambda \pi^+$, $\overline{\Lambda}_c^- \to \overline{\Lambda} \pi^-$
This is zero if *CP* is conserved.

VALUE	DOCUMENT ID		TECN	COMMENT
$-0.07\pm0.19\pm0.24$	LINK	06A	FOCS	γ A, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$

²⁴ ALBRECHT 94B uses Λe^+ and $\Lambda \mu^+$ events in the mass range 1.85 < $M(\Lambda \ell^+)$ < 2.20

²⁵ CRAWFORD 95 measures the form-factor ratio $R \equiv f_2/f_1$ for $\Lambda_c^+ \to \Lambda e^+ \nu_e$ events to be $-0.25 \pm 0.14 \pm 0.08$ and from this calculates α , averaged over q^2 , to be the above. 26 BERGFELD 94 uses Λe^+ events.

$$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$$
 in $\Lambda_c^+ \to \Lambda e^+ \nu_e$, $\overline{\Lambda}_c^- \to \overline{\Lambda} e^- \overline{\nu}_e$

This is zero if *CP* is conserved.

VALUE

DOCUMENT ID

TEC

05 CLEO $e^+e^- \approx \Upsilon(4S)$ $0.00\pm0.03\pm0.02$ HINSON

TECN COMMENT

Λ_c^+ REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1992 edition (Physical Review D45, 1 June, Part II) or in earlier editions.

AUBERT	07U	PR D75 052002	B. Aubert et al.	(BABAR Collab.)
LINK	06A	PL B634 165	J.M. Link et al.	(FNAL FOCUS Collab.)
AUBERT,B	05S	PR D72 052006	B. Aubert et al.	` (BABAR Collab.)
HINSON	05	PRL 94 191801	J.W. Hinson et al.	(CLEO Collab.)
LINK	05F	PL B624 22	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
LINK	05K	PL B624 166	J.M. Link et al.	(FNAL FOCUS Collab.)
CRONIN-HEN.		PR D67 012001	D. Cronin-Hennessy <i>et al.</i>	(CLEO Collab.)
KAYIS-TOPAK		PL B555 156	A. Kayis-Topaksu <i>et al.</i>	(CERN CHORUS Collab.)
ABE	03 02C	PL B524 33	K. Abe <i>et al.</i>	(KEK BELLE Collab.)
LINK	02C	PRL 88 161801	J.M. Link <i>et al.</i>	
				(FNAL FOCUS Collab.)
LINK	02G	PL B540 25	J.M. Link <i>et al.</i>	(FNAL FOCUS Collab.)
PDG	02	PR D66 010001	K. Hagiwara et al.	(ENAL CELEX C. II. I.)
KUSHNIR	01	PRL 86 5243	A. Kushnirenko <i>et al.</i>	(FNAL SELEX Collab.)
MAHMOOD	01	PRL 86 2232	A.H. Mahmood <i>et al.</i>	(CLEO Collab.)
AITALA	00	PL B471 449	E.M. Aitala et al.	(FNAL E791 Collab.)
JAFFE	00	PR D62 072005	D.E. Jaffe <i>et al.</i>	(CLEO Collab.)
ALAM	98	PR D57 4467	M.S. Alam <i>et al.</i>	(CLEO Collab.)
ALBRECHT	96E	PRPL 276 223	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEEV	96	JINRRC 3-77 31	A.N. Aleev et al.	(Serpukhov EXCHARM Collab.)
ALEXANDER	96C	PR D53 R1013	J.P. Alexander et al.	(CLEO Collab.)
ALBRECHT	95B	PL B342 397	H. Albrecht et al.	(ARGUS Collab.)
AMMAR	95	PRL 74 3534	R. Ammar et al.	(CLEO Collab.)
BISHAI	95	PL B350 256	M. Bishai et al.	(CLEO Collab.)
CRAWFORD	95	PRL 75 624	G. Crawford et al.	(CLEO Collab.)
KODAMA	95	PL B345 85	K. Kodama <i>et al.</i>	(FNAL E653 Collab.)
ALBRECHT	94B	PL B326 320	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEEV	94	PAN 57 1370	A.N. Aleev <i>et al.</i>	(Serpukhov BIS-2 Collab.)
, ·	٥.	Translated from YF 57 14		(Gerbanner 216 2 Gerna21)
AVERY	94	PL B325 257	P. Avery et al.	(CLEO Collab.)
BERGFELD	94	PL B323 219	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
FRABETTI	94E	PL B328 193	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
AVERY	93	PRL 71 2391	P. Avery <i>et al.</i>	(CLEO Collab.)
BOZEK	93	PL B312 247	A. Bozek <i>et al.</i>	(CERN NA32 Collab.)
FRABETTI	93D	PRL 70 1755	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
FRABETTI	93H	PL B314 477	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
KUBOTA	93	PRL 71 3255	Y. Kubota <i>et al.</i>	(CLEO Collab.)
	93 92	PL B274 239	H. Albrecht <i>et al.</i>	
ALBRECHT	-			(ARGUS Collab.)
ALBRECHT	920	ZPHY C56 1	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BARLAG	92	PL B283 465	S. Barlag <i>et al.</i>	(ACCMOR Collab.)
CRAWFORD	92	PR D45 752	G. Crawford <i>et al.</i>	(CLEO Collab.)
JEZABEK	92	PL B286 175	M. Jezabek, K. Rybicki, R.	
ALBRECHT	91G	PL B269 234	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
AVERY	91	PR D43 3599	P. Avery <i>et al.</i>	(CLEO Collab.)
ALVAREZ	90	ZPHY C47 539	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ALVAREZ	90B	PL B246 256	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ANJOS	90	PR D41 801	J.C. Anjos <i>et al.</i>	(FNAL E691 Collab.)
AVERY	90B	PRL 65 2842	P. Avery et al.	(CLEO Collab.)
BARLAG	90D	ZPHY C48 29	S. Barlag <i>et al.</i>	(ACCMOR Collab.)
FRABETTI	90	PL B251 639	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
BARLAG	89	PL B218 374	S. Barlag et al.	` (ACCMOR Collab.)
AGUILAR	88B	ZPHY C40 321	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also		PL B189 254	M. Aguilar-Benitez <i>et al.</i>	(LEBC-EHS Collab.)
Also		PL B199 462	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also		SJNP 48 833	M. Begalli <i>et al.</i>	(LEBC-EHS Collab.)
		Translated from YAF 48 1		(= = = ===)

_	88C	PL B207 109	H. Albrecht et al.	(ARGUS Collab.)	
ANJOS	88B	PRL 60 1379	J.C. Anjos <i>et al.</i>	(FNAL E691 Collab.)	
ADAMOVICH	87	EPL 4 887	M.I. Adamovich et al.	(Photon Emulsion Collab.)	
Also		SJNP 46 447	F. Viaggi <i>et al.</i>	(Photon Emulsion Collab.)	
	Translated from YAF 46 799.				
AMENDOLIA	87	ZPHY C36 513	S.R. Amendolia et al.	(CERN NA1 Collab.)	
JONES	87	ZPHY C36 593	G.T. Jones et al.	(ČERN WA21 Collab.)	
ABE	86	PR D33 1	K. Abe <i>et al.</i>	,	
ALEEV	84	ZPHY C23 333	A.N. Aleev et al.	(BIS-2 Collab.)	
BOSETTI	82	PL 109B 234	P.C. Bosetti et al.	(AACH3, BÒNN, CERN+)	
VELLA	82	PRL 48 1515	E. Vella <i>et al.</i>	` (SLAC, LBL, UCB)	
BASILE	81B	NC 62A 14	M. Basile <i>et al.</i>	(CERN, BĠNA, PGIA, FRAS)	
CALICCHIO	80	PL 93B 521	M. Calicchio et al.	` (BARI, BIRM, BRUX+)	

- OTHER RELATED PAPERS -

MIGLIOZZI 99 PL B462 217 P. Migliozzi *et al.* DUNIETZ 98 PR D58 094010 I. Dunietz