실험계획자응용

제13강(10장)

지분계획과분할구계획

지난 시간

- 10.1 교차실험과 지분실험
- 10.2 이단지분계획
- 10.3 삼단지분계획

제13강(10장)

지부계획과 분할구계획

이번 시간

- 분할구계획 10.4
- 이단분할구계획 10.5

스 그는 호 기 - 으 으 정보통계학과 **백재욱** 교수

제13강 지분계획과 분할구계획

<표 10-9> 전자부품의 수명 자료: 이원배치법의 자료구조

온도T (°F) 가열시간 B (분)	580	600	620	640
5	217	158	229	223
	188	126	160	201
	162	122	167	182
10	233	138	186	227
	201	130	170	181
	170	185	181	201
15	175	152	155	156
	195	147	161	172
	213	180	182	199

<표 10-10> 전자부품의 수명 자료: 분할구계획의 자료구조

반복 R	온도T (°F) 가열시간 B (분)	580	600	620	640
I	5	217	158	229	223
	10	233	138	186	227
	15	175	152	155	156
II	5	188	126	160	201
	10	201	130	170	181
	15	195	147	161	172
III	5	162	122	167	182
	10	170	185	181	201
	15	213	180	182	199

<표 10-11> 분할구계획에서 랜덤화 방법의 예

반복 1 $a_1 = a_0 = a_2$

 $\begin{array}{c|cccc} b_0 & b_1 & b_0 \\ b_1 & b_0 & b_1 \end{array}$

반복 2

 a_2 a_1 a_0

b_1	b_1	b_0
b_0	b_0	b_1

반복 3

◆ 분할구계획에 대한 통계 모형(모형 1)

$$x_{ijk} = \mu + \rho_k + \alpha_i + (\rho\alpha)_{ki} + \beta_i + (\rho\beta)_{kj} + (\alpha\beta)_{ij} + (\rho\alpha\beta)_{kij}$$
 주구 세구
$$(k = 1, \cdots, r; i = 1, \cdots, a; j = 1, \cdots, b)$$

- ρ 항:반복 R=I, II, III (r=3)
- α 항: 온도 T=580, 600, 620, 640 (a =4)
- $\rho\alpha$ 항: 반복R과온도T간상호작용효과{주구오차(whole-plot error)}
- β항:가열시간 B=5, 10, 15 (b = 3)
- $\rho\beta$, $\alpha\beta$, $\rho\alpha\beta$: 여러 가지 상호작용효과(이들 중 $\rho\alpha\beta$ 는 세구오차임)

= split-plot error = subplot error

◆ 분할구계획에 대한 통계 모형(모형 2)

$$x_{ijk} = \mu + \rho_k + \alpha_i + (\rho\alpha)_{ki} + \beta_j + (\rho\beta)_{kj} + (\alpha\beta)_{ij} + (\rho\alpha\beta)_{kij}$$
 (모형1) 주구 세구
$$x_{ijk} = \mu + \rho_k + \alpha_i + e_{(1)ik} + \beta_j + (\alpha\beta)_{ij} + e_{(2)ijk}$$
 (모형2) 주구(1차 단위) 세구(2차 단위)

여기서
$$e_{(1)ik} = (\rho \alpha)_{ki}$$
, $e_{(2)ijk} = (\rho \beta)_{kj} + (\rho \alpha \beta)_{kij}$,
$$e_{(1)ik} \sim N(0, \sigma_{E_1}^2), e_{(2)ijk} \sim N(0, \sigma_{E_2}^2).$$

<표 10-14> 분할법 데이터에 대한 분산분석표(모형2) (A, B 모수인자, R 변량인자)

	요인	SS	ν	V	E(V)	F_0
	R	SS_R	<i>r</i> -1	V_R	$\sigma_{E_2}^2 + b\sigma_{E_1}^2 + ab\sigma_R^2$	V_R / V_{E_1}
1차단위	\boldsymbol{A}	SS_A	a-1	V_A	$\sigma_{E_2}^2 + b\sigma_{E_1}^2 + br\sigma_A^2$	V_A / V_{E_1}
	E_1	SS_{E_1}	(r-1)(a-1)	V_{E_1}	$\sigma_{E_2}^2 + b\sigma_{E_1}^2$	V_{E_1} / V_{E_2}
	В	SS_B	b-1	V_B	$\sigma_{E_2}^2 + ar\sigma_B^2$	V_B / V_{E_2}
2차단위	$A \times B$	$SS_{A \times B}$	(a-1)(b-1)	$V_{A \times B}$	$\sigma_{E_2}^2 + r \sigma_{A \times B}^2$	$V_{A \times B} / V_{E_2}$
	E_2	SS_{E_2}	a(b-1)(r-1)	V_{E_2}	$\sigma_{\!E_2}^2$	
T		SS_T	abr-1			

$$SS_{E_1} = SS_{A \times R} = SS_{AR} - SS_A - SS_R$$
, $SS_{AR} = \sum_{i=1}^{a} \sum_{k=1}^{r} \frac{T_{i,k}^2}{b} - CT$

$$SS_{E_2} = SS_T - (SS_R + SS_A + SS_{E_1} + SS_B + SS_{A \times B}) + SS_{E_2} = SS_{B \times R} + SS_{A \times B \times R}$$

<표 10-13> 분산분석표(모형2)

요인	제곱합	자유도	평균제곱	F_0	
R(반복)	1962.7	2	981.4	3.32	
A(온도)	12494.3	3	4164.8	14.08	> F(3,6;0.01)
E_{1}	1773.9	6	295.7	0.48	
<i>B</i> (시간)	566.2	2	283.1	0.46	
$A \times B$	2600.4	6	433.4	0.70	
E_2	9933.3	16	620.8		
T	29331.0	35			

R 실습

```
life \leftarrow c(217, 158, 229, 223, 233, 138, 186, 227, 175, 152, 155, 156,
          188, 126, 160, 201, 201, 130, 170, 181, 195, 147, 161, 172,
          162, 122, 167, 182, 170, 185, 181, 201, 213, 180, 182, 199)
rho \leftarrow c(rep(1, 12), rep(2, 12), rep(3, 12))
time \langle -\text{rep}(c(\text{rep}(1, 4), \text{rep}(2, 4), \text{rep}(3, 4)), 3))
temp < -rep(c(1, 2, 3, 4), 9)
split.data <- data.frame(life, rho, time, temp)
split.data$rho <- factor(split.data$rho, levels=c(1, 2, 3), labels=c("R1", "R2", "R3"))
split.data$time <- factor(split.data$time, levels=c(1, 2, 3), labels=c("Time1", "Time2", "Time3"))
split.data$temp <- factor(split.data$temp, levels=c(1, 2, 3, 4), labels=c("Temp1", "Temp2", "Temp3", "Temp4"))
model3 <- aov(life~temp*time+Error(rho/temp), data=split.data)
summary(model3) # 丑 <10-13>
```

R 실습

with(split.data, interaction.plot(x.factor=temp, trace.factor=time, response=life, fun=mean, type="b", legend=T, ylab="품질특성(수명)", main="Interaction Plot", pch=c(1,19)))

line type

R 실습

par(bg=rgb(1,1,0.8), mfrow=c(1,2))

boxplot(life~temp, data=split.data, main="온도 별 수명", xlab="온도",ylab="품질특성(수명)")

boxplot(life~time, data=split.data, main="가열시간 별 수명", xlab="가열시간",ylab="품질특성(수명)")

정보통계학과 백재욱 교수

제13강 지분계획과 분할구계획

10.5 이단분할구계획

<표 10-14> 고무의 경화율 자료

				<u> </u>							
					온도(℃)						
	145				155			165			
			혼합물원료			혼합물원료			혼합물원료		
반복	실험실	Α	В	С	Α	В	С	Α	В	С	
	1	18.6	14.5	21.1	9.5	7.8	11.2	5.4	5.2	6.3	
1	2	20.0	18.4	22.5	11.4	10.8	13.3	6.8	6.0	7.7	
	3	19.7	16.3	22.7	9.3	9.1	11.3	6.7	5.7	6.6	
	1	17.0	15.8	20.8	9.4	8.3	10.0	5.3	4.9	6.4	
II	2	20.1	18.1	22.7	11.5	11.1	14.0	6.9	6.1	8.0	
	3	18.3	16.7	21.9	10.2	9.2	11.0	6.0	5.5	6.5	
	1	18.7	16.5	21.8	9.5	8.9	11.5	5.7	4.3	5.8	
III	2	19.4	16.5	21.5	11.4	9.5	12.0	6.0	5.0	6.6	
	3	16.8	14.4	19.3	9.8	8.0	10.9	5.0	4.6	5.9	
	1	18.7	17.6	21.0	10.0	9.1	11.1	5.3	5.2	5.6	
IV	2	20.0	16.7	21.3	11.5	9.7	11.5	5.7	5.2	6.3	
	3	17.1	15.2	19.3	9.5	9.0	11.4	4.8	5.4	5.8	

◆ 모형 1

$$\begin{aligned} x_{ijkl} &= \mu + \rho_l + \alpha_i + (\rho\alpha)_{li} \\ &+ \beta_j + (\rho\beta)_{lj} + (\alpha\beta)_{ij} + (\rho\alpha\beta)_{lij} \\ &+ \gamma_k + (\rho\gamma)_{lk} + (\alpha\gamma)_{ik} + (\rho\alpha\gamma)_{lik} + (\beta\gamma)_{jk} + (\rho\beta\gamma)_{ljk} + (\alpha\beta\gamma)_{ijk} + (\rho\alpha\beta\gamma)_{lijk} \end{aligned}$$

$$l &= 1, \cdots, r; i = 1, \cdots, a; j = 1, \cdots, b; k = 1, \cdots, c$$

◆ 모형 2

<표 10-18> 이단분할법의 분산분석표 (A, B, C 모수인자, R변량인자) (모형2)

요인	SS	ϕ	V	E(V)
R	SS_R	r-1	V_R	$\sigma_{E_3}^2 + c\sigma_{E_2}^2 + bc\sigma_{E_1}^2 + abc\sigma_{E_2}^2$
A	SS_A	a-1	V_A	$\sigma_{\mathcal{B}_3}^2 + c\sigma_{\mathcal{B}_2}^2 + bc\sigma_{\mathcal{B}_1}^2 + bcr\sigma_{\mathcal{A}}^2$
E_1	SS_{E_1}	(a-1)(r-1)	$V_{\mathcal{B}_1}$	$\sigma_{B_3}^2 + c\sigma_{B_2}^2 + bc\sigma_{B_1}^2$
В	SS_B	(b-1)	V_C	$\sigma_{B_3}^2 + c\sigma_{B_2}^2 + acr\sigma_B^2$
$A \times B$	$SS_{A \times B}$	(a-1)(b-1)	$V_{A \times B}$	$\sigma_{B_3}^2 + c\sigma_{B_2}^2 + cr\sigma_{A\times B}^2$
E_2	SS_{E_2}	a(b-1)(r-1)	$V_{\mathcal{B}_2}$	$\sigma_{B_3}^2 + c\sigma_{B_2}^2$
C	SS_C	c-1	$V_{\mathcal{C}}$	$\sigma_{E_3}^2 + abr\sigma_C^2$
$A\times C$	$SS_{A \times C}$	(a-1)(c-1)	$V_{A\times\mathcal{C}}$	$\sigma_{\mathcal{B}_3}^2 + br\sigma_{A \times C}^2$
$B \times C$	$SS_{B \times C}$	$(b-1\:)(c-1\:)$	$V_{\mathcal{B}\times\mathcal{C}}$	$\sigma_{\mathcal{B}_3}^2 + ar\sigma_{\mathcal{B}\times C}^2$
$A \times B \times C$	$SS_{A \times B \times}$	(a-1)(b-1)(c-1)	$V_{A \times B \times C}$	$\sigma_{\mathcal{B}_3}^2 + r\sigma_{A\times B\times C}^2$
E_3	SS_{E_3}	ab(c-1)(r-1)	V_{E_3}	$\mathcal{L}_{\mathcal{B}_3}^2$
T	SS_T	abcr-1		

<표 10-16> 분산분석표(모형2)

				- ·
<u>요인</u>	제곱합	자유	·도 평균제곱	Fo
R(반복)	9.414	3	3.138	
A(실험실)	40.664	2	20.332	7.57 < F(2,6;0.01)=10.9
E_1	16.110	6	2.685	
B(온도)	3119.51	2	1559.76	2835.93> $F(2,18;0.01)$ =6.01
$A \times B$	4.936	4	1.234	2.24
E_2	9.883	18	0.55	
- C(혼합물원료)	145.718	2	72.859	293.4> $F(2, 54; 0.01)$ =5.02
$A \times C$	0.339	4	0.085	0.342
$B \times C$	43.687	4	10.922	43.987> $F(4,54;0.01)$ =3.69
$A \times B \times C$	1.077	8	0.135	0.544
E_3	13.406	54	0.2483	
T	3404.74	107		

R 실습

```
hard <- c(18.6, 14.5, 21.1, 9.5, 7.8, 11.2, 5.4, 5.2, 6.3,
         20, 18.4, 22.5, 11.4, 10.8, 13.3, 6.8, 6, 7.7,
         [[중략]]
         17.1, 15.2, 19.3, 9.5, 9, 11.4, 4.8, 5.4, 5.8)
R <- c(rep(1, 27), rep(2, 27), rep(3, 27), rep(4, 27)) # R=반복
A \leftarrow rep(c(rep(1, 9), rep(2, 9), rep(3, 9)), 4) # A=실험실
B <- rep(c(1, 1, 1, 2, 2, 2, 3, 3, 3), 12) # B=온도
<u>C <- rep(c(1, 2, 3), 36)</u> # C=혼합물원료
hard.data <- data.frame(hard, R, A, B, C)
hard.data$R <- factor(hard.data$R, levels=c(1, 2, 3, 4), labels=c("R1", "R2", "R3", "R4"))
hard.data$A <- factor(hard.data$A, levels=c(1, 2, 3), labels=c("Room1", "Room2", "Room3"))
hard.data$B <- factor(hard.data$B, levels=c(1, 2, 3), labels=c("B1", "B2", "B3"))
hard.data$C <- factor(hard.data$C, levels=c(1, 2, 3), labels=c("C1", "C2", "C3"))
model1 \leftarrow aov(hard \sim A*B*C + Error(R/A/B/C), data=hard.data)
summary(model1) # < 亞 10-16>
```

R 실습

with(hard.data, interaction.plot(x.factor=A, trace.factor=B, response=hard, fun=mean, type="b", legend=T, ylab="경화율", main="Interaction Plot", pch=c(1,19)))

with(hard.data, interaction.plot(x.factor=A, trace.factor=C, response=hard, fun=mean, type="b", legend=T, ylab="경화율", main="Interaction Plot", pch=c(1,19)))

with(hard.data, interaction.plot(x.factor=B, trace.factor=C, response=hard, fun=mean, type="b", legend=T_ylab="경화율", main="Interaction Plot", pch=c(1,19)))

R 실습

par(bg=rgb(1,1,0.8), mfrow=c(1,3))

boxplot(hard~A, data=hard.data, main="실험실 별 경화율", xlab="실험실",ylab="경화율")
boxplot(hard~B, data=hard.data, main="온도 별 경화율", xlab="온도",ylab="경화율")
boxplot(hard~C, data=hard.data, main="혼합원료 별 경화율", xlab="혼합원료",ylab="경화율")

다음 시간 안내

제14강(11장)

반응표면분석