CLOS network

Our objective: To design a strictly non-blocking interconnection switch.

<u>Recall</u>: Two-stage was unable to meet this strictly non-blocking requirement. In addition, switch complexity would grow quadratically.

Bell labs paper – by Charles Clos

Idea: Extending from 2-stage networks

Issue is when there is one free input on sw1 (1st stage) and 1 free output on sw1 (2nd stage), there is no way a connection could be established as the ¼ link are currently occupied. This leads to blocking.

If we extend to 3 stages,

Actually, we can increase the number of switches in the middle stage. Clos came up with a condition under which three-stage becomes non-blocking.

Consider two free input-output pairs and let us see if they can be connected.

 3^{rd} stage: Consider sw2. Out of m₃, only n₃ can be connected (max) since one output is free only (n₃-1) can be occupied or emanating from the input side. (m₃ could be greater than n₃)

<u>1</u>st stage: sw_1 – from sw_1 only $(m_1$ -1) can be going out occupied (as one is free); that is out of m_1 input lines, n_1 – $(m_1$ – 1) will be free.

So, if $(m_1 - 1)$ rows are occupied / coming out of stage 1, this means there are $(m_1 - 1)$ switches in the middle stage that are used for all other rows from sw_1 in stage 1.

Similarly, see sw_2 of 3^{rd} stage. $(n_3 - 1)$ middle stage switches are used to connect the requests to the 3^{rd} stage.

Note that we have our free link at switch 2 at stage 3.

Q: How many cross points required for this switch configuration?

Let us consider a <u>symmetric configuration</u> \rightarrow looks the same from either \rightarrow ion

For symmetric config $m_1 = n_3$

$$r_2 = n$$

From our condition: $r_2 \ge m + m - 1$ i.e, $r_2 \ge 2m - 1$

so,
$$n = r_2 \ge 2m - 1$$

Number of input points: $N = (m \times r_1) \Rightarrow r_1 = (N / m)$

Number of cross points needed: (2m - 1) switches in the middle stage;

So, each switch in the first stage will be having m(2m - 1) cross points.

There are r_1 switches in the first stage.

Therefore, number of crosspoints in the first stage is: r_1 . m. (2m-1), i.e $\left(\frac{N}{m}\right)$. m(2m-1)

For middle stage:

each switch: $n \times n$

$$\& \ n = \ r_2 = (2m-1)$$

$$\therefore \ n \ x \ n = (2m-1) \left(\frac{N}{m}\right) \left(\frac{N}{m}\right)$$
 # switches in the middle

Third stage: same as first stage.

Therefore, number of crosspoint Q

$$Q = 2m(2m-1)\frac{N}{m} + (2m-1)\frac{N}{m} \cdot \frac{N}{m}$$
1st & 3rd stages Middle stage

We can further simplify. If we assume if we have one more middle switch, 2m - 1 becomes just 2m.

$$\therefore Q = 4mN + 2\frac{N^2}{m}$$

It is better to express complexity in terms of N & hence we will find an optimum m*.

$$Q = 4mN + 2\frac{N^2}{m}$$

$$\Rightarrow \left(\frac{dQ}{dm}\right) = 0 = 4N - 2\frac{N^2}{m^2}$$

$$\Rightarrow 2N\left(2 - \frac{N}{m^2}\right) = 0, N > 0$$

$$\Rightarrow m^* = \frac{\sqrt{N}}{2}$$

$$\therefore Q = 4. \sqrt{\frac{N}{2} \cdot N} + \frac{2N^2}{\sqrt{\frac{N}{2}}}$$

$$Q = 2N^{3/2} + 2\sqrt{2}N^{3/2} = 4\sqrt{2}N^{3/2}$$

$$\therefore Complexity = O(N^{3/2})$$

So, number of crosspoints are not growing as N^2 . We minimized to $O(N^{3/2})$.