CAPITULO 1 Matrices.

$$U_1(s) = Z_{11}(s)I_1(s) + Z_{12}(s)I_2(s)$$

$$U_2(s) = Z_{21}(s)I_1(s) + Z_{22}(s)I_2(s)$$

(a) Ecuaciones Z

$$\begin{split} U_{1}(s) &= h_{11}(s) I_{1}(s) + h_{12}(s) U_{2}(s) \\ I_{2}(s) &= h_{21}(s) I_{1}(s) + h_{22}(s) U_{2}(s) \end{split}$$

(c) Ecuaciones H

$$U_1(s) = A(s)U_2(s) - B(s)I_2(s)$$

$$I_1(s) = C(s)U_2(s) - D(s)I_2(s)$$

(b) Ecuaciones T (Convención con corrientes entrantes al cuadripolo.)

$$I_1(s) = g_{11}(s)U_1(s) + g_{12}(s)I_2(s)$$

$$U_2(s) = g_{21}(s)U_1(s) + g_{22}(s)I_2(s)$$

(d) Ecuaciones G

Figure 1: Modelo de trafo

Si se tiene un cuadripolo T como el siguiente: Sus matrices Z y T serán las siguientes:

$$Z = \begin{bmatrix} Z_a + Z_c & Z_c \\ Z_c & Z_b + Z_c \end{bmatrix}$$

$$T = \begin{bmatrix} \frac{Z_a + Z_c}{Z_c} & \frac{Z_a Z_c + Z_a Z_b + Z_c Z_b}{Z_c} \\ \frac{1}{Z_c} & \frac{Z_c + Z_b}{Z_c} \end{bmatrix}$$

Las demás matrices salen de usar estas dos.

Matriz H

$$h_{11}(s) = \frac{U_1(s)}{I_1(s)} \Big|_{U_2(s)=0} = \frac{1}{Y_{11}(s)} = \frac{Z_{22}(s)}{|\mathbf{Z}(s)|}$$

$$h_{12}(s) = \frac{U_1(s)}{U_2(s)} \Big|_{I_1(s)=0} = -\frac{Y_{12}(s)}{Y_{11}(s)} = \frac{Z_{12}(s)}{Z_{22}(s)}$$

$$h_{21}(s) = \frac{I_2(s)}{I_1(s)} \Big|_{U_2(s)=0} = \frac{Y_{21}(s)}{Y_{11}(s)} = -\frac{Z_{21}(s)}{Z_{22}(s)}$$

$$h_{22}(s) = \frac{I_2(s)}{U_2(s)} \Big|_{I_1(s)=0} = \frac{|\mathbf{Y}(s)|}{Y_{11}(s)} = \frac{1}{Z_{22}(s)}$$

Matriz G

$$\begin{split} g_{11}(s) &= \frac{I_{1}(s)}{U_{1}(s)} \bigg|_{I_{2}(s)=0} = \frac{1}{Z_{11}(s)} = \frac{\left| \mathbf{Y}(\mathbf{s}) \right|}{Y_{22}(s)} \\ g_{12}(s) &= \frac{I_{1}(s)}{I_{2}(s)} \bigg|_{U_{1}(s)=0} = \frac{Y_{12}(s)}{Y_{22}(s)} = -\frac{Z_{12}(s)}{Z_{11}(s)} \\ g_{21}(s) &= \frac{U_{2}(s)}{U_{1}(s)} \bigg|_{I_{2}(s)=0} = -\frac{Y_{21}(s)}{Y_{11}(s)} = \frac{Z_{21}(s)}{Z_{22}(s)} \\ g_{22}(s) &= \frac{U_{2}(s)}{I_{2}(s)} \bigg|_{U_{1}(s)=0} = \frac{\left| \mathbf{Z}(\mathbf{s}) \right|}{Z_{11}(s)} = \frac{1}{Y_{22}(s)} \end{split}$$

Matriz T

Simetrías.

•Simetría balanceada

Respecto de un eje de simetría horizontal: Genera cuadripolos balanceados o equilibrados (no tienen conexión común).

•Simetría de transferencia

Respecto de un eje de simetría vertical: Genera cuadripolos simétricos (no cambia si invertimos la entrada por la salida).

$$A(s) = \frac{U_1(s)}{U_2(s)}\Big|_{I_2(s)=0} = -\frac{Y_{22}(s)}{Y_{21}(s)} = \frac{Z_{11}(s)}{Z_{21}(s)}$$

$$B(s) = \frac{U_1(s)}{-I_2(s)}\Big|_{U_2(s)=0} = -\frac{1}{Y_{21}(s)} = \frac{\left|\mathbf{Z}(s)\right|}{Z_{21}(s)}$$

$$C(s) = \frac{I_1(s)}{U_2(s)}\Big|_{I_2(s)=0} = \frac{1}{Z_{21}(s)} = -\frac{\left|\mathbf{Y}(s)\right|}{Y_{21}(s)}$$

$$D(s) = \frac{I_1(s)}{-I_2(s)}\Big|_{U_2(s)=0} = -\frac{Y_{11}(s)}{Y_{21}(s)} = \frac{Z_{22}(s)}{Z_{21}(s)}$$

•Recíprocos o bilaterales

Tiene que ser una red pasiva y lineal.

Cuando un cuadripolo es simétrico $Z_{11} = Z_{22}$ o $Y_{11} = Y_{22}$.

Cuando un cuadripolo es bilateral $Z_{12} = Z_{21}$ o $Y_{12} = Y_{21}$.

CAPITULO 2

Matriz de Admitancia Indefinida.

Propiedades.

La suma de todos los elementos de una fila debe dar 0.

La suma de todos los elementos de una columna debe dar 0.

•Puesta de nodo comun.

Para hacer que uno de los terminales de una red multiterminales sea el terminal común de una red de n puertas puesta a tierra, basta **suprimir la fila y la columna** correspondiente a dicho terminal de la matriz Admitancia Indefinida. Esto resulta en una matriz de Admitancias de Cortocircuito, con el terminal suprimido como el nodo común de todas las n-puertas. **La operación inversa es**: Dada la matriz de Impedancias en corto circuito de una red de n puertas con terminal común, **se le agrega a dicha matriz** otra fila, cuyos elementos sean las sumas, cambiadas de signo, de todos los elementos de cada columna. Luego se agrega otra columna, cada uno de cuyos elementos es igual a la suma, cambiada de signo, de todos los elementos de la fila correspondiente". Esto resulta en una matriz Admitancia Indefinida.

•Unión de dos terminales.

Si unimos dos terminales de una red de n terminales, las dos corrientes se suman y las tensiones son iguales. Luego la matriz Admitancia Indefinida resultante (para la red de n-1 terminales), se obtiene sumando las dos filas y las dos columnas correspondientes de la matriz original, sustituyendo estas sumas a las dos filas y dos columnas originales.

•Supresión de un terminal.

Se debe primero obtener la MAI, luego aplicar la siguiente fórmula:

$$[Y_{indefinida}(s)] = ([Y_{aa}(s) - [Y_{ab}(s)][Y_{ba}]^{-1}[Y_{bb}(s)])$$

Suponiendo que:

$$Y_{indefinida} = \begin{bmatrix} 1 & 2 & 3 & -6 \\ 6 & 5 & 4 & -15 \\ 7 & 8 & 9 & -24 \\ -14 & -15 & -16 & 45 \end{bmatrix}$$

Y queremos suprimir el nodo 4, tenemos que:

$$\mathbf{Y_{aa}} = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 8 & 9 \end{bmatrix}$$

$$\mathbf{Y_{ab}} = \begin{bmatrix} -6 \\ -15 \\ -24 \end{bmatrix}$$

$$\mathbf{Y_{ba}} = \begin{bmatrix} -14 & -15 & -16 \end{bmatrix}$$

$$\mathbf{Y_{bb}} = \begin{bmatrix} 45 \end{bmatrix}$$

CAPITULO 3

•Potencia compleja.

$$\mathbf{S} = P + jQ = \mathbf{U} * \mathbf{I}^*$$

•Potencia máxima.

$$P_{max} = \frac{U_1^2}{4R_1}$$

•Rendimiento.

$$\eta = \frac{P_{carga}}{P_{fuente}} = \frac{|S_{carga}| cos(\phi_{carga})}{|S_{fuente}| cos(\phi_{fuente})}$$

4

CAPITULO 4

Relizabilidad RLC/LC.

•RLC.

Para que un circuito sea realizable RLC, F(s) tiene que ser una función racional-real real-positiva, para ello debe cumplir lo siguiente

- 1) F(s) debe ser racional-real. Es decir, tiene que ser una función racional con coeficientes reales.
- 2) Para que F(s) sea real positiva debe cumplir que:

$$Re[F(s)] \ge 0 \ \forall \ s/Re[s] \ge 0$$

Si es muy complicado demostrarlo (pasa siempre), debemos mostrar que al menos se cumplan las siguientes 2 codicones:

$$Re[F(j\omega)] \ge 0 \ \forall \ \omega \in \Re$$

Y que todos los polos de F(s) están en el **semiplano izquierdo cerrado**, y los polos que haya en el eje imaginario son simples y sus residuos asociados son reales y positivos.

•LC.

Para que un circuito sea realizable LC, F(s) tiene que cumplir lo siguiente

- 1) F(s) debe ser racional-real. Es decir, tiene que ser una función racional con coeficientes reales.
- $\mathbf{2})F(s)$ debe cumplir lo siguiente:

$$Re[F(j\omega)] = 0 \ \forall \ \omega \in \Re$$

O lo que es equivalente, que F(s) sea **impar**.

Y además, todos los polos de F(s) están en el eje imaginario, son simples y sus residuos asociados son reales y positivos.

•Foster.

La fórmula de Foster es:

$$F\left(s\right) = \frac{k_0}{s} + k_{\infty}s + \sum_{\lambda} \frac{2k_{\lambda}s}{s^2 + \omega_{\lambda}^2} = \frac{1}{\frac{1}{k_0}s} + \sum_{\lambda=1}^{n} \frac{1}{\frac{1}{2k_{\lambda}}s + \frac{1}{\frac{2k_{\lambda}}{\omega_{\lambda}^2}s}} + k_{\infty}s$$

Síntesis por **Foster I**:

Síntesis por Foster II:

\bullet Cauer.

Síntesis por Cauer I:

Síntesis por Cauer II:

CAPITULO 5

Sintesis de cuadripolos.

Siempre se da de dato Y_{11}/Z_{11} y Y_{12}/Z_{12} .

- 1. Se comprueba realizabilidad igual que para circuitos LC/RLC.
- 2. Se calculan los residuos de Y_{11}/Z_{11} y Y_{12}/Z_{12} y se escribe en fracciones simples a ambas expresiones.
- 3. Se remueven los polos particulares de la inmitancia de entrada.
- 4. Se sintetiza a través del diagrama cero-polar.
- 5. SE CHEQUEA EL FACTOR DE CORRECCIÓN. Esto se puede hacer mirando el comportamiento asintótico de manera muy fácil (recomendado) o por definición (no recomendado).

•Pérdidas de inserción.

La función pérdidas de inserción debe cumplir con los requisitos de una función conductancia $G(\omega)$, parte real de una función admitancia Y, debiendo obedecer a las siguientes condiciones:

- a) Ser una función racional par en ω , con coeficientes reales y positivos.
- **b)** Dado que tiene que ser $0 \le |\rho_1(s)|^2 \le 1$, en consecuencia $t \le P_{20}/P_2(\omega) \le \infty$ para todas las frecuencias.
- c) Además $P_{20}/P_2(s)$ no puede tener ceros imaginarios puros, y todos los ceros deben tener una disposición simétrica respecto del origen.

Procedimiento de síntesis

- 1) Verificar si $P_{20}/P_2(\omega)$ cumple los requisitos de realizabilidad.
- 2) Si P_{20}/P_2 es realizable, se calcula t mediante la expresión 1c.
- 3) Se calcula $|\rho_1(s)|^2$ mediante la ecuación 1a y se determinan sus singularidades.
- **4)** Se obtiene $|\rho_1(s)|$ considerando **solo** los polos ubicados en el SPI (la mitad de polos de $|\rho_1(s)|^2$. Puede haber dos soluciones posibles: $\rho_{1a}(s)$ con los *ceros* en el SPI y ρ_{1b} con los *ceros* en el SPD.
- 5) Se calcula la impedancia y admitancia de entrada mediante las expresiones 2b y 2a.
- 6) Se sintetizan Z(s) ó Y(s) de modo de realizar la mitad de los polos de la función pérdidas de inserción que se encuentran en el SPI (o sea los puntos de pérdidas infinitas $P_2 = 0$). Se empleará alguna de las formas canónicas, según la ubicación de los polos sobre el eje imaginario.

Ecuaciones mencionadas:

$$|\rho_1(s)|^2 = 1 - t\Phi(s)$$
 (1a)

$$\Phi(s) = \frac{P_2}{P_{20}}(\omega) \bigg|_{\omega = \frac{s}{j}} \tag{1b}$$

$$t = \frac{4R_1R_2}{(R_1 + R_2)^2} \tag{1c}$$

$$Z(s) = \left(\frac{1 - \rho_1(s)}{1 + \rho_1(s)}\right)^{\pm 1} \tag{2a}$$

$$Y(s) = \left(\frac{1 + \rho_1(s)}{1 - \rho_1(s)}\right)^{\pm 1} \tag{2b}$$

CAPITULO 6

Normalizaciones/Desnormalizaciones.

•Normalización de impedancia:

$$\frac{1}{sC_N} = \left(\frac{1}{sC}\right) \frac{1}{R_0} \to C_N = CR_0$$

$$sL_N = sL\frac{1}{R_0} \to L_N = L/R_0$$

$$sR_N = sR\frac{1}{R_0} \to R_N = R/R_0$$

•Desnormalización de impedancia:

$$\frac{1}{sC} = \left(\frac{1}{sC_N}\right) R_0 \to C = \frac{C_N}{R_0}$$

$$sL = sL_N R_0 \to L = L_N R_0$$

$$sR = sR_N R_0 \to R = R_N R_0$$

•Normalización en frecuencia:

$$\frac{1}{\hat{s}C_N} = \frac{1}{\frac{s}{\omega_0}(\omega_0 C)} \to C_N = \omega_0 C$$
$$\hat{s}L_N = \frac{s}{\omega_0}(\omega_0 L) \to L_N = \omega_0 L$$
$$R_N = R \to R_N = R$$

•Desnormalización en frecuencia:

$$\frac{1}{sC} = \frac{1}{\hat{s}\omega_0 \frac{C_N}{\omega_0}} \to C = \frac{C_N}{\omega_0}$$
$$sL = \hat{s}\omega_0 \frac{L_N}{\omega_0} \to L = \frac{L_N}{\omega_0}$$
$$R = R_N \to R = R_N$$

Transformaciones en frecuencia.

•Transormación proporcional:

$$\hat{s} = \frac{1}{\omega_C} s$$

•Transformación recíproca de la frecuencia:

$$\hat{s} = \frac{K}{s}$$

•Transformación pasa bajos-pasa altos sin normalizar ni desnormalizar:

$$\hat{s} = \frac{1}{s}$$

8

•Transformación pasa bajos-pasa altos normalizando o desnormalizando:

$$\hat{s} = \frac{\omega_c}{s}$$

$$\begin{cases} \overline{sL} = \frac{\omega_c \overline{L}}{s} & \Rightarrow \quad C = \frac{1}{\omega_c \overline{L}} \\ \frac{1}{s\overline{C}} = \frac{s}{\omega_c \overline{C}} & \Rightarrow \quad L = \frac{1}{\omega_c \overline{C}} \\ \overline{R} = R \end{cases} \qquad \begin{array}{c} \overline{L} & C = \frac{1}{\omega_c \overline{L}} \\ \overline{C} & \Rightarrow & -\frac{1}{\omega_c \overline{C}} \\ \overline{R} & \overline{R} = R \end{cases}$$

•Transformación pasa bajos-pasa banda (y viceversa): De filtro pasa bajos normalizado a filtro pasa banda NO normalizado con ancho de banda $\Delta\omega$. Si el filtro está normalizado $\Delta\omega=1$:

$$\hat{s} = \frac{s^2 + \omega_0^2}{\Delta \omega s}$$

•Transformación pasa bajos-suprime banda (y viceversa): De filtro pasa bajos normalizado a filtro rechaza banda NO normalizado con ancho de supresión de banda $\Delta\omega$. Si el filtro está normalizado $\Delta\omega=1$:

$$\hat{s} = \frac{\Delta \omega s}{s^2 + \omega_0^2}$$

$$\overline{sL} = \frac{\Delta \omega \, s}{s^2 + \omega_0^2} \, \overline{L} = \frac{1}{\frac{1}{\Delta \omega \, \overline{L}} \, s + \frac{\omega_0^2}{\Delta \omega \, \overline{L}} \, \overline{s}} \qquad \Rightarrow \qquad \begin{cases}
L = \frac{\Delta \omega \, \overline{L}}{\omega_0^2} & \overline{L} & \overline{L} & \overline{L} = \frac{\Delta \omega \, \overline{L}}{\omega_0^2} \\
C = \frac{1}{\Delta \omega \, \overline{L}} & \overline{C} & \overline{C} & \overline{C} = \frac{1}{\Delta \omega \, \overline{L}} \\
C = \frac{1}{\Delta \omega \, \overline{L}} & \overline{C} & \overline{C} & \overline{C} = \frac{\Delta \omega \, \overline{C}}{\omega_0^2} \, L = \frac{1}{\Delta \omega \, \overline{C}} \\
C = \frac{\Delta \omega \, \overline{C}}{\omega_0^2} & \overline{R} & \overline{R} = \overline{R} \\
\overline{R} = R & Fig. 7.11$$

Recordar que para hallar Δf_{3dB} tenemos:

Si $f_0 \gg \Delta f$: $f_1 = f_0 - \Delta f/2$ y $f_2 = f_0 + \Delta f/2$. Pero si f_0 no es mucho mayor que Δf entonces, para hallar f_1 y f_2 debemos hacer:

$$\Delta f = f_2 - f_1$$
$$f_0^2 = f_1 f_2$$