Exercício 1

 Passo 1: Implementar o seguinte código em Java ou equivalente em outra linguagem de programação. (0%)

```
import java.util.concurrent.TimeUnit;
public class Exercicio1 {
       public static void main(String[] args) {
              System.out.printf("metodo1\n");
              System.out.printf("%10s%20s%10s\n","n", "solucao", "tempo");
              for (int n = 0; n \le 10; n+=1) {
                      metodo1(n);
              System.out.printf("metodo2\n");
              System.out.printf("%10s%20s%10s\n","n", "solucao", "tempo");
              for (int n = 0; n \le 10; n+=1) {
                      metodo2(n);
              }
              System.out.printf("metodo3\n");
              System.out.printf("%10s%20s%10s\n","n", "solucao", "tempo");
              for (int n = 0; n \le 10; n+=1) {
                      metodo3(n);
              }
              System.out.printf("metodo4\n");
              System.out.printf("%10s%20s%10s\n","n", "solucao", "tempo");
              for (int n = 0; n \le 10; n+=1) {
                      metodo4(n);
              System.out.printf("metodo5\n");
              System.out.printf("%10s%20s%10s\n","n", "solucao", "tempo");
              for (int n = 0; n \le 10; n+=1) {
                      metodo5(n);
              }
       }
       static void metodo1 (long n) {
              double inicio = System.currentTimeMillis();
              long valor = 0;
              long termo = n * n * n * n;
              try {
                      TimeUnit.MILLISECONDS.sleep(1);
              } catch (InterruptedException e) {
```

```
e.printStackTrace();
       }
       for (long i = 1; i \le 4; i++) {
               valor += termo;
               try {
                       TimeUnit.MILLISECONDS.sleep(1);
               } catch (InterruptedException e) {
                       e.printStackTrace();
       }
       double fim = System.currentTimeMillis();
       double tempo = fim - inicio;
       System.out.printf("%10d%20d%10.0f\n", n, valor, tempo);
}
static void metodo2 (long n) {
       double inicio = System.currentTimeMillis();
       long valor = 0;
       long termo = 4 * n * n * n;
       try {
               TimeUnit.MILLISECONDS.sleep(1);
       } catch (InterruptedException e) {
               e.printStackTrace();
       }
       for (long i = 1; i \le n; i++) {
               valor += termo;
               try {
                       TimeUnit.MILLISECONDS.sleep(1);
               } catch (InterruptedException e) {
                       e.printStackTrace();
               }
       }
       double fim = System.currentTimeMillis();
       double tempo = fim - inicio;
       System.out.printf("%10d%20d%10.0f\n", n, valor, tempo);
}
static void metodo3 (long n) {
       double inicio = System.currentTimeMillis();
       long valor = 0;
       long termo = n * n * n;
       try {
               TimeUnit.MILLISECONDS.sleep(1);
       } catch (InterruptedException e) {
               e.printStackTrace();
       for (long i = 1; i \le 4; i++) {
               for (long j = 1; j \le n; j++) {
```

```
valor += termo;
                      try {
                              TimeUnit.MILLISECONDS.sleep(1);
                      } catch (InterruptedException e) {
                              e.printStackTrace();
                      }
               }
       }
       double fim = System.currentTimeMillis();
       double tempo = fim - inicio;
       System.out.printf("%10d%20d%10.0f\n", n, valor, tempo);
}
static void metodo4 (long n) {
       double inicio = System.currentTimeMillis();
       long valor = 0;
       long termo = n * n;
       try {
               TimeUnit.MILLISECONDS.sleep(1);
       } catch (InterruptedException e) {
               e.printStackTrace();
       }
       for (long i = 1; i \le 2 * n; i++) {
               for (long j = 1; j \le 2 * n; j++) {
                      valor += termo;
                      try {
                              TimeUnit.MILLISECONDS.sleep(1);
                      } catch (InterruptedException e) {
                              e.printStackTrace();
                      }
               }
       }
       double fim = System.currentTimeMillis();
       double tempo = fim - inicio;
       System.out.printf("%10d%20d%10.0f\n", n, valor, tempo);
}
static void metodo5 (long n) {
       double inicio = System.currentTimeMillis();
       long valor = 0;
       long termo = 4 * n;
       try {
               TimeUnit.MILLISECONDS.sleep(1);
       } catch (InterruptedException e) {
               e.printStackTrace();
       for (long i = 1; i \le n; i++) {
               for (long j = 1; j \le n; j++) {
```

}

 Passo 2: Os diferentes métodos computam o valor de 4n^4. Executar o código e preencher o resultado na planilha disponibilizada (aba Exercicio1). Copiar os gráficos neste documento. (0%) Crescimento do tempo em função do tamanho do problema

Crescimento do tempo em função do tamanho do problema

Crescimento do tempo em função do tamanho do problema

Crescimento do tempo em função do tamanho do problema

Passo 3: Realizar a análise de complexidade para cada um dos métodos.
 Desconsiderar na análise as instruções do try catch (utilizadas apenas para simular uma máquina mais lenta) e as de rastreamento do tempo de execução. (10%)

metodo 1: Θ(1)

- c1 1 c2 1
- c3 5
- c4 4

$$c1 * 1 + c2 * 1 + c3 * 5 + c4 * 4 = T(N) = \Theta(1) = Constante$$

```
metodo 2: Θ(n)
с1
       1
c2
       1
сЗ
       n+1
c4
       n
c1 * 1 + c2 * 1 + c3 * n+1 + c4 * n = T(N) = \Theta(N) = Linear
metodo 3: Θ(n)
       1
c1
c2
       1
сЗ
       5
c4
       4(n+1)
с5
       4(n)
c1 * 1 + c2 * 1 + c3 * 5 + c4 * 4(n+1) = T(N) = \Theta(n) = Linear
metodo 4:Θ(n^2)
       1
с1
c2
       1
сЗ
       2n + 1
c4
       2n
       2n (2n + 1)
с5
       4n^2
c6
c1 * 1 + c2 * 1 + c3 * (2n + 1) + c4 * 2n + c5 * (2n (2n + 1)) + c6 * (4n^2) = T(N) = \Theta(n^2) = T(N)
Quadrática
metodo 5:Θ(n^3)
с1
       1
       1
c2
c3
       n+1
c4
       n(n+1)
с5
       n(n(n+1))
с6
       n^3
c1 * 1 + c2 * 1 + c3 * (n + 1) + c4 * (n(n+1)) + c5 * (n(n(n+1))) + c6 * n^3 = T(N) = \Theta(n^3)
```

 Passo 4: Explicar a que se deve a variação de tempo de execução para o método metodo1? (2%) A complexibilidade do método 1 é constante. Levando isso em consideração, a variação apresentada durante a execução se deve a influência de diversos fatores do sistema, como a carga da CPU, alocação de recursos entre outros.

 Passo 5: Em seu experimento, qual método tem melhor tempo de execução: metodo2 ou metodo3? Para simular a execução do metodo2 em uma máquina 10 vezes mais lenta, modificar a instrução de sleep para TimeUnit.MILLISECONDS.sleep(10) apenas para este método, executar novamente o programa, alterar a planilha e copiar o gráfico respectivo neste documento. Neste novo experimento, qual método tem o melhor tempo de execução para n suficientemente grande: metodo2 ou metodo3? Explicar a que se deve este comportamento. (4%)

O primeiro experimento o metodo 2 possui melhor tempo de execução. Após modificar a instrução sleep de 1 para 10, o metodo3 passou a ter o melhor tempo de execução. O método 2 quando aumentamos o sleep, ele fica proporcional a N * 10, enquanto o método 3 permanece 4 * N.

Para valores suficientemente grandes de N, o método 2 terá maior tempo de execução por conta do seu tempo de espera. Já método 3 para valores suficientemente grandes se torna mais rápido, devido á sua estrutura de loop mais eficiente.

• Passo 6: Em seu experimento, qual método tem melhor tempo de execução: método 4 ou método 5? Para simular a execução do método 4 em uma máquina 10 vezes mais lenta, modificar a instrução de sleep para TimeUnit.MILLISECONDS.sleep(10) apenas para este método, executar novamente o programa, alterar a planilha e copiar o gráfico respectivo neste documento. Neste novo experimento, qual método tem o melhor tempo de execução para n suficientemente grande: metodo4 ou metodo5? Explicar este comportamento. (4%)

O primeiro experimento o método 4 possui melhor tempo de execução. Após modificar a instrução sleep de 1 para 10, o método 5 passou a ter o melhor tempo de execução para N pequenos, porém para N suficientemente grande o método 4 continua sendo mais rápido. O método 4 quando aumentamos o sleep, ele fica proporcional a 2 * N * 10, enquanto o método 5 permanece 4 * N * N * N * 1.

Para valores suficientemente grandes de N, o método 5 terá maior tempo de execução por conta do tempo de espera no loop mais interno.

 Passo 7: Indicar o nome dos integrantes da equipe que participaram efetivamente na resolução deste exercício. (0%)

Angelo Barcelos Rodrigues Alberto Alessandro Vithor Vilas Boas Ana Clara de Sá

Exercício 2

 Passo 1: Implementar o seguinte código em Java ou equivalente em outra linguagem de programação. (0%)

import java.util.concurrent.TimeUnit;

```
public class Exercicio1 {
    public static void main(String[] args) {
        double inicio1, fim1, tempo1;
        double inicio2, fim2, tempo2;
        double inicio3, fim3, tempo3;
        double inicio4, fim4, tempo4;
```

```
System.out.printf("%5s%10s%10s%10s%10s%10s\n","n", "tempo1", "tempo2",
"tempo3", "tempo4");
              System.out.println("-----");
              for (int n = 0; n \le 10; n+=1) {
                     inicio1 = System.currentTimeMillis();
                     metodo1(n);
                     fim1 = System.currentTimeMillis();
                     tempo1 = fim1 - inicio1;
                     inicio2 = System.currentTimeMillis();
                     metodo2(n);
                     fim2 = System.currentTimeMillis();
                     tempo2 = fim2 - inicio2;
                     inicio3 = System.currentTimeMillis();
                     metodo3(n);
                     fim3 = System.currentTimeMillis();
                     tempo3 = fim3 - inicio3;
                     inicio4 = System.currentTimeMillis();
                     metodo4(n);
                     fim4 = System.currentTimeMillis();
                     tempo4 = fim4 - inicio4;
                      System.out.printf("%5d%10.0f%10.0f%10.0f%10.0f\n", n, tempo1,
tempo2, tempo3, tempo4);
       }
       static void metodo1 (long n) {
              long valor = 0;
              try {
                     TimeUnit.MILLISECONDS.sleep(1);
              } catch (InterruptedException e) {
                     e.printStackTrace();
              for (long i = 10; i \le 12; i++) {
                     for (long j = 4; j \le 10; j++) {
                             valor += 1;
                             try {
                                    TimeUnit.MILLISECONDS.sleep(1);
                             } catch (InterruptedException e) {
                                    e.printStackTrace();
                             }
                     }
              }
       }
       static void metodo2 (long n) {
              long valor = 0;
```

```
try {
               TimeUnit.MILLISECONDS.sleep(1);
       } catch (InterruptedException e) {
               e.printStackTrace();
       for (long i = 1; i \le n; i++) {
               for (long j = 1; j \le 3; j++) {
                       valor += 1;
                       try {
                              TimeUnit.MILLISECONDS.sleep(1);
                       } catch (InterruptedException e) {
                              e.printStackTrace();
                      }
               }
       }
}
static void metodo3 (long n) {
       long valor = 0;
       try {
               TimeUnit.MILLISECONDS.sleep(1);
       } catch (InterruptedException e) {
               e.printStackTrace();
       }
       for (long i = 0; i < n; i++) {
               for (long j = 1; j \le n - i; j++) {
                       valor += 1;
                       try {
                              TimeUnit.MILLISECONDS.sleep(1);
                       } catch (InterruptedException e) {
                              e.printStackTrace();
                      }
               }
       }
}
static void metodo4 (long n) {
       long valor = 0;
       try {
               TimeUnit.MILLISECONDS.sleep(1);
       } catch (InterruptedException e) {
               e.printStackTrace();
       for (long i = 1; i \le n * n; i++) {
               for (long j = 1; j \le i; j++) {
                       valor += 1;
                       try {
                              TimeUnit.MILLISECONDS.sleep(1);
```

 Passo 2: Executar o código e preencher o resultado na planilha disponibilizada (aba Exercicio2). Copiar os gráficos neste documento. (0%)

Passo 3: Realizar a análise de complexidade para cada um dos métodos.
 Desconsiderar na análise as instruções do try catch (utilizadas apenas para simular uma máquina mais lenta) e as de rastreamento do tempo de execução. (10%)

```
metodo 1: Θ(1)
```

C1 * 1 + C2 * 3 + C3 * 7 + C4 * 12 =
$$T(N) = \Theta(1) = Constante$$

metodo 2: Θ(n)

$$C1 * 1 + C2 * (N + 1) + C3 * 3 + C4 * 2N=T(N) = \Theta(N) = Linear$$

Metodo3 : Θ(N³)

C1: 1

C2: N+1

C3: (N*(N+1))/2

C4:N*N*N/2

$$C1 * 1 + C2 * N+1 + C3 * (N*(N+1))/2 + c4 * N*N*N = T(N) = \Theta(N^3)$$

metodo 4:Θ(n^4)

```
C1 1
```

$$C1 * 1 + C2 * (N^2 + 1) + C3 * (N^4 + 1) + C4 * N^4 = T(N) = \Theta(N^4)$$

 Passo 4: Observando os gráficos obtidos e considerando as análises de complexidade assintótica: (1) discutir sobre as curvas de crescimento do tempo de execução de cada método; (2) indicar qual é o método assintoticamente mais eficiente; (3) indicar qual é o método assintoticamente menos eficiente; e (4) indicar a partir de que ponto o método mais eficiente passou a ser efetivamente mais rápido que os demais no experimento realizado. (5%)

- (1) método 1: Θ(1) Crescimento constante, método 2: Θ(n)Crescimento Linear, Método
 3: Θ(N³) Crescimento cúbico, método 4:Θ(n⁴) Crescimento Biquadrático
- (2) método 1 é a mais eficiente
- (3) método menos eficiente é o 4
- (4) A partir do ponto 7 do eixo x, observamos que o método 1 se torna o mais eficiente
- Passo 5: Indicar o nome dos integrantes da equipe que participaram efetivamente na resolução deste exercício. (0%)

Alberto Perdigão Lopes, Vithor Vilas Boas Iury Azevedo Ana Clara de Sá Alessandro

Exercício 3

 Passo 1: Implementar o seguinte código em Java ou equivalente em outra linguagem de programação. (0%)

```
import java.util.Random;
import java.util.concurrent.TimeUnit;
public class Exercicio2{
       public static void main(String[] args) {
               int n = 1000;
               int[] A;
               A = criaVetorAleatorio(n);
               double inicio, fim, tempo;
               inicio = System.currentTimeMillis();
               metodo(A, n);
               fim = System.currentTimeMillis();
               tempo = fim - inicio;
               System.out.printf("Tempo: %1.0f", tempo);
       }
       static double metodo (int[] vetor, int n) {
               double v = 1;
               for (int i = 0; i < n; i++) {
                       try {
                               TimeUnit.MILLISECONDS.sleep(1);
                       } catch (InterruptedException e) {
                               e.printStackTrace();
                       v = v * vetor[i];
                       if (v == 0) {
                               return 0;
                       }
               }
               return v;
       }
       static int[] criaVetorAleatorio (int n) {
               Random randomGenerator = new Random();
               int[] A = new int[n];
               for (int i = 0; i < n; i++) {
                       A[i] = randomGenerator.nextInt(100);
               }
               return A;
       }
}
```

 Passo 2: Dado um vetor, o que exatamente a função metodo está computando matematicamente? (2%)

Ela computa o produto de todos os valores contidos no vetor e retorna esse valor.

 Passo 3: Executar o código 10 vezes e copiar a saída de cada execução do programa aqui abaixo. Visto que o tamanho do problema não se modifica, o que justifica a grande variação do tempo de uma execução para outra? (3%)

Tempo: 42 Tempo: 16
Tempo: 74 Tempo: 37
Tempo: 232 Tempo: 106
Tempo: 80 Tempo: 33
Tempo: 20 Tempo: 148

Essa grande variância no tempo de execução é dada pela aleatoriedade dos termos do vetor e o fato de existir um melhor e pior caso dentro da função "metodo".

Passo 4: Realizar a análise de complexidade de melhor e pior casos para o método.
 Obs.: Desconsiderar na análise as instruções do try catch (utilizadas apenas para simular uma máguina mais lenta). (3%)

Melhor caso:

```
c1 1
```

c2 1

c3 1

c4 1

c5 1 c6 0

 $T(n) = c1 + c2 + c3 + c4 + c5 = \Theta(1)$

pior caso:

c1 1

c2 n+1

c3 n

c4 n

c5 0

c6 1

$$T(n) = c1 + (n+1)c2 + n*c3 + n*c4 + c6 = \Theta(n)$$

• Passo 5: Se o vetor A, em vez de 1000 elementos, tivesse 1.000.000 elementos, a complexidade do algoritmo aumentaria? Justificar. (2%)

Não, o que aumentaria seria o tempo de execução e não a complexidade, pois a complexidade independe do tamanho da instância.

• Passo 6: Indicar o nome dos integrantes da equipe que participaram efetivamente na resolução deste exercício. (0%)

Ana Clara de Sá Vithor Vilas Angelo Rodrigues Iury azevedo Alessandro

Exercício 4

• Passo 1: Considerar o seguinte código em Java ou equivalente em outra linguagem de programação. (0%)

```
import java.util.Random;
import java.util.concurrent.TimeUnit;
public class Exercicio1 {
       public static void main(String[] args) {
              int∏ A;
              double inicio1, fim1, tempo1;
              double inicio2, fim2, tempo2;
              System.out.printf("%5s%10s%10s%10s%10s\n","n", "soma1", "tempo1",
"soma2", "tempo2");
              System.out.println("-----");
              for (int n = 1; n \le 50; n++) {
                     A = criaVetorAleatorio(n);
                     inicio1 = System.currentTimeMillis();
                     int soma1 = soma1(A, n);
                     fim1 = System.currentTimeMillis();
                     tempo1 = fim1 - inicio1;
                     inicio2 = System.currentTimeMillis();
                     int soma2 = soma2(A, 0, n-1);
                     fim2 = System.currentTimeMillis();
                     tempo2 = fim2 - inicio2;
```

```
System.out.printf("%5d%10d%10.0f%10d%10.0f\n", n, soma1,
tempo1, soma2, tempo2);
               }
       }
       static int soma1 (int[] vetor, int n) {
               int total = 0;
               for (int i = 0; i < n; i++) {
                       try {
                               TimeUnit.MILLISECONDS.sleep(1);
                       } catch (InterruptedException e) {
                               e.printStackTrace();
                       total = total + vetor[i];
               }
               return total;
       }
       static int soma2 (int[] vetor, int i, int f) {
               if (i == f) {
                       return vetor[i];
               } else {
                       int m = (i+f) / 2;
                       try {
                               TimeUnit.MILLISECONDS.sleep(2);
                       } catch (InterruptedException e) {
                               e.printStackTrace();
                       return soma2(vetor, i, m) + soma2(vetor, m+1, f);
               }
               2^* (t/2) + \Theta(1)
       }
       static int[] criaVetorAleatorio (int n) {
               Random randomGenerator = new Random();
               int[] A = new int[n];
               for (int i = 0; i < n; i++) {
                       A[i] = randomGenerator.nextInt(100*n);
               }
               return A;
       }
}
```

Passo 2: Realizar a análise de complexidade da função soma1. (1%)

с1

c2

1

n + 1

```
c3
           n
       c4
       T(n) = \Theta(1) = constante
      Passo 3: Montar a equação de recorrência para a função soma2. (2%)
       2^* (t/2) + \Theta(1)
     Passo 4: Resolver a equação de recorrência pelo teorema mestre. (2%)
       N<sup>^</sup>(log2 base2)
       n^1
       \Theta(N)
       T(n) = \Theta(N)
     Passo 5: Considerar o seguinte código em Java ou equivalente em outra linguagem
       de programação. (0%)
import java.util.concurrent.TimeUnit;
public class Exercicio2 {
       public static void main(String[] args) {
              double inicio1, fim1, tempo1;
              double inicio2, fim2, tempo2;
              System.out.printf("%5s%20s%10s%20s%10s\n","n", "pot1", "tempo1", "pot2",
"tempo2");
              System.out.println("-----");
              for (int n = 1; n \le 30; n++) {
                     inicio1 = System.currentTimeMillis();
                     int pot1 = potencia1(2, n);
                     fim1 = System.currentTimeMillis();
                     tempo1 = fim1 - inicio1;
                     inicio2 = System.currentTimeMillis();
                     int pot2 = potencia3(2, n);
                     fim2 = System.currentTimeMillis();
                     tempo2 = fim2 - inicio2;
                     System.out.printf("%5d%20d%10.0f%20d%10.0f\n", n, pot1, tempo1,
pot2, tempo2);
       static int potencia1 (int a, int n) {
              int total = 1;
              for (int i = 1; i \le n; i++) {
                     try {
```

TimeUnit.MILLISECONDS.sleep(1);

} catch (InterruptedException e) {

```
e.printStackTrace();
                       total = total * a;
               }
               return total;
       }
       static int potencia2 (int a, int n) {
               if (n == 0) {
                       return 1;
               } else {
                       try {
                               TimeUnit.MILLISECONDS.sleep(1);
                       } catch (InterruptedException e) {
                               e.printStackTrace();
                       int aux = potencia2 (a, n/2);
                       if (n \% 2 == 0) {
                               return aux * aux;
                       } else {
                               return aux * aux * a;
                       }
               }
       }
}
```

• Passo 6: Realizar a análise de complexidade da função potencia1. (1%)

```
C1: 1
C2: N+1
C3: N*1
C4: 1
T(n) = Θ(1) = constante
```

Passo 7: Montar a equação de recorrência para a função potencia2. (2%)

```
T(a, n) = T(a, n/2) + O(1)
```

- Passo 8: Resolver a equação de recorrência pelo teorema mestre. (2%)
- Passo 9: Indicar o nome dos integrantes da equipe que participaram efetivamente na resolução deste exercício. (0%)

Ana Clara de Sá Angelo Rodrigues

lury azevedo

Alessandro

Exercício 5

Q1. Suponha que dois algoritmos, A e B, resolvem um mesmo problema. Assuma ainda que o tamanho das instâncias do problema é dado por um parâmetro n. Para cada item abaixo, assumindo-se n suficientemente grande, indique se A é mais rápido que B para toda e qualquer instância, se B é mais rápido que A para toda e qualquer instância, ou se não podemos inferir qual dos dois algoritmos é mais rápido. Só serão pontuados os itens devidamente justificados. (10%)

- O algoritmo A consome tempo $O(n^2)$ e o B consome tempo $O(n^3)$.
- O "A" é mais eficiente, pois não existe uma intersecção entre os intervalos de complexibilidade de $O(N^2)$ e $\Omega(n3)$, sendo O(n2) sempre menor que $\Omega(n3)$.
- O algoritmo A consome tempo $\Omega(n2)$ e o B consome tempo O(n3). Impossível de inferir, pois existe uma intersecção entre os intervalos de complexibilidade de $\Omega(n^2)$ e $O(n^3)$.
- O algoritmo A consome tempo $\Theta(n2)$ e o B consome tempo $\Theta(n3)$.
- O "A" é mais eficiente, complexibilidade de $\Theta(n^2)$ e $\Theta(n^3)$, sendo $\Theta(n^2)$ sempre menor que $\Theta(n^3)$.
- O algoritmo A consome tempo O(n2) e o B consome tempo O(n3).
 Impossível de inferir, pois existe uma intersecção entre os intervalos de complexibilidade de O(n^2) e O(n^3). Podendo A ser Θ(n^2) e B Θ(n), podendo ser tanto quanto B igual a Θ(n^2) e A Θ(n).
- O algoritmo A consome tempo O(n2) no pior caso e o B consome tempo O(n3) no melhor caso.

No pior caso de A, ele ainda terá um consumo de tempo inferior ao de B no melhor caso.

- O algoritmo A consome tempo O(n3) no pior caso e o B consome tempo O(n2) no pior caso.
 - Impossível de inferir, pois só é dado o limite superior.
- O algoritmo A consome tempo O(n2) no pior caso e o B consome tempo O(n3) no pior caso.

Impossível de inferir, pois só é dado o limite superior.

• O algoritmo A consome tempo $\Omega(n2)$ no melhor caso e o B consome tempo $\Omega(n3)$ no melhor caso.

Impossível de inferir, pois só é dado o limite inferior.

Q2. Aplique o método mestre para resolver as seguintes recorrências. (10%)

```
    T(n) = 4T(n/3) + n2
    T(n) = T(n/8) + 1
    T(n) = 8T(n/2) + n2
    T(n) = 16T(n/4) + n2
```

```
a - T(n) = \Theta(n^2)
b - T(n) = \Theta(logn)
c - T(n) = \Theta(n^3)
d - T(n) = \Theta(n^2log)
```

Q3. Dada o método abaixo, encontre um limite assintótico, utilizando notação Θ, para determinar sua complexidade. E qual o valor de retorno do método em função do valor da entrada? (7%)

```
int funcao(n) sum = 0; \qquad c1 \quad 1 \\ for (i = 1; i <= n; i++) \qquad c2 \quad n+1 \\ for (j = 1; j <= i; j++) \qquad c3 \quad 2 + (n+1)^* \, n \, / \, 2 \\ for (k = 1; k <= n^*n; k++) \qquad c4 \quad (1+n) \quad * \, n \, / \, 2 \, (n^*2 + 1) \\ sum = sum + k; \qquad c5 \quad (1+n) \quad * \, n \, * \, (n^*2) \, / \, 2 \\ return sum \\ \Theta(n^*3)
```

Q4. Dada o método abaixo, encontre um limite assintótico, utilizando notação Θ, para determinar sua complexidade. E qual o valor de retorno do método em função do valor da entrada? (8%)

Q5. Seja um vetor A de n elementos inteiros. É possível determinar o produto dos elementos do vetor em Θ(n) percorrendo-se os elementos do vetor de forma iterativa. Alternativamente, pode-se utilizar um método de divisão-e-conquista. Faça uma função recursiva para determinar o produto dos elementos do vetor. O algoritmo deve recursivamente dividir o vetor ao meio até se chegar a um caso trivial. Determine e resolva a equação de recorrência para o seu algoritmo. O algoritmo recursivo é mais eficiente do que o algoritmo iterativo? (10%

Passo 6: Indicar o nome dos integrantes da equipe que participaram efetivamente na resolução deste exercício. (0%)

Vithor Vilas Boas Angelo Barcelos Ana Clara de Sá Iury Azevedo Alberto Alexandro