

Design and Analysis of Algorithms

Backtracking

Rupali Khare

Assistant Professor, DCEA, GLAU

Backtracking algorithms determine problem solutions by systematically searching the solution space for the given problem instance.

This search is facilitated by using a tree organization for the solution space.

Depth first node generation with bounding functions is called backtracking.

Backtracking

State space tree

- All paths from the root to other nodes define the state space of the problem.
- Solution states are those problem states S for which the path from the root to S defines a tuple in the solution space.
- Answer states are those solution states S for which the path from the root to S defines a tuple which is a member of the set of solutions.
- The tree organization of the solution space will be referred to as the state space tree.

• The n-queens problem is a generalization of the 8-queens problem of n queens are to be placed on a n x n chessboard so that no two attack, i.e., no two queens are on the same row, column or diagonal.

```
Nqueens(k,n){
for i=1 to n{
    if(place(k,i)){
        x[k]=i
        if (k==n){
            for j=1 to n
                print x[i]}
        else
            Nqueens(k+1,n)}}}
```

```
place(k,i){
for j=1 to k
  if(x[j]==i || abs(x[j]-i ==abs(j-k))
      return false
  return true
  }
```

Placing n queens on the n x n chessboard, such that none of them attack one another (no two queens are in the same row, column or diagonal)

• The 4-queens problem is a generalization of 4 queens are to be placed on a 4 x 4 chessboard so that no two attack, i.e., no two queens are on the same row, column or diagonal.

• The 4-queens problem is a generalization of 4 queens are to be placed on a 4 x 4 chessboard so that no two attack, i.e., no two queens are on the same row,

column or diagonal. (a) (b) (c) (d) 9 (14) (a) (f)(g) (h)

• The 4-queens problem is a generalization of 4 queens are to be placed on a 4 x 4 chessboard so that no two attack, i.e., no two queens are on the same row, column or diagonal.

• The 8-queens problem is a generalization of 8 queens are to be placed on a 8 x 8 chessboard so that no two attack, i.e., no two queens are on the same row, column or diagonal.

(8,5,3,2,2,1,1,1) = 2329

• The 8-queens problem is a generalization of 8 queens are to be placed on a 8 x 8 chessboard so that no two attack, i.e., no two queens are on the same row, column or diagonal.

(8,5,3,2,2,1,1,1) = 2329

Number of Solution exists

- ☐ The number of different solutions, not necessarily distinct, is known for $n \le 26$.
- ☐ It is clear to see that the number of solutions grows exponentially.
- ☐ The number of solutions that exist when $n \ge 27$ is still an open problem.

n	Number of different solutions
1	1
2	0
3	0
4	2
5	10
6	4
7	40
8	92
9	352
10	724
11	2680
12	14200
13	73712
14	365596
15	2279184
16	14772512
17	95815104
18	666090624
19	4968057848
20	39029188884
21	314666222712
22	2691008701644
23	24233937684440
24	227514171973736
25	2207893435808352
26	22317699616364044

n	Number of distinct solutions
1	1
2	0
3	0
4	1
5	2
6	1
7	6
8	12
9	46
10	92
11	341
12	1787
13	9233
14	45752
15	285053
16	1846955
17	11977939
18	83263591
19	621012754
20	4878666808
21	39333324973
22	336376244042
23	3029242658210
24	28439272956934
25	275986683743434
26	2789712466510289

Time complexity

Time Complexity of N Queens problem

2. Sum of Subset Problem

- \square Suppose we are given n distinct positive numbers (usually called weights) and we desire to find all combinations of these numbers whose sum is M. This is called the *sum of subsets* problem.
- ☐ In this case the element X(i) of the solution vector is either one or zero depending upon whether the weight W(i) is included or not.
- \square For a node at level i the left child corresponds to X(i) = 1 and the right to X(i) = 0.

Sum of Subset

Instance: A set of numbers denoted S and a target number t.

Problem: To decide if there exists a subset $Y\subseteq S$, s.t $\Sigma_{y\in Y}y=t$.

The state space tree generated by procedure SUMOFSUB while working on the instance n = 6, M = 30 and W(1:6) = (5, 10, 12, 13, 15, 18).

The state space tree generated by procedure SUMOFSUB while working on the instance n = 6, M = 30 and W(1:6) = (5, 10, 12, 13, 15, 18).

The state space tree generated by procedure SUMOFSUB while working on the instance n = 6, M = 30 and W(1:6) = (5, 10, 12, 13, 15, 18).

At nodes A, B and C the output is respectively (1, 1, 0, 0, 1), (1, 0, 1, 1) and (0, 0, 1, 0, 0, 1).

Sum of Subset Problem

```
procedure SUMOFSUB(s, k, r)

//find all subsets of W(1:n) that sum to M. The values of//

//X(j), 1 \le j < k have already been determined. s = \sum_{j=1}^{k-1} W(j)X(j)//

//and r = \sum_{j=k}^{n} W(j) The W(j)s are in nondecreasing order.//

//It is assumed that W(1) \le M and \sum_{j=1}^{n} W(j) \ge M.//
```

```
global integer M, n; global real W(1:n); global boolean X(1:n)
 2 real r, s; integer k, j
   //generate left child. Note that s + W(k) \le M because B_{k-1} = \text{true}//
 3 X(k) \leftarrow 1
4 if s + W(k) = M //subset found//
        then print (X(j), j \leftarrow 1 \text{ to } k)
        //there is no recursive call here as W(j) > 0, 1 \le j \le n//
        else
          if s + W(k) + W(k + 1) \le M then \frac{1}{B_k} = \text{true}/\frac{1}{B_k}
               call SUMOFSUB(s + W(k), k + 1, r - W(k))
             endif
10 endif
   //generate right child and evaluate B_k//
11 if s + r - W(k) \ge M and s + W(k + 1) \le M //B_k = \text{true}//
12
        then X(k) \leftarrow 0
13
             call SUMOFSUB(s, k + 1, r - W(k))
    endif
15
     end SUMOFSUB
```

Recursive solution for Sum of Subset problem

```
// A recursive solution for subset sum problem
                                                        // If last element is greater than sum, then ignore
#include <stdio.h>
                                                        if (set[n-1] > sum)
// Returns true if there is a subset of set[] with
sun equal to given sum
                                                            return SOS(set, n-1, sum);
bool SOS(int set[], int n, int sum)
                                                        /* else, check if sum can be obtained by any of
                                                        the following
// Base Cases
                                                            (a) including the last element
if (sum == 0)
                                                            (b) excluding the last element */
    return true;
                                                        return SOS(set, n-1, sum) || SOS(set, n-1, sum-set[n-1]);
if (n == 0 \&\& sum != 0)
    return false;
```

Cont...

```
// Driver program to test above function
int main()
int set[] = \{3, 34, 4, 12, 5, 2\};
int sum = 9;
int n = sizeof(set)/sizeof(set[0]);
if (SOS(set, n, sum) == true)
     printf("Found a subset with given sum");
Else
printf("No subset with given sum");
return 0;
```

Dynamic Programming solution for subset sum problem

```
// A Dynamic Programming solution for subset sum problem
#include <stdio.h>
// Returns true if there is a subset of set[] with sun equal to given sum
bool SOS (int set[], int n, int sum)
{ // The value of subset[i][j] will be true if there is a
       // subset of set[0..j-1] with sum equal to i
       bool subset[n+1][sum+1];
       // If sum is 0, then answer is true
      for (int i = 0; i \le n; i++)
       subset[i][0] = true;
       // If sum is not 0 and set is empty, then answer is false
       for (int i = 1; i <= sum; i++)
       subset[0][i] = false;
```

Cont.

```
// Fill the subset table in botton up manner
                                                                                               // Driver program to test above function
      for (int i = 1; i <= n; i++)
                                                                                               int main()
                             { for (int j = 1; j \le sum; j++)
                     if(j<set[i-1])
                                                                                               int set[] = {3, 34, 4, 12, 5, 2};
              subset[i][j] = subset[i-1][j];
                                                                                               int sum = 9;
              if (j \ge set[i-1])
                                                                                                int n = sizeof(set)/sizeof(set[0]);
               subset[i][j] = subset[i-1][j] || subset[i - 1][j-set[i-1]];
                                                                                                if (isSubsetSum(set, n, sum) == true)
                                                                                                      printf("Found a subset with given sum");
               /* // uncomment this code to print table
                                                                                                else
      for (int i = 0; i <= n; i++)
                                                                                                printf("No subset with given sum");
                 for (int j = 0; j \le sum; j++)
                                                                                                return 0;
              printf ("%4d", subset[i][j]);
                             printf("\n");
```