In-Vehicle Network	Test specification of vulner	1/25		
Application: In-vehicle part countermeasu	ts in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

	·部署 御中 ments concerned	表示 Confidential level	PROTE 関係者	外秘	原紙保管 Storage of original コピー保管 Storage of cop	M/Y /
Test specifi	号性対策評価仕様書 cation of vulnerabil rmeasure for ECU	•	制御ネット E/E Architec System netw No. SEC-e 承認 Approved	ture Develops ork & archite PF-VUL-E(ーキ開発室 40 ment Div. cture developm CU-TST-SPE	nent dept 4G.
適用 Target	サイバーセキュリティ管理 ECUs that cybersecurity co			ed.		
特記 Special note	開をお願いします。	会社・関 locume ufactur nation】 一ム開 せ窓口	ent to affiliated rers, or ECU so 発部 制御ネ nt Div Syste	companies, o uppliers) if ne ットワーク・ア	r departments (cessary. ーキ開発室	J サプライヤ)への展e.g., overseas business

Mail:epf-sec-sp@mega.tec.toyota.co.jp

In-Vehicle Network	Test specification of vulner	2/25		
Application: In-vehicle part countermeasu	ts in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

変更履歴 △1

記号	Version	日付	変更者	項目	変更内容
	a00-00-a	2020/06/23	46F 松井	全項目	初版発行
$\Delta 1$	a00-01-a	2021/04/01	46F 石川	4.6	目標 AP の評価要件を追加
1	↑	1	↑	全要件	セキュリティレベルを目標 AP に変更
1	↑	1	↑	4.1	エビデンス記載内容の誤記修正
				4.2	
				4.3	
1	↑	1	↑	3.1	本書記載要件の実施が評価機関への委託前提
					でない旨を明記
1	\uparrow	↑	\uparrow	1.3	関連文書に ISO/IEC 18045 を追記
	a00-01-b	2021/05/20	46F 清川	全項目	英訳の追加
$\Delta2$	a00-02-a	2021/09/02	46F 玉樹	4.6	目標 AP の評価要件明確化に伴い要件追加
1	↑	2021/09/16	↑	4.3.4	ファジングテスト対象の明記
				4.3.5	
				4.3.6	
1	\uparrow	↑	\uparrow	4.6.3	評価項目除外方法の明確化
$\Delta 3$	a00-03-a	2021/10/06	46F 石川	4.2.2	脆弱性スキャンの適用対象を変更
$\Delta 4$	a00-04-a	2021/10/14	46F 玉樹	4.3.1	Wi-Fi/Bluetooth ファジング評価要件を変更
1	↑	1	↑	4.6.1	「侵入テストの結果(VULETS_03001)」を削
					除
$\Delta5$	a00-05-a	2021/10/25	46F 早川	1.3	適用範囲、要件の記載の章構成変更と内容明
				1.4	確化
1	\uparrow	↑	46F 石川	3.4	侵入テスト要件(VULETS_03001)の削除
1	\uparrow	2021/11/01	46F 安江	1.5	関連文書を追加し、SEC-ePF-TRM-GUD-
				1.6	PROC-***-**に記載されている略語、用語の
				1.7	削除
1	\uparrow	↑	46F 石川	3.3	ファジングテスト要件を明確化、
					ファジングテストの対象(VULETS_02009,
					VULETS_02010)を追加
1	<u> </u>	2021/11/5	46F 玉樹	3.6.2	(別紙1) 攻撃テストケース定義ガイドを追加
				3.6.3	
1	↑	1	↑	1.2	図1を削除
<u></u>	↑	1	↑	全項目	エビデンス要求を削除
1	<u> </u>	<u> </u>	↑	3.6.1	攻撃耐性評価対象の明確化
				3.6.2	

In-Vehicle Network	Test specification of vulner	3/25		
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

$\Delta 6$	a00-06-a	2022/9/29	46F 玉樹	3.2.1	脆弱性の修正時期の指定を削除
				3.2.2	
				3.3.1	
				3.3.2	
				3.3.3	
				3.3.4	
				3.3.5	
				3.3.6	
				3.3.7	
				3.3.8	
				3.3.9	
				3.3.10	
$\Delta 7$	a00-07-a	2022/11/10	46F 玉樹	3.5.1	既製品に対する結合評価の要件
					(VULETS_04001)を削除
1	1	↑	1	全項目	参考要件を削除
1	↑	↑	↑	2.1	CIAD を CIA に変更

Application: In-vehicle parts in which cyber security countermeasure are implemented

No.

SEC-ePF-VUL-ECU-TST-SPEC-a00-07-a

4/25

目次

1.	はじ	.めに	6
	1.1.	本書の目的	6
	1.2.	本書の位置づけ 45	6
	1.3.	適用範囲 Δ5	7
	1.4.	要件の記載 45	7
	1.5.	関連文書	7
	1.6.	略語の定義	9
	1.7.	用語の定義	.10
2.	本書	の前提条件	.11
	2.1.	トヨタとサプライヤ間での CIA の締結 Δ7	.11
3.	脆弱	性テスト	12
	3.1.	共通要件	.12
	3.2.	脆弱性スキャン	.13
	3.2.1	1. ポートスキャン	.13
	3.2.2	· · · · · · · · · · · · · · · · · · ·	
	3.3.	ファジングテスト	.15
	3.3.1	1. Wi-Fi/Bluetooth のファジングテスト	.15
	3.3.2	2. イーサネット系通信プロトコルのファジングテスト	.15
	3.3.3	3. ストレージデバイスのファジングテスト	.16
	3.3.4	4. DoCAN のファジングテスト	.17
	3.3.5	5. DoCAN のファジングテスト (CAN-FD)	.17
	3.3.6	3. DoIP のファジングテスト	.18
	3.3.7	7. CAN のファジングテスト	.19
	3.3.8	8. CAN-FD のファジングテスト	.19
	3.3.9	9. TLS のファジングテスト ^{Δ5}	.20
	3.3.1	10. HTTP のファジングテスト ^{Δ5}	.20
	3.4.	(欠番) ^{Δ5}	.22
	3.4.1	1. (欠番)Δ5	.22
	3.5.	(欠番) Δ7	.23
	3.5.1	1. (欠番)^7	.23
	3.6.	目標 AP の評価(攻撃耐性評価)^1/\(\Delta\)2	.24
	3.6.1	1. 脆弱性候補の収集 ^2^5	.24
	3 6 9	2. 評価項目の定義 △2	24

In-Vehicle Network	Test specification of vulner	5/25		
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.6.3.	AP の算出 ^{Δ2}	2
3.6.4.	AP の実機評価 ^{Δ2}	2

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		6/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

1. はじめに

1.1. 本書の目的

本書は、ISO / SAE 21434 (自動車サイバーセキュリティ規格)の要求を満たし、ECU の脆弱性を 適切なレベルまで低減されていることを確認するために、サプライヤが ECU に対する脆弱性テストを 実施する際の要求事項を定義する。

1.2. 本書の位置づけ 🗠

本書と同様に、ECU を脆弱性なく作り込むための要求仕様書/評価仕様書と、各文書の位置づけの一覧を表 1 に示す。

表 1 脆弱性を低減するための仕様書一覧

-	
文書名	位置づけ
ECU 脆弱性対策要求仕様書	ECU 開発における各アーキテクチャ設計工程において、
	脆弱性分析/脆弱性対策を実施する際の要求事項を定義。
ECU 脆弱性対策評価仕様書	ECU 開発における各テスト工程において、セキュリティに
(本書)	関連する機能の評価(脆弱性評価を含む)の要求事項を定義
共通脆弱性対策要求仕様書	攻撃者による脆弱性の探索を困難にするため、設計/
	評価、および、実装工程で、各 ECU が共通に実施すべき
	脆弱性対策を定義。

In-Vehicle Network	Test specification of vulner	7/25		
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

1.3. 適用範囲 💵

トヨタでは、車両へのハッキングを防ぐため、攻撃の経路上に位置する ECU に対してセキュリティ 仕様書の引き当てを指示している。本書の対象は、いずれかのセキュリティ機能の開発が指示された ECU (以降、セキュリティ対象 ECU と記す) である。

1.4. 要件の記載 45

本書の各要件では、適用条件として以下2つの項目を定義している。各要件を確認し、条件に該当する要件に対応すること。

- ① 機能/部品 : 特定の機能 (無線通信機能など) / 特定の部品 (既製品など) を利用するか否か
- ② 目標 APA1: 各 ECU に引当たるサイバーセキュリティ要求に付与された値(※)

※目標 AP の定義は ECU 脆弱性対策要求仕様書にて記載する $^{\Delta 1}$ 。 なお、本書で記載する要件は、評価機関への委託実施を想定するものではない $^{\Delta 1}$ 。

1.5. 関連文書

本書の関連文書を以下に示す。

表 2 関連文書一覧

仕様書番号	名称
	リスク指標定義書(未発行)
SEC-ePF-VUL-ECU-REQ-SPEC	ECU 脆弱性対策要求仕様書
SEC-ePF-VUL-CMN-REQ-SPEC	共通脆弱性対策要求仕様書
SEC-ePF-TRM-GUD-PROC∆5	車両サイバーセキュリティ及びプライバシー用語定義集

表 3 公的関連文書一覧

文書名	名称/外部リンク
ISO/SAE 21434	ISO/SAE DIS 21434
	Road vehicles — Cybersecurity engineering
	https://www.iso.org/standard/70918.html
ISA Secure EDSA	IEC 62443 - EDSA Certification ^A
	https://www.isasecure.org/en-US/Certification/IEC-
	62443-EDSA-Certification
	IEC 62443 - EDSA Certification (In Japanese)
	https://www.isasecure.org/en-US/Certification/IEC-
	62443-EDSA-Certification-(In-Japanese)
ISO/IEC 18045	ISO/IEC 18045:2008

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU 8/2		8/25	
Application: In-vehicle part countermeasu:	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

(CEM : Common Methodology for	Information technology — Security techniques —
Information Technology Security	Methodology for IT security evaluation
Evaluation) 11	https://www.iso.org/standard/46412.html

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		9/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

1.6. 略語の定義

本書で用いる略語を定義する。

表 4 略語一覧 △5

略語	解説
DoCAN	Diagnostic communication over Controller Area Network
DoIP	Diagnostic communication over Internet Protocol
EDSA	Embedded Device Security Assurance

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		10/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

1.7. 用語の定義

本書で用いる用語を定義する。

表 5 用語一覧 △5

用語	解説
EDSA	制御機器のセキュリティ保証に関する認証制度。評価項目は以下の通り。 ・通信に関する堅牢性試験 ・セキュリティ機能の実装評価
	・ソフトウェア開発の各フェーズにおけるセキュリティ評価

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU 11/		11/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

2. 本書の前提条件

本書では、サプライヤが ISO/SAE 21434 に準拠したプロセス&ルールを整備していることを前提とする。その上で、トヨタが要求するサイバーセキュリティ管理策を、迂回・突破する脆弱性が残っていないことを確認するための評価要件を定義する。

2.1. トヨタとサプライヤ間での CIA の締結 ^{Δ7}

ECU の開発を開始する際に、トヨタはサプライヤに外注品設計申入書(以降、外設申と記載)を発行し、ECU に対して引き当てる仕様書(セキュリティに関連する仕様書を含む)を指示している。

ISO/SAE 21434 に準拠するため、外設申の発行までに、トヨタとサプライヤ間の役割/責任分担を明確化し、CIA (Cybersecurity Interface Agreement) ^{Δ7}を締結している。締結した CIA^{Δ7}は、セキュリティに関連する仕様書と合わせて外設申に添付している。

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		12/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3. 脆弱性テスト

本章では、ECUに対して実施すべき脆弱性テストを定義する。

3.1. 共通要件

本節では、本章で定める要件で共通の要件事項を定義する。

エビデンスの作成期限についての要件事項

項目		内容	
ID		VULETS_05001	
適用条件	機能/部品	-	
$\Delta 5$	目標 APΔ1	-	
要件		(欠番)	

推奨ツールの使用に関する要件事項

項目		内容
ID		VULETS_05002
適用条件	機能/部品	全ての ECU
$\Delta 5$	目標 APΔ1	全て
要件		解析・テストツールに関しては、各要件に記載されているツールの使用を推
		奨する。推奨ツール以外を使用する場合、代替ツールについて本書発行部署
		の合意を得ること。

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		13/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.2. 脆弱性スキャン

3.2.1. ポートスキャン

項目		内容
ID		VULETS_01001
適用条件	機能/部品	TCP、又は UDP ポートを持つ ECU
$\Delta 5$	目標 AP ^{Δ1}	全て
要件		ポートスキャンを実施し、必要なポートのみが開いていることを確認するこ
		と。不要なポートが開いていた場合は修正すること。 ^{A6}
		ポートスキャン後に設計変更が発生した場合は、ポートスキャンを再度実施
		すること。 ^{Δ6}
		※IPv4/IPv6 デュアルスタックに対応している場合は、すべてのバージョン
		においてポートスキャンを実施すること
推奨ツール		Nmap
		https://nmap.org/
理由		不要なポートが開いていると外部からの攻撃に悪用される危険性があるため

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		14/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.2.2. 公知の脆弱性スキャン

項	頁目	内容
ID		VULETS_01002
適用条件	機能/部品	「ECU 脆弱性対策要求仕様書」の VULERQ_01001 で特定された既製品を
$\Delta 5$		含み、IP 通信 IF を備える ECU ^{Δ3}
	目標 APΔ1	全て
要件		IP 通信 IF を利用して A3 公知の脆弱性スキャンを実施し、脆弱性が検出され
		ないことを確認すること。
		発見された脆弱性は修正すること。やむをえず取り除けない場合には、その
		脆弱性をエビデンスに記載した上で、許可を得ること。 ^{Δ6}
		公知の脆弱性スキャン後に設計変更が発生した場合は、公知の脆弱性スキャ
		ンを再度実施すること。 Δ6
推奨ツール	/	Nessus
理由		公知の脆弱性が残存している場合、攻撃の糸口として利用される可能性があ
		るため。

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		15/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.3. ファジングテスト

3.3.1. Wi-Fi/Bluetooth のファジングテスト

項	目	内容
ID		VULETS_02001
適用条件	用条件 機能/部品 Wi-Fi / Bluetooth の通信 IF を備える ECU	
$\Delta 5$	目標 APΔ1	$14\sim 20^{\Delta 5}$
要件		Wi-Fi/Bluetooth に対して、推奨ツールのデフォルト設定で全パターンのフ
		ァジングテストを実施し、セキュリティの脆弱性が発見されないことを確認
		すること。(*1) ^{Δ5}
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙
		動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること
		などを確認する ^{Δ5}
		*2) 正常入力、異常入力以外の想定外の入力に対する処理 Δ5
		ECU がテストの間その負荷に対して正常であること。 ^{Δ4} 発見された脆弱性
		は修正すること。 ^{Δ6}
		ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度
		実施すること。46
推奨ツール	•	Defensics
理由		想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、
		それを攻撃の糸口とされる可能性があるため。

3.3.2. イーサネット系通信プロトコルのファジングテスト

- J	頁目	内容
ID		VULETS_02002
適用条件	機能/部品	イーサネット系通信プロトコル(イーサネット, ARP, IPv4, ICMPv4, UDP,
$\Delta 5$		TCP)を使用する IF を備える ECU
	目標 APΔ1	全て
要件		攻撃経路上の IF (目標 AP が割り当たる機能が配置されている IF) で用いる
		Δ5イーサネット系通信プロトコル (イーサネット, ARP, IPv4, ICMPv4, UDP,
		TCP)に対して、以下の ISA Secure EDSA の CRT の評価仕様に示されるフ
		ァジング
		テストを実施し、セキュリティの脆弱性が発見されないことを確認すること。
		(*1) Δ5
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		16/25	
Application: In-vehicle parts in which cyber security countermeasure are implemented		No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

項目	内容		
	動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること		
	などを確認する ^{Δ5}		
	*2) 正常入力、異常入力以外の想定外の入力に対する処理 45		
	- EDSA-310 Common Requirements for Communication Robustness		
	Testing (CRT)		
	- CRT Test Requirements for Protocols in EDSA Certification		
	- EDSA-401 Ethernet robustness test specification		
	- EDSA-402 ARP robustness test specification		
	- EDSA-403 IPv4 robustness test specification		
	- EDSA-404 ICMPv4 robustness test specification		
	- EDSA-405 UDP robustness test specification		
	- EDSA-406 TCP robustness test specification		
	発見された脆弱性は修正すること。 ^{Δ6}		
	ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度		
	実施すること。 ^{Δ6}		
推奨ツール	Defensics		
理由	想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、		
	それを攻撃の糸口とされる可能性があるため。		

3.3.3. ストレージデバイスのファジングテスト

Ţ.	項目	
ID		VULETS_02003
適用条件	機能/部品	ストレージデバイス(USB, SD, CD, DVD, Blu-ray)を使用する IF を備え
$\Delta 5$		る ECU
	目標 APΔ1	$14\sim20^{\Delta5}$
		ストレージデバイス (USB, SD, CD, DVD, Blu-ray) に対して、推奨ツール のデフォルト設定で、ファイル拡張子あたり 8 時間のファジングテストを実施し、セキュリティの脆弱性が発見されないことを確認すること。(*1) Δ5 *1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること などを確認する Δ5 *2) 正常入力、異常入力以外の想定外の入力に対する処理 Δ5 ECU がテストの間その負荷に対して正常であること。

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		17/25	
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

	発見された脆弱性は修正すること。 ^{Δ6}
	ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度
	実施すること。 ^{Δ6}
推奨ツール	Defensics
理由	想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、
	それを攻撃の糸口とされる可能性があるため。

3.3.4. DoCAN のファジングテスト

丏	目	内容		
ID		VULETS_02004		
適用条件	機能/部品	DoCAN を使用する IF を備える ECU		
$\Delta 5$	目標 APΔ1	全て		
要件 Δ2		攻撃経路上の IF (目標 AP が割り当たる機能が配置されている IF) で用いる		
		Δ5DoCAN, 及び UDS に対して、推奨ツールのデフォルト設定で、全パター		
		ンのファジングテストを実施し、セキュリティの脆弱性が発見されないこと		
		を確認すること。(*1) ^{Δ5}		
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙		
		動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること		
		などを確認する ^{Δ5}		
		*2) 正常入力、異常入力以外の想定外の入力に対する処理 △5		
		ECU がテストの間その負荷に対して正常であること。		
		発見された脆弱性は修正すること。 ^{Δ6}		
		ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度		
		実施すること。 ^{Δ6}		
推奨ツール	,	Defensics		
理由		想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、		
		それを攻撃の糸口とされる可能性があるため。		

3.3.5. DoCAN のファジングテスト (CAN-FD)

		,
項目		内容
ID		VULETS_02005
適用条件	機能/部品	DoCAN(CAN-FD)を使用する IF を備える ECU
Δ5 目標 AP Δ1		全て
要件 Δ2		攻撃経路上の IF (目標 AP が割り当たる機能が配置されている IF) で用いる

In-Vehicle Network Test specification of vulner		rability c	ountermeasure for ECU	18/25
Application: In-vehicle part countermeasu	es in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

	<u> </u>
	△5DoCAN(CAN-FD),及び UDS(CAN-FD)に対して、推奨ツールのデフォル
	ト設定で、全パターンのファジングテストを実施し、セキュリティの脆弱性
	が発見されないことを確認すること。 (*1) ^{Δ5}
	*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙
	動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること
	などを確認する ^{Δ5}
	*2) 正常入力、異常入力以外の想定外の入力に対する処理 45
	ECU がテストの間その負荷に対して正常であること。
	発見された脆弱性は修正すること。 ^{Δ6}
	ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度
	実施すること。 ^{Δ6}
推奨ツール	Defensics
理由	想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、
	それを攻撃の糸口とされる可能性があるため。

3.3.6. DoIP のファジングテスト

項目		内容
ID		VULETS_02006
適用条件	機能/部品	DoIP を使用する IF を備える ECU
$\Delta 5$	目標 AP ^{Δ1}	全て
要件 42		攻撃経路上の IF (目標 AP が割り当たる機能が配置されている IF) で用いる
		Δ5DoIP, 及び UDSonIP に対して、推奨ツールのデフォルト設定で、全パタ
		ーンのファジングテストを実施し、セキュリティの脆弱性が発見されないこ
		とを確認すること。(*1) ^{Δ5}
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙
		動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること
		などを確認する ^{Δ5}
		*2) 正常入力、異常入力以外の想定外の入力に対する処理 △5
		ECU がテストの間その負荷に対して正常であること。
		発見された脆弱性は修正すること。 ^{Δ6}
		ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度
		実施すること。 ^{Δ6}
推奨ツール		Defensics
理由		想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、

In-Vehicle Network	Test specification of vulnerability countermeasure for ECU		19/25	
	Application: In-vehicle parts in which cyber security countermeasure are implemented			-a00-07-a

それを攻撃の糸口とされる可能性があるため。

3.3.7. CAN のファジングテスト

Į.	頁目	内容
ID		VULETS_02007
適用条件	機能/部品	CAN を使用する IF を備える ECU
$\Delta 5$	目標 APΔ1	全て
要件		攻撃経路上の IF (目標 AP が割り当たる機能が配置されている IF) で用いる
		△5CAN に対して、推奨ツールのデフォルト設定(CAN Sequences, 及びOBD-
		II) で全パターンのファジングテストを実施し、セキュリティの脆弱性が発
		見されないことを確認すること。(*1)△5
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙
		動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること
		などを確認する ^{Δ5}
		*2) 正常入力、異常入力以外の想定外の入力に対する処理 45
		ECU がテストの間その負荷に対して正常であること。
		発見された脆弱性は修正すること。 ^{Δ6}
		ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度
		実施すること。Δ6
推奨ツール	/	Defensics
理由		想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、
		それを攻撃の糸口とされる可能性があるため。

3.3.8. **CAN-FD のファジングテスト**

項目		内容
ID		VULETS_02008
適用条件	機能/部品	CAN-FD を使用する IF を備える ECU
$\Delta 5$	目標 APΔ1	全て
要件		攻撃経路上の IF (目標 AP が割り当たる機能が配置されている IF) で用いる
		Δ5CAN-FD に対して、推奨ツールのデフォルト設定(CAN Sequences, 及び
		OBD-II) で、全パターンのファジングテストを実施し、セキュリティの脆弱
		性が発見されないことを確認すること。(*1)45
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙
		動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	20/25
Application: In-vehicle parts in which cyber security countermeasure are implemented		No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

	などを確認する ^{Δ5} *2) 正常入力、異常入力以外の想定外の入力に対する処理 ^{Δ5}		
	ECU がテストの間その負荷に対して正常であること。 発見された脆弱性は修正すること。 ^{Δ6} ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度		
	実施すること。 ^{Δ6}		
推奨ツール	Defensics		
理由	想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、		
	それを攻撃の糸口とされる可能性があるため。		

3.3.9. TLS のファジングテスト $^{\Delta5}$

項目		内容
ID		VULETS_02009
適用条件	機能/部品	TLS を使用する IF を備える ECU
	目標 AP	14~20
要件		TLSに対して、推奨ツールのデフォルト設定で、全パターンのファジングテ
		ストを実施し、セキュリティの脆弱性が発見されないことを確認すること。
		ECU がテストの間その負荷に対して正常であること。(*1) ^{Δ5}
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙
		動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること
		などを確認する ^{Δ5}
		*2) 正常入力、異常入力以外の想定外の入力に対する処理 45
		発見された脆弱性は修正すること。 ^{Δ6}
		ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度
		実施すること。 ^{Δ6}
推奨ツール		Defensics
理由		想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、
		それを攻撃の糸口とされる可能性があるため。

3.3.10. HTTP のファジングテスト $^{\Delta5}$

項目		内容
ID		VULETS_02010
適用条件 機能/部品		HTTP を使用する IF を備える ECU

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	21/25
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

	H AT	14.00
	目標 AP	14~20
要件		HTTP に対して、推奨ツールのデフォルト設定で、全パターンのファジング
		テストを実施し、セキュリティの脆弱性が発見されないことを確認すること。
		ECU がテストの間その負荷に対して正常であること。(*1) ⁴⁵
		*1) ツールで検出されるエラーが ECU の仕様において想定される応答・挙
		動とずれがないこと、ファズデータに対して例外処理(*2)が動いていること
		などを確認する ^{Δ5}
		*2) 正常入力、異常入力以外の想定外の入力に対する処理 45
		発見された脆弱性は修正すること。 ^{Δ6}
		ファジングテスト後に設計変更が発生した場合は、ファジングテストを再度
	実施すること。 ^{Δ6}	
推奨ツール	,	Defensics
理由		想定外の入力により予期せぬ異常動作や異常終了、再起動が発生する場合、
		それを攻撃の糸口とされる可能性があるため。

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	22/25
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.4. **(欠番)** △5

3.4.1. **(欠番)**△5

項	目	内容
ID		VULETS_03001
適用条件	機能/部品	
$\Delta 5$	目標 APΔ1	
要件		(欠番) A5
推奨ツール	,	
理由		

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	23/25
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.5. (欠番) △7

3.5.1. (欠番) △7

	, ты	
項	目	内容
ID		VULETS_04001
適用条件	機能/部品	-
$\Delta 5$	目標 APΔ1	-
要件		(欠番)
推奨ツール		-
理由		-

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	24/25
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.6. 目標 AP の評価(攻撃耐性評価) Δ1Δ2

トヨタより各 ECU に指示するサイバーセキュリティ要求(セキュリティ機能)を ECU に実装する上で生ずる恐れのある脆弱性に対し、目標 AP 未満の攻撃を想定した評価を行い、セキュリティ機能の目標 AP 達成を確認する。評価の実施者は第三者ではなく、設計者を想定しているが、第三者で実施することも可能である。

3.6.1. 脆弱性候補の収集 △2△5

項	目	内容
ID		VULETS_06001
適用条件	機能/部品	全ての ECU
$\Delta 5$	目標 AP	全て
要件		セキュリティ機能に関連する全ての脆弱性候補を収集すること。収集する対象は脆弱性候補への対策有無に関わらず、下記で識別された全ての脆弱性候補である。ただし対策の結果、脆弱性として識別されなくなった脆弱性候補は収集の対象外とする。 ・ 脆弱性分析(「ECU 脆弱性対策要求仕様書」 VULERQ_01002, VULERQ_01004, VULERQ_02004, VULERQ_02005, VULERQ_02006) ・ 脆弱性スキャン(VULETS_01001, VULETS_01002) ・ ファジング(VULETS_02001~VULETS_02010)
推奨ツール		なし
理由		リスクが許容できる値に低減していることを確認するため。

3.6.2. 評価項目の定義 🗠

этэт дти	- <u> </u>	~
項	目	内容
ID		VULETS_06002
適用条件	機能/部品	全ての ECU
$\Delta 5$	目標 AP	全て
要件		VULETS_06001 にて収集した脆弱性候補に対し、攻撃の入り口から脆弱性候補までの攻撃経路を分析し、攻撃を想定した評価項目を定義すること。
		評価項目の定義にあたり、(別紙 1) 攻撃テストケース定義ガイド Δ5 を参照してもよい。
推奨ツール		なし
理由		リスクが許容できる値に低減していることを確認するため。

3.6.3. AP の算出 A2

項目	
----	--

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	25/25
Application: In-vehicle parts in which cyber security countermeasure are implemented		No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

ID		VULETS_06003
適用条件	機能/部品	全ての ECU
$\Delta 5$	目標 AP	全て
要件		VULETS_06002 にて策定した評価項目の実施に必要と想定される AP を机
		上にて算出すること。AP の算出方法については(別紙 1) 攻撃テストケース
		定義ガイド 🗅 を参照すること。 算出した AP が目標 AP 以上の場合は、評価
		項目から除外する。Δ2
推奨ツール		なし
理由		リスクが許容できる値に低減していることを確認するため。

3.6.4. APの実機評価 △2

項目		内容
ID		VULETS_06004
適用条件	機能/部品	全ての ECU
$\Delta 5$	目標 AP	全て
要件		VULETS_06002 にて策定した評価項目に従って評価を実施し、目標 AP 未満の攻撃が成功しないことを確認すること。算出した AP が目標 AP 未満の場合、当該脆弱性について対策し、目標 AP 未満の攻撃が成功しないことを確認すること。
推奨ツール		なし
理由		リスクが許容できる値に低減していることを確認するため。

In-Vehicle Network Test specification of vulner		rability c	ountermeasure for ECU	1/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

Change History^{∆1}

Mark	Version	Date	Revised by	Item	Description
	a00-00-a	Jun.23,2020	46F Matsui	All items	Initial release
Δ1	a00-01-a	Apr.01,2021	46F Ishikawa	4.6	Add requirement "Evaluation of Target
					AP".
1	\uparrow	↑	↑	All	Replace security level with target AP.
				requirements	
1	\uparrow	1	↑	4.1	Correction of errors for Contents described
				4.2	in the evidence.
				4.3	
1	\uparrow	1	1	3.1	Describe that it is not assumed that tests
					will be outsourced to external evaluation
					organization
1	\uparrow	1	1	1.3	Add ISO/IEC 18045 to reference
					documents.
	a00-01-b	May 20,2021	46F	All items	Add English translation.
			Kiyokawa		
$\Delta 2$	a00-02-a	Sep.02,2021	46F Tamaki	4.6	Add requirement in accordance with
					evaluation requirement clarification of
					target AP
1	\uparrow	Sep.16,2021	1	4.3.4	Describe targets of fuzz testing
				4.3.5	
				4.3.6	
1	\uparrow	1	1	4.6.3	Clarify method of removing from
					evaluation items.
Δ3	a00-03-a	Oct.06,2021	46F Ishikawa	4.2.2	Change the target of vulnerability scanning
$\Delta 4$	a00-04-a	Oct.14,2021	46F Tamaki	4.3.1	Change the requirement for Fuzz testing for
					Wi-Fi/Bluetooth
\uparrow	\uparrow	\uparrow	\uparrow	4.6.1	Delete "Result of penetration
					testing(VULETS_03001)"
Δ5	a00-05-a	Oct. 24,2021	46F	1.3	Change the chapter structure and clarify the
			Hayakawa	1.4	content of scope and description of
					requirements
\uparrow	\uparrow	\uparrow	46F Ishikawa	3.4	Delete Penetration Testing
					requirement(VULETS_03001)

In-Vehicle Network Test specification of vulner		rability c	ountermeasure for ECU	2/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

_					T
1	\uparrow	Nov. 1,2021	46F Yasue	1.5	Add the related document and delete
				1.6	abbreviations and terms which are
				1.7	described in SEC-ePF-TRM-GUD-
					PROC-***-*
\uparrow	↑	↑	46F Ishikawa	3.3	Clarify fuzz testing requirements,
					Add the target of fuzz
					testing(VULETS_02009, VULETS_02010)
↑	1	Nov. 5,2021	46F Tamaki	3.6.2	Add (Annex 1) Guide for Defining
				3.6.3	Cyber Attack Test Case
1	1	↑	↑	1.2	Delete Fig 1.
↑	1	↑	↑	All items	Delete evidence requirements.
1	↑	↑	↑	3.6.1	Clarify the target of evaluation of target AP.
				3.6.2	
Δ6	a00-06-a	Sep. 29,2022	46F Tamaki	3.2.1	Delete vulnerability fix timing.
				3.2.2	
				3.3.1	
				3.3.2	
				3.3.3	
				3.3.4	
				3.3.5	
				3.3.6	
				3.3.7	
				3.3.8	
				3.3.9	
				3.3.10	
Δ7	a00-07-a	Nov. 10,	46F Tamaki	3.5.1	Delete the requirement "Integration
		2022			evaluation for off-the-shelf
					component(VULETS_04001)"
↑	1	↑	↑	All items	Delete the "Reference requirements"
↑	↑	↑	↑	2.1	Change terms from CIAD to CIA

In-Vehicle Network Test specification of vulner		rability c	ountermeasure for ECU	3/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

Table of Contents

1.	INT	ROD	OUCTION	5
	1.1.	PUR	POSE OF THIS DOCUMENT	.5
	1.2.	Posi	$ ext{TION}^{\Delta 5}$.5
	1.3.	Sco	${\sf PE}^{\Delta 5}$.5
	1.4.	DES	CRIPTION OF REQUIREMENTS $^{\Delta5}$.5
	1.5.	REL	ATED DOCUMENT	.6
	1.6.	ABB	REVIATIONS AND DEFINITIONS	.7
	1.7.	TER	MS AND DEFINITIONS	.8
2.	THI	E PRI	ECONDITION OF THIS DOCUMENT	9
	2.1.	Con	ICLUSION CIA BETWEEN TOYOTA AND SUPPLIERS $^{\Delta7}$.9
3.	VIII	NEI	RABILITY TESTING 1	ın
ა.	VUI			
	3.1.		1MON REQUIREMENT	
	3.2.	Vul	nerability Scanning 1	
	3.2.	1.	Port Scanning	
	3.2.		Scanning public domain vulnerability	
	3.3.	Fuzz	Z TESTING	
	3.3.	1.	Fuzz testing for Wi-Fi/Bluetooth	
	3.3.	2.	Fuzz testing for Ethernet based communication protocol	
	3.3.	3.	Fuzz testing for storage device	14
	3.3.	4.	Fuzz testing for DoCAN	
	3.3.	5.	Fuzz testing for DoCAN(CAN-FD)	
	3.3.	6.	Fuzz testing for DoIP	
	3.3.		Fuzz testing for CAN	
	3.3.	8.	Fuzz testing for CAN-FD.	Ĺ7
	3.3.	9.	Fuzz testing for $TLS^{\Delta 5}$	
	3.3.		Fuzz testing for HTTP ^{Δ5}	
	3.4.	DEL	ETED $^{\Delta 5}$	20
	3.4.		Deleted ^{Δ5}	
	3.5.	DEL	ETED $^{\Delta7}$	21
	3.5.		Deleted $^{\Delta7}$	
	3.6.	EVA	LUATION OF TARGET $\mathbf{AP}^{\Delta 1 \Delta 2}$	
	3.6.	1.	Collection of vulnerability candidate $^{\Delta2\Delta5}$	
	3.6.	2.	Define of evaluation item $^{\Delta 2}$	23
	3.6	3	Calculation of $\Delta P^{\Delta 2}$	23

In-Vehicle Network Test specification of vulner		rability c	ountermeasure for ECU	4/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

In-Vehicle Network Test specification of vulner		rability c	ountermeasure for ECU	5/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

1. Introduction

1.1. **Purpose of this Document**

This document defines the requirements on vulnerability testing for ECU done by supplier to meet the requirements of ISO / SAE21434 and confirm that the vulnerability of ECU is mitigated to the appropriate level.

1.2. Position⁵

Including this document, the requirements specification / test specification to design and implement ECU without vulnerabilities and each position are shown in Table 1.

List of Specifications to reduce vulnerability

Title	Position
Requirements specification of	In each architecture design process in ECU development,
vulnerability countermeasure for	define requirements for vulnerability analysis and vulnerability
ECU	countermeasures.
Test specification of	In each test process in ECU development, define
vulnerability countermeasure for	requirements for evaluating security-related features
ECU (this document)	(including vulnerability assessments).
Requirements Specification of	To make it difficult for an attacker to find a vulnerability,
Common Vulnerability	define vulnerability countermeasures that each ECU should
Countermeasure	take in common during the design/evaluation and
	implementation process.

1.3. Scope^{∆5}

To prevent vehicle hacking, Toyota instructs the ECU located on the attack path to assign the security specification. The scope of this document is an ECU that is instructed to develop one of the security functions. (Hereinafter an ECU that is instructed to develop one of the security specifications will be referred to as "security target ECU")

1.4. Description of Requirements^{∆5}

The following two items are defined as the application conditions for each requirement of this document. The ECU designer shall check each requirement and implement the requirements that apply to own condition.

- Functions/Parts: Whether to use specific functions (wireless communication function, etc.) / specific parts (Off-the-shelf products, etc.).
- Target $AP^{\Delta 1}$: The value given to the cybersecurity requirement that is assigned to each ECU. (\times) (2)

*The definition of target AP is described in "Requirements specification of vulnerability countermeasure for ECU"^{Δ1}. Note that it is not assumed that tests will be outsourced to external evaluation organization, regarding

In-Vehicle Network		rability c	ountermeasure for ECU	6/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

requirements in this document $^{\Delta 1}$.

1.5. Related Document

The documents related to this document are as follows.

Table 2 List of Related Documents

Specification Number	Title
SEC-24PF-VCL-RIC-INST-DOC	Post 19ePF Cybersecurity Risk Criteria Definitions (unissued)
SEC-ePF-VUL-ECU-REQ-SPEC	Requirements specification of vulnerability countermeasure for ECU
SEC-ePF-VUL-CMN-REQ-SPEC	Requirements Specification of Common Vulnerability Countermeasure
SEC-ePF-TRM-GUD-PROC ^{∆5}	Terms and Definitions related to Vehicle Cybersecurity and Privacy

Table 3 List of Public Related Documents

Abbreviation in this document	Title and External links
ISO/SAE 21434	ISO/SAE DIS 21434
	Road vehicles — Cybersecurity engineering
	https://www.iso.org/standard/70918.html
ISA Secure EDSA	IEC 62443 - EDSA Certification∆4
	https://www.isasecure.org/en-US/Certification/IEC-62443-EDSA-
	<u>Certifica</u> tion
	IEC 62443 - EDSA Certification (In Japanese)
	https://www.isasecure.org/en-US/Certification/IEC-62443-EDSA-
	Certification-(In-Japanese)
ISO/IEC 18045	ISO/IEC 18045:2008
(CEM: Common Methodology for	Information technology — Security techniques — Methodology
Information Technology Security	for IT security evaluation
Evaluation) ^{Δ1}	https://www.iso.org/standard/46412.html

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	7/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

1.6. Abbreviations and Definitions

The abbreviations to be used in this document are explained in Table 4.

Table 4 List of Abbreviations^{Δ5}

Abbreviation	Explanation
DoCAN	Diagnostic communication over Controller Area Network
DoIP	Diagnostic communication over Internet Protocol
EDSA	Embedded Device Security Assurance

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	8/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

1.7. Terms and Definitions

The terms used in this document are explained in Table 5.

Table 5 List of terms $^{\Delta 5}$

Term	Explanation
EDSA	A Certification scheme for security assurance of control devices. Evaluation
	items are as below.
	Testing the robustness of communication
	Evaluating the implementations of security functions
	Evaluating the Security at each phase in software developments.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	9/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

2. The precondition of this document

In this document, it's prerequisite that ISO/SAE 21434 compliant processes & rules of supplier are prepared. Based on this, this document defines the evaluation requirement to confirm that there are no vulnerabilities that can bypass or penetrate the cybersecurity control required by Toyota.

2.1. Conclusion CIA between Toyota and suppliers^{Δ7}

When starting the development of the ECU, Toyota issues the REQUEST FOR DESIGN & DEVELOPMENT OF PARTS (subsequently described as "RDDP") to the supplier, it directs the specifications (including security-related specifications) to be assigned to the ECU.

In order to comply with ISO/SAE 21434, by the date the RDDP is issued, the division of roles /responsibilities between Toyota and the supplier will be clarified and a CIA (Cybersecurity Interface Agreement) $^{\Delta 7}$ will be concluded. The CIA $^{\Delta 7}$ concluded is attached to the RDDP in addition to the security-related specifications.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	10/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3. Vulnerability testing

This chapter defines vulnerability testing to be implemented for ECUs.

3.1. Common Requirement

This section provides common requirements for each requirement set out in this chapter.

Requirements for evidence creation deadlines

Item		Contents
ID		VULETS_05001
Application	Functions/Parts	-
Conditions ^{∆5}	Target AP ^{∆1}	-
Requirements		Deleted.

Requirements for use of the recommended tool

I	tem	Contents
ID		VULETS_05002
Application	Functions/Parts	All ECUs
Conditions $^{\Delta 5}$	Target AP ^{∆1}	All
Requirements		For analysis and test tool, use of a tool described in each requirement is
		recommended. If a tool other than the recommended tool is to be used,
		agreement on use of the substitute tool shall be obtained from the department
		issuing this document.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	11/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.2. Vulnerability Scanning

3.2.1. Port Scanning

I	tem	Contents
ID		VULETS_01001
Application	Functions/Parts	ECUs with TCP or UDP ports
Conditions ^{∆5}	Target $AP^{\Delta 1}$	All
Requirements		Port scanning shall be performed and it shall be confirmed that only necessary
		ports are open.
		If an unnecessary port is open, it shall be fixed. ⁶
		If design changes occur after port scanning, port scanning shall be performed
		again. ^{Δ6}
		* If the in-vehicle part is corresponding to IPv4/IPv6 dual stack, port scanning
		shall be performed in both IPv4 and IPv6.
Recommended Tool		Nmap
		https://nmap.org/
Reasons		An open unnecessary ports would otherwise be exploited by an external attack.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	12/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.2.2. Scanning public domain vulnerability

I	Item Contents	
ID		VULETS_01002
Application	Functions/Parts	ECUs with off-the-shelf components identified according to VULERQ_01001
Conditions $^{\Delta 5}$		in "Requirements specification of vulnerability countermeasure for ECU" and IP
		communication IF. $\Delta 3$
	Target AP ^{∆1}	All
Requirements		The supplier shall scan public domain vulnerabilities for using the IP
		communication IF $^{\Delta 3}$ and check that vulnerabilities have not been detected.
		If a vulnerability is discovered, it shall be fixed. ^{Δ6}
		If unavoidably the vulnerability cannot be remove, ECU design department shall
		describe the vulnerability in an evidence and shall obtain agreement from the
		department issuing this document.
		If design changes occur after scanning public domain vulnerability, scanning
		public domain vulnerability shall be performed again. ⁶
Recommende	d Tool	Nessus
Reasons		If a public domain vulnerability is remained, it would otherwise be exploited for
		a clue to attack.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	13/24
	Application: In-vehicle parts in which cyber security countermeasure are implemented		SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.3. Fuzz testing

3.3.1. Fuzz testing for Wi-Fi/Bluetooth

Item		Contents
ID		VULETS_02001
Application	Functions/Parts	ECUs with IF for Wi-Fi / Bluetooth communication.
Conditions ^{∆5}	Target $AP^{\Delta 1}$	14~20 ^{Δ5}
Requirements		For Wi-Fi / Bluetooth, a fuzz testing shall be performed for all testing patterns
		with default configuration of the recommended tool, and it shall be confirmed
		that security vulnerabilities have not been detected. $(*1)^{\Delta 5}$
		*1) The tester confirm that the error detected by the tool does not deviate from
		the response / behavior expected in the ECU specifications, and that exception
		processing (*2) is working for the fuzz data, etc. ^{Δ5}
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
		The target ECU shall be kept normal against the load during the test. ^{Δ4} The
		vulnerability found by fuzz testing shall be fixed. A6 If design changes occur after
		fuzz testing, fuzz testing shall be performed again. ^{A6}
Recommende	d Tool	Defensics
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal
		termination, or restart, it would otherwise be exploited for a clue to attack.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	14/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.3.2. Fuzz testing for Ethernet based communication protocol

I	tem	Contents	
ID		VULETS_02002	
Application	Functions/Parts	ECUs with IF using Ethernet based communication protocol(Ethernet, ARP,	
Conditions ^{∆5}		IPv4, ICMPv4, UDP, TCP).	
	Target $AP^{\Delta 1}$	All	
Requirements		For Ethernet based communication protocol (Ethernet, ARP, IPv4, ICMPv4,	
		UDP, TCP) used in IF on the attack path (IF where the functions assigned Target	
		AP are allocated) ^{Δ5} , a fuzz testing indicated in the CRT specification in ISA	
		Secure EDSA below shall be performed, and it shall be confirmed that security	
		vulnerabilities have not been detected. (*1) $^{\Delta 5}$	
		*1) The tester confirm that the error detected by the tool does not deviate from	
		the response / behavior expected in the ECU specifications, and that exception	
		processing (*2) is working for the fuzz data, etc. ^{Δ5}	
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}	
		- EDSA-310 Common Requirements for Communication Robustness Testing	
		(CRT)	
		- CRT Test Requirements for Protocols in EDSA Certification	
		- EDSA-401 Ethernet robustness test specification	
		- EDSA-402 ARP robustness test specification	
		- EDSA-403 IPv4 robustness test specification	
		- EDSA-404 ICMPv4 robustness test specification	
		- EDSA-405 UDP robustness test specification	
		- EDSA-406 TCP robustness test specification	
		The vulnerability found by fuzz testing shall be fixed. As If design changes occur	
		after fuzz testing, fuzz testing shall be performed again. $^{\Delta 6}$	
Recommende	d Tool	Defensics	
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal	
		termination, or restart, it would otherwise be exploited for a clue to attack.	

3.3.3. Fuzz testing for storage device

I	tem	Contents
ID		VULETS_02003
Application	Functions/Parts	ECUs with IF using storage device (USB, SD, CD, DVD, Blu-ray)
Conditions ^{∆5}	Target AP ^{∆1}	14~20 ^{Δ5}

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	15/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

Requirements	For storage device (USB, SD, CD, DVD, Blu-ray) , a fuzz testing shall be
	performed for 8 hours for each file extension with default configuration of the
	recommended tool, and it shall be confirmed that security vulnerabilities have
	not been detected. (*1) $^{\Delta 5}$
	*1) The tester confirm that the error detected by the tool does not deviate from
	the response / behavior expected in the ECU specifications, and that exception
	processing (*2) is working for the fuzz data, etc. ^{Δ5}
	*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
	The target ECU shall be kept normal against the load during the test.
	The vulnerability found by fuzz testing shall be fixed. ^{Δ6} If design changes occur
	after fuzz testing, fuzz testing shall be performed again. $^{\Delta 6}$
Recommended Tool	Defensics
Reasons	If an unexpected input causes unpredictable abnormal behavior, abnormal
	termination, or restart, it would otherwise be exploited for a clue to attack.

3.3.4. Fuzz testing for DoCAN

I	tem	Contents
ID		VULETS_02004
Application	Functions/Parts	ECUs with IF using DoCAN
Conditions $^{\Delta 5}$	Target AP ^{∆1}	All
Requirements	Δ2	For DoCAN and UDS used in IF on the attack path (IF where the functions
		assigned Target AP are allocated) ^{Δ5} , a fuzz testing shall be performed for all
		testing patterns with default configuration of the recommended tool, and it shall
		be confirmed that security vulnerabilities have not been detected. (*1) $^{\Delta5}$
		*1) The tester confirm that the error detected by the tool does not deviate from
		the response / behavior expected in the ECU specifications, and that exception
		processing (*2) is working for the fuzz data, etc. $^{\Delta5}$
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
		The target ECU shall be kept normal against the load during the test.
		The vulnerability found by fuzz testing shall be fixed. ^{\(\Delta 6 \)} If design changes occur
		after fuzz testing, fuzz testing shall be performed again. ^{Δ6}
Recommende	d Tool	Defensics
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal
		termination, or restart, it would otherwise be exploited for a clue to attack.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	16/24
	Application: In-vehicle parts in which cyber security countermeasure are implemented		SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.3.5. Fuzz testing for DoCAN(CAN-FD)

I	tem	Contents
ID		VULETS_02005
Application	Functions/Parts	ECUs with IF using DoCAN (CAN-FD) .
Conditions $^{\Delta 5}$	Target AP ^{∆1}	All
Requirements	Δ2	For DoCAN (CAN-FD) and UDS(CAN-FD) used in IF on the attack path (IF
		where the functions assigned Target AP are allocated) ^{\Delta 5} , a fuzz testing shall be
		performed for all testing patterns with default configuration of the recommended
		tool, and it shall be confirmed that security vulnerabilities have not been detected.
		$(*1)^{\Delta 5}$
		*1) The tester confirm that the error detected by the tool does not deviate from
		the response / behavior expected in the ECU specifications, and that exception
		processing (*2) is working for the fuzz data, etc. ^{Δ5}
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
		The target ECU shall be kept normal against the load during the test.
		The vulnerability found by fuzz testing shall be fixed. ^{Δ6} If design changes occur
		after fuzz testing, fuzz testing shall be performed again. ^{Δ6}
Recommende	d Tool	Defensics
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal
		termination, or restart, it would otherwise be exploited for a clue to attack.

3.3.6. Fuzz testing for DoIP

Item		Contents	
ID		VULETS_02006	
Application	Functions/Parts	ECUs with IF using DoIP	
Conditions $^{\Delta 5}$	Target $AP^{\Delta 1}$	All	
Requirements	Δ2	For DoIP and UDSonIP used in IF on the attack path (IF where the functions	
		assigned Target AP are allocated) ^{Δ5} , a fuzz testing shall be performed for all	
		testing patterns with default configuration of the recommended tool, and it shall	
		be confirmed that security vulnerabilities have not been detected. (*1) $^{\Delta5}$	
		*1) The tester confirm that the error detected by the tool does not deviate from	
		the response / behavior expected in the ECU specifications, and that exception	
		processing (*2) is working for the fuzz data, etc. ^{Δ5}	

In-Vehicle Network Test specification of vulner		rability c	ountermeasure for ECU	17/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

	*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
	The target ECU shall be kept normal against the load during the test.
	The vulnerability found by fuzz testing shall be fixed. ^{\(\Delta 6 \)} If design changes occur
	after fuzz testing, fuzz testing shall be performed again. $^{\Delta6}$
Recommended Tool	Defensics
Reasons	If an unexpected input causes unpredictable abnormal behavior, abnormal
	termination, or restart, it would otherwise be exploited for a clue to attack.

3.3.7. Fuzz testing for CAN

I	tem	Contents
ID		VULETS_02007
Application	Functions/Parts	ECUs with IF using CAN
Conditions $^{\Delta 5}$	Target $AP^{\Delta 1}$	All
Requirements		For CAN used in IF on the attack path (IF where the functions assigned Target
		AP are allocated) ^{Δ5} , a fuzz testing shall be performed for all testing patterns with
		default configuration (CAN Sequences and OBD-II) of the recommended tool,
		and it shall be confirmed that security vulnerabilities have not been detected. (*1)
		Δ5
		*1) The tester confirm that the error detected by the tool does not deviate from
		the response / behavior expected in the ECU specifications, and that exception
		processing (*2) is working for the fuzz data, etc. $^{\Delta5}$
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
		The target ECU shall be kept normal against the load during the test.
		The vulnerability found by fuzz testing shall be fixed. ^{Δ6} If design changes occur
		after fuzz testing, fuzz testing shall be performed again. ^{Δ6}
Recommende	d Tool	Defensics
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal
		termination, or restart, it would otherwise be exploited for a clue to attack.

3.3.8. Fuzz testing for CAN-FD

Item		Contents
ID		VULETS_02008
Application	Functions/Parts	ECUs with IF using CAN-FD

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	18/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

Conditions $^{\Delta 5}$	Target AP ^{∆1}	All	
Requirements		For CAN-FD used in IF on the attack path (IF where the functions assigned Target	
		AP are allocated) ^{Δ5} , a fuzz testing shall be performed for all testing patterns with	
		default configuration (CAN Sequences and OBD-II) of the recommended tool,	
		and it shall be confirmed that security vulnerabilities have not been detected. (*1)	
		Δ5	
		*1) The tester confirm that the error detected by the tool does not deviate from	
		the response / behavior expected in the ECU specifications, and that exception	
		processing (*2) is working for the fuzz data, etc. ^{Δ5}	
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}	
		The target ECU shall be kept normal against the load during the test.	
		The vulnerability found by fuzz testing shall be fixed. ^{A6} If design changes occur	
		after fuzz testing, fuzz testing shall be performed again. $^{\Delta 6}$	
Recommended Tool		Defensics	
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal	
		termination, or restart, it would otherwise be exploited for a clue to attack.	

3.3.9. Fuzz testing for TLS $^{\Delta 5}$

I	tem	Contents
ID		VULETS_02009
Application	Functions/Parts	ECUs with IF using TLS
Conditions $^{\Delta 5}$	Target $AP^{\Delta 1}$	14~20
Requirements		For TLS, a fuzz testing shall be performed for all testing patterns with default
		configuration of the recommended tool, and it shall be confirmed that security
		vulnerabilities have not been detected. (*1) $^{\Delta 5}$
		*1) The tester confirm that the error detected by the tool does not deviate from
		the response / behavior expected in the ECU specifications, and that exception
		processing (*2) is working for the fuzz data, etc. ^{Δ5}
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
		The target ECU shall be kept normal against the load during the test.
		The vulnerability found by fuzz testing shall be fixed. ^{Δ6} If design changes occur
		after fuzz testing, fuzz testing shall be performed again. ^{Δ6}
Recommende	d Tool	Defensics
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal

In-Vehicle Network		rability c	ountermeasure for ECU	19/24
Application: In-vehicle part countermeasur	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

termination, or restart, it would otherwise be exploited for a clue to attack.

3.3.10. Fuzz testing for HTTP^{Δ5}

I	tem	Contents
ID		VULETS_02010
Application	Functions/Parts	ECUs with IF using HTTP
Conditions ^{∆5}	Target $AP^{\Delta 1}$	14~20
Requirements		For HTTP, a fuzz testing shall be performed for all testing patterns with default
		configuration of the recommended tool, and it shall be confirmed that security
		vulnerabilities have not been detected. (*1) $^{\Delta5}$
		*1) The tester confirm that the error detected by the tool does not deviate from
		the response / behavior expected in the ECU specifications, and that exception
		processing (*2) is working for the fuzz data, etc. ^{Δ5}
		*2) Processing for unexpected inputs other than normal and abnormal inputs. ^{Δ5}
		The target ECU shall be kept normal against the load during the test.
		The vulnerability found by fuzz testing shall be fixed. ^{Δ6} If design changes occur
		after fuzz testing, fuzz testing shall be performed again. ^{Δ6}
Recommende	d Tool	Defensics
Reasons		If an unexpected input causes unpredictable abnormal behavior, abnormal
		termination, or restart, it would otherwise be exploited for a clue to attack.

In-Vehicle Network Test specification of vulner		erability countermeasure for ECU		20/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.4. **Deleted** Δ5

3.4.1. Deleted ^{Δ5}

I	tem	Contents
ID		VULETS_03001
Application	Functions/Parts	
Conditions $^{\Delta 5}$	Target AP ^{∆1}	
Requirements		Deleted. ^{Δ5}
Recommended Tool		
Reasons		

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	21/24
Application: In-vehicle part countermeasu	s in which cyber security re are implemented	No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.5. **Deleted** Δ^7

3.5.1. Deleted $^{\Delta7}$

I	tem	Contents
ID		VULETS_04001
Application	Functions/Parts	-
Conditions ^{∆5}	Target AP ^{∆1}	-
Requirements		Deleted.
Recommended Tool		-
Reasons		-

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	22/24
1 1	Application: In-vehicle parts in which cyber security countermeasure are implemented		SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.6. Evaluation of Target $AP^{\Delta 1\Delta 2}$

For vulnerabilities that potentially occur in implementing cybersecurity requirements (security functions) on ECU directed to each ECU from TMC, evaluate assuming an attack below the target AP, and confirm the achievement of the target AP of the security function,

It is assumed that evaluator is ECU designer, but it is also possible to conduct the evaluation by third party.

3.6.1. Collection of vulnerability candidate A2A5

I	tem	Contents
ID		VULETS_06001
Application	Functions/Parts	All ECUs
Conditions $^{\Delta 5}$	Target AP ^{∆1}	All
Requirements		Evaluator shall collect all vulnerability candidates about security function on
		ECU. Regardless of applying countermeasures, all candidates identified in the
		process shown below are the target of evaluation.
		If the vulnerability is eliminated by the countermeasure, it is excluded from the
		candidates.
		- Vulnerability analysis ("Requirements specification of vulnerability
		countermeasure for ECU" VULERQ_01002, VULERQ_01004,
		VULERQ_02004, VULERQ_02005, VULERQ_02006)
- Vulnerability scanning (VULE)		- Vulnerability scanning (VULETS_01001, VULETS_01002)
		- Fuzz testing (VULETS_02001 ~VULETS_02008)
Recommende	d Tool	No recommendation
Reasons		To confirm that the risks are reduce to be acceptable level.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	23/24
Application: In-vehicle parts in which cyber security countermeasure are implemented		No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.6.2. Define of evaluation item^{A2}

I	tem	Contents
ID		VULETS_06002
Application	Functions/Parts	All ECUs
Conditions ^{∆5}	Target AP	All
Requirements		For the vulnerability candidate collected in VULETS_06001, evaluator shall
		analyze attack path from entry point to vulnerability candidate, and define
		evaluation items to expected attacks.
		To define evaluation item, it may refer to "Annex1: Guide for Defining Cyber
		Attack Test Case" ^{Δ5}
Recommende	d Tool	No recommendation
Reasons		To confirm that the risks are reduce to acceptable level.

3.6.3. Calculation of $AP^{\Delta 2}$

I	tem	Contents
ID		VULETS_06003
Application	Functions/Parts	All ECUs
Conditions $^{\Delta 5}$	Target AP	All
Requirements		Evaluator shall calculate AP to evaluate the evaluation items defined in
		VULETS_06002. Evaluator shall refer to "Annex1: Guide for Defining Cyber
		Attack Test Case,"about AP calculation.
		If the calculated value of AP is greater than or equal to the target AP, the
		evaluation item can be removed from evaluation items. ^{Δ2}
Recommended Tool		No recommendation
Reasons		To confirm that the risks are reduce to acceptable level.

In-Vehicle Network	Test specification of vulner	rability c	ountermeasure for ECU	24/24
Application: In-vehicle parts in which cyber security countermeasure are implemented		No.	SEC-ePF-VUL-ECU-TST-SPEC	-a00-07-a

3.6.4. Evaluation of AP on a real device $^{\text{A2}}$

I	tem	Contents
ID		VULETS_06004
Application	Functions/Parts	All ECUs
Conditions ^{∆5}	Target AP	All
Requirements		Evaluator shall conduct the evaluation in accordance with evaluation items
		defined in VULETS_06002, and evaluator shall confirm that attacks whose AP
		are less than target AP do not succeed.
		If the calculated AP is less than target AP, evaluator shall take measure against
		the vulnerability and confirm that attacks whose AP are less do not succeed.
Recommende	d Tool	No recommendation
Reasons		To confirm that the risks are reduce to acceptable level.