

THE PARABOLA

A parabola is the set of all points in a plane equidistant from a fixed point F (the focus and a fixed line l (th directrix that lie in the plane.

The axis of the parabola is the line through F that is perpendicular to the directrix.

The **vertex** of the parabola is the point V on the axis halfway from F to l.

Parabola with Vertex V(h, k)

Standard equation, focus, directrix	Graph for $p > 0$	Graph for $p < 0$
$(x-h)^2 = 4p(y-k)$		
Focus: $F(h, k+p)$		
Directrix: $y = k - p$		
Length of latus rectum: 4p		
$(y-k)^2 = 4p(x-h)$		
Focus: $F(h+p,k)$		
Directrix: $x = h - p$		
Length of latus rectum: $4p$		

Ex 1 Sketch the graph of the following functions. Find the vertex, focus, and directrix

Vertex	Focus	Directrix	Equation
(0,0)	(a, 0)	x = -a	$y^2 = 4ax$
(0,0)	(-a, 0)	x = a	$y^2 = -4ax$
(0,0)	(0, a)	y = -a	$x^2 = 4ay$
(0,0)	(0, -a)	y = a	$x^2 = -4ay$

a)
$$x^2 = -3y$$

$$4p = -3$$
$$p = \frac{-3}{4}$$

Vertex: (0,0), Focus: $(0,\frac{-3}{4})$

b)
$$(y+1)=-12\left(x+2\right)$$
 Vertex = $(-2,-1)$
$$4p=-12 \to \text{focal width}=12 \to \text{split in half: 6}$$
 $p=-3$

Focus: $(-5,-1) \rightarrow$ (The focus is p, or -3 away from the vertex.) (x-axis) Focus: $(-5,5) \rightarrow$ (This focus is 6 units from our vertex) (y-axis)

Thus,

Ex 2: Find the equation of the parabola that satisfies the given conditions.

a) Focus
$$F(-3, -2)$$
, directrix $y = 1$

Vertex:
$$(-3, \frac{-1}{2})$$

 $(x+3)^2 = 4p(y+\frac{1}{2})$
 $(x+3)^2 = 4(-1.5)(y+\frac{1}{2})$
 $(x+3)^2 = -6(y+\frac{1}{2})$

b) Vertex V(3,-2), axis (axis of symmetry) parallel to the x-axis, and y-intercept 1.

$$h = 3$$

$$k = -2$$

$$(y - k)^{2} = 4p(x - h)$$

$$(y + 2)^{2} = 4p(x - 3)$$

$$(1 + 2)^{2} = 4p(0 - 3)$$

$$-3 = 4p$$

$$(y+2)^{2} = -3(x - 3)$$