1. Autoencoder

Autoencoder는 <u>인공 신경망(Artificial Neural Network)의</u> 한 종류로, 입력 데이터를 잠
재 공간(latent space)으로 압축한 후, 이를 다시 원래 데이터로 복원하는 <u>비지도 학습 모</u>델입니다.

부호화 또는 인코딩(encoding)은 컴퓨터를 이용해 영상 · 이미지 · 소리 데이터를 생성할때 데이터의 양을 줄이기 위해 데이터를 코드화하고 압축하는 것이다. 정보의 형태나 형식을 표준화, 보안, 처리 속도 향상, 저장 공간 절약 등을 위해서 다른 형태나 형식으로 변환하는 것이다.

<u>부호기(符號機) 또는 인코더(encoder)</u>는 부호화를 수행하는 장치나 회로, 컴퓨터 소프트웨어, 알고리즘을 일컫는다.

•

- 오토인코더는 입력 데이터와 출력 데이터가 동일한 형태를 갖는 자기 지도 학습 (self-supervised learning) 방식으로 학습됩니다. 즉, 입력 데이터를 압축하고 복원하는 과정에서 입력 데이터 자체를 정답(label)으로 사용합니다.
- Autoencoder는 1980년대부터 차원 축소, 노이즈 제거, 특징 추출 등의 필요에 의해 연구되어왔고, 특히 딥러닝의 발전과 함께 그 응용 범위가 크게 확장되었습니다.
- Autoencoder가 데이터를 자동으로 학습하여 자기 표현(self-representation)을 할 수 있음을 의미합니다.
- 다시 말해, Autoencoder는 비지도 학습을 통해 입력 데이터를 자체적으로 학습하여 주요 특징을 압축하고 복원할 수 있습니다. 이 과정에서 데이터의 레이블(label) 정보가 필요하 지 않고, 모델이 스스로 데이터의 중요한 패턴을 학습하여 압축된 표현(latent representation)을 형성 (표현된 정보)합니다.
- Autoencoder라는 이름은 "자동으로 인코딩하고 디코딩하는 신경망"이라는 의미를 담고 있으며, 인간의 개입 없이도 데이터를 효율적으로 표현하고 복원할 수 있는 모델임을 나타냅니다.

-

1. Autoencoder의 개념

Autoencoder는 <u>입력 데이터의 중요한 특징을 유지하면서도 낮은 차원으로 압축하는 데 목적</u>이 있습니다. --> 정보 손실???

데이터의 특징을 효율적으로 학습하여 <u>잠재공간 표현</u>을 얻고, <u>이를 통해 원본과 유사한 데이터를 복원할 수 있도록 학습합니다. (비지도학습.. 별도의 레이블을 필요로 하지 않는다)</u>

2. Autoencoder의 구조

Autoencoder는 기본적으로 Encoder와 Decoder 두 개의 주요 부분으로 구성됩니다.

- <u>■ Encoder:</u> 입력 데이터에서 중요한 특징을 <u>추출하고 차원을 축소하여(데이터 압축) 잠재</u> 공간 표현을 생성합니다. *Encoder + Auto*
- 일반적으로 Dense(밀집) 레이어 또는 Convolutional 레이어를 사용하여 입력 데이터를 점 차 작은 차원으로 축소합니다.

- 마지막 Encoder 레이어는 잠재 공간(latent space)이라고 불리는 저차원 벡터를 생성하여 데이터의 주요 정보를 담고 있습니다.
- Latent Space (Z): 잠재 공간은 데이터의 중요한 정보를 함축하는 저차원 벡터로, 데이터 의 특징을 효과적으로 표현한 것입니다. Z를 보통 latent vector 라고 부르며 이를 latent variable, 등으로 부른다.
- Decoder: 잠재 공간 표현에서 데이터를 <u>다시 원래 차원으로 복원하는 역할</u>을 합니다. Encoder와 구조가 반대 방향으로 구성되어 있으며, 이를 통해 잠재 공간 표현을 원본 데이터 와 유사한 형태로 복원합니다.
- Input Data를 Encoder Network에 통과시켜 압축된 z값을 얻습니다
- 압축된 z vector로부터 Input Data와 같은 크기의 출력 값을 생성합니다
- 이때 Loss값은 입력값 x(원본 data)와 Decoder를 통과한 y값(복원된 data)의 차이입니다

3. Autoencoder의 학습 과정

Autoencoder는 <u>입력 데이터와 출력 데이터 간의 차이(손실 함수)를 최소화하는 방식으로 학</u>습됩니다.

예시) Mean Squared Error (MSE)를 사용하여 <u>입력과 출력 간의 차이를 최소화하도록 학습하는 것이 일반적입니다.</u>

- Encoding: 입력 데이터를 Encoder에 입력하여 잠재 공간 표현을 얻습니다.
- Decoding: 잠재 공간 표현을 Decoder를 통해 원래 데이터로 복원합니다.

손실 계산: 복원된 데이터와 원본 데이터 간의 차이를 손실 함수로 계산하여 차이를 최소화하 도록 모델을 학습합니다.

4. Autoencoder의 활용

• <u>차원 축소(Dimensionality Reduction)</u>: 데이터의 특징을 저차원 잠재 공간으로 표현하여 차원을 축소할 수 있습니다. <u>PCA와 유사한 역할을 하지만 비선형 관계도 학습할 수 있습니다.</u>

- <u>노이즈 제거(Denoising)</u>: 데이터에 포함된 노이즈를 제거하고 깨끗한 데이터를 복원하는 데 활용됩니다.
- 데이터 생성(Data Generation): VAE와 같은 변형 Autoencoder는 새로운 데이터 샘플을 생성하는 데 활용될 수 있습니다.
- <u>이상 감지(Anomaly Detection)</u>: 정상 데이터의 특징을 학습한 후, 복원이 잘 안 되는 이상 데이터를 검출하는 데 사용됩니다. 오토인코더는 훈련의 일부로 재구성 오류 (Reconstruction error) 를 최소화하려 한다. 따라서 재구성 손실의 크기를 통하여 이상 치를 탐지할 수 있다

Autoencoder는 입력 데이터를 압축하고 이를 원래 형태로 복원함으로써 데이터의 중요한 정보를 효율적으로 학습할 수 있는 강력한 도구입니다. 다양한 응용 분야에서 중요한 특징 추출, 노이즈 제거 및 데이터 생성 등의 작업에 사용됩니다.

1. 초기 연구 배경: 차원 축소와 특징 학습의 필요성

- Autoencoder는 차원 축소 및 특징 학습에 대한 연구의 연장선에서 탄생했습니다. 1980년 대에는 이미지, 음성, 텍스트 데이터와 같은 고차원 데이터를 효과적으로 처리하기 위한 방법이 필요했으며, 특히 차원 축소(Dimensionality Reduction)와 데이터의 내재적 구조를 학습하는 데 관심이 집중되었습니다.
- 주성분 분석(PCA): Autoencoder 이전에 차원 축소 기법으로 가장 널리 사용되었던 방법은 주성분 분석(PCA)이었습니다. PCA는 데이터의 분산을 최대화하는 방향으로 저차원 공간을 찾아 데이터를 압축하는 방법으로, 선형 관계에서는 효과적이지만, 비선형적인 복잡한 구조를 학습하는 데 한계가 있었습니다.

2. 1980년대 후반: Autoencoder의 도입

- Autoencoder는 1980년대 후반에 데이터의 비선형 구조를 학습할 수 있는 새로운 방법으로 제안되었습니다. 특히 David Rumelhart와 Geoffrey Hinton 같은 신경망 연구자들이 Autoencoder의 초기 개념을 발전시키기 시작했습니다.
- 1986년 Rumelhart와 Hinton의 연구: "Learning Representations by Back-propagating Errors"라는 논문에서, 오차 역전파(backpropagation)를 이용하여 입력 데이터에서 중요한 특징을 학습하고 이를 복원하는 모델로서 Autoencoder를 소개했습니다.
- 이 시기에 소개된 Autoencoder는 오차 역전파 알고리즘을 사용해 입력과 출력 간의 차이를 최소화하도록 학습했습니다. 이 논문은 신경망을 이용한 비지도 학습의 가능성을 열었으며, 데이터의 내재적 표현을 학습하는 데 있어서 Autoencoder의 가능성을 시사했습니다.

3. 2000년대 초반: 심층 Autoencoder의 발전과 새로운 가능성

- 1990년대 후반에서 2000년대 초반까지는 신경망 모델이 복잡해질수록 학습이 어려워지는 문제(기울기 소실 문제)가 있었기 때문에 심층 신경망 연구가 주춤했습니다.
- 그러나 2006년에 Geoffrey Hinton과 그의 동료들이 <u>심층 신경망의 층별 사전 학습</u> (pre-training) 방법을 제안하면서 심층 학습(deep learning) 연구가 다시 활발해졌습니 <u>다.</u> Autoencoder도 이때 새로운 가능성을 맞이하게 됩니다.
- 심층 Autoencoder (Deep Autoencoder): Hinton은 Autoencoder를 층별로 사전 학습하

여 입력 데이터의 중요한 특징을 점진적으로 학습하는 심층 Autoencoder 구조를 제안했습니다.

• 층별 사전 학습: Autoencoder의 인코더와 디코더를 구성하는 여러 은닉층을 개별적으로 학습하여 심층 구조를 안정적으로 학습하는 방법이 제안되었으며, 이는 이후 딥러닝 모델에 적용되어 심층 네트워크 학습을 가능하게 했습니다.

4. 2010년대: Variational Autoencoder (VAE)와 Generative Models의 도입

2010년대에는 생성 모델(Generative Model)에 대한 연구가 활발히 진행되었고, Autoencoder는 데이터 생성 및 변형에 활용될 수 있는 강력한 도구로 발전했습니다. 특히 Variational Autoencoder (VAE)는 Autoencoder와 확률 모델을 결합하여 주어진 데이터의 분포를 학습하고 새로운 데이터를 생성할 수 있는 모델로, 생성적 모델의 중요한 기법이 되었습니다.

- 2013년 VAE 도입: Kingma와 Welling은 "Auto-Encoding Variational Bayes" 논문에서 VAE를 소개하며 Autoencoder에 확률적 접근을 도입했습니다. VAE는 입력 데이터를 잠재 공간으로 압축하는 것뿐만 아니라, 해당 공간에서 새로운 데이터를 생성하는 데도 유리한 모델입니다.
- GAN과 함께 발전: VAE는 GAN(Generative Adversarial Network)과 함께 이미지 생성, 강화 학습 등 다양한 응용 분야에서 활용되며 생성 모델의 중요한 기법으로 자리 잡았습니 다

5. 현재: 다양한 변형 Autoencoder와 응용

현재 Autoencoder는 기본적인 모델 외에도 다양한 변형이 존재하며, 각 응용 분야에 맞춰 활용됩니다.

.

2. Stacked autoencoder

Stacked Autoencoder는 여러 개의 Autoencoder를 층층이 쌓아 올려 구성한 모델입니다. 각 Autoencoder는 이전 층의 출력을 입력으로 받아 점진적으로 특징을 압축하여 잠재 공간 표현을 학습합니다. 이를 통해 데이터의 점진적이고 깊이 있는 특징 표현이 가능해집니다.

- 구조: Stacked Autoencoder는 여러 개의 Autoencoder가 연속적으로 연결된 형태로, <u>각</u> <u>각의 Autoencoder는 하나의 인코더와 디코더로 구성됩니다. 각 층은 이전 Autoencoder</u> 의 출력을 입력으로 받아 점진적으로 데이터의 특징을 압축해 나갑니다.
- 첫 번째 Autoencoder는 원본 입력 데이터를 받아 특징을 압축한 후, 이 특징 표현을 다음 Autoencoder의 입력으로 전달합니다.
- <u>다음 Autoencoder는 이 입력을 기반으로 다시 압축하여 점진적으로 더 정교한 잠재 표현</u>을 얻어냅니다.
- <u>충별 사전 학습(Pre-training)</u>: Stacked Autoencoder는 기울기 소실 문제를 해결하고 안 정적인 학습을 돕기 위해 사전 학습을 수행하는 경우가 많습니다. 각 Autoencoder 층을 개별적으로 학습하여 데이터의 특징을 점진적으로 학습하고, 전체 네트워크를 다시 한 번 미세 조정(fine-tuning)하는 방식입니다.
- 특징: 데이터의 계층적인 특징을 점진적으로 학습하기 때문에, 고차원 데이터에서도 복잡한 패턴을 잘 포착할 수 있습니다. <u>충별 학습을 통해 안정적인 학습이 가능하며, 이미지,</u> 텍스트, 음성 데이터 등에서 고차원의 특성을 효과적으로 표현할 수 있습니다.

Stacked Autoencoder:

장점: 층별 학습 방식으로 인해 깊은 네트워크에서도 <u>안정적으로 학습할 수 있습니다.</u> 특히 초기 학습이 쉬워서 기울기 소실 문제를 완화합니다.

단점: 층별로 사전 학습을 진행하기 때문에 학습 시간이 더 오래 걸릴 수 있습니다.

3. Convolutional Autoencoder (CAE)

Convolutional Autoencoder(CAE) 는 <u>CNN(Convolutional Neural Network) 기반의</u> Autoencoder로, 특히 이미지와 같은 2차원 데이터의 특징을 효과적으로 학습할 수 있도록 설계되었습니다.

이미지 데이터의 공간적 특성을 유지하면서 복원하는 데 강점이 있습니다.

- 구조: CAE는 인코더와 디코더에 각각 Conv2D(혹은 3D) 레이어를 사용합니다. 인코더 부분은 입력 이미지의 특징을 추출하고, Pooling 레이어를 통해 크기를 줄이며 잠재 표현을 만듭니다. 디코더 부분은 Transpose Convolution 또는 **업샘플링(upsampling)**을 통해 원래 이미지 크기로 복원합니다.
- 특징: 일반적인 Dense 레이어 기반 Autoencoder와 달리, CAE는 이미지의 **공간적 관계(Spatial Relationship)**를 보존하면서 특징을 학습합니다. Conv 레이어를 사용해 이미지의 중요한 패턴과 경계를 유지할 수 있으며, 재구성할 때도 높은 품질의 이미지를 복원할 수 있습니다.
- 활용: 이미지 복원, 노이즈 제거, 차원 축소, 이미지 압축, 이상 감지 등에서 주로 활용됩니다. 특히 Denoising Autoencoder로 사용될 때 노이즈가 포함된 이미지를 깨끗한 이미

지로 복원하는 데 매우 효과적입니다.

CAE는 이미지의 공간적 패턴을 효율적으로 학습할 수 있어, 특히 고해상도 이미지나 복잡한 이미지 데이터를 복원하는 데 강력한 성능을 발휘합니다.

4. Sparse Autoencoder

- Sparse Autoencoder 은 기본적인 Autoencoder 의 구조와는 다르게 Hidden layer 내 의 Node 수가 더 많아진다.
- Autoencoder 를 사용하게 되면 원본데이터의 Feature 를 압축하다보면, 다른 데이터가 들어와도 training set 과 비슷하게 만들어버리는 <u>overfitting 의 문제점이 존재하는데</u>, 이를 방지하기 위해 Sparse Autoencoder 를 사용한다. Sparse Autoencoder 를 사용하게 되면 overfitting 을 줄이는 효과가 있다
- Sparse AutoEncoder 를 통해 sparse(0이 많은) 한 노드들을 만들고, 그 중에서 0과 가까운 값들은 전부 0으로 보내버리고 0 이 아닌값들만 사용하여 네트워크 학습을 진행한다.
- : 잠재 공간에서 일부 노드만 활성화되도록 학습해 중요한 특징만 추출하는 방식으로, 희소성(sparsity)을 강조하여 데이터를 효율적으로 표현합니다.

5. Denoising Autoencoder

입력 데이터에 노이즈를 추가한 후 이를 원래의 깨끗한 데이터로 복원하는 방식으로 학습합니다. 이 모델은 데이터에서 중요한 특징을 잡아내고, 입력에 포함된 불필요한 정보(노이즈)를 제거하는 데 효과적입니다.

노이즈가 포함된 데이터를 원본 데이터로 복원하는 모델로, <u>이미지 노이즈 제거 등에서 널리</u> 사용됩니다.

- Denoising Autoencoder 은 입력층에서 Hidden layer로 갈 때, Noise를 추가한 것이다.
- <u>이러한 Noise 를 추가하였을 때 사람의 인식으로는 같은 데이터라고 느끼지만 실제로는 성능향상의 효과를 얻을 수 있다.</u>

Denoising Autoencoder의 동작 원리

- <u>노이즈 추가</u>: 원본 입력 데이터에 인위적으로 노이즈를 추가합니다. 여기서 노이즈는 가우시안 노이즈, 드롭아웃(dropout), 마스킹 등 다양한 방식으로 추가할 수 있습니다.
- <u>노이즈가 포함된 데이터 입력</u>: 노이즈가 포함된 데이터를 인코더에 입력합니다. 인코더는 노이즈가 포함된 데이터로부터 중요한 특징을 추출하여 잠재 공간(latent space)에 압축된 표현을 생성합니다.
- <u>복원 과정(디코딩)</u>: 디코더는 잠재 공간 표현을 기반으로 데이터를 복원하여 노이즈를 제거하고 원본 데이터와 유사한 형태로 만듭니다.

학습 목표: Denoising Autoencoder는 <u>출력 데이터와 원본 데이터 간의 차이를 최소화하는 방식으로 학습됩니다.</u> 즉, <u>출력이 노이즈가 없는 원본 데이터와 최대한 유사해지도록 모델을</u> 최적화합니다.

활용

노이즈 제거: Denoising Autoencoder는 특히 이미지에서 노이즈를 제거하거나, 텍스트 데이터의 오류를 보정하는 데 효과적입니다.

특징 학습: 입력 데이터에서 중요한 특징만을 학습할 수 있어, 일반 Autoencoder보다 더욱 견고한 특징 표현을 제공합니다.

이상 탐지: Denoising Autoencoder는 일반적인 패턴을 학습하기 때문에, 노이즈가 아닌 다른 종류의 이상 데이터(이상치)가 입력되었을 때 복원이 잘 되지 않는 특성을 활용해 이상 데이터를 탐지할 수 있습니다.

5. Variational Autoencoder (VAE)

Variational Autoencoder(VAE)는 <u>확률적 특성을 추가하여 데이터 분포를 학습하고, 새로운</u> 데이터를 생성할 수 있도록 설계된 Autoencoder입니다.

VAE는 단순히 데이터를 압축하고 복원하는 것 외에도,생성 모델(Generative Model)로서의 역할을 할 수 있습니다.

- 구조: VAE는 입력 데이터를 <u>잠재 공간에서 확률 분포로 매핑합니다</u>. 일반 Autoencoder 와 달리 <u>잠재 공간을 정규 분포와 같은 특정 분포로 가정하여, 그 분포에 맞게 데이터 포인트를 샘플링합니다.</u> 이를 통해 VAE는 잠재 공간에서 임의의 벡터를 생성하여 새로운 데이터로 복원할 수 있습니다.
- 학습 과정: VAE는 <u>입력 데이터를 통해 평균(mean)과 분산(variance)을 학습하고, 잠재 공간에서 임의의 샘플을 생성하여 복원합니다.</u>이 과정에서 KL-divergence 손실과 재구성 손실을 최소화하여 잠재 공간의 분포가 정규 분포를 따르도록 학습됩니다.
- 활용: 데이터 생성, 이미지 생성, 데이터 증강 등에 활용됩니다. 특히 VAE는 특정한 분포로부터 데이터를 샘플링해 새로운 데이터를 생성할 수 있어, GAN과 함께 생성 모델의 중요한 기법으로 사용됩니다.

VAE는 데이터의 분포를 학습하여 잠재 공간에서 다양한 데이터를 샘플링하고, 이를 통해 새로운 데이터 생성을 가능하게 하는 특징이 있습니다.

VAE 는 Input image X 를 잘 설명하는 feature 를 추출하여 Latent vector z 에 담고, Latent vector z 를 통해 X와 유사하지만 새로운 데이터를 생성하는 것을 목표로 한다. 이 때, 각 feature는 가우시안 분포를 따른다고 가정하고 평균과 분산값을 나타내어 준다.

<u>VAE는 확률적 오토인코더이다</u>. 따라서 학습이 끝난 이후에도 출력이 부분적으로 우연에 의해 결정된다.

VAE는 생성 오토인코더이며, 학습 데이터셋에서 샘플링된 것과 같은 새로운 샘플을 생성할 수 있다.

VAE는 생성 모델이기 때문에, 디코더를 학습시키는 것을 주 목적으로 한다 VAE 의 인코더는 주어진 입력에 대하여 평균 코딩과, 표준편차 코딩을 만든다 실제 코딩은 가우시안 분포에서 랜덤하게 샘플링되며, 이렇게 샘플링된 코딩을 디코더의 입력 으로 사용해 원본 입력으로 재구성하게 된다

VAE의 손실함수

VAE의 손실함수는 두 부분으로 구성

1. 재구성 손실 (Reconstruction Loss)

재구성 손실은 Autoencoder에서 원본 입력과 복원된 출력 간의 차이를 최소화하는 손실 함수입니다. 이는 <u>입력 데이터가 복원된 데이터와 얼마나 비슷한지를 평가하는 지표</u>입니다.

- 목적: 원본 데이터와 복원된 데이터 간의 차이를 최소화하여, 인코더와 디코더가 데이터의 중요한 특징을 잘 유지하도록 합니다.
- 동작 원리: 원본 입력 데이터와 디코더가 생성한 출력 데이터 간의 차이를 측정하며, 일반 적으로 Mean Squared Error (MSE) 또는 Binary Cross-Entropy와 같은 손실 함수를 사용합니다.
- 최소화: 재구성 손실이 최소화되면, 복원된 데이터가 원본 데이터와 매우 유사해지며, VAE가 데이터를 효과적으로 압축하고 복원할 수 있게 됩니다.
- 재구성 손실의 계산 방법
- ▷ 평균 제곱 오차 (Mean Squared Error, MSE)

$$ext{MSE} = rac{1}{N} \sum_{i=1}^N (x_i - \hat{x}_i)^2$$

x i : 입력 데이터의 각 값, x^i : 재구성된 출력의 각 값 MSE가 작을수록 재구성 품질이 높음을 의미합니다.

2. KL-divergence 손실 (Kullback-Leibler Divergence Loss : <u>상대적 Entropy</u> KL-divergence는 <u>두 확률 분포 간의 차이를 측정하는 지표</u>입니다. --> 모델이 학습한 분포와 목표 분포 간의 차이를 측정하는 데 사용됩니다.

VAE에서는 학습 과정에서 잠재 공간의 분포가 특정한 정규 분포(Normal Distribution)를 따르도록 유도합니다.

목적: 잠재 공간의 분포가 정규 분포와 가까워지도록 합니다. 이는 새로운 데이터를 생성할 때, 잠재 공간에서 무작위로 샘플링하여도 실제 데이터와 유사한 샘플을 생성할 수 있도록 하기 위함입니다.

동작 원리: VAE는 인코더에서 입력 데이터를 평균(mean)과 분산(variance)으로 표현하며, 이 잠재 분포가 정규 분포와 차이가 없도록 KL-divergence 손실을 사용해 정규화합니다.

최소화: KL-divergence 손실이 최소화되면, 잠재 공간의 분포가 정규 분포에 가까워지며, 잠재 공간에서 샘플링된 데이터가 더 자연스럽게 원본과 유사한 특성을 가지게 됩니다.

KL-발산은 두 확률 분포 P와 Q가 주어졌을 때, 분포 Q가 P에 비해 얼마나 다른지를 측정합니다.

$$D_{ ext{KL}}(P||Q) = \sum_i P(i) \log rac{P(i)}{Q(i)}$$

위식을 Cross Entropy 와 비교해서 생각해보기 !!!!!!!!!

KL-divergence 손실과 재구성 손실의 균형

VAE에서는 총 손실이 KL-divergence 손실과 재구성 손실의 합으로 구성됩니다. 두 손실을 균형 있게 최적화하는 것이 중요합니다.

KL-divergence 손실이 너무 작아지면 잠재 공간이 정규 분포를 따르지 않아, 생성된 데이터의 다양성이 떨어질 수 있습니다.

재구성 손실이 너무 작아지면 데이터가 원본과 유사하게 복원되지 않아, 모델이 제대로 학습되지 않습니다.

이 두 손실을 동시에 최소화함으로써, VAE는 데이터를 효과적으로 압축하고, 잠재 공간에서 새로운 데이터를 생성할 때도 실제 데이터와 유사한 분포를 따르는 샘플을 생성할 수 있게 됩니다.

오토인코더 종류	특징	사용 사례
Denoising Autoencoder	노이즈 제거	이미지 복원
Sparse Autoencoder	희소성 제약	특징 추출, 이상 탐지
Variational Autoencoder	확률 모델, 생성 가능	이미지 생성
Contractive Autoencoder	견고한 특징 추출	일반화 성능 향상
Convolutional Autoencoder	CNN 구조 사용	이미지 처리
Sequence-to-Sequence Autoencoder	RNN/LSTM 구조	자연어 처리, 시계열 예측

파이썬 실습

딥러닝: Autoencoder

논문 연구 할 것

Stacked Autoencoder와 LSTM을 이용한 금융 시계열 딥러닝 프레임워크 jangminhyeok 2019. 11. 3. 19:44

제목

원제목 : Deep Learning Framework for Financial Time Series using Stacked Autoencoders and LSTM

번역 : Stacked Autoencoder와 LSTM을 이용한 금융 시계열 딥러닝 프레임워크

논문 링크: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180944

Github 링크: https://github.com/timothyyu/wsae-lstm