Study and Application of Security based on ZigBee Standard

Paper Presentation

Presented by:

Archana Sreekumar (P2CSN18005)

Betrant Titus (P2CSN18006)

Introduction

A quick overview of ZigBee and how it secures it's communication

ZigBee: Advantages and Disadvantages

- ZigBee: Open WLAN communication technology standard for low data rate network.
- Advantages : low-complexity, low-cost, high reliability, etc.
- Restrictions: computing speed of nodes, memory space, limit of energy consumption etc.
- Unable to utilize a traditional security mechanism in a ZigBee network.
- Need to design a practical security scheme for the same.

The stack architecture of ZigBee

The ZigBee protocol stack consists of the given layers which provide one layer of abstraction over the other.

ZigBee: Security Suites

Data Integrity Check

This uses message integrity codes (MIC) to prevent data from being modified by the attackers without secret key.

Support for identity authentication

This provides a safe means for a device to synchronize messages with another.

Presence of AES

ZigBee encryption utilizes AES algorithm.

It is approved by
National Institute for
Standards Technology.

ZigBee: Security Suites

Presence of Trust Center

Trust Center decides whether new devices are allowed to join the WLAN or not.

It stores the keys for the network.

Three-key network security

Master key: Basic key among communicating of nodes.

Link key: Secure unicast communication.

Network key: Secure

broadcast communication.

ZigBee: Network Attacks

- Three kinds:
 - Sybil
 - Sinkholes
 - Wormholes
- Malicious node enters WLAN and acts as legitimate one.
- Destroy packets, altering, discarding etc.

ZigBee: Security Mechanism

- Encryption mode: AES Counter mode with Cipher block chaining and Message authentication code (CCM*)
- Provides confidentiality and integrity.
- Same key used in all layers.

2. Securing Application Layer

Proposing an idea to ensure integrity and confidentiality in the application layer

A regular ZigBee application frame

The ZigBee application layer data is transmitted via packets with the given frame structure.

Bits: 4	4	8	8	V	V	8	8	V		
Transmission Count	Type Frame	Transmission Sequence	Length	Data		Transmission Sequence	Length	Data		
		Packet 1				Packet n				
Application Frame										
Application support sub-layer protocol Data Unit (ASDU)										

The proposed secure ZigBee application frame

This revision of the packet frame structure introduces encryption along with message integrity.

Bits: 8	8	8	8	V				
Transmission Sequence	Length	Key Bit Sequence	MIC	Data				
		Transmission Data						
Transmission packet 1								

How is this realized?

- Variable number frame changed to one single frame.
- The transmission sequence, length and data fields are replaced with key-bit sequence, MIC and encrypted data.
- Since there are no multiple frames, transmission count is replaced with the required sequence number of the packet.

The Cipher-Block-Chaining method of AES

The AES-CBC-128 method is utilized to generate the encrypted data as shown in the schematic.

The proposed encryption method

The proposed AES-CCM* implementation is shown here.

The proposed decryption method

The proposed AES-CCM* implementation is shown here.

Conclusion

- Proposed system helps secure application data and reduces overhead and complexity.
- CCM* mode also helps assure message integrity along with confidentiality.
- Resistant toward internal cryptanalysis attacks as well.

Thank You!

Any questions?