Nombre _____ Carnet _____

- 1. [2pts.] Tres masas puntuales m idénticas están colocadas en el plano x-y como se muestra en la figura. Están conectadas por medio de barras de masa despreciable para formar un cuerpo rígido con brazos de igual longitud a. Dos de ellas están a una distancia a del eje y. El momento de inercia del sistema respecto al eje y es:

- (X) $6ma^2$
- $() 5ma^2$
- 2. $[2\,pts.]$ En la figura se muestra un gráfico ω vs. t para un objeto en rotación. El desplazamiento angular $\Delta\theta$ del objeto, entre $t=0\,s$ y $t=4\,s$ es
 - $(\times) \Delta\theta = 6 [rad]$ Área bajo la curva ω vs. t: $() \Delta\theta = 4 [rad]$ $\Delta\theta = \frac{1}{2} |\Delta\omega| \Delta t$ $() \Delta\theta = 3 [rad]$ $= \frac{1}{2} (3 [rad/s]) \times (4 [s])$ $() \Delta\theta = 2 [rad]$ = 6 [rad] $() \Delta\theta = 12 [rad]$

- 3. $[2\,pts.]$ Un cilindro de radio R, masa M y momento de inercia I, sube un plano inclinado rodando sin deslizar hasta que se detiene. Se puede afirmar que:
 - $(\, {\sf X}\,)\,$ La fuerza de roce es distinta de cero pero se conserva la energía mecánica total 1
 - () La fuerza de roce es igual a cero y se conserva la energía mecánica total
 - () La fuerza de roce es distinta de cero y no se conserva la energía mecánica total
 - $(\ \)$ La fuerza de roce es igual a cero pero no se conserva la energía mecánica total
 - () La fuerza de roce apunta en dirección opuesta a la velocidad

¹La fuerza de roce es de tipo estática y no hace trabajo, y la gravedad es conservativa

4. $[3\,pts.]$ La figura muestra un bloque de masa $m_1 = 2\,Kg$, que se suelta desde el extremo superior de una cuña curva, de masa $m_2 = 3\,Kg$, la cual está apoyada sobre el piso horizontal. Ambos cuerpos están inicialmente en reposo, y no existe fricción ni entre el bloque y la cuña, ni entre la cuña y el piso. En el instante en que el bloque sale por el extremo inferior de la cuña, lleva una velocidad horizontal $\vec{v}_{12} = -10\,\hat{x}\,[cm/s]$ respecto a la cuña. La velocidad \vec{v}_2 , de la cuña respecto al piso es, en ese instante:

5. $[2\,pts.]$ La figura sombreada muestra una placa delgada con densidad uniforme σ , contenida en el plano x-y. La posición \vec{R}_{CM} del centro de masa está dada por

() $\vec{\boldsymbol{v}}_2 = -6\,\hat{\boldsymbol{x}}$, [cm/s]

() $K_T/K_R = 0.5$

- 6. $[2\,pts.]$ Un cilindro hueco, de radio R y masa M distribuida uniformemente en la superficie, rueda sin deslizar. El cociente entre la energía cinética de traslación K_T y la energía cinética de rotación K_R es:
 - () $K_T/K_R=2$ La energía cinética total es: $() K_T/K_R=1.5 \qquad K=K_T+K_R, \quad \text{donde}$ () $K_T/K_R=2.5 \qquad K_T=\frac{1}{2}MV_{cm}^2 \wedge K_R=\frac{1}{2}I_0\omega^2 \quad \text{con} \quad I_0=MR^2 \wedge V_{cm}^2=\omega^2R^2$ (X) $K_T/K_R=1 \qquad K_T=\frac{1}{2}MR^2\omega^2 \wedge K_R=\frac{1}{2}MR^2\omega^2 \quad \Longrightarrow \quad \overline{K_T/K_R=1}$

7. $[2\,pts.]$ Una barra delgada, de masa M y longitud L, se suelta desde el reposo en la posición horizontal mostrada en la figura. El soporte esta firmemente anclado al techo. La velocidad del punto B del borde de la barra, cuando ésta llega a la posición vertical, es

$$(\quad)\ v_{\scriptscriptstyle B} = \sqrt{2\,gL}$$

$$-\Delta U = \frac{1}{2}MgL = \frac{1}{2}I_P\omega^2 = \Delta K$$

$$(\quad)\ v_{{\scriptscriptstyle B}}=\sqrt{gL}$$

$$I_P = \frac{1}{3} M L^2 \quad \wedge \quad v_{\scriptscriptstyle B} = \omega L$$

$$(\mathsf{X})\ v_{\scriptscriptstyle B} = \sqrt{3\,gL}$$

()
$$v_R = 2\sqrt{qL}$$

$$\implies \boxed{v_B^2 = 3gL}$$

- 8. [2 pts.] Podemos aplicar conservación de la energía a un cilindro que rueda sin deslizar, cuesta abajo por un plano inclinado porque
 - () No hay fuerza de fricción entre la superficie del plano inclinado y la del cilindro
 -) El coeficiente de fricción cinética es cero
 - (X) La velocidad lineal del punto de contacto relativa a la superficie inclinada es cero²
 - Los coeficientes de fricción estática y de fricción cinética son iguales
 -) La velocidad angular del centro de masa alrededor del punto de contacto es cero
- 9. [3 pts.] La figura muestra un par de discos, ambos de radio R, que pueden rotar alrededor de sus respectivos ejes centrales fijos. El disco de la izquierda (#1) tiene un piñón coaxial, de radio r = R/2, alrededor del cual pasa una correa de transmisión inextensible que no desliza, que pasa por el borde del disco de la derecha (#2). Del disco (#1) cuelga un bloque de masa m, por medio de un cuerda enrollada a su borde externo. Se sabe que el bloque desciende con aceleración $a=2 [m/s^2]$. La magnitud a_T de la aceleración tangencial del punto P, indicado en el borde del disco (#2), es

()
$$a_T = 0.5 [m/s^2]$$

()
$$a_T = 2 [m/s^2]$$

$$(X) \ a_T = 1 [m/s^2]$$

()
$$a_T = 4 [m/s^2]$$

La aceleración tangencial del punto Pes igual, en módulo, a la aceleración tangencial del piñón. Ésta, a su vez, es la mitad de la aceleración del borde del cilindro, ya que r = R/2. Luego:

$$a_T = 1 \left[m/s^2 \right]$$

 $\triangleright P$

) No se puede calcular, porque no se conoce el valor del radio R de los discos.

²La fuerza de roce es de tipo estática y no hace trabajo, y la gravedad es conservativa

- 10. $[10\,pts.]$ El sistema mostrado en la figura consta de una rueda cilíndrica de radio R y masa m_2 , de cuyo borde se desenrrolla una cuerda inextensible, paralela al plano inclinado. La cuerda pasa sin deslizar por una polea de radio r, para terminar, en el otro extremo, sujetando a un bloque de masa m_1 , que puede moverse verticalmente. Las masas de la cuerda y de la polea son despreciables. La polea está firmemente anclada al techo de manera que su eje está fijo, y el mismo no presenta fricción. Entre la rueda y el plano inclinado en un ángulo $\theta = 30^{\circ} [\pi/6]$ con la horizontal, existe suficiente fricción de manera que <u>ruede sin deslizar</u>.
 - (a) $[4\,pts.]$ Escriba las ecuaciones de movimiento para los elementos del sistema, y los vínculos que relacionan a la aceleración \boldsymbol{a}_1 del bloque con la aceleración \boldsymbol{a}_2 del centro de masa de la rueda.
 - (b) [6 pts.] Calcule la aceleración \boldsymbol{a}_1 del bloque y la aceleración \boldsymbol{a}_2 del centro de masa de la rueda. Igualmente, calcule la tensión \boldsymbol{T} de la cuerda y la fuerza de fricción $\vec{\boldsymbol{f}}$ que ejerce el plano inclinado sobre la rueda. ¿ En qué dirección apunta el vector $\vec{\boldsymbol{f}}$?

Respuestas:

Escogemos los ejes de la siguiente manera: $\hat{x}(\nwarrow)$, $\hat{y}(\swarrow)$, $\hat{z}(\bigcirc)$.

Sea P el punto de contacto de la rueda con el plano inclinado, en el cual está aplicada la fricción $\vec{f} = f \hat{x}$, y B el punto en el borde de la rueda, en el cual está aplicada la tensión $\vec{T} = T \hat{x}$ de la cuerda. Ésta última también actúa sobre el bloque, pero en dirección $-\hat{y}'$ (\uparrow), debido a que la polea no tiene masa.

Así, las aceleraciones quedarán definidas como $\vec{a}_1 = a_1 \hat{y}'$ y $\vec{a}_2 = a_2 \hat{x}$, mientras que el vector aceleración angular para la rueda será $\vec{\alpha} = \alpha \hat{z}$

(a) Las ecuaciones de movimiento quedan, entonces:

$$\sum F_y = m_1 g - T = m_1 a_1 \quad \text{(bloque)} \tag{1}$$

$$\sum F_x = f + T - m_2 g \operatorname{sen} \theta = m_2 a_2 \quad \text{(rueda)}$$

$$\sum \tau_{/CM} = RT - Rf = I_0 \alpha \quad \text{(rueda)}$$

$$\sum \tau_{/P} = 2RT - m_2 gR \operatorname{sen} \theta = I_P \alpha \quad \text{(rueda)}, \tag{4}$$

donde $\tau_{/CM}$ es el torque respecto al centro de masa, con $I_0 = \frac{1}{2}m_2R^2$ y $\tau_{/P}$, respecto al punto de contacto. Por el teorema de ejes paralelos, $I_P = \frac{3}{2}m_2R^2$. Los vínculos están dados por las relaciones $a_1 = a_B = 2R\alpha$, siendo a_B la aceleración tangencial en el punto B, y por la condición de rodadura $a_B = R\alpha$. Combinando ambas ecuaciones, podemos definir la aceleración del sistema $a_B = R\alpha$.

$$2R\alpha = a = a_1 = \frac{2R}{R}a_2 = 2a_2. (5)$$

(b) Reescribimos las ecuaciones (1)–(4), haciendo sen $\theta = 1/2$ y, usando solamente la aceleración a del sistema, escogemos la ecuación (4) donde no aparece la fricción f. Ejecutando la operación (4)/2R y restando la expresión a la ecuación (1), se obtiene:

$$T + m_1 a = m_1 g \tag{6}$$

$$T - \frac{I_P}{(2R)^2}a = T - \frac{3}{2} \frac{R^2}{(2R)^2} m_2 a = T - \frac{3}{8} m_2 a = \frac{1}{4} m_2 g$$
 (7)

$$\Rightarrow \left(m_1 + \frac{3}{8}m_2\right)a = \left(m_1 - \frac{1}{4}m_2\right)g \implies \left[a = \frac{8m_1 - 2m_2}{8m_1 + 3m_2}g\right]$$
(8)

$$\Rightarrow \left(m_1 + \frac{3}{8}m_2\right)a = \left(m_1 - \frac{1}{4}m_2\right)g \implies a = \frac{8m_1 - 2m_2}{8m_1 + 3m_2}g$$

$$T = m_1g - m_1a = m_1g\left(1 - \frac{8m_1 - 2m_2}{8m_1 + 3m_2}\right) \implies T = \frac{5m_1m_2}{8m_1 + 3m_2}g$$
(9)

Utilizando ahora la ecuación (5) para los vínculos, y la ecuación (3) para despejar la componente x de la fricción (f), se obtiene:

$$a_1 = a \implies a_1 = \frac{8m_1 - 2m_2}{8m_1 + 3m_2} g$$
 (10)

$$a_2 = \frac{1}{2}a \implies a_2 = \frac{4m_1 - m_2}{8m_1 + 3m_2}g$$
 (11)

$$f = T - \frac{I_0 \alpha}{R} = T - \frac{1}{4} m_2 a = \frac{5m_1 m_2}{8m_1 + 3m_2} g - \frac{1}{4} \left(\frac{8m_1 m_2 - 2m_2^2}{8m_1 + 3m_2} \right) g$$
 (12)

$$= \frac{1}{4} \left(\frac{12m_1m_2 + 2m_2^2}{8m_1 + 3m_2} \right) g \tag{13}$$

$$\implies \qquad \vec{f} = \frac{1}{2} \left(\frac{6m_1m_2 + m_2^2}{8m_1 + 3m_2} \right) g \, \hat{x}$$
 (14)

Es decir, que la fuerza de fricción \vec{f} apunta hacia arriba en el plano inclinado.