Conjugate Priors: Beta and Normal 18.05 Spring 2018

Review: Continuous priors, discrete data

'Bent' coin: unknown probability θ of heads.

Prior $f(\theta) = 2\theta$ on [0,1].

Data: heads on one toss.

Question: Find the posterior pdf to this data.

		Bayes			
hypoth.	prior	likelihood	numerator	posterior	
θ	$2\theta d\theta$	θ	$2\theta^2 d\theta$	$3\theta^2 d\theta$	
Total	1		$T = \int_0^1 2\theta^2 d\theta = 2/3$	1	

Posterior pdf: $f(\theta|x) = 3\theta^2$.

Review: Continuous priors, continuous data

Bayesian update table

Bayes							
hypoth.	prior	likeli.	numerator	posterior			
θ	$f(\theta) d\theta$	$\phi(x \mid \theta)$	$\phi(x \mid \theta) f(\theta) d\theta$	$f(\theta \mid x) d\theta = \frac{\phi(x \mid \theta) f(\theta) d\theta}{\phi(x)}$			
total	1		$\phi(x)$	1			

$$\phi(x) = \int \phi(x \mid \theta) f(\theta) d\theta$$
= probability of data x

Updating with normal prior and normal likelihood

A normal prior is conjugate to a normal likelihood with known σ .

- Data: $x_1, x_2, ..., x_n$
- Normal likelihood. $x_1, x_2, \ldots, x_n \sim N(\theta, \sigma^2)$

Assume θ is our unknown parameter of interest, σ is known.

- Normal prior. $\theta \sim N(\mu_{prior}, \sigma_{prior}^2)$.
- Normal Posterior. $\theta \sim N(\mu_{post}, \sigma_{post}^2)$.
- We have simple updating formulas that allow us to avoid complicated algebra or integrals (see next slide).

	hypoth.	prior	likelihood	posterior
ĺ	θ	$f(\theta) \sim N(\mu_{prior}, \sigma^2_{prior})$	$\phi(x \theta) \sim N(\theta, \sigma^2)$	$f(\theta x) \sim N(\mu_{post}, \sigma^2_{post})$
		$= c_1 \exp\left(rac{-(heta-\mu_{prior})^2}{2\sigma_{prior}^2} ight)$	$=c_2\exp\left(rac{-(x- heta)^2}{2\sigma^2} ight)$	$= c_3 \exp\left(\frac{-(\theta - \mu_{post})^2}{2\sigma_{post}^2}\right)$

Board question: Normal-normal updating formulas

$$a = rac{1}{\sigma_{
m prior}^2} \qquad b = rac{n}{\sigma^2}, \qquad \mu_{
m post} = rac{a\mu_{
m prior} + bar{x}}{a+b}, \qquad \sigma_{
m post}^2 = rac{1}{a+b}.$$

Suppose we have one data point x = 2 drawn from $N(\theta, 3^2)$

Suppose θ is our parameter of interest with prior $\theta \sim N(4, 2^2)$.

- **0.** Identify μ_{prior} , σ_{prior} , σ , n, and \bar{x} .
- **1.** Make a Bayesian update table, but leave the posterior as an unsimplified product.
- 2. Use the updating formulas to find the posterior.
- **3.** By doing enough of the algebra, understand that the updating formulas come by using the updating table and doing a lot of algebra.

Solution

0.
$$\mu_{prior} = 4$$
, $\sigma_{prior} = 2$, $\sigma = 3$, $n = 1$, $\bar{x} = 2$.

1.

hypoth.	prior	likelihood	posterior	
θ	$f(\theta) \sim N(4,2^2)$	$f(x \theta) \sim N(\theta, 3^2)$	$f(\theta x) \sim N(\mu_{post}, \sigma^2_{post})$	
θ	$c_1 \exp\left(\frac{-(\theta-4)^2}{8}\right)$	$c_2 \exp\left(\frac{-(2-\theta)^2}{18}\right)$	$c_3 \exp\left(\frac{-(\theta-4)^2}{8}\right) \exp\left(\frac{-(2-\theta)^2}{18}\right)$	

2. We have a = 1/4, b = 1/9, a + b = 13/36. Therefore

$$\mu_{\text{post}} = (1 + 2/9)/(13/36) = 44/13 = 3.3846$$
 $\sigma_{\text{post}}^2 = 36/13 = 2.7692$

The posterior pdf is $f(\theta|x=2) \sim N(3.3846, 2.7692)$.

3. See the reading class15-prep-a.pdf example 2.

Concept question: normal priors, normal likelihood

Blue graph = prior

Red lines = data in order: 3, 9, 12

(a) Which plot is the posterior to just the first data value? (Solution in 2 slides)

Concept question: normal priors, normal likelihood

Blue graph = prior

Red lines = data in order: 3, 9, 12

(b) Which graph is posterior to all 3 data values?

(Solution on next slide)

Solution to concept question

- (a) Plot 2: The first data value is 3. Therefore the posterior must have its mean between 3 and the mean of the blue prior. The only possibilites for this are plots 1 and 2. We also know that the variance of the posterior is less than that of the posterior. Between the plots 1 and 2 graphs only plot 2 has smaller variance than the prior.
- **(b)** Plot 3: The average of the 3 data values is 8. Therefore the posterior must have mean between the mean of the blue prior and 8. Therefore the only possibilities are the plots 3 and 4. Because the posterior is posterior to the magenta graph (plot 2) it must have smaller variance. This leaves only the Plot 3.

Board question: normal/normal

For data x_1, \ldots, x_n with data mean $\bar{x} = \frac{x_1 + \ldots + x_n}{n}$

$$a = \frac{1}{\sigma_{\mathrm{prior}}^2} \qquad b = \frac{n}{\sigma^2}, \qquad \mu_{\mathrm{post}} = \frac{a\mu_{\mathrm{prior}} + b\bar{x}}{a+b}, \qquad \sigma_{\mathrm{post}}^2 = \frac{1}{a+b}.$$

Question. On a basketball team the players are drawn from a pool in which the career average free throw percentage follows a $N(75,6^2)$ distribution. In a given year individual players free throw percentage is $N(\theta,4^2)$ where θ is their career average.

This season Sophie Lie made 85 percent of her free throws. What is the posterior expected value of her career percentage θ ? **answer:** Solution on next frame

Solution

This is a normal/normal conjugate prior pair, so we use the update formulas.

Parameter of interest: $\theta = \text{career average}$.

Data: x = 85 = this year's percentage.

Prior: $\theta \sim N(75, 36)$

Likelihood $x \sim N(\theta, 16)$. So $f(x|\theta) = c_1 e^{-(x-\theta)^2/2 \cdot 16}$.

The updating weights are

$$a = 1/36$$
, $b = 1/16$, $a + b = 52/576 = 13/144$.

Therefore

$$\mu_{\mathsf{post}} = (75/36 + 85/16)/(52/576) = 81.9, \qquad \sigma_{\mathsf{post}}^2 = 36/13 = 11.1.$$

The posterior pdf is $f(\theta|x=85) \sim N(81.9, 11.1)$.

Conjugate priors

A prior is conjugate to a likelihood if the posterior is the same type of distribution as the prior.

Updating becomes algebra instead of calculus.

	hypothesis	data	prior	likelihood	posterior
Bernoulli/Beta	$\theta \in [0, 1]$	x	beta(a, b)	$Bernoulli(\theta)$	beta(a+1,b) or $beta(a,b+1)$
	θ	x = 1	$c_1\theta^{a-1}(1-\theta)^{b-1}$	θ	$c_3\theta^a(1-\theta)^{b-1}$
	θ	x = 0	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$1 - \theta$	$c_3\theta^{a-1}(1-\theta)^b$
Binomial/Beta	$\theta \in [0,1]$	x	beta(a, b)	$\operatorname{binomial}(N,\theta)$	beta(a+x,b+N-x)
(fixed N)	θ	x	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$c_2\theta^x(1-\theta)^{N-x}$	$c_3\theta^{a+x-1}(1-\theta)^{b+N-x-1}$
${\it Geometric/Beta}$	$\theta \in [0,1]$	x	beta(a, b)	$geometric(\theta)$	beta(a+x,b+1)
	θ	x	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$\theta^x(1-\theta)$	$c_3\theta^{a+x-1}(1-\theta)^b$
Normal/Normal	$\theta \in (-\infty, \infty)$	x	$N(\mu_{prior}, \sigma_{prior}^2)$	$N(\theta, \sigma^2)$	$N(\mu_{post}, \sigma_{post}^2)$
(fixed σ^2)	θ	x	$c_1 \exp\left(\frac{-(\theta - \mu_{\text{prior}})^2}{2\sigma_{\text{prior}}^2}\right)$	$c_2 \exp\left(\frac{-(x-\theta)^2}{2\sigma^2}\right)$	$c_3 \exp\left(\frac{(\theta - \mu_{\text{post}})^2}{2\sigma_{\text{post}}^2}\right)$

There are many other likelihood/conjugate prior pairs.

Concept question: conjugate priors

Which are conjugate priors?

	hypothesis	data	prior	likelihood
a) Exponential/Normal	$\theta \in [0, \infty)$	x	$N(\mu_{prior}, \sigma_{prior}^2)$	$\exp(\theta)$
	θ	x	$c_1 \exp\left(-\frac{(\theta - \mu_{\text{prior}})^2}{2\sigma_{\text{prior}}^2}\right)$	$\theta e^{-\theta x}$
b) Exponential/Gamma	$\theta \in [0, \infty)$	x	Gamma(a, b)	$\exp(\theta)$
	θ	x	$c_1 \theta^{a-1} e^{-b\theta}$	$\theta e^{-\theta x}$
c) Binomial/Normal	$\theta \in [0,1]$	x	$N(\mu_{prior}, \sigma_{prior}^2)$	$\operatorname{binomial}(N,\theta)$
(fixed N)	θ	x	$c_1 \exp\left(-\frac{(\theta - \mu_{\text{prior}})^2}{2\sigma_{\text{prior}}^2}\right)$	$c_2 \theta^x (1-\theta)^{N-x}$

1. none 2. a 3. b 4. c

5. a,b 6. a,c 7. b,c 8. a,b,c

Answer: 3. b

We have a conjugate prior if the posterior as a function of θ has the same form as the prior.

Exponential/Normal posterior:

$$f(\theta|x) = c_1 \theta e^{-\frac{(\theta - \mu_{prior})^2}{2\sigma_{prior}^2} - \theta x}$$

The factor of θ before the exponential means this is not the pdf of a normal distribution. Therefore it is not a conjugate prior.

Exponential/Gamma posterior: Note, we have never learned about Gamma distributions, but it doesn't matter. We only have to check if the posterior has the same form:

$$f(\theta|x) = c_1 \theta^a e^{-(b+x)\theta}$$

The posterior has the form Gamma(a+1,b+x). This is a conjugate prior.

Binomial/Normal: It is clear that the posterior does not have the form of a normal distribution.

Variance can increase

Normal-normal: variance **always** decreases with data.

Beta-binomial: variance **usually** decreases with data.

Variance of beta(2,12) (blue) is smaller than that of beta(12,12) (magenta), but beta(12,12) can be a posterior to beta(2,12)

Table discussion: likelihood principle

Suppose the prior has been set. Let x_1 and x_2 be two sets of data. Which of the following are true?

- (a) If the likelihoods $\phi(x_1|\theta)$ and $\phi(x_2|\theta)$ are the same then they result in the same posterior.
- **(b)** If x_1 and x_2 result in the same posterior then their likelihood functions are the same.
- (c) If the likelihoods $\phi(x_1|\theta)$ and $\phi(x_2|\theta)$ are proportional (as functions of θ) then they result in the same posterior.
- (d) If two likelihood functions are proportional then they are equal.
- <u>answer:</u> (4): a: true; b: false, the likelihoods are proportional.c: true, scale factors don't matter d: false

Concept question: strong priors

Say we have a bent coin with unknown probability of heads θ .

We are convinced that $\theta \leq 0.7$.

Our prior is uniform on [0,0.7] and 0 from 0.7 to 1.

We flip the coin 65 times and get 60 heads.

Which of the graphs below is the posterior pdf for θ ?

Solution to concept question

answer: Graph C, the blue graph spiking near 0.7.

Sixty heads in 65 tosses indicates the true value of θ is close to 1. Our prior was 0 for $\theta>0.7$. So no amount of data will make the posterior non-zero in that range. That is, we have foreclosed on the possibility of deciding that θ is close to 1. The Bayesian updating puts θ near the top of the allowed range.