ANÁLISIS INTELIGENTE DE DATOS

PROFESORA: MÓNICA CANTONI

AYUDANTES: CECILIA OLIVA

FABIANA ROSSI

PAMELA PAIRO

CLASE 01 - ANÁLISIS EXPLORATORIO Y DESCRIPTIVO DE DATOS

AGENDA

- Datos estructurados
- Atributos
- Medidas descriptivas univariadas
- Visualización de datos

Instancias

DATOS ESTRUCTURADOS

Ejemplo: datos de calidad del vino

Atributos

acidez fija	acidez volátil	ácido cítrico	azúcar residual	cloruros	anhídrido sulfuroso libre	anhídrido sulfuroso total	densidad	рН	sulfatos	alcohol	calidad	variedad
7	0.27	0.36	20.7	0.045	45 170		1.001	3	0.45	8.8	6	blanco
6.3	0.3	0.34	1.6	0.049	14	132	0.994	3.3	0.49	9.5	6	blanco
8.1	0.28	0.4	6.9	0.05	30	97	0.9951	3.26	0.44	10.1	6	blanco
7.2	0.23	0.32	8.5	0.058	47	186	0.9956	3.19	0.4	9.9	6	blanco
7.2	0.23	0.32	8.5	0.058	47	186	0.9956	3.19	0.4	9.9	6	blanco
8.1	0.28	0.4	6.9	0.05	30	97	0.9951	3.26	0.44	10.1	6	blanco
6.2	0.32	0.16	7	0.045	30	136	0.9949	3.18	0.47	9.6	6	blanco
7	0.27	0.36	20.7	0.045	45	170	1.001	3	0.45	8.8	6	blanco
6.3	0.3	0.34	1.6	0.049	14	132	0.994	3.3	0.49	9.5	6	blanco
8.1	0.22	0.43	1.5	0.044	28	129	0.9938	3.22	0.45	11	6	blanco
8.1	0.27	0.41	1.45	0.033	11	63	0.9908	2.99	0.56	12	5	blanco
8.6	0.23	0.4	4.2	0.035	17	109	0.9947	3.14	0.53	9.7	5	blanco
7.9	0.18	0.37	1.2	0.04	16	75	0.992	3.18	0.63	10.8	5	blanco
6.6	0.16	0.4	1.5	0.044	48	143	0.9912	3.54	0.52	12.4	7	blanco
8.3	0.42	0.62	19.25	0.04	41	172	1.0002	2.98	0.67	9.7	5	blanco
6.6	0.17	0.38	1.5	0.032	28	112	0.9914	3.25	0.55	11.4	7	blanco
6.3	0.48	0.04	1.1	0.046	30	99	0.9928	3.24	0.36	9.6	6	blanco
6.2	0.66	0.48	1.2	0.029	29	75	0.9892	3.33	0.39	12.8	8	blanco
7.4	0.34	0.42	1.1	0.033	17	171	0.9917	3.12	0.53	11.3	6	blanco

ATRIBUTOS: CONCEPTOY EJEMPLOS

Atributo

- O Denominado "estructura de datos" en programación y "variable" en estadística
- Es una forma de identificar de manera sencilla un dato.
- Es un contenedor en el que se almacena un dato. El dato puede cambiar.
- Un atributo nos permite acceder al dato para manipularlo y transformarlo.

Ejemplos

- Edad, Género, Peso, Altura, Nacionalidad
- Lugar de residencia, Nivel de instrucción
- O Categoría laboral, Cantidad de horas trabajadas
- o Profesión, Ingreso mensual, Código Postal

TIPOS DE ATRIBUTO (VARIABLE). CLASIFICACIÓN SEGÚN TIPO DE DATO

EJEMPLOS DE ATRIBUTOS CUALITATIVA (NO MÉTRICA)

Nominal	Ordinal
Color del vino	Nivel de instrucción
Tipo de comida	Orden de mérito en un concurso académico
País de origen	Categoría laboral
Estado civil	Nivel de inglés
Idioma	Trivel de lligies
Nacionalidad	Nivel de satisfacción de un cliente con el servicio

EJEMPLOS DE ATRIBUTOS. CUANTITATIVA (MÉTRICA)

Discreta

Edad en años

Cantidad de materias aprobadas

Continua

Peso de la persona

Altura de la persona

Superficie de una vivienda

Ingresos mensuales

Saldo cuenta bancaria

Tarifa por noche de hospedaje

TIPO DE ATRIBUTO (VARIABLE). CLASIFICACIÓN SEGÚN NIVEL DE MEDICIÓN

No hay orden en las categorías **Ordinal** • Orden en las categorías Intervalar • El cero es arbitrario • El cero es absoluto. Razón o proporción Ausencia del fenómeno

MEDIDAS DESCRIPTIVAS UNIVARIADAS

Atributo Cualitativo

Frecuencia

Porcentaje

Moda

MEDIDAS DESCRIPTIVAS UNIVARIADAS CUALITATIVO

• Ejemplos de frecuencia, porcentaje y moda. Datos de cursos ofrecidos por Udemy.

Moda

Categoría	Frecuencia	Porcentaje
Informática y software	2741	22.44
Desarrollo	2659	21.77
Negocios	1774	14.52
Desarrollo personal	1704	13.95
Diseño	1534	12.56
Finanzas y contabilidad	878	7.19
Productividad en la oficina	576	4.71
Marketing	350	2.86
	12216	100

MEDIDAS DESCRIPTIVAS UNIVARIADAS

MEDIDAS DESCRIPTIVAS UNIVARIADAS MEDIDAS DETENDENCIA CENTRAL

- Media
- Mediana
- Moda
- Media podada

MEDIA O PROMEDIO

• La media es el promedio aritmético de los valores del atributo. Dicho atributo debe ser numérico.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ejemplo para atributo edad en años:

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65 120

$$\bar{x} = \frac{28+30+34+34+36+44+45+46+47+50+51+52+60+65+120}{17} = 48,82$$

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65

$$\bar{x} = \frac{28+30+34+34+36+44+45+46+47+50+51+52+60+65}{16} = 44,38$$

MEDIANA

- La mediana es el valor del atributo que divide a la serie de datos en dos partes iguales. De manera que el 50% de las observaciones está por debajo de la mediana y el 50% está por encima de la mediana.
- Antes de calcularla deben ordenarse los valores del atributo.
- El atributo debe ser numérico.
- Ejemplo para edad:
- Si la cantidad de datos es impar es el valor que se encuentra en la posición central:

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65 120

• Si la cantidad de datos es par es la media de los dos valores centrales:

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65

 $\tilde{x} = 45.5$

La mediana es 45,5

MODA

- La moda es el valor del atributo que aparece con mayor frecuencia. Por lo tanto, puede determinarse para atributos cualitativos y cuantitativos.
- Es posible que la mayor frecuencia corresponda a varios valores diferentes, lo que da lugar a más de una moda.
- Los conjuntos de datos con uno, dos o tres modas se denominan unimodal, bimodal y trimodal, respectivamente.
- En general, un conjunto de datos con dos o más modas es multimodal.
- Si cada valor de los datos ocurre sólo una vez, entonces no hay moda.
- Ejemplo para atributo numérico. Edad en años

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65

- La moda es 34
- Ejemplo para atributo categórico. Color de fondo de la imagen

• La moda es rojo

MEDIA PODADA

- Promedio de los datos centrales recortado en un cierto porcentaje.
- Ejemplo. Para una serie de 20 valores calculamos la media podada al 10%

$$\bar{x}_{0.10} = \frac{34 + 34 + 36 + 40 + 44 + 45 + 46 + 46 + 47 + 48 + 48 + 48 + 49 + 50 + 51 + 52}{16} = 44,875$$

MEDIDAS DESCRIPTIVAS UNIVARIADAS MEDIDAS DE POSICIÓN O ESTADÍSTICAS DE ORDEN

Cuantiles

Para calcular la posición:

• Cuartiles
$$\frac{1}{4}k(n+1), k = 1,2,3,4$$

• Deciles
$$\frac{1}{10}k(n+1), k = 1, 2, ..., 10$$

• Percentiles $\frac{1}{100}k(n+1), k = 1, 2, ..., 100$

CUARTILES

EJEMPLO DE DECILES

	Escala	de ingreso	Población		Ingreso per cápita familiar					
Decil	Desde	Hasta	Población por decil	Porcentaje de personas	Ingreso total por decil (en miles)	Porcentaje del ingreso	Ingreso medio por decil	Ingreso medio por estrato	Mediana por decil	
	\$	\$		%	\$	%	\$	\$	\$	
1	0	11.800	2.913.811	10,0	22.852.435	1,9	7.843		8.360	
2	11.800	16.400	2.913.752	10,0	41.340.673	3,4	14.188		14.250	
3	16.400	20.867	2.913.741	10,0	54.428.854	4,5	18.680		18.778	
4	20.867	26.000	2.913.763	10,0	68.333.727	5,6	23.452	16.041	23.400	
5	26.000	31.125	2.913.612	10,0	82.892.156	6,8	28.450		28.400	
6	31.167	37.500	2.914.433	10,0	99.397.370	8,2	34.105		34.000	
7	37.500	46.667	2.914.302	10,0	122.147.600	10,1	41.913		41.667	
8	46.667	57.875	2.912.393	10,0	150.899.168	12,4	51.813	39.069	51.750	
9	57.875	80.000	2.914.092	10,0	198.341.941	16,4	68.063		67.500	
10	80.000	1.164.000	2.913.318	10,0	372.242.053	30,7	127.773	97.914	106.667	
Población to	tal (¹)		29.137.217	100,0	1.212.875.977	100,0	41.626	41.626	31.125	

⁽¹) Las diferencias en los totales de población y de ingresos entre los distintos cuadros se deben al uso de los diferentes ponderadores correspondientes en cada caso.

Fuente: INDEC, Dirección de Encuesta Permanente de Hogares.

PERCENTILES

MEDIDAS DESCRIPTIVAS UNIVARIADAS MEDIDAS DE DISPERSIÓN

- Rango muestral
- Varianza muestral
- Desviación estándar muestral
- Coeficiente de variación
- Rango intercuartílico
- MAD.

RANGO MUESTRAL: MÍNIMO Y MÁXIMO

• Para atributo numérico edad en años veamos como se determina:

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65 120

- Mínimo es el valor mas pequeño del atributo en el conjunto de datos
- Mínimo es 28
- Máximo es el valor más grande del atributo en el conjunto de datos
- Máximo es 120

$$rg_{(x)} = x^{(n)} - x^{(1)}$$

$$rg_{(x)} = 120 - 28 = 92$$

VARIANZA MUESTRAL

• La varianza muestral es el promedio de las distancias cuadráticas entre el valor del atributo y la media.

$$s_{x}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65 120

- La varianza es 436,78
- Ejemplo 2. Edad en años con 16 observaciones

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65

La varianza es 107,05

DESVIACIÓN ESTÁNDAR MUESTRAL

 La desviación estándar muestral es el promedio de las distancias entre el valor del atributo y la media.

$$s_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}}$$

• **Ejemplo I**. Edad en años con 17 observaciones

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65 120

- La desviación estándar es 20,90
- **Ejemplo 2.** Edad en años con 16 observaciones

28 30 34 34 36 40 44 45 46 47 48 50 51 52 60 65

• La desviación estándar es 10,35

COEFICIENTE DE VARIACIÓN

$$CV(x) = \frac{S_x}{\bar{x}}$$

Ejemplo I.

$$CV(x) = \frac{S_x}{\bar{x}} = \frac{20.9}{48.82} = 0.428 (42.8\%)$$

Ejemplo 2.

$$CV(x) = \frac{S_x}{\bar{x}} = \frac{10.35}{44.38} = 0.233 (23,3\%)$$

Si se multiplica por 100 se interpreta como un porcentaje.

RANGO INTERCUARTÍLICO

$$RI = Q3 - Q1 = 50.5 - 35 = 15.5$$

MAD

Mediana de los desvíos absolutos respecto de la mediana

Veamos un ejemplo:

$$2 - 3 - 5 - 8 - 13 - 27$$

Mediana
$$\tilde{x} = \frac{1}{2}(5+8) = 6.5$$

Los desvíos respecto de la mediana son:

Los valores absolutos de los desvíos en forma creciente:

La mediana de los desvíos absolutos:

$$MAD = \frac{3.5 + 4.5}{2} = 4$$

MEDIDAS DE LA FORMA DE LA DISTRIBUCIÓN ASIMETRÍA

- Coeficiente de asimetría muestral
- Fisher $skf(x) = \frac{\sqrt{n}\sum_{i=1}^{n}(x_i-\bar{x})^3}{\left[\sum_{i=1}^{n}(x_i-\bar{x})^2\right]^{3/2}} = \frac{\sum_{i=1}^{n}(x_i-\bar{x})^3}{ns_x^3}$

 $Si\ skf(x) = 0\ Sim\'etrica\ o\ insesgada$ $Si\ skf(x) > 0\ Asim\'etrica, sesgada\ a\ la\ derecha$ $Si\ skf(x) < 0\ Asim\'etrica, sesgada\ a\ la\ izquierda$

- Pearson $skp(x) = \frac{\bar{x} Mo(x)}{s_x}$
- Bowley $skb(x) = \frac{(q3-q2)+(q1-q2)}{q3-q1} = \frac{q3+q1-2\tilde{x}}{q3-q1}$

MEDIDAS DE LA FORMA DE LA DISTRIBUCIÓN CURTOSIS

$$k(x) = \frac{n \sum_{i=1}^{n} (x_i - \bar{x})^4}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^2}$$

$$k(x) = \frac{n\sum_{i=1}^{n} (x_i - \bar{x})^4}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^2} - 3$$

Si k(x) = 0 Mesocúrtica

Si k(x) > 0 Leptocúrtica

Si k(x) < 0 Platicúrtica

VISUALIZACIÓN DE LA INFORMACIÓN

VISUALIZACIÓN DE LA INFORMACIÓN

Gráfico de Gráfico de Diagrama Diagrama de Diagrama de circular 2D y barras barras dispersión barras adyacentes 3D superpuestas Gráfico de Gráfico de Diagrama de Polígono de Histograma tallo y hoja frecuencias densidad bastones

Función de distribución

Función escalonada

Boxplot

Boxplot comparativos.

DIAGRAMA DE DISPERSIÓN

DIAGRAMA CIRCULAR 2D

DIAGRAMA CIRCULAR 3D

DIAGRAMA DE BARRAS

GRÁFICO DE BARRAS SUPERPUESTAS

GRÁFICO DE BARRAS ADYACENTES

GRÁFICO DE BASTONES

FUNCIÓN DE DISTRIBUCIÓN

FUNCIÓN DE DISTRIBUCIÓN ESCALONADA

DIAGRAMA DE TALLO HOJA

134, 156, 158, 159, 160, 162, 164

Tallo | hoja

13 | 4

14 |

15 | 689

16 | 024

HISTOGRAMA

POLÍGONO DE FRECUENCIAS

GRÁFICO DE DENSIDAD

BOXPLOT (DIAGRAMA DE CAJAY BIGOTES

BOXPLOT COMPARATIVOS

¿PREGUNTAS?

