Chapter 2.3: Line Bundles and Divisors

Huybrechts, Complex Geometry

1 We assume X is compact and connected. Consider the exact sequence

$$0 \to \mathcal{O}^* \to \mathcal{M}^* \to \mathcal{M}^*/\mathcal{O}^* \to 0$$
,

where the first map is given by inclusion and the second by projection to the quotient. The exact sequence in cohomology then gives the exact sequence

$$H^0(X, \mathcal{M}^*) \to H^0(X, \mathcal{M}^*/\mathcal{O}^*) \to_{\delta} H^1(X, \mathcal{O}^*).$$

It is checked by diagram chasing that, under the isomorphisms $H^0(X, \mathcal{M}^*/\mathcal{O}^*) \simeq \operatorname{Div}(X)$ and $H^1(X, \mathcal{O}^*) \simeq \operatorname{Pic}(X)$, that δ is the canonical map of divisors to line bundles discussed in the chapter. Therefore this map has a nontrivial kernel exactly when the image of $H^0(X, \mathcal{M}^*)$ under the map on sections induced by the inclusion is nontrivial. But it can be seen that the image of a meromorphic function under this map is zero if and only if the function is locally and therefore globally constant. But a nonzero meromorphic function is constant if and only if satisfies a polynomial relation over \mathbb{C}^* .

2 First we note that s is nonsingular on Y. This is because its vanishing locus is a smooth hypersurface, so by the definition of complex submanifold (GH pg. 20), Y is locally given as the vanishing locus of a nondegenerate function h. But by the Nullstellensatz (pg. 11), this means that in some trivialization, h and the coordinate representation of s differ by a nonzero holomorphic function g. A calculation in coordinates then shows that over Y,

$$Ds = Dgh + gDh = gDh.$$

Now take $p \in Y$. By the implicit function theorem, it is possible to choose a chart $(z_1, ..., z_n)$ in a neighborhood U of p such that $Y \cap U$ corresponds to $\{z_n = 0\}$. Choose a trivialization of L over U in the chosen coordinate system and let s_U be the corresponding trivialization of s. I claim that $(z_1, ..., z_n) \rightarrow (z_1, ..., z_{n-1}, s_U(z_1, ..., z_n))$ is a diffeomorphism in a neighborhood of p. This follows because the derivative of s_U is normal to $z_n = 0$ and nonzero, so the Jacobian at p is invertible.

Therefore we have a system of charts $(U_{\alpha}, \rho_{\alpha})$ on X such that if U_{α} intersects Y, the z_n vanishes on Y and such that there exists a trivialization ϕ_{α} of L over this chart such that $\sigma_{\alpha}(z_1, ..., z_n) = z_n$. Then if $z' = (z'_1, ..., z'_n)$ is another coordinate chart, $z'_n(z_1, ..., z_{n-1}, 0)$ is identically zero and

$$z_n'(z_1,...,z_{n-1},z_n) = \sigma_{\beta}(z_1,...,z_n) = g_{\beta\alpha}\sigma_{\alpha}(z_1,...,z_n).$$

Therefore the transition function $F_{\alpha\beta}$ between any two such charts takes the form

$$\left(\begin{array}{cc} * & * \\ 0 & g_{\alpha\beta} \end{array}\right).$$

Using the characterization of the normal bundle (HY pg. 68), this completes the proof.

3 Let $f_1, ..., f_k$ be the polynomials defining X. Fix $p \in X$ and choose a trivialization containing p. Near p we can assume that $F = (z_1, ..., z_{n-k}, f_1(z), ..., f_k(z))$ is local diffeomorphism. This gives a system of charts such that the locus of f_i is the n - k + ith hyperplane. Trivializations then take the form

$$\left(\begin{array}{cc} * & * \\ 0 & D \end{array}\right),$$

where D is a diagonal matrix. Thus the normal bundle to the complete intersection is the direct sum of the normal bundles of each hypersurface.

Now we have seen that a homogeneous polynomial of degree d corresponds to a section of $\mathcal{O}(d)$. By the previous exercise, this yields that

$$\mathcal{N}_X = \bigoplus_{i=1}^k \mathcal{O}(d_k).$$

- 4 This is proven in Griffiths Harris. FINISH
- 5 Fix n and d. By projective equivalence, it is enough to show that ϕ is an embedding at any $p \in \mathbb{P}^n$, that is, that $D\phi$ has maximum rank at any point. Pick $p \in U_0 \subset \mathbb{P}^n$, so $\phi(p) \in U_{x_0^d} \subset \mathbb{P}^N$. In the standard coordinates on these charts,

$$\phi(x_{1/0},...,x_{n/0}) = (\prod_{i>0} x_{i/0}^{d_i}).$$

We require that $D\phi$ be rank n. But consider the monomial $x_0^{d-1}x_i$, which is $x_{i/0}$ is coordinates. In coordinates, the derivative of this component is just $dx_{i/0}$. These clearly give n independent columns, so $D\phi$ has rank n.

6 The fiber of $p_1^*(L_1) \otimes p_2^*(L_2)$ over x is $(L_1)_{p_1(x)} \otimes (L_2)_{p_2(x)}$, and the section $s_1^i \otimes s_2^j$ takes the value $s_1^i(p_1(x)) \otimes s_2^j(p_2(x))$. Therefore this statement follows from the fact that if A and B are vector spaces with bases $a_1, ..., a_n$ and $b_1, ..., b_m$, then $a_i \otimes b_j$ form a basis for $A \otimes B$. Recall that this is proven by defining a linear map $f: A \times B \to \mathbb{C}$ sending

$$(\sum s_i a_i, \sum t_j b_j) \mapsto s_i t_j.$$

This map factors through the tensor product to \tilde{f} . Therefore if $z = \sum c_{ij} a_i \otimes b_j = 0$, $0 = \tilde{f}(z) = c_{ij}$.

7 By projective equivalence, we can take x = [1:0:...:0]. Then the linear system is the span of $s_1,...,s_n$, so ϕ sends $[x_0:...:x_n]$ to $[x_1:...:x_n]$. This map is a projection of \mathbb{P}^n onto a (projective) hyperplane.