Isack Odero

ML Eng LogAl

How Computer See and Talk

→ Computer Vision

→ Sequence Modeling

Computer Vision

Computer Vision

The rise and impact of computer vision

Robotics

Mobile computing

Accessibility

Biology & Medicine

Autonomous driving

Impact: Facial Recognition

Impact: Autonomous Driving

Impact: Medicine, Biology, Healthcare

Impact: Medicine, Biology, Healthcare

What Computers "See"

Images are Numbers

- → An image is just a matrix of numbers [0, 255]
- → I.e. 1080x1080x3 an RGB image

Tasks in Computer Vision

- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

Learning Feature Representations

Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

An Architecture for Many Applications

Classification: Breast Cancer Screen

Object Detection

Taxi

Image

lmage

Semantic Segmentation

Continuous Control Navigation

Deep Learning for Computer Vision

Sequence Modeling

Given an Image of a ball, can you predict where it will go next?

Sequence data

Sequence Modeling Application

1. Sequence Modeling with Recurrence

Models: RNN, LSTM, GRU

Core Idea: Process sequences **step-by-step**, maintaining a hidden state that captures past information.

1. Sequence Modeling with Recurrence

Models: RNN, LSTM, GRU

Core Idea: Process sequences **step-by-step**, maintaining a hidden state that captures past information.

Pros	Cons
✔ Handles variable-length sequences well	* Struggles with long-range dependencies
✓ Low memory usage (sequential processing)	≭ Slow training (no parallelization)
✓ Simple architecture	★ Prone to vanishing/exploding gradients (RNNs)

1. Sequence Modeling with Recurrence

Models: RNN, LSTM, GRU

Core Idea: Process sequences **step-by-step**, maintaining a hidden state that captures past information.

Applications

- Early NLP (machine translation, sentiment analysis)
- Time-series forecasting (stock prices, weather)

2. Sequence Modeling with Attention

Models: Transformers (BERT, GPT)

Core Idea: Weigh the importance of all past inputs dynamically using

self-attention.

Scaled Dot-Product Attention

Figure 1: The Transformer - model architecture.

2. Sequence Modeling with Attention

Models: Transformers (BERT, GPT)

Core Idea: Weigh the importance of all past inputs dynamically using **self-attention**.

0	roc	
_	ros	

- ✓ Captures long-range dependencies better
- ✔ Parallel processing (faster training)
- ✓ State-of-the-art performance (e.g., GPT-4)

Cons

- ★ High memory usage (stores all tokens)
- ★ Computationally expensive
- **★** Requires large datasets

2. Sequence Modeling with Attention

Models: Transformers (BERT, GPT)

Core Idea: Weigh the importance of all past inputs dynamically using self-a

Vision tasks (ViT - Vision Transformers)

Applications

