Lagrange Multipliers

Optimization Methods in Management Science
Master in Management
HEC Lausanne

Dr. Rodrigue Oeuvray

Fall 2019 Semester

Outline

- Equality constraints
- Equality and inequality constraints
- Sufficient conditions

Optimization with Equality Constraints

General formulation:

$$egin{array}{ll} & & & opt & f(oldsymbol{x}) \ & & h_1(oldsymbol{x}) & = & b_1 \ & & ext{s.t.} & & dots \ & & h_I(oldsymbol{x}) & = & b_I \ \end{array}$$

opt means min or max

Optimization with Equality Constraints (Cont'd)

• The lagrangian is defined by:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{j=1}^{l} \lambda_j (h_j(\mathbf{x}) - b_j)$$

ullet Each constraint function is multiplied by a variable $\lambda_j \in \mathbb{R}$, called a lagrange multiplier

Optimization with Equality Constraints (Cont'd)

The reason L is of interest is the following:

Proposition

Assume that $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ maximizes or minimizes $f(\mathbf{x})$ subject to the constraints $h_i(\mathbf{x}) = b_i, i = 1, \dots, l$. If the vectors $\nabla h_1(\mathbf{x}^*), \dots, \nabla h_l(\mathbf{x}^*)$ are linearly independent, then there exists a vector $\mathbf{\lambda} = (\lambda_1^*, \dots, \lambda_l^*)$ such that $\nabla L(\mathbf{x}^*, \mathbf{\lambda}^*) = 0$, i.e

$$\frac{\partial L}{\partial x_1}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \cdots = \frac{\partial L}{\partial x_n}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

$$\frac{\partial L}{\partial \lambda_1}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \cdots = \frac{\partial L}{\partial \lambda_I}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

Example 1

• We consider the following example:

min
$$x_1 + x_2 + x_3^2$$

s.t. $x_1 = 1$
 $x_1^2 + x_2^2 = 1$

- It is easy to check that the minimum is achieved at $(x_1, x_2, x_3) = (1, 0, 0)$
- The associated lagrangian is

$$L(x_1, x_2, x_3, \lambda_1, \lambda_2) = x_1 + x_2 + x_3^2 + \lambda_1(x_1 - 1) + \lambda_2(x_1^2 + x_2^2 - 1)$$

Example 1 (Cont'd)

Observe that

$$\frac{\partial L}{\partial x_2}(1,0,0,\lambda_1,\lambda_2) = 1 \quad \forall \lambda_1,\lambda_2$$

- Consequently, $\frac{\partial L}{\partial x_2}$ does not vanish at the optimal solution !
- Case (i) of the former proposition occurs:

$$\nabla h_1(1,0,0) = (1 \ 0 \ 0)^T$$
 and $\nabla h_2(1,0,0) = (2 \ 0 \ 0)^T$

are linearly dependent vectors!

Optimization with Equality Constraints (Cont'd)

- Once we have found a candidate solution x*, it is not always easy to figure out whether they correspond to a minimum, a maximum or neither
- But in the two following situations, one can conclude

Proposition

- 1. If f(x) is concave and all of the $h_i(x)$ are linear, then any feasible x^* with a corresponding λ^* making $\nabla L(x^*, \lambda) = 0$ maximizes f(x) subject to the constraints
- 2. Similarly, If $f(\mathbf{x})$ is convex and all of the $h_i(\mathbf{x})$ are linear, then any feasible \mathbf{x}^* with a corresponding λ^* making $\nabla L(\mathbf{x}^*, \lambda) = 0$ minimizes $f(\mathbf{x})$ subject to the constraints

Example 2

We consider the following example:

min
$$2x_1^2 + x_2^2$$

s.t. $x_1 + x_2 = 1$

• The associated lagrangian is

$$L(x_1, x_2, \lambda_1) = 2x_1^2 + x_2^2 + \lambda_1(x_1 + x_2 - 1)$$

First-order conditions:

$$\frac{\partial L}{\partial x_1}(x_1^*, x_2^*, \lambda^*) = 4x_1^* + \lambda_1^* = 0$$

$$\frac{\partial L}{\partial x_2}(x_1^*, x_2^*, \lambda^*) = 2x_2^* + \lambda_1^* = 0$$

$$\frac{\partial L}{\partial \lambda}(x_1^*, x_2^*, \lambda^*) = x_1^* + x_2^* - 1 = 0$$

Example 2 (Cont'd)

- We get the following candidate solution: $x_1^*=1/3, x_2^*=2/3$ and $\lambda_1^*=-4/3$ with function value 2/3
- The hessian of f is given by:

$$\nabla^2 f(x_1, x_2) = \left(\begin{array}{cc} 4 & 0 \\ 0 & 2 \end{array}\right)$$

• Since $f(x_1, x_2)$ is **convex** (its hessian is positive semi-definite and even positive definite) and as the constraint is linear, then we conclude that this candidate solution is the **unique global minimum** of this problem

Minimization with Equality and Inequality Constraints

We now consider the general case for a minimization problem:

$$min_{\mathbf{x} \in \mathbb{R}^n}$$
 $f(\mathbf{x})$
 $s.t.$ $g_i(\mathbf{x}) \le 0,$ $i = 1, ..., k$
 $h_i(\mathbf{x}) = 0,$ $i = 1, ..., l$

Its lagrangian is defined by

$$L(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{x}) + \sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{i=1}^{l} \beta_{i} h_{i}(\mathbf{x})$$

We say that the ith constraint $g_i(x) \leq 0$ is active at a point $ar{x}$ if $g_i(ar{x}) = 0$

Min with Equality and Inequality Constraints (Cont'd)

The fundamental result is the following:

Proposition

Assume that $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ minimizes $f(\mathbf{x})$ subject to the constraints $g_i(\mathbf{x}) \leq 0, i = 1, \dots, k$ and $h_i(\mathbf{x}) = 0, i = 1, \dots, l$. If the gradient at \mathbf{x}^* of the active constraints (including the equality constraints h_i) are linearly independent, then there exists vectors $\mathbf{\alpha}^* = (\alpha_1^*, \dots, \alpha_k^*)$ and $\mathbf{\beta}^* = (\beta_1^*, \dots, \beta_l^*)$ such that

$$\begin{split} \frac{\partial}{\partial x_i} L(\boldsymbol{x}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) &= 0, \quad i = 1, \dots, n \\ h_i(\boldsymbol{x}^*) &= 0, \quad i = 1, \dots, l \\ \alpha_i^* g_i(\boldsymbol{x}^*) &= 0, \quad i = 1, \dots, k \; (\textit{dual complementary cond.}) \\ g_i(\boldsymbol{x}^*) &\leq 0, \quad i = 1, \dots, k \\ \alpha_i^* &\geq 0, \quad i = 1 \dots, k \end{split}$$

Example 3

We consider the following example:

$$\begin{aligned} & \min \quad (x-2)^2 + 2(y-1)^2 \\ & \text{s.t.} \quad \begin{array}{c} x+4y & \leq & 3 \\ & x & \geq & y \end{array} & \Longleftrightarrow \quad (-x+y \leq 0) \end{aligned}$$

• The associated lagrangian is

$$L(x, y, \alpha_1, \alpha_1) = (x - 2)^2 + 2(y - 1)^2 + \alpha_1(x + 4y - 3) + \alpha_2(-x + y)$$

• System of equations to solve:

$$\frac{dL''}{\partial x} : 2(x-2) + \alpha_1 - \alpha_2 = 0 \qquad \frac{\alpha_2 g_2'' : \alpha_2 (-x+y) = 0}{g_1'' : x + 4y - 3 \le 0}$$

$$\frac{dL''}{\partial y} : 4(y-1) + 4\alpha_1 + \alpha_2 = 0 \qquad \frac{g_1'' : x + 4y - 3 \le 0}{g_2'' : -x + y \le 0}$$

$$\frac{\alpha_1 g_1'' : \alpha_1 (x + 4y - 3) = 0}{\alpha_1, \alpha_2 \ge 0}$$

Example 3 (Cont'd)

Since they are **two** complementary conditions $(\alpha_i g_i(\mathbf{x}) = 0, i = 1, 2)$, there are **four** cases to check: 1. $\alpha_1 = \alpha_2 = 0$, 2. $\alpha_1 = g_2(\mathbf{x}) = 0$, 3. $\alpha_2 = g_1(\mathbf{x}) = 0$, 4. $g_1(\mathbf{x}) = g_2(\mathbf{x}) = 0$

- 1. $\alpha_1 = 0, \alpha_2 = 0$: we get x = 2, y = 1 which is not feasible (x + 4y 3 > 0)
- 2. $\alpha_1 = 0, -x + y = 0$: we get $x = 4/3, y = 4/3, \alpha_2 = -4/3$ which is not feasible $(\alpha_2 < 0)$
- 3. $\alpha_2 = 0, x + 4y 3 = 0$: we get $x = 5/3, y = 1/3, \alpha_1 = 2/3$. This solution is feasible
- 4. x+4y-3=0, -x+y=0: we get $x=3/5, y=3/5, \alpha_1=22/25,$ $\alpha_2=-48/25$ which is not feasible ($\alpha_2<0$)

We conclude that the **optimal** solution is given by x = 5/3 and y = 1/3

Sufficient Conditions

 The KKT conditions give us candidate optimal solutions. When are these conditions sufficent for optimality?

Sufficent Conditions

When f and the $g_i, i = 1, ..., k$ are **convex**, the $h_i, i = 1, ..., l$ are **affine**, and the problem **satisfies** the Slater's condition, then any point that satisfies the KKT conditions gives a point that **minimizes** f(x) subject to the constraints

The Slater's condition corresponds to the existence of some feasible x so that $g_i(x) < 0$, $\forall i$

Breach of Slater's Condition

We consider the following example:

$$min \quad x$$
s.t. $x^2 \le 0$

- The **optimal** solution is obvioulsy x = 0
- The lagrangian of this problem is

$$L(x,\alpha) = x + \alpha x^2$$

- The equation $\frac{\partial L}{\partial x}(x,\alpha)=1+2\alpha x=0$ is **not satisfied** at the optimum!
- KKT conditions are not satisfied since Slater's condition does not hold! The condition $x^2 < 0$ is simply not possible

Maximization with Equality and Inequality Constraints

We now consider the general case for a maximization problem:

$$max_{\mathbf{x} \in \mathbb{R}^n}$$
 $f(\mathbf{x})$
 $s.t.$ $g_i(\mathbf{x}) \leq 0, \quad i = 1, ..., k$
 $h_i(\mathbf{x}) = 0, \quad i = 1, ..., l$

Its lagrangian is defined by

$$L(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{x}) - \sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{i=1}^{l} \beta_{i} h_{i}(\mathbf{x}), \quad \alpha_{i} \geq 0, i = 1, \dots, k$$

Max with Equality and Inequality Constraints (Cont'd)

The fundamental result is the following:

Proposition

Assume that $\mathbf{x}^* = (\mathbf{x}_1^*, \dots, \mathbf{x}_n^*)$ maximizes $f(\mathbf{x})$ subject to the constraints $g_i(\mathbf{x}) \leq 0, i = 1, \dots, k$ and $h_i(\mathbf{x}) = 0, i = 1, \dots, l$. If the gradient at \mathbf{x}^* of the active constraints (including the equality constraints h_i) are linearly independent, then there exists vectors $\mathbf{\alpha}^* = (\alpha_1^*, \dots, \alpha_k^*)$ and $\mathbf{\beta}^* = (\beta_1^*, \dots, \beta_l^*)$ such that

$$\begin{split} \frac{\partial}{\partial x_i} L(\boldsymbol{x}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) &= 0, \quad i = 1, \dots, n \\ h_i(\boldsymbol{x}^*) &= 0, \quad i = 1, \dots, l \\ \alpha_i^* g_i(\boldsymbol{x}^*) &= 0, \quad i = 1, \dots, k \; (\textit{dual complementary cond.}) \\ g_i(\boldsymbol{x}^*) &\leq 0, \quad i = 1, \dots, k \\ \alpha_i^* &\geq 0, \quad i = 1 \dots, k \end{split}$$

Important Remark

For the following maximization problem:

$$max_{\mathbf{x} \in \mathbb{R}^n}$$
 $f(\mathbf{x})$
 $s.t.$ $g_i(\mathbf{x}) \leq 0,$ $i = 1, ..., k$
 $h_i(\mathbf{x}) = 0,$ $i = 1, ..., l,$

we could equivalently define its lagrangian by:

$$L(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{x}) + \sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{x}) + \sum_{i=1}^{l} \beta_{i} h_{i}(\mathbf{x})$$

but with

$$\alpha_i \leq 0, i = 1, \ldots, k$$

Example 4

• We consider the following example:

$$\max \quad x^3 - 3x$$

s.t. $x \le 2$

• The associated lagrangian is

$$L(x,\alpha_1) = x^3 - 3x - \alpha_1(x-2)$$

• System of equations to solve:

$$\frac{\partial L''}{\partial x} : 3x^2 - 3 - \alpha_1 = 0$$
 $\alpha_1 g_1'' : \alpha_1(x - 2) = 0$ $\alpha_1 \ge 0$

Example 4 (Cont'd)

For the complementary condition, there are two cases : 1. $lpha_1=$ 0,

- 2. x = 2 to check:
 - 1. If $\alpha_1=0$ then $3x^2-3=0$ so x=1 or x=-1. Both solutions are feasible. f(1)=-2, f(-1)=2
 - 2. If x=2, then $\alpha_1=9$. We obtain a new feasible solution. f(2)=2

We conclude that we have **two global** maximas: x = -1 and x = 2

Sufficient Conditions

• The KKT conditions give us candidate optimal solutions. When are these conditions sufficent for optimality ?

Sufficent Conditions

When f is **concave**, the $g_i, i = 1, ..., k$ are **convex**, the $h_i, i = 1, ..., l$ are **affine**, and the problem satisfies the Slater's condition, then any point that satisfies the KKT conditions gives a point that **maximizes** f(x) subject to the constraints

Review of Optimality Conditions - 1

Review of Optimality Conditions

Single Variable - Unconstrained

- Solve f'(x) = 0 to get candidates x^*
- If $f''(x^*) > 0$, it is a local min
- If $f''(x^*) < 0$, it is a local max
- If f(x) is convex, a local min is a global min
- If f(x) is concave, a local max is a global max

Review of Optimality Conditions - 2

Review of Optimality Conditions

Multipe Variables - Unconstrained

- Solve $\nabla f(x) = 0$ to get candidates x^*
- If the hessian at x^* is positive definite, it is a local min
- If the hessian at x^* is negative definite, it is a local max
- If f(x) is convex, a local min is a global min
- If f(x) is concave, a local max is a global max

Review of Optimality Conditions - 3

Review of Optimality Conditions

Multipe Variables - Constrainted

- Solve KKT conditions to get candidates x*
- The best candidate is the optimum if it is feasible and if the optimum exists
- If max problem, any x^* is an optimum if f concave, g_i convex, h_i affine, and the problem satisfies the Slater's condition
- If min problem, any x^* is an optimum if f convex, g_i convex, and h_i affine, and the problem satisfies the Slater's condition

Remark. It is not obvious to determine if an optimization has an optimum or not

Existence of an Optimum

- The Weierstrass extreme value theorem states that a continuous function on a closed and bounded set obtains its extreme values (min or max)
 - ► Examples of closed sets: $[a, b], x^2 + y^2 \le 1, x^2 + y^2 = 1, \dots$
 - ► Examples of non-closed sets: $[a, b[, x^2 + y^2 < 1, ...]$
- When the domain is not bounded, then we don't have the guarantee that an optimum exists
 - ▶ The problem $max\ f(x) = x$ subject to $x \ge 0$ has no finite optimum
 - ▶ But the solution of min f(x) = x subject to $x \ge 0$ is $x^* = 0$