

A report on Deep Neural Networks for Learning Graph Representation

by

Julina Maharjan

Department of Computer Science Kent State University

Original Authors:

Shaosheng Cao, Wei Lu, Qiongkai Xu

Submitted for the Course CS-79995

Supervisor:

Dr. Ruoming Jin rjin1@kent.edu

Contents

1	Intr	oducti	on 1
	1.1	Object	tive
	1.2	-	ach
		1.2.1	Random Surfing Model
		1.2.2	SGNS: Skip Gram Negative Sampling
2	$\operatorname{Lit}\epsilon$	erature	Review 3
	2.1	Algori	thms
		2.1.1	Deep Walk
		2.1.2	Random Walk
		2.1.3	Skip Gram Negative Sampling 6
		2.1.4	Auto Encoder
		2.1.5	Stacked Auto Encoder
		2.1.6	Stacked denoising Auto Encoder
3	Met	thodolo	ogy 9
	3.1		R Model
		3.1.1	3 main steps
		3.1.2	Random Surfing and Context Weighting 9
		3.1.3	Random Surfing Model
		3.1.4	Stacked Denoising Autoencoder
4	Res	ult	12
	4.1		iments
	1.1	4.1.1	Visualization of Wine
		4.1.2	Experiment Set up
5	Cor	nclusio	n 18

Introduction

1.1 Objective

DNGR is the model that generates low dimensional vector representation for each vertex by capturing the graph structural information. It includes two steps:

- 1. Random Surfing model to capture the graph structure
 - instead of the sampling-based method for generating linear sequences
- 2. PMI matrix factorization as a solution for an objective function of SGNS
 - instead of SVD, uses the Stacked denoising autoencoders for extracting complex non-linear features

1.2 Approach

Many methods existed to learn effective vector representation for linear sequence in NLP

e.g. Random walk

Can we leverage this idea to learn vertex representations for graph structure?

- The graph structure can be converted into a large collection of linear structures
- And Skip-Gram model can be utilized to learn low-dimensional representations for vertices from such linear structures

1.2.1 Random Surfing Model

Why?

- yields a probabilistic co-occurrence for weighted graphs
- very similar to the one obtained by sampling linear sequence from graphs (w/o sampling)

1.2.2 SGNS: Skip Gram Negative Sampling

Why;

- the objective function of SGNS has a intrinsic relation with factorizing PPMI matrix of the words and contexts
- SVD only reduces to linear dimension reduction
- Levy and Goldberg showed that PPMI matrix itself is an explicit representation matrix of the graph
- SVD didn't outperform the representations from the PPMI matrix
- thus, the stacked autoencoders are used to learn low level features with high level abstraction

Literature Review

- 2.1 Algorithms
- 2.1.1 Deep Walk

Algorithm 1: DeepWalk

```
for n = 1, 2, ..., N do

Pick w_1^n according to a probability distribution P(w_1);

Generate a vertex sequence (w_1^n, \dots, w_L^n) of length L by a random walk on network G;

for j = 1, 2, ..., L - T do

for r = 1, ..., T do

Add vertex-context pair (w_j^n, w_{j+r}^n) to multiset \mathcal{D};

Add vertex-context pair (w_{j+r}^n, w_j^n) to multiset \mathcal{D};
```

8 Run SGNS on \mathcal{D} with b negative samples.

2.1.2 Random Walk

Let G = (V, E) be an undirected graph. Consider the random process that starts from some vertex $v \in V(G)$, and repeatedly moves to a neighbor of the current vertex chosen uniformly at random.

For $t \geq 0$, and for $u \in V(G)$, let $p_t(u)$ denote the probability that you are at vertex u at time $t.p_t \in \mathbb{R}^n$. Clearly, $\sum_{u \in V(G)} p_t(u) = 1$

$$p_{t+1}(v) = \sum_{(u,v)\in E(G)} p_t(u) \cdot \frac{1}{d(u)}$$

We can write this using matrix notation $W = W_G$:

$$[W_G]_{i,j} = \begin{cases} \frac{1}{d(j)} & if(i,j) \in E(G) \\ 0 & otherwise \end{cases}$$

$$W_G = AD^{-1}$$

Limitation:

- only transform unweighted graph structural information into linear sequence
- constraints on hyper parameters walk length, η and total walk, γ
- based on sampled linear sequences

Solution:

• Random Surfing: model that generates POM from a weighted graph which avoids the expensive sampling process

2.1.3 Skip Gram Negative Sampling

Setting and Notation: The skip-gram model assumes a corpus of words $w \in V_W$ and their contexts $c \in V_C$, where V_W and V_C are the word and context vocabularies.

The words come from an unannotated textual corpus of words w_1, w_2, \ldots, w_n (typically n is in the billions) and the contexts for word w_i are the words surrounding it in an L-sized window $w_{i-1}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+L}$

We denote the collection of observed words and context pairs as D. We use #(w,c) to denote the number of times the pair (w,c) appears in D. Similarly, $\#(w) = \sum_{c' \in V_C} \#(w,c')$ and $\#(w) = \sum_{w' \in V_w} \#(w',c)$ are the number of times w and c occurred in D, respectively.

SGNS Objective Function

$$\ell = \sum_{w \in V_W} \sum_{c \in V_C} \#(w, c) \left(\log \sigma(\vec{w} \cdot \vec{c}) + k \cdot E_{c_N \sim P_D} \left[\log \sigma \left(-\vec{w} \cdot \vec{c}_N \right) \right] \right)$$

Simplifying above equation leads to following: (Paper: Neural Word Embedding as Implicit Matrix Factorization - Levy and Goldberg 20014)

$$\vec{w} \cdot \vec{c} = \log \left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \cdot \frac{1}{k} \right) = \log \left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \right) - \log k$$

Interestingly, the expression $\log\left(\frac{\#(w,c)\cdot|D|}{\#(w)\cdot\#(c)}\right)$ is the well-known pointwise mutual information (PMI) of (w,c), which we discuss in depth below. Finally, we can describe the matrix M that SGNS is factorizing:

$$M_{ij}^{\text{SGNS}} = W_i \cdot C_j = \vec{w_i} \cdot \vec{c_j} = PMI(w_i, c_j) - \log k$$

2.1.4 Auto Encoder

Auto Encoder performs two actions

- — an encoding step, followed by decoding step. In the encoding step, a function $f_{\theta_1}(\cdot)$ applied to the vector in the input space and send it to new feature space. An activation function is typically involved in this process to model the non-linearities between the two vector spaces the space of input vectors and th space of latent vector representations.
- At the decoding step a reconstruction function $g_{\theta_2}(\cdot)$ is used to reconstruct th original input vectors back from the latent representation space.

Auto Encoder Objective Function

Let us assume that $f_{\theta_1}(x) = \sigma\left(W_1x + b_1\right)$ and $g_{\theta_2}(y) = \sigma\left(W_2y + b_2\right)$, where $\sigma(\cdot)$ is the activation function, $\theta_1 = \{W_1, b_1\}$ are the weights (parameters) involved in the encoder, and $\theta_2 = \{W_2, b_2\}$ are the weights (parameters) involved in the decoder. Here W_1 and W_2 are linear maps (matrices) transforming the vectors from the input space, and b_1 and b_2 are the bias vectors. Our goal is to minimize the following reconstruction loss function by finding θ_1 and θ_2 :

$$\sum L\left(x^{(i)}, g_{\theta_2}\left(f_{\theta_1}\left(x^{(i)}\right)\right)\right)$$

where L is sample-wise loss, and $x^{(i)}$ is the i-th instance.

2.1.5 Stacked Auto Encoder

- Multi-layer deep neural network consisting of multiple layers of such autoencoders.
- use the layer-wise training approach to extract essential regularities capturing different levels of abstractions from the data layer by layer, with higher layers conveying higher-level abstractions from the data.

2.1.6 Stacked denoising Auto Encoder

- partially corrupts the input data before taking the training step
- \bullet each input sample x is corrupted randomly by assigning some of the entries in the vector to 0 with a certain probability.

• Loss function:

Similar to standard autoencoders, we again reconstruct data from the latent representations.

$$\min_{\theta_1,\theta_2} \sum_{i=1}^n L\left(x^{(i)}, g_{\theta_2}\left(f_{\theta_1}\left(\tilde{x}^{(i)}\right)\right)\right)$$

where $\tilde{x}^{(i)}$ is corrupted input data of $x^{(i)}$, and L is the standard squared loss.

Methodology

3.1 DNGR Model

3.1.1 3 main steps

- 1. Random surfing model to capture graph structural information and generate a probabilistic co-occurrence matrix
- 2. Calculation of PPMI matrix based on our probabilistic co-occurrence matrix
- 3. A Stacked Denoising autoencoder to learn low-dimensional vertex representations

3.1.2 Random Surfing and Context Weighting

Why Random Surfing?

Figure 3.1: Main Components: Random Surfing, Calculation of PPMI matrix and feature reduction by SDAE

- Sampling sequences have finite length, thus makes difficult to capture the accurate contextual info for vertices that appears at the edges of the sequence
- • Also, it is very difficult to find hyper parameters ; walk length η and total walks γ

3.1.3 Random Surfing Model

Let current vertex be i-th vertex and A be a transition matrix. Then, p_k is a row vector, whose j-th entry is the probability of reaching the j-th vertex after k steps

$$p_k = \alpha \cdot p_{k-1}A + (1 - \alpha)p_0$$

3.1.4 Stacked Denoising Autoencoder

- Matrix factorization of PPMI matrix to low dimensional word/vertex embedding
- SVD: Limitation in Linear Factorization
- Need non-linear factorization

Why stacked and denoising autoencoder?

- to learn high-level abstractions at each layer
- denoising to corrupt the input data corrupt each input sample x randomly by assigning some of the entries in the vector o 0 with a certain probability

PPMI Algorithm

 $Input: PPMImatrixX, Number of SDAE layers \Gamma$

1.InitializeSDAE

 $Setnumber of nodes n_i in layer j, X^{(1)} = X$

2. Greedy layer-wise dtraining

 $Forj = 2to\Gamma$

 $2.1 Construct on ehidden layer SDAE within put of X^{(j)}$

 $2.2 Learnhidden layer representation h^{(j)}$

 $2.3X^{(j)} = h^{(j)} \left(X^{(j)} \in R^{n \times n_j} \right)$

 $Output: {\it Matrix \^of vertices representations R}$

- all the X_i 's are input data
- Y_i 's are learned representation in first layer
- \bullet Z_i 's are learned representation in second layer

The objection function for SDAE:

$$\min_{\theta_1,\theta_2} \sum_{i=1}^n L\left(x^{(i)}, g_{\theta_2}\left(f_{\theta_1}\left(\tilde{x}^{(i)}\right)\right)\right)$$

where $x^{(i)}$ is corrupted input data of $x^{(i)}$, and L is the standard squared loss.

Result

4.1 Experiments

4.1.1 Visualization of Wine

- Comparison on the performance of DNGR with SVD, DeepWalk and SGNS on Wine
- Vertex representation were fed to t-SNE; mapped to 2D.
- DNGR ($\alpha = 0.98$) showed better clustering among all.

Figure 4.1: Comparison result across different models for Wine Classification

4.1.2 Experiment Set up

```
GitHub Link: https://github.com/ShelsonCao/DNGR
python3 DNGR.py -- graphType undirected -- input wine.edgelist --
output representation
def random_surfing(adj_matrix, max_step, alpha):
    # Random Surfing
    nm_nodes = len(adj_matrix)
    adj_matrix = scale_sim_mat(adj_matrix)
    P0 = np.eye(nm_nodes, dtype='float32')
    M = np.zeros((nm_nodes, nm_nodes), dtype='float32')
    P = np.eye(nm_nodes, dtype='float32')
    for i in range(0, max_step):
        P = alpha * np.dot(P, adj_matrix) + (1 - alpha) * P0
        M = M + P
    return M
def PPMI_matrix(M):
   M = scale_sim_mat(M)
    nm_nodes = len(M)
    col_s = np.sum(M, axis=0).reshape(1, nm_nodes)
    row_s = np.sum(M, axis=1).reshape(nm_nodes, 1)
    D = np.sum(col_s)
    rowcol_s = np.dot(row_s, col_s)
    np.seterr(divide='ignore')
    PPMI = np.log(np.divide(D * M, rowcol_s))
    PPMI[np.isnan(PPMI)] = 0.0
    PPMI[np.isinf(PPMI)] = 0.0
    PPMI[np.isneginf(PPMI)] = 0.0
    PPMI[PPMI < 0] = 0.0
    return PPMI
def model(data, hidden_layers, hidden_neurons, output_file, validation_split=0.9
    train_n = int(validation_split * len(data))
    batch_size = 50
```

```
train_data = data[:train_n, :]
val_data = data[train_n:, :]
input_sh = Input(shape=(data.shape[1],))
encoded = noise.GaussianNoise(0.2)(input_sh)
for i in range(hidden_layers):
    encoded = Dense(hidden_neurons[i], activation='relu')(encoded)
    encoded = noise.GaussianNoise(0.2)(encoded)
# input 128 64 32 64 128 output
# //[128, 64, 32]
decoded = Dense(hidden_neurons[-2], activation='relu')(encoded)
for j in range(hidden_layers - 3, -1, -1):
    decoded = Dense(hidden_neurons[j], activation='relu')(decoded)
decoded = Dense(data.shape[1], activation='sigmoid')(decoded)
autoencoder = Model(input_sh, decoded)
autoencoder.compile(optimizer='adadelta', loss='mse')
checkpointer = ModelCheckpoint(filepath='data/bestmodel' + output_file + ".h
earlystopper = EarlyStopping(monitor='val_loss', patience=15, verbose=1)
train_generator = DataGenerator(batch_size, train_data, train_data)
val_generator = DataGenerator(batch_size, val_data, val_data)
autoencoder.fit_generator(train_generator,
                          steps_per_epoch=len(train_data),
                          epochs=100,
                          verbose=1,
                          validation_data=val_generator,
                          validation_steps=len(val_data),
                          max_queue_size=batch_size,
                          callbacks=[checkpointer, earlystopper])
enco = Model(input_sh, encoded)
enco.compile(optimizer='adadelta', loss='mse')
reprsn = enco.predict(data)
return reprsn
```

Console Output:

*** Generating Adjacency matrix (EDGELIST) ***

Num GPUs Available: 0

** Training DNGR (Deep Neural Network For Learning Graph Representa-

tion) Model ***

** Data: wine.edgeList Calling ... DNGR Model

** Parameters DNGR Model ***

Filename: wine.edgelist Graph Type: undirected

(Random Surfing) Ksteps: 10

(PPMI) alpha: 0.98

 $(AutoEncoder)\ Hidden\ Layers:\ 3$

(AutoEncoder) Hidden Neurons: [128, 64, 32]

```
Epoch 00100: val-loss improved from 0.23136 to 0.23124, saving model to data/bestmodelrepresentation.hdf5
Preprocessing the data using PCA...
Computing pairwise distances...
Computing P-values for point 0 of 178 ...
Mean value of sigma: 0.008671895811543645
Iteration 10: error is 11.369875219491831
Iteration 20: error is 9.80103401468988
Iteration 30: error is 10.893799513029181
Iteration 40: error is 11.059345662952541
Iteration 50: error is 11.061018372618026
Iteration 60: error is 10.94345349413246
Iteration 70: error is 10.87103052174422
...
...
Iteration 990: error is 0.28491236291143884 Iteration 1000: error is 0.2849123629114369
```


Figure 4.2: Wine classified for the given wine input

Conclusion

- A Deep Graph Representation Model that encodes vertex representation in a low dimension
- Uses Random surfing and SDAE as the main components
- \bullet Experiments showed it outperformed many baseline algorithms

References

- [1] Wei Lu Shaosheng Cao and Qiongkai Xu. Deep neural networks for learning graph representations. Xidian University, Singapore University of Technology and Design and Australian National University Nation UCT Australia -CRL.
- [2] Omer Levy and Yoav Goldberg. Neuralword embedding as implicit matrix factorization. *Bar-Ilan University*.
- [3] Bullinara and Levy. Positive pointwise mutual information. 2007.
- [4] Mikolov et al. Skip gram negative sampling. 2013.
- [5] Al-Rfou Perozzi and Skiena. Deepwalk. 2014.
- [6] Gutmann Michael and Hyv arinen Aapo. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. *Journal of Machine Learning Research*, 135(35):13096–13106, 2013.