Contents

Uebung zum 3. Blatt															1						
1.																					1
2 .																					2
3 .																					2
	3.1																				2
4 .																					2
5.																					2

2015-05-19 14:43:46

Uebung zum 3. Blatt

1

geg. "Nachfolger" gegen Uhrzeigersinn, Theta-Funktionen, etc wie in Angabe.

- OGDF: C++ bib zum ausprobieren, Enthält Graphstrukturen
- yEd: Grapheditor

Von beliebigem Knoten alle Kreise entlanggehen und füllen - geht nicht wegen Doppelkanten z.B. bei Knoten mit Grad 1

Siehe mehr oder weniger http://i11www.iti.uni-karlsruhe.de/_media/teaching/winter2006/algorithmengineering/triangulierung.pdf

- Für alle $v \in V$
 - $-\,$ Für alle Kanten e indizent zu v
 - * $e' = \Theta(e)$
 - * trianguliere Facette die (e,e') enthält
 - * $e'' = \Theta^*(e')$
 - * wenn $\overline{e} = \Theta^*(e'')$ dann
 - · fertig
 - * wenn $\{v, t(e'')\} \in E$ dann
 - · füge $\{s(e''), t(\Theta^*(e''))\}$ ein
 - · trianguliere(e,e')
 - * sonst

```
· füge e_{neu} = \{v, t(e'')\} ein
```

Damit in Linearzeit ist, um den Algorithmus oben außenrum:

- N[] = Array der Größe n (initialisiert mit 0)
- Für alle $v \in V$
 - Für alle Nachbarn u von v $(O(\deg(v)),\,|V|$ mal => $O(Anzahl \, kanten))$
 - * N[u] = 1
 - -Für alle Kanten indizent zu v
 - * ... siehe oben
 - Für alle Nachbarn u von v
 - * N[u] = 0

 $\mathbf{2}$

unwichtig

3

3.1

Nein, Beispiel:

- Einfacher Pfad mit
n Knoten: \$ h \geq n/2 \$
- "Nested-Triangles"-Graph: $n = 3j + 1, h \ge j/2$

4

unwichtig

5

(a) BFS O(m)

(Aufgabenstellung falsch, sollte sein "oder entscheidet, dass v nicht auf einem Kreis in G liegt")

(b) BFS von jedem Knoten aus O(n*m)

[·] trianguliere (e, e_{neu})

- (c) Planar Separator Theorem verwenden:
- G_1, G_2 mit $n/3 \le k \le 2n/3$ Knoten S mit $4\sqrt{n}$ Knoten

$$T(n) = T(\alpha_1 n) + T(\alpha_2 n) + O(n\sqrt{n}) \in \Theta(n^k) = \Theta(n\sqrt{n})$$

(Mastertheorem anwenden)