Conclusions Neural Network TV Modeling CV Modeling Bow

PROCESAMIENTO DEL LENGUAJE NATURAL

OBJETIVO:

Este proyecto tiene como objetivo realizar Sentiment Analysis sobre un conjunto de datos provistos por los usuarios de la plataforma Yelp, usando varios algoritmos de Machine Learning.

eural Network TV Modeling CV Modeling BoW

DATOS DE ORIGEN

Para clasificar los comentarios en POSITIVOS ó NEGATIVOS, se usarán los siguientes atributos:

stars	cantidad de estrellas otorgadas por el usuario en referencia a la review		
text	revisión realizada por el usuario sobre un determinado negocio		
cool	cantidad de votos por haber sido una review "genial"		
funny	cantidad de votos por haber sido una review "divertida"		
useful	cantidad de votos por haber sido una review "útil"		

CANTIDAD DE INFORMACIÓN PROCESADA:

✓ ATRIBUTOS: 5 COLUMNAS

✓ REGISTROS: 30.000k FILAS

TV Modeling CV Modeling

DISTRIBUCIÓN DE LA VARIABLE STARS

Por cada revisión un usuario dio una puntuación de 1 a 5 estrellas. Para pronosticar si una revisión es "positiva" o "negativa", tomaremos la variable de texto como predictor y la variable de estrellas como objetivo (target).

leural Networ

TV Modeling CV Modeling

LAS 20 PALABRAS MÁS IMPORTANTES

Podemos encontrar que no importa la estrella que obtenga un lugar, las palabras más frecuentes son comida, servicio y algunas otras palabras (bueno, estupendo, etc.) que se utilizan para describir la calidad de los mismos.

Modeling

Neural

LAS 100 PALABRAS MÁS USADAS PARA REVIEWS CON 3 STARS 6 MENOS

horrible nothing records of the lived recently stars wents of the lived recently stars of the lived recently stars

conflicted foodsaid
serve Ordered options forward rows crowds to review reviewing review last resslooking hour

BoW

CV Modeling

EDA

About

CLASIFICADORES MÁS FRECUENTES PARA LAS REVIEWS

TV Modeling
CV Modeling
BoW

Conclusions

Modeling CV Modeling

BoW

0.7

0.6 0.5

0.4

0.3

stars

RELACIÓN ENTRE LA CANTIDAD DE STARS Y TIPOS DE VOTACIÓN

Las calificaciones más bajas parecen haber sido votadas como "divertidas" en comparación con las reseñas con una calificación de estrellas más alta.

Neural Network TV Modeling

CV Modeling

RELACIÓN ENTRE LA CANTIDAD DE STARS Y DURACIÓN DE LA REVIEW

Las personas que tienden a calificar un lugar con 3 estrellas ó menos, tienen en promedio **140** palabras en sus reseñas, mientras que las personas que evalúan un lugar con un comentario de 4-5 estrellas, tienen un promedio de **98** palabras en sus reseñas.

BoX

ELIMINACIÓN **REVIEWS NEUTRAS**

CLASIFICACIÓN **BINARIA**

Para trabajar con un análisis más polarizado, se eliminan los comentarios con 3 estrellas

Se toma una muestra de datos, donde se asigna 1 a las reviews consideradas positivas y O a las consideradas negativas

BALANCEO DE LOS **DATOS**

Se balancean las clases, para que el desequilibrio entre estrellas, no influya en los resultados del modelo

Conclusions Annual Network

TV Modeling CV Modeling

Eliminación de Ruido

Proceso Reviews en otro idioma

 Se toman una muestra para entrenar los modelos y otra para prueba

Separar Set

Train & Test

- Poner texto en minúsculas
- ✓ Tokenizar
- Quitar números
- Quitar signos de puntuación
- Quitar token vacíos
- Quitar tokens con una letra

- Se identifican los comentarios en otro idioma
- Se eliminan los comentarios a los cuales no se les pudo identificar el idioma
- Se traducen al inglés los comentarios para los cuales se encontró idioma

IMPLEMENTACIÓN COUNT VECTORIZER

Naive Bayes

KNN (12 vecinos)

Conclusions
eural Networ
TV Modeling

METRICS	NAIVE BAYES	KNN
Accuracy	0.88	0.71
✔ Precisión	0.86	0.75
✓ Recall	0.90	0.64
✓ F1 score	0.88	0.69

BoW EDA About

IMPLEMENTACIÓN TFIDF VECTORIZER

Naive Bayes

KNN (12 vecinos)

TV Modeling
CV Modeling

Naive Bayes

CURVA ROC

CV Modeling TV Modeling

BoW

KNN (12 vecinos)

RED NEURONAL

Embedding

Con GloVe de 50D pre entrenado

Conv1D

Con 2 filtros y kernel size 5

MaxPooling

Reducción de dimensión

Flatten

Unidimensionalidad para ingreso a capa Densa

TV Modeling
CV Modeling

Neural Networ

BoW

ED/

Modelo1

Modelo 2

64 - 48 -1 Neuronas Activación Relu Conv1D 2 filtros 64 - 48 -1 Neuronas Activación Relu Conv1D 20 filtros

METRICS	MODELO 1	MODELO 2
Accuracy	0.76	0.84
✔ Precisión	0.76	0.84
✓ Recall	0.77	0.84
✓ F1 score	0.76	0.84

RED NEURONAL

TV Modeling
CV Modeling

EDA

Neural Network

TV Modeling
CV Modeling

BoW

NEGATIVOS

Selección del Modelo final

MÉTRICAS	NB (con CV)	NB (con TF)	RED NEURONAL
Accuracy	0.88	0.89	0.76
Precisión	0.86	0.90	0.76
Recall	0.90	0.87	0.77
F1 score	0.88	0.89	0.76

Conclusions

TV Modeling

Neural Network

CV Modeling

Integrantes:

Agustina Ghelfi, Cecilia Manoni, Carolina Guzmán, Noelia Ferrero