Stochastic Revealed Preferences with Measurement Error

Victor H. Aguiar and Nail Kashaev

University of Western Ontario

SAET Conference, July 1, 2019

Motivation

- A long-standing question about consumer behavior is whether it is consistent with the utility maximization theory (UMT):
 - Static utility maximization (Afriat (1967)).
 - The intertemporal consumption with exponential discounting (Browning (1989)).
- Measurement error is a well-known issue: Surveys, Experiments, Scanner.
- A key concern: deterministic revealed preferences (RP) tests may overreject the null hypothesis in the presence of measurement error.

Our contribution (methodological)

- New statistical framework to test for any RP model that can be characterized by first-order conditions.
 - Explicitly account for measurement error.
 - No parametric assumptions about preferences or heterogeneity.
 - No strong distributional assumptions about measurement error. Based on centering conditions.
 - Measurement error in RP models Varian (1985), Tsur (1989), Hjerstrand (2013), Adams et.al (2014), Cherchye et. al (2017).
- General methodology to make out-of-sample predictions or counterfactual analysis with minimal assumptions.

Our contribution (empirical)

- We test for dynamic rationalizability with exponential discounting (ED) in a consumer panel data set from Spain.
 - Fail to reject the model for single-individual households.
 - Reject for couples' households.
- We test for static rationalizability (R) in a experimental data set (Ahn et al. (2014))
 - Fail to reject the model with measurement error in prices due to missperception.
 - Reject for the case of implementation error in consumption decisions (trembling hand).

Exponential-discounting model

- Dynamic rationalizability with ED. The paper is more general.
- $T = \{0, \dots, T\}$ finite horizon.
- $u(\cdot)$ concave, locally nonsatiated, and continuous instantaneous utility function.
- $d \in (0, 1]$ discount factor; $p_t \in \mathbb{R}_{++}^L$ price vector.
- At time τ , the consumer is maximizing

$$u(c_{\tau})+\sum_{j=1}^{I-\tau}d^{j}u(c_{\tau+j}),$$

s.t.

$$p_t^{\mathsf{T}} c_t - y_t + s_t - a_t = 0, \quad t = \tau, \dots, T.$$

- y_t , s_t , a_t , r_t income, savings, assets, and interest rate.
- Assets evolve according to $a_t = (1 + r_t)s_{t-1}$.
- $(p_t, r_t, c_t)_{t \in \mathcal{T}}$ is observed.

ED-rationalizability

Definition

(ED-rationalizability) A deterministic array $(p_t, r_t, c_t)_{t \in \mathcal{T}}$ is ED-rationalizable if \exists a concave, l.n.s., and cont. fnct u, $(y_t)_{t \in \mathcal{T}} \in \mathbb{R}^{|\mathcal{T}|}_{++}$ and $a_0 \geq 0$ such that the consumption stream $(c_t)_{t \in \mathcal{T}}$ solves:

$$\max_{z \in \mathbb{R}_{+}^{L \times |\mathcal{T}|}} u(z_0) + \sum_{t=1}^{T} d^t u(z_t),$$

subject to

$$p_0^{\mathsf{T}} z_0 + \sum_{t=1}^{T} \frac{p_t^{\mathsf{T}} z_t}{\prod_{i=1}^{t} [1+r_i]} = \sum_{t=1}^{T} \frac{y_t}{\prod_{i=1}^{t} [1+r_i]} + a_0.$$

Fist-order-condition characterization

Browning (1989)

Let $\rho_t = p_t / \prod_{j=1}^t (1+r_j)$. A deterministic array $(\rho_t, c_t)_{t \in \mathcal{T}}$ is ED-rationalizable if and only if there exists a pair (u, d) such that

- **1** $u: \mathbb{R}^{L}_{+} \to \mathbb{R}$ is a concave, locally nonsatiated, and continuous function;
- **2** $d \in (0, 1]$;
- 3 $\nabla u(c_t) \leq d^{-t}\rho_t$ for every $t \in \mathcal{T}$. If $c_{t,j} \neq 0$, then $\nabla u(c_t)_j = d^{-t}\rho_{t,j}$, where $c_{t,j}$, $\nabla u(c_t)_j$, and $\rho_{t,j}$ are the j-th components of c_t , $\nabla u(c_t)$, and ρ_t , respectively.
- Static utility maximization, quasilinear utility, cost minimization, hyperbolic discounting and many others can be written as FOC.
- $u(\cdot)$ is a latent infinite-dimensional parameter.
- Parametric utility vs. shape restrictions.

Statistical rationalizability

- Boldface font to denote random objects and regular font for deterministic ones.
- Each individual is an i.i.d. draw from some stochastic consumption rule.
- That is, every individual has her own $u(\cdot)$, d, income, prices etc.
- Similarly to the deterministic case

Definition

- (s/ED-rationalizability) A random array $(\rho_t, \mathbf{c}_t^*)_{t \in \mathcal{T}}$ is s/ED-rationalizable if there exists a pair (\mathbf{u}, \mathbf{d}) such that
 - 1 u is a random, concave, locally nonsatiated, and continuous function;
 - **2 d** is supported on or inside (0, 1];
 - **3** $\nabla u(\mathbf{c}_t^*) \leq d^{-t} \rho_t$ a.s. for all $t \in \mathcal{T}$;
 - **4** For every $j=1,\ldots,L$ and $t\in\mathcal{T}$, it must be that $\Pr(\mathbf{c}_{t,j}^*\neq 0, \nabla u(\mathbf{c}_t^*)_j < d^{-t}\rho_{t,j}) = 0.$

Elimination of utility function

Lemma

For a given random array $(\rho_t, \mathbf{c}_t^*)_{t \in \mathcal{T}}$, the following are equivalent:

- **1** The random array $(\rho_t, \mathbf{c}_t^*)_{t \in \mathcal{T}}$ is s/ED-rationalizable.
- **2** There exist a positive random $(\mathbf{v}_t)_{t\in\mathcal{T}}$ and $\mathbf{d}\in(0,1]$ such that

$$\mathbf{v}_t - \mathbf{v}_s \ge d^{-t} \boldsymbol{\rho}_t^\mathsf{T} (\mathbf{c}_t^* - \mathbf{c}_s^*)$$
 a.s., $\forall s, t \in \mathcal{T}$.

- Stochastic version of the deterministic case.
- BUT, the problem is still infinite-dimensional since the distribution of v and d is unknown.

Technical Point: Approximate rationalizability

Consider the case of a consumer who maximizes

$$V_{\tau}(c) = u(c_{\tau}) + \beta \sum_{j=1}^{T-\tau} d^{j} u(c_{\tau+j}),$$

where $\beta \in (0, 1]$ is the present-bias parameter.

• if $\beta \to 1$, then the consumption stream generated by this model is arbitrarily close to the ED-rationalizable behavior.

Definition

(Approximate s/ED-rationalizability) We say that $(\rho_t, \mathbf{c}_t^*)_{t \in \mathcal{T}}$ is approximately consistent with s/ED-rationalizability if there exists a sequence of random variables $(d_k, \mathbf{v}_k^\mathsf{T})^\mathsf{T} \in (0, 1] \times \mathbb{R}_+^{|\mathcal{T}|}$, $k = 1, 2, \ldots$, such that

$$\Pr\left(\mathbb{1}(\mathbf{v}_{k,t}-\mathbf{v}_{k,s}\geq d_k^{-t}\boldsymbol{\rho}_t^\mathsf{T}[\mathbf{c}_t^*-\mathbf{c}_s^*])=1\right)\to_{k\to+\infty}1,$$

for all $s, t \in \mathcal{T}$.

Measurement error

• Define the **measurement error** $\mathbf{w} = (\mathbf{w}_t)_{t \in \mathcal{T}} \in \mathcal{W}$ as the difference between reported consumption and prices, $\mathbf{c} = (\mathbf{c}_t)_{t \in \mathcal{T}}$ and $\boldsymbol{\rho} = (\boldsymbol{\rho}_t)_{t \in \mathcal{T}}$; and true consumption and prices, $(\mathbf{c}_t^*)_{t \in \mathcal{T}}$ and $(\boldsymbol{\rho}_t^*)_{t \in \mathcal{T}}$. That is,

$$\mathbf{w}_t = \left(egin{array}{c} \mathbf{w}_t^c \ \mathbf{w}_t^p \end{array}
ight)$$
 ,

where $\mathbf{w}_t^c = \mathbf{c}_t - \mathbf{c}_t^*$ and $\mathbf{w}_t^p = \boldsymbol{\rho}_t - \boldsymbol{\rho}_t^*$ for all $t \in \mathcal{T}$.

• As a result, a random array $\mathbf{x} = (\boldsymbol{\rho}_t, \mathbf{c}_t)_{t \in \mathcal{T}}$ can be s/ED-rationalized if and only if there exist $(\mathbf{d}, \mathbf{v}_t, \mathbf{w}_t)_{t \in \mathcal{T}}$, with \mathbf{d} supported on or inside (0, 1] such that

$$\mathbf{v}_t - \mathbf{v}_s \ge \mathbf{d}^{-t} (\mathbf{\rho}_t - \mathbf{w}_t^p)^\mathsf{T} (\mathbf{c}_t - \mathbf{c}_s + \mathbf{w}_s^c - \mathbf{w}_t^c)$$
 a.s., $\forall s, t \in \mathcal{T}$.

 Measurement error is an additional latent variable with unknown distribution.

Centering condition

Without additional restrictions on ${\bf w}$ the RP tests have no power: any data can be rationalized.

- $\mathbf{e} = (\mathbf{d}, \mathbf{w}^\mathsf{T}, \mathbf{v}^\mathsf{T})^\mathsf{T}$ latent random variables.
- x vector of observed quantities.

Assumption

(Centered Measurement Error) (i) The random vector \mathbf{e} is supported on or inside E|X. (ii) There exists a known measurement error moment $g_M: X \times E|X \to \mathbb{R}^{d_M}$ such that

$$\mathbb{E}[g_M(\mathbf{x},\mathbf{e})]=0.$$

The choice of g_M depends on the application and the assumptions the researcher is willing to make given the knowledge about the nature of measurement error.

Centering Conditions: Survey Panel Datasets

For survey datasets, we consider measurement error in consumption:

• Measurement error does not alter the mean value of total expenditure:

$$\mathbb{E}\left[\boldsymbol{\rho}_t^\mathsf{T}\mathbf{c}_t\right] = \mathbb{E}\left[\boldsymbol{\rho}_t^{*\mathsf{T}}\mathbf{c}_t^{*}\right]$$

- Consumers' recall mistakes, in terms of expenditures, average out (Evidence from Denmark Abildgren et al. (2018) from validation data).
- This assumption is compatible with nonclassical measurement error in consumption.
- In our main application we assume that $\rho_t^* = \rho_t$ a.s. (error in consumption more severe than error in prices).

Assumption

(Mean Budget Neutrality) $\mathbb{E}\left[\boldsymbol{\rho}_t^\mathsf{T}\mathbf{w}_t^c\right] = 0$, for all $t \in \mathcal{T}$.

Econometric framework

Define

$$g_{l,t,s}(\mathbf{x}, \mathbf{e}) = \mathbb{1}(\mathbf{v}_t - \mathbf{v}_s - \mathbf{d}^{-t}\boldsymbol{\rho}_t^{\mathsf{T}}[\mathbf{c}_t - \mathbf{w}_t - \mathbf{c}_s + \mathbf{w}_s] \ge 0) - 1,$$

$$g_{M,t}(\mathbf{x}, \mathbf{e}) = \boldsymbol{\rho}_t^{\mathsf{T}}\mathbf{w}_t,$$

$$g(\mathbf{x}, \mathbf{e}) = (g_{l,t,s}(\mathbf{x}, \mathbf{e}), g_{M,t}(\mathbf{x}, \mathbf{e}))_{t,s}$$

• $k = |\mathcal{T}|^2 - |\mathcal{T}|$ and $q = |\mathcal{T}|$ moment functions which correspond to inequality conditions (g_I) and the mean budget-neutrality conditions (g_M) .

Econometric framework

Theorem

Suppose that the Mean Budget Neutrality condition is satisfied. Then the following are equivalent:

1 $\mathbf{x} = (\boldsymbol{\rho}_t, \mathbf{c}_t)_{t \in \mathcal{T}}$ is approximately s/ED-rationalizable.

$$\inf_{\mu \in \mathcal{P}_{E|X}} \|\mathbb{E}_{\mu imes \pi_0} \left[g(\mathbf{x}, \mathbf{e}) \right] \| = 0,$$

where $\pi_0 \in \mathcal{P}_X$ is the observed distribution of \mathbf{x} , and $\mathcal{P}_{E|X}$ is the set of all probability measures defined over the support of $\mathbf{e}|\mathbf{x}$.

ELVIS

- Note that $\mathcal{P}_{E|X}$ is an infinite-dimensional space.
- We can use Entropic Variable Integration via Simulation (ELVIS) (Schennach (2014)).
- Define maximum-entropy moment condition (MEM) as

$$h(x; \gamma) = \frac{\int_{e \in E|X} g(x, e) \exp(\gamma^{\mathsf{T}} g(x, e)) d\eta(e|x)}{\int_{e \in E|X} \exp(\gamma^{\mathsf{T}} g(x, e)) d\eta(e|x)},$$

- $\gamma \in \mathbb{R}^{k+q}$ is a nuisance parameter.
- $\eta(\cdot|\cdot) \in \mathcal{P}_{E|X}$ is a user-input distribution function.
- The MEM depends only on the observable random variables.

ELVIS

Theorem

Suppose that the Mean Budget Neutrality condition is satisfied. Then the following are equivalent:

- **1** $\mathbf{x} = (\boldsymbol{\rho}_t, \mathbf{c}_t)_{t \in \mathcal{T}}$ is approximately s/ED-rationalizable.
- 2

$$\inf_{oldsymbol{\gamma}\in\mathbb{R}^{k+q}}\|\mathbb{E}_{\pi_0}\left[\,h(\mathbf{x};oldsymbol{\gamma})\,
ight]\|=0,$$

where $\pi_0 \in P_X$ is the observed distribution of **x**.

- Necessary and sufficient conditions for the observed data to be s/ED-rationalizable.
- Distribution of unobservables is not identified.

Semi-analytic solution

- One can directly employ the MEM to test the model. However,
 - **1** The number of MEM is $k + q = |\mathcal{T}|^2$
 - 2 Nonstandard testing if $\|\gamma\| = \infty$

Theorem

Suppose that (i) x has a bounded support; (ii) the distribution of $\rho_t^T w_t$ is nondegenerate for all $t \in \mathcal{T}$; (iii) the Mean Budget Neutrality condition is satisfied. Then the following are equivalent:

- **1** $\mathbf{x} = (\boldsymbol{\rho}_t, \mathbf{c}_t)_{t \in \mathcal{T}}$ is approximately s/ED-rationalizable.
- 2

$$\min_{oldsymbol{\gamma}_M \in \mathbb{R}^q} \left\| \mathbb{E}_{\pi_0} \left[\, \widetilde{h}_M(\mathbf{x}; oldsymbol{\gamma}_M) \,
ight]
ight\| = 0,$$

where

$$\tilde{h}_{M}(x; \gamma) = \frac{\int_{e \in E|X} g_{M}(x, e) \exp(\gamma^{\mathsf{T}} g_{M}(x, e)) \mathbb{1}(g_{I}(x, e) = 0) d\eta(e|x)}{\int_{e \in E|X} \exp(\gamma^{\mathsf{T}} g_{M}(x, e)) \mathbb{1}(g_{I}(x, e) = 0) d\eta(e|x)}$$

- We need to minimize the globally convex objective function over a much smaller parameter space.
- If the data is consistent with s/ED-rationalizability, then the minimizer has to be finite and unique.

Testing

- $\{\mathbf{x}_i\}_{i=1}^n$ sample of size n
- Define sample analogues of the MEM and the MEM-variance matrix:

$$\hat{\tilde{h}}_{M}(\gamma) = \frac{1}{n} \sum_{i=1}^{n} \tilde{h}_{M}(\mathbf{x}_{i}, \gamma);$$

$$\hat{\tilde{\Omega}}(\gamma) = \frac{1}{n} \sum_{i=1}^{n} \tilde{h}_{M}(\mathbf{x}_{i}, \gamma) \tilde{h}_{M}(\mathbf{x}_{i}, \gamma)^{\mathsf{T}} - \hat{\tilde{h}}_{M}(\gamma) \hat{\tilde{h}}_{M}(\gamma)^{\mathsf{T}}.$$

• Test statistic:

$$\mathsf{TS}_n = n \inf_{\gamma \in \mathbb{R}^q} \hat{\tilde{h}}_M(\gamma)^\mathsf{T} \hat{\tilde{\Omega}}^-(\gamma) \hat{\tilde{h}}_M(\gamma).$$

Testing

Theorem

Suppose the above assumptions hold and $\{x_i\}_{i=1}^n$ is i.i.d. Then under H_0 that the data is consistent with s/ED-rationalizability, it follows that

$$\lim_{n\to\infty} \Pr(\mathsf{TS}_n > \chi^2_{q,1-\alpha}) \le \alpha,$$

for every $\alpha \in (0, 1)$.

If, moreover, the eigenvalues of $\mathbb{V}[\tilde{h}_B(\mathbf{x}, \gamma)]$ are bounded and bounded away from 0 uniformly in γ , then, under H_1 , it follows that

$$\lim_{n\to\infty} \Pr(\mathsf{TS}_n > \chi^2_{q,1-\alpha}) = 1.$$

Inference on parameters/Counterfactuals

- Additional restrictions that come in the form of moments or support restrictions on the latent variables.
- The parameter of interest θ_0 is related to the model via the known function $g_R: X \times E \times \Theta \to \mathbb{R}^{d_R}$ such that

$$\mathbb{E}_{\mu\times\pi_0}\left[\,g_R(\mathbf{x},\mathbf{e};\theta_0)\,\right]=0.$$

- Expected true consumption at time τ : $g_R(x, e; \theta_0) = c_\tau w_\tau \theta_0$.
- Support of the discount factor: $g_R(x, e; \theta_0) = \mathbb{1}(\theta_{01} \le d \le \theta_{02}) 1$.
- Add additional moments to the original ones and compute the test statistic for a fixed θ_0 .
- The (1α) -confidence set for θ_0 is

$$\{\theta_0 \in \Theta : \mathsf{TS}_n(\theta_0) \le \chi^2_{q+d_R,1-\alpha}\},$$

• We can construct confidence sets for counterfactuals and out-of-sample predictions.

Asymptotic Power

- Is the alternate hypothesis non-empty?
- Example: $\rho_0 = (1, 1)^T$, $\rho_1 = (2, 2)^T$, $\mathbf{c}_0 = (1, 1)^T$, $\mathbf{c}_1 = (2, 2)^T$.
- (Contradiction) $\exists \ \mathbf{d} \in (0, 1], \ \{\mathbf{w}_t^c\}_{t=0,1}, \ \{\mathbf{v}_t\}_{t=0,1} \ \text{s.t.}$

$$\mathbf{v}_{1} - \mathbf{v}_{0} \geq \frac{\rho_{1}^{\mathsf{T}}}{\mathbf{d}} (c_{1} - c_{0}) + \frac{\rho_{1}^{\mathsf{T}}}{\mathbf{d}} (\mathbf{w}_{1} - \mathbf{w}_{0}) \text{ a.s.,}$$

$$\mathbf{v}_{0} - \mathbf{v}_{1} \geq \rho_{0}^{\mathsf{T}} (c_{0} - c_{1}) + \rho_{0}^{\mathsf{T}} (\mathbf{w}_{0} - \mathbf{w}_{1}) \text{ a.s.,}$$

$$\mathbb{E} [\rho_{0} \mathbf{w}_{0}] = \mathbb{E} [\rho_{1} \mathbf{w}_{1}] = 0.$$

- $\Longrightarrow \frac{d}{2}(\mathbf{v}_1 \mathbf{v}_0) \ge (\mathbf{v}_1 \mathbf{v}_0) \text{ a.s. } \Longrightarrow \mathbf{v}_0 \ge \mathbf{v}_1 \text{ a.s..}$
- Taking expectations on the first inequality, applying Mean Budget Neutrality (contradiction):

$$0 \geq \mathbb{E}\left[\mathbf{d}(\mathbf{v}_1 - \mathbf{v}_0)\right] \geq 4 + \mathbb{E}\left[\rho_1^\mathsf{T}(\mathbf{w}_0 - \mathbf{w}_1)\right] = 4$$

Empirical application

- Data: The Spanish Continuous Family Expenditure Survey (1985-1997).
- 185 individuals, 2004 couples.
- Prices and expenditures for 17 categories of goods recorded over 4 consecutive quarters (e.g., all food and nonalcoholic drinks, all clothing, household services, public transport, petrol, food consumed outside the home).
- Nominal interest rate on consumer loans faced by the household in any particular quarter.

Empirical application

- We assume that **d** is supported on or inside (0.1, 1].
- We also perform the deterministic test of Browning(1989).

Results

- Singles: Browning 81.1% of rejections; our test fails to reject at 95% confidence level. (the same conclusion for d ∈ [0.99, 1))
- Couples: Browning 88.5% of rejections; our test rejects at 95% confidence level (*p*-value< 0.001).

Conclusion

- Measurement error may lead to substantial overrejections in deterministic RP tests.
- We propose a methodology to test several RP models that can be characterized by FOC allowing for measurement error.
- We provide a general methodology to make out-of-sample predictions or counterfactual analysis with minimal assumptions.
- We do not make parametric assumptions about preferences or heterogeneity, nor impose strong distributional assumptions on measurement error.
- We find support for ED for single-individual households, and we reject the null hypothesis of ED for the case of couples.

Related literature

- RP models Afrijat (1967), Rockafellar (1970), Browning (1989), Brown & Calsamiglia (2007), Forges & Minelli (2009), Beatty & Crawford (2011), Kitamura and Stoye (2016), Blow et. al (2017), Deb et al. (2018).
- Measurement error in RP models Varian (1985), Tsur (1989), Hjerstrand (2013), Adams et.al (2014), Cherchye et. al (2017), Echenique, Lee, and Shum (2011)
- Latent variable Galichon & Henry (2013), Ekeland at. al (2010), Schennach (2014).