Laboratory 2

Ex. 1

The task is to generate orthonormal matrix of dimension 1000×950 and fit regression model:

$$Y = X\beta + \varepsilon$$
,

with $\varepsilon \sim N(0, I)$ and different number of nonzero β_i .

i) Calculating the value of the tuning parameter γ for the ridge regression, so as to minimize the mean square error of the estimation of β :

$$\gamma_0 = \underset{\gamma}{arg \, minMSE} = \underset{\gamma}{arg \, min} \mathbb{E} \|\hat{\beta} - \beta\|^2$$
$$\frac{\partial MSE}{\partial \gamma} = \frac{\partial}{\partial \gamma} \left[\frac{\gamma^2}{(1+\gamma)^2} \|\beta\|^2 + \frac{p}{(1+\gamma)^2} \right] = 0 \Rightarrow \gamma_0 = \frac{p}{\|\beta\|^2}$$

ii) Calculating the bias, the varaiance and the mean squared error of this optimal estimator:

$$\hat{\beta} = \left(X^T X + \gamma I\right)^{-1} X^T Y = \frac{1}{1+\gamma} X^T Y \sim N \left(\frac{1}{1+\gamma}\beta, \frac{1}{(1+\gamma)^2} I\right)$$

$$Cov(\hat{\beta}) = \frac{1}{(1+\gamma)^2} I = \left(\frac{\|\beta\|^2}{p+\|\beta\|^2}\right)^2 I$$

$$tr(Cov(\hat{\beta})) = \frac{p}{(1+\gamma)^2}$$

$$Bias(\hat{\beta}) = \mathbb{E}\left(\hat{\beta} - \beta\right) = \frac{-\gamma}{1+\gamma}\beta = \frac{-p}{p+\|\beta\|^2}\beta$$

$$\|Bias(\hat{\beta})\|^2 = \left(\frac{-\gamma}{1+\gamma}\right)^2 \|\beta\|^2$$

$$MSE = \left(\frac{p}{p+\|\beta\|^2}\right)^2 \|\beta\|^2 + p\left(\frac{\|\beta\|^2}{p+\|\beta\|^2}\right)^2 = \frac{p\|\beta\|^2}{p+\|\beta\|^2}$$

iii) Finding the critical value and calculating power of the test based on ridge estimator:

$$H_{0i}: \beta_{i} = \beta_{0i} = 0, \quad H_{1i}: \beta_{i} \neq \beta_{0i} \neq 0$$

$$t = \left(\hat{\beta}_{i} - \frac{\beta_{0i}}{1 + \gamma}\right) (1 + \gamma) \stackrel{H_{0i}}{\sim} N(0, 1)$$

$$c = \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$$

$$c_{FWER} = \Phi^{-1} \left(1 - \frac{\alpha}{2p}\right)$$

$$t = \left(\hat{\beta}_{i} - \frac{\beta_{0i}}{1 + \gamma}\right) (1 + \gamma) \stackrel{H_{1i}}{\sim} N(\beta_{1i} - \beta_{0i}, 1)$$

$$power(\beta_{1i}) = \Phi(-c - \beta_{1i}) + 1 - \Phi(c - \beta_{1i})$$

iv) Generating 200 replicates of models with different numbers of nonzero β_i and comparing bias norm, sum of variances, MSE and power between ridge and OLS methods (??):

-		ŀ	oias	tr_c	cov	r	nse	pov	ver		}	oias	tr_	cov	n	ise	powe	er	fwei	•
_	20	154.8	838	39.9	932	194.	770	0.3	553	20	5.	101	953.	777	954.1	.09	0.36	60 (0.085	
	100	233.	703	301.3	354	535.0	057	0.3	553	100	4.	879	948.	361	948.4	98	0.35	4 (0.090	1
	200	191.5	274	493.2	285	684.5	559	0.3	53	200	4.	203	951.	731	951.1	76	0.35	52 (0.075	•
_	(a)	Theor	etical	l result	s for	ridge	regre	ssion					(b) Re	esults	for OI	S.				
		bias	${ m tr}_{_}$	_cov]	mse	pow	er	fwer				bias	${ m tr}_{_}$	cov		mse	pow	er	fwer
20	147	.315	47	.915	194.	991	0.4	80	0.345	2	20	154	.636	40.	.091	194	.526	0.3	60	0.085
100	144	.530	410	.945	553.	419	0.5	72	0.590	1	.00	234	.373	300.	.834	533	.703	0.3	54	0.090
200	77	350	651	.341	725.	435	0.5	44	0.440	2	200	195	.250	494.	184	686	.963	0.3	52	0.075

⁽c) Results for ridge (glmnet).

Table 1.1: Theoretical and empirical norm of bias, trace of covariance, MSE and power for different methods.

The table 1.1 presents results of those replications. Theoretical results are almost identical with ridge regression calculated "by hand". Using library glmnet gives worse results, among them not holding FWER on 0.1 level. Power of OLS is equal to ridge, because of modification in testing (OLS is equivalent to ridge regression with $\gamma=0$) so that it also holds FWER on 0.1 level. Testing OLS estimators using γ for corresponding ridge regression, gives power close to 1. The biggest difference between OLS and ridge is the MSE. It's much smaller for ridge, especially when there is not a lot of nonzero elements. MSE of OLS stays constant and its estimators have larger variances, but have lower biases.

Ex. 2

The task is to generate matrix $X_{1000\times950}$ such that its elements are iid random variables from $N(0,1/\sqrt{n})$ and then generating response variables like in previous task, using ridge regression with parameter choosen by minimizing SURE criterion and cross-validation, and OLS regression with model selected by MBIC2. Repeating experiment 100 times and comparing mean square errors of estimation of β and $\mu = X\hat{\beta}$:

$MSE(\beta)$	$\overline{MSE(\mu)}$	k	$MSE(\beta)$
202.727	173.743	20	245.000
672.375	415.725	100	1224.970
1074.386	526.216	200	2449.068
Results for	SURE.		(b) Results f
$MSE(\beta)$	$\overline{MSE(\mu)}$	k	$MSE(\beta)$
0022.413	955.572	20	187.255
19927.649	954.405	100	1111.707
13321.043	00-1-00		

Table 2.1: Results of MSE for different regression models with $\beta_1 = \ldots = \beta_k = 3.5$.

The table 2.1 presents results of those replications. We can infere, that MSE is always the lowest for ridge regression that minimizes prediction error (PE), but it's also the slowest one, because it needs a lot of computation to find right parameter γ . Also, the OLS method is always the worst one, but its always constant in its errors. Calculating ridge regression using cross-validation is quicker, but slightly worse than SURE method. Using OLS with mbic2 criterion is close to CV method.

Ex. 3

The task is to repeat the previous task, but with $\beta_1 = \ldots = \beta_k = 5$. Repeating experiment 100 times and comparing mean square errors of estimation of β and $\mu = X\hat{\beta}$:

⁽d) Results for ridge (by hand).

$MSE(\beta)$	$MSE(\mu)$	k	$MSE(\beta)$
352.566	273.389	20	500.000
1150.254	520.090	100	2498.567
1691.578	624.688	200	4998.986
a) Results for	SURE.		(b) Results f
$MSE(\beta)$	$\overline{MSE(\mu)}$	k	$MSE(\beta)$
18474.741	950.603	20	66.609
18093.470	948.889	100	322.703

Table 3.1: Results of MSE for different regression models with $\beta_1 = \ldots = \beta_k = 5$.

The table 3.1 presents results of those replications. The OLS method has not changed since the previous task. Every other MSE is bigger than in previous task, except the case of k = 100 for MBIC2. This could be, because of using function *stepwise* instead of *fast_forward*, which is used later for shortening the time of computations. Function *stepwise* is more accurate and gives better results.

Ex. 4

The task is to repeat task 2 and 3 when rows of X are iid random vectors from $\frac{1}{n}N(0,\Sigma)$, where $\Sigma_{ii}=1$ and for $i\neq j,\ \Sigma_{ij}=0.5$. Repeating experiment 100 times and comparing mean square errors of estimation of β and $\mu=X\hat{\beta}$:

a) $\beta_1 = \ldots = \beta_k = 3.5$

k	$MSE(\beta)$	$\overline{MSE(\mu)}$
20	258.676	1.474
10	00 1120.830	2.975
20	00 1915.784	6.862
	(a) Results for	SURE
7	$MSE(\beta)$	$MSE(\mu)$
0	36630614.619	942.881
.00	37688017.134	948.485
200	37694027.202	953.357
	(c) Results for	OLS

Table 4.1: Results of MSE for different regression models with $\beta_1 = \ldots = \beta_k = 3.5$ and $X_{ij} \sim \frac{1}{n}N(0,\Sigma)$.

k	$MSE(\beta)$	$MSE(\mu)$		k	$MSE(\beta)$	$MSE(\mu)$
20	271.406	136.201	·	20	239.243	372.386
100	752.439	335.354		100	1100.399	7239.309
200	5625.719	817.840		200	1961.677	27212.738
((a) Results for	r SURE			(b) Results f	for CV
k	$MSE(\beta)$	$MSE(\mu)$	-	k	$MSE(\beta)$	$MSE(\mu)$
20	38868.759	947.290	-	20	139.928	66.171
100	38036.446	945.243		100	682.457	300.042
200	38314.439	951.272		200	5049.350	1974.668
	(c) Results fo	r OLS	-	(d) Results for	MBIC2

Table 4.2: Results of MSE for different regression models with $\beta_1 = \ldots = \beta_k = 3.5$ and $X_{ij} \sim \frac{1}{\sqrt{n}} N(0, \Sigma)$.

b) /	$\beta_1 =$. =	β_k	=	5
------	-------------	--	-----	-----------	---	---

k	$MSE(\beta)$	$MSE(\mu)$
20	513.169	1.383
100	2235.171	4.339
200	3854.293	11.808
(a	a) Results for	SURE
	$MSE(\beta)$	$MSE(\mu)$
3	5474733.111	946.731
3	5860809.621	949.790
0 3	5080103.264	952.296
(c) Results for	OLS

Table 4.3: Results of MSE for different regression models with $\beta_1 = \ldots = \beta_k = 5$ and $X_{ij} \sim \frac{1}{n} N(0, \Sigma)$.

k	$MSE(\beta)$	$MSE(\mu)$
20	482.524	208.019
100	1757.673	487.038
200	12147.574	1035.190
((a) Results for	SURE
k	$MSE(\beta)$	$MSE(\mu)$
20	38538.776	947.913
100	38274.305	944.235
200	38533.282	949.673
	(c) Results for	r OLS

Table 4.4: Results of MSE for different regression models with $\beta_1 = \ldots = \beta_k = 5$ and $X_{ij} \sim \frac{1}{\sqrt{n}} N(0, \Sigma)$.

The tables 4.1 and 4.3 present results of those replications. Each experiment was also repeated twice for $X_{ij} \sim \frac{1}{n} N(0, \Sigma)$ and $X_{ij} \sim \frac{1}{\sqrt{n}} N(0, \Sigma)$ to check if the task contained error. Usually we divide by \sqrt{n} to make norm L_2 of each column around 1. Seems that this difference have mostly influence on $MSE(\mu)$, which is bigger when diving by square root.

Results throughout the experiments show that in those cases OLS mehtod is always the worst one and SURE method is the best, but also the slowest when comparing $MSE(\beta)$. OLS always has the same $MSE(\mu)$. CV mehtod is worse with growing number of nonzero elements than SURE. In some cases MBIC2 method could be better than CV (lower k).

Appendices

Ex. 1

```
Listing 1.1: Generating data.
generate_design <- function(n=1000, p=950) {
  X = \mathbf{matrix}(\mathbf{rnorm}(n*p, 0, 1/\mathbf{sqrt}(n)), n, p)
  return(X)
generate_response <- function(X, beta=3.5, nonzero=20, rdist=rnorm) {
  betas = c(rep(beta, nonzero), rep(0, ncol(X)-nonzero))
  X\%*\%betas + rdist(nrow(X))
                        Listing 1.2: Theoretical and empirical statistics.
\#i)
norm2 \leftarrow function(X) sum(X^2)
gamma_min <- function(beta) length(beta)/norm2(beta)
\#ii)
bias thr <- function(beta, gamma) -gamma/(1+gamma) * beta
bias_norm_thr <- function(beta, gamma) (gamma/(1+gamma))^2 * norm2(beta)
bias_norm_est <- function(beta, beta_hat) norm2(beta_hat - beta)
cov_beta_thr <- function(beta, gamma) 1/(1+gamma)^2 * diag(length(beta))
cov_trace_thr <- function(beta, gamma) length(beta)/(1+gamma)^2
cov_trace_est <- function(beta_hat) sum(diag(cov(beta_hat,beta_hat)))
mse_thr <- function(beta, gamma) bias_norm_thr(beta, gamma) + cov_trace_thr
    (beta, gamma)
se <- function(beta, beta_hat) sum((beta_hat - beta)^2)
\#iii)
power_thr <- function(beta1, p=950, alpha=.1) {
  \mathbf{c} = \mathbf{qnorm}(1 - \mathbf{alpha}/(2 * \mathbf{p}))
  \mathbf{pnorm}(-\mathbf{c} - \mathbf{beta1}) + 1 - \mathbf{pnorm}(\mathbf{c} - \mathbf{beta1})
power_est <- function(beta, beta_hat, gamma, p=950, alpha=.1) {
  \mathbf{c} = \mathbf{qnorm}(1 - \mathbf{alpha}/(2 * \mathbf{p})) / (1 + \mathbf{gamma})
  test = abs(beta\_hat[beta!=0]) > c
  sum(test) / sum(beta!=0)
}
fwer_est <- function(beta, beta_hat, gamma, p=950, alpha=.1) {
  \mathbf{c} = \mathbf{qnorm}(1 - \mathbf{alpha}/(2 * \mathbf{p})) / (1 + \mathbf{gamma})
  test = abs(beta\_hat[beta==0]) > c
  \mathbf{sum}(\text{test}) > 0
                          Listing 1.3: Empiric comparision of models
\#iv)
ex1 \leftarrow function(n=1000, p=950, beta=3.5, nonzero=c(20,100,200), rep=200)
  beta_hat=matrix(0,rep,p); OLS=matrix(0,rep,p); ridge=matrix(0,rep,p);
  beta_hat_results=data.frame(); OLS_results=data.frame(); ridge_results=
      data.frame();
```

May 3, 2021 5

```
results_list = list(beta_hat_results, OLS_results, ridge_results)
 names(results_list) = c("OLS", "ridge", "beta_hat")
 X = \text{randortho}(n) [1:p] \# X = generate\_design(n, p, beta, max(nonzero))
  for (k in nonzero) {
    betas = c(rep(beta,k), rep(0,p-k))
   gamma = gamma_min(betas)
    for (r in 1:rep) {
      Y = X\% *\% betas + rnorm(n)
      OLS[r,] = coef(lm(Y\sim X-1))
      ridge[r,] = coef(glmnet(X, Y, lambda=gamma/n, alpha = 0, intercept=
         FALSE, standardize = FALSE)) [-1,1]
      \mathbf{beta\_hat}[r] = 1/(1+\mathbf{gamma}) * \mathbf{t}(X) \% 
      cat ( " k=_ " , k , " r=_ " , r , " \n " )
    }
    est list = list (OLS, ridge, beta hat)
    for (i in 1:length(est_list)) {
      est = est_{list}[[i]]
      bias = bias_norm_est(betas, apply(est, MARGIN=2, mean))
      tr_{cov} = sum(apply(est, MARGIN=2, var))
      mse = mean(apply(est, MARGN=1, function(b)se(betas, b)))
      power = mean(apply(est, MARGIN=1, function(b)power_est(betas,b,
          ifelse(i==1, 0, gamma))))
      fwer = mean(apply(est, MARGIN=1, function(b)fwer_est(betas,b, ifelse(
          i == 1, 0, gamma))))
      results_list[[i]] = rbind(results_list[[i]], c(bias, tr_cov, mse,
         power, fwer))
    }
  }
 save(list=c("results_list"), file=paste0("SL_lab2_ex1",".RData"))
  for (i in 1:length(results_list)) {
    name = names(results_list)[i]
    colnames(results\_list[[i]]) = c("bias", "tr\_cov", "mse", "power", "fwer
   rownames(results_list[[i]]) = paste(nonzero)
    printTable(results_list[[i]], paste("Results_for", name), paste0("SL_
       lab2\_ex1\_" ,name))
  }
  return (results_list)
                     Listing 1.4: Theoretical values of ridge regression.
ex1_{thr} \leftarrow function(n=1000, p=950, beta=3.5, nonzero=c(20,100,200)) {
  results\_thr = data.frame()
  for (k in nonzero) {
    betas = c(rep(beta,k), rep(0,p-k))
   gamma = gamma_min(betas)
    bias = bias_norm_thr(betas,gamma)
    tr cov = cov trace thr (betas ,gamma)
    mse = mse\_thr(betas, gamma)
    power = power_{thr}(beta, p)
    results_thr = rbind(results_thr, c(bias, tr_cov, mse, power))
```

```
}
  colnames(results\_thr) = c("bias", "tr\_cov", "mse", "power")
  rownames(results_thr) = paste(nonzero)
  save(list=c("results_thr"), file=paste("SL_lab2_ex1_thr", ".RData", sep=""
  printTable(results_thr, "Theoretical_results", "SL_lab2_ex1_thr")
  return (results_thr)
Ex. 2
                               Listing 2.1: Additional functions.
SE <- function(Yhat, Y) norm2(Y - Yhat)
PE_est <- function(RSS, eigen, gamma, sigma=1) {
  RSS + 2*sigma^2 * sum( eigen / (eigen + gamma))
                         Listing 2.2: Ridge coefficients minimizing PE.
ridge\_SURE\_min2 \leftarrow function(X,Y) {
  \mathbf{beta} = \mathbf{c}(\mathbf{rep}(3.5,20), \mathbf{rep}(0,930))
  lambdaseq = seq(from = 0.0001, to = 0.005, length.out = 200)
  values = eigen(t(X)), only values = TRUE) $ values
  n = nrow(X)
  obj = glmnet(X,Y,alpha=0,intercept=FALSE, standardize=FALSE, lambda=
      lambdaseq)
  betaridge = obj$beta
  lambdas = obj$lambda
  sureridge = NULL
  for (u in 1:ncol(betaridge))
     sureridge[u] = PE_est(sum((X%%betaridge[,u]-Y)^2), values, lambdas[u]*
        n)
  ind = which.min(sureridge)
  return (betaridge [, ind])
}
                         Listing 2.3: OLS coefficients choosen by mbic2.
ols\_mbic2 \leftarrow function(X,Y) {
  model = as.numeric(stepwise(prepare_data(Y,X), crit=mbic2)$model)
  \mathbf{beta} = \mathbf{rep}(0, \mathbf{ncol}(X))
  if (length (model) !=0)
     \mathbf{beta}[\mathbf{model}] = \mathbf{coef}(\mathbf{lm}(Y \sim X[, \mathbf{model}] - 1))
  return (beta)
}
                          Listing 2.4: Empiric comparision of models.
ex2 \leftarrow function(n=1000, p=950, beta=3.5, nonzero=c(20,100,200), rep=100,
    generate_x=generate_design) {
  SURE = \mathbf{matrix}(0, \mathbf{rep}, p); CV = \mathbf{matrix}(0, \mathbf{rep}, p); OLS = \mathbf{matrix}(0, \mathbf{rep}, p)
      ; MBIC2 = \mathbf{matrix}(0, \mathbf{rep}, p);
  results_list = list(data.frame(), data.frame(), data.frame(), data.frame
  names(results\_list) = c("SURE", "CV", "OLS", "MBIC2")
```

May 3, 2021 7

```
X = generate_x(n, p)
  for (k in nonzero) {
     betas = c(rep(beta,k), rep(0,p-k))
     for (r in 1:rep) {
       Y = X\% * \% betas + rnorm(n)
       SURE[r,] = ridge\_SURE\_min2(X,Y)
       CV[r,] = coef(cv.glmnet(X,Y,alpha=0,intercept=FALSE, standardize=
           FALSE))[-1,1]
       	ext{OLS}[r,] = \mathbf{coef}(\mathbf{lm}(Y \sim X - 1))
       MBIC2[r,] = ols\_mbic2(X,Y)
       \mathbf{cat}("k=_{\square}", k, "r=_{\square}", r, "\setminus n")
     est_list = list (SURE, CV, OLS, MBIC2)
     for (i in 1:length(est_list))  {
       est = est \ list[[i]]
       mse = mean(apply(est, 1, function(b)norm2(b-betas)))
       mu = mean(apply(est, 1, function(b)norm2(X%-(b-betas))))
       results_list[[i]] = rbind(results_list[[i]], c(mse,mu))
     }
  }
  save(list=c("results_list"), file=paste0("SL_lab2_ex3", ".RData"))
  for (i in 1:length(results_list)) {
     name = names(results_list)[i]
     \mathbf{colnames}(\,\mathtt{results\_list}\,[\,[\,\,\mathtt{i}\,\,]\,]\,)\,\,=\,\mathbf{c}(\,\mathtt{"mse}(\,\mathtt{beta}\,)\,\mathtt{"}\,\,,\,\,\,\mathtt{"mse}(\,\mathtt{mu})\,\mathtt{"}\,)
     rownames(results_list[[i]]) = paste(nonzero)
     printTable(results_list[[i]], paste("Results_for", name), paste0("SL_
         lab2\_ex3\_",name))
  }
  return (results_list)
}
Ex. 3
                           Listing 3.1: Empiric comparision of models.
ex2(beta = 5) #REMBEMER FILE NAME
Ex. 4
                                 Listing 4.1: Generating data.
generate_mvrnorm \leftarrow function (n=1000, p=950, ro=0.5) {
  Sigma = matrix(ro, p, p)
  diag(Sigma) = 1
  X = mvrnorm(n, rep(0,p), Sigma)
}
                           Listing 4.2: Empiric comparision of models.
ex2(generate_x = generate_mvrnorm) #REMEMBER FILE NAME
ex2(beta = 5, generate_x = generate_mvrnorm)
```