Dynamics of Neural Systems

Martin Giese, Albert Mukovskiy, Leonid Fedorov (leonid.fedorov@uni-tuebingen.de)

Exercise Sheet 1 due Nov 6th 2014

1 Exercise 1. Nernst Equation. Credits: 2

1.1

Derive the Nernst equation, Eq. (2), from the Nernst-Planck equation, Eq. (1).(*Hint: In equilibrium holds* $j_A = 0$.)

$$J_{A} = J_{A,\text{diff}} + J_{A,\text{drift}} = -D_{A} \left(\frac{d[A]}{dx} + \frac{z_{A}F}{RT} [A] \frac{dV}{dx} \right)$$
(1)

$$E_m = \frac{RT}{z_{\rm A}F} \ln \left(\frac{[{\rm A}]_{\rm out}}{[{\rm A}]_{\rm in}} \right) \tag{2}$$

Variables:

- J_A = The flux of ion A within electric field, sum of diffusion and drift flux.
- D_A = The diffusion constant of ion A.
- [A] = The concentration of ion A at current location.
- x =The current position, from $x_{inside} = 0$ to $x_{outside} =$ thickness of membrane.
- z_A = The signed valency of ion A.
- F = Faraday's constant (Coulombs per mole).
- R = The ideal gas constant (Joules per Kelvin per mole).
- T =The temperature (in Kelvin).
- V = The membrane potential (in Volt).
- E_m = The membrane equilibrium potential (in Volt).
- [A]_{out} = The extracellular concentration of ion A.
- $[A]_{in}$ = The intracellular concentration of ion A.

2 Exercise 2. GHK Equations. Credits: 3

2.1

Given the Goldman Hodgkin Katz (GHK) voltage equation, Eq. (3), assume the membrane of a neuron is selectively permeable for only **one monovalent anion** type A with permeability P_A (all other permeabilities are zero). Derive the Nernst equation, Eq. (2).

$$E_{m} = \frac{RT}{F} \ln \left(\frac{\sum_{i}^{N} P_{C_{i}^{+}} \left[C_{i}^{+} \right]_{\text{out}} + \sum_{j}^{M} P_{A_{j}^{-}} \left[A_{j}^{-} \right]_{\text{in}}}{\sum_{i}^{N} P_{C_{i}^{+}} \left[C_{i}^{+} \right]_{\text{in}} + \sum_{j}^{M} P_{A_{j}^{-}} \left[A_{j}^{-} \right]_{\text{out}}} \right)$$
(3)

Variables:

- C_i^+ = One type of monovalent cation (positive charge, e.g. K^+).
- N = Number of relevant cations.
- A_i^- = One type of monovalent anion (negative charge, e.g. Cl⁻).
- M = Number of relevant anions.
- P_{ion} = The permeability of an ion type (meters per second).

2.2

We assume a homogeneous electric field across the membrane with $\frac{dV}{dx} = -\frac{V_0}{L}$. Write down the Nernst-Planck equation for this case.

2.3

From the previous result, derive a differential equation for [A] as a function of x. Assume a constant current density j_A and take into account $j_A = z_A F J_A$.

2.4

Solve this DEQ. (Hint: Use Eq. (4).)

$$\int \frac{\mathrm{d}x}{ax+b} = \frac{\ln(ax+b)}{a} \tag{4}$$

2.5

Using the previous solution, derive a relationship between [A]_{in} and [A]_{out} in a mathematical form of Eq. (5)

$$k = \frac{a + b \left[A \right]_{\text{out}}}{c + d \left[A \right]_{\text{in}}} \tag{5}$$

2.6

Using this relationship, derive the GHK current equation, Eq. (6), for j_A as a function of V_0 .

$$j_{A} = P_{A} z_{A} F \frac{z_{A} F V_{0}}{RT} \left(\frac{[A]_{\text{in}} - [A]_{\text{out}} e^{-\frac{z_{A} F V_{0}}{RT}}}{1 - e^{-\frac{z_{A} F V_{0}}{RT}}} \right)$$
(6)

Variables:

- j_A = The current density of ion A.
- L = The thickness of the membrane.
- $P_{\text{ion}} = \frac{D_{\text{ion}}}{I}$

2.7

From the GHK current equation, derive the GHK voltage equation for one ion type A, Eq. (3), by setting the membrane current to zero, i.e. $I = aJ_A = 0$.

• a =The membrane area.

3 Exercise 3. Linear Membrane Model. Credits: 4

3.1 Equivalent simplified electrical circuit.

Figure 1: *Left)* Detailed circuit with single channel conductances and reversal potentials. *Right)* Equivalent simplified circuit.

Given Fig. 1, compute E_m as a function of g_{K^+} , g_{Na^+} , E_{K^+} , E_{Na^+} .

Figure 2: Equivalent circuit with external current I_e .

3.2

Given the equivalent circuit of a membrane in Fig. 2, derive the response of the membrane potential V(t) to a step input current $I_{\varepsilon}(t)$, assuming $V(t) = E_m$ for $t \le t_0$:

$$I_{e}(t) = \begin{cases} 0 & t \le t_{0} \\ I_{0} & t > t_{0} \end{cases}$$
 (7)

where I_0 is a constant.

3.3

Given the equivalent circuit of a membrane in Fig. 2, derive the response (of the membrane potential V) to a rectangular input current $I_e(t)$. (Hint: Use previous result and exploit that the network is time-invariant.)

$$I_{e}(t) = \begin{cases} 0 & t \leq 0 \\ I_{0} & 0 < t \leq t_{e} \\ 0 & t_{e} < t \end{cases}$$
 (8)