Deuxième bac sciences PC /SVT /ST

Sujets des examens nationaux : Calcul d'intégrales

Deuxième bac sciences PC /SVT /ST

➤ De 2024 à 2015 session normale et rattrapage

Exercice 01 (Examen 2024-Session-Normal)

Soient les deux fonctions u et v définies sur $\mathbb R$ par : $u(x)=e^x$ et v(x)=x

- 1) Tracer dans un même repère les courbes (C_u) et (C_v) des fonctions u et v
- **2)** Justifier graphiquement que $e^x x > 0$ pour tout x de $\mathbb R$
- 3) Calculer l'aire de la partie du plan délimitée par la courbe (C_n) , la courbe (C_n) et les droites d'équations x = 0 et x = 1

Exercice 02 (Examen 2024-Session-Rattrapage)

On considère la fonction définie sur $\mathbb R$ par :

$$f(x) = e^{-x} \ln{(1+e^x)}.$$

Soit (C_f) sa courbe dans un repère orthonormé $(O, \vec{\iota}, \vec{\jmath})$.

Soit λ un réel strictement positif.

- 1) Vérifier que : $\frac{1}{e^x+1} = \frac{e^{-x}}{e^{-x}+1}$, pour tout $x \in \mathbb{R}$
- 2) Montrer que: $\int_0^{\lambda} \frac{1}{e^x + 1} dx = \ln(2) \ln(1 + e^{\lambda})$
- 3) Montrer que: $\int_0^{\lambda} f(x) dx = \ln(2) f(\lambda) + \int_0^{\lambda} \frac{1}{e^x + 1} dx.$

(Remarquer $f(x) = \frac{1}{e^{x}+1} - f'(x)$)

- 5) Déduire en fonction de λ , l'aire \mathcal{A}_{λ} da la partie du plan délimitée par la courbe (C_f) , l'axe des abscisses et les droites d'équations x=0 et $x=\lambda$.
- 5) Calculer $\lim_{\lambda \to +\infty} \mathcal{A}_{\lambda}$.

Exercice 03 (Examen 2023-Session-Normal)

Soit f la fonction numérique définit sur $]0, +\infty[$ par

$$f(x) = 2 - \frac{2}{x} + (1 - \ln x)^2$$

Et (C) sa courbe représentative dans un repère orthonormé

 $(\mathbf{0}, \vec{\imath}, \vec{\jmath})$ (unité: 1cm)

1)La courbe (\mathcal{C}_g) ci-contre est la représentation

graphique de la fonction $g: x \mapsto f(x) - x$ et qui

s'annule en α et 1 ($\alpha \approx 0$, 3)

Soit (∆) la droite d'équation v=x

- a) A partir de la courbe (\mathcal{C}_g) , déterminer le signe de la fonction g sur $]0,+\infty[$
- -1 0 \(\alpha\) 1 2 3 4
- b) Déduire que la droite (Δ) est en dessous de (\mathcal{C}) sur l'intervalle[α ; 1] et au-dessus de (\mathcal{C}) sur les intervalles $]\mathbf{0}, \alpha[\mathbf{et} \ [\mathbf{1}; +\infty[$
- 2)a) Vérifier que : $x \mapsto 2x x \ln(x)$ est une primitive de : $x \mapsto 1 \ln(x)$ sur $[1; \alpha]$
- b) Par une intégrale par partie montrer que

$$\int_{\alpha}^{1} (1 - \ln x)^2 dx = 5(1 - \alpha) + \alpha(4 - \ln \alpha) \ln \alpha$$

c) En déduire en fonction de α l'air du domaine délimité par la courbe (\mathcal{C}) et l'axe des abscisses et les droites d'équations $x = \alpha$ et x = 1

Site web:

www.elboutkhili.jimdofree.com

Sujets des examens nationaux de Calcul d'intégrales

2BAC SC PC/SVT/ST Page 02

Exercice 04 (Examen 2023-Session-Rattrapage)

Soit f une fonction définit sur]2; 3] par :

$$f(x) = 1 + (x-2)^2 \ln(x-2)$$

- (C) la courbe de f dans un repère orthonormé $(0; \vec{\imath}; \vec{j})$ d'unité 1cm Soit $\alpha \in [2; 3]$
- a) Par une intégrale par partie montrer que :

$$\int_{\alpha}^{3} (x-2)^{2} \ln(x-2) dx = -\frac{1}{9} + \frac{1}{3} (\alpha-2)^{3} \left(\frac{1}{3} - \ln(\alpha-2) \right)$$

b)En déduire en fonction de α l'aire $A(\alpha)$ du domaine délimité par la courbe (\mathcal{C}) les droites d'équations y=1; $x=\alpha$ et x=3 c)Calculer $\lim_{x\to 2^+} A(\alpha)$

Exercice 05 (Examen 2022-Session-Normal)

On considère la fonction h définie sur \mathbb{R} par : $h(x) = (x+1)e^x$ a. Vérifier que $x \mapsto xe^x$ est une primitive de la fonction h sur \mathbb{R} ; puis calculer $I = \int_{-1}^{0} h(x) dx$

b. A l'aide d'une intégration par parties calculer $J = \int_{-1}^{0} (x+1)^{2} e^{x} dx$

Exercice 06 (Examen 2022-Session-Rattrapage)

f la fonction définit sur $[0, +\infty[$ par $\begin{cases} f(x) = x^4(\ln x - 1)^2; x > 0 \\ f(0) = 0 \end{cases}$

- 1)On pose $I = \int_1^e x^4 (\ln x 1) dx$, en utilisant une intégrale par partie, montrer que $I = \frac{6 e^5}{25}$
- 2) Soit la fonction h définit sur $]0, +\infty[$ par $h(x) = x^5(\ln x 1)^2$
- a) Vérifier que $h'(x) = 5f(x) + 2x^4(\ln x 1)$
- **b)** Déduire que $\int_{1}^{e} f(x) dx = -\frac{1}{5} \frac{2}{5}I$
- c) Calculer l'air du domaine délimité par la courbe (C) et l'axe des abscisses et les droites d'équations x = 1 et x = e (unité : 1cm)

Exercice 07 (Examen 2019-Session-Normal)

Soit f la fonction numérique définie sur $]0; +\infty[$ par ;

$$f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$$
.

- Et (C) sa courbe représentative dans un repère orthonormé $(O; \vec{\imath}; \vec{\jmath})$ (unité : 1 cm).
- 1. a) Montrer que pour tout x de]0; $+\infty[$,
- $f(x) x = \frac{1}{2}(\ln x 1)^2$ et déduire la position relative de (C) et (Δ)
- 2. a) Montrer que la fonction $H: x \mapsto lnx x$ est une primitive de $h: x \mapsto lnx$ sur $]0; +\infty[$.
- b) A l'aide d'une intégration par parties montrer que $\int_1^e (lnx)^2 dx = e 2$.
- c) Calculer en cm^2 l'aire du domaine plan limité par (C) et (Δ) les droites d'équations x=1 et x=e.

Exercice 08(Examen 2019-Session-Rattrapage)

Soit f la fonction numérique définie sur \mathbb{R}^* par :

$$f(x) = 2 + 8\left(\frac{x-2}{x}\right)^2 e^{x-4}$$

- Et (C) sa courbe représentative dans un repére orthonormé (O, \vec{l}, \vec{j}) (unité :1 cm)
- a) Vérifier que la fonction $H: x \to \frac{1}{x} e^{x-4}$ est une fonction primitive de la fonction $h: x \to \frac{x-1}{x^2} e^{x-4}$ sur [2, 4]
- b) Vérifier que $f(x)=2+8e^{x-4}-32rac{(x-1)}{x^2}e^{x-4}$ pour tout x de \mathbb{R}^*
- c)Calculer l'intégrale $\int_2^4 e^{x-4} dx$
- d)Calculer en cm^2 l'aire du domaine plan limité par (C) l'axe (Ox) et les droites d'équation x=2 et x=4

Site web:

www.elboutkhili.jimdofree.com

Sujets des examens nationaux de Calcul d'intégrales

Exercice 09 (Examen 2018-Session-Normal)

Soit f la fonction définie sur $]0, +\infty[$ par : $f(x) = (x^2 - x)e^{-x} + x$ Et (C) sa courbe représentative dans un repére orthonormé $(O, \vec{\iota}, \vec{j})$ (unité :1 cm)

- 1) Montrer que (Cf) est en dessous de la droite (D); y = x sur l'intervalle [0,1]
- **2)**Monter que la fonction H: $x \to (x^2 + 2x + 2)e^{-x}$ est une primitive de la fonction h: $x \to -x^2e^{-x}$ sur [0,1]
- 3) Déduire que : $\int_0^1 x^2 e^{-x} dx = \frac{2e-5}{e}$
- 4) Par intégration par parties, montrer que $\int_0^1 xe^{-x} dx = \frac{e-2}{e}$
- 5) Déduire l'aire du domaine délimité par (Cf), la droite (D) et les droites d'équations x=0 et x=1

Exercice 10 (Examen 2018-Session-Rattrapage)

Soit f la fonction définie sur $]0, +\infty[$ par :

$$f(x) = x + (1 - \frac{2}{x}) \ln(x)$$

Et (C) sa courbe représentative dans un repére orthonormé (O, \vec{l}, \vec{j}) (unité :1 cm)

- 1) Montrer que (Cf) la courbe de f est en dessous de la droite (D); y = x sur l'intervalle [1, 2]
- 2) Par intégration par parties ,montrer que

$$\int_{1}^{2} \left(\frac{2}{x} - 1\right) \ln x \, dx = (1 - \ln 2)^{2}$$

- 3) Déduire l'aire du domaine plan délimité par (Cf), la droite
- (D) et les droites d'équations x = 1 et x = 2

Exercice 11 (Examen 2017-Session-Normal)

Sit la fonction f définie sur $]0, +\infty[$ par : $f(x) = x + \left(1 - \frac{2}{x}\right) \ln x$

 (\mathcal{C}_f) Est la courbe de f dans un repère orthonormé d'unité 1cm

1.a. Résoudre dans l'intervalle $]0 + \infty[$, l'équation $\left(1 - \frac{2}{x}\right) \ln x = 0$

b. En déduire que la courbe (C_f) coupe la droite (D) en deux points dont on déterminera les coordonnées.

c. Montrer que $f(x) \le x$ pour tout x appartenant à l'intervalle [1, 2]

2.a. Montrer que $\int_{1}^{2} \frac{\ln x}{x} dx = \frac{1}{2} (\ln 2)^{2}$

b. Vérifier que $H: x \to 2 \ln x - x$ est une primitive de $h: x \to \frac{2}{x} - 1 \text{ sur }]0 + \infty[.$

c. Montrer, en utilisant une intégration par parties, que $\int_{1}^{2} \left(\frac{2}{x} - 1\right) \ln x \, dx = (1 - \ln 2)^{2}.$

d. Calculer, en cm^2 , l'aire du domaine limité par la courbe (C_f) , la droite (D) et les droites d'équations x=1 et x=2 .

Exercice 12 (Examen 2016-Session-Normal)

On considère la fonction numérique f définie sur $\mathbb R$ par :

$$f(x) = 2x - 2 + e^{2x} - 4e^x$$

 (C_f) la courbe de f dans un repère orthonormé ($\|ec{\imath}\| = \|ec{\jmath}\| = 1cm$) .

1) Soit la droite (D) d'équation y = 2x - 2

Montrer que la courbe (C_f) est au-dessus de la droite (D) sur

l'intervalle]ln(4); $+\infty[$ et qu'elle est en-dessous de la droite (D) sur l'intervalle $]-\infty$; ln(4)[

2)a) Montrer que $\int_0^{\ln(4)} (e^{2x} - 4e^x) dx = -\frac{9}{2}$.

b) Calculer, en cm^2 ,l'aire du domaine plan limité par la courbe (C_f) ,la droite (D),l'axe des ordonnées et la droite d'équation x=ln(4)

Exercice 13(Examen 2015-Session-Annulé)

On considère la fonction f définie par : $f(x) = \frac{1}{x(1-\ln x)}$

et (C_f) est la courbe représentative de f dans un repère

orthonormé $(0; \vec{\imath}; \vec{j}; \vec{k})$ d'unité 2cm. Et la fonction g définie sur $]0, +\infty[$ par : $g(x) = 1 - x^2(1 - \ln x)$ (C_g) est la courbe représentative de g dans un repère orthonormé (voir figure)

- 1) a) Déterminer graphiquement le nombre de solutions de l'équation
 - $(E): x \in]0, +\infty[; g(x) = 0$
- b) On donne le tableau de valeurs :

x	2, 1	2,2	2,3	2,4
g(x)	-0,14	-0,02	0,12	0,28

Montrer que l'équation (E) admet une solution α telle que 2, 2 < α < 2, 3

- 2)a) Montrer que $f(x) x = \frac{g(x)}{x(1-\ln x)}$ pour tout x de D_f .
- b) Montrer que la droite (Δ): y = x coupe la courbe (C_f) en deux points d'abscisses 1 et α .
- c) A partir de la courbe (Cg), Déterminer le signe de g(x) sur l'intervalle $[1, \alpha]$ et montrer que $f(x) x \le 0$ pour tout x de $[1, \alpha]$
- 3) a) Montrer que $\int_1^{\sqrt{e}} \frac{1}{x(1-\ln x)} dx = \ln 2$.
- b) Calculer, en cm^2 , l'aire du domaine limité par la courbe (Cf), la droite(Δ) et les droites d'équations x=1 et x=e

Exercice 14 (Examen 2015-Session-Normal)

On considère la fonction numérique f définie sur $[0; +\infty[$ par :

$$f(x) = \frac{x}{e^x - 2x}$$

et soit (C) la courbe représentative de la fonction f dans un repère orthonormé $(O; \vec{i}; \vec{j})$ (unité 1cm).

- 1)Montrer que $xe^{-x} \le \frac{x}{e^x 2x} \le \frac{1}{e 2}$ pour tout x de l'intervalle $[0; +\infty[$
- 2).a) En utilisant une intégration par parties, montrer que

$$\int_0^1 xe^{-x}\,dx = 1 - \frac{2}{e}$$

b) Soit, en cm², A(E) l'aire du domaine plan limité par la courbe (C), l'axe des abscisses et les deux droites d'équations x=0 et x=1. Montrer

$$1 - \frac{2}{e} \le A(E) \le \frac{1}{e - 2}$$

Exercice 15 (Examen 2015-Session-Rattrapage)

On considère la fonction numérique f définie sur]0; $+\infty[$ par :

$$f(x) = 3 - \frac{1}{x^2} - \frac{2Inx}{x}$$

Et soit (C) la courbe représentative de la fonction f dans un repère orthonormé $(O; \vec{\imath}; \vec{\jmath})$ $(||\vec{\imath}|| = ||\vec{\jmath}|| = 1cm)$.

- 1) On admet que f est strictement croissante sur [1; e]Montrer que pour tout x dans [1; e] on a $f(x) \ge 0$
- a) Montrer que:

$$\int_{1}^{e} \frac{2Inx}{x} dx = 1$$

- b) Calculer, en cm^2 , l'aire du domaine plan limité par la courbe
- (C), l'axe des abscisses et les deux droites d'équations

$$x = 1 et x = e$$
.