电子学基础实验报告 RLC串联电路的幅频特性和谐振现象

封面照:本次实验所用到的仪器

班级: 计86

学号: 2018011438

姓名: 周恩贤

实验班次: J84

实验桌号: A21

实验日期: 2019.11.1

预习报告拍照

清华大学实验报告预习報告

系别 计算机系 班号 计 86 姓名 | 哲學學 作实验日期2019年11月1日

宴员三 RLC串联电路的幅频特性和增振现象

※实験电器图

※实践結果估算 Z=R+j(ωL-壶), 增振时, ω。= ±== = 2元f。

任務1. R=10sh, C=0SnF, L2100mH Lt=1V

$$f_0 = \frac{1}{2 \sqrt{LC}} = 711.76 \text{ Hz}$$
 $U_{c_0} = \frac{-I_0}{\omega C} = \frac{-I_0}{2 \sqrt{LC}} = -44.7 \text{ V}$

$$I_0 = \frac{V}{R} = 0.1 \text{ A}$$
 $V_{L0} = \omega L I_0 = 2 \pi f_0 L I_0 = 44.7 \text{ V}$

任務2. R=90.R, 其价同1.

4務3, L=foomH, 其約1

终结报告

实验结果

任务 1: $R = 10\Omega$, $C = 0.5\mu F$, $L \approx 100 mH$

测得: $f_0=711.89Hz$, $I_0=400.85mA$, $U_{C_0}=17.43V$, $U_{L_0}=17.38V$

f(Hz)	511.89	561.89	591.89	611.89	631.89	651.89	671.89	691.89	701.89	711.89
I (mA)	3. 42	4. 79	6. 13	7. 43	9.35	12.35	17.63	27. 95	35. 28	40.09
I/I0	0.09	0.12	0.15	0.19	0.23	0.31	0.44	0.70	0.88	1.00
f/f0	0.72	0.79	0.83	0.86	0.89	0.92	0.94	0.97	0.99	1.00
f(Hz)	721.89	731.89	751.89	771.89	791.89	811.89	831.89	861.89	911.89	
I (mA)	36. 57	29.45	19.04	13.66	10.60	8.65	7. 33	6.38	4.62	
I/I0	0.91	0.73	0.47	0.34	0.26	0.22	0.18	0.16	0.12	
f/f0	1.01	1.03	1.06	1.08	1.11	1.14	1. 17	1.21	1.28	

任务 2: $R = 90\Omega$, $C = 0.5\mu F$, $L \approx 100 mH$

测得: $f_0 = 712.76 Hz$, $I_0 = 9.789 mA$, $U_{C_0} = 4.33 V$, $U_{L_0} = 4.33 V$

f (Hz)	352.76	432.76	512.76	592.76	632.76	652.76	672.76	692.76	702.76	712.76	722.76
I (mA)	1.49	2.17	3.24	5.24	6.86	7.83	8.77	9.50	9.71	9.79	9.70
I/I0	0.15	0.22	0.33	0.54	0.70	0.80	0.90	0.97	0.99	1.00	0.99
f/f0	0.49	0.61	0.72	0.83	0.89	0.92	0.94	0.97	0.99	1.00	1.01
f(Hz)	732.76	752.76	772.76	792.76	832.76	912.76	992.76	1072.76	1232.76	1392.76	
I (mA)	9.50	8.87	8.06	7.25	5.89	4.17	3.22	2.63	1.95	1.57	
I/I0	0.97	0.91	0.82	0.74	0.60	0.43	0.33	0.27	0.20	0.16	
f/f0	1.03	1.06	1.08	1.11	1.17	1.28	1.39	1.51	1.73	1.95	

任务 3: $R = 10\Omega$, $C = 0.5\mu F$, $L \approx 400 mH$

测得: $f_0=356.58.Hz$, $I_0=24.01mA$, $U_{C_0}=21.03V$, $U_{L_0}=20.99V$

f (Hz)	306.58	316.58	326.58	336.58	346.58	356.58
I (mA)	3.74	4.72	6.30	9.18	15.37	24.01
I/I0	0.16	0.20	0.26	0.38	0.64	1.00
f/f0	0.86	0.89	0.92	0.94	0.97	1.00
f (Hz)	366.58	376.58	386.58	396.58	406.58	416.58
I (mA)	15.88	9.74	6.87	5.30	4.32	3.65
I/I0	0.66	0.41	0.29	0.22	0.18	0.15
f/f0	1.03	1.06	1.08	1.11	1.14	1.17

二、实验报告要

1. 计算任务 1-3 的 Q 值, Q = $\frac{U_{C_0}}{U_i} = \frac{\sqrt{L/C}}{R_{ef}}$, $R_{eq} = \frac{U_i}{I_0}$

答: 利用 Excel 函数, 计算结果记录于下表

	$U_{co}(V)$	$U_i(V)$	$I_0(mA)$	$R_{eq}(\Omega)$	L(H)	C(µF)	$Q = \frac{U_{co}}{U_i}$	$Q = \frac{\sqrt{\frac{L}{C}}}{R_{eq}}$
任务一	17.43	1	40.085	24.94699	100	0.5	17.43	17.92656
任务二	4.33	1	9.789	102.1555	100	0.5	4.33	4.377774
任务三	21.03	1	24.01	41.64931	400	0.5	21.03	21.4752

用两种方法计算的Q值相近。

2. 画出电流谐振曲线 $\frac{I}{I_0} \sim f$

答: 利用 Excel 绘图, 电流谐振曲线如下。

电流谐振曲线图形与第一题计算结果相符。

(因 $Q_3 > Q_1 > Q_2$, 曲线尖锐程度: 任务 3>任务 1>任务 2)

若将频率归一化后,可得下图:

3. 推导 $Q = \frac{\omega_0}{\omega_2 - \omega_1}$ 的表达式, 其中 ω_1 和 ω_2 是转折频率, 对应到 $\frac{I}{I_0} = \frac{1}{\sqrt{2}}$

答:已知谐振角频率: $\omega_0 = \frac{1}{\sqrt{LC}}$

电流有效值:
$$I = \frac{U_i}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

又谐振时的最大电流有效值: $I_0 = \frac{U_i}{R}$

由转折频率的定义:
$$\frac{I}{I_0} = \frac{R}{\sqrt{R^2 + \left(\omega_i L - \frac{1}{\omega_i C}\right)^2}} = \frac{\sqrt{2}}{2}$$
, $i = 1,2$

$$\Rightarrow \omega_{\mathrm{i}}L - \frac{1}{\omega_{\mathrm{i}}c} = \pm 1$$
 , $\boxtimes \omega_{\mathrm{2}} > \omega_{\mathrm{1}}$

$$\Rightarrow \omega_2 = \frac{R + \sqrt{R^2 + \frac{4L}{C}}}{2L}, \omega_1 = \frac{-R + \sqrt{R^2 + \frac{4L}{C}}}{2L}$$

$$\Rightarrow \frac{\omega_0}{\omega_2 - \omega_1} = \frac{\sqrt{\frac{1}{LC}}}{R/L} = \frac{\sqrt{L/C}}{R} = Q$$

证毕。

三、思考题

谐振时电流最大,此时电感电压、电容电压是否最大? 若不是,分别求出使得电感、电容电压最大的频率 ω_l 、 ω_c 并推导出 ω_l 、 ω_c 、 ω_0 的关系

答: 否。以下给出证明

电流有效值:
$$I = \frac{U_i}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega c}\right)^2}}$$

电感电压有效值:
$$U_l = I\omega L = \frac{U_i L}{\sqrt{\frac{\left(R^2 - \frac{2L}{C}\right)}{\omega^2} + \frac{1}{\omega^4 C^2} + L^2}}$$

电容电压有效值:
$$U_c = \frac{I}{\omega C} = \frac{U_i}{c\sqrt{\omega^4 L^2 + \left(R^2 - \frac{2L}{C}\right)\omega^2 + \frac{1}{C^2}}}$$

用配方法求解分母中根式的极小值:

当
$$\omega^2 = \frac{2}{2LC - R^2C^2}$$
时, U_l 最大;当 $\omega^2 = \frac{2LC - R^2C^2}{2L^2C^2}$ 时, U_c 最大 $\Rightarrow \omega_L = \sqrt{\frac{2}{2LC - R^2C^2}}$, $\omega_c = \sqrt{\frac{2LC - R^2C^2}{2L^2C^2}}$

观察后发现: $\omega_L\omega_c=\frac{1}{LC}=\omega_0^2$, 此为三者之关系式

四、实验任务4

利用对偶原理、诺顿定理设计并联谐振实验线路。

答: 固定输入电流 I,测量电阻两端电压 U,U 最大时为并联谐振。

五、创新

1. RLC 串联电路们可依基尔霍夫定律列写微分方程, 受迫振动 的运动方程也是一个二阶微分方程。列写两者方程并作对比。

答两者方程具有同样的形式。

RLC 串联谐振电路的方程:

$$\frac{d^2u_c}{dt^2} + \frac{R}{L}\frac{du_c}{dt} + \frac{1}{LC}u_s = \frac{1}{LC}u_s cos\omega t$$

受迫振动运动方程:

$$\frac{d^{2}\theta}{dt^{2}} + \frac{\gamma}{J}\frac{d\theta}{dt} + \frac{k}{J}\theta = \frac{k}{J}\alpha_{m}cos\omega t$$

"元件参数" 与 "振动参数" 可一一对应如下表。

串联谐振	受迫振动
u _c 电容电压	θ 转动角度
L 电感	J 转动惯量
R 电阻	γ 阻尼力矩系数
C 电容	$\frac{1}{k}$ 弹簧劲度系数的倒数
u _s 外接电压最大值	$lpha_m$ 外接摇杆振幅
ω 外激励角频率	ω 外激励角频率
$\omega_0 = \sqrt{\frac{1}{LC}}$ 谐振角频率	$\omega_0 = \sqrt{\frac{k}{J}}$ 固有角频率
$Q = \frac{\sqrt{L/C}}{R}$ 品质因数	$Q = \frac{\sqrt{kJ}}{\gamma}$ 品质因数

然而,两者共振定义不同:串联谐振是让电流最大,受迫振 动是让θ最大。(受迫振动的分析见下题)

2. 承上题,即使上课没教二阶电路分析,也似乎可以将谐振电 路类比成含阻尼的受迫振动。请试着用已学过的力学知识并 观察受迫振动的幅频曲线来验证思考本次实验的结果。

答: 求解受迫振动微分方程, 得共振角频率

当
$$\omega = \sqrt{{\omega_0}^2 - 2\beta^2}$$
 时发生共振 , $\beta = \frac{\gamma}{2J}$ 为阻尼系数 共振最大振幅 $\theta_m = \frac{\alpha_m {\omega_0}^2}{\sqrt{({\omega_0}^2 - {\omega^2})^2 + 4\beta^2 {\omega^2}}}$

由上表,我们可给出对应结果: 当外接角频率

$$\omega = \sqrt{\left(\sqrt{\frac{1}{LC}}\right)^2 - 2\left(\frac{R}{2L}\right)^2} = \sqrt{\frac{2LC - R^2C^2}{2L^2C^2}} \text{ 时, 电容电压有最大值}$$

$$u_c = \frac{u_s \frac{1}{LC}}{\sqrt{\left(\frac{1}{LC} - \omega^2\right)^2 + 4\left(\frac{R}{2L}\right)^2 \omega^2}} = \frac{u_s}{c\sqrt{\omega^4L^2 + \left(R^2 - \frac{2L}{C}\right)\omega^2 + \frac{1}{C^2}}} \text{ 与思考题结论相符。}$$

受迫振动的阻尼力矩系数γ (正比于阻尼值)相当于谐振电 路电阻R。其幅频曲线如下图(图出自于大物B(1)实验报告)

归一化后可得近似于电流谐振曲线的图形,得出共同结论:

阳尼/电阻越小,品质因数Q越大,筛选度最好!

3. 承上, 进一步思考为何两者共振、谐振的定义不同呢? 答: 我认为关键在于观察的 "响应 "本体不同。

虽然两者方程相同,有同样激励形式,但意义有所区别。 受迫振动时,最理想的情况是希望没有阻尼,将受迫力 的激励都尽可能的消耗于振动的摆轮,以达到最大振幅。

⇒ 受迫振动的响应是摆轮的振动角度 θ

串联谐振电路中,一定有电阻,且电阻才是实际消耗能量的元件。我们希望将电压的激励都尽可能的消耗在电阻上以得到最大电流。

⇒ 串联谐振电路的**响应是电阻上的电流 I** 响应不同,达到最大的条件自然不同,进而有不同的解。

六. 实验结论与收获

- 验证理论: 熟悉 RLC 串联谐振的共振频率及品值因数的计算。
- 实操学习:了解如何正确使用信号产生器。
- 对比思考: 在理解串联谐振电路后,对比力学的受迫振动,并进一步延伸思考,验证串联谐振电路的特性。
- 反思理论与实际中的差距:这次预报和实验结果相差挺大的,原因在于没考虑到电感线圈的电阻值;另一方面,电容应该也有微小的电阻值,但可能因为量值过小,并未对 U_L 、 U_C 的实验结果造成太大的影响。(否则, U_L 、 U_C 会有微小偏差)。

原始数据表格拍照

原始數據紀錄表

任務1表格·fo=711.89 地: Jo=40.85 mA; Va=17.13V: U=17.38 V 3,42 4,79

f(te)	fno	filos	1.80	f60	to-40	t20	f 10	711.39	1.110	ton:	f.44s	fathe	f.+8=	1.4.	1,410	f.+ 150 to
I(mA)	6.13	7,43	9.35	識	平3	27.15	35.23	40.09	36.57	19,45	19,4	RH	labo	8.65	7, 33	63840

毕要求: Imin ≤ 0.2 Io

性務2款格: f.=712.76 Hz: Jo=9.789 mA: Va=4.33 V: Ub=4.33 V 149 2117

(ch)t	f200	10-120	f80	10-10	t=40	t2.	\$0-b	712,76	fotto	t,n.	1.+40	falls	f.40	†.+n•	f.tim	to 120 186
IcmAD	3,24	5,24	6.86	7.83	8.77	9,50	4.71	9.79 9.79	9.10	9.50	8.87	8.06	7,25	5.89	4,17	3.72 263

4第3表格 fo= 356.58 Hz 70= 24.01 mA U6= 21.03 V U6=20.99 V

				f.40	130			10450	1.+4	fo+6.					
tura	 	de la	1.50	+	100	器	4-10	to: 35649	tit 10	†.t2	fortho	**	1.13	挴	捡
I(m4)			3,74	4.72	477	9.18	15.37	24.0	15.88	9.74	6.87	5,30	4:32	365	- 77

实验器材 世电感箱 0300 6976 十进电容箱 DC-1615 功率信号源 15030446