Algebra I Blatt 11

Thorben Kastenholz Jendrik Stelzner

10. Juli 2014

Aufgabe 3

Wir behaupten, dass R/\mathfrak{m} bis auf Isomorphie der einzige einfache R-Modul ist.

Wir bemerken zunächst folgendes: Für ein Linksideal $I\subseteq R$ entsprechen die R-Untermoduln von R/I in bijektiver Weise den Linksdealen von R, die I enthalten via

$$\{J\subseteq R\mid J \text{ ist ein Linksideal mit }I\subseteq J\} \overset{1:1}{\longleftrightarrow} \{R\text{-Untermoduln von }R/I\}$$

$$J\mapsto J/I,$$

Daher ist R/I genau dann irreduzibel als R-Modul, wenn I ein maximales Linksideal in R ist. Inbesondere ist daher R/\mathfrak{m} ein einfacher R-Modul.

Ist andererseits M ein einfacher R-Modul, so gibt es $m \in M$ mit $m \neq 0$. Da R unitär ist, ist $Rm \neq 0$ und wegen der Irreduziblität von M somit Rm = M. Wir erhalten so einen R-Modulepimorphismus

$$\pi: R \to M, r \mapsto rm.$$

 $\ker \pi$ ist ein Untermodul, also Linksideal, in R, und da M einfach ist, ist $\ker \pi$ ein maximales Linksideal. Also ist $\ker \pi = \mathfrak{m}$. Somit ist

$$M \cong R/\ker \pi = R/\mathfrak{m}.$$

Aufgabe 4

Wir gehen davon aus, dass A unitär ist.

$$(a) \Rightarrow (b)$$

Wir definieren

$$\varepsilon: A \to k, a \mapsto (a, 1).$$

Aus der k-Bilinearität von (\cdot,\cdot) folgt die k-Linearität von ε . Da (\cdot,\cdot) nicht entartet ist, gibt es für jedes $a\in A$ mit $a\neq 0$ ein $b\in A$ mit $(a,b)\neq 0$, also

$$\varepsilon(ba)=(ba,1)=(b,a)=(a,b)\neq 0.$$

(b) \Rightarrow (a)

Für alle $a,b\in A$ definieren wir

$$(a,b) := \varepsilon(ab).$$

Aus (b) folgt direkt, dass dies auf A eine nicht entartete symmetrische Bilinearform definiert. Die Assoziativität von (\cdot,\cdot) folgt direkt aus der Assoziativität der Multiplikation auf A.

(b) ⇔ **(c)**

Es genügt zu zeigen, dass die jeweiligen Bedingungen (ii) in (b) und in (c) äquivalent sind. Sei hierfür $\varepsilon:A\to k$ k-linear.

Da A unitär ist, enthält ker ε genau dann ein von 0 verschiedenes Linksideal, wenn es ein von 0 verschiedenes Links-Hauptideal enthält. Dies gilt genau dann, wenn es $a \in A, a \neq 0$ gibt mit $\varepsilon(ba) = 0$ für alle $b \in A$. Dass $\varepsilon(ba) = 0$ für alle $b \in A$ ist äquivalent dazu, dass es kein $b \in A$ gibt mit $\varepsilon(ba) \neq 0$.