Practice Midterm 1a

For each of the following statements,

- i. express the statement in terms of quantifiers, (1 pt.)
- ii. express the negation in terms of quantifiers, (1 pt.)
- iii. indicate whether the statement is true or false, (2 pt.)
- iv. either prove or disprove the statement (3 pts. for logical correctness, 3 pts. for conventional writing.)
- 1. For every $k \in \mathbb{Z}$, there is an $\ell \in \mathbb{N}$ satisfying $\ell \leq k$.
- 2. For all $x \in \mathbb{R}$ there is a $y \in \mathbb{R}$ such that if x < y then there is a $z \in \mathbb{R}$ with x < z < y.
- 3. Let $A,\,B,$ and C be sets. If $A\cap B\subseteq C,$ then $A\subseteq C$ or $B\subseteq C.$
- 4. If $f:A\to B$ and $g:B\to C$ are not surjective, then $g\circ f:A\to C$ is not surjective.
- 5. If $f:A\to B$ is a bijection, then there is a $g:B\to A$ such that $g\circ f=\mathrm{id}_A$ and $f\circ g=\mathrm{id}_B$.

Bonus Question. (5 pts.)

6. Prove that $\lim_{x\to 0} x^2 = 0$.