

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE MATHEMATICS

H

Higher Tier

Paper 3 Calculator

Tuesday 13 June 2017

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- · mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

Advice

• In all calculations, show clearly how you work out your answer.

For Examiner's Use		
Pages	Mark	
2–3		
4–5		
6–7		
8–9		
10–11		
12–13		
14–15		
16–17		
18–19		
20–21		
22–23		
24–25		
26		
TOTAL		

Answer all questions in the spaces provided

1
$$\mathbf{a} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$

Circle the vector 2a + b

[1 mark]

$$\begin{pmatrix} -5 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} -11 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} -5 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -5 \\ -3 \end{pmatrix} \qquad \begin{pmatrix} -11 \\ -3 \end{pmatrix} \qquad \begin{pmatrix} -5 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -11 \\ -1 \end{pmatrix}$$

Which of these values of n makes 2.7×10^n a cube number? 2 Circle your answer.

[1 mark]

 $2x = \frac{y}{w}$ to make w the subject. Rearrange 3

Circle your answer.

[1 mark]

$$w = \frac{2y}{x} \qquad \qquad w = \frac{2x}{y} \qquad \qquad w = \frac{x}{2y}$$

$$w = \frac{2x}{y}$$

$$w = \frac{y}{2x}$$

$$w = \frac{x}{2y}$$

4

3

Not drawn accurately

Work out the bearing of C from A.

Circle your answer.

[1 mark]

030°

130°

150°

210°

Turn over for the next question

4

A coin lan	us on rails a	200 times.	
The relative	ve frequency	of Tails is 0.4	
Work out	the number	of times the coin was thrown.	
			•
		Answer	
How ore t			
now are t	he whole nu	mber solutions to A and B different?	
A			
Α	Solve	$3 \leqslant 3x < 18$	
	Solve		
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	I
Α	Solve	$3 \leqslant 3x < 18$	I
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	
Α	Solve	$3 \leqslant 3x < 18$	

7 (a)	The length of a pipe is 6 metres to the nearest metre.	
	Complete the error interval for the length of the pipe.	[2 marks]
	Answer m ≼ length <	m
7 (b)	The length of a different pipe is 4 metres to the nearest metre. Olly says, "The total length of the two pipes is 11 metres to the nearest metre." Give an example to show that he could be correct.	[2 marks]

Turn over for the next question

8

8	This shape is made from two triangles and four congruent parallelogi	rams.
		Not drawn accurately
	For each statement, tick the correct box.	
8 (a)	The triangles are equilateral.	[1 mark]
	Must be true	
	Could be true	
	Must be false	
8 (b)	The triangles are congruent.	[1 mark]
	Must be true	
	Could be true	
	Must be false	

9	There are 720 boys and 700 girls in a school.	
	The probability that a boy chosen at random studies French is $\frac{2}{3}$	
	The probability that a girl chosen at random studies French is $\frac{3}{5}$	
9 (a)	Work out the number of students in the school who study French. [3 marks]	
		,
	Answer	
9 (b)	Work out the probability that a student chosen at random from the whole school does not study French. [2 marks]	
	Answer	
	Turn over for the next question	

AB, CD and EF are straight lines.

Not drawn accurately

10 (a) Ava assumes that AB and CD are parallel.

What answer should she get for the size of angle *y*?

[4 marks]

Answer _____ degrees

10 (b)	In fact, AB and CD are not parallel angle w is 60° What effect does this have on the size of angle y? Tick a box.				
	y is bigger				
	y is the same				
	y is smaller				
	Show working to support your answer. [3	marks]			
	Turn over for the next question				

Purple paint is made by mixing red paint and blue paint in the ratio 5 : 2
Yan has 30 litres of red paint and 9 litres of blue paint.

What is the **maximum** amount of purple paint he can make?

[3 marks]

Answer	litres

12 $\left(ar^b\right)^4 = 16r^{20}$ where a and b are positive integers.

Work out a and b

[2 marks]

13 In a class of 28 students

the mean height of the 12 boys is 1.58 metres

the mean height of all 28 students is 1.52 metres.

Work out the mean height of the girls.

[4 marks]

-

14 xy = c where c is a constant. Circle the correct statement.

[1 mark]

$$y$$
 is directly proportional to x y is directly proportional to $\frac{1}{x}$

$$y$$
 is inversely proportional to $\frac{1}{x}$ x is directly proportional to y

Turn over for the next question

10

The graph shows the depth of water in a harbour for 12 hours.

d is the depth of water in a harbour in metres

t is the number of hours after 9 am

15 (a) For how many of the 12 hours is the depth more than 5 metres?

[1 mark]

Answer

15 (b) By how much does the depth change between 12 noon and 4 pm?

[1 mark]

Answer _____ metres

The value of a new car is £18 000
The value of the car decreases by
25% in the first year
12% in each of the next 4 years.
Work out the value of the car after 5 years.
[3 marks
Answer £
Allowof &

Turn over for the next question

5

17 Liam drives his car.

He drives the first 9 miles in 9 minutes.

He then drives at an average speed of 70 miles per hour for 1 hour 36 minutes.

He finds this information about his car.

Average speed	Miles travelled per gallon
65 miles per hour or less	50
More than 65 miles per hour	40

Use the information to show that his car uses less than 3 gallons of petrol for the drive.

[5 marks]

Nick sketches the graph of $y = 0.5^x$ for $x \ge 0$

Make one criticism of his sketch.

[1 mark]

Turn over for the next question

6

A, B, C, D and E are points on a circle.	
BFD and AFC are straight lines.	
DC = DF	
	Not drawn accurately
С	
С	
Work out the size of angle x .	· am
	ram. [4 marl
Work out the size of angle x .	ram. [4 marl
Work out the size of angle x .	ram. [4 marl
Work out the size of angle x .	ram. [4 mar l
Work out the size of angle x .	ram. [4 mar l
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	ram. [4 mar
Work out the size of angle x .	[4 mar

0	This sign shows when a lift is safe to use.	
	Total mass of people must be 450 kg or less	
	Ben and some other people are in the lift.	
	Their total mass is 525 kg to the nearest 5 kg	
	Ben gets out.	
	He has a mass of 78 kg to the nearest kg	
	Is the lift now safe to use?	
	You must show your working.	
		[4 marks]
	Answer	
	Turn over for the next question	

8

21 Here is a sketch of y = f(x) where f(x) is a quadratic function.

The graph intersects the *x*-axis where x = -2.5 and x = 1

Not drawn accurately

Circle the solution of f(x) > 0

[1 mark]

$$x < -2.5$$
 or $x > 1$

$$x > -2.5$$
 or $x > 1$

$$-2.5 < x < 1$$

$$x > -2.5$$
 or $x < 1$

22	Work out an exp	Work out an expression for the <i>n</i> th term of the quadratic sequence				
		2 1	7 40	71		
	Give your answe	er in the forn	$an^2 + bn$	+c where a	a,b and c are cons	tants. [3 marks]
		An	swer			

Turn over for the next question

4

Here is a sketch of $y = x^2 + bx + c$

The curve intersects

the x-axis at (5, 0) and point P

the y-axis at (0, -10)

Work out the *x*-coordinate of the turning point of the graph.

[4 marks]

Answer __

A ball is thrown from a point 6 metres above the ground.

The graph shows the height of the ball above the ground, in metres.

Estimate the speed of the ball, in m/s, after 1 second.

You **must** show your working.

[2 marks]

Answer m/s

25 Rectangle *ABCD* is the horizontal base of a triangular prism *ABCDEF*.

AE = BE

E is vertically above M, the midpoint of AB.

AB = 16 cm

BC = 30 cm

25 (a) Show that EM = 15 cm

[2 marks]

I			Ш
l			
١	 2	 2	 -

25 (b)	Work out the size of angle <i>ECM</i> .	[4 marks]
	Answer degree	ees
	Turn over for the next question	

6

26 Here is an L-shape. All dimensions are in centimetres. -x – Not drawn accurately 9 3x + 1- 10 -

Work out the value of x .	IS ma
	[6 ma
Answer	

27	Prove that	$x^2 + x + 1$	is always positive.	[3 marks]

END OF QUESTIONS

3

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

GCSE Mathematics

Paper 3 Higher Tier

Mark scheme

8300 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments			
	$\begin{pmatrix} -5 \\ -3 \end{pmatrix}$	B1				
1	Ad	ditional	Guidance			
	1	B1				
2	Additional Guidance					
	V					
	$w = \frac{y}{2x}$	B1				
3	Additional Guidance					
	210°	B1				
4	Additional Guidance					

	$200 \div 0.4$ or $200 \div 40 \times 100$ or $200 = 0.4 \times n$	M1	oe (Heads =) 300 200 : 300				
	500	A1					
	Additional Guidance						
_	Build up method must be complete						
5	eg 200 = 40%, 100 = 20%, 500 (= 100	M1A1					
	200 = 40%, 100 = 20%, 400 = 80%, 10	M1A0					
	200 = 40%, 100 = 20%, 400 = 80%	MOAO					
	0.4 : 0.6 = 200 : 300						
	100 = 20%, 300 = 60%	M1A0					
	$200 \div 0.4 = 500, 500 + 200 = 700$ inco	thod M0A0					

Question	Answer	Mark	Comments			
	Alternative method 1					
6	A includes 1 or B does not include 1	B1	oe Correct statement about 1 without contradiction			
	A does not include 6 or B includes 6	B1	oe Correct statement about 6 without contradiction			
	Alternative method 2					
	$1 \le x < 6$ or $1 < x \le 6$	M1	oe eg $x \ge 1$ and $x < 6$ for 1^{st} statement			
	or $1 \le x$ and $1 < x$ or $x < 6$ and $x \le 6$		A includes 3 and B includes 18			
	or A is 1, 2, 3, 4, 5 or B is 2, 3, 4, 5, 6		A is 3, 17 and B is 4, 18			
	A is 1, 2, 3, 4, 5 and B is 2, 3, 4, 5, 6	A1	oe eg A = 1 to 5 and B = 2 to	e g A = 1 to 5 and B = 2 to 6		
	Additional Guidance					
	For 2 marks, must have clearly indicated both sets of integer solutions			M1A1		
	For 2 marks, must have clearly indicated both differences			B1B1		
	A could be 1 but not 6, B could be 6 but not 1			B1B1		
	A is $x = 1$ and B is $x = 6$			B1B1		
	A: 3, 6, 9, 12, 15 and B: 6, 9, 12, 15, 18			M1A0		
	Comment that inequality signs are switched with no other working			B0B0		
	'1 and 6 don't appear in both' – need to be correctly linked to A and B			B0B0		

Question	Answer	Mark	Comments			
	5.5 in the correct position	B1	oe			
	6.5 in the correct position	B1	oe			
	Additional Guidance					
7(a)	5.50 or $5\frac{1}{2}$ or $\frac{11}{2}$			B1		
	6.50 or $6\frac{1}{2}$ or $\frac{13}{2}$			B1		
	One correctly evaluated trial using eg 6.3 + 4.1 = 10.4					
1	(6, 6.5] + (4, 4.5)		og old i ili ioi i			
	or (6, 6.5) + (4, 4.5]	N44				
		M1				
	or two values in the ranges given that work if correctly evaluated		eg 6.4, 4.2			
	One correctly evaluated trial using		eg 6.4 + 4.2 = 10.6			
	(6, 6.5) + (4, 4.5)	A1				
	with an answer that rounds to 11		Ignore fw			
7(b)	Additional Guidance					
	6.4 + 4.4 = 10.8 (= 11) do not need to show 11			M1A1		
	6.4999 + 4.4999 = 10.9998			M1A1		
	6.5 + 4.4 = 10.9	M1A0				
	4.5 + 6.2 = 10.7	M1A0				
	6 + 4 = 10	MO				
	6.5 + 4.5 = 11			MO		
	6.49 + 4.49 = 11	МО				
8(a)	Could be true	B1				
	Additional Guidance					

Question	Answer	Mark	Comments	
	Must be true	B1		
8(b)	Ad	ditional	Guidance	
	$\frac{2}{3} \times 720 \text{ or } \frac{3}{5} \times 700$	M1	oe Accept use of 0.66 or 0.	67
	480 or 420	A1		
	900	A1	Ignore fw	
9(a)	Additional Guidance			
	900 with no working			M1A1A1
	900 out of 1420 or $\frac{900}{1420}$ (ignore fw)			M1A1A1
	$\frac{480}{720}$ (480 boys out of 720) or $\frac{420}{1420}$ (4	120 girls o	out of 1420 students)	M1A1A0

Question	Answer	Mark	Comments			
	Alternative method 1					
	720 + 700 or 1420 or 720 + 700 – their 900 or 520	M1	oe			
	$\frac{520}{1420}$ or $\frac{26}{71}$	A1ft	oe fraction, decimal or percentage 0.36(6) or 0.37 36.(6)% or 37% ft their part (a) Ignore fw			
	Alternative method 2					
9(b)	720 + 700 or 1420 or $\frac{1}{3}$ × 720 or 240 or $\frac{2}{5}$ × 700 or 280 or 240 + 280 or 520	M1	oe			
	$\frac{520}{1420}$ or $\frac{26}{71}$	A1	oe fraction, decimal or percentage 0.36(6) or 0.37 36.(6)% or 37% Ignore fw			
	Alternative method 3					
	$720 + 700 \text{ or } 1420$ or $\frac{900}{1420}$ or $\frac{45}{71}$ or $\frac{\text{their } 900}{1420}$	M1	oe fraction, decimal or percentage 0.63 or 0.63 63.()% or 63%			
	$\frac{520}{1420}$ or $\frac{26}{71}$	A1ft	oe fraction, decimal or percentage 0.36(6) or 0.37 36.(6)% or 37% ft their part (a) Ignore fw			

Additional guidance is on the next page

Question	Answer	Mark	Commen	ts	
0/b)	Additional Guidance				
9(b) cont	520 1420 followed by incorrect simplification	on of frac	tion	M1A1	
	2x + 10 = 3x - 20	M1	oe 180 – (2x + 10) + 3x – 20 =	= 180	
	3x - 2x = 20 + 10 or $x = 30$	M1dep	oe		
	2 × their 30 + 10 or 3 × their 30 – 20 or 70	M1dep	oe		
	110	A1			
	Additional Guidance				
	x = 30, y = 180 - 3(30) + 20 = 110			M1M1M1A1	
10(=)	x = 30, y = 180 - 3(30) - 20 = 110 recovered missing bracket			M1M1M1A1	
10(a)	x = 30, y = 180 - 3(30) - 20 = 70 not recovered			M1M1M0A0	
	$2x + 10 = 3x - 20$ $3x - 2x = 20 + 10$ $x = 10$ $2 \times 10 + 10 (= 30)$			M1M1M1A0	
	$2x + 10 = 3x - 20$ $x = 10$ $2 \times 10 + 10 (= 30)$			M1M0M0A0	
	y + 2x + 10 = 3x - 20 + y			M1M0M0A0	
	w = 3x - 20 seen or on diagram			M0M0M0A0	
	w = 2x + 10 seen or on diagram			M0M0M0A0	

Question	Answer	Mark	Comment	s	
	2x + 10 = 60 or $2x = 60 - 10$ or $2x = 50$ or $x = 25$	M1			
	3 × their 25 – 20 or 55 or 180 – 55 or 125	M1dep	oe		
10(b)	(y =) 125 and bigger or $(y is)$ 15 bigger	A1ft	oe ft their (a)		
	Additional Guidance				
	ct of lines not being parallel				
	w is smaller so $2x + 10$ is smaller so x is bigger	M1M1A1			
	2 × 25 + 10 = 60			M1M0A0	
	y is bigger ticked but no valid working			M0M0A0	

Question	Answer	Mark	Comments			
	Alternative method 1					
	Any correct scaling of the ratio 5 : 2 eg 10 (:) 4 or 20 (:) 8 or 25 (:) 10	M1	oe			
	22.5 (:) 9 or 22.5 (red) or 30 (:) 12 or 12 (blue)	M1dep	oe			
	31.5 or 31 $\frac{1}{2}$ or $\frac{63}{2}$	A1				
	Alternative method 2					
	9 ÷ 2 or 4.5 or 30 ÷ 5 or 6	M1	oe 2 ÷ 9 or 0.22 5 ÷ 30 or 0.16 or 0.17			
11	5 × their 4.5 or 22.5 or 7 × their 4.5 or 2 × their 6 or 12 or 7 × their 6 or 42	M1dep	oe			
	31.5 or 31 $\frac{1}{2}$ or $\frac{63}{2}$	A1				
	Alternative method 3					
	$\frac{2}{7}$ × purple = blue $\frac{5}{7}$ × purple = red	M1	oe $\frac{2}{7}$ × purple = 9 $\frac{5}{7}$ × purple = 30			
	<u>'</u>		,			
	$9 \times \frac{7}{2}$ or $30 \times \frac{7}{5}$ or 42	M1dep	OE .			
	31.5 or 31 $\frac{1}{2}$ or $\frac{63}{2}$	A1				

Additional guidance is on the next page

Question	Answer	Mark	Comments
	Ad	lditional (Guidance

	Additional Guidance				
	28 + 3.5 = 31.5	M1M1A1			
	28 + 3.5	M1M1A0			
	31.5, answer 31	M1M1A1			
	31.5 + 42 = 73.5	M1M1A0			
11	10 4	M1M0A0			
cont	10, 4	M1M0A0			
	10 + 4	M1M0A0			
	'He has 2.5 times more red than blue'	M1M0A0			
	2.5 : 1	M1M0A0			
	2.5	M0M0A0			
	28 on its own	MOMOAO			

	a = 2	B1	May be embedded		
	b = 5	B1	May be embedded		
	Additional Guidance				
12	$(2r^5)^4$			B1B1	
	$(r^5)^4$			B1	
	2^4 = 16 on its own is not enough			В0	
	a = 5 and $b = 2$			B0B0	

Question	Answer	Mark	Comr	ments
	Alternative method 1			
	12 × 1.58 or 18.96 or 28 × 1.52 or 42.56	M1		
	28 × 1.52 – 12 × 1.58 or their 42.56 – their 18.96 or 23.6	M1dep	oe	
	their 23.6 ÷ (28 – 12) or their 23.6 ÷ 16	M1dep	oe dep on M1 M1	
	1.475 or 1.48	A1		
	Alternative method 2			
13	$16x + 12 \times 1.58$ or $16x + 18.96$ or 28×1.52 or 42.56	M1		
	(16x =) their 42.56 – their 18.96 or $(16x =)$ 23.6	M1dep	oe	
	their 23.6 ÷ (28 – 12) or their 23.6 ÷ 16	M1dep	oe dep on M1 M1	
	1.475 or 1.48	A1		
	Additional Guidance			
	23.6 ÷ 16 = 1.475 = 1.5			M1M1M1A1
	23.6 ÷ 16 = 1.5			M1M1M1A0
	23.6 ÷ (28 – 12) 23.6 ÷ 14			M1M1M1A0
	23.6 ÷ 14			M1M1M0A0
	Beware use of 0.06 eg 1.58 – 1.52 = 0.06			MO

Question	Answer	Mark	Comments	
	y is directly proportional to $\frac{1}{x}$	B1		
14	Ad	ditional	Guidance	
	0	D4		
	8	B1		
15(a)	Additional Guidance			
	3	B1	Accept –3	
15(b)	Additional Guidance			

Question	Answer	Mark	Comments	
	Alternative method 1			
	$\frac{25}{100}$ × 18 000 or 4500		oe	
	and 18 000 – their 4500			
	or 18 000 × (1 – 0.25)	M1		
	or 18 000 × 0.75			
	or 13 500			
	or 0.88			
	their 13 500 × (1 – 0.12) ⁴		oe	
	or their 13 500 × 0.88 ⁴		Complete method for at least 4 years	
	their 13 500 × $(1 - 0.12)^3$	M1dep		
	or their 13 500 × 0.88 ³			
	or 9199.87 or 9199.88 or 9199.90			
16	or 9200			
	8095.88 or 8095.89 or 8095.90		Correct money notation	
	or 8096 or 8096.00	A1		
	or 8100 or 8100.00			
	Alternative method 2			
	$\frac{25}{100}$ × 18 000 or 4500		oe	
	and 18 000 – their 4500	M1		
	or 13 500			
	or 0.88			
	13 500, 11 880, 10 454.() 9199.()	N/4 al a :-	ое	
		M1dep	Complete method for at least 4 years	
	8095.88 or 8095.89 or 8095.90		Correct money notation	
	or 8096 or 8096.00	A1		
	or 8100 or 8100.00			

Additional guidance is on the next page

	Additional Guidance					
	Condone eg £8095.88p					
	8095.887	M1M1A0				
16	Note the values for successive calculations are 13 500, 11880, 10454.4, 9199.87(2), 8095.88(736)					
cont	(2), 0000.00(, 00)					
	The values for successive savings are					
	4500, 1620, 1425.6, 1254.52(8), 1103.98					
	For method marks allow rounding or truncating of their totals or savings					

Question	Answer	Mark	Comments		
	Alternative method 1				
	1 mile per minute or 60 miles per hour or 0.15 (hours) or 1.6 (hours) or $1\frac{36}{60}$ (hours)	B1			
	9 ÷ 50 or 0.18	M1	oe		
	$70 \times 1 \frac{36}{60}$ or 70×1.6 or 112	M1	oe		
	their 112 ÷ 40 or 2.8	M1dep	dep on 2nd M1		
17	2.98 or 2.8 and $(3 - 0.18 =) 2.82$ or 0.18 and $(3 - 2.8 =) 0.2$	A1	Ignore fw		
	Alternative method 2				
	1 mile per minute or 60 miles per hour or 0.15 (hours) or 1.6 (hours) or $1\frac{36}{60}$ (hours)	B1			
	9 ÷ 50 or 0.18	M1	oe		
	$70 \times 1\frac{36}{60}$ or 112 or 70×1.6 or 112	M1			
	40 × (3 – their 0.18) or 112.8	M1dep	dep on 1st M1		
	112.8 and 112	A1	Ignore fw		

Alternative method 3 and additional guidance is on the next page

	Alternative method 3					
	1 mile per minute or 60 miles per hour or 0.15 (hours)	B1				
	or 1.6 (hours) or $1\frac{36}{60}$ (hours) 9 ÷ 50 or 0.18	M1	oe			
	70 ÷ 40 or 1.75	M1				
	70 ÷ 40 × 1.6 or 2.8 or their 1.75 × 1.6	M1dep	oe eg 1.75 + 0.875 + 0.175 dep on 2nd M1			
	2.98 or 2.8 and (3 – 0.18 =) 2.82 or 0.18 and (3 – 2.8 =) 0.2	A1	Ignore fw			
	Additional Guidance					
17	Key facts are :					
cont	First stage: Distance travelled 9 miles (given) Time taken 9 minutes (given) of the state of t					
	Second stage: Distance travelled 70 × 1.6 = 112 miles Time taken 1 hour 36 minutes (given) or 1.6 hours Average speed 70 mph (given) Miles per gallon 40 mpg (given), Amount of petrol 112 ÷ 40 = 2.8 gallons					
	An incorrect conversion of 1 hour 36 minutes to 1.36 can score: eg					
	$70 \times 1.36 = 95.2, 95.2 \div 40 = 2.38$ $70 \times 1.36 = 95.2, 95.2 \div 40 = 2.38, 0.18 + 2.38 = 2.56$					
	2.98 = 3 (further work)			B1M1M1M1A0 B1M1M1M1A1		
	9 ÷ 50			B1M1		

Question	Answer	Mark	Comment	ts	
18	Valid criticism	B1	eg $(y =) 0.5 \text{ should be } (y =) 1$ $y = 0.5 \text{ should be when } x =$ When $x = 0$ $y = 1$ 0.5 is incorrect Crosses y axis in wrong places of the control of th	= 1	
	Additional Guidance				
	Do not accept statements which are co	ontradicto	ry		
	He does not have a scale on the x axis			В0	
	It does not pass through zero			В0	
	The line should meet the x axis			В0	

Question	Answer	Mark	Comments		
	Alternative method 1				
	BDC = 24	B1	May be on the diagram		
	$DFC = \frac{180 - 24}{2}$		May be on the diagram Finding a base angle in triangle <i>CDF</i>		
	or $DCF = \frac{180 - 24}{2}$	B1dep			
	or $\frac{156}{2}$ or 78				
	(3x =) 180 – their 78		oe		
	or $(3x =) 24 + $ their 78	M1	May be on the diagram		
	or $(3x =) 102$				
	34	A1	May be on the diagram		
	Alternative method 2				
	BDC = 24	B1	May be on the diagram		
19	DFC = 180 - 3x	M1	May be on the diagram		
	2(180 - 3x) + 24 = 180		ое		
	or $360 - 6x + 24 = 180$				
		M1dep			
	or $3x + 78 = 180$ or $(3x =) 102$				
	34	A1	May be on the diagram		
	Additional Guidance				
	If angles in the same segment are not used ie all the working is using triangle ABF then award maximum of 2 marks				
	If triangle <i>ABF</i> is assumed to be isosceles and there is no evidence of angle <i>BDC</i> = 24 being used then award maximum of 2 marks				
	If triangle ABF is used as isosceles and correctly justified then all marks are available eg 'triangle ABF is similar to triangle CDF'				
	Answer of 34 does not imply full marks				

Additional guidance continues on the next page

	Answer of 34 with no working	B0B0M1A1
19	'their 78' must come from an attempt to calculate $\frac{180 - 24}{2}$	
cont	Angles must be clearly identified	
	eg <i>D</i> = 24	B1
	24 (unless shown on diagram)	B0

	522.5 or 527.5	B1	oe Accept 527.499(999)		
	77.5 or 78.5	B1	oe Accept 78.499(999)		
	527.5 – 77.5	M1	their max total – their min their max total must be (52 their min Ben must be [77, Accept 527.49 or 527.499	78)	
20	450 and Yes with correct working seen	A1	Accept [449.999, 450]		
	Additional Guidance				
	525 – 78 = 447 and yes	B0B0M0A0			
	525 = 520 to 530			В0	
	78 = 77.5 to 78.5			B1	
	520 - 78.5 = 441.5				
	520 – 77.5 = 442.5				
	530 - 78.5 = 451.5				
	530 – 77.5 = 452.5			M1	
	Answer No			A0	

	-2.5 < <i>x</i> < 1	B1		
21	Additional Guidance			

Question	Answer	Mark	Comments
	Alternative method 1		
	Second differences 8	M1	Implied by $4n^2$
	Any three values from -2 1 4 7	M1dep	
	$4n^2 + 3n - 5$	A1	oe Allow $a = 4$ $b = 3$ $c = -5$
	Alternative method 2		
22	Any 3 of a + b + c = 2 4a + 2b + c = 17 9a + 3b + c = 40 16a + 4b + c = 71	M1	Using $an^2 + bn + c$
	Any 2 equations in 2 unknowns eg $3a + b = 15$ 5a + b = 23 7a + b = 31 8a + 2b = 38 12a + 2b = 54 15a + 3b = 69	M1dep	Correctly eliminates the same letter using two different pairs of equations
	$4n^2 + 3n - 5$	A1	oe Allow $a = 4$ $b = 3$ $c = -5$

Alternative method 3 and additional guidance is on the next page

	Alternative method 3			
	Second differences 8		Using $an^2 + bn + c$	
	a = 4	M1		
	or $c = 2 - 7$ or $- 5$			
	3a + b = 17 - 2		oe eg $b=3$	
22	and	M1dep	May also see $a + b + c = 2$ used	
cont	substitutes their a		to work out c	
	$4n^2 + 3n - 5$	0.4	oe	
		A1	Allow $a = 4$ $b = 3$ $c = -5$	
	Additional Guidance			
	Sequence (-5) 2 17 40 71			
	1 st differences are (7) 15 23 3	31		
	2 nd differences are 8 8 8			

Question	Answer	Mark	Comments
23	$0 = 5^{2} + 5b + c$ or $-10 = 0^{2} + b(0) + c$ or $c = -10$ $b = -3$ or $x^{2} - 3x + c$ or $(y =) x^{2} - 3x - 10$ $(x - 5)(x + 2)$ or $\frac{3 \pm \sqrt{(-3)^{2} - 4 \times 1 \times -10}}{2 \times 1}$ or $\frac{3 \pm \sqrt{49}}{2}$ or $(x - \frac{3}{2})^{2} + \dots$	M1dep	oe $(x-5)(x+k) \text{ and } -5k = -10$ oe Correctly factorises the 3-term quadratic expression or correctly substitutes into quadratic formula for the 3-term quadratic dep on M1 M1
	or $2x - 3 = 0$ or x -coordinate of $P = -2$ or two symmetrical coordinates		eg (1, -12) and (2, -12)
	$1\frac{1}{2}$ or $\frac{3}{2}$ with no incorrect working	A1	oe Accept (1.5, -12.25)
	Ac	Guidance	

	Draws a tangent at 1 second M1		
24	Their gradient at 1 second	A1ft	Must see a tangent on the graph ft their tangent ±0.2 tolerance on vertical reading ±0.1 tolerance on horizontal reading
	Additional Guidance		

Question	Answer	Mark	Comments		
	Alternative method 1				
	$17^{2} - (16 \div 2)^{2}$ or $17^{2} - 8^{2}$ or $289 - 64$	M1	Correct use of Pythagoras' theorem eg $8^2 + 15^2 = 17^2$ or $64 + 225 = 289$		
	$\sqrt{17^2 - (16 \div 2)^2}$ (= 15) or $\sqrt{17^2 - 8^2}$ (= 15) or $\sqrt{289 - 64}$ (= 15)	A1	Correct use of Pythagoras' theorem using a square root		
	Alternative method 2	1			
25(a)	$\sin E = \frac{8}{17}$ or $\cos A = \frac{8}{17}$ or $E = 28.()$ or $A = 61.9()$ or 62 and $\cos 28.() = \frac{EM}{17}$ or $\tan 28.() = \frac{8}{EM}$ or $\sin 61.9() = \frac{EM}{17}$ or $\tan 61.9() = \frac{EM}{8}$	M1			
	17 cos 28.() or 8 ÷ tan 28.() or 17 sin 61.9() or 8 tan 61.9()	A1			
	Ac	lditional	Guidance		
	8, 15, 17 on their own		M0A0		
	$EM^2 = 289 - 64 = 225$, $EM = 15$		M1A0		

Question	Answer	Mark	Comments			
	Alternative method 1					
	$30^2 + (16 \div 2)^2$ or $30^2 + 8^2$ or 964	M1	oe			
	$\sqrt{\text{their 964}}$ or 2 √241 or [31, 31.1]	M1dep	oe CM			
	$\tan x = \frac{15}{\text{their [31, 31.1]}}$	M1dep	oe eg 90 – tan ⁻¹ their [31, 31.1] 15 dep on M1 M1			
25(b)	[25.7, 26]	A1				
	Alternative method 2					
	$30^2 + 17^2$ or 1189	M1	oe			
	√their 1189 or [34.4, 34.5]	M1dep	oe CE			
	$\sin x = \frac{15}{\text{their [34.4, 34.5]}}$	M1dep	oe eg $90 - \cos^{-1} \frac{15}{\text{their } [34.4, 34.5]}$ or $\frac{\sin x}{15} = \frac{\sin 90}{\text{their } [34.4, 34.5]}$			
		dep on M1 M1				
	[25.7, 26]	A1				

	Alternative method 3			
	$30^2 + (16 \div 2)^2$ or 964 or $30^2 + 17^2$ or 1189	M1	oe	
	$\sqrt{\text{their 964}}$ or $2\sqrt{241}$ or [31, 31.1] or $\sqrt{\text{their 1189}}$ or [34.4, 34.5]	M1dep	oe CM CE	
	$\cos x = \frac{\text{their } [31, 31.1]}{\text{their } [34.4, 34.5]}$	M1dep	oe eg 90 – sin ⁻¹ their [31, 31.1] their [34.4, 34.5]	
	[25.7, 26]	A1		
25(b)	Alternative method 4			
25(b) cont	$17^{2} - (16 \div 2)^{2}$ or 225 or $30^{2} + (16 \div 2)^{2}$ or 964 or $30^{2} + 17^{2}$ or 1189	M1	oe EM ² CM ² CE ²	
	$\cos x = \frac{\text{their } 964 + \text{their } 1189 - \text{their } 225}{2 \times \sqrt{\text{their } 964} \times \sqrt{\text{their } 1189}}$	M1dep	oe	
	$\frac{\cos^{-1}}{\text{their 964 + their 1189 - their 225}}$ $2 \times \sqrt{\text{their 964}} \times \sqrt{\text{their 1189}}$	M1dep	oe dep on M1 M1	
	[25.7, 26]	A1		
	Additional Guidance			

Question	Answer	Mark	Comment	ts
26	10(3x + 1) or 9x or $x(9-3x-1)$ or $x(8-3x)$ or $(10-x)(3x+1)$ or $x(3x+1)$ or $(10-x)(9-3x-1)$	M1	oe One correct area expression May be implied	on in x
	$10(3x + 1) + x(9 - 3x - 1)$ or $9x + (10 - x)(3x + 1)$ or $(10 - x)(3x + 1) + x(9 - 3x - 1)$ $+ x(3x + 1)$ or $10 \times 9 - (10 - x)(9 - 3x - 1)$	M1dep	oe Fully correct unsimplified e area	expression for
	$30x + 10 + 9x - 3x^{2} - x$ or $9x + 30x + 10 - 3x^{2} - x$ or $30x + 10 - 3x^{2} - x + 9x - 3x^{2} - x$ $+ 3x^{2} + x$ or $90 - 90 + 30x + 10 + 9x - 3x^{2} - x$ or $38x + 10 - 3x^{2}$	M1dep	oe dep on M1 M1 Full expansion All brackets removed	
	$3x^2 - 38x + 55 (= 0)$	A1	oe 3-term equation	
	$(3x - 5)(x - 11)$ $\frac{-38 \pm \sqrt{(-38)^2 - 4 \times 3 \times 55}}{2 \times 3}$ or $\frac{38 \pm \sqrt{1444 - 660}}{6}$ or $\frac{38 \pm \sqrt{784}}{6}$	M1	oe their 3-term quadratic factorised correctly or correct substitution in formula for their 3-term quadratic equation	
	$\frac{5}{3}$ or $1\frac{2}{3}$ or 1.66(6) or 1.67	A1	oe $x = 11$ included is A0	
	Additional Guidance			
	$3x^2 = 38x - 55$			M1M1M1A1

Question	Answer	Mark	Comments		
	Alternative method 1 – completing the square				
	$(x+\frac{1}{2})^2+$	M1			
	$(x+\frac{1}{2})^2-(\frac{1}{2})^2+1$		ое		
	or $(x+\frac{1}{2})^2 - \frac{1}{4} + 1$	A1			
	or $(x + \frac{1}{2})^2 + \frac{3}{4}$				
	$(x + \frac{1}{2})^2 \ge 0$ and $\frac{3}{4} > 0$	A1	oe		
	and always positive				
	Alternative method 2 – real roots				
27	$\frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times 1}}{2 \times 1}$		oe		
	or a correct sketch showing a quadratic curve with turning point above the <i>x</i> -axis	M1			
	States no values on <i>x</i> -axis	A1	oe		
	States no values on <i>x</i> -axis		ое		
	and (minimum value =) $\frac{3}{4}$	A1			
	Alternative method 3 – Calculus				
	2x + 1 = 0	M1			
	$x = -\frac{1}{2}$	A1			
	(minimum value =) $\frac{3}{4}$	A1			

	Alternative method 4 – Explanation method			
	If $x \ge 0$,		Accept $x > 0$ for $x \ge 0$	
	$x^2 \ge 0$ and $x \ge 0$ (1 > 0)			
	so $x^2 + x + 1 > 0$		B2 for two correct stateme	nts
			B1 for one correct stateme	nt
	and			
	If $-1 < x < 0$			
27	$x^2 > 0$ and $x + 1 > 0$	B3		
cont	so $x^2 + x + 1 > 0$			
	and			
	If <i>x</i> ≤ −1			
	$x^2 > x$ and $x^2 + x > 0$			
	so $x^2 + x + 1 > 0$			
	Additional Guidance			
	Calculating pairs of coordinates alone			M0A0A0