

Brain Tumor Classification

Sabra Mabrouk

Problem Statement

- Manual interpretation
 - time-consuming
 - prone to errors

Increasing number of MRI scans

Automated solution

Develop a deep learning-based model that can automatically classify brain tumors into multiple categories to assist in the early detection, diagnosis, and treatment planning for patients

Dataset

- Dataset: 7023 human brain MRI images
 - Training dataset: 5712 images
 - Testing dataset: 1311 images

- 4 classes :
 - Glioma
 - Meningioma
 - Pituitary
 - No tumor

Exploratory Data Analysis

Class distribution

Exploratory Data Analysis

Image brightness

Images in the glioma class are darker than the other classes

Exploratory Data Analysis

Histogram of brightness

Poor contrast for the Meningioma and pituitary classes

Preprocessing

- One hot encoding labels
- Filter images: 5x5 Gaussian filter to reduce noise
- Cropping images: focus on the brain area
- Adjusting contrast: enhance the image quality
- Normalize image to [0,1]
- Resizing images to 150x150

Before Cropping

Before Cropping

Before Cropping

Before Cropping

After Cropping and adjusting contrast

After Cropping and adjusting contrast

After Cropping and adjusting contrast

After Cropping and adjusting contrast

After Cropping and adjusting contrast

Modeling

Modeling

Evaluation

- The test set was preprocessed similarly to the training set

- Results

Test Loss: 0.2509309947490692

Test Accuracy: 0.9320312738418579

Hyperparameter tuning

The tuned parameters are:

- The number of filters in the 3 convolutional blocks
- The dimensionality of the output space in the dense layer
- The learning rate of the optimizer "adam"

The best parameters are:

- 'filters_1': 64, 'filters_2': 64, 'filters_3': 512,
- 'dense_units': 192,
- 'learning_rate': 0.000675

Mean validation accuracy cross folds	Standard deviation of validation accuracy across folds
0.96	0.024

Evaluation of the best model

Metric	Value
Precision	0.915
Recall	0.913
F1 score	0.913
AUC-ROC	0.985

Conclusion

- Objective: classify brain Tumor MRI into 4 classes
- Trained CNN model:
 - 3 convolutional blocks with progressively increasing filter sizes and depths containing
 - Convolutional layer,
 - A max pooling layers to reduce spatial dimensions and retain important features.
 - A dropout layers to help mitigate overfitting
 - A layer to flatten the features into a one-dimensional vector
 - A dense layer with ReLU activation.
 - A softmax output layer is used for classification
- Results after tuning
 - High accuracy rate of 91%.
 - High recall rate 91%

Future work

- Generate more data: use data augmentation techniques (Rotating, shifting, flipping, Shearing, etc)
- Increase model complexity: adding more layers or more neurons in the dense layers.
- Tune more hyperparameters (batch size, dropout rate, etc)

Thank You!