MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2012-13, primer semestre. Examen parcial del 2 de novembre de 2012

1.- Es considera el càlcul recurrent

$$\begin{cases} x_0, x_1 \text{ dades conegudes }, \\ x_n = 3x_{n-1} - 2x_{n-2} \quad \forall n \ge 2. \end{cases}$$

- (a) Demostreu que $x_5 = 31x_1 30x_0$.
- (b) Trobeu una fórmula explícita de x_n en funció de x_1 i x_0 . O sigui, trobeu f(n) i g(n) tals que $x_n = f(n)x_1 + g(n)x_0$, $\forall n \geq 0$.
- (c) Suposem que els càlculs es fan exactament (sense errors d'arrodoniment), i suposem que x_0 i x_1 es coneixen només aproximadament, amb uns errors absoluts fitats per ϵ . Demostreu que l'error absolut en el valor x_n obtingut, està fitat per $(2^{n+1}-3)\epsilon$.
- **2.-** Sigui $p_3(x) = a_0 + a_1x + a_2x^2 + x^3$ un polinomi de tercer grau amb $a_0 \neq 0$, del qual coneixem l'aproximació d'una arrel α amb error relatiu fitat per 0 < u << 1. Volem calcular els coeficients b_0 i b_1 del polinomi

$$p_2(x) = b_0 + b_1 x + x^2,$$

tal que

$$p_3(x) = (x - \alpha)p_2(x),$$

(a) Demostreu que

$$b_1 = \alpha + a_2, \qquad b_0 = a_1 + \alpha b_1.$$

- (b) Suposem que els coeficients a_i no tenen error, i que les operacions es fan amb un error relatiu fitat per u. Trobeu fites dels errors absoluts de b_0 , b_1 en funció de u, a_1 , a_2 , α .
- (c) Demostreu que també es verifica $b_0 = -a_0/\alpha$. Trobeu una fita de l'error absolut de b_0 si es calcula usant aquesta fórmula, novament en funció de u, a_1 , a_2 , α .

- (a) (Teoria) Deduiu quin és el nombre d'operacions necessàries per a resoldre un sistema triangular superior.
- (b) Si s'usa l'algorisme natural per a calcular el producte, C=AB, de dues matrius quadrades $n\times n$:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
, $\forall i = 1, 2, ..., n$, $\forall j = 1, 2, ..., n$.

la quantitat de productes entre escalars que cal fer és exactament n^3 .

Quants productes cal fer, en funció de n, si suposem que A és triangular inferior, que B és triangular superior, i que no fem els productes en què sabem que un dels dos factors és 0? Nota: Heu de donar una expressió de la forma $\alpha + \beta n + \gamma n^2 + \dots$

(c) En un ordinador antic, el producte anterior, quan n=30, es feia en 2 segons. Quant es tardava a fer el producte en el cas n=60? Nota: No useu només el terme dominant de l'apartat anterior, sinó tots els termes.

4.-

(a) Es considera la següent factorització PA = LU en dimensió n = 4:

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 12 & 2 & 10 & 15 \\ -4 & 21 & 5 & 10 \\ 4 & -1 & 2 & -3 \\ 8 & 3 & 6 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 4 & 1 & 0 \\ 3 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & -1 & 2 & -3 \\ 0 & 5 & 2 & 4 \\ 0 & 0 & -1 & -9 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Si es canvia només l'element $a_{44} = -2$ per $a_{44} = +2$ en la matriu A (sigui \overline{A} la nova matriu) i si es considera la matriu de permutació P, quines són les noves matrius \overline{L} i \overline{U} de la factorització $P\overline{A} = \overline{L}\overline{U}$?

(b) Sigui ara la dimensió n arbitrària. Es considera una factorització PA = LU. Com que P és una matriu de permutació, cada columna seva té un element que és 1, i la resta són 0. Sigui $k \in \{1, 2, ..., n\}$ la fila on hi ha l'element 1 de la columna n de P.

Si es canvia únicament l'element a_{nn} de la matriu A (sigui \overline{A} la nova matriu) i si es manté fixada la mateixa matriu P, expliqueu quins elements de L i de U canviarien en la factorització $P\overline{A} = \overline{L}\overline{U}$ i com els calcularíeu. De pas, heu de demostrar que la nova factorització $P\overline{A} = \overline{L}\overline{U}$ existeix.

Entregueu problemes diferents en fulls diferents

Qualificacions: Divendres 16 de novembre, al Campus Virtual.