7 Quarta lezione

7.1 Importane file Python

Abbiamo visto come utilizzare le librerie, tutto a partire dal comando import. Oltre alle librerie possiamo importare anche altri file Python scritti da noi, magari perchè in quel file è implementata una funzione che ci serve. Facciamo un esempio:

```
def f(x, n):
       restituisce la potenza n-esima di un numero x
4
       Parametri
       x, n : float
       Return
       v : float
11
12
13
14
16
       return v
17
       _name__ == '__main__':
18
19
       #test
       print(f(5, 2))
20
21
  [Output]
```

Abbiamo questo codice che chiamiamo "elevamento.py" che ha implementato la funzione di elevamento a potenza e supponiamo di voler utilizzare questa funzione in un altro codice, possiamo farlo grazie ad import:

```
import elevamento

print(elevamento.f(3, 3))

[Output]
27
```

Notiamo nel codice iniziale la presenza dell' if, esso serve per far si che tutto ciò che sia scritto sotto venga eseguito solo se il codice viene lanciato come 'main' appunto e non importato come modulo su un altro codice. In genere l'utilizzo di questa istruzione è buona norma quando si vuol scrivere un codice da importare altrove.

7.2 Fit

Nell'ambito della statistica un fit, cioè una regressione lineare o non che sia (dove la linearità è riferita ai parametri della funzione), è un metodo per trovare la funzione che meglio descrive l'andamento di alcuni dati. Nel caso di regressione lineare la procedura da eseguire non è troppo complicata, mentre per la regressione non lineare le cose si fanno parecchio complicate e si utilizzano algoritmi di ottimizzazione. Se noi abbiamo quindi un modello teorico che ci dice che un corpo cade con una legge oraria della forma $y(t) = h_0 - \frac{1}{2}gt^2$, grazie al fit possiamo trovare i valori dei parametri della leggere oraria, h_0 e g, che meglio adattano la curva ai dati (nella speranza che escano valori fisicamente sensati, dato che in genere i dati sono di origine sperimentale o simulativa). Nella nostra pigrizia deleghiamo tutto il da fare alla funzione "scipy.optimaze.curve_fit()". In ogni caso comunque l'idea di ciò che va fatto è trovare il minimo della seguente funzione:

$$S^{2}(\{\theta_{i}\}) = \sum_{i} \frac{(y_{i} - f(x_{i}; \{\theta_{j}\}))^{2}}{\sigma_{y_{i}}^{2}}$$
(1)

che nel caso in chi il termine dentro la somma sia distribuito in modo gaussiano allora la quantità S^2 è distribuita come un chiquadro, e da qui si potrebbe fare tutta una discussione sulla significatività statistica di quello che andiamo a fare, che ovviamente noi non facciamo. Il problema della non linearità fondamentalmente si può esprimere nell'esistenza di minimi locali che potrebbero bloccare il fit dando valori per i parametri θ_i non realistici; mentre per una regressione lineare il minimo è solo uno e assoluto. Prima di vedere il codice vediamo brevemente due grafici della quantità S^2 , che con un po' di abuso di notazione chiamiamo chiquadro, nel caso di regressione lineare e non:

modello:
$$y(t) = h_0 - \frac{1}{2}gt^2$$

$$modello:y(t) = Acos(\omega t)$$

Vediamo come effettivamente siano presenti nel caso non lineare una serie di minimi locali che sarebbe meglio evitare (i codici per la realizzazione di grafici sono riportati a fine sezione). Vediamo ora un semplice esempio di codice:

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.optimize import curve_fit
5 def Legge_oraria(t, h0, g):
      Restituisce la legge oraria di caduta
      di un corpo che parte da altezza h0 e
      con una velocita, inziale nulla
9
      return h0 - 0.5*g*t**2
12
  . . . . .
13
14 dati misurati:
xdata : fisicamemnte i tempi a cui osservo
16
           la caduta del corpo non affetti da
17
           errore
18 ydata : fisicamente la posizione del corpo
19
           misurata a dati tempi xdata afetta
          da errore
20
21
23 #misuro 50 tempi tra 0 e 2 secondi
24 xdata = np.linspace(0, 2, 50)
25
26 #legge di caduta del corpo
y = Legge_oraria(xdata, 20, 9.81)
rng = np.random.default_rng()
y_noise = 0.3 * rng.normal(size=xdata.size)
30 #dati misurati afferri da errore
31 ydata = y + y_noise
32 dydata = np.array(len(ydata)*[0.3])
34 #funzione che mi permette di vedere anche le barre d'errore
  plt.errorbar(xdata, ydata, dydata, fmt='.', label='dati')
35
36
37 #array dei valori che mi aspetto, circa, di ottenere
  init = np.array([15, 10])
39 #eseguo il fit
40 popt, pcov = curve_fit(Legge_oraria, xdata, ydata, init, sigma=dydata, absolute_sigma=False)
41
h0, g = popt
dh0, dg = np.sqrt(pcov.diagonal())
44 print(f'Altezza inziale h0 = {h0:.3f} +- {dh0:.3f}')
print(f"Accelerazione di gravita' g = {g:.3f} +- {dg:.3f}")
47 #garfico del fit
t = np.linspace(np.min(xdata), np.max(xdata), 1000)
49 plt.plot(t, Legge_oraria(t, *popt), label='fit')
50
51 plt.grid()
52 plt.xlabel('y(t) [m]')
```

```
53 plt.ylabel('t [s]')
54 plt.legend(loc='best')
55 plt.show()
56
57 [Output]
58 Altezza inziale h0 = 19.975 +- 0.064
59 Accelerazione di gravita' g = 9.810 +- 0.070
```


L'utilizzo dell'array init ci aiuta a trovare il minimo assoluto in modo che il codice vada a cercare intorno a quei valori, evitando che il codice si incastri altrove; anche se in questo caso non era necessario in quanto regressione lineare, è comunque buona norma utilizzarlo. Di seguito riportiamo i codici usati per costruire i grafici del chiquadro mostrati sopra:

Caso lineare

```
import numpy as np
  import matplotlib.pyplot as plt
3
4
  def Legge_oraria(t, h0, g):
      Restituisce la legge oraria di caduta
6
      di un corpo che parte da altezza h0 e
      con una velocita' inziale nulla
9
      return h0 - 0.5*g*t**2
10
12
  dati misurati:
xdata : fisicamemnte i tempi a cui osservo
15
          la caduta del corpo non affetti da
16
          errore
  ydata : fisicamente la posizione del corpo
17
18
          misurata a dati tempi xdata afetta
19
          da errore
20
22 #misuro 50 tempi tra 0 e 2 secondi
xdata = np.linspace(0, 2, 50)
25 #legge di caduta del corpo
y = Legge_oraria(xdata, 20, 9.81)
rng = np.random.default_rng()
y_noise = 0.3 * rng.normal(size=xdata.size)
29 #dati misurati afferri da errore
```

```
30 ydata = y + y_noise
31 dydata = np.array(ydata.size*[0.3])
33 N = 100
34 S2 = np.zeros((N, N))
_{35} h0 = np.linspace(15, 25, N)
g = np.linspace(7, 12, N)
37 for i in range(N):
      for j in range(N):
          S2[i, j] = (((ydata - Legge_oraria(xdata, h0[i], g[j]))/dydata)**2).sum()
39
41 #grafico del chi quadro
42 fig = plt.figure(1)
gridx, gridy = np.meshgrid(h0, g)
44 ax = fig.add_subplot(projection='3d')
ax.plot_surface(gridx, gridy, S2, color='yellow')
ax.set_title('Chiquadro regressione lineare')
47 ax.set_xlabel('h0')
ax.set_ylabel('g')
49 plt.show()
```

Caso non lineare

```
1 import numpy as np
{\scriptstyle 2} import matplotlib.pyplot as plt
3 from scipy.optimize import curve_fit
5 def Legge_oraria(t, A, omega):
      Restituisce la legge oraria di un corpo che
      oscilla con ampiezza A e frequenza omega
9
      return A*np.cos(omega*t)
10
11
13 dati misurati:
14 xdata : fisicamemnte i tempi a cui osservo
          l'osscilazione del corpo non
15
          affetti da errore
16
17 ydata : fisicamente la posizione del corpo
          misurata a dati tempi xdata afetta
18
19
          da errore
20 HHH
21
22 #misuro 50 tempi tra 0 e 2 secondi
xdata = np.linspace(0, 2, 50)
24
25 #legge di oscillazione del corpo
y = Legge_oraria(xdata, 10, 42)
rng = np.random.default_rng()
y_noise = 0.3 * rng.normal(size=xdata.size)
29 #dati misurati afferri da errore
30 ydata = y + y_noise
dydata = np.array(ydata.size*[0.3])
32
33 N = 100
34 S2 = np.zeros((N, N))
A = np.linspace(5, 15, N)
0 = \text{np.linspace}(30, 50, N)
37 for i in range(N):
      for j in range(N):
38
           S2[i, j] = (((ydata - Legge_oraria(xdata, A[i], O[j]))/dydata)**2).sum()
39
40
41 #grafico chiquadro
42 fig = plt.figure(1)
43 gridx, gridy = np.meshgrid(A, 0)
44 ax = fig.add_subplot(projection='3d')
ax.plot_surface(gridx, gridy, S2, color='yellow')
ax.set_title('Chiquadro regressione non-lineare')
47 ax.set_xlabel('A')
ax.set_ylabel('Omega')
49 plt.show()
```

7.3 Dietro curve fit: Levenberg-Marquardt

Vogliamo ora provare ad andare dietro la libreria e vedere cosa fa effettivamente curve fit. Chiaramente i metodi di fit implementati sono molti e diversi, a seconda delle esigenze; per semplicità perciò andiamo a vedere quello che viene usato di default: Levenberg-Marquardt. Questo è un metodo iterativo, il che spiega la sensibilità ai valori iniziali, caratteristica di ogni metodo iterativo. Consideriamo la nostra funzione di fit f la quale dipende da una variabile indipendente e da un insieme di parametri θ , il quale fondamentalmente è un vettore di \mathbb{R}^m . Possiamo espandere f in serie di taylor intorno ad un valore dei nostri parametri:

$$f(x_i, \theta_j + \delta_j) \simeq f(x_i, \theta_j) + J_{ij}\delta_j \tag{2}$$

dove δ_j è lo spostamento che vine fatto ad ogni passo dell'iterazione e J_{ij} è il gradiente di f, o jacobinao se volete:

$$J_{ij} = \frac{\partial f(x_i, \theta_j)}{\partial \theta_j} = \begin{bmatrix} \frac{\partial f(x_1, \theta_1)}{\partial \theta_1} & \cdots & \frac{\partial f(x_1, \theta_m)}{\partial \theta_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x_n, \theta_1)}{\partial \theta_1} & \cdots & \frac{\partial f(x_n, \theta_m)}{\partial \theta_m} \end{bmatrix}$$
(3)

Che è una matrice $m \times n$ con m < n altrimenti il metodo non funziona e dobbiamo adottare altre strategie. Per trovare il valore di δ espandiamo la (1):

$$S^{2}(\theta + \delta) \simeq \sum_{i=1}^{n} \frac{(y_{i} - f(x_{i}, \beta) - J_{ij}\delta_{j})^{2}}{\sigma_{y_{i}}^{2}}$$

$$= (y - f(x, \theta) - J\delta)^{T}W(y - f(x, \theta) - J\delta)$$

$$= (y - f(x, \theta))^{T}W(y - f(x, \theta)) - (y - f(x, \theta))^{T}WJ\delta - (J\delta)^{T}W(y - f(x, \theta)) + (J\delta)^{T}W(J\delta)$$

$$= (y - f(x, \theta))^{T}W(y - f(x, \theta)) - 2(y - f(x, \theta))^{T}WJ\delta + \delta^{T}J^{T}W(J\delta)$$
(4)

Dove W è tale che $W_{ii}=1/\sigma_{y_i}^2$ e derivando rispetto a delta otteniamo il metodo di Gauss-Newton:

$$\frac{\partial S^2(\theta+\delta)}{\partial \delta} = -2(y - f(x,\theta))^T W J + 2\delta^T J^T W J = 0$$
 (5)

per cui facendo il trasposto a tutto otteniamo:

$$(J^T W J)\delta = J^T W (y - f(x, \theta)) \tag{6}$$

La quale si risolve per δ . Per migliorare la convergenza del metodo si introduce un parametro di damping λ e l'equazione diventa:

$$(J^T W J - \lambda \operatorname{diag}(J^T W J))\delta = J^T W (y - f(x, \theta))$$
(7)

Il valore di λ viene cambiato a seconda se ci avviciniamo o meno alla soluzione giusta. Se ci stiamo avvicinando ne riduciamo il valore, andando verso il metodo di Gauss-Newton; mentre se ci allontaniamo ne aumentiamo il valore in modo che l'algoritmo si comporti più come un gradiente discendente (di cui in appendice ci sarà un esempio). La domanda è: come capiamo se ci stiamo avvicinando alla soluzione? Calcoliamo:

$$\rho(\delta) = \frac{S^2(x,\theta) - S^2(x,\theta+\delta)}{|(y - f(x,\theta) - J\delta)^T W(y - f(x,\theta) - J\delta)|}$$

$$= \frac{S^2(x,\theta) - S^2(x,\theta+\delta)}{|\delta^T(\lambda \operatorname{diag}(J.TWJ)\delta + J.TW(y - f(x,\theta)))|}$$
(8)

se $\rho(\delta) > \varepsilon_1$ la mossa è accetta e riduciamo λ senno rimaniamo nella vecchia posizione. Altra domanda a cui rispondere è: quando siamo arrivati a convergenza? definiamo:

$$R1 = \max(|J.TW(y - f(x, \theta))|) \tag{9}$$

$$R2 = \max(|\delta/\theta|) \tag{10}$$

$$R3 = |S^{2}(x,\theta)/(n-m) - 1| \tag{11}$$

Se una di queste quantità è minore di una certa tolleranza allora l'algoritmo termina. Rimane ora un ultima domanda a cui rispondere e possiamo passare al codice.Dato che ci servono gli errori sui parametri di fit: come calcoliamo la matrice di covarianza? Basta calcolare:

$$Cov = (J^T W J)^{-1} \tag{12}$$

quindi gli errori saranno semplicemente la radice degli elementi sulla diagonale, e le altre entrate le correlazioni fra parametri.

Passiamo ora al codice:

```
1 """
2 the code performs a linear and non linear regression
3 Levenberg-Marquardt algorithm. You have to choose
4 some parameters delicately to make the result make sense
7 import numpy as np
8 import matplotlib.pyplot as plt
10
11 def lm_fit(func, x, y, x0, sigma=None, tol=1e-6, dense_output=False, absolute_sigma=False):
12
      Implementation of Levenberg-Marquardt algorithm
      for non-linear least squares. This algorithm interpolates
14
      between the Gauss-Newton algorithm and the method of
      gradient descent. It is iterative optimization algorithms
16
      so finds only a local minimum. So you have to be careful
17
      about the values you pass in x0
18
19
      Parameters
20
21
      f : callable
22
          fit function
23
24
      x : 1darray
25
           the independent variable where the data is measured.
      y : 1darray
26
27
          the dependent data, y \le f(x, {\theta})
28
      x0 : 1darray
29
          initial guess
      sigma : None or 1darray
30
          the uncertainty on y, if None sigma=np.ones(len(y)))
31
32
      tol : float
          required tollerance, the algorithm stop if one of this quantities
33
          R1 = np.max(abs(J.T @ W @ (y - func(x, *x0))))
34
35
          R2 = np.max(abs(d/x0))
          R3 = sum(((y - func(x, *x0))/dy)**2)/(N - M) - 1
36
          is smaller than tol
37
38
      dense_output : bool, optional dafult False
39
40
          if true all iteration are returned
      absolute_sigma : bool, optional dafult False
41
          If True, sigma is used in an absolute sense and
42
43
           the estimated parameter covariance pcov reflects
           these absolute values.
44
          pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)
45
46
47
      Returns
48
      x0 : 1d array or ndarray
          array solution
50
      pcov : 2darray
51
         The estimated covariance of popt
52
53
      iter : int
      number of iteration
54
55
56
      iter = 0
                              #initialize iteration counter
57
      h = 1e-7
                              #increment for derivatives
58
59
      1 = 1e-3
                              #damping factor
      f = 10
                              #factor for update damping factor
60
                              #number of variable
      M = len(x0)
61
      N = len(x)
62
                              #number of data
      s = np.zeros(M)
63
                              #auxiliary array for derivatives
      J = np.zeros((N, M))
                             #gradient
64
65
      #some trashold
      eps_1 = 1e-1
66
      eps_2 = tol
67
      eps_3 = tol
68
      eps_4 = tol
69
70
71
      if sigma is None :
                              #error on data
          W = np.diag(1/np.ones(N))
72
          dy = np.ones(N)
73
      else :
    W = np.diag(1/sigma**2)
74
75
          dy = sigma
76
```

```
78
                               #to store solution
79
       if dense_output:
           X = []
80
81
           X.append(x0)
       while True:
83
84
           #jacobian computation
           for i in range(M):
                                                                   #loop over variables
85
               s[i] = 1
                                                                   #we select one variable at a time
86
                dz1 = x0 + s*h
87
                                                                   #step forward
                dz2 = x0 - s*h
                                                                   #step backward
88
               J[:,i] = (func(x, *dz1) - func(x, *dz2))/(2*h)
                                                                  #derivative along z's direction
89
                s[:] = 0
                                                                   #reset to select the other
       variables
91
           JtJ = J.T @ W @ J
                                                        #matrix multiplication, JtJ is an MxM matrix
92
           dia = np.eye(M)*np.diag(JtJ)
                                                        #dia_ii = JtJ_ii ; dia_ij = 0
93
           res = (y - func(x, *x0))
94
                                                        #residuals
           b = J.T @ W @ res
                                                        #ordinate or dependent variable values of
95
       system
           d = np.linalg.solve(JtJ + 1*dia, b)
                                                       #system solution
97
           x_n = x0 + d
                                                        #solution at new time
98
99
           # compute the metric
           chisq_v = sum((res/dy)**2)
100
           chisq_n = sum(((y - func(x, *x_n))/dy)**2)
101
102
           rho = chisq_v - chisq_n
            den = abs( d.T @ (1*np.diag(JtJ)@d + J.T @ W @ res))
104
           rho = rho/den
106
            # acceptance
           if rho > eps_1 :
                                     #if i'm closer to the solution
107
               x0 = x_n
                                      #update solution
108
               1 /= f
                                      #reduce damping factor
109
            else:
               1 *= f
                                      #else magnify
112
           # Convergence criteria
           R1 = np.max(abs(J.T @ W @ (y - func(x, *x0))))
114
           R2 = np.max(abs(d/x0))
           R3 = abs(sum(((y - func(x, *x0))/dy)**2)/(N - M) - 1)
116
117
           if R1 < eps_2 or R2 < eps_3 or R3 < eps_4:</pre>
                                                                  #break condition
118
119
               break
120
           iter += 1
121
           if dense_output:
               X.append(x0)
124
125
       #compute covariance matrix
126
       pcov = np.linalg.inv(JtJ)
127
128
       if not absolute_sigma:
129
           s_{sq} = sum(((y - func(x, *x0))/dy)**2)/(N - M)
130
           pcov = pcov * s_sq
131
       if not dense_output:
133
134
           return x0, pcov, iter
       else :
135
           X = np.array(X)
136
           return X, pcov, iter
```

Il parametro dense_output è stato inserito per fare un plot interessante per far vedere la dipendenza dalle condizioni iniziali. Non riportiamo l'intero codice per non appesantire, la restante parte trattava solo di fare il plot delle curve di livello. In ogni caso è disponibile nell'apposita cartella il codice intero.

Questo grafico rappresenta le curve di livello del modello non lineare $y(t) = A\cos(\omega t)$ ed è facile vedere come partendo da condizioni diverse il fit si incastri in minimo locali. L'asse y corrisponde a ω mentre l'asse x corrisponde ad A. Vediamo ora di testare i risultati del codice fittando qualcosa di un po' più bruttino.

```
1 """
2 Test
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from scipy.optimize import curve_fit
7 from Lev_Maq import lm_fit
def f(t, A, o1, o2, f1, f2, v, tau):
       """fit function
      return A*np.cos(t*o1 + f1)*np.cos(t*o2 + f2)*np.exp(-t/tau) + v
14
15 ##data
x = np.linspace(0, 20, 1000)
y = f(x, 200, 10.5, 0.5, np.pi/2, np.pi/4, 42, 25)
rng = np.random.default_rng(seed=69420)
19 y_noise = 1 * rng.normal(size=x.size)
y = y + y_noise
dy = np.array(y.size*[1])
22
23
  ##confronto
24
25 init = np.array([101, 10.5, 0.475, 1.5, 0.6, 35, 20])
26
pars1, covm1, iter = lm_fit(f, x, y, init, sigma=dy, tol=1e-8)
28 dpar1 = np.sqrt(covm1.diagonal())
pars2, covm2 = curve_fit(f, x, y, init, sigma=dy)
30 dpar2 = np.sqrt(covm2.diagonal())
31 print(" ----codice-----
                   ----codice----
                                       ---|----scipy----")
for i, p1, dp1, p2, dp2 in zip(range(len(init)), pars1, dpar1, pars2, dpar2):
print(f"pars{i} = {p1:.5f} +- {dp1:.5f}; {p2:.5f} +- {dp2:.5f}")
34
print(f"numero di iterazioni = {iter}")
```

```
37 chisq1 = sum(((y - f(x, *pars1))/dy)**2.)
38 chisq2 = sum(((y - f(x, *pars2))/dy)**2.)
39 ndof = len(y) - len(pars1)
40 print(f'chi quadro codice = {chisq1:.3f} ({ndof:d} dof)')
41 print(f'chi quadro numpy = {chisq2:.3f} ({ndof:d} dof)')
43
c1 = np.zeros((len(pars1),len(pars1)))
c2 = np.zeros((len(pars1),len(pars1)))
46 #Calcoliamo le correlazioni e le inseriamo nella matrice:
47 for i in range(0, len(pars1)):
      for j in range(0, len(pars1)):
48
         49
          \texttt{c2[i][j]} = (\texttt{covm2[i][j]})/(\texttt{np.sqrt(covm2.diagonal()[i])*np.sqrt(covm2.diagonal()[j])})
51 #print(c1) #matrice di correlazione
52 #print(c2)
54 ##Plot
55 #Grafichiamo il risultato
56 fig1 = plt.figure(1)
57 #Parte superiore contenetnte il fit:
58 frame1=fig1.add_axes((.1,.35,.8,.6))
59 #frame1=fig1.add_axes((trasla lateralmente, trasla verticamente, larghezza, altezza))
60 frame1.set_title('Fit dati simulati',fontsize=10)
plt.ylabel('y [u.a.]',fontsize=10)
62 plt.grid()
63
64
65 plt.errorbar(x, y, dy, fmt='.', color='black', label='dati') #grafico i punti
t = np.linspace(np.min(x), np.max(x), 10000)
67 plt.plot(t, f(t, *pars1), color='blue', alpha=0.5, label='best fit codice') #grafico del best
68 plt.plot(t, f(t, *pars2), color='red', alpha=0.5, label='best fit scipy') #grafico del best
      fit scipy
  plt.legend(loc='best')#inserisce la legenda nel posto migliorte
70
71 #Parte inferiore contenente i residui
72 frame2=fig1.add_axes((.1,.1,.8,.2))
74 #Calcolo i residui normalizzari
75 ff1 = (y - f(x, *pars1))/dy
76 ff2 = (y - f(x, *pars2))/dy
77 frame2.set_ylabel('Residui Normalizzati')
78 plt.xlabel('x [u.a.]',fontsize=10)
80 plt.plot(t, 0*t, color='red', linestyle='--', alpha=0.5) #grafico la retta costantemente zero
plt.plot(x, ff1, '.', color='blue') #grafico i residui normalizzati
plt.plot(x, ff2, '.', color='red') #grafico i residui normalizzati scipy
83 plt.grid()
84 plt.show()
85
86 [Output]
           -----scipy------
87
88 pars0 = 199.85504 +- 0.17712 ; 199.85504 +- 0.17712
89 pars1 = 10.50005 +- 0.00009 ; 10.50005 +- 0.00009
90 pars2 = 0.49990 +- 0.00008 ; 0.49990 +- 0.00008
91 pars3 = 1.57040 +- 0.00087 ; 1.57040 +- 0.00087
pars4 = 0.78579 +- 0.00067; 0.78579 +- 0.00067
93 pars5 = 41.92350 +- 0.03125; 41.92350 +- 0.03125
94 pars6 = 24.99194 +- 0.05652 ; 24.99194 +- 0.05652
95 numero di iterazioni = 6
96 chi quadro codice = 969.017 (993 dof)
97 chi quadro numpy = 969.017 (993 dof)
```

Non abbiamo stampato la matrice di covarianza per avere un po' più di ordine. Vediamo che tra i due non ci sono differenze, siamo felici. Vediamo anche il grafico:

