Level 2 E-training, week 8 Due to 23:59, Friday, 30 October 2020

Problem 1. Let ABC be a non-degenerate triangle with perimeter 2s. Let M be the midpoint of BC and L be the foot of altitude from A onto BC. If BC = a, AL = h, and AM = m, then prove that

 $h \le \sqrt{s(s-a)} \le m$

Problem 2. Let p be an odd prime number and a, b be different integers coprime with p such that p|a-b both Prove that

$$v_p(a^n - b^n) = v_p(a - b) + v_p(n)$$

for every $n \in \mathbb{N}$.

Problem 3. Let $f(x) = x^2 + ax + b$ be a monic quadratic polynomial having 2 different zeros r < s with s > 0. Suppose that the polynomial f(f(x)) has exactly 3 distinct zeros. Prove that $s \le 1$.

Problem 4. Can we partition the set $\{1, 2, \dots, 2020\}$ into 3 subsets A, B, C such that the sets A+B, B+C and C+A are pairwise disjoint? (Remark: for $X, Y \subseteq \mathbb{R}$ we define $X+Y=\{x+y|x\in X,y\in Y\}$)

Problem 5. Let Ω , Γ be two circles on the plane meeting at exactly two different points A, B. The points C, D are outside $\Omega \cup \Gamma$ such that

$$\frac{\mathcal{P}_{\Omega}(C)}{\mathcal{P}_{\Gamma}(C)} = \frac{\mathcal{P}_{\Omega}(D)}{\mathcal{P}_{\Gamma}(D)}$$

Show that A, B, C and D are either collinear or concyclic.

Problem 6. Find all triples (a, b, c) of positive integers such that the numbers

$$a^{2} + b + c + 1$$
, $a + b^{2} + c + 1$, $a + b + c^{2} + 1$

are all perfect squares.

Problem 7. Let $n \geq 4$ be an even positive integer and \mathcal{S} be a balanced set of n points. Show that \mathcal{S} contains 4 different points A, B, C and O such that O is the circumcenter of ABC.

Note: A balanced set is defined in Week7, Problem7

Problem 8. Find all real quadruples (x, y, z, t) satisfying

$$x(y+z+t)^2 = y(x+z+t)^2 = z(x+y+t)^2 = t(x+y+z)^2$$