In the Claims:

The current status of all claims is listed below and supercedes all previous lists of claims.

Please amend claims 1-20, and add new claims 21-28 as follows.

(currently amended) A compound of formula (I):

$$\begin{array}{c} OH \\ OH \\ O \end{array}$$

wherein:

 $R^1 \ is \ hydrogen, \ C_{1-6} alkyl, \ C_{3-6} cycloalkyl \ or \ aryl; \ wherein \ said \ C_{1-6} alkyl \ may be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, <math display="block">C_{1-6} alkoxy, \ N-(C_{1-6} alkyl) amino, \ N,N-(C_{1-6} alkyl) 2 mino, \ C_{4}-C_{6} \ alkylearbonylamino \ C_{1-C_{6}} \ alkylearbonylamino, \ C_{1-6} alkylS(O)_a \ wherein \ a is 0-2, \ C_{3-6} cycloalkyl \ or \ aryl; \ and \ wherein \ any aryl group may be optionally substituted by one or two substituents selected from halo, hydroxy, <math display="block">C_{1-6} alkyl \ or \ C_{1-6} alkoxy;$

 R^2 and R^5 are independently hydrogen, a branched or unbranched C_{1-6} alkyl, C_{3-6} cycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, cyano, carbamoyl, carboxy, C_{1-6} alkoxy, aryl C_{1-6} alkoxy, $(C_1-C_4)_3$ Si, N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)2amino, C_{1-6} alkyl C_{1-6}

R3 is hydrogen, alkyl, halo, CLalkoxy or CLa alkylS-:

R4 is hydrogen, C1-6 alkyl, halo or C1-6alkoxy;

R⁶ is hydrogen, C₁₋₆ alkyl, or arylC₁₋₆ alkyl;

wherein R^5 and R^2 may form a ring with 2-7 carbon atoms and wherein R^6 and R^2 may form a ring with 3-6 carbon atoms;

or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof:

with the proviso that said compound is not $3-(R)-4-(R)-1-(phenyl)-3-[2-(4-fluorophenyl)-2-hydroxyethylsulphanyl]-4-[4-(<math>N-\{N-\{R\}-1-(carboxy)-2-(hydroxy)ethyl]carbamoylmethyl\}carbamoylmethoxy)phenyl]azetidin-2-one; or <math>3-(R)-4-(R)-1-(phenyl)-3-[2-(4-fluorophenyl)-2-hydroxyethylsulphanyl]-4-[4-[<math>N-(R)-0-\{N-\{N-\{N-\{C\}-1-(carboxy)-2-(hydroxy)ethyl]carbamoyl\}benzyl)carbamoylmethoxy|phenyl]azetidin-2-one.$

(currently amended) A compound of formula (I2);

OH
$$R^4$$
 R^2 R^5 R^6 R^6 R^6 R^6 R^6 R^6 R^6 R^7 R^8 R

wherein:

 R^1 is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl or aryl; wherein said $C_{1\text{-}6}$ alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, $C_{1\text{-}6}$ alkxyl, $N\text{-}(C_{1\text{-}6}$ alkyl)amino, $N.N\text{-}(C_{1\text{-}6}$ alkyl)2amino, $C_{4\text{-}}$ C₆ alkylearbonylamino $C_{1\text{-}}$ C₆ alkylearbonylamino, $C_{1\text{-}6}$ alkylS(O)a wherein a is 0-2, $C_{3\text{-}6}$ cycloalkyl or aryl; and wherein any aryl group may be optionally substituted by one or two substituents selected from halo, hydroxy, $C_{1\text{-}6}$ alkyl or $C_{1\text{-}6}$ alkxy;

 R^2 and R^5 are independently hydrogen, a branched or unbranched C_{1-6} alkyl, C_{3-6} cycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, cyano, carbamoyl, carboxy, C_{1-6} alkoxy, aryl C_{1-6} alkoxy, (C_{1-7}) 3Si, N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)amino, C_{1-6}

 $aryl\ C_{1\text{-}6}\ alkylS(O)_{a,}\ wherein\ a\ is\ 0\text{-}2;\ and\ wherein\ any\ aryl\ group\ may\ be\ optionally\ substituted$ by one or two substituents selected from halo, hydroxy, $C_{1\text{-}6}$ alkyl\ or $C_{1\text{-}6}$ alkoxy;

- R3 is hydrogen, alkyl, halo, C1-6alkoxy or C1-6 alkylS-;
- R4 is hydrogen, C1.6 alkyl, halo or C1.6 alkoxy;
- R⁶ is hydrogen, C₁₋₆ alkyl, or arylC₁₋₆ alkyl;

wherein R^5 and R^2 may form a ring with 2-7 carbon atoms and wherein R^6 and R^2 may form a ring with 3-6 carbon atoms;

or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof:

with the proviso that said compound is not 3-(R)-4-(R)-1-(phenyl)-3-[2-(4-fluorophenyl)-2-hydroxyethylsulphanyl]-4-[4-(<math>N-[(R)-1-(carboxy)-2-(hydroxy)ethyl]carbamoylmethyl]carbamoylmethoxy)phenyl]azetidin-2-one; or <math>3-(R)-4-(R)-1-(phenyl)-3-[2-(4-fluorophenyl)-2-hydroxyethylsulphanyl]-4-[4-[<math>N-(R)-0-[N-(R)-0-(R)-1-(carboxy)-2-(hydroxy)]ethyl[carbamoyl]benzyl]carbamoyl]methoxy]phenyl]azetidin-2-one.

- (currently amended) A compound according to claim 1 or 2, wherein:
 R¹ is hydrogen or phenyl.
- (currently amended) A compound according to any of the preceding claims claim 1, wherein:

 R^2 is hydrogen, a branched or unbranched C_{1-6} alkyl, C_{3-6} cycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, acylamino, C_{1-6} alkyl $S(O)_a$ wherein a is 0-2, C_{3-6} cycloalkyl or aryl; and wherein any aryl group may be optionally substituted by hydroxy, alkyl, alkoxy or cyano.

- (currently amended) A compound according to any of the preceding claims claim 1, wherein:
 - R^3 is hydrogen, C_1 - C_2 alkyl, halo or methoxy.

 (currently amended) A compound according to any of the preceding claims claim 1, wherein:

R3 is hydrogen, methyl, chlorine, fluorine, C1-6 alkylS-, or methoxy.

 (currently amended) A compound according to any of the preceding claims claim 1, wherein:

R4 is hydrogen or halo.

 (currently amended) A compound according to any of the preceding claims claim 1, wherein:

R4 is chlorine or fluorine.

 (currently amended) A compound according to any of the preceding claims claim 1, wherein:

 R^6 is hydrogen, $C_{1\text{-}6}$ alkyl, aryl $C_{1\text{-}6}$ alkyl or R^6 and R^2 form a ring with 3-6 carbon atoms.

10. (currently amended) A compound according to claim 1, wherein:

R1 is hydrogen;

 R^2 is a branched or unbranched C_{1-4} alkyl, optionally substituted by a C_{3-6} cycloalkyl, alkylS-, aryl optionally substituted by hydroxy or cyano, amino, N- $(C_{1-6}$ alkyl)amino, N- $(C_{1-6}$ alkyl)₂amino or aryl C_{1-6} alkyl $(C_{1-6}$ alkyl)₂ wherein a is θ - θ 0-2;

R3 and R4 are halo:

R5 is hydrogen or C1-6 alkyl; and

R⁶ is hydrogen.

11. (currently amended) One or more compounds chosen from:

 $N-\{[4-((2R,3R)-1-(4-fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio\}-4-oxoazetidin-2-yl)phenoxy]acetyl]glycyl-N^6-acetyl-D-lysine;$

1-(4-Fluorophenyl)-3-(R)-[2-(4-fluorophenyl)-2-hydroxyethylthio]-4-(R)-{4-[N-{N-[2-

- (phenyl)-1-(R)-(carboxy)ethyl]carbamoylmethyl}carbamoylmethoxy|phenyl}azetidin-2-one;
- $N-\{[4-((2R,3R)-1-(4-fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxy[acetyl]glycyl-D-valine;$
- $N-\{[4-((2R,3R)-1-(4-fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxylacetyl\}glycyl-D-tyrosine;$
- $N-\{[4-((2R_3R)-1-(4-fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio\}-4-oxoazetidin-2-yl)phenoxylacetyl]glycyl-D-proline;$
- N-{[4-((2R,3R)-1-(4-fluorophenyl)-3-{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxylacetyl}elycyl-D-lysine:
- $N-\{[4-((2R,3R)-1-(4-fluorophenyl)-3-\{[2-hydroxy-2-(4-methoxyphenyl)ethyl]thio\}-4-oxoazetidin-2-yl)phenoxylacetyl}glycyl-D-valine;$
- N-{[4-((2R,3R)-1-(4-fluorophenyl)-3-{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-ylphenoxylacetyl}elycyl-2-butylnorleucine:
- N-{[4-((2R,3R)-1-(4-Fluorophenyl)-3-{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxylacetyl}elycyl-S-methyl-L-cysteine:
- $N-\{[4-((2R_3R)-1-(4-\text{chlorophenyl})-3-\{[2-(4-\text{chlorophenyl})-2-\text{hydroxyethyl}]\text{thio}\}-4-\text{oxoazetidin-2-yl)phenoxylacetyl}$ glycyl-3-cyclohexyl-D-alanine;
- $N-\{[4-((2R_3R)-1-(4-fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio\}-4-oxoazetidin-2-yl)phenoxy]acetyl]glycyl-3-cyclohexyl-D-alanine;$
- N-{[4-((2R,3R)-1-(4-fluorophenyl)-3-{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxylacetyl}glycyl-4-methylleucine;
- N-{[4-((2R,3R)-1-(4-Fluorophenyl)-3-{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxy]acetyl}-L-alanyl-D-valine;
- $N-\{[4-((2R,3R)-1-(4-fluorophenyl)-3-\{[2-hydroxy-2-(4-methylphenyl)ethyl]thio\}-4-oxoazetidin-2-yl)phenoxy]acetyl]glycyl-D-valine;$
- $N-\{[4-((2R_3R)-1-(4-chlorophenyl)-3-\{[2-(4-chlorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxy[acetyl]glycyl-D-valine;$
- $N-\{[4-((2R,3R)-1-(4-\text{chlorophenyl})-3-\{[2-(4-\text{chlorophenyl})-2-\text{hydroxyethyl}]\text{thio}\}-4-\text{oxoazetidin-2-yl}\text{phenoxy}]\text{acetyl}\}\text{glycyl-3-methyl-D-valine};$
 - $\textit{N-}\{[4\text{-}((2R,3R)\text{-}1\text{-}(4\text{-}fluorophenyl})\text{-}3\text{-}\{[2\text{-}(4\text{-}fluorophenyl})\text{-}2\text{-}hydroxyethyl}]thio\}\text{-}4\text{-}(2R,3R)\text{-}1\text{-}(4\text{-}fluorophenyl})\text{-}3\text{-}\{[4\text{-}((2R,3R)\text{-}1\text{-}(4\text{-}fluorophenyl})\text{-}2\text{-}hydroxyethyl}]thio\}\text{-}4\text{-}(4\text{-}fluorophenyl})\text{-}3\text{$

oxoazetidin-2-yl)phenoxy[acetyl]glycyl-3-(2-naphthyl)-D-alanine;

 $N-\{[4-((2R,3R)-1-(4-fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxy[acetyl]glycyl-3-methyl-D-valine;$

 $N-\{[4-((2R,3R)-1-(4-\Pi uorophenyl)-3-\{[2-(4-\Pi uorophenyl)-2-hydroxyethyl]thio\}-4-oxoazetidin-2-yl)phenoxy]acetyl\}glycyl-(3R,4S,5R)-3,4,5,6-tetrahydroxy-D-norleueine, norleueine;$

 $N-\{[4-((2R,3R)-1-(4-Fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio\}-4-oxoazetidin-2-yl)phenoxy[acetyl]glycyl-N,2-dimethylalanine dimethylalanine:$

N-({4-[(2R,3R)-1-(4-Fluorophenyl)-3-([2-hydroxy-2-[4-(methylthio)phenyl]ethyl}thio)-4-oxoazetidin-2-yl|phenoxy}acetyl)glycyl-3-methyl-D-valine valine;

N-{[4-((2R,3R)-1-(4-fluorophenyl)-3-{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxylacetyl}glycyl-5-(4-methylbenzyl)-D-eysteine cysteine;

N-{[4-((2R,3R)-1-(4-fluorophenyl)-3-{[2-(4-fluorophenyl)-2-hydroxyethyl]thio}-4-oxoazetidin-2-yl)phenoxylacetyl}g|veyl-5-(tert-butyl)-D-evsteine; and

 $N-\{[4-((2R,3R)-1-(4-fluorophenyl)-3-\{[2-(4-fluorophenyl)-2-hydroxyethyl]thio\}-4-oxoazetidin-2-yl)phenoxy[acetyl]glycyl-b,b-dimethyl-D-phenylalanine.$

 (currently amended) A compound of the formula (XV) or hydrolysable esters or amides thereof:

wherein:

 R^{1} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl or aryl; wherein said $C_{1\text{-}6}$ alkyl may be

optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, $C_{1\text{-}6}alkoxy, \textit{N-}(C_{1\text{-}6}alkyl)amino, \textit{N,N-}(C_{1\text{-}6}alkyl)amino, C_{4\text{-}C_6}alkylcarbonylamino} \underbrace{C_{1\text{-}C_6}}_{C_6}alkylcarbonylamino, C_{1\text{-}6}alkylS(O)_a}_{C_6}$ wherein a is 0-2, $C_{3\text{-}6}$ cycloalkyl or aryl; and wherein any aryl group may be optionally substituted by one or two substituents selected from halo, hydroxy, $C_{1\text{-}6}alkyl$ or $C_{1\text{-}6}alkoxy$;

 R^2 and R^5 are independently hydrogen, a branched or unbranched C_{1-6} alkyl, C_{3-6} eycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, C_{1-6} alkoxy, aryl C_{1-6} alkoxy, $(C_{1-C})_3$ Si, N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)2mino, C_{1-6} alkylS(O)_{a, aryl} C_{1-6} -alkylS(O)_{a, aryl} C_{1-6} -alkylS(O)_{aryl} C_{1-6} -alkylS(O)_{aryl} C_{1-6} -alkylS(O)_a

R3 is hydrogen, alkyl, halo, C1-6alkoxy or C1-6 alkylS-;

R4 is hydrogen, C1-6 alkyl, halo or C1-6alkoxy;

 R^6 is hydrogen, C_{1-6} alkyl, or aryl C_{1-6} alkyl; and

 R^{7} is an hydroxy group or a $C_{1\mbox{-}3}$ alkoxy group;

wherein R^5 and R^2 may form a ring with 2-7 carbon atoms and wherein R^6 and R^2 may form a ring with 3-6 carbon atoms;

or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof;

with the proviso that said compound is not 3-(R)-4-(R)-1-(phenyl)-3-[2-(4-fluorophenyl)-2-hydroxyethylsulphanyl]-4-[4-(N-[(R)-1-(carboxy)-2-(hydroxy)ethyl]carbamoylmethyl]carbamoylmethoxy)phenyl]azetidin-2-one; or 3-(R)-4-(R)-1-(phenyl)-3-[2-(4-fluorophenyl)-2-hydroxyethylsulphanyl]-4-{4-[N-((R)- α -{N-[(S)-1-(carboxy)-2-(hydroxy) ethyl]carbamoyl}benzyl)carbamoylmethoxy]phenyl]azetidin-2-one.

(currently amended) A method of treating or preventing a <u>hyperlipidemic condition</u>
 hyperlipidemic conditions comprising the administration of an effective amount of a compound
 according to any one of claims 1 to 12 claim 1 to a mammal in need thereof.

- 14. (currently amended) A method of treating or preventing atherosclerosis comprising the administration of an effective amount of a compound according to any one of claims 1 to 12 claim 1 to a mammal in need thereof.
- 15. (currently amended) A method for treating or preventing Alzheimers' disease comprising the administration of an effective amount of a compound according to any one of claims 1 to 12 claim 1 to a mammal in need thereof.
- 16. (currently amended) A method for treating or preventing <u>a cholesterol associated tumor</u> cholesterol associated tumors comprising the administration of an effective amount of a compound according to any one of claims 1 to 12 <u>claim 1</u> to a mammal in need thereof.
- 17. (currently amended) A pharmaceutical formulation comprising a compound according to any one of claims 1 to 12 claim 1 in admixture with a pharmaceutically acceptable adjuvant, diluent and/or carrier adjuvants, diluents and/or earriers.
- 18. (currently amended) A combination of a compound according to formula (I)

wherein:

 R^1 is hydrogen, $C_{1:6}$ alkyl, $C_{3:6}$ cycloalkyl or aryl; wherein said $C_{1:6}$ alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, $C_{1:6}$ alkyl)amino, $N.N-(C_{1:6}$ alkyl)amino, $C_{1:C}$ 6 alkylcarbonylamino, $C_{1:C}$ 6 alkylcarbonylamino, $C_{1:C}$ 6 alkylS(O)_a, wherein a is 0-2, $C_{3:C}$ 6 cycloalkyl or aryl; and wherein any aryl group may be

optionally substituted by one or two substituents selected from halo, hydroxy, $C_{1.6}$ alkyl or $C_{1.6}$ alkoxy;

 R^2 and R^5 are independently hydrogen, a branched or unbranched $C_{1:6}$ alkyl, $C_{2:6}$ eycloalkyl or aryl; wherein said $C_{1:6}$ alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, cyano, carbamoyl, carboxy, $C_{1:6}$ alkoxy, aryl $C_{1:6}$ alkoxy, $(C_{1:6}$ alkyl)amino, N_iN^2 - $(C_{1:6}$ alkyl)amino, $C_{1:6}$ alkyl) $(O_{1:6}$ alkyl) $(O_{1:6}$ alkyl)amino, $C_{1:6}$ alkyl) $(O_{1:6}$

R³ is hydrogen, alkyl, halo, C₁₋₆alkoxy or C₁₋₆ alkylS-;

R4 is hydrogen, C1-6 alkyl, halo or C1-6 alkoxy;

R⁶ is hydrogen, C₁₋₆ alkyl, or arylC₁₋₆ alkyl;

wherein R⁵ and R² may form a ring with 2-7 carbon atoms and wherein R⁶ and R² may form a ring with 3-6 carbon atoms;

or according to formula (I2)

$$\begin{array}{c|c}
 & OH \\
 & O$$

wherein:

 R^1 is hydrogen, C_{1-6} alkyl, C_{2-6} cycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, C_{1-6} alkyl)amino, $N.N-(C_{1-6}$ alkyl)amino, C_{1-6} alkyl)amino, C_{1-6} alkyl)amino, C_{1-6} alkyl)amino, C_{1-6} alkyl)amino, C_{1-6} alkyl C_{1-6} alkylC

R² and R⁵ are independently hydrogen, a branched or unbranched C₁₋₆alkyl,

 C_{1-6} cycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, cyano, carbamoyl, carboxy, C_{1-6} alkoxy, aryl C_{1-6} alkoxy, $(C_{1}-C_{4})_{1}$ Si, N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)2mino, C_{1-6} alkylS(O)₈, C_{3-6} cycloalkyl, aryl or aryl C_{1-6} alkylS(O)₈, wherein a is O-O2; and wherein any aryl group may be optionally substituted by one or two substituents selected from halo, hydroxy, C_{1-6} alkyl or C_{1-6} alkoxy;

R³ is hydrogen, alkyl, halo, C₁₋₆alkoxy or C₁₋₆ alkylS-;

R4 is hydrogen, C1-6 alkyl, halo or C1-6alkoxy;

R⁶ is hydrogen, C₁₋₆ alkyl, or arylC₁₋₆ alkyl;

wherein R⁵ and R² may form a ring with 2-7 carbon atoms and wherein R⁶ and R² may form a ring with 3-6 carbon atoms;

with a PPAR alpha and/or gamma agonist.

(currently amended) A combination of a compound according to formula (I)

$$\begin{array}{c|c} & OH & OH & R^1 & R^6 & OH \\ \hline & R^2 & R^5 & OH \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

wherein:

 R^1 is hydrogen, C_{1-6} alkyl, C_{2-6} cycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, C_{1-6} alkoxy, N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)amino, C_{1} - C_{6} alkylcarbonylamino, C_{1-6} alkylS(O)_a wherein a is 0-2, C_{2-6} cycloalkyl or aryl; and wherein any aryl group may be optionally substituted by one or two substituents selected from halo, hydroxy, C_{1-6} alkyl or C_{1-6} alkoxy;

 R^2 and R^5 are independently hydrogen, a branched or unbranched $C_{1:6}$ alkyl. $C_{1:6}$ eveloalkyl or aryl; wherein said $C_{1:6}$ alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, cyano, carbamoyl, carboxy, C_{1-6} alkoxy, aryl C_{1-6} alkoxy, $(C_{1}-C_{3})$, S_{1} , N- $(C_{1-6}$ alkyl)amino, N, N- $(C_{1-6}$ alkyl)amino, C_{1-6} alkyl $S(O)_{2}$, C_{2-6} cycloalkyl, aryl or aryl C_{1-6} alkyl $S(O)_{2}$, wherein a is 0-2; and wherein any aryl group may be optionally substituted by one or two substituents selected from halo, hydroxy, C_{1-6} alkyl or C_{1-6} alkoxy;

R³ is hydrogen, alkyl, halo, C₁₋₆alkoxy or C₁₋₆ alkylS-;

R4 is hydrogen, C1-6 alkyl, halo or C1-6 alkoxy;

R⁶ is hydrogen, C₁₋₆ alkyl, or arylC₁₋₆ alkyl;

wherein R⁵ and R² may form a ring with 2-7 carbon atoms and wherein R⁶ and R² may form a ring with 3-6 carbon atoms;

or according to formula (I2)

$$\begin{array}{c|c} OH & & & & \\ & & & \\ R^3 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

wherein:

 $R^1 \ is \ hydrogen, \ C_{1-6}alkyl, \ C_{2-6}eveloalkyl \ or \ aryl; \ wherein \ said \ C_{1-6}alkyl \ may \ be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, <math display="block">C_{1-6}alkyl, N-(C_{1-6}alkyl)amino, \ N-(C_{1-6}alkyl)_2amino, \ C_{1-6}alkylcarbonylamino, \\ C_{1-6}alkylS(O)_a \ wherein \ a \ is \ O-2, \ C_{2-6}eveloalkyl \ or \ aryl; \ and \ wherein \ any \ aryl \ group \ may \ be optionally substituted \ by one or two substituents selected from halo, hydroxy, \ C_{1-6}alkyl \ or \ C_{1-6}alkylv.$

R² and R⁵ are independently hydrogen, a branched or unbranched C₁₋₆alkyl,

C₁₋₆cycloalkyl or aryl; wherein said C₁₋₆alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, cyano, carbamoyl, carboxy, C₁₋₆alkoxy, aryl C₁₋₆alkoxy, (C₁-C₃)₂Si, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkylS(O)₃, C₁₋₆cycloalkyl, aryl or aryl C₁₋₆alkylS(O)₅, wherein a is 0-2; and wherein any aryl group may be optionally substituted by one or

DOCKET NO.: ASZN0107-100 (101340-1P US)

two substituents selected from halo, hydroxy, C₁₋₆alkyl or C₁₋₆alkoxy;

R³ is hydrogen, alkyl, halo, C₁₋₆alkoxy or C₁₋₆ alkylS-;

R4 is hydrogen, C1-6 alkyl, halo or C1-6alkoxy;

R⁶ is hydrogen, C₁₋₆ alkyl, or arylC₁₋₆ alkyl;

wherein R^5 and R^2 may form a ring with 2-7 carbon atoms and wherein R^6 and R^2 may form a ring with 3-6 carbon atoms;

with an HMG Co-A reductase inhibitor.

20. (currently amended) A process for preparing a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof which process (wherein variable groups are, unless otherwise specified, as defined in formula (b)) comprises of comprising:

Process 1) a) reacting a compound of formula (II):

with a compound of formula (III):

$$\begin{array}{c|c} O & R^1 & \stackrel{\textstyle R^6}{\longrightarrow} O \\ I & \stackrel{\textstyle \downarrow}{\longrightarrow} O \\ I & O & R^2 & R^5 \end{array} O H$$

wherein L is a displaceable group;

Process 2) b) reacting an acid of formula (IV):

or an activated derivative thereof;

with an amine of formula (V):

$$H_2N$$
 R^1
 R^5
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6

Process 3): c) reacting an acid of formula (VI):

or an activated derivative thereof, with an amine of formula (VII):

Process 4): d) reducing a compound of formula (VIII):

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Process 5): e) reacting a compound of formula (IX):

with a compound of formula (X):

wherein L is a displaceable group;

Process 6): f) reacting a compound of formula (XI):

wherein L is a displaceable group;

with a compound of formula (XII):

Process 7): g) De-esterifying a compound of formula (XIII)

$$\begin{array}{c} OH \\ R^{3} \\ O \end{array}$$

wherein the group C(O)OR is an ester group; and wherein:

 optionally substituted by one or two substituents selected from halo, hydroxy, $C_{1.6}$ alkyl or $C_{1.6}$ alkoxy;

 R^2 and R^5 are independently hydrogen, a branched or unbranched C_{1-6} alkyl, C_{1-6} ecycloalkyl or aryl; wherein said C_{1-6} alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, cyano, carbamoyl, carboxy, C_{1-6} alkoxy, aryl C_{1-6} alkoxy, $(C_{1-6}$ alkyl)amino, N_iN^2 - $(C_{1-6}$ alkyl)amino, C_{1-6} alkyl) $(O_{1-6}$ alky

R3 is hydrogen, alkyl, halo, C1-6alkoxy or C1-6 alkylS-;

R4 is hydrogen, C1-6 alkyl, halo or C1-6 alkoxy;

R⁶ is hydrogen, C₁₋₆ alkyl, or arylC₁₋₆ alkyl;

wherein R^5 and R^2 may form a ring with 2-7 carbon atoms and wherein R^6 and R^2 may form a ring with 3-6 carbon atoms; and

L is a displaceable group;

and thereafter if necessary or desirable optionally:

- i) converting a compound of the formula (I) into another compound of the formula (I);
- ii) removing any protecting groups;
- iii) forming a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug; or
 - iv) separating two or more enantiomers.

Lis a displaceable group, suitable values for Lare for example, a halogeno or sulphonyloxy group, for example a chloro, bromo, methanesulphonyloxy or toluene 4 sulphonyloxy group.

C(O)OR is an ester group, suitable values for C(O)OR are methoxyearbonyl, ethoxyearbonyl, / butoxyearbonyl and benzyloxyearbonyl.

21. (new) A method of treating or preventing a hyperlipidemic condition comprising the administration of an effective amount of a compound according to claim 12 to a mammal in need thereof

PATENT

DOCKET NO.: ASZN0107-100 (101340-1P US)

- (new) A method of treating or preventing atherosclerosis comprising the administration of an effective amount of a compound according to claim 12 to a mammal in need thereof.
- 23. (new) A method for treating or preventing Alzheimers' disease comprising the administration of an effective amount of a compound according to claim 12 to a mammal in need thereof.
- 24. (new) A method for treating or preventing a cholesterol associated tumor comprising the administration of an effective amount of a compound according to claim 12 to a mammal in need thereof
- (new) A pharmaceutical formulation comprising a compound according to claim 12 in admixture with a pharmaceutically acceptable adjuvant, diluent and/or carrier.
- 26. (new) A process according to claim 20 wherein L is a halogen or sulphonyloxy group.
- (new) A process according to claim 26 wherein L is a chloro, bromo, methanesulphonyloxy or toluene-4-sulphonyloxy group.
- (new) A process according to claim 20 wherein the C(O)OR ester group is methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, or benzyloxycarbonyl.