쉽게 배우는 통계입문 (2)

ntroduction to Statistics

Present by Hobin Kwak

0 강의 개요

쉽게 배우는 통계입문의 심화 버전! (중복되는 내용 있음! 그러나, 듣길 추천)

[강의계획]

- 표본분포 (쉽게 배우는 통계입문 복습)
- 통계적 추론
- 검정
- 회귀분석
- 분산분석
- 범주형 자료 분석
- 비모수적 추론

표본분포

1. 표본 분포 (sampling distribution)

: 모집단에서 일정 크기로 표본을 뽑을 때, 그 표본의 통계량의 확률분포

: 통계적 추정/검정의 핵심

: 예시) 아래와 같은 분포를 띈 모집단에서 크기가 2인 확률표본 X1과 X2를 추출할 때, 표본평균의 확률분포는?

X	0	1
f(X=x)	0.3	0.7

	0	1
0	0.09	0.21
1	0.21	0.49

표본분포

1. 표본평균의 평균과 표준편차

: X_1 , ···, X_n 이 모평균 μ , 모표준편차 σ 인 모집단으로부터의 확률표본 (i.i.d)일 때,

표본평균 :
$$\bar{X} = \frac{\sum X_i}{n}$$

$$E(\overline{X}) = E\left(\frac{\sum X_i}{n}\right) = \frac{1}{n}[E(X_1) + \dots + E(X_n)] = \frac{1}{n}n\mu = \mu$$

$$Var(\overline{X}) = \frac{\sigma^2}{n}$$

표본분포 - 중심극한정리

1. 중심극한정리

: 평균이 μ , 표준편차 σ 인 임의의 모집단으로부터 크기 n인 표본에서의 **표본평균**은 n(주로 30 이상)이 크면 근사적으로 평균이 μ 이고 분산이 $\frac{\sigma^2}{n}$ 인 정규분포를 따름

: 모집단이 어떤 형태의 분포든 **표본 크기가 크면 항상 성립**

: **모집단이 정규분포라면** 표본평균은 표본 개수와 상관없이 **항상 정규분포**를 따른다.

2. 예) 어느 회사 그래픽카드의 평균수명은 3년이고 표준편차는 2년이다. 이 회사 제품에서 100개의 그래픽카드를 뽑아 평균 수명을 확인할 때 4년 이상일 확률은?

표본분포 - 중심극한정리

1. 이항분포의 정규분포 근사

: 서로 독립이고 동일한 모수 p를 갖는 베르누이 확률변수 $Y_1, Y_2, ... Y_n$ 에 대해 $X = Y_1 + Y_2 + ... + Y_n$ $Y_1, Y_2, ... Y_n$ 로부터의 표본평균에 대해 중심극한정리 적용

$$\frac{X - np}{\sqrt{np(1 - p)}} = \frac{\sum_{i=1}^{n} Y_i - np}{\sqrt{np(1 - p)}} = \frac{\overline{Y} - p}{\sqrt{\frac{p(1 - p)}{n}}} \sim N(0, 1^2)$$

2. 표본비율 정규근사

: 베르누이분포로부터의 크기 n인 확률표본에 대해, 표본비율 \hat{p} 의 분포는 n이 클 때, 근사적으로

$$N(p, \frac{p(1-p)}{n})$$

1. 카이제곱(χ^2) 분포

: 표본분산과 관련된 분포

: 확률변수 Z_1 , …, Z_k 가 각각 표준정규분포를 따르고 독립일 때

그들의 제곱합은 자유도 k인 카이제곱 분포 $\chi^2_{(k)}$ 를 따름

$$Z_1^2 + Z_2^2 + \dots + Z_k^2 \sim \chi_{(k)}^2$$

: 표본분산(s^2)을 알고 모분산(σ^2)을 추정할 때 사용하는 분포 (표본크기 클 수록 치우침이 적어짐)

1. **카이제곱(χ²)** 분포표

CHI-SQUARE TABLE: VALUES OF CHI-SQUARE (ALPHA) OF THE CHI-SQUARE DISTRIBUTION

-		T:::::						
ō		X2						
DF	X2(.995)	X2(.99)	X2(.975)	X2(.95)	X2(.05)	X2(.025)	X2(.01)	X2(.005)
1 23 4 5	0.000	0.000	0.001	0.004	3.841	5.024	6.635	7.879
	0.010	0.020	0.051	0.103	5.991	7.378	9.210	10.597
	0.072	0.115	0.216	0.352	7.815	9.348	11.345	12.838
	0.207	0.297	0.484	0.711	9.488	11.143	13.277	14.860
	0.412	0.554	0.831	1.145	11.071	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	43.773	46.979	50.892	53.672

1. 정규모집단에서의 표본분산 분포

 $: X_1, \dots, X_n$ 을 정규분포 $N(\mu, \sigma^2)$ 으로부터의 확률표본이라 할 때, 표본분산 $S^2 = \sum_{\{i=1\}} (X_i - \bar{X})^2 / (n-1)$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

2. 증명

$$\frac{X_i - \mu}{\sigma} \sim N(0,1)$$
 이고 서로 독립(i = 1,2, ... n)

$$\Sigma \left(\frac{X_i - \mu}{\sigma} \right)^2 = \Sigma \left(\frac{(X_i - \bar{X})}{\sigma} \right)^2 + n \left(\frac{(\bar{X} - \mu)}{\sigma} \right)^2$$

$$= \left(\frac{(n-1)S^2}{\sigma^2}\right) + \left(\frac{(\bar{X}-\mu)}{\frac{\sigma}{\sqrt{n}}}\right)^2$$

1. 분산이 동일한 두 정규모집단에서의 표본분산의 분포

 $: X_1, \dots, X_n$ 과 Y_1, \dots, Y_n 가 각각 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$ 을 따르며 서로 독립인 확률표본이라 할 때, 표본분산은 각각

$$S_1^2 = \frac{\Sigma_i (X_i - \bar{X})^2}{n_1 - 1}$$
, $S_2^2 = \frac{\Sigma_i (Y_i - \bar{Y})^2}{n_2 - 1}$ 일 경우

$$\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

2. 합동표본분산(pooled sample variance)

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$$

- 1. 단봉분포
- 2. 오른쪽에 꼬리를 가짐
- 3. 항상 양수값을 가짐
- 4. $E(\chi_{\phi}^2) = \phi$, $Var(\chi_{\phi}^2) = 2\phi$
- 5. 자유도가 커지면 정규분포에 가까워짐
- 6. 모분산 추정 및 검정에 활용
- 7. 적합성, 동질성, 독립성 검정 등에 사용

표본분포 - t분포

1. t분포

: X의 분포가 정규분포일 때, 표본평균의 분포에서 모집단의 표준편차를 모를 경우 모표준편차(σ) 대신 표본표준편차(s)를 사용

: t분포는 자유도에 의해 모양이 결정됨

- 자유도: 임의로 결정될 수 있는 수

: Z ~ N(0,1), V ~ $\chi^2_{(k)}$ 이고 Z와 V는 서로 독립일 때,

$$T = \frac{Z}{\sqrt{V/_k}} \sim t(k)$$

 $: X_1, \dots, X_n \sim N(\mu, \sigma^2)$ 일 때,

$$t(n-1){\sim}\frac{\bar{X}-\mu}{S/\sqrt{n}}$$

표본분포 - t분포

1. 분산이 동일한 두 정규모집단에서의 t-분포

 $: X_1, \dots, X_n$ 과 Y_1, \dots, Y_n 가 각각 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$ 을 따르며 서로 독립인 확률표본이라 할 때, 표본분산은 각각

$$S_1^2 = \frac{\Sigma_i (X_i - \bar{X})^2}{n_1 - 1}$$
, $S_2^2 = \frac{\Sigma_i (Y_i - \bar{Y})^2}{n_2 - 1}$ 일경우
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p(\sqrt{1 \setminus n_1 + 1/n_2})} \sim t(n_1 + n_2 - 2)$$

표본분포 - t분포

- 1. T분포는 정규분포보다 넓게 퍼져 있고 꼬리부분이 더 평평함
- 2. Bell Shaped
- 3. 표본크기가 커질수록 분포가 중심부근에서 점점 더 뾰족해짐
 - 표본 크기가 30 이상이 되면 **정규분포에 근사**
- 4. 주로 모평균 추정 혹은 모평균차이에 대한 추정 시 모표준편차를 모를 때 t분포를 사용함
- 5. 표본 크기가 30 이상일 경우에는 표준정규분포, 미만일 때는 t분포

표본분포 - F-분포

1. F분포

- : F-분포는 두 정규모집단의 분산을 비교하는 추론에 사용
- : V1과 V2는 각각 자유도 k1, k2인 카이제곱분포를 따르는 독립인 확률변수

$$F = \frac{V_1/k_1}{V_2/k_2} \sim F(k_1, k_2) \quad \frac{1}{F} = \frac{V_2/k_2}{V_1/k_1} \sim F(k_2, k_1)$$

표본분포 - F-분포

1. F-분포와 t-분포와의 관계

: $Z \sim N(0,1), V \sim \chi^2(k)$ 이고 Z와 V는 서로 독립일 때,

$$T = \frac{Z}{\sqrt{\frac{V}{k}}} \sim t(k), \quad T^2 = \frac{Z^2/1}{\frac{V}{k}} \sim F(1, k)$$

표본분포 - 정리

1. 정규분포

- 모분산을 알고 있을 때, 모평균에 대한 추정/검정
- 모분산을 알고 있을 때, 두 모평균 차이에 대한 추정/검정
- 표본크기가 클 때 모평균 혹은 모평균 차이에 대한 추정/검정
- 표본크기가 클 때, 모비율 혹은 모비율 차이에 대한 추정/검

2. t 분포

- 모분산을 모를 때 모평균에 대한 추정/검정
- 모분산을 모를 때 두 모평균 차이에 대한 추정/검정

3. 카이제곱분포

- 모분산에 대한 추정/검정
- 분할표에 의한 독립성/적합성/동질성 검정

4. F 분포

- 두 모분산 차이에 대한 추정/검정
- 분산분석표의 요인에 관한 추정/검정

추정

1. 통계적 추정(estimation)

: 표본의 통계량을 기초로 하여 모집단의 모수를 추정하는 방법론

: 통계적 추정의 관심대상은 통계량이 아니라 모수

2. 통계적 추정의 종류

- 1. 점 추정 (Point estimation)
 - 모수를 단일한 값으로 추측하는 방식
 - 신뢰도를 나타낼 수 없음 (추정치가 어느정도 옳을지 모름)
 - 오차에 대한 정보가 없음
- 2. 구간추정
 - 모수를 포함한다고 추정되는 구간을 구하는 방식
 - 신뢰도를 나타낼 수 있음

1. 추정량 (estimator)

: 확률변수 (표본 추출 전에는 알 수 없음)

: 모수에 대한 대략적 정보 제공

2. 추정값 (estimate)

: 표본 추출로 추정량을 통해 실현된 값

3. 통계량과 추정량의 차이

: 추정량 = 추정에 사용되는 통계량

: 추정값 = 표본에서 결정된 추정량의 값

|추정 - 점 추정

1. 불편성 (Unbiasedness)

: 모수의 추정량의 기댓값이 모수가 되는 성질

2. 유효성 (Efficiency)

: 추정량이 불편추정량이고 분산이 다른 추정량에 비해 가장 작은 분산을 갖는 성질

3. 일치성 (Consistency)

: 표본 크기가 커질 수록 추정량이 모수에 수렴하는 성질

4. 충분성 (Sufficiency)

: 모수에 대해 가능한 많은 표본정보를 내포하는 성질

1. 불편성 (Unbiasedness)

: 모든 모수 θ 의 모든 참값에 대하여 $E(\hat{\theta}) = \theta$ 이면 $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ 을 모수의 불편추정량이라고 함

$$\hat{\sigma}^2 = S^2 = \frac{\Sigma (X_i - \bar{X})^2}{(n-1)}$$

2, 유효성

: 추정량의 표준오차(standard error): 흩어짐의 정도를 나타내는 측도, 추정량 $\hat{\theta}$ 의 표준편차

두 불편추정량 $\hat{\theta}_1, \hat{\theta}_2$ 에 대해 $S. E. (\hat{\theta}_1) < S. E. (\hat{\theta}_2)$ 이면 추정량 $\hat{\theta}_1$ 이 추정량 $\hat{\theta}_2$ 보다 유효

1. 모평균의 추정

: 추정량: 표본평균 $\hat{\mu} = \overline{X}$

: 표준오차: S. E. $(\hat{\mu}) = \frac{\sigma}{\sqrt{n}}$

: 표준오차의 추정량: S. E. $(\widehat{\mu}) = \frac{s}{\sqrt{n}}$

2, 오차한계(limit of error)

 $: P\left\{|\overline{X} - \mu| \le \frac{2\sigma}{\sqrt{n}}\right\} = 0.954$

: 추정량 $\hat{\mu} = \overline{X}$ 을 사용하여 모평균을 1,000번 추정하면 오차가 $\frac{2\sigma}{\sqrt{n}}$ 이내인 것인 대략 954번 (정규모집단의 경우)

 $\rightarrow \frac{2\sigma}{\sqrt{n}}$ 는 $\hat{\mu} = \overline{X}$ 의 95.4% (근사)오차한계

1. 모비율의 추정

 $X \sim B(n, p)$: E(X) = np, Var(X) = npq

: 표본비율 $\hat{p} = \frac{X}{n}$ 은 모비율 p의 불편추정량

$$E(\hat{p}) = p$$
, $S.E.(\hat{p}) = sd(\hat{p}) = \sqrt{\frac{pq}{n}}$

: 표본비율 p은 모비율 p의 일치추정량

$$P\{|\hat{p}-p| \geq \varepsilon\} \leq {^{Var(\hat{p})}}/_{\varepsilon^2} = pq/(n\varepsilon^2)$$

: 표본 크기가 큰 경우 $X \sim N(np, npq)$ 표본비율 \hat{p} 는 N(p, pq/n) 근사

1. 모분산의 추정

 $: X_1, ... X_n$ 은 모평균 μ , 모분산 σ^2 인 모집단의 확률표본일 때,

$$E[\Sigma(X_i - \bar{X})^2] = E\left[\Sigma X_i^2 - \frac{(\Sigma X_i)^2}{n}\right] = E\left[\Sigma X_i^2 - n\bar{X}^2\right]$$
$$= \Sigma E(X_i^2) - nE(\bar{X}^2)$$

2. 모분산과 모표준편차 점 추정

: 모분산의 추정량 = $\hat{\sigma}^2 = S^2 = \frac{\Sigma (X_i - \bar{X})^2}{n-1}$

: 모표준편차의 추정량 $= \hat{\sigma} = \sqrt{S^2} = S$

추정 - 구간추정

1. 구간추정

- : 표본에서 얻어지는 정보를 이용하여 모수가 속할 것으로 기대되는 범위(신뢰구간)를 택하는 과정
- : 통계적 추정은 일반적으로 신뢰구간의 추정을 활용

: 모수 θ 에 대하여 $P(a < \theta < b) = 1 - \alpha$ 일 때 구간 (a,b)을 모수 θ 에 대한 $100(1-\alpha)$ % 신뢰구간이라고 한다.

2. 신뢰구간

: 모수를 포함할 것으로 추정한 구간

3. 신뢰수준

- : 신뢰구간이 모수를 포함할 확률 $(1 \alpha) * \alpha$: 오차율
- : 동일한 표본추출을 통해 구한 신뢰구간들 중 $100 \times (1-\alpha)$ %는 모수를 포함

|추정 - 모평균의 구간추정

1. 모분산을 아는 경우

가정) 모분산을 안다. 모집단의 평균이 μ , 분산이 σ^2 인 정규분포 Z통계량을 사용

- 90% 신뢰구간 : $Z_{0.05} = 1.64$
- 95% 신뢰구간 : Z_{0.025} = 1.96
- 99% 신뢰구간 : Z_{0.005} = 2.57

추정 - 모평균의 구간추정

1. 모분산을 모르는 경우

가정) 모분산을 모른다. 모집단의 평균이 μ , 분산이 σ^2 인 정규분포 t통계량을 사용 (표본 크기가 클 경우 Z통계량을 사용)

$$\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)$$

$$P\left\{-t(n-1,\frac{\alpha}{2}) \le \frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \le t(n-1,\frac{\alpha}{2})\right\} = 1-\alpha$$

$$P\left\{\mu\in(\bar{X}-t\left(n-1,\frac{\alpha}{2}\right)\frac{S}{\sqrt{n}},\bar{X}+t(n-1,\frac{\alpha}{2})\frac{S}{\sqrt{n}})\right\}=1-\alpha$$

▶ 추정 - 모평균의 구간추정

모평균의 100(1-α)% 신뢰구간

- 1) 표본 크기가 크지 않은 경우
 - 모분산 known

$$(\bar{X}-Z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}, \quad \bar{X}+Z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}})$$

- 모분산 unknown

$$(\bar{X}-t\left(n-1,\frac{\alpha}{2}\right)\frac{S}{\sqrt{n}}, \quad \bar{X}+t\left(n-1,\frac{\alpha}{2}\right)\frac{S}{\sqrt{n}})$$

2) 표본 크기가 큰 경우
- 모분산 known
$$(\bar{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$$

- 모분산 unknown
$$(\bar{X} - Z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} + Z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}})$$

추정 - 모비율의 구간추정

1. 모비율의 구간추정

: 베르누이분포 B(1,p)로부터의 크기 n인 확률표본에 대해, 표본비율 \hat{p} 의 분포는 n이 클 때, 근사적으로 $N\left(p,\frac{p(1-p)}{n}\right)$ 를 따름.

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

2. 근사신뢰구간

$$\left(\hat{p}-Z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}\hat{q}}{n}},\qquad \hat{p}+Z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}\hat{q}}{n}}\right)$$

추정 - 모분산의 구간추정

1. 모분산의 구간추정

 $: X_1, ..., X_n$ 이 정규분포 $N(\mu, \sigma^2)$ 로부터의 확률표본, 표본분산에 대하여

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\{\chi^2\left(n-1, 1-\frac{\alpha}{2}\right) \le \frac{(n-1)S^2}{\sigma^2} \le \chi^2\left(n-1, \frac{\alpha}{2}\right) = 1-\alpha$$

2. 정규모집단의 모분산 σ^2 에 대한 100(1- α)% 신뢰구간

$$\left(\frac{(n-1)S^2}{\chi^2\left(n-1,\frac{\alpha}{2}\right)},\frac{(n-1)S^2}{\chi^2\left(n-1,1-\frac{\alpha}{2}\right)}\right)$$

│ 추정 - 표본크기 결정

1. 모평균 추정

: $100(1-\alpha)$ % 오차한계를 d 이하로, 하는데 필요한 표본크기 n

$$P\left(\overline{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$
 $Z_{\frac{\alpha}{2}} \left(\frac{\sigma}{\sqrt{n}}\right) \le d, \qquad n \ge \left(Z_{\frac{\alpha}{2}} \frac{\sigma}{d}\right)^2$

2. 모비율 추정

: $100(1-\alpha)$ % 오차한계를 d 이하로, 하는데 필요한 표본크기 n

- p에 대한 사전지식이 없는 경우:
$$n \geq \frac{1}{4} \left(\frac{Z_{\frac{\alpha}{2}}}{d}\right)^2$$

- p에 대한 사전지식(p*)이 있는 경우:
$$n \geq p^*q^*\left(\frac{Z_{\frac{\alpha}{2}}}{d}\right)^2$$

2 추정 - 표본크기 결정

1. 최소표본크기 조정

- : 모집단 크기가 표본 크기에 비해 상대적으로 작을 경우 최소표본의 크기를 조정
- $-100(1-\alpha)$ % 신뢰구간 가정 하, 최소표본 크기 계산
- 최소표본 크기(=n)와 모집단 크기(=N) 비교
- n/N이 α 보다 크면 표본크기 조정

$$n_{adj} = \frac{n}{1 + \frac{n}{N}}$$

검정

1. 통계적 추론

- 신뢰구간: 미지의 모수 추정이 목적
- 가설검정: 모수의 관한 가설의 타당성에 대한

경험적 증거 제시가 목적

2. 가설검정

- : 모수에 관한 귀무/대립가설을 설정한 후 데이터에 따라 어떤 가설이 맞는지 결정하는 통계적 분석
- 비수도권의 출생률이 수도권 출생률보다 낮다
- X팀은 홈구장에서의 승률이 원정 구장에서의 승률보다 높다

Source: https://medium.com/@rich.tsai1103

MetaCode

검정

1. 가설의 종류

- : 귀무가설 (H0)
 - 검정하는 가설
 - 대립과설과 상반되는 가설로, 일반적인 사실을 귀무가설로 설정
 - 효과가 없다, 차이가 없다 등의 내용
- : 대립가설 (H1)
- 입증하고자 하는 가설
- 효과가 있다, 차이가 있다 등의 내용

2. 가설의 예시

- 예) X팀의 홈구장 승률은 60%보다 높은가?
- 귀무가설: X팀의 홈구장 평균 승률은 60%보다 작거나 같다. $(\mu \le 0.60)$
- 대립가설: X팀의 홈구장 평균 승률은 60%보다 크다. $(\mu > 0.60)$

검정

1. 가설설정의 오류

- 제1종 오류 (*α*)
 - : 귀무가설을 채택해야 했음에도 이를 기각할 오류
 - : 표본으로부터 얻은 검정결과가 우연에 의해 잘못
 - 판단되었을 가능성
 - $: \alpha$ 는 일반적으로 5%로 설정
- 제2종 오류 (β)
 - : 귀무가설을 기각해야 했음에도 이를 채택할 오류
 - : 실제로는 효과가 없는데 효과가 있다고 잘못 결론 내릴 가능성
 - : β는 일반적으로 10%로 설정

검정

1. 가설설정의 오류

	귀무가설 True	귀무가설 False
귀무가설 채택	옳음 (1-a)	제2종 오류(β)
귀무가설 기각	제1종 오류(α)	옳음 (1- <i>β</i>)

- 오류를 완벽히 배제할 수는 없음
- 두 가지 오류를 동시에 최소로 할 수는 없음
- 일반적으로 제1종 오류가 더 중요하여 이를 미리 지정한 유의수준 이하로 하는 방식 사용

검정 - 요소

1. 유의수준 (significance level)

- 제1종 오류를 범할 확률의 최대 허용한계

2. 유의확률 (p-value)

- 귀무가설이 옳다는 가정하에 관측된 사건만큼 혹은 이보다 더 귀무가설에 반하는 사건이 일어날 확률
- 검정통계량 값에 대해 귀무가설을 기각할 수 있는 최소의 유의수준으로 귀무가설이 사실일 확률
- *α* > p-value : 귀무가설 기각
- α < p-value : 귀무가설 채택

3. 임계값 (critical value)

- 기각역과 채택역을 나누는 경계값
- 기각역 : 귀무가설을 기각하게 되는 검정통계량의 관측값의 영역
- 채택역: 귀무가설을 채택하게 되는 검정통계량의 관측값의 영역
- 검정통계량의 관측값이 기각역에 속하면 귀무가설 기각

검정 - 요소

Source: https://online.stat.psu.edu/statprogram

MetaCode

검정 - 검정력함수

1. 검정력함수 (power function)

: 모수의 값에 따른 귀무가설 기각 확률의 변화에 대한 함수

: 검정통계량이 X, 기각역이 R이라면

검정력함수는
$$\gamma(\theta) = P\{X \in R | \theta\}$$

- 제1종오류 범할 확률 = $\gamma(\theta)$
- 제2종오류 범할 확률 = $1 \gamma(\theta)$

: 검정력(power): 귀무가설이 사실이 아닐 때 귀무가설을 기각할 확률

2. 예시) "기각역이 $\bar{X} \leq 10$ 인 검정법의 검정력 함수 $\gamma(\mu) = P[\bar{X} \leq 10 | true\ mean\ = \mu] = P[Z \leq \frac{10-\mu}{\frac{\sigma}{\sqrt{n}}}]$

검정 -절차

- 1. 검정할 가설을 설정
- 2. 유의수준을 설정
- 3. 임계치를 결정하고 검정통계량과 임계치를 비교 (혹은 유의수준과 유의확률 비교)
- 4. 유의확률(=p-value)값이 유의수준(α)보다 작으면 귀무가설을 기각

검정

1. 양측검정 (Two-sided)

- 기각역이 각각 왼쪽과 오른쪽 두 부분으로 구성된 가설검정
- 양쪽 기각역의 합 = 유의수준

2. 단측검정 (One-sided)

- 기각역이 한쪽으로만 구성되는 가설검정
- 한쪽 기각역이 유의수준

- 1. 정규성 가정 만족하는 경우
 - 정규분포를 따르는 모집단으로부터 n개의 표본이 추출되었을 때
 - 모분산 known: Z 검정 통계량 사용

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

- 모분산 unknown: t 검정 통계량 사용

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

- 1. 모평균 검정 정규 모집단
 - 모분산 known: Z 검정 통계량 사용

귀무가설	대립가설	기각역
H_0 : $\mu \leq \mu_0$	$H_1: \mu > \mu_0$	$Z \geq Z_{\alpha}$
H_0 : $\mu \ge \mu_0$	H_1 : $\mu < \mu_0$	$Z \leq -Z_{\alpha}$
$H_0: \mu = \mu_0$	$H_1: \mu \neq \mu_0$	$ Z \geq Z_{\alpha/2}$

- 모분산 unknown: t 검정 통계량 사용

귀무가설	대립가설	기각역
H_0 : $\mu \leq \mu_0$	$H_1: \mu > \mu_0$	$T \ge t(n-1,\alpha)$
H_0 : $\mu \ge \mu_0$	H_1 : $\mu < \mu_0$	$T \le -t(n-1,\alpha)$
H_0 : $\mu = \mu_0$	$H_1: \mu \neq \mu_0$	$ T \ge t(n-1,\frac{\alpha}{2})$

1. 표본의 크기가 큰 임의의 모집단

- 모분산 known: Z 검정 통계량 사용
$$Z=rac{ar{x}-\mu}{\sigma/\sqrt{n}}$$

- 모분산 unknown: Z 검정 통계량 사용
$$Z=rac{ar{x}-\mu}{s/\sqrt{n}}$$

귀무가설	대립가설	기각역
H_0 : $\mu \leq \mu_0$	H_1 : $\mu > \mu_0$	$Z \geq Z_{\alpha}$
H_0 : $\mu \ge \mu_0$	H_1 : $\mu < \mu_0$	$Z \leq -Z_{\alpha}$
$H_0: \mu = \mu_0$	H_1 : $\mu \neq \mu_0$	$ Z \geq Z_{\alpha/2}$

1. 표본의 크기

- 모분산 known인 정규모집단에서
- H_0 : $\mu \leq \mu_0$, H_1 : $\mu > \mu_0$ 혹은 H_0 : $\mu \geq \mu_0$, H_1 : $\mu < \mu_0$ 유의수준 α 인 검정법에서 대립가설 하의 평균값 $\mu = \mu_1$ 이 True라면, 제2종 오류를 범한 확률이 β 이하가 되도록 하려면 표본의 크기 n은

$$n \ge \left\{ \frac{Z_{\alpha} + Z_{\beta}}{\frac{\mu_1 - \mu_0}{\sigma}} \right\}^2$$

1. 예시 - 표본의 크기

- 한 배달업체의 기존 배달시간은 평균 30분, 표준편차는 5분이라고 한다. 새로운 배달방식에 의한 평균 배달시간이 20분이 된다면 큰 개선으로 간주한다. 실제로 $\mu=20$ 일 때, 잘못 결정하는 확률을 $\beta=0.1$ 이하로 하고자 할 때, 유의수준 $\alpha=0.05$ 인 검정법의 표본 크기는?

풀이) $\mu = 20$ 일 때, 검정력을 0.9 이상으로 해야 하므로

$$n \ge \left\{ \frac{Z_{\alpha} + Z_{\beta}}{\frac{\mu_1 - \mu_0}{\sigma}} \right\}^2$$

검정 - 모비율 검정

1. 모비율의 검정

- 표본의 크기가 작은 경우에는 이항검정법을 사용

귀무가설	대립가설	기각역
H_0 : $p \le p_0$	H_1 : p > p_0	$X \ge c(P\{X \ge c p=p_0\} \le \alpha \ensuremath{ ext{ m C}}\xspace c \ensuremath{ ext{ m C}}\xspace 3$ 최소값)
H_0 : $p \ge p_0$	H_1 : p < p_0	$X \le c(P\{X \le c p=p_0\} \le \alpha \ensuremath{ ext{\cap}}\ c$ 중 최대값)
H_0 : p = p_0	$H_1: p \neq p_0$	$X \le c_1$ 또는 $X \ge c_2$ 단, $P\{X \le c_1 p = p_0\} \le \alpha/2$ 인 c_1 중 최대값 $P\{X \ge c_2 p = p_0\} \le \alpha/2$ 인 c_2 중 최소값

검정 - 모비율 검정

1. 예시 - 모비율의 검정

- 한 질병의 발병률은 3%로 알려져 있다. 시간이 지나 100명을 랜덤추출하여새롭게 조사를 해보니 감염환자는 2명이다. 이 조사로부터 해당 질병의 발병률이 기존보다 낮아졌는지 유의수준 5%에서 검정

$$H_0: p \ge 0.03, H_1: p < 0.03, 기각역: X \le c$$

포아송 분포를 통해 접근

$$P(X \le c) \simeq \sum_{x=0}^{c} \frac{e^{-3}3^x}{x!} \le 0.05$$

▋ 검정 - 모비율 검정

1. 모비율의 검정

- $X \sim B(n, p)$ 를 따르고, 표본 크기 n이 충분히 크고 $np_0 \ge 5, nq_0 \ge 5$ 일 때, 모비율에 관한 검정통계량

$$Z = \frac{X - np_0}{\sqrt{np_0 q_0}} = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0/n}}$$

귀무가설	대립가설	(근사적으로) 기각역
H_0 : $p \le p_0$	H_1 : p > p_0	$Z > Z_{\alpha}$
H_0 : $p \ge p_0$	H_1 : p < p_0	$Z < -Z_{\alpha}$
$H_0: \mathbf{p} = p_0$	$H_1: \mathbf{p} \neq p_0$	$ Z \geq Z_{\alpha/2}$

3 검정 - 모분산 검정

1. 모분산의 검정

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

귀무가설	대립가설	기각역
$H_0: \sigma^2 \le \sigma^2_0$	$H_1: \sigma^2 > \sigma^2_0$	$\chi^2 \ge \chi^2(n-1,\alpha)$
$H_0: \sigma^2 \ge \sigma^2_0$	$H_1: \sigma^2 < \sigma^2_0$	$\chi^2 \le \chi^2(n-1,1-\alpha)$
$H_0: \sigma^2 = \sigma^2_0$	$H_1: \sigma^2 \neq \sigma^2_0$	$\chi^{2} \ge \chi^{2} \left(n - 1, \frac{\alpha}{2} \right)$ 또는 $\chi^{2} \le \chi^{2} \left(n - 1, 1 - \frac{\alpha}{2} \right)$

| 검정 - 모분산 검정

1. 예시 - 모분산의 검정

- 어느 측정기의 분산이 0.1이고, 새 측정기의 분산이 0.05일 때, 새 측정기의 분산이 0.1보다 작다고 할 수 있는지 유의수준 5%에서 검정하라 (새 측정기의 측정 데이터는 총 20개)

$$H_0$$
: $\sigma^2 = 0.1$, H_1 : $\sigma^2 < 0.1$

검정통계량:
$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{(20-1)(0.05)}{0.1} = 9.5$$

기각역:
$$\chi^2 \le \chi^2_{0.95} (20 - 1) = 10.117 \cdots$$

┃ 두 모집단 비교

1. 두 집단의 비교

- 모평균 비교, 모비율 비교, 모분산 비교 등
- 두 집단의 비교에는 분산이 고려되어야 함
 - 분산이 고려되어야 보다 객관적인 비교가 가능

2. 두 모평균의 비교

- 두모평균 비교
 - 모분산 Known & 정규모집단
 - 모분산 Unknown & 정규모집단
 - 모분산 같음
 - 모분산 다름
- 짝을 이룬 표본 비교

두 모집단 비교 - 모평균

1. 두 모평균 차이 추론: 모분산 known

$$X_1, \dots, X_n$$
과 Y_1, \dots, Y_n 이 각각 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$ 을 따르고 서로 독립 $\bar{X} \sim N\left(\mu_1, \frac{\sigma_1^2}{n_1}\right), \quad \bar{Y} \sim N\left(\mu_2, \frac{\sigma_2^2}{n_2}\right)$

$$E(\overline{X} - \overline{Y}) = E(\overline{X}) - E(\overline{Y}) = \mu_1 - \mu_2$$

$$Var(\overline{X} - \overline{Y}) = Var(\overline{X}) + Var(\overline{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

- 우리의 관심 대상은 두 모평균의 차이 $(= \mu_1 \mu_2)$
- 추정량: $\bar{X} \bar{Y}$

- 검정통계량:
$$Z = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 1. 예시) 두 모평균 차이 추론: 모분산 known
 - 그룹 A와 그룹B의 키 평균이 같은가? $(\bar{x} = 170, \ \bar{y} = 173, \ n_1 = 10, \ n_2 = 10, \ \sigma_1^2 = 3, \ \sigma_2^2 = 10)$
- 가설

- 검정통계량:
$$Z = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \leftrightarrows 2.63 > 1.96$$

- 신뢰구간

1. 두 모평균 차이 추론: 소표본, 모분산 unknown, 등분산

 $X_1, ..., X_n$ 과 $Y_1, ..., Y_n$ 이 각각 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$ 을 따르고 서로 독립

$$S_1^2 = \frac{\Sigma_i^{n_1} (X_i - \bar{X})^2}{(n_1 - 1)}, \qquad S_2^2 = \frac{\Sigma_i^{n_2} (Y_i - \bar{Y})^2}{(n_2 - 1)}$$

$$\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2}{\sim}\chi^2(n_1+n_2-2)$$

이를, 합동분산으로 정리하면,

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

등분산
$$\sigma^2$$
 합동분산의 추정량 $s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}$

1. 두 모평균 차이 추론: 소표본, 모분산 unknown, 등분산

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1) \quad \chi^2 = \frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$

 $Z \sim N(0,1), \ \ V \sim \chi^{2}(k) \ \ Z$ 와 V는 서로 독립

$$T = \frac{Z}{\sqrt{\frac{V}{k}}} \sim t(k)$$

- 검정통계량
$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$

- 1. 예시) 두 모평균 차이 추론: 소표본, 모분산 unknown, 등분산
 - 그룹 A와 그룹B의 키 평균이 같은가? $(\bar{x} - \bar{y} = 5, n_1 = 15, n_2 = 10, S_p = 3)$
- 가설

- 검정통계량:
$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \leftrightarrows 4.08 > 2.069$$

- 신뢰구간

1. 두 모평균 차이 추론: 소표본, 모분산 unknown, 이분산

$$t = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$
 근사적으로 t분포

자유도: Satterwaite 자유도

$$\nu = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{((\frac{s_1^2}{n_1})^2 \frac{1}{n_1 - 1} + (\frac{s_2^2}{n_2})^2 \frac{1}{n_2 - 1})}$$

- 1. 두 모평균 차이 추론: 표본 크기가 크다면
- 모평균의 차($\mu_1 \mu_2$)의 100(1- α)% 신뢰구간

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{S_1^2/n_1 + S_2^2/n_2}$$

- 귀무가설 H_0 : $\mu_1 - \mu_2 = \delta$ 을 검정하기 위한 검정통계량

$$Z = \frac{(\bar{X} - \bar{Y}) - \delta}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$$

■ 두 모집단 비교 - 대응비교

1. 짝을 이룬 표본의 차이

- 같은 개체에 대해 실험 전/후 측정 값의 차이를 추론
- 두 집단 독립 X
- **대응표본**: 서로 독립 X 비슷한 성질의 표본
- 대응비교: 대응표본을 사용하여 두 모집단의 평균을 비교

2. 모평균의 차 $(\mu_1 - \mu_2 = \delta)$ 에 관한 추론

- 대응비교 $D_i = X_i Y_i$, 서로 독립이고 $N(\delta, \sigma_D^2)$ 가정
- $\delta = \mu_1 \mu_2$ 에 대한 100(1- α)% 신뢰구간

$$\overline{D} \pm t_{\frac{\alpha}{2}}(n-1)S_D/\sqrt{n}$$

$$\overline{D} = \frac{1}{n}\Sigma D_i, \qquad S_D^2 = \frac{\Sigma(D_i - \overline{D})^2}{n-1}$$

- 귀무가설
$$H_0$$
: $\mu_1-\mu_2$ 를 검정하기 위한 검정통계량 $T=rac{\overline{D}-\delta}{S_D/\sqrt{n}} \sim t(n-1)$

두 모집단 비교 - 두 모비율 비교

1. 두 모집단의 비율 비교

- 두 독립 표본으로부터 비율 \hat{p}_1 과 \hat{p}_2
- 표본비율의 평균과 분산

$$E(\hat{p}_1) = p_1, \qquad E(\hat{p}_2) = p_2$$

$$Var(\hat{p}_1) = \frac{p_1(1-p_1)}{n_1}, \qquad Var(\hat{p}_2) = \frac{p_2(1-p_2)}{n_2},$$

2. 표본의 크기가 큰 경우

$$E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2$$

$$Var(\hat{p}_1 - \hat{p}_2) = \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}$$

$$\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} \approx N(0, 1)$$

▋ 두 모집단 비교 - 두 모비율 비교

1. **p₁ - p₂ 신뢰구간** (표본 크기 큰 경우)

$$(\widehat{p_1} - \widehat{p_2}) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}$$

2. 표본의 크기가 큰 경우

$$H_0: p_1 = p_2 (= p)$$

 H_0 하에서

$$E(\widehat{p_1} - \widehat{p_2}) = 0, \quad Var(\widehat{p_1} - \widehat{p_2}) = p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$

공통 모비율
$$p$$
의 합동추정량 $\hat{p} = \frac{X+Y}{n_1+n_2}$

$$H_0: p_1 = p_2$$
 검정통계량

$$H_0: p_1 = p_2$$
 검정통계량 $Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$

4 두 모집단 비교 - 두 모비율 비교

1. 예시) 두 모집단 비율의 검정

	강의A	강의B
합격	70	90
불합격	30	60
합계	100	150

- 합격률 차에 대한 95% 신뢰구간 $\widehat{p_1} = 0.7$, $\widehat{p_2} = 0.6$

$$(\widehat{p_1} - \widehat{p_2}) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}$$

두 모집단 비교 - 두 모비율 비교

1. 예시) 두 모집단 비율의 검정

- 유의수준 5% 하에서 강의A를 수강한 학생의 합격률이 강의B를 수강한 학생의 합격률보다 높은가?

$$H_0$$
: $p_1 = p_2$, H_1 : $p_1 > p_2$
귀무가설 하에서의 공통 모비율 p의 합동추정량

$$\hat{p} = \frac{70 + 90}{100 + 150} = 0.64$$

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{0.1}{\sqrt{0.64 * 0.36} \sqrt{\frac{1}{100} + \frac{1}{150}}} = 1.6137$$

두 모집단 비교 - 두 모분산 비교

1. 두 모집단의 분산 비교

- 두 집단의 분산의 차이는 두 집단의 평균 차이 검정에 영향을 줌
- 분산의 동일성 검정
 - 여러 모집단에 대한 분산의 동일성 여부를 검정
 - 분산의 동일성 검정은 ANOVA분석의 기본 가정
 - 등분산 가정이 성립해야 유의미한 분석 가능

2. 두 모분산 비교의 가정

- $X_1, ..., X_n$ 과 $Y_1, ..., Y_n$ 이 각각 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$ 을 따르고 서로 독립 (정규분포 아닐 경우 Levene's Test 사용)

3. 귀무가설

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1 \quad \Rightarrow \quad F = \frac{\frac{S_1^2}{\sigma_1^2}}{\frac{S_2^2}{\sigma_2^2}} \sim F(n_1 - 1, n_2 - 1)$$

▎두 모집단 비교 - 두 모분산 비교

1. 두 모집단의 분산 비교

검정통계량 :
$$F = \frac{S_1^2}{S_2^2}$$

가설검정

$$H_1: \frac{\sigma_1^2}{\sigma_2^2} > 1$$
 $F \ge F(n_1 - 1, n_2 - 1; \alpha)$: 기각

$$H_1: \frac{\sigma_1^2}{\sigma_2^2} < 1$$
 $F \le F(n_1 - 1, n_2 - 1; 1 - \alpha)$: 기각

$$H_1: \frac{\sigma_1^2}{\sigma_2^2} > 1$$
 $F \ge F(n_1 - 1, n_2 - 1; \alpha): 7$ 각 $H_1: \frac{\sigma_1^2}{\sigma_2^2} < 1$ $F \le F(n_1 - 1, n_2 - 1; 1 - \alpha): 7$ 각 $H_1: \frac{\sigma_1^2}{\sigma_2^2} \ne 1$ $F \ge F(n_1 - 1, n_2 - 1; \frac{\alpha}{2})$ or $F \le F(n_1 - 1, n_2 - 1; 1 - \frac{\alpha}{2}): 7$ 각

신뢰구간

$$\frac{S_1^2}{S_2^2} \frac{1}{F(n_1 - 1, n_2 - 1; \alpha/2)} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{S_1^2}{S_2^2} F(n_2 - 1, n_1 - 1; \alpha/2)$$

두 모집단 비교 - 두 모분산 비교

1. 두 모집단의 분산 비교

신뢰구간

$$\frac{S_1^2}{S_2^2} \frac{1}{F(n_1 - 1, n_2 - 1; \alpha/2)} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{S_1^2}{S_2^2} F(n_2 - 1, n_1 - 1; \alpha/2)$$

증명)

$$X_1, ... X_n \sim N(\mu_1, \sigma_1^2), Y_1, ... Y_n \sim N(\mu_2, \sigma_2^2) \Rightarrow \frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi_{n_1 - 1}^2, \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi_{n_2 - 1}^2$$

$$F = \frac{\frac{(n_2 - 1)S_2^2}{\sigma_2^2}}{\frac{(n_1 - 1)S_1^2}{\sigma_1^2}} = \frac{\sigma_1^2 S_2^2}{\sigma_2^2 S_1^2} \sim F(n_2 - 1, n_1 - 1) \Rightarrow P\left[F_{1 - \frac{\alpha}{2}}(n_2 - 1, n_1 - 1) \leq \frac{\sigma_1^2 S_2^2}{\sigma_2^2 S_1^2} \leq F_{\frac{\alpha}{2}}(n_2 - 1, n_1 - 1)\right] = 1 - \alpha$$

이 때, 양변을
$$\frac{S_2^2}{S_1^2}$$
로 나눠주고, $F_{1-\frac{\alpha}{2}}(n_2-1,n_1-1)=\frac{1}{F_{\frac{\alpha}{2}}(n_1-1,n_2-1)}$ 을 활용하면 위와 같은 신뢰구간이 나온다.

두 모집단 비교 - 두 모분산 비교

1. F분포

- : F-분포는 두 정규모집단의 분산을 비교하는 추론에 사용
- : V1과 V2는 각각 자유도 k1, k2인 카이제곱분포를 따르는 독립인 확률변수

$$F = \frac{V_1/k_1}{V_2/k_2} \sim F(k_1, k_2) \quad \frac{1}{F} = \frac{V_2/k_2}{V_1/k_1} \sim F(k_2, k_1)$$

▋ 두 모집단 비교 - 두 모분산 비교

1. 예시) 두 모집단 분산 차이 가설검정 (단측)

$$: n_A = 21, S_A^2 = 10, \quad n_B = 25, S_B^2 = 15$$

$$H_0: \sigma_A^2 = \sigma_B^2, \quad H_1: \sigma_A^2 > \sigma_B^2$$

$$F = \frac{S_A^2}{S_B^2} = \frac{10}{15} = 0.666$$

$$F(n_B - 1, n_A - 1, \alpha) = F(24, 20, 0.05) = 2.08$$

두 모집단 비교 - 두 모분산 비교

1. 예시) 두 모집단 분산 차이 가설검정 (단측)

$$: n_A = 21, S_A^2 = 10, \quad n_B = 25, S_B^2 = 15$$

$$H_0$$
: $\sigma_A^2 = \sigma_B^2$, H_1 : $\sigma_A^2 < \sigma_B^2$

$$F = \frac{S_A^2}{S_B^2} = \frac{10}{15} = 0.666$$

$$\frac{1}{F(n_A,-1\,n_B-1\,,\alpha)} = \frac{1}{F(20,24,0.05)} = F(24,20,0.95) = \frac{1}{2.03}$$

분산 분석

1. 분산분석 (Analysis of Variance)

- 독립변수의 수준(범주)으로 나뉜 집단 간 평균 차이를 검정
- 특성값의 산포를 인자별로 분해하여 어느 인자가 큰 영향을 주는지
- 반응변수
 - 처리(treatment)에 의해 변화하는, 연구대상이 되는 변수
- 인자 (=요인, factor)
 - 반응변수에 영향을 주는 변수
 - 독립변수, 설명변수
- 처리(treatment)
 - 요인의 특정 값 (특정 실험 조건)
 - 수준(level)

2. 기본 가정

- 각 집단의 모집단 분포는 정규분포
- 각 집단의 모집단의 분산 같음
- 각 모집단 내의 오차와 모집단 간 오차는 독립

분산 분석

1. 분산분석 (Analysis of Variance)

- 전체 변동 = 그룹간 변동 + 그룹내 변동
 - 그룹간 변동 = 요인에 의한 효과
 - 그룹내 변동 = 오차에 의한 효과
- 그룹간 분산과 그룹내 분산의 비교

2. 종류

- 일원배치분산분석 (one-way anova)
 - 2 sample t test와 같은 목적이지만 anova는 2개 이상의 모집단의 평균 비교
 - 인자가 하나인 경우, 두 개 이상의 모집단 평균이 서로 동일한지 검정
- 이원배치분산분석 (two-way anova)
 - 인자가 두개인 경우에 사용
 - 인자의 수준 및 교호 작용에 의한 영향 파악 가능

1. 일원배치 분산분석

- 한 개의 요인
- 가정
 - k개의 모집단은 독립 & 정규분포
 - 각 집단의 모집단 평균은 서로 다를 수 있으나 분산은 같음

2. 가설검정

$$H_0$$
: $\mu_1 = \mu_2 = \dots = \mu_k$

 H_1 : 적어도 하나의 평균은 다르다

1. 일원배치 분산분석 - 반복수가 같은 경우

	처리 1	처리 2		처리 k	
데이터	y_{11}	y_{21}		y_{k1}	
	y_{12}	y_{22}		y_{k2}	
	y_{1n}	y_{2n}		y_{kn}	
크기	n	n	•••	n	
평균	$ar{y}_1$	$ar{y}_2$	•••	\overline{y}_k	
표준편차	s_1	s_2		s_k	
전체	$\bar{y} = (y_{11} + y_{12} + \dots + y_{kn})/N$				

$$Y_{ij}: \mu_i + \epsilon_{ij}, \qquad (j = 1, 2, \dots n), \qquad \epsilon \sim N(0, \sigma^2)$$

1. 관찰값 모형

$$Y_{ij}: \mu_i + \epsilon_{ij} = \mu + (\mu_i - \mu) + \epsilon_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

μ: 전체 모평균

 μ_i :i번째 처리의 모평균

 $lpha_i$: 처리 i의 효과, 처리 i에서의 모평균 μ_i 가 전체 모평균 μ 로부터 어느정도 치우쳤는지

 $-\Sigma\alpha_i=0$

 ϵ_{ij} : i번째 처리의 j번째 반응값이 가치는 오차, 상호 독립, $\epsilon_{ij} \sim N(0, \sigma^2)$

1. 관찰값 모형

$$Y_{ij}: \mu_i + \epsilon_{ij} = \mu + (\mu_i - \mu) + \epsilon_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

오차항의 가정

- 1) 정규성: 정규분포
- 2) 독립성: 오차항 간 독립
- 3) 비편향성: 기댓값은 0 (Bias 없음)
- 4) 등분산성: 모든 오차항의 분산 동일

2. 귀무가설 수립

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

 $\to H_0: \alpha_1 = \alpha_2 = \dots = \alpha_k$

1. 제곱합 분해

$$y_{ij}$$
: $\bar{y} + (\bar{y}_i - \bar{y}) + (y_{ij} - \bar{y}_i)$

- 1) $(\bar{y}_i \bar{y})$: i번째 집단의 평균과 전체평균 간의 차이 = 처리효과의 크기
- 2) $(y_{ij} \bar{y}_i)$: 각 관찰값과 각 집단평균 간의 차이 = 잔차

$$(y_{ij} - \overline{y}) = (\overline{y}_i - \overline{y}) + (y_{ij} - \overline{y}_i)$$

$$\Rightarrow \Sigma \Sigma (y_{ij} - \overline{y})^2 = \Sigma \Sigma (\overline{y}_i - \overline{y})^2 + \Sigma \Sigma (y_{ij} - \overline{y}_i)^2$$

- 제곱합: SST = SSt + SSE
 - (총 분산) = (처리간 분산) + (처리내 분산)
- 자유도: kn-1 = (k-1) + k(n-1)

1. 제곱합 분해 - 증명

$$\Sigma\Sigma(y_{ij} - \bar{y})^2 = \Sigma\Sigma((\bar{y}_i - \bar{y}) + (y_{ij} - \bar{y}_i))^2$$
$$= \Sigma\Sigma(\bar{y}_i - \bar{y})^2 + 2\Sigma\Sigma(\bar{y}_i - \bar{y})(y_{ij} - \bar{y}_i) + \Sigma\Sigma(y_{ij} - \bar{y}_i)^2$$

1. 평균 제곱

- 제곱합을 자유도로 나눈 값 (분산의 추정량)
- MSt (처리평균제곱)

$$MSt = \frac{SSt}{k-1} = \frac{n\Sigma(\bar{y}_i - \bar{y})^2}{k-1}$$

- MSE (잔차평균제곱)

$$MSE = \frac{SSE}{k(n-1)} = \frac{\Sigma\Sigma(y_{ij} - \bar{y}_i)^2}{k(n-1)}$$

- F-통계량

$$F_{k-1,k(n-1)} = \frac{MSt}{MSE}$$

1. ANOVA Table

	제곱합	자유도	평균제곱합	F
처리	SSt	K-1	SSt/(K-1)	MSt/MSE
잔차	SSE	K(n-1)	SSE/(K(n-1))	
~	SST	Kn-1		

2. 가설검정 (반복수 같음)

- 각 처리 집단의 평균이 같다면 SSt는 작아짐 (SSE 커짐)
- 각 처리 집단의 평균이 다르다면 SSt는 커짐 (SSE 작아짐)

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_k$

- 검정통계량 $F = \frac{MSt}{MSE}$
- $F > F_{\alpha}(k-1,k(n-1))$ \rightarrow 귀무가설 기각

1. 독립변수의 설명력

- 상관비 지수 $\eta^2 = \frac{SSt}{SST}$
- 독립변수의 설명력을 나타냄

2. 사후검정

- 어떤 집단 간에서 유의한 차이가 발생했는지 사후적으로 분석
- Post hoc comparison
- LSD, TUKEY, DUNCAN, 등

1. 예시) $\alpha = 0.05$

그룹1	그룹2	그룹3
85	91	79
86	92	78
88	93	88
75	85	94
78	87	92
94	84	85
98	82	83
79	88	85
71	95	82
80	96	81

	제곱합	자유도	평균제곱합	F
처리	192.2	2	96.1	2.358
잔차	1100.6	27	40.8	
총	1292.8	29		

임계값: $F_{0.05}(2,27) = 2.51$

독립변수 설명력: $\frac{192.2}{1292.8}$ =0.1486

1. 일원배치 분산분석 - 반복수가 다른 경우

	처리 1	처리 2		처리 k		
데이터	<i>y</i> ₁₁	y_{21}		y_{k1}		
	<i>y</i> ₁₂	y_{22}		y_{k2}		
	y_{1n_1}	y_{2n_2}		y_{kn_k}		
크기	n_1	n_2		n_k		
평균	\bar{y}_1	\bar{y}_2		$ar{y}_k$		
표준편차	s_1	s_2		s_k		
전체	$n = (n_1 + n_2 + \dots + n_k)$					
	$\bar{y} = (y_{11} + y_{12} + \dots + y_{kn_k})/n$					

$$Y_{ij}$$
: $\mu_i + \epsilon_{ij}$, $(j = 1, 2, \dots n)$, $\epsilon \sim N(0, \sigma^2)$

1. 관찰값 모형 - 반복 수 다름

$$Y_{ij}: \mu_i + \epsilon_{ij} = \mu + (\mu_i - \mu) + \epsilon_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

($i = 1, 2, ..., k; j = 1, 2, ..., n_i$)

 μ : 전체 모평균

 μ_i : i번째 처리의 모평균

 α_i : 처리 i의 효과, 처리 i에서의 모평균 μ_i 가 전체 모평균 μ 로부터 어느정도 치우쳤는지

$$-\sum_{i=1}^k n_i \alpha_i = 0$$

 ϵ_{ij} : i번째 처리의 j번째 반응값이 가치는 오차, 상호 독립, $\epsilon_{ij} \sim N(0, \sigma^2)$

1. 제곱합 분해

$$y_{ij}$$
: $\bar{y} + (\bar{y}_i - \bar{y}) + (y_{ij} - \bar{y}_i)$, $(i = 1, 2, ..., k; j = 1, 2, ..., n_i)$

- 1) $(\bar{y}_i \bar{y})$: i번째 집단의 평균과 전체평균 간의 차이 = 처리효과의 크기
- 2) $(y_{ij} \bar{y}_i)$: 각 관찰값과 각 집단평균 간의 차이 = 잔차

$$(y_{ij} - \bar{y}) = (\bar{y}_i - \bar{y}) + (y_{ij} - \bar{y}_i)$$

$$\Rightarrow \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 = \sum_{i=1}^{k} (\bar{y}_i - \bar{y})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

- 제곱합: SST = SSt + SSE
 - (총 분산) = (처리간 분산) + (처리내 분산)
- 자유도: kn-1 = (k-1) + k(n-1)

1. ANOVA Table

	제곱합	자유도	평균제곱합	F
처리	SSt	K-1	SSt/(K-1)	MSt/
잔차	SSE	$\sum_{i=1}^k n_i - k$	$SSE/(\Sigma_{i=1}^k n_i - k)$	MSE
총	SST	$\sum_{i=1}^k n_i - 1$		

2. 가설검정 (반복수 다름)

- 각 처리 집단의 평균이 같다면 SSt는 작아짐 (SSE 커짐)
- 각 처리 집단의 평균이 다르다면 SSt는 커짐 (SSE 작아짐)

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_k$

- 검정통계량 $F = \frac{MSt}{MSE}$
- $F > F_{\alpha}(k-1, \Sigma_{i=1}^k n_i k)$ → 귀무가설 기각

1. 이원배치 분산분석

- 두 개의 요인 (A, B)
 - 요인 A(수준 p개)
 - 요인 B(수준 q개)

2. 가설검정

$$H_0: \mu_{A1} = \mu_{A2} = \dots = \mu_{Ap}$$

 $\mu_{B1} = \mu_{B2} = \dots = \mu_{Bq}$

 H_1 : 적어도 요인 A 하나의 평균은 다르다 적어도 요인 B 하나의 평균은 다르다

5

분산 분석 - 이원배치 (반복X)

	B_1	 B_j	 B_q	평균
A_1	y_{11}	 y_{1j}	 y_{1q}	$ar{y}_{1.}$
A_i	y_{i1}	 y_{ij}	 y_{iq}	$\bar{y}_{i.}$
A_p	y_{p1}	 y_{pj}	 y_{pq}	$ar{\mathcal{Y}}_{p.}$
평균	$ar{y}_{.1}$	$ar{\mathcal{Y}}_{.j}$	$ar{\mathcal{Y}}_{.q}$	<u> </u>

$$\bar{y}_{i.} = \frac{1}{q} \sum_{j=1}^{q} y_{ij} \quad (i = 1, 2, ..., p) \quad \bar{y}_{.j} = \frac{1}{p} \sum_{i=1}^{p} y_{ij} \quad (j = 1, 2, ..., q)$$

$$\bar{y}_{..} = \frac{1}{pq} \sum_{i=1}^{p} \sum_{j=1}^{q} y_{ij}$$

MetaCode

1. 관찰값 모형

$$Y_{ij}: \mu + \alpha_i + \beta_j + \epsilon_{ij}$$

$$\mu$$
: 전체 모평균 α_i : A의 i번째 수준 효과 $-\Sigma\alpha_i=0$ β_j : B의 j번째 수준 효과 $-\Sigma\beta_j=0$ ϵ_{ij} : 오차항 상호 독립, $\epsilon_{ij}\sim N(0,\sigma^2)$

2. 귀무가설 수립

$$H_0: \mu_{A1} = \mu_{A2} = \dots = \mu_{Ap} \Rightarrow H_0: \alpha_1 = \alpha_2 = \dots = \alpha_p$$

$$\mu_{B1} = \mu_{B2} = \dots = \mu_{Bq} \Rightarrow H_0: \beta_1 = \beta_2 = \dots = \beta_q$$

1. 제곱합 분해

$$(y_{ij} - \bar{y}_{..}) = (\bar{y}_{i.} - \bar{y}_{..}) + (\bar{y}_{.j} - \bar{y}_{..}) + (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})$$

$$SST = \Sigma_{i}^{p} \Sigma_{j}^{q} (y_{ij} - \bar{y}_{..})^{2}$$

$$SS_{A} = q \Sigma_{i}^{p} (\bar{y}_{i.} - \bar{y}_{..})^{2}$$

$$SS_{B} = p \Sigma_{j}^{q} (\bar{y}_{.j} - \bar{y}_{..})^{2}$$

$$SSE = \Sigma_{i}^{p} \Sigma_{j}^{q} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2}$$

1. ANOVA Table

	제곱합	자유도	평균제곱합	F
А	SS_A	p-1	$MS_A = SS_A/(p-1)$	MS _A /MSE
В	SS_B	q-1	$MS_B = SS_B/(q-1)$	MS _B /MSE
잔차	SSE	(p-1)(q-1)	MSE = SSE/[(p-1)(q-1)]	
총	SST	pq-1		

2. 가설검정

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_p$

- 검정통계량 $F = \frac{MS_A}{MSE}$
- $F > F_{\alpha}(p-1,(p-1)(q-1)) \rightarrow 귀무가설 기각$

1. 이원배치 분산분석

- 두 개의 요인 (A, B)
 - 요인 A(수준 p개)
 - 요인 B(수준 q개)
- 주효과 분석
 - 독립변수 개별 효과 분석
- 상호작용 효과
 - 주 효과들 간 교호작용 분석

5

분산 분석 - 이원배치 (반복O)

	B_1	B_2		B_q	전체
A_1	y_{111}	y_{121}		y_{1q1}	
	y_{11n}	y_{12n}		y_{1qn}	
평균	$\bar{y}_{11.}$	$\bar{y}_{12.}$	•••	$ar{y}_{1q}$.	$ar{y}_{1}$
A_2	y_{111}	y_{221}		y_{2q1}	
	y_{21n}	y_{22n}		y_{2qn}	
평균	$\bar{y}_{21.}$	$\bar{y}_{22.}$	•••	$ar{y}_{2q}$.	$ar{y}_{2}$
A_P	y_{p11}	y_{p21}		y_{pq1}	
	y_{p1n}	y_{p2n}		y_{pqn}	
평균	$\bar{y}_{p1.}$	$\bar{y}_{p2.}$	•••	$ar{\mathcal{Y}}_{pq}$	$ar{\mathcal{Y}}_{p}$
전체	$\bar{y}_{.1.}$	<u> </u>		$ar{\mathcal{y}}_{.q}$.	<u> </u>

1. 관찰값 모형

$$Y_{ijk}$$
: $\mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ij}$ $(i=1,2,...,p;\ j=1,2,...,q;\ k=1,2,...,n)$ μ : 전체 모평균

$$\alpha_i$$
: A의 i번째 수준 효과

$$-\Sigma\alpha_i=0$$

$$\beta_i$$
: B의 j번째 수준 효과

$$-\Sigma\beta_i=0$$

$$\gamma_{ij}$$
: A(i)와 B(j)의 교호작용 효과

$$-\Sigma_{i=1}^p \gamma_{ij} = \Sigma_{j=1}^q \gamma_{ij} = 0$$

$$\epsilon_{ij}$$
: 오차항
상호 독립, $\epsilon_{ij} \sim N(0, \sigma^2)$

1. 가설 수립

$$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_p$$

$$H_0: \beta_1 = \beta_2 = \dots = \beta_q$$

$$H_0: \gamma_{ij} = 0$$

2. 제곱합 분해

$$(y_{ijk} - \bar{y}_{...}) = (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}) + (y_{ijk} - \bar{y}_{ij.})$$

$$SST = SS_A + SS_B + SS_{A \times B} + SSE$$

1. 제곱합 분해

$$(y_{ijk} - \bar{y}_{...}) = (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}) + (y_{ijk} - \bar{y}_{ij.})$$

$$SST = SS_A + SS_B + SS_{A \times B} + SS_{A \times B}$$

$$+ SS_{A \times B} + SS_{A \times B}$$

$$SST = \sum_{i}^{p} \sum_{j}^{q} \sum_{k}^{n} (y_{ijk} - \bar{y}_{...})^{2}$$

$$SS_{A} = qn \sum_{i}^{p} (\bar{y}_{i..} - \bar{y}_{...})^{2}$$

$$SS_{B} = pn \sum_{j}^{q} (\bar{y}_{.j.} - \bar{y}_{...})^{2}$$

$$SS_{A,B} = n \sum_{i}^{p} \sum_{j}^{q} (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...})^{2}$$

$$SSE = \sum_{i}^{p} \sum_{j}^{q} \sum_{k}^{n} (y_{ijk} - \bar{y}_{ij.})^{2}$$

1. ANOVA Table

	제곱합	자유도	평균제곱합	F
А	SS_A	p-1	$MS_A = SS_A/(p-1)$	MS _A /MSE
В	SS_B	q-1	$MS_B = SS_B/(q-1)$	MS _B /MSE
교호	$SS_{A,B}$	(p-1)(q-1)	$MS_{A,B} = SS_{A,B}/[(p-1)(q-1)]$	MS _{A,B} /MSE
잔차	SSE	pq(n-1)	MSE = SSE/[pq(n-1)]	
총	SST	pqn-1		

1. 가설 검정

$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_p$

- 검정통계량 $F = \frac{MS_A}{MSE}$
- $F > F_{\alpha}(p-1,pq(n-1))$ \rightarrow 귀무가설 기각

$$H_0: \gamma_{ij} = 0$$

- 검정통계량 $F = \frac{MS_{A,B}}{MSE}$
- $F > F_{\alpha}((p-1)(q-1), pq(n-1))$ \to 귀무가설 기각

1. 독립변수의 설명력

- A의 설명력: $\eta^2 = \frac{SS_A}{SST}$
- B의 설명력: $\eta^2 = \frac{SS_B}{SST}$
- 교호작용 설명력: $\eta^2 = \frac{SS_{A,B}}{SST}$
- A, B, AB 상호작용 설명력: $\eta^2 = \frac{SS_A + SS_B + SS_{A,B}}{SST}$
- 오차분산의 비율: $1 \frac{SS_A + SS_B + SS_{A,B}}{SST}$

회귀 분석

1. 회귀분석이란

- 독립변수와 종속변수 간 관련성을 설명하는 통계적 모형인 회귀모형을 통해, 두 변수의 데이터로 **회귀모형**에 적합한 **추정회귀식**을 계산하고 **통계적 분석(추론)**을 하는 기법
 - 회귀모형의 계수인 "모수"를 추정
 - 모수에 대한 구간추정/가설검정 등의 분석
 - 종속변수 설명에 있어서 독립변수의 상대적 중요성 평가 가능
- 예) 기업의 시가총액과 투자활동이 주식 수익률의 관련성 연구
- 과거의 데이터에 의존 (데이터 수집이 중요)
- 과거/현재/미래 예측

2. 회귀분석 종류

- 단순선형회귀분석
- 다중선형회귀분석
- 로지스틱회귀분석
- 비선형회귀분석

회귀 분석

1. 회귀분석 종류

- 단순선형회귀모형

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

- 다중선형회귀모형

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

- 비선형회귀모형

$$Y = \frac{m \exp(\beta_0 + \beta X)}{1 + \exp(\beta_0 + \beta X)} + \varepsilon$$

- 다변량회귀모형

$$\begin{cases} Y_{1} = \beta_{10} + \beta_{11} X_{1} + \beta_{12} X_{2} + \dots + \beta_{1p} X_{p} + \varepsilon \\ Y_{2} = \beta_{20} + \beta_{21} X_{1} + \beta_{22} X_{2} + \dots + \beta_{2p} X_{p} + \varepsilon \\ Y_{3} = \beta_{30} + \beta_{31} X_{1} + \beta_{32} X_{2} + \dots + \beta_{3p} X_{p} + \varepsilon \end{cases}$$

6

회귀 분석 - 단순회귀

1. 단순회귀모형

- 단순선형회귀모형

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- 추정 단순회귀식

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

2. 오차항 가정

- $E(\epsilon_i) = 0$, i = 1, ..., n
- 등분산: $Var(\epsilon_i) = \sigma^2$, i = 1, ..., n
- 독립성: $Cov(\epsilon_i, \epsilon_j) = 0, i \neq j$
- 정규성: $\epsilon_i \sim N(0, \sigma^2)$

회귀 분석 - 단순회귀

1. 종속변수의 분포

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

$$E(y_i) = E(\beta_0 + \beta_1 x_i + \epsilon_i) = \beta_0 + \beta_1 x_i + E(\epsilon_i)$$

= \beta_0 + \beta_1 x_i

$$Var(y_i) = Var(\beta_0 + \beta_1 x_i + \epsilon_i) = Var(\epsilon_i)$$

= σ^2

$$y_i \sim N(\beta_0 + \beta_1 x_i, \ \sigma^2)$$

회귀 분석 - 단순회귀

1. 최소제곱법

- 어떤 관측값 y_i 에 대한 오차 $\epsilon_i = y_i (\beta_0 + \beta_1 x_i)$
- 모든 점에 대한 오차의 제곱합이 최소가 되도록 회귀계수를 추정 $\Sigma \epsilon_i^2 = \Sigma \big(y_i \hat{\beta}_0 \hat{\beta}_i x_i \big)^2$

2. 편미분 활용한 최소제곱법의 해

$$Q = \Sigma_i \epsilon_i^2 = \Sigma_i (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial Q(\beta_0, \beta_1)}{\partial \beta_0} = -2\Sigma_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial Q(\beta_0, \beta_1)}{\partial \beta_1} = -2\Sigma_i (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

회귀 분석 - 단순회귀

1. 편미분 활용한 최소제곱법의 해

$$\begin{split} &Q = \Sigma_{i} \epsilon_{i}^{2} = \Sigma_{i} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2} \\ &\frac{\partial Q(\beta_{0}, \beta_{1})}{\partial \beta_{0}} = -2\Sigma_{i} (y_{i} - \beta_{0} - \beta_{1} x_{i}) = 0 \quad (1) \\ &\frac{\partial Q(\beta_{0}, \beta_{1})}{\partial \beta_{1}} = -2\Sigma_{i} (y_{i} - \beta_{0} - \beta_{1} x_{i}) x_{i} = 0 \quad (2) \\ &(1), (2) \text{에서 } -2 \stackrel{=}{=} \text{ 나눠주고 } \Sigma_{i} \stackrel{=}{=} \text{ 분배한 } \text{ 뒤}, (1) \text{ 에 } \bar{x} = \frac{\Sigma x_{i}}{n} \stackrel{=}{=} \text{ 곱해준 } \text{ 뒤}, (1) \text{-}(2) \text{ Z } \text{ 정리하면} \\ &\bar{x} \Sigma_{i} y_{i} - \Sigma_{i} x_{i} y_{i} + \beta_{1} \Sigma_{i} x_{i}^{2} - \bar{x} \beta_{1} \Sigma x_{i} = 0 \\ &\beta_{1} = \frac{\Sigma_{i} x_{i} y_{i} - \bar{x} \Sigma_{i} y_{i}}{\Sigma_{i} x_{i}^{2} - \bar{x} \Sigma_{i} y_{i}} = \frac{\Sigma_{i} x_{i} y_{i} - 2 \bar{x} \Sigma_{i} y_{i} + \bar{x} \bar{x} \bar{y}}{\Sigma_{i} x_{i}^{2} - 2 \bar{x} \Sigma_{i} y_{i} + \bar{x} \bar{x} x_{i}} = \frac{\Sigma_{i} x_{i} y_{i} - 2 \bar{x} \Sigma_{i} y_{i} + n \bar{x} \bar{y}}{\Sigma_{i} x_{i}^{2} - 2 \bar{x} \Sigma_{i} y_{i} + \bar{x} \bar{y} y_{i}} = \frac{\Sigma_{i} x_{i} y_{i} - 2 \bar{x} \Sigma_{i} y_{i} + n \bar{x} \bar{y}}{\Sigma_{i} x_{i}^{2} - 2 \bar{x} \Sigma_{i} y_{i} + \bar{x} \bar{y} y_{i}} = \frac{\Sigma_{i} x_{i} y_{i} - 2 \bar{x} \Sigma_{i} y_{i} + n \bar{x} \bar{y}}{\Sigma_{i} x_{i}^{2} - 2 \bar{x} \Sigma_{i} y_{i} + \bar{x} \bar{y} y_{i}} = \frac{\Sigma_{i} (x_{i} y_{i} - 2 \bar{x} \Sigma_{i} y_{i} + n \bar{x} \bar{y}}{\Sigma_{i} (x_{i}^{2} - 2 \bar{x} \Sigma_{i} y_{i} + \bar{x} \bar{y} y_{i}} = \frac{\Sigma_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\Sigma_{i} (x_{i} - \bar{x})^{2}} \\ &\beta_{1} = \frac{\Sigma_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\Sigma_{i} (x_{i} - \bar{x})^{2}} = \frac{S S x_{y}}{S S_{xx}}, \qquad \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x} \quad (\hat{\beta}_{0} \vdash \hat{\beta}_{1} \Rightarrow 4(1) \Rightarrow 4$$

6

회귀 분석 - 단순회귀

1. 추정 회귀방정식

$$\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X$$

2. 적합값

$$\widehat{y}_i = \widehat{\beta_0} + \widehat{\beta_1} x_i$$

3. 잔차

$$e_i = y_i - \hat{y_i}$$

- 잔차의 합은 0

6

회귀 분석 - 단순회귀

1. 잔차제곱합 (SSE)

$$SSE = \Sigma e_i^2 = \Sigma (y_i - \widehat{y}_i)^2 = \Sigma (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$

2. MSE

$$MSE = \hat{\sigma}^2 = \frac{\Sigma e_i^2}{n-2} = \frac{\Sigma (y_i - \widehat{y_i})^2}{n-2} = \frac{SSE}{n-2}$$

오차분산의 불편추정량오차분산 추정시 MSE 사용

$$E(MSE) = E\left(\frac{SSE}{n-2}\right) = \sigma^2$$

1. β_1 의 추정 및 검정

$$\widehat{\beta_1} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\Sigma(x_i - \bar{x})^2} = \frac{\Sigma(x_i - \bar{x})y_i - \bar{y}\Sigma(x_i - \bar{x})}{\Sigma(x_i - \bar{x})^2}$$

이 때, 분자의 $\Sigma(x_i - \bar{x})$ 는 편차의 합이므로 0이 됨 따라서,

$$= \frac{\Sigma(x_i - \bar{x})y_i}{\Sigma(x_i - \bar{x})^2} = \Sigma_i a_i y_i, \qquad a_i = \frac{(x_i - \bar{x})}{\Sigma(x_i - \bar{x})^2}$$

 $a_i = \frac{(x_i - \bar{x})}{\Sigma (x_i - \bar{x})^2}$ 의 몇 가지 특징을 활용하여 회귀계수 추정값의 기댓값/분산 계산

1.
$$\Sigma_i a_i = \Sigma_i \left(\frac{(x_i - \bar{x})}{\Sigma (x_i - \bar{x})^2} \right) = \frac{\Sigma_i (x_i - \bar{x})}{\Sigma (x_i - \bar{x})^2} = 0$$

2.
$$\Sigma_i a_i x_i = \frac{\Sigma_i (x_i - \bar{x}) x_i}{\Sigma (x_i - \bar{x})^2} = \frac{\Sigma_i (x_i - \bar{x}) (x_i - \bar{x})}{\Sigma (x_i - \bar{x})^2} = \frac{\Sigma_i (x_i - \bar{x})^2}{\Sigma (x_i - \bar{x})^2} = 1$$

1. β_1 의 추정 및 검정

3.
$$\Sigma_i a_i^2 = \Sigma \left(\frac{(x_i - \bar{x})}{\Sigma (x_i - \bar{x})^2} \right)^2 = \frac{1}{(\Sigma (x_i - \bar{x})^2)^2} \Sigma (x_i - \bar{x})^2 = \frac{1}{\Sigma (x_i - \bar{x})^2}$$

 a_i 의 (1), (2) 특징을 활용하면 아래와 같이 기댓값을 구할 수 있음

$$E(\widehat{\beta_1}) = E(\Sigma a_i y_i) = \Sigma a_i E(y_i) = \Sigma a_i (\beta_0 + \beta_1 x_i) = \beta_0 \Sigma a_i + \beta_1 \Sigma a_i x_i = \beta_1$$

 a_i 의 (3) 특징을 활용하면 아래와 같이 분산을 구할 수 있음

$$Var(\widehat{\beta_1}) = Var(\Sigma a_i y_i) = \Sigma a_i^2 Var(y_i) = \Sigma a_i^2 \sigma^2 = \frac{\sigma^2}{\Sigma (x_i - \bar{x})^2}$$

1. β_1 의 추정 및 검정

$$V(\hat{\beta}_1) = V\left(\sum a_i y_i\right) = \sum a_i^2 V(y_i) = \sum a_i^2 \sigma^2 = \frac{1}{\sum (x_i - \overline{x})^2} \sigma^2 = \frac{\sigma^2}{S_{xx}}$$

$$V(\widehat{\beta_1})$$
의 불편추정량: $\frac{MSE}{S_{XX}} \Rightarrow \frac{\widehat{\beta_1} - \beta_1}{\sqrt{MSE/S_{XX}}} \sim t_{n-2}$

 β_1 의 100(1- α)% 신뢰구간

$$\left[\hat{\beta}_{1}-t_{\left(\frac{\alpha}{2},n-2\right)}\sqrt{\frac{MSE}{S_{XX}}},\hat{\beta}_{1}+t_{\left(\frac{\alpha}{2},n-2\right)}\sqrt{MSE/S_{XX}}\right]$$

회귀 분석 - 단순회귀

1. β_1 의 추정 및 검정

- 검정통계량:
$$T = \frac{\widehat{\beta_1} - \beta_1}{\sqrt{MSE/S_{XX}}}$$

- 양측검정
 - $H_0: \beta_1 = 0$, $H_1: \beta_1 \neq 0$
- 단측검정

-
$$H_0: \beta_1 = 0$$
, $H_1: \beta_1 > 0$

- 귀무가설 기각: $β_1$ 이 0이 아니다.

즉, 독립변수 X는 종속변수에 대해 통계적으로 유의

1. β_0 의 추정 및 검정

$$\begin{split} \hat{\beta}_{0} &= \bar{y} - \hat{\beta}_{1}\bar{x} \\ E(\hat{\beta}_{0}) &= E(\bar{y} - \hat{\beta}_{1}\bar{x}) = \frac{1}{n}\sum E(y_{i}) - \bar{x}E(\hat{\beta}_{1}) \\ &= \frac{1}{n}\sum (\beta_{0} + \beta_{1}x_{i}) - \beta_{1}\bar{x} = \beta_{0} \\ V(\hat{\beta}_{0}) &= V(\bar{y} - \hat{\beta}_{1}\bar{x}) = V(\bar{y}) + (\bar{x})^{2}V(\hat{\beta}_{1}) - 2cov(\bar{y}, \hat{\beta}_{1}\bar{x}) \\ &= \frac{\sigma^{2}}{n} + \frac{\sigma^{2}}{S_{xx}}(\bar{x})^{2} - 2\bar{x}cov(\bar{y}, \hat{\beta}_{1}) = \sigma^{2}(\frac{1}{n} + \frac{1}{S_{xx}}(\bar{x})^{2}) = \frac{\sigma^{2}\sum x_{i}^{2}}{n\sum(x_{i}-\bar{x})^{2}} \end{split}$$

$$\begin{bmatrix}
\bar{y} = \sum a_i y_i & a_i = \frac{1}{n} \\
\hat{\beta}_1 = \sum c_i y_i & c_i = \frac{(x_i - \bar{x})}{\sum (x_i - \bar{x})^2} = \frac{x_i - \bar{x}}{S_{xx}}
\end{bmatrix} \Rightarrow cov(\bar{y}, \hat{\beta}_1) = cov(\sum a_i y_i, \sum c_i y_i) = \sigma^2 \sum a_i c_i = \frac{\sigma^2 \sum (x_i - \bar{x})}{n S_{XX}} = 0$$
(참고) y_i 가 독립일 때, $cov(\sum a_i y_i, \sum c_i y_i) = \sigma^2 \sum a_i c_i$

1. β_0 의 추정 및 검정

$$\frac{E(\hat{\beta}_0) = \beta_0}{V(\hat{\beta}_0) = \frac{\sigma^2 \sum x_i^2}{n \sum (x_i - \bar{x})^2}} \Rightarrow \widehat{\beta_0} \sim N(\beta_0, \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2}\right))$$

만약 오차분산 σ^2 를 모른다면

$$Var(\widehat{\beta_0}) = MSE(\frac{1}{n} + \frac{\overline{X}^2}{\Sigma(X_i - \overline{X})^2})$$

회귀 분석 - 단순회귀

1. β_0 의 추정 및 검정

 β_0 의 100(1- α)% 신뢰구간

$$\left[\hat{\beta}_{0}-t_{\left(\frac{\alpha}{2},n-2\right)}\sqrt{MSE\left[\frac{1}{n}+\frac{\bar{X}^{2}}{S_{XX}}\right]},\hat{\beta}_{0}+t_{\left(\frac{\alpha}{2},n-2\right)}\sqrt{MSE\left[\frac{1}{n}+\frac{\bar{X}^{2}}{S_{XX}}\right]}\right]$$

- 검정통계량:
$$T = \frac{\widehat{\beta_0} - \beta_0}{\sqrt{MSE\left[\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}\right]}} \sim t(n-2)$$

1. $E(Y_i)$ 의 추정 및 검정

$$\widehat{Y}_i = \widehat{\beta_0} + \widehat{\beta_1} X_i$$

$$E(\widehat{Y_i}) = E(\widehat{\beta_0} + \widehat{\beta_1}X_i) = \beta_0 + \beta_1X_i = E(Y_i)$$

$$Var(\widehat{Y_i}) = Var(\widehat{\beta_0} + \widehat{\beta_1}X_i) = Var(\overline{Y} + \widehat{\beta_1}(X_i - \overline{X}))$$
 , $(\widehat{\beta_0} = \overline{Y} - \widehat{\beta_1}\overline{X}$ 활용)
$$= Var(\overline{Y}) + (X_i - \overline{X})^2 Var(\widehat{\beta_1})$$

$$= \sigma^2 \left[\frac{1}{n} + \frac{(X_i - \overline{X})^2}{S_{VV}}\right]$$

회귀 분석 - 단순회귀

1. $E(Y_i)$ 의 추정 및 검정

-
$$\widehat{Y}_i$$
의 분포
$$\widehat{Y}_i \sim^{iid} N(E(Y_i), \sigma^2[\frac{1}{n} + \frac{(X_i - \overline{X})^2}{S_{XX}}])$$

- 오차분산을 모를 때, $\widehat{Y}_i \sim^{iid} N(E(Y_i), MSE\left[\frac{1}{n} + \frac{(X_i - \bar{X})^2}{S_{YY}}\right])$

-
$$E(Y_i)$$
의 100(1- α)% 신뢰구간
$$[\widehat{Y}_i - t_{\left(\frac{\alpha}{2}, n-2\right)} \sqrt{MSE\left[\frac{1}{n} + \frac{(X_i - \bar{X})^2}{S_{XX}}\right]}, \widehat{Y}_i + t_{\left(\frac{\alpha}{2}, n-2\right)} \sqrt{MSE\left[\frac{1}{n} + \frac{(X_i - \bar{X})^2}{S_{XX}}\right]}]$$

회귀 분석 - 단순회귀

1. $E(Y_i)$ 의 추정 및 검정

- 검정통계량: $T = \frac{\widehat{Y}_i E(Y_i)}{S.E.(\widehat{Y}_i)} \sim t(n-2)$
- 양측검정
 - $H_0: E(Y_i) = \mu_0, H_1: E(Y_i) \neq \mu_0$
- 귀무가설 기각: $E(Y_i)$ 이 μ_0 이 아니다.

회귀 분석 - 단순회귀

1. 변동 분해

- 총 변동 = 설명이 안되는 변동 + 설명이 되는 변동

$$(y_i - \overline{y}) = (y_i - \widehat{y}_i) + (\widehat{y}_i - \overline{y})$$

- 총 제곱합(SST) = 잔차제곱합(SSE) + 회귀제곱합(SSR)

$$\Sigma (y_i - \overline{y})^2 = \Sigma (y_i - \widehat{y}_i)^2 + \Sigma (\widehat{y}_i - \overline{y})^2$$

2. 분산분석

- 자유도: 총변동(n-1) = 잔차변동(n-2) + 회귀변동(1)
- 평균제곱

$$MSE = \frac{SSE}{n-2}$$
, $MSR = \frac{SSR}{1}$

회귀 분석 - 단순회귀

1. 회귀모형 검정 (F 검정)

- F 분포

$$F^* = \frac{MSR}{MSE} = \frac{SSR/\sigma^2}{\frac{SSR}{n-2}/\sigma^2} = \frac{\chi^2(1)/1}{\chi^2(n-2)/(n-2)} \sim F(1, n-2)$$

- F 분포와 t-분포

2. F-분포와 t-분포와의 관계

: $Z \sim N(0,1), V \sim \chi^2(k)$ 이고 Z와 V는 서로 독립일 때,

$$T = \frac{Z}{\sqrt{\frac{V}{k}}} \sim t(k), \quad T^2 = \frac{Z^2/1}{\frac{V}{k}} \sim F(1,k)$$

회귀 분석 - 단순회귀

1. 회귀모형 검정 (F 검정)

- 가설 검정

$$H_0: \beta_1 = 0, \ H_1: \beta_1 \neq 0$$

- 검정통계량

$$F = \frac{MSR}{MSE}$$

- 검정

$$|F| > F_{(\alpha;1,n-2)}$$
 귀무가설 기각 $|F| \le F_{(\alpha;1,n-2)}$ 귀무가설 채택

1. 결정계수 (R²)

- 총 변동 중 회귀식에 의해 설명되는 변동의 비율총 변동 중 어느 정도가 독립변수에 의해 설명되는가
- 0과 1사이의 범위에 있고 1에 가까울수록 회귀식에 의해 설명되는 양이 커짐

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} =$$
 상관계수²