# PLSC 502 – Fall 2023 Linear Regression I

November 13, 2023

## Linearity

#### Linearity means:

$$\frac{\partial Y}{\partial X}=m;$$

$$Y = mX + b$$

#### Other monotonic + "smooth" alternatives:

• Logarithmic:

$$\frac{\partial^2 Y}{\partial X \partial X} < 0$$

• Exponential:

$$\frac{\partial^2 Y}{\partial X \partial X} > 0$$

# Linear, Logarithmic, Exponential



#### Other Possibilities



#### Linear Association: Pearson's r

"Pearson's product-moment correlation coefficient":

$$r = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

$$= \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{N} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}}$$

$$= \frac{\sum_{i=1}^{N} \left(\frac{X_i - \bar{X}}{s_X}\right) \left(\frac{Y_i - \bar{Y}}{s_Y}\right)}{N - 1}$$

#### Pearson's r: Intuition



#### Pearson's r: Characteristics

- $r \in [-1, 1]$
- $r = 0 \leftrightarrow \text{no linear}$  association between Y and X.
- Sign $(r) \rightarrow$  "direction" of the *linear* association
- ullet |r| 
  ightarrow "strength" of the *linear* association
- In general:
  - $\cdot |r| < 0.3 
    ightarrow$  "weak" linear association
  - $\cdot$  0.3 < |r| < 0.7  $\rightarrow$  "moderate" linear association
  - $|r| > 0.7 \rightarrow$  "strong" linear association

# Examples



#### $r = \pm 1.0 \rightarrow ?$



## Nonlinearity, etc.



#### Inference on *r*

The sampling distribution of r is:

- complex, and
- skewed as  $|r| \rightarrow 1.0$ .

#### Fisher:

$$\hat{w} \equiv \frac{1}{2} \ln \left( \frac{1+\hat{r}}{1-\hat{r}} \right) \ \sim \ \mathcal{N} \left[ \frac{1}{2} \ln \left( \frac{1+\hat{r}}{1-\hat{r}} \right), \frac{1}{\sqrt{N-3}} \right]$$

implying:

$$z_r = rac{rac{1}{2} \ln \left(rac{1+\hat{r}}{1-\hat{r}}
ight) - rac{1}{2} \ln \left(rac{1+r}{1-r}
ight)}{\sqrt{rac{1}{N-3}}} \sim \mathcal{N}(0,1)$$

## Fisher's z Transformation of r



## Alternative Approach (t)

Under r = 0, the standard error of  $\hat{r}$  is:

$$\sigma_r = \sqrt{\frac{1 - r^2}{N - 2}}$$

This means that we can construct confidence intervals using a t distribution, as:

$$\frac{\hat{r}}{\sigma_r} = \frac{\hat{r}\sqrt{N-2}}{\sqrt{1-\hat{r}^2}} \sim t_{N-2}.$$

Note that this converges to z as  $N \to \infty$ .

## Alternative Measure: Spearman's $\rho$

For sorted data on X and Y, where  $R_{Y_i}$  and  $R_{X_i}$  are the respective ranks,

$$\rho = 1 - \frac{6\sum_{i=1}^{N}(R_{Y_i} - R_{X_i})^2}{N(N^2 - 1)}$$

#### Characteristics:

- $\rho \in [-1, 1]$
- Same interpretation as r.
- Also appropriate for use with ordinal data; but
- When many "ties" occur, calculate Pearson's r on the ranks  $R_{Y_i}$  and  $R_{X_i}$ , and assign "partial" (or "half") ranks to tied individuals.

## r vs. $\rho$ Comparison (Simulation)



#### Real Data: ANES 2016 Feeling Thermometers

#### > describe(Therms,range=FALSE)

|                             | vars | n    | mean  | sd    | skew  | kurtosis | se   |
|-----------------------------|------|------|-------|-------|-------|----------|------|
| Asian-Americans             |      |      |       |       |       | 0.02     |      |
| Hispanics                   | 2    | 2387 | 69.35 | 20.91 | -0.41 | 0.01     | 0.43 |
| Blacks                      | 3    | 2387 | 69.00 | 21.19 | -0.35 | -0.24    | 0.43 |
| Illegal Immigrants          | 4    | 2387 | 42.54 | 27.31 | 0.13  | -0.71    | 0.56 |
| Whites                      |      |      |       | 19.40 |       |          | 0.40 |
| Dem. Pres. Candidate        | 6    | 2387 | 44.12 | 34.91 | 0.12  | -1.42    | 0.7  |
| GOP Pres. Candidate         | 7    | 2387 | 40.53 | 35.65 | 0.23  | -1.43    | 0.73 |
| Libertarian Pres. Candidate | 8    | 2387 | 43.61 | 19.92 | -0.58 | 0.25     | 0.4  |
| Green Pres. Candidate       |      |      |       |       |       | 0.22     |      |
| Dem. VP                     | 10   | 2387 | 48.24 | 25.91 | -0.22 | -0.44    | 0.53 |
| GOP VP                      |      |      |       |       |       | -1.21    |      |
| John Roberts                | 12   | 2387 | 53.75 | 18.39 | -0.41 | 1.44     | 0.38 |
| Pope Francis                |      |      |       |       |       | 0.14     |      |
| Christian Fundamentalists   | 14   | 2387 | 48.59 | 28.48 | -0.07 | -0.72    | 0.58 |
| Feminists                   |      |      |       |       |       | -0.47    |      |
| Liberals                    | 16   | 2387 | 52.27 | 27.35 | -0.24 | -0.67    | 0.56 |
| Labor Unions                |      |      |       |       |       | -0.29    |      |
| Poor People                 | 18   | 2387 | 72.20 | 19.63 | -0.36 | -0.06    | 0.40 |
| Big Business                | 19   | 2387 | 49.34 | 22.52 | -0.15 | -0.18    | 0.46 |
| Conservatives               | 20   | 2387 | 55.22 | 25.91 | -0.24 | -0.45    | 0.53 |
| SCOTUS                      | 21   | 2387 | 59.34 | 19.38 | -0.32 | 0.54     | 0.40 |
| Gays & Lesbians             | 22   | 2387 | 62.83 | 26.86 | -0.46 | -0.20    | 0.58 |
| Congress                    | 23   | 2387 | 41.17 | 22.32 | 0.02  | -0.34    | 0.46 |
| Rich People                 |      |      |       | 20.69 |       |          | 0.42 |
| Muslims                     |      |      |       | 25.64 |       |          | 0.52 |
| Christians                  | 26   | 2387 | 74.40 | 23.80 | -0.87 | 0.35     | 0.49 |
| Jews                        | 27   | 2387 | 72.20 | 21.19 | -0.45 | -0.14    | 0.43 |
| Tea Party                   | 28   | 2387 | 42.97 | 27.08 | -0.06 | -0.70    | 0.58 |
| Police                      | 29   | 2387 | 75.57 | 22.50 | -1.15 | 1.13     | 0.46 |
| Transgender People          | 30   | 2387 | 57.29 | 26.88 | -0.28 | -0.31    | 0.5  |
| Scientists                  | 31   | 2387 | 77.74 | 19.23 | -0.77 | 0.39     | 0.39 |
| BLM                         | 32   | 2387 | 48.26 | 32.66 | -0.06 | -1.15    | 0.67 |
|                             |      |      |       |       |       |          |      |

#### Feeling Thermometers: Clinton vs. Trump



```
> rCT<-with(Therms, cor('Dem, Pres, Candidate', 'GOP Pres, Candidate'))
> rCT
Γ17 -0.71227
> rCT2<-with(Therms, cor.test('Dem, Pres, Candidate', 'GOP Pres, Candidate'))
> rCT2
Pearson's product-moment correlation
data: Dem. Pres. Candidate and GOP Pres. Candidate
t = -49.6, df = 2385, p-value <2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.73148 -0.69192
sample estimates:
     cor
-0.71227
> # Identical:
> (rCT*sqrt(nrow(Therms)-2)) / sqrt(1-(rCT^2))
```

[1] -49.557

#### Liberals and Conservatives



```
> rLC<-with(Therms, cor.test(Liberals,Conservatives))
> rLC

Pearson's product-moment correlation

data: Liberals and Conservatives
t = -28.2, df = 2385, p-value <2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.52983 -0.46986s
sample estimates:
    cor
    -0.50035

> rhoLC<-with(Therms, SpearmanRho(Liberals,Conservatives))
> rhoLC
[11] -0.49128
```

## Pairwise FT Differences between r and $\rho$



## Biggest Differences Between r and $\rho$





# Summary: Measures of Association

Which bivariate measure of association should I use?

|   |                  | X                       |                  |                              |                         |  |  |
|---|------------------|-------------------------|------------------|------------------------------|-------------------------|--|--|
|   |                  | Nominal                 | Binary           | Ordinal                      | Interval/Ratio          |  |  |
|   | Nominal          | $\chi^2$                | $\chi^2$         | $\chi^2$                     | $t$ -test (and $\eta$ ) |  |  |
| V | Binary           | $\chi^2$                | $\phi$ , $Q$     | $\gamma, \tau_c$             | t-test                  |  |  |
| , | Ordinal          | $\chi^2$                | $\gamma, \tau_c$ | $\gamma, \tau_{a}, \tau_{b}$ | Spearman's $ ho$        |  |  |
|   | Interval / Ratio | $t$ -test (and $\eta$ ) | t-test           | Spearman's $ ho$             | r                       |  |  |

# Linear Regression

#### Random Variables

Recall that a (real-valued) random variable Y is:

$$Y_i = \mu + u_i$$
 "systematic" + "stochastic"

Note that we typically require that:

$$Cov(\mu, u) = 0.$$

#### Linear Association

Allow  $\mu$  to vary *linearly* with some other variable X:

$$\mu_i = \beta_0 + \beta_1 X_i$$

so that we get

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

#### Goals:

- Point estimates of  $\beta_0$  and  $\beta_1$  (call them  $\hat{\beta}_0$  and  $\hat{\beta}_1$ )
- ullet Estimates of their *variability* o inference

## Estimating $\beta_0$ and $\beta_1$

Suppose we have some estimates  $\hat{\beta}_0$  and  $\hat{\beta}_1$ . Then:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

 $\rightarrow$  estimated "residuals":

$$\hat{u}_i = Y_i - \hat{Y}_i 
= Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

#### Intuition



#### "Loss Function"

Key Idea: Select  $\hat{\beta}_0$  and  $\hat{\beta}_1$  to make the  $\hat{u}_i$ s as small as possible.

#### Possibilities:

- Pick  $\hat{\beta}_0$  and  $\hat{\beta}_1$  so as to minimize  $\sum_{i=1}^N \hat{u}_i$
- Pick  $\hat{\beta}_0$  and  $\hat{\beta}_1$  so as to minimize  $\sum_{i=1}^N |\hat{u}_i|$  ("MAD")
- Pick  $\hat{\beta}_0$  and  $\hat{\beta}_1$  so as to minimize  $\sum_{i=1}^N \hat{u}_i^2$  ("least squares")
- $\rightarrow$  "ordinary least squares" ("OLS") regression...

# The Simplest Regression In Human History





## World's Simplest Regression

Recall:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i.$$

So, for i = 1

$$\hat{Y}_1 = \hat{\beta}_0 + \hat{\beta}_1(1)$$

and for i = 2

$$\hat{Y}_2 = \hat{\beta}_0 + \hat{\beta}_1(2)$$

Means:

$$\hat{u}_i = Y_i - \hat{Y}_i$$
  
=  $3 - [\hat{\beta}_0 + \hat{\beta}_1(1)]$  for  $i = 1$ , and  
=  $5 - [\hat{\beta}_0 + \hat{\beta}_1(2)]$  for  $i = 2$ 

## Sum of Squared Residuals

$$\hat{S} = u_1^2 + u_1^2 
= [3 - \hat{\beta}_0 - \hat{\beta}_1(1)]^2 + [5 - \hat{\beta}_0 - \hat{\beta}_1(2)]^2 
= (9 + \hat{\beta}_0^2 + \hat{\beta}_1^2 - 6\hat{\beta}_0 - 6\hat{\beta}_1 + 2\hat{\beta}_0\hat{\beta}_1) + 
(25 + \hat{\beta}_0^2 + 4\hat{\beta}_1^2 - 10\hat{\beta}_0 - 20\hat{\beta}_1 + 4\hat{\beta}_0\hat{\beta}_1) 
= 2\hat{\beta}_0^2 + 5\hat{\beta}_1^2 - 16\hat{\beta}_0 - 26\hat{\beta}_1 + 6\hat{\beta}_0\hat{\beta}_1 + 34$$

Choose  $\hat{\beta}_0$  and  $\hat{\beta}_1$  that minimize this...

#### Minimizing...

For:

$$\hat{S} = 2\hat{\beta}_0^2 + 5\hat{\beta}_1^2 - 16\hat{\beta}_0 - 26\hat{\beta}_1 + 6\hat{\beta}_0\hat{\beta}_1 + 34$$

We have:

$$\begin{array}{lcl} \frac{\partial \hat{S}}{\partial \hat{\beta}_0} & = & 4\hat{\beta}_0 + 6\hat{\beta}_1 - 16 \\ \\ \frac{\partial \hat{S}}{\partial \hat{\beta}_1} & = & 6\hat{\beta}_0 + 10\hat{\beta}_1 - 26 \end{array}$$

So for  $\hat{\beta}_1$ :

$$\begin{array}{lll} 4\hat{\beta}_0 + 6\hat{\beta}_1 - 16 = 0 & \Rightarrow & 2\hat{\beta}_0 = -3\hat{\beta}_1 + 8 \\ & \Rightarrow & \hat{\beta}_0 = -3/2\hat{\beta}_1 + 4 \end{array}$$

$$6\hat{\beta}_{0} + 10\hat{\beta}_{1} - 26 = 0 \quad \Rightarrow \quad 5\hat{\beta}_{1} - 3(-3/2\hat{\beta}_{1} + 4) - 13 = 0$$

$$\Rightarrow \quad 5\hat{\beta}_{1} - 9/2\hat{\beta}_{1} + 12 - 13 = 0$$

$$\Rightarrow \quad \frac{1}{2}\hat{\beta}_{1} - 1 = 0$$

$$\Rightarrow \quad \hat{\beta}_{1} = \mathbf{2}$$

And for  $\hat{\beta}_0$ :

$$4\hat{\beta}_0 + 6(2) - 16 = 0 \Rightarrow 4\hat{\beta}_0 = 4$$
  
  $\Rightarrow \hat{\beta}_0 = 1$ 

## World's Simplest Regression

So:

$$Y_i = 1 + 2X_i + u_i$$

Note that, in this (N=2) case:

$$\hat{\beta}_1 = (5-3)/(2-1)$$
  
= 2, and  
 $\hat{\beta}_0 = -2(2) + 5$ 

## Least Squares with > 2 Observations

$$\hat{S} = \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^{N} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

$$= \sum_{i=1}^{N} (Y_i^2 - 2Y_i \hat{\beta}_0 - 2Y_i \hat{\beta}_1 X_i + \hat{\beta}_0^2 + 2\hat{\beta}_0 \hat{\beta}_1 X_i + \hat{\beta}_1^2 X_i^2)$$

## Least Squares with > 2 Observations

Then:

$$\frac{\partial \hat{S}}{\partial \hat{\beta}_0} = \sum_{i=1}^N (-2Y_i + 2\hat{\beta}_0 + 2\hat{\beta}_1 X_i)$$

$$= -2\sum_{i=1}^N (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)$$

$$= -2\sum_{i=1}^N \hat{u}_i$$

and

$$\begin{aligned} \frac{\partial \hat{S}}{\partial \hat{\beta}_1} &= & \sum_{i=1}^{N} (-2Y_i X_i + 2\hat{\beta}_0 X_i + 2\hat{\beta}_1 X_i^2) \\ &= & -2\sum_{i=1}^{N} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i) X_i \\ &= & -2\sum_{i=1}^{N} \hat{u}_i X_i \end{aligned}$$

## Least Squares with > 2 Observations

Next, set:

$$-2\sum_{i=1}^{N}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})=0$$

and

$$-2\sum_{i=1}^{N}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})X_{i}=0$$

... and solve...

### Least Squares "Normal Equations"

(Algebra happens...):

$$\sum_{i=1}^{N} Y_{i} = N\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{N} X_{i}$$

and

$$\sum_{i=1}^{N} Y_i X_i = \hat{\beta}_0 \sum_{i=1}^{N} X_i + \hat{\beta}_1 \sum_{i=1}^{N} X_i^2$$

### Least Squares: Solutions!

(More algebra...):

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_i - \bar{X})^2}$$

and

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

#### The intuition:

$$\hat{\beta}_1 = \frac{\text{Covariance of } X \text{ and } Y}{\text{Variance of } X}$$

#### Parsing Variation in Y: ANOVA

Note that the "total" variation in Y around its mean  $\bar{Y}$  is:

$$SS_{Total} = \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

which comprises:

$$SS_{Residual} = \sum_{i=1}^{N} (\hat{u}_i)^2$$
$$= \sum_{i=1}^{N} (Y_i - \hat{Y})^2$$

and:

$$SS_{Model} = \sum_{i=1}^{N} (\hat{Y}_i - \bar{Y})^2$$

### SCOTUS Data, OT1946-2022

Data from the Supreme Court Database and the justices' Segal-Cover scores...

- Y is CivLibs = liberal voting percentage in civil rights & liberties cases
- X is IdeologyScore  $\in [0,1] \to SCOTUS$  justice liberalism

| > describe(SCOTUS,skew=FALSE,trim=0) |      |    |         |       |      |         |       |      |
|--------------------------------------|------|----|---------|-------|------|---------|-------|------|
|                                      | vars | n  | mean    | sd    | min  | max     | range | se   |
| justice                              | 1    | 39 | 97.87   | 11.60 | 78   | 117.00  | 39.00 | 1.86 |
| justiceName*                         | 2    | 39 | 20.00   | 11.40 | 1    | 39.00   | 38.00 | 1.83 |
| CivLibs                              | 3    | 39 | 55.28   | 20.67 | 20   | 95.33   | 75.33 | 3.31 |
| Nom.Order*                           | 4    | 39 | 20.00   | 11.40 | 1    | 39.00   | 38.00 | 1.83 |
| Nominee*                             | 5    | 39 | 20.00   | 11.40 | 1    | 39.00   | 38.00 | 1.83 |
| ChiefJustice*                        | 6    | 4  | 1.00    | 0.00  | 1    | 1.00    | 0.00  | 0.00 |
| SenateVote*                          | 7    | 39 | 16.69   | 8.42  | 1    | 25.00   | 24.00 | 1.35 |
| IdeologyScore                        | 8    | 39 | 0.53    | 0.33  | 0    | 1.00    | 1.00  | 0.05 |
| QualificationsScore*                 | 9    | 39 | 16.38   | 7.82  | 1    | 25.00   | 24.00 | 1.25 |
| Nominator (Party)*                   | 10   | 39 | 6.92    | 3.72  | 1    | 13.00   | 12.00 | 0.60 |
| Year                                 | 11   | 39 | 1971.03 | 25.66 | 1937 | 2020.00 | 83.00 | 4.11 |

### Le Scatterplot



### Le Labeled Scatterplot



# Estimating $\hat{\beta}$

```
> # Residuals. etc.
>
> SCOTUS$Yhats <- with(SCOTUS, Beta0 + Beta1*IdeologyScore)
> SCOTUS$Uhats <- with(SCOTUS, CivLibs - Yhats)
> # Y itself:
> describe(SCOTUS$CivLibs)
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 39 55.3 20.7 55.4 55.1 23.6 20 95.3 75.3 0.13 -1.03 3.31
> # Predicted Ys:
> describe(SCOTUS$Yhats)
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 39 55.3 15.1 54 55.4 18.2 31.2 76.7 45.5 -0.06 -1.47 2.42
> # Residuals:
> describe(SCOTUS$Uhats)
  vars n mean sd median trimmed mad min max range skew kurtosis
X1 1.39 0.14.1 2.79 -0.13.11.2 -26.7 30 56.7 -0.07 -0.61 2.26
```

# $\hat{Y}$ s and $\hat{u}$ s



### Le Scatterplot, Again



### What's a "typical" residual?

Note that because

$$\sum_{i=1}^{N} \hat{u}_i = 0$$

it's also true that:

$$\bar{\hat{u}} = \frac{\sum_{i=1}^{N} \hat{u}_i}{N}$$
$$= 0$$

Consider instead:

"Residual Standard Error" (RSE) = 
$$\sqrt{\left(\frac{\sum_{i=1}^{N} \hat{u}_i^2}{N-2}\right)}$$

### Sums of Squares, RSE, etc.

```
> # Sums of squares:
> TotalYVar <- with(SCOTUS, sum((CivLibs - mean(CivLibs))^2))
> TotalYVar
[1] 16235
> TotalUVar <- with(SCOTUS, sum((Uhats)^2))
> TotalUVar
[1] 7543
> TotalModelVar <- with(SCOTUS, sum((Yhats - mean(CivLibs))^2))
> TotalModelVar
Γ17 8693
> RSE <- with(SCOTUS, sqrt(TotalUVar / (nrow(SCOTUS)-2)))
> RSE
Γ17 14.3
```

## Estimating $\hat{\beta}$ via 1m

```
> fit<-lm(CivLibs~IdeologyScore,data=SCOTUS)
> summarv(fit)
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median 30
                            Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
            31.24
                          4.33 7.21 0.000000015 ***
IdeologyScore 45.47 6.96 6.53 0.000000121 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

#### ANOVA with 1m