Вариант 1

- 1. Найти функцию Гамильтона системы H, если функция Лагранжа равна $L = \frac{\alpha_1}{2} \, \dot{x}^2 + \frac{\alpha_2}{2} \, \dot{y}^2 + \frac{\alpha_3}{2} \, \dot{z}^2 + \frac{\omega_1}{2} \, x \dot{y}^2 + \frac{\omega_2}{2} \, y \dot{x}^2 \, (\alpha_I, \, \omega_I, \, \alpha_2, \, \omega_2, \, \alpha_3 \, \text{- постоянныe}).$
- 2. Поле деформации упругой среды имеет вид: $\vec{u}(\vec{R}) = \vec{R} \cdot \cos^2 \left(\frac{\pi \cdot R}{R_0} \right)$, где $\vec{R} = \left(\vec{x}, \vec{y}, \vec{z} \right)$ радиус-вектор, $R = \sqrt{x^2 + y^2 + z^2}$, $R_0 = const$. Определить относительное изменение объема в произвольной точке \vec{R} и записать компоненты тензора напряжений. E MOZYJJ Юнга. σ коэффициент Пуассона.
- 3. Определить форму прогиба стержня под влиянием приложенной к его середине сосредоточенной силы f. Левый конец стержня заделан (z=0), правый (z=l) оперт. Изгиб стержня считать малым. Момент инерции I. Модуль Юнга E. В качестве ответа достаточно записать решение на отрезке от $0 \le z \le l/2$.

Вариант 2

- 1. Найти функцию Гамильтона системы H, если функция Лагранжа равна $L = \frac{\alpha_1}{2} \, \dot{x}^2 + \frac{\alpha_2}{2} \, \dot{y}^2 + \frac{\alpha_3}{2} \, \dot{z}^2 + \frac{\omega_1}{2} \, y \dot{x}^2 + \frac{\omega_2}{2} \, x \dot{y}^2 \, (\alpha_I, \, \omega_I, \, \alpha_2, \, \omega_2, \, \alpha_3 \, \text{- постоянныe}).$
- 2. Поле деформации упругой среды имеет вид: $\vec{u}(\vec{R}) = \vec{R} \cdot \sin\left(\frac{\pi \cdot R}{R_0}\right)$, где $\vec{R} = (\vec{x}, \vec{y}, \vec{z})$ радиус-вектор, $R = \sqrt{x^2 + y^2 + z^2}$, $R_0 = const$. Определить относительное изменение объема в произвольной точке \vec{R} и записать компоненты тензора напряжений. E модуль Юнга. σ коэффициент Пуассона.
- 3. Определить форму прогиба стержня под влиянием приложенной к его середине сосредоточенной силы f. Оба конца стержня шарнирно закреплены. Изгиб стержня считать малым. Момент инерции I. Модуль Юнга E. В качестве ответа достаточно записать решение на отрезке от $0 \le z \le l/2$.

Вариант 3

- 1. Найти функцию Гамильтона системы H, если функция Лагранжа равна $L = \frac{\alpha}{2} \, \dot{x}^2 + \gamma \dot{x} \dot{y} \, \, (\alpha, \, \gamma$ постоянные).
- 2. Поле деформации упругой среды имеет вид: $\vec{u}(\vec{R}) = \vec{R} \cdot \sin^2 \left(\frac{\pi \cdot R}{R_0} \right)$, где $\vec{R} = \left(\vec{x}, \vec{y}, \vec{z} \right)$ радиус-вектор, $R = \sqrt{x^2 + y^2 + z^2}$, $R_0 = const$. Определить относительное изменение объема в произвольной точке \vec{r} и записать компоненты тензора напряжений. E MOZУЛЬ Юнга. σ коэффициент Пуассона.
- 3. Определить форму прогиба стержня длины l под влиянием собственного веса. Один конец (z=l) заделан, второй (z=0) шарнирно закреплен. Изгиб стержня считать малым. Линейная плотность стержня λ . Момент инерции l. Модуль Юнга E. Ускорение свободного падения g.

Вариант 4

- 1. Найти функцию Гамильтона системы H, если функция Лагранжа равна $L = \frac{\alpha}{2} \, \dot{y}^2 + \gamma \dot{x} \dot{y} \,$ (α , γ постоянные).
- 2. Поле деформаций упругой среды имеет вид: $\vec{u}(\vec{R}) = \vec{R} \cdot e^{-R/a}$; a = const, $R = \sqrt{x^2 + y^2 + z^2}$, $\vec{R} = (\vec{x}, \vec{y}, \vec{z})$. Определить относительное изменение объема в произвольной точке \vec{R} и записать компоненты тензора напряжений. \vec{E} модуль Юнга. σ коэффициент Пуассона.
- 3. Определить форму прогиба стержня длины l под влиянием собственного веса. Один конец (z=0) заделан, второй (z=l) свободен. Изгиб стержня считать малым. Линейная плотность стержня λ . Момент инерции I. Модуль Юнга E. Ускорение свободного падения g.

Вариант 5

- 1. Найти функцию Лагранжа L системы, если функция Гамильтона равна $H = \frac{p_x^2}{2(\alpha_1 + \omega_2 y)} + \frac{p_y^2}{2(\alpha_2 + \omega_1 x)} + \frac{p_z^2}{2\alpha_3} \; (\alpha_I, \; \omega_I, \; \alpha_2, \; \omega_2, \; \alpha_3 \; \text{- постоянные}).$
- 2. Поле деформации упругого тела имеет вид: $u_x = u_y = \alpha \cdot (x^2 + y^2)$, $u_z = \beta \cdot (x^2 + y^2) \cdot z$, α и β постоянные. Определить относительное изменение объема в произвольной точке \vec{R} и записать компоненты тензора напряжений. E модуль Юнга. σ коэффициент Пуассона.
- 3. Определить форму прогиба стержня длины l под влиянием собственного веса. Оба конца стержня шарнирно закреплены. Изгиб стержня считать малым. Линейная плотность стержня λ . Момент инерции l. Модуль Юнга E. Ускорение свободного падения g.

Вариант 6

- 1. Найти функцию Лагранжа L системы, если функция Гамильтона равна $H = \frac{p_x^2}{2(\alpha_1 + \omega_1 y)} + \frac{p_y^2}{2(\alpha_2 + \omega_2 x)} + \frac{p_z^2}{2\alpha_3} \ (\alpha_I, \ \omega_I, \ \alpha_2, \ \omega_2, \ \alpha_3 \text{ постоянные}).$
- 2. Поле деформации однородно деформированного стержня имеет вид: $\mathbf{u}_{x} = -\alpha \cdot \mathbf{X} \cdot \mathbf{\sigma}$, $\mathbf{u}_{y} = -\alpha \cdot \mathbf{y} \cdot \mathbf{\sigma}$, $\mathbf{u}_{z} = \alpha \cdot \mathbf{z}$, где $\boldsymbol{\sigma}$ коэффициент Пуассона, $\boldsymbol{\alpha} = const > \boldsymbol{\theta}$. Определить модуль Юнга, если известна величина растягивающего давления \mathbf{P} и константа $\boldsymbol{\alpha}$.
- 3. Определить форму прогиба стержня длины l под влиянием собственного веса (стержень занимает отрезок оси $0 \le z \le l$). Оба конца стержня заделаны. Изгиб стержня считать малым. Линейная плотность стержня меняется по закону $\lambda = \lambda_0 \sin\left(\frac{\pi z}{l}\right)$. Момент инерции l. Модуль Юнга e. Ускорение свободного падения e.

Вариант 7

- 1. Найти функцию Лагранжа L системы, если функция Гамильтона равна $H = \frac{p_x p_y}{\gamma} \frac{\alpha \ p_y^2}{2\gamma^2} \ (\alpha, \ \gamma\text{- постоянные}).$
- 2. Поле деформации однородно деформированного стержня в цилиндрических координатах имеет вид: $u_r = \alpha \cdot r \cdot z$, $u_{\varphi} = 0$, $u_z = \beta \cdot r \cdot z^2$. α и β постоянные. σ коэффициент Пуассона E модуль Юнга. Определить относительное изменение объема в этой точке и записать компоненты тензора напряжений.
- 3. Определить форму прогиба стержня длины l под влиянием собственного веса (стержень занимает отрезок оси $0 \le z \le l$). Оба конца стержня заделаны. Изгиб стержня считать малым. Линейная плотность стержня меняется по закону $\lambda = \lambda_0 \sin\left(\frac{2\pi z}{l}\right)$. Момент инерции I. Модуль Юнга E. Ускорение свободного падения g.

Вариант 8

- 1. Найти функцию Лагранжа L системы, если функция Гамильтона равна $H = \frac{p_x p_y}{\gamma} \frac{\alpha \ p_x^2}{2\gamma^2} \ (\alpha, \ \gamma\text{- постоянные}).$
- 2. Поле деформации однородно деформированного стержня в цилиндрических координатах имеет вид: $u_r = \alpha \cdot r \cdot z$, $u_{\varphi} = \gamma \cdot \varphi$, $u_z = \beta \cdot r \cdot z$. α и β постоянные. σ коэффициент Пуассона E модуль Юнга. Определить относительное изменение объема в этой точке и записать компоненты тензора напряжений.
- 3. Определить форму прогиба стержня длины l под влиянием собственного веса (стержень занимает отрезок оси $0 \le z \le l$). Оба конца стержня заделаны. Изгиб стержня считать малым. Линейная плотность стержня меняется по закону $\lambda = \lambda_0 \sin\left(\frac{\pi z}{2l}\right)$. Момент инерции l. Модуль Юнга E. Ускорение свободного падения g.