STN Columbus

RECEIVED **CENTRAL FAX CENTER** FEB 1 2 2007

FILE 'WPIX' ENTERED AT 16:54:02 ON 11 AUG 2006 COPYRIGHT (C) 2006 THE THOMSON CORPORATION CHARGED TO COST=HOLLOWAY

```
=> e jp11058635/pn
       2 JP11058633/PN
2 JP11058634/PN
E2
                  2 --> JP11058635/PN
E3
                   2 JP11058636/PN
E4
                 2 JP11058636/PN
2 JP11058637/PN
2 JP11058638/PN
2 JP11058640/PN
2 JP11058641/PN
2 JP11058642/PN
2 JP11058643/PN
2 JP11058644/PN
展長
E6
E7
E8
E9
E10
Ell
E12
```

BEST AVAILABLE COPY

DATE

=> s e3

2 JP11058635/PN Ll

=> d ibib abs 1-2

L1 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2006 ACS on STN

Full Text

ACCESSION NUMBER:

1999:142110 CAPLUS

DOCUMENT NUMBER:

130:253422 Inflation multilayer films using LLDPE prepared by

TITLE: using metallocene polymerization catalysts

Hamata, Naoshi; Nishimura, Toshihiro; Inoue, Hiroshi INVENTOR(S):

PATENT ASSIGNEE(S):

Mitsui Chemicals Inc., Japan

COURCE:

Jpn. Kokai Tokkyo Koho, 7 pp.

APPLICATION NO.

INVENTOR(S):

CODEN: JKXXAF Patent

KIND DATE

DOCUMENT TYPE:

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION: DATENT NO

	PATENT NO.	1/11/17	DALE	THE PROPERTY OF THE PARTY OF TH			
	JP 11058635	A2	19990302	JP 1997-215188	19970808		
PRTO	RITY APPLN. INFO.:			JP 1997-215188			
AB	Title films, suitab	ole for	packaging co	ontents of 5-15 kg, e.g	,, rice,		
• •	fertilizers etc	consist	of (A) insi	ide layers contg. 100 p	arts LLDPE		
	arend by using met	allocer	ne catalvsts	and having d. 0.920-0.	.935 g/cm3,		
prepd. by using metallocene catalysts and having d. 0.920-0.935 g/cm3, melt flow rate (MFR; ASTM D 1238, 190°, 2.16 kg) 0.5-2.5 g/10 min							
	and 0 1-1 0 part at	tistati	ic agents. (F	a) intermediate layers	made of HDPE		
	having d 0 950-0.5	965 a/cr	n3. MFR 0.3-6	5.0 g/10 min, and (C) o	outside layers		
	naving d. 0.550 d.	DEE nr	end by using	metallocene polymn.	catalysts and		
	Contg. 100 parca in	335 A/A	n3 MER 0 5-5	5.0 g/10 min and 0.01-0).3 part elip		
	naving a. 0.918-0.	735 9/6	nd +3/+0 - 0	.5-1.5 (t0 = thickness	of the inside		
	agents at ti/tu = 0	له ∠-د.ن		ntermediate layers; t2	- thickness of		
	layers; tl = total	tnickn	ess or the H	ncermediate layers, ta	110 min.		
	the outside layers). Thu	s, LLDPE (a.	0.928 g/cm3, MFR 1.8 g	j/ #U min,		
	prepd. by using me	talloce	ne catalyst)	contg. 0.2 phr steary.	L wonoglyceride		
	(Electrostripper T	S 5) as	the inside	layer, HDPE (d. 0.953 g	J/cm3, MFR 0.6		
	g/10 min) as the i	ntermed	iate layer, a	and LLDPE (d. 0.930 g/c	cm3, MFR 1.0		
	a/10 min, prepd. b	v usina	metallocene	catalyst) contg. 0.04	phr erucamide		
	(Alflow 10) as the	outside	e layer were	inflation-molded to g	ive title film		
	showing dart impac	t stren	gth 600 g, f;	lexural modulus (MD; ma	achine		
	Alecation) AEOO ka	/cm an	A tear streng	gth 120 and 250 kg/cm,	for MD and		
	direction) 4200 va	, cm, an	·				

STN Columbus

RECEIVED **CENTRAL FAX CENTER**

FEB 1 2 2007

, transverse direction, resp.,.

LI ANSWER 2 OF 2 WPIX COPYRIGHT 2006 THE THOMSON CORP on STN

Full Text

ACCESSION NUMBER: 1999-224395 [19] WPIX
DOC. NO. NON-CPI: N1999-166769
DOC. NO. CPI: C1999-065973
TITLE: Inflation multilayer film - has inner polyethylene layer,

at least one intermediate layer and outer layer.

DERWENT CLASS: A17 A92 P73

PATENT ASSIGNEE(S): (MITC) MITSUI PETROCHEM IND CO LTD

COUNTRY COUNT: 1

PATENT INFORMATION:

KIND DATE WEEK LA PG PATENT NO JP 11058635 A 19990302 (199919)* 7

BEST AVAILABLE COPY

APPLICATION DETAILS:

APPLICATION DATE PATENT NO KIND JP 1997-215188 19970808 JP 11058635 A

PRIORITY APPLN. INFO: JP 1997-215188 19970808

AN 1999-224395 [19] WPIX

JP 11058635 A UPAB: 19990813

Inflation multilayer film includes an inner layer, at least one intermediate layer, and an outer layer, where the inner layer is made of a composition (1) including 100 parts by weight of a metallocene-based straight-chain low density polyethylene A and 0.1 to 1.0 parts by weight of an antistatic agent B, the polyethylene A has a density of 0.920 to 0.935 g/cm3 and a melt flow rate of 0.5 to 2.5 g/10 min. (ASTM D 1238, 190 deg. C and load: 2.16 kg), the intermediate layer is made of a high density polyethylene C having a density of 0.950 to 0.965 g/cm3 and a melt flow rate of 0.3 to 6.0 g/10 min. (ASTM D 1238, 190 deg. C and load: 2.16 kg), the outer layer is made of a composition (2) composed of 100 parts by weight of a metallocene-based straight-chain low density polyethylene D and 0.01 to 0.3 parts by weight of a slip agent E, the polyethylene resin D has a density of 0.918 to 0.935 g/cm3 and a melt flow rate of 0.5 to 5.0 g/10 min. (ASTM D 1238, 190 deg. C and load: 2.16 kg), to/t1 is 0.3 to 2, and t2/to is the thickness of the inner layer, to, t1 and t2 are thicknesses of the inner layer, the entire intermediate layer and the outer layer, respectively.

USE - The inflation multilayer film is used for semi-heavy packing in polished rice and home vegetable fertilizer.

ADVANTAGE - The multi-layer film has high strength, rigidity and stiffness as well as high tear strength and dart impact strength. Dwg.0/0

=> log y COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	9.25	9.46
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE PILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-0.75	-0.75