二〇一九 ~ 二〇二〇 学年 第 I 学期 《理论力学》 考试试题

考试日期: 2020年月日 试卷类型: A 试卷代号:

班号:		学号:			姓名:			
	题号	_	二	三	四	五.	六	总分
	得分							

本题分数	30
得 分	

一、填空题

1. (6分) 如图所示力系中, $F_1 = F_2 = F_3 = F_4 = F$,此力系向点A简化,主矢大小

2. $(4 \, \mathcal{G})$ 如图所示,重量为G 的物块置于静摩擦因数为f 的斜面上。物块在一铅锤向下 的力F作用下保持静止,斜面倾角为 α ,则物体受到的摩擦力大小为_____

3. $(3\, \mathcal{G})$ 平行四边形机构如图。曲柄 O_1A 以匀角速度 ω 绕轴 O_1 转动。动点 M 沿 AB 杆运动的相对速度为 V_r 。 若将动坐标系固连于 AB 杆,则动点的科氏加速度的大小为_____。

4. $(8\,
m eta)$ 如图所示的机构中,已知 $O_1O_2=200\,mm$, $\omega=3rad/s$ 。设动系建立在 O_1A 杆上,选滑块A为动点,则图示位置时动点A的牵连加速度大小为_____。**在图中** 画出动点A 的绝对速度、相对速度、牵连加速度的方向。

5. (9分)质量为m,长度为l=3R的均质细直杆的A端固接在均质圆盘的边缘上,如图所示圆盘的质量为2m,半径为R,以角速度 ω 绕定轴O转动,则:

该系统的动量大小为_____,

该系统的动能大小为_____,

对于轴O的动量矩大小为 L_o = _____。

本题分数	13
得 分	

二、计算题

如图所示, 杆架由杆 AC、CE 和 BH 铰接而成, 其中 BH 水平,

F=200N , $M=2400N\cdot m$, 尺寸如图, 单位: m 。求:

- (1) 求 BH 杆上 B 所受的力;
- (2) 求支座 A 、 E 所受的力。

本题分数	12
2月 分	

三、计算题

图示直角曲杆 OBC 绕 O 轴转动,使套在其上的小环 M 沿固定直杆

OA 滑动。已知: OB = 0.1m, OB = BC 垂直, 曲杆的角速度 $\omega = 1rad/s$, 角加速度为

零。求当 $\varphi = 45$ °时:

- (1) 根据点的运动方程, 求小环M的速度;
- (2) 求小环 M 加速度。

William Willia

本题分数	15
得 分	

四、计算题

在图示机构中, 曲柄 OA 长为 r , 绕 O 轴以等角速度 ω_0 转动, AB=6r ,

 $BC = 3\sqrt{3}r$ 。求图示位置时,

- (1) 滑块C的速度;
- (2) 滑块C的加速度。

THE WAR THE WA

本题分数	20
24 分	

五、计算题

椭圆规位于水平面内,由曲柄OC带动规尺AB运动,如图所示。曲柄

和椭圆规尺都是均质杆,质量均为 m_1 ,OC = AC = BC = l,滑块A和B的质量分别为 m_2 、

 $2m_2$ 。如作用在曲柄上的力偶矩为M,且M为常数。设 $\varphi=0$ 时系统静止,忽略摩擦,求:

- (1) 曲柄的角速度(结果用 φ 表示);
- (2) 曲柄的角加速度。

本题分数	10
得 分	

六、计算题

两匀质杆焊成图示形状,绕水平轴O在铅锤面内转动。在图示位置时,

角速度 $\omega = \sqrt{0.3} rad/s$ 。设杆的单位长度质量为 10 kg/m, g 取 $10 m/s^2$,图中长度单位为 cm。试用**达朗贝尔原理**求轴承O的约束力。

二〇一九 ~ 二〇二〇 学年 第2学期《理论力学》试题参考答案

考试日期:

试卷类型:

试卷代号:

命题人:

一、填空题

1. (6分) $2\sqrt{2}F$, 斜向上 45° ; 2Fa , 垂直纸面向外

- 2. $(4 分) (F+G)\sin \alpha$
- 3. (3分) 0

【解析】 AB 杆平动, $\omega=0$,故 $a_{C}=2\omega\times v_{r}=0$.

4. (8分) 1.8 m/s^2

5.
$$(9 \%) \frac{\sqrt{13}}{2} m\omega R, \frac{5}{2} m\omega^2 R^2, 5m\omega R^2$$

【解析】① $p = mv_c$,对于圆盘,只有转动, $v_{c1} = 0$,故 $p_1 = 0$.

对于杆,
$$\overline{OC} = \frac{\sqrt{13}}{2}R$$
, $v_{C2} = \frac{\sqrt{13}}{2}\omega R$, 故 $p = p_2 = \frac{\sqrt{13}}{2}m\omega R$.

② 平面运动刚体的动能 $T = \frac{1}{2}J_{P}\omega^{2} = \frac{1}{2}mv_{C} + \frac{1}{2}J_{C}\omega^{2}$

对于圆盘
$$T_1 = \frac{1}{2} \left(\frac{1}{2} 2mR^2 \right) \omega^2 = \frac{1}{2} mR^2 \omega^2$$

对于杆
$$T_2 = \frac{1}{2} \left[\frac{1}{12} m (3R)^2 + m \left(\frac{\sqrt{13}}{2} R \right)^2 \right] \omega^2 = 2mR^2 \omega^2$$

故
$$T = \frac{5}{2} mR^2 \omega^2$$
.

③质点系动量矩公式 $L_o = r_c \times mv_c + L_c (L_c$ 为对质心的动量矩)

对于圆盘
$$L_{O1} = J_O \omega = \frac{1}{2} 2mR^2 \omega = mR^2 \omega$$

对于杆
$$L_{O2} = m\omega \left(\frac{\sqrt{13}}{2}R\right)^2 + \frac{1}{12}m(3R)^2\omega = 4mR^2\omega$$
 故 $L = 5mR^2\omega$.

二、计算题

(1) 对杆BDH分析:

 F_B 方向可确定,即垂直AC杆。

$$M_D(F) = -F \cdot \overline{DH} + F_B \cdot \overline{BD} \sin 53.1^\circ = 0 \implies F_B = 250N$$

(2)对整体分析:

$$\begin{cases} M_{E}(F) = -F_{Ay} \cdot \overline{AE} - F \cdot \overline{DH} - M = 0 \\ \sum F_{x} = F_{Ax} + F_{Ex} = 0 \\ \sum F_{y} = -F + F_{Ay} + F_{Ey} = 0 \end{cases} \Rightarrow \begin{cases} F_{Ay} = -400N \\ F_{Ey} = 600N \\ F_{Ax} = -F_{Ex} \end{cases}$$

对杆AC分析:

$$M_{C}(F) = F_{Ax} \cdot \overline{CE} - F_{Ay} \cdot \overline{AE} - F_{B} \cdot \overline{BC} = 0$$
 \Rightarrow $F_{Ax} = -F_{Ex} = -325N$ 综上得:
$$\begin{cases} F_{Ax} = -325N \\ F_{Ay} = -400N \\ F_{Ex} = 325N \\ F_{Ey} = 600N \end{cases}$$

三、计算题

(1) 根据点的运动方程得: $\overline{OM} = \frac{\overline{OB}}{\cos \varphi}$

$$\mathbb{U} v_a = \frac{d\overline{OM}}{dt} = d\left(\frac{\overline{OB}}{\cos\varphi}\right) / dt = \frac{\omega \overline{OB} \sin\varphi}{\left(\cos\varphi\right)^2}$$

将 $\varphi = 45$ °代入得 $v_a = 0.1\sqrt{2}m/s$.

(2)根据速度合成定理, $v_a = v_e = 0.1\sqrt{2}m/s$, $v_r = \sqrt{2}v_M = 0.2m/s$. 由于牵连运动为转动,故 $a_C = 2\omega \times v_r = 0.4m/s^2$.

$$a_e^n = 0.1\sqrt{2}m/s^2$$
, $a_e^t = 0$

将加速度示意图向 a_c 方向分解:

$$a_a \cos \varphi = -a_e^n \cos \varphi + a_e^t \sin \varphi + a_C$$

得:
$$a_a = 0.3\sqrt{2} \, m/s^2 = 0.424 m/s^2$$

四、计算题

$$(1) v_A = \omega_0 \cdot \overline{OA} = \omega_0 r$$

研究AB:

AB的速度瞬心为Pi

$$AP_1 = 3r, \quad BP_1 = 3\sqrt{3}r$$

$$\omega_{AB} = \frac{v_A}{AP_1} = \frac{\omega_0}{3}, \quad v_B = \omega_{AB} \cdot BP_1 = \sqrt{3}\omega_0 r$$

研究BC:

BC的速度瞬心为P,

$$BP_2 = 2BC = 6\sqrt{3}r$$
, $CP_2 = 9r$

$$\omega_{BC} = \frac{v_B}{BP_2} = \frac{\omega_0}{6}, \quad v_C = \omega_{BC} \cdot CP_2 = \frac{3}{2}\omega_0 r$$

$$(2) v_A = \omega_0 \cdot \overline{OA} = \omega_0 r$$

研究AB:

$$a_A^t = 0$$
, $a_A = a_A^n = r\omega_0^2$
 $a_{BA}^n = \omega_{AB}^2 \cdot \overline{AB} = \frac{2}{3}\omega_0^2 r$

做加速度矢量分析图,向AB投影:

$$a_B \cos 60^\circ = -a_A \cos 60^\circ + a_{BA}^n \quad \Rightarrow \quad a_B = \frac{1}{3}\omega_0^2 r$$

研究BC:

$$a_{CB}^n = \omega_{BC}^2 \cdot \overline{BC} = \frac{\sqrt{3}}{12} \omega_0^2 r$$

做加速度矢量分析图,向BC投影:

$$a_C = a_B \cos 30^\circ - a_{CB}^n = \frac{\sqrt{3}}{12} \omega_0^2 r$$

五、计算题

(1) $\angle COB$ 从0变化至 φ 的过程中:

外力做的总功为 $W = M\varphi$.

初始时刻 $T_0 = 0$

$$T$$
 时刻 $T = \frac{1}{2}J_{O_{OC}}\omega^2 + \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 + \frac{1}{2}J_{C_{AB}}\omega_{AB}^2 + \frac{1}{2}m_{AB}v_C^2$

其中
$$m_{OC} = m_{AB} = m_1$$
, $m_A = m_2$, $m_B = 2m_2$,

$$J_{O_{OC}} = \frac{1}{3} m_1 l^2, \quad J_{C_{AB}} = \frac{1}{12} m_1 (2l)^2 = \frac{1}{3} m_1 l^2,$$

由基点法得
$$\omega_{AB} = \frac{v_C}{\overline{CP}} = \omega$$
,
$$v_A = \omega_{AB} \overline{AP} = 2\omega l \cos \varphi, \quad v_B = \omega_{AB} \overline{BP} = 2\omega l \sin \varphi.$$

由动能定理
$$T - T_o = W$$
得: $2M\varphi = \omega^2 l^2 \left(\frac{5}{3} m_1 + 8 m_2 \sin^2 \varphi + 4 m_2 \cos^2 \varphi \right)$ …①
$$\omega = \sqrt{\frac{6M\varphi}{l^2 \left[5 m_1 + \left(24 \sin^2 \varphi + 12 \cos^2 \varphi \right) m_2 \right]}}$$

(2)对①式两边求导得
$$2M\omega = 2\omega\alpha l^2 \left(\frac{5}{3}m_1 + 8m_2\sin^2\varphi + 4m_2\cos^2\varphi\right)$$

即 $\alpha = \frac{3M}{l^2[5m_1 + (24\sin^2\varphi + 12\cos^2\varphi)m_2]}$

六、计算题

$$\begin{split} r_{C} &= \frac{m_{OB} \times 1m + m_{CD} \times 2m}{m_{OB} + m_{CD}} = \frac{20 \, kg \times 1m + 10 \, kg \times 2m}{20 \, kg + 10 \, kg} = \frac{4}{3} \, m \\ J_{O} &= \frac{1}{3} \, m_{OB} \, \overline{OB}^{2} + \frac{1}{12} \, m_{CD} \, \overline{CD}^{2} + m_{CD} \, \overline{OB}^{2} = 67.5 \, kg \cdot m^{2} \\ m &= m_{OB} + m_{CD} = 30 \, kg, \quad G = mg = 300 \, N \\ F_{I}^{n} &= mr_{C} \omega^{2}, \quad F_{I}^{t} = mr_{C} \alpha, \quad M_{IO} = J_{O} \alpha \end{split}$$

$$M_{O}(F) = -M_{IO} + G \cdot r_{C} = 0 \implies \begin{cases} M_{IO} = 400 kg \cdot m^{2} / s^{2} \\ \alpha = \frac{M_{IO}}{J_{O}} = \frac{160}{27} = 5.93 rad / s^{2} \end{cases}$$

$$\sum F_{x} = F_{Ox} - F_{I}^{n} = 0 \implies F_{Ox} = 12N$$

$$\sum F_{y} = -F_{Oy} + F_{I}^{t} - G = 0 \implies F_{Oy} = -\frac{1700}{27} = -62.96N$$

