- 1. The hedgehog Melissa starts at the vertex A of a triangle ΔABC . Each minute she randomly moves to an adjacent vertex with probabilities $\mathbb{P}(A \to B) = 0.7$, $\mathbb{P}(A \to C) = 0.3$, $\mathbb{P}(B \to C) = \mathbb{P}(B \to A) = 0.5$, $\mathbb{P}(C \to B) = \mathbb{P}(C \to A) = 0.5$.
 - (a) What is the probability that she will be in vertex B after 3 steps?
 - (b) Write down the transition matrix of this Markov chain.
 - (c) What proportion of time Melissa will spend in each state in the long run?
- 2. The number of players N who will win the lottery is a random variable with probability mass function $\mathbb{P}(N=k)=7\cdot 0.3^k/3$ for $k\geq 1$. Each player will get a random prize $X_i\sim U[0;1]$. All random variables are independent. Let S be the sum of all the prizes.
 - (a) Find $\mathbb{E}(S \mid N)$ and conditional moment generating function $M_{S|N}(u)$.
 - (b) Find the unconditional moment generating function $M_S(u)$.
 - (c) What is the probabilistic meaning of $M_S''(0) (M_S'(0))^2$?

Note: you don't need to calculate the value in (c).

- 3. Consider the stochastic process (X_n) , where X_0 is uniform on [0;2] and $X_n=(1+X_{n-1})/2$.
 - (a) Find $\mathbb{E}(X_n)$ and $\mathbb{V}ar(X_n)$.
 - (b) Find the probability limit plim X_n .
- 4. Students arrive in the Grusha café according to the Poisson arrival process (X_t) with constant rate λ . The probability of no visitors during 5 minutes is 0.05.
 - (a) Find the value of λ .
 - (b) Find the variance and expected number of arrivals between $5~\mathrm{pm}$ and $8~\mathrm{pm}$.
 - (c) What is the probability of exactly 5 arrivals between 5 pm and 8 pm?
- 5. The random variables X_1 and X_2 are independent and normally distributed, $X_1 \sim \mathcal{N}(1;1)$, $X_2 \sim \mathcal{N}(2;2)$. I choose X_1 with probability 0.3 and X_2 with probability 0.7 without knowing their values.

Casino pays me the value Y that is equal to the chosen random variable.

Let the indicator I be equal to 1 if I choose X_1 and 0 otherwise.

- (a) Express Y in terms of X_1 , X_2 and I.
- (b) Find $\mathbb{E}(Y \mid I)$, $\mathbb{V}ar(Y \mid I)$.
- (c) Find $\mathbb{E}(Y)$ and $\mathbb{V}ar(Y)$.
- 6. The joint distribution of X and Y is given in the table

	X = -2	X = 0	X = 2
Y = -1	0.1	0.2	0.3
Y = 1	0.2	0.1	0.1

- (a) Explicitely find the σ -algebra $\sigma(X)$.
- (b) How many elements are there in $\sigma(X \cdot Y)$?