Tutorial 2

- 1. Find out 3 real world applications of logic gates
- 2. Derive the boolean expression for the following combinational logic gates

3. The diagram shows a logic circuit consisting of multiple logic gates. The table shows the output for some of the different possible combinations of inputs.

Input A	Input B	Input C	Input D	Output
0	0	0	0	p
0	0	1	1	q
0	1	0	0	1
0	1	1	1	r
1	0	0	0	1
1	0	1	1	S
1	1	0	0	1
1	1	1	1	0

- 1. What is the value of *p* in the table?
- 2. What is the value of q in the table?
- 3. What is the value of *r* in the table?
- 4. What is the value of *s* in the table?

4. The diagram shows a logic circuit consisting of multiple logic gates. The table shows the output for some of the different possible combinations of inputs.

Input A	Input B	Input C	Input D	Output
0	0	0	0	p
0	1	1	0	q
1	0	1	1	r
1	1	0	1	S

What is the value of p in the table?

What is the value of q in the table?

What is the value of r in the table?

What is the value of *s* in the table?