LPC2114/2124/2212/2214 使用指南

1.5	个绍		10
	1.1	概述	10
	1.2	特性	10
	1.3	应用	11
	1.4	器件信息	11
	1.5	结构概述	11
	1.6	ARM7TDMI-S 处理器	12
	1.7	片内 FLASH 程序存储器	12
		片内静态 RAM	
	1.9	LPC2114/2124/2212/2214 寄存器	13
2.	LP	C2114/2124/2212/2214 存储器寻址	22
	2.1	存储器映射	22
	2.2	LPC2114/2124/2212/2214 存储器重新映射和 BOOT BLOCK	26
		2.2.1 存储器映射概念和操作模式	26
		2.2.2 存储器的重新映射	26
	2.3	预取指中止和数据中止异常	28
3.	外	部存储器控制器(EMC)	28
	3.1	特性	28
	3.2	概述	29
	3.3	管脚描述	29
	3.4	寄存器描述	
		3.4.1 存储器组配置寄存器 0-3(BCFG0-3 — 0xFFE00000-0C)	
		外部存储器接口	
		典型总线时序	
		外部存储器选择	
4.		统控制模块	
		系统控制模块功能汇总	
		管脚描述	
		寄存器描述	
		晶体振荡器	
	4.5	外部中断输入	
		4.5.1 寄存器描述	
		4.5.2 外部中断标志寄存器(EXTINT - 0xE01FC140)	
		4.5.3 外部中断唤醒寄存器(EXTWAKE - 0xE01FC144)	
		4.5.4 外部中断方式寄存器(EXTMODE – 0xE01FC148)	
		4.5.5 外部中断极性寄存器(EXTPOLAR – 0xE01FC14C)	
		4.5.6 多个外部中断管脚	
	4.6	存储器映射控制	
		4.6.1 存储器映射控制寄存器(MEMMAP-0xE01FC040)	41

	4.6.2 存储器映射控制的使用注意事项	42
	4.7 PLL(锁相环)	42
	4.7.1 寄存器描述	43
	4.7.2 PLL 控制寄存器(PLLCON – 0xE01FC080)	44
	4.7.3 PLL 配置寄存器(PLLCFG – 0xE01FC084)	44
	4.7.4 PLL 状态寄存器(PLLSTAT - 0xE01FC088)	44
	4.7.5 PLL 中断	45
	4.7.6 PLL 模式	45
	4.7.7 PLL 馈送寄存器(PLLFEED – 0xE01FC08C)	45
	4.7.8 PLL 和掉电模式	
	4.7.9 PLL 频率计算	
	4.7.10 确定 PLL 设定的过程	
	4.7.11 PLL 举例	
	4.8 功率控制	
	4.8.1 寄存器描述	
	4.8.2 功率控制寄存器 (PCON – 0xE01FC0C0)	
	4.8.3 外设功率控制寄存器(PCONP – 0xE01FC0C4)	
	4.9 功率控制注意事项	
	4.10 复位	
	4.11 VPB 分频器	
	4.11.1 VPBDIV 寄存器(VPBDIV - 0xE01FC100)	
_	4.12 唤醒定时器	
5.	存储器加速模块(MAM)	
	5.1 介绍	
	5.1.1 存储器加速器模块	
	5.1.2 Flash 仔陌奋组	
	5.1.3 指令钡仔和数据钡仔	
	5.2 存储器加速器模块的操作模式	
	5.3 MAM 配置	
	5.4 寄存器描述	
	5.4.1 MAM 控制寄存器(MAMCR - 0xE01FC000)	
	5.4.2 MAM 定时寄存器(MAMTIM - 0xE01FC004)	
	5.5 MAM 使用注意事项	
6.	向量中断控制器(VIC)	
	6.1 特性	
	6.2 描述	57
	6.3 寄存器描述	59
	6.4 VIC 寄存器	60
	6.4.1 软件中断寄存器(VICSoftInt - 0xFFFFF018,读/写)	60
	6.4.2 软件中断清零寄存器(VICSoftIntClear - 0xFFFFF01C, 只写)	60
	6.4.3 所有中断状态寄存器(VICRawIntr - 0xFFFFF008, 只读)	
	6.4.4 中断使能寄存器(VICIntEnable - 0xFFFFF010,读/写)	61
	6.4.5 中断使能清零寄存器(VICIntEnClear - 0xFFFFF014, 只写)	61

	6.4.6 中断选择寄存器(VICIntSelect - 0xFFFFF00C,读/写)	61
	6.4.7 IRQ 状态寄存器(VICIRQStatus - 0xFFFFF000,只读)	61
	6.4.8 FIQ 状态寄存器(VICFIQStatus - 0xFFFFF004,只读)	62
	6.4.9 向量控制寄存器 0-15(VICVectCnt l0-15 - 0xFFFFF200-23C,读/写)	62
	6.4.10 向量地址寄存器 0-15(VICVectAddr0-15 - 0xFFFFF100-13C,读/写)	62
	6.4.11 默认向量地址寄存器(VICDefVectAddr - 0xFFFFF034,读/写)	62
	6.4.12 向量地址寄存器(VICVectAddr - 0xFFFFF030,读/写)	63
	6.4.13 保护使能寄存器(VICProtection - 0xFFFFF020,读/写)	63
	6.5 中断源	63
	6.6 伪中断	65
	6.6.1 伪中断的详述和个案	66
	6.7 VIC 使用事项	67
7.	管脚配置	69
	7.1 LPC2114/2124 的管脚分布	69
	7.2 LPC2114/2124 的管脚描述	69
	7.3 LPC2212/2214 的管脚分布	74
	7.4 LPC2212/2214 的管脚描述	74
8.	管脚连接模块	80
	8.1 应用	80
	8.2 描述	
	8.3 寄存器描述	81
	8.3.1 管脚功能选择寄存器 0(PINSEL0 - 0xE002C000)	81
	8.3.2 管脚功能选择寄存器 1(PINSEL1 - 0xE002C004)	
	8.3.3 管脚功能选择寄存器 2(PINSEL2 - 0xE002C014)	
	8.3.4 管脚功能选择寄存器值	
	8.4 144 脚封装的引导控制	
9.	GPIO	85
	9.1 特性	
	9.2 应用	85
	9.3 管脚描述	
	9.4 寄存器描述	
	9.4.1 GPIO 管脚值寄存器 (IO0PIN - 0xE0028000,IO1PIN – 0xE0028010, IO2PI	
	0xE0028020, IO3PIN – 0xE0028030)	
	9.4.2 GPIO 输出置位寄存器(IO0SET - 0xE0028004,IO1SET – 0xE002801	
	IO2SET – 0xE0028024, IO3SET – 0xE0028034)	
	9.4.3 GPIO 输出清零寄存器(IO0CLR - 0xE002800C,IO1CLR – 0xE0028010	
	IO2CLR – 0xE002802C, IO3CLR – 0xE002803C)	
	9.4.4 GPIO 方向寄存器(IO0DIR - 0xE0028008,IO1DIR – 0xE0028018,IO2DI	
	0xE0028028,IO3DIR - 0xE0028038)	
	9.5 GPIO 使用注意事项	
10.	. UART 0	
	10.1 特性	
	10.2 管脚描述	
	10.3 寄存器描述	90

		10.3.1 UART0 接收器缓存寄存器(U0RBR - 0xE000C000,DLAB=0,只读)	90
		10.3.2 UART0 发送器保持寄存器(U0THR - 0xE000C000,DLAB=0,只写)	91
		10.3.3 UART0 除数锁存 LSB 寄存器(U0DLL - 0xE000C000,DLAB=1)	91
		10.3.4 UART0 除数锁存 MSB 寄存器(U0DLM - 0xE000C004,DLAB=1)	91
		10.3.5 UART0 中断使能寄存器(U0IER - 0xE000C004,DLAB=0)	91
		10.3.6 UART0 中断标识寄存器(U0IIR - 0xE000C008, 只读)	92
		10.3.7 UART0 FIFO 控制寄存器(U0FCR - 0xE000C008)	93
		10.3.8 UART0 线控制寄存器(U0LCR - 0xE000C00C)	94
		10.3.9 UART0 线状态寄存器(U0LSR - 0xE000C014, 只读)	94
		10.3.10 UART0 高速缓存寄存器(U0SCR – 0Xe000C01C)	95
	10.4	结构	95
11.	UA	ART1	97
	11.1	特性	97
	11.2	管脚描述	97
	11.3	寄存器描述	98
		11.3.1 UART1 接收器缓存寄存器(U1RBR - 0xE0010000,DLAB=0,只读)	98
		11.3.2 UART1 发送器保持寄存器(U1THR - 0xE0010000,DLAB=0,只写)	99
		11.3.3 UART1 除数锁存 LSB 寄存器(U1DLL - 0xE0010000,DLAB=1)	99
		11.3.4 UART1 除数锁存 MSB 寄存器(U1DLM - 0xE0010004,DLAB=1)	99
		11.3.5 UART1 中断使能寄存器(U1IER - 0xE0010004,DLAB=0)	99
		11.3.6 UART1 中断标识寄存器(U1IIR - 0xE0010008,只读)	100
		11.3.7 UART1 FIFO 控制寄存器(U1FCR - 0xE0010008)	101
		11.3.8 UART1 线控制寄存器(U1LCR - 0xE001000C)	102
		11.3.9 UART1 Modem 控制寄存器(U1MCR - 0xE0010010)	102
		11.3.10 UART1 线状态寄存器(U1LSR – 0Xe0010014,只读)	103
		11.3.11 UART1 Modem 状态寄存器(U1MSR - 0x0E0010018)	104
		11.3.12 UART1 高速缓存寄存器(U1SCR - 0xE001001C)	105
	11.4	结构	105
12.	I^2C	∁接口	106
	12.1	特性	106
	12.2	应用	107
	12.3	描述	107
		12.3.1 I ² C 操作模式	107
		12.3.1.1 主发送器模式:	107
		12.3.1.2 主接收器模式	108
		12.3.1.3 从接收器模式	109
		12.3.1.4 从发送器模式	110
	12.4	管脚描述	110
	12.5	寄存器描述	111
		12.5.1 I ² C 控制置位寄存器(I2CONSET - 0xE001C000)	111
		12.5.2 I ² C 控制清零寄存器(I2CONCLR – 0xE001C018)	112
		12.5.3 I ² C 状态寄存器(I2STAT - 0xE001C004)	113
		12.5.4 I ² C 数据寄存器(I2DAT - 0xE001C008)	113
		12.5.5 I ² C 从地址寄存器(I2ADR - 0xE001C00C)	113

	12.5.6 I ² C SCL 占空比寄存器(I2SCLH - 0xE001C010 和 I2SCLL - 0xE001C014)113
13. SF	PI 接口116
13.1	特性116
13.2	描述116
	13.2.1 SPI 概述
	13.2.2 SPI 数据传输116
	13.2.3 SPI 外设描述
	13.2.3.1 概述117
	13.2.3.2 主机操作118
	13.2.3.3 从机操作118
	13.2.3.4 异常状况119
13.3	管脚描述120
13.4	寄存器描述120
	13.4.1 SPI 控制寄存器(S0SPCR - 0xE0020000, S1SPCR - 0xE0030000) 121
	13.4.2 SPI 状态寄存器(S0SPSR - 0xE0020004, S1SPSR - 0xE0030004) 121
	13.4.3 SPI 数据寄存器(S0SPDR - 0xE0020008,S1SPDR – 0xE0030008) 121
	13.4.4 SPI 时钟计数寄存器(S0SPCCR - 0xE002000C,S1SPCCR – 0xE003000C)
	13.4.5 SPI 中断寄存器(S0SPINT - 0xE002001C,S1SPINT – 0xE003001C) 122
13.5	结构122
14. 定	时器 0 和定时器 1123
14.1	特性
14.2	应用
	描述124
14.4	管脚描述124
14.5	寄存器描述124
	14.5.1 中断寄存器(IR: 定时器 0 - T0IR: 0xE00040000; 定时器 1 - T1IR:
	0xE0008000)
	14.5.2 定时器控制寄存器(TCR: 定时器 0 – T0TCR: 0xE0004004; 定时器 1 –
	T1TCR: 0xE0008004)
	14.5.3 定时器计数器(TC: 定时器 0 – T0TC: 0xE0004008; 定时器 1 – T1TC:
	0xE0008008)
	14.5.4 预分频寄存器 (PR: 定时器 0 – T0PR: 0xE000400C; 定时器 1 – T1PR:
	0xE000800C)
	14.5.5 预分频计数器寄存器 (PC: 定时器 0 - T0PC: 0xE0004010; 定时器 1 -
	T1PC: 0xE0008010)
	14.5.6 匹配寄存器(MR0 - MR3)
	14.5.7 匹配控制寄存器 (MCR: 定时器 0 – T0MCR: 0xE0004014; 定时器 1 –
	T1MCR: 0xE00080014) 127
	14.5.8 捕获寄存器(CR0 - CR3)
	14.5.9 捕获控制寄存器 (CCR: 定时器 0 – T0CCR: 0xE0004028; 定时器 1 –
	T1CCR: 0xE0008028)
	14.5.10 外部匹配寄存器 (EMR: 定时器 0 – T0EMR: 0xE000403C; 定时器 1 –
	T1EMR: 0xE0008003C)

		14.5.11 定时器举例操作	129
	14.6	结构1	130
15.	脉	宽调制器(PWM)1	130
	15.1	特性	131
	15.2	描述1	131
		15.2.1 单边沿控制的 PWM 输出规则	135
		15.2.2 双边沿控制的 PWM 输出规则	135
	15.3	管脚描述1	135
	15.4	寄存器描述1	135
		15.4.1 PWM 中断寄存器(PWMIR - 0xE0014000)	137
		15.4.2 PWM 定时器控制寄存器(PWMTCR - 0xE0014004)	137
		15.4.3 PWM 定时器计数器(PWMTC - 0xE0014008)	137
		15.4.4 PWM 预分频寄存器(PWMPR - 0xE001400C)	137
		15.4.5 PWM 预分频计数器寄存器(PWMPC - 0xE0014010)	138
		15.4.6 PWM 匹配寄存器(PWMMR0 –PWMMR6)	138
		15.4.7 PWM 匹配控制寄存器(PWMMCR - 0xE0014014)	138
		15.4.8 PWM 控制寄存器(PWMPCR - 0xE001404C)	139
		15.4.9 PWM 锁存使能寄存器(PWMLER - 0xE0014050)	140
16.	A/D	转换器1	141
	16.1	特性1	141
	16.2	描述1	141
	16.3	管脚描述1	141
	16.4	寄存器描述1	
		16.4.1 A/D 控制寄存器(ADCR – 0xE0034000)	
		16.4.2 A/D 数据寄存器(ADDR – 0xE0034004)	i 44
	16.5	操作1	
		16.5.1 硬件触发转换	
		16.5.2 时钟产生	
		16.5.3 中断	
		16.5.4 精度和数字接收器	
17.		时时钟	
		特性	
		描述	
		结构	
		寄存器描述	
		RTC 中断	
	17.6	混合寄存器组	
		17.6.1 中断位置(ILR - 0xE0024000)	
		17.6.2 时钟节拍计数器(CTC - 0xE0024004)	
		17.6.3 时钟控制寄存器(CCR - 0xE0024008)	
		17.6.4 计数器增量中断	
	177	17.6.5 报警屏蔽	
		完整时间寄存器	149 149
		コフラフ - July SECULTIFICAL YEAR OF COLUMN TO THE TOTAL TOTAL TO THE TO	,44

	17.7.2 完整时间寄存器 1(CTIME1 - 0xE0024018)	149
	17.7.3 完整时间寄存器 2(CTIME2 - 0xE002401C)	150
	17.8 时间计数器组	150
	17.8.1 闰年计算	. 150
	17.9 报警寄存器组	. 151
	17.10 RTC 使用注意事项	. 151
	17.11 基准时钟分频器(预分频器)	. 151
	17.11.1 预分频整数寄存器(PREINT - 0xE0024080)	. 152
	17.11.2 预分频小数寄存器(PREFRAC - 0xE0024084)	. 152
	17.11.3 预分频器的使用举例	. 152
	17.11.4 预分频器操作	. 153
18.	. 看门狗	154
	18.1 特性	154
	18.2 应用	154
	18.3 描述	154
	18.4 寄存器描述	154
	18.4.1 看门狗模式寄存器(WDMOD - 0xE0000000)	155
	18.4.2 看门狗定时器常数寄存器(WDTC - 0xE0000004)	155
	18.4.3 看门狗喂狗寄存器(WDFEED - 0xE0000008)	156
	18.4.4 看门狗定时器值寄存器(WDTV - 0xE000000C)	
	18.5 方框图	
19.	. FLASH 存储器系统和编程	
	19.1 FLASH 存储器系统	
	19.2 FLASH BOOT 装载程序	
	19.3 特性	
	19.4 应用	
	19.5 描述	
	19.5.1 通信协议	
	19.5.1.1 ISP 命令格式	
	19.5.1.2 ISP 响应格式	
	19.5.1.3 ISP 数据格式	
	19.5.1.4 ISP 流程控制	
	19.5.1.5 ISP 命令中止	
	19.5.1.6 ISP 过程中的中断	
	19.5.1.7 IAP 过程中的中断	
	19.5.1.8 ISP 命令处理器使用的 RAM	
	19.5.1.9 IAP 命令处理器使用的 RAM	
	19.5.1.10 RealMonitor 使用的 RAM	
	19.6 BOOT 处理流程图	
	19.7 扇区数	
	19.8 代码读保护	
	19.8.1 ISP 命令	
	19.8.1.1 解锁 <解锁代码>	
	19811 72 頁 72 行	I h4

		19.8.1.3 回声 <设定>	164
		19.8.1.4 写 RAM<起始地址> <字节数>	164
		19.8.1.5 读存储器 <地址> <字节数>	165
		19.8.1.6 准备写操作的扇区<起始扇区号><结束扇区号>	165
		19.8.1.7 将 RAM 内容复制到 Flash <flash 地址=""> <ram 地址=""> <字节数></ram></flash>	166
		19.8.1.8 运行<地址><模式>	166
		19.8.1.9 擦除扇区<起始扇区号><结束扇区号>	167
		19.8.1.10 扇区查空<起始扇区号><结束扇区号>	167
		19.8.1.11 读器件 ID	167
		19.8.1.12 读 Boot 代码版本	168
		19.8.1.13 比较<地址 1><地址 2><字节数>	168
		19.8.2 IAP 命令	169
		19.8.2.1 准备编程扇区	171
		19.8.2.2 将 RAM 内容复制到 Flash	171
		19.8.3 擦除扇区	172
		19.8.3.1 扇区查空	172
		19.8.3.2 读器件 ID	172
		19.8.3.3 读 Boot 代码版本	173
		19.8.3.4 比较	173
	19.9	JTAG Flash 编程接口	174
20.	En	nbeddedICE 逻辑	174
	20.1	特性	174
	20.2	应用	174
	20.3	描述	174
	20.4	管脚描述	176
	20.5	复用管脚的复位状态	176
	20.6	寄存器描述	176
	20.7	方框图	177
21.	嵌	入式跟踪宏单元	177
	21.1	特性	177
	21.2	应用	177
	21.3	描述	178
		21.3.1 ETM 配置	178
	21.4	管脚描述	178
	21.5	复用管脚的复位状态	179
	21.6	寄存器描述	179
	21.7	方框图	181
22.	RE	EALMONITOR	181
	22.1	特性	181
	22.2	应用	181
	22.3	描述	182
		22.3.1 RealMonitor 部件	182
		22.3.1.1 RMHost	182
		22 3 1 2 RMTarget	182

22.3.2 RealMonitor 是如何工作的	183
22.4 如何使能 RealMonitor	184
22.4.1 增加堆栈	184
22.4.1.1 IRQ 模式	185
22.4.1.2 未定义模式	
22.4.1.3 SVC 模式	185
22.4.1.4 预取指中止模式	185
22.4.1.5 数据中止模式	185
22.4.1.6 用户/系统模式	185
22.4.1.7 FIQ 模式	185
22.4.2 处理异常	
22.4.2.1 RealMonitor 异常处理	185
22.4.3 RMTarget 初始化	186
22.4.4 例程	186
22.5 RealMonitor 建立选项	189
修订记录	191

1.介绍

1.1 概述

LPC2114/2124/2212/2214 是基于一个支持实时仿真和跟踪的 16/32 位 ARM7TDMI-STM CPU 的微控制器,并带有 128/256 k 字节(kB)嵌入的高速 Flash 存储器。128 位宽度的存储器接口和独特的加速结构使 32 位代码能够在最大时钟速率下运行。对代码规模有严格控制的应用可使用 16 位 Thumb 模式将代码规模降低超过 30%,而性能的损失却很小。

由于 LPC2114/2124/2212/2214 较小的 64 和 144 脚封装、极低的功耗、多个 32 位定时器、4 路 10 位 ADC 或 8 路 10 位 ADC (64 脚和 144 脚封装)以及多达 9 个外部中断使它们特别适用于工业控制、医疗系统、访问控制和 POS 机。

在 64 脚的封装中,最多可使用 46 个 GPIO。在 144 脚的封装中,可使用的 GPIO 高达 76 (使用了外部存储器)~112 个(单片应用)。由于内置了宽范围的串行通信接口,它们也非常适合于通信网关、协议转换器、嵌入式软 modern 以及其它各种类型的应用。

1.2 特性

- 16/32 位 64/144 脚 ARM7TDMI-S 微控制器。
- 16K 字节静态 RAM。
- 128/256K 字节片内 Flash 程序存储器 (在工作温度范围内,片内 Flash 存储器至少可擦除和写 10,000 次)。128 位宽度接口/加速器实现高达 60MHz 的操作频率。
- 外部 8、16 或 32 位总线 (144 脚封装)。
- 片内 Boot 装载程序实现在系统编程 (ISP) 和在应用中编程 (IAP)。Flash 编程时间: 1ms 可编程 512 字节,扇区擦除或整片擦除只需 400ms。
- EmbeddedICE-RT 接口使能断点和观察点。当前台任务使用片内 RealMonitor 软件 调试时,中断服务程序可继续执行。
- 嵌入式跟踪宏单元(ETM)支持对执行代码进行无干扰的高速实时跟踪。
- 4/8 路(64/144 脚封装) 10 位 A/D 转换器,转换时间低至 2.44us。
- 2个32位定时器(带4路捕获和4路比较通道)、PWM单元(6路输出)、实时时钟和看门狗。
- 多个串行接口,包括2个16C550工业标准UART、高速I²C接口(400 kbit/s)和2个SPI接口。
- 通过片内 PLL 可实现最大为 60MHz 的 CPU 操作频率。
- 向量中断控制器。可配置优先级和向量地址。
- 多达 46 个 (64 脚封装) 或 112 个 (144 脚封装) 通用 I/O 口 (可承受 5V 电压), 12 个独立外部中断引脚 (EIN 和 CAP 功能)。
- 片内晶振频率范围: 1~30 MHz。

- 2个低功耗模式:空闲和掉电。
- 通过外部中断将处理器从掉电模式中唤醒。
- 可通过个别使能/禁止外部功能来优化功耗。
- 双电源
- -CPU 操作电压范围: 1.65~1.95 V(1.8 V+/- 8.3%)
- -I/O 操作电压范围: 3.0~3.6 V(3.3 V+/- 10%)

1.3 应用

- 工业控制
- 医疗设备
- 访问控制
- POS 机
- 通信网关
- 嵌入式软 moderm
- 一般性应用

1.4 器件信息

器件	管脚数	片内 RAM	片内 FLASH	10 位 A/D 通道数	注
LPC2114	64	16 kB	128 kB	4	_
LPC2124	64	16 kB	256 kB	4	_
LPC2212	144	16 kB	128 kB	8	带外部存储器接口
LPC2214	144	16 kB	256 kB	8	带外部存储器接口

表 1 LPC2114/2124/2212/2214 器件信息

1.5 结构概述

LPC2114/2124/2212/2214 包含一个支持仿真的 ARM7TDMI-S CPU、与片内存储器控制器接口的 ARM7 局部总线、与中断控制器接口的 AMBA 高性能总线(AHB)和连接片内外设功能的 VLSI 外设总线(VPB,ARM AMBA 总线的兼容超集)。LPC2114/2124/2212/2214 将 ARM7TDMI-S 配置为小端(little-endian)字节顺序。

AHB 外设分配了 2M 字节的地址范围,它位于 4G 字节 ARM 存储器空间的最顶端。每个 AHB 外设都分配了 16k 字节的地址空间。LPC2114/2124/2212/2214 的外设功能(中断控制器除外)都连接到 VPB 总线。AHB 到 VPB 的桥将 VPB 总线与 AHB 总线相连。VPB 外设也分配了 2M 字节的地址范围,从 3.5GB 地址点开始。每个 VPB 外设在 VPB 地址空间内都分配了 16k 字节地址空间。

片內外设与器件管脚的连接由管脚连接模块控制。该模块必须由软件进行控制以符合外设功能与管脚在特定应用中的需求。

1.6 ARM7TDMI-S 处理器

ARM7TDMI-S 是通用的 32 位微处理器,它具有高性能和低功耗的特性。ARM 结构是基于精简指令集计算机(RISC)原理而设计的。指令集和相关的译码机制比复杂指令集计算机要简单得多。这样使用一个小的、廉价的处理器核就可实现很高的指令吞吐量和实时的中断响应。

由于使用了流水线技术,处理和存储系统的所有部分都可连续工作。通常在执行一条指令的同时对下一条指令进行译码,并将第三条指令从存储器中取出。

ARM7TDMI-S 处理器使用了一个被称为 THUMB 的独特结构化策略,它非常适用于那些对存储器有限制或者需要较高代码密度的大批量产品的应用。

在 THUMB 后面一个关键的概念是"超精简指令集"。基本上,ARM7TDMI-S 处理器具有两个指令集:

- 标准 32 位 ARM 指令集
- 16 位 THUMB 指令集

THUMB 指令集的 16 位指令长度使其可以达到标准 ARM 代码两倍的密度,却仍然保持 ARM 的大多数性能上的优势,这些优势是使用 16 位寄存器的 16 位处理器所不具备的。因为 THUMB 代码和 ARM 代码一样,在相同的 32 位寄存器上进行操作。

THUMB 代码仅为 ARM 代码规模的 65%, 但其性能却相当于连接到 16 位存储器系统的相同 ARM 处理器性能的 160%。

关于 ARM7TDMI-S 处理器详细内容请参阅 ARM 官方网站 ARM7TDMI-S 数据手册。

1.7 片内 FLASH 程序存储器

LPC2114/2212 集成了一个 128K, 而 LPC2124/2214 集成了 256K 的 FLASH 存储器系统。该存储器可用作代码和数据的存储。对 FLASH 存储器的编程可通过几种方法来实现:通过内置的串行 JTAG 接口,通过在系统编程(ISP)和 UARTO,或通过在应用编程(IAP)。使用在应用编程的应用程序也可以在应用程序运行时对 FLAH 进行擦除和/或编程,这样就为数据存储和现场固件的升级都带来了极大的灵活性。

1.8 片内静态 RAM

LPC2114/2124/2212/2214 含有 16kB 的静态 RAM,可用作代码和/或数据的存储。SRAM 支持 8 位、16 位和 32 位访问。

SRAM 控制器包含一个回写缓冲区,它用于防止 CPU 在连续的写操作时停止运行。回写缓冲区总是保存着软件发送到 SRAM 的最后一个字节。该数据只有在软件请求下一次写操作时才写入 SRAM(数据只有在软件执行另外一次写操作时被写入 SRAM)。如果发生芯片复位,实际的 SRAM 内容将不会反映最近一次的写请求(即:在一次"热"芯片复位后,SRAM 不会反映最后一次写入的内容)。任何在复位后检查 SRAM 内容的程序都必须注意这一点。通过对一个单元执行两次相同的写操作可保证复位后数据的写入。或者,也可通过在进入空闲或掉电模式前执行虚写(dummy write)操作来保证最后的数据在复位后被真正写入到 SRAM。

* 与GPIO共用

图 1 LPC2114/2124/2212/2214 方框图

1.9 LPC2114/2124/2212/2214 寄存器

对 LPC2114/2124/2212/2214 特殊功能寄存器的访问必须遵循以下方式:

- 1. 用户不要试图访问任何未经定义的 SFR 地址。
- 2. 对任何已定义的 SFR 的访问必须符合 SFR 的功能。
- 3. 标注为"一"、"0"或"1"的 SFR 位只能以如下方式读或写:
 - "一"必须写入 0,但当读出时不返回任何确定的值(即使向其写入 0)。这是一个保留位,作为将来功能扩展之用。
 - "0"必须写入 0,并且当读出时返回 0。
 - "1"必须写入1,并且当读出时返回1。

¹ 当使用测试/调试接口时,共用这些管脚的GPIO/其它功能都不可用。

² (XLPC2212/2214

下表列举了 LPC2114/2124/2212/2214 微控制器的所有寄存器,这些寄存器均按照地址进行存储。

对特殊功能寄存器的访问分为读/写、只读或只写几种操作(R/W,RO和WO)。

"复位值"一栏只针对使用的/可访问的位而言,并不包括保留位的内容。某些寄存器的复位值还可能是不确定的,把这些不确定的复位值称为"未定义"。实际应用中不会用到的复位值称为"NA"。某些 RTC 寄存器的值并不受芯片复位的影响。这些复位值用*来表示,如果 RTC 使能,这些寄存器必须进行软件初始化。

LPC2114/2124/2212/2214 的寄存器可以是 8、16 或 32 位。对于表 2 中的 8 位寄存器,MSB(最高有效位)列的位置用来存放寄存器的位 7,LSB(最低有效位)列的位置用来存放寄存器的位 0。

如果是 16/32 位的寄存器,则寄存器位描述的左上角用来存放寄存器的位 15/31,右下角用来存放寄存器的位 0。

例如: PWMPCR 寄存器 (地址: 0xE001404C) 的位 "ENA6" 是寄存器的位 14; 该 寄存器的位 15, 8, 7 和 0 保留。PWMMCR 寄存器 (0xE0014014) 的位 "Stop on MR6" 是寄存器的位 20; 该寄存器的位 31 和 21 保留。

未用(保留)位用"一"来表示。访问这些位时必须严格遵循上述方式。

地址偏移	名称	描述	MSB							LSB	访问	复位值
WD												
0xE0000000	WDMOD	看门狗模式寄存器	_	_	_	_	WDINT	WDTOF	WDRE SET	WDEN	R/W	0
0xE0000004	WDTC	看门狗定时器常数寄存器	32 位数据	2 位数据							R/W	0xFF
0xE0000008	WDFEED	看门狗喂狗寄存器	8 位数据	(先为 0x	AA,后为	0x55)					wo	NA
0xE000000C	WDTV	看门狗值寄存器	32 位数据	2 位数据							RO	0Xff
TIMER0												
0xE0004000	TOIR	T0 中断寄存器	CR3 Int.	CR2 Int.	CR1 Int.	CR0 Int.	MR3 Int.	MR2 Int.	MR1 Int.	MR0 Int.	R/W	0
0xE0004004	T0TCR	T0 控制寄存器	_	_	_	_	-	_	CTR 复位	CTR 使能	R/W	0
0xE0004008	T0TC	T0 计数器	32 位数据								R/W	0
0xE000400C	T0PR	T0 预分频寄存器	32 位数据								R/W	0
0xE0004010	T0PC	T0 预分频计数器	32 位数据								R/W	0
0xE0004014	T0MCR	T0 匹配控制寄存器	4 个保留信	立 (-)			Stop on MR3	Reset on MR3	3 MR3 MR2			0
0AL0004014	TOWICK		Reset on MR2	Int. on MR2	Stop on MR1	Reset onMR1	Int. on MR1	Stop on MR0	Reset onMR0	Int. on MR0	R/W	·
0xE0004018	T0MR0	T0 匹配寄存器 0	32 位数据							R/W	0	
0xE000401C	T0MR1	T0 匹配寄存器 1	32 位数据	32 位数据						R/W	0	
0xE0004020	T0MR2	T0 匹配寄存器 2	32 位数据	! 位数据						R/W	0	
0xE0004024	T0MR3	T0 匹配寄存器 3	32 位数据								R/W	0

表 2 LPC2114/2124/2212/2214 寄存器

地址偏移	名称	描述	MSB							LSB	访问	复位值
		T0 捕获控制寄存器	4 个保留位 (-)				Int. on Cpt.3	Int. on Cpt.3 falling	Int. on Cpt.3	Int. on Cpt.2		
0xE0004028	T0CCR		Int. on Cpt.2 falling	Int. on Cpt.2 rising	Int. on Cpt.1	Int. on Cpt.1 falling	Int. on Cpt.1 rising	Int. on Cpt.0	Int. on Cpt.0 falling	Int. on Cpt.0 rising	R/W	0
0xE000402C	T0CR0	T0 捕获寄存器 0	32 位数据	ŧ							RO	0
0xE0004030	T0CR1	T0 捕获寄存器 1	32 位数据	f							RO	0
0xE0004034	T0CR2	T0 捕获寄存器 2	32 位数据	f							RO	0
		T0 外部匹配寄存器	4 个保留	4个保留位(-) 外部匹配控制 3 外部匹配控制					控制 2			
0xE000403C	T0EMR		外部匹配	邓匹配控制 1 外部匹配控制 0 -		_	Ext. Mtch2.	Ext. Mtch.1	Ext	R/W	0	
TIMER1												
0xE0008000	T1IR	T1 中断寄存器	CR3Int.	CR2Int.	CR1Int.	CR0Int.	MR3Int.	MR2Int.	MR1Int.	MR0Int.	R/W	0
0xE0008004	TITCR	T1 控制寄存器	_	_	_	_	-	_	CTR 复位	CTR 使能	R/W	0
0xE0008008	TITC	T1 计数器	32 位数据	32 位数据							R/W	0
0xE000800C	T1PR	T1 预分频寄存器	32 位数据	2 位数据								0
0xE0008010	T1PC	T1 预分频计数器	32 位数排	Š							R/W	0
0xE0008014	TIMCR	T1 匹配控制寄存器	Stop on Reset on Int. on Stop on 4个保留位 (-) MR3 MR3 MR3 MR3 MR2									
			Reset on MR2	Int. on MR2	Stop on MR1	Reset on MR1	Int. on MR1	Stop on MR0	Reset on MR0	Int. on MR0	R/W	0
0xE0008018	T1MR0	T1 匹配寄存器 0	32 位数排	Š							R/W	0
0xE000801C	T1MR1	T1 匹配寄存器 1	32 位数据	Š							R/W	0
0xE0008020	T1MR2	T1 匹配寄存器 2	32 位数据	Ę.							R/W	0
0xE0008024	T1MR3	T1 匹配寄存器 3	32 位数排	Š							R/W	0
0xE0008028	TICCR	TI 捕获控制寄存器	4个保留	位 (-)	I		Int. on Cpt.3	Int. on Cpt.3 falling	Int. on Cpt.3 rising	Int. on Cpt.2	R/W	0
			Int. on Cpt.2 falling	Int. on Cpt.2 rising	Int. on Cpt.1	Int. on Cpt.1 falling	Int. on Cpt.1 rising	Int. on Cpt.0	Int. on Cpt.0 falling	Int. on Cpt.0 rising		
0xE000802C	T1CR0	T1 捕获寄存器 0	32 位数据	f							RO	0
0xE0008030	T1CR1	T1 捕获寄存器 1	32 位数排	<u> </u>							RO	0
0xE0008034	T1CR2	T1 捕获寄存器 2	32 位数据						RO	0		
0xE0008038	T1CR3	T1 捕获寄存器 3	32 位数据							RO	0	
0xE000803C	TIEMR	T1 外部匹配寄存器	4个保留外部匹配		外部匹配	空制 0	外部匹配: 外部 Mtch.3	空制 3 外部 Mtch2.	外部匹配: 外部 Mtch.1	控制 2 外部 Mtch.0	R/W	0
	l	1	L		1		1	<u> </u>	1	1	L	<u> </u>

地址偏移	名称	描述	MSB							LSB	访问	复位值
UART0												
0xE000C000	U0RBR	U0 接收缓冲	8 位数据								R0	未定义
	(DLAB=0)											
	U0THR	U0 发送保持	8 位数据								wo	NA
	(DLAB=0)											
	U0DLL	U0 除数锁存 LSB	8 位数据								R/W	0x01
	(DLAB=1)											
0xE000C004	U0IER	U0 中断使能	0	0	0	0	0	使能 Rx	使能	使能 Rx	R/W	0
	(DLAB=0)							线状态	THRE	数据		
								Int.	Int.	Av.Int.		
	U0DLM	U0 除数锁存 MSB	8 位数据								R/W	0
	(DLAB=1)											
0xE000C008	U0IIR	U0 中断 ID	FIFO 使能		0	0	IIR3	IIR2	IIR1	IIR0	RO	0x01
	U0FCR	U0 FIFO 控制	Rx 触发		-	-	-	U0 Tx	U0 Rx	U0	wo	0
								FIFO	FIFO	FIFO		
								复位	复位	使能		
0xE000C00C	U0LCR	U0 线控制	DLAB	设置	奇偶	偶选	奇偶例	停止位	字长度选	怿	R/W	0
				间隔	固定	择	能	个数				
0xE000C014	U0LSR	U0 线状态	RxFIFO	TEMT	THRE	BI	FE	PE	OE	DR	RO	0x60
			错误									
0xE000C01C	U0SCR	U0 高速缓存	8位数据								R/W	0
UART1			1									1
0xE0010000	U1RBR	U1 接收缓冲	8 位数据								R0	未定义
	(DLAB=0)											
	U1THR	U1 发送保持	8位数据								WO	NA
	(DLAB=0)											
	UIDLL	U1 除数锁存 LSB	8位数据								R/W	0x01
	(DLAB=1)			ı	1		T		ı	T		
0xE0010004	U1IER	U1 中断使能	0	0	0	0	使能	使能 Rx	使能	使能	R/W	0
	(DLAB=0)						Modem	线 状 态	THRE	Rx 数据		
							状态	Int.	Int.	Av.Int.		
							Int.					
	U1DLM	U1 除数锁存 MSB	8位数据								R/W	0
	(DLAB=1)						1 1			1		
0xE0010008	U1IIR	U1 中断 ID	FIFO 使能		0	0	IIR3	IIR2	IIR1	IIR0	RO	0x01
	U1FCR	U1 FIFO 控制	Rx 触发		-	-	-	U1 Tx	U1 Rx	U1 FIFO	WO	0
								FIFO 复位	FIFO 复	使能		
		15.13.53				man and a second			位	<u></u>		
0xE001000C	U1LCR	U1 线控制	DLAB	设置间		偶选择	奇 偶	停止位个	字长度选	择	R/W	0
				隔	固定		使能	数		1		
0xE0010010	U1MCR	U1 Modem 控制	0	0	0	回送	0	0	RTS	DTR	R/W	0

续表 2

地址偏移	名称	描述	MSB							LSB	访问	复位值
0xE0010014	U1LSR	U1 线状态	Rx	TEMT	THRE	BI	FE	PE	OE	DR	RO	0x60
			FIFO									
			错误									
0xE001001C	U1SCR	U1 高速缓存	8 位数捷	i						•	R/W	0
0xE0010018	U1MSR	U1 Modem 状态	DCD	RI	DSR	CTS	Delta DCD	后沿RI	Delta DSR	Delta CTS	RO	0
PWM										•	•	
0xE0014000	PWMIR	PWM 中断	-	-	-	-	-	MR6	MR5	MR4	R/W	0
								Int.	Int.	Int.		
			-	-	-	-	MR3	MR2	MR1	MR0		
							Int.	Int.	Int.	Int.		
0xE0014004	PWMTCR	PWM 定时器控制	-	-	-	-	PWM	-	CTR	CTR	R/W	0
							使能		复位	使能		
0xE0014008	PWMTC	PWM 定时器计数器	32 位数	据	u.	u.	u.	ı		I.	R/W	0
0xE001400C	PWMPR	PWM 预分频	32 位数	据							R/W	0
0xE0014010	PWMPC	PWM 预分频器计数器	32 位数	据							R/W	0
0xE0014014	PWMMCR	PWM 匹配控制	11 位保旨	留(-)		Stop on	Reset	Int. on	Stop on	Reset	R/W	0
						MR6	onMR6	MR6	MR5	onMR5		
			Int. on	Stop on	Reset	Int. on	Stop on	Reset	Int. on	Stop on		
			MR5	MR4	onMR4	MR4	MR3	onMR3	MR3	MR2		
			Reset	Int. on	Stop on	Reset	Int. on	Stop on	Reset	Int. on		
			onMR2	MR2	MR1	onMR1	MR1	MR0	onMR0	MR0		
0xE0014018	PWMMR0	PWM 匹配寄存器 0	32 位数扫	居	•	•	•				R/W	0
0xE001401C	PWMMR1	PWM 匹配寄存器 1	32 位数扫	居							R/W	0
0xE0014020	PWMMR2	PWM 匹配寄存器 2	32 位数扫	居							R/W	0
0xE0014024	PWMMR3	PWM 匹配寄存器 3	32 位数扫	居							R/W	0
0xE0014040	PWMMR4	PWM 匹配寄存器 4	32 位数扫	居							R/W	0
0xE0014044	PWMMR5	PWM 匹配寄存器 5	32 位数扫	居							R/W	0
0xE0014048	PWMMR6	PWM 匹配寄存器 6	32 位数扫	居							R/W	0
0xE001404C	PWMPCR	PWM 控制	-	ENA6	ENA5	ENA4	ENA3	ENA2	ENA1	-	R/W	0
			-	SEL6	SEL5	SEL4	SEL3	SEL2	SEL1	-		
0xE0014050	PWMLER	PWM 锁存使能	-	使 能	使 能	使 能	使 能	使 能	使 能	使 能	R/W	0
				PWM	PWM	PWM	PWM	PWM	PWM	PWM		
				M6 锁	M5 锁	M4 锁	M3 锁	M2 锁	M1 锁	M0 锁		
				存	存	存	存	存	存	存		
I2C	1		1	1	1	1	1	1	1	1	I	
0xE001C000	I2CONSET	I2C 控制设置	-	I2EN	STA	STO	SI	AA	-	-	R/W	0
0xE001C004	I2STAT	I2C 状态	5 位状态	<u> </u>	1	1	1	0	0	0	RO	0xF8
UXEUUTCUU4									1	1	1	i .
0xE001C004	I2DAT	I2C 数据	8 位数据	!							R/W	0

地址偏移	名称	描述	MSB							LSB	访问	复位值
0xE001C010	12SCLH	SCL 占空比寄存器高半字	16 位数	据							R/W	0x04
0xE001C014	I2SCLL	SCL 占空比寄存器低半字	16 位数	据							R/W	0x04
0xE001C018	I2CONCLR	I2C 控制清零	-	I2ENC	STAC	-	SIC	AAC	-	-	wo	NA
SPI0				•	•	•				•		
0xE0020000	S0SPCR	SPI0 控制	SPIE	LSBF	MSTR	CPOL	СРНА	-	-	-	R/W	0
0xE0020004	SOSPSR	SPI0 状态	SPIF	WCOL	ROVR	MODF	ABRT	-	-	-	RO	0
0xE0020008	S0SPDR	SPI0 数据	8 位数捷	f	•	•				•	R/W	0
0xE002000C	S0SPCCR	SPI0 时钟计数器	8 位数捷	f							R/W	0
0xE002001C	SOSPINT	SPI0 中断标志	-	-	-	-	-	-	-	SPI Int.	R/W	0
SPI1											•	
0xE0030000	S1SPCR	SPI1 控制	SPIE	LSBF	MSTR	CPOL	СРНА	-	-	-	R/W	0
0xE0030004	S1SPSR	SPI1 状态	SPIF	WCOL	ROVR	MODF	ABRT	-	-	-	RO	0
0xE0030008	S1SPDR	SPI1 数据	8 位数捷	f							R/W	0
0xE003000C	S1SPCCR	SPI0 时钟计数器	8 位数捷	f							R/W	0
0xE003001C	S1SPINT	SPI1 中断标志	-	-	-	-	-	-	-	SPI Int.	R/W	0
RTC												
0xE0024000	ILR	中断位置	-	-	-	-	-	-	RTCALF	RTCCIF	R/W	*
0xE0024004	CTC	时钟节拍计数器	15 位数	据			-				RO	*
0xE0024008	CCR	时钟控制	-	-	-	-	CTTEST CTCRST CLKEN				R/W	*
0xE002400C	CIIR	计数器递增中断寄存器	IM	IM	IM	IM	IM	IM	IM	IM	R/W	*
			YEAR	MON	DOY	DOW	DOM	HOUR	MIN	SEC		
0xE0024010	AMR	报警屏蔽	AMR	AMR	AMR	AMR	AMR	AMR	AMR	AMR	R/W	*
			YEAR	MON	DOY	DOW	DOM	HOUR	MIN	SEC		
0xE0024014	CTIME0	完整时间寄存器 0	-	-	-	-	-	星期(3	位)		RO	*
			-	-	-	小时 (5	(位)					
			-	-	分(6位	L)						
			-	-	秒 (6位	L)						
0xE0024018	CTIME1	完整时间寄存器 1	-	-	-	-					RO	*
			年(12个	位)								
			-	-	-	-	月(4位	7)				
			-	-	-	日(月旬	分)(5位)				
0xE002401C	CTIME2	完整时间寄存器 2	20 位保	留 (-)			日 (年)	(12位)			RO	*
0xE0024020	SEC	秒寄存器	-	-	6 位数据	f					R/W	*
0xE0024024	MIN	分寄存器	-	-	6 位数据	f						*
0xE0024028	HOUR	小时寄存器	-	-	-	5 位数据	据			R/W	*	
0xE002402C	DOM	日期(月)寄存器	-	-	-	5 位数据	Ē				R/W	*
0xE0024030	DOW	星期寄存器	-	-	-	-	-	3 位数据	i		R/W	*
0xE0024034	DOY	日期(年)寄存器	7位保留	(-)	_	_	9 位数据	Ę			R/W	*
0xE0024038	MONTH	月寄存器	-	-	-	-	4 位数据	Ę			R/W	*
0xE002403C	YEAR	年寄存器	4位保留	(-)		12 位数:	据				R/W	*

地址偏移	名称	描述	MSB							LSB	访问	复位值
0xE0024060	ALSEC	秒报警值	-	-	6 位数	据					R/W	*
0xE0024064	ALMIN	分报警值	-	-	6 位数	6 位数据						*
0xE0024068	ALHOUR	小时报警值	-	-	-	5 位数捷	i i				R/W	*
0xE002406C	ALDOM	日期(月)报警值	-	-	-	5 位数捷	i i				R/W	*
0xE0024070	ALDOW	星期报警值	-	-	-	-	-	3 位数据			R/W	*
0xE0024074	ALDOY	日期(年)报警值	7 位保留	(-)		9 位数捷	i i	u e			R/W	*
0xE0024078	ALMON	月报警值-	-	-	-	-	4 位数据	Ē.			R/W	*
0xE002407C	ALYEAR	年报警值	4 位保留	(-)	12 位数	数据	•				R/W	*
0xE0024080	PREINT	预分频值整数部分	3 位保留	(-)	13 位数	数据					R/W	0
0xE0024084	PREFRAC	预分频值小数部分	-	15 位数	数据						R/W	0
GPIO PORTO												
0xE0028000	IO0PIN	GPIO 0 管脚值	32 位数:	据							RO	NA
0xE0028004	IO0SET	GPIO 0 输出设置	32 位数:	据							R/W	0
0xE0028008	IO0DIR	GPIO 0 方向控制	32 位数:	据							R/W	0
0xE002800C	IO0CLR	GPIO 0 输出清零	32 位数:	据							wo	0
GPIO PORT1												
0xE0028010	IO1PIN	GPIO 1 管脚值	32 位数:	据							RO	NA
0xE0028014	IO1SET	GPIO 1 输出设置	32 位数据						R/W	0		
0xE0028018	IO0DIR	GPIO 1 方向控制	32 位数:	据							R/W	0
0xE002801C	IO1CLR	GPIO 1 输出清零	32 位数:	据							wo	0
GPIO PORT2												
0xE0028020	IO2PIN	GPIO 2 管脚值	32 位数	据							RO	NA
0xE0028024	IO2SET	GPIO 2 输出设置	32 位数	据							R/W	0
0xE0028028	IO2DIR	GPIO 2 方向控制	32 位数	据							R/W	0
0xE002802C	IO2CLR	GPIO 2 输出清零	32 位数	据							wo	0
GPIO PORT3												
0xE0028030	IO3PIN	GPIO 3 管脚值	32 位数	据							RO	NA
0xE0028034	IO3SET	GPIO 3 输出设置	32 位数	据							R/W	0
0xE0028038	IO3DIR	GPIO 3 方向控制	32 位数:	据							R/W	0
0xE002803C	IO3CLR	GPIO 3 输出清零	32 位数:	据							wo	0
管脚连接模块												
0xE002C000	PINSEL0	管脚功能选择寄存器 0	32 位数据						R/W	0		
0xE002C004	PINSEL1	管脚功能选择寄存器 1	32 位数:	据							R/W	0
0xE002C014	PINSEL2	管脚功能选择寄存器 2	-								R/W	0
			24 位管	脚配置	数据(1	144 脚封装	불)					
			保留位	(64 脚	封装)							
							配置数	据	-			

ADCR	LT O DANKI										
ADCR	r a debuted										
	ADC 控制	-				EDGE	START			R/W	01
		TEST1:0		PDN	-	CLKS	I		BURST		
		8 位数据		ı							
		8 位数据									
ADDR	ADC 数据	DONE	OVER	-			CHN			R/W	X
			RUN								
		-									
		10 位数排	居								
				-							
MAMCR	MAM 控制	-	-	-	-	-	-	2 位数捷	1	R/W	0
MAMTIM	MAM 时间控制	-	-	-	-	-	3 位数据			R/W	0x07
MEMMAP	存储器映射控制	-	-	-	-	-	-	2 位数捷	i	R/W	0
PLLCON	PLL 控制	-	-	-	-	-	-	PLLC	PLLE	R/W	0
PLLCFG	PLL 配置	-	2 位数	据 PSEL	5 位数据1	MSEL				R/W	0
PLLSTAT	PLL 状态	-	-	-	-	-	PLOCK	PLLC	PLLE	RO	0
		-	2 位数	据 PSEL	5 位数据1	MSEL					
PLLFEED	PLL 馈送	8 位数据			_		1		1	WO	NA
PCON	功率控制	-	-	-	-	-	-	PD	IDL	R/W	0
PCONP	外设功率控制	19 位保旨	留(-)	1	PCAD	-	PCSPI1	PCRTC	PCSPI0	R/W	0x3BE
		PC	-	PC	PC	PC	PC	PC	-		
		I2C		PWM0	UART1	UART	TIM1	TIM0			
						0					
		-	-	-	-	-			· 		0
		-	-	-	-	-	EINT2	EINT1	EINT0	R/W	0
EXTWAKE	外部中断唤醒	-	-	-	-	-	EXT	EXT	EXT	R/W	0
							WAKE2		WAKE0		
EVEN CODE	LI 소마 너, Net Lebt — Net Leb		1			EV.	EX/		EXC	D 444	
EXIMODE	外部中断模式奇仔裔	-	-	-	-					R/W	0
							MODE2		MODEO		
EXTPOLAR	外部中断极性客左哭	_	1.	_			FXT		FXT	R/W	0
EXTFOLAR	71中中则似注可行命	-	-	-	-					K/ W	0
							1 OLAK2		TOLARO		
器 - EMC				<u> </u>	1	L	[[<u> </u>	<u> </u>
BCFG0	存储器组0配置寄存器	AT		May Bo	OOT1:0	BM	WP	WPER	BUSERR	R/W	0x0000
				MW(B)			R			FBEF
		-	-	-	-	-	-	-	-		
		WST2		<u> </u>	<u> </u>	<u> </u>	RBLE	WST1	<u> </u>		
					-	IDCY	<u> </u>	<u> </u>			
	MAMCR MAMTIM MEMMAP PLLCON PLLCFG PLLSTAT PLLFEED PCON PCONP VPBDIV EXTINT EXTWAKE EXTMODE EXTPOLAR	MAMCR MAM 控制 MAMTIM MAM 时间控制 PLLCON PLL 控制 PLLCFG PLL 配置 PLLSTAT PLL 状态 PLLFEED PLL 锁送 PCON 功率控制 PCONP 外设功率控制 VPBDIV VPB 分频器控制 EXTINT 外部中断标志 EXTWAKE 外部中断模式寄存器 EXTPOLAR 外部中断极性寄存器	MAMCR MAM 控制	MAMCR MAM 控制	RUN						

续表 2

地址偏移	名称	描述	MSB							LSB	访问	复位值
0xFFE00004	BCFG1	存储器组1配置寄存器	AT		MW(0	x2)	ВМ	WP	WPERR	BUSERR	R/W	0x2000FBEF
			-	-	-	-	-	-	-	-		
			WST2	1			ı	RBLE	WST1			
			WST1			-	IDCY	Y				
0xFFE00008	BCFG2	存储器组2配置寄存器	AT		MW(0	x1)	BM	WP	WPERR	BUSERR	R/W	0x1000FBEF
			-	-	-	-	-	-	-	-		
			WST2		•	•		RBLE	WST1	•		
			WST1			-	IDCY	•	•			
0xFFE0000C	BCFG3	存储器组3配置寄存器	AT		MW(0	x0)	BM	WP	WPERR	BUSERR	R/W	0x0000FBEF
			-	-	-	-	-	-	-	-		
			WST2		•	•		RBLE	WST1	•		
			WST1			-	IDCY	•	•			
向量中断控制	器 - VIC					•						
0xFFFFF000	VICIRQ Status	IRQ 状态寄存器	32 位数	数据							RO	0
0xFFFFF004	VICFIQStatus	FIQ 状态寄存器	32 位数	数据							RO	0
0xFFFFF008	VICRawIntr	所有中断状态	32 位数据							RO	0	
0xFFFFF00C	VICIntSelect	中断选择	32 位数	32 位数据							R/W	0
0xFFFFF010	VICIntEnable	中断使能	32 位数	32 位数据							R/W	0
0xFFFFF014	VICIntEnClear	中断使能清零	32 位数据						wo	0		
0xFFFFF018	VICSoftInt	软件中断	32 位数	数据							R/W	0
0xFFFFF01C	VICSoftIntClear	软件中断清零	32 位数	数据							w	0
0xFFFFF020	VICProtection	保护使能	32 位数	数据							R/W	0
0xFFFFF030	VICVectAddr	向量地址	32 位数	数据							R/W	0
0xFFFFF034	VICDefvect	默认向量地址	32 位数	数据							R/W	0
	Addr											
0xFFFFF100	VICVectAddr0	向量地址 0	32 位数	数据							R/W	0
0xFFFFF104	VICVectAddr1	向量地址 1	32 位数	数据							R/W	0
:												
0xFFFFF13C	VICVectAddr15	向量地址 15	32 位数据					R/W	0			
0xFFFFF200	VICVectCntl0	向量控制 0 寄存器	-	-	1位	5 位数据	Ē.				R/W	0
					数据							
0xFFFFF204	VICVectCntl1	向量控制1寄存器	-	-	1位	5 位数据	1				R/W	0
					数据							
:												
0xFFFFF23C	VICVectCntl15	向量控制 15 寄存器	-	-	1 位	5 位数据	1				R/W	0
					数据							

2. LPC2114/2124/2212/2214 存储器

寻址

2.1 存储器映射

LPC2114/2124/2212/2214 包含几个不同的存储器组,见以下各图。图 2 所示为复位后从用户角度所看到的整个地址空间映射。中断向量支持地址的重新映射,详见后面的章节。

图 2 系统存储器映射

注:

- -AHB 部分是128×16kB 的范围 (共2MB)。
- -VPB 部分是 128×16kB 的范围 (共 2MB)。

图 3 外设存储器映射

图 3~5 显示了从不同角度所观察到的外设地址空间。AHB 和 VPB 外设区域都为 2M 字节,可各自分配最多 128 个外设。每个外设空间的规格都为 16k 字节。这样可简化每个外设的地址译码。所有外设寄存器不管规格大小,都按照字地址进行分配(32 位 t 边界)。这样就不再需要使用字节定位的硬件来进行小边界的字节(8 位)或半字(16 位)访问。不管字还是半字寄存器都是一次性访问。例如,不可能对一个字寄存器的最高字节执行单独的读或写操作。

图 4 AHB 外设映射

图 5 VPB 外设映射

2.2 LPC2114/2124/2212/2214 存储器重新映射和 BOOT BLOCK

2.2.1 存储器映射概念和操作模式

LPC2114/2124/2212/2214 的基本的概念是:每个存储器组在存储器映射中都有一个"物理上的"位置。它是一个地址范围,该范围内可写入程序代码。每一个存储器空间的容量都永久固定在同一个位置,这样就不需要将代码设计成在不同地址范围内运行。

由于 ARM7 处理器上的中断向量位置(地址 0x0000 0000~0x0000 001C, 见表 3), Boot Block 和 SRAM 空间的一小部分需要重新映射来实现在不同操作模式下对中断的使用, 见表 4。中断的重新映射通过存储器映射控制特性来实现,详见*系统控制模块*一节。

地址	异常
0x0000 0000	复位
0x0000 0004	未定义指令
0x0000 0008	软件中断
0x0000 000C	预取指中止(从存储器取指出错)
0x0000 0010	数据中止(数据访问存储器出错)
0x0000 0014	保留 *
0x0000 0018	IRQ
0x0000 001C	FIQ

表 3 ARM 异常向量位置

^{*} 在ARM 文档中标识为保留,该位置被Boot 装载程序用作有效的用户程序关键字。详见Flash 存储器系统和编程的相关内容。

模式	激活	用途
Boot装载程序模式	由任何复位硬件激活	在任何复位后都会执行 Boot 装载程序。Boot Block 中断
		向量映射到存储器的底部以允许处理异常并在 Boot 装
		载过程中使用中断。
用户 Flash 模式	由 Boot 代码软件激活	当在存储器中识别了一个有效的用户程序标识并且
		Boot 装载操作未被执行时,由 Boot 装载程序启动。中
		断向量没有重新映射,它位于 Flash 存储器的底部。
用户 RAM 模式	由用户程序软件激活	由用户程序激活。中断向量重新映射到静态 RAM 的底
		部。
用户外部模式	复位时 BOOT1:0 不为 11 时激活	当一个或两个 BOOT 管脚在 RESET 低电平结束时为低
		时由 Boot 装载程序激活。中断向量从外部存储器映射
		的底部重新映射。注:该模式只适用于 LPC2212/2214!

表 4 LPC2114/2124/2212/2214 存储器映射模式

2.2.2 存储器的重新映射

为了与将来器件相兼容,整个 Boot Block 都被映射到片内存储器空间的顶端。在这种方式下,使用较大或较小的 Flash 模块都不需要改变 Boot Block(需要改变 Boot 装载程序自身的代码)的位置或改变 Boot Block 中断向量的映射。除了中断向量之外的存储器空间都保持固定的位置。图 6 所示为使用上述定义的模式映射的片内存储器。

存储器重新映射的部分允许在不同模式下处理中断,它包括中断向量区(32 字节)和额外的 32 字节,一共是 64 字节。重新映射的代码位置与地址 0x0000 0000~0x0000 003F 重叠。一个位于Flash存储器中的典型用户程序可以将整个FIQ 处理程序放置在地址 0x0000 001C 而不需要考虑存储器的边界。包含在 SRAM、外部存储器和 Boot Block 中的向量必须包含跳转到实际中断处理程序的分支或者其它执行跳转到中断处理程序的转移指令。

选择这种配置有三个原因:

- 1. 使Flash 存储器中FIO 处理程序不必考虑因为重新映射所导致的存储器边界问题。
- 2. 用来处理代码空间中段边界仲裁的 SRAM 和 Boot Block 向量的使用大大减少。
- 3. 为超过单字转移指令范围的跳转提供空间来保存常量

重新映射的存储器组,包括 Boot Block 和中断向量,除了重新映射的地址外,仍然继续出现在它们最初的位置。

有关重新映射及其举例详见系统控制模块。

注:存储器组并不是按比例绘制的。

图 6 显示已重新映射和可重新映射区域的低存储器空间

2.3 预取指中止和数据中止异常

如果试图访问一个保留地址或未分配区域的地址,LPC2114/2124/2212/2214 将产生适当的总线周期中止异常。这些区域包括:

- 特定的 ARM 器件所没有的存储器映射区域。对于 LPC2114/2124/2212/2214, 它 们是:
 - 一片内非易失性存储器与片内 SRAM 之间的地址空间,在图 2 和图 6 中标为"保留给片内存储器"。对于 128kB Flash 器件来说,它们是 0x0002 0000 到 0x3FFF FFFF 的存储器地址空间;而对于 256kB Flash 器件来说,它们是 0x0004 0000 到 0x3FFF FFFF 的存储器地址空间。
 - 一片内静态 RAM 与外部存储器之间的地址空间,在图 2 中标为"保留给片内存储器"。地址范围从 0x4000 3FFF 到 0x7FFF DFFF。
 - -外部存储器,但由 144 脚封装中 EMC 提供的除外。
 - -AHB 和 VPB 空间的保留区域,见图 3。
- 未分配的 AHB 外设空间,见图 4。
- 未分配的 VPB 外设空间,见图 5。

对于这些区域,对数据的访问和对指令的取指都会产生异常。此外,对 AHB 或 PVB 外设地址执行任何指令取指都会导致产生预取指中止异常。

在现有的 VPB 外设地址空间内,对未定义地址的访问不会产生数据中止异常。每个外设内的地址译码被限制为外设内部需要判别的已定义寄存器。例如,对地址 0xE000D000 (UART0 空间内一个未定义的地址)的访问可能导致对定义在地址 0xE000C000 处的寄存器进行访问。一个外设内的这样一种地址混淆在LPC2114/2124/2212/2214 文档中没有定义,并且它也不是一个被 LPC2114/2124/2212/2214 支持的特性。

需要注意的是,只有在试图执行从非法地址取指的指令时,ARM 才会将预取指中止标志与相关的指令(没有意义的指令)一起保存到流水线并对中止进行处理。当代码在非常靠近存储器边界执行时,这样防止了由预取指所导致的意外中止。

3. 外部存储器控制器 (EMC)

只有 LPC2212 和 LPC2214 含有该模块。

3.1 特性

- 支持静态存储器映射器件,包括 RAM、ROM、Flash、Burst ROM 和一些外部 I/O 器件。
- 在未锁定存储器子系统中可执行异步页模式读操作。
- 可对突发模式 ROM 器件进行异步突发模式读访问。
- 可对高达 4 个存储器组进行单独配置,每个存储器组可包含多达 16M 字节。
- 总线往返(空闲)周期(1~16)可编程。

- 可对静态 RAM 器件的读和写 WAIT 状态(高达 32 个)进行编程。
- 可编程 Burst ROM 器件的初始和连续读 WAIT 状态。
- 可编程写保护。
- 可编程突发模式的操作。
- 可编程外部数据总线宽度(8、16或32位)。
- 可编程读字节定位使能控制。

3.2 概述

外部静态存储器控制器是一个 AMBA AHB 从机模块,它为 AMBA AHB 系统总线和外部(片外)存储器器件提供一个接口。该模块同时支持多达 4 个单独配置存储器组。每个存储器组都支持 SRAM、ROM、Flash EPROM、Burst ROM 存储器或一些外部 I/O 器件。

每个存储器组的总线宽度为8、16或32位。

只有 LPC2212 和 LPC2214 含有该模块。144 脚封装器件的管脚地址输出线是 A[23:0], 其中地址位 A[25:24]用于 4 个存储器组的译码。4 个存储器组的有效区域位于外部存储器 的起始部分,如图 2 所示,但在 BOOT[1:0]的状态控制下,Bank 0 可用于初始引导。

表 5 外部存储器组的地址范围(仅适用于 LPC2212/2214)

Bank 地址范围 配置寄存器

Bank	地址范围	配置寄存器
0	8000 0000 — 80FF FFFF	BCFG0
1	8100 0000 — 81FF FFFF	BCFG1
2	8200 0000 — 82FF FFFF	BCFG2
3	8300 0000 — 83FF FFFF	BCFG3

3.3 管脚描述

表 6 外部存储器控制器管脚描述

管脚名称	类型	管脚描述
D[31:0]	输入/输出	外部存储器数据线
A[23:0]	输出	外部存储器地址线
OE	输出	输出使能信号, 低有效
BLS[3:0]	输出	字节定位选择信号, 低有效
WE	输出	写使能信号, 低有效
CS[3:0]	输出	芯片选择信号, 低有效

3.4 寄存器描述

外部存储器控制器包含4个寄存器,如表7所示。

表7 外部存储器控制器寄存器

名称	描述	访问	复位值(见表9)	地址
BCFG0	存储器组0的配置寄存器	读/写	0x0000 FBEF	0xFFE00000
BCFG1	存储器组1的配置寄存器	读/写	0x2000 FBEF	0xFFE00004
BCFG2	存储器组2的配置寄存器	读/写	0x1000 FBEF	0xFFE00008
BCFG3	存储器组3的配置寄存器	读/写	0x0000 FBEF	0xFFE0000C

每个寄存器必须为对应的存储器组选择以下选项:

- 一个存储器组内部的读写访问之间以及访问一个存储器组和访问另一个存储器组之间需要间隔的空闲时钟周期个数(1~17个时钟),以避免器件间总线的相互争用
- 读访问长度, 但对 Burst ROM 的连续读访问除外(3~35 个时钟)
- 写访问长度(3~19个时钟)
- 存储器组是否写保护
- 存储器组的总线宽度: 8、16 或 32 位

3.4.1 存储器组配置寄存器 0-3 (BCFG0-3 - 0xFFE00000-0C)

表 8 存储器组配置寄存器 0-3 (BCFG0-3 - 0xFFE00000-0C)

BCFG0-3	名称	功能	复位值
		该域控制着一个存储器组内部的读写访问之间以及访问一个存储器组和访	
3:0	IDCY	问另一个存储器组之间 EMC 需要给定的"空闲"CCLK 周期最小数目,以	1111
		避免器件间总线的相互争用。空闲 CCLK 周期数为该域的值加 1。	
4	保留	保留,用户软件不应向其写入1。从保留位读出的值未被定义。	NA
9:5	WST1	该域控制着读访问的长度(对 Burst ROM 的连续读访问除外)。读访问的长	11111
9:3	WSII	度以 CCLK 周期来计量,其值是该域的值加 3。	11111
		当存储器组由字节宽度或未按字节区分的器件组成时该位为0,这时在读访	
10	RBLE	问时 EMC 将 BLS3:0 输出拉高;当存储器组由含有字节选择输入的 16 位和	0
		32 位宽器件组成时该位为 1,这时在读访问时 EMC 将 BLS3:0 输出拉低。	
		对于 SRAM 区,该域控制着写访问的长度,写访问长度由以下几部分组成:	
		● 地址建立的 1 个 CCLK 周期(CS、BLS 和 WE 为高)	
15:11	WST2	● (该域的值加 1)个 CCLK 周期(地址有效,CS、BLS 和 WE 为低)	11111
13.11	WSIZ	● 1 个 CCLK 周期(地址有效,CS 为低,BLS 和 WE 为高)	11111
		对于 Burst ROM 区,该域控制着连续访问的长度,其值为(该域的值加 1)	
		个 CCLK 周期。	
16:23	保留	保留,用户软件不应向其写入1。从保留位读出的值未被定义。	NA
		如果 EMC 检测到一个大于 32 位数据访问的 AMBA 请求时该位被置位。这	
24	BUSERR	也是惟一一种可知的该位被置位的情况。ARM7TDMI-S 不会出现这样的请	0
		求。	
25	WPERR	如果试图对一个WP位为1的存储器组进行软件写入操作时该位置位。通过	0
	WIEKK	写入1将该位清零。	U

续表 8

BCFG0-3	名称	功能	
26	WP	该位为1时,表明存储器组写保护。	0
27	BM	该位为 1 时,表明这是一个 Burst ROM 区。	0
29:28	MANY	该域控制着存储器组数据总线的宽度: 00=8位,01=16位,10=32位,	见表 9
	MW	11=保留。	光衣9
31:30	AT	该域通常写入00	00

下表所示为引导装载程序运行后的 BCFG0[29:28]的状态,硬件复位后,其值为 10。

表 9 复位时默认的存储器宽度

Bank	复位时 BOOT[1:0]的状态	BCFG[29:28]复位值	存储器宽度
0	LL	00	8位
0	LH	01	16 位
0	HL	10	32 位
1	XX	10	32 位
2	XX	01	16 位
3	XX	00	8位

3.5 外部存储器接口

外部存储器接口取决于存储器组宽度(32、16 或 8 位,由 BCFG 寄存器的 MW 位选择)。而且,存储器芯片的选择也需要对 BCFG 寄存器的 RBLE 位进行适当的设置。RBLE=0时选择 8 位的外部存储器;RBLE=1 时,存储器芯片必须能够接收 16 或 32 位的数据。

如果存储器组配置成 32 位宽,地址线 A0 和 A1 就可用作非地址线。如果存储器组配置成 16 位宽,则不需要 A0; 8 位宽的存储器组只需要使用 A0。通过管脚功能选择寄存器 2(PINSEL2 寄存器)的位 23 和 24 来对 A1 和/或 A0 线来进行配置,从而实现 A0/A1 的地址或非地址功能。

下面各图中的符号 "a_b" 表示数据总线的最高位地址线,符号 "a_m" 表示使用外部存储器接口的存储器芯片的最高位地址线。

a) 32 位宽存储器组连接 8位的存储器芯片

图 7 32 位存储器组的外部存储器接口

a) 16 位宽存储器组连接8位的存储器芯片

a) 16位宽存储器组连接16位的存储器芯片

图 8 16 位存储器组的外部存储器接口

图 9 8 位存储器组的外部存储器接口

3.6 典型总线时序

下图所示为典型的外部存储器读/写访问时序。XCLK 是从 P3.23 输入的时钟信号。当 P3.23 脚的信号不被外部存储器用作时钟信号时,在典型的外部存储器读/写访问中,它还可用作时间基准(XCLK 和 CCLK 必须设定成相同的频率)。

图 10 外部存储器读访问(WST1=0和 WST1=1两种情况)

图 11 外部存储器写访问(WST2=0 和 WST2=1 两种情况)

图 10 和图 11 所示是典型的外部存储器读/写访问时序。因而,在某些特殊情况下会有所变化。

例如,当对刚被选中的存储器组执行首次读访问时, CS 和 OE 线的低电平可能比图 10 中早出现 1 个 XCLK 周期。

同样,在对 SRAM 的几次连续写访问时序中,最后一次写访问的时序与图 11 给出的相同。但另一方面,前导写周期的数据有效时间会长 1 个周期。单个的写访问时序也将与图 11 的其中一个相同。

3.7 外部存储器选择

根据 EMC 操作的描述和常用的外部存储器(合适的读和写访问时间 t_{AA} 和 t_{WRITE}),可构造出下表并用于外部存储器的选择。 t_{CYC} 表示单个 XCLK 周期(见图 10 和 11)。fmax表示选用了外部存储器的系统能得到的最大 CCLK 频率。

表 10 外部存储器和系统的性能指标

访问时序	最大频率	WST 设置	所需的存储器访问时间
		(WST>=0; 取整数)	
标准读	$fmax \le \frac{2 + WST1}{t_{RAM} + 20ns}$	$WST1 >= \frac{t_{RAM} + 20ns}{t_{CYC}} - 2$	$t_{RAM} <= t_{CYC} * (2+WST1) - 20ns$
标准写	$fmax <= \frac{1 + WST2}{t_{RAM} + 5ns}$	WST2>= $\frac{t_{WRITE} - t_{CYC} + 5ns}{t_{CYC}}$	$t_{WRITE} <= t_{CYC} * (1 + WST2) - 5ns$

4. 系统控制模块

4.1 系统控制模块功能汇总

系统控制模块包括几个系统特性和控制寄存器,这些寄存器具有众多与特定外设器件 无关的功能。它们包括:

- 晶体振荡器
- 外部中断输入
- 存储器映射控制
- PLL
- 功率控制
- 复位
- VPB 分频器
- 唤醒定时器

每种类型的功能都有其自身的寄存器,不需要的位则定义为保留位。为了满足将来扩展的需要,无关的功能不共用相同的寄存器地址。

4.2 管脚描述

表 11 所示为系统控制模块功能相关的管脚。

表 11 管脚汇总

管脚名称	管脚方向	管脚描述			
X1	输入	晶振输入 一振荡器和内部时钟发生器电路的输入			
X2	输出	晶振输出 一振荡器放大器的输出			
		外部中断输入 0 一低有效的通用中断输入。该管脚可用于将处理器从空			
ED ITO	44.3	闲或掉电模式中唤醒。			
EINT0	输入	P0.1 和 P0.16 可用作 EINTO 功能。			
		复位后该管脚上立即出现的低电平被看作是一个起动 ISP 命令处理器			
		的外部硬件请求。有关 ISP 和 Flash 存储器的详细情况见 "Flash 存储器			

		系统和编程"一章。
EINT1	输入	外部中断输入 1-见上面的 EINTO 描述。
		P0.3 和 P0.14 可用作 EINT1 功能。

续表 11

管脚名称	管脚方向	管脚描述		
EINT2	输入	外部中断输入 2 一见上面的 EINTO 描述。P0.7 和 P0.15 可用作 EINT2 功能。		
EINT3	输入	外部中断输入 3-见上面的 EINTO 描述。P0.9, P0.20 和 P0.30 可用作 EINT3 功能。		
RESET	输入	外部复位输入一该管脚上的低电平将芯片复位,使 I/O 口和外设恢复其默认状态,		
		并使处理器从地址0开始执行程序。		

4.3 寄存器描述

所有寄存器不管规格大小都以字地址作为边界。这些寄存器的详细信息见相关功能的 描述。

表 12 系统控制寄存器汇总

名称	描述	访问	复位值*	地址
外部中断				
EXTINT	外部中断标志寄存器	R/W	0	0xE01FC140
EXTWAKE	外部中断唤醒寄存器	R/W	0	0xE01FC144
EXTMODE	外部中断方式寄存器	R/W	0	0xE01FC148
EXTPOLAR	外部中断极性寄存器	R/W	0	0xE01FC14C
存储器映射控制				
MEMMAP	存储器映射控制	R/W	0	0xE01FC040
锁相环				
PLLCON	PLL 控制寄存器	R/W	0	0xE01FC080
PLLCFG	PLL 配置寄存器	R/W	0	0xE01FC084
PLLSTAT	PLL 状态寄存器	RO	0	0xE01FC088
PLLFEED	PLL 馈送寄存器	WO	NA	0xE01FC08C
功率控制				
PCON	功率控制寄存器	R/W	0	0xE01FC0C0
PCONP	外设功率控制	R/W	0x3BE	0xE01FC0C4
VPB 分频器		•		
VPBDIV	VPB 分频器控制	R/W	0	0xE01FC100

复位值仅指已使用位中保存的数据,不包括保留位的内容。

4.4 晶体振荡器

当 1MHz~50MHz 频率范围内的一个占空比因数为 50-50 的信号从 XTAL1 脚输入到 LPC2114/2124/ 2212/2214 时,微控制器的内部振荡电路支持 1MHz~30MHz 的外部晶体。如果片内 PLL 系统或引导装载程序被使用,输入时钟频率将被限制到 10MHz~25MHz。

振荡器输出频率称为 Fosc, 为了便于频率等式的书写及本文档的描述, ARM 处理器

时钟频率称为 cclk。 F_{OSC} 和 cclk 的值相同,除非 PLL 运行连接。详见 PLL 一节。 LPC2114/2124/2212/2214 的振荡器可工作在两种模式下:从属模式和振荡模式。

从属模式下,输入时钟信号与一个 100pF (图 12 Cc) 相连,其幅值不少于 200mVrms。 X2 管脚不连接。如果选择从属模式,Fosc 信号(占空因数为 50-50)的频率被限制在 1MHz~50MHz。

振荡模式中使用的外部元件和模型见图 12 中的 b 和 c 图以及表 13。由于片内集成了反馈电阻,只需在外部连接一个晶体和电容 Cx1、Cx2 就可形成基本模式的振荡(基本频率用 L、 C_L 和 Rs 来表示)。图 12 中 c 图的电容 Cp 是并联封装电容,其值不能大于 7pF。参数 Fc、 C_L 、Rs 和 Cp 都由晶体制造商提供。

如果器件振荡器工作在振荡模式, Fosc 时钟限制在 1MHz~30MHz。

图 12 振荡器模式和模型: a)从属模式,b)振荡模式,c)外部晶体模型(用来评估 Cx1/x2 的值)

表 13 振荡模式下 Cx1/x2 的建议取值(晶体和外部元件参数)

基本振荡频率 Fc	晶体负载电容 CL	最大晶体串联电阻 Rs	外部负载电容 Cx1, Cx2
1∼5MHz	10pF	n.a.	n.a.
	20pF	n.a.	n.a.
	30pF	<300Ω	58pF, 58pF
5∼10MHz	10pF	<300Ω	18pF, 18pF
	20pF	<300Ω	38pF, 38pF
	30pF	<300Ω	58pF, 58pF
10∼15MHz	10pF	<300Ω	18pF, 18pF
	20pF	<220Ω	38pF, 38pF
	30pF	<140Ω	58pF, 58pF
15∼20MHz	10pF	<220Ω	18pF, 18pF
	20pF	<140Ω	38pF, 38pF
	30pF	<80Ω	58pF, 58pF
20~25MHz	10pF	<160Ω	18pF, 18pF
	20pF	<90Ω	38pF, 38pF
	30pF	<50Ω	58pF, 58pF
25~30MHz	10pF	<130Ω	18pF, 18pF
	20pF	<50Ω	38pF, 38pF
	30pF	n.a.	n.a.

图 13 Fosc 的选择

4.5 外部中断输入

LPC2114/2124/2212/2214 含有 4 个外部中断输入(作为可选的管脚功能)。外部中断输入可用于将处理器从掉电模式唤醒。

4.5.1 寄存器描述

外部中断功能具有 4 个相关的寄存器。EXTINT 寄存器包含中断标志。EXTWAKEUP 寄存器包含使能唤醒位,可使能独立的外部中断输入将处理器从掉电模式唤醒。EXTMODE 和 EXTPOLAR 寄存器用来指定管脚使用电平或边沿激活方式。

地址	名称	描述	访问
0. E01EG140	EXTENT	外部中断标志寄存器包含 ENITO,EINT1 和 EINT2 的中断标	R/W
0xE01FC140	EXTINT	志。见表 15。	K/W
0xE01FC144 EXTWAKE	EXTWAKE	外部中断唤醒寄存器包含 3 个用于控制外部中断是否将处	R/W
0xE01FC144	EAIWAKE	理器从掉电模式唤醒的使能位,见表 16。	IX/ VV
0xE01FC148	EXTMODE	外部中断方式寄存器控制每个管脚的边沿或电平激活。	R/W
0-E01EC14C	EVTDOLAD	外部中断极性寄存器控制由每个管脚的哪种电平或边沿来	R/W
0xE01FC14C	EXTPOLAR	产生中断。	K/W

表 14 外部中断寄存器

4.5.2 外部中断标志寄存器(EXTINT - 0xE01FC140)

当一个管脚选择使用外部中断功能时,对应在 EXTPOLAR 和 EXTMODE 寄存器中的位选择的电平或边沿将置位 EXTINT 寄存器中的中断标志。这样来向 VIC 提出中断请求,如果管脚中断使能,则产生中断。

通过向 EXTINT 寄存器的位 EINT0 \sim 位 EINT3 写入 1 来将其清零。电平激活方式下,该操作只有在管脚处于无效状态时才有效。

表 15 外部中断标志寄存器 (EXTINT- 0xE01FC140)

EXTINT	功能	描述	复位值
0	EINT0	电平激活方式下,如果管脚的 EINTO 功能被选用且管脚处于有效状态时,该位置位;边沿激活方式下,如果管脚的 EINTO 功能被选用且管脚上出现所选极性,该位置位。 有2个 I/O 口可选择用作 EINTO 功能 (见"管脚配置"中有关 P0.1 和P0.16 的描述)。 该位通过写入1清除,但电平激活方式下管脚处于有效状态的情况除外。	0
1	EINT1	电平激活方式下,如果管脚的 EINT1 功能被选用且管脚处于有效状态时,该位置位;边沿激活方式下,如果管脚的 EINT1 功能被选用且管脚上出现所选极性,该位置位。有 2 个 I/O 口可选择用作 EINT1 功能 (见"管脚配置"中有关 P0.3 和 P0.14 的描述)。 该位通过写入 1 清除,但电平激活方式下管脚处于有效状态的情况除外。	0
2	EINT2	电平激活方式下,如果管脚的 EINT2 功能被选用且管脚处于有效状态时,该位置位;边沿激活方式下,如果管脚的 EINT2 功能被选用且管脚上出现所选极性,该位置位。 有2个 I/O 口可选择用作 EINT2 功能 (见"管脚配置"中有关 P0.7 和P0.15 的描述)。 该位通过写入1清除,但电平激活方式下管脚处于有效状态的情况除外。	0
3	EINT3	电平激活方式下,如果管脚的 EINT3 功能被选用且管脚处于有效状态时,该位置位;边沿激活方式下,如果管脚的 EINT3 功能被选用且管脚上出现所选极性,该位置位。 有3个 I/O 口可选择用作 EINT0 功能(见"管脚配置"中有关 P0.9, P0.20和 P0.30的描述)。 该位通过写入1清除,但电平激活方式下管脚处于有效状态的情况除外。	0
7:4	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

4.5.3 外部中断唤醒寄存器(EXTWAKE - 0xE01FC144)

EXTWAKE 寄存器中的使能位允许外部中断将处理器从掉电模式唤醒。相关的 EINTn 功能必须映射到管脚才能实现掉电唤醒。但中断并不必要为了实现唤醒操作而在向量中断控制器中被使能。这样做的好处是允许外部中断输入将处理器从掉电模式唤醒,但不产生中断(只是简单地恢复操作),或者在掉电模式下使能中断而不会将处理器唤醒(这样,当应用中并不需要唤醒特性时,也不必关闭中断)。

表 16 外部中断唤醒寄存器(EXTWAKE - 0xE01FC144)

EXTWAKE	功能	描述	复位值
0	EXTWAKE0	该位为 1 时,使能 EINTO 将处理器从掉电模式唤醒。	0
1	EXTWAKE1	该位为 1 时,使能 EINT1 将处理器从掉电模式唤醒。	0
2	EXTWAKE2	该位为 1 时,使能 EINT2 将处理器从掉电模式唤醒。	0
3	EXTWAKE3	该位为 1 时,使能 EINT3 将处理器从掉电模式唤醒。	0
7:4	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

4.5.4 外部中断方式寄存器(EXTMODE - 0xE01FC148)

EXTMODE 寄存器中的位用来选择每个 EINT 脚是电平或边沿激活。只有选择用作 EINT 功能(见管脚连接模块一章)并已通过 VICIntEnable(见向量中断控制器(VIC)一章)使能的管脚才能产生外部中断功能的中断(当然,如果管脚选择用作其它功能,则产生其它功能的中断)。

注: 当某个中断在 VICIntEnable 中被禁能时,软件应该只改变 EXTMODE 寄存器中相应位的值。中断重新使能前,软件向 EXTINT 写入 1 来清除 EXTINT 位,EXTINT 位可通过改变激活方式来置位。

EXTMODE	功能	描述	复位值
0	EXTMODE0	该位为 0 时, EINTO 使用电平激活;该位为 1 时, EINTO 使用边沿	0
		激活。	
1	EXTMODE1	该位为 0 时, EINT1 使用电平激活;该位为 1 时, EINT1 使用边沿	0
		激活。	
2	EXTMODE2	该位为 0 时, EINT2 使用电平激活;该位为 1 时, EINT2 使用边沿	0
		激活。	
3	EXTMODE3	该位为 0 时, EINT3 使用电平激活;该位为 1 时, EINT3 使用边沿	0
		激活。	
7:4	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

表 17 外部中断方式寄存器(EXTMODE - 0xE01FC148)

4.5.5 外部中断极性寄存器(EXTPOLAR - 0xE01FC14C)

在电平激活方式中,EXTPOLAR 寄存器用来选择相应管脚是高电平或低电平有效。在边沿激活方式中,EXTPOLAR 寄存器用来选择管脚上升沿或下降沿有效。只有选择用作 EINT 功能(见管脚连接模块一章)并已通过 VICIntEnable(见向量中断控制器(VIC)一章)使能的管脚才能产生外部中断功能的中断(当然,如果管脚选择用作其它功能,则产生其它功能的中断)。

注: 当某个中断在 VICIntEnable 中被禁能时,软件应该只改变 EXTPOLAR 寄存器中相应位的值。中断重新使能前,软件向 EXTINT 写入 1 来清除 EXTINT 位,EXTINT 位可通过改变中断极性来置位。

EXTPOLAR	功能	描述	复位值
0	EXTPOLAR0	该位为0时,EINT0低电平或下降沿有效(由EXTMODE0决定)。	0
		该位为 1 时, EINTO 高电平或上升沿有效(由 EXTMODEO 决定)	
1	EXTPOLAR1	该位为0时,EINT1低电平或下降沿有效(由EXTMODE1决定)。	0
		该位为1时,EINT1高电平或上升沿有效(由EXTMODE1决定)。	
2	EXTPOLAR2	该位为0时,EINT2低电平或下降沿有效(由EXTMODE2决定)。	0
		该位为1时,EINT2高电平或上升沿有效(由EXTMODE2决定)。	
3	EXTPOLAR3	该位为0时,EINT3低电平或下降沿有效(由EXTMODE3决定)。	0
		该位为1时,EINT3高电平或上升沿有效(由EXTMODE3决定)。	
7:4	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

表 18 外部中断极性寄存器 (EXTPOLAR - 0xE01FC14C)

4.5.6 多个外部中断管脚

通过软件可选择使用管脚选择寄存器中 EINT3:0 的多个管脚,见管脚连接模块一章的描述。每个 EINT3:0 的外部中断逻辑从管脚的接收装置中接收与之相连的所有管脚的状态和信号(用来指示管脚是否选用 EINT 功能)。当多个管脚根据其方式位和极性位的不同进行选择时,由外部中断逻辑来处理:

- 低有效电平激活方式中,选用 EINT 功能的全部管脚的状态都连接到一个正逻辑与门。
- 高有效电平激活方式中,选用 EINT 功能的全部管脚的状态都连接到一个正逻辑或门。
- 边沿激活方式中,使用 GPIO 端口号最低的管脚,与管脚的极性无关。(边沿激活 方式中选择使用多个 EINT 管脚被看作编程出错。)

外部中断逻辑获取的是 EINTi 信号, 见下面的逻辑原理图 (图 14)。

当多个 EINT 管脚逻辑或时,可在中断服务程序中通过 IOOPIN 和 IO1PIN 寄存器从 GPIO 端口读出管脚状态来判断产生中断的管脚。

图 14 外部中断逻辑

4.6 存储器映射控制

存储器映射控制用于改变从地址 0x00000000 开始的中断向量的映射。这允许运行在不同存储器空间中的代码对中断进行控制。

4.6.1 存储器映射控制寄存器 (MEMMAP - 0xE01FC040)

表 19 MEMMAP 特	寄存器
---------------	-----

地址	名称	描述	访问
0xE01FC040	MEMMAP	存储器映射控制。选择从Flash Boot Block、用户Flash或RAM中读取ARM中断向量。	R/W

MEMMAP	功能	描述	复位值
		00: Boot 装载程序模式。中断向量从 Boot Block 重新映射。	
		01: 用户 Flash 模式。中断向量不重新映射, 它位于 Flash 中。	
		10: 用户 RAM 模式。中断向量从静态 RAM 重新映射。	
1:0	MAP1:0	11: 用户外部存储器模式。中断向量从外部存储器重新映射。	0
		该模式仅适用于 LPC2212/2214,LPC2114/2124 使用此	
		项功能时未设定该模式。	
		警告:不正确的设定会导致器件的错误操作。	
7:2	保留	保留,用户软件不要向其写入 1。从保留位读出的值未被定	NA
		义。	

表 20 存储器映射控制寄存器 (MEMMAP - 0xE01FC040)

4.6.2 存储器映射控制的使用注意事项

存储器映射控制只从处理 ARM 异常(中断)必需的 3 个数据源(每个 64 字节)中选择一个使用。

例如,每当产生一个软件中断请求,ARM 内核就从 0x0000 0008 处取出 32 位数据(见表 3, "ARM 异常向量位置")。这就意味着当 MEMMAP[1:0]=10 (用户 RAM 模式)时,从 0x0000 0008 的读数/取指是对 0x4000 0008 单元进行操作。如果 MEMMAP[1:0]=01 (用户 Flash 模式),从 0x0000 0008 的读数/取指是对片内 Flash 单元 0x0000 0008 进行操作。当 MEMMAP[1:0]=00 (Boot 装载程序模式)时,从 0x0000 0008 的读数/取指是对 0x7FFF E008 单元的数据进行操作(Boot Block 从片内 Flash 存储器重新映射)。

4.7 PLL (锁相环)

PLL 接受的输入时钟频率范围为 10MHz~25MHz。输入频率通过一个电流控制振荡器 (CCO) 倍增到范围 10MHz~60MHz。倍频器可以是从 1 到 32 的整数 (实际上,由于 CPU 最高频率的限制,LPC2114/2124/2212/2214 的倍频值不能高于 6)。CCO 的操作频率范围为 156MHz~320MHz,因此在环中有一个额外的分频器在 PLL 提供所需要的输出频率时使 CCO 保持在频率范围内。输出分频器可设置为 2, 4, 8 或 16 分频。由于输出分频器的最小值为 2, 它保证了 PLL 输出有 50%的占空比。图 15 为 PLL 的方框图。

PLL 的激活由 PLLCON 寄存器控制。PLL 倍频器和分频器的值由 PLLCFG 寄存器控制。为了防止 PLL 参数发生意外改变或 PLL 失效,对这两个寄存器进行了保护。当 PLL 提供芯片时钟时,由于芯片的所有操作,包括看门狗定时器在内都依赖于它,因此 PLL 设置的意外改变将导致 CPU 执行不期望的动作。对它们的保护由一个类似于操作看门狗定时器的代码序列来实现。详情请参阅 PLLFEED 寄存器的描述。

PLL 在芯片复位和进入掉电模式时被关闭并旁路。PLL 只能通过软件使能。程序必须在配置并激活 PLL 后等待其锁定,然后再连接 PLL。

^{*} LPC2114/2124/2212/2214 的 MAP 位的<u>硬件</u>复位值为 00。Boot 装载程序会将用户看到的复位值更改,该程序总是在复位后立即运行。用户文档将反映这一区别。

4.7.1 寄存器描述

PLL 由表 21 所示的寄存器进行控制。

警告: PLL 值的不正确设定会导致芯片的错误操作。

表 21 PLL 寄存器

地址	名称	描述	访问
0xE01FC080	DI I CON	PLL 控制寄存器。最新的 PLL 控制位的保持寄存器。写入该寄	R/W
	PLLCON	存器的值在有效的 PLL 馈送序列执行之前不起作用。	K/ W
0xE01FC084	PLLCFG	PLL 配置寄存器。最新的 PLL 配置值的保持寄存器。写入该寄	R/W
UXEU1FCU84	PLLCFG	存器的值在有效的 PLL 馈送序列执行之前不起作用。	K/W
	PLLSTAT	PLL 状态寄存器。PLL 控制和配置信息的读回寄存器。如果曾	
0xE01FC088		对 PLLCON 或 PLLCFG 执行了写操作,但没有产生 PLL 馈送	RO
UXEUIFCUOO		序列,这些值将不会反映 PLL 的当前状态。读取该寄存器提供	KO
		了控制 PLL 和 PLL 状态的真实值。	
0xE01FC08C		PLL 馈送寄存器。该寄存器使能装载 PLL 控制和配置信息,该	
	PLLFEED	配置信息从 PLLCON 和 PLLCFG 寄存器装入实际影响 PLL 操	WO
		作的映像寄存器。	

图 15 PLL 方框图

4.7.2 PLL 控制寄存器 (PLLCON - 0xE01FC080)

PLLCON 寄存器包含使能和连接 PLL 的位,使能 PLL 锁定到当前倍频器和分频器值的设定频率上。连接 PLL 将使处理器和所有片内功能都根据 PLL 输出时钟来运行。对 PLLCON 的更改只有在对 PLLFEED 寄存器执行了正确的 PLL 馈送序列后才生效(见 PLL 馈送寄存器(PLLFEED - 0xE01FC08C)一节的描述)。

PLLCON	功能	描述	复位值
0		PLL 使能。当该位为 1 并且在有效的 PLL 馈送之后,该位将激	
	PLLE	活 PLL 并允许其锁定到指定的频率。见表 24 的 PLLSTAT 寄存	0
		器。	
1	PLLC	PLL 连接。当 PLLC 和 PLLE 都为 1 并且在有效的 PLL 馈送后,	
		将 PLL 作为时钟源连接到 LPC2114/2124/2212/2214。否则,	0
		LPC2114/2124/2212/2214 直接使用振荡器时钟。见表 24 的	0
		PLLSTAT 寄存器描述。	
7:2	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

表 22 PLL 控制寄存器(PLLCON - 0xE01FC080)

PLL 在作为时钟源之前必须进行设置、使能并锁定。将振荡器时钟切换到 PLL 输出或 反过来操作时,内部电路对操作进行同步以确保不会产生干扰。硬件不能确保 PLL 在连接 之前锁定或在 PLL 在失去锁定时自动断开连接。在 PLL 失去锁定的情况下,振荡器很可能已经变得不稳定,这样断开 PLL 也挽救不了这种状况。

4.7.3 PLL 配置寄存器 (PLLCFG - 0xE01FC084)

PLLCFG 寄存器包含 PLL 倍频器和分频器值。在执行正确的 PLL 馈送序列之前改变 PLLCFG 寄存器的值不会生效(见 PLL 馈送寄存器(PLLFEED – 0xE01FC08C)的描述。 PLL 频率和倍频器以及分频器值的计算详见 PLL 频率计算一节。

PLLCFG	功能	描述	复位值
4:0	MSEL4:0	PLL 倍频器值。在 PLL 频率计算中其值为 M。	0
		注: 有关 MSEL4:0 值的正确选取见 "PLL 频率计算"。	
6:5	PSEL1:0	PLL 分频器值。在 PLL 频率计算中其值为 P。	0
		注: 有关 PSEL1:0 值的正确选取见 "PLL 频率计算"。	
7	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

表 23 PLL 配置寄存器 (PLLCFG - 0xE01FC084)

4.7.4 PLL 状态寄存器 (PLLSTAT - 0xE01FC088)

从 PLLSTAT 寄存器读出的是正在使用的真实 PLL 参数和状态。PLLSTAT 可能与 PLLCON 和 PLLCFG 中的值不同,这是因为没有执行正确的 PLL 馈送序列,这两个寄存器中的值并未生效。详见 PLL 馈送寄存器(PLLFEED – 0xE01FC08C)寄存器的描述。

表 24 PLL 状态寄存器 (PLLSTAT - 0xE01FC088)

PLLSTAT	功能	描述	复位值
4:0	MSEL4:0	读出的 PLL 倍增器值。这是 PLL 当前使用的值。	0
6:5	PSEL1:0	读出的 PLL 分频器值。这是 PLL 当前使用的值。	0
7	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
8	DLLE	读出的 PLL 使能位。当该位为 1 时,PLL 处于激活状态;为 0	0
8	PLLE	时,PLL 关闭。当进入掉电模式时,该位自动清零。	0
	PLLC	读出的 PLL 连接位。当 PLLC 和 PLLE 都为 1 时,PLL 作为时	
9		钟源连接到 LPC2114/2124/2212/2214; 当 PLLC 或 PLLE 位为 0	0
9		时,PLL 被旁路,LPC2114/2124/2212/2214 直接使用振荡器时	
		钟。当进入掉电模式时,该位自动清零。	
10		反映 PLL 的锁定状态。为 0 时, PLL 未锁定; 为 1 时, PLL 锁	0
	PLOCK	定到指定的频率。	U
15:11	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

4.7.5 PLL 中断

PLLSTAT 寄存器中的 PLOCK 位连接到中断控制器。这样可使用软件打开 PLL 并连接到其它功能,不需要等待 PLL 锁定。当发生中断(PLOCK=1),可连接 PLL 并禁止中断。

4.7.6 PLL 模式

PLLE 和 PLLC 的组合见表 25。

表 25 PLL 控制位组合

PLLC	PLLE	PLL 功能
0	0	PLL 被关闭并断开连接。系统使用未更改的时钟输入。
0	1	PLL 被激活但是尚未连接。PLL 可在 PLOCK 置位后连接。
1	0	与 00 组合相同。这样消除了 PLL 已连接但没有使能的可能性。
1	1	PLL 已使能并连接到处理器作为系统时钟源。

4.7.7 PLL 馈送寄存器(PLLFEED - 0xE01FC08C)

必须将正确的馈送序列写入 PLLFEED 寄存器才能使 PLLCON 和 PLLCFG 寄存器的更改生效。馈送序列如下:

- 1. 将值 0xAA 写入 PLLFEED
- 2. 将值 0x55 写入 PLLFEED。

这两个写操作的顺序必须正确,而且必须是连续的 VPB 总线周期。后面一个要求表明在执行 PLL 馈送操作时必须禁止中断。不管是写入的值不正确还是没有满足前两个条件,对 PLLCON 或 PLLCFG 寄存器的更改都不会生效。

表 26 PLL 馈送寄存器 (PLLFEED - 0xE01FC08C)

PLLFEED	功能	描述	复位值
7:0	PLLFEED	PLL 馈送序列必须写入该寄存器才能使PLL 配置和控制寄存器的更改生效。	未定义

4.7.8 PLL 和掉电模式

掉电模式会自动关闭并断开 PLL。从掉电模式唤醒不会自动恢复 PLL 的设定,PLL 的恢复必须由软件来完成。通常,一个将 PLL 激活并等待锁定,然后将 PLL 连接的子程序可以在任何中断服务程序的开始调用。有一点非常重要,那就是不要试图在掉电唤醒之后简单地执行馈送序列来重新启动 PLL。这会在 PLL 锁定建立之前同时使能并连接 PLL。

4.7.9 PLL 频率计算

PLL 等式使用下列参数:

Fosc 晶振频率

F_{CCO} PLL 电流控制振荡器的频率

cclk PLL 输出频率(也是处理器的时钟频率)

M PLLCFG 寄存器中 MSEL 位的倍增器值

P PLLCFG 寄存器中 PSEL 位的分频器值

PLL 输出频率(当 PLL 激活并连接时)由下式得到:

 $cclk = M * F_{OSC}$ 或 $cclk = F_{CCO} / (2*P)$

CCO 频率可由下式得到:

 $F_{CCO} = cclk * 2 * P$ 或 $F_{CCO} = F_{OSC} * M * 2 * P$

PLL 输入和设定必须满足下面的条件:

- Fosc 的范围: 10MHz~25MHz
- cclk 的范围: 10MHz~F_{max} (LPC2114/2124/2212/2214 的最大允许频率)
- F_{CCO}的范围: 156MHz~320MHz

4.7.10 确定 PLL 设定的过程

如果一个特定的应用使用 PLL,它的配置必须依照下面的原则:

- 1. 选择处理器的操作频率(cclk)。这可以根据处理器的整体要求、UART 波特率的支持等因素来决定。记住外围器件的时钟频率可以低于处理器频率(见 VPB 分频器描述)。
- 2. 选择振荡器频率 (F_{OSC}) 。cclk 一定是 F_{OSC} 的整数 (非小数) 倍。
- 3. 计算 M 值以配置 MSEL 位。M = cclk/F_{OSC}, M 的取值范围为 1~32。写入 MSEL 位的值为 M-1(见表 28)。
- 4. 选择 P 值以配置 PSEL 位,使 F_{CCO} 在定义的频率限制范围内, F_{CCO} 可通过前面的等式计算。P 必须是 1, 2, 4 或 8 其中的一个。写入 PSEL 位的值 00 表示 P=1; 01表示 P=2; 10表示 P=4; 11表示 P=8 (见表 27)。

表 27 PLL 分频器值

PSEL 位 PLLCFG[6:5]	P值
00	1
01	2
10	4
11	8

表 28 PLL 倍增器值

MSEL 位 PLLCFG[4:0]	M 值
00000	1
00001	2
00010	3
00011	4
11110	31
11111	32

4.7.11 PLL 举例

例如系统要求 Fosc=10MHz, cclk=60MHz。

根据这些要求,可得出 M=cclk/Fosc = 60MHz/10MHz = 6。因此,M-1 = 5 写入 PLLCFG4:0。

P 值可由 P=Fcco/(cclk*2)得出,Fcco 必须在 156MHz~320MHz 内。假设 Fcco 取最低 频率 156MHz,则 P=156MHz/(2*60MHz)=1.3。Fcco 取最高频率可得出 P=2.67。因此,同 时满足 Fcco 最低和最高频率要求的 P 值只能为 2,见表 27。所以,PLLCFG=6:5=1。

4.8 功率控制

LPC2114/2124/2212/2214 支持两种节电模式:空闲模式和掉电模式。在空闲模式下,指令的执行被挂起直到发生复位或中断为止。外设功能在空闲模式下继续保持并可产生中断使处理器恢复运行。空闲模式使处理器、存储器系统和相关控制器以及内部总线不再消耗功率。

在掉电模式下,振荡器关闭,这样芯片没有任何内部时钟。处理器状态和寄存器、外设寄存器以及内部 SRAM 值在掉电模式下被保持。芯片管脚的逻辑电平保持静态。复位或特定的不需要时钟仍能工作的中断可终止掉电模式并使芯片恢复正常运行。由于掉电模式使芯片所有的动态操作都挂起,因此芯片的功耗降低到几乎为零。

掉电和空闲模式的进入必须与程序的执行同步进行。通过中断唤醒掉电模式不会使指 令丢失、不完整或重复。从掉电模式唤醒将在唤醒定时器一节中作进一步讨论。

外设的功率控制特性允许独立关闭应用中不需要的外设,这样进一步降低了功耗。

4.8.1 寄存器描述

功率控制功能包含两个寄存器,如表 29 所示。更详细的内容见后面的描述。

表 29 功率控制 寄存器

地址	名称	描述	访问
0xE01FC0C0	PCON	功率控制寄存器。该寄存器包含 LPC2114/2124/2212/2214 两种	R/W
		节电模式的控制位。见表 30。	
0xE01FC0C4		外设功率控制寄存器。该寄存器包含使能和禁止单个外设功能	R/W
		的控制位。该寄存器可使未被使用的外设不消耗功率。	K/W

4.8.2 功率控制寄存器 (PCON - 0xE01FC0C0)

PCON 寄存器包含两个位。置位其中一个位,将会进入对应的节电模式。如果两位都置位,则进入掉电模式。

表 30 功率控制寄存器 (PCON - 0xE01FC0C0)

PCON	功能	描述	复位值
		空闲模式一当该位置位时,处理器时钟停止,但外围功能保	
0	IDL	持工作状态。外设或外部中断源所产生的任何中断都会使处	0
		理器恢复运行。	
		掉电模式一当该位置位时,振荡器和所有片内时钟都停止。	
1	PD	外部中断所产生的唤醒条件可使振荡器重新启动并使 PD 位	0
		清零,处理器恢复运行。	
7:2	/ប ជា	保留,用户软件不要向其写入 1。从保留位读出的值未被定	NA
1:2	保留	义。	INA

4.8.3 外设功率控制寄存器 (PCONP - 0xE01FC0C4)

PCONP 寄存器允许将所选的外设功能关闭以实现节电的目的。有少数外设功能不能被关闭(看门狗定时器、GPIO、管脚连接模块和系统控制模块)。PCONP中的每个位都控制一个外设。每个位所对应的外设编号见 LPC2114/2124/2212/2214 存储器寻址部分的 VPB 外设映射一节。

表 31 LPC2114/2124 的外设功率控制寄存器(PCONP - 0xE01FC0C4)

PCONP	功能	描述	复位值
0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	0
1	PCTIM0	该位为1时,定时器0使能。为0时,定时器0被关闭以实现节电。	1
2	PCTIM1	该位为1时,定时器1使能。为0时,定时器1被关闭以实现节电。	1
3	PCURT0	该位为1时,UART0使能。为0时,UART0被关闭以实现节电。	1
4	PCURT1	该位为1时,UART1使能。为0时,UART1被关闭以实现节电。	1
5	PCPWM0	该位为1时,PWM0使能。为0时,PWM0被关闭以实现节电。	1
6	保留	用户软件不要向其写入1。从保留位读出的值未被定义。	0
7	PCI2C	该位为 1 时, I^2 C 接口使能。为 0 时, I^2 C 接口被关闭以实现节电。	1
8	PCSPI0	该位为1时,SPIO接口使能。为0时,SPIO接口被关闭以实现节电。	1
9	PCRTC	该位为1时,RTC 使能。为0时,RTC 被关闭以实现节电。	1

续表 31

PCONP	功能	描述	复位值
10	PCSPI1	该位为 1 时, SPI1 接口使能。为 0 时, SPI1 接口被关闭以实现节电。	1
11	保留	用户软件写入0来实现节电。	1
12	PCAD	该位为1时,A/D转换器使能。为0时,A/D转换器被关闭以实现节能。	1
31:13	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

表 32 LPC2212/2214 的外设功率控制寄存器 (PCONP - 0xE01FC0C4)

PCONP	功能	描述	复位值
0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	0
1	PCTIM0	该位为1时,定时器0使能。为0时,定时器0被关闭以实现节电。	1
2	PCTIM1	该位为1时,定时器1使能。为0时,定时器1被关闭以实现节电。	1
3	PCURT0	该位为1时,UART0使能。为0时,UART0被关闭以实现节电。	1
4	PCURT1	该位为1时,UART1使能。为0时,UART1被关闭以实现节电。	1
5	PCPWM0	该位为1时,PWM0使能。为0时,PWM0被关闭以实现节电。	1
6	保留	用户软件不要向其写入1。从保留位读出的值未被定义。	0
7	PCI2C	该位为 1 时, I^2 C 接口使能。为 0 时, I^2 C 接口被关闭以实现节电。	1
8	PCSPI0	该位为 1 时, SPI0 接口使能。为 0 时, SPI0 接口被关闭以实现节电。	1
9	PCRTC	该位为1时,RTC 使能。为0时,RTC 被关闭以实现节电。	1
10	PCSPI1	该位为 1 时, SPI1 接口使能。为 0 时, SPI1 接口被关闭以实现节电。	1
11	PCEMC	该位为1时,外部存储器控制器被使能。为0时,EMC被关闭以实现节电。	1
12	PCAD	该位为1时,A/D转换器使能。为0时,A/D转换器被关闭以实现节能。	1
31:13	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

4.9 功率控制注意事项

复位后,PCONP的值设置成使能所有接口和外围功能(受 PCONP 控制的)。除了对外围功能相关的寄存器进行配置外,用户应用程序不要访问 PCONP 寄存器以便启动使用片内的任何外围功能。

在需要控制功率的系统中,只要将应用中用到的外围功能的对应在 PCONP 寄存器的位置 1,寄存器的其它"保留"位或当前无需使用的外围功能对应在寄存器中的位都必须清零。

4.10 复位

LPC2114/2124/2212/2214 有两个复位源: RESET 管脚和看门狗复位。RESET 管脚为施密特触发输入管脚,带有一个额外的干扰滤波器。任何复位源提供的芯片复位都会启动唤醒定时器(详见唤醒定时器的描述),复位将保持有效直至外部复位撤除,振荡器开始运行。当计数达到一个固定个数的时钟时,Flash 控制器完成其初始化。复位、振荡器以及唤醒定时器之间的关系见图 16。

复位干扰滤波器使处理器可以忽略非常短的外部复位脉冲并决定 $\overline{\text{RESET}}$ 保证芯片复位 所必须保持的最短时间。 $\overline{\text{RESET}}$ 一旦有效,只有当晶振运行稳定并且 LPC2114/2124/2212/2214的 X1 脚上出现适当的信号时才能撤除。如果晶振子系统使用的是外部晶体,上电后 $\overline{\text{RESET}}$ 脚的信号必须保持 10ms。对于晶振已经稳定运行且 X1 脚上已出现稳定信号时出现的复位, $\overline{\text{RESET}}$ 脚的信号只需保持 300ns。

一般说来,各个电源管脚(V_{18} , V_{3} , V_{18A} 和 V_{3A})的上电是无顺序的。但是,为了正确地处理复位,所有 V_{18} 脚完全必要给定有效的电压,因为片内复位电路和振荡器的相关硬件都由它们供电。 V_{3} 脚通过其数字管脚来使能微控制器与外部功能的接口。所以,不供给 V_{3} 电源并不会影响复位序列,但会妨碍微控制器与外部器件的通信。

当内部复位撤除时,处理器从地址 0 开始运行,此处为从 Boot Block 映射的复位向量。此时所有的处理器和外设寄存器都恢复为默认状态。

外部复位和内部复位有一些小的区别。外部复位使特定管脚的值被锁存以实现配置。 外部电路无法确定内部复位什么时候发生进而对特定管脚的值进行配置,因此那些锁存在 内部复位过程中不会重新装载。在外部复位时对管脚:

P1.20/TRACESYNC,P1.26/RTCK,BOOT1 和 BOOT0 (见管脚配置、管脚连接模块和外部存储器控制器 (EMC)的内容描述)以实现不同的目的。当复位后执行引导装载程序时,片内引导装载程序将对 P0.14 进行检测 (见 Flash 存储器系统和编程)。

芯片复位可以发生在 Flash 编程或擦除操作过程中。Flash 存储器会中断正在进行的操作并使 CPU 复位延迟到内部 Flash 高电压降低后才完成。

内部复位过程中不会重新装载。在外部复位时对管脚

图 16 包括唤醒定时器的复位方框图

4.11 VPB 分频器

VPB 分频器决定处理器时钟(cclk)与外设器件所使用的时钟(pclk)之间的关系。VPB 分频器有两个用途。第一个是通过 VPB 总线为外设提供所需的 pclk 时钟以便外设以为满足 ARM 处理器而调整的速度下工作。为了实现此目的,VPB 总线可以降低到 1/2 或 1/4 处理器时钟速率。由于 VPB 总线必须在上电后正常工作(并且如果由于 VPB 分频器控制器位于 VPB 总线上而使上电时 VPB 总线不工作,其时序就不能改变),VPB 总线在复位后默认的状态是以 1/4 速度运行。VPB 分频器的第二个用途是在应用不需要任何外设全速运行时使功耗降低。

VPB 分频器与振荡器和处理器时钟的连接见图 17。由于 VPB 分频器连接到 PLL 输出, PLL 在空闲模式下保持有效(如果 PLL 处于运行状态)。

4.11.1 VPBDIV 寄存器(VPBDIV - 0xE01FC100)

VPB 分频器寄存器包含两个位,可以设定 3 个分频值,详见表 34。

表 33 VPBDIV 寄存器映射

地址	名称	描述	访问
0xE01FC100	VPBDIV	控制 VPB 时钟速率与处理器时钟之间的关系	R/W

表 34 VPBDIV 寄存器 (VPBDIV - 0xE01FC100)

VPBDIV	功能	描述	复位值
1:0	VPBDIV	VPB 时钟速率如下:	0
		00: VPB 总线时钟为处理器时钟的 1/4。	
		01: VPB 总线时钟与处理器时钟相同。	
		10: VPB 总线时钟为处理器时钟的 1/2。	
		11:保留。将该值写入 VPBDIV 寄存器无效(保留原来的设定)。	
3:2	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	0
5:4	XCLKDIV	这些位仅用于 LPC2212/2214 (144 脚封装) 中,它们控制着	0
		A23/XCLK 脚上的时钟驱动,取值编码方式与 VPBDIV 相同。由	
		PINSEL2 寄存器中的一位来控制选择管脚用作 A23 还是	
		XCLKDIV 选择的时钟功能。	
		注:如果 XCLKDIV 和 VPBDIV 取值相同,则 VPB 和 XCLK 使	
		用相同的时钟。(这在处理 VPB 外设的外部逻辑时可能有用。)	
7:6	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	0

图 17 VPB 分频器连接

4.12 唤醒定时器

唤醒定时器的用途是确保振荡器和芯片所需要的其它模拟功能在处理器开始执行指令之前能够正确工作。这在上电、所有类型的复位以及任何原因所导致上述功能关闭时非常重要。由于振荡器和其它功能在掉电模式下关闭,使处理器从掉电模式中唤醒都必须使用唤醒定时器。

唤醒定时器通过检测晶振是否能可靠地开始代码的执行来对其进行监视。当给芯片加电或某个事件使芯片退出掉电模式,振荡器需要一段时间来产生足够振幅的信号驱动时钟逻辑。时间的长度取决于许多因素,包括 Vdd 的上升速率(上电时)、晶振的类型及其电气特性(如果使用石英晶振)、任何其它外部电路(例如电容)和振荡器在现有环境下自身的特性。

一旦检测到一个时钟,唤醒定时器则对 4096 个时钟计数,这段时间可使 Flash 进行初始化。当 Flash 存储器初始化完毕时,如果外部复位已撤除,处理器开始执行指令。当系统使用外部时钟源(与晶振连接的管脚相反)时,需要考虑的振荡器的启动延时可能很短甚至没有。唤醒定时器的设计确保了芯片所需要的任何其它功能在程序运行之前都能够进行操作。

LPC2114/2124/2212/2214 不包含不需要时钟的比较器或者具有独立时钟源的看门狗振荡器这样的模拟功能。没有时钟源仍能工作的功能是外部中断(EINT0, EINT1,EINT2 和EINT3)。如果外部中断使能产生唤醒并且所选中断事件出现,那么必须启动振荡器唤醒。实际的中断(如果有)在唤醒定时器停止后产生,由向量中断控制器(VIC)进行处理。

但是,LPC2114/2124/2212/2214 的复用管脚(见管脚配置和管脚连接模块)允许其它外设起作用,使器件退出掉电模式。下面的管脚功能对允许 UART0 或 1、SPI0 或 1、I²C相关事件来产生中断: RxD0/EINT0、SDA/EINT1、SSEL0/EINT2、RxD1/EINT3、DCD1/EINT1、RI1/EINT2、SSEL1/EINT3。

要使器件进入掉电模式并允许总线或管脚上的一个或多个事件能使其恢复正常操作,软件应该对管脚的外部中断功能重新编程,选择中断合适的方式和极性以及掉电模式。唤醒时软件软件应恢复管脚复用的外围功能。

上述的所有总线或管脚活动都是低电平有效。如果软件要使器件退出掉电模式来响应 多个管脚共用的同一个 EINTi 通道的事件,中断通道必须编程设定为低电平激活方式,因 为只有在电平方式中通道才能使信号逻辑或来唤醒器件。

这种方法的唯一缺陷就是振荡器的重新启动会阻止LPC2114/2124/2212/2214对总线或管脚上唤醒事件的捕获。空闲模式比掉电模式更适用于器件,使器件能及时地捕获和响应外部活动。

总之,LPC2114/2124/2212/2214 唤醒定时器根据晶振执行最短时间的复位,它在从掉电模式中唤醒或任何复位产生时激活。

5. 存储器加速模块(MAM)

5.1 介绍

存储器加速模块(MAM)将需要的下一个 ARM 指令锁存以防止 CPU 取指暂停。所使用的方法是将 Flash 存储器分成两组,每一组都可独立进行访问。这两个 Flash 组都有自己的预取指缓冲区和分支跟踪缓冲区。当一个组的预取指缓冲区和分支跟踪缓冲区不能满足指令取指的需要,并且预取指还没有启动时,两个组的分支跟踪缓冲区捕获两个 128 位的 Flash 数据行。在 MAM 启动的预取指周期的结束,每个预取指缓冲区从它自身的 Flash组捕获一个 128 位指令行。

每个 128 位值包括了 4 个 32 位 ARM 指令或 8 个 16 位 Thumb 指令。在连续执行代码时,通常一个 Flash 组包含或者正在取指当前的指令和包含该指令的整个 Flash 行。另一个 Flash 组则包含或正在预取指下一个连续的代码行。当一个代码行传送完最后一条指令时,包含它的 Flash 组开始对下一行进行取指。

Flash 读操作时序的编程和描述见本节后面的内容和系统控制模块一节。

分支和其它程序流的变化导致前面所讲述的连续指令取指出现中断。当发生回溯分支时,表示很有可能正在执行一个循环。分支跟踪缓冲区有可能已经包含了目标指令。如果是,不需要执行 Flash 读周期就可执行指令。对于一个前向分支,新的地址也有可能包含在其中一个预取指缓冲区中。如果是,那么分支的执行不会有任何延迟。

当分支不在分支跟踪和预取指缓冲区当中时,则需要一个 Flash 访问周期来装载分支跟踪缓冲区。接下来将不再有取指的延迟,除非发生了另一个这样的"指令丢失"。

Flash 存储器控制器检测访问 Flash 存储器的数据并使用一个单独的缓冲区保存结果,采用的方式类似于代码取指时使用的方式。这样就加快了按顺序访问数据的速度。数据访问使用一个单行的缓冲区,和访问代码时提供两个缓冲区不同。因为数据访问不需要预取指功能。

5.1.1 存储器加速器模块

存储器加速器模块分成以下几个功能块:

- 为每个组提供 Flash 地址锁存。用于 Flash 组 0 地址锁存的增量器功能。
- 两个 Flash 存储器组
- 指令锁存,数据锁存,地址比较锁存
- 等待逻辑

图 18 所示为存储器加速器模块数据通路的一个简化框图。

在下面的描述中,"取指"一词表示 ARM 发出的一个直接的 Flash 读请求。"预取指"一词表示对当前处理器取指地址之后的地址执行 Flash 读操作。

5.1.2 Flash 存储器组

两个 Flash 存储器组实现了并行访问并消除了连续访问时的延迟。

Flash 编程功能不受存储器加速器模块的控制,而是作为一个独立的功能进行处理。 "boot block"扇区包含作为应用程序的一部分调用的 Flash 编程算法和一个可对 Flash 存储器进行串行编程的装载程序。

Flash 存储器的布线使其每个扇区同时存在于两个组当中,这样扇区擦除操作可同时对两个组执行。实际上,两个组的实体对于编程功能是透明的。

图 18 存储器加速器模块的简化框图

5.1.3 指令锁存和数据锁存

代码和数据的访问由存储器加速器模块分别进行处理。每个 Flash 组都由两套 128 位指令锁存和 12 位比较地址锁存。其中一套称为分支跟踪缓冲区,用于保存最近一次指令丢失以来的数据和比较地址。另一套称为预取指缓冲区,用于保存预取指的数据和比较地址。每个指令锁存保存 4 个代码字(4 条 ARM 指令或 8 条 Thumb 指令)。

与之相似,在数据访问中使用了一个 128 位数据锁存和 13 位数据地址锁存。两个 Flash 组共用这一套锁存。对数据锁存中没有的数据进行访问会导致读取 Flash 的 4 个数据字,它们由数据锁存所捕获。使用数据锁存加速了连续数据的访问,但对于随机数据访问几乎没什么效果。

5.1.4 Flash 编程问题

由于在编程和擦除操作过程中不允许访问 Flash 存储器,那么如果在 Flash 模块忙时存储器请求访问 Flash 地址, MAM 就必须强制 CPU 等待(这通过声明 ARM7TDMI-S 局部总线信号 CLKEN 来实现)。在某些情况下,代码执行的延迟会导致看门狗超时。用户必须注意到这种可能性并采取措施来确保不会在编程或擦除 Flash 存储器时出现非预期的看门狗复位而导致系统故障。

为了防止从 Flash 存储器中读取无效的数据, MAM 使锁存在 Flash 编程或擦除操作的 开始自动失效。在 Flash 操作结束后,任何对 Flash 地址的读操作将启动新的取指。

5.2 存储器加速器模块的操作模式

MAM 定义了3种操作模式,可以在性能和可预测性之间进行选择:

- 0) MAM 关闭。所有存储器请求都会导致 Flash 的读操作(见下面的注 2)。无指令预 取指。
- 1) MAM 部分使能。如果数据可用,则从保持锁存区执行连续的指令访问。指令预取 指使能。非连续的指令访问启动 Flash 读操作(见下面的注2)。这意味着所有的转移指令 都会导致对存储器的取指。由于缓冲的数据访问时序很难预测并且非常依赖于所处的状 况,因此所有数据操作都会导致 Flash 读操作。
- 2) MAM 完全使能。任何存储器请求(代码或数据),如果其值已经包含在其中一个 保持锁存当中,那么从缓冲区执行该代码或数据的访问。指令预取指使能。Flash 读操作用 于指令的预取指和当前缓冲区所没有的代码或数据的访问。

表 35 MAM 响应的不同类型的程序访问

程序存储器请求类型		MAM 模式	
在广行调益明本关型	0		2
连续访问,数据位于 MAM 锁存当中	启动取指2	使用锁存的数据	使用锁存的数据 1
连续访问,数据不在 MAM 锁存当中	启动取指	启动取指1	启动取指1
非连续访问,数据位于 MAM 锁存当中	启动取指2	启动取指 ^{1,2}	使用锁存的数据 1
非连续访问,数据不在 MAM 锁存当中	启动取指	启动取指1	启动取指1

MAM 模式 数据存储器请求类型 连续访问,数据位于 MAM 锁存当中 启动取指2 启动取指2 使用锁存的数据 连续访问,数据不在 MAM 锁存当中 启动取指 启动取指 启动取指 非连续访问,数据位于 MAM 锁存当中 启动取指2 启动取指2 使用锁存的数据

启动取指

表 36 MAM 响应的不同类型的数据和 DMA 访问

1. 指令预取指在模式1和2中使能。

非连续访问,数据不在 MAM 锁存当中

只要锁存的数据可用, MAM 则使用锁存的数据, 但模仿 Flash 读操作的时序。这样虽然使用 相同的执行时序,但却降低了功耗。将 MAMTIM 中的取指时间设置为 1 个时钟可关闭 MAM。

启动取指

启动取指

5.3 MAM 配置

在复位后, MAM 默认为禁止状态。软件可以随时将存储器访问加速打开或关闭。这 样就可使大多数应用程序以最高速度运行,而某些要求更精确定时的功能可以较慢但更可 预测的速度运行。

5.4 寄存器描述

所有寄存器不管规格如何,都以字地址为边界。详细的寄存器内容见各个功能的描述。

表 37 系统控制寄存器汇总

名称	描述	访问	复位值*	地址
MAM				
MAMCR	存储器加速器模块控制寄存器。决定 MAM 的操作模式。 也就是说 MAM 性能增强的程度,见表 38。	R/W	0	0xE01FC000
MAMTIM	存储器加速器定时控制。决定 Flash 存储器取指所使用的时钟个数(1到7个处理器时钟)。	R/W	0x07	0xE01FC004

^{*} 复位值仅指已使用位中保存的数据,不包括保留位的内容。

5.4.1 MAM 控制寄存器 (MAMCR - 0xE01FC000)

两个配置位选择 MAM 的 3 种操作模式,见表 38。在复位后,MAM 功能被禁止。改变 MAM 操作模式会导致 MAM 所有的保持锁存内容无效,因此需要执行新的 Flash 读操作。

表 38 MAM 控制寄存器 (MAMCR - 0xE01FC000)

MAMCR	功能	描述	复位值
		这两个位决定 MAM 的操作模式:	
		00-MAM 功能被禁止	
1:0	MAM 模式控制	01-MAM 功能部分使能	0
		10-MAM 功能完全使能	
		11-保留	
7:2	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

5.4.2 MAM 定时寄存器 (MAMTIM - 0xE01FC004)

MAM 定时寄存器决定使用多少个 cclk 周期访问 Flash 存储器。这样可调整 MAM 时序使其匹配处理器操作频率。Flash 访问时间可以从 1 到 7 个时钟。单个时钟的 Flash 访问 实际上关闭了 MAM。这种情况下可以选择 MAM 模式对功耗进行优化。

表 39 MAM 定时寄存器(MAMTIM - 0xE01FC004)

MAMTIM	功能	描述	复位值
		这几个位决定 MAM Flash 取指操作的时间:	
		000=0-保留	
		001=1-MAM 取指周期为 1 个处理器时钟(cclk)。	
		010=2-MAM 取指周期为 2 个处理器时钟(cclk)。	
2:0	MAM 取指周期	011=3-MAM 取指周期为 3 个处理器时钟(cclk)。	0x07
2.0	IVIAIVI 坎頂川朔	100=4-MAM 取指周期为 4 个处理器时钟(cclk)。	UXU7
		101=5-MAM 取指周期为 5 个处理器时钟(cclk)。	
		110=6-MAM 取指周期为 6 个处理器时钟(cclk)。	
		111=7-MAM 取指周期为 7 个处理器时钟(cclk)。	
		警告:不正确的设定会导致器件的错误操作。	
7:3	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

5.5 MAM 使用注意事项

当改变 MAM 定时值时,必须先通过向 MAMCR 写入 0 来关闭 MAM,然后将新值写入 MAMTIM。最后,将需要的操作模式的对应值(1或2)写入 MAMCR,再次打开 MAM。

对于低于 20MHz 的系统时钟,MAMTIM 设定为 001。对于 20MHz 到 40MHz 之间的系统时钟,建议将 Flash 访问时间设定为 2cclk,而在高于 40MHz 的系统时钟下,建议使用 3cclk。

6. 向量中断控制器 (VIC)

6.1 特性

- ARM PrimeCell TM 向量中断控制器
- 32 个中断请求输入
- 16 个向量 IRQ 中断
- 16个优先级,可动态分配给中断请求
- 软件中断产生

6.2 描述

向量中断控制器(VIC)具有 32 个中断请求输入,可将其编程分为 3 类: FIQ、向量 IRQ 和非向量 IRQ。可编程分配机制意味着不同外设的中断优先级可以动态分配并调整。

快速中断请求(FIQ)要求具有最高优先级。如果分配给 FIQ 的请求多于 1 个,VIC 将中断请求"相或"后向 ARM 处理器产生 FIQ 信号。当只有一个中断被分配为 FIQ 时可实现最短的 FIQ 等待时间,因为 FIQ 服务程序只要简单地启动器件的处理就可以了。但如果分配给 FIQ 级的中断多于 1 个,FIQ 服务程序从 VIC 中读出一个字来识别产生中断请求的 FIQ 中断源是哪一个。

向量 IRQ 具有中等优先级。该级别可分配 32 个请求中的 16 个。32 个请求中的任意一个都可分配到 16 个向量 IRQ slot 中的任意一个,其中 slot0 具有最高优先级,而 slot15 则为最低优先级。

非向量 IRO 的优先级最低。

VIC 将所有向量和非向量 IRQ"相或"向 ARM 处理器产生 IRQ 信号。IRQ 服务程序可通过读取 VIC 的一个寄存器立即启动并跳转到相应地址。如果有任意一个向量 IRQ 发出请求,VIC 则提供最高优先级请求 IRQ 服务程序的地址,否则提供所默认程序的地址。该默认程序由所有非向量 IRQ 共用。默认程序可读取另一个 VIC 寄存器以确定哪个 IRQ 被激活。

VIC 中所有的寄存器都为字寄存器。不支持字节和半字的读和写操作。

关于向量中断控制器的其它信息请参阅 ARM PrimeCell TM 向量中断控制器 (PL190)

的相关文档。

6.3 寄存器描述

VIC 所包含的寄存器如表 40 所示。详细内容见后面的描述。

表 40 VIC 寄存器映射

名称	描述	访问	复位值*	地址
VICIRQStatus	IRQ 状态寄存器。该寄存器读出定义为 IRQ 并使能的中断的状态。	RO	0	0xFFFF F000
VICFIQStatus	FIQ 状态请求。该寄存器读出定义为 FIQ 并使能的中断的状态。	RO	0	0xFFFF F004
VICRawIntr	所有中断的状态寄存器。该寄存器读出 32 个中断请求/软件中断的状态,不管中断是否使能或分类。	RO	0	0xFFFF F008
VICIntSelect	中断选择寄存器。该寄存器将 32 个中断请求的每个都分配为 FIQ 或 IRQ。	R/W	0	0xFFFF F00C
VICIntEnable	中断使能寄存器。该寄存器控制将 32 个中断请求和 软件中断中的哪些使能为 FIQ 或 IRQ。	R/W	0	0xFFFF F010
VICIntEnClr	中断使能清零寄存器。该寄存器允许软件将中断使能 寄存器中的一个或多个位清零。	W	0	0xFFFF F014
VICSoftInt	软件中断寄存器。该寄存器的内容与 32 个不同外设的中断请求"相或"。	R/W	0	0xFFFF F018
VICSoftIntClear	软件中断清零寄存器。该寄存器允许软件将软件中断 寄存器中的一个或多个位清零。	W	0	0xFFFF F01C
VICProtection	保护使能寄存器。该寄存器允许特权模式下运行的软件对 VIC 寄存器进行有限的访问。	R/W	0	0xFFFF F020
VICVectAddr	向量地址寄存器。当发生一个 IRQ 中断时,IRQ 服务程序可读出该寄存器并跳转到读出的地址。	R/W	0	0xFFFF F030
VICDefVectAddr	默认向量地址寄存器。该寄存器保存了非向量 IRQ 的中断服务程序(ISR)地址。	R/W	0	0xFFFF F034
VICVectAddr0	向量地址 0 寄存器。向量地址寄存器 0-15 保存了 16 个向量 IRQ slot 的中断服务程序地址。	R/W	0	0xFFFF F100
VICVectAddr1	向量地址 1 寄存器	R/W	0	0xFFFF F104
VICVectAddr2	向量地址 2 寄存器	R/W	0	0xFFFF F108
VICVectAddr3	向量地址 3 寄存器	R/W	0	0xFFFF F10C
VICVectAddr4	向量地址 4 寄存器	R/W	0	0xFFFF F110
VICVectAddr5	向量地址 5 寄存器	R/W	0	0xFFFF F114
VICVectAddr6	向量地址 6 寄存器	R/W	0	0xFFFF F118
VICVectAddr7	向量地址 7 寄存器	R/W	0	0xFFFF F11C
VICVectAddr8	向量地址 8 寄存器	R/W	0	0xFFFF F120
VICVectAddr9	向量地址 9 寄存器	R/W	0	0xFFFF F124
VICVectAddr10	向量地址 10 寄存器	R/W	0	0xFFFF F128
VICVectAddr11	向量地址 11 寄存器	R/W	0	0xFFFF F12C
VICVectAddr12	向量地址 12 寄存器	R/W	0	0xFFFF F130

续表 40

名称	描述	访问	复位值*	地址
VICVectAddr13	向量地址 13 寄存器	R/W	0	0xFFFF F134
VICVectAddr14	向量地址 14 寄存器	R/W	0	0xFFFF F138
VICVectAddr15	向量地址 15 寄存器	R/W	0	0xFFFF F13C
VICVectCntl0	向量控制 0 寄存器。向量控制寄存器 0-15 分别控制 16 个向量 IRQ slot 中的一个。Slot0 优先级最高,而	R/W	0	0xFFFF F200
VICVectCntl1	Slot15 优先级最低。 向量控制 1 寄存器	R/W	0	0xFFFF F204
VICVectCntl2	向量控制 2 寄存器	R/W	0	0xFFFF F208
VICVectCntl3	向量控制 3 寄存器	R/W	0	0xFFFF F20C
VICVectCntl4	向量控制 4 寄存器	R/W	0	0xFFFF F210
VICVectCntl5	向量控制 5 寄存器	R/W	0	0xFFFF F214
VICVectCntl6	向量控制 6 寄存器	R/W	0	0xFFFF F218
VICVectCntl7	向量控制7寄存器	R/W	0	0xFFFF F21C
VICVectCntl8	向量控制 8 寄存器	R/W	0	0xFFFF F220
VICVectCntl9	向量控制 9 寄存器	R/W	0	0xFFFF F224
VICVectCntl10	向量控制 10 寄存器	R/W	0	0xFFFF F228
VICVectCntl11	向量控制 11 寄存器	R/W	0	0xFFFF F22C
VICVectCntl12	向量控制 12 寄存器	R/W	0	0xFFFF F230
VICVectCntl13	向量控制 13 寄存器	R/W	0	0xFFFF F234
VICVectCntl14	向量控制 14 寄存器	R/W	0	0xFFFF F238
VICVectCntl15	向量控制 15 寄存器	R/W	0	0xFFFF F23C

^{*} 复位值仅指已使用位中保存的数据,不包括保留位的内容。

6.4 VIC 寄存器

这一节按照 VIC 逻辑中的使用顺序对 VIC 寄存器进行描述,该顺序为从那些与中断请求输入最密切的寄存器到那些由软件所使用的最抽象的寄存器。对大多数人来说,这也是在学习 VIC 时读取寄存器的最佳顺序。

6.4.1 软件中断寄存器(VICSoftInt - 0xFFFFF018, 读/写)

在执行任何逻辑之前,将该寄存器的内容与32个不同外设的中断请求相或。

表 41 软件中断寄存器(VICSoftInt - 0xFFFFF018, 读/写)

VICSoftInt	功能	复位值
	1: 强制产生与该位相关的中断请求。	0
31:0	0:不强制产生中断请求。向 VICSoftInt 写入 0 无效,见 VICSoftIntClear。	0

6.4.2 软件中断清零寄存器(VICSoftIntClear - 0xFFFFF01C, 只写)

该寄存器在不需读取软件中断寄存器的情况下,可用软件清零软件中断寄存器中的一个或多个位。

表 42 软件中断清零寄存器(VICSoftIntClear - 0xFFFFF01C, 只写)

VICSoftIntClear	功能	复位值
21.0	1: 写入 1 清零软件中断寄存器的相应位,并解除强制的中断请求。	0
31:0	0: 写入 0 不会影响 VICSoftInt 中的相应位。	0

6.4.3 所有中断状态寄存器(VICRawIntr - 0xFFFFF008, 只读)

该寄存器读取所有32个中断请求和软件中断的状态,不管中断是否使能或分类。

表 43 所有中断状态寄存器(VICRawIntr - 0xFFFFF008, 只读)

VICRawIntr	功能	复位值
31:0	1: 对应位的中断请求或软件中断声明。	0
31:0	0: 对应位的中断请求或软件中断未声明。	0

6.4.4 中断使能寄存器(VICIntEnable - 0xFFFFF010,读/写)

该寄存器使能分配为 FIQ 或 IRQ 的中断请求或软件中断。

表 44 中断使能寄存器 (VICIntEnable - 0xFFFFF010,读/写)

VICIntEnable	功能	复位值
	当读取该寄存器时,1表示中断请求使能为FIQ或IRQ。	
31:0	当写该寄存器时,1 使能中断请求或软件中断,0 无效。见 VICIntEnClear 寄	0
	存器 (表 45),给出了中断禁止的方法。	

6.4.5 中断使能清零寄存器(VICIntEnClear - 0xFFFFF014,只写)

该寄存器在不需要读取中断使能寄存器的情况下,可用软件清零其中的一个或多个位。

表 45 中断使能清零寄存器(VICIntEnClear - 0xFFFFF014, 只写)

VICIntEnClr	功能	复位值
	1: 写入1清零中断使能寄存器中的对应位并禁止对应的中断请求。	0
31:0	0: 写入 0 不影响中断使能寄存器中的位。	0

6.4.6 中断选择寄存器(VICIntSelect - 0xFFFFF00C,读/写)

该寄存器将32个中断请求分别分配为FIQ或IRQ。

表 46 中断选择寄存器 (VICIntSelect - 0xFFFFF00C, 读/写)

VICIntSelect	功能	复位值
21.0	1: 对应的中断请求分配为 FIQ。	0
31:0	0: 对应的中断请求分配为 IRQ。	0

6.4.7 IRQ 状态寄存器(VICIRQStatus - 0xFFFFF000,只读)

该寄存器读取使能并分配为 IRQ 的中断请求的状态,它不对向量和非向量 IRQ 进行区分。

表 47 IRQ 状态寄存器 (VICIRQStatus - 0xFFFFF000, 只读)

VICIRQStatus	功能				
31:0	1: 对应位的中断请求使能并分配为 IRQ 并且声明。	0			

6.4.8 FIQ 状态寄存器 (VICFIQStatus - 0xFFFFF004, 只读)

该寄存器读取使能并分配为 FIQ 的中断请求的状态。如果有超过一个请求分配为 FIQ, FIQ 服务程序可读取该寄存器来确定是哪一个(几个)请求被激活。

表 48 FIQ 状态寄存器 (VICFIQStatus - 0xFFFFF004, 只读)

VICFIQStatus	功能			
31:0	1: 对应位的中断请求使能并分配为 FIQ 并且声明。	0		

6.4.9 向量控制寄存器 0-15 (VICVectCnt I0-15 - 0xFFFFF200-23C, 读/写)

每一个寄存器控制 16 个向量 IRQ slot 中的一个。Slot0 优先级最高, Slot15 优先级最低。在 VICVectCntl 寄存器中禁止一个向量 IRQ slot 不会禁止中断本身,中断只是变为非向量的形式。

表 49 向量控制寄存器 0-15 (VICVectCntI0-15 - 0xFFFFF200-23C,读/写)

VICVectCntl0-15	功能	复位值
	1: 向量 IRQ 使能,当分配的中断请求或软件中断使能,被分配为 IRQ 并	
5	声明时,可产生一个唯一的 ISR 地址对应位的中断请求使能并分配为 FIQ	0
	并且声明。	
	分配给此向量 IRQ slot 的中断请求或软件中断的编号。作为一个良好的编	
4.0	程习惯,不要将把相同的中断编号分配给多于一个使能的向量 IRQ slot。	0
4:0	但如果这样做了,当中断请求或软件中断使能,被分配为 IRQ 并声明时,	0
	会使用最低编号的 slot。	

6.4.10 向量地址寄存器 0-15(VICVectAddr0-15 - 0xFFFFF100-13C,读/写)

这些寄存器保存 16 个向量 IRQ slot 中断服务程序的地址。

表 50 向量地址寄存器 0-15(VICVectAddr0-15 - 0xFFFFF100-13C,读/写)

VICVectAddr0-15	功能	复位值
	当一个或多个分配为向量 IRQ slot 的中断请求使能,分配为 IRQ 并声明时,	
31:0	IRQ 服务程序读取向量地址寄存器(VICVectAddr)时会得到最高优先级	0
	slot 寄存器的值。	

6.4.11 默认向量地址寄存器(VICDefVectAddr - 0xFFFFF034,读/写)

这些寄存器保存非向量 IRQ 中断服务程序 (ISR) 的地址。

表 51 默认向量地址寄存器(VICDefVectAddr - 0xFFFFF034,读/写)

VICDefVectAddr	功能				
	当一个 IRQ 服务程序读取向量地址寄存器(VICVectAddr),并且没有 IRQ	0			
31:0	slot 响应时,则返回该寄存器中的地址。	U			

6.4.12 向量地址寄存器(VICVectAddr - 0xFFFFF030, 读/写)

当发生一个 IRQ 中断时。IRQ 服务程序可读取该寄存器并跳转到读出的地址。

表 52 向量地址寄存器 (VICVectAddr - 0xFFFFF030,读/写)

VICVectAddr	功能								
	当任何分配给向量 IRQ slot 的中断请求或软件中断使能,分配为 IRQ 并声明								
	时,读取该寄存器将返回最高优先级 slot (最低编号) 在向量地址寄存器中的								
31:0	地址。否则返回默认向量地址寄存器中的地址。	0							
	由于写入该寄存器的设置值并不能在将来读出,因此,该寄存器应该在 ISR								
	快结束时写入,以便更新优先级硬件。								

6.4.13 保护使能寄存器(VICProtection - 0xFFFFF020, 读/写)

运行在用户模式下的软件使用该 1 位寄存器来控制对 VIC 寄存器的访问。

表 53 保护使能寄存器 (VICProtection - 0xFFFFF020, 读/写)

VICProtection	功能						
	1: VIC 寄存器只能在特权模式下访问。	0					
0	0: VIC 寄存器可在用户模式或特权模式下访问。	U					

6.5 中断源

表 54 列出了每一个外设功能的中断源。每个外围设备都有一条中断线连接到向量中断控制器,但有些可能拥有几个内部中断标志。单个中断标志也可能代表一个以上的中断。

表 54 连接到向量中断控制器的中断源

模块	标志	VIC 通道#
WDT	看门狗中断(WDINT)	0
-	保留给软件中断	1
ARM 内核	EmbeddedICE, DbgCommRx	2
ARM 内核	EmbeddedICE, DbgCommTx	3
⇒ □ □ □ 0	匹配 0-3(MR0, MR1, MR2, MR3)	4
定时器 0	捕获 0-3(CR0, CR1, CR2, CR3)	4
定时器 1	匹配 0-3(MR0, MR1, MR2, MR3)	5
足 円 船 1	捕获 0-3(CR0, CR1, CR2, CR3)	3
	Rx 线状态 (RLS)	
UART0	发送保持寄存器空(THRE)	6
UARIU	Rx 数据可用(RDA)	0
	字符超时指示 (CTI)	

续表 54

模块	标志	VIC 通道#	
	Rx 线状态 (RLS)		
	发送保持寄存器空(THRE)		
UART1	Rx 数据可用(RDA)	7	
	字符超时指示(CTI)		
	Modem 状态中断(MSI)		
PWM0	匹配 0-6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)	8	
I ² C	SI (状态改变)	9	
SPI0	SPI 中断标志(SPIF)	10	
3110	模式错误(MODF)	10	
SPI1	SPI 中断标志(SPIF)	11	
SFII	模式错误(MODF)	11	
PLL	PLL 锁定(PLOCK)	12	
RTC	计数器增加(RTCCIF)	13	
RIC	报警 (RTCALF)	15	
系统控制	外部中断 0 (EINTO)	14	
系统控制	外部中断 1 (EINT1)	15	
系统控制	外部中断 2 (EINT2)	16	
系统控制	外部中断 3(EINT3)	17	
A/D	A/D 转换器	18	

图 19 向量中断控制器方框图

6.6 伪中断

由于异步中断处理的原因,伪中断可能出现在基于 ARM7TDMI 的微控制器一LPC2114/2124/2212/2214 中。中断处理的异步特性来源于内核和 VIC 的相互作用。如果在内核检测到中断和内核真正开始处理中断的过程中 VIC 的状态发生改变,则产生中断的异步特性。

应用中可能经过以下步骤:

- 1. VIC 判断是否有 IRQ 中断并向内核发送 IRQ 信号。
- 2. 内核保存 IRO 状态。
- 3. 执行流水线的多个周期的处理。
- 4. 内核从 VIC 中装入 IRQ 地址。

另外, VIC 的状态可能在第 3 步就发生了变化。例如, VIC 的变化使得触发从第 1 步开始的时序的中断不再是挂起中断,在运行的代码中禁止。此时, VIC 不能清除地识别产生中断请求的中断,最后只能返回到 VicDefVectAddr (0xFFFF F034)默认中断。

这一系列的情况可通过下面两种方法来防止:

- 1. 编写应用程序来防止伪中断的产生。仅仅简单地对 VIC 状态进行监控还不够,因为当干扰出现在电平激活方式的中断上也可能产生伪中断。
- 2. 应当正确设置和检测 VIC 默认处理器。

6.6.1 伪中断的详述和个案

本节的详细内容请登陆 ARM 官方网站(http://www.arm.com)。FAQ 的"技术支持"链接为: http://www.arm.com/support/faqip/3677.html。

当被禁能的中断产生时将出现怎样的情况?

应用范围: ARM7TDMI

如果在执行禁能中断指令时内核接收到中断请求,ARM7系列器件仍然响应中断。这种情况出现在 IRQ 和 FIQ 中断中。

例如, 假设正在执行下面的代码:

MRS r0, cpsr

ORR r0, r0, # I_Bit: OR: F_Bit ; 禁止 IRQ 和 FIQ 中断

MSR cpsr_c, r0

如果在执行 MSR 指令时接收到 IRO 中断,则执行以下操作:

- 保存 IRQ 中断
- 执行 MSR cpsr, r0 指令来完成 CPSR 中 I 位和 F 位的设置
- 响应 IRQ 中断,因为 CPSR 的 I 位被置位前内核将对中断异常进行处理
- CPSR(I位和F位已被置位)的内容移入SPSR irq

这就意味着,在 IRQ 中断服务程序的入口,人们可以看到 IRQ 中断被处理的异常效果,SPSR 的 I 位被置位。在上面的例子中,CPSR 和 SPSR 的 F 位都置位。表明在 IRQ 服务程序的入口处 FIQ 被禁止,FIQ 将一直被禁止直到重新被使能。FIQ 不能通过 IRQ 返回来自动重新使能。

尽管上例中的 IRQ 和 FIQ 中断都被禁止,但是如果两个中断类型中只有一种被禁止,出现的情况也与之类似。执行完禁止 IRQ 的 MSR 指令后内核才对 IRQ 进行处理,这通常不会产生任何问题,因为只有中断正好在一个周期之前到达才会被处理。当中断程序通过下面的指令返回时:

SUBS pc, lr, #4

SPSR_IRQ 的值恢复到 CPSR。这时,CPSR 的 I 位和 F 位将被置位,所有中断禁能。但是,这样会造成以下情况:

情况 1: 调用一个特定程序,该程序可以是 IRQ 处理程序或普通程序。之后,系统必须保证 IRQ 在调用程序之前被禁能。程序利用这个限制条件来决定调用方式(通过监测 SPSR 的 I 位状态),并使用合适的指令返回。如果程序在执行禁能 IRQ 的 MSR 指令的过程中接收到 IRQ 时进入,置位 SPSR 的 I 位。因此,程序不可能通过 IRQ 来进入。

情况 2: FIQ 和 IRQ 通过同一条写 CPSR 的指令来禁止。这时,如果在写 CPSR 过程中接收到 IRQ, FIQ 将在执行 IRQ 处理程序时被禁止。这种情况不会出现在不允许 FIQ 禁能多个周期的系统中。

解决方案:这里推荐了3种解决方案。哪一种方案最合适取决于特定的系统要求。

方案 1: 在中断服务程序之前增加类似于下面的代码:

 SUB
 lr, lr, #4
 ; 调整 LR, 指向返回

 STMFD
 sp!, {..., lr}
 ; 指定使用的寄存器

MRS lr, SPSR ; 当中断禁止时,判断是否有中断产生

TST lr, # I_Bit;

LDMNEFD sp!, {..., pc}[^]; 如果有中断产生,立即返回。

;由于该中断并未被响应,因此仍保持代处理状态,

; 它将在下次使能时再被重新处理。

; 以下为中断程序

这部分代码用于在写 CPSR 来禁止 IRQ 过程中检测 IRQ 中断的产生。如果检测到 IRQ,程序立即返回,从而使得 IRQ 不被响应(清除),也禁止后面的 IRQ。

FIQ 处理程序也可使用类似的代码来解决情况 1。

由于该方案解决了上述的两种情况,因此推荐用户使用。但是,对于情况 2 的处理,该方案确实将 FIQ 禁止的最大时间延长了几个周期。

方案 2: 分别使用两条写 CPSR 的指令来禁能 IRQ 和 FIQ

MRS r0, cpsr

ORR r0, r0, # I_Bit ; 禁止 IRQ

MSR cpsr_c, r0

ORR r0, r0, #F_Bit ; 禁止FIQ

MSR cpsr_c, r0

当 FIQ 的禁能最长时间受到严格限制时,这是最好的一个方案(它根本不会延长 FIQ 的禁能时间)。但是,该方案并不能解决情况 1,要解决情况 1,还必须在每条禁能 IRQ 和 FIQ 的指令前同时添加一些其它指令。

方案 3: 在 IRQ 处理程序的开始重新使能 FIQ。CPSR 的 C 的所有的位必须是可知的,最有效的方法就是向 CPSR c 写入一个立即数,例如:

MSR cpsr_c , # I_Bit : OR : irq_MODE ; IRQ 应该禁能

; FIQ 使能

; ARM 状态, IRQ 模式

本方案只需要修改 IRQ 处理程序便可实现,它使得 FIQ 的重新使能比方案 1 更快。但是,当系统要求 IRQ 使能时 FIQ 不能禁能时,不能使用本方案。本方案不能解决情况 1。

6.7 VIC 使用事项

如果在片内 RAM 当中运行代码并且应用程序需要调用中断,那么必须将中断向量重新映射到 Flash 地址 0x0。这样做是因为所有的异常向量都位于地址 0x0 及以上。通过将寄存器 MEMMAP(位于系统控制模块当中)配置为用户 RAM 模式来实现这一点。用户代码被连接以便使中断向量表 (IVT)装载到 0x4000 0000。

虽然可以选择多个中断源(通过 VICIntSelect)来产生 FIQ 请求,但是只有一个专门的中断服务程序来服务响应所有可用/出现的 FIQ 请求。因此,如果分配为 FIQ 的中断多于一个,FIQ 中断服务程序就必须读取 VICFIQStatus 的内容来决定如何处理中断请求。不过我们还是建议只将一个中断分配为 FIQ。多个 FIQ 中断源会增加中断延迟。

在中断服务程序执行完毕后,对外设中断标志的清零将会对 VIC 寄存器 (VICRawIntr, VICFIQStatus 和 VICIRQStatus) 当中的对应位产生影响。另外,为了能够服务下次中断,必须在中断返回之前对 VICVectAddr 寄存器执行写操作。该写操作将清零内部中断优先级硬件当中对应的中断标志。

通常要禁止 VIC 中断,必须清零 VICIntEnClr 寄存器中的对应位,该操作使 VICIntEnable 寄存器的对应位清零。这同样应用于 VICSoftInt 和 VICSoftIntClear,VICSoftIntClear 将会使 VICSoftInt 中的对应位清零。例如,如果 VICSoftInt=0x0000 0005 并且 bit0 必须清零,那么 VICSoftIntClear=0x0000 0001 可实现该操作。通过写 VICSoftIntClear 来执行对 VICSoftInt 当中相同位的新的清零操作之前,必须执行 VICSoftIntClear=0x0000 0000。因此向 VICSoftIntClear 寄存器任何位写入 1 对目标寄存器 都是一次有效。

如果看门狗只在溢出或无效喂狗时产生中断,那么无法清除中断。唯一的方法是通过 VICIntEnClr 禁止 VIC 中断来实现中断返回。

举例:

假设 UART0 和 SPI0 产生中断请求,它们被分配为向量 IRQ(UART0 的优先级高于 SPI0),而 UART1 和 I^2 C 产生非向量 IRO,下面就是 VIC 一种可能的设定:

VICIntSelect = 0x0000 0000 (SPI0, I²C, UART1 和 UART0 为 IRQ => bit10, bit9, bit7 和 bit6=0)
VICIntEnable = 0x0000 06C0 (SPI0, I²C, UART1 和 UART0 中断使能 => bit10, bit9, bit 7 和 bit6=1)
VICDefVectAddr = 0x... (保存服务非向量 IRQ 的程序地址 (即,UART1 和 I²C 的起始地址))
VICVectAddr0 = 0x... (保存 UART0 IRQ 服务程序的起始地址)
VICVectAddr1 = 0x... (保存 SPI0 IRQ 服务程序的起始地址)
VICVectCntl0 = 0x0000 0026 (VIC 通道号为 6(UART0)的中断源使能为优先级 0(最高级))
VICVectCntl1 = 0x0000 002A (VIC 通道号为 10(SPI0)中断源使能为优先级 1)

在任何 IRQ 请求(SPI0, I^2 C, UART0 或 UART1)产生之后,微控制器跳转到地址 0x00000018 执行代码。对于向量和非向量 IRQ,可在地址 0x18 放入下面指令:

LDR pc, [pc, #-0xFF0]

该指令将 VICVectAddr 寄存器中保存的地址装入 PC。

一旦产生 UARTO 请求,VICVectAddr 和 VICVectAddr0 相同。如果产生 SPI 请求,VICVectAddr 等于 VICVectAddr1。如果 UARTO 和 SPI 都没有产生 IRQ 请求,而 UART1和/或 I²C 产生请求,那么 VICVectAddr 的内容与 VICDefVectAddr 相同。

7. 管脚配置

7.1 LPC2114/2124 的管脚分布

图 20 LPC2114/2124 的 64 脚封装

7.2 LPC2114/2124 的管脚描述

LPC2114/2124 的管脚描述及其主要功能见下表。

表 55 LPC2114/2124 的管脚描述

管脚名称	LQFP64 管脚#	类型			描述
P0.0~P0.1		I/O	Р0 □: Р	0 口是一个 3	2 位双向 I/O 口,每位的方向可单独控制。P0 口的功
			能取决于	管脚连接模均	中的管脚功能选择。P0 口的 26 和 31 脚未用。
			注: 除用	作 A/D 输入的	的管脚(P0.27, P0.28, P0.29 和 P0.30)外,所有 P0 管
			脚最大可	承受 5V 的电	压。如果未使用 A/D 转换器, A/D 输入可用作可承受
			5V 电压的	的数字 I/O 口。	。见"A/D转换器"。
	19	О	P0.0	TxD0	UART0 发送输出端。
		О		PWM1	脉宽调制器输出 1。
	21	I	P0.1	RxD0	UARTO 接收输入端。
		0		PWM3	脉宽调制器输出 3。
		I		EINT0	外部中断 0 输入。
P0.2~P0.15	22	I/O	P0.2	SCL	I ² C 时钟输入/输出。开漏输出(符合 I ² C 规范)。
		I		CAP0.0	TIMER0 的捕获输入通道 0。
	26	I/O	P0.3	SDA	I^2C 数据输入/输出。开漏输出(符合 I^2C 规范)。
		О		MAT0.0	TIMER0 的匹配输出通道 0。
				EINT1	外部中断1输入。
	27	I/O	P0.4	SCK0	SPIO 的串行时钟。SPI 时钟从主机输出,从机输入。
		I		CAP0.1	TIMER0 的捕获输入通道 1。
	29	I/O	P0.5	MISO0	SPIO 主机输入从机输出端。从机到主机的数据传输。
		О		MAT0.1	TIMER0 的匹配输出通道 1。
	30	I/O	P0.6	MOSI0	SPIO 主机输出从机输入端。主机到从机的数据传输。
		I		CAP0.2	TIMER0 的捕获输入通道 2。
	31	I	P0.7	SSEL0	SPI0 从机选择。选择 SPI 接口用作从机。
		О		PWM2	脉宽调制器输出 2。
		I		EINT2	外部中断 2 输入。
	33	О	P0.8	TxD1	UART1 发送输出端。
		О		PWM4	脉宽调制器输出 4。
	34	I	P0.9	RxD1	UART1 接收输入端。
		О		PWM6	脉宽调制器输出 6。
		I		EINT3	外部中断 3 输入。
	35	О	P0.10	RTS1	UART1 请求发送输出端。
		I		CAP1.0	TIMER1 的捕获输入通道 0。
	37	I	P0.11	CTS1	UART1 清除发送输入端。
		I		CAP1.1	TIMER1 的捕获输入通道 1。
	38	I	P0.12	DSR1	UART1 数据设置就绪端。
		О		MAT1.0	TIMER1 的匹配输出通道 0。
	39	О	P0.13	DTR1	UART1 数据终止就绪端。
		О		MAT1.1	TIMER1 的匹配输出通道 1。
	41	I	P0.14	DCD1	UART1 数据载波检测输入端。

续表 55

管脚名称	LQFP64 管脚#	类型			描述
		I		EINT1	外部中断 1 输入。 RESET 为低时,该管脚线上的低
					电平将强制片内引导装载程序复位后控制器件的操
					作。
					SET 为低时, P0.14 的低电平将强制片内引导装载程序
					引器件的操作。
	45	I	P0.15	RI1	UART1 铃响指示输入端。
		I		EINT2	外部中断 2 输入。
P0.16~P0.29	46	I	P0.16	EINT0	外部中断 0 输入。
		О		MAT0.2	TIMER0 的匹配输出通道 2。
		I		CAP0.2	TIMER0 的捕获输入通道 2。
	47	I	P0.17	CAP1.2	TIMER1 的捕获输入通道 2。
		I/O		SCK1	SPI1 串行时钟。SPI 时钟从主机输出或输入到从机。
		О		MAT1.2	TIMER1 的匹配输出通道 2。
	53	I	P0.18	CAP1.3	TIMER1 的捕获输入通道 3。
		I/O		MISO1	SPI1 主机输入从机输出端。从机到主机的数据传输。
		О		MAT1.3	TIMER1 的匹配输出通道 3。
	54	О	P0.19	MAT1.2	TIMER1 的匹配输出通道 2。
		I/O		MOSI1	SPI1 主机输出从机输入端。主机到从机的数据传输。
		О		CAP1.2	TIMER1 的捕获输入通道 2。
	55	О	P0.20	MAT1.3	TIMER1 的匹配输出通道 3。
		I		SSEL1	SPI1 从机选择。选择 SPI 接口用作从机。
		I		EINT3	外部中断 3 输入。
	1	О	P0.21	PWM5	脉宽调制器输出 5。
		I		CAP1.3	TIMER1 的捕获输入通道 3。
	2	I	P0.22	CAP0.0	TIMER0 的捕获输入通道 0。
		О		MAT0.0	TIMER0 的匹配输出通道 0。
	3	I/O	P0.23		通用双向数字端口。
	5	I/O	P0.24		通用双向数字端口。
	9	I/O	P0.25		通用双向数字端口。
	11	I	P0.27	AIN0	A/D 转换器输入 0。该模拟输入总是连接到相应的管
					脚上。
		I		CAP0.1	TIMER0 的捕获输入通道 1。
		О		MAT0.1	TIMER0 的匹配输出通道 1。
	13	I	P0.28	AIN1	A/D 转换器输入 1。该模拟输入总是连接到相应的管
					脚上。
		I		CAP0.2	TIMERO 的捕获输入通道 2。
		О		MAT0.2	TIMER0 的匹配输出通道 2。
	14	I	P0.29	AIN2	A/D 转换器输入 2。该模拟输入总是连接到相应的管
					脚上。
		I		CAP0.3	TIMERO 的捕获输入通道 3。
		О		MAT0.3	TIMER0 的匹配输出通道 3。

续表 55

管脚名称	LQFP64 管脚#	类型			描述		
P0.30	15	I	P0.30	AIN3	A/D 转换器输入 3。该模拟输入总是连接到相应		
					的管脚上。		
		I		EINT3	外部中断 3 输入。		
		I		CAP0.0	TIMERO 的捕获输入通道 0。		
P1.16~P1.31		I/O	P1 □:	P1 口是一个	· 32 位双向 I/O 口,每位的方向可单独控制。P1		
			口的功能	 能取决于管肤	D连接模块的管脚功能选择。P1 口只有 16 到 31		
			脚可用。				
			注: P1	口是内置有_	上拉电阻的最大可承受 5V 电压的 I/O 口,用作输		
			入口时间	可通过上拉电	阻将输入电平置高。		
	16	О	P1.16	TRACE	跟踪包位 0。带内部上拉的标准 I/O 口。		
				PKT0			
	12	О	P1.17	TRACE	跟踪包位 1。带内部上拉的标准 I/O 口。		
				PKT1			
	8	О	P1.18	TRACE	跟踪包位 2。带内部上拉的标准 I/O 口。		
				PKT2			
	4	О	P1.19	TRACE	跟踪包位 3。带内部上拉的标准 I/O 口。		
				PKT3			
	48	О	P1.20	TRACE	跟踪同步。标准 I/O 口带内部上拉。 RESET 为		
				SYNC	低时,该管脚线上的低电平使 P1.25:16 复位后		
					用作跟踪端口。		
			重点 : RESET 为低时, P1.20 的低电平使 P1.25:16 复位后用作跟踪端口。				
	44	0	P1.21	PIPEST	流水线状态位 0。带内部上拉的标准 I/O 口。		
	7-7		11,21	AT0	AINTENTE OF INTARESTALIANCE TO ITS		
	40	О	P1.22	PIPEST	流水线状态位 1。带内部上拉的标准 I/O 口。		
				AT1			
	36	О	P1.23	PIPEST	流水线状态位 2。带内部上拉的标准 I/O 口。		
				AT2			
	32	О	P1.24	TRACE	跟踪时钟。带内部上拉的标准 I/O 口。		
				CLK			
	28	I	P1.25	EXTIN0	外部触发输入。带内部上拉的标准 I/O 口。		
	24	I/O	P1.26	RTCK	返回的测试时钟输出。它是加载在JTAG接口的		
					额外信号。辅助调试器与处理器频率的变化同		
					步。双向管脚带内部上拉。 RESET 为低时,该		
					管脚线上的低电平使 P1.31:26 复位后用作一个		
					调试端口。		
				重点: RE	SET 为低时, P1.26 的低电平使 P1.31:26 复位后		
				用作一个调	周试端口。		
	64	О	P1.27	TDO	JTAG 接口的测试数据输出。		
	60	I	P1.28	TDI	JTAG 接口的测试数据输入。		

续表 55

管脚名称	LQFP64 管脚#	类型		描述					
	56	I	P1.29	TCK	JTAG 接口的测试时钟。				
	52	I	P1.30	TMS	JTAG 接口的测试方式。				
	20	I	P1.31	TRST	JTAG 接口的测试复位。				
NC	10	O	管脚悬雪						
RESET	57	I	外部复位	立输入:当	当该管脚为低电平时,器件复位,I/O 口和外围功能				
			进入默认	人状态,处	理器从地址0开始执行程序。具有迟滞作用的TTL				
			电平,管	曾脚可承受	₹ 5V 电压。				
XTAL1	62	I	振荡器甲	电路和内部	邓时钟发生电路的输入。				
XTAL2	61	О	振荡放力	振荡放大器的输出。					
Vss	6,18,25,	I	地: 0V	地 : 0V 电压参考点。					
	42,50								
V_{SSA}	59	I	模拟地:	0V 电压	参考点。它与 Vss 的电压相同,但为了降低噪声和				
			出错几率	室,两者点	立当隔离。				
V_{SSA_PLL}	58	I	PLL 模	拟地:0V	电压参考点。它与 Vss 的电压相同,但为了降低噪				
			声和出针	昔几率,丙	丙者应当隔离。				
V_{18}	17,49	I	1.8V 内	核电源:	内部电路的电源电压。				
V_{18A}	63	I	模拟 1.8	模拟 1.8V 内核电源:内部电路的电源电压。它与 V_{18} 的电压相同,					
			但为了降低噪声和出错几率,两者应当隔离。						
V_3	23,43,	I	3.3V 端口电源 : I/O 口电源电压。						
	51		模拟 3.3	V端口电	$m{y}_1$: 它与 V_3 的电压相同,但为了降低噪声和出错几				
V_{3A}	7	I	率,两都	皆应当隔离	S。该管脚上的电平可用作 A/D 转换器的参考基准。				

7.3 LPC2212/2214 的管脚分布

图 21 LPC2212/2214 的 144 脚封装

7.4 LPC2212/2214 的管脚描述

LPC2212/2214 的管脚描述及其主要功能见下表。

表 56 LPC2212/2214 的管脚描述

管脚名称	LQFP144 管脚#	类型			描述			
P0.0~P0.11		I/O	P0 口: P0 口是一个 32 位双向 I/O 口,每位的方向可单独控制。P0					
			口的功能取决于管脚连接模块的管脚功能选择。					
			P0 口的 26 和 31 脚未用。					
			注:除用作 A/D 输入的管脚(P0.27, P0.28, P0.29 和 P0.30)外,所					
			有 P0 管	脚最大可承受 5V 的	电压。如果未使用 A/D 转换器, A/D			
			输入可用	月作可承受 5V 电压的	数字 I/O 口。见"A/D 转换器"。			
	42	О	P0.0 TxD0		UART0 发送输出端。			
		0		PWM1	脉宽调制器输出1。			

续表 56

管脚名称	LQFP144 管脚#	类型			描述
	49	I	P0.1	RxD0	UART0 接收输入端。
		О		PWM3	脉宽调制器输出 3。
		I		EINT0	外部中断 0 输入。
	50	I/O	P0.2	SCL	I ² C 时钟输入/输出。开漏输出(符合 I ² C 规范)。
		I		CAP0.0	TIMER0 的捕获输入通道 0。
	58	I/O	P0.3	SDA	I ² C 数据输入/输出。开漏输出(符合 I ² C 规范)。
		О		MAT0.0	TIMER0 的匹配输出通道 0。
		I		EINT1	外部中断 1 输入。
	59	I/O	P0.4	SCK0	SPIO 的串行时钟。SPI 时钟从主机输出,从机
					输入。
		I		CAP0.1	TIMER0 的捕获输入通道 1。
	61	I/O	P0.5	MISO0	SPIO 主机输入从机输出端。从机到主机的数
					据传输。
		O		MAT0.1	TIMERO 的匹配输出通道 1。
	68	I/O	P0.6	MOSI0	SPIO 主机输出从机输入端。主机到从机的数
					据传输。
		I		CAP0.2	TIMERO 的捕获输入通道 2。
	69	I	P0.7	SSEL0	SPI0 从机选择。选择 SPI 接口用作从机。
		О		PWM2	脉宽调制器输出 2。
		I		EINT2	外部中断 2 输入。
	75	О	P0.8	TxD1	UART1 发送输出端。
		О		PWM4	脉宽调制器输出 4。
	76	I	P0.9	RxD1	UART1 接收输入端。
		О		PWM6	脉宽调制器输出 6。
		I		EINT3	外部中断 3 输入。
	78	О	P0.10	RTS1	UART1 请求发送输出端。
		I		CAP1.0	TIMER1 的捕获输入通道 0。
	83	I	P0.11	CTS1	UART1 清除发送输入端。
		I		CAP1.1	TIMER1 的捕获输入通道 1。
P0.12~P0.22	84	I	P0.12	DSR1	UART1 数据设置就绪端。
		О		MAT1.0	TIMER1 的匹配输出通道 0。
	85	О	P0.13	DTR1	UART1 数据终止就绪端。
		О		MAT1.1	TIMER1 的匹配输出通道 1。
	92	I	P0.14	DCD1	UART1 数据载波检测输入端。
		I		EINT1	外部中断 1 输入。 RESET 为低时,该管脚线
					上的低电平强制片内引导装载程序复位后控
				_	制器件的操作。
					医ET 为低时, P0.14 的低电平强制片内引导装
					立后控制器件的操作。
	99	I	P0.15	RI1	UART1 铃响指示输入端。
		I		EINT2	外部中断 2 输入。

续表 56

管脚名称	LQFP144 管脚#	类型			描述
	100	I	P0.16	EINT0	外部中断 0 输入。
		О		MAT0.2	TIMER0 的匹配输出通道 2。
		I		CAP0.2	TIMER0 的捕获输入通道 2。
	101	I	P0.17	P0.17 CAP1.2 TIMER1 的捕获输入通道 2。	
		I/O		SCK1	SPI1 串行时钟。SPI 时钟从主机输出或输入到
					从机。
		О		MAT1.2	TIMER1 的匹配输出通道 2。
	121	I	P0.18	CAP1.3	TIMER1 的捕获输入通道 3。
		I/O		MISO1	SPI1 主机输入从机输出端。从机到主机的数据
					传输。
		О		MAT1.3	TIMER1 的匹配输出通道 3。
	122	О	P0.19	MAT1.2	TIMER1 的匹配输出通道 2。
		I/O	MOSI1 SPI1 主机输出从机输入端。3		SPI1 主机输出从机输入端。主机到从机的数据
					传输。
		О		CAP1.2	TIMER1 的捕获输入通道 2。
	123	О	P0.20	MAT1.3	TIMER1 的匹配输出通道 3。
		I SSEL1 SPII 从机选择。选择 S		SPI1 从机选择。选择 SPI 接口用作从机。	
		I		EINT3	外部中断 3 输入。
	4	О	P0.21	PWM5	脉宽调制器输出 5。
		I		CAP1.3	TIMER1 的捕获输入通道 3。
	5	I	P0.22	CAP0.0	TIMER0 的捕获输入通道 0。
		О		MAT0.0	TIMER0 的匹配输出通道 0。
P0.23~P0.25	6	I/O	P0.23		通用双向数字端口。
	8	I/O	P0.24		通用双向数字端口。
	21	I/O	P0.25		通用双向数字端口。
P0.27~P0.30	23	I	P0.27	AIN0	A/D 转换器输入 0。该模拟输入总是连接到相
					应的管脚上。
		I		CAP0.1	TIMER0 的捕获输入通道 1。
		О		MAT0.1	TIMER0 的匹配输出通道 1。
	25	I	P0.28	AIN1	A/D 转换器输入 1。该模拟输入总是连接到相
					应的管脚上。
		I		CAP0.2	TIMER0 的捕获输入通道 2。
		О		MAT0.2	TIMER0 的匹配输出通道 2。
	32	I	P0.29	AIN2	A/D 转换器输入 2。该模拟输入总是连接到相
					应的管脚上。
		I		CAP0.3	TIMER0 的捕获输入通道 3。
		О		MAT0.3	TIMER0 的匹配输出通道 3。
	33	I	P0.30	AIN3	A/D 转换器输入 3。该模拟输入总是连接到相
					应的管脚上。
		I		EINT3	外部中断 3 输入。
		I		CAP0.0	TIMER0 的捕获输入通道 0。

续表 56

管脚名称	LQFP144 管脚#	类型			描述		
P1.0~P1.25		I/O	P1 □:	P1 口是一个 32 位	双向 I/O 口,每位的方向可单独控制。P1 口		
			的功能耳	Q决于管脚连接模	块的管脚功能选择。P1 口的 2 到 15 脚未用。		
			注: P1	口是内置有上拉电	B阻的最大可承受 5V 电压的 I/O 口,用作输		
			入口时司	可通过上拉电阻将	输入电平置高。		
	91	О	P1.0	CS0	低有效片选 0 信号。(Bank 0 地址范围为		
					8000 0000 – 80FF FFFF)		
	90	О	P1.1	OE	低有效输出使能信号。		
	34	О	P1.16	TRACEPKT0	跟踪包位 0。带内部上拉的标准 I/O 口。		
	24	О	P1.17	TRACEPKT1	跟踪包位 1。带内部上拉的标准 I/O 口。		
	15	О	P1.18	TRACEPKT2	跟踪包位 2。带内部上拉的标准 I/O 口。		
	7	О	P1.19	TRACEPKT3	跟踪包位 3。带内部上拉的标准 I/O 口。		
	102	О	P1.20	TRACESYNC	跟踪同步。带内部上拉的标准 I/O 口。		
					RESET 为低时,该管脚线上的低电平使		
					P1.25:16 复位后用作跟踪端口。		
			重点: RESET 为低时, P1.20 的低电平使 P1.25				
				作跟踪端口。			
	95	О	P1.21	PIPESTAT0	流水线状态位 0。带内部上拉的标准 I/O 口。		
	86	О	P1.22	PIPESTAT1	流水线状态位 1。带内部上拉的标准 I/O 口。		
	82	О	P1.23	PIPESTAT2	流水线状态位 2。带内部上拉的标准 I/O 口。		
	70	О	P1.24	TRACECLK	跟踪时钟。带内部上拉的标准 I/O 口。		
	60	I	P1.25	EXTIN0	外部触发输入。带内部上拉的标准 I/O 口。		
P1.26~P1.31	52	I/O	P1.26	RTCK	返回的测试时钟输出。它是加载在JTAG接		
					口的额外信号。辅助调试器与处理器频率的		
					变化同步。带内部上拉的双向管脚。RESET		
					为低时,该管脚线上的低电平使 P1.31:26		
					复位后用作一个调试端口。		
				重点: RESET	为低时, P1.26 的低电平使 P1.31:26 复位后用		
				作一个调试端口			
	144	О	P1.27	TDO	JTAG 接口的测试数据输出。		
	140	I	P1.28	TDI	JTAG 接口的测试数据输入。		
	126	I	P1.29	TCK	JTAG 接口的测试时钟。		
	113	I	P1.30	TMS	JTAG 接口的测试方式。		
	43	I	P1.31	TRST	JTAG 接口的测试复位。		
P2.0~P2.25		I/O	P2 □:	P2 口是一个 32 位	:双向 I/O 口,每位的方向可单独控制。P2 口		
					块的管脚功能选择。		
			注:除用作 A/D 输入的管脚(P2.30 和 P2.31)外,所有 P2 管脚最大				
					口用作输入时,可通过内置的上拉电阻将输		
					A/D 转换器, A/D 输入可用作可承受 5V 电		
				字 I/O 口。见"A/I I ———————————————————————————————————			
	98	I/O	P2.0	D0	外部存储器数据线 0。		
	105	I/O	P2.1	D1	外部存储器数据线 1。		

续表 56

管脚名称	LQFP144 管脚#	类型		描述	
	106	I/O	P2.2	D2	外部存储器数据线 2。
	108	I/O	P2.3	D3	外部存储器数据线 3。
	109	I/O	P2.4	D4	外部存储器数据线 4。
	114	I/O	P2.5	D 5	外部存储器数据线 5。
	115	I/O	P2.6	D6	外部存储器数据线 6。
	116	I/O	P2.7	D 7	外部存储器数据线 7。
	117	I/O	P2.8	D8	外部存储器数据线 8。
	118	I/O	P2.9	D9	外部存储器数据线 9。
	120	I/O	P2.10	D10	外部存储器数据线 10。
	124	I/O	P2.11	D11	外部存储器数据线 11。
	125	I/O	P2.12	D12	外部存储器数据线 12。
	127	I/O	P2.13	D13	外部存储器数据线 13。
	129	I/O	P2.14	D14	外部存储器数据线 14。
	130	I/O	P2.15	D15	外部存储器数据线 15。
	131	I/O	P2.16	D16	外部存储器数据线 16。
	132	I/O	P2.17	D17	外部存储器数据线 17。
	133	I/O	P2.18	D18	外部存储器数据线 18。
	134	I/O	P2.19	D19	外部存储器数据线 19。
	136	I/O	P2.20	D20	外部存储器数据线 20。
	137	I/O	P2.21	D21	外部存储器数据线 21。
	1	I/O	P2.22	D22	外部存储器数据线 22。
	10	I/O	P2.23	D23	外部存储器数据线 23。
	11	I/O	P2.24	D24	外部存储器数据线 24。
	12	I/O	P2.25	D25	外部存储器数据线 25。
P2.26~P2.31	13	I/O	P2.26	D26	外部存储器数据线 26。
		I		воото	当 RESET 为低时,BOOT0 与 BOOT1
					一同控制引导和内部操作。管脚的内部
					上拉确保了管脚未连接时呈现高阻态。
	16	I/O	P2.27	D27	外部存储器数据线 27。
		I		BOOT1	当 RESET 为低时,BOOT1 与 BOOT0
					一同控制引导和内部操作。管脚的内部
					上拉确保了管脚未连接时呈现高阻态。
					BOOT1:0=00 选择引导 CS0 控制的 8 位
					存储器。
					BOOT1:0=01 选择引导 CS0 控制的 16
					位存储器。
					BOOT1:0=10 选择引导 CS0 控制的 32
					位存储器。
					BOOT1:0=11 选择内部 Flash 存储器。
	17	I/O	P2.28	D28	外部存储器数据线 28。
	18	I/O	P2.29	D29	外部存储器数据线 29。

续表 56

管脚名称	LQFP144 管脚#	类型	描述				
_	19	I/O	P2.30	D30	外部存储器数据线 30。		
		I		AIN4	A/D 转换器输入 4。该模拟输入总是连接		
					到相应的管脚上。		
	20	I/O	P2.31	D31	外部存储器数据线 31。		
		I		AIN5	A/D 转换器输入 5。该模拟输入总是连接		
					到相应的管脚上。		
P3.0~P3.14		I/O	Р3 □: Р	3 口是一个	· 32 位双向 I/O 口,每位的方向可单独控制。		
			P3 口的:	功能取决于	管脚连接模块的管脚功能选择。		
			注:除月	月作 A/D 输	入的管脚(P3.28 和 P3.29)外,所有 P3 管		
			脚最大同	可承受 5V 的	的电压。当 P3 口用作输入时,可通过内置的		
			上拉电阻	且将输入电	平置高。如果未使用 A/D 转换器, A/D 输入		
			可用作可	可承受 5V 🗉	电压的数字 I/O 口。见"A/D 转换器"。		
	89	О	P3.0	A0	外部存储器地址线 0。		
	88	О	P3.1	A1	外部存储器地址线 1。		
	87	О	P3.2	A2	外部存储器地址线 2。		
	81	О	P3.3	A3	外部存储器地址线 3。		
	80	О	P3.4	A4	外部存储器地址线 4。		
	74	О	P3.5	A5	外部存储器地址线 5。		
	73	О	P3.6	A6	外部存储器地址线 6。		
	72	О	P3.7	A7	外部存储器地址线 7。		
	71	О	P3.8	A8	外部存储器地址线 8。		
	66	О	P3.9	A9	外部存储器地址线 9。		
	65	О	P3.10	A10	外部存储器地址线 10。		
	64	О	P3.11	A11	外部存储器地址线 11。		
	63	О	P3.12	A12	外部存储器地址线 12。		
	62	О	P3.13	A13	外部存储器地址线 13。		
	56	О	P3.14	A14	外部存储器地址线 14。		
P3.15~P3.31	55	О	P3.15	A15	外部存储器地址线 15。		
	53	О	P3.16	A16	外部存储器地址线 16。		
	48	О	P3.17	A17	外部存储器地址线 17。		
	47	О	P3.18	A18	外部存储器地址线 18。		
	46	О	P3.19	A19	外部存储器地址线 19。		
	45	О	P3.20	A20	外部存储器地址线 20。		
	44	О	P3.21	A21	外部存储器地址线 21。		
	41	О	P3.22	A22	外部存储器地址线 22。		
	40	I/O	D P3.23 A23 外部存储器地址线 23。				
		О	XCLK 时钟输出。				
	36	О					
					8300 0000 – 83FF FFFF)		
	35	О	P3.25	CS2	低有效片选 2 信号。(Bank 2 地址范围为		
					8200 0000 – 82FF FFFF)		

续表 56

管脚名称	LQFP144 管脚#	类型		描述				
	30	О	P3.26	CS1	低有效片选 1 信号。(Bank 1 地址范围为 8100			
					0000 – 81FF FFFF)			
	29	О	P3.27	WE	低有效写使能信号。			
	28	О	P3.28	BLS3	字节定位选择信号(Bank 3), 低有效。			
		I		AIN7	A/D 转换器输入 7。该模拟输入总是连接到			
					相应的管脚上。			
	27	О	P3.29	BLS2	字节定位选择信号(Bank 2), 低有效。			
		I		AIN6	A/D 转换器输入 6。该模拟输入总是连接到			
					相应的管脚上。			
	97	О	P3.30	BLS1	字节定位选择信号(Bank 1), 低有效。			
	96	О	P3.31	BLS0	字节定位选择信号(Bank 0), 低有效。			
NC	22	О	管脚悬空	Ž。				
RESET	135	I	外部复位	立输入 :当	该管脚为低电平时,器件复位,I/O 口和外围			
			功能进入	功能进入默认状态,处理器从地址0开始执行程序。具有迟滞作				
			用的 TT	L电平,管	萨脚可承受 5V 电压。			
XTAL1	142	I	振荡器甲	电路和内部	时钟发生电路的输入。			
XTAL2	141	О	振荡放力	大器的输出	•			
Vss	3,9,26,38,54,67,	I	地: 0V	电压参考点	ī.°			
	79,93,103,107,							
	111,128							
V_{SSA}	139	I	模拟地:	0V 电压参	参考点。它与 Vss 的电压相同,但为了降低噪			
			声和出针	昔几率,两	者应当隔离。			
V_{SSA_PLL}	138	I	PLL 模	拟地: 0V	电压参考点。它与 Vss 的电压相同,但为了降			
			低噪声和	印出错几率	,两者应当隔离。			
V ₁₈	37,110	I	1.8V 内	核电源 : 内	部电路的电源电压。			
V _{18A}	143	I	模拟 1.8	模拟 1.8V 内核电源: 内部电路的电源电压。它与 V ₁₈ 的电压相同,				
			但为了阿	但为了降低噪声和出错几率,两者应当隔离。				
V_3	2,31,39,51,57,	I	3.3V 端口电源: I/O 口电源电压。					
	77,94,104,112,		模拟 3.3	V 端口电源	$oldsymbol{G}$: 它与 $oldsymbol{V}_3$ 的电压相同,但为了降低噪声和出			
	119		错几率,	两者应当	隔离。			
V_{3A}	14	I						

8. 管脚连接模块

• 可实现独立的管脚配置

8.1 应用

管脚连接模块的用途是将管脚配置为需要的功能。

8.2 描述

管脚连接模块可以使所选管脚具有 1 个以上的功能。配置寄存器控制多路开关来连接 管脚与片内外设。

外设在激活和任何相关中断使能之前必须连接到适当的管脚。任何使能的外设功能如 果没有映射到相关的管脚,则被认为是无效的。

当管脚只选择一个功能时,其它功能无效。

上述规则唯一的例外是管脚用作 A/D 转换器输入时。不论管脚选择何种功能,它都仍可用作 A/D 输入,A/D 输入可随时被读取,管脚的电压变化都从 A/D 的读取值中反映出来。但是,只有选择模拟输入功能,才能读出有效的模拟值。也只有这种情况下,管脚和 A/D 模块之间的接口电路才有效。其它情况下,执行数字功能所必需的数字逻辑部分将有效,从而影响 A/D 转换器的正确操作。

8.3 寄存器描述

管脚连接模块包含3个寄存器,见表57。

名称	描述	访问	复位值	地址
PINSEL0	管脚选择寄存器 0	读/写	0x0000 0000	0xE002C000
PINSEL1	管脚选择寄存器 1	读/写	0x1540 0000	0xE002C004
PINSEL2	管脚选择寄存器 2	读/写	见表 63 和 64	0xE002C014

表 57 管脚连接模块寄存器映射

8.3.1 管脚功能选择寄存器 0 (PINSEL0 - 0xE002C000)

PINSELO 寄存器按照表 65 当中的设定来控制管脚的功能。IOODIR 寄存器中的方向控制位只有在管脚选择 GPIO 功能时才有效。对于其它功能,方向是自动控制的。

表 58	LPC2114/2124/2212/2214 管脚选择寄存器 0(PINSEL0 -
	0xE002C000)

PINSEL0	管脚名称	00	01	10	11	复位值
1:0	P0.0	GPIO P0.0	TxD(UART0)	PWM1	保留	00
3:2	P0.1	GPIO P0.1	RxD(UART0)	PWM3	EINT0	00
5:4	P0.2	GPIO P0.2	SCL(I ² C)	捕获 0.0(TIMER0)	保留	00
7:6	P0.3	GPIO P0.3	SDA(I ² C)	匹配 0.0(TIMER0)	EINT1	00
9:8	P0.4	GPIO P0.4	SCK(SPI0)	捕获 0.1(TIMER0)	保留	00
11:10	P0.5	GPIO P0.5	MISO(SPI0)	匹配 0.1(TIMER0)	保留	00
13:12	P0.6	GPIO P0.6	MOSI(SPI0)	捕获 0.2(TIMER0)	保留	00
15:14	P0.7	GPIO P0.7	SSEL(SPI0)	PWM2	EINT2	00
17:16	P0.8	GPIO P0.8	TxD UART1	PWM4	保留	00
19:18	P0.9	GPIO P0.9	RxD(UART1)	PWM6	EINT3	00
21:20	P0.10	GPIO P0.10	RTS(UART1)	捕获 1.0(TIMER1)	保留	00

续表 58

PINSEL0	管脚名称	00	01	10	11	复位值
23:22	P0.11	GPIO P0.11	CTS(UART1)	捕获 1.1(TIMER1)	保留	00
25:24	P0.12	GPIO P0.12	DSR(UART1)	匹配 1.0(TIMER1)	保留	00
27:26	P0.13	GPIO P0.13	DTR(UART1)	匹配 1.1(TIMER1)	保留	00
29:28	P0.14	GPIO P0.14	CD(UART1)	EINT1	保留	00
31:30	P0.15	GPIO P0.15	RI(UART1)	EINT2	保留	00

8.3.2 管脚功能选择寄存器 1 (PINSEL1 - 0xE002C004)

PINSEL1 寄存器按照下表中的设定来控制管脚的功能。IO0DIR 寄存器中的方向控制位只有在管脚选择 GPIO 功能时才有效。对于其它功能,方向是自动控制的。

表 60 LPC2114/2124/2212/2214 管脚选择寄存器 1(PINSEL1 - 0xE002C004)

PINSEL1	管脚名称	00	01	10	11	复位值
1:0	P0.16	GPIO P0.16	EINT0	匹配 0.2(TIMER0)	捕获	00
					0.2(TIMER0)	
3:2	P0.17	GPIO P0.17	捕获 1.2(TIMER1)	SCK(SPI1)	匹配	00
					1.2(TIMER1)	
5:4	P0.18	GPIO P0.18	捕获 1.3(TIMER1)	MISO(SPI1)	匹配	00
					1.3(TIMER1)	
7:6	P0.19	GPIO P0.19	匹配 1.2(TIMER1)	MOSI(SPI1)	匹配	00
					1.3(TIMER1)	
9:8	P0.20	GPIO P0.20	匹配 1,3(TIMER1)	SSEL(SPI1)	EINT3	00
11:10	P0.21	GPIO P0.21	PWM5	保留	捕获	00
					1.3(TIMER1)	
13:12	P0.22	GPIO P0.22	保留	捕获 0.0(TIMER0)	匹配	00
					0.0(TIMER0)	
15:14	P0.23	GPIO P0.23	保留	保留	保留	00
17:16	P0.24	GPIO P0.24	保留	保留	保留	00
19:18	P0.25	GPIO P0.25	保留	保留	保留	00
21:20	P0.26			保留		00
23:22	P0.27	GPIO P0.27	AIN0(A/D 转换器)	捕获 0.1(TIMER0)	匹配	01
					0.1(TIMER0)	
25:24	P0.28	GPIO P0.28	AIN1(A/D 转换器)	捕获 0.2(TIMER0)	匹配	01
					0.2(TIMER0)	
27:26	P0.29	GPIO P0.29	AIN2(A/D 转换器)	捕获 0.3(TIMER0)	匹配	01
					0.3(TIMER0)	
29:28	P0.30	GPIO P0.30	AIN3(A/D 转换器)	EINT3	捕获	01
					0.0(TIMER0)	
31:30	P0.31			保留		00

8.3.3 管脚功能选择寄存器 2 (PINSEL2 - 0xE002C014)

PINSEL2 寄存器按照表 63 当中的设定来控制管脚的功能。IO1DIR 寄存器中的方向控制位只有在管脚选择 GPIO 功能时才有效。对于其它功能,方向是自动控制的。

警告:使用读一修改一写的方法来访问 PINSEL2 寄存器。对位 $0\sim2$ 和/或位 3 的意外写操作会造成调试和/或跟踪功能的丢失!

表 63 LPC2114/2124 管脚功能选择寄存器 2 (PINSEL2 - 0xE002C014)

PINSEL2	描述	复位值
1:0	保留。	00
2	该位为 0 时, P1.36:26 用作 GPIO。该位为 1 时, P1.31:26 用作一个调试端口。	P1.26/RTCK
3	该位为 0 时, P1:25:16 用作 GPIO。该位为 1 时, P1.25:16 用作一个跟踪端口。	P1.20 / TRACESYNC
4:5	保留。 注:不能改变这两位的值,否则会导致执行错误的代码。	11
6:31	保留。	NA

表 64 LPC2212/2214 管脚功能选择寄存器 2 (PINSEL2 - 0xE002C014)

PINSEL2		描述		复位值
1:0	保留。			00
2	该位为 0 时, P1.36	:26 用作 GPIO 。该位为 1	时, P1.31:26 用作一个调	P1.26/RTCK
2	试端口。			P1.26/RTCK
3	该位为 0 时, P1:25	:16 用作 GPIO 。该位为 1	时, P1.25:16 用作一个跟	P1.20 /
3	踪端口。			TRACESYNC
	控制数据总线和选过	通管脚的使用:		
	管脚 P2.7:0	11=P2.7:0	0x 或 10=D7:0	
	管脚 P1.0	11=P1.0	0x 或 10=CS0	
	管脚 P1.1	11=P1.1	0x 或 10=OE	
	管脚 P3.31	11=P3.31	0x 或 10=BLS0	
5:4	管脚 P2.15:8	00 或 11=P2.15:8	01 或 10=D15:8	BOOT1:0
	管脚 P3.30	00 或 11=P3.30	01 或 10=BLS1	
	管脚 P2.27:16	0x 或 11=P2.27:16	10=D27:16	
	管脚 P2.29:28	0x 或 11=P2.29:28	10=D29:28	
	管脚 P2.31:30	0x 或 11=P2.31:30 或	AIN5:4 10=D31:30	
	管脚 P3.29:28	0x 或 11=P3.29:28 或	AIN6:7 10=BLS2:3	
6	如果位 5:4 不为 10,	由该位控制 P3.29 脚的位	使用: 为 0 时使能 P3.29,	1
0	为1时使能AIN6。			1
7	如果位 5:4 不为 10,	由该位控制 P3.28 脚的位	使用: 为 0 时使能 P3.28,	1
,	为 1 时使能 AIN7。		1	
8	该位控制 P3.27 脚的	的使用: 为 0 时使能 P3.27	,为 1 时使能 WE。	0
10:9	保留。			-

续表 64

PINSEL2	描述	复位值
11	该位控制 P3.26 脚的使用: 为 0 时使能 P3.26, 为 1 时使能 CS1。	0
12	保留。	-
13	如果位 27:25 不为 111,由该位控制 P3.23/A23/XCLK 脚的使用:为 0时使能 P3.23,为 1 时使能 XCLK。	0
PINSEL2	描述	复位值
15:14	控制 P3.25 脚的使用: 00 使能 P3.25, 01 使能 CS2, 10 和 11 保留。	00
17:16	控制 P3.24 脚的使用: 00 使能 P3.24, 01 使能 CS3, 10 和 11 保留。	00
19:18	保留。	-
20	如果位 5:4 不为 10,由该位控制 P2.29:28 的使用: 0 使能 P2.29:28,1 保留。	0
21	如果位 5:4 不为 10,由该位控制 P2.30 的使用: 0 使能 P2.30, 1 使能 AIN4。	1
22	如果位 5:4 不为 10,由该位控制 P2.31 的使用: 0 使能 P2.31,1 使能 AIN5。	1
23	控制 P3.0/A0 用作端口管脚(0)或地址线(1)。	如果 RESET = 0 时 BOOT1:0=00, 该位的复位值为 1。反之为 0。
24	控制 P3.1/A1 用作端口管脚(0)或地址线(1)。	
27:25	控制 P3.23/A23/XCLK 和 P3.22:2/A2.22:2 中地址线的数目: 000=无地址线 100=A11:2 为地址线 001=A3:2 为地址线 101=A15:2 为地址线 110=A19:2 为地址线 111=A7:2 为地址线 111=A23:2 为地址线	如果复位时 BOOT1:0=11,该域的复位值为 000。反之为111。
31:28	保留。	-

8.3.4 管脚功能选择寄存器值

PINSEL 寄存器控制下表中器件管脚的功能。每一对寄存器位对应一个特定的器件管脚。

表 65 管脚功能选择寄存器位

PINSEL0 和 I	PINSLE1 的值	功能	复位值
0	0	首选(默认)功能,通常为 GPIO 口	
0	1	第一可选功能	00
1	0	第二可选功能	00
1	1	保留	

只有当管脚选择 GPIO 功能时,IO0DIR/IO1DIR 寄存器的方向控制位才有效。其它功能的方向是自动控制的。每个派生器件通常具有不同的管脚分布,因此每个管脚可能有不同的功能。详见对应的器件手册。

8.4 144 脚封装的引导控制

只有在 144 脚封装中,当 $\overline{\text{RESET}}$ 为低时,BOOT1:0 脚的状态控制着引导和初始操作。如果某个管脚不连,接收器的内部上拉可保证它的高阻状态。设计者可通过连接一些弱下拉电阻(\sim 10k Ω)或晶体管($\overline{\text{RESET}}$ 为低时可驱动为低电平)到 BOOT1:0 脚来选择下表的选项。

表 66 BOOT1:0 的引导控制

воот1	воот0	引导处
(复位脚上升沿时 P2.27/D27 的值)	(复位脚上升沿时 P2.26/D26 的值)	
0	0	CS0 控制的 8 位存储器
0	1	CS0 控制的 16 位存储器
1	0	CS0 控制的 32 位存储器
1	1	内部 Flash 存储器

注: 如果应用中使能看门狗定时器来使未使用的部件复位,则RESET 驱动的晶体管不能再使用。

9. GPIO

9.1 特性

- 单个位的方向控制
- 单独控制输出的置位和清零
- 所有 I/O 口在复位后默认为输入

9.2 应用

- 通用 I/O 口
- 驱动 LED 或其它指示器
- 控制片外器件
- 检测数字输入

9.3 管脚描述

表 67 GPIO 管脚描述

管脚名称	类型	描述
P0.0 – P0.31	输入/输出	通用 I/O 口。实际可用的 GPIO 数量取决于可选功能的使用。
P1.16 - P1.31		

P2.0 -P2.31	输入/输出	GPIO、数字和模拟功能共用的外部数据/地址线。GPIO/数字和模拟功能口
P3.0-P3.31		的数目取决于所选的总线结构。
		P2 和 P3 口仅适用于 LPC2212/2214。

9.4 寄存器描述

LPC2114/2124 有 2 个 32 位的通用 I/O 口。PORT0 使用了 30 个管脚,PORT1 有多达 16 个管脚可用作 GPIO 功能。PORT0 和 PORT1 由 2 组 (4 个) 寄存器控制,如图 68 所示。除 PORT0 和 PORT1 外,LPC2212/2214 还包含另外两个端口一PORT2 和 PORT3。通过配置,这两个端口可用作外部存储器数据的地址和数据总线或 GPIO(与少数数字和模拟功能共用管脚)。有关 PORT2 和 PORT3 的详细使用见管脚配置和管脚连接模块的内容。

通用名称 描述 访问 复位值 PORT0 PORT1 PORT2 PORT3 地址&名称 地址&名称 地址&名称 地址&名称 GPIO 管脚值寄存器。不 **IOPIN** 只读 NA 0xE0028000 0xE0028010 | 0xE0028020 0xE0028030 管方向和模式如何设定, IO0PIN IO2PIN **IO1PIN** IO3PIN 管脚的当前状态都可从 该寄存器中读出。 该寄存器不反应非 GPIO 配置管脚的活动。 IOSET GPIO 输出置位寄存器。 读/置位 0x0000 0xE0028004 0xE0028014 0xE0028024 0xE0028034 该寄存器和 IOCLR 寄存 0000 **IOOSET IO1SET** IO2SET **IO3SET** 器一起控制输出管脚的 状态。写入1使对应管脚 输出高电平。写入0无效。 IODIR GPIO 方向控制寄存器。 读/写 0x0000 0xE0028008 0xE0028018 | 0xE0028028 0xE0028038 该寄存器单独控制每个 0000 **IOODIR IO1DIR IO2DIR IO3DIR** I/O 口的方向。 GPIO 输出清零寄存器。 IOCLR 只清零 0x0000 0000 IO0CLR IO1CLR IO2CLR IO3CLR 该寄存器控制输出管脚 的状态。写入1使对应管 脚输出低电平并清零 IOSET 寄存器中的对应 位。写入0无效。

表 68 GPIO 寄存器映射

9.4.1 GPIO 管脚值寄存器(IO0PIN - 0xE0028000,IO1PIN - 0xE0028010,IO2PIN - 0xE0028020,IO3PIN - 0xE0028030)

该寄存器提供 GPIO 管脚的值。它反映了外部环境对管脚的影响。IOPIN 寄存器不能反映非 GPIO 配置管脚的活动,因此不能使用 IOPIN 寄存器来监控非 GPIO 配置管脚。

当管脚只选择一个功能时, 其它功能无效。

上述规则唯一的例外是管脚用作 A/D 转换器输入时。不论管脚选择何种功能,它都仍

可用作 A/D 输入,A/D 输入可随时被读取,管脚的电压变化都从 A/D 的读取值中反映出来。但是,只有选择模拟输入功能,才能读出有效的模拟值。也只有这种情况下,管脚和 A/D 模块之间的接口电路才有效。其它情况下,执行数字功能所必需的数字逻辑部分将有效,从而影响 A/D 转换器的正确操作。

表 69 GPIO 管脚值寄存器 (IOOPIN - 0xE0028000,IO1PIN - 0xE0028010,

IO2PIN - 0xE0028020, IO3PIN - 0xE0028030)

IOPIN	描述	复位值
31:0	GPIO 管脚值。IO0PIN 的位 0 对应于 P0.0 位 31 对应于 P0.31	未定义

9.4.2 GPIO 输出置位寄存器(IO0SET - 0xE0028004,IO1SET - 0xE0028014,IO2SET - 0xE0028024,IO3SET - 0xE0028034)

当管脚配置为 GPIO 输出模式时,可使用该寄存器从管脚输出高电平。写入 1 使对应管脚输出高电平。写入 0 无效。如果一个管脚被配置为输入或第二功能,写 IOSET 无效。

读 IOSET 寄存器返回 GPIO 输出寄存器中的值。该值由前一次对 IOSET 和 IOCLR(或 前面提到的 IOPIN) 的写操作决定。该值不反映任何外部环境对管脚的影响。

表 70 GPIO 输出置位寄存器(IO0SET - 0xE0028004,IO1SET - 0xE0028014,IO2SET - 0xE0028024,IO3SET - 0xE0028034)

IOSET	描述	
31:0	输出置位。IOOSET 的位 0 对应于 P0.0 位 31 对应于 P0.31	0

9.4.3 GPIO 输出清零寄存器(IO0CLR - 0xE002800C,IO1CLR - 0xE002801C,IO2CLR - 0xE002802C,IO3CLR - 0xE002803C)

当管脚配置为 GPIO 输出模式时,可使用该寄存器从管脚输出低电平。写入 1 使对应管脚输出低电平并清零 IOSET 寄存器中相应的位。写入 0 无效。如果一个管脚被配置为输入或第二功能,写 IOCLR 无效。

表 71 GPIO 输出清零寄存器(IO0CLR - 0xE002800C, IO1CLR - 0xE002801C, IO2CLR - 0xE002802C, IO3CLR - 0xE002803C)

IOCLR	描述	复位值
31:0	输出清零。IOOCLR 的位 0 对应于 P0.0 位 31 对应于 P0.31	0

9.4.4 GPIO 方向寄存器 (IO0DIR - 0xE0028008 , IO1DIR - 0xE0028018.IO2DIR - 0xE0028028.IO3DIR - 0xE0028038)

当管脚配置为 GPIO 模式时,可使用该寄存器控制管脚的方向。任意管脚的方向位的设置必须与管脚功能一致。

表 72 GPIO 方向寄存器(IO0DIR - 0xE0028008,IO1DIR - 0xE0028018,

IO2DIR - 0xE0028028,IO3DIR - 0xE0028038)

IODIR	描述	复位值
31:0	方向控制位 (0=输入,1=输出)。 IOODIR 的位 0 控制 P0.0 位 31 控制 P0.31	0

9.5 GPIO 使用注意事项

如果指定输出管脚在 GPIO 输出置位寄存器 (IOnSET) 和 GPIO 输出清零寄存器 (IOnCLR) 中的对应位都置位,那么管脚的输出电平取决于后写入的寄存器的值。例如:

IOOSET = 0x0000 0080

IOOCLR = 0x000000080

P0.7 输出电平为低,因为写 GPIO 清零寄存器在写置位寄存器之后。

如果在应用中要求在特定的并行口上瞬时出现 0 和 1,可直接通过访问相应的 GPIO 管脚值寄存器 (IOPIN)来实现。

假设 P0.8~P0.15 要配置成输出,则写 IO0PIN:

IO0PIN=0x0000 C700

产生的输出结果与下面两条写指令的相同:

IO0SET=0x0000 C700

IO0CLR=0x0000 3800

由此可见,前者较后者更简便。

10. UART 0

10.1 特性

- 16 字节收发 FIFO
- 寄存器位置符合'550 工业标准
- 接收器 FIFO 触发点可为 1, 4, 8 和 14 字节
- 内置波特率发生器

10.2 管脚描述

表 73 UART0 管脚描述

管脚名称	类型	描述
RxD0	输入	串行输入 串行接收数据
TxD0	输出	串行输出 串行发送数据

10.3 寄存器描述

表 74 UARTO 寄存器映射

名称	描述	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	访问	复位值	地址
LIODDD	接收缓冲	MCD			2去。	*/- 15	•		I CD	DO.	+ -> >	0xE000C000
U0RBR		MSB			决	数据		LSB	RO	未定义	DLAB=0	
U0THR	发送保持	MSB			TZ:	数据			LSB	wo	WO NA	0xE000C000
UUITK		MSD		与		奴1佔			LSD	WO	NA	DLAB=0
UOIER	中断使能	0	0	0	0	0	使能 Rx	使能 THRE	使能 Rx 数据	R/W	0	0xE000C004
UUIEK		U	U	U	U	O	线状态中断	中 断	可用中断	K/ W	w U	DLAB=0
U0IIR	中断 ID	FIFO	使能	0	0	IIR3	IIR2	IIR1	IIR0	RO	0x01	0xE000C008
U0FCR	FIFO 控制						Tx	Rx	FIFO		0	0xE000C008
		Rx f	触发	保留	留	-	FIFO FIFO	FIFO	使能	WO		
							复位	复位	区配			
U0LCR	线控制	DLAB	设置	奇偶	偶选择	奇偶	停止位	字长月	度选择	R/W 0	0	0xE000C00C
		DLA	间隔	固定	14201十	使能	个数	1 K/2	X X 2 1 +		U	UNEUUUCUUC
U0LSR	线状态	Rx										
		FIFO	TEMT	THRE	BI	FE	PE	OE	DR	RO	0x60	0xE000C014
		错误										
U0SCR	高速缓存	MSB							LSB	R/W	0	0xE000C01C
U0DLL	除数锁存 LSB	MSB							LSB	D/W	2/W 0x01	0xE000C000
		MSB							LSD	r\/ vv		DLAB=1
U0DLM	除数锁存 MSB	MSB							LSB	R/W	0	0xE000C004
		MSB							LSD	rv/ vv	U	DLAB=1

^{*} 复位值仅指已使用位中保存的数据,不包括保留位的内容。

UART0 包含 10 个 8 位寄存器,见表 74。除数锁存访问位(DLAB)位于 U0LCR7,它使能对除数锁存的访问。

10.3.1 UART0 接收器缓存寄存器(U0RBR - 0xE000C000,DLAB=0,只读)

U0RBR 是 UART0 Rx FIFO 的最高字节。它包含了最早接收到的字符,可通过总线接口读出。LSB (bit0)代表最早接收到的数据位。如果接收到的字符小于 8 位,未使用的MSB 填充为 0。

如果要访问 U0RBR, U0LCR 的除数锁存访问位(DLAB)必须为 0。U0RBR 为只读寄存器。

表 75 UARTO 接收器缓存寄存器 (UORBR - 0xE000C000, DLAB=0, 只读)

U0RBR	功能	描述	复位值
7:0	接收器缓存	接收器缓存寄存器包含 UARTO Rx FIFO 当中最早接收到的字节	未定义

10.3.2 UART0 发送器保持寄存器(U0THR - 0xE000C000, DLAB=0, 只写)

U0THR 是 UARTO Tx FIFO 的最高字节。它包含了 Tx FIFO 中最新的字符,可通过总线接口写入。LSB 代表最先发送的位。

如果要访问 U0THR, U0LCR 的除数锁存访问位(DLAB)必须为 0。U0THR 为只写寄存器。

表 76 UARTO 发送器保持寄存器 (U0THR - 0xE000C000, DLAB=0, 只写)

U0THR	功能	描述	复位值
7.0	42. 24. 24. 24. 24. 24. 24. 24. 24. 24.	写 UART0 发送器保持寄存器使数据保存到 UART0 发送 FIFO 当中。	NI/A
7:0	发送器保持	当字节到达 FIFO 的最底部并且发送器就绪时,该字节将被发送。	N/A

10.3.3 UART0 除数锁存 LSB 寄存器(U0DLL - 0xE000C000, DLAB=1)

10.3.4 UARTO 除数锁存 MSB 寄存器(U0DLM - 0xE000C004, DLAB=1)

除数锁存是波特率发生器的一部分,它保存了用于产生波特率时钟的 VPB 时钟(pclk)分频值,波特率时钟必须是波特率的 16 倍。U0DLL 和 U0DLM 寄存器一起构成一个 16 位除数,U0DLL 包含除数的低 8 位,U0DLM 包含除数的高 8 位。值'h0000 被看作是'h0001,因为除数是不允许为 0 的。当访问 UARTO 除数锁存寄存器时,除数锁存访问位(DLAB)必须为 1。

表 77 UARTO 除数锁存 LSB 寄存器(U0DLL - 0xE000C000,DLAB=1)

U0DLL	功能	描述	复位值
7.0	除数锁存	UART0 除数锁存 LSB 寄存器与 U0DLM 寄存器一起决定 UART0 的	001
7:0	LSB 寄存器	波特率。	0x01

表 78 UARTO 除数锁存 MSB 寄存器(U0DLM - 0xE000C004, DLAB=1)

U0DLM	功能	描述	复位值
7.0	除数锁存	UARTO 除数锁存 MSB 寄存器与 U0DLL 寄存器一起决定 UARTO 的	0
7:0	MSB 寄存器	波特率。	U

10.3.5 UART0 中断使能寄存器(U0IER - 0xE000C004, DLAB=0)

U0IER 用于使能 4 个 UARTO 中断源。

表 79 UARTO 中断使能寄存器(U0IER - 0xE000C004, DLAB=0)

U0IER	功能	描述	复位值
		0: 禁止 RDA 中断	
0	RBR 中断使能	1: 使能 RDA 中断	0
		U0IER0 使能 UART0 接收数据可用中断。它还控制字符接收超时中断。	
		0: 禁止 THRE 中断	
1	THRE 中断使能	1: 使能 THRE 中断	0
		U0IER1 使能 UART0 THRE 中断。该中断的状态可从 U0LSR5 读出。	

续表 79

U0IER	功能	描述	复位值
2	Rx 线状态中断使能	0: 禁止 Rx 线状态中断 1: 使能 Rx 线状态中断 UOIER2 使能 UARTO Rx 线状态中断。该中断的状态可从 UOLSR[4:1] 读出。	0
7:3	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

10.3.6 UART0 中断标识寄存器(U0IIR - 0xE000C008, 只读)

UOIIR 提供状态代码用于指示一个挂起中断的中断源和优先级。在访问 UOIIR 过程中,中断被冻结。如果在访问 UOIIR 时产生了中断,该中断被记录,下次 UOIIR 访问可读出。

UOIIR 功能 描述 复位值 0: 至少有1个中断被挂起 0 中断挂起 1: 没有挂起的中断 1 U0IIR0 为低有效。挂起的中断可通过 U0IER3:1 确定。 011: 1. 接收线状态 (RLS) 010: 2a. 接收数据可用 (RDA) 110: 2b. 字符超时指示(CTI) 3:1 中断标识 0 001: 3. THRE 中断 U0IER3 指示对应于 UARTO Rx FIFO 的中断。上面未列出的 U0IER3:1 的其它组合都为保留值(000,100,101,111) 保留,用户软件不要向其写入1。从保留位读出的值未被定义。 保留 5:4 NA FIFO 使能 这些位等效于 U0FCR0 7:6

表 80 UARTO 中断标识寄存器 (UOIIR - 0xE000C008, 只读)

中断的处理见表 81。给定了 U0IIR[3:0]的状态,中断处理程序就能确定中断源以及如何清除激活的中断。在退出中断服务程序之前,必须读取 U0IIR 来清除中断。

UARTO RLS 中断(U0IIR3:1=011)是最高优先级的中断。只要 UARTO Rx 输入产生 4 个错误条件(溢出错误(OE)、奇偶错误(PE)、帧错误(FE)和间隔中断(BI))中的任意一个,该中断标志将置位。产生该中断的 UARTO Rx 错误条件可通过查看 U0LSR4:1 得到。当读取 U0LSR 时清除中断。

UARTO RDA 中断(U0IIR3:1=010)与 CTI 中断(U0IIR3:1=110)共用第二优先级。当 UARTO Rx FIFO 到达 U0FCR7:6 所定义的触发点时,RDA 被激活。当 UARTO Rx FIFO 的深度低于触发点时,RDA 复位。当 RDA 中断激活时,CPU 可读出由触发点所定义的数据块。

CTI 中断(U0IIR3:1=110)为第二优先级中断。当 UARTO Rx FIFO 包含至少 1 个字符并且在接收 3.5 到 4.5 字符的时间内没有发生 UARTO Rx FIFO 动作时,产生该中断。UARTO Rx FIFO 的任何动作(读或写 UARTO RSR)都将清除该中断。当接收到的信息不是触发值的倍数时,CTI 中断将会清空 UARTO RBR。例如,如果一个外设想要发送一个 105 个字符的信息,而触发值为 10 个字符,那么前 100 个字符将使 CPU 接收 10 个 RDA 中断,而剩下的 5 个字符使 CPU 接收 1 到 5 个 CTI 中断(取决于服务程序)。

表 81 UART0 中断处理

U0IIR[3:0]	优先级	中断类型	中断源	中断复位		
0001	l	无	无	_		
0110	最高	Rx 线状态/错误	OE, PE, FE, 或 BI	U0LSR 读操作		
0100	第二	D 粉提可用	Rx 数据可用或 FIFO 模式下(U0FCR0=1)到达触	U0RBR 读或 UART0		
0100		Rx 数据可用	发点	FIFO 低于触发值		
			Rx FIFO 包含至少 1 个字符并且在一段时间内无字	U0RBR 读操作		
			符输入或移出,该时间的长短取决于 FIFO 中的字符			
1100	第二	字符超时指示	数以及在(3.5到4.5字符的时间内)的触发值。			
			实际的时间为:			
			[(字长度)×7-2]×8+[(触发值-字符数)×8+1]RCLK			
0010	第三	THRE	THRE	U0IIR 读(如果是中断		
0010		INKE		源)或 THR 写操作		
注: "0000"	注: "0000", "0011", "0101", "0111", "1000", "1001", "1010", "1011", "1101", "1110", "1111"为保留值。					

UARTO THRE 中断(UOIIR3:1=001)为第三优先级中断。当 UARTO THR FIFO 为空并且满足特定的初始化条件时,该中断激活。这些初始化条件将使 UARTO THR FIFO 被数据填充,以免在系统启动时产生许多 THRE 中断。初始化条件在 THRE=1 时实现了一个字符的延时减去停止位并在上一次 THRE=1 事件之后没有在 UOTHR 中存在至少 2 个字符。在没有译码和服务 THRE 中断时,该延迟为 CPU提供了将数据写入 UOTHR 的时间。如果 UARTO THR FIFO 中曾经有两个或更多字符,而当前 UOTHR 为空时,THRE 中断立即设置。当发生 UOTHR 写操作或 UOIIR 读操作并且 THRE 为最高优先级中断(UOIIR3:1=001)时,THRE 中断复位。

10.3.7 UARTO FIFO 控制寄存器(U0FCR - 0xE000C008)

U0FCR 控制 UARTO Rx 和 Tx FIFO 的操作。

表 82 UARTO FIFO 控制寄存器(U0FCR - 0xE000C008)

U0FCR	功能	描述	复位值	
	FIFO 使能	高电平使能对 UARTO Rx 和 Tx FIFO 以及 U0FCR7:1 的访问。该位必		
0		须置位以实现正确的 UARTO 操作。该位的任何变化都将使 UARTO	0	
		FIFO 清空。		
1	Rx FIFO 复位	该位置位会清零 UARTO Rx FIFO 中的所有字节并复位指针逻辑。该	0	
1		位自动清零。	U	
2	Tx FIFO 复位	该位置位会清零 UARTO Tx FIFO 中的所有字节并复位指针逻辑。该	0	
2		位自动清零。	0	
5:3	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA	
	Rx 触发选择	00: 触发点 0 (默认=1 个字符或 0x01h)		
		01: 触发点 1 (默认=4 个字符或 0x04h)		
7:6		10: 触发点 2 (默认=8 个字符或 0x08h)	0	
7.0		11: 触发点 3 (默认=14 个字符或 0x0eh)	U	
		这两个位决定在激活中断之前,接收 UARTO FIFO 必须写入多少个字		
		符。4个触发点由用户在编译时定义,可以选择所需要的触发深度。		

10.3.8 UART0 线控制寄存器(U0LCR - 0xE000C00C)

U0LCR 决定发送和接收数据字符的格式。

表 83 UARTO 线控制寄存器 (UOLCR - 0xE000C00C)

U0LCR	功能	描述	复位值
		00: 5 位字符长度	
1:0	字长度选择	01: 6 位字符长度	0
	于以及处理	10: 7位字符长度	0
		11: 8 位字符长度	
2	庙 正 台 进权	0: 1 个停止位	0
2	2 停止位选择	1: 2 个停止位(如果 U0LCR[1:0]=00 则为 1.5)	U
3	奇偶使能	0: 禁止奇偶产生和校验	0
3		1: 使能奇偶产生和校验	U
	奇偶选择	00: 奇数	
5:4		01: 偶数	0
5:4		10: 强制为 1	0
		11: 强制为 0	
		0: 禁止间隔发送	
6	间隔控制	1: 使能间隔发送	0
		当 U0LCR6=1 时,输出管脚 UART0 TxD 强制为逻辑 0。	
7	除数锁存访问位	0: 禁止访问除数锁存	0
,		1: 使能访问除数锁存	U

10.3.9 UARTO 线状态寄存器(U0LSR - 0xE000C014, 只读)

UOLSR 为只读寄存器,它提供 UARTO Tx 和 Rx 模块的状态信息。

表 84 线状态寄存器 (UOLSR - 0xE000C014, 只读)

U0LSR	功能	描述	复位值
		0: U0RBR 为空	
0	接收数据就绪	1: U0RBR 包含有效数据	0
	(RDR)	当U0RBR包含未读取的字符时,U0LSR0置位;当UART0 RBR FIFO	Ü
		为空时,U0LSR0 清零。	
		0: 溢出错误状态未激活	
		1: 溢出错误状态激活	
	溢出错误	溢出错误条件在错误发生后立即设置。U0LSR 读操作清零 U0LSR1。	0
1	(OE)	当 UARTO RSR 已经有新的字符就绪而 UARTO RBR FIFO 已满时,	0
		U0LSR1 置位。此时 UART0 RBR FIFO 不会被覆盖,UART0 RSR	
		中的字符将丢失。	
		0: 奇偶错误状态未激活	
	大畑州四	1: 奇偶错误状态激活	
2	奇偶错误	当接收字符的奇偶位处于错误状态时产生一个奇偶错误。U0LSR读	0
	(PE)	操作清零 U0LSR2 位。奇偶错误检测时间取决于 U0FCR0。奇偶错	
		误与 UARTO RBR FIFO 中读出的字符相关。	

续表 84

U0LSR	功能	描述	复位值
3	帧错误 (FE)	0: 帧错误状态未激活 1: 帧错误状态激活 当接收字符的停止位为 0 时,产生帧错误。U0LSR 读操作清零 U0LSR3。 帧错误检测时间取决于 U0FCR0。帧错误与 UART0 RBR FIFO 中读出的字符相关。当检测到一个帧错误时,Rx 将尝试与数据重新同步并假设错误的停止位实际是一个超前的起始位。但即使没有出现帧错误,它也不能假设下一个接收到的字节是正确的。	0
4	间隔中断 (BI)	0: 间隔中断状态未激活 1: 间隔中断状态激活 在发送整个字符(起始位、数据、奇偶位和停止位)过程中 RxD0 如果都保持逻辑 0,则产生间隔中断。当检测到中断条件时,接收器立即进入空闲状态直到 RxD0 变为全 1 状态。U0LSR 读操作清零该状态位。间隔检测的时间取决于 U0FCR0。间隔中断与 UART0 RBR FIFO 中读出的字符相关。	0
5	发送保持寄存器空 (THRE)	0: U0THR 包含有效数据 1: U0THR 空 当检测到 UART0 THR 空时,THRE 置位,U0THR 写操作清零该位。	1
6	发送器空 (TEMT)	0: U0THR 和/或 U0TSR 包含有效数据 1: U0THR 和 U0TSR 空 当 U0THR 和 U0TSR 都为空时, TEMT 置位。当 U0TSR 或 U0THR 包含有效数据时, TEMT 清零。	1
7	Rx FIFO 错误 (RXFE)	0: U0RBR 中没有 UART0 Rx 错误,或 U0FCR0=0 1: U0RBR 包含至少一个 UART0 Rx 错误 当一个带有 Rx 错误(例如帧错误、奇偶错误或间隔中断)的字符装入 U0RBR 时,U0LSR7 置位。当读取 U0LSR 寄存器并且 UART0 FIFO 中不 再有错误时,U0LSR7 清零。	0

10.3.10 UARTO 高速缓存寄存器(U0SCR - 0Xe000C01C)

在 UARTO 操作时 U0SCR 无效。用户可自由对该寄存器进行读或写。不提供中断接口向主机指示 U0SCR 所发生的读或写操作。

表 85 UARTO 高速缓存寄存器 (UOSCR - 0Xe000C01C)

U0SCR	功能	描述	复位值
7:0	-	一个可读可写的字节	0

10.4 结构

UARTO 的结构如图 22 所示。

VPB 接口提供 CPU 或主机与 UART 之间的通信连接。

UART0 接收器模块 U0Rx 监视串行输入线 RxD0 的有效输入。UART0 Rx 移位寄存器(U0RSR)通过 RxD0 接收有效的字符。当 U0RSR 接收到一个有效字符时,它将该字符传送到 UART0 Rx 缓冲寄存器 FIFO 中,等待 CPU 或主机通过主机接口进行访问。

UARTO 发送器模块 U0Tx 接收 CPU 或主机写入的数据并将数据缓存到 UARTO Tx 保持寄存器 FIFO (U0THR) 中。UARTO Tx 移位寄存器 (U0TSR) 读取 U0THR 中的数据并将数据通过串行输出管脚 TxD0 发送。

UARTO 波特率发生器模块 U0BRG 产生 UARTO Tx 模块所使用的定时。U0BRG 模块时钟源为 VPB 时钟(pclk)。主时钟与 U0DLL 和 U0DLM 寄存器所定义的除数相除得到 UARTO Tx 模块使用的时钟。该时钟为 16 倍过采样时钟 NBAUDOUT。

中断接口包含寄存器 U0IER 和 U0IIR。中断接口接收几个由 U0Tx 和 U0Rx 发出的单时钟宽度的使能信号。

U0Tx 和 U0Rx 的状态信息保存在 U0LSR 中。U0Tx 和 U0Rx 的控制信息保存在 U0LCR 中。

图 22 UART0 方框图

11. UART1

11.1 特性

- UART1与 UART0相同,只是增加了一个调制解调器(modem)接口
- 16 字节接收和发送 FIFO
- 寄存器位置符合'550 工业标准
- 接收器 FIFO 触发点可为 1, 4, 8 和 14 字节
- 内置波特率发生器
- 包含标准调制解调器接口信号

11.2 管脚描述

表 86 UART1 管脚描述

管脚名称	类型	描述
RxD1	输入	串行输入 串行接收数据
TxD1	输出	串行输出 串行发送数据
CTS1	输入	清零以发送 有效低电平信号指示外部 modem 的接收是否已经准备就绪,UART1 数
		据可通过 TxD1 发送。在 modem 的正常操作中(U1MCR4=0),该信号的补码保存在
		U1MSR4中。状态改变信息保存在U1MSR0中,如果第4优先级中断使能(U1IER3=1),
		该信息将作为中断源。
DCD1	输入	数据载波检测 有效低信号指示外部 modem 是否已经与 UART1 建立了通信连接,可
		以进行数据交换。在 modem 的正常操作中(U1MCR4=0),该信号的补码保存在
		U1MSR7中。状态改变信息保存在U1MSR3中,如果第4优先级中断使能(U1IER3=1),
		该信息将作为中断源。
DSR1	输入	数据设置就绪 有效低电平指示外部 modem 是否准备建立与 UART1 的连接。在
		modem 的正常操作中(U1MCR4=0),该信号的补码保存在 U1MSR5 中。状态改变信
		息保存在 U1MSR1 中,如果第 4 优先级中断使能(U1IER3=1),该信息将作为中断源。
DTR1	输出	数据终止就绪 有效低电平指示 UART1 准备建立与外部 modem 的连接。该信号的补
		码保存在 U1MCR0 中。
RI1	输入	铃响指示 有效低电平指示 modem 检测到电话的响铃信号。在 modem 的正常操作中
		(U1MCR4=0),该信号的补码保存在 U1MSR6 中。状态改变信息保存在 U1MSR2 中,
		如果第 4 优先级中断使能(U1IER3=1),该信息将作为中断源。
RTS1	输出	请求发送 有效低电平指示 UART1 打算向外部 modem 发送数据。该信号的补码保存
		在 U1MCR1 中。

11.3 寄存器描述

表 87 UART1 寄存器映射

名称	描述	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	访问	复位值	地址偏移
U1RBR	接收缓冲	MSB				读数据			LSB	RO	未定义	0xE0010000
UIKBK	按以级作	MISD				决致1/h			LSD	KO	不足又	DLAB=0
U1THR	发送保持	MSB				写数据			LSB	WO	NA	0xE0010000
OTTIN	及恐州的	WISD				3 X Ju			LSD	""	IVA	DLAB=0
						使能	使能	使能	使能			
U1IER	中断使能	0	0	0	0	Modem	Rx 线状	THRE	Rx 数	R/W	0	0xE0010004
OTILIX	中的仪形				O	状态中断	态中断	中断	据可用	10/ 11	O	DLAB=0
									中断			
U1IIR	中断 ID	FIFO	使能	0	0	IIR3	IIR2	IIR1	IIR0	RO	0x01	0xE0010008
	FIFO					-	Tx FIFO	RxFIF	FIFO			
U1FCR	控制	Rx 1	触发	保留			复位	O	使能	WO	0	0xE0010008
	1上巾1							复位	文化			
U1LCR	线控制	DLA	设置	奇偶	偶选择	奇偶使能	停止位	字长周	主体坯	R/W	0	0xE001000C
OTECK	三人 (1工作)	В	间隔	固定	内心汗		个数	于以及	又处许	IX/ VV	U	OXEO01000C
U1MCR	Modem	0	0	0	回送	0	0	RTS	DTR	R/W	0	0xE0010010
UTWICK	控制	U	U	U			U	KIS	DIK	IX/ VV	U	0xE0010010
		Rx				FE						
U1LSR	线状态	FIFO	TEMT	THRE	BI		PE	OE	DR	RO	0x60	0xE0010014
		错误										
U1MSR	Modem 状态	DCD	RI	DSR	CTS	Delta DCD	后沿 RI	Delta DSR	Delta CTS	RO	0	0xE0010018
U1SCR	高速缓存	MSB							LSB	R/W	0	0xE001001C
HIDLI	除数锁存	MCD							I CD	D/W	0	0xE0010000
U1DLL	LSB	MSB							LSB	R/W	0	DLAB=1
LIIDIA	除数锁存	MCD							I CD	D /XX	0	0xE0010004
U1DLM	MSB	MSB							LSB	R/W	0	DLAB=1

^{*} 复位值仅指已使用位中保存的数据,不包括保留位的内容。

UART1 包含 12 个 8 位寄存器,见表 87。除数锁存访问位(DLAB)位于 U1LCR7,它使能对除数锁存的访问。

11.3.1 UART1 接收器缓存寄存器(U1RBR - 0xE0010000,DLAB=0,只读)

U1RBR 是 UART1 Rx FIFO 的最高字节。它包含了最早接收到的字符,可通过总线接口读出。LSB(bit0)代表最早接收到的数据位。如果接收到的字符小于 8 位,未使用的MSB 填充为 0。

如果要访问 U1RBR, U1LCR 的除数锁存访问位(DLAB)必须为 0。U1RBR 为只读寄存器。

表 88 UART1 接收器缓存寄存器 (U1RBR - 0xE0010000, DLAB=0, 只读)

U1RBR	功能	描述	复位值
7:0	接收器缓存	接收器缓存寄存器包含 UART1 Rx FIFO 当中最早接收到的字节	未定义

11.3.2 UART1 发送器保持寄存器(U1THR - 0xE0010000, DLAB=0, 只写)

U1THR 是 UART1 Tx FIFO 的最高字节。它包含了 Tx FIFO 中最新的字符,可通过总线接口写入。LSB 代表最先发送的位。

如果要访问 U1THR,U1LCR 的除数锁存访问位(DLAB)必须为 0。U1THR 为只写寄存器。

表 89 UART1 发送器保持寄存器 (U1THR - 0xE0010000, DLAB=0, 只写)

U1THR	功能	描述	复位值
7.0	42. 24. 28. 47. 44.	写发送器保持寄存器使数据保存到 UART1 发送 FIFO 当中。当字节	NI/A
7:0	发送器保持	到达 FIFO 的最低部并且发送器就绪时,该字节将被发送。	N/A

11.3.3 UART1 除数锁存 LSB 寄存器(U1DLL - 0xE0010000, DLAB=1)

11.3.4 UART1 除数锁存 MSB 寄存器(U1DLM - 0xE0010004, DLAB=1)

UART1 的除数锁存是波特率发生器的一部分,它保存了用于产生波特率时钟的 VPB 时钟(pclk)分频值,波特率时钟必须是波特率的 16 倍。U1DLL 和 U1DLM 寄存器一起构成一个 16 位除数,U1DLL 包含除数的低 8 位,U1DLM 包含除数的高 8 位。值'h0000被看作是'h0001,因为除数是不允许为 0 的。当访问 UART1 除数锁存寄存器时,U1LCR的除数锁存访问位(DLAB)必须为 1。

表 90 UART1 除数锁存 LSB 寄存器(U1DLL - 0xE0010000, DLAB=1)

U1DLL	功能	描述	复位值
7.0	除数锁存	UART1 除数锁存 LSB 寄存器与 UIDLM 寄存器一起决定 UART1 的	001
7:0	LSB 寄存器	波特率。	0x01

表 91 UART1 除数锁存 MSB 寄存器(U1DLM - 0xE0010004, DLAB=1)

U1DLM	功能	描述	复位值
7.0	除数锁存	UART1 除数锁存 MSB 寄存器与 UIDLL 寄存器一起决定 UART1 的	0
7:0	MSB 寄存器	波特率。	U

11.3.5 UART1 中断使能寄存器(U1IER - 0xE0010004,DLAB=0)

UlIER 用于使能 4 个中断源。

表 92 UART1 中断使能寄存器(U1IER - 0xE0010004, DLAB=0)

U1IER	功能	描述	复位值
	RBR 中断	0: 禁止 RDA 中断	
0	使能	1: 使能 RDA 中断	0
	文化	U1IER0 使能 UART1 的接收数据可用中断。它还控制着接收超时中断。	
	THRE 中断	0: 禁止 THRE 中断	
1	使能	1: 使能 THRE 中断	0
	文化	U1IER1 使能 UART1 的 THRE 中断。该中断的状态可从 U1LSR5 读出。	
		0: 禁止 Rx 线状态中断	
2	Rx 线状态	1: 使能 Rx 线状态中断	0
2	中断使能	U1IER2 使能 UART1 Rx 线状态中断。该中断的状态可从 U1LSR[4:1]读	O
		出。	
	Modem 状	0: 禁止 Modem 中断	
3	态中断使	1: 使能 Modem 中断	0
	能	U1IER3 使能 modem 中断。中断的状态可从 U1MSR[3:0]读取。	
7:4	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

11.3.6 UART1 中断标识寄存器(U1IIR - 0xE0010008, 只读)

U1IIR 提供状态代码用于指示一个挂起中断的中断源和优先级。在访问 U1IIR 过程中,中断被冻结。如果在访问 U1IIR 时产生了中断,该中断被记录,下次 U1IIR 访问可读出。

表 93 UART1 中断标识寄存器(U1IIR - 0xE0010008, 只读)

U1IIR	功能	描述	复位值
		0: 至少有1个中断被挂起	
0	中断挂起	1: 没有挂起的中断	1
		U1IIR0 为低有效。挂起的中断可通过 U1IIR3:1 确定。	
		011: 1. 接收线状态(RLS)	
		010: 2a. 接收数据可用(RDA)	
		110: 2b. 字符超时指示(CTI)	
3:1	中断标识	001: 3. THRE 中断	0
		000: 4. Modem 中断	
		U1IER3 指示对应于 UART1 Rx FIFO 和 modem 信号的中断。上面未列	
		出的 U1IER3:1 的其它组合都为保留值(100, 101, 111)	
5:4	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
7:6	FIFO 使能	这些位等效于 U1FCR0	0

中断的处理见表 94。给定了 U1IIR[3:0]的状态,中断处理程序就能确定中断源以及如何清除激活的中断。在退出中断服务程序之前,必须读取 U1IIR 来清除中断。

UART1 RLS 中断(U1IIR3:1=011)是最高优先级的中断。只要 UART1 RX 输入产生 4 个错误条件(溢出错误(OE)、优先级错误(PE)、帧错误(FE)和间隔中断(BI))中的任意一个,该中断标志将置位。产生该中断的 UART1 Rx 错误条件可通过查看 U1LSR4:1 得到。当读取 U1LSR 时清除中断。

UART1 RDA 中断(U1IIR3:1=010)与 CTI 中断(U1IIR3:1=110)共用第二优先级。 当 UART1 Rx FIFO 到达 U1FCR7:6 所定义的触发点时,RDA 被激活。当 UART1 Rx FIFO 的深度低于触发点时,RDA 复位。当 RDA 中断激活时 CPU 可读出由触发点所定义的数据块。

CTI 中断(U1IIR3:1=110)为第二优先级中断。当 UART1 Rx FIFO 包含至少 1 个字符并且在接收 3.5 到 4.5 字符的时间内没有发生 UART1 Rx FIFO 动作时,产生该中断。UART1 Rx FIFO 的任何动作(读或写 UART1 RSR)都将清除该中断。当接收到的信息不是触发值的倍数时,CTI 中断将会清空 UART1 RBR。例如,如果一个外设想要发送一个 105 个字符的信息,而触发值为 10 个字符,那么前 100 个字符将使 CPU 接收 10 个 RDA 中断,而剩下的 5 个字符使 CPU 接收 1 到 5 个 CTI 中断(取决于服务程序)。

U1IIR[3:0]	优先级	中断类型	中断源	中断复位				
0001	_	无	无	_				
0110	最高	Rx 线状态/错误	OE, PE, FE, 或 BI	U1LSR 读操作				
0100	第二	Rx 数据可用	Rx 数据可用或 FIFO 模式下(FCR0=1)到达触发	U1RBR 读或				
0100		KX 数据 刊用	点	FIFO 低于触发值				
			Rx FIFO 包含至少1个字符并且在一段时间内无字					
1100			符输入或移出,该时间的长短取决于 FIFO 中的字					
	公	ウ 然切时长二	符数以及在(3.5 到 4.5 字符的时间内)的触发值。	LUDDD 选提化				
	第二	字符超时指示	实际的时间为:	U1RBR 读操作				
			[(字长度)×7-2]×8+[(触发值-字符数)×					
			8+1]RCLK					
			THRE	U1IIR 读 (如果				
0010	第三	THRE		是中断源)或				
				THR 写操作				
0000	第四	Modem 状态	CTS, DSR, RI 或 DCD	MSR 读操作				
注: "0011"	注: "0011", "0101", "0111", "1000", "1001", "1010", "1011", "1101", "1110", "1111"为保留值。							

表 94 UART1 中断处理

UART1 THRE 中断(U1IIR3:1=001)为第三优先级中断。当 UART1 THR FIFO 为空并且满足特定的初始化条件时,该中断激活。这些初始化条件将使 UART1 THR FIFO 被数据填充,以免在系统启动时产生许多 THRE 中断。初始化条件在 THRE=1 时实现了一个字符的延时减去停止位并在上一次 THRE=1 事件之后没有在 U1THR 中存在至少 2 个字符。在没有译码和服务 THRE 中断时,该延迟为 CPU提供了将数据写入 U1THR 的时间。如果 UART1 THR FIFO 中曾经有两个或更多字符,而当前 U1THR 为空时,THRE 中断立即设置。当发生 U1THR 写操作或 U1IIR 读操作并且 THRE 为最高优先级中断(U1IIR3:1=001)时,THRE 中断复位。

Modem 中断(U1IIR3:1=000)是最低优先级中断,只要在 modem 输入管脚、DCD、DSR 或 CTS 上发生任何状态变化,该中断就会激活。此外,modem 输入口 RI 上低到高电平的跳变会产生一个 modem 中断。modem 中断源可通过检查 U1MSR3:0 得到。读取 U1MSR 将清除 modem 中断。

11.3.7 UART1 FIFO 控制寄存器(U1FCR - 0xE0010008)

U1FCR 控制 UART1 Rx 和 Tx FIFO 的操作。

表 95 UART1 FIFO 控制寄存器 (U1FCR - 0xE0010008)

U1FCR	功能	描述	复位值	
		高电平使能对 UART1 Rx 和 Tx FIFO 以及 U1FCR7:1 的访问。该位必		
0	FIFO 使能	须置位以实现正确的 UART1 操作。该位的任何变化都将使 UART1	0	
		FIFO 清空。		
1	Rx FIFO 复位	该位置位会清零 UART1 Rx FIFO 中的所有字节并复位指针逻辑。该	0	
1	KX FIFU 麦牡	位自动清零。	U	
2	2 Tx FIFO 复位	该位置位会清零 UART1 Tx FIFO 中的所有字节并复位指针逻辑。该	0	
2		位自动清零。		
5:3	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA	
		00: 触发点 0 (默认=1 个字符或 0x01h)		
		01: 触发点 1 (默认=4 个字符或 0x04h)		
7:6	Rx 触发选择	10: 触发点 2 (默认=8 个字符或 0x08h)	0	
7:0	KX 熙汉处拜	11: 触发点 3 (默认=14 个字符或 0x0eh)	U	
		这两个位决定在激活中断之前,UART1 FIFO 必须写入多少个字符。4		
		个触发点由用户在编译时定义,可以选择所需要的触发深度。		

11.3.8 UART1 线控制寄存器(U1LCR - 0xE001000C)

U1LCR 决定发送和接收数据字符的格式。

表 96 UART1 线控制寄存器 (U1LCR - 0xE001000C)

U1LCR	功能	描述	复位值			
	之 [00: 5 位字符长度				
1:0		01: 6 位字符长度	0			
1.0	字长度选择	10: 7 位字符长度	U			
		11: 8 位字符长度				
2	停止位选择	0: 1 个停止位	0			
2	行止位处件	1: 2 个停止位(如果 U1LCR[1:0]=00 则为 1.5)	U			
3	奇偶使能	0: 禁止奇偶产生和校验	0			
3		1: 使能奇偶产生和校验	0			
	奇偶选择	00: 奇数				
5:4		01: 偶数	0			
3:4		10: 强制为 1	U			
		11: 强制为 0				
	间隔控制	0: 禁止间隔发送				
6		1: 使能间隔发送	0			
		当 U1LCR6=1 时,输出管脚 UART1 TxD 强制为逻辑 0。				
7	除数锁存访问位	0: 禁止访问除数锁存	0			
'		1: 使能访问除数锁存	U			

11.3.9 UART1 Modem 控制寄存器(U1MCR - 0xE0010010)

U1MCR 使能 modem 的回写模式并控制 modem 的输出信号。

表 97 U1RT1 Modem 控制寄存器(U1MCR - 0xE0010010)

U1MCR	功能	描述					
0	DTR 控制	选择 modem 输出管脚 DTR。该位在回写模式激活时读出为 0。					
1	RTS 控制	选择 modem 输出管脚 RTS。该位在回写模式激活时读出为 0。					
2	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA				
3	保留	段留,用户软件不要向其写入1。从保留位读出的值未被定义。					
4	回写模式选择	0: 禁止 modem 回写模式 1: 使能 modem 回写模式 modem 回写模式提供了一个执行回写测试的诊断机制。发送器输出的串行数据在内部连接到接收器的串行输入端。输入脚 RxD1 对回写模式无影响,输出脚 TxD1 保持总为 1 的状态。4 个 modem 输入(CTS, DSR, RI 和 DCD)与外部断开。从外部来看,modem 的输出端(RTS, DTR)无效。在内部,4 个 modem 输出连接到 4 个 modem 输入。这样连接的结果是 UIMSR 的高 4 位由 UIMCR 的低4 位驱动,而不是在正常模式下由4 个 modem 输入驱动。这样在回写模式下,写 UIMCR 的低4 位就可产生 modem 状态中断。	0				
7:5	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA				

11.3.10 UART1 线状态寄存器(U1LSR - 0Xe0010014,只读)

U1LSR 为只读寄存器,它提供 UART1 Tx 和 Rx 模块的状态信息。

表 98 UART1 线状态寄存器 (U1LSR - 0Xe0010014, 只读)

U1LSR	功能	描述					
0	接收数据 就绪 (RDR)	1: U1RBR 包含有效数据 就绪 当 U1RBR 包含未读取的字符时, U1LSR0 置位; 当 UART1 RBR FIFO 为					
1	溢出错误(OE)	溢出错误条件在错误发生后立即设置。U1LSR 读操作清零 U1LSR1。当					
2	奇偶错误 (PE)	0: 奇偶错误状态未激活 1: 奇偶错误状态激活 当接收字符的奇偶位处于错误状态时产生一个奇偶错误。U1LSR 读操作清零 U1LSR2 位。奇偶错误检测时间取决于 U1FCR0。奇偶错误与 UART1 RBR FIFO 中读出的字符相关。					
3	帧错误 (FE)	0: 帧错误状态未激活 1: 帧错误状态激活 当接收字符的停止位为 0 时,产生帧错误。UILSR 读操作清零 UILSR3。 帧错误检测时间取决于 UIFCR0。帧错误与 UART1 RBR FIFO 中读出的字 符相关。当检测到一个帧错误时,Rx 将尝试与数据重新同步并假设错误的 停止位实际是一个超前的起始位。	0				

续表 98

U1LSR	功能	描述	复位值			
4	0: 间隔中断状态未激活 1: 间隔中断状态激活 1: 间隔中断状态激活 在发送整个字符(起始位、数据、奇偶位和停止位)过程中 RxD1 如果者 保持逻辑 0,则产生间隔中断。当检测到间隔条件时,接收器立即进入空闭状态直到 RxD1 变为全 1 状态。U1LSR 读操作清零该状态位。间隔检测的时间取决于 U1FCR0。间隔中断与 UART1 RBR FIFO 中读出的字符相关。					
5	发送保持 寄存器空 (THRE)	: U1THR 包含有效数据 : U1THR 空 占检测到 U1THR 空时,THRE 置位,U1THR 写操作清零该位。				
6	发送器空 (TEMT)	D: UITHR 和/或 UITSR 包含有效数据 I: UITHR 和 UITSR 空 当 THR 和 TSR 都为空时,TEMT 置位。当 UITSR 或 UITHR 包含有效数 据时,TEMT 清零。				
7	Rx FIFO 错 误(RXFE)	0: U1RBR 中没有 UART1 Rx 错误,或 U1FCR0=0 1: U1RBR 包含至少一个 UART1 Rx 错误 当一个带有 Rx 错误(例如帧错误、奇偶错误或间隔中断)的字符装入 U1RBR 时,U1LSR7 置位。当读取 U1LSR 寄存器并且 UART1 FIFO 中不再有错误 时,U1LSR7 清零。	0			

11.3.11 UART1 Modem 状态寄存器(U1MSR - 0x0E0010018)

U1MSR 是一个只读寄存器,它提供 modem 输入信号的状态信息。U1MSR3:0 在读取 U1MSR 时清零。需要注意的是,modem 信号对 UART1 的操作没有直接影响,modem 信号的操作是通过软件来实现的。

表 99 UART1 Modem 状态寄存器(U1MSR - 0x0E0010018)

U1MSR	功能	描述						
0	Delta CTS	0: 没有检测到 modem 输入 CTS 上的状态变化						
		1: 检测到 modem 输入 CTS 上的状态变化	0					
		当输入 CTS 状态发生变化时,该位置位。读取 U1MSR 时清零。						
		0: 没有检测到 modem 输入 DSR 上的状态变化						
1	Delta DSR	1: 检测到 modem 输入 DSR 上的状态变化	0					
		当输入 DSR 状态发生变化时,该位置位。读取 U1MSR 时清零。						
	后沿 RI	0: 没有检测到 modem 输入 RI 上的状态变化						
2		1: 检测到 modem 输入 RI 上的状态变化	0					
		当输入 RI 状态发生变化时,该位置位。读取 U1MSR 时清零。						
	Delta DCD	0: 没有检测到 modem 输入 DCD 上的状态变化						
3		1: 检测到 modem 输入 DCD 上的状态变化	0					
		当输入 DCD 状态发生变化时,该位置位。读取 UIMSR 时清零。						
4	CTS	清零以发送状态 输入信号 CTS 的补码。在回写模式下,该位连接到	0					
4		U1MCR[1]。	U					

续表 99

U1MSR	功能	描述				
5	DSR	数据设置就绪状态 输入信号 DSR 的补码。在回写模式下,该位连接	0			
		到 U1MCR[0]。	0			
6	RI	响铃指示状态 输入信号 RI 的补码。在回写模式下,该位连接到	0			
		U1MCR[2]。				
7	DCD	数据载波检测状态 输入信号 DCD 的补码。在回写模式下,该位连接	0			
		到 U1MCR[3]。				

11.3.12 UART1 高速缓存寄存器(U1SCR - 0xE001001C)

在 UART1 操作时 U1SCR 无效。用户可自由对该寄存器进行读或写。不提供中断接口向主机指示 U1SCR 所发生的读或写操作。

表 100 高速缓存寄存器(U1SCR - 0xE001001C)

U1SCR	功能	描述			
7:0	-	一个可读可写的字节	0		

11.4 结构

UART1 的结构如图 23 所示。

VPB 接口提供 CPU 或主机与 UART1 之间的通信连接。

UART1 接收器模块 U1Rx 监视串行输入线 RxD1 的有效输入。UART1 Rx 移位寄存器 (U1RSR) 通过 RxD1 接受有效的字符。当 U1RSR 接收到一个有效字符时,它将该字符 传送到 UART1 Rx 缓冲寄存器 FIFO 中,等待 CPU 或主机通过主机接口进行访问。

UART1 发送器模块 U1Tx 接受 CPU 或主机写入的数据并将数据缓存到 UART1 Tx 保持寄存器 FIFO (U1THR)中。UART1 Tx 移位寄存器(U1TSR)读取 U1THR 中的数据并将数据通过串行输出管脚 TxD1 发送。

UART1 波特率发生器模块 U1BRG 产生 UART1 Tx 模块所使用的定时。U1BRG 模块时钟源为 VPB 时钟(pclk)。主时钟与 U1DLL 和 U1DLM 寄存器所定义的除数相除得到 Tx 模块使用的时钟。该时钟为 16 倍过采样时钟 NBAUDOUT。

Modem 接口包含寄存器 U1MCR 和 U1MSR。该接口负责一个 modem 外设与 UART1 之间的握手。

中断接口包含寄存器 U1IER 和 U1IIR。中断接口接收几个由 U1Tx, U1Rx 和 modem 模块发出的单时钟宽度的使能信号。

U1Tx 和 U1Rx 的状态信息保存在 U1LSR 中。U1Tx 和 U1Rx 的控制信息保存在 U1LCR 中。

图 23 UART1 方框图

12. I²C 接口

12.1 特性

- 标准的 I²C 总线接口
- 可配置为主机、从机或主/从机
- 可编程时钟可实现通用速率控制
- 主机从机之间双向数据传输
- 多主机总线(无中央主机)
- 同时发送的主机之间进行仲裁,避免了总线数据的冲突
- 串行时钟同步使器件在一条串行总线上实现不同位速率的通信
- 串行时钟同步可作为握手机制使串行传输挂起和恢复
- I²C 总线可用于测试和诊断

12.2 应用

• 与外部标准 I²C 部件接口,例如串行 RAM、LCD、音调发生器等等

12.3 描述

 I^2C 总线的典型配置如图 24 所示。根据方向位(R/W)状态的不同, I^2C 总线上存在以下两种类型的数据传输:

- 从主发送器向从接收器发送数据。主机发送的第一个字节是从机地址。接下来是数据字节流。从机每接收一个字节返回一个应答位。
- 从发送器向主接收器发送数据。第一个字节(从地址)由主机发送。从机返回一个应答位。接下来从机向主机发送数据字节。主机每接收一个字节返回一个应答位。接收完最后一个字节,主机返回一个"非应答位"。主器件产生所有串行时钟脉冲和起始以及停止条件。出现停止条件或重复的起始条件时传输结束。由于重复的起始条件同时是下一个串行发送的开始,因此 I²C 总线不会被释放。

该器件提供字节方式的 I^2C 接口。它有 4 种操作模式:主发送器模式、主接收器模式、从发送器模式和从接收器模式。

图 24 I²C 总线配置

12.3.1 I²C 操作模式

12.3.1.1 主发送器模式:

在该模式中,数据从主机发送到从机。在进入主发送器模式之前,I2CONSET 必须按照图 25 进行初始化。必须置位 I2EN 来使能 I^2 C 功能。如果 AA 位为 0,而另一个器件成为总线的主控器时, I^2 C 将不会对任何地址产生应答。也就是说它无法进入从模式。STA,STO 和 SI 必须设置为 0。向 I2CONCLR 寄存器中的 SIC 位写入 1 可清零 SI。

	7	6	5	4	3	2	1	0	
I2CONSET	ı	I2EN	STA	STO	SI	AA	_	I	
	_	1	0	0	0	0	_	_	

图 25 主模式配置

第一个发送的数据包含接收器件的从地址(7 位)和数据方向位。在此模式下,数据方向位(R/W)应当为 0 表示执行写操作。因此第一个发送的字节为从地址和写方向位。数据的发送每次为 8 位。每发送完一个字节,都接收到一个应答位。起始和停止条件用于指示串行传输的起始和结束。

通过软件置位 STA 进入 I^2C 主发送器模式。 I^2C 逻辑在总线空闲后立即发送一个起始条件。当发送完起始条件后,SI 置位。此时 I2STAT 中的状态代码应当为 08H。该状态代码用于指向一个中断服务程序。该中断程序将从地址和写方向位装入 I2DAT(数据寄存器),然后清零 SI 位。向 I2CONCLR 寄存器中的 SIC 位写入 1 可清零 SI。

当从地址和 R/W 位已发送且接收到应答位之后,SI 位再次置位,并且对于主模式,可能的状态代码为 18H,20H或 38H,如果从模式使能(AA=1),可能的状态代码为 68H,78H或 0B0H。每个状态代码对应的执行动作见"80C51 系列派生器件 8XC552/562 概述"数据

手册中的表 3~6,数据手册可从网上下载:

http://www.semiconductors.philips.com/acrobat/various/8XC552_562OVERVIEW_2.pdf。

图 26 主发送器模式中的格式

12.3.1.2 主接收器模式

在主接收器模式中,数据字节接收自从发送器。传输的初始化与主发送器模式相同。 发送完起始条件后,中断服务程序必须将从地址和数据方向位装入 I^2C 数据寄存器 (I2DAT),然后清零 SI 位。

当从地址和方向位已发送且接收到应答位之后,SI 置位而状态寄存器将显示状态代码。对于主模式,可能的状态代码为 40H,48H 或 38H,对于从模式,可能的状态代码为 68H,78H 或 B0H。详情请参考"80C51 系列派生器件 8XC552/562 概述"数据手册中的表4,数据手册可通过下面的地址从网上下载:

http://www.semiconductors.philips.com/acrobat/various/8XC552_562OVERVIEW_2.pdf。

图 27 主接收器模式的格式

在一个重复的起始条件之后, I²C 可以切换到主发送器模式。

图 28 在发送重复起始条件后,主接收器切换到主发送器

12.3.1.3 从接收器模式

在从接收器模式中,从主发送器接收数据字节。要初始化从接收器模式,用户必须将从地址写入从地址寄存器(I2ADR)并按照图 29 配置 I²C 控制置位寄存器(I2CONSET):

	7	6	5	4	3	2	1	0
I2CONSET	-	I2EN	STA	STO	SI	AA	_	_
	_	1	0	0	0	1	_	_

图 29 从模式配置

I2EN 必须置位以使能 I^2C 功能。AA 位必须置位以使 I^2C 应答自身的从地址或通用调用地址。STA,STO 和 SI 设置为 0。

当 I2ADR 和 I2CONSET 完成初始化时, I²C 一直等待到它被自身的从地址或通用地址(两者后面都紧跟数据方向位)寻址为止。如果数据方向位为 1(R), I²C 将进入从发送器模式。在接收到地址和方向位后, SI 置位并可从状态寄存器(I2STAT)中读出有效的状态代码。请参考"80C51 系列派生器件 8XC552/562 概述"数据手册中的表 4,数据手册可从网上下载:

http://www.semiconductors.philips.com/acrobat/various/8XC552_562OVERVIEW_2.pdf。

图 30 从接收器模式的格式

12.3.1.4 从发送器模式

第一个字节的接收和处理与从接收器模式相同。但在该模式中,方向位指示传输的方向掉转。串行数据通过 SDA 发送而串行时钟通过 SCL 输入。在串行传输的开始和结束对起始和停止条件进行识别。在一个给定的应用中,I2C 可以为主模式也可以为从模式。在从模式中,I2C 寻找它自身的从地址和通用调用地址。如果检测到其中一个地址,将产生中断请求。当微控制器希望成为总线主机时,硬件在进入主模式前一直等待,直到总线释放。这样就不会中断一个可能的从机动作。如果在主模式中总线仲裁丢失,I2C 将立即切换到从模式并能在同一个串行传输中检测自身的从地址。

图 31 从发送器模式的格式

12.4 管脚描述

表 101 I²C 管脚描述

管脚名称	类型	描述		
SDA	输入/输出	串行数据 I^2C 数据输入和输出。相关端口为开漏输出以符合 I^2C 规范。		
SCL	输入/输出	串行时钟 I^2C 时钟输入和输出。相关端口为开漏输出以符合 I^2C 规范。		

12.5 寄存器描述

 I^2C 接口包含 7 个寄存器,如表 102 所示。

表 102 I2C 寄存器映射

名称	描述	访问	复位值*	地址
I2CONSET	I ² C 控制置位寄存器	读/置位	0	0xE001C000
I2STAT	I ² C 状态寄存器	只读	0xF8	0xE001C004
I2DAT	I ² C 数据寄存器	读/写	0	0xE001C008
I2ADR	I ² C 从地址寄存器	读/写	0	0xE001C00C
I2SCLH	SCL 占空比寄存器高半字	读/写	0x04	0xE001C010
I2SCLL	SCL 占空比寄存器低半字	读/写	0x04	0xE001C014
I2CONCLR	I ² C 控制清零寄存器	只清零	NA	0xE001C018

• 复位值仅指已使用位中保存的数据,不包括保留位的内容。

12.5.1 I²C 控制置位寄存器(I2CONSET - 0xE001C000)

AA 为声明应答标志。当该位置位时,SCL 线的应答时钟脉冲内出现下面的任意条件之一将产生一个应答(SDA 上的低电平):

- 1. 接收到从地址寄存器中的地址。
- 2. 当 I2ADR 中的通用调用位(GC)置位时,接收到通用调用地址。
- 3. 当 I²C 接口处于主接收器模式时,接收到一个数据字节。
- 4. 当 I^2C 接口处于可寻址的从接收器模式时,接收到一个数据字节。

向 I2CONCLR 寄存器中的 AAC 位写入 1 会使 AA 位清零。当 AA 为零时,SCL 线的 应答时钟脉冲内出现下列情况将返回一个非应答信号(SDA 上的高电平):

- 1. 当 I^2C 接口处于主接收器模式时,接收到一个数据字节。
- 2. 当 I²C 接口处于可寻址的从接收器模式时,接收到一个数据字节。

SI 为 I^2C 中断标志。当进入 25 种可能的 I^2C 状态中的任何一个后,该位置位。通常, I^2C 中断只在空闲的从器件中用于指示一个起始条件,或在一个空闲的主器件(如果它等 待使用 I^2C 总线)中指示一个停止条件。向 I2CONCLR 寄存器中的 SIC 位写入 1 使 SI 位 清零。

STO 为停止标志。当 STO 为 1 时,在主模式中,向 I²C 总线发送一个停止条件或在从模式中使总线从错误状态中恢复。当主模式中 STO=1 时,向总线发送停止条件。当总线检测到停止条件时,STO 自动清零。

在从模式中,置位 STO 位可从错误状态中恢复。这种情况下不向总线发送停止条件。硬件的表现就好像是接收到一个停止条件并切换到不可寻址的从接收器模式。STO 标志由硬件自动清零。

STA 为起始标志。当 STA=1 时, I^2 C 接口进入主模式并发送一个起始条件,如果已经处于主模式,则发送一个重复起始条件。

当 STA=1 并且 I^2 C 接口还没进入主模式时, I^2 C 接口将进入主模式,检测总线并在总线空闲时产生一个起始条件。如果总线忙,则等待一个停止条件(释放总线)并在延迟半个内部时钟发生器周期后发送一个起始条件。当 I^2 C 接口已经处于主模式中并发送或接收了数据时, I^2 C 接口会发送一个重复的起始条件。STA 可在任何时候置位,当 I^2 C 接口处于可寻址的从模式时,STA 也可以置位。

向 I2CONCLR 寄存器中的 STAC 位写入 1 使 STA 位清零。当 STA=0 时,不会产生起始或重复起始条件。

当 STA 和 STO 都置位时,如果 I^2C 接口处于主模式, I^2C 接口将向总线发送一个停止条件,然后发送一个起始条件。如果 I^2C 接口处于从模式,则产生一个内部停止条件,但不发送到总线上。

I2EN 为 I^2 C 接口使能。当该位置位时,使能 I^2 C 接口。向 I2CONCLR 寄存器中的 I2ENC 位写入 1 将使 I2EN 位清零。当 I2EN 位为 0 时, I^2 C 功能被禁止

I2CONSET	功能	描述	复位值
0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
1	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
2	AA	应答标志	0
3	SI	I ² C 中断标志	0
4	STO	停止标志	0
5	STA	起始标志	0
6	I2EN	I ² C 接口使能	0
7	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

表 103 I²C 控制置位寄存器 (I2CONSET - 0xE001C000)

12.5.2 I²C 控制清零寄存器(I2CONCLR – 0xE001C018)

表 104	I ² C 控制清零寄存器	(I2CONCLR)	0xF001C018)
X 1U4		UZGUNGER :	・ひょとひひょしひょうノ

I2CONCLR	功能	描述	复位值		
0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA		
1	保留	留,用户软件不要向其写入1。从保留位读出的值未被定义。			
2	AAC	应答标志清零位。向该位写入 1 清零 I2CONSET 寄存器中的 AA 位。写入 0 无效。	NA		
3	SIC	I^2C 中断标志清零位。向该位写入 1 清零 $I2CONSET$ 寄存器中的 SI 位。写入 0 无效。	NA		
4	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA		
5	STAC 起始标志清零位。向该位写入 1 清零 I2CONSET 寄存器中的 STA 位。写, 0 无效。		NA		
6	I2ENC	I^2C 接口禁止。向该位写入 I 清零 $I2CONSET$ 寄存器中的 $I2EN$ 位。写入 0 无效。	NA		
7	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA		

12.5.3 I²C 状态寄存器(I2STAT - 0xE001C004)

这是一个只读寄存器。它包含 I²C 接口的状态代码。最低 3 位总是为 0。一共有 26 种可能存在的状态代码。当代码为 F8H 时,无可用的相关信息,SI 位不会置位。所有其它 25 种状态代码都对应一个已定义的 I²C 状态。当进入其中一种状态时,SI 位将置位。所有状态代码的描述见"80C51 系列派生器件 8XC552/562 概述"数据手册中的表 3~6,数据手册可从网上下载:

 $http://www.semiconductors.philips.com/acrobat/various\\/8XC552_562OVERVIEW_2.pdf\circ$

表 105 I²C 状态寄存器 (I2STAT - 0xE001C004)

I2STAT	功能	描述	
2:0	状态	这3个位总是为0	0
7:3	状态	状态位	1

12.5.4 I²C 数据寄存器(I2DAT - 0xE001C008)

该寄存器包含要发送或刚接收的数据。当它没有处理字节的移位时,CPU 可对其进行读写。该寄存器只能在 SI 置位时访问。在 SI 置位期间,I2DAT 中的数据保持稳定。I2DAT 中的数据移位总是从右至左进行:第一个发送的位是 MSB(位 7),在接收字节时,第一个接收到的位存放在 I2DAT 的 MSB。

表 106 I²C 数据寄存器 (I2DAT - 0xE001C008)

I2DAT	功能	描述	复位值
7:0	数据	发送/接收数据位	0

12.5.5 I²C 从地址寄存器(I2ADR - 0xE001C00C)

该寄存器可读可写,但只能在 I^2C 设置为从模式时才能使用。在主模式中,该寄存器 无效。I2ADR 的 LSB 为通用调用位。当该位置位时,通用调用地址(00h)被识别。

表 107 I²C 从地址寄存器 (I2ADR - 0xE001C00C)

I2ADR	功能	描述	
0	GC	通用调用位	0
7:1	地址	从模式地址	0

12.5.6 I²C SCL 占空比寄存器(I2SCLH - 0xE001C010 和 I2SCLL - 0xE001C014)

软件必须通过对 I2SCLH 和 I2SCLL 寄存器进行设置来选择合适的波特率。I2SCLH 定义 SCL 高电平所保持的 pclk 周期数,I2SCLL 定义 SCL 低电平的 pclk 周期数。频率由下面的公式得出:

位频率 = f_{CLK}/(I2SCLH + I2SCLL)

此处为 f_{CLK} 为 pclk 频率。

I2SCLL 和 I2SCLH 的值不一定要相同。通过设定这两个寄存器可得到 SCL 的不同占空比。但寄存器的值必须确保 I²C 数据通信速率在 0 到 400KHz 之间。这样对 I2SCLL 和

I2SCLH的值就有一些限制。每个寄存器的值都必须大于等于 4。

表 108 I²C SCL 高电平占空比寄存器(I2SCLH - 0xE001C010)

I2SCLH 功能		描述	复位值
15:0	计数值	SCL 高电平周期选择计数	

表 109 I²C SCL 低电平占空比寄存器(I2SCLL - 0xE001C014)

I2SCLL	功能	功能描述	
15:0	计数值	SCL 低电平周期选择计数	

表 110 VPB 时钟分频=1 时的 I²C 时钟速率选择

***************************************	位数据速率(Ki	Hz) @ f _{CCLK} (MHz	z) & VPB 时钟分频	5 =1
I2SCLL+I2SCLH	16	20	40	60
8	-	-	-	-
10	-	-	-	-
25	-	-	-	-
50	320.0	400.0	-	-
75	213.333	266.667	-	-
100	160.0	200.0	400.0	-
160	100.0	125.0	250.0	375.0
200	80.0	100.0	200.0	300.0
320	50.0	62.5	125.0	187.5
400	40.0	50.0	100.0	150.0
510	31.373	39.216	78.431	117.647
800	20.0	25.0	50.0	75.0
1280	12.5	15.625	31.25	46.875

表 111 VPB 时钟分频=2 时的 I^2C 时钟速率选择

IAGGLI JAGGLII	位数据速率(KI	Hz) @ f _{CCLK} (MHz	z) & VPB 时钟分频	页=2
I2SCLL+I2SCLH	16	20	40	60
8	-	-	-	-
10	-	-	-	-
25	320.0	400.0	-	-
50	160.0	200.0	400.0	-
75	106.667	133.333	266.667	400.0
100	80.0	100.0	200.0	300.0
160	50.0	62.5	125.0	187.5
200	40.0	50.0	100.0	150.0
320	25.0	31.25	62.5	93.75
400	20.0	25.0	50.0	75.0
510	15.686	19.608	39.216	58.824
800	10.0	12.5	25.0	37.5
1280	6.25	7.813	15.625	23.438

表 112	VPB 时钟分频=4	时的 I2C	时钟谏率选择
-------	------------	--------	--------

I2SCLL+	位数据速率(KI	Hz) @ f _{CCLK} (MHz	z) & VPB 时钟分频	页 =4
I2SCLH	16	20	40	60
8	500.0	-	-	-
10	400.0	-	-	-
25	160.0	200.0	400.0	-
50	80.0	100.0	200.0	300.0
75	53.333	66.667	133.333	200.0
100	40.0	50.0	100.0	150
160	25.0	31.25	62.5	93.75
200	20.0	25.0	50.0	75.0
320	12.5	15.625	31.25	46.875
400	10.0	12.5	25.0	37.5
510	7.843	9.804	19.608	29.412
800	5.0	6.25	12.5	18.75
1280	3.125	3.906	7.813	11.719

图 32 I²C 结构

13. SPI 接口

13.1 特性

- 两个完全独立的 SPI 控制器
- 遵循串行外设接口(SPI)规范
- 同步、串行、全双工通信
- 组合的 SPI 主机和从机
- 最大数据位速率为输入时钟速率的 1/8

13.2 描述

13.2.1 SPI 概述

SPIO 和 SPII 是一个全双工的串行接口。它们设计成可以处理在一个给定总线上多个互连的主机和从机。在一定数据传输过程中,接口上只能有一个主机和一个从机能够通信。在一次数据传输中,主机总是向从机发送一个字节数据,而从机也总是向主机发送一个字节数据。

13.2.2 SPI 数据传输

图 33 所示为 SPI 的 4 种不同数据传输格式的时序。该时序图描述的是 8 位数据的传输。需要注意的是,该时序图分成了 3 个水平的部分。第一部分描述 SCK 和 SSEL 信号。第二部分描述了 CPHA=0 时的 MOSI 和 MISO 信号。第三部分描述了 CPHA=1 时的 MOSI 和 MISO 信号。

在时序图的第一部分需要注意两点。第一,时序图包含了 CPOL 设置为 0 和 1 的情况。第二,SSEL 信号的激活和未激活。当 CPHA=1 时,SSEL 信号在数据传输之间时总是保持未激活状态。当 CPHA=0 时则不能保证这一点(信号有可能保持激活状态)。

图 33 SPI 数据传输格式 (CPHA=0 和 CPHA=1)

数据和时钟的相位关系在表 113 中描述。该表汇集了下面情况下 CPOL 和 CPHA 的每一种设定:

- 当驱动第一个数据位时
- 当驱动所有其它数据位时
- 当采样数据时

表 113 SPI 数据和时钟的相位关系

CPOL 和 CPHA 的设定	驱动的第一个数据	驱动的其它数据	采样的数据
CPOL=0, CPHA=0	在第一个 SCK 上升沿之前	SCK 下降沿	SCK 上升沿
CPOL=0, CPHA=1	第一个 SCK 上升沿	SCK 上升沿	SCK 下降沿
CPOL=1, CPHA=0	在第一个 SCK 下降沿之前	SCK 上升沿	SCK 下降沿
CPOL=1, CPHA=1	第一个 SCK 下降沿	SCK 下降沿	SCK 上升沿

8位传输起始和停止时间的定义取决于器件为主机还是从机,以及 CPHA 变量的设定。

当器件为主机时,传输的起始由包含发送数据字节的主机来指示。此时,主机可激活 时钟并开始传输。当传输的最后一个时钟周期结束时,传输结束。

当器件为从机并且 CPHA=0 时,传输在 SSEL 信号激活时开始,并在 SSEL 变为高电平时结束。当器件为从机且 CPHA=1 时,如果该器件被选择,传输从第一个时钟沿开始,并在数据采样的最后一个时钟沿结束。

13.2.3 SPI 外设描述

13.2.3.1 概述

有 4 个寄存器控制 SPI 外设。将在*寄存器描述*一节中详细讲述。

SPI 控制寄存器包含一些可编程位来控制 SPI 模块的功能。该寄存器必须在数据传输之前进行设定。

SPI 状态寄存器包含只读位,用于监视 SPI 外设的状态,包括一般性功能和异常状况。 该寄存器的主要用途是检测数据传输的完成,这通过 SPIF 位来实现。其它位用于指示异 常状况。异常情况将在后面描述。

SPI 数据寄存器用于提供发送和接收的数据字节。串行数据实际的发送和接收通过内部移位寄存器来实现。在发送时向 SPI 数据寄存器写入数据。数据寄存器和内部移位寄存器之间没有缓冲区。写数据寄存器会使数据直接进入内部移位寄存器。因此数据只能在没有执行数据发送时写入该寄存器。读数据带有缓冲区。当传输结束时,接收到的数据转移到一个单字节的数据缓冲区,下次传输时将其读出。读 SPI 数据寄存器将返回读数据缓冲区的值。

当 SPI 模块处于主模式时,SPI 时钟计数器寄存器用于控制时钟速率。该寄存器必须 在数据传输之前设定。当 SPI 模块处于从模式时,该寄存器无效。

SPI 所使用的 I/O 口为标准 CMOS I/O 口。设计上没有实现开漏 SPI 选项。当器件设置为从机时,它的 I/O 口只有在被有效的 SSEL 信号选择时才有效。

13.2.3.2 主机操作

下面的步骤描述了 SPI 设置为主机时如何处理数据传输。该处理假设任何之前的数据传输已经结束。

- 1. 将 SPI 时钟计数寄存器设置为所需要的值。
- 2. 将 SPI 控制寄存器设置为所需要的设定。
- 3. 将要发送的数据写入 SPI 数据寄存器。此写操作启动 SPI 数据传输。
- 4. 等待 SPI 状态寄存器中的 SPIF 位置位。SPIF 位将在 SPI 数据传输的最后一个周期之后置位。
- 5. 读取 SPI 状态寄存器。
- 6. 从 SPI 数据寄存器中读出接收到的数据 (可选)
- 7. 如果有更多数据需要发送,则跳到第3步。

注:读或写 SPI 数据寄存器用来清零 SPIF 状态位。因此,如果不执行可选的 SPI 数据寄存器读操作,则需要执行该寄存器的写操作以清零 SPIF 状态位。

13.2.3.3 从机操作

下面的步骤描述了 SPI 设置为从机时如何处理数据传输。该处理假设任何之前的数据传输已经结束。要求驱动 SPI 逻辑的系统时钟速度至少 8 倍于 SPI。

- 1. 将 SPI 控制寄存器设置为所需要的设定。
- 2. 将要发送的数据写入 SPI 数据寄存器 (可选)。注意这只能在从 SPI 传输没有进行时执行。
- 3. 等待 SPI 状态寄存器中的 SPIF 位置位。SPIF 位将在 SPI 数据传输的最后一个采样时钟沿后置位。
- 4. 读取 SPI 状态寄存器。
- 5. 从 SPI 数据寄存器中读出接收到的数据 (可选)。
- 6. 如果有更多数据需要发送,则跳到第2步。

注:读或写 SPI 数据寄存器用来清零 SPIF 状态位。因此至少需要执行一个该寄存器的读或写操作来清零 SPIF 状态位。

13.2.3.4 异常状况

读溢出一当 SPI 模块内部读缓冲区包含没有读出的数据,而新的传输已经完成,那么这时候就会发生读溢出。SPIF 位置位表示读缓冲区包含了有效数据。当一次传输结束时,SPI 模块需要将接收到的数据移到读缓冲区。如果 SPIF 位置位 (读缓冲区已满),新接收到的数据将会丢失,而状态寄存器的读溢出 (ROVR)位将置位。

写冲突一我们在前面提到过,在 SPI 总线接口与内部移位寄存器之间没有写缓冲区。 这样在 SPI 数据传输过程当中不应向 SPI 数据寄存器写入数据。不能向 SPI 数据寄存器写 入数据的时间从传输启动时开始,直到 SPIF 置位时读取状态寄存器为止。如果在这段时 间内写 SPI 数据寄存器,写入的数据将会丢失,状态寄存器中的写冲突位(WCOL)置位。

模式错误—SSEL 信号在 SPI 模块为主机时必须无效。当 SPI 模块为主机时,如果 SSEL 信号被激活,表示有另外一个主机将该器件选择为从机。这种状态称为模式错误。当检测到一个模式错误时,状态寄存器的模式错误位(MODF)位置位,SPI 信号驱动器关闭,而 SPI 模式转换为从模式。

从机中止一如果 SSEL 信号在传输结束之前变为高电平,从传输将被认为中止。此时, 正在处理的发送或接收数据都将丢失,状态寄存器的从机中止(ABRT)位置位。

13.3 管脚描述

表 114 SPI 管脚描述

管脚名称	类型	描述
		串行时钟 用于同步 SPI 接口间数据传输的时钟信号。该时钟总是由主机驱动并
SCK1,SCK0	输入/输出	且从机接收。时钟可编程为高有效或低有效。它只在数据传输时才被激活,其
		它任何时候都处于非激活状态或三态。
		从机选择 SPI 从机选择信号是一个低有效信号,用于指示被选择参与数据传输
		的从机。每个从机都有各自特定的从机选择输入信号。在数据处理之前,SSEL
		必须为低电平并在整个处理过程中保持低电平。如果在数据传输中 SSEL 信号变
CCEL 1 CCEL O	输入	为高电平,传输将被中止。这种情况下,从机返回到空闲状态并将任何接收到
SSEL1,SSEL0		的数据丢弃。对于这样的异常没有其它的指示。该信号不直接由主机驱动。可
		通过软件使用一个通用 I/O 口来驱动。
		注:配置为 SPI 主机的 LPC2114/2124/2212/2214 必须选择一个合适的管脚用作
		SSEL 功能并使其保持高电平,只有这样,器件才能真正执行主机的功能。
		主入从出 MISO 信号是一个单向的信号,它将数据从从机传输到主机。当器件
MISO1,MISO0	输入/输出	为从机时,串行数据从该端口输出。当器件为主机时,串行数据从该端口输入。
		当从机没有被选择时,将该信号驱动为高阻态。
MOGILI MOGIO	tA) /tA	主出从入 MOSI 信号是一个单向的信号,它将数据从主机传输到从机。当器件
MOSI1,MOSI0	输入/输出	为主机时,串行数据从该端口输出。当器件为从机时,串行数据从该端口输入。

13.4 寄存器描述

SPI 包含 5 个寄存器,见表 115。所有寄存器都可以字节、半字和字的形式访问。

表 115 SPI 寄存器映射

名称	描述	访问	复位值*	SPI0 地址&名称	SPI1 地址&名称
SPCR	SPI 控制寄存器。该寄存器控制 SPI 的操作。	R/W	0	0xE0020000	0xE0030000
SPCK			U	SOSPCR	S1SPCR
SPSR	SPI 状态寄存器。该寄存器显示 SPI 的状态。	RO	0	0xE0020004	0xE0030004
SPSK			U	SOSPSR	S1SPSR
	SPI 数据寄存器。该双向寄存器为 SPI 提供	R/W		0xE0020008	0xE0030008
SPDR	发送和接收的数据。发送数据通过写该寄存		0	SOSPDR	S1SPDR
	器提供。SPI 接收的数据可从该寄存器读出。			SUSPDR	SISPDR
SPCCR	SPI 时钟计数寄存器。 该寄存器控制主机	R/W	0	0xE002000C	0xE003000C
SPCCK	SCK 的频率。		U	S0SPCCR	S1SPCCR
SPINT	SPI 中断标志寄存器。该寄存器包含 SPI 接	R/W	0	0xE002001C	0xE003001C
SFINI	口的中断标志。		U	SOSPINT	S1SPINT

^{*} 复位值仅指已使用位中保存的数据,不包括保留位的内容。

13.4.1 SPI 控制寄存器(S0SPCR - 0xE0020000, S1SPCR - 0xE0030000)

SPCR 寄存器根据每个配置位的设定来控制 SPI 的操作。

表 116 SPI 控制寄存器 (SOSPCR - 0xE0020000, S1SPCR - 0xE0030000)

SPCR	功能	描述	复位值
2:0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
		时钟相位控制决定 SPI 传输时数据和时钟的关系并控制从机传输的起	
		始和结束。当该位为1时,数据在 SCK 的第二个时钟沿采样。当 SSEL	
3	СРНА	信号激活时,传输从第一个时钟沿开始并在最后一个采样时钟沿结束。	0
		当该位为 0 时,数据在 SCK 的第一个时钟沿采样。传输从 SSEL 信号	
		激活时开始,并在 SSEL 信号无效时结束。	
4	CPOL	时钟极性控制。当该位为1时,SCK 为低有效。为0时,SCK 为高有	0
4	CFOL	效。	U
5	MSTR	主模式选择。为1时,SPI处于主模式。为0时,SPI处于从模式。	0
6	LCDE	LSBF 用来控制传输的每个字节的移动方向。为 1 时, SPI 数据传输 LSB	0
0	LSBF (位 0)在先。为 0 时, SPI 数据传输 MSB (位 7)在先。	(位 0)在先。为 0 时,SPI 数据传输 MSB (位 7)在先。	0
7	SPIE	SPI 中断使能。为 1 时,每次 SPIF 或 MODF 置位时都会产生硬件中断。	0
/	SPIE	为 0 时, SPI 中断被禁止。	U

13.4.2 SPI 状态寄存器(S0SPSR - 0xE0020004, S1SPSR - 0xE0030004)

SPSR 寄存器根据配置位的设定来控制 SPI 的操作。

表 117 SPI 状态寄存器(S0SPSR - 0xE0020004, S1SPSR - 0xE0030004)

SPSR	功能	描述	复位值
2:0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
3	ABRT	从机中止。该位为1时表示发生了从机中止。当读取该寄存器时,该位清零。	0
4	MODF	模式错误。为 1 时表示发生了模式错误。先通过读取该寄存器清零 MODF 位,再写 SPI 控制寄存器。	0
5	ROVR	读溢出。为1时表示发生了读溢出。当读取该寄存器时,该位清零。	0
6	WCOL	写冲突。为1时表示发生了写冲突。先通过读取该寄存器清零 WCOL 位,再访问 SPI 数据寄存器。	0
7	SPIF	SPI 传输完成标志。为 1 时表示一次 SPI 数据传输完成。在主模式下,该位在传输的最后一个周期置位。在从机模式下,该位在 SCK 的最后一个数据采样边沿置位。当第一次读取该寄存器时,该位清零。然后才能访问 SPI 数据寄存器。注: SPIF 不是 SPI 中断标志。中断标志位于 SPINT 寄存器中。	0

13.4.3 SPI 数据寄存器(S0SPDR - 0xE0020008,S1SPDR - 0xE0030008)

双向数据寄存器为 SPI 提供数据的发送和接收。发送数据通过将数据写入该寄存器来实现。SPI 接收的数据可从该寄存器中读出。处于主模式时,写该寄存器将启动 SPI 数据传输。从数据传输开始到 SPIF 状态位置位并且还没有读取状态寄存器的这段时间内不能对该寄存器执行写操作。

表 118 SPI 数据寄存器(S0SPDR - 0xE0020008,S1SPDR - 0xE0030008)

SPDR	功能	描述	复位值
7:0	数据	SPI 双向数据	0

13.4.4 SPI 时钟计数寄存器(S0SPCCR - 0xE002000C, S1SPCCR - 0xE003000C)

该寄存器控制主机 SCK 的频率。寄存器指示构成一个 SPI 时钟的 pclk 周期的数据。 该寄存器的值必须为偶数。因此 bit0 必须为 0。该寄存器的值还必须大于等于 8。如果寄存器的值不符合上述条件,可能导致产生不可预测的动作。

表 119 SPI 时钟计数寄存器(S0SPCCR - 0xE002000C,S1SPCCR - 0xE003000C)

SPCCR	功能	描述	复位值
7:0	计数值	SPI 时钟计数值设定	0

SPI 速率可以这样进行计算: PCLK 速率/SPCCR 值。pclk 速率为 CCLK/VPB 除数,由 VPBDIV 寄存器的内容决定。

13.4.5 SPI 中断寄存器(S0SPINT - 0xE002001C,S1SPINT - 0xE003001C)

该寄存器包含 SPI 接口的中断标志。

表120 SPI中断寄存器(S0SPINT - 0xE002001C,S1SPINT - 0xE003001C)

SPINT	功能	描述	复位值
		SPI 中断标志。由 SPI 接口置位以产生中断。向该位写入 1 清零。	
0	CDI + NC	注: 当 SPIE=1 并且 SPIF 和 WCOL 位中至少有一位为 1 时该位置位。	0
0	SPI 中断	但是,只有当 SPI 中断位置位并且 SPI 中断在 VIC 中被使能, SPI 中断	0
		才能由中断处理软件处理。	
7:1	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

13.5 结构

SPIO 和 SPII 接口中的 SPI 方框图见图 34。

图 34 SPI 方框图

14. 定时器 0 和定时器 1

定时器 0 和定时器 1 除了外设基地址以外, 其它都相同。

14.1 特性

- 带可编程 32 位预分频器的 32 位定时器/计数器
- 具有多达 4 路 32 位的捕获通道。当输入信号跳变时可取得定时器的瞬时值。也可选择使捕获事件产生中断。
- 4个32位匹配寄存器:
 - -匹配时定时器继续工作,可选择产生中断
 - -匹配时停止定时器,可选择产生中断
 - -匹配时复位定时器,可选择产生中断
- 多达 4 个对应于匹配寄存器的外部输出,具有下列特性:
 - -匹配时设置为低电平
 - -匹配时设置为高电平
 - -匹配时翻转
 - 匹配时无动作

14.2 应用

- 用于对内部事件进行计数的间隔定时器
- 通过捕获输入实现脉宽调制
- 自由运行的定时器

14.3 描述

定时器对外设时钟(pclk)周期进行计数,可选择产生中断或根据 4 个匹配寄存器的设定,在到达指定的定时值时执行其它动作。它还包括 4 个捕获输入,用于在输入信号发生跳变时捕获定时器值,并可选择产生中断。

14.4 管脚描述

表 121 所示为每个定时器相关管脚的简要描述。

表 121 管脚概况

管脚名称	管脚方向	管脚描述
CAP0.30		捕获信号 捕获管脚的跳变可配置为将定时器值装入一个捕获寄存器,并可选择产
CAP1.30		生一个中断。可选择多个管脚用作捕获功能。而且,假设如果有 2 个管脚被选择
		并行提供 CAP0.2 功能,它们的输入将进行逻辑或,所得结果用作一个捕获输入。
		3个管脚可同时选择用作 CAP0.0 的功能。
		2个管脚可同时选择用作 CAP0.1 的功能。
	输入	3 个管脚可同时选择用作 CAP0.2 的功能。
		1 个管脚可选择用作 CAP0.3 的功能。
		1 个管脚可选择用作 CAP1.0 的功能。
		1个管脚可选择用作 CAP1.1 的功能。
		2个管脚可选择用作 CAP1.2 的功能。
		2个管脚可选择用作 CAP1.3 的功能。
MAT0.30		外部匹配输出 0/1 当匹配寄存器 0/1 (MR3:0) 等于定时器计数器 (TC) 时,该输
MAT1.30		出可翻转,变为低电平、变为高电平或不变。外部匹配寄存器(EMR)控制该输
		出的功能。可选择多个管脚并行用作匹配输出功能。例如,同时选择 2 个管脚并
		行提供 MAT1.3 功能。
		2个管脚可同时选择用作 MAT0.0 的功能。
	输出	2个管脚可同时选择用作 MAT0.1 的功能。
	湘江	2个管脚可同时选择用作 MAT0.2 的功能。
		1 个管脚可选择用作 MAT0.3 的功能。
		1 个管脚可选择用作 MAT1.0 的功能。
		1 个管脚可选择用作 MAT1.1 的功能。
		2个管脚可选择用作 MAT1.2 的功能。
		2个管脚可选择用作 MAT1.3 的功能。

14.5 寄存器描述

每个定时器所包含的寄存器如表 122 所示。

表 122 定时器 0 和定时器 1 寄存器映射

名称	描述	访问	复位值	定时器 0 地址&名称	定时器1地址&名称
ID	中断寄存器 可以写 IR 来清除中断。可	D/W	0	0xE0004000	0xE0008000
IR	读取 IR 来识别哪个中断源被挂起。	R/W	0	T0IR	T1IR
	定时器控制寄存器 TCR 用于控制定时			0xE0004004	0xE0008004
TCR	器计数器功能。定时器计数器可通过	R/W	0	TOTCR	T1TCR
	TCR 禁止或复位。			TOTCK	TITCK
TC	定时器计数器 32位TC每经过PR+1个	R/W	0	0xE0004008	0xE0008008
ic	pclk 周期加 1。TC 通过 TCR 进行控制。	IX/ W	U	T0TC	T1TC
PR	预分频寄存器 32 位 TC 每经过 PR+1 个	R/W	0	0xE000400C	0xE000800C
FK	pclk 周期加 1。	IX/ W	U	T0PR	T1PR
PC	预分频计数器 每当 32 位 PC 的值增加	R/W	0	0xE0004010	0xE0008010
PC	到等于 PR 中保存的值时,TC 加 1。	K/W	U	T0PC	T1PC
MCR	匹配控制寄存器 MCR 用于控制在匹配	R/W	0	0xE0004014	0xE0008014
MCK	时是否产生中断或复位 TC。	K/W	U	T0MCR	T1MCR
	匹配寄存器 0 MR0 可通过 MCR 设定为			0xE0004018	0xE0008018
MR0	在匹配时复位 TC,停止 TC 和 PC 和/或	R/W	0	TOMR0	T1MR0
	产生中断。			TOWIKO	TIVIRU
MR1	匹配寄存器 1 同上	R/W	0	0xE000401C	0xE000801C
MIKI	匹配 司 仔 奋 1 一 円 上	K/ W		T0MR1	T1MR1
MR2	匹配寄存器 2 同上	R/W	0	0xE0004020	0xE0008020
WIKZ	四批可任命 2 四上			T0MR2	T1MR2
MR3	匹配寄存器 3 同上	D/W	0	0xE0004024	0xE0008024
MKS	匹配寄存器 3 同上	R/W		T0MR3	T1MR3
	捕获控制寄存器 CCR 控制用于装载捕			050004039	0xE0008028
CCR	获寄存器的捕获输入边沿以及在发生捕	R/W	0	0xE0004028	
	获时是否产生中断。			T0CCR	T1CCR
CR0	捕获寄存器 0 当在 CAP0.0(CAP1.0)上	RO	0	0xE000402C	0xE000802C
CRU	产生捕获事件时,CR0 装载 TC 的值。	KU	U	T0CR0	T1CR0
CD1	捕获寄存器 1 同上	DO.	0	0xE0004030	0xE0008030
CR1	捕获寄存器 1 同上	RO	0	T0CR1	T1CR1
CR2	捕获寄存器 2 同上	RO	0	0xE0004034	0xE0008034
CK2	捕获寄存器 2 同上		U	T0CR2	T1CR2
CD2	捕获寄存器 3 同上	D.O.	0	0xE0004038	0xE0008038
CR3	捕获寄存器 3 同上	KU	RO 0	T0CR3	T1CR3
EMD	外部匹配寄存器 EMR 控制外部匹配管	R/W	0	0xE000403C	0xE000803C
EMR	脚 MAT0.0-3(MAT1.0-3)。	K/ W	0	T0EMR	T1EMR

14.5.1 中断寄存器(IR: 定时器 0 - T0IR: 0xE00040000; 定时器 1 - T1IR: 0xE0008000)

中断寄存器包含 4 个位用于匹配中断, 4 个位用于捕获中断。如果有中断产生, IR 中的对应位会置位, 否则为 0。向对应的 IR 位写入 1 会复位中断。写入 0 无效。

表 123 中断寄存器(IR: 定时器 0 - TOIR: 0xE00040000; 定时器 1 - T1IR: 0xE0008000)

IR	功能	描述	复位值
0	MR0 中断	匹配通道0的中断标志	0
1	MR1 中断	匹配通道1的中断标志	0
2	MR2 中断	匹配通道2的中断标志	0
3	MR3 中断	匹配通道3的中断标志	0
4	CR0 中断	捕获通道0事件的中断标志	0
5	CR1 中断	捕获通道1事件的中断标志	0
6	CR2 中断	捕获通道2事件的中断标志	0
7	CR3 中断	捕获通道3事件的中断标志	0

14.5.2 定时器控制寄存器(TCR: 定时器 0 - T0TCR: 0xE0004004; 定时器 1 - T1TCR: 0xE0008004)

定时器控制寄存器 TCR 用于控制定时器计数器的操作。

表 124 定时器控制寄存器(TCR - 定时器 0 - T0TCR: 0xE0004004; 定时器 1 - T1TCR: 0xE0008004)

TCR	功能	描述	
0	计数器使能	为1时,定时器计数器和预分频计数器使能计数。为0时,计数器被禁止。	0
1	11 40 38 月 1/1	为 1 时,定时器计数器和预分频计数器在 pclk 的下一个上升沿同步复位。	0
1		计数器在 TCR[1]恢复为 0 之前保持复位状态。	0

14.5.3 定时器计数器(TC: 定时器 0 – T0TC: 0xE0004008; 定时器 1 – T1TC: 0xE0008008)

当预分频计数器到达计数的上限时,32 位定时器计数器加 1。如果 TC 在到达计数上限之前没有被复位,它将一直计数到 0xFFFFFFFF 然后翻转到 0x00000000。该事件不会产生中断。如果需要,可用匹配寄存器检测溢出。

14.5.4 预分频寄存器(PR: 定时器 0 – T0PR: 0xE000400C; 定时器 1 – T1PR: 0xE000800C)

32 位预分频寄存器指到预分频计数器的最大值。

14.5.5 预分频计数器寄存器 (PC: 定时器 0 – T0PC: 0xE0004010; 定时器 1 – T1PC: 0xE0008010)

预分频计数器使用某个常量来控制 pclk 的分频。这样可实现控制定时器分辨率和定时器溢出时间之间的关系。预分频计数器每个 pclk 周期加 1。当其到达预分频寄存器中保存的值时,定时器计数器加 1,预分频计数器在下个 pclk 周期复位。这样,当 PR=0 时,定时器计数器每个 pclk 周期加 1,当 PR=1 时,定时器计数器每 2 个 pclk 周期加 1。

14.5.6 匹配寄存器 (MR0 - MR3)

匹配寄存器值连续与定时器计数值相比较。当两个值相等时自动触发相应动作。这些动作包括产生中断,复位定时器计数器或停止定时器。所执行的动作由 MCR 寄存器控制。

14.5.7 匹配控制寄存器 (MCR: 定时器 0 – T0MCR: 0xE0004014; 定时器 1 – T1MCR: 0xE00080014)

匹配控制寄存器用于控制在发生匹配时所执行的操作。每个位的功能见表 125。

表 125 匹配控制寄存器 (MCR: 定时器 0 - T0MCR: 0xE0004014; 定时器 1 - T1MCR: 0xE00080014)

MCR	功能	描述	复位值
0	中断(MR0)	为 1 时, MR0 与 TC 值的匹配将产生中断。为 0 时, 中断被禁止。	0
1	复位(MR0)	为 1 时, MR0 与 TC 值的匹配将使 TC 复位。为 0 时,该特性被禁止。	0
2	停止(MR0)	为1时,MR0与TC值的匹配将使TC和PC停止,TCR[0]清零。为0时,该特性被禁止。	0
3	中断(MR1)	为 1 时, MR1 与 TC 值的匹配将产生中断。为 0 时,中断被禁止。	0
4	复位(MR1)	为 1 时, MR1 与 TC 值的匹配将使 TC 复位。为 0 时, 该特性被禁止。	0
5	停止(MR1)	为1时,MR1与TC值的匹配将使TC和PC停止,TCR[0]清零。为0时,该特性被禁止。	0
6	中断(MR2)	为 1 时, MR2 与 TC 值的匹配将产生中断。为 0 时, 中断被禁止。	0
7	复位(MR2)	为 1 时, MR2 与 TC 值的匹配将使 TC 复位。为 0 时, 该特性被禁止。	0
8	停止(MR2)	为1时,MR2与TC值的匹配将使TC和PC停止,TCR[0]清零。为0时,该特性被禁止。	0
9	中断(MR3)	为 1 时, MR3 与 TC 值的匹配将产生中断。为 0 时,中断被禁止。	0
10	复位(MR3)	为 1 时, MR3 与 TC 值的匹配将使 TC 复位。为 0 时,该特性被禁止。	0
11	停止(MR3)	为1时,MR3与TC值的匹配将使TC和PC停止,TCR[0]清零。为0时,该特性被禁止。	0

14.5.8 捕获寄存器 (CR0 - CR3)

每个捕获寄存器都与一个器件管脚相关联。当管脚发生特定的事件时,可将定时器计数值装入该寄存器。捕获控制寄存器的设定决定捕获功能是否使能以及捕获事件在管脚的 上升沿、下降沿或是双边沿发生。

14.5.9 捕获控制寄存器 (CCR: 定时器 0 – T0CCR: 0xE0004028; 定时器 1 – T1CCR: 0xE0008028)

当发生捕获事件时,捕获控制寄存器用于控制将定时器计数值是否装入 4 个捕获寄存器中的一个以及是否产生中断。同时设置上升沿和下降沿位也是有效的配置,这样会在双边沿触发捕获事件。在下面的描述中,"n"代表定时器的编号 0 或 1。

表 126 捕获控制寄存器 (CCR: 定时器 0 - T0CCR: 0xE0004028; 定时器 1 - T1CCR: 0xE0008028)

CCR	功能	描述	复位值
0	CAPn.0 上升沿捕获	为 1 时, CAPn.0 上 0 到 1 的跳变将导致 TC 的内容装入 CR0。为 0 时, 该特性被禁止。	0
1	CAPn.0 下降沿捕获	为 1 时, CAPn.0 上 1 到 0 的跳变将导致 TC 的内容装入 CR0。为 0 时, 该特性被禁止。	0
2	CAPn.0 事件中断	为 1 时, CAPn.0 的捕获事件所导致的 CR0 装载将产生一个中断。 为 0 时, 该特性被禁止。	0
3	CAPn.1 上升沿捕获	为1时, CAPn.1上0到1的跳变将导致TC的内容装入CR1。为0时,该特性被禁止。	0
4	CAPn.1 下降沿捕获	为 1 时, CAPn.1 上 1 到 0 的跳变将导致 TC 的内容装入 CR1。为 0 时, 该特性被禁止。	0
5	CAPn.1 事件中断	为 1 时, CAPn.1 的捕获事件所导致的 CR1 装载将产生一个中断。 为 0 时, 该特性被禁止。	0
6	CAPn.2 上升沿捕获	为 1 时, CAPn.2 上 0 到 1 的跳变将导致 TC 的内容装入 CR2。为 0 时, 该特性被禁止。	0
7	CAPn.2 下降沿捕获	为 1 时, CAPn.2 上 1 到 0 的跳变将导致 TC 的内容装入 CR2。为 0 时, 该特性被禁止。	0
8	CAPn.2 事件中断	为 1 时, CAPn.2 的捕获事件所导致的 CR2 装载将产生一个中断。 为 0 时,该特性被禁止。	0
9	CAPn.上升沿捕获	为1时, CAPn.3上0到1的跳变将导致TC的内容装入CR3。为0时,该特性被禁止。	0
10	CAPn.3 下降沿捕获	为1时, CAPn.3上1到0的跳变将导致TC的内容装入CR3。为0时,该特性被禁止。	0
11	CAPn.3 事件中断	为 1 时, CAPn.3 的捕获事件所导致的 CR3 装载将产生一个中断。 为 0 时, 该特性被禁止。	0

14.5.10 外部匹配寄存器(EMR: 定时器 0 – T0EMR: 0xE000403C; 定时器 1 – T1EMR: 0xE0008003C)

外部匹配寄存器提供外部匹配管脚 M(0-3)的控制和状态。

表 127 外部匹配寄存器 (EMR: 定时器 0 - T0EMR: 0xE000403C; 定时器 1 - T1EMR: 0xE0008003C)

EMR	功能	描述	复位值
		不管 MAT0.0/MAT1.0 是否连接到管脚,该位都会反映 MAT0.0/MAT1.0	
0	外部匹配 0	的状态。当 MR0 发生匹配时,该输出可翻转,变为低电平,变为高电平	0
		或不执行任何动作。位 EMR[4:5]控制该输出的功能。	
	外部匹配 1	不管 MAT0.1/MAT1.1 是否连接到管脚,该位都会反映 MAT0.1/MAT1.1	
1		的状态。当 MR1 发生匹配时,该输出可翻转,变为低电平,变为高电平	0
		或不执行任何动作。位 EMR[6:7]控制该输出的功能。	

续表 127

EMR	功能	描述	复位值
	外部匹配 2	不管 MAT0.2/MAT1.2 是否连接到管脚,该位都会反映 MAT0.2/MAT1.2	
2		的状态。当 MR2 发生匹配时,该输出可翻转,变为低电平,变为高电	0
		平或不执行任何动作。位 EMR[8:9]控制该输出的功能。	
	外部匹配 3	不管 MAT0.3/MAT1.3 是否连接到管脚,该位都会反映 MAT0.3/MAT1.3	
3		的状态。当 MR3 发生匹配时,该输出可翻转,变为低电平,变为高电	0
		平或不执行任何动作。位 EMR[10:11]控制该输出的功能。	
5:4	外部匹配控制 0	决定外部匹配 0 的功能。表 128 所示为这两个位的编码。	0
7:6	外部匹配控制1	决定外部匹配 1 的功能。表 128 所示为这两个位的编码。	0
9:8	外部匹配控制 2	决定外部匹配 2 的功能。表 128 所示为这两个位的编码。	0
11:10	外部匹配控制3	决定外部匹配 3 的功能。表 128 所示为这两个位的编码。	0

表 128 外部匹配控制

EMR[11:10], EMR[9:8] EMR[7:6],或 EMR[5:4]	功能
00	不执行任何动作
01	将对应的外部匹配输出设置为0(如果连接到管脚,则输出低电平)
10	将对应的外部匹配输出设置为1(如果连接到管脚,则输出高电平)
11	使对应的外部匹配输出翻转

14.5.11 定时器举例操作

图 35 所示为定时器配置为在匹配时复位计数并产生中断。预分频器设置为 2, 匹配寄存器设置为 6。在发生匹配的定时器周期结束时,定时器计数值复位。这样就使匹配值具有完整长度的周期。指示匹配发生的中断在定时器到达匹配值的下一个时钟产生。

图 36 所示为定时器配置为在匹配时停止并产生中断。预分频器设置为 2, 匹配寄存器设置为 6。在定时器到达匹配值的下一个周期中, TCR 中的定时器使能位清零并产生指示匹配发生的中断。

图 35 定时器周期设置为 PR=2, MRx=6, 匹配时使能中断和复位

图 36 定时器周期设置为 PR=2, MRx=6, 匹配时使能中断和停止

14.6 结构

定时器 0 和定时器 1 的方框图,见图 37。

*注:捕获寄存器3不能用于定时器0

图 37 定时器方框图

15. 脉宽调制器 (PWM)

LPC2114/2124/2212/2214 的脉宽调制器建立在前一章的标准定时器 0/1 之上。应用可在 PWM 和匹配功能当中进行选择。

15.1 特性

- 7个匹配寄存器,可实现 6个单边沿控制或 3个双边沿控制 PWM 输出,或这两种类型的混合输出:
 - -连续操作,可选择在匹配时产生中断
 - -匹配时停止定时器,可选择产生中断
 - -匹配时复位定时器,可选择产生中断
- 每个匹配寄存器对应一个外部输出,具有下列特性:
 - 匹配时设置为低电平
 - -匹配时设置为高电平
 - 匹配时翻转
 - -匹配时无动作
- 支持单边沿控制和/或双边沿控制的 PWM 输出。单边沿控制 PWM 输出在每个周期开始时总是为高电平,除非输出保持恒定低电平。双边沿控制 PWM 输出可在一个周期内的任何位置产生边沿。这样可同时产生正和负脉冲。
- 脉冲周期和宽度可以是任何的定时器计数值。这样可实现灵活的分辨率和重复速率的设定。所有 PWM 输出都以相同的重复率发生。
- 双边沿控制的 PWM 输出可编程为正脉冲或负脉冲
- 匹配寄存器更新与脉冲输出同步,防止产生错误的脉冲。软件必须在新的匹配值 生效之前将它们释放。
- 如果不使能 PWM 模式,可作为一个标准定时器
- 带可编程 32 位预分频器的 32 位定时器/计数器
- 当输入信号跳变时4个捕获寄存器可取得定时器的瞬时值,也可选择使捕获事件 产生中断。

15.2 描述

PWM 基于标准的定时器模块并具有其所有特性。不过 LPC2114/2124/2212/2214 只将 其 PWM 功能输出到管脚。定时器对外设时钟(pclk)进行计数,可选择产生中断或基于 7 个 匹配寄存器,在到达指定的定时值时执行其它动作。它还包括 4 个捕获输入,用于在输入信号发生跳变时捕获定时器值,并可选择在事件发生时产生中断。PWM 功能是一个附加特性,建立在匹配寄存器事件基础之上。

独立控制上升和下降沿位置的能力使 PWM 可以应用于更多的领域。例如,多相位电机控制通常需要 3 个非重叠的 PWM 输出,而这 3 个输出的脉宽和位置需要独立进行控制。

两个匹配寄存器可用于提供单边沿控制的 PWM 输出。一个匹配寄存器(PWMMR0)通过匹配时重新设置计数值来控制 PWM 周期率。另一个匹配寄存器控制 PWM 边沿的位置。每个额外的单边沿控制 PWM 输出只需要一个匹配寄存器,因为所有 PWM 输出的重复率速率是相同的。多个单边沿控制 PWM 输出在每个 PWM 周期的开始,当 PWMMR0

发生匹配时,都有一个上升沿。

3个匹配寄存器可用于提供一个双边沿控制 PWM 输出。也就是说,PWMMR0 匹配寄存器控制 PWM 周期速率,其它匹配寄存器控制两个 PWM 边沿位置。每个额外的双边沿控制 PWM 输出只需要两个匹配寄存器,因为所有 PWM 输出的重复率速率是相同的。

使用双边沿控制 PWM 输出时,指定的匹配寄存器控制输出的上升和下降沿。这样就产生了正脉冲(当上升沿先于下降沿时)和负脉冲(当下降沿先于上升沿时)。

图 38 所示为 PWM 的方框图。在标准定时器模块上增加的部分位于图的右边和顶端。

注:该图用来解释 PWM 的功能,不是一个具体的设计方案。

图 38 PWM 方框图

图 39 所示为一个用来说明 PWM 值与波形输出之间关系的例子。图 38 的 PWM 输出逻辑允许通过 PWMSELn 位选择单边沿或者双边沿控制的 PWM 输出。表 129 所示为不同 PWM 输出的匹配寄存器选项。支持 N-1 个单边沿 PWM 输出或(N-1)/2 个双边沿 PWM 输出,其中 N 为匹配寄存器的个数。如果需要也可使用混合的 PWM 类型。

下面所示的波形是单个 PWM 周期,它演示了在下列条件下的 PWM 输出:

- 定时器配置为 PWM 模式
- 匹配寄存器 0 配置为在发生匹配事件时复位定时器/计数器
- 控制位 PWMSEL2 和 PWMSEL4 置位
- 匹配寄存器值如下:

图 39 PWM 波形举例

表 129 PWM 触发器的置位和复位输入

DVVA IA!*	单边沿 PWM(PWMSELn=0)		双边沿 PWM(PWMSELn=1)	
PWM 通道	置位	复位	置位	复位
1	匹配 0	匹配 1	匹配 O¹	匹配 1 ¹
2	匹配 0	匹配 2	匹配 1	匹配 2
3	匹配 0	匹配 3	匹配 2 ²	匹配 3 ²
4	匹配 0	匹配 4	匹配 3	匹配 4
5	匹配 0	匹配 5	匹配 4 ²	匹配 5 ²
6	匹配 0	匹配 6	匹配 5	匹配 6

注:

- 1. 这种情况下与单边沿模式相同,因为匹配 0 是相邻的匹配寄存器。基本上 PWM1 不能用作双 边沿输出。
- 2. 通常不建议使用 PWM 通道 3 和通道 5 作为双边沿 PWM 输出,因为这样会减少可用的双边沿 PWM 的个数。使用 PWM2, PWM4 和 PWM6 可得到最多个数的双边沿 PWM 输出。

15.2.1 单边沿控制的 PWM 输出规则

- 1. 所有单边沿控制的 PWM 输出在 PWM 周期开始时都为高电平,除非它们的匹配 值等于 0。
- 2. 每个 PWM 输出在到达其匹配值时都会变为低电平。如果没有发生匹配(即匹配值大于 PWM 速率), PWM 将一直保持高电平。

15.2.2 双边沿控制的 PWM 输出规则

当一个新的周期将要开始时,使用以下 5 个规则来决定下一个 PMW 输出的值:

- 1. 在一个 PWM 周期结束时(与下一个 PWM 周期的开始重合的时间点),使用下一个 PMW 周期的匹配值,例外见规则 3。
- 2. 等于 0 或当前 PWM 速率(与匹配通道 0 的值相同)的匹配值等效。例外见规则 3。例如,在 PWM 周期开始时的下降沿请求与 PWM 周期结束时的下降沿请求等 效。
- 3. 当匹配值正在改变时,如果有其中一个"旧"匹配值等于 PWM 速率,并且新的 匹配值不等于 0 或 PWM 速率,旧的匹配值不等于 0,那么旧的匹配值将再次被 使用。
- 4. 如果同时请求 PWM 输出置位和清零,清零优先。当置位和清零匹配值相同时,或者置位或清零值等于 0 并且其它值等于 PWM 速率时,可能发生这种状况。
- 5. 如果匹配值超出范围(大于 PMW 速率值),将不会发生匹配事件,匹配通道对输出不起作用。也就是说 PWM 输出将一直保持一种状态,可以为低电平、高电平或是"无变化"输出。

15.3 管脚描述

表 130 汇集了所有与 PWM 相关的管脚。

表 130 PWM 管脚汇总

管脚名称	管脚方向	管脚描述
PWM1	输出	PWM 通道 1 输出
PWM2	输出	PWM 通道 2 输出
PWM3	输出	PWM 通道 3 输出
PWM4	输出	PWM 通道 4 输出
PWM5	输出	PWM 通道 5 输出
PWM6	输出	PWM 通道 6 输出

15.4 寄存器描述

PWM 功能增加了新的寄存器和寄存器位,见表 131。

表 131 PWM 寄存器映射

名称	描述	访问	复位值	地址
PWMIR	PWM 中断寄存器 可以写 IR 来清除中断。可读取 IR 来识别哪	R/W	0	0xE0014000
PWMTCR	个中断源被挂起。 PWM 定时器控制寄存器 TCR 用于控制定时器计数器功能。定时器计数器可通过 TCR 禁止或复位。	R/W	0	0xE0014004
PWMTC	PWM 定时器计数器 32 位 TC 每经过 PR+1 个 pclk 周期加 1。 TC 通过 TCR 进行控制。	R/W	0	0xE0014008
PWMPR	PWM 预分频寄存器 TC 每经过 PR+1 个 pclk 周期加 1。	R/W	0	0xE001400C
PWMPC	PWM 预分频计数器 每当 32 位 PC 的值增加到等于 PR 中保存的值时,TC 加 1。	R/W	0	0xE0014010
PWMMCR	PWM 匹配控制寄存器 MCR 用于控制在匹配时是否产生中断或复位 TC。	R/W	0	0xE0014014
PWMMR0	PWM 匹配寄存器 0 MR0 可通过 MCR 设定为在匹配时复位 TC,停止 TC 和 PC 和/或产生中断。此外, MR0 和 TC 的匹配将 置位所有单边沿模式的 PWM 输出,并置位双边沿模式下的 PWM1 输出。	R/W	0	0xE0014018
PWMMR1	PWM 匹配寄存器 1 MR1 可通过 MCR 设定为在匹配时复位 TC,停止 TC 和 PC 和/或产生中断。此外,MR1 和 TC 的匹配将 清零单边沿模式或双边沿模式下的 PWM1,并置位双边沿模式下的 PWM2 输出。	R/W	0	0xE001401C
PWMMR2	PWM 匹配寄存器 2 MR2 可通过 MCR 设定为在匹配时复位 TC,停止 TC 和 PC 和/或产生中断。此外,MR2 和 TC 的匹配将 清零单边沿模式或双边沿模式下的 PWM2,并置位双边沿模式下	R/W	0	0xE0014020
PWMMR3	的 PWM3 输出。 PWM 匹配寄存器 3 MR3 可通过 MCR 设定为在匹配时复位 TC,停止 TC 和 PC 和/或产生中断。此外,MR3 和 TC 的匹配将 清零单边沿模式或双边沿模式下的 PWM3,并置位双边沿模式下的 PWM4 输出。	R/W	0	0xE0014024
PWMMR4	PWM 匹配寄存器 4 MR4 可通过 MCR 设定为在匹配时复位 TC,停止 TC 和 PC 和/或产生中断。此外,MR4 和 TC 的匹配将 清零单边沿模式或双边沿模式下的 PWM4,并置位双边沿模式下的 PWM5 输出。	R/W	0	0xE0014040
PWMMR5	PWM 匹配寄存器 5 MR5 可通过 MCR 设定为在匹配时复位 TC,停止 TC 和 PC 和/或产生中断。此外,MR5 和 TC 的匹配将 清零单边沿模式或双边沿模式下的 PWM5,并置位双边沿模式下的 PWM6 输出。	R/W	0	0xE0014044
PWMMR6	PWM 匹配寄存器 6 MR6 可通过 MCR 设定为在匹配时复位 TC,停止 TC 和 PC 和/或产生中断。此外,MR6 和 TC 的匹配将 清零单边沿模式或双边沿模式下的 PWM6,	R/W	0	0xE0014048
PWMPCR	PWM 控制寄存器 使能 PWM 输出并选择 PWM 通道类型为单边沿或双边沿控制。	R/W	0	0xE001404C
PWMLER	PWM 锁存使能寄存器 使能使用新的 PWM 匹配值。	R/W	0	0xE0014050

15.4.1 PWM 中断寄存器(PWMIR - 0xE0014000)

中断寄存器包含 11 个位(见表 132)。其中 7 个位用于匹配中断, 4 个位保留将来之 用。如果有中断产生,PWMIR 中的对应位会置位,否则为 0。向对应的 IR 位写入 1 会复 位中断。写入0无效。

表 132 中断寄存器 (PWMIR - 0xE00140000)

MIR	功能	描述
0	PWMMR0 中断	PWM 匹配通道 0 的中断标志

PWMIR	功能	描述	复位值
0	PWMMR0 中断	PWM 匹配通道 0 的中断标志	0
1	PWMMR1 中断	PWM 匹配通道 1 的中断标志	0
2	PWMMR2 中断	PWM 匹配通道 2 的中断标志	0
3	PWMMR3 中断	PWM 匹配通道 3 的中断标志	0
4	保留	应用程序不能向该位写入1	0
5	保留	应用程序不能向该位写入1	0
6	保留	应用程序不能向该位写入1	0
7	保留	应用程序不能向该位写入1	0
8	PWMMR4 中断	PWM 匹配通道 4 的中断标志	0
9	PWMMR5 中断	PWM 匹配通道 5 的中断标志	0
10	PWMMR6 中断	PWM 匹配通道 6 的中断标志	0

15.4.2 PWM 定时器控制寄存器 (PWMTCR - 0xE0014004)

PWM 定时器控制寄存器(PWMTCR)用于控制 PWM 定时器计数器的操作。每个位 的功能见表 133。

PWMTCR	功能	描述			
0	计数器使	为 1 时,PWM 定时器计数器和PWM 预分频计数器使能计数。为 0	0		
0	能	时,计数器被禁止。	0		
1	计数器复	为 1 时,PWM 定时器计数器和PWM 预分频计数器在pclk 的下一个	0		
1	位	上升沿同步复位。计数器在 TCR[1]恢复为 0 之前保持复位状态。	U		
2	保留	保留 保留,用户软件不要向其写入1。从保留位读出的值未被定义。			
		为1时,PWM模式使能。PWM模式将映像寄存器连接到匹配寄存器。			
		只有在 PWMLER 中的相应位置位后发生的匹配 0 事件才会使程序写			
3	PWM 使能	入匹配寄存器的值生效。需要注意的是,决定 PWM 速率(PWM 匹	0		
		配 0)的匹配寄存器必须在使能 PWM 之前设定。否则不会发生使映			
		像寄存器内容生效的匹配事件。			

表 133 定时器控制寄存器 (PWMTCR - 0xE0014004)

15.4.3 PWM 定时器计数器 (PWMTC - 0xE0014008)

当预分频计数器到达计数的上限时,32 位定时器计数器加1。如果 PWMTC 在到达计 数上限之前没有被复位,它将一直计数到 0xFFFFFFFF 然后翻转到 0x00000000。该事件不 会产生中断。如果需要,可用匹配寄存器检测溢出。

15.4.4 PWM 预分频寄存器(PWMPR - 0xE001400C)

32 位预分频寄存器指到预分频寄存器的最大值。

15.4.5 PWM 预分频计数器寄存器 (PWMPC - 0xE0014010)

预分频计数器使用某个常量来控制 pclk 的分频,再使之用于 PWM 定时器计数器。这样可实现控制定时器分辨率和定时器溢出时间之间的关系。预分频计数器每个 pclk 周期加 1。当其到达 PWM 预分频计数器中保存的值时,PWM 定时器计数器加 1,PWM 预分频计数器在下个 pclk 周期复位。这样,当 PWMPR=0 时,PWM TC 每 1 个 pclk 周期加 1,当 PWMPR=1 时,PWMTC 每 2 个 pclk 周期加 1。

15.4.6 PWM 匹配寄存器 (PWMMR0 -PWMMR6)

PWM 匹配寄存器值连续与 PWM 定时器计数值相比较。当两个值相等时自动触发相应动作。这些动作包括产生中断,复位 PWM 定时器计数器或停止定时器。所执行的动作由 PWMMCR 寄存器控制。

15.4.7 PWM 匹配控制寄存器 (PWMMCR - 0xE0014014)

PWM 匹配控制寄存器用于控制在发生匹配时所执行的操作。每个位的功能见表 134。

表 134 匹配控制寄存器 (PWMMCR - 0Xe0014014)

PWMMCR	功能	描述	复位值	
0	中断	为1时,PWMMR0与PWMTC值的匹配将产生中断。为0时,该中	0	
0	(PWMMR0)	断被禁止。	0	
1	复位	为1时,PWMMR0与PWMTC值的匹配将使PWMTC复位。为0时,	0	
1	(PWMMR0)	该特性被禁止。	U	
2	停止	为 1 时, PWMMR0 与 PWMTC 值的匹配将使 PWMTC 和 PWMPC 停	0	
2	(PWMMR0)	止并使 PWMTCR[0]复位为 0。为 0 时,该特性被禁止。	U	
3	中断	为1时,PWMMR1与PWMTC值的匹配将产生中断。为0时,该中	0	
3	(PWMMR1)	断被禁止。	U	
4	复位	为1时,PWMMR1与PWMTC值的匹配将使PWMTC复位。为0时,	0	
4	(PWMMR1)	该特性被禁止。	U	
5	停止	为 1 时, PWMMR1 与 PWMTC 值的匹配将使 PWMTC 和 PWMPC 停	0	
	(PWMMR1)	止并使 PWMTCR[0]复位为 0。为 0 时,该特性被禁止。	U	
6	中断	为1时,PWMMR2与PWMTC值的匹配将产生中断。为0时,该中	0	
0	(PWMMR2)	断被禁止。	U	
7	复位	为1时,PWMMR2与PWMTC值的匹配将使PWMTC复位。为0时,	0	
/	(PWMMR2) 该特性被禁止。		U	
8	停止	为 1 时, PWMMR2 与 PWMTC 值的匹配将使 PWMTC 和 PWMPC @		
0	(PWMMR2)	止并使 PWMTCR[0]复位为 0。为 0 时,该特性被禁止。	0	
9	中断	为1时,PWMMR3与PWMTC值的匹配将产生中断。为0时,该中	0	
9	(PWMMR3)	断被禁止。	U	
10	复位	为1时,PWMMR3与PWMTC值的匹配将使PWMTC复位。为0时,	0	
10	(PWMMR3)	该特性被禁止。	U	
11	停止	为 1 时, PWMMR3 与 PWMTC 值的匹配将使 PWMTC 和 PWMPC 停	0	
11	(PWMMR3)	止并使 PWMTCR[0]复位为 0。为 0 时,该特性被禁止。	U	
12	中断	为1时,PWMMR4与PWMTC值的匹配将产生中断。为0时,该中	0	
12	(PWMMR4)	断被禁止。	U	
13	复位	为1时,PWMMR4与PWMTC值的匹配将使PWMTC复位。为0时,	0	
13	(PWMMR4)	该特性被禁止。	U	

续表 134

PWMMCR	功能	描述	复位值	
14	停止	为 1 时, PWMMR4 与 PWMTC 值的匹配将使 PWMTC 和 PWMPC 停	0	
14	(PWMMR4)	止并使 PWMTCR[0]复位为 0。为 0 时,该特性被禁止。	U	
15	中断	为1时,PWMMR5与PWMTC值的匹配将产生中断。为0时,该中	0	
13	(PWMMR5)	断被禁止。	U	
16	复位	为1时,PWMMR5与PWMTC值的匹配将使PWMTC复位。为0时,	0	
10	(PWMMR5)	该特性被禁止。	U	
17	停止	为 1 时, PWMMR5 与 PWMTC 值的匹配将使 PWMTC 和 PWMPC 停	0	
17	(PWMMR5)	止并使 PWMTCR[0]复位为 0。为 0 时,该特性被禁止。	Ü	
18	中断	为1时,PWMMR6与PWMTC值的匹配将产生中断。为0时,该中	0	
10	(PWMMR6)	断被禁止。	U	
19	复位	为1时,PWMMR6与PWMTC值的匹配将使PWMTC复位。为0时,	0	
19	(PWMMR6)	该特性被禁止。	U	
20	停止	为 1 时, PWMMR6 与 PWMTC 值的匹配将使 PWMTC 和 PWMPC 停	0	
20	(PWMMR6)	止并使 PWMTCR[0]复位为 0。为 0 时,该特性被禁止。	U	

15.4.8 PWM 控制寄存器(PWMPCR - 0xE001404C)

PWM 控制寄存器用于使能并选择每个 PMW 通道的类型。每个位的功能详见表 135。

表 135 PWM 控制寄存器 (PWMPCR - 0xE001404C)

PWMPCR	功能	描述	复位值
1:0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
2	PWMSEL2	为 0 时, PWM2 选择单边沿控制模式; 为 1 时,选择双边沿控制模式。	0
3	PWMSEL3	为 0 时, PWM3 选择单边沿控制模式; 为 1 时,选择双边沿控制模式。	0
4	PWMSEL4	为 0 时,PWM4 选择单边沿控制模式;为 1 时,选择双边沿控制模式。	0
5	PWMSEL5	为 0 时,PWM5 选择单边沿控制模式;为 1 时,选择双边沿控制模式。	0
6	PWMSEL6	为 0 时,PWM6 选择单边沿控制模式;为 1 时,选择双边沿控制模式。	0
8:7	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
9	PWMENA1	为1时,使能PWM1输出;为0时,禁止PWM1输出。	0
10	PWMENA2	为1时,使能PWM2输出;为0时,禁止PWM2输出。	0
11	PWMENA3	为1时,使能PWM3输出;为0时,禁止PWM3输出。	0
12	PWMENA4	为1时,使能PWM4输出;为0时,禁止PWM4输出。	0
13	PWMENA5	为1时,使能PWM5输出;为0时,禁止PWM5输出。	0
14	PWMENA6	为1时,使能PWM6输出;为0时,禁止PWM6输出。	0
15	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

15.4.9 PWM 锁存使能寄存器(PWMLER - 0xE0014050)

当 PWM 匹配寄存器用于产生 PWM 时,PWM 锁存使能寄存器用于控制 PWM 匹配寄存器的更新。当定时器处于 PWM 模式时如果软件对 PWM 匹配寄存器位置执行写操作,写入的值将保存在一个映像寄存器中。当 PWM 匹配 0 事件发生时(在 PWM 模式下,通常也会复位定时器),如果对应的锁存使能寄存器位已经置位,那么映像寄存器的内容将传送到实际的匹配寄存器中。此时,新的值将生效并决定下一个 PWM 周期。当发生新值传送时,LER 中的所有位都自动清零。在 PWMLER 中相应位置位和 PWM 匹配 0 事件发生之前,任何写入 PWM 匹配寄存器的值都不会影响 PWM 操作。

例如,当 PWM2 配置为双边沿操作并处于运行中时,改变定时的典型事件顺序如下:

- 将新值写入 PWM 匹配 1 寄存器;
- 将新值写入 PWM 匹配 2 寄存器;
- 写 PWMLER,同时置位 bit1 和 bit2:
- 更改的值将在下一次定时器复位时(当 PWM 匹配 0 事件发生时)生效。

写两个 PWM 匹配寄存器的顺序并不重要,因为在写 PWMLER 之前,写入的新匹配 信都无效。这样就确保了两个值同时生效。如果使用单个值,也可用同样的方法更改。

PWMLER 中所有位的功能如表 136 所示。

表 136 PWM 锁存使能寄存器 (PWMLER - 0xE0014050)

PWMLER	功能	描述	复位值
		将该位置位允许最后写入 PWM 匹配 0 寄存器的值在由 PWM	
0	使能PWM匹配0锁存	匹配事件引起的下次定时器复位时生效。见 PWM 匹配控制寄	0
		存器(PWMMCR)的描述。	
		将该位置位允许最后写入 PWM 匹配 1 寄存器的值在由 PWM	
1	使能PWM匹配1锁存	匹配事件引起的下次定时器复位时生效。见 PWM 匹配控制寄	0
		存器(PWMMCR)的描述。	
		将该位置位允许最后写入 PWM 匹配 2 寄存器的值在由 PWM	
2	使能PWM匹配2锁存	匹配事件引起的下次定时器复位时生效。见 PWM 匹配控制寄	0
		存器(PWMMCR)的描述。	
		将该位置位允许最后写入 PWM 匹配 3 寄存器的值在由 PWM	
3	使能PWM匹配3锁存	匹配事件引起的下次定时器复位时生效。见 PWM 匹配控制寄	0
		存器(PWMMCR)的描述。	
		将该位置位允许最后写入 PWM 匹配 4 寄存器的值在由 PWM	
4	使能PWM匹配4锁存	匹配事件引起的下次定时器复位时生效。见 PWM 匹配控制寄	0
		存器(PWMMCR)的描述。	
		将该位置位允许最后写入 PWM 匹配 5 寄存器的值在由 PWM	
5	使能PWM匹配5锁存	匹配事件引起的下次定时器复位时生效。见 PWM 匹配控制寄	0
		存器(PWMMCR)的描述。	
		将该位置位允许最后写入 PWM 匹配 6 寄存器的值在由 PWM	
6	使能PWM匹配6锁存	匹配事件引起的下次定时器复位时生效。见 PWM 匹配控制寄	0
		存器(PWMMCR)的描述。	
7	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA

16. A/D 转换器

16.1 特性

- 10 位逐次逼近式模数转换器
- 4个(LPC2114/2124)或8个(LPC2212/2214)管脚复用为输入脚
- 掉电模式
- 测量范围: 0~3V
- 10 位转换时间>=2.44us
- 一个或多个输入的 Burst 转换模式
- 可选择由输入跳变或定时器匹配信号触发转换

16.2 描述

A/D 转换器的基本时钟由 VPB 时钟提供。可编程分频器可将时钟调整至逐步逼近转换 所需的 4.5MHz (最大)。完全满足精度要求的转换需要 11 个这样的时钟。

16.3 管脚描述

表 137 A/D 管脚描述

管脚名称	类型	管脚描述
Ain7:0	输入	模拟输入。A/D 转换器单元可测量 8 个输入信号的电压(但 64 脚封装中模拟输入管脚
		限制为 Ain3:0)。注意:这些模拟输入通常连接到管脚上,即使管脚复用寄存器将它们
		设定为端口管脚。通过将这些管脚驱动成端口输出来实现 A/D 转换器的简单自测。
		注: 当使用 A/D 转换器时,模拟输入管脚的信号电平在任何时候都不能大于 V_{3A} ,否
		则,读出的 A/D 值无效。如果在应用中未使用 A/D 转换器,则 A/D 输入管脚用作可承
		受 5V 电压的数字 I/O 口。
V_{3A}, V_{SSA}	电源	模拟电源和地 。它们分别与标称为 V_3 和 V_{SSD} 的电压相同,但为了降低噪声和出错几
		率,两者应当隔离。转换器单元的 VrefP 和 VrefN 信号在内部与这两个电源信号相连。

16.4 寄存器描述

A/D 转换器的基址是 0xE003 4000。A/D 转换器包含 2 个寄存器, 见表 138。

表 138 A/D 寄存器

名称	描述	访问	复位值	地址
ADCR	A/D 控制寄存器。A/D 转换开始前,必须写入 ADCR	读/写	0x0000 0001	0xE003 4000
	寄存器来选择工作模式。			

广州周立功单片机发展有限公司 Tel: (020)38730976 38730977 Fax: 38730925 http://www.zlgmcu.com

ADDR	A/D 数据寄存器。该寄存器包含 ADC 的 DONE 位	读/写	NA	0xE003 4004
	(当 DONE 位为 1 时)和 10 位的转换结果。			

16.4.1 A/D 控制寄存器(ADCR – 0xE0034000)

表 139 A/D 控制寄存器(ADCR – 0xE0034000)

ADCR	名称	描述	复位值
7:0	SEL	从 Ain3:0(LPC2114/2124)或 Ain7:0(LPC2212/2214)中选择采样和转换输入	0x01
		脚。在48或64脚封装中只有位3:0可置位。软件控制模式下,只有一位	
		可被置位。硬件扫描模式下, SEL 可为 1~8 中的任何一个值(在 48 或	
		64 脚封装中 SEL 从 1~4 中取值)。SEL 为零时等效于为 0x01。	
15:8	CLKDIV	将 VPB 时钟(PCK)进行(CLKDIV 的值+1)分频得到 A/D 转换时钟,	0
		该时钟必须小于或等于 4.5MHz。典型地,软件将 CLKDIV 编程为最小值	
		来得到 4.5MHz 或稍低于 4.5MHz 的时钟,但某些情况下(例如高阻抗模	
		拟电源)可能需要更低的时钟。	
16	BURST	如果该位为0,转换由软件控制,需要11个时钟方能完成。如果该位为1,	0
		A/D 转换器以 CLKS 字段选择的速率重复执行转换,(如果必要) 并从	
		DEL 字段中为 1 的位对应的管脚开始扫描。A/D 转换器起动后的第一次	
		转换的是 SEL 字段中为 1 的位中的最低有效位对应的模拟输入,然后是	
		为1的更高有效位对应的模拟输入(如果可用)。重复转换通过清零该位	
		终止,但该位被清零时并不会中止正在进行的转换。	
19:17	CLKS	该字段用来选择 Burst 模式下每次转换使用的时钟数和所得 ADDR 转换	000
		结果的 LS 位中可确保精度的位的数目, CLKS 可在 11 个时钟(10 位)~	
		4个时钟(3位)之间选择:000=11个时钟/10位,001=10个时钟/9位,111	
		=4 个时钟/3 位。	
21	PDN	1: A/D 转换器处于正常工作模式。	0
		0: A/D 转换器处于掉电模式。	
23:22	TEST1:0	这些位用于器件测试。00=正常模式,01=数字测试模式,10=DAC 测	0
		试模式,11=一次转换测试模式。	
26:24	START	当 BURST 为 0 时,这些位控制着 A/D 转换是否启动和何时启动:	000
		000: 不启动(PDN 清零时使用该值)	
		001: 立即启动转换	
		010: ADCR 寄存器位 27 选择的边沿出现在 P0.16/EINT0/ MAT0.2/CAP0.2	
		脚时启动转换	
		011: ADCR 寄存器位 27 选择的边沿出现在 P0.22/CAP0.0/ MAT0.0 脚时	
		启动转换	
		注意: START 选择 100-111 时 MAT 信号不必输出到管脚上	
		100: ADCR 寄存器位 27 选择的边沿出现在 MAT0.1 时启动转换	
		 101:ADCR 寄存器位 27 选择的边沿出现在 MAT0.3 时启动转换	
		 110: ADCR 寄存器位 27 选择的边沿出现在 MAT1.0 时启动转换	
		111: ADCR 寄存器位 27 选择的边沿出现在 MAT1.1 时启动转换	
27	EDGE	该位只有在 START 字段为 010~111 时有效。	0
		0: 在所选 CAP/MAT 信号的下降沿启动转换	
		1: 在所选 CAP/MAT 信号的上升沿启动转换	

16.4.2 A/D 数据寄存器(ADDR - 0xE0034004)

表 140 A/D 数据寄存器 (ADDR - 0xE0034004)

ADDR	名称	描述	复位值
31	DONE	A/D 转换结束时该位置位。该位在 ADDR 被读出和 ADCR 被写入时清零。	0
		如果 ADCR 在转换过程中被写入,该位置位,启动一次新的转换。	
30	OVERU	Burst 模式下,如果在转换产生 LS 位的结果前一个或多个转换结果被丢失	0
	N	和覆盖,该位置位。在非 FIFO 操作中,该位通过读 ADDR 寄存器清零。	
29:27		这些位读出为 0。它们用于未来 CHN 字段的扩展,使之兼容包含更多通道	0
		的转换器。	
26:24	CHN	这些位包含的是 LS 位的转换通道。	X
23:16		这些位读出时为 0。它们允许连续 A/D 值的累加,而不需要使用与门屏蔽	0
		处理,使得至少有 256 个值不会溢出到 CHN 字段。	
15:6	V/V _{3A}	当 DONE 为 1 时,该字段包含一个二进制数,用来代表 SEL 字段选中的	X
		Ain 脚的电压。该字段根据 VddA 脚上的电压对 Ain 脚的电压进行划分。	
		该字段为 0 表明 Ain 脚的电压小于,等于或接近于 VssA;该字段为 0x3FF	
		表明 Ain 脚的电压接近于,等于或大于 V _{3A} 。	
		为了测试的需要,写入到该字段的数据捕获到移位寄存器,寄存器的移位	
		时钟为 A/D 转换器时钟。仅当 TEST1:0 为 10 时, 寄存器的 MS 位供给 A/D	
		转换器的 DINSERI 输入。	
5:0		这些位读出时为 0。专门用于未来的扩展和功能更强大的 A/D 转换器。	0

16.5 操作

16.5.1 硬件触发转换

如果 ADCR 的 BURST 位为 0 且 START 字段的值包含在 010-111 之内, 当所选管脚或 定时器匹配信号发生跳变时 A/D 转换器启动一次转换。也可选择在 4 个匹配信号中任何一个的指定边沿转换,或者在 2 个捕获/匹配管脚中任何一个的指定边沿转换。将所选端口的管脚状态或所选的匹配信号与 ADCR 位 27 相异或用作边沿检测逻辑。

16.5.2 时钟产生

通常,我们非常希望时钟分频器(利用它来得到 4.5MHz 的转换时钟)在 A/D 转换器 空闲时保持复位状态,以便在 ADCR 的 START 字段被写入 01 或所选边沿出现在选择的信号上时可立刻启动采样时钟。这个特性可以节省功率,尤其适用于 A/D 转换器很少使用的场合。

16.5.3 中断

当 DONE 位为 1 时,中断请求声明到向量中断控制器(VIC)。软件通过 VIC 中 A/D 转换器的中断使能位来控制是否产生中断。DONE 在 ADDR 读出时清零。

16.5.4 精度和数字接收器

当 A/D 转换器用来测量 Ain 脚的电压时,并不理会管脚在管脚选择寄存器中的设置(见管脚连接模块),但是通过禁能管脚的数字接收器来选择 Ain 功能可以提高转换精度。

17. 实时时钟

17.1 特性

- 测量保持日历或时钟的时间通路
- 超低功耗设计,支持电池供电系统
- 提供秒、分、小时、日、月、年和星期
- 可编程基准时钟分频器允许调节 RTC 以适应不同的晶振频率

17.2 描述

实时时钟(RTC)提供一套计数器在系统上电和关闭操作时对时间进行测量。RTC 消耗的功率非常低,这使其适合于由电池供电的,CPU 不连续工作(空闲模式)的系统。

17.3 结构

图 40 RTC 方框图

17.4 寄存器描述

RTC 包含了许多寄存器。地址空间按照功能分成 4 个部分。前 8 个地址为混合寄存器组。第二部分的 8 个地址为定时器计数器组,第三部分的 8 个地址为报警寄存器组。最后一部分为基准时钟分频器。

实时时钟模块所包含的寄存器见表 141。详细的描述见后面的寄存器。

表 141 实时时钟寄存器映射

名称	规格	描述	访问	复位值	地址
ILR	2	中断位置寄存器	R/W	*	0xE0024000
CTC	15	时钟节拍计数器	RO	*	0xE0024004
CCR	4	时钟控制寄存器	R/W	*	0xE0024008
CIIR	8	计数器递增中断寄存器	R/W	*	0xE002400C
AMR	8	报警屏蔽寄存器	R/W	*	0xE0024010
CTIME0	(32)	完整时间寄存器 0	RO	*	0xE0024014
CTIME1	(32)	完整时间寄存器 1	RO	*	0xE0024018
CTIME2	(32)	完整时间寄存器 2	RO	*	0xE002401C
SEC	6	秒寄存器	R/W	*	0xE0024020
MIN	6	分寄存器	R/W	*	0xE0024024
HOUR	5	小时寄存器	R/W	*	0xE0024028
DOM	5	日期(月)寄存器	R/W	*	0xE002402C
DOW	3	星期寄存器	R/W	*	0xE0024030
DOY	9	日期(年)寄存器	R/W	*	0xE0024034
MONTH	4	月寄存器	R/W	*	0xE0024038
YEAR	12	年寄存器	R/W	*	0xE002403C
ALSEC	6	秒报警值	R/W	*	0xE0024060
ALMIN	6	分报警值	R/W	*	0xE0024064
ALHOUR	5	小时报警值	R/W	*	0xE0024068
ALDOM	5	日期(月)报警值	R/W	*	0xE002406C
ALDOW	3	星期报警值	R/W	*	0xE0024070
ALDOY	9	日期(年)报警值	R/W	*	0xE0024074
ALMON	4	月报警值	R/W	*	0xE0024078
ALYEAR	12	年报警值	R/W	*	0xE002407C
PREINT	13	预分频值,整数部分	R/W	0	0xE0024080
PREFRAC	15	预分频值,小数部分	R/W	0	0xE0024084

^{*} RTC 当中除预分频器部分之外的其它寄存器都不受器件复位的影响。如果 RTC 使能,这些寄存器必须通过软件来初始化。

17.5 RTC 中断

中断的产生由中断位置寄存器(ILR)、计数器递增中断寄存器(CIIR)、报警寄存器和报警屏蔽寄存器(AMR) 控制。只有转换到中断状态才能产生中断。ILR单独使能 CIIR 和 AMR 中断。CIIR 中的每个位都对应一个时间计数器。如果 CIIR 使能用于一个特定的计数器,那么该计数器的值每增加一次就产生一个中断。报警寄存器允许用户设定产生中断的日期或时间。AMR 提供一个屏蔽报警比较的机制。如果所有非屏蔽报警寄存器与它们对应的时间计数器的值相匹配时,则会产生中断。

17.6 混合寄存器组

表 142 所示为 A[6:2]的 0 到 7 的寄存器。详见下面的描述。

地址	名称	规格	描述	访问
0E0024000	и в	2	中断位置寄存器。读出的该位置寄存器的值指示了中断源。向寄存器	
0xE0024000	ILR		的一个位写入1来清除相应的中断。	R/W
0xE0024004	CTC	15	时钟节拍计数器。该寄存器的值来自时钟分频器。	RO
0xE0024008	CCR	4	时钟控制寄存器。控制时钟分频器的功能。	R/W
0xE002400C	CIIR	8	计数器递增中断寄存器。当计数器递增时,选择一个计数器产生中断。	R/W
0xE0024010	AMR	8	报警屏蔽寄存器。控制报警寄存器的屏蔽。	R/W
0xE0024014	CTIME0	32	完整时间寄存器 0	RO
0xE0024018	CTIME1	32	完整时间寄存器 1	RO
0xE002401C	CTIME2	32	完整时间寄存器 2	RO

表 142 混合寄存器

17.6.1 中断位置(ILR - 0xE0024000)

中断位置寄存器为 2 位寄存器,它指定哪些模块产生中断(见表 143)。向一个位写入 1 会清除相应的中断。写入 0 无效。这样程序员可以读取该寄存器并将读出的值回写到寄存器中清除检测到的中断。

ILR	功能	描述
0	RTCCIF	为1时,计数器增量中断模块产生中断。向该位写入1清除计数器增量中断。
1	RTCALF	为1时,报警寄存器产生中断。向该位写入1清除报警中断。

表 143 中断位置寄存器(ILR - 0xE0024000)

17.6.2 时钟节拍计数器(CTC - 0xE0024004)

时钟节拍计数器只可读。它可通过时钟控制寄存器(CCR)复位为 0。CTC 包含时钟分频计数器位。

表 144 时钟节拍计数器 (CTC - 0xE0024004)

CTC	功能	描述
0	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
15:1	时钟节拍计数器	位于秒计数器之前,CTC 每秒计数 32768 个时钟。由于 RTC 预分频器的关系,这 32768 个时间增量的长度可能并不全部相同。详见基准时钟分频器(预分频器)。

17.6.3 时钟控制寄存器(CCR - 0xE0024008)

时钟控制寄存器是一个 4 位寄存器,它控制时钟分频电路的操作。每一位的功能见表 145。

表 145 时钟控制寄存器 (CCR - 0xE0024008)

CCR	功能	描述
0	CLKEN	时钟使能 当该位为1时,时间计数器使能。为0时,时间计数器都被禁止,这时可
0	CLKEN	对其进行初始化。
1	СТСВСТ	CTC 复位 为 1 时,时钟节拍计数器复位。在 CCR[1]变为 0 之前,它将一直保持复位
1	CTCRST	状态。
3:2	CTTEST	测试使能 在正常操作中,这些位应当全为0。

17.6.4 计数器增量中断

计数器增量中断寄存器(CIIR)可使计数器每次增加时产生一次中断。在中断位置寄存器的位0(ILR[0])写入1之前,该中断一直保持有效。

表 146 计数器增量中断寄存器位(CIIR - 0xE002400C)

CIIR	功能	描述
0	IMSEC	为1时, 秒值的增加产生一次中断。
1	IMMIN	为1时,分值的增加产生一次中断。
2	IMHOUR	为1时,小时值的增加产生一次中断。
3	IMDOM	为1时,日期(月)值的增加产生一次中断。
4	IMDOW	为1时,星期值的增加产生一次中断。
5	IMDOY	为1时,日期(年)值的增加产生一次中断。
6	IMMON	为1时,月值的增加产生一次中断。
7	IMYEAR	为1时,年值的增加产生一次中断。

17.6.5 报警屏蔽

报警屏蔽寄存器(AMR)允许用户屏蔽任意报警寄存器。表 147 所示为 AMR 位与报警寄存器位之间的关系。对于报警功能来说,要产生中断,非屏蔽的报警寄存器必须匹配对应的时间计数值。只有当计数器之间的比较第一次从不匹配到匹配时才会产生中断。向中断位置寄存器(ILR)的位写入 1 会清除相应的中断。如果所有屏蔽位都置位,报警将被禁止。

表 147 报警屏蔽寄存器位(AMR - 0xE0024010)

AMR	功能	描述
0	AMRSEC	为1时, 秒值不与报警寄存器比较。
1	AMRMIN	为1时,分值不与报警寄存器比较。
2	AMRHOUR	为1时,小时值不与报警寄存器比较。
3	AMRDOM	为1时,日期(月)值不与报警寄存器比较。
4	AMRDOW	为1时,星期值不与报警寄存器比较。
5	AMRDOY	为1时,日期(年)值不与报警寄存器比较。
6	AMRMON	为1时,月值不与报警寄存器比较。
7	AMRYEAR	为1时,年值不与报警寄存器比较。

17.7 完整时间寄存器

时间计数器的值可选择以一个完整格式读出,程序员只需执行 3 次读操作即可读出所有的时间计数器值,见表 148,149 和 150。每个寄存器的最低位分别位于 bit0, 8,16 和 24。

完整时间寄存器为只读寄存器。要更新时间计数器的值,必须对时间计数器寻址。

17.7.1 完整时间寄存器 0 (CTIME0 - 0xE0024014)

完整时间寄存器 0 包含的时间值为: 秒、分、小时和星期。

表 148 完整时间寄存器 0 (CTIME0 - 0xE0024014)

CTIME0	功能	描述
31:27	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
26:24	星期	星期值 该值的范围为 0~6。
23:21	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
20:16	小时	小时值 该值的范围为 0~23。
15:14	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
13:8	分	分值 该值的范围为 0~59。
7:6	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
5:0	秒	秒值 该值的范围为 0~59。

17.7.2 完整时间寄存器 1 (CTIME1 - 0xE0024018)

完整时间寄存器 1 包含的时间值为: 日期(月)、月和年。

表 149 完整时间寄存器 1(CTIME1 - 0xE0024018)

CTIME1	功能	描述
31:28	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
27:16	年	年值 该值的范围为 0~4095。
15:12	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
11:8	月	小时值 该值的范围为 1~12。
7:5	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。
4:0	日期(月)	日期(月)值 该值的范围为 1~28, 29, 30 或 31(取决于月份以及是否为闰年)。

17.7.3 完整时间寄存器 2 (CTIME2 - 0xE002401C)

完整时间寄存器 2 仅包含日期 (年)。

表 150 完整时间寄存器 2 (CTIME2 - 0xE002401C)

CTIME2	功能	描述
11:0	日期(年)	日期(年)值 该值的范围为 1~365 (闰年为 366)。
31:12	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。

17.8 时间计数器组

时间值包含8个寄存器,见表151和152。表152所示的寄存器可执行读或写操作。

计数器 规格 使能 最小值 最大值 秒 6 Clk1 (见图 40) 6 秒 59 小时 5 分 0 23 5 小时 日期(月) 1 28, 29, 30 或 31 星期 3 小时 0 9 日期(年) 小时 1 365 或 366 (闰年) 12 月 4 日期(月) 1 年 12 月或日期(年) 0 4095

表 151 时间计数器的关系和值

表 152 时间计数器寄存器

地址	名称	规格	描述	访问
0xE0024020	SEC	6	秒值 该值的范围为 0~59。	R/W
0xE0024024	MIN	6	分值 该值的范围为 0~59。	R/W
0xE0024028	HOUR	5	小时值 该值的范围为 0~23。	R/W
0xE002402C	DOM	5	日期(月)值 该值的范围为 1~28,29,30 或 31(取决于月份 以及是否为闰年)。 ¹	R/W
0xE0024030	DOW	3	星期值 该值的范围为 0~6。1	R/W
0xE0024034	DOY	9	日期(年)值 该值的范围为 1~365(闰年为 366)。 ¹	R/W
0xE0024038	MONTH	4	月值 该值的范围为 1~12。	R/W
0xE002403C	YEAR	12	年值 该值的范围为 0~4095。	R/W

注:

1. 这些值只能在适当的时间间隔处递增且在定义的溢出点复位。为了使这些值有意义,它们不能进行计算且必须被正确初始化。

17.8.1 闰年计算

RTC 执行一个简单的位比较,看年计数器的最低两位是否为 0。如果为 0,那么 RTC 认为这一年为闰年。RTC 认为所有能被 4 整除的年份都为闰年。这个算法从 1901 年到 2099 年都是准确的,但在 2100 年出错,2100 年并不是闰年。闰年对 RTC 的影响只是改变 2 月份的长度、日期(月)和年的计数值。

17.9 报警寄存器组

报警寄存器见表 153。这些寄存器的值与时间计数器相比较。如果所有未屏蔽(见"报警屏蔽")的报警寄存器都与它们对应的时间计数器相匹配,那么将产生一次中断。向中断位置寄存器的位 1 (ILR[1]) 写入 1 清除中断。

地址	名称	规格	描述	访问
0xE0024060	ALSEC	6	秒报警值	R/W
0xE0024064	ALMIN	6	分报警值	R/W
0xE0024068	ALHOUR	5	小时报警值	R/W
0xE002406C	ALDOM	5	日期 (月) 报警值	R/W
0xE0024070	ALDOW	3	星期报警值	R/W
0xE0024074	ALDOY	9	日期(年)报警值	R/W
0xE0024078	ALMON	4	月报警值	R/W
0xE002407C	ALYEAR	12	年报警值	R/W

表 153 报警寄存器

17.10 RTC 使用注意事项

由于 RTC 的时钟源为 VPB 时钟(pclk),时钟出现的任何中断都会导致时间值的偏移。如果 RTC 初始化成这个时间值或从 RTC 激活后运行的一段时间内出现了一个错误,它们带来的变化都将影响真实的时钟时间。

LPC2114/2124/2212/2214 在断电时不能保持 RTC 的状态。如果时钟源丢失、中断或改变, RTC 也无法维持时间计数。芯片的断电将使 RTC 寄存器的内容完全丢失。进入掉电模式会使时间的更新出现误差。在系统操作过程中(重新配置 PLL、VPB 定时器或 RTC 预分频器)改变 RTC 的时间基准会使累加时间出现错误。

17.11 基准时钟分频器 (预分频器)

基准时钟分频器(在下文中称为预分频器)允许从任何频率高于 65.536kHz(2×32.768kHz)的外设时钟源产生一个 32.768kHz 的基准时钟。这样,不管外设时钟的频率为多少,RTC 总是以正确的速率运行。预分频器通过一个包含整数和小数部分的值对外设时钟(pclk)进行分频。这样就产生了一个不是恒定频率的连续输出。有些时钟周期比其它周期多 1 个 pclk 周期。但是每秒钟的计数总数总是 32768。

基准时钟分频器包含一个 13 位整数计数器和一个 15 位小数计数器。使用该规格的原因如下:

- 1. 对于 LPC2114/2124/2212/2214 所支持的频率,13 位整数计数器是必要的。可以这样进行计算:频率 160MHz 除以 32768 再减去 1 等于 4881,余数为 26,624。保存4881 需要 13 个位。13 位实际所能支持的最高频率为 268.4MHz(32768×8192)。
- 2. 余数的最大值为 32767, 需要 15 位来保存。

表 154 基准时钟分频寄存器

地址	名称	规格	描述	访问
0xE0024080	PREINT	13	预分频值,整数部分	R/W
0xE0024084	PREFRAC	15	预分频值,小数部分	R/W

17.11.1 预分频整数寄存器(PREINT - 0xE0024080)

预分频值的整数部分计算如下:

PREINT = int (pclk/32768) – 1。PREINT 的值必须大于等于 1。

表 155 预分频整数寄存器 (PREINT - 0xE0024080)

PREINT	功能	描述	复位值
15:13	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
12:0	预分频整数	包含 RTC 预分频值的整数部分	0

17.11.2 预分频小数寄存器(PREFRAC - 0xE0024084)

预分频值的小数部分计算如下:

 $PREFRAC = pclk - ((PREINT+1) \times 32768)$

表 156 预分频小数寄存器 (PREFRAC - 0xE0024084)

PREFRAC	功能	描述	复位值
15	保留	保留,用户软件不要向其写入1。从保留位读出的值未被定义。	NA
14:0	预分频小数	包含 RTC 预分频值的小数部分	0

17.11.3 预分频器的使用举例

先假设一个最简单的状况, pclk 频率为 65.537kHz。那么:

 $PREINT = int (pclk/32768) - 1 = 1, PREFRAC = pclk - ((PREINT+1) \times 32768) = 1$

使用此设定,每秒钟有 32767 次 2 个 pclk 周期计数,1 次 3pclk 周期计数,加起来每秒刚好为RTC 提供 32768 个时钟。

再假设一个比较实际的状况,pclk 频率为 10MHz。那么:

PREINT = int (pclk/32768) – 1 = 304, PREFRAC = pclk – ((PREINT+1) \times 32768) = 5760

这时,有 5760 个预分频器输出时钟宽度为 306 (305+1)pclk 周期。余下的时钟宽度为 305 个 pclk 周期。

采用相似的方法可以将任何高于 65536kHz 的 pclk 频率(每秒钟的周期数必须是偶数)转换成 RTC 的 32kHz 基准时钟。唯一需要注意的是,如果 PREFRAC 不等于 0,那么每秒当中的 32768 个时钟长度是不完全相同的,有些时钟会比其它时钟多 1 个 pclk 周期。虽然较长的脉冲已经尽可能地分配到剩余的脉冲当中,但是在希望直接观察时钟节拍计数器的应用中可能需要注意这种"抖动"。

图 41 RTC 预分频器方框图

17.11.4 预分频器操作

图 41 预分频器模块中被称为"组合逻辑"的模块决定了何时 13 位 PREINT 计数器的 递减操作延长 1 个 pclk。为了使插入的延长周期数目正确并对它们进行合理地分配,组合 逻辑将 PREFRAC 的每一位与 15 位小数计数器的值对应起来。这种对应关系在下文以(???) 的形式给出。

例如,如果 PREFRAC 的位 14 为 1(表示小数 1/2),则 13 位计数器计数半个周期时延长。当小数计数器的 LSB 位为 1 时,组合逻辑将使每次计数变化(每当小数计数器的 LSB 位为 1 时)的时间延长 1 个 pclk,并尽量平均分配脉冲宽度。类似地,PREFRAC 的位 13 为 1(表示小数 1/4)时 13 位计数器计数 1/4 个周期(每当小数计数器的低 2 位=10时)时延长。

1 34.21 34.00		PREFRAC 位													
小数计数器	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
100	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
1000	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
1 0000	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-
10 0000	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
100 0000	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
1000 0000	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
1 0000 0000	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
10 0000 0000	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
100 0000 0000	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
1000 0000 0000	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
1 0000 0000 0000	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
-10 0000 0000 0000	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
100 0000 0000 0000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

表 157 整数计数器重装值递增时预分频器的情况

18. 看门狗

18.1 特性

- 如果没有周期性重装,则产生片内复位
- 调试模式
- 由软件使能,但要求禁止硬件复位或看门狗复位/中断
- 错误/不完整的喂狗时序会导致复位/中断(如果使能)
- 指示看门狗复位的标志
- 带内部预分频器的可编程 32 位定时器
- 可选择 $t_{pclk} \times 4$ 倍数的时间周期:从 $(t_{pclk} \times 256 \times 4)$ 到 $(t_{pclk} \times 2^{32} \times 4)$

18.2 应用

看门狗的用途是使微控制器在进入错误状态后的一定时间内复位。当看门狗使能时,如果用户程序没有在周期时间内喂狗(重装),看门狗会产生一个系统复位。

有关片内看门狗和外围功能的相互作用,尤其是复位和引导过程的关系,请参考本文"复位"和"144 脚封装的引导控制"的内容。

18.3 描述

看门狗包括一个 4 分频的预分频器和一个 32 位计数器。时钟通过预分频器输入定时器。定时器递减计数。定时器递减的最小值为 0xFF。如果设置一个小于 0xFF 的值,系统会将 0xFF 装入计数器。因此最小看门狗间隔为 $(t_{pclk}\times 256\times 4)$,最大间隔为 $(t_{pclk}\times 2^{32}\times 4)$,两者都是 $t_{pclk}\times 4$ 的倍数。看门狗应当根据下面的方法来使用:

- 在WDTC 寄存器中设置看门狗定时器的固定装载值
- 在 WDMOD 寄存器中设置模式
- 通过向 WDFEED 寄存器顺序写入 0xAA 和 0x55 启动看门狗
- 在看门狗向下溢出之前应当再次喂狗以防止复位/中断

当看门狗计数器向下溢出时,程序计数器将从 0x000000000 开始,和外部复位一样。可以检查看门狗超时标志 (WDTOF) 来确定看门狗是否产生复位条件。WDTOF 标志必须由软件清零。

18.4 寄存器描述

看门狗包含 4 个寄存器, 见表 158。

表 158 看门狗寄存器映射

名称	描述	访问	复位值	地址	
WDMOD	看门狗模式寄存器 该寄存器包含看门狗定时器的基本	读/设置	0	0xE0000000	
WDMOD	模式和状态。	以/ 仅且	U	UXEUUUUUUU	
WDTC	看门狗定时器常数寄存器 该寄存器决定超时值。	读/写	0xFF	0xE0000004	
WDFEED	看门狗喂狗寄存器 向该寄存器顺序写入 AAh 和 55h 使	□ #=	NT A	0E000000	
WDFEED	看门狗定时器重新装入预设值。	只写 NA 0xE000		0xE0000008	
WDTV	看门狗定时器值寄存器 该寄存器读出看门狗定时器的	口法	0xFF	0xE000000C	
WDIV	当前值。	只读	UXFF	UXEUUUUUUC	

18.4.1 看门狗模式寄存器(WDMOD - 0xE0000000)

WDMOD 寄存器通过 WDEN 和 RESET 的组合来控制看门狗的操作。

WDEN	WDRESET	
0	X	看门狗关闭时的调试/操作
1	0	带看门狗中断的调试,但没有 WDRESET
1	1	带看门狗中断和 WDRESET 的操作

一旦 WDEN 和/或 WDRESET 位设置,就无法使用软件将其清零。这两个标志由外部 复位或看门狗定时器溢出清零。

WDTOF 当看门狗发生超时,看门狗超时标志置位。该标志由软件清零。

WDINT 当看门狗发生超时,看门狗中断标志置位。产生的任何复位都会使该位清零。

表 159 看门狗模式寄存器 (WDMOD - 0xE0000000)

WDMOD	功能	描述	复位值
0	WDEN	看门狗中断使能位(只能置位)	0
1	WDRESET	看门狗复位使能位(只能置位)	0
2	WDTOF	看门狗超时标志	0 (外部复位)
3	WDINT	看门狗中断标志 (只读)	0
7:4	保留	保留,用户软件不要向其写入 1。从保留位读出的值未被定义。	NA

18.4.2 看门狗定时器常数寄存器(WDTC - 0xE0000004)

WDTC 寄存器决定看门狗超时值。当喂狗时序产生时,WDTC 的内容重新装入看门狗定时器。它是一个 32 位寄存器,低 8 位在复位时设置为 1。写入一个小于 0xFF 的值会使 0xFF 装入 WDTC,因此超时的最小时间间隔为 $t_{pelk} \times 256 \times 4$ 。

WDTC	功能	描述	复位值
31:0	计数值	看门狗超时间隔	0xFF

18.4.3 看门狗喂狗寄存器(WDFEED - 0xE0000008)

向该寄存器写入 0xAA,然后写入 0x55 会使 WDTC 的值重新装入看门狗定时器。如果看门狗通过 WDMOD 寄存器使能,该操作还将启动看门狗运行。置位 WDMOD 中的 WDEN 位不足以使能看门狗。在看门狗能够产生中断/复位之前,必须完成一次有效的喂狗时序。否则,看门狗将忽略喂狗错误。向 WDFEED 寄存器写入 0xAA 的下一个操作应当是向 WDFEED 寄存器写入 0x55,除非看门狗被触发。在一个喂狗时序中,一次对看门狗定时器寄存器不正确的访问之后第二个 pclk 周期将产生中断/复位。

表 160 看门狗喂狗寄存器 (WDFEED - 0xE0000008)

WDFEED	功能	描述	复位值
7:0	喂狗	喂狗值应当为 0xAA, 然后是 0x55。	未定义

18.4.4 看门狗定时器值寄存器(WDTV - 0xE000000C)

WDTV 寄存器用于读取看门狗定时器的当前值。

表 161 看门狗定时器值寄存器 (WDTV - 0xE000000C)

WDTV	功能	描述	复位值
31:0	计数	当前定时器值	0xFF

18.5 方框图

看门狗方框图如图 42 所示。

图 42 看门狗方框图

19. FLASH 存储器系统和编程

本章讲述了 Flash 存储器系统和 Boot 装载程序以及在系统编程(ISP)和在应用中编程(IAP)接口。

19.1 FLASH 存储器系统

Flash 存储器系统包含 128kB Flash 器件的 16 个扇区和 256kB Flash 器件的 17 个扇区。 Flash 存储器从地址 0 开始并向上增加。详见 LPC2114/2124/2212/2214 存储器寻址。

在整个工作温度范围内,片内 Flash 存储器至少可擦除和写 10.000 次。

19.2 FLASH BOOT 装载程序

Boot 装载程序控制复位后的初始化操作,并提供实现 Flash 编程的方法。BOOT 装载器可启动对空片的编程、已编程器件的擦除和再编程以及在运行的系统中由应用程序对 Flash 存储器进行编程。

19.3 特性

- 在系统编程:在系统编程 (ISP)通过 boot 装载程序和串口(最终用户系统中的功能部件)对片内 Flash 存储器进行编程和再编程。
- 在应用中编程: 最终用户代码直接执行在应用编程 (IAP)对片内 Flash 存储器进行擦除和编程操作。

19.4 应用

Flash boot 装载程序同时提供片内 Flash 存储器的 ISP 和 IAP 编程接口。

19.5 描述

Flash boot 装载程序代码在器件上电或复位时执行。装载程序可执行 ISP 命令处理器或用户应用代码。复位后 P0.14 的低电平被认为是启动 ISP 命令处理器的外部硬件请求。该管脚由软件采样。假定在 RST 脚产生上升沿时 X1 管脚上有正确的信号,在 P0.14 被采样之前最多为 3ms 并决定执行用户代码还是 ISP 处理程序。如果 P0.14 采样为低电平并且看门狗溢出标志置位,启动 ISP 命令处理器的外部硬件请求将被忽略。如果没有外部请求(P0.14 复位后采样为高电平),那么将搜索有效的用户程序。如果找到有效的用户程序,执行的控制就转移给用户程序。如果没有找到有效的用户程序,那么就调用自动波特率程序。

管脚 P0.14 作为 ISP 硬件请求时要特别注意。由于 P0.14 在复位后处于高阻模式,用户需要提供外部硬件(上拉电阻或其它器件)使管脚处于一个确定的状态。否则可能导致非预期的进入 ISP 模式。

复位后的存储器映射:

Boot 扇区规格为 8kB,它位于片内 Flash 存储器最顶端的部分(128kB Flash 器件从 0x0001 E000 开始,256kB Flash 器件从 0x0003 E000 开始)。在任何复位后,整个 boot 扇区映射到片内存储器空间的顶端,也就是说 boot 扇区出现在存储器从地址 0x7FFF E000 的区域。Flash boot 装载程序运行在这部分 Flash 区域,但 ISP 和 IAP 程序使用部分片内 RAM。RAM 的使用在稍后讲述。中断向量位于片内 Flash 存储器的 boot 扇区当中,它在复位后被激活,即 boot 扇区的最低 64 字节也出现在存储器从地址 0x0000 0000 的区域。复位向量包含一条跳转指令,用来跳转到 Flash boot 装载程序的入口。

注:存储器区域并不是按比例绘制的。

图 43 复位后低地址存储器的映射(128kB Flash 器件)

有效用户代码的判定标准:保留的 ARM 中断向量位置 (0x0000 0014) 应当包含剩余中断向量校验和的 2 的补码。这样就使所有向量的校验和为 0。boot 装载程序代码禁止中断向量在 boot 扇区内重叠,然后计算 Flash 扇区 0 当中的中断向量的校验和。如果结果匹配,那么通过将 0x0000 0000 装入程序计数器使执行控制权转移给用户代码。此后,用户 Flash 复位扇区应当包含一条跳转到用户代码的跳转指令。

如果结果不匹配,那么自动波特率程序通过串口 0 与主机进行同步。主机应当发送一个同步字符"?"并等待响应。主机的串口应设定为 8 个数据位、1 个停止位和无奇偶校验。自动波特率程序根据自身的频率测量接收到的同步字符的位时间并对串口波特率发生器进行编程。它还向主机发送一个 ASCII 字符串("Synchronized<CR><LF>")。作为响应,主机应当发送接收到的字符串("Synchronized<CR><LF>")。自动波特率程序通过观察接收到的字符来验证是否同步。如果通过验证,则向主机发送"OK<CR><LF>"。主机应当通过发送正在运行部分的晶振频率(单位为 kHz)作为响应。例如,如果运行在 10MHz,主机的响应应当为"10000 <CR><LF>"。在接收到晶振频率后再向主机发送"OK<CR><LF>"。如果同步验证没有通过,那么自动波特率程序再次等待一个同步字符。要使自动波特率正确工作,晶振频率应当大于等于 10MHz。Boot 代码没有使用片内 PLL。

在接收到晶振频率后,执行初始化并调用 ISP 命令处理器。处于安全性的考虑,在执行 Flash 编程/擦除操作命令和 "Go"命令之前必须执行"Unlock (解锁)"命令。其它命令不需要解锁命令。每次 ISP 命令处理都要执行一次"Unlock (解锁)"命令。解锁命令在"ISP 命令"一节讲述。

19.5.1 通信协议

所有 ISP 命令都以单个 ASCII 字符串形式发送。字符串应当以回车(CR)和/或换行 (LF) 控制字符作为结束。多余的<CR>和<LF>将被忽略。所有 ISP 的响应都以<CR><LF>结束的字符串形式发送。数据以 UU 编码格式发送和接收。

19.5.1.1 ISP 命令格式

"命令 参数 0 参数 1 ... 参数 n<CR><LF>""数据"(只适用于写命令)

19.5.1.2 ISP 响应格式

"返回代码<CR><LF>响应_0<CR><LF>响应_1<CR><LF> ... 响应_n<CR><LF>" "数据"(只适用于读命令)

19.5.1.3 ISP 数据格式

数据流采用 UU 编码格式。UU 编码算法将 3 字节二进制数据转换成 4 字节可打印的 ASCII 字符集。该编码的效率高于 Hex 格式。Hex 格式将 1 字节二进制数据转换成 2 字节 ASCII Hex 数据。发送器应当在发送 20 个 UU 编码行之后发送校验和。任何 UU 编码行的 长度都不应超过 61 个字符(字节)。也就是说它可以保持 45 个数据字节。接收器应当将该校验和与接收数据的校验和相比较。如果校验和匹配,接收器响应"OK<CR><LF>",并等待下一次发送。如果校验和不匹配,接收器响应"RESEND<CR><LF>"。作为响应,发送器应当将字节重新发送。

UU 编码的描述见 http://www.wotsit.org。

19.5.1.4 ISP 流程控制

软件 XON/XOFF 流程控制机制可防止缓冲区溢出时的数据丢失。当数据快速到达时,发送 ASCII 控制字符 DC3(停止)使数据流停止。发送 ASCII 控制字符 DC1(启动)恢复数据流。主机也应支持相同的控制机制。

19.5.1.5 ISP 命令中止

命令可通过发送 ASCII 控制字符 "ESC"中止。该特性在"ISP 命令"一节中并没有作为一个命令。一旦接收到 ESC 代码, ISP 命令处理器将等待一个新命令。

19.5.1.6 ISP 过程中的中断

在任何复位后,位于 Flash boot 扇区内的 boot block 中断向量都有效。

19.5.1.7 IAP 过程中的中断

在擦除/编程操作过程中,片内 Flash 存储器不可访问。当用户应用程序启动执行时,用户 Flash 区域的中断向量有效。在调用 Flash 擦除/写 IAP 之前,用户应当禁止中断或确保用户中断向量在 RAM 中有效和中断处理程序位于 RAM 中。IAP 代码不使用或禁止中断。

19.5.1.8 ISP 命令处理器使用的 RAM

ISP 命令使用片内地址 0x4000 0120 到 0x4000 01FF 范围内的 RAM。用户可以使用该区域,但是在复位时内容可能会丢失。Flash 编程命令使用片内 RAM 最顶端的 32 字节。 堆栈位于 RAM 顶端一32。可使用的最大堆栈为 256 字节,堆栈是向下增加的。

19.5.1.9 IAP 命令处理器使用的 RAM

Flash 编程命令使用片内 RAM 最顶端的 32 字节。用户可使用的最大堆栈为 128 字节,堆栈是向下增加的。

19.5.1.10 RealMonitor 使用的 RAM

RealMonitor 使用的片内 RAM 地址范围为 0x4000 0040~0x4000 011F。如果不需要基于 RealMonitor 的调试,用户可使用该区域。Flash boot 装载程序不初始化 RealMonitor 的 堆栈。

19.6 BOOT 处理流程图

图 44 Boot 处理流程图(1.61 之前的 Bootloader 修订版本)

图 45 Boot 处理流程图(Bootloader 修订版 1.61 以及之后的版本)

19.7 扇区数

有些 IAP 和 ISP 命令根据"扇区"进行操作并指定扇区数。下表列出 LPC2114/2124/2212/2214 器件所包含的扇区数和存储器地址。IAP、ISP 和 RealMonitor 程序都位于 boot 扇区。boot 扇区存在于所有的器件当中。ISP 和 IAP 命令不允许对 boot 扇区执行写/擦除/运行操作。在 128kB Flash 器件中只有 120kB Flash 可供用户程序使用。器件共包含 256kB 的 Flash,其中,248kB 的 Flash 可供用户程序使用。

扇区号	存储器地址							
	128kB 器件	扇区规格(kB)	256kB 器件	扇区规格(kB)				
0	0x0000 0000 - 1FFF	8	0x0000 0000 - 1FFF	8				
1	0x0000 2000 - 3FFF	8	0x0000 2000 - 3FFF	8				
2	0x0000 4000 - 5FFF	8	0x0000 4000 - 5FFF	8				
3	0x0000 6000 - 7FFF	8	0x0000 6000 - 7FFF	8				
4	0x0000 8000 - 9FFF	8	0x0000 8000 - 9FFF	8				
5	0x0000 A000 - BFFF	8	0x0000 A000 - BFFF	8				
6	0x0000 C000 - DFFF	8	0x0000 C000 - DFFF	8				
7	0x0000 E000 - FFFF	8	0x0000 E000 - FFFF	8				
8	0x0001 0000 - 1FFF	8	0x0001 0000 - FFFF	64				
9	0x0001 2000 - 3FFF	8	0x0002 0000 - FFFF	64				
10 (0x0A)	0x0001 4000 - 5FFF	8	0x0003 0000 - 1FFF	8				
11 (0x0B)	0x0001 6000 - 7FFF	8	0x0003 2000 - 3FFF	8				
12 (0x0C)	0x0001 8000 - 9FFF	8	0x0003 4000 – 5FFF	8				
13 (0x0D)	0x0001 A000 - BFFF	8	0x0003 6000 – 7FFF	8				
14 (0x0E)	0x0001 C000 - DFFF	8	0x0003 8000 – 9FFF	8				
15 (0x0F)	0x0001 E000 – FFFF*	8	0x0003 A000 – BFFF	8				
16 (0x10)			0x0003 C000 – DFFF	8				
17 (0x11)			0x0003 E000 – FFFF*	8				

表 162 128K 字节 Flash 器件中的扇区

*Boot Block 一般位于片内 Flash 存储器顶端。在128kB Flash 中,它是第16 个扇区(对应的扇区号是15),在256kB Flash 中,它是第18 个扇区(对应的扇区号是17)。Boot Block 占有的 Flash 存储器扇区不能用来存放代码。

19.8 代码读保护

这是 Bootloader 修订版 1.61 的特性。

代码读保护通过向 Flash 地址单元 0x1FC (用户 Flash 扇区 0) 写入 0x87654321 (十进制表示为 2271560481) 来使能。地址单元 0x1FC 用来允许为 fiq 异常处理程序保留部分空间。当 JTAG 调试端口的代码读保护被使能时,外部存储器引导和以下 ISP 命令将被禁能:

- 读存储器
- 写 RAM
- 运行
- 将 RAM 内容复制到 Flash

上述 ISP 命令终止时返回 CODE_READ_PROTECTION_ENABLED。

代码读保护使能时, ISP 擦除命令只允许擦除用户扇区的内容。这种限制是代码读保护不使能时所没有的。IAP 命令不受代码读保护的影响。

19.8.1 ISP 命令

下面的命令是 ISP 命令处理程序所接受的命令。每个命令都有具体的返回代码。当接收到未定义的命令时,命令处理程序返回代码 INVALID_COMMAND。命令和返回代码为 ASCII 格式。

只有当接收到的 ISP 命令执行完毕时,处理程序才发送 CMD_SUCCESS。这时主机才能发送新的 ISP 命令。但"设置波特率"、"写 RAM"、"读存储器"和"运行"命令除外。

表 163 ISP 命令汇总

ISP 命令	使用	描述
解锁	U <解锁代码>	见表 164
设置波特率	B <波特率> <停止位>	见表 165
回声	A <设定>	见表 167
写RAM	W <起始地址> <字节数>	见表 168
读存储器	R <地址> <字节数>	见表 169
准备写操作的扇区	P <起始扇区号> <结束扇区号>	见表 170
将 RAM 内容复制到 Flash	C <flash 地址=""> <ram 地址=""> <字节数></ram></flash>	见表 171
运行	G <地址> <模式>	见表 172
擦除扇区	E <起始扇区号> <结束扇区号>	见表 173
扇区查空	I <起始扇区号> <结束扇区号>	见表 174
读器件 ID	J	见表 175
读 Boot 代码版本	K	见表 176
比较	M <地址 1> <地址 2> <字节数>	见表 177

19.8.1.1 解锁 <解锁代码>

表 164 ISP 解锁命令描述

命令	U
输入	解锁代码: 23130
	CMD_SUCCESS
返回代码	INVALID_CODE
	PARAM_ERROR
描述	该命令用于解锁 Flash 写/擦除&运行命令。
举例	"U 23130 <cr><lf>"解锁 Flash 写/擦除&运行命令。</lf></cr>

19.8.1.2 设置波特率 <波特率> <停止位>

表 165 ISP 设置波特率命令描述

命令	В
输入	波特率: 9600 19200 38400 57600 115200 230400;停止位: 1 2
	CMD_SUCCESS
海同母和	INVALID_BAUD_RATE
返回代码	INVALID_STOP_BIT
	PARAM_ERROR
描述	该命令用于改变波特率。新的波特率在命令处理器发送 CMD_SUCCESS 返回代码之后生效。
举例	"B 57600 1 <cr><lf>"设置串口波特率 57600bps 和 1 个停止位。</lf></cr>

表 166 ISP 波特率和外部晶体频率的关系(以 MHz 为单位)

ISP 波特率和	9600	19200	38400	57600	115200	230400
外部晶体频率						
10.0000	+	+	+			
11.0592	+	+		+		
12.2880	+	+	+			
14.7456	+	+	+	+	+	+
15.3600	+					
18.4320	+	+		+		
19.6608	+	+	+			
24.5760	+	+	+			
25.0000	+	+	+			

19.8.1.3 回声 <设定>

表 167 ISP 回音命令描述

命令	A
输入	设定: 打开=1 关闭=0
海同母前	CMD_SUCCESS
返回代码	PARAM_ERROR
描述	回声命令的默认设定是打开。当打开时,ISP 命令处理器将接收到的串行数据发送回主机。
举例	"A 0 <cr><lf>" 回声关闭。</lf></cr>

19.8.1.4 写 RAM<起始地址> <字节数>

主机应当在接收到 CMD_SUCCESS 返回代码后发送数据。主机应当在发送 20 个 UU 编码行之后发送校验和。校验和在增加新数据(UU 编码前)字节时产生,发送完 20 个编码行后重新设置。任何 UU 编码行的长度不应超过 61 个字符(字节),即可以保持 45 个数据字节。当数据少于 20 个 UU 编码行时,校验和按照实际发送的字节数进行计算。ISP命令处理器将它与接收字节的校验和相比较。如果校验和匹配,那么 ISP 命令处理器响应"OK<CR><LF>",并等待下一次发送。如果校验和不匹配,接收器响应"RESEND<CR><LF>"。作为响应,发送器应当将字节重新发送。

表 168 ISP 写 RAM 命令描述

命令	W
<i>t</i> ⇔ λ	起始地址:被写 RAM 的起始地址,该地址应当以字为边界。
输入	字节数:写入的字节数。计数值应当为4的倍数。
	CMD_SUCCESS
	ADDR_ERROR (地址不是以字为边界)
返回代码	ADDR_NOT_MAPPED
	COUNT_ERROR (字节计数值不是 4 的倍数)
	PARAM_ERROR
描述	该命令用于将数据下载到 RAM。数据应当为 UU 编码格式。
举例	"W 1073742336 4 <cr><lf>"向地址 0x4000 0200 写入 4 个字节数据。</lf></cr>

19.8.1.5 读存储器 <地址> <字节数>

数据流之后是命令成功返回代码。校验和在发送完 20 个 UU 编码后发送。校验和在增加新数据(UU 编码前)字节时产生,发送完 20 个编码行后重新设置。任何 UU 编码行长度都不应超过 61 个字符(字节),即它可以保持 45 个数据字节。当数据少于 20 个 UU 编码行时,校验和按照实际发送的字节数进行计算。主机将它与接收字节的校验和相比较。如果校验和匹配,那么主机响应"OK<CR><LF>",并等待下一次发送。如果校验和不匹配,主机响应"RESEND<CR><LF>"。作为响应,ISP 命令处理器应当将字节重新发送。

表 169 ISP 读存储器命令描述

命令	R		
<i>t</i> △)	起始地址:被读出数据字节的地址,该地址应当以字为边界。		
输入	字节数:读出的字节数。计数值应当为4的倍数。		
	CMD_SUCCESS,后面是<实际数据(UU 编码)>		
	ADDR_ERROR (地址不是以字为边界)		
返回代码	ADDR_NOT_MAPPED		
	COUNT_ERROR (字节计数值不是 4 的倍数)		
	PARAM_ERROR		
描述	该命令用于读出 RAM 或 Flash 存储器的数据。		
举例	"R 1073741824 4 <cr><lf>"从地址 0x4000 0000 读出 4 个字节数据。</lf></cr>		

19.8.1.6 准备写操作的扇区<起始扇区号> <结束扇区号>

该命令使 Flash 写/擦除操作分成两个步骤处理。

表 170 ISP 准备写操作的扇区命令描述

命令	P
输入	起始扇区号
	结束扇区号: 应当大于等于起始扇区号。
返回代码	CMD_SUCCESS
	BUSY
	INVALID_SECTOR
	PARAM_ERROR

续表 170

命令	P		
	该命令必须在执行"将 RAM 内容复制到 Flash"或"擦除扇区"命令之前执		
描述	行。这两个命令的成功执行会导致相关的扇区再次被保护。该命令不能用于		
	boot 扇区。要准备单个扇区,可将起始和结束扇区号设置为相同值。		
举例	"P 0 0 <cr><lf>"准备 Flash 扇区 0。</lf></cr>		

19.8.1.7 将 RAM 内容复制到 Flash <Flash 地址> <RAM 地址> <字节数>

表 171 ISP 将 RAM 内容复制到 Flash 命令描述

命令	С
	Flash 地址(DST): 要写入数据字节的目标 Flash 地址。目标地址的边界应当为 512 字节。
输入	RAM 地址(SRC): 读出数据字节的源 RAM 地址。
	字节数:写入字节的数目。应当为 512 1024 4096 8192.
	CMD_SUCCESS
	SRC_ADDR_ERROR (地址不以字为边界)
	DST_ADDR_ERROR (地址边界错误)
	SRC_ADDR_NOT_MAPPED
返回代码	DST_ADDR_NOT_MAPPED
及四八四	COUNT_ERROR (字节计数值不是 512 1024 4096 8192)
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	BUSY
	CMD_LOCKED
	PARAM_ERROR
描述	该命令用于编程 Flash 存储器。受影响的扇区应当先通过调用"准备写操作的扇区"命令准备。
加化	当成功执行复制命令后,扇区将自动受到保护。该命令不能写 boot 扇区。
举例	"C 0 1073774592 512 <cr><lf>"将 RAM 地址 0x4000 8000 开始的 512 字节复制到 Flash 地址 0。</lf></cr>

19.8.1.8 运行<地址><模式>

表 172 ISP 运行命令描述

命令	G
<i>t</i> △)	地址:代码执行起始的 Flash 或 RAM 地址。该地址应当以字为边界。
输入	模式: T(执行 Thumb 模式下的程序) A(执行 ARM 模式下的程序)
	CMD_SUCCESS
	ADDR_ERROR
返回代码	ADDR_NOT_MAPPED
	CMD_LOCKED
	PARAM_ERROR
	该命令用于执行(调用)位于 RAM 或 Flash 存储器当中的程序。一旦成功执
描述	行该命令,就有可能不再返回 ISP 命令处理程序。如果执行的代码以返回指
	令结束,则恢复 ISP 处理程序的执行。
举例	"G 0 A <cr><lf>"跳转到 ARM 模式下的地址 0x0000 0000 处。</lf></cr>

19.8.1.9 擦除扇区<起始扇区号><结束扇区号>

表 173 ISP 擦除扇区命令描述

命令	E
输入	起始扇区号
111八	结束扇区号: 应当大于等于起始扇区号。
	CMD_SUCCESS
	BUSY
返回代码	INVALID_SECTOR
这 图代码	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	CMD_LOCKED
	PARAM_ERROR
描述	该命令用于擦除片内 Flash 存储器的一个或多个扇区。boot 扇区不能由该命令
	擦除。要擦除单个扇区可将起始和结束扇区号设定为相同值。
举例	"E 2 3 <cr><lf>"擦除 Flash 扇区 2 和 3。</lf></cr>

19.8.1.10 扇区查空<起始扇区号><结束扇区号>

表 174 ISP 扇区查空命令描述

命令	I
<i>t</i> △)	起始扇区号
输入	结束扇区号: 应当大于等于起始扇区号。
	CMD_SUCCESS
返回代码	SECTOR_NOT_BLANK (后跟<第一个非空字的偏移量> <非空字的内容>)
区凹 (1)	INVALID_SECTOR
	PARAM_ERROR
描述	该命令用于对片内 Flash 存储器的一个或多个扇区进行查空。要查空单个扇区
	可将起始和结束扇区号设定为相同值。
举例	"I 2 3 <cr><lf>"对 Flash 扇区 2 和 3 进行查空。由于扇区 0 的前 64 字节重新</lf></cr>
	映射到 Flash boot 扇区,因此对其进行查空一定会失败。

19.8.1.11 读器件 ID

表 175 ISP 读器件 ID 命令描述

命令	J
输入	无
返回代码	CMD_SUCCESS 后跟 ASCII 格式的 ID 号。
描述	该命令用于读取器件的 ID 号。
举例	"J <cr><lf>"</lf></cr>

19.8.1.12 读 Boot 代码版本

表 176 ISP 读 Boot 代码版本命令描述

命令	К
输入	无
返回代码	CMD_SUCCESS 后跟 2 字节 ASCII 格式的 boot 代码版本号。将其解释为<字节 1
	(主)>.<字节 0 (次)>
描述	该命令用于读取 boot 代码版本号。
举例	"K <cr><lf>"</lf></cr>

19.8.1.13 比较<地址 1><地址 2><字节数>

表 177 ISP 比较命令描述

命令	M
输入	地址 1(DST): 要比较数据字节的起始 Flash 或 RAM 地址。该地址应当以字为边界。
	地址 2(SRC): 要比较数据字节的起始 Flash 或 RAM 地址。该地址应当以字为边界。
	字节数: 待比较的字节数. 计数值应当为 4 的倍数。
	CMD_SUCCESS (源和目标数据相同)
	COMPARE_ERROR (后跟第一个不匹配字节的地址)
	COUNT_ERROR (字节数不是 4 的倍数)
返回代码	ADDR_ERROR
	ADDR_NOT_MAPPED
	PARAM_ERROR
描述	该命令用来比较两个地址单元的存储器内容。
	"M 8192 1073741824 4 <cr><lf>"将 RAM 地址 0x4000 0000 开始的 4 个字节与 Flash</lf></cr>
举例	地址 0x2000 开始的 4 个字节相比较。 当源或目标地址包含从地址 0 开始的前 64 字节
	中的任意一个时,比较的结果不一定正确。前 64 字节重新映射到 Flash boot 扇区。

表 178 ISP 返回代码汇总

返回代码	符号	描述
0	CMD_SUCCESS	命令被成功执行。只有当主机发出的命令被成
		功执行完毕后,才由 ISP 处理程序发送。
1	INVALID_COMMAND	无效命令
2	SRC_ADDR_ERROR	源地址没有以字为边界
3	DST_ADDR_ERROR	目标地址的边界错误
4	SRC_ADDR_NOT_MAPPED	源地址没有位于存储器映射中。计数值必须考
		虑可用性。
5	DST_ADDR_NOT_MAPPED	目标地址没有位于到存储器映射中。计数值必
		须考虑到可用性。
6	COUNT_ERROR	字节计数值不是 4 的倍数或是一个非法值。
7	INVALID_SECTOR	扇区号无效或结束扇区号小于起始扇区号。
8	SECTOR_NOT_BLANK	扇区非空

续表 178

返回代码	符号	描述
9	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	为写操作准备扇区命令未执行。
10	COMPARE_ERROR	源和目标数据不相等。
11	BUSY	Flash 编程硬件接口忙
12	PARAM_ERROR	参数不足或无效参数
13	ADDR_ERROR	地址没有以字为边界
14	ADDR_NOT_MAPPED	地址没有位于存储器映射中。计数值必
		须考虑可用性。
15	CMD_LOCKED	命令被锁定
16	INVALID_CODE	解锁代码无效
17	INVALID_BAUD_RATE	无效波特率设定
18	INVALID_STOP_BIT	无效停止位设定

19.8.2 IAP 命令

对于在应用编程来说,应当通过寄存器 r0 中的字指针指向存储器(RAM)包含的命令代码和参数来调用 IAP 程序。IAP 命令的结果返回到寄存器 r1 所指向的返回表。用户可通过传递寄存器 r0 和 r1 中的相同指针重用命令表来得到结果。参数表应当大到足够保存所有的结果以防结果的数目大于参数的数目。参数传递见图 46。参数和结果的数目根据 IAP命令而有所不同。参数的最大数目为 5,由"将 RAM 内容复制到 Flash"命令传递。结果的最大数目为 2,由"扇区查空"命令返回。命令处理程序在接收到一个未定义的命令时发送状态代码 INVALID_COMMAND。IAP 程序是 thumb 代码,位于地址 0x7FFFFFF0。

IAP 功能可用下面的 C 代码来调用。

定义 IAP 程序的入口地址。由于 IAP 地址的第 0 位是 1,因此,当程序计数器转移到 该地址时会引起 Thumb 指令集的变化。

#define IAP_LOCATION 0x7ffffff1

定义数据结构或指针,将 IAP 命令表和结果表传递给 IAP 函数

定义函数类型指针,函数包含 2 个参数,无返回值。注意: IAP 将函数结果和 R1 中的表格基址一同返回。

```
typedef void (*IAP) (unsigned int [], unsigned int []);
IAP iap_entry;
```

设置函数指针

iap_entry=(IAP) IAP_LOCATION;

使用下面的语句来调用 IAP。

iap_entry (command, result);

使用 ADS (ARM 开发套件)的 ARM 连接器支持的符号定义文件可以进一步简化 IAP 的调用。用户还可使用汇编程序来调用 IAP 程序。

下面的符号定义可用于连接 IAP 程序和用户代码。

#<SYMDEFS># ARM Linker, ADS1.2 [Build 826]: Last Updated: Wed May 08 16:12:23 2002

0x7fffff90 T rm_init_entry

0x7fffffa0 A rm_undef_handler

0x7fffffb0 A rm_prefetchabort_handler

0x7fffffc0 A rm_dataabort_handler

0x7fffffd0 A rm_irqhandler

0x7fffffe0 A rm_irqhandler2

0x7ffffff0 T iap_entry

根据 ARM 规范(ARM Thumb 过程调用标准 SWS ESPC 0002 A-05),r0, r1, r2 和 r3 寄存器能够传递最多 4 个参数。另外的参数通过堆栈传递。最多有 4 个参数可以返回 r0, r1, r2 和 r3 寄存器。另外的参数间接通过存储器返回。有些 IAP 调用需要的参数多于 4 个。如果使用 ARM 建议的机制来传递/返回参数,则有可能因为不同厂商所提供的 C 编译器的差异而产生问题。建议的参数传递机制降低了这样的风险。

Flash 存储器在写或擦除操作过程中不可被访问。执行 Flash 写/擦除操作的 IAP 命令使用片内 RAM 顶端的 32 个字节空间。如果应用程序中允许 IAP 编程,那么用户程序不应使用该空间.

ISP 命令	命令代码	描述
准备编程扇区	50	见表 180
将 RAM 内容复制到 Flash	51	见表 181
擦除扇区	52	见表 182
扇区查空	53	见表 183
读器件 ID	54	见表 184
读 boot 代码版本	55	见表 185
比较	56	见表 186

表 179 IAP 命令汇总

图 46 IAP 参数传递

19.8.2.1 准备编程扇区

该命令使 Flash 写/擦除操作分两步执行。

表 180 IAP 准备编程扇区命令描述

命令	准备编程扇区	
	命令代码: 50	
输入	参数 0: 起始扇区号	
	参数 1: 结束扇区号: 应当大于等于起始扇区号。	
	CMD_SUCCESS	
状态代码	BUSY	
	INVALID_SECTOR	
结果	无	
	该命令必须在执行"将 RAM 内容复制到 Flash"或"擦除扇区"命令之前执	
描述	行。这两个命令的成功执行会导致相关的扇区再次被保护。该命令不能用于	
	boot 扇区。要准备单个扇区,可将起始和结束扇区号设置为相同值。	

19.8.2.2 将 RAM 内容复制到 Flash

表 181 IAP 将 RAM 内容复制到 Flash 命令描述

命令	将 RAM 内容复制到 Flash	
	命令代码: 51	
	参数 0 (DST): 要写入数据字节的目标 Flash 地址。目标地址的边界应当为 512 字节。	
输入	参数 1 (SRC): 读出数据字节的源 RAM 地址。该地址应当以字为边界。	
	参数 2: 写入字节的数目。应当为 512 1024 4096 8192.	
	参数 3: 系统时钟频率(CCLK)(单位: KHz)	
	CMD_SUCCESS	
	SRC_ADDR_ERROR (地址不以字为边界)	
	DST_ADDR_ERROR (地址边界错误)	
状态代码	SRC_ADDR_NOT_MAPPED	
(人念)(1)	DST_ADDR_NOT_MAPPED	
	COUNT_ERROR (字节计数值不是 512 1024 4096 8192)	
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	
	BUSY	
结果	无	
抽	该命令用于编程 Flash 存储器。受影响的扇区应当先通过调用"准备写操作的扇区"	
描述	命令准备。当成功执行复制命令后,扇区将自动受到保护。该命令不能写 boot 扇区。	

19.8.3 擦除扇区

表 182 IAP 擦除扇区命令描述

命令	擦除扇区
	命令代码: 52
输入	参数 0: 起始扇区号
111八	参数 1: 结束扇区号: 应当大于等于起始扇区号。
	参数 2: 系统时钟频率(CCLK)(单位: KHz)
状态代码	CMD_SUCCESS
	BUSY
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	INVALID_SECTOR
结果	无
描述	该命令用于擦除片内 Flash 存储器的一个或多个扇区。boot 扇区不能由该命令
	擦除。要擦除单个扇区可将起始和结束扇区号设定为相同值。

19.8.3.1 扇区查空

表 183 IAP 扇区查空命令描述

命令	扇区查空
输入	命令代码: 53
	参数 0: 起始扇区号
	参数 1: 结束扇区号: 应当大于等于起始扇区号。
状态代码	CMD_SUCCESS
	BUSY
	SECTOR_NOT_BLANK
	INVALID_SECTOR
结果	结果 0: 状态代码为 SECTOR_NOT_BLANK 时第一个非空字位置的偏移量
	结果 1: 非空字位置的内容
描述	该命令用于对片内 Flash 存储器的一个或多个扇区进行查空。要查空单个扇区
畑坯	可将起始和结束扇区号设定为相同值。

19.8.3.2 读器件 ID

表 184 IAP 读器件 ID 命令描述

命令	读器件 ID
输入	命令代码: 54 参数: 无
返回代码	CMD_SUCCESS
结果	结果 0: 器件 ID 号
描述	该命令用于读取器件的 ID 号。

19.8.3.3 读 Boot 代码版本

表 185 IAP 读 Boot 代码版本命令描述

命令	读 Boot 代码版本
输入	命令代码: 55
	参数: 无
返回代码	CMD_SUCCESS
结果	结果 0: 2字节 boot 代码版本号。将其解释为<字节 1 (主)>.<字节 0 (次)>
描述	该命令用于读取 boot 代码版本号。

19.8.3.4 比较

表 186 IAP 比较命令描述

命令	比较	
	命令代码: 56	
输入	参数 0 (DST): 要比较数据字节的起始 Flash 或 RAM 地址。该地址应当以字为边界。	
抽八	参数 1 (SRC): 要比较数据字节的起始 Flash 或 RAM 地址。该地址应当以字为边界。	
	参数 2: 待比较的字节数。计数值应当为 4 的倍数。	
	CMD_SUCCESS	
	COMPARE_ERROR	
返回代码	COUNT_ERROR (字节数不是 4 的倍数)	
	ADDR_ERROR	
	ADDR_NOT_MAPPED	
结果	结果 0: 当状态代码为 COMPARE_ERROR 时第一个不匹配字节的偏移地址	
44.74	该命令用来比较两个地址单元的存储器内容。当源或目标地址包含从地址0开始的前64	
描述	字节中的任意一个时,比较的结果不一定正确。前 64 字节重新映射到 Flash boot 扇区。	

表 187 IAP 状态代码汇总

返回代码	符号	描述
0	CMD_SUCCESS	命令被成功执行。
1	INVALID_COMMAND	无效命令。
2	SRC_ADDR_ERROR	源地址没有以字为边界。
3	DST_ADDR_ERROR	目标地址的边界错误。
4	SRC_ADDR_NOT_MAPPED	源地址没有位于存储器映射中。计数值必须
	SRC_ADDR_NOT_MAPPED	考虑可用性。
5	DST ADDR NOT MAPPED	目标地址没有位于到存储器映射中。计数值
	DS1_ADDK_NO1_MAPPED	必须考虑到可用性。
6	COUNT_ERROR	字节计数值不是 4 的倍数或是一个非法值。
7	INVALID_SECTOR	扇区号无效。
8	SECTOR_NOT_BLANK	扇区非空。
9	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	为写操作准备扇区命令未执行。
10	COMPARE_ERROR	源和目标数据不相等。
11	BUSY	Flash 编程硬件接口忙

19.9 JTAG Flash 编程接口

调试工具可以将 Flash 映像部分写入 RAM, 然后根据正确的偏移重复执行 IAP 命令"将 RAM 内容复制到 Flash"。

20. EmbeddedICE 逻辑

20.1 特性

- 通过软件调试器启动调试会话,不需要目标资源
- 允许软件调试器通过 JTAG 直接与内核进行对话
- 在 ARM7TDMI-S 内核中直接插入指令
- 通过插入不同类型的指令可对 ARM7TDMI-S 内核或系统状态进行检查、保存或 修改
- 允许指令在低调试速度或高系统速度下执行

20.2 应用

EmbeddedICE 逻辑提供对片内调试的支持。对目标系统进行调试需要一个主机来运行调试软件和 EmbeddedICE 协议转换器。EmbeddedICE 协议转换器将远程调试协议命令转换成所需要的 JTAG 数据,从而对目标系统上的 ARM7TDMI-S 内核进行访问。

20.3 描述

ARM7TDMI-S 调试结构使用现有的 JTAG* 端口来访问内核。供产品测试用的扫描链在调试状态下重新用来捕获数据总线上的信号并向内核或存储器插入新的信息。在ARM7TDMI-S 当中有两个 JTAG 类型的扫描链。一个 JTAG 类型的测试访问端口控制器控制扫描链。除了扫描链之外,调试结构还使用位于 ARM7TDMI-S 核内部的 EmbeddedICE 逻辑。 EmbeddedICE 使用自身的扫描链向 ARM7TDMI-S 内核插入观察点和断点。 EmbeddedICE 逻辑包含 2 个实时观察点寄存器和 1 个控制和状态寄存器。这两个观察点寄存器或其中的一个可编程为暂停 ARM7TDMI-S 内核。当编程到 EmbeddedICE 逻辑中的值与当前出现在地址总线、数据总线和某些控制信号上的值匹配时,内核的运行将暂停。可以屏蔽任何位使其不会影响比较操作。观察点寄存器可以配置为观察点(即对于数据的访问)或断点(指令取指)。观察点和断点可以按照下面的方式进行组合:

在停止 ARM7TDMI 内核之前,必须满足观察点的两个条件。CHAIN 的功能要求 在暂停内核之前满足两个连续的条件。例如,将第一个断点设定为在访问外设时 触发,而第二个断点在执行任务切换的代码段时触发。当断点触发时,与任务切 换有关的信息准备就绪以备检查。

^{*} 详见 IEEE 标准 1149.1-1990《标准测试访问端口和边界扫描结构》。

• 观察点可以配置为在一段地址范围内对观察点有效。RANGE 功能允许实现一个组合的断点,例如在访问存储器最低 256 字节但不访问最低 32 字节时产生断点。

20.4 管脚描述

表 188 EmbeddedICE 管脚描述

管脚名称	类型	描述	
TMS	输入	测试模式选择 TMS 管脚选择 TAP 状态机中的下一个状态	
TCK	输入	测试时钟 该管脚允许 TMS 和 TDI 管脚上数据的转换。它是一个上升沿触发时钟,由 TMS	
ICK	制八	和 TCK 信号定义器件的内部状态。	
TDI	输入	测试数据输入 移位寄存器的串行数据输入端。	
TDO	输出	测试数据输出 移位寄存器的串行数据输出端。器件中的数据在 TCK 信号的下降沿输出。	
nTRST	输入	测试复位 nTRST 管脚可用于复位 EmbeddedICE 逻辑中的测试逻辑。	
		返回的测试时钟 叠加到 JTAG 端口的额外信号。 基于 ARM7TDMI-S 处理器内核进行设	
RTCK	输出	计时需要该信号。Multi-ICE (ARM 的开发系统) 使用该信号来保持与低或宽范围时钟频率	
		的目标系统的同步。详见"Multi-ICE 系统设计精要应用笔记注 72(ARM DAI 0072A)"。	

20.5 复用管脚的复位状态

LPC2114/2124/2212/2214 器件的上述 EmbeddedICE 管脚是 P1.31-26 的复用功能。如果 P1.31-26 用作调试端口, V_{SS} 和 P1.26/RTCK 之间必须连接一个弱偏置电阻(4.7k Ω)。如果 它们用作 GPIO,无需连接偏置电阻,并且确保了任何连接到 P1.26/RTCK 的外部驱动器复位时驱动为高或处于高阻态。

20.6 寄存器描述

EmbeddedICE 逻辑包含 16 个寄存器, 见表 189。有关 ARM7TDMI-S 的调试结构的详细描述见 ARM 有限公司出版的"ARM7TDMI-S(Rev 4)技术参考手册"(ARM DDI 0234A),可从网站 http://www.arm.com 下载。

表 189 EmbeddedICE 逻辑寄存器

名称	宽度	描述	地址
调试控制	6	强制调试状态,禁止中断	00000
调试状态	5	调试状态	00001
调试通信控制寄存器	32	调试通信控制寄存器	00100
调试通信数据寄存器	32	调试通信数据寄存器	00101
观察点0地址值	32	保存观察点0地址值	01000
观察点0地址屏蔽	32	保存观察点0地址屏蔽	01001
观察点0数据值	32	保存观察点0数据值	01010
观察点0数据屏蔽	32	保存观察点0数据屏蔽	01011
观察点0控制值	9	保存观察点 0 控制值	01100
观察点0控制屏蔽	8	保存观察点 0 控制屏蔽	01101
观察点1地址值	32	保存观察点 1 地址值	10000
观察点1地址屏蔽	32	保存观察点1地址屏蔽	10001

续表 189

名称	宽度	描述	地址
观察点1数据值	32	保存观察点1数据值	10010
观察点1数据屏蔽	32	保存观察点1数据屏蔽	10011
观察点1控制值	9	保存观察点 1 控制值	10100
观察点1控制屏蔽	8	保存观察点 1 控制屏蔽	10101

20.7 方框图

调试环境的方框图如图 47 所示。

图 47 EmbeddedICE 调试环境方框图

21. 嵌入式跟踪宏单元

21.1 特性

- 跟踪 ARM 内核正在执行的指令
- 10 线接口
- 1个外部触发输入
- 所有寄存器都通过 JTAG 接口编程
- 不使用跟踪时不消耗功率
- 支持 THUMB 指令集

21.2 应用

由于微控制器带有大量的片内存储器,因此不能简单地通过观察外部管脚来确定处理器核是如何运行的。ETM 对深嵌入处理器内核提供了实时跟踪能力。它向一个跟踪端口输出处理器执行的信息。软件调试器允许使用 JTAG 接口对 ETM 进行配置并以用户易于理解的格式显示捕获到的跟踪信息。

21.3 描述

ETM 直接连接到 ARM 内核而不是主 AMBA 系统总线。它将跟踪信息压缩并通过一个窄带跟踪端口输出。外部跟踪端口分析仪在软件调试器的控制下捕获跟踪信息。跟踪端口可以广播指令跟踪信息。指令跟踪(或 PC 跟踪)显示了处理器的执行流程并提供所有已执行指令的列表。指令跟踪被显著压缩为广播分支地址和一套用于指示流水线状态的状态信号。跟踪信息的产生可通过选择触发源进行控制。触发源包括地址比较器、计数器和序列发生器。由于跟踪信息被压缩,软件调试器需要一个执行代码的静态映像。由于这个限制,自修改代码无法被跟踪。

21.3.1 ETM 配置

ETM 宏单元使用下面的标准配置。

表 190 ETM 配置

资源数/类型	Small ¹
地址比较器对	1
数据比较器	0 (不支持数据跟踪)
存储器映射译码器	4
计数器	1
时序发生器	无
外部输入	2
外部输出	0
FIFOFULL 信号	0 (未连接)
FIFO 深度	10 字节
跟踪包宽度	4/8

详见ARM 文档"嵌入式跟踪宏单元规范"(ARM IHI 0014E)。

21.4 管脚描述

表 191 ETM 管脚描述

管脚名称	类型	描述
TRACECLK	输出	跟踪时钟 跟踪时钟信号为跟踪端口提供时钟。PIPESTAT[2:0], TRACESYNC 和
		TRACEPKT[3:0]信号以跟踪时钟的上升沿为参照。该时钟并不由 ETM 模块产生,
		而是由系统时钟得来的。该时钟应当为跟踪数据信号提供足够的保持时间。支持半
		速率时钟模式。跟踪数据信号应当从 TRACECLK 的时钟相位移出。详见"ETM7
		技术参考手册"(ARM DDI 0158B),而 TRACECLK 时序请参阅"嵌入式跟踪宏单
		元规范" (ARM IHI 0014E)。
PIPESTAT[2:0]	输出	流水线状态 流水线状态信号提供处理器流水线执行阶段中所发生状况的指示
TRACESYNC	输出	跟踪同步 跟踪同步信号用于指示一组跟踪包当中的第一个包。并且仅为任何分支
		地址的第一个包声明为高电平。
TRACEPKT[3:0]	输出	跟踪包 跟踪包信号用于输出打包的关于流水线状态的地址和数据信息。所有包的
		长度都为8位。一个包需要两个周期输出,在第一个周期中,Packet[3:0]输出,第

		二个周期 Packet[7:4]输出。
EXTIN[0]	输入	外部触发输入

21.5 复用管脚的复位状态

LPC2114/2124/2212/2214 器件的上述 ETM 管脚是 P1.25-16 的复用功能。如果 P1.25-16 用作调试端口, V_{SS} 和 P1.20/TRACESYNC 之间必须连接一个弱偏置电阻(4.7k Ω)。如果它们用作 GPIO,无需连接偏置电阻,并且确保了任何连接到 P1.20/TRACESYNC 的外部驱动器复位时驱动为高或处于高阻态。

21.6 寄存器描述

ETM 包含 29 个寄存器, 见表 192。有关它们的详细描述见 ARM 有限公司出版的 ARM IHI 0014E 文档,可从网站 http://www.arm.com 下载。

表 192 ETM 寄存器

名称	描述	访问	寄存器编码
ETM 控制	控制 ETM 的一般操作	R/W	000 0000
ETM 配置代码	允许调试器读取每种资源类型的数目。	RO	000 0001
触发事件	保存控制事件	WO	000 0010
存储映射译码控制	8位寄存器,用于静态配置存储器映射译码器。	WO	000 0011
ETM 状态	保存挂起的溢出状态位	RO	000 0100
系统配置	保存使用 SYSOPT 总线的配置信息	RO	000 0101
跟踪使能控制3	保存跟踪使能/禁止地址	WO	000 0110
跟踪使能控制2	保存比较的地址	WO	000 0111
跟踪使能事件	保存使能的事件	WO	000 1000
跟踪使能控制1	保存包含和排除的区域	WO	000 1001
FIFOFULL 区域	保存包含和排除的区域	WO	000 1010
FIFOFULL 水平	保存认为 FIFO 已满的值	WO	000 1011
ViewData 事件	保存使能的事件	WO	000 1100
ViewData 控制 1	保存包含/排除的区域	WO	000 1101
ViewData 控制 2	保存包含/排除的区域	WO	000 1110
ViewData 控制 3	保存包含/排除的区域	WO	000 1111
地址比较器 1~16	保存比较的地址	WO	001 xxxx
地址访问类型 1~16	保存访问的类型和规格	WO	010 xxxx
保留	_	_	000 xxxx
保留	_	_	100 xxxx
初始计数值 1~4	保存计数器的初始值	WO	101 00xx
计数器使能 1~4	保存计数器时钟使能控制和事件	WO	101 01xx
计数器重装 1~4	保存计数器重装事件	WO	101 10xx
计数值 1~4	保存当前计数器值	RO	101 11xx

时序状态和控制	保存下一个状态触发的事件	-	110 00xx
外部输出 1~4	保存每个输出的控制事件	WO	110 10xx
保留	_	-	110 11xx
保留	_	_	111 0xxx
保留	_	_	111 1xxx

21.7 方框图

ETM 调试环境的方框图如图 48 所示。

图 48 ETM 调试环境方框图

22. REALMONITOR

RealMonitor 是一个可配置的软件模块,它由 ARM 公司开发,可以提供实时的调试。本章所描述的信息摘自 ARM 文档 *RealMonitor 目标集成指南*(ARM DUI 0142A)。LPC2114/2124/2212 /2214 包含一个编程到片内 Flash 存储器内的 RealMonitor 软件,用于特定的配置。

请参考白皮书"片上系统的实时调试",可从网站

http://www.arm.com/support/White Papers?Open Document 下载。

22.1 特性

- 允许用户在不暂停或复位系统的情况下,与当前运行的系统建立调试会话。
- 在其它用户应用代码调试过程中,允许用户的实时中断代码连续执行。

22.2 应用

实时调试。

22.3 描述

RealMonitor 是一个轻巧的调试监视器,它允许在用户调试前台应用程序时对中断进行服务。它通过 DCC(调试通信通道)与主机进行通信, DCC 位于 EmbeddedICE 逻辑当中。RealMonitor 比 ARM 系统中传统的调试方法更具优势。传统的调试方法包括:

- Angel (基于目标的调试监视器)
- Multi-ICE 或其它 JTAG 单元和 EmbeddedICE 逻辑(基于硬件的调试方案) 尽管这两种方法都提供健壮的调试环境,但并不适合作为一个轻巧的实时监视器。

Angel 设计成可以装载和调试在各种不同模式下独立运行的应用程序,它通过不同的连接与调试主机进行通信(例如串口或者以太网)。Angel 要求保存和恢复所有的处理器上下文,这样做的结果是使中断产生延迟。Angel 作为一个全功能的基于目标的调试器,对于执行实时监视来说显得过于笨重了。

Multi-ICE 是一种硬件调试方案。它使用内置在大多数 ARM 处理器中的 EmbeddedICE 单元来执行操作。为了执行访问存储器或处理器寄存器这样的调试任务,Multi-ICE 必须使内核进入调试状态。处理器处于调试状态的时间可能长达数百万个周期,这样正常的程序执行被挂起,中断也无法执行。

RealMonitor 结合了 Angel 和 Multi-ICE 的特性和机制。它提供了必需的服务和功能,此外,它还包含了 Multi-ICE 的通信机制(使用 JTAG 的 DCC)和类似 Angel 的保存和恢复处理器上下文。RealMonitor 被预先编程在片内 Flash 存储器当中(boot 扇区)。当用户将其使能后,可以在部分应用程序继续运行时进行观察和调试。详见如何使能 RealMonitor一节的内容。

22.3.1 RealMonitor 部件

如图 49 所示, RealMonitor 分成两个功能部件:

22.3.1.1 RMHost

位于调试器和 JTAG 单元之间。RMHost 控制器和 RealMonitor.dll 将通用的*远程调试接口* (RDI) 请求从调试器转换为 JTAG 单元的 RDI 信息。有关主机 RealMonitor 集成应用调试的完整信息请参考 "ARM RMHost 用户指南" (ARM DUI 0137A)。

22.3.1.2 RMTarget

这部分预先编程到片内 Flash 存储器(boot 扇区)并在目标硬件上运行。它使用 EmbeddedICE 逻辑并通过 DCC 与主机进行通信。有关 RMTarget 功能的详细信息见 RealMonitor 目标集成指南(ARM DUI 0142A)。

图 49 RealMonitor 部件

22.3.2 RealMonitor 是如何工作的

通常情况下,RealMonitor 作为一个状态机,如图 50 所示。为了响应主机接收到的包,或者因为目标板上的异步事件,RealMonitor 在运行和停止状态之间进行切换。RMTarget 一次只支持一个断点、观察点、停止或半主机 SWI 的触发。不提供嵌套事件的保存和恢复。因此,如果用户应用程序因为一个断点而停止,而在 IRQ 处理程序中产生了另一个断点,那么 RealMonitor 进入 Panic 状态。RealMonitor 进入该状态后将不执行任何调试。

图 50 作为状态机的 RealMonito

一个运行在主计算机上的调试器,例如 ARM eXtended 调试器(AXD)或其它 RealMonitor 调试器可以连接到目标,实现命令的发送和数据的接收。主机和目标之间的通信如图 49 所示。

RealMonitor 的目标部件 RMTarget 与主机部件 RMHost 通过调试通信通道(DCC)进行通信。DCC 通过 JTAG 连接来传递数据。

当用户应用程序运行时,RMTarget 通常使用 DCC 所产生的 IRQ。这意味着,如果用户应用程序也打算使用 IRQ,它必须将 DCC 产生的中断传递给 RealMonitor。

为了实现不间断的调试,处理器中的 EmbeddedICE-RT 逻辑在接收到一个断点时产生一个预取指中止异常或在接收到观察点时产生一个数据中止异常。这些异常由 RealMonitor 异常处理程序进行处理,并由调试器告知用户。这样用户应用程序可以在不停止处理器的情况下继续运行。RealMonitor 认为用户应用程序包含下面两部分:

- 连续运行的前台应用程序,通常处于用户、系统或 SVC 模式。
- 包含中断和异常处理程序的后台应用程序,由用户系统的特定事件触发,这些事件包括:
 - -IRO 或 FIO
 - 由用户前台应用程序产生的数据和预取指中止,表示应用程序在调试时出现错误。这两种情况都会通知主机并停止用户应用程序。
 - -由用户前台程序中的未定义指令所导致的未定义异常,表示在调试程序时出现错误。RealMonitor使用户程序一直停止到从主机接收到一个"Go"包为止。

当一个不是由用户应用程序处理的异常发生时,执行下面的操作:

- RealMonitor 进入查询 DCC 的一个循环。如果 DCC 读缓冲区已满,控制权传递 给 m_ReceiveData()(RealMonitor 内部函数)。如果 DCC 写缓冲区空闲,控制权 传递给 m_TransmitData()(RealMonitor 内部函数)。如果没有别的事要做,函数 返回调用程序。上述比较的顺序使读操作的优先级高于写操作。
- RealMonitor 停止前台应用程序。如果 IRQ 和 FIQ 在前台程序停止时已经使能, 那么 IRQ 和 FIQ 可以继续得到服务。

22.4 如何使能 RealMonitor

必须执行下面的步骤才可使能 RealMonitor。在这一节的末尾给出了执行所有步骤的例程。

22.4.1 增加堆栈

用户必须确保在 RealMonitor 所使用的每一个处理器模式下的应用程序中都建立了堆栈。对于每一种模式,RealMonitor 都要求一个固定数目字的堆栈空间。用户必须为 RealMonitor 和应用程序提供足够的堆栈空间。

RealMonitor 对堆栈有下列要求:

表 193 RealMonitor 的堆栈要求

处理器模式	RealMonitor 堆栈使用(字节)
未定义	48
预取指中止	16
数据中止	16
IRQ	8

22.4.1.1 IRQ 模式

该模式下的堆栈是必不可少的。RealMonitor 用两个字保存中断处理程序的入口。在嵌套中断使能前将它们释放。

22.4.1.2 未定义模式

该模式的堆栈也是必要的。RealMonitor 在处理一个未定义指令异常时使用 12 个字。

22.4.1.3 SVC 模式

RealMonitor 不使用该堆栈。

22.4.1.4 预取指中止模式

RealMonitor 使用 4 个字保存预取指中止中断处理程序的入口。

22.4.1.5 数据中止模式

RealMonitor 使用 4 个字保存数据中止中断处理程序的入口。

22.4.1.6 用户/系统模式

RealMonitor 不使用该堆栈。

22.4.1.7 FIQ 模式

RealMonitor 不使用该堆栈。

22.4.2 处理异常

这一节讲述 RealMonitor 和用户程序共用异常处理程序的重要性。

22.4.2.1 RealMonitor 异常处理

为了正常工作,RealMonitor 必须能够截获特定的中断和异常。图 51 所示为如何由 RealMonitor 自身声明异常或与应用程序共用异常处理程序。如果用户应用程序要求共用异常,那么它必须提供函数(例如 app IROHandler())。根据异常的特性,该处理程序可以:

- 将控制权传递给 RealMonitor 处理程序,例如 rm_irqhandler2()
- 为应用程序自身声明异常,例如 app_IRQHandler()

一个自身不带异常处理程序的应用程序可以安装 RealMonitor 低级异常处理程序,该程序直接指向处理器的向量表。irq 处理程序必须得到向量中断控制器的地址。最简单的方法是在向量表中写一条转移指令,转移指令的目标地址为相关的 RealMonitor 异常处理程序的起始地址。

图 51 异常处理程序

22.4.3 RMTarget 初始化

当处理器处于特权模式并且 IRQ 禁止时,用户必须在应用程序的初始化代码中加入一行指令: call rm_init_entry()。

22.4.4 例程

下面的例子显示了如何建立堆栈、VIC、初始化 RealMonitor 以及共用非向量中断:

IMPORT rm_init_entry IMPORT rm_prefetchabort_handler IMPORT rm_dataabort_handler IMPORT rm_irqhandler2 IMPORT rm_undef_handler IMPORT User_Entry ; 用户应用程序入口 CODE32 **ENTRY** ; 定义异常表。指令连接器将代码放置在地址 0x0000 0000。 AREA exception_table, CODE LDR pc, Reset_Address LDR pc, Undefined_Address LDR pc, SWI_Address LDR pc, Prefetch_Address LDR pc, Abort_Address NOP ; 在此处插入用户代码有效签名 LDR pc, [pc, #-0xFF0] ; 从 VIC 装载 IRQ 向量 LDR PC, FIQ_Address ; 复位入口 Reset_Address DCD __init

Undefined_Address DCD rm_undef_handler ; 由 RealMonitor 提供

SWI_Address DCD 0 ; 用户可将 SWI 处理程序的地址放置在此处

Prefetch_Address DCD rm_prefetchabort_handler ; 由 RealMonitor 提供 Abort_Address DCD rm_dataabort_handler ; 由 RealMonitor 提供

FIQ_Address DCD 0 ; 用户可将 FIQ 处理程序的地址放置在此处

AREA init_code, CODE

ram_end EQU 0x4000xxxx ; 片内 RAM 的顶端

__init

. /***********************

;* 为不同的处理模式建立堆栈指针。堆栈向下增加。.

LDR r2, =ram_end ; 得到 RAM 顶端地址 MRS r0, CPSR ; 保存当前处理器模式 ; 初始化未定义模式堆栈, 供 RealMonitor 使用

BIC r1, r0, #0x1f ORR r1, r1, #0x1b MSR CPSR_c, r1

;为 Flash 编程程序保留顶端 32 字节。参见 Flash 存储器系统和编程章节。

SUB sp,r2,#0x1F

;初始化中止模式堆栈,供 RealMonitor 使用

BIC r1, r0, #0x1f

ORR r1, r1, #0x17

MSR CPSR_c, r1

; 为未定义模式堆栈保留 64 字节

SUB sp,r2,#0x5F

;初始化 IRQ 模式堆栈,供 RealMonitor 和用户程序使用

BIC r1, r0, #0x1f

ORR r1, r1, #0x12

MSR CPSR_c, r1

; 为中止模式堆栈保留 32 字节

SUB sp,r2,#0x7F

; 返回初始模式

MSR CPSR_c, r0

;初始化用户应用程序堆栈

;为 IRQ 模式堆栈保留 256 字节

SUB sp,r2,#0x17F

```
;* 建立向量中断控制器。DCC Rx 和 Tx 中断产生非向量 IRQ 请求。
; * rm_init_entry 意识到 VIC 并使能 DBGCommRX 和 DBGCommTx 中断。
;*将默认向量地址寄存器编程为非向量 app_irqDispatch 的地址。
;* 在此例中,用户可在此处建立向量 IRQ 或 FIQ
VICBaseAddr
          EQU 0xFFFFF000; VIC 基地址
VICDefVectAddrOffset EQU 0x34
LDR r0, =VICBaseAddr
LDR r1, =app_irqDispatch
STR r1, [r0,#VICDefVectAddrOffset]
            ;初始化 RealMonitor
BL rm_init_entry
;使能 ARM 处理器中的 FIQ 和 IRQ
          ;读取 CPSR
MRS r1, CPSR
BIC r1, r1, #0xC0
             ; 使能 IRQ 和 FIQ
MSR CPSR_c, r1
            ; 更新 CPSR
;* 获取用户程序的入口。
LDR lr, =User_Entry
MOV pc, lr
;* 非向量 irq 处理程序 (app_irqDispatch)
AREA app_irqDispatch, CODE
VICVectAddrOffset EQU 0x30
app_irqDispatch
; 使能中断嵌套
STMFD sp!, {r12,r14}
MRS r12, spsr
          ;将 SPSR 保存到 r12
MSR cpsr_c,0x1F
            ; 重新使能 IRQ, 进入系统模式
;如果要求共用非向量中断,用户应当在此处插入代码。每个非向量共用 irq 处理程序都必须使用下列代
码
; 返回到被中断的指令。
                  ;禁止 irq, 进入 IRQ 模式
;MSR cpsr_c, #0x52
;MSR spsr, r12
                   ; 从 r12 恢复 SPSR
;STMFD sp!, {r0}
;LDR r0, =VICBaseAddr
;STR r1, [r0,#VICVectAddrOffset] ; 应答。非向量 irq 已经执行完毕
```

;LDMFD sp!, {r12,r14,r0} ; 恢复寄存器

;SUBS pc, r14, #4 ; 返回到被中断的指令

;用户中断没有发生,因此调用 rm_{irq} irq i

; rm_irqhandler2 返回到此处。

STMFD sp!, {ip,pc} LDR pc, rm_irqhandler2 ;rm_irqhandler2 返回到此处

MSR cpsr_c, #0x52 ; 禁止 irq, 进入 IRQ 模式 MSR spsr, r12 ; 将 SPSR 从 r12 恢复

STMFD sp!, {r0}

LDR r0, =VICBaseAddr

STR r1, [r0,#VICVectAddrOffset] ; 应答。非向量 irq 已经执行完毕

LDMFD sp!, {r12,r14,r0} ; 恢复寄存器

SUBS pc, r14, #4 ; 返回到被中断的指令

END

22.5 RealMonitor 建立选项

RealMonitor 使用下列选项建立:

RM_OPT_DATALOGGING=FALSE

该选项使能或禁止在非 RealMonitor (第三方)通道上发送任何从目标到主机的包。

RM_OPT_STOPSTART=TRUE

该选择使能或禁止对所有停止和启动调试特性的支持。

RM_OPT_SOFTBREAKPOINT=TRUE

该选项使能或禁止对软件断点的支持。

RM_OPT_HARDBREAKPOINT=TRUE

在带有 EmbeddedICE-RT 的内核上使能。该器件使用带有 EmbeddedICE-RT 的 ARM-7TDMI-S Rev 4 内核。

RM_OPT_HARDWATCHPOINT=TRUE

在带有 EmbeddedICE-RT 的内核上使能。该器件使用带有 EmbeddedICE-RT 的 ARM-7TDMI-S Rev 4 内核。

RM_OPT_SEMIHOSTING=FALSE

该选项使能或禁止对 SWI 半主 (semi-hosting)的支持。Semi-hosting 提供运行在 ARM 目标板上的代码,这些代码具有运行 ARM 调试器的主机的一些功能。这些功能包括键盘

输入、屏幕输出和磁盘 I/O 等等。

RM_OPT_SAVE_FIQ_REGISTERS=TRUE

当 RealMonitor 停止时,该选项决定是否将 FIQ 模式寄存器保存到寄存器块。

RM_OPT_READBYTES=TRUE

RM_OPT_WRITEBYTES=TRUE

RM_OPT_READHALFWORDS=TRUE

RM_OPT_WRITEHALFWORDS=TRUE

RM OPT READWORDS=TRUE

RM_OPT_WRITEWORDS=TRUE

使能或禁止对 8/16/32 位读/写的支持。

RM_OPT_EXECUTECODE=FALSE

使能或禁止对"执行代码"缓冲区的执行代码的支持。该代码必须先下载。

RM_OPT_GETPC=TRUE

该选项使能或禁止对 RealMonitor GetPC 包的支持。当中断模式中使用了实时监视时,它可用于代码的成型。

RM_EXECUTECODE_SIZE=NA

"执行代码"缓冲器规格。参见 RM_OPT_EXECUTECODE 选项。

RM_OPT_GATHER_STATISTICS=FALSE

该选项使能或禁止关于 RealMonitor 内部操作的集中统计表代码。

RM_DEBUG=FALSE

该选项使能或禁止在 RealMonitor 中额外的调试和错误检测代码。

RM_OPT_BUILDIDENTIFIER=FALSE

该选项决定是否在 RMTarget 的性能表中建立一个"建立标识符"。性能表保存在 ROM中。

RM_OPT_SDM_INFO=FALSE

SDM 向调试工具提供关于应用板和处理器的额外信息。

RM_OPT_MEMORYMAP=FALSE

该选项决定板的存储器映射是否建立到目标当中。并通过性能表得到。

RM_OPT_USE_INTERRUPTS=TRUE

该选项指定是否为中断驱动模式和查询模式建立 RMTarget。

RM_FIFOSIZE=NA

该选项指定数据记录 FIFO 缓冲区的规格(以字为单位)。

CHAIN_VECTORS=FALSE

该选项允许 RMTarget 通过μHAL(ARM HW abstraction API)支持向量链。

修订记录

2004年5月3日

修改或新增的内容以红色显示。