	TP2 SADB - Vernhet Fabri	Pt	A B C D		D	Note		
I.	Caractéristiques statiques							
1	Donner et réaliser le câblage pneumatique définie sur le schéma TI ci-dessus.	1	С				0,35	Schéma SVP
2	Expliquer le principe de fonctionnement du capteur FT1.	1	В				0,75	
3	Expliquer le fonctionnement du capteur FT2.	1	С				0,35	
4	Donner et procéder au câblage électrique des deux capteurs sur les entrées 1 et 2 du régulateur.	1	Α				1	
5	Ouvrir la vanne de réglage FV1 au maximum. Régler FV2, pour que le débit maximal soit mesurable par les deux capteurs. On donnera la valeur de ce débit en Nm3/h.	1	Α				1	
6	Relever la mesure de débit en fonction de la commande de la vanne, pour le capteur FT1.	1	D				0,05	
7	Même question pour le capteur FT2.	1	D				0,05	
8	Tracer les deux caractéristiques sur le même graphique.	1	D				0,05	
9	Quelle caractéristique est la plus linéaire ?	1	D				0,05	
II.	Régulation proportionnelle							
1	Procéder au réglage du régulateur pour un fonctionnement en régulation proportionnelle.	1	D				0,05	Je ne comprends rien
2	Déterminer la valeur XPO de la bande proportionnelle pour un fonctionnement en limite de stabilité.	1	Α				1	
3	Relever la réponse indicielle du système pour les valeurs suivantes de la bande proportionnelle.	1	D				0,05	
4	Pour chacune des bande proportionnelles, relever la valeur de l'erreur statique.	1	D				0,05	
5	Pour chacune des bande proportionnelles, relever le temps de réponse à 10 %.	1	D				0,05	
6	Pour chacune des bande proportionnelles, relever la valeur du dépassement.	1	D		Ш		0,05	
7	conclure sur i filituence de la pande proportionnene sur les trois cinteres d'une regulation , la precision, la vitesse et la	1	D				0,05	
III.	Comparaison des deux capteurs							
1	Déterminer le réglage de la bande proportionnelle pour un fonctionnement optimal (temps de réponse à 10 % le plus court possible), en utilisant le capteur FT1.	1	Х				0	
2	Donner la courbe obtenue ainsi que le temps de réponse.	1	Х				0	
3	Déterminer le réglage de la bande proportionnelle pour un fonctionnement optimal (temps de réponse à 10 % le plus court possible), en utilisant le capteur FT2.	1	Х				0	
4	Donner la courbe obtenue ainsi que le temps de réponse.	1	Χ				0	
5	Quel capteur vous parait le plus performant pour un fonctionnement en régulation de débit proportionnelle ? Justifier votre réponse.	1	Х				0	
			Note: 4,95/21					

Fabri Vernhet

TP2 SADB

Caractéristiques Statiques

- I) On branche l'arrive d'air a la vanne pneumatique puis on le fait passer par le capteur de débit 1 puis 2 ensuite il passe par FV2 et rejoint la sortie d'air.
- II) la référence : FKKT33V4PACYYAA et nous avons ici un capteur 2 fils
- III) Le capteur de débit n°1 est composé d'un orifice intégré et d'un transmetteur de pression différentielle
- IV) la référence:D-6250 et nous avons ici un capteur 4 fils

V) VI)

VII)

On a alors une valeur de 16,6 Nm3/h

VIII) On en déduit que plus la vanne est ouverte plus il y a de débit : pour une consigne de 30% nous avons un débit plus faible que pour une consigne de 70%

IX) Avec les mêmes consignes que la question précédente nous avons une baisse de débit lorsque la consigne est plus faible

X)

Graphique d'une variation de consigne de 30 à 70%

XI) On en déduit d'après le graphique que le capteur n°1 (courbe rouge) est le plus linéaire

Régulation proportionnel

I) on a un débit maximum de 83% donc on amène la consigne a 50 pour un débit de 41,5%

II) on en déduit que xp0 est égal a 20

III) Pour Xp10 on a une consigne de 35% pour Xp5 on a une consigne de 20% pour Xp2 on a une consigne de 7%

pour Xp0 on a pas de consigne possible

V)Pour Xp10 on a:

un temps de réponse à 1 secondes avec un dépassement de 75%

Pour Xp5 on a:

on a un temps de réponse a 1 secondes

pour Xp2 on a:

on un temps de réponse de 10 secondes