Lemma Π_1 and Π_2 are equivalent f and only if:

- (i) For every feasible solution to Π_1 , there exists a feasible solution to Π_2 , with cost equal or lower, and
- (ii) For every feasible solution to Π_2 , there exists a feasible solution to Π_1 , with cost equal or lower.

Proof.
"=" If TI, IT, Loth inleasible. There is nothing to prove
"=" If TI, TIZ Loth infeasible. There is nothing to prove thus we assume TI, TIZ have the same optimal cost.
(i) holds because The optimal solution to The has cost
< every leasible solution to TI,
(ii) holds symmetrically.
="1] II, II, Soth infeasible, we are done. So assume one
is leasille, vilog T.
(i) implies that also To is lessible
(i) implies that also The is loosible Assume by contradiction that one of the Two problems has strictly lower optimal cost, who The Two problems
has strictly lower noting cost whom T.

Then	,76	* Jeas	sille)	70 TI	witl	ost	stri	te l	າ <u>ລເມ<i>ຍ</i>7</u>
then	Ony	leasil	5	olution	To	\mathcal{I}_{2}		(The same
This	CONTT	adids	(i)) .					
Hence	The	optia	mal	cost a	1 The	Two	prollen	خ نځ	The same
							1		

Observation The two problems in Example 1.4 are equivalent.

$$\Pi_1$$
: minimize $2x_1 + 4x_2$ $\qquad \qquad \Pi_2$: minimize $2x_1 + 4x_2^+ - 4x_2^-$ subject to $x_1 + x_2 \ge 3$ $\qquad \qquad \text{subject to} \qquad x_1 + x_2^+ - x_2^- - x_3 = 3$ $3x_1 + 2x_2 = 14$ $\qquad \qquad \qquad 3x_1 + 2x_2^+ - 2x_2^- = 14$ $\qquad \qquad \qquad x_1 \ge 0,$ $\qquad \qquad x_1, x_2^+, x_2^-, x_3 \ge 0.$

Proof. We use The Lemma.

(i) Let
$$(x, x_2)$$
 be any flexible solution to T .

Define x_2 if $x_2 = 0$ if $x_2 = 0$ if $x_2 = 0$.

 $x_2 = x_1 + x_2 - 3$

Note that $x_2 + x_2 = x_2$.

 $(x, x_2 + x_2 - x_3)$ is a feasible solution to T a because $x_1 + (x_2 + x_2 - x_3) = x_1 + x_2 - (x_1 + x_2 - x_3) = 3$
 $3x_1 + (2x_2 + 2x_3 - x_3) = 3x_1 + 2x_2 = 14$
 $x_1 + x_2 + x_3 + x_3 = x_4 + x_4 = 14$

