Series SSR/1

Code No. **56/1/1** कोड नं.

Roll No.		1	4.		F . C	7 17
रोल नं.		_	1 1	L		

Candidates must write the Code No. on the title page of the answer-book. विद्यार्थी उत्तर-पुस्तिका में कोड नं. अवश्य लिखें।

- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 30 questions.
- Please write down the Serial Number of the question before attempting it.
- कृपया जांच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कुपया जांच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।

CHEMISTRY (Theory) रसायन विज्ञान (सैद्धान्तिक)

Time allowed : 3 hours] निर्धारित समय : 3 घण्टे] [Maximum marks : 70

। अधिकतम अंक : 70

General Instructions:

- (i) All questions are compulsory.
- (ii) Question nos. 1 to 8 are very short answer questions and carry 1 mark each.
- (iii) Question nos. 9 to 18 are short answer questions and carry 2 marks each.
- (iv) Question nos. 19 to 27 are also short answer questions and carry 3 marks each.
- (v) Question nos. 28 to 30 are long answer questions and carry 5 marks each.
- (vi) Use log tables if necessary, use of calculators is not allowed.

P.T.O.

सामान्य	निर्देश	

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) क्रम संख्या 1 से 8 के प्रश्न अति लघु उत्तरीय हैं। यह एक-एक अंक के हैं।
- (iii) क्रम संख्या 9 से 18 के प्रश्न दो-दो अंकों के लघु उत्तरीय प्रश्न हैं।
- (iv) क्रम संख्या 19 से 27 के प्रश्न भी तीन-तीन अंकों के लघु उत्तरीय प्रश्न हैं।
- (v) क्रम संख्या 28 से 30 के प्रश्न पाँच-पाँच अंकों के दीर्घ उत्तरीय प्रश्न हैं।
- (vi) आवश्यकता हो तो लॉग टेबल प्रयोग किये जा सकते हैं। केलक्यूलेटरों के प्रयोग की अनुमति नहीं है।
- What is the coordination number of each type of ions in a rock-salt type crystal structure?
 रॉक-साल्ट प्रकार की क्रिस्टली संरचना में प्रत्येक प्रकार के आयन की समन्वय संख्या क्या होती है?
- 2. Define the term 'order of reaction' for chemical reactions.

 रासायनिक अभिक्रियाओं के लिये 'अभिक्रिया की कोटि' की परिभाषा लिखिये।
- 3. What causes Brownian movement in a colloidal solution?

 कोलाइडी विलयनों में ब्राउनी गति होने का क्या कारण होता है?
- 4. In which one of the two structures, NO_2^+ and NO_2^- , the bond angle has a higher value ?

 दो संरचनाओं NO_2^+ और NO_2^- में से किसमें आबन्धन कोण अधिक मान रखेगा?

56/1/1

5. Write the IUPAC name of the following compound:

निम्नलिखित यौगिक का IUPAC नाम लिखिए :

6. Arrange the following compounds in an increasing order of their acid strengths:

 $(\mathrm{CH_3})_2\mathrm{CHCOOH}, \mathrm{CH_3CH_2CH(Br)COOH}, \mathrm{CH_3CH(Br)CH_2COOH}$ निम्नलिखित को उनके बढ़ते हुए अम्लीय सामर्थ्य के क्रम में व्यवस्थित कीजिए : $(\mathrm{CH_3})_2\mathrm{CHCOOH}, \mathrm{CH_3CH_2CH(Br)COOH}, \mathrm{CH_3CH_2CH(Br)COOH}$

 Write a chemical reaction in which the iodide ion replaces the diazonium group in a diazonium salt.

एक रासायनिक अभिक्रिया लिखिए जिसमें एक डायज्ञोनियम लवण में से डायज्ञोनियम समूह आयोडाइड आयन द्वारा विस्थापित होता हो।

8. Name a substance that can be used as an antiseptic as well as a disinfectant.

एक ऐसे पदार्थ का नाम दीजिए जिसका उपयोग प्रतिरोधी तथा रोगाणुनाशी दोनों रूपों में होता हो।

9. Explain as to why haloarenes are much less reactive than haloalkanes towards nucleophilic substitution reactions.

2

2

OR

Which compound in each of the following pairs will react faster in Sn2 reaction with -OH? Why?

- (i) CH₃Br or CH₃I
- (ii) (CH₃)₃CCl or CH₃Cl

समझाइये कि न्यूक्लिओफिलिक प्रतिस्थापन अभिक्रियाओं के प्रति हैलोएरीनें हैलोएल्केनों की अपेक्षा क्यों अति कम क्रियाशील होती हैं ?

अथवा

निम्नलिखित प्रत्येक जोड़ों में से कौन सा यौगिक -OH के साथ S_N2 अभिक्रिया में अधिक तेजी से अभिक्रिया करेगा और क्यों?

- (i) CH3Br अथवा CH3I
- (ii) (CH₃)₃CCl अथवा CH₃Cl
- 10. (a) State the IUPAC name of the following compound:

H₃C H_H Br

(b) Complete the following chemical equation:

CH₃CH₂CH=CH₂ + HBr <u>peroxide</u>

(अ) निम्नलिखित यौगिक का IUPAC नाम लिखिए:

$$H_3C$$
 H
 H
 H
 H
 H

- 11. State Henry's law correlating the pressure of a gas and its solubility in a solvent and mention two applications for the law.

 एक गैस के दाब और उसकी किसी विलायक में विलेयता के संबंध में हेनरी का नियम और इस नियम के दो अनुप्रयोग लिखिए।
- 12. A first order decomposition reaction takes 40 minutes for 30% decomposition. Calculate its $t_{1/2}$ value. 2 एक प्रथम कोटि की अपघटन अभिक्रिया 30% अपघटन के लिये 40 मिनट का समय लेती है। इसके लिए $t_{1/2}$ का परिकलन कीजिए।
- 13. What is meant by the 'rate constant, k' of a reaction? If the concentration be expressed in mol L⁻¹ units and time in seconds, what would be the units for k (i) for a zero order reaction and (ii) for a first order reaction? किसी अभिक्रिया के 'दर स्थिरांक k' का क्या तात्पर्य होता है? यदि सांद्रता की मात्रक mol L⁻¹ और समय की सेकण्ड हो तो (i) शून्य कोटि की अभिक्रिया, और (ii) प्रथम कोटि की अभिक्रिया के लिये k का मान किन मात्रकों में होगा?

[P.T.O.

lO.

56/1/1

14.	Define the following terms in relation to proteins.	2
	(i) Peptide linkage	
	(ii) Denaturation	
	प्रोटीन के संदर्भ में निम्नलिखित की परिभाषा लिखिये :	
	(i) पेप्टाइड बन्धता	
	(ii) डीनेचुरेशन (विकृतिकरण)।	
15.	List the reactions of glucose which cannot be explained by its open chain	
	structure.	2
	ग्लूकोस की उन अभिक्रियाओं को लिखिये जिन्हें इसकी खुली शृंखल संरचना के आधार	
	पर समझाया नहीं जा सकता।	
16.	Assign a reason for each of the following statements:	2
	(i) Ammonia is a stronger base than phosphine.	
	(ii) Sulphur in vapour state exhibits a paramagnetic behaviour.	
	निम्नलिखित प्रक्रमों में से प्रत्येक के लिये कारण लिखिये :	
	(i) फ़ास्फीन की अपेक्षा अमोनिया अधिक प्रबल क्षार है।	
	(ii) वाष्प अवस्था में सल्फर अनुचुम्बकीय व्यवहार प्रदर्शित करता है।	
17.	Draw the structures of the following molecules:	2
	(i) SF ₄	
	(ii) XeF ₄	

	नीचे लिखे अणुओं की संरचना आरेखित कीजिए :	
	(i) SF ₄	
	(ii) XeF ₄	
18.	What are his degradable and non-his degradable determines 2 Give and	
10.	What are biodegradable and non-biodegradable detergents? Give one	
	example of each class.	2
	जैवनिम्नीकरणीय अपमार्जक और अजैव निम्नीकरणीय अपमार्जक क्या होते हैं ? प्रत्येव	F .
	प्रकार का एक-एक उदाहरण दीजिए।	
19.	What is a semiconductor? Describe the two main types of semiconductors	S
	and explain mechanisms for their conduction.	3
	अर्धचालक क्या होता है ? दो प्रमुख प्रकार के अर्धचालकों का वर्णन कीजिए और उनकी	ो
	चालन क्रियाविधि को स्पष्ट कीजिए।	
20.	Calculate the temperature at which a solution containing 54 g of glucose	,
	(C ₆ H ₁₂ O ₆), in 250 g of water will freeze.	
	$(K_f \text{ for water} = 1.86 \text{ K mol}^{-1} \text{ kg})$	3
	उस ताप को परिकलित कीजिए जिस पर 250 g जल में 54 g ग्लूकोस, ($\mathrm{C_6H_{12}O_6}$)
	घोल कर बना विलयन जम जायेगा। $(K_f (\text{जल}) = 1.86 \text{ K mol}^{-1} \text{ kg})$	
21.	What are lyophilic and lyophobic sols ? Give one example of each	1
	type. Which one of these two types of sols is easily coagulated and	i
	why?	3
بمدورة	_	DTO
56/1/	7	P.T.O.

द्रव-स्नेही और द्रव-विरोधी सॉल (sol) क्या होते हैं ? प्रत्येक प्रकार का एक-एक उदाहरण दीजिए। इन दोनों प्रकार के सॉलों में से किसका स्कन्दन अधिक सुगमता से हो सकता है और क्यों ?

- 22. State briefly the principles which serve as basis for the following operations in metallurgy:
- 3

- (i) Froth floatation process
- (ii) Zone refining
- (iii) Refining by liquation

धातु-कर्म में निम्नलिखित प्रक्रमों के आधारभूत सिद्धान्तों को संक्षेप में लिखिये :

- (i) झाग (फेन) प्लवन प्रक्रम
- (ii) ज़ोन (मंडल) परिष्करण
- (iii) द्रवीकरण द्वारा परिष्करण
- 23. Write chemical equations for the following processes:

3

- (i) Chlorine reacts with a hot concentrated solution of sodium hydroxide
- (ii) Orthophosphorous acid is heated
- (iii) PtF₆ and xenon are mixed together

OR

Complete the following chemical equations:

(i) $Ca_3P_2(s) + H_2O(l) \longrightarrow$

56/1/1

(ii)
$$Cu^{2+}(aq) + NH_3(aq) \longrightarrow$$

(excess)

(iii)
$$F_2(g) + H_2O(l) \longrightarrow$$

इन प्रक्रमों के लिये रासायनिक समीकरण लिखिये :

- (i) क्लोरीन सोडियम हाइड्रॉक्साइड के सांद्र तप्त विलयन से अभिक्रिया करती है।
- (ii) आर्थोफॉस्फोरस एसिड को गर्म किया जाता है।
- (iii) PtF₆ और जीनॉन को परस्पर मिलाया जाता है।

अथवा

निम्नलिखित रासायनिक समीकरणों को पूरा कीजिए :

- (i) $Ca_3P_2(s)+H_2O(l)\longrightarrow$

(iii)
$$F_2(g) + H_2O(1) \longrightarrow$$

- 24. (a) What is a ligand? Give an example of a bidentate ligand.
 - (b) Explain as to how the two complexes of nickel, [Ni(CN)₄]²⁻ and Ni(CO)₄, have different structures but do not differ in their magnetic behaviour. (Ni = 28)
 - (अ) लिगन्ड (ligand) क्या होते हैं? द्विदंती लिगन्डों का एक उदाहरण दीजिए।
 - (ब) व्याख्या कीजिए कि कैसे निकल के दो कॉम्प्लेक्स $[Ni(CN)_4]^{2-}$ और $Ni(CO)_4$ भिन्न-भिन्न संरचना रखते हुए भी समान चुम्बकीय व्यवहार प्रदर्शित करते हैं। (Ni=28)

56/1/1

[P.T.O.

Name the reagents which are used in the following conversions: (i) A primary alcohol to an aldehyde (ii) Butan-2-one to butan-2-ol (iii) Phenol to 2, 4, 6-tribromophenol निम्नलिखित परिवर्तनों में प्रयुक्त होने वाले अभिकारकों के नाम लिखिए : हिन (i) एक प्राइमरी ऐल्कोहॉल का एक ऐल्डिहाइड में (ii) ब्यूटन-2- ऑन का ब्यूटन-2- ऑल में (iii) फीनॉल का 2, 4, 6-ट्राइब्रोमोफीनॉल में 26. Account for the following observations: (i) pK_b for aniline is more than that for methylamine. (ii) Methylamine solution in water reacts with ferric chloride solution to give a precipitate of ferric hydroxide. (iii) Aniline does not undergo Friedel-Crafts reaction. निम्नलिखित अवलोकनों के कारण लिखिये : (i) ऐनिलीन के लिये pK, का मान मेथिलऐमीन के मान से अधिक होता है। (ii) जल में मेथिलऐमीन का घोल फेरिक क्लोराइड के घोल से अभिक्रिया कर फेरिक हाइड्रोक्साइड का अवक्षेप देता है।

(iii) ऐनिलीन फ्रीडेल-क्राफ्ट्स अभिक्रिया नहीं करती है।

27.	Write the names and structures of the monomers of the following		
	polymers:	3	
	(i) Buna-S * POS 15 TO 1		
	(ii) Neoprene		
	(iii) Nylon-6		
	निम्नलिखित बहुलकों के एकलकों के नाम और उनकी संरचनाएं लिखिए :		
	(i) ब्ना-S		
	(ii) विश्लोपीन		
	Assign Control of the		
	(iii) नायलान-6		
28.	Conductivity of 0.00241M acetic acid solution is 7.896×10^{-5} S cm ⁻¹ .		
	Calculate its molar conductivity in this solution. If Λ_m^0 for acetic acid be		
	390.5 S cm ² mol ⁻¹ , what would be its dissociation constant?	5	
	OR		
	Three electrolytic cells A, B and C containing solutions of zinc sulphate,		
	silver nitrate and copper sulphate, respectively are connected in series.		
	A steady current of 1.5 ampere was passed through them until 1.45 g of		
	silver were deposited at the cathode of cell B. How long did the current		•
	flow? What mass of copper and what mass of zinc were deposited in the		
	concerned cells ? (Atomic masses of Ag = 108, $Zn = 65.4$, $Cu = 63.5$)		
	$0.00241 \mathrm{M}$ ऐसीटिक अम्ल घोल की चालकता $7.896 \times 10^{-5}~\mathrm{S}~\mathrm{cm}^{-1}$ है। इस घोल		
	में अम्ल की मोलर चालकता का परिकलन कीजिए। यदि ऐसीटिक अम्ल के लिये Λ_m^0		
	390.5 S cm 2 mol $^{-1}$ हो तो इसका वियोजन स्थिरांक क्या होगा?		
56/1/	71 11 1	P.T.O.	

तीन विद्युत्-अपघटनी सेल A, B और C जिनमें क्रमशः ज़िंक सल्फेट, सिल्वर नाइट्रेट और कॉपर सल्फ़ेट के विलयन रखे गये हैं, श्रेणीबद्ध जोड़े हुए हैं। उनमें से 1.5 ऐम्पियर की अपिरवर्ती विद्युत्धारा तब तक प्रवाहित की जाती है जब तक सिल्वर की 1.45~g मात्रा सेल B के कैथोड पर नहीं जम जाती। कॉपर और जिंक के कितने-कितने द्रव्यमान सम्बद्ध सेलों में निक्षेपित हुए होंगे? (परमाणु द्रव्यमान, Ag = 108, Zn = 65.4, Cu = 63.5)

29. Assign reasons for the following:

- (i) The enthalpies of atomisation of transition elements are high.
- (ii) The transition metals and many of their compounds act as good catalyst.
- (iii) From element to element the actinoid contraction is greater than the lanthanoid contraction.
- (iv) The E^0 value for the Mn^{3+}/Mn^{2+} couple is much more positive than that for Cr^{3+}/Cr^{2+} .
- (v) Scandium (Z = 21) does not exhibit variable oxidation states and yet it is regarded as a transition element.

OR

(a) What may be the possible oxidation states of the transition metals with the following d electronic configurations in the ground state of their atoms:

 $3d^34s^2$, $3d^54s^2$ and $3d^64s^2$. Indicate relative stability of oxidation states in each case.

56/1

56/1/1

(b) Write steps involved in the preparation of (i) Na₂CrO₄ from chromite ore and (ii) K₂MnO₄ from pyrolusite ore.

3, 2

निम्नलिखितों के कारण लिखिए:

- (i) संक्रमण तत्वों की परमाणवीकरण की एन्थैल्पियां उच्च होती हैं।
- (ii) संक्रमण धातुएं और उनके बहुत से यौगिक अच्छे उत्प्रेरक होते हैं।
- (iii) किसी तत्व से दूसरे अगले तत्व तक ऐक्टिनॉयड संकुचन अपेक्षाकृत लेन्थैनॉयड संकुचन से अधिक होता है।
- (iv) ${\rm Mn^{3+}/Mn^{2+}}$ के लिये ${\rm E^0}$ का मान ${\rm Cr^{3+}/Cr^{2+}}$ के ${\rm E^0}$ मान की अपेक्षा अधिक धनात्मक होता है।
- (v) स्कैन्डियम (Z = 21) परिवर्ती उपचयन अवस्थाएं नहीं प्रदर्शित करता है फिर भी इसे संक्रमण तत्त्व माना जाता है।

अथवा

(अ) उनके परमाणुओं की मूल अवस्था में d इलेक्ट्रॉनिक विन्यासों वाले संक्रमण धातुओं की संभावित उपचयन अवस्थाएं क्या हो सकती हैं:

3d³4s², 3d⁵4s² और 3d⁶4s²

प्रत्येक तत्व के लिए उपचयन अवस्थाओं की सापेक्ष स्थिरता भी लिखिए।

(ब) (i) क्रोमाइट अयस्क से Na_2CrO_4 और (ii) पायरोल्युसाइट अयस्क से K_2MnO_4 के बनाने के विभिन्न चरण लिखिए।

(iii)
$$\bigcirc$$
 $\xrightarrow{\text{KIVINO}_4}$

Describe the following reactions:

- (i) Cannizaro reaction
- (ii) Cross aldol condensation

OR

How would you account for the following:

- (i) Aldehydes are more reactive than ketones towards nucleophiles.
- (ii) The boiling points of aldehydes and ketones are lower than of the corresponding acids.
- (iii) The aldehydes and ketones undergo a number of addition reactions.

Give chemical tests to distinguish between:

- (i) Acetaldehyde and benzaldehyde
- (ii) Propanone and propanol

3, 2

अ) प्रारम्भिक पदार्थ, अभिकारक अथवा उत्पाद, जो नीचे न दिये गए हों, उनको लिखते हुए निम्नलिखित अभिक्रिया विवरणों को पूर्ण कीजिए :

(i)
$$\xrightarrow{O_2}$$
 2 \longrightarrow = O

(ii)
$$\longrightarrow$$
=CH₂ \longrightarrow -CHO

(iii)
$$\longrightarrow$$
 $\xrightarrow{\text{CH}_2\text{CH}_3} \xrightarrow{\text{KMnO}_4} \dots$

निम्नलिखित अभिक्रियाओं का वर्णन कीजिए :

- (i) कैनिज़ैरो अभिक्रिया
- (ii) क्रॉस एल्डोल संघनन

अथवा

निम्नलिखितों के कारण लिखिये :

- (i) न्यूक्लिओफाइलों के प्रति कीटोनों की अपेक्षा ऐल्डिहाइडें अधिक सक्रिय होते हैं।
- (ii) ऐल्डिहाइडों और कीटोनों के क्वथनांक तत्संबंधी अम्लों की अपेक्षा कम होते हैं।
- (iii) ऐल्डिहाइडें और कीटोनें बहुत सी योगात्मक अभिक्रियाएं देती हैं। नेम्नलिखितों में भेद दिखाने के लिये रासायनिक परीक्षणों को लिखिए :
- (i) ऐसिटऐल्डिहाइड और बेन्जैल्डिहाइड में
- (ii) प्रोपेनॉन और प्रोपेनॉल में