Classifying Clustering Schemes

Facundo Mémoli, joint with Gunnar Carlsson

IMA, 2014

What is data clustering?

A (standard/flat) **clustering scheme** assigns to any finite set X a partition P_X of that set.

Figure : Elements with the same color are in the same block

• Let $\mathcal{M} = \{(X, d_X), \text{ finite metric spaces}\}.$

- Let $\mathcal{M} = \{(X, d_X), \text{ finite metric spaces}\}.$
- Given finite set X, P(X) denotes set of all **partitions** of X.

- Let $\mathcal{M} = \{(X, d_X), \text{ finite metric spaces}\}.$
- Given finite set X, P(X) denotes set of all **partitions** of X.
- Let $\mathcal{P} = \{(X, P_X), X \text{ finite and } P_X \in \mathbf{P}(X)\}$. Partitioned spaces.

- Let $\mathcal{M} = \{(X, d_X), \text{ finite metric spaces}\}.$
- Given finite set X, P(X) denotes set of all **partitions** of X.
- Let $\mathcal{P} = \{(X, P_X), X \text{ finite and } P_X \in \mathbf{P}(X)\}$. Partitioned spaces.

A standard clustering scheme is a map:

$$\mathfrak{C}: \mathcal{M} \longrightarrow \mathcal{P}$$

$$(X, d_X) \mapsto (X, P_X)$$

Goal of data clustering

Theorem (2002)

J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X)$, $\forall \lambda > 0$.

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X)$, $\forall \lambda > 0$.
 - Surjectivity: $\forall X \text{ and } P_X \in \mathbf{P}(X) \exists d_X \text{ s.t.}$ $\mathfrak{C}(X, d_X) = (X, P_X).$

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X)$, $\forall \lambda > 0$.
 - Surjectivity: $\forall X \text{ and } P_X \in \mathbf{P}(X) \exists d_X \text{ s.t.}$ $\mathfrak{C}(X, d_X) = (X, P_X).$
 - Consistency:

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X)$, $\forall \lambda > 0$.
 - Surjectivity: $\forall X \text{ and } P_X \in \mathbf{P}(X) \exists d_X \text{ s.t.}$ $\mathfrak{C}(X, d_X) = (X, P_X).$
 - Consistency: Partition your dataset into blocks.

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X)$, $\forall \lambda > 0$.
 - Surjectivity: $\forall X \text{ and } P_X \in \mathbf{P}(X) \exists d_X \text{ s.t.}$ $\mathfrak{C}(X, d_X) = (X, P_X).$
 - Consistency: Partition your dataset into blocks.
 - Shrink intrablock distances

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X), \ \forall \lambda > 0$.
 - Surjectivity: $\forall X \text{ and } P_X \in \mathbf{P}(X) \exists d_X \text{ s.t.}$ $\mathfrak{C}(X, d_X) = (X, P_X).$
 - Consistency: Partition your dataset into blocks.
 - Shrink intrablock distances
 - Expand interblock distances

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X), \ \forall \lambda > 0$.
 - Surjectivity: $\forall X \text{ and } P_X \in \mathbf{P}(X) \exists d_X \text{ s.t.}$ $\mathfrak{C}(X, d_X) = (X, P_X).$
 - Consistency: Partition your dataset into blocks.
 - Shrink intrablock distances
 - Expand interblock distances
 - invariance under this transformation

Theorem (2002)

- J. Kleinberg states: there exists no standard clustering algorithm $\mathfrak C$ that can simultaneously satisfy the following three properties:
 - Scale Invariance: For all $(X, d_X) \in \mathcal{M}$, $\mathfrak{C}(X, d_X) = \mathfrak{C}(X, \lambda d_X)$, $\forall \lambda > 0$.
 - Surjectivity: $\forall X \text{ and } P_X \in \mathbf{P}(X) \exists d_X \text{ s.t.}$ $\mathfrak{C}(X, d_X) = (X, P_X).$
 - Consistency: Partition your dataset into blocks.
 - Shrink intrablock distances
 - Expand interblock distances
 - invariance under this transformation

Kleinberg's theorem was the inspiration for this work.

study reformulation/variation of Kleinberg's point of view

study reformulation/variation of Kleinberg's point of view Roadmap for studying data clustering:

study reformulation/variation of Kleinberg's point of view Roadmap for studying data clustering:

Recast input/output spaces as categories

study reformulation/variation of Kleinberg's point of view Roadmap for studying data clustering:

- Recast input/output spaces as categories
- Categories impose a structure on data

study reformulation/variation of Kleinberg's point of view

Roadmap for studying data clustering:

- Recast input/output spaces as categories
- Categories impose a structure on data
- Study "functors" between categories (respecting this structure)

study reformulation/variation of Kleinberg's point of view

Roadmap for studying data clustering:

- Recast input/output spaces as categories
- Categories impose a structure on data
- Study "functors" between categories (respecting this structure)

We provide a range of input categories (small to large) and show analogues of Kleinberg's theorem in each.

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Category
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

Intuitively: category \simeq directed multigraph.

Intuitively: category \simeq directed multigraph.

Intuitively: category \simeq directed multigraph.

Definition (A category C consists of:)

ullet A collection of **objects** $ob(\mathcal{C})$ (think "vertices")

Intuitively: category \simeq directed multigraph.

- ullet A collection of **objects** $race{\operatorname{ob}(\mathcal{C})}$ (think "vertices")
- For each pair of objects X, Y a set $Mor_{\mathcal{C}}(X, Y)$, the **morphisms** from X to Y (think directed edges/arrows)

Intuitively: category \simeq directed multigraph.

- ullet A collection of **objects** $ob(\mathcal{C})$ (think "vertices")
- For each pair of objects X, Y a set $\lfloor \operatorname{Mor}_{\mathcal{C}}(X, Y) \rfloor$, the **morphisms** from X to Y (think directed edges/arrows)
- Composition operations:
 - $\circ: \operatorname{Mor}_{\mathcal{C}}(X,Y) \times \operatorname{Mor}_{\mathcal{C}}(Y,Z) \to \operatorname{Mor}_{\mathcal{C}}(X,Z)$ such that \circ is associative (think function composition)

Intuitively: category \simeq directed multigraph.

- ullet A collection of **objects** $ob(\mathcal{C})$ (think "vertices")
- For each pair of objects X, Y a set $Mor_{\mathcal{C}}(X, Y)$, the **morphisms** from X to Y (think directed edges/arrows)
- Composition operations:
 - $\circ: \operatorname{Mor}_{\mathcal{C}}(X,Y) \times \operatorname{Mor}_{\mathcal{C}}(Y,Z) \to \operatorname{Mor}_{\mathcal{C}}(X,Z)$ such that \circ is associative (think function composition)
- Identity morphisms: special morphisms $X \to X$, $\operatorname{id}_X \in \operatorname{Mor}_{\mathcal{C}}(X,X)$ for each X (think self loops/ identity maps) such that if $f \in \operatorname{Mor}_{\mathcal{C}}(X,Y)$ then $\operatorname{id}_Y \circ f = f \circ \operatorname{id}_X = f$

Examples of categories

Example (category 3)

The category $\underline{3}$ has exactly three objects A, B and C and six morphisms: the identities for A, B, C, and three more morphisms, $\operatorname{Mor}_3(A,B)=f$, $\operatorname{Mor}_3(B,C)=g$ and $\operatorname{Mor}_3(A,C)=h$:

In order to satisfy composition: $h = g \circ f$.

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - ullet \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X,Y) = \{f: X \rightarrow Y \mid \forall x, x' \in X, d_X(x,x') \geq d_Y(f(x),f(x'))\}$$

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X,Y) = \{f : X \to Y \mid \forall x, x' \in X, d_X(x,x') \ge d_Y(f(x), f(x'))\}$$

Note: composition works, $\circ: N(X,Y) \times N(Y,Z) \rightarrow N(X,Z)$, and $\mathrm{id}_X \in N(X,X)$.

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X,Y) = \{f : X \to Y \mid \forall x, x' \in X, d_X(x,x') \ge d_Y(f(x), f(x'))\}$$

Note: composition works, $\circ: N(X,Y) \times N(Y,Z) \rightarrow N(X,Z)$, and $\mathrm{id}_X \in N(X,X)$.

We now define three categories:

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X,Y) = \{f : X \to Y \mid \forall x, x' \in X, d_X(x,x') \ge d_Y(f(x), f(x'))\}$$

Note: composition works, $\circ: N(X,Y) \times N(Y,Z) \rightarrow N(X,Z)$, and $\mathrm{id}_X \in N(X,X)$.

We now define three categories:

• \mathcal{M}^{gen} : $ob(\mathcal{M}^{gen}) = \mathcal{M}$ and $Mor_{\mathcal{M}^{gen}}(X, Y) = N(X, Y)$.

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X,Y) = \{f: X \rightarrow Y \mid \forall x, x' \in X, d_X(x,x') \geq d_Y(f(x),f(x'))\}$$

Note: composition works, $\circ: N(X,Y) \times N(Y,Z) \rightarrow N(X,Z)$, and $\mathrm{id}_X \in N(X,X)$.

We now define three categories:

- \mathcal{M}^{gen} : ob $(\mathcal{M}^{gen}) = \mathcal{M}$ and $\operatorname{Mor}_{\mathcal{M}^{gen}}(X, Y) = \mathcal{N}(X, Y)$.
- ullet \mathcal{M}^{inj} : the subcategory whose morphisms are also **injective**.

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X, Y) = \{f : X \to Y \mid \forall x, x' \in X, d_X(x, x') \ge d_Y(f(x), f(x'))\}$$

Note: composition works, $\circ: N(X,Y) \times N(Y,Z) \rightarrow N(X,Z)$, and $\mathrm{id}_X \in N(X,X)$.

We now define three categories:

- \mathcal{M}^{gen} : ob $(\mathcal{M}^{gen}) = \mathcal{M}$ and $\operatorname{Mor}_{\mathcal{M}^{gen}}(X, Y) = \mathcal{N}(X, Y)$.
- \mathcal{M}^{inj} : the subcategory whose morphisms are also **injective**.
- \mathcal{M}^{iso} : the subcategory whose morphisms are **isometries**: $f: X \to Y$ is an *isometry* if f is bijective and $d_Y(f(x), f(x')) = d_X(x, x')$ for all x and x'.

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X,Y) = \{f : X \to Y \mid \forall x, x' \in X, d_X(x,x') \ge d_Y(f(x), f(x'))\}$$

Note: composition works, $\circ: N(X,Y) \times N(Y,Z) \rightarrow N(X,Z)$, and $\mathrm{id}_X \in N(X,X)$.

We now define three categories:

- \mathcal{M}^{gen} : ob $(\mathcal{M}^{gen}) = \mathcal{M}$ and $\operatorname{Mor}_{\mathcal{M}^{gen}}(X, Y) = \mathcal{N}(X, Y)$.
- \mathcal{M}^{inj} : the subcategory whose morphisms are also **injective**.
- \mathcal{M}^{iso} : the subcategory whose morphisms are **isometries**: $f: X \to Y$ is an *isometry* if f is bijective and $d_Y(f(x), f(x')) = d_X(x, x')$ for all x and x'. $\mathcal{M}^{gen} \supset \mathcal{M}^{inj} \supset \mathcal{M}^{iso}$

Consider $(X, d_X), (Y, d_Y) \in \mathcal{M}$, where \mathcal{M} is the collection of all finite metric spaces.

Define N(X, Y) the set of **distance non-increasing maps**:

$$N(X, Y) = \{f : X \to Y \mid \forall x, x' \in X, d_X(x, x') \ge d_Y(f(x), f(x'))\}$$

Note: composition works, $\circ: N(X,Y) \times N(Y,Z) \rightarrow N(X,Z)$, and $\mathrm{id}_X \in N(X,X)$.

We now define three categories:

- \mathcal{M}^{gen} : ob $(\mathcal{M}^{gen}) = \mathcal{M}$ and $\operatorname{Mor}_{\mathcal{M}^{gen}}(X, Y) = \mathcal{N}(X, Y)$.
- \mathcal{M}^{inj} : the subcategory whose morphisms are also **injective**.
- \mathcal{M}^{iso} : the subcategory whose morphisms are **isometries**: $f: X \to Y$ is an *isometry* if f is bijective and $d_Y(f(x), f(x')) = d_X(x, x')$ for all x and x'. $\mathcal{M}^{gen} \supset \mathcal{M}^{inj} \supset \mathcal{M}^{iso}$

 \mathcal{M} will denote any of these categories

Nested categories: same object set, but filter morphisms

Figure : $\mathcal{M}^{gen}\supseteq\mathcal{M}^{inj}\supseteq\mathcal{M}^{iso}$. Same object set, nested morphism sets!

Nested categories: same object set, but filter morphisms

Figure : $\mathcal{M}^{gen} \supseteq \mathcal{M}^{inj} \supseteq \mathcal{M}^{iso}$. Same object set, nested morphism sets!

Nested categories: same object set, but filter morphisms

Figure : $\mathcal{M}^{gen} \supseteq \mathcal{M}^{inj} \supseteq \mathcal{M}^{iso}$. Same object set, nested morphism sets!

$\operatorname{Mor}_{\mathcal{M}^{gen}}(X, Y)$ is never empty

 $\mathcal{M}^{\mathit{gen}}$ is special in that $\forall X, Y \operatorname{Mor}_{\mathcal{M}^{\mathit{gen}}}(X, Y) \neq \emptyset$

Figure : Constant maps are always distance non-increasing. Hence, \mathcal{M}^{gen} is fully connected! Thus, can always have diagram $X \to Y \to X$ in \mathcal{M}^{gen} .

$\operatorname{Mor}_{\mathcal{M}^{gen}}(X,Y)$ is never empty

 \mathcal{M}^{gen} is special in that $\forall X, Y \operatorname{Mor}_{\mathcal{M}^{gen}}(X, Y) \neq \emptyset$

Figure : Constant maps are always distance non-increasing. Hence, \mathcal{M}^{gen} is fully connected! Thus, can always have diagram $X \to Y \to X$ in \mathcal{M}^{gen} .

This property fails in \mathcal{M}^{inj} and \mathcal{M}^{iso} , since morphism ϕ could not send two different elements in X, to one element in Y.

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Category
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - \mathcal{M}^{gen} (large)
 - M^{inj} (medium)
- Conclusion

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Category
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

For a finite set X, P(X) denotes set of all partitions of X.

For a finite set X, P(X) denotes set of all partitions of X.

Definition (\mathcal{P} , a category of outputs of standard clustering schemes)

The category ${\mathcal P}$ has

For a finite set X, P(X) denotes set of all partitions of X.

Definition (\mathcal{P} , a category of outputs of standard clustering schemes)

The category ${\mathcal P}$ has

• ob(\mathcal{P}) equal to all possible pairs (X, P_X) where X is a finite set and $P_X \in \mathbf{P}(X)$.

For a finite set X, $\mathbf{P}(X)$ denotes set of all partitions of X.

Definition (\mathcal{P} , a category of outputs of standard clustering schemes)

The category ${\mathcal P}$ has

- $ob(\mathcal{P})$ equal to all possible pairs (X, P_X) where X is a finite set and $P_X \in \mathbf{P}(X)$.
- $\operatorname{Mor}_{\mathcal{P}}((X, P_X), (Y, P_Y))$ is the set of all maps $f: X \to Y$ where P_X is a refinement of $f^*(P_Y)$.

What is $f^*(P_Y)$?

What is $f^*(P_Y)$?

Definition $(f^*(P_Y))$: pullback partition

Let Y be a finite set, $P_Y \in \mathbf{P}(Y)$, and $f: X \to Y$ be a set map. We define $f^*(P_Y) = \{f^{-1}(B) : B \in P_Y\} \in \mathbf{P}(X)$.

What is $f^*(P_Y)$?

Definition $(f^*(P_Y))$: pullback partition

Let Y be a finite set, $P_Y \in \mathbf{P}(Y)$, and $f: X \to Y$ be a set map. We define $f^*(P_Y) = \{f^{-1}(B) : B \in P_Y\} \in \mathbf{P}(X)$.

Morphisms in ${\mathcal P}$

 $\operatorname{Mor}_{\mathcal{P}}((X,P_X),(Y,P_Y))$ is the set of all maps $f:X\to Y$ where P_X is a refinement of $f^*(P_Y)$

Figure : P_X refines $f^*(P_Y)$

Repeat: output category

For a finite set X we denote by $\mathbf{P}(X)$ the set of all partitions of X.

Definition (\mathcal{P} , a category of outputs of standard clustering schemes)

The category ${\mathcal P}$ has

- ob(\mathcal{P}) equal to all possible pairs (X, P_X) where X is a finite set and $P_X \in \mathbf{P}(X)$.
- $\operatorname{Mor}_{\mathcal{P}}((X, P_X), (Y, P_Y))$ is the set of all maps $f: X \to Y$ where P_X is a refinement of $f^*(P_Y)$.

Example (forcing)

• Assume that $f \in \operatorname{Mor}_{\mathcal{P}} \big((\{a,b\}, \{\{a,b\}\}), (Y,P_Y) \big)$. Then, f(a) and f(b) must be in <u>same</u> block of P_Y .

Example (forcing)

• Assume that $f \in \operatorname{Mor}_{\mathcal{P}} \big((\{a,b\}, \{\{a,b\}\}), (Y,P_Y) \big)$. Then, f(a) and f(b) must be in <u>same</u> block of P_Y .

• Let $f \in \operatorname{Mor}_{\mathcal{P}}((X, P_X), (\{a, b\}, \{\{a\}, \{b\}\}))$. Then, $f(x) \neq f(x')$, implies that x, x' must be in <u>different</u> blocks of P_X .

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - M^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \bullet \mathcal{M}^{iso} (small)
 - M^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

Definition (Functor)

Definition (Functor)

Let $\mathcal C$ and $\mathcal D$ be categories. A **functor** from $\mathcal C$ to $\mathcal D$ consists of:

• A mapping of the objects: $\Phi : ob(\mathcal{C}) \to ob(\mathcal{D})$.

Definition (Functor)

- A mapping of the objects: $\Phi : ob(\mathcal{C}) \to ob(\mathcal{D})$.
- A mapping of the morphisms: $\forall X, Y \in ob(\mathcal{C})$
 - $\Phi: \operatorname{Mor}_{\mathcal{C}}(X, Y) \to \operatorname{Mor}_{\mathcal{D}}(\Phi(X), \Phi(Y))$ so that

Definition (Functor)

- A mapping of the objects: $\Phi : ob(\mathcal{C}) \to ob(\mathcal{D})$.
- A mapping of the morphisms: $\forall X, Y \in ob(\mathcal{C})$
 - $\Phi: \operatorname{Mor}_{\mathcal{C}}(X, Y) \to \operatorname{Mor}_{\mathcal{D}}(\Phi(X), \Phi(Y))$ so that
 - **1** identities are respected: $\Phi(\mathrm{id}_X) = \mathrm{id}_{\Phi(X)}$

Definition (Functor)

- A mapping of the objects: $\Phi : ob(\mathcal{C}) \to ob(\mathcal{D})$.
- A mapping of the morphisms: $\forall X, Y \in ob(\mathcal{C})$
 - $\Phi: \operatorname{Mor}_{\mathcal{C}}(X, Y) \to \operatorname{Mor}_{\mathcal{D}}(\Phi(X), \Phi(Y))$ so that
 - **1** identities are respected: $\Phi(\mathrm{id}_X) = \mathrm{id}_{\Phi(X)}$
 - **2** composition is respected: $\Phi(g \circ f) = \Phi(g) \circ \Phi(f)$

Clustering methods as functors

• For \mathcal{M} being each of our three input categories, we are going to require that for all morphisms (test functions) $f \in \operatorname{Mor}_{\mathcal{M}}(X,Y)$:

$$(X, d_X) \xrightarrow{f} (Y, d_Y)$$

$$\downarrow^{\mathfrak{C}} \qquad \downarrow^{\mathfrak{C}}$$

$$(X, P_X) \xrightarrow{f} (Y, P_Y)$$

Clustering methods as functors

• For \mathcal{M} being each of our three input categories, we are going to require that for all morphisms (test functions) $f \in \operatorname{Mor}_{\mathcal{M}}(X, Y)$:

$$(X, d_X) \xrightarrow{f} (Y, d_Y)$$

$$\downarrow^{\mathfrak{C}} \qquad \downarrow^{\mathfrak{C}}$$

$$(X, P_X) \xrightarrow{f} (Y, P_Y)$$

• Take for example (X, d) and (X, d'), two metrics on X s.t. $d \ge d'$. If P and P' are the respective partitions produced by a clustering functor \mathfrak{C} , then if $x \sim_P x'$, it also has to happen that $x \sim_{P'} x'$ as well. Namely, reducing distances has to make it easier to cluster two points!

Clustering methods as functors

• For \mathcal{M} being each of our three input categories, we are going to require that for all morphisms (test functions) $f \in \operatorname{Mor}_{\mathcal{M}}(X, Y)$:

$$(X, d_X) \xrightarrow{f} (Y, d_Y)$$

$$\downarrow^{\mathfrak{C}} \qquad \downarrow^{\mathfrak{C}}$$

$$(X, P_X) \xrightarrow{f} (Y, P_Y)$$

- Take for example (X, d) and (X, d'), two metrics on X s.t. $d \ge d'$. If P and P' are the respective partitions produced by a clustering functor \mathfrak{C} , then if $x \sim_P x'$, it also has to happen that $x \sim_{P'} x'$ as well. Namely, reducing distances has to make it easier to cluster two points!
- Notice that it is more difficult to find functors $\mathcal{M}^{gen} \to \mathcal{P}$ than to find functors $\mathcal{M}^{inj} \to \mathcal{P}$, than to find functors $\mathcal{M}^{iso} \to \mathcal{P}$.

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - M^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \bullet \mathcal{M}^{iso} (small)
 - M^{gen} (large)
 - M^{inj} (medium)
- Conclusion

Single linkage clustering

Definition

On $(X, d_X) \in \mathcal{M}$, for each $\delta \geq 0$, define the **equivalence relation** \sim_{δ} , where $x \sim_{\delta} x' \iff$ there is a sequence $x_0, x_1, \ldots, x_k \in X$ so that $x_0 = x, x_k = x'$, and $d_X(x_i, x_{i+1}) \leq \delta$ for all i. Let $\mathbf{P}_{\mathbf{X}}(\delta)$ be the resulting partition.

$\mathcal{M}^{\mathit{gen}}$ functorial clustering algorithms

Definition (Vietoris-Rips clustering functor on \mathcal{M}^{gen})

For each $\delta > 0$ define

$$\mathfrak{R}_{\delta}:\mathcal{M}^{\textit{gen}}
ightarrow\mathcal{P}$$

by

$$\mathfrak{R}_{\delta}(X, d_X) = (X, P_X(\delta)).$$

A.K.A. the **single linkage clustering** on parameter δ .

$\mathcal{M}^{\mathit{gen}}$ functorial clustering algorithms

Definition (Vietoris-Rips clustering functor on \mathcal{M}^{gen})

For each $\delta > 0$ define

$$\mathfrak{R}_{\delta}:\mathcal{M}^{\textit{gen}}
ightarrow\mathcal{P}$$

by

$$\mathfrak{R}_{\delta}(X, d_X) = (X, P_X(\delta)).$$

A.K.A. the **single linkage clustering** on parameter δ .

One checks this *is* a functor (**existence**), and prove a **uniqueness** theorem for it.

$\mathcal{M}^{\textit{gen}}$ functorial clustering algorithms

Definition (Vietoris-Rips clustering functor on \mathcal{M}^{gen})

For each $\delta > 0$ define

$$\mathfrak{R}_{\delta}:\mathcal{M}^{ extit{gen}}
ightarrow\mathcal{P}$$

by

$$\mathfrak{R}_{\delta}(X, d_X) = (X, P_X(\delta)).$$

A.K.A. the **single linkage clustering** on parameter δ .

One checks this *is* a functor (**existence**), and prove a **uniqueness** theorem for it.

Functoriality is equivalent to:

 $\phi \in \operatorname{Mor}_{\mathcal{M}^{gen}}(X,Y)$, then $x \sim_{\delta} x'$ in X, implies $\phi(x) \sim_{\delta} \phi(x')$ in Y.

Let $\Delta_2(\delta)$ be the metric space of two points, where $d(x,y) = \delta$:

Let $\Delta_2(\delta)$ be the metric space of two points, where $d(x,y) = \delta$:

Theorem

THEOTEIN

Assume that $\mathfrak{C}:\mathcal{M}^{gen}\to\mathcal{P}$ is a clustering functor for which there exists $\delta_{\mathfrak{C}}>0$ with the property that

Let $\Delta_2(\delta)$ be the metric space of two points, where $d(x,y) = \delta$:

Theorem

Assume that $\mathfrak{C}:\mathcal{M}^{gen}\to\mathcal{P}$ is a clustering functor for which there exists $\delta_{\mathfrak{C}}>0$ with the property that

① $\mathfrak{C}(\Delta_2(\delta))$ is in <u>one</u> piece for all $\delta \in [0, \delta_{\mathfrak{C}}]$, and

Let $\Delta_2(\delta)$ be the metric space of two points, where $d(x,y) = \delta$:

Theorem

Assume that $\mathfrak{C}:\mathcal{M}^{\text{gen}}\to\mathcal{P}$ is a clustering functor for which there exists $\delta_{\mathfrak{C}}>0$ with the property that

- **①** $\mathfrak{C}(\Delta_2(\delta))$ is in <u>one</u> piece for all $\delta \in [0, \delta_{\mathfrak{C}}]$, and
- ② $\mathfrak{C}(\Delta_2(\delta))$ is in <u>two</u> pieces for all $\delta > \delta_{\mathfrak{C}}$.

Let $\Delta_2(\delta)$ be the metric space of two points, where $d(x,y) = \delta$:

Theorem

Assume that $\mathfrak{C}:\mathcal{M}^{gen}\to\mathcal{P}$ is a clustering functor for which there exists $\delta_{\mathfrak{C}}>0$ with the property that

- **①** $\mathfrak{C}(\Delta_2(\delta))$ is in <u>one</u> piece for all $\delta \in [0, \delta_{\mathfrak{C}}]$, and
- **2** $\mathfrak{C}(\Delta_2(\delta))$ is in <u>two</u> pieces for all $\delta > \delta_{\mathfrak{C}}$.

Then, $\mathfrak C$ is the Vietoris-Rips functor with parameter $\delta_{\mathfrak C}$. i.e. $\mathfrak C=\mathfrak R_{\delta_{\mathfrak C}}$.

• Great so SLC is unique in \mathcal{M}^{gen} !

- Great so SLC is unique in \mathcal{M}^{gen} !
- Recall Kleinberg's criteria:

- Great so SLC is unique in \mathcal{M}^{gen} !
- Recall Kleinberg's criteria:
 - Scale Invariance: $\mathfrak{C}(X,d) = \mathfrak{C}(X,\lambda d) \ \forall \lambda > 0$
 - Surjectivity: $\forall P_X \exists d_X \text{ such that: } \mathfrak{C}(X, d_X) = P_X$
 - Consistency: Partition your dataset into blocks.
 - Shrink intrablock distances
 - Expand interblock distances
 - invariance under this transformation

- Great so SLC is unique in \mathcal{M}^{gen} !
- Recall Kleinberg's criteria:
 - Scale Invariance: $\mathfrak{C}(X,d) = \mathfrak{C}(X,\lambda d) \ \forall \lambda > 0$
 - Surjectivity: $\forall P_X \exists d_X \text{ such that: } \mathfrak{C}(X, d_X) = P_X$
 - Consistency: Partition your dataset into blocks.
 - Shrink intrablock distances
 - Expand interblock distances
 - invariance under this transformation
- To what degree do these properties hold for the VR/SL functor?

• The VR functor is surjective, this can be checked easily.

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.
- The Vietoris-Rips functor is **not** scale invariant over \mathcal{P} !

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.
- The Vietoris-Rips functor is **not** scale invariant over \mathcal{P} !

Theorem (Scale invariance in \mathcal{M}^{gen})

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.
- The Vietoris-Rips functor is **not** scale invariant over \mathcal{P} !

Theorem (Scale invariance in \mathcal{M}^{gen})

Let σ_{λ} be the mapping $(X, d_X) \mapsto (X, \lambda \cdot d_X)$

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.
- The Vietoris-Rips functor is **not** scale invariant over \mathcal{P} !

Theorem (Scale invariance in \mathcal{M}^{gen})

Let σ_{λ} be the mapping $(X, d_X) \mapsto (X, \lambda \cdot d_X)$

Let $\mathfrak{C}:\mathcal{M}^{gen}\to\mathcal{P}$ be a clustering functor s.t. $\mathfrak{C}\circ\sigma_\lambda=\mathfrak{C}$ for all $\lambda>0$. Then, either

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.
- The Vietoris-Rips functor is **not** scale invariant over \mathcal{P} !

Theorem (Scale invariance in \mathcal{M}^{gen})

Let σ_{λ} be the mapping $(X, d_X) \mapsto (X, \lambda \cdot d_X)$

Let $\mathfrak{C}:\mathcal{M}^{gen}\to\mathcal{P}$ be a clustering functor s.t. $\mathfrak{C}\circ\sigma_\lambda=\mathfrak{C}$ for all $\lambda>0$. Then, either

• C assigns to each finite metric space X the partition of X into singletons, or

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.
- The Vietoris-Rips functor is **not** scale invariant over \mathcal{P} !

Theorem (Scale invariance in $\mathcal{M}^{ extit{gen}}$)

Let σ_{λ} be the mapping $(X, d_X) \mapsto (X, \lambda \cdot d_X)$

Let $\mathfrak{C}:\mathcal{M}^{gen}\to\mathcal{P}$ be a clustering functor s.t. $\mathfrak{C}\circ\sigma_\lambda=\mathfrak{C}$ for all $\lambda>0$. Then, either

- C assigns to each finite metric space X the partition of X into singletons, or
- C assigns to each finite metric the partition with only one block.

- The VR functor is surjective, this can be checked easily.
- Functoriality is our substitute for consistency.
- The Vietoris-Rips functor is **not** scale invariant over \mathcal{P} !

Theorem (Scale invariance in \mathcal{M}^{gen})

Let σ_{λ} be the mapping $(X, d_X) \mapsto (X, \lambda \cdot d_X)$

Let $\mathfrak{C}:\mathcal{M}^{gen}\to\mathcal{P}$ be a clustering functor s.t. $\mathfrak{C}\circ\sigma_\lambda=\mathfrak{C}$ for all $\lambda>0$. Then, either

- C assigns to each finite metric space X the partition of X into singletons, or
- C assigns to each finite metric the partition with only one block.

A similar theorem holds in \mathcal{M}^{inj} .

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

Definition (Excisive clustering functors)

We say that a clustering functor $\mathfrak C$ is **excisive** if for all $(X,d_X)\in \mathrm{ob}(\mathcal M)$, if we write $\mathfrak C(X,d_X)=(X,\{X_\alpha\}_{\alpha\in\mathcal A})$, then $\mathfrak C\left(X_\alpha,d_{X|_{X_\alpha\times X_\alpha}}\right)=(X_\alpha,\{X_\alpha\})$ for all $\alpha\in\mathcal A$.

Definition (Excisive clustering functors)

We say that a clustering functor $\mathfrak C$ is **excisive** if for all $(X,d_X)\in \mathrm{ob}(\mathcal M)$, if we write $\mathfrak C(X,d_X)=(X,\{X_\alpha\}_{\alpha\in A})$, then $\mathfrak C\left(X_\alpha,d_{X|_{X_\alpha\times X_\alpha}}\right)=(X_\alpha,\{X_\alpha\})$ for all $\alpha\in A$.

The Vietoris-Rips functor is excisive.

Metric Space (X,d)

Definition (Excisive clustering functors)

We say that a clustering functor $\mathfrak C$ is **excisive** if for all $(X,d_X)\in \mathrm{ob}(\mathcal M)$, if we write $\mathfrak C(X,d_X)=(X,\{X_\alpha\}_{\alpha\in A})$, then $\mathfrak C\left(X_\alpha,d_{X|_{X_\alpha\times X_\alpha}}\right)=(X_\alpha,\{X_\alpha\})$ for all $\alpha\in A$.

The Vietoris-Rips functor is excisive.

Metric Space (X,d)

Definition (Excisive clustering functors)

We say that a clustering functor $\mathfrak C$ is **excisive** if for all $(X,d_X)\in \mathrm{ob}(\mathcal M)$, if we write $\mathfrak C(X,d_X)=(X,\{X_\alpha\}_{\alpha\in\mathcal A})$, then $\mathfrak C\left(X_\alpha,d_{X|_{X_\alpha\times X_\alpha}}\right)=(X_\alpha,\{X_\alpha\})$ for all $\alpha\in\mathcal A$.

The Vietoris-Rips functor is excisive.

Do non-excisive methods exist?

Definition (Excisive clustering functors)

We say that a clustering functor $\mathfrak C$ is **excisive** if for all $(X,d_X)\in \mathrm{ob}(\mathcal M)$, if we write $\mathfrak C(X,d_X)=(X,\{X_\alpha\}_{\alpha\in A})$, then $\mathfrak C\left(X_\alpha,d_{X|_{X_\alpha\times X_\alpha}}\right)=(X_\alpha,\{X_\alpha\})$ for all $\alpha\in A$.

The Vietoris-Rips functor is excisive.

Do non-excisive methods exist? Definitely not in \mathcal{M}^{gen} !

In \mathcal{M}^{inj} there exist **non-excisive** clustering functors: for each finite metric space X (with at least two points):

In \mathcal{M}^{inj} there exist **non-excisive** clustering functors: for each finite metric space X (with at least two points): let

$$\eta(X) := \left(\operatorname{sep}(X) \right)^{-1},$$

where $sep(X) = min_{x \neq x'} d_X(x, x')$ (separation of a metric space).

In \mathcal{M}^{inj} there exist **non-excisive** clustering functors: for each finite metric space X (with at least two points): let

$$\eta(X) := \left(\sup(X) \right)^{-1},$$

where $\operatorname{sep}(X) = \min_{x \neq x'} d_X(x, x')$ (separation of a metric space). Let $\widehat{\mathfrak{R}}$ be functor assigning to each X partition into equivalence classes of $\sim_{n(X)}$ (now parameter δ depends on the space!).

In \mathcal{M}^{inj} there exist **non-excisive** clustering functors: for each finite metric space X (with at least two points): let

$$\eta(X) := \left(\operatorname{sep}(X) \right)^{-1},$$

where $\operatorname{sep}(X) = \min_{x \neq x'} d_X(x, x')$ (separation of a metric space). Let $\widehat{\mathfrak{R}}$ be functor assigning to each X partition into equivalence classes of $\sim_{\eta(X)}$ (now parameter δ depends on the space!).

That this indeed defines a functor in \mathcal{M}^{inj} follows from:

$$\operatorname{Mor}_{\mathcal{M}^{inj}}(X,Y) \neq \emptyset \Longrightarrow \operatorname{sep}(X) \geq \operatorname{sep}(Y).$$

In \mathcal{M}^{inj} there exist **non-excisive** clustering functors: for each finite metric space X (with at least two points): let

$$\eta(X) := \left(\operatorname{sep}(X) \right)^{-1},$$

where $\operatorname{sep}(X) = \min_{x \neq x'} d_X(x, x')$ (separation of a metric space). Let $\widehat{\mathfrak{R}}$ be functor assigning to each X partition into equivalence classes of $\sim_{n(X)}$ (now parameter δ depends on the space!).

That this indeed defines a functor in \mathcal{M}^{inj} follows from:

$$\operatorname{Mor}_{\mathcal{M}^{inj}}(X,Y) \neq \emptyset \Longrightarrow \operatorname{sep}(X) \geq \operatorname{sep}(Y).$$

Indeed, assume that $\phi \in \operatorname{Mor}_{\mathcal{M}^{inj}}(X, Y)$, then for all $x \neq x'$:

$$d_X(x,x') \ge d_Y(\phi(x),\phi(x')) \ge \min_{y \ne y'} d_Y(y,y') = \operatorname{sep}(Y).$$

In \mathcal{M}^{inj} there exist **non-excisive** clustering functors: for each finite metric space X (with at least two points): let

$$\eta(X) := \left(\operatorname{sep}(X) \right)^{-1},$$

where $\operatorname{sep}(X) = \min_{x \neq x'} d_X(x, x')$ (separation of a metric space). Let $\widehat{\mathfrak{R}}$ be functor assigning to each X partition into equivalence classes of $\sim_{n(X)}$ (now parameter δ depends on the space!).

That this indeed defines a functor in \mathcal{M}^{inj} follows from:

$$\operatorname{Mor}_{\mathcal{M}^{inj}}(X,Y) \neq \emptyset \Longrightarrow \operatorname{sep}(X) \geq \operatorname{sep}(Y).$$

Indeed, assume that $\phi \in \operatorname{Mor}_{\mathcal{M}^{inj}}(X, Y)$, then for all $x \neq x'$:

$$d_X(x,x') \ge d_Y(\phi(x),\phi(x')) \ge \min_{y \ne y'} d_Y(y,y') = \operatorname{sep}(Y).$$

Then, $\operatorname{sep}(X) \ge \operatorname{sep}(Y)$, and since \mathfrak{R}_{δ} is functorial and $\eta(Y) \ge \eta(X)$,

$$x \sim_{\eta(X)} x' \Longrightarrow \phi(x) \sim_{\eta(X)} \phi(x') \Longrightarrow \phi(x) \sim_{\eta(Y)} \phi(x').$$

Consider X to be the metric space below (graph distance):

Consider X to be the metric space below (graph distance):

Note that $\eta(X) = 2$

Consider X to be the metric space below (graph distance):

Note that
$$\eta(X) = 2 \Longrightarrow$$

$$\widehat{\Re}(X, d_X) = \Re_2(X, d_X) = (X, \{\{A, B, C\}, \{D, E\}\}).$$

Excisiveness in \mathcal{M}^{inj}

Consider X to be the metric space below (graph distance):

Note that
$$\eta(X) = 2 \Longrightarrow$$

$$\widehat{\mathfrak{R}}(X, d_X) = \mathfrak{R}_2(X, d_X) = (X, \{\{A, B, C\}, \{D, E\}\}).$$

Now, if $Y = \{A, B, C\}$, then $\eta(Y) = 1 \Longrightarrow \{A, B, C\}$ gets further partitioned! Then, $\widehat{\mathfrak{R}}$ is **not-excisive**.

Excisiveness in \mathcal{M}^{inj}

Consider X to be the metric space below (graph distance):

Note that
$$\eta(X) = 2 \Longrightarrow$$

$$\widehat{\mathfrak{R}}(X, d_X) = \mathfrak{R}_2(X, d_X) = (X, \{\{A, B, C\}, \{D, E\}\}).$$

Now, if $Y = \{A, B, C\}$, then $\eta(Y) = 1 \Longrightarrow \{A, B, C\}$ gets further partitioned! Then, $\widehat{\mathfrak{R}}$ is **not-excisive**.

Excisiveness in \mathcal{M}^{inj}

Consider X to be the metric space below (graph distance):

Note that
$$\eta(X) = 2 \Longrightarrow$$

$$\widehat{\mathfrak{R}}(X, d_X) = \mathfrak{R}_2(X, d_X) = (X, \{\{A, B, C\}, \{D, E\}\}).$$

Now, if $Y = \{A, B, C\}$, then $\eta(Y) = 1 \Longrightarrow \{A, B, C\}$ gets further partitioned! Then, $\widehat{\mathfrak{R}}$ is **not-excisive**.

Let $\iota: \mathcal{M}^{inj} \to (\mathbb{R}, \geq)$ by any <u>non-constant</u> contra-variant functor:

$$\operatorname{Mor}_{\mathcal{M}^{inj}}(X, Y) \neq \emptyset \Longrightarrow \iota(X) \leq \iota(Y).$$

For each of them know how to build a non-excisive monster: $\mathfrak{R}_{\iota(\cdot)}$.

Let $\iota:\mathcal{M}^{inj} o (\mathbb{R},\geq)$ by any non-constant contra-variant functor:

$$\operatorname{Mor}_{\mathcal{M}^{inj}}(X, Y) \neq \emptyset \Longrightarrow \iota(X) \leq \iota(Y).$$

For each of them know how to build a non-excisive monster: $\mathfrak{R}_{\iota(\cdot)}$.

We saw that no such ι exist on \mathcal{M}^{gen} : uniqueness of VR.

Let $\iota:\mathcal{M}^{inj} o (\mathbb{R},\geq)$ by any non-constant contra-variant functor:

$$\operatorname{Mor}_{\mathcal{M}^{inj}}(X, Y) \neq \emptyset \Longrightarrow \iota(X) \leq \iota(Y).$$

For each of them know how to build a non-excisive monster: $\mathfrak{R}_{\iota(\cdot)}$.

We saw that no such ι exist on \mathcal{M}^{gen} : uniqueness of VR.

Indirectly: $X \to Y \to X$ is always a possible diagram on \mathcal{M}^{gen} . Apply ι and get $\iota(X) = \iota(Y)$.

And now something completely different..

Notice the following: given $\delta \geq 0$, $(X, d_X) \in \mathcal{M}$ and $x, x' \in X$, $d_X(x, x') \leq \delta \Longleftrightarrow \exists \phi \in \mathrm{Mor}_{\mathcal{M}}(\Delta_2(\delta), X) \, \mathrm{s.t.} \ \{x, x'\} \in \mathrm{im}(\phi).$

Notice the following: given $\delta \geq 0$, $(X, d_X) \in \mathcal{M}$ and $x, x' \in X$, $d_X(x, x') \leq \delta \Longleftrightarrow \exists \phi \in \mathrm{Mor}_{\mathcal{M}}(\Delta_2(\delta), X) \, \mathrm{s.t.} \ \{x, x'\} \in \mathrm{im}(\phi).$

Notice the following: given $\delta \geq 0$, $(X, d_X) \in \mathcal{M}$ and $x, x' \in X$,

$$d_X(x,x') \le \delta \Longleftrightarrow \exists \phi \in \operatorname{Mor}_{\mathcal{M}}(\Delta_2(\delta),X) \text{ s.t. } \{x,x'\} \in \operatorname{im}(\phi).$$

Notice the following: given $\delta \geq 0$, $(X, d_X) \in \mathcal{M}$ and $x, x' \in X$,

$$d_X(x,x') \le \delta \iff \exists \phi \in \operatorname{Mor}_{\mathcal{M}}(\Delta_2(\delta),X) \text{ s.t. } \{x,x'\} \in \operatorname{im}(\phi).$$

Notice the following: given $\delta \geq 0$, $(X, d_X) \in \mathcal{M}$ and $x, x' \in X$, $d_X(x, x') \leq \delta \iff \exists \phi \in \operatorname{Mor}_{\mathcal{M}}(\Delta_2(\delta), X) \text{ s.t. } \{x, x'\} \in \operatorname{im}(\phi).$

Notice the following: given $\delta \geq 0$, $(X, d_X) \in \mathcal{M}$ and $x, x' \in X$, $d_X(x, x') \leq \delta \Longleftrightarrow \exists \phi \in \mathrm{Mor}_{\mathcal{M}}(\Delta_2(\delta), X) \, \mathrm{s.t.} \ \{x, x'\} \in \mathrm{im}(\phi).$

Notice the following: given $\delta \geq 0$, $(X, d_X) \in \mathcal{M}$ and $x, x' \in X$, $d_X(x, x') \leq \delta \Longleftrightarrow \exists \phi \in \mathrm{Mor}_{\mathcal{M}}(\Delta_2(\delta), X) \, \mathrm{s.t.} \ \{x, x'\} \in \mathrm{im}(\phi).$

What if we use something else instead of $\Delta_2(\delta)$?

Definition (representable functors)

We say a functor $\mathfrak C$ is **representable** if there is a collection Ω of finite metric spaces such that: points x and x' in X are in the same block of $\mathfrak C(X,d_X)$ if and only if there exist:

Definition (representable functors)

We say a functor \mathfrak{C} is **representable** if there is a collection Ω of finite metric spaces such that: points x and x' in X are in the same block of $\mathfrak{C}(X, d_X)$ if and only if there exist:

• a sequence of points $z_0, \ldots, z_k \in X$ with $z_0 = x$ and $z_k = x'$,

Definition (representable functors)

We say a functor $\mathfrak C$ is **representable** if there is a collection Ω of finite metric spaces such that: points x and x' in X are in the same block of $\mathfrak C(X, d_X)$ if and only if there exist:

- a sequence of points $z_0, \ldots, z_k \in X$ with $z_0 = x$ and $z_k = x'$,
- a sequence of metric spaces $\omega_1, \ldots, \omega_k \in \Omega$,

Definition (representable functors)

We say a functor $\mathfrak C$ is **representable** if there is a collection Ω of finite metric spaces such that: points x and x' in X are in the same block of $\mathfrak C(X, d_X)$ if and only if there exist:

- a sequence of points $z_0, \ldots, z_k \in X$ with $z_0 = x$ and $z_k = x'$,
- a sequence of metric spaces $\omega_1, \ldots, \omega_k \in \Omega$,
- for each $i=1,\ldots,k$, pairs of points $(\alpha_i,\beta_i)\in\omega_i$ and morphisms $f_i\in\operatorname{Mor}_{\mathcal{M}}(\omega_i,X)$ s.t. $f_i(\alpha_i)=z_{i-1}$ and $f_i(\beta_i)=z_i$.

Definition (representable functors)

We say a functor $\mathfrak C$ is **representable** if there is a collection Ω of finite metric spaces such that: points x and x' in X are in the same block of $\mathfrak C(X, d_X)$ if and only if there exist:

- a sequence of points $z_0, \ldots, z_k \in X$ with $z_0 = x$ and $z_k = x'$,
- a sequence of metric spaces $\omega_1, \ldots, \omega_k \in \Omega$,
- for each $i=1,\ldots,k$, pairs of points $(\alpha_i,\beta_i)\in\omega_i$ and morphisms $f_i\in\operatorname{Mor}_{\mathcal{M}}(\omega_i,X)$ s.t. $f_i(\alpha_i)=z_{i-1}$ and $f_i(\beta_i)=z_i$.

If Ω is finite, then we say that $\mathfrak C$ is **finitely representable**. We write $\mathfrak C^\Omega$ for a functor that is represented by Ω .

Definition (representable functors)

We say a functor $\mathfrak C$ is **representable** if there is a collection Ω of finite metric spaces such that: points x and x' in X are in the same block of $\mathfrak C(X, d_X)$ if and only if there exist:

- a sequence of points $z_0, \ldots, z_k \in X$ with $z_0 = x$ and $z_k = x'$,
- a sequence of metric spaces $\omega_1, \ldots, \omega_k \in \Omega$,
- for each $i=1,\ldots,k$, pairs of points $(\alpha_i,\beta_i)\in\omega_i$ and morphisms $f_i\in\operatorname{Mor}_{\mathcal{M}}(\omega_i,X)$ s.t. $f_i(\alpha_i)=z_{i-1}$ and $f_i(\beta_i)=z_i$.

If Ω is finite, then we say that $\mathfrak C$ is **finitely representable**. We write $\mathfrak C^\Omega$ for a functor that is represented by Ω .

Notice if $\Omega=\{\Delta_2(\delta)\}$ then we see that \mathfrak{C}^Ω is the VR functor, thus it is representable.

Definition (representable functors)

We say a functor $\mathfrak C$ is **representable** if there is a collection Ω of finite metric spaces such that: points x and x' in X are in the same block of $\mathfrak C(X, d_X)$ if and only if there exist:

- a sequence of points $z_0, \ldots, z_k \in X$ with $z_0 = x$ and $z_k = x'$,
- a sequence of metric spaces $\omega_1, \ldots, \omega_k \in \Omega$,
- for each $i=1,\ldots,k$, pairs of points $(\alpha_i,\beta_i)\in\omega_i$ and morphisms $f_i\in\operatorname{Mor}_{\mathcal{M}}(\omega_i,X)$ s.t. $f_i(\alpha_i)=z_{i-1}$ and $f_i(\beta_i)=z_i$.

If Ω is finite, then we say that $\mathfrak C$ is **finitely representable**. We write $\mathfrak C^{\Omega}$ for a functor that is represented by Ω .

Notice if $\Omega = \{\Delta_2(\delta)\}$ then we see that \mathfrak{C}^{Ω} is the VR functor, thus it is representable. Representability means: parametric description of clustering methods.

Clustering in \mathcal{M}^{inj} (and \mathcal{M}^{gen})

Theorem (Excisive = Representable)

A clustering functor is excisive if and only if it is representable.

Clustering in \mathcal{M}^{inj} (and \mathcal{M}^{gen})

Theorem (Excisive = Representable)

A clustering functor is excisive if and only if it is representable.

Theorem (Factorization)

If \mathcal{M} is either \mathcal{M}^{inj} or \mathcal{M}^{gen} then if \mathfrak{C} is any \mathcal{M} -functorial finitely represented functor, represented by Ω ,

Then
$$\mathfrak{C}=\mathfrak{R}_1\circ \boxed{\mathfrak{T}^\Omega}$$

Clustering in \mathcal{M}^{inj} (and \mathcal{M}^{gen})

Theorem (Excisive = Representable)

A clustering functor is excisive if and only if it is representable.

Theorem (Factorization)

If \mathcal{M} is either \mathcal{M}^{inj} or \mathcal{M}^{gen} then if \mathfrak{C} is any \mathcal{M} -functorial finitely represented functor, represented by Ω ,

Then $\mathfrak{C} = \mathfrak{R}_1 \circ \boxed{\mathfrak{T}^{\Omega}} \Leftarrow$ a certain transformation that changes the metric:

$$\mathfrak{T}^\Omega:\mathcal{M} o\mathcal{M}$$

•

Excisive clustering functors in \mathcal{M}^{inj}

Our factorization theorem suggests how to change metrics to account for **density**– ameliorate SL's **chaining effect**.

Figure : \mathfrak{C}^{Ω} , with $\Omega = \{\Delta_n(\delta)\}$ for increasing n, requires more and more density.

Excisive clustering functors in \mathcal{M}^{inj}

Our factorization theorem suggests how to change metrics to account for **density**– ameliorate SL's **chaining effect**.

Figure : \mathfrak{C}^{Ω} , with $\Omega = \{\Delta_n(\delta)\}$ for increasing n, requires more and more density.

Related to DBSCAN (network clustering, and database mining)!

More generality in $\mathcal{M}^{\textit{inj}}$

Figure : A metric space that encodes a notion of "density" different from that provided by $\Delta_3(\delta)$.

Same thing for HC methods

Figure: Dendrograms arising from $\mathfrak{R}^{\Delta m}$ applied to a randomly generated points in \mathbb{R}^2 . Top: from left to right we show dendrograms corresponding to $\mathbf{m}=\mathbf{2},\mathbf{3}$ and $\mathbf{4}$. Bottom: partitioning induced on data by each dendrogram using parameters corresponding to red lines shown over dendrograms.

Roadmap for classification

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \bullet \mathcal{M}^{iso} (small)
 - \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Discussion

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - \bullet \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

• Kleinberg's nonexistence result.

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - \bullet \mathcal{M}^{gen} (large)
 - \mathcal{M}^{inj} (medium)
- Conclusion

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - M^{gen} (large)
 - M^{inj} (medium)
- Conclusion

- Kleinberg's nonexistence result.
- category theory: language for reasoning about clustering.

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - M^{gen} (large)
 - M^{inj} (medium)
- Conclusion

- Kleinberg's nonexistence result.
- category theory: language for reasoning about clustering.
- Future: better understanding of non-excisive functors in \mathcal{M}^{inj} .

- Motivation
- Categories
- FrameworkInput Categories
 - Output Categories
- Functors
- Results
 - \mathcal{M}^{iso} (small)
 - M^{gen} (large)
 - M^{inj} (medium)
- Conclusion

- Kleinberg's nonexistence result.
- category theory: language for reasoning about clustering.
- Future: better understanding of non-excisive functors in \mathcal{M}^{inj} .
- note: also established results for hierarchical clustering

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - M^{iso} (small)
 - M^{gen} (large)
 - M^{inj} (medium)
- Conclusion

- Kleinberg's nonexistence result.
- category theory: language for reasoning about clustering.
- Future: better understanding of non-excisive functors in \mathcal{M}^{inj} .
- note: also established results for hierarchical clustering
- In context of HC: metric structures on M lead to stability and convergence (Gromov-Hausdorff distances).

- Motivation
- Categories
- Framework
 - Input Categories
 - Output Categories
- Functors
- Results
 - M^{iso} (small)
 - M^{gen} (large)
 - M^{inj} (medium)
- Conclusion

- Kleinberg's nonexistence result.
- category theory: language for reasoning about clustering.
- Future: better understanding of non-excisive functors in \mathcal{M}^{inj} .
- note: also established results for hierarchical clustering
- In context of HC: metric structures on M lead to stability and convergence (Gromov-Hausdorff distances).
- Paper in FoCM, 2013. Also JMLR, 2010.
- Ongoing work on extending to networks.
 Joint with Carlsson, Ribeiro, Segarra.
 Some unexpected results.

Acknowledgements

- DARPA grant HR0011-05-1-0007
- ONR grant N00014-09-1-0783
- Stanford University, The Ohio State University.
- Ryan Lewis for help preparing the slides!

Any questions?