Lab #3: Devide and Conquer

Students implemented the following problems using "Devide and Conquer" technique.

1. Multiplication of Large Integers

Requirements: Multiplication of two positive integers of n bits.

Input	Output
Content of the "input_1.txt" file:	
1^{st} Big integer	Result of the multiplication
2^{nd} Big integer	
Example:	
123456	12345600000
100000	

2. Strassen's Matrix Multiplication

Input	Output
Content of the "input_2.txt" file:	
Integer n represent number of rows and columns.	
Matrix 1	Result matrix
[Blank line]	
Matrix 2	
Example:	
4	
1 1 1 1	
1 1 1 1	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1 1	
	4 4 4 4
1 1 1 1	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1 1	
1 1 1 1	

3. Find the substring with largest sum of elements in an array: Given an integer array which has n elements: $a_0, a_2, ..., a_{n-1}$ Find (and identify the subarray) the largest value of: $\sum_{k=i}^{j} a_k, 0 \le i \le k \le j \le n-1$.

Input	Output
Content of the "input_3.txt" file: - 1 st line: positive integer n represent size of the given array 2 nd line: n integers, separated by a single space " ".	 - 1st line: The required subarray - 2nd line: Begin index and End index. - 3rd line: The largest total value.
Example:	2 3 -4 5
6	1 4
-1 2 3 -4 5 -9	6

4. Closest-Pair Problem: Let $P = \{p_0, p_1, ..., p_{n-1}\}$ be a list of n > 1 points in the Cartesian plane. Find a pair of points with the smallest distance between them.

Input	Output
Content of the "input_4.txt" file: - 1 st line: positive integer n represent the number of points - Next n lines: each line is a pair of diaphragm degrees and bounce degrees represent the point. Separated by a single space " ".	ALL pair of points with the smallest distance. Each pair located on a single line.
Example: 4	
0 0	(0,0) (0,1)
0 1	(0,1) (1,1)
$\left \begin{array}{cc}1\ 1\\2\ 2\end{array}\right $	

5. The change-making problem: Given k denominations $x_1 < x_2 < ... < x_k$. Find the minimum number of coins (of certain denominations) that add up to a given amount of money n.

Note: Assumed the minimum denomination is 1.

Requirement: Using upgrade version

Input	Output
Content of the "input_5.txt" file: - 1 st line: k positive integers represent k denominations, sorted descending, separated by a single space " ". The last value is 1. - 2 nd line: positive integers n represent the amount money to be exchanged.	Denomination 1: amountDenomination 2: amountDenomination k: amount
Example: 25 10 5 1 72	25: 2 10: 2 5: 0 1: 2

• FILE SUBMISSION REGULATION

- Only submit files with .cpp extensions: 1.cpp, 2-1.cpp, 2-2.cpp Project submission is illegal.
- .cpp files must be located in MSSV folder, then be compressed into MSSV.zip(.rar).
- Source code must receive input and return output as specified for each problem. Submissions with wrong regulation will result in a "0" (zero).
- Plagiarism and Cheating will result in a "0" (zero) for the entire course.
- Contact: **bhthong@fit.hcmus.edu.vn** for more information.