Arquiteturas Paralelas e Distribuídas

Programação distribuída: passagem de mensagens

Eduardo Furlan Miranda

Baseado em: MAZIERO, C. A. Sistemas Operacionais: Conceitos e Mecanismos. 2019.

Comunicação entre tarefas

- Tarefas cooperantes precisam trocar informações entre si
- Se as tarefas estão no mesmo processo, elas compartilham a mesma área de memória e a comunicação pode então ser implementada facilmente, usando variáveis globais comuns
- Caso as tarefas pertençam a processos distintos, não existem variáveis compartilhadas
 - A comunicação tem de ser feita, p.ex., usando bibliotecas
- Tarefas em computadores diferentes
 - Se comunicam usando a rede
 - Velocidade de transmissão varia conforme a tecnologia de rede

IPC (Inter-Process Communication)

Comunicação intraprocesso (ti \rightarrow t j), interprocessos (t j \rightarrow tk) e intersistemas (tk \rightarrow tl)

Aspectos da comunicação

- Formato dos dados a transferir
- Sincronismo exigido nas comunicações
- Necessidade de buffers
- Nº de emissores/receptores envolvidos em cada ação de comunicação
- Velocidade
- etc.

Comunicação direta ou indireta

- Direta
 - enviar (dados, destino)
 - receber (dados, origem)
- Indireta
 - emissor e receptor n\u00e3o precisam se conhecer
 - se relacionam através de um canal de comunicação
 - enviar (dados, canal)
 - receber (dados, canal)

Sincronismo

- Síncrona (ou bloqueante)
 - operações de envio e recepção de dados bloqueiam (suspendem) as tarefas envolvidas até a conclusão da comunicação

Assíncrona (ou não-bloqueante)

 caso o emissor e o receptor operem ambos de forma assíncrona, torna-se necessário criar um canal ou buffer para armazenar os dados da comunicação entre eles

Semissíncrona (ou semibloqueante)

- Comportamento síncrono (bloqueante) durante um prazo predefinido
- Caso esse prazo se esgote sem que a comunicação tenha ocorrido, a primitiva se encerra com uma indicação de erro

Formato de envio

- A informação enviada pelo emissor ao receptor pode ser vista basicamente de duas formas
 - como uma sequência de mensagens independentes, cada uma com seu próprio conteúdo, ou
 - como um fluxo sequencial e contínuo de dados, imitando o comportamento de um arquivo com acesso sequencial

Comunicação baseada em mensagens

Abordagem baseada em mensagens

- Cada mensagem consiste de um pacote de dados que pode ser tipado ou não
- O pacote é recebido ou descartado pelo receptor em sua íntegra
 - não existe a possibilidade de receber "meia mensagem"
- Ex.: message queues do UNIX e os protocolos de rede IP e UDP

Comunicação como fluxo contínuo de dados

- O canal de comunicação é visto como o equivalente a um arquivo
 - o emissor "escreve" dados nesse canal, que serão "lidos" pelo receptor respeitando a ordem de envio dos dados
- Não há separação lógica entre os dados enviados em operações separadas
 - o receptor não vê os dados como conjuntos separados ou "pacotes" distintos; para ele, é como se fosse um único fluxo contínuo
 - eles podem ser lidos byte a byte ou em grandes blocos a cada operação de recepção, a critério do receptor
- Ex.: pipes do UNIX e o protocolo de rede TCP/IP

Comunicação baseada em fluxo de dados

Capacidade dos canais

- O comportamento síncrono ou assíncrono de um canal de comunicação pode ser afetado pela presença de buffers
 - Capacidade nula (n = 0): transferência direta sem cópias intermediárias
 - Capacidade infinita ($n = \infty$): emissor sempre pode enviar dados, armazenados em buffer do canal enquanto o receptor não consome
 - Capacidade finita (0 < n < ∞): ao tentar enviar dados em um canal
 já saturado, o emissor poderá ficar bloqueado até surgir espaço no
 buffer do canal e conseguir enviar (comportamento síncrono) ou
 receber um retorno indicando o erro (comportamento assíncrono)

Confiabilidade dos canais

 Canal confiável: transporta todos os dados enviados através dele para seus receptores, respeitando seus valores e a ordem em que foram enviados

Número de participantes

M : emissores N : receptores

- M:N, através de um mailbox
 - Cada mensagem é recebida por apenas um receptor (em geral aquele que pedir primeiro)
 - A comunicação continua sendo ponto-a-ponto, através de um canal compartilhado
 - Essa abordagem é conhecida como mailbox
 - Funciona como um buffer de dados, no qual os emissores depositam mensagens e os receptores as consomem

- M:N, através de um barramento de mensagens
 - Cada mensagem é recebida por vários receptores
 - Conhecida como barramento de mensagens (message bus), canal de eventos ou ainda canal publish-subscribe

