Diagnosing Performance Changes by Comparing Request Flows

Raja Sambasivan, et al.

Presented by Mingrui Zhang(1110379057) Hongxu Chen(1110379002)

January 3, 2014

Part I

Introduction

Outline

Difficulties

Performance problems in distributed systems

- May have many root causes
- May be contained in any one or more of the component processes
- May emerge from the interactions among component processes

An Example

Debugging a feature addition

Client

NFS server

Metadata server

An Example

Before addition

Every file access needs a MDS access

An Example

After: Metadata prefetched to clients

Most requests don't need MDS access

Debugging a feature addition

- Adding metadata prefetching reduced performance instead of improving it
- How to efficiently diagnose this?

Debugging a feature addition

- Adding metadata prefetching reduced performance instead of improving it
- How to efficiently diagnose this?

Outline

Request-flow comparison will show

Jump to evaluation

Request-flow comparison will show

Jump to evaluation

Request Flow Comparison

- Identifies distribution changes
 - Distinct from anomaly detection
 - E.g. Magpie, Pinpoint, etc.
- Satisfies many use cases
 - Performance regressions/degradations
 - Eliminating the system as the culprit

Request Flow Comparison

- Identifies distribution changes
 - Distinct from anomaly detection
 - E.g. Magpie, Pinpoint, etc.
- Satisfies many use cases
 - Performance regressions/degradations
 - Eliminating the system as the culprit

Contributions

- Heuristics for identifying mutations, precursors, and for ranking them
 - Implementation in Spectroscope
- Use of Spectroscope to diagnose
 - 8 Unsolved problems in Ursa Minor
 - Problems in Google services

Contributions

- Heuristics for identifying mutations, precursors, and for ranking them
 - Implementation in Spectroscope
- Use of Spectroscope to diagnose
 - Unsolved problems in Ursa Minor
 - Problems in Google services

Part II

Spectroscope Workflow

Outline

Overview

- Input: two periods of activity
 - non-problem period graph
 - 2 a problem period graph
- Categrazation
 - Response time mutation
 - Structural mutation and precursor
- Ranking by expected contribution to the performance change
- Visulation

Figure: Spectroscope's workflow for comparing request flows

Outline

Spectroscope workflow (i)

Graphs via end-to-end tracing

- Used in research & production systems
- Works as follows:
 - Tracks trace points touched by requests
 - Request-flow graphs obtained by stitching together trace points accessed
- ullet Yields <1% overhead request sampling

Example: Graph for a striped read

- Node:trace point
- Edge:latency

Outline

Spectroscope workflow (ii)

Categorization

- Problem: Even small distributed systems can service hundreds to thousands of requests per second, so comparing all of them individually is not feasible.
- It is meaningless to compare individual requests flows
- Groups together similar request flows
 - 1 Categories: basic unit for comparisons
 - 2 Allows for mutation identification by comparing per-category distributions

Categorization

- Problem: Even small distributed systems can service hundreds to thousands of requests per second, so comparing all of them individually is not feasible.
- It is meaningless to compare individual requests flows
- Groups together similar request flows
 - Categories: basic unit for comparisons
 - Allows for mutation identification by comparing per-category distributions

What to bin into a category?

- Identically structured requests
 - Uses same path/similar cost expectation
- Same path/similar costs notion is valid
 - For 88 99% of Ursa Minor categories
 - For 47 69% of Bigtable categories
 - Lower value due to sparser trace points
 - 2 Lower value also due to contention

Outline

Spectroscope workflow (iii)

Types of Mutations

Figure: Types of Mutations

- response-time mutations
 - increased cost between the periods
 - same structure, different response time
 - Root cause localized by identifying interactions responsible
- structural mutations
 - different paths through the system in the problem period
 - Root cause localized by:
 - identifying their precursors
 - ② identifying how mutation & precursor differ

Identifying response-time mutations

use of Kolmogorov-Smirnov two-sample, non-parametric hypothesis test

- Sets apart natural variance from mutations
- Also used to find interactions responsible

Identifying structural mutations

- Assume similar workloads executed
 - Categories with more problem period requests contain mutations
 - 2 Reverse true for precursor categories
- Threshold used to differentiate natural variance from categories mutations

Mapping mutations to precursors

- eliminate different root nodes in precursor categories
- remove precursor categories having decreased in request count less than the increase in request count of the structure-mutation category
- rank remaining precursor categories according to likelihood of having donated requests

Figure: Only two categories are reserved

Outline

Spectroscope workflow (iv)

UI layer

UI layer

Part III

Experiemental appratus

Outline

Methodoly

Three complementary metrics provided for evaluation

- ullet The percentage of the 10 highest-ranked categories that are relevant $(Top\ 10rel.)$
- ullet The percentage of false-positive categories (FPs)
- Request coverage(Cov.)

Name	Manifestation	Root cause	# of results	Top 10 rel. %	FPs %	Cov.%
MDS config	Structural	Config. change	128	100	2	2
RMWs	Structural	Env. change	3	100	0	100
MDS prefetch. 50	Structural	Internal change	7	29	71	93
MDS prefetch. 10	Structural	Internal change	16	70	56	96
Create behaviour	Structural	Design problem	11	40	64	N/A
$100 \mu s$ delay	Response time	Internal change	17	0	100	0
$500 \mu s$ delay	Response time	Internal change	166	100	6	92
1ms delay	Response time	Internal change	178	100	7	93
Periodic spikes	No change	Env. change	N/A	N/A	N/A	N/A

Name	Manifestation	Root cause	# of results	Top 10 rel. %	FPs %	Cov.%
MDS config	Structural	Config. change	128	100	2	2
RMWs	Structural	Env. change	3	100	0	100
MDS prefetch. 50	Structural	Internal change	7	29	71	93
MDS prefetch. 10	Structural	Internal change	16	70	56	96
Create behaviour	Structural	Design problem	11	40	64	N/A
	Response time	Internal change	17	0	100	0
	Response time	Internal change	166	100	6	92
	Response time	Internal change	178	100	7	93
Periodic spikes	No change	Env. change	N/A	N/A	N/A	N/A

MDS ¹ configuration change

• used Spectroscope to compare request flows between two runs of *postmark-large*, one from before the check-in and one from after.

¹Metadata Server

Name	Manifestation	Root cause	# of results	Top 10 rel. %	FPs %	Cov.%
MDS config	Structural	Config. change	128	100	2	2
RMWs	Structural	Env. change	3	100	0	100
MDS prefetch. 50	Structural	Internal change	7	29	71	
MDS prefetch. 10	Structural	Internal change	16	70	56	
Create behaviour	Structural	Design problem	11	40	64	N/A
$100 \mu s$ delay	Response time	Internal change	17	0	100	
	Response time	Internal change	166	100	6	
1ms delay	Response time	Internal change	178	100	7	
Periodic spikes	No change	Env. change	N/A	N/A	N/A	N/A

Read-modify-writes

Compare request flows between a run of IoZone in which

- the Linux client's I/O size was set to 16KB and
- the Linux client's I/O size was set to 4KB

Name	Manifestation	Root cause	# of results	Top 10 rel. %	FPs %	Cov.%
MDS config	Structural	Config. change	128	100	2	2
RMWs	Structural	Env. change	3	100	0	100
MDS prefetch. 50	Structural	Internal change	7	29	71	93
MDS prefetch. 10	Structural	Internal change	16	70	56	96
Create behaviour	Structural	Design problem	11	40	64	N/A
$100 \mu s$ delay	Response time	Internal change	17	0	100	0
$500 \mu s$ delay	Response time	Internal change	166	100	6	92
1ms delay	Response time	Internal change	178	100	7	93
Periodic spikes	No change	Env. change	N/A	N/A	N/A	N/A

MDS prefetching Jump to Graph

- Compared two runs of *linux-build*, one with prefetching disabled and another with it enabled.
- \bullet SM_THRESHOLD set to be $50,\!10$ respectively.

Name	Manifestation	Root cause	# of results	Top 10 rel. %	FPs %	Cov.%
MDS config	Structural	Config. change	128	100	2	2
RMWs	Structural	Env. change	3	100	0	100
MDS prefetch. 50	Structural	Internal change	7	29	71	93
MDS prefetch. 10	Structural	Internal change	16	70	56	96
Create behaviour	Structural	Design problem	11	40	64	N/A
$100 \mu s$ delay	Response time	Internal change	17	0	100	0
$500 \mu s$ delay	Response time	Internal change	166	100	6	92
1ms delay	Response time	Internal change	178	100	7	93
Periodic spikes	No change	Env. change	N/A	N/A	N/A	N/A

Create behaviour

- To serve a CREATE, the metadata server executed a tight inter-component loop with a storage node
- Categories containing structural mutations executed this loop more times than their precursor categories

Name	Manifestation	Root cause	# of results	Top 10 rel. %	FPs %	Cov.%
MDS config	Structural	Config. change	128	100	2	2
RMWs	Structural	Env. change	3	100	0	100
MDS prefetch. 50	Structural	Internal change	7	29	71	93
MDS prefetch. 10	Structural	Internal change	16	70	56	96
Create behaviour	Structural	Design problem	11	40	64	N/A
$100 \mu s$ delay	Response time	Internal change	17	0	100	0
$500 \mu s$ delay	Response time	Internal change	166	100	6	92
1ms delay	Response time	Internal change	178	100	7	93
Periodic spikes	No change	Env. change	N/A	N/A	N/A	N/A

Slowdown due to code changes

- Compare request flows between two runs of SFS97.
- Injecting $100\mu s$, $500\mu s$, and 1ms spin loops

Name	Manifestation	Root cause	# of results	Top 10 rel. %	FPs %	Cov.%
MDS config	Structural	Config. change	128	100	2	2
RMWs	Structural	Env. change	3	100	0	100
MDS prefetch. 50	Structural	Internal change	7	29	71	93
MDS prefetch. 10	Structural	Internal change	16	70	56	96
Create behaviour	Structural	Design problem	11	40	64	N/A
$100 \mu s$ delay	Response time	Internal change	17	0	100	0
$500 \mu s$ delay	Response time	Internal change	166	100	6	92
1ms delay	Response time	Internal change	178	100	7	93
Periodic spikes	No change	Env. change	N/A	N/A	N/A	N/A

Periodic spikes

Currently suspect the problem to be backup activity initiated from the facilities department.

Outline

Experiences at Google

- Inter-cluster performance
- Performance change in a large service
- Challenges remain in scaling request-flow comparison techniques to large distributed services

Summary

- Introduced request-flow comparison as a new way to diagnose perform changes
- Presented algorithms for localizing problems by identifying mutations
- Showed utility of our approach by using it to diagnose real, unsolved problems