Exercise 5.1

(a)

(b)

Exercise 5.2

- (a) Since the equivalence relation \sim is reflexive, we have that for all $x \in S$ that $(x, x) \in \sim$. Therefore, for any equivalence class $[x]_{\sim} = \{y \in S \mid x \sim y\}$ there must exist a $y \in [x]_{\sim}$ with x = y. Each equivalence class of the set $E = \{[x]_{\sim} \mid x \in S\}$ has the latter property. Therefore, every element of S is in some equivalence class in E.
- (b) I will show this by an indirect proof. Assume there is are $x,y,z\in S$ with $x\in [y]_{\sim},x\in [z]_{\sim}$ and $[y]_{\sim}\neq [z]_{\sim}$. Because equivalence relations are symmetric, we have that for arbitrary s,q that $s\in [q]_{\sim}$ iff $q\in [s]_{\sim}$. Therefore $x\in [y]_{\sim}\leftrightarrow y\in [x]_{\sim}$ and $x\in [z]_{\sim}\leftrightarrow z\in [x]_{\sim}$. We have a contradiction, since we assumed $[y]_{\sim}\neq [z]_{\sim}$ which is equivalent to $[x]_{\sim}\neq [x]_{\sim}$, but it is the case that $[x]_{\sim}=[x]_{\sim}$. Thus every element of S is in at most one equivalence class in E.

Exercise 5.3

Exercise 5.4

- (a) Let R be a total order over an arbitrary set S and let $x, y \in S$. If x = y, then the statements xRy and yRx are the same statements and thus count as only one statement. If $x \neq y$, then we have, because partial relations are antisymmetric, that if $xRy \in R$, then $yRx \notin R$ and vice versa. Therefore, either $xRy \in R$ xor $yRx \in R$ is true.
- (b) I will disprove this statement by a counterexample. Let $S = \{a, b\}$. The only strict orders over S which exist are $R_1 = \{(a, b)\}$, $R_2 = \{(b, a)\}$. Let's look at the strict order R_1 . Here a is minimal, since there is no $y \in R_1$ with yR_1a . The element a is not maximal, since there exists $y \in R_1$ with aR_1y which is y = b. An analogous argument can be made for R_2 . Therefore, there does not exist a strict order over

S where all $x \in S$ are both minimal and maximal. Thus the statement is false.

Exercise 5.5

- (a)
- (b)
- (c)
- (d)
- (e)
- (f)