

FixationNet: Forecasting Eye Fixations in Task-Oriented Virtual Environments

Zhiming Hu¹, Andreas Bulling², Sheng Li¹, Guoping Wang¹

¹Peking University ²University of Stuttgart

Project URL: cranehzm.github.io/FixationNet

Human Visual Attention

Application of Visual Attention

Marketing Strategy Analysis [Zamani et al. 2016]

Cognitive Research [Kiefer et al. 2017]

Medical Education [Kok et al. 2017]

は京大学 PEKING UNIVERSITY

Application of Visual Attention

Gaze-based Interaction [Pfeiffer et al. 2008]

Collaborative System [Zhang et al. 2017]

Gaze-contingent
Eyeglasses
[Padmanaban et al. 2019]

Application of Visual Attention in VR

Gaze-contingent Rendering [Patney et al. 2016]

Redirected Walking [Sun et al. 2018]

Layout Optimization [Alghofaili et al. 2019]

Application of Visual Attention in VR

VR Content Design [Sitzmann et al. 2018]

Gaze Guidance [Grogorick et al. 2017]

LOD Management [Lee et al. 2009]

Research Goals

- Analyze and reveal the characteristics of users' task-oriented visual attention in virtual reality
- Forecast (temporally predict future) eye fixations based on the characteristics of visual attention

Salient Object Detection

Top: Original Images; Bottom: Salient Objects

[1] https://mmcheng.net/msra10k/

Saliency Prediction

Top: Original Images; Bottom: Saliency Maps

[1] http://saliency.mit.edu/results_mit300.html

Visual Attention Prediction in VR

Gaze Prediction in Static Free-Viewing Virtual Environments [Hu et al. 2019]

Visual Attention Prediction in VR

Gaze Prediction in Dynamic Free-Viewing Virtual Environments [Hu et al. 2020]

Our Work vs. Previous Work

Prediction Goal

Eye Fixations vs. Salient Objects, Saliency Maps

> Scene

Immersive Virtual Environments vs. Images, Videos Task-Oriented Situations vs. Free-Viewing Conditions

FixationNet

Contributions

- Propose a novel learning-based fixation prediction model (FixationNet)
- Analyze and reveal the characteristics of users' task-oriented visual attention in VR
- Build a task-oriented VR eye tracking dataset

Data Collection

- > Participants: 27 users (15 male, 12 female, ages 17-32)
- > Stimuli: four immersive virtual environments
- ➤ Apparatus: HTC Vive, eye tracker
- Procedure: visual search task
- Data: VR content, task-related objects, eye fixations, head movements

Stimuli

Data Collection

Data Collection Process

Fixation-Gaze Correlation

Fixation-gaze correlations in the horizontal (left) and vertical (right) directions

Eye fixations are highly correlated with historical gaze positions

Fixation-Task Correlation

Fixation-task correlations in the horizontal (left) and vertical (right) directions

Fixations are correlated with task-related objects

Fixation-Saliency Correlation

The distribution of users' fixation positions on the salient regions

The fixation positions are mostly located in the regions with high saliency values

Fixation-Head Correlation

Fixation-head correlations in the horizontal (left) and vertical (right) directions

Fixations have correlations with head velocities

FixationNet Model

FixationNet Model

Architecture of FixationNet model

Experiments and Results

Performance in Task-Oriented Situations

Performances in task-oriented situations at different time intervals

FixationNet outperforms other methods at different prediction times

Experiments and Results

Performance in Free-Viewing Conditions

Performances in free-viewing conditions at different time intervals

FixationNet outperforms other methods at different time intervals

Discussion

Limitations

- Our dataset is restricted to visual search task
- > Our model employs pre-computed cluster centers
- > The influence of sound is not considered in our model

Discussion

Future Work

- Overcome the limitations
- ➤ Improve our model by considering other factors related to users' visual attention
- Explore the problem of forecasting users' long-term eye fixations
- Convert our model to other systems like AR and MR systems

Thank you