Bitcoin: A Peer-to-Peer Electronic Cash System

• • •

Satoshi Nakamoto 2008

Presented By: Ayush Jain

P2P electronic cash system with no trusted third party

Problems?

- ★ Track Ownership
- ★ Double Spending
 - Race Attack
 - Finney Attack
 - 51% Attack

Coin Transaction

Block

- ★ A ledger of transaction data
- ★ Contains hash of the previous block
- ★ Finite size (~ 1 MB)

New Transactions

Collect into Block

Timestamp

Extend

Accept if Valid

Broadcast Block

Proof-of-Work

Properties

- ★ Target is currently 6.65 e+12
 - \circ Lower value \rightarrow exponentially greater difficulty
 - Readjusted every 2016 blocks (~ 2 weeks)
- **★** Impractical to rewrite history
- ★ No Guarantees

Why do the hard work?

Incentives

- **★** Coinbase Transaction
 - 12.5 BTC (~ \$46k) to the miner
 - 83% already mined.
 - Halves every 210,000 blocks
- ★ Transaction Fees
 - (Input Value Output Value)
 - o 10/30 minutes ~ 42 cents
 - \circ 60 minutes \sim 26 cents

Saving Disk Space

Transactions Hashed in a Merkle Tree

After Pruning Tx0-2 from the Block

Combining & Splitting Value

Privacy

Exponential Difficulty

- p = probability an honest node finds the next block
- q = probability the attacker finds the next block
- z = number of blocks that have been linked after the transaction

$$1 - \sum_{k=0}^{z} \frac{\lambda^{k} e^{-\lambda}}{k!} (1 - (q/p)^{(z-k)})$$

Conclusion

- **★** Trust → 'Cryptographic Proof'
- ★ Digital Signatures + PoW

Thank You