UNSCENTED KALMAN FILTER ALGORITHM OVERVIEW

Given sensor data **z**, **t** (measurement vector, timestamp):

If 1st data:	initialize x, P (state vector, state covariance matrix)
Else:	 Compute dt (time difference) between new t and previous measurement's t update(z, dt)

update(z, dt):

State Prediction using StatePredictor

- Given: current x, current P, dt
- Get: predicted_x, predicted_P, predicted_sigma_x

Measurement Prediction using MeasurementPredictor (depends on sensor used)

- Given: predicted_sigma_x, sensor_type (lidar or radar)
- Get: predicted_sigma_z, predicted_z, S (measurement covariance)

State Update using StateUpdater

- Given: z, S, predicted_P, predicted_x, predicted_z, predicted_sigma_x, predicted_sigma_z
- Get: updated P, updated x (and nis)
- Sigma matrices contain representative points in the gaussian distribution of a vector. Each column is a point.
- In the figure below, the point in center the mean state vector \mathbf{x} , while the ellipse represents the state covariance matrix \mathbf{P} which is assumed to be gaussian.

StatePredictor

1st Step:

Given: current x, current PGet: augmented_sigma_x

2nd Step:

- Given: augmented_sigma_x, dt

- Get: predicted_sigma_x

3rd Step:

- Given: predicted_sigma_x

- Get: predicted_x

4th Step:

- Given: predicted_x, predicted_sigma_x

- Get: predicted_P

1st step:

- The $augmented_sigma_x$ is a matrix that contains representative points of the gaussian distribution of state x
- It's augmented because it includes speed_noise_variance and yawrate_noise_variance which are process noises
- The computation of the sigma points consider the covariance of the process from the current P, the effect of this process covariance is scaled with a tuned parameter lambda

2nd step:

The predicted_sigma_x is extrapolated from the time difference dt and sigma_x including the noise values stored at the augmented_sigma_x at that time

3rd Step:

 The predicted_x is the mean of all the sigma points stored at predicted_sigma_x scaled with appropriate weights. These weights come from the tuned parameter lambda

4th Step

 The predicted_P covariance is computed from the all the differences between the predicted_x and each predicted_sigma_x point also affected by the mentioned weights

MeasurementPredictor

1st Step:

Given: predicted_sigma_xGet: predicted_sigma_z

2nd Step:

- Given: predicted_sigma_z

- Get: predicted_z

3rd Step:

- Given: predicted_sigma_z

Get: S (measurement covariance)

1st step:

 Just like when we map measurement vector z to state vector x (and back), we just map each sigma point in sigma_x to sigma_z. In essence, we just transform the points in state space to measurement space.

2nd step:

 Analogous to the 3rd step of StatePredictor, we just get the mean of all sigma points scaled by the mentioned weights

3rd step

 We compute for the measurement covariance S, analogous to the 4th step of StatePredictor, note that the noise covariance R of the sensor is considered

StateUpdater

1st Step:

- Given: predicted_z, predicted_x,
 predicted_sigma_z, predicted_sigma_x

Get: Tc (cross correlation matrix)

2nd Step:

- Given: predicted_x, predicted_P, z,
 predicted_z, S, Tc,

Get update P, updated x, (and nis)

1st step:

- We compute the cross correlation between state ${\bf x}$ and measurement ${\bf z}$, by considering the difference between state ${\bf x}$ and each sigma point in ${\bf x}$ -space as well as between measurement ${\bf z}$ and each sigma point in ${\bf z}$ -space .

2nd step:

- We get the kalman gain K from the cross correlation matrix Tc and measurement covariance matrix S, and use that difference between the actual measurement and predicted measurement to get the updated P and x, the nis can be computed here as well which can be used to gauge how well our filter is performing

PROCESS NOISE

$$\nu_k = \begin{bmatrix} \nu_{a,k} \\ \nu_{\ddot{\psi},k} \end{bmatrix}$$

INDEPENDENT NOISE PROCESSES DOESN'T EXPRESS EFFECT ON STATE VECTOR INDEPENDENT OF Δt

$$x_{k+1} = f(x_k, \nu_k) = x_k +$$

$$\begin{aligned} & \text{PROCESS MODEL} \\ & x_{k+1} = f(x_k, \nu_k) = x_k + \begin{bmatrix} \frac{v_k}{\dot{\psi}_k} \left(\sin(\psi_k + \dot{\psi}_k \Delta_t) - \sin(\psi_k) \right) \\ \frac{v_k}{\dot{\psi}_k} \left(-\cos(\psi_k + \dot{\psi}_k \Delta_t) + \cos(\psi_k) \right) \\ 0 \\ \dot{\psi}_k \Delta t \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{\frac{1}{2}}{2} (\Delta t)^2 \cos(\psi_k) \cdot \nu_{a,k} \\ \frac{1}{2} (\Delta t)^2 \sin(\psi_k) \cdot \nu_{a,k} \\ \Delta t \cdot \nu_{a,k} \\ \frac{1}{2} (\Delta t)^2 \cdot \nu_{\ddot{\psi}_{,k}} \\ \Delta t \cdot \nu_{\ddot{\psi}_{,k}} \end{bmatrix} \end{aligned}$$

$$rac{rac{1}{2}(\Delta t)^2 ext{cos}\left(\psi_k
ight)\cdot
u_{a,k}}{rac{1}{2}(\Delta t)^2 ext{sin}(\psi_k)\cdot
u_{a,k}} \ rac{\Delta t\cdot
u_{a,k}}{rac{1}{2}(\Delta t)^2\cdot
u_{oldsymbol{\psi}_k}} \ rac{\Delta t\cdot
u_{oldsymbol{\psi}_k}}{\Delta t\cdot
u_{oldsymbol{\psi}_k}}$$

$$x_{a,k=} egin{bmatrix} p_x \ p_y \ v \ \psi \ \psi \ \nu_a \
u_z \end{bmatrix}$$

$$n_a = 7$$

NUMBER SIGMA POINTS

$$n_{\sigma} = 2n_a + 1 = 15$$

$$\star \star \star \star \star \star \star \star \star \star$$

$$P_{a,k|k} = \begin{bmatrix} P_{k|k} & 0 \\ 0 & Q \end{bmatrix}$$

CALCULATE AUGMENTED SIGMA POINTS

$$X_{a,k|k} = \begin{bmatrix} x_{a,k|k} & x_a \end{bmatrix}$$

$$X_{a,k|k} = \begin{bmatrix} x_{a,k|k} & x_{a,k|k} + \sqrt{(\lambda + n_a)P_{a,k|k}} & x_{a,k|k} - \sqrt{(\lambda + n_a)P_{a,k|k}} \end{bmatrix}$$

$$x_{a,k|k} - \sqrt{(\lambda + n_a)P_{a,k|k}}$$

with scaling factor
$$\,\lambda=3-n_a\,$$

$$\nu_{a,k} \sim N(0, \sigma_a^2)$$

$$\nu_{\ddot{\psi},k} \sim N(0,\sigma_{\ddot{\psi}}^2)$$

PROCESS NOISE **COVARIANCE MATRIX**

$$Q = E\left\{\nu_k \cdot \nu_k^T\right\} = \begin{bmatrix} \sigma_a^2 & 0\\ 0 & \sigma_{\ddot{\psi}}^2 \end{bmatrix}$$

Notice in figure in the left:

- rho_dot is not equal to v. rho_dot is a projection of v on line L
- The yaw corresponds to the direction of the object's (blue dot) movement, phi on the other hand corresponds to the sensor's (car's perspective) position