

On the Complexity of SNP Block Partitioning Under the Perfect Phylogeny Model

An appropriate subtitle

Jens Gramm¹ Tzvika Hartman² Till Nierhoff³

¹Universität Tübingen, Germany

²Bar-Ilan University, Ramat-Gan, Israel

³International Computer Science Institute, Berkeley, USA

Outline

Introduction

The Model and the Problem The Integrated Approach

Bad News: Hardness Results

Hardness of PP-Partitioning of Haplotype Matrices Hardness of PP-Partitioning of Genotype Matrices

Good News: Tractability Results
Perfect Path Phylogenies
Tractability of PPP-Partitioning of Genotype Matrices

What is haplotyping and why is it important?

You hopefully know this after the previous three talks. . .

General formalization of haplotyping.

Inputs

- ► A genotype matrix *G*.
- ► The rows of the matrix are taxa / individuals.
- ► The columns of the matrix are SNP sites / characters.

Outputs

- ► A haplotype matrix *H*.
- \blacktriangleright Pairs of rows in H explain the rows of G.
- ► The haplotypes in *H* are biologically plausible.

Our formalization of haplotyping.

Inputs

- ► A genotype matrix *G*.
- ► The rows of the matrix are individuals / taxa.
- ▶ The columns of the matrix are SNP sites / characters.
- ▶ The problem is directed: one haplotype is known.
- ► The input is biallelic: there are only two homozygous states (0 and 1) and one heterozygous state (2).

Outputs

- ► A haplotype matrix *H*.
- ▶ Pairs of rows in *H* explain the rows of *G*.
- The harletynes in H form a perfect phylogeny

but . . .

1. Data may be missing.

- ► This makes the problem NP-complete . . .
- ▶ ... even for very restricted cases.

Solutions:

► Additional assumption like the rich data hypothesis.

2. No perfect phylogeny is possible.

- ► This can be caused by chromosomal crossing-over effects.
- ▶ This can be caused by incorrect data.
- ▶ This can be caused by multiple mutations at the same sites.

Solutions:

- Look for phylogenetic networks.
- ► Correct data.
- Find blocks where a perfect phylogeny is possible.

- 1. Partition the site set into overlapping contiguous blocks.
- 2. Compute a perfect phylogeny for each block and combine them.
- 3. Use dynamic programming for finding the partition.

- 1. Partition the site set into overlapping contiguous blocks.
- 2. Compute a perfect phylogeny for each block and combine them.
- 3. Use dynamic programming for finding the partition.

- 1. Partition the site set into overlapping contiguous blocks.
- 2. Compute a perfect phylogeny for each block and combine them.
- 3. Use dynamic programming for finding the partition.

- 1. Partition the site set into overlapping contiguous blocks.
- 2. Compute a perfect phylogeny for each block and combine them.
- 3. Use dynamic programming for finding the partition.

Objective of the integrated approach.

- 1. Partition the site set into noncontiguous blocks.
- 2. Compute a perfect phylogeny for each block and combine them.
- 3. Compute partition while computing perfect phylogenies.

Objective of the integrated approach.

- 1. Partition the site set into noncontiguous blocks.
- 2. Compute a perfect phylogeny for each block and combine them.
- 3. Compute partition while computing perfect phylogenies.

The formal computational problem.

We are interested in the computational complexity of the function χ_{PP} :

- ▶ It gets genotype matrices as input.
- ▶ It maps them to a number k.
- ► This number is minimal such that the sites can be covered by k sets, each admitting a perfect phylogeny. (We call this a pp-partition.)

Finding pp-partitions of haplotype matrices.

We start with a special case:

- ► The inputs *M* are already haplotype matrices.
- ► The inputs *M* do not allow a perfect phylogeny.
- ▶ What is $\chi_{PP}(M)$?

Example

```
0 0 0 1
0 1 0 0
1 0 0 0
0 1 0 0
M: 1 0 0 0
0 1 0 1
1 1 0 0
0 0 1 0
1 0 1 0
```


Finding pp-partitions of haplotype matrices.

We start with a special case:

- ► The inputs *M* are already haplotype matrices.
- ► The inputs *M* do not allow a perfect phylogeny.
- ▶ What is $\chi_{PP}(M)$?

Example

Perfect phylogeny Perfect phylogeny $\chi_{PP}(M) = 2$.

Bad news about pp-partitions of haplotype matrices.

Theorem

Finding optimal pp-partition of haplotype matrices is equivalent to finding optimal graph colorings.

Proof sketch for first direction.

- 1. Let G be a graph.
- 2. Build a matrix with a column for each vertex of G.
- 3. For each edge of G add four rows inducing the submatrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- 4. The submatrix enforces that the columns lie in different perfect phylogenies.

Implications for pp-partitions of haplotype matrices.

Corollary

If $\chi_{PP}(M) = 2$ for a haplotype matrix M, we can find an optimal pp-partition in polynomial time.

Corollary

Computing χ_{PP} for haplotype matrices is

- ► NP-hard,
- ► not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

Finding pp-partitions of genotype matrices.

Now comes the general case:

- ► The inputs *M* are genotype matrices.
- ▶ The inputs *M* do not allow a perfect phylogeny.
- ▶ What is $\chi_{PP}(M)$?

Example

No perfect phylogeny is possible.

Finding pp-partitions of genotype matrices.

Now comes the general case:

- ► The inputs *M* are genotype matrices.
- ▶ The inputs *M* do not allow a perfect phylogeny.
- ▶ What is $\chi_{PP}(M)$?

Example

Admirion						
	2	2	2	2		
И:	1	0	0	0		
	0	0	0	1		
	0	0	1	0		
	0	2	2	0		
	1	1	0	0		

Perfect phylogeny Perfect phylogeny $\chi_{PP}(M) = 2$.

Bad news about pp-partitions of haplotype matrices.

Theorem

Finding optimal pp-partition of genotype matrices is at least as hard as finding optimal colorings of 3-uniform hypergraphs.

Proof sketch.

- 1. Let G be a 3-uniform hypergraph.
- 2. Build a matrix with a column for each vertex of G.
- 3. For each hyperedge of G add four rows inducing the submatrix $\begin{pmatrix} 2 & 2 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- 4. The submatrix enforces that the three columns do not all lie in the same perfect phylogeny. □

Implications for pp-partitions of genotype matrices.

Corollary

Even if we know $\chi_{PP}(M) = 2$ for a genotype matrix M, finding a pp-partition of any fixed size is still

- ► NP-hard,
- ▶ not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

Automatic optimal pp-partitioning is hopeless, but...

- ► The hardness results are worst-case results for highly artificial inputs.
- Real biological data might have special properties that make the problem tractable.
- ► One such property is that perfect phylogenies are often perfect path phylogenies:
 - In HapMap data, in 70% of the blocks where a perfect phylogeny is possible a perfect path phylogeny is also possible.

Example of a perfect path phylogeny.

Genotype matrix

	Α	В	C
	2	2	2
G:	0	2	0
	2	0	0
	0	2	2

Haplotype matrix

	Α	В	C
	1	0	0
	0	1	1
	0	0	0
H :	0	1	0
	0	0	0
	1	0	0
	0	0	0
	0	1	1

Perfect path phylogeny

The modified formal computational problem.

We are interested in the computational complexity of the function χ_{PPP} :

- ▶ It gets genotype matrices as input.
- ▶ It maps them to a number k.
- ► This number is minimal such that the sites can be covered by k sets, each admitting a perfect path phylogeny. (We call this a ppp-partition.)

Good news about ppp-partitions of genotype matrices.

Theorem

Optimal ppp-partitions of genotype matrices can be computed in polynomial time.

Algorithm

- 1. Build the following partial order:
 - ► Can one column be above the other in a phylogeny?
 - ► Can the columns be the two children of the root of a perfect path phylogeny?
- 2. Cover the partial order with as few compatible chain pairs as possible.
 - For this, a maximal matching in a special graph needs to be computed.

Summary

- ► Finding optimal pp-partitions is intractable.
- ▶ It is even intractable to find a pp-partition when just two noncontiguous blocks are known to suffice.
- For perfect path phylogenies, optimal partitions can be computed in polynomial time.

Genotype matrix

	/ \	D	_	\mathcal{L}	_
	2	2	2	2	2
G:	0	1	2	1	0
	1	0	0	1	2
	0	2	2	0	0

Partial order

Partial order: →

Genotype matrix

	Å	В	C	D	Ε	
	2	2	2	2	2	
G:	0	1	2	1	0	
	1	0	0	1	2	
	0	2	2	0	0	

Partial order

Partial order: →

Compatible as children of root: —

Return
 Re

A maximal matching in the matching graph

Return
 Re

A maximal matching in the matching graph induces perfect path phylogenies.

Return
 Re

