MATEMÁTICA DISCRETA I Examen Final - 28/07/2015

Apellido y Nombre:

Condición:

- Justifique todas sus respuestas.
- No se puede usar calculadora ni celular.
- Para aprobar debe conseguir al menos 12 puntos en la parte teórica y al menos 28 puntos en la parte práctica.

Parte Teórica (30 pts.)

- 1. (10 pts.) Enunciar el Teorema Fundamental de la Aritmética y demostrar la existencia de la descomposición.
- 2. (10 pts.)
 - (i) Definir congruencia módulo m.
 - (ii) Demostrar que si $a \equiv b \pmod{y}$ $c \equiv d \pmod{m}$, entonces $a + c \equiv b + d \pmod{m}$.
- 3. (10 pts.) Sean G = (V, A) y G' = (V', A') dos grafos.
 - (i) Dar la definición de isomorfismo entre G y G'.
 - (ii) Demostrar que si G y G' son isomorfos y α es el isomorfismo, entonces $\delta(v) = \delta(\alpha(v))$, para todo $v \in V$.

Parte Práctica (70 pts.)

4. a) (10 pts.) Usando el método de la demostración de la ecuación lineal en congruencia, encontrar todas las soluciones de

$$21 x \equiv 12$$
 (27).

- b) (5 pts.) Dar todas las soluciones x de la ecuación del punto anterior tal que -15 < x < 20.
- 5. Resolver los siguientes ejercicios.
 - a) (9 pts.) Demostrar por inducción que la siguiente igualdad se verifica para todo $n \in \mathbb{N}$:

$$\sum_{i=1}^{n} (-1)^{i+1} i^2 = \frac{(-1)^{n+1} n(n+1)}{2}.$$

b) (9 pts.) Sea $\{a_n\}_{n\geq 0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 2, \\ a_1 = 8, \\ a_n = -4 a_{n-1} + 5 a_{n-2}, \text{ para } n \ge 2. \end{cases}$$

Probar que $a_n = 3 - (-5)^n$ para todo $n \ge 0$.

c) (7 pts.) Expresar el número $(2432)_5$ en base 7.

- 6. Se desea formar una contraseña de 5 caracteres con las 27 letras del alfabeto y los 10 dígitos del 0 al 9 ¿De cuántas maneras distintas se puede formar dicha contraseña si:
 - a) (3 pts.) no hay restricciones?
 - b) (4 pts.) no hay dos letras juntas?
 - c) (4 pts.) todos los caracteres son distintos?
 - d) (4 pts.) todos los caracteres son distintos y aparecen exactamente dos números?
- 7. Determinar si las siguientes afirmaciones son verdaderas o falsas, justificando apropiadamente.
 - a) (5 puntos) Existe una caminata euleriana en el siguiente grafo:

- b) (5 puntos) La cifra de las unidades de 3^{240} es 7.
- c) (5 puntos) Para cada $n \in \mathbb{N}$, $n(n+1)(3n^2-n-2)$ es divisible por 3.

Ejercicios para alumnos libres

(Cada ejercicio mal hecho o no resuelto descuenta 10 pts.)

- 1. Expresar el número 4854 en base 6.
- 2. Calcular el máximo común divisor (152, 88) usando el Algoritmo de Euclides.

]	L	2	3	Total T			1	2	Total L	
4.	a	4.b	5.a	5.b	5.c	6.a	6.1	6.0	e 6	.d
	7.a 7		7.b	7.c		Total	P	ГОТ)TAL	