Formal Methods for High-Assurance Software Engineering

HomeWork Assignment 04

Shahin Roozkhosh shahin@bu.edu U01670169

September 2020

Problem 1. From Lecture Slides 11, entitled Quantified Boolean Formulas (QBF's): part 1 Do the exercise on page 31.

Solution. We prove these equivalencies semantically, rather than providing a theoretical proof. Starting with the case that all wff's are quantifier-free.

$$\Phi = (\phi \lor \psi_1) \land (\phi \lor \psi_2) \land (\phi \lor \psi_3)
\Psi = \exists y.(y \leftrightarrow \phi) \land (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3)$$

In order to show $\Phi \equiv \Psi$ it is sufficient to, semantically speaking, compare the last column of their truth tables and as you can see below, last columns of the truth tables for Φ and Ψ are exactly compatible, hence they are equivalent.

truth-table for WFF $\Phi = (\phi \vee \psi_1) \wedge (\phi \vee \psi_2) \wedge (\phi \vee \psi_3)$

ϕ	$ \psi_1 $	ψ_2	ψ_3	$\phi \lor \psi_1$	$\phi \lor \psi_2$	$\phi \lor \psi_3$	Φ
F	F	F	F	F	F	F	F
F	F	F	Т	F	F	Т	F
F	F	Т	F	F	Т	F	F
F	F	Т	Т	F	Т	Т	F
F	Т	F	F	Т	F	F	F
F	Т	F	Т	Т	F	Т	F
F	Т	Т	F	Т	Т	F	F
F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
T	F	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т	Т
Т	Т	Т	F	Т	Т	Т	Т
Т	Т	T	Т	Т	Т	Т	Т

truth-table for WFF $\Psi = \exists y. (y \leftrightarrow \phi) \land (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3)$ (next page)

Ţ	ட	Щ	Щ	ш	ш	ட	ட	⊢	⊢	⊢	F	⊢	⊢	F	⊢	⊢
$\Psi[y=1]$	ш	щ	ш	ш	ш	ш	ш	ш	-	F	F	F	–	–	F	T
$\Psi[y=0]$	ш	ш	ш	ш	ш	ш	ш	—	ш	ш	ш	ш	ш	ш	ш	Ь
$[y=1] \leftrightarrow \psi_3$	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	T
$[y=0] \leftrightarrow \psi_3$	ш	-	ш	⊢	ц	⊢	ц	⊢	ц	⊢	L	⊢	L.	⊢	L	T
$[y=1] \leftrightarrow \psi_2$	-	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	F	⊢	F	⊢	⊢	T
$[y=0] \leftrightarrow \psi_2$	ш	ш	⊢	⊢	ц	Щ	⊢	⊢	Щ	L	F	⊢	ш	ш	⊢	T
$[y=1] \leftrightarrow \psi_1$	-	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢	⊢
$[y=0] \leftrightarrow \psi_1$	ш	ц	ш	ц	⊢	⊢	⊢	⊢	ц	L	ш	L	⊢	F	⊢	⊢
$[y=1] \leftrightarrow \phi$	ш	ш	ш	ц	ц	ц	ц	ц	-	-	⊢	F	F	F	F	F
$y \mapsto [y = 0] \Leftrightarrow \phi$	F	F	F	F	F	F	F	F	ш	ш	ш	ш	ш	L	L	F
ψ_3	щ	-	ഥ	⊢	ഥ	⊢	ഥ	-	ഥ	-	ш	-	щ	F	ш	⊢
ψ_2	щ	щ	-	F	ഥ	ഥ	-	-	ഥ	ഥ	H	F	щ	ഥ	-	⊢
ψ_1	щ	щ		щ	-	-	-								-	⊢
ϕ	щ	щ	щ	ഥ	щ	щ	щ	щ	⊢	⊢	H	⊢	H	H	F	F

part 2 Do the exercise on page 32.

Problem 3. LCS 2.3.3 on page 160

Write down a sentence of predicate logic which intuitively holds in a model iff the model has (respectively):

part a) exactly three distinct elements:

Solution.

$$\exists x \exists y \exists z (((\neg(x=y) \land \neg(x=z)) \land \neg(y=x)) \land \forall t (((t=x) \lor (t=y)) \lor (t=z)))$$
(1)

part b) At most three distinct elements:

Solution. The answer is:

$$\phi_1 \wedge \phi_2 \wedge \phi_3 \tag{2}$$

As defined bellow:

 ϕ_1 describes Model with exactly one element as:

$$\phi_1 = \exists x \forall t (t = x) \tag{3}$$

 ϕ_2 describes Models with exactly two element:

$$\phi_2 = \exists x \exists y (\neg(x=y)) \land \forall t ((t=x) \lor (t=y)) \tag{4}$$

 ϕ_3 describes M_3 as:

$$\phi_3 = \exists x \exists y \exists z (((\neg(x=y) \land \neg(x=z)) \land \neg(y=x)) \land \forall t (((t=x) \lor (t=y)) \lor (t=z)))$$

$$(5)$$

part c) Write down an infinite set of FO sentences which hold in a model iff the model has infinitely many distinct elements.

Solution. We define model $M_{k(k=0,\cdots,\infty)}$ such that the model M_k is a set of models with **exactly** k distinct elements. These models definately exist and could be constructed following the approach we took at section (a) as an example for **exactly** 3 elements. Then the answer to this part would be a logical or over all formulas of ϕ_i where ϕ_i describes M_i .

$$\bigwedge_{i\geq 1}\phi_i\tag{6}$$

For example:

 ϕ_1 describes M_1 as:

$$\phi_1 = \exists x \forall t (t = x) \tag{7}$$

 ϕ_2 describes M_2 as:

$$\phi_2 = \exists x \exists y (\neg(x=y)) \land \forall t ((t=x) \lor (t=y))$$
(8)

 ϕ_3 describes M_3 as:

$$\phi_3 = \exists x \exists y \exists z (((\neg(x=y) \land \neg(x=z)) \land \neg(y=x)) \land \forall t (((t=x) \lor (t=y)) \lor (t=z)))$$
(9)

Problem 4. LCS 2.3.9 on page 161

Prove the validity of the following sequents in predicate logic, where F, G, P, and Q have arity 1, and S has arity 0 (a 'propositional atom'):

part a

$$\exists (S \to Q(x)) \vdash S \to \exists x \ Q(x) \tag{10}$$

part b

$$S \to \exists x Q(x) \vdash \exists x (S \to Q(x))$$
 (11)

1	$S \to \exists x Q(x)$	premise
2	$S \vee \neg S$	LEM
3	S	assume
4	$\exists x Q(x)$	\rightarrow e1,5
5	$\neg S \vee \exists x Q(x)$	$\forall i_2, 6$
6	$\neg S$	assume
7	$\neg S \vee \exists x Q(x))$	$\forall i_1, 3$
8	$\neg S \vee \exists x Q(x)$	$\lor e2, 3-4, 5-7$
9	$\neg S$	assume
10	S	assume
11	\perp	¬e9, 10
12	$Q(x_0)$	⊥e11
13	$S \to Q(x_0)$	\rightarrow i10 $-$ 12
14	$\exists x (S \to Q(x))$	$\exists x i 13$
15	$\exists x Q(x)$	assume
16	x_0	
17	$Q(x_0)$	assume
18	S	assume
19	$Q(x_0)$	17
20	$S \to Q(x_0)$	→i17 – 18
21	$\exists x(S \to Q(x))$	$\exists x i 19$
22	$\exists x (S \to Q(x))$	$\exists x$ e15, 17 $-$ 20
23	$\exists x (S \to Q(x))$	\vee e8, 9 - 14, 15 - 21, 1, 3 - 6

part c

$$\exists x P(x) \to S \vdash \forall x (P(x) \to S)$$
 (12)

 $\exists x P(x) \to S$ premise

2 X ₀	
$P(x_0)$	assume
$_4$ $\exists x P(x)$	$\exists x i \ 3$
$_{5}$ S	→e 1,4
6 $P(x_0) \rightarrow S$	\rightarrow i 3 – 5
$_{7} \forall x (P(x) \rightarrow S)$	$\forall x i \ 2-6$

part d

$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$
 (13)

1	$\forall x P(x) \to S$	premise
2	$\neg \exists x (P(x) \to S)$	assume
3	x_0	
4	$\neg P(x_0)$	assume
5	$P(x_0)$	assume
6	\perp	$\neg e4, 5$
7	S	<u>⊥e6</u>
8	$P(x_0) \to S$	\rightarrow i5 – 7
9	$\exists x (P(x) \to S)$	$\exists x i, 8$
10	1	¬e9, 2
11	$\neg \neg P(x_0)$	$\neg i, 4 - 10$
12	$P(x_0)$	¬¬e, 11
13	$\forall x P(x)$	$\forall x \mathbf{i}, 3-12$
14	S	\rightarrow e1, 13
15	P(x)	assume
16	S	14
17	P(x) o S	\rightarrow i15 – 16
18	$\exists x (P(x) \to S)$	$\exists x i, 17$
19		$\neg e2, 18$
20	$\neg\neg\exists x(P(x)\to S)$	$\neg i2 - 19$
21	$\exists x (P(x) \to S)$	$\neg \neg e20$

Problem 5.

 $\begin{tabular}{ll} \textbf{Solution.} & \texttt{https://github.com/ro0zkhosh/CS511/blob/master/HW4/shahin_streamroller.py} \\ \end{tabular}$

Problem 6.

Solution. https://github.com/ro0zkhosh/CS511/blob/master/HW4/shahin_whokilledaunty.in

Who killed Aunt Agatha? Buttler did! Here's the output of the prover8:

```
**Proof l at 0.01 (+ 0.01) seconds.

* Length of proof is 16.

* Level of proof is 16.

* Level of proof is 16.

* Maximum clause weight is 12.000.

* Given clauses 15.

1 (exists x (LivesIn(x,D) & Killed(x,A)) # label(non_clause). [assumption].

2 LivesIn(A,D) & LivesIn(B,D) & LivesIn(C,D) & (all x (LivesIn(x,D) -> x = A | x = B | x = C)) # label(non_clause). [assumption].

9 (exists x ((x = A | x = C | x = B) & Killed(x,A))) # label(non_clause) # label(goal). [goal].

12 LivesIn(cl,D). [clausify(1)].

13 Killed(cl,A). [clausify(1)].

13 Killed(cl,A). [clausify(1)].

17 -LivesIn(x,D) | A = x | B = x | C = x. [clausify(2)].

25 A | = x | -Killed(x,A). [deny(9)].

26 C != x | -Killed(x,A). [deny(9)].

27 B != x | -Killed(x,A). [deny(9)].

30 cl = B | cl = C. [resolve(17,a,12,a),flip(a),flip(b),flip(c)].

36 cl = B | cl = C. [back unit del(29),unit_del(a,34)].

37 cl != C. [resolve(26,b,13,a),flip(a)].

38 cl = B. [back_nuit_del(30),unit_del(b,37)].

41 Killed(B,A). [back_rewrite(13),rewrite([39(1)])].
```

According to the line 41, Buttler is the killer.

First Order formulas:

1. Someone who lives in Dreadbury Mansion killed Aunt Agatha.

$$\exists x(LivesIn(x,D) \land Killed(x,A))$$
 (14)

2. Agatha, the butler, and Charles live in Dreadbury Mansion, and are the only people who live therein.

$$LivesIn(A,D) \wedge LivesIn(B,D) \wedge LivesIn(C,D) \\ \wedge (\forall x(LivesIn(x,D) \rightarrow ((x=A) \vee (x=B) \vee (x=C)))$$
 (15)

3. A killer always hates his victim, and is never richer than his victim.

$$\forall x \ Killed(x,y) \rightarrow (Hates(x,y) \land \neg (RicherThan(x,y))) \tag{16}$$

4. Charles hates no one that Aunt Agatha hates.

$$\forall x \ Hates(A, x) \rightarrow \neg Hates(C, x)$$
 (17)

5. Agatha hates everyone except the butler.

$$\forall x (\neg(x=B) \to Hates(A,x))$$
 (18)

6. The butler hates everyone not richer than Aunt Agatha.

$$\forall x (\neg RicherThan(x, A) \rightarrow Hates(B, x))$$
 (19)

7. The butler hates everyone Aunt Agatha hates.

$$\forall x (Hates(A, x) \to Hates(B, x))$$
 (20)

8. No one hates everyone.

$$\forall y (\exists x \, \neg Hates(y, x)) \tag{21}$$

9. Agatha is not the butler.

$$\neg (A = B) \tag{22}$$