

Análisis de Sistemas Dinámicos y Estimación (EL3103)

Clase auxiliar 10

Prof. Heraldo Rozas.

Prof. Aux. Erik Saez - Maximiliano Morales

1 Resumen

Estimador de máxima verosimilitud:

Se define el estimador de máxima verosimilitud del parámetro θ de una distribución conocida $f_X(x|\theta)$, teniendo un vector de n observaciones de dicha variable, como:

$$\hat{\theta}_{ML} = \arg \max_{\theta \in \Theta} L(X_1, \dots, X_n | \theta) \tag{1}$$

Donde:

$$L(X_1, \dots, X_n | \theta) = f_{X_1, \dots, X_n}(x_1, \dots, x_n | \theta)$$
(2)

Un criterio equivalente (y a veces mejor) es el siguiente:

$$\hat{\theta}_{ML} = \arg \max_{\theta \in \Theta} \ln[L(X_1, \dots, X_n | \theta)]$$
(3)

Estimador lineal de mínimos cuadrados:

Sea Y un vector de observaciones, un vector $\theta \in \mathbb{R}$ a inferir y un estimador $\hat{\theta} : \mathbb{X} \to \mathbb{R}^n$, tal que se tiene la relación lineal $Y = X \cdot \hat{\theta} + V^n$, con $X \in \mathbb{M}_{mn}$ y V^n un vector de ruido. Se define como el estimador lineal de mínimos cuadrados a:

$$\hat{\theta}_{LS}(Y) = (X^T \cdot X)^{-1} \cdot X^T \cdot Y \tag{4}$$

Tal que este minimiza la distancia entre el parámetro θ y el estimador $\hat{\theta}$, es decir, se minimiza $\|\hat{\theta} - \hat{\theta}_{LS}(Y)\|^2$. Para cada estimador de mínimos cuadrados, se define su varianza residual (distancia entre Y e Y_{est}) en función del estimador como:

$$\sigma_R^2 = \sum_{i=1}^n (Y_i - (X \cdot \hat{\theta}_{LS})_i)^2$$
 (5)

Finalmente, el valor que permite definir qué tan bueno es el estimador con respecto al estimador de media muestral típico $\sigma_Y^2 = \sum_{i=1}^n (Y_i - (X \cdot \hat{\theta}_{\text{Media}})_i)^2$ es:

$$R^2 = 1 - \frac{\sigma_R^2}{\sigma_Y^2} \tag{6}$$

Para este valor, existen 3 casos:

- \bullet $R^2 = 1$: El estimador es óptimo pues posee una varianza mucho menor al de la media muestral.
- $R^2 = 0$: El estimador es equivalente al de la media muestral.
- $R^2 < 0$: El estimador posee peor desempeño que la media muestral.

Estimador MAP

Sea el vector $X=(X_1,\ldots,X_n)$ tal que X_i i.i.d. $\forall i\in\{1,\ldots,n\},$ con función de densidad condicionada al parámetro θ $f_{X|\theta}$. A su vez, θ posee la función de densidad f_{θ} . Se define el estimador de máxima verosimilitud a posteriori de $\dot{\theta}$ como:

$$\hat{\theta}_{MAP} = \arg\max_{\theta \in A} f_{\theta|X} \tag{7}$$

Este término puede desarrollarse más para obtener una expresión más fácil de obtener usando el teorema de Bayes:

$$\hat{\theta}_{MAP} = \arg \max_{\theta \in A} f_{X|\theta} \cdot f_{\theta}$$

$$\iff \hat{\theta}_{MAP} = \arg \max_{\theta \in A} \ln(f_{X|\theta} \cdot f_{\theta})$$
(9)

$$\iff \hat{\theta}_{MAP} = \arg\max_{\theta \in A} \ln(f_{X|\theta} \cdot f_{\theta})$$
 (9)

1. Considere X_1, X_2, \dots, X_n variables aleatorias i.i.d. observaciones de la siguiente f.d.p.m.:

$$p(x|\lambda) = \frac{e^{-\lambda} \cdot \lambda^x}{x!} \tag{10}$$

- 1. Encuentre el estimador de máxima verosimilitud $\hat{\lambda}_{ML}$.
- 2. Compruebe si el estimador encontrado es insesgado y consistente. *Hint*: Recuerde que una distribución $X \sim \text{Poisson}(\lambda)$ cumple que $\mathbb{E}(X) = \text{Var}(X) = \lambda$.
- 2. Considere un sistema con dos sensores que toman medidas de una constante desconocida θ . Cada observación es ruidosa y puede ser modelada de la forma:

$$y(1) = \theta + v(1) \tag{11}$$

$$y(2) = \theta + v(2) \tag{12}$$

Donde v(1) y v(2) son variables aleatorias definidas por ruido no-correlacionado, media cero y varianzas σ_1^2 y σ_2^2 respectivamente.

En ausencia de cualquier otra información, es decir, sin información previa acerca del valor de θ , se busca el mejor estimador lineal de θ de la forma:

$$\hat{\theta} = k_1 \cdot y(1) + k_2 \cdot y(2) \tag{13}$$

- 1. Encuentre el estimador de mínimos cuadrados de θ .
- 2. Determine si dicho estimador es insesgado.
- 3. Determine la varianza residual y el valor de R^2 . ¿Qué puede decir del desempeño del estimador?
- 4. Encuentre los valores para k_1 y k_2 que definen un estimador **insesgado** para θ que minimiza el error cuadrático medio, $\mathbb{E}[(\theta \hat{\theta})^2]$.
- 5. Obtenga el valor R^2 para este estimador y déjelo en función de las variables del problema.
- 6. Obtenga los valores factibles para cada caso de R^2 y determine cuál estimador es mejor.
- 3. Sean X_1, \ldots, X_n muestras *i.i.d.* de la variable aleatoria $X \sim \mathcal{N}(\mu, \sigma^2)$. A su vez, μ es una variable aleatoria continua tal que $\mu \sim \mathcal{N}(0, \sigma_0^2)$.
 - 1. Determine las densidades $f_{X_1,...,X_n}$ y f_{μ} .
 - 2. Obtenga el estimador MAP de μ , $\hat{\mu}_{MAP}$.
 - 3. Determine los casos límite en que $\sigma_0^2 \to \infty$ y $\sigma_0^2 \to 0$. Interprete cada situación.