

TTT4120 Digital Signal Processing Fall 2021

Lecture: Course Arrangements & Introduction

Prof. Stefan Werner stefan.werner@ntnu.no Office B329

Department of Electronic System

© Stefan Werner

1

Contents and learning outcomes

- Course arrangements and general introduction
- Discrete-time signals in time-domain

2

At your service

• Lecturer:

Professor Stefan Werner, stefan.werner@ntnu.no, room B329

• Teaching assistants (click to contact):

Franco

D 070

Mahamma

Hossein

Ehsan

Gianluca

3

3

At your service ...

- Student assistants:
 - Solveig Reppen Lunde, solverl@stud.ntnu.no
 - Helene Markeng, volrathb@stud.ntnu.no

Check Blackboard for any updates

4

Basic course information

- Course information
 - all information through Blackboard (BB)
 - open page exists

http://www.ntnu.edu/studies/courses/TTT4120

- · Teaching:
 - lectures on Tue 16:15-18:00 and Thu 14:15 16:00 (EL5)
 - tutoring/exercises Thu 16:15-18:00 (KJL1)
- Course material:
 - Proakis, Manolakis Digital Signal Processing, 4th Ed.
 - lecture notes on Blackboard (Norwegian/English)
 - lecture slides

5

5

Basic course information...

- Important for Fall term 2021
 - lectures at campus, but can change abruptly to online
 - homework sessions at campus; TAs can be contacted online
 - to facilitate distance learning, most material available on BB

6

Basic course information...

- Exercises:
 - 10-11 exercises, each up to 10 points
 - total of 50 points required to participate in exam (at least 25 points from exercises 6-11)
- Sessions will start next week
- Exam:
 - December 13, 9-13 (home exam)

7

Digital signal processing (DSP)

- What is a signal? **↑**
 - a varying (measurable) quantity
 - conveys information
- Signals can be deterministic or random
- Digital signal processing (DSP)
 - signal is a sequence of numbers
 - DSP involves transforming one signal into another signal

Signal processing is the enabling technology for the generation, transformation, and interpretation of information

8

Digital signal processing (DSP)

- Definition of DSP:
 - digitalization, processing, transmission and/or representation of physical (analog) signals
 - modeling of physical signals and systems
- DSP discipline provides a toolbox of methods and algorithms
 - digitalization and analysis of physical signals
 - analysis, design, and use of linear digital systems
 - mathematical treatment of discrete versions of physical signals
 - estimation and application of mathematical models for different signals and channels

9

9

Digital signal processing (DSP)...

• Discipline is quite theoretical

$$\begin{split} H(z) &= \sum_{k=0}^{M-1} b_k z^{-k} = \\ &= \sum_{k=0}^{(M-3)/2} h[k] z^{-k} + h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=(M+1)/2}^{M-1} h[k] z^{-k} \\ &= \sum_{k=0}^{(M-3)/2} h[k] z^{-k} + h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=(M+1)/2}^{M-1} h[M-1-k] z^{-k} \\ &= \sum_{k=0}^{(M-3)/2} h[k] z^{-k} + h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{l=0}^{(M-3)/2} h[l] z^{l-(M-1)} \\ &= h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=0}^{(M-3)/2} h[k] \big(z^{-k} + z^{k-(M-1)} \big) \\ &= h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=0}^{(M-3)/2} h[k] z^{-(M-1)/2} \big(z^{-(k-(M-1)/2)} + z^{k-(M-1)/2} \big) \\ &= \left(h \left[\frac{M-1}{2} \right] + \sum_{k=0}^{(M-3)/2} h[k] \left(z^{-(k-(M-1)/2)} + z^{k-(M-1)/2} \right) \right) z^{-(M-1)/2} \\ &= \left(h \left[\frac{M-1}{2} \right] + 2 \sum_{k=0}^{(M-3)/2} h[k] \cos[\omega((M-1)/2-k)] \right) e^{-j\omega(M-1)/2} \end{split}$$

1

Digital signal processing (DSP)...

• ... but also application oriented

13

13

Digital signal processing (DSP)...

• Traditional areas of DSP include, e.g.,

filter design

spectrum analysis

fast filtering algorithms

signal reconstruction

multirate filters

adaptive filters

14

Digital signal processing (DSP)...

• DSP influence on related disciplines

control digital communication (TTT4130)

estimation, detection and classification (TTT4275)

multimedia signal processing (TTT4135)

machine learning for signal processing (TTT4185)

15

15

Typical DSP intensive problems

- Signal enhancement, interference reduction
- Efficient coding for transmission or storage
- Control of industrial processes
- Navigation, positioning, surveillance
- Classification, identification, detection, and verification
- Within each problem formulation you may find many applications
- A single application may also require solving a variety of problems

16

Applications

• Efficient and robust signal representation

17

17

Applications...

• Digital signal transmission

18

Applications...

• Speech recognition

19

19

Applications...

• Medicine

20

Applications...

• Self-driving cars

2

21

Applications...

- Underwater communication
- Environmental monitoring

2

Digital versus analog signal processing

- Advantages:
 - easy to design and modify
 - possible to build complex systems
 - accuracy easier to control (word length of ADC)
 - errors in transmission and storage can be corrected
 - can be implemented in software
 - size decreases and less energy needed
 - same processor can time share different tasks
- Limitations:
 - signals with high bandwidth may require too fast processing and too high sampling rate

2

23

Prerequisites

- Vary with the study programme: 2-3 first weeks will be devoted to make sure all have a common understanding of basics
 - could be a lot of new things for "KYB," and some repetition for "ELSYS"
- Central concepts during first few weeks:
 - sampling
 - signals and systems in time and frequency
 - math: Fourier analysis, Laplace transform, complex numbers, partial fractions
 - statistics: probability density functions, expectations
 - MATLAB (or Python)

24

Course contents

- Introduction to discrete signals and systems
- Analysis of discrete systems/filters using z-transform
- Sampling of analog signals, Nyquist rate and reconstruction
- Sampling in frequency domain, DFT and FFT
- · Correlation and energy spectral density
- Stochastic signals, basic estimation theory, spectral estimation, and signal models, prediction
- Filter design and implementation
- · Quantization and quantization noise
- Multirate signal processing

2

25

Example questions

• Consider the following two operations

$$y[n] = \frac{1}{4}x[n] + \frac{1}{4}x[n-1] + \frac{1}{4}x[n-2] + \frac{1}{4}x[n-3]$$

$$y[n] = \frac{1}{4}x[n] - \frac{1}{4}x[n-1] + \frac{1}{4}x[n-2] - \frac{1}{4}x[n-3]$$

- Amplifies low/high frequencies? What is digital frequency?
- What about the following two operations (feedback)

$$y[n] = 0.6y[n-1] + x[n]$$

$$y[n] = 1.1y[n-1] + x[n]$$

- · Stability issues.
- How to figure out these things for more complicated signals?

26

27

What you should do

- Be active:
 - important to work throughout the whole semester
 - check lecture/homework material before sessions
 - ask questions
 - try to solve homeworks (not blindly copy someone else)
- Matlab/Python will replace pen and paper when dealing with physical signals
- Try to understand subject rather than only focus on rehearing exam questions

2

Reference group

- Quality control and feeback
 - few students from course (one from each programme)
 - be contact person/link to the students in your programme
 - three meetings during the course
- Volonteers?
- More information found here*

2

 $^{^*\} https://innsida.ntnu.no/wiki/-/wiki/English/Reference+groups+-+quality+assurance+of+education$