Chapter 8 Network Security

Internet security threats

Packet sniffing:

- m broadcast media
- m promiscuous NIC reads all packets passing by
- m can read all unencrypted data (e.g. passwords)
- m e.g.: C sniffs B's packets

Internet security threats

IP Spoofing:

- can generate "raw" IP packets directly from application, putting any value into IP source address field
- m receiver can't tell if source is spoofed
- m e.g.: C pretends to be B

Internet security threats

Denial of service (DOS):

- flood of maliciously generated packets "swamp" receiver
- m Distributed DOS (DDOS): multiple coordinated sources swamp receiver
- m e.g., C and remote host SYN-attack A

What is network security?

- Confidentiality (Secrecy, Privacy): only sender, intended receiver should "understand" msg contents
 - m sender encrypts msg
 - m receiver decrypts msg
- Authentication: sender, receiver want to confirm identity of each other
- Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

Network Security

- Sometimes the data transmitted between application processes is confidential, such as credit card numbers
- The idea of **encryption** is that
 - The sender applies an encryption function to the original plaintext message
 - The resulting **ciphertext message** is sent over the network
 - The receiver applies a reverse function (decryption) to recover the original plaintext
- The encryption/decryption process generally depends on a secret key shared between the sender and the receiver
- It can also be used to support **authentication** (verifying the identity of the remote participant) and **integrity** (making sure that the message has not been altered)

Security Issues

- The security issue can be divided into two parts
 - Cryptographic algorithms
 - Security services

Cryptographic Tools

Principles of Ciphers

- The sender applies an encryption function to the original plaintext message, resulting in a ciphertext message that is sent over the network
- The receiver applies a **decryption function** the **inverse** of the encryption function to recover the original plaintext
- Cryptographers have been led to the principle that encryption and decryption functions should be parameterized by a key
 - The functions should be considered public knowledge
 - Only the key need be secret

Principles of Ciphers

- Most ciphers are block ciphers
 - Take a plaintext block of a fixed size
 - The same plaintext block will always result in the same ciphtext block
- To prevent this problem
 - Each plaintext blocks is
 XORed with the previous block's ciphertext before being encrypted
 - Use an initialization vector (IV),
 which is a random number

Symmetric-key Ciphers

- In a symmetric-key cipher, both participants share the same key
- Symmetric-key ciphers are also known as secret-key ciphers
 - The shared key must be known only to the participants

DES (Data Encryption Standard)

• 64-bit key (56-bits + 8-bit parity)

• 16 rounds

• Each Round

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$$

Repeat for larger messages

General Depiction of DES Encryption Algorithm

Detail of Single Round

Detail of Single Round (cont.)

- L_i is the left half of the output text at round i.
- R_i is the right half of the output text at round i.
- C_i is the left half of the key at round i.
- D_i is the right half of the key at round i.

Expansion/Permutation (E table)

- We must expands R from 32 bits into 48 bits, so that it can be combined with the 48 bits K.
- Break R into eight 4-bits chunks and expand each chunk into 6 bits by stealing the rightmost and leftmost bit from the left and right adjacent 4-bits chunks (consult E table).

S-box

• You can think of S-box as just performing a manyto-one mapping from 6-bits numbers to 4-bits numbers.

S-box (cont.)

Middle 4 bits of input

											1					
	14 0 4 15	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
$\mathbf{S_1}$	0	15 1	7 14	4	14	2	13	1	10	6	12	11	9	5	3	8
	15	12	8	8 2	13	6	2	11 7	15 5	12 11	9	7 14	3 10	10	5	13
																-
6	15 3 0 13	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
S_2	3	13 14	4	7	15 10	2 4	8 13	14	12 5	0 8	1 12	10	6 9	9	11	5 15
	13	8	4 7 10	1	3	15	4	1 2	11	6	7	6	0	5	2 14	15
	10 13 13	0 7 6 10	9	14	6	3	15	5	1	13	12 5 2	7	11	4	2	8
S_3	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15 14	7
	13	10	0 4 13	0	3 8 6	4 15 9	6 3 8	0 7	11	15	14	12	5 11	10	14	12
	_ 1	10	13	U	0	7	0		- 4	13	14	3	11	3	4	12
	7 13 10 3	13 8 6 15	14	3	0	6	9	10	1	2 7 1	8 2	5	11	12	4	15
S_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	15	11 9 0	3 5 0 6	12 10	11	7	13	15 9	4	3 5	14 11	5 12	2 7	8 2	14
					10						li de la	***	12		-	1-4
220	2 14 4 11	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
S ₅	14	11	2	12 11	4	7	13	8	5 15	0	15	10	3	9	8	6
	11	2 8	2 1 12	7	10	13 14	7 2	13	6	9	12	5 9	6	3 4	0 5	14
			1	-		-	-		, in the second	1.0		STATE OF THE PARTY OF	10			-
	12 10 9 4	1	10	15	9	2 12	6	8	0	13	3	4	14	7	5	11
Se	10	15 14	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	4	3	15	2 5 12	7 2 9	8 5	12 15	10	7	0	4	10	6	13	11 8	13
			2	1.2	-		1.0	10		14			0	U	0	13
	4 13 1 6	11	2	14	15	0	8	13	3	12	9	7 12	5 2	10	6	1
S ₇	13	0	11	7	4	9	1 7	10	14	3	5	12	2	15	8	6
	6	11	11 11 13	13	12	3	7	14	10	15 5	6	8 15	0	5 2	9	12
			10		-	-	10		2	3	U	15	14	-	3	12
-	13 1 7 2	2	8 13	4	6	15	11	1	10	9	3	14	5	0	12	7
S_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	2	11	4 14	7	9	12 10	14	13	0 15	6	10	13	15	5	5	8
	-		1.4	,	150	10	0	13	13	12	9	U	2	2	0	11

Permutation Tables for DES

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24 17	16 9	8
57	49	41	33	25	17		1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (IP-1)

8	48	16	56	24	64	32
7	47	15	55	23	63	31
6	46	14	54	22	62	30
5		13	53	21	61	29
4		12	52	20	60	28
3		11	51	19	59	27
2			50	18	58	26
1	41	9	49	17	57	25
	7 6 5 4 3	7 47 6 46 5 45 4 44 3 43 2 42	7 47 15 6 46 14 5 45 13 4 44 12 3 43 11 2 42 10	7 47 15 55 6 46 14 54 5 45 13 53 4 44 12 52 3 43 11 51 2 42 10 50	7 47 15 55 23 6 46 14 54 22 5 45 13 53 21 4 44 12 52 20 3 43 11 51 19 2 42 10 50 18	7 47 15 55 23 63 6 46 14 54 22 62 5 45 13 53 21 61 4 44 12 52 20 60 3 43 11 51 19 59 2 42 10 50 18 58

(c) Expansion Permutation (E)

32bit-48bit expansion

				201		
32	1	2	3	4	5	į
4	5	6	7	8	9	ı
8	9	10	11	12	13	ı
12	13	14	15	16	17	A
16	17	18	19	20	21	ı
20	21	22	23	24	25	l
24	25	26	27	28	29	ı
28	29	30	31	32	1	i

(d) Permutation Function (P)

16	7	20	21	29	12	28	17
16 1 2 19	15 8 13	20 23 24 30	21 26 14	5	12 18 27	28 31 3	17 10 9 25
2 19	8	24	14	5 32 22	27	3	9
19	13	30	6	22	11	4	25

How to Decrypt?

• One nice feature of DES is that decryption uses the same algorithm as encryption, except that the application of the subkeys (K_i) is reversed.

• Why?

• Next, we consider a general combiner function F.

How to Decrypt? (cont.)

How to Decrypt? (cont.)

• First, consider the encryption process :

$$LE_{16} = RE_{15}$$

 $RE_{16} = LE_{15} \oplus F(RE_{15}, K_{16})$

• On the decryption side:

$$LD_{1} = RD_{0} = LE_{16} = RE_{15}$$

$$LD_{0} = RE_{16}$$

$$RD_{1} = LD_{0} \oplus F(RD_{0}, K_{16})$$

$$= RE_{16} \oplus F(RE_{15}, K_{16})$$

$$= [LE_{15} \oplus F(RE_{15}, K_{16})] \oplus F(RE_{15}, K_{16})$$

How to Decrypt? (cont.)

• The XOR has the following properties:

$$[A \oplus B] \oplus C = A \oplus [B \oplus C]$$
$$D \oplus D = 0$$
$$E \oplus 0 = E$$

• Thus, we have :

$$LD_1 = RE_{15}$$
$$RD_1 = LE_{15}$$

• In general case:

$$LD_{i} = RE_{16-i}$$

$$RD_{i} = LE_{16-i}$$

Public-key Ciphers

- A public-key cipher uses a pair of related keys, one for encryption and a different one for decryption
- The pair of keys is "owned" by just one participant

Keeps the decryption key secret so that only the owner can decrypt messages; this key is called the private key

Make the encryption key public so that anyone can encrypt messages for the owner; this key is called the public key

- RSA (Rivest, Shamir, and Adleman)

Public Key (RSA)

• Encryption & Decryption

$$c = m^e mod n$$

 $m = c^d mod n$

RSA (cont.)

- Choose two large prime numbers p and q (each 256 bits)
- Multiply p and q together to get n
- Choose the encryption key e, such that e and (p 1)
 x (q 1) are relatively prime.
- Two numbers are relatively prime if they have no common factor greater than one
- Compute decryption key d such that

$$d = e^{-1} mod ((p - 1) \times (q - 1))$$

- Construct public key as (e, n)
- Construct private key as (d, n)
- Discard (do not disclose) original primes p and q^{27}

The Mathematic Theory for RSA

• Theorem:

```
If C = M^e \mod n
then M = C^d \mod n (The parameters are defined above.)
```

Properties of Modular Arithmetic

Lemma 1:

```
If a is relatively prime to n and (a \times b) \mod n = (a \times c) \mod n then b \mod n = c \mod n.

pf:
```

 $b \mod n = c \mod n$ (同餘), iff $\exists p \in Z \ni (b-c) = pn$. Let $(a \times b) \mod n = (a \times c) \mod n = r$

Then
$$\exists p_1, p_2 \in Z \ni \begin{cases} a \times b = p_1 \times n + r \dots (1) \\ a \times c = p_2 \times n + r \dots (2) \end{cases}$$

Properties of Modular Arithmetic (cont.)

(1)-(2):
$$(b-c)a = (p_1-p_2)n$$

Since a is relatively prime to n, (b-c) is an integer Multiple of n, i.e.,

$$(b-c) = kn \text{ for some } n.$$
Thus, $b \mod n = c \mod n.$

Properties of Modular Arithmetic (cont.)

```
Lemma 2:

ab \mod n = (a \mod n)(b \mod n) \mod n

pf:

Let a \mod n = r_1 \Rightarrow a = np_1 + r_1

b \mod n = r_2 \Rightarrow b = np_2 + r_2 where p_1, p_2

then ab = (np_1 + r_1)(np_2 + r_2) = n(np_1p_2 + p_2r_1 + p_1r_2) + r_1r_2

\Rightarrow ab \mod n = [n(np_1p_2 + p_2r_1 + p_1r_2) + r_1r_2] \mod n

= r_1r_2 \mod n = (a \mod n)(b \mod n) \mod n
```

Fermat's Theorem

• Let Z_n is the set of nonnegative integers less then n, i.e., $Z_n = \{0,1,...,(n-1)\}$

Fermat's Theorem (cont.)

Lemma 3: Let $Z_p^a = \{0, (a \mod p), (2a \mod p), \dots, ((p-1)a \mod p)\}.$

If p is prime and a is a positive integer not divisible by p, then

$$Z_p^a = Z_p$$
.

Fermat's Theorem (cont.)

Theorem (Fermat's Theorem):

If p is prime and a is a positive integer not divisible by p, then

$$a^{p-1} \bmod p = 1 \bmod p$$

pf:

Since $Z_p^a = Z_p$, the products of all the elements in Z_p^a and Z_p are the same.

Fermat's Theorem (cont.)

Thus,

$$(a \times 2a \times ... \times (p-1)a) \mod p$$

$$= [(a \mod p) \times (2a \mod p) \times ... \times ((p-1)a \mod p)] \mod p$$

$$= (p-1) ! \mod p$$

Note that

$$a \times 2a \times ... \times ((p-1)a) = a^{p-1} \times (p-1)!$$

Therefore,

$$[a^{p-1} \times (p-1)!] \mod p = (p-1)! \mod p$$

Since (p-1)! is relatively prime to p,

$$a^{p-1} \mod p = 1 \mod p$$
 (Lemma 1)

Euler's Theorem

Define (*Euler's totient funtion*):

Euler's totient function $\phi(n)$ is defined to be the number of positive integers that are less than n and relatively prime to n.

• It is clear that for a prime number p,

$$\phi(p) = p-1.$$

• Then, for n = pq (p and q are two prime numbers)

$$\phi(n) = \phi(pq) = pq - [(q-1) + (p-1) + 1]$$

$$= pq - (p+q) + 1 = (p-1) \times (q-1)$$

$$= \phi(p) \times \phi(q)$$

Euler's Theorem (cont.)

Theorem (*Euler's Theorem*):

For every a and n that are relatively prime, then

$$a^{\phi(n)} \operatorname{mod} n = 1 \operatorname{mod} n.$$

pf:

Let R be the set of all integers that are less than n and relatively prime to n,

$$R = \{x_1, x_2, ..., x_{\phi(n)}\}.$$

Now multiply each element by a, and then modulo n,

$$S = \{ax_1 \mod n, ax_2 \mod n, ..., ax_{\phi(n)} \mod n\}.$$

Euler's Theorem (cont.)

Then R = S.

- 1. Since a is relatively prime to n and x_i is relatively prime to n, ax_i must also be relatively prime to n. Thus, all the members of S are intergers less than n and they are relatively prime to n.
- 2. All the elements in S are distinct. If $ax_i \mod n = ax_j \mod n$, then $x_i = x_j$ (contraction to that all the element in R are distinct.)

Euler's Theorem (cont.)

$$\prod_{i=1}^{\phi(n)} (ax_i \bmod n) = \prod_{i=1}^{\phi(n)} x_i$$

$$\Rightarrow \left(a^{\phi(n)} \prod_{i=1}^{\phi(n)} x_i \right) \bmod n = \left(\prod_{i=1}^{\phi(n)} x_i \right) \bmod n$$

$$\Rightarrow a^{\phi(n)} \bmod n = 1 \bmod n \quad \text{(Lemma 1)}$$

The Mathematical Theory for RSA (cont.)

Let's recall the definitions of all parameters.

- p, q, two prime numbers.
- n = pq.
- e is relatively prime to (p-1)(q-1), i.e. gcd((p-1)(q-1), e) = 1.
- $de \mod [(p-1)(q-1)] = 1 \mod [(p-1)(q-1)]$

Now, we need to prove:

if
$$C = M^e \mod n$$

then $M = C^d \mod n \ \forall M < n$

The Mathematical Theory for RSA (cont.)

pf:

$$de = k(p-1)(q-1)+1 = k\phi(n)+1$$
, where k is an integer.

If M is relatively prime to n, then

$$C^{d} \bmod n = (M^{e})^{d} \bmod n$$

$$= M^{ed} \bmod n$$

$$= M^{k\phi(n)+1} \bmod n$$

$$= \left[(M^{\phi(n)})^{k} \times M \right] \bmod n$$

$$= \left[(M^{\phi(n)})^{k} \times M \right] \bmod n$$

$$= \left[(M^{\phi(n)})^{k} \bmod n \times (M \bmod n) \right] \bmod n \text{ (Lemma 2)}$$

$$= M \bmod n = M \quad \forall M < n$$

The Mathematical Theory for RSA (cont.)

Suppose M is not relatively prime to n and M < n = pq. W.L.G., let M = sp for some integer s. From Euler's theorem,

$$M^{\phi(q)} \mod q = 1 \mod q$$

$$\Rightarrow M^{k\phi(q)} \mod q = 1 \mod q$$

$$\Rightarrow \left[M^{k\phi(q)} \right]^{\phi(p)} \mod q = 1 \mod q$$

$$\Rightarrow M^{k\phi(n)} \mod q = 1 \mod q$$

$$\Rightarrow M^{k\phi(n)} \mod q = 1 \mod q$$

$$\Rightarrow M^{k\phi(n)} = 1 + tq \qquad \text{for some integer } t$$
Multiplying each side by $M = sp$, then

$$M^{ed} = M^{k\phi(n)+1} = M + tspq = M + tsn$$

 $\Rightarrow M^{ed} \mod n = M \mod n = M \quad \forall M < n$

Authentication

- Another application of public-key ciphers is authentication
- The private key can be used with the encryption function to encrypt messages so that they can only be decrypted using the public key
- Anyone with the public key could decrypt such a message
- It tells the receiver that such a message could only have been created by the owner of the keys

Authenticate the owner of the keys

Message Integrity

- Encryption alone does not provide data integrity
- Sometimes two participants are worried about the possibility of an impostor sending message that claim to be from one of them
- An authenticator is a value, to be included in a transmitted message, that can be used to verify simultaneously the authenticity and the data integrity of a message
- An authenticator includes redundant information about the message contents
 - Like a checksum or cyclic redundancy check (CRC)
 - Also known as a message integrity code (MIC)
 - The receiver can check the MIC to verify the validity of the message

Hash Function

- One way to generate an authenticator is using a hash function
- Hashing algorithms (message digest function): does not involve the use of keys
 - Map a potentially large message into a small fixed-length number (cryptographic checksum)
 - MD5 (Message Digest version 5)

Message Integrity – Signature

- A digest encrypted with a public-key algorithm but using the private key is called a digital signature
- The receiver of a message with a digital signature can prove to any **third party** that the sender **really sent** that message
 - The third party can use the sender's public key to check for the message

Message Integrity – Hash with Secret Value

- Take a secret value known to only the sender and the receiver
 - Message authentication code (MAC)

Hash message authentication code (HMAC)

Authentication Protocols

Authentication Protocols

- Before two participants are likely to establish a secure channel between themselves
 - They wish to verify that the other participant is who he or she claims to be
- The authentication protocols may base on:
 - Using secret key cryptography (such as DES)
 - Need to share a secret key
 - Using public key cryptography (such as RSA)
 - Do not need to share a secret key

Public-key Authentication (Synchronous)

- In the first protocol, Alice and Bob's clocks are synchronized
- Alice sends Bob a message with a timestamp and her identity in plaintext plus her digital signature
- Bob uses the digital signature to authenticate the message, and the timestamp to verify its **freshness**

• Bob sends back a message with a timestamp and his identity

in plaintext, and a new session key encrypted by Alice's public key, all digitally signed

 Alice can verify the authenticity and freshness of the message

Public-key Authentication (Asynchronous)

- The second protocol does not rely on clock synchronization
- Alice sends Bob a digitally signed message with T_A and A
- Bob cannot be sure that the message is fresh, since their clocks are not synchronized
- Bob sends back a digitally signed message with T_A , T_B and B

Alice can verify the freshness of Bob's reply by comparing her current time

• Alice sends Bob back a signed message with T_B and an encrypted new session key

 Bob can verify the freshness of Alice's reply

Symmetric-key Authentication

- It involves three parties: Alice Alice, Bob, and a KDC
 - KDC is a trusted key distribution center
 (also known as Authentication Server, AS)
- A (B) and KDC already share a secret key
- Finally, a session key is shared between A and B
- A & B can communicate directly with each other

Diffie-Hellman Key Agreement

- Two parameter p and g
- Parameter p is a prime number
- Parameter g is the generator of the group {1,2, ..., p-1}
- For every n in {1,2, ..., p-1}, there is some k such that n=g^k mod p
- Alice generates a random number a in {1,2, ..., p-1}
- Bob generates a random number b in {1,2, ..., p-1}
- Alice's public value is g^a mod p
- Bob's public value is g^b mod p
- Then they exchange their public values

Diffie-Hellman Key Agreement

- Alice computes $g^{ab} \mod p = (g^b \mod p)^a \mod p$
- Bob computes $g^{ab} \mod p = (g^a \mod p)^b \mod p$
- Alice and Bob now have g^{ab} mod p as their shared symmetric key
- Discrete logarithm problem: knowing the public value public value is g^a mod p is difficult to compute a for suitably large p
- Note that Diffie-Hellman does not authenticate the participants
- Suffer from the man-in-the-middle attack

Secure Systems

Secure Systems

- Systems that operate at the application layer:
 - Pretty Good Privacy (PGP) provides electronic mail security
 - Secure Shell (SSH) provides secure remote login services
- For **transport** layer:
 - Transport Layer Security (TLS)
- For **network** (**IP**) layer:
 - IP Security (IPsec) protocols
- For data link layer:
 - IEEE 802.11i for WLAN

Pretty Good Privacy (PGP)

• PGP provides authentication, confidentiality, data integrity, and non-repudiation

- The confidentiality, and receiver authentication rely on the receiver having a known public key
- The non-repudiation, and sender authentication rely on the sender having a known public key

Hi...= The plaintext message

 Digitally sign using Alice's private key

Encrypt using a newly generated one-time session key

Encrypt the session key using Bob's public key, and append that

E-mail format

 Use base64 encoding to obtain an ASCII-compatible representation

base64

 Provide secrecy, sender authentication, message integrity.

Note: Alice uses both her private key, Bob's public key.

Secure Shell (SSH)

- The SSH provides a **remote login service** and is intended to replace the less secure Telnet and rlogin programs
- SSH consists of three protocols:
 - SSH-TRANS: is a transport layer protocol
 - SSH-AUTH: is an authentication protocol
 - SSH-CONN: is a connection protocol
- SSH can also support other insecure TCP-based applications
 - Run the applications over a secure "SSH tunnel"
 - Use the SSH-CONN protocol

Secure Shell (SSH)

- When messages arrive at the well-known **SSH port** on the server
 - SSH decrypts the connects, and then
 - Forwards the data to the actual port at which the server is listening

Transport Layer Security (TLS)

- Since World Wide Web becomes popular and has been applied for commercial applications
 - Such as making purchases by credit card
 - Some level of security would be necessary for transactions on the Web
- TLS looks just like a normal transport protocol, except for the fact that it is secure
 - Provides the necessary privacy, integrity, and
 - authentication

Application (e.g., HTTP)		
Secure transport layer		
TCP		
IΡ		
Subnet		

Transport Layer Security (TLS)

• When HTTP is used in this way, it is Handshake Protocol

known as **HTTPS** (secure HTTP)

- HTTP is unchanged
- It simply delivers data to and accepts data from the TLS layer rather than TCP
- TLS is broken into two parts:
 - Handshake protocol: is used to negotiate parameters of the communication
 - Record protocol: is used for actual data transfer

Secure electronic transactions (SET)

- designed for paymentcard transactions over Internet.
- provides securityservices among 3players:
 - m customer
 - m merchant
 - m merchant's bankAll must have certificates.
- SET specifies legal meanings of certificates.
 - m apportionment of

- Customer's card number passed to merchant's bank without merchant ever seeing number in plain text.
 - Prevents merchants from stealing, leaking payment card numbers.
- Three software components:
 - m Browser wallet
 - m Merchant server
 - M Acquirer gateway
- See text for description of SET

IP Security (IPSEC)

- **IPSEC** consists of two pieces:
 - The first piece is a pair of protocols that implement the available security services
 - Authentication Header (AH): provides access control, connectionless message integrity, authentication and anti-replay protection
 - Encapsulating Security Payload: supports these same services, plus confidentiality
 - The second piece is the support for key management
 - ISAKMP: Internet Security Association and Key Management Protocol

IP Security (IPSEC)

- Authentication Header (AH):
 - NextHdr: is the type of the next payload after the AH
 - PayloadLength: is the length of the AH
 - Reserved: is reserved and set to 0
 - **SPI**: identifies the security association for this datagram
 - SeqNum: is used to protect against replay
 - AuthenticationData: contains the message integrity
 code for this packet

NextHdr	PayloadLength	Reserved	
SPI			
<u>SeqNum</u>			
AuthenticationData			

IP Security (IPSEC)

- Encapsulating Security Payload (ESP):
 - PayloadData: contains the data described by the NextHdr
 - PadLength: is the length of the padding

ESP Tunnel Mode

Wireless Security (IEEE 802.11i)

- IEEE 802.11i provides authentication, message integrity, and confidentiality to IEEE 802.11 at the link layer
- 802.11i authentication supports two modes. In either mode, the end result of successful authentication is a shared pairwise master key
 - Personal mode: provides weaker security but is more convenient and economical for situations like a home 802.11 network
 - Uses a preconfigured password
 - Between wireless device and the AP (access point)
 - Stronger authentication mode: is based on the IEEE
 802.1X framework for controlling access to a LAN

• Uses an authentication server (AS)

Wireless Security (IEEE 802.11i)

- For stronger authentication mode, the AS and AP must be connected by a secure channel
 - The AP forwards authentication messages between the wireless device and the AS
- The Extensible Authentication Protocol (EAP) is used

Is designed to support multiple authentication methods

smart cart, Kerberos,
 one-time passwords,
 public-key authentication

Firewalls

Firewalls

- A firewall is a specially programmed router that sits between a site and the rest of the network
 - A router connects to two or more networks and it forwards
 or filters the packets that flow through it
- The firewall might filter packets based on the destination IP or source IP
 - Prevent external users to access a particular host
 - Prevent an unwanted flood of packets from an external host
- Such a flood of packets is called a denial-of-service attack

Filter-Based Firewalls

- Filter-based firewalls are the simplest and most widely deployed type of firewalls
 - Configured with a table of addresses that characterize the packets they will, and will not, be forwarded
- Generally, each entry in the table is a 4-tuple:
 - It gives the IP address and TCP port number for both the source and destination
- For example: to filter <192.12.13.14, 1234, 128.7.6.5, 80>
 - Filter all packets from port 1234 on host 192.12.13.14 addressed to port 80 on host 128.7.6.5
- For example: to filter <*, *, 128.7.6.5, 80>
 - Filter all packets addressed to port 80 on host 128.7.6.5

Proxy-Based Firewalls

- A proxy is a process that sits between a client process and a server process
 - To the client, the proxy appears to be the server
 - To the server, the proxy appears to be the client
- Considering a corporate Web server, some of the server's
 pages are accessible to all external users, and some pages
 are restricted to corporate users at one or more remote sites

Proxy-Based Firewalls

- The solution is to put an HTTP proxy on the firewall
- Remote users establish an HTTP/TCP connection to the proxy
- The proxy looks at the **URL** contained in the request message
 - If the requested page is allowed for the source host
 - The proxy establishes a second HTTP/TCP connection to the server and forwards the request to the server
 - The proxy forwards the response to the remote user

Proxy-Based Firewalls

- If the requested page is not allowed
 - The proxy does not create this second connection
 - Returns an error to the source
- The proxy has to **understand** the HTTP protocol in order to response to the client
- Once an HTTP proxy is in place for security reasons
 - It might be extended to decide which of many local Web servers to forward a given request to (i.e. load balance)
 - It might also cache hot Web pages
 - Access the server only once for multiple requests
- Proxies can be defined for applications other than HTTP
 - For example, FTP and Telnet proxies