DBA1. p1.

Устройство реляционных СУБД

Архитектура MySQL

Структура Innodb

Архитектура Postgres

В целом, схема работы баз данных похожа

Сначала клиент коннектится к бд

С помощью утилит или клиентских интерфейсов, реализующих клиентсерверный протокол

Пример

Драйвера: ODBC, JDBC для MySQL; libpq, ECPG для Postgres

Утилиты: mysql, pqsql

Клиент передал запрос

Запросы обычно написаны на SQL

Но это необязательно, СУБД могут поддерживать и другие языки программирования. Например, С

В разных СУБД разные реализации SQL в разной степени приближенных к стандарту ANSI

Последняя ревизия стандарта датируется 2008 годом

Архитектура MySQL

Далее запрос разбирается на части парсером

Архитектура MySQL

После парсера очередь оптимизатора

Архитектура MySQL

Исполнение запроса

Структура Innodb

Память

HDD, SSD (энергонезависимая память)

ОЗУ (энергозависимая память)

Структура Innodb

Реляционная модель

"related table"

Индексы

- Кластерный
- Вторичный
- B+ Tree
- LSM Tree
- Fractal Tree
- Остальные

Репликация

Секционирование (партицирование)

Безопасность

Шифруем все (когда действительно нужно)!

Сетевое взаимодействие

Диски

Логи

Бекапы

... но за все нужно платить (деньги, время восстановления после сбоев)