L2 Informatique Probabilités et Statistiques Examen sur machines

	NOM:			
Documents autorisés	Prénom:	<u>Durée</u> : 2h		
	Note: / 20			
<u>Déroulement</u> : les réponses aux questions et le code Matlab devront être écrit uniquement dans les rectangles prévus à cet effet.				
Exercice 1 : Simulation de lancer de 2 dés équilibrés				
1- Prenez deux échantillons (X1 et X2) de taille 12, correspondant à 12 lancers de 2 dés.				
<u>Indication</u> : Utilisez la loi uniforme « unifrnd » et la fonction « round » pour prendre l'entier le plus proche d'un nombre réel.				
2- Calculez les moyennes et les variances empiriques pour chaque échantillon.				
	ne théorique ? Comment expliquez-vous la dif les moyennes empiriques ?	férence entre la		

4- Calculez le coefficient de corrélation entre X1 et X2.

$$\underline{Rappel\ du\ cours}: \ corr(X1, X2) = \frac{cov(X1, X2)}{\sqrt{var(X1).var(X2)}}$$

5- Prenez des échantillons de taille 10000 pour X1 et X2 et recalculez la corrélation. Qu'en concluez-vous ?

Exercice 2 : Simulation d'un dé « pipé »

1- Créez une fonction « truque.m » qui permet de simuler le lancer d'un dé pipé (un dé dont les 6 faces ne sont pas équiprobables). Cette fonction prendra en entrée un vecteur probas contenant 6 probabilités (une pour chaque face du dé) et un nombre de lancers taille. Elle renverra un vecteur de contenant les valeurs prises par le dé.

<u>Indication</u>: vous pourrez utiliser la méthode de partition d'intervalles.

function [de] = truque(probas, taille)

Université Paul Sabatier – Examen de TP en Probabilités et Statistiques	11/12/2009
2- Testez pour des tailles de 10, 1000 et 100000 valeurs avec un vecteu de [0,1 0,1 0,3 0,1 0,1 0,3] respectivement pour les valeurs 1 à 6 du dhistogrammes.	
3- Qu'en concluez-vous ?	

Exercice 3 : Lois de probabilités

Copiez le fichier « exam_tp.mat » dans votre répertoire depuis le répertoire suivant : /users/iupsi/pinquier/L2_Probas/

Chargez le fichier sous Matlab (commande : load exam_tp). Vous disposez de 7 variables inconnues loil à loi7 qui contiennent 100000 valeurs. Elles correspondent à 7 lois de probabilités.

Pour chaque variable, trouvez de quelle loi il s'agit et quels sont les paramètres de celle-ci (complétez le tableau ci-après).

Par exemple, calculez et affichez:

- les valeurs minimales,
- les valeurs maximales,
- les moyennes,
- les variances,
- les histogrammes,
- les fonctions écrites dans le TP1,
- etc.

Variable	Loi de probabilités	Paramètre(s)
loi1		
loi2		
loi3		
loi4		
loi5		
loi6		
loi7		