AP위성

Disclaimer

본 자료는 투자자들을 대상으로 실시되는 presentation에서의 정보 제공을 목적으로 AP위성에 의해 작성되었으며 임의 반출, 복사 또는 타인에 대한 재배포는 금지됨을 알려 드리는 바입니다. 본 자료에 포함된 예측 정보는 presentation 자료 작성일을 기준으로 시장 상황과 회사의 경영 방향 등을 고려한 것으로 향후 시장 환경의 변화와 전략 수정 등에 따라 변경될 수 있으며, 별도의 고지 없이 변경될 수 있음을 양지하시기 바랍니다.

또한 본질적으로 불확실성을 내포하고 있는 바, 이러한 불확실성으로 인하여 실제 미래 실적은

기재되거나 암시된 내용과 자이가 발생할 수 있음을 유의하시기 바랍니다. 본 자료눈 투자자들의
투자판단을 위한 참고자료로 작성된 것이며, 당사는 이 자료의 활용으로 인해 발생하는 손실에 대하여 어떠한 책임도 부당하지 않음을 알려 드립니다.

회사소개

01-1 회사개요 | 01-2 성장스토리 | 01-3 사업영역 | 01-4 핵심제품

AP위성은 우주분야에서 선진 기술의 국산화와 기술혁신에 끊임없이 도전하여, 국가우주 항공개발사업에 기여하고, 전자, 자동차, 조선 등과 같이 우리나라를 대표하는 산업분야로 발전하는데 기여하고자 합니다

→ 회사 개요 : 현황

주요 경영진

설립	2000.6 아리랑위성1호 개발을 책임졌던 류장수 대표와 현대전자 위성사업부 출신 연구원들이 합 심하여 우리나라 위성산업에 도전		
구성원	총 139명(2020.12.31기준)		
주요사업	-인공위성 개발 및 제작 -위성통신 단말기 개발 및 제작		
신용등급	A (이크레더블, 2016.12.31 기준)		
지배구조	자본금 75.07억원(15,014,804주) 류장수외 특수관계인 50.0% 자기주식 7.0%		

성명	직책	주요경력
류장수	대표이사	-KAIST 기계공학과 박사 -국방과학연구소 선임연구원 -한국항공우주연구소(아리랑위성1호 총 괄책임자)
오대일	개발/영업본부장 (사장/CTO)	-서강대학교 전자공학과 박사 -SK하이닉스(구 현대전자)
김한돌	위성사업본부장 (부사장)	-Drexel University 기계공학과 박사 -한국항공우주산업㈜ -한국항공우주연구원
유권영	권영 생산/품질본부장 -경북대학교 전자공학과 학사 (부사장) -SK하이닉스(구 현대전자)	
배한익	경영지원본부장 -영남대학교 경영학과 학사 -LG기공	
이재필	개발 부문장 (위성기술연구소)	-KAIST 전기전자공학 석사 -SK하이닉스(구 현대전자)
송진환	개발 부문장 (위성시스템)	-중앙대학교 전자전기공학 석사 -SK하이닉스(구 현대전자)
정병현	사업 부문장 (사업관리)	-금오공대 전자공학 석사 -한국전자통신연구원 -MDA Corporation (CANADA 소재)
김영민	개발 부문장 (위성s/w)	-전북대학교 전자공학 석사 -LG정보통신
박진효	개발 부문장 (위성H/W)	-금오공과대학교(학사) -LG 이노텍

●성장스토리:회사 연혁

세계 최초로 최소형 위성휴대폰 출시

위성휴대폰 전세계 160개국에 50만대 수출

국내 우주시대 개막 달 탐사 사업 참여

2003

2006

2010

2014

2016

2017

민간기업 최초로 위성본체 주관(아리랑 3A호)

→ 핵심제품

위성통신분야

통신장비 위성데이터링크모뎀 통신장비 TEDS 모뎀 J*D*S사업 LINK-K 모델 통신 CHIP 통신장비 고정형 위성통신 장비 통신장비 위성휴대폰 통신장비 **Asset Tracker**

위성제조분야

사업현황

 02-1 위성제조산업 | 02-2 위성통신산업

 02-3 위성제조 사업 현황 | 02-4 위성통신 사업 현황

AP위성은 2000년 6월에 아태위성산업으로 설립된 이후 위성산업의 발전을 위하여 국내 및 해외의 위성 프로젝트 및 관련 사업의 외길을 꾸준히 걸어 왔습니다.

₩ 위성 산업

전세계 위성산업 규모는 2,710억달러 규모 (19년 기준)

2010년 1,670억 달러에서 2019년 2,710억달러로 지난 10년간 약 1.6배 성장

출처: State of The Satellite Industry Report, SIA, 2020

-- 위성통신 산업

위성서비스 산업 중 위성통신산업이 213억 달러(17.6%) 규모

[위성통신 산업규모] 97.8 17.9 3.4 1.8 위성방송 고정위성통신 이동위성통신 지상관측 (자료: State of the Satellite Industry Report, 2016. (단위: Bil 09) USD)

[세계 위성 단말기기 수요 및 예측]

(Euroconsult 2015 – Mobile Satellite Communications Markets Survey)

--- 위성통신 산업

국내 유일 글로벌 위성 휴대통신(GMPCS) 단말기 공급 및 서비스 제공

<세계 이동 위성통신사업자 현황>

구분	ORBCOMM (미국)	Iridium (미국)	GlobalStar (미국)	InmarSat (영국)	THURAYA (UAE)	TerreStar (미국)	NTT Docomo W ideStar (일본)
위성	저궤도(29)	저궤도(66)	저궤도(44)	정지궤도(3)	정지궤도(2)	정지궤도(1)	정지궤도(1)
서비스 지역	글로벌	글로벌	글로벌	글로벌	유럽,아프리카, 아시아, 호주	미국	일본
접속 방식	비공개 규격	비공개 규격	비공개 규격	비공개 규격	ETSI GMR-1 규격	ETSI GMR-1 3G 규격	비공개 규격
주요시장	지상, 해양	지상, 해양, 항공	지상	해양, 항공, 지상	지상, 해양	지상	지상, 해양
주요 단말기	M2M	위성휴대폰 M2M	위성휴대폰 M2M	위성휴대폰, M2M, 광대역 단말기	위성휴대폰, M2M, 협대역 단말기 광대역 단말기	위성휴대폰	협대역 단말기 광대역 단말기

^{*} GMPCS : Global Mobile Personal Communication System by Satellite

----위성제조 사업현황

위성본체에서 부터 탑재체, 지원장비 등 위성사업 전방위 수주

구 분	사업분야	내용		
		2007.07.03~2012.08.31	다목적실용위성 3호 영상자료처리장치(IDHU)의 조립/시험 및 기술검증 모델 개발 및 공급	
		2009.09.01~2012.08.31	차세대 우주용 고속자료처리장치 개발(국가연구개발사업)	
		2010.01.29~2014.09.30	다목적실용위성 3A호 영상자료처리장치(IDHU)의 국산화 개발 및 공급	
		2013.06.01~2016.05.31	차세대 소형위성 핵심기술 탑재체 용역	
	탑재체 Data Link	2014.01.17~2019.11.30	다목적실용위성 6호 탑재체 데이터링크 개발	
		2017.04.06~2021.12.31	다목적실용위성 7호 탑재체 기기자료처리장치 개발	
		2017.05.12~2018.12.31	시험용 달 궤도선 본체 전장품 설계 및 제작(탑재자료처리장치 PDHU)	
		2018.09.28~2023.12.31	EO/IR 위성탑재체 개발납품계약	
		2019.03.29~2025.09.26	SAR 위성탑재체(SAR센서, DLS 분야)_DLS 고출력 증폭기 및 변조기 개발계약	
		2011.07.01~2014.12.31	표준형 위성 탑재컴퓨터 핵심모듈 개발(국가연구개발사업)	
		2015.12.01~2016.05.31	차세대소형위성 1호 우주핵심기술 탑재체 탑재컴퓨터(OBC) 개발	
	위성 탑재컴퓨터	2016.07.01~2018.05.31	차세대중형위성 1호 표준탑재컴퓨터 제작	
위성제조분야		2016.07.12~2019.03.31	차세대중형위성 2호 표준탑재컴퓨터 제작	
用 6세ㅗ┲ੑੑੑੑੑੑੑੑੑੑ		2017.05.12~2018.12.31	시험용 달 궤도선 본체 전장품 설계 및 제작(탑재컴퓨터 OBC)	
	이서 납케	2010.03.26~2013.06.30	다목적실용위성 3A호 위성본체 주관개발 및 공급	
	위성 본체	2017.11.1 ~ 2020.12.31	소형 성능검증위성 개발 납품	
		2006.01.20~2012.08.31	다목적실용위성 3호 X-BAND 하향링크모듈 지상지원용역	
		2010.12.15~2014.09.30	다목적실용위성 3A호 X-밴드 하향링크모듈(XDM) 지상지원장비(EGSE) 개발 및 공급	
	전기지상지원장비	2013.04.17~2016.10.31	정지궤도복합위성 RF 전기지상지원장비 시제작품 개발	
	선기사장시편장미	2014.10.17~2017.03.31	정지궤도복합위성 전력공급 및 발사지원용 전기지상지원장비 개발	
		2014.12.12~2017.06.30	정지궤도복합위성 탑재체링크 전기지상지원장비 개발	
		2015.11.30~2019.02.28	다목적실용위성 6호 전력공급, 모니터링 및 발사지원용 전기지상지원장비 개발	
		2007.09.01~2012.03.31	다목적실용위성 3호 및 5호 위성기능시험 기술용역	
	위성 AIT	2012.04.01~2015.01.31	다목적실용위성 3A호 위성기능시험 용역	
		2015.04.01~2018.12.31	정지궤도복합위성 2A호 전자통합시험 기술용역	

--- 위성통신 사업현황

2006년부터 U.A.E 투라야 社에 약 2억불 규모의 위성통신 단말기 독점 공급

[THURAYA 이동위성통신서비스 지역]

* 투라야 社 (Thuraya Telecommunications Company) 는 2대의 정지궤도위성을 이용해 유럽, 아프리카, 중동 호주 지역 및 한국과 일본을 포함하는 아시아 등 총 160여개국에서 이동위성통신서비스를 제공

Investment Highlights

03-1 Summary | 03-2 경쟁력 | 03-3 신성장 동력 확보

☞ 향후 성장전략:Summary

독보적인 위성통신 기술을 바탕으로 신제품 및 신규 사업 진출로 성장 가속화

マ フ

기존사업의 성장

- THURAYA 위성 단말기 사업(XT-Lite, XT-PRO, XT-PRO DUAL, X5-Touch, MarineStar 등)
- 위성 탑재체 수주 (K6, K7&K7A DLS, 차중 1, 2호& 4,5호 SBMU 등)
- 위성체 수주(성능검증위성, 달궤도위성 본체 전장품)

\bigcirc

신성장동력

- 차세대 위성 모뎀: GMR-1 2G/3G 및 5G 위성통신 모뎀 SoC 개발
- 차세대 중형 위성 2단계 사업 참여

신규사업

- 한국형 위성항법시스템(KPS) 참여
- 非 THURAYA 통신 단말기 사업
- V-SAR Project 참여

☞ 경쟁력:위성제조

인공위성 부분품 국산화 기술부터 플랫폼 설계기술까지 기술 확보

위성 본체 체계 설계

위성 본체 시스템 체계 종합 기

- 위성체의 형상관리/품질관리 기술
- 위성체의 열/구조 해석 기술
- 위성체 서브시스템의 설계/시험/검증
- 위성체 AIT 기술

위성용 표준탑재컴퓨터 (주요실적)

- 차세대중형위성 1호/2호 개발(

- 차세대소형위성 1호

데이터저장처리장치 (주요실적)

- 아리랑 3호/3A호: 국산화
- 아리랑 6호 개발(중)
- 아리랑 7호 개발(중)

지 상 장 비 (EGSE) (주요실적)

- *BUS EGSE
- 차세대중형위성 1호/2호
- 다목적실용위성 6호 개발(중) 개발(중)
- 정지궤도복합위성

2A호/2B호

*XDM/IDHU EGSE

- 다목적실용위성 6호

- 다목적실용위성 3A호
- 다목적실용위성 3호

핵심반도체인 기저대역모뎀 시스템 온 칩 개발기술 위성통신(GMR1 Protocol Stack) 및 주파수공용통신(TETRA Protocol Stack) 기술

전세계적으로 극소수에 불과한 이동위성통신 단말기의 핵심 기술을 자체 보유

₩ 신성장동력:위성 제조 분야

[정찰위성 관련보도자료, 출처 뉴시스]

425사업 (군정찰위성)

- 배경 한국형 미사일방어체계인 킬체인(Kill Chain) 구축
- 사업 내용 2022년까지 고성능 영상레이더(SAR) 위성4기, 전자광학 및 적외선(EO/IR) 위성 1기를 저궤도에 발사
- 사업 규모 2020년 1기, 2021년 2기, 2022년 2기 등 총 5기를 발사하는데 1조 789억원을 투여
- 참여부분
 - EO/IR위성 탑재체 개발(2018.10 수주; 111억원)
 - SAR 위성 탑재체 SAR센서, DLS 개발(2019.4.1 수주; 129억원)
- AP위성의 경쟁력
 - 국내 유일의 실용급 위성 자료처리저장장치 국산화 업체 (아리랑 6호 DLS 수주업체, 2014.1)
 - 차세대 중형위성 1호/2호 표준탑재컴퓨터 개발 수주업체

₩ 신성장동력:위성 제조 분야

[출처, 한국항공우주연구원 발췌]

달 탐사선 개발

- 사업 기간 2016년 ~ 20년 (4년간)
- 사업예산 4년간 총 1,978억원
- 진행경과
- 1단계 사업인 달 궤도선 본체 전장품 설계 및 제작을 174억원에 수주(17.4)
- FM(Flying Model) 납품 예정(20.7 중)
- 발사 일정
- 22. 8월 중에 스페이스 X의 발사체 이용
- 향후 사업
- 달 착륙선을 발사하는 2단계사업은 25년에 착수할 예정 (30년 발사예정)

₩ 신성장동력:위성 제조 분야

소형 위성 개발

- 사업명: 한국형발사체 소형위성사업
- 사업 기간 2017년 ~ 2022년
- 발사일정 2021년 10월
- 내용
- 100Kg 이하급 소형위성으로 한국형발사체 성능검증 비행모델 개발
- 위성 완제품 개발사업으로 본체, 탑재체뿐만 아니라, 위성 운용을 위한 지상국 개발 및 운영

● 신성장동력:위성 제조 분야

《 차세대중형위성 3, 4, 5호 시스템 구성도 》

	본체	·차세대중형위성 표준플랫폼 3기				
위성체		(3호) 기술검증 및 우주과학 등 탑재체				
173세 탑재체 ·(4호) 광역전자광학카메라(관측폭 120km급, 해상도 5m급) :						
		·(5호) C-밴드 영상레이다(해상도 10m 급) 1기				
지	상국	·기존 저궤도위성 지상국 공통 기반시설 개량				
	·(3호) 한국형발사체를 활용					
발사 ·(4·5호) 해외발사체 이용을 전제. 다만, 3호 위성이						
		발사될 경우 한국형발사체 적극 활용				

차세대중형위성사업

- 차세대중형위성 3호
- 목적:우주과학/기술검증
- 개발기간: 21~23(발사:23년)
- 예산:470.5억원
- 참여분야: 표준탑재컴퓨터(SBMU) 및 S/W 개발 참여계획
- 차세대중형위성 4호
- 목적:농작물작황이나 산림자원 관측
- 개발기간: 20~23(발사:23년)
- 예산:1,169억원
- 참여분야: SBMU(20'4 수주), 저장장치 개발 참여계획
- 차세대중형위성 5호
- 목적:하천관리, 해양환경감시등
- 개발기간: 22~25(발사:25년)
- 예산:1,427.4억원
- 참여분야: SBMU(20'4 수주), 저장장치 개발 참여계획

● 신성장동력:위성 제조 분야

자료:한국항공우주연구원

한국형 위성항법시스템 KPS(Korean Positioning System

- 사업개요
- 정지궤도위성 3기와 경사궤도위성 4기로 구성된 우주시스템과 지상시스템, 사용자시스템으로 한국형 위성항법시스템 구축
- 사업 기간
- 2022년에 사업 착수, 27년에 첫 위성 발사, 2034년 마지막 위성 발사 후 시스템 구축예정
- 사업내용
- 상용 GPS 정밀도: 18m → KPS(센티미터급 서비스 적용 시): 2.5~5cm
- 파생산업
- 초정밀 PNT(Positioning Navigation Timing) 정보를 통한 교통, 통신, 금융, 국방, 농업, 재난대응 영역
- 글로벌 위치기반서비스(LBS) 시장규모 2017년 28조3천억원→2021년 113조5천억원으로 4배 증가 전망

● 신성장동력:통신 응용 분야

< 그림:5G 위성통신 기반 공공 재난서비스 개념도 >

GMR-1 2G/3G 및 5G 위성통신 모뎀 SoC 개발

- 각종 셀룰러(LTE, 3G, 2G, TRS 등) 또는 IoT(NB-IoT, LoRa 등) 솔루션과 결합하여 지상/위성 겸용 유비쿼터스 통신 솔루션에 활용
- 스마트 팜, 스마트물류, 스마트시티 등 다양한 어플리케이션 활용

글로벌 IOT 및 M2M 시장 대응 지상/위성 겸용 M2M/ioT chipset 및 제품 개발

- 기 보유 위성통신 핵심기술 및 경쟁력을 기반으로 지상망(NB-IOT)과 위성망을 동시에 사용할 수 있는 지상/위성 겸용 M2M/IOT 핵심 chipset을 개발하여 신규 시장 창출
- 해상, 산악, 사막 등 지상망 음영지역을 포함하는 글로벌 ubiquitous connectivity 보장

Appendix

│ 04-1 요약재무제표│ 04-2 주주현황

→ 요약재무제표

O 요약 재무상태표

(단위 : 억원)

구 분	2018.12	2019.12	2020.12(E)
유 동 자 산	824.8	869.3	
비유동자산	172.1	157	
자 산 총 계	997.0	1026.4	1,130.3
유 동 부 채	177.7	195.2	
비유동부채	2.8	8.5	
부 채 총 계	180.6	203.8	324.9
자 본 금	75.0	75.0	75.0
자본잉여금	604	604	
자본조정	-85.4	-81.6	
이익잉여금	221.3	225.1	
자 본 총 계	816	822	805

O 요약 손익계산서

(단위 : 억원)

구 분	2019.12	2020.12 (E)
매 출 액	456.5	453.4
매 출 원 가	322	
매출총이익	134.4	
판매관리비	63.2	
영 업 이 익	71.2	44.2
법인세차감전순이익	25.8	8.5
법인세비용	18.7	
당기순이익	7.1	-7.1

구분	주식 수 (만주)	지분율(%)
최대주주 등	748	50%
자기주식	91	6%
기타주주	662	44%
총 주식 수	1,501	100%

기준일: 2020.9.30

THANK YOU