A COUNT DATA MODEL WITH SOCIAL INTERACTIONS

A. Houndetoungan

Department of Economics Université Laval

February 3, 2021

• Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
 Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; ...
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

Example of model

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE):
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

• Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
 Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

Example of model

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE):
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

• Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
 Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

Example of model

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE):
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

• Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
 Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

Example of model

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE);
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

• Why is it important to estimate peer effects? (Manski 1993, REStud)

- E.g, Participation in extracurricular activities.
- Decrease in the number of hours in class; Student increases his participation;
 Student's friends increase their participation;
- Because Student's friends increase their participation, Student further increases his participation; . . .
- Social multiplier increasing the impact of exogenous shocks (direct impact due exogenous shocks + indirect impact because friends change their behavior).

Example of model

A. Houndetoungan

Behavior = F (Friend's Behavior, Control Variables)

- Peer effects in adolescent overweight (Trogdon, Nonnemaker, and Pais 2008, JHE);
- Peer effects in education (Calvó-Armengol, Patacchini, and Zenou 2009, REStud);
- Peer effects in the workplace (Cornelissen, Dustmann, and Schönberg 2017, AER).

Count Data & Network February 3, 2021

4 D > 4 D > 4 E > 4 E > E | E | 9 Q P

Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.

Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.

Integer values and left censored at zero

- Models with social interactions:
 - 1 Linear-in-means model (Bramoullé, Djebbari, and Fortin 2009, JE), (L.-F. Lee 2004, Econometrica);

• Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.

Integer values and left censored at zero

- Models with social interactions:
 - 1 Linear-in-means model (Bramoullé, Djebbari, and Fortin 2009, JE), (L.-F. Lee 2004, Econometrica);
 - 2 Binary data (Brock and Durlauf 2001, REStud), (Brock and Durlauf 2001, REStat);

• Example of count data from Add Health: Number of extracurricular activities in which students are enrolled.

- Models with social interactions:
 - 1 Linear-in-means model (Bramoullé, Djebbari, and Fortin 2009, JE), (L.-F. Lee 2004, Econometrica);
 - 2 Binary data (Brock and Durlauf 2001, REStud), (Brock and Durlauf 2001, REStat);

- Model of random utility dealing with networks and count choices.
 - Number of count choices is unbounded:
 - Game of incomplete information.
- Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lir 2014 (REStat) for binary outcome.
- (Under some conditions, e.g, when the number of count choices is large) my model is asymptotically similar to the linear models;
 - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
 - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE)

- Model of random utility dealing with networks and count choices.
 - Number of count choices is unbounded;
 - Game of incomplete information.
- Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lir 2014 (REStat) for binary outcome.
- Ounder some conditions, e.g, when the number of count choices is large my model is asymptotically similar to the linear models;
 - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
 - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE).

- Model of random utility dealing with networks and count choices.
 - Number of count choices is unbounded;
 - Game of incomplete information.
- Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lin
 2014 (REStat) for binary outcome.
- (Under some conditions, e.g, when the number of count choices is large) my model is asymptotically similar to the linear models;
 - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
 - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE).

- Model of random utility dealing with networks and count choices.
 - Number of count choices is unbounded;
 - Game of incomplete information.
- Generalization of Rational Expectation model presented by L.-f. Lee, Li, and Lin
 2014 (REStat) for binary outcome.
- Ounder some conditions, e.g, when the number of count choices is large my model is asymptotically similar to the linear models;
 - Linear Spatial Autoregressive (SAR) model (L.-F. Lee 2004, Econometrica);
 - Spatial Autoregressive Tobit (SART) model (Xu and L.-f. Lee 2015, JE).

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
 - Peer marginal effect: 0.294
 - SART model: 0.141, SAR model 0.166;
- Endogeneity of the network controlled.
 - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
 - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
 - Peer marginal effect: 0.294;
 - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
 - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
 - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
 - Peer marginal effect: 0.294;
 - SART model: 0.141, SAR model 0.166;
- Endogeneity of the network controlled.
 - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
 - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
 - Peer marginal effect: 0.294;
 - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
 - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
 - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
 - Peer marginal effect: 0.294;
 - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
 - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
 - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
 - Peer marginal effect: 0.294;
 - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
 - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
 - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

- (Application) Peer effects on the number of extracurricular activities in which students are enrolled.
 - Peer marginal effect: 0.294;
 - SART model: 0.141, SAR model 0.166;
- 2 Endogeneity of the network controlled.
 - Unobserved variables such as sociability degree may explain the network and the participation in extracurricular activities;
 - Do not take into account the endogeneity of the network significantly overestimates the peer effects.
- An easy to use R package—named CDatanet—located on my GitHub implementing the model.

Outline

Microeconomics Foundations

② Estimation Strategy

Monte Carlo simulations

Empirical Application

• Individuals choose a continuous latent variable y_i^* (interpreted as an intention, see Maddala 1986) which determines y_i (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019)

	-2	-1		1	2	3	4	5	6
Latent Variable	-		-		-	-	-	-	
Binary choices									

Assumption for count variable (see Cameron and Trivedi 1990).

	-2	-1	1	2	3	4	5	6
Latent Variable			-	~			~ :	
Count choices								
Count choices								

• Individuals choose a continuous latent variable y_i^* (interpreted as an intention, see Maddala 1986) which determines y_i (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019).

•				,		,			
	-2	-1	0	1	2	3	4	5	6
Latent Variable	_								
Binary choices		0				1			

• Assumption for count variable (see Cameron and Trivedi 1990).

Latent Variable	_	-1	1	2	3	4	5	6
							$\leftarrow \stackrel{\gamma}{\longrightarrow}$	
Count choices								8

• Individuals choose a continuous latent variable y_i^* (interpreted as an intention, see Maddala 1986) which determines y_i (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019).

	-2	-1	0	1	2	3	4	5	6
Latent Variable		<u> </u>		<u> </u>	<u> </u>	-	+		<u> </u>
Binary choices		0				1			

Assumption for count variable (see Cameron and Trivedi 1990).

T - 4 4 W : - 1-1-	-2	-1	0	1	2	3	3	4	5	6
Latent Variable		•	$\leftarrow \gamma$	→ ·	$\stackrel{\gamma}{\longleftrightarrow}$		$\stackrel{\gamma}{\longleftrightarrow}$	•	$\stackrel{\gamma}{\longleftrightarrow}$	
Count choices		0	1	2	3	4	5	6	7	8

• Individuals choose a continuous latent variable y_i^* (interpreted as an intention, see Maddala 1986) which determines y_i (the observed variable).

• Binary choices (L.-f. Lee, Li, and Lin 2014; Liu 2019).

	-2	-1	0	1	2	3	4	5	6
Latent Variable		<u> </u>		<u> </u>	<u> </u>	-	+		<u> </u>
Binary choices		0				1			

• Assumption for count variable (see Cameron and Trivedi 1990).

T / / 37 . 11	-2	-1	0	1	2	3	3	4	5	6
Latent Variable		•	<i>γ</i>	→ ·	$\stackrel{\gamma}{\longleftrightarrow}$		$\stackrel{\gamma}{\longleftrightarrow}$		$\stackrel{\gamma}{\longleftrightarrow}$	
Count choices		0	1	2	3	4	5	6	7	8

Game: Preferences

Preferences (see also Ballester, Calvó-Armengol, and Zenou 2006;
 Calvó-Armengol, Patacchini, and Zenou 2009).

$$\mathcal{U}_{i} = \underbrace{\left(\psi_{i} + \varepsilon_{i}\right) y_{i}^{*} - \frac{y_{i}^{*2}}{2}}_{\text{private sub-utility}} + \underbrace{\lambda y_{i}^{*} \sum_{j \neq i} g_{ij} y_{j}}_{\text{social sub-utility}}$$
(1)

where ψ_i , $\lambda \in \mathbb{R}$ and ε_i is a private information with a common distribution known among individuals.

Expected utility

$$\mathbf{E}\left(\mathcal{U}_{i}|y_{i}^{*},\varepsilon_{i},\lambda,\boldsymbol{\psi},\mathbf{G}\right) = \left(\psi_{i}+\varepsilon_{i}\right)y_{i}^{*} - \frac{y_{i}^{*2}}{2} + \lambda y_{i}^{*}\sum_{j\neq i}g_{ij}\bar{y}_{j},\tag{2}$$

where $\forall j \in \mathcal{V}$,

$$i_j = \sum_{r=0}^{\infty} r p_{jr} \tag{3}$$

and p_{jr} is the probability of $y_j = r$.

Game: Preferences

Preferences (see also Ballester, Calvó-Armengol, and Zenou 2006;
 Calvó-Armengol, Patacchini, and Zenou 2009).

$$\mathcal{U}_{i} = \underbrace{(\psi_{i} + \varepsilon_{i}) y_{i}^{*} - \frac{y_{i}^{*2}}{2}}_{\text{private sub-utility}} + \underbrace{\lambda y_{i}^{*} \sum_{j \neq i} g_{ij} y_{j}}_{\text{social sub-utility}}$$
(1)

where ψ_i , $\lambda \in \mathbb{R}$ and ε_i is a private information with a common distribution known among individuals.

Expected utility

$$\mathbf{E}\left(\mathcal{U}_{i}|y_{i}^{*},\varepsilon_{i},\lambda,\boldsymbol{\psi},\mathbf{G}\right) = \left(\psi_{i}+\varepsilon_{i}\right)y_{i}^{*} - \frac{y_{i}^{*2}}{2} + \lambda y_{i}^{*}\sum_{j\neq i}g_{ij}\overline{y}_{j},\tag{2}$$

where $\forall j \in \mathcal{V}$,

$$\bar{\mathbf{y}}_j = \sum_{r=0}^{\infty} r p_{jr} \tag{3}$$

and p_{jr} is the probability of $y_j = r$.

• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and $q \in \mathbb{N}$

$$p_{iq} = \mathcal{P}\left(y_i \in (a_{q-1}, \ a_q)\right)$$

$$p_{iq} = \mathcal{F}_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q\right) - \mathcal{F}_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1}\right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$. \Longrightarrow Bijective function between (p_{iq}) and (\bar{y}_i) .
- Fixed point equation: $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$.

• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and $q \in \mathbb{N}$

$$p_{iq} = \mathcal{P}\left(y_i^* \in (a_{q-1}, \ a_q)\right)$$

$$p_{iq} = F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q\right) - F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1}\right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$. \Longrightarrow Bijective function between (p_{iq}) and (\bar{y}_i) .
- Fixed point equation: $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$.

• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and $q \in \mathbb{N}$

$$p_{iq} = \mathcal{P}\left(y_i^* \in (a_{q-1}, \ a_q)\right)$$

$$p_{iq} = F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q\right) - F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1}\right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$. \Longrightarrow Bijective function between (p_{iq}) and (\bar{y}_i) .
- Fixed point equation: $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$

• focs

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \tag{4}$$

• Belief at equilibrium for all i = 1, ..., n and $q \in \mathbb{N}$

$$p_{iq} = \mathcal{P}\left(y_i^* \in (a_{q-1}, \ a_q)\right)$$

$$p_{iq} = F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_q\right) - F_{\varepsilon}\left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_{q+1}\right)$$
(5)

- $\bar{y}_i = \sum_{r=0}^{\infty} r p_{ir}$. \Longrightarrow Bijective function between (p_{iq}) and (\bar{y}_i) .
- Fixed point equation: $\bar{y}_i = \mathbf{L}(\bar{\mathbf{y}})$.

VS Poisson

$$\bar{y}_i = \sum_{r=1}^{\infty} F_{\varepsilon} \left(\lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} - a_r \right)$$
 (6)

Game: Equilibrium

- Equilibrium conditions
 - Distribution of ε_i is continuous, with a derivable cdf, F_ε, and a pdf, f_ε which
 decrease exponentially in its tails;

•
$$|\lambda| < \frac{C_{\gamma,\sigma_{\varepsilon}}}{||\mathbf{G}||_{\infty}}$$
, where $C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\max_{u \in \mathbb{R}} \sum_{k=-\infty}^{\infty} f_{\varepsilon} \left(\frac{u + \gamma k}{\sigma_{\varepsilon}}\right)}$.

- If $\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$,

$$C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\phi(0) + 2\sum_{k=1}^{\infty} \phi\left(\frac{\gamma_{k}}{\sigma_{\varepsilon}}\right)}$$

- •
- If $\gamma = \infty$, (ii) implies $|\lambda| < \frac{\sigma_{\varepsilon}}{||\mathbf{G}||_{\infty}\phi(0)}$, which is the restriction set on $|\lambda|$ in binary models (L.-f. Lee, Li, and Lin 2014; Liu 2019).
- Under the equilibrium condition, **L** is a contracting mapping. The game has a unique equilibrium and there is a unique expected outcome \bar{y} such that $\bar{y} = L(\bar{y})$

Game: Equilibrium

- Equilibrium conditions
 - Distribution of ε_i is continuous, with a derivable cdf, F_ε, and a pdf, f_ε which
 decrease exponentially in its tails;

•
$$|\lambda| < \frac{C_{\gamma,\sigma_{\varepsilon}}}{||\mathbf{G}||_{\infty}}$$
, where $C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\max_{u \in \mathbb{R}} \sum_{k=-\infty}^{\infty} f_{\varepsilon} \left(\frac{u + \gamma k}{\sigma_{\varepsilon}}\right)}$.

- If $\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$,

$$C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\phi(0) + 2\sum_{k=1}^{\infty} \phi\left(\frac{\gamma_{k}}{\sigma_{\varepsilon}}\right)}$$

- .
- If $\gamma = \infty$, (ii) implies $|\lambda| < \frac{\sigma_{\varepsilon}}{||\mathbf{G}||_{\infty}\phi(0)}$, which is the restriction set on $|\lambda|$ in binary models (L.-f. Lee, Li, and Lin 2014; Liu 2019).
- Under the equilibrium condition, **L** is a contracting mapping. The game has a unique equilibrium and there is a unique expected outcome \bar{y} such that $\bar{y} = L(\bar{y})$

Game: Equilibrium

- Equilibrium conditions
 - Distribution of ε_i is continuous, with a derivable cdf, F_ε, and a pdf, f_ε which
 decrease exponentially in its tails;

•
$$|\lambda| < \frac{C_{\gamma,\sigma_{\varepsilon}}}{||\mathbf{G}||_{\infty}}$$
, where $C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\max_{u \in \mathbb{R}} \sum_{k=-\infty}^{\infty} f_{\varepsilon} \left(\frac{u + \gamma k}{\sigma_{\varepsilon}}\right)}$.

- If $\varepsilon_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$,

$$C_{\gamma,\sigma_{\varepsilon}} = \frac{\sigma_{\varepsilon}}{\phi(0) + 2\sum_{k=1}^{\infty} \phi\left(\frac{\gamma_k}{\sigma_{\varepsilon}}\right)}$$

- If $\gamma = \infty$, (ii) implies $|\lambda| < \frac{\sigma_{\varepsilon}}{||\mathbf{G}||_{\infty}\phi(0)}$, which is the restriction set on $|\lambda|$ in binary models (L.-f. Lee, Li, and Lin 2014; Liu 2019).
- Under the equilibrium condition, \mathbf{L} is a contracting mapping. The game has a unique equilibrium and there is a unique expected outcome $\bar{\mathbf{y}}$ such that $\bar{\mathbf{v}} = \mathbf{L}(\bar{\mathbf{v}})$.

Outline

• Microeconomics Foundations

2 Estimation Strategy

Monte Carlo simulations

Empirical Application

Estimation strategy

- Estimation done using the NPL algorithm proposed by Aguirregabiria and Mira 2007.
- Likelihood

$$\mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}) = \sum_{i=1}^{n} \sum_{r=0}^{\infty} \mathrm{I}\left\{y_i = r\right\} \log(p_{ir})$$

- Estimation
 - Start with a proposal $\bar{\mathbf{y}}_0$ for $\bar{\mathbf{y}}$;
 - Compute $\theta_1 = \arg \max \mathcal{L}(\theta, \bar{\mathbf{y}}_0)$ and $\mathbf{y}_1 = \mathbf{L}(\bar{\mathbf{y}}_0, \theta_1)$;
 - Compute $\theta_2 = \arg \max_{\theta} \mathcal{L}(\theta, \bar{\mathbf{y}}_1), \ \mathbf{y}_2 = \mathbf{L}(\bar{\mathbf{y}}_1, \theta_2);$
 - . .
 - If $\{\theta_m, \bar{\mathbf{y}}_m\}_{m\geq 1}$ converges, regardless of the initial guess $\bar{\mathbf{y}}_0$, then $\hat{\boldsymbol{\theta}} = \lim_{m \to \infty} \theta_m$.
- I adapt the Proposition 2 in Aguirregabiria and Mira 2007 and prove that $\hat{\theta}$ is consistent with a normal distribution.

Estimation strategy

- Estimation done using the NPL algorithm proposed by Aguirregabiria and Mira 2007.
- Likelihood

$$\mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}) = \sum_{i=1}^{n} \sum_{r=0}^{\infty} \mathrm{I}\left\{y_i = r\right\} \log(p_{ir})$$

- Estimation
 - Start with a proposal $\bar{\mathbf{y}}_0$ for $\bar{\mathbf{y}}$;
 - Compute $\theta_1 = \arg \max_{\mathbf{a}} \mathcal{L}(\theta, \bar{\mathbf{y}}_0)$ and $\mathbf{y}_1 = \mathbf{L}(\bar{\mathbf{y}}_0, \theta_1)$;
 - Compute $\theta_2 = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}_1), \ \mathbf{y}_2 = \mathbf{L}(\bar{\mathbf{y}}_1, \boldsymbol{\theta}_2);$
 - ..
 - If $\{\theta_m, \bar{\mathbf{y}}_m\}_{m\geq 1}$ converges, regardless of the initial guess $\bar{\mathbf{y}}_0$, then $\hat{\mathbf{\theta}} = \lim_{m \to \infty} \theta_m$.
- I adapt the Proposition 2 in Aguirregabiria and Mira 2007 and prove that $\hat{\theta}$ is consistent with a normal distribution.

Estimation strategy

- Estimation done using the NPL algorithm proposed by Aguirregabiria and Mira 2007.
- Likelihood

$$\mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}) = \sum_{i=1}^{n} \sum_{r=0}^{\infty} I\{y_i = r\} \log(p_{ir})$$

- Estimation
 - Start with a proposal $\bar{\mathbf{y}}_0$ for $\bar{\mathbf{y}}$;
 - Compute $\theta_1 = \arg \max_{\mathbf{a}} \mathcal{L}(\theta, \bar{\mathbf{y}}_0)$ and $\mathbf{y}_1 = \mathbf{L}(\bar{\mathbf{y}}_0, \theta_1)$;
 - Compute $\theta_2 = \arg \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \bar{\mathbf{y}}_1), \ \mathbf{y}_2 = \mathbf{L}(\bar{\mathbf{y}}_1, \boldsymbol{\theta}_2);$
 - ...
 - If $\{\theta_m, \bar{\mathbf{y}}_m\}_{m\geq 1}$ converges, regardless of the initial guess $\bar{\mathbf{y}}_0$, then $\hat{\mathbf{\theta}} = \lim_{m \to \infty} \theta_m$.
- I adapt the Proposition 2 in Aguirregabiria and Mira 2007 and prove that $\hat{\theta}$ is consistent with a normal distribution.

Comparison with the linear model

What happens if the econometrician estimates,

$$y_i = \tilde{\lambda} \mathbf{g}_i \mathbf{y} + \mathbf{x}_i' \tilde{\boldsymbol{\beta}} + \nu_i? \tag{7}$$

instead of the true first order condition,

$$y_i^* = \lambda \sum_{j=1}^n g_{ij}\bar{y}_j + \mathbf{x}_i'\boldsymbol{\beta} + \varepsilon_i$$
 (8)

- The maximum likelihood estimator (MLE) of the parameter $\tilde{\lambda}$ based on the assumption $\nu_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\nu}^2\right)$, where σ_{ν}^2 is an unknown parameter, is inconsistent.
- If **X** is a column vector of ones, the asymptotic bias of $\hat{\tilde{\lambda}}_{2SLS}$ is,

$$-\lambda \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \text{Var}(\tilde{\mathbf{g}_{i}}\mathbf{y}|\mathbf{X}, \mathbf{G}, \mathbf{Z})}{\sum_{i=1}^{n} \text{Var}(\tilde{\mathbf{g}_{i}}\mathbf{y})}$$
(9)

• The bias decreases if y_i takes its values in a large range

Comparison with the linear model

What happens if the econometrician estimates,

$$y_i = \tilde{\lambda} \mathbf{g}_i \mathbf{y} + \mathbf{x}_i' \tilde{\boldsymbol{\beta}} + \nu_i? \tag{7}$$

instead of the true first order condition,

$$y_i^* = \lambda \sum_{j=1}^n g_{ij}\bar{y}_j + \mathbf{x}_i'\boldsymbol{\beta} + \varepsilon_i$$
 (8)

- The maximum likelihood estimator (MLE) of the parameter $\tilde{\lambda}$ based on the assumption $\nu_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\nu}^2\right)$, where σ_{ν}^2 is an unknown parameter, is inconsistent.
- If **X** is a column vector of ones, the asymptotic bias of $\hat{\tilde{\lambda}}_{2SLS}$ is,

$$-\lambda \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \text{Var}(\tilde{\mathbf{g}_{i}}\mathbf{y}|\mathbf{X}, \mathbf{G}, \mathbf{Z})}{\sum_{i=1}^{n} \text{Var}(\tilde{\mathbf{g}_{i}}\mathbf{y})}$$
(9)

• The bias decreases if y_i takes its values in a large range

Comparison with the linear model

What happens if the econometrician estimates,

$$y_i = \tilde{\lambda} \mathbf{g}_i \mathbf{y} + \mathbf{x}_i' \tilde{\boldsymbol{\beta}} + \nu_i? \tag{7}$$

instead of the true first order condition,

$$y_i^* = \lambda \sum_{j=1}^n g_{ij}\bar{y}_j + \mathbf{x}_i'\boldsymbol{\beta} + \varepsilon_i$$
 (8)

- The maximum likelihood estimator (MLE) of the parameter $\tilde{\lambda}$ based on the assumption $\nu_i \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma_{\nu}^2\right)$, where σ_{ν}^2 is an unknown parameter, is inconsistent.
- If **X** is a column vector of ones, the asymptotic bias of $\hat{\tilde{\lambda}}_{2SLS}$ is,

$$-\lambda \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \mathbf{Var}\left(\mathbf{g}_{i}\mathbf{y}|\mathbf{X}, \mathbf{G}, \mathbf{Z}\right)}{\sum_{i=1}^{n} \mathbf{Var}\left(\mathbf{g}_{i}\mathbf{y}\right)}$$
(9)

• The bias decreases if y_i takes its values in a large range

4□▶ 4周▶ 4분▶ 4분▶ 분발 외약

Outline

Microeconomics Foundations

2 Estimation Strategy

3 Monte Carlo simulations

Empirical Application

Monte Carlo simulations

• Specification

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \gamma_1 \mathbf{g}_i \mathbf{x}_1 + \gamma_2 \mathbf{g}_i \mathbf{x}_2 + \varepsilon_i,$$

• Example of simulated data for a sample size N=1500

Monte Carlo simulations

	CDSI		SA	RT	SAR				
Statistic	Mean	Sd.	Mean	Sd.	Mean	Sd.			
Low dispersion - $N = 1500$									
	Type A								
$\lambda = 0.4$	0.402	0.088	0.268	0.078	0.143	0.132			
	Type B								
$\lambda = 0.4$	0.401	0.056	0.288	0.050	0.272	0.074			
Large dispersion - $N = 1500$									
	Type A								
$\lambda = 0.4$	0.400	0.020	0.383	0.020	0.296	0.063			
	Type B								
$\lambda = 0.4$	0.400	0.016	0.387	0.016	0.385	0.016			

16 / 26

Outline

Microeconomics Foundations

② Estimation Strategy

Monte Carlo simulations

4 Empirical Application

Application

- Wave I of Add Health Data: Demographic characteristics of students as well as their friendship links (i.e., best friends, up to 5 females and up to 5 males).
- Number of extracurricular activities in which students are enrolled.

- Schools with more than 100 students.
- Contextual effects and school heterogeneity as fixed effects.

Application: Exogenous network

• Network is exogenous: $\mathbf{\epsilon} \perp \mathbf{G}$.

Parameters	CDSI Coef. Marginal Effects		Coef.	SART Marginal Effects	SAR	
λ	0.443	0.363 (0.028)***	0.194	0.157 (0.005)***	0.185 (0.006)***	

Application: Dyadic linking model

Probability of link formation

$$P_{ij} = \frac{\exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}{1 + \exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}.$$
 (10)

- Observed dyad-specific variables $\Delta \mathbf{x}_{ij}$ (e.g, absolute value of age difference, indicator of same sex, ...).
- Unobserved individual-level attribute which captures the degree heterogeneity μ_i (gregariousness).
- Unobserved individual-level attribute may explain y_i : $\varepsilon \perp \mathbf{G}$ violated.

$$y_{i}^{*} = \lambda \mathbf{g}_{i} \bar{\mathbf{y}} + \mathbf{x}_{i}^{\prime} \boldsymbol{\beta} + \mathbf{g}_{i} \mathbf{x}_{i}^{\prime} \boldsymbol{\delta} + \overbrace{\rho \mu_{i} + \overline{\rho} \mathbf{g}_{i} \mu + \widehat{\varepsilon}_{i}}^{\varsigma_{i}}$$
(11)

• Use MCMC algorithm to estimate (10); include μ_i and $\mathbf{g}_i \boldsymbol{\mu}$ as additional explanatory variable in the count data model.

Application: Dyadic linking model

Probability of link formation

$$P_{ij} = \frac{\exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}{1 + \exp\left(\Delta \mathbf{x}'_{ij}\bar{\boldsymbol{\beta}} + \mu_i + \mu_j\right)}.$$
 (10)

- Observed dyad-specific variables $\Delta \mathbf{x}_{ij}$ (e.g, absolute value of age difference, indicator of same sex, ...).
- Unobserved individual-level attribute which captures the degree heterogeneity μ_i (gregariousness).
- Unobserved individual-level attribute may explain y_i : $\varepsilon \perp \mathbf{G}$ violated.

$$y_i^* = \lambda \mathbf{g}_i \bar{\mathbf{y}} + \mathbf{x}_i' \boldsymbol{\beta} + \mathbf{g}_i \mathbf{x}_i' \boldsymbol{\delta} + \overbrace{\rho \mu_i + \bar{\rho} \mathbf{g}_i \boldsymbol{\mu} + \tilde{\varepsilon}_i}^{\varepsilon_i}$$
(11)

• Use MCMC algorithm to estimate (10); include μ_i and $\mathbf{g}_i \boldsymbol{\mu}$ as additional explanatory variable in the count data model.

Application: Endogenous network

• Without controlling for the endogeneity of the network

Parameters	CDSI Coef. Marginal Effects		Coef.	SART Marginal Effects		SAR		
λ	0.443	0.363	(0.028)***	0.194	0.157	(0.005)***	0.185	(0.006)***

• Controlling for the endogeneity of the network

Parameters	CDSI ⁽¹⁾ Coef. Marginal Effects		Coef.	SART Marginal Effects		SAR		
λ	0.359	0.294	(0.028)***	0.173	0.141	(0.005)***	0.166	(0.006)***
$\rho\sigma_{\varepsilon}$	0.246	0.202	(0.011)***	0.253	0.205	(0.010)***	0.240	(0.013)***
$\bar{ ho}\sigma_{arepsilon}$	0.202	0.166	(0.019)***	0.240	0.195	(0.018)***	0.218	(0.020)***

• Model with endogeneity is the best model according the likelihood ratio test.

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
 - 1 Integer nature of the outcome is important.
 - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.
 - $$\label{eq:cd_context} \begin{split} \text{CD} &\leftarrow \text{CDnetNPL}(\textbf{formula} = y ~\tilde{x}1 + x2\,,~\text{contextual} = \text{TRUE},\\ &\text{Glist} = \text{Network}\,,~\text{optimizer} = \text{"nlm"})\\ &\text{summary}(\text{CD}) \end{split}$$

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
 - 1 Integer nature of the outcome is important.
 - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.
 - CD <- CDnetNPL(formula = y $\tilde{\ }$ x1 + x2, contextual = TRUE, Glist = Network, optimizer = "nlm")

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
 - 1 Integer nature of the outcome is important.
 - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.

```
\label{eq:cd_context} \begin{split} \text{CD} & \leftarrow \text{CDnetNPL}(\textbf{formula} = y ~\tilde{\ } \text{x1} + \text{x2}\,, \text{ contextual} = \text{TRUE}, \\ & \text{Glist} = \text{Network}\,, \text{ optimizer} = \text{"nlm"}) \\ & \textbf{summary}(\text{CD}) \end{split}
```

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
 - 1 Integer nature of the outcome is important.
 - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- CDatanet package, https://github.com/ahoundetoungan/CDatanet.

```
CD <- CDnetNPL(formula = y ~ x1 + x2, contextual = TRUE, Glist = Network, optimizer = "nlm")
```

- First model of random utility dealing with networks and count outcome.
- The model performs well on count data.
- Two main results.
 - 1 Integer nature of the outcome is important.
 - 2 The endogeneity of the network is important.
- (Next steps) Zeros inflated specification may be required (e.g., smoking).
- $\bullet \ \ \mathtt{CDatanet} \ \ \mathtt{package}, \ \mathtt{https://github.com/ahoundetoungan/CDatanet}.$

$$\label{eq:cd_context} \begin{split} \text{CD} & \leftarrow \text{CDnetNPL}(\textbf{formula} = y ~ \text{*} x1 + x2 \,, ~ \text{contextual} = \text{TRUE}, \\ & \text{Glist} = \text{Network} \,, ~ \text{optimizer} = \text{"nlm"}) \\ & \textbf{summary}(\text{CD}) \end{split}$$

THANK YOU

Game: First Order Conditions (focs)

• Belief comparison with the standard Poisson model ($\lambda = 0$)

- Flexible model in term of dispersion fitting as the Generalized Poisson model.
 - The Poisson model only allows equidispersion;
 - The Negative Binomial model only allows overdispersion and equidispersion.

Game: Equilibrium

- Assume $\gamma = 1$ and **G** is row-normalized; ie $||\mathbf{G}||_{\infty} = 1$.
- Is the condition on λ much stronger than $|\lambda| < 1$?
- $C_{1,\sigma_{\varepsilon}}$ (upper bound of λ when $\gamma=1$ and $||\mathbf{G}||_{\infty}=1$) as a function of σ_{ε}

- The condition $\sigma_{\varepsilon} < 0.5$ is likely to be violated in practice:
 - max of $Var(y_i|\psi_i) < 0.34$;
 - Only two count choices concentrate more than 84% of observed data.

25 / 26

Variance of the two-stage estimation

Unconditional variance

$$\mathbf{Var}(\hat{\boldsymbol{\theta}}) = \mathbf{E}_u \left(\mathbf{Var}(\hat{\boldsymbol{\theta}} | \tilde{\boldsymbol{\mu}}) \right) + \mathbf{Var}_u \left(\mathbf{E}(\hat{\boldsymbol{\theta}} | \tilde{\boldsymbol{\mu}}) \right). \tag{12}$$

• Assumption: Let $\tilde{\mu}_s$ be a draw of $\tilde{\mu}$ from its posterior distribution and $\hat{\theta}_s$ be the estimator of θ_0 associated with $\tilde{\mu}_s$. $\hat{\theta}_s$ is a consistent estimator of $\mathbf{E}(\hat{\theta}_s|\tilde{\mu}_s)$.

$$\widehat{AsyVar}\left(\hat{\boldsymbol{\theta}}_{s}\right) = \frac{1}{S} \sum_{s=1}^{S} \mathbf{Var}(\hat{\boldsymbol{\theta}}_{s} | \tilde{\boldsymbol{\mu}}_{s}) + \frac{1}{S-1} \sum_{s=1}^{T} \left(\hat{\boldsymbol{\theta}}_{s} - \hat{\bar{\boldsymbol{\theta}}}\right) \left(\hat{\boldsymbol{\theta}}_{s} - \hat{\bar{\boldsymbol{\theta}}}\right)', \quad (13)$$

where $\tilde{\mu}_1, \ldots, \tilde{\mu}_S$ are S draws of $\tilde{\mu}$ with replacement from the population of the 10,000 simulations kept at the first stage, and $\hat{\theta} = \frac{1}{S} \sum_{s=1}^{S} \hat{\theta}_s$. In practice, I set S = 5,000.