昆明理工大学 2012 级硕士研究生 《数理统计》试卷A

满分 100 分 考试时间: 3 小时

学院:	专业:	学号:	姓名:	

题号	 =	Ξ	四	五	六	总分	评卷人
得分							

一、(16 分) 设总体 $X \sim U[\theta_1, \theta_2], \theta_1 < \theta_2$ 未知, $x_1, x_2, ..., x_n$ 是样本值, 试求:

- (1) θ_1, θ_2 的矩估计值;
- (2) θ_1, θ_2 的最大似然估计值。
- 二、(16分)设总体 $X \sim N(0, \sigma^2)$, $x_1, x_2, ..., x_n$ 是样本值,试求:
 - (1) σ² 的有效估计量;
 - (2) 信息量: $I(\sigma^2)$, $I(\sigma)$ 。

三、(10分)500 名啤酒爱好者对5种品牌啤酒进行了试验,结果如 下:

试在水平 5%下检验消费者对这 5 种啤酒的爱好有无显著差异?

$$(\chi^2_{0.05}(4) = 9.49)$$

四、(10分)从甲、乙两批灯泡中随机抽取若干只进行寿命试验,测得数据(单位: h)如下:

甲: 1420, 1450, 1425, 1470, 1465, 1480

Z: 1425, 1445, 1410, 1420, 1415

试在水平5%下检验两批灯泡的寿命有无显著差异?

$$(t_1(5,6) = 20, t_2(5,6) = 40)$$

五、(24 分)为研究温度 $x(^{\circ}C)$ 对某化工产品得率 Y(%) 的影响,独立观测了 10 次,测得数据如下:

温度 x(°C)	100	110	120	130	140	150	160	170	180	190
得率 y(%)	45	51	54	61	66	70	74	78	85	89

相关数据结果:

$$\sum_{i=1}^{10} x_i = 1450 , \sum_{i=1}^{10} y_i = 673 , \sum_{i=1}^{10} (x_i - \bar{x})^2 = 8250 , \sum_{i=1}^{10} (y_i - \bar{y})^2 = 1932.1$$

$$\sum_{i=1}^{10} (x_i - \bar{x})(y_i - \bar{y}) = 3985.$$

已知 $t_{0.975}(8) = 2.306$, 试根据上述数据,

- (1) 求得率Y(%)对于温度 $x(^{\circ}C)$ 的回归直线方程;
- (2) 在水平 5%下检验线性关系的显著性;
- (3) 当x = 125 时,求E(Y)及Y的 95%的预测区间。

六、(24分)某橡胶配方中,因素水平表如下:

因素水平	促进剂总量 A	碳墨品种B	硫磺分量 <i>c</i>	
1	1.5	天津耐高磨	2. 5	
2	2. 5	天津与长春耐高磨并用	2. 0	

考虑到因素间的交互作用,选用正交表 $L_8(2^7)$,结果如下表:

列号	A 1	В 2	A×B 3	C 4	<i>A</i> × <i>C</i> 5	<i>B</i> × <i>C</i> 6	y _i 弯曲次数(万次)
1	1	1	1	1	1	1	1.5
2	1	1	1	2	2	2	2. 0
3	1	2	2	1	1	2	2. 0
4	1	2	2	2	2	1	1.5
5	2	1	2	1	2	1	2. 0
6	2	1	2	2	1	2	3. 0
7	2	2	1	1	2	2	2. 5
8	2	2	1	2	1	1	2. 0

其中橡胶的弯曲次数越多越好.

- (1) 对试验结果进行直观分析,并求出主要因素及较好的因素水平的搭配;
- (2) 对试验结果进行方差分析。($F_{0.95}$ (1,3) = 10.13)