Задачи для подготовки к экзамену

1. Неопределенные интегралы

68.
$$\int e^{-x^3} x^2 dx$$
.

69.
$$\int \frac{e^{\sqrt{x}}dx}{\sqrt{x}}.$$

$$70. \quad \int \frac{\cos x}{\sin^3 x} dx.$$

71.
$$\int e^{\sin x} \cos x dx$$
.

$$72. \quad \int \frac{e^{\operatorname{tg} x} dx}{\cos^2 x}.$$

$$73. \quad \int \frac{2^{\sqrt{x}} dx}{\sqrt{x}}.$$

74.
$$\int \frac{3^{\frac{1}{x}} dx}{x^2}$$
.

$$75. \quad \int \frac{\sin x}{\cos^5 x} dx.$$

76.
$$\int \frac{\sqrt[3]{2 + \ln x}}{x} dx.$$

$$77. \quad \int \sqrt{3 + \cos 5x} \sin 5x dx.$$

160.
$$\int \arcsin x dx$$

161.
$$\int x \arctan x \, dx$$

$$162. \int x \operatorname{arcctg}(1-x) dx$$

163.
$$\int \frac{\arcsin x}{\sqrt{1+x}} dx$$

164.
$$\int \arctan \sqrt{7x-1} dx$$

$$165. \qquad \int x \ln \frac{1+x}{1-x} dx$$

$$166. \quad \int e^x \sin x dx$$

$$168. \quad \int e^{2x} \cos 3x dx$$

172.
$$\int \ln(x^2 + 2) dx$$

173.
$$\int \cos(\ln x) dx$$

$$174. \quad \int \frac{x \cos x}{\sin^3 x} dx$$

$$175. \qquad \int x \, \mathrm{tg}^2 x \, dx$$

176.
$$\int \frac{\arctan x}{x^2} dx$$

177.
$$\int \frac{\arcsin\sqrt{x}}{\sqrt{x}} dx$$

$$182. \qquad \int \sqrt{7-x^2} \, dx \, .$$

$$183. \qquad \int \sqrt{x^2 - 5} dx.$$

$$184. \qquad \int \sqrt{3-x^2} \, dx \, .$$

$$185. \qquad \int \sqrt{x^2 + 2} dx.$$

$$235. \int \cos^4 x dx.$$

236.
$$\int \sin^5 x dx$$
.

$$237. \int \cos^2 x \sin^2 x dx.$$

238.
$$\int \sin^3 \frac{x}{4} \cos^3 \frac{x}{4} dx.$$

$$259. \int \frac{\cos^3 x}{\sin^2 x} dx.$$

261.
$$\int \operatorname{ctg}^3 x dx$$
.

$$262. \int \frac{\cos^3 x}{\sin^5 x} dx$$

262.
$$\int \frac{\cos^3 x}{\sin^5 x} dx$$
. **266.** $\int \frac{dx}{1 + 3\cos^2 x}$.

$$267. \int \frac{dx}{5 + 3\cos x}.$$

267.
$$\int \frac{dx}{5+3\cos x}$$
. **268.** $\int \frac{dx}{3\sin x + 4\cos x}$.

276.
$$\int \frac{dx}{\sin^2 x + 3\sin x \cos x - \cos^2 x}$$
. **277.** $\int \frac{dx}{\sin^2 x - 5\sin x \cos x}$.

$$277. \int \frac{dx}{\sin^2 x - 5\sin x \cos x}.$$

278.
$$\int \frac{dx}{8-4\sin x + 7\cos x}$$
. **279.** $\int \frac{dx}{(\sin x + \cos x)^2}$.

$$279. \int \frac{dx}{\left(\sin x + \cos x\right)^2}$$

$$320. \int \frac{x \arcsin x dx}{\sqrt{1-x^2}}.$$

324.
$$\int x^2 \arctan(2x+1) dx$$
.

8.4.14.
$$\int \frac{x + \sqrt[3]{x^2} + \sqrt[6]{x}}{x(1 - \sqrt[3]{x})} dx.$$
 8.4.15.
$$\int \frac{\sqrt{x} dx}{x - \sqrt[3]{x^2}}.$$
 8.4.16.
$$\int \frac{\sqrt{x} dx}{1 + \sqrt{x}}.$$
 8.4.17.
$$\int \frac{\sqrt{x} dx}{1 - \sqrt[3]{x}}.$$

8.4.15.
$$\int \frac{\sqrt{x} \, dx}{x - \sqrt[3]{x^2}}$$

8.4.16.
$$\int \frac{\sqrt{x} \, dx}{1 + \sqrt{x}}$$

8.4.17.
$$\int \frac{\sqrt{x} \, dx}{1 - \sqrt[3]{x}}$$

$$8.4.18. \quad \int \frac{\sqrt{x+2}}{x} \, dx$$

8.4.19.
$$\int \frac{x \, dx}{\sqrt{x+1} + \sqrt[3]{x+1}}$$

8.4.18.
$$\int \frac{\sqrt{x+2}}{x} dx.$$
8.4.19.
$$\int \frac{x dx}{\sqrt{x+1} + \sqrt[3]{x+1}}.$$
8.4.20.
$$\int \frac{dx}{(x+1)^{3/2} + (x+1)^{\frac{1}{2}}}.$$
8.4.21.
$$\int \frac{\sqrt{1+x} + 1}{\sqrt{1+x} - 1} dx.$$

8.4.21.
$$\int \frac{\sqrt{1+x}+1}{\sqrt{1+x}-1} \, dx.$$

2. Неопределенный интеграл и его приложения

$$375. \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{ctg}^4 t dt.$$

375.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \operatorname{ctg}^4 t dt$$
. 376. $\int_{0}^{\frac{\pi}{2}} \frac{dx}{3 + 2\cos x}$. 377. $\int_{1}^{e} \ln x dx$.

$$377. \int_{1}^{e} \ln x dx$$

$$378. \int_{2\pi}^{3\pi} x \sin x dx.$$

379.
$$\int_{1}^{1} x^{2} e^{-x} dx$$

378.
$$\int_{2\pi}^{3\pi} x \sin x dx$$
. 379. $\int_{-1}^{1} x^2 e^{-x} dx$. 380. $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x dx}{\sin^2 x}$.

Вычислить площади фигур, ограниченных линиями:

392.
$$y = \arcsin 2x$$
, $x = 0$, $y = -\frac{\pi}{2}$.

393.
$$y = \sin 2x$$
, $y = 1$, $x = \frac{\pi}{2}$, $\frac{\pi}{4} \le x \le \frac{\pi}{2}$.

394.
$$x^2 - y^2 = 1$$
, $x = 2$.

395.
$$y = x^3$$
, $y = -1$, $x = 0$.

Вычислить длину дуги кривой:

427.
$$y = \frac{2}{3}x\sqrt{x}$$
, отсеченной прямой $x = 3$.

428.
$$y^2 = x^3$$
, отсеченной прямой $x = 1$.

429.
$$y = \ln \cos x$$
, отсеченной прямыми $x = 0$, $x = \frac{\pi}{6}$.

435. астроиды
$$x = a \cos^3 t$$
, $y = a \sin^3 t$.

436. одной арки циклоиды
$$x = a(t - \sin t), y = a(1 - \cos t),$$
 $0 \le t \le 2\pi$.

9.3.108.
$$\begin{cases} x = \frac{1}{6}t^6, \\ y = 2 - \frac{t^4}{4} \end{cases}$$
 между точками пересечения с осями Ox и Oy .

9.3.109.
$$\begin{cases} x = \cos t + t \sin t, \\ y = \sin t - t \cos t \end{cases} \text{ or } t = 0 \text{ go } t = \pi/4.$$

9.3.110.
$$\begin{cases} x = 4(t - \sin t), & \frac{\pi}{2} \leq t \leq \frac{2\pi}{3}. \\ y = 4(1 - \cos t), & \frac{\pi}{2} \leq t \leq \frac{2\pi}{3}. \end{cases}$$

9.3.111.
$$y = \ln \frac{e}{\cos x}$$
 от $x = 0$ до $x = \frac{\pi}{6}$

9.3.112.
$$y = \sqrt{x-1}$$
 от точки $A(1;0)$ до точки $B(2;1)$.

9.3.113.
$$y = \ln(1 - x^2)$$
 or $x = 0$ go $x = \frac{3}{4}$.

9.3.116.
$$\begin{cases} x = t^2, \\ y = t - \frac{1}{3}t^3 \end{cases}$$
 (петля).

9.3.117.
$$\begin{cases} x = 3\sin t + 4\cos t, \\ y = 4\sin t - 3\cos t. \end{cases}$$

9.3.129. Вычислить длину кривой
$$y = \sqrt{x - x^2} + \arcsin \sqrt{x} + 3$$
, $\frac{1}{16} \leqslant x \leqslant 1$.

Вычислить объемы тел, образованных вращением фигуры, ограниченной линиями:

413.
$$y = 4 - x^2$$
, $y = 0$, $x = 0$, где $x \ge 0$ вокруг: 1) оси Ox , 2) оси Oy .

414.
$$y = e^x$$
, $x = 0$, $x = 1$, $y = 0$ вокруг: 1) оси Ox , 2) оси Oy .

415.
$$y = x^2$$
, $y = 4$, $x = 0$, где $x \ge 0$ вокруг: 1) оси Ox , 2) оси Oy .

416.
$$y = x^2 + 1$$
, $y = 0$, $x = 1$, $x = 2$ вокруг: 1) оси Ox , 2) оси Oy .

417.
$$y = x^3$$
, $y = 1$, $x = 0$ вокруг: 1) оси Ox , 2) оси Oy .

419.
$$y = \ln x$$
, $y = 0$, $x = e$ вокруг: 1) оси Ox , 2) оси Oy .

9.3.206. $y = \arccos x, y = \arcsin x, y = 0$ вокруг оси Oy.

9.3.207. $y = \sqrt{x-1}, y = 0, y = 1, x = 0,5$ вокруг оси Ox.

9.3.243. Тангенсоида $y = \operatorname{tg} x$ от x = 0 до $x = \frac{\pi}{4}$ вокруг оси Ox.

3. Несобственные интегралы

Вычислить интегралы или установить их расходимость:

462.
$$\int_{0}^{+\infty} x^2 e^{-x^3} dx$$
.

$$\mathbf{463.} \qquad \int\limits_{0}^{+\infty} x \cdot \sin x dx \,.$$

$$465. \qquad \int_{1}^{+\infty} \frac{\arctan x}{x^2} dx.$$

$$466. \int_{e}^{+\infty} \frac{dx}{x \ln^2 x}.$$

467.
$$\int_{6}^{+\infty} \frac{dx}{\sqrt[3]{(x+2)^2}}.$$

468.
$$\int_{0}^{+\infty} \frac{dx}{1+x^3}.$$

$$469. \qquad \int\limits_{1}^{+\infty} \frac{x dx}{\sqrt{4+x^4}}.$$

470.
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}.$$

$$475. \qquad \int_{1}^{2} \frac{x dx}{\sqrt{x-1}}.$$

476.
$$\int_{0}^{1} x \ln x dx.$$

$$477. \qquad \int_{1}^{e} \frac{dx}{x\sqrt{\ln x}}.$$

478.
$$\int_{2}^{4} \frac{dx}{\sqrt[3]{(4-x)^2}}.$$

479.
$$\int_{0}^{2} \frac{dx}{(x-1)^{2}}.$$

480.
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{(x-1)^2}}.$$

481.
$$\int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^2}} dx.$$

482.
$$\int_{-1}^{1} \frac{x+1}{\sqrt[5]{x^3}} dx.$$

4. Двойные интегралы:

Изменить порядок интегрирования

6.19.
$$\int_{0}^{\sqrt{3}} dx \int_{\sqrt{4-x^2}-2}^{0} f dy + \int_{\sqrt{3}}^{2} dx \int_{-\sqrt{4-x^2}}^{0} f dy \cdot 6.20. \int_{-2}^{-1} dy \int_{-(2+y)}^{0} f dx + \int_{-1}^{0} dy \int_{\sqrt[3]{y}}^{0} f dx$$

6.21.
$$\int_{0}^{1} dy \int_{0}^{y} f \, dx + \int_{1}^{e} dy \int_{\ln y}^{1} f \, dx.$$
6.22.
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f \, dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^{2}}} f \, dy.$$
6.23.
$$\int_{0}^{\pi/4} dx \int_{0}^{\sin x} f \, dy + \int_{\pi/4}^{\pi/2} dx \int_{0}^{\cos x} f \, dy.$$
6.24.
$$\int_{-\sqrt{2}}^{-1} dy \int_{-\sqrt{2-y^{2}}}^{0} f \, dx + \int_{-1}^{0} dy \int_{y}^{0} f \, dx.$$

6.25.
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f \ dy + \int_{1}^{2} dx \int_{0}^{2-x} f \ dy.$$
 6.26.
$$\int_{0}^{\sqrt{3}} dx \int_{0}^{2-\sqrt{4-x^{2}}} f \ dy + \int_{\sqrt{3}}^{2} dx \int_{0}^{\sqrt{4-x^{2}}} f \ dy.$$

Вычислить двойной интеграл (D- область, ограниченная линиями)

$$\iint_{D} (12x^{2}y^{2} + 16x^{3}y^{3}) dxdy;$$

$$D: x = 1, y = x^{2}, y = -\sqrt{x}.$$

$$\iint_{D} (9x^{2}y^{2} + 48x^{3}y^{3}) dxdy;$$

$$D: x = 1, y = \sqrt{x}, y = -x^{2}.$$

$$\iint_{D} (36x^{2}y^{2} - 96x^{3}y^{3}) dxdy;$$

$$D: x = 1, y = \sqrt[3]{x}, y = -x^{3}.$$

$$\iint_{D} (18x^{2}y^{2} + 32x^{3}y^{3}) dxdy;$$

$$D: x = 1, y = x^{3}, y = -\sqrt[3]{x}.$$

$$\iint_{D} (27x^{2}y^{2} + 48x^{3}y^{3}) dxdy;$$

$$D: x = 1, y = x^{2}, y = -\sqrt[3]{x}.$$

$$D: x = 1, y = x^{2}, y = -\sqrt[3]{x}.$$

Используя двойной интеграл, вычислить площадь фигуры, ограниченной линиями

6.1.
$$y = 3/x$$
, $y = 4e^x$, $y = 3$, $y = 4$.

6.2.
$$x = \sqrt{36 - y^2}$$
, $x = 6 - \sqrt{36 - y^2}$.

6.3.
$$x^2 + y^2 = 72$$
, $6y = -x^2 \ (y \le 0)$.

6.4.
$$x = 8 - v^2$$
, $x = -2v$.

6.5.
$$y = \frac{3}{x}$$
, $y = 8e^x$, $y = 3$, $y = 8$.

6.6.
$$y = \frac{\sqrt{x}}{2}$$
, $y = \frac{1}{2x}$, $x = 16$.

6.7.
$$x = 5 - y^2$$
, $x = -4y$.

6.8.
$$x^2 + y^2 = 12$$
, $-\sqrt{6}y = x^2 \ (y \le 0)$.

6.9.
$$y = \sqrt{12 - x^2}$$
, $y = 2\sqrt{3} - \sqrt{12 - x^2}$, $x = 0$ $(x \ge 0)$.

6.10.
$$y = \sqrt{24 - x^2}$$
, $2\sqrt{3}y = x^2$, $x = 0$ $(x \ge 0)$.

6.11.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $(x \ge 0)$.

5. Криволинейные интегралы:

1.1. а) Вычислить $\int\limits_{AB} \frac{e^{3y}}{\sqrt{1+e^{2y}}} \, ds$, где AB - дуга кривой $x=1+e^y$, заключенная между точками

$$A(2;0)$$
 и $B(3;\ln 2)$,

- b) Вычислить $\int\limits_{L} \left(x+rac{y}{4}
 ight)^{-3} dx + \sqrt{y} \ e^{-\left(x/4+y/16
 ight)} dy$, где L ломаная с вершинами $A(-2\,;\,0)\,,\,B(-4\,;\,0)\,,\,C(-8\,;\,16)\,.$
- 1.2. а) Вычислить $\int\limits_{AB} \Big(4x^4y + 2x^2y^3 + 3y^5 \Big) ds$, где AB полуокружность $y = \sqrt{2x x^2}$.

b) Вычислить
$$\int\limits_L \left(x+5y\right) dx + \left(-x+4y\right) dy$$
 , где L – четверть окружности $\begin{cases} x=4\cos t \\ y=4\sin t \end{cases} \left(0 \le t \le \frac{\pi}{2}\right)$.

1.3. а) Вычислить $\int\limits_{AB} \frac{6xy^4-4xy^3}{\sqrt{1+4x^2y^4}} \, ds$, где AB - дуга кривой $y=\frac{4}{4x^2+1}$, заключенная между точками $A(0\,;4)$ и $B\Big(\frac{1}{2}\,;2\Big)$,

- b) Вычислить $\int_L \sqrt{x-\frac{y}{3}} \ dx + y \ e^{\left(x/3-y/9\right)} dy$, где L ломаная с вершинами $A(4\,;0)$, $B(3\,;0)$, $C(6\,;9)$.
- 1.4. а) Вычислить $\int\limits_{AB} \frac{\left(x^2+1\right)}{\left(y^2+1\right)\sqrt{10+9xy-9x^2}} \, ds$, где AB дуга кубической параболы $y=x^3+3x$, заключенная между точками $A(0\,;\,0)$ и $B(1\,;\,4)$,
- b) Вычислить $\int_L (3x^2 + y^2) dx + (xy 5) dy$, где L дуга параболы $y = 3x x^2$, расположенная выше оси OX и пробегаемая по часовой стрелке.

Вычислить с помощью формулы Грина

2.4.
$$\int\limits_{L} \frac{y^2 \, e^{xy} + 6x}{y} \, dx + \left(x \, e^{xy} + e^{\left(x^2 + y\right)}\right) dy \,, \qquad \qquad L \qquad - \qquad \text{прямоугольник} \qquad \text{с} \qquad \text{вершинами} \\ A(0\,;1), B(0\,;3), C(-1\,;3), D(-1\,,1),$$

b)
$$\int_{L} \left(y - x e^{\left(x^2 + y^2\right)} \right) dx + \left(3x - y e^{\left(x^2 + y^2\right)} \right) dy$$
, L – окружность $x^2 + y^2 = 9y$.

2.5. a)
$$\int\limits_{L} \left(\frac{y}{x^2y^2+7} + \frac{3x}{y} \right) dx + \left(e^{x^2+y} + \frac{x}{x^2y^2+7} \right) dy \,, \qquad L \quad - \quad \text{прямоугольник} \quad \text{с} \quad \text{вершинами} \quad A(0\,;1)\,, B(0\,;3)\,, C\left(\sqrt{2}\;;3\right)\!, D\left(\sqrt{2}\;,1\right)\!,$$

b)
$$\int_{L} (xy + x\cos(x^2 + y^2))dx + (y\cos(x^2 + y^2) + x^2y)dy$$
, $L - \text{окружность } x^2 + y^2 = 16$.

2.6. a)
$$\int_{L} \left(2x+2y+x\sqrt{9-x^2+y^2}\right) dx + \left(xy-y\sqrt{9-x^2+y^2}\right) dy$$
 , L – окружность $x^2+y^2=9$.

b)
$$\int_{L} (3^{\sin x} - xy^2) dx + (x^2y + e^{y^3}) dy$$
, L – треугольник с вершинами $A(1;0), B(4;0), C(4;3)$.

2.7. а)
$$\int\limits_L \left(x^2+x\sqrt{3+x^2+y^2}\right) dx + \left(y\sqrt{3+x^2+y^2}+x+e^y\right) dy$$
 , L — контур, образованный кривыми $y=-x^2$, $x=y^2$,

b)
$$\int_{L} \left(xy + x e^{\left(x^2 + y^2 + 3\right)} \right) dx + \left(y^2 + y e^{\left(x^2 + y^2 + 3\right)} \right) dy$$
, L – окружность $x^2 + y^2 = 3y$.

2.8. a)
$$\int_L \left(\frac{2xy}{x^2y+3} + x^2y \right) dx + \left(\frac{x^2}{x^2y+3} + x \right) dy$$
 , L – контур, образованный кривыми $y = 2x^2$, $x = y^2$,

b)
$$\int_L \left(-x^2y + x\sqrt{5-x^2-y^2}\right) dx + \left(y\sqrt{5-x^2-y^2} + xy^2\right) dy$$
, L – окружность $x^2 + y^2 = 4y$.

2.9. a)
$$\int_L \frac{6y + 4x \ln x - 2x \ln y}{y} dx + \frac{xy^2 + x^2 \ln y - 2x^2 \ln x}{y^2} dy$$
, L – треугольник с вершинами $A(4;3), B(5;5), C(6;4)$,

b)
$$\int_{I} \left(-x^2y + x\sqrt{4 + x^2 + y^2}\right) dx + \left(y\sqrt{4 + x^2 + y^2} + xy^2\right) dy$$
, $L - \text{окружность } x^2 + y^2 = 8y$.

2.10. a)
$$\int\limits_{L} \left(\frac{12x}{y} + x\,e^{\left(x^2 + y^2\right)}\right) dx + \left(e^{x^2} + y\,e^{\left(x^2 + y^2\right)}\right) dy \,, \qquad L \quad - \quad \text{прямоугольник} \quad \text{с} \quad \text{вершинами}$$

$$A(0\,;6)\,,\,B(0\,;8)\,,\,C(1\,;8)\,,\,D(1\,,6)\,,$$

b)
$$\int\limits_{L} \left(x^2y + \sqrt{\frac{y}{x}}\right) dx + \left(\sqrt{\frac{x}{y}} + xy^2\right) dy, \quad L - \text{окружность } x^2 + y^2 = 6.$$

2.11. a)
$$\int_L \left(x^2 + 7y + x\sqrt{x^2 - y^2}\right) dx + \left(e^{y^2} + x - y\sqrt{x^2 - y^2}\right) dy$$
, L – треугольник с вершинами $A(8;1), B(9;3), C(10;2)$,

b)
$$\int_{I} \left(x^2 3^{(x^3 + y^3)} - 4y \right) dx + \left(y^2 3^{(x^3 + y^3)} + e^y + 2x \right) dy$$
, L – окружность $x^2 + y^2 = 10y$.

Вычислить криволинейный интеграл независящий от пути интегрирования:

4.2.89.
$$\int_{(-1,2)}^{(2,3)} x \, dy + y \, dx.$$
 4.2.90.
$$\int_{(0,1)}^{(3,-4)} x \, dx + y \, dy.$$
4.2.91.
$$\int_{(2,1)}^{(1,2)} \frac{y \, dx - x \, dy}{x^2}, (x \neq 0).$$
 4.2.92.
$$\int_{(1,0)}^{(6,8)} \frac{x \, dx + y \, dy}{\sqrt{x^2 + y^2}}.$$
4.2.93.
$$\int_{(1,0)}^{(2,\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x}\right) \, dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}\right) \, dy.$$

6. Тройные интегралы:

Вычислить объемы тел, ограниченных поверхностями:

3.4.37.
$$z = x + y$$
, $z = xy$, $x + y = 1$, $x = 0$, $y = 0$.

3.4.39.
$$az = x^2 + y^2$$
, $z = \sqrt{x^2 + y^2}$, $a > 0$.

3.4.41.
$$\dot{x} = 0, \, \dot{y} = 0, \, \dot{z} = 0, \, 2\dot{x} - 3\dot{y} - 12 = 0, \, 2z = y^2.$$

3.4.43.
$$z=4-y^2, y=\frac{x^2}{2}, z=0.$$

3.4.44.
$$z = \frac{17}{2} - x^2 - y^2, z = \frac{15}{2} \sqrt{x^2 + y^2}.$$

3.4.45.
$$z = \sqrt{4 - x^2 - y^2}, z = \sqrt{\frac{x^2 + y^2}{255}}.$$

3.4.46.
$$z = \sqrt{64 - x^2 - y^2}, x^2 + y^2 \le 60, z = 1.$$

3.4.47.
$$x^2 + y^2 = y$$
, $x^2 + y^2 = 4y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

3.4.48.
$$x^2 + y^2 = 18$$
, $x = \sqrt{3y}$, $z = \frac{10y}{11}$, $x = 0$, $z = 0$.

Тело V задано ограничивающими его поверхностями, μ - плотность. Найти массу тела.

12.1.
$$z^2 = 4(x^2 + y^2)$$
, $z = 6$, $y = 0$ $(y \ge 0)$, $\mu = z$.

12.2.
$$z = 2(x^2 + y^2)$$
, $z = 8$, $x = 0$ $(x \ge 0)$, $\mu = \sqrt{x^2 + y^2}$.

12.3.
$$z = 8 - 2(x^2 + y^2)$$
, $z = 0$, $y = 0$ $(y \ge 0)$, $\mu = z$.

12.4.
$$z = \frac{1}{2}(x^2 + y^2)$$
, $x^2 + y^2 = 4$, $z = 0$, $x = 0$ $(x \ge 0)$, $\mu = \sqrt{x^2 + y^2}$.

12.5.
$$z^2 = 9(x^2 + y^2)$$
, $x^2 + y^2 = 4$, $z = 0$, $x = 0$ $(z \ge 0, x \ge 0)$, $\mu = z$.

12.6.
$$z^2 = x^2 + y^2$$
, $z = 6 - x^2 - y^2$, $y = 0$ $(z \ge 0, y \ge 0)$, $\mu = \sqrt{x^2 + y^2}$.

12.7.
$$z = x^2 + y^2$$
, $x^2 + y^2 + z^2 = 20$, $x = 0$ $(x \ge 0)$, $\mu = z$.

Ответы:

1. Неопределенные интегралы

68.
$$-\frac{1}{3}e^{-x^3} + c$$
.

160.
$$x \arcsin x + \sqrt{1-x^2} + c$$
.

69.
$$2e^{\sqrt{x}} + c$$
.

161.
$$\frac{x^2+1}{2}$$
 arctg $x-\frac{1}{2}x+c$.

70.
$$-\frac{1}{2\sin^2 x} + c$$
.

162.
$$\frac{x^2}{2} \operatorname{arcctg}(1-x) - \frac{x}{2} - \frac{1}{2} \ln(x^2 - 2x + 2) + c.$$

$$2\sin^2 x$$

$$71.e^{\sin x} + c.$$

163.
$$\sqrt{1+x} \arcsin x + 4\sqrt{1-x} + c$$
.

164.
$$x \operatorname{arctg} \sqrt{7x-1} - \frac{1}{7} \sqrt{7x-1} + c.$$

72.
$$e^{tgx} + c$$
.

165.
$$\frac{x^2 - 1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + c.$$

73.
$$\frac{2^{\sqrt{x}+1}}{\ln 2} + c$$
.

166.
$$\frac{1}{2}e^x(\sin x - \cos x) + c$$
.

74.
$$-\frac{3^{x}}{\ln 3} + c$$
.

168.
$$\frac{1}{13}e^{2x}(3\sin 3x + 2\cos 3x) + c$$
.

$$75. \frac{1}{4\cos^4 x} + c.$$

172.
$$x \ln(x^2 + 2) - 2x + \frac{4}{\sqrt{2}} \arctan \frac{x}{\sqrt{2}} + c$$
.

76.
$$\frac{3}{4}(2 + \ln x)^{\frac{4}{3}} + c$$
.

173.
$$\frac{x}{2}(\cos(\ln x) + \sin(\ln x)) + c$$
.

77.
$$-\frac{2}{15}(3+\cos 5x)^{\frac{3}{2}}+c$$

77.
$$-\frac{2}{15}(3+\cos 5x)^{\frac{3}{2}}+c$$
 174. $-\frac{x}{2\sin^2 x}-\frac{1}{2}\cot x+c$.

175.
$$\ln|\cos x| - \frac{x^2}{2} + x \operatorname{tg} x + c$$
.

176.
$$-\frac{\arctan x}{x} - \frac{1}{2} \ln \left(1 + \frac{1}{x^2} \right) + c.$$

177.
$$2\sqrt{x} \arcsin \sqrt{x} + 2\sqrt{1-x} + c$$
.

182.
$$\frac{x}{2}\sqrt{7-x^2} + \frac{7}{2}\arcsin\frac{x}{\sqrt{7}} + c$$
.

183.
$$\frac{x}{2}\sqrt{x^2-5} - \frac{5}{2}\ln\left|x + \sqrt{x^2-5}\right| + c.$$

184.
$$\frac{x}{2}\sqrt{3-x^2} + \frac{3}{2}\arcsin\frac{x}{\sqrt{3}} + c$$
.

185.
$$\frac{x}{2}\sqrt{x^2+2} + \ln\left|x + \sqrt{x^2+2}\right| + c$$
.

235.
$$\frac{3x}{8} + \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + c$$
.

236.
$$\frac{2\cos^3 x}{3} - \frac{\cos^5 x}{5} - \cos x + c$$
.

237.
$$\frac{x}{8} - \frac{\sin 4x}{32} + c$$
.

238.
$$\frac{2\cos^3\frac{x}{2}}{12} - \frac{\cos\frac{x}{2}}{4} + c$$
.

259.
$$-\frac{1}{\sin x} - \sin x + c$$
.

267.
$$\frac{1}{2} \operatorname{arctg} \left(\frac{1}{2} \operatorname{tg} \frac{x}{2} \right) + c.$$

261.
$$-\frac{\text{ctg}^2 x}{2} - \ln|\sin x| + c$$
.

268.
$$\frac{1}{5} \ln \left| \frac{2 \operatorname{tg} \frac{x}{2} + 1}{\operatorname{tg} \frac{x}{2} - 2} \right| + c.$$

262.
$$-\frac{\operatorname{ctg}^4 x}{4} + c$$
.
266. $\frac{1}{2}\operatorname{arctg}\frac{\operatorname{tg} x}{2} + c$.

276.
$$\frac{1}{\sqrt{13}} \ln \left| \frac{2tgx + 3 - \sqrt{13}}{2tgx + 3 + \sqrt{13}} \right| + c.$$

277.
$$\frac{1}{5} \ln |1 - 5 \operatorname{ctg} x| + c$$
.

278.
$$\ln \left| \frac{\lg \frac{x}{2} - 5}{\lg \frac{x}{2} - 3} \right| + c.$$

279.
$$-\frac{1}{\lg x + 1} + c$$
.

320.
$$x - \sqrt{1 - x^2} \arcsin x + c$$
.

324.
$$-\frac{1}{12}x^2 + \frac{x}{16} - \frac{1}{24}\ln(x^2 + x + 1) + \left(\frac{x^3}{3} - \frac{1}{12}\right)\arctan(2x + 1) + c.$$

8.4.14.
$$-\frac{3}{2}\sqrt[3]{x^2} - 6\sqrt[3]{x} - 9\ln|\sqrt[6]{x} - 1| - 3\ln(\sqrt[6]{x} + 1) + C$$
.

8.4.15.
$$2\sqrt{x} + 6\sqrt[6]{x} + 3\ln\left|\frac{\sqrt[6]{x} - 1}{\sqrt[6]{x} + 1}\right| + C$$
. **8.4.16.** $x - 2\sqrt{x} + 2\ln(1 + \sqrt{x}) + C$.

8.4.17.
$$C - 6\sqrt[6]{x} - 2\sqrt{x} - \frac{6}{5}\sqrt[6]{x^5} - \frac{6}{7}\sqrt[6]{x^7} - 3\ln\left|\frac{\sqrt[6]{x} - 1}{\sqrt[6]{x} + 1}\right|$$

8.4.18.
$$2\sqrt{x+2} + \sqrt{2} \ln \left| \frac{\sqrt{x+2} - \sqrt{2}}{\sqrt{x+2} + \sqrt{2}} \right| + C.$$

8.4.19.
$$\frac{2}{3}\sqrt{(x+1)^3} - \frac{3}{4}\sqrt[3]{(x+1)^4} + \frac{6}{7}\sqrt[6]{(x+1)^7} - x + \frac{6}{5}\sqrt[6]{(x+1)^5} - \frac{3}{2}\sqrt[3]{(x+1)^2} + C$$
.

8.4.20.
$$2 \operatorname{arctg} \sqrt{x+1} + C$$
. **8.4.21.** $x + 4\sqrt{1+x} + 4\ln(\sqrt{1+x} - 1) + C$.

2. Неопределенный интеграл и его приложения

375.
$$\frac{\pi}{4} - \frac{2}{3}$$
.

375.
$$\frac{\pi}{4} - \frac{2}{3}$$
. **380.** $\frac{\pi(9 - 4\sqrt{3})}{36} + \frac{1}{2} \ln \frac{3}{2}$. **427.** $\frac{14}{3}$.

376.
$$\frac{2}{\sqrt{5}} arctg \frac{1}{\sqrt{5}}$$

392.
$$\frac{1}{2}$$

376.
$$\frac{2}{\sqrt{5}} arctg \frac{1}{\sqrt{5}}$$
. **392.** $\frac{1}{2}$. **428.** $\frac{2}{27} (13\sqrt{13} - 8)$.

393.
$$\frac{\pi-2}{4}$$
. **429.** $\frac{1}{2}\ln 3$.

429.
$$\frac{1}{2} \ln 3$$

378.
$$5\pi$$
.

394.
$$2\sqrt{3} - \ln(2 + \sqrt{3})$$
. **435.** 6a.

379.
$$\frac{e^2-5}{e}$$
. 395. $\frac{3}{4}$.

395.
$$\frac{3}{4}$$

9.3.108.
$$\frac{13}{3}$$
. **9.3.109.** $\frac{\pi^2}{32}$. **9.3.110.** $8\sqrt{2} - 1$. **9.3.111.** $\frac{1}{2} \ln 3$.

9.3.112.
$$\frac{1}{2} \left(\sqrt{5} + \frac{1}{2} \ln(2 + \sqrt{5}) \right)$$
. **9.3.113.** $\ln 7 - \frac{3}{4}$.

9.3.116.
$$4\sqrt{3}$$
. **9.3.117.** 10π .

9.3.129.
$$\frac{3}{2}$$
.

413.
$$\frac{256\pi}{15}$$
; 8π . **417.** $\frac{6\pi}{7}$; $\frac{3\pi}{5}$.

417.
$$\frac{6\pi}{7}$$
; $\frac{3\pi}{5}$.

414.
$$\frac{\pi(e^2-1)}{2}$$
; 2π .

419. $\frac{\pi(e-2)}{\pi(e-2)}$; $\frac{\pi(e^2+1)}{2}$.

416. $\frac{178\pi}{15}$; $\frac{21\pi}{2}$.

9.3.206. $\pi(\frac{\pi\sqrt{2}}{2}-2)$.

9.3.207. π .

419.
$$\pi(e-2)$$

415.
$$\frac{128\pi}{5}$$
; 8π

206.
$$\pi(\frac{\pi\sqrt{2}}{2}-2)$$
.

416.
$$\frac{178\pi}{15}$$
; $\frac{21\pi}{2}$

9.3.243.
$$\pi\left(\sqrt{5}-\sqrt{2}+\ln\frac{2(\sqrt{2}+1)}{\sqrt{5}+1}\right)$$
.

3. Несобственные интегралы

462.
$$\frac{1}{3}$$
.

475.
$$\frac{8}{3}$$

476.
$$-\frac{1}{4}$$
.

463. *Pacxodumcs*. **476.**
$$-\frac{1}{4}$$
. **465.** $\frac{\pi}{4} + \frac{1}{2} \ln 2$. **477.** 2.

478.
$$3\sqrt[3]{2}$$
.

468.
$$\frac{2\pi}{3\sqrt{3}}$$
.

481.
$$14\frac{4}{7}$$
.

482.
$$\frac{10}{7}$$
.