LTL: Linear Temporal Logic

- ▶ Computation Tree
- ► Linear Temporal Logic
- Using Temporal Formulas
- Equivalences of Temporal Formulas

Computation Tree

Let $\mathbb{S} = (S, In, T, \mathcal{X}, dom)$ be a transition system and $s \in S$ be a state. The computation tree for \mathbb{S} starting at s is the following (possibly infinite) tree.

- 1. The nodes of the tree are labeled by states in S.
- 2. The root of the tree is labeled by s.
- 3. For every node s' in the tree, its children are exactly such nodes $s'' \in S$ that $(s', s'') \in T$.

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.
- ▶ Let *n* be a node in a computation tree *C* for \$\mathbb{S} labeled by *s'*. Then the subtree of *C* rooted at *s'* is the computation tree for \$\mathbb{S} starting at *s'*. In other words, every subtree of a computation tree rooted at some node is itself a computation tree.
- ► For every transition system S and state s there exists a unique computation tree for S starting at s, up to the order of children.

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.
- ▶ Let *n* be a node in a computation tree *C* for S labeled by *s'*. Then the subtree of *C* rooted at *s'* is the computation tree for S starting at *s'*. In other words, every subtree of a computation tree rooted at some node is itself a computation tree.
- ► For every transition system S and state s there exists a unique computation tree for S starting at s, up to the order of children.

Properties

- Computation paths for a transition system are exactly all branches in the computation trees for this transition system.
- ▶ Let *n* be a node in a computation tree *C* for S labeled by *s'*. Then the subtree of *C* rooted at *s'* is the computation tree for S starting at *s'*. In other words, every subtree of a computation tree rooted at some node is itself a computation tree.
- ► For every transition system S and state s there exists a unique computation tree for S starting at s, up to the order of children.

Linear Temporal Logic: LTL

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

- 1. If F is a formula, then $\bigcirc F$, $\square F$, and $\lozenge F$ are formulas;
- 2. If F and G are formulas, then FUG and FRG are formulas.

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

- 1. If F is a formula, then $\bigcirc F$, $\square F$, and $\lozenge F$ are formulas;
- 2. If F and G are formulas, then FUG and FRG are formulas.

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

- 1. If F is a formula, then $\bigcirc F$, $\square F$, and $\lozenge F$ are formulas;
- 2. If F and G are formulas, then $F \cup G$ and $F \cap G$ are formulas.
 - next
 - always (in future)
 - sometimes (in future)
- U until
- R release

Linear Temporal Logic is a logic for reasoning about properties of computation paths.

Formulas are built in the same way as in propositional logic, with the following additions:

- 1. If F is a formula, then $\bigcirc F$, $\square F$, and $\lozenge F$ are formulas;
- 2. If F and G are formulas, then $F \cup G$ and $F \cap G$ are formulas.
- next
- always (in future)
- sometimes (in future)
- U until
- R release

Example:

$$(\bigcirc p \to \Diamond (\square (p \to q) U (\Diamond \neg p \lor \Diamond q)))$$

LTL: Semantics (intuitive)

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2...$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2 \dots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2 \dots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states s_i, s_{i+1}, s_{i+2} ... (note that $\pi_0 = \pi$).

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2 \dots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2 \dots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2 \dots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2 \dots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

Unlike propositional formulas, LTL formulas express properties of computations or computation paths.

Let $\pi = s_0, s_1, s_2 \dots$ be a sequence of states and F be an LTL formula.

We define the notion F is true on π (or F holds on π), denoted by $\pi \models F$, by induction on F as follows.

For all i = 0, 1, ... denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} ...$ (note that $\pi_0 = \pi$).

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0

- 1. $\pi \models \top$ and $\pi \not\models \bot$.
- 2. $\pi \models x = v \text{ if } s_0 \models x = v$.
- 3. $\pi \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi \models F_j$; $\pi \models F_1 \lor \ldots \lor F_n$ if for some $j = 1, \ldots, n$ we have $\pi \models F_j$.
- 4. $\pi \models \neg F \text{ if } \pi \not\models F$.
- 5. $\pi \models F \rightarrow G$ if either $\pi \not\models F$ or $\pi \models G$; $\pi \models F \leftrightarrow G$ if either both $\pi \not\models F$ and $\pi \not\models G$ or both $\pi \models F$ and $\pi \models G$.

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

```
1. \pi \models \top and \pi \not\models \bot.
```

2.
$$\pi \models x = v \text{ if } s_0 \models x = v$$
.

3.
$$\pi \models F_1 \land ... \land F_n$$
 if for all $j = 1, ..., n$ we have $\pi \models F_j$; $\pi \models F_1 \lor ... \lor F_n$ if for some $j = 1, ..., n$ we have $\pi \models F_j$

4.
$$\pi \models \neg F \text{ if } \pi \not\models F$$
.

```
5. \pi \models F \rightarrow G if either \pi \not\models F or \pi \models G; \pi \models F \leftrightarrow G if either both \pi \not\models F and \pi \not\models G or both \pi \models F and \pi \models G.
```

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

```
1. \pi \models \top and \pi \not\models \bot.
```

2.
$$\pi \models x = v \text{ if } s_0 \models x = v.$$

3.
$$\pi \models F_1 \land ... \land F_n$$
 if for all $j = 1, ..., n$ we have $\pi \models F_j$; $\pi \models F_1 \lor ... \lor F_n$ if for some $j = 1, ..., n$ we have $\pi \models F_n$

```
4. \pi \models \neg F \text{ if } \pi \not\models F.
```

```
5. \pi \models F \rightarrow G if either \pi \not\models F or \pi \models G; \pi \models F \leftrightarrow G if either both \pi \not\models F and \pi \not\models G or both \pi \models F and \pi \models G.
```

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

```
1. \pi \models T and \pi \not\models \bot.
2. \pi \models x = v if s_0 \models x
```

- 3. $\pi \models F_1 \land ... \land F_n$ if for all j = 1, ..., n we have $\pi \models F_j$; $\pi \models F_1 \lor ... \lor F_n$ if for some j = 1, ..., n we have $\pi \models F_n$
- 4. $\pi \models \neg F \text{ if } \pi \not\models F$.
- 5. $\pi \models F \rightarrow G$ if either $\pi \not\models F$ or $\pi \models G$; $\pi \models F \leftrightarrow G$ if either both $\pi \not\models F$ and $\pi \not\models G$ or both $\pi \models F$ and $\pi \models G$.

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

```
1. \pi \models \top and \pi \not\models \bot.
```

```
2. \pi \models x = v \text{ if } s_0 \models x = v.
```

```
3. \pi \models F_1 \land ... \land F_n if for all j = 1, ..., n we have \pi \models F_j; \pi \models F_1 \lor ... \lor F_n if for some j = 1, ..., n we have \pi \models F_j.
```

```
4. \pi \models \neg F if \pi \not\models F.
```

```
5. \pi \models F \rightarrow G if either \pi \not\models F or \pi \models G; \pi \models F \leftrightarrow G if either both \pi \not\models F and \pi \not\models G or both \pi \models F and \pi \models G.
```

The semantics of propositional connectives is standard.

Atomic formulas are true iff they are true in s_0 .

```
1. \pi \models \top and \pi \not\models \bot.
```

2.
$$\pi \models x = v \text{ if } s_0 \models x = v.$$

3.
$$\pi \models F_1 \land ... \land F_n$$
 if for all $j = 1, ..., n$ we have $\pi \models F_j$; $\pi \models F_1 \lor ... \lor F_n$ if for some $j = 1, ..., n$ we have $\pi \models F_j$.

```
4. \pi \models \neg F if \pi \not\models F.
```

```
5. \pi \models F \rightarrow G if either \pi \not\models F or \pi \models G; \pi \models F \leftrightarrow G if either both \pi \not\models F and \pi \not\models G.
```

Semantics of temporal operators

6. $\pi \models \bigcirc F$ if $\pi_1 \models F$;

 $\pi \models \Diamond F$ if for some $k \geq 0$ we have $\pi_k \models F$;

7. $\pi \models F \cup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and $\pi_0 \models F, \dots, \pi_{k-1} \models F$; $\pi \models F \setminus G$ if for all $k \ge 0$, either $\pi_k \models G$ or there exists j < 1.

- 6. $\pi \models \bigcirc F$ if $\pi_1 \models F$; $\pi \models \lozenge F$ if for some $k \ge 0$ we have $\pi_k \models F$;
- 7. $\pi \models F \cup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and $\pi_0 \models F, \dots, \pi_{k-1} \models F$; $\pi \models F \setminus G$ if for all $k \ge 0$, either $\pi_k \models G$ or there exists j < k such that $\pi_i \models F$.

- 6. $\pi \models \bigcirc F$ if $\pi_1 \models F$; $\pi \models \lozenge F$ if for some $k \ge 0$ we have $\pi_k \models F$; $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$.
- 7. $\pi \models F \cup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and $\pi_0 \models F, \dots, \pi_{k-1} \models F$; $\pi \models F \setminus G$ if for all $k \ge 0$, either $\pi_k \models G$ or there exists j < k such that $\pi_i \models F$.

- 6. $\pi \models \bigcirc F$ if $\pi_1 \models F$; $\pi \models \lozenge F$ if for some $k \ge 0$ we have $\pi_k \models F$; $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$.
- 7. $\pi \models F \cup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and $\pi_0 \models F, \dots, \pi_{k-1} \models F$; $\pi \models F \setminus G$ if for all $k \ge 0$, either $\pi_k \models G$ or there exists j < k such that $\pi_i \models F$.

6. $\pi \models \bigcirc F$ if $\pi_1 \models F$; $\pi \models \lozenge F$ if for some $k \ge 0$ we have $\pi_k \models F$; $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$. 7. $\pi \models F \cup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and $\pi_0 \models F, \dots, \pi_{k-1} \models F$; $\pi \models F \cup G$ if for all k > 0, either $\pi_k \models G$ or there exists j < k

- 6. $\pi \models \bigcirc F$ if $\pi_1 \models F$; $\pi \models \Diamond F$ if for some $k \ge 0$ we have $\pi_k \models F$; $\pi \models \bigcirc F$ if for all $i \ge 0$ we have $\pi_i \models F$. 7. $\pi \models F \cup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and
- 7. $\pi \models F \sqcup G$ if for some $k \ge 0$ we have $\pi_k \models G$ and $\pi_0 \models F, \dots, \pi_{k-1} \models F$; $\pi \models F \bowtie G$ if for all $k \ge 0$, either $\pi_k \models G$ or there exists j < k such that $\pi_j \models F$.

Standard properties

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

Consider a transition system \mathbb{S} . We are interested in checking the following properties of LTL formulas

For an LTL formula F we can consider two kinds of properties of S:

- 1. does *F* hold on some computation path for S from an initial state?
- 2. does F hold on all computation paths for S from an initial state?

Standard properties

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

Consider a transition system S. We are interested in checking the following properties of LTL formulas

For an LTL formula F we can consider two kinds of properties of $\mathbb S$:

- 1. does F hold on some computation path for S from an initial state?
- 2. does F hold on all computation paths for S from an initial state?

Standard properties

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

Consider a transition system \mathbb{S} . We are interested in checking the following properties of LTL formulas

For an LTL formula F we can consider two kinds of properties of S:

- 1. does *F* hold on some computation path for S from an initial state?
- 2. does F hold on all computation paths for S from an initial state?

Precedences of Connectives and Temporal Operators

Connective	Precedence
$\neg, \bigcirc, \Diamond, \bigsqcup$	6
\mathbf{U}, \mathbf{R}	5
\wedge	4
V	3
\rightarrow	2
\leftrightarrow	1

1. F never holds in two consecutive states.

1. F never holds in two consecutive states. $\square(F \rightarrow \bigcirc \neg F)$

1. F never holds in two consecutive states. $\Box(F \to \bigcirc \neg F)$ Caution: not equivalent to $F \to \bigcirc \neg F$.

- 1. F never holds in two consecutive states. $\Box (F \rightarrow \bigcirc \neg F)$ Caution: not equivalent to $F \rightarrow \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s.

- 1. F never holds in two consecutive states. $\Box(F \to \bigcirc \neg F)$ Caution: not equivalent to $F \to \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\bigcap (F \to \bigcap F)$

- 1. F never holds in two consecutive states. $\Box(F \to \bigcirc \neg F)$ Caution: not equivalent to $F \to \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. F holds in at most one state.

- 1. F never holds in two consecutive states. $\Box(F \to \bigcirc \neg F)$ Caution: not equivalent to $F \to \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\bigcap (F \to \bigcap F)$
- 3. *F* holds in at most one state. $\square(F \to \bigcirc \square \neg F)$

- 1. F never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$ Caution: not equivalent to $F \rightarrow \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. *F* holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
- 4. F holds in at least two states.

- 1. F never holds in two consecutive states. $\Box(F \to \bigcirc \neg F)$ Caution: not equivalent to $F \to \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. *F* holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$

- 1. F never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$ Caution: not equivalent to $F \rightarrow \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. *F* holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$ Caution: not equivalent to $F \land \bigcirc \Diamond F$; $\Diamond(F \land \Diamond F)$.

- 1. F never holds in two consecutive states. $\Box(F \to \bigcirc \neg F)$ Caution: not equivalent to $F \to \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. *F* holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$ Caution: not equivalent to $F \land \bigcirc \Diamond F$; $\Diamond(F \land \Diamond F)$.
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} .

- 1. F never holds in two consecutive states. $\Box(F \to \bigcirc \neg F)$ Caution: not equivalent to $F \to \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. *F* holds in at most one state. $\square(F \rightarrow \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$ Caution: not equivalent to $F \land \bigcirc \Diamond F$; $\Diamond(F \land \Diamond F)$.
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \square (\bigcirc \bigcirc F \to G \lor \bigcirc G)$

- 1. F never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$ Caution: not equivalent to $F \rightarrow \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. *F* holds in at most one state. $\square(F \to \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$ Caution: not equivalent to $F \land \bigcirc \Diamond F$; $\Diamond(F \land \Diamond F)$.
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \bigcirc (\bigcirc \bigcirc F \to G \lor \bigcirc G)$
- 6. F happens infinitely often.

- 1. F never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$ Caution: not equivalent to $F \rightarrow \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \to \bigcirc \Box F)$
- 3. F holds in at most one state. $\square(F \to \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$ Caution: not equivalent to $F \land \bigcirc \Diamond F$; $\Diamond(F \land \Diamond F)$.
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \bigcirc (\bigcirc \bigcirc F \to G \lor \bigcirc G)$
- 6. F happens infinitely often. $\square \lozenge F$

- 1. F never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$ Caution: not equivalent to $F \rightarrow \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \rightarrow \bigcirc \Box F)$
- 3. F holds in at most one state. $\square(F \to \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$ Caution: not equivalent to $F \land \bigcirc \Diamond F$; $\Diamond(F \land \Diamond F)$.
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \bigcirc (\bigcirc \bigcirc F \to G \lor \bigcirc G)$
- 6. F happens infinitely often. $\square \lozenge F$
- 7. F holds in each even state and does not hold in each odd state (states are counted from 0).

- 1. F never holds in two consecutive states. $\Box(F \rightarrow \bigcirc \neg F)$ Caution: not equivalent to $F \rightarrow \bigcirc \neg F$.
- 2. If F holds in a state s, it also holds in all states after s. $\Box (F \rightarrow \bigcirc \Box F)$
- 3. F holds in at most one state. $\square(F \to \bigcirc \square \neg F)$
- 4. F holds in at least two states. $\Diamond(F \land \bigcirc \Diamond F)$ Caution: not equivalent to $F \land \bigcirc \Diamond F$; $\Diamond(F \land \Diamond F)$.
- 5. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is s_{i-1} and s_{i-2} . $(\bigcirc F \to G) \land \bigcirc (\bigcirc \bigcirc F \to G \lor \bigcirc G)$
- 6. F happens infinitely often. $\square \lozenge F$
- 7. F holds in each even state and does not hold in each odd state (states are counted from 0). $F \land \Box (F \leftrightarrow \bigcirc \neg F)$.

1. $\Diamond \Box F$;

- 1. $\Diamond \Box F$;
- 2. $\square(F \rightarrow \bigcirc F)$;

$$\tau: \bigcirc S_0 \qquad S_1 \qquad S_2 \qquad S_3 \qquad S_4 \qquad S_5 \qquad S_6 \qquad \cdots$$

- 1. $\Diamond \Box F$;
- 2. $\square(F \rightarrow \bigcirc F)$;
- 3. $\neg F \cup \square F$;

- 1. $\Diamond \Box F$;
- 2. $\square(F \rightarrow \bigcirc F)$;
- 3. $\neg F \cup \square F$;
- 4. $FU \neg F$;

- 1. $\Diamond \Box F$;
- 2. $\square(F \rightarrow \bigcirc F)$;
- 3. $\neg F \cup \square F$;
- 4. *F* U ¬*F*:
- 5. $\Diamond F \land \Box (F \rightarrow \bigcirc F)$;

- 1. $\Diamond \Box F$;
- 2. $\square(F \rightarrow \bigcirc F)$;
- 3. $\neg F \cup \square F$;
- 4. *F* U ¬*F*:
- 5. $\Diamond F \land \Box (F \rightarrow \bigcirc F);$
- 6. $\square \lozenge F$;

- 1. $\Diamond \Box F$;
- 2. $\square(F \rightarrow \bigcirc F)$;
- 3. ¬*F* U □ *F*;
- 4. *F* U ¬*F*:
- 5. $\Diamond F \land \Box (F \rightarrow \bigcirc F);$
- 7. $F \wedge \Box (F \leftrightarrow \neg \bigcirc F)$;

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

$$\neg \bigcirc A \equiv \\
\neg \Diamond A \equiv \\
\neg \square A \equiv \\
\neg (A \cup B) \equiv$$

$$\pi$$
:

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

$$\neg \bigcirc A \equiv \bigcirc \neg A
\neg \Diamond A \equiv
\neg \bigcirc A \equiv
\neg (A \cup B) \equiv$$

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

$$\neg \bigcirc A \equiv \bigcirc \neg A
\neg \Diamond A \equiv \bigcirc \neg A
\neg \bigcirc A \equiv
\neg (A \cup B) \equiv$$

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

$$\neg \bigcirc A \equiv \bigcirc \neg A
\neg \Diamond A \equiv \bigcirc \neg A
\neg \bigcirc A \equiv \Diamond \neg A
\neg (A \cup B) \equiv$$

Some LTL Equivalences

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.

Negation:

$$\begin{array}{cccc}
\neg \bigcirc A & \equiv & \bigcirc \neg A \\
\neg \Diamond A & \equiv & \Box \neg A \\
\neg \Box A & \equiv & \Diamond \neg A \\
\neg (A \cup B) & \equiv & \neg A R \neg B
\end{array}$$

Expressing operators through U.

LTL with only temporal operators $\,\mathbf{U}\,, \,\bigcirc\,$ has the same expressive power as LTL.

Expressing operators through **U**.

LTL with only temporal operators $\,\mathbf{U}\,, \,\bigcirc\,$ has the same expressive power as LTL.

Expressing operators through **U**.

LTL with only temporal operators $\,\mathbf{U}\,, \, \bigcirc\,$ has the same expressive power as LTL.

Expressing operators through **U**.

LTL with only temporal operators \mathbf{U} , \bigcirc has the same expressive power as LTL.

Other Equivalences

$$\begin{array}{ccc} \Diamond(F\vee G) & \equiv & \Diamond F\vee \Diamond G \\ \square(F\wedge G) & \equiv & \square F\wedge \square G \end{array}$$

Other Equivalences

$$\begin{array}{ccc} \Diamond(F\vee G) & \equiv & \Diamond F\vee \Diamond G \\ \square(F\wedge G) & \equiv & \square F\wedge \square G \end{array}$$

But

$$\Box(F \lor G) \not\equiv \Box F \lor \Box G
\Diamond(F \land G) \not\equiv \Diamond F \land \Diamond G$$

How to Show that Two LTL Formulas are not Equivalent?

Find a path that satisfies one of the formulas but not the other. For example for $\Box (F \lor G)$ and $\Box F \lor \Box G$.

How to Show that Two LTL Formulas are not Equivalent?

Find a path that satisfies one of the formulas but not the other. For example for $\Box (F \lor G)$ and $\Box F \lor \Box G$.

Standard properties of state changing systems

Consider a state changing system S. We are interested in checking the following properties of LTL formulas

For an LTL formula F we can consider two kinds of properties of S:

- 1. does *F* hold on some computation path for S from an initial state?
- 2. does F hold on all computation paths for S from an initial state?

Standard properties of state changing systems

Consider a state changing system S. We are interested in checking the following properties of LTL formulas

For an LTL formula F we can consider two kinds of properties of S:

- 1. does *F* hold on some computation path for S from an initial state?
- 2. does F hold on all computation paths for S from an initial state?

Example

Consider a state changing system with the following state transition graph.

Are the following formulas true on all/some paths (from the initial state)?

Summary LTL

Linear temporal logic (LTL) – expressing properties of computations.

- Computation tree, path
- LTL Syntax ○, □, ⋄, U, R
- LTL Semantics
- Equivalences of temporal formulas
- expressing properties of state-changing systems