Name: Sankalp Apharande, UNI: spa2138

## Perceptron Learning Algorithm

The following is the decision boundary visualization of the perceptron learning algorithm on data1.csv



The Results table looks like the following:

| weight_1 | weight_2 | b  |  |  |
|----------|----------|----|--|--|
| 8        | 3        | 3  |  |  |
| 3        | 9        | 6  |  |  |
| 12       | 6        | 10 |  |  |
| 6        | 1        | 12 |  |  |
| 7        | 9        | 15 |  |  |
| 5        | 2        | 16 |  |  |
| 5        | -1       | 18 |  |  |
| 6        | 7        | 21 |  |  |
| 3        | 8        | 23 |  |  |
| -1       | -2       | 24 |  |  |
| 2        | 7        | 26 |  |  |
| 3        | 3        | 28 |  |  |
| 3        | 6        | 30 |  |  |
| 0        | 7        | 32 |  |  |
| 1        | 3        | 34 |  |  |
| 1        | 6        | 36 |  |  |
| 2        | 2        | 38 |  |  |
| 2        | 5        | 40 |  |  |
| -5       | -2       | 39 |  |  |
| -5       | -2       | 39 |  |  |

Name: Sankalp Apharande, UNI: spa2138

### **Linear Regression**

If we plot the variation of cost as learning rate, we get the following:

Note: to visualize the variation, I have added plots for learning rate  $\varepsilon$  [1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.1] For other learning rates, cost shoots to very high number and difficult to visualize subtle variation in the cost.



#### Observations:

- We can see that there is not much variation in learning rate from 1 to 1.05, but at 1.1, cost increases.
- Hence choosing 1.05 as the 10th learning rate.
- Increasing number of iterations to 10000 to further minimize the cost
- At learning rate 5 and 10, cost overshoots to infinity

For the reference, variation of the cost for learning rate [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]



Name: Sankalp Apharande, UNI: spa2138

The resuls2 table looks like this:

Note the learning rate 1.05 is the learning rate of choice and number of iterations was changed to 10000

|                             | G (Learning Rate) | No of<br>Iterations | Bias         | b_age         | b_weight       |
|-----------------------------|-------------------|---------------------|--------------|---------------|----------------|
|                             | 0.001             | 100                 | 0.1043916796 | 0.01196296719 | 0.008633595556 |
|                             | 0.005             | 100                 | 0.4322572671 | 0.04562576717 | 0.02981469392  |
|                             | 0.01              | 100                 | 0.6951206935 | 0.06862363808 | 0.03893700612  |
|                             | 0.05              | 100                 | 1.089969183  | 0.1124331714  | 0.01840028008  |
|                             | 0.1               | 100                 | 1.096431688  | 0.1250055377  | 0.005844982938 |
|                             | 0.5               | 100                 | 1.096460811  | 0.1294390291  | 0.001411492516 |
|                             | 1                 | 100                 | 1.096460811  | 0.129439076   | 0.001411445546 |
|                             | 5                 | 100                 | 4.38E+71     | -4.42E+86     | -4.42E+86      |
|                             | 10                | 100                 | 3.07E+104    | -3.40E+119    | -3.40E+119     |
| The learning rate of choice | 1.05              | 10000               | 1.096460811  | 0.129439076   | 0.001411445546 |

Name: Sankalp Apharande, UNI: spa2138

#### 3D Visualize the Result of Each Linear Regression Model:

learning rate: 0.001, Iterations:100, UNI: spa2138



learning rate: 0.005, Iterations:100, UNI: spa2138



Name: Sankalp Apharande, UNI: spa2138

learning rate: 0.01, Iterations:100, UNI: spa2138



learning rate: 0.05, Iterations:100, UNI: spa2138



Name: Sankalp Apharande, UNI: spa2138

learning rate: 0.1, Iterations:100, UNI: spa2138



learning rate: 0.5, Iterations:100, UNI: spa2138



Name: Sankalp Apharande, UNI: spa2138

learning rate: 1, Iterations:100, UNI: spa2138



When the learning rate is 5 and 10, the values of weighs are too high, and the cost overshoots to a very high number. Hence we are not able to visualize the boundary for learning rate = 5 and 10.

learning rate: 5, Iterations:100, UNI: spa2138



learning rate: 10, Iterations:100, UNI: spa2138



# Learning rate of choice: alpha = 1.05

learning rate: 1.05, Iterations:10000, UNI: spa2138

