

CHEMISTRY DATA SHEET

Revised September 2007

FORMULA

Number of moles n = <u>m</u> (<u>mass</u>) M (molar mass)

Number of moles of solute n = cV

Number of moles of a gas $n = \underline{V}$ at STP 22.41

Ideal gas law PV = nRT

Parts per million ppm = <u>mass of solute (mg)</u>

mass of solution (kg)

pH of a solution pH = $-\log [H^{\dagger}]$

Density $\rho = \frac{\text{mass of sample}}{\text{volume of sample}}$

Units

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or Kelvin (K).

It may be assumed that 0.0°C = 273.1 K

Energy changes are given in the SI unit kilojoule (kJ)

Pressures are given in the SI unit kilopascal (kPa) and in atmospheres.

Solution concentrations are given in the unit moles per litre (mol L⁻¹)

Constants

Universal Gas Constant, R = 8.315 J K⁻¹ mol⁻¹

Avogadro Constant, N = $6.022 \times 10^{23} \text{ mol}^{-1}$

Volume of 1.000 mol of an ideal gas at 0.0°C and 101.3 kPa is 22.41 L

S.T.P. is 0.0°C and 101.3 kPa

Equilibrium Constant for Water at 25°C Kw=1x10⁻¹⁴

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exceptions							
Colubic	Insoluble	Slightly soluble						
Most chlorides	AgCI,	PbCl ₂						
Most bromides	AgBr,	PbBr ₂						
Most iodides	Agl, Pbl ₂							
All nitrates	No exceptions							
All ethanoates								
Most sulfates	SrSO ₄ , BaSO ₄ , HgSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄						

Insoluble in water

Insoluble	Exceptions								
IIISOIUDIC	Soluble	Slightly soluble							
Most hydroxides	NaOH, KOH, Ba(OH)₂ (NH₄OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂							
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃								
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄								
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S								

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colour of species in aqueous solution

Cation	Colour	Cation	Colour	Anion	Colour	Halogen	Colour	
Al ³⁺	colourless	Mn ²⁺	very pale pink	Br⁻	colourless	$C\ell_{2(aq)}$	pale yellow	
NH ₄ ⁺	colourless	Ni ²⁺	green	Cℓ ⁻	colourless	Br _{2 (aq)}	orange	
Ba ²⁺	colourless	Ag⁺	colourless	CrO ₄ ² -	yellow	I _{2(aq)}	brown	
Ca ²⁺	colourless	Na⁺	colourless	Cr ₂ O ₇ ²⁻	orange			
Cr³⁺	deep green	Sr ²⁺	colourless	1-	colourless	Halogen in o	rganic solvent	
Co ²⁺	pink	Sn ²⁺	colourless	MnO ₄	deep purple	Halogen	Colour	
Cu ²⁺	blue	Zn ²⁺	colourless	PO ₄ ³⁻	colourless	Br ₂	red	
Fe ²⁺	pale green			S ²⁻	colourless		purple	
Fe³+	brown							
K⁺	colourless							
Pb ²⁺	colourless				/			
Mg ²⁺	colourless			_				

Standard Reduction Potentials at 25°C

Half-reaction

E°(volts)

```
+ 2.87
                                 F_2(g) + 2 e^- \implies 2 F^-(aq)
              H_2O_2(aq) + 2 H^+(aq) + 2 e^- \implies 2 H_2O(\ell)
                                                                                                   + 1.78
PbO_2(s) + SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \implies PbSO_4(s) + 2 H_2O(\ell)
                                                                                                   + 1.69
          2 \text{ HC} \ell \text{O}(aq) + 2 \text{ H}^{+}(aq) + 2 \text{ e}^{-} \iff \text{C} \ell_{2}(g) + 2 \text{ H}_{2} \text{O}(\ell)
                                                                                                   + 1.61
            MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \implies Mn^{2+}(aq) + 4 H_2O(\ell)
                                                                                                   + 1.51
                            Au^{3+}(aq) + 3e^{-} \Rightarrow Au(s)
                                                                                                   + 1.50
               HC\ell O(aq) + H^{+}(aq) + 2e^{-} \rightleftharpoons C\ell^{-}(aq) + H_2O(\ell)
                                                                                                   + 1.48
               PbO_2(s) + 4 H^+(aq) + 2 e^- \Rightarrow Pb^{2+}(aq) + 2 H_2O(\ell)
                                                                                                   + 1.46
                                                                                                   + 1.36
                                Cl_2(g) + 2e^- \rightleftharpoons 2C\ell^-(aq)
         Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \implies 2 Cr^{3+}(aq) + 7 H_2O(\ell)
                                                                                                   + 1.23
                  O_2(g) + 4 H^+(aq) + 4 e^- \implies 2 H_2O(\ell)
                                                                                                   + 1.23
                                Br_2(\ell) + 2 e^- \rightleftharpoons 2 Br^-(aq)
                                                                                                   + 1.07
              NO_3^-(aq) + 4 H^+(aq) + 3 e^- \implies NO(g) + 2 H_2O(\ell)
                                                                                                   + 0.96
                          2 \text{ Hg}^{2^+}(aq) + 2 e^- \implies \text{Hg}_2^{2^+}(aq)
                                                                                                   + 0.91
                               Ag^{+}(aq) + e^{-} \implies Ag(s)
                                                                                                   + 0.80
                              Fe^{3+}(aq) + e^{-} \implies Fe^{2+}(aq)
                                                                                                   + 0.77
                  O_2(g) + 2 H^+(ag) + 2 e^- \implies H_2O_2(ag)
                                                                                                   + 0.68
                                  I_2(s) + 2e^- \implies 2I^-(aq)
                                                                                                   + 0.54
                  O_2(g) + 2 H_2O(\ell) + 4 e^- \iff 4 OH^-(aq)
                                                                                                   + 0.40
                            Cu^{2^+}(aq) + 2 e^- \rightleftharpoons Cu(s)
                                                                                                   + 0.34
                            2 H^{+}(aq) + 2 e^{-} \rightleftharpoons H_{2}(g)
                                                                                                   0 exactly
                            Pb^{2+}(aq) + 2e^{-} \Rightarrow Pb(s)
                                                                                                   - 0.13
                            \operatorname{Sn}^{2+}(aq) + 2 e^{-} \iff \operatorname{Sn}(s)
                                                                                                   - 0.14
                             Ni^{2+}(aq) + 2e^{-} \implies Ni(s)
                                                                                                   - 0.26
                            Co^{2+}(aq) + 2e^{-} \rightleftharpoons Co(s)
                                                                                                   - 0.28
                           PbSO_4(s) + 2 e^- \Rightarrow Pb(s) + SO_4^{2-}(aq)
                                                                                                   - 0.36
                            Cd^{2+}(aq) + 2e^{-} \rightleftharpoons Cd(s)
                                                                                                   - 0.40
              2 CO_2(g) + 2 H^+(ag) + 2 e^- \Rightarrow HOOCCOOH(ag)
                                                                                                   -0.43
                             Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)
                                                                                                   -0.44
                             Cr^{3+}(aq) + 3e^{-} \iff Cr(s)
                                                                                                   - 0.73
                            Zn^{2+}(aq) + 2 e^- \rightleftharpoons Zn(s)
                                                                                                   -0.76
                            2 H_2O(\ell) + 2 e^- \iff H_2(g) + 2 OH^-(aq)
                                                                                                   -0.83
                            Mn^{2+}(aq) + 2e^- \implies Mn(s)
                                                                                                   - 1.18
                            A\ell^{3+}(aq) + 3e^{-} \implies A\ell (s)
                                                                                                   - 1.66
                            Mg^{2+}(aq) + 2e^{-} \implies Mg(s)
                                                                                                   - 2.37
                              Na^{+}(aq) + e^{-} \implies Na(s)
                                                                                                   - 2.71
                            Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)
                                                                                                   -2.76
                             Sr^{2+}(aq) + 2e^{-} \implies Sr(s)
                                                                                                   - 2.89
                            Ba^{2+}(aq) + 2e^{-} \Rightarrow Ba(s)
                                                                                                   - 2.91
                                 K^+(aq) + e^- \implies K(s)
                                                                                                   - 2.93
```

Periodic Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.008																		2 He 4.003
L	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
	11 Na 22.99	12 Mg 24.31											13 Aℓ 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cℓ 35.45	18 Ar 39.95
	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
	55 Cs 132.9	56 Ba 137.3	57 *La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po	85 At	86 Rn
	87 Fr	88 Ra 226.0	89 **Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									
										-								
	* Lanthanide Series				58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
			** Actinide Series		90 Th 232.0	91 Pa	92 U 238.0	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

6 ← Atomic Number C ← Symbol 12.01 ← Atomic Mass