Лабораторная работа 4.4.1. Амплитудная дифракционная решётка.

Радькин Кирилл, Б01-005

5.03.22

Цель работы: Знакомство с работой и настройкой гониометра Г5, определение спектральных характеристик амплитудной решётки

В работе используются: гониометр, дифракционная решётка, ртутная лампа

Теоретическое введение:

• Интенсивность дифрагированного света максимальна для углов φ_m , при которых волны, приходящие в точку наблюдения от всех щелей оказываются в фазе:

$$d\sin\varphi_m = m\lambda\tag{1}$$

• Угловая дисперсия $D(\lambda)$ характеризует угловое расстояние между близкими спектральными линиями:

$$D(\lambda) = \frac{d\varphi}{d\lambda} \tag{2}$$

В современных приборах спектроскопии регистрация изображения спектров проводится не глазом, а линейкой или матрицей чувствительных к свету элементов. Угловая дисперсия позволяет определить минимальное расстояние между ячейками приёмного устройства

• Рассмотрим изображения спектра для двух узких спектральных линий с длинами волн λ и $\lambda + \delta \lambda$. Для минимального значения $\delta \lambda$, которое может быть определено по результатам измерений, вводят важнейшую характеристику спектрального прибора — разрешающую способность

$$R = \frac{\lambda}{\delta \lambda} \tag{3}$$

• Угловое расстояние между двумя линиями определяется дисперсией:

$$\Delta \varphi \approx D\delta \lambda = \frac{m}{d\cos\varphi_m} \delta \lambda \tag{4}$$

Для сравнения между собой различных спектральных приборов Релей предложил приравнять полуширину $\delta \varphi$ и расстояние между линиями $\Delta \varphi$. Критерий Релея удобен для различных оценок. Согласно ему для дифракционных решёток разрешающая способность определяется порядком спектра и числом штрихов:

$$R = Nm (5)$$

Ход работы:

- 1. Настроим установку
- 2. Измерим угловые координаты спектральных линий ртути в ± 1 порядке. Начальный угол $\varphi_0 = 182^\circ 31' 50''$

цвет	кр. 2	желт. 1	желт. 2	зел.	гол.	син.	фиол.
угол	200°40'28"	199°21'1"	199°16'54"	198°22'28"	196°45'46"	195°6'43"	194°11'58"
цвет	фиол.	син.	гол.	зел.	желт. 2	желт. 1	кр. 2
угол	171°51'42"	169°56'56"	168°18'33"	166°41'39"	165°45'4"	165°42'30"	164°22'30"

3. Измерим угловую ширину линий желтого дуплета:

левый край: 199°21'45" правый край: 199°21'3"

Обработка результатов:

- 1. Построим график зависимости $\sin \varphi_m$ от длины волны (1): Определим шаг решетки: d=2003 нм, совпадает со значением, указанным на установке (2 мкм)
- 2. Рассчитаем по линиям желтого дуплета угловую дисперсию в спектре 1 порядка: $D=570\frac{\mathrm{pag}}{\mathrm{mm}}$
- 3. Оценим разрешимый спектральный интервал: $\delta \lambda = 0.357$ нм

Оценим разрешающую способность для средней длины волны желтого дуплета (580 нм): R=1618.66

Оценим число эффективно работающих штрихов: ≈ 1618

4. Рассчитаем порядок спектра, при котором фиолето
ая линия наложится на желтую: $d\sin\varphi=m\lambda_{\rm m},\ d\sin\varphi=(m+1)\lambda_{\rm d}\to m\approx 2.34$

Рис. 1. $\sin \varphi_m$ от λ