

Il Livello Logico-Digitale

Blocchi funzionali combinatori

18 -10-2015

Blocchi funzionali combinatori

- Esiste una ben nota e ormai stabilizzata libreria di blocchi funzionali predefiniti di tipo combinatorio che contiene i blocchi per tutte le funzioni combinatorie di base
 - La libreria contiene anche blocchi funzionali di tipo sequenziale
- I tipici blocchi funzionali combinatori sono:

- Multiplexer
- Demultiplexer
- Decoder (decodificatore)
- Confrontatore
- Shifter combinatorio

- Half adder e Full adder
- Addizionatore a n bit
- ALU or, and, not e somma

Multiplexer

- Il blocco funzionale multiplexer ha:
 - n ≥ 1 ingressi di selezione
 - $-2^n \ge 2$ ingressi dati
 - un'uscita
- Gli ingressi dati sono numerati a partire da 0: k = 0, 1, 2, ..., 2ⁿ 1
- Se sugli ingressi di selezione è presente il numero binario k, il kesimo ingresso dati viene inviato in uscita

Multiplexer a 1 ingresso di selezione (1)

1 ingresso di selezione, 2 ingressi dati, un'uscita

10	I1	Sel (Ctrl)	OUT
D1	D2	0	D1
D1	D2	1	D2

Tabella della verità

10	I1	Sel (Ctrl)	OUT
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer a 1 ingresso di selezione (2)

1 ingresso di selezione, 2 ingressi dati, un'uscita

Multiplexer a 2 ingressi di selezione

Tabella delle verità

# riga	S 1	S0	10	I1	12	I 3	U
0	0	0	0	X	X	Χ	0
1	0	0	1	X	X	X	1
2	0	1	X	0	X	Χ	0
3	0	1	X	1	X	Χ	1
4	1	0	X	X	0	Χ	0
5	1	0	X	X	1	Χ	1
6	1	1	X	X	X	0	0
7	1	1	X	X	X	1	1

Multiplexer a 2 ingressi dati da k bit

Esempio: k=3

Demultiplexer

- Il blocco funzionale demultiplexer ha:
 - $n \ge 1$ ingressi di selezione
 - 1 ingresso dati
 - $-2^n \ge 2$ uscite
- Le uscite sono numerate a partire da 0: k = 0, 1, 2, ..., 2ⁿ
 1
- Se sugli ingressi di selezione è presente il numero binario k, l'ingresso dati viene inviato alla kesima uscita, le rimanenti sono a 0

Demultiplexer a 2 ingressi di selezione

Ingressi	Selez	zione		Uscite		
	S ₁	S ₂	O ₁	02	<i>O</i> ₃	<i>O</i> ₄
D	0	0	D	0	0	0
D	1	0	0	D	0	0
D	0	1	0	0	D	0
D	1	1	0	0	0	D

$$O_1 = !S_1!S_2I \quad O_3 = !S_1S_2I$$

$$O_2 = S_1! S_2 I O_4 = S_1 S_2 I$$

Decodificatore (decoder)

- Il blocco funzionale decodificatore ha:
 - n ≥ 1 ingressi
 - $-2^n \ge 2$ uscite
- Le uscite sono numerate a partire da 0: k = 0, 1, 2, ..., 2ⁿ
 1
- Se sugli ingressi è presente il numero binario k, la kesima uscita assume il valore 1 e le restanti uscite assumono il valore 0

Decodificatore a 2 ingressi

Tabella delle verità

# riga	I 1	10	U0	U1	U2	U3
0	0	0	1	0	0	0
1	0	1	0	1	0	0
2	1	0	0	0	1	0
3	1	1	0	0	0	1

Confrontatore (comparator)

- Il blocco funzionale confrontatore ha:
 - due gruppi A e B di ingressi da n ≥ 1 bit ciascuno
 - tre uscite: minoranza A < B, uguaglianza A = B e maggioranza AB
- Il blocco confronta i due numeri binari A e B da n bit presenti sui due gruppi di ingressi, e attiva (a 1) l'uscita corrispondente all'esito del confronto

ingressi A0 A1 A-B B0 B1 COMP

Confrontatore di numeri a 2 bit

Tabella delle verità

# riga	A1	Α0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	0	1	0
1	0	0	0	1	1	0	0
_	0	0	1	0	1	0	0
_ '	0	0	1	1	1	0	0
4	0	1	0	0	0	0	1
5	0	1	0	1	0	1	0
6	0	1	1	0	1	0	0
7	0	1	1	1	1	0	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	0	1
10	1	0	1	0	0	1	0
11	1	0	1	1	1	0	0
12	1	1	0	0	0	0	1
13	1	1	0	1	0	0	1
14	1	1	1	0	0	0	1
15	1	1	1	1	0	1	0

Shifter combinatorio

- Il blocco funzionale shifter ha:
 - n ≥ 1 ingressi
 - 1 ingresso per il bit aggiunto a dx (scorrimento a sinistra)
 - 1 ingresso per il bit aggiunto a sx (scorrimento a destra)
 - 1 ingresso di controllo che comanda lo scorrimento a destra o a sinistra
 - n ≥ 1 uscite

Uscite:

- scorrimento a dx: bit aggiunto a sx + ingressi shiftati di una posizione a dx (viene "perso" il bit meno significativo degli ingressi)
- scorrimento a sx: bit aggiunto a dx + ingressi shiftati di una posizione a sx (viene "perso" il bit più significativo degli ingressi)
- Si noti che se si considerano gli ingressi come un valore numerico espresso in binario naturale
 - lo scorrimento a dx (con bit aggiunto a sx = 0) equivale ad una divisione per 2
 - lo scorrimento a sx (con bit aggiunto a dx = 0) equivale ad una moltiplicazione per 2

Shifter combinatorio 5 ingressi

- Rappresentazione dei numeri in binario naturale intero su k ≥ 1 bit
 - Addizionatore ad 1 bit
 - half adder
 - full adder
 - Addizionatore a k bit in binario naturale intero
 - Sottrattore a 1 bit
 - Sottrattore a k bit in binario naturale intero

Half adder (semisommatore)

HALF-ADDER

A	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$Sum = A \oplus B$$

 $Carry = AB$

Full adder (sommatore completo)

FULL ADDER

Α	В	Carry In	Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S = !A!BC + !AB!C + A!B!C + ABC = = C (!A!B + AB) + !C (!AB + A!B) = C !(A xor B) + !C (A xor B)

ponendo Z = A xor B = !Z C + Z !C = Z xor C = A xor B xor C_in

S = A xor B xor C_in

 $C_{out} = AB + C(A xor B)$

C_out = !ABC + A!BC + AB!C + ABC = C (!AB + A!B) + AB(!C + C) = C (A xor B) + AB

..... schema rete da ricavare

Addizionatore a k bit in binario naturale intero

Sommatore intero a n bit

Sommatore intero binario naturale a 3 bit

Sottrattore a 1 bit e a k bit in binario naturale intero

- Ricavare le tabelle delle verità, l'espressione logica minima e la rete combinatoria che realizza
 - un semi-sottrattore a 1 bit
 - un sottrattore completo a 1 bit
- Disegnare la struttura modulare di un sottrattore a k bit

Sottrattore intero a n bit

Sottrattore intero binario naturale a 3 bit

Semplice esempio di progetto in stile funzionale

- Si chiede di progettare un circuito digitale combinatorio, che abbia:
 - in ingresso due numeri interi binari naturali (positivi) A e B da n
 ≥ 1 bit ciascuno
 - in ingresso un segnale di comando C
 - in uscita un numero intero binario naturale Z da n ≥ 1 bit
- Su Z deve presentarsi la somma A + B se C = 0, la differenza A – B se C = 1

Schema logico della soluzione

Unità Aritmetico-Logica

Unità Aritmetico-Logica: esempio di comandi

# riga	Comando	Operazione	R	Esito
0	Add	somma A e B	A + B + R _{in}	riporto in uscita R _{usc}
1	Sub	sottrae B da A	$A - B - P_{in}$	prestito in uscita P _{usc}
2	Pass A	A passa in uscita	А	-
3	Pass B	B passa in uscita	В	-
4	Zero	annulla uscita	0	-
5	Shift Left A	A scorre a SX	2A	bit più significativo di A
6	Shift Right A	A scorre a DX	A/2	bit meno significativo di A
7	Null	Confronta A con 0	-	A = 0
8	Compare	Confronta A con B	A <,=,> B	A < B, A = B, A > B
9	Multiply	prodotto di A e B	$A \times B$	riporto in uscita
10	Divide	divisione A / B	A/B	divisione per 0 ?

ALU and, not, or e somma (1): realizzazione con MUX

ALU and, not, or e somma (2): realizzazione con DECODER

Schema logico di una ALU da 1 bit

- Istruzioni aritmetico-logiche
 - add
 - sub
 - or
 - and
 - nor

Un altro schema somma e sottrazione in complemento a 2

FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and \overline{b} . By selecting \overline{b} (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get two's complement subtraction of b from a instead of addition of b to a.

ALU a 32 bit

FIGURE B.5.7 A **32-bit ALU constructed from 32 1-bit ALUs.** CarryOut of the less significant bit is connected to the CarryIn of the more significant bit. This organization is called ripple carry.

Si aggiunge il NOR

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or \overline{a} and \overline{b} . By selecting \overline{a} (Ainvert = 1) and \overline{b} (Binvert = 1), we get a NOR b instead of a AND b.

L'indispensabile «Overflow Detection»

... e anche la realizzazione di

slt \$s1, \$s2, \$s3

se s2<s3 allora s1=1 altrimenti s1=0

s2 < s3 equivale a s2 – s3<0

se s2 – s3<0 allora il bit di segno del sommatore è 1 altrimenti è 0

L'ingresso *less* viene portato direttamente in uscita tramite il multiplexer e deve essere *O* per i 31 bit più significativi di \$s1 e 1 oppure *O* per il bit meno significativo

... a 32 bit

Overflow

in uscita solo quello relativi al bit più significativo

SIt ecco i valori di tutti i bit

Test zero e sottrazione

bit **Zero**

- posto a 1 se il risultato dell'ALU vale zero
- altrimenti a 0

Bnegate

Per la sottrazione in cpl2 è necessario avere i segnali *Binvert* e *Carryin* a 1 mentre per le altre operazioni considerate, eccetto il NOR, sono entrambi a 0

Vengono sostituiti dall'unico segnale *Bnegate*

ALU del MIPS e linee di controllo

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

Le linee di controllo interne dell'ALU sono:

Ainvert, Bnegate, Operation(2)

... come blocco funzionale

Numeri relativi e numeri reali

- I numeri relativi sono rappresentabili tramite sequenze di bit, proprio come i numeri interi naturali (sempre positivi)
 - La tecnica più usata per rappresentare i numeri interi relativi è il complemento a due (two's complement)
 - Le ALU sono normalmente in grado di operare sia con numeri interi naturali sia con numeri interi relativi rappresentati in complemento a due
- I numeri reali sono rappresentabili tramite sequenze di bit, proprio come i numeri interi
 - Esiste uno standard internazionale per la rappresentazione binaria di numeri reali: lo standard IEEE 754 per la rappresentazione in virgola mobile
 - Esistono ALU in grado di effettuare i calcoli aritmetici con i numeri reali, oltre che con i numeri interi