МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Направление подготовки/специальность 09.03.01 Информатика и вычислительная техника

направленность (профиль)/специализация «Технологии разработки программного обеспечения и обработки больших данных»

Лабораторная работа №5 по физике «ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛ МЕТОДОМ ТРИФИЛЯРНОГО ПОДВЕСА»

Обучающихся 1 курса очной формы обучения Фролова Андрея Алексеевича, Курылёва Григория Алексеевича, Ганиевой Елены Рустамовной, Сударчикова Яна Александровича.

Отчёт по ЛР-5 Физика

Цель работы: определение момента инерции некоторых тел относительно оси вращения, проходящей через центр масс, исследование влияния на момент инерции переноса осей вращения (проверка теоремы Штейнера методом крутильных колебаний).

Используемое оборудование: трифилярный подвес, секундомер, штангенциркуль, тела для измерения моментов инерции.

Ход работы

1. Определение параметров трифилярного подвеса

Массу платформы (m_0) трифилярного подвеса, длину нитей (l), радиус окружности, по которой закреплены нижние (R) и верхние (r) концы нитей трифиляра измерили штангенциркулем 5 раз. Рассчитали средние значения величин и определили погрешность измерения.

2. Вычисление периода

Сообщили пустой платформе вращательный импульс и при помощи секундомера измерили время (t_0) п полных колебаний (n=20), и определить величину периода T_0 :

$$\frac{T_0}{n}$$

3. Расчёт момента инерции пустой платформы

$$J_0 = \frac{m_0 \cdot g \cdot R \cdot r \cdot T^2}{4\pi^2 \cdot l}$$

4. Определение массы исследуемого тела

Взвешиванием определили массу исследуемого тела (m).

Расположили это тело в центре платформы. Вновь измерили время t 20 полных колебаний нагруженной платформы. Рассчитали период колебания T всей системы.

5. Расчёт момента инерции всей системы

$$J_1 = \frac{(m_0 + m) \cdot g \cdot R \cdot r \cdot T^2}{4\pi^2 \cdot l}$$

Величина момента инерции исследуемого тела J определяется как разность $J=J_1-J_0$

6. Вычисление погрешностей

Вычислили абсолютную и относительную погрешности рассчитанных значений моментов инерции.

7. Вычисление значения теоретического момента инерции

Рассчитали теоретическое значение момента инерции платформы, представляющей собой диск:

$$J = \frac{1}{3}ml^2$$

20.12.2024

Отчёт по ЛР-5

Результаты работы

Nº	r,M	Δr, м	R,M	ΔR, м	l, M	Δl, м
1	0.046675	0	0.0575	0.0000	0.43	0.0052
2	0.046675	0	0.0575	0.0000	0.435	0.0002
3	0.046675	0	0.0575	0.0000	0.44	0.0048
4	0.046675	0	0.0575	0.0000	0.428	0.0072
5	0.046675	0	0.0575	0.0000	0.443	0.0078
Ср. знач	0.046675	0	0.0575	0.0000	0.4352	0.01

m _o , кг	t _o , c	T _o , c	ΔT _o , c	m, кг	t, c	Т, с	ΔТ, с
0.1906	38.1	1.905	0.001	0.5406	25.7	1.285	0.0086
0.1906	38.2	1.91	0.004	0.5406	25.54	1.277	0.0006
0.1906	38	1.9	0.006	0.5406	25.6	1.28	0.0036
0.1906	38.1	1.905	0.001	0.5406	26	1.3	0.0236
0.1906	38.2	1.91	0.004	0.5406	24.8	1.24	0.0364
0.1906	38.12	1.906	0.0032	0.5406	25.528	1.2764	0.01456

J _o , кг·м2	ΔЈ₀, кг∙м3	δJ_o	Ј₁, кг∙м2	Д, кг∙м3	δJ_1	Ј, кг∙м3	Ј_теор, кг∙м3
0.0011	1.58E-05	1%	4.066E-03	1.40E-04	3%	3.006E-03	0.0120

Вывод

В ходе лабораторной работы мы научились определять момент инерции тела относительно оси вращения, проходящей через центр масс, проверили теорему Штейнера методом крутильных колебаний, вычислили абсолютные и относительные погрешности измерений, а также конечных результатов.

20.12.2024