

DATA SHEET (DOC No. HM0360-DS)

^{>>}НМ0360

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor
Preliminary version 04 May, 2020

Himax Imaging, Ltd.

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

May, 2020

Features

- Ultra Low Power, high sensitivity, low noise VGA sensor
- Operates 7.8mA VGA 60 FPS down to 240μA in monitor mode
- Automatic wake and sleep operation with programmable event interrupt to wake host processor
- On chip high precision oscillator, auto exposure / gain, ambient light sensor and zone detection
- Metered exposure provides well exposed first frame and after extended sleep (blanking) period

- External frame synch and stereo camera support
- Flexible binning, subsampling and region of interest
- Embedded line provides metadata frame, AE statistics, zone trigger and other interrupt event information
- On-chip high precision oscillator and LDO
- 1-lane MIPI CSI2 and 8-bit parallel/serial data format that supports 1-bit, 4-bit and 8-bit protocol
- I2C 2-wrie serial interface supporting burst operation for fast register access
- < 13 mm² CSP sensor package option</p>
- High CRA for low profile module design

Key Parameters

Sensor parameters	Value	
Pixel Array (Full/ Active)	656 x 496 / 640 x 480	
Pixel Size	3.6µm x 3.6µm / BSI	
Image Diagonal	2.88mm (1/6")	
Color Filter Array	Bayer, Monochrome	
Shutter Type	Electronic Rolling Shutter	
Frame Rate @ 24MHz	QQVGA 1 FPS to VGA 60 FPS	
Readout Modes	Full, VGA, Bin2 / Sub2,	
Readout Modes	Bin4 / Sub4, Fast ROI	
S/N Ratio (Max.)	45.5 dB	
Dynamic Range (1x)	TBD dB	
Compitalisates	5.5V / Lux-sec @530nm	
Sensitivity	15V / (µW-sec/cm²) @850nm	
Pixel CRA (Max.)	35.74	

Sensor para	ameters	Value	
Cymply	AVDD	2.8V	
Supply Voltage	DVDD	1.2∨ (Internal LDO)	
voltage	IOVDD	1.8V / 2.8V	
Input Reference	e Clock	6 – 24MHz	
Internal Oscillator		48MHz	
Serial Interface		I2C (1MHz max. singl	le / burst)
MIPI Data Form	nat	8-bit	
Parallel / Serial data format		8-bit, 4-bit+4-bit / 4-bit	/ 1-bit
Current Consumption		QVGA (S2) 2FPS	140 µA
(8-bit parallel	interface,	QVGA 60FPS	3.2 mA
Typical)		VGA 60FPS	7.8 mA

Order Information

Part no. Color option		Operating / Storage temperature	Package
HM0360-AWA	RGB	- 20 °C to 85 °C / - 30 °C to 85 °C	CSP
HM0360-MWA	Mono	- 20 °C to 85 °C / - 30 °C to 85 °C	CSP

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Revision History

Version Date Description of changes 01 2019/04/30 New setup. 02 2019/08/21 Page 2 1. Modify 'Key Parameters' 1. Modify 'Key Parameters'	
02 2019/08/21 Page 2 1. Modify 'Key Parameters'	
1. Modify 'Key Parameters'	
Page 10	
2. Modify 'Table 1.1: CSP pin description'.	
Page 13	
3. Modify CH '3.3 Sub-sampling and binning readout'.	
Page 17	
4. Modify 'Table 4.2: Motion Detection (MD) block'.	
5. Modify 'Figure 4.4: Example for VGA effective ROI are	a and
map'.	
Page 23	
6. Modify CH '5.1.1 External LDO mode (CSP)'.	
Page 24	
7. Modify CH '5.2.1 Internal LDO mode (CSP)'.	
Page 28	
8. Modify Figure '6.4 Clock dividers'	
Page 29 9. Modify Table '6.3 IO control options'.	
10. Modify Table '6.4 Output pin status'.	
Page 51	
11. Modify CH '10.22 IO and clock control registers [0x30]	94 –
0x3128]'.	
Page 59	
12. Modify 'Table 11.3: DC characteristics'.	
Page 65	
13. Add CH '13. Quantum Efficiency (QE)'.	
03 2020/04/15 Page 2	
1. Modify 'Features'.	
2. Modify 'Key Parameters'.	
Page 11	
3. Modify 'Figure 1.1: CSP pin diagram (Top view)'.	
Page 13 4 Modify CH '2 Separar Overview'	
4. Modify CH '2. Sensor Overview'. Page 14	
5. Modify CH '3.1 Sensor array'.	
6. Modify 'Figure 3.2: VGA resolution pixel readout'.	
Page 15	
7. Modify CH '3.3 Sub-sampling and binning readout'.	
Page 16	
8. Modify 'Figure 3.6: VGA ROI window readout with par	allel
interface'.	
Page 17	
9. Modify 'Figure 4.1: ISP and digital function blocks'.	
Page 18	
10. Modify 'Table 4.1: ISP and digital block description'.	
Page 19	
11. Modify CH '4.1 Motion Detection (MD)'. (Remove 'Figure 4.3: Motion detect configuration')	
Page 20	
12. Modify CH '4.2 Strobe control'.	
Page 21	
13. Modify CH '4.4 Context switch'.	

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Revision History

Vorei en	Dete	Description of changes
Version	Date	Description of changes
		Page 22
		14. Modify 'Table 4.3: Interrupt control'.
		Page 23
		15. Modify CH '4.6 AEGC'.
		Page 24
		16. Modify CH '4.7 One Time Programming (OTP) memory'.
		17. Add CH '4.8 Pre-meter'.
		Page 25
		18. Add CH '4.9 Embedded data'.
		Page 26 19. Add CH '4.10 Tone mapping'.
		Page 29
		20. Modify 'Table 6.1: Operating modes'.
		Page 30
		21. Modify 'Figure 6.1: State diagram (Software I2C trigger)'.
		22. Modify 'Figure 6.2: State diagram (Hardware pin trigger)'.
		Page 32
		23. Modify 'Table 6.2: Power up sequence timing'.
		Page 33
		24. Modify 'Figure 6.4: Clock dividers'.
		Page 37~38
		25. Add CH '6.7 Multiple camera application'.
		Page 39
		26. Modify 'Figure 7.1: MIPI interface lane'.
		Page 44
		27. Modify CH '9.2 Analog gain control'.
		Page 46
		28. Modify CH ,10.1 Sensor ID registers [0x0000 – 0x0007]'. Page 48
		29. Modify CH ' 10.8 Test pattern control registers [0x0601 –
		0x0609]'.
		30. Modify CH '10.9 Black level control registers [0x1000 – 0x1009]'.
	51	Page 49
		31. Modify CH '10.10 Monochrome programming registers
	~ (O) A	[0x100A]'.
		32. Add CH '10.12 Tone mapping registers [0x1030 – 0x103F]'.
		Page 50
		33. Modify CH '10.13 Automatic exposure programming registers
	\rightarrow	[0x2000 – 0x2072]'.
		Page 54~55
		34. Modify CH '10.15 Motion detection control registers [0x2080 –
		0x20C0]'. Page 56
		35. Modify CH '10.20 Operation mode registers [0x3026 – 0x302A]'.
		Page 58
		36. Modify CH '10.22 Strobe control registers [0x3080 – 0x3089]'.
		Page 59
		37. Modify CH '10.23 IO and clock control registers [0x3094 –
		0x3128]'.
		Page 60~62
		38. Modify CH '10.25 Context switch A registers [0x3500 – 0x3559]'.
		Page 63~65
		39. Modify CH '10.26 Context switch B registers [0x355A – 0x35B3]'.

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Revision History

Version	Date	Description of changes
		Page 67~68
		40. Modify CH '11.3 DC characteristics'.
		Page 71
		41. Modify 'Figure 11.2: 8-bit parallel video interface timing diagram'.
		42. Modify 'Figure 11.3: 4-bit parallel video interface timing diagram'.
		Page 72
0.4	0000/05/00	43. Modify 'Figure 11.4: Serial video interface timing diagram'.
04	2020/05/29	Page 2
		1. Modify 'Features'. Page 13
		2. Modify CH '2. Sensor Overview'.
		Page 22
		3. Modify 'Table 4.3: Interrupt control'.
		Page 25
		4. Modify 'Table 4.4: Embedded Data Content page'.
		Page 33
		5. Modify 'Figure 6.4: Clock dividers'.
		Page 47
		6. Modify CH '10.4 Clock control registers [0x0300 – 0x0302]'.
		7. Modify CH '10.6 Monochrome programming registers [0x0370 –
		0x0372]'.
		Page 50~52 8. Modify CH '10.13 Automatic exposure programming registers
		[0x2000 – 0x2072]'.
		Page 53
		Modify CH '10.14 Interrupt programming registers [0x2061 –
		0x2065]'.
		Page 54~55
		10. Modify CH '10.15 Motion detection control registers [0x2080 –
	· ·	0x20C0]'.
	1	Page 56~57
		11. Modify CH '10.16 OTP programming registers [0x2500 –
		0x25FF]'.
	(10)	Page 61
		12. Modify CH 10.23 IO and clock control registers [0x3094 – 0x3128]'.
		Page 62-64
		13. Modify CH '10.25 Context switch A registers [0x3500 – 0x3559]'.
	\ <u>\</u>	Page 65~67
		14. Modify CH '10.26 Context switch B registers [0x355A – 0x35B3]'.
		Page 71
		15. Modify 'Table 11.5: MIPI timing characteristics'.
		Page 73
		16. Modify 'Table 11.8: 8-bit parallel video interface timing'.
		17. Modify 'Table 11.9: 4-bit parallel video interface timing'.
		Page 74
		18. Modify 'Table 11.10: Serial video interface timing'.

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Himax Imaging, Ltd. http://www.himax.com.tw

List of Contents

1.	Packa	age Information	11
	1.1	Chip Scale Package (CSP)	11
2.	Senso	or Overview	13
3.	Senso	or Core and Function Description	14
	3.1	Sensor array	14
	3.2	VGA window readout	14
	3.3	Sub-sampling and binning readout	15
	3.4	Region of Interest (ROI)	16
	3.5	Horizontal and vertical mirror	16
4.	Image	Signal Processor Functional Description	17
	4.1	Signal Processor Functional Description Motion Detection (MD)	19
	4.2	Strope control	20
	4.3	FSYNC	21
	4.4	Context switch	
	4.5	Interrupt	
	4.6	AEGC	23
	4.7	One Time Programming (OTP) memory	24
	4.8	Pre-meter	24
	4.9	Embedded data	25
	4.10	Tone mapping	26
5.	Typica	One Time Programming (OTP) memory	27
	5.1	Reference circuit for triple supply	27
		5.1.1 External LDO mode (CSP)	27
	5.2	Reference circuit for dual supply	28
		5.2.1 Internal LDO mode (CSP)	28
6.	Syste	Reference circuit for triple supply 5.1.1 External LDO mode (CSP) Reference circuit for dual supply 5.2.1 Internal LDO mode (CSP) m Level Description Operating modes. Reset	29
	6.1	Operating modes	29
	6.2	Reset	31
	6.3	Power up sequence	32
	6.4	Clock setup	33
	6.5	IO control options	34
	6.6	Data format control	35
	6.7	Multiple camera application	37
		6.7.1 Mode 1	37
7	MIDLO	6.7.2 Mode 2serial data interface	პბ
7.	7.1	From format	ა ყ
	7.1	Frame format	عد
8.		Interface Description	
0.	8.1	2C slave address ID	
	8.2	Start / Stop conditions	
	8.3	Data valid	
	8.4	Data format	
	8.5	Acknowledge / No-Acknowledge	
	8.6	Write sequence	
	8.7	Read sequence	
a		or Core Control	
٥.	9.1	Frame retiming	
	9.2	Analog gain control	
	9.3	Exposure control	
	5.5	9.3.1 50Hz / 60Hz flicker avoidance	
	9.4	Frame rate control	
10.		ter Table	
	10.1	Sensor ID registers [0x0000 – 0x0007]	

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Himax Imaging, Ltd. http://www.himax.com.tw

List of Contents

	10.2	Sensor mode control registers [0x0100 – 0x0104]	46
		Sensor exposure gain control registers [0x0202 – 0x020F]	
	10.4	Clock control registers [0x0300 – 0x0302]	
	10.5	Frame timing control registers [0x0340 – 0x0343]	47
	10.6	Monochrome programming registers [0x0370 – 0x0372]	47
	10.7	Sub-sampling / Binning control registers [0x0380 – 0x0382]	48
	10.8	Test pattern control registers [0x0601 – 0x0609]	
		Black level control registers [0x1000 – 0x1009]	
	10.10	Monochrome programming registers [0x100A]	49
		VSYNC / HSYNC / pixel shift registers [0x1014]	
	10.12	Tone mapping registers [0x1030 – 0x103F]	49
	10.13	Tone mapping registers [0x1030 – 0x103F]	50
	10.14	Interrupt programming registers [0x2061 – 0x2065]	53
	10.15	Motion detection control registers [0x2080 – 0x20C0]	54
	10.16	Interrupt programming registers [0x2061 – 0x2065]	56
	10.17	MIPI programming registers [0x2800 – 0x2822]	57
	10.18	SYNU, TUNCTION CONTROL REGISTERS TUX3UTU = UX3UTU.	אכ
	10.19	Context switch control registers [0x3024 – 0x3025]	58
	10.20	Operation mode registers [0x3026 – 0x302A]	58
	10.21	ROI and sensor control registers [0x3030 – 0x307F]	59
	10.22	Strobe control registers [0x3080 – 0x3089]	60
	10.23	IO and clock control registers [0x3094 – 0x3128]	61
	10.24	I2C slave registers [0x3400 – 0x3401]	62
	10.25	Context switch A registers [0x3500 – 0x3559]	62
	10.26	Context switch B registers [0x355A – 0x35B3]	65
11.	Electr	ical Specification	68
	11.1	Absolute maximum ratings	68
	11.2	Operating voltages	68
	11.3	DC characteristics	69
	11.4	Master Clock (MCLK) input	70
	11.5	MIPI timing characteristics	71
	11.6	Serial bus characteristics	72
	11.7	Parallel interface timing characteristics	73
	11.8	Context switch control registers [0x3024 – 0x3025] Operation mode registers [0x3026 – 0x302A] ROI and sensor control registers [0x3030 – 0x307F] Strobe control registers [0x3080 – 0x3089] IO and clock control registers [0x3094 – 0x3128] I2C slave registers [0x3400 – 0x3401] Context switch A registers [0x3500 – 0x3559] Context switch B registers [0x355A – 0x35B3] ical Specification Absolute maximum ratings Operating voltages DC characteristics Master Clock (MCLK) input MIPI timing characteristics Serial bus characteristics Parallel interface timing characteristics Serial interface timing characteristics Serial interface timing characteristics	74
12.	Senso	Serial interface timing characteristics	75
13.	Quant	um Efficiency (QE)	76

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Himax Imaging, Ltd. http://www.himax.com.tw

List of Figures

Figure 1.1: CSP pin diagram (Top view)	11
Figure 2.1: HM0360 block diagram	13
Figure 3.1: Full resolution pixel readout	
Figure 3.2: VGA resolution pixel readout	14
Figure 3.3: Quad mode subsampling (RGB shown)	15
Figure 3.4: Quad mode binning (RGB shown)	
Figure 3.5: Channel mode subsampling (RGB shown)	
Figure 3.6: VGA ROI window readout with parallel interface	16
Figure 3.7: Horizontal and vertical mirror readout modes	16
Figure 4.1: ISP and digital function blocks	17
Figure 4.2: Test image patterns	18
Figure 4.3: Example for VGA effective ROI area and map	19
Figure 4.4: Strobe control	20
Figure 4.5: FSYNC tracking	21
Figure 4.6: AE Zone	23
Figure 4.7: AE ROI window	23
Figure 4.8: Four operation scenarios for pre-meter	24
Figure 4.9: Compression curve (input 10b, output 8b)	26
Figure 4.10: Tone mapping examples	26
Figure 5.1: Application circuit for CSP (External LDO mode)	27
Figure 5.2: Application circuit for CSP (Internal LDO mode)	28
Figure 6.1: State diagram (Software I2C trigger)	30
Figure 6.2: State diagram (Hardware pin trigger)	30
Figure 4.7: AE ROI window Figure 4.8: Four operation scenarios for pre-meter Figure 4.9: Compression curve (input 10b, output 8b) Figure 4.10: Tone mapping examples Figure 5.1: Application circuit for CSP (External LDO mode) Figure 5.2: Application circuit for CSP (Internal LDO mode) Figure 6.1: State diagram (Software I2C trigger) Figure 6.2: State diagram (Hardware pin trigger) Figure 6.3: Power up sequence Figure 6.4: Clock dividers Figure 6.5: Gated serial data clock option Figure 6.6: Output format on 8-bit data IO interface Figure 6.7: Output format on 4-bit data IO interface Figure 6.8: Output format on serial data IO interface	32
Figure 6.4: Clock dividers	33
Figure 6.5: Gated serial data clock option	34
Figure 6.6: Output format on 8-bit data IO interface	35
Figure 6.7: Output format on 4-bit data IO interface	36
Figure 6.8: Output format on serial data IO interface	36
Figure 6.8: Output format on serial data IO interface	37
Figure 6.10: Operation scenario for mode 1	3/
Figure 6.11: Block diagram for mode 2	38
Figure 6.12: Operation scenario for mode 2	
Figure 7.1: MIPI interface lane Figure 7.2: Frame format	39
Figure 7.2: Frame format	39
Figure 7.3: MIPI clock lane options	
Figure 8.1: 2-Wire serial interface Start / Stop condition	
Figure 8.2: 2-Wire serial interface 16-bit address write	
Figure 8.3: 2-Wire serial interface 16-bit address read	
Figure 9.1: (N+2) command update (CMU) timing	
Figure 11.1: 2-Wire serial interface timing diagram	
Figure 11.2: 8-bit parallel video interface timing diagram	
Figure 11.4: Serial video interface timing diagram	
Figure 13.1: QE (Monochrome)	
Figure 13.1: QE (Monochioffle)	

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Himax Imaging, Ltd. http://www.himax.com.tw

List of Tables

Table 1.1: CSP pin description	12
Table 3.1: Region of Interest (ROI) block	16
Table 4.1: ISP and digital block description	18
Table 4.2: Motion Detection (MD) block	19
Table 4.3: Interrupt control	22
Table 4.4: Embedded Data Content	25
Table 4.5: Tone mapping parameters	26
Table 6.1: Operating modes Table 6.2: Power up sequence timing	32
Table 6.3: IO control options	34
Table 6.4: Output pin status	34
Table 6.5: Data format control setting summary	చ్
Table 8.1: Device address configuration	41
Table 8.2: Serial interface Start / Stop transition	41
Table 11.1: Absolute maximum ratings	68
Table 11.2: Operating voltages	68
Table 11.3: DC characteristics	70
Table 11.4: Master Clock (MCLK) timing	70
Table 11.5: MIPI timing characteristics	71
Table 9.1: Global analog gain settings	71
Table 11.7: Serial bus interface timing	72
Table 11.8: 8-bit parallel video interface timing	73
Table 11.9: 4-bit parallel video interface timing	73
Table 11.10: Serial video interface timing	74
Table 12.1: CRA profile	75

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Important Notice

May, 2020

Disclaimer

Himax Imaging reserves the right to modify this documentation without prior notice. The information appearing in this publication is believed to be accurate and reliable. However, Himax Imaging makes no warranty for any errors which may appear in this document. Contact Himax Imaging to obtain the latest version of product specifications before placing your order. No responsibility is assumed by Himax Imaging, Ltd. for any infringement of patent or other rights of third parties which may result from its use. Products described herein are intended for use in normal commercial applications. Please note that application circuits illustrated in this document are for reference purposes only.

All Rights Reserved

The following are trademarks of Himax Imaging Ltd.: Himax Imaging, BrightSense, ClearSense, the Himax Imaging logo symbol. The use of any trademark, trade name, or service mark found in this document without the owner's express written consent is strictly prohibited.

Himax Imaging strives to produce quality documentation and welcomes your feedback. Please send comments or suggestions to hi_marketing@himaximaging.com.

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

Preliminary Version 04

May, 2020

1. Package Information

1.1 Chip Scale Package (CSP)

Figure 1.1: CSP pin diagram (Top view)

Pin no.	Pin name	Туре	Description
A1	HVLD	Out	Line valid output.
A2	D1	Out	Data 1 output.
A3	D3	Out	Data 3 output.
A4	D5	Out	Data 5 output.
A5	D7	Out	Data 7 output.
A6	CXT_SEL	In	Context switching selection. (Internal pull low)
A7	DVDD	Power	Digital power. (1.2V)
B1	D0	Out	Data 0 output.
B2	PCLKO	Out	Pixel clock output.
В3	D2	Out	Data 2 output.
B4	D4	Out	Data 4 output.
B5	CLK_SEL	ln	Clock source select. (Internal pull low, Low: Oscillator, High: MCLK, connect to ground for oscillator mode)
B6	IOVDD	Power	IO power. (1.8V / 2.8V)
B7	DGND	Ground	Digital ground.
C1	DVDD	Power	Digital power. (1.2V)
C2	IOVDD	Power	IO power. (1.8V / 2.8V)
C3	FVLD	Out	Frame valid output.
C5	D6	Out	Data 6 output.
C6	FSIN	In	Frame sync. (Internal pull low)
C7	INT	Out	Interrupt output. (Active high)
D1	DGND	Ground	Digital ground.
D2	RTC	In	Real time clock source input. (Must not be left floating, connected to DGND without RTC clock input)
D5	METER	In	Exposure Meter enable pin. (Internal pull low / Active high)
D6	TRIGGER	In	Frame trigger input. (Internal pull low / Active high)
D7	STROBE	Out	Strobe output.
E1	CP	Out	MIPI clock positive output.
E2	CN	Out	MIPI clock negative output.
E3	AGND	Ground	Analog ground.
E4	I2C_SEL1	In	I2C device address selection. (Internal pulling low)
E5	VREF1	Reference	Voltage reference. (VRNP)
E6	SCL	In In	I2C serial clock.
E7	SDA	In/Out	Serial data I/O. (Open drain)
F1	DP	Out	MIPI data positive output.
F2	DN	Out	MIPI data negative output.
F3	DVDD	Power	Digital power. (1.2V)
F4	XSHUTDOWN	In	Reset and power down control pin. (Active low)
F5	HVP	Reference	Place an external capacitor if the internal OTP pump is used.
F6 🔷	DGND	Ground	Digital ground.
F7	VREF3	Reference	Voltage reference. (PVDD)
G1	MCLK	ln	Master clock input. (Connected to DGND when using internal oscillator)
G2	AVDD	Power	Analog power. (2.8V)
G3	I2C_SEL0	In	I2C device address selection. (Internal pulling low)
G4	XSLEEP	In	Low power sleep mode. (Active low)
G5	VREF2	Reference	Voltage reference. (VRPP)
G6	DVDD	Power	Digital power. (1.2V)
G7	AVDD	Power	Analog power. (2.8V)

Table 1.1: CSP pin description

2. Sensor Overview

The HM0360 is an ultra-low power, Back Side Illuminated (BSI) CMOS image sensor designed for energy efficient smart vision applications, such as object-specific classification, tracking and identification. The advanced 3.6µ low noise, deep diode pixel achieves superior image quality performance to enable monitoring, detection and video capture in low light environments while minimizing the use of external, power consuming, LED illuminators.

The HM0360 Always On Sensor architecture delivers a target current consumption of 240µA in AoS monitor mode and 7.8mA in VGA 60 frames per second read out mode. In order to reduce host processor loading, camera latency and system power consumption, the HM0360 features on-chip oscillator with automatic external reference clock detection, automatic frame mode switch, fast sensor initialization, <2ms frame trigger time, context switching and instant frame update. The sensor offers several monitoring options with programmable interrupt thereby allowing the host processor to be placed in low power standby until notified by the sensor.

The HM0360 is available in a compact Chip Scale Package (CSP) compatible with standard SMT reflow process. The sensor supports multiple power supply configurations and uses few passive components to enable a highly compact camera module design for next generation energy efficient, smart camera devices.

Figure 2.1: HM0360 block diagram

3. Sensor Core and Function Description

3.1 Sensor array

The HM0360 consists of full pixel array of 656 columns and 496 rows. The sensor maximum active resolution is 640 columns and 480 rows which include 16 border pixels.

For the sensors with color filter, the even numbered rows contain the Blue (B) and Green (G₁) pixel, and the odd numbered rows contain the Red (R) and Green (G₂) pixels; the even numbered columns contain the Green (G₂) and Blue (B) pixels, and the odd numbered columns contain the Red (R) and Green (G₁) pixels. Optically black rows are used by the sensor for black level calibration and masked out from the data output. Programmable horizontal and vertical blanking time adjusts the line length and frame height, respectively.

Figure 3.1: Full resolution pixel readout

3.2 VGA window readout

The HM0360 full active pixel array of 656 x 496 can be windowed to 640 x 480 by register **0x3030[0]**.

Figure 3.2: VGA resolution pixel readout

3.3 Sub-sampling and binning readout

HM0360 supports Quad and Channel sub-sampling and Quad binning readout for sub2 and sub4 for both Bayer RGB and Monochrome sensor CFA. The sub-sampling readout can be used to reduce sensor resolution while preserving the field of view. The binning readout improves S/N ratio. The sub-sampling and binning modes can be configured in the main and context register banks.

Figure 3.3: Quad mode subsampling (RGB shown)

Figure 3.4: Quad mode binning (RGB shown)

Figure 3.5: Channel mode subsampling (RGB shown)

3.4 Region of Interest (ROI)

The HM0360 supports Region of Interest (ROI) window readout mode. The array is partitioned into 10(H) x 15(V) independently addressable ROI blocks. As shown in the ROI example below, the ROI selection is independent, and the frame timing will need to be programmed and adjusted based on the selected active region as shown the Figure 3.6. The resolution of each ROI block is scaled based on the binning / subsampling mode as described in Table 3.1.

Window readout	Maximum number of ROI	ROI size
VGA (640 x 480)	10 x 15	64 x 32
QVGA (320 x 240)	10 x 15	32 x 16
QQVGA (160 x 120)	10 x 15	16 x 8

Table 3.1: Region of Interest (ROI) block

Figure 3.6: VGA ROI window readout with parallel interface

3.5 Horizontal and vertical mirror

The sensor readout can be mirrored in the vertical and horizontal direction where the window center will remain unchanged. The horizontal and vertical mirror readout can be applied in VGA, QVGA (sub2 or bin2), QQVGA (sub4 or bin4), and ROI modes.

In the color sensor version, the color of the first pixel read out will change according to the selected mirror mode as shown in the Figure 3.7.

Figure 3.7: Horizontal and vertical mirror readout modes

4. Image Signal Processor Functional Description

The sensor ISP features can be configured by the host through the serial register interface. Please contact Himax Imaging for application notes.

Block	Digital function	Description	Register range	Register enable bit
	Test Pattern	Five test patterns are supported (See Figure 4.2): a. Color Bar b. FADE To Grey Color Bar c. Walking 1's d. Solid Pattern e. PN9	0x0601~ 0x0609	0x0601[6:4]
	Black Level Correction	Adjusts the black level to the target programmed value based on optical black pixel data	0x1000~ 0x1009	-
	Digital Gain	Global digital gain applied to the video data. Programmed in 2.6 format (2-bit integer, 6-bit floating)	0x0202~ 0x020F	0x020E[1:0] 0x020F[7:2]
ISP	Tone mapping	Preserving image detail for monochrome sensor.	0x1030~ 0x103F	-
	Motion Detection	Detect for presence of motion within programmable motion region. The status of the motion detection, including triggered interrupt can be accessed through the registers or embedded data line.	0x2080~ 0x20C0	0x2080[0]
	Automatic Exposure Gain	Control loop which adjusts the sensor exposure, analog and digital gain to the user-defined target luminance value. The AEG can be programmed to avoid 50Hz and 60Hz flicker.	0x2000~ 0x2072	0x2000[0]
	Premeter	Exposure metering approximates scene to quickly set the sensor exposure and gain. The premeter function can be enabled through software (I2C) or digital input pin (METER).	0x3026~ 0x302A	0x3026[3:0]
	STROBE	Synchronized with exposure field and can be used to control LED driver. Please see the Strobe control section.	0x3080~ 0x3089	0x3080[0]
	CXT_SEL	The resolution switch in real time through software (I2C) or digital input pin (CTX_SEL). Please see the Context switch section.	0x3024~ 0x3025	0x3024[3:0]
Timing	TRIGGER	When selected, frame trigger is controlled by hardware TRIGGER pin. Please see the mode select control in the Operating modes section.	0x0100	0x0100[2:0]
	FSIN	Aligns the frame read field to an external frame synchronization input signal. Please see the FSYNC section.	0x3010 ~ 0x301C	0x3010[1]
	METER	Active high signal to assert Pre-meter function. Please see the Pre-meter section.	0x3026 ~ 0x3027	0x3026[3]
Interrupt Generator	Generator Output c. ALC d. MD e. AE statistic ready		0x2061~ 0x2065	a. 0x309C[0] 0x350F[0] 0x3569[0] b. 0x2001[1] 0x3513[1] 0x356D[1] c. 0x2000[7] 0x3512[7] 0x356C[7] d. 0x209E[2:1] e. 0x2001[0] 0x3513[0] 0x356D[0]
OTP	User Info	One time programmable 1 Kbit memory that can be used to store module information.	0x2500~ 0x2507	-
Embedded data	Embedded data	Embedded sensor's information at the last row of current frame	0x0102[0] 0x3511[0] 0x356B[0]	0x0102[0] 0x3511[0] 0x356B[0]

Table 4.1: ISP and digital block description

Figure 4.2: Test image patterns

4.1 Motion Detection (MD)

The sensor features on-chip Motion Detection (MD) logic. The MD is triggered if a qualified motion event occurs in any one of the selected Motion Detection ROI (MDROI). The maximum MDROI for different resolution is described in Table 4.2. The effective ROI area for motion detect is set by the registers ROI_START_V, ROI_END_V, ROI_START_H and ROI_END_H. Please contact Himax Imaging FAE for additional information to program the MD function.

Window readout	Maximum number of MDROI	ROI size
VGA (640 x 480)	16 x 15	40 x 30
QVGA (320 x 240)	16 x 15	20 x 15
QQVGA (160 x 120)	16 x 14	10 x 8
656 x 496	16 x 16	40 x 30
328 x 248	16 x 16	20 x 15
164 x 124	16 x 15	10 x 8

Table 4.2: Motion Detection (MD) block

There are maximum 256-bit to indicate motion or no-motion for each motion detection block (Effective ROI area is equal to maximum motion detect block). The information can be found in Embedded_line[29] ~ Embedded_line[60] and registers 0x20A1 to 0x20C0.

Embedded motion map	Register motion map	Corresponding Value
Embedded_ line[29]	Register 0x20A1	Byte 12
Embedded_ line[30]	Register 0x20A2	Byte 11
10 10	7.1 1.5	
Embedded_ line[40]	Register 0x20AC	Byte 1
Embedded_ line[41]	Register 0x20AD	Byte 0[2:0]
Embedded_ line[42]	Register 0x20AE	2
i.	i.	:
Embedded_ line[60]	Register 0x20C0	

Figure 4.3: Example for VGA effective ROI area and map

4.2 Strobe control

HM0360 supports strobe function synchronized with exposure field and can be used to control synchronized light sources, such as an LED. There are four different modes: Static, Dynamic1, Dynamic2 and Multiple modes as shown in the Figure 4.4.

Strobe function is enabled by setting register **0x3080[0]** to 1 and strobe mode is set by register **0x3080[4:1]**. Strobe front porch is programmed by register **0x3082** and register **0x3083**. Strobe end porch is set by register **0x3084** and register **0x3085**. The step of strobe front porch and strobe end porch are one PCLKO clock time unit. Strobe line is set by register **0x3086** and register **0x3087** with programming resolution of one row. Output programmed number of strobe is set by register **0x3088** and register **0x3089**.

Static

Enabled with register 0x3080=0x05

Dynamic 1

Dynamic 2

Enabled with register 0x3080=0x0B

Multiple

Enabled with register 0x3080=0x13

Figure 4.4: Strobe control

4.3 FSYNC

HM0360 can synchronize the sensor read field to the rising edge of an external frame pulse provided at the sensor's FSIN input pin. The FSYNC function is enabled by setting register **0x3010[1]** to 1.

If the period of FSIN pulses is longer than the programmed frame length, the sensor will output one read field at the rising edge of every FSIN pulse. If the period of FSIN pulses are shorter than the internal frame length, the sensor will output the next read field synchronized to the first FSIN following the internal frame length.

The Figure 4.5 is to depict the condition that the period of the FSIN pulses is shorter than the set internal frame length. In this example, the sensor will output one frame data every three FSIN pulses.

Figure 4.5: FSYNC tracking

4.4 Context switch

HM0360 support two context fields (Context A, Context B) that allow programmable parameters, such as frame size, readout mode, PLL, Auto Exposure, Motion Detection, and interrupt configuration to be grouped as one context and selected with an I2C command or hardware input. "Selected with I2C command" is enabled by setting register 0x3024[1] to 0 and context A is selected by programming register 0x3024[0] to 0. "Select with hardware input" is enabled by setting register 0x3024[1] to 1 and context A is selected by applying low voltage level to digital input pin (CTX_SEL). When the new context is selected within the current frame period, the new context will take effect in the following frame.

The context can be manually selected (Off, Context A, Context B) or can be set to automatically switch between Context A and Context B. In the automatic switch mode of operation, the number of Context A frames and Context B frames can be programmed by register 0x3025[3:0] and register 0x3025[7:4], respectively.

The Context Switch control register is set by register **0x3024[3:0]**. The Context A registers are set from register **0x3500** to **0x3559**; and the Context B registers are set from **0x355A** to **0x35B3**.

4.5 Interrupt

HM0360 support five interrupt conditions: Early VSYNC; AE non-converged; ALC; MD and AE Statistic ready.

Interrupt	Description	Enable bit
Early VSYNC	An early flag of VSYNC (provide the delay for host to power up and then receive sensor data successfully)	0x309C[0] 0x350F[0] 0x3569[0]
AE non-converged	Interrupt happen if AE does not converge	0x2001[1] 0x3513[1] 0x356D[1]
ALC	During AE update disabled a. Interrupt for illumination change. The mean value of frame N is away from AE target (non-converged), interrupt happen if mean value of frame N+1 converge. b. Interrupt happen if mean value does not converge with more than frames programmed by frame counter (register 0x205B[7:0])	0x2000[7] 0x3512[7] 0x356C[7]
MD	Motion interrupt enable	0x209E[1]
AE statistic ready	During AE update disabled AE statistic calculated ready, store related information in register and embedded line	0x2001[0] 0x3513[0] 0x356D[0]

4.6 AEGC

The AEGC state machine adjusts the integration, analog gain and digital gain against the target brightness value. Three convergence zones with programmable damping factors balance speed and stability.

In the fast zone, large exposure steps are applied to quickly converge to the target brightness value. In the slow zone, small exposure gain steps are applied to smoothly converge to the target brightness value. Inside the target zone, the control loop does not change exposure gain values.

Figure 4.6: AE Zone

HM0360 support 5x5 AE ROI window mode that allow weighting adjustment in each ROI block. The start address of 5x5 AE ROI window is set by register CNT_ORG_H and register CNT_ORG_V. The size of each ROI block is set by register CNT_ST_H and CNT_ST_V.

Figure 4.7: AE ROI window

4.7 One Time Programming (OTP) memory

HM0360 offers 1 Kbit of One Time Programming (OTP) memory that can be used to store module information. It is recommended to connect a 0.1µF capacitor between HVP pin and ground for write operation. HVP pin can be left open (floating) during read operation.

4.8 Pre-meter

To further reduce the camera power consumption and system latency, the HM0360 offers pre-meter function to quickly output well-exposed frames. The pre-meter function is enabled by programming register **0x3026[3:0]** and the operation scenario is depicted in Figure 4.8.

Figure 4.8: Four operation scenarios for pre-meter

4.9 Embedded data

HM0360 supports embedded data which contains predefined sensor register data such as I2C slave address ID, frame count, AE and MD parameters for current frame. The embedded data is available for both MIPI and parallel interface. The embedded sensor register data are appended at the last row of frame by setting EMBEDDED_LINE_EN to 1.

Byte content	Embedded content
0	I2C slave ID
1	FRAME_COUNT_H
2	FRAME_COUNT_L
4	FRAME_LENGTH_LINES_H
5	FRAME_LENGTH_LINES_L
6	LINE_LENGTH_PCK_H
7	LINE_LENGTH_PCK_L
8	INTEGRATION_H
9	INTEGRATION_L
10	ANALOG_GAIN
11	DIGITAL_GAIN_H
12	DIGITAL_GAIN_L
	Interrupt Indicator
	[5]: Early VSYNC
	[4]: RESERVED
24	[3]: MD INT
	[2]: AE non-converged
	[1]: AE statistic ready
C C	[0]: AE ALC
25	AE MEAN
28	[0]: MD INT Flag (Origin)
20	[1]: MD INT Flag (Latency)
29~60	MD flag 0~MD flag 31

Table 4.4: Embedded Data Content

4.10 Tone mapping

HM0360 supports tone mapping (it does not increase dynamic range and only for monochrome sensor) to preserve image details. Compression curve (Input 10b, Output 8b) and examples for three level are provided based on "low", "medium" and "High" level.

Figure 4.9: Compression curve (input 10b, output 8b)

Register	Default (Hex)	Low (Hex)	Medium (Hex)	High (Hex)
0x1030	0x04	0x09	0x0F	0x1B
0x1031	0x08	0x12	0x1E	0x36
0x1032	0x10	0x23	0x36	0x58
0x1033	0x18	0x31	0x4A	0x68
0x1034	0x20	0x3E	0x5B	0x74
0x1035	0x28	0x4B	0x64	0x7C
0x1036	0x30	0x56	0x6C	0x82
0x1037	0x38	0x5E	0x73	0x88
0x1038	0x40	0x65	0x79	0x8C
0x1039	0x50	0x72	0x84	0x94
0x103A	0x60	0x7F	0x8F	0x9E
0x103B	0x70	0x8C	0x99	0xA6
0x103C	0x80	0x98	0xA4	0xB0
0x103D	0xA0	0xB2	0xBA	0xC2
0x103E	0xC0	0xCC	0xD0	0xD4
0x103F	0xE0	0xE6	0xE8	0xEA

Table 4.5: Tone mapping parameters

Figure 4.10: Tone mapping examples

5. Typical Application Circuit

5.1 Reference circuit for triple supply

5.1.1 External LDO mode (CSP)

Note: (1) Capacitors should be placed close to its respective pin. All power supplies must be adequately decoupled.

- (2) CCI pull-up resistors should have a value based on the CCI specification (typically 4k7 ohm)
- (3) RTC pin must not be left floating, connected to DGND without RTC clock input.
- (4) MCLK connect to DGND when using internal oscillator.

Figure 5.1: Application circuit for CSP (External LDO mode)

Reference circuit for dual supply

Internal LDO mode (CSP)

Note: (1) Capacitors should be placed close to its respective pin. All power supplies must be adequately decoupled. (2) CCI pull-up resistors should have a value based on the CCI specification **(typically 4k7 ohm)**.

- (3) RTC pin must not be left floating, connected to DGND without RTC clock input.
- (4) MCLK connect to DGND when using internal oscillator.

Figure 5.2: Application circuit for CSP (Internal LDO mode)

6. System Level Description

6.1 Operating modes

The HM0360 supports nine modes of operation as shown in Table 6.1.

Mode	Description	Power	Register values	I2C	CLOCK	Digital
Power off	No power supplied to sensor	Off	ı	-	-	-
Sleep 2 (HW)	Hardware sleep; lowest power consumption mode (XSLEEP=low)	On	Retained	Off	Off	Standby mode
Sleep 1 (SW)	MODE_SELECT[2:0]=000 Soft sleep with I2C enabled; Wait for SW I2C trigger or I2C configuration for HW trigger and TRIGGER command	On	Retained	On	On or Off	Standby mode
Streaming 1	MODE_SELECT[2:0]=001 SW I2C triggered; continuous streaming	On	Retained	On	On	On
Streaming 2	MODE_SELECT[2:0]=010 SW I2C triggered; auto wake up, output N frame and then sleep. Register 0x3028[7:0] sets the frame output number. Register 0x3029[7:0] and 0x302A[7:0] set sleep time counter	On	Retained		On	On
Streaming 3	MODE_SELECT[2:0]=011 SW I2C triggered; output register programmed number of frames (0x3028[7:0]), then enters s/w standby and clears MODE_SELECT register bit to 000	On	Retained	On	On	On
Streaming 4	MODE_SELECT[2:0]=100 Digital input pin (TRIGGER) trigger streaming enable	On	Retained	On	On	On
Streaming 5	MODE_SELECT[2:0]=110 Digital input pin (TRIGGER) frame trigger; output register programmed number of frames (0x3028[7:0]), then enters S/W standby	On	Retained	On	On	On
Streaming 6	MODE_SELECT[2:0]=111 Digital input pin (TRIGGER) frame trigger; auto wake up, output N frame and then sleep (cycle, until HW TRIGGER goes to low). Register 0x3028[7:0] is to set frame output number. Register 0x3029[7:0] and 0x302A[7:0] set sleep time counter	On	Retained	On	On	On

Table 6.1: Operating modes

Figure 6.1: State diagram (Software I2C trigger)

Figure 6.2: State diagram (Hardware pin trigger)

6.2 Reset

HM0360 provides two methods of reset methods: Power On Reset (POR) and software reset.

During power up, an internal POR circuit applies a system reset until the XSHUTDOWN pin reaches a monitored voltage threshold. This insures that the supply voltage is stable, and the sensor can be properly initialized.

Software reset is applied by writing register value 0 or 1 to register bit SW_RESET [0] **(0x0103[0])**. When reset is applied, the sensor will return to "Standby Mode" and reset all serial interface registers to its default values.

6.3 Power up sequence

Figure 6.3: Power up sequence

Parameter	Symbol		Spec.		Unit
rai ailletei	Symbol	Min.	Тур.	Max.	Ullit
AVDD to IOVDD	T1	0	-	8	S
IOVDD to DVDD	T2	0	-	8	S
DVDD to XSHDOWN (External DVDD)	T3	0	-	8	S
Power On Reset time	POR	-	-	50	μs
Power On Reset to XSLEEP	T4	200	-	ı	μs
XSLEEP to 1st 12C command	T5	10	-	-	μs

Note: (1) The minimum timing of T4 is 0 us when using external reference clock and external LDO mode.

Table 6.2: Power up sequence timing

6.4 Clock setup

Reference clock to the sensor can be provided externally through the MCLK pin or generated by the on-chip self-oscillator. The sensor will select the self-oscillator if applying low voltage level to CLK_SEL pin.

6.5 IO control options

Options for IO pins can be programmed based on the Table 6.3. Please consult Himax Imaging FAE for additional information.

Output pin	Drive strength	Polarity	Interface bit width	Sync advance or retreat	MSB / LSB	PCLKO clock gating
D[7:4]	0x310F[5:3]	-	0x310F[7:6]	-	0x3112[3] ⁽¹⁾	-
D[3:1]	0x310F[2:0]	-	00=8-bit 01=4-bit	-	0=MSB	-
D[0]	0x310E[6:4]	-	10=1-bit	-	1=LSB	-
HVLD	0x310E[3:1]	-	-	0x3096[7:0]~ 0x3099[7:0]		-
FVLD	0x310E[3:1]	-	-	0x3094[7:0] 0x3095[7:0]	~ (O)	-
PCLKO	0x3110[2:0]	0x3112[2] 0: Falling edge 1: Rising edge	-	-		0x1014[3] 0: Non-gated 1: Gated clk
INT STROBE	0x3111[2:0]	-	-	-	-	-

Note: (1) 1-bit / 4-bit data mode only.

Table 6.3: IO control options

The status for output pins can be control by register described in Table 6.4.

Register 0x310E[0]	Register 0x3110[7]	Register 0x30A8[0]	Register 0x30A5	Streaming	Standby/VSYNC blanking
1	0	1	0x01	Driving	Hi-Z
0	1	1	0x01	Driving	Driving
-	-	0 (0x00	Hi-Z	Hi-Z

Table 6.4: Output pin status

Figure 6.5: Gated serial data clock option

6.6 Data format control

Output data bit	Mode of operation	0x310F[6] 4bit_enable	0x310F[7] 1bit_enable	0x1014[3] gated_enable	0x309E[1:0] gate by frame/line	0x3112[3] msb_enable
8	Non-gated	0	0	0	0	0
8	Gated by frame	0	0	1	1	0
	Non-gated; LSB	1	0	0	0	0
4	Non-gated; MSB	1	0	0	0	1
4	Gated by frame; LSB	1	0	1	1	0
	Gated by line; MSB	1	0	1	2	1
	Non-gated; LSB	0	1	0	0	0
1	Non-gated; MSB	0	1	0	0	1
'	Gated by frame; LSB	0	1	1	1	0
	Gated by line; MSB	0	1	1(9)	2	1

Table 6.5: Data format control setting summary

Figure 6.6: Output format on 8-bit data IO interface

6.7 Multiple camera application

HM0360 supports two modes for multiple HM0360 sensors to output image in sequence.

6.7.1 Mode 1

Mode 1 is enabled by programming register **0x30A9** to 0x01. An example of block diagram and the operation scenario for mode 1 (daisy chain) are depicted in Figure 6.9 and Figure 6.10 respectively. The constraint for mode 1 is that hardware trigger should be pulled low in the duration between VSYNC1 rising edge and VSYNC2 falling edge.

- Sensor 1 streams on after applying high voltage level to hardware trigger.
- Sensor 2 outputs one frame after receiving statistic ready interrupt of INT1 through FSIN2 pin.
- Sensor 1 outputs one frame after receiving statistic ready interrupt of INT2 through FSIN1 pin.

Figure 6.10: Operation scenario for mode 1

6.7.2 Mode 2

HM0360 supports a digital function to adjust the latency between hardware trigger and 1st VSYNC rising edge. This function is enabled by programming register **0x30A9** to 0x02. The latency is controlled by register 0x30AA and register 0x30AB with programmable resolution of 1 row. This function can also be used for multiple HM0360 sensors to output images sequentially based on a common master clock input. An example of block diagram and the operation scenario for mode 2 are depicted in Figure 6.11 and Figure 6.12 respectively

- Frame length A= Frame length B = Frame height 1+ Frame height 2+ T_C+T_D
 - T_A= maximum integration time + 32 rows
 - Min.Tc and Tp: 8 rows
- Adjust T_B to output VSYNC2 frame height during the VSYNC1 blanking area.
 - T_B= T_A +Frame height 1+T_D

Figure 6.11: Block diagram for mode 2

Sensor 1 Trigger on

Figure 6.12: Operation scenario for mode 2

7. MIPI serial data interface

The HM0360 supports 1-lane MIPI CSI2 interface (forward link in High Speed and Low Power mode) following MIPI Alliance D-PHY specification v1.20 and CSI-2 standard v1.00.

Figure 7.1: MIPI interface lane

7.1 Frame format

The format of the frame follows Figure 7.2. The Line Start (LS) and Line End (LE) marker are tunable.

FE: Frame End

Figure 7.2: Frame format

7.2 MIPI clock mode

The HM0360 supports continuous and gated clock mode as shown in Figure 7.3.

8. Serial Interface Description

The 2-Wire serial interface provides read/write access to the sensor registers

- 2-Wire serial interface consists of SDA (Bidirectional serial data) and SCL (Serial clock) pins.
- HM0360 uses 16-bit register address and 8-bit register data.
- The sensor uses double-buffered registers to ensure that register changes that affect sensor operation takes place at the beginning of the next valid video frame.
- Supports single and burst read / write up to 1MHz
- The host generates SCL clock signal to the sensor and uses the signal to synchronize all data transfer.

8.1 I2C slave address ID

- Slave address is configured by I2C_SEL0 and I2C_SEL1 pin following the Table
- The address of the sensor can be changed by register 0x3401[6:0] when register **0x3400[0]** set to 1.

	2/1 \ 2/2	
I2C_SEL1 pin	I2C_SEL0 pin	Address
Pull Down	Pull Down	0x24 (7-bit)
Pull Down	Pull High	0x25 (7-bit)
Pull High	Pull Down	0x34 (7-bit)
Pull High	Pull High	0x35 (7-bit)

Table 8.1: Device address configuration

8.2 Start / Stop conditions

The Start and Stop conditions on the serial bus is issued by the Host.

SDA Transition	SCL	Condition
High to Low	High	Start
Low to High	High	Stop

Table 8.2: Serial interface Start / Stop transition

Figure 8.1: 2-Wire serial interface Start / Stop condition

8.3 Data valid

One SCL pulse is generated for each data bit transferred. The host should ensure that the SDA signal must be stable when SCL in High. The SDA signal can transition when SCL is Low.

8.4 Data format

Data is transferred one byte at a time. The most significant bit should always be transferred first. Each byte is followed by an Acknowledge (ACK) or a No-Acknowledge bit (No ACK).

8.5 Acknowledge / No-Acknowledge

Each 8-bit is followed by an Acknowledge (ACK) or No-Acknowledge (No ACK) bit.

- Acknowledge: The Host will release the SDA line. The sensor will drive the SDA line low.
- No-Acknowledge: The Host will release the SDA line. The sensor will not drive the SDA pin (Pulled high). The No ACK bit is used to terminate a read sequence.

8.6 Write sequence

The write sequence is initiated by the Host with Start (S) condition, followed by 8-bit device slave ID (write ID)

- If the slave ID is recognized by the sensor, the ACK bit will be sent to the Host.
- Once the Host receives an ACK from the sensor, it can begin to transmit the register address (high byte first, then low byte), then the register data. After each byte, the sensor will issue an ACK or No ACK signal.
- The write operation is completed when the Host asserts a stop condition

Figure 8.2: 2-Wire serial interface 16-bit address write

8.7 Read sequence

The read sequence is initiated by Host with Start (S) condition, followed by the 8-bit device slave ID (write ID).

- If the slave ID is recognized by the sensor, the ACK bit will be sent to the Host.
- Once the Host receives an ACK from the sensor, it can begin to transmit the register address (high byte first, then low byte), then the register data. After each byte, the sensor will issue an ACK or No ACK bit.
- The write operation is completed when the Host asserts a Stop condition.
- The Host must issue another Start condition, followed by the 8-bit device slave ID (Read ID).
- If the register ID is recognized by the sensor, the ACK bit will be sent to the Host.
- The sensor will respond with the Register Data Out.
- The Host will issue an ACK, and then asserts the Stop condition.

Figure 8.3: 2-Wire serial interface 16-bit address read

9. Sensor Core Control

9.1 Frame retiming

Serial registers that are synchronized to sensor timing utilize double-buffer register to ensure that changes take effect at the start of the frame boundary. In the Register Table section of this document, the registers that require retiming, such as gain and integration (exposure), are indicated by the designator **CMU** (Command Update).

Changes to retimed registers take effect at the boundary of either the first (N+1) or second subsequent frame (N+2). Register 0x3032[0] = 1 selects N+1 update.

Figure 9.1: (N+2) command update (CMU) timing

9.2 Analog gain control

Analog gain follows the equation 2^N where N is set by ANALOG_ GAIN **0x0205[6:4]**. The valid programmable values for the analog gain register are defined in Table 9.1.

Code (Hex)	Gain (x)	Gain (dB)
0 x 00		0
0 x 10		6
0 x 20	(2)4	12
0 x 30	8	18
0 x 40	16 ()	24

Table 9.1: Global analog gain settings

9.3 Exposure control

The HM0360 supports coarse integration control with a programmable resolution of 1 row. The exposure time of the sensor is calculated using the following equation:

- A. Integration time (seconds) = coarse integration x line length pck/(vt pix clk (MHz) x 10^6)
- B. Coarse_integration_time ≤ (frame_length_lines 4)

9.3.1 50Hz / 60Hz flicker avoidance

To avoid flicker, the sensor exposure time should be set in intervals of 1/100 seconds or 1/120 seconds for 50Hz or 60Hz flicker avoidance, respectively.

- A. Integration Step Size (60Hz Avoidance) = vt_pix_clk (MHz) x 1 x 106 / line_length_pck / 120
- B. Integration Step Size (50Hz Avoidance) = vt_pix_clk (MHz) x 1 x 106/line_length_pck / 100

9.4 Frame rate control

The frame rate of the sensor is calculated based on the Video Timing Clock and uses the following equations:

- A. 65535 ≥ line_length_pck ≥ min_line_length_pck
- B. 65535 ≥ frame_length_lines ≥ min_frame_length_lines
- C. frame rate = $vt_pix_clk(MHz) \times 1 \times 10^6/(frame_length_lines \times line_length_pck)$

10. Register Table

10.1 Sensor ID registers [0x0000 - 0x0007]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x0000	[7:0]	MODEL_ID_H	RO	16-bit sensor part number	-	0x03
0x0001	[7:0]	MODEL_ID_L	RO	(HM0360)	-	0x60
0x0002	[7:0]	SILICON_REV	RO	Silicon Revision Number	-	-
0x0005	[7:0]	FRAME_COUNT_H	RO	16-bit Frame counter	-	0xFF
0x0006	[7:0]	FRAME_COUNT_L	RO		-	0xFF
0x0007	[1:0]	PIXEL_ORDER	RO	[1:0] Color Sensor Pixel Order 0: GR 1: RG 2: BG 3: GB	~6	0x02

10.2 Sensor mode control registers [0x0100 - 0x0104]

Address	Byte	Register name	Туре	Description	CMU	Default (Hex)
0x0100	[2:0]	MODE_SELECT	RW	[2:0]: Sensor mode selection SW I2C trigger streaming: 000: Sleep1 001: Continuous streaming 010: Automatic wake up sleep cycles 011: Snapshot with N frames output HW pin trigger streaming: 100: continuous Streaming 110: Snapshot with N frames output 111: Automatic wake up sleep cycles		0x00
0x0101	[1:0]	IMAGE_ORIENTATION	RW	Image Orientation [1]: Vertical flip enable [0]: Horizontal mirror enable	Y	0x00
0x0102	[0]	EMBEDDED_LINE_EN	RW	[0]: Embedded line enable	-	0x00
0x0103	[0]	SW_RESET	WO	[0]: Software reset	-	0xFF
0x0104	[0]	COMMAND_UPDATE	WO	[0]: Command update	-	0x00

10.3 Sensor exposure gain control registers [0x0202 - 0x020F]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x0202	[7:0]	INTEGRATION_H	RW	Coarse integration time in lines	Υ	0x00
0x0203	[7:0]	INTEGRATION_L	RW	(16-bit UINT)	Υ	0x08
0x0205	[6:4]	ANALOG_GAIN	RW	Analog Global Gain code (3-bit UINT)	Y	0x00
0x020E	[1:0]	DIGITAL_GAIN_H	RW	Digital Global Gain code	Υ	0x01
0x020F	[7:2]	DIGITAL_GAIN_L	RW	(8-bit UINT)	Y	0x00

10.4 Clock control registers [0x0300 - 0x0302]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x0300	[7:0]	PLL1CFG	RW	[7]: Reserved [6]: PLL PRE DIVIDER [3] [5:4]: CLK_I2C divider 00: /2 01: /4 10: /6 11: /8 [3:2]: PCLKO divider 00: /1 01: /1 10: /2 11: /4 [1:0]: CLK_TB divider 00: /1 01: /2 10: /4 11: /8	Y	0x04
0x0301	[7:0]	PLL2CFG	RW	[7:6]: Reserved [5:4]: mipi_cll = pll output 00: /2 01: /4 10: /8 11: /16 [3]: Reserved [2:0]: Reserved		0x0A
0x0302	[7:0]	PLL3CFG	RW	[7:5]: PLL PRE DIVIDER [2:0] [4:0]: Divider for 24MHz to 1MHz	-	0x78

10.5 Frame timing control registers [0x0340 - 0x0343]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x0340	[7:0]	FRAME_LENGTH_LIN ES_H	RW	frame_length_lines (16-bit UINT)	Y	0x02
0x0341	[7:0]	FRAME_LENGTH_LIN	RW		Y	0x14
0x0342	[7:0]	LINE_LENGTH_PCK_	RW	line_length_pck (16-bit UINT)	Y	0x03
0x0343	[7:0]	LINE_LENGTH_PCK_	RW		Y	0x00

10.6 Monochrome programming registers [0x0370 - 0x0372]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x0370	[0]	MONO_MODE	RW	[0]: Mono Mode Indicator	-	0x00
0x0371	[0]	MONO_MODE_ISP	RW	[0]: Mono Mode for ISP block	-	0x01
0x0372	[0]	MONO_MODE_SEL	RW	[0]: Select Mono_mode indicator from OTP	-	0x01

10.7 Sub-sampling / Binning control registers [0x0380 - 0x0382]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x0380	[1:0]	H_SUB	RW	[1:0]: Horizontal Operation 00: Full frame 01: Sub2 10: Sub4	1	0x00
0x0381	[1:0]	V_SUB	RW	[1:0]: Vertical Operation 00: Full frame 01: Sub2 10: Sub4	-	0x00
0x0382	[1:0]	BINNING_MODE	RW	Binning Operation [1]: Horizontal Binning [0]: Vertical Binning	-	0x00

10.8 Test pattern control registers [0x0601 - 0x0609]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x0601	[6:4]	TEST_PATTERN_MO DE	RW	[6:4]: Mode selection 0: Color Bar	-	0x00
		DL		1: FADE To Grey Color Bar		
				2: Walking 1's	1	
				3: Solid Pattern	\sim	
	[0]			4: PN9 [0]: Test pattern enable		
0x0602	[2:0]	TEST_DATA_BLUE_H	RW	TEST DATA BLUE H) 	0x00
0x0603	[7:0]	TEST DATA BLUE L	RW	TEST DATA BLUE L	5 -	0x00
0x0604	[2:0]	TEST_DATA_GB_H	RW	TEST_DATA_GB_H	-	0x00
0x0605	[7:0]	TEST_DATA_GB_L	RW	TEST_DATA_GB_L	-	0x00
0x0606	[2:0]	TEST_DATA_GR_H	RW	TEST_DATA_GR_H	-	0x00
0x0607	[7:0]	TEST_DATA_GR_L	RW	TEST_DATA_GR_L	-	0x00
0x0608	[2:0]	TEST_DATA_RED_H	RW	TEST_DATA_RED_H	-	0x00
0x0609	[7:0]	TEST_DATA_RED_L	RW	TEST_DATA_RED_L	-	0x00

10.9 Black level control registers [0x1000 - 0x1009]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x1000	[0]	RESERVED	RW	RESERVED. Set to 1	•	0x01
0x1003	[7:0]	RESERVED	RW	RESERVED. Set to the same	-	0x20
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		level as BLC target		
0x1004	[7:0]	BLC_TGT	RW	Black level target 0-255	1	0x20
0x1007	[0]	RESERVED	RW	RESERVED. Set to 1	1	0x01
0x1008	[7:0]	RESERVED	RW	RESERVED. Set to the same	-	0x20
				level as BLC target		
0x1009	[7:0]	BLC2_TGT	RW	BLC2 target. Set to the same	-	0x20
				level as BLC target		

10.10 Monochrome programming registers [0x100A]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x100A	[1:0]	MONO_CTRL	RW	Mono control [1]: MONO_mode [0]: RESERVED, Set to 1	-	0x00

10.11 VSYNC / HSYNC / pixel shift registers [0x1014]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x1014	[5:0]	OPFM_CTRL	RW	Output format control [5]: 2-pixel mode option [4]: Parallel 8bits, 2-pixel mode [3]: PCLKO_gating_enable 0: PCLKO free-running 1: PCLKO gated by PCLKO_enable signal from timing control [2]: RESERVED [1]: HSYNC_shift_enable [0]: VSYNC_shift_enable		0x0F

10.12 Tone mapping registers [0x1030 - 0x103F]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x1030	[7:0]	CMPRS_01	RW	Compression_01	-	0x10
0x1031	[7:0]	CMPRS_02	RW	Compression_02	-	0x19
0x1032	[7:0]	CMPRS_03	RW	Compression_03	-	0x28
0x1033	[7:0]	CMPRS_04	RW	Compression_04	ı	0x35
0x1034	[7:0]	CMPRS_05	RW	Compression_05	•	0x40
0x1035	[7:0]	CMPRS_06	≥ RW	Compression_06	-	0x4A
0x1036	[7:0]	CMPRS_07	RW	Compression_07	-	0x54
0x1037	[7:0]	CMPRS_08	RW	Compression_08	-	0x5D
0x1038	[7:0]	CMPRS_09	RW	Compression_09	-	0x66
0x1039	[7:0]	CMPRS_10	RW	Compression_10	-	0x76
0x103A	[7:0]	CMPRS_11	RW	Compression_11	-	0x85
0x103B	[7:0]	CMPRS_12	RW	Compression_12	-	0x94
0x103C	[7:0]	CMPRS_13	RW	Compression_13	-	0xA1
0x103D	[7:0]	CMPRS_14	RW	Compression_14	-	0xBB
0x103E	[7:0]	CMPRS_15	RW	Compression_15	-	0xD3
0x103F	[7:0]	CMPRS_16	RW	Compression_16	-	0xEA

10.13 Automatic exposure programming registers [0x2000 - 0x2072]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x2000	[7:0]	AE_CTRL	RW	Auto Exposure control [7]: ALC_INT enable [6]: FR_ctrl_enable [5]: RESERVED [4]: AE_update_enable [3]: RESERVED [2]: RESERVED [1]: RESERVED [0]: AE enable	-	0x1F
0x2001	[4:0]	AE_CTRL1	RW	AE control 1 [4]: AEtarget_less_enable [3]: AEtarget_great_enable [2]: Emax_remap_enable [1]: AENC_INT enable [0]: STAT_INT enable		0x00
0x2002	[1:0]	CNT_ORG_H	RW	AE ROI x start location [9:8]	-	0x00
0x2003	[7:0]		RW	AE ROI x start location [7:0]	-	0x02
0x2004	[0]	CNT_ORG_V	RW	AE ROI y start location [8]	-	0x00
0x2005	[7:0]		RW	AE ROI y start location [7:0]	-	0x03
0x2006	[1:0]	CNT_ST_H	RW	AE ROI x cnt [9:8]	-	0x00
0x2007	[7:0]		RW	AE ROI x cnt [7:0]	× 4-	0x82
0x2008	[0]	CNT_ST_V	RW	AE ROI y cnt [8]	1	0x00
0x2009	[7:0]		RW	AE ROI y cnt [7:0]	Ü	0x62
0x200A	[3:0]	CTRL_PG_SKIPCNT	RW	AE skip count control		0x01
0x200D	[0]	BV_WIN_WEIGHT_EN	RW	AE ROI Weight enable	<i>O)</i> -	0x01
0x200E	[7:0]	WINARRAY_1	RW	BV window 5x5 enable bit [7]: win23 [6]: win22 [5]: win21 [4]: win15 [3]: win14 [2]: win13 [1]: win12 [0]: win11	· -	0xFF
0x200F	[7:0]	WINARRAY 2		BV window 5x5 enable bit [7]: win41 [6]: win35 [5]: win34 [4]: win33 [3]: win32 [2]: win31 [1]: win25 [0]: win24	-	0xFF

Address	Byte	Register name	Туре	Description	CMU	Default
				<u> </u>	CIVIO	(Hex)
0x2010	[7:0]	WINARRAY_3	RW	BV window 5x5 enable bit [7]: win54	-	0xFF
				[6]: win54		
				[5]: win52		
				[4]: win51		
				[3]: win45		
				[2]: win44		
				[1]: win43		
0::0044	[0]	MINIA DD AV. 4	DW	[0]: win42		055
0x2011	[0]	WINARRAY_4	RW	BV window 5x5 enable bit [0]: win55	-	0xFF
0x2012	[6:0]	WINWEIGHT_1_12	RW	Window weight	-	0x66
				000: 0%	^ ^	
				001: 12.5%		
				010: 25.0%	$\mathcal{L}(\mathcal{O})$	
				011: 50.0%, 100: 75.0%,		
				100: 75:0%,		
				110: 100%		
				[6:4]: WinWeight_1_2		
				[2:0]: WinWeight_1_1		
0x2013	[6:0]	WINWEIGHT_1_34	RW	[6:4]: WinWeight_1_4	-	0x66
				[2:0]: WinWeight_1_3		
0x2014	[2:0]	WINWEIGHT_1_5	RW	[2:0]: WinWeight_1_5	4-	0x06
0x2015	[6:0]	WINWEIGHT_2_12	RW	[6:4]: WinWeight_2_2 [2:0]: WinWeight_2_1	21	0x66
0x2016	[6:0]	WINWEIGHT_2_34	RW	[6:4]: WinWeight_2_4	2	0x66
0,2010	[0.0]	WIIWEIOI11_2_0+	1000	[2:0]: WinWeight_2_3		0,000
0x2017	[2:0]	WINWEIGHT_2_5	RW	[2:0]: WinWeight_2_5	-	0x06
0x2018	[6:0]	WINWEIGHT_3_12	RW	[6:4]: WinWeight_3_2	-	0x66
0x2019	[0.0]	WINWEIGHT_3_34	RW	[2:0]: WinWeight_3_1	_	0,,00
0x2019	[6:0]	WINWEIGH1_3_34	KVV	[6:4]: WinWeight_3_4 [2:0]: WinWeight_3_3	-	0x66
0x201A	[2:0]	WINWEIGHT_3_5	RW	[2:0]: WinWeight_3_5	-	0x06
0x201B	[6:0]	WINWEIGHT_4_12	RW	[6:4]: WinWeight_4_2	-	0x66
0.0040	10.01	VAUNDAUELOUIT 4 04	DVA	[2:0]: WinWeight_4_1		0.00
0x201C	[6:0]	WINWEIGHT_4_34	RW	[6:4]: WinWeight_4_4 [2:0]: WinWeight_4_3	-	0x66
0x201D	[2:0]	WINWEIGHT_4_5	RW	[2:0]: WinWeight_4_5	-	0x06
0x201E	[6:0]	WINWEIGHT_5_12	RW	[6:4]: WinWeight_5_2	-	0x66
0.0045	10.01	MANAGEROUT FLOA	DVA	[2:0]: WinWeight_5_1		0.00
0x201F	[6:0]	WINWEIGHT_5_34	RW	[6:4]: WinWeight_5_4 [2:0]: WinWeight_5_3	-	0x66
0x2020	[2:0]	WINWEIGHT_5_5	RW	[2:0]: WinWeight_5_5	-	0x06
0x2029	[7:0]	MAX_INTG_H	RW	AE max INTG allowance H	-	0x02
0x202A	[7:0]	MAX_INTG_L	RW	AE max INTG allowance L	-	0x10
0x202B	[7:0]	MAX_AGAIN	RW	AE max AGAIN allowance	-	0x04
0x202C	[4:0]	MAX_DGAIN_H	RW	AE max DGAIN allowance H	-	0x03
0x202D	[5:0]	MAX_DGAIN_L	RW	AE max DGAIN allowance L	-	0x3F
0x202E	[7:0]	MIN_INTG	RW	AE min INTG allowance	-	0x00
0x202F	[7:0]	MIN_AGAIN	RW	AE min AGAIN allowance	-	0x00
0x2030	[7:0]	MIN_DGAIN	RW	AE min DGAIN allowance (u2.6)	-	0x40
0x2031	[7:0]	T_DAMPING	RW	AE T damping factor (u1.7)	-	0x20
0x2032	[4:0]	N_DAMPING	RW	AE N damping factor (u0.5)	-	0x00
0x2033	[7:0]	ALC_TH	RW	AE ALC mean difference TH	-	0x05
0x2034	[7:0]	AE_TARGET	RW	AE target	-	0x50
0x2035 0x2036	[7:0]	MIN_MEAN AE_TARGETZONE	RW RW	AE min mean AE IIR Target Zone	-	0x08 0x23
0x2036 0x2037	[7:0] [7:0]	CONVERGE_IN_TH	RW	AE IIR Target Zone AE converge in threshold	-	0x23 0x08
0x2037 0x2038	[7:0]	CONVERGE_IN_TH	RW	AE converge out threshold	-	0x08 0x19
0x2039	[7:0]	RESERVED	RW	RESERVED	-	0x10
0x203A	[7:0]	RESERVED	RW	RESERVED	-	0x02

Address	Byte	Register name	Туре	Description	СМП	Default (Hex)
0x203B	[2:0]	FS_CTRL	RW	[2]: Flicker step hysteresis	-	0x0B
				enable		
				[1]: Flicker step select		
				[0]: Flicker step enable		
0x203C	[7:0]	FS_60HZ_H	RW	AE flicker step H (60Hz)	-	0x01
0x203D	[7:0]	FS_60HZ_L	RW	AE flicker step L (60Hz)	-	0x1C
0x203E	[7:0]	FS_50HZ_H	RW	AE flicker step H (50Hz)	-	0x01
0x203F	[7:0]	FS_50HZ_H	RW	AE flicker step L (50Hz)	-	0x54
0x2042	[7:0]	FR_STAGE1_H	RW	Frame rate stage 1 High byte	-	0x02
0x2043	[7:0]	FR_STAGE1_L	RW	Frame rate stage 1 Low byte	-	0x12
0x2044	[7:0]	FR_STAGE2_H	RW	Frame rate stage 2 High byte	-	0x04
0x2045	[7:0]	FR_STAGE2_L	RW	Frame rate stage 2 Low byte	-	0x24
0x2046	[7:0]	FR_STAGE3_H	RW	Frame rate stage 3 High byte	△- △	0x06
0x2047	[7:0]	FR_STAGE3_L	RW	Frame rate stage 3 Low byte	-	0x36
0x2048	[6:0]	FR_EGPTH12_H	RW	FR ctrl EGP TH 12		0x00
0x2049	[7:0]	FR_EGPTH12_M	RW	FR ctrl EGP TH 12	-	0x1F
0x204A	[7:0]	FR_EGPTH12_L	RW	FR ctrl EGP TH 12	_	0x40
0x204B	[6:0]	FR_EGPTH21_H	RW	FR ctrl EGP TH 21	-	0x00
0x204C	[7:0]	FR_EGPTH21_M	RW	FR ctrl EGP TH 21	-	0x0E
0x204D	[7:0]	FR_EGPTH21_L	RW	FR ctrl EGP TH 21	-	0x10
0x204E	[6:0]	FR_EGPTH23_H	RW	FR ctrl EGP TH 23	-	0x00
0x204F	[7:0]	FR_EGPTH23_M	RW	FR ctrl EGP TH 23	-	0x7D
0x2050	[7:0]	FR_EGPTH23_L	RW	FR ctrl EGP TH 23	Α-	0x00
0x2051	[6:0]	FR_EGPTH32_H	RW	FR ctrl EGP TH 32	- []	0x00
0x2052	[7:0]	FR_EGPTH32_M	RW	FR ctrl EGP TH 32	2 1	0x27
0x2053	[7:0]	FR_EGPTH32_L	RW	FR ctrl EGP TH 32	\bigcirc V	0x10
0x2054	[6:0]	RESERVED	RW	RESERVED	<i>J</i>	0x00
0x2055	[7:0]	RESERVED	RW	RESERVED	-	0xBB
0x2056	[7:0]	RESERVED	RW	RESERVED	-	0x80
0x2057	[6:0]	RESERVED	RW	RESERVED	-	0x00
0x2058	[7:0]	RESERVED	RW	RESERVED	-	0x0B
0x2059	[7:0]	RESERVED	RW	RESERVED	-	0xB8
0x205B	[7:0]	FRAME_CNT_TH	RW	AE ALC frame cnt	-	0x05
0x205D	[7:0]	AE_MEAN	RO	AE mean	-	0x00
0x2060	[0]	AE_CONVERGE	RO	AE converged	-	0x00
0x206F	[7:0]	RESERVED	RW	RESERVED	-	0x08
0x2070	[7:0]	AE BLI TGT	RW	AE BLI target	-	0x08
0x2071	[7:0]	AETARGET THO	RW	Threshold when AE mean >	-	0x64
		V/07 ~ (target_mean		
0x2072	[7:0]	AETARGET_TH1	RW	Threshold when AE mean <	-	0x64
	,			target_mean		

10.14 Interrupt programming registers [0x2061 - 0x2065]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x2061	[0]	PULSE_MODE	RW	0: INT level mode 1: INT pulse mode	-	0x00
0x2062	[7:0]	PULSE_TH_H	RW	INT pulse width	-	0x05
0x2063	[7:0]	PULSE_TH_L	RW	INT pulse width	-	0x80
0x2064	[7:0]	INT_INDIC	RO	INT indicator [7]: RESERVED [6]: AE converge [5]: Early VSYNC [4]: MD flicker INT [3]: MD INT [2]: AENC INT [1]: Stat INT [0]: ALC INT	<u>-</u>	0x00
0x2065	[5:0]	INT_CLEAR	RW	INT clear [5]: Early VSYNC [4]: RESERVED [3]: MD INT [2]: AENC INT [1]: Stat INT [0]: ALC INT	· ·	0x00
<						

10.15 Motion detection control registers [0x2080 - 0x20C0]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x2080	[7:0]	MD_CTRL	RW	[7]: RESERVED	-	0x01
		_		[6]: RESERVED		
				[5:4]: MD latency select		
				[3:2]: RESERVED		
				[1]: RESERVED		
0v2004	[7,0]	ROI_START_END_V	DW	[0]: Motion detect enable [7:4]: ROI_END_V		٥٧٥٥
0x2081	[7:0]	KOI_STAKT_END_V	RW	[7.4]. ROI_END_V [3:0]: ROI_START_V	-	0xF0
0x2082	[7:0]	ROI_START_END_H	RW	[7:4]: ROI_END_H	_	0xF0
0,2002	[1.0]	1101_01/1111_2110_11	1000	[3:0]: ROI_START_H		OXI O
0x2083	[6:0]	MD_TH_MIN	RW	Threshold min value	<u> </u>	0x01
0x2084	[5:0]	MD_TH_STR_L	RW	Threshold strength		0x10
0x2085	[5:0]	MD_TH_STR_H	RW	Threshold strength	SOF	0x10
0x2086	[7:0]	MD_TH_COEF_0	RW	Motion detect threshold	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x01
		115 = 11 00== 1	5111	coefficient 0	^	
0x2087	[7:0]	MD_TH_COEF_1	RW	Motion detect threshold	-	0x06
0,,2000	[7.0]	MD TH COFF 2	DW	coefficient 1		000
0x2088	[7:0]	MD_TH_COEF_2	RW	Motion detect threshold coefficient 2	-	0x0C
0x2089	[7:0]	MD_TH_COEF_3	RW	Motion detect threshold		0x12
0,2000	[1.0]	MB_111_00E1_0	1000	coefficient 3	\searrow	0.712
0x208A	[7:0]	MD_TH_COEF_4	RW	Motion detect threshold	(1	0x1B
	,			coefficient 4	21	
0x208B	[7:0]	MD_TH_COEF_5	RW	Motion detect threshold	0 7	0x27
				coefficient 5		
0x208C	[5:0]	RESERVED	RW	RESERVED	-	0x10
0x208D	[7:0]	RESERVED	RW	RESERVED	-	0x03
0x208E	[7:0]	RESERVED	RW	RESERVED	-	0x09
0x208F	[7:0]	RESERVED	RW	RESERVED	-	0x0F
0x2090	[7:0]	RESERVED	RW RW	RESERVED	-	0x17
0x2091 0x2092	[7:0] [7:0]	RESERVED RESERVED	RW	RESERVED RESERVED	-	0x1F 0x2C
0x2092	[5:0]	MD_TG_COEF_1	RW	md_tg_coef_1		0x28
0x2094	[5:0]	MD_TG_COEF_2	RW	md_tg_coef_2	-	0x10
0x2095	[5:0]	MD_TG_COEF_3	RW	md_tg_coef_3	-	0x16
0x2096	[5:0]	MD_TG_COEF_4	RW	md_tg_coef_4	-	0x20
0x2097	[5:0]	MD_TG_COEF_5	RW	md_tg_coef_5	-	0x2D
0x2098	[5:0]	MD_TG_COEF_6	RW	md_tg_coef_6	-	0x3F
0x2099	[6:0]	MD_LIGHT_COEF	RW	md_light_coef	-	0x00
0x209A	[7:0]	MD_IIR_PARAMETER	RW	IIR Filter	-	0x81
0x209B	[7:0]	MD_BLOCK_NUM_TH	RW	MD_block_number threshold	-	0x01
0x209C	[4:0]	MD_LATENCY	RW	MD_latency_frame	-	0x01
0x209D	[7:0]	MD_LATENCY_TH	RW	[7:4]: md_latency_s_threshold	-	0x11
0.2005	[0.0]	MD CTDI 4	DW	[3:0]: md_latency_m_threshold		0,,00
0x209E	[2:0]	MD_CTRL1	RW	MD_interrupt_control [2]: RESERVED	-	0x06
				[1]: Motion interrupt enable		
				[0]: Motion interrupt select		
				0: Original flag		
				1: Latency flag		<u> </u>
0x20A1	[7:0]	MD_ROI_OUT_0	RO	md_roi_map_out[7:0]	-	0x00
0x20A2	[7:0]	MD_ROI_OUT_1	RO	md_roi_map_out[15:8]	-	0x00
0x20A3	[7:0]	MD_ROI_OUT_2	RO	md_roi_map_out[23:16]	-	0x00
0x20A4	[7:0]	MD_ROI_OUT_3	RO	md_roi_map_out[31:24]	-	0x00
0x20A5	[7:0]	MD_ROI_OUT_4	RO	md_roi_map_out[39:32]	-	0x00
0x20A6	[7:0]	MD_ROI_OUT_6	RO	md_roi_map_out[47:40]	-	0x00
0x20A7	[7:0]	MD_ROI_OUT_6	RO	md_roi_map_out[55:48]	-	0x00
0x20A8	[7:0]	MD_ROI_OUT_8	RO	md_roi_map_out[63:56]	-	0x00
0x20A9 0x20AA	[7:0] [7:0]	MD_ROI_OUT_8 MD_ROI_OUT_9	RO RO	md_roi_map_out[71:64] md_roi_map_out[79:72]	-	0x00 0x00
0x20AA 0x20AB	[7:0]	MD_ROI_OUT_10	RO	md_roi_map_out[87:80]	-	0x00
UNZUAD	[≀.∪]	ו ו יייו ויייו ויייו ויייו	NΟ	πα_τοι_παρ_υμί[ο <i>τ</i> .ου]	_	UXUU

Address	Byte	Register name	Туре	Description	СМП	Default (Hex)
0x20AC	[7:0]	MD_ROI_OUT_11	RO	md_roi_map_out[95:88]	-	0x00
0x20AD	[7:0]	MD_ROI_OUT_12	RO	md_roi_map_out[103:96]	-	0x00
0x20AE	[7:0]	MD_ROI_OUT_13	RO	md_roi_map_out[111:104]	-	0x00
0x20AF	[7:0]	MD_ROI_OUT_14	RO	md_roi_map_out[119:112]	-	0x00
0x20B0	[7:0]	MD_ROI_OUT_15	RO	md_roi_map_out[127:120]	-	0x00
0x20B1	[7:0]	MD_ROI_OUT_16	RO	md_roi_map_out[135:128]	-	0x00
0x20B2	[7:0]	MD_ROI_OUT_17	RO	md_roi_map_out[143:136]	-	0x00
0x20B3	[7:0]	MD_ROI_OUT_18	RO	md_roi_map_out[151:144]	-	0x00
0x20B4	[7:0]	MD_ROI_OUT_19	RO	md_roi_map_out[159:152]	-	0x00
0x20B5	[7:0]	MD_ROI_OUT_20	RO	md_roi_map_out[167:160]	-	0x00
0x20B6	[7:0]	MD_ROI_OUT_21	RO	md_roi_map_out[175:168]	-	0x00
0x20B7	[7:0]	MD_ROI_OUT_22	RO	md_roi_map_out[183:176]	-	0x00
0x20B8	[7:0]	MD_ROI_OUT_23	RO	md_roi_map_out[191:184]		0x00
0x20B9	[7:0]	MD_ROI_OUT_24	RO	md_roi_map_out[199:192]		0x00
0x20BA	[7:0]	MD_ROI_OUT_25	RO	md_roi_map_out[207:200]	W(A)	0x00
0x20BB	[7:0]	MD_ROI_OUT_26	RO	md_roi_map_out[215:208]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x00
0x20BC	[7:0]	MD_ROI_OUT_27	RO	md_roi_map_out[223:216]	-	0x00
0x20BD	[7:0]	MD_ROI_OUT_28	RO	md_roi_map_out[231:224]	-	0x00
0x20BE	[7:0]	MD_ROI_OUT_29	RO	md_roi_map_out[239:232]	-	0x00
0x20BF	[7:0]	MD_ROI_OUT_30	RO	md_roi_map_out[247:240]	-	0x00
0x20C0	[7:0]	MD_ROI_OUT_31	RO	md_roi_map_out[255:248]	-	0x00
					>	
			0)			

10.16 OTP programming registers [0x2500 - 0x25FF]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x2500	[0]	PAGE_NUMBER	RW	[0]: OTP Page Number	-	0x00
0x2501	[5:0]	PAGE_OFFSET	RW	[5:0]: OTP Page Read/Write Start Offset	-	0x00
0x2502	[6:0]	OTP_LENGTH	RW	[6:0]: OTP Read/Write Length	-	0x40
0x2503	[1:0]	OTP_COMMAND	RW	[1]: OTP Read procedure	-	0x00
				trigger start		
				[0]: OTP Write procedure		
0.0504	r. 01	OTD OTATILO		trigger start		2.00
0x2504	[1:0]	OTP_STATUS	RO	[1]: OTP Write Processing	-	0x00
				Indicator. [0]: OTP Read Processing	^ ^	
				Indicator.	2/0	
		OTP_ PDSTB _control		[1]: OTP PDSTB pin manual		0x00
0x250A	[1]	1	RW	control enable		5,100
0.0544	[0]	OTD DDCTD control	DW	[3]: OTP PDSTB pin manual	_	0x00
0x2511	[3]	OTP_ PDSTB _control	RW	control		
0x25C0	[7:0]	OTP_USER_BYTE0	RW	OTP data space	-	0x00
0x25C1	[7:0]	OTP_USER_BYTE1	RW	OTP data space	-	0x00
0x25C2	[7:0]	OTP_USER_BYTE2	RW	OTP data space	-	0x00
0x25C3	[7:0]	OTP_USER_BYTE3	RW	OTP data space	<u> </u>	0x00
0x25C4 0x25C5	[7:0]	OTP_USER_BYTE4 OTP_USER_BYTE5	RW RW	OTP data space	<u></u>	0x00 0x00
0x25C6	[7:0] [7:0]	OTP_USER_BYTE6	RW	OTP data space OTP data space		0x00
0x25C7	[7:0]	OTP_USER_BYTE7	RW	OTP data space		0x00
0x25C8	[7:0]	OTP_USER_BYTE8	RW	OTP data space	(a) 4.	0x00
0x25C9	[7:0]	OTP_USER_BYTE9	RW	OTP data space	٠ .	0x00
0x25CA	[7:0]	OTP_USER_BYTE10	RW	OTP data space		0x00
0x25CB	[7:0]	OTP_USER_BYTE11	RW 🕖	OTP data space	-	0x00
0x25CC	[7:0]	OTP_USER_BYTE12	RW	OTP data space	-	0x00
0x25CD	[7:0]	OTP_USER_BYTE13	RW	OTP data space	-	0x00
0x25CE	[7:0]	OTP_USER_BYTE14	RW	OTP data space	-	0x00
0x25CF	[7:0]	OTP_USER_BYTE15	RW	OTP data space	-	0x00
0x25D0	[7:0]	OTP_USER_BYTE16	RW	OTP data space	-	0x00
0x25D1 0x25D2	[7:0] [7:0]	OTP_USER_BYTE17 OTP_USER_BYTE18	RW RW	OTP data space OTP data space	-	0x00 0x00
0x25D2	[7:0]	OTP_USER_BYTE19	RW	OTP data space	_	0x00
0x25D4	[7:0]	OTP_USER_BYTE20	RW	OTP data space	_	0x00
0x25D5	[7:0]	OTP USER BYTE21	RW	OTP data space	-	0x00
0x25D6	[7:0]	OTP_USER_BYTE22	RW	OTP data space	-	0x00
0x25D7	[7:0]	OTP_USER_BYTE23	RW	OTP data space	-	0x00
0x25D8	[7:0]	OTP_USER_BYTE24	RW	OTP data space	-	0x00
0x25D9	[7:0]	OTP_USER_BYTE25	RW	OTP data space	-	0x00
0x25DA	[7:0]	OTP_USER_BYTE26	RW	OTP data space	-	0x00
0x25DB	[7:0]	OTP_USER_BYTE27	RW	OTP data space	-	0x00
0x25DC 0x25DD	[7:0] [7:0]	OTP_USER_BYTE28 OTP_USER_BYTE29	RW RW	OTP data space OTP data space	-	0x00 0x00
0x25DE	[7:0]	OTP_USER_BYTE30	RW	OTP data space	-	0x00
0x25DE	[7:0]	OTP_USER_BYTE31	RW	OTP data space	-	0x00
0x25E0	[7:0]	OTP_USER_BYTE32	RW	OTP data space	-	0x00
0x25E1	[7:0]	OTP_USER_BYTE33	RW	OTP data space	-	0x00
0x25E2	[7:0]	OTP_USER_BYTE34	RW	OTP data space	-	0x00
0x25E3	[7:0]	OTP_USER_BYTE35	RW	OTP data space	-	0x00
0x25E4	[7:0]	OTP_USER_BYTE36	RW	OTP data space	-	0x00
0x25E5	[7:0]	OTP_USER_BYTE37	RW	OTP data space	-	0x00
0x25E6	[7:0]	OTP_USER_BYTE38	RW	OTP data space	-	0x00
0x25E7	[7:0]	OTP_USER_BYTE39	RW	OTP data space	-	0x00
0x25E8 0x25E9	[7:0] [7:0]	OTP_USER_BYTE40 OTP_USER_BYTE41	RW RW	OTP data space OTP data space	-	0x00 0x00
0x25E9	[7:0]	OTP_USER_BYTE42	RW	OTP data space	_	0x00
0x25EB	[7:0]	OTP_USER_BYTE43	RW	OTP data space	-	0x00
0x25EC	[7:0]	OTP_USER_BYTE44	RW	OTP data space	_	0x00

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x25ED	[7:0]	OTP_USER_BYTE45	RW	OTP data space	-	0x00
0x25EE	[7:0]	OTP_USER_BYTE46	RW	OTP data space	-	0x00
0x25EF	[7:0]	OTP_USER_BYTE47	RW	OTP data space	-	0x00
0x25F0	[7:0]	OTP_USER_BYTE48	RW	OTP data space	-	0x00
0x25F1	[7:0]	OTP_USER_BYTE49	RW	OTP data space	-	0x00
0x25F2	[7:0]	OTP_USER_BYTE50	RW	OTP data space	-	0x00
0x25F3	[7:0]	OTP_USER_BYTE51	RW	OTP data space	-	0x00
0x25F4	[7:0]	OTP_USER_BYTE52	RW	OTP data space	-	0x00
0x25F5	[7:0]	OTP_USER_BYTE53	RW	OTP data space	-	0x00
0x25F6	[7:0]	OTP_USER_BYTE54	RW	OTP data space	-	0x00
0x25F7	[7:0]	OTP_USER_BYTE55	RW	OTP data space	-	0x00
0x25F8	[7:0]	OTP_USER_BYTE56	RW	OTP data space	-	0x00
0x25F9	[7:0]	OTP_USER_BYTE57	RW	OTP data space	۸. ،	0x00
0x25FA	[7:0]	OTP_USER_BYTE58	RW	OTP data space	7/0	0x00
0x25FB	[7:0]	OTP_USER_BYTE59	RW	OTP data space		0x00
0x25FC	[7:0]	OTP_USER_BYTE60	RW	OTP data space	MO.	0x00
0x25FD	[7:0]	OTP_USER_BYTE61	RW	OTP data space	· ·	0x00
0x25FE	[7:0]	OTP_USER_BYTE62	RW	OTP data space	-	0x00
0x25FF	[7:0]	OTP_USER_BYTE63	RW	OTP data space	_	0x00

10.17 MIPI programming registers [0x2800 - 0x2822]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x2800	[0]	MIPI_EN	RW	[0]: MIPI enable	(A)	0x05
0x2821	[7:0]	LANE_CFG	RW	[7]: Clock lane on [6:5]: Clock lane option 00: Clock always on 01: Clock on while sending packet 10: Clock on during frame 11: Clock on during line [4]: Use LS/LE [3:0]: RESERVED	3	0xDE
0x2822	[0]	EMB_DATA_CFG	RW	[0]: Embedded data CFG 0: Treat embedded line as pixel data 1: Treat embedded line MIPI protocol	-	0x00

10.18 SYNC function control registers [0x3010 - 0x301C]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x3010	[1]	EXP_SYNC_CFG	RW	[1]: Read Field Sync enable	-	0x00
0x3013	[0]	ERR_FLAG_CFG	RW	[0]: Error Flag self-clear enable	-	0x01
0x3019	[7:0]	OFFSET_RDSYNC_H	RW	[7]: Sign bit [6:0]: Adjust the delay between FVLD and FSIN input signal.	-	0x00
0x301A	[7:0]	OFFSET_RDSYNC_L	RW	[7:0]: Adjust the delay between FVLD and FSIN input signal.	-	0x00
0x301B	[7:0]	RDSYNC_DEC_TH_H	RW	Threshold for Out-of-Sync in Read Synchronization mode	-	0x20
0x301C	[7:0]	RDSYNC_DEC_T_L	RW	Threshold for Out-of-Sync in Read Synchronization mode	<u> </u>	0x80

10.19 Context switch control registers [0x3024 - 0x3025]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x3024	[3:0]	PMU_CFG_3	RW	CXT_SEL [3]: CXT disable [2]: AUTO CXT enable [1]: PAD_SEL enable 0: SW, I2C 1: HW, CTX_SEL pin [0]: SW (I2C) triggered 0: Context A 1: Context B		0x02
0x3025	[7:0]	PMU_CFG_4	RW	CXT_SEQ_FCNT [7:4]: Context B frame counter	-	0x12
				[3:0]: Context A frame counter		

10.20 Operation mode registers [0x3026 - 0x302A]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x3026	[3:0]	PMU_CFG_5	RW	Premeter_CFG	-	0x0F
				[3]: Premeter mode at METER		
		~ ((S)		pin		
			(0)	[2]: Premeter mode at light		
				change		
			7)	[1]: Premeter enable at every		
				wakeup		
<	\times			[0]: Premeter enabled at power		
				up		
0x3027	[7:4]	PMU_CFG_6	RW	[7:4]: Premeter time limit	-	0x21
				Higher value delays output		
				frame but increases accuracy		
				of Premeter at wake up		
	[0]			[0]: Enable time limit on		
				Premeter		
0x3028	[7:0]	PMU_CFG_7	RW	Output frame count	-	0x01
0x3029	[7:0]	PMU_CFG_8	RW	Sleep count H	-	0x00
0x302A	[7:0]	PMU_CFG_9	RW	Sleep count L	-	0x10

10.21 ROI and sensor control registers [0x3030 - 0x307F]

Address	Byte	Register name	Туре	Description	CMU	Default (Hex)
0x3030	[0]	WIN_MODE	RW	[0]: Pixel window	-	0x00
				0: 656 x 496 resolution		
				1: 640 x 480 resolution		
0x3032	[0]	N_PLUS_MODE_EN	RW	[0]: N+1 CMU update	-	0x01
0x3034	[0]	RESERVED	RW	RESERVED	-	0x00
0x3035	[0]	RESERVED	RW	RESERVED	-	0x00
0x3060	[0]	ROI_CFG	RW	[0]: ROI enable	-	0x00
0x3061	[7:0]	ROI_WIN_NUMBER	RW	[7:4]: Vertical window number	-	0xFA
				[3:0]: Horizontal window		
				number		
0x3062	[1:0]	ROI_WIN_ONE_H	RW	1st row of vertical window		0xFF
0x3063	[7:0]	ROI_WIN_ONE_L	RW	1st row of vertical window		0xFF
0x3064	[1:0]	ROI_WIN_TWO_H	RW	2 nd row of vertical window	~ (Y	0xFF
0x3065	[7:0]	ROI_WIN_TWO_L	RW	2 nd row of vertical window	-	0xFF
0x3066	[1:0]	ROI_WIN_THIRD_H	RW	3 rd row of vertical window	-	0xFF
0x3067	[7:0]	ROI_WIN_THIRD_L	RW	3 rd row of vertical window	-	0xFF
0x3068	[1:0]	ROI_WIN_FOUR_H	RW	4 th row of vertical window	-	0xFF
0x3069	[7:0]	ROI_WIN_FOUR_L	RW	4 th row of vertical window	-	0xFF
0x306A	[1:0]	ROI_WIN_FIVE_H	RW	5 th row of vertical window	-	0xFF
0x306B	[7:0]	ROI_WIN_FIVE_L	RW	5 th row of vertical window	_	0xFF
0x306C	[1:0]	ROI_WIN_SIX_H	RW	6 th row of vertical window	× 4-	0xFF
0x306D	[7:0]	ROI_WIN_SIX_L	RW	6th row of vertical window	_//	0xFF
0x306E	[1:0]	ROI_WIN_SEVEN_H	RW	7 th row of vertical window	21	0xFF
0x306F	[7:0]	ROI_WIN_SEVEN_L	RW	7 th row of vertical window		0xFF
0x3070	[1:0]	ROI_WIN_EIGHT_H	RW	8 th row of vertical window	<i>O)</i> -	0xFF
0x3071	[7:0]	ROI_WIN_EIGHT_L	RW	8 th row of vertical window	-	0xFF
0x3072	[1:0]	ROI_WIN_NINE_H	RW	9 th row of vertical window	-	0xFF
0x3073	[7:0]	ROI_WIN_NINE_L	RW (9th row of vertical window	-	0xFF
0x3074	[1:0]	ROI_WIN_TEN_H	RW	10th row of vertical window	-	0xFF
0x3075	[7:0]	ROI_WIN_TEN_L	RW	10th row of vertical window	-	0xFF
0x3076	[1:0]	ROI_WIN_ELEVEN_H	RW	11 th row of vertical window	-	0xFF
0x3077	[7:0]	ROI_WIN_ELEVEN_L	RW	11th row of vertical window	-	0xFF
0x3078	[1:0]	ROI_WIN_TWELVE_H	RW	12th row of vertical window	-	0xFF
0x3079	[7:0]	ROI_WIN_TWELVE	RW	12th row of vertical window	-	0xFF
		_L		70		
0x307A	[1:0]	ROI_WIN_THIRTEEN	RW	13 th row of vertical window	-	0xFF
		_H (\$/(\),\text{7} ((]]			
0x307B	[7:0]	ROI_WIN_THIRTEEN	RW	13 th row of vertical window	-	0xFF
		_L/(\> /(\))				
0x307C	[1:0]	ROI_WIN_FOURTEE	RW	14th row of vertical window	-	0xFF
		N_H				
0x307D	[7:0]	ROI_WIN_FOURTEE	RW	14 th row of vertical window	-	0xFF
		N_L		45		 _ _ _ _ _
0x307E	[1:0]	ROI_WIN_FIFTEEN_	RW	15 th row of vertical window	-	0xFF
	Y	H	B	4.5th		
0x307F	[7:0]	ROI_WIN_FIFTEEN_L	RW	15 th row of vertical window	-	0xFF

10.22 Strobe control registers [0x3080 - 0x3089]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x3080	[7]	STROBE_CFG	RW	[7]: RESERVED	-	0x00
	[4:0]			[4]: Multiple Strobe Enable		
				0: always output strobe in frame		
				base 1: output multiple strobe by		
				frame counter value		
				[3]: Programmable Endpoint		
				enable		
				[2]: Static mode		
				[1]: Dynamic mode		
				[0]: Strobe function enable	\wedge	
0x3081	[0]	STROBE_SEL	RW	[0]: strobe selection		0x00
				0: Align to start of reset field	~ (O)	
0.0000	[7.0]	OTDODE EDONT II	DW	1: Align to end of reset field		0.00
0x3082	[7:0]	STROBE_FRONT_H	RW	Strobe Front Porch (clk base)	-	0x00
0x3083 0x3084	[7:0] [7:0]	STROBE_FRONT_L STROBE_END_H	RW RW	Strobe Front Porch (clk base) Strobe End Porch (clk base)	-	0x20 0x00
0x3085	[7:0]	STROBE_END_H	RW	Strobe End Porch (clk base)	-	0x00 0x20
0x3086	[7:0]	STROBE_LINE_H	RW	Strobe Line H (row base)	-	0x20
0x3087	[7:0]	STROBE_LINE_L	RW	Strobe Line L (row base)	-	0x20
0x3088	[7:0]	STROBE_FRAME_H	RW	Multiple Strobe Frame H	· .	0x00
0x3089	[7:0]	STROBE_FRAME_H	RW	Multiple Strobe Frame L	()	0x04

10.23 IO and clock control registers [0x3094 - 0x3128]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x3094	[7:0]	VSYNC_FRONT	RW	Early VSYNC Front porch register	-	0x00
0x3095	[7:0]	VSYNC_END	RW	Early VSYNC End porch register	-	0x00
0x3096	[7:0]	HSYNC_FRONT_H	RW	Early HSYNC Front porch register	-	0x00
0x3097	[7:0]	HSYNC_FRONT_L	RW	Early HSYNC Front porch register	-	0x00
0x3098	[7:0]	HSYNC_ END_H	RW	Early HSYNC End porch register	-	0x00
0x3099	[7:0]	HSYNC_ END_L	RW	Early HSYNC End porch register		0x00
0x309A	[7:0]	READ_PU_FRONT	RW	Read_PU Front porch register		0x01
0x309B	[7:0]	READ_PU_End	RW	Read_PU End porch register	-	0x08
0x309C	[0]	EARLY_INT_EN	RW	[0]: Early interrupt enable		0x00
0x309E	[1:0]	PCLKO_GATED_EN	RW	[1]: Gated by line [0]: Gated by frame	-	0x01
0x309F	[7:0]	PCLKO_FRAME_FRO NT	RW	PCLKO Frame-based front porch register (row adjustment)	-	0x02
0x30A0	[7:0]	PCLKO_FRAME_END	RW	PCLKO Frame-based end porch register (row adjustment)	> -	0x02
0x30A1	[7:0]	PCLKO_LINE_FRONT _ H	RW	PCLKO Line-based front porch register (clock adjustment)	2	0x00
0x30A2	[7:0]	PCLKO_LINE_FRONT _L	RW	PCLKO Line-based front porch register (clock adjustment)	5)7/	0x00
0x30A3	[7:0]	PCLKO_LINE_END_ H	RW	PCLKO Line-based end porch register (clock adjustment)	5 -	0x00
0x30A4	[7:0]	PCLKO_LINE_END_L	RW	PCLKO Line-based end porch register (clock adjustment)	-	0x00
0x30A5	[2:0]	OUTPUT_EN	RW	[2]: PCLKO continuous mode [1]: Trigger on/off mode [0]: VSYNC mode	-	0x01
0x30A8	[2:0]	FRAME_OUTPUT_EN	RW	[2]: Mask out enable for AE non-converged frame [1]: Mask out enable for MIPI output [0]: Mask out enable for parallel output	-	0x01
0x30A9	[1:0]	MULTI_CAMERA_CO NFIG	RW	[1]: MODE 2 [0]: MODE 1	-	0x00
0x30AA	[7:0]	MULTI_CAMERA_TU NE_H	RW	MULTI CAMERA MODE 2 tuning register	-	0x02
0x30AB	[7:0]	MULTI_CAMERA_TU NE_L	RW	MULTI CAMERA MODE 2 tuning register	-	0x34
0x310E	[6:0]	ANA_REGISTER_03	RW	[6:4]: d0_slew_d [3:1]: vld_slew_d [0]: enable_highz_d	-	0x01
0x310F	[7:0]	ANA_REGISTER_04	RW	[7]: srl_enable_1b_d [6]: srl_enable_4b_d [5:3]: d7_slew_d [2:0]: d3_slew_d	-	0x00
0x3110	[7:6] [2:0]	ANA_REGISTER_05	RW	[7]: drv0_enable_d [6]: enable_res_in_pull0_d [2:0]: pclko_slew_d	-	0x44
0x3111	[2:0]	ANA_REGISTER_06	RW	[2:0]: s_d	-	0x00
0x3112	[3:0]	ANA_REGISTER_07	RW	[3]: msb_first_d [2]: PCLKO_polarity [1]: RESERVED [0]: RESERVED	-	0x00
0x3119	[4:0]	User Space Reg Control Byte	RW	[4:1]: RESERVED [0]: otp_pump_en	-	0x1E
0x3128	[7:0]	PLL_POST_DIV_D	RW	[7:0]: PLL post divider	-	0x00

10.24 I2C slave registers [0x3400 - 0x3401]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x3400	[0]	I2C_ID_SEL	RW	[0]: I2C ID Selection 0: Vendor defined 1: User defined	-	0x00
0x3401	[6:0]	I2C_ID_REG	RW	[6:0]: User defined I2C ID		0x30

10.25 Context switch A registers [0x3500 - 0x3559]

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x3500	[7:0]	PLL1CFG	RW	[7]: RESERVED [6]: PLL PRE DIVIDER [3] [5:4]: CLK_I2C divider 00: /2 01: /4 10: /6 11: /8 [3:2]: PCLKO divider 00: /1 01: /1 10: /2 11: /4 [1:0]: CLK_TB divider 00: /1 01: /2 10: /4 11: /8		0x04
0x3501	[7:0]	PLL2CFG	RW	[7:6]: Reserved [5:4]: mipi_ell = pll output 00: /2 01: /4 10: /8 11: /16 [3]: Reserved [2:0]: Reserved	-	0x0A
0x3502	[7:0]	PLL3CFG	RW	[7:5]: PLL PRE DIVIDER [2:0] [4:0]: Divider for 24MHz to 1MHz	-	0x78
0x3503	[7:0]	FRAME_LENGTH_LIN	RW	Frame_length_lines (16-bit UINT)	-	0x02
0x3504	[7:0]	FRAME_LENGTH_LINES_L	RW	,	-	0x14
0x3505	[7:0]	LINE_LENGTH_PCK_ H	RW	Line_length_pck (16-bit UINT)	-	0x03
0x3506	[7:0]	LINE_LENGTH_PCK_ L	RW	,	-	0x00
0x3507	[1:0]	H_SUB	RW	[1:0]: Horizontal Operation 00: Full frame 01: Sub2 10: Sub4	-	0x00
0x3508	[1:0]	V_SUB	RW	[1:0]: Vertical Operation 00: Full frame 01: Sub2 10: Sub4	-	0x00
0x3509	[1:0]	BIN_MODE	RW	Binning Operation [1]: Horizontal Binning [0]: Vertical binning	-	0x00
0x350A	[7:0]	RESERVED	RW	RESERVED	-	0xFF
0x350B	[0]	MONO_MODE_ISP	RW	[0]: Mono Mode for ISP block	-	0x01
0x350C	[0]	N_PLUS_MODE_EN	RW	[0]: N+1 CMU update	-	0x01

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

DATASHEET Preliminary V04

Address	Byte	Register name	Туре	Description	CMU	Default (Hex)
0x350D	[0]	WIN_MODE	RW	[0]: Pixel window	-	0x01
				0: 656 x 496 resolution		
0.2505	[0]	DOL OFO	DW	1: 640 x 480 resolution		0,,00
0x350E 0x350F	[0] [0]	ROI_CFG EARLY_INT_EN	RW RW	[0]: ROI enable	-	0x00 0x00
0x350F 0x3510	[2:0]	FRAME_OUTPUT_EN	RW	[0]: Early interrupt enable [2]: Mask out enable for AE	-	0x00
0.00010	[2.0]	FRAME_OUTFUT_EN	IXVV	non-converged frame	-	0.001
				[1]: Mask out enable for MIPI		
				output		
				[0]: Mask out enable for parallel		
				output		
0x3511	[0]	EMBEDDED_LINE_EN	RW	[0]: Embedded data enable	-	0x01
0x3512	[7:0]	AE_CTRL	RW	AE control	^- ^	0x1F
				[7]: ALC_INT enable	7/0	
				[6]: Frame Rate control enable	(O)	
				[5]: RESERVED [4]: AE Update enable	7	
				[3]: RESERVED		
				[2]: RESERVED		
				[1]: RESERVED		
				[0]: AE enable		
0x3513	[4:0]	AE_CTRL1	RW	AE control 1	-	0x00
				[4]: AEtarget_less_enable		
				[3]: AEtarget_great_enable	^ ^	
				[2]: Exposure remap enable	~\\	
				[1]: AENC_INT enable		
0.0511	F4 63	017 050 11	514	[0]: AE Statistics INT enable	$)$ $^{\prime\prime}$	2.22
0x3514	[1:0]	CNT_ORG_H	RW	AE ROLX start location [9:8]	-	0x00
0x3515 0x3516	[7:0] [0]	CNT_ORG_V	RW RW	AE ROI x start location [7:0] AE ROI y start location [8]	-	0x01 0x00
0x3510	[7:0]	CIVI_ONG_V	RW	AE ROI y start location [7:0]	-	0x00
0x3518	[1:0]	CNT_ST_H	RW	AE ROI x cnt [9:8]	-	0x00
0x3519	[7:0]		RW	AE ROI x cnt [7:0]	-	0x7F
0x351A	[0]	CNT_ST_V	RW	AE ROLy cnt [8]	-	0x00
0x351B	[7:0]		RW	AE ROI y cnt [7:0]	-	0x5F
0x351C	[3:0]	CTRL_PG_SKIPCNT	RW	AE skip count control	-	0x00
0x351D	[7:0]	MAX_INTG_H	RW	AE max INTG allowance H	-	0x02
0x351E	[7:0]	MAX_INTG_L	RW	AE max INTG allowance L	-	0x10
0x351F	[7:0]	MAX_AGAIN	RW	AE max AGAIN allowance	-	0x04
0x3520	[4:0]	MAX_DGAIN_H	RW	AE max DGAIN allowance H	-	0x03
0x3521	[5:0]	MAX_DGAIN_L	RW	AE max DGAIN allowance L	-	0x3F
0x3522 0x3523	[7:0] [7:0]	MIN_INTG T DAMPING	RW RW	AE min INTG allowance AE T damping factor (u1.7)	-	0x00 0x20
0x3523	[4:0]	N_DAMPING	RW	AE N damping factor (u1.7)	-	0x20
0x3525	[7:0]	AE_TARGETZONE	RW	AE IIR Target Zone	-	0x23
0x3526	[7:0]	CONVERGE_IN_TH	RW	AE converge in threshold	-	0x08
0x3527	[7:0]	CONVERGE_OUT_TH	RW	AE converge out threshold	-	0x19
0x3528	[7:0]	RESERVED	RW	RESERVED	-	0x10
0x3529	[7:0]	RESERVED	RW	RESERVED	-	0x02
0x352A	[7:0]	FS_60HZ_H	RW	AE flicker step H (60Hz)	-	0x01
0x352B	[7:0]	FS_60HZ_L	RW	AE flicker step L (60Hz)	-	0x1C
0x352C	[7:0]	FS_50HZ_H	RW	AE flicker step H (50Hz)	-	0x01
0x352D	[7:0]	FS_50HZ_H	RW	AE flicker step L (50Hz)	-	0x54
0x352E	[7:0]	FR_STAGE1_H	RW	Frame rate stage 1 High byte	-	0x02
0x352F	[7:0]	FR_STAGE1_L	RW	Frame rate stage 1 Low byte	-	0x12
0x3530	[7:0]	FR_STAGE2_H	RW	Frame rate stage 2 High byte	-	0x04
0x3531	[7:0]	FR_STAGE2_L	RW	Frame rate stage 2 Low byte	-	0x24
0x3532	[7:0]	FR_STAGE3_H	RW	Frame rate stage 3 High byte	-	0x06
0x3533	[7:0]	FR_STAGE3_L MD_CTRL	RW	Frame rate stage 3 Low byte [7:1]: Motion detect light	-	0x36
0x354B	[7:0]	INID_C I KL	RW	coefficient	-	0x01
				[0]: Motion detect enable		
				I()); Motion detect enable		

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

DATASHEET Preliminary V04

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x354D	[7:0]	ROI_START_END_V	RW	[7:4]: ROI_END_V [3:0]: ROI_START_V	-	0xF0
0x354E	[7:0]	ROI_START_END_H	RW	[7:4]: ROI_END_H [3:0]: ROI_START_H	-	0xF0
0x354F	[7:0]	MD_TH_STR_H	RW	Threshold strength	-	0x10
0x3550	[7:0]	MD_TH_STR_L	RW	Threshold strength	-	0x10
0x3551	[7:0]	RESERVED	RW	RESERVED	-	0x10
0x3552	[7:0]	MD_FLICK_TH_ADJ_ N	RW	Motion detect flicker threshold adjustment N	-	0x52
0x3553	[7:0]	MD_FLICK_TH_ADJ_P	RW	Motion detect flicker threshold	-	0x53
0x3554	[7:0]	MD_TH_COEF_0	RW	adjustment P Motion detect threshold coefficient 0	-	0x01
0x3555	[7:0]	MD_TH_COEF_1	RW	Motion detect threshold	\wedge	0x06
0x3555	[7.0]	MD_TH_COEF_T	KVV	coefficient 1		UXUG
0x3556	[7:0]	MD_TH_COEF_2	RW	Motion detect threshold	~(O)*	0x0C
				coefficient 2		
0x3557	[7:0]	MD_TH_COEF_3	RW	Motion detect threshold coefficient 3	7	0x12
0x3558	[7:0]	MD_TH_COEF_4	RW	Motion detect threshold coefficient 4	-	0x1B
0x3559	[7:0]	MD_TH_COEF_5	RW	Motion detect threshold	-	0x27
	7,					

10.26 Context switch B registers [0x355A - 0x35B3]

Address	Byte	Register name	Туре	Description	CMU	Default (Hex)
0x355A	[7:0]	PLL1CFG	RW	[7]: RESERVED [6]: PLL PRE DIVIDER [3] [5:4]: CLK_I2C divider 00: /2 01: /4 10: /6 11: /8 [3:2]: PCLKO divider 00: /1 01: /1 10: /2	<u>-</u>	0x04
0x355B	[7:0]	PLL2CFG	RW	11: /4 [1:0]: CLK_TB divider 00: /1 01: /2 10: /4 11: /8 [7:6]: Reserved [5:4]: mipi_cll = pll output 00: /2 01: /4 10: /8 11: /16 [3]: Reserved [2:0]: Reserved		0x0A
0x355C	[7:0]	PLL3CFG	RW	[7:5]: PLL PRE DIVIDER [2:0] [4:0]: Divider for 24MHz to 1MHz	3 -	0x78
0x355D	[7:0]	FRAME_LENGTH_LIN ES_H	RW	Frame_length_lines (16-bit UINT)	-	0x01
0x355E	[7:0]	FRAME_LENGTH_LIN ES L	RW		-	0x0A
0x355F	[7:0]	LINE_LENGTH_PCK_ H	RW	Line_length_pck (16-bit UINT)	-	0x03
0x3560	[7:0]	LINE_LENGTH_PCK_	RW		-	0x00
0x3561	[1:0]	H_SUB	RW	[1:0]: Horizontal Operation 00: Full frame 01: Sub2 10: Sub4	-	0x01
0x3562	[1:0]	V_SUB	RW	[1:0]: Vertical Operation 00: Full frame 01: Sub2 10: Sub4	-	0x01
0x3563	[1:0]	BIN_MODE	RW	Binning Operation [1]: Horizontal Binning [0]: Vertical binning	-	0x00
0x3564	[7:0]	RESERVED	RW	RESERVED	-	0x55
0x3565	[0]	MONO_MODE_ISP	RW	[0]: Mono Mode for ISP block	-	0x01
0x3566 0x3567	[0] [0]	N_PLUS_MODE_EN WIN MODE	RW RW	[0]: N+1 CMU update [0]: Pixel window	-	0x01 0x01
100001	ĮΟJ	VVIN_IVIODE	IZ VV	0: 656 x 496 resolution 1: 640 x 480 resolution	-	UXUT
0x3568	[0]	ROI_CFG	RW	[0]: ROI enable	-	0x00
0x3569 0x356A	[0] [2:0]	EARLY_INT_EN FRAME_OUTPUT_EN	RW RW	[0]: Early interrupt enable [2]: Mask out enable for AE non-converged frame [1]: Mask out enable for MIPI output [0]: Mask out enable for parallel output	-	0x00 0x01
0x356B	[0]	EMBEDDED_LINE_EN	RW	[0]: Embedded data enable	-	0x01

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

DATASHEET Preliminary V04

Address	Byte	Register name	Туре	Description	СМП	Default (Hex)
0x356C	[7:0]	AE_CTRL	RW	AE control	-	0x1F
				[7]: ALC_INT enable		
				[6]: Frame Rate control enable		
				[5]: RESERVED		
				[4]: AE Update enable		
				[3]: RESERVED		
				[2]: RESERVED		
				[1]: RESERVED		
0x356D	[4:0]	AE_CTRL1	RW	[0]: AE enable AE control 1		0x00
0x330D	[4.0]	AL_CIRLI	IXVV	[4]: AEtarget_less_enable	-	0,000
				[3]: AEtarget_great_enable		
				[2]: Exposure remap enable		
				[1]: AENC_INT enable		
				[0]: AE Statistics INT enable		
0x356E	[1:0]	CNT_ORG_H	RW	AE ROI x start location [9:8]	~(<u>)</u>	0x00
0x356F	[7:0]		RW	AE ROI x start location [7:0]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x01
0x3570	[0]	CNT_ORG_V	RW	AE ROI y start location [8]	-	0x00
0x3571	[7:0]		RW	AE ROI y start location [7:0]	-	0x02
0x3572	[1:0]	CNT_ST_H	RW	AE ROI x cnt [9:8]	-	0x00
0x3573	[7:0]		RW	AE ROI x cnt [7:0]	-	0x3F
0x3574	[0]	CNT_ST_V	RW	AE ROI y cnt [8]	-	0x00
0x3575	[7:0]		RW	AE ROI y cnt [7:0]	-	0x2F
0x3576	[3:0]	CTRL_PG_SKIPCNT	RW	AE skip count control	\ \frac{1}{2}	0x00
0x3577	[7:0]	MAX_INTG_H	RW	AE max INTG allowance H		0x01
0x3578	[7:0]	MAX_INTG_L	RW	AE max INTG allowance L		0x08
0x3579	[7:0]	MAX_AGAIN	RW	AE max AGAIN allowance	$\mathcal{O}_{\mathcal{U}}$	0x04
0x357A	[4:0]	MAX_DGAIN_H	RW	AE max DGAIN allowance H	<i>一</i>	0x03
0x357B	[5:0]	MAX_DGAIN_L	RW	AE max DGAIN allowance L	-	0x3F
0x357C	[7:0]	MIN_INTG	RW	AE min INTG allowance	-	0x00
0x357D	[7:0]	T_DAMPING	RW	AE T damping factor (u1.7)	-	0x20
0x357E	[4:0]	N_DAMPING	RW	AE N damping factor (u0.5)	-	0x00
0x357F	[7:0]	AE_TARGETZONE	RW	AE IIR Target Zone	-	0x23
0x3580	[7:0]	CONVERGE_IN_TH	RW	AE converge in threshold	-	0x08
0x3581	[7:0]	CONVERGE_OUT_TH	RW	AE converge out threshold	-	0x19
0x3582	[7:0]	RESERVED	RW	RESERVED RESERVED	-	0x10
0x3583	[7:0]	RESERVED	RW		-	0x02
0x3584	[7:0]	FS_60HZ_H FS_60HZ_L	RW RW	AE flicker step H (60Hz)	-	0x01
0x3585 0x3586	[7:0] [7:0]	FS_50HZ_H	RW	AE flicker step L (60Hz) AE flicker step H (50Hz)	-	0x1C 0x01
0x3587	[7:0]	FS 50HZ H	RW	AE flicker step L (50Hz)	-	0x54
0x3588	[7:0]	FR_STAGE1_H	RW	Frame rate stage 1 High byte	-	0x01
0x3589	[7:0]	FR_STAGE1_L	RW	Frame rate stage 1 Low byte	-	0x0A
0x358A	[7:0]	FR_STAGE2_H	RW	Frame rate stage 2 High byte	-	0x02
0x358B	[7:0]	FR_STAGE2_L	RW	Frame rate stage 2 Low byte	-	0x14
0x358C	[7:0]	FR_STAGE3_H	RW	Frame rate stage 3 High byte	-	0x03
0x358D	[7:0]	FR_STAGE3_L	RW	Frame rate stage 3 Low byte	-	0x1E
0x35A5	[7:0]	MD_CTRL	RW	[7:1]: Motion detect light	-	0x01
				coefficient		
				[0]: Motion detect enable		
0x35A6	[7:0]	MD_BLOCK_NUM_TH	RW	MD_block_number threshold	-	0x01
0x35A7	[7:0]	ROI_START_END_V	RW	[7:4]: ROI_END_V	-	0xF0
				[3:0]: ROI_START_V		
0x35A8	[7:0]	ROI_START_END_H	RW	[7:4]: ROI_END_H	-	0xF0
				[3:0]: ROI_START_H		
0x35A9	[7:0]	MD_TH_STR_H	RW	Threshold strength	-	0x10
0x35AA	[7:0]	MD_TH_STR_L	RW	Threshold strength	-	0x10
0x35AB	[7:0]	RESERVED	RW	RESERVED	-	0x10
0x35AC	[7:0]	MD_FLICK_TH_ADJ_	RW	Motion detect flicker threshold	-	0xAC
		N		adjustment N		
0x35AD	[7:0]	MD_FLICK_TH_ADJ_	RW	Motion detect flicker threshold	-	0xAD
		P		adjustment P		

1/6" 640 x 480 • VGA 60FPS CMOS Image Sensor

DATASHEET Preliminary V04

Address	Byte	Register name	Туре	Description	СМИ	Default (Hex)
0x35AE	[7:0]	MD_TH_COEF_0	RW	Motion detect threshold coefficient 0	-	0x01
0x35AF	[7:0]	MD_TH_COEF_1	RW	Motion detect threshold coefficient 1	-	0x06
0x35B0	[7:0]	MD_TH_COEF_2	RW	Motion detect threshold coefficient 2	-	0x0C
0x35B1	[7:0]	MD_TH_COEF_3	RW	Motion detect threshold coefficient 3	-	0x12
0x35B2	[7:0]	MD_TH_COEF_4	RW	Motion detect threshold coefficient 4	-	0x1B
0x35B3	[7:0]	MD_TH_COEF_5	RW	Motion detect threshold coefficient 5	-	0x27

11. Electrical Specification

11.1 Absolute maximum ratings

Poro	meter	Symbol		Spec.		Unit
Para	meter	Symbol	Min.	Тур.	Max.	o iii
Ambient storage tempera	ature	T _{ST}	-30	-	85	۰C
Operating temperature (Junction temperature)	T _{OP}	-20	-	85	°C
Stable image temperature ⁽¹⁾ (Junction temperature)		T _{SI}	0	-	60	°C
Analog supply voltage		V_{DD-A_MAX}	-0.3	-	4.0	V
Digital supply voltage		V_{DD-D_MAX}	-0.3	-	2.0	V
IO supply voltage		$V_{\text{DD-IO_MAX}}$	-0.3	•	4.0	٧
DC input voltage		DC _{IN}	-0.3	-	V _{DD-IO} + 0.3	٧
ESD rating	Human Body Model	ESD	-	2000	-	V
ESD failing	Machine Model	ESD	-	200	-	V

Note: (1) The sensor will produce stable images within the temperature range and the operating limits of the electrical specification. The image quality is not guaranteed when operating the sensor beyond the stable image temperature specification.

Table 11.1: Absolute maximum ratings

11.2 Operating voltages

Dovometer	Cumbal		Linit		
Parameter	Symbol	Min.	Тур.	Max.	Unit
Analog supply voltage	V _{DD-A}	2.6	2.8	3.0	V
Digital supply voltage	V_{DD-D}	1.08	1.2	1.32	V
IO supply voltage	V _{DD-IO}	1.7	1.8 / 2.8	3.0	V
LDO supply voltage	V _{DD-LDOIN}	1.7	1.8 / 2.8	3.0	V

Table 11.2: Operating voltages

⁽²⁾ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

11.3 DC characteristics

The power consumptions are measured in color bar ($C_L = 5pF$).

Parameter	Symbol	Condition		Spec.		Unit
	•		Min.	Тур.	Max.	Oilit
Average Current Consun	nption – Para	allel 8b, External LDO mode				T
	I _{DD-AVDD1}	Video, VGA @ 60 FPS,	-	1394	-	μΑ
Continuous video output	I _{DD-DVDD1}	PCLKO gated,	-	4718	-	μA
	I _{DD-IOVDD1}	$V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$ $V_{DD-IO} = 1.8V$	-	1665	-	μΑ
	IDD-AVDD1	Auto wake up sleep, QQVGA@ 2 FPS,	-	29.5	O -	μΑ
S1 (Gate single frame with software standby)	I _{DD-DVDD1}	PCLKO gated, V _{DD-A} = 2.8V,V _{DD-D} = 1.2V,	ı	209.6	-	μΑ
	I _{DD-IOVDD1}	V _{DD-IO} = 1.8V, XSLEEP high	-	4.5	-	μΑ
	I _{DD-AVDD1}	Auto wake up sleep, QQVGA@ 2 FPS,		15.5	-	μΑ
S2 (Gate single frame with hardware standby)	IDD-DVDD1	PCLKO gated, V _{DD-A} = 2.8V,V _{DD-D} = 1.2V,		67.2	-	μΑ
	I _{DD-IOVDD1}	V _{DD-IO} = 1.8V, XSLEEP control by host	9-90	3.5	-	μΑ
Software Standby current	IDD-SLEEP1	$V_{DD-A} = 2.8V$, $V_{DD-D} = 1.2V$, $V_{DD-IO} = 1.8V$ XSLEEP inactive		172	-	μA
Hardware Standby current	I _{DD-SLEEP2}	$V_{DD-A} = 2.8V$, $V_{DD-D} = 1.2V$, $V_{DD-IO} = 1.8V$ XSLEEP active		11	-	μA
Average Current Consun	nption – MIP	I, External LDO mode	- / /			<u>4</u>
	I _{DD-AVDD1}	Video, VGA @ 60 FPS,	-	1466	-	μΑ
Continuous video output	I _{DD-DVDD1}	gated by line, w/o LSLE		8275	-	μA
	IDD-IOVDD1	$V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$ $V_{DD-IO} = 1.8V$	-	1	-	μA
6	ldd-avdd1	Auto wake up sleep, QQVGA@ 2 FPS,	-	31.9	-	μΑ
S1 (Gate single frame with software standby)	IDD-DVDD1	gated by line, w/o LSLE $V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$	-	228.1	-	μΑ
	I _{DD-IOVDD1}	V _{DD-IO} = 1.8V, XSLEEP high	-	2	-	μΑ
	I _{DD-AVDD1}	Auto wake up sleep, QQVGA@ 2 FPS,	-	16.6	-	μA
S2 (Gate single frame with hardware standby)	I _{DD-DVDD1}	gated by line, w/o LSLE $V_{DD-A} = 2.8V, V_{DD-D} = 1.2V,$	-	84	-	μA
	I _{DD-IOVDD1}	$V_{DD-IO} = 1.8V$, XSLEEP control by host	-	1	-	μA
Software Standby current	IDD-SLEEP1	$V_{DD-A} = 2.8V$, $V_{DD-D} = 1.2V$, $V_{DD-IO} = 1.8V$ XSLEEP inactive	-	181	-	μΑ
Hardware Standby current	IDD-SLEEP2	$V_{DD-A} = 2.8V$, $V_{DD-D} = 1.2V$, $V_{DD-IO} = 1.8V$ XSLEEP active	-	17.1	-	μΑ
Average Current Consun	nption - Har	dware shutdown				
Hardware shutdown (Parallel/MIPI)	I _{DD}	MCLK off	-	1	-	μΑ

Parameter	Cumbal	Condition		Unit		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Digital Inputs (MCLK, TR	IGGER, SCL	_)				
Input voltage low	VIL	-	GND – 0.3	-	0.3V _{DD-IO}	V
Input voltage high	ViH	-	0.7V _{DD-IO}	-	V _{DD-IO} + 0.3	٧
Digital Output	-					
Output voltage low	Vol	-	-	-	$0.2V_{DD-IO}$	V
Output voltage high	Vон	-	$0.8V_{\text{DD-IO}}$	-	-	V
Tri-state leakage current	loz	-	-	-	10	μΑ

Table 11.3: DC characteristics

11.4 Master Clock (MCLK) input

Parameter	Symbol	Condition		Spec.		Unit
Parameter	Symbol	Condition	Min.	Тур.	Max.	Ullit
Input frequency	MCLK	-	6	-	24	MHz
Input clock duty cycle	MCLK _{DUTY}	-	45	-	55	%

Table 11.4: Master Clock (MCLK) timing

11.5 MIPI timing characteristics

(Conditions: $T_A = 25^{\circ}C$, $C_L < 10pF$, $UI_{INST} = 2.84ns$)

Parameter	Cumbal		Spec.		Unit
Parameter	Symbol	Min.	Тур.	Max.	Unit
MIPI HS Transmitter Output		-	-	-	-
UI instantaneous	UI _{INST}	-	2.84	-	ns
High speed transmitter 20%-80% Rise / Fall time	T _R	150	-	-	ps
night speed transmitter 20%-60% Rise / Fall time	T _F	-	-	- - 0.3 0.15	Ulinst
Data to clock skew	Tskew	-0.15	-	0.15	Ulinst
MIPI LP Transmitter Output					
Period of the LP exclusive-OR clock	T _{LP-PER-TX}	90	-	-	ns
Low power transmitter 15%-85% Rise / Fall time	T _{RLP} , T _{FLP}	-	-	25	ns
30%-85% Rise / Fall time	T_{REOT}	-	- 5	35	ns

Table 11.5: MIPI timing characteristics

Davamatar	Cumbal	Condition		Spec.		Unit
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
MIPI HS Transmitter Output	•	•				-
HS static common-mode voltage	Vсмтх	Range of ZID is 85~120Ω	150	200	250	mV
HS differential voltage	VOD	Range of ZID is 85~120Ω	140	200	270	mV
HS output high voltage	Vohhs	Range of ZID is 85~120Ω	<u></u>		360	mV
Single ended output impedance	Zos	107 - (08)	40	50	62.5	Ω
MIPI LP Transmitter Output	•		•		-	
Single-ended output voltage low	Vosu	0, (0)	-50	-	50	mV
Single-ended output Voltage high	Vosh	N - CS	1.1	1.2	1.3	V

Table 11.6: MIPI interface characteristics

11.6 Serial bus characteristics

Donomotor	Council of	O a malitia m		Spec.		11
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Input clock frequency	F _{SCL}	-	100	-	1000	kHz
Input clock period	tscl	•	1	-	10	μs
Input clock duty cycle	-	•	40	50	60	%
Rise time of SCL/SDA	t _{RT}	-	-	-	0.12T _{SCL} ⁽¹⁾	ns
Fall time of SCL/SDA	t _{FT}	•	-	-	0.12T _{SCL} ⁽¹⁾	ns
Start setup time	t _{HD_SU}	Write	T _{MCLK} ⁽²⁾	-	-	ns
Start hold time	t _{HD_STA}	Write	3T _{MCLK} ⁽²⁾	-	-	ns
Data hold time	t _{HD_DAT}	Write	5	-	-	ns
Data setup time	t _{SU_DAT}	Write	3T _{MCLK} ⁽²⁾	-	-	ns
Stop setup time	t _{SU_STP}	Write	3T _{MCLK} ⁽²⁾	-	2/0	ns
Stop hold time	t _{HD_STP}	Write	T _{MCLK} ⁽²⁾	((₩ -	ns
Data hold time	t _{HD_DATR}	Read	3T _{MCLK} ⁽²⁾	-7.2.>	-	ns
Data setup time	tsu_datr	Read	T _{SCL} ⁽¹⁾ /2- t _{HD_DATR}	<u>√-//</u>	-	ns
SDA maximum load capacitance	Csda_load	-	-	\\\-\-	4.2	pF
SDA pull-up resistor	R _{SDA}	-	500	-	-	Ω

Note: (1) T_{SCL} = Cycle time of SCL.

(2) T_{MCLK} = Cycle time of MCLK. **Table 11.7: Serial bus interface timing**

Figure 11.1: 2-Wire serial interface timing diagram

11.7 Parallel interface timing characteristics

Conditions: TA = 25°C, CL = 5pF, FPLCKO = 24MHz

Figure 11.2: 8-bit parallel video interface timing diagram

Parameter	Symbol			Unit	
Parameter	Syllibol	Min.	Тур.	Max.	Offic
PCLKO period	T _{PLCK} O)V) - <	41.67	•	ns
PCLKO rise time	TPRT	/ -(On	5.55	•	ns
PCLKO fall time	TPFT	9-0	3.63	•	ns
PCLKO falling edge to HSYNC rising edge delay	T_{D}		7	•	ns
PCLKO falling edge to DATA transition delay	T_DD	V - /	5.4	•	ns
Data bus setup time	Tsu	- (16.2	•	ns
Data bus hold time	THD	fO	23.8	-	ns

Table 11.8: 8-bit parallel video interface timing

Conditions: TA = 25°C, CL = 5pF, FPLCKO = 48MHz

Figure 11.3: 4-bit parallel video interface timing diagram

Dozometez	Cumbal		Unit		
Parameter	Symbol	Min.	Тур.	Max.	Unit
PCLKO period	T _{PLCKO}	-	20.83	-	ns
PCLKO rise time	T_{PRT}	-	3.51	-	ns
PCLKO fall time	T _{PFT}	-	3.56	-	ns
PCLKO falling edge to HSYNC rising edge delay	T _D	-	4.08	-	ns
PCLKO falling edge to DATA transition delay	T_DD	-	2.72	-	ns
Data bus setup time	T _{SU}	-	7.44	-	ns
Data bus hold time	T _{HD}	-	9.76	-	ns

Table 11.9: 4-bit parallel video interface timing

11.8 Serial interface timing characteristics

Conditions: $T_A = 25^{\circ}C$, $C_L = 5pF$, $F_{PLCKO} = 48MHz$

Figure 11.4: Serial video interface timing diagram

The state of the s					
Parameter	Symbol		Unit		
rai ailletei	Symbol	Min.	Тур.	Max.	Offic
PCLKO period	TPLCKO)V) - <	20.83	-	ns
PCLKO rise time	TPRT	/ -(On	8.78	-	ns
PCLKO fall time	TPFT	9-0	4.84	-	ns
PCLKO falling edge to HSYNC rising edge delay	T _D		1.2	-	ns
PCLKO falling edge to DATA transition delay	T_DD	V - /	2.6	-	ns
Data bus setup time	Tsu	- (8.8	-	ns
Data bus hold time	THD	f(0)	9.6	-	ns

Table 11.10: Serial video interface timing

12. Sensor Chief Ray Angle (CRA)

Figure 12.1: Lens CRA profile

Field (%)	Image Height (mm)	CRA (degree)
0.00	0.000	0.00
0.10	0.140	3.65
0.20	0.290	7.08
0.30	0.430	10.28
0.40	0.580	14.02
0.50	0.720	17.92
0.60	0.860	22.14
0.70	1.010	26.78
0.80	1.150	30.83
0.90	1.300	34.21
1.00	1.440	35.74

Table 12.1: CRA profile

13. Quantum Efficiency (QE)

Figure 13.1: QE (Monochrome)

Figure 13.2: QE (Bayer)