

Grelha de respostas certas

Versão A

Grupo	1		2			3			4				5	
	a)	b)	a)	b)	c)	a)	b)	c)	a)	b)	c	d)	e)	
	A	С	A	D	С	С	D	В	С	ΒF	Α	С	В	A

Versão B

Grupo	1		2		3			4				5		
	a)	b)	a)	b)	c)	a)	b)	c)	a)	b)	c	d)	e)	
	С	В	D	С	Α	D	В	D	A	АС	В	В	С	В

Resolução abreviada do 2º Teste Versão A

1. (a) •
$$f(x) \ge 0$$
, $\forall x \in \mathbb{R} \Rightarrow m \ge 0$

•
$$\int_{\mathbb{R}} f(x) dx = 1 \Leftrightarrow \int_{d}^{+\infty} m x^{-3} dx = 1 \Leftrightarrow m \left[-\frac{x^{-2}}{2} \right]_{d}^{+\infty} = 1 \Leftrightarrow \frac{m d^{-2}}{2} = 1 \Leftrightarrow m = 2d^2$$

(b) A v.a. X tem distribuição de Pareto com parâmetros (1,1). Então $P(X \le x) = 1 - x^{-1}, x \in [1, +\infty[$.

$$P(X > 3x | X > 2x) = \frac{P(X > 3x)}{P(X > 2x)} = \frac{(3x)^{-1}}{(2x)^{-1}} = \frac{2}{3}$$

2. Seja X- tempo gasto numa visita (em horas). $X \sim N(\mu, 0.5^2)$

(a)
$$P(X > 3) = 0.1587 \Leftrightarrow P(X \le 3) = 0.8413 \Leftrightarrow P\left(\frac{X - \mu}{0.5} \le \frac{3 - \mu}{0.5}\right) = 0.8413 \Leftrightarrow$$

 $\Leftrightarrow P\left(Z \le \frac{3 - \mu}{0.5}\right) = 0.8413 \Leftrightarrow \Phi\left(\frac{3 - \mu}{0.5}\right) 0.8413 \Leftrightarrow \frac{3 - \mu}{0.5} = \Phi^{-1}\left(0.8413\right) \Leftrightarrow \frac{3 - \mu}{0.5} = 1.00 \Leftrightarrow \mu = 2.5$

(b)
$$P(1 \le X \le 3) = P\left(\frac{1-2}{0.5} \le \frac{X-2}{0.5} \le \frac{3-2}{0.5}\right) = P(-2 \le Z \le 2) = P(Z \le 2) - P(Z \le -2) = 2P(Z \le 2) - 1 = 2 \times 0.9772 - 1 = 0.9544$$

(c) X e Y são v.a.'s independentes e ambas com distribuição Normal. Então 2X-Y tem distribuição Normal com parâmetros (1, 1.25) porque:

$$E(2X - Y) = 2E(X) - E(Y) = 2 - 1 = 1$$
 $V(2X - Y) = 4V(X) + V(Y) = 5 \times 0.5^2 = 1.25$

$$P\left(2X-Y\leq a\right)=P\left(\frac{2X-Y-1}{\sqrt{1.25}}\leq\frac{a-1}{\sqrt{1.25}}\right)=P\left(Z\leq\frac{a-1}{\sqrt{1.25}}\right)$$

3. Defina-se N(t) - n° de viaturas que passam pela passadeira em t minutos. $\{N(t)\}_{t>0}$ é um P.P. de intensidade $\beta = 0.5 \text{ viaturas/minuto.}$

(a) A v.a.
$$T$$
 tem distribuição Exponencial de parâmetros $\left(0,\frac{1}{0.5}\right)$ $T \sim E\left(0,2\right)$ Pela propriedade de falta de memória, $P\left(T \leq 5 \mid T > 3\right) = 1 - P\left(T > 5 \mid T > 3\right) = 1 - P\left(T > 2\right) = 1 - e^{-2/2} = 1 - e^{-1}$

(b) Seja X-n.º de viaturas que passam nos primeiros 2 minutos. $X \equiv N(2) \sim P(2 \times 0.5) \equiv P(1)$ Seja Y-n.º de viaturas que passam nos últimos 4 minutos. $Y \equiv N(4) \sim P(4 \times 0.5) \equiv P(2)$

São v.a.'s independentes porque se referem a intervalos de tempo disjuntos.
$$P(X = 3; Y = 1) = P(X = 3) P(Y = 1) = e^{-1} \frac{1^3}{3!} \times e^{-2} \frac{2^1}{1!} = e^{-3} \frac{2}{6} = \frac{e^{-3}}{3}$$

(c) Seja W-n.º de viaturas que passam em 32 minutos. $W \equiv N(32) \sim P(32 \times 0.5) \equiv P(16)$ Por se tratar de uma distribuição de Poisson com parâmetro de valor superior a 5, o T.L.C. permite concluir que $\frac{W-16}{\sqrt{16}}=\frac{W-16}{4}\stackrel{a}{\sim} N\left(0,1\right)$

$$P(W \le 22) = P\left(\frac{W - 16}{4} \le \frac{22 - 16}{4}\right) \approx P(Z \le 1.5) = 0.9332$$

4. (a)
$$\begin{cases} E(X) = \bar{X} \\ V(X) = M_2 \end{cases} \Leftrightarrow \begin{cases} \theta - \delta = \bar{X} \\ \delta^2 = M_2 \end{cases} \Leftrightarrow \begin{cases} \theta = \bar{X} + \sqrt{M_2} \\ \delta = \sqrt{M_2} \end{cases}$$

Os estimadores dos momentos para os parâmetros θ e δ são, respectivamente, $\theta^* = \bar{X} + \sqrt{M_2}$ e $\delta^* = \sqrt{M_2}.$

(b) •
$$E(2-\bar{X}) = 2 - E(\bar{X}) = 2 - E(X) = 2 - \theta + 2 = 4 - \theta \neq \theta$$
 não centrada

•
$$E(\bar{X} + 2) = E(\bar{X}) + 2 = E(X) + 2 = \theta - 2 + 2 = \theta$$
 centrada

•
$$E\left(\frac{2}{n} - \hat{\theta}\right) = \frac{2}{n} - E\left(\hat{\theta}\right) = \frac{2}{n} - \theta + \frac{2}{n} = \frac{4}{n} - \theta \neq \theta$$
 não centrada

•
$$E(n\bar{X}) = nE(\bar{X}) = nE(X) = n(\theta - 2) \neq \theta$$
 não centrada

•
$$E\left(\hat{\theta} + \frac{2}{n}\right) = E\left(\hat{\theta}\right) + \frac{2}{n} = \theta - \frac{2}{n} + \frac{2}{n} = \theta$$
 centrada

(c)
$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta = \theta - \frac{2}{n} - \theta = -\frac{2}{n}$$

 $EQM(\hat{\theta}) = V(\hat{\theta}) + bias^2(\hat{\theta}) = \frac{4}{n^2} + \frac{4}{n^2} = \frac{8}{n^2}$

(d)
$$V\left(\tilde{\theta}\right) = V\left(\bar{X} + 3\right) = V\left(\bar{X}\right) = \frac{V(X)}{n} = \frac{9}{n}$$

(d) $V\left(\tilde{\theta}\right) = V\left(\bar{X} + 3\right) = V\left(\bar{X}\right) = \frac{V(X)}{n} = \frac{9}{n}$ Sendo os dois estimadores centrados, o mais eficiente é o que tiver menor variância. Ora, para $n \geq 2$, $n^2 > n \Rightarrow \frac{9}{n^2} < \frac{9}{n} \Rightarrow V\left(\ddot{\theta}\right) < V\left(\tilde{\theta}\right)$. $\ddot{\theta}$ é o mais eficiente.

(e) Informação amostral:
$$n = 5$$
, $\overline{x} = 6.6$, $s = 2.700925767$ e $s^2 = 7.295$

A estimativa de θ , resultante do estimador $\tilde{\theta}$ é: $\tilde{\theta}=\overline{x}+3=6.6+3=9.6$

Como S^2 é um estimador centrado para a V(X), então a estimativa centrada para V(X) é: $s^2 = 7.295$

5. Se
$$X \sim U(2,6)$$
, a sua função distribuição é

$$F\left(x\right) = \begin{cases} 0, & x < 2\\ \left(x - 2\right)/4, & 2 \le x < 6\\ 1, & x \ge 6 \end{cases}$$
 e a sua inversa é $\overleftarrow{F}\left(u\right) = 2 + 4u, \ u \in [0, 1]$

i	1	2	3	4
u_i	0.59	0.10	0.89	0.38
x_i	4.36	2.40	5.56	3.52