Redes de Computadores e Internet

transparências baseadas no livro "Computer Networking: A Top-Down Approach Featuring the Internet" James Kurose e Keith Ross

http://occawlonline.pearsoned.com/bookbind/pubbooks/kurose-ross1/

Histórico Das Redes De Comunicação

Primeiros computadores:

- máquinas complexas, grandes, caras
- ficavam em salas isoladas com ar condicionado
- operadas apenas por especialistas
- programas submetiaos em torma de jobs sequenciais

• Anos 60:

- primeiras tentativas de interação entre tarefas concorrentes
- surge técnica time-sharing, sistemas multiusuários
- usuários conectados ao computador por terminais
- terminais necessitavam técnicas de comunicação de dados com computador central => inicio das redes

Sistemas Multiusuários

Histórico Das Redes De Comunicação

Anos 70:

- surgem microprocessadores
- computadores muito mais baratos => difusão do uso

· Após década de 70:

- computadores cada vez mais velozes, tamanho menor, preço mais acessível
- aplicações interativas cada vez mais frequentes
- necessidade crescente de incremento na capacidade de cálculo e armazenamento
- vários computadores conectados podem ter desempenho melhor do que um mainframe, além de custo menor
- necessidade de desenvolver técnicas para interconexão de computadores => redes

Importância Das Redes De Comunicação

- Nas empresas modernas temos grande quantidade de computadores operando em diferente setores.
- Operação do conjunto mais eficiente se estes computadores forem interconectados:
 - possivei compartiinar recursos
 - possível trocar dados entre máquinas de forma simples e confortável para o operador
 - vantagens gerais de sistemas distribuídos e downsizing atendidas
- Redes são muito importantes para a realização da filosofia CIM (Manufatura Integrada por Comput.)

Extensão Das Redes De Comunicação

- LAN (Local Area Network) ou Rede Local Industrial: interconexão de computadores localizados em uma mesma sala ou em um mesmo prédio. Extensão típica: até aprox. 200 m.
- CAN (Campus Area Network): interconexão de computadores situados em prédios diferentes em um mesmo campus ou unidade fabril. Extensão típica: até aprox. 5 Km.
- MAN (Metropolitan Area Network): interconexão de computadores em locais diferentes da mesma cidade. Pode usar rede telefônica pública ou linha dedicada. Extensão típica: até aprox. 50 Km.
- WAN (Wide Area Network) ou Rede de Longa Distância: interconexão de computadores localizados em diferentes prédios em cidades distantes em qualquer ponto do mundo. Usa rede telefônica, antenas parabólicas, satélites, etc. Extensão >50 Km.

Topologia Das Redes De Comunicação

- *Topologia*: definição da maneira como as estações estão associadas
- Duas formas básicas: ponto-a-ponto e difusão
- Canais ponto-a-ponto: rede composta de diversas linhas de comunicação associadas a um par de estações de cada vez
 - comunicação entre estações não adjacentes feita por estações intermediárias
 - política conhecida como "comutação de pacotes"
 - topologia usada na maioria de redes WAN, MAN, CAN e algumas LAN

Topologias De Redes Ponto-a-ponto

(a) estrela; (b) anel; (c) árvore; (d) malha regular;(e) malha irregular.

Topologia Das Redes De Comunicação

- Canais de difusão: rede composta por uma única linha de comunicação compartilhada por todas as estações
 - mensagens são difundidas no canal e podem ser lidas por qualquer estação
 - destinatário identificado por um endereço codificado na mensagem
 - possível enviar mensagens para todas as estações (broadcasting) ou a um conjunto delas (multicasting) usando endereços reservados para estas finalidades
 - topologia mais comum em LAN mas também possível em WAN
 - requer mecanismos de arbitragem de acesso para evitar conflitos

Topologias De Redes De Difusão

(a) barramento; (b) satélite; (c) anel.

Serviços Necessários à Comunicação

- CASO 1: Como enviar informações entre um terminal e um computador?
 - Enviar unidades binárias (**BI**nary uni**T** = BIT) em série ou paralelo
 - Codificação dos BITs (representação para 0 e 1 e duração de cada bit)
 - Codificação dos caracteres (ex.: ASCII, EBCDIC)
 - Sincronização entre emissor e receptor
 - Tratamento de erros de transmissão
 - Controle de fluxo
 - Estabelecer regras de troca de dados (protocolo)

Serviços Necessários à Comunicação

- Múltiplos terminais
- · Surge necessidade de endereçamento

Parte I: Introdução

Visão geral:

- · o que é Internet
- · o que é um protocolo?
- · borda da rede
- · núcleo da rede
- · rede de acesso, meio físico
- desempenho: perdas, atrasos
- camadas de protocolo, modelos de serviço
- backbones, NAPs, ISPs
- histórico

O que é Internet: visão "componentes"

- milhões de dispositivos computacionais conectados: hosts, sistemas finais
 - workstations, servidores
 - telefones PDAs, torradeiras executando aplicações de rede
- · links de comunicação
 - o fibra, cobre, rádio, satélite
- roteadores: passam adiante (forward) pacotes de dados através da rede

O que é Internet: visão "componentes"

- protocolos: envio e recepção de msgs
 - o e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "rede de redes"
 - o aproximadamente hierárquica
- Padrões Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

O que é Internet: visão "de serviços"

- infraestrutura de comunicação possibilita aplicações distribuídas:
 - WWW, email, jogos, ecommerce, database, votações, compartilhamento de arquivos (MP3)
- serviços de comunicação fornecidos:
 - o sem conexão
 - o orientada a conexão

O que é protocolo?

<u>protocolos humanos:</u>

- "que horas são?"
- "Eu tenho uma questão"
- ... msgs específicas enviadas
- ... ações específicas tomadas quando msgs recebidas, ou outros eventos

protocolos de rede:

- máquinas em vez de humanos
- toda atividade de comunicação na Internet governada por protocolos

protocolos definem formatos, ordens de mensagens enviadas e recebidas entre entidades de rede, e ações tomadas

O que é protocolo?

um protocolo humano e um protocolo computacional de rede:

Q: Outro protocolo humano?

Estrutura de rede:

- borda da rede: aplicações e hosts
- · núcleo da rede:
 - o roteadores
 - v rede de redes
- redes de acesso, meios físicos: links de comunicação

A borda da rede:

sistemas finais (hosts):

- executam programas de aplicação
- o e.g., WWW, e-mail
- o situam-se na "borda da rede"

modelo cliente/servidor

- cliente host faz requisições, recebem serviços do servidor
- e.g., WWW cliente (navegador)/ servidor; e-mail cliente/servidor

modelo par-a-par:

- o interação simétrica entre hosts
- e.g.: Gnutella, KaZaA

Borda da rede: serviço orientado a conexão

Objetivo: transferência de dados entre sistemas.

- handshaking: setup (prepara para) transferência de dados
 - Alò, alò protocolo humano de telefone
 - setup "estado" em dois hosts se comunicando
- TCP Transmission Control Protocol
 - Serviço orientado a conexões da Internet

serviço TCP [RFC 793]

- confiável, transferência de dados ordenada byte-stream
 - perdas: acknowledgements (reconhecimentos) e retransmissões
- controle de fluxo:
 - emissor não pode "oprimir"o receptor
- · controle de congestão
 - emissores "reduzem a taxa de envio" qdo a rede está congestionada

Borda da rede: serviço sem conexão

Objetivo: transferência de dados entre sistemas finais

- o mesmo que o anterior!
- UDP User Datagram
 Protocol [RFC 768]: serviço
 sem conexao aa Internet
 - transferência de dados não-confiável
 - o sem controle de fluxo
 - sem controle de congestão

Aplics usando TCP:

 HTTP (WWW), FTP (transf. arq.), Telnet (login remoto), SMTP (email)

Aplics usando UDP:

 streaming media, teleconferencing, Internet telephony

O núcleo da rede

- malha de roteadores interconectados
- questão fundamental: como os dados são transferidos através da rede?
 - cnaveamento (comutação) de circuitos: circuito dedicado por chamada: rede telefônica
 - chaveamento de pacotes: dados enviados através da rede em "pedaços"

Núcleo da rede: comutação de circuitos

Recursos fim a fim reservados por chamada

- largura de banda no enlace (link), capacidade no switch
- recursos dedicados: sem compartilhamento
- desempenho garantido
- requer setup na chamada

Núcleo da rede: chaveamento de circuitos

- recursos de rede (e.g., largura de banda) dividida em "pedaços"
- pedaços alocados para chamadas
- pedaço do recurso idle

 (disponível) se não usado
 pelo próprio chamador
 (sem compartilhamento)

- dividindo largura de banda:
 - divisão de freqüências
 - o divisão de tempos

Chaveamento de circuitos: FDMA e TDMA

Núcleo da rede: chaveamento de pacotes

cada stream de dados fim-a-fim dividido em *pacotes*

- pacotes de usuários A, B
 compartilham recursos de redes
- cada pacote usa toda largura de banda do link
- recursos usados quando necessário

Divisão de largura de banda Alocação dedicada Reserva de recursos

competição por recurso:

- demanda por recurso agregada pode exceder a capacidade disponível
- congestionamento: fila de pacotes, espera pelo uso do link
- armazena e repassa: pacotes se movem um hop vez
 - transmitidos sobre link
 - espera a vez no próximo link

Núcleo da rede: chaveamento de pacotes

Chaveamento de pacotes versus chaveamento de circuito: analogia com restaurante

Núcleo da rede: chaveamento de pacotes

Chaveamento de pacotes: comportamento armazena e repassa

- quebra mensagens em pequenos pedaços: "pacotes"
- Armazena-e-repassa: switch aguarda até pedaço chegar completamente, então repassa/roteia

Chaveamento de pacotes vs de circuitos

Chaveamento de pacotes permite mais usuários usarem a rede!

- 1 Mbit link
- cada usuário:
 - o 100Kbps qdo "ativo"
 - o ativo 10% do tempo
- chaveamento de circuito:
 - 10 usuários
- chaveamento de pacotes:
 - com 35 usuários, probabilidade > 10 ativos menos que .0004

Chaveamento de pacotes vs de circuitos

Será chaveamento de pacotes o "grande vencedor da disputa?"

- Excelente para dados em rajadas
 - o compartilhamento de recursos
 - o sem setup na chamada
- Qdo congestionamento excessivo: atrasos e perdas de pacotes
 - o protocolos necessários para transferência de dados confiável, controle de congestão
- Q: Como fornecer comportamento "de circuito"?
 - aplics de áudio/vídeo necessitam de garantias de largura de banda
 - o esse ainda é um problema não resolvido!

Redes chaveamento de pacotes: roteamento

- Objetivo: mover pacotes entre roteadores da origem para destino
 - o iremos estudar algoritmos de roteamento
- rede datagrama:
 - o endereço de destino determina próximo hop
 - o rota pode mudar durante sessão
 - o analogia: dirigir perguntando direção
- rede de circuito virtual:
 - cada pacote carrega um tag (virtual circuit ID), que determina o próximo hop
 - caminho fixo determinado em tempo de setup de chamada, permanece fixo durante chamada
 - o roteadores mantêm estado por chamada

Redes de acesso e meios físicos

Q: Como conectar sistemas finais aos roteadores de borda?

- · redes de acesso residencial
- redes de acesso institucional (escola, companhia)
- · redes de acesso móveis

Tenha em mente:

- bandwidth (bits por segundo) da rede de acesso?
- compartilhados ou dedicados?

Acesso residencial: acesso ponto a ponto

- Discagem via modem
 - até 56Kbps acesso direto ao roteador (conceitualmente)
- ISDN: integrated services digital network: 128Kbps conectados ao roteador
- ADSL: asymmetric digital subscriber line
 - o até 1 Mbps casa-roteador
 - o até 8 Mbps roteador-casa
 - ADSL ainda em desenvolvimento

Acesso residencial: modens a cabo

- HFC: hybrid fiber coax
 - o assimétrico: até 10Mbps downstream, 1 Mbps upstream
- rede de cabo e fibra interliga casas ao roteador ISP
 - acesso compartilhado ao roteador
 - questões: congestionamento, dimensionamento
- · disponíveis através de companhias de cabo

Acesso institucional: redes locais

local area network (LAN)
 conectam sistemas finais a
 roteador de borda

• Ethernet:

- cabo compartilhado ou dedicado conecta sistema final e roteador
- 10 Mbs, 100Mbps,
 Gigabit Ethernet

Redes de acesso sem fio

 rede de acesso sem fio e compartilhada conecta sistema final ao roteador

wireless LANs:

- espectro de rádio substitui fio
- e.g., Lucent Wavelan 11 Mbps
- wider-area wireless access
 - CDPD: acesso sem fio ao roteador ISP via rede celular

Meio físico

link físico:

 bit de dado transmitido propaga através de um link

meio guiado:

 sinais propagam em meio sólido: cobre, fibra

meio não guiado:

sinais propagam
 livremente, e.g., rádio

Par trançado (TP)

- dois fios de cobres
 - Categoria 3: fio de telefone tradicional, 10 Mbps Ethernet
 - Categoria 5 TP:100Mbps Ethernet

Meio físico: coaxial, fibra

Cabo coaxial:

- fio (condutor de sinal) dentro de fio (protetor)
 - baseband: canal único no cabo
 - broadband: múltiplos canais no cabo
- bidirecional
- uso comum em Ethernet 10Mbs

Cabo de fibra ótica:

- fibra de vidro conduzindo pulsos de luz
- · operação em alta-velocidade:
 - Ethernet 100Mbps
 - transmissão ponto-a-ponto de alta-velocidade (e.g., 5 Gps)
- baixa taxa de erros

Meio físico: rádio

- sinal conduzido no espectro eletromagnético
- · sem "fio" físico
- bidirecional
- efeitos de propagação do ambiente:
 - o reflexão
 - o obstrução por objetos
 - o interferência

Tipos de link de Rádio:

- microondas
 - o e.g. canais até 45 Mbps
- LAN (e.g., WaveLAN)
 - 2Mbps, 11Mbps
- wide-area (e.g., celular)
 - o e.g. CDPD, 10's Kbps
- satélite
 - canal até 50Mbps (ou vários canais menores)
 - atraso fim-a-fim 270 Msec

Atrasos em redes de chav. de pacotes

- pacotes experimentam atrasos no caminho fim-a-fim
- quatro fontes de atraso em cada hop
- processamento no nó:
 - o checagem de bits de erros
 - o escolha do link de saída
- enfileiramento
 - tempo de espera no link de saída para transmissão
 - depende do nivel de congestionamento do roteador

Atrasos em redes de chav. de pacotes

Atraso de transmissão:

- R=link bandwidth (bps)
- L=tam. pacote (bits)
- tempo de envio de bits no link = L/R

Atraso de propagação:

- d = tamanho do link físico
- s = veloc. propagação no meio (~2x10⁸ m/sec)
- atraso propagação = d/s

Atraso na fila (revisitado)

- R=link bandwidth (bps)
- L=tam. pacote (bits)
- a=taxa média de chegada de pacotes

intensidade de tráfego = La/R

- La/R ~ 0: pequeno atraso médio na fila
- La/R -> 1: atrasos se tornam grandes
- La/R > 1: mais "trabalho" chegando do que pode ser servido, atraso médio infinito!

"Camadas" de protocolos

Redes são complexas!

- muitas "peças":
 - o hosts
 - roteadores
 - vários tipos de links
 - aplicações
 - o protocolos
 - hardware, software

Questão:

Existe alguma esperança em organizar a estrutura de rede?

Ou pelo menos a discussão sobre redes?

Por que usar camadas?

Para lidar com sistemas complexos:

- estrutura explícita permite identificar o relacionamento entre peças do sistema complexo
 - o modelo de referência em camadas facilita discussão
- modularização facilita manutenção e atualização do sistema
 - mudança na implementação de serviços de camadas transparentes para o resto do sistema
- uso de camadas pode ser prejudicial?

Pilha de protocolos da Internet

- aplicação: suporta aplicações de rede
 - o ftp, smtp, http
- transporte: transferência de dados entre hosts
 - o tcp, udp
- rede: roteamento de datagramas da origem para destino
 - o ip, protocolos de roteamento
- enlace: transferência de dados entre elementos de rede "vizinhos"
 - o ppp, ethernet
- física: bits "no fio"

aplicação
transporte
rede
enlace
física

Camadas: comunicação lógica

Cada camada:

- distribuída
- "entidades" implementam funções de camadas em cada nó
- entidades
 executam
 ações, trocam
 mensagens com
 seus pares

Camadas: comunicação logica

E.g.: transporte

- pega dados da aplic.
- adiciona endereço, informação de confiabilidade p/ formar "datagrama"
- envia datagrama para seu par
- espera confirmação de recepção de seu par
- analogia: correio

Camadas: comunicação física

Protocolo em camadas e dados

Cada camada recebe dados da camada acima

- adiciona cabeçalho de informação para criar nova unidade de dados
- passa nova unidade de dados para camada abaixo

Aspectos Arquiteturais

· Estruturação em camadas: modelo baseado em hierarquização e descentralização

Aspectos Arquiteturais

• Estruturação em camadas: processo de comunicação

Arquitetura a Sete Camadas Do RM-OSI

Ilustração Da Comunicação No Modelo OSI

Estrutura da Internet: rede de redes

- mais ou menos hierárquica
- national/international backbone providers (NBPs)
 - e.g. Embratel, BBN/GTE,
 Sprint, AT&T, IBM, UUNet
 - interconecta cada par com outro privativamente, ou em um Network Access Point (NAP) público
- ISPs regionais
 - conecta em NBPs (ex. Telesc)
- ISP local, companhia
 - conecta em ISP regional (ex. UOL, UFSC)

Histórico da Internet

1961-1972: Primeiros princípios de chaveamento de pacotes 1980-1990: Novos protocolos, proliferação de redes

• 1983: TCP/IP

 1983: DNS (tradução nome-endereçoIP)

1985: protocolo ftp

1988: controle de congestão TCP

1990's: comercialização, o WWW

- 1994: Mosaic, depois Netscape
- final de 1990:
 comercialização do WWW

Final de 1990:

- 50 milhões computadores na Internet
- 100 milhões+ usuários
- links no backbone executando a 1 Gbps