南京航空航天大学

第1页 (共2页)

2013~2014 学年 《 Matrix Theory 》 Midterm

考试日期: 2013年11月

学号 学院 姓名 题号 1 (15) 2 (20) 3 (20) 4 (15) 5 (15) 6 (15) 7 (15) 8 (15) 总分 得分

(70分,必做题) Part I

第1题	15 分
得分	

Let S be a subspace of R4 spanned by

$$\mathbf{u}_1 = (1, 2, 2, 4)^T$$
 and $\mathbf{u}_2 = (-2, 0, -4, 0)^T$

- (1) Find an orthonormal basis for the subspace S.
- (2) Find the projection matrix P that projects vectors in \mathbb{R}^4 onto S.
- (3) Find the vector projection of $\mathbf{b} = (1,1,1,1)^T$ onto \mathbf{S} .

第2题	20分
得分	

Let σ be a linear transformation on \mathbf{P}_3 defined by

$$\sigma(p(x)) = p(x) + p'(x) \ (p'(x) 为 p(x) 的导数)$$

where P_3 is the vector space whose elements are real polynomials of degree less than 3.

- (1) Find the kernel and range of σ .
- (2) Find the matrix A representing σ with respect to the ordered basis $[1, x, x^2]$.
- (3) Is matrix A diagonalizable? Why?

第3题	20 分
得分	

Consider the inner product space C[0,1] with inner product defined by

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$$

 $< f,g> = \int_{-\pi}^{\pi} f(x)g(x)dx$. Let **S** be the subspace spanned by vectors $\sin x$ and $\cos x$.

- (1) Find $\|\sin x\|$, $\|\cos x\|$, $\|x\|$, and $(\cos x, \sin x)$.
- (2) Find the projection of h(x) = x onto the subspace S.
- (3) Find the minimal distance from the vector h(x) = x to the subspace S.

第4题	15 分
得分	

Given four points (-1,0), (0,1), (1,3) and (2,9) on the plane, find a linear function (线性函数) y = ax + b that best fits (拟合) the given data in the "least squares" sense (在最小二乘意义下).

Part II (选做题, 30 分)

第五、第六题每题 15 分,请选择其中一题解答,并在所选的题号上划圈,否则按得分最低的一题计分.

第五题 Definition: Let V_1, V_2, V_3 be subspaces of vector space V. $V_1 + V_2 + V_3$ is a direct sum if each vector $\mathbf{x} \in V_1 + V_2 + V_3$ can be uniquely represented as $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$, where $\mathbf{x}_k \in V_k$ for k = 1, 2, 3.

Show that $V_1 + V_2 + V_3$ is a direct sum if and only if

$$\dim(\mathbf{V}_1 + \mathbf{V}_2 + \mathbf{V}_3) = \dim(\mathbf{V}_1) + \dim(\mathbf{V}_2) + \dim(\mathbf{V}_3)$$

(注: 不可利用书中 36 页上的 Theorem 1.7.3)

第六题 Show that if $A \in C^{n \times n}$, then the column space of AA^H is the same as the column space of A. That is, $R(AA^H) = R(A)$.

第七、第八题每题 15 分,请选择其中一题解答,并在所选的题号上划圈,否则按得分最低的一题计分.

第七题 Let $A \in C^{n \times n}$. Show that if $A = QDQ^T$, where $Q \in R^{n \times n}$ is a real orthogonal matrix and $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ with $|\lambda_k| = 1$ for $k = 1, 2, \dots, n$, then A is both symmetric and unitary.

第八题 Let $A \in C^{n \times n}$, and $AA^H = A^H A$. Show that $||A\mathbf{x} - \lambda \mathbf{x}|| = ||A^H \mathbf{x} - \overline{\lambda} \mathbf{x}||$ for any $\mathbf{x} \in C^n$ and $\lambda \in C$, where the inner product on C^n is the standard inner product.