Lecture 6 – Regular Expressions and Languages COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

→: Subset Construction

Languages – Operations

• The union of languages:

$$L_1 \cup L_2$$

• The concatenation of languages:

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

• The Kleene star of a language:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \ge 0} L^n$$

Languages – Operations

• The union of languages:

$$L_1 \cup L_2$$

• The concatenation of languages:

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

• The Kleene star of a language:

$$\begin{split} L^* &= L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \geq 0} L^n \\ L_1 &= \{ \mathtt{a}^n \mid n \geq 0 \} \qquad L_2 = \{ \mathtt{b}^n \mid n \geq 0 \} \end{split}$$

Languages – Operations

• The union of languages:

$$L_1 \cup L_2$$

• The concatenation of languages:

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

• The Kleene star of a language:

$$\begin{split} L^* &= L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{n \geq 0} L^n \\ L_1 &= \{\mathtt{a}^n \mid n \geq 0\} \qquad L_2 = \{\mathtt{b}^n \mid n \geq 0\} \end{split}$$

$$L_1 \cup L_2 = \{ \mathbf{a}^n \text{ or } \mathbf{b}^n \mid n \ge 0 \}$$

$$L_1 L_2 = \{ \mathbf{a}^n \mathbf{b}^m \mid n, m \ge 0 \}$$

$$L_1^* = L_1 = \{ \mathbf{a}^n \mid n \ge 0 \}$$

Contents

1. Regular Expressions

Definition
Language of Regular Expressions
Extended Regular Expressions
Examples

Definition (Regular Expressions)

A **regular expression** over a set of symbols Σ is inductively defined as follows:

- (Basis Case) \varnothing , ϵ , and $a \in \Sigma$ are regular expressions.
- (Induction Case) If R_1 and R_2 are regular expressions, then so are $R_1 \mid R_2, R_1 \cdot R_2, R^*$, and (R).

```
\begin{array}{ccccc} R & ::= & \varnothing & & (\mathsf{Empty}) \\ & | & \epsilon & & (\mathsf{Epsilon}) \\ & | & a & & (\mathsf{Symbol}) \\ & | & R \mid R & (\mathsf{Union}) \\ & | & R \cdot R & (\mathsf{Concatenation}) \\ & | & R^* & (\mathsf{Kleene Star}) \\ & | & (R) & (\mathsf{Parentheses}) \end{array}
```

Definition of Regular Expressions

Definition (Regular Expressions)

A **regular expression** over a set of symbols Σ is inductively defined as follows:

- (Basis Case) \varnothing , ϵ , and $a \in \Sigma$ are regular expressions.
- (Induction Case) If R_1 and R_2 are regular expressions, then so are $R_1 \mid R_2, R_1 \cdot R_2, R^*$, and (R).


```
// The type definitions of symbols
type Symbol = Char
// The definition of regular expressions
trait RE
case class REEmpty() extends RE
case class REEpsilon() extends RE
case class RESymbol(symbol: Symbol) extends RE
case class REUnion(left: RE, right: RE) extends RE
case class REConcat(left: RE, right: RE) extends RE
case class REStar(re: RE) extends RE
case class REParen(re: RE) extends RE
// An example of regular expression
val re: RE = REConcat(
  REParen (
    REUnion(
      RESymbol('a'),
      REEpsilon(),
  ).
  REStar(
    RESymbol('b')
  ).
```


Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ , the **language** L(R) of R is inductively defined as follows:

$$L(\varnothing) = \varnothing \qquad L(R_1 \mid R_2) = L(R_1) \cup L(R_2)$$

 $L(\epsilon) = \{\epsilon\} \qquad L(R_1R_2) = L(R_1)L(R_2)$
 $L(a) = \{a\} \qquad L(R^*) = L(R)^*$
 $L((R)) = L(R)$

Language of Regular Expressions

Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ , the **language** L(R) of R is inductively defined as follows:

$$L((\epsilon|a)b^*) =$$

Language of Regular Expressions

Definition (Language of Regular Expressions)

For a given regular expression R on a set of symbols Σ , the **language** L(R) of R is inductively defined as follows:

$$L((\epsilon | \mathbf{a}) \mathbf{b}^*) = L((\epsilon | \mathbf{a})) \cdot L(\mathbf{b}^*)$$

$$= L(\epsilon | \mathbf{a}) \cdot L(\mathbf{b})^*$$

$$= (L(\epsilon) \cup L(\mathbf{a})) \cdot L(\mathbf{b})^*$$

$$= (\{\epsilon\} \cup \{\mathbf{a}\}) \cdot \{\mathbf{b}^n \mid n \ge 0\}$$

$$= \{\mathbf{b}^n \text{ or } \mathbf{a} \mathbf{b}^n \mid n > 0\}$$

Extended Regular Expressions

More operators:

$$R ::= \cdots$$
 $\mid R^+ \text{ (Kleene plus)}$
 $\mid R^? \text{ (Optional)}$

Actually, they are just syntactic sugar for the existing operators:

$$L(R^+) = L(RR^*) = L(R) \cdot L(R^*)$$

 $L(R^?) = L(\epsilon | R) = L(\epsilon) \cup L(R)$

For examples,

$$L(a^+)$$
 = $L(aa^*)$
= $L(a) \cdot L(a^*)$
= $\{a^n \mid n \ge 1\}$
 $L(b^?)$ = $L(\epsilon) \cup L(b)$
= $\{\epsilon, b\}$

- $L = \{\epsilon, a\}$
- $L = \{w \in \{0, 1^*\} \mid w \text{ contains at least two } 0's\}$
- $L = \{w \in \{0, 1^*\} \mid w \text{ contains exactly two } 0's\}$
- $L = \{w \in \{0, 1^*\} \mid w \text{ has three consecutive } 0's\}$
- $L = \{w \in \{a, b^*\} \mid a \text{ and } b \text{ alternate in } w\}$

- $L = \{a^nb^m \mid n \geq 3 \land m \equiv 0 \pmod{2}\}$
- $L = \{a^nb^m \mid n+m \equiv 0 \pmod{2}\}$
- $L = \{w \in \{0, 1^*\} \mid \text{ the number of 0's is divisible by 3}\}$
- $L = \{w \in \{0, 1^*\} \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is a natural number represented by w.

- $L = \{a^n b^m \mid n \geq 3 \land m \equiv 0 \pmod{2}\}$
- $L = \{a^nb^m \mid n+m \equiv 0 \pmod{2}\}$
- $L = \{w \in \{0, 1^*\} \mid \text{ the number of 0's is divisible by 3}\}$
- $L = \{w \in \{0, 1^*\} \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is a natural number represented by w.

$$(0|1(01*0)*1)*$$

• $L = \{a^n b^n \mid n \ge 0\}$

- $L = \{a^nb^m \mid n \geq 3 \land m \equiv 0 \pmod{2}\}$
- $L = \{a^nb^m \mid n+m \equiv 0 \pmod{2}\}$
- $L = \{w \in \{0, 1^*\} \mid \text{ the number of 0's is divisible by 3}\}$
- $L = \{w \in \{0, 1^*\} \mid \mathbb{N}(w) \equiv 0 \pmod{3}\}$ where $\mathbb{N}(w)$ is a natural number represented by w.

$$(0|1(01*0)*1)*$$

• $L = \{a^n b^n \mid n \ge 0\}$ – IMPOSSIBLE (# RE R. L(R) = L)

Exercise #1

- Please see
 https://github.com/ku-plrg-classroom/docs/tree/main/fa-examples.
- You don't have to submit it. This is just exercise for your practice.
- The goal is to implement the finite automata (FA) objects in the Implementation.scala file.

Summary

1. Regular Expressions

Definition
Language of Regular Expressions
Extended Regular Expressions
Examples

Next Lecture

• Equivalence of Regular Expressions and Finite Automata

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr