





# TDE 02 – Conhecendo o Ambiente Integrado de Desenvolvimento Intel Altera – Quartus Prime CDSD – Concepção de Design de Sistemas Digitais

Prof. Marcelo do C.C. Gaiotto, Eng. Comp. e Prof. Valter Klein Jr, Eng. Eletricista

| Objetivo | S  Conhecer o Ambiente Inte Desenvolver soluções utili Apresentar os resultados d                                                      | izando Lógica D                           | igital Programáv                   | rel;                        | s Prime;               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|-----------------------------|------------------------|
|          | ções necessárias<br>a atividade deverá ser realiz                                                                                      | ada individualm                           | ente e incluirá a g                | gravação de um              | vídeo como prov        |
| Desenvo  | lvimento                                                                                                                               |                                           |                                    |                             |                        |
|          | a instalação, configuração<br>r usada é <u>Quartus Prime Lit</u>                                                                       |                                           |                                    | a seguir. A versâ           | io do software qu      |
| a.       | Intel Quartus -<br>ferramenta do                                                                                                       | Parte 1 site da                           | _                                  | aixando<br>s://youtu.be/m_u | a<br>u <u>yZYJSPoY</u> |
| b.       | Intel Quartus -<br>ferramenta no                                                                                                       | Parte 2<br>Windows: <u>I</u>              | - Ir<br>https://youtu.be/d         | nstalando<br>lqG3dZLn0_4    | a                      |
| c.       | Intel Quartus - diagrama em https://youtu.be/9Hy6Bi5S                                                                                  | Parte 3<br>blocos:<br>SS90 (atualizado em |                                    | riando um                   | projeto com            |
| d.       | Intel Quartus - Parte 4 - Verificando o funcionamento do circuito — Simulação: https://youtu.be/2-VNM8dW9TQ (atualizado em 06/04/2021) |                                           |                                    |                             |                        |
| e.       | Intel Quartus -<br>a USB Blas                                                                                                          | Parte 5 <sup>1</sup> ster: https://youtu  | (OPCION.<br><u>1.be/HKnpsneji8</u> | /                           | Configurando           |

A parte 5 é para a configuração do driver de um módulo chamado USB Blaster que está disponível apenas nos laboratórios da PUCPR. Não é necessária a instalação deste em seu computador.



#### Escola Politécnica



f. Intel Quartus - Parte 6¹ (APENAS UMA DEMOSNTRAÇÃO) - Gravando e testando na placa:

https://youtu.be/cCteSRoomvQ

2. Verifique no arquivo "Lista de Números dos Estudantes CDSD (seu turno) X° sem 20XX" o seu número # e escreva aqui: 9

<u>IMPORTANTE</u>: cada estudante possui um número # individual. Se resolver a atividade utilizando um número incorreto, seu TDE receberá nota ZERO.

3. A seguir, localize a função lógica que corresponda ao seu número # na Tabela 2. Copie sua função lógica no espaço abaixo:

$$X(S3, S2, S1)$$
:  $x = (s1 \text{ and } s2) \text{ xor } s3$ 

<u>IMPORTANTE</u>: cada estudante possui uma função lógica individual. Se resolver a atividade utilizando uma diferente, seu TDE receberá nota ZERO.

4. Utilizando os métodos apresentados em aula, complete a Tabela Verdade <u>de sua função lógica</u>, preenchendo a coluna X:

Tabela 1: Tabela Verdade para a função lógica

| S3 | S2 | S1 | X(S3, S2,<br>S1) |
|----|----|----|------------------|
| 0  | 0  | 0  | 0                |
| 0  | 0  | 1  | 0                |
| 0  | 1  | 0  | 0                |
| 0  | 1  | 1  | 1                |
| 1  | 0  | 0  | 1                |
| 1  | 0  | 1  | 1                |
| 1  | 1  | 0  | 1                |
| 1  | 1  | 1  | 0                |

- 5. Implemente o circuito eletrônico (realização física) correspondente a sua função dentro do ambiente Quartus Prime.
- 6. Ainda dentro do ambiente Quartus Prime, realize a simulação comparando com a tabela verdade do item 5. Caso encontre alguma inconsistência, avalie os resultados e faça as devidas correções. A tabela verdade do item 5 precisa apresentar o mesmo resultado da simulação.

### Procedimento de entrega

\_

<sup>&</sup>lt;sup>1</sup> A parte 6 é apenas uma demonstração. Como a placa apresentada está disponível apenas nos laboratórios da PUCPR



#### Escola Politécnica



Esta atividade será entregue via vídeo do Youtube com DURAÇÃO TOTA MÁXIMA de 2 minutos.

- 1. O vídeo deve conter as seguintes partes:
  - a. Explicação da folha de orientação da atividade preenchida (esta folha mesmo);
  - b. Explicação do circuito implementado no ambiente Quartus Prime (entradas, saídas e funções usadas);
  - c. Comparação dos valores da Tabela Verdade (Tabela 1) com os obtidos na simulação no ambiente Quartus Prime;
  - d. Conclusões finais.
- 2. A qualidade do vídeo será fator de avaliação. Caso um item não esteja compreensível ou curto demais, o item será desconsiderado da correção e será atribuída nota zero ao item;
- 3. Cada parte do vídeo (letras 'a' até 'd') deverá ser indicada por um link na descrição deste, incluindo o instante exato em que está aparecendo. Para saber como incluir os links na descrição do vídeo do <u>YouTube</u>, assista: <a href="https://youtu.be/Tf8AT5DRESk">https://youtu.be/Tf8AT5DRESk</a>. O vídeo deverá apresentar 4 links com os instantes na descrição.
- 4. O vídeo deve ser postado no Youtube como 'Não listado';
- 5. Apenas o link do vídeo deverá ser postado no CANVAS, Módulo TDE, TDE1 ENTREGA. Adicionar o link do vídeo, e acionar o botão "Enviar tarefa". IMPORTANTE: não entregue nenhum arquivo (texto, vídeo, etc...), entregue apenas o link do vídeo.



Obs.: Qualquer outro procedimento realizado que não respeite estas orientações levarão ao descarte desta atividade e lançamento de nota zero.

## O que é esperado ao final deste TDE

Espera-se que os discentes adquiram a capacidade de realizar um estudo independente, demonstrando compreensão básica da criação e simulação de circuitos digitais com a ferramenta Quartus Altera.

Tabela 2: Funções lógicas atribuídas a cada estudante.

| #<br>estudante | Função                    |
|----------------|---------------------------|
| 1              | x = (s1  or  s2)  xor  S# |





#### Escola Politécnica

| 2  | x = s1 nand (S@ xor S#)     |
|----|-----------------------------|
| 3  | x = s1  or  (S@xor s3)      |
| 4  | x = s1 nand (s2 xor S#)     |
| 5  | x = (s1  nor  S@)  xor  s3  |
| 6  | x = (s1  nand  s2)  xor  s3 |
| 7  | x = s1  nor  (s2  xor  s3)  |
| 8  | x = (s1  and  S@)  xor  S#  |
| 9  | x = (s1  and  s2)  xor  s3  |
| 10 | x = (s1  nand  s2)  xor  s3 |
| 11 | x = s1 and $(s2 xor S#)$    |
| 12 | x = S! or $(S@xors3)$       |
| 13 | x = s1 and (S@ xor s3)      |
| 14 | x = (S!  or  s2)  xor  S#   |
| 15 | x = (s1  and  S@)  xor  S#  |
| 16 | x = (s1  nor  s2)  xor  S#  |
| 17 | x = (s1  nor  S@)  xor  S#  |
| 18 | x = s1  nor  (S@xor s3)     |
| 19 | x = (S!  or  s2)  xor  s3   |
| 20 | x = S! or $(s2 xor S#)$     |
| 21 | x = (s1  and  s2)  xor  S#  |
| 22 | x = (s1  nand  s2)  xor  S# |
| 23 | x = (s1  nand  S@)  xor  s3 |
| 24 | x = s1  or  (S@xor S#)      |
| 25 | x = s1 nand (S@ xor S#)     |
| 26 | x = s1  or  (s2  xor  s3)   |
| 27 | x = s1  nor  (s2  xor  s3)  |
| 28 | x = (s1  or  s2)  xor  s3   |
| 29 | x = (s1  or  S@)  xor  s3   |
| 30 | x = (s1  and  S@)  xor  s3  |
| 31 | x = s1 nand (s2 xor S#)     |
| 32 | x = (s1  and  S@)  xor  S#  |
| 33 | x = (s1  nand  s2)  xor  s3 |
| 34 | x = s1 and (S@ xor s3)      |
| 35 | x = s1  nor  (S@xor s3)     |
| 36 | x = (s1  and  s2)  xor  S#  |
| 37 | x = (s1  nand  S@)  xor  s3 |
| 38 | x = s1 nand (S@ xor S#)     |