International Institute of Information Technology, Hyderabad

(Deemed to be University)

SC1.311: Quantum Materials and Devices (Monsoon 2025)

Mid Semester Examination

Date: 25/09/2025

Duration: 1.5 hour

Section A: Multiple Choice (1 mark x 10 = 10 marks)

- 1. In a semiconductor, increasing temperature generally:
 - A) Decreases the number of carriers
 - B) Increases the number of carriers
 - C) Does not change carrier concentration
 - D) Makes it metallic
- 2. Which lattice structure has the highest packing efficiency?
 - A) Simple cubic (SC)
 - B) Body-centered cubic (BCC)
 - C) Face-centered cubic (FCC)
 - D) Hexagonal close-packed (HCP)
- 3. The bandgap of a direct bandgap semiconductor occurs when:
 - A) The conduction band minimum and valence band maximum occur at different k-values
 - B) The conduction band minimum and valence band maximum occur at the same k-value
 - C) The valence band is partially filled
 - D) The material is metallic
- 4. Which of the following is a characteristic feature of a quantum well?
 - A) Electron motion is confined in all three directions
 - B) Electron motion is confined in two directions
 - C) Electron motion is confined in one direction
 - D) Electron motion is free in all directions
- 5. In a quantum wire, the density of states (DOS) varies with energy as:
 - A) $E^{1/2}$
 - B) E_0 (constant)
 - C) $E^{-1/2}$
 - D) E^2

6	Which motorial is a wall known 2D to a legical insulator?
6.	
	a) Graphene b) Bi-Se-
	b) Bi ₂ Se ₃
	c) YBCO
	d) FeSe
7.	Spin-momentum locking in 3D TIs means:
	a) Electron spin direction is random.
	b) Electron spin is always perpendicular to momentum
	c) Spin is independent of momentum.
	d) Spin aligns with external magnetic field.
8.	What is the nature of the surface state dispersion in 3D TIs?
	a) Quadratic
	b) Linear (Dirac cone)
	c) Flat bands
	d) Parabolic
9.	Which of the following 2D materials has a zero bandgap with linear energy dispersion
	near the Dirac points?
	A) MoS ₂
	B) WS ₂
	C) Graphene
	D) Black phosphorus
10.	Which property makes transition metal dichalcogenides (TMDs) like MoS2 attractive
	for optoelectronics?
	A) High thermal conductivity
	B) Direct bandgap in monolayer form
	C) Zero effective mass
	D) Metallic behavior in all thicknesses
Section	B: Fill in the blanks (1 mark x 10 = 10 marks)
11. I	Bloch's theorem states that the wavefunction in a periodic potential can be expressed as
12. A	A material with completely filled valence band and large bandgap is classified as a
13. E	Berry phase is a geometric phase acquired over a closed in momentum
	Berry phase is a geometric phase acquired over a closed in momentum pace.

14. Superconductivity was first discovered in	(material) in 1911 by Heike
Kamerlingh Onnes.	
15. The temperature below which a material	becomes superconducting is called the
16. Superconductors exhibit	effect, which is the complete expulsion of
magnetic fields.	
17. Superconductors have	electrical resistance at temperatures below T_c
18. In conventional superconductors, the ele	ectron pairing is mediated by
19. A Josephson junction consists of two su	perconductors separated by a thin
20. High-temperature superconductors typi	cally have a critical temperature
compared to conventional superconduc	tors.

Section C: Short Answers (5 marks x 2 = 10 marks)

21. The graph below shows the band structure of a 3D topological insulator and contains five intentional errors. Identify all five errors

22. Write a short note on Higher-Order Topological Insulators (HOTI)

Section D: Long Answers (10 marks x 2 = 20 marks)

- 23. A particle of mass m is confined to a one-dimensional box of length L (from x=0 to x=L) with infinitely high walls.
 - a. Derive the time-independent Schrödinger equation for the particle inside the box.
 (3 marks)
 - b. Using the appropriate boundary conditions, solve the equation to show that the energy eigenvalues are quantized. Express the energy levels, E, n, in terms of n,ħ,m, and L. (5 marks)
 - c. For the ground state (n=1), find the probability of finding the particle in the region 0 < x < L/2. (2 marks)
- 24. Describe the various Hall effects. Explain their unique physical origins, key features, and practical applications. Provide a labeled diagram for each of these effects.