University of Missouri

MASTER'S PROJECT

A Survey on Character Tables for Representations of Finite Groups

Author: Jared Stewart

Supervisor: Dr. Calin Chindris

A project submitted in fulfilment of the requirements for the degree of Masters of Arts

in the

Department of Mathematics

November 2, 2015

UNIVERSITY OF MISSOURI

Abstract

Calin Chindris
Department of Mathematics

Masters of Arts

A Survey on Character Tables for Representations of Finite Groups

by Jared Stewart

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor...

Contents

Al	ostrac	et en	iii
Ac	knov	vledgements	v
1		cs of Representation Theory	1
	1.1	Group Actions	1
		Definition of a Representation	2
		1.2.1 Subsection 1	2
		1.2.2 Subsection 2	3
	1.3	Main Section 2	3
2	Spa	ghetti	5
	2.1	Definition of a Representation AGAIN	5
		2.1.1 Subsection 1	5
		2.1.2 Subsection 2	5
	2.2	Main Section 2	6
A	App	endix Title Here	7
Bi	bliog	raphy	9

For/Dedicated to/To my...

Chapter 1

Basics of Representation Theory

1.1 Group Actions

Definition 1.1. A *(left)* **group action** of a group G on a set X is a map $\varphi : G \times X \to X$ (written as $g \cdot a$, for all $g \in G$ and $a \in A$) that satisfies the following two axoims:

$$id_G \cdot x = x \qquad \forall x \in X \tag{1.1.1}$$

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 $\forall g, h \in G, x \in X$ (1.1.2)

Note. We could likewise define the concept of a *right* group action, where the set elements would be multiplied by group elements on the right instead of on the left. Throughout we shall use the term *group action* to mean a *left* group action.

In this section, let the group G acts on a set X. For any fixed element $g \in G$, we have an associated map $\sigma_g : X \to X$ given by $\sigma_g(x) = g \cdot x$.

Proposition 1.2. The map σ_g is a permutation of the set X.

Proof. We show that σ_g is a permutation of X by finding a two-sided inverse map, namely $\sigma_{g^{-1}}$. Observe that for any $x \in X$, we have

$$(\sigma_{g^{-1}} \circ \sigma_g)(x) = \sigma_{g^{-1}}(\sigma_g(x) \qquad \text{(by definition of function composition)}$$

$$= g^{-1} \cdot (g \cdot x) \qquad \text{(by definition of } \sigma_g \text{ and } \sigma_{g^{-1}})$$

$$= (g^{-1}g) \cdot x \qquad \text{(by axiom 1.1.1 of an action)}$$

$$= id_G \cdot x$$

$$= x \qquad \text{(by axiom 1.1.2 of an action)}.$$

Thus $\sigma_{g^{-1}} \circ \sigma_g$ is the identity map on X. We can reverse the roles of g and g^{-1} to see that $\sigma_g \circ \sigma_{g^{-1}}$ is also the identity map on X. Having a two-sided inverse, we conslude that σ_g is a permutation of X.

Proposition 1.3. The map from G to the symmetric group S_X defined by $g \mapsto \sigma_g$ is a group homomorphism.

Proof. Let $\varphi: G \to S_X$ be defined by $\varphi(g) = \sigma_g$. We have seen from Proposition 1.2 that σ_g is indeed an element of S_X . It remains to show that $\varphi(g_1g_2) = \varphi(g_1) \circ \varphi(g_2)$. For every $x \in X$

$$\begin{split} \varphi(g_1g_2)(x) &= \sigma_{g_1g_2}(x) & \text{(by definition of } \varphi) \\ &= (g_1g_2) \cdot x & \text{(by definition of } \sigma_{g_1g_2}) \\ &= g_1 \cdot (g_2 \cdot x) & \text{(by axiom 1.1.1 of an action)} \\ &= \sigma_{g_1}(\sigma g_2(x) & \text{(by definition of } \sigma_{g_1} \text{ and } \sigma g_2) \\ &= (\varphi(g_1) \circ \varphi(g_2))(x) & \text{(by definition of } \varphi). \end{split}$$

Since their values agree on every element $x \in X$, these two permutations are equal. \square

Proposition 1.4. The actions of G on the set X are in bijective correspondence with the homomorphisms from G into the symmetric group S_X .

Proof. We have seen already that any action of G on the set X gives rise to a homomorphism from G into S_X . Suppose conversely that we have a homomorphism ψ from G into S_X . We can define a map from $G \times X$ to X by $g \cdot x = \psi(g)(x)$. We verify that this map satisfies the definition of a group action of G on X:

(property 1.1.1)
$$id_G \cdot x = \psi(id_G)(x) = id_X(x) = x$$

(property 1.1.2) $(gh) \cdot x = \psi(gh)(x) = (\psi(g)\psi(h))(x) = \psi(g)(\psi(h)(x)) = g \cdot (h \cdot x)$

1.2 Definition of a Representation

Definition 1.5. A **linear representation** of a group G on a vector space V is a group homomorphism from G to GL(V), the general linear group on V.

Definition 1.6. A **linear representation** ρ of a group G on a vector space V over a field F is a group action of G on V which preserves the linear structure of V, that is,

$$\rho(g)(v_1 + v_2) = \rho(g)(v_1) + \rho(g)(v_2) \qquad \forall g \in G, v_1, v_2 \in V$$
(1.6.1)

$$\rho(g)(kv) = k \cdot \rho(g)v \qquad \forall g \in G, v \in V, k \in F \qquad (1.6.2)$$

Proposition 1.7. *The definitions of a linear representation given in* **1.5** *and* **1.6** *are equivalent.*

Proof. (\rightarrow) Suppose that we have a homomorphism $\varphi: G \to GL(V)$. We can define an action of G on V by taking:

$$q \cdot v = \varphi(q)(v) \quad \forall q \in G, v \in V.$$

We verify that indeed we have obtained group action.

```
(property 1.1.1) For any v \in V, we have: id_G \cdot v = \varphi(id_G)(v) = id_V(v) = v. (property 1.1.2) For any v \in eV and g, h in G we have: (gh) \cdot v = \varphi(gh)(v) = (\varphi(g)\varphi(h))(v) = \varphi(g)(\varphi(h)(v)) = g \cdot (h \cdot v).
```

Next, we check that this action preserves the linear structure of V.

1.6.1 For any
$$g \in G$$
, $v_1, v_2 \in V$ we have: $g \cdot (v_1 + v_2) = \varphi(g)(v_1 + v_2) = \varphi(g)(v_1) + \varphi(g)(v_2) = g \cdot v_1 + g \cdot v_2$

1.2.1 Subsection 1

Definition 1.8. Here is a new definition.

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

1.2.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

Definition 1.9. A **linear representation** ρ of a group G on a vector space V over a field K is a group action of G on V which preserves the linear structure of V. That is,

$$\rho(g)(v_1 + v_2) = \rho(g)(v_1) + \rho(g)(v_2) \quad \forall g \in G, \forall v_1, v_2 \in V$$

$$\rho(g)(kv) = k \cdot \rho(g)v \quad \forall g \in G, v \in V, k \in K$$

$$(1.9.1)$$

1.3 Main Section 2

Definition 1.10. Here is a new definition.

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

Chapter 2

Spaghetti

2.1 Definition of a Representation AGAIN

Definition 2.1. A **linear representation** of a group G on a vector space V is a group homomorphism from G to GL(V), the general linear group on V.

More explicitly, a representation is a map $\rho:G\to GL(V)$ such that

$$\rho(g_1g_2) = \rho(g_1)\rho(g_2) \quad \forall g_1, g_2 \in G.$$

Definition 2.2. A **linear representation** ρ of a group G on a vector space V over a field K is a group action of G on V which preserves the linear structure of V. That is,

1.
$$\rho(g)(v_1 + v_2) = \rho(g)(v_1) + \rho(g)(v_2) \quad \forall g \in G, v_1, v_2 \in V$$

2.
$$\rho(g)(kv) = k \cdot \rho(g)v \quad \forall g \in G, v \in V, k \in K$$

2.1.1 Subsection 1

Definition 2.3. Here is a new definition.

$$E = mc^2 (2.3.1)$$

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

2.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

Definition 2.4. A **linear representation** ρ of a group G on a vector space V over a field K is a group action of G on V which preserves the linear structure of V. That is,

$$\rho(g)(v_1 + v_2) = \rho(g)(v_1) + \rho(g)(v_2) \quad \forall g \in G, \forall v_1, v_2 \in V$$
(2.4.1)

$$\rho(g)(kv) = k \cdot \rho(g)v \quad \forall g \in G, v \in V, k \in K$$

2.2 Main Section 2

Definition 2.5. Here is a new definition.

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

Appendix A

Appendix Title Here

Write your Appendix content here. [2] [1]

Bibliography

- [1] D.S. Dummit and R.M. Foote. *Abstract Algebra*. Wiley, 2003. ISBN: 9780471433347. URL: https://books.google.com/books?id=KJDBQgAACAAJ.
- [2] Constantin Teleman. Representation Theory. 2005. URL: https://math.berkeley.edu/~teleman/math/RepThry.pdf.