Exam 4A Chem 1142 Spring 2017

a) The reaction is always spontaneous

(b) The reaction is always non-spontaneous

Name: KEY
MULTIPLE CHOICE. [3 pts ea.] Record the best response on the scantron sheet. [45 pts total.]
Assume all solutions are aqueous and at a temperature of 25 °C, unless stated otherwise.
Q1. Which version of the exam do you have? (a) 4A (b) 4B
Q2. Which law of thermodynamics states that the entropy of the universe keeps increasing? a) First law b) Second law c) Third law d) Fourth law
Q3. Which of the following substances would be expected to have the highest entropy at a given temperature? a) $H_2O(s)$ b) $Au(s)$ c) $Hg(l)$ d) $He(g)$
Q4. Which of the following chemical reactions would likely have a $\Delta S^{\circ} \approx 0$? a) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ b) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ c) $CO(g) + H_2(g) \rightarrow CH_2O(g)$ d) $H_2O(g) \rightarrow H_2O(l)$
Q5. A chemical reaction loses 25 kJ of heat to its surroundings at a temperature of 25 °C. What will the entrop change of the surrounding be? a) -1 kJ/°C b) +1000 J/°C c) -84 J/K d) +84 J/K A6 = AH - T A5
Q6. An endothermic chemical reaction has ΔS_{rxn}^{o} < 0. What can you say about the spontaneity of this reaction

- Q7. Which of the following substances will have a Gibbs free energy of formation of zero?
 - a) $H_2(l)$
 - b) CH₄(g)
 - c) C(s, graphite)
 - d) CO₂(s)
- Q8. A reaction with a large and negative value of ΔG° will have an equilibrium constant, K, whereby which statement best applies:
 - a) $K \gg 1$
 - b) $K \ll 1$
 - c) K = 1
 - d) K = 0
- Q9. At equilibrium, what can you say about the value of ΔG ?
 - a) $\Delta G = 1$
 - b) $\Delta G > 0$
 - (c) $\Delta G = 0$
 - d) $\Delta G \gg 1$
- Q10. The oxidation number of chromium in Cr₂O₇²⁻ is:
 - a) + 8
 - b) + 7
 - (c)+6
 - d) + 5
- Q11. Which of the following is **not** a redox reaction?
 - a) $2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$
 - b) $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$
 - c) $PCl_3(1) + Cl_2(g) \rightarrow PCl_5(1)$
 - (d) $KCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + KNO_3(aq)$
- Q12. Oxidation takes place at which part of a galvanic cell?
 - a) Salt bridge
 - b) Voltmeter
 - (c) Anode
 - d) Cathode
- Q13. Given the following two standard electrode potentials:

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

$$E^{o} = +0.80 \text{ V}$$

$$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$$

$$E^{\circ} = -2.37 \text{ V}$$

caums loss é (=) good @ gaining) Which of the following species would be the best oxidizing agent?

- a))Ag+(aq)
- b) Ag(s)
- c) Mg²⁺(aq)
- d) Mg(s)

Q14. A spontaneous redox reaction would best be described as having:

a)
$$E^{o}_{cell} > 0$$
, $\Delta G^{o} > 0$

(b)
$$E^{\circ}_{\text{cell}} > 0$$
, $\Delta G^{\circ} < 0$

c)
$$E^{\circ}_{cell} < 0, \Delta G^{\circ} > 0$$

d)
$$E^{o}_{cell} < 0$$
, $\Delta G^{o} < 0$

Q15. The charge on 2 moles of electrons is equal to:

$$(5) -2 \times 6.022 \times 10^{23}$$

Short Response.

Show ALL work to receive credit.

Q16. [10 pts.] Given the following chemical equations:

C(s, graphite) + ½
$$O_2(g) \rightarrow CO(g)$$

$$\Delta G^{\circ} = -137.3 \text{ kJ/mol}$$

2)
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

$$\Delta G^{\circ} = -257.1 \text{ kJ/mol}$$

Calculate the value of the equilibrium constant, K, at 25 °C for the reaction:

$$C(s, graphite) + O_2(g) \rightleftharpoons CO_2(g)$$

Be sure to show all work and explain clearly your solution.

$$\Rightarrow k = -\frac{\Delta 6}{RT} (+2)$$

$$\Rightarrow k = e^{-\Delta 6/RT} (+1)$$

$$= e^{159.18} = 1.35 \times 10^{69}$$

(a) Show how to, then calculate, ΔG° at 45 °C for the chemical reaction:

$$2CO_2(g) + 3H_2(g) \rightarrow C_2H_6(g) + 2O_2(g)$$

Substance	CO ₂ (g)	H ₂ (g)	$C_2H_6(g)$	$O_2(g)$	
ΔH _f ° (kJ/mol)	-393.5	0	-84.7	0	
So (J/mol·K)	213.6	131.0	229.5	205.0	

ΔH°= ZΔH¢(P)-(P) = [(× 02-84.7 + 2×0)-[2×000 + 3×0)= 4702.3 AG°= AH°-TAS° 15°=5 5°(P)-(P) = [(x229.5+2x205.0]-[2x213.6+3x131.0) = -180.7] T= 45+273 = 318K △G° = +702.3 KJ - 318K x -180.73 x 1KJ = +759.76 KJ/mol 3

(b) Comment on the value you obtained from part (a), and its meaning.

tue AG man Non-sponkencom.

(Would need to provide 760K) of energy to allow on to happan

(c) Explain what will happen to the reaction as the temperature is increased.

Since bothis AH° and AS° , Will always to have toe DGO no nother what T is!

Q18. [15 pts.] Balance the following two redox equations using the half-reaction method. Be sure to clearly identify all oxidation numbers in the original skeleton equation.

(+2) (-2) (0) (-1) (+2.5)(-2) max: +2 (-0.5 (103))
a)
$$S_2O_3^{2-} + I_2 \rightarrow I^- + S_4O_6^{2-}$$
 (acidic solution)

a)
$$S_2O_3^{2-} + I_2 \rightarrow I^- + S_4O_6^{2-}$$
 (acidic solution)

$$I_2 + 2S_2O_3^2 \xrightarrow{2e^-} 2I^- + S_4O_6^2 -$$

b)
$$CO + I_2O_5 \rightarrow CO_2 + I_2$$
 (basic solution)

Q19. [15 pts.] Calculate E_{cell} for the following cell diagram:

 $Mg(s)|Mg^{2+}(aq, 0.050M)||Ag^{+}(aq, 1.5 M)|Ag(s)$

As part of your answer you should calculate E°_{cell} and also write the overall balanced chemical equation. Assume the cell temperature is 25 °C.

$$E_{col} = E_{Ag^{\dagger}/Ag} - E_{Mg^{2\dagger}/Mg}$$

= +0.80V \bigcirc -2.37V
= +3.17V +4

$$(e^{-t} A_S^{t} \rightarrow A_g) \times 2$$

$$M_g \rightarrow M_g^{2+} + 2e^{-}$$

$$2 A_g^{t} (a_S) + M_g (s) \xrightarrow{2e^{-}} 2 A_g (s) + M_g^{2+} (a_P)$$

$$Q = \underline{(M_S^{2+})}$$

$$(A + 7)^2$$

$$= \frac{+3.170 + 0.04890}{-10.04890}$$

IA	IIA	Periodic Table of the Elements										IIIA	IVA	VA	VIA	VIIA	VIIIA
T H																	2
1,008	2																He
3	4											13	14	15	16	17	4,003
Li	Be											5	l 🕯	7.	å	2	10
												В	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19,00	20,18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
22.99	24.31	3			- 6	7	8	_ •	10	11	12	26,98	28.09	30.97	32.07	35,45	39,95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44,96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	l In	Sn	Sb	Te	l	Xe
85.47	87.62	68,91	91.22	92.91	95,94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195,1	197.0	200.6	204.4	207.2	209,0	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	l Ra**∣	Lr	Rf	Db	Sg	Bh	Hs	Mt					l				
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	(268)	[269]	[272]	[277]		[285]	1	[289]		[293]
				•													
	1	57	58	59	60	61	62	63	64	65	66	67	68	69	70	1	
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Yb		
		138.9	140.1	140.9	144.2	[145]	150.4	152.0	157.3	158,9	162.50	164.9	167.3	168.9	173.0		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	1	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.0	231.0	238.0	(237)	(244)	[243]	12471	12471	[251]	12521	[257]	[258]	[259]	1	
		[461]		201.0		[207]	1 (0.00)	[243]	[441]	1547	[[27]	[202]	[207]	1_12001	[200]	J	

$$N_{\rm A} = 6.022 \times 10^{23} \, {\rm mol^{-1}}$$

$$R = 8.3145 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ L-atm/mol} \cdot \text{K}$$

$$\Delta G = -nFE_{cell}$$

$$\Delta G^{\circ} = -nFE^{\circ}_{cell}$$

$$\Delta G = \Delta H - T \Delta S$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln Q$$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}}$$
 $F = 96,500 \text{ C/mol e}^{-}$

$$F = 96.500 \text{ C/mol } e^{-}$$

$$1 V = 1 J/C$$

$$\Delta S_{\text{surr}} = q_{\text{surr}}/T$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
 $\Delta G^{\circ} = -RT \ln K$

$$\Delta G^{\circ} = -RT \ln K$$

Partial list of standard electrode potentials: