Алгебра. Практика.

А. В. Щеголёв

Определение 1. Кольцо R называется Eвклидовым, если существует $\phi: R \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ — норма Eвклида, что $\forall a,b \in R \ \exists q,r \in R: a = bq + r, \phi(r) < \phi(b)$.

Упражнение 1.

- 1. Пусть дана какая-то норма Евклида ϕ на кольце R. Тогда эту норму можно докрутить так, что для новой нормы ϕ' верно, что $\phi'(ab) \geqslant \phi'(a)$.
- 2. Для ϕ' верно, что для всех обратимых элементов ϕ' -значения равны.

Определение 2. Общим делителем a и b называется c, что $c \mid a$ и $c \mid b$. Наибольшим общим делителем (НОД) a и b называется общий делитель a и b, делящийся на все другие общие делители a и b.

Теорема 1 (алгоритм Евклида). В Евклидовом кольце у любых двух чисел есть НОД.

Доказательство. Заметим, что (a,b) = (a+bk,b).

Пусть даны a и b. Предположим, что $\phi(a) \geqslant \phi(b)$, иначе поменяем их местами. Тем самым по аксиоме Евклида найдутся q и r, что a = bq + r, а $\phi(r) < \phi(b) \leqslant \phi(a)$, значит $\phi(a) + \phi(b) > \phi(r) + \phi(b)$. При этом (a,b) = (r,b). Значит бесконечно $\phi(a) + \phi(b)$ не может бесконечнго уменьшаться, так как натурально, значит за конечное кол-во переходов мы получим, что одно из чисел делит другое, а значит НОД стал определён.

Упражнение 2. $\sigma(\begin{smallmatrix} a & 1 & 0 \\ b & 0 & 1 \end{smallmatrix}) = (\begin{smallmatrix} d & \sigma \\ 0 & \sigma \end{smallmatrix})$. Чему может быть равно σ_{2*} ?

Упражнение 3. Докажите, что Гауссова норма — норма Евклида.

Упражнение 4. $Haŭmu\ (17+23i, 13-21i)$.

Упражнение 5. Ждите позжее...

Упражнение 6. Найти все решения 17x + 24y = 3 над \mathbb{Z} .