Sorting

Data Structures and Algorithms

Nanjing University, Fall 2021 郑朝栋

Complexity of a problem:

Upper bound and Lower bound

- Consider a problem \mathcal{P} . (Such as the sorting problem.)
- Upper bound: how fast can we solve the problem?
 - The (worst-case) runtime of an algorithm $\mathcal A$ on input of size n is: $T_{\mathcal A}(n) = \max_{|I|=n} \{ cost_{\mathcal A}(I) \}.$
 - $T_{\mathcal{A}}(n)$ upper bounds the complexity of solving problem \mathcal{P} .
 - Every valid algorithm gives an upper bound on the complexity of \mathcal{P} .
- Lower bound: how slow solving the problem has to be?
 - The worst-case complexity of $\mathcal P$ is the worst-case runtime of the *fastest* algorithm that solves $\mathcal P$: $T_{\mathcal P}(n) = \min_{\substack{\mathcal A \text{ solves } \mathcal P}} \{\max_{|I|=n} \{ cost_{\mathcal A}(I) \} \}$
 - $T_{\mathcal{P}}(n)$, usually in the form of $\Omega(f(n))$, *lower bounds* the complexity of solving problem \mathcal{P} .
 - $T_{\mathcal{P}}(n) = \Omega(f(n))$ means **any** algorithm has to spend $\Omega(f(n))$ time to solve problem \mathcal{P} .

Lower bound of a problem

- A **lower bound** of $\Omega(f(n))$ for a problem \mathcal{P} means any algorithm that solves \mathcal{P} has worst-case runtime $\Omega(f(n))$.
- Larger lower bound is a stronger lower bound.
 (On the other hand, smaller upper bound is better.)
- But how do we prove a lower bound?!
 - It is usually unpractical to examine all possible algorithms...
 - Instead, rely on structures/properties of the problem itself...

Techniques for proving lower bounds:

The Adversary Argument

- ullet Imagine an adversary Eve that determines the input I.
- Whenever the algorithm \mathcal{A} asks about the input, Eve answers.
- If $\mathcal A$ does not ask enough questions, then there are two inputs that are both consistent with Eve's answers, but result in different outputs. Say I_0 and I_1 are two such inputs.
- If \mathcal{A} outputs $result(I_0)$ (resp., $result(I_1)$), then Eve can "reveal" that I was actually I_1 (resp., I_0), making \mathcal{A} 's output invalid.
- A is **not** an algorithm which solves the considered problem!
- A can be any algorithm: no restrictions posed on its behavior.
- Any algorithm that door colve the problem must ack

The adversary argument in action:

Lower bound for sorting

Assume we want to sort n integers.

The algorithm, which queries the input n-1times, does not solve the problem.

Any algorithm which queries the input at most

What is a_1 ?"

"What inning" ??

Solving the "sort *n* integers" problem has a time complexity of $\Omega(n)$.

n-1 times does not solve the problem.

(always say 1)

n-1 queries, $\Theta(n)$ work

sorry but $a_2 > 1$

a_2	a_1		a_{n-1}	a_n
<1	=1	•••	=1	=1

=1 =1 ••• =1 >1	<i>a</i> ₁ =1	<i>a</i> ₃ =1		<i>a</i> _n =1	<i>a</i> ₂ >1
-------------------------	--------------------------	--------------------------	--	--------------------------	--------------------------

Sorting needs $\Omega(n)$ time.

Can we sort faster than $\Theta(n \log n)$?

No, at least not for a large class of algorithms...

Comparison-based sorting lower bound

- A comparison-based sorting algorithm determines sorted order only based on comparisons between the input items.
- In a comparison sort, only comparisons between elements are used to gain order information about the input sequence.
 - Given a_i and a_j , only use "<", " \leq ", "=", " \geq ", or ">" to gain order info.
 - Particularly, the algorithm **cannot** inspect the values of input items.

Any comparison-based sorting algorithm has time complexity $\Omega(n \log n)$, in the worst case.

Decision Tree

- Decisions trees can be used to describe algorithms.
 - A decision tree is a tree.
 - Each internal node denotes a query the algorithm makes on input.
 - Outgoing edges denote the possible answers to that query.
 - Each leaf denotes an output.
- One execution of the algorithm is a path from root to a leaf.
 - At each internal noc next.
- The worst-case time of the longest path if of the tree!

Decision tree in action:

Comparison-based sorting lower bound Any comparison-based so

Assume input items are distinct.

Any comparison-based sorting algorithm has time complexity $\Omega(n\log n)$, in the worst case.

- Assume the algorithm only uses "≤" to do comparison.
- We can use a *binary comparison tree* to describe the alg.
 - Each internal node has two outgoing edges.
 - Each internal node denotes a query of the form " $a_i \le a_j$ ".
- The tree must have $\geq n!$ leaves.
- The height of the tree must be $\geq \lg (n!)$, which is $\Omega(n \log n)$.

*: 基于信息论的下界证明 $2^x >= n!$

Sorting needs $\Omega(n)$ time.

Can we sort faster than $\Theta(n \log n)$?

No, at least not for comparison-based sorting...

Humm, maybe "non-comparison-based" sorting?

- Assume we want to sort n integers, and we know each item is from the set [10]. Can we beat $\Theta(n\log n)$?
- Of course, very easy!
 - Create 10 empty lists. (These are the buckets.)
 - Scan through input, for each item, append it to the end of the corresponding list.
 - Concatenate all lists.
- This algorithm only takes $\Theta(n)$ time.
- This is **not** a comparison based algorithm.
 - No comparison between items are made.
 - Instead the algorithm uses actual values of the items.

• In general, if the input items are all from set [d], then we can use the following algorithm to sort them.

```
BucketSort(A, d):

<L_1,L_2,...,L_d>= CreateBuckets(d)

for (i=1 to A.length)

AssignToBucket(A[i])

CombineBuckets(L_1,L_2,...,L_d)
```

- Total time complexity is $\Theta(n+d)$ what if $n \ll d$? • Total time complexity is $\Theta(n+d)$ sort 1000 64-bit integers.
 - $\Theta(d)$ time to create buckets.
 - $\Theta(n)$ time to assign items to buckets.
 - $\Theta(d)$ time to combine buckets.

• If the range of items' values is too large, allow each bucket to hold multiple values.

 Allocate k buckets each responsible for an interval of size d/k.

• But now we need to sort each bucket n = 8, d = 50, k = 5 before combining them.

- Runtime is $\Theta(n + k)$, plus cost for sorting within buckets.
- If items are uniformly distributed and we use insertion sort,
 - expected cost for sorting is $O(k \cdot (n/k)^2) = O(n^2/k)$.
- Expected total runtime which is O(n) when we
- BucketSort can be stabl

BucketSort(A, k): $<L_1,L_2,...,L_k>$ = CreateBuckets(k) for (i=1 to A.length) AssignToBucket(A[i])

for (j=1 to k)
SortWithinBucket(L_j)
CombineBuckets(L₁,L₂,...,L_k)

Radix sort

- Assume we want to sort n decimal integers each of d-digits. Valid but not for now...
- How about recursive bucket sort?
 - Based on most significant bit, assign items to 10 buckets.
 - Sort recursively in each bucket (i.e., use 2nd most significant bit).

RadixSort(A, d):

for (i=1 to d)
use-a-stable-sort-to-sort-A-on-digit-i

gnificant bit.

329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Radix sort

```
329
           720
                       720
                                   329
           355
                       329
                                   355
           436
                       436
                                   436
           457 million
                       839 million
                                   457
           657
                       355
                                   657
           329
                       457
                                   720
355
                                   839
           839
```

RadixSort(A, d):

for (i=1 to d) use-a-stable-sort-to-sort-A-on-digit-i

Why it works?!

Claim: after i^{th} iteration, items are sorted by their rightmost Use induction to prove the claim.

- [Basis] Claim holds after the first iteration.
- [Hypothesis] Assume claim holds after first k-1 iterations.
- [Inductive Step] Consider two items a and b after k iterations.
 - W.I.o.g., assume a appears before b. Thus, $a[k] \le b[k]$.
 - If a[k] < b[k], then it must be a[k...1] < b[k...1].
 - If a[k] = b[k], since we use stable sort, it must be $a[(k-1)...1] \le b[(k-1)...1]$. Again, $a[k...1] \le b[k...1]$.

Radix sort

329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

RadixSort(A, d):

for (i=1 to d) use-a-stable-sort-to-sort-A-on-digit-i

RadixSort(A, d):

for (i=1 to d) use-**bucket-sort**-to-sort-A-on-digit-i

How much time?

Since only considering decimal numbers, we only need $10 = \Theta(1)$ bucket

RadixSort can sort n decimal d-digits numbers in O(dn) time

Summary

Lower Bounds:

- Sorting needs $\Omega(n)$ time. (adversary argument)
- Comparison-based sorting needs $\Omega(n\log n)$. (decision tree)

Upper Bounds:

- There are $O(n\log n)$ comparison-based sorting algorithms.
- BucketSort, RadixSort can be $\Theta(n)$ in many cases.

Reading

• [CLRS] Ch.8