Informe de Física: Encontrando el coeficiente de fricción dinámica

Francisco Carruthers, Facundo Firpo y Joel Jablonski

{fcarruthers, ffirpo, jjablonski}@udesa.edu.ar Fisica I, tutorial Vinograd

2do Semestre 2024

Resumen

Se investigó el coeficiente de fricción dinámica entre un carrito y varias superficies utilizando un sistema de carrito, soga y polea. Para garantizar la precisión de las mediciones, se realizó una calibración previa del sistema, ajustando los sensores y asegurando que las lecturas de posición y tiempo fueran precisas. A continuación, se varió la masa del carrito y se midió la aceleración para calcular el coeficiente de fricción dinámica (μ_d) en diferentes superficies. Las superficies evaluadas incluyeron el carrito sobre madera, carrito sobre papel y papel sobre papel. Los valores obtenidos para el μ_d fueron: 0.4 ± 0.1 para madera y trineo, 0.45 ± 0.03 para papel y trineo, y 0.5 ± 0.2 para papel y papel. Los resultados demostraron que la superficie tiene un impacto significativo en la fricción dinámica del sistema.

1. Introducción

La fricción es una fuerza de resistencia que actúa en oposición al movimiento relativo entre dos superficies en contacto. Existen dos tipos principales de fricción: la fricción estática, que previene el inicio del movimiento, y la fricción dinámica (o cinética), que actúa cuando el objeto ya está en movimiento. En este experimento, nos centraremos en la fricción dinámica, cuyo coeficiente, denotado como μ_d , se define como la relación entre la fuerza de fricción y la fuerza normal ejercida sobre el objeto:

$$F_r = \mu_d \cdot F_n$$

donde F_r es la fuerza de fricción y F_n es la fuerza normal, que para superficies horizontales es equivalente al peso del objeto en contacto con la superficie. Este coeficiente depende del tipo de materiales en contacto y su textura.

La determinación del μ_d es fundamental en la física aplicada, ya que afecta el diseño de sistemas mecánicos, el análisis de movimientos y la estabilidad de objetos en distintas superficies. En este

contexto, comprender la relación entre la fuerza de fricción y la aceleración del objeto es crucial. Para este experimento, utilizamos la segunda ley de Newton, que establece que la fuerza neta que actúa sobre un objeto es proporcional a la masa del objeto y su aceleración:

$$F = m \cdot a$$

Combinando esta ecuación con la expresión de la fuerza de fricción podemos deducir que la aceleración del carrito estará influenciada por el coeficiente de fricción y la masa total del sistema. Podemos despejar la formula como:

$$\mu_d = \frac{a \cdot (M+m) + m \cdot g}{M \cdot g} \tag{1}$$

En nuestro caso, el sistema se conforma de un carrito y varias superficies, lo que nos permite explorar cómo el coeficiente de fricción cambia según el material.

El objetivo principal de esta práctica es medir el μ_d en diferentes superficies mediante el uso de un carrito y un sistema de polea. Para ello, se realizan mediciones de la aceleración y se compara cómo varía el coeficiente de fricción con el tipo de superficie y la masa utilizada. Este análisis teórico es esencial para comprender los resultados que se presentan en la sección siguiente.

Armamos el sistema de la siguiente manera:

Dispusimos de los siguientes materiales para realizar el experimento:

Objeto	Masa(g)
Pesa dorada	72 ± 1
Pesa plateada	23 ± 1
Pesa madera	6 ± 1
Trineo	109 ± 1
Metro	134 ± 1

2. Calibración

Utilizamos un sistema de referencia para calibrar el sistema.

Figura 1: Calibración del sistema

Pendiente: 0.0184 ± 0.0005

Ordenada al origen: $(-0.5\pm0.5)~\mathrm{cm}$

Distancia para 600: (10.5 ± 0.4) cm

3. Resultados

3.1. Posicion

Madera y Trineo

En un primer caso dejamos el trineo deslizar sobre la mesa de madera.

Figura 2: $M = 161 \pm 1g, m = 72 \pm 1g$

Figura 3: $M = 243 \pm 1g, m = 95 \pm 1g$

Figura 4: $M = 109 \pm 1g, m = 46 \pm 1g$

De 2, 3 y 4 obtenemos valores de la aceleración del sistema. En promedio, la aceleración fue de $0.32\pm0.02~{\rm cm/s^2}.$

Papel y trineo

Luego, le pegamos papel a la mesa y repetimos el experimento.

Figura 5: $M = 161 \pm 1g, m = 72 \pm 1g$

Figura 6: $M = 243 \pm 1g, m = 95 \pm 1g$

Figura 7: $M=109\pm 1g, m=46\pm 1g$

De 5, 6 y 7 obtenemos valores de la aceleración del sistema. En promedio, la aceleración fue de $0.22\pm0.03~\rm cm/s^2.$

Papel y Papel

Por ultimo, pegamos otro papel al trineo y repetimos el experimento.

Figura 8: $M=243\pm 1g, m=72\pm 1g$

Figura 9: $M=243\pm 1g, m=95\pm 1g$

Figura 10: $M = 109 \pm 1g, m = 72 \pm 1g$

De 8, 9 y 10 obtenemos valores de la aceleración del sistema. En promedio, la aceleración fue de 0.39 ± 0.04 cm/s².

3.2. Obtencion del μ_d

Sacando un promedio de los valores obtenidos de 1 usando cada aceleración obtenemos un valor de μ_d para cada superficie.

Superficie	μ_d
Madera y trine	eo 0.4 ± 0.1
Papel y trined	0.45 ± 0.03
Papel y Pape	0.5 ± 0.2

Tabla 1: Valores de μ_d y sus incertezas para cada superficie

Figura 11: Promedio de μ_d para cada superficie

4. Conclusiones

A través de las mediciones de aceleración en diversas configuraciones de masa y superficie, se obtuvieron valores para el μ_d , destacándose variaciones entre las diferentes superficies analizadas.

Los resultados obtenidos evidencian que la fricción varía dependiendo de la textura de las superficies en contacto. Por ejemplo, el valor de μ_d en la superficie de madera fue de 0.4 ± 0.1 , mientras que en papel sobre papel fue mayor, alcanzando un promedio de 0.5 ± 0.2 . Esta variación en el coeficiente es indicativa de la influencia de la rugosidad y la naturaleza del material en la interacción de fricción.

Por las incertezas de los resultados, podemos comprender la importancia de las condiciones experimentales y cómo pequeñas variaciones pueden impactar en los resultados, reforzando el valor de una correcta medición y calibración en estudios físicos.