

Exercise 9B

Question 9:

(i) ABCD is a rhombus, so its all sides are equal.

In ∆ABC, we have

$$AB = BC$$

$$\Rightarrow \angle CAB = \angle ACB = x^{0}$$

$$As, \angle CAB + \angle ABC + \angle ACB = 180^{0}$$

$$\Rightarrow x + 110^{0} + x = 180^{0}$$

$$\Rightarrow 2x = 180^{0} - 110^{0} = 70^{0}$$

$$\Rightarrow x = \frac{70^{0}}{2} = 35^{0}$$

$$\therefore x = 35^{\circ} \text{ and } y = 35^{\circ}$$

(ii) Since in a rhombus, all sides are equal

So in
$$\triangle ABD$$
, $AB = AD$
 $\Rightarrow \angle ABD = \angle ADB$
 $\Rightarrow x = y \dots (1)$
Now in $\triangle ABC$, $AB = BC$
 $\Rightarrow \angle CAB = \angle ACB$
 $\Rightarrow \angle ACB = 40^{\circ}$
 $\therefore \angle B = 180^{\circ} - \angle CAB - \angle ACB$
 $= 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}$
 $\Rightarrow \angle DBC = \angle B - x^{\circ} = 100 - x^{\circ}$
But $\angle DBC = \angle ADB = y^{\circ}$ [alternate angle]
 $\Rightarrow 100 - x^{\circ} = y^{\circ}$
 $\Rightarrow 100^{\circ} - x^{\circ} = x^{\circ}$ [from (1)]
 $\Rightarrow 2x^{\circ} = 100$
 $\Rightarrow x^{\circ} = \frac{100}{2} = 50^{\circ}$

(iii) Since ABCD is a rhombus

So, $x = 50^{\circ}$ and $y = 50^{\circ}$.

So,
$$\angle A = \angle C$$
, i.e. $\angle C = 62^{\circ}$
Now in $\triangle BCD$,

$$BC = DC$$

$$\Rightarrow \angle CDB = \angle DBC = y^{\circ}$$

$$As, \angle BDC + \angle DBC + \angle BCD = 180^{\circ}$$

$$\Rightarrow y + y + 62^{\circ} = 180^{\circ}$$

$$\Rightarrow 2y = 180^{\circ} - 62^{\circ} = 118^{\circ}$$

$$\Rightarrow y = \frac{118}{2} = 59^{\circ}$$

As diagonals of a rhombus are perpendicular to each other, $\triangle COD$ is a right triangle and $\angle DOC = 90^{\circ}$, $\angle ODC = y = 59^{\circ}$ $\Rightarrow \angle DCO = 90^{\circ} - \angle ODC$

$$= 90^{\circ} - 59^{\circ} = 31^{\circ}$$
∴ ∠DCO = x = 31°
∴ x = 31° and y = 59°

******* END ********