Numerical Optimization, Fall 2024 Homework 3

Due 23:59 (CST), Oct. 31, 2024

Problem 1

Prove the dual of the dual of the primal problem is itself. [20pts]

Solution:

Consider the following primal question (standard form)

min
$$c^T x$$

s.t. $Ax = b$, $x \ge 0$,

its Lagrangian is given by

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \boldsymbol{c}^T \boldsymbol{x} - \boldsymbol{\lambda}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) - \boldsymbol{\nu}^T \boldsymbol{x}.$$

The dual objective is then

$$g(\pmb{\lambda}, \pmb{\nu}) = \min_{\pmb{x}} L(\pmb{x}, \pmb{\lambda}, \pmb{\nu}) = \min_{\pmb{x}} (\pmb{c} - \pmb{A}^T \pmb{\lambda} - \pmb{\nu})^T \pmb{x} + \pmb{b}^T \pmb{\lambda}.$$

Maximize $g(\lambda, \nu)$, only care about $g(\lambda, \nu) > -\infty$, meaning $c - A^T \lambda - \nu = 0$. So the dual problem is

$$\max \qquad \boldsymbol{b}^T \boldsymbol{\lambda}$$

s.t.
$$\boldsymbol{A}^T \boldsymbol{\lambda} \leq \boldsymbol{c}.$$

The Lagrangian of dual problem is

$$\hat{L}(\pmb{\lambda}, \pmb{x}) = \pmb{b}^T \pmb{\lambda} - \pmb{x}^T (\pmb{A}^T \pmb{\lambda} - \pmb{c}), \quad \pmb{x} \ge \pmb{0}.$$

The dual objective of dual is then

$$f(oldsymbol{x}) = \max_{oldsymbol{\lambda}} \hat{L}(oldsymbol{\lambda}, oldsymbol{x}) = \max_{oldsymbol{\lambda}} (oldsymbol{b} - oldsymbol{A}oldsymbol{x})^T oldsymbol{\lambda} + oldsymbol{c}^T oldsymbol{x}, \quad oldsymbol{x} \geq oldsymbol{0}.$$

Minimize $f(\mathbf{x})$, only care about $f(\mathbf{x}) < \infty$, meaning $\mathbf{b} - \mathbf{A}\mathbf{x} = \mathbf{0}$. So the dual of dual problem is

min
$$c^T x$$

s.t. $Ax = b$, $x \ge 0$,

which is the same as the primal problem.

Problem 2

Write the optimality conditions for the following linear programming problem.

min
$$x_1 + 2x_2$$

s.t. $x_1 + x_2 \ge 1$,
 $2x_1 + x_2 \ge 2$,
 $x_1, x_2 \ge 0$.

Solution(1):

The dual problem is

max
$$y_1 + 2y_2$$

s.t. $y_1 + 2y_2 \le 1$,
 $y_1 + y_2 \le 2$,
 $y_1, y_2 \ge 0$.

optimality conditions:

- 1. primal feasibility: $x_1, x_2 \ge 0, x_1 + x_2 \ge 1, 2x_1 + x_2 \ge 2$;
- 2. dual feasibility: $y_1, y_2 \ge 0, y_1 + 2y_2 \le 1, y_1 + y_2 \le 2$;
- 3. dual gap: $x_1 + 2x_2 = y_1 + 2y_2$.

Solution(2):

The Lagrangian is given by

$$L(x_1, x_2, y_1, y_2) = x_1 + 2x_2 - y_1(x_1 + x_2 - 1) - y_2(2x_1 + x_2 - 2).$$

KKT conditions:

- 1. primal feasibility: $x_1, x_2 \ge 0, x_1 + x_2 \ge 1, 2x_1 + x_2 \ge 2$;

- 2. dual feasibility: $y_1, y_2 \ge 0$, $y_1 + 2y_2 \le 1$, $y_1 + y_2 \le 2$; 3. complementary: $y_1(x_1 + x_2 1) = 0$, $y_2(2x_1 + x_2 2) = 0$; 4. gradient vanishing: $\frac{\partial L}{\partial x_1} = 1 y_1 2y_2 = 0$, $\frac{\partial L}{\partial x_2} = 2 y_1 y_2 = 0$.

Problem 3

Write the dual problem for the following linear programming problem. [15pts]

min
$$10x_1 + 15x_2$$

s.t. $2x_1 + x_2 \ge 3$,
 $x_1 + 3x_2 \ge 5$,
 $x_1, x_2 \ge 0$.

Solution:

max
$$3y_1 + 5y_2$$

s.t. $2y_1 + y_2 \le 10$,
 $y_1 + 3y_2 \le 15$,
 $y_1, y_2 \ge 0$.

Problem 4

Give an example where neither the primal problem nor the dual problem is feasible. [20pts]

Solution:

The primal problem is

$$\begin{array}{ll} \min & x_1 + 2x_2 \\ \text{s.t.} & x_1 + x_2 \geq 5, \\ & x_1 + x_2 \leq 2, \\ & x_1 \geq 0, x_2 \leq 0. \end{array}$$

The dual problem is

$$\begin{array}{ll} \max & \quad 5y_1 + 2y_2 \\ \text{s.t.} & \quad y_1 + y_2 \leq 1, \\ & \quad y_1 + y_2 \geq 2, \\ & \quad y_1 \geq 0, y_2 \leq 0. \end{array}$$

Problem 5

(1) Prove that one and only one of $(\mathbf{A}\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T\mathbf{x} > 0)$ or $(\mathbf{A}^T\mathbf{y} = \mathbf{c}, \mathbf{y} \geq \mathbf{0})$ is solvable, where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{c} \in \mathbb{R}^n$. [15pts]

Solution:

Consider the primal problem

min
$$\mathbf{0}^T \mathbf{y}$$

s.t. $\mathbf{A}^T \mathbf{y} = \mathbf{c}$, $\mathbf{y} \ge \mathbf{0}$,

its dual problem is

$$\max_{\text{s.t.}} \quad \boldsymbol{c}^T \boldsymbol{x}$$
s.t.
$$\boldsymbol{A} \boldsymbol{x} < \boldsymbol{0}.$$

Denote the optimal solution of the primal and dual problems as $f(\mathbf{y}^*), g(\mathbf{x}^*)$. By weak duality we have $f(\mathbf{y}^*) \geq g(\mathbf{x}^*)$.

If $\{Ax \leq \mathbf{0}, c^Tx > 0\} \neq \emptyset$, suppose that $\{A^Ty = c, y \geq \mathbf{0}\} \neq \emptyset$. Then $f(y^*) \geq g(x^*) > 0$, conflict! So $\{A^Ty = c, y \geq \mathbf{0}\} = \emptyset$.

If $\{Ax \leq 0, c^Tx > 0\} = \emptyset$, $g(x^*) \leq 0$. Then $f(y^*) = 0$ and (1) is feasible. So $\{A^Ty = c, y \geq 0\} \neq \emptyset$.

(2) Prove that one and only one of $(\boldsymbol{B}\boldsymbol{y} + \boldsymbol{C}\boldsymbol{w} = \boldsymbol{g}, \boldsymbol{y} > \boldsymbol{0})$ or $(\boldsymbol{g}^T\boldsymbol{d} < 0, \boldsymbol{B}^T\boldsymbol{d} \geq \boldsymbol{0}, \boldsymbol{C}^T\boldsymbol{d} = \boldsymbol{0})$ is solvable, where $\boldsymbol{B} \in \mathbb{R}^{n \times m}, \boldsymbol{C} \in \mathbb{R}^{n \times p}, \boldsymbol{g} \in \mathbb{R}^n$. [15pts]

Solution:

Consider the primal problem

min
$$\mathbf{0}^T \mathbf{y} + \mathbf{0}^T \mathbf{w}$$

s.t. $\mathbf{B} \mathbf{y} + \mathbf{C} \mathbf{w} = \mathbf{g},$
 $\mathbf{y} > \mathbf{0},$

its dual problem is

$$\begin{aligned} \max & -\boldsymbol{g}^T \boldsymbol{d} \\ \text{s.t.} & \boldsymbol{B}^T \boldsymbol{d} \geq \boldsymbol{0}, \\ \boldsymbol{C}^T \boldsymbol{d} &= \boldsymbol{0}. \end{aligned}$$

Denote the optimal solution of the primal and dual problems as $f(\boldsymbol{y}^*, \boldsymbol{w}^*), g(\boldsymbol{d}^*)$. By weak duality we have $f(\boldsymbol{y}^*, \boldsymbol{w}^*) \geq g(\boldsymbol{d}^*)$.

If $\{ \boldsymbol{g}^T \boldsymbol{d} < 0, \boldsymbol{B}^T \boldsymbol{d} \ge \boldsymbol{0}, \boldsymbol{C}^T \boldsymbol{d} = \boldsymbol{0} \} \neq \emptyset$, suppose that $\{ \boldsymbol{B} \boldsymbol{y} + \boldsymbol{C} \boldsymbol{w} = \boldsymbol{g}, \boldsymbol{y} > \boldsymbol{0} \} \neq \emptyset$. Then $f(\boldsymbol{y}^*, \boldsymbol{w}^*) \ge g(\boldsymbol{d}^*) > 0$, conflict! So $\{ \boldsymbol{B} \boldsymbol{y} + \boldsymbol{C} \boldsymbol{w} = \boldsymbol{g}, \boldsymbol{y} > \boldsymbol{0} \} = \emptyset$.

If $\{ \boldsymbol{g}^T \boldsymbol{d} < 0, \boldsymbol{B}^T \boldsymbol{d} \geq \boldsymbol{0}, \boldsymbol{C}^T \boldsymbol{d} = \boldsymbol{0} \} = \varnothing, \ g(\boldsymbol{d}^*) \leq 0$. Then $f(\boldsymbol{y}^*, \boldsymbol{w}^*) = 0$ and (1) is feasible. So $\{ \boldsymbol{B} \boldsymbol{y} + \boldsymbol{C} \boldsymbol{w} = \boldsymbol{g}, \boldsymbol{y} > \boldsymbol{0} \} \neq \varnothing$.