Almost Ready for Prime Time: Weak Versions of the Prime Number Theorem

What did the drowning number theorist say? "Log log log log log..."

1. Prove the inequality in the meme: For all $t \in \mathbf{R}$, we have $3 + 4\cos(t) + \cos(2t) \ge 0$.

Cos and Effect. As it turns out, this leads to a proof that $\zeta(1+it) \neq 0$ for all $t \in \mathbf{R}^{\times}$, which is a key ingredient in analytic proofs of the Prime Number Theorem.

- 2. Show that the following statements are equivalent to the Prime Number Theorem:
 - (a) The number of primes up to x is asymptotically

$$\pi(x) \sim \operatorname{li}(x)$$
.

(b) For all $B \in \mathbf{R}$, we have

$$\pi(x) \sim \frac{x}{\log x + B}.$$

In other words, Legendre's estimate is not that bad after all!

- (c) Let p_n denote the *n*th prime, e.g., $p_1 = 2, p_2 = 3, p_3 = 5, \ldots$ Then $p_n \sim n \log n$.
- 3. Deduce from the version of Chebyshev's theorem proved in the slides that for sufficiently large x, there exists a prime in the interval (x, 125x).
- 4. (Sylvester 1892, Schur 1929, Erdős 1934) By tweaking the proof of Bertrand's postulate in the slides, show that for every $n \ge 1$ and $k \ge 2n$, the binomial coefficient $\binom{k}{n}$ has a prime factor larger than n.
- 5. The number 30 has the property that if $1 < m \le 30$, and gcd(m, 30) = 1, then m is in fact prime. In other words, when \mathbf{U}_{30} is represented by its least residue system, all its elements are either 1 or prime.
 - (a) Find all other $n \leq 30$ with this property.
 - (b) Suppose n has this property. Consider the least prime p_k such that $p_k \nmid n$. Then $p_k^2 > \prod_{i=1}^{k-1} p_i$.
 - (c) Use Bertrand's postulate to show that the above inequality does not hold for k > 4. Deduce that 30 is the largest such positive integer with the desired property.