## Empirical Distribution of Caller Wait Times

# Khalid Elsadig, Krish Mallina, and Joshua Parr August 1, 2024

### 1 Introduction

#### 1.1 Problem

In order to answer questions about a random variable with regards to probability, expected value, etc., it is important to know the distribution of the variable. In this project, we used simulation to create an experimental distribution of random variable  $\mathbf{W}$ , the total wait time spent by a caller getting tickets from a ticketing agency.

#### 1.2 Outline

We are given the following assumptions:

- callers need 3 seconds to dial
- callers need 2 seconds to hang up
- callers will dial 3 times before giving up on getting tickets
- callers will spend a maximum of 1.5 minutes waiting for the switchboard to connect them to an agent before hanging up
- the caller can be connected to any one of 4 agents A, B, C, or D, whom will take 72, 96, 81, or 114 seconds, respectively, to get the callers their ticket

This report breaks down into three major sections:

- 1. Theory: Analyzing the problem using theoretical probability
- 2. Experimental Testing: Combining theory with programming to simulate 500 callers
- 3. Results: Values and descriptions are given to describe the distribution of wait times

### 2 Theory

We are given that the amount of time the switchboard takes to connect a caller to an agent in minutes, X, is defined by the probability density function (PDF) in Equation 1:

$$f(x) = \frac{3}{16}\sqrt{x}, \quad 0 < x < 4 \tag{1}$$

Given this PDF, we integrate over its range to yield the cumulative distribution function (CDF) defined in Equation 2:

$$F(x) = \begin{cases} 0 & x \le 0\\ \frac{1}{8}x^{\frac{3}{2}} & 0 \le x \le 4\\ 1 & 4 \le x \end{cases}$$
 (2)

The caller will hang up on the switchboard after 1.5 minutes. With this CDF, we approximate that the caller will not hang up on the switchboard with probability 0.2296. We calculated this using Equation 3:

$$F(1.5) \approx 0.2296 \tag{3}$$

With this CDF, we can derive the inverse CDF by solving for x in terms of u, the probability (see Equation 4 for reference). This will be specifically useful later for calculating the wait time the caller spends at the switchboard. The inverse CDF is given in Equation 5

$$F(x) = u = \frac{1}{8}x^{\frac{3}{2}}, \quad 0 < x < 4 \tag{4}$$

$$F^{-1}(u) = 4u^{\frac{3}{2}} = x \tag{5}$$

Using our given parameters, we have devised a flowchart to outline what needs to be tested and calculated during our simulation. First, we test to see if the the caller waits or hangs up on the switchboard. The former has a probability of 0.2296 whereas the latter has a probability of 0.7704. If they hang up, the flowchart has indicated that the caller will redial, given that the number of total dials is less than 3. If the number of total dials is equal to 3, the simulation terminates. This is represented with an arrow looping back to the start. If the caller is successfully connected to an agent, they are assigned to Agent A, B, C, or D at probabilities of 0.2, 0.3, 0.1, or 0.4, respectively. This is also indicated with arrows pointing to each possible outcome. The added wait time is indicated by hexagons with text stating "w+=" the wait time for each section. The flowchart can be seen in Figure 1.



Figure 1: Diagram for Total Wait Time Calculation

### 3 Algorithm

The algorithm for calculating W was first diagrammed, as shown in Figure 1. Our algorithm begins by defining a variable W, representing wait time in seconds, and n, representing the number of times the caller has dialed the ticketing agency. W is set to 0 by default since the caller has not yet called the agency, and n is set to 1 by default since the simulation starts with the caller dialing the agency. Since dialing requires 3 seconds, W is increased by 3. We then simulate the caller's decision to either wait for the switchboard or hang up. To this end, we created a random variable "u", which is a random number between 0 and 1. "U" is generated using the linear congruential random number generator (LCRNG). The LCRNG is designed to reliably yield random values between 0 to 1 given four parameters: a starting value, multiplier, increment, and modulus. For this simulation, we used 1000 for the starting value, 24693 for the multiplier, 3517 for the increment, and 2<sup>17</sup> for the modulus. Now that we can reliably generate random values between 0 and 1, we must determine which range of values corresponds to the caller waiting for the switchboard, and which range corresponds to the caller hanging up. For this, we are given that the Probability Density Function (PDF) of the wait time to connect to the switchboard in minutes, X, is defined by the formula 1 and that the caller will hang up after 1.5 minutes. So, the caller will hang up if the switchboard takes longer than 1.5 minutes to connect them to an agent. Therefore, if we want to find the range of values that define whether the caller waits for the switchboard or not, then we must find the probability that the switchboard takes less than 1.5 minutes to connect the caller to an agent.

To do this, we find the Cumulative Distribution Function (CDF) as seen in Equation 2. The probability that the switchboard takes less than 1.5 minutes to connect the caller to an agent is given by Equation 3. So, if "u" is less than 0.2296, then the simulated caller will be connected to an agent. Otherwise, the caller will hang up. If the caller hangs up, W is increased by 92 seconds because the caller spent 90 seconds waiting for the switchboard and another 2 seconds hanging up. If n is equal to 3, the simulation terminates for that caller, and their wait time, W, is stored to a list of wait times. Otherwise, n is increased by 1 and the caller is put through the switchboard simulation again.

If the caller is connected to an agent, then the time the caller spent waiting for the switchboard must be calculated. For this purpose, we derive the inverse CDF from the CDF in Equation 4 by solving for "x", yielding the inverse CDF in Equation 5.

Note that because this is the inverse CDF we are inputting a probability to get a wait time as the result, which is why the variable is "u" instead of "x". Inputting our value of "u" generated from the LCRNG to make the switchboard decision gives us the time the caller spent waiting for the switchboard in minutes. We multiply this by 60 to put it in units of seconds and increment our variable W by the result.

After the switchboard, the caller can be connected to any one of four agents:

- Agent A who will cause the caller to wait for 72 seconds, with a probability of 0.2;
- Agent B who will cause the caller to wait for 96 seconds, with a probability of 0.3;
- Agent C who will cause the caller to wait for 81 seconds, with a probability of 0.1; or
- Agent D who will cause the caller to wait for 114 seconds, with a probability of 0.4.

To determine which agent the caller gets connected to, we set up a discrete random variable generator (DRVG). The DRVG begins by generating a random number using the LCRNG. Since there is a 0.2 probability of connecting to agent A, we checked if  $u \le 0.2$ . Next, we checked if  $u \le 0.5$  for agent B. Then, we checked if  $u \le 0.6$  for agent C. Finally, if all other checks returned false, then the caller was assigned to agent D. It's important to note that in this sequence of checks, the next check happens only if all previous checks returned false (i.e.  $u \le 0.5$  won't be checked if  $u \le 0.2$  is already true). W is then incremented by 72 sec, 96 sec, 81 sec, or 114 sec for agents A, B, C, or D, respectively since that is the time the caller will spend waiting for each agent. The simulation is then terminated and W is stored to a list of wait times.

### 4 Results

#### 4.1 u-Values

The following equation shows the 51st, 52nd, and 53rd random numbers generated by our linear congruential random number generator:

$$(u_{51}, u_{52}, u_{53}) = (0.5157, 0.4273, 0.7682) \tag{6}$$

## 4.2 W-Values

The table below shows the total wait times (in numerical order) of the first 500 callers stored by our simulation.

| Total Caller Wait Time, $\boldsymbol{W}(\text{seconds})$ |          |    |          |     |          |     |          |     |          |
|----------------------------------------------------------|----------|----|----------|-----|----------|-----|----------|-----|----------|
|                                                          | W        |    | W        |     | W        |     | W        |     | W        |
| 1                                                        | 80.3071  | 37 | 138.7785 | 73  | 169.5722 | 109 | 205.5162 | 145 | 252.5748 |
| 2                                                        | 94.1915  | 38 | 140.5359 | 74  | 169.9606 | 110 | 205.8428 | 146 | 254.086  |
| 3                                                        | 95.3157  | 39 | 141.1892 | 75  | 170.3122 | 111 | 206.1945 | 147 | 260.2726 |
| 4                                                        | 97.3515  | 40 | 141.2223 | 76  | 171.5853 | 112 | 206.5641 | 148 | 260.9217 |
| 5                                                        | 98.4907  | 41 | 141.5188 | 77  | 173.1257 | 113 | 208.0975 | 149 | 261.1297 |
| 6                                                        | 100.6623 | 42 | 142.1368 | 78  | 174.667  | 114 | 210.023  | 150 | 261.2642 |
| 7                                                        | 103.2418 | 43 | 142.6206 | 79  | 174.9412 | 115 | 211.6621 | 151 | 262.7708 |
| 8                                                        | 111.0151 | 44 | 142.8792 | 80  | 175.6144 | 116 | 212.1993 | 152 | 263.2627 |
| 9                                                        | 111.5355 | 45 | 144.372  | 81  | 177.1878 | 117 | 216.1923 | 153 | 264.5197 |
| 10                                                       | 111.8546 | 46 | 145.0255 | 82  | 177.9691 | 118 | 216.4159 | 154 | 264.7319 |
| 11                                                       | 111.9284 | 47 | 145.4658 | 83  | 178.755  | 119 | 217.0977 | 155 | 264.8431 |
| 12                                                       | 112.1221 | 48 | 147.2786 | 84  | 179.5655 | 120 | 222.0242 | 156 | 265.1108 |
| 13                                                       | 113.8462 | 49 | 147.8268 | 85  | 181.3524 | 121 | 223.1316 | 157 | 265.867  |
| 14                                                       | 114.3173 | 50 | 148.5819 | 86  | 183.1141 | 122 | 223.3693 | 158 | 267.5842 |
| 15                                                       | 116.0086 | 51 | 148.7654 | 87  | 183.846  | 123 | 225.3265 | 159 | 267.6548 |
| 16                                                       | 116.5726 | 52 | 149.549  | 88  | 185.138  | 124 | 226.262  | 160 | 267.8556 |
| 17                                                       | 117.0033 | 53 | 151.0193 | 89  | 185.5159 | 125 | 228.6134 | 161 | 268.7979 |
| 18                                                       | 117.2202 | 54 | 151.3067 | 90  | 186.3637 | 126 | 228.8354 | 162 | 268.9724 |
| 19                                                       | 117.9866 | 55 | 153.3622 | 91  | 188.2121 | 127 | 228.9047 | 163 | 268.9896 |
| 20                                                       | 119.0878 | 56 | 155.179  | 92  | 188.4414 | 128 | 230.8098 | 164 | 269.2824 |
| 21                                                       | 119.6808 | 57 | 155.2182 | 93  | 188.5782 | 129 | 230.9967 | 165 | 269.7165 |
| 22                                                       | 119.9502 | 58 | 155.5691 | 94  | 189.8017 | 130 | 233.58   | 166 | 269.7277 |
| 23                                                       | 122.5215 | 59 | 157.1133 | 95  | 189.9846 | 131 | 234.8241 | 167 | 270.3213 |
| 24                                                       | 123.2499 | 60 | 157.361  | 96  | 190.4448 | 132 | 238.1241 | 168 | 271.8592 |
| 25                                                       | 123.663  | 61 | 158.9056 | 97  | 191.225  | 133 | 238.8074 | 169 | 272.4474 |
| 26                                                       | 124.5231 | 62 | 159.2791 | 98  | 192.1103 | 134 | 242.4745 | 170 | 272.715  |
| 27                                                       | 126.375  | 63 | 160.3096 | 99  | 194.0527 | 135 | 243.4974 | 171 | 274.2085 |
| 28                                                       | 126.474  | 64 | 161.115  | 100 | 197.6703 | 136 | 243.7896 | 172 | 275.3449 |
| 29                                                       | 127.7412 | 65 | 161.373  | 101 | 199.6102 | 137 | 245.6746 | 173 | 276.2874 |
| 30                                                       | 130.89   | 66 | 161.3856 | 102 | 200.2785 | 138 | 246.6203 | 174 | 277.2058 |
| 31                                                       | 131.3597 | 67 | 161.9931 | 103 | 201.9623 | 139 | 246.7337 | 175 | 279.0577 |
| 32                                                       | 133.3938 | 68 | 164.2842 | 104 | 202.4861 | 140 | 248.7061 | 176 | 280.3901 |
| 33                                                       | 133.8456 | 69 | 167.8973 | 105 | 203.616  | 141 | 249.9359 | 177 | 280.4988 |
| 34                                                       | 134.1934 | 70 | 168.0693 | 106 | 204.0363 | 142 | 251.6927 | 178 | 281.6192 |
| 35                                                       | 135.5157 | 71 | 168.7182 | 107 | 204.2229 | 143 | 251.7917 | 179 | 281.7948 |
| 36                                                       | 137.4657 | 72 | 168.8095 | 108 | 204.2404 | 144 | 251.8383 | 180 | 281.92   |

|     | W        |     | W   |     | W   |     | W   |     | W   |
|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| 181 | 283.8098 | 217 | 285 | 253 | 285 | 289 | 285 | 325 | 285 |
| 182 | 284.3616 | 218 | 285 | 254 | 285 | 290 | 285 | 326 | 285 |
| 183 | 285      | 219 | 285 | 255 | 285 | 291 | 285 | 327 | 285 |
| 184 | 285      | 220 | 285 | 256 | 285 | 292 | 285 | 328 | 285 |
| 185 | 285      | 221 | 285 | 257 | 285 | 293 | 285 | 329 | 285 |
| 186 | 285      | 222 | 285 | 258 | 285 | 294 | 285 | 330 | 285 |
| 187 | 285      | 223 | 285 | 259 | 285 | 295 | 285 | 331 | 285 |
| 188 | 285      | 224 | 285 | 260 | 285 | 296 | 285 | 332 | 285 |
| 189 | 285      | 225 | 285 | 261 | 285 | 297 | 285 | 333 | 285 |
| 190 | 285      | 226 | 285 | 262 | 285 | 298 | 285 | 334 | 285 |
| 191 | 285      | 227 | 285 | 263 | 285 | 299 | 285 | 335 | 285 |
| 192 | 285      | 228 | 285 | 264 | 285 | 300 | 285 | 336 | 285 |
| 193 | 285      | 229 | 285 | 265 | 285 | 301 | 285 | 337 | 285 |
| 194 | 285      | 230 | 285 | 266 | 285 | 302 | 285 | 338 | 285 |
| 195 | 285      | 231 | 285 | 267 | 285 | 303 | 285 | 339 | 285 |
| 196 | 285      | 232 | 285 | 268 | 285 | 304 | 285 | 340 | 285 |
| 197 | 285      | 233 | 285 | 269 | 285 | 305 | 285 | 341 | 285 |
| 198 | 285      | 234 | 285 | 270 | 285 | 306 | 285 | 342 | 285 |
| 199 | 285      | 235 | 285 | 271 | 285 | 307 | 285 | 343 | 285 |
| 200 | 285      | 236 | 285 | 272 | 285 | 308 | 285 | 344 | 285 |
| 201 | 285      | 237 | 285 | 273 | 285 | 309 | 285 | 345 | 285 |
| 202 | 285      | 238 | 285 | 274 | 285 | 310 | 285 | 346 | 285 |
| 203 | 285      | 239 | 285 | 275 | 285 | 311 | 285 | 347 | 285 |
| 204 | 285      | 240 | 285 | 276 | 285 | 312 | 285 | 348 | 285 |
| 205 | 285      | 241 | 285 | 277 | 285 | 313 | 285 | 349 | 285 |
| 206 | 285      | 242 | 285 | 278 | 285 | 314 | 285 | 350 | 285 |
| 207 | 285      | 243 | 285 | 279 | 285 | 315 | 285 | 351 | 285 |
| 208 | 285      | 244 | 285 | 280 | 285 | 316 | 285 | 352 | 285 |
| 209 | 285      | 245 | 285 | 281 | 285 | 317 | 285 | 353 | 285 |
| 210 | 285      | 246 | 285 | 282 | 285 | 318 | 285 | 354 | 285 |
| 211 | 285      | 247 | 285 | 283 | 285 | 319 | 285 | 355 | 285 |
| 212 | 285      | 248 | 285 | 284 | 285 | 320 | 285 | 356 | 285 |
| 213 | 285      | 249 | 285 | 285 | 285 | 321 | 285 | 357 | 285 |
| 214 | 285      | 250 | 285 | 286 | 285 | 322 | 285 | 358 | 285 |
| 215 | 285      | 251 | 285 | 287 | 285 | 323 | 285 | 359 | 285 |
| 216 | 285      | 252 | 285 | 288 | 285 | 324 | 285 | 360 | 285 |

|     | W   |     | W        |     | W        |     | W        |     | W        |
|-----|-----|-----|----------|-----|----------|-----|----------|-----|----------|
| 361 | 285 | 389 | 285      | 417 | 293.3632 | 445 | 331.0744 | 473 | 354.2739 |
| 362 | 285 | 390 | 285      | 418 | 294.4835 | 446 | 331.9605 | 474 | 354.416  |
| 363 | 285 | 391 | 285      | 419 | 297.3299 | 447 | 332.3286 | 475 | 355.3074 |
| 364 | 285 | 392 | 285      | 420 | 298.9599 | 448 | 334.2107 | 476 | 356.0144 |
| 365 | 285 | 393 | 285      | 421 | 299.0722 | 449 | 334.4166 | 477 | 356.998  |
| 366 | 285 | 394 | 285      | 422 | 299.3522 | 450 | 335.589  | 478 | 357.8778 |
| 367 | 285 | 395 | 285      | 423 | 299.7238 | 451 | 335.6519 | 479 | 359.6681 |
| 368 | 285 | 396 | 285      | 424 | 300.5991 | 452 | 339.3097 | 480 | 360.0043 |
| 369 | 285 | 397 | 285      | 425 | 301.2471 | 453 | 339.5582 | 481 | 360.4234 |
| 370 | 285 | 398 | 285      | 426 | 301.4074 | 454 | 340.3136 | 482 | 361.98   |
| 371 | 285 | 399 | 285      | 427 | 301.578  | 455 | 340.3652 | 483 | 369.5725 |
| 372 | 285 | 400 | 285      | 428 | 301.623  | 456 | 341.2485 | 484 | 370.9778 |
| 373 | 285 | 401 | 285      | 429 | 304.0791 | 457 | 341.6779 | 485 | 371.545  |
| 374 | 285 | 402 | 285      | 430 | 304.5648 | 458 | 341.9322 | 486 | 373.4285 |
| 375 | 285 | 403 | 285      | 431 | 305.3452 | 459 | 342.0571 | 487 | 373.4858 |
| 376 | 285 | 404 | 285      | 432 | 305.8555 | 460 | 344.6113 | 488 | 374.2855 |
| 377 | 285 | 405 | 285      | 433 | 305.8575 | 461 | 344.7547 | 489 | 377.6651 |
| 378 | 285 | 406 | 285      | 434 | 306.5702 | 462 | 346.8255 | 490 | 380.8398 |
| 379 | 285 | 407 | 285      | 435 | 307.4492 | 463 | 346.9279 | 491 | 381.9    |
| 380 | 285 | 408 | 285      | 436 | 308.6389 | 464 | 347.4985 | 492 | 383.2242 |
| 381 | 285 | 409 | 285.9764 | 437 | 315.5264 | 465 | 348.2687 | 493 | 387.3722 |
| 382 | 285 | 410 | 286.5354 | 438 | 317.8071 | 466 | 349.1675 | 494 | 388.0763 |
| 383 | 285 | 411 | 287.4136 | 439 | 318.7817 | 467 | 349.6406 | 495 | 390.0089 |
| 384 | 285 | 412 | 287.8985 | 440 | 321.3445 | 468 | 349.8958 | 496 | 395.3299 |
| 385 | 285 | 413 | 288.1364 | 441 | 322.3189 | 469 | 350.0553 | 497 | 398.1403 |
| 386 | 285 | 414 | 290.756  | 442 | 324.1895 | 470 | 351.7905 | 498 | 398.6936 |
| 387 | 285 | 415 | 291.0886 | 443 | 327.8902 | 471 | 351.9297 | 499 | 401.5143 |
| 388 | 285 | 416 | 291.7107 | 444 | 328.1919 | 472 | 354.1094 | 500 | 401.9495 |

### 4.3 Analysis

The sample space of the first 500 W-values is:

$$S_W = [80.3071, 401.9495] \tag{7}$$

It's important to note that the above sample space is just for the discrete experimental values of W that we calculated. Theoretically the sample space of W is given below.

$$S_W = [80, 402] \tag{8}$$

The mean total waiting time for the first 500 callers is approximately 260.744 seconds. The median wait time is 285 seconds. The first quartile and third quartile are 228.724 and 285, respectively. The median wait time comprises of approximately 45% of the data and

occurs when the caller dials 3 times and fails to connect to the switch board each time. The probability of this occurrence is given by the equation below:

$$(1 - 0.2296)^3 \approx 0.46 \tag{9}$$

This probability is consistent with our gathered data. The following figure shows the graph of the cumulative distribution function (CDF) of W.



Figure 2: Cumulative Distribution Function of Total Wait Time, W(s)

The jump in the CDF occurs at the median wait time described above. The mean being less than the median means that the data is skewed left and that it is more probable for W to be greater than the mean.