Facultad Regional Buenos Aires

CONSTANTES

Velocidad Luz	<i>C</i> =	$299\ 792\ 458 \approx 3 \times 10^8 \ \left[\frac{m}{s} \right]$		
Planck		$6,625 \times 10^{-34} [J s] = 4,1356 \times 10^{-15} [eV s]$		
	$h \cdot C \approx$	1240 [eV nm]		
Masa del electrón		$9,109 \times 10^{-31} = 0,511 \left[\frac{MeV}{C^2} \right]$		
Carga del electrón	e =	$-1 [e] \approx -1,6022 \times 10^{-19} [Culombio]$		
Rydberg	$R_{\infty} =$	$R_H = 1,097 \times 10^7 [m^{-1}]$		
Energía Hidrógeno	$E_H =$	$R_{\infty} \cdot h \cdot C \approx 13,6 \ [eV]$		
Stefan	$\sigma =$	$5,64 \times 10^{-8} \left[\frac{W}{m^2 K^4} \right]$		
Boltzmann	K =	$1,37 \times 10^{-23} \left[\frac{J}{K} \right] = 8,617 \times 10^{-5} \left[\frac{eV}{K} \right]$		
Universal de los Gases	R =	$K \cdot N_a$ $R = 8,3145 \left[\frac{J}{mol \cdot K} \right]$		
Núm. Avogadro	$N_a =$	$6,022 \times 10^{23} \left[\frac{1}{mol} \right]$ (Partículas en un mol)		
Compton	$\lambda_c =$	$\frac{h}{m_e C} \approx 2,47 \ [pm]$		

Masa Molar: $M\left[\frac{gr}{mol}\right]$ Cantidad de moles: n[moles] cant. partículas: N masa: m[gr] Z: cant. Protones $n = \frac{m}{M} = \frac{N}{N_a}$

RELATIVIDAD

- El tiempo, espacio y masa **dependen** de la velocidad del observador.
- La velocidad de la luz es constante para **TODO** sistema de referencia.

Dilatación Temporal y Contracción Espacial

- Se define como tiempo propio (t_0) al medido en un sistema donde **ambos eventos** ocurridos son **simultáneos**.
- Se define como longitud propia (L_0) a la distancia medida en un sistema donde **ambos puntos** están en **reposo**.
- La velocidad relativa entre ambos sistemas es V. (No confundir con v: velocidad de un objeto en el sistema).

$$t = \gamma \cdot t_0 \qquad \qquad t = \frac{L_o}{\gamma} \qquad \qquad \gamma = \frac{1}{\sqrt{1 - \frac{V^2}{C^2}}} \qquad \qquad 1 \le \gamma \le \infty$$

Transformación de Lorentz

- Sea O el sistema en reposo y O' el sistema en movimiento, a velocidad "V" constante, positiva con respecto a O.
- Sean v_x , v_y , v_z las velocidades de un objeto en el sistema S.

$$S = \begin{cases} x = x \\ y = y \\ z = z \\ t = t \end{cases}$$

$$S' = \begin{cases} x' = \gamma(x - Vt) \\ y' = y \\ z' = z \\ t' = \gamma\left(t - \frac{V \cdot x}{c^2}\right) \end{cases}$$

$$S' = \begin{cases} x' = \gamma(x - Vt) \\ y' = y \\ z' = z \\ t' = \gamma\left(t - \frac{V \cdot x}{c^2}\right) \end{cases}$$

$$S' = \begin{cases} x' = \gamma(x - Vt) \\ y' = y \\ z' = z \\ t' = \gamma\left(t - \frac{V \cdot x}{c^2}\right) \end{cases}$$

$$S'(x', y', z', t')$$

$$S(x, y, z, t)$$

$$S'(x', y', z', t')$$

$$S(x, y, z, t)$$

$$V' = \begin{cases} v_x' = \frac{v_x - V}{1 - V \cdot \frac{v_x}{c^2}} \\ v_y' = \frac{v_y}{\gamma\left(1 - V \cdot \frac{v_x}{c^2}\right)} \end{cases}$$

$$V = \begin{cases} v_x' = \frac{v_x - V}{1 - V \cdot \frac{v_x}{c^2}} \\ v_z' = \frac{v_z}{\gamma\left(1 - V \cdot \frac{v_x}{c^2}\right)} \end{cases}$$

Coincidencia, Simultaneidad Y Coincidencia

- 2 eventos son **coincidentes** si ocurren en el **mismo x**. Depende del sistema de referencia.
- 2 eventos son **Simultáneos** si ocurren en el **mismo t**. Depende del sistema de referencia.
- Si 2 eventos son coincidentes y simultáneos (son **superpuestos**) lo son para todos los sistemas de referencia.

Causalidad

- 2 eventos pueden sufrir inversión temporal si la distancia de estos es mayor a la recorrida por la luz.
- Los eventos que sufren inversión temporal son **independientes** entre sí.

$$c \cdot (t_2 - t_1) < x_2 - x_1 \leftarrow \text{Condición de inversión temporal.}$$

Facultad Regional Buenos Aires

Sincronización de Relojes

2 relojes que se encuentran sincronizados para un sistema (simultáneos) dejan de estarlo para el otro sistema. t_{sync} representa dicha diferencia en sincronización para el 2do sistema.

$$\Delta t_{sync} = \frac{\Delta t'}{\gamma} = \frac{V \cdot \Delta x}{c^2}$$

Dinámica

Se sigue cumpliendo la 2da ley de Newton siempre que se utilice la masa relativista.

$$\frac{d}{dt}p = F \qquad p = m \cdot v \left[kg \cdot \frac{m}{s} \right]$$

$$m = m_0 \cdot \zeta$$

masa relativista.
$$\zeta = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \qquad \qquad m_0 = \text{Masa en Reposo.}$$

Energía

Los objetos simplemente por tener masa poseen una energía en reposo.

$$E = E_C + E_0 = m \cdot c^2$$

$$E^2 = p^2 c^2 + m_0^2 \cdot c^4$$

$$E_0 = m_0 \cdot c^2$$

$$E_0 = m_0 \cdot c^2$$

$$E_0 = m_0 \cdot c^2$$

- Se considera al gas como un "macro estado". Combinación de muchas partículas.
- Los valores medidos son los más probables de las distribuciones de partículas.
- A nivel macro, la velocidad que importa es el módulo del vector velocidad (v).

$$\rho(v_x) = \left(\frac{m}{2\pi \cdot K \cdot T}\right)^{\frac{1}{2}} \cdot e^{-\frac{m \cdot v_x^2}{2KT}} \left| \rho(\bar{v}) = \rho(v_x) \cdot \rho(v_y) \cdot \rho(v_z) = \left(\frac{m}{2\pi \cdot K \cdot T}\right)^{\frac{3}{2}} \cdot e^{-\frac{m \cdot \bar{v}^2}{2KT}} \right| \rho(v) = 4\pi \left(\frac{m}{2\pi \cdot K \cdot T}\right)^{\frac{3}{2}} \cdot v^2 \cdot e^{-\frac{m \cdot v^2}{2KT}}$$

Velocidades Importantes

$$v_{RMS} = \sqrt{\frac{3 \cdot R \cdot T}{M}} = \sqrt{\frac{3 \cdot K \cdot T}{m}}$$

$$v_{+probable} = \sqrt{\frac{2 \cdot K \cdot T}{m}}$$

$$\langle v \rangle = \sqrt{\frac{8 \cdot K \cdot T}{\pi \cdot m}}$$

Energía En Gases

- Aproximación para gases en equilibrio térmico. No contempla variación por temperatura de C_V .
- Aproximación inválida para sólidos. Expresiones exactas con mecánica cuántica.
- Una molécula monoatómica posee 3 grados de libertad.
- Una molécula diatómica posee 5 grados de libertad.

Energía media:
$$U = \frac{K \cdot T \cdot v}{2} \cdot N = \frac{R \cdot T \cdot v}{2} \cdot n$$

 $\nu = \text{grados de libertad del átomo}$

capacidad térmica:
$$C_V = \frac{\partial U}{\partial T} = \frac{K \cdot v}{2} \cdot N = \frac{R \cdot v}{2} \cdot n$$

RADIACIÓN

- Emisión de energía debido a la temperatura.
- Un cuerpo negro absorbe todas las longitudes de onda incidentes sin reflejar y emite en todo el espectro (ideal).
- Ecuaciones de la ley de Planck.

Longitud de Máxima Radiación:

Aumentar T desplaza la longitud de onda de máxima radiación.

$$\lambda_{MAX} \cdot T = cte = 2.5 \times 10^{-3} [m \ K]$$

Radiancia espectral: Radicación de una única λ .	Radiancia total: Radiación total para todas las λ.	Densidad de energía espectral: Energía por unidad de volumen para una λ .
$R(\lambda) = 2\pi h \cdot c^2 \frac{1}{\lambda^5} \cdot \frac{1}{e^{\frac{h \cdot c}{\lambda \cdot K \cdot T}} - 1} \left[\frac{W}{m^2 \ \mu m} \right]$	$R_T = \int_{-\infty}^{+\infty} R(\lambda) \ d\lambda = \sigma \cdot T^4 \left[\frac{W}{m^2} \right] = \frac{Potencia}{Superficie}$	$\rho_T(\lambda) = \frac{4}{C} \cdot R_T \left[\frac{J}{m^3 \mu m} \right]$

MODELO ATÓMICO DE BOHR

- Ecuaciones válidas para hidrógeno y átomos similares (monoelectrónicos).
- Modelo inválido con mecánica cuántica puesto que da valores exactos a momento angular, velocidad y radio.
- n corresponde al número atómico del átomo.
- n = 1 se llama **Estado fundamental**.

Facultad Regional Ruenos Aires

Tacilita Regional Buchos Hires					
	Radio	$r_n = 4\pi \cdot \varepsilon_0 \frac{n^2 \hbar^2}{m \cdot \mathbb{Z} \cdot \mathbf{C}^2}$ $n \cdot \hbar$	con n = 1,2,3,		
	Velocidad	$v_n = \frac{1}{m \cdot r}$	con n = 1,2,3,		
	Energía	$E_n = -\frac{m \cdot \mathbf{C}^4 \cdot \mathbb{Z}^2}{(4\pi \cdot \varepsilon)^2 \cdot 2\hbar^2} \cdot \frac{1}{n^2} = -R_{\infty} \cdot \mathbb{Z}^2 \cdot \frac{1}{n^2}$	con n = 1,2,3,		
$E_C = -E_n$ $E_P = 2 \cdot E_n$ Una corrección al modelo de Bohr sugiere utilizar R_M en vez de R_H .					
$\mu = \frac{m_e}{m_e}$	$\frac{m_{nucleo}}{m_{nucleo}}$	$R_M = rac{\mu}{m_e} \cdot R_{\infty}$	$E_n = -R_M$		
as de emis	ión				

$$E_C = -E_n E_P = 2 \cdot E_n$$

$$\mu = \frac{m_e \cdot m_{nucleo}}{m_e + m_{nucleo}}$$

$$R_M = \frac{\mu}{m_o} \cdot R_{\infty}$$

$$E_n = -R_M \cdot Z^2 \cdot \frac{1}{n^2}$$

Líneas de emisión

Se obtienen de las ecuaciones anteriores, sabiendo que $\Delta E = E_{foton}$. (ver Fotones).

$$\frac{1}{\lambda} = R_{\infty} \cdot \mathbb{Z}^2 \cdot \left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right)$$

$$h \cdot f = E_H \cdot \left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right)$$

Espectroscopía del hidrógeno:

- Los gases, al tener partículas libres, absorben solo algunas longitudes de onda (pasar luz blanca sobre el gas).
- Los gases también emiten solo determinadas líneas del espectro si se los coloca en un bajo Efecto Fotoeléctrico.
- El espectro de emisión posee todas las líneas del material. El de absorción solo algunas.

Líneas correspondientes a λ cuando:

 $n_i = 1$ → Lineas de Lyman $n_i = 2 \rightarrow Lineas de Balmer$ $n_i = 3 \rightarrow Lineas de Paschen$ $n_i = 4 \rightarrow Lineas de Brackett$ $n_i = 5 \rightarrow Lineas de Pfund$ $n_i = 6 \rightarrow Lineas de Humphreys$

$$\begin{split} n_f &= n_i + 1 & \rightarrow & \text{línea alfa } (\alpha) \\ n_f &= n_i + 2 & \rightarrow & \text{línea beta } (\beta) \\ n_f &= n_i + 3 & \rightarrow & \text{línea gamma } (\gamma) \end{split}$$

MECÁNICA CUÁNTICA

- Todos los elementos emiten radiación debido a la vibración de los átomos.
- La energía es escalonada, no es continua. Los saltos energéticos son de: E_0 , $2E_0$, $3E_0$, ...

 $E_0 = h \cdot f$ (Valor de Plank, no válido con Schrödinger)

Se basa en los postulados de Broglie:

$$p = \hbar \cdot k$$
 $E = \omega \cdot \hbar$
 $p = h/\lambda$ $E = h \cdot f$

Principio de Incertidumbre

- Define un máximo de medición de las partículas elementales.
- Todas las partículas elementales se mueven con funciones probabilidad.
- Todas las partículas elementales a su vez son ondas que siguen los postulados de Broglie.

$$\Delta p \cdot \Delta x \ge \frac{\hbar}{2}$$
 $\Delta E \cdot \Delta t \ge \frac{\hbar}{2}$

Fotones

- Partículas elementales del fenómeno electromagnético (luz). También llamados partículas gamma.
- Posee masa nula y velocidad c.
- Un electrón solo es desplazado cuando un fotón lo empuja.

$$p = \frac{h}{\lambda} = \frac{h \cdot c}{f}$$

$$E = p \cdot c$$

ECUACIONES DE SCHRÖDINGER

La ecuación no es relativista, para eso ver ecuaciones de Dirac. (se cumple que $E=E_{\mathcal{C}}+V$)

$$j\hbar \cdot \frac{\partial}{\partial t} \Psi(\bar{x}, t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\bar{x}, t) + V(\bar{x}, t) \Psi(\bar{x}, t)$$
$$\hat{E} \cdot \Psi(\bar{x}, t) = \hat{H} \cdot \Psi(\bar{x}, t)$$

$$\widehat{E} \cdot \Psi(\bar{x},t) = \widehat{H} \cdot \Psi(\bar{x},t)$$
 Operador Energía: $\widehat{E} = j\hbar \cdot \frac{\partial}{\partial t}$ Operador Hamiltoniano: $\widehat{H} = -\frac{\hbar^2}{2m} \nabla^2 + U(\bar{x},t) = \frac{\widehat{P}^2}{2m} + V(\bar{x},t)$

- La integral del módulo al cuadrado de Ψ debe dar 1. (la partícula debe existir en algún punto de todo el espacio).
- Ψ debe ser continua (salvo casos especiales).

Ecuación Independiente del Tiempo

Solo válida cuando U no depende del tiempo.

$$\hbar \cdot \psi(x) + V(x)\psi(x) = E \cdot \psi(x)$$

Agustín Martinez Relatividad y Cuántica Página 3 de 6

Valores Reales

La función de onda se utiliza para obtener la función probabilidad de encontrar al átomo en el espacio.

$$P(x) = \int_{-\infty}^{+\infty} \Psi \cdot x \cdot \Psi^* dx = \int_{-\infty}^{+\infty} x \cdot |\Psi|^2 dx$$

Casos especiales

Partícula libre:

$$- V = 0$$

$$\psi(x) = A \cdot e^{jkx} + B \cdot e^{-jkx}; \qquad k = \frac{\sqrt{2mE}}{\hbar}$$

Escalón de potencial:

- $V = V_0 \cdot u(x)$ Si $E < V_0$ la función de onda deja de oscilar, pasa a ser exponencial
- Para R y T considerar $k_2 = \frac{\sqrt{2m(V_0 E)}}{\kappa}$

coef. Reflexión:
$$R = \frac{B \cdot B^*}{A \cdot A^*} = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

coef. Transmisión: $T = \frac{C \cdot C^*}{A \cdot A^*} = \frac{2k_1k_2}{(k_1 + k_2)^2}$

$$\psi(x) = \begin{cases} A \cdot e^{jk_1 x} + B \cdot e^{-jk_1 x} & x < 0 \\ \vdots & x = 0 \end{cases}$$

$$\psi(x) = \begin{cases} A \cdot e^{jk_1 x} + B \cdot e^{-jk_1 x} & x < 0 \\ C \cdot e^{-jk_2 x} & x > 0 \end{cases}; \qquad k_1 = \frac{\sqrt{2mE}}{\hbar} \qquad k_2 = \frac{\sqrt{2m(E - V_0)}}{\hbar}$$

Barrera potencial:

$$-V = \begin{cases} V_0 & 0 < x < l \\ 0 & en otros caso. \end{cases}$$

- $V = \begin{cases} V_0 & 0 < x < l \\ 0 & en \ otros \ casos \end{cases}$ Si $E < V_0$ la función de onda dentro de la pared es exponencial y no
- Aunque $E < V_0$ la partícula tiene probabilidad de atravesar la pared (efecto túnel).
- Para los coeficientes R y T considerar $k_2 = \frac{\sqrt{2m(V_0 E)}}{k}$

$$\psi(x) = \begin{cases} A \cdot e^{jk_1x} + B \cdot e^{-jk_1x} & -\infty < x < 0 \\ C \cdot e^{jk_2x} + D \cdot e^{-jk_2x} & 0 < x < l \\ F \cdot e^{jk_1x} & l < x < +\infty \end{cases} \qquad k_1 = \frac{\sqrt{2mE}}{\hbar} \qquad k_2 = \frac{\sqrt{2m(E - V_0)}}{\hbar}$$

$$R = \frac{B \cdot B^*}{A \cdot A^*} = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

$$k_1 = \frac{\sqrt{2mE}}{\hbar} \qquad k_2 = \frac{\sqrt{2m(E - V_0)}}{\hbar}$$

$$T = \frac{F \cdot F^*}{A \cdot A^*} = \frac{4k_1^2 k_2^2}{4k_1^2 k_2^2 + (k_1^2 + k_2^2)^2 \operatorname{senh}^2(2k_2 l)}$$

Pozo potencial infinito:

$$-V = \begin{cases} 0 & 0 < x < l \\ \infty & en otros casos \end{cases}$$

- La partícula solo existe entre 0 y l.
- Este caso particular tiene niveles energéticos definidos según n.
- El cambio entre estos niveles es el que produce fotones.

$$\psi(x) = jA \cdot \operatorname{sen}(k \cdot x); \qquad k = \frac{\sqrt{2mE}}{\hbar} = \frac{\pi \cdot n}{l}; \qquad A = \sqrt{\frac{2}{l}}; \qquad E_n = \frac{h^2 \cdot n^2}{8m \cdot l^2}$$

En caso de ser 3D los resultados son los mismos, pero k responde a 3 valores

$$\psi(x) = j \sqrt{\frac{8}{l_x l_y l_z}} \cdot \operatorname{sen}\left(\frac{\pi \cdot n_x}{l_x} \cdot x\right) \operatorname{sen}\left(\frac{\pi \cdot n_y}{l_y} \cdot y\right) \operatorname{sen}\left(\frac{\pi \cdot n_z}{l_z} \cdot z\right)$$

$$k = \sqrt{\left(\frac{n_x}{l_x}\right)^2 + \left(\frac{n_y}{l_y}\right)^2 + \left(\frac{n_z}{l_z}\right)^2}$$

$$E_n = \frac{h^2 \cdot k^2}{8m}$$

Facultad Regional Buenos Aires

Pozo potencial finito:

$$- V = \begin{cases} 0 & 0 < x < l \\ V_0 & en \ otros \ casos \end{cases}$$

- Misma forma que pozo potencial infinito, con puntas alargadas que pasan ligeramente la barrera.

ramente la barrera.
$$E_n = \frac{\pi^2 \cdot h^2 \cdot n^2}{2m \cdot (l + 2\delta)} \qquad \delta \approx \frac{\hbar}{\sqrt{2m(V_0 - E)}}$$

Oscilador Armónico:

-
$$V = A \cdot x^2 \implies V = \frac{1}{2}K \cdot x^2$$
 (Caso Resorte)

- Responde igual que el postulado de Planck, pero agrega un $\frac{1}{2}$.

$$K = \omega^2 \cdot m$$

$$E_n = \left(n + \frac{1}{2}\right) \cdot hf$$

Átomo de Hidrógeno:

$$V = -\frac{e^2}{4\pi\varepsilon_0 \cdot r} \qquad r = \sqrt{x^2 + y^2 + z^2}$$

- Se resuelve en coordenadas polares y se obtienen los números cuánticos.
- La energía sigue respondiendo como el Modelo Atómico de Bohr.
- n = 1 se llama **Estado fundamental**.

núm. cuántico principal: n núm. cuántico azimutal: $l=0,1,2,\ldots,n-1$ núm. cuántico magnético: $m_l=-l,-l+1,\ldots,0,\ldots,l-1,l$ núm. cuántico de spin: $m_s=\pm\frac{1}{2}$

$$\text{Energía:}\, E_n = -\frac{m \cdot \mathbb{Z}^2 \mathbf{C}^4}{(4\pi \cdot \varepsilon)^2 \cdot 2\hbar^2 \cdot n^2}$$
 Impulso Angular: $L = \hbar \sqrt{l \cdot (l+1)}$ Impulso Angular en eje z: $L_Z = m_l \cdot \hbar$

Bandas de Energía

- Método de aproximación de posos potenciales separados una distancia a (modelo Kronig-Penney).

Se generan bandas energéticas en vez de niveles discretos debido a la cantidad y separación de átomos.

masa efectiva:
$$m^* = \frac{\hbar^2}{\frac{\partial E^2}{\partial k^2}}$$
 Relación masas electrón: $\frac{m^*}{m_n}$ Relación masas hueco: $\frac{m^*}{m_p}$

- Se utiliza la masa efectiva para aproximaciones. Está tabulada por cada material.
- Se define **hueco** como ausencia de electrón (la masa efectiva del electrón es negativa).

Estadística Cuántica

- Definimos F(E) como la función distribución de probabilidad de encontrar un electrón en el estado E.
- Definimos G(E) como la densidad de estados y n(E) como la densidad de partículas por unidad de energía.
- Válido para cristales. Los fermiones usan F_{FD} , los bosones usan F_{BE} .

$$G(E) = \frac{4\pi \cdot (2m_e)^{3/2} \cdot E^{1/2}}{h^3} \cdot Vol\left[\frac{num.Estados}{\Delta E}\right] \qquad n(E) = F(E) \cdot G(E) \left[\frac{\# \ particulas}{\Delta E}\right] \\ F_{FD}(E) = \frac{1}{1 + e^{\frac{E-E_F}{k \cdot T}}} \qquad F_{MB}(E) = \frac{1}{e^{\frac{E-E_F}{k \cdot T}}} \qquad F_{BE}(E) = \frac{1}{e^{\frac{E-E_F}{k \cdot T}} - 1}$$

Cantidad de Partículas: $N = \int_0^{+\infty} n(E) dE$ Energía Interna: $U = \int_0^{+\infty} E \cdot n(E) dE$ Energía Promedio: $\langle E \rangle = \frac{U}{N}$

Agustín Martinez Relatividad y Cuántica Página 5 de 6

*

Universidad Tecnológica Nacional

Facultad Regional Buenos Aires

Reglas de Selección y Exclusión

- No puede haber 2 fermiones con el mismo conjunto de números cuánticos (electrón, protón, neutrón, etc.).
- Los Bosones sí pueden repetir sus números cuánticos (el fotón es un bosón).
- Los cambios de nivel energético responden a las siguientes reglas:

$$\Delta l = +1, -1$$

$$\Delta m_l = -1$$
 , 0 , $+1$

CASOS ESPECIALES

Efecto Fotoeléctrico

- Un fotón impactando un material con la energía suficiente puede desprender electrones.
- El proceso ocurre si un fotón es absorbido por un electrón en el cátodo del material.
- Cada material posee una función trabajo (W) que debe superarse para desprender electrones.
- Si la energía es negativa, el electrón **no** se mueve. $E_{C_{\it electron}} = 0$.

$$E_{Celectron} = h \cdot f - W$$

$$V_0 = \frac{h \cdot f}{e} - \frac{W}{e}$$

Modelo de Bragg y von Laue

- Los rayos X poseen interferencia al igual que la luz al pasar por sólidos cristalinos (difracción).
- Distancia entre planos cristalográficos d (Obtenida de índices de Miller).
- Von Laue realiza un análisis vectorial. Bragg es una simplificación práctica para cristales.

Von Laue $\left(\bar{k} = \frac{2\pi}{\lambda} \cdot \widehat{dir}\right)$	Bragg
$d \cdot (\bar{k}_i - \bar{k}_t) = 2\pi \cdot n$ $\begin{cases} \bar{k}_i : \text{dirección inicial} \\ \bar{k}_i : \text{dirección final transmitists} \end{cases}$	$2 \cdot d \cdot \operatorname{sen} \alpha = n \cdot \lambda$
\bar{k}_t :dirección final/transmitida	$2 \cdot \alpha \cdot \operatorname{Seli} \alpha = n \cdot \lambda$

Índices de Miller:

- *h, k, l* Corresponden a la inversa de la intersección del plano con los ejes. Se debe simplificar a los menores números enteros posibles.
- a, b, c Corresponden a las longitudes de la celda unitaria.

plano cristalográfico: (h, k, l)

Dirección normal al plano: [h, k, l]

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{h^2} + \frac{l^2}{c^2}$$

Espectroscopía y Ley de Moseley

- Para el caso hidrógeno ir a Espectroscopía del hidrógeno:.
- Un electrón ingresa y mueve a otro nivel energético un electrón del átomo.
- Existe una longitud de onda mínima que emite líneas espectrales, dependiente de la energía entregada.

$$\lambda_{min} = \frac{hc}{\mathbf{e} \cdot V}$$

$$n_i = 1 \quad \rightarrow \quad \text{Lineas } K$$

$$n_i = 2 \quad \rightarrow \quad \text{Lineas } L$$

$$n_i = 3 \quad \rightarrow \quad \text{Lineas } M$$

$$n_f = n_i + 1 \quad \rightarrow \quad \text{linea alfa } (\alpha)$$

$$n_f = n_i + 2 \quad \rightarrow \quad \text{linea beta } (\beta)$$

$$n_f = n_i + 3 \quad \rightarrow \quad \text{linea gamma } (\gamma)$$

$$\mathbf{n}_f = n_i + 3 \quad \rightarrow \quad \text{linea gamma } (\gamma)$$

$$\mathbf{n}_f = n_i + 3 \quad \rightarrow \quad \text{linea gamma } (\gamma)$$

$$\mathbf{n}_f = n_i + 3 \quad \rightarrow \quad \text{linea gamma } (\gamma)$$

Efecto Compton

- Cuando los fotones poseen mucha energía e interactúan con electrones, su longitud de onda cambia.
- Se plantea **conservación de energía** y **momento** para un fotón y un electrón en reposo.
- Al finalizar el electrón se mueve en dirección θ y el fotón en dirección φ con distinto λ .

$$\lambda_f - \lambda_i = \Delta \lambda = \frac{h}{m_e \cdot c} (1 - \cos \theta)$$

Antimateria

- Toda partícula elemental posee su par idéntico con carga opuesta.
- El choque entre una partícula y su antipartícula las destruye y genera energía.
- Un fotón puede dividirse en un electrón y un positrón en direcciones opuestas.