Recurrent Neural Networks

RNN, Types of RNN

Debapriyo Majumdar

debapriyo@isical.ac.in

Remember: deep feedforward networks

- Data that are temporal or in the form of sequences
 - Text
 - Speech
 - Music
 - Video
 - DNA sequence, ...
- Each data point (and output, sometimes) is a sequence of input units
 - Inputs later in the sequence have dependency on previous inputs
- Early NLP techniques used the bag-of-word model
 - Ignored the sequence
 - Simulated somehow by set of sequences of words

Representing text in deep learning

21 46 34 32 42 7 sequential models are for text data

Assign an ID to each word

39 36 10 34 32 21 46 recurrent neural networks are for sequential models

Each sentence (input) becomes a sequence of integers

47 36 10 34 48 2 32 28 convolutional neural networks are generally used for images

28 31 30 23 3 49 16 images may be colored with three channels

16 5 1 47 36 12 4

ResNet is a convolutional neural network architecture

21 19 6 39 36 10 sequential inputs need recurrent neural networks

Representing text for deep learning

Consider a sentence of length T_x

Problem: the numbers have an order that does not represent the words.

Each word is a vector with all zeros except one Orthogonal to each other

Word embeddings

One-hot encoding

Each word is a vector with all zeros except one

Orthogonal to each other

But words have meanings
Some words are similar to each other

Better idea

More compact vector representation retaining semantics of words
Similar words ⇒ similar vectors

Learn word embeddings

Embedding matrix for *d*

dimensional embedding

 $N \times 1$

 e_i

$$d \times 1$$

Embedding for the i-th word in the vocabulary

One-hot vector for the *i*-th word in the vocabulary

Debapriyo Majumdar Recurrent Neural Networks

Learning word embeddings

White = 1; Black = 0, Grey \in (0,1).

Add an embedding layer in the beginning

```
inputs = keras.Input(shape=(None,), dtype="int32")
# Embed each integer in a d-dimensional vector
x = layers.Embedding(N, d)(inputs)
```


The embedding can be learnt as a byproduct of any task for which the model is trained

Input as one-hot vectors

We will learn more about word embeddings later.

The Recurrent Neural Network (RNN)

Output $\hat{y} = \text{the sequence } \hat{y}^{<1>}, \dots, \hat{y}^{< T_x>}$

Input x: This is an example of a recurrent neural network.

In this example, length of \hat{y} = length of x = T_x

But it can be different, as well as the architecture also may be somewhat different

An RNN Cell

• Input $x^{<t>}$: some vector representation (say, one-hot) of the input element (e.g. a word)

An RNN Cell: Details of the Operations

$$\begin{vmatrix} n_a \times 1 & n_a \times 1 & n_x \times 1 \\ \downarrow & \downarrow & \downarrow \\ a^{} = g_a(W_{aa}a^{} + W_{ax}x^{} + b_a) \\ \uparrow & \uparrow & \uparrow \\ n_a \times n_a & n_a \times n_x & n_a \times 1 \end{vmatrix} \equiv \begin{vmatrix} a^{} = g_a\left(\underbrace{\begin{bmatrix} W_{aa} & W_{ax} \end{bmatrix}}_{n_a \times (n_a + n_x)} \underbrace{\begin{bmatrix} a^{} \\ x^{} \end{bmatrix}}_{(n_a + n_x) \times 1} + b_a \end{vmatrix}$$

$$a^{\langle t \rangle} = g_a \left(\underbrace{\begin{bmatrix} W_a \\ W_{aa} | W_{ax} \end{bmatrix}}_{n_a \times (n_a + n_x)} \underbrace{\begin{bmatrix} a^{\langle t-1 \rangle} \\ \chi^{\langle t \rangle} \end{bmatrix}}_{(n_a + n_x) \times 1} + b_a \right)$$

We can write

$$a^{} = g_a(W_a[a^{}, x^{}] + b_a)$$

and, similarly

$$\hat{y}^{< t>} = g_y(W_y[a^{< t-1>}, x^{< t>}] + b_y)$$

Debapriyo Majumdar Recurrent Neural Networks

Backpropagation through time

Total loss:
$$L = \sum_{t=1}^{T_x} L^{} = \sum_{t=1}^{T_x} L(\hat{y}^{}, y^{})$$

$$\frac{\partial L}{\partial W_y} = \sum_{t=1}^{T_x} \frac{\partial L^{}}{\partial W_y}$$

$$\frac{\partial L}{\partial W_a} = \sum_{t=1}^{T_x} \frac{\partial L^{\langle t \rangle}}{\partial W_a}$$

Similarly for b_y and b_a

Input x is a single training example. Update W_y , b_y , W_a , b_a happens after the complete backpropagation (possibly for all examples of a mini-batch)

Different RNN Architectures

Many to Many

Named entity recognition, POS tagging, ...

Many to One

Sentiment classification, ...

One to Many

Music generation, text generation, ...

Many to Many (encoder - decoder)

Machine Translation, ...

Bidirectional RNN

An acyclic graph

- Sometimes, earlier cells may require information from later cells to make sense
- Example: "Teddy bears are lovely gifts." and "Teddy Roosevelt was a president of the United States of America."
- Each output $\hat{y}^{< t>}$ can be obtained by both forward and backward cells $\hat{y}^{< t>} = g(W_y[\overrightarrow{a}^{< t>}, \overleftarrow{a}^{< t>}, x^{< t>}] + b_y)$
- Usually the forward-RNN and backward-RNN are trained together by stacking the hidden state activations $\overrightarrow{a}^{< t>}$ and $\overleftarrow{a}^{< t>}$
- Bidirectional RNNs are widely used in practice

Deep RNN with multiple layers

- Multiple layers of RNN can be stacked to make a deep RNN
- Also called stacked RNNs
- Intuition: lower-level layers capture lower-level features, higher-level layers capture higher level features
- In practice, number of layers for multilayer RNNs (2-6) are not as much as ConvNets (can be 150 - 200)
- Transformer based networks (e.g. BERT)
 can be up to 24 layers

- Andrew Ng's lectures on Sequence Models: <u>www.coursera.org/learn/nlp-sequence-models</u>
- Chris Manning, Abigail See and other TAs. Natural Language Processing with Deep Learning. Stanford University Course (CS224n), Winter 2019. web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
 www.deeplearningbook.org