Advanced statistical methods

Frédéric Pascal

CentraleSupélec, Laboratory of Signals and Systems (L2S), France frederic.pascal@centralesupelec.fr http://fredericpascal.blogspot.fr

MSc in Data Sciences & Business Analytics
CentraleSupélec / ESSEC
Oct. 2nd - Dec. 20th. 2017

Contents

- Part A
 Reminders of probability theory and mathematical statistics
- Part B Statistical Modelling and Parameter Estimation theory
- Part CHypothesis testing Detection theory
- Part D (Multivariate) Linear regression
- Part E
 Robust Estimation Theory (including robust detection, and robust regression)

Does a target is present if some received data?

Similar problem for testing if a person carries a disease or not... After a blood test, an X-ray, a sonogram or whatever the procedure...

- **1** Observations $\rightsquigarrow x_1, \ldots, x_n$
- 2 Statistical model \rightsquigarrow Gaussian model, $\mathcal{N}(\mu, \sigma^2)$
- 3 Unknown parameters $\rightsquigarrow \sigma^2$ (could be extremely more complex...)
- Data to Decision \(\simes \) Binary hypothesis test

$$\left\{ \begin{array}{ll} \mbox{Hypothesis H_0:} & \mu=0, \mbox{ i.e., no target} \\ \mbox{Hypothesis H_1:} & \mu>0, \mbox{ i.e. a target is present} \end{array} \right.$$

5 How to exploit the data → Parameter estimation

$$\hat{\mu}_n = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i \text{ and } \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_n)^2 \text{ or } \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu}_n)^2$$

Discussion on parameter estimation, choice, properties, ...

Discussion on parameter estimation, choice, properties, ...

- convergence: much more data implies better accuracy?
- biais: in expectation, can we find the true value?
- error, variance: what is the best we can do?
- estimate characterisation: do we know some properties? e.g., the estimators distribution...
- identifiability: are we sure to find the correct value of the parameter? (likelihood approach)
- Confidence Interval

5 / 7

Figure: PDF of $\hat{\mu}_n$ under H_0 and H_1

Intuition:

- if $\hat{\mu}_n < \gamma$, one decides H_0 ,
- if $\hat{\mu}_n \geq \gamma$, one decides H_1 .

Some natural questions:

- How to choose γ ?... under which criterion...
- What are the errors? Are they equivalent? if yes, $\gamma = \mu/2$ but if not...

Beginning of understanding ans answers on the problem

■ Two types of errors:

Decision Truth	H_0	H_1
H_0	OK	Type-I error=PFA
H_1	Type-II error=PND	power = PD

■ Type-II error extremely serious!

Missing a target (e.g., a missile!) is more dangerous than detecting a false alarm... Claiming that a person is contaminated is more serious than the opposite: no treatment ...

<u>Problem!</u> impossible to minimize both errors at the same time!!!! Explanations and details

Solution: Fixe the less serious error and minimize the other one $(\Leftrightarrow$ maximize the power of the test)

In practice, e.g., in radar (depending on the applications), PFA = 10^{-2} to 10^{-5} , resulting in PND of 10^{-7} or more...