

CCNx 1.0 – Routing in CCN New Solutions Needed for an Old Problem

Computer Science Laboratory Networking & Distributed Systems

March 2014

Origins of Routing for Packet Switching

"On Distributed Communications Series" Paul Baran's RAND Corporation, 1960-62.

- Packet headers, store-and-forward operation, statistical multiplexing of links
- "Hot-potato heuristic routing doctrine": Primordial distance-vector routing.
- Addresses for sender and destination of packet
- Routing of packets is based on destination-based routing tables using node addresses.
- Destinations are routers that originate routing updates

			LII	NK I	NUMB	ER		
	ī	2	3	4	5	6	7	8
		HAND	OVER	NUN	BER	ENT	RIES	
Α	22	8	12	10	9	9	8	13
В	5	3	2	2	4	5	12	2
С	7	8	13	9	22	10	7	8
D	21	23	19	21	12	10	12	13
E	7	10	12	14	12	13	13	15
F	7	10	12	13	14	سع		
G	6	4	سعلر					

LINK NUMBER for DECISION CHOICE		lst	2nd	3rd	4th	5%
3 4 8 2 0 1 7 2 8 4 6 5 7 8 3 1 2 3 5 6			LINK	NUM	BER CHOI	for CE
1 7 2 8 4 6 5 7 8 5 1 2 3 5 3	Γ	7	5	6	4	3
6 5 7 8 5		3	4	8	2	٤,
1 2 3 5 3		ı	7	2	8	4 ,
		6	5	7	8	3
1 2 3 4 8		1	2	3	5	3
		1	2	3	4	8 1
5 2 1 6		5	2		مها	

ſ	~	_		_		_	_		
	Z	15	20	7	3	10	8	5	10

ARPANET: Evolution from Baran's View

- Hosts are the destinations of the network
- Hosts and routers use addresses in exactly the same way
- Same destination-based routing approach using addresses:
 Distance vector first, link-state approach later
- IMPs are the origins of updates (distances or link states)
- Host attached to only one IMP

State of The Art in Shortest-Path Routing

- Problem: Compute the path of minimum length from each router to each destination node in the network
- G(N, E) is the network of |N| nodes and |E| links

 \forall hop $h_i \in P_i^i$

Distances: Node starts by sending distance to itself

Note that each node has a single instance in the graph

Link-state: Node starts sending state of adjacent links

Internet: A Big ARPANET

- Destinations are attached to routers
- Routers "speak for" destinations [address ranges]
- Same routing algorithms are used: Distances (EIGRP, RIP), link state (OSPF), path vector (BGP)
- The choice appears obvious or trivial at first glance!
- However, the approach forces a solution in which a destination speaks for itself or has a <u>single instance</u> [and hence a single representative node]

The Brave "New World" Information Centric Networks (ICN)

- Many papers have declared that routing in ICN is inherently different than routing in the "old" IP Internet
- Content objects are copied opportunistically in the network
- Multiple instances of the same destination.
- However, <u>all</u> existing proposals for routing in ICN use the same old routing algorithms designed for singleinstance destinations!
- Is the basic routing problem in ICN really new?

Multi-Homing and John McQuillan

- McQuillan worked on the "old" and the "new" ARPANET routing protocols:
 - McQuillan J. M., et. al., "The New Routing Algorithm for the ARPANET," IEEE
 Trans. Comm. 1980
- He and others also studied multi-homed destinations
 - J.M. McQuillan, "Enhanced Message Addressing Capabilities for Computer Networks", Proc. IEEE, Vol. 66, No. 11, Nov. 1978
- Same routing algorithms for single-instance destinations
- A directory is used to map identifier of "group" to identifier of each instance

Source does not know all instances
Source knows all instances
Something in between

Source does not know all instances

Flood the network and prune as needed

Source knows all instances

- Have each node know the topology and the location of each instance.
- Source can compute source trees to instances

Something in between (Cheat!)

- Designate a representative node between sources and destination instances
- Compute a routing tree rooted at the representative

Sounds Familiar!

Multicasting:

- No info: Deering [Flood and prune (ACM SIGCOMM 88)]
- All info: McQuillan [Link-state multicast (1978)] and Deering [link-state multicast redone (ACM SIGCOMM 88)]
- Representative: Ballardi, Francis and Crowcroft [Core Based Trees (ACM SIGCOMM 93)]; followed by Protocol Independent Multicast by Deering and many cohorts

ICN routing:

- No info: Intanagonwiwat et al [Directed Diffusion (Trans. Networking 2002)]
- All info: Jacobson [CCN paper (CONEXT 09)]; Mahmudul-Hoque et al [NLSR (ACM ICN '13)]
- Representative: Carzaniga, Rosenblum, and Wolf [Content-Based Networking (Infocom 04)]

Exciting Future!

We do not have to assume that routing to multiinstantiated destinations has to be done the same way as for single-instance destinations

New routing algorithms are needed that:

- Route to some and all instances of a destination
- Do not flood for each instance, do not require complete information of all instances, and do not need a designated representative
- Take advantage of what we know about termination detection for single-instance destinations... It is just a distributed computation

Basic Approach

- Establish a lexicographic ordering of distances to multi-instantiated destination
- The name of a router "speaking for" a destination instance (called anchor) is an attribute used in the ordering
- Routers choose what to share with their peers (e.g., "the best distance according to the lexicographic ordering")
- Lexicographic ordering among instances defines an instance where a DAG spanning all instances is rooted

Example: DCR

- Three instances (at d, o and u)
- Lexicographic ordering based on hop count to instance, ID of instance's anchor, sequence number from anchor
- Route to some [nearest] instances w/o knowing all

- Lexicographic ordering based on hop count, anchor ID, sequence number
- One instance is "best" and is hence known between instances (d < o < u)

- Routing to all instances
- We can build a routing structure spanning all instances, w/o knowing all instances, flooding, or pre-defining a "core"

Much More Can and Should Be Done!

- Show how much better routing to multi-instantiated destinations can be compared to traditional routing approaches (NDN's NLSR, CBN)
- ns3 simulations based on the NDN simulator with thousands of routers and millions of data objects
- Play with policies and quality of information
 - You may just have access to some instances based on who you are and what you want to access
- How are autonomous systems defined in a CCN world and how is routing done?
- Secure routing: Making sure we follow valid paths to instances of a destination

