Specialized architectures

R-CNN: Regions with CNN features

State-of-the-Art

Neural architecture search

- Why not learn the optimal neural architecture?
- How to backprop through discrete, non-differentiable variables?
 - Architectures/graphs, number of layers, number of nodes, connectivity
 - Several workarounds to circumvent the problem
- Should you run your own neural architecture search?
 - If you are Facebook or Google, yes!

Evolutionary search for NAS

- DARTS: Differentiable Architecture Search, Liu et al., 2018
- Efficient Neural Architectur
 Search via Parameter
 Sharing, Pham et al., 2018
- Evolving Space-Time Neura Architectures for Videos, Piergiovanni et al. 2018
- Regularized Evolution for Image Classifier Architecture Search, Real et al., 2019

Algorithm 1 Evolutionary search algorithm

function SEARCH

Randomly initialize the population, P Evaluate each individual in P

for i < number of evolutionary rounds do S = random sample of 25 individuals parent = the most fit individual in S child = parent

for $\max(\lceil d - \frac{i}{r} \rceil, 1)$ do child = mutate(child)

end for

evaluate *child* and add to population remove least fit individual from population

end for end function

Figure 5. Example mutations applied to a module, including (a) layer type change, (b) filter length change, and (c) layer addition.

Combinatorial Bayesian Optimization for NAS

- Treat neural architecture search as hyperparameter optimization
- Learn bayesian model of architecture space and sample likely good architectures

Combinatorial Bayesian Optimization using the Graph Cartesian Product, NeurIPS 2019, C. Oh, J. Tomczak, E. Gavves, M. Welling, NeurIPS 2019

Fast RCNN

Predictions from sliding windows on feature maps

He, Zhang, Ren, Sun, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, 2014 Girshick, Fast R-CNN, 2015

Region-of-Interest (ROI) Pooling

- O Divide feature map in $T \times T$ cells
 - The cell size will change depending on the size of the candidate location

Always 3x3 no matter the size of candidate location

Some results

Faster R-CNN [Girshick2016]

Generate also candidate locations

Region Proposal Network

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

Ren, He, Girshick, Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Fully Convolutional Networks

o Image larger than network input → slide the network

Long, Shelhamer, Darell, Fully Convolutional Networks for Semantic Segmentation, 2015

Deconvolutional modules

<u>Output</u>

<u>Input</u>

ConvolutionNo padding, no strides

<u>Upconvolution</u> Padding, no strides

<u>Upconvolution</u> Padding, strides

More visualizations: https://github.com/vdumoulin/conv_arithmetic

Upconvolving putput

Siamese Networks for Tracking

The backbone of modern trackers nowadays, especially for long-term tracking

Test-time tracking

Marginal Contrastive Loss:

$$L(x_j, x_k, y_{jk}) = \frac{1}{2} y_{jk} D^2 + \frac{1}{2} (1 - y_{jk}) \max(0, \sigma - \nu)$$

$$D = \|f(x_j) - f(x_k)\|_2$$

Tao, Gavves, Smeulders, Siamese Instance Search for Tracking, CVPR, 2015

Inflated Inception-V1

Inception Module (Inc.)

- i3D = C3D + InceptionPlus some neat tricks
- Take 2D filters and inflate them so that they become
 3D filters
- Then, use them as initialization

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling operators are 1 where not specified, and batch normalization layers, ReLu's and the softmax at the end are not shown. The theoretical sizes of receptive field sizes for a few layers in the network are provided in the format "time,x,y" – the units are frames and pixels. The predictions are obtained convolutionally in time and averaged.

	UCF-101			HMDB-51			Kinetics		
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	_	_	36.0	_	_	63.3	_	_
(b) 3D-ConvNet	51.6	-	_	24.3	_	_	56.1	_	_
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	_	_	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51; (right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31] model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames then averages the predictions.

Carreira, Zisserman, Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR, 2017

Timeception

Params Separable Conv

 Decompose space-time in long temporal convolutions

Hussein, Gavves, Smeulders, Timeception for complex action recognition, CVPR, 2019

Summary

- Case study II: VGG
- Vanishing and exploding gradients
- Case study III: Inception
- Case study IV: Resnet, Denset, Highway Net
- Depth, trainability, generalization
- Specialized architectures

Reading material

All the papers from the models presented