Apache Sparks Diagrams

DataFrame

Spark SQL

Spark Streaming Streaming

MLlib Machine Learning

GraphX Graph Computation

Packages R on Spark

RDD API

Spark Core Engine

Apache Spark Execution

- For every application submitted on spark cluster spark creates a dedicated Driver process and bunch of Executor processes.
- Driver process is responsible for analyzing, distributing, scheduling and monitoring of executor processes.
- Whereas the executor process is only responsible for running the task they
 were assigned by drivers and reporting the status back to the driver.

Apache Spark Execution – Client Mode

Client Mode Client Executor Resource Manager Executor Node Driver Application Executor Application Spark Session Master Matser Node Executor Node Spark-Shell Executor Executor Node Yarn Cluster

Apache Spark Execution – Client Mode

- 1. The spark driver is created within the spark-client (i.e. spark-shell)
- 2. Driver then connects with the Yarn Resource Manager to initiate the application.
- The yarn resource manager then Spawns a Application Manager (AM container).
- 4. Application container then contacts to Resource manager for Executor containers.
- 5. Yarn Resource manager then creates and allocates the executor container to AM container.
- 6. AM container then distributes the spark application tasks to these executors

7. Executors then begins the tasks and creates the Spark-Executor processes and these reports back the status to Spark-Driver.

Apache Spark Execution – Cluster Mode

Cluster Mode Matser Node Client Executor Resource Manager Executor Node Application Master Executor Spark-Submit: Application Spark-Shell Driver Executor Node Executor Executor Node Yarn Cluster Executor status

Apache Spark Execution – Cluster Mode

- Spark client submits the packed application to yarn request manager.
- Yarn request manager then creates the AM container. The Spark-Driver is also created in AM container.
- Rest of the flow is same as mentioned in the client mode.

Apache Spark Execution – Local Mode

- There is another mode in which spark can be run locally without any cluster requirement.
- This mode is suitable for scenarios when we do not have enough resources to create cluster.
- But in this mode you get only one executor and both the Driver and Excuter runs in the same JVM.

Local Mode

How Sparks work?

RDDs

- immutable distributed collection of objects
- logical reference of a dataset which is partitioned across many server machines in the cluster

Partitions

- If it cannot fit into a single node it should be partitioned across various nodes.
- More the number of partitions, the more the parallelism.
- These partitions of an RDD is distributed across all the nodes in the network.
- By applying transformations you incrementally build a RDD lineage with all the parent RDDs of the final RDD(s).
- RDDs can also be thought of as a set of instructions that has to be executed, first instruction being the load instruction.

Worker 2

Worker 3

Worker 4

History of Spark APIs

- · Distribute collection of JVM objects
- Functional Operators (map, filter, etc.)
- Distribute collection of Row objects
- Expression-based operations and UDFs
- Logical plans and optimizer
- Fast/efficient internal representations

Internally rows, externally

 "Best of both worlds" type safe + fast

JVM objects

Shared Variables

Broadcast variables

 Allows user to keep a read-only variable cached on each machine vs shipping it with tasks.

-|-

e.g. lookup table

Accumulators

- workers can "add" to using associative operations
- only driver can read
- used for
 - counters
 - sums

RDD Operations – Expressive

- Transformations
 - Creation of a new RDD dataset from an existing
 - map, filter, distinct, union, sample, groupByKey, join, reduce, etc...
- Actions
 - Return a value after running a computation
 - collect, count, first, takeSample, foreach, etc...
- Easy: Expressive API

• map	• reduce	sample
• filter	• count	• take
• groupBy	• fold	• first
• sort	 reduceByKey 	partitionBy
• union	 groupByKey 	mapWith
• join	• cogroup	• pipe
 leftOuterJoin 	• cross	• save
 rightOuterJoin 	• zip	

Table 3-2. Basic RDD transformations on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
map()	Apply a function to each element in the RDD and return an RDD of the result.	$rdd.map(x \Rightarrow x + 1)$	{2, 3, 4, 4}
flatMap()	Apply a function to each element in the RDD and return an RDD of the contents of the iterators returned. Often used to extract words.	<pre>rdd.flatMap(x => x.to(3))</pre>	{1, 2, 3, 2, 3, 3, 3}
filter()	Return an RDD consisting of only elements that pass the condition passed to filter().	rdd.filter(x => x != 1)	{2, 3, 3}
<pre>distinct()</pre>	Remove duplicates.	rdd.distinct()	{1, 2, 3}
<pre>sample(withRe placement, frac tion, [seed])</pre>	Sample an RDD, with or without replacement.	rdd.sample(false, 0.5)	Nondeterministic

Table 3-3. Two-RDD transformations on RDDs containing {1, 2, 3} and {3, 4, 5}

Function name	Purpose	Example	Result
union()	Produce an RDD containing elements from both RDDs.	rdd.union(other)	{1, 2, 3, 3, 4, 5}
intersec tion()	RDD containing only elements found in both RDDs.	rdd.intersection(other)	{3}
subtract()	Remove the contents of one RDD (e.g., remove training data).	rdd.subtract(other)	{1, 2}
cartesian()	Cartesian product with the other RDD.	rdd.cartesian(other)	{(1, 3), (1,
	k		4), (3,5)}

Table 3-4. Basic actions on an RDD containing {1, 2, 3, 3}

Function name	Purpose	Example	Result
collect()	Return all elements from the RDD.	rdd.collect()	{1, 2, 3, 3}
count()	Number of elements in the RDD.	rdd.count()	4
countByValue()	Number of times each element occurs in the RDD.	rdd.countByValue()	{(1, 1), (2, 1), (3, 2)}

Table 4-3. Actions on pair RDDs (example ({(1, 2), (3, 4), (3, 6)}))

Function	Description	Example	Result
countByKey()	Count the number of elements for each key.	rdd.countByKey()	{(1, 1), (3, 2)}
collectAsMap()	Collect the result as a map to provide easy lookup.	rdd.collectAsMap()	Map{(1, 2), (3, 4), (3, 6)}
lookup(key)	Return all values associated with the provided key.	rdd.lookup(3)	[4, 6]

discretized stream processing

records processed in batches with short tasks each batch is a RDD (partitioned dataset)

Figure 10-1. High-level architecture of Spark Streaming

Figure 10-6. A windowed stream with a window duration of 3 batches and a slide duration of 2 batches; every two time steps, we compute a result over the previous 3 time steps

Spreadsheet on a single machine

Table or Data Frame partitioned across servers in a data center

Figure 2-3. Distributed versus single-machine analysis

Narrow transformations 1 to 1

Figure 2-4. A narrow dependency

Wide transformations (shuffles) 1 to N

Figure 2-7. Reading a CSV file into a DataFrame and converting it to a local array or list of rows

Figure 2-8. Reading, sorting, and collecting a DataFrame

Catalyst Optimizer

- Spark SQL uses an optimizer called catalyst to optimize all the queries
- This optimizer makes queries run much faster
- An optimizer automatically finds out the most efficient plan to execute data operations specified in the user's program.
- logical plan series of algebraic or language constructs, as for example: SELECT, GROUP BY or UNION keywords in SQL. It's usually represented as a tree.
- physical plan Concerns low level operations.

Catalyst Optimizer

Catalyst Optimizer

Figure 4-3. The physical planning process

Figure 14-1. Broadcast variables

Figure 14-2. Accumulator variable

Heartbeat Receiver

Figure 2. Executors use HeartbeatReceiver endpoint to report task metrics

Broadcast

SparkContext

Located in the Spark Driver

Entry point for RDDs

The Spark application

One SparkContext per application

Created for you in the REPL

You need to create for spark2-submit

SparkSession

Entry point to Spark SQL

Merges SQLContext and HiveContext

Access SparkContext

Can have multiple SparkSession objects

Created for you in REPL

You need to create for spark2-submit

Execution

Thanks