

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

特許料
(1,000円)

特 許 国

昭和49年5月22日

特許庁長官 聞

1発明の名前
置換酢酸誘導体の製造法

2発明者

アマガキシムコウタケイカホウ
兵庫県尼崎市武庫畠町2の5 3の303
ハマダブシノリ
浜田芳徳 (ほか/名)

3特許出願人 郵便番号 561
オオサカシヨウジヤマツ
大阪府大阪市東区道修町3丁目13番地
タクノセイイワ
(1931) 横濱製薬株式会社
ロシントン
代表者 吉和一雄

4代理人 郵便番号 533
大阪市福島区鷺洲上2丁目47番地
塙野製薬株式会社特許部(電話06-458-5861)
弁理士(6703) 岩崎光

5添付書類の目録

(1) 明細書 /通
(2) 委任状 /通
(3) 願書副本 49-058244 /通

明 紹 書

1発明の名称

置換酢酸誘導体の製造法

2特許請求の範囲

一般式Iで表わされる化合物にアルコキシメチレン三炭化水素基置換フオスフォランを反応させて得られる化合物を加水分解しついで酸化して一般式IIで表わされる化合物を得ることを特徴とする置換酢酸誘導体の製造法。

(式中、○はピリジン、ピリミシン、イミダゾール、チトラゾールまたはチアゾールを表わし、Rは炭化水素基を表わし、Aは酸素、硫黄、イミノ基または炭化水素置換イミノ基を表わし、□およ

⑯ 日本国特許庁

公開特許公報

⑮ 特開昭 50-149668

⑯ 公開日 昭50.(1975)11.29

⑰ 特願昭 49-58244

⑱ 出願日 昭49.(1974)5.22

審査請求 未請求 (全8頁)

厅内整理番号 562744

6762 44
7306 44
5627 44

⑲ 日本分類

16 E05/1
16 E03/1
30 B6
30 C0

⑳ Int.CI:

C07D277/34
C07D277/36
C07D277/38
C07D277/42
C07D213/62
C07D213/741
A61K 31/425
A61K 31/44

び上記ベンゼン環は反応に影響を及ぼさない、～3個の置換基を有していてもよくあるいは結合ベニゼン環または結合脂環を有していてもよく-COR基はこの結合ベンゼン環上にあってもよい。但し□がチアゾールでない場合は、Aは酸素または硫黄を表わす。)

3発明の詳細な説明

本発明は置換酢酸誘導体の製造法に關し、その目的は優れた抗炎症作用(抗リウマチ作用も含む)および鎮痛作用を示し医薬または動物薬として有用な置換酢酸誘導体を得る点にある。

本発明方法の要旨は次式によつて示される。

(式中、○はピリウム、ピリミジン、イミダゾール、テトラゾールまたはチアゾールを表わし、Rは炭化水素基を表わし、▲は酸素、硫黄、イミノ基または炭化水素置換イミノ基を表わし、○および上記ベンゼン環は反応に影響を及ぼさない／～3個の置換基を有していてもよくあるいは結合ベニゼン環または結合脂環を有していてもよく、-COR基はこの結合ベンゼン環上にあってもよい。Rはアルキル基を表わす。但し○がチアゾールでない場合は、▲は酸素または硫黄を表わす。)

本発明方法は一般式Ⅰで表わされる化合物をアルコキシメチレン三炭化水素置換フォスフォランと反応させることによるウィティツヒ(Wittig)反応に付し(反応①)、得られる化合物Ⅱを加水分

- 3 -

反応させるのが通常実務的である。反応は通常不活性気流中で行われる。得られる化合物Ⅱはついで反応②すなわち加水分解反応に付し、アルコキシメチレン基をアルデヒド基にする。この加水分解は通常エノールエーテルを加水分解する際に用いられる手段を用いることができる。例えば、酸として塗酸、硫酸、硝酸またはこれらと有機酸(例えば、酢酸)などとの混合物を用いることができる。塗基として水酸化アルカリ、炭酸アルカリなどが用いられ水あるいは含水溶媒の存在下で加熱することにより実施される。生成する化合物Ⅲは単離することなく次工程④に付すことができる。

反応②は化合物Ⅱのアルデヒド基をカルボキシル基に変えるもので一般的のアルデヒド基をカルボキシル基に置換する酸化反応に準じて行えばよい。例えば過マンガン酸カリウム、過酸化水素、酸化銀などにより水中または有機溶媒中で酸化してもよいし、硝酸、クロム酸、硝酸銀と過酸化鉛、または過酸化酢酸などにより酸化してもよい。なお上記反応①、②および③の工程において反応を受

特開昭50-149668 (2)
群に付し化合物Ⅲとした(反応①)後酸化反応に付して目的とする置換酢酸誘導体Ⅳを得る(反応②)ものである。

次に本発明方法の実施について詳細に記述する。反応①は通常のウィティツヒ反応に従つて行えばよく、種々のアルコキシメチレン三炭化水素置換フォスフォラン(例えば、メトキシメチレントリエニルフォスフォラン、メトキシメチレントリメトキシメチル)フォスフォラン、エトキシメチレントリブチルフォスフォランなど)が原料化合物と反応条件に応じて適宜選択し使用される。例えば、上記フォスフォランにハロゲン化水素が付加したフォスフォニウム塩を使用し、有機金属(例えば、エニルリチウム、ブチルリチウムなど)を用いてエーテル類(例えば、エーテル、ジビニルエーテル、テトラヒドロフランなど)中で必要に応じて加温下で化合物Ⅰと反応させるか、あるいはアルカリ金属アルコキサイド(例えば、ナトリウムメチラート、ナトリウムエチラートなど)を用いアルコキサイドと対応するアルコール中で

- 4 -

ける環上の置換基は各反応の前後に置換基を修飾することにより、最終において目的化合物を得るようにすることができる。

かくして得られた化合物Ⅱはさらに分離、精製あるいは製剤化、その他の必要に応じて、適当なアルカリ金属塩(例えば、ナトリウム、カリウムなど)、アルカリ土類金属塩(例えば、カルシウム、マグネシウム、バリウムなど)、その他アルミニウム塩などに常法に従つて変換することができる。

本発明方法の目的化合物である置換酢酸誘導体及びその塩類は優れた抗炎症作用(抗リウマチ作用も含む)または鎮痛作用を示し、座薬または動植物として有用な化合物である。

以下実施例において本発明方法の実施範囲を示す。

実施例

粉末にしたメトキシメチレントリエニルフォスフォリウムクロライドヨコヨウドをエーテル2mlに懸濁し、内温5~20℃で1/25

モルフエニルリチウムエーテル溶液 60 ml を滴下後、5°Cで15分間かきませる。ユーフエノキシ-5-アセチルピリジン-2-キノのエーテル溶液140 ml を30分で滴下後室温で10分間かきませる。不溶物を浮かし沪波に冰水を注ぎエーテルで抽出する。抽出液を水洗、乾燥後溶媒を留去し残渣(2.62 g)をシリカゲルカラムクロマトに付す。ベンゼン/酢酸エチル(30:1)溶出部を減圧蒸留すると bp_{40~45°C} / 49~149°C のユーフエノキシ-5-(ノーメチル-2-メトキシビニル)ピリジン(2.2 g)を得る。

元素分析 C₁₃H₁₅O₂N として

計算値: C, 74.66; H, 6.37; N, 5.89

実験値: C, 74.94; H, 6.37; N, 5.79

IR ν_{max}^{CHCl₃} cm⁻¹ 1652, 1590

NMR δ(DCCl₃) 1.88, 1.95(3H, d), 1.367, 3.70(3H, s), 6.12, 6.33(3H, q)

本品(2.2 g)を20%塩酸50 ml に加え、窒素気流中一夜かきませた後反応液にベンゼン10 ml を入れ窒素気流中温マンガン酸カリウム(3 g)の水

特開昭50-149668 (3)
塩酸30 ml を20分で滴下さらに室温で10分間かきませた後不溶物を浮かし沪波を炭酸水素ナトリウムでpH3~4としてエーテルで抽出する。抽出液を5%炭酸水素ナトリウム水溶液で抽出し10%塩酸でpH3とした後エーテルで再び抽出する。抽出液を水洗、乾燥し溶媒を留去する。残液61.0 ml をベンゼン/石油エーテルで再結晶するとmp 80~82°Cのユーフエノキシ-5-(ユーフエノキシ-5-アセチル)プロピオン酸(2.0 g)を得る。本品は他の方法により調製された標品と同定された。

実施例2

以下実施例1と同様にして下記の化合物を得る。
なお、下記表中に用いられる略号は下記の意味を表わし、A欄において例えばユー-0はピリジン環の5位がエーテル結合していることを表わし、X₁, X₂, Y₁, Y₂およびY₃欄において例えば4-CIはクロルが母核の4位を置換していることを表わす。

M₀: ノチル基 M₀₇: ノトキシ基 E₇: エチル基

Iso-Bu: イソブチル基 A₀: アセチル基 A₀₇: アニリン基

CH₂-CH=CH₂: シクロプロピルメチル基

-8-

-ク-

Ca(H₂O): カルシウム塩(水和物を表わす)

AS: アルミニウム塩 d: 分解点

(以下余白)

実験例 No.	R-CHCOOH の位置	R-A-	X ₁	X ₂	Y ₁	Y ₂	Y ₃	m.p.(°C)
2	3	Me-S-O	H	H	H	H	H	133~135
3	4	Me-2-O	H	H	4-CF ₃	H	H	119~120d
4	4	Me-2-O	H	H	H	H	H	98~99d
5	4	Me-2-O	H	H	2-CF ₃	H	H	102.5~102.5d
6	4	Me-2-O	H	H	3-CF ₃	H	H	84~85d
7	3	Me-2-O	H	H	6-CF ₃	H	H	110~111
8	3	Me-2-O	H	H	H	H	H	94~95
9	3	Me-4-O	H	H	4-CF ₃	H	H	114~115
10	2	Me-6-O	H	H	H	H	H	Ca(2H ₂ O)135~136
11	2	Me-6-O	H	H	4-CF ₃	H	H	Ca(2H ₂ O)80~81d
12	4	Me-1-S	H	H	4-CF ₃	H	H	116.0~117.5
13	4	Me-1-O	H	H	4-Met.	H	H	129~130d
14	4	Me-1-O	H	H	4-Me	H	H	101~102d
15	3	Me-6-S	H	H	H	H	H	114.5~115.5
16	3	Me-6-O	H	H	4-Me	H	H	98~99
17	4	Me-2-S	H	H	H	H	H	Ca(3H ₂ O)140~141
18	3	Me-6-O	H	H	4-Met	H	H	Ca(4H ₂ O)155
19	4	Et-2-O	H	H	4-CF ₃	H	H	93~93
20	3	Me-6-O	H	H	3-CF ₃	H	H	106~107
21	4	Me-1-O	H	H	4-CN	H	H	105~106d
22	3	Et-6-O	H	H	4-CF ₃	H	H	112.3d
23	4	Me-2-O	H	H	4-COOH	H	H	154~156d
24	4	Me-2-O	H	H	3-CF ₃	H	H	Ca(2H ₂ O)155~157
25	3	Me-6-S	H	H	4-CF ₃	H	H	Ca(H ₂ O)150
26	4	Me-2-O	H	H	4-COOH ₂	H	H	160~162 (発泡) 200~201
27	4	Me-2-O	H	H	4-OH	H	H	Ca(4H ₂ O)157~159
28	4	Me-2-O	H	H	4-OAc	H	H	Ca(2H ₂ O)132.5~133.5
29	3	Me-4-O	H	H	4-OAc	H	H	Ca(4H ₂ O)145
30	3	Me-6-O	H	H	4-OH	H	H	Ca(H ₂ O)205
31	4	Me-2-O	H	H	4-NO ₂	H	H	115~116d
32	4	Me-2-O	H	H	4-NH ₂	H	H	132~133d
33	4	Me-2-O	H	H	4-NHAc	H	H	142~143d
34	4	Me-2-O	H	H	4-NHOOCEt	H	H	136~137d

実施例 No.	R	-COOH の位置	A	X ₁	X ₂	Y ₁	Y ₂	Y ₃	Y ₄	T(°C)
35	*	Me	2-0	H	H	2-MeO-3a	H	H	H	206~208d
36	3	Me	4-0	H	H	2-Br	H	H	H	119~120
37	*	Me	2-0	H	H	2-4-ベンゾ	H	H	H	138~139d
38	3	Me	4-0	H	H	6-CH	H	H	H	120~121
39	3	Me	4-0	2-Me	H	H	H	H	H	135~136
40	3	Me	4-0	3-Me	H	H	H	H	H	92~93
41	3	Me	4-0	H	H	2-Me	3-Me	H	H	115~116
42	3	Me	4-0	H	H	2-CF ₃	H	H	H	96~97
43	3	Me	4-0	H	H	2-Me	H	H	H	65~67
44	3	Me	4-0	H	H	3-Me	H	H	H	81~82
45	3	Me	4-0	H	H	3-Me	5-Me	H	H	120~121
46	3	Me	4-0	H	H	3-Me	6-Me	H	H	90~91
47	3	Me	4-0	H	H	H	H	H	H	145~146
48	3	Me	4-0	H	H	4-iso-Bn	H	H	H	77~78
49	*	Me	2-0	H	H	2-Me	3-Me	H	H	86~87d
50	3	Me	4-0	2-Me	H	H	H	H	H	107~108
51	3	Me	4-0	H	H	3-Me	5-Me	H	Ca(2H ₂ O)175d	
52	3	Me	4-0	H	H	3-Me	6-Me	H	Ca(2H ₂ O)187d	
53	3	Me	4-0	H	H	3-Me	6-Me	H	Ca(1.5H ₂ O)202d	
54	*	Me	2-0	H	H	3-Me	6-Me	H	H	123~124d
55	*	Me	2-0	H	H	3-Me	5-Me	H	H	103~104d
56	3	Me	4-0	H	H	2-Me	3-Me	5-Me	H	128~129
57	3	Me	4-0	H	H	3-Me	6-Me	5-Me	H	113~114
58	3	Me	4-0	H	H	3-Me	6-Me	5-Me	H	155~156
59	3	Me	4-0	H	H	3-Me	6-Me	6-Me	H	135~136
60	3	Me	4-0	H	H	2,4-(CH ₂) ₆ -	H	Ca(1.5H ₂ O)169d		
61	*	Me	2-0	H	H	2-Me	3-Me	5-Me	H	125~126d
62	*	Me	2-0	H	H	3-Me	6-Me	5-Me	H	126~127d
63	3	Me	4-0	H	H	2,3-(CH ₂) ₆ -	H	Ca(1.5H ₂ O)169~168		
64	3	Me	4-0	H	H	2-4-ベンゾ	H	H	H	1205~1215
65	3	Me	4-0	H	H	2,3-ベンゾ	H	H	H	131~132
66	3	Me	4-0	2-Me	3-Me	H	H	H	H	148~149
67	*	Me	2-0	2,6-C ₆ H ₃	H	H	H	H	Ca(1.5H ₂ O)216~217	
68	3	Me	4-0	2,5-C ₆ H ₃	H	H	H	H	H	122~123
69	3	Me	4-0	4,5-(CH ₂) ₆ -	H	H	H	H	H	151~152
70	3	Me	4-0	H	H	2,4-(CH ₂) ₆ -	H	H	H	1225~1235

実験例 No.	R -CHCOOH	R -A-	X ₁	X ₂	Y ₁	Y ₂	Y ₃	T(^o C)
	の位置							
71	3	Me	6-O	H	H	3-Me	H	625~705
72	3	Me	6-O	2-Me	4-Me	H	H	Ca(H ₂ O) 2/8d
73	3	Me	6-O	H	H	6-OH	H	167~169
74	3	Me	6-O	H	H	6-AcO	H	161~163

実験例 No.	X ₁	X ₂	ブエノキシ基 の位置	Y ₁	R -CHCOOH の位置	T(^o C)
75	H	H	2	H	3	76~77
76	H	H	2	H	*	129~130
77	S-OH	H	2	H	*	198~200
78	S-COOH	H	2	H	*	211~212
79	H	H	3	H	*	130~131
80	H	H	*	H	*	180~181
81	3-(CH ₂) ₄ -	-	2	H	*	166~167
82	3-(E)-ベンジ	-	2	H	*	145~147
83	3-Me	α-Me	2	H	*	1555~156
84	α-Me	3-Me	2	H	*	142~143
85	α-Me	H	2	H	*	123~124
86	6-Me	H	2	H	*	Ca(H ₂ O) 273~275
87	3-Br	H	2	H	*	137~138
88	2-Me	H	*	H	*	152~153
89	S-Me	H	2	H	*	192~194
90	S-Me	H	2	H	*	121~122
91	H	H	2	2-Me	*	107~108
92	H	H	2	2-Met	*	Ca(H ₂ O) 158d
93	*	H	2	H	*	136~138

※: S-CH₂COOH

実験例 No.	Y ₁	Y ₂	A	Z ₁	CH ₂ COOH の位置	mp(℃)	
						s	mp(℃)
94	H	H	O	4-Me	s	110~111	
95	2-Me	3-Me	O	4-Me	s	142~143	
96	3-CF ₃	H	O	4-Me	s	Ca(2SH ₂ O)/06d	
97	4-Me	H	O	4-Me	s	118, Ca(2SH ₂ O)/46d	
98	4-CI	H	O	4-Me	s	93~94, Ca(2SH ₂ O)/33	
99	H	H	S	4-Me	s	128~130	
100	H	H	O	H	s	Ca(2SH ₂ O)/69~70d	
101	4-Cl	H	O	H	s	Ca(H ₂ O)/45d	
102	H	H	NH	4-Me	s	145d	
103	3-CF ₃	H	NH	4-Me	s	193d	
104	H	H	O	H	*	Ca(2SH ₂ O)/42d	
105	H	H	O	5-Me	*	Ca(2SH ₂ O)/42d	
106	4-Cl	H	O	H	*	Ca(2SH ₂ O)/33~35d	
107	4-Cl	H	O	5-Me	*	Ca(2SH ₂ O)/38~136	
108	H	H	H-Me	H	*	79~80d	
109	H	H	H-Me	4-Me	s	141~142	
110	H	H	H-79d	4-Me	s	106~107	
111	H	H	H-CH ₂ -O-4-Me	H	s	130~131	
112	H	H	H-Me	H	s	198~200	
113	H	H	H-79d	H	s	138~135	
114	H	H	H-CH ₂ -O	H	*	Ca(3H ₂ O)/80~83	
115	H	H	H-CH ₂ -O	H	*	Ca(H ₂ O)/20~22d	
116	H	H	H-79d	H	*	Ca(2H ₂ O)/73~178d	

実験例 番	X ₁	X ₂	A	Y ₁	R-COOH の位置	R	mp(°C)
117	H	H	O	H	4	Me	119~120
118	2-Me	2-Me	O	H	4	Me	122~124
119	2-Me	H	O	H	4	Me	87~88
120	H	H	O	2-Me	4	Me	Ca(H ₂ O)175d
121	H	H	O	H	4	アリル	Ca(H ₂ O)136d
122	H	H	O	H	3	Me	58~59
123	H	H	H-Me	H	4	Me	123~124
124	H	H	H-アリル	H	4	Me	118~119
125	H	H	O	H	4	Et	113~116
126	H	H	O	H	4	ヘキシル	121~122
127	H	H	O	H	4	メチル	99~100
128	H	H	O	H	4	メチル	111~112
129	H	H	O	H	4	-CH ₂ -4	85~86
130	H	H	O	2-Me	4	Me	93~94

※2 -CH₂C≡CH※3 -CH₂C(CH₃)=CH₂

- 14 -

実験例 131~134

実験例1と同様にして下記の化合物を得る。

2-[4-(2-ビリジルオキシ)-2-ナフチル]プロピオン酸、mp/94~105°C。

2-[4-(2-エニル-1,2-ジテトラゾリルオキシ)フェニル]プロピオン酸、mp/65~166°C。

2-[4-(2-ビリミジルオキシ)フェニル]プロピオン酸、mp/98~105°C。

2-[4-(2-メチル-2-ベンズimidゾイルオキシ)フェニル]プロピオン酸、mp/84~185°C。

△前記以外の発明者

サカイシサンショウドオリ
大阪府堺市三条通2の5
オカダ テツ
岡田哲夫

特許出願人 塩野義製薬株式会社

代理人弁理士 岩崎光雄

昭 53.11.18 新

特許法第17条の2による補正の掲載

昭和49年特許願第58244号(特開昭

50-149668号 昭和50年11月29日

発行公開特許公報50-1497号(掲載)につ

いては特許法第17条の2による補正があったので
下記の通り掲載する。

庁内整理番号	日本分類
6762 44	16 E35/1
7306 44	16 E43/1
5647 44	30 B4
5647 44	30 C0

手 説 補 正 書

←審査書に代えて→

昭和53年11月19日

特許庁長官 殿

1.事件の表示 昭和49年特許願第58244号

2.発明の名称

置換酢酸誘導体の製造法

3.補正をする者

事件との関係 特許出願人

住所 大阪府大阪市東区道修町3丁目12番地

名称 (ノ92) 塩野義製薬株式会社

代表者 吉利一雄

4.代理人

住所 大阪市福島区箕面5丁目12番4号

塩野義製薬株式会社特許部

(電話06-458-5861)

氏名 弁理士(6703)岩崎光

—5.拒絶理由通知の日付 昭和—年—月—日(受付日)

5.補正の対象

明細書の発明の詳細な説明の欄

6.補正の内容

(1)明細書5頁11行目の「実施例2」を「実施例2-130」に訂正する。

(2)同書5頁実施例57のX欄の「3-Br」を「5-Br」に訂正する。

(3)同書5頁の実施例131~134の次に下記の実施例135~169を追加する。

「実施例135~169

実施例1と同様に反応操作し、下記の化合物を得る。

(以下余白)

実施例 No.	Y ₁	Y ₂	mp(°C)
135	2-Me	H	150~151
136	3-Cl	H	98~99
137	2-Cl	H	145~146
138	3-Cl	5-Cl	127~128

実施例 No.	Y	mp	mp(°C)
139	1-Pr	3	89~91
140	Pr	3	81.5~82.5
141	t-Bu	3	112~113
142	s-Bu	3	67~71
143	Bu	3	Cs·H ₂ O / 40~142
144	i-Bu	3	Cs / 114~119(d)

※ プロピオン酸残基の置換位置

実施例 番号	X	A	Y ₁	Y ₂	T(℃)
145	H	O	2-Me	H	120~121
146	H	O	3-CF ₃	H	115~116
147	H	O	2-CF ₃	H	86~87
148	H	N-Me	3-CF ₃	H	Ca:4H ₂ O 175~178
149	H	S	H	H	85~87
150	H	O	2-CF ₃	3-Me	147~148
151	H	O	3-F	H	107~108
152	H	O	2-Me	5-CF ₃	130~131
153	H	NH	3-CF ₃	H	144~145
154	4-Me	NH	2-CF ₃	H	185~188
155	4-Me	NH	3-F	H	163~164
156	4-Me	NH	2-F	H	202~204
157	H	NH	2-B	H	190~191.5
158	H	NH	3-CF ₃	5-CF ₃	177~178

159	4-Me	N-Me	3-CF ₃	5-CF ₃	138~139
160	4-Me	NH	3-Me	H	201~202
161	H	N-Me	3-CF ₃	5-CF ₃	180~181
162	H	N-Me	2-F	H	111~112.5
163	H	O	2-F	H	74~75
164	H	NH	3-F	H	160~161
165	H	N-Me	2-Me	H	165~166
166	H	N-Me	3-F	H	98~100
167	H	NH	2-CF ₃	H	174~175
168	H	NH	2-Me	H	160~161.5
169	H	N-Me	2-CF ₃	H	141~142

各表中の略号は以下の意味を表わす。

i-Pr:イソプロピル基 Pr:プロピル基

t-Bu:t-ブチル基 s-Bu:sec-ブチル基

i-Bu:イソブチル基。その他の略号は前記の意味を表わす。

以 上