Embeddings in Natural Language Processing How to Represent Text for Neural Networks

Part A: Embeddings Overview

Ester Hlav

ECBM E6040 Neural Networks and Deep Learning Columbia University

August 2019

Natural Language Processing with Deep Learning

Intro: Pre-Deep Learning NLP (No Word Embeddings)

- I. Static Embeddings $(MLP) \rightarrow \text{embed words}$
 - A. Neural Probabilistic Language Model (NPLM)
 - B. Word2 Vec (Word to Vector)
 - C. GloVe (Global Vectors for Word Representation)
 - D. Character Embeddings
- II. <u>Contextualized</u> Embeddings (Attention with LSTM or Transformers) \rightarrow embed sentences
 - A. CoVe (Contextualized Word Vectors)
 - B. **ELMo** (Embeddings from Language Models)
 - C. **BERT** (Bidirectional Encoder Representations from Transformers)
 - D. XLM (Cross-lingual Language Model Pretraining)
 - E. XLNet (Generalized Autoregressive Pretraining for Language Understanding)
 - F. Roberta (Robustly Optimized BERT Pretraining Approach)

Embeddings Research Papers References

NPLM: A Neural Probabilistic Language Model by Bengio et al. (2003)

Word2Vec: Distributed Representations of Words and Phrases and their Compositionality by

Mikolov et al. (2013)

Global Vectors for Word Representation by Pennington et al. (2014)

Characters: Character-Aware Neural Language Models by Kim et al. (2015)

CoVe: Learned in Translation: Contextualized Word Vectors, McCann et al. (2017)

ELMo: Deep contextualized word representations, Peters et al. (2018)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin

et al. (2018)

XLM: Cross-lingual Language Model Pre-training, Devlin et al. (2019)

XLNet: Generalized Autoregressive Pre-training for Language Understanding, Yang et al. (2019)

RoBERTa: A Robustly Optimized BERT Pre-training Approach, Liu et al. (2019)

Intro: Pre-Deep Learning NLP (No Word Embeddings)

Natural Language Processing (NLP) tasks:

- Easy: Spell Checking, Keyword Search, Finding Synonyms, etc.
- *Medium*: Parsing Information from Websites or Documents, etc.
- *Hard*: Machine Translation, Semantic Analysis, Question Answering, etc.

How to represent words? \rightarrow A computer cannot understand strings, but *does* understand **vectors**.

Two traditional vectorization methods:

- i. Word Vectors: one-hot encoding
- ii. Singular Value Decomposition (SVD) methods:
 - Word-Document Matrix
 - Window based Co-occurrence Matrix

Intro: Pre-Deep Learning NLP (No Word Embeddings)

One-hot encoding:

- -hot encoding:

 V words in vocabulary \rightarrow V-dimensional vector

 All words assumed independence leads $\forall i$ ((x,i) T i) All words assumed independent: $\forall i \neq j, (w^i)^T w^j = 0$
- Can reduce the size of the space by reducing redundancy and sparsity (i.e. embeddings, making V entities represented within a space of size < V)

ii. **SVD** methods:

Word Document Matrix

- Matrix V by M documents
- Track words in document by 1

Window based Co-occurrence Matrix

- Matrix V by V
- Counts co-occurrences in corpus

Applying SVD to X:

Reducing dimensionality by selecting first k singular vectors:

$$|V|$$
 $\begin{bmatrix} & |V| \\ & \hat{X} \end{bmatrix} = |V|$ $\begin{bmatrix} & k \\ & | & | \\ u_1 & u_2 & \cdots \\ & | & | \end{bmatrix}$ k $\begin{bmatrix} \sigma_1 & 0 & \cdots \\ 0 & \sigma_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$ k $\begin{bmatrix} - v_1 & - \\ - v_2 & - \\ \vdots & \vdots & \ddots \end{bmatrix}$

Intro: Pre-Deep Learning NLP (No Word Embeddings)

SVD methods have many problems:

- Quadratic cost to train due to SVD cost
- Matrix that SVD is performed on is high-dimensional, typically $10^6 \times 10^6$
- Requires the incorporation of some hacks on X to account for the drastic imbalance in word frequency

Some tricks can help to improve SVD methods:

- Reduce vocabulary with *stemming* (do=doing=does) and *stop-words* (delete repetitive words)
- Apply a $ramp\ window$ i.e. weight the co-occurrence count based on distance between the words in the document
- Use *Pearson correlation* and set counts with negative correlation to 0 instead of using raw counts

<u>But</u>: remains problematic and computationally expensive \rightarrow **This is Motivation for DL Embeddings!**

A. Neural Probabilistic Language Model (Bengio et al. - 2003)

 Model probability distribution of next word given a sequence of N words:

$$J_{\theta} = \frac{1}{T} \sum_{t=1}^{T} \log P(w_t | w_{t-1}, \dots, w_{t-n+1})$$

- Perform table lookup on the embedding matrix C, i.e.
 one-hot encoding x embedding matrix = embedding
- Bengio et al. suggest to replace MLP by LSTM to leverage the sequential nature of inputs
- Cost of computing softmax is proportional to the vocabulary size V

- B. Word2 Vec (Mikolov et al. 2013)
 - Keep NPLM, but with Continuous Bag-of-words or Skip-gram model
 - In both cases, avoid softmax by ranking instead of predicting
 - Continuous Bag-of-words (CBOW): from context predict a word

$$J_{\theta} = \frac{1}{T} \sum_{t=1}^{T} \log P(w_t \mid w_{t-n}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+n})$$

• Skip-gram: predict context from a word

$$J_{\theta} = \frac{1}{T} \sum_{t=1}^{T} \sum_{-n \le j \le n, \ne 0} \log P(w_{t+j} \mid w_t)$$

- The main advantages of CBOW and Skip-gram:
 - i) no costly hidden layer (architecture) ii) additional context (task)

- C. GloVe (Pennington et al. 2014)
 - Assumption: co-occurrence probabilities P_{ij} are the main driver of language information: $P_{ij} = \frac{X_{ij}}{\sum_{k=1}^{V} X_{ik}}$
 - Goal: train embeddings by predicting P_{ii}

$$J = \sum_{i,j=1}^{V} f(X_{ij}) (w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log P_{ij})^2$$

- w_i represents the embedding of word i
- *f* is the weighting function that assigns relatively low weight to rare and frequent co-occurrences
- Dot product is unnormalized cosine similarity
- Learns representative "word algebra" like the famous: king man + woman = queen

D. Character Embeddings (Kim et al. - 2015)

- Embed characters instead of words
- Formed as **ngrams**, e.g. unigram, bigram, etc.
- 2 fundamental advantages:
 - Vocabulary size drastically reduced
 - Can deal with out-of-vocabulary words
 (OOV), while word embeddings cannot
- Can be concatenated with word embeddings
- Easy to train, thus in general task-specific

Figure 2: Plot of character n-gram representations via PCA for English. Colors correspond to: prefixes (red), suffixes (blue), hyphenated (orange), and all others (grey). Prefixes refer to character n-grams which start with the start-of-word character. Suffixes likewise refer to character n-grams which end with the end-of-word character.

II. Contextualized Embeddings - Attention with LSTM

A. CoVe (McCann et al. - 2017)

- Until now: static embeddings, i.e. the contextualized information has to be learnt by the network
- Now: dynamic embeddings, i.e. encoder/decoder architecture trained using bidirectional LSTM with attention, where encoder is used to encode the word vectors
- Embeddings trained on machine translation
 task; can leverage transfer learning
- Word Vector inputs are concatenation of GloVe and Character embeddings
- CoVe Embedding is the hidden-state of biLSTM's *top* layer

Figure 1: We a) train a two-layer, bidirectional LSTM as the encoder of an attentional sequence-to-sequence model for machine translation and b) use it to provide context for other NLP models.

• CoVe outperforms GloVe on downstream NLP tasks, e.g. sentiment analysis, name entity recognition

II. Contextualized Embeddings - Attention with LSTM

ELMo (Peters et al. - 2018) В.

- Train deep embeddings by training a biLSTM on a language model task, using all LSTM encoder layers
- Advantage over CoVe (supervised): ELMo (unsupervised) is trained on large amount of data
- Character CNN used to build initial word representations instead of mix of pretrained embeddings
- Obtains state-of-the-art (SOTA) results on 6 tasks, where performance gain comes only from ELMo:

0	Question Answering	TASK	Previous SOTA		OUR	ELMo +	INCREASE (ABSOLUTE/
0	Textual entailment		T NE VIOUS SO III	BASELINE	BASELINE	RELATIVE)	
0	Semantic role labeling	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
		SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
0	Coreference resolution	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
0	Named antity autocation	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
0	Named entity extraction	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
0	Sentiment analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

C. BERT (Devlin et al. - 2018)

- Replaces seq2seq LSTM attention model by a **Transformer** (Attention is all you need, *Vaswani et al. 2017*)
- Bidirectionality works differently: no concatenation
 of independent unidirectional representations as in ELMo
- Masked language model task and advanced location embeddings (used by transformers)

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

D. XLM (Lample et al. - 2019)

- Cross-lingual pre-training on an unsupervised masked language model task and a supervised translation language model task
- Processes *all* languages with the same shared vocabulary (Byte pair encoding) using arbitrary number of sentences (while BERT uses pairs)
- Improved SOTA on:
 - XLNI by 4.9% measured in terms of accuracy
 - unsupervised WMT'16 German-English by 9 BLEU
 - supervised WMT'16 Romanian-English by more than 4 BLEU

- Ε. XLNet (Yang et al. - 2019)
 - BERT relies on corrupting the input with masks, neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy
 - XLNet is a generalized autoregressive pretraining **method** with objective $\max_{\theta} \log p_{\theta}(\mathbf{x}) = \sum_{t=0}^{\infty} \log p_{\theta}(x_t \mid \mathbf{x}_{< t})$ instead of $\max_{\theta} \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{n} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}})$ in BERT

 $Transformers\ train/eval\ for\ long\ sequences\ (Vanilla,\ XL)$

- Uses **Transformer-XL architecture** (Dai et al. 2010) with an autoregressive structure $H_t = f(X_t, H_{t-1})$
- Achieves new SOTA on 7 out of 9 tasks benchmarked by GLUE, becoming a leader on June 2019
- Empirically, XLNet outperforms BERT on 20 tasks and achieves SOTA results on 18 tasks

- F. **RoBERTa** (Liu et al. 2019)
 - Studies the impact of key hyperparameters and of training data size in BERT's training
 - Modifications: (1) longer model training with bigger batches and more data
 - (2) removing the next sentence prediction objective (NSP loss);
 - (3) dynamic changing of the masking pattern applied to the training data
 - (4) training on longer sequences
 - GLUE (July 2019), RACE and SQuAD leader _
 - Results illustrate the importance of previously overlooked design decisions and suggest that
 BERT pre-training remains competitive with recently proposed alternatives

Results reported on GLUE

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg		
Single-task single models on dev												
BERTLARGE	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-		
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-		
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-		
Ensembles on test (from leaderboard as of July 25, 2019)												
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3		
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6		
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4		
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5		

References

- Bengio, Y., Ducharme, R. & Vincent, P. A neural probabilistic language model. In Proc. Advances in Neural Information Processing Systems 13 932–938, 2001.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed representations of words and phrases and their compositionality. In Proc. Advances in Neural Information Processing Systems 26 3111–3119, 2013.
- R. Jeffrey Pennington and C. Manning. Glove: Global vectors for word representation. 2014.
- Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware neural language models, 2015.
- Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation: Contextualized word vectors, 2017.
- ME. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer. Deep contextualized word representations, 2018.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin. Attention is all you need, 2017.
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- J. Devlin, M.-W. Chang, K. Lee, K. Toutanova. Cross-lingual Language Model Pretraining, 2019.
- Zhilin Yang , Zihang Dai, Yiming Yang , Jaime Carbonell , Ruslan Salakhutdinov , Quoc V. Le. XLNet: Generalized Autoregressive Pre-training for Language Understanding, 2019.
- Zhilin Yang , Zihang Dai, Yiming Yang , Jaime Carbonell , Ruslan Salakhutdinov , Quoc V. Le. *Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context*, 2019.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019.