# Министерство образования Российской Федерации Томский государственный университет Факультет прикладной математики и кибернетики

### БУЛЕВЫ ФУНКЦИИ

|  | l |   | • | • |   |   | • | • |   |   |   | • |   |  |
|--|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|  |   | • |   |   | • | • |   |   | • |   | • | • |   |  |
|  | I | • |   |   | • | • |   |   | • | • |   | • |   |  |
|  |   | • |   |   | • | • |   |   | • |   |   | • |   |  |
|  | l | • |   |   | • | • |   |   | • |   |   | • |   |  |
|  |   |   | • | • |   |   | • | • |   |   | • | • | • |  |
|  |   |   |   |   |   |   |   |   |   |   |   |   |   |  |

Учебно-методическое пособие часть I

Томск 2002

| "УТВЕРЖДАЮ"                                                                                       |
|---------------------------------------------------------------------------------------------------|
| Декан ФПМК                                                                                        |
| профессор А.М. Горцев                                                                             |
| 1 декабря 2002 г.                                                                                 |
| РАССМОТРЕНО и УТВЕРЖДЕНО методической комиссией<br>факультета прикладной математики и кибернетики |
| Председатель комиссии                                                                             |
| профессор С.Э. Воробейчиков                                                                       |
| Протокол 15 от 27 ноября 2002 г.                                                                  |

Предлагаемое учебно-методическое пособие состоит из нескольких частей. В данной части вводится понятие булевой функции, и предлагаются различные способы ее задания. Рассматриваются двойственные функции и двойственные формулы. Изложение опирается на курс лекций, читаемых на ФПМК и РФФ, и поэтому утверждения и алгоритмы приводятся без доказательства. Каждый раздел сопровождается упражнениями, и в заключение приводится контрольная работа по изложенному материалу с полным разбором примера.

Пособие предназначено для студентов, изучающих теорию булевых функций.

Составители: доцент каф. ЗИК С.В. Быкова программист каф. ВМиММ Ю.Б. Буркатовская

#### 1. Булевы константы и векторы

#### 1.1. Булевы константы

**Определение.** *Булевыми константами* называются символы 0 и 1.

Они могут интерпретироваться как числа: ноль и единица, знаки: минус и плюс, потенциалы: низкий и высокий, высказывания: ложь и истина, и многое другое.

**Определение**. *Булевым множеством* называется множество булевых констант  $B = \{0, 1\}$ .

#### 1.2. Булев вектор

**Определение**. *Булев вектор* это последовательность булевых констант, называемых *компонентами* булева вектора.

Договоримся обозначать булевы векторы греческими буквами, а компоненты вектора — латинскими с указанием номеров компонент.

Примеры.  $\alpha = a_1 a_2 ... a_6 = 010101$ ,  $\beta = b_1 b_2 ... b_8 = 11110000$ .

**Определение.** Длиной булева вектора назовем количество его компонент, а *весом* вектора – количество компонент, равных единице.

**Пример.** Длина булева вектора  $\alpha=101010$  равна шести, а вес – трем.

**Теорема о числе булевых векторов.** Число различных булевых векторов длины n равно  $2^n$ .

**Примеры.** Имеется 4 булевых вектора длины два: 00, 01, 10, 11, и 8 булевых векторов длины три: 000, 100, 010, 001, 110, 101, 011, 111.

Представление булевыми векторами подмножеств. Пусть заданы множество  $M = \{m_1, m_2, ..., m_n\}$  и его подмножество A. Построим булев вектор  $\alpha = a_1 a_2 ... a_n$ , представляющий

подмножество A, следующим образом: зафиксируем порядок элементов в множестве M и положим

$$a_i = \begin{cases} 1, & \text{если} \quad m_i \in A; \\ 0, & \text{если} \quad m_i \notin A. \end{cases}$$

**Примеры.** Булев вектор  $\alpha=11101$  выделяет в множестве  $M=\{2,6,4,7,8\}$  подмножество четных чисел, вектор  $\beta=10010$  выделяет подмножество простых чисел.

Представление булевыми векторами целых неотрицательных чисел. Введем следующее соответствие между булевым вектором  $\alpha = a_1 a_2 ... a_n$  и числом  $a \in \{0, 1, ..., 2^n - 1\}$ :

$$a = \sum_{i=1}^{n} a_i \times 2^{n-i}$$

(здесь компоненты булева вектора интерпретируются как числа 0 и 1).

#### Примеры.

Задан булев вектор  $\alpha=1001$ ; подставив его компоненты в формулу, получим число  $a=1\times 2^3+0\times 2^2+0\times 2^1+1\times 2^0=8+1=9$ .

Задано число a=13; разложив его, согласно формуле, на сумму степеней двойки:  $13=8+4+1=1\times 2^3+1\times 2^2+0\times 2^1+1\times 2^0$ , получим булев вектор  $\alpha=1101$ .

Данный алгоритм построения булева вектора по числу легко применим лишь для малых чисел, но в общем случае применяется другой вариант алгоритма.

**А**лгоритм построения вектора, представляющего число (использует целочисленное деление, результатом которого являются два целых числа: неполное частное и остаток).

*Начало*: задано целое число  $a \ge 0$ .

Шаг 1: поделим a на 2, запомним неполное частное и остаток. Шаг 2: если полученное частное не равно нулю, то поделим его на 2, запомним новые неполное частное и остаток и повторим шаг 2.

*Конец*: выпишем остатки в обратном порядке – получим искомый булев вектор.

**Пример.** 
$$a=36;$$
 частные:  $18,\,9,\,4,\,2,\,1,\,0;$  остатки:  $0,\,0,\,1,\,0,\,0,\,1.$ 

Выписав остатки в обратном порядке, получим булев вектор  $\alpha=100100$ , представляющий число 36.

#### 1.3. Пара булевых векторов

Рассмотрим два булевых вектора одинаковой длины и договоримся для наглядности писать их один под другим

$$\alpha = a_1 \ a_2 \dots a_n,$$
  
$$\beta = b_1 \ b_2 \dots b_n.$$

**Определение.** Говорят, что булевы векторы  $\alpha$  и  $\beta$  ортогональны по i-й компоненте, если  $a_i \neq b_i$ .

**Пример.** Булевы векторы  $\alpha = 1010 \atop \beta = 1000$  ортогональны по 3-й компоненте.

**Определение.** *Расстоянием* между булевыми векторами называют число ортогональных компонент в данной паре векторов (его еще называют *расстоянием по Хэммингу*).

**Пример.** Расстояние по Хэммингу между векторами  $\beta = 1010$  равно двум.

Определение. Булевы векторы называются *соседними* (*соседями*), если они ортогональны по одной и только одной компоненте, т.е. расстояние по Хэммингу между векторами равно единице.

**Пример.** Булевы векторы  $\frac{\alpha = 1010}{\beta = 1000} - \text{соседи}$  (по третьей компоненте).

**Определение.** Булевы векторы называются *противоположеными* (*антиподами*), если они ортогональны по всем компонентам, т.е. расстояние по Хэммингу между векторами равно их длине.

**Пример.** Булевы векторы 
$$\alpha = 1010 \\ \beta = 0101$$
 – антиподы.

Определение. Говорят, что булев вектор  $\alpha = a_1 a_2 ... a_n$  предшествует булеву вектору  $\beta = b_1 b_2 ... b_n$  (и это отношение обозначают  $\alpha \leq \beta$ ), если для любого i = 1, 2, ..., n выполняется условие  $a_i \leq b_i$  (здесь компоненты булевых векторов интерпретируются как числа 0 и 1). В этом случае говорят также, что булев вектор  $\beta$  следует за  $\alpha$ , булев вектор  $\alpha$  называют предшественником, а  $\beta$  – последователем.

Пример. 
$$\begin{array}{ll} \alpha=0010 \\ \beta=1011 \end{array}: \alpha \preceq \beta.$$

**Определение**. Булевы векторы  $\alpha$  и  $\beta$  называются cpashumuни, если  $\alpha \leq \beta$  или  $\beta \leq \alpha$ , в противном случае говорят, что они necpashumu.

**Примеры**. Рассмотрим две пары векторов  $\alpha = 1011$ ,  $\alpha' = 1010$   $\beta = 1001$ ,  $\beta' = 1001$  Векторы  $\alpha$  и  $\beta$  сравнимы, причем  $\beta \leq \alpha$ , а  $\alpha'$  и  $\beta'$  несравнимы.

#### 1.4. Упражнения

Упр.1. Определить длину и вес булевых векторов:

$$\begin{array}{lll} \alpha_1 = 00011100, & \alpha_2 = 0001010, & \alpha_3 = 11111, & \alpha_4 = 1101000, \\ \alpha_5 = 1, & \alpha_6 = 001, & \alpha_7 = 0000, & \alpha_8 = 1001. \end{array}$$

Какие натуральные числа они представляют?

**Упр.2.** Какими булевыми векторами представляются числа 5, 7, 21, 32, 40, 2002?

**Упр.3.** Задано множество  $M = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ . Представить булевыми векторами его подмножества:

 $A_1$  – четных чисел;

 $A_2$  – простых чисел;

 $A_3$  – чисел, кратных 3;

 $A_4$  – целых чисел.

**Упр.4.** Какие из следующих векторов являются соседними? Противоположными? Сравнимыми?

$$\alpha_1 = 00000011, \quad \alpha_2 = 00000111, \quad \alpha_3 = 10100001, \quad \alpha_4 = 01010101, \\ \alpha_5 = 11111100, \quad \alpha_6 = 10000001, \quad \alpha_7 = 01010100, \quad \alpha_8 = 01111110.$$

Каким из перечисленных векторов предшествуют  $\alpha_1$ ,  $\alpha_7$ ? Каково расстояние по Хэммингу между векторами  $\alpha_3$  и  $\alpha_7$ ,  $\alpha_1$  и  $\alpha_5$ ,  $\alpha_6$  и  $\alpha_8$ ?

Упр.5. Могут ли соседние векторы быть антиподами?

**Упр.6.** Могут ли быть сравнимыми различные векторы одинакового веса?

**Упр.7.** Сколько соседей у вектора длины n?

## 2. Булево пространство, интервал в булевом пространстве

#### 2.1. Булево пространство и способы его задания

**Определение.** *Булевым пространством*  $B^n$  *размерности* n называется множество всех булевых векторов длины n, расстояние между которыми вычисляется по Хэммингу.

Примеры.  $B^1 = \{0, 1\} = B$ ,  $B^2 = \{00, 01, 10, 11\}$ .

Булево пространство может быть задано несколькими способами. Рассмотрим два из них.

1) Явным перечислением векторов.

**Пример.**  $B^3 = \{000, 100, 010, 001, 110, 101, 011, 111\}.$ 

**2)** Матрицей в коде Грея. Булево пространство размерности n представляется матрицей, состоящей из  $2^s$  строк и  $2^p$  столбцов, где s и p — целые числа, такие что s+p=n и s=p либо s=p-1. Строкам матрицы поставлены в соответствие булевы векторы длины s (их называют  $kodamu\ cmpok$ ), а столбцам — булевы векторы длины p ( $kodu\ cmonfuos$ ).

Коды столбцов упорядочены по следующему принципу:

- младшая компонента кодов, т.е. компонента с меньшим номером, равна 0 в первой половине столбцов и равна 1 во второй их половине (например, если столбцов восемь, то младшая компонента принимает значения 00001111);
- следующая компонента равна 0 в первой четверти кодов и равна 1 во второй четверти, после чего значения симметрично повторяются, т.е. равны 1 в третьей четверти и 0 в четвертой (в примере: 00111100) симметрирование происходит в момент, когда предыдущая компонента меняет свое значение с 0 на 1;

– следующая компонента равна 0 в первой осьмушке кодов и равна 1 во второй их осьмушке, после чего ее значения дважды симметрично повторяются (в примере: 01100110) – симметрирование происходит в моменты, когда вторая компонента, а затем первая, меняют свои значения с 0 на 1;

– и так далее (за 1/8 следуют 1/16, 1/32, ...).

Коды строк строятся аналогично.

Элемент матрицы, стоящий в i-й строке и j-м столбце, задает булев вектор, который получается приписыванием к коду строки i кода столбца j.

**Пример.** Пусть n=5. На левой матрице показан процесс построения кодов столбцов. Выделенная клетка задает булев вектор 10011.



Договоримся изображать коды условно: единицу – черточкой, а ноль – ее отсутствием: такой код более нагляден, да и быстрее рисуется (он показан на правой матрице предыдущего примера).

На правой матрице пунктирными линиями обозначены места смены значений компонент, эти линии называются *осями симметрии* компонент. Каждая ось имеет свою *зону симметрии*, т.е. область, на которую распространяется ее действие:

- зоной симметрии оси младшей компоненты (в примере: первой для строк и третьей для столбцов) является вся матрица;
- зонами симметрии двух осей следующих компонент (в примере: второй для строк и четвертой для столбцов) являются половины матрицы;
- и так далее (с каждым разом размер зоны уменьшается в два раза, а число осей увеличивается в два раза).

Нетрудно заметить, что пара соседних векторов располагается в матрице симметрично относительно оси той компоненты, по которой векторы ортогональны.

**Пример.** Каждый из соседей выделенного вектора отмечен номером ортогональной компоненты.



Симметричное расположение соседей на матрице Грея упрощает их поиск и делает представление булева пространства наглядным, тем более, что код Грея рисуется просто.

Алгоритм рисования кода Грея для столбцов матрицы. Haчало: задана матрица из  $2^p$  столбцов.

*Hlas 1*: отступив от края матрицы один столбец, нарисуем черточку над двумя столбцами, затем, пропустив два столбца, нарисуем черточку над двумя следующими столбцами и так далее до конца матрицы – в результате получим ряд черточек, симметрично расположенных относительно середины матрицы.

*Шаг 2*: отступив от полученного ряда черточек немного вверх, начнем следующий ряд: нарисуем черту от середины первой до середины второй черточки предыдущего ряда, затем – от середины третьей до середины четвертой черточки предыдущего ряда и так далее до конца матрицы. Повторим шаг 2, пока это возможно (последнюю черту, которая начнется с середины матрицы, оборвем у правого края).

Конец.

Пример. Матрица содержит 16 столбцов.



#### 2.2. Интервал в булевом пространстве

### 2.2.1. Определение интервала и алгоритм его распознавания

Пусть задана пара булевых векторов одинаковой длины:

 $\alpha = a_1 \ a_2 \dots a_n,$ 

 $\beta = b_1 \ b_2 \dots b_n$ .

Определение. Интервалом  $I(\alpha,\beta)$  в булевом пространстве  $B^n$ , заданным парой булевых векторов  $\alpha$  и  $\beta$ , таких что  $\alpha \leq \beta$ , называется множество всех булевых векторов  $\gamma$  длины n, удовлетворяющих условию  $\alpha \leq \gamma \leq \beta$ , т.е.  $I(\alpha,\beta) = \{\gamma \in B^n : \alpha \leq \gamma \leq \beta\}$ . Булевы векторы  $\alpha$  и  $\beta$  называются границами интервала, вектор  $\alpha$  — наименьшим элементом интервала, а  $\beta$  — наибольшим.

**Пример.**  $I(000, 101) = \{000, 001, 100, 101\}$ , граница  $\alpha = 000$  – наименьший элемент, граница  $\beta = 101$  – наибольший элемент.

Из определения интервала следует, что либо границы  $\alpha$  и  $\beta$  совпадают в i-й компоненте  $(a_i = b_i)$ , тогда все векторы  $\gamma$  интервала  $I(\alpha,\beta)$  имеют в i-й компоненте то же значение, либо границы не совпадают  $(a_i < b_i)$ , тогда такие компоненты принимают в векторах  $\gamma$  все возможные значения.

Определение. Компоненты, по которым границы (а значит и все векторы интервала) совпадают, называются внешними компонентами интервала, остальные – внутренними. Число внешних компонент называется рангом интервала (r), а число внутренних – его размерностью (s).

**Пример.** В предыдущем примере вторая компонента – внешняя, первая и третья – внутренние, ранг r = 1, размерность s = 2.

Договоримся для наглядности записывать булевы векторы интервала один под другим и опускать фигурные скобки; кроме того, введем компактное представление интервала *троичным вектором*, в котором 0 и 1 задают значения внешних компонент, а черточки отмечают внутренние компоненты.

Пример. 
$$I(000, 101) = {0001 \atop 0011 \atop 100} = -0-.$$

Рассмотрим крайние случаи:

 $I(\alpha, \alpha) = \{\alpha\}$ , границы интервала совпадают, значит он состоит из одного булева вектора, ранг r = n, размерность s = 0;

I(00...0, 11...1) = --...-, интервал – все булево пространство  $B^n$ , ранг r = 0, размерность s = n.

**Утверждение о мощности интервала.** Мощность интервала размерности s равна  $2^s$ .

**Примеры.** Мощность интервала -0- из предыдущего примера равна  $2^2=4$ , мощность интервала 101 равна  $2^0=1$ , мощность интервала -- равна  $2^3=8$ .

**А**лгоритм распознавания интервала и поиска его границ (основан на утведждении о мощности интервала и на теореме о числе векторов).

Hauano: задано множество A булевых векторов длины n.

*Шаг 1*: если мощность множества A не является целой степенью двойки, т.е.  $|A| \neq 2^c$ , где c – целое, то A не является интервалом, идем на конец.

*Шаг* 2: считаем число s несовпадающих компонент в векторах множества A, т.е. число компонент, претендующих быть внутренними. Если  $s \neq c$ , то A – не интервал, идем на конец; иначе A является интервалом, s – его размерность, r = n - s – ранг.

*Шаг* 3: находим границы  $\alpha$  и  $\beta$  интервала. Вектор минимального веса (из всех векторов множества A) – это наименьший элемент интервала  $(\alpha)$ , а вектор максимального веса – наибольший элемент  $(\beta)$ .

Конец.

#### Примеры.

 $A = \{010, 011, 001\}$ : множество не образует интервал, так как его мощность, равная 3, целой степенью двойки не является.

 $A = \{0010,0011,0001,1000\}$ : множество не образует интервал – мощность является целой степенью двойки, но показатель степени c=2 не совпадает с количеством компонент s=3, претендующих быть внутренними (это первая, третья и четвертая компоненты).

 $A=\{010,011,001,000\}$ : множество образует интервал, так как его мощность является целой степенью двойки (c=2), и эта степень совпадает с количеством компонент s=2, претендующих быть внутренними (это вторая и третья компоненты). Границы интервала:  $\alpha=000$ ,  $\beta=011$ .

#### 2.2.2. Способы задания интервалов

Мы уже пользовались тремя способами задания интервалов.

- 1) Границами интервала.
- 2) Явным перечислением векторов интервала.
- 3) Троичным вектором.

Рассмотрим еще один способ.

**4) На матрице Грея.** Булево пространство представляется матрицей Грея, а все булевы векторы (клетки), образующие интервал, отмечаются.

Чтобы нарисовать интервал, совсем не обязательно получать в явном виде каждый из его булевых векторов и отмечать соответствующую клетку на матрице. Достаточно найти все строки и все столбцы, коды которых совпадают с векторами интервала по внешним компонентам – на их пересечении и будет лежать интервал.

**Пример.** I=-0-10: находим строки матрицы Грея, в кодах которых вторая компонента равна 0 (верхняя и нижняя строки), и столбцы, в кодах которых четвертая компонента равна 1, а пятая -0 (два средних столбца), - на их пересечении лежит заданный интервал.



Поскольку код Грея обладает свойством симметрии, то элементы интервала лежат симметрично относительно осей внутренних

компонент (в примере это первая и третья компоненты). Это позволяет распознавать интервалы на матрице Грея, не переходя к явному перечислению векторов.

#### Алгоритм распознавания интервала на матрице Грея.

Havano: задана матрица Грея с отмеченными клетками, которые образуют множество A.

*Шаг 1*: если число клеток множества A не является целой степенью двойки, т.е.  $|A| \neq 2^c$ , то A – не интервал, идем на конец.

*Шаг* 2: если множество A лежит симметрично относительно осей симметрии c компонент (его можно "разрезать" осями на симметричные половины, затем половины на симметричные четвертины, затем четвертины на симметричные осьмушки и так далее до тех пор, пока множество A не "разрежется" на отдельные клетки), то A – интервал, идем на конец, иначе A – не интервал.

Конец.

#### Примеры.



На левой матрице задан интервал -0-1 (8 клеток и оси симметрии трех компонент), на правой – не интервал (4 клетки и ось симметрии лишь одной компоненты).

Очевидно, что интервалами являются следующие множества:

- каждая отдельная клетка,
- любая пара симметричных клеток, в том числе рядом лежащих.
- любая строка и любой столбец,
- любая пара симметричных строк или столбцов, в том числе рядом лежащих,
- любой "квадрат" размером  $2 \times 2$ ,
- любая половина или четвертина матрицы,

- четверка клеток, лежащих в углах матрицы,
- и не только они.

#### 2.2.3. Соседние интервалы

Рассмотрим два интервала булева пространства  $B^n$ :  $I_1(\alpha_1, \beta_1)$  и  $I_2(\alpha_2, \beta_2)$ .

Определение. Интервалы  $I_1$ ,  $I_2$  называют соседними (соседями), если они совпадают по номерам внешних компонент, но различаются по значению одной из них; ее называют ортогональной компонентой, а интервалы  $I_1$ ,  $I_2$  — соседями по данной компоненте.

Примеры. Рассмотрим три пары интервалов:

$$I_1=0$$
 1 — — ,  $I_1'=0$  1 — — ,  $I_1''=0$  1 — — ,  $I_2''=0$  1 — — ,  $I_2'=1$  0 — — ,  $I_2''=0$  — — — 1. Интервалы  $I_1$  и  $I_2$  являются соседями (по первой компонен-

Интервалы  $I_1$  и  $I_2$  являются соседями (по первой компоненте),  $I'_1$  и  $I'_2$  не являются соседями (различаются по двум внешним компонентам),  $I''_1$  и  $I''_2$  также не соседи (различаются по номерам внешних компонент).

Утверждение о соседних интервалах. Два соседних интервала ранга r (размерности s) не пересекаются, а их объединение образует интервал ранга r-1 (размерности s+1).

Определение. Операцию объединения двух интервалов  $I_1$  и  $I_2$ , соседних по i-й компоненте, назовем  $c\kappa$ леиванием интервалов i-й компоненте, а результат их склеивания  $I = I_1 \bigcup I_2 - pacuupe$ нием каждого из интервалов  $I_1$  и  $I_2$  по i-й компоненте.

Очевидно, что на матрице в коде Грея соседние по i-й компоненте интервалы располагаются симметрично относительно оси симметрии этой компоненты.

**Пример.** На матрице показаны интервалы из предыдущего примера, которые располагаются симметрично относительно оси симметрии третьей компоненты.



#### 2.3. Упражнения

**Упр.1.** Перечислить булевы векторы, образующие следующие интервалы:

 $I_1(0001,1001),\ I_2(01010,11011),\ I_3(0000,1100),\ I_4(000,111).$  Задать эти интервалы на матрице Грея и вычислить их ранги.

**Упр.2.** Перечислить все интервалы ранга 1 в булевом пространстве  $B^3$ , представив их троичными векторами.

**Упр.3.** Перечислить все интервалы в пространстве  $B^5$ , первая и четвертая компоненты которых являются внешними, а все остальные — внутренними. Представить интервалы на матрице Грея.

**Упр.4.** Являются ли следующие множества булевых векторов интервалами, и если да, то какими троичными векторами они представляются?

**Упр.5.** Найти на матрице Грея все интервалы, соседние интервалу  $I=1\,0-0-.$ 

Упр.6. Образуют ли интервал векторы, выделенные на матрице Грея? Если да, то представить интервал троичным вектором и найти границы интервала.



# 3. Булевы переменные, булевы функции, фиктивные переменные

#### 3.1. Булевы переменные

**Определение.** *Булева переменная* – это переменная со значениями из булева множества  $B = \{0, 1\}$ .

Обозначаются булевы переменные символами: a,b,c,...,x,y,z,или теми же символами с индексами:  $x_1,x_2,...,x_n.$ 

**Определение.** Последовательность значений  $a_1, a_2, ..., a_n$  булевых переменных назовем *набором значений переменных* (или просто *набором*) и будем перечислять их без запятых.

Пример. Набор  $a_1a_2a_3a_4a_5a_6 = 010100$ .

#### 3.2. Булевы функции

Дадим два эквивалентных определения булевой функции.

Определение 1. Функцию  $f(x_1, x_2, ..., x_n)$  назовем булевой, если она сама и ее аргументы принимают значения 0 и 1.

**Определение 2.** Булевой функцией  $f(x_1, x_2, ..., x_n)$  назовем однозначное отображение булева пространства  $B^n$  в булево множество B, т.е.  $f: B^n \to B$ .

**Пример.** Булева функция двух аргументов, принимающая на наборах 01 и 11 значение 0, а на наборах 00 и 10 значение 1:

$$B^2 \begin{pmatrix} 00 \\ 01 \\ 10 \\ 11 \end{pmatrix} B \qquad f: B^2 \to B$$

Определение. Булевы функции равны,

$$f_1(x_1,...,x_n) = f_2(x_1,...,x_n),$$

если на одинаковых наборах они принимают одинаковые значения.

#### 3.3. Способы задания булевых функций

1) Задание булевой функции таблицей истинности. Так называется таблица, состоящая из двух частей: в левой части перечисляются все наборы значений аргументов (булевы векторы пространства  $B^n$ ) в естественном порядке, т.е. по возрастанию значений чисел, представляемых этими векторами, а в правой части — значения булевой функции на соответствующих наборах.

**Пример.** Рассмотрим булеву функцию трех аргументов, называемую *мажоритарной* (или функцией голосования): она принимает значение 1 на тех и только тех наборах, в которых единиц больше, чем нулей (major – больший).

| $x_1$ | $x_2$ | $x_3$ | $f(x_1, x_2, x_3)$ |
|-------|-------|-------|--------------------|
| 0     | 0     | 0     | 0                  |
| 0     | 0     | 1     | 0                  |
| 0     | 1     | 0     | 0                  |
| 0     | 1     | 1     | 1                  |
| 1     | 0     | 0     | 0                  |
| 1     | 0     | 1     | 1                  |
| 1     | 1     | 0     | 1                  |
| 1     | 1     | 1     | 1                  |

Очевидно, что левая часть таблицы истинности постоянна для всех функций с одинаковым числом аргументов. Поэтому, задавая несколько таких функций, можно не повторять левую часть таблицы, а в ее правой части перечислить столбцы значений всех функций.

**Пример.** Булевы функции  $f_1(x_1,x_2), f_2(x_1,x_2)$  и  $f_3(x_1,x_2)$  могут быть заданы общей таблицей

| : | $r_1$ | $x_2$ | $f_1$ | $f_2$ | $f_3$ |
|---|-------|-------|-------|-------|-------|
|   | 0     | 0     | 0     | 0     | 1     |
|   | 0     | 1     | 0     | 1     | 0     |
|   | 1     | 0     | 1     | 1     | 1     |
|   | 1     | 1     | 1     | 0     | 1     |

**Теорема о числе булевых функций.** Число различных булевых функций, зависящих от n переменных, равно  $2^{2^n}$ .

2) Задание булевой функции характеристическими множествами. Так называются два множества:

 $M_f^1,$  состоящее из всех наборов, на которых функция прини-

мает значение 1, т.е.  $M_f^1 = \{ \alpha \in B^n : f(\alpha) = 1 \};$ 

 $M_f^0$ , состоящее из всех наборов, на которых функция принимает значение 0, т.е.  $M_f^0=\{\alpha\in B^n:\, f(\alpha)=0\}.$ 

Пример (мажоритарная функция).

 $M_f^1 = \{011, 101, 110, 111\}, \quad M_f^0 = \{000, 001, 010, 100\}.$ 

3) Задание булевой функции вектором ее значений.

$$\varphi_f = f(0, 0, ..., 0) f(0, 0, ..., 1) ... f(1, 1, ..., 1).$$

Пример (мажоритарная функция).

 $\varphi_f = 00010111.$ 

4) Задание булевой функции матрицей Грея. Булево пространство задается матрицей Грея, и наборы (клетки матрицы), на которых булева функция  $f(x_1,...,x_n)$  принимает значение 1, отмечаются и называются moukamu.

Пример (мажоритарная функция).



**5)** Интервальный способ задания булевой функции. Булева функция  $f(x_1,...,x_n)$  задается таким множеством интервалов  $I_f = \{I_1,I_2,...,I_k\}$ , объединение которых образует характеристическое множество  $M_f^1$ , т.е.  $I_1 \cup I_2 \cup ... \cup I_k = M_f^1$ . Множество  $I_f$  называется достаточным для функции f.

**Пример.** Мажоритарная функция может быть задана достаточным множеством  $I_f = \{I_1, I_2, I_3\}$  интервалов:



Здесь интервалы представлены троичными векторами и изображены на матрице Грея.

В отличие от предыдущих, интервальный способ задания функций многовариантен (одну и ту же булеву функцию можно представить разными множествами интервалов).

**Пример**. Зададим мажоритарную функцию другим множеством  $I_f' = \{I_1, I_2, I_3, I_4\}$  интервалов:

Очевидно, что это множество интервалов избыточно: первый интервал (011) можно удалить.

**Определение.** Интервал назовем *допустимым для булевой функции*, если на всех его наборах функция равна 1.

**Примеры.**  $I_1 = -11$  – допустимый интервал для мажоритарной функции,  $I_2 = 10$  – не допустимый.



Определение. Интервал I назовем максимальным для булевой функции  $f(x_1,...,x_n)$ , если он является допустимым для этой функции, и не существует другого допустимого интервала I', такого что  $I \subset I'$ .

**Пример.**  $I_1=-11$  является максимальным интервалом для мажоритарной функции, а допустимый интервал  $I_2=111$  не является максимальным, т.к.  $I_2\subset I_1$ .



**Пример.** Зададим мажоритарную функцию множеством  $I_f'' = \{I_1, I_2, I_3\}$  всех максимальных интервалов.



**6) Задание булевой функции формулами** будет рассмотрено несколько позже.

#### 3.4. Фиктивные переменные

**Определение.** Говорят, что булева функция  $f(x_1,...,x_i,...,x_n)$  существенно зависит от переменной  $x_i$ , если выполняется условие

$$f(x_1,...,x_{i-1},0,x_{i+1},...,x_n) \neq f(x_1,...,x_{i-1},1,x_{i+1},...,x_n).$$

В этом случае также говорят, что переменная  $x_i$  существенная, в противном случае ее называют фиктивной переменной.

**Пример.** Рассмотрим булеву функцию  $f(x_1, x_2, x_3)$  и исследуем ее переменные  $x_1$  и  $x_3$ .

| $x_1$ | $x_2$ | $x_3$ | $f(x_1, x_2, x_3)$ |
|-------|-------|-------|--------------------|
| 0     | 0     | 0     | 0                  |
| 0     | 0     | 1     | 0                  |
| 0     | 1     | 0     | 1                  |
| 0     | 1     | 1     | 1                  |
| 1     | 0     | 0     | 1                  |
| 1     | 0     | 1     | 1                  |
| 1     | 1     | 0     | 0                  |
| 1     | 1     | 1     | 0                  |

| $x_2$ | $x_3$ | $f(0,x_2,x_3) =$ | $\neq f(1, x_2, x_3)$ |  |  |
|-------|-------|------------------|-----------------------|--|--|
| 0     | 0     | 0                | 1                     |  |  |
| 0     | 1     | 0                | 1                     |  |  |
| 1     | 0     | 1                | 0                     |  |  |
| 1     | 1     | 1                | 0                     |  |  |

| $x_1$ | $x_2$ | $f(x_1, x_2, 0) = f(x_1, x_2, 0)$ |   |  |  |  |
|-------|-------|-----------------------------------|---|--|--|--|
| 0     | 0     | 0                                 | 0 |  |  |  |
| 0     | 1     | 1                                 | 1 |  |  |  |
| 1     | 0     | 1                                 | 1 |  |  |  |
| 1     | 1     | 0                                 | 0 |  |  |  |

Из таблиц истинности видно, что переменная  $x_1$  булевой функции  $f(x_1,x_2,x_3)$  существенная, так как  $f(0,x_2,x_3)\neq f(1,x_2,x_3)$ . Переменная  $x_3$  фиктивная, так как  $f(x_1,x_2,0)=f(x_1,x_2,1)$ .

Очевидно, что для выявления фиктивных переменных можно не строить в явном виде таблиц истинности левой и правой частей неравенства, а сравнивать соответствующие части векторастолбца значений функции.

#### Алгоритм распознавания фиктивной переменной по таблице истинности.

- Для переменной  $x_1$  сравниваются половины столбца значений функции: верхняя и нижняя, так как именно в верхней половине  $x_1=0$ , а в нижней  $x_1=1$ ; если они совпадают, то переменная  $x_1$  фиктивна;
- для переменной  $x_2$  сравниваются четвертины столбца в каждой половине, так как именно в верхних четвертинах  $x_2=0$ , а в нижних  $x_2=1$ ; если четвертины в каждой половине совпадают, то переменная  $x_2$  фиктивна;
  - и так далее (за четвертинами следуют 1/8, 1/16, ...).

**Пример.** Для функции из предыдущего примера переменная  $x_1$  существенна, так как верхняя половина столбца значений функции (0011) не равна нижней половине (1100). Переменная  $x_2$  существенна, так как четвертины уже в первой половине различаются (00 и 11). Переменная  $x_3$  фиктивна, так как осьмушки в каждой четвертине равны (0 и 0, 1 и 1, 1 и 1, 0 и 0).

Выявление фиктивных переменных можно ускорить, используя следующее очевидное утверждение.

Достаточное условие отсутствия фиктивных переменных. Если вес вектора-столбца значений функции нечетен, то функция не может содержать фиктивных переменных.

Алгоритм удаления фиктивной переменной  $x_i$  состоит в вычеркивании из таблицы истинности всех строк, в которых  $x_i = 0$  (или всех строк, в которых  $x_i = 1$ ), и столбца  $x_i$ .

**Пример** (функция та же). После удаления фиктивной переменой  $x_3$  имеем

| $x_1$ | $x_2$ | $f(x_1, x_2)$ |
|-------|-------|---------------|
| 0     | 0     | 0             |
| 0     | 1     | 1             |
| 1     | 0     | 1             |
| 1     | 1     | 0             |

### Алгоритм распознавания фиктивной переменной по матрице $\Gamma$ рея.

Переменная фиктивна тогда и только тогда, когда точки на матрице расположены симметрично относительно осей этой переменной. Упрощенная матрица — это одна из ее симметричных половин.

**Пример** (функция та же и представлена на левой матрице). Переменная  $x_3$  функции фиктивна. Справа показан результат ее удаления.



Определение. Булевы функции назовем равными с точностью до фиктивных переменных, если равны (в смысле, определенном ранее) функции, полученные из исходных удалением фиктивных переменных (и именно это расширенное толкование равенства функций мы будем иметь в виду во всех дальнейших рассуждениях).

**Пример.** Рассмотрим функции  $f_1(x_1,x_2)$  и  $f_2(x_1,x_2)$ . Удалив фиктивную переменную  $x_1$  функции  $f_1(x_1,x_2)$  и фиктивную переменную  $x_2$  функции  $f_2(x_1,x_2)$ , получим равные функции  $f_1(x_2) = f_2(x_1) = f(x)$ . Значит, исходные функции равны с точностью до фиктивных переменных.

| $x_1$ | $x_2$ | $f_1(x_1, x_2)$ | $f_2(x_1, x_2)$ |
|-------|-------|-----------------|-----------------|
| 0     | 0     | 0               | 0               |
| 0     | 1     | 1               | 0               |
| 1     | 0     | 0               | 1               |
| 1     | 1     | 1               | 1               |

| $x_2$ | $f_1(x_2)$ |
|-------|------------|
| 0     | 0          |
| 1     | 1          |

| $x_1$ | $f_2(x_1)$ |
|-------|------------|
| 0     | 0          |
| 1     | 1          |

#### 3.5. Элементарные булевы функции

Рассмотрим все булевы функции двух и менее аргументов. При n=0 имеем две функции: константу 0 и константу 1.

При n = 1 имеем четыре функции:

| x | $f_0$ | $f_1$ | $f_2$ | $f_3$ |
|---|-------|-------|-------|-------|
| 0 | 0     | 0     | 1     | 1     |
| 1 | 0     | 1     | 0     | 1     |

Функции  $f_0$  и  $f_3$  зависят от x несущественно, поэтому равны двум рассмотренным ранее функциям. Введем названия и обозначения для остальных двух функций:

 $f_1(x) = x - moж decmeenhaa$  функция (читается "x"),

 $f_2(x) = \overline{x}$  – функция отрицания (а также инверсия, HE) (читается "не x").

При n=2 имеем 16 функций:

| $x_1$ | $x_2$ | $f_0$ | $f_1$    | $f_2$         | $f_3$ | $f_4$        | $f_5$ | $f_6$    | $f_7$ | $f_8$        | $f_9$ | $f_{10}$ | $f_{11}$     | $f_{12}$ | $f_{13}$      | $f_{14}$ | $f_{15}$ |
|-------|-------|-------|----------|---------------|-------|--------------|-------|----------|-------|--------------|-------|----------|--------------|----------|---------------|----------|----------|
| 0     | 0     | 0     | 0        | 0             | 0     | 0            | 0     | 0        | 0     | 1            | 1     | 1        | 1            | 1        | 1             | 1        | 1        |
| 0     | 1     | 0     | 0        | 0             | 0     | 1            | 1     | 1        | 1     | 0            | 0     | 0        | 0            | 1        | 1             | 1        | 1        |
| 1     | 0     | 0     | 0        | 1             | 1     | 0            | 0     | 1        | 1     | 0            | 0     | 1        | 1            | 0        | 0             | 1        | 1        |
| 1     | 1     | 0     | 1        | 0             | 1     | 0            | 1     | 0        | 1     | 0            | 1     | 0        | 1            | 0        | 1             | 0        | 1        |
|       |       |       | $\wedge$ | $\rightarrow$ |       | $\downarrow$ |       | $\oplus$ | V     | $\downarrow$ | 7     |          | $\leftarrow$ |          | $\rightarrow$ | /        |          |

Функции  $f_0$ ,  $f_3$ ,  $f_5$ ,  $f_{10}$ ,  $f_{12}$ ,  $f_{15}$  содержат фиктивные переменные и поэтому уже рассмотрены ранее. Обозначения остальных функций указаны в нижней строке таблицы, а названия их таковы:

 $f_1(x_1,x_2) = x_1 \wedge x_2$  – конъюнкция (логическое умножение, M)

 $f_7(x_1,x_2) = x_1 \lor x_2$  (читается " $x_1$  и  $x_2$ "), — дизбюнкция (логическое ИЛИ) (читается " $x_1$  или  $x_2$ "),

 $f_6(x_1,x_2) = x_1 \oplus x_2$  — дизъюнкция c исключением (сложение  $no\ modyno\ 2$ ) (читается " $x_1$  плюс  $x_2$ "),

 $f_9(x_1,x_2) = x_1 \sim x_2$  – эквивалентность (читается " $x_1$  эквивалентно  $x_2$ "),

 $f_8(x_1,x_2) = x_1 \downarrow x_2$  — стрелка Пирса (НЕ-ИЛИ) (читается " $x_1$ стрелка  $x_2$ "),

 $f_{14}(x_1,x_2)=x_1/x_2$  — umpux Шеффера (НЕ-И) (читается " $x_1$ штрих  $x_2$ "),

 $f_{13}(x_1,x_2)=x_1 o x_2$  - импликация (логическое следование) (читается " $x_1$  имплицирует  $x_2$ "),

 $f_2(x_1,x_2) = x_1 \hookrightarrow x_2 -$ не импликация (читается " $x_1$  не имплицирует  $x_2$ "),

 $f_{11}(x_1,x_2)=x_1\leftarrow x_2$  — обратная импликация (читается " $x_1$  обратно имплицирует  $x_2$ "),

 $f_4(x_1, x_2) = x_1 \leftarrow x_2$  — не обратная импликация (читается " $x_1$  не обратно имплицирует  $x_2$ ").

**Определение.** Булевы функции двух и менее аргументов назовем *элементарными булевыми функциями*.

#### Пары инверсных элементарных функций:

$$0.1, \quad \lor \downarrow, \quad \land /, \quad \oplus \sim, \quad \leftarrow \hookleftarrow, \quad \rightarrow \hookrightarrow,$$

кроме того, пару составляют тождественная функция и инверсия.

#### 3.6. Упражнения

- **Упр.1.** Задать с помощью таблиц истинности, характеристических множеств, векторов, матриц Грея и интервалов следующие булевы функции:
- $f_1: B^3 \to B$ ; функция равна единице на тех и только тех наборах, вес которых больше единицы;
- $f_2: B^4 \to B;$  функция равна единице на тех и только тех наборах, которые представляют числа большие или равные 7;
- $f_3: B^3 \to B$ ; функция равна нулю на всех наборах с четным весом, и только на них.
- **Упр.2.** Привести примеры таблиц истинности булевых функций:
- $f_1: B^3 \to B$ ; функция принимает различные значения на противоположных наборах;
  - $f_2: B^3 \to B: f(\alpha) \le f(\beta)$  если  $\alpha \le \beta$ .
- Упр.3. Соревнования обслуживают три судьи, один из них главный. Вес считается поднятым, если "за" проголосовало большинство судей, в том числе и главный. Построить таблицу истинности булевой функции, описывающей такое голосование.

Упр.4. Вдоль длинного коридора размещены лампы. Включение и выключение света управляется тремя выключателями, два из которых расположены в концах коридора, а третий — посередине. При нажатии любого выключателя все лампы включаются, если были выключены, и выключаются, если были включены. Построить таблицу истинности булевой функции, описывающей управление освещением коридора.

**Упр.5.** Найти и удалить фиктивные переменные следующих булевых функций:

| $\boldsymbol{x}$ | y | z | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$ | $f_8$ |
|------------------|---|---|-------|-------|-------|-------|-------|-------|-------|-------|
| 0                | 0 | 0 | 0     | 0     | 1     | 0     | 1     | 1     | 1     | 0     |
| 0                | 0 | 1 | 0     | 1     | 0     | 1     | 0     | 1     | 1     | 1     |
| 0                | 1 | 0 | 1     | 1     | 0     | 0     | 0     | 0     | 1     | 0     |
| 0                | 1 | 1 | 1     | 0     | 1     | 1     | 0     | 1     | 1     | 1     |
| 1                | 0 | 0 | 1     | 0     | 1     | 0     | 0     | 1     | 0     | 1     |
| 1                | 0 | 1 | 1     | 1     | 0     | 1     | 0     | 0     | 0     | 0     |
| 1                | 1 | 0 | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1     |
| 1                | 1 | 1 | 0     | 0     | 1     | 1     | 1     | 1     | 0     | 0     |

**Упр.6.** Найти и удалить фиктивные переменные следующих булевых функций:



**Упр.7.** Представить все элементарные булевы функции матрицами Грея и разбить их на пары инверсных функций.

#### 4. Формулы и равносильности

#### 4.1. Формула как способ задания функции

**Определение** (индуктивное). Пусть даны  $\Phi$  – множество символов функций и X – множество символов переменных.

База индукции. Если  $f_i$  – символ n-местной функции из множества  $\Phi$ , а  $x_1, x_2, ..., x_n$  – переменные из множества X, то последовательность символов  $f_i(x_1, x_2, ..., x_n)$  – формула над  $\Phi$  и X.

 $\mathit{Индуктивный переход}$ . Если  $f_j$  – символ m-местной функции из  $\Phi$ , а  $A_1,A_2,...,A_m$  – переменные из X или формулы, то последовательность символов  $f_j(A_1,A_2,...,A_m)$  – формула над  $\Phi$  и X, а  $A_1,A_2,...,A_m$  – ее  $\mathit{nod}$  формулы.

Заключительная фраза. Других формул нет.

Если множество  $\Phi = \{0,1, ,^-, \lor, \land, \oplus, \sim, \rightarrow, \leftarrow, \hookrightarrow, \downarrow, /\}$ , а множество  $X = \{a,b,...,z,x_1,x_2,...,x_n\}$ , то формулу над данными множествами  $\Phi$  и X договоримся называть просто формулой (обратим внимание на "пустой" символ, стоящий в множестве  $\Phi$  после 1 – это символ тождественной функции).

**Примеры.**  $\land (c, a); \quad \downarrow (b, c); \quad \neg(x); \quad \lor (\oplus (x, y), \neg(z)).$ 

Эти формулы написаны по всем правилам, оговоренным в определении, но мы будем использовать более привычный и уже введенный нами способ записи формул для элементарных булевых функций:  $c \wedge a, b \downarrow c, \overline{x}$  и т.д.

Чтобы указать порядок подстановки подформул  $A_1, A_2, ..., A_m$  в формулу, то есть порядок вычисления значения формулы, будем брать все подформулы, кроме инверсии, в скобки. Договоримся обозначать формулы большими латинскими буквами.

**Пример.** Последняя формула предыдущего примера примет вид  $F = (x \oplus y) \vee \overline{z}$ .

Разрешим опускать скобки вокруг конъюнкции и те скобки, которые бы указывали, что функции вычисляются в порядке их следования слева направо. Кроме того, разрешим опускать знак конъюнкции. Все это означает, что при вычислении по формуле конъюнкция имеет приоритет, а остальные функции вычисляются слева направо, но с учетом скобок.

**Пример.** Формула  $F = (x \oplus (y \wedge z)) \vee (x \to \overline{z})$  примет вид  $F = x \oplus yz \vee (x \to \overline{z})$ .

**Определение.** Говорят, что формула F задает булеву функцию  $f(x_1,...,x_n)$ , а функция peanusyem формулу, и в этом случае используют обозначение  $F_f$ .

**Пример.** Построим таблицу истинности функции f, реализующей предыдущую формулу  $F_f = x \oplus yz \lor (x \to \overline{z})$ . Порядок вычисления значений подформул обозначен цифрами внизу таблицы. Столбец значений функции выписан справа в рамке.

| x y z | $x \oplus$ | yz | V | $(x \rightarrow$ | $\overline{z})$ | f |
|-------|------------|----|---|------------------|-----------------|---|
| 0 0 0 | 0          | 0  | 1 | 1                | 1               | 1 |
| 0 0 1 | 0          | 0  | 1 | 1                | 0               | 1 |
| 0 1 0 | 0          | 0  | 1 | 1                | 1               | 1 |
| 0 1 1 | 1          | 1  | 1 | 1                | 0               | 1 |
| 1 0 0 | 1          | 0  | 1 | 1                | 1               | 1 |
| 1 0 1 | 1          | 0  | 1 | 0                | 0               | 1 |
| 1 1 0 | 1          | 0  | 1 | 1                | 1               | 1 |
| 1 1 1 | 0          | 1  | 0 | 0                | 0               | 0 |
|       | 2          | 1  | 5 | 4                | 3               |   |

Определение. Формулу назовем тождественно истинной (обозначается  $F \equiv 1$ ), если на всех наборах она принимает значение 1, и тождественно ложной (обозначается  $F \equiv 0$ ), если на всех наборах она принимает значение 0.

**Пример.** Исследуем формулу  $F = x \vee \overline{x}y \vee \overline{y}$ , построив по ней таблицу истинности (здесь мы демонстрируем другой способ построения таблицы истинности – построчный).

| x | _ | 9 9                                                            |
|---|---|----------------------------------------------------------------|
| 0 | 0 | $0 \vee \overline{0}0 \vee \overline{0} = 0 \vee 0 \vee 1 = 1$ |
| 0 | 1 | $0 \vee \overline{0}1 \vee \overline{1} = 0 \vee 1 \vee 0 = 1$ |
|   |   | $1 \vee \overline{10} \vee \overline{0} = 1 \vee 0 \vee 1 = 1$ |
| 1 | 1 | $1 \vee \overline{1}1 \vee \overline{1} = 1 \vee 0 \vee 0 = 1$ |

Формула является тождественно истинной.

#### 4.2. Равносильность формул

**Определение.** Две формулы F' и F'' называются *равносильными*, если они задают равные функции. В этом случае пишут F' = F''.

Доказывать равносильности можно с помощью таблиц истинности или рассуждений, опирающихся на свойства элементарных булевых функций.

**Пример.** Докажем равносильность  $\overline{x \lor y} = \overline{x} \, \overline{y}$ , построив таблицы истинности для левой и правой формул.

| x | y | $\overline{x \vee y}$ | $\overline{x}\overline{y}$ |
|---|---|-----------------------|----------------------------|
| 0 | 0 | 1                     | 1                          |
| 0 | 1 | 0                     | 0                          |
| 1 | 0 | 0                     | 0                          |
| 1 | 1 | 0                     | 0                          |

**Пример.**  $(x \to y) \lor 1 = 1$ . Для доказательства этой равносильности можно не строить таблиц истинности, а воспользоваться следующими рассуждениями: так как один из аргументов дизъюнкции равен 1, то левая часть тождественно равна 1 и поэтому равна правой.

Кроме предложенных, существуют и другие способы доказательства равносильностей, например, приведением формул к каноническому виду. Этот способ будет рассмотрен позже.

#### 4.3. Основные равносильности

К основным относят следующие равносильности, которые рекомендуется запомнить и применять при упрощении формул.

Cooücmea 0 u 1: 
$$x0=0, \qquad x1=x,$$
 
$$x\vee 0=x, \qquad x\vee 1=1,$$
 
$$x\oplus 0=x, \qquad x\oplus 1=\overline{x}.$$

Закон двойного отрицания:  $\overline{\overline{x}} = x$ .

Закон противоречия:  $x \overline{x} = 0$ .

Закон исключенного третьего:  $x \vee \overline{x} = 1$ .

Законы идемпотентности: xx = x,

$$x \lor x = x$$
.

Законы де Моргана:  $\overline{xy} = \overline{x} \vee \overline{y}$ ,

$$\overline{x \vee y} = \overline{x} \, \overline{y}.$$

Законы коммутативности:  $x \lor y = y \lor x$ ,

$$x \oplus y = y \oplus x$$
,

$$xy = yx$$
.

Законы ассоциативности:  $x \lor (y \lor z) = (x \lor y) \lor z = x \lor y \lor z$ ,

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z = x \oplus y \oplus z,$$

$$x(yz) = (xy)z = xyz$$
.

Законы дистрибутивности:  $x(y \lor z) = xy \lor xz$ ,

$$x\vee yz=(x\vee y)(x\vee z),$$

$$x(y \oplus z) = xy \oplus xz.$$

Законы поглощения:  $x \lor xy = x$ ,

$$x(x \vee y) = x$$
.

Законы склеивания:  $xy \vee \overline{x}y = y$ ,

$$(x \vee y)(\overline{x} \vee y) = y.$$

Закон обобщенного склеивания:  $xy \vee \overline{x}z = xy \vee \overline{x}z \vee yz$ .

#### 4.4. Свойства 0 и 1

Свойства 0 и 1 для дизъюнкции, конъюнкции и суммы по модулю 2 приведены в списке основных равносильностей. Для остальных функций аналогичные свойства при необходимости можно получать самостоятельно построением таблиц истинности.

Пример. Свойства 0 и 1 для импликации.

| x | $x \to 0$ | $x \rightarrow 1$ | $0 \to x$ | $1 \to x$ |
|---|-----------|-------------------|-----------|-----------|
| 0 | 1         | 1                 | 1         | 0         |
| 1 | 0         | 1                 | 1         | 1         |

Отсюда получаем следующие равносильности:

$$x \to 0 = \overline{x}, \quad x \to 1 = 1, \quad 0 \to x = 1, \quad 1 \to x = x.$$

#### 4.5. Упражнения

**Упр.1.** Построить таблицы истинности для функций, заданных формулами:

$$F_{2} = x \rightarrow y \lor (x \rightarrow z);$$
  
 $F_{3} = y \oplus (\overline{x} \lor z) (y \sim z);$   
 $F_{4} = x (x \downarrow y) \lor (y \downarrow z);$   
 $F_{5} = (x \oplus y \downarrow (y \oplus z)) \overline{y}z;$   
 $F_{6} = x \downarrow y \downarrow (y \downarrow z) \rightarrow xz.$   
Упр.2. Проверить равносильности:  
1)  $x \lor (y \sim z) = (x \lor y) \sim (x \lor z);$   
2)  $x \rightarrow (y \sim z) = (x \rightarrow y) \sim (x \rightarrow z);$   
3)  $x(y \sim z) = xy \sim xz;$   
4)  $x \rightarrow (y \lor z) = (x \rightarrow y) \lor (x \rightarrow z);$   
5)  $x \oplus (y \rightarrow z) = (x \oplus y) \rightarrow (x \oplus z);$ 

6)  $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$ .

 $F_1 = xy \to (y \lor z);$ 

**Упр.3.** Доказать основные равносильности, пользуясь различными способами.

**Упр.4.** Проверить, являются ли формулы тождественно истинными либо тождественно ложными:

$$F_{1} = x \rightarrow yz \lor \overline{y} \lor \overline{z};$$

$$F_{2} = (x \oplus z) (xy \sim z) \rightarrow y;$$

$$F_{3} = (x \oplus y \downarrow (y \oplus z)) \overline{y}z;$$

$$F_{4} = x \downarrow y \downarrow (y \downarrow z) \rightarrow xz.$$

# 5. Двойственная функция и двойственная формула

#### 5.1. Двойственная функция

Определение. Булева функция  $f^*(x_1,...,x_n)$  называется двойственной булевой функции  $f(x_1,...,x_n)$ , если она получена из функции  $f(x_1,...,x_n)$  инверсией всех аргументов и самой функции, т.е.

$$f^*(x_1,...,x_n) = \overline{f}(\overline{x}_1,...,\overline{x}_n).$$

Пример. Построим функцию, двойственную импликации.

| x y | $x \to y$ | $\overline{\overline{x}} \to \overline{y}$ |
|-----|-----------|--------------------------------------------|
| 0 0 | 1         | 0                                          |
| 0 1 | 1         | 1                                          |
| 1 0 | 0         | 0                                          |
| 1 1 | 1         | 0                                          |

**Алгоритм построения таблицы истинности двойствен- ной функции** (основан на определении двойственной функции).

Инверсия всех переменных превращает наборы в их антиподы. Поскольку в таблице истинности антипод первого набора расположен последним, антипод второго набора – предпоследним и так далее, то для построения функции  $f(\overline{x}_1,...,\overline{x}_n)$  нужно перевернуть вектор-столбец значений исходной функции  $f(x_1,...,x_n)$ , а для получения функции  $\overline{f}(\overline{x}_1,...,\overline{x}_n)$  еще и инвертировать компоненты столбца.

Пример. Построим функцию, двойственную импликации.

| x y | $x \to y$ | $\overline{x} \to \overline{y}$ | $\overline{\overline{x}} \to \overline{y}$ |
|-----|-----------|---------------------------------|--------------------------------------------|
| 0 0 | 1         | 1                               | 0                                          |
| 0 1 | 1         | 0                               | 1                                          |
| 1 0 | 0         | 1                               | 0                                          |
| 1 1 | 1         | 1                               | 0                                          |

Пары двойственных элементарных функций:

$$0.1, \quad \forall \land, \quad \downarrow /, \quad \oplus \sim, \quad \leftarrow \hookrightarrow, \quad \rightarrow \hookleftarrow.$$

Тождественная функция и инверсия двойственны каждая самой себе.

#### 5.2. Двойственная формула

Определение. Формула  $F^*$  называется двойственной формуле F, если она получена из F заменой символов функций на символы двойственных им функций.

Пример. 
$$F = x \downarrow (y \oplus (\overline{x} \lor yz)) \to (y \sim \overline{x}),$$
  
 $F^* = x/(y \sim \overline{x}(y \lor z)) \hookleftarrow (y \oplus \overline{x}).$ 

**Теорема** (*принцип двойственности*.) Если формула F задает булеву функцию  $f(x_1,...,x_n)$ , то двойственная ей формула  $F^*$  задает двойственную функцию  $f^*(x_1,...,x_n)$ .

**Пример.** Рассмотрим формулу  $F = \overline{x \vee y}$ , задающую функцию НЕ-ИЛИ, то есть стрелку Пирса. Двойственная ей формула  $F^* = \overline{xy}$  должна задавать функцию, двойственную стрелке Пирса – это штрих Шеффера: в самом деле  $F^* = \overline{xy}$  – это функция НЕ-И, то есть штрих Шеффера.

#### 5.3. Способы получения двойственной функции

Из материала, изложенного в предыдущих двух подразделах, следует, что если булева функция  $f(x_1,...,x_n)$  задана формулой  $F_f$ , то двойственная ей функция  $f^*(x_1,...,x_n)$  может быть получена из  $F_f$  следующими тремя способами:

- по определению двойственной функции инверсией в формуле  $F_f$  всех аргументов и самой функции;
- по определению двойственной формулы и принципу двойственности заменой в формуле  $F_f$  символов функций на символы двойственных функций;
- построением таблицы истинности исходной функции по заданной формуле  $F_f$ , а затем переходом к таблице истинности двойственной функции (переворотом и инверсией столбца значений исходной функции).

#### 5.4. Упражнения

Упр.1. Построить формулы для функций, двойственных данным, пользуясь двумя разными способами: определением двойственной функции и принципом двойственности. Сравнить таблицы истинности, построенные по полученным формулам.

$$F_1 = x y \vee y z \vee x t \vee z t;$$

$$F_2 = x \oplus 1 \lor y(z \, t \lor 0) \lor \overline{x} \, y \, z;$$
  

$$F_3 = (x \to y) \oplus ((x \downarrow y)/(\overline{x} \sim y \, z));$$
  

$$F_4 = (x \lor y \lor (y \overline{z} \oplus 1)) \to 1.$$

**Упр.2.** По таблицам истинности функций  $f_1 - f_8$  построить двойственные им функции.

| x y z | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$ | $f_8$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0 0 0 | 0     | 0     | 1     | 0     | 1     | 1     | 1     | 1     |
| 0 0 1 | 0     | 1     | 0     | 1     | 0     | 1     | 1     | 0     |
| 0 1 0 | 1     | 1     | 0     | 0     | 0     | 1     | 1     | 1     |
| 0 1 1 | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |
| 1 0 0 | 1     | 0     | 1     | 0     | 0     | 1     | 0     | 0     |
| 1 0 1 | 1     | 1     | 1     | 1     | 0     | 0     | 0     | 0     |
| 1 1 0 | 0     | 1     | 1     | 0     | 1     | 1     | 0     | 1     |
| 1 1 1 | 0     | 0     | 1     | 1     | 1     | 1     | 0     | 0     |

**Упр.3.** Являются ли двойственными формулы  $F_f$  и  $G_g$ ? Являются ли двойственными функции f и g?

- 1)  $F_f = x y \oplus x z \oplus y z$ ,  $G_g = \overline{x} \overline{y} \vee \overline{x} \overline{z} \vee \overline{y} \overline{z}$ ;
- 2)  $F_f = (\overline{x} \to \overline{y}) \to (y \to x),$
- $G_g = (x o y)(\overline{y} o \overline{x});$   $3) \ F_f = x \ y \downarrow x \ z,$   $G_g = (x \lor y)/(x \lor z).$  **Vnp.4.** Показать, что  $f^* = g$ .

- 1)  $F_f = \overline{x}yz \vee x(y \oplus z)$ ,
- $\varphi_{g} = 10010111;$ 2)  $F_{f} = x \oplus y \oplus z,$   $F_{g} = x \oplus y \oplus z;$ 3)  $F_{f} = xy \lor xz \lor yz,$
- $F_g = xy \vee xz \vee yz;$
- 4)  $M_f^1 = \{0101, 0110, 1001, 1010\},\$

$$I_1 = 0 \ 0 - - \ I_2 = \{I_1, I_2, I_3, I_4\}, \ I_3 = - - 0 \ 0 \ I_4 = - - 1 \ 1$$

### 6. Контрольная работа

Тема контрольной работы: булевы функции, фиктивные переменные, двойственные функции и двойственные формулы.



Схема контрольной работы (решение каждой из десяти предложенных здесь задач начинать с постановки задачи и делать вывод из сравнения таблиц истинности функции  $f^*$ , полученных разными способами; Г обозначает формулу без лишних скобок, (F) – с недостающими скобками).

#### Задания на контрольную работу (формула $F_f$ )

- $\begin{array}{llll} 1) \ x \to y \to (z \oplus \overline{x}y) & 6) \ x\overline{z} \downarrow y/(y \oplus x) & 11) \ y \oplus \overline{z} \to \overline{y}(x \downarrow z) \\ 2) \ x \leftarrow \overline{y} \leftarrow (z \oplus \overline{x}y) & 7) \ z \oplus y \leftarrow (\overline{x} \sim \overline{y}) & 12) \ x \oplus \overline{z} \to \overline{x}(y/z) \\ 3) \ x/y/(\overline{z} \sim \overline{x}y) & 8) \ x \vee \overline{z} \downarrow y/(y \sim x) & 13) \ xy \vee \overline{z}/(x \to z) \\ 4) \ z \to \overline{y} \to (x \oplus \overline{z}y) & 9) \ x\overline{z} \to y \downarrow (y \oplus x) & 14) \ y \sim \overline{z} \to \overline{y}(\overline{x}/\overline{z}) \\ 5) \ \overline{x} \to \overline{y} \to (z \sim \overline{x}y) & 10) \ x\overline{z} \oplus y \to (x \sim y) & 15) \ x \to \overline{z}/\overline{x}(y \downarrow z) \end{array}$

```
16) x \to \overline{y} \to (y \oplus \overline{x}z) 21) \overline{z} \sim xy \to (\overline{x} \downarrow \overline{y}) 26) y \oplus \overline{z}y/\overline{y}(x \downarrow \overline{z})

17) y \leftarrow \overline{y} \leftarrow (z \oplus \overline{x}y) 22) \overline{x}z \downarrow y/x(y \oplus z) 27) x/\overline{z} \to \overline{y}(x \downarrow z)

18) \overline{x}/\overline{y} \to (z \sim \overline{x}y) 23) x \vee y\overline{z} \downarrow (y \sim x) 28) \overline{x}/\overline{z} \to y(x \to z)

19) z \to x\overline{y} \to (x \oplus \overline{z}) 24) z \downarrow xy \sim (\overline{x} \to \overline{z}) 29) x \sim \overline{z} \to \overline{y}(x/\overline{z})

20) \overline{x} \to x\overline{y} \to (z \sim y) 25) x\overline{y} \downarrow x/(x \oplus y) 30) x \to y/\overline{x}(y \downarrow z)
```

**Пример.** Задана формула  $F_f = z \oplus y \leftarrow (\overline{x} \leftarrow \overline{y}z)$ .

0) Расставим недостающие скобки в формуле  $F_f$ . Возьмем в скобки конъюнкцию, затем остальные подформулы слева направо.

$$(F)_f = (z \oplus y) \leftarrow (\overline{x} \leftarrow (\overline{y}z)).$$

 $1),\,2)$  Построим таблицу истинности функции f по формуле  $(F)_f$ . Получим таблицу истинности двойственной функции  $f^*$  по таблице истинности функции f, переворачивая и инвертируя столбец значений функции f.

| x y z | $(z \oplus y)$ | $\leftarrow$ | $(\overline{x}$ | $\leftarrow$ | $(\overline{y}z))$ | f | $f^*$ |
|-------|----------------|--------------|-----------------|--------------|--------------------|---|-------|
| 0 0 0 | 0              | 0            | 1               | 1            | 0                  | 0 | 1     |
| 0 0 1 | 1              | 1            | 1               | 1            | 1                  | 1 | 0     |
| 0 1 0 | 1              | 1            | 1               | 1            | 0                  | 1 | 0     |
| 0 1 1 | 0              | 0            | 1               | 1            | 0                  | 0 | 1     |
| 1 0 0 | 0              | 0            | 0               | 1            | 0                  | 0 | 1     |
| 1 0 1 | 1              | 1            | 0               | 0            | 1                  | 1 | 0     |
| 1 1 0 | 1              | 1            | 0               | 1            | 0                  | 1 | 0     |
| 1 1 1 | 0              | 0            | 0               | 1            | 0                  | 0 | 1     |
|       | 2              | 5            | 3               | 4            | 1                  |   |       |

3) По определению двойственной функции получим из формулы  $(F)_f$  формулу двойственой функции  $(F')_{f^*}$ , инвертируя переменные и саму функцию f.

$$(F')_{f^*} = \overline{(\overline{z} \oplus \overline{y}) \leftarrow (x \leftarrow (y\overline{z}))}.$$

Упростим формулу  $(F')_{f^*}$ , заменив инверсию функции обратной импликации на не обратную импликацию.

$$(F')_{f^*} = (\overline{z} \oplus \overline{y}) \hookleftarrow (x \leftarrow (y\overline{z})).$$

0') Уберем лишние скобки в формуле  $(F')_{f^*}$  вокруг конъюнкции и первой слева функции  $(\oplus)$ .

$$F'_{f^*} = \overline{z} \oplus \overline{y} \longleftrightarrow (x \leftarrow y\overline{z}).$$

4) Построим формулу, двойственную  $(F)_f$ . Заменим в формуле  $(F)_f$  символы элементарных функций на символы двойственных им функций.

$$(F^*)_{f^*} = (z \sim y) \hookrightarrow (\overline{x} \hookrightarrow (\overline{y} \lor z)).$$

0'') Уберем лишние скобки в формуле  $(F^*)_{f^*}$ . Опустим скобки вокруг первой слева функции  $(\sim)$ .

$$F_{f^*}^* = z \sim y \hookrightarrow (\overline{x} \hookrightarrow (\overline{y} \lor z)).$$

1') Построим таблицу истинности двойственной функции  $f^*$  по формуле  $F'_{f^*}$ .

| x | y | z | $\overline{z}$ | $\oplus$ | $\overline{y}$ | $\leftarrow$ | (x) | $\leftarrow$ | $y\overline{z})$ | $f^*$ |
|---|---|---|----------------|----------|----------------|--------------|-----|--------------|------------------|-------|
| 0 | 0 | 0 | 1              | 0        | 1              | 1            |     | 1            | 0                | 1     |
| 0 | 0 | 1 | 0              | 1        | 1              | 0            |     | 1            | 0                | 0     |
| 0 | 1 | 0 | 1              | 1        | 0              | 0            |     | 0            | 1                | 0     |
| 0 | 1 | 1 | 0              | 0        | 0              | 1            |     | 1            | 0                | 1     |
| 1 | 0 | 0 | 1              | 0        | 1              | 1            |     | 1            | 0                | 1     |
| 1 | 0 | 1 | 0              | 1        | 1              | 0            |     | 1            | 0                | 0     |
| 1 | 1 | 0 | 1              | 1        | 0              | 0            |     | 1            | 1                | 0     |
| 1 | 1 | 1 | 0              | 0        | 0              | 1            |     | 1            | 0                | 1     |
|   |   |   | 2              | 4        | 3              | 6            |     | 5            | 1                |       |

1'') Построим таблицу истинности двойственной функции  $f^*$  по формуле  $F_{f^*}^*$ .

| r n | 7 | ~ ~ | $n \hookrightarrow$ | $(\overline{r}$ | $\hookrightarrow$ | $(\overline{y} \vee z)$ | ) f* |
|-----|---|-----|---------------------|-----------------|-------------------|-------------------------|------|
| x y | ~ | 2.0 | 9 ′                 | (4              |                   |                         | ') J |
| 0 0 | 0 | 1   | 1                   | 1               | Ü                 | 1 1                     | 1    |
| 0 0 | 1 | 0   | 0                   | 1               | 0                 | 1 1                     | 0    |
| 0 1 | 0 | 0   | 0                   | 1               | 1                 | 0 0                     | 0    |
| 0 1 | 1 | 1   | 1                   | 1               | 0                 | 0 1                     | 1    |
| 1 0 | 0 | 1   | 1                   | 0               | 0                 | 1 1                     | 1    |
| 1 0 | 1 | 0   | 0                   | 0               | 0                 | 1 1                     | 0    |
| 1 1 | 0 | 0   | 0                   | 0               | 0                 | 0 0                     | 0    |
| 1 1 | 1 | 1   | 1                   | 0               | 0                 | 0 1                     | 1    |
|     |   | 1   | 6                   | 2               | 5                 | 3 4                     |      |

Вывод. Три таблицы истинности двойственной функции  $f^*$ , полученные в 2), 1'), 1"), совпадают, следовательно, все задачи решены верно (кроме, может быть, задачи 0).

5) Удалим фиктивные переменные функции  $f^*$  в ее таблице истинности. Так как вес столбца значений функции четный, то переменные функции могут быть фиктивными. Рассмотрим переменную x. Верхняя половина столбца значений функции  $f^*$  (1001) равна нижней половине (1001), следовательно, переменная x является фиктивной. Удаляем из таблицы истинности столбец x и все строки, в которых x принимает значение 0.

| y | z | $f^*$ |
|---|---|-------|
| 0 | 0 | 1     |
| 0 | 1 | 0     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |

В полученной таблице истинности верхняя половина столбца значений функции  $f^*$  (10) не равна нижней половине (01), значит, переменная y существенна. Четвертины первой же половины не равны, значит, переменная z тоже существенна.

### Содержание

| 1. | Булен  | вы константы и векторы                           | 3  |
|----|--------|--------------------------------------------------|----|
|    | 1.1.   | Булевы константы                                 | 3  |
|    | 1.2.   | Булев вектор                                     | 3  |
|    | 1.3.   | Пара булевых векторов                            | 5  |
|    |        | Упражнения                                       | 6  |
| 2. | Булег  | во пространство, интервал в булевом пространстве | 7  |
|    | 2.1.   | Булево пространство и способы его задания        | 7  |
|    | 2.2.   | Интервал в булевом пространстве                  | 10 |
|    | 2.2.1. | Определение интервала и алгоритм его распо-      |    |
|    |        | знавания                                         | 10 |
|    | 2.2.2. | Способы задания интервалов                       | 12 |
|    | 2.2.3. | Соседние интервалы                               | 14 |
|    | 2.3.   | Упражнения                                       | 15 |
| 3. | Булев  | вы переменные, булевы функции, фиктивные         |    |
|    | перем  | иенные                                           | 16 |
|    | 3.1.   | Булевы переменные                                | 16 |
|    | 3.2.   | Булевы функции                                   | 16 |
|    | 3.3.   | Способы задания булевых функций                  | 17 |
|    | 3.4.   | Фиктивные переменные                             | 21 |
|    | 3.5.   | Элементарные булевы функции                      | 23 |
|    | 3.6.   | Упражнения                                       | 25 |
| 4. | Форм   | улы и равносильности                             | 27 |
|    | 4.1.   | Формула как способ задания функции               | 27 |
|    | 4.2.   | Равносильность формул                            | 29 |
|    | 4.3.   | Основные равносильности                          | 29 |
|    | 4.4.   | Свойства 0 и 1                                   | 30 |
|    | 4.5.   | Упражнения                                       | 31 |
| 5. | Двой   | ственная функция и двойственная формула          | 31 |
|    | 5.1.   | Двойственная функция                             | 31 |
|    | 5.2.   | Двойственная формула                             | 32 |
|    | 5.3.   | Способы получения двойственной функции           | 33 |
|    | 5.4.   | Упражнения                                       | 33 |
| 6. | Конт   | рольная работа                                   | 35 |