

Machine Learning

Clustering

Unsupervised learning introduction

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Astronomical data analysis

Machine Learning

Clustering

K-means algorithm

Input:

- K (number of clusters) \leftarrow
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
Cluster for i = 1 to m
c^{(i)} := index (from 1 to <math>K) of cluster centroid closest to x^{(i)}
closest to x^{(i)}
                                                                                                         الى بتحصل هنا انى بدور على أقل
                                                                                                         u و training ex(i) سىافە س
                  \rightarrow \mu_k := average (mean) of points assigned to cluster k
```

K-means for non-separated clusters

Machine Learning

Clustering Optimization objective

K-means optimization objective

- $\rightarrow c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned ke {1,2,.., k}
- $\rightarrow \mu_k$ = cluster centroid k ($\mu_k \in \mathbb{R}^n$)
 - $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Diff. between location of example x(i) & Optimization objective: location of cluster centroid to which x(i) has

$$\min_{\Rightarrow c^{(1)}, \dots, c^{(m)}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

$$\rightarrow \mu_1, \dots, \mu_K$$
 Distortion

Trying to minimize this idistance as possible

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n cluster essignment step (n) call (n) cal
                                                                                                                            c^{(i)} := index (from 1 to K ) of cluster centroid closest to x^{(i)}
                                                                              for k = 1 to K
                                                                                                                                      \mu_k := average (mean) of points assigned to cluster k
```


Machine Learning

Clustering Random initialization

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
        for i = 1 to m
           c^{(i)} := \text{index (from 1 to } K \text{ ) of cluster centroid}
                   closest to x^{(i)}
        for k = 1 to K
            \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

 ${\bf Should\ have}\ K < m$

Randomly pick \underline{K} training examples.

Set μ_1, \dots, μ_K equal to these K examples. $\mu_1 = \chi_1^{(i)}$

$$\mu_2 = \kappa_{(i)}$$

Random initialization

The K-means

For i = 1 to 100 {

algorithm will always converge to some final set of means for the centroids. Note that the converged solution may not always be ideal and depends on the initial setting of the centroids.

```
Randomly initialize K-means. Run K-means. Get c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K. Compute cost function (distortion) J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K) }
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Machine Learning

Clustering

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

