

Pixels to Prognosis: **Machine Learning** in Tumor Detection

Sinclair Hansen

What is a Tumor?

- A mass of abnormal cells that form in your body
- Generally defined as benign or malignant

Malignant (cancerous) tumor

Spreads into nearby tissues, glands, and other parts of the body.

Benign (noncancerous) tumor

Localized; does not spread or affect other tissues.

Common Types of Brain Tumors

Meningioma - Forms in the meninges, the outer three layers of tissue that cover and protect the brain just under the skull

Glioma - Arise from glial cells that surround neurons

Pituitary - Grow in pituitary gland tissue (John Hopkins Medicine)

Symptoms

In some cases a tumor can be felt or seen raised above the surface of the skin

Other symptoms include:

- Fatigue
- Fever/Chills
- Night Sweats
- Loss of Appetite

Using Al to Detect Tumors

Building a <u>Model</u>

```
# Simple training loop
num_epochs = 5
train_losses, val_losses = [], []
model = TumorClassifier(num_classes=4)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
    # Training phase
    model.train()
    running_loss = 0.0
    for images, labels in tqdm(train_loader, desc='Training loop'):
        # Move inputs and labels to the device
        images, labels = images.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item() * labels.size(0)
    train_loss = running_loss / len(train_loader.dataset)
    train_losses.append(train_loss)
```

Training a Model

Supervised Learning

Certainty of the Models

Results from Testing Set

Results from Outside Sources

No Tumor

Glioma

The Setbacks of Al

- Tens of thousands of **quality** images are required for a reliable model
- The model needs to predict edge cases accurately (Mitchell)

Al Lacks Transparency

We are unable to see what AI

"thinks" and how it makes decisions

(Mitchell)

Looking to the Future

In the US, approximately 75% of hospitals are utilizing AI-driven solutions for improved patient care and operational efficiency.

The AI in healthcare market is projected to grow to \$20.65 billion in 2023.

The AI in healthcare market is projected to grow to \$187 billion by 2030.

Nearly 60% of hospitals have integrated AI powered telemedicine solutions to offer remote healthcare services

(HealthfulHelps)

Thank you!

Works Cited

- Badža, M. M., & Barjaktarović, M. (2020). Classification of brain tumors from MRI images using a convolutional neural network. *Applied Sciences*, *10*(6), 1999. https://doi.org/10.3390/app10061999
- Brain tumor types. Johns Hopkins Medicine. (2021, November 8). https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor/brain-tumor-types
- Brain tumor faqs learn more or donate today!: Abta. American Brain Tumor Association. (2024, November 12).
 - https://www.abta.org/about-brain-tumors/brain-tumor-education/#:~:text=Approximately%2090%2C000%20people%20are%20diagnosed,primary%20brain%20and%20CNS%20tumors
- Evanson, J. (2019). Radiology of the pituitary. *Encyclopedia of Endocrine Diseases*, 339–348. https://doi.org/10.1016/b978-0-12-801238-3.65233-9
- Formaspace. (2024, April 4). The Ai Doctor Will See You Now. https://formaspace.com/articles/healthcare/the-ai-doctor-will-see-you-now/

GeeksforGeeks

, & GeeksforGeeks. (2025, February 27). *Supervised and unsupervised learning*. GeeksforGeeks. https://www.geeksforgeeks.org/supervised-unsupervised-learning/

Works Cited cont.

- HealthfulHelps Editors. (2024, April 15). *How many hospitals use artificial intelligence? (New Data)*. HealthfulHelps.
 - https://healthfulhelps.com/how-many-hospitals-use-artificial-intelligence-new-data/#:~:text=Over%209 0%25%20of%20hospitals%20now,care%20and%20optimize%20resource%20allocation
- Kelley, K. (2020, April 30). What happens during an MRI?. Intermountain Medical Imaging. https://aboutimi.com/what-happens-during-an-mri/
- Mitchell, M. (2025, February 13). *LLMS and World Models, part 1*. LLMs and World Models, Part 1 by Melanie Mitchell. https://aiguide.substack.com/p/llms-and-world-models-part-1
- Normal brain (MRI) | radiology case | radiopaedia.org. (n.d.). https://radiopaedia.org/cases/normal-brain-mri-6
- Peloso, M. (2022, January 21). *Moving toward "virtual biopsy" of gliomas using Artificial Intelligence*.

 Brigham On a Mission.

 https://www.brighamhealthonamission.org/2018/12/18/moving-toward-virtual-biopsy-of-gliomas-using-artificial-intelligence/
- What is a tumor?. Cleveland Clinic. (2024, December 19). https://my.clevelandclinic.org/health/diseases/21881-tumor