TP Mesure en Régime Transitoire

Raphaël Jamann

1 Objectif

A l'aide dumatériel à votre disposition, vous devez proposer une méthode permettant de déterminer la valeur de la capacité et de la résistance inconnues en exploitant le régime transitoire (i.e. décharge du condensateur).

2 Montage expérimental

On étudie les deux montages ci-dessous. Le générateur basse fréquence est branché au circuit par la sortie TTL^1 . Il délivre alors un signal créneau passant de $0\,V$ à $5\,V$ à une fréquence de $50\,Hz$ (période de $20\,ms$). On étudie la décharge du condensateur, à $t=0\,s$ le GBF passe de $5\,V$ à $0\,V$. C'est pourquoi il n'interviendra pas dans les calculs suivant (loi des mailles).

Loi des mailles:

$$\Rightarrow \qquad -U_R - U_{R_X} + U_C = 0 \\ \Leftrightarrow \qquad -(R + R_X)I + U_C = 0 \quad \text{avec } I = -C_X \frac{\mathrm{d}U_C}{\mathrm{d}t} \\ \Leftrightarrow \qquad C_X(R + R_X)\frac{\mathrm{d}U_C}{\mathrm{d}t} + U_C = 0 \\ \Rightarrow \qquad \tau_1 = C_X(R + R_X)$$

$$\Rightarrow \qquad \tau_1 = C_X(R + R_X)$$

On peut alors faire la mesure de τ_1 puis τ_2 et on résout le système pour obtenir C_X et R_X . Lien pour réaliser le tp avec une simulation.

$$\begin{cases} R_X = \frac{\tau_2}{C_X} \\ \tau_1 = C_X \left(R + \frac{\tau_2}{C_X} \right) \end{cases} \iff \begin{cases} R_X = \frac{R \tau_2}{\tau_1 - \tau_2} \\ C_X = \frac{\tau_1 - \tau_2}{R} \end{cases}$$

Réponses : Les valeurs mesurées de τ_1 et τ_2 sont respectivement $0.5\,ms$ et $1.5\,ms$. On obtient alors $C_X=100\,nF$ et $R_X=5\,k\Omega$