Database Management Systems (DBMS)

Lec 12: The Enhanced ER Model (Cont.)

Ramesh K. Jallu

IIIT Raichur

Date: 16/03/21

Recap

- Enhanced Entity-Relationship (EER) Model
- The concepts of EER model
 - Subclass and Superclass, Inheritance
 - **Specialization** (*Top-down conceptual refinement*)
 - Process of defining a set of subclasses of an entity type
 - **Generalization** (Bottom-down conceptual refinement)
 - Process of defining a generalized entity type from the given entity types
 - Constraints: Predicate-defined, disjointness, and completeness constraints

Today's plan

- Specialization/Generalization hierarchies and lattices
- The concepts of EER model
 - Subclass and Superclass, Inheritance
 - Specialization and Generalization
 - Union or Category
 - Aggregation

Hierarchies and lattices

- A subclass may itself have further subclasses specified on it
 - Forms a *hierarchy* or a *lattice*
- Hierarchy has a constraint that every subclass has only one superclass (called single inheritance)
 - this is basically a tree structure
- In a lattice, a subclass can be subclass of more than one superclass (called multiple inheritance)

Properties

- In specialization lattice or hierarchy, a subclass inherits the attributes not only of its direct superclass, but also of all its predecessor superclasses all the way to the root of the hierarchy or lattice
- An entity may exist in several *leaf nodes* of the hierarchy

Properties (Cont.)

- A subclass with *more than one* superclass is called a *shared subclass*
 - the existence of at least one shared subclass leads to a lattice
- In multiple inheritance, if an attribute (or relationship) originating in the *same superclass* is inherited more than once via different paths in the lattice, then it should be included only once in the shared subclass*

Modeling of Union types using Categories

- Sometimes it is necessary to represent a collection of entities from different entity types
- A subclass is said to be *Union type* or a *category* if it represents a collection of entities that is a subset of the *union* of entities from distinct entity types
 - Represents a single superclass/subclass relationship with more than one superclass

Shared subclass vs category

Tmake

Shared subclass vs category

- The collection of entities in a shared subclass is a subset of the *intersection* of its superclasses
 - I.e., an entity must exist in *all* the superclasses
- Inherits all the attributes of its superclasses
- The superclasses of a shared subclass always have the same key attribute(s)

- The collection of entities in a category is the *union* of its superclasses
 - I.e., an entity must exist in *only one* of the superclasses
- Inherits the attributes depending on the superclass to which the entity belongs
- The superclasses of a category may have different key attributes or they may have the same key attribute

Generalization vs category

Design Choices for Specialization/Generalization

- Many specializations/generalizations and subclasses can be defined to make the conceptual model accurate
 - the drawback is that the design becomes quite cluttered
- If a subclass has few specific (local) attributes and no specific relationships, it can be merged into the superclass
 - The specific attributes would hold NULL values for entities that are not members of the subclass
 - We can add a *type* attribute which specifies whether an entity is a member of the subclass

Design Choices for Specialization/Generalization (Cont.)

- Union types and categories should generally be avoided
 - If possible, we try to model using specialization/generalization
- The choice of disjoint/overlapping and total/partial constraints on specialization/generalization is driven by the application
 - If the requirements do not indicate any particular constraints, the default would generally be overlapping and partial

An example of applying the guidelines

Aggregation

- One limitation of the ER model is that it cannot express relationships among relationships
- Aggregation is an abstraction through which relationships are treated as higher level entities
 - It refers to the process by which entities are combined to form a single entity

An example UNIVERSITY EER Schema

A University database

- Students and their majors
- Transcripts and registration
- university's course offerings
- the sponsored research projects of faculty and graduate students

Summary of EER model

- Extensions to ER model that improve its representational capabilities
 - Subclass and its superclass
 - Specialization and generalization
 - Category or union type
 - Aggregation

Thank you!