Tutoraggio Ricerca Operativa 2019/2020 5. Programmazione Lineare: Teoria della dualità e Analisi di sensitività

Alice Raffaele, Romeo Rizzi

Università degli Studi di Verona

28 aprile 2020 05 maggio 2020

Sommario

Teoria della dualità

2 Analisi di sensitività

3 Bibliografia

Dualità in Programmazione Lineare

Ogni problema **primale** di massimo, è associato a un problema **duale** di minimo:

Dal Primale (max) al Duale (min)

max
$$-6x_1-3x_2$$
 min $1y_1 + 1y_2 + 2y_3$
s.t. $x_1 + x_2 \ge 1$ s.t. $y_1 + 2y_2 \ge -6$
 $2x_1 - x_2 \ge 1$ $y_1 - y_2 + 3y_3 \ge -3$
 $3x_2 \le 2$ $y_1, y_2 \le 0$
 $x_1, x_2 \ge 0$ $y_3 \ge 0$

D

- **1** Si introduce in **D** una variabile y_i per ogni vincolo in **P**;
- I coefficienti della funzione obiettivo di D sono i termini noti di P;
- I termini noti di D sono i coefficienti della funzione di obiettivo di P;
- **1** La matrice A di **D** corrisponde alla matrice A^T di **P**;
- I segni delle variabili di D sono opposti ai segni dei vincoli di P:
 - Se il vincolo $i \in A$, la variabile y_i sarà $b \in A$;
 - Se il vincolo $i \ge 1$, la variabile y_i sarà ≤ 0 ;
 - Se il vincolo i è =, la variabile y_i sarà libera in segno.
- I segni dei vincoli di D corrispondono a quelli delle variabili x in P.

Dal Primale (min) al Duale (max)

min
$$1y_1 + 1y_2 + 2y_3$$
 max $-6x_1 - 3x_2$
s.t. $y_1 + 2y_2 \ge -6$ s.t. $x_1 + x_2 \ge 1$
 $y_1 - y_2 + 3y_3 \ge -3$ $2x_1 - x_2 \ge 1$
 $y_1, y_2 \le 0$ $3x_2 \le 2$
 $y_3 \ge 0$ $x_1, x_2 \ge 0$

- **1** Si introduce in **D** una variabile y_i per ogni vincolo in **P**;
- I coefficienti della funzione obiettivo di D sono i termini noti di P;
- I termini noti di D sono i coefficienti della funzione di obiettivo di P;
- **1** La matrice A di **D** corrisponde alla matrice A^T di **P**;
- I segni delle variabili di D corrispondono a quelli dei vincoli di P;
- I segni dei vincoli di D sono opposti a quelli delle variabili x in P:
 - Se la variabile x_i è \leq , il vincolo i sarà ≥ 0 ;
 - Se la variabile x_i è \geq , il vincolo i sarà ≤ 0 ;
 - Se la variabile x_i è libera in segno, il vincolo i sarà =.

D

Esercizio sul passaggio tra P e D

max
$$2x_1 + 3x_2 - 4x_3$$

s.t. $3x_1 - x_2 \le -3$
 $17x_1 + 3x_3 \ge 8$
 $4x_2 + 12x_3 \le 2$
 $x_1 + x_2 + x_3 = 4$
 $x_1, x_2 \ge 0$
 x_3 libera

Esercizio sul passaggio tra P e D - Soluzione

min
$$-3y_1 + 8y_2 + 2y_3 + 4y_4$$

s.t. $3y_1 + 17y_2 + y_4 \ge 2$
 $-y_1 + 4y_3 + y_4 \ge 3$
 $3y_2 + 12y_3 + y_4 = -4$
 $y_1, y_3 \ge 0$
 $y_2 \le 0$
 y_4 libera

Teoremi della dualità

Dato il problema primale $P : \max \mathbf{c}^T \mathbf{x}$ t.c. $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0$ e il suo duale $D : \min \mathbf{b}^T \mathbf{y}$ t.c. $A^T \mathbf{y} \geq \mathbf{c}, \mathbf{y} \geq 0$:

- Il duale del duale D è il primale P stesso;
- Teorema della dualità in forma debole: $c^T x \le b^T y$.
- Teorema della dualità in forma forte: P una soluzione ottima finita se e solo se anche D ce l'ha e il valore delle due funzioni obiettivo coincide $\rightarrow \mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$.

Relazione tra Primale e Duale

		DUALE		
		OTTIMO FINITO	ILLIMITATO INFERIOR.	INAMMISSIBILE
PRIMALE	OTTIMO FINITO	SI	NO	NO
	ILLIMITATO SUPERIOR.	NO	NO	SI
	INAMMISSIBILE	NO	SI	SI

Condizioni di ottimalità

I vettori $\bar{\mathbf{x}} \in \mathbb{R}^n$ e $\bar{\mathbf{y}} \in \mathbb{R}^m$ sono ottimi rispettivamente per il primale P e per il duale D se e solo se valgono le seguenti condizioni:

- **1** $A\bar{x} \geq b, \bar{x} \geq 0$ (ammissibilità del primale)
- $\mathbf{c}^T \geq \bar{\mathbf{y}}^T A, \bar{\mathbf{y}} \geq 0$ (ammissibilità del duale)
- **3** $\bar{\mathbf{y}}^T(A\bar{\mathbf{x}}-b)=0$ (scarti complementari complementary slackness)
- $(\mathbf{c}^T \bar{\mathbf{y}}^T A)\bar{\mathbf{x}} = 0$ (scarti complementari complementary slackness)

Interpretazione economica e prezzi ombra

Si considerino un problema primale **P** in forma standard ed il suo duale **D**:

$$\begin{array}{lll}
\text{max} & c^T \mathbf{x} & \text{min} & b^T \mathbf{y} \\
\text{s.t.} & A\mathbf{x} = b & \text{s.t.} & A^T \mathbf{y} \ge c \\
& \mathbf{x} \ge 0 & \mathbf{y} \ge 0
\end{array}$$

Sia B una base ottima di \mathbf{P} e siano x^* e y^* le corrispondenti soluzioni ottime di \mathbf{P} e \mathbf{D} . Allora ciascuna variabile duale y_i^* indica di quanto varierebbe il valore ottimo se il termine noto del corrispondente vincolo primale b_i aumentasse di un'unità e la base ottima restasse la stessa.

- Questa interpretazione è valida solo se la base ottima rimane la stessa quando il termine noto del primale viene perturbato (si vedano le slides 18-22 sull'analisi di sensitività);
- Variabili duali come *prezzi di equilibrio*: il valore di y_i dice quanto si sarebbe disposti a pagare per incrementare di una unità il termine noto b_i (ammesso che la base ottima B resti la stessa);
- Altro link utile: http://www.swappa.it/wiki/Uni/RO-Prezzi-Ombra

TE 19/06/2014 - Es. 3: Ammissibilità

Si consideri la soluzione $x_3=x_6=x_7=0$, $x_1=6$, $x_2=5$, $x_4=10$, $x_5=14$ del seguente problema:

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

• Verificare esplicitamente che la soluzione proposta è ammissibile. È sufficiente sostituire i valori delle variabili in soluzione e controllare che tutti i vincoli siano soddisfatti.

TE 19/06/2014 - Es. 3: Duale

2 Scrivere il problema duale.

TE 19/06/2014 - Es. 3: Scarti complementari

 Impostare il sistema che esprima le condizioni agli scarti complementari

Cosa vale agli scarti complementari?

$$\bullet \ \bar{\mathbf{y}}^T(A\bar{\mathbf{x}}-b)=0$$

$$\bullet (\mathbf{c}^T - \bar{\mathbf{y}}^T A) \bar{\mathbf{x}} = 0$$

Usiamo la soluzione $\mathbf{x} = (6, 5, 0, 10, 14, 0, 0)$:

- $x_1 \neq 0 \rightarrow II$ primo vincolo del duale dovrà essere soddisfatto a uguaglianza:
 - $y_1 + y_4 = 1$
- La stessa cosa vale per il secondo, il quarto e il quinto vincolo sempre del duale (associati rispettivamente a x_2 , x_4 e x_5):
 - $y_1 + y_5 = 6$
 - $y_1 + y_2 + y_5 = 19$
 - $y_1 + y_3 + y_4 = 10$
- Sostituendo x nei vincoli del primale, il primo vincolo non è attivo (i.e., non è soddisfatto a uguaglianza):
 - $y_1 = 0$

TE 19/06/2014 - Es. 3: Soluzione duale

Otteniamo quindi il seguente sistema:

$$y_4 = 1$$

 $y_5 = 6$
 $y_2 + y_5 = 19$
 $y_3 + y_4 = 10$

Risolvere il sistema per trovare una soluzione duale complementare a quella fornita.

Il duale ammette un'unica soluzione $\mathbf{y}=(0,13,9,1,6)$: è ammissibile? Sostituisco questi valori in tutti i vincoli del duale e verifico.

TE 19/06/2014 - Es. 3: Valori dei parametri C_3 , C_6 e C_7

5 Per quali valori dei parametri C_3 , C_6 e C_7 la soluzione primale assegnata è ottima? Indicare con chiarezza le verifiche da compiere.

Sappiamo che alcune condizioni agli scarti complementari sono soddisfatte, dobbiamo ora verificare che valgano anche per il terzo, sesto e settimo vincolo del duale:

• (3):
$$x_3(y_1 + y_2 + y_4 - C_3) = 0$$

• (6):
$$x_6(y_1 + y_3 + y_5 - C_6) = 0$$

• (7):
$$x_7(y_1 + y_2 + y_3 - C_7) = 0$$

 $x_3 = x_6 = x_7 = 0$, è sufficiente che i vincoli del duale siano rispettati:

• (3):
$$y_1 + y_2 + y_4 = 14 \ge C_3$$

• (6):
$$y_1 + y_3 + y_5 = 15 \ge C_6$$

• (7):
$$y_1 + y_2 + y_3 = 22 \ge C_7$$

Se $C_3 \le 14$, $C_6 \le 15$ e $C_7 \le 22$, la soluzione primale fornita è ottima, oltre che ammissibile.

TE 19/06/2014 - Es. 3: Prezzi ombra

• Per C₃ = C₆ = C₇ = 10, quanto si sarebbe disposti a pagare per incrementare di un'unità il termine noto di ciascuno dei 5 vincoli?
Usando C₃ = C₆ = C₇ = 10, la soluzione fornita del problema primale è ancora ottima. Il prezzo da pagare per ogni incremento di un'unità del termine noto di ogni vincolo (i.e., il prezzo ombra) lo indicano proprio i valori che assumono le variabili del duale all'ottimo: (0, 13, 9, 1, 6).

Analisi di sensitività

Una volta che otteniamo la funzione obiettivo, abbiamo davvero concluso?

- Potremmo investigare quanto sia stabile la soluzione, rispetto a piccole variazioni dei parametri in ingresso;
- Non dimentichiamoci che stiamo risolvendo un modello del problema, non il problema stesso! Perciò meno sensibile è la soluzione, più affidabile sarà il modello;
- Analisi di sensitività: studio delle perturbazioni dei dati iniziali quando:
 - $B^{-1}\mathbf{b} \geq 0$ (ammissibilità del primale per $\bar{\mathbf{x}}$);
 - $\bar{\mathbf{c}}^T := \mathbf{c}^T \mathbf{c}_B^T B^{-1} A \ge 0^T$ (ammissibilità del duale per $\bar{\mathbf{y}}$, dove $\bar{\mathbf{y}}^T := \mathbf{c}_B^T B^{-1}$).
- La base B rimane ottima (ma non la soluzione x).
- Vedremo tre casi:
 - Variazione dei termini noti;
 - Variazione dei costi delle variabili fuori base;
 - Variazione dei costi delle variabili in base.

Analisi di sensitività - Variazione dei termini noti

Consideriamo la variazione $\Delta \mathbf{b}$:

•
$$B^{-1}(\mathbf{b} + \Delta \mathbf{b}) \ge 0$$

•
$$\bar{\mathbf{c}}^T := \mathbf{c}^T - \mathbf{c}_B^T B^{-1} A \ge \mathbf{0}^T$$
 (invariato).

La base B rimane ammissibile e ottima se e solo se:

$$B^{-1}\mathbf{b} \ge -B^{-1}\Delta\mathbf{b}$$

La soluzione ottima varia da $\mathbf{c}_B^T B^{-1} \mathbf{b}$ a $\mathbf{c}_B^T B^{-1} (\mathbf{b} + \Delta \mathbf{b}) \rightarrow \Delta z := (\mathbf{c}_B^T B^{-1}) \Delta \mathbf{b} = \bar{\mathbf{y}}^T \Delta \mathbf{b}$

Le variabili duali \bar{y}_i , $i=1,\ldots,m$, misurano la **sensitività** del valore ottimo della funzione obiettivo, rispetto a piccoli cambiamenti Δb_i nei termini noti.

Analisi di sensitività - Variazione costi variabili fuori base

Consideriamo ora $\Delta \mathbf{c}_N^T$ e siano \mathbf{c} e $\widetilde{\mathbf{c}}$ i vettori dei costi ridotto prima e dopo la variazione $\Delta \mathbf{c}_N^T$.

- $B^{-1}\mathbf{b} \ge 0$ (invariato);
- $\bullet \ \widetilde{\boldsymbol{c}}^T := [\widetilde{\boldsymbol{c}}_B^T, \widetilde{\boldsymbol{c}}_N^T] = [\boldsymbol{0}^T, (\boldsymbol{c}_N^T + \Delta \boldsymbol{c}_N^T) \boldsymbol{c}_B^T B^{-1} N] \geq \boldsymbol{0}^T.$

Come prima, vogliamo che B rimanga ottima, e ciò accade se e solo se:

$$\widetilde{\mathbf{c}}^T = \mathbf{c}_N^T - \mathbf{c}_B^T B^{-1} N + \Delta \mathbf{c}_N^T = \overline{\mathbf{c}}_N^T + \Delta \mathbf{c}_N^T \geq 0 \iff \Delta \mathbf{c}_N \geq -\overline{\mathbf{c}}_N.$$

Otteniamo quindi n-m disuguaglianze indipendenti l'una dall'altra:

$$\Delta c_j \geq -\bar{c}_j, \forall x_j$$
 fuori base

Il costo ridotto $\bar{c}_j \geq 0$ può essere interpretato come il massimo **calo** del costo c_j per cui la base B rimane ottima.

Analisi di sensitività - Variazione costi variabili in base

Infine consideriamo la variazione $\Delta \mathbf{c}_B^T$ e, come nel caso precedente, siano \mathbf{c} e $\widetilde{\mathbf{c}}$ i vettori dei costi ridotto prima e dopo la variazione $\Delta \mathbf{c}_B^T$.

- $B^{-1}\mathbf{b} \ge 0$ (invariato);
- $\tilde{\mathbf{c}}^T := [\tilde{\mathbf{c}}_B^T, \tilde{\mathbf{c}}_N^T] = [0^T, \mathbf{c}_N^T (\mathbf{c}_B^T + \Delta \mathbf{c}_B^T)B^{-1}N] \ge 0^T$.

Perciò B rimane ottima se e solo se:

$$\widetilde{\mathbf{c}}_N^T := \mathbf{c}_N^T - \mathbf{c}_B^T B^{-1} N - \Delta \mathbf{c}_B^T B^{-1} N \geq \mathbf{0}^T \iff \Delta \mathbf{c}_B^T B^{-1} N \leq \overline{\mathbf{c}}_N^T$$

Abbiamo ottenuto un sistema che definisce un poliedro in \mathbb{R}^m , i cui punti corrispondono ai vettori $\Delta \mathbf{c}_B$ per cui B non cambia.

Bibliografia

Marco Di Summa, *Corso di Ottimizzazione Discreta, Interpretazione economica della dualità* https://www.math.unipd.it/ disumma/OD-Cap4b.pdf

Matteo Fischetti, *Introduction to Mathematical Optimization*, Kindle Direct Publishing, 2019

https://www.amazon.it/Introduction-Mathematical-Optimization-Matteo-Fischetti/dp/1692792024

Robert J. Vanderbei, *Linear Programming: Foundations and Extensions*, Springer Nature, 4th edition, 2013 https://www.springer.com/gp/book/9781461476290