CLAIMS

- 1. A proton-exchange membrane having a structure of mesogen-containing organic molecular chains and a proton-donating group-containing group covalent-bonding to a silicon-oxygen three-dimensional crosslinked matrix, in which at least a part of the organic molecular chains are oriented to form an aggregate thereof.
- 2. The proton-exchange membrane of claim 1, which 10 contains a partial structure of the following formula (I):

$$\left(\begin{array}{c} ** \\ \xrightarrow{} \\ n_{12} \end{array} A_{11} = \begin{bmatrix} \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)_{3-m_{11}} \\ Si = \begin{pmatrix} \\ \\ \\ \end{array} O = * \\ \end{array} \right)_{m_{11}} = n_{11}$$
 ... (I)

15

wherein A_{11} represents a mesogen-containing organic atomic group; R_1 represents an alkyl group, an aryl group or a heterocyclic group; m_{11} indicates an integer of from 1 to 3; m_{11} indicates an integer of from 1 to 8; m_{12} indicates an integer of from 0 to 4; * indicates the position at which the structure bonds to a silicon atom; and ** indicates the position at which the structure bonds to an organic polymer chain.

3. The proton-exchange membrane of claim 1, wherein the proton-donating group covalent-bonds to the silicon-oxygen three-dimensional crosslinked matrix via a structure of the following formula (III):

$$E_1 - B_1 = \begin{cases} (R_3)_{3-m3} \\ Si + (O^*)_{m3} \end{cases}$$

wherein B_1 represents a linking group that contains an aliphatic group and/or an aromatic group; R_3 represents an alkyl group or an aryl group; E_1 represents a proton-donating group; m_3 indicates an integer of from 1 to 3; m_3 indicates an integer of from 1 to 4; and * indicates the position at which the structure bonds to a silicon atom.

4. The proton-exchange membrane of claim 1, which is obtained through sol-gel reaction of a precursor, organosilicon compound of the following formula (IV):

$$\left(\begin{array}{c} Y \\ \end{array} \right)_{n_{42}} A_3 = \left[\left(\begin{array}{c} (R_4)_{3-m_{41}} \\ Si (O-R_5)_{m_{41}} \end{array} \right]_{n_{41}} \cdots (IV)$$

5

10

15

wherein A_3 represents a mesogen-containing organic atomic group; R_4 represents an alkyl group, an aryl group or a heterocyclic group; R_5 represents a hydrogen atom, an alkyl group, an aryl group or a silyl group; Y represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; m_{41} indicates an integer of from 1 to 3; n_{41} indicates an integer of from 1 to 8; n_{42} indicates an integer of from 0 to 4; when m_{41} is 2 or more, R_5 's may be the same or different.

5. The proton-exchange membrane of claim 1, in which is used a sulfonic acid sol obtained through oxidization of a solution that contains an organosilicon compound of the following formula (IV), and an organosilicon compound of the following formula (VI) and/or (VII):

$$\left(\begin{array}{c} Y \\ \end{array} \right)_{n_{42}} A_3 = \left[\left(\begin{matrix} R_4 \\ S i \end{matrix} \right)_{3-m_{41}} \\ S i \left(\begin{matrix} O - R_5 \\ \end{matrix} \right)_{m_{41}} \right]_{n_{41}} \cdots (IV)$$

5

10

15

wherein A_3 represents a mesogen-containing organic atomic group; R_4 represents an alkyl group, an aryl group or a heterocyclic group; R_5 represents a hydrogen atom, an alkyl group, an aryl group or a silyl group; Y represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; m_{41} indicates an integer of from 1 to 3; n_{41} indicates an integer of from 1 to 8; n_{42} indicates an integer of from 0 to 4; when m_{41} is 2 or more, R_5 's may be the same or different,

$$HS - B_2 \left[\begin{array}{c} \left(R_8 \right)_{3\text{-ms}} \\ Si \left(O - R_9 \right)_{\text{ms}} \end{array} \right] \cdot \cdot \cdot \cdot (\text{VI}) \quad \left\{ \begin{array}{c} S - B_3 \left[\left(R_{10} \right)_{3\text{-m7}} \\ Si \left(O - R_{11} \right)_{\text{m7}} \end{array} \right]_{n7} \right\} \cdot \cdot \cdot \cdot (\text{VII})$$

wherein B_2 and B_3 each represent a linking group that contains an aliphatic group and/or an aromatic group; R_8 and R_{10} each represent an alkyl group or an aryl group; m6 and m7 each indicate an integer of from 1 to 3; n6 and n7 each indicate an integer of from 1 to 4; R_9 and R_{11} each represent a hydrogen atom, an alkyl group, an aryl group or a silyl group; when m6 or m7 is 2 or more, R_9 's or R_{11} 's may be the same or different.

6. The proton-exchange membrane of claim 1, which is obtained through sol-gel reaction of a compound of the following formula (IV) with from 1 mol% to 50 mol% of a compound of the following formula (VIII):

$$\left(\begin{array}{c} Y \xrightarrow{} A_3 \xrightarrow{} \left[\left(R_4 \right)_{3-m_{41}} \\ Si \left(O - R_5 \right)_{m_{41}} \right]_{n_{41}} & \cdots & (IV) \end{array}$$

.5

10

15

wherein A_3 represents a mesogen-containing organic atomic group; R_4 represents an alkyl group, an aryl group or a heterocyclic group; R_5 represents a hydrogen atom, an alkyl group, an aryl group or a silyl group; Y represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; m_{41} indicates an integer of from 1 to 3; n_{41} indicates an integer of from 1 to 8; n_{42} indicates an integer of from 0 to 4; when m_{41} is 2 or more, R_5 's may be the same or different,

$$(Y_2 \rightarrow)_{n_{82}} A_5 \leftarrow Z_1)_{n_{81}}$$
 ... (VIII)

wherein A_5 represents a mesogen-containing organic atomic group; Z_1 represents a substituent not changing in sol-gel reaction, or a hydrogen atom; n_{81} indicates an integer of from 1 to 8; n_{82} indicates an integer of from 0 to 4; Y_2 represents a polymerizing group capable of forming a carbon-carbon bond or a carbon-oxygen bond through polymerization; when n_{81} is 2 or more, Z_1 's may be the same or different.

7. The proton-exchange membrane of claim 1, in which is used a sol obtained through hydrolysis and polycondensation of a precursor of the following formula (XX) in the presence of water and an oxidizing agent:

wherein L4 represents a divalent linking group.

8. The proton-exchange membrane of claim 1, in which is used a sol obtained through hydrolysis and polycondensation of a precursor of the following formula (X) and/or (XI) in the presence of water and an oxidizing agent:

$$(R_{15})_{3-n9}$$

 $| (R_{14}O)_{n9} - Si - L_1 - (SH)_p$. . . (X)

10

15

25

wherein L_1 represents a (p+1)-valent linking group; R_{14} and R_{15} each represent an alkyl group or an aryl group; n9 indicates 2 or 3; at least one R_{14} is an alkyl or aryl group having at least 3 carbon atoms; R_{14} 's may be the same or different; and p indicates an integer of from 1 to 3,

$$\begin{array}{c} (R_{17})_{3\text{-n10}} & (R_{18})_{3\text{-n11}} \\ (R_{16}O)_{n10} - \text{Si} - \text{L}_2 - (\text{S})_{\overline{q}} - \text{L}_3 - \text{Si} - (\text{OR}_{19})_{n11} & \cdots & (\text{XI}) \end{array}$$

wherein L_2 and L_3 each represent a divalent linking group, R_{16} to R_{19} each represent an alkyl group or an aryl group; n10 and n11 each indicate 2 or 3; at least one R_{16} and at least one R_{19} each are an alkyl or aryl group having at least 3 carbon atoms; R_{16} 's and R_{19} 's each may be the same or different; and q indicates an integer of from 2 to 4.

- 9. A membrane electrode assembly comprising the 20 proton-exchange membrane of claim 1.
 - 10. A fuel cell comprising the proton-exchange membrane of claim 1.
 - 11. A silica sol composition obtained through hydrolysis and polycondensation of at least one precursor of the following formulae (X) and (XI) in the presence of water and an oxidizing

agent:

$$(R_{15})_{3-n9}$$

 $| (R_{14}O)_{n9} - Si - L_1 - (SH)_p$ · · · (X)

wherein L_1 represents a (p+1)-valent linking group; R_{14} and R_{15} each represent an alkyl group or an aryl group; n9 indicates 2 or 3; at least one R_{14} is an alkyl or aryl group having at least 3 carbon atoms; R_{14} 's may be the same or different; and p indicates an integer of from 1 to 3,

$$\begin{array}{c} (R_{17})_{3\text{-n10}} & (R_{18})_{3\text{-n11}} \\ (R_{16}O)_{n10} - Si - L_2 - (S)_{\overline{q}} - L_3 - Si - (OR_{19})_{n11} & \cdot & \cdot & \cdot \end{array}$$

wherein L_2 and L_3 each represent a divalent linking group, R_{16} to R_{19} each represent an alkyl group or an aryl group; n10 and n11 each indicate 2 or 3; at least one R_{16} and at least one R_{19} each are an alkyl or aryl group having at least 3 carbon atoms; and q indicates an integer of from 2 to 4.