Artemis Reference Manual

Otto Mattic

Version 7.2
December 29, 2016

AVERTISSEMENT / CAUTION

L'accès à ce document, ainsi que son utilisation, sont strictement limités aux personnes expressément habilitées par EDF.

EDF ne pourra être tenu responsable, au titre d'une action en responsabilité contractuelle, en responsabilité délictuelle ou de tout autre action, de tout dommage direct ou indirect, ou de quelque nature qu'il soit, ou de tout préjudice, notamment, de nature financier ou commercial, résultant de l'utilisation d'une quelconque information contenue dans ce document.

Les données et informations contenues dans ce document sont fournies "en l'état" sans aucune garantie expresse ou tacite de quelque nature que ce soit.

Toute modification, reproduction, extraction d'éléments, réutilisation de tout ou partie de ce document sans autorisation préalable écrite d'EDF ainsi que toute diffusion externe à EDF du présent document ou des informations qu'il contient est strictement interdite sous peine de sanctions.

The access to this document and its use are strictly limited to the persons expressly authorized to do so by EDF.

EDF shall not be deemed liable as a consequence of any action, for any direct or indirect damage, including, among others, commercial or financial loss arising from the use of any information contained in this document.

This document and the information contained therein are provided "as are" without any warranty of any kind, either expressed or implied.

Any total or partial modification, reproduction, new use, distribution or extraction of elements of this document or its content, without the express and prior written consent of EDF is strictly forbidden. Failure to comply to the above provisions will expose to sanctions.

Contents

1	Detail list of keywords	9
1.1	ACCOUNT NUMBER	9
1.2	ALPHA	9
1.3	AUTOMATIC CALCULATION OF PHASE	9
1.4	AUTOMATIC TETAP CALCULATION	9
1.5	BEGINNING PERIOD FOR PERIOD SCANNING	10
1.6	BIDON STRING	10
1.7	BINARY DATA FILE 1	10
1.8	BINARY DATA FILE 1 FORMAT	10
1.9	BINARY DATA FILE 2	10
1.10	BINARY DATA FILE 2 FORMAT	11
1.11	BINARY RESULTS FILE	11
1.12	BOTTOM FRICTION LAW	11
1.13	BOTTOM TOPOGRAPHY FILE	11
1.14	BOTTOM TOPOGRAPHY SMOOTHING	11
1.15	BOUNDARY CONDITIONS FILE	12
1.16	BREAKING	12
1.17	BREAKING LAW	12
1.18	CHAINING TOMAWAC 1	12
1.19	CHECKING THE MESH	12
1.20	CPU TIME	13
1.21	CURRENT	13
1.22	DEBUGGER	13
1.23	DEFAULT EXECUTABLE	13
1.24	DEFAULT PARALLEL EXECUTABLE	13
1.25	DESCRIPTION DES LIBRARIES	14

1.26	DIAMETER50	14
1.27	DIAMETER90	14
1.28	DICTIONARY	14
1.29	DIRECTION OF WAVE PROPAGATION	14
1.30	DISCRETIZATION IN SPACE	15
1.31	DISSIPATION RELAXATION	15
1.32	ENDING PERIOD FOR PERIOD SCANNING	15
1.33	FLUID KINEMATIC VISCOSITY	15
1.34	FLUID SPECIFIC MASS	15
1.35	FORMATTED DATA FILE 1	16
1.36	FORMATTED DATA FILE 2	16
1.37	FORMATTED RESULTS FILE	16
1.38	FORTRAN FILE	16
1.39	FRICTION	16
1.40	FRICTION COEFFICIENT	17
1.41	FRICTION FACTOR	17
1.42	FRICTION FACTOR IMPOSED	17
1.43	GAMMA	17
1.44	GAMMAS	17
1.45	GDALLY	18
1.46	GEOMETRY FILE	18
1.47	GEOMETRY FILE BINARY	18
1.48	GEOMETRY FILE FORMAT	18
1.49	GEOMETRY FILE STANDARD	18
1.50	GRAPHIC PRINTOUT PERIOD	19
1.51	GRAVITY ACCELERATION	19
1.52	HYDRAULIC REGIME IMPOSED	19
1.53	HYDRAULIC REGIME TYPE	19
1.54	INFORMATIONS ABOUT SOLVER	19
1.55	INITIAL CONDITIONS	20
1.56	INITIAL DEPTH	20
1.57	INITIAL WATER LEVEL	20
1.58	INSTANT FOR READING TOMAWAC SPECTRUM	20
1.59	KDALLY	20
1.60	LAW OF BOTTOM FRICTION	21
1.61	LIBRARIES	21

1.62	LIST OF FILES	21
1.63	LISTING PRINTOUT	21
1.64	LISTING PRINTOUT PERIOD	22
1.65	MATRIX STORAGE	22
1.66	MATRIX-VECTOR PRODUCT	22
1.67	MAXIMUM ANGLE OF PROPAGATION	22
1.68	MAXIMUM NUMBER OF ITERATIONS FOR SOLVER	22
1.69	MAXIMUM OF SUB-ITERATIONS	23
1.70	MAXIMUM OF SUB-ITERATIONS FOR TETAP	23
1.71	MAXIMUM SPECTRAL PERIOD	23
1.72	MEMORY SPACE	23
1.73	MINIMUM ANGLE OF PROPAGATION	23
1.74	MINIMUM SPECTRAL PERIOD	24
1.75	MINIMUM VALUE FOR H	24
1.76	MONODIRECTIONAL RANDOM WAVE	24
1.77	MULTIDIRECTIONAL RANDOM WAVE	24
1.78	NUMBER OF DIRECTIONS	24
1.79	NUMBER OF DIRECTIONS IN TOMAWAC SPECTRUM	25
1.80	NUMBER OF FREQUENCIES IN TOMAWAC SPECTRUM	25
1.81	NUMBER OF PERIODS	25
1.82	NUMBER OF PRIVATE VARIABLES	25
1.83	ORIGIN COORDINATES	25
1.84	ORIGINAL DATE OF TIME	26
1.85	ORIGINAL HOUR OF TIME	26
1.86	PARALLEL PROCESSORS	26
1.87	PARTITIONING TOOL	26
1.88	PASSWORD	26
1.89	PEAK PERIOD	27
1.90	PERIOD SCANNING	27
1.91	PHASE REFERENCE COORDINATES	27
1.92	PRECONDITIONING	27
1.93	PRIORITY	27
1.94	RAPIDLY VARYING TOPOGRAPHY	28
1.95	REFERENCE FILE	28
1.96	REFERENCE FILE FORMAT	28
1.97	REFERENCE WATER DEPTH FOR AUTOMATIC PHASE	28

1.98	RELAXATION COEFFICIENT	28
1.99	RELAXATION ON TETAP	29
1.100	RELEASE	29
1.101	RESULTS FILE	29
1.102	RESULTS FILE BINARY	29
1.103	RESULTS FILE FORMAT	29
1.104	RESULTS FILE STANDARD	30
1.105	RIPPLES COEFFICIENT	30
1.106	S EXPONENT	30
1.107	SEDIMENT SPECIFIC WEIGHT	30
1.108	SKIN ROUGHNESS ONLY	30
1.109	SOLVER	31
1.110	SOLVER ACCURACY	31
1.111	SOLVER OPTION	31
1.112	STEERING FILE	31
1.113	STEP FOR PERIOD SCANNING	31
1.114	SUB-ITERATIONS ACCURACY FOR CURRENT	32
1.115	SUB-ITERATIONS ACCURACY FOR DISSIPATION	32
1.116	SUB-ITERATIONS ACCURACY FOR TETAP	32
1.117	TITLE	32
1.118	TOMAWAC DATA FILE 1	32
1.119	TOMAWAC DATA FILE 1 FORMAT	33
1.120	USER CRAY	33
1.121	VALIDATION	33
1.122	VARIABLES FOR GRAPHIC PRINTOUTS	33
1.123	VARIABLES TO BE PRINTED	34
1.124	VECTOR LENGTH	34
1.125	WAVE HEIGHTS SMOOTHING	34
1.126	WAVE PERIOD	34
1.127	ZERO	34
2	List of keywords classified according to type	35
2.1	BOTTOM FRICTION	35
2.2	BREAKING	35
2.3	CHAINING	35
2.4	COMPUTATION ENVIRONMENT	36

2.5	COMPUTATIONAL INFORMATION	36
2.6	CONTROL	36
2.7	CURRENT	36
2.8	DISSIPATION	36
2.9	DONNEES	37
2.10	EQUATIONS,SMOOTHINGS	37
2.11	FORMULATION	37
2.12	FORMULATION DE BATTJES	37
2.13	FORMULATION OF DALLY	37
2.14	FORMULATION OF FW	37
2.15	FORMULATION OF REGIME	38
2.16	FORMULATION OF RUGOSITE	38
2.17	GENERAL	38
2.18	INCIDENT WAVE PHASE	38
2.19	INFORMATION	38
2.20	INFORMATION, SOLVER	39
2.21	INITIAL CONDITIONS EQUATIONS	39
2.22	INPUT-OUTPUT, FILES	39
2.23	INPUT-OUTPUT, INFORMATION	39
2.24	INPUT-OUTPUT,FILES	39
2.25	INPUT-OUTPUT, GRAPHICS AND LISTING	40
2.26	INPUT-OUTPUT,INFORMATION	40
2.27	MONODIRECTIONAL RANDOM WAVE	40
2.28	MULTIDIRECTIONAL RANDOM WAVE	40
2.29	NAMES	40
2.30	NUMERICAL PARAMETERS	41
2.31	NUMERICAL PARAMETERS, SOLVER	41
2.32	PERIOD SCANNING	41
2.33	PHASE	41
2.34	PHASE DEFINITION	42
2.35	PHYSICAL CONSTANTS	42
2.36	PHYSICAL PARAMETERS	42
2.37	RANDOM WAVE	42
2.38	REFERENCE WATER DEPTH	42
2.39	REFLEXION ANGLE	43
2.40	RESULTS	43

2.41	STANDARD	43
2.42	TETAP	43
2.43	TETAP CONVERGENCE	43
2.44	TOMAWAC	43
2.45	TOPOGRAPHY EFFECTS, EXTENDED MILD-SLOPE EQUATION	43
2.46	TYPE OF BINARY	43
3	Glossary	44
3.1	English/French glossary	44
3.2	French/English glossary	47
	Bibliography	52

1. Detail list of keywords

1.1 ACCOUNT NUMBER

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: "

French keyword: NUMERO DE COMPTE

Account number to which the cost of computation shall be charged.

1.2 ALPHA

Type: Real Dimension: 0

Mnemo ALFABJ
DEFAULT VALUE: 1.0
French keyword: ALPHA

Fixes the coefficient Alpha used in the formulation of the dissipation coefficient through breaking proposed by Battjes & Janssen, 1978 for random waves.

1.3 AUTOMATIC CALCULATION OF PHASE

Type: Logical

Dimension: 0

Mnemo LPHASEAUTO

DEFAULT VALUE: NON

French keyword: CALCUL AUTOMATIQUE DE LA PHASE

TRUE: AUTOMATIC CALCULATION OF INCIDENTE PHASE (based on reference water

depth)

1.4 AUTOMATIC TETAP CALCULATION

Type: Logical

Dimension: 0

Mnemo LANGAUTO

DEFAULT VALUE: NON

French keyword: CALCUL AUTOMATIQUE DE TETAP

TRUE: AUTOMATIC CALCULATION OF TETAP (based on velocity direction)

1.5 BEGINNING PERIOD FOR PERIOD SCANNING

Type: Real Dimension: 0

Mnemo PERDEB

DEFAULT VALUE: 0.

French keyword: PERIODE DE DEBUT POUR LE BALAYAGE EN PERIODE Used with the option: PERIOD SCANNING = YES Fixes the minimum value (in sec) of the period range to be used for the period scanning.

1.6 BIDON STRING

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: "

French keyword: CHAINE BIDON

Character Array of size: 4 Reserved to introduce new character strings (new file names...).

1.7 BINARY DATA FILE 1

Type: String Dimension: 0

Mnemo NOMBI1

DEFAULT VALUE: "

French keyword: FICHIER DE DONNEES BINAIRE 1

Data file, written in binary mode, at the disposal of the user. Data of this file must be read on unit 24.

1.8 BINARY DATA FILE 1 FORMAT

Type: String Dimension: -1

Mnemo ART_FILES(ARTBI1)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 1

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

1.9 BINARY DATA FILE 2

Type: String Dimension: 0

Mnemo NOMBI2

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES BINAIRE 2

Data file, written in binary mode, at the disposal of the user. Data of this file must be read on unit 25.

1.10 BINARY DATA FILE 2 FORMAT

Type: String Dimension: -1

Mnemo ART_FILES(ARTBI2)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 2

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

1.11 BINARY RESULTS FILE

Type: String Dimension: 0

Mnemo NOMRBI

DEFAULT VALUE:

French keyword: FICHIER DES RESULTATS BINAIRE

Results file, written in binary mode, at the disposal of the user. Data of this file must be written

on unit 28.

1.12 BOTTOM FRICTION LAW

Type: Integer Dimension: 0

Mnemo FORMFR

DEFAULT VALUE: 1

French keyword: FORMULATION DU FROTTEMENT DE FOND

Used with the option FRICTION = YES. Fixes the formulation used for bottom friction law: 1

: Kostense et al., 1986 2 : Putnam & Johnson, 1949.

1.13 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: 0

Mnemo NOMFON

DEFAULT VALUE: '

French keyword: FICHIER DES FONDS

Name of a potential bathymetry file. If this key-word is specified, the bathymetry which it is defining is accounted for.

1.14 BOTTOM TOPOGRAPHY SMOOTHING

Type: Integer
Dimension: 0
Mnemo LISFON

DEFAULT VALUE: 0

French keyword: LISSAGES DU FOND

Number of smoothings done on the topography. Each smoothing, using a mass matrix, is conservative. It is used when bathymetric data provide too irregular results after interpolation.

1.15 BOUNDARY CONDITIONS FILE

Type: String Dimension: 0

Mnemo NOMDYN

DEFAULT VALUE:

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the boundary conditions file. It is automatically built by STBTEL or by the mesh generator MATISSE.

1.16 BREAKING

Type: Logical Dimension: 0

Mnemo DEFERL
DEFAULT VALUE: NON

French keyword: DEFERLEMENT

Yes, if one wants to account for breaking process (see also reals of index 18, 19, 20, 21, 22, 23, and integer of index 12, 13).

1.17 BREAKING LAW

Type: Integer Dimension: 0

Mnemo IBREAK

DEFAULT VALUE:

French keyword: FORMULATION DU DEFERLEMENT

Specifies the formulation choosen for calculating the dissipation coefficient through breaking. Only effective for Monochromatic wave mode. 1: Formulation of Battjes & Janssen, 1978 2: Formulation of Dally et al., 1984 In random wave mode, the formulation of B & J, 1978 is the only one to be used.

1.18 CHAINING TOMAWAC 1

Type: Logical

Dimension: 0

Mnemo CHAINTWC

DEFAULT VALUE: NON

French keyword: CHAINAGE TOMAWAC 1

Yes, if one wants to use a spectrum from TOMAWAC on the incident boundary.

1.19 CHECKING THE MESH

Type: Logical

Dimension: 0

Mnemo CHECK_MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

if this key word is equal to yes, a call to subroutine checkmesh will look for errors in the mesh, superimposed points, etc.

1.20 CPU TIME

1.20 CPU TIME

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: '10'

French keyword: TEMPS MACHINE CRAY

CPU time (in sec) specified for a computation on CRAY. Warning: it is written as a Character.

1.21 CURRENT

Type: Logical Dimension: 0

Mnemo COURANT
DEFAULT VALUE: NON
French keyword: COURANT

TRUE: WAVE REFRACTION DUE TO CURRENT IS DESCRIBED USING KOSTENSE

MODEL (1988)

1.22 DEBUGGER

Type: Integer
Dimension: 0
Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, calls of subroutines will be printed in the listing

1.23 DEFAULT EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEF

 $DEFAULT\ VALUE: \ \ 'builds|PPP|bin|artemisMMMVVV.exe'$

French keyword: EXECUTABLE PAR DEFAUT

Default executable for ARTEMIS

1.24 DEFAULT PARALLEL EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEFPARA

DEFAULT VALUE: 'builds|PPP|bin|artemisMMMVVV.exe'

French keyword: EXECUTABLE PARALLELE PAR DEFAUT

Default parallel executable for Artemis

1.25 DESCRIPTION DES LIBRARIES

Type: String Dimension: 6

Mnemo LINKLIBS

DEFAULT VALUE: 'builds|PPP|lib|artemisMMMVVV.LLL;

builds|PPP|lib|biefMMMVVV.LLL; builds|PPP|lib|hermesMMMVVV.LLL; builds|PPP|lib|damoMMMVVV.LLL; builds|PPP|lib|parallelMMMVVV.LLL; builds|PPP|lib|specialMMMVVV.LLL'

French keyword: DESCRIPTION DES LIBRAIRIES

ARTEMIS LIBRARIES description

1.26 DIAMETER50

Type: Real Dimension: 0

Mnemo DIAM50
DEFAULT VALUE: 0.10E-3

French keyword: DIAMETRE50

DIAM50 is the maximum grain diameter, in m, which defines 50

1.27 DIAMETER90

Type: Real Dimension: 0

Mnemo DIAM90
DEFAULT VALUE: 0.15E-3
French keyword: DIAMETRE 90

DIAM90 is the maximum grain diameter, in m, which defines 90

1.28 DICTIONARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE : 'artemis.dico'
French keyword : DICTIONNAIRE

Key word dictionary.

1.29 DIRECTION OF WAVE PROPAGATION

Type: Real
Dimension: 0
Mnemo TETAH
DEFAULT VALUE: 0.0

French keyword: DIRECTION DE PROPAGATION DE LA HOULE

Fixes the direction towards the incident waves at boundaries go to. It is counted in degress and positively in the trigonometric sense relatively to the x axis. This value is prescribed as a constant value along all the wave incident type boundaries. If one wants to specify a non uniform value, the user has to specify the value TETAB in the sub-routine BORH.

1.30 DISCRETIZATION IN SPACE

Type: Integer
Dimension: 0
Mnemo DISESP

DEFAULT VALUE: 1

French keyword: DISCRETISATION EN ESPACE

NOT ACTIVE FOR THE MOMENT

1.31 DISSIPATION RELAXATION

Type: Real
Dimension: 0
Mnemo RELDIS
DEFAULT VALUE: 0.5

French keyword: RELAXATION SUR LA DISSIPATION

Fixes the relaxation coefficient used between two sub-iterations for the computation of the dis-

sipation term.

1.32 ENDING PERIOD FOR PERIOD SCANNING

Type: Real
Dimension: 0
Mnemo PERFIN
DEFAULT VALUE: 0.

French keyword: PERIODE DE FIN POUR LE BALAYAGE EN PERIODE

Used with the option: PERIOD SCANNING = YES Fixes the maximum value (in sec) of the

period range to be used for the period scanning.

1.33 FLUID KINEMATIC VISCOSITY

Type: Real
Dimension: 0
Mnemo VISCO
DEFAULT VALUE: 1.0E-6

French keyword: VISCOSITE CINEMATIQUE DU FLUIDE

Kinematic viscosity of the fluid (water) in m2/s.

1.34 FLUID SPECIFIC MASS

Type: Real
Dimension: 0
Mnome MVF

Mnemo MVEAU DEFAULT VALUE: 1000.0

French keyword: MASSE VOLUMIQUE DU FLUIDE

Fluid specific weight (water) in Kg/m3.

1.35 FORMATTED DATA FILE 1

Type: String Dimension: 0

Mnemo NOMFO1

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 1

Data file, written in ASCII mode, at the disposal of the user. Data of this file must be read on unit 26.

1.36 FORMATTED DATA FILE 2

Type: String Dimension: 0

Mnemo NOMFO2

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 2

Data file, written in ASCII mode, at the disposal of the user. Data of this file must be read on

unit 27.

1.37 FORMATTED RESULTS FILE

Type: String Dimension: 0

Mnemo NOMRFO

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS FORMATE

Results file, written in ASCII mode, at the disposal of the user. Data of this file must be written

on unit 29.

1.38 FORTRAN FILE

Type: String Dimension: 0

Mnemo NOMFOR DEFAULT VALUE: 'DEFAUT'

French keyword: FICHIER FORTRAN

Name of the FORTRAN file used for the computation.

1.39 FRICTION

Type: Logical Dimension: 0

Mnemo FROTTE
DEFAULT VALUE: NON

French keyword: FROTTEMENT

Yes, if one wants to include dissipation through bottom friction in the computation.

1.40 FRICTION COEFFICIENT

Type: Real
Dimension: 0
Mnemo FFON
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE FROTTEMENT

Do not confuse with the FRICTION FACTOR. Not used in ARTEMIS. It is let here for consistence with TELEMAC2D.

1.41 FRICTION FACTOR

Type: Real Dimension: 0

Mnemo FWCOEF

DEFAULT VALUE: 0.

French keyword: FACTEUR DE FROTTEMENT

Used with the option FRICTION FACTOR IMPOSED = YES. Fixes the value of the friction factor uniform over the domain.

1.42 FRICTION FACTOR IMPOSED

Type: Logical
Dimension: 0
Mnemo ENTFW
DEFAULT VALUE: NON

French keyword: FACTEUR DE FROTTEMENT IMPOSE

Used with the option FRICTION = YES. Yes, enables the user to impose a friction factor, by a key-word for a constant value (see real of index 29) or by programming in the FWSPEC subroutine for non-uniform value. If Not, ARTEMIS automatically computes the friction factor assuming that the bottom is sandy and uses the characteristics of sediment and of motion.

1.43 GAMMA

Type: Real Dimension: 0

Mnemo GAMMA

DEFAULT VALUE: 3.3 French keyword: GAMMA

Used with otion: MONODIRECTIONAL RANDOM WAVE = YES or MULTIDIRECTIONAL RANDOM WAVE = YES Fixes the gamma value tor the JONSWAP wave energy spectrum: GAMMA = 1: Pierson-Moskowitz GAMMA = 3.3: mean JONSWAP spectrum (default value).

1.44 GAMMAS

Type: Real Dimension: 0

Mnemo GAMMAS

DEFAULT VALUE: 0.88
French keyword: GAMMAS

Fixes the coefficient Gammas used in the criterion of the critical breaking wave height. Do not confuse with coefficient Gamma used in the JONSAP spectrum.

1.45 **GDALLY**

Type: Real Dimension:

GDALLY Mnemo

DEFAULT VALUE: 0.4 French keyword: GDALLY

Fixes the Gamma coefficient used in the formulation of Dally et al., 1984, for the dissipation coefficient in surf-breaking. Do not confuse with the coefficient GAMMA used in the JONSWAP formulae and coefficient gammas used to determine the breaking wave height criterion.

1.46 GEOMETRY FILE

Type: String Dimension:

Mnemo **NOMGEO**

DEFAULT VALUE:

French keyword: FICHIER DE GEOMETRIE Name of the file which contains the computational mesh.

1.47 **GEOMETRY FILE BINARY**

Type: String Dimension: 0

Mnemo **BINGEO DEFAULT VALUE:** 'STD'

French keyword: BINAIRE DU FICHIER DE GEOMETRIE

Type of binary mode used for geometry file writing. It depends on the machine used for the file generation. Possible values are: - IBM: for a file created on IBM, - I3E: for a file created on HP, - STD: enables to take the default binary type associated to the machine on which the user is working. It then concerns usual READ and WRITE instructions.

GEOMETRY FILE FORMAT 1.48

Type: String Dimension: -1

Mnemo ART_FILES(ARTGEO)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Geometry file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; - MED: MED format based on HDF5

GEOMETRY FILE STANDARD 1.49

Type: Integer Dimension: 0

Mnemo **STDGEO**

DEFAULT VALUE:

STANDARD DU FICHIER DE GEOMETRIE French keyword:

Adapts the reading of the GEOMETRY FILE to the specific standard: - 1: regular mesh on standard LEONARD - 2: any mesh on standard RUBENS - 3: any mesh on standard SELAFIN

1.50 GRAPHIC PRINTOUT PERIOD

Type: Integer Dimension: 0

Mnemo LEOPRD

DEFAULT VALUE: 1

French keyword: PERIODE DE SORTIE GRAPHIQUE

Fixes the period, in number of wave periods, for the writing of the VARIABLES FOR GRAPHIC PRINTOUTS (see this key-word) in the RESULTS FILE

1.51 GRAVITY ACCELERATION

Type: Real
Dimension: 0
Mnemo GRAV
DEFAULT VALUE: 9.81

French keyword: ACCELERATION DE LA PESANTEUR

Fixes the gravity acceleration value.

1.52 HYDRAULIC REGIME IMPOSED

Type: Logical

Dimension: 0

Mnemo ENTREG DEFAULT VALUE: NON

French keyword: REGIME HYDRAULIQUE IMPOSE

Used with the option FRICTION = YES. Enables to impose the hydraulic regime in the case of an automatic calculation of the friction factor for sandy beds.

1.53 HYDRAULIC REGIME TYPE

Type: Integer Dimension: 0

Mnemo REGIDO

DEFAULT VALUE: 1

French keyword: TYPE DU REGIME HYDRAULIQUE

Used with option HYDRAULIC REGIME IMPOSED = YES. Determines the type of the hydraulic regime (laminar, smooth-turbulent, rough-turbulent, transient).

1.54 INFORMATIONS ABOUT SOLVER

Type: Logical Dimension: 0

Mnemo INFORG
DEFAULT VALUE: OUI

French keyword: INFORMATIONS SUR LE SOLVEUR

Gives the iterations number which was necessary for the solver to converge.

1.55 INITIAL CONDITIONS

Type: String
Dimension: 0
Mnemo CDTINI

DEFAULT VALUE: 'ZERO ELEVATION'

French keyword: CONDITIONS INITIALES

Enables to define the initial conditions on water depths. Allowable values are: - ZERO ELE-VATION: fixes the free surface level to 0. Water depths are then equal to the difference between free surface level and bottom level. - CONSTANT ELEVATION: fixes the free surface level to the value specified by the key-word INITIAL WATER LEVEL. Water level are then computed as before. - ZERO DEPTH: initializes the water depths to 0. - CONSTANT DEPTH: initializes the water depths to the value specified by the key-word INITIAL DEPTH. - SPECIAL: initial conditions on water depths are to be precised in the sub-routine CONDIH.

1.56 INITIAL DEPTH

Type: Real Dimension: 0

Mnemo HAUTIN

DEFAULT VALUE: 0.

French keyword: HAUTEUR INITIALE

Value specified when using the option: INITIAL CONDITIONS: CONSTANT DEPTH.

1.57 INITIAL WATER LEVEL

Type: Real Dimension: 0

Mnemo COTINI DEFAULT VALUE: 0.

French keyword: COTE INITIALE

Used with the option INITIAL CONDITIONS: CONSTANT ELEVATION.

1.58 INSTANT FOR READING TOMAWAC SPECTRUM

Type: Real Dimension: 0

Mnemo TPSTWC

DEFAULT VALUE: 0.

French keyword: INSTANT DE LECTURE DU SPECTRE TOMAWAC

Give the instant of the TOMAWAC computation at which we want to import the spectrum for ARTEMIS

1.59 KDALLY

Type: Real Dimension: 0

Mnemo KDALLY
DEFAULT VALUE: 0.1
French keyword: KDALLY

Fixes the coefficient K used in the formulation of the dissipation coefficient proposed by Dally et al. 1984.

1.60 LAW OF BOTTOM FRICTION

Type: Integer
Dimension: 0
Mnemo KFROT

DEFAULT VALUE: 0

French keyword: LOI DE FROTTEMENT SUR LE FOND Not used in ARTEMIS. It is kept for consistence with TELEMAC2D

1.61 LIBRARIES

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'artemis,telemac,util,damo,bief,hp'

French keyword: BIBLIOTHEQUES

Set of libraries required for an ARTEMIS computation.

1.62 LIST OF FILES

Type: String Dimension: 15

Mnemo

DEFAULT VALUE: 'STEERING FILE;

DICTIONARY; FORTRAN FILE; GEOMETRY FILE;

BOUNDARY CONDITIONS FILE;

RESULTS FILE;

BOTTOM TOPOGRAPHY FILE;

BINARY DATA FILE 1; BINARY DATA FILE 2; FORMATTED DATA FILE 1; FORMATTED DATA FILE 2; BINARY RESULTS FILE; FORMATTED RESULTS FILE;

REFERENCE FILE:

TOMAWAC DATA FILE 1'

French keyword:

LISTE DES FICHIERS

List of files

1.63 LISTING PRINTOUT

Type: Logical
Dimension: 0
Mnemo LISTIN
DEFAULT VALUE: OUI

French keyword: SORTIE LISTING

If NOT is specified for this key-word, the printout listing just contains the head and the sentence END OF PROGRAM. It is adviced not to use this way.

1.64 LISTING PRINTOUT PERIOD

Type: Integer Dimension: 0 **LISPRD** Mnemo

DEFAULT VALUE: 1

French keyword: PERIODE DE SORTIE LISTING

Fixes the period, in number of wave periods, for the writing of the VARIABLES TO BE PRINTED (see this key-word)

1.65 MATRIX STORAGE

Type: Integer Dimension: Mnemo

OPTASS

DEFAULT VALUE: 3

French keyword: STOCKAGE DES MATRICES

1 : classical EBE 2 : assembled EBE 3 : edge by edge beware, with option 2, a special number-

ing of points is required

1.66 MATRIX-VECTOR PRODUCT

Type: Integer Dimension: 0 Mnemo **PRODUC**

DEFAULT VALUE: 1

French keyword: PRODUIT MATRICE-VECTEUR

1 : Classical Product 2 : New Frontal Product

MAXIMUM ANGLE OF PROPAGATION 1.67

Type: Real Dimension: 0

Mnemo **TETMAX** DEFAULT VALUE: 180.

French keyword: ANGLE MAXIMUM DE PROPAGATION

Used with the option: MULTIDIRECTIONAL RANDOM WAVE = YES Fixes the maximum value (in deg) of the directions range. It is counted positively in the trigonometric sense relatively to the x axis.

1.68 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER

Type: Integer Dimension:

Mnemo **NITMAX** DEFAULT VALUE: 60000

MAXIMUM D'ITERATIONS POUR LE SOLVEUR French keyword:

Algorithms used for solving the matrix system are iterative. It is then necessary to limit the maximum number of iterations

1.69 MAXIMUM OF SUB-ITERATIONS

Type: Integer
Dimension: 0
Mnemo NITDIS
DEFAULT VALUE: 15

French keyword: MAXIMUM DE SOUS-ITERATIONS

Fixes the maximum number of sub-iterations for the computation of dissipation.

1.70 MAXIMUM OF SUB-ITERATIONS FOR TETAP

Type: Integer
Dimension: 0
Mnemo NITTP
DEFAULT VALUE: 15

French keyword: MAXIMUM DE SOUS-ITERATIONS POUR TETAP Fixes the maximum number of sub-iterations for the automatic computation of tetap

1.71 MAXIMUM SPECTRAL PERIOD

Type: Real
Dimension: 0
Mnemo PMAX
DEFAULT VALUE: 200.

French keyword: PERIODE MAXIMUM DU SPECTRE

Maximum period value requested in seconds if it is necessary to alter the energy spectrum for the computation of the periods in the case of random waves (see PERALE).

1.72 MEMORY SPACE

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: '1500000W'

French keyword: PLACE MEMOIRE CRAY

Memory space (in words of 8 bytes) reserved for a computation on CRAY.

1.73 MINIMUM ANGLE OF PROPAGATION

Type: Real Dimension: 0
Mnemo TETI

Mnemo TETMIN DEFAULT VALUE: -180.

French keyword: ANGLE MINIMUM DE PROPAGATION

Used with the option: MULTIDIRECTIONAL RANDOM WAVE = YES Fixes the minimum value (in deg) of the directions range. It is counted positively in the trigonometric sense relatively to the x axis.

1.74 MINIMUM SPECTRAL PERIOD

Type: Real
Dimension: 0
Mnemo PMIN
DEFAULT VALUE: 0.02

French keyword: PERIODE MINIMUM DU SPECTRE

Minimum period value requested in seconds if it is necessary to alter the energy spectrum for the computation of the periods in the case of random waves (see PERALE).

1.75 MINIMUM VALUE FOR H

Type: Real
Dimension: 0
Mnemo HMIN
DEFAULT VALUE: 1.E-7

French keyword: VALEUR MINIMUM DE H
Fixes the minimum value of H Non active at the moment.

1.76 MONODIRECTIONAL RANDOM WAVE

Type: Logical Dimension: 0

Mnemo ALEMON DEFAULT VALUE: NON

French keyword: HOULE ALEATOIRE MONODIRECTIONNELLE

Yes, if one wants to run computation in random monodirectional waves (see reals key-words of index 12, 13 and integer of index 10).

1.77 MULTIDIRECTIONAL RANDOM WAVE

Type: Logical Dimension: 0

Mnemo ALEMUL DEFAULT VALUE: NON

French keyword: HOULE ALEATOIRE MULTIDIRECTIONNELLE

Yes, if one wants to run computation in random multidirectional waves (see reals key-words of index 12, 13 and integer of index 10).

1.78 NUMBER OF DIRECTIONS

Type: Integer
Dimension: 0
Mnemo NDALE
DEFAULT VALUE: 5

French keyword: NOMBRE DE DIRECTIONS DE DISCRETISATION

Used with the option: MULTIDIRECTIONAL RANDOM WAVE = YES It fixes the number of iso-energy bands which discretizes the wave directional spectrum.

1.79 NUMBER OF DIRECTIONS IN TOMAWAC SPECTRUM

Type: Integer
Dimension: 0
Mnemo NDTWC

DEFAULT VALUE: 0

French keyword: NOMBRE DE DIRECTION DANS LE SPECTRE TOMAWAC

Give the number of direction in the TOMAWAC imported spectrum

1.80 NUMBER OF FREQUENCIES IN TOMAWAC SPECTRUM

Type: Integer
Dimension: 0
Mnemo NFTWC

DEFAULT VALUE: 0

French keyword: NOMBRE DE FREQUENCES DANS LE SPECTRE TOMAWAC

Give the number of frequences in the TOMAWAC imported spectrum

1.81 NUMBER OF PERIODS

Type: Integer
Dimension: 0
Mnemo NPALE

DEFAULT VALUE: 5

French keyword: NOMBRE DE PERIODES DE DISCRETISATION

Used with otion: MONODIRECTIONAL RANDOM WAVE = YES or MULTIDIRECTIONAL RANDOM WAVE = YES It fixes the number of iso-energy frequency bands which discretize the energy spectrum.

1.82 NUMBER OF PRIVATE VARIABLES

Type: Integer
Dimension: 0
Mnemo NPRIV
DEFAULT VALUE: 0

French keyword: NOMBRE DE VARIABLES PRIVEES

Give the number of private variables

1.83 ORIGIN COORDINATES

Type: Integer Dimension: 2

Mnemo I_ORIG,J_ORIG

DEFAULT VALUE: 0;0

French keyword: COORDONNEES DE L'ORIGINE

Value in metres, used to avoid large real numbers, added in Selafin format, but so far no other

treatment

1.84 ORIGINAL DATE OF TIME

Type: Integer Dimension: 3

Mnemo MARDAT DEFAULT VALUE: 0;0;0

French keyword: DATE DE L'ORIGINE DES TEMPS

Give the date of the time origin of the model when taking into account the tide generating force.

1.85 ORIGINAL HOUR OF TIME

Type: Integer Dimension: 3

Mnemo MARTIM DEFAULT VALUE: 0;0;0

French keyword: HEURE DE L'ORIGINE DES TEMPS

Give the time of the time origin of the model when taking into account the tide generating force.

1.86 PARALLEL PROCESSORS

Type: Integer
Dimension: 0
Mnemo NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

NUMBER OF PROCESSORS FOR PARALLEL PROCESSING 0 : 1 machine, compiling without parallel library 1 : 1 machine, compiling with a parallel library 2 : 2 processors or machines in parallel etc....

1.87 PARTITIONING TOOL

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR

PARTITIONING TOOL SELECTION 1: METIS 2: SCOTCH 3: PARMETIS 4: PTSCOTCH

etc...

1.88 PASSWORD

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: "

French keyword: MOT DE PASSE CRAY

Password associated to the CRAY Userid.

1.89 PEAK PERIOD 27

1.89 PEAK PERIOD

Type: Real
Dimension: 0
Mnemo PERPIC
DEFAULT VALUE: 10.0

French keyword: PERIODE DE PIC

Used with otion: MONODIRECTIONAL RANDOM WAVE = YES or MULTIDIRECTIONAL

RANDOM WAVE = YES Fixes the peak period (in sec) of the energy spectrum

1.90 PERIOD SCANNING

Type: Logical
Dimension: 0
Mnemo BALAYE
DEFAULT VALUE: NON

French keyword: BALAYAGE EN PERIODE

Yes, if one wants to run computations by scanning a period range (resonance computations, see also reals of index 8, 9, and 10).

1.91 PHASE REFERENCE COORDINATES

Type: Real Dimension: 2

Mnemo X_PHREF,Y_PHREF

DEFAULT VALUE: 0;0

French keyword: COORDONNEES DE REFERENCE POUR LA PHASE Coordinates of reference point for phase. Will not change the wave height computed

1.92 PRECONDITIONING

Type: Integer
Dimension: 0
Mnemo IPRECO

WHICHIO IF KECC

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT

Enables to apply preconditionning the matrix system to accelerate the convergence of the solver.

- 0 : no preconditionning 2 : diagonal preconditionning 3 : block-diagonal preconditionning
- 5: diagonal preconditionning in absolute value 7: Element Crout preconditionning. Few of them can be combined (numbers 2 or 3 with the other) To combine some preconditionning, impose the product of the previous numbers: example 6 means preconditionning 2 and 3 applied.

1.93 PRIORITY

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'JOUR'
French keyword: PRIORITE

Type of invoice requested for CRAY computation: there are 3 possibilities: jour, nuit, and weekend.

1.94 RAPIDLY VARYING TOPOGRAPHY

Type: Integer Dimension: 0

Mnemo **IPENTCO**

DEFAULT VALUE:

French keyword: VARIATION RAPIDE DE LA BATHYMETRIE

EXTENSION OF MILD-SLOPE EQUATION WITH SECOND ORDER BOTTOM EFFECTS 0=> MILD-SLOPE EQUATION 1=> GRADIENT SECOND ORDER TERM: grad(H) **2 2=> CURVATURE SECOND ORDER TERM: laplacian(H) 3=> GRADIENT + CURVATURE SECOND ORDER TERMS Model used for functions E1 and E2 expression: Chamberlain et

Porter 1995

1.95 REFERENCE FILE

Type: String Dimension:

NOMREF Mnemo

DEFAULT VALUE:

FICHIER DE REFERENCE French keyword:

Binary-coded result file for validation. The results to be entered into this file shall be written on channel

REFERENCE FILE FORMAT

Type: String Dimension: -1 Mnemo ?????

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

REFERENCE WATER DEPTH FOR AUTOMATIC PHASE 1.97

Real Type: Dimension:

DEPREF Mnemo DEFAULT VALUE: -1.0

French keyword: PROFONDEUR DE REFERENCE POUR LA PHASE AUTOMATIQUE WATER DEPTH FOR AUTOMATIC INCIDENT PHASE CALCULATION. TRY TO PUT THE INCIDENT WAVE BOUNDARY ON A REGULAR TOPOGRAPHY ZONE. THE REF-ERENCE WATER DEPTH SHOULD BE REPRESENTATIVE OF THE WATER DEPTH ON THE BOUNDARY

RELAXATION COEFFICIENT 1.98

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 1.4

French keyword: COEFFICIENT DE RELAXATION TODO: WRITE HELP FOR THAT KEYWORD

1.99 RELAXATION ON TETAP

Type: Real
Dimension: 0
Mnemo RELTP
DEFAULT VALUE: 1.

French keyword: RELAXATION SUR TETAP

Fixes the relaxation coefficient used between two sub-iterations for the computation of automatic tetap.

1.100 RELEASE

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'V7P2'

French keyword: NUMERO DE VERSION

Number of the release of the ARTEMIS TELEMAC2D UTILE DAMO BIEF and HP libraries. If this number begins by D, it corresponds to the Debug option (example: DV3P0). If this number begins by F, it corresponds to the Flowtrace option.

1.101 RESULTS FILE

Type: String Dimension: 0

Mnemo NOMRES

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS

Name of the results file corresponding to the computations and which contains the variables specified by the key-word VARIABLES FOR GRAPHIC PRINTOUTS.

1.102 RESULTS FILE BINARY

Type: String
Dimension: 0
Mnemo BINRES
DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES RESULTATS

Binary type used to write on the results file. This type depends on the machine used to create this file. Allowed values are the same as used for the geometry file.

1.103 RESULTS FILE FORMAT

Type: String
Dimension: -1
Mnemo ?????
DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE RESULTATS

Results file format. Possible values are: - SERAFIN: classical single precision format in

Telemac; - SERAFIND: classical double precision format in Telemac; - MED : MED format based on HDF5

1.104 RESULTS FILE STANDARD

Type: Integer Dimension: 0

Mnemo STDRES

DEFAULT VALUE: 3

French keyword: STANDARD DU FICHIER DES RESULTATS

Specific standard of the results file: -1: regular mesh on standard LEONARD - 2: any mesh

on standard RUBENS - 3: any mesh on standard SELAFIN

1.105 RIPPLES COEFFICIENT

Type: Real Dimension: 0

Mnemo RICOEF
DEFAULT VALUE: 0.7

French keyword: COEFFICIENT DE RIDES

Fixes the ripples coefficient used in the formulae of Van Rijn to calculate the friction factor.

1.106 S EXPONENT

Type: Real
Dimension: 0
Mnemo EXPOS
DEFAULT VALUE: 20.

French keyword: EXPOSANT S

Used with the option: MULTIDIRECTIONAL RANDOM WAVE = YES Fixes the maximum value of exponent S in the Goda formula used to express the directional wave energy spreading. See GODA Y., Random Seas and Design of Maritime Structures - Univ. of Tokyo Press, 1987.

1.107 SEDIMENT SPECIFIC WEIGHT

Type: Real
Dimension: 0
Mnemo MVSED
DEFAULT VALUE: 2650.0

French keyword: MASSE VOLUMIQUE DU SEDIMENT

Sediment specific weight in Kg/m3.

1.108 SKIN ROUGHNESS ONLY

Type: Logical Dimension: 0

Mnemo ENTRUG DEFAULT VALUE: NON

French keyword: RUGOSITE DE PEAU SEULE

Used with the option FRICTION = YES. Enables to restrict the total roughness to the skin roughnes in the case of an automatic calculation of the friction factor for sandy beds.

1.109 SOLVER 31

1.109 **SOLVER**

Type: Integer
Dimension: 0
Mnemo ISOLVE

DEFAULT VALUE: 8

French keyword: SOLVEUR

Enables to choose the solver used for solving the matrix system. They are: 1: conjugate gradient 2: conjugate residual 3: conjugate gradient on the normal equation 4: minimum error 5: squarred conjugate gradient (not programmed) 6: CGSTAB conjugate gradient 7: GMRES

8 : direct solver

1.110 SOLVER ACCURACY

Type: Real
Dimension: 0
Mnemo EPSI
DEFAULT VALUE: 1.E-4

French keyword: PRECISION DU SOLVEUR

Accuracy requested for the linear system solver.

1.111 SOLVER OPTION

Type: Integer
Dimension: 0
Mnemo ISOLVE

DEFAULT VALUE: 3

French keyword: OPTION DU SOLVEUR

Defines the dimension of the Krylov space when using the solver 7 (GMRES)

1.112 STEERING FILE

Type: String Dimension: 0

Mnemo NOMCAS

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES

Name of the steering file used for the computation.

1.113 STEP FOR PERIOD SCANNING

Type: Real Dimension: 0

Mnemo PERPAS

DEFAULT VALUE: 0.

French keyword: PAS POUR LE BALAYAGE EN PERIODE

Used with the option: PERIOD SCANNING = YES Fixes the value of the period step (in sec)

to be used for the period scanning.

1.114 SUB-ITERATIONS ACCURACY FOR CURRENT

Type: Real
Dimension: 0
Mnemo EPSDIR
DEFAULT VALUE: 1.E-2

French keyword: PRECISION SUR LES SOUS-ITERATIONS POUR COURANT

Fixes the accuracy requested for sub-iterations necessary to determine the wave vector.

1.115 SUB-ITERATIONS ACCURACY FOR DISSIPATION

Type: Real
Dimension: 0
Mnemo EPSDIS
DEFAULT VALUE: 1.E-2

French keyword: PRECISION SUR LES SOUS-ITERATIONS POUR LA DISSIPATION

Fixes the accuracy requested for sub-iterations necessary to determine the dissipation coeffi-

cients.

1.116 SUB-ITERATIONS ACCURACY FOR TETAP

Type: Real
Dimension: 0
Mnemo EPSTP
DEFAULT VALUE: 1.E-2

French keyword: PRECISION SUR LES SOUS-ITERATIONS POUR TETAP Fixes the accuracy requested for sub-iterations necessary to determine value of TETAP (crite-

rion on cos(TETAP).

1.117 TITLE

Type: String
Dimension: 0
Mnemo TITCAS

DEFAULT VALUE: 'NO TITLE IN THE STEERING FILE'

French keyword: TITRE

Title of the studied case.

1.118 TOMAWAC DATA FILE 1

Type: String Dimension: 0

Mnemo NOMTC1

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES TOMAWAC 1

Data file, written in binary mode, given a tomawac spectrum. Data of this file must be read on

unit 30.

1.119 TOMAWAC DATA FILE 1 FORMAT

Type: String Dimension: -1

Mnemo ART_FILES(ARTTC1)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE DONNEES TOMAWAC 1

Previous computation results file format. Possible values are: - SERAFIN: classical single precision format in Telemac; - SERAFIND: classical double precision format in Telemac; -

MED: MED format based on HDF5

1.120 USER CRAY

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: "

French keyword: USER CRAY

Userid CRAY of the user.

1.121 VALIDATION

Type: Logical Dimension: 0 Mnemo VALID DEFAULT VALUE: NO

French keyword: VALIDATION

This option is primarily used for the validation documents. The PREVIOUS COMPUTATION FILE is then considered as a reference which the computation is going to be compared with. The comparison is made by the subroutine VALIDA, which can be modified as to so as to include, for example, a comparison with an exact solution.

1.122 VARIABLES FOR GRAPHIC PRINTOUTS

Type: String
Dimension: 0
Mnemo SORTIE

DEFAULT VALUE: 'HS,PHAS,ZS,ZF'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES

Names of the variables that the user wants to write in the results file. Separators between variable names can be choosen free. The allowable values are: - HS=wave height - PHAS=wave phase - U0=velocity u (free surface at t=0) - V0=velocity v (free surface at t=0) - ZS=free surface elevation (at t=0) - ZF=bottom elevation - HW=still water height - C=phase velocity - CG=group velocity - K=wave number - PHIR=real potential - PHII=imaginal potential - D=prive(1,1) - E=prive(1,2) - F=prive(1,3) - G=prive(1,4) - T01=first mean spectral period - T02=second mean spectral period - TM=third mean spectral period - FX=force along X - FY=force along Y - INC=wave incidence radian - QB=breaking rate - SXX=SXX stress - SXY=SXY stress - SYY=SYY stress The user has 4 free variables at his/her disposal to create other variables by him/herself. These variables have to be computed in the CALRES subroutine, and the name that we want to attribute has to be precibed in the NOMVAR sub-routine. The 4 free variable fields are: - D, E, F, G which corresponds to the private arrays PRIVE(1,1),

PRIVE(1,2), PRIVE(1,3) and PRIVE (1,4). Contrarily to the previous variables, these are conserved all through the computation, and can be used again. Do not forget to specify the number of private arrays you want to use in the principal programme (variable NPRIV).

1.123 VARIABLES TO BE PRINTED

Type: String Dimension: 0

Mnemo VARIMP

DEFAULT VALUE: '

French keyword: VARIABLES A IMPRIMER

Name of variables taht the user whishes to write on the screen. Possibilities are the same as for graphic outputs.

1.124 VECTOR LENGTH

Type: Integer
Dimension: 0
Mnemo LVMAC

DEFAULT VALUE: 1

French keyword: LONGUEUR DU VECTEUR VECTOR LENGTH ON VECTOR MACHINES

1.125 WAVE HEIGHTS SMOOTHING

Type: Logical

Dimension: 0

Mnemo LISHOU DEFAULT VALUE: NON

French keyword: LISSAGE DES HAUTEURS DE HOULE

YES when one wants to smooth the wave heights to improve the radiation stresses computation (only used in regular wave mode). Default value = NO.

1.126 WAVE PERIOD

Type: Real
Dimension: 0
Mnemo PER
DEFAULT VALUE: 10.

French keyword: PERIODE DE LA HOULE Defines the wave period for monochromatic mode.

1.127 **ZERO**

Type: Real
Dimension: 0
Mnemo ZERO
DEFAULT VALUE: 1.E-12
French keyword: ZERO
Non active at the moment.

2. List of keywords classified according to type

2.1 BOTTOM FRICTION

BOTTOM FRICTION LAW
DIAMETER 50
DIAMETER 90
FLUID KINEMATIC VISCOSITY
FLUID SPECIFIC MASS
FRICTION
FRICTION COEFFICIENT
FRICTION FACTOR
FRICTION FACTOR IMPOSED
HYDRAULIC REGIME IMPOSED
HYDRAULIC REGIME TYPE
LAW OF BOTTOM FRICTION
RIPPLES COEFFICIENT
SEDIMENT SPECIFIC WEIGHT
SKIN ROUGHNESS ONLY

2.2 BREAKING

ALPHA
BREAKING
BREAKING LAW
GDALLY
KDALLY

2.3 CHAINING

CHAINING TOMAWAC 1
INSTANT FOR READING TOMAWAC SPECTRUM
NUMBER OF DIRECTIONS IN TOMAWAC SPECTRUM
NUMBER OF FREQUENCIES IN TOMAWAC SPECTRUM

2.4 COMPUTATION ENVIRONMENT

ACCOUNT NUMBER

CPU TIME

DICTIONARY

LIBRARIES

MEMORY SPACE

PASSWORD

PRIORITY

USER CRAY

VECTOR LENGTH

2.5 COMPUTATIONAL INFORMATION

DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION DES LIBRARIES
RELEASE
TITLE

2.6 CONTROL

ORIGIN COORDINATES

2.7 CURRENT

CURRENT

SUB-ITERATIONS ACCURACY FOR CURRENT

2.8 DISSIPATION

ALPHA

BOTTOM FRICTION LAW

BREAKING

BREAKING LAW

DIAMETER50

DIAMETER90

DISSIPATION RELAXATION

FLUID KINEMATIC VISCOSITY

FLUID SPECIFIC MASS

FRICTION

FRICTION COEFFICIENT

FRICTION FACTOR

FRICTION FACTOR IMPOSED

GAMMAS

GDALLY

HYDRAULIC REGIME IMPOSED

2.9 DONNEES 37

HYDRAULIC REGIME TYPE
KDALLY
LAW OF BOTTOM FRICTION
MAXIMUM OF SUB-ITERATIONS
MAXIMUM OF SUB-ITERATIONS FOR TETAP
RELAXATION ON TETAP
RIPPLES COEFFICIENT
SEDIMENT SPECIFIC WEIGHT
SKIN ROUGHNESS ONLY
SUB-ITERATIONS ACCURACY FOR DISSIPATION

2.9 DONNEES

BEGINNING PERIOD FOR PERIOD SCANNING
ENDING PERIOD FOR PERIOD SCANNING
MAXIMUM ANGLE OF PROPAGATION
MINIMUM ANGLE OF PROPAGATION
NUMBER OF DIRECTIONS
S EXPONENT
STEP FOR PERIOD SCANNING

2.10 EQUATIONS, SMOOTHINGS

BOTTOM TOPOGRAPHY SMOOTHING

2.11 FORMULATION

BOTTOM FRICTION LAW BREAKING LAW

2.12 FORMULATION DE BATTJES

ALPHA

2.13 FORMULATION OF DALLY

GDALLY KDALLY

2.14 FORMULATION OF FW

FRICTION FACTOR IMPOSED

2.15 FORMULATION OF REGIME

HYDRAULIC REGIME IMPOSED HYDRAULIC REGIME TYPE

2.16 FORMULATION OF RUGOSITE

SKIN ROUGHNESS ONLY

2.17 GENERAL

CHECKING THE MESH ORIGINAL DATE OF TIME PARTITIONING TOOL

2.18 INCIDENT WAVE PHASE

AUTOMATIC CALCULATION OF PHASE

2.19 INFORMATION

BIDON STRING

DIAMETER50

DIAMETER90

DIRECTION OF WAVE PROPAGATION

DISCRETIZATION IN SPACE

DISSIPATION RELAXATION

FLUID KINEMATIC VISCOSITY

FLUID SPECIFIC MASS

MAXIMUM OF SUB-ITERATIONS

MAXIMUM OF SUB-ITERATIONS FOR TETAP

MINIMUM VALUE FOR H

ORIGINAL HOUR OF TIME

PHASE REFERENCE COORDINATES

RELAXATION ON TETAP

RIPPLES COEFFICIENT

SEDIMENT SPECIFIC WEIGHT

SUB-ITERATIONS ACCURACY FOR CURRENT

SUB-ITERATIONS ACCURACY FOR DISSIPATION

SUB-ITERATIONS ACCURACY FOR TETAP

WAVE PERIOD

ZERO

2.20 INFORMATION, SOLVER

INFORMATIONS ABOUT SOLVER LISTING PRINTOUT RELAXATION COEFFICIENT VALIDATION

2.21 INITIAL CONDITIONS EQUATIONS

INITIAL CONDITIONS
INITIAL DEPTH
INITIAL WATER LEVEL

2.22 INPUT-OUTPUT, FILES

BINARY DATA FILE 1 FORMAT
BINARY DATA FILE 2 FORMAT
GEOMETRY FILE FORMAT
REFERENCE FILE FORMAT
RESULTS FILE FORMAT
TOMAWAC DATA FILE 1 FORMAT

2.23 INPUT-OUTPUT, INFORMATION

DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION DES LIBRARIES
DICTIONARY
ORIGIN COORDINATES

2.24 INPUT-OUTPUT, FILES

BINARY DATA FILE 1
BINARY DATA FILE 2
BINARY RESULTS FILE
BOTTOM TOPOGRAPHY FILE
BOUNDARY CONDITIONS FILE
FORMATTED DATA FILE 1
FORMATTED DATA FILE 2
FORMATTED RESULTS FILE
FORTRAN FILE
GEOMETRY FILE
GEOMETRY FILE BINARY
GEOMETRY FILE STANDARD
LIST OF FILES
REFERENCE FILE
RESULTS FILE

RESULTS FILE BINARY
RESULTS FILE STANDARD
STEERING FILE
TOMAWAC DATA FILE 1

2.25 INPUT-OUTPUT, GRAPHICS AND LISTING

GRAPHIC PRINTOUT PERIOD
INFORMATIONS ABOUT SOLVER
LISTING PRINTOUT
LISTING PRINTOUT PERIOD
RELAXATION COEFFICIENT
VALIDATION
WAVE HEIGHTS SMOOTHING

2.26 INPUT-OUTPUT, INFORMATION

ACCOUNT NUMBER
CPU TIME
LIBRARIES
MEMORY SPACE
PASSWORD
PRIORITY
RELEASE
TITLE
USER CRAY
VECTOR LENGTH

2.27 MONODIRECTIONAL RANDOM WAVE

MONODIRECTIONAL RANDOM WAVE

2.28 MULTIDIRECTIONAL RANDOM WAVE

MAXIMUM ANGLE OF PROPAGATION MINIMUM ANGLE OF PROPAGATION MULTIDIRECTIONAL RANDOM WAVE NUMBER OF DIRECTIONS
S EXPONENT

2.29 NAMES

BINARY DATA FILE 1 BINARY DATA FILE 2 BINARY RESULTS FILE BOTTOM TOPOGRAPHY FILE
BOUNDARY CONDITIONS FILE
FORMATTED DATA FILE 1
FORMATTED DATA FILE 2
FORMATTED RESULTS FILE
FORTRAN FILE
GEOMETRY FILE
LIST OF FILES
REFERENCE FILE
RESULTS FILE
STEERING FILE
TOMAWAC DATA FILE 1

2.30 NUMERICAL PARAMETERS

DEBUGGER
MATRIX STORAGE
MATRIX-VECTOR PRODUCT
NUMBER OF PRIVATE VARIABLES
ORIGINAL DATE OF TIME
PARALLEL PROCESSORS
PARTITIONING TOOL

2.31 NUMERICAL PARAMETERS, SOLVER

BIDON STRING
DISCRETIZATION IN SPACE
MAXIMUM NUMBER OF ITERATIONS FOR SOLVER
PRECONDITIONING
SOLVER
SOLVER ACCURACY
SOLVER OPTION
ZERO

2.32 PERIOD SCANNING

BEGINNING PERIOD FOR PERIOD SCANNING ENDING PERIOD FOR PERIOD SCANNING PERIOD SCANNING STEP FOR PERIOD SCANNING

2.33 PHASE

AUTOMATIC CALCULATION OF PHASE

2.34 PHASE DEFINITION

PHASE REFERENCE COORDINATES
REFERENCE WATER DEPTH FOR AUTOMATIC PHASE

2.35 PHYSICAL CONSTANTS

GRAVITY ACCELERATION

2.36 PHYSICAL PARAMETERS

BEGINNING PERIOD FOR PERIOD SCANNING DIRECTION OF WAVE PROPAGATION ENDING PERIOD FOR PERIOD SCANNING GAMMA MAXIMUM ANGLE OF PROPAGATION MAXIMUM SPECTRAL PERIOD MINIMUM ANGLE OF PROPAGATION MINIMUM SPECTRAL PERIOD MINIMUM VALUE FOR H MONODIRECTIONAL RANDOM WAVE MULTIDIRECTIONAL RANDOM WAVE NUMBER OF DIRECTIONS NUMBER OF PERIODS ORIGINAL HOUR OF TIME PEAK PERIOD PERIOD SCANNING S EXPONENT STEP FOR PERIOD SCANNING

2.37 RANDOM WAVE

WAVE PERIOD

GAMMA
MAXIMUM SPECTRAL PERIOD
MINIMUM SPECTRAL PERIOD
NUMBER OF PERIODS
PEAK PERIOD

2.38 REFERENCE WATER DEPTH

REFERENCE WATER DEPTH FOR AUTOMATIC PHASE

2.39 REFLEXION ANGLE

AUTOMATIC TETAP CALCULATION

2.40 RESULTS

VARIABLES FOR GRAPHIC PRINTOUTS VARIABLES TO BE PRINTED

2.41 STANDARD

GEOMETRY FILE STANDARD RESULTS FILE STANDARD

2.42 TETAP

AUTOMATIC TETAP CALCULATION

2.43 TETAP CONVERGENCE

SUB-ITERATIONS ACCURACY FOR TETAP

2.44 TOMAWAC

CHAINING TOMAWAC 1
INSTANT FOR READING TOMAWAC SPECTRUM
NUMBER OF DIRECTIONS IN TOMAWAC SPECTRUM
NUMBER OF FREQUENCIES IN TOMAWAC SPECTRUM

2.45 TOPOGRAPHY EFFECTS, EXTENDED MILD-SLOPE EQUATION

RAPIDLY VARYING TOPOGRAPHY

2.46 TYPE OF BINARY

GEOMETRY FILE BINARY RESULTS FILE BINARY

3. Glossary

3.1 English/French glossary

ACCOUNT NUMBER	NUMERO DE COMPTE
ALPHA	ALPHA
AUTOMATIC CALCULATION OF PHASE	CALCUL AUTOMATIQUE DE LA PHASE
AUTOMATIC TETAP CALCULATION	CALCUL AUTOMATIQUE DE TETAP
BEGINNING PERIOD FOR PERIOD	PERIODE DE DEBUT POUR LE
SCANNING	BALAYAGE EN PERIODE
BIDON STRING	CHAINE BIDON
BINARY DATA FILE 1	FICHIER DE DONNEES BINAIRE 1
BINARY DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES
	BINAIRE 1
BINARY DATA FILE 2	FICHIER DE DONNEES BINAIRE 2
BINARY DATA FILE 2 FORMAT	FORMAT DU FICHIER DE DONNEES
	BINAIRE 2
BINARY RESULTS FILE	FICHIER DES RESULTATS BINAIRE
BOTTOM FRICTION LAW	FORMULATION DU FROTTEMENT DE
	FOND
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOTTOM TOPOGRAPHY SMOOTHING	LISSAGES DU FOND
BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX
	LIMITES
BREAKING	DEFERLEMENT
BREAKING LAW	FORMULATION DU DEFERLEMENT
CHAINING TOMAWAC 1	CHAINAGE TOMAWAC 1
CHECKING THE MESH	VERIFICATION DU MAILLAGE
CPU TIME	TEMPS MACHINE CRAY
CURRENT	COURANT
DEBUGGER	DEBUGGER
DEFAULT EXECUTABLE	EXECUTABLE PAR DEFAUT
DEFAULT PARALLEL EXECUTABLE	EXECUTABLE PARALLELE PAR DEFAUT
DESCRIPTION DES LIBRARIES	DESCRIPTION DES LIBRAIRIES
DIAMETER50	DIAMETRE50

DIAMETER90	DIAMETRE90
DICTIONARY	DICTIONNAIRE
DIRECTION OF WAVE PROPAGATION	DIRECTION DE PROPAGATION DE LA
	HOULE
DISCRETIZATION IN SPACE	DISCRETISATION EN ESPACE
DISSIPATION RELAXATION	RELAXATION SUR LA DISSIPATION
ENDING PERIOD FOR PERIOD	PERIODE DE FIN POUR LE BALAYAGE
SCANNING	EN PERIODE
FLUID KINEMATIC VISCOSITY	VISCOSITE CINEMATIQUE DU FLUIDE
FLUID SPECIFIC MASS	MASSE VOLUMIQUE DU FLUIDE
FORMATTED DATA FILE 1	FICHIER DE DONNEES FORMATE 1
FORMATTED DATA FILE 2	FICHIER DE DONNEES FORMATE 2
FORMATTED RESULTS FILE	FICHIER DES RESULTATS FORMATE
FORTRAN FILE	FICHIER FORTRAN
FRICTION	FROTTEMENT
FRICTION COEFFICIENT	COEFFICIENT DE FROTTEMENT
FRICTION FACTOR	FACTEUR DE FROTTEMENT
FRICTION FACTOR IMPOSED	FACTEUR DE FROTTEMENT IMPOSE
GAMMA	GAMMA
GAMMAS	GAMMAS
GDALLY	GDALLY
GEOMETRY FILE	FICHIER DE GEOMETRIE
GEOMETRY FILE BINARY	BINAIRE DU FICHIER DE GEOMETRIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE
GEOMETRY FILE STANDARD	STANDARD DU FICHIER DE GEOMETRIE
GRAPHIC PRINTOUT PERIOD	PERIODE DE SORTIE GRAPHIQUE
GRAVITY ACCELERATION	ACCELERATION DE LA PESANTEUR
HYDRAULIC REGIME IMPOSED	REGIME HYDRAULIQUE IMPOSE
HYDRAULIC REGIME TYPE	TYPE DU REGIME HYDRAULIQUE
INFORMATIONS ABOUT SOLVER	INFORMATIONS SUR LE SOLVEUR
INITIAL CONDITIONS	CONDITIONS INITIALES
INITIAL DEPTH	HAUTEUR INITIALE
INITIAL WATER LEVEL	COTE INITIALE
INSTANT FOR READING TOMAWAC	INSTANT DE LECTURE DU SPECTRE
SPECTRUM	TOMAWAC
KDALLY	KDALLY
LAW OF BOTTOM FRICTION	LOI DE FROTTEMENT SUR LE FOND
LIBRARIES	BIBLIOTHEQUES
LIST OF FILES	LISTE DES FICHIERS
LISTING PRINTOUT	SORTIE LISTING
LISTING PRINTOUT PERIOD	PERIODE DE SORTIE LISTING
MATRIX STORAGE	STOCKAGE DES MATRICES
MATRIX-VECTOR PRODUCT	PRODUIT MATRICE-VECTEUR
MAXIMUM ANGLE OF PROPAGATION	ANGLE MAXIMUM DE PROPAGATION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LE
FOR SOLVER	SOLVEUR

MAXIMUM OF SUB-ITERATIONS	MAXIMUM DE SOUS-ITERATIONS
MAXIMUM OF SUB-ITERATIONS FOR	MAXIMUM DE SOUS-ITERATIONS POUR
TETAP	TETAP
MAXIMUM SPECTRAL PERIOD	PERIODE MAXIMUM DU SPECTRE
MEMORY SPACE	PLACE MEMOIRE CRAY
MINIMUM ANGLE OF PROPAGATION	ANGLE MINIMUM DE PROPAGATION
MINIMUM SPECTRAL PERIOD	PERIODE MINIMUM DU SPECTRE
MINIMUM VALUE FOR H	VALEUR MINIMUM DE H
MONODIRECTIONAL RANDOM WAVE	HOULE ALEATOIRE
	MONODIRECTIONNELLE
MULTIDIRECTIONAL RANDOM WAVE	HOULE ALEATOIRE
	MULTIDIRECTIONNELLE
NUMBER OF DIRECTIONS	NOMBRE DE DIRECTIONS DE
	DISCRETISATION
NUMBER OF DIRECTIONS IN TOMAWAC	NOMBRE DE DIRECTION DANS LE
SPECTRUM	SPECTRE TOMAWAC
NUMBER OF FREQUENCIES IN	NOMBRE DE FREQUENCES DANS LE
TOMAWAC SPECTRUM	SPECTRE TOMAWAC
NUMBER OF PERIODS	NOMBRE DE PERIODES DE
	DISCRETISATION
NUMBER OF PRIVATE VARIABLES	NOMBRE DE VARIABLES PRIVEES
ORIGIN COORDINATES	COORDONNEES DE L'ORIGINE
ORIGINAL DATE OF TIME	DATE DE L'ORIGINE DES TEMPS
ORIGINAL HOUR OF TIME	HEURE DE L'ORIGINE DES TEMPS
PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARTITIONING TOOL	PARTITIONNEUR
PASSWORD	MOT DE PASSE CRAY
PEAK PERIOD	PERIODE DE PIC
PERIOD SCANNING	BALAYAGE EN PERIODE
PHASE REFERENCE COORDINATES	COORDONNEES DE REFERENCE POUR
	LA PHASE
PRECONDITIONING	PRECONDITIONNEMENT
PRIORITY	PRIORITE
RAPIDLY VARYING TOPOGRAPHY	VARIATION RAPIDE DE LA
	BATHYMETRIE
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
REFERENCE WATER DEPTH FOR	PROFONDEUR DE REFERENCE POUR LA
AUTOMATIC PHASE	PHASE AUTOMATIQUE
RELAXATION COEFFICIENT	COEFFICIENT DE RELAXATION
RELAXATION ON TETAP	RELAXATION SUR TETAP
RELEASE	NUMERO DE VERSION
RESULTS FILE	FICHIER DES RESULTATS
RESULTS FILE BINARY	BINAIRE DU FICHIER DES
	RESULTATS
RESULTS FILE FORMAT	FORMAT DU FICHIER DE RESULTATS

RESULTS FILE STANDARD	STANDARD DU FICHIER DES
	RESULTATS
RIPPLES COEFFICIENT	COEFFICIENT DE RIDES
S EXPONENT	EXPOSANT S
SEDIMENT SPECIFIC WEIGHT	MASSE VOLUMIQUE DU SEDIMENT
SKIN ROUGHNESS ONLY	RUGOSITE DE PEAU SEULE
SOLVER	SOLVEUR
SOLVER ACCURACY	PRECISION DU SOLVEUR
SOLVER OPTION	OPTION DU SOLVEUR
STEERING FILE	FICHIER DES PARAMETRES
STEP FOR PERIOD SCANNING	PAS POUR LE BALAYAGE EN PERIODE
SUB-ITERATIONS ACCURACY FOR	PRECISION SUR LES
CURRENT	SOUS-ITERATIONS POUR COURANT
SUB-ITERATIONS ACCURACY FOR	PRECISION SUR LES
DISSIPATION	SOUS-ITERATIONS POUR LA
	DISSIPATION
SUB-ITERATIONS ACCURACY FOR	PRECISION SUR LES
TETAP	SOUS-ITERATIONS POUR TETAP
TITLE	TITRE
TOMAWAC DATA FILE 1	FICHIER DE DONNEES TOMAWAC 1
TOMAWAC DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES
	TOMAWAC 1
USER CRAY	USER CRAY
VALIDATION	VALIDATION
VARIABLES FOR GRAPHIC PRINTOUTS	VARIABLES POUR LES SORTIES
	GRAPHIQUES
VARIABLES TO BE PRINTED	VARIABLES A IMPRIMER
VECTOR LENGTH	LONGUEUR DU VECTEUR
WAVE HEIGHTS SMOOTHING	LISSAGE DES HAUTEURS DE HOULE
WAVE PERIOD	PERIODE DE LA HOULE
ZERO	ZERO

3.2 French/English glossary

ACCELERATION DE LA PESANTEUR	GRAVITY ACCELERATION
ALPHA	ALPHA
ANGLE MAXIMUM DE PROPAGATION	MAXIMUM ANGLE OF PROPAGATION
ANGLE MINIMUM DE PROPAGATION	MINIMUM ANGLE OF PROPAGATION
BALAYAGE EN PERIODE	PERIOD SCANNING
BIBLIOTHEQUES	LIBRARIES
BINAIRE DU FICHIER DE GEOMETRIE	GEOMETRY FILE BINARY
BINAIRE DU FICHIER DES	RESULTS FILE BINARY
RESULTATS	
CALCUL AUTOMATIQUE DE LA PHASE	AUTOMATIC CALCULATION OF PHASE
CALCUL AUTOMATIQUE DE TETAP	AUTOMATIC TETAP CALCULATION
CHAINAGE TOMAWAC 1	CHAINING TOMAWAC 1
CHAINE BIDON	BIDON STRING

COPPETCIONE DE EDOTTEMENT	EDICTION COEFFICIENT
COEFFICIENT DE FROTTEMENT COEFFICIENT DE RELAXATION	FRICTION COEFFICIENT
	RELAXATION COEFFICIENT
COEFFICIENT DE RIDES	RIPPLES COEFFICIENT
CONDITIONS INITIALES	INITIAL CONDITIONS
COORDONNEES DE L'ORIGINE	ORIGIN COORDINATES
COORDONNEES DE REFERENCE POUR LA PHASE	PHASE REFERENCE COORDINATES
COTE INITIALE	INITIAL WATER LEVEL
COURANT	CURRENT
DATE DE L'ORIGINE DES TEMPS	ORIGINAL DATE OF TIME
DEBUGGER	DEBUGGER
DEFERLEMENT	BREAKING
DESCRIPTION DES LIBRAIRIES	DESCRIPTION DES LIBRARIES
DIAMETRE50	DIAMETER50
DIAMETRE90	DIAMETER90
DICTIONNAIRE	DICTIONARY
DIRECTION DE PROPAGATION DE LA	DIRECTION OF WAVE PROPAGATION
HOULE	
DISCRETISATION EN ESPACE	DISCRETIZATION IN SPACE
EXECUTABLE PAR DEFAUT	DEFAULT EXECUTABLE
EXECUTABLE PARALLELE PAR DEFAUT	DEFAULT PARALLEL EXECUTABLE
EXPOSANT S	S EXPONENT
FACTEUR DE FROTTEMENT	FRICTION FACTOR
FACTEUR DE FROTTEMENT IMPOSE	FRICTION FACTOR IMPOSED
FICHIER DE DONNEES BINAIRE 1	BINARY DATA FILE 1
FICHIER DE DONNEES BINAIRE 2	BINARY DATA FILE 2
FICHIER DE DONNEES FORMATE 1	FORMATTED DATA FILE 1
FICHIER DE DONNEES FORMATE 2	FORMATTED DATA FILE 2
FICHIER DE DONNEES TOMAWAC 1	TOMAWAC DATA FILE 1
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DES CONDITIONS AUX	BOUNDARY CONDITIONS FILE
LIMITES	
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES RESULTATS	RESULTS FILE
FICHIER DES RESULTATS BINAIRE	BINARY RESULTS FILE
FICHIER DES RESULTATS FORMATE	FORMATTED RESULTS FILE
FICHIER FORTRAN	FORTRAN FILE
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 1 FORMAT
BINAIRE 1	
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 2 FORMAT
BINAIRE 2	
FORMAT DU FICHIER DE DONNEES	TOMAWAC DATA FILE 1 FORMAT
TOMAWAC 1	
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
	1

FORMAT DU FICHIER DE RESULTATS	RESULTS FILE FORMAT
FORMULATION DU DEFERLEMENT	BREAKING LAW
FORMULATION DU FROTTEMENT DE FOND	BOTTOM FRICTION LAW
FROTTEMENT	FRICTION
GAMMA	GAMMA
GAMMAS	GAMMAS
GDALLY	GDALLY
HAUTEUR INITIALE	INITIAL DEPTH
HEURE DE L'ORIGINE DES TEMPS	ORIGINAL HOUR OF TIME
HOULE ALEATOIRE	MONODIRECTIONAL RANDOM WAVE
MONODIRECTIONNELLE	
HOULE ALEATOIRE	MULTIDIRECTIONAL RANDOM WAVE
MULTIDIRECTIONNELLE	
INFORMATIONS SUR LE SOLVEUR	INFORMATIONS ABOUT SOLVER
INSTANT DE LECTURE DU SPECTRE	INSTANT FOR READING TOMAWAC
TOMAWAC	SPECTRUM
KDALLY	KDALLY
LISSAGE DES HAUTEURS DE HOULE	WAVE HEIGHTS SMOOTHING
LISSAGES DU FOND	BOTTOM TOPOGRAPHY SMOOTHING
LISTE DES FICHIERS	LIST OF FILES
LOI DE FROTTEMENT SUR LE FOND	LAW OF BOTTOM FRICTION
LONGUEUR DU VECTEUR	VECTOR LENGTH
MASSE VOLUMIQUE DU FLUIDE	FLUID SPECIFIC MASS
MASSE VOLUMIQUE DU SEDIMENT	SEDIMENT SPECIFIC WEIGHT
MAXIMUM D'ITERATIONS POUR LE	MAXIMUM NUMBER OF ITERATIONS
SOLVEUR	FOR SOLVER
MAXIMUM DE SOUS-ITERATIONS	MAXIMUM OF SUB-ITERATIONS
MAXIMUM DE SOUS-ITERATIONS POUR TETAP	MAXIMUM OF SUB-ITERATIONS FOR TETAP
MOT DE PASSE CRAY	PASSWORD
NOMBRE DE DIRECTION DANS LE	NUMBER OF DIRECTIONS IN TOMAWAC
SPECTRE TOMAWAC	SPECTRUM
NOMBRE DE DIRECTIONS DE	NUMBER OF DIRECTIONS
DISCRETISATION	
NOMBRE DE FREQUENCES DANS LE	NUMBER OF FREQUENCIES IN
SPECTRE TOMAWAC	TOMAWAC SPECTRUM
NOMBRE DE PERIODES DE DISCRETISATION	NUMBER OF PERIODS
NOMBRE DE VARIABLES PRIVEES	NUMBER OF PRIVATE VARIABLES
NUMERO DE COMPTE	ACCOUNT NUMBER
NUMERO DE VERSION	RELEASE
	SOLVER OPTION
UPILION DII SOLVEIID	L DOTIATIV OF LION
OPTION DU SOLVEUR	DARTITIONING TOO!
PARTITIONNEUR	PARTITIONING TOOL
	PARTITIONING TOOL STEP FOR PERIOD SCANNING BEGINNING PERIOD FOR PERIOD

PERIODE DE FIN POUR LE BALAYAGE	ENDING PERIOD FOR PERIOD
EN PERIODE	SCANNING
PERIODE DE LA HOULE	WAVE PERIOD
PERIODE DE PIC	PEAK PERIOD
PERIODE DE SORTIE GRAPHIQUE	GRAPHIC PRINTOUT PERIOD
PERIODE DE SORTIE LISTING	LISTING PRINTOUT PERIOD
PERIODE MAXIMUM DU SPECTRE	MAXIMUM SPECTRAL PERIOD
PERIODE MINIMUM DU SPECTRE	MINIMUM SPECTRAL PERIOD
PLACE MEMOIRE CRAY	MEMORY SPACE
PRECISION DU SOLVEUR	SOLVER ACCURACY
PRECISION SUR LES	SUB-ITERATIONS ACCURACY FOR
SOUS-ITERATIONS POUR COURANT	CURRENT
PRECISION SUR LES	SUB-ITERATIONS ACCURACY FOR
SOUS-ITERATIONS POUR LA	DISSIPATION
DISSIPATION	
PRECISION SUR LES	SUB-ITERATIONS ACCURACY FOR
SOUS-ITERATIONS POUR TETAP	TETAP
PRECONDITIONNEMENT	PRECONDITIONING
PRIORITE	PRIORITY
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PRODUIT MATRICE-VECTEUR	MATRIX-VECTOR PRODUCT
PROFONDEUR DE REFERENCE POUR LA	REFERENCE WATER DEPTH FOR
PHASE AUTOMATIQUE	AUTOMATIC PHASE
REGIME HYDRAULIQUE IMPOSE	HYDRAULIC REGIME IMPOSED
RELAXATION SUR LA DISSIPATION	DISSIPATION RELAXATION
RELAXATION SUR TETAP	RELAXATION ON TETAP
RUGOSITE DE PEAU SEULE	SKIN ROUGHNESS ONLY
SOLVEUR	SOLVER
SORTIE LISTING	LISTING PRINTOUT
STANDARD DU FICHIER DE	GEOMETRY FILE STANDARD
GEOMETRIE	
STANDARD DU FICHIER DES	RESULTS FILE STANDARD
RESULTATS	TESCHIO TIBE CITATINE
STOCKAGE DES MATRICES	MATRIX STORAGE
TEMPS MACHINE CRAY	CPU TIME
TITRE	TITLE
TYPE DU REGIME HYDRAULIQUE	HYDRAULIC REGIME TYPE
USER CRAY	USER CRAY
VALEUR MINIMUM DE H	MINIMUM VALUE FOR H
VALIDATION	
VARIABLES A IMPRIMER	VALIDATION VARIABLES TO BE PRINTED
VARIABLES POUR LES SORTIES	VARIABLES FOR GRAPHIC PRINTOUTS
GRAPHIQUES	DADIDIY WADVING TODOGDADUY
VARIATION RAPIDE DE LA	RAPIDLY VARYING TOPOGRAPHY
BATHYMETRIE	CHECKING THE MECH
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VISCOSITE CINEMATIQUE DU FLUIDE	FLUID KINEMATIC VISCOSITY

Bibliography 51

ZERO	ZERO
------	------

- [1] JOLY A., GOEURY C., and HERVOUET J.-M. Adding a particle transport module to telemac-2d with applications to algae blooms and oil spills. Technical Report H-P74-2013-02317-EN, EDF R&D-LNHE, 2013.
- [2] AUTHOR. Title. Journal de Mickey, 666.
- [3] PHAM C.-T., BOURBAN S., DURAND N., and TURNBULL M. Méthodologie pour la simulation de la marée avec la version 6.2 de telemac-2d et telemac-3d. Technical Report H-P74-2012-02534-FR, EDF R&D-LNHE, 2012.
- [4] Sampath Kumar Gurram, Karam S. Karki, and Willi H. Hager. Subcritical junction flow. *Journal of Hydraulic Engineering*, 123(5):447–455, may 1997.
- [5] TSANIS I. Simulation of wind-induced water currents. *Journal of hydraulic Engineering*, 115(8):1113–1134, 1989.
- [6] SMAGORINSKY J. General simulation experiments with the primitive equations. *Monthly Weather Review*, 91(3):99–164, March 1963.
- [7] HERVOUET J.-M. *Méthodes itératives pour la solution des systèmes matriciels*. Rapport EDF HE43/93.049/A, 1996.
- [8] HERVOUET J.-M. Hydrodynamics of Free Surface Flows. Modelling with the finite element method. Wiley, 2007.
- [9] HERVOUET J.-M. Guide to programming in the telemac system version 6.0. Technical Report H-P74-2009-00801-EN, EDF R&D-LNHE, 2009.
- [10] JANIN J.-M., HERVOUET J.-M., and MOULIN C. A positive conservative scheme for scalar advection using the M.U.R.D technique in 3D free-surface flow problems. XIth International Conference on Computional methods in water resources, 1996.
- [11] GAUTHIER M. and QUETIN B. Modèles mathématiques de calcul des écoulements induits par le vent. In *17e congrès de l'AIRH*, Baden-Baden, August 1977.
- [12] METCALF M. and REID J. Fortran 90 explained. Oxford Science Publications, 1990.