第三章 矩阵的初等变换与线性方程组

- 一、填空题
- 1、设A与B均为 3×4 矩阵,且A与B等价,若R(A) = 3,则 $R(B) = ____$.
- 2、若 A 为 4×3 矩阵, R(A) = 2, $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$, 则 R(AB) =______.
- 3、已知 $A = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & -3 \end{pmatrix}$, 则R(AB) =______.
- 4、若 A 为 4×3矩阵,且 A 有一个三阶子式不等于零,则 R(A) = _____.
- 5、如果 x_1, x_2 都是方程 $A_{n \times n} x = 0$ 的解,且 $x_1 \neq x_2$,则 $|A_{n \times n}| = \underline{\hspace{1cm}}$.
- 6、若方程组 $\begin{cases} \lambda x_1 + 3x_2 = 0 \\ 2x_1 + x_2 = 0 \end{cases}$ 有非零解,则 $\lambda =$ _____.
- 7、n 元线性方程组 Ax = b 无解的充分必要条件是 R(A) R(A,b).
- 8、非齐次线性方程组 Ax = b 有解,且增广矩阵 $B = (A \mid b)$ 的秩为 3,则系数矩阵 的秩为_____.
- 二、选择题
- 1、设n阶矩阵A与B等价,则必有 .

(A)
$$\stackrel{\text{def}}{=}$$
 |A| = a(a ≠ 0) ff , |B| = a

(A)
$$\stackrel{\text{def}}{=} |A| = a(a \neq 0)$$
 Iff , $|B| = a$ (B) $\stackrel{\text{def}}{=} |A| = a(a \neq 0)$ Iff , $|B| = -a$

(C)
$$|A| \neq 0$$
 时, $|B| = 0$

(C)
$$\triangleq |A| \neq 0 \text{ ft}, |B| = 0$$
 (D) $\triangleq |A| = 0 \text{ ft}, |B| = 0$

- 2、设A,B均为n阶方阵,则下列命题中正确的是 .

 - (A)若|A| = |B|,则A = B (B)若A 与 B等价,则R(A) = R(B)
 - (C)若|A| = 0,则A为零矩阵 (D)若A 与 B等价,则|A| = |B|
- 3、设A是 $m \times n$ 阶矩阵,A 的秩R(A) = r,则A中_____.
 - (A) 至少有一个r阶子式不等于 0
 - (B) 所有r阶子式都不等于0
 - (C) 所有r-1阶子式都不等于 0
 - (D) 有一个r+1阶子式等于 0, 其余r+1阶子式可能不等于 0

4、设矩阵 A 的秩为 r ,则 A 中	
(A)所有 $r-1$ 阶子式都不为 0	
(C)至少有一个 r 阶子式不等于 0 (D)所有 r 阶子式都不为 0
5、设 A 为 3 阶方阵, $R(A)=1$,则	
(A) $R(A^*) = 3$ (B) $R(A^*) = 2$ (C)	C) $R(A^*) = 1$ (D) $R(A^*) = 0$
$\begin{pmatrix} 1 & a & a^2 \end{pmatrix}$	
6、矩阵 1 b b ² 的秩为 3,则	.
6、矩阵 $\begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$ 的秩为 3,则	
(A) a,b,c 都不为 1 (B) a,b,c 都不为 0 (C) a,b,c 互不相等 (D) $a=b=c$	
7、设 A 为 $4×3$ 的矩阵, B 为三阶可逆矩阵,且 $R(A)=3$,则矩阵 AB 的秩为	
(A) 1 (B) 2
(C) 3	D) 4
8、设 n 阶方阵 A 不可逆,则必有	
0、	
(A) $R(A) < n$ (B) $R(A) = n - 1$ (9)	C) $A = O$ (D) 方程组 $Ax = 0$ 只有零解
9、设 A 是 $m \times n$ 矩阵, B 是 $n \times m$ 矩阵,则	
(A) 当 $m > n$ 时,必有行列式 $ AB ≠$	0 (B) 当 $m > n$ 时,必有行列式 $ AB = 0$
(C) 当 $n > m$ 时,必有行列式 $ AB \neq$	0 (D) 当 $n > m$ 时,必有行列式 $ AB = 0$
10、设非齐次线性方程组 $Ax = b$ 的增广矩阵 $B = (A b)$ 为 m 阶方阵,且 B 的行列	
式不为零,则该方程组	
(A) 无解 (B) 有唯一解 (C)	有无穷多解 (D) 解的情况无法确定
	Ax = b 有无穷多解的充要条件是
(A) R(A) = n (B) R(A) = R(A,b) = n
(C) $R(A) = R(A,b)$ (D) R(A) = R(A,b) < n
12 、设 A 为 $m \times n$ 矩阵,非齐次线性方积	星组 $Ax = b$ 的导出组为 $Ax = 0$,如果 $m < n$
则	
(A) $Ax = b$ 必有无穷多解 (1)	B)Ax= 心有唯一解
(C) $Ax = 0$ 必有非零解 (I	D)Ax = 必有唯一解
13、 n 元非齐次线性方程组 $Ax = b$ 无解的充要条件是	
(A) $R(A) = R(A,b) = n$ (B)) R(A) = R(A,b) < n
(C) $R(A) < R(A,b)$ (D	R(A) < n

三、解答题

$$1$$
、求三阶方阵 $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 4 \\ 2 & -1 & 0 \end{pmatrix}$ 的逆矩阵.

2、利用初等变换法求矩阵
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 3 & 1 & 5 \\ 3 & 2 & 3 \end{pmatrix}$$
 的逆矩阵.

3、用初等变换求
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$
的逆矩阵.

4、设
$$A = \begin{pmatrix} 2 & 4 & -2 \\ -2 & -5 & 3 \\ 3 & -1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \\ 2 & -1 \end{pmatrix}$,求矩阵 X ,使得 $AX = B$.

5、求矩阵
$$X$$
,使其满足 $AX = B$,其中 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 90 \\ 43 \\ 19 \end{pmatrix}$.

6、设矩阵
$$A,B,X$$
 满足 $AX=B$,其中 $A=\begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix}$, $B=\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ -1 & 0 \end{pmatrix}$, 求矩阵 X .

7、求矩阵
$$X$$
,使其满足 $AX = B$,其中 $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \end{pmatrix}$.

8、 求解矩阵方程
$$AX = A + 2X$$
, 其中 $A = \begin{pmatrix} 0 & 3 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$.

9、求解齐次线性方程组

$$\begin{cases} x_1 - 2x_2 - x_3 - 2x_4 = 0 \\ 4x_1 + x_2 - 2x_3 - 5x_4 = 0 \\ 2x_1 + 5x_2 - x_4 = 0 \end{cases}$$

10、求非齐次线性方程组
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 4 \\ x_1 - 2x_2 + 4x_3 = -5 \\ 3x_1 + 8x_2 - 2x_3 = 13 \\ 4x_1 - x_2 + 9x_3 = -6 \end{cases}$$
 的通解.

11、求解非齐次线性方程组
$$\begin{cases} x_1 + 2x_2 + x_3 - 2x_4 = 1 \\ 2x_1 + 3x_2 - x_4 = 2 \end{cases}$$
的通解.
$$x_1 - x_2 - 5x_3 + 7x_4 = 1$$

12、求方程组
$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1 \\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4 \text{ 的通解.} \\ x_1 + 5x_2 - 9x_3 - 8x_4 = 0 \end{cases}$$

$$13、求解非齐次线性方程组 \begin{cases} 2x_1+x_2-x_3+x_4=1\\ 4x_1+2x_2-2x_3+x_4=2\\ 2x_1+x_2-x_3-x_4=1 \end{cases}.$$