

Festigkeit von Böden

Haris Felic

Institut für Bodenmechanik, Grundbau und Numerische Geotechnik

Inhalte übernommen und aufgearbeitet von: Prof. Schweiger

Prof. Semprich

Ass. Prof. Tschuchnigg

DI Havinga

Festigkeit von Böden

Scherfestigkeit

- Begriffserklärung
- Theorie

Laborversuche zur Ermittlung der Scherfestigkeit

- Scherversuche
- Triaxialversuche
- Versuchsauswertung

Spannungspfade

- Definition
- · Mohr'scher Spannungskreis vs. Spannungspfad
- s-t-Diagramm
- Effektiver und totaler Spannungspfad
- Typische Spannungspfade
- Spannungspfade bei Laborversuchen

Scherfestigkeit – Begriffserklärung

- Die **Festigkeit eines Bodens** wird durch dessen **Scherfestigkeit** wiedergegeben. Sie nimmt eine zentrale Stellung unter den Bodeneigenschaften ein, da sie für alle Stabilitätsprobleme wie Böschungsstabilität, Tragfähigkeit, Erddruck u.a. die maßgebende Größe ist, siehe *Lang, Huder, Amann und Puzrin (2011).*
- Verwendung eines Bruchkriteriums zur Darstellung der Scherfestigkeit aus experimentellen Untersuchungen.
 - Mohr-Coulomb
 - Hoek-Brown
 - u.a.
- Abhängigkeit der Scherfestigkeit
 - Grobkörnige Böden
 Lagerungsdichte (locker/dicht)
 - Form der Kornverteilung
 - Feinkörnige Böden
 - Wassergehalt → Konsistenz
 - Normal-/ Überkonsolidiert → Abhängig von <u>Belastungsgeschichte</u> des Bodens (Overconsolidation-Ratio, OCR)

Scherfestigkeit – Theorie

Bruchkriterium Mohr-Coulomb

$$\sigma'_{1} = \sigma'_{3} \frac{1 + \sin \phi'}{1 - \sin \phi'} + c' \frac{2 \cos \phi'}{1 - \sin \phi'}$$

Mohr'scher Spannungskreis ohne Kohäsion

Mohr'scher Spannungskreis mit Kohäsion

Charakterisierung mittels Reibungswinkel φ' und Kohäsion c'

Scherfestigkeit – Theorie

Abhängigkeit der Festigkeit

Grobkörnige (granulare) Böden

relative Lagerungsdichte

$$I_d = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}}$$

e = Porenzahl

Quelle: Prof. Schweiger

Für grobkörnige Böden ist φ' abhängig von der Lagerungsdichte

Scherfestigkeit – Theorie

Abhängigkeit der Festigkeit

Feinkörnige Böden

Konsistenzzahl

$$I_{C} = \frac{W_{L} - W}{W_{L} - W_{F}}$$

w = Wassergehalt

Quelle: Prof. Schweiger

Für feinkörnige Böden ist c' abhängig vom Wassergehalt

Festigkeit von Böden

Scherfestigkeit

- Begriffserklärung
- Theorie

Laborversuche zur Ermittlung der Scherfestigkeit

- Scherversuche
- Triaxialversuche
- Versuchsauswertung

Spannungspfade

- Definition
- · Mohr'scher Spannungskreis vs. Spannungspfad
- s-t-Diagramm
- · Effektiver und totaler Spannungspfad
- Typische Spannungspfade
- Spannungspfade bei Laborversuchen

Laborversuche zur Ermittlung der Scherfestigkeit

...auf Grundlage der Mohr-Coloumb'schen Bruchbedingung σ_1 Scherfestigkeit im Boden abhängig von: Normalspannung auf der Scherfläche σ_3 Korngröße, -form, -rauhigkeit Wassergehalt Lagerungsdichte (rolliger Boden) Konsistenz (bindiger Boden) Zeitdauer der Beanspruchung

Im Labor ermittelt via:

- Direkter Scherversuch
- Ringscherversuch
- Einfacher Scherversuch
- Triaxialversuch

Laborversuche

Direkter Scherversuch

- Probe wird in einer zweiteiligen Scherbox eingebaut
- Versuch wird in 2 Schritten durchgeführt:
 - 1. Aufbringen einer bestimmten Normakraft N
 - 2. Scherphase (Bruchebene ist vorgegeben)
- dient zur Untersuchung der Scherfestigkeit (Reibungswinkel und Kohäsion)

Literatur: Fellin 1997, Bodenmechanik und Grundbau Übung, Teil 1

Laborversuche

Direkter Scherversuch

(Kastenschergerät)

Laborversuche

Um die Mohr-Coulomb'sche Bruchgerade eines Sandes zu bestimmen, wurden 5 Proben eines Sandes im **direkten Schergerät** eingebaut und bei verschiedenen Normalspannungen σ' abgeschert. Zeichnen Sie die Mohr-Coulomb'sche Bruchgerade und ermitteln Sie den effektiven Reibungswinkel ϕ' .

Laborversuche

Ringscherversuch

- Versuch wird in 2 Schritten durchgeführt:
 - 1. Aufbringen einer bestimmten Normakraft N
 - 2. kontrollierte Torsion einer Hälfte der Scherbox (Bruch in vorgegebener Ebene)

dient zur Untersuchung der Scherfestigkeit bei sehr großen Scherwegen (Restscherfestigkeit)

Schergeschwindigkeiten a) und Kontaktkräfte im Schervorgang b)

Literatur: Fellin 1997, Bodenmechanik und Grundbau Übung, Teil 1, Claquin&Emeriault 2003

Laborversuche

Einfacher Scherversuch

- Verbesserung des direkten Scherversuches (Bodenprobe weist einheitlichen Spannungs- und Dehnungszustand auf)
- Versuch wird in 2 Schritten durchgeführt:
 - 1. Aufbringen einer bestimmten Normakraft N
 - 2. Aufbringen der Scherspannung (Scherbox geht von Rechteck auf Parallelogramm über)
- dient zur Untersuchung der Scherfestigkeit

Photoelastische Studien zur Partikelverschiebung während des Schervorgangens

Literatur: Oda&Konishi 1997

Laborversuche

Triaxialversuch

- axiale und radiale Spannungen sind voneinander unabhängig (i.d.R. $\sigma_2 = \sigma_3$)
- Versuch wird in 2 Schritten durchgeführt:
 - 1. isotroper Spannungszustand ($\sigma_1 = \sigma_2 = \sigma_3$)
 - 2. Scherphase σ_1 wird bis zum Bruch erhöht
 - dient u.a. zur Ermittlung der Festigkeitseigenschaften und der Untersuchung des

Bodeneigenschaften Abhängig von Randbedingungen stellen unterschiedliche Versagensmechanismen ein

Laborversuche

- 1 Entlüftung
- 2 Druckstempel
- 3 Kopfplatte
- 4 Druckkappe
- 5 Gummiringe
- 6 Gummihülle
- 7 Probekörper
- 8 Filterstein
- 9 Gummimanschette
- 10 Fußplatte mit Sockel
- 11 Zylinder
- 12 Zellenflüssigkeit
- 13 Filtrierpapierstreifen
- 14 Bohrung für Druckausgleich

(Triaxialzelle)

Konsolidierter, drainierter Versuch (**CD**)

Konsolidierter, undrainierter Versuch (**CU**)

Unkonsolidierter, undrainierter Versuch (**UU**)

Laborversuche – Beispiel 1

Zeichnen Sie die maßgebenden **Mohr'schen Spannungskreise** während eines **CD-Triaxialversuchs** für einen Ton mit $\phi' = 24^\circ$ und c = 5 kN/m². Die Bodenprobe wird dabei von einem Zelldruck $\sigma_{c1}' = 40$ kN/m² auf $\sigma_{c2}' = 100$ kN/m² konsolidiert und dann bei konstantem σ_3' geschert.

$$\sigma'_{1} = \sigma'_{3} \frac{1 + \sin \phi'}{1 - \sin \phi'} + c' \frac{2\cos \phi'}{1 - \sin \phi'} = 100 \frac{1 + \sin 24^{\circ}}{1 - \sin 24^{\circ}} + 5 \frac{2\cos 24^{\circ}}{1 - \sin 24^{\circ}} = 253 \text{ kPa}$$

Laborversuche – Beispiel 2

Aus einem CD-Triaxialversuch eines Sandes sind folgende Daten ermittelt worden

Probe	$\sigma'_{c} = \sigma'_{3}$ (kN/m^{2})	$ \frac{(\sigma'_1 - \sigma'_3)_f}{(kN/m^2)} $	σ' _{1f} (kN/m²)
1	35	93	128
2	70	270	340
3	140	425	565

Bestimmen Sie:

- Mohr´sche Spannungskreise im Versagenszustand
- Effektive Spannungspfade
- c' und φ ' aus dem $\sigma \tau$ Diagramm
- a und α′ aus dem s t Diagramm
- Neigung der Bruchfläche zur Horizontalen

Laborversuche – Beispiel 2

Aus einem CD-Triaxialversuch eines Sandes sind folgende Daten ermittelt worden:

	Probe	$\sigma_{c}^{\circ} = \sigma_{3}^{\circ}$ (kN/m^{2})	$ \frac{(\sigma'_1 - \sigma'_3)_f}{(kN/m^2)} $	σ' _{1f} (kN/m²)	
	1 2 3	35 70 140	93 270 425	128 340 565	σ'_f
7	• ^		φ' ~ 36	6° /	τ_f \leftarrow σ_{3}
	$\sigma'_{3} = 35$ $\sigma'_{1} = 128$		σ'_f, τ_f	f	
		P	$\sigma'_{3} = 70 \text{ kPa}$ $\sigma'_{1} = 340 \text{ kPa}$		σ' ₃ = 140 kPa σ' ₁ = 565 kPa
	0	$\theta =$	$45^{\circ} + \frac{\phi}{2} = 6$	63°	σ

Festigkeit von Böden

Scherfestigkeit

- Begriffserklärung
- Theorie

Laborversuche zur Ermittlung der Scherfestigkeit

- Scherversuche
- Triaxialversuche
- Versuchsauswertung

Spannungspfade

- Definition
- Mohr'scher Spannungskreis vs. Spannungspfad
- s-t-Diagramm
- · Effektiver und totaler Spannungspfad
- Typische Spannungspfade
- Spannungspfade bei Laborversuchen

Mohr'sche Spannungskreis

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Wozu brauchen wir Spannungspfade?

Erklärung anhand des Beispiels Aushub

Hauptnormalspannung σ₁

Darstellung wird sehr unübersichtlich wenn Bauvorgang, Labortests o.ä. als Mohr'sche Spannungskreise dargestellt werden sollen.

Spannungspfade

Ändert sich der Spannungszustand werden **Spannungspfade** anstelle von Mohr'schen Spannungskreisen zur **Darstellung der Spannungsänderung** verwendet.

Spannungspfade

Ändert sich der Spannungszustand werden **Spannungspfade** anstelle von Mohr'schen Spannungskreisen zur **Darstellung der Spannungsänderung** verwendet.

MIT- oder s-t-Darstellung

$$s = \frac{\sigma_1 + \sigma_3}{2}$$

→ Mittelpunkt des Mohr'schen Spannungskreises

$$t = \frac{\sigma_1 - \sigma_3}{2}$$

→ Radius des Mohr'schen Spannungskreises

Spannungspfade

Ändert sich der Spannungszustand werden **Spannungspfade** anstelle von Mohr'schen Spannungskreisen zur Darstellung der Spannungsänderung verwendet.

MIT- oder s-t-Darstellung

$$s = \frac{\sigma_1 + \sigma_3}{2}$$

$$s = \frac{\sigma_1 + \sigma_3}{2} \qquad t = \frac{\sigma_1 - \sigma_3}{2}$$

Spannungspfade

Totaler Spannungspfad:

$$s = \frac{\sigma_1 + \sigma_3}{2} \qquad t = \frac{\sigma_1 - \sigma_3}{2}$$

Effektiver Spannungspfad: s' = s - ut' = t

$$s' = \frac{\sigma'_1 + \sigma'_3}{2}$$
 $t = \frac{\sigma'_1 - \sigma'_3}{2} = \frac{\sigma_1 - \sigma_3}{2}$

Hydrostatische Achse

$\sigma'_{3} = K \cdot \sigma'_{1}$ $s' = \frac{1}{2}(\sigma'_{1} + K \cdot \sigma'_{1})$ $t = \frac{1}{2}(\sigma'_{1} - K \cdot \sigma'_{1})$ $\frac{t}{s'} = \frac{1 - K}{1 + K}$

Spannungspfade für konstante t/s-Verhältnisse

Spannungspfade – Beispiel 1a

- a) Ausgangszustand $\sigma_v = \sigma_h = 200 \text{ kN/m}^2$, σ_h wird konstant gehalten während σ_v bis 600 kN/m² erhöht wird.
- b) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h bis 600 kN/m² erhöht wird.
- c) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h auf 100 kN/m² verkleinert wird.
- d) Ausgangszustand wie unter a), σ_v und σ_h werden mit konstantem Verhältnis $\Delta \sigma_h/\Delta \sigma_v$ = 3 vergrößert.

$$\Delta \sigma_v = 400 \ kPa$$
$$\Delta \sigma_h = 0 \ kPa$$

$$\sigma_{h}$$

$$s_{0} = \frac{\sigma_{v} + \sigma_{h}}{2} = \frac{200 + 200}{2} = 200 \text{ kPa}$$

$$t_{0} = \frac{\sigma_{v} - \sigma_{h}}{2} = \frac{200 - 200}{2} = 0 \text{ kPa}$$

$$\Delta s = \frac{\Delta \sigma_v + \Delta \sigma_h}{2} = \frac{400 + 0}{2} = 200 \text{ kPa}$$
$$\Delta t = \frac{\Delta \sigma_v - \Delta \sigma_h}{2} = \frac{400 - 0}{2} = 200 \text{ kPa}$$

$$s_1 = s_0 + \Delta s = 200 + 200 = 400 \text{ kPa}$$

 $t_1 = t_0 + \Delta t = 0 + 200 = 200 \text{ kPa}$

Spannungspfade – Beispiel 1b

- a) Ausgangszustand $\sigma_v = \sigma_h = 200 \text{ kN/m}^2$, σ_h wird konstant gehalten während σ_v bis 600 kN/m² erhöht wird.
- b) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h bis 600 kN/m² erhöht wird.
- c) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h auf 100 kN/m² verkleinert wird.
- d) Ausgangszustand wie unter a), σ_{v} und σ_{b} werden mit konstantem Verhältnis $\Delta \sigma_{b}/\Delta \sigma_{v} = 3$ vergrößert.

$$\Delta \sigma_v = 0 \ kPa$$
$$\Delta \sigma_h = 400 \ kPa$$

$$\Delta s = \frac{\Delta \sigma_v + \Delta \sigma_h}{2} = \frac{0 + 400}{2} = 200 \text{ kPa}$$

$$\Delta t = \frac{\Delta \sigma_v - \Delta \sigma_h}{2} = \frac{0 - 400}{2} = -200 \text{ kPa}$$

$$s_1 = s_0 + \Delta s = 200 + 200 = 400 \text{ kPa}$$

 $t_1 = t_0 + \Delta t = 0 - 200 = -200 \text{ kPa}$

Spannungspfade – Beispiel 1c

- a) Ausgangszustand $\sigma_v = \sigma_h = 200 \text{ kN/m}^2$, σ_h wird konstant gehalten während σ_v bis 600 kN/m² erhöht wird.
- b) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h bis 600 kN/m² erhöht wird.
- c) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h auf 100 kN/m² verkleinert wird.
- d) Ausgangszustand wie unter a), σ_v und σ_h werden mit konstantem Verhältnis $\Delta \sigma_h/\Delta \sigma_v$ = 3 vergrößert.

$$\Delta \sigma_v = 0 \, kPa$$
$$\Delta \sigma_h = -100 \, kPa$$

$$\Delta s = \frac{\Delta \sigma_v + \Delta \sigma_h}{2} = \frac{0 - 100}{2} = -50 \, kPa$$

$$\Delta t = \frac{\Delta \sigma_v - \Delta \sigma_h}{2} = \frac{0 - (-100)}{2} = 50 \, kPa$$

$$s_1 = s_0 + \Delta s = 200 - 50 = 150 \text{ kPa}$$

 $t_1 = t_0 + \Delta t = 0 + 50 = 50 \text{ kPa}$

Spannungspfade – Beispiel 1d

- a) Ausgangszustand $\sigma_v = \sigma_h = 200 \text{ kN/m}^2$, σ_h wird konstant gehalten während σ_v bis 600 kN/m² erhöht wird.
- b) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h bis 600 kN/m² erhöht wird.
- c) Ausgangszustand wie unter a), σ_v wird konstant gehalten während σ_h auf 100 kN/m² verkleinert wird.
- d) Ausgangszustand wie unter a), σ_v und σ_h werden mit konstantem Verhältnis $\Delta \sigma_h / \Delta \sigma_v = 3$ vergrößert.

$$\frac{\Delta t}{\Delta s} = \frac{\frac{\Delta \sigma_v - \Delta \sigma_h}{2}}{\frac{\Delta \sigma_v + \Delta \sigma_h}{2}} = \frac{\Delta \sigma_v - 3\Delta \sigma_v}{\Delta \sigma_v + 3\Delta \sigma_v} = -\frac{1}{2}$$

Bruchkriterium im s-t-Diagramm

Ändert sich der Spannungszustand werden **Spannungspfade** anstelle von Mohr'schen Spannungskreisen zur Darstellung der Spannungsänderung verwendet.

MIT- oder s-t-Darstellung

$$s = \frac{\sigma_1 + \sigma_3}{2}$$

$$s = \frac{\sigma_1 + \sigma_3}{2} \qquad t = \frac{\sigma_1 - \sigma_3}{2}$$

Bruchkriterium im s-t-Diagramm

Rechnen Sie die Scherparameter ϕ und c der Mohr-Coulomb schen Bruchgeraden in die Kennwerte a und α der transformierten Bruchgeraden um.

$$\sin \phi' = \frac{t_f}{\overline{AM}} = \tan \alpha'$$

$$\rightarrow \alpha' = \arctan(\sin \phi')$$

$$\tan \phi' = \frac{c'}{\overline{A0}}; \quad \tan \alpha' = \frac{a'}{\overline{A0}}$$

$$\frac{\tan \phi'}{c'} = \frac{\tan \alpha'}{a'} \to a' = \frac{\tan \alpha'}{\tan \phi'} \cdot c'$$

$$a' = \frac{\tan \alpha' \cdot \cos \phi' \cdot c'}{\sin \phi'} = \frac{\sin \phi' \cdot \cos \phi' \cdot c'}{\sin \phi'}$$

$$\to a' = \cos \phi' \cdot c'$$

Spannungspfade – Beispiel 2

Aus einem CD-Triaxialversuch eines Sandes sind folgende Daten ermittelt worden:

Probe	$\sigma'_{c} = \sigma'_{3}$ (kN/m^{2})	$ \frac{(\sigma'_1 - \sigma'_3)_f}{(kN/m^2)} $	σ'_{1f} (kN/m^2)
1	35	93	128
2	70	270	340
3	140	425	565

Bestimmen Sie:

- Mohr´sche Spannungskreise im Versagenszustand
- Effektive Spannungspfade
- c' und φ ' aus dem $\sigma \tau$ Diagramm
- a und α´ aus dem s-t-Diagramm
- Neigung der Bruchfläche zur Horizontalen

Spannungspfade – Beispiel 2

Aus einem CD-Triaxialversuch eines Sandes sind folgende Daten ermittelt worden:

Probe	$\sigma'_{c} = \sigma'_{3}$ (kN/m^{2})	$ \frac{(\sigma'_1 - \sigma'_3)_f}{(kN/m^2)} $	σ' _{1f} (kN/m²)
1	35	93	128
2	70	270	340
3	140	425	565

$$a' = \cos \phi' \cdot c' = \cos 36^{\circ} \cdot 0 = 0 \text{ kPa}$$

$$\alpha' = \arctan(\sin \phi') = \arctan(36^{\circ}) = 30,4^{\circ}$$

Typische Spannungspfade

C axiale Kompression E axiale Extension

$$\Delta s' = \frac{\Delta \sigma'_v + \Delta \sigma'_h}{2}$$
 $\Delta t = \frac{\Delta \sigma'_v - \Delta \sigma'_h}{2}$

$$\Delta t = \frac{\Delta \sigma'_v - \Delta \sigma'_h}{2}$$

Typische Spannungspfade

aus Ortigao, 1995

LC seitliche Kompression

LE seitliche Extension

$$\Delta s' = \frac{\Delta \sigma'_v + \Delta \sigma'_h}{2} \qquad \Delta t = \frac{\Delta \sigma'_v - \Delta \sigma'_h}{2}$$

(c)

$$\Delta t = \frac{\Delta \sigma'_v - \Delta \sigma'_h}{2}$$

Spannungspfade bei unterschiedlichen Laborversuchen

Isotroper Kompressionsversuch

- Aufbringen eines allseitig gleichen Druckes σ_c (hydrostatischer Druck)
- Versuch kommt sehr selten zur Anwendung
- Dient u.a. der Bestimmung des Kompressionsmoduls K

Spannungspfade bei unterschiedlichen Laborversuchen

Triaxialversuch

- Axiale und radiale Spannungen sind voneinander unabhängig (i.d.R. $\sigma_2 = \sigma_3$)
- Versuch wird in 2 Schritten durchgeführt:
 - isotroper Spannungszustand ($\sigma_1 = \sigma_2 = \sigma_3$)
 - Scherphase σ₁ wird bis zum Bruch erhöht
- Dient u.a. zur Ermittlung der Festigkeitseigenschaften und der Untersuchung des Verformungsverhaltens

