

Convertir en radians les mesures données en degrés :

1. 58°

3. $112,5^{\circ}$

2. 72°

4. 180°

Convertir en degrés les mesures données en radians :

1. $\frac{2\pi}{3}$

3. $\frac{\pi}{5}$

2. $\frac{3\pi}{4}$

4. $\frac{5\pi}{12}$

Sur le cercle trigonométrique ci-après, placer les points images des angles en radians suivants :

1. π

4. $\frac{\pi}{6}$

2. $\frac{\pi}{4}$

5. $-\frac{\pi}{3}$

3. $\frac{3\pi}{2}$

6. $-\frac{3\pi}{4}$

Utiliser les renseignements portés sur la figure pour déterminer les angles sur $[0; 2\pi]$ repérant les points M, N et P:

Utiliser les renseignements portés sur la figure pour déterminer les angles sur $[-\pi\,;\,\pi]$ repérant les points M, N et P :

119

Sur le cercle trigonométrique colorier l'arc $I = \left[-\frac{\pi}{4}; \frac{3\pi}{4} \right]$:

120

Sur le cercle trigonométrique colorier l'arc $J = \left[\frac{4\pi}{3}; \frac{13\pi}{6}\right]$:

121

Dans chaque cas, trouver l'angle x dans $]-\pi$; $\pi]$ correspondant à l'angle α donné :

1. 7π

3. $-\frac{21\pi}{4}$

2. $-\frac{4\pi}{3}$

4. $\frac{35\pi}{6}$

122

Trouver les valeurs exactes du cosinus et du sinus des réels donnés. Vous pourrez commencer par placer les points sur le cercle trigonométrique.

1. $\frac{\pi}{6}$

3. $\frac{7\pi}{6}$

2. $\frac{5\pi}{6}$

4. $-\frac{13\pi}{6}$

123

Trouver les valeurs exactes du cosinus et du sinus des réels donnés. Vous pourrez commencer par placer les points sur le cercle trigonométrique.

1. $\frac{\pi}{4}$

3. $\frac{81\pi}{4}$

2. $\frac{3\pi}{4}$

4. $-\frac{59\pi}{4}$

124

À l'aide de la formule $\sin^2 x + \cos^2 x = 1$:

- 1. Déterminer $\cos x$ sachant que $\sin x = \frac{2}{3}$ et $x \in \left[0; \frac{\pi}{2}\right]$.
- **2.** Déterminer $\sin x$ sachant que $\cos x = -\frac{1}{5}$ et $x \in [-\pi; 0]$.

Démontrer que pour tout réel x on a :

- 1. $(\cos x + \sin x)^2 + (\cos x \sin x)^2 = 2$.
- 2. $(\cos x + \sin x)^2 (\cos x \sin x)^2 = 4\cos x \sin x$.

Exprimer à l'aide de $\sin x$ et $\cos x$, les expressions suivantes :

- 1. $\sin(-x) + \cos(-x)$.
- **2.** $\sin(-x) \sin(\pi + x)$
- 3. $\cos(\pi x) + \cos(3\pi + x)$.
- **4.** $\sin\left(x+\frac{\pi}{2}\right)-3\cos\left(-\frac{\pi}{2}-x\right)-4\sin(\pi-x).$

- 1. Résoudre dans $[0; 2\pi[$ l'équation $\cos(x) = \frac{\sqrt{3}}{2}$.
- **2.** Résoudre dans $[0; 2\pi[$ l'équation $\sin(x) = \frac{\sqrt{2}}{2}$.

128

Résoudre dans] $-\pi$; π] :

- 1. $\cos(x) \geqslant \frac{\sqrt{2}}{2}$.
- **2.** $\sin(x) \leqslant -\frac{1}{2}$.

129

- 1. Donner les abscisses des points A et B.
- **2.** Résoudre sur $]-\pi$; π], l'équation :

$$\sin(x) = -\frac{\sqrt{2}}{2}.$$

3. Résoudre sur $]-\pi$; π], l'inéquation :

$$\sin(x) \geqslant -\frac{\sqrt{2}}{2}.$$

4. Déduire de l'abscisse du point A celle du point C.

130

- 1. Soit f une fonction paire. Pour tout réel x, calculer f(x) - f(-x).
- **2.** En déduire que la fonction f définie sur \mathbb{R} par $f(x) = x^2 + \cos(x)$ est paire.

131

- 1. Soit g une fonction impaire. Pour tout réel x, calculer g(x) + g(-x).
- **2.** En déduire que la fonction g définie sur \mathbb{R} par $g(x) = x + \sin(x)$ est impaire.

132

Dans chaque cas, vérifier que la fonction f est T-périodique.

- 1. $f(x) = \cos(2\pi x)$ avec T = 1.
- **2.** $f(x) = \sin(3x)$ avec $T = \frac{2\pi}{3}$.
- 3. $f(x) = \frac{2}{3}\cos\left(7x + \frac{\pi}{4}\right)$ avec $T = \frac{2\pi}{7}$.

133

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \cos(4x)\sin^2(4x).$$

- 1. Montrer que f est paire. Interpréter graphiquement ce résultat.
- **2.** Montrer que f est périodique de période $\frac{\pi}{2}$.

134

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \cos(x) + \sin(x).$$

- 1. Montrer que f est ni paire ni impaire.
- **2.** Montrer que f est 2π -périodique.
- 3. Démontrer que pour tout réel x,

$$-2 \leqslant f(x) \leqslant 2.$$

On considère la fonction f définie par :

$$f(x) = \frac{2}{2 + \cos(x)}.$$

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est paire. Interpréter graphiquement ce résultat.
- 3. Montrer que f est périodique de période 2π .

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \sin(2x) + \cos(x)\sin(x).$$

- 1. Étudier la parité de f et interpréter graphiquement ce résultat.
- **2.** Montrer que f est périodique de période π .

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \cos(2x) - \cos(x).$$

- 1. Étudier la parité de f et interpréter graphiquement ce résultat.
- **2.** Montrer que f est périodique de période 2π .

Sujet de devoir 2019.

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = 2\cos(x)\sin(x).$$

1. Démontrer que f est impaire. Qu'en déduire pour sa courbe représentative?

2. On a représenté $\mathscr C$ sur $[0\,;\,\pi]$. Représenter alors graphiquement $\mathscr C$ sur $[-2\pi\,;\,2\pi]$:

Sujet de devoir 2019.

Soit la fonction définie sur \mathbb{R} par $f(x) = \cos(x) + \sin^2(x)$.

- 1. Démontrer que f est 2π périodique.
- **2.** Démontrer que f est paire.
- **3.** Déterminer l'intervalle d'étude de la fonction f.
- **4.** On a représenté la courbe $\mathscr C$ représentative de la fonction f sur $[0\,;\,\pi]$ ci-dessous. Compléter ce tracé pour avoir $\mathscr C$ sur $[-2\pi\,;\,2\pi]$:

