

Syllabus

Exam

40%

Week	Lecture Topics (Science)	Lab Topics (Technology)	Remarks
1	Course Outline; Intro. to Big Data	R Tutorial	
2	Data Computing Cycles; R Examples	<u>Lab1 - R Lab Submission</u>	
3	Data Computing - Text Data	Python Tutorial	
4	Data Computing - Time Series Data	<u>Lab2 - Python Lab Submission</u>	Project Grouping Deadline
5	Midterm	Hadoop Tutorial	
6	Parallel Computing - Theory	Lab3 - Hadoop Lab Submission	
7	Parallel Computing - Hadoop	Pig Latin Tutorial	
8	Parallel Computing - Spark	<u>Lab4 - Pig Latin Lab Submission</u>	
9	Parallel Computing - Others	Spark Tutorial	
10	Summary	Lab5 - Spark Lab Submission	
11	(Project Time)	(Project Time)	
12	(Project Time)	(Project Time)	
			Project Precentation File Deadline
13 (Project Time)	(Project Time)	(Project Time)	<u>Project Presentation File Deadline</u>
	•		Project Report Deadline

[Please click "Files" on the left menu for further details.)

P	ercentage	Links
Project	40%	https://canvas.cityu.edu.hk
In-class	5%	http://www.cityu.edu.hk/arro/ac calendar.asp
Midterm	15%	http://www.oityd.cdd.hivaho/do_cdichddi.dsp

Textbooks

- Data Science and Big Data Analytics
- Hadoop: The Definitive Guide
- Lightning-Fast Big Data Analysis
- MapReduce: a flexible data processing tool
- The Hadoop Distributed File System
- Beginning Apache Pig: Big Data Processing Made Easy

Course Materials

- All the course related content, communication, and grading will be posted on CANVAS
- •https://canvas.cityu.edu.hk

Kimberly Cook

FULL BIO V

analytics

Data science

IBM

To be Successful at Data Science, Think Batman, Not Superman

Apr 23, 2018 | 9000 Views

I recently made a Batman analogy when discussing the topic of data science with some colleagues. In this post, I will explore this analogy further.

http://houseofbots.com/news-detail/2775-4-to-besuccessful-at-data-science-think-batman-not-superman

In-class (5%)

The red colors denote the 5 in-class labs; each lab accounts for 1%.

Week	Lecture Topics (Science)	Lab Topics (Technology)	Remarks
1	Course Outline; Intro. to Big Data	R Tutorial	
2	Data Computing Cycles; R Examples	<u>Lab1 - R Lab Submission</u>	
3	Data Computing - Text Data	Python Tutorial	
4	Data Computing - Time Series Data	<u>Lab2 - Python Lab Submission</u>	Project Grouping Deadline
5	Midterm	Hadoop Tutorial	
6	Parallel Computing - Theory	Lab3 - Hadoop Lab Submission	
7	Parallel Computing - Hadoop	Pig Latin Tutorial	
8	Parallel Computing - Spark	Lab4 - Pig Latin Lab Submission	
9	Parallel Computing - Others	Spark Tutorial	
10	Summary	<u>Lab5 - Spark Lab Submission</u>	
11	(Project Time)	(Project Time)	
12	(Project Time)	(Project Time)	
13	(Project Time)	(Project Time)	Project Presentation File Deadline Project Report Deadline

[Please click "Files" on the left menu for further details.)

	Percentag
Project	40%
In-class	5%
Midterm	15%
Exam	40%

Midterm (15%)

- Based on the lecture notes and tutorial / lab materials
- HKEAA-approved calculators are allowed.
 - http://www.hkeaa.edu.hk/DocLibrary/IPE/cal/CAL2016.pdf

Objective:

 To review the knowledge in the first-half of the course so that students can prepare for the final exam in a rigorous manner.

Final Exam (40%)

- 30% of the final exam mark must be obtained to pass the course. (i.e. 30/100)
- Based on the lecture notes and tutorial / lab materials.
- Will be announced later by the university administration.

Objectives:

- To assess the capability of students to
 - Identify data computing problems
 - Review the existing concepts in data computing
 - Review the existing technology in data computing
 - Develop data computing solutions
 - Accelerate data computing solutions by parallel computing
 - Apply data computing solutions with specific case studies

- To be consistent with the CityU discovery-enriched curriculum, each group has to identify an interesting problem and propose a data computing solution to solve the problem with parallel computing elements.
 - Hard Deadline: The Saturday of Week 13.

3 to 4 members

- A project cover sheet template has been provided for you.
- Deliverables:
 - Project Cover Sheet
 - Project Report
 - Supporting Materials
- Please submit your project deliverables on CANVAS https://canvas.cityu.edu.hk
- Late submissions are not graded and will be given 0 mark.

Schedule

Before Week 4: Join a group on Canvas. (Leftovers will be assigned randomly)

Week 4: Grouping confirmed -- no more change of grouping.

Week 6: You are advised to confirm a project topic with your groupmates for work load distribution.

Week 12-13: Project presentation during lecture time. The presentation schedule will be randomly assigned.

Week 13: Submit all final deliverables on Canvas.

Report			
Real World Impact / Creativity	/ 5		
Solid Works and Output Amount	/ 20		
Technical Depth and Correctness	/ 20		
Parallel Computing Elements	/ 20		
Use of Written English	/ 5		
Presentation			
Technical Presentation Amount	/ 20		
Technical Presentation Skills	/ 5		
Question and Answer (Q&A)	/ 5		
	/ 100		

Project Example: (More past projects in CANVAS)

"Parallel Data Computing Solutions to Hong Kong Real Estate Data"

- 1. Collect the Hong Kong real estate data from several sources.
- Document the source of the data clearly in the report (e.g. https://data.gov.hk/en/).
- 2. Preprocess and Visualize the data with histograms, scatterplots, and other diagrams you have learned;
- Preprocess the data so that you can visualize it.
- Implement data visualizations so that we know better about the data.
- 3. Analyze the data and discuss your own findings
- Perform advanced analysis on the data (e.g. data clustering and association rule mining)
- Explain the findings, and try to make conjectures about the findings you obtained.
- 4. Discuss how parallel computing is applied to accelerate the data computing process
- Describe what kind of parallel computing strategy you have implemented (e.g. parallel for loop)
- Explain why such a parallel computing strategy has been adopted (e.g. memory hierarchy)
- 5. Conclusion and Future work.
- State your conclusions and the related pros / cons.
- If you have enough time, what you can do? What problems are there to be investigated further?

- Possible Data Sources: (but not limited to)
- (You are encouraged to find your own datasets you are interested in; below are just examples that you can choose.)
- Hong Kong Government Data: https://data.gov.hk/en/
- US Government Data: https://www.data.gov/
- Singapore Government Data: https://data.gov.sg/
- UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/
- Panama Papers Graph Data (i.e. Network): https://github.com/amaboura/panama-papers-dataset-2016
- Stanford Large Network Dataset Collection: https://snap.stanford.edu/data/
- Offshore Leaks Database (i.e. Text Data): https://offshoreleaks.icij.org/
- Miscellaneous:
- http://www.kdnuggets.com/2011/02/free-public-datasets.html
- https://r-dir.com/reference/datasets.html
- https://www.springboard.com/blog/free-public-data-sets-data-science-project/
- http://www.datasciencecentral.com/page/search?q=data+sets

Possible Project Ideas: (but not limited to)

- Analyze factors relating the gaming performance in League of Legends
- Exploration of Factors Relating to Movie Box Office Performance
- Historical Buildings in Hong Kong
- FIFA players' statistics and Professional Football Clubs' Seasonal Performance
- A visual exploration of aircraft crashes since 1908
- NBA in Data: An analytical report on Los Angeles Lakers
- Hong Kong Housing Trend
- Gastronomy and Ingredients Matching Across the World
- Exploring of factors relating to League of Legend world championship performance
- The frequency of earthquakes
- Homeless, Hong Kong
- The Relationship among Gender, Education and Employment in Hong Kong
- Renewable energy in the European Union
- Flight Networking and On-time Performance Analysis
- Analysis of Factors Affecting Global Temperature Rise

- Possible Project Ideas: (but not limited to)
 - Secondary School in Hong Kong
 - World University Rankings and Statistics
 - Exploring currency exchange rate
 - Mass Shooting in America
 - An evaluation of workplace environment in Hong Kong
 - Shootings in NBA
 - Exploration of typhoon in Hong Kong in 21st century
 - IMDB Movie Analysis
 - Data mining in conditions and predictions of G20 countries by continent
 - The Analysis of Mandatory Provident Fund (MPF) Schemes
 - Understanding people's reactions to new movies cia Twitter and film review websites
 - Mobile Application (ios and android system) Ranking and the relevant factors on America market
 - Unemployment rate and major indices of US, Germany and Japan
 - Analysis on the 2016 Legislative Council Election

Academic Honesty at City University

- City University is committed to high standards of academic honesty, and students are expected to 'present their own work, give proper acknowledgement of other's work, and honestly report findings obtained'.
- http://www.cityu.edu.hk/provost/academic_honesty/rules_ on_academic_honesty.htm
- http://www6.cityu.edu.hk/ah/academic_honesty.htm

VeriGuide

- Plagiarism Detection Engine
- http://veriguide1.cse.cuhk.edu.hk/portal/

Contact

- https://canvas.cityu.edu.hk (primary contact)
- Unless personal, please post your technical questions on the CANVAS system so that other students can have the equal opportunities to have a look at the answers.
- Dr. Ka-Chun Wong
 - Consultation Time: After Each Lecture
 - kc.w@cityu.edu.hk (urgent contact only)

END