Assignment 6 Advanced Algorithms & Data Structures PS

Christian Müller 1123410 Daniel Kocher, 0926293

April 25, 2016

Aufgabe 11

- i.) Fügen Sie die Schlüssel f, g, h, e, b, a, c in einen (anfangs leeren) Treap ein. Die Prioritäten dieser Schlüssel sind wie folgt gegeben: a:8, b:15, c:2, e:3, f:7, g:6, h:25, i:22, j:19, k:13.
- ii.) Entfernen Sie e aus dem Treap.
- iii.) Fügen Sie die Schlüssel i, j, k in einen anderen (anfangs leeren) Treap ein. Vereinigen Sie anschließend die zwei Treaps.
- iv.) Führen Sie $Spalte(T, d, T_1, T_2)$ durch, wobei T der Treap aus dem vorigen Punkt ist.

Geben Sie den Treap vor und nach jeder Rotation an.

Für den Pseudocode bzw. die grundlegenden Vorgehensweise der Operationen Suchen, Einfügen, Rotiere-NachLinks/Rechts, Entfernen, Vereinige und Spalte, sei auf die Folien vom 14.04.2016 verwiesen.

i.) Fügen Sie die Schlüssel f, g, h, e, b, a, c in einen (an fangs leeren) Treap ein. Die Prioritäten dieser Schlüssel sind wie folgt gegeben: a:8, b:15, c:2, e:3, f:7, g:6, h:25, i:22, j:19, k:13.

Insert g_6 :

Insert h_{25} :

(a) Keine Rotation notwendig

Insert e_3 :

(c) Nachher (nach: RotiereNachRechts (g_6))

Insert b_{15} :

(a) Keine Rotation notwendig

Insert a_8 :

Insert c_2 :

(c) nach: RotiereNachLinks (a_8)

(d) Nachher (nach: Rotiere NachRechts (e_3))

ii.) Entfernen Sie e aus dem Treap.

, ,

(a) nach: g_6 is rechtes Kind von e_3 = RotiereNachLinks (e_3)

(b) nach: f_7 is rechtes Kind von $e_3 \implies$ RotiereNachLinks (e_3)

iii.) Fügen Sie die Schlüssel i_{22} , j_{19} , k_{13} in einen anderen (anfangs leeren) Treap ein. Vereinigen Sie anschließend die zwei Treaps.

Insert j_{19} :

(a) Vorher

(b) Nachher (nach: Rotiere Nach
Links (i_{22}))

Insert k_{13} :

(a) Vorher

(b) Nachher (nach: RotiereNachLinks (j_{19}))

Vereinige (T_1,T_2) :

Sei \dot{k} ein Schlüssel mit key $(x_1) < \dot{k} < \ker(x_2)$ für alle $x_1 \in T_1$ und $x_2 \in T_2$. Ein echter Buchstabe kann hier nicht verwendet werden, da ein solcher im deutschen Alphabet (natürliche Ordnung) nicht existiert. Es gilt also: $a < b < c < \ldots < \dot{k} < i < j < k < \ldots < z$.

(a) Neuer Knoten mit Schlüssel \dot{k} als Wurzel.

Entferne Wurzel aus Treap:

(a) nach: c_2 is linkes Kind von $\dot{k}_{-\infty} \implies$ RotiereNachRechts $(\dot{k}_{-\infty})$

(a) nach: g_6 is linkes Kind von $\dot{k}_{-\infty} \implies$ Rotiere NachRechts($\dot{k}_{-\infty}$)

(a) nach: k_{13} is rechtes Kind von $\dot{k}_{-\infty} \implies$ RotiereNachLinks $(\dot{k}_{-\infty})$

(a) nach: j_{19} is rechtes Kind von $\dot{k}_{-\infty} \implies$ RotiereNachLinks $(\dot{k}_{-\infty})$

(a) nach: i_{22} is rechtes Kind von $\dot{k}_{-\infty} \implies$ RotiereNachLinks $(\dot{k}_{-\infty})$

(a) nach: h_{25} ist linkes Kind von $\dot{k}_{-\infty} \implies$ RotiereNachRechts $(\dot{k}_{-\infty})$

Aufgabe 12

Der $linke\ Rand$ in einem binären Suchbaum T ist der Pfad von der Wurzel zum Knoten mit dem kleinsten Schlüssel. Der $rechte\ Rand$ in einem binären Suchbaum T ist der Pfad von der Wurzel zum Knoten mit dem größten Schlüssel. Betrachten Sie einen Treap T direkt nach dem Einfügen eines Objektes x. Sei C die Länge des rechten Randes des linken Unterbaums des Knotens mit dem Element x und sei D die Länge des linken Randes des rechten Unterbaums des Knotens mit dem Element x. Zeigen Sie, dass die Anzahl der Rotationen, die während des Einfügens von x durchgeführt wurden, C+D ist.

Aufgabe 13

Sei $U = \{0, ..., N-1\}$, wobei N eine Primzahl ist und sei m = 4. Seien $a_i = 40i$ und $b_i = 60i$. Wir definieren folgende Klasse von Hashfunktionen:

$$H = \left\{ h_i(k) = \left((a_i k + b_i) \mod N - 1 \right) \mod m \right\} \text{ für } i \in \left\{ 1, \dots, N(N-1) \right\}$$
 (1)

Ist H universell? Warum? Falls H nicht universell ist, so modifizieren Sie h_i , a_i und b_i , sodass Sie eine universelle Klasse erhalten.