ELEC 7410 Homework Assignment #5 Oct. 14, 2025

(6 problems, Due: Oct. 21, 2025)

Any late homework submission will incur 15% penalty per day, with any fraction of a day counted as full day.

- 1. (10 points) (Transformations of Random Vectors) Problem 21, Chapter 8, Gubner.
 - 21. Let X and Y have joint density $f_{XY}(x,y)$. Let U := X + Y and V := X Y. Find $f_{UV}(u,v)$.
- 2. (10 points) (Transformations of Random Vectors) Problem 23, Chapter 8, Gubner.
 - 23. Let *X* and *Y* be independent Laplace(λ) random variables. Put U := X and V := Y/X. Find $f_{UV}(u, v)$ and $f_V(v)$. Compare with Problem 33(c) in Chapter 7.
- 3. (10 points) (Linear Estimation of Random Vectors) Problem 28, Chapter 8, Gubner.
 - **28.** Let *X* and *W* be independent N(0,1) random variables, and put $Y := X^3 + W$. Find *A* and *b* that minimize $E[|X \widehat{X}|^2]$, where $\widehat{X} := AY + b$.
- 4. (10 points) (Linear Estimation of Random Vectors) Problem 29, Chapter 8, Gubner.
 - 29. Let $X \sim N(0,1)$ and $W \sim \text{Laplace}(\lambda)$ be independent, and put Y := X + W. Find the linear MMSE estimator of X based on Y.
- 5. (10 points) (**Definition of Multivariate Gaussian**) Problem 3, Chapter 9, Gubner.
 - 3. Let $X \sim N(0, 1)$ and put Y := 3X.
 - (a) Show that *X* and *Y* are jointly Gaussian.
 - (b) Find their covariance matrix, cov([X,Y]').
 - (c) Show that they are not jointly continuous. *Hint:* Show that the conditional cdf of Y given X = x is a unit-step function, and hence, the conditional density is an impulse.
- 6. (10 points) (Characteristic Function) Problem 11, Chapter 9, Gubner.
 - 11. Let X be a random vector with joint characteristic function $\varphi_X(v) = e^{jv'm-v'Cv/2}$. For any coefficients a_i , put $Y := \sum_{i=1}^n a_i X_i$. Show that $\varphi_Y(\eta) = \mathbb{E}[e^{j\eta Y}]$ has the form of the characteristic function of a scalar Gaussian random variable.