Two-Sample Problems

Previously, we made inference using a one sample, but imagine you want to compare two samples from two different populations.

Random samples from two populations

 Samples from two distinct populations are independent if each one is drawn without reference to the other, and has no connection with the other.

mean: μ_1 s.d.: σ_1

Sample 1

 $size: n_1$ $mean: \bar{x}_1$ $s.d.: s_1$

Population 2

mean: μ_2 s.d.: σ_2

Sample 2

 $size: n_2$ $mean: \bar{x}_2$ $s.d.: s_2$

Confidence interval estimation

- Suppose we have a sample from both populations with both n>=30. Than sample mean \bar{x}_1 and sample mean \bar{x}_2 are both good estimate do the population means μ_1 and μ_2 .
- So, we could subtract them to get a point estimate. Or we subtract both sample distributions for an interval estimation.
- If the samples are independent and n_1 and $n_2 >= 30$ then, can construct the difference of both sample distributions
- And estimate the interval accordingly:

$$(\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

To compare customer satisfaction levels of two competing cable television companies, 174 customers of Company 1 and 355 customers of Company 2 were randomly selected and were asked to rate their cable companies on a five-point scale, with 1 being least satisfied and 5 most satisfied. The survey results are summarized in the following table:

Construct a point estimate and a 99% confidence interval for $\mu_1 - \mu_2$, the difference in average satisfaction levels of customers of the two companies as measured on this five-point scale.

Company 1	Company 2
n1=174	n2=355
x-1=3.51	x-2=3.24
s1=0.51	s2=0.52

The point estimate of $\mu_1 - \mu_2$ is: $\overline{x}_1 - \overline{x}_2 = 3.51 - 3.24 = 0.27$.

The average costumer satisfaction of company1 is 0.27 points higher.

We are 99% confident that the difference in the population means lies in the interval [0.15,0.29], in the sense that in repeated sampling 99% of all intervals constructed from the sample data in this manner will contain $\mu_1 - \mu_2$. We say that we are 99% confident that the average level of costumer satisfaction for company 1 is between 0.15 and 0.39 higher.

Hypothesis testing

- Hypotheses concerning the relative sizes of the means of two
 populations are tested using the same critical value and p-value
 procedures that were used in the case of a single population.
- Thus, the null hypothesis will always be written $H_0: \mu_1 \mu_2 = D_0$, where D_0 is a number that is deduced from the statement of the situation.

• The alternative hypothesis can take one of the three forms, with the same terminology:

Form of Ha	Terminology
<i>Ha</i> :μ1–μ2< <i>D</i> 0	Left-tailed
<i>Ha</i> :μ1–μ2> <i>D</i> 0	Right-tailed
<i>Ha</i> :μ1–μ2≠ <i>D</i> 0	Two-tailed

Test statistic for large samples

 With both samples are larger than n>=30, we can use the normal test statistic:

- Continuing the initial example, does company1 has a higher mean satisfaction? Test at a 1% significance level.
- Because we assume that the customer mean satisfaction of company1 is higher:

$$H_0 = \mu_1 - \mu_2 = 0$$

 $H_a = \mu_1 - \mu_2 > 0$

- Estimate test statistic:
- Estimate critical region:
 since H_a assumes > its right tailed.
- Also because we want μ_1 - μ_2 to lie very far to the right away from 0.
- With α=0.01 which the rejection region is [2.32,∞)

• The decision is to reject H_0 . The data provide sufficient evidence, at the 1% level of significance, to conclude that the mean customer satisfaction for Company 1 is higher than that for Company 2

- What if we don't standardize?
- We really want the difference to be bigger than 0 or D₀, if you think about it.

Small, independent samples

- When one of the sample sizes is smaller than 30, the Central limit theorem does not apply.
- If we assume that variance for population 1 is about the same as that of population 2, we can estimate the common variance by pooling information from samples from population 1 and population 2

The test statistic is
$$t=\frac{\bar{X}_1-\bar{X}_2}{s_p\cdot\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}$$
 , where $s_p=\sqrt{\frac{(n_1-1)\,s_{X_1}^2+(n_2-1)\,s_{X_2}^2}{n_1+n_2-2}}.$ and with df=n₁+n₂-2

 We we assume the variance of both populations to be different we can use a Welch-Test. The test statistic approximately follows a t distribution:

$$T=rac{ar{X}-ar{Y}-\omega_0}{\sqrt{rac{S_X^2}{n}+rac{S_Y^2}{m}}}pprox t_
u. \qquad \qquad ext{with df} =rac{\left(rac{s_x^2}{n}+rac{s_y^2}{m}
ight)^2}{rac{1}{n-1}\left(rac{s_x^2}{n}
ight)^2+rac{1}{m-1}\left(rac{s_y^2}{m}
ight)^2}.$$

Comparison of two paired samples population means

- If we have two samples from the some object under different conditions, we use a test for paired samples.
- Two sorts of gasoline are used for the same car. Instead of independent random samples, pairs are select.
- We aim to estimate if the fuel that was used in car1, has a higher fuel economy.

Make and Model	Car 1	Car 2
Buick LaCrosse	17.0	17.0
Dodge Viper	13.2	12.9
Honda CR-Z	35.3	35.4
Hummer H 3	13.6	13.2
Lexus RX	32.7	32.5
Mazda CX-9	18.4	18.1
Saab 9-3	22.5	22.5
Toyota Corolla	26.8	26.7
Volvo XC 90	15.1	15.0

Paired samples test statistic

 To estimate if one fuel is superior to the other, we estimate the difference between each sample pair. As indicated here:

Make and Model	Car 1	Car 2	Difference
Buick LaCrosse	17.0	17.0	0.0
Dodge Viper	13.2	12.9	0.3

• We than use the mean \overline{d} and standard deviation s_d of the differences to estimate the test statistic, with df = n-1

$$T = \frac{\overline{d} - D_0}{s_d / \sqrt{n}}$$

• The difference in the samples can be considered as a random sample selected from a population with mean $\mu_d = \mu_1 - \mu_2$. This essentially transforms the paired two-sample problem into a one-sample problem.

• Since the differences were computed in the order car1– car2, higher fuel economy with Type1 fuel corresponds to $\mu = \mu_1 - \mu_2 > 0$, with $\alpha = 0.05$

$$H_0$$
: $\mu_d = 0$

$$H_a: \mu_d > 0$$

$$T = \frac{\overline{d}}{sd/\sqrt{n}} = \frac{0.14}{0.16/3} = 2.6$$

Rejection region with df=8 [1.86,∞)

The data provide sufficient evidence, at the 5% level of significance, to conclude that the mean fuel economy provided by Type 1 gasoline is greater than that for Type 2 gasoline.