

olphi =
$$A(S_1 \omega_{h_1}^1)$$

olphi = $A(S_1 \omega_{h_1}^1)$
olphi = $A(S_1 \omega_{h_1}^1)$
olphi = $A(S_1 \omega_{h_1}^1)$

Multi-class Logistic Regression

No hidden layer

= special case of neural network

ip Layer

•••

M2 Tr
$$\Rightarrow$$
 high \Rightarrow 80

M, Ts \Rightarrow 100 \Rightarrow 40

Tr \Rightarrow 100 \Rightarrow 100

Tast \Rightarrow 100

$$z_i^{(k)} = g(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)})$$

g = nonlinear activation function

Common Activation Functions

Sigmoid Function

Find derivative.

Hyperbolic Tangent

Rectified Linear Unit (ReLU)

Common Activation Functions

Sigmoid Function

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

• Training the deep neural network is just like logistic regression:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

just w tends to be a much, much larger vector 😌

☐ just run gradient ascent

Neural Networks Properties

• Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.

- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

Neural Networks

https://cs.stanford.edu/people/karpathy/convnetjs/

Neural Networks