Data Analytics for Operations

INSY 7120

Lecture 10b – Intro to Classification

Dan O'Leary // dan.oleary@auburn.edu

Today

- start the classification unit!
- Logistic Regression, KNN
- Binary, multiclass, multilabel classification problems
- Gradient descent solver
- Assessment confusion matrix, precision, recall, ROC AUC
- Data prep considerations, e.g., stratified split, feature scaling
- Imbalanced data
- SKL grid search and pipelines

Classification (ISL Ch 4)

- Regression predicting numeric response (quantitative)
- Classification predicting categorical response (qualitative)
 - binary (two categories aka classes)
 - nominal (unordered)
 - ordinal (ordered, even / uneven interval)
- Often predicting the probability that an observation belongs to each categories, assigning the most likely – quantitative basis
- Many models suitable for classification; we will focus on logistic regression, and K-nearest neighbors for now, more in next unit

Examples of Classification

- Image recognition: cat, breed of cat, breeds of cats and dogs
 - binary; multi-class; multi-class, multi-label
- Person in emergency room; symptoms → condition
 - multi-class
- Credit card charge → fraudulent / not
 - binary classification
- DNA sequence → disease
 - multi-class; can be used to infer what differences in the sequences may contribute to the disease
- Wilderness audio recording → species identification
 - multi-class; can be used to study the population of species in an area

FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.

Logistic Regression (4.3)

- Obvious (exaggerated) relationship between balance and default; not typically the case – for illustration purposes
- Given balance (X_1) and income (X_2) , predict default (Y)
- ullet Logistic regression models the *probability* that Y belongs to default or not-default classes

$$Pr(default = Yes \mid balance) = p(balance) \in [0,1]$$

- Then you might predict default for any observation where p(balance) > 0.5, a 50% probability
- More conservative: p(balance) > 0.1, only 10% chance
- The decision / classification threshold is based on business rules and model tuning

The Logistic Model (4.3.1)

• Must model p(X) using a function that gives outputs between 0 and 1 for all values of $X \to logistic function$

$$p(x) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- p(X) has an S-shaped curve that reaches 0 and 1 at the limits
- Why not linear regression?
 - cannot account for classification with more than two classes (order dependence)
 - does not provide meaningful estimates of Pr(Y|X), even for 2 classes (some predictions outside [0,1] interval
 - for more detail, see section 4.2

FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default (No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

Assume for a moment that we CAN solve for the coefficients in the case of simple logistic regression...

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance. A one-unit increase in balance is associated with an increase in the log odds of default by 0.0055 units.

for an individual with a balance of \$1,000 is

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576,$$

which is below 1 %. In contrast, the predicted probability of default for an individual with a balance of \$2,000 is much higher, and equals 0.586 or 58.6%.

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using student status. Student status is encoded as a dummy variable, with a value of 1 for a student and a value of 0 for a non-student, and represented by the variable student [Yes] in the table.

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

The Logistic Model (4.3.1)

$$p(x) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- p(X) has an S-shaped curve that reaches 0 and 1 at the limits
- To interpret the coefficients, some manipulation is required

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X} \to log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

- p(x)/(1-p(x)) is called the *odds*, can take on any value 0 to ∞
 - 1 in 5 people with an odds of ¼ will default: $p(X) = 0.2 \rightarrow \frac{0.2}{1-0.2} = 1/4$

The Logistic Model (4.3.1)

- The log of the odds term is called the *log odds* or *logit*
- The log odds term is is linear in *X*:

$$log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

- But there is not a straight-line relationship between X and p(X)
- Increasing X by one unit changes the \log odds by β_1 or you could say that it multiplies the odds by e^{β_1}

Estimating the Coefficients (4.3.2)

- β_0 and β_1 are unknown, must be estimated, typically with maximum likelihood method
- find coefficients that the predicted probability of the label assigned to each each observation corresponds as closely as possible to the observed label
- for the default example, we're looking for probabilities close to zero for those that did not default and close to 1 for those that did

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$
 likelihood function

Gradient Descent

- No closed-form analytical solution for maximizing likelihood → an iterative optimization algorithm is typically used
- Gradient Descent
 - Start with initial values for β_0 and β_1 (typically random)
 - Compute the gradient (direction of steepest increase) of the log-likelihood function, i.e., the partial derivative of log likelihood with respect to β_0 and β_1
 - Move β_0 and β_1 in the direction of the gradient (for maximizing) or opposite to it (for minimizing the negative log-likelihood)
 - Repeat until convergence
- Analogy: How would a blind person get to the bottom of a hill?

Figure 4-3. In this depiction of gradient descent, the model parameters are initialized randomly and get tweaked repeatedly to minimize the cost function; the learning step size is proportional to the slope of the cost function, so the steps gradually get smaller as the cost approaches the minimum

- Important parameter in GD = step size, aka *learning rate*
 - Small learning rate → can be slow to converge
 - To large → can create erratic, divergent behavior

Figure 4-5. Learning rate too high

- Not all cost functions have a regular "bowl" shape with a single global minimum; may have holes, ridges, plateaus, other irregular shapes
- Result: local minima that may "trick" the algorithm

- Luckily, the cost function for logistic regression (negative log-likelihood) is convex, which guarantees that:
 - there is only one global minimum (no local minima)
 - gradient descent will converge on the optimal solution for any initialization
 - there is a single, unique solution

Multiple Logistic Regression (4.3.4)

We now consider the problem of predicting a binary response using multiple predictors. By analogy with the extension from simple to multiple linear regression in Chapter 3, we can generalize (4.4) as follows:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p,\tag{4.6}$$

where $X = (X_1, \dots, X_p)$ are p predictors. Equation 4.6 can be rewritten as

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}.$$
(4.7)

As with simple logistic regression, maximum likelihood method is used to estimate the p coefficients

	Coefficient	Std. error	$z ext{-statistic}$	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

TABLE 4.3. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance, income, and student status. Student status is encoded as a dummy variable student [Yes], with a value of 1 for a student and a value of 0 for a non-student. In fitting this model, income was measured in thousands of dollars.

By substituting estimates for the regression coefficients from Table 4.3 into (4.7), we can make predictions. For example, a student with a credit card balance of \$1,500 and an income of \$40,000 has an estimated probability of default of

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058. \tag{4.8}$$

A non-student with the same balance and income has an estimated probability of default of

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}} = 0.105.$$
 (4.9)

FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown for students (orange) and non-students (blue). The solid lines display default rate as a function of balance, while the horizontal broken lines display the overall default rates. Right: Boxplots of balance for students (orange) and non-students (blue) are shown.

What is the apparent contradiction here and what causes it?