Complex Numbers

A complex number is an ordered pair of real numbers, (a, b) = a + bi. A vector in \mathbb{R}^2 is also an ordered pair, (a, b) of real numbers.

Indeed, vector addition and scalar multiplication on complex numbers are defined just as with \mathbb{R}^2 . However, unlike vectors in \mathbb{R}^2 , there is also an operation \cdot . We desire for $(0,1)\cdot(0,1)=(-1,0)$; essentially, $i^2=-1$. We say that i is a square foot of -1; every complex number except 0 has two square roots.

$$(a, b) \cdot (c, d) = (a + bi) + (c + di)$$

 $= a(c) + adi + bci + bd(i^2)$
 $= (ac - bd) + (ad + bc)i$
 $= (ac - bd, ad + bc)$

Thus, \mathbb{R}^2 with the operations + and the above defined complex multiplication is known as \mathbb{C} . We write as a+bi instead of (a,b).

Given $z=(a+bi)\in\mathbb{C}$, we write Re(z)=a and Im(z)=b. If Im(z)=0, then $z\in\mathbb{R}\times\{0\}\subset\mathbb{C}$. However, many people say that $\mathbb{R}\subseteq\mathbb{C}$, even if \mathbb{C} isn't defined as such.

Reciprocals of Complex Numbers

Let $z \in \mathbb{C}$, where $z \neq 0$. Then, $\exists w \in C$ such that zw = 1.

Let w = c + di. We want to show that zw = 1.

$$(a + bi) + (c + di) = (ac - bd) + (ad + bc)i$$

with the condition that

$$ac - bd = 1$$
$$ad + bc = 0$$

Thus, let w = c + di, with $a, b \neq 0$

$$c = \frac{a}{a^2 + b^2}$$
$$d = \frac{-b}{a^2 + b^2}$$

For every $z \neq 0$, with z = a + bi, the *reciprocal* of z is defined as $\frac{1}{z} = \frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}i$. Then, for $w \in \mathbb{C}$, we define

$$\frac{w}{z} := w\left(\frac{1}{z}\right).$$

Properties of Complex Numbers

Let $z = a + bi \in C$. Then, the (Euclidean) norm (or absolute value) of z is defined as

$$|z| = \sqrt{a^2 + b^2}.$$

The conjugate of z = a + bi is $\overline{z} = a - bi$.

- (i) $z\overline{z} = |z|^2$
- (ii) $\overline{(\overline{z})} = z$

(iii)
$$\overline{(z+w)} = \overline{z} + \overline{w}$$

(iv)
$$\overline{zw} = \overline{z} \cdot \overline{w}$$

(v)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$
, so $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$

(vi)
$$z - \overline{z} = 2\operatorname{Im}(z)i$$
, so $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$