

EOSC 350: Environmental, Geotechnical and Exploration Geophysics I EM 3-loop Model

September – December, 2017

Maxwell's Equations

Ampere's law

electric -> magnetic

Faraday's law

magnetic -> electric

Communicate with the earth

Transmitter loop

Ampere: timevarying current and changing primary magnetic field

Target

Faraday: current induced by the changing primary field; Ampere: induced current generates a secondary magnetic field

Receiver loop

Faraday: measurable current induced in the loop by the changing secondary field

3-loop Model

Interactive 3D visualization in "MagDipoleLoops3D.ipynb" clone from https://github.com/yangdikun/magLab.git

3-loop Model: Primary Hp

3-loop Model: Secondary Hs

3-loop Model receiver transmitter Data = H^s/H^p (in % or ppm) target

Question: Is the data positive or negative for the scenario on this page? Hint: Think about the positive and negative anomalies in total field magnetics.

Data (Hs/Hp) Sign Convention

Positive primary and secondary in same direction

Coupling between Two Loops Through Magnetic Flux Linkage

Coupling between Two Loops Through Magnetic Flux Linkage

Coupling between Two Loops Through Magnetic Flux Linkage

Null coupled

H^s/H^p: Positive or Negative?

H^s/H^p: Positive or Negative?

Hs/Hp Profile

walk

Drawing lines only helps qualitative understanding.

We need more math to do a quantitative interpretation.

Decompose Secondary Field

primary field $H_3^p \cos(\omega t)$

secondary field

$$H_3^s \cos(\omega t - \frac{\pi}{2} - \phi)$$

or $H_3^s \cos(\omega t - \psi)$

$$\phi = tan^{-1}(\frac{\omega L}{R}) = tan^{-1}(\alpha)$$

- Hs swings in the third quadrant: 0 < φ < 90°
- ϕ depends on the induction number α
- α is a function of frequency ω, self inductance L
 and resistance R of Loop 2

Decompose Secondary Field

$$\phi = tan^{-1}(\frac{\omega L}{R}) = tan^{-1}(\alpha)$$

Question: What happens to the H^s (red arrow) for a very conductive or very resistive target?

Decompose H^s to two orthogonal components then normalize by H^p:

90° phase lag: called "out-ofphase", "quadrature", "imaginary"

$$\frac{H^s \cos(\phi)}{H^p}$$

180° phase lag: called "in-phase", "real"

$$\frac{H^s \sin(\phi)}{H^p}$$

Response Function

Question: How would the real and imaginary data change with the induction number α ?

Response Function

$$Q(\alpha) = \frac{i\alpha}{1 + i\alpha} = \frac{\alpha^2 + i\alpha}{1 + \alpha^2} \qquad \alpha = \frac{\omega I}{R}$$

- low frequency
- low conductivity

Inductive limit:

- high frequency
- high conductivity

Expected Data From a Loop Target

Coupling

- location, orientation
- overall magnitude

Induction

- properties of loop 2
- how much in Re & Im

Summary

- 3-loop circuit model for EM-31 over compact conductive objects
 - EM energy transmission via magnetic flux linkage
 - Sign and overall magnitude of data: draw field lines and using mutual inductance
 - Real and imaginary portion of data: response function as a function of the induction number
- Be able to sketch data on a profile
- Be able to infer conductivity using the response function plot