How can we ensure the model is fair?

Responsible Al: Human-Centered Design

START

DESIGN

DEVELOPMENT

DEPLOYMENT

END

Course 1

Fundamentals of TinyMl

- What am I building?
- Who am I building this for?
- What are the consequences for the user if it fails?

Course 2

Applications of TinyML

- What data will be collected to train the model?
- Is the dataset biased?
- How can we ensure the model is fair?

Course 3

Deploying TinyML

Unfairness in ML

Model exhibits **discriminatory biases**, perpetuates **inequality** or performs less well for historically **disadvantaged groups**

- All ML discriminates (it just means to recognize a distinction, differentiate)
- Fairness is concerned with wrongful discrimination

Discrimination

Disparate **Treatment**:

Membership in a protected class is used as an input to the model, decisions are differentiated on that basis in a way that disadvantages members of a protected class

Disparate Impact:

Outcomes of the model disproportionately disadvantage members of a protected class

1. Group Unawareness

Sensitive attributes are **not** included as features of the data (e.g. race, gender)

Pro: Avoids disparate treatment

Con: Possibility of highly correlated features that are proxies of the sensitive attribute

2. Group Threshold

Counteract historical biases in data by adjusting confidence thresholds *independently* for each group

3. Demographic Parity

	Actually Healthy = Yes	Actually Healthy = No
Predicted Healthy = Yes	True Positive	False Positive
Predicted Healthy = No	False Negative	True Negative

The positive rate is the same across groups

Problem with Demographic Parity

4. Equal Opportunity

	Actually Healthy = Yes	Actually Healthy = No
Predicted Healthy = Yes	True Positive	False Positive
Predicted Healthy = No	False Negative	True Negative

Qualified individuals should have an equal chance of being correctly classified for a desirable outcome.

Problem with Equality of Opportunity

True positive
False positive
True negative
False negative

4. Equal Accuracy

	Actually Disease = Yes	Actually Disease = No
Predicted Disease = Yes	True Positive	False Positive
Predicted Disease = No	False Negative	True Negative

The percentage of correct classifications should be the same for all individuals

Problem with Equal Accuracy

Impossibility Theorem

We cannot satisfy all fairness metrics at the same time!

For example:

- Group Unawareness is incompatible with Group Threshold
- Equal Opportunity is incompatible with Equal Accuracy

How can we mitigate unfairness in ML?

The Framing Trap

Algorithmic Frame

Do properties of the output match the input? Does the algorithm provide good accuracy on unseen data?

Data Frame

Has bias been removed from the training data? Does the demographic information of the data require optimization of the model?

Sociotechnical Frame

How does the model operate when considered as part of a system of humans and social institutions?

The Framing Trap

Algorithmic Frame

Do properties of the output match the input? Does the algorithm provide good accuracy on unseen data?

Data Frame

Has bias been removed from the training data? Does the demographic information of the data require optimization of the model?

Sociotechnical Frame

How does the model operate when considered as part of a system of humans and social institutions?

The Framing Trap

Algorithmic Frame

Do properties of the output match the input? Does the algorithm provide good accuracy on unseen data?

Data Frame

Has bias been removed from the training data? Does the demographic information of the data require optimization of the model?

Sociotechnical Frame

How does the model operate when considered as part of a system of humans and social institutions?

The Portability Trap

The Portability Trap

Context Matters!

Repurposing algorithmic solutions may not preserve fair outcomes.

The **Formalism** Trap

Which mathematical definition of fairness should I choose?

Google's What-If Tool

