Transformer Details Not Described in The Paper

Ki Hyun Kim

nlp.with.deep.learning@gmail.com

Transformer의 단점

- 학습이 까다롭다.
 - Bad local optima에 빠지기 매우 쉬움
 - 그런데 paper에서 이것을 언급하지 않음
 - #warm-up step, learning rate

(a) Loss/BLEU on the IWSLT14 De-En task (Adam)

- 오죽하면,,
 - Training Tips for the Transformer Model [Popel et al., 2018]
 - Transformers without Tears: Improving the Normalization of Self-Attention [Nguyen et al., 2019]
 - ON THE VARIANCE OF THE ADAPTIVE LEARNING RATE AND BEYOND [Liu et al., 2020]

On Layer Normalization in the Transformer Architecture [Xiong et al., 2020]

- Previous work:
 - Use Noam decay (warm-up and linear decay)
 - Rectified Adam (RAdam)
- Proposed:
 - Layer Norm의 위치에 따라 학습이 수월해짐
 - LN이 gradient를 평탄하게 바꾸는 효과

Figure 1: (a) Post-LN Transformer layer; (b) Pre-LN Transformer layer.

Table 1: Post-LN Transformer v.s. Pre-LN Transformer

Post-LN Transformer	Pre-LN Transformer
	$ \begin{aligned} x_{l,i}^{pre,1} &= \operatorname{LayerNorm}(x_{l,i}^{pre}) \\ x_{l,i}^{pre,2} &= \operatorname{MultiHeadAtt}(x_{l,i}^{pre,1}, [x_{l,1}^{pre,1}, \cdots, x_{l,n}^{pre,1}]) \\ x_{l,i}^{pre,3} &= x_{l,i}^{pre} + x_{l,i}^{pre,2} \\ x_{l,i}^{pre,4} &= \operatorname{LayerNorm}(x_{l,i}^{pre,3}) \\ x_{l,i}^{pre,5} &= \operatorname{ReLU}(x_{l,i}^{pre,4}W^{1,l} + b^{1,l})W^{2,l} + b^{2,l} \end{aligned} $
$x_{l+1,i}^{post} = \text{LayerNorm}(x_{l,i}^{post,5})$	$\frac{x_{l,i}^{pre}}{x_{l+1,i}^{pre} = x_{l,i}^{pre,5} + x_{l,i}^{pre,3}}$ Final LayerNorm: $x_{Final,i}^{pre} \leftarrow \text{LayerNorm}(x_{L+1,i}^{pre})$

• Evaluation Results

30 BLEU 20 Post-LN (RAdam w/o warm-up) Pre-LN (RAdam w/o warm-up) Post-LN (Adam w/ warm-up) Pre-LN (Adam w/o warm-up) 3 13 5 15 **Epochs**

(a) Validation Loss (IWSLT)

(b) BLEU (IWSLT)

Summary

- Pre-Norm 방식을 통해 warm-up 및 LR 튜닝 제거 가능
 - LR decay는 여전히 필요
- 그 밖에도 Layer Norm을 대체하거나, weight initialization을 활용하여 좀 더 나은 성능을 확보할 수 있음