Homework 2 Part 2

Will Scheib

9/22/2021

6

```
Auto$hilow <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)
```

 \mathbf{a}

We should remove mpg because it was used to create hilow and thus would break the model.

b

Yes, because the assumptions are less important when classifying.

 \mathbf{c}

```
for(col in c("cylinders","displacement","horsepower","weight","acceleration","year")){
  is.list(col)
  boxplot(
    Auto[,col]~Auto$hilow,
    xlab="Above Median MPG",
    ylab=col,
    main=paste(col,"by Above Median MPG")
  )
}
```

cylinders by Above Median MPG

displacement by Above Median MPG

Above Median MPG

horsepower by Above Median MPG

weight by Above Median MPG

Above Median MPG

acceleration by Above Median MPG

Above Median MPG

year by Above Median MPG

All predictors except acceleration and maybe year look to have significantly differing distributions depending on hilow.

d

```
set.seed(99)
lda_v_qda <- function(trial){</pre>
  if(trial%%1000 == 0){print(trial)}
  # i
  sample.data <- sample(nrow(Auto),floor(.50*nrow(Auto)))</pre>
  train <- Auto[sample.data,]</pre>
  test <- Auto[-sample.data,]</pre>
  # ii
  lda.hilow <- lda(</pre>
    hilow ~ cylinders + displacement + horsepower + weight + acceleration + year,
    data=train
  )
  # iii
  lda.test <- predict(lda.hilow,test)</pre>
  conf_mat_lda <- table(test$hilow,lda.test$class)</pre>
  error_rate_lda <- (conf_mat_lda["0","1"] + conf_mat_lda["1","0"]) / sum(conf_mat_lda)
  # iv
  qda.hilow <- qda(
    hilow ~ cylinders + displacement + horsepower + weight + acceleration + year,
    data=train
  qda.test <- predict(qda.hilow,test)</pre>
  conf_mat_qda <- table(test$hilow,qda.test$class)</pre>
  error_rate_qda <- (conf_mat_qda["0","1"] + conf_mat_qda["1","0"]) / sum(conf_mat_qda)
  c(error_rate_lda, error_rate_qda)
}
results <- sapply(1:10000, lda_v_qda)
## [1] 1000
## [1] 2000
## [1] 3000
## [1] 4000
## [1] 5000
## [1] 6000
## [1] 7000
## [1] 8000
## [1] 9000
## [1] 10000
\mathbf{e}
mean lda <- mean(results[1,])</pre>
mean_qda <- mean(results[2,])</pre>
```

```
c(mean_lda=mean_lda, mean_qda=mean_qda)
```

```
## mean_lda mean_qda
## 0.09524337 0.10031224
```

The LDA appears to work marginally better than the QDA over the $10,\!000$ training and test splits.