Diseño de Bases de Datos

Clase 4

Curso 2015

Prof. Luciano Marrero

Pablo Thomas

Rodolfo Bertone

Agenda

Optmización de Consultas

- Costo de Consulta
- Accesos
- Operaciones básicas

Componentes del "costo" de ejecución de una consulta:

- Costo de acceso a almacenamiento secundario → acceder al bloque de datos que reside en disco.
- Costo de cómputo

 Costo de realizar operaciones sobre memoria RAM
- Costo de comunicación → Costo de enviar la consulta y los resultados (si es un Sistema Distribuido)

Optimización Lógica

- Expresiones equivalentes → Algebra relacional
 - existe una secuencia de resolución >
 - se puede encontrar una expresión más eficiente que otra.

Selección: Personas del género masculino que sean solteros

- σ Genero='M' ∧ ECivil='Soltero' (Persona) →
 - Se aplican 2 condiciones a 7 tuplas
- $\sigma_{\text{Genero}='M'}(\sigma_{\text{ECivil}='Soltero'}, (\text{Persona})) \rightarrow$
 - Se aplica 1 condición a 7 tuplas y 1 condición a 1 tuple
- σ_{ECivil='Soltero'} (σ_{Genero='M'} (Persona))
 - Se aplica 1 condicion a 7 tuplas y 1 condicion a 4 tuplas

· Conclusión: el caso 2 es mejor, por lo que conviene realizar la selección lo

antes posible

DNI	Nombre	Genero	ECivil
22456980	Josefina	F	Casado
32456789	Juan	M	Casado
24567876	María	F	Casado
21345654	Roberto	M	Soltero
20987654	Alfredo	M	Casado
20897656	Fernanda	F	Casado
21345678	Raul	M	Casado

DBD - CLASE 7

DNI	Nombre	IdCiudad
22456980	Josefina	1
32456789	Juan	2
24567876	María	3
21345654	Roberto	1
20987654	Alfredo	2
20897656	Fernanda	3
21345678	Raul	1

IdCiudad	Nombre		
1	Junín		
2	Pergamino		
3	La Plata		

- Proyección: DNI de las personas que vivan en la ciudad de Junín
 - 1. π_{DNI} (Persona | x | $\sigma_{Nombre='Junin'}$ (Ciudad))
 - 2. π_{DNI} ($\pi_{DNI,IdCiudad}$ (Persona) | x | $\pi_{IdCiudad}$ ($\sigma_{Nombre='Junín'}$ (Ciudad))
- Conclusión: el caso 2 es mejor, por lo que conviene realizar la proyección para disminuir la cantidad de información que se almacena en buffers de memoria.

La conclusión anterior respecto a la proyección se puede aplicar a otras operaciones binarias:

- Union,
- Intersección,
- Diferencia

Algunos valores:

- CT tabla,
- CB tabla
- CV (a, tabla)

Costo selección: σ (at = "valor") (Tabla)

• (CT tabla / CV (at, tabla)) * CB tabla

Costo proyección: π at1, at2, .. atn (Tabla)

• (CB at1 + CB at2 + .. + CB atn) * CT tabla

Costo producto cartesiano: T1 X T2

(CT †1 * CT †2) * (CB †1 + CB †2)

Costo producto natural: T1 | X | T2

- Sin atributos en común → T1 X T2
 - CT (†1) * CT (†2)
- T2 x T1
 - CT (†2) * CT (†1)
- ES LO MISMO

Costo producto natural: T1 | X | T2

- Con atributo "a" en común, donde: a es PK en T1 y FK en T2.
 - T1 | X | T2 → un fila de T1 con muchas de T2.
 - Clave secundaria.
 - T2 |X| T1 \rightarrow un fila de T2 con una de T1.
 - Clave primaria.

Costo producto natural: T1 | X | T2

Con atributo "a" en común:

Proveedores = (idproveedor, nombre, idlocalidad)

Clientes = (idcliente, nombre id localidad)

Clientes que vivan en la misma localidad de proveedores

SELECT c.nombre FROM proveedores p INNER JOIN cliente C ON (c.idlocalidad = p.idlocalidad)

- P |x| C
 c/tupla de P se junta con tuplas de C → CT (C) / CV(idlocalidad, C)
 En P hay CT(P) Tuplas → (CT(P)*CT(C))/CV(idlocalidad, C)
 C |x| P
 c/tupla de C se junta con tuplas de P → CT (P) / CV(id,localidad P)
 En C hay CT(C) Tuplas → (CT(C)*CT(P))/CV(idlocalidad, P)
- (CT †1 * CT †2) / MAX(CV (a, †1) , CV (a, †2))

Dado el siguiente modelo relacional:

- PRODUCTOS (<u>idproducto</u>, código, descripción, precio, idvendedor)
 - FK (vendedor, VENDEDORES) la clave foránea no permite nulos
- VENDEDORES (idvendedor, nombre vendedor, sucursal)

Ejemplo 1: la siguiente consulta: "Listar los datos de los productos que vende la sucursal de JUNIN"

- SELECT p.codigo, p.descripción, p.precio, v.nombre_vendedor
- FROM PRODUCTOS p, VENDEDORES v
- WHERE p.idvendedor = v.idvendedor and v.sucursal = 'JUNIN';
- CT(productos) = 7000 CT(vendedores) = 300 CV (sucursal = 'JUNIN', vendedores) = 10 Sabiendo que:

 - 1000 productos de vendedores de JUNIN

Árbol Inicial

π p.producto, p.descripción, p.precio, v.nombre_vendedor

σ p.idvendedor = v.idvendedor AND sucursal= 'JUNIN'

X

PRODUCTOS VENDEDORES

 $\Pi_{p.producto, p.descripción, p.precio, v.nombre_vendedor}(\sigma_{p.idvendedor = v.idvendedor ^ sucursal = 'JUNIN'}(PRODUCTOS X VENDEDORES))$

Plan	Pasos	Operación	Cantidad de lecturas	Costo de acceso	Cantidad de Tuplas	Costo Total
Α	1	Producto Cartesiano	7.000 + 300	7.300	2.100.000	7.300
	2	O (A1) p.idvendedor = v.idvendedor	2.100.000	2.100.000	7.000	2.107.300
DBD - CLA:	3 SE 7	(A2) sucursal=	7.000	7.000	1.000	2.114.300

Plan	Paso	Operación	Cantidad de lecturas	Costo de acceso	Cantidad de Tuplas	Costo Total
В	1	O sucursal = 'JUNIN' (vendedores)	300	300	10	300
	2	B1 x PRODUCTOS	10 + 7.000	7.010	70.000	7.310
DBD - CLA	3 ASE 7	(B2) p.idvendedor = v.idvendedor	70.000	70.000	1.000	77.310

 $\Pi_{p.producto, p.descripción, p.precio, v.nombre_vendedor}$ (PRODUCTOS | χ | ($\sigma_{sucursal = 'JUNIN'}$ VENDEDORES))

Pla n	Nivel	Operación	Cantidad de lecturas	Costo de acceso	Cantida d de Tuplas	Costo Total
С	1	(vendedores) sucursal = 'JUNIN'	300	300	10	300
DBD - CLA	2 ASE 7	PRODUCTOS Ix I C1	10 + 7.000	7.010	1.000	7.310

CONSULTA ORIGINAL:

SELECT p.producto, p.descripción, p.precio, v.nombre_vendedor

FROM PRODUCTOS p, VENDEDORES v

WHERE p.idvendedor = v.idvendedor and v.sucursal = 'JUNIN';

VS LEGIBILIDAD

CONSULTA MÁS EFICIENTE:

SELECT p.codigo, p.descripcion, p.precio, v.nombre_vendedor

FROM Productos p NATURAL JOIN (SELECT Idvendedor, nombre_vendedor

FROM Vendedores

WHERE sucursal = 'JUNIN')

CONSULTA MÁS LEGIBLE:

SELECT p.codigo, p.descripcion, p.precio, v.nombre_vendedor

FROM Productos p NATURAL JOIN Vendedores v

WHERE v.sucursal = 'JUNIN'

DBD - CLASE 7