Question 1

Part (a):

Proof. By Bernoulli's inequality: $\left(1 + \frac{1}{\sqrt{n}}\right)^n \ge 1 + n \times \frac{1}{\sqrt{n}} = 1 + \sqrt{n} > \sqrt{n}$. So it's true for all $n \in \mathbb{N}$.

Part (b):

Proof. In order to prove $\left(1 + \frac{1}{\sqrt{n}}\right)^2 > \sqrt[n]{n}$, first by taking the n-th square on both sides, which is equivalant as proving $\left(1 + \frac{1}{\sqrt{n}}\right)^{2n} > n$.

$$\left(1 + \frac{1}{\sqrt{n}}\right)^{2n} > n$$

$$\left(1 + \frac{1}{\sqrt{n}}\right)^n \left(1 + \frac{1}{\sqrt{n}}\right)^n > n$$

$$\geq \left(1 + \sqrt{n}\right) \left(1 + \sqrt{n}\right) \quad By \ Bernoulli's \ inequality$$

$$= 1 + n + 2\sqrt{n}$$

$$> n.$$

Part (c):

Proof. By definition, we need to show that $\exists N \in \mathbb{N}$, such that $\forall n \geq N$, $|a_n - L| < \epsilon$ for all $\epsilon > 0$. i.e $|\sqrt[n]{n} - 1| < \epsilon$. By part (b), we know that

$$|\sqrt[n]{n} - 1| < \left| \left(1 + \frac{1}{\sqrt{n}} \right)^2 - 1 \right| = \left| 1 + \frac{1}{n} + \frac{2}{\sqrt{n}} - 1 \right| = \left| \frac{2}{\sqrt{n}} + \frac{1}{n} \right|$$

For large n, especially n > 1, we have $n > \sqrt{n}$, and we can get rid of absolute signs because they are all positive. so

$$\left| \frac{2}{\sqrt{n}} + \frac{1}{n} \right| < \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n}} = \frac{3}{\sqrt{n}} < \epsilon$$

Now, solve for n, we have $n > \left(\frac{3}{\epsilon}\right)^2$. So in this case, we have proved that when $N = \left(\frac{3}{\epsilon}\right)^2$, for all $n \geq N$, $|a_n - L| < \epsilon$. Hence

$$\lim \left(\sqrt[n]{n}\right) = 1$$

Question 3

Proof. Knowing that 0 < a < b, and the function $f(x) = \sqrt{x}$ is increasing, we know that it is true for $\sqrt[n]{2a^n} < \sqrt[n]{a^n + b^n} < \sqrt[n]{2b^n}$, i.e $a\sqrt[n]{2} < \sqrt[n]{a^n + b^n} < b\sqrt[n]{2}$. We know that the sequence $(x_n) = \sqrt[n]{2}$ is convergent, because we can rewrite as $x_n = 2^{\frac{1}{n}}$ and $0 < \frac{1}{n} < 1$. Since a, b are constant, then the sequences $a_n = a\sqrt[n]{2}$ and $b_n = b\sqrt[n]{2}$ are also convergent, which will make the sequence $x_n = \sqrt[n]{a^n + b^n}$ between them to be convergent. So (x_n) converges.

3