

### **Outline**

- Basic Laws
  - Ohm's Law
  - Kirchhoff's Laws -- KCL,KVL
- Circuit Analysis
  - Nodal Analysis
  - Mesh Analysis



## **Circuit Analysis**

- Two techniques will be presented in this part:
  - Nodal analysis, which is based on KCL
  - Mesh analysis, which is based on KVL



## **Nodal Analysis – Three Steps**

- Given a circuit with *n* nodes, the nodal analysis is accomplished via three steps:
  - 1. <u>Select a node as the reference (i.e., ground) node</u>. Assign the node voltages to the remaining *(n-1)* nodes. Voltages are relative to the reference node.
  - 2. Apply KCL to the *(n-1)* nodes, expressing branch current in terms of the node voltages (using the *I-V* relationships of branch elements).
  - 3. <u>Solve the resulting simultaneous equations</u> to obtain the unknown node voltages.

[Source: Berkeley]



# **Nodal Analysis: Example #1**



[Source: Berkeley]



# Nodal Analysis: Example #1





[Source: Berkeley]



# **Nodal Analysis with Voltage Sources**

#### Case I:





### **Nodal Analysis: Supernode**

#### Case II

A "floating" voltage source is one for which neither side is connected to the reference node, e.g. V<sub>LL</sub> in the circuit below:



A supernode is formed by enclosing a (dependent or independent) voltage source connected between two nonreference nodes and any elements connected in parallel with it.

[Source: Berkeley]

35



### **Exercise**

• Find the power supplied by the voltage source.



### Mesh Analysis--Loop, Independent Loop, Mesh

- A loop is a closed path.
- A loop is <u>independent</u> if it contains at least one branch which is <u>not a</u> <u>part of any other independent loop</u>.
- A mesh is a loop that does not contain any other loop within it.



Mesh = Independent loop?

- *b* number of branches
- *n* number of nodes
- $l_{ind}$  number of ind. loops

$$l_{ind} = b - (n-1)$$



### **Mesh Analysis**

 Another general procedure for analyzing circuits is to use the mesh currents as the circuit variables.



Mesh analysis uses KVL to find unknown currents.



## Mesh Analysis Steps

- Mesh analysis follows these steps:
  - 1. Assign mesh currents  $i_1, i_2, ... i_x$  to the x meshes
  - 2. Apply KVL to each of the *x* mesh currents.
  - 3. Solve the resulting *x* simultaneous equations to get the mesh currents.





# **Example**





## **Mesh Analysis with Current Sources**

- The presence of a current source makes the mesh analysis simpler in that it reduces the number of equations.
  - If the current source is located on only one mesh, the current for that mesh is defined by the source. For example:





### If the current source is located...





# **Supermesh**





# **Summary**

- Node Analysis
  - Node voltage is the unknown
  - Solve by KCL
  - Special case: Floating voltage source



- Mesh Analysis
  - Mesh current is the unknown
  - Solve by KVL
  - Special case: Current source

