

Taylor's Theorem: If (a+n) be a function of the variable h s.t it can be expanded in ascending powers of h \$ this expansion

be differentiable any no. of times, then $f(a+h) = f(a) + h f(a) + \frac{h^2}{2!} f'(a) + \dots = \infty$

(O.)

Let $a+h=x \Rightarrow f(x) = f(a) + (x-a) f(a) + (x-a)^{\frac{1}{2}} f(a) + \cdots$

Now if we will put a=0, this = $f(x) = f(0) + x \cdot f(0) + \frac{x^2}{2!} f(0) + \cdots = \infty$ will give us

Q. Expand tan'x in power of $(x-\frac{x}{4})$ by Taylor's Theorem.

To bhi - ya 1+' hoga way hon a' le lenge

 $f\left(\frac{x}{4}\right) = f\left(\frac{x}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) = f\left(\frac{x}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) = f\left(\frac{x}{4}\right) = f\left(\frac{x}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) = f\left(\frac{x}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) = f\left(\frac{x}{4}\right) = f\left(\frac{x}{4}\right) + \left(\frac{x-\frac{x}{4}}{4}\right) = f\left(\frac{x}{4}\right) = f\left(\frac$

Here, $f(x) = \tan^{-1}x$ $f(\frac{\pi}{4}) = \tan \frac{\pi}{4} = 1$

 $f'(x) = \frac{1}{1 + x^2} \qquad f'(\frac{\pi}{4}) = \frac{1}{1 + \frac{\pi^2}{4}} = \frac{16}{16 + \pi^2}$

 $f''(x) = \frac{-2\pi}{(1+x^2)^2} \qquad f''(\frac{\pi}{4}) = -\frac{\pi}{2} \qquad = \frac{-128\pi}{(16+\pi)^2}$

 $\therefore \tan x = 1 + \underbrace{\left(x - \frac{\pi}{4}\right)}_{11} \left(\frac{16}{16 + \pi^{2}}\right) + \underbrace{\left(x - \frac{\pi}{4}\right)^{2}}_{21} \frac{\left(-128\pi\right)}{\left(16 + \pi^{2}\right)} + \underbrace{\left(x - \frac{\pi}{4}\right)^{2}}_{21} \frac{\left(-128\pi$

Taylor's Theorem for function of two variable

If f(x,y) & all it's partial derivatives upto not order are finite of

continuous for all points (x,y) then,

 $f(x,y) = f(a,b) + \left[(x-a) \frac{\partial}{\partial x} + (y-b) \frac{\partial}{\partial y} \right] f(a,b) + \frac{1}{21} (x-a) \frac{\partial}{\partial x} + (y-b) \frac{\partial}{\partial y}$ f (a,b)

Aa 📒 🗎 🗿 🖒 🕟

Now in questions, we are given the two pts & we put them in a & b but if no pt. is given then we take a=0, b=0. This is called

Rolle's Theorem

If a function $f:[a,b] \rightarrow R$ is continuous - [a,b] & differentiable - (a,b)and f(a) = f(b) then there will be some $C \in (a,b)$ s.t f'(c) = 0slope of tangent of the curre

Mean Value Theorem (extension of Roue's theorem)

If a function $f: \lceil a,b \rceil \to R$ s.t f is continuous $-\lceil a,b \rceil$ & differentiable - (a,b) & f(a) + f(b), so there will be a some $c \in (a,b)$;

NUMERICAL ANALYSIS

Interpolation: - The technique or method of estimating unknown values from given set of observation is known as interpolation Assumptions - (1) No sudden jumps

- 2) sufficient number of observations
- (3) Absence of external forces
- (4) No continuous missing values
- (5) Stable relationship

Equal Interval

Newton Forward: (1)

Grauss Forward/Grauss Backward/Striling / Bessel's formula

Newton Backward (1)

	\propto	f (x)
	1971	1000
(1973)	1981	1025
	1991	1080
2008	2001	1120
	2011	1200

Unequal Interval

lagrange's Interpolation Newston divided difference

-	x	f (x)
(77)	75	67 O
	80	685
	87	750
(93)	90	800
(13)	94	915

EQUAL INTERVAL

À)	\propto	f(x)	(x)	D2f(x)	13 f(x)	Δ f(x)
(1995	1891	46 K	7			
(1895)	1901	66 K	20 K	- 5 K	FORWART	>
Ш	1911	81 K	15 K 🥕	-3K ~	-3-(-5)-2	-3
	1921	93 K	12 K	- 4K	-4- (-3)=-1	
(925)	1931	101 K	8 K		BACKWARD	*

Newton Forward:

$$f(a+hu) = f(a) + \underline{u} \Delta f(a) + \underline{u(u-i)} \Delta^2 f(a) + \underline{u(u-i)(u-2)} \Delta^3 f(a)$$
base difference (starting pt.) $b/\omega \propto$

$$f(1895)$$

$$a+hu=1895$$

$$= 46+0.4(20)+\frac{0.4(0.4-1)}{2!}(-5)+\frac{0.4(0.4-1)(0.4-2)}{3!}(2)+\frac{0.4(0.4-1)(0.4-2)(0.4-2)}{3!}(2)+\frac{0.4(0.4-1)(0.4-2)(0.4-2)}{3!}(2)+\frac{0.4(0.4-1)(0.4-2)(0.4-2)}{3!}(-3)$$

$$= 100$$

$$0.4(0.4-1)(0.4-2)(0.4-3)(-3)$$

$$= 1891+10u=1895$$

= solve & get answer
$$\Rightarrow$$
 rebla \Rightarrow $\nabla f(x) = f(x) - f(x-h)$

Newton Backward: $f(a+hu) = f(a) + \frac{u}{1!} \nabla f(a) + \frac{u(u+1)}{2!} \nabla^2 f(a) + \frac{u(u+1)(u+2)(u+3)}{3!} \nabla^3 f(a)$

10

CENTRAL DIFFERENCE INTERPOLATION

Q. Find	y if	w= 14,	u ₄ = 24,	u ₈ = 32 2	u = 35	, u = 40
x	4(≈)	$\Delta f(x)$	$5^2 f(x)$	$\Delta^3 f(x)$	54 f(x)	
0	14	10				
4	24	7-2	-2 Y-2			
٩	2.0	8,		/ - 3 <		

x	∱(≈)	$\Delta f(x)$	$5^2f(x)$	23 f(x)	54 f(x)
0	14 42	10			
ч	24	8	-2 Y-2		
8	32	7-1	>-5	-3 _{Y-2}	>10,
12	35	> 3 Yo	2 1	> 7, <	-2
16	40	5 7	70	-1	
	7.	1			

$$f(a+hu) = y + \frac{u}{2!} Dy + \frac{u(u-1)}{2!} \frac{2y}{3!} + \frac{u(u-1)(u+1)}{3!} \frac{3}{2} + \frac{u(u-1)(u+1)(u-2)}{4!}$$

Gouss Backward:

$$f(a+hu) = y + \frac{u}{1!} - y + \frac{u(u+1)}{2!} - y + \frac{u(u+1)}{3!} - y + \frac{(u-1)u(u+1)}{3!} - y + \frac{(u-1)u(u+1)(u+2)}{4!} - y + \frac{u(u+1)}{5!} - y +$$

$$f(a+hu) = y + \frac{u}{1!} \left(\frac{\Delta y + \Delta y}{2} \right) + \frac{u^2}{2!} \frac{\partial^2 y}{\partial y} + \frac{u(u^2-1)}{3!} \left(\frac{\partial^2 y}{\partial y} + \frac{\partial^2 y}{\partial y} + \frac{u(u^2-1)}{2} \right) + \frac{u^2(u^2-1)}{4!} \frac{\partial^2 y}{\partial y}$$

Bessel's Formula:

UNEQUAL INTERNAL

lagranges Interpolation:

Q. find value of y when $\infty = 10$ by Lagrange's Interpolation formula

lagranges Interpolation:

Q. Find value of y when x=10 by Lagrange's Interpolation formula

<u>x</u>	5	6	٩	Ι١
f (x)=7	12	13	14	16

$$f(x) = \frac{(x-6)(x-9)(x-11)}{(5-6)(5-9)(5-11)}(12) + \frac{(x-5)(x-9)(x-11)}{(6-5)(6-9)(6-11)}(13) + \frac{(x-5)(x-6)(x-11)}{(9-5)(9-6)(9-11)}(14)$$

$$+ \frac{(x-5)(x-6)(x-9)}{(11-5)(11-6)(11-9)} (16)$$

Now put x=10 & solve !!

NEWTON'S DIVIDED DIFFERENCE:

solving above same question !!

7			•		
$x \mid f(x) \mid$		△ f(x)	$\Delta^2 f(x)$	⊳2 f(α)	
5	12	13-12 = 1			
∞ , 6	13	6- 5	3-1=-1	2 + 1	
2C 9	14	14-13 = <u>1</u> 9-6 3	q - 5	15 6 = 1	
× ₃ 11	16	16-17 = 1	1-13 = 2 15		

$$f(x) = f(x) + (x-x) + (x-x)(x-x) + (x-x)(x-x)(x-x)$$

$$5^{2}f(x)$$

Errors in polynomial Interpolation

Let f(x) have (n+1) continuous derivatives on [a,b] & let $x_0,x_1...x_n$

then, evor in polynomial is

 $f(x) - P_n(x) = (x - x_0)(x - x_1)(x - x_2) - \dots (x - x_n) f(c_x)$ (n+1)! where $x_0 < c_x < x_n$

Proof: Let $P_n(x)$ be the n^{th} degree interpolating paynomial, $P_{x}(x) = y_{x}$, $i = \frac{1}{2}$

Proof: Let Pn(x) be the nth degree interpolating paynomial,

$$P_{n}(x) = y_{i}$$
, $i = 0, 1, 2, \dots$

$$f(x) - b'(x) = \Gamma(x-x^0)(x-x^1)(x-x^3) - \cdots (x-x^{\nu})$$

Let
$$\pi(x) = (x-x^0)(x-x^1)(x-x^2)-\cdots (x-x^n)$$

$$= \frac{f(x) - P_n(x)}{\pi(x)}$$

Let
$$F(x) = f(x) - P_n(x) - L(x-x_0)(x-x_1) - \dots - (x-x_n)$$

For any
$$x_0 \leq x' \leq x_0$$
, $F'(x) = 0$

$$F(x)$$
 has $(n+1)$ zeroes, $x_0, x_1, x_2 - \cdots - x_n, x$

min-degree of
$$F(x)$$
 is $(n+2)$

=)
$$F(x) = f(x) - 0 - L(n+i)!$$

and
$$f(x)$$
 is linear (n+1)

min- degree of
$$F(x)$$
 is $(n+2)$

$$=) \begin{cases} (n+1) & (n+1) \\ F(x) = f(x) - O - L(n+1)! \end{cases}$$
and $F(x)$ is linear
$$(n+1) \\ =) C_x \in [a,b] \quad \text{s.t.} \quad F(c_x) = 0 \Rightarrow f(c_x) - L(n+1)! = 0$$

$$=) L = f(c_x)$$

$$=) L = f(c_x)$$

$$= (n+1)!$$

$$= \sum_{x \in \mathbb{Z}} \frac{f(C_x)}{(n+1)!}$$

$$\Rightarrow f(x) - P_n(x) = \frac{(x - x_0)(x - x_1) - \dots - (x - x_n)}{(n+i)!} f(c_x)$$

Q. Arrive at the error in linear interpolation of f(x) = e on [0, 1]Let (x_0, y_0) & (x_1, y_1) be the nodal points.

$$f(\alpha) - P(x) = (x - x_0)(x - x_1) f(c_x), \quad x_0 \leq c_x \leq c_x$$

$$= \frac{(x-x_0)(x-x_1)}{2}e^{cx}$$

$$\therefore \quad \alpha' \leqslant C' \leqslant \alpha'$$

$$= \sum_{\alpha} e^{\alpha \alpha} \leq C \leq e^{\alpha \alpha} \Rightarrow \frac{(\alpha - \alpha \alpha)(\alpha - \alpha)}{2} e^{\alpha} \leq \frac{(\alpha - \alpha)$$

$$(x-x)(x-x)$$

$$\Rightarrow \frac{(x-x_0)(x-x)}{2}e^{x_0} \leqslant |f(x)-P_1(x)| \leqslant \frac{(x-x_0)(x-x)}{2}e^{x_0}$$

max.
$$[(x-x^{\circ})(x^{-}x)]$$
 occurs at $\frac{x^{+}x^{\circ}}{2}$

12:48 AM Sun 27 Nov

Û

(A)

max. [(x-x)(x-x)] occurs at $\frac{x+x_0}{x}$

mid pt.

$$\frac{x-x_0}{2} = \frac{x-x_0}{2} = \frac{h}{2}$$
; $h=x_1-x_0 = \frac{h}{8}e^{x_0} \leqslant \left| f(x) - P_1(x) \right| \leqslant \frac{h^2}{8}e^{x_1}$
 \therefore bound for ever is $\left| f(x) - P_1(x) \right| \leqslant \frac{h^2}{8}e$

In particular if h = 0.01 then, $\left| f(x) - P_1(x) \right| \leq \frac{(0.01)^2}{8} e \sim 0.0000$

NUMERICAL INTEGRATION

As we know from class 12^{th} , the area bounded by the curve f(x)x-axis b) which a x b is denoted by $I = \int f(x) dx - 0$

Now divide the interval (a, b) into n equal interval with length h (step size) ie

$$(a,b) = (a = x_0, x_1, x_2)$$

$$a = x_0 + h$$

$$x_2 = x_1 + h$$

$$\vdots$$

x = x + h where $h = \frac{b-a}{h}$ or $h = \frac{b-a}{h}$

Newton - Cotés Quadrature Formula:-

$$= n h \left[y_0 + \frac{n}{2} \Delta^2 y_0 + \left(\frac{n^3}{3} - \frac{n^2}{2} \right) \frac{1}{2} \Delta^2 y_0 + \frac{1}{3!} \left(\frac{n^4}{4} - \frac{3}{3} \frac{n^3}{3} + \frac{2n^2}{2} \right) \Delta^3 y_0 - \dots \right]$$

I. Trapezoidal Rule: It is applicable on any no- of interval (odd)

$$\int_{\mathcal{C}} f(x) dx = h \left(\frac{y_0 + y_n}{2} + y_1 + y_2 + y_3 + \dots + y_{n-1} \right)$$
first term last term

II. Simpsons 1/3 Rule: - It is applicable in even intervals

$$\int f(x) dx = \frac{h}{3} \left[(y_0 + y_0) + 4 \left(y_1 + y_3 + y_5 + --- \right) + 2 \left(y_2 + y_4 + y_5 --- \right) \right]$$
even terms

Aa 💝 🗏 (<u>O</u>)

III. Simpson's 3/8 Rule: It is applicable when 3 ke multiple mei

 $\int f(x) dx = \frac{3h}{8} \left(7_0 + 7_1 \right) + 3 \left(\frac{1}{2} + 7_2 + 7_4 + 7_5 - \cdots \right) + 2 \left(\frac{1}{2} + 7_5 + 7_4 - \cdots \right)$

Q. Evaluate $\int \frac{dx}{1+x^2}$ using Lis Trapezoidal Rule Lis Simpson's $\frac{1}{3}$ Rule uis simpson's 3 Rule.

Also find the value of x in each case.

A: $h = \frac{b-a}{n} = \frac{1-0}{6}$ coz we combine Simpson's $\frac{1}{3} \notin \frac{3}{8}$ Rule then y= 1/(1+ x2) interval becomes 6.

 $\Rightarrow x_0 = \frac{1}{b} \quad |y_0 = \frac{1}{1 + x_2^2} = 1$ $x_1 = \frac{1}{6} \qquad y_1 = \frac{1}{1+x_1^2} = 36 37$

Jy = = 9/13 x4 = 4/6

 $\alpha_5 = 5/6$ $\gamma_5 = 36/61$

 ∞ = 6) b 7, = And By Direct Integration, $\int \frac{1}{1+x^2} dx = \left(\tan^2 x\right)$

 $\frac{x}{4}$ - 0 = $\frac{x}{4}$ - $\frac{4}{4}$

 $\int \frac{1}{1+x^2} dx = h \left| \frac{y_0 + y_6}{2} + y_1 + y_2 + y_3 + y_4 + y_5 \right|$

= $\frac{1}{b}$ $\frac{1+0.5}{2}$ + Put the values & solve $\frac{1}{2}$ = Ans $\frac{1}{2}$

 $\int \frac{1}{1+x^2} dx = \frac{h}{3} \left[\left(\frac{1}{3} + \frac{1}{3} \right) + 4 \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) + 2 \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right) \right]$ take terms

Put the values & solve. = Ans ____ - 2 $\int \frac{1}{1+x^2} dx = \frac{3h}{8} \left(y_0 + y_0 \right) + 3 \left(y_1 + y_2 + y_4 + y_5 \right) + 3 \left(y_3 \right)$

Put the values \$ solve = Ans ____ -(3)

: value of π (using (1) \$ (9)

 $\frac{\pi}{V}$ = Ans ... (1) \Rightarrow π = Ans ... (1) $\times Y$

of T (using 2) \$ (9)

Aa 🚰 🗐 🕥 🖒

value of x (using 2 & 9)

=)
$$\frac{\pi}{4}$$
 = Ans ___ (2) =) π = Ans ___ (2) XY = ____

value of π (using (3) & (4)

Errors in Quadrature Formula: The error in quadrature formulae $E = \int \int dx - \int Q(x) dx$ where Q(x) is the polynomial of $\int \int \int \int \int dx dx = \int \int \int \int \int \int dx dx = \int \int \int \int \int \int dx = \int \int \int \int \partial x = \int \int \partial x = \int \partial x =$

$$\rightarrow$$
 Error in Trapezoidal Rule: $E = -\frac{(b-a)}{12}h^2 \cdot y''(x)$ Error is in order h^2

- \rightarrow Evor in Simpsons 1/3 Rule:-
- \rightarrow Evor in Simpsons 3/8 Rule:-

ROMBERG INTEGRATION :-

トコ