HYPOTHESIS TESTING TWO CATEGORICAL VARIABLES

PARAMETRIC STATISTICS

These are statistics that are used when the sampling distribution is normal distributed.

NON-PARAMETRIC STATISTICS

These are statistics that are used when the sampling distribution is not normal distributed.

STATISTICAL SIGNIFICANCE

This is a claim that a set of observations are not due to random chance.

Used in hypothesis testing to help decide whether to reject the null hypothesis.

Leads to a lot of problems within research when relied on.

CHI SQUARE

This is used when the IV and DV are both categorical and the data is not normally distributed (i.e., non-parametric).

$$x^2 = \frac{\sum (O - E)^2}{E}$$

0 = Observed frequency

E = Expected frequency

$$E = \frac{\text{(row total)(column total)}}{\text{(sample size)}}$$

Is gender and education level dependent at a 5% level of significance?

In other words, in the data below, is there a relationship between the gender of an individual and the level of education that they have obtained?

	High School	Bachelors	Masters	Total	
Female	60	54	46	160	
Male	40	44	53	137	
Total	100	98	99	297	

Let's first state our null and alternative hypothesis:

 H_0 Gender and education level are independent, there is no relationship between gender and education level.

 H_A Gender and education level are dependent, there is a relationship between gender and education level.

$$E = \frac{\text{(row total)(column total)}}{\text{(sample size)}}$$

	High School	Bachelors	Masters	Total
Female	<u>(160)(100)</u> <u>297</u>	<u>(160)(98)</u> 297	<u>(160)(99)</u> 297	160
Male	<u>(137)(100)</u> <u>297</u>	<u>(137)(98)</u> <u>297</u>	<u>(137)(99)</u> <u>297</u>	137
Total	100	98	99	297

Observed

	High School	Bachelors	Masters	
Female	60	54	46	
Male	40	44	53	
	Expe	cted		
	High School	Bachelors	Masters	
Female	53.87	52.68	53.45	
Male	46.13	44.32	46.55	

$$\chi^2 = \left(\frac{(60 - 53.87)^2}{53.87}\right) + \left(\frac{(54 - 52.68)^2}{52.68}\right) + \left(\frac{(46 - 53.45)^2}{53.45}\right) +$$

$$\chi^2 \approx 3.45$$

DEGREES OF FREEDOM

The degrees of freedom for the chi-square are calculated using the following formula:

$$df = (r - 1)(c - 1)$$

r = row number

c = column number

Now, we need to compare this value to the critical value from the chi-square distribution at a 5% significance level.

$$(2-1) \times (3-1) = 2$$

2 degrees of freedom

If the observed chi-square test statistic is greater than the critical value, the null hypothesis can be rejected.

If the observed chi-square test statistic is less than the critical value, we fail to reject the null hypothesis.

Now lets take our df value of 12 and find our critical value with our 5% (0.05) significance level and locate the critical value in a chi-square distribution chart (p. 375).

The critical value is 5.99

	P										
DF	0.995	0.975	0.2	0.1	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	.0004	.00016	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.55	10.828
2	0.01	0.0506	3.219	4.605	5.991	7.378	7.824	9.21	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.86	16.924	18.467
5	0.412	0.831	7.289	9.236	11.07	12.833	13.388	15.086	16.75	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
7	0.989	1.69	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322
8	1.344	2.18	11.03	13.362	15.507	17.535	18.168	20.09	21.955	24.352	26.124
9	1.735	2.7	12.242	14.684	16.919	19.023	19.679	21.666	23.589	26.056	27.877
10	2.156	3.247	13.442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588
11	2.603	3.816	14.631	17.275	19.675	21.92	22.618	24.725	26.757	29.354	31.264
12	3.074	4.404	15.812	18.549	21.026	23.337	24.054	26.217	28.3	30.957	32.909
13	3.565	5.009	16.985	19.812	22.362	24.736	25.472	27.688	29.819	32.535	34.528
14	4.075	5.629	18.151	21.064	23.685	26.119	26.873	29.141	31.319	34.091	36.123
15	4.601	6.262	19.311	22.307	24.996	27.488	28.259	30.578	32.801	35.628	37.697
16	5.142	6.908	20.465	23.542	26.296	28.845	29.633	32	34.267	37.146	39.252
17	5.697	7.564	21.615	24.769	27.587	30.191	30.995	33.409	35.718	38.648	40.79
18	6.265	8.231	22.76	25.989	28.869	31.526	32.346	34.805	37.156	40.136	42.312
19	6.844	8.907	23.9	27.204	30.144	32.852	33.687	36.191	38.582	41.61	43.82
20	7.434	9.591	25.038	28.412	31.41	34.17	35.02	37.566	39.997	43.072	45.315

$$\chi^2 = 3.45$$

The critical value = 5.99

3.483 < 5.99, we fail reject the null hypothesis.

Therefore, at a 5% significance level, we do not have enough evidence to conclude that there is a relationship between gender and education level.