Devoir surveillé n°2

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

- 1) Démontrer que, pour tout $n \in \mathbb{N}^*$, $T_n = \sum_{k=1}^n ki^{k-1} = \frac{i ni^n (n+1)i^{(n+1)}}{2}$
- 2) Soit $p \in \mathbb{N}$. En déduire les valeurs des deux sommes :

$$S_1(p) = 1 - 3 + 5 - 7 + \dots + (-1)^p (2p+1),$$

 $S_2(p) = 2 - 4 + 6 - 8 + \dots + (-1)^{(p+1)} 2p.$

II. Résolution d'équations.

Soit $p \in \mathbb{N}^*$. On pose n = 2p + 1. Soit $a \in \mathbb{C}^*$.

Partie 1 : Résolution de l'équation $\frac{a+z}{a-z}=w$

Soit $w \in \mathbb{C}$. On considère l'équation d'inconnue $z \in \mathbb{C} \setminus \{a\}$.

$$(E_1) \quad \frac{a+z}{a-z} = w$$

- 1) Donner, selon les valeurs de w, l'ensemble des solutions de (E_1) .
- **2)** Soit $\alpha \in \mathbb{R}$, on suppose que $w = e^{i\alpha}$ et $w \neq -1$.
 - a) Simplifier l'expression :

$$\frac{w-1}{w+1}$$

b) En déduire, dans ce cas, une expression des solutions de (E_1) ne faisant intervenir que a, α et la fonction tangente.

Partie 2 : Résolution de l'équation $\sum_{k=0}^{p} \binom{n}{2k} z^{2k} a^{n-2k}$

On considère l'équation d'inconnue $z \in \mathbb{C}$:

$$(E_2)$$
 $\sum_{k=0}^{p} \binom{n}{2k} z^{2k} a^{n-2k} = 0$

- 3) Soit $z \in \mathbb{C}$.
 - a) Exprimer $(z+a)^n$ puis $(-z+a)^n$ sous forme de sommes.
 - **b)** En déduire une expression de $\sum_{k=0}^{p} \binom{n}{2k} z^{2k} a^{n-2k}$ faisant intervenir $(z+a)^n$ et $(-z+a)^n$.

4) Déterminer l'ensemble des solutions $z \in \mathbb{C} \setminus \{a\}$ de l'équation :

$$\left(\frac{z+a}{-z+a}\right)^n = -1.$$

5) En déduire l'ensemble des solutions de (E_2) que l'on exprimera en utilisant la fonction tangente.

Partie 3 : Résolution de l'équation
$$\sum_{k=0}^{n-1} \left(\frac{z+a}{a-z}\right)^k = 0$$

On considère l'équation d'inconnue $z \in \mathbb{C} \setminus \{a\}$:

$$\sum_{k=0}^{n-1} \left(\frac{z+a}{a-z}\right)^k = 0$$

6) Soit $z \in \mathbb{C} \setminus \{a\}$.

Montrer que z est solution de (E_3) si et seulement si $\frac{z+a}{a-z}$ est une racine $n^{\text{ième}}$ de l'unité différente de 1.

7) En déduire l'ensemble des solutions de (E_3) que l'on exprimera en utilisant la fonction tangente.

III. Argument tangente hyperbolique.

L'objectif de ce problème est d'étudier la fonction réciproque de la tangente hyperbolique : l'argument tangente hyperbolique, notée argth.

Dans tout le problème, on considère un plan muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1) Définition en tant que réciproque.
 - a) Rappeler sans démonstration le tableau de variations de la fonction th.
 - b) Démontrer que th admet une réciproque, que nous noterons argth, et déterminer son tableau de variations.
 - c) Exprimer th' en fonction de th (on justifiera le résultat).
 - d) Étudier la dérivabilité de argth et déduire de la question précédente une expression explicite de argth'.
 - e) Étudier la position relative de la courbe de argth et de sa tangente au point d'abscisse 0.
 - f) Tracer sur un même dessin les courbes de th, argth et la droite d'équation y = x.
- 2) Expression explicite de l'argument tangente hyperbolique.
 - a) Soit $y \in \mathbb{R}$. Résoudre en x l'équation $y = \operatorname{th}(x)$ et en déduire une expression explicite de $\operatorname{argth}(y)$.
 - b) Retrouver à partir de cette expression de $\operatorname{argth}(y)$ l'expression de de $\operatorname{argth}'(y)$ obtenue à la question 1)d).
- **3)** Une étude de fonction.

On considère la fonction $f: x \mapsto \operatorname{argth}\left(\frac{3\operatorname{th}(x)+1}{3+\operatorname{th}(x)}\right)$.

a) Déterminer le domaine de définition de f.

- b) Déterminer le domaine de dérivabilité de f ainsi qu'une expression simplifiée de f'(x), lorsque c'est possible.
- c) En déduire une expression simplifiée de f.
- 4) Une autre étude de fonction.

On considère la fonction $g: x \mapsto \operatorname{argth}\left(\sqrt{\frac{\operatorname{ch}(x) - 1}{\operatorname{ch}(x) + 1}}\right)$.

- a) Déterminer le domaine de définition de g.
- **b)** Soit $x \in \mathbb{R}$, posons $y = \operatorname{ch}(x)$. Montrer que $g(x) = \frac{1}{2} \ln \left(y + \sqrt{y^2 1} \right)$.
- c) En déduire que pour tout $x \in \mathbb{R}$, $g(x) = \frac{|x|}{2}$.
- 5) Un calcul de somme.
 - a) Montrer que si $x, y \in \mathbb{R}$, alors

$$th(x+y) = \frac{th(x) + th(y)}{1 + th(x)th(y)}.$$

b) En déduire que pour tout $k \in \mathbb{N}$:

$$\operatorname{argth}\left(\frac{1}{k^2+3k+1}\right) = \operatorname{argth}\left(\frac{1}{k+1}\right) - \operatorname{argth}\left(\frac{1}{k+2}\right)$$

c) En déduire l'existence et la valeur de la limite de la suite de terme général :

$$S_n = \sum_{k=1}^n \operatorname{argth}\left(\frac{1}{k^2 + 3k + 1}\right) = \operatorname{argth}\left(\frac{1}{1^2 + 3 \times 1 + 1}\right) + \dots + \operatorname{argth}\left(\frac{1}{n^2 + 3n + 1}\right).$$