COMP9414文字分类

2

COMP9414:人工智能第6b讲:文

本分类

韦恩-沃布克

电由话: w. wobcke@unsw. edu. au

COMP9414文本分类

本讲座

- 文本分类的概率公式化
- 基于规则的文本分类
- ■贝叶斯文本分类
 - △ 伯努利模型

文本分类应用

- 垃圾邮件检测
- 著述权分析
- 电子邮件分类/优先排序
- 新闻/科学文章主题分类
- 事件提取(事件类型分类)
- ■情绪分析
- 推荐系统(使用产品评论)

新南威尔士大学

©W.Wobcke等人, 2019-2022年

COMP9414文字分类

电影评论/评级实例

- ▲ 多项式奈何贝叶斯
- 评估分类器

.令人难以置信的失望......。

充满了古怪的人物和丰富的应用讽刺 , 还有一些伟大的情节转折。

有史以来最伟大的螺旋式喜剧拍摄。

这很可悲。最糟糕的部分是拳击场面。

基于规则的方法

COMP9414文字分类

5

帮助用户定义规则

使用Naive Bayes推荐特征

新南威尔士大学

©W.Wobcke等人, 2019-2022年

COMP9414文字分类

7

监督学习

- 输入。一份文件(电子邮件、新闻报道、评论、推特)。
- 输出。从一个固定的班级集合中抽取一个班级
 - ▲ 所以文本分类是一个多类分类问题
 - ▲有时是一个多标签的分类问题
- 学习问题
 - ▲ 输入。训练集的标记文件{(d₁, c₁), - -}。
 - △ 输出。学习到的分类器,将d映射到预测的c类上

概率论的表述

- 事件。特征x的出现,类别c的文件的出现
- 给定文件 x_1 , ---, x_n , 选择c, 使 $P(c|x_1$, --, x_n) 达到最大。
- 应用贝叶斯规则
 - $^{\wedge} P(c|x1, --, xn) = \frac{P(x1, -, xn|c) \circ P(c)}{P(x1, --, xn)}$
 - △ 因此,最大化 $P(x_1, ---, x_n | \mathbf{c})$ 。P(c)

COMP9414文本分类

9

特色工程

例子。SpamAssassin (垃圾电子邮件)

- 提到通用伟哥
- 网上药店
- · 提及百万(美元)((美元)NNN,NNN,NNN.NN)。
- · 短语:打动人心..女孩
- · 来自:以许多数字开头
- · 主题都是大写的
- ·HTML的文字与图像面积的比例很低
- 百分之百保证
- · 声称可以将你从名单中删除http://spamassa

伯努利模型

最大化 $P(x_1, ---, x_n | \mathbf{c})_{\circ} P(c)$

- 特征是文件中是否存在w_i。
- 应用独立假设

$$\stackrel{\wedge}{\wedge} P(x, --, x \mid \mathbf{c}) = P(x \mid \mathbf{c})_{\circ} --- P(x \mid \mathbf{c})$$

- Δ 词w (不) 在c类中的概率与上下文无关
- 估计概率

新南威

尔士大

- $\triangle P(\neg w|c) = 1 P(w|c)$
- $\triangle P(c) = \#(c * 生 + t) + t$

ssin.apache.org/old/tests 3 3 x.html

Naive Bayes 分类

	等级=1	等级=0
P(Class)	0.40	0.60
P(w1 类)	0.75	0.50
P(w2 类)	0.25	0.67
P(w3 类)	0.50	0.33
P(w4 类)	0.50	0.50

对有w2、w3、w4的文件进行分类

- $P(Class = 1 | \neg w1, w2, w3, w4)$ $\approx ((1 - \mathbf{0}.75) * 0.25 * 0.5 * 0.5) * 0.4$ = 0.00625
- $P(Class = 0 | \neg w1, w2, w3, w4)$ $\approx ((1 - 0.5) * 0.67 * 0.33 * 0.5) * 0.6$ = 0.03333

w1	w2	w3	w4	级别
1	0	0	1	1
0	0	0	1	0
1	1	0	1	0
1	0	1	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
0	1	0	0	1
0	1	0	1	0
1	1	1	0	0

12

文字袋模型

我喜欢这部电影!它很温馨,但有讽刺性的 幽默。对话很好,冒险场面也很有趣。 浪漫,同时对童话体裁的惯例感到好笑。 我几乎会向任何人推荐它。我已经看过好 几遍了,每当我有朋友还没有看过的时候 ,我总是很高兴再看一遍!"。

它 6 5 的 4 至 3 和 3 2 看到的 但 奇思妙想 时间 甜的 讽刺的 冒险 体裁 仙子 幽默 有 伟大的

新南威尔士大学

COMP9414文字分类

13

奈何贝叶斯分类

最大化 $P(x_1, ---, x_n \mid \mathbf{c})_{\circ} P(c)$

- ■特征是单词在文件中的位置出现的情况
- 应用独立假设
 - $\triangle P(w_1, --, w_n \mid c) = P(w_1 \mid c)_{\circ} --- P(w_n \mid c)$
 - △ 词w在文件中的位置并不重要
- ■估计概率
 - △ 设V为词汇表
 - △ 让 "文件 "c=类c中文件的串联
 - $\triangle P(w|c) = \#(w在文档c中)/\Sigma_{w\in V}\#(w在文档c中)$

拉普拉斯平滑

- 如果测试文件中的单词在训练中没有出现,怎么办?
- 那么P(w|c)=0, 所以对c类的估计是0
- 拉普拉斯平滑
 - △ 给未见过的单词分配小概率
 - $\triangle P(w|c) = (\#(w在文档c中) + 1) / (\Sigma_{w \in V} \#(w在文档c中) + |V|)$
 - △ 不一定要加1,可以是0.05或一些参数α

新南威尔士大学

©W.Wobcke等人, 2019-2022年

COMP9414文字分类

15

MNB实例

 $\triangle P(c) =$

#(c类中的	的文件 调集 文件		级别
	d_1	中国人 北京人	С
	d_2	中国 中国上海	с
	d_3	中国澳门	С
	d_4	东京 日本 中文	j
	d_5	中国人 中国人 东京 日本	?

P (中文|c) = (5+1) / (8+6) =3/7 P (东京|c) = (0+1) / (8+6) =1/14 P (日本|c) = (0+1) / (8+6) =1/14 P(中文|j) = (1+1)/(3+6) = 2/9 P(东京|j) = (1+1)/(3+6) = 2/9 P(日本|j) = (1+1)/(3+6) = 2/9

为了对文件d进行分类5

- $P(c|d5) \propto [(3/7)^3 \cdot 1/14 \cdot 1/14] \cdot 3/4$ ≈ 0.0003
- $P(j|d5) \propto [(2/9)^3 \cdot 2/9 \cdot 2/9] \cdot 1/4$ $\approx \mathbf{0}.0001$
- 选择c类

示例的图形模型

COMP9414文字分类

17

评估分类器

2×2 应急表(单班C级)

	c类	不是 <i>C</i> 类
预测的c	真正的积极性	假阳性
预测的不是c	假阴性	真阴性

- 精度(P) = TP/(TP+FP) 你想得到什么就有什么 \triangle - 但可能不会得到很多
- 召回率(R)=TP/(TP+FN) 你得到你想要的东西

多个班级。每类指标

 $n \times n$ 混淆矩阵(每个实例在一个类别中)。

	预测的 c_1	预测的 c_2	
c类 ₁	c11	c12	c1 3
c 类 $_2$	c21	c22	c2 3
	c31	c32	c3 3

- 精度 $(c \underset{i}{\cancel{+}}) = c_{ii} / \Sigma_{i} c_{ii}$
 - △ 预测为 c_i 的项目比例正确分类(如 c_i)。
- 回顾($类c_i$) = c_{ii} / $\Sigma_j c_{ij}$
 - \triangle c类项目的比例 $_i$ 预测正确(如 c_i)
- 准确度= $\Sigma_i c_{ii} / \Sigma_i \Sigma_i c_{ij}$

COMP9414文字分类

19

多类。微观/宏观平均法

- n (每班一个) 2×2应急表
- 微观平均数=对所有类别的汇总措施
 - Δ 微型精度 = Σ_c TP_c / Σ_c (TP_c + FP_c) Δ 微召回 = Σ TP / Σ (TP + FN)
 - △ ---但你可能得到更多的(垃圾)。
- F1 = 2PR/(P+R) 精度和召回率的谐波平均值

٨

当每个实例具有并被赋予一个且仅有一个标签时也 是如此

- ▲ 被较大的阶级所支配
- 宏观平均数=每类措施的平均值

- Δ 宏观精度 = Σ^{1}_{c} TP_c /(TP_c + FP_c)
- $^{\Lambda} \text{ macro-recall} = \sum_{n=0}^{\infty} ^{1} TP_{c} / (TP_{c} + FN_{c})$
- △ 以小班为主导
- △ 对不平衡的数据更公平,例如情感分析。

摘要: 奈何贝叶斯

- 非常快,存储要求低
- 对不相关的特征具有鲁棒性
- 不相关的特征相互抵消而不影响结果
- 在各领域非常好,有许多同样重要的特点
 - ▲ 决策树在这种情况下会受到碎片化的影响--尤其是在数据很少的时候。
- 如果独立假设成立,则是最优的 如果假设的独立性是正确的,那么它就是问题的贝叶斯最优分类 器。
- 良好可靠的文本分类基线