FICHE DE COURS 28

ÉTUDE GÉNÉRALE DES MACHINES CYCLIQUES DITHERMES

Ce que je dois être capable de faire après avoir appris mon cours

Ц	Définir les machines thermiques en tant que convertisseurs d'énergie et donner quelques exemples.
	Énoncer quelques propriétés que doit satisfaire un fluide caloporteur.
	Schématiser les échanges d'énergie d'un fluide pouvant recevoir du travail et en contact avec différents thermostats (sources) au cours de son cycle.
	Montrer qu'il est impossible de concevoir un moteur monotherme.
	Effectuer un bilan énergétique et un bilan entropique pour une machine ditherme.
	Donner l'inégalité de Clausius-Clapeyron.
	Représenter le diagramme de Raveau d'une machine ditherme et identifier les zones correspondant aux machines utiles.
	Définir le rendement d'un moteur ditherme. Établir l'expression du rendement maximal d'un moteur et préciser ses conditions d'obtention.
	Définir l'efficacité d'un récepteur ditherme. Établir l'expression de l'efficacité maximale d'une machine frigorifique et d'une pompe à chaleur et préciser leurs conditions d'obtention.
	Décrire qualitativement le fonctionnement d'un moteur à essence à quatre temps et justifier la modélisation de son cycle par celui de Beau de Rochas.
	Discuter l'intérêt d'un compromis entre la maximisation du rendement et la maximisation de la puissance d'un moteur.
	Démontrer la conservation du débit massique à partir de la conservation de la masse pour une canalisation unidirectionnelle en régime stationnaire.
	Énoncer et démontrer le principe principe industriel pour les systèmes ouverts.

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \square$ Bilan énergétique pour une machine ditherme :

$$W + Q_F + Q_C = 0$$

 $\hfill \square$ Inégalité de Clausius-Clapeyron pour une machine ditherme :

$$\frac{Q_F}{T_F} + \frac{Q_C}{T_C} \le 0$$

 $\hfill \square$ Rendement d'un moteur ditherme :

$$\eta = \frac{-W}{Q_C} = 1 + \frac{Q_F}{Q_C} \le 1 - \frac{T_F}{T_C}$$

 $\hfill \square$ Efficacité d'une machine frigorifique ditherme :

$$e_f = \frac{Q_F}{W} = \frac{1}{-1 - \frac{Q_C}{Q_F}} \le \frac{T_F}{T_C - T_F}$$

 $\hfill \square$ Efficacité d'une pompe à chaleur ditherme :

$$e_P = \frac{-Q_C}{W} = \frac{1}{1 + \frac{Q_F}{Q_C}} \le \frac{T_C}{T_C - T_F}$$

 $\hfill \square$ Premier principe industriel :

$$\underset{es}{\Delta}(h + e_c + e_p) = w_u + q_{th}$$

ou

$$D_m \Delta (h + e_c + e_p) = \mathcal{P}_u + \mathcal{P}_{th}$$