SPECTRAL RESOLUTION IN AN ORDER-UNIT SPACE

DAVID J. FOULIS

Emeritus Professor, Department of Mathematics and Statistics University of Massachusetts, Amherst, MA Postal Address: 1 Sutton Court, Amherst, MA 01003, USA (e-mail: foulis@math.umass.edu)

and

SYLVIA PULMANNOVÁ

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK-814 73 Bratislava, Slovakia (e-mail: pulmann@mat.savba.sk)

(Received April 29, 2008 - Revised May 12, 2008)

The operational approach to quantum physics employs an order-unit space in duality with a base-normed space, and in this context, a suitable spectral theory is a prerequisite for the representation of quantum-mechanical observables. An order-unit space is called spectral if it is enriched by a compression base with the comparability and projection cover properties. These notions are explicated in the article. We show that each element in a spectral order-unit space determines and is determined by a spectral resolution and it has a spectrum which is a nonempty closed bounded subset of the real numbers. Our theory is a generalization and a more algebraic version of the well-known non-commutative spectral theory of Alfsen and Shultz.

AMS Classification: Primary 46B40, Secondary 81Q10.

Keywords: order-unit space; effect algebra; compression; compression base; projection cover; unital group; orthomodular lattice; comparability property; spectral order-unit space; Rickart mapping; spectral resolution; eigenprojection; spectrum; regular element; simple element.

1. Introduction and basic definitions

An order-unit space [1, p. 69] is an archimedean partially-ordered real vector space A with a distinguished (strong) order unit u. The operational approach to quantum physics [5] features an order-unit space A in duality with a base-normed space V, the cone base in V being the convex state space of a quantum-mechanical system S. According to the modern quantum theory of measurement [4], (possibly "unsharp") observables for S are represented by measures defined on Borel spaces and taking on values in the unit interval E of A. The "sharp" observables for S correspond to

The second author was supported by Research and Development Support Agency under the contract No. APVV-0071-06, grant VEGA 2/6088/26 and Center of Excellence SAS, CEPI I/2/2005.

spectral (projection-valued) measures, and their mathematical representation requires an appropriate spectral theory for the order-unit space A.

Every order-unit space is a partially ordered additive abelian group with order unit, so the results in [11] pertaining to such groups are applicable to order-unit spaces. In what follows, $\mathbb R$ is the ordered field of real numbers and $\mathbb N$ is the set of positive integers.

STANDING ASSUMPTION 1.1. In the sequel, A is an order-unit space with order unit u and positive cone $A^+ := \{a \in A : 0 \le a\}$.\(^1\) The "unit interval" in A is denoted by $E := \{e \in A : 0 \le e \le u\}$. The order-unit norm $\|\cdot\|$ on A is defined by $\|a\| = \inf\{\lambda \in \mathbb{R} : 0 < \lambda \text{ and } -\lambda u \le a \le \lambda u\}$ for every $a \in A$ [1, pp. 68–69]. To avoid trivialities, we also assume that $A \ne \{0\}$, i.e. 0 < u.

The norm $\|\cdot\|$ satisfies the condition $-\|a\|u \le a \le \|a\|u$ for all $a \in A$ [1, Proposition II.1.2]. Moreover, by [11, Proposition 7.12], if $a, b \in A$, then $-a \le b \le a \Rightarrow \|b\| \le \|a\|$. Obviously, $\|u\| = 1$.

If $a \in A$, then since u is an order unit, there exists $n \in \mathbb{N}$ such that $a \le nu$; hence, if $a \in A^+$, then $e := (1/n)a \in E$. From this, it follows easily that $A = A^+ - A^+$, i.e. A is directed, and $A^+ = \{ne : n \in \mathbb{N} \text{ and } e \in E\}$.

Our main purpose in this article is to show that, if the order-unit space A is enriched by a so-called *spectral compression base* (Definition 1.7 below), then every element $a \in A$ has a spectral resolution and a corresponding spectrum. In Examples 1.1, 1.2, 1.4, and 1.5 below, we illustrate, compare, and contrast our work with an important special case, namely the well-known non-commutative spectral theory of E.M. Alfsen and F.W. Shultz [2, Sections 1–7]. The simpler Examples 1.3, 1.6, and 1.7 will also help to fix ideas.

EXAMPLE 1.1. In [2], Alfsen and Shultz study an order-unit space² (A, u) and a base-normed space (V, K) in separating norm and order duality under a bilinear form $\langle \cdot, \cdot \rangle$ (see Conditions (1.1) and (2.1) in [2]). In [2, Section 4], two additional conditions are imposed: A is pointwise monotone σ -complete (Condition (4.1)), and every exposed face of K is projective (Condition (4.2)). Condition (4.1) implies that A is monotone σ -complete, which in turn implies that A is a Banach space.

Our approach to spectral theory for A is more algebraic, we make no overt use of a base-normed space V in duality with A, and we do not necessarily assume that A is a Banach space.

DEFINITION 1.1. A compression with focus p on A [7, Definition 2.4] is a mapping $J: A \to A$ such that, for all $a, b \in A$ and all $e \in E$, (i) $p = J(u) \in E$, (ii) J(a+b) = J(a) + J(b), (iii) $a \le b \Rightarrow J(a) \le J(b)$, (iii) $e \le p \Rightarrow J(e) = e$, and (iv) $J(e) = 0 \Rightarrow e \le u - p$.

¹The notation := means "equals by definition."

²In [2], the order unit is denoted by e.

LEMMA 1.1. If J is a compression on A, then J is an idempotent linear mapping on A and $||J(a)|| \le ||a||$ holds for all $a \in A$.

Proof: By [7, Lemma 2.2], J is idempotent. Let $b \in A^+$ and $\lambda \in \mathbb{R}$. As J is additive, it follows that $J(\alpha b) = \alpha J(b)$ for all rational numbers α . Let $n \in \mathbb{N}$, and choose rational numbers α , β with $0 < \lambda - \alpha < 1/n$ and $\lambda + (\lambda - \alpha) < \beta < \lambda + 1/n$. Then $-(\beta - \lambda) < \alpha - \lambda$ and $0 < \beta - \lambda < 1/n$. As $\alpha < \lambda < \beta$ and $0 \le b$, we have $\alpha b \le \lambda b \le \beta b$, whence $\alpha J(b) \le J(\lambda b) \le \beta J(b)$, and it follows that

$$-(\beta - \lambda)J(b) \le (\alpha - \lambda)J(b) \le J(\lambda b) - \lambda J(b) \le (\beta - \lambda)J(b).$$

Consequently, $||J(\lambda b) - \lambda J(b)|| \le (\beta - \lambda) ||J(b)|| \le (1/n) ||J(b)||$, and letting $n \to \infty$, we conclude that $J(\lambda b) = \lambda J(b)$. Since $A = A^+ - A^+$, it follows that $J(\lambda a) = \lambda J(a)$ for all $a \in A$, and therefore J is linear.

Let $a \in A$ and let p = J(u). Then $0 \le p \le u$, so $||p|| \le ||u|| = 1$. Also, $-||a||u \le a \le ||a||u$, so $-||a||p \le J(a) \le ||a||p$, whence $||J(a)|| \le ||a|| ||p|| \le ||a||$. \square

The unit interval E in A is a convex subset of A^+ and it forms a so-called (interval) effect algebra [3]; hence we refer to elements $e \in E$ as effects.

DEFINITION 1.2. A subset $S \subseteq E$ is called a *sub-effect algebra* of E iff³ (i) $0, u \in S$, (ii) $s \in S \Rightarrow u - s \in S$, and (iii) if $s, t \in S$, then $s + t \le u \Rightarrow s + t \in S$. If S is a sub-effect algebra of E and $s, t \in S$, then s and t are *Mackey compatible* in S, in symbols sC_St , iff there are elements $r, s_1, t_1 \in S$ such that $r + s_1 + t_1 \in S$, $s = r + s_1$, and $t = r + t_1$. A sub-effect algebra S of E is said to be *normal* iff, for all $d, e, f \in E$ such that $d + e + f \le u$, we have $d + e, d + f \in S \Rightarrow d \in S$ [9, Definition 1].

If S is a sub-effect algebra of E and $s, t \in S$, then $s \le t \Leftrightarrow t - s \in S$; moreover, if S is normal, then $sC_St \Leftrightarrow sC_Et$.

DEFINITION 1.3. A compression base for A [9, Definition 2] is a family $(J_p)_{p \in P}$ of compressions on A, indexed by their own foci, such that P is a normal sub-effect algebra of E, and whenever $p, q, r \in P$ and $p+q+r \leq u$, then $J_{p+r} \circ J_{q+r} = J_r$.

EXAMPLE 1.2. In Example 1.1, every P-projection J on A [2, p. 8] is a compression on A, and by [2, Lemma 2.16], J is uniquely determined by its focus p = J(u). If Conditions (4.1) and (4.2) in [2] are satisfied, then the family $(J_p)_{p \in P}$ of all P-projections on A, indexed by their own foci, is a compression base for A and P is the set of all so-called projective units in A [2, p. 12].

STANDING ASSUMPTION 1.2. In the sequel, we assume that $(J_p)_{p \in P}$ is a compression base for A, and we refer to elements $p \in P$ as "projections."

EXAMPLE 1.3. Let X be a compact Hausdorff space and let $A := C(X, \mathbb{R})$ be the set of all continuous functions $f \colon X \to \mathbb{R}$. Define P to be the subset of A consisting of all characteristic set functions (indicator functions) of compact open subsets of

³We use "iff" as an abbreviation for "if and only if."

⁴In [2], the set of projective units is denoted by \mathcal{U} and a generic P-projection is denoted by P.

X, and denote by $1 \in P$ the constant function 1(x) := 1 for all $x \in X$. Then, with pointwise addition and partial order, A is an order-unit space with order unit 1. If $p \in P$, then $J_p: A \to A$ defined by $J_p(f) := pf$ (pointwise product) for all $f \in A$ is a compression on A with focus p, and every compression on A has the form J_p for a uniquely determined $p \in P$. The family $(J_p)_{p \in P}$ is a compression base for A, and P is a Boolean algebra isomorphic to the field of compact open subsets of X.

By parts (iii) and (iv) of the following lemma, if $p \in P$, then J_p and J_{u-p} are quasicomplements in the sense of [2, (1.22)].

LEMMA 1.2. Let $a \in A$, and let $p \in P$. Then: (i) $J_0(a) = 0$ and $J_u(a) = a$. (ii) $J_{u-p} \circ J_p = J_0$. (iii) $J_p(a) = a \Rightarrow J_{u-p}(a) = 0$. (iv) If $0 \le a$, then $J_{u-p}(a) = 0 \Rightarrow J_p(a) = a$.

Proof: Part (i) is obvious. As (u-p)+p+0=u, we have $J_{u-p}\circ J_p=J_{(u-p)+0}\circ J_{p+0}=J_0$, proving (ii), and (iii) follows from (ii). To prove (iv), suppose $0\leq a$ and $J_{u-p}(a)=0$. As $0\leq a$, there exists $e\in E$ and $n\in \mathbb{N}$ such that a=ne. Therefore, $J_{u-p}(e)=0$, so $e\leq u-(u-p)=p$, and it follows that $J_p(e)=e$, whence $J_p(a)=a$.

DEFINITION 1.4. If $e \in E$ and $p \in P$, then p is a projection cover for e [6, Definition 6.1] iff, for all $q \in P$, $e \le q \Leftrightarrow p \le q$. The compression base $(J_p)_{p \in P}$ has the projection cover property iff every effect $e \in E$ has a (necessarily unique) projection cover.

If A is regarded as an additive partially ordered abelian group with order unit, then A forms a so-called *unital group* [6, p. 436]; hence by [6, Theorem 6.3], we have the following result.⁵

THEOREM 1.1. Suppose that $(J_p)_{p\in P}$ has the projection cover property. Then, with the partial order inherited from A, and with $p\mapsto u-p$ as orthocomplementation, P is an orthomodular lattice (OML) [12].

EXAMPLE 1.4. In Examples 1.1 and 1.2, suppose A satisfies Conditions (4.1) and (4.2). Then, if $a \in A^+$, there is a smallest element $p \in P$ such that a belongs to the face of A^+ generated by p [2, Proposition 4.7], and by definition $\operatorname{rp}(a) := p$ [2, p. 31]. If $e \in E$, then $\operatorname{rp}(e)$ is the smallest element $p \in P$ such that $e \leq p$; hence A has the projection cover property. By Theorem 1.1 above, P is an OML, but an independent proof is given in [2, Theorem 4.5]. Furthermore, Condition (4.1) implies that P is σ -complete [2, Proposition 4.2].

DEFINITION 1.5. Let $(J_p)_{p \in P}$ be a compression base for A and let $a \in A$.

(i) If $p \in P$, then $C(p) := \{a \in A : a = J_{u-p}(a) + J_p(a)\}$, and we say that a is compatible with p iff $a \in C(p)$ (cf. [2, p. 32]).

⁵Theorem 6.3 in [6] was proved under hypotheses stronger than in Theorem 1.1, but the proof given in [6] goes through under our current hypotheses. A similar observation applies to the proofs in [7] and [8] that are cited below.

- (ii) If $Q \subseteq P$, then $C(Q) := \bigcap_{p \in Q} C(p)$. (iii) $CPC(a) := C(\{p \in P : a \in C(p)\})$.

THEOREM 1.2. Let $v \in P$, $H := J_v(A)$, C := C(v), and $P_H := \{p \in P : p \le v\}$. If $p \in P$ and $M \subseteq A$, let J_p^M be the restriction of J_p to M. Then:

- (i) H is a norm-closed linear subspace of A, H is an order-unit space with order unit v, and $(J_p^H)_{p \in P_H}$ is a compression base for H. (ii) C is a norm-closed linear subspace of A, C is an order-unit space with
- order unit u, and $(J_n^C)_{p \in C \cap P}$ is a compression base for C.

Proof: By Lemma 1.1, $J_u - J_v$ and $J_u - J_v - J_{u-v}$ are norm-continuous linear transformations on A; hence their respective null spaces H and C are norm-closed linear subspaces of A. The remainder of the proof can be found in [9, Theorems 4] and 5].

If $a, b \in A$, then the condition $b \in CPC(a)$ requires that b is compatible with every projection $p \in P$ such that a is compatible with p (cf. [2, p. 35]). For the following result, see [9, Lemma 3 and Theorem 3].

LEMMA 1.3. If $p, q \in P$ and $a \in A$, then: (i) $J_p(a) \le a \Rightarrow a \in C(p)$. (ii) If $a \in A^+$, then $a \in C(p) \Leftrightarrow J_p(a) \leq a$. (iii) $pC_Pq \Leftrightarrow p \in C(q) \Leftrightarrow q \in C(p)$. (iv) $p \in C(q) \Leftrightarrow J_p \circ J_q = J_q \circ J_p$.

If $p, q \in P$, then in view of Lemma 1.3 (iii), we shall write the condition $p \in C(q)$, or equivalently, pC_Pq , simply as pCq.

DEFINITION 1.6.

- (i) If $a \in A$, then $P^{\pm}(a) := \{ p \in P \cap CPC(a) : a \in C(p) \text{ and } J_{u-p}(a) \le 0 \le 1 \}$ $J_p(a)$.
- (ii) The compression base $(J_p)_{p\in P}$ has the comparability property iff, for every $a \in A, P^{\pm}(a) \neq \emptyset.$

Suppose that $(J_p)_{p\in P}$ satisfies the comparability property, let $a\in A$, let $\lambda\in\mathbb{R}$, and choose $p \in P^{\pm}(a - \lambda u)$. Then $a = J_{u-p}(a) + J_p(a)$ with $J_{u-p}(a) \le \lambda(u-p)$ and $\lambda p \leq J_p(a)$ (cf. [2, (6.3)]).

DEFINITION 1.7. The compression base $(J_p)_{p \in P}$ is spectral iff it has both the projection cover and the comparability properties. A spectral order-unit space is an order unit space equipped with a spectral compression base.

EXAMPLE 1.5. According to [2, p. 55], the order-unit space (A, u) and the base norm space (V, K) in separating order and norm duality (Example 1.1) are said to be in spectral duality iff A is pointwise monotone σ -complete (Condition (4.1)) and Condition (7.1) [2, p. 55] holds. It is easily seen that Condition (7.1) implies that the compression base $(J_p)_{p\in P}$ (Example 1.2) has the comparability property. Moreover, Condition (7.1) obviously implies Condition (6.3), and by [2, Proposition 6.2], it also implies Condition (4.2), so $(J_p)_{p \in P}$ has the projection cover property (Example 1.4). Therefore if A and V are in spectral duality, then A is a spectral order-unit space.

In view of Example 1.5, all of the examples in [2] of pairs A and V in spectral duality yield examples of spectral order-unit spaces A. For instance, if K is a Choquet simplex, then the space $A^b(K)$ of all bounded affine functionals on K is a spectral order-unit space [2, Theorem 10.4]. Also, if A is the self-adjoint part of a unital von Neumann algebra, then A is a spectral order-unit space [2, Section 11]. Of course, all of the spectral order-unit spaces A arising from pairs A, V in spectral duality are pointwise monotone σ -complete, they are Banach spaces, and their projections form a σ -OML.

EXAMPLE 1.6. Let $A := C(X, \mathbb{R})$ with compression base $(J_p)_{p \in P}$ as in Example 1.3. If the space X is connected and consists of more than one point, then $P = \{0, 1\}$ and $(J_p)_{p \in P}$ has the projection cover property (trivially), but $(J_p)_{p \in P}$ does not have the comparability property. If X is basically disconnected (i.e. the closure of every open F_σ subset of X remains open), then A is a spectral order unit space. If X is totally disconnected, but not basically disconnected, then $(J_p)_{p \in P}$ does not have the projection cover property.

The following example, a variation on Examples 1.3 and 1.6, shows that a spectral order-unit space need not be monotone σ -complete.

EXAMPLE 1.7. Let \mathcal{B} be a field of subsets of the nonempty set X and define A to be the set of all functions $f\colon X\to\mathbb{R}$ such that $f(X)=\{f(x):x\in X\}$ is finite and $f^{-1}(\lambda)\in\mathcal{B}$ for all $\lambda\in\mathbb{R}$. Then, with the constant function 1(x)=1 for all $x\in X$ as the order unit, and with pointwise addition and partial order, A is an order-unit space. Define $P:=\{p\in A:p(X)\subseteq\{0,1\}\}$, and for each $p\in P$, define $J_p(f):=pf$ (pointwise product) for all $f\in A$. Then, with $(J_p)_{p\in P}$ as compression base, A is a spectral order-unit space. In particular, if B is a Boolean algebra that is not σ -complete, X is the Stone space of B, and B is the field of compact open subsets of X, then A is not monotone σ -complete.

2. Basic properties of a spectral order-unit space

STANDING ASSUMPTION 2.1. In the sequel, we assume that A is a spectral order-unit space with order unit u > 0, unit interval E, and compression base $(J_p)_{p \in P}$.

The following theorem is a consequence of [8, Theorem 6.5].

THEOREM 2.1. There is a uniquely determined mapping ': $A \rightarrow P$ such that for all $a \in A$ and all $p \in P$, $p \le a' \Leftrightarrow a \in C(p)$ with $J_p(a) = 0$.

In what follows, we make extensive use of the mapping ': $A \to P$, which we call the *Rickart mapping*. By part (ii) of the following lemma, if $p \in P$, then p' = u - p is the orthocomplement of p in the OML P.

LEMMA 2.1. For all $a, b \in A$, all $p \in P$, and all $e \in E$: (i) $J_{a'}(a) = 0$ and $a \in C(a')$. (ii) p' = u - p. (iii) a'' := (a')' = u - a' and C(a'') = C(a'), (iv) $0 \le a \le b \Rightarrow a'' \le b''$. (v) e'' is the projection cover of e. (vi) $a', a'' \in CPC(a)$. (vii) $J_p(a) = a \Leftrightarrow a'' \le p$.

Proof: Parts (i)–(v) follow from [8, Lemma 6.2], and (vi) follows from [8, Theorem 6.5]. If $J_p(a) = a$, then $J_{u-p}(a) = 0$ by Lemma 1.2 (iii) and $a \in C(p) = C(u-p)$ by Lemma 1.3 (i), whence $u - p \le a'$, so by (iii), $a'' = u - a' \le p$. Conversely, suppose $a'' \le p$. Then $u - p \le a'$, whence $J_{u-p}(a) = 0$ and $a \in C(u-p) = C(p)$, and it follows that $a = J_p(a) + J_{u-p}(a) = J_p(a)$, proving (vii).

If $p, q \in P$, we denote the supremum and infimum of p and q in the OML P by $p \lor q$ and $p \land q$, respectively. More generally, an existing supremum or infimum in P of a set $Q \subseteq P$ is written as $\bigvee Q$ or $\bigwedge Q$, respectively. As usual, elements p and q in P are said to be *orthogonal*, in symbols $p \perp q$, iff $p \le u - q = q'$.

LEMMA 2.2. Let $p,q \in P$. Then: (i) $p \perp q \Leftrightarrow p+q \in P$. (ii) $p \leq q \Leftrightarrow q-p \in P$. (iii) $p \perp q \Rightarrow p+q=p \vee q$. (iv) $p \leq q \Rightarrow q-p=q \wedge (u-p)=q \wedge p'$. (v) $p \leq q \Leftrightarrow J_p \circ J_q=J_q \circ J_p=J_p$. (vi) $pCq \Leftrightarrow J_p \circ J_q=J_q \circ J_p \Leftrightarrow J_p(q)=J_q(p)=p \wedge q$. (vii) If pCq, then $C(p) \cap C(q) \subseteq C(p \wedge q) \cap C(p \vee q)$.

Proof: As *P* is a sub-effect algebra of *E*, (i) and (ii) are obvious. Suppose that $p+q \in P$. Then clearly, p+q is an upper bound in *P* for *p* and *q*. Also, if $r \in P$ and $p, q \le r$, then $p = J_r(p)$ and $q = J_r(q)$, whence $p+q = J_r(p+q) \le J_r(u) = r$, so $p+q=p \lor q$, proving (iii). If $p \le q$, then $q=p+(q-p)=p \lor (q-p)$ by (i) and (iii), and (iv) follows since *P* is an OML. Part (v) is [9, Lemma 2], part (vi) is [9, Theorem 3 and Corollary 1], and part (vii) is a consequence of [8, Corollary 2.4]. □

LEMMA 2.3. Let $p_1, p_2, \ldots, p_n \in P$ with $p := \sum_{i=1}^n p_i \le u$. Then: (i) $p = \bigvee_{i=1}^n p_i \in P$. (ii) $c \in C(\{p_1, p_2, \ldots, p_n\}) \Rightarrow J_p(c) = \sum_{i=1}^n J_{p_i}(c)$. (iii) $a_1, a_2, \ldots, a_n \in A^+ \Rightarrow (\sum_{i=1}^n a_i)'' = \bigvee_{i=1}^n (a_i)''$.

Proof: Part (i) follows from parts (i) and (iii) of Lemma 2.2 and induction on n, part (ii) is [8, Theorem 2.3 (ii)], and part (iii) is [8, Theorem 6.4 (ii)].

DEFINITION 2.1. Let $a \in A$, and let $p \in P^{\pm}(a)$. By [8, Theorem 3.2], $J_p(a)$ and $J_{u-p}(a)$ are independent of the choice of $p \in P^{\pm}(a)$, hence we can and do define $a^+ := J_p(a)$, $a^- := -J_{u-p}(a)$, and $|a| := a^+ + a^-$. We refer to a^+ as the positive part of a and to |a| as the absolute value of a.

In the sequel, we also make extensive use of the mapping $^+$: $A \rightarrow A^+$.

LEMMA 2.4. Let $a,b \in A$. Then: (i) $0 \le a^+, a^-, |a|$. (ii) $a = a^+ - a^-$. (iii) $a^- = (-a)^+$. (iv) $a^+, a^-, |a| \in CPC(a)$. (v) $a \le b \in CPC(a) \Rightarrow a^+ \le b^+ \Rightarrow (a^+)'' \le (b^+)''$. (vi) $a' = |a|' \in CPC(a)$. (vii) $(a^+)'' \perp (a^-)''$ with $(a^+)'' + (a^-)'' = (a^+)'' \vee (a^-)'' = a''$. (viii) If $p \in P$, $a \in C(p)$, and $J_{p'}(a) \le 0 \le J_p(a)$, then $J_{p'}(a) = -a^-$ and $J_p(a) = a^+$.

Proof: Let $p \in P^{\pm}(a)$. Parts (i), (ii), and (iii) are obvious. To prove (iv), suppose $q \in P$ and $a \in C(q)$. Then pCq, so by Lemma 1.3 (iv), $a^+ = J_p(a) = J_p(J_q(a) + J_{q'}(a)) = J_p(J_q(a)) + J_p(J_{q'}(a)) = J_q(J_p(a)) + J_{q'}(J_p(a)) = J_q(a^+) + J_{q'}(a^+)$, whence $a^+ \in C(q)$. Likewise, $a^- \in C(q)$, and so $|a| = a^+ + a^- \in C(q)$.

The first implication in (v) follows from [8, Lemma 4.4 (i)], and the second implication is a consequence of Lemma 2.1 (iv). Parts (vi) and (vii) follow from parts (i) and (ii) of [8, Theorem 6.5] and part (viii) follows from [8, Lemma 4.2].

THEOREM 2.2. Let $a \in A$. Then:

- (i) $(a^+)'' \le a''$ and $(a^+)''$ is the smallest projection in $P^{\pm}(a)$.
- (ii) If $q \in P^{\pm}(a)$ and $q \le a''$, then $q = (a^{+})''$.
- (iii) If $(a^+)'' = u$, then $0 \le a$.

Proof: Let $p := (a^+)''$. Then $J_{p'}(a^+) = 0$ and $J_p(a^+) = a^+$ by parts (i) and (vii) of Lemma 2.1. By Lemma 2.4 (vii), $p + (a^-)'' = a''$, so $p = a'' - (a^-)'' = a'' \wedge (a^-)'$ by Lemma 2.2 (iv). As $p \le (a^-)'$, we have $J_p(a^-) = 0$, and since $0 \le a^-$, Lemma 1.2 (iv) implies that $J_{p'}(a^-) = a^-$. Therefore, $J_p(a) = J_p(a^+ - a^-) = J_p(a^+) - J_p(a^-) = a^+$, and likewise, $J_{p'}(a) = -a^-$, whence $a = J_p(a) + J_{p'}(a)$, i.e. $a \in C(p)$. By Lemma 2.1 (vi), $p = (a^+)'' \in CPC(a^+)$, and by Lemma 2.4 (iv), $a^+ \in CPC(a)$, so $p \in CPC(a)$. Consequently, since $J_{p'}(a) = -a^- \le 0 \le a^+ = J_p(a)$, we have $p \in P^{\pm}(a)$.

Suppose that $q \in P^{\pm}(a)$. Then $J_q(a) = a^+$, so $J_q(a^+) = a^+$, and it follows from Lemma 2.1 (vii) that $p \leq q$, completing the proof of (i). Now suppose that $q \leq a''$. Since $a^- = -J_{q'}(a)$, we have $J_{q'}(a^-) = a^-$, so $(a^-)'' \leq q'$, whence $q \leq (a^-)'$, and it follows that $q \leq a'' \wedge (a^-)' = p$, whereupon q = p, and (ii) is proved. Part (iii) follows immediately from (i).

We omit the straightforward proofs of the following two theorems.

THEOREM 2.3. As in Theorem 1.2, let $v \in P$ and $H := J_v(A)$. Then, for all $h \in H$: (i) H is a spectral order-unit space with order unit v. (ii) $v' \leq h'$ and the Rickart mapping on H is given by $h \mapsto h' - v' = h' \wedge v$. (iii) $h^+ \in H$ and h^+ is the positive part of h as calculated in H. (iv) If $a \in C(v)$, then $(J_v(a))' \wedge v = a' \wedge v$ and $(J_v(a))^+ = J_v(a^+)$.

THEOREM 2.4. As in Theorem 1.2, let $v \in P$ and C := C(v). Then, for all $c \in C$: (i) C is a spectral order-unit space with order unit u. (ii) $c' \in C$ and the Rickart mapping on C is the restriction to C of the Rickart mapping on C. (iii) $c^+ \in C$ and c^+ is the positive part of C as calculated in C.

3. Spectral resolution

DEFINITION 3.1. If $a \in A$, then the spectral lower and upper bounds for a are defined by $L_a := \sup\{\lambda \in \mathbb{R} : \lambda u \le a\}$ and $U_a := \inf\{\lambda \in \mathbb{R} : a \le \lambda u\}$, respectively.

THEOREM 3.1. If $a \in A$, then: (i) $-\infty < L_a \le U_a < \infty$. (ii) $||a|| = \max\{|L_a|, |U_a|\}$. (iii) $L_{-a} = -U_a$ and $U_{-a} = -L_a$. (iv) $L_a u \le a \le U_a u$.

Proof: Parts (i) and (ii) follow as in the proof of [11, Proposition 4.7], and (iii) is obvious. For every $n \in \mathbb{N}$, it is clear that $(L_a - 1/n)u \le a$, whence $n(L_a u - a) \le u$, and as A is archimedean, it follows that $L_a u - a \le 0$, i.e., $L_a u \le a$. Therefore, by (iii), $-U_a u \le -a$, so $a \le U_a u$, completing the proof of (iv).

DEFINITION 3.2. Let $a \in A$, $\lambda \in \mathbb{R}$, and define

$$p_{\lambda} := ((a - \lambda)^+)' \in P$$
 and $d_{\lambda} := (a - \lambda)' \in P$.

The family of projections $(p_{\lambda})_{\lambda \in \mathbb{R}}$ is called the *spectral resolution* for a. For $\lambda \in \mathbb{R}$, d_{λ} is called the λ -eigenprojection for a, and λ is called an eigenvalue of a iff $d_{\lambda} \neq 0$.

STANDING ASSUMPTION 3.1. In what follows: $a \in A$; $L := L_a$ and $U := U_a$ are the spectral bounds for a; $(p_{\lambda})_{{\lambda} \in \mathbb{R}}$ is the spectral resolution of a; and $(d_{\lambda})_{{\lambda} \in \mathbb{R}}$ is the family of eigenprojections for a.

For the spectral resolution $(p_{\lambda})_{{\lambda} \in \mathbb{R}}$ of a, we have the following uniqueness theorem.⁶

THEOREM 3.2. For each $\lambda \in \mathbb{R}$, p_{λ} is uniquely determined by the following properties:

- (i) $p_{\lambda} \in P \cap CPC(a)$ and $a \in C(p_{\lambda})$.
- (ii) $J_{p_{\lambda}}(a) \lambda p_{\lambda} \leq 0 \leq J_{u-p_{\lambda}}(a) \lambda (u p_{\lambda}).$
- (iii) $(a \lambda u)' \leq p_{\lambda}$.

Proof: Let $q := (p_{\lambda})' = ((a - \lambda u)^{+})''$. By Theorem 2.2, q, hence also $p_{\lambda} = q'$, is uniquely determined by the conditions $q \in P^{\pm}(a - \lambda u)$ and $q \leq (a - \lambda u)''$. Therefore, q is uniquely determined by the following properties:

$$q \in P \cap CPC(a - \lambda u) = P \cap CPC(a); \quad a - \lambda u \in C(q), \quad \text{i.e. } a \in C(q);$$

$$J_{q'}(a) - \lambda q' = J_{q'}(a - \lambda u) \le 0 \le J_q(a - \lambda u) = J_q(a) - \lambda q;$$
 and $q \le (a - \lambda u)''$, i.e. $(a - \lambda u)' \le q'$.

Thus, properties (i), (ii), and (iii) are obtained upon replacing q above by $(p_{\lambda})' = u - p_{\lambda}$.

LEMMA 3.1. Let $\alpha \in \mathbb{R}$. Then, for all $\lambda \in \mathbb{R}$: (i) The spectral resolution $(q_{\lambda})_{\lambda \in \mathbb{R}}$ of $a-\gamma u$ is given by $q_{\lambda}=p_{\gamma+\lambda}$. (ii) The λ -eigenprojection for $a-\gamma u$ is $d_{\gamma+\lambda}$. (iii) The spectral resolution $(s_{\lambda})_{\lambda \in \mathbb{R}}$ of -a is given by $s_{\lambda}=(u-p_{-\lambda})+d_{-\lambda}=(u-p_{-\lambda})\vee d_{-\lambda}$. (iv) The λ -eigenprojection for -a is $d_{-\lambda}$.

⁶Right continuity of the spectral resolution is a *consequence* of Definition 3.2 (Theorem 3.5 below) and is not required *a priori* for the uniqueness (cf. [2, Definition p. 49] and [2, Theorem 7.2]).

Proof: Parts (i) and (ii) follow directly from Definition 3.2. By Lemma 2.4 (iii), we have

$$u - s_{\lambda} = ((-a - \lambda u)^{+})^{"} = ((-(a - (-\lambda)u))^{+})^{"} = ((a - (-\lambda)u)^{-})^{"}.$$

Therefore, by Lemma 2.4 (vii),

$$(u - p_{-\lambda}) + (u - s_{\lambda}) = ((a - (-\lambda)u)^{+})'' + ((a - (-\lambda)u)^{-})''$$

= $(a - (-\lambda)u)'' = u - d_{-\lambda}$,

whence, by parts (i) and (iii) of Lemma 2.2, $s_{\lambda} = (u - p_{-\lambda}) + d_{-\lambda} = (u - p_{-\lambda}) \vee d_{-\lambda}$, proving (iii). To prove (iv), we note that (-h)' = h' for all $h \in A$, so

$$(-a - \lambda u)' = (-(a - (-\lambda)u))' = (a - (-\lambda)u)' = d_{-\lambda}.$$

Theorem 3.3. For all $\lambda, \mu \in \mathbb{R}$:

- (i) p_{λ} , $d_{\lambda} \in P \cap CPC(a)$, $a \in C(p_{\lambda}) \cap C(d_{\lambda})$, and $d_{\lambda}Cp_{\lambda}$.
- (ii) $J_{p_{\lambda}}(a) \lambda p_{\lambda} \leq 0 \leq J_{u-p_{\lambda}}(a) \lambda (u p_{\lambda}).$
- (iii) $\lambda \leq \mu \Rightarrow p_{\lambda} \leq p_{\mu}$ and $p_{\mu} p_{\lambda} = p_{\mu} \wedge (u p_{\lambda})$.
- (iv) $\lambda < \mu \Rightarrow d_{\lambda} \leq p_{\lambda} \leq u d_{\mu} \Rightarrow d_{\lambda} \perp d_{\mu}$.
- (v) $\lambda > U \Rightarrow p_{\lambda} = u$, and $\lambda < U \Rightarrow p_{\lambda} < u$.
- (vi) $\lambda < L \Rightarrow p_{\lambda} = 0$, and $L < \lambda \Rightarrow 0 < p_{\lambda}$.
- (vii) $L = \sup\{\lambda \in \mathbb{R} : p_{\lambda} = 0\}$, and $U = \inf\{\lambda \in \mathbb{R} : p_{\lambda} = u\}$.
- (viii) If $\lambda \leq \mu$ and $q \in P$ with $q \leq p_{\mu} p_{\lambda}$, then $\lambda q \leq J_q(a) \leq \mu q$.

Proof: (i) By Theorem 3.2, $p_{\lambda} \in P \cap CPC(a)$ and $a \in C(p_{\lambda})$. By parts (vi) and (i) of Lemma 2.1, $d_{\lambda} \in CPC(a - \lambda u)$ and $a - \lambda u \in C(d_{\lambda})$, whence $d_{\lambda} \in P \cap CPC(a)$ and $a \in C(d_{\lambda})$. As $a \in C(p_{\lambda})$ and $d_{\lambda} \in CPC(a)$, we also have $d_{\lambda}Cp_{\lambda}$.

- (ii) Part (ii) follows from Theorem 3.2.
- (iii) Assume that $\lambda \le \mu$. Then $a \mu u \le a \lambda u$, and $a \mu u \in CPC(a \lambda u)$; hence $p_{\lambda} \le p_{\mu}$ follows from Lemma 2.4 (v). Also, $p_{\mu} p_{\lambda} = p_{\mu} \wedge (u p_{\lambda})$ by Lemma 2.2 (iv).
- (iv) By Theorem 3.2 (iii), $d_{\lambda} \leq p_{\lambda}$. Assume that $\lambda < \mu$. By (i), $d_{\mu} \in CPC(a)$ and $a \in C(p_{\lambda})$, so $d_{\mu}Cp_{\lambda}$. Therefore, by Lemma 1.3 (iv), $J_{d_{\mu}} \circ J_{p_{\lambda}} = J_{p_{\lambda}} \circ J_{d_{\mu}}$, and by Lemma 2.2 (vi), $J_{p_{\lambda}}(d_{\mu}) = J_{d_{\mu}}(p_{\lambda}) = d_{\mu} \wedge p_{\lambda}$. As $d_{\mu} = (a \mu u)'$, we have $J_{d_{\mu}}(a \mu u) = 0$, i.e., $\mu d_{\mu} = J_{d_{\mu}}(a)$. Also, by (ii), $J_{p_{\lambda}}(a) \leq \lambda p_{\lambda}$, and it follows that

$$\mu(p_{\lambda} \wedge d_{\mu}) = \mu J_{p_{\lambda}}(d_{\mu}) = J_{p_{\lambda}}(\mu d_{\mu}) = J_{p_{\lambda}}(J_{d_{\mu}}(a)) = J_{d_{\mu}}(J_{p_{\lambda}}(a))$$

$$\leq J_{d_{\mu}}(\lambda p_{\lambda}) = \lambda J_{d_{\mu}}(p_{\lambda}) = \lambda (p_{\lambda} \wedge d_{\mu}) \leq \mu(p_{\lambda} \wedge d_{\mu}),$$

and therefore $\lambda(p_{\lambda} \wedge d_{\mu}) = \mu(p_{\lambda} \wedge d_{\mu})$, i.e. $(\mu - \lambda)(p_{\lambda} \wedge d_{\mu}) = 0$. As $0 < \mu - \lambda$, it follows that $p_{\lambda} \wedge d_{\mu} = 0$. But $p_{\lambda}Cd_{\mu}$, and therefore $p_{\lambda} \leq u - d_{mu}$.

(v) If $\lambda > U$, there exists $\mu \in \mathbb{R}$ such that $\mu < \lambda$ and $a \le \mu u \le \lambda u$, whereupon $a - \lambda u \le 0$, i.e. $(a - \lambda u)^+ = 0$, so $((a - \lambda u)^+)'' = 0$, and it follows that $p_\lambda = u$. Conversely, if $p_\lambda = u$, then $((a - \lambda u)^+)'' = 0$, so $(a - \lambda u)^+ = 0$, whence $a - \lambda u \le 0$, and it follows that $U \le \lambda$; consequently, $\lambda < U \Rightarrow p_\lambda < u$.

- (vi) Suppose $\lambda < L$. Then there exists $\mu \in \mathbb{R}$ such that $\lambda < \mu$ and $\mu u \leq a$. Therefore, $u \leq (\mu \lambda)u = \mu u \lambda u \leq a \lambda u = (a \lambda u)^+$, and it follows from Lemma 2.1 (iv) that $u = u'' \leq ((a \lambda u)^+)'' = u p_{\lambda}$, whence $p_{\lambda} = 0$. Conversely, if $p_{\lambda} = 0$, then $((a \lambda u)^+)'' = u$, whence $0 \leq a \lambda u$, i.e., $\lambda u \leq a$, by Theorem 2.2 (iii), whereupon $\lambda \leq L$; consequently, $L < \lambda \Rightarrow 0 < p_{\lambda}$.
 - (vii) Follows directly from (v) and (vi).

(viii) Assume the hypotheses. By (iii), $q \le p_{\mu}$ and $q \le u - p_{\lambda}$; hence $J_q \circ J_{p_{\mu}} = J_q \circ J_{u-p_{\lambda}} = J_q$ by Lemma 2.2 (v). As $q \le p_{\mu}$, we have $q = J_q(q) \le J_q(p_{\mu}) \le J_q(u) = q$, whence $q = J_q(p_{\mu})$, and likewise, $q = J_q(u - p_{\lambda})$. Also, by (ii),

$$\begin{split} &\lambda(u-p_{\lambda}) \leq J_{u-p_{\lambda}}(a) \quad \text{and} \quad J_{p_{\mu}}(a) \leq \mu p_{\mu} \,; \text{ hence} \\ &\lambda q = \lambda J_q(u-p_{\lambda}) = J_q(\lambda(u-p_{\lambda})) \leq J_q(J_{u-p_{\lambda}}(a)) \\ &= J_q(a) = J_q(J_{p_{\mu}}(a)) \leq J_q(\mu p_{\mu}) = \mu J_q(p_{\mu}) = \mu q \,. \end{split}$$

Consequently, $\lambda q \leq J_q(a) \leq \mu q$.

THEOREM 3.4. Suppose that $\lambda_0, \lambda_1, \ldots, \lambda_n \in \mathbb{R}$ with $\lambda_0 < L < \lambda_1 < \cdots < \lambda_{n-1} < U < \lambda_n$, and let $\gamma_i \in \mathbb{R}$ with $\lambda_{i-1} \le \gamma_i \le \lambda_i$ for $i = 1, 2, \ldots, n$. Define $u_i := p_{\lambda_i} - p_{\lambda_{i-1}}$ for $i = 1, 2, \ldots, n$, and let $\epsilon := \max\{\lambda_i - \lambda_{i-1} : i = 1, 2, \ldots, n\}$. Then:

$$u_1, u_2, \dots, u_n \in P \cap CPC(a),$$
 $a \in C(\{u_1, u_2, \dots, u_n\}),$
 $\sum_{i=1}^n u_i = 1, \text{ and } ||a - \sum_{i=1}^n \gamma_i u_i|| \le \epsilon.$

Proof: In the proof, we understand that $i=1,2,\ldots,n$ and that all sums are from i=1 to i=n. By parts (i) and (iii) of Theorem 3.3, we have $p_{\lambda_{i-1}} \leq p_{\lambda_i}$ with $p_{\lambda_{i-1}}, p_{\lambda_i} \in P \cap CPC(a)$, whence $u_i \in P \cap CPC(a)$. Also, $a \in C(p_{\lambda_i})$, so $a \in C(u_i)$ by Lemma 2.2 (vii). That $\sum u_i = u$ follows from parts (v) and (vi) of Theorem 3.3. Theorem 3.3 (viii) with $q := u_i$ implies that $\lambda_{i-1}u_i \leq J_{u_i}(a) \leq \lambda_i u_i$, whence $\sum \lambda_{i-1}u_i \leq \sum J_{u_i}(a) \leq \sum \lambda_i u_i$. By Lemma 2.3, $\sum J_{u_i}(a) = J_1(a) = a$, and we have

$$\sum \lambda_{i-1} u_i \leq a \leq \sum \lambda_i u_i.$$

The latter inequalities together with $\lambda_{i-1} \leq \gamma_i \leq \lambda_i$ and $0 \leq u_i$ imply that

$$-\sum (\lambda_i - \lambda_{i-1})u_i \leq a - \sum \gamma_i u_i \leq \sum (\lambda_i - \lambda_{i-1})u_i,$$

whence

$$\|a - \sum \gamma_i u_i\| \le \|\sum (\lambda_i - \lambda_{i-1})u_i\| \le \epsilon \|\sum u_i\| = \epsilon \cdot 1 = \epsilon.$$

COROLLARY 3.1. There exists an ascending sequence $a_1 \le a_2 \le \cdots$ in CPC(a) such that each a_n is a finite linear combination of projections in the family $(p_{\lambda})_{{\lambda} \in \mathbb{R}}$ and $||a - a_n|| \to 0$.

Proof: Choose and fix $\alpha, \beta \in \mathbb{R}$ with $\alpha < L$ and $\beta > U$. As usual, a partition of the closed interval $[\alpha, \beta] \subseteq \mathbb{R}$ is understood to be a finite sequence $\Lambda = (\lambda_i)_{i=0,1,2,\ldots,n} \subseteq [\alpha,\beta]$ such that $\alpha = \lambda_0 < \lambda_1 < \cdots \lambda_{n-1} < \lambda_n = \beta$. The closed interval $[\lambda_{i-1},\lambda_i]$ is called the *i*th subinterval of Λ for $i=1,2,\ldots,n$, and we define $\epsilon(\Lambda) := \max\{\lambda_i - \lambda_{i-1} : i=1,2,\ldots,n\}$. For the partition Λ , we also define $a(\Lambda) := \sum_{i=1}^n \lambda_{i-1}(p_{\lambda_i} - p_{\lambda_{i-1}}) \in CPC(a)$, and we have $||a-a(\Lambda)|| \le \epsilon(\Lambda)$ by Theorem 3.4 with $\gamma_i = \lambda_{i-1}$ for $i=1,2,\ldots,n$.

By recursion, we define a sequence $(\Lambda_n)_{n\in\mathbb{N}}$ of partitions of $[\alpha, \beta]$ as follows: Λ_1 is the partition $\alpha = \lambda_0 < \lambda_1 = \beta$ having only one subinterval, namely $[\alpha, \beta]$ itself. For each partition Λ_n , we form the refined partition Λ_{n+1} , with twice as many subintervals as Λ_n , by appending to the partition Λ_n the midpoints of all its subintervals. Define $a_n := a(\Lambda_n)$ for all $n \in \mathbb{N}$. Evidently, $a_1 \le a_2 \le \cdots$. Obviously, $\epsilon(\Lambda_n) = (\beta - \alpha)/2^{n-1}$, and we have $||a - a_n|| \to 0$.

COROLLARY 3.2. If $p \in P$, then $a \in C(p) \Leftrightarrow p_{\lambda} \in C(p)$ for all $\lambda \in \mathbb{R}$.

Proof: If $a \in C(p)$ and $\lambda \in \mathbb{R}$, then $p_{\lambda}Cp$ by Theorem 3.3 (i). Conversely, suppose that $p_{\lambda}Cp$ for all $\lambda \in \mathbb{R}$ and let $(a_n)_{n \in \mathbb{N}}$ be the sequence in Corollary 3.1. Then $a_n \in C(p)$ for all $n \in \mathbb{N}$, whence $a \in C(p)$ by Theorem 1.2 (ii).

The following theorem indicates the sense in which the spectral resolution of a is "continuous from the right."

THEOREM 3.5. If $\alpha \in \mathbb{R}$, then $p_{\alpha} = \bigwedge \{p_{\mu} : \alpha < \mu \in \mathbb{R}\}$.

Proof: Let $D:=\{p_{\mu}: \alpha<\mu\in\mathbb{R}\}$. By Theorem 3.3 (iii), p_{α} is a lower bound for D. Suppose that $r\in P$ is another lower bound for D. We have to prove that $r\leq p_{\alpha}$. Evidently, $p_{\alpha}\vee r$ is a lower bound for D. Define $q:=(p_{\alpha}\vee r)-p_{\alpha}=(p_{\alpha}\vee r)\wedge(u-p_{\alpha})$. It will be sufficient to prove that q=0. Let $\lambda\in\mathbb{R}$. If $\lambda\leq\alpha$, then $p_{\lambda}\leq p_{\alpha}\leq p_{\alpha}\vee r$, so $p_{\lambda}Cq$. If $\alpha<\lambda$, then $p_{\lambda}\in D$, so $q\leq p_{\alpha}\vee r\leq p_{\lambda}$, and again $p_{\lambda}Cq$; hence $a\in C(q)$ by Corollary 3.2.

Now suppose that $\alpha < \mu \in \mathbb{R}$. Then $p_{\mu} \in D$, so $q \leq p_{\alpha} \vee r \leq p_{\mu}$ and $q \leq u - p_{\alpha}$, so $q \leq p_{\mu} \wedge (u - p_{\alpha}) = p_{\mu} - p_{\alpha}$, and it follows from Theorem 3.3 (viii) that $\alpha q \leq J_q(a) \leq \mu q$. Therefore, $0 \leq J_q(a) - \alpha q \leq (\mu - \alpha)q$, whence $\|J_q(a) - \alpha q\| \leq (\mu - \alpha)\|q\|$, and since $\mu - \alpha$ can be made arbitrarily small, we have $J_q(a - \alpha u) = J_q(a) - \alpha q = 0$ with $a - \alpha u \in C(q)$. Therefore, $q \leq (a - \alpha u)' = d_{\alpha} \leq p_{\alpha}$ by Theorem 3.3 (iv). But $q \leq u - p_{\alpha}$, so q = 0.

REMARK 3.1. By Theorem 3.5, $p_U = u$; hence in the proof of Theorem 3.4, we can take $\lambda_n = U$. Consequently, a can be written as a norm-convergent integral $a = \int_{L-0}^{U} \lambda \, dp_{\lambda}$ of Riemann-Stieltjes type (cf. [2, Theorem 6.8]).

According to the next theorem, in the same sense as Theorem 3.5, the eigen-projection d_{α} may be interpreted as the "jump" that occurs as λ approaches α from the left.

THEOREM 3.6. If $\alpha \in \mathbb{R}$, then $p_{\alpha} - d_{\alpha} = \bigvee \{p_{\mu} : \alpha > \mu \in \mathbb{R}\}.$

Proof: Let $D:=\{p_{\mu}: \alpha>\mu\in\mathbb{R}\}$. By Theorem 3.3 (iv), $d_{\alpha}\leq p_{\alpha}$, so $p_{\alpha}-d_{\alpha}=p_{\alpha}\wedge(u-d_{\alpha})\in P$. Let $(s_{\lambda})_{\lambda\in\mathbb{R}}$ be the spectral resolution of -a. By Lemma 3.1 (iii) and Theorem 3.5, $s_{-\alpha}=u-p_{\alpha}+d_{\alpha}$ is the infimum in P of

$$\{s_{\lambda}: -\alpha < \lambda \in \mathbb{R}\} = \{u - p_{-\lambda} + d_{-\lambda}: \alpha > -\lambda \in \mathbb{R}\} = \{u - p_{\mu} + d_{\mu}: \alpha > \mu \in \mathbb{R}\};$$

hence by the De Morgan law in P, $u - (u - p_{\alpha} + d_{\alpha}) = p_{\alpha} - d_{\alpha}$ is the supremum in P of

$$C := \{ u - (u - p_{\mu} + d_{\mu}) : \alpha > \mu \in \mathbb{R} \} = \{ p_{\mu} - d_{\mu} : \alpha > \mu \in \mathbb{R} \}.$$

We have to show that $p_{\alpha}-d_{\alpha}=p_{\alpha}\wedge(u-d_{\alpha})$ is also the supremum in P of D. If $\mu<\alpha$, then by parts (iii) and (iv) of Theorem 3.3, $p_{\mu}\leq p_{\alpha}\wedge(u-d_{\alpha})$, i.e. $p_{\alpha}\wedge(u-d_{\alpha})$ is an upper bound for D. Suppose that $r\in P$ is another upper bound for D. Then, if $\mu<\alpha$, we have $p_{\mu}-d_{\mu}\leq p_{\mu}\leq r$, i.e. r is an upper bound for C; hence $p_{\alpha}-d_{\alpha}\leq r$, so $p_{\alpha}-d_{\alpha}$ is the supremum of D.

LEMMA 3.2. Suppose $v \in P$, $a \in C(v)$, and $H := J_v(A)$. Then: (i) vCp_{λ} , vCd_{λ} for all $\lambda \in \mathbb{R}$. (ii) The spectral resolution of $J_v(a)$ in the spectral order-unit space H (Theorem 2.3) is $(v \wedge p_{\lambda})_{\lambda \in \mathbb{R}}$. (iii) The family of eigenprojections of $J_v(a)$ in H is $(v \wedge d_{\lambda})_{\lambda \in \mathbb{R}}$.

Proof: As p_{λ} , $d_{\lambda} \in CPC(a)$ and $a \in C(v)$, we have (i). Let $\lambda \in \mathbb{R}$. As $a - \lambda u \in C(v)$ and v is the order unit in H, Theorem 2.3 implies that the projection corresponding to λ in the spectral resolution of $J_v(a)$ in H is

$$((J_{v}(a) - \lambda v)^{+})' \wedge v = ((J_{v}(a - \lambda u))^{+})' \wedge v = (J_{v}((a - \lambda u)^{+}))' \wedge v$$

= $((a - \lambda u)^{+})' \wedge v = p_{\lambda} \wedge v$,

proving (ii), and a similar computation takes care (iii).

4. The spectrum

In this section, Assumption 3.1 remains in force, i.e. $a \in A$; $L := L_a$, $U := U_a$, $(p_{\lambda})_{{\lambda} \in \mathbb{R}}$ is the spectral resolution of a, and $(d_{\lambda})_{{\lambda} \in \mathbb{R}}$ is the family of eigenprojections for a.

DEFINITION 4.1. Let $\alpha, \rho \in \mathbb{R}$. We say that ρ belongs to the *resolvent set* of a iff there exists $0 < \epsilon \in \mathbb{R}$ such that p_{λ} is constant for λ in the open interval $(\rho - \epsilon, \rho + \epsilon)$. The *spectrum* of a, in symbols, $\operatorname{spec}(a)$, is defined to be the complement in \mathbb{R} of the resolvent set of a. If there exists $0 < \epsilon \in \mathbb{R}$ such that both open intervals $(\alpha - \epsilon, \alpha)$ and $(\alpha, \alpha + \epsilon)$ are contained in the resolvent set of a, we shall say that α belongs to the *relative resolvent set of* a.

As is easily seen, if I is an open interval contained in the resolvent set of a, then p_{λ} is constant for $\lambda \in I$.

LEMMA 4.1. Let $0 < \epsilon \in \mathbb{R}$, let $\alpha \in \mathbb{R}$, and let $I \subseteq \mathbb{R}$ be an open interval. Then: (i) p_{λ} is constant for λ in the open interval $(\alpha - \epsilon, \alpha)$ iff $p_{\lambda} = p_{\alpha} - d_{\alpha}$

for all $\lambda \in (\alpha - \epsilon, \alpha)$. (ii) p_{μ} is constant for μ in the open interval $(\alpha, \alpha + \epsilon)$ iff $p_{\mu} = p_{\alpha}$ for all $\mu \in (\alpha, \alpha + \epsilon)$. (iii) If p_{λ} is constant for $\lambda \in I$, then $d_{\lambda} = 0$ for all $\lambda \in I$. (iv) $p_{\lambda} - d_{\lambda}$ is constant for $\lambda \in I$ iff p_{λ} is constant for $\lambda \in I$.

Proof: By Theorems 3.5 and 3.6, $p_{\alpha} = \inf\{p_{\mu} : \mu \in (\alpha, \alpha + \epsilon)\}$ and $p_{\alpha} - d_{\alpha} = \sup\{p_{\lambda} : \lambda \in (\alpha - \epsilon, \alpha)\}$, from which (i) and (ii) follow immediately.

Assume the hypothesis of (iii), let $\alpha \in I$, and choose $0 < \epsilon \in \mathbb{R}$ such that $(\alpha - \epsilon, \alpha) \subseteq I$. Choose any $\lambda \in (\alpha - \epsilon, \alpha)$. By part (ii) above, $p_{\lambda} = p_{\alpha} - d_{\alpha}$, and since $\lambda, \alpha \in I$, $p_{\lambda} = p_{\alpha}$, whence $d_{\alpha} = 0$. As $\alpha \in I$ was arbitrary, (iii) follows.

To prove (iv), suppose first that $p_{\lambda} - d_{\lambda}$ is constant for $\lambda \in I$. Let $\lambda \in I$ and choose any $\mu \in I$ with $\lambda < \mu$, so that $p_{\lambda} \leq p_{\mu}$. As $\lambda, \mu \in I$, we also have $p_{\lambda} - d_{\lambda} = p_{\mu} - d_{\mu}$. Therefore, $0 \leq p_{\mu} - p_{\lambda} = d_{\mu} - d_{\lambda}$, so $d_{\lambda} \leq d_{\mu}$. But, as $\lambda < \mu$, it follows that $d_{\lambda} \leq u - d_{\mu}$, whence $d_{\lambda} = 0$. Therefore, if $p_{\lambda} - d_{\lambda}$ is constant for $\lambda \in I$, then $d_{\lambda} = 0$ for all $\lambda \in I$, and so p_{λ} is constant for $\lambda \in I$. The converse implication follows from (ii) above, and (iv) is proved.

THEOREM 4.1. (i) If $\gamma \in \mathbb{R}$, then $\operatorname{spec}(a - \gamma u) = \{\alpha - \gamma : \alpha \in \operatorname{spec}(a)\}$. (ii) $\operatorname{spec}(-a) = \{-\alpha : \alpha \in \operatorname{spec}(a)\}$

Proof: Part (i) follows from Lemma 3.1 (i), and part (ii) follows from Lemma 3.1 (iii) and Lemma 4.1 (iv).

THEOREM 4.2. Let $\alpha \in \mathbb{R}$. Then: (i) α is an isolated point of spec(a) iff α is in the relative resolvent set of a, but not in the resolvent set of a. (ii) If α is an isolated point of spec(a), then α is an eigenvalue of a. (iii) If α is an eigenvalue of a, then $\alpha \in \operatorname{spec}(a)$. (iv) α is in the resolvent set of a iff α is in the relative resolvent set of a, but α is not an eigenvalue of a.

Proof: Part (i) follows directly from the definitions involved. Suppose that α is an isolated point of $\operatorname{spec}(a)$. Then there exists $0 < \epsilon \in \mathbb{R}$ such that p_{λ} is constant on $(\alpha - \epsilon, \alpha)$ and on $(\alpha, \alpha + \epsilon)$; hence by parts (i) and (ii) of Lemma 4.1, $p_{\lambda} = p_{\alpha} - d_{\alpha}$ for $\alpha - \epsilon < \lambda < \alpha$ and $p_{\lambda} = p_{\alpha}$ for $\alpha \le \lambda < \alpha + \epsilon$. Since α is not in the resolvent set of a, p_{λ} cannot be constant on $(\alpha - \epsilon, \alpha + \epsilon)$, and it follows that $d_{\alpha} \ne 0$, proving (ii). Part (iii) is a consequence of Lemma 4.1 (iii). As the resolvent set of a is contained in the relative resolvent set of a, (iv) follows from (i), (ii), and (iii).

THEOREM 4.3. $\operatorname{spec}(a)$ is a closed nonempty subset of the closed interval $[L, U] \subseteq \mathbb{R}$, $L = \inf(\operatorname{spec}(a)) \in \operatorname{spec}(a)$, $U = \sup(\operatorname{spec}(a)) \in \operatorname{spec}(a)$, and $||a|| = \sup\{|\alpha| : \alpha \in \operatorname{spec}(a)\}$.

Proof: Clearly, the resolvent set of a is open, so $\operatorname{spec}(a)$ is closed. By parts (v) and (vi) of Theorem 3.3, $(-\infty, L)$ and (U, ∞) are contained in the resolvent set of a, whereas $L, U \in \operatorname{spec}(a)$, and it follows that $L = \inf(\operatorname{spec}(a))$ and $U = \sup(\operatorname{spec}(a))$. Therefore, by Theorem 3.1 (ii), $||a|| = \sup\{|\alpha| : \alpha \in \operatorname{spec}(a)\}$.

COROLLARY 4.1. If $\alpha \in \mathbb{R}$, then the following conditions are mutually equivalent: (i) $d_{\alpha} = u$. (ii) $a = \alpha u$. (iii) spec $(a) = \{\alpha\}$.

Proof: As $d_{\alpha} = (a - \alpha u)'$ and $(a - \alpha u)'' = 0 \Leftrightarrow a - \alpha u = 0$, it is clear that (i) \Leftrightarrow (ii). If $a = \alpha u$, then $L = \sup\{\lambda \in \mathbb{R} : \lambda u \le a\} = \alpha$ and $U = \inf\{\mu \in \mathbb{R} : a \le \mu u\} = \alpha$, whence spec $(a) = \{\alpha\}$ by Theorem 4.3, so (ii) \Rightarrow (iii). Conversely, if spec $(a) = \{\alpha\}$, then $L = \alpha = U$ by Theorem 4.3, and therefore $a = \alpha u$ by Theorem 3.1 (iv); hence (iii) \Rightarrow (ii).

THEOREM 4.4. The following conditions are mutually equivalent: (i) $0 \le a$. (ii) $0 \le L$. (iii) If $\lambda \in \mathbb{R}$, then $\lambda < 0 \Rightarrow p_{\lambda} = 0$. (iv) $\operatorname{spec}(a) \subseteq [0, \infty)$.

Proof: That (i) \Rightarrow (ii) follows from the definition of L, and the converse implication is a consequence of Theorem 3.1 (iv); hence (i) \Leftrightarrow (ii). That (ii) \Leftrightarrow (iii) follows from Theorem 3.3 (vi). By Theorem 4.3, $L = \inf(\operatorname{spec}(a))$, from which (ii) \Leftrightarrow (iv) follows.

The terminology in the next definition is suggested by the fact that, if A is the self-adjoint part of a unital von Neumann algebra and $a \in A$, then a is von Neumann regular in A iff |a| is an order unit in a''Aa''.

DEFINITION 4.2. The element a is regular iff |a| is an order unit in the spectral order-unit space $J_{a''}(A)$ (see Theorem 2.3). The element a is nonsingular iff a'' = u and a is regular. If a fails to be nonsingular, we say that a is singular.

We omit the straightforward proof of the following.

LEMMA 4.2. |a| is an order unit in A iff there exists $n \in \mathbb{N}$ such that $u \le n|a|$, and if |a| is an order unit in A, then a'' = |a|'' = u. Moreover, the following conditions are mutually equivalent: (i) a is regular. (ii) There exists $n \in \mathbb{N}$ such that $a'' \le n|a|$. (iii) There exists $0 < \epsilon \in \mathbb{R}$ such that $\epsilon a'' \le |a|$. (iv) a is nonsingular in $J_{a''}(A)$.

The well-known Gelfand-Mazur theorem for Banach algebras has the following analogue for the spectral order-unit space A.

THEOREM 4.5. The following conditions are mutually equivalent: (i) $A = \mathbb{R}u$. (ii) Every nonzero element in A^+ is nonsingular. (iii) $P = \{0, u\}$.

Proof: Obviously, (i) \Rightarrow (ii). Assume (ii) and suppose $p \in P$ with $p \neq 0$. Then there exists $n \in \mathbb{N}$ with $u \leq np$; whence $p' = J_{p'}(u) \leq nJ_{p'}(p) = 0$, so p' = 0, and therefore p = u. Assume (iii). Then, by Theorem 3.3 (vi), $p_{\mu} = u$ for $U \leq \mu$ and $p_{\lambda} = 0$ for $\lambda < U$; hence $\text{spec}(a) = \{U\}$. Therefore, a = Uu by Corollary 4.1, and since a is an arbitrary element of A, (i) follows.

THEOREM 4.6. a is regular iff both a^+ and a^- are regular.

⁷By Lemma 2.4 (vi), a'' = |a|'', whence $|a| = J_{a''}(|a|) \in J_{a''}(A)$.

Proof: Let $p := (a^+)''$ and $q := (a^-)''$. Then $a^+ = J_p(a)$, $a^- = J_q(a)$, $J_p(q) = J_q(p) = J_p(a^-) = J_q(a^+) = 0$, and $p + q = p \lor q = a''$ by Lemma 2.4 (vii).

Suppose that a is regular. Then there exists $0 < \epsilon \in \mathbb{R}$ with $\epsilon(p+q) = \epsilon a'' \le |a| = a^+ + a^-$, so $\epsilon p = J_p(\epsilon(p+q)) \le J_p(a^+) + J_p(a^-) = a^+$, whence a^+ is regular. Likewise, $\epsilon q \le a^-$, so a^- is regular. Conversely, if both a^+ and a^- are regular, there exist $0 < \alpha$, β such that $\alpha p \le a^+$ and $\beta q \le a^-$; hence with $\epsilon := \min\{\alpha, \beta\}$, we have $\epsilon a'' = \epsilon(p+q) \le a^+ + a^- = |a|$, and it follows that a is regular. \square

COROLLARY 4.2. a is nonsingular iff a'' = u and both a^+ and a^- are regular.

LEMMA 4.3. Suppose that $0 \le a$. Then the following conditions are mutually equivalent: (i) a is nonsingular. (ii) 0 < L. (iii) $0 \notin \operatorname{spec}(a)$.

Proof: As $0 \le a$, a is nonsingular iff there exists $0 < \epsilon \in \mathbb{R}$. such that $\epsilon u \le a$. As $L = \sup\{\lambda : \lambda u \le a\}$, it follows that (i) \Leftrightarrow (ii). By Theorem 3.3 (vi), $p_{\lambda} = 0$ for all $\lambda \in (-\infty, L)$, whence if (ii) holds, then 0 belongs to the resolvent set of a. Therefore, (ii) \Rightarrow (iii). Conversely, suppose that (iii) holds. Then there exists $0 < \epsilon \in \mathbb{R}$ such that p_{λ} is constant on $(-\epsilon, \epsilon)$. By Lemma 4.4, $p_{\lambda} = 0$ for $-\epsilon < \lambda < 0$, whence $p_{\lambda} = 0$ for $-\epsilon < \lambda < \epsilon$, and it follows from Theorem 3.3 (vi) that $0 < \epsilon \le L$. Consequently, (iii) \Rightarrow (ii).

LEMMA 4.4. Suppose $0 \le a$. Then the following conditions are mutually equivalent: (i) a is regular. (ii) There exists $0 < \epsilon \in \mathbb{R}$ such that, for all $\lambda \in \mathbb{R}$, $0 \le \lambda < \epsilon \Rightarrow p_{\lambda} = p_0$. (iii) There exists $0 < \epsilon \in \mathbb{R}$ such that p_{λ} is constant for $\lambda \in (0, \epsilon)$.

Proof: Let v:=a'' and $H:=J_v(A)$. Then $0 \le a = J_v(a) \in H$, $p_0 = (a^+)' = a' = v'$, and $J_v(p_0) = 0$. Let ϵ be the lower spectral bound of a as calculated in H. By Theorem 3.3 (vii) and Lemma 3.2, $\epsilon = \sup\{\lambda \in \mathbb{R} : v \land p_\lambda = 0\}$, and as $v \land p_0 = 0$, we have $0 \le \epsilon = \sup\{0 \le \lambda \in \mathbb{R} : v \land p_\lambda = 0\}$. Let $0 \le \lambda \in \mathbb{R}$. Then $p_0 \le p_\lambda$, whence $v \land p_\lambda = 0 \Leftrightarrow p_\lambda \le p_0 \Leftrightarrow p_\lambda = p_0$, and it follows that

$$\epsilon = \sup\{0 \le \lambda \in \mathbb{R} : p_{\lambda} = p_0\}.$$

By Lemma 4.3, a is an order unit in H iff $0 < \epsilon$, hence (i) and (ii) are equivalent. That (ii) \Leftrightarrow (iii) follows from Lemma 4.1 (ii).

LEMMA 4.5. Let $a \in A$ and let $0 \le \lambda \in \mathbb{R}$. Then $(a - \lambda u)^+ = (a^+ - \lambda u)^+$.

Proof: Obviously, $(a^+)^+ = a^+$, so we can and do assume that $0 < \lambda$. If $b \in A$, it is clear that $(\lambda b)^+ = \lambda b^+$; hence $(a^+ - \lambda u)^+ = \lambda ((\lambda^{-1}a)^+ - u)^+$ and $(a - \lambda u)^+ = \lambda (\lambda^{-1}a - u)^+$. Thus, replacing $\lambda^{-1}a$ by a, we need only prove the lemma for the case $\lambda = 1$, i.e. we need only prove that $(a - u)^+ = (a^+ - u)^+$. Put

$$p := (a^+)'' = u - p_0$$
 and $q := ((a - u)^+)'' = u - p_1$.

By Lemma 2.4 (iv), $a^+ \in CPC(a)$ and by Theorem 3.3 (i), $a \in C(p_1) = C(q)$, whence $a^+ \in C(q)$, and it follows that $a^+ - u \in C(q)$. Also, as $p_0 \le p_1$, we have

 $q \le p$. As a consequence of Theorem 2.2, $p \in P^{\pm}(a)$ and $q \in P^{\pm}(a-u)$. Therefore, $J_{q'}(a) - q' = J_{q'}(a-u) \le 0$, so

$$J_{q'}(a) \le q'$$
 with $J_p(a) = a^+$ and $J_q(a - u) = (a - u)^+$. (1)

As $q \le p$, Lemma 2.2 (iv) implies that $J_q \circ J_p = J_q$, so by (1), $J_q(a^+) = J_q(J_p(a)) = J_q(a)$, and therefore

$$J_q(a^+ - u) = J_q(a^+) - q = J_q(a) - q = J_q(a - u) = (a - u)^+ \ge 0.$$
 (2)

The condition $q \le p$ also implies that q'Cp, so by Lemma 1.3 (iv), (1), and Lemma 2.2 (vi), $J_{q'}(J_p(a)) = J_p(J_{q'}(a)) \le J_p(q') = p \land q'$, and we have

$$J_{q'}(a^+ - u) = J_{q'}(J_p(a)) - q' = p \wedge q' - q' \le 0.$$
 (3)

By (2) and (3), $J_{q'}(a^+-u) \le 0 \le J_q(a^+-u)$, and as $a^+-u \in C(q)$, Lemma 2.4 (viii) implies that $J_q(a^+-u) = (a^+-u)^+$. Therefore, $(a-u)^+ = (a^+-u)^+$ by (1).

LEMMA 4.6. Let $(q_{\lambda})_{\lambda \in \mathbb{R}}$ be the spectral resolution of a^+ , and let $(r_{\lambda})_{\lambda \in \mathbb{R}}$ be the spectral resolution of a^- . Then: (i) $0 \le \lambda \in \mathbb{R} \Rightarrow q_{\lambda} = p_{\lambda}$ and $r_{\lambda} = u - (p_{-\lambda} - d_{-\lambda})$. (ii) $0 > \lambda \in \mathbb{R} \Rightarrow q_{\lambda} = r_{\lambda} = 0$.

Proof: Let $0 \le \lambda \in \mathbb{R}$. That $q_{\lambda} = p_{\lambda}$ follows directly from Lemma 4.5. By Lemma 3.1 (iii), the spectral resolution $(s_{\mu})_{\mu \in \mathbb{R}}$ of -a is given by $s_{\mu} = u - (p_{-\mu} - d_{-\mu})$ for all $\mu \in \mathbb{R}$; hence, applying what has just been proved to -a, we find that $r_{\lambda} = s_{\lambda} = u - (p_{-\lambda} - d_{-\lambda})$, completing the proof of (i). As $0 \le a^{+}$, a^{-} , (ii) follows from Lemma 4.4.

THEOREM 4.7. Let $\alpha \in \mathbb{R}$. Then: (i) a is regular iff 0 belongs to the relative resolvent set of a. (ii) $a - \alpha u$ is regular iff α belongs to the relative resolvent set of a. (iii) a is nonsingular iff 0 belongs to the resolvent set of a. (iv) $\operatorname{spec}(a) = \{\alpha \in \mathbb{R} : a - \alpha u \text{ is singular}\}.$

- *Proof*: (i) Let $(q_{\lambda})_{\lambda \in \mathbb{R}}$ be the spectral resolution of a^+ , and let $(r_{\lambda})_{\lambda \in \mathbb{R}}$ be the spectral resolution of a^- . By Theorem 4.6 and Lemma 4.4, it will be sufficient to show that, if $0 < \epsilon \in \mathbb{R}$, then p_{λ} is constant on $(-\epsilon, 0)$ and also on $(0, \epsilon)$ iff both q_{λ} and r_{λ} are constant on $(0, \epsilon)$. By Lemma 4.6 (i), q_{λ} is constant on $(0, \epsilon)$ iff p_{λ} is constant on $(0, \epsilon)$ iff p_{λ} is constant on $(-\epsilon, 0)$ iff p_{λ} is constant on $(-\epsilon, 0)$.
 - (ii) Part (ii) follows from (i) and Lemma 3.1 (i).
- (iii) By (i) above, a is nonsingular iff 0 belongs to the relative resolvent set of a and a'' = u. But $a'' = u d_0$, so a is nonsingular iff 0 belongs to the relative resolvent set of a and 0 is not an eigenvalue of a. Therefore, (iii) follows from Theorem 4.2 (iv).

5. Simple elements of A

In this section, we maintain Standing Assumption 3.1.

DEFINITION 5.1. We shall say that an element in A is *simple* iff it can be written as a finite linear combination of pairwise compatible projections.

REMARK 5.1. By Corollary 3.1, each element $a \in A$ is a norm limit of an ascending sequence $a_1 \le a_2 \le \cdots$ of simple elements; hence, the simple elements are norm dense in A.

LEMMA 5.1. $a \in A$ is simple iff there are real numbers $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ and projections $0 \neq u_i \in P$ for $i = 1, 2, \ldots, n$ such that $a = \sum_{i=1}^n \alpha_i u_i$, and $\sum_{i=1}^n u_i = u$.

Proof: Suppose that a is simple. Then there exist real numbers γ_k and pairwise compatible projections $v_k \in P$ for k = 1, 2, ..., M such that $a = \sum_{k=1}^M \gamma_k v_k$. The pairwise compatible projections v_k , k = 1, 2, ..., M, generate a finite Boolean sublattice B of the OML P. Let w_j , j = 1, 2, ..., m be the (distinct) atoms in B. Then every v_k can be written as a sum of w_j 's, and by collecting terms and inserting terms with zero coefficients if necessary, we can write $a = \sum_{j=1}^m \beta_j w_j$ with $\beta_j \in \mathbb{R}$ for j = 1, 2, ..., m. Let $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ be a listing of the distinct coefficients β_j , j = 1, 2, ..., m. Again by collecting terms, we can write $a = \sum_{i=1}^n \alpha_i u_i$, where each u_i is the sum of all the w_j 's for which $\alpha_i = \beta_j$. Since $\sum_{j=1}^m w_j = u$, it follows that $\sum_{i=1}^n u_i = u$. The converse is obvious.

DEFINITION 5.2. If a is a simple element of A, we shall refer to the representation $a = \sum_{i=1}^{n} \alpha_i u_i$ satisfying the conditions in Lemma 5.1 as the *reduced representation* of a.

LEMMA 5.2. Suppose $\alpha \in \mathbb{R}$ and $a-\alpha u$ is regular. Define $v:=(a-\alpha u)''=u-d_{\alpha}$. Then: (i) If $a\neq \alpha u$, then $0\neq v\in CPC(a)$, $J_v(a)\in J_v(A)$, and the spectrum of $J_v(a)$ as calculated in $J_v(A)$ is $\operatorname{spec}(a)\setminus\{\alpha\}$. (ii) If $\alpha\in\operatorname{spec}(a)$, then $0\neq v'\in CPC(a)$ and $J_{v'}(a)=\alpha v'$.

Proof: Since $(a - \alpha u)'' \in CPC(a)$, we have $v, v' \in CPC(a)$, whence $v, v' \in C(p_{\lambda})$ for all $\lambda \in \mathbb{R}$. Also, since $a - \alpha u$ is regular, α belongs to the relative resolvent set of a by Theorem 4.7 (ii), so by parts (i) and (ii) of Lemma 4.1, there exists $0 < \epsilon \in \mathbb{R}$ such that, for all $\lambda \in \mathbb{R}$,

$$\alpha \le \lambda < \alpha + \epsilon \Rightarrow p_{\lambda} = p_{\alpha} \quad \text{and} \quad \alpha - \epsilon < \lambda < \alpha \Rightarrow p_{\lambda} = p_{\alpha} - d_{\alpha}.$$
 (1)

(i) By Lemma 3.2, the spectral resolution of $J_v(a)$ in $J_v(A)$ is $(v \wedge p_\lambda)_{\lambda \in \mathbb{R}}$. As $d_\alpha = v'$, we have $v \wedge d_\alpha = 0$, so by (1),

$$\alpha - \epsilon < \lambda < \alpha + \epsilon \Rightarrow v \land p_{\lambda} = v \land p_{\alpha}, \tag{2}$$

whence α does not belong to the spectrum of a as calculated in $J_{\nu}(A)$. By parts

(iii) and (iv) of Theorem 3.3, we have

$$\alpha \le \lambda \Rightarrow v' = d_{\alpha} \le p_{\alpha} \le p_{\lambda} \Rightarrow v \land p_{\lambda} = p_{\lambda} - v'. \tag{3}$$

and

$$\lambda < \alpha \Rightarrow p_{\lambda} \le u - d_{\alpha} = v \Rightarrow v \land p_{\lambda} = p_{\lambda}. \tag{4}$$

Suppose $\beta \in \mathbb{R}$ and $\beta \neq \alpha$. By (3) and (4), if I is an open interval in \mathbb{R} with $\beta \in I$ and $\alpha \notin I$, then p_{λ} is constant on I iff $v \wedge p_{\lambda}$ is constant on I, i.e., β belongs to the spectrum of $J_v(a)$ as calculated in $J_v(A)$ iff β belongs to spec(a).

(ii) Assume that $\alpha \in \operatorname{spec}(a)$. Then, by parts (i) and (ii) of Theorem 4.2, $v' = d_{\alpha} \neq 0$, and by Lemma 3.2, the spectral resolution of $J_{v'}(a)$ in $J_{v'}(A)$ is $(v' \wedge p_{\lambda})_{\lambda \in \mathbb{R}}$. By parts (iii) and (iv) of Theorem 3.3, we have

$$p_{\lambda} \leq v$$
 for $\lambda < \alpha$ and $v' = d_{\alpha} \leq p_{\alpha} \leq p_{\lambda}$ for $\alpha \leq \lambda$,

whence

$$v' \wedge p_{\lambda} = 0$$
 for $\lambda < \alpha$ and $v' \wedge p_{\lambda} = v' \neq 0$ for $\alpha \leq \lambda$.

Thus, the spectrum of $J_{v'}(a)$ as calculated in $J_{v'}(A)$ is $\{\alpha\}$, and $J_{v'}(a) = \alpha v'$ follows from Corollary 4.1.

THEOREM 5.1. Suppose that $\operatorname{spec}(a) = \{\alpha_i : i = 1, 2, ..., n\}$. Then $d_{\alpha_i} \neq 0$ for i = 1, 2, ..., n, $\sum_{i=1}^n d_{\alpha_i} = u$ and $a = \sum_{i=1}^n \alpha_i d_{\alpha_i}$.

Proof: As each α_i is an isolated point of $\operatorname{spec}(a)$, Theorem 4.2(ii) implies that $d_{\alpha_i} \neq 0$ for $i=1,2,\ldots,n$. The remainder of the proof is by induction on n. Corollary 4.1 takes care of the case n=1. Suppose n>1, let $\alpha:=\alpha_n$, and let $v:=u-d_{\alpha_n}$. By Corollary 4.1 again, $a\neq\alpha u$. By Theorem 4.2 (i), and Theorem 4.7 (ii), $a-\alpha u$ is regular. Thus by Lemma 5.2 (i), $v\neq 0$ and the spectrum of $J_v(a)$ in $J_v(A)$ is $\{\alpha_i:i=1,2,\ldots,n-1\}$; moreover, by Lemma 3.2, $(v\wedge d_\lambda)_{\lambda\in\mathbb{R}}$ is the family of eigenprojections of $J_v(a)$ in $J_v(A)$. Also, by Theorem 3.3 (iv), $d_{\alpha_i}\leq u-d_{\alpha_n}=v$, whence $v\wedge d_{\alpha_i}=d_{\alpha_i}$ for $1\leq i\leq n-1$. Thus, by the inductive hypothesis,

$$J_v(a) = \sum_{i=1}^{n-1} \alpha_i(v \wedge d_{\alpha_i}) = \sum_{i=1}^{n-1} \alpha_i d_{\alpha_i}$$
 and $\sum_{i=1}^{n-1} d_{\alpha_i} = v$.

Also, by Lemma 5.2 (ii), $J_{v'}(a) = \alpha v' = \alpha d_{\alpha} = \alpha_n d_{\alpha_n}$, and it follows that

$$a = J_v(a) + J_{v'}(a) = \sum_{i=1}^{n-1} \alpha_i d_{\alpha_i} + \alpha_n d_{\alpha_n} = \sum_{i=1}^n \alpha_i d_{\alpha_i}$$

with

$$\sum_{i=1}^{n} d_{\alpha_i} = \sum_{i=1}^{n-1} d_{\alpha_i} + d_{\alpha_n} = v + v' = u.$$

LEMMA 5.3. Let $u_i \in P$ with $v := \sum_{i=1}^n u_i \le u$, suppose that $0 \ne \alpha_i \in \mathbb{R}$ for i = 1, 2, ..., n, and let $a := \sum_{i=1}^n \alpha_i u_i$. Define $I^+ := \{i = 1, 2, ..., n : \alpha_i > 0\}$,

 $\begin{array}{llll} I^- := \{i = 1, 2, \ldots, n : \alpha_i < 0\}, & p := \sum_{i \in I^+} u_i & and & q := \sum_{i \in I^-} u_i. & Then & (i) \\ u_1, u_2, \ldots u_n & are pairwise orthogonal, & v, p, q \in P, & and & v = p + q = \bigvee_{i=1}^n u_i. & (ii) \\ J_{u_i}(a) = \alpha_i u_i & and & a \in C(u_i) & for & i = 1, 2, \ldots, n. & (iii) \\ J_p(a) = J_{q'}(a) = \sum_{i \in I^+} \alpha_i u_i \geq 0 \\ 0 & and & J_q(a) = J_{p'}(a) = \sum_{i \in I^-} \alpha_i u_i \leq 0. & (iv) \\ J_p(a) = a^+, & J_q(a) = -a^-, & and \\ |a| = \sum_{i=1}^n |\alpha_i| u_i. & (v) & a & is & regular & and & a'' = v. \end{array}$

Proof: Part (i) follows from Lemma 2.3 (i). As a consequence of the pairwise orthogonality of the u_i 's, we have $J_{u_i}(a) = \alpha_i u_i$ and $J_{u-u_i}(a) = a - \alpha_i u_i$, so $a \in C(u_i)$ for $i = 1, 2, \ldots, n$, proving (ii). As $u_i \leq p, q'$ for $i \in I^+$ and $u_i \leq q, p'$ for $i \in I^-$, (iii) is clear. Since $a \in C(u_i)$ for all $i \in I^+$, it follows that $a \in C(p)$, hence $J_{p'}(a) \leq 0 \leq J_p(a)$ implies that $J_p(a) = a^+$ and $J_{p'}(a) = -a^-$ by Lemma 2.4 (viii). Similarly $J_q(a) = -a^-$ and $J_{q'}(a) = a^+$, whence $|a| = a^- + a^+ = \sum_{i \in I^-} (-\alpha_i)u_i + \sum_{i \in I^+} \alpha_i u_i = \sum_{i=1}^n |\alpha_i|u_i$, proving (iv). As $0 \neq |\alpha_i|$, it is clear that $(|\alpha_i|u_i)'' = u_i$ for $i = 1, 2, \ldots n$, whence $a'' = |a|'' = (\sum_{i \in I^+} |\alpha_i|u_i)'' = \bigvee_{i=1}^n u_i = v$ by Lemma 2.4 (vi) and Lemma 2.3 (iii). Finally, with $\epsilon := \min\{|\alpha_i| : i = 1, 2, \ldots n\}$ we obviously have $\epsilon a'' = \epsilon v \leq |a|$, so a is regular by Lemma 4.2, proving (iv). \square

THEOREM 5.2. Suppose that $\alpha_1, \alpha_2, \ldots, \alpha_n$ are distinct real numbers, $u_1, u_2, \ldots, u_n \in P$ are nonzero projections, $a = \sum_{i=1}^n \alpha_i u_i$, and $\sum_{i=1}^n u_i = u$. Then $\operatorname{spec}(a) = \{\alpha_i : i = 1, 2, \ldots, n\}$ and $u_i = d_{\alpha_i}$ for $i = 1, 2, \ldots, n$.

Proof: By Corollary 4.1, we need only consider the case n > 1. If $\alpha \in \mathbb{R}$, then

$$a - \alpha u = \sum_{i=1}^{n} \alpha_i u_i - \alpha \sum_{i=1}^{n} u_i = \sum_{i=1}^{n} (\alpha_i - \alpha) u_i.$$

On the one hand, if $\alpha \neq \alpha_i$ for $i=1,2,\ldots,n$, then the coefficients $\alpha_i-\alpha$ are nonzero, Lemma 5.3 (iv) implies that $a-\alpha u$ is regular with $(a-\alpha u)''=\sum_{i=1}^n u_i=u$, so $a-\alpha u$ is nonsingular, and it follows from Theorem 4.7 (iv) that $\alpha \notin \operatorname{spec}(a)$. On the other hand, putting $\alpha:=\alpha_1$, we find that $a-\alpha_1 u=\sum_{i=2}^n (\alpha_i-\alpha_1)u_i$, where again the coefficients are nonzero; hence $(a-\alpha_1 u)''=\sum_{i=2}^n u_i=u-u_1\neq u$, so $a-\alpha_1 u$ is singular, and therefore $\alpha_1\in\operatorname{spec}(a)$. Moreover, $d_{\alpha_1}=u-(a-\alpha_1 u)''=u_1$. By symmetry, $\alpha_i\in\operatorname{spec}(a)$ with $u_i=d_{\alpha_i}$ for $i=1,2,\ldots,n$.

COROLLARY 5.1. a is a projection iff spec(a) $\subseteq \{0, 1\}$.

Proof: By Corollary 4.1, $a = 0 \Leftrightarrow \operatorname{spec}(a) = \{0\}$ and $a = u \Leftrightarrow \operatorname{spec}(a) = \{1\}$. If a is a projection, $a \neq 0$, u, then a = 0(u - a) + 1a where the projections u - a and a are nonzero and (u - a) + a = u; hence $\operatorname{spec}(a) = \{0, 1\}$ by Theorem 5.2. Conversely, if $\operatorname{spec}(a) = \{0, 1\}$, then $a = 0d_0 + 1d_1 = d_1 \in P$ by Theorem 5.1. \square

As a consequence of Theorems 4.3, 5.1, 5.2, and Lemma 5.3 we have the following.

THEOREM 5.3. The simple elements in A are precisely those with finite spectrum, each simple element $a \in A$ has a unique reduced representation $a = \sum_{i=1}^{n} \alpha_i u_i$, with $\alpha_1 < \alpha_2 < \cdots < \alpha_n$, $0 \neq u_i \in P$, $\sum_{i=1}^{n} u_i = u$, $\operatorname{spec}(a) = \{\alpha_i : i = 1, 2, \dots, n\}$,

 $|a| = \sum_{i=1}^{n} |\alpha_i| u_i$, and $||a|| = \max\{|\alpha_i| : i = 1, 2, ..., n\}$. Moreover, every simple element in A is regular.

THEOREM 5.4. The following conditions are mutually equivalent: (i) a is simple. (ii) $a - \lambda u$ is regular for all $\lambda \in \mathbb{R}$. (iii) spec(a) consists entirely of isolated points. (iv) spec(a) is finite. (v) $\{p_{\lambda} : \lambda \in \mathbb{R}\}$ is a finite chain in the OML P.

- *Proof*: (i) \Rightarrow (ii). Suppose a is simple and let $a = \sum_{i=1}^{n} \alpha_i u_i$ be the reduced representation of a. Then, for $\lambda \in \mathbb{R}$, $a \lambda u = \sum_{i=1}^{n} (\alpha_i \lambda) u_i$, whence $a \lambda u$ is simple, and therefore regular by Theorem 5.3.
- (ii) \Rightarrow (iii). Assume (ii). Then by Theorem 4.7 (ii), every real number belongs to the relative resolvent set of a; hence, (iii) follows from Theorem 4.2 (i).
- (iii) \Leftrightarrow (iv) \Leftrightarrow (i). Since spec a is a compact subset of \mathbb{R} , it consists entirely of isolated points iff it is finite, and spec(a) is finite iff a is simple by Theorem 5.3.
- (iv) \Leftrightarrow (v). Assume that spec a is finite and list its elements as $L = \alpha_1 < \alpha_2 < \cdots < \alpha_n = U$. Then, p_{λ} is constant on each of the intervals $(-\infty, \alpha_1), [\alpha_1, \alpha_2), \ldots, [\alpha_{n-1}, \alpha_n), [\alpha_n, \infty)$, whence $\{p_{\lambda} : \lambda \in \mathbb{R}\}$ is finite.

Conversely, suppose that $\{p_{\lambda}: \lambda \in \mathbb{R}\}$ is finite and list its elements as $0 = q_0 < q_1 < q_2 < \cdots < q_n = u$. For each $i = 1, 2, \ldots, n$, let $\alpha_i := \inf\{\lambda \in \mathbb{R}: p_{\lambda} = q_i\}$. Then $q_i = p_{\alpha_i}$ for each $i = 1, 2, \ldots, n$,

$$L = \alpha_1 < \alpha_2 < \cdots < \alpha_{n-1} < \alpha_n = U$$

and for all $\mu \in \mathbb{R}$ and all i = 1, 2, ..., n,

$$\alpha_{i-1} \leq \mu < \alpha_i \Rightarrow p_{\mu} = p_{\alpha_{i-1}} = q_{i-1};$$

hence each open interval (α_{i-1}, α_i) is contained in the resolvent set of a. Consequently, $\operatorname{spec}(a) = \{L, \alpha_1, \alpha_2, \dots, \alpha_{n-1}, U\}.$

COROLLARY 5.2. (i) If A has finite dimension, then P satisfies the chain conditions (i.e. there are no infinite properly ascending or descending sequences in P). (ii) If P satisfies the chain conditions, then every element in A is simple, hence every element in A is regular.

Proof: Part (i) follows from the observation that, for each $p \in P$, $J_p(A)$ is a vector subspace of A, and if $p, q \in P$, then $p \le q \Leftrightarrow J_p(A) \subseteq J_q(A)$. Part (ii) is a consequence of the fact that a totally ordered set such as $\{p_{\lambda} : \lambda \in \mathbb{R}\}$ satisfies the chain conditions, then it is finite.

REFERENCES

- [1] E. M. Alfsen: Compact Convex Sets and Boundary Integrals, Springer, New York 1971, ISBN 0-387-05090-6.
- [2] E. M. Alfsen and F. W. Shultz: Non-commutative spectral theory for affine function spaces on convex sets, *Mem. Amer. Math. Soc.* 6 (1976), No. 172.
- [3] M. K. Bennett and D. J. Foulis: Interval and scale effect algebras, Adv. Appl. Math. 19 (1997), 200-215.

- [4] P. Busch, P. J. Lahti, and P. Mittelstaedt: *The quantum theory of measurement*, Second edition, Lecture Notes in Physics, New Series m: Monographs 2, Springer, Berlin 1996, ISBN: 3-540-61355-2.
- [5] C. M. Edwards: The operational approach to algebraic quantum theory. I. Commun. Math. Phys. 16 (1970), 207-230.
- [6] D. J. Foulis: Compressible groups, Math. Slovaca 53, No. 5 (2003), 433-455.
- [7] D. J. Foulis: Compressions on partially ordered abelian groups, Proc. AMS 132 (2004), 3581-3587.
- [8] D. J. Foulis: Compressible groups with general comparability, Math. Slovaca 55, No. 4 (2005), 409-429.
- [9] D. J. Foulis: Compression bases in unital groups, Int. J. Theor. Phys. 44, No. 12 (2005), 2153-2160.
- [10] D. J. Foulis and S. Pulmannová: Monotone σ -complete RC-groups, J. London Math. Soc. 73, No. 2 (2006) 1325–1346.
- [11] K. R. Goodearl: Partially Ordered Abelian Groups with Interpolation, A.M.S. Mathematical Surveys and Monographs, No. 20, American Mathematical Society, Providence, RI, 1986, ISBN 0-8218-1520-2.
- [12] G. Kalmbach: Orthomodular Lattices, Academic Press, Inc., London/New York 1983, ISBN 0-12-394580-1.