

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES Prof. Me. Antônio Clementino Neto

Centro Paula Souza

Simplificação de Expressões Booleanas Através dos Diagramas de Veitch-Karnaugh

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto,

O que tem que ser feito?

O dono de uma banda de música deseja controlar a iluminação do palco. A iluminação é composta por três cores:

→ azul

→ vermelha

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

O que tem que ser feito?

A banda é composta por três integrantes.

Cada um toca um instrumento.

Jonas → Bateria Alberto → Baixo Luiz → Teclado

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto,

O que tem que ser feito?

O dono da banda Sr. Francisco, deseja que cada cor de luz seja acesa ou apagada conforme a combinação dos instrumentos em funcionamento em determinado momento.

Portanto Sr. Francisco precisa nos informar qual a combinação dos instrumentos que determinarão que cada cor de lampada seja acesa ou apagada.

Precisamos da regra clara para cada uma das cores de lâmpada a ser controlada.

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto,

Controlar lampadas do palco - coloridas

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Controlar lampada amarela

Caso	Α	В	С	S1
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Controlar lampada amarela-expressão

Caso	Α	В	С	S1
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

EXPRESSÃO BOOLEANA RESULTANTE

$$S1 = (|A.|B.|C) + (|A.|B.C) + (|A.B.|C) + (|A.B.C) +$$

$$(A.|B.|C) + (A.|B.C) + (A.B.|C) + (A.B.C)$$

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Controlar lampada amarela-bits ligados

Caso	Α	В	С	S1
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

EXPRESSÃO BOOLEANA RESULTANTE

$$S1 = (|A.|B.|C) + (|A.B.|C) + (|A.B.|C) + (|A.B.C) +$$

$$(A.|B.|C) + (A.|A.C) + (A.B.|C) + (A.A.C)$$

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Mapas para Simplificações

2 Variáveis

A	В	S	
0	0	X	Linha 0
0	1	X	Linha 1
1	0	X	Linha 2
1	1	X	Linha 3

4 Variáveis

A	В	C	D	S	
0	0	0	0	X	Linha 0
0	0	0	1	X	Linha 1
0	0	1	0	X	Linha 2
0	0	1	1	Х	Linha 3
0	1	0	0	Х	Linha 4
0	1	0	1	X	Linha 5
0	1	1	0	X	Linha 6
0	1	1	1	X	Linha 7
1	0	0	0	X	Linha 8
1	0	0	1	X	Linha 9
1	0	1	0	X	Linha 10
1	0	1	1	X	Linha 11
1	1	0	0	X	Linha 12
1	1	0	1	X	Linha 13
1	1	1	0	X	Linha 14
1	1	1	1	X	Linha 15

3 Variáveis

A	В	C	S	
0	0	0	X	Linha 0
0	0	1	X	Linha 1
0	1	0	X	Linha 2
0	1	1	X	Linha 3
1	0	0	X	Linha 4
1	0	1	X	Linha 5
1	1	0	X	Linha 6
1	1	1	X	Linha 7

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

CENTRO PAULA SOUZA

Agrupamentos Horizontal ou Vertical

Quadras

4 bits ligados e agrupados

Transpondo a tabela para o diagrama, temos:

	1	3		3
Ā	Caso 0	Caso 1 0	Caso 3	Caso 2
A	Caso 4	Caso 5	Caso 7	Caso 6
	c	(2	C

Figura 3.21

Para efetuarmos a simplificação, seguimos o mesmo processo visto anteriormente, somente que, para 3 variáveis, os agrupamentos possíveis são os seguintes:

a) Oitava:

Agrupamento máximo, onde todas as localidades valem 1. A figura 3.22 apresenta esta situação:

(c) Quadra C

Figura 3.22

b) Quadras:

Quadras são agrupamentos de 4 regiões, onde S é igual a 1, adjancentes ou em sequência. Vamos agora formar algumas quadras possíveis num diagrama de 3 variáveis, a título de exemplo:

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

CENTRO PAULA SOUZA

Agrupamentos Horizontal ou Vertical

c) Pares:

A figura 3.24 apresenta, como exemplo, 2 pares entre os 12 possíveis en um diagrama de 3 variáveis:

Par AC (está localizado na intersecção das regiões A e C)

Figura 3.24

d) Termos isolados:

Vejamos na figura 3.25, alguns exemplos de termos isolados, que, como já dissemos, são os casos de entrada sem simplificação.

Pares e isolados

Figura 3.25

Para o exemplo, agrupamos primeiramente uma quadra e, logo após, um par, conforme mostra a figura 3.26.

Figura 3.26

Notamos que esse par não depende de C, pois está localizado tanto em C como em C, resultando sua expressão independente de C, ou seja, o termo AB.

2 bits ligados e agrupados

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto,

Distribuição no mapa

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Agrupamentos Possíveis

Com 4 variáveis

Thursday, April 24, 14

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Simplificações - Regiões

Figura 3.18 - Regiões do mapa de Veitch-Karnaugh:

- (a) Região na qual A = 1.
- (b) Região na qual $\overline{A} = 1(A = 0)$.
- (c) Região na qual B = 1.
- (d) Região na qual $\overline{B} = 1(B = 0)$.
- (e) Região na qual C = 1.
- (f) Região na qual $\overline{C} = 1(C = 0)$.

	Ē	3	E	1
Ā	50	51	53	52
Α	54	S 5	57	56
	<u>c</u>	0		<u>c</u>

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Simplificações - Casos

2 ())	0	10
40000U III 0		1	0
3 (100
	Э	1	1
4	1	0	0
5	1	Ó	1
	1	1	0
7	1	i	1

	Ī		I	3
Ā	Caso 0 0 0 0 A B C	Caso 1 0 0 1 ABC	Caso 3 0 1 1 A B C	Caso 2 0 1 0 A B C
Α	Caso 4 1 <u>0 0</u> A B C	Caso 5 1 0 1 A B C	Caso 7	Caso 6 11 <u>0</u> ABC
	<u>c</u> (2	C

Figura 3.19

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Prof. Me. Antônio Clementino Neto

Tarefa para fixação de conteúdo

Caso	Α	В	С			
0	0	0	0	1	1	0
1	0	0	1	1	1	0
2	0	1	0	0	1	1
3	0	1	1	0	1	1
4	1	0	0	1	0	1
5	1	0	1	0	0	0
6	1	1	0	1	0	1
7	1	1	1	1	1	0