SMART ENERGY LONDRES

SOFÍA CORRAL, ELENA DELGADO, MARÍA FERNÁNDEZ Y NICOLA FONTAINE

HISTORIA DEL TRABAJO

- 1. ¿QUÉ DATOS TENEMOS?
- 2. ¿QUÉ HACER SOBRE LOS DATOS?
- **3.** ¿QUÉ MODELO HEMOS ELABORADO?
- 4. ¿QUÉ VEMOS CON LOS DATOS?
- 5. CONCLUSIONES

Introducción

- Cómo afecta el clima de Londres a la energía consumida en cada hogar
- servir de ayuda a compañías energéticas -> manejar sus recursos según la demanda -> mejorar el abastecimiento a la ciudad de Londres.

O1 DATOS hipótesis inicial

DATASETS usados

PREPARACIÓN para el modelo

Cargar los datos

```
for filename in archivos1:
      data = pd.read_csv(filename, usecols = ["LCLid",
  "day", "energy_mean", "energy_max", "energy_min"])
      list_data_daily.append(data)
                         RECORRER
                                                  UNIR
    ARRAY
archivos1 = []
                                              pd.concat(list_data_daily,ignore_inde
for i in csv_daily:
                                             x=True)
    direccion = "daily_dataset/" + i
    archivos1.append(direccion)
```

ETL

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

¡¡Multicolinealidad!!

Limpieza de datos

Datos nulos

df.isnull().sum()

Borrar

df = df.dropna()

df.drop_duplicates()

Unique

dfdaily['LCLid'].unique()

DATASET objetivo!

TRATAMIENTO FECHAS

UNION

pd.to_datetime(dfwea['time'])

pd.merge(df_daily, dfwea, left_on='day', right_on='time')

	LCLid object	<pre>day datetime64[ns]</pre>	<pre>energy_mean float64</pre>	<pre>energy_max float64</pre>	<pre>energy_min float64</pre>	temperatu
0	MAC000020	2011-12- 07T00:00:00.000000	0.2121724137931035	0.62	0.057	9.02
1	MAC000155	2011-12- 07T00:00:00.000000	0.2543749999999999	0.939	0.0819999999999999	9.02
2	MAC000259	2011-12- 07T00:00:00.000000	0.26589583333333333	0.887	0.036	9.02
3	MAC000239	2011-12- 07T00:00:00.000000	0.1579166666666666	0.545	0.019	9.02

Nuestros pasos

¿Qué hemos hecho?

Fecha

Numerizar

Preparación del modelo

SEPARACIÓN

Separación de variables regresoras e independiente

DIVIDIMOS

Dividimos el modelo en 80% training y 20% testeo

ENTRENAMOS

Entrenamos el modelo con los datos de training

APLICAMOS

Aplicamos el modelo a los datos de testeo

ECUACIÓN

Obtenemos la ecuación de regresión

Modelo Linear Regresión

	MSE	R²
Linear regression	0,01	0,83
Random forest	0.03	0,72

VISUALIZACIÓN de los datos

Temperatura máxima

Temperatura minima

Viento

Nubosidad

Visibilidad

Etapa lunar

Visibilidad nocturna

Presión atmosférica

Humedad

Condensación

- El consumo es cíclico, pero disminuye poco a poco
- Temperatura, Humedad y Velocidad del Viento
- Todo gracias a los medidores inteligentes

CONCLUSIÓN

GRACIAS!

