Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине 'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №18

Выполнил: Студент группы Р3213 Хафизов Булат Ленарович Преподаватель: Малышева Татьяна Алексеевна

Санкт-Петербург, 2022

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения, выполнить программную реализацию методов.

Ход работы

$N_{\underline{0}}$				0.()	0.01	0()	1 , 1
шага	a	b	X	$f(\mathbf{a})$	f(b)	$f(\mathbf{x})$	a - b
0	3	4	3.5	4.01	-0.42	3.003	1
1	3.5	4	3.75	3.003	-0.42	1.64	0.5
2	3.75	4	3.875	1.64	-0.42	0.703	0.25
3	3.875	4	3.938	0.703	-0.42	0.161	0.125
4	3.938	4	3.969	0.161	-0.42	-0.123	0.062
5	3.938	3.969	3.954	0.161	-0.123	0.016	0.031
6	3.954	3.969	3.962	0.016	-0.123	-0.058	0.015
7	3.954	3.962	3.958	0.016	-0.058	-0.021	0.008

Таблица 1 - Уточнение крайнего правого корня методом половинного деления (хорд)

№ шага	χ_n	$f(x_n)$	$f'(x_n)$	χ_{n+1}	$ x_{n+1}-x_n $
0	0	1.34	-7,12	0,188	0,188
1	0.188	0.195	-5,094	0,226	0,038
2	0.226	0.009	-4,71	0,228	0,002

Таблица 2 - Уточнение крайнего левого корня методом Ньютона

№ шага	X _{k-1}	$f(x_{k-1})$	X _k	$f(x_k)$	<i>X</i> _{k+1}	<i>f</i> (<i>x</i> _{<i>k</i>+1})	$ x_k - x_{k+1} $
0	2	1.78	1.8	1.063	1.503	0.052	0.297
1	1.8	1.063	1.503	0.052	1.488	0.005	0.015
2	1.503	0.052	1.488	0.005	1.486	-0.001	0.006

Таблица 3 - Уточнение центрального корня методом секущих

№ итерации	X_k	$f(x_k)$	<i>X</i> _{k+1}	$\varphi(x_k)$	$ x_k - x_{k+1} $
1	1	-1.11	1.91	1.91	0.91
2	1.91	1.457	1.505	1.505	0.405
3	1.505	0.057	1.487	1.487	0.018
4	1.487	0.000	1.486	1.486	0.000

Таблица 4 - Уточнение корня уравнения методом простой итерации

Листинг программы

Основной класс:

```
import numpy as np
import matplotlib.pyplot as plt
from lab2.NonLinearSystems import CalculatorSystems

def halfDivision_method(a, b, f, e):
   if f(a) * f(b) > 0:
      print("Уравнение содержит 0 или несколько корней!")
      exit(0)
```

```
table.append([n, a, b, x, f(a), f(b), f(x), abs(a - b)])
def simpleIteration_method(a, b, f, e, maxitr=100):
   def g(g_x):
   log.append([0, x0, x, g(x0), f(x0), abs(x - x0)])
       log.append([itr, x0, x, g(x0), f(x0), abs(x - x0)])
               sform=ax.get yaxis transform(), clip_on=False)
```

```
def getfunc(num):
def file read(filename, type func):
```

```
print("x2 + y
def keyboard read(type func):
        nonlinearSystem()
main()
```

Класс для обработки системы:

```
import numpy as np
import matplotlib.pyplot as plt

class CalculatorSystems:
```

```
return (self.g(x + h, y) - self.g(x, y)) / h
def get a(self, mode, x, y):
```

```
G = g(X, Y)
   plt.show()
def printResult(calculator):
       output.close()
```

Вывод программы

```
Пабораторная работа №2
Вариант №18
Численное решение нелинейных уравнений/систем уравнений
Что вы хотите решить?:
1: Уравнение
2: Систему уравнений
1
Выберите функцию:
1: x³ - 2.92x² + 4.435x + 0.791
2: x³ - x + 4
3: sin(x) + 0.1
2
Выберите метод решения.
1 - Метод половинного деления
2 - Метод простой итерации
1
Теперь нужно ввести данные для функции (границы интервала/начальное приближение к корню и погрешность вычисления).
Выберите способ ввода: из исходного файла (-) или ввести с клавиатуры (+)
```

Введите левую границу интервала: -2 Введите правую границу интервала: -1 Введите погрешность: 0.01 Записать ответ в файл (-) или вывести в консоль (+)? + Корень уравнения: -1.7890625 Значение функции в корне: 0.06273031234741211								
	тераций: 6							
	таблицу т	рассировки	. (+/-)					
+								
	Nº La bl		b	X	F(a)	F. (D)		
	a-b				-2.000			
	1.000		-1.000	-1.500	-2.000			
					-2.000	2.125		
	0.500							
				-1.875	-2.000	0.391		
				-1.812		0.391		
-0.142		5						
				-1.781		0.391		
				-1.797	-0.142			
-0.005	0.03	1						

Вывод

В результате выполнения данной лабораторной работой я познакомился с численными методами решения нелинейных уравнений и реализовал метод хорд, метод секущих и метод простой итерации на языке программирования Python, закрепив знания.