Série 18

1. Déterminer le centre, les foyers, les axes et les asymptotes des hyperboles suivantes :

a)
$$9x^2 - 4y^2 - 54x + 117 = 0$$
,

a)
$$9x^2 - 4y^2 - 54x + 117 = 0$$
, b) $x^2 - 4y^2 - 18x - 16y + 49 = 0$.

2. Déterminer l'équation d'une hyperbole donnée par :

- a) le centre $\Omega(-3; 1)$, un foyer F(-3; 5) et e = 2,
- b) une asymptote 3x 4y 2 = 0, le centre $\Omega(?; 1)$ et un foyer F(7; ?).

3. Déterminer l'équation d'une hyperbole donnée par :

- a) le centre $\Omega(-1; 4)$, les asymptotes sont perpendiculaires et c = 3,
- b) les asymptotes 3x + 4y = 0 et 3x 4y + 24 = 0, une directrice y = 6,
- c) un sommet A(3; 2) et une asymptote : 4x 7y + 10 = 0.

4. On considère les coniques d'équation :

$$\mathcal{H}: \frac{(x-\lambda)^2}{\lambda+1} + \frac{(y-2)^2}{(2-\lambda)(\lambda+1)} - 1 = 0, \text{ où } \lambda \text{ est un paramètre réel.}$$

- a) Discuter en fonction de λ la nature des coniques \mathcal{H} .
- b) Dans chaque cas, préciser la direction des grands axes ou axes réels.
- c) Déterminer les foyers des hyperboles équilatères.
- d) Déterminer les équations cartésiennes du lieu des sommets des grands axes des ellipses. Quelle est la nature du lieu?

5. Données:

- l'hyperbole \mathcal{H} d'équation xy = k, k > 0 (fixé),
- un point fixe A de ${\mathcal H}$ tel que $x_A=a$ (a>0).

Une droite variable passant par A coupe \mathcal{H} en N et l'axe Ox en P. Déterminer l'équation cartésienne du lieu des points M symétriques de P par rapport à N. Etudier la nature du lieu ainsi obtenu.

Réponses de la série 18

- 1. a) $\Omega(3; 0)$ $F(3; \sqrt{13})$ $F'(3; -\sqrt{13})$, axe réel : x = 3, axe imaginaire : y = 0, les asymptotes : $3x \pm 2y - 9 = 0$,
 - b) $\Omega(9; -2)$ $F(9-2\sqrt{5}; -2)$ $F'(9+2\sqrt{5}; -2)$, axe réel : y=-2, axe imaginaire : x=9, les asymptotes : x-2y-13=0 et x+2y-5=0.
- **2.** a) $\frac{(y-1)^2}{4} \frac{(x+3)^2}{12} = 1$, b) $\frac{(x-2)^2}{16} \frac{(y-1)^2}{9} = 1$.
- **3.** a) $(x+1)^2 (y-4)^2 = \frac{9}{2}$ ou $(y-4)^2 (x+1)^2 = \frac{9}{2}$.
 - b) $\frac{(y-3)^2}{25} \frac{9(x+4)^2}{400} = 1$.
 - c) $\frac{(x-1)^2}{4} \frac{49(y-2)^2}{64} = 1$ ou $-\frac{(x-3)^2}{4} + \frac{49(y-\frac{22}{7})^2}{64} = 1$.
- **4.** a) $\lambda \leq -1$ ou $\lambda = 2$: $\mathcal{H} = \emptyset$, $-1 < \lambda < 2$: ellipse, $\lambda > 2$: hyperbole.
 - b) $\lambda \in]-1;\ 1[:$ ellipse de grand axe vertical,

 $\lambda = 1$: cercle d'équation $(x-1)^2 + (y-2)^2 - 2 = 0$,

 $\lambda \in [1; 2[$: ellipse de grand axe horizontal,

 $\lambda \in \,]\, 2\,;\,\, +\infty\, [\,:\,\, \text{hyperbole d'axe r\'eel horizontal}\,:\,\, \frac{(x-\lambda)^2}{\lambda+1}\, -\, \frac{(y-2)^2}{(\lambda-2)(\lambda+1)} = 1\,,$

- c) $F(3+2\sqrt{2}; 2)$, $F'(3-2\sqrt{2}; 2)$.
- d) Equation du lieu:
 - $\lambda \in]1; 2[$ lieu de A: segment de droite $1 + \sqrt{2} < x < 2 + \sqrt{3}$ et y = 2, lieu de B: segment de droite $1 \sqrt{2} < x < 2 \sqrt{3}$ et y = 2,
 - $\lambda \in]-1; 1[: \text{ arc de cercle de centre } \Omega(\frac{1}{2}; 2) \text{ et de rayon } \frac{3}{2}.$
- **5.** Equation du lieu : (x+a)y = 2k.

C'est une hyperbole équilatère de centre $\Omega(-a; 0)$.