Pág. 1/4 Nome ______ Número

- COMPUTAÇÃO GRÁFICA E INTERFACES -

MIEI/FCT/UNL – Ano letivo 2014/2015 Teste 2 – 2014.12.11

Responda no próprio enunciado, que entregará. Em caso de engano, e se o espaço para as respostas não for suficiente, poderá usar o verso das folhas desde que feitas as devidas referências. **Não desagrafe** as folhas! A prova, com duração de **1H30**, é **sem consulta**!

1. (4 valores)

No grafo de cena abaixo representado, os P_i representam primitivas geométricas, onde se sabe não ocorrerem quaisquer transformações geométricas.

a) Escreva, em pseudo-código, o programa OpenGL otimizado correspondente, usando o menor número de operações glPushMatrix() e glPopMatrix():

S(2,1,1)	S(2,5,8)	P4()
T(3,5,1)	Rx(20°)	S(2,1,2)
glPushMatrix()	P2()	T(5,1,0)
T(1,1,3)	glPopMatrix()	glPushMatrix()
glPushMatrix()	glPushMatrix()	S(3,2,4)
S(1,1,4)	Rx(5°)	P5()
Ry(10°)	S(1,3,3)	glPopMatrix()
S(2,5,2)	Rx(10°)	T(1,2,5)
P1()	P3()	P6()
glPopMatrix()	glPopMatrix()	

b) Simplifique o grafo apresentado por forma a usar o menor número de nós possível e apresente, abaixo, a composição de transformações geométricas e as primitivas às quais se aplicam, apenas

Pág	. 2/	4	Nome Número
			Nome Número nos onde tenham ocorrido simplificações (por ramo entenda-se o percurso da raíz do na dada primitiva):
R	Ram	1: <mark>S(</mark>	2,1,1).T(3,5,1).S(2,5,8).Ry(10°).P1
R	Ram	o 2: <mark>S(</mark>	2,1,1).T(3,5,1).Rx(15°).S(1,3,3).P3 (ou S(2,1,1).T(3,5,1).S(1,3,3).Rx(15°).P3)
R	Ram	10 3: <u>0</u>	caminho da raíz até P2 também sofre modificações no grafo simplificado, mas as ansformações geométricas são exatamente as mesmas e pela mesma ordem
c) I	ndi		úmero total de nós do grafo após a simplificação: <u>12 nós</u>
2. (3 \	valore	es)
a) I	ndio	que qua	al o nome da componente que faria variar, para uma dada cor de partida nas condições ida no modelo HLS , de modo a:
	-]	percori	rer a escala de cinzentos: <u>Lightness (L)</u>
•	-]	percori	rer as cores principais do modelo RGB e CMY: <u>Hue (H)</u>
	-]	passar	duma cor para o seu equivalente em tons de cinzento: Saturation (S)
-			o HSV for representado por um cone, como descreveria o lugar geométrico (ponto, linha, etângulo, círculo, circunferência, etc.):
•	- '	Todas a	as cores com máxima saturação: superfície cónica (exceptuando a base)
•	- '	Todos	os tons de cinzento? <mark>segmento de reta (ou linha)</mark>
	- '	Todas a	as cores com um mesmo tom? <u>triângulo</u>
		5 valo ndo ao	res) pipeline gráfico 3D estudado nas aulas, indique , justificando se:
•	- ,	A ilum	inação poderá ou não ser efetuada após a transformação do volume de visão para o
	,	volume	e canónico: Não pode ser efetuada após a transformação indicada.
	-	A trans	formação para o volume canónico causa, no caso geral, deformações que alteram os
	-	valores	dos ângulos, alterando assim os resultados das fórmulas envolvidas nos modelos de
	-	ilumina	ção. Também as distâncias são modificadas, o que altera o resultado caso se utilize
	-	atenua	ção das fontes de luz.
	- ,	A trans	sformação do volume de visão para o volume canónico, representado por um cubo, é
			suficiente para que haja deformação dos objetos na sua visualização final, num
			ão é razão suficiente para que haja deformação dos objetos na sua visualização final
	•		sor. Embora haja uma deformação no caso geral (quando o volume de visão não é um
	•		essa deformação poderá ser compensada na transformação para o visor, já perto do final
			eline, desde que o aspect ratio do visor tenha o mesmo valor que a relação entre a largura
	-	e a altu	ıra do volume de visão.

Pág. 3/4 Nome Número	
----------------------	--

4. (3 valores)

Assinale as afirmações com verdadeiro (V) ou falso (F) na quadrícula da esquerda! **Cada resposta errada descontará 50% da cotação!**

Segundo o modelo de reflexão difusa $I_{rgb}=I_{p,rgb} K_{d,rgb} \cos(\theta)$:

F	a cor observada num ponto duma face plana dum objeto só depende da orientação dessa mesma face e da cor do próprio objeto
V	quando o ângulo entre ${\bf N}$ e ${\bf L}$ é 90°, o objeto não refletirá qualquer luz na direção do observador
F	quando (N.L)=1, assumindo que ambos os vetores estão normalizados, o objeto refletirá a totalidade da luz nele incidente
V	um objeto de cor RGB(1, 0.5, 0.7) poderá ser visto como tendo a cor RGB(0.8, 0, 0.1)
V	para que um objeto cinzento seja visível bastará que uma das componentes da luz não seja nula e a face esteja parcialmente virada para a luz
V	Quando visível, um objeto de cor verde RGB(0,k,0), será sempre visualizado em tons de verde

5. (4.5 valores)

O cubo apresentado ao lado foi projetado recorrendo a diversas projeções planas, apresentando-se a imagem final de cada uma dessas projeções em baixo. Indique, para cada imagem, o tipo de projeção que poderá ter sido utilizado, assim como os nomes e valores dos respetivos parâmetros! Caso exista mais do que uma resposta, bastará indicar apenas uma das hipóteses.

		[
			ļ	$\overline{}$		
		L				

Projeção	oblíqua	ortogonal	oblíqua	oblíqua	axonométrica
Par. 1 (nome,valor)	l=1	-	l=0.2	I=0.5	theta=0°
Par. 2 (nome, valor)	alfa=0° (ou 180°)	-	alfa=90°	alfa=-45°	gamma=45°

a) Para qualquer das imagens acima, qual o número máximo de vezes que um determinado pixel da imagem poderia vir a ser pintado, assumindo que foi usado o algoritmo de z-buffer para efetuar a remoção das superfícies ocultas? ______ Justifique!

Considerando apenas o preenchimento de superfícies, em cada pixel serão projetadas,

no máximo, 2 faces. Ocorrendo em primeiro lugar a pintura da face mais afastada, o número máximo de vezes que um pixel poderá ser pintado seria, assim, 2 vezes.

(Se se considerarem também as linhas, há situações em que poderiam ser pintados 4 vezes)

b) E no caso de se usar previamente o teste de *culling* de faces, como seria a sua resposta à alínea anterior?

Pág. 4/4 NomeNúme	ero
-------------------	-----

No caso de usar o teste de culling de faces, as faces não visíveis seriam previamente descartadas.

Assim, considerando apenas o preenchimento das faces, a resposta seria 1 única vez, para as faces visíveis.

(Se se considerar também o desenho das linhas, a resposta dependeria da forma como as mesmas foram desenhadas: 2 para outline de polígonos e 3 para segmentos de reta)

6.

a) Complete o seguinte trecho dum programa em OpenGL (JOGL2), por forma a que faça sentido e que o mapeamento da textura seja o mapeamento ortogonal classico, segundo a direção do eixo y:

```
gl.__glBegin (GL_POLYGON);
for(int i=0; i<nvert; i++) {
    gl.glTexCoord2f(_x[i]__, _z[i]__);
    gl._glVertex3f__(x[i], y[i], z[i]);
}
gl.__glEnd___();</pre>
```

b) Que problema poderá surgir quando uma textura, de uma determinada resolução, é mapeada num polígono, cuja área projetada no visor (em pixels) é bastante superior à dimensão (em texels) da textura e de que forma poderá ser atenuado?

Nas condições enunciadas, a textura irá ser ampliada. O procedimento normal, mais simples, consiste em usar um mesmo texel para pintar vários pixels. O efeito que daqui resulta é geralmente denominado por efeito mosaico. Em alternativa a textura poderá ser filtrada, usando não apenas a cor de um texel, mas a de vários, para determinar a cor de cada pixel. O processo poderá ser efetuado por interpolação, suavizando assim as transições dum texel para um outro seu vizinho.

Boa sorte!