TAREA SEMANAL 1-4:

GRAFOS CFCs

Y

ORDEN TOPOLÓGICO

(CORRECCIONES)

INTEGRANTES: Andrés Monetta Alejandro Clara Sebastián Daloia

Contenido

Correcciones
Parte 1
Observación 2:
Proposición a:
Proposición b:
Proposición c:

Correcciones

La correcciones se hicieron en el Ejercicio 1.

Se modificó la observación dos hecha en el trabajo para la cual existían contraejemplos, agregándose ahora las condiciones para evitar los casos de contrajemplos evidenciados en la jornada de monitoreo.

Producto de esta modificación se re plantearon las proposiciones a), b) y c) a modo de adecuarse a la observación dos.

1 Ejercicio

Parte 1

Consideremos

G grafo,

G_C grafo de componentes y

una DFS de G en la cual los vértices son apilados en una pila P a terminar de ser procesados; para cada CFC C_i sea f_i $1 \le i \le k$ el primer vértice visitado, y sea f_k, \ldots, f_1 el orden en que son apilados en P.

Observación 1:

Una recorrida DFS va marcando los vértices visitados en pre – procesamiento y los apila en pos procesamiento.

Observación 2:

Si en una recorrida DFS se cumple:

- 1) u_i es visitado antes que u_i,
- 2) existe camino entre u_i y u_i
- 3) y los vértices del camino aún no han sido visitados

Entonces u_i es apilado despues que u_i

Demostración:

Directa. u_i es el primero en ser visitado, luego existe camino hacia u_j , luego como ningún vértice de este camino ha sido visitado entonces u_j es visitado, por lo que el pos procesamiento pasará primero por u_j y por lo tanto u_i será apilado despues que u_j .

Proposición a:

Si en una recorrida DFS el vértice f_i es visitado antes que el vértice f_i y hay un camino desde f_ihacia f_i,

entonces fi será apilado después de f_i.

Demostración:

Instanciamos la observación dos con u_i=f_i, u_i=f_i.

Tenemos f_i es el primer visitado de la CFC C_i , y hay un camino desde f_i hacia f_j , si hubiese en el camino un vértice w marcado, entonces pertenecería a una componente CFC C_k con k distinto a i y a j.

Por lo que se generaría un bucle en G_C entre v_k y v_c , lo cual es contradicción ya que G_C es acíclico, por proposición vista en laboratorio anterior*.

Entonces vemos que u_i y u_i para este caso cumplen con los requisitos de la Observación 2.

*Proposición

 G_C se puede ordenar topológicamente como una secuencia $o = \{o_1, \dots, o_k\}$

Proposición b:

Para cada CFC C_i, f_i es el ultimo de sus vértices que se apila en P.

Demostración:

Instanciamos la observación dos con u_i=f_i, u_i=w con w perteneciendo a la CFC C_i.

1)f_i es el primero en ser visitado

2)hay camino entre f_i y w, por estar ambos en C_i

3)por 1) los vértices del camino entre f_i y w aun no han sido marcados

Se cumple con la hipótesis de la observación 2.

Es valida la proposición.

Proposición c:

Si hay algún camino desde la CFC C_i a la CFC C_i, entonces f_i se apila en P despues que f_i.

Demostración:

Tenemos que hay camino entre f_i y f_i

Si f_i no es el primero en ser visitado en DFS en ese camino entonces habría ciclo en G_C , por lo que f_i es visitado primero en DFS, y se cumple proposición a) entonces esta proposición es cierta.