

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

: STATE BENEZIEN IN BUBLIN BENED HON I 11: 11: BENED BURKE BURKE BURKE HON BENEDER HON BURKE HON BURKE FOR BU

(43) International Publication Date 24 January 2002 (24.01.2002)

PCT

(10) International Publication Number WO 02/06529 A2

(51) International Patent Classification?: C12Q 1/68 PHAKDEEKITCHAROEN, Bunyong [TH/TH]; 486/131-2 Petchburi Road, Ratchatewee, Bangkok 10400 (TH).

(22) International Filing Date: 13 July 2001 (13.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/218,261 13 July 2000 (13.07.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/218,261 (CIP)
Filed on 13 July 2000 (13.07.2000)
US 60/283,691 (CIP)
Filed on 13 April 2001 (13.04.2001)

13 April 2001 (13.04.2001)

(71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE [US/US]; 111 Market Place, Suite 906, Baltimore, MD 21202 (US).

(72) Inventors; and

60/283,691

(75) Inventors/Applicants (for US only): GERMINO, Gregory, G. [US/US]; 7310 Pomander Lane, Chevy Chase, MD 20815 (US). WATNICK, Terry, J. [US/US]; 7310 Pomander Lane, Chevy Chase, MD 20815 (US). (74) Agent: HAILE, Lisa, A.; Gary Cary Ware & Friedenrich LLP, Suite 1600, 4365 Executive Drive, San Diego, CA 92121-2189 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

02/06529 A2

(54) Title: DETECTION AND TREATMENT OF POLYCYSTIC KIDNEY DISEASE

(57) Abstract: Compositions useful for examining the PKD1 gene are provided. In addition, methods for detecting mutations of the PKD1 gene, which can be associated with autosomal dominant polycystic kidney disease in humans, are provided. Methods for diagnosing a mutant PKD1 gene sequence in a subject also are provided, as are methods of treating a subject having a PKD1-associated disorder.

DETECTION AND TREATMENT OF POLYCYSTIC KIDNEY DISEASE

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates generally to the diagnosis and treatment of polycystic kidney disease and more specifically to probes and agents useful in diagnosing and treating polycystic kidney disease and related disorders.

10

15

20

5

BACKGROUND INFORMATION

Autosomal dominant polycystic kidney disease (ADPKD), also called adultonset polycystic kidney disease, is one of the most common hereditary disorders in humans, affecting approximately one individual in a thousand. The prevalence in the United States is greater than 500,000, with 6,000 to 7,000 new cases detected yearly (Striker et al., Am. J. Nephrol. 6:161-164, 1986; Iglesias et al., Am. J. Kid. Dis. 2:630-639, 1983). The disease is considered to be a systemic disorder, characterized by cyst formation in the ductal organs such as kidney, liver, and pancreas, as well as by gastrointestinal, cardiovascular, and musculoskeletal abnormalities, including colonic diverticulitis, berry aneurysms, hernias, and mitral valve prolapse (Gabow et al., Adv. Nephrol. 18:19-32, 1989; Gabow, New Eng. J. Med. 329:332-342, 1993).

The most prevalent and obvious symptom of ADPKD is the formation of kidney cysts, which result in grossly enlarged kidneys and a decrease in renal-concentrating ability. In approximately half of ADPKD patients, the disease progresses to end-stage renal disease, and ADPKD is responsible for 4-8% of the renal dialysis and transplantation cases in the United States and Europe (Proc. Eur. Dialysis and Transplant Assn., Robinson and Hawkins, eds., 17:20, 1981).

30

25

Few diagnostics are available for the identification and characterization of mutations of the PKD1 gene, which is located on human chromosome 16. A major factor contributing to the difficulty in identifying and characterizing mutations of the PKD1 gene is that greater than 70% of the length of the PKD1 gene is replicated on

2

chromosome 16 and elsewhere, resulting in at least six PKD1 homologs. Significantly, the PKD1 homologs share a very high sequence identity with the PKD1 gene, including sequences having greater than 95% identity with the PKD1 gene. As such, oligonucleotides that have been examined for use as specific probes, or as primers for amplification, of PKD1 gene sequences have been found to cross-hybridize with the PKD1 homologs, and the inability to identify PKD1 locus specific probes has prevented accurate analysis of PKD1 gene mutations.

10

15

20

The identification and characterization of PKD1 gene mutations have been further hindered, in part, because transcription of the PKD1 gene results in production of a 14 kilobase (kb) mRNA, which is highly GC-rich. In addition, unlike the remainder of the PKD1 gene, which is extremely compact (approximately 13.5 kb mRNA coded within approximately 30 kb genomic DNA), exon 1 is separated from the rest of the gene by an intron of approximately 19 kb. Thus, previous investigators have simply placed the 5' anchor primer within the first intron and used it as a link to more 3' sequences. Exon 1 has several other features that have been major obstacles to its amplification, including an extremely high GC content (approximately 85%), and the ability to replicate with high fidelity in PKD1 gene homologs. Furthermore, no effective method for DNA based analysis of PKD1 gene exon 22, which is flanked on both ends by introns that contain lengthy polypyrimidine tracts. Accordingly, very few positions within the replicated segment and flanking exon 22 are suitable for the design of PKD1-specific primers.

A few oligonucleotides useful for examining regions of the human PKD1 gene,
have been described. For example, the primer set forth below as SEQ ID NO:11 has
been described in U.S. Pat. No. 6,017,717, and the primer set forth as SEQ ID NO:18
has been described by Watnick et al. (Hum. Mol. Genet. 6:1473-1481, 1997). Also, the
primers set forth below as SEQ ID NOS:9, 10, 49 to 51, and 61 to 105 have been
described by Watnick et al. (Am. J. Hum. Genet. 65:1561-1571, 1999). The primers set
forth below as SEQ ID NOS: 9 and 10 and SEQ ID NOS: 11 and 12 also were more
recently described by Phakdeekitcharoen et al. (Kidney International 58:1400-1412,
2000). In addition, a primer set forth as SEQ ID NO:13 in U.S. Pat. No. 6,071,717 has a

3

nucleotide sequence that is substantially identical to that set forth below as SEQ ID NO:10, and a primer designated TWR2 by Watnick et al. (Mol. Cell 2:247-251, 1998) has a nucleotide sequence that is substantially identical to that set forth below as SEQ ID NO:12.

5

10

15

20

25

30

Despite the large number of families having diseases associated with PKD1 gene mutations, the potential clinical and scientific impact of mutation studies, and the availability of a genomic structure, the fact that only a relatively small number of PKD1 mutations have been described demonstrates the relative paucity of data due to the complicated genomic structure of the PKD1 gene. Thus, there exists a need for diagnostic methods suitable for examining the PKD1 gene and for identifying disorders related to PKD1 gene mutations. The present invention satisfies this need and provides additional advantages.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods that allow for the selective examination of the human PKD1 gene, including the detection and identification of PKD1 gene mutations. For example, the compositions of the invention include oligonucleotide primers that are useful for selectively amplifying a region of a PKD1 gene, but not a corresponding region of a PKD1 homolog. Accordingly, the present invention relates to a PKD1 gene specific primer, which can be one of a primer pair. A primer of the invention includes a 5' region and adjacent PKD1-specific 3' region, wherein the 5' region has a nucleotide sequence that can hybridize to a PKD1 gene sequence and, optionally, to a PKD1 homolog sequence, and the 3' region has a nucleotide sequence that selectively hybridizes only to a PKD1 gene sequence, and particularly not to a PKD1 gene homolog sequence, except that a primer of the invention does not have a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60. A 5' region of a primer of the invention generally contains at least about ten contiguous nucleotides, and the 3' region contains at least one 3' terminal nucleotide, wherein the at least one 3' terminal nucleotide is identical to a nucleotide that is 5' and adjacent to the nucleotide sequence of the PKD1 gene to which the 5' region of the primer can hybridize, and is different

4

from a nucleotide that is 5' and adjacent to a nucleotide sequence of the PKD1 homolog to which the 5' region of the primer can hybridize. Generally, the primer includes a 5' region of about 14 to 18 nucleotides and a 3' region of about 2 to 6 nucleotides, particularly about 2 to 4 nucleotides. For example, a primer of the invention can have a sequence as set forth in any of SEQ ID NOS:3 to 10, 12 to 17, 19 to 51 and 61 to 113.

5

10

15

20

25

30

The present invention also relates to an isolated mutant PKD1 polynucleotide, or an oligonucleotide portion thereof. The polynucleotides of the invention are exemplified by mutation of SEQ ID NO:1, which appear to be normal variants that are not associated with a PKD1-associated disorder, for example, a polynucleotide or oligonucleotide that includes nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T; or a combination thereof; and by mutations of SEQ ID NO:1 that are associated with a PKD1-associated disorder, for example, a polynucleotide or oligonucleotide that includes nucleotide 3110 of SEQ ID NO:1, wherein nucleotide 3110 is a C; nucleotide 8298 of SEQ ID NO:1, wherein nucleotide 8298 is a G; nucleotide 9164 of SEQ ID NO:1, wherein nucleotide 9164 is a G; nucleotide 9213 of SEQ ID NO:1, wherein nucleotide 9213 is an A; nucleotide 9326 of SEQ ID NO:1, wherein nucleotide 9326 is a T; nucleotide 10064 of SEQ ID NO:1, wherein nucleotide 10064 is an A; or a combination thereof. The invention also provides a vector containing such a polynucleotide, or an oligonucleotide portion thereof, and provides a host cell containing such a polynucleotide or oligonucleotide. or vector.

A PKD1-specific primer of the invention is exemplified by an oligonucleotide that can selectively hybridize to a nucleotide sequence that flanks and is within about fifty nucleotides of a nucleotide sequence selected from about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329

to 41258; and nucleotides 41508 to 47320 of SEQ ID NO:1. The primer, which can be one of a primer pair, can have a nucleotide sequence substantially identical to any of SEQ ID NOS: 3 to 18, provided that when the primer is not one of a primer pair, the primer does not have a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60. Accordingly, the present invention further relates to a primer pair that can amplify a portion of a PKD1 gene, for example, the wild type PKD1 gene set forth as SEQ ID NO:1, wherein the amplification product can include about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof. A primer pair of the invention is useful for performing PKD1-specific amplification of a portion of a PKD1 gene.

10

15

Primer pairs of the invention are exemplified by a pair including at least one forward primer and at least one reverse primer of the oligonucleotides sequences set forth in SEQ ID NOS:3 to 18 or a sequence substantially identical thereto. In one embodiment, the primer pair includes SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or SEQ ID NOS:9 and 113. Also provided are primer pairs useful for performing nested amplification of a 20 PKD1-specific amplification product of a PKD1 gene, for example, the primer pairs set forth as SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; 25 SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS: 51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 30 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID

NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112. In another embodiment, the invention relates to a plurality of primer pairs, which can include two or more primer pairs that are useful for generating two or more PKD1-specific amplification products of a PKD1 gene; or can include two or more primer pairs that are useful for generating a PKD1-specific amplification product of a PKD1 gene and for generating a nested amplification product of the PKD1-specific amplification product.

The present invention also relates to a purified mutant PKD1 polypeptide, or a peptide portion thereof, comprising an amino acid sequence of a mutant of SEQ ID NO:2. A mutant PKD1 polypeptide, or peptide portion thereof can be substantially identical to a sequence of SEQ ID NO:2 and, for example, include amino acid residue 88 of SEQ ID NO:2, wherein residue 88 is a V; residue 967 of SEQ ID NO:2, wherein residue 967 is an R; residue 2696 of SEQ ID NO:2, wherein residue 2696 is an R; residue 2985 of SEQ ID NO:2, wherein residue 2985 is a G; residue 3039 of SEQ ID NO:2, wherein residue 3039 is a C; residue 3285 of SEQ ID NO:2, wherein residue 3285 is an I; or residue 3311 of SEQ ID NO:2, wherein residue 3311 is an R; or can include residue 3000 of a truncated mutant PKD1 polypeptide ending at amino acid residue 3000 with respect to SEQ ID NO:2, wherein residue 3001 is absent (and the mutant PKD1 polypeptide is truncated) due to the presence of a STOP codon in the encoding mutant PKD1 polynucleotide; or a combination of such mutations. Also provided is a purified antibody that specifically binds to a mutant PKD1 polypeptide, or to a peptide thereof.

The present invention further relates to a primer or an oligonucleotide of the invention immobilized to a solid support. In addition, the primer or oligonucleotide can be one of a plurality of primers, oligonucleotides, or a combination thereof, each of which is immobilized to a solid support. The solid support can be any support, including, for example, a microchip, in which case, the primers, oligonucleotides, or combination thereof can be arranged in array, particularly an addressable array. The primers, oligonucleotides, or combination thereof also can be degenerate with respect

7

to each other, and specific for a wild type PKD1 polynucleotide, a mutant PKD1 polynucleotide, including a variant, or combinations thereof, and, therefore, provide a means for multiplex analysis. Accordingly, the present invention provides compositions comprising one or a plurality of immobilized primers or oligonucleotides of the invention, or combinations thereof.

5

10

15

20

25

The present invention also relates to a method of detecting a PKD1 polynucleotide in a sample, wherein the PKD1 polynucleotide is a wild type PKD1 polynucleotide having a sequence as set forth in SEQ ID NO:1, or a mutant PKD1 polynucleotide, which can be a variant PKD1 polynucleotide that has a sequence different from SEQ ID NO:1 but is not associated with a PKD1-associated disorder or can be a mutant PKD1 polynucleotide that is associated with a PKD1-associated disorder. A method of the invention can be performed, for example, by contacting nucleic acid molecules in a sample suspected of containing a PKD1 polynucleotide with at least one primer pair under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair; and generating a PKD1-specific amplification product under said conditions, thereby detecting a PKD1 polynucleotide in the sample. The primer pair can be any primer pair as disclosed herein, for example, a primer pair such as SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEO ID NOS:9 and 10; SEO ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or SEQ ID NOS:9 and 113; or can be a combination of such primer pairs.

A method of detecting a PKD1 polynucleotide can further include, upon generating a PKD1-specific amplification product, contacting the amplification product with at least a second primer pair, under conditions suitable for nested amplification of the PKD1-specific amplification product by the second primer pair, and generating a nested amplification product. The second primer pair can be any primer pair that can produce a nested amplification product of the PKD1-specific amplification product, for example, a second primer pair such as SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID

8

NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; primer pairs formed using consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, and 97 to 112; or a combination thereof.

5

10

15

20

25

30

Upon detecting a PKD1 polynucleotide in a sample according to a method of the invention, an additional step of detecting the presence or absence of a mutation in an amplification product of the PKD1 polynucleotide in the sample as compared to a corresponding nucleotide sequence in SEQ ID NO:1. As such, a method of the invention provides a means to identify a PKD1 polynucleotide in a sample as a mutant PKD1 polynucleotide or a wild type PKD1 polynucleotide, wherein detecting the absence of a mutation in the amplification product identifies the PKD1 polynucleotide in the sample as a wild type PKD1 polynucleotide, and wherein detecting the presence of a mutation in the amplification product identifies the PKD1 polynucleotide in the sample as a mutant PKD1 polynucleotide, which can be a variant PKD1 polynucleotide, or can be mutant PKD1 polynucleotide associated with a PKD1associated disorder, the latter of which are exemplified by a polynucleotide that is substantially identical to SEQ ID NO:1, and wherein at least nucleotide 474 is a T; nucleotide 487 is an A; nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; nucleotide 9367 is a T; nucleotide 10064 is an A; nucleotide 10143 is a G; nucleotide 10234 is a C; or nucleotide 10255 is a T.

The presence or absence of a mutation in an amplification product generated according to a method of the invention can be detected any method useful for detecting a mutation. For example, the nucleotide sequence of the amplification product can be determined, and can be compared to the corresponding nucleotide sequence of SEQ ID NO:1. The melting temperature of the amplification product also can be determined, and can be compared to the melting temperature of a corresponding double stranded nucleotide sequence of SEQ ID NO:1. The melting

temperature can be determined using a method such as denaturing high performance liquid chromatography.

An advantage of a method of the invention is that a large number of samples can be examined serially or in parallel. Accordingly, a method of the invention can be performed with respect to a plurality of samples, and can be performed using a high throughput format, for example, by organizing the samples of a plurality of samples in an array such as in an array is on a microchip. The method can further include detecting the presence or absence of a mutation in an amplification product of the samples of the plurality of samples, for example, by determining the melting temperature of the amplification product and comparing it to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1 using a method such as denaturing high performance liquid chromatography, or the presence or absence of a mutation can be performed using any method useful for such a purpose, for example, matrix-assisted laser desorption time of flight mass spectrometry or high throughput conformation-sensitive gel electrophoresis, each of which is readily adaptable to a high throughput analysis format.

In another embodiment, the presence or absence of a mutation in an amplification product can be detected by contacting the amplification product with the oligonucleotide of the invention, under condition suitable for selective hybridization of the oligonucleotide to an identical nucleotide sequence; and detecting the presence or absence of selective hybridization of the oligonucleotide to the amplification product. Using such a method detecting the presence of selective hybridization identifies the PKD1 polynucleotide in the sample as a mutant PKD1 polynucleotide, and detecting the absence of selective hybridization identifies the PKD1 polynucleotide as a wild type PKD1 polynucleotide. Where an absence of a mutation is detected, the PKD1 polynucleotide in the sample is identified as a wild type PKD1 polynucleotide. In comparison, where the presence of a mutation is identified, the mutant PKD1 polynucleotide so identified can be further examined to determine whether the mutant PKD1 polynucleotide is a variant PKD1 polynucleotide, which is associated with a normal phenotype with respect to PKD1, for example, where the

10

amplification product has a nucleotide sequence substantially identical to SEQ ID NO:1, and including C474T, G487A, G4885A; C6058T; G6195A; T7376C; C7696T; G8021A; C9367T, A10143G, T10234C, or a combination thereof, or is a mutant PKD1 polynucleotide associated with a PKD1-associated disorder, for example, where the amplification product has a nucleotide sequence substantially identical to SEQ ID NO:1, and including T3110C, G3707A; T6078A; C7433T; T8298G; A9164G; G9213A, C9326T; G10064A; an insertion of GCG between nucleotides G7535 and A7536; or a combination thereof, each of which is associated with ADPKD (see Example 2; see, also, Phakdeekitcharoen *et al.*, Kidney International 58:1400-1412, 2000, which is incorporated herein by reference).

The present invention further relates to a method of detecting the presence of a mutant PKD1 polynucleotide in a sample. In one embodiment, a method of the invention is performed by amplifying a nucleic acid sequence in a sample suspected of containing a mutant PKD1 polynucleotide using a primer pair of the invention, for example, a primer pair selected from SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or SEQ ID NOS:9 and 113, thereby obtaining a PKD1-specific amplification product of a PKD1 gene sequence; and detecting a mutant PKD1 polynucleotide in the amplification product. The mutant PKD1 nucleotide in the amplification product can be detected using any method useful for detecting a mutation in a polynucleotide, for example, using denaturing high performance liquid chromatograph. In another embodiment, a method of the invention is performed by contacting a sample suspected of containing a mutant PKD1 polynucleotide with a probe comprising an isolated polynucleotide of the invention, or an oligonucleotide portion thereof, under conditions such that the probe selectively hybridizes to a mutant PKD1 polynucleotide, and detecting specific hybridization of the probe and a PKD1 polynucleotide, thereby detecting the presence of a mutant PKD1 polynucleotide sequence in the sample.

30

25

10

15

20

The present invention further relates to a method of identifying a subject having or is at risk of having a PKD1-associated disorder. Such a method can be

11

performed, for example, by contacting nucleic acid molecules in a sample from a subject with at least one primer pair of the invention under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair, thereby generating an amplification product; and testing an amplification product for the presence or absence of a mutation indicative of a PKD1-associated disorder. As disclosed herein, the absence of such a mutation identifies the subject as not having or at risk of the having a PKD1-associated disorder, wherein the presence of such a mutation identifies the subject as having or is at risk of having a PKD1-associated disorder, for example, ADPKD or acquired cystic disease.

10

15

A primer pair useful in a diagnostic method of the invention can include at least one primer pair selected from SEQ ID NO:3 and 4; SEQ ID NO:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; and SEQ ID NOS:9 and 113. The subject can be any subject having a PKD1 gene and susceptible to a PKD1-associated disorder, including a vertebrate subject, and particularly a mammalian subject such as a cat or a human. In addition, the diagnostic method can be performed in a high throughput format, thereby allowing the examination of a large number samples in a cost-effective manner.

20

25

The diagnostic method can further include contacting the amplification product generated as described above with at least a second primer pair, under conditions suitable for nested amplification of the amplification product by a second primer pair, thereby generating a nested amplification product. The second primer pair can be, for example, a primer pair selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; a primer pair formed using two consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, and 97 to 112 (i.e., SEQ ID NOS: 62 and 63, SEQ ID NOS:64 and 65, and so on); and a

12

combination thereof, in which case, the step of testing the amplification product for the presence or absence of a mutation comprises testing the nested amplification product. It should be recognized that the selection of a primer pair for nested amplification is based, in part, on the sequence of the PKD1-specific amplification product that is to be used as a template for the nested amplification, i.e., nested primer pairs are selected such that they can hybridize to a target PKD1-specific amplification product and can amplify the target sequence.

10

15

20

25

30

An amplification product can be tested for the presence or absence of the mutation, for example, by determining the nucleotide sequence of the amplification product, and comparing it to a corresponding nucleotide sequence of SEQ ID NO:1; by determining the melting temperature of the amplification product, and comparing it to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1, for example, using a method such as denaturing high performance liquid chromatography; or by contacting the amplification product with an oligonucleotide probe containing nucleotide 474 of SEQ ID NO:1, wherein nucleotide 474 is a T; nucleotide 487 of SEO ID NO:1, wherein nucleotide 487 is an A; nucleotide 3110 of SEQ ID NO:1, wherein nucleotide 3110 is a C; nucleotide 8298 of SEQ ID NO:1, wherein nucleotide 8298 is a G; nucleotide 9164 of SEQ ID NO:1, wherein nucleotide 9164 is a G; nucleotide 9213 of SEQ ID NO:1, wherein nucleotide 9213 is an A; nucleotide 9326 of SEQ ID NO:1, wherein nucleotide 9326 is a T; nucleotide 9367 of SEQ ID NO:1, wherein nucleotide 9367 is a T; nucleotide 10064 of SEQ ID NO:1, wherein nucleotide 10064 is an A; nucleotide 10143 of SEQ ID NO:1, wherein nucleotide 10143 is a G; nucleotide 10234 of SEQ ID NO:1, wherein nucleotide 10234 is a C; and nucleotide 10255 of SEQ ID NO:1, wherein nucleotide 10255 is a T, under conditions suitable for selective hybridization of the probe to a mutant PKD1 polypeptide, which can be a normal variant or can be a mutant PKD1 polynucleotide associated with a PKD1-associated disorder.

The present invention also relates to a method of diagnosing a PKD1-associated disorder in a subject suspected of having a PKD1-associated disorder.

Such a method is performed by amplifying a nucleic acid sequence in a sample

obtained from the subject using a primer pair suitable for PKD1-specific amplification of a PKD1 gene sequence, for example, a primer pair such as SEQ ID NO:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18, or SEQ ID NOS:9 and 113, thereby obtaining a PKD1-specific first amplification product; and detecting a mutation of a PKD1 gene sequence in the PKD1-specific first amplification product, wherein the mutation is indicative of a PKD1-associated disorder, thereby diagnosing a PKD1-associated disorder in the subject.

In one embodiment, the diagnostic method includes a step of further amplifying the first amplification product using a second set of primer pairs to obtain a nested amplification product; and detecting a PKD1 gene mutation in the nested amplification product. The second set of primer pairs can be any primer pairs useful for amplifying the PKD1-specific first amplification product, including, for example, the primer pairs exemplified by SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; or any of the primer pairs formed using consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, and 97 to 112.

10

15

20

25

30

In another method, the diagnostic method includes a step of contacting the PKD1-specific first amplification product or second amplification product with a probe comprising an isolated polynucleotide, or an oligonucleotide portion thereof, comprising a mutant of SEQ ID NO:1, under conditions such that the probe can selectively hybridize to a mutant PKD1 polynucleotide; and detecting selective hybridization of the probe to the first amplification product, thereby diagnosing a PKD1-associated disorder in the subject. The probe can be, for example, an oligonucleotide portion of SEQ ID NO:1 that includes one or more of nucleotide 474 is a T; nucleotide 487 is an A; nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; nucleotide 9367

is a T; nucleotide 10064 is an A; nucleotide 10143 is a G; nucleotide 10234 is a C; or nucleotide 10255 is a T.

The present invention also relates to a method of detecting the presence of a mutant PKD1 polypeptide in a sample. Such a method can be performed, for example, by contacting a sample suspected of containing a mutant PKD1 polypeptide with an antibody that specifically binds to a mutant PKD1 polypeptide, under conditions which allow the antibody to bind to the mutant PKD1 polypeptide and detecting specific binding of the antibody and the mutant PKD1 polypeptide in the sample. The detection of an immunocomplex of the antibody and a mutant PKD1 polypeptide, for example, indicates the presence of a mutant PKD1 polypeptide in the sample. In one embodiment, the method is performed by contacting a tissue sample from a subject suspected of containing a PKD1 polypeptide with the antibody that specifically binds a mutant PKD1 polypeptide under conditions that allow the antibody interact with a PKD1 polypeptide and detecting specific binding of the antibody and the PKD1 polypeptide in the tissue.

The present invention further relates to a kit for detecting a mutant PKD1 polynucleotide, which can be a variant PKD1 polynucleotide or a mutant PKD1 polynucleotide associated with a PKD1-associated disorder. The kit can contain, for example, a carrier means containing therein one or more containers wherein a first container contains a nucleotide sequence useful for detecting a wild type or mutant PKD1 polynucleotide. As such, a nucleotide sequence useful in a kit of the invention can be an oligonucleotide comprising at least ten contiguous nucleotides of SEQ ID NO:1, including at least one of nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 4168, wherein nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058, wherein nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T;

5

10

15

20

25

30

15

nucleotide 6195, wherein nucleotide 6195 is an A; nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T. A nucleotide sequence useful in a kit of the invention also can comprise one or both primers of a primer pair, particularly at least a forward primer and a reverse primer as set forth in SEQ ID NOS: 3 to 18; and the kit can further include at least a second primer pair, including a forward and reverse primer as set forth in SEQ ID NOS: 19 to 51 and 61 to 113. In another aspect, the present invention relates to a kit containing an antibody that specifically binds to a mutant PKD1 polypeptide or peptide portion thereof.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a schematic showing the genomic structure of the PKD1 gene (SEQ ID NO:1) and the relative position of locus-specific templates and primers.

Figure 2 shows the relative position of the BPF6-BPR6 long-range PCR template and the much shorter PKD1-specific exon 28 product, 28F-BPR6. The dashed line below exon 28 identified the long range PCR amplification product that resulted when BPF6, the sequence of which is common to the PKD1 gene and to the homologs, was used in combination with the homolog-specific primer, BPR6HG.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides compositions and methods for identifying polycystic kidney disease-associated protein-1 (PKD1) gene variants and mutants, and for diagnosing PKD1-associated disorders in a subject. Prior to the present disclosure, the ability to selectively examine the entire PKD1 gene for mutations was precluded due to the high sequence homology of the PKD1 gene and the PKD1 gene homologs, including those present with the PKD1 gene on human chromosome 16. As disclosed herein, polynucleotide sequences have now been developed that are useful as probes and primers for examining the entire PKD1 gene. Accordingly, the present invention provides polynucleotides, and oligonucleotide portions thereof, of a PKD1 gene and of PKD1 gene mutants that are useful for detecting PKD1 mutations, and that can be diagnostic of a PKD1-associated disorder.

5

10

15

20

Autosomal dominant polycystic kidney disease (ADPKD) exhibits a transmission pattern typical of autosomal dominant inheritance, where typically each offspring of an affected individual has a 50% chance of inheriting the causative gene. Linkage studies indicated that a causative gene is present on the short arm of chromosome 16, near the α globin cluster; this locus was designated PKD1 (Reeders et al., Nature, 317:542, 1985.) Though other PKD-associated genes exist (for example, PKD2), defects in PKD1 appear to cause ADPKD in about 85-90% of affected families (Parfrey et al., New Eng. J. Med. 323:1085-1090, 1990; Peters et al., Contrib. Nephrol. 97:128-139, 1992).

The PKD1 gene has been localized to chromosomal position 16p13.3,

specifically to an interval of approximately 600kb between the markers ATPL and
CMM65 (D16S84). This region is rich in CpG islands that often flank transcribed
sequences; it has been estimated that this interval contains at least 20 genes. The
precise location of the PKD1 gene was pinpointed by the finding of an ADPKD
family whose affected members carry a translocation that disrupts a 14 kb RNA
transcript associated with this region (European PKD Consortium, Cell, 77:881,
1994).

The genomic structure of the PKD1 gene, which is illustrated in Figure 1 (SEQ ID NO:1; see Appendix A; see, also, GenBank Accession No. L39891, which is incorporated herein by reference), extends over approximately 50 kb, contains 46 exons, and is bisected by two large polypyrimidine tracts of approximately 2.5 kb and 0.5 kb, respectively, in introns 21 and 22 (indicated by "...CCTCCTCCT..." in Figure 1). The replicated portion of the gene, which begins prior to the 5'UTR and is believed to end in exon 34 (Figure 1; stippled region), covers approximately two thirds of the 5' end of the gene and is duplicated several times in a highly similar, transcribed fashion elsewhere in the human genome (Germino et al., Genomics 13:144-151, 1992; European Chromosome 16 Tuberous Sclerosis Consortium, 1993, Cell 75:1305-1315). The encoded PKD1 polypeptide is shown as SEQ ID NO:2 (see Appendix A; see, also, GenBank Accession No. P98161, which is incorporated herein by reference). It should be recognized that SEO ID NO:2 is not the same amino acid sequence as that shown to be encoded by GenBank Accession No. L39891 (see, also, GenBank AAB59488), presumably due to errors in predicting the encoded PKD1 polypeptide from the PKD1 gene sequence. Instead, the wild type PKD1 polypeptide sequence is shown in SEQ ID NO:2 (GenBank Accession No. P98161).

5

10

15

The present invention provides a PKD1 gene specific primer, which can be one of a primer pair. A primer of the invention includes a 5' region and adjacent 20 PKD1-specific 3' region, wherein the 5' region has a nucleotide sequence that can hybridize to a PKD1 gene sequence or to a PKD1 gene sequence and a PKD1 gene homolog sequence, and the 3' region has a nucleotide sequence that selectively hybridizes only to a PKD1 gene sequence, and particularly not to a PKD1 gene homolog sequence, except that a primer of the invention does not have a sequence as 25 set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60. Thus, a primer of the invention can have a sequence as set forth in any of SEQ ID NOS:3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 30 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 and 113, as well as a sequence that is substantially identical to any of SEQ ID NOS:3 to 51 and 61 to 113, provided the sequence comprises a 5' region that can hybridize to a PKD1 gene sequence or to a PKD1 gene sequence and a PKD1 gene homolog sequence, and a 3' region that selectively hybridizes to a PKD1 gene sequence, but not to a PKD1 gene homolog sequence; and provided the sequence is not otherwise specifically excluded herein.

5

As disclosed herein, a primer of the invention can be prepared by aligning SEO ID NO:1 with the PKD1 gene homologs contained in GenBank Accession Nos. AC002039, AC010488, AC040158, AF320593 and AF320594 (each of which is incorporated herein by reference; see, also, Bogdanova et al., Genomics 74:333-341, 10 2001, which is incorporated herein by reference) and identifying regions having potential sequence differences, then selecting as PKD1-specific primers those sequences that match over at least about ten nucleotides and that have a mismatch at or adjacent to the 3' terminus of the matched regions (see Example 1; see, also, Phakdeekitcharoen et al., supra, 2000). Such primers are referred to as "PKD1-15 specific primers" because, while they can hybridize to a PKD1 gene and a PKD1 gene homologue, an extension product only can be generated upon hybridization to a PKD1 gene due to the mismatch of one or more nucleotides in the 3' region when the primer hybridizes to a PKD1 gene homologue. Confirmation that a selected oligonucleotide is a PKD1-specific primer can be made using methods as disclosed 20 herein (Example 1) or otherwise known in the art. For example, a simple and straightforward method for determining that a primer is a PKD1-specific primer of the invention is to perform a primer extension or an amplification reaction using the putative PKD1-specific primer and templates including a PKD1 gene sequence and PKD1 gene homolog sequences, and detecting a single extension product or 25 amplification product generated from the PKD1 gene template, but not the PKD1 gene homolog templates. Sequences identified as PKD1-specific primers using this or another method can be confirmed by performing various control experiments as described by Watnick et al. (supra, 1999), for example, by comparing an amplification product obtained in a cell having a PKD1 gene with the products, if any, 30 produced using the radiation hybrid cell line, 145.19, which lacks the PKD1 gene but contains PKD1 gene homologs.

A nucleotide sequence suspected of being useful as a PKD1-specific primer also can be compared against a human genomic DNA database using, for example, a BLAST search or other algorithm, to confirm that the nucleotide sequence meets the requirements of a PKD1-specific primer as defined herein. For example, a putative PKD1-specific primer can be examined at the National Center for Biotechnology Information (NCBI), which can be accessed on the world wide web, by selecting the "Blast" option, thereafter selecting the "Search for short nearly exact matches", entering in the sequence to be examined, and, using the default search algorithms (word size 7), searching the "nr" database, which include all non-redundant GenBank+EMBL+DDBJ+PDB sequences, but no EST, SST, GSS or HTGS sequences; output can be restricted to showing only the top ten matches.

In a PKD1-specific primer of the invention, the 5' region contains at least about ten contiguous nucleotides, generally at least about 12 nucleotides, and usually about 14 to 18 nucleotides. In addition, the 3' region of the primer contains at least one 3' terminal nucleotide, and can include a sequence of at least about 2 to 6 nucleotides, particularly about 2 to 4 nucleotides. Where the 3' region consists of a single 3' terminal nucleotide, the primer is selected such that the 3' terminal nucleotide is identical to a nucleotide that is 5' and adjacent to the nucleotide sequence of the PKD1 gene to which the 5' region of the primer can hybridize, and is different from a nucleotide that is 5' and adjacent to a nucleotide sequence of the PKD1 homolog to which the 5' region of the primer can hybridize, i.e., provides a mismatched nucleotide. Where the 3' region of the PKD1-specific primer contains two or more nucleotides, one or more of the nucleotides can be mismatched, and the mismatched nucleotide can, but need not include the 3' terminal nucleotide, provided that when the mismatched nucleotide or nucleotides do not include the 3' terminal nucleotide, the primer cannot be extended when hybridized to a PKD1 gene homolog.

PKD1-specific primers of the invention are exemplified by primers that can selectively hybridize to a nucleotide sequence that flanks and is within about fifty nucleotides of a nucleotide sequence of SEQ ID NO:1 selected from about

10

15

20

25

20

nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; and nucleotides 41508 to 47320. A primer of the invention is exemplified by any of SEQ ID NOS: 3 to 10, 12 to 17, 19 to 51, and 61 to 113, and can have a sequence substantially identical to any of SEQ ID NOS:3 to 51 and 61 to 113, provided the sequence meets the requirements of a PKD1-specific primer as disclosed herein, and provided the sequence is not a sequence as set forth in any of SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, and SEQ ID NO:60.

A primer is considered to be "substantially identical" to any of SEQ ID NOS:3 to 51 and 61 to 113 if the primer has at least about 80% or 85%, generally at least about 90%, usually at least about 95%, and particularly at least about 99% sequence identity with one of SEQ ID NOS:3 to 51 and 61 to 113, and has a 5' region and adjacent PKD1-specific 3' region, wherein the 5' region has a nucleotide sequence that can hybridize to a PKD1 gene sequence or to a PKD1 gene sequence and a PKD1 gene homolog sequence, and the 3' region has a nucleotide sequence that selectively hybridizes only to a PKD1 gene sequence, and particularly not to a PKD1 gene homolog sequence, as defined herein, except that a primer of the invention does not have a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60. As such, a primer of the invention can include one or a few, but no more than about four or five, more or fewer nucleotide than a primer as set forth in SEQ ID NOS:3 to 51 and 61 to 113, provided the primer meets the functional requirements as defined herein.

The present invention also provides primer pairs. In one embodiment, a primer pair of the invention comprising a forward and reverse PKD1-specific primer as disclosed herein. As such, a primer pair of the invention can amplify a portion of SEQ ID NO:1 including about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof. In general, a primer pair of the invention can produce an amplification product of about ten kilobases or shorter, generally about 7500 bases or

21

shorter, and particularly about six kilobases or shorter. Primer pairs of the invention are exemplified by a forward primer and a reverse primer selected from SEQ ID NOS:3 to 18, for example, by any of SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; and SEQ ID NOS:9 and 113, which can be used to produce PKD1-specific amplification products of about 0.3 kilobases to about 5.8 kilobases.

As disclosed herein, a set of eight polymerase chain reaction (PCR) primer pairs can be used to prepare PKD1-specific amplification products that encompass all of the exons and their flanking introns within the replicated region of the PKD1 gene. In view of the disclosed nucleotide sequences of the primers and of SEQ ID NO:1, it will be recognized that additional PCR primer pairs useful for a preparing PKD1-specific first amplification product can be based on the exemplified primers and primer pairs, but can include one or few additional nucleotides (based on SEQ ID NO:1) at one or both ends of the exemplified primers, or can have one or a few nucleotides of an exemplified primer deleted, and their usefulness can be determined by comparing an amplification product generated using the derived or modified primer with a PKD1-specific amplification product as disclosed herein. As such, a primer pair based, for example, on SEQ ID NOS: 3 and 4 can be used to generate a PKD-1 specific amplification product containing about nucleotides 2043 to 4209 of SEQ ID NO:2, where in reference to "about" nucleotides 2043 to 4209 of SEQ ID NO:2 accounts for the disclosure that a primer pair used for amplification can be identical or substantially identical to SEQ ID NOS: 3 and 4.

25

30

10

15

20

Accordingly, the present invention provides primer pairs comprising a forward primer and a reverse primer having nucleotide sequences as set forth in SEQ ID NOS:3 to 18; primer pairs exemplified by SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; and SEQ ID NOS:9 and 113; and substantially identical primer pairs that comprise primers based on or derived from the exemplified primers, such primer pairs being useful for preparing a PKD1-specific

22

amplification product. The primer pairs shown as SEQ ID NOS: 9 and 10 and SEQ ID NOS: 11 and 12 have been described by Phakdeekitcharoen *et al.* (*supra*, 2000), as have the PKD1 specific amplification products generated using these primers.

5

15

30

It should be recognized that certain primers and certain primer pairs exemplified herein are not considered to be encompassed within the present invention. For example, the primer set forth in SEQ ID NO:11 has been described in U.S. Pat. No. 6,017,717 (which is incorporated herein by reference; column 24, SEQ ID NO:15); and the primer set forth in SEQ ID NO:18 has been described by Watnick *et al.* (Hum. Mol. Genet. 6:1473-1481, 1997, which is incorporated herein by reference; see page 1479; KG8R25), and, therefore, neither of these primers is considered to be a primer of the invention. Nevertheless, the primers set forth as SEQ ID NOS: 11 and 18 can be encompassed within the primer pairs of the invention, including within various disclosed and exemplified primer pairs, for example, the primer pairs set forth as SEQ ID NOS:11 and 12 and as SEQ ID NOS:17 and 18, as well as within combinations of two or more primer pairs, for example, a combination comprising SEQ ID NOS:11 and 12 and SEQ ID NOS:13 and 14.

The primers set forth in SEQ ID NO:9 and SEQ ID NO:10 have been described by Watnick et al. (Am. J. Hum. Genet. 65:1561-1571, 1999, which is incorporated herein by reference) and, therefore, can be specifically excluded from certain embodiments of the invention, as desired, for example, as encompassed within the primers of the invention. It should be recognized, however, that the combination of SEQ ID NOS:9 and 10 as a primer pair is not described by Watnick et al. (supra, 1999). SEQ ID NOS:49 to 51 and 61 to 105 also have been described by Watnick et al. (supra, 1999) and, therefore, can be specifically excluded from certain embodiments of the invention, as desired.

Except as provided herein, a primer of the invention is exemplified by any of SEQ ID NOS:3 to 51 and 61 to 113, as well as substantially identical oligonucleotide primers that are based on or derived from SEQ ID NOS:3 to 51 and 61 to 113. It should be recognized, however, that the primer set forth as SEQ ID NO:12 is substantially

23

similar to the primer designated TWR2 by Watnick *et al.* (Mol. Cell 2:247-251, 1998, which is incorporated herein by reference; page 250; 5'-GCAGGGTGAGCAGGTGGGGCCATCCTA-3'; SEQ ID NO:60), and that the primer set forth as SEQ ID NO:10 is substantially identical to SEQ ID NO:13 in U.S.

Pat. No. 6,071,717 (5'-AGGTCAACGTGGGCCTCCAAGTAGT-3'; SEQ ID NO:52). As such, a primer having the nucleotide sequence of SEQ ID NO:52 or of SEQ ID NO:60 is specifically excluded from the primers that otherwise would be encompassed within the scope of primers that have a sequence substantially identical to the sequence of the primer set forth as SEQ ID NO:12 or SEQ ID NO:10, respectively.

10

15

20

5

The present invention also provides an isolated mutant PKD1 polynucleotide, or an oligonucleotide portion thereof comprising a mutation as disclosed herein. As used herein, the term "isolated" or "purified," when used in reference to a polynucleotide, oligonucleotide, or polypeptide, means that the material is in a form other than that in which it normally is found in nature. Thus, where a polynucleotide or polypeptide occurs in a cell in nature, an isolated polynucleotide or purified polypeptide can be one that separated, at least in part, from the materials with which it is normally associated. In general, an isolated polynucleotide or a purified polypeptide is present in a form in which it constitutes at least about 5 to 10% of a composition, usually 20% to 50% of a composition, particularly about 50% to 75% of a composition, and preferably about 90% to 95% or more of a composition. Methods for isolating a polynucleotide or polypeptide are well known and routine in the art.

As part of or following isolation, a polynucleotide can be joined to other

polynucleotides, such as DNA molecules, for example, for mutagenesis studies, to
form fusion proteins, or for propagation or expression of the polynucleotide in a host.

The isolated polynucleotides, alone or joined to other polynucleotides, such as
vectors, can be introduced into host cells, in culture or in whole organisms. Such
polynucleotides, when introduced into host cells in culture or in whole organisms,

nevertheless are considered "isolated" because they are not in a form in which they
exist in nature. Similarly, the polynucleotides, oligonucleotides, and polypeptides can
be present in a composition such as a media formulation (solutions for introduction of

24

polynucleotides, oligonucleotides, or polypeptides, for example, into cells or compositions or solutions for chemical or enzymatic reactions which are not naturally occurring compositions) and, therein remain isolated polynucleotides, oligonucleotides, or polypeptides within the meaning of that term as it is employed herein. An isolated polynucleotide can be a polynucleotide that is not immediately contiguous with nucleotide sequences with which it is immediately contiguous in a genome or other naturally occurring cellular DNA molecule in nature. Thus, a recombinant polynucleotide, which can comprise a polynucleotide incorporated into a vector, an autonomously replicating plasmid, or a virus; or into the genomic DNA of a

prokaryote or eukaryote, which does not normally express a PKD1 polypeptide.

10

15

20

25

30

As used herein, the term "polynucleotide" or "oligonucleotide" or "nucleotide sequence" or the like refers to a polymer of two or more nucleotides or nucleotide analogs. The polynucleotide can be a ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) molecule, and can be single stranded or double stranded DNA or RNA, or a double stranded DNA:RNA hybrid. A polynucleotide or oligonucleotide can contain one or more modified bases, for example, inosine or a tritylated base. The bonds linking the nucleotides in a polymer generally are phosphodiester bonds, but can be other bonds routinely used to link nucleotides including, for example, phosphorothioate bonds, thioester bonds, and the like. A polynucleotide also can be a chemically, enzymatically or metabolically modified form.

As used herein, the term "mutant PKD1 polynucleotide" means a nucleotide sequence that has one or a few nucleotide changes as compared to the nucleotide sequence set forth as SEQ ID NO:1. The nucleotide change can be a deletion, insertion or substitution, and can be silent such that there is no change in the reading frame of a polypeptide encoded by the PKD1 polynucleotide, or can be a change that results in an amino acid change or in the introduction of a STOP codon into the polynucleotide, or a change in a nucleotide sequence involved in transcription or translation of the PKD1 polynucleotide, for example, a change that results in altered splicing of a PKD1 gene transcript into an mRNA (see Example 2). As disclosed herein, a mutant PKD1 polynucleotide can be a polymorphic variant, which, other than one or a few nucleotide

changes with respect to SEQ ID NO:1, encodes a PKD1 polypeptide and does not correlate with a PKD1 associated disorder, particularly ADPKD, or can be a mutant PKD1 polynucleotide that contains one or more mutations that correlate with a PKD1 associated disorder such as ADPKD (see Example 2).

5

10

15

20

25

30

For convenience of discussion and for use as a frame of reference, the PKD1 nucleotide sequence set forth in SEQ ID NO:1 is referred to as a "wild type PKD1 polynucleotide" or a "wild type PKD1 gene" sequence, and, similarly, the polypeptide set forth as SEQ ID NO:2 is referred to as a "wild type PKD1 polypeptide." However, while the presence of the wild type PKD1 gene sequence (i.e., SEQ ID NO:1) in an individual correlates to the absence of ADPKD in the individual, it should be recognized that polymorphic variants of SEQ ID NO:1 also are found in individuals that do not exhibit ADPKD or other PKD1-associated disorder. The term "variants" or "polymorphic variants" is used herein to refer to mutant PKD1 polynucleotide sequences (with respect to SEQ ID NO:1) that do not correlate with the signs or symptoms characteristic of a PKD1 associated disorder such as ADPKD. Variant PKD1 polynucleotides include, for example, nucleotide substitutions that do not result in a change in the encoded amino acid, i.e., silent mutations, such as G4885A, in which the wild type and mutant codons both encode a threonine (T1558T), and C6058T, in which the wild type and mutant codons both encode a serine (S1949S; see Example 2; see, also, Phakdeekitcharoen et al., supra, 2000); those that do not segregate with the disease, or those that are found in a panel of unaffected individuals. As such, it should be recognized that the term "mutant PKD1 polynucleotide" broadly encompasses PKD1 variants, which do not correlate with a PKD1 associated disorder, as well as mutant PKD1 polynucleotides that correlate or are associated with a PKD1 associated disorder.

Examples of mutant PKD1 polynucleotide sequences, including variant PKD1 polynucleotide sequence, include sequences substantially as set forth in SEQ ID NO:1, but having a mutation at nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 3336 is deleted; nucleotide 3707, wherein nucleotide 3707 is an A; nucleotide 4168, wherein

26

nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058 is a T; nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T; nucleotide 6195, wherein nucleotide 6195 is an A; nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T; or a combination thereof (see Example 2; see, also, Tables 3 and 4). Examples of a mutant PKD1 polynucleotide of the invention also include a polynucleotide that encodes a PKD1 polypeptide having substantially as set forth in SEQ ID NO:2, but having an A88V, W967R, G1166S; V1956E; R1995H; R2408C; D2604N; L2696R, R2985G, R3039C, V3285I, H3311R mutation, or a combination thereof, as well as polypeptides that have, for example, an addition of a Gly residue between amino acid residues 2441 and 2442 of SEQ ID NO:2 due to an insertion, or that terminate with amino acid 3000 of SEQ ID NO:2 due to the presence of a STOP codon at the position in SEQ ID NO:1 that would otherwise encode amino acid 3001 (see, also, Table 4; Example 2).

30

10

15

20

25

Additional examples of mutant PKD1 polynucleotides of the invention include polynucleotide sequences that selectively hybridize to the complements of the

27

polynucleotide sequences, or oligonucleotide portions thereof, as disclosed herein, under highly stringent hybridization conditions, e.g., hybridization to filter-bound DNA in 0.5M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1 x SSC/0.1% SDS at 68°C (Ausubel et al., Current Protocols in Molecular Biology, (Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York 1989), and supplements; see p. 2.10.3; Sambrook et al., Molecular Cloning: A laboratory manual (Cold Spring Harbor Laboratory Press, 1989), which are incorporated herein by reference), as well as polynucleotides that encode a PKD1 polypeptide substantially as set forth in SEQ ID NO:2, but having one or more mutations; or an RNA corresponding to such a polynucleotide.

5

10

15

20

25

30

A polynucleotide or polypeptide sequence that is "substantially identical" to a PKD1 polynucleotide of SEQ ID NO:1 or a polypeptide sequence of SEQ ID NO:2 generally is at least 80% or 85%, usually at least about 90%, and particularly at least about 95%, and preferably at least about 99% identical to the nucleotide sequence or amino acid sequence as set forth in SEQ ID NO:1 or SEQ ID NO:2, respectively. It should be recognized, however, that a mutation in a PKD1 gene sequence can result in the expression of a truncated PKD1 polypeptide, or even a complete loss of expression of the PKD1 polypeptide. As such, while a mutant PKD1 polynucleotide is identified as being substantially identical to SEQ ID NO:1, it may not always be possible to make the same comparison with respect to the encoded polypeptides. In one aspect of the invention, a polynucleotide or polypeptide sequence that is substantially identical to SEQ ID NO:1 or 2 will vary at one or more sites having a mutation, for example, a mutation present in a mutant PKD1 polynucleotide as set forth in the preceding paragraph. Sequence identity can be measured using sequence analysis software (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison WI 53705).

A polynucleotide or oligonucleotide portion thereof of the invention can be useful, for example, as a probe or as a primer for an amplification reaction. Reference to an "oligonucleotide portion" of a mutant PKD1 polynucleotide means a nucleotide

28

sequence of the mutant PKD1 polynucleotide that is less than the full length polynucleotide. Generally, a polynucleotide useful as a probe or a primer contains at least about 10 nucleotides, and usually contains about 15 to 30 nucleotides or more (see, for example, Tables 1 and 2). Polynucleotides can be prepared by any suitable method, including, for example, by restriction enzyme digestion of an appropriate polynucleotide, by direct chemical synthesis using a method such as the phosphotriester method (Narang et al., 1979, Meth. Enzymol., 68:90-99); the phosphodiester method (Brown et al., 1979, Meth. Enzymol., 68:109-151); the diethylphosphoramidite method (Beaucage et al., 1981, Tetrahedron Lett., 22:1859-1862); the triester method (Matteucci et al., 1981, J. Am. Chem. Soc., 103:3185-3191), including by automated synthesis methods; or by a solid support method (see, for example, U.S. Pat. No. 4,458,066). In addition, a polynucleotide or oligonucleotide can be prepared using recombinant DNA methods as disclosed herein or otherwise known in the art.

15

20

25

30

10

An oligonucleotide of the invention can include a portion of a mutant PKD1 polynucleotide, including, for example, a sequence substantially identical to that of SEQ ID NO:1, except wherein nucleotide 474 is a T; or wherein nucleotide 487 is an A; or wherein nucleotide 3110 is a C; or wherein nucleotide 8298 is a G; or wherein nucleotide 9164 is a G; or wherein nucleotide 9213 is an A; or wherein nucleotide 9326 is a T; or wherein nucleotide 9367 is a T; or wherein nucleotide 10064 is an A; or wherein nucleotide 10143 is a G; or wherein nucleotide 10234 is a C; or wherein nucleotide 10255 is a T; or wherein the oligonucleotide contains a combination of such substitutions with respect to SEQ ID NO:1. Thus, as disclosed herein, the oligonucleotide can be any length and can encompass one or more of the above mutations.

An oligonucleotide of the invention can selectively hybridize to a mutant PKD1 polynucleotide sequence as disclosed herein. As such, the oligonucleotide does not hybridize substantially, if at all, to a wild type PKD1 polynucleotide (i.e., to SEQ ID NO:1). As used herein, the term "selectively hybridize" refers to the ability of an oligonucleotide (or polynucleotide) probe to hybridize to a selected sequence, but not to

29

a highly related nucleotide sequence. For example, a oligonucleotide of the invention selectively hybridizes to a mutant PKD1 polynucleotide, but not substantially to a corresponding sequence of SEQ ID NO:1. As such, hybridization of the oligonucleotide to SEQ ID NO:1 generally is not above background, or, if some hybridization occurs, is at least about ten-fold less than the amount of hybridization that occurs with respect to the mutant PKD1 polynucleotide.

In addition, the term "hybridize" is used herein to have its commonly understood meaning of two nucleotide sequences that can associate due to shared complementarity. As disclosed herein, a primer of the invention can hybridize to PDK1 gene and may also hybridize to a PDK1 gene homolog, but generally does not substantially hybridize to a nucleotide sequence other than a PKD1 gene or PKD1 gene homolog. Desired hybridization conditions, including those that allow for selective hybridization, can be obtained by varying the stringency of the hybridization conditions, based, in part, on the length of the sequences involved, the relative G:C content, the salt concentration, and the like (see Sambrook et al., supra, 1989). Hybridization conditions that are highly stringent conditions are used for selective hybridization and can be used for hybridization of a primer or primer pair of the invention to a PKD1 gene or PKD1 gene homolog, and include, for example, washing in 6 x SSC/0.05% sodium pyrophosphate at about 37°C (for 14 nucleotide DNA probe), about 48°C (for 17 nucleotide probe), about 55°C (for a 20 nucleotide probe), and about 60°C (for a 23 nucleotide probe). As disclosed herein, polynucleotides that selectively hybridize to a mutant PKD1 polynucleotide provide a means to distinguish the mutant PKD1 polynucleotide from a wild type PKD1 polynucleotide.

25

30

5

10

15

20

A polynucleotide or oligonucleotide of the invention can be used as a probe to screen for a particular PKD1 variant or mutant of interest. In addition, the oligonucleotides of the invention include a PKD1 antisense molecule, which can be useful, for example, in PKD1 polynucleotide regulation and amplification reactions of PKD1 polynucleotide sequences, including mutant PKD1 polynucleotide sequences. Further, such oligonucleotides can be used as part of ribozyme or triple helix sequence for PKD1 gene regulation. Still further, such oligonucleotides can be used as a

component of diagnostic method, whereby the level of PKD1 transcript can be determined or the presence of an ADPKD-causing allele can be detected. Further, such oligonucleotides can be used, for example, to screen for and identify PKD1 homologs from other species.

The term "primer" or "PCR primer" refers to an isolated natural or synthetic oligonucleotide that can act as a point of initiation of DNA synthesis when placed under conditions suitable for primer extension. Synthesis of a primer extension product is initiated in the presence of nucleoside triphosphates and a polymerase in an appropriate buffer at a suitable temperature. A primer can comprise a plurality of primers, for example, where there is some ambiguity in the information regarding one or both ends of the target region to be synthesized. For instance, if a nucleic acid sequence is determined from a protein sequence, a primer generated to synthesize nucleic acid sequence encoding the protein sequence can comprise a collection of primers that contains sequences representing all possible codon variations based on the degeneracy of the genetic code. One or more of the primers in this collection will be homologous with the end of the target sequence or a sequence flanking a target sequence. Likewise, if a conserved region shows significant levels of polymorphism in a population, mixtures of primers can be prepared that will amplify adjacent sequences.

During PCR amplification, primer pairs flanking a target sequence of interest are used to amplify the target sequence. A primer pair typically comprises a forward primer, which hybridizes to the 5' end of the target sequence, and a reverse primer, which hybridizes to the 3' end of the target sequence. Except as otherwise provided herein, primers of the present invention are exemplified by those having the sequences set forth as SEQ ID NOS:3 to 51 and 61 to 113 (see Tables 1 and 2). Forward primers are exemplified by SEQ ID NOS:3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47 and 49; and reverse primers are exemplified by SEQ ID NOS:4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, and 50. A primer pair of the invention includes at least one forward primer and at least one reverse primer that allows for generation of an

amplification product, which can be a long range PKD1-specific amplification product or a nested amplification product of such an amplification product, including a forward and reverse primer as set forth in SEQ ID NOS:3 to 18 and of SEQ ID NOS:19 to 51 and 61 to 113, provided that the forward primer is 5' (or upstream) of the reverse primer with reference to a target polynucleotide sequence, and that the primers are in sufficient proximity such that an amplification product can be generated.

Nucleic acid sequences that encode a fusion protein can be produced and can be operatively linked to expression control sequences. Such fusion proteins and compositions are useful in the development of antibodies or to generate and purify peptides and polypeptides of interest. As used herein, the term "operatively linked" refers to a juxtaposition, wherein the components so described are in a relationship permitting them to function in their intended manner. For example, an expression control sequence operatively linked to a coding sequence is ligated such that expression of the coding sequence is achieved under conditions compatible with the expression control sequences, whereas two operatively linked coding sequences can be ligated such that they are in the same reading frame and, therefore, encode a fusion protein.

As used herein, the term "expression control sequences" refers to nucleic acid sequences that regulate the expression of a nucleic acid sequence to which it is operatively linked. Expression control sequences are operatively linked to a nucleic acid sequence when the expression control sequences control and regulate the transcription and, as appropriate, translation of the nucleic acid sequence. Thus, expression control sequences can include appropriate promoters, enhancers, transcription terminators, a start codon (*i.e.*, ATG) in front of a protein-encoding gene, splicing signals for introns, maintenance of the correct reading frame of that gene to permit proper translation of the mRNA, and STOP codons. Control sequences include, at a minimum, components whose presence can influence expression, and can also include additional components whose presence is

32

advantageous, for example, leader sequences and fusion partner sequences.

Expression control sequences can include a promoter.

A polynucleotide of the invention can comprise a portion of a recombinant nucleic acid molecule, which, for example, can encode a fusion protein. The polynucleotide, or recombinant nucleic acid molecule, can be inserted into a vector, which can be an expression vector, and can be derived from a plasmid, a virus or the like. The expression vector generally contains an origin of replication, a promoter, and one or more genes that allow phenotypic selection of transformed cells containing the vector. Vectors suitable for use in the present invention include, but are not limited to the T7-based expression vector for expression in bacteria (Rosenberg *et al.*, Gene 56:125, 1987), the pMSXND expression vector for expression in mammalian cells (Lee and Nathans, J. Biol. Chem. 263:3521, 1988); baculovirus-derived vectors for expression in insect cells; and the like.

15

20

25

30

10

The choice of a vector will also depend on the size of the polynucleotide sequence and the host cell to be employed in the methods of the invention. Thus, the vector used in the invention can be plasmids, phages, cosmids, phagemids, viruses (e.g., retroviruses, parainfluenzavirus, herpesviruses, reoviruses, paramyxoviruses, and the like), or selected portions thereof (e.g., coat protein, spike glycoprotein, capsid protein). For example, cosmids and phagemids are typically used where the specific nucleic acid sequence to be analyzed or modified is large because these vectors are able to stably propagate large polynucleotides. Cosmids and phagemids are particularly suited for the expression or manipulation of the PKD1 polynucleotide of SEQ ID NO:1 or a mutant PKD1 polynucleotide.

In yeast, a number of vectors containing constitutive or inducible promoters can be used (see Ausubel *et al.*, *supra*, 1989; Grant *et al.*, Meth. Enzymol. 153:516-544, 1987; Glover, DNA Cloning, Vol. II, IRL Press, Washington D.C., Ch. 3, 1986; and Bitter, Meth. Enzymol. 152:673-684, 1987; and The Molecular Biology of the Yeast Saccharomyces, Eds. Strathern *et al.*, Cold Spring Harbor Press, Vols. I and II, 1982). A constitutive yeast promoter such as ADH or LEU2 or an inducible promoter

33

such as GAL can be used ("Cloning in Yeast," Ch. 3, Rothstein, In "DNA Cloning" Vol. 11, A Practical Approach, ed. Glover, IRL Press, 1986). Alternatively, vectors can be used which promote integration of foreign DNA sequences into the yeast chromosome. The construction of expression vectors and the expression of genes in transfected cells involves the use of molecular cloning techniques also well known in the art (see Sambrook et al., supra, 1989; Ausubel et al., supra, 1989). These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination.

A polynucleotide or oligonucleotide can be contained in a vector and can be introduced into a cell by transformation or transfection of the cell. By "transformation" or "transfection" is meant a permanent (stable) or transient genetic change induced in a cell following incorporation of new DNA (*i.e.*, DNA exogenous to the cell). Where the cell is a mammalian cell, a permanent genetic change is generally achieved by introduction of the DNA into the genome of the cell.

10

15

20

25

30

A transformed cell or host cell can be any prokaryotic or eukaryotic cell into which (or into an ancestor of which) has been introduced, by means of recombinant DNA techniques, a polynucleotide sequence of the invention or fragment thereof. Transformation of a host cell can be carried out by conventional techniques as are well known to those skilled in the art. Where the host is prokaryotic, such as *E. coli*, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl₂ method by procedures well known in the art, or using MgCl₂ or RbCl. Transformation can also be performed after forming a protoplast of the host cell or by electroporation.

When the host is a eukaryote, such methods of transfection include the use of calcium phosphate co-precipitates, conventional mechanical procedures such as microinjection, electroporation, insertion of a plasmid encased in liposomes, or the use of virus vectors, or other methods known in the art. One method uses a eukaryotic viral vector, such as simian virus 40 (SV40) or bovine papillomavirus, to

34

transiently infect or transform eukaryotic cells and express the protein. (Eukaryotic Viral Vectors, Cold Spring Harbor Laboratory, Gluzman ed., 1982). Preferably, a eukaryotic host is utilized as the host cell as described herein. The eukaryotic cell can be a yeast cell (e.g., Saccharomyces cerevisiae), or can be a mammalian cell, including a human cell.

A variety of host-expression vector systems can be utilized to express a PKD1 polynucleotide sequence such as SEQ ID NO:1, a coding sequence of SEQ ID NO:1 or a mutant PKD1 polynucleotide. Such host-expression systems represent vehicles by which the nucleotide sequences of interest can be produced and subsequently purified, and also represent cells that, when transformed or transfected with the appropriate nucleotide coding sequences, can express a PKD1 protein, including a PKD1 variant or mutant polypeptide or peptide portion thereof in situ. Such cells include, but are not limited to, microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing a PKD1 polynucleotide, or oligonucleotide portion thereof (wild type, variant or other mutant); yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing a PKD1 polynucleotide, or oligonucleotide portions thereof (wild type, variant or other PKD1 mutant); insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing a PKD1 polynucleotide, or oligonucleotide portion thereof (wild type, PKD1 variant or other mutant); plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus or tobacco mosaic virus) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing a mutant PKD1 polynucleotide, or oligonucleotide portion thereof; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

30

5

10

15

20

25

In bacterial systems, a number of expression vectors can be advantageously selected depending upon the use intended for the PKD1 protein (wild type, variant or

5

10

15

20

25

30

35

other PKD1 mutant) being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies, which can be used to identify or diagnose PKD1-associated diseases or disorders, or to screen peptide libraries, vectors that direct the expression of high levels of fusion protein products that are readily purified can be desirable. Such vectors include, but are not limited to, the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a PKD1 polynucleotide, or oligonucleotide portion thereof (wild type, variant or other mutant) can be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye and Inouye, Nucl. Acids Res. 13:3101-3109, 1985; Van Heeke and Schuster, J. Biol. Chem. 264:5503-5509, 1989); and the like. pGEX vectors can also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned PKD1 protein, variant or mutant can be released from the GST moiety.

In an insect system, *Autographa californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. A PKD1 polynucleotide, or oligonucleotide portion thereof can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of a PKD1 polynucleotide, or oligonucleotide portion thereof will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (*i.e.*, virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect *Spodoptera frugiperda* cells in which the inserted gene is expressed (see Smith *et al.*, 1983, J. Virol. <u>46</u>:584; U.S. Pat. No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems can be utilized. In cases where an adenovirus is used as an expression vector, a PKD1 polynucleotide, or oligonucleotide portion thereof, can be ligated to an adenovirus

transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene can then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome such as the E1 or E3 region results in a recombinant virus that is viable and capable of expressing a PKD1 protein (e.g., wild-type, variants or mutants thereof) in infected hosts (Logan and Shenk, Proc. Natl. Acad. Sci., USA 81:3655-3659, 1984). Specific initiation signals can also be required for efficient translation of an inserted PKD1 sequence. These signals include the ATG initiation codon and adjacent sequences. Where an entire PKD1 polynucleotide, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals can be needed. However, where only a portion of a PKD1 sequence is inserted, exogenous translational control signals, including, for example, an ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, and the like (see Bittner et al., Meth. Enzymol. 153:516-544, 1987).

5

10

15

20

25

30

In addition, a host cell strain can be chosen which modulates the expression of the inserted sequences, or modifies and processes the expressed polypeptide in a specific fashion. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products can be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein being expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the polypeptide can be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and the like.

5

10

15

For long term, high yield production of recombinant proteins, stable expression is preferred. For example, cell lines that stably express a PKD1 protein, including wildtype, variants or mutants of PKD1, can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter and/or enhancer sequences, transcription terminators, polyadenylation sites, and the like), and a selectable marker. Following the introduction of the foreign DNA, engineered cells can be grown for 1-2 days in an enriched media, then switched to selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci, which can be cloned and expanded into cell lines. This method can advantageously be used to engineer cell lines that express a PKD1 variant or mutant polypeptide. Such engineered cell lines can be particularly useful in screening and evaluation of compounds that affect the endogenous activity of a variant or mutant PKD1 polypeptide. Such engineered cell lines also can be useful to discriminate between factors that have specific vs. non-specific effects. In particular, mutant cell lines should lack key functions, and various mutations can be used to identify key functional domains using in vivo assays.

A number of selection systems can be used, including but not limited to the 20 herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223, 1977), hypoxanthineguanine phosphoribosyltransferase (Szybalska and Szybalski, Proc. Natl. Acad. Sci. USA 48:2026, 1962), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817, 1980) genes can be employed in tk, hgprt or aprt cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers 25 resistance to methotrexate (Wigler et al., Proc. Natl. Acad. Sci. USA 77:3567, 1980; O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527, 1981); gpt, which confers resistance to mycophenolic acid Mulligan and Berg, Proc. Natl. Acad. Sci. USA 78:2072, 1981); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin et al., J. Mol. Biol. 150:1, 1981); and hygro, which confers resistance to hygromycin (Santerre 30 et al., Gene 30:147, 1984) genes. Accordingly, the invention provides a vector that contains a mutant PKD1 polynucleotide, or oligonucleotide portion thereof, or one or

38

more primers or their complements, including an expression vector that contains any of the foregoing sequences operatively associated with a regulatory element that directs the expression of a coding sequence or primer; and also provides a host cell that contains any of the foregoing sequences, alone or operatively associated with a regulatory element, which can directs expression of a polypeptide encoded the polynucleotide, as appropriate.

In addition to mutant PKD1 polynucleotide sequences disclosed herein, homologs of mutant PKD1 polynucleotide of the invention, including a non-human species, can be identified and isolated by molecular biological techniques well known in the art. Further, mutant PKD1 alleles and additional normal alleles of the human PKD1 polynucleotide, can be identified using the methods of the invention. Still further, there can exist genes at other genetic loci within the human genome that encode proteins having extensive homology to one or more domains of the PKD1 polypeptide (SEQ ID NO:2). Such genes can also be identified including associated variants and mutants by the methods of the invention.

10

15

20

25

30

A homolog of a mutant PKD1 polynucleotide sequence can be isolated by performing a polymerase chain reaction (PCR; see U.S. Pat. No. 4,683,202, which is incorporated herein by reference) using two oligonucleotide primers, which can be selected, for example, from among SEQ ID NOS:3 to 51, preferably from among SEQ ID NOS: 3 to 18, or can be degenerate primer pools designed on the basis of the amino acid sequences of a PKD1 polypeptide such as that set forth in SEQ ID NO:2 or a mutant thereof as disclosed herein. The template for the reaction can be cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known to express a PKD1 allele or PKD1 homologue. The PCR product can be subcloned and sequenced or manipulated in any number of ways (e.g., further manipulated by nested PCR) to insure that the amplified sequences represent the sequences of a PKD1 or a PKD mutant polynucleotide sequence. The PCR fragment can then be used to isolate a full length PKD1 cDNA clone (including clones containing a mutant PKD1 polynucleotide sequence) by labeling the amplified fragment and screening a nucleic acid library (e.g., a bacteriophage cDNA library).

39

Alternatively, the labeled fragment can be used to screen a genomic library (for review of cloning strategies, see, for example, Sambrook *et al.*, *supra*, 1989; Ausubel *et al.*, *supra*, 1989).

The present invention also provides a purified mutant PKD1 polypeptide, or a peptide portion thereof. As disclosed herein, a mutant PKD1 polypeptide has an amino acid sequence substantially identical to SEQ ID NO:2, and includes a mutation resulting in the deletion, addition (insertion), or substitution of an amino acid of SEQ ID NO:2, or is truncated with respect to SEQ ID NO:2. Examples of such mutations include, with respect to SEQ ID NO:2, an A88V, W967R, G1166S; V1956E; R1995H; R2408C; D2604N; L2696R, R2985G, R3039C, V3285I, or H3311R mutation, an addition of a Gly residue between amino acid residues 2441 and 2442 of SEQ ID NO:2 due to an insertion, or a truncated PKD1 polypeptide terminates with amino acid 3000 of SEQ ID NO:2 due to the presence of a STOP codon at the position in SEQ ID NO:1 that would otherwise encode amino acid 3001; as well as mutant PKD1 polypeptides having a combination of such mutations (see Table 4).

A mutant PKD1 polypeptide or peptide portion thereof can contain one or more of the exemplified mutations. As used herein, reference to a peptide portion of SEQ ID NO:2 or of a mutant PKD1 polypeptide refers to a contiguous amino acid sequence of SEQ ID NO:2 or of SEQ ID NO:2 including a mutation as disclosed herein, respectively, that contains fewer amino acids than full length wild type PKD1 polypeptide. Generally, a peptide portion of a PKD1 polypeptide or a mutant PKD1 polypeptide contains at least about five amino acids (or amino acid derivatives or modified amino acids), each linked by a peptide bond or a modified form thereof, usually contains at least about eight amino acids, particularly contains about ten amino acids, and can contain twenty or thirty or more amino acids of SEQ ID NO:2. In particular, where the peptide is a peptide portion of a mutant PKD1 polypeptide, the peptide includes a mutant amino acid with respect to SEQ ID NO:2.

30

5

10

15

20

25

The mutant PKD1 polypeptides and peptide fragments thereof of the invention include a PKD1 polypeptide or peptide having a sequence substantially identical to that

40

set forth in SEQ ID NO:2, and having one or a combination of the following mutations: A88V, W967R, L2696R, R2985G, R3039C, V3285I, or H3311R, or a mutation resulting in termination of the mutant PKD1 polypeptide at amino acid 3000 (with respect to SEQ ID NO:2) due to the presence of a STOP codon at the position that otherwise would encode amino acid 3001. The wild type PKD1 polypeptide (SEQ ID NO:2) contains 4303 amino acid residues and has a predicted molecular mass of approximately 467 kilodaltons (kDa). Further encompassed by the present invention are mutant PKD1 polypeptides that are truncated with respect to SEQ ID NO:2, for example, a mutation of SEQ ID NO:1 resulting in a G9213A, which results in premature termination of the encoded PKD1 polypeptide (see Example 2). Such truncated products can be associated with PKD1-associated disorders such as ADPKD (see, also, Table 4).

5

10

15

20

25

30

PKD1 polypeptides that are functionally equivalent to a wild type PKD1 polypeptide, including variant PKD1 polypeptides, which can contain a deletion. insertion or substitution of one or more amino acid residues with respect to SEO ID NO:2, but that nevertheless result in a phenotype that is indistinguishable from that conferred by SEQ ID NO:2, are encompassed within the present invention. Such amino acid substitutions, for example, generally result in similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, amphipatic nature or the like of the residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine and tyrosine. In many cases, however, a nucleotide substitution can be silent, resulting in no change in the encoded PKD1 polypeptide (see Example 2). Such variant PKD1 polynucleotides are exemplified by those encoded by the variant PKD1 polynucleotide sequences substantially identical to SEQ ID NO:1 (SEO ID NO:2), but containing (encoding) G487A (A92A), C9367T (G3052G), T10234C (L3341L), and G10255T (R3348R) as shown in Table 3 (see, also, Example 2), and by C9494T (L3095L).

41

Mutant PKD1 polypeptides and peptide portions thereof that are substantially identical to the PKD1 polypeptide SEQ ID NO:2 or peptide portions thereof, which cause ADPKD symptoms, are encompassed within the scope of the invention. Such mutant PKD1 polypeptides and peptide portions thereof can include dominant mutant PKD1 polypeptides, or PKD1 related polypeptides functionally equivalent to such mutant PKD1 polypeptides. Examples of mutant PKD1 polypeptide sequences include a polypeptide sequences substantially identical to SEQ ID NO:2 having one or more amino acid substitutions such as A88V, W967R, L2696R, R2985G, R3039C, V3285I, or H3311R, or truncated after amino acid 3000. A peptide portion of a mutant PKD1 polypeptide can be 3, 6, 9, 12, 20, 50, 100 or more amino acid residues in length, and includes at least one of the mutations identified above.

5

10

15

20

25

30

A PKD1 wild type or mutant polypeptide, or peptide portions thereof, can be purified from natural sources, as discussed below; can be chemically synthesized; or can be recombinantly expressed. For example, one skilled in the art can synthesize peptide fragments corresponding to a mutated portion of the PKD1 polypeptide as set forth in SEQ ID NO:2 (e.g., including residue 3110) and use the synthesized peptide fragment to generate polyclonal and monoclonal antibodies. Synthetic polypeptides or peptides can be prepared by chemical synthesis, for example, solid-phase chemical peptide synthesis methods, which are well known (see, for example, Merrifield, J. Am. Chem. Soc., 85:2149-2154, 1963; Stewart and Young, Solid Phase Peptide Synthesis, Second ed., Pierce Chemical Co., Rockford, Ill., pp. 11-12), and have been employed in commercially available laboratory peptide design and synthesis kits (Cambridge Research Biochemicals). Such commercially available laboratory kits have generally utilized the teachings of Geysen et al., Proc. Natl. Acad. Sci., USA, 81:3998 (1984) and provide for synthesizing peptides upon the tips of a multitude of rods or pins, each of which is connected to a single plate. When such a system is utilized, a plate of rods or pins is inverted and inserted into a second plate of corresponding wells or reservoirs. which contain solutions for attaching or anchoring an appropriate amino acid to the tips of the pins or rods. By repeating such a process step, i.e., inverting and inserting the tips of the rods or pins into appropriate solutions, amino acids are built into desired peptides.

42

A number of available FMOC peptide synthesis systems are available. For example, assembly of a polypeptide or fragment can be carried out on a solid support using an Applied Biosystems, Inc., Model 431A automated peptide synthesizer. Such equipment provides ready access to the peptides of the invention, either by direct synthesis or by synthesis of a series of fragments that can be coupled using other known techniques. Accordingly, methods for the chemical synthesis of polypeptides and peptides are well-known to those of ordinary skill in the art, e.g., peptides can be synthesized by solid phase techniques, cleaved from the resin and purified by preparative high performance liquid chromatography (see, e.g., Creighton, 1983, Proteins: Structures and Molecular Principles, W. H. Freeman & Co., N.Y., pp. 50-60). The composition of the synthetic peptides can be confirmed by amino acid analysis or sequencing; e.g., using the Edman degradation procedure (see e.g., Creighton, 1983, supra at pp. 34-49). Thus, fragments of the PKD1 polypeptide, variant, or mutant can be chemically synthesized. Peptides can then be used, for example, to generate antibodies useful in the detection of PKD1 variants and mutants, as well as the diagnosis of PKD1-associated disorder (e.g., ADPKD).

10

15

20

25

30

A PKD1 polypeptide or peptide, including variants or mutants of the invention, can be substantially purified from natural sources (e.g., purified from cells) using protein separation techniques, well known in the art. Such methods can separate the PKD1 polypeptide away from at least about 90% (on a weight basis), and from at least about 99% of other proteins, glycoproteins, and other macromolecules normally found in such natural sources. Such purification techniques can include, but are not limited to ammonium sulfate precipitation, molecular sieve chromatography, and/or ion exchange chromatography. Alternatively, or additionally, the PKD1 polypeptide, variant, or mutant can be purified by immunoaffinity chromatography using an immunoabsorbent column to which an antibody is immobilized that is capable of specifically binding the PKD1 polypeptide, variant, or mutant. Such an antibody can be monoclonal or polyclonal in origin. For example, an antibody that specifically binds to a mutant PKD1 polypeptide does not bind to a wild-type PKD1 polypeptide or peptide thereof. If the PKD1 polypeptide is glycosylated, the glycosylation pattern can be utilized as part of a purification scheme via, for example, lectin chromatography.

The cellular sources from which the PKD1 polypeptide, variant, or mutants thereof can be purified include, for example, those cells that are shown by northern and/or western blot analysis to express a PKD1 polynucleotide, variant, or mutant sequence. Preferably, such cellular sources are renal cells including, for example, renal tubular epithelial cells, as well as biliary duct cells, skeletal muscle cells, lung alveolar epithelial cells, placental cells, fibroblasts, lymphoblasts, intestinal epithelial cells, and endothelial cells. Other sources include biological fluids, fractionated cells such as organelle preparations, or tissues obtained from a subject. Examples of biological fluids of use with the invention are blood, serum, plasma, urine, mucous, and saliva. Tissue or cell samples can also be used with the invention. The samples can be obtained by many methods such as cellular aspiration, or by surgical removal of a biopsy sample.

PKD1 polypeptides, variants, or mutants of the invention can be secreted out of the cell. Such extracellular forms of the PKD1 polypeptide or mutants thereof can preferably be purified from whole tissue rather than cells, utilizing any of the techniques described above. PKD1 expressing cells such as those described above also can be grown in cell culture, under conditions well known to those of skill in the art. PKD1 polypeptide or mutants thereof can then be purified from the cell media using any of the techniques discussed above.

A PKD1 polypeptide, variant, or mutant can additionally be produced by recombinant DNA technology using the PKD1 nucleotide sequences, variants and mutants described above coupled with techniques well known in the art. Alternatively, RNA capable of encoding PKD1 polypeptides, or peptide fragments thereof, can be chemically synthesized using, for example, automated or semi-automated synthesizers (see, for example, "Oligonucleotide Synthesis", 1984, Gait, ed., IRL Press, Oxford, which is incorporated herein by reference).

30

25

5

15

20

When used as a component in the assay systems described herein, the mutant PKD1 polypeptide or peptide can be labeled, either directly or indirectly, to facilitate

44

detection of a complex formed between the PKD1 polypeptide and an antibody or nucleic acid sequence, for example. Any of a variety of suitable labeling systems can be used including, but not limited to, radioisotopes such as ¹²⁵I, enzyme labeling systems such as biotin-avidin or horseradish peroxidase, which generates a detectable colorimetric signal or light when exposed to substrate, and fluorescent labels.

The present invention also provides antibodies that specifically bind a PKD1 mutant or PKD1 variant, except that, if desired, an antibody of the invention can exclude an antibody as described in U.S. Pat. No. 5,891,628, which is incorporated herein by reference, or an antibody that that specifically binds a PKD1 mutant as described in U.S. Pat. No. 5,891,628. Antibodies that specifically bind a mutant PKD1 polypeptide are useful as diagnostic or therapeutic reagents and, therefore, can be used, for example, in a diagnostic assay for identifying a subject having or at risk of having ADPKD, and are particularly convenient when provided as a kit.

15

20

10

5

As used herein, the term "specifically binds," when used in reference to an antibody and an antigen or epitopic portion thereof, means that the antibody and the antigen (or epitope) have a dissociation constant of at least about 1 x 10⁻⁷, generally at least about 1 x 10⁻⁸, usually at least about 1 x 10⁻⁹, and particularly at least about 1 x 10⁻¹⁰ or less. Methods for identifying and selecting an antibody having a desired specificity are well known and routine in the art (see, for example, Harlow and Lane, "Antibodies: A Laboratory Manual" (Cold Spring Harbor Pub. 1988), which is incorporated herein by reference.

25

30

Methods for producing antibodies that can specifically bind one or more PKD1 polypeptide epitopes, particularly epitopes unique to a mutant PKD1 polypeptide, are disclosed herein or otherwise well known and routine in the art. Such antibodies can be polyclonal antibodies or monoclonal antibodies (mAbs), and can be humanized or chimeric antibodies, single chain antibodies, anti-idiotypic antibodies, and epitope-binding fragments of any of the above, including, for example, Fab fragments, F(ab')₂ fragments or fragments produced by a Fab expression library. Such antibodies can be used, for example, in the detection of PKD1 polypeptides, or mutant PKD1

WO 02/06529

polypeptides, including variant PKD1 polypeptides, which can be in a biological sample, or can be used for the inhibition of abnormal PKD1 activity. Thus, the antibodies can be utilized as part of ADPKD treatment methods, as well as in diagnostic methods, for example, to detect the presence or amount of a PKD1 polypeptide.

5

10

For the production of antibodies that bind to PKD1, including a PKD1 variant or PKD1 mutant, various host animals can be immunized by injection with a PKD1 polypeptide, mutant polypeptide, variant, or a portion thereof. Such host animals can include but are not limited to, rabbits, mice, and rats. Various adjuvants can be used to increase the immunological response, depending on the host species, including, but not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacillus Calmette-Guerin) or *Corynebacterium parvum*.

15

20

25

30

Antibodies that bind to a mutant PKD1 polypeptide, or peptide portion thereof, of the invention can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen. The polypeptide or a peptide used to immunize an animal can be derived from translated cDNA or chemical synthesis, and can be conjugated to a carrier protein, if desired. Such commonly used carriers that can be chemically coupled to the peptide include keyhole limpet hemocyanin, thyroglobulin, bovine serum albumin, tetanus toxoid and others as described above or otherwise known in the art. The coupled polypeptide or peptide is then used to immunize the animal and antiserum can be collected. If desired, polyclonal or monoclonal antibodies can be purified, for example, by binding to and elution from a matrix to which the polypeptide or a peptide to which the antibodies were raised is bound. Any of various techniques commonly used in immunology for purification and/or concentration of polyclonal antibodies, as well as monoclonal antibodies, can be used (see for example, Coligan, et al., Unit 9, Current Protocols in Immunology, Wiley Interscience, 1991, which is incorporated herein by reference).

46

Anti-idiotype technology can be used to produce monoclonal antibodies that mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region that is the image of the epitope bound by the first monoclonal antibody. Antibodies of the invention include polyclonal antibodies, monoclonal antibodies, and fragments of polyclonal and monoclonal antibodies that specifically bind to a mutant PKD1 polypeptide or peptide portion thereof.

10

15

20

25

30

The preparation of polyclonal antibodies is well known to those skilled in the art (see, for example, Green *et al.*, Production of Polyclonal Antisera, in Immunochemical Protocols (Manson, ed.), pages 1-5 (Humana Press 1992); Coligan *et al.*, Production of Polyclonal Antisera in Rabbits, Rats, Mice and Hamsters, in Current Protocols in Immunology, section 2.4.1 (1992), which are incorporated herein by reference). The preparation of monoclonal antibodies likewise is conventional (see, for example, Kohler and Milstein, Nature, 256:495, 1975, which is incorporated herein by reference; see, also Coligan *et al.*, *supra*, sections 2.5.1-2.6.7; and Harlow *et al.*, *supra*, 1988). Briefly, monoclonal antibodies can be obtained by injecting mice with a composition comprising an antigen, verifying the presence of antibody production by removing a serum sample, removing the spleen to obtain B lymphocytes, fusing the B lymphocytes with myeloma cells to produce hybridomas, cloning the hybridomas, selecting positive clones that produce antibodies to the antigen, and isolating the antibodies from the hybridoma cultures.

Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography, and ion-exchange chromatography (see Coligan *et al.*, sections 2.7.1-2.7.12 and sections 2.9.1-2.9.3; Barnes *et al.*, Purification of Immunoglobulin G (IgG), in Methods in Molecular Biology, Vol. 10, pages 79-104 (Humana Press 1992)). Methods of *in vitro* and *in vivo* multiplication of hybridoma cells expressing monoclonal antibodies is well-known to those skilled in the art. Multiplication *in vitro* can be carried out in suitable culture media such as Dulbecco's Modified Eagle Medium or RPMI 1640 medium, optionally

replenished by a mammalian serum such as fetal calf serum or trace elements and growth-sustaining supplements such as normal mouse peritoneal exudate cells, spleen cells, bone marrow macrophages. Production *in vitro* provides relatively pure antibody preparations and allows scale-up to yield large amounts of the desired antibodies. Large scale hybridoma cultivation can be carried out by homogenous suspension culture in an airlift reactor, in a continuous stirrer reactor, or in immobilized or entrapped cell culture. Multiplication *in vivo* can be carried out by injecting cell clones into mammals histocompatible with the parent cells, *e.g.*, syngeneic mice, to cause growth of antibody-producing tumors. Optionally, the animals are primed with a hydrocarbon, especially oils such as pristane tetramethylpentadecane prior to injection. After one to three weeks, the desired monoclonal antibody is recovered from the body fluid of the animal.

Therapeutic applications for antibodies disclosed herein are also part of the present invention. For example, antibodies of the present invention can be derived from subhuman primate antibodies. General techniques for raising therapeutically useful antibodies in baboons can be found, for example, in Goldenberg *et al.*, International Application Publication No. WO 91/11465, 1991; Losman *et al.*, Int. J. Cancer, <u>46</u>:310, 1990, which are incorporated herein by reference.

An anti-PKD1 antibody also can be derived from a "humanized" monoclonal antibody. Humanized monoclonal antibodies are produced by transferring mouse complementarity determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain, and then substituting human residues in the framework regions of the murine counterparts. The use of antibody components derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions. General techniques for cloning murine immunoglobulin variable domains are described, for example, by Orlandi *et al.*, Proc. Natl. Acad. Sci. USA <u>86</u>:3833, 1989, which is incorporated herein by reference. Techniques for producing humanized monoclonal antibodies are described, for example, by Jones *et al.*, Nature, <u>321</u>:522, 1986; Riechmann *et al.*, Nature <u>332</u>:323, 1988; Verhoeyen *et al.*, Science <u>239</u>:1534, 1988; Carter *et al.*, Proc. Natl. Acad. Sci. USA,

48

89:4285, 1992; Sandhu, Crit. Rev. Biotech. 12:437, 1992; and Singer *et al.*, J. Immunol. 150:2844, 1993, which are incorporated herein by reference.

Antibodies of the invention also can be derived from human antibody fragments isolated from a combinatorial immunoglobulin library (see, for example, Barbas *et al.*, Methods: A Companion to Methods in Enzymology, Vol. 2, page 119, 1991; Winter *et al.*, Ann. Rev. Immunol. 12:433, 1994, which are incorporated herein by reference). Cloning and expression vectors that are useful for producing a human immunoglobulin phage library can be obtained, for example, from Stratagene (La Jolla CA).

10

15

20

25

30

5

In addition, antibodies of the present invention can be derived from a human monoclonal antibody. Such antibodies are obtained from transgenic mice that have been "engineered" to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain loci are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens, and the mice can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described by Green *et al.*, Nature Genet., 7:13 (1994); Lonberg *et al.*, Nature, 368:856 (1994); and Taylor *et al.*, Int. Immunol., 6:579 (1994), which are incorporated herein by reference.

Antibody fragments of the invention can be prepared by proteolytic hydrolysis of an antibody or by expression in *E. coli* of DNA encoding the fragment. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. For example, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S fragment denoted F(ab')₂. This fragment can be further cleaved using a thiol reducing agent, and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab' monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly. These methods are described, for example, by Goldenberg, U.S. Pat. Nos. 4,036,945 and 4,331,647, and

references contained therein, each of which in incorporated herein by reference (see, also, Nisonhoff *et al.*, Arch. Biochem. Biophys, <u>89</u>:230, 1960; Porter, Biochem. J. <u>73</u>:119, 1959; Edelman *et al.*, Meth. Enzymol. 1:422, 1967; and Coligan *et al.*, at sections 2.8.1-2.8.10 and 2.10.1-2.10.4). Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical, or genetic techniques can also be used, provided the fragments bind to the antigen that is recognized by the intact antibody.

Fv fragments comprise an association of V_H and V_L chains, for example, which can be noncovalent (see Inbar *et al.*, Proc. Natl. Acad. Sci. USA <u>69</u>:2659, 1972). The variable chains also can be linked by an intermolecular disulfide bond, can be crosslinked by a chemical such as glutaraldehyde (Sandhu, *supra*, 1992), or F_v fragments comprising V_H and V_L chains can be connected by a peptide linker. These single chain antigen binding proteins (sFv) are prepared by constructing a structural gene comprising DNA sequences encoding the V_H and V_L domains connected by an oligonucleotide. The structural gene is inserted into an expression vector, which is subsequently introduced into a host cell such as *E. coli*. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing sFvs are described, for example, by Whitlow *et al.*, Methods: A Companion to Meth. Enzymol., 2:97, 1991; Bird *et al.*, Science <u>242</u>:423, 1988; Ladner *et al.*, U.S. Patent No. 4,946,778; Pack *et al.*, BioTechnology <u>11</u>:1271, 1993; and Sandhu, *supra*, 1992).

Another form of an antibody fragment is a peptide coding for a single complementarity determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells (see, for example, Larrick *et al.*, Methods: A Companion to Meth. Enzymol., 2:106, 1991).

50

A variety of methods can be employed utilizing reagents such as a mutant PKD1 polynucleotide, or oligonucleotide portion thereof and antibodies directed against a mutant PKD1 polypeptide or peptide. Specifically, such reagents can be used for the detection of the presence of PKD1 mutations, e.g., molecules present in diseased tissue but absent from, or present in greatly reduced levels compared or relative to the corresponding non-diseased tissue.

The methods described herein can be performed, for example, by utilizing pre-packaged kits, which can be diagnostic kits, comprising at least one specific oligonucleotide portion of a PKD1 gene or mutant PKD1 polynucleotide, a primer pair, or an anti-PKD1 antibody reagent as disclosed herein, which can be conveniently used, for example, in a clinical setting to diagnose subjects exhibiting PKD1 abnormalities or to detect PKD1-associated disorders, including ADPKD. Any tissue in which a PKD1 polynucleotide is expressed can be utilized in a diagnostic method of the invention.

15

20

25

30

10

5

Nucleic acids from a tissue to be analyzed can be isolated using procedures that are well known in the art, or a diagnostic procedures can be performed directly on a. tissue section (fixed or frozen), which can be obtained from a subject by biopsy or resection, without further purification. Oligonucleotide sequences of the invention can be used as probes or primers for such in situ procedures (Nuovo, 1992, PCR in situ hybridization: protocols and applications, Raven Press, N.Y.). For example, oligonucleotide probes useful in the diagnostic methods of the invention include nucleotide sequences having at least 10 contiguous nucleotides and having a sequence substantially identical to a portion of SEQ ID NO:1, and including nucleotide 474. wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T, or a combination thereof. Primers

useful in the present invention include those set forth in SEQ ID NOS:3 to 18 and SEQ ID NOS: 19 to 51 and 61 to 112. Such primers flank and can be used to amplify sequences containing one or more mutated nucleotides of a mutant PKD1 polynucleotide.

PKD1 polynucleotide sequences, either RNA or DNA, can be used in hybridization or amplification assays of biological samples to detect abnormalities of PKD1 expression; *e.g.*, Southern or northern blot analysis, single stranded conformational polymorphism (SSCP) analysis including *in situ* hybridization assays, or polymerase chain reaction analyses, including detecting abnormalities by a methods such as denaturing high performance liquid chromatography (DHPLC; also referred to as temperature-modulated heteroduplex chromatography) or conformation sensitive gel electrophoresis (CSGE), both of which are readily adaptable to high throughput analysis (see, for example, Kristensen et al., BioTechniques 30:318-332, 2001; Leung et al., BioTechniques 30:334-340, 2001, which are incorporated herein by reference). Such analyses can reveal quantitative abnormalities in the expression pattern of the PKD1 polynucleotide, and, if the PKD1 mutation is, for example, an extensive deletion, or the result of a chromosomal rearrangement, can reveal more qualitative aspects of the PKD1 abnormality.

Diagnostic methods for detecting a mutant PKD1 polynucleotide can involve, for example, contacting and incubating nucleic acids derived from a tissue sample being analyzed, with one or more labeled oligonucleotide probes of the invention or with a primer or primer pair of the invention, under conditions favorable for the specific annealing of these reagents to their complementary sequences within the target molecule. After incubation, non-annealed oligonucleotides are removed, and hybridization of the probe or primer, if any, to a nucleic acid from the target tissue is detected. Using such a detection scheme, the target tissue nucleic acid can be immobilized, for example, to a solid support such as a membrane, or a plastic surface such as that on a microtiter plate or polystyrene beads. In this case, after incubation, non-annealed, labeled nucleic acid reagents are easily removed. Detection of the remaining, annealed, labeled nucleic acid reagents is accomplished using standard techniques well known to those in the art.

WO 02/06529

Oligonucleotide probes or primers of the invention also can be associated with a solid matrix such as a chip in an array, thus providing a means for high throughput methods of analysis. Microfabricated arrays of large numbers of oligonucleotide probes (DNA chips) are useful for a wide variety of applications. Accordingly, methods of diagnosing or detecting a PKD1 variant or mutant can be implemented using a DNA chip for analysis of a PKD1 polynucleotide and detection of mutations therein. A methodology for large scale analysis on DNA chips is described by Hacia *et al.* (Nature Genet. 14:441-447, 1996; U.S. Pat. No. 6,027,880, which are incorporated herein by reference; see, also, Kristensen et al., *supra*, 2001). As described in Hacia *et al.*, high density arrays of over 96,000 oligonucleotides, each about 20 nucleotides in length, are immobilized to a single glass or silicon chip using light directed chemical synthesis. Contingent on the number and design of the oligonucleotide probe, potentially every base in a sequence can be examined for alterations.

15

20

25

30

5

10

Polynucleotides or oligonucleotides applied to a chip can contain sequence variations, which can be used to identify mutations that are not yet known to occur in the population, or they can only those mutations that are known to occur, including those disclosed herein (see Example 2). Examples of oligonucleotides that can be applied to the chip include oligonucleotides containing at least 10 contiguous nucleotides and having a sequence substantially identical to a portion of SEQ ID NO:1, and including nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 3336 is deleted; nucleotide 3707, wherein nucleotide 3707 is an A; nucleotide 4168, wherein nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058 is a T; nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T; nucleotide 6195, wherein nucleotide 6195 is an A; nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to

nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T; or a combination thereof.

Prior to hybridization with oligonucleotide probes on the chip, the test sample is isolated, amplified and labeled (e.g. fluorescent markers). The test polynucleotide sample is then hybridized to the immobilized oligonucleotides. The intensity of sequence-based techniques of the target polynucleotide to the immobilized probe is quantitated and compared to a reference sequence. The resulting genetic information can be used in molecular diagnosis. A common utility of the DNA chip in molecular diagnosis is screening for known mutations.

In addition to DNA chip methodology, methods using machinery adapted to DNA analysis can allow for commercialization of the disclosed methods of detection of PKD1 mutations and diagnosis of ADPKD. For example, genotyping by mass spectrometry can be used, or matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry can be used for mass genotyping of single-base pair and short tandem repeat mutant and variant sequences. For example, PCR amplification of the region of the mutation with biotin attached to one of the primers can be conducted, followed by immobilization of the amplified DNA to streptavidin beads. Hybridization of a primer adjacent to the variant or mutant site is performed, then extension with DNA polymerase past the variant or mutant site in the presence of dNTPs and ddNTPs is

performed. When suitably designed according to the sequence, this results in the addition of only a few additional bases (Braun, Little, Koster, 1997). The DNA is then processed to remove unused nucleotides and salts, and the short primer plus mutant site is removed by denaturation and transferred to silicon wafers using a piezoelectric pipette. The mass of the primer+variant or mutant site is then determined by delayed extraction MALDI-TOF mass spectrometry. Single base pair and tandem repeat variations in sequence are easily determined by their mass. This final step is very rapid, requiring only 5 sec per assay, and all of these steps can be automated, providing the potential of performing up to 20,000 genotypings per day. This technology is rapid, extremely accurate, and adaptable to any variant or mutation, can identify both single base pair and short tandem repeat variants, and adding or removing variant or mutant sequences to be tested can be done in a few seconds at trivial cost.

5

10

15

20

25

30

Another diagnostic methods for the detection of mutant PKD1 polynucleotides involves amplification, for example, by PCR (see U.S. Patent No. 4,683,202), ligase chain reaction (Barany, Proc. Natl. Acad. Sci. USA 88:189-193, 1991a), self sustained sequence replication (Guatelli *et al.*, Proc. Natl. Acad. Sci. USA 87:1874-1878, 1990), transcriptional amplification system (Kwoh *et al.*, Proc. Natl. Acad. Sci. USA 86:1173-1177, 1989), Q-Beta Replicase (Lizardi *et al.*, Bio/Technology 6:1197, 1988), or any other RNA amplification method, followed by the detection of the amplification products. The present invention provides reagents, methods and compositions that can be used to overcome prior difficulties with diagnosing ADPKD.

Using the primer pairs and methods described herein, the entire replicated segment of the PKD1 gene, including exons 1 and 22, can be amplified from genomic DNA to generate a set of eight long range amplification products, which range in size from about 0.3 kb to 5.8 kb (Table 1; see, also, Figure 1). The availability of widely scattered PKD1-specific primers provides a means to anchor PKD1-specific amplification, and the ability to use various primer combinations provides a means to produce longer or shorter amplification products as desired. For example, the largest PKD1 fragment, which is amplified by primers BPF13 and KG8R25 (see Table 1; SEQ ID NOS: 17 and 18, respectively), can be divided into two shorter segments by

WO 02/06529

using the PKD1-specific primer, KG85R25 (SEQ ID NO:18), with forward nested primer F32 (5'-GCCTTGCGCAGCTTGGACT-3'; SEQ ID NO:53), and using BPF13 (SEQ ID NO:17) and a second specific primer, 31R (5'-ACAGTGTCTTGAGTCCAAGC-3'; SEQ ID NO:54).

5

10

15

It should be recognized that, while many of the primers disclosed herein are positioned with intronic sequences of the PKD1 gene, others such as SEQ ID NO:16 are positioned in coding sequences. As such, a cDNA molecule can obtained from a target RNA molecule, for example, by reverse transcription of the RNA molecule using a primer such as SEQ ID NO:16 and an appropriate second primer positioned 5' or 3' to SEQ ID NO:16. In this embodiment, a PKD1 RNA can be isolated from any tissue in which wild type PKD1 is known to be expressed, including, for example, kidney tissue, nucleated peripheral blood cells, and fibroblasts. A target sequence within the cDNA is then used as the template for a nucleic acid amplification reaction, such as a PCR amplification reaction, or the like. An amplification product can be detected, for example, using radioactively or fluorescently labeled nucleotides or the like and an appropriate detection system, or by generating a sufficient amount of the amplification product such that it can be visualized by ethidium bromide staining and gel electrophoresis.

20

25

30

Genomic DNA from a subject, including from a cell or tissue sample, can be used as the template for generating a long range PKD1-specific amplification product. Methods of isolating genomic DNA are well known and routine (see Sambrook et al., supra, 1989). Amplification of the genomic PKD1 DNA has advantages over the cDNA amplification process, including, for example, allowing for analysis of exons and introns of the PKD1 gene. As such, a target sequence of interest associated with either an intron or exon sequence of a PKD1 gene can be amplified and characterized. A target sequence of interest is any sequence or locus of a PKD1 gene that contains or is thought to contain a mutation, including those mutations that correlate to a PKD1-associated disorder or disease.

56

Using primers flanking the target sequence, a sufficient number of PCR cycles is performed to provide a PKD1-specific amplification product corresponding to the target sequence. If desired, additional amplification can be performed, for example, by performing a nested PCR reaction. Examples of primers useful for generating a PKD1-specific first amplification product from genomic DNA include the primer pairs having sequences as exemplified in SEQ ID NO:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; and SEQ ID NOS:17 and 18. The PKD1specific first amplification product can be further amplified using nested primers specific for a target sequence, including the primer pairs exemplified as SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; and the primer pairs formed using consecutive primers set forth in Table 2 as SEQ ID NOS:62 to 96, 113, and 97 to 112.

10

15

20

25

30

The amplified target sequences can be examined for changes (i.e., mutations) with respect to SEQ ID NO:1 using any of various well known methods as disclosed herein or otherwise known in the art. For example, the amplification products can simply be sequenced using routine DNA sequencing methods, particularly where only one or few amplification products are to be examined. However, DNA sequencing will be more valuable as a method of detecting mutations according to a method of the invention as sequencing technology improves and becomes more adaptable to high throughput screening assays. In addition, methods that are useful for detecting the presence of a mutation in a DNA sequence include, for example, DHPLC (Huber et al., Nucl. Acids Res. 21:1061-10666, 1993; Liu et al., Nucl. Acids Res. 26:1396-1400, 1998; Choy et al., Ann. Hum. Genet. 63:383-391, 1999; Ellis et al., Hum. Mutat. 15:556-564, 2000; which are incorporated herein by reference; see, also, Kristensen et al., *supra*, 2001); CSGE (Leung et al., *supra*, 2001); single-stranded conformation analysis (SSCA; Orita *et al.*, Proc. Natl. Acad. Sci., USA 86:2766-2770, 1989); denaturing gradient gel

electrophoresis (DGGE; Sheffield *et al.*, Proc. Natl. Acad. Sci., USA 86:232-236, 1989); RNase protection assays; allele-specific oligonucleotides (ASOs; Handelin and Shuber, Current Protocols in Human Genetics, Suppl. 16 (John Wiley & Sons, Inc. 1998), 9:9.4.1-9.4.8); the use of proteins that recognize nucleotide mismatches, such as the *E. coli* mutS protein; and allele-specific PCR.

For allele-specific PCR, primers are used that hybridize at their 3' ends to a particular mutations. Examples of primers that can be used for allele specific PCR include an oligonucleotide of at least 10 nucleotide of SEQ ID NO:1 and that has at its 3' end nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T. If the particular mutation is not present, an amplification product is not observed. Amplification Refractory Mutation System (ARMS) can also be used (see European Patent Application Publ. No. 0332435; Newton et al., Nucl. Acids. Res. 17:2503-2516, 1989).

In the SSCA, DGGE and RNase protection methods, a distinctive electrophoretic band appears. SSCA detects a band that migrates differentially because the sequence change causes a difference in single-strand, intramolecular base pairing. RNase protection involves cleavage of the mutant polynucleotide into two or more smaller fragments. DGGE detects differences in migration rates of mutant sequences compared to wild-type sequences, using a denaturing gradient gel. In an allele-specific oligonucleotide assay, an oligonucleotide is designed that detects a specific sequence, and the assay is performed by detecting the presence or absence of a hybridization signal. In the mutS assay, the protein binds only to sequences that contain a nucleotide mismatch in a heteroduplex between mutant and wild-type sequences.

5

10

15

20

25

30

58

Denaturing gradient gel electrophoresis is based on the melting behavior of the DNA fragments and the use of denaturing gradient gel electrophoresis as shown by Fischer and Lerman, Proc. Natl. Acad. Sci. USA 80:1579-83, 1983; Myers et al.; Nucl. Acids Res. 13:3111-3129, 1985; Lerman et al., in Molecular Biol. of Homo Sapiens, Cold Spring Harbor Lab. (1986) pp. 285-297. DNA fragments differing by single base substitutions can be separated from each other by electrophoresis in polyacrylamide gels containing an ascending gradient of the DNA denaturants urea and formamide. Two identical DNA fragments differing by only one single base pair, will initially move through the polyacrylamide gel at a constant rate. As they migrate into a critical concentration of denaturant, specific domains within the fragments melt to produce partially denatured DNA. Melting of a domain is accompanied by an abrupt decrease in mobility. The position in the denaturant gradient gel at which the decrease in mobility is observed corresponds to the melting temperature of that domain. Since a single base substitution within the melting domain results in a melting temperature difference, partial denaturation of the two DNA fragments will occur at different positions in the gel. DNA molecules can therefore be separated on the basis of very small differences in the melting temperature. Additional improvements to this DGGE have been made as disclosed by Borresen in US Patent No. 5,190,856. In addition, after a first DGGE analysis, an identified product can be cloned, purified and analyzed a second time by DGGE.

Denaturing high performance liquid chromatography (DHPLC; Kristensen et al., supra, 2001) and high throughput conformation sensitive gel electrophoresis (HTCSGD; Leung et al., supra, 2001) are particularly useful methods for detecting a mutant PKD1 polynucleotide sequence because the methods are readily adaptable to high throughput analysis. In addition, these methods are suitable for detecting known mutations as well as identifying previously unknown mutations. As such, these methods of detection can be adopted for use in clinical diagnostic settings. DHPLC, for example, can be used to rapidly screen a large number of samples, for example, 96 samples prepared using a 96 well microtiter plate format, to identify those showing a change in the denaturation properties. Where such a change is identified, confirmation that the PKD1

59

polynucleotide in the sample showing the altered denaturation property is a mutant PKD1 polynucleotide can be confirmed by DNA sequence analysis, if desired.

5

10

15

20

25

30

An oligonucleotide probe specific for a mutant PKD1 polynucleotide also can be used to detect a mutant PKD1 polynucleotide in a biological sample, including in a biological fluid, in cells or tissues obtained from a subject, or in a cellular fraction such as an organelle preparation. Cellular sources useful as samples for identifying a mutant PKD1 polynucleotide include, for example, renal cells including renal tubular epithelial cells, bile duct cells, skeletal muscle cells, lung alveolar epithelial cells, placental cells, fibroblasts and lymphocytes. Biological fluids useful as samples for identifying a mutant PKD1 polynucleotide include, for example, whole blood or serum or plasma fractions, urine, mucous, and saliva. A biological sample such as a tissue or cell sample can be obtained by any method routinely used in a clinical setting, including, for example, by cellular aspiration, biopsy or other surgical procedure.

The oligonucleotide probe can be labeled with a compound that allows detection of binding to a mutant PKD1 polynucleotide in the sample. A detectable compound can be, for example, a radioactive label, which provides a highly sensitive means for detection, or a non-radioactive label such as a fluorescent, luminescent, chemiluminescent, or enzymatically detectable label or the like (see, for example, Matthews *et al.*, Anal. Biochem. 169:1-25, 1988).

The method of detection can be a direct or indirect method. An indirect detection process can involve, for example, the use of an oligonucleotide probe that is labeled with a hapten or ligand such as digoxigenin or biotin. Following hybridization, the target-probe duplex is detected by the formation of an antibody or streptavidin complex, which can further include an enzyme such as horseradish peroxidase, alkaline phosphatase, or the like. Such detection systems can be prepared using routine methods, or can be obtained from a commercial source. For example, the GENIUS detection system (Boehringer Mannheim) is useful for mutational analysis of DNA, and provides an indirect method using digoxigenin as a tag for the

oligonucleotide probe and an anti-digoxigenin-antibody-alkaline phosphatase conjugate as the reagent for identifying the presence of tagged probe.

Direct detection methods can utilize, for example, fluorescent labeled oligonucleotides, lanthanide chelate labeled oligonucleotides or oligonucleotideenzyme conjugates. Examples of fluorescent labels include fluorescein, rhodamine and phthalocyanine dyes. Examples of lanthanide chelates include complexes of europium (Eu³⁺) or terbium (Tb³⁺). Oligonucleotide-enzyme conjugates are particularly useful for detecting point mutations when using target-specific oligonucleotides, as they provide very high sensitivities of detection. Oligonucleotide-enzyme conjugates can be prepared by a number of methods (Jablonski *et al.*, Nucl. Acids Res. 14:6115-6128, 1986; Li *et al.*, Nucl. Acids. Res. 15:5275-5287, 1987; Ghosh *et al.*, Bioconjugate Chem. 1:71-76, 1990). The detection of target nucleic acids using these conjugates can be carried out by filter hybridization methods or by bead-based sandwich hybridization (Ishii *et al.*, Bioconjugate Chem. 4:34-41, 1993).

Methods for detecting a labeled oligonucleotide probe are well known in the art and will depend on the particular label. For radioisotopes, detection is by autoradiography, scintillation counting or phosphor imaging. For hapten or biotin labels, detection is with antibody or streptavidin bound to a reporter enzyme such as horseradish peroxidase or alkaline phosphatase, which is then detected by enzymatic means. For fluorophor or lanthanide chelate labels, fluorescent signals can be measured with spectrofluorimeters, with or without time-resolved mode or using automated microtiter plate readers. For enzyme labels, detection is by color or dye deposition, for example, p-nitrophenyl phosphate or 5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium for alkaline phosphatase, and 3,3'-diaminobenzidine-NiCl₂ for horseradish peroxidase, fluorescence by 4-methyl umbelliferyl phosphate for alkaline phosphatase, or chemiluminescence by the alkaline phosphatase dioxetane substrates LumiPhos 530 (Lumigen Inc., Detroit MI) or AMPPD and CSPD (Tropix, Inc.). Chemiluminescent detection can be carried out with X-ray or Polaroid film, or

5

10

15

20

25

30

61

by using single photon counting luminometers, which also is a useful detection format for alkaline phosphatase labeled probes.

Mutational analysis can also be carried out by methods based on ligation of oligonucleotide sequences that anneal immediately adjacent to each other on a target DNA or RNA molecule (Wu and Wallace, Genomics 4:560-569, 1989; Landren et al., Science 241:1077-1080, 1988; Nickerson et al., Proc. Natl. Acad. Sci. USA 87:8923-8927, 1990; Barany, supra, 1991a). Ligase-mediated covalent attachment occurs only when the oligonucleotides are correctly base-paired. The ligase chain reaction (LCR) and the oligonucleotide ligation assay (OLA), which utilize the thermostable Taq ligase for target amplification, are particularly useful for interrogating mutation loci. The elevated reaction temperatures permit the ligation reaction to be conducted with high stringency (Barany, PCR Methods and Applications 1:5-16, 1991b; Grossman et al., Nucl. Acids. Res. 22:4527-4534, 1994, which are incorporated herein by reference).

Analysis of point mutations in DNA can also be carried out by using PCR and variations thereof. Mismatches can be detected by competitive oligonucleotide priming under hybridization conditions where binding of the perfectly matched primer is favored (Gibbs *et al.*, Nucl. Acids. Res. 17:2437-2448, 1989). In the amplification refractory mutation system technique (ARMS), primers can be designed to have perfect matches or mismatches with target sequences either internal or at the 3' residue (Newton *et al.*, *supra*, 1989). Under appropriate conditions, only the perfectly annealed oligonucleotide can function as a primer for the PCR reaction, thus providing a method of discrimination between normal and mutant sequences.

Detection of single base mutations in target nucleic acids can be conveniently accomplished by differential hybridization techniques using sequence-specific oligonucleotides (Suggs *et al.*, Proc. Natl. Acad. Sci. USA <u>78</u>:6613-6617, 1981; Conner *et al.*, Proc. Natl. Acad. Sci. USA <u>80</u>:278-282, 1983; Saiki *et al.*, Proc. Natl. Acad. Sci. USA <u>86</u>:6230-6234, 1989). Mutations can be diagnosed on the basis of the higher thermal stability of the perfectly matched probes as compared to the

62

mismatched probes. The hybridization reactions can be carried out in a filter-based format, in which the target nucleic acids are immobilized on nitrocellulose or nylon membranes and probed with oligonucleotide probes. Any of the known hybridization formats can be used, including Southern blots, slot blots, reverse dot blots, solution hybridization, solid support based sandwich hybridization, bead-based, silicon chipbased and microtiter well-based hybridization formats.

5

15

20

30

An alternative strategy involves detection of the mutant sequences by sandwich hybridization methods. In this strategy, the mutant and wild type target nucleic acids are separated from non-homologous DNA/RNA using a common capture oligonucleotide immobilized on a solid support and detected by specific oligonucleotide probes tagged with reporter labels. The capture oligonucleotides can be immobilized on microtiter plate wells or on beads (Gingeras *et al.*, J. Infect. Dis. 164:1066-1074, 1991; Richen *et al.*, Proc. Natl. Acad. Sci. USA 88:11241-11245, 1991).

Another method for analysis of a biological sample for specific mutations in a PKD1 polynucleotide sequence (e.g., mutant PKD1 polynucleotides, or oligonucleotide portions thereof) is a multiplexed primer extension method. In this method primer is hybridized to a nucleic acid suspected of containing a mutation such that the primer is hybridized 3' to the suspected mutation. The primer is extended in the presence of a mixture of one to three deoxynucleoside triphosphates and one of three chain terminating deoxynucleoside triphosphates selected such that the wild-type extension product, the mutant DNA-derived extension product and the primer each are of different lengths. These steps can be repeated, such as by PCR or RT-PCR, and the resulting primer extended products and primer are then separated on the basis of molecular weight to thereby enable identification of mutant DNA-derived extension product.

In one aspect of the invention, the OLA is applied for quantitative mutational analysis of PKD1 polynucleotide sequences (Grossman, *et al.*, *supra*, 1994). In this embodiment of the invention, a thermostable ligase-catalyzed reaction is used to link

63

a fluorescently labeled common probe with allele-specific probes. The latter probes are sequence-coded with non-nucleotide mobility modifiers that confer unique electrophoretic mobilities to the ligation products.

Oligonucleotides specific for wild type or mutant PKD1 sequences can be synthesized with different oligomeric nucleotide or non-nucleotide modifier tails at their 5' termini. Examples of nucleotide modifiers are inosine or thymidine residues, whereas examples of non-nucleotide modifiers include pentaethyleneoxide (PEO) and hexaethyleneoxide (HEO) monomeric units. The non-nucleotide modifiers are preferred and most preferably PEO is used to label the probes. When a DNA template is present, a thermostable DNA ligase catalyzes the ligation of normal and mutant probes to a common probe bearing a fluorescent label. The PEO tails modify the mobilities of the ligation products in electrophoretic gels. The combination of PEO tails and fluorophor labels (TET and FAM (5-carboxy-fluorescein derivatives)), HEX and JOE (6-carboxy-fluorescein derivatives), ROX (6-carboxy-x-rhodamine), or TAMRA (N, N, N', N'-tetramethyl-6-carboxy-rhodamine; Perkin-Elmer, ABI Division, Foster City CA) allow multiplex analysis based on size and color by providing unique electrophoretic signatures to the ligation products. The products are separated by electrophoresis, and fluorescence intensities associated with wild type and mutant products are used to quantitate heteroplasmy. Thus, wild type and mutant, including variant, sequences are detected and quantitated on the basis of size and fluorescence intensities of the ligation products. This method further can be configured for quantitative detection of multiple PKD1 polynucleotide mutations in a single ligation reaction.

25

30

15

20

5

Mismatch detection or mutation analysis can also be performed using mismatch specific DNA intercalating agents. Such agents intercalate at a site having a mismatch followed by visualization on a polyacrylamide or agarose gel or by electrocatalysis. Accordingly, PKD1 polynucleotide sequences can be contacted with probes specific for a PKD1 mutation or probes that are wild type for an area having a specific mutation under conditions such that the PKD1 polynucleotide and probe hybridize. The hybridized sequences are then contacted with a mismatch intercalating

64

agent and, for example, separated on a gel. Visualized bands on the gel correspond to a sequence having a mismatch. If the probes are wild-type probes mismatches will occur if the target PKD1 sequence contains a mismatch. If the probes are specific for a mutated sequence mismatches will be present where the target PKD1 sequence is wild type, but the hybridized or duplex sequences will not contain mismatches where the probe sequence hybridizes to a PKD1 sequence containing the same mutation.

For quantitative analysis of PKD1 mutations using OLA, oligonucleotide probes are preferably labeled with fluorophor labels that provide spectrally distinguishable characteristics. In one embodiment, oligonucleotides are labeled with 5' oligomeric PEO tails. Synthesis of such 5' labeled oligonucleotides can be carried out, for example, using an automated synthesizer using standard phosphoramidite chemistry. Following cleavage from resin and deprotection with ammonium hydroxide, the (PEO)_n -oligonucleotides can be purified by reverse phase HPLC. Oligonucleotides with 3'-FAM or TET dyes (Perkin Elmer) and 5'-phosphates can be synthesized and purified by the procedure of Grossman *et al.*, *supra*, 1994. The 5'-PEO-labeled probes can be synthesized to have 5'-PEO-tails of differing lengths to facilitate distinguishing the ligated probe products both electrophoretically by size and by spectral characteristics of the fluorophor labels.

20

25

30

10

15

The oligonucleotide probes are used for identifying mutant PKD1 polynucleotides, which can be indicative of a PKD1-associated disorder such as ADPKD. Preferably, the probes are specific for one or more PKD1 nucleotide positions of SEQ ID NO:1 selected from nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; or nucleotide 10255, wherein nucleotide 10255 is a T. The oligonucleotide probes for the OLA assay are typically

65

designed to have calculated melting temperatures of about 40°C to 50°C, generally about 48°C, by the nearest neighbor method (Breslaur *et al.*, Proc. Natl. Acad. Sci. USA <u>83</u>:9373-9377, 1986) so that the ligation reaction can be performed at a temperature range of about 40°C to 60°C, typically from about 45°C to about 55°C.

The wild type and mutant, including variant, oligonucleotide probes can be synthesized with various combinations of PEO oligomeric tails and fluorescein dyes such as TET and FAM. These combinations of mobility modifiers and fluorophor labels furnish electrophoretically unique ligation products that can enable the monitoring of two or more PKD1 nucleotide sites in a single ligation reaction.

10

20

25

30

5

In one embodiment, a method of diagnosing a PKD1-associated disorder in a subject is performed by amplifying a portion of a PKD1 polynucleotide in a nucleic acid sample from a subject suspected of having a PKD1-associated disorder with at least a first primer pair to obtain a first amplification product, wherein said first primer pair is a primer pair of claim 3; amplifying the first amplification product with at least a second primer pair to obtain a nested amplification product, wherein the second primer pair is suitable for performing nested amplification of the first amplification product; and determining whether the nested amplification product has a mutation associated with a PKD1-associated disorder, wherein the presence of a mutation associated with a PKD1-associated disorder is indicative of a PKD1associated disorder, thereby diagnosing a PKD1-associated disorder in the subject. The method can be performed using a first primer pair selected from SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEO ID NOS:13 and 14; SEO ID NOS:15 and 16; SEQ ID NOS:17 and 18; and a combination thereof, and a second primer pair selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEO ID NOS:27 and 28; SEO ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEO ID NOS:47 and 48; SEO ID NOS:49 and 50; SEO ID NOS:51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74

66

and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112; and a combination thereof.

10

15

20

25

30

In another embodiment, a method of diagnosing a PKD1-associated disorder in a subject is performed by amplifying a portion of PKD1 polynucleotide in a nucleic acid sample from a subject suspected of having a PKD1-associated disorder with a first primer pair to obtain a first amplification product; amplifying the first amplification product using a second primer pair to obtain a second amplification product; and detecting a mutation in the second amplification product, wherein the mutation comprises SEQ ID NO:1 wherein nucleotide 3110 is a C; nucleotide 3336 is deleted; nucleotide 3707 is an A; nucleotide 5168 is a T; nucleotide 6078 is an A; nucleotide 6089 is a T; nucleotide 6326 is a T; nucleotides 7205 to 7211 are deleted; nucleotide 7415 is a T; nucleotide 7433 is a T; nucleotide 7883 is a T; or nucleotide 9213 is an A; or nucleotide 9326 is a T; nucleotide 10064 is an A; or wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; or a combination thereof, thereby diagnosing a PKD1-associated disorder in the subject.

The present invention also provides a method of identifying a subject having or at risk of having a PKD1-associated disorder. Such a method can be performed, for example, by comprising contacting nucleic acid molecules in a sample from a subject with at least one primer pair of the invention under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair, thereby generating a PKD1-specific amplification product; and testing an amplification product for the presence or absence of a mutation indicative of a PKD1-associated disorder, wherein the absence of the mutation identifies the subject a not having or at risk of the having a PKD1-associated disorder, and wherein the presence of the mutation identifies the

67

subject as having or is at risk of having a PKD1-associated disorder. The primer pair can be, for example, selected from SEQ ID NO:3 and 4; SEQ ID NO:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; or SEQ ID NOS:17 and 18. The PKD1-associated disorder can be autosomal dominant polycystic kidney disease, acquired cystic disease, or any other PKD-1 associated disorder, and the subject can be, for example, a vertebrate, particularly a human subject.

10

Such a method is particularly adaptable to a high throughput format, and, if desired, can include a step of contacting the PKD1-specific amplification product with at least a second primer pair, under conditions suitable for nested amplification of the PKD1-specific amplification product by a second primer pair, thereby generating a nested amplification product, then testing the nested amplification product for the presence or absence of a mutation indicative of a PKD1-associated disorder. The second primer pair can be any primer pair suitable for nested amplification of the 15 PKD1-specific amplification product, for example, a primer pair selected from SEQ ID NOS:19 and 20; SEO ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEO ID NOS:27 and 28; SEO ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEO ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEO ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; SEO ID NOS:62 and 63; SEO ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEO ID NOS:82 and 83; SEO ID NOS:84 and 85; SEO ID NOS:86 and 87; SEO ID 25 NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEO ID NOS:101 and 102; SEO ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112; and a combination thereof. 30

68

Testing an amplification product for the presence or absence of the mutation can be performed using any of various well known methods for examining a nucleic acid molecule. For example, nucleotide sequence of the amplification product can be determined, and compared with the nucleotide sequence of a corresponding nucleotide sequence of SEQ ID NO:1. The amplification product also can be tested by determining the melting temperature of the amplification product, and comparing the melting temperature to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1. The melting temperature can be determined, for example, using denaturing high performance liquid chromatography.

10

15

20

25

30

Where a nested amplification is to be performed, the method can include a step directed to reducing contamination of the PKD1-specific amplification product by genomic DNA prior to contacting the PKD1-specific amplification product with the at least second set of primer pairs. For example, contamination of the PKD1-specific amplification product can be reduced by diluting the PKD1-specific amplification product.

The mutation indicative of a of PKD1 associated disorder can be, for example, a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; or nucleotide 10064 is an A; or can be a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 3336 is deleted; nucleotide 3707 is an A; nucleotide 5168 is a T; nucleotide 6078 is an A; nucleotide 6089 is a T; nucleotide 6326 is a T; nucleotides 7205 to 7211 are deleted; nucleotide 7415 is a T; nucleotide 7433 is a T; nucleotide 7883 is a T; or nucleotides 8159 to 8160 are deleted; or wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536.

Data that is collected pursuant to a step of detecting the presence or absence of a mutation indicative of a PKD1-associated disorder in an amplification product, which can be an amplification product generated according to a method of the invention, including, for example, a PKD1-specific amplification product or a nested

69

amplification product, can be accumulated, and can be formatted into a form that facilitates determining, for example, whether a subject is at risk of a PKD1-associated disorder. As such, the data can be formatted into a report that indicates whether a subject is at risk of a PKD1-associate disorder. The report can be in any of various forms, including, for example, contained in a computer random access or read-only memory, or stored on a diskette, CD, DVD, magnetic tape; presented on a visual display such as a computer monitor or other cathode ray tube or liquid crystal display; or printed on paper. Furthermore, the data, which can be formatted into a report, can be transmitted to a user interested in or privy to the information. The data or report can be transmitted using any convenient medium, for example, via the internet, by facsimile or by mail, depending on the form of the data or report.

5

10

15

20

25

30

Also provided is a method of detecting the presence of a mutant PKD1 polynucleotide in a sample by contacting a sample suspected of containing a mutant PKD1 polynucleotide with an oligonucleotide of the invention under conditions that allow the oligonucleotide to selectively hybridize with a mutant PKD1 polynucleotide; and detecting selective hybridization of the oligonucleotide and a mutant PKD1 polynucleotide, thereby detecting the presence of a mutant PKD1 polynucleotide sequence in the sample. In another embodiment, a method of detecting the presence of a mutant PKD1 polypeptide in a sample is provided, for example, by contacting a sample suspected of containing a mutant PKD1 polypeptide with an antibody of the invention under conditions that allow the antibody to specifically bind a mutant PKD1 polypeptide; and detecting specific binding of the antibody and the mutant PKD1 polypeptide in the sample, thereby detecting the presence of a mutant PKD1 polypeptide in a sample. The mutant PKD1 polypeptide can have a sequence, for example, substantially as set forth in SEQ ID NO:2, and having a mutation of A88V, W967R, L2696R, R2985G, W3001X, R3039C, V3285I, H3311R, or a combination thereof (see, also, Table 4).

Antibodies that can specifically bind wild type or mutant PKD1 polypeptides, or peptide portions thereof, can also be used as ADPKD diagnostic reagents. Such reagents provide a diagnostic method that can detect the expression of abnormal PKD1 proteins

70

or of abnormal levels of PKD1 protein expression, including the detection of mutant PKD1 polypeptides or aberrant cellular localization of a PKD1 protein. For example, differences in the size, electronegativity, or antigenicity of the mutant PKD1 protein relative to a wild type PKD1 protein can be detected.

5

10

20

25

30

Diagnostic methods for the detection of mutant PKD1 polypeptides or peptide portions thereof can involve, for example, immunoassays wherein epitopes of a mutant PKD1 polypeptide are detected by their interaction with an anti-PKD1 specific antibody (e.g., an anti-mutant PKD1 specific antibody). For example, an antibody that specifically binds to a mutant PKD1 polypeptide does not bind to a wild-type PKD1 polypeptide or peptide thereof. Particular epitopes of PKD1 to which antibodies can be developed include peptides that are substantially identical to SEQ ID NO:2, and having at least five amino acids, including amino acid residue 88, wherein residue 88 is a V; residue 967, wherein residue 967 is an R; residue 2696, wherein residue 2696 is an R; residue 2985, wherein residue 2985 is a G; residue 3039, wherein residue 3039 is a C; residue 3285, wherein residue 3285 is an I; or residue 3311, wherein residue 3311 is an R; or a C-terminal peptide including amino acid residue 3000, where residue 3001 is absent and the mutant PKD1 polypeptide is truncated due to the presence of a STOP codon in the encoding mutant PKD1 polypucleotide.

Antibodies, or fragments of antibodies, such as those described, above, are useful in the present invention and can be used to quantitatively or qualitatively detect the presence of wild type or mutant PKD1 polypeptides or peptide portions thereof, for example. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody (see below) coupled with light microscopic, flow cytometric, or fluorimetric detection.

The antibodies (or fragments thereof) useful in the present invention can, additionally, be employed histologically, as in immunofluorescence or immunoelectron microscopy, for *in situ* detection of PKD1 polypeptide, peptides, variants or mutants thereof. Detection can be accomplished by removing a histological specimen from a

71

subject, and applying thereto a labeled antibody of the present invention. The histological sample can be taken from a tissue suspected of exhibiting ADPKD. The antibody (or fragment) is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of PKD1 polypeptides, but also their distribution in the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such *in situ* detection.

10

15

20

25

30

Immunoassays for wild type or mutant PKD1 polypeptide or peptide portions thereof typically comprise incubating a biological sample, such as a biological fluid, a tissue extract, freshly harvested cells, or cells that have been incubated in tissue culture, in the presence of a detectably labeled antibody capable of identifying a PKD1 polypeptide, mutant PKD1 polypeptide and peptide portions thereof, and detecting the bound antibody by any of a number of techniques well-known in the art. The biological sample can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support that is capable of immobilizing cells, cell particles or soluble proteins. The support can then be washed with suitable buffers followed by treatment with the detectably labeled mutant PKD1 specific antibody, preferably an antibody that recognizes a developed include peptides that are substantially identical to SEQ ID NO:2, and having at least five amino acids, including amino acid residue 88, wherein residue 88 is a V; residue 967, wherein residue 967 is an R; residue 2696, wherein residue 2696 is an R; residue 2985, wherein residue 2985 is a G; residue 3039, wherein residue 3039 is a C; residue 3285, wherein residue 3285 is an I; or residue 3311, wherein residue 3311 is an R; or a C-terminal peptide including amino acid residue 3000, where residue 3001 is absent and the mutant PKD1 polypeptide is truncated due to the presence of a STOP codon in the encoding mutant PKD1 polynucleotide (see, also, Table 4). The solid phase support can then be washed with the buffer a second time to remove unbound antibody, and the amount of bound label on solid support can be detected by conventional means specific for the label.

A "solid phase support" or "carrier" can be any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material can have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration can be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface can be flat such as a sheet, test strip, or the like. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

The binding activity of a given lot of an anti-mutant PKD1 antibody can be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation. One of the ways in which the mutant PKD1-specific antibody can be detectably labeled is by linking the antibody to an enzyme and use the enzyme labeled antibody in an enzyme immunoassay (EIA; Voller, "The Enzyme Linked Immunosorbent Assay (ELISA):, Diagnostic Horizons 2:1-7, 1978; Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller *et al.*, J. Clin. Pathol. 31:507-520, 1978; Butler, Meth. Enzymol. 73:482-523, 1981; Maggio (ed.), "Enzyme Immunoassay", CRC Press, Boca Raton FL, 1980; Ishikawa *et al.*, (eds.), "Enzyme Immunoassay", Kgaku Shoin, Tokyo, 1981). The enzyme that is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorimetric or by visual means.

Enzymes that can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, α-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase,

beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the enzyme. Detection can also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards. In addition, detection can be accomplished using any of a variety of other immunoassays, including, for example, by radioactively labeling the antibodies or antibody fragments and detecting PKD1 wild type or mutant peptides using a radioimmunoassay (RIA; see, for example, Weintraub, Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated herein by reference). The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.

The antibody also can be labeled with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine. The antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester. Likewise, a bioluminescent compound can be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the

74

presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and acquorin.

In vitro systems can be designed to identify compounds capable of binding a mutant PKD1 polynucleotide of the invention (e.g., a polynucleotide having a sequence substantially identical to SEQ ID NO:1 and having a mutation such as C474T; G487A; T3110C; T8298G; A9164G; G9213A; C9326T; C9367T; G10064A; A10143G; T10234C; or G10255T). Such compounds can include, but are not limited to, peptides made of D-and/or L-configuration amino acids in, for example, the form of random peptide libraries (see, e.g., Lam et al., Nature 354:82-84, 1981), phosphopeptides in, for example, the form of random or partially degenerate, directed phosphopeptide libraries (see, e.g., Songyang et al., Cell 72:767-778, 1993), antibodies, and small or large organic or inorganic molecules. Compounds identified can be useful, for example, in modulating the activity of PKD1 proteins, variants or mutants. For example, mutant PKD1 polypeptides of the invention can be useful in elaborating the biological function of the PKD1 protein. Such mutants can be utilized in screens for identifying compounds that disrupt normal PKD1 interactions, or can in themselves disrupt such interactions.

The principle of the assays used to identify compounds that bind to a mutant PKD1 protein involves preparing a reaction mixture of the PKD1 protein, which can be a mutant, including a variant, and the test compound under conditions and for a time sufficient to allow the two components to interact, then isolating the interaction product (complex) or detecting the complex in the reaction mixture. Such assays can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring PKD1 or the test substance onto a solid phase and detecting PKD1 test substance complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested.

30

5

10

15

20

In addition, methods suitable for detecting protein-protein interactions can be employed for identifying novel PKD1 cellular or extracellular protein interactions based

75

upon the mutant or variant PKD1 polypeptides of the invention. For example, some traditional methods that can be employed are co-immunoprecipitation, crosslinking and copurification through gradients or chromatographic columns. Additionally, methods that result in the simultaneous identification of the genes coding for the protein interacting with a target protein can be employed. These methods include, for example, probing expression libraries with labeled target protein, using this protein in a manner similar to antibody probing of λ gt libraries. One such method for detecting protein interactions *in vivo* is the yeast two hybrid system. One version of this system has been described (Chien *et al.*, Proc. Natl. Acad. Sci. USA <u>88</u>:9578-9582, 1991) and can be performed using commercially available reagents (Clontech; Palo Alto CA).

10

15

20

25

30

A PKD1 polypeptide (e.g., a variant or mutant) of the invention can interact with one or more cellular or extracellular proteins in vivo. Such cellular proteins are referred to herein as "binding partners". Compounds that disrupt such interactions can be useful in regulating the activity of a PKD1 polypeptide, especially mutant PKD1 polypeptides. Such compounds include, for example, molecules such as antibodies, peptides, peptidomimetics and the like.

In instances whereby ADPKD symptoms are associated with a mutation within the PKD1 polynucleotide (e.g., SEQ ID NO:1 having a mutation at T3110C; T8298G; A9164G; G9213A; C9326T; G10064A or the like; see Example 2), which produces PKD1 polypeptides having aberrant activity, compounds identified that disrupt such activity can therefore inhibit the aberrant PKD1 activity and reduce or treat ADPKD1-associated symptoms or ADPKD disease, respectively (see Table 4). For example, compounds can be identified that disrupt the interaction of mutant PKD1 polypeptides with cellular or extracellular proteins, for example, the PKD2 gene product, but do not substantially effect the interactions of the normal PKD1 protein. Such compounds can be identified by comparing the effectiveness of a compound to disrupt interactions in an assay containing normal PKD1 protein to that of an assay containing mutant PKD1 polypeptide, for example, a two hybrid assay.

76

The basic principle of the assay systems used to identify compounds that interfere with the interaction between the PKD1 protein, preferably a mutant PKD1 protein, and its cellular or extracellular protein binding partner or partners involves preparing a reaction mixture containing the PKD1 protein and the binding partner under conditions and for a time sufficient to allow the two proteins to interact or bind, thus forming a complex. In order to test a compound for inhibitory activity, reactions are conducted in the presence or absence of the test compound, i.e., the test compound can be initially included in the reaction mixture, or added at a time subsequent to the addition of PKD1 and its cellular or extracellular binding partner; controls are incubated without the test compound or with a placebo. The formation of any complexes between the PKD1 protein and the cellular or extracellular binding partner is then detected. The formation of a complex or interaction in the control reaction, but not in the reaction mixture containing the test compound indicates that the compound interferes with the interaction of the PKD1 protein and the binding partner. As noted above, complex formation or component interaction within reaction mixtures containing the test compound and normal PKD1 protein can also be compared to complex formation or component interaction within reaction mixtures containing the test compound and mutant PKD1 protein. This comparison can be important in those cases wherein it is desirable to identify compounds that disrupt interactions of mutant but not normal PKD1 proteins.

10

15

20

25

30

Any of the binding compounds, including but not limited to, compounds such as those identified in the foregoing assay systems can be tested for anti-ADPKD activity. ADPKD, an autosomal dominant disorder, can involve underexpression of a wild-type PKD1 allele, or expression of a PKD1 polypeptide that exhibits little or no PKD1 activity. In such an instance, even though the PKD1 polypeptide is present, the overall level of normal PKD1 polypeptide present is insufficient and leads to ADPKD symptoms. As such increase in the level of expression of the normal PKD1 polypeptide, to levels wherein ADPKD symptoms are ameliorated would be useful. Additionally, the term can refer to an increase in the level of normal PKD1 activity in the cell, to levels wherein ADPKD symptoms are ameliorated.

77

The identified compounds that inhibit PKD1 expression, synthesis and/or activity can be administered to a patient at therapeutically effective doses to treat polycystic kidney disease. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of polycystic kidney disease. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, *e.g.*, for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography. Additional factors that can be utilized to optimize dosage can include, for example, such factors as the severity of the ADPKD symptoms as well as the age, weight and possible additional disorders that the patient can also exhibit. Those skilled in the art will be able to determine the appropriate dose based on the above factors.

30

10

15

20

25

Pharmaceutical compositions for use in accordance with the present invention can be formulated in conventional manner using one or more physiologically acceptable

78

carriers or excipients. Thus, the compounds and their physiologically acceptable salts and solvates can be formulated for administration by inhalation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

For oral administration, the pharmaceutical compositions can take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycollate); or wetting agents (e.g., sodium lauryl sulphate). The tablets can be coated by methods well known in the art. Liquid preparations for oral administration can take the form of, for example, solutions, syrups or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations can also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration can be suitably formulated to give controlled release of the active compound. For buccal administration the compositions can take the form of tablets or lozenges formulated in conventional manner.

25

30

5

10

15

20

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant such as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit can be determined by providing a valve to deliver a metered amount. Capsules and cartridges

79

of e.g., gelatin, for use in an inhaler can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

5

10

15

20

25

30

The compounds can be formulated for parenteral administration by injection, *e.g.*, by bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, *e.g.*, in ampoules or in multi-dose containers, with an added preservative. The compositions can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient can be in powder form for constitution with a suitable vehicle, *e.g.*, sterile pyrogen-free water, before use. The compounds can also be formulated in rectal compositions such as suppositories or retention enemas, *e.g.*, containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The compositions can, if desired, be presented in a pack or dispenser device that can contain one or more unit dosage forms containing the active ingredient. The pack can for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device can be accompanied by instructions for administration.

Alternatively, ADPKD can be caused by the production of an aberrant mutant form of the PKD1 protein, that either interferes with the normal allele product or introduces a novel function into the cell, which then leads to the mutant phenotype. For example, a mutant PKD1 protein can compete with the wild type protein for the binding of a substance required to relay a signal inside or outside of a cell.

5

10

15

20

25

30

PCT/US01/22035

Cell based and animal model based assays for the identification of compounds exhibiting anti-ADPKD activity are also encompassed within the present invention. Cells that contain and express mutant PKD1 polynucleotide sequences (e.g., a sequence substantially identical to the sequence as set forth in SEQ ID NO:1 and having one or more mutations of a C474T; G487A; T3110C; T8298G; A9164G; G9213A; C9326T; C9367T; G10064A; A10143G; T10234C; G10255T or the like; see Example 2), which encode a mutant PKD1 polypeptide, and thus exhibit cellular phenotypes associated with ADPKD, can be utilized to identify compounds that possess anti-ADPKD activity. Such cells can include cell lines consisting of naturally occurring or engineered cells that express mutant or express both normal and mutant PKD1 polypeptides. Such cells include, but are not limited to renal epithelial cells, including primary and immortalized human renal tubular cells, MDCK cells, LLPCK1 cells, and human renal carcinoma cells. Methods of transforming cell with PKD1 polynucleotide sequences encoding wild-type or mutant proteins are described above.

Cells that exhibit ADPKD-like cellular phenotypes, can be exposed to a compound suspected of exhibiting anti-ADPKD activity at a sufficient concentration and for a time sufficient to elicit an anti-ADPKD1 activity in the exposed cells. After exposure, the cells are examined to determine whether one or more of the ADPKD-like cellular phenotypes has been altered to resemble a more wild type, non-ADPKD phenotype.

Among the cellular phenotypes that can be followed in the above assays are differences in the apical/basolateral distribution of membrane proteins. For example, normal (i.e., non-ADPKD) renal tubular cells in situ and in culture under defined conditions have a characteristic pattern of apical/basolateral distribution of cell surface markers. ADPKD renal cells, by contrast, exhibit a distribution pattern that reflects a partially reversed apical/basolateral polarity relative to the normal distribution. For example, sodium-potassium ATPase generally is found on the basolateral membranes of renal epithelial cells, but also can be found on the apical surface of ADPKD epithelial cells, both in cystic epithelia in vivo and in ADPKD

81

cells in culture (Wilson *et al.*, Am. J. Physiol. <u>260</u>:F420-F430, 1991). Another marker that exhibits an alteration in polarity in normal versus ADPKD affected cells is the EGF receptor, which is normally located basolaterally, but in ADPKD cells is mislocated to the apical surface. Such a apical/basolateral marker distribution phenotype can be followed, for example, by standard immunohistology techniques using antibodies specific to a markers of interest.

Assays for the function of PKD1 also can include a measure of the rate of cell growth or apoptosis, since dysregulation of epithelial cell growth can be a key step in cyst formation. The cysts are fluid filled structures lined by epithelial cells that are 10 both hyper-proliferative and hyper-apoptotic (Evan et al., Kidney International 16:743-750, 1979; Kovacs and Gomba, Kidney Blood Press. Res. 21:325-328, 1998; Lanoix et al., Oncogene 13: 1153-1160, 1996; Woo, New Engl. J. Med. 333:18-25, 1995, each of which is incorporated herein by reference). The cystic epithelium has a high mitotic rate in vivo as measured by PCNA staining (Nadasdy et al., J. Am. Soc. Nephrol. 5:1462-1468, 1995, which is incorporated herein by reference), and increased levels of expression of other markers of proliferation (Klingel et al., Amer. J. Kidney Dis. 19:22-30, 1992, which is incorporated herein by reference). In addition, cultured cells from ADPKD cystic kidneys have increased growth rates in vitro (Wilson et al., Kidney Int. 30:371-380, 1986; Wilson, Amer. J. Kidney Dis. 20 17:634-637, 1991, each of which is incorporated herein by reference).

Further, in studies of rodent models of polycystic kidney disease, the epithelial cells that line cysts of animals with naturally occurring forms of PKD showed abnormalities similar to those reported in human ADPKD (Harding *et al.*, 1992; Ramasubbu *et al.*, J. Am. Soc. Nephrol. 2:937-945, 1998; Rankin *et al.*, J. Cell Physiol. 152:578-586, 1992; Rankin *et al.*, In Vitro Cell Devel. Biol. Anim. 32:100-106, 1996, each of which is incorporated herein by reference). Moreover, mice that have transgenic over-expression of either c-myc or SV40-large T antigen developed PKD (Kelley *et al.* J. Am. Soc. Nephrol. 2:84-97, 1991; Trudel *et al.*, Kidney Int. 39:665-671 1991, each of which is incorporated herein by reference). Also, expression of recombinant full length PKD1 in epithelial cells reduced their rate of

25

30

10

15

20

25

growth and induced resistance to apoptosis when challenged with stimuli such as serum starvation or exposure to UV light, which are known to stimulate apoptosis (Boletta *et al.*, Mol. Cell <u>6</u>:1267-1273, 2000, which is incorporated herein by reference). As such, biochemical pathways that are activated by PKD1 expression, including, for example, JAK2, STAT1/3, PI3 kinase, p21, and AKT, can provide surrogate markers for PKD1 activity.

The propensity of an epithelial cell to form tubules provides still another assay for the function of PKD1. In vivo, PKD is characterized by cystic transformation of renal tubules and pancreatic and biliary ductules. In vitro, expression of full length PKD1 induces spontaneous tubulogenesis in MDCK cells (Boletta et al., supra, 2000). In this model system, control MDCK cells, which did not express recombinant wild type full length PKD1, formed cystic structures unless treated with hepatocyte growth factor or with fibroblast conditioned medium when cultured suspended in collagen. In contrast, MDCK cells that expressed the full length wild type recombinant form of PKD1 spontaneously formed tubules in the absence of exogenous factors when cultured in this manner. As such, this model system can be used to identify ligands that bind to and activate the PKD1 protein, to determine pathways that are targeted for activation by therapeutic agents, and as an assay system to evaluate the effect of sequence variants on PKD1 function.

Additionally, assays for the function of a PKD1 polypeptide can, for example, include a measure of extracellular matrix (ECM) components, such as proteoglycans, laminin, fibronectin and the like, in that studies in both ADPKD and in rat models of acquired cystic disease (Carone et al., Kidney International 35:1034-1040, 1989) have shown alterations in such components. Thus, any compound that serves to create an extracellular matrix environment that more fully mimics the normal ECM should be considered as a candidate for testing for an ability to ameliorate ADPKD symptoms.

In addition, it is contemplated that the present invention can be used to measure the ability of a compound, such as those identified in the foregoing binding assays, to prevent or inhibit disease in animal models for ADPKD. Several naturally-

occurring mutations for renal cystic disease have been found in animals, and are accepted in the art as models of ADPKD and provide test systems for assaying the effects of compounds that interact with PKD1 proteins. Of these models, the Han:SPRD rat model, provides an autosomal dominant model system (see, for example, Kaspareit-Rittinghausen et al., Vet. Path. 26:195, 1989), and several recessive models also are available (Reeders, Nature Genetics 1:235, 1992). In addition, knock-out mice, in which the PKD1 or PKD2 gene has been disrupted, are available and provide a relevant model system for genetic forms of ADPKD. As such, the PKD1 and PKD2 knock-out mice can be useful for confirming the effectiveness in vivo of compounds that interact with PKD1 proteins in vitro (see, for example, Wu et al., Nat. Genet. 24:75-78, 2000; Kim et al., Proc. Natl. Acad. Sci., USA 97:1731-1736, 2000; Lu et al., Nat. Genet. 21:160-161, 1999; Wu et al., Cell 93:177-188, 1998; Lu et al., Nat. Genet. 17:179-181, 1997, each of which is incorporated herein by reference).

Animal models exhibiting ADPKD-like symptoms associated with one or more of the mutant PKD1 polynucleotide sequences as disclosed herein can also be engineered by utilizing the PKD1 polynucleotide sequences such in conjunction with well known methods for producing transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, mini-pigs, goats, and non-human primates, *e.g.*, baboons, squirrels, monkeys, and chimpanzees can be used to generate such ADPKD animal models or transgenic animals. In instances where the PKD1 mutation leading to ADPKD symptoms causes a drop in the level of PKD1 protein or causes an ineffective PKD1 protein to be made (*e.g.*, the PKD1 mutation is a dominant loss-of-function mutation, such as a W3001X, i.e., truncated after amino acid residue 3000, or a T3110C mutation; see, also, Table 4) various strategies can be utilized to generate animal models exhibiting ADPKD-like symptoms.

The present invention also provides transgenic non-human organisms, including invertebrates, vertebrates and mammals. For purposes of the subject invention, these animals are referred to as "transgenic" when such animal has had a heterologous DNA sequence, or one or more additional DNA sequences normally endogenous to the animal

84

(collectively referred to herein as "transgenes") chromosomally integrated into the germ cells of the animal. The transgenic animal (including its progeny) will also have the transgene integrated into the chromosomes of somatic cells.

Various methods to make the transgenic animals of the subject invention can be employed. Generally speaking, three such methods can be employed. In one such method, an embryo at the pronuclear stage (a "one cell embryo") is harvested from a female and the transgene is microinjected into the embryo, in which case the transgene will be chromosomally integrated into both the germ cells and somatic cells of the resulting mature animal. In another such method, embryonic stem cells are isolated and the transgene incorporated therein by electroporation, plasmid transfection or microinjection, followed by reintroduction of the stem cells into the embryo where they colonize and contribute to the germ line. Methods for microinjection of mammalian species is described in U.S. Pat. No. 4,873,191.

15

20

25

30

10

5

In yet another such method, embryonic cells are infected with a retrovirus containing the transgene whereby the germ cells of the embryo have the transgene chromosomally integrated therein. When the animals to be made transgenic are avian, because avian fertilized ova generally go through cell division for the first twenty hours in the oviduct, microinjection into the pronucleus of the fertilized egg is problematic due to the inaccessibility of the pronucleus. Therefore, of the methods to make transgenic animals described generally above, retrovirus infection is preferred for avian species, for example as described in U.S. Pat. No. 5,162,215. If microinjection is to be used with avian species, however, the method of Love et al., (Biotechnology, 12, 1994) can be utilized whereby the embryo is obtained from a sacrificed hen approximately two and one-half hours after the laying of the previous laid egg, the transgene is microinjected into the cytoplasm of the germinal disc and the embryo is cultured in a host shell until maturity. When the animals to be made transgenic are bovine or porcine, microinjection can be hampered by the opacity of the ova thereby making the nuclei difficult to identify by traditional differential interference-contrast microscopy. To overcome this problem, the ova can first be centrifuged to segregate the pronuclei for better visualization.

The non-human transgenic animals of the invention include, for example, bovine, porcine, ovine and avian animals (e.g., cow, pig, sheep, chicken, turkey). Such transgenic non-human animals are produced by introducing a transgene into the germline of the non-human animal. Embryonal target cells at various developmental stages can be used to introduce transgenes. Different methods are used depending on the stage of development of the embryonal target cell. The zygote is the best target for microinjection. The use of zygotes as a target for gene transfer has a major advantage in that in most cases the injected DNA will be incorporated into the host gene before the first cleavage (Brinster et al., Proc. Natl. Acad. Sci. USA 82:4438-4442, 1985). As a consequence, all cells of the transgenic non-human animal will carry the incorporated transgene. This will in general also be reflected in the efficient transmission of the transgene to offspring of the founder since 50% of the germ cells will harbor the transgene.

10

15

20

25

30

The term "transgenic" is used to describe an animal that includes exogenous genetic material within all of its cells. A transgenic animal can be produced by cross-breeding two chimeric animals that include exogenous genetic material within cells used in reproduction. Twenty-five percent of the resulting offspring will be transgenic *i.e.*, animals that include the exogenous genetic material within all of their cells in both alleles. Fifty percent of the resulting animals will include the exogenous genetic material within one allele and 25% will include no exogenous genetic material.

In the microinjection method useful in the practice of the invention, the transgene is digested and purified free from any vector DNA *e.g.* by gel electrophoresis. It is preferred that the transgene include an operatively associated promoter that interacts with cellular proteins involved in transcription, ultimately resulting in constitutive expression. Promoters useful in this regard include those from cytomegalovirus (CMV), Moloney leukemia virus (MLV), and herpes virus, as well as those from the genes encoding metallothionein, skeletal actin, P-enolpyruvate carboxylase (PEPCK), phosphoglycerate (PGK), DHFR, and thymidine kinase. Promoters for viral long terminal repeats (LTRs) such as Rous Sarcoma Virus can also be employed. When the animals to be made transgenic are avian, preferred promoters include those for the

86

chicken β -globin gene, chicken lysozyme gene, and avian leukosis virus. Constructs useful in plasmid transfection of embryonic stem cells will employ additional regulatory elements well known in the art such as enhancer elements to stimulate transcription, splice acceptors, termination and polyadenylation signals, and ribosome binding sites to permit translation.

5

10

15

20

25

30

Retroviral infection can also be used to introduce transgene into a non-human animal, as described above. The developing non-human embryo can be cultured in vitro to the blastocyst stage. During this time, the blastomeres can be targets for retro viral infection (Jaenich, Proc. Natl. Acad. Sci. USA 73:1260-1264, 1976). Efficient infection of the blastomeres is obtained by enzymatic treatment to remove the zona pellucida (Hogan et al., In "Manipulating the Mouse Embryo" (Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY 1986)). The viral vector system used to introduce the transgene is typically a replication-defective retro virus carrying the transgene (Jahner et al., Proc. Natl. Acad. Sci. USA 82:6927-6931, 1985; Van der Putten et al., Proc. Natl. Acad. Sci USA 82:6148-6152, 1985). Transfection is easily and efficiently obtained by culturing the blastomeres on a monolayer of virus-producing cells (Van der Putten, supra; Stewart, et al., EMBO J. 6:383-388, 1987). Alternatively, infection can be performed at a later stage. Virus or virus-producing cells can be injected into the blastocoele (Jahner et al., Nature 298:623-628, 1982). Most of the founders will be mosaic for the transgene since incorporation occurs only in a subset of the cells that formed the transgenic nonhuman animal. Further, the founder can contain various retroviral insertions of the transgene at different positions in the genome that generally will segregate in the offspring. In addition, it is also possible to introduce transgenes into the germ line, albeit with low efficiency, by intrauterine retroviral infection of the midgestation embryo (Jahner et al., supra, 1982).

A third type of target cell for transgene introduction is the embryonal stem cell (ES). ES cells are obtained from pre-implantation embryos cultured *in vitro* and fused with embryos (Evans *et al.* Nature 292:154-156, 1981; Bradley *et al.*, Nature 309:255-258, 1984; Gossler *et al.*, Proc. Natl. Acad. Sci. USA 83:9065-9069, 1986; and Robertson *et al.*, Nature 322:445-448, 1986). Transgenes can be efficiently introduced

87

into the ES cells by DNA transfection or by retro virus-mediated transduction. Such transformed ES cells can thereafter be combined with blastocysts from a nonhuman animal. The ES cells thereafter colonize the embryo and contribute to the germ line of the resulting chimeric animal (for review see Jaenisch, Science 240:1468-1474, 1988).

5

10

15

20

25

The transgene can be any piece of DNA that is inserted by artifice into a cell, and becomes part of the genome of the organism (i.e., either stably integrated or as a stable extrachromosomal element) that develops from that cell. Such a transgene can include a gene that is partly or entirely heterologous (i.e., foreign) to the transgenic organism, or can represent a gene homologous to an endogenous gene of the organism. Included within this definition is a transgene created by the providing of an RNA sequence that is transcribed into DNA, then incorporated into the genome. The transgenes of the invention include DNA sequences that encode a mutant PKD1 polypeptide, for example, a polypeptide having an amino acid sequence substantially identical to SEQ ID NO:2 and having a mutation of a A88V, a W967R, a L2696R, an R2985G, an R3039C, a V3285I, a H3311R, or any combination thereof; or encoding a truncated PKD1 polypeptide ending at amino acid 3000 (also referred to herein as "W3001X", where "X" indicates STOP codon; see, also, Table 4) and include sense, antisense, and dominant negative encoding polynucleotides, which can be expressed in a transgenic non-human animal. The term "transgenic" as used herein also includes any organism whose genome has been altered by in vitro manipulation of the early embryo or fertilized egg or by any transgenic technology to induce a specific gene knockout. The term "gene knockout" as used herein, refers to the targeted disruption of a gene in vivo with complete or partial loss of function that has been achieved by any transgenic technology familiar to those in the art. In one embodiment, transgenic animals having a gene knockout are those in which the target gene has been rendered nonfunctional by an insertion targeted to the gene to be rendered non-functional by homologous recombination.

30

The invention also includes animals having heterozygous mutations in or partial inhibition of function or expression of a PKD1 polypeptide. One of skill in the art would readily be able to determine if a particular mutation or if an antisense molecule was able

to partially inhibit PKD1 expression. For example, *in vitro* testing can be desirable initially by comparison with wild-type (*e.g.*, comparison of northern blots to examine a decrease in expression). After an embryo has been microinjected, colonized with transfected embryonic stem cells or infected with a retrovirus containing the transgene (except for practice of the subject invention in avian species, which is addressed elsewhere herein), the embryo is implanted into the oviduct of a pseudopregnant female. The progeny are tested for incorporation of the transgene by Southern blot analysis of blood samples using transgene specific probes. PCR is particularly useful in this regard. Positive progeny (P₀) are crossbred to produce offspring (P₁) that are analyzed for transgene expression by northern blot analysis of tissue samples.

In order to distinguish expression of like species transgenes from expression of an endogenous PKD1-related gene, a marker gene fragment can be included in the construct in the 3' untranslated region of the transgene and the northern blot probe designed to probe for the marker gene fragment. The serum levels of a PKD1 polypeptide can also be measured in the transgenic animal to determine the level of PKD1 expression. A method of creating a transgenic organism also can include methods of inserting a transgene into, for example, an embryo of an already created transgenic organism, the organism being transgenic for a different unrelated gene or polypeptide.

Transgenic organisms of the invention are highly useful in the production of organisms for study of, for example, polycystic kidney disease or PKD1-related diseases or disorders and in identifying agents or drugs that inhibit or modulate polycystic kidney disease, PKD1 associated disorders and inheritance. Expression of a mutant human PKD1 polynucleotide can be assayed, for example, by standard northern blot analysis, and the production of the mutant human PKD1 polypeptide can be assayed, for example, by detecting its presence using an antibody directed against the mutant human PKD1 polypeptide. Those animals found to express the mutant human PKD1 polypeptide can then be observed for the development of ADPKD-like symptoms.

89

As discussed above, animal models of ADPKD can be produced by engineering animals containing mutations in a copy of an endogenous PKD1 gene that correspond to mutations within the human PKD1 polynucleotide. Utilizing such a strategy, a PKD1 homologue can be identified and cloned from the animal of interest, using techniques such as those described herein. One or more mutations can be engineered into such a PKD1 homologue that correspond to mutations within the human PKD1 polynucleotide, as discussed above (e.g., resulting in a mutation of the amino acid sequence as set forth in SEO ID NO:2 and having a mutation of a A88V, a W967R, a L2696R, an R2985G, a W3001X, an R3039C, a V3285I, a H3311R, or any combination thereof; see, also, Table 4). As disclosed herein, a mutant polypeptide produced by such an engineered corresponding PKD1 homologue can exhibit an aberrant PKD1 activity that is substantially similar to that exhibited by a mutant human PKD1 protein. The engineered PKD1 homologue can then be introduced into the genome of the animal of interest, using techniques such as those described, above. Accordingly, any of the ADPKD animal models described herein can be used to test compounds for an ability to ameliorate ADPKD symptoms, including those associated with the expression of a mutant PKD1 polypeptide substantially identical to SEQ ID NO:2 and having the mutation A88V, W967R, L2696R, R2985G, W3001X, R3039C, V3285I, H3311R, or a combination thereof (see Example 2 and Table 4).

20

25

30

15

10

As discussed above, mutations in the PKD1 polynucleotide that cause ADPKD can produce a form of the PKD1 protein that exhibits an aberrant activity that leads to the formation of ADPKD symptoms. A variety of techniques can be utilized to inhibit the expression, synthesis, or activity of such mutant PKD1 polynucleotides and polypeptides. For example, compounds such as those identified through assays described, above, which exhibit inhibitory activity, can be used in accordance with the invention to ameliorate ADPKD symptoms. Such molecules can include, but are not limited, to small and large organic molecules, peptides, and antibodies. Further, antisense and ribozyme molecules that inhibit expression of a PKD1 polynucleotide, (e.g., a mutant PKD1 polynucleotide), can also be used to inhibit the aberrant PKD1 activity. Such techniques are described, below. In yet another embodiment, triple helix molecules can be utilized in inhibiting aberrant PKD1 activity.

Among the compounds that can exhibit anti-ADPKD activity are antisense, ribozyme, and triple helix molecules. Such molecules can be designed to reduce or inhibit mutant PKD1 activity by modulating the expression or synthesis of PKD1 polypeptides. Techniques for the production and use of such molecules are well known to those of skill in the art.

5

10

15

20

25

30

Double stranded interfering RNA molecules are especially useful to inhibit expression of a target gene. For example, double stranded RNA molecules can be injected into a target cell or organism to inhibit expression of a gene and the resultant polypeptide's activity. It has been found that such double stranded RNA molecules are more effective at inhibiting expression than either RNA strand alone (Fire *et al.*, Nature, 12:391(6669):806-11, 1998).

When a disorder is associated with abnormal expression of a PKD1 polypeptide (e.g., overexpression, or expression of a mutated form of the protein), a therapeutic approach that directly interferes with the translation of a PKD1 polypeptide (e.g., a wild type, variant or mutant PKD1 polypeptide) is possible. Alternatively, similar methodology can be used to study gene activity. For example, antisense nucleic acid, double stranded interfering RNA or ribozymes could be used to bind to a PKD1 mRNA sequence or to cleave it. Antisense RNA or DNA molecules bind specifically with a targeted gene's RNA message, interrupting the expression of that gene's protein product. The antisense binds to the messenger RNA forming a double stranded molecule that cannot be translated by the cell. Antisense oligonucleotides of about 15 to 25 nucleotides are preferred since they are easily synthesized and have an inhibitory effect just like antisense RNA molecules. In addition, chemically reactive groups, such as iron-linked ethylenediaminetetraacetic acid (EDTA-Fe) can be attached to an antisense oligonucleotide, causing cleavage of the RNA at the site of hybridization. Antisense nucleic acids are DNA or RNA molecules that are complementary to at least a portion of a specific mRNA molecule (Weintraub, Scientific American, 262:40, 1990). In the cell, the antisense nucleic acids hybridize to the corresponding mRNA, forming a doublestranded molecule. The antisense nucleic acids interfere with the translation of the

mRNA, since the cell will not translate a mRNA that is double-stranded. Antisense oligomers of at least about 15 nucleotides also are preferred because they are less likely to cause problems when introduced into the target PKD1 polypeptide producing cell. The use of antisense methods to inhibit the *in vitro* translation of genes is well known in the art (Marcus-Sakura, Anal. Biochem., 172:289, 1988).

Use of an oligonucleotide to stall transcription is known as the triplex strategy since the oligomer winds around double-helical DNA, forming a three-strand helix. Therefore, these triplex compounds can be designed to recognize a unique site on a chosen gene (Maher *et al.*, Antisense Res. and Devel., 1:227, 1991; Helene, Anticancer Drug Design, 6:569, 1991).

Ribozymes are RNA molecules possessing the ability to specifically cleave other single-stranded RNA in a manner analogous to DNA restriction endonucleases.

Through the modification of nucleotide sequences that encode these RNAs, it is possible to engineer molecules that recognize specific nucleotide sequences in an RNA molecule and cleave it (Cech, J. Amer. Med. Assn., 260:3030, 1988). A major advantage of this approach is that, because they are sequence-specific, only mRNAs with particular sequences are inactivated.

20

25

30

15

5

10

There are two basic types of ribozymes namely, tetrahymena-type (Hasselhoff, Nature, 334:585, 1988) and "hammerhead"-type. Tetrahymena-type ribozymes recognize sequences that are four bases in length, while "hammerhead"-type ribozymes recognize base sequences 11-18 bases in length. The longer the recognition sequence, the greater the likelihood that the sequence will occur exclusively in the target mRNA species. Consequently, hammerhead-type ribozymes are preferable to tetrahymena-type ribozymes for inactivating a specific mRNA species and 18-base recognition sequences are preferable to shorter recognition sequences. These and other uses of antisense and ribozymes methods to inhibit the *in vivo* translation of genes are known in the art (e.g., De Mesmaeker *et al.*, Curr. Opin. Struct. Biol., 5:343, 1995; Gewirtz *et al.*, Proc. Natl. Acad. Sci. USA, 23:3161, 1996b; Stein, Chem. and Biol. 3:319, 1996).

92

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, which include the following sequence: GUA, GUU and GUC. Once identified, short RNA sequences of about 15 to 30 ribonucleotides corresponding to the region of the target gene containing the cleavage site can be evaluated for predicted structural features, such as secondary structure, that can render the oligonucleotide sequence unsuitable. The suitability of candidate targets can also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.

It is possible that the antisense, ribozyme, or triple helix molecules described herein can reduce or inhibit the translation of mRNA produced by mutant PKD1 alleles of the invention. In order to ensure that substantial normal levels of PKD1 activity are maintained in the cell, nucleic acid molecules that encode and express PKD1 polypeptides exhibiting normal PKD1 activity can be introduced into cells that do not contain sequences susceptible to whatever antisense, ribozyme, or triple helix treatments. Such sequences can be introduced via gene therapy methods such as those described, below. Alternatively, it can be preferable to coadminister normal PKD1 protein into the cell or tissue in order to maintain the requisite level of cellular or tissue PKD1 activity.

10

15

20

25

30

Antisense RNA and DNA molecules, ribozyme molecules and triple helix molecules of the invention can be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules can be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences can be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

93

Various well known modifications to the DNA molecules can be introduced as a means of increasing intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences of ribonucleotide or deoxyribonucleotides to the 5' or 3' end or both of the molecule or the use of phosphorothioate or 2'-O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.

As discussed above, mutations in the PKD1 polynucleotide that cause ADPKD can lower the level of expression of the PKD1 polynucleotide or; alternatively, can cause inactive or substantially inactive PKD1 proteins to be produced. In either instance, the result is an overall lower level of normal PKD1 activity in the tissues or cells in which PKD1 is normally expressed. This lower level of PKD1 activity, then, leads to ADPKD symptoms. Thus, such PKD1 mutations represent dominant loss-of-function mutations. For example, a polynucleotide having a sequence as set forth in SEQ ID NO:1 and having a mutation of a G9213A results in early termination of PKD1.

For example, normal PKD1 protein, at a level sufficient to ameliorate ADPKD symptoms can be administered to a patient exhibiting such symptoms or having a mutant PKD1 polynucleotide. Additionally, DNA sequences encoding normal PKD1 protein can be directly administered to a patient exhibiting ADPKD symptoms or administered to prevent or reduce ADPKD symptoms where they have been diagnosed as having a PKD1 mutation identified herein but have not yet demonstrated symptoms. Such administration can be at a concentration sufficient to produce a level of PKD1 protein such that ADPKD symptoms are ameliorated.

25

30

5

10

15

20

Further, subjects with these types of mutations can be treated by gene replacement therapy. A copy of the normal PKD1 polynucleotide can be inserted into cells, renal cells, for example, using viral or non-viral vectors that include, but are not limited to vectors derived from, for example, retroviruses, vaccinia virus, adeno-associated virus, herpes viruses, bovine papilloma virus or non-viral vectors, such as plasmids. In addition, techniques frequently employed by those skilled in the art for introducing DNA into mammalian cells can be utilized. For example, methods including

94

but not limited to electroporation, DEAE-dextran mediated DNA transfer, DNA guns, liposomes, direct injection, and the like can be utilized to transfer recombinant vectors into host cells. Alternatively, the DNA can be transferred into cells through conjugation to proteins that are normally targeted to the inside of a cell. For example, the DNA can be conjugated to viral proteins that normally target viral particles into the targeted host cell.

Administering the whole gene or polypeptide is not necessary to avoid the appearance of ADPKD symptoms. The use of a "minigene" therapy approach also can serve to ameliorate such ADPKD symptoms (see Ragot et al., Nature 3:647, 1993; Dunckley et al., Hum. Mol. Genet. 2:717-723, 1993). A minigene system uses a portion of the PKD1 coding region that encodes a partial, yet active or substantially active PKD1 polypeptide. As used herein, "substantially active" means that the polypeptide serves to ameliorate ADPKD symptoms. Thus, the minigene system utilizes only that portion of the normal PKD1 polynucleotide that encodes a portion of the PKD1 polypeptide capable of ameliorating ADPKD symptoms, and can, therefore represent an effective and even more efficient ADPKD therapy than full-length gene therapy approaches. Such a minigene can be inserted into cells and utilized via the procedures described, above, for full-length gene replacement. The cells into which the PKD1 minigene are to be introduced are, preferably, those cells, such as renal cells, which are affected by ADPKD. Alternatively, any suitable cell can be transfected with a PKD1 minigene so long as the minigene is expressed in a sustained, stable fashion and produces a polypeptide that ameliorates ADPKD symptoms.

10

15

20

25

30

A therapeutic minigene for the amelioration of ADPKD symptoms can comprise a nucleotide sequence that encodes at least one PKD1 polypeptide peptide domain, particularly a domain having an amino acid sequence substantially identical to a peptide portion SEQ ID NO:2 and having a mutation as shown in Table 4, for example, an A88V, W967R, L2696R, R2985G, W3001X, R3039C, V3285I, or H3311R mutation. Minigenes that encode such PKD1 polypeptides can be synthesized and/or engineered using the PKD1 polynucleotide sequence (SEQ ID NO:1).

The materials for use in the assay of the invention are ideally suited for the preparation of a kit. Such a kit can comprise a carrier means containing one or more container means such as vials, tubes, and the like, each of the container means comprising one of the separate elements to be used in the method. One of the container means can comprise a probe that is or can be detectably labeled. Such probe can be an oligonucleotide comprising at least 10 contiguous nucleotides and having a sequence of a fragment of SEQ ID NO:1 including: nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234, wherein nucleotide 10235, wherein nucleotide 10255, wherein nucleotide 10255 is a T (see, also, Example 2).

A kit containing one or more oligonucleotide probes of the invention can be useful, for example, for qualitatively identifying the presence of mutant PKD1 polynucleotide sequences in a sample, as well as for quantifying the degree of binding of the probe for determining the occurrence of specific strongly binding (hybridizing) sequences, thus indicating the likelihood for a subject having or predisposed to a disorder associated with PKD1. Where the kit utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing reagents for amplification of the target nucleic acid sequence. When it is desirable to amplify the mutant target sequence, this can be accomplished using oligonucleotide primers, which are based upon identification of the flanking regions contiguous with the target nucleotide sequence. For example, primers such as those listed below in Tables 1 and 2 can be included in the kits of the invention. The kit can also contain a container comprising a reporter means such as an enzymatic, fluorescent, or radionuclide label, which can be bound to or incorporated into the oligonucleotide and can facilitate identification of the oligonucleotide.

The following examples are intended to illustrate but not limit the invention.

EXAMPLES

The present invention is based upon the use of widely spaced PKD1-specific

anchor primers in long range PCR to generate 5 kb to 10 kb PKD1 polynucleotide segments. After appropriate dilution, the PCR products can be used as a template for mutation screening using any one of a variety of methods. Accordingly, a number of mutants have been identified in families with PKD1-associated disorders.

10 Using a number of PKD1-specific primers, eight templates ranging in size from about 0.3 to 5.8 kb were generated that span from the 5' untranslated region to intron 34 and cover all exons in the replicated region including exon 1 and exon 22 (Example 1). These reagents were used to evaluate 47 Asian PKD1 families (Example 2). Variant nucleotide sequences were found throughout the PKD1 polynucleotide sequence.

Forty-one Thai and 6 Korean ADPKD families were studied. Samples from 50 healthy Thai blood donors collected in blood banks served as normal controls. Genomic DNA was extracted from either fresh or frozen whole blood that had been stored for up to five years using commercially available kits (Puregene, Gentra) or standard phenol-chloroform methods. For the N23HA and 145.19 cell lines (Cell 77:881-894, 1994; Germino et al., Am J. Hum. Genet. 46:925-933, 1990; Ceccherini et al., Proc. Natl. Acad. Sci. USA 89:104-108, 1992, each of which is incorporated herein by reference; see, also, Watnick et al., supra, 1997), genomic DNA was isolated using the Puregene DNA isolation kit.

20

25

30

EXAMPLE 1 LONG RANGE SPECIFIC TEMPLATES

A two-part strategy was used to generate and validate PKD1-specific primers that could be used to amplify the replicated portion of PKD1. The sequence of PKD1 (SEQ ID NO:1) was aligned with that of two homologues present in GenBank (Accession Number AC002039) and identified potential sequence differences.

97

Candidate primers were designed such that the mismatches were positioned at or adjacent to the 3' end of the oligonucleotide so as to maximize their specificity for PKD1.

5

10

15

20

25

30

The primers were tested for specificity using rodent-human somatic cell hybrids that either contained only human 16p13.3 and therefore, human PKD1 (145.19, a radiation hybrid), or that lacked 16p13.3 and contained only the human PKD1-homologues (N23HA). Figure 2 presents a representative example of this approach using the primer pair, BPF6 and the PKD1-specific primer BPR6. This primer pair amplified a product of the correct length (4.5 kb) under the stated conditions only when total human genomic DNA or 145.19 DNA is used as template. Similar results were obtained when BPR6 was used in combination with the non-specific primer 28F to generate a much shorter product.

As a final control, the absence of amplified product was verified using N23HA as template to confirm that the results obtained using total human genomic DNA and 145.19 DNA were due to the specificity of the primer and not the result of other causes (*i.e.*, difference in quality of DNA or ratio of human/rodent template). A primer specific for the homologues (BPR6HG) was designed that was positioned the same distance from BPF6 as BPR6 and used to amplify a specific band of the same size as the corresponding PKD1-long range product. As predicted, a product of the correct size was amplified from both N23HA and total genomic DNA, but not from 145.19.

A total of eight primer pairs can be used to generate a series of templates that range in size from about 0.3kb to 5.8kb and include all exons and their flanking intron sequences in the replicated portion of PKD1 (exons 1 to 34). Table 1 summarizes the details for each product and includes the sequence of each primer, its respective position within the gene, its expected size, and the optimal annealing temperature and extension time for its amplification. Figure 1 illustrates the relative position of each product with respect to the overall gene structure. It should be noted that exon 1 and its flanking sequences were particularly problematic to evaluate. Primer design was

WO 02/06529

98

Table 1

Oligonucleotide primers for Long-range specific templates

from exon 1-34 of PKD1 gene

Template	Primers	Sequence 5'→3'	Position (5')	Size (kb)	Tm (°C)	ET (Min)	SEQ ID NO:
T1	BPF14*	CCATCCACCTGCTGTGTGAC CTGGTAAAT	2043	2.2	69	7	3
	BPR9	CCACCTCATCGCCCCTTCCT AAGCAT	4290				4
T2-7	BPF9*	ATTTTTTGAGATGGAGCTTC ACTCTTGCAGG	17907	4.6	68	7	5
	BPR4	CGCTCGGCAGGCCCCTAACC	22489		1	1	6
T8-12	BPF12	CCGCCCCAGGAGCCTAGAC G	22218	4.2	68	7	7
	BPR5*	CATCCTGTTCATCCGCTCCA CGGTTAC	26363				8
T13-15	F13	TGGAGGGAGGGACGCCAAT C	26246	4.4	68	7	9
	R27*	GTCAACGTGGGCCTCCAAGT	30612				10
T15-21	F26*	AGCGCAACTACTTGGAGGCC C	30603	3.4	70	4.5	11
	R2	GCAGGGTGAGCAGGTGGGG CCATCCTAC	33953				12
T22	BPF15	GAGGCTGTGGGGGTCCAGTC AAGTGG	36815	0.3	72	1	13
	BPR12*	AGGGAGGCAGAGGAAAGGG CCGAAC	37136				14
T23-28	BPF6	CCCCGTCCTCCCCGTCCTTTT GTC	37325	4.2	69	7	15
	BPR6*	AAGCGCAAAAGGGCTGCGT CG	41524				16
T29-34	BPF13*	GGCCCTCCCTGCCTTCTAGG CG	41504	5.8	68	8	17
	KG8R25*	GTTGCAGCCAAGCCCATGTT A	47316				18

5 Tm - annealing temperature; ET - extension time; * - PKD1-specific primer.

Bold type in BPR12 primer sequence identifies intentional replacement of C by A to enhance discrimination of PKD1 from homologs.

greatly limited by the high degree of homology and extreme GC bias in the region. A combination of widely space primers (to generate a fragment considerably larger than the segment of interest) and the GC melt system were used to circumvent these obstacles.

5

10

15

20

99

Specific details concerning the primer sequences, annealing temperatures and extension times used for each long-range (LR) template are provided in Table 1 (all sequences in Tables 1 and 2 are shown in 5' to 3' orientation from left to right). Three hundred to 400 ng of genomic DNA was used as template for each LR product, except for exon 1 (see below). The long range PCR amplification was performed as follows in a Perkin Elmer 9600 thermal cycler: denaturation at 95°C for 3 min followed by 35 cycles of a two-step protocol that included denaturation at 95°C for 20 sec followed by annealing and extension at a temperature and for a time specific for each primer pair (Table 1). A final extension at 72°C for 10 min was included in each program. The total PCR volume was 50 µl using 4 U of rTth DNA polymerase XL (Cetus, Perkin Elmer) and a final MgOAC₂ concentration of 0.9 mM. A hot start protocol as recommended by the manufacturer was used for the first cycle of amplification. For the exon 1 LR product (T1), the LR was generated using 500 ng of genomic DNA. The long range PCR amplification was modified as follows: denaturation 95 C for 1 min followed by 35 two-step cycles of denaturation at 95°C for 30 sec followed by annealing and extension at 69°C for 7 min. The total PCR volume was 50 µl using 1 µl of Advantage-GC genomic polymerase (Clontech), GC melt of 1.5 M and final MgOAC₂ concentration of 1.1 mM.

The long-range templates were serially diluted (1:10⁴ or 1:10⁵) to remove genomic contamination, then used as templates for nested PCR of 200-400 bp exonic fragments. A total of 17 new primer pairs were developed for exons 1-12 and exon 22. The sequences and PCR conditions for each new pair are summarized in Table 2. Primer sequences and PCR conditions for exons 13-21 and 23-34 are 25 described in Watnick et al., Am. J. Hum. Genet. 65:1561-1571, 1999; and Watnick et al., Hum. Mol. Genet. 6:1473-1481, 1997, which are incorporated herein by reference. Intron based primers were positioned approximately 30-50 bp away from consensus splice sites. Exons larger than approximately 400 bp were split into overlapping fragments of less than or equal to 350 bp. Two µl of diluted long range 30 (LR) product was used as template for amplification of each exon. Single strand conformation analysis was performed using standard protocols. SSCA analysis was performed by use of 8% polyacrylamide gels with 5% glycerol added. The

Table 2

<u>Nested Primers Used for Mutation Detection</u>

Exons	Primer	Primer Sequence 5' 3'	Fragment	T _m (°C)	SEQ
			size (bp)		ID (I
					NO:
T1	1F1	GGTCGCGCTGTGGCGAAGG	328	67	19
T1	1R1	CGGCGGCGCATCGT			20
T1	1F2	ACGGCGGGCCATGCG	348	67	21
T1	1R2	GCGTCCTGGCCCGCGTCC			22
T2-7	2F	TTGGGGATGCTGGCAATGTG	272	62	23
T2-7	2R	GGGATTCGGCAAAGCTGATG			24
T2-7	3F	CCATCAGCTTTGCCGAATCC	171	62	25
T2-7	3R	AGGGCAGAAGGGATATTGGG			26
T2-7	4F	AGACCCTTCCCACCAGACCT	299	62	27
T2-7	4R	TGAGCCCTGCCCAGTGTCT			28
T2-7	5F1	GAGCCAGGAGGAGCAGAACC C	259	65	29
T2-7	5R1	AGAGGGACAGGCAAA		 	30
		GG			
T2-7	5F2	CCCAGCCCTCCAGTGCCT	284	65	31
T2-7	5R2	CCCAGGCAGCACATAGCGAT			32
T2-7	5F3	CCGAGGTGGATGCCGCTG	294	65	33
T2-7	5R3	GAAGGGGAGTGGGCAGCAGA			34
		C			
T2-7	6F	CACTGACCGTTGACACCCTCG	281	65	35
T2-7	6R	TGCCCCAGTGCTTCAGAGATC			36
T2-7	7F	GGAGTGCCCTGAGCCCCCT	311	65	37
T2-7	7R	CCCCTAACCACAGCCAGCG			38
T8-12	8F	TCTGTTCGTCCTGGTGTCCTG	215	65	39
T8-12	8R	GCAGGAGGCAGGTTGTAGA			40
		A			
T8-12	9F	GGTAGGGGGAGTCTGGGCTT	253	65	41
T8-12	9R	GAGGCCACCCGAGTCC			42
T8-12	10F	GTTGGGCATCTCTGACGGTG	364	65	43
T8-12	10R	GGAAGGTGGCCTGAGGAGAT			44
T8-12	11F2	GGGGTCCACGGGCCATG	311	67	45
T8-12	11R2	AAGCCCAGCAGCACGGTGAG			46
T8-12	11midF	GCTTGCAGCCACGGAAC	386	65	47
T8-12	11midR	GCAGTGCTACCACTGAGAAC			48
T8-12	11F1	TGCCCCTGGGAGACCAACGA TAC	303	67	49
T8-12	11R1	GGCTGCTGCCCTCACTGGGA AG			50

101 **TABLE 2 (cont.)**

Exons	Primer	Sequence 5' 3'	Fragment	T _m (°C)	SEQ ID
- 10 -	105	0.16666.461666	size (bp)	64	NO:
12	12F	GAGGCGACAGGCTAAGGG	286	04	51 61
	12R-2	CATGAAGCAGAGCAGAAGG	200	67	62
13	13F:	TGGAGGGAGGACGCCAATC	308	0/	63
	13R:	GAGGCTGGGGCTGGGACAA	200		
14	14F:	CCCGGTTCACTCACTGCG	220	64	64
	14R:	CCGTGCTCAGAGCCTGAAAG			65
15	15F16:	CGGGTGGGGAGCAGGTGG	280	67	66
	15R16:	GCTCTGGGTCAGGACAGGGG A		}	67
15	15F15:	CGCCTGGGGGTGTTCTTT	270	64	68
	15R15:	ACGTGATGTTGTCGCCCG		 	69
15	15F14:	GCCCCGTGGTGGTCAGC	250	67	70
	15R14:	CAGGCTGCGTGGGGATGC		 	71
15	15F13:	CTGGAGGTGCTGCGCGTT	256	67	72
	15R13:	CTGGCTCCACGCAGATGC		1	73
15	15F12:	CGTGAACAGGGCGCATTA	270	65	74
	15R12:	GCAGCAGAGATGTTGTTGGA	270		75
		C			
15	15F11:	CCAGGCTCCTATCTTGTGACA	259	60	76
-	15R11:	TGAAGTCACCTGTGCTGTTGT			77
15	15F10:	CTACCTGTGGGATCTGGGG	217	67	78
	15R10:	TGCTGAAGCTCACGCTCC			79
15	15F9:	GGGCTCGTCGTCAATGCAAG	267	67	80
	15R9:	CACCACCTGCAGCCCCTCTA	 	 	81
15	15F8:	5CCGCCCAGGACAGCATCTTC	261	64	82
	15R8:	CGCTGCCCAGCATGTTGG		 	83
15	15F7:	CGGCAAAGGCTTCTCGCTC	288	64	84
	15R7:	CCGGGTGTGGGGAAGCTATG		 	85
15	15F6:	CGAGCCATTTACCACCCATA	231	65	86
	151 0.	G		"	
	15R6:	GCCCAGCACCAGCTCACAT	 	 	87
15	15F5:	CCACGGGCACCAATGTGAG	251	64	88
	15R5:	GGCAGCAGCAGGATCTGAA	231		89
15	15F4:	CAGCAGCAAGGTGGTGGC	333	67	90
	15R4:	GCGTAGGCGACCCGAGAG			91
15	15F3:	ACGGCACTGAGAGGAACTT	206	64	92
٠.١	roro.	C	200) 04	32
	15R3:	ACCAGCGTGCGGTTCTCACT	 	 	93
15	15F2:	GCGCGACGTCACCTACAC	265	67	94
12	15R2:	TCGGCCCTGGGCTCATCT	+ 203	- 07	95
-15			228	60	
15	15F1: R27':	GTCGCCAGGGCAGGACACAG AGGTCAACGTGGGCCTCCAA	220	68	96
15	15F1-1:	ACTTGGAGGCCCACGTTGAC	276	69	113
13	13F1-1;	C	2/6	69	97
	15R1-1:	TGATGGGCACCAGGCGCTC		Ţ	98
15	15F1-2:	CATCCAGGCCAATGTGACGG T	266	64	99
	15R1-2:	CCTGGTGGCAAGCTGGGTGT		 -	100
16	16F:	TAAAACTGGATGGGGCTCTC	294	56	101
	16R:	GGCCTCCACCAGCACTAA	 	 	102

15

102 **TABLE 2 (cont.)**

Exons	Primers	Primer Sequence 5'-3'	Fragment	T _m (°C)	SEQ ID
			size (bp)		NO:
17	17F:	GGGTCCCCCAGTCCTTCCAG	244	67	103
	17R:	TCCCCAGCCCGCCACA			104
18	18F:	GCCCCTCACCACCCCTTCT	342	67	105
	18R:	TCCCGCTGCTCCCCCAC			106
19	19F:	GATGCCGTGGGGACCGTC	285	67	107
	19R:	GTGAGCAGGTGGCAGTCTCG		·	108
20	20F:	CCACCCCTCTGCTCGTAGGT	232	64	109
	20R:	GGTCCCAAGCACGCATGCA			110
21	21F:	TGCCGGCCTCCTGCGCTGCTG	232	67	111
		Α			
	TWR2-1:	GTAGGATGGCCCCACCTGCT			112
		CACCCTGC			ļ

radiolabeled PCR products were diluted with loading buffer, were denatured by heating at 95°C for 5 min, then were placed on ice prior to being loaded and run on the gel at room temperature. Gels were run at 400 V overnight, dried, and placed on X-Omat XAR film (Kodak) at room temperature. Aberrantly migrating bands detected by SSCA were cut from the gel and eluted into 100 μl of sterile water
 overnight. The eluted products were re-amplified using the same set of primers, purified using Centricon-100 columns (Amicon) and then sequences.

Variants that were predicted to alter a restriction site were confirmed by restriction enzyme digestion analysis of re-amplified products. In cases where the change did not alter a restriction site, primers were designed with mismatches that create a new restriction site when combined with the point mutation in question. The following primer combinations were utilized:

ASP1+26R (ASP1; 5'-CTGGTGACCTACATGGTCATGGCC GAGATC-3'; SEQ ID NO:55);

20 ASP2+30R (ASP2; 5'-GGTTGTCTATCCCGTCTACCTGGCCCTCCT-3'; SEQ ID NO:56);

ASP3 + 30F (ASP3; 5'-GTCCCCAGCCCAGCCCACCTGGCC-3'; SEQ ID NO:57).

103

When possible, segregation of the variant with the disease phenotype was tested. In cases where a missense change was unable to be determined on the normal haplotype (and thus be a normal variant) the mutation was tested for in a panel of 50 normal controls.

5

10

15

20

25

30

EXAMPLE 2

MUTATION SCREENING

The new PKD1-specific products were generated from one affected member of each of the 47 Asian families and then used as template for mutation detection of exons 1-12 and 22-34. Table 2 lists the sequence and PCR condition for primer pairs that were used for nested amplification of individual exons and their adjacent intronic sequence. Overlapping pairs were designed for segments >400 base pairs in length.

A total of 13 novel variants were detected by SSCA using the conditions described above. Two are highly likely to be pathogenic mutations, four are predicted to encode missense substitutions not found in normals and seven are normal variants (see Table 3).

The first pathogenic mutation is a G to A transition at position 9213 in exon 25 that is predicted to result in a nonsense codon (W3001X). Its presence was confirmed by restriction analysis using the enzyme *Mae I* and it was found to segregate with disease. This variant is predicted to truncate the protein near the carboxyl end of the Receptor for Egg Jelly (REJ) domain. The W3001X mutation results in a greatly truncated product missing all of the membrane spanning elements, intervening loops and carboxy terminus. The second mutation (T3110C) is predicted to result in a non-conservative amino acid substitution (W967R) at a critical position of one of the PKD repeats. The mutation is unique to the family in which it was found and was not observed in a screen of over 100 normal Thai chromosomes. The W967R missense mutation is predicted to disrupt the secondary structure of PKD domain 3. The WDFGDGS (SEQ ID NO:58) motif within the CC' loop region is the most conserved sequence of the PKD domains. The tryptophan is replaced is the first

104

residue of the turn at the end of the C strand and is conserved in 14 out of 16 PKD domains. Moreover, it is evolutionarily conserved in mouse and Fugu polycystin-1.

Table 3

<u>Mutations Identified in the PKD1 Gene in a Thai population</u>

Patient	Exon	Nucleic Acid Change	Codon Change	Consequence	Confirmation Enzyme
Pathogenic					
RAMA28-01°	12	T3110C	W967R	Missense (disrupt PKD domain3)	BsaW 1 (cut NC)
RAMA59-02*	25	G9213A	W3001X	Nonsense (early termination)	Mae I
Variants not fou	nd in 100 c	hromosomes			
RAMA3-02*	22	T8298G	L2696R	Missense	HinP1 I
RAMA87-01*	25	A9164G	R2985G	Missense	BsrB 1
RAMA87-01*	25	C9326T	R3039C	Missense	Fau I (cut NC)
RAMA45-03*	29	G10064A	V3285I	Missense	Bsm I
Probable normal	l variants				
RAMA7-06	2	C474T	A88V	Missense	Hph I
RAMA107-01	2	G487A	A92A	Silent change	TspR I
RAMA94-01	25	C9367T	G3052G	Silent change	Sfo I (cut NC)
RAMA66-01	30	A10143G ^{HG}	H3311R	Missense	Nsp I (cut NC)
RAMA66-01	30	T10234CHG	L3341L	Silent change	ASPI + BseR I
RAMA51-01	30	G10255T	R3348R	Silent change	ASP2 + MSC I

^{* -} Segregation with disease; 0 - cannot test for segregation; NC - Normal control; HG - Present in one copy of the homologues; ASP - Allele-specific primer.

10

15

5

These pathogenic mutations add to previously identified pathogenic mutations, including a deletion of G3336 (Δ G3336) in exon 13, resulting in a frame shift after amino acid 1041 (FS1041); C4168T (Q1653)X), C6089T (Q1960X) and C6326T (Q2039X) mutations in exon 15, each resulting in a nonsense termination; Δ G7205-G7211 in exon 16, resulting in a FS2331; a C7415T (R2402X) mutation in exon 18, resulting in a nonsense termination; a C7883T (Q2558X) mutation in exon 19, resulting in a nonsense termination; and a Δ C8159-T8160 mutation in

105

exon 21, resulting in a FS2649 (Phakdeekitcharoen et al., *supra*, 2000). In addition, probable pathogenic mutations including G3707A (G1166S) and T6078A (V1956E) missense mutations in exon 15, and a C7433T (R2408C) missense mutation and an insertion of a GCG trinucleotide between G7535 and G7536 (extra Gly2422) in exon 18 have been identified (Phakdeekitcharoen et al., *supra*, 2000).

Four additional mutations unique to one of the families also were identified (see Table 3). The mutants segregate with disease, and were not observed in a screen of over 100 normal Thai chromosomes. Three of the four variants are predicted to result in non-conservative amino acid substitutions. Two of them (A9164G, C9326T) are present in the same allele of a single family (*RAMA87*). As such, these mutations meet several criteria expected of disease-producing mutations, including they are not found in normal, ethnically matched chromosomes, they segregate with the disease, and they result in non-conservative substitutions.

15

20

25

30

5

10

In one case a heteroduplex pattern was discovered for the exon 22 product of the proband by standard agarose electrophoresis. The heteroduplex pattern was confirmed to segregate with disease and subsequently determined that the novel variant was the result of a T to G transversion at position 8298. This mutation is predicted to substitute arginine for leucine at position 2696 of the protein sequence. This non-conservative substitution is within the REJ domain. Interestingly, the R3039C substitution occurs near a newly described putative proteolytic cleavage site of polycystin-1, His(3047)-Leu-Thr-Ala(3050) (SEQ ID NO:59). In the corresponding position of *Fugu* and murine polycystin-1, glutamic acid and arginine, respectively, are present, suggesting a non-critical role for a non-polar residue at this location.

Seven nucleotide substitutions that are likely normal variants were also identified. Two are missense variants that do not segregate with disease in the family in which they were discovered. The C474T substitution results in the conservative replacement of valine by alanine at position 88 in the first leucine rich (LRR) repeat. The amino acid is not conserved between species and is not predicted to disrupt the

106

LRR structure. The second missense variant, A10143G, substitutes arginine for histidine at position 3311 within the first extracellular loop between TM2 and TM3. It too, is a conservative change involving a residue whose identity is not evolutionarily conserved at this position. The other five variants were silent nucleotide substitutions that were unique to the pedigree in which they were found and not found in more than 100 normal chromosomes. It is possible that these variants can be pathogenic by affecting gene splicing in the region. Two of the normal variants of exon 30, A10143G (H3311R) and T10234C (L3341L), were clustered together in a single PKD1 haplotype. Interestingly, both variants also are present in at least one of the homologues, suggesting a previous gene conversion event as the original of these PKD1 variants. Additional PKD1 variants, which do not appear to be associated with a PKD1-associated disorder, include two silent mutations, G4885A (T1558T) and C6058T (S1949S), and a missense mutation, G6195A (R1995H), in exon 15; a silent T7376C (L2389L) mutation in exon 17; a silent C7696T (C2495C) mutation in exon 18; and a missense G8021A (D2604N) mutation in exon 20 (Phakdeekitcharoen et al., supra, 2000).

10

15

20

25

Table 4 summarizes the clinical findings for the probands of 17 Thai families. The genotypes and phenotypes for patients with ADPKD are shown. It has been estimated on the basis of studies of Caucasian populations that approximately 15% of mutations are localized to the nonreplicated portion of the PKD1 gene. If the same frequency is true for the Thai population (the patients were not screened for mutations in the nonreiterated portion), then the present studies have identified approximately 45% to 54 percent of all mutations present in the nonreplicated region. This detection rate likely can be increased by using more sensitive detection methods such as DHPLC (Kristensen et al., *supra*, 2001), HTCSGD (Leung et al., *supra*, 2001), or the like.

Table 4
Genotypes and phenotypes in Thai ADPKD1

Patients	Age		Genotype						Phenotype	type		Ref.
		Exon	Exon Codon Change Consequence	Consequence	HT	Renal insuff. (Cr>2)	Renal	Palpable kidneys	Liver Cyst	Heart Valv. Brain Abnorm. Aneur	Brain Aneur.	
RAMA28-0	30	12	W967R	Missense	+	. •		ı	,			
RAMA103-	57	13	FS after 1041	Frameshift	+	,	+	•	+			Đ
RAMA49-0	26	15	G1166S	Missense	+		.,	+		~		£
RAMA36-0	47	15	Q1653X	Nonsense	+	•		+	•	•		Đ
RAMA108-	57	15	V1956E	Missense	+	+	,		•		•	€
RAMA77-0	53	15	. Q1960X	Nonsense	+	+	,	+	+			Đ
RAMA32-0	36	15	Q2039X	Nonsense	+	+	•	+	,		•	Đ
RAMA97-0	45	17	R2402X	Nonsense	+	+		,	•			Đ
RAMA96-0	30	8	R2408C	Missense	,		+		+			Đ
RAMA99-0	99	18	R2430X	Nonsense		+	+		+	,		Đ
.RAMA66-0	39	80	2442 add'l. Gly	Extra Glycine	+		+		•			€
RAMA55-0	22	19	Q2558X	Nonsense	,		•	+	+			€
RAMAS-01	53	21	FS after 2649	Frameshift	+	+	+	+	+	+	+	Đ
RAMA3-02	40	22	L2696R	Missense	+	+		+	+		•	
RAMA87-0	61	25	R2985G	Missense		,	•	+	+			
		25	R3039C	Missense								
RAMAS9-0 35	35	25	W3001X	Nonsense	+	+	+	1		,	•	
RAMA45-0 59	89	59	V3285I	Missense	+	+			•			
LIT hand	1	G	UTF hungersion Danal insuff - "	renel incusticiency. Heart Valv Ahnorm - heart valvular ahnormalities.	.000	Heart V	alv Abnor	m. hea	et valvula	rahnomal	ities.	

HT - hypertension; Renal insuff. - renal insufficiency; Heart Valv. Abnorm. - heart valvular abnormalities; Brain Aneur. - brain aneurisyms; * - Phakdeekitcharoen et al., supra, 2000.

108

Although the invention has been described with reference to the above examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.

PCT/US01/22035

What is claimed is:

5

15

A primer, comprising a 5' region and adjacent 3' region,
 said 5' region comprising a nucleotide sequence that selectively hybridizes to a
 PKD1 gene sequence and, optionally, to a PKD1 gene homolog sequence, and
 said 3' region comprising a nucleotide sequence that selectively hybridizes to a
 PKD1 gene sequence, and not to a PKD1 gene homolog sequence,
 provided the primer does not consist of a sequence as set forth in SEQ ID
 NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60.

10 2. The primer of claim 1, wherein said 5' region comprises at least about ten contiguous nucleotides,

wherein the 3' region comprises at least one 3' terminal nucleotide identical to a nucleotide that is 5' and adjacent to the nucleotide sequence of the PKD1 gene to which the 5' region of the primer can hybridize, and

wherein said 3' terminal nucleotide is different from a nucleotide that is 5' and adjacent to a nucleotide sequence of the PKD1 homolog to which the 5' region of the primer can hybridize.

- 3. The primer of claim 2, wherein the 3' region comprises about 2 to 4 20 3' terminal nucleotides.
 - 4. The primer of claim 2, comprising a 5' region of about 14 to 18 nucleotides and a 3' region of about 2 to 6 nucleotides.
- 5. The primer of claim 1, which can selectively hybridize to a nucleotide sequence flanking and within about fifty nucleotides of a sequence of SEQ ID NO:1 selected from about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; and nucleotides 41508 to 47320, or to a nucleotide sequence complementary to said sequence of SEQ ID NO:1.

WO 02/06529

- 6. The primer of claim 5, comprising a nucleotide sequence substantially identical to any of SEQ ID NOS:3 to 51 and 61 to 113.
- 7. A primer pair, which can amplify a portion of SEQ ID NO:1 comprising about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof.
- 10 8. The primer pair of claim 7, comprising a forward primer and a reverse primer, each of which is selected from SEQ ID NOS:3 to 18.
- The primer pair of claim 7, wherein the primer pair comprises SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10;
 SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; or SEQ ID NOS:17 and 18.
 - 10. The primer pair of claim 7, comprising a forward primer and a reverse primer, each of which is selected from SEQ ID NOS:19 to 51 and 61 to 113.

20

25

30

NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS: 51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102;

111

SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; or SEQ ID NOS:111 and 112.

- 12. A plurality of primer pairs comprising at least two primers pairs, wherein the primer pairs in the plurality can amplify a portion of SEQ ID NO:1 comprising about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819 to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof.
- 13. The plurality of primer pairs of claim 12, wherein at least one primer pair is selected from SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; and SEQ ID NOS:17 and 18.
- 14. The plurality of primer pairs of claim 12, wherein the primer pairs comprise SEQ ID NOS:3 and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; and SEQ ID NOS:17 and 18.
- 15. The plurality of primer pair of claim 12, wherein at least one primer pair is selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS: 51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ

ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; and SEQ ID NOS:111 and 112.

- 16. A solid matrix, comprising the primer of claim 5, wherein the primer is5 immobilized on the solid matrix.
 - 17. The solid matrix of claim 16, which comprises a plurality of immobilized primers.
- 18. The solid matrix of claim 17, wherein the matrix comprises a plurality of primers, wherein said primers are degenerate with respect to one or more codons encoding a polypeptide having an amino acid sequence as set forth in SEQ ID NO:2.
 - 19. The solid matrix of claim 16, wherein the solid matrix is a microchip.

15

30

20. An isolated polynucleotide, comprising a contiguous sequence of at least about ten nucleotides substantially identical to a nucleotide sequence of SEQ ID NO:1 or to a nucleotide sequence complementary thereto, the contiguous nucleotide sequence comprising with respect to SEQ ID NO:1:

nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C;

a position corresponding to nucleotide 3336, wherein nucleotide 3336 is

deleted;

25 nucleotide 3707, wherein nucleotide 3707 is an A;

nucleotide 4168, wherein nucleotide 4168 is a T;

nucleotide 4885, wherein nucleotide 4885 is an A;

nucleotide 5168, wherein nucleotide 5168 is a T;

nucleotide 6058, wherein nucleotide 6058 is a T;

nucleotide 6078, wherein nucleotide 6078 is an A;

nucleotide 6089, wherein nucleotide 6089 is a T;

nucleotide 6195, wherein nucleotide 6195 is an A;

nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted;

nucleotide 7376, wherein nucleotide 7376 is a C:

a nucleotide sequence corresponding to nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536;

nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding to nucleotide 8159 to 8160, wherein

nucleotide 8298, wherein nucleotide 8298 is a G;
nucleotide 9164, wherein nucleotide 9164 is a G;
nucleotide 9213, wherein nucleotide 9213 is an A;
nucleotide 9326, wherein nucleotide 9326 is a T;
nucleotide 9367, wherein nucleotide 9367 is a T;
nucleotide 10064, wherein nucleotide 10064 is an A;
nucleotide 10143, wherein nucleotide 10143 is a G;
nucleotide 10234, wherein nucleotide 10234 is a C;
nucleotide 10255, wherein nucleotide 10255 is a T;

or a combination thereof.

nucleotides 8159 to 8160 are deleted;

25

10

- 21. A vector, comprising the polynucleotide of claim 20.
- 22. A host cell containing the vector of claim 20.
- 30 23. A solid matrix, comprising the polynucleotide of claim 20, wherein said polynucleotide is immobilized on the solid matrix.

114

24. The solid matrix of claim 23, wherein the polynucleotide comprises one of a plurality of polynucleotides, each of which is immobilized on the solid matrix.

25. A method of detecting the presence or absence of a mutation in a PKD1
5 polynucleotide in a sample, the method comprising:

contacting nucleic acid molecules in a sample with at least one primer pair of claim 7 under conditions suitable for amplification of a PKD1 polynucleotide by the primer pair, thereby generating a PKD1-specific amplification product under said conditions; and

identifying the presence or absence of a mutation in the PKD1-specific amplification product, thereby detecting the presence or absence of a mutation in the PKD1 polynucleotide in the sample.

26. The method of claim 25, wherein the primer pair comprises SEQ ID NO:3
and 4; SEQ ID NOS:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; SEQ ID NOS:17 and 18; or a combination thereof.

27. The method of claim 25, wherein, upon generating a PKD1-specific amplification product, the method further comprises:

20

25

30

contacting the PKD1-specific amplification product with at least a second primer pair selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEQ ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEQ ID NOS:74 and 75; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90

5

10

20

and 91; SEQ ID NOS:92 and 93; SEQ ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; SEQ ID NOS:111 and 112; and a combination thereof, under conditions suitable for nested amplification of the PKD1-specific amplification product by the second primer pair, thereby generating a nested amplification product; and

identifying the presence or absence of a mutation in the nested amplification product, thereby detecting the presence or absence of a mutation in the PKD1 polynucleotide in the sample.

- 28. The method of claim 25, wherein amplification is performed by a polymerase chain reaction.
- 15 29. The method of claim 25, wherein the PKD1 polynucleotide is a variant PKD1 polynucleotide.
 - 30. The method of claim 29, wherein the variant PKD1 polynucleotide comprises a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 474 is a T; nucleotide 487 is an A; nucleotide 4884 is an A; nucleotide 6058 is a T; nucleotide 6195 is n A; nucleotide 7376 is a C; nucleotide 7696 is a T; nucleotide 8021 is an A; nucleotide 9367 is a T; nucleotide 10143 is a G; nucleotide 10234 is a C; or nucleotide 10255 is a T.
- 25 31. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product comprises determining the nucleotide sequence of the amplification product.
- 32. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product comprises determining the melting temperature of the amplification product, and comparing the melting temperature to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1.

33. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using denaturing high performance liquid chromatography.

5

25

- 34. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using matrix-assisted laser desorption time of flight mass spectrometry.
- 35. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using high throughput conformation-sensitive gel electrophoresis.
- 36. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed by a method selected from single stranded conformation analysis, denaturing gradient gel electrophoresis, an RNAse protection assay, allele-specific oligonucleotide detection, an allele-specific polymerase chain reaction, and an oligonucleotide ligation assay.
- 37. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product is performed using a primer extension reaction assay,

wherein the primer extension reaction is performed using a detectably labeled primer and a mixture of deoxynucleotides and dideoxynucleotides, and

- wherein the primer and mixture are selected so as to enable differential extension of the primer in the presence of a wild type PKD1 polynucleotide as compared to a mutant PKD1 polynucleotide.
- 38. The method of claim 25, wherein the method is performed using a plurality of primer pairs.

- 39. The method of claim 25, wherein the method is performed in a high throughput format using a plurality of samples.
 - 40. The method of claim 39, wherein plurality of samples are in an array.

5

20

- 41. The method of claim 40, wherein the array comprises a microtiter plate.
- 42. The method of claim 40, wherein the array is on a microchip.
- 43. The method of claim 25, wherein identifying the presence or absence of a mutation in the amplification product comprises:

contacting the amplification product with the polynucleotide of claim 20, under condition suitable for selective hybridization of the polynucleotide to an identical nucleotide sequence; and

detecting the presence of selective hybridization of the polynucleotide to the amplification product,

wherein the detecting the presence of selective hybridization identifies the presence of a mutation in the PKD1 polynucleotide in the sample, and

wherein detecting the absence of selective hybridization identifies the absence of a mutation in the PKD1 polynucleotide in the sample.

- 44. A method of identifying a subject at risk for a PKD1-associated disorder, the method comprising:
- contacting nucleic acid molecules in a sample from a subject with at

 least one primer pair of claim 7 under conditions suitable for amplification of
 a PKD1 polynucleotide by the primer pair, thereby generating an amplification
 product; and

detecting the presence or absence of a mutation indicative of a PKD1-associated disorder in the amplification product,

wherein the absence of the mutation identifies the subject a not at risk for a PKD1-associated disorder, and

WO 02/06529

20

25

PCT/US01/22035

wherein the presence of the mutation identifies the subject as at risk for a PKD1-associated disorder.

- 45. The method of claim 44, wherein the at least one primer pair is selected from SEQ ID NO:3 and 4; SEQ ID NO:5 and 6; SEQ ID NOS:7 and 8; SEQ ID NOS:9 and 10; SEQ ID NOS:11 and 12; SEQ ID NOS:13 and 14; SEQ ID NOS:15 and 16; and SEQ ID NOS:17 and 18.
- 46. The method of claim 44, wherein the PKD1-associated disorder is autosomal dominant polycystic kidney disease.
 - 47. The method of claim 44, wherein the PKD1-associated disorder is acquired cystic disease.
- 48. The method of claim 44, wherein the method is performed in a high throughput format.
 - 49. The method of claim 44, wherein detecting the presence or absence of a mutation indicative of a PKD1-associated disorder in the amplification product comprises accumulating data representative of the presence or absence of the mutation.
 - 50. The method of claim 49, wherein the data is formatted into a report indicating whether a subject is at risk of a PKD1-associate disorder.
 - 51. The method of claim 50, further comprising transmitting the report to a user.
- 52. The method of claim 51, wherein transmitting the report comprises sending the report over the internet, by facsimile or by mail.

119

53. The method of claim 44, further comprising contacting the amplification product with at least a second primer pair, under conditions suitable for nested amplification of the amplification product by a second primer pair, thereby generating a nested amplification product,

and detecting the presence or absence of a mutation indicative of a PKD1-associated disorder in the nested amplification product.

5

- 54. The method of claim 53, wherein the second primer pair is selected from SEQ ID NOS:19 and 20; SEQ ID NOS:21 and 22; SEQ ID NOS:23 and 24; SEQ ID NOS:25 and 26; SEQ ID NOS:27 and 28; SEQ ID NOS:29 and 30; SEQ ID NOS:31 and 32; SEQ ID NOS:33 and 34; SEQ ID NOS:35 and 36; SEQ ID NOS:37 and 38; SEQ ID NOS:39 and 40; SEQ ID NOS:41 and 42; SEQ ID NOS:43 and 44; SEO ID NOS:45 and 46; SEQ ID NOS:47 and 48; SEQ ID NOS:49 and 50; SEQ ID NOS:51 and 61; SEQ ID NOS:62 and 63; SEQ ID NOS:64 and 65; SEQ ID NOS:66 and 67; 15 SEQ ID NOS:68 and 69; SEQ ID NOS:70 and 71; SEQ ID NOS:72 and 73; SEO ID NOS:74 and 75; SEQ ID NOS:76 and 77; SEQ ID NOS:78 and 79; SEQ ID NOS:80 and 81; SEQ ID NOS:82 and 83; SEQ ID NOS:84 and 85; SEQ ID NOS:86 and 87; SEQ ID NOS:88 and 89; SEQ ID NOS:90 and 91; SEQ ID NOS:92 and 93; SEO ID NOS:94 and 95; SEQ ID NOS:96 and 113; SEQ ID NOS:97 and 98; SEQ ID NOS:99 and 100; SEQ ID NOS:101 and 102; SEQ ID NOS:103 and 104; SEQ ID NOS: 105 and 106; SEQ ID NOS:107 and 108; SEQ ID NOS:109 and 110; SEQ ID NOS:111 and 112; and a combination thereof.
- 55. The method of claim 53, detecting the presence or absence of the mutation comprises determining the nucleotide sequence of the amplification product, and comparing the nucleotide sequence to a corresponding nucleotide sequence of SEQ ID NO:1.
- 56. The method of claim 53, wherein detecting the presence or absence of the mutation comprises determining the melting temperature of the amplification product, and comparing the melting temperature to the melting temperature of a corresponding nucleotide sequence of SEQ ID NO:1.

20

25

30

- 57. The method of claim 53, wherein detecting the presence or absence of the mutation is performed using denaturing high performance liquid chromatography.
- 58. The method of claim 44, wherein the mutation indicative of a of PKD1 associated disorder comprises a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 3110 is a C; nucleotide 8298 is a G; nucleotide 9164 is a G; nucleotide 9213 is an A; nucleotide 9326 is a T; or nucleotide 10064 is an A.
- 59. The method of claim 44, wherein the mutation indicative of a of PKD1 associated disorder comprises a nucleotide sequence substantially identical to SEQ ID NO:1, wherein nucleotide 3336 is deleted; nucleotide 3707 is an A; nucleotide 5168 is a T; nucleotide 6078 is an A; nucleotide 6089 is a T; nucleotide 6326 is a T; nucleotides 7205 to 7211 are deleted; nucleotide 7415 is a T; nucleotide 7433 is a T; nucleotide 7883 is a T; or nucleotides 8159 to 8160 are deleted; or wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536.
 - 60. A method of diagnosing a PKD1-associated disorder in a subject, the method comprising:

amplifying a portion of a PKD1 polynucleotide in a nucleic acid sample from a subject with at least a first primer pair to obtain a first amplification product, wherein said first primer pair is a primer pair of claim 7;

amplifying the first amplification product with at least a second primer pair to obtain a nested amplification product, wherein the second primer pair is suitable for performing nested amplification of the first amplification product; and

determining whether the nested amplification product has a mutation associated with a PKD1-associated disorder,

wherein the presence of a mutation associated with a PKD1-associated disorder is indicative of a PKD1-associated disorder, thereby diagnosing a PKD1-associated disorder in the subject.

10

25

30

- 61. The method of claim 60, wherein the method is performed in a high throughput format using a plurality of nucleic acid samples.
- 5 62. A method of detecting the presence of a mutant PKD1 polynucleotide in a sample, the method comprising:

contacting a sample suspected of containing a mutant PKD1 polynucleotide with a polynucleotide of claim 20 under conditions that allow the polynucleotide to selectively hybridize with a mutant PKD1 polynucleotide; and

detecting selective hybridization of the polynucleotide and a mutant PKD1 polynucleotide, thereby detecting the presence of a mutant PKD1 polynucleotide sequence in the sample.

- 63. A kit for detecting the presence or absence of a mutation in a PKD1 gene, the kit comprising a primer, said primer comprising a 5' region and adjacent 3' region, said 5' region comprising a nucleotide sequence that selectively hybridizes to a PKD1 gene sequence and, optionally, to a PKD1 gene homolog sequence, and said 3' region comprising a nucleotide sequence that selectively hybridizes to a PKD1 gene sequence, and not to a PKD1 gene homolog sequence, provided the primer does not consist of a sequence as set forth in SEQ ID NO:11, SEQ ID NO:18, SEQ ID NO:52, or SEQ ID NO:60.
 - 64. The kit of claim 63, comprising a plurality of said primers.
 - 65. A kit for detecting the presence or absence of a mutation in a PKD1 gene, the kit comprising a primer pair, said primer pair comprising a forward primer and a reverse primer,

wherein the primer pair can amplify a portion of SEQ ID NO:1 comprising about nucleotides 2043 to 4209; nucleotides 17907 to 22489; nucleotides 22218 to 26363; nucleotides 26246 to 30615; nucleotides 30606 to 33957; nucleotides 36819

122

to 37140; nucleotides 37329 to 41258; nucleotides 41508 to 47320; or a combination thereof.

66. A kit for detecting the presence or absence of a mutation in a PKD1 gene. the kit comprising an isolated polynucleotide, said polynucleotide comprising a contiguous sequence of at least about ten nucleotides substantially identical to a nucleotide sequence of SEQ ID NO:1 or to a nucleotide sequence complementary thereto, wherein the contiguous nucleotide sequence comprises with respect to SEQ ID NO:1, nucleotide 474, wherein nucleotide 474 is a T; nucleotide 487, wherein 10 nucleotide 487 is an A; nucleotide 3110, wherein nucleotide 3110 is a C; a position corresponding to nucleotide 3336, wherein nucleotide 3336 is deleted; nucleotide 3707, wherein nucleotide 3707 is an A; nucleotide 4168, wherein nucleotide 4168 is a T; nucleotide 4885, wherein nucleotide 4885 is an A; nucleotide 5168, wherein nucleotide 5168 is a T; nucleotide 6058, wherein nucleotide 6058 is a T; 15 nucleotide 6078, wherein nucleotide 6078 is an A; nucleotide 6089, wherein nucleotide 6089 is a T; nucleotide 6195, wherein nucleotide 6195 is an A; nucleotide 6326, wherein nucleotide 6326 is a T; a position corresponding to nucleotides 7205 to 7211, wherein nucleotides 7205 to 7211 are deleted; nucleotide 7376, wherein nucleotide 7376 is a C; a nucleotide sequence corresponding to 20 nucleotides 7535 to 7536, wherein a GCG nucleotide sequence is inserted between nucleotides 7535 and 7536; nucleotide 7415, wherein nucleotide 7415 is a T; nucleotide 7433, wherein nucleotide 7433 is a T; nucleotide 7696, wherein nucleotide 7696 is a T; nucleotide 7883, wherein nucleotide 7883 is a T; nucleotide 8021, wherein nucleotide 8021 is an A; a nucleotide sequence corresponding 25 to nucleotide 8159 to 8160, wherein nucleotides 8159 to 8160 are deleted; nucleotide 8298, wherein nucleotide 8298 is a G; nucleotide 9164, wherein nucleotide 9164 is a G; nucleotide 9213, wherein nucleotide 9213 is an A; nucleotide 9326, wherein nucleotide 9326 is a T; nucleotide 9367, wherein nucleotide 9367 is a T; nucleotide 10064, wherein nucleotide 10064 is an A; nucleotide 10143, wherein nucleotide 10143 is a G; nucleotide 10234, wherein nucleotide 10234 is a C; nucleotide 10255, wherein nucleotide 10255 is a T; or a combination thereof.

123

67. A kit for detecting the presence or absence of a mutation in a PKD1 gene, the kit comprising an antibody that specifically binds to a mutant PKD1 polypeptide.

SEQUENCE LISTING

		0-20-10-			
<110>	THE JOHNS HOPKIN	S UNIVERSITY	SCHOOL OF	MEDICINE	3
	GERMINO, Gregory				
	WATNICK, Terry				
	PHAKDEEKITCHAROE	N, Bunyong			
<120>	DETECTION AND T	REATMENT OF	POLYCYSTIC	KIDNEY I)I

- ISEASE
- <130> JHU1680WO
- <150> US 60/283,691
- <151> 2001-07-13
- <150> US 60/218,261
- <151> 2000-07-13
- <160> 113
- <170> PatentIn version 3.0
- <210> 1
- <211> 53522
- <212> DNA
- <213> Homo sapiens

<400> 1

	caaacttt	ttgagacagc	atctcaccct	gttccccagg	ctggagtgca	gtggtgtgat	60
cat	ggctcac	tgcagcgtca	acctcctggg	tctacttgat	ctgtaaactt	cgagggaagg	120
tgt	aataaac	cctcctgcaa	tgtctttgtt	tttcaaaatc	tttgtatttc	acagtttagc	180
tto	gtgggtt	gatgttctat	tttgtttttg	tgtgtgtgtg	tgtgtgtttt	gtgtttttt	240
ttg	gagacaca	gtcttgctct	tgttgcccag	gctggagtgc	aatggtgtga	tcttggctca	300
cts	gcaacttc	cacctcttgg	gttcaagaga	ttctcctgcc	tcagccttcc	gagtagctag	360
gat	tacaggc	gccgccacca	caccccgcta	attttgtatt	tttagtagag	atggggtttc	420
tec	catattgg	tcaggctggt	ctcaaactcc	cgacctcagg	tgatccgccc	acctcagcct	480
CCC	caaaatgc	tgggattaca	ggcgtgagtc	accgcacctg	gccaatgttc	tatttttgag	540
aac	cacaacag	ttcataatat	attctacata	gaccatacct	gttatgtgta	gataaacaga	600
cto	ttttccc	atttaacacc	ttttgcctta	ggtttatttt	tctggtatca	atactggcac	660
act	tactttg	tttgcagttt	cctgtctttt	tttttttt	tttttttt	gagacagagt	720
cto	cactctgt	cacccaggct	ggagtgaagt	ggcgggatct	cggctcactg	caacctctac	780
cto	ctgggtt	catgcgattc	tcctgcctca	gcttcccgaa	tagctgagac	cacaactgtg	840
tgo	caccatg	cccagccaat	ttttgtattt	ttagtagaca	cggggtttca	ccatactggc	900
cag	ggatggct	caatctcttg	acctcgtgat	ccacctgcct	ccgcctccca	aagtgctggg	960
att	acaggca	tgagccactg	tgcctggcct	tttttttct	ttttgagatg	gagtctcact	1020
cts	gtcaccca	ggctggagtg	cagtggggta	acctcaggtc	actgcgacct	ccgcctcccg	1080

ggttccagtg	attctcctgc	ctcagcctcc	cgagtagctg	ggattacagg	cacccaccac	1140
catgeetgge	taatttttgt	atttttagta	gagacggggt	tttgccacgt	tggccaggtt	1200
ggtctcgaac	tettggeete	atgtgacccg	cctgccttgg	cctcccaaag	tgctgggatt	1260
acaggtgtga	gccactgtgc	ctggcctggc	tttcttgttt	cttttctcct	cttctagttt	1320
ccccctttta	ggctaacaat	tattcactgt	taataaaaac	cctcaggtct	gtattttatc	1380
aagaaacatt	tccctcacgt	cttcttccct	gaaccaaaca	agatctctgg	cacattttat	1440
ttgctctgtc	tcaccacatg	gattttgttt	ttttgtttct	ttgttttttg	agatggagtc	1500
tcactcttgt	tgcccaggct	ggagtgccat	ggcacaatct	cagctcactg	caacctccac	1560
ctcctgggtt	caagcgattc	tectgtetea	gcctcctgag	tagctgggat	tacaggcgcg	1620
tggcaccacc	cccagctaat	ttttgtattt	ttagtagaga	cggggtttca	ccatgttggt	1680
caggetggte	tcgaactcct	gaccttgtga	tctgcccacc	ttggcctccc	aaagtgctgg	1740
gattacaggc	atgagccacc	acgcccggcc	cccatggttt	ttcaaatagt	ttagaatttc	1800
atttccaggt	aactaatttg	cttctttaaa	catatgtctt	ttctatttaa	gaaatccttt	1860
ctaaacaatt	gcattttatt	ccacaaccgc	cttcaaacaa	tcattgagac	ttggttaatc	1920
tgttttgctc	atttggcagc	agtttcttgt	ggctgtttct	tccctccact	ggagtccttg	1980
aatcttaagt	ctgtcatttg	actgcaatta	aaagctgggt	ttggaataca	atcgcagcct	2040
taccatccac	ctgctgtgtg	acctggtaaa	tttcttttt	tttttttgag	acggagtctt	2100
gctctgttgc	ccaggctgga	gtgcagtggc	acaacctctg	cctcccaggt	tcaagcgatt	2160
ctactgcctc	aggctcccta	gtagctggga	ttataggtgc	ctgccaccat	gcccagctga	2220
tttttgtatt	tttagtagag	atgaggtttc	accatgttgg	ctaggctggt	ctcgaacttc	2280
tgatcttgtg	atctgcccgc	ctcggcctcc	caaagtgctg	ggattacagg	catgagecae	2340
cactcccagc	cagttctttt	tttcttttt	ccatttttt	ttttttcgag	acaggatett	2400
actcttttgc	ccaggcggga	gtgcagtggc	acaatcacgg	ctcagcgcag	ccactgccta	2460
ctgggctcac	acgetectee	ggcctcagcc	tctcgagtac	ctgggactac	aagcgtgagc	2520
cagtttggct	aattttggct	aatttttgta	gaaacggggt	ctcgccatgt	tggccaggct	2580
ggtctccaac	tcctggactc	aagggatcca	ccttcctccc	cctctcaaag	ttctgggatt	2640
accggagtga	gccactgtgc	cctgctggca	aatttcttaa	actgtctgtg	cctcagtgac	2700
ctcatttaat	aaagggaata	attgtagcac	actttttcta	gagctgtgaa	gattcaatgg	2760
aataaataag	gcaataaatg	aatggatggg	gaatgaagga	tgtgggtttc	ctccctcttg	2820
tctttcaata	agctctcacc	atcaacctcc	cattgcctgt	tctctctctt	cccctctct	2880

ccctctgtct	ctctctcagc	caggaaacct	ggggtaggga	ggcttggagc	cagcgggtgc	2940
gtcgggaggc	tgcgggtact	gactcgggcc	gcgcacggag	atcgcgggag	aaggatecae	3000
aaccgcggaa	gaaggatcag	ggtggagcct	gtggctgctg	caggaggagg	aacccgccgc	3060
ctggcccaca	ccacaggaga	agggcggagc	agatggcacc	ctgcccaccg	cttcccgccc	3120
acgcacttta	gcctgcagcg	gggcggagcg	tgaaaaatag	ctcgtgctcc	teggeegaet	3180
ctgcagtgcg	acggcggtgc	ttccagacgc	teegeeceae	gtcgcatgcg	ccccgggaac	3240
gcgtggggcg	gagetteegg	aggccccgcc	ctgctgccga	ccctgtggag	cggagggtga	3300
agcctccgga	tgccagtccc	tcatcgctgg	cccggtcgcg	ctgtggcgaa	gggggcggag	3360
cctgcacccg	ccccgccccc	cctcgccccg	teegeeeege	gccgcgcggg	gaggaggagg	3420
aggagccgcg	gcggggcccg	cactgcagcg	ccagcgtccg	agcgggcggc	cgagctcccg	3480
gagcggcctg	geccegagee	ccgagcgggc	gtcgctcagc	agcaggtcgc	ggccgcagcc	3540
ccatccagcc	cgcgcccgcc	atgccgtccg	egggeeeege	ctgagctgcg	gcctccgcgc	3600
gegggeggge	ctggggacgg	cggggccatg	cgcgcgctgc	cctaacgatg	ccgcccgccg	3660
cgcccgcccg	cctggcgctg	gccctgggcc	tgggcctgtg	gctcggggcg	ctggcggggg	3720
gccccgggcg	cggctgcggg	ccctgcgagc	ccccctgcct	ctgcggccca	gegeeeggeg	3780
ccgcctgccg	cgtcaactgc	tegggeegeg	ggctgcggac	gctcggtccc	gcgctgcgca	3840
teccegegga	cgccacagcg	ctgtgagtag	cgggcccagc	ggcacccggg	agaggccgcg	3900
ggacgggcgg	gcgtgggcgg	gttccctggc	ccgggacggg	aagcaggacg	cgggccagga	3960
cgctcccagg	ggcgaggctc	cggcgcggca	cggcgggccc	tgctaaataa	ggaacgeetg	4020
gagccgcggt	tggcacggcc	ccggggagcc	gaaaaacccc	gggtctggag	acagacgtcc	4080
cacccggggg	ctctgcagac	gccagcgggg	gcggggcgcg	gaggeegege	tcagctggga	4140
ggacaaacag	tcgctaattg	gagaggaatt	gggatgcggc	ctggggctgc	ggggtacccg	4200
gagaggtggg	gatggctgta	gggggcggca	gggaagagtt	ccaggaggtg	tctggaaaag	4260
gatttgatgg	atgtgcaaga	attgggctga	tgcttaggaa	ggggcgatga	ggtgggtcca	4320
gaagaagggg	ggtgaacggt	gtgagcaaag	accgtgaggc	tggaggctgg	ccacgggagg	4380
tgtgaggggt	aggggcaggg	tgggaggtgg	gctcgcgggt	gggctggggt	catgaagggc	4440
ctcaggcgct	ctgctattgg	gttccaaggc	tatcctgaga	acaggggtga	ggggggattg	4500
ccgtgggggg	ttaaagcctt	gtcatgttcg	ctttcgggag	ataaaaacaa	caggtggcct	4560
ttatggagac	gctgcccaga	gccaggtctg	tgccaggctc	ctgttggggg	tcgtcatgcg	4620
gaatcctgac	tetgaccate	cgaggcatag	ggaccgtgga	gatttgcatt	tcacagatga	4680
ggaaacaggt	ttggagaggt	gacacgacct	gtcccaggca	tcacagccgg	gatgtgcata	4740

gcaggggttt	ggaactatga	ggtgcccagg	acccagggtt	ggattgaaaa	gggcggaggg	4800
gactaagata	agcagacagt	tgtccccagc	gctggggaga	gtcttgggac	cagtctgatg	4860
ccttgtattt	cccaggctcc	aggctcctcg	ccgggacagt	gtctccttgg	gtgcgtgctg	4920
gatecetggg	ggacgtggca	catccccagg	cttgctaaac	attgggtggg	ttctggcatt	4980
tggttttgta	acgtttctgg	gtcactcccg	cctgtggcca	cccttcctta	ggggagccgt	5040
gtgtccttgg	ggctttgctg	ggtggtctcg	agggtgggag	aagaatgggt	tetectggae	5100
caatggagcc	cgtgcccctc	ggggccacat	tgctcctgcg	ctccctgact	gcggacgcgt	5160
gtgtctcgcg	gctgtctctg	tggagatggc	ctcctcctgc	ctggcaacag	cacccacaga	5220
attgcatcag	acctacccca	cccgttgttt	gtgatgctgt	agctgagggc	tectetgtet	5280
gccaggccgg	tcactgggga	ctctgtccag	ggcctggtgg	ttcctgcttc	ccagcacctg	5340
atggtgtcca	tgagagcagc	ccctcaggag	ctgtccggga	gagaagggcg	ctggtggctg	5400
ctgagcggag	agcaaggccc	gtgttctcca	ggcccttggc	acagcagtgg	agcccccgcc	5460
cctgccttgt	gttgtcctct	taggctctgg	tcctggggtt	tggaggaggg	ggaccctggg	5520
agttggtggc	ctgtcccagc	ctgagctggc	aagattccga	atgccaggcc	ccccaagtgt	5580
gcaacagggc	acagggtgac	ctcatgtggg	caggtgggtg	ctgttctgta	cacacctggg .	5640
gccgccgctg	ggagagttct	ggaaggtggg	gtgaggggac	ccatggcaaa	ctagggcctt	5700
aggaaggatg	tgaaggccct	ggctggcccc	ccaggccacc	ctctgtgctg	tggggcagcc	5760
cagccatttt	gctgtctacc	ctgcaaactc	ctcctcgggg	agacggctgg	gttttcccca	5820
gggaagaggg	gtcaagctgg	gagaggtgaa	ggacacagat	cacagctgct	ggcaggtgtt	5880
caagggtcca	agagcgttgc	tgtctgggtg	tcaccagtag	ccttcctggg	gggctcacgc	5940
aggtgcctct	ccacttgtgg	ctccctggct	gctgaagctc	agcagggaca	gctgtgtcca	6000
gttccaggtg	gaggacagcc	ggggcttctg	aggccacagc	ctgccttggg	ttaatgatgc	6060
tgccgagagg	tggtggcttt	tggaaaagat	ggcgtactgc	aaaacgtgct	getetgegtg	6120
gctcgaagct	tcgtggggag	acgtgggcag	agccgtggct	gactcacaga	cccccaccc	6180
cagageetge	cctgccctcc	ctgccccgac	ccttctccct	cctgacccat	gtgtttttt	6240
tttttttt	tttttttgag	acagagttca	ctcttgttgc	caaggctgga	gtgcaatggc	6300
acgatctcgg	ctcatggcaa	cctccgcctc	ctgggttcaa	gegetttte	ctgcctcagc	6360
ctcccgagta	gctgggatta	caggcgtgca	ccaccatgcc	tggctaattt	tgtattttta	6420
gtagagacag	ggtttctcca	tattggtcag	gctggtcttg	aactcctgac	ctcagatgat	6480
ccgcccgcct	cggcctccca	aagtgctggg	attacaggca	tgagccacca	cgcccagccc	6540

WO 02/06529 PCT/US01/22035 5

tgacccatgt	tttgaaccaa	attccagcca	cccttttatc	tgcaagcatt	ttggagggca	6600
togcaatact	gcagacccac	ctaacacaac	agacagttcc	ttcatgccac	cgaaggcctg	6660
gtgtgttcac	atttttggtt	taatagtttg	aattaagagc	caaataaggt	ccacacactg	6720
caattagttg	atgtcttttt	ttttttctt	tttttttt	ttttgagacg	gagtcttgct	6780
cttgtctcca	ggccgcagtg	cagtggcatg	atctcagctc	accgcaacct	ccgactccct	6840
ggttcaagcg	attctcctgc	ctcagcctcc	cgagtacctg	gtagctgggt	ttacaggcat	6900
gcaccaccgt	gcccagctaa	tttttgtatt	tttagtagag	acggggtttt	actgtgttgg	6960
ccaggatggt	ctcgatctcc	tgacctcgtg	atctgcccac	ctcggcctcc	caaagtgctg	7020
ggattacagg	cgtgagccac	cgcacccggc	caatgtcttt	taaaaatata	tacttttttt	7080
tttttttga	gacggagttt	cgctcttgtt	gcccaggctg	gagtgcagtg	gcgcgatctc	7140
acctcacggc	aacctccgcc	tcccgggttc	aagtgattct	cctgcctcag	cctctccagt	7200
agctgggatt	acaggcatgt	gccaccatgc	ctggctaatt	ttgtattttt	aggagagacg	7260
gggtttctcc	acgttggtca	ggctggtctc	aaactcctga	cctcaggtga	tccgcctgcc	7320
ttggcctccc	aaagtgttgg	gattacaggt	gtgagccaac	gcgcccagac	aaaaatatat	7380
gtgtgtcttt	aaggctggtc	aagcaaagca	gtaggactgg	agaaagaatg	aagaattcta	7440
cctggctgtg	atcaattcgt	tgtgaacacc	actgtgcttg	gaccagctag	ctgatgtctt	7500
ttgttttgtt	ttgtttgaga	cggagtctgg	ctctgtcacc	caggctggag	gacaatggtg	7560
tgatctcggc	tcactgcagc	ctccatctcc	cgggttcaag	cgattctcct	gcctcagcct	7620
cctgagtagc	tgggattaga	ggcgcgcgcc	accacgcccg	gctaattttt	aaaaatattt	7680
ttagtagaga	tggggtttca	ccatgttggt	caggctggtc	ttgaactctt	ggccttaggt	7740
gatctgcttg	cctcggcctc	ccaaagtgct	gggattacag	gtgtgagtga	tgtattttat	7800
ttatttattt	atttatttat	ttttattatt	tgagatggag	tctcactctg	ttgcccaggc	7860
tggagtgcag	cagtgccatc	tcagctcact	gcaagctccg	cctcctgggt	tcacgccatt	7920
ctcctgcctc	agcctcctga	gtagcctgga	ctggtgcccg	ccaccatgcc	cagctaattt	7980
tttgtatttt	tagtagagac	ggggtttcac	cgtgttagcc	aggatggtct	ggatctcctg	8040
acctcgtgat	cctcccgcct	cagcctccca	aagtgctggg	attacaggct	tgagccaccg	8100
cctgtctttt	aaatgtccga	tgatgtctag	gagetteeet	tectetett	ttccttgtgc	8160
aatttgttga	agaaactggc	tcctgcagcc	tggatttctc	gctgtgtctt	gggggtgcca	8220
cctccatggt	gtcacctccg	tggtgctgtg	agtgtgtgct	ttgtgtttet	tgtaaattgg	8280
tegttggage	cgacatecca	ttgtcccaga	ggttgtcctg	gctggcactg	gcctaggtgt	8340
agatgtcatc	agctcagggc	cccctgctct	aaaggccact	tctggtgctg	gttgccactc	8400

accetggetg	ggggtcacct	gggtctgctg	ctgtctcgca	aatgctgggg	tccaggactg	8460
ggcacatcga	gggacttggt	aggtgcttgg	ttcactgatg	taaaatatag	gagcacccgg	8520
ggcettgece	tttcccacct	gcatccctga	atgacaggag	agtg tgg gag	agtgtaggga	8580
cagcaggcgc	agaccccggg	gcccctgcct	gggattggcg	toggggaaga	caggcattct	8640
ggagcgaccc	ctaggcctga	tgccttagag	cgcaactgcc	agagacacag	cttccttggg	8700
gggctggcca	ggccacggag	gggccctggc	tcccatttct	ggtccctgga	tcctgagagc	8760
gaggactagg	gattgtcacc	aaggcctcca	tgagccctca	gcagaaggag	ggccaccctc	8820
gagggctccg	ttatcactgg	agcccgcgtt	caaccaacac	gcagatgatt	ctccaaggac	8880
agagatggat	gatggggagg	gggetggeet	ggaaggaccc	ccagtgcagg	tgacattgaa	8940
gccaggtttc	aaagctccca	cagggagctg	cccagagaga	gtccccaagg	ggcaaggtga	9000
ctcgggggca	ggggtagggc	ctctgtcagg	agagcctagg	agaggcctgt	gtcttctagg	9060
aagagccctg	gcagccgagc	ggaggcagtg	gtgaggacct	gcatcctgca	tgtccagctg	9120
gcctcacccg	gggtccctga	gccgggtctt	acgtggctcc	cgcactcggg	cgttcagaac	9180
gtgcctgcgt	gagaaacggt	agtttcttta	ttagacgcgg	atgcaaactc	gccaaacttg	9240
tggacaaaaa	tgtggacaag	aagtcacacg	ctcactcctg	tacgcgattg	ccggcagggg	9300
tgggggaagg	gatggggagg	ctttggttgt	gtctgcagca	gttgggaatg	tggggcaccc	9360
gagctcccac	tgcagaggcg	actgtggaga	cagagagcac	ctgcaggtca	tccatgcagt	9420
atcggcttgc	atccagatca	tacagggaac	actatgattc	aacaacagac	agggaccccg	9480
tttaaacatg	gacaaggggt	cactcacgcc	tggaatccca	gcagtttggg	aggccagggt	9540
gggtggatcg	cttgagccca	ggagtttgac	accagcctgg	gcaacagggt	gagaccccgg	9600
tctctaaaaa	ataaaagaac	attggccggg	cgtggtggta	tgcatctgtg	gtcccagcta	9660
ttcaggagac	tgaggtggga	catcacttga	gccgaggagg	tcaaggctgc	agtgagctgt	9720
gatcacacca	ctgcactcca	ggctgggtca	cagagcaaga	ccctgtctca	aaaaaaaaa	9780
aaaaaaaaa	aaaaaatcac	aggatctgaa	cagagatttc	tccaaagaag	acgcacagat	9840
ggccaacagc	gtgtgagaag	atggtcggcc	tcattagtca	tgagggaaac	gtaaatcaaa	9900
accactgtcc	agcegggege	ggtgcctcac	gcctgtaatc	ccagcacttt	aggagagcag	9960
atggcttgag	gccaggagtt	tgaggccagc	ctgggcaaca	tagcgagacc	aataaataga	10020
tattagtggt	ggcgcctgta	gtcccagcta	gttgggaggc	tgagggggga	ggattccctg	10080
agtctatgag	gttgagactg	cagttagctg	tgatggtgcc	actgcactcc	agcctgggcg	10140
actaggaaac	ggtctttaaa	aaaaaaaaa	aaaacaggg	tgggcgcggt	ggttcacgcc	10200

tgtaatetea geaetttggg aggeeaaggt ggggggatea caaggteagg agtttgtgae 10260 cagootgaco aacatggtga aaccoogtto tactaaaaat acaaaaatta gogaggtgtg 10320 gtcgtgggcg cctgtaatcc cagctaatta ggaggctgag gcaggagaat cacttgaacc 10380 cgggaggcgg aggttgcagt gagccaatat cacaccactg cactctagcc tggtcaacag 10440 agcgagactc tgtctcaaaa aaaaaaaatg ctgagcgtgg tggcgcatgc ctgtagtctc 10500 agctactttg ggggctgagg caggagaatc gcttgaacct gggaggcaga ggtcgcagtg 10560 aggcaagatt gcaccattgc actccagcct gggagacaga gtgaaactct gtctcaaaaa 10620 gaaaaggtct aggaagagtc cgcaccctct ccccgcggtg gccacgccgg gctccgcgct 10680 gagecetetg tgttettgte tetecatace teateaegge aeegeagggt tgeagecact 10740 cctggtctca ttttacacac caggaaattg aggctctttg agaagccgtg gtgatgattt 10800 catcagcatg ctctggggca gacccctgca gccgcacagg gtgcctgggg cccacactag 10860 tgccctggtt tatagacaga cagaggtggc agtggcgctt ccgagtcggg ctgcgatgtg 10920 cttgcactcc ccgaggggct gaggggccct gcgcccaggt gcagctgctt gggtgctgcc 10980 agreectors acetetecet ecetgorage coeteceace tetecetece tgccagecos 11040 teccacetet ecetecetge eageceetee caceteteee tecetgeeag eceeteceae 11100 etetecetes etgecagece eteceacete tecetecetg ceagecete ecacetetee 11160 ctccctgcca gcccctccca cctctccctc cctccagccc ctcccacctc tccctccctg 11220 ccagecete ecacetete etecetgeca gecetecea cetetecete eetgecagee 11280 ceteceacet etecetecet gecageceet eccacetete ectecetgee ageceeteec 11340 acctetecet coetgecage coeteceace tetecetece tggeteatee etgetgtte 11400 cettetetet agttteetgt teagttteag gaaggagget gggaacceag atgtagggaa 11460 tttgcgccct ggagtcagac ctgggttcac gtcccagcgc ctccacctct ggtgtgacct 11520 tggtccagtc tctcagcctc agtttcctca cctgtaaagt gggctccatg attagatgca 11580 ccctgcaggg cagtgtagca gtgacctggc tcagccactg gcagccccaa caatcatacc 11640 ttgttaaagt agetetgteg gtteeeteag gggtteeggg ggeeeattee eetgteetee 11700 atgcactgtg agacctgccc tgccacagag cagagtgtaa cagcctgagg gtgagagcca 11760 gacactgtgc ctgtgcttag accagacact ggacgacggg agccagtgca gcctgggcgg 11820 gtggactcct atggacccct cagcacccag cctcggtgcc ttcagegcag ggccgcgtgg 11880 ctgtgggggc tcacaagacc cggcccactc ctgcttgtgc ctacatctgg gtgtttgccc 11940 attggtgcct tttgacgcgt tctggtgtgt gtgagacgtg cggggctggg aagtgttggc 12000 agageegega gtacegteet cacteetttt gttettttga egtaagetgg egagtggeac 12060

tgcctgagtt	ccgctcagtg	cccgccctga	tgtgcggacc	ccgctgcatt	cttgctgtta	12120
ggtggtggcg	gtgtgcgctg	tcgctggtgg	gcaccgagag	tctttgggag	ctttggggag	12180
gttgtgccaa	gcctgagcct	cgacgtcccc	cttcccggct	ttctgttggc	tettetgagg	12240
ccagggcatc	tctatgaggg	cctcctgctg	gageegtete	tgtggatctc	ctctgccatc	12300
ctggcccatg	agtgggtgat	gcgctggcca	ccatctggtg	acagtggccg	ggcaccgctg	12360
ccaaatgtgg	gtcccgcatc	tgcaagcccc	tccctgggtc	ccctagggta	tggggtggtt	12420
ctgccactgc	cctcgctccc	ccaccttggg	gtgcctctcc	ccctgctcgt	gggggagacc	12480
ctgcctggga	tctgctttcc	agcaaggaat	atactttgga	gggagacaca	catgttcttt	12540
tctggagctc	tgcagtggcc	acggcagccc	agecegecaa	gcaccctgga	atgaaaacat	12600
cccgctgctg	tetgggeetg	gcctgcactc	tgctgcctgc	gctccagctg	gctgaggccg	12660
ggcacgtctg	cgggcacagc	agcgggggcg	ccacagtctc	cctgcagagt	gagcgcagct	12720
ggaaaatgca	gctcacgccc	tttcccagaa	cacctcgctc	ttcatggctt	ggcagctgtc	12780
cttgcctagg	ggccagggtg	cccaggcact	ggtggcagga	gaagggctac	atctggggct	12840
gaggcgggct	gggtcctttt	ctccctgcag	ctcccgaggc	ccagccctgg	cccagcctgg	12900
cattcctgac	cttagcagcg	ccatgatctg	aagacaggct	ggcttctgtg	aggccacctc	12960
agaaagggct	ttgtgcccag	gcagaggcgg	aagccagctc	ttccttctgg	ttgaggcagg	13020
aatgaggcca	gcgctgggca	agcccatgcc	cagggaacgt	cacagetgtg	ggagtacagg	13080
ggctccgggt	tetgageceg	tccactgtgc	atcgtggccc	tggcctcagg	atggctcgta	13140
ccatcattgg	ctgtgcccao	agccgagtgg	gtgatgggat	teeggetgee	ccgctggatc	13200
tgtgctgctg	ccctctccag	ggcactgctg	tgeccgcaca	gccgggcgca	gatggccagt	13260
ttgcttgccc	cccccccac	catcctcttc	ctaccttggc	ttcctccatt	gacacactgg	13320
accctgctgg	ctgcccgggg	aggtgtttgg	gggatggtgt	tgggggagga	ggagggcccc	13380
ttgagcctca	gtgtgcccat	caggagcgta	aggtcagtgc	agcacctgcc	cacacagget	13440
gtgaagggtg	ggagtggaga	gggatgcaag	ggggtcacaa	cgcctggctc	catgtcagct .	13500
gcgtgcaggg	gcaccaggag	ccggccctca	ttctcccctt	gaactggaag	ggtggccccg	13560
accccagcgg	caggtagcat	acgtatgaag	cgctctcctt	cctacacccc	acaggtgggc	13620
tegtetecag	acggcccttt	ttgagctggc	tgtgttttc	catctgtgta	ggcaaggaca	13680
tegcagaete	ccctttctca	tctccctcgt	tcagcctccg	aggccggagt	ctccatccct	13740
gtgcctgcct	gtgggtcccg	ggaggacctg	aggetgeeca	tgtcaccccc	ggcatctcat	13800
cctggggaca	gttcagccgt	gggagggatc	tgtaaggaca	gaatgccgct	gagcctgggg	13860

ctccccagct	agtctcacac	cccgtgtctg	ggacccagag	accctcgtgc	agggctctgt	13920
tgcttggggc	ctggcagcct	cgtcctgtat	cagaggctgc	cacccccacc	cctcgtgggg	13980
ccagggttgt	ggccggcctc	cctggccctc	cccatggaag	tggtaggcgg	agccagcagc	14040
catctgccca	gcccggggct	gcactgtttt	ttttcaaatg	agcaccgtcc	caaactgcag	14100
cccgttaatt	taaacaggat	catttccggc	cctggaagcc	gcctcactct	ccttaaatag	14160
aaaggagcac	agcgcagagg	gaaacagatg	aggtcatggc	teggetggee	cagcgaggaa	14220
ggggccgcag	tgggggtggc	actgccgcct	gtcccctgtc	ctctccagcg	cccacactgc	14280
agcccatttc	ctcaccctgg	gcctgctctc	gggagggacg	ggcctggggg	tectettget	14340
gggcggaggg	gaaccagctc	ctccaggaga	ggacggggcc	tggcaggggg	catggggcct	14400
ccctgggtct	ggcgtcctgt	cctgcccctg	ccgagggagg	agcggttaca	taagctccgc	14460
aggeggeeee	tccgagccgg	tecececage	ccagtttcca	gtgaggcggc	cagcgcgggc	14520
gggggtgccg	ggcctggcgc	acacccgctg	ctgaccacac	gtgtctggaa	tgtgcagatg	14580
tttctttggg	ggctccgtcc	ggcccccaga	ccccactcag	catctggtct	ggggagtggg	14640
cgcctggggc	actcagctct	gagtgtgaga	ctctgaggca	ggtctggttt	gtctggggcc	14700
attccctctg	ctgtggattg	ggagggcccc	gggagctgcc	ccacacccag	ggaagttctc	14760
ctcagtccca	ctgttgcatt	ccccgacccc	ggctcccccg	gcccaggagc	gcctgtgggg	14820
cagaaggccc	agccccaaga	cttcccggcc	ctgccagcct	caggetteae	ccaccctcgc	14880
gccaactgtg	ggcagagccc	agggggaggg	caggagagcc	agcgcctggc	tgggaacacc	14940
cctgaggggc	cgaggctcca	gggcgagggg	gcccgacctg	gggttcacac	gcccgggtgg	15000
cgggcagacc	cgctgcagca	tgagacacgt	gtcagctacc	tcgggccggc	aggctggccc	15060
tgctgcccac	agccctggga	cgtggcccca	cctgtgacgg	gtgtggaggg	gcagcctcca	15120
ggcctggcca	caccctctgc	tgttgctgct	cctgctccag	gattggcaag	ggtgctggga	15180
aggggtgaag	accegtactg	tggccacaca	cctgggactt	ccttctccac	ccagtggtgc	15240
cccagcagcc	gctaaggagc	ccgctgggtc	ccacgctagg	atggtcctaa	ctcctcccgc	15300
cttccagatc	ggacgctcgg	cgctggggac	cccttgtgtc	ccggggctgg	ggcaccgtcc	15360
tgcccccatg	ggggtgtact	cctcccgaca	agcttggctt	cagcttccct	gggagcacat	15420
cctggccctc	gggcacccat	caggetgtcc	ctgtgcacct	ggctcccacc	cttccagctc	15480
atagcaggaa	ctggggtgag	gagtgegtgg	ggcagcaagg	gcctgggacc	ccagaggacc	15540
ctgcactctg	ctctgtgctc	ttgcctgggc	ttagggccgc	tcggtggtcc	tgctgccaga	15600
tgcctgggcc	ctgctgtgtc	ccccatcctt	gcagggaacc	agaacgtggg	ggcagggcat	15660
cagacagcgg	cgatgatgtc	acctggcggg	tgcagaggaa	gcccgagggg	cggggtgggg	15720

gggctggcgc	gaggetgeet	ggctaggcct	tggcgttccc	ccagaacggc	gatggcaaaa	15780
gcagatggag	acgtgaaaa	gtacgggagc	aagcgaggtg	g aggactccac	ggggacccct	15840
gtgctgttcc	ctgtccctga	agcccacacc	tgagtcctgc	ccagggcaga	tgcttccaca	15900
cccaggggg	acctgagtco	tacccagggc	agacgetted	: acaccctggg	ggctggggga	15960
ctgcacctgg	ctcctgtctg	ggccccagct	tcattccact	geeetgggee	ctgggagctc	16020
ggccgagcgg	ggtccccaag	accttgctgc	atttctgggc	cttgggctgg	ggtgagggcc	16080
gggagaagga	gccagcctgg	agcctggcac	gcagggagtg	catggccaga	accggtgaca	16140
ggcagggctg	cctgctggcg	tggaagaagt	gtccatggca	cccccaggcc	tggttcacag	16200
tgggatgggc	ggggagccgg	ggggctctgg	ggtcctcggc	tgacctgccc	ccacccctqc	16260
cctggcttgt	cagctcccag	cagcagccac	tcttgatgga	ttttccagaa	aatgaggtgt	16320
ggccaaacat	cttcaggctt	ttccttcttt	cctttctccc	gtggcctggg	tgggagetge	16380
tccccatgcc	tgggggcagg	tgcgagagcc	tgtgcccctc	cctggggcag	tttcacagct	16440
gtgtcccttc	cagggggcct	geetgtgtte	accgtggcct	ctgcagcacc	tctcgcccct	16500
tagggctcct	gcgcctcggg	tcccggtgcc	tcatttctcc	ctaaagcatt	ggttctgctg	16560
ccgccgcagc	cgctggaaag	tccctcctca	ggtctaactg	cagttcctca	cggcacagtg	16620
ttccccctcg	ggcatggtgc	ttgggcagtg	ggtgtgagtc	cagctgcctc	accetgtete	16680
gagaatggcc	tcttgctggt	ctcccagcca	ccaccctgtc	ccaccccacg	gcggggatgg	16740
tgtggatgcc	tagcagcgcg	gctgtgggcc	cacccatcct	tatgggcagt	ggggagcacc	16800
tcagcccgtg	tccctacctt	ggtgtagagg	aggggacggc	agagaagcag	ggttcagtta	16860
ggggggaagt	ggtggccctg	ccggaggggc	cgttccctgt	gtgcctggcc	cccagatcct	16920
etecectece	ggagcccagg	gcacaggcat	aggetetetg	agtgtcccac	agcccctggg	16980
ggaagggaac	tgcaccccca	accgtgccct	ccatccgcag	atggaacgag	aagctccggg	17040
agccagtgcc	cagcgtctca	tctgtctggg	cacccagccc	aggtgagggc	ctggctccac	17100
cgtccgtggc	tggtgctgct	tcctggcacg	gagaaggcct	cggctgctct	gtcccctcag	17160
ctggggtggc	ctctggtccc	cttctttgtt	ggttcccttc	tcaagctctt	gecetggece	17220
cgggccccac	cgggcagcct	gtgtgtgcgt	ctctcctgcg	ccgggtaggc	tectgtggga	17280
geggagetee	ggtgggagga	gcagggctgg	aggctggcag	gggctgggcg	ggtgttcagg	17340
gatggaggcc	gccccggctt	ggggatggat	gccgggtggt	cattgctggg	aagagcaagt	17400
ctaggcggag	gcacctgctg	ggtcactcgt	ggggagggtg	acacctgggg	aagtagaggc	17460
ccgtggcagg	aggtgaggcc	tcggggtcct	ggggagcagg	ggggtggtgt	gcagacctgc	17520

ggagccatag	tcctgtgcca	ggagcactac	tgggagtgcg	tgggaccagg	aggggtgccc	17580
agggtgggcg	gcagagtgac	ccccgaggtg	cttgaggccg	aggggaggtg	gagttctcgg	17640
tttgccccag	ctctctgtct	actcacctcc	gcatcaccag	ctccaggacc	tggtttgtaa	17700
ctcgggcagc	tctgaaaaga	gagacatgct	gccgccctgt	ggtttctgtt	gctttttctt	17760
cactgactac	tgacatggga	tgtttttcct	acggctgtga	ccaattgtgc	ttcttctaat	17820
tgcctggttt	ttctttttt	gtttttggag	ttttctcttt	ctttcctccc	tccctctcac	17880
cctccatcct	tttttttt	atttttattt	tttgagatgg	agcttcactc	ttgcaggatg	17940
gggtgctgga	gtgcaggggt	gcgatctcag	ctcactgcaa	cctctgcctc	gcgggttcaa	18000
gtgattctcc	tgcctaagcc	tcctgagtag	ctggaattac	aggtgcttgc	caccacgccc	18060
gactaattct	gtagttttgg	tagagacagg	gtgtctccgt	gttggtcggt	ctggtcttga	18120
actcctgacc	tcaggtgatg	cgcccgcctc	agecteccaa	agtgctggga	ttacaggcag	18180
gagccattgc	acceggetet	ttccccttct	ccttttcttc	tctctctcct	ccctttcttt	18240
cttttcttt	ctttttttt	tcttttgaga	tggagtctcg	ctctgtcacc	aggctggatt	18300
gcagtggcgt	gatcttggct	cactgcaacc	ttegeeteee	gggttcacgt	gattctcctg	18360
cctcagcctc	ctgagtggct	ggcactacag	gctcccgccg	ccatgcccgg	ctaatttttg	18420
catttttagt	agagacaggg	tttcaccctg	ttggccagga	tggtctcgat	ctcttgatct	18480
catgatccac	ccaccttggc	ctcccaaagt	tctggcatta	caggagtgag	ccaccgtgcc	18540
cggccatctt	tettteettg	ctttctcttt	gttttctttc	gagaccgggt	cttgctctgt	18600
cgcccaggct	ggactgcagt	ggcacaatca	tagctcactg	cagcctcgac	ttccctggct	18660
caagcgatcc	ttcctcctca	gccccccgag	tagctggaac	tacagttaca	cactaccatg	18720
cctggctgat	tcttttttc	cttgtagaga	tggggtcttg	ctatgctgtc	catectggte	18780
tcaaactcct	ggccttccca	aagcactggg	tttacaggca	taagccacca	cacccagttt	18840
ccttttcttc	tttttaactg	gaatagttga	cgttttcttt	attagctgtg	tgtcaggagg	18900
gtatttttgg	cctttagtat	gtcgtgtaag	ttgctagtgc	ttttctgaga	ttgtagtttg	18960
ttttctaatt	ttatttatat	tttgcgtaga	agttgtgtat	tttagatgga	gttaggtcgg	19020
ctggtctttg	atgttttatt	tattaattat	gtatgtattt	atttatttt	gaggtagagt	19080
ctcgccgttt	cacccaggct	ggagtacagt	gatgcgatct	cagctccctg	tagccttgac	19140
ctctctgggc	tcaagtgatt	tttctctcct	ctacctcccg	agtacttggg	accccaggcg	19200
catgccgcca	tgcctggcta	atgtgtattt	tttgtagata	cggggtctca	etgtgttgcc	19260
cagggtggtt	tcaaaatcct	gggcccaggc	gatectteeg	teteagetee	cacggtgctg	19320
tgttaccggc	gtgtgcccag	tgcctggccg	tcttggaggt	cttgtttctc	tgggtttatg	19380

cctcgaggtg	gcgcctgctc	ccctgtgctc	cctggtagcc	tggtagtgag	cctgcttctc	19440
acacagtcat	acctggttgt	ggtcccacag	tgggaccacc	ctgttgggtt	cagaacagga	19500
gatgggggcc	cctcgagtct	gtgtgggggc	tgtggacagg	gttgggagac	cttggctctg	19560
tgggggactg	tggacagggg	atggggggcc	ttggccctgc	gtgggatggg	ttgggggtcc	19620
gtgcccttcc	tggccctggg	tggacaggtc	catgtggcac	tcggcatagg	gctgagatgg	19680
gtgcagaggg	ctgaggcccc	caggcctctc	ctggcttggt	ttccccagat	gagtgttcat	19740
ttgggtcttc	catcagaaag	tcccctcctg	acctctggga	gtggggagct	caagggtggg	19800
aggccatagc	ttggggatgc	tggcaatgtg	tgggatgggc	ccagggaagg	cctctggcct	19860
actagggget	ctggccctga	cccacggcca	ctcactcctc	agagacgtct	cccacaacct	19920
gctccgggcg	ctggacgttg	ggeteetgge	gaacctctcg	gegetggeag	agctgtgagt	19980
gtcccccagt	cgtgccagca	tgcggggctc	acteegggtg	ggctggcggc	accgcctctt	20040
gctgctcagc	tgtgggggct	tccatcagct	ttgccgaatc	ccccgtctct	tccagggata	20100
taagcaacaa	caagatttct	acgttagaag	aaggaatatt	tgctaattta	tttaatttaa	20160
gtgaaatgta	agttgtggtt	ctttgggtgg	ggtcctggct	ggaccccagg	ccccaatat	20220
cccttctgcc	ctcccagttg	gtccgtgtcc	ccttccaggc	ttgagaccag	atcctggggg	20280
cagttcactg	cctgcttgga	gcccccagt	gccggcttgg	ttggggcagg	ggaggcggtg	20340
ctgtcagggt	ggctccaggg	cctggttgcc	agtggggggc	tggcatagac	ccttcccacc	20400
agacctggtc	cccaacacct	gcccctgccc	tgcagaaacc	tgagtgggaa	cccgtttgag	20460
tgtgactgtg	gcctggcgtg	getgeegega	tgggcggagg	agcagcaggt	gcgggtggtg	20520
cagcccgagg	cagccacgtg	tgctgggcct	ggctccctgg	ctggccagcc	tctgcttggc	20580
atccccttgc	tggacagtgg	ctgtggtgag	tgccggtggg	tggggccagc	tctgtccttc	20640
ccagccaggt	gggacctggg	ccctgcagac	actgggcagg	gctcaggaag	gcctctctgg	20700
ggggggcctc	cgggccaagg	gaacagcatg	ggagcctgtg	agtgcggcgg	gcggatgtgg	20760
gggcgtgggg	tggagccagg	aggagcagaa	cccggggtcc	agtggctgcc	tcttctaggt	20820
gaggagtatg	tegeetgeet	ccctgacaac	agctcaggca	ccgtggcagc	agtgtccttt	20880
tcagctgccc	acgaaggcct	gettcageca	gaggcctgca	gcgccttctg	cttctccacc	20940
ggccagggcc	tcgcagccct	ctcggagcag	ggctggtgcc	tgtgtggggc	ggcccagccc	21000
tccagtgcct	cctttgcctg	cctgtccctc	tgctccggcc	cccgccacc	tcctgccccc	21060
acctgtaggg	gccccaccct	cctccagcac	gtcttccctg	cctccccagg	ggccaccctg	21120
gtggggcccc	acggacctct	ggcctctggc	cagctagcag	ccttccacat	cgctgccccg	21180

ctccctgtca ctgccacac	g ctgggacttc	ggagacggct	ccgccgaggt	ggatgccgct	21240
gggccggctg cctcgcatc	g ctatgtgctg	cctgggcgct	atcacgtgac	ggccgtgctg	21300
gccctggggg ccggctcag	c cctgctgggg	acagacgtgc	aggtggaagc	ggcacctgcc	21360
gccctggagc tcgtgtgcc	c gtcctcggtg	cagagtgacg	agagcetega	cctcagcatc	21420
cagaaccgcg gtggttcag	g cetggaggee	gcctacagca	tegtggeeet	gggcgaggag	21480
ccggcccgag gtgagtgtc	t gctgcccact	ccccttcctc	cccagggcca	tccagatggg	21540
gcagagcctg gtacccccg	cttgggccca	cactgaccgt	tgacaccctc	gttcccaccg	21600
gtctccageg gtgcacecge	tetgececte	ggacacggag	atcttccctg	gcaacgggca	21660
ctgctaccgc ctggtggtg	g agaaggcggc	ctggctgcag	gcgcaggagc	agtgtcaggc	21720
ctgggccggg gccgccctgg	g caatggtgga	cagtcccgcc	gtgcagcgct	tactggtata	21780
ccgggtcacc aggtgcctg	ccccacccc	cgaggggcca	taggttggga	gatctctgaa	21840
gcactggggc agagactgcg	g gctggggagt	ctcaggagga	aggaggtggg	agctgggccg	21900
gccctggtga gcaggtggcg	g ccggccggtg	gggccgttcc	tgtcagctct	gcagatgcag	21960
aggtggacat gagctggggg	g cageeteegg	acactcctgg	gcacgccata	cgggaggtgg	22020
cctgcacggg gatccctgcc	ggtacccaca	ggccccgtgg	gtgggtgctg	ctgtgagcct	22080
gggetggtgg gecetggtet	cegggetetg	agcctcagtt	tccccatctg	gaaaggggga	22140
cagtgatggg gctcccagcg	ggctgctgtg	agggtgggag	gatggaggag	tgccctgagc	22200
cccctgccat cccacacccc	cccccaggag	cctagacgtg	tggatcggct	tctcgactgt	22260
gcagggggtg gaggtgggcc	cagegeegea	gggcgaggcc	ttcagcctgg	agagctgcca	22320
gaactggctg cccggggagc	cacacccagc	cacageegag	cactgcgtcc	ggctcgggcc	22380
caccgggtgg tgtaacaccg	acctgtgctc	agcgccgcac	agctacgtct	gcgagctgca	22440
gcccggaggt gtgcgggggg	ccaggcaggg	gcctgagacg	ctggctgtgg	ttaggggcct	22500
gccgagcgcc cgcggtggag	cctgggctga	ggaggagggg	ctggtggggg	ggttttcggg	22560
cggctcggtc cccagtctgt	tegteetggt	gtcctgggcc	ctggcccggc	gcctcactgt	22620
gcactegeca ecceaggee	agtgcaggat	gccgagaacc	tcctcgtggg	agcgcccagt	22680
ggggacctgc agggacccct	gacgcctctg	gcacagcagg	acggcctctc	agccccgcac	22740
gagcccgtgg aggtagtcgg	cccccacgt	tctacaacct	gccctcctgc	ctgcccctgg	22800
aggeettgee tgeeetgeee	actgtgggtc	tcgccaaaaa	acttgggggc	cttaatgttg	22860
cttgtgccca gtgaagatgg	ttgggaaaat	ccagagtgca	gagaggaaag	cgtttactca	22920
cattacctcc aggccttttc	tctgagcgtg	tgtgagttat	tcctgaaagg	caggtcaggg	22980
gtectgeece ceatggacag	tttccaccgg	agtcttcctc	tcgagcgaca	ggagecagge	23040

ctgtgggggt	ctgatggctc	geteteette	cctcccctct	tcctgggaag	ttcgggtagg	23100
gggagtctgg	gcttcaggct	gggatggggt	ctgtggagct	gaggcggccc	cctgcccacc	23160
aggtcatggt	attcccgggc	ctgcgtctga	gccgtgaagc	cttcctcacc	acggccgaat	23220
ttgggaccca	ggagctccgg	eggeeegeee	agctgcggct	gcaggtgtac	cggctcctca	23280
gcacagcagg	tgggactctg	ggtggtgggt	ggtgggtggt	gggcgccgca	ggactcgggg	23340
tggectetet	gagctttcac	gtctgctggt	cctgtggcca	ccagagtggt	tcccagtctt	23400
aggtggacag	agcaggggtt	ccagagacac	cagctcattc	caggtgtcct	gggggtggat	23460
tgggtggggc	ctgcctgggg	geeggeetgg	gtcagtcggc	tggccggaga	cggacgcagc	23520
actgggctgg	gagtgctgcc	caggtgggga	gacctgtcct	cacagcaagg	ccaggattgc	23580
tggtgcaggc	agttgggcat	ctctgacggt	ggcctgtggg	caaatcaggg	ccccaacacc	23640
ctcccctcct	cacagggacc	ccggagaacg	gcagcgagcc	tgagagcagg	tccccggaca	23700
acaggaccca	gctggccccc	gcgtgcatgc	cagggggacg	ctggtgccct	ggagccaaca	23760
tctgcttgcc	gctggacgcc	tectgecace	cccaggcctg	cgccaatggc	tgcacgtcag	23820
ggccagggct	acccggggcc	ccctatgcgc	tatggagaga	gttcctcttc	teegtteeeg	23880
cggggccccc	cgcgcagtac	teggtgtgtg	gccctgacct	gggtctgttc	cctgcatctc	23940
ctcaggccac	cttcctgtct	gctgcccagg	gtctgggtct	gtgcaccaga	cacacccagc	24000
ctgcaggccc	ctcccacgtc	cttgccacct	ctgacctccg	acctctgcag	tgccctcggc	24060
cctctcccag	tgggagaagc	tetegeetgg	gcccttggca	cgagctgtgc	ctcctcttcc	24120
tctctcccag	cacagetget	ccttcctgtc	tgccaggtct	tggcctgtgt	cctctccccg	24180
tgtgtccccc	ggtctgcaac	tgtcctgcct	gtccttgtca	cgagcactgt	ggggaggctc	24240
cttgaggtgt	ggctgacgaa	gcggggagcc	ctgcgtgtcc	accctcatcc	gtcgtgcggg	24300
ggtccacggg	ccatgaccgt	gaggacgtga	tgcagccctg	catacatata	cacaggtcac	24360
cctccacggc	caggatgtcc	tcatgctccc	tggtgacctc	gttggcttgc	agcacgacgc	24420
tggccctggc	gccctcctgc	actgctcgcc	ggctcccggc	caccctggtc	ccegggcccc	24480
gtacctctcc	gccaacgcct	cgtcatggct	gccccacttg	ccagcccagc	tggagggcac	24540
ttgggcctgc	cctgcctgtg	ccctgcggct	gcttgcagcc	acggaacagc	tcaccgtgct	24600
gctgggcttg	aggcccaacc	ctggactgcg	gctgcctggg	cgctatgagg	tccgggcaga	24660
ggtgggcaat	ggcgtgtcca	ggcacaacct	ctcctgcagc	tttgacgtgg	tctccccagt	24720
ggctgggctg	cgggtcatct	accctgcccc	ccgcgacggc	cgcctctacg	tgcccaccaa	24780
cggctcagcc	ttggtgctcc	aggtggactc	tggtgccaac	gccacggcca	cggctcgctg	24840

gcctgggggc	agtgtcagcg	cccgctttga	gaatgtctgc	cctgccctgg	tggccacctt	24900
catacceaac	tgcccctggg	agaccaacga	taccctgttc	tcagtggtag	cactgccgtg	24960
gctcagtgag	ggggagcacg	tggtggacgt	ggtggtggaa	aacagcgcca	gccgggccaa	25020
cctcagcctg	cgggtgacgg	cggaggagcc	catctgtggc	ctccgcgcca	cgcccagccc	25080
cgaggcccgt	gtactgcagg	gagtcctagt	ggtgagtatg	gccgaggctc	caccaccagc	25140
ccccaggcag	gtgcctgcag	acagggtgct	cacacagggc	gtgaggcctg	gcttcccagt	25200
gagggcagca	gcccagttac	tggggacgtc	ggccccgggc	aggtcctgct	ggctggctcc	25260
tegggetace	tggtgggctt	taaattcctg	gaaagtcacg	gctctgacag	tggctccgct	25320
aactcattcc	actgtctcat	ttcacaaaat	gaatttaaaa	ctctgctccc	tgacctcaca	25380
cgagcccccg	tgagtctctc	acgccctctg	ctgtgttctc	gcctggctaa	agcgagtggc	25440
ttttgaggtg	gagtctgaac	ccctgatggg	aaactgcggg	ctgcccgcgg	tgccaccatg	25500
ctgggtacat	gggggacagg	gctgtctcca	tettgegggt	acctgcctct	tcaccagggg	25560
ccttgggagg	ggccatcaga	aatggcgtga	cctgtgcagc	ctgtcctggg	ttctgtaagc	25620
cagtgtaggt	geeteeeste	actgctccga	gctctctggg	tgaggagctg	gggcaagagc	25680
gccgggaggg	tctgagaaga	ctcagagaga	ggtggactct	ttgtagctgg	tactaggttt	25740
gctttacaga	tggggaaact	gaggcacaga	gaggttgagg	cattagtagt	actacatggc	25800
tggctggaga	gccggacagt	gagtgtccca	gcccgggctt	ggctcccatg	gcatgcagag	25860
ccccgggcac	ctcctctcct	ctgtgccccg	cgtgggactc	tccagcccga	cgggaggtgt	25920
gtccaggagg	cgacaggcta	agggcagagt	cctccacaga	gcccaggctg	acaccattcc	25980
ccccgcagag	gtacagcccc	gtggtggagg	ccggctcgga	catggtcttc	cggtggacca	26040
tcaacgacaa	gcagtccctg	accttccaga	acgtggtctt	caatgtcatt	tatcagagcg	26100
cggcggtctt	caagctctca	gtaggtgggc	gggggtgggg	aggggagggg	atggggcggg	26160
gcagggcggg	ggcgggctcc	accttcacct	ctgccttctg	ctctgcttca	tgctgcccga	26220
ggacgctgcc	atggctgtgg	gtgagtggag	ggagggacgc	caatcagggc	caggcctctc	26280
acctgccacc	tgggctcact	gacgcctgtc	cctgcagctg	acggcctcca	accacgtgag	26340
caacgtcacc	gtgaactaca	acgtaaccgt	ggagcggatg	aacaggatgc	agggtctgca	26400
ggtctccaca	gtgccggccg	tgctgtcccc	caatgccacg	ctagcactga	cggcgggcgt	26460
gctggtggac	teggeegtgg	aggtggcctt	cctgtgagtg	actcgggggc	cggtttgggg	26520
tgggcaccag	gctcttgtcc	cagececage	ctcagccgag	ggacccccac	atcacggggt	26580
tgcttttctg	agcctcggtt	tecetgtetg	ttgggaggta	actgggtgca	caggagccct	26640
gaggctgcac	gggagccggg	agaggcctca	gcacagccgg	gtgggccctg	aatggaggcc	26700

cggggcgtga	ctgcagagtg	gagcctcggc	tgggtcccaa	gcaccccctg	ccccgccacc	26760
gcccacccct	gtcccggttc	actcactgcg	tcccaccgcc	ccggcaggtg	gacctttggg	26820
gatggggagc	aggccctcca	ccagttccag	cctccgtaca	acgagtcctt	cccggttcca	26880
gacccctcgg	tggcccaggt	gctggtggag	cacaatgtca	tgcacaccta	cgctgcccca	26940
ggtgagggat	gagggggtga	gggggccact	gcctttcagg	ctctgagcac	gggtcccccc	27000
agctccccag	tcaagctgcc	ccccttcctc	cccaacagcc	ctcactgtga	cctcacctgg	27060
gctgatggct	taggccctac	tggggtgagg	gaggggccag	gcgtgggggg	agtggacagg	27120
gaagctgggc	ccctgaactg	egeeeeege	cctccccggg	cctggctctt	gctgctctgc	27180
tgccccgagt	gcagctgcac	ttggaggcgg	tgcgtcctcg	ccaggcagcc	ctcagtgctg	27240
ctacacctgt	gctccgtccc	gcacgtggct	tgggagcctg	ggacccttaa	ggctgggccg	27300
caggtgcagc	cgttcacccc	gggctcctca	ggcggggggc	ttctgccgag	cgggtgggga	27360
gcaggtgggg	gtgccgcggc	tgccccactc	gggcctgtcc	ccacaggtga	gtacctcctg	27420
accgtgctgg	catctaatgc	cttcgagaac	cggacgcagc	aggtgcctgt	gagegtgege	27480
gcctccctgc	cctccgtggc	tgtgggtgtg	agtgacggcg	tcctggtggc	cggccggccc	27540
gtcaccttct	acccgcaccc	gctgccctcg	cctgggggtg	ttctttacac	gtgggacttc	27600
ggggacggct	cccctgtcct	gacccagagc	cagccggctg	ccaaccacac	ctatgcctcg	27660
aggggcacct	accacgtgcg	cctggaggtc	aacaacacgg	tgagcggtgc	ggcggcccag	27720
gcggatgtgc	gcgtctttga	ggagctccgc	ggactcagcg	tggacatgag	cctggccgtg	27780
gagcagggcg	ccccgtggt	ggtcagcgcc	gcggtgcaga	cgggcgacaa	catcacgtgg	27840
accttcgaca	tgggggacgg	caccgtgctg	tegggeeegg	aggcaacagt	ggagcatgtg	27900
tacctgcggg	cacagaactg	cacagtgacc	gtgggtgcgg	ccagccccgc	cggccacctg	27960
gcccggagcc	tgcacgtgct	ggtcttcgtc	ctggaggtgc	tgcgcgttga	accegeegee	28020
tgcatcccca	cgcagcctga	cgcgcggctc	acggcctacg	tcaccgggaa	cccggcccac	28080
tacctcttcg	actggacctt	cggggatggc	tcctccaaca	cgaccgtgcg	ggggtgcccg	28140
acggtgacac	acaacttcac	gcggagcggc	acgttccccc	tggcgctggt	gctgtccagc	28200
cgcgtgaaca	gggegeatta	cttcaccagc	atctgcgtgg	agccagaggt	gggcaacgtc	28260
accctgcagc	cagagaggca	gtttgtgcag	ctcggggacg	aggcctggct	ggtggcatgt	28320
geetggeece	cgttccccta	ccgctacacc	tgggactttg	gcaccgagga	ageegeeeee	28380
acccgtgcca	ggggccctga	ggtgacgttc	atctaccgag	acccaggete	ctatcttgtg	28440
acagtcaccg	cgtccaacaa	catctctgct	gccaatgact	cagccctggt	ggaggtgcag	28500

gagcccgtgc tggtcaccag catcaaggtc aatggctccc ttgggctgga gctgcagcag 28560 ccgtacctgt tctctgctgt gggccgtggg cgccccgcca gctacctgtg ggatctgggg gacggtgggt ggctcgaggg tccggaggtc acccacgctt acaacagcac aggtgacttc 28680 accgttaggt ggccggctgg aatgaggtga gccgcagcga ggcctggctc aatgtgacgg 28740 tgaagcggcg cgtgcggggg ctcgtcgtca atgcaagccc cacggtggtg cccctgaatg ggagcgtgag cttcagcacg tcgctggagg ccggcagtga tgtgcgctat tcctgggtgc 28860 totgtgacog etgcacgeec atceetgggg gteetaceat etettacace tteegeteeg tgggcacctt caatatcatc gtcacggctg agaacgaggt gggctccgcc caggacagca 28980 tettegteta tgteetgeag eteatagagg ggetgeaggt ggtgggeggt ggeegetaet terrelaced ceacacggta cagetgeagg cogtggttag ggatggeace aacgtetect 29100 acagetggae tgeetggagg gacaggggee eggeeetgge eggeagegge aaaggettet 29160 egeteacegt etegaggeeg geacetacea tgtgeagetg egggeeacea acatgetggg 29220 cagegeetgg geegaetgea ecatggaett egtggageet gtggggtgge tgatggtgge 29280 egecteeceg aacceagetg eegteaacaa aagegteace eteagtgeeg agetggetgg 29340 tggcagtggt gtcgtataca cttggtcctt ggaggagggg ctgagctggg agacctccga 29400 gecatttace acceataget tecceacace eggeetgeae ttggtcacca tgaeggeagg 29460 gaaccegetg ggetcageca acgecaccgt ggaagtggat gtgcaggtgc ctgtgagtgg 29520 ceteageate agggecageg ageeeggagg eagettegtg geggeegggt cetetgtgee 29580 cttttggggg cagctggcca cgggcaccaa tgtgagctgg tgctgggctg tgcccggcgg 29640 cagcagcaag cgtggccctc atgtcaccat ggtcttcccg gatgctggca ccttctccat ccggctcaat gcctccaacg cagtcagctg ggtctcagcc acgtacaacc tcacggcgga 29760 ggagcccatc gtgggcctgg tgctgtgggc cagcagcaag gtggtggcgc ccgggcagct ggtccatttt cagatcctgc tggctgccgg ctcagctgtc accttccgcc tgcaggtcgg eggggeeaac eeegaggtge teeeegggee eegtttetee cacagettee eeegegtegg agaccacgtg gtgagcgtgc ggggcaaaaa ccacgtgagc tgggcccagg cgcaggtgcg categtggtg etggaggeeg tgagtggget geaggtgeee aactgetgeg ageetggeat egecaeggge actgagagga actteacage eegegtgeag egeggetete gggtegeeta 30120 cgcctggtac ttctcgctgc agaaggtcca gggcgactcg ctggtcatcc tgtcgggccg 30180 cgacgtcacc tacacgcccg tggccgcggg gctgttggag atccaggtgc gcgccttcaa 30240 cgccctgggc agtgagaacc gcacgctggt gctggaggtt caggacgccg tccagtatgt 30300 ggccctgcag agcggcccct gcttcaccaa ccgctcggcg cagtttgagg ccgccaccag 30360

ccccagcccc	cggcgtgtgg	cctaccactg	ggactttggg	gatgggtcgc	cagggcagga	30420
cacagatgag	cccagggccg	agcactccta	cctgaggcct	ggggactacc	gcgtgcaggt	30480
gaacgcctcc	aacctggtga	gettettegt	ggcgcaggcc	acggtgaccg	tccaggtgct	30540
ggcctgccgg	gagccggagg	tggacgtggt	cctgcccctg	caggtgctga	tgcggcgatc	30600
acagcgcaac	tacttggagg	cccacgttga	cctgcgcgac	tgcgtcacct	accagactga	30660
gtaccgctgg	gaggtgtatc	gcaccgccag	ctgccagcgg	ccggggcgcc	cagcgcgtgt	30720
ggccctgccc	ggcgtggacg	tgagccggcc	tcggctggtg	ctgccgcggc	tggcgctgcc	30780
tgtggggcac	tactgctttg	tgtttgtcgt	gtcatttggg	gacacgccac	tgacacagag	30840
catccaggcc	aatgtgacgg	tggcccccga	gcgcctggtg	cccatcattg	agggtggctc	30900
ataccgcgtg	tggtcagaca	cacgggacct	ggtgctggat	gggagcgagt	cctacgaccc	30960
caacctggag	gacggcgacc	agacgccgct	cagtttccac	tgggcctgtg	tggcttcgac	31020
acaggtcagt	gcgtggcagg	gccgtcctcc	atgeceetca	cccgtccaca	cccatgagcc	31080
cagagaacac	ccagettgee	accagggetg	gcccgtcctc	agtgcctggt	gggccccgtc	31140
ccagcatggg	gagggggtct	cccgcgctgt	ctcctgggcc	gggctctgct	ttaaaactgg	31200
atggggctct	caggccacgt	cgccccttgt	tctcggcctg	cagagggagg	ctggcgggtg	31260
tgcgctgaac	tttgggcccc	gcgggagcag	cacggtcacc	attccacggg	ageggetgge	31320
ggctggcgtg	gagtacacct	tcagcctgac	cgtgtggaag	gccggccgca	aggaggaggc	31380
caccaaccag	acggtgggtg	ccgcccgccc	ctcggccact	tgccttggac	agcccagcct	31440
ccctggtcat	ctactgtttt	ccgtgtttta	gtgctggtgg	aggccgcacg	ctctcccctc	31500
tetgtttetg	atgcaaattc	tatgtaacac	gacagcctgc	ttcagctttg	cttccttcca	31560
aacctgccac	agttccacgt	acagtettea	agccacatat	gctctagtgg	caaaagctac	31620
acagtcccct	agcaatacca	acagtgagga	agageceett	cccaccccag	aggtagccac	31680
tgtccccagc	ccatgtccct	gttgctggat	gtggtgggcc	ggttctcacc	ctcacgctcc	31740
cctctctgga	ccggccagga	ggcttggtga	ccctgagccc	gtggtggctg	ctcctgctgc	31800
tgtcaggcgg	ggcctgctgg	tgccccagag	tgggcgtctg	ttccccagtc	cctgctttcc	31860
tcagctggcc	tgattggggg	tcttcccaga	ggggtcgtct	gaggggaggg	tgtgggagca	31920
ggttccatcc	cageteagee	tectgaceca	ggccctggct	aagggctgca	ggagtctgtg	31980
agtcaggcct	acgtggcagc	tgeggteete	acacccacac	atacgtctct	tetcacacge	32040
atccccccag	gggccctcag	tgagcattgc	ctgcctcctg	ctagggtcca	gctgggtcca	32100
gtacaccaga	acgcacactc	cagtgtcctc	tgccctgtgt	atgecettee	gccgtccaag	32160

ttggaaggtg	gcaaaccgga	tgagtatcct	gggagggagt	gageteaceg	gcagtggcca	32220
ggcccctggg	aaacctggag	tttgggagca	gcatcctcca	tgggtcccc	agtccttcca	32280
gcaggccaaa	tagacctgtg	ttggaggtaa	ccccactccc	acgccaggtg	ctgatccgga	32340
gtggccgggt	gcccattgtg	tccttggagt	gtgtgtcctg	caaggcacag	gccgtgtacg	32400
aagtgagccg	cagctcctac	gtgtacttgg	agggccgctg	cctcaattgc	agcagcggct	32460
ccaagcgagg	ggtgagtgtt	gagcggggtg	tgggcgggct	ggggatgggt	cccatggccg	32520
aggggacggg	gcctgcaggc	agaagtgggg	ctgacagggc	agagggttgc	gccccctcac	32580
caccccttct	gcctgcagcg	gtgggctgca	cgtacgttca	gcaacaagac	gctggtgctg	32640
gatgagacca	ccacatccac	gggcagtgca	ggcatgcgac	tggtgctgcg	gcggggcgtg	32700
ctgcgggacg	gcgagggata	caccttcacg	ctcacggtgc	tgggccgctc	tggcgaggag	32760
gagggctgcg	cctccatccg	cctgtccccc	aaccgcccgc	cgctgggggg	ctcttgccgc	32820
ctcttcccac	tgggcgctgt	gcacgccctc	accaccaagg	tgcacttcga	atgcacgggt	32880
gagtgcaggc	ctgcgtgggg	ggagcagcgg	gatcccccga	ctctgtgacg	tcacggagcc	32940
ctcccgtgat	gccgtgggga	ccgtccctca	ggctggcatg	acgcggagga	tgctggcgcc	33000
ccgctggtgt	acgccctgct	getgeggege	tgtcgccagg	gccactgcga	ggagttctgt	33060
gtctacaagg	gcagcctctc	cagctacgga	gccgtgctgc	ccccgggttt	caggccacac	33120
ttcgaggtgg	gcctggccgt	ggtggtgcag	gaccagctgg	gagccgctgt	ggtcgccctc	33180
aacaggtgag	ccaggccgtg	ggagggcgcc	cccgagactg	ccacctgctc	accaccccct	33240
ctgctcgtag	gtctttggcc	atcaccctcc	cagagcccaa	cggcagcgca	acggggctca	33300
cagtctggct	gcacgggctc	accgctagtg	tgctcccagg	gctgctgcgg	caggccgatc	33360
cccagcacgt	catcgagtac	tegttggccc	tggtcaccgt	gctgaacgag	gtgagtgcag	33420
cctgggaggg	gacgtcacat	ctgctgcatg	cgtgcttggg	accaagacct	gtacccctgc	33480
ctggagcttt	gcagagggct	catcccgggc	cccagagata	aatcccagtg	accctgaagc	33540
agcaccccga	ccttccgctc	ccagcagcca	cacccaccgg	gccctctccg	gegtetgett	33600
tecacaatge	agcccccgcc	caggagggcc	catgtgctta	ccctgttttg	cccatgaaga	33660
aacagctcag	tgttgtgggt	cagtgcccgc	atcacacagc	gtctagcacg	taactgcacc	33720
ccgggagtcg	tgggcatctg	ctggcctcct	gccggcctcc	tgcgctgctg	acagettget	33780
gtgccccctg	cctgccccag	tacgagcggg	ccctggacgt	ggcgcagagc	ccaagcacga	33840
gcggcagcac	cgagcccaga	tacgcaagaa	catcacggag	actctggtgt	ccctgagggt	33900
ccacactgtg	gatgacatcc	agcagatcgc	tgetgegetg	gcccagtgca	tggtaggatg	33960
gccccacctg	ctcaccctgc	cccgcatgcc	tgccagggca	ctgggttcag	cccccaggg	34020

cagacgggca	gcttggccga	ggagctgagc	ctccagcctg	ggctccttcc	tgccatggcg	34080
ttcctcggtc	tctgacctgc	ttcagtagcc	tcagccgttc	tgtcctgtgt	gaacgcaggg	34140
tgcctctcgg	gggacccagg	gtgtaaagag	gggcccagat	gtggggaggg	actaagaaga	34200
tgctgctctg	tgccctccac	tateceatea	cctcccctcc	cccttccctc	ccctagcccc	34260
tcccctcctc	ccctccccta	gcccttcccc	tecteceete	ccctagccct	ttcccttctt	34320
ccccccagc	ccttcccctc	ctcccctccc	ctagcccttc	ccctcctccc	ctcccctacc	34380
ccttcccctc	ctcccctccc	ctagaccttc	ccctcacctc	ctcccgctga	gcccctccac	34440
tcgtccccca	gcccctccct	cccctagccc	ctccctccc	ccttcctccc	ctcctccccc	34500
tcccctcctc	cccctccctc	ttectccccc	teceetecte	ccccttcctc	ccctctcctc	34560
cccctcccct	cctgtccccc	ctcctcccct	cctccctcct	cccctcctcc	cccctcctcc	34620
tccccctcct	ccetectece	tectececet	cctcctcctc	ccctcctccc	tecteceete	34680
ctcccctccc	ctectcccc	tececetee	cttcctcccc	ctccccctc	ccctcctccc	34740
cctctcctcc	tcccatccct	cctcccatcc	ctcctccccg	ttcccattct	ctcccctccc	34800
ccttccattt	ctccctcctc	cccctgccct	cctctcctcc	tcacctcccc	ttctccgctc	34860
ctttcttctc	ctccctccct	ttctctcctc	cctccccttc	tccccttctc	ctcttctccc	34920
cttctcctct	cttttcatcc	ttcccttctt	ccctcctttc	ctcctcttt	ccctcttctc	34980
cccctcctc	ccctccttcc	tcctcccatt	cccctcctc	cccctccca	ttccccctcc	35040
teccetectt	cctcctccca	ttacccctcc	tetectecce	tcctcccacc	cccctctcct	35100
cccggctcct	ctcctccct	cctcatcccc	ctcctctcct	tccctcctaa	ccccctcct	35160
ctcctcccct	cctcatcccc	ctcctctcct	tecetectee	tatcccccct	cctctcctcc	35220
cctcctccta	ttccccctcc	tctcctcccc	tccttcctcc	tcctctcctc	ccatgccccc	35280
tectecete	ctcccatccc	cctcctcccc	tectecetec	tcccatccca	tocccctcct	35340
ctcctcccct	tctctccct	cctctcctcc	catactates	tctcctcctc	tcctcccctc	35400
ctcccatccc	ccctcctccc	atccccctc	ctctcctccc	cactcctctc	ctccccactc	35460
ctctcctccc	ctcatccccc	tcctctctcc	tcccctcccc	ctcctctcct	tecetectec	35520
tttcctcccc	tcccctcct	tcccctcct	cccctcctt	ctccccatcc	cccttcccct	35580
tctcctcctc	tccctcccc	cttctctttt	tccctcctcc	tcccttcctc	ctcccctctt	35640
ctcccctttt	cccttttctc	ttcctctcct	ccccttctcc	cctcctgtcc	tecetecett	35700
tetetette	tttcctccct	ttccttctcc	cctgttctcc	tecettecet	tctccccttt	35760
tettecetee	tcctttcctc	ccctcctcct	tttctctgtt	tatattaatt	tcccctccac	35820

			2.			
tttccccttc	ctttcccctc	tcctttctcc	ttcctttcct	ctccccttct	cttccttttc	35880
ctctctcccc	ttcttttccc	tetteceete	ccctcctctt	cccctcccct	cctcttcccc	35940
toccctcctc	ttcccctccc	ctcctcttcc	cctctcctcc	tcttcccctc	ccctcctctt	36000
tccctcccct	cttctcctcc	cctcctctcc	cetettecee	teccetecte	ttccctcccc	36060
ttcccctccc	ctcctcttcc	ctccccttcc	cctcccctcc	tettecetee	ccttcccctc	36120
ctcttccttc	ctctcttccc	ctccctcct	cttccctccc	ctcttcccct	ccccttctct	36180
totoctocco	ttctcttccc	ctcccctttt	cttccctctc	cttgtcttcc	ctgccctcct	36240
cttccctccc	ctcctcttcc	ctcccctctt	cecetetect	cctcttccct	cccctcttcc	36300
tatttaatat	tcccatcccc	toctcctccc	tcccctttcc	cctcttcccc	tcccctccgc	36360
ttccctccc	tttctcccc	ttctctcccc	tcccctctcc	ccccttctct	cccctcccct	36420
ctccccttc	tctccctcc	cctctcccc	ttctctcccc	tctcctctcc	cccttctctc	36480
ccccttctct	ccccttctc	tctccccttc	tctccccctt	ctctcccctc	ccccttctc	36540
tecectecee	tctccccctt	ctctcccctc	ccctctcccc	tgtcctctcc	tctccaccct	36600
teteteceet	cccctctcct	ctccccttc	cetetectet	ccccttctc	tcccctcccc	36660
tetectetee	cccctttct	ccactcccct	ctcctctctc	ccctcctcct	ccgctctcat	36720
gtgaagaggt	gccttgtgtg	gtcggtgggc	tgcatcacgt	ggtccccagg	tggaggccct	36780
gggtcatgca	gagccacaga	aaatgcttag	tgaggaggct	gtgggggtcc	agtcaagtgg	36840
gctctccagc	tgcagggctg	ggggtgggag	ccaggtgagg	acccgtgtag	agaggagggc	36900
gtgtgcaagg	agtggggcca	ggagcggggc	tggacactgc	tggctccaca	caggggccca	36960
gcagggagct	cgtatgccgc	tegtgeetga	agcagacgct	gcacaagctg	gaggccatga	37020
tgctcatcct	gcaggcagag	accaccgcgg	gcaccgtgac	geccacegec	atcggagaca	37080
gcatcctcaa	catcacaggt	gccgcggccc	gtgccccatg	ccacccgccc	gccccgtgcg	37140
gccctttcct	ctgcctccct	cctccccca	accgcgtcgc	ctttgcccca	tcccatcttc	37200
gtccccctcc	cctccccca	atteccatec	tcatccccct	cccccaattc	ccattctcct	37260
cccctcccc	cttccctatt	accatccctt	ttctccatct	ctctcccctt	ttctccattt	37320
eccccccgt	cctccccgtc	cttttgtcca	ttcccctcat	cttcctcatc	cccctcatcc	37380
eccttcccct	cccttatccc	ccttcccctc	cctttccccc	tgctcctctt	cttctccctt	37440
ctcttttctc	tacccttttc	cttccttttt	cctccctctc	cccatcatcc	ccctcatctt	37500
egteeteate	cccatcacct	tccccctccc	ccctccacca	ctctctctcc	agcttccccc	37560
ttccttctgc	ctgcacctcg	ctctctgccc	cctcaggttc	cccctttctc	ccagccccca	37620
ccctccggct	ccccttttt	gcctgccccc	accetecete	tacctccctg	tctctgcact	37680

gacctcacgc	atgtctgcag	gagacctcat	ccacctggcc	agctcggacg	tgcgggcacc	37740
acagecetea	gagctgggag	ccgagtcacc	atctcggatg	gtggcgtccc	aggcctacaa	37800
cctgacctct	gccctcatgc	gcatcctcat	gcgctcccgc	gtgctcaacg	aggagcccct	37860
gacgctggcg	ggcgaggaga	tcgtggccca	gggcaagcgc	tcggacccgc	ggagcctgct	37920
gtgctatggc	ggcgccccag	ggcctggctg	ccacttctcc	atccccgagg	ctttcagcgg	37980
ggccctggcc	aacctcagtg	acgtggtgca	gctcatcttt	ctggtggact	ccaatccctt	38040
tccctttggc	tatatcagca	actacaccgt	ctccaccaag	gtggcctcga	tggcattcca	38100
gacacaggcc	ggcgcccaga	tccccatcga	gcggctggcc	tcagagcgcg	ccatcaccgt	38160
gaaggtgccc	aacaactcgg	actgggctgc	ccgqgqccac	cgcagctccg	ccaactccgc	38220
caactccgtt	gtggtccagc	cccaggcctc	cgtcggtgct	gtggtcaccc	tggacagcag	38280
caaccctgcg	gccgggctgc	atctgcagct	caactatacg	ctgctggacg	gtgcgtgcag	38340
cgggtggggc	acacgcggcc	ccctggcctt	gttcttgggg	ggaaggcgtt	tctcgtaggg	38400
cttccatggg	tgtctctggt	gaaatttgct	ttctgtttca	tgggctgctg	ggggcctggc	38460
cagagaggag	ctgggggcca	cggagaagca	ggtgccagct	ctggtgcaga	ggctcctatg	38520
ctttcaggcc	cgtggcagag	ggtgggctca	ggagggccat	cgtgggtgtc	ccccgggtgg	38580
ttgagcttcc	cggcaggcgt	gtgacctgcg	cgttctgccc	caggccacta	cctgtctgag	38640
gaacctgagc	cctacctggc	agtctaccta	cactcggagc	cccggcccaa	tgagcacaac	38700
tgctcggcta	gcaggaggat	ccgcccagag	tcactccagg	gtgctgacca	ccggccctac	38760
accttcttca	tttccccggg	gtgagctctg	.cgggccagcc	tggcagggca	gggcagggca	38820
tcatgggtca	gcattgcctg	ggttactggc	cccatgggga	cggcaggcag	cgaggggact	38880
ggaccgggta	tgggctctga	gactgcgaca	tccaacctgg	cggagcctgg	gctcacgtcc	38940
gctacccctt	ccctgcccag	gagcagagac	ccagcgggga	gttaccatct	gaacctetee	39000
agccacttcc	gctggtcggc	gctgcaggtg	tccgtgggcc	tgtacacgtc	cctgtgccag	39060
tacttcagcg	aggaggacat	ggtgtggcgg	acagagggc	tgctgcccct	ggaggagacc	39120
tegeceegee	aggccgtctg	cctcacccgc	cacctcaccg	ccttcggcgc	cagcctcttc	39180
gtgcccccaa	gccatgtccg	ctttgtgttt	cctgtgagtg	accctgtgct	cctgggagcc	39240
tctgcagagt	cgaggagggc	ctgggtgggc	toggototat	cctgagaagg	cacagcttgc	39300
acgtgacctc	ctgggcccgg	cggctgtgtc	ctcacaggag	ccgacagcgg	atgtaaacta	39360
catcgtcatg	ctgacatgtg	ctgtgtgcct	ggtgacctac	atggtcatgg	ccgccatcct	39420
gcacaagctg	gaccagttgg	atgccagecg	gggccgcgcc	atccctttct	gtgggcagcg	39480

gggccgcttc	aagtacgaga	tcctcgtcaa	gacaggctgg	ggccggggct	caggtgaggg	39540
gcgcagcggg	gtggcagggc	ctcccctgct	ctcactggct	gtgctggttg	caccctctgg	39600
gagtgagtct	cgtcgcaggc	gtcagaacaa	ggcagttttt	gcagtgctgt	gtgaagggct	39660
cgtgtgttca	tcctgggaat	gacctcgtga	gcactcactg	tccctgagga	ctaggacagc	39720
tectagetgg	aagtaggtgc	cagtcagtca	gggtgggcag	cccacgttct	gcacagtagc	39780
gtggccccac	aagtgacgtg	agcatcgcta	ccactgtggg	agactgtgca	tccacccgcg	39840
atcctgactg	catagetegt	ctctcagacg	gaggcgccag	caccctcccc	gtggctgttt	39900
cttcagtacc	tccattttcc	tttcattgga	attgcccttc	tggcattccc	tttttgtttt	39960
cgtttttctt	tttttagaga	cggagtctca	ctctgttgcc	caggctggag	tgcaatggca	40020
tgatcttggc	tcacagcaac	ttccagctcc	cgggtttaag	ccattcccct	taagcgattc	40080
tcctgagtag	ctgggagtac	aggtgcacac	caccacaccc	agttaatttt	tcaccatgtc	40140
agccaggcga	actcctgacc	tcaggtgatc	cgcctgcctc	ggcctgccag	agtgctggga	40200
tgacaggtgt	gagccaccac	acctggctgt	gttcccattt	tttatctctg	tgctgctttc	40260
ctcttcattg	cccagttctt	tcttttgatt	acctactttt	aaaaactgtc	ggccgggcgc	40320
ggtggctcac	acctgtaatc	cgagcacttt	gggaggccag	gcaggcaaat	cacggggtca	40380
ggagatcgag	accatcctgg	ctaacggtga	aaccctgtct	ctaataaaaa	gtacaaaaaa	40440
attagcccgg	cgtagtggca	ggcgcctgta	gtcccagctc	cttgggagac	tgaggcagga	40500
gaatggcgtg	aacccgggag	gcggagcttg	cagtgagctg	agattgcgcc	actgcactcc	40560
agcctgggtg	acacagcaag	actccatctc	aaaaaaaaa	gaaaaaaaat	actgtcacct	40620
gggtctgtca	ctgggagagg	aggtgacaca	gcttcacgct	ttgcagtctg	tgcatgaact	40680
gagggacggg	tgtgtggtgc	gggtcaccgg	ttgtggcatg	actgaggcgt	ggacaggtgt	40740
gcagtgcggg	tcactggttg	tggtgtggac	tgaggcgtgt	gcagccatgt	ttgcatgtca	40800
caagttacag	ttctttccat	gtaacttaat	catgtccttg	aggtcctgct	gttaattgga	40860
caaattgcag	taaccgcagc	tccttgtgta	tggcagagcc	gtgcaaagcc	gggactgcct	40920
gtgtggctcc	ttgagtgcgc	acaggccaaa	gctgagatga	cttgcctggg	atgccacacg	40980
tgttgggcag	cagaccgagc	ctcccacccc	tecetettge	ctcccaggta	ccacggccca	41040
cgtgggcatc	atgctgtatg	gggtggacag	ccggagcggc	caccggcacc	tggacggcga	41100
cagagccttc	caccgcaaca	gcctggacat	cttccggatc	gccaccccgc	acageetggg	41160
tagcgtgtgg	aagatccgag	tgtggcacga	caacaaaggt	ttgtgcggac	cctgccaagc	41220
tetgeceete	tgcccccgca	ttggggcgcc	ctgcgagcct	gacctccctc	ctgcgcctct	41280
gcagggctca	gccctgcctg	gttcctgcag	cacgtcatcg	tcagggacct	gcagacggca	41340

cgcagcgcct	tcttcctggt	caatgactgg	ctttcggtgg	agacggaggc	caacgggggc	41400
ctggtggaga	aggaggtgct	ggccgcgagt	aaggcctcgt	tccatggtcc	cactccgtgg	41460
gaggttgggc	agggtggtcc	tgccccgtgg	cctcctgcag	tgcggccctc	cctgccttct	41520
aggegaegea	gcccttttgc	gcttccggcg	cctgctggtg	gctgagctgc	agcgtggctt	41580
ctttgacaag	cacatctggc	tctccatatg	ggaccggccg	cctcgtagcc	gtttcactcg	41640
catccagagg	gccacctgct	gegttetect	catctgcctc	ttcctgggcg	ccaacgccgt	41700
gtggtacggg	gctgttggcg	actctgccta	caggtgggtg	ccgtaggggt	cggggcagcc	41760
tcttcctgcc	cagcccttcc	tgcccctcag	cctcacctgt	gtggcctcct	ctcctccaca	41820
cagcacgggg	catgtgtcca	ggctgagccc	gctqagcgtc	gacacagtcg	ctgttggcct	41880
ggtgtccagc	gtggttgtct	atcccgtcta	cctggccatc	ctttttctct	tccggatgtc	41940
ccggagcaag	gtgggctggg	gctggggacc	cgggagtact	gggaatggag	cctgggcctc	42000
ggcaccatgc	ctagggccgc	cactttccag	tgctgcagcc	agagggaaag	gcgtccacca	42060
aaggctgctc	gggaagggtc	aacacacttg	agcagcctta	gctagactga	ccagggagaa	42120
agagagaaga	ctcagaagcc	agaatggtga	aagaacgagg	gcactttgct	aagcagacgc	42180
cacggacgac	tgcacagcag	cacgccagat	aactcagaag	aagcaagcac	geggetgtge	42240
acgcttccga	aatgcactcc	agaagaaaat	ctcagtacat	ctataggaag	tgaagaggct	42300
gagttagtcc	cttagaaacg	tcccagtggc	cgggccgggt	gtggtggctc	acgcctgtaa	42360
tcccaacact	tcaggtggcc	gaggtgggcg	gatctgagtc	caggagtttg	agaccagcct	42420
gggcaacata	gcaagacccc	atctatataa	aacattaaaa	agggccaggc	gcggtggctc	42480
acgcctgtaa	tcccagcact	ttgggaggcc	gaggcgggca	gatcacttga	ggtcaggagt	42540
tcgagaccag	cctggccaac	acaatgaaac	cccgactcta	ctacaaatac	aaaaacttag	42600
ctgggcatgg	tggcgggcgc	ctgtagtccc	agctactcga	gaggctgagg	caggagaatg	42660
gcatgaaccc	aggaggcgga	gcttgcagtg	agccgagatt	gcgccactgc	actccatcct	42720
gggcaacgga	gcaagactcc	atctccaaaa	aaaaaaaaa	aaaatcccac	aaagaaaagc	42780
tcaggctcag	agccttcacg	atagaatttt	tctaagcagt	taaggaagaa	ttaacaccaa	42840
tccttcacag	actctttcca	agaatacagc	aggtgggaac	gcttcccatt	catacggaaa	42900
cgggaggccg	caccccttag	gaatgcacac	gtggggtcct	caagaggtta	catgcaaact	42960
aaccccagca	gcacacagag	aaggcgcata	agccgcgacc	<pre>aggaggggtt</pre>	gctcccgagt	43020
ccgtggcagg	aaccagaggc	cacatgtggc	tgctcgtatt	taagttaatt	aaaatggaac	43080
gatggccggg	tgtggtggct	cacacctgta	atcccagcac	tttgggaggc	ggaggcgggc	43140

agatcacttg	aggtcaggag	ttccaagacc	agcctggcca	acacagtgaa	accccgtctc	43200
tactaaaaat	acaaaaaatt	agctgggcat	ggtggcaggc	acctgtaatc	ccagctactc	43260
aggaggctga	gccaggacaa	tcgcctgaac	gcgggaggtg	gaggttgcag	tgagctgaga	43320
ttgcgccatt	gcactccagc	ctgggtgaca	gcgagactcc	atctaaaaaa	gaaaatatga	43380
aatttaaaac	tetgtteett	agctgcacca	gtctgctgtc	aagtgttcag	tggcacacgt	43440
cgcgaggggc	tgccatcacg	gacggtgcag	atgtcccata	tatccagcat	tctaggacat	43500
tctgtcagat	ggeaccgggc	tctgtcctgt	ctgctgagga	ggtggcttct	catccctgtc	43560
ctgagcaggt	ctgagctgcc	gcccgctgac	cactgccctc	gtcctgcagg	tggctgggag	43620
ccegageeee	acacctgccg	ggcagcaggt	gctggacatc	gacagetgee	tggactcgtc	43680
cgtgctggac	ageteettee	tcacgttctc	aggcctccac	gctgaggtga	ggactctact	43740
gggggtcctg	ggctgggctg	ggggtcctgc	cgccttggcg	cagcttggac	tcaagacact	43800
gtgcacctct	cagcaggcct	ttgttggaca	gatgaagagt	gacttgtttc	tggatgattc	43860
taagaggtgg	gttccctaga	gaaacctcga	gccctggtgc	aggtcactgt	gtctggggtg	43920
ccgggggtgt	gcgggctgcg	tgtccttgct	gggtgtctgt	ggctccatgt	ggtcacacca	43980
cccgggagca	ggtttgctcg	gaagcccagg	gtgtccgtgc	gtgactggac	gggggtgggc	44040
tgtgtgtgtg	acacatcccc	tggtaccttg	ctgacccgcg	ccacctgcag	tctggtgtgc	44100
tggccctccg	gcgagggaac	gctcagttgg	ccggacctgc	tcagtgaccc	gtccattgtg	44160
ggtagcaatc	tgcggcagct	ggcacggggc	caggcgggcc	atgggctggg	cccagaggag	44220
gacggcttct	ccctggccag	cccctactcg	cctgccaaat	ccttctcagc	atcaggtgag	44280
ctggggtgag	aggaggggc	tctgaagctc	accettgeag	ctgggcccac	cctatgcctc	44340
ctgtacctct	agatgaagac	ctgatccagc	aggteettge	cgagggggtc	agcagcccag	44400
cccctaccca	agacacccac	atggaaacgg	acctgctcag	cagcctgtga	gtgtccggct	44460
ctcgggggag	gggggattgc	cagaggaggg	gccgggactc	aggccaggca	gccgtggttc	44520
ccgcctgggg	tagggtgggg	tggggtgcca	gggcagggct	gtggctgcac	cacttcactt	44580
ctctgaacct	ctgttgtetg	tggaaagagc	ctcatgggat	ccccagggcc	ccagaacctt	44640
ccctctaggg	agggagcagg	ctcatggggc	tttgtaggag	cagaaaggct	cctgtgtgag	44700
gctggccggg	gccacgtttt	tatcttggtc	tcagagcagt	gagaaattat	gggcgggttt	44760
ttaaataccc	catttttggc	cgggcgcggt	ggctcacacg	tgtaatccca	gcactttggg	44820
aggccgaggt	gggcagatga	cctgaggtca	gcagttcgag	accagcctgg	ccaacatggc	44880
gaaaccccgt	ctctactaaa	aatacaaaaa	attagccggg	catgctggca	ggcgcctgta	44940
gtcccagtta	ctcgggagac	tgaggtagga	gaatcgattg	aacctggtag	gtgaaggttg	45000

tagtgagccg	agatcgcgcc	actgcactcc	agcctgggca	acaagagcga	aactccgtct	45060
caaaaacaaa	aaaattcctc	aatttcttgg	ttgttttgta	acttatcaac	aaatggtcat	45120
atagaggtta	ccttgtatgt	agtcacgcac	atagtcacgc	acatggcagc	cggcggcgga	45180
gcgcacccac	ggcgtgttcc	cacgcgtgtg	accccgggct	ctgccatgcc	ctcctatgct	45240
caggtgtgct	gaggtccaca	cggccctgcc	gttgcactgc	agctgcctgc	aggattcagt	45300
gcagtggcat	gcagtgcagg	tgcggtgccc	cggagccaca	ggccacacca	cagggcctgc	45360
atgcacaggg	gctgcggtgt	ctgggtttgg	gtaactacgc	cctgtgacat	ttgcacagca	45420
acagaattac	ctaatgacgc	atttctcaga	acacatccct	ggcactaagt	ggtgcgtgac	45480
tgctgctttt	gcatccacat	ctagtttgat	ttgtgtgtta	ttcctttgag	tgcttctcat	45540
tgttaagcaa	ccaagaacta	aagaggtatg	aactgcccct	ggactcaaac	aaaaaggaaa	45600
acttcctgat	ttacaaaagg	cagataacca	tcacatgagg	gcatctttat	gaataaattg	45660
ctggttggtt	ttaaaaatac	agagtatggg	gaaatccagg	ggtagtcact	acatgctgac	45720
cagccccagg	tatctccggc	ccaaagctct	gtgaaatcca	gattcagtgc	ttccgcgggg	45780
atttctgacg	gcagctcaga	ctccgcatcc	acacagagcg	cgtggccctc	acceteeegg	45840
cttcctcaac	ccttggccgt	cccttgctcg	gacagtgctt	cgggctgacc	aggteggagg	45900
cttgggtttg	tcctggaccc	ctctgcgtcc	ttcctcactg	cagcetecag	cgcgtcccgt	45960
ggctcctttc	ccaacgcaga	gcacggcctt	ccctgcgcct	gagcctgcac	cctccgtcct	46020
ggcggcgcct	ctgccctggc	attccctgcc	actccatgcc	tccctattgg	ccattctccg	46080
tctctgccag	cgagagcctg	ctccctgagt	cagaccctga	gtcatttgtg	ttgctataaa	46140
ggaatagttg	aggctgggtt	attttttatt	tttatttatt	tttttgagat	ggagtctctg	46200
ttgcccagac	tggagtgcag	tcgcatgatc	teggeteact	gcaaagtctg	cctcccacgt	46260
tcaagcagtt	atctgcctca	gcctcccaag	tagctaagat	tacaggcgcc	cgccgccaca	46320
gccggctaat	tttttgtgtg	tgtgttttag	tagagaggag	gtttcaccat	cttagccagg	46380
ctggtcttga	actcctgacc	tcgtgatcca	cccatctcag	cctcccaaaa	tgctgagatt	46440
acaggcgtga	gccaccacgc	ctgaccaagt	tgaggetagg	tcatttttta	attttttgta	46500
aagacagggt	ctcactgtct	ccaactcctg	agctcaagtg	atcctcctgc	ctcagcctcc	46560
tgaagtgctg	ggattacagg	cttgagacac	tgcgcccagc	caagagtgtc	ttttatcctc	46620
cgagagacag	caaaacagga	agcattcagt	gcagtgtgac	cctgggtcag	gccgttcttt	46680
cggtgatggg	ctgacgaggg	cgcaggtacg	ggagagcgtc	ctgagagccc	gggactcggc	46740
gtctcgcagt	tggtctcgtc	ctccccctca	acgtgtcttc	gctgcctctg	tacctcttct	46800

ctagcagete tgggaceggg catateagea tggtggeeeg atgeagtgge acageetegg 46860 tggtcactgg ctcctggaga cacaagcaga tctctggcct cagggagccc tacacactgt 46920 tgggatttga aaggcattca tatgtttcct tgtccagaag ttaattttag gccataaacc 46980 tgcatgggac agacacactg gcgtctctag attgtagaga tgcttgttgg atggttgaga 47040 cccaatcata gtttgcaggg ttgaaggggg gctcattgca ccctgagaga ctgtgcactg 47100 ctgtaagggc agctggtcag gctgtgggeg atgggtttat cagcagcaag cgggcgggag 47160 agggaegeag geggaegeet gaetteggtg eetggagtgg etettggtte eetggeteee 47220 agcaccactc ccactctcgt ttggggtagg gtcttccggc tttttgtcgg ggggaccctg 47280 tgacccaaga ggctcaagaa actgcccgcc caggttaaca tgggcttggc tgcaactgcc 47340 tcctggaggc cgggatgaat tcacagccta ccatgtccct caggtccagc actcctgggg 47400 agaagacaga gacgctggcg ctgcagaggc tgggggagct ggggccaccc agcccaggcc 47460 tgaactggga acagccccag gcagcgaggc tgtccaggac aggtgtgctt gcgtagcccc 47520 gggatgcccc tagcccctcc ctgtgagctg cctctcacag gtctgtctct gcttccccag 47580 gactggtgga gggtctgcgg aagcgcctgc tgccggcctg gtgtgcctcc ctggcccacg 47640 ggctcagcct gctcctggtg gctgtggctg tggctgtctc agggtgggtg ggtgcgagct 47700 tecceeggg cgtgagtgtt gegtggetee tgtecageag egecagette etggeeteat 47760 tcctcggctg ggagccactg aaggtgaggg ggctgccagg ggtaggctac aggcctccat 47820 cacgggggac ccctctgaag ccacccctc cccaggtctt gctggaagcc ctgtacttct 47880 cactggtggc caageggetg cacceggatg aagatgacac cetggtagag ageceggetg 47940 tgacgcctgt gagcgcacgt gtgccccgcg tacggccacc ccacggcttt gcactcttcc 48000 tggccaagga agaagcccgc aaggtcaaga ggctacatgg catgctgcgg gtgagcctgg 48060 gtgcggcctg tgcccctgcc acctccgtct cttgtctccc acctcccacc catgcacgca ggacactect gteeceettt ceteacetea gaaggeeett aggggtteaa tgetetgeag 48180 cetttgeceg gtetecetee taccecaege eccecaettg etgececagt ecctgecagg geocagetee aatgeceaet cetgeetgge cetgaaggee cetaageace actgeagtgg 48300 cetgtgtgtc tgccccagg tggggttccg ggcagggtgt gtgctgccat taccctggcc 48360 aggtagagte ttggggegee cectgecage teacetteet geagecacae etgeegeage 48420 catggeteca geegttgeea aageeetget gteaetgtgg getggggeea ggetgaeeac 48480 agggeceece egtecaccag agecteetgg tgtacatget ttttetgetg gtgaccetge 48540 tggccagcta tggggatgcc tcatgccatg ggcacgccta ccgtctgcaa agcgccatca 48600 agcaggaget geacageegg geetteetgg ceateaegeg gtaegggeat ceggtgeact 48660

ggtctgtctt	ctgggcttta	gttttgcctt	tagtccagcc	agaccctagg	ggacatgtgg	48720
acatgtgtag	atacctttgt	ggctgctaga	actggaggta	ggtgctgctg	gcatcagtag	48780
gcagaggga	gggacacagg	teegtgtett	gcagtgcaca	ggacgggccc	atgacagaca	48840
actgtctgcc	ccagaacatc	cccaggataa	ggctgagaag	cccaggtcta	gccgtggcca	48900
gcagggcagt	gggagccatg	ttccctgggt	ctctggtggc	cgctcactcg	aggcgggcat	48960
ggggcagtag	gggctggagc	gtgtgactga	tgctgtggca	ggtctgagga	gctctggcca	49020
tggatggccc	acgtgctgct	gccctacgtc	cacgggaacc	agtccagccc	agagctgggg	49080
ccccacggc	tgcggcaggt	gcggctgcag	gaaggtgagc	tggcagggcg	tgccccaaga	49140
cttaaatcgt	tcctcttgtt	gagagagcag	cetttagegg	agctctggca	tcagccctgc	19200
tccctagctg	tgtgaccttt	gccctcttaa	caccgccgtt	teettetetg	tatatgagag	49260
atggtaacgt	tgtctaattg	atggctgctg	ggagggttcc	ctggggtggc	gccgaaccag	49320
agctcaggcg	agctggccag	caggaaacac	tcctgttggg	ttttgatgag	gccctggccc	49380
cggcctgggg	ctctgtgtgt	ttcagcactc	tacccagacc	ctcccggccc	cagggtccac	49440
acgtgctcgg	ccgcaggagg	cttcagcacc	agcgattacg	acgttggctg	ggagagtcct	49500
cacaatggct	cggggacgtg	ggcctattca	gcgccggatc	tgctggggtg	agcagagcga	49560
gggccccggg	cgtctacgcc	aaggacaagg	gagtagttct	ccaggagtgc	cgcggcctcc	49620
tgaccagcct	ggctccgggg	tgccggaagg	gctggggtgc	ggcacccacg	ccacccctct	49680
ccggcagggc	atggtcctgg	ggctcctgtg	ccgtgtatga	cageggggge	tacgtgcagg	49740
agctgggcct	gagcctggag	gagagccgcg	accggctgcg	cttcctgcag	ctgcacaact	49800
ggctggacaa	caggtgggag	ctccctcccc	tgccctctcc	ggggtggccg	cagtcaccag	49860
ccaggagccc	accctcactc	ctccggcccc	cgctggccta	ggcggcttcc	acageceete	49920
agccacgcct	gcactgcgcg	gtccccgcag	ctéccgccct	gccacccgct	cctactgacc	49980
cgcaccctct	gcgcaggagc	cgcgctgtgt	tcctggagct	cacgcgctac	agcccggccg	50040
tggggctgca	cgccgccgtc	acgctgcgcc	tcgagttccc	ggcggccggc	cgcgccctgg	50100
ccgccctcag	cgtccgcccc	tttgcgctgc	gccgcctcag	cgcgggcctc	tegetgeete	50160
tgctcacctc	ggtacgcccg	tccccggcca	gaccccgcgc	ctcccaccgg	cagcgtcccg	50220
cccctcgcg	gggccccgcc	cggcagcgtc	tcacccctcg	cagegeeeeg	cccctcgca	50280
gegteeegee	ccctcgcagg	gccccgcccc	ggcagcgtcc	cgccccctcg	tagggccccg	50340
ccccggcagc	gtecegecee	ctcgcagggc	cccgccccgg	cagegteect	cccgccctcc	50400
tgaccgcgcc	ccccacaggt	gtgcctgctg	ctgttcgccg	tgcacttcgc	cgtggccgag	50460

gcccgtactt	ggcacaggga	agggcgctgg	cgcgtgctgc	ggctcggagc	ctgggcgcgg	50520
tggctgctgg	tggcgctgac	ggcggccacg	gcactggtac	gcctcgccca	gctgggtgcc	50580
gctgaccgcc	agtggacccg	tttcgtgcgc	ggccgcccgc	geegetteae	tagcttcgac	50640
caggtggcgc	agctgagctc	cgcagcccgt	ggcctggcgg	cctcgctgct	cttcctgctt	50700
ttggtcaagg	tgagggctgg	gccggtgggc	gcggggctgg	gcgcacaccc	cagggctgca	50760
agcagacaga	tttctcgtcc	gcaggctgcc	cagcagctac	gcttcgtgcg	ccagtggtcc	50820
gtctttggca	agacattatg	ccgagctctg	ccagagctcc	tgggggtcac	cttgggcctg	50880
gtggtgctcg	gggtagccta	cgcccagctg	gccatcctgg	taggtgactg	cgcggccggg	50940
gagggcgtct	tagctcagct	cagctcagct	gtacgccctc	actggtgtcg	ccttccccgc	51000
agctcgtgtc	ttcctgtgtg	gactccctct	ggagcgtggc	ccaggccctg	ttggtgctgt	51060
gccctgggac	tgggctctct	accctgtgtc	ctgccgagtc	ctggcacctg	tcacccctgc	51120
tgtgtgtggg	gctctgggca	ctgcggctgt	ggggcgccct	acggctgggg	gctgttattc	51180
tccgctggcg	ctaccacgcc	ttgcgtggag	agctgtaccg	gccggcctgg	gagccccagg	51240
actacgagat	ggtggagttg	ttcctgcgca	ggctgcgcct	ctggatgggc	ctcagcaagg	51300
tcaaggaggt	gggtacggcc	cagtgggggg	gagagggaca	cgccctgggc	tctgcccagg	51360
gtgcagccgg	actgactgag	cccctgtgcc	gcccccagtt	ccgccacaaa	gtccgctttg	51420
aagggatgga	gccgctgccc	tctcgctcct	ccaggggctc	caaggtatcc	ccggatgtgc	51480
ccccacccag	cgctggctcc	gatgcctcgc	acccctccac	ctcctccagc	cagctggatg	51540
ggctgagcgt	gagcctgggc	cggctgggga	caaggtgtga	gcctgagccc	tcccgcctcc	51600
aagccgtgtt	cgaggccctg	ctcacccagt	ttgaccgact	caaccaggcc	acagaggacg	51660
tctaccagct	ggagcagcag	ctgcacagcc	tgcaaggccg	caggagcagc	cgggcgcccg	51720
ccggatcttc	ccgtggccca	tccccgggcc	tgcggccagc	actgcccagc	cgccttgccc	51780
gggccagtcg	gggtgtggac	ctggccactg	gccccagcag	gacacccctt	cgggccaaga	51840
acaaggtcca	ccccagcagc	acttagtcct	ccttcctggc	gggggtgggc	cgtggagtcg	51900
gagtggacac	cgctcagtat	tactttctgc	cgctgtcaag	gccgagggcc	aggcagaatg	51960
gctgcacgta	ggttccccag	agagcaggca	ggggcatctg	tctgtctgtg	ggcttcagca	52020
ctttaaagag	gctgtgtggc	caaccaggac	ccagggtccc	ctccccagct	cccttgggaa	52080
ggacacagca	gtattggacg	gtttctagcc	tctgagatgc	taatttattt	ccccgagtcc	52140
tcaggtacag	cgggctgtgc	ccggccccac	cccctgggca	gatgtccccc	actgctaagg	52200
ctgctggctt	cagggagggt	tagcctgcac	egeegeeaee	ctgcccctaa	gttattacct	52260
ctccagttcc	taccgtactc	cctgcaccgt	ctcactgtgt	gtctcgtgtc	agtaatttat	52320

atggtgttaa	aatgtgtata	tttttgtatg	tcactatttt	cactagggct	gaggggcctg	52380
cgcccagagc	tggcctcccc	caacacctgc	tgcgcttggt	aggtgtggtg	gcgttatggc	52440
agcccggctg	ctgcttggat	gcgagcttgg	ccttgggccg	gtgctggggg	cacagetgte	52500
tgccaggcac	teteateace	ccagaggcct	tgtcatcctc	ccttgcccca	ggccaggtag	52560
caagagagca	gcgcccaggc	ctgctggcat	caggtctggg	caagtagcag	gactaggcat	52620
gtcagaggac	cccagggtgg	ttagaggaaa	agactcctcc	tgggggctgg	ctcccagggt	52680
ggaggaaggt	gactgtgtgt	gtgtgtgtgt	gegegegege	acgcgcgagt	gtgctgtatg	52740
gcccaggcag	cctcaaggcc	ctcggagctg	gctgtgcctg	cttctgtgta	ccacttctgt	52800
gggcatggcc	gcttctagag	cctcgacacc	ccccaaccc	ccgcaccaag	cagacaaagt	52860
caataaaaga	gctgtctgac	tgcaatctgt	gcctctatgt	ctgtgcactg	gggtcaggac	52920
tttatttatt	tcactgacag	gcaataccgt	ccaaggccag	tgcaggaggg	agggccccgg	52980
cctcacacaa	actcggtgaa	gtcctccacc	gaggagatga	ggcgcttccg	ctggcccacc	53040
tcatagccag	gtgtgggctc	ggctggagtc	tgtgcagggg	ctttgctatg	ggacggaggg	53100
tgcaccagag	gtaggctggg	gttggagtag	gcggcttcct	cgcagatctg	aaggcagagg	53160
cggcttgggc	agtaagtctg	ggaggcgtgg	caaccgctct	gcccacacac	ccgcccaca	53220
gcttgggcag	ccagcacacc	ccgctgaggg	agccccatat	tccctacccg	ctggcggagc	53280
gcttgatgtg	gcggagcggg	caatccactt	ggaggggtag	atatcggtgg	ggttggagcg	53340
gctatgatgc	acctgtgagg	ccatctgggg	acgtaggcag	ggggtgagct	cactatcagg	53400
tggcacctgg	gcctgtccca	ccagctcacg	cctggaccca	ccccactca	catttgcgtg	53460
cagggccatc	tggcgggcca	cgaagggcag	gttgcggtca	gacacgatct	tggccacgct	53520
gg						53522

<210> 2 <211> 4303 <212> PRT

<213> Homo sapiens

Met Pro Pro Ala Ala Pro Ala Arg Leu Ala Leu Gly Leu Gly

Leu Trp Leu Gly Ala Leu Ala Gly Gly Pro Gly Arg Gly Cys Gly Pro 20 2530

Cys Glu Pro Pro Cys Leu Cys Gly Pro Ala Pro Gly Ala Ala Cys Arg

Val Asn Cys Ser Gly Arg Gly Leu Arg Thr Leu Gly Pro Ala Leu Arg

									٠,	•					
	50					55					60				
Ile 65	Pro	Ala	Asp	Ala	Thr 70	Glu	Leu	Asp	Val	Ser 75	His	Asn	Leu	Leu	Arg 80
Ala	Leu	Asp	Val	Gly 85	Leu	Leu	Ala	Asn	Leu 90	Ser	Ala	Leu	Ala	Glu 95	Leu
Asp	Ile	Ser	Asn 100	Asn	Lys	Ile	Ser	Thr 105	Leu	Glu	Glu	Gly	Ile 110	Phe	Ala
Asn	Leu	Phe 115	Asn	Leu	Ser	Glu	Ile 120	Asn	Leu	Ser	Gly	Asn 125	Pro	Phe	Glu
Cys	Asp 130	Суз	Gly	Leu	Ala	Trp 135	Leu	Pro	Gln	Trp	Ala 140	Glu	Glu	Gln	Gln
Val 145	Arg	Val	Val	Gln	Pro 150	Glu	Ala	Ala	Thr	Сув 155	Ala	Gly	Pro	Gly	Ser 160
Leu	Ala	Gly	Gln	Pro 165	Leu	Leu	Gly	Ile	Pro 170	Leu	Leu	Asp	Ser	Gly 175	Cys
Gly	Glu	Glu	Tyr 180	Val	Ala	Cys	Leu	Pro 185	qaA	Asn	Ser	Ser	Gly 190	Thr	Val
Ala	Ala	Val 195	Ser	Phe	Ser	Ala	Ala 200	His	Glu	Gly	Leu	Leu 205	Gln	Pro	Glu
Ala	Cys 210	Ser	Ala	Phe	Cys	Phe 215	Ser	Thr	Gly	Gln	Gly 220	Leu	Ala	Ala	Leu
Ser 225	Glu	Gln	Gly	Trp	Cys 230	Leu	Cys	Gly	Ala	Ala 235	Gln	Pro	Ser	Ser	Ala 240
Ser	Phe	Ala	Сув	Leu 245	Ser	Leu	Cys	Ser	Gly 250	Pro	Pro	Ala	Pro	Pro 255	Ala
Pro	Thr	Сув	Arg 260	Gly	Pro	Thr	Leu	Leu 265	Gln	His	Val	Phe	Pro 270	Ala	Ser
Pro	Gly	Ala 275	Thr	Leu	Val	Gly	Pro 280	His	Gly	Pro	Leu	Ala 285	Ser	Gly	Gln
Leu	Ala 290	Ala	Phe	His	Ile	Ala 295	Ala	Pro	Leu	Pro	Val 300	Thr	Asp	Thr	Arg
Trp 305	Asp	Phe	Gly	Asp	Gly 310	Ser	Ala	Glu	Val	Asp 315	Ala	Ala	Gly	Pro	Ala 320
Ala	Ser	His	Arg	Tyr 325	Val	Leu	Pro	Gly	Arg 330	Tyr	His	Val	Thr	Ala 335	Val
Leu	Ala	Leu	Gly 340	Ala	Gly	Ser	Ala	Leu 345	Leu	Gly	Thr	Asp	Val 350	Gln	Val
Glu	Ala	Ala 355	Pro	Ala	Ala	Leu	Glu 360	Leu	Val	Сув	Pro	Ser 365	Ser	Val	Gln
Ser	Asp 370	Glu	Ser	Leu	Asp	Leu 375	Ser	Ile	Gln	Asn	Arg 380	Gly	Gly	Ser	Gly

PCT/US01/22035 WO 02/06529 32

Leu 385	Glu	Ala	Ala	Tyr	Ser 390	Ile	Val	Ala	Leu	Gly 395	Glu	Glu	Pro	Ala	Arg 400
Ala	Val	His	Pro	Leu 405	Сув	Pro	Ser	Asp	Thr 410	Glu	Ile	Phe	Pro	Gly 415	Asn
Gly	His	Cys	Tyr 420	Arg	Leu	Val	Val	Glu 425	ГÀа	Ala	Ala	Trp	Leu 430	Gln	Ala
Gln	Glu	Gln 435	Cys	Gln	Ala	Trp	Ala 440	Gly	Ala	Ala	Leu	Ala 445	Met	Val	Asp
Ser	Pro 450	Ala	Val	Gln	Arg	Phe 455	Leu	Val	Ser	Arg	Val 460	Thr	Arg	Ser	Leu
Asp 465	Val	Trp	Ile	Gly	Phe 470	Ser	Thr	Val	Gln	Gly 475	Val	Glu	Val	Gly	Pro 480
Ala	Pro	Gln	Gly	Glu 485	Ala	Phe	Ser	Leu	Glu 490	Ser	Cys	Gln	Asn	Trp 495	Leu
Pro	Gly	Glu	Pro 500	His	Pro	Ala	Thr	Ala 505	Glu	His	Суѕ	Val	Arg 510	Leu	Gly
Pro	Thr	Gly 515	Trp	Сув	Asn	Thr	Asp 520	Leu	Cys	Ser	Ala	Pro 525	His	Ser	Tyr
Val	Cys 530	Glu	Leu	Gln	Pro	Gly 535	Gly	Pro	Val	Gln	Asp 540	Ala	Glu	Asn	Leu
Leu 545	Val	Gly	Ala	Pro	Ser 550	Gly	Asp	Leu	Gln	Gly 555	Pro	Leu	Thr	Pro	Leu 560
545			Ala Asp		550					555					560
545 Ala	Gln	Gln		Gly 565	550 Leu	Ser	Ala	Pro	His 570	555 Glu	Pro	Val	Glu	Val 575	560 Met
545 Ala Val	Gln Phe	Gln Pro	Asp Gly	Gly 565 Leu	550 Leu Arg	Ser Leu	Ala Ser	Pro Arg 585	His 570 Glu	555 Glu Ala	Pro Phe	Val Leu	Glu Thr 590	Val 575 Thr	560 Met Ala
545 Ala Val Glu	Gln Phe	Gln Pro Gly 595	Asp Gly 580	Gly 565 Leu Gln	550 Leu Arg Glu	Ser Leu Leu	Ala Ser Arg	Pro Arg 585 Arg	His 570 Glu Pro	555 Glu Ala Ala	Pro Phe Gln	Val Leu Leu 605	Glu Thr 590 Arg	Val 575 Thr	560 Met Ala Gln
545 Ala Val Glu Val	Gln Phe Phe Tyr 610	Gln Pro Gly 595 Arg	Asp Gly 580 Thr	Gly 565 Leu Gln Leu	550 Leu Arg Glu Ser	Ser Leu Leu Thr 615	Ala Ser Arg 600 Ala	Pro Arg 585 Arg	His 570 Glu Pro	555 Glu Ala Ala Pro	Pro Phe Gln Glu 620	Val Leu Leu 605	Glu Thr 590 Arg	Val 575 Thr Leu Ser	560 Met Ala Gln Glu
545 Ala Val Glu Val Pro 625	Gln Phe Phe Tyr 610	Gln Pro Gly 595 Arg	Asp Gly 580 Thr	Gly 565 Leu Gln Leu Ser	550 Leu Arg Glu Ser Pro 630	Ser Leu Leu Thr 615 Asp	Ala Ser Arg 600 Ala Asn	Pro Arg 585 Arg Gly Arg	His 570 Glu Pro Thr	SSS Glu Ala Ala Pro Gln 635	Pro Phe Gln Glu 620 Leu	Val Leu 605 Asn	Glu Thr 590 Arg Gly	Val 575 Thr Leu Ser	560 Met Ala Gln Glu Cys 640
545 Ala Val Glu Val Pro 625 Met	Gln Phe Phe Tyr 610 Glu	Gln Pro Gly 595 Arg Ser	Asp Gly 580 Thr Leu	Gly 565 Leu Gln Leu Ser Arg 645	550 Leu Arg Glu Ser Pro 630 Trp	Ser Leu Leu Thr 615 Asp	Ala Ser Arg 600 Ala Asn	Pro Arg 585 Arg Gly Arg	His 570 Glu Pro Thr Thr	555 Glu Ala Ala Pro Gln 635 Asn	Pro Phe Gln Glu 620 Leu Ile	Val Leu Leu 605 Asn Ala	Glu Thr 590 Arg Gly Pro Leu	Val 575 Thr Leu Ser Ala Pro 655	560 Met Ala Gln Glu Cys 640 Leu
S45 Ala Val Glu Val Pro 625 Met Asp	Gln Phe Phe Tyr 610 Glu Pro	Gln Pro Gly 595 Arg Ser Gly	Asp Gly 580 Thr Leu Arg Gly Cys	Gly 565 Leu Gln Leu Ser Arg 645 His	550 Leu Arg Glu Ser Pro 630 Trp	Ser Leu Leu Thr 615 Asp Cys	Ala Ser Arg 600 Ala Asn Pro	Pro Arg 585 Arg Gly Arg Gly Cys 665	His 570 Glu Pro Thr Thr Ala 650	555 Glu Ala Ala Pro Gln 635 Asn	Pro Phe Gln Glu 620 Leu Ile	Val Leu 605 Asn Ala Cys	Glu Thr 590 Arg Gly Pro Leu Thr 670	Val 575 Thr Leu Ser Ala Pro 655 Ser	560 Met Ala Gln Glu Cys 640 Leu

Gln 705	Asp	Val	Leu	Met	Leu 710	Pro	Gly	Asp	Leu	Val 715	Gly	Leu	Gln	His	Asp 720
Ala	Gly	Pro	Gly	Ala 725	Leu	Leu	His	Сув	Ser 730	Pro	Ala	Pro	Gly	His 735	Pro
Gly	Pro	Arg	Ala 740	Pro	Tyr	Leu	Ser	Ala 745	Asn	Ala	Ser	Ser	Trp 750	Leu	Pro
His	Leu	Pro 755	Ala	Gln	Leu	Glu	Gly 760	Thr	Trp	Gly	Cys	Pro 765	Ala	Сув	Ala
Leu	Arg 770	Leu	Leu	Ala	Gln	Arg 775	Glu	Gln	Leu	Thr	Val 780	Leu	Leu	Gly	Leu
Arg 785	Pro	Asn	Pro	Gly	Leu 790	Arg	Leu	Pro	Gly	Arg 795	Tyr	Glu	Val	Arg	Ala 800
Glu	Val	Gly	Asn	Gly 805	Val	Ser	Arg	His	Asn 810	Leu	Ser	Суѕ	Ser	Phe 815	Asp
Val	Val	Ser	Pro 820	Val	Ala	Gly	Leu	Arg 825	Val	Ile	Tyr	Pro	Ala 830	Pro	Arg
Asp	Gly	Arg 835	Leu	Tyr	Val	Pro	Thr 840	Asn	Gly	Ser	Ala	Leu 845	Val	Leu	Gln
Val	Asp 850	Ser	Gly	Ala	Asn	Ala 855	Thr	Ala	Thr	Ala	Arg 860	Trp	Pro	Gly	Gly
Ser 865	Leu	Ser	Ala	Arg	Phe 870	Glu	Asn	Val	Cys	Pro 875	Ala	Leu	Val	Ala	Thr 880
Phe	Val	Pro	Ala	Cys 885	Pro	Trp	Glu	Thr	Asn 890	Asp	Thr	Leu	Phe	Ser 895	Val
Val	Ala	Leu	Pro 900	Trp	Leu	Ser	Glu	Gly 905	Glu	His	Val	Val	Asp 910	Val	Val
Val	Glu	Asn 915	Ser	Ala	Ser	Arg	Ala 920	Asn	Leu	Ser	Leu	Arg 925	Val	Thr	Ala
3lu	Glu 930	Pro	Ile	Cys	Gly	Leu 935	Arg	Ala	Thr	Pro	Ser 940	Pro	Glu	Ala	Arg
Val 945	Leu	Gln	Gly	Val	Leu 950	Val	Arg	Tyr	Ser	Pro 955	Val	Val	Glu	Ala	Gly 960
Ser	Asp	Met	Val	Phe 965	Arg	Trp	Thr	Ile	Asn 970	Asp	Lys	Gln	Ser	Leu 975	Thr
Phe	Gln	Asn	Val 980	Val	Phe	Asn	Val	Ile 985	Tyr	Gln	Ser	Ala	Ala 990	Val	Phe
Lys	Leu	Ser 995	Leu	Thr	Ala	Ser	Asn 1000		val	. Sei	Ası	100		ır Va	al Asn
Tyr	Asn 1010	Val	Thi	· Val	. Glu	Arg 101		et As	sn Ar	g Me		ln (ly I	eu (ln

Val Ser Thr Val Pro Ala Val Leu Ser Pro Asn Ala Thr Leu Ala

1025 1030 1035 Leu Thr Ala Gly Val Leu Val Asp Ser Ala Val Glu Val Ala Phe 1040 1045 Leu Trp Thr Phe Gly Asp Gly Glu Gln Ala Leu His Gln Phe Gln 1060 Pro Pro Tyr Asn Glu Ser Phe Pro Val Pro Asp Pro Ser Val Ala 1075 Gln Val Leu Val Glu His Asn Val Thr His Thr Tyr Ala Ala Pro 1085 1090 Gly Glu Tyr Leu Leu Thr Val Leu Ala Ser Asn Ala Phe Glu Asn 1105 Leu Thr Gln Gln Val Pro Val Ser Val Arg Ala Ser Leu Pro Ser 1120 1115 1125 Val Ala Val Gly Val Ser Asp Gly Val Leu Val Ala Gly Arg Pro 1135 Val Thr Phe Tyr Pro His Pro Leu Pro Ser Pro Gly Gly Val Leu 1150 Tyr Thr Trp Asp Phe Gly Asp Gly Ser Pro Val Leu Thr Gln Ser 1170 Gln Pro Ala Ala Asn His Thr Tyr Ala Ser Arg Gly Thr Tyr His 1175 1180 1185 Val Arg Leu Glu Val Asn Asn Thr Val Ser Gly Ala Ala Ala Gln Ala Asp Val Arg Val Phe Glu Glu Leu Arg Gly Leu Ser Val Asp 1210 Met Ser Leu Ala Val Glu Gln Gly Ala Pro Val Val Val Ser Ala 1220 1225 1230 Ala Val Gln Thr Gly Asp Asn Ile Thr Trp Thr Phe Asp Met Gly Asp Gly Thr Val Leu Ser Gly Pro Glu Ala Thr Val Glu His Val Tyr Leu Arg Ala Gln Asn Cys Thr Val Thr Val Gly Ala Gly Ser 1265 1270 Pro Ala Gly His Leu Ala Arg Ser Leu His Val Leu Val Phe Val 1285 Leu Glu Val Leu Arg Val Glu Pro Ala Ala Cys Ile Pro Thr Gln 1295 1300 Pro Asp Ala Arg Leu Thr Ala Tyr Val Thr Gly Asn Pro Ala His 1315 1320 Tyr Leu Phe Asp Trp Thr Phe Gly Asp Gly Ser Ser Asn Thr Thr 1325 1330

Val	Arg 1340		Cys	Pro	Thr	Val 1345		His	Asn	Phe	Thr 1350		Ser	Gly
Thr	Phe 1355		Leu	Ala	Leu	Val 1360		Ser	Ser	Arg	Val 1365		Arg	Ala
His	Tyr 1370		Thr	Ser	Ile	Суз 1375		Glu	Pro	Glu	Val 1380	_	Asn	Val
Thr	Leu 1385		Pro	Glu	Arg	Gln 1390		Val	Gln	Leu	Gly 1395	Asp	Glu	Ala
Trp	Leu 1400		Ala	Cys	Ala	Trp 1405		Pro	Phe	Pro	Tyr 1410	Arg	Tyr	Thr
Trp	Asp 1415		Gly	Thr	Glu	Glu 1420		Ala	Pro	Thr	Arg 1425	Ala	Arg	Gly
Pro	Glu 1430		Thr	Phe	Ile	Tyr 1435		Asp	Pro	Gly	Ser 1440	Tyr	Leu	Val
Thr	Val 1445	Thr	Ala	Ser	Asn	Asn 1450	Ile	Ser	Ala	Ala	Asn 1455	Asp	Ser	Ala
Leu	Val 1460	Glu	Val	Gln	Glu	Pro 1465	Val	Leu	Val	Thr	Ser 1470	Ile	ГЛЗ	Val
Asn	Gly 1475		Leu	Gly	Leu	Glu 1480	Leu	Gln	Gln	Pro	Tyr 1485	Leu	Phe	Ser
Ala	Val 1490	Gly	Arg	Gly	Arg	Pro 1495	Ala	Ser	Tyr	Leu	Trp 1500	qaA	Leu	Gly
Asp	Gly 1505	Gly	Trp	Leu	Glu	Gly 1510	Pro	Glu	Val	Thr	Hìs 1515	Ala	Tyr	Asn
Ser	Thr 1520	Gly	Asp	Phe	Thr	Val 1525	Arg	Val	Ala	Gly	Trp 1530	Asn	Glu	Val
Ser	Arg 1535	Ser	Glu	Ala		Leu 1540	Asn	Val	Thr	Val	Lys 1545	Arg	Arg	Val
Arg	Gly 1550	Leu	Val	Val	Asn	Ala 1555	Ser	Arg	Thr	Val	Val 1560	Pro	Leu	Asn
Gly	Ser 1565	Val	Ser	Phe	Ser	Thr 1570	Ser	Leu	Glu	Ala	Gly 1575	Ser	Asp	Val
Arg	Tyr 1580	Ser	Trp	Val	Leu	Cys 1585	Asp	Arg	Cys	Thr	Pro 1590	Ile	Pro	Gly
Gly	Pro 1595	Thr	Ile	Ser	Tyr	Thr 1600	Phe	Arg	Ser	Val	Gly 1605	Thr	Phe	Asn
Ile	Ile 1610	Val	Thr	Ala	Glu	Asn 1615	Glu	Val	Gly	Ser	Ala 1620	Gln	Asp	Ser
Ile	Phe 1625	Val	Tyr	Val	Leu	Gln 1630	Leu	Ile	Glu	Gly	Leu 1635	Gln	Val	Val

Gly	Gly 1640		Arg	Tyr	Phe	Pro 1645		Asn	His	Thr	Val 1650	Gln	Leu	Gln
Ala	Val 1655	Val	Arg	Asp	Gly	Thr 1660		Val	Ser	Tyr	Ser 1665		Thr	Ala
Trp	Arg 1670	Asp	Arg	Gly	Pro	Ala 1675	Leu	Ala	Gly	Ser	Gly 1680	Гув	Gly	Phe
Ser	Leu 1685	Thr	Val	Leu	Glu	Ala 1690	_	Thr	Tyr	His	Val 1695		Leu	Arg
Ala	Thr 1700	Asn	Met	Leu	Gly	Ser 1705	Ala	Trp	Ala	Asp	Cys 1710	Thr	Met	Asp
Phe	Val 1715	Glu	Pro	Val	Gly	Trp 1720	Leu	Met	Val	Ala	Ala 1725		Pro	Asn
Pro	Ala 1730	Ala	Val	Asn		Ser 1735	Val	Thr	Leu	Ser	Ala 1740	Glu	Leu	Ala
Gly	Gly 1745	Ser	Gly	Val	Val	Tyr 1750	Thr	Trp	Ser	Leu	Glu 1755	Glu	Gly	Leu
Ser	Trp 1760	Glu	Thr	Ser		Pro 1765	Phe	Thr	Thr	His	Ser 1770	Phe	Pro	Thr
Pro	Gly 1775	Leu	His	Leu	Val	Thr 1780	Met	Thr	Ala	Gly	Asn 1785	Pro	Leu	Gly
Ser	Ala 1790	Asn	Ala	Thr	Val	Glu 1795	Val	Asp	Val		Val 1800	Pro	Val	Ser
Gly	Leu 1805	Ser	Ile	Arg	Ala	Ser 1810	Glu	Pro	Gly	Gly	Ser 1815	Phe	Val	Ala
Ala	Gly 1820	Ser	Ser	Val		Phe 1825	Trp	Gly	Gln		Ala 1830	Thr	Gly	Thr
Asn	Val 1835	Ser	Trp	Cys	Trp	Ala 1840	Val	Pro	Gly	Gly	Ser 1845	Ser	Lys	Arg
Gly	Pro 1850	His	Val	Thr	Met	Val 1855	Phe	Pro	Asp	Ala	Gly 1860	Thr	Phe	Ser
Ile	Arg 1865	Leu	Asn	Ala	Ser	Asn 1870	Ala	Val	Ser	Trp	Val 1875	Ser	Ala	Thr
Tyr	Asn 1880	Leu	Thr	Ala	Glu	Glu 1885	Pro	Ile	Val	Gly	Leu 1890	Val	Leu	Trp
Ala	Ser 1895	Ser	Lys	Val	Val	Ala 1900	Pro	Gly	Gln	Leu	Val 1905	His	Phe	Gln
Ile	Leu 1910	Leu	Ala	Ala	Gly	Ser 1915	Ala	Val	Thr	Phe	Arg 1920	Leu	Gln	Val
Gly	Gly 1925	Ala	Asn	Pro	Glu	Val 1930	Leu	Pro	Gly	Pro	Arg 1935	Phe	Ser	His
Ser	Phe	Pro	Arg	Val	Gly	Asp	His	Val	Val	Ser	Val	Arg	Gly	Lys

1940 1945 1950 Asn His Val Ser Trp Ala Gln Ala Gln Val Arg Ile Val Val Leu 1955 1960 Glu Ala Val Ser Gly Leu Gln Val Pro Asn Cys Cys Glu Pro Gly Ile Ala Thr Gly Thr Glu Arg Asn Phe Thr Ala Arg Val Gln Arg Gly Ser Arg Val Ala Tyr Ala Trp Tyr Phe Ser Leu Gln Lys Val 2000 2005 2010 Gln Gly Asp Ser Leu Val Ile Leu Ser Gly Arg Asp Val Thr Tyr Thr Pro Val Ala Ala Gly Leu Leu Glu Ile Gln Val Arg Ala Phe 2030 2035 Asn Ala Leu Gly Ser Glu Asn Arg Thr Leu Val Leu Glu Val Gln 2050 Asp Ala Val Gln Tyr Val Ala Leu Gln Ser Gly Pro Cys Phe Thr 2065 Asn Arg Ser Ala Gln Phe Glu Ala Ala Thr Ser Pro Ser Pro Arg 2080 Arg Val Ala Tyr His Trp Asp Phe Gly Asp Gly Ser Pro Gly Gln 2095 Asp Thr Asp Glu Pro Arg Ala Glu His Ser Tyr Leu Arg Pro Gly 2105 2110 Asp Tyr Arg Val Gln Val Asn Ala Ser Asn Leu Val Ser Phe Phe 2125 Val Ala Gln Ala Thr Val Thr Val Gln Val Leu Ala Cys Arg Glu 2135 2140 2145 Pro Glu Val Asp Val Val Leu Pro Leu Gln Val Leu Met Arg Arg Ser Gln Arg Asn Tyr Leu Glu Ala His Val Asp Leu Arg Asp Cys Val Thr Tyr Gln Thr Glu Tyr Arg Trp Glu Val Tyr Arg Thr Ala 2180 2185 2190 Ser Cys Gln Arg Pro Gly Arg Pro Ala Arg Val Ala Leu Pro Gly 2200 Val Asp Val Ser Arg Pro Arg Leu Val Leu Pro Arg Leu Ala Leu 2210 2215 Pro Val Gly His Tyr Cys Phe Val Phe Val Val Ser Phe Gly Asp 2230 Thr Pro Leu Thr Gln Ser Ile Gln Ala Asn Val Thr Val Ala Pro 2245 2240

Glu	Arg 2255	Leu	Val	Pro	Ile	Ile 2260	Glu	Gly	Gly	Ser	Tyr 2265	Arg	Val	Trp
Ser	Asp 2270	Thr	Arg	Asp	Leu	Val 2275	Leu	Asp	Gly	Ser	Glu 2280	Ser	Tyr	Asp
Pro	Asn 2285	Leu	Glu	Asp	Gly	Asp 2290	Gln	Thr	Pro	Leu	Ser 2295	Phe	His	Trp
Ala	Cys 2300		Ala	Ser	Thr	Gln 2305	Arg	Glu	Ala	Gly	Gly 2310	Сув	Ala	Leu
Asn	Phe 2315	Gly	Pro	Arg	Gly	Ser 2320	Ser	Thr	Val	Thr	Ile 2325	Pro	Arg	Glu
Arg	Leu 2330	Ala	Ala	Gly	Val	Glu 2335	Tyr	Thr	Phe	Ser	Leu 2340	Thr	Val	Trp
Lys	Ala 2345	Gly	Arg	Lys	Glu	Glu 2350		Thr	Asn	Gln	Thr 2355	Val	Leu	Ile
Arg	Ser 2360	Gly	Arg	Val	Pro	Ile 2365	Val	Ser	Leu	Glu	Cys 2370	Val	Ser	Cys
Lys	Ala 2375	Gln	Ala	Val	Tyr	Glu 2380	Val	Ser	Arg	Ser	Ser 2385	Tyr	Val	Tyr
Leu	Glu 2390	Gly	Arg	Сув	Leu	Asn 2395		Ser	Ser	Gly	Ser 2400	Lys	Arg	Gly
Arg	Trp 2405	Ala	Ala	Arg	Thr	Phe 2410	Ser	Asn	Lys	Thr	Leu 2415	Val	Leu	Asp
	2405										2415			
Glu	2405 Thr 2420	Thr	Thr	Ser	Thr	2410 Gly	Ser Gly	Ala	Gly	Met	2415 Arg 2430	Leu	Val	Leu
Glu Arg	2405 Thr 2420 Arg 2435	Thr	Thr Val	Ser Leu	Thr Arg	2410 Gly 2425 Asp	Ser	Ala Glu	Gly	Met Tyr	2415 Arg 2430 Thr 2445	Leu Phe	Val Thr	Leu Leu
Glu Arg Thr	2405 Thr 2420 Arg 2435 Val 2450	Thr Gly Leu Ser	Thr Val Gly	Ser Leu Arg	Thr Arg Ser	Gly 2425 Asp 2440 Gly	Ser Gly Glu Pro	Ala Glu Glu	Gly Gly Glu	Met Tyr Gly	2415 Arg 2430 Thr 2445 Cys 2460	Leu Phe Ala	Val Thr Ser	Leu Leu Ile
Glu Arg Thr	2405 Thr 2420 Arg 2435 Val 2450 Leu 2465	Thr Gly Leu Ser	Thr Val Gly Pro	Ser Leu Arg Asn	Thr Arg Ser	2410 Gly 2425 Asp 2440 Gly 2455 Pro	Ser Gly Glu Pro	Ala Glu Glu Leu	Gly Gly Glu	Met Tyr Gly Gly	2415 Arg 2430 Thr 2445 Cys 2460 Ser 2475	Leu Phe Ala Cys	Val Thr Ser Arg	Leu Leu Ile Leu
Glu Arg Thr Arg	2405 Thr 2420 Arg 2435 Val 2450 Leu 2465 Pro 2480	Thr Gly Leu Ser Leu Thr	Thr Val Gly Pro	Ser Leu Arg Asn	Thr Arg Ser Arg	2410 Gly 2425 Asp 2440 Gly 2455 Pro 2470 His	Ser Gly Glu Pro Ala Ala	Ala Glu Glu Leu	Gly Glu Gly Thr	Met Tyr Gly Gly	2415 Arg 2430 Thr 2445 Cys 2460 Ser 2475 Lys 2490	Leu Phe Ala Cys Val	Val Thr Ser Arg	Leu Leu Ile Leu
Glu Arg Thr Arg Phe	2405 Thr 2420 Arg 2435 Val 2450 Leu 2465 Pro 2480 Cys 2495	Thr Gly Leu Ser Leu Thr	Thr Val Gly Pro Gly	Ser Leu Arg Asn Ala	Thr Arg Ser Arg Val	2410 Gly 2425 Asp 2440 Gly 2455 Pro 2470 His 2485	Ser Gly Glu Pro Ala Ala	Ala Glu Glu Leu Glu	Gly Glu Gly Thr	Met Tyr Gly Thr	2415 Arg 2430 Thr 2445 Cys 2460 Ser 2475 Lys 2490 Gly 2505	Leu Phe Ala Cys Val Ala His	Val Thr Ser Arg His	Leu Leu Leu Phe Leu
Glu Arg Thr Arg Phe Glu Val	2405 Thr 2420 Arg 2435 Val 2450 Leu 2465 Pro 2480 Cys 2495 Tyr 2510	Thr Gly Leu Ser Leu Thr	Thr Val Gly Pro Gly Gly Leu	Ser Leu Arg Asn Ala Trp	Thr Arg Ser Arg Val His	2410 Gly 2425 Asp 2440 Gly 2455 Pro 2470 His 2485 Asp 2500	Ser Gly Glu Pro Ala Ala Arg	Ala Glu Glu Leu Glu Cys	Gly Glu Gly Thr Asp	Met Tyr Gly Thr Ala	2415 Arg 2430 Thr 2445 Cys 2460 Ser 2475 Lys 2490 Gly 2505 Gly 2520	Leu Phe Ala Cys Val Ala His	Val Thr Ser Arg His Pro	Leu Leu Leu Phe Leu Glu

Val	Val 2555		Asp	Gln	Leu	Gly 2560		Ala	Val	Val	Ala 2565	Leu	Asn	Arg
Ser	Leu 2570	Ala	Ile	Thr	Leu	Pro 2575		Pro	Asn	Gly	Ser 2580	Ala	Thr	Gly
Leu	Thr 2585	Val	Trp	Leu	His	Gly 2590	Leu	Thr	Ala	Ser	Val 2595	Leu	Pro	Gly
Leu	Leu 2600	Arg	Gln	Ala	Asp	Pro 2605		His	Val	Ile	Glu 2610	Tyr	Ser	Leu
Ala	Leu 2615	Val	Thr	Val	Leu	Asn 2620	Glu	Tyr	Glu	Arg	Ala 2625	Leu	Asp	Val
Ala	Ala 2630	Glu	Pro	Lys	His	Glu 2635	Arg	Gln	His	Arg	Ala 2640	Gln	Ile	Arg
Lys	Asn 2645	Ile	Thr	Glu	Thr	Leu 2650		Ser	Leu	Arg	Val 2655	His	Thr	Val
Asp	Asp 2660	Ile	Gln	Gln	Ile	Ala 2665	Ala	Ala	Leu	Ala	Gln 2670	Cys	Met	Gly
Pro	Ser 2675	Arg	Glu	Leu	Val	Cys 2680	Arg	Ser	Cys	Leu	Lys 2685	Gln	Thr	Leu
His	Lys 2690	Leu	Glu	Ala	Met	Met 2695	Leu	Ile	Leu	Gln	Ala 2700	Glu	Thr	Thr
Ala	Gly 2705	Thr	Val	Thr	Pro	Thr 2710	Ala	Ile	Gly	Asp	Ser 2715	Ile	Leu	Asn
Ile	Thr 2720	Gly	Asp	Leu	Ile	His 2725	Leu	Ala	Ser	Ser	Asp 2730	Val	Arg	Ala
Pro	Gln 2735	Pro	Ser	Glu	Leu	Gly 2740	Ala	Glu	Ser	Pro	Ser 2745	Arg	Met	Val
Ala	Ser 2750	Gln	Ala	Tyr	Asn	Leu 2755	Thr	Ser	Ala	Leu	Met 2760	Arg	Ile	Leu
Met	Arg 2765	Ser	Arg	Val	Leu	Asn 2770	Glu	Glu	Pro	Leu	Thr 2775	Leu	Ala	Gly
Glu	Glu 2780	Ile	Val	Ala	Gln	Gly 2785	Lys	Arg	Ser	Asp	Pro 2790	Arg	Ser	Leu
Leu	Cys 2795	Tyr	Gly	Gly	Ala	Pro 2800	Gly	Pro	Gly	Cys	His 2805	Phe	Ser	Ile
Pro	Glu 2810	Ala	Phe	Ser	Gly	Ala 2815	Leu	Ala	Asn	Leu	Ser 2820	Asp	Val	Val
Gln	Leu 2825	Ile	Phe	Leu	Val	Asp 2830	Ser	Asn	Pro	Phe	Pro 2835	Phe	Gly	Tyr
Ile	Ser 2840	Asn	Tyr	Thr	Val	Ser 2845	Thr	Lys	Val	Ala	Ser 2850	Met	Ala	Phe
Gln	Thr	Gln	Ala	Gly	Ala	Gln	Ile	Pro	Ile	Glu	Arg	Leu	Ala	Ser

									70					
	2855					2860					2865			
Glu	Arg 2870		Ile	Thr	Val	Lys 2875		Pro	Asn	Asn	Ser 2880		Trp	Ala
Ala	Arg 2885	Gly	His	Arg	Ser	Ser 2890		Asn	Ser	Ala	Asn 2895	Ser	Val	Val
Val	Gln 2900	Pro	Gln	Ala	Ser	Val 2905		Ala	Val	Val	Thr 2910	Leu	Asp	Ser
Ser	Asn 2915	Pro	Ala	Ala	Gly	Leu 2920		Leu	Gln	Leu	Asn 2925		Thr	Leu
Leu	Asp 2930		His	Tyr	Leu	Ser 2935		Glu	Pro	Glu	Pro 2940		Leu	Ala
Val	Tyr 2945	Leu	His	Ser	Glu	Pro 2950	Arg	Pro	Asn	Glu	Hìs 2955	Asn	Cys	Ser
Ala	Ser 2960	Arg	Arg	Ile	Arg	Pro 2965	Glu	Ser	Leu	Gln	Gly 2970	Ala	Asp	His
Arg	Pro 2975	Tyr	Thr	Phe	Phe	Ile 2980	Ser	Pro	Gly	Ser	Arg 2985	Asp	Pro	Ala
Gly	Ser 2990	Tyr	His	Leu	Asn	Leu 2995	Ser	Ser	His	Phe	Arg 3000	Trp	Ser	Ala
Leu	Gln 3005	Val	Ser	Val	Gly	Leu 3010	Tyr	Thr	Ser	Leu	Cys 3015	Gln	Tyr	Phe
Ser	Glu 3020	Glu	Asp	Met	Val	Trp 3025	Arg	Thr	Glu	Gly	Leu 3030	Leu	Pro	Leu
Glu	Glu 3035	Thr	Ser	Pro	Arg	Gln 3040	Ala	Val	Суз	Leu	Thr 3045	Arg	His	Leu
Thr	Ala 3050	Phe	Gly	Ala	Ser	Leu 3055	Phe	Val	Pro	Pro	Ser 3060	His	Val	Arg
Phe	Val 3065	Phe	Pro	Glu	Pro	Thr 3070	Ala	Asp	Val	Asn	Tyr 3075	Ile	Val	Met
Leu	Thr 3080	Cys	Ala	Val	Сув	Leu 3085	Val	Thr	Tyr	Met	Val 3090	Met	Ala	Ala
Ile	Leu 3095	His	Lys	Leu	Asp	Gln 3100	Leu	Asp	Ala	Ser	Arg 3105	Gly	Arg	Ala
Ile	Pro 3110	Phe	аұЭ	Gly	Gln	Arg 3115	Gly	Arg	Phe	Lys	Tyr 3120	Glu	Ile	Leu
Val	Lys 3125	Thr	Gly	Trp	Gly	Arg 3130	Gly	Ser	Gly	Thr	Thr 3135	Ala	His	Val
Gly	Ile 3140	Met	Leu	Tyr	Gly	Val 3145	qaA	Ser	Arg	Ser	Gly 3150	His	Arg	His
Leu	Asp 3155	Gly	Asp	Arg	Ala	Phe 3160	His	Arg	Asn	Ser	Leu 3165	qaA	Ile	Phe

Arg	Ile 3170		Thr	Pro	His	Ser 3175		Gly	Ser	Val	Trp 3180		Ile	Arg
Val	Trp 3185	His	Asp	Asn	Lys	Gly 3190		Ser	Pro	Ala	Trp 3195		Leu	Gln
His	Val 3200	Ile	Val	Arg	Asp	Leu 3205		Thr	Ala	Arg	Ser 3210		Phe	Phe
Leu	Val 3215	Asn	Asp	Trp	Leu	Ser 3220		Glu	Thr	Glu	Ala 3225		Gly	Gly
Leu	Val 3230	Glu	Lys	Glu	Val	Leu 3235		Ala	Ser	Asp	Ala 3240		Leu	Leu
Arg	Phe 3245	Arg	Arg	Leu	Leu	Val 3250	Ala	Glu	Leu	Gln	Arg 3255	Gly	Phe	Phe
Asp	Lys 3260	His	Ile	Trp	Leu	Ser 3265	Ile	Trp	Asp	Arg	Pro 3270	Pro	Arg	Ser
Arg	Phe 3275	Thr	Arg	Ile	Gln	Arg 3280	Ala	Thr	Cys	Cys	Val 3285	Leu	Leu	Ile
Cys	Leu 3290	Phe	Leu	Gly	Ala	Asn 3295	Ala	Val	Trp	Tyr	Gly 3300	Ala	Val	Gly
Asp	Ser 3305	Ala	Tyr	Ser	Thr	Gly 3310	His	Val	Ser	Arg	Leu 3315	Ser	Pro	Leu
Cox	Val) en	Thr	Val	בות	Val	Glv	T. A 11	Val	Ser	Ser	V=1	Val	Val
261	3320	Asp	1111	vai	ALG	3325	4 47	neu	val	-	3330	Vai	Vai	•
	3320	_				3325	_							
Tyr	3320 Pro 3335	Val	Tyr	Leu	Ala	3325 Ile 3340	Leu	Phe	Leu	Phe	3330 Arg	Met	Ser	Arg
Tyr Ser	3320 Pro 3335 Lys 3350	Val Val	Tyr Ala	Leu Gly	Ala Ser	3325 Ile 3340 Pro 3355	Leu Ser	Phe Pro	Leu Thr	Phe Pro	3330 Arg 3345 Ala	Met Gly	Ser Gln	Arg Gln
Tyr Ser Val	3320 Pro 3335 Lys 3350 Leu 3365	Val Val Asp	Tyr Ala Ile	Leu Gly Asp	Ala Ser Ser	3325 Ile 3340 Pro 3355 Cys 3370	Leu Ser Leu	Phe Pro Asp	Leu Thr Ser	Phe Pro Ser	3330 Arg 3345 Ala 3360 Val	Met Gly Leu	Ser Gln Asp	Arg Gln Ser
Tyr Ser Val Ser	3320 Pro 3335 Lys 3350 Leu 3365 Phe 3380	Val Val Asp	Tyr Ala Ile Thr	Leu Gly Asp Phe	Ala Ser Ser	3325 Ile 3340 Pro 3355 Cys 3370 Gly 3385	Leu Ser Leu	Phe Pro Asp	Leu Thr Ser Ala	Phe Pro Ser Glu	3330 Arg 3345 Ala 3360 Val 3375 Gln	Met Gly Leu Ala	Ser Gln Asp	Arg Gln Ser Val
Tyr Ser Val Ser	3320 Pro 3335 Lys 3350 Leu 3365 Phe 3380 Gln 3395	Val Val Asp Leu Met	Tyr Ala Ile Thr	Leu Gly Asp Phe Ser	Ala Ser Ser Ser	3325 Ile 3340 Pro 3355 Cys 3370 Gly 3385 Leu 3400	Leu Ser Leu Leu	Phe Pro Asp His	Leu Thr Ser Ala Asp	Phe Pro Ser Glu Asp	3330 Arg 3345 Ala 3360 Val 3375 Gln 3390 Ser	Met Gly Leu Ala Lys	Ser Gln Asp Phe Ser	Arg Gln Ser Val Leu
Tyr Ser Val Ser Gly	3320 Pro 3335 Lys 3350 Leu 3365 Phe 3380 Gln 3395 Cys 3410	Val Val Asp Leu Met	Tyr Ala Ile Thr Lys	Leu Gly Asp Phe Ser	Ala Ser Ser Ser	3325 Ile 3340 Pro 3355 Cys 3370 Gly 3385 Leu 3400 Glu 3415	Leu Ser Leu Leu Phe	Phe Pro Asp His Leu	Leu Thr Ser Ala Asp	Phe Pro Ser Glu Asp	3330 Arg 3345 Ala 3360 Val 3375 Gln 3390 Ser 3405	Met Gly Leu Ala Lys	Ser Gln Asp Phe Ser	Arg Gln Ser Val Leu
Tyr Ser Val Ser Gly Val Leu	3320 Pro 3335 Lys 3350 Leu 3365 Phe 3380 Gln 3395 Cys 3410 Ser 3425	Val Val Asp Leu Met Trp Asp	Tyr Ala Ile Thr Lys Pro	Leu Gly Asp Phe Ser Ser	Ala Ser Ser Ser Asp Gly	3325 Ile 3340 Pro 3355 Cys 3370 Gly 3385 Leu 3400 Glu 3415 Val	Leu Ser Leu Leu Gly Gly	Phe Pro Asp His Leu Thr	Leu Thr Ser Ala Asp Leu Asn	Phe Pro Ser Glu Asp Ser	3330 Arg 3345 Ala 3360 Val 3375 Gln 3390 Ser 3405 Trp 3420 Arg	Met Gly Leu Ala Lys Pro Gln	Ser Gln Asp Phe Ser Asp	Arg Gln Ser Val Leu Leu Ala

Asp	Glu 3470		Leu	Ile	Gln	Gln 3475		Leu	Ala	Glu	Gly 3480	Val	Ser	Ser
Pro	Ala 3485		Thr	Gln	Asp	Thr 3490		Met	Glu	Thr	Asp 3495		Leu	Ser
Ser	Leu 3500		Ser	Thr	Pro	Gly 3505		Lys	Thr	Glu	Thr 3510	Leu	Ala	Leu
Glr	Arg 3515		Gly	Glu	Leu	Gly 3520		Pro	Ser	Pro	Gly 3525		Asn	Trp
Glu	Gln 3530	Pro	Gln	Ala	Ala	Arg 3535	Leu	Ser	Arg	Thr	Gly 3540	Leu	Val	Glu
Gly	Leu 3545		Lys	Arg	Leu	Leu 3550		Ala	Trp	Cys	Ala 3555		Leu	Ala
His	Gly 3560		Ser	Leu		Leu 3565		Ala	Val	Ala	Val 3570	Ala	Val	Ser
Gly	Trp 3575		Gly	Ala	Ser	Phe 3580		Pro	Gly	Val	Ser 3585	Val	Ala	Trp
Leu	Leu 3590	Ser	Ser	Ser		Ser 3595		Leu	Ala		Phe 3600	Leu	Gly	Trp
Glu	Pro 3605	Leu	Lys	Val	Leu	Leu 3610	Glu	Ala	Leu	Tyr	Phe 3615	Ser	Leu	Val
Ala	Lys 3620		Leu	His	Pro	Asp 3625		Asp	Asp		Leu 3630	Val	Glu	Ser
Pro	Ala 3635	Val	Thr	Pro	Val	Ser 3640	Ala	Arg	Val	Pro	Arg 3645	Val	Arg	Pro
Pro	His 3650	Gly	Phe	Ala		Phe 3655		Ala	Lys		Glu 3660	Ala	Arg	Lys
Val	Lys 3665	Arg	Leu	His	Gly	Met 3670	Leu	Arg	Ser	Leu	Leu 3675	Val	Tyr	Met
Leu	Phe 3680	Leu	Leu	Val	Thr	Leu 3685		Ala		Tyr	Gly 3690	Asp	Ala	Ser
Cys	His 3695	Gly	His	Ala	Tyr	Arg 3700	Leu	Gln	Ser	Ala	Ile 3705	Lys	Gln	Glu
Leu	His 3710	Ser	Arg	Ala	Phe	Leu 3715	Ala	Ile	Thr	Arg	Ser 3720	Glu	Glu	Leu
Trp	Pro 3725	Trp	Met	Ala	His	Val 3730	Leu	Leu	Pro	Tyr	Val 3735	His	Gly	Asn
Gln	Ser 3740	Ser	Pro	Glu	Leu	Gly 3745	Pro	Pro	Arg	Leu	Arg 3750	Gln	Val	Arg
Leu	Gln 3755	Glu	Ala	Leu	Tyr	Pro 3760	Asp	Pro	Pro	Gly	Pro 3765	Arg	Val	His
Thr	Cys	Ser	Ala	Ala	Gly	Gly	Phe	Ser	Thr	Ser	Asp	Tyr	Asp	Val

	3770					3775					3780			
Gly	Trp 3785		Ser	Pro	His	Asn 3790		Ser	Gly	Thr	Trp 3795		Tyr	Ser
Ala	Pro 3800	Asp	Leu	Leu	Gly	Ala 3805		Ser	Trp	Gly	Ser 3810	Сла	Ala	Val
Tyr	Asp 3815		Gly	Gly	Tyr	Val 3820		Glu	Leu	Gly	Leu 3825		Leu	Glu
Glu	Ser 3830	Arg	Asp	Arg	Leu	Arg 3835	Phe	Leu	Gln	Leu	His 3840	Asn	Trp	Leu
Asp	Asn 3845	Arg	Ser	Arg	Ala	Val 3850		Leu	Glu	Leu	Thr 3855	_	Tyr	Ser
Pro	Ala 3860	Val	σlу	Ъеџ	Нія	Ala 3865		Val	Thr	Leu	Arg 3870	Leu	Glu	Phe
Pro	Ala 3875	Ala	Gly	Arg	Ala	Leu 3880	Ala	Ala	Leu	Ser	Val 3885	Arg	Pro	Phe
Ala	Leu 3890	Arg	Arg	Leu	Ser	Ala 3895	_	Leu	Ser	Leu	Pro 3900	Leu	Leu	Thr
Ser	Val 3905	Сув	Leu	Leu	Leu	Phe 3910	Ala	Val	His	Phe	Ala 3915		Ala	Glu
Ala	Arg 3920	Thr	Trp	His	Arg	Glu 3925	_	Arg	Trp	Arg	Val 3930	Leu	Arg	Leu
Gly	Ala 3935	Trp	Ala	Arg	Trp	Leu 3940	Leu	Val	Ala	Leu	Thr 3945	Ala	Ala	Thr
Ala	Leu 3950	Val	Arg	Leu	Ala	Gln 3955	Leu	Gly	Ala	Ala	Asp 3960	Arg	Gln	Trp
Thr	Arg 3965	Phe	Val	Arg	Gly	Arg 3970	Pro	Arg	Arg	Phe	Thr 3975	Ser	Phe	Asp
Gln	Val 3980	Ala	His	Val	Ser	Ser 3985	Ala	Ala	Arg	Gly	Leu 3990	Ala	Ala	Ser
Leu	Leu 3995	Phe	Leu	Leu	Leu	Val 4000	ГÀа	Ala	Ala	Gln	His 4005	Val	Arg	Phe
Val	Arg 4010	Gln	Trp	Ser	Val	Phe 4015	Gly	Lys	Thr	Leu	Сув 4020	Arg	Ala	Leu
Pro	Glu 4025	Leu	Leu	Gly	Val	Thr 4030	Leu	Gly	Leu	Val	Val 4035	Leu	Gly	Val
Ala	Tyr 4040	Ala	Gln	Leu	Ala	Ile 4045	Leu	Leu	Val	Ser	Ser 4050	Cys	Val	Asp
Ser	Leu 4055	Trp	Ser	Val	Ala	Gln 4060	Ala	Leu	Leu	Val	Leu 4065	Cys	Pro	Gly
Thr	Gly 4070	Leu	Ser	Thr	Leu	Cys 4075	Pro	Ala	Glu	Ser	Trp 4080	His	Leu	Ser

44

Pro	Leu 4085	Leu	Cys	Val	Gly	Leu 4090		Ala	Leu	Arg	Leu 4095	Trp	Gly	Ala
Leu	Arg 4100	Leu	Gly	Ala		Ile 4105	Leu	Arg	Trp	Arg	Tyr 4110	His	Ala	Leu
Arg	Gly 4115	Glu	Leu	Tyr	Arg	Pro 4120		Trp	Glu	Pro	Gln 4125	Asp	Tyr	Glu
Met	Val 4130	Glu	Leu	Phe	Leu	Arg 4135	Arg	Leu	Arg	Leu	Trp 4140	Met	Gly	Leu
Ser	Lys 4145	Val	Lys	Glu	Phe	Arg 4150	His	Lys	Val	Arg	Phe 4155	Glu	Gly	Met
Glu	Pro 4160	Leu	Pro	Ser		Ser 4165	Ser	Arg	Gly	Ser	Lys 4170	Val	Ser	Pro
Asp	Val 4175	Pro	Pro	Pro	Ser	Ala 4180	Gly	Ser	Asp	Ala	Ser 4185	His	Pro	Ser
Thr	Ser 4190	Ser	Ser	Gln	Leu	Asp 4195	_	Leu	Ser		Ser 4200	Leu	Gly	Arg
Leu	Gly 4205	Thr	Arg	Cys	Glu	Pro 4210	Glu	Pro	Ser	Arg	Leu 4215	Gln	Ala	Val
Phe	Glu 4220	Ala	Leu	Leu		Gln 4225		Asp	Arg		Asn 4230	Gln	Ala	Thr
Glu	Asp 4235	Val	Tyr	Gln	Leu	Glu 4240	Gln	Gln	Leu	His	Ser 4245	Leu	Gln	Gly
Arg	Arg 4250	Ser	Ser	Arg	Ala	Pro 4255	Ala	Gly	Ser	Ser	Arg 4260	Gly	Pro	Ser
Pro	Gly 4265	Leu	Arg	Pro	Ala	Leu 4270	Pro	Ser	Arg	Leu	Ala 4275	Arg	Ala	Ser
Arg	Gly 4280	Val	Asp	Leu	Ala	Thr 4285	Gly	Pro	Ser	Arg	Thr 4290	Pro	Leu	Arg
Ala	Lys 4295	Asn	Lys	Val	His	Pro 4300	Ser	Ser	Thr					
<210 <211		9												
<212	2> D1	ΙA	icial	Lsec	quenc	ce								
<220					1									
<223		CR pi	rimen	BPI	714									
<400)> 3													

29

<210> 4 <211> 26 <212> DNA

ccatccacct gctgtgtgac ctggtaaat

<213> Artificial sequence

<220>		
<223>	PCR primer F13	
<400>	9	
tggagg	ggagg gacgccaatc	20
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer R27	
<400>		
gtcaac	gtgg gcctccaagt	20
.010	••	
<210>		
<211> <212>		
<213>	Artificial sequence	
<220>		
	PCR primer F26	
(223)	FCR PIIMEL 126	
<400>	11	
	acta cttggaggcc c	21
ugegeu	acca cceggaggee c	21
<210>	12	
<211>		
<212>	DNA	
	Artificial sequence	
	•	
<220>		
<223>	PCR primer R2	
<400>	12	
gcaggg	tgag caggtggggc catcctac	28
<210>	13	
<211>	26	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer BPF15	
	42	
<400>	13	
gagger	gtgg gggtccagtc aagtgg	26
<210>	14	
<210>	25	
<212>		
	Artificial sequence	
	· · · · · · · · · · · · · · · · · · ·	

WO 02/06529	47	PCT/US01/22035
<220>		
<223> PCR primer BPR12		
<400> 14		
aggaggcag aggaaagggc cgaac		25
-ssauggong nggananggge egane		23
<210> 15		
<211> 24		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer BPF6		
(223) FCR PLIMEL BPF6		
<400> 15		
ccccgtcctc cccgtccttt tgtc		24
<210> 16		
<211> 21		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer BPR6		
TOR PERMOE BERG		
<400> 16		
aagcgcaaaa gggctgcgtc g		21
-210. 17		
<210> 17 <211> 22		
<211> 22 <212> DNA		
<213> Artificial sequence		
dispersion of the second secon		
<220>		
<223> PCR primer BPF13		
<400> 17		
ggccctccct gccttctagg cg		22
<210> 18		
<211> 21		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer KG8R25		
<400> 18		
<400> 18 gttgcagcca agcccatgtt a		2.5
geogeageea ageceaegee a		21
<210> 19		
<211> 19		
<212> DNA		
<213> Artificial sequence		
-220>		

<220> <223> PCR primer 1F1

<400> ggtcg	19 cgctg tggcgaagg	19
<220> <223>	PCR primer 1R1	
<400>	20 ggogg catcgt	16
-33-9	ggogg cacego	10
<210><211><211><212>	16	
<220> <223>	PCR primer 1F2	
<400>	21	
acggcg	ggggc catgcg	16
<210><211><211><212><213>	18	
<220>		
<223>	PCR primer 1R2	
<400>	22 etggc ccgcgtcc	18
3-3		10
<210><211><211><212><213>	20	
<220>		
<223>	PCR primer 2F	
<400> ttgggg	23 gatgc tggcaatgtg	20
<210><211><211>	DNA	
<213>	Artificial sequence	
<220> <223>	PCR primer 2R	

wo	02/06529		49	PCT/US01/22035
<400> gggatt	24 cggc aaagct	gatg		20
<210><211><211><212><213>	25 20 DNA Artificial	sequence		
<220> <223>	PCR primer	3F		
<400> ccatcag	25 gett tgeega	atcc		20
<210><211><212><212><213>	20	sequence		
<220> <223>	PCR primer	3R		
<400> agggcag	26 gaag ggatat	tggg		20
<210><211><211><212><213>	20	sequence		
<220> <223>	PCR primer	4F		
<400> agaccct	27 :tcc caccaga	acct		20
<210><211><211><212><213>		sequence		
<220> <223>	PCR primer	4R		
	28 tgc ccagtgt	tct		19
<211> <212>		sequence		
<220> <223>	PCR primer	5F1		
<400>	29			

WO 02/06529		50	PCT/US01/22035
gagccaggag gagcagaacc	С		21
<210> 30 <211> 21 <212> DNA <213> Artificial seq	uence		
<220> <223> PCR primer 5R1			
<400> 30 agagggacag gcaggcaaag	g		21
<210> 31 <211> 18 <212> DNA <213> Artificial seq	uence		
<220> <223> PCR primer 5F2			
<400> 31 cccagccctc cagtgcct			18
<210> 32 <211> 20 <212> DNA <213> Artificial seq	lence		
<220> <223> PCR primer 5R2			
<400> 32 cccaggcagc acatagcgat			20
<210> 33 <211> 18 <212> DNA <213> Artificial sequ	ience		
<220> <223> PCR primer 5F3			
<400> 33 ccgaggtgga tgccgctg			18
<210> 34 <211> 21 <212> DNA <213> Artificial seq	ience		
<220> <223> PCR primer 5R3			
<400> 34 gaaggggagt gggcagcaga	С		21

<210>	35	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
	•	
<220>		
<223>	PCR primer 6F	
<400>	35	
cactga	ccgt tgacaccctc g	21
•		
<210>	36	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
	*	
<220>		
<223>	PCR primer 6R	
	F	
<400>	36	
	agtg cttcagagat c	21
<210>	37	
<211>	19	
:212>	DNA	
(213>	Artificial sequence	
:220>		
223>	PCR primer 7F	
	TON PITMOT 11	
400>	37	
	cct gagccccct	19
,545,55	Jayooccc	יב
210>	38	
211>	19	
212>	DNA	
213>	Artificial sequence	
.213>	ATCITICIAL BEQUENCE	
(220>		
:223>	PCR primer 7R	
.2257	rek primer /k	
400>	38	
	acca cagccageg	19
ccccae	icea cagocageg	13
210>	39	
211>	21	
212>	DNA	
213>	Artificial sequence	
4137	ALCITICAUI BEQUENCE	
·220×		
:220> :223>	PCR primer 8F	
.443>	row brimer or	
:400>	39	
	egte etggtgteet g	21
.uuyuuC	and the second of the second o	21

<210> <211>		
<212> <213>	DNA Artificial sequence	
<220>		
<223>	PCR primer 8R	
<400> gcagga	40 gggc aggttgtaga a	21
5 35-	3530 #350030# #	2-
<210>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 9F	
<400>		
ggtagg	ggga gtetgggett	20
<210>	42	
<211>		
<212>		
<213>	Artificial sequence	
<220>	PGP maintain on	
<223>	PCR primer 9R	
	42	
gaggcc	accc cgagtcc	17
<210>	43	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>	P	
<223>	PCR primer 10F	
<400>	43	
grrggg	cate tetgaeggtg	20
<210>	44	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>	DOD mulman 10D	
<223>	PCR primer 10R	
<400>	44 eggc ctgaggagat	20
ggaaggi	-33343345	20

wo	02/06529	53	PCT/US01/22035
<210><211><212>	17		
	Artificial sequence		
<220> <223>	PCR primer 11F2		
<400> ggggtc	45 Cacg ggccatg		17
<210>			
<211> <212>			
	Artificial sequence		
<220>			
	PCR primer 11R2		
	46		2.0
aageee	gca gcacggtgag		20
<210>			
<211>			
<212> <213>	DNA Artificial sequence		
<220>			
<223>	PCR primer 11midF		
	47		
gcttgca	gcc acggaac		17
<210>	48		
<211>			
<212> <213>	DNA Artificial sequence		
	-		
<220> <223>	PCR primer 11midR		
	48		
gcagtgo	tac cactgagaac		20
<210>			
<211> <212>			
	Artificial sequence		
<220>			
	PCR primer 11F1		
	49		•-
tgcccct	ggg agaccaacga tac		23

<210> 50

wo	02/06529	54	PCT/US01/22035
		54	
<211> <212>			
	Artificial sequence		
<220>			
<223>	PCR primer 11R1		
<400>			
ggctgc	tgcc ctcactggga ag		22
<210>			
<211> <212>			
	Artificial sequence		
<220>	PCR primer 12F		
<400>			
	acag gctaaggg		18
<210>	52		
<211>			
<212>			
<213>	Artificial sequence		
<220>	Du'ana fan DOD		
	Primer for PCR		
<400>	acgt gggeeteeaa gtagt		25
-5500	augu ggguuduu guugu		
<210>			
<211>			
<212>	Artificial sequence		·
<220>	.actional boquo.co		
	Forward nested primer F32		
<400>	53	•	
	cgca gcttggact		19
<210>			
<211> <212>			
<212> <213>			
<220>			
<223>	Second specific primer 31R		
<400>			
	tett gagtecaage		20
	J J -		
<210>			
<211>	30		

<220>

<223> PCR primer

30

30

25

```
<212> DNA
 <213> Artificial sequence
<220>
<223> PCR primer
<400> 55
ctggtgacct acatggtcat ggccgagatc
<210> 56
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 56
ggttgtctat cccgtctacc tggccctcct
<210> 57
<211> 25
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 57
gtccccagcc ccagcccacc tggcc
<210> 58
<211> 7
<212> PRT
<213> Homo sapiens
<400> 58
Trp Asp Phe Gly Asp Gly Ser
<210> 59
<211> 4
<212> PRT
<213> Homo sapiens
<400> 59
His Leu Thr Ala
<210> 60
<211> 27
<212> DNA
<213> Artificial sequence
```

wo	02/06529	56	PCT/US01/22035
<400>	60		
	tgag caggtggggc catccta		27
- 433			
<210>	61		
<211>			
<212>	DNA		
<213>	Artificial sequence		
<220>			
	PCR primer 12R-2		
<400>			19
catgaa	gcag agcagaagg		10
<210>			
<211>			
<212>	Artificial sequence		
(213)	Artificial sequence		
<220>			
<223>	PCR primer 13F		
<400>	62		
tggagg	gagg gacgccaatc		20
<210>	63		
<211>	19		
<212>			
<213>	Artificial sequence		
<220>			
<223>	PCR primer 13R		•
<400>	63		
	gggg ctgggacaa		19
533-			
<210>	54		
<211>			
<212>			
	Artificial sequence		
.2205			
<220>	PCR primer 14F		
(22)/	TOR PILMOL 141		
<400>			
cccggt	tcac tcactgcg		18
<210>	65		
<211>	20		
<212>	DNA Detificial common		
<213>	Artificial sequence		

<220> <223> PCR primer 14R

wo	02/06529	57	PCT/US01/22035
<400>	65		
	stcag ageetgaaag		20
<210>	66		
<211>			
<212>			
	Artificial sequence		
<220>			
<223>	PCR primer 15F16		
<400>	66		
cgggtg	ggga gcaggtgg		18
<210>	67		
<211>	21		
<212>	DNA		
<213>	Artificial sequence		
-0.00			
<220>	PCR primer 15R16		
4223 >	PCR primer iskie		
<400>	67		
gctctg	ggtc aggacagggg a		21
<210>	68		
<211>			
<212>			
<213>	Artificial sequence		
<220>			
	PCR primer 15F15		
	L		
<400>			
cgcctg	gggg tgttcttt		18
<210>	69		
<211>	18		
<212>			
<213>	Artificial sequence		
<220>			
<223>	PCR primer 15R15		
<400>	69		
	tgtt gtcgcccg		18
.010-	7.0		
<210>	70 18		
<211> <212>			
<212>			
1213 2	incinicati sequence		
<220>			
<223>	PCR primer 15F14		
	•		
<400>	70		

WO 02/06529	58	PCT/US01/22035
gccccgtgg tggtcagc		18
<210> 71		
<211> 18		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer 15R14		
TELOP TON PILMOT TONET		
<400> 71		
caggctgcgt ggggatgc		18
<210> 72		
<211> 18		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer 15F13		
.400 50		
<400> 72 ctggaggtgc tgcgcgtt		18
ceggaggege egegegee		10
<210> 73		
<211> 18		
<212> DNA <213> Artificial sequence		
and the state of t		
<220>		
<223> PCR primer 15R13		
<400> 73		
ctggctccac gcagatgc		18
<210> 74		
<211> 18		
<212> DNA		
<213> Artificial sequence		
<220> <223> PCR primer 15F12		
<223> PCR primer 15F12		
<400> 74		
cgtgaacagg gcgcatta		18
<210> 75		
<211> 21		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> PCR primer 15R12		
<400> 75 gcagcagaga tgttgttgga c		21
3-03-02-03-03-03-0		24

<210>	76	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15F11	
<400>	7.0	
	76 toot atottgtgad a	21
cagge	cocc accergegae a	2.
<210>	77	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R11	
.400	77	
<400>	77	21
gaagto	cacc tgtgctgttg t	21
<210>	78	
<211>	19	
<212>	DNA	
	Artificial sequence	
<220>		
:223>	PCR primer 15F10	
<400>	78	10
ctaccts	gtgg gatctgggg	19
<210>	79	
<211>	18	
	AWD	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R10	
(400>	79	18
gctgaa	aget cacgetee	Τ.α
<210>	80	
211>	20	
	DNA	
	Artificial sequence	
<220>		
<223>	PCR primer 15F9	
<400>	80	20
adactca	rtcq tcaatgcaag	20

<211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 15R9 <400> 81 20 caccacctgc agcccctcta <210> 82 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 15F8 <400> 82 ccgcccagga cagcatcttc 20 <210> 83 <211> 18 <212> DNA <213> Artificial sequence <220> <223> PCR primer 15R8 <400> 83 18 cgctgcccag catgttgg <210> 84 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 15F7 <400> 84 19 cggcaaaggc ttctcgctc <210> 85 <211> 20 <212> DNA <213> Artificial sequence

<220>
<223> PCR primer 15R7

<400> 85
ccgggtgtgg ggaagctatg 20

wo	02/06529	61	PCT/US01/22035
<210>	86		
<211>			
<212>			
	Artificial sequence		
<220>			
<223>	PCR primer 15F6		
<400>	86		
cgagc	attt accacccata g		21
-010	0.5		
<210>			
<212>			
	Artificial sequence		
	bodaciico		
<220>			
<223>	PCR primer 15R6		
	-		
<400>	87		
gcccac	cacc agctcacat		19
<210>			
<211> <212>			
	Artificial sequence		
(213/	Artificial sequence		
<220>			
<223>	PCR primer 15F5		
	-		
<400>	88		
ccacgg	gcac caatgtgag		19
<210> <211>	_ -		
<211>			
	Artificial sequence		
12137	interretar poducinos		
<220>			
<223>	PCR primer 15R5		
<400>			
ggcago	cagc aggatctgaa		20
401 As	90		
<210> <211>			
<211>			
	Artificial sequence		
<220>			
<223>	PCR pimer 15F4		
<400>			
cagcag	caag gtggtggc		18

<210> 91

wo	02/06529		62	PCT/US01/22035
<211>	18			
<212>	DNA			
	Artificial se	emience		
(213)	ALCILICIAL BO	equence		
<220>				
<223>	PCR primer 1	5R4		
<400>	91			10
gcgtagg	oga cccgagag			18
<210>	92			
<211>	21			
<212>	DNA			
	Artificial s	equence		
<220>				
	PCR primer 1	5F3		
<400>	92			
		++ 0		21
acgggc	actg agaggaac			
<210>	0.3			
<211>				
<212>		emience		
<213>	Artificial s	equence		
<220>				
<223>	PCR primer 1	5R3		
<400>	93			
	gtgc ggttctca	.ct.		20
uccugo	,c 5			
<210>	94			
<211>				
<212>				
	Artificial s	equence		
		•		
<220>	ngn 1	FB 2		
<223>	PCR primer 1	.512		
<400>	94			10
gccgcg	acgt cacctaca	ac .		19
<210>				
<211>				
<212>				
<213>	Artificial s	sequence		
<220>				
<223>	PCR primer 1	15R2		
	0.5			
<400>	95	-		18
reggee	ctgg gctcatct	-		_•

<210> 96 <211> 20

wo	02/06529	63	PCT/US01/22035
<212> <213>	DNA Artificial sequence		
<220> <223>	PCR primer 15F1		
<400> gtcgcc	96 aggg caggacacag		20
<210><211><211><212><213>	21		
<220> <223>	PCR primer 15F1-1		
<400> acttgg	97 ragge ceaegttgae e		21
<210><211><212><213>	19		
<220> <223>	PCR primer 15R1-1		
<400> tgatgg	98 gcac caggegete		19
<210><211><212><212><213>	21		
<220> <223>	PCR primer 15F1-2		
<400> catcca	99 ggcc aatgtgacgg t		21
<210><211><212><213>	21		
<220> <223>	PCR primer 15R1-2		

21

<210> 101 <211> 20 <212> DNA

<400> 100

cctggtggca agctgggtgt t

WO 02/06529	,	64	PCT/US01/22035
<213> Artif	icial sequence		
<220> <223> PCR p	rimer 16F		
<400> 101 taaaactgga t	ggggetete		20
<210> 102 <211> 18 <212> DNA <213> Artif	icial sequence		
<220> <223> PCR p			
<400> 102 ggcctccacc a	gcactaa		18
<210> 103 <211> 20 <212> DNA <213> Artif	icial sequence		
<220> <223> PCR p	rimer 17F		
<400> 103 gggtccccca g	teetteeag		20
<210> 104 <211> 17 <212> DNA <213> Artif	icial sequence		
<220> <223> PCR p	rimer 17R		
<400> 104 tccccagccc g	cccaca		17
<210> 105 <211> 20 <212> DNA <213> Artif	icial sequence		
<220> <223> PCR p	orimer 18F		
<400> 105 gececeteae e	accccttct		20
<210> 106 <211> 18 <212> DNA <213> Artif	icial sequence		

<220> <223>	PCR primer 18R	
<400> tcccgct	106 eget ecceccae	18
<210><211><211><212>	18 DNA	
	Artificial sequence	
<220> <223>	PCR primer 19F	
	107	18
gatgdd	ytgg ggaccgtc	Ξ
<210><211><211>	20	
	Artificial sequence	
<220> <223>	PCR primer 19R	
	108 aggt ggcagteteg	20
3 3 3		
<210> <211>		
<212>		
<220>		
	PCR primer 20F	
<400>		21
ccacce	cetc tgctcgtagg t	
<210>		
<211> <212>		
<213>	Artificial sequence	
<220> <223>	PCR primer 20R	
<400>	110	
	aagc acgcatgca	19
<210><211><212><212><213>	111 22 DNA Artificial sequence	

PCT/US01/22035 WO 02/06529 66 <220> <223> PCR primer 21F <400> 111 22 tgeeggeete etgegetget ga <210> 112 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer TWR2-1 <400> 112 28 gtaggatggc cccacctgct caccctgc <210> 113 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer R27' <400> 113 20

aggtcaacgt gggcctccaa