MA 2-23

- 1. Pomocí metody Lagrangeových multiplikátorů nalezněte bod ležící v rovině x+y+z=1, který je nejblíže k bodu A=(-1,5,6) a spočtěte jejich vzdálenost.
- 2. Přepište následující integrál

$$\int_1^2 \int_{x-2}^0 f \, dy \, dx$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\varrho\,d\varphi$.

- 3. Hmotná koule K s poloměrem R a středem v počátku má hustotu v bodě (x,y,z) rovnou vzdálenosti bodu (x,y,z) od počátku. Vypočtěte těžiště horní poloviny koule K.
- 4. U mocninné řady $\sum_{n=1}^{\infty} n(x-1)^{n-1}$ určete poloměr konvergence, interval, na kterém řada konverguje, a její součet. Jakou hodnotu bude mít řada v bodě x=0?
- 5. (a) Mějme C^1 -zobrazení $\Phi \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$, $\Phi = (\Phi_1, \dots, \Phi_n)$. Napište definici **jakobiánu**. Vypočtěte jakobián pro $\Phi(x, y) = (xy^2, y/x)$.
 - (b) S využitím věty o střední hodnotě pro funkci jedné proměnné dokažte následující větu o střední hodnotě pro funkci více proměnných: $f(\mathbf{x} + t\mathbf{h}) f(\mathbf{x}) = \frac{\partial}{\partial \mathbf{h}} f(\mathbf{x} + \vartheta \mathbf{h})$ pro nějaké $\vartheta \in (0, 1)$.

Řešení.

- 1. Lagrangeova funkce je $L=(x+1)^2+(y-5)^2+(z-6)^2+\lambda(x+y+z-1)$. Jediný stacionární (a tedy nejbližší) bod je (-4,2,3) a vzdálenost $3\sqrt{3}$.
- 2. Opačné pořadí je $\int_{-1}^{0} \int_{1}^{y+2} f dx dy$ a v polárních souřadnicích

$$\int_{-\pi/4}^{0} \int_{1/\cos\varphi}^{2/(\cos\varphi - \sin\varphi)} f\varrho \, d\varrho \, d\varphi.$$

3. Hustota je $f(x,y,z)=(x^2+y^2+z^2)^{1/2}$. Ze symetrie jsou souřadnice těžiště $t_x=t_y=0$. Zbývá určit z-ovou souřadnici t_z , což je poměr následujících dvou integrálů,

$$\iiint_K z f(x,y,z) \ \ {\rm a} \ \ \iiint_K f(x,y,z).$$

Ve sférických souřadnicích máme

$$\begin{split} & \iiint_K z f(x,y,z) = \int_0^{2\pi} \int_0^{\pi/2} \int_0^R \varrho \cos \theta \cdot \varrho \cdot \varrho^2 \sin \theta \, d\varrho \, d\theta \, d\varphi = \frac{\pi R^5}{5}, \\ & \iiint_K f(x,y,z) = \int_0^{2\pi} \int_0^{\pi/2} \int_0^R \varrho \cdot \varrho^2 \sin \theta \, d\varrho \, d\theta \, d\varphi = \frac{\pi R^4}{2}. \end{split}$$

Závěr: $t_z = 2R/5$, a tedy těžiště je v bodě T = (0, 0, 2R/5).

4. Poloměr konvergence R=1 a střed v bodě $x_0=1$, řada tedy konverguje pro $x\in(0,2)$. Integrací dostaneme geometrickou řadu,

$$\int \sum_{n=1}^{\infty} n(x-1)^{n-1} dx = \sum_{n=1}^{\infty} (x-1)^n + C = \frac{x-1}{2-x} + C.$$

Původní řada je tak rovna derivaci posledního výrazu,

$$\sum_{n=1}^{\infty} n(x-1)^{n-1} = \left(\frac{x-1}{2-x} + C\right)' = \frac{1}{(2-x)^2}.$$

Bodě x = 0 řada diverguje.

5. (a) Jakobián je absolutní hodnota determinantu Jacobiho matice J_{Φ} , $\Delta_{\Phi} = |\det J_{\Phi}|$, kde

$$J_{\Phi} = \begin{pmatrix} \frac{\partial \Phi_1}{\partial x_1} & \cdots & \frac{\partial \Phi_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial \Phi_n}{\partial x_1} & \cdots & \frac{\partial \Phi_n}{\partial x_n} \end{pmatrix}.$$

Jakobián pro zadané zobrazení je $\Delta_{\Phi} = 3y^2/|x|$.

(b) Položíme $\varphi(t)=f(\mathbf{x}+t\mathbf{h})$. Podle věty o střední hodnotě pro $\varphi(t)$ platí, že $\varphi(1)-\varphi(0)=\varphi'(\vartheta)$ pro nějaké $\vartheta\in(0,1)$. Dosazením za $\varphi(t)$ dostaneme požadovanou větu pro funkci $f(\mathbf{x})$: $\varphi(1)=f(\mathbf{x}+\mathbf{h})$, $\varphi(0)=f(\mathbf{x})$ a

$$\varphi'(\vartheta) = \lim_{s \to 0} \frac{\varphi(\vartheta + s) - \varphi(\vartheta)}{s}$$

$$= \lim_{s \to 0} \frac{f(\mathbf{x} + \vartheta\mathbf{h} + s\mathbf{h}) - f(\mathbf{x} + \vartheta\mathbf{h})}{s} = \frac{\partial}{\partial \mathbf{h}} f(\mathbf{x} + \vartheta\mathbf{h}).$$