Lecture 4

Hyperbolic Equations of first order - Part 1

Important tool to understand Conservation Laws: Characteristics.

Consider a solution ${\color{red} u} \in {\it C}^{\scriptscriptstyle 1}(\mathbb{R} \times [o,\infty))$ to

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 and $\mathbf{u}(x, \mathbf{o}) = \mathbf{v}(x)$

where $v \in C^1(\mathbb{R})$ and $f \in C^2(\mathbb{R})$.

Definition

For every $x_0 \in \mathbb{R}$ there is a maximum time T > 0 such that (by Picard-Lindelöf theorem) there is a unique solution γ to

$$\gamma'(t) = f'(\mathbf{u}(\gamma(t),t))$$
 for $t \in (0,T)$, $\gamma(0) = x_0$.

The curve $\{(\gamma(t),t) \mid t \in [0,T]\}$ is called *Characteristic* of the Conservation law.

Characteristics - Example: Linear advection

Definition

For $x_0 \in \mathbb{R}$ and maximum time T > 0, let γ solves

$$\gamma'(t) = f'(u(\gamma(t), t))$$
 for $t \in (0, T)$, $\gamma(0) = x_0$.

The curve $\{(\gamma(t), t) \mid t \in [0, T]\}$ is called *Characteristic*.

Example: f(u) = u. Let $u \in C^1(\mathbb{R} \times [0, \infty))$ solve

$$\partial_t \mathbf{u} + \partial_x \mathbf{u} = \mathbf{o}$$
 and $\mathbf{u}(x, \mathbf{o}) = \mathbf{v}(x)$

Solution:
$$u(x,t) = v(x-t)$$
. Characteristic (since $f'(u) = 1$):

$$\gamma'(t) = 1 \Rightarrow \gamma(t) = t + x_0.$$

Hence

$$u(\gamma(t),t) = v(\gamma(t)-t) = v(x_0),$$

i.e. the characteristic is a linear curve on which u(x, t) is constantly $v(x_0)$.

Characteristics - Example: Linear advection

Definition

For $x_0 \in \mathbb{R}$ and maximum time T > 0, let γ solves

$$\gamma'(t) = f'(u(\gamma(t),t))$$
 for $t \in (0,T)$, $\gamma(0) = x_0$.

The curve $\{(\gamma(t), t) \mid t \in [0, T]\}$ is called *Characteristic*.

General properties:

- ► The map $t \mapsto u(\gamma(t), t)$ is always constant on [0, T].
- ▶ The function γ has the form

$$\gamma(t) = f'(\mathbf{v}(x_0)) t + x_0.$$

Next, we prove these properties.

Characteristics - Proof: $t \mapsto u(\gamma(t), t)$ is constant.

Differentiating yields

$$\begin{array}{ll} \partial_t \big[\textbf{\textit{u}}(\gamma(t),t) \big] &= & \partial_x \textbf{\textit{u}}(\gamma(t),t) \ \gamma'(t) + \partial_t \textbf{\textit{u}}(\gamma(t),t) \\ &= & \partial_x \textbf{\textit{u}}(\gamma(t),t) \ f'(\textbf{\textit{u}}(\gamma(t),t)) + \partial_t \textbf{\textit{u}}(\gamma(t),t) \\ &= & \partial_x f(\textbf{\textit{u}}(\gamma(t),t)) + \partial_t \textbf{\textit{u}}(\gamma(t),t) \\ &= & \partial_x f(\textbf$$

Hence, $t \mapsto u(\gamma(t), t)$ is constant, i.e.

$$u(\gamma(t),t) = v(x_0)$$
 for all $t \in [0,T]$.

Characteristics - Proof: $\gamma(t) = f'(v(x_0)) t + x_0$.

Since $t \mapsto u(\gamma(t), t)$ is constant

$$\gamma'(t) = f'(u(\gamma(t),t)) = f'(u(\gamma(0),0)) = f'(v(x_0)).$$

Hence with $\gamma(o) = x_o$ we have

$$\gamma(t) = f'(u_o(\gamma(o)))t + x_o.$$

First order hyperbolic equation

Characteristics

mple 1: Burgers equation mple 2: Linear systems

Characteristics - Summary

Definition

For $x_0 \in \mathbb{R}$ and maximum time T > 0, let γ solves

$$\gamma'(t) = f'(u(\gamma(t),t))$$
 for $t \in (0,T)$, $\gamma(0) = x_0$.

The curve $\{(\gamma(t),t) \mid t \in [0,T]\}$ is called *Characteristic*.

General properties:

- ► The map $t \mapsto u(\gamma(t), t)$ is always constant on [0, T].
- ▶ The function γ has the form $\gamma(t) = f'(v(x_0)) t + x_0$.

Why characteristics?

- 1. Understanding solutions.
- 2. Constructing solutions.

Characteristics - Understanding solutions

Some observations:

► the characteristic is explicitly known and solving is not necessary

$$\gamma(t) = f'(\mathbf{v}(x_0)) t + x_0;$$

- we know \underline{u} is constant on $(\gamma(t), t)$.
- we only know that a characteristic exists (uniquely) for some maximum time T;
- ▶ in general, we do not know the value of *T*;
- what does that mean for u(t) for $t \geq T$?