MSCI-623

Beilin Ye Harneet Kaur Lida Ghasemi

CLAIM AMOUNT PREDICTION ON U.S. CAR INSURANCE

Introduction: why is it important:

DATA

MAIN FEATURES IN OUR DATASETS:

- Monthly Premium
- Age, Gender, Income
- Employment Status
- Vehicle Size, Car Make
- Number of Vehicles
- Location
- Coverage Type

Vehicle Class vs Total Claim Amount

Coverage Type vs Total Claim Amount

Location vs Total Claim Amount

Car Make vs Total Claim Amount

Education vs Total Claim Amount

Incident Type vs Total Claim Amount

METHODOLOGIES & RESULTS

Linear Regression

We achieved 76% and 96% accuracy in our datasets using Linear Regression for predicting the total claim amount.

Decision Trees

We achieved 85% and 96% accuracy in our datasets using Decision Trees for predicting the total claim amount.

Naive Bayes

We achieved 96% and 90% accuracy in our datasets using Naive Bayes for predicting the total claim amount class of high or low.

Linear Regression Actual vs Predicted Claim Amount

Dataset-1

Dataset-2

R-squared: 0.7241172999836459

R-squared: 0.9595324511314519

Decision Trees

Before Hyperparameterism

R-Squared: ~50%

Before Hyperparameterism

R-Squared: ~94%

After Hyperparameterism

R-Squared: ~81%

After Hyperparameterism

R-Squared: ~96%

Dataset-1

Dataset-2

Naive Bayes

```
Confusion Matrix:
[[844 60]
[ 0 922]]
```

Precision Score: 0.9398

```
Confusion Matrix:
[[90 15]
[ 5 90]]
```

Precision Score: 0.9581

FINAL CONCLUSION & BUSINESS INSIGHTS

Major Features

Dataset 1

- Monthly Premium Auto
- Coverage
- Vehicle class
- Location

Dataset 2

- Number of vehicles in accident
- Location
- Incident date
- Car make

Minor Features

Dataset 1

- Age
- Education level
- Gender

Dataset 2

- Age
- Education level
- Gender

Thank You!