TD N°2

Sémantique des Formes propositionnelles

Exercice 1: Tautologie?

Utiliser la méthode des tables de vérité pour montrer que les formules suivantes sont ou non des tautologies ?

$$1/(p \land q) \rightarrow p$$

$$2/(p \lor q) \rightarrow (p \land q)$$

$$3/(p \land q) \rightarrow (p \lor q)$$

$$4/p \rightarrow (p \lor q)$$

$$5/p \rightarrow ((\neg p) \rightarrow p)$$

$$6/p \rightarrow (p \rightarrow q)$$

$$7/p \rightarrow (q \rightarrow p)$$

$$8/(p \rightarrow (\neg p)) \rightarrow (\neg p)$$

$$9/p \rightarrow (p \rightarrow p)$$

$$10/(p \lor q) \leftrightarrow ((p \rightarrow q) \rightarrow q)$$

$$11/(p \land (\neg q)) \lor (p \land q)$$

$$12/(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

Exercice 2 : f est une conséquence de g

Dans chacun des cas ci-dessous déterminer si la première forme propositionnelle à pour conséquence la forme propositionnelle qui est sur la même ligne :

1/ (p∧ q)	p
2/ q	$(p \rightarrow q)$
$3/\neg (p \rightarrow q)$	p
$4/(p \wedge q) \vee r$	$p \wedge (q \vee r)$
$5/\left(p\rightarrow q\right)\wedge\left(q\rightarrow r\right)$	$p \rightarrow (q \rightarrow r)$
$6/p \to (q \to r)$	$p \rightarrow r$
$7/p \rightarrow (q \wedge r)$	$p \rightarrow q$
$8/\left(p\wedge q\right)\rightarrow r$	$(p \to r) \land (q \to r)$
$9/p \rightarrow (q \lor r)$	$(p \rightarrow q) \lor (p \rightarrow r)$

Exercice 3: synonymes

Dans chacun des cas suivants dire si les deux formes propositionnelles sont synonymes.

$$\begin{array}{ll} 1/\ p \rightarrow q & (\neg p) \lor (p \land q) \\ 2/\ p \rightarrow q & (\neg p) \rightarrow (\neg q) \\ 3/\ p \rightarrow (q \rightarrow r) & (p \rightarrow q) \rightarrow r \\ 4/\ (p \land q) \lor (q \land r) \lor (r \land p) & (p \lor q) \land (q \lor r) \land (r \lor p) \end{array}$$

Exercice 4:

Répéter l'exercice 1 en utilisant la méthode des arbres.

Exercice 5: Validité des arguments

Dans chacun des cas suivants déterminer, par la méthode des arbres, si les arguments sont valides. $1/p \rightarrow q$, $p \rightarrow \neg q$ $\vdash (\neg p)$

$$2/p \leftrightarrow (q \lor r) \vdash ((p \land (\neg q)) \rightarrow r)$$

$$3/p \rightarrow r, q \rightarrow r \vdash (p \rightarrow q)$$

$$4/p \rightarrow (q \rightarrow r), r \lor (\neg q) \vdash (\neg p)$$

$$5/p \rightarrow (q \rightarrow r), q \rightarrow (r \rightarrow p) \vdash (p \rightarrow r)$$

Exercice 6:

En utilisant les **tableaux de Karnaugh**, déterminer les formules en FND équivalentes aux formules N, P, Q, R, S et T représentées par les tableaux suivants :

N		a b			
		0 0	0 1	11	10
c d	0 0	1	1	1	1
	0 1	1	1	1	1
	11	0	1	1	0
	10	0	1	1	0

P		a b			
		0 0	0 1	11	10
c d	0 0	1	0	0	1
	0 1	0	1	1	0
	11	0	1	1	0
	1 0	1	0	0	1

Q		a b			
		0 0	0 1	11	10
c d 1	0 0	1	0	0	1
	0 1	1	1	1	1
	11	1	1	0	0
	10	0	0	0	0

R		a b			
		0 0	0 1	11	10
c d 0 1	0 0	0	0	1	0
	0 1	1	0	1	1
	11	1	1	1	1
	1 0	0	0	1	0

S		a b			
		0 0	0 1	11	10
-	0 0	0	1	1	0
	0 1	1	0	0	1
	11	1	0	0	1
	1 0	0	1	1	0

Т		a b			
		0 0	0 1	11	1 0
c d	0 0	0	1	0	1
	0 1	1	0	1	1
	11	0	1	0	1
	1 0	1	1	1	1