Lecture 9

Ant Colony Optimization (ACO) AlgorithmSolving TSP using ACO

CENG 632- Computational Intelligence, 2024-2025, Spring Assist. Prof. Dr. Osman GÖKALP

Ant Colony Optimization

- Ant Colony Optimization (ACO) is a probabilistic and evolutionary technique that is used to solve combinatorial optimization problems.
- Proposed by Marco Dorigo in 1992 in his PhD thesis
- Search for an optimal path in a graph, based on the behavior of ants.

Initially proposed and tested for Travelling Salesman Problem.

How do Natural Ants Find Shortest Path to their Food?

- > Initially move randomly.
- After finding food, return to their colony while laying down pheromone trail (stigmergy).
- ➤ If another ant finds such a path its movement is not completely random anymore, more likely to follow that path.
- Pheromone trail evoporates over time.

ACO Metaheuristic

Set parameters, initialize pheromone trails

while termination condition not met do

ConstructAntSolutions

ApplyLocalSearch (optional)

UpdatePheromones

endwhile

ConstructAntSolutions Phase

- > A set of *m* artificial ants construct solutions from elements of a finite set of available solution components **C**
- \succ Solution construction starts from an empty partial solution $S^P = \emptyset$
- \succ At each construction step, the partial solution S^P is extended by adding a feasible solution component $c_i^j \in N(S^P) \subseteq C$ without violating any of the constraints in Ω

ConstructAntSolutions Phase:

Solution Component Selection

• Probability of selecting solution component, or edge (i,j):

•
$$p(c_i^j|S_p) = \frac{T_{ij}^a \cdot \eta_{ij}^\beta}{\sum_{c_i^z \in N(S_p)} T_{iz}^a \cdot \eta_{iz}^\beta}, \forall c_i^j \in N(S_p)$$

- τ is the pheromone (trail) level
- η is the heuristic information:
 - a.k.a, visibility, attractiveness:
 - e.g., $\eta_{ij}=\frac{1}{d_{ij}}$, where d_{ij} is the distance between i and j

ApplyLocalSearch Phase (optional)

• After solution construction and before pheromone update, solutions obtained by the ants are improved through a local search (2-opt, 3-opt, Lin-Kernighan ...).

UpdatePheromones Phase

 When all the ants completed their solutions, the trails are updated by:

•
$$T_{ij} = (1 - \rho)T_{ij} + \sum_{k}^{m} \Delta \tau_{ij}^{k}$$

• $\Delta \tau_{ij}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{if ant } k \text{ uses edge } (i, j) \text{ in its tour,} \\ & 0 \text{ otherwise} \end{cases}$

- L_k is the cost of the kth ant's tour (e.g., tour length)
- Q is a constant

Main ACO Variants

- ➤ Ant System (AS)
- ➤ MAX MIN Ant System (MMAS)
- > Ant Colony System (ACS)
- Elitist Ant System (ASe)
- Rank-based Ant System (RBAS)

TSP Example

 Code example: https://github.com/Akavall/AntColonyOptimization/blob/master/a nt_colony.py

Simulation example: https://thiagodnf.github.io/aco-simulator/