Carry Trades and Precautionary Saving: The Use of Proceeds from Foreign Currency Debt Issuance

Annie Soyean Lee and Steve Pak Yeung Wu

Johns Hopkins SAIS & UC San Diego

Motivation

- Conventional wisdom: Depreciation of its currency boosts net exports and aggregate demand
 expansionary depreciation (Mundell & Fleming)
- On the other hand, with liability dollarization, depreciation leads to a balance sheet deterioration
 - ⇒ contractionary depreciation (Cespedes, Chang, Velasco, 2004)
- Therefore, the currency denomination of corporate liabilities can have a large impact on both financial and macroeconomic aspects of emerging economies.
 - corporate \$ debt ↑ to 4.7 trillion USD in 2016 (doubled from 2008).
- However, the effect of \$ liabilities depends a lot on how firms use their proceeds from \$ debt issuance.

Research Question

What firms do with their foreign currency borrowing?

What the literature is missing

- The recent literature points to "carry trade" activities of firms when borrowing in \$.
- Firms borrow in USD but deposit in their own local currency (LC): Bruno & Shin (2017), Huang, Panizza & Portes (2020), Hardy & Saffie (2019)
- However, the currency composition of firms' assets are not observed in the datasets that previous studies used
- Only conjecture from observing ↑ liquid assets (cash or its equivalents, account receivables, · · ·)
 after \$ debt issuance

What our paper does to fill the gap

- Fill the gap in the literature by introducing a Korean firm-level dataset with 23,000 firms
- Only 10% are listed firms, and many are private small/medium-sized firms
- Currency & maturity information about both assets and liabilities
- That is, we can see if local currency (LC) or foreign currency (FC) liquid assets have increased after \$ debt issuance

Preview of results

	Local Currency	Foreign Currency		Consistent
Debt type	Liquid Assets	Liquid Assets	Investment	Hypothesis
Local Currency	_	_	+	Pecking order
(LT LC /ST LC)				Borrow to invest
Long-term Foreign Currency	_	+	+	Borrow to invest
(LT FC)				+ Precautionary
Short-term Foreign Currency	+	+	_	Carry trade
(ST FC)				+ Precautionary
Current Portion of LT Foreign Currency	flat	+	flat	Precautionary
(ST FC)				

• Maturity and currency both matter

Literature review

Currency denomination of firms' debt issuance

- Natural hedging

Kedia & Mozumdar (2003), Jiao et al. (2021), Colacito et al. (2022)

- Carry trade

Bruno & Shin (2017), Huang et al. (2018), Acharya & Vij (2020), Hardy & Saffie (2019)

Corporate cash holdings:

- International financial market & corporate cash holdings:

Opler et al. (1999), Graham & Harvey (2001), Bates et al. (2009)

- Uncertainty & cash hoarding:

Arellano et al. (2019), Xiao (2020)

• Corporate leverage & macro/financial market stability:

- Macroeconomic consequences of FC debt:

Aguiar (2005), Dominguez & Tesar (2006), Bleakley & Cowan (2008), Kim et al. (2015), Kim & Lee (2022), Wu (2021)

- International market spillover to domestic market:

McCauley et al. (2015), Chui et al. (2016), Alfaro et al. (2017), Alfaro et al. (2019), Abraham et al. (2020), Kalemli-Ozcan et al. (2021), Di Giovanni et al. (2021)

Dataset

KISVALUE dataset of firm-level B/S data

- Contains a rich set of B/S items of 23,000 firms in 2001–2017
 - 1. currency composition & maturity of their liabilities + assets: foreign currency vs. domestic currency, short-term vs. long-term
 - 2. not only large listed but small and medium-sized non-listed non-financial firms.
- Representative dataset:
 - 1. The average coverage ratios are above 60% for the variables of interests¹

Cash	ST Debt	LT Debt	AR	Total Assets	Sales
62.8	68.1	78.4	65.2	65.3	62.2

2. The dynamics of these variables are fairly close to the aggregate counterparts from BoK. Dynamics

¹The coverage ratios are computed as the ratio of KISVALLUE aggregates across firms to the aggregate data from BoK in the same vear

Baseline specification

• We estimate a regression similar to Bruno and Shin (2017) :

$$\frac{Y_{i,t}}{TA_{i,t-1}} = \beta^{LTFC} \frac{LT \ FCdebt_{i,t}}{TA_{i,t-1}} + \beta^{LTLC} \frac{LT \ LCdebt_{i,t}}{TA_{i,t-1}} + \beta^{STLC} \frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}} + \beta^{STLC} \frac{ST \ LCdebt_{i,t}}{TA_{i,t-1}} + \gamma_1 \frac{OS_{i,t}}{TA_{i,t-1}} + \gamma_2 In TA_{i,t-1} + \alpha + \alpha_c + \alpha_t + \epsilon_{i,t}$$
(1)

where $y_{i,t}$ is cash & cash equivalents (Cash), ST financial instruments (ST FI), and accounts receivables (AR) in LC or FC

- Key innovation is that we see the currency denomination of LHS
- Focus only on cash & cash equivalents in this presentation (results are similar for ST FI and AR)

Baseline results

	LC Cash	FC Cash	CapEx
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.042***	-0.009***	0.103***
$\frac{TA_{i,t-1}}{ST\ LCdebt_{i,t}}$ $\frac{TA_{i,t-1}}{TA_{i,t-1}}$	-0.071***	-0.007***	0.055***
LT FCdebt _{i,t}	0.008	0.016**	0.081***
$\frac{\overline{TA_{i,t-1}}_{ST\ FCdebt_{i,t}}}{\overline{TA_{i,t-1}}}$	0.106***	0.031***	-0.023***
Adjusted R^2	0.101	0.049	0.088
Obs.	145698	145979	145480

 \bullet LC debt $\uparrow \Rightarrow$ Cash \downarrow and investment \uparrow (pecking order theory)

Baseline results

	LC Cash	FC Cash	CapEx
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.042***	-0.009***	0.103***
$\frac{TA_{i,t-1}}{ST\ LCdebt_{i,t}}$ $\frac{TA_{i,t-1}}{TA_{i,t-1}}$	-0.071***	-0.007***	0.055***
$\frac{TA_{i,t-1}}{LT\ FCdebt_{i,t}}$ $\frac{TA_{i,t-1}}{TA_{i,t-1}}$	0.008	0.016**	0.081***
$\frac{TA_{i,t-1}}{ST\ FCdebt_{i,t}}$ $\frac{TA_{i,t-1}}{TA_{i,t-1}}$	0.106***	0.031***	-0.023***
Adjusted R^2	0.101	0.049	0.088
Obs.	145698	145979	145480

ullet LC debt $\uparrow\Rightarrow$ Cash \downarrow and investment \uparrow (pecking order theory)

FC debt depends on maturity

 \bullet LT FC debt $\uparrow \Rightarrow$ FC Cash \uparrow and investment \uparrow (precautionary)

Baseline results

	LC Cash	FC Cash	CapEx
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.042***	-0.009***	0.103***
$\frac{TA_{i,t-1}}{ST\ LCdebt_{i,t}}$ $\frac{TA_{i,t-1}}{TA_{i,t-1}}$	-0.071***	-0.007***	0.055***
LT FCdebt _{i,t}	0.008	0.016**	0.081***
$\frac{TA_{i,t-1}}{ST \ FC debt_{i,t}}$ $\frac{TA_{i,t-1}}{TA_{i,t-1}}$	0.106***	0.031***	-0.023***
Adjusted R^2	0.101	0.049	0.088
Obs.	145698	145979	145480

• LC debt $\uparrow \Rightarrow$ Cash \downarrow and investment \uparrow (pecking order theory)

FC debt depends on maturity

- \bullet LT FC debt $\uparrow \Rightarrow$ FC Cash \uparrow and investment \uparrow (precautionary)
- ST FC debt $\uparrow \Rightarrow$ LC Cash \uparrow and investment \downarrow (carry trade), FC Cash \uparrow (precautionary)

Further identification

• We show that the increase in LC cash is associated with proceeds of debt issuance by comparing:

Current portion of LT FC debt \uparrow ST FC debt \uparrow		
\uparrow in maturing debt in $t+1$		
no cash inflow at t	\uparrow cash inflow at t	

With current portion of LT debt

	1661	FC C 1	6 5
	LC Cash	FC Cash	CapEx
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.042***	-0.009***	0.103***
$\frac{\overline{TA_{i,t-1}}_{ST \ LCdebt_{i,t}}}{\overline{TA_{i,t-1}}}$	-0.071***	-0.007***	0.055***
$\frac{LT\ FCdebt_{i,t}}{TA_{i,t-1}}$	0.012	0.016**	0.083***
$\frac{TA_{i,t-1}}{Current\ LT\ FCdebt_{i,t}}$ $\frac{TA_{i,t-1}}{TA_{i,t-1}}$	-0.007	0.016*	0.071***
$\frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}}$	0.106***	0.031***	-0.022***
Adjusted R ²	0.101	0.049	0.088
Obs.	145698	145979	145480

• No LC cash increase without cash inflow at t, unlike ST FC debt

Incentives across time

(i) Do we see more carry trades when the interest rate differential is high?

$$\frac{\text{LC Liquid Assets}_{i,t}}{TA_{i,t-1}} = \beta^{LTFC} \frac{LT \ FCdebt_{i,t}}{TA_{i,t-1}} + \beta^{LTLC} \frac{LT \ LCdebt_{i,t}}{TA_{i,t-1}} + \beta^{STLC} \frac{TA_{i,t-1}}{TA_{i,t-1}} + \beta^{STLC} \frac{ST \ LCdebt_{i,t}}{TA_{i,t-1}} + \gamma_1 \frac{OS_{i,t}}{TA_{i,t-1}} + \gamma_2 InTA_{i,t-1} + \alpha + \alpha_c + \alpha_t + \epsilon_{i,t} + \delta_1 \frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}} \times (i_t^{KRW} - i_t^{USD})$$
(2)

(i) Do we see more carry trades when the interest rate differential is high?

$$\frac{\text{LC Liquid Assets}_{i,t}}{TA_{i,t-1}} = \beta^{LTFC} \frac{LT \ FCdebt_{i,t}}{TA_{i,t-1}} + \beta^{LTLC} \frac{LT \ LCdebt_{i,t}}{TA_{i,t-1}} \\
+ \beta^{STFC} \frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}} + \beta^{STLC} \frac{ST \ LCdebt_{i,t}}{TA_{i,t-1}} \\
+ \gamma_1 \frac{OS_{i,t}}{TA_{i,t-1}} + \gamma_2 In TA_{i,t-1} + \alpha + \alpha_c + \alpha_t + \epsilon_{i,t} \\
+ \delta_1 \frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}} \times \left(i_t^{KRW} - i_t^{USD}\right)$$
(2)

(ii) Is precautionary saving more pronounced when the exchange rate volatility is high?

$$\frac{\text{FC Liquid Assets}_{i,t}}{\text{TA}_{i,t-1}} = \beta^{LTFC} \frac{LT \ FCdebt_{i,t}}{\text{TA}_{i,t-1}} + \beta^{LTLC} \frac{LT \ LCdebt_{i,t}}{\text{TA}_{i,t-1}} \\ + \beta^{STFC} \frac{ST \ FCdebt_{i,t}}{\text{TA}_{i,t-1}} + \beta^{STLC} \frac{ST \ LCdebt_{i,t}}{\text{TA}_{i,t-1}} \\ + \gamma_1 \frac{OS_{i,t}}{\text{TA}_{i,t-1}} + \gamma_2 \ln TA_{i,t-1} + \alpha + \alpha_c + \alpha_t + \epsilon_{i,t} \\ + \delta_1 \frac{LT \ FCdebt_{i,t}}{\text{TA}_{i,t-1}} \times (1yFXvol_t) + \delta_2 \frac{ST \ FCdebt_{i,t}}{\text{TA}_{i,t-1}} \times (3mFXvol_t)$$

$$(3)$$

Across time results

	LC Cash	FC Cash
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.042***	-0.009***
$\frac{ST\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.071***	-0.007***
$\frac{LT\ FCdebt_{i,t}}{TA_{i,t-1}}$	0.008	0.016**
$\frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}}$	0.090***	0.031***
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}} \times i_t^{diff}$	0.009**	
$\frac{LT\ FCdebt_{i,t}}{TA} \times (1yFXvol_t)$		-0.0000
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}} \times (3mFXvol_t)$		0.002***
Adjusted R ²	0.101	0.050
Obs.	145740	146021

 \bullet More carry trade when interest rate diff \Uparrow

Across time results

	LC Cash	FC Cash
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.042***	-0.009***
$\frac{ST\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.071***	-0.007***
$\frac{LT\ FCdebt_{i,t}}{TA_{i,t-1}}$	0.008	0.016**
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}}$	0.090***	0.031***
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}} \times i_t^{diff}$	0.009**	
$\frac{LT\ FCdebt_{i,t}}{TA} \times (1yFXvol_t)$		-0.0000
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}} \times (3mFXvol_t)$		0.002***
Adjusted R ²	0.101	0.050
Obs.	145740	146021

- More carry trade when interest rate diff \uparrow
- \bullet More precautionary when exchange rate vol \Uparrow

Incentives across sectors

- Which sectors engage in more carry trades?
- Follow Rajan and Zingales (1998) to compute

$$\textit{FinDep}_i = \frac{\sum\limits_{t=0}^{T} \text{increase is investment assets}_{i,t} - \text{cashflow from operation}_{i,t}}{\sum\limits_{t=0}^{T} \text{increase is investment assets}_{i,t}}$$

and take a median across firms in each sector

• and similarly using the input-output table,

$$\textit{ExportShare}_c = \frac{\sum\limits_{t=0}^{T} \mathsf{sector} \ \mathsf{export}_{c,t}}{\sum\limits_{t=0}^{T} \mathsf{sector} \ \mathsf{output}_{c,t}} \ \text{and} \ \textit{ImportShare}_c = \frac{\sum\limits_{t=0}^{T} \mathsf{sector} \ \mathsf{import}_{c,t}}{\sum\limits_{t=0}^{T} \mathsf{sector} \ \mathsf{output}_{c,t}}.$$

Across sector regression

$$\frac{y_{i,t}}{TA_{i,t-1}} = \beta^{LTFC} \frac{LT \ FCdebt_{i,t}}{TA_{i,t-1}} + \beta^{LTLC} \frac{LT \ LCdebt_{i,t}}{TA_{i,t-1}} + \beta^{STLC} \frac{ST \ LCdebt_{i,t}}{TA_{i,t-1}} + \beta^{STLC} \frac{ST \ LCdebt_{i,t}}{TA_{i,t-1}} + \gamma_1 \frac{OS_{i,t}}{TA_{i,t-1}} + \gamma_2 \ln TA_{i,t-1} + \alpha + \alpha_c + \alpha_t + \epsilon_{i,t} + \delta_1 \frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}} \times X_c$$
(4)

where X_c is financial dependence, export share or import share

Across sector results (financial dependence)

	LC Cash	FC Cash
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t}-1}$	-0.042***	-0.009***
$\frac{ST\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.071***	-0.007***
$\frac{LT \ FCdebt_{i,t}}{TA_{i,t-1}}$	0.008	0.016**
ST FCdebt _{i,t}	-0.025	-0.000
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}} imes FinDep_c$	0.133***	0.031**
Adjusted R2	0.101	0.050
N	145740	146021

• More financially dependent firms engage in carry trades

Across sector results (export and import)

	LC Cash	LC AR	FC Cash	FC AR
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.042***	-0.107***	-0.009***	-0.019***
$\frac{ST\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.071***	-0.031***	-0.007***	0.003
$\frac{LT \ F\acute{C}debt_{i,t}}{TA_{i,t-1}}$	0.008	-0.068***	0.016**	0.025***
ST FCdebt _{i,t}	0.106***	-0.027	0.023**	0.017
$\frac{ST \ F \acute{C} debt_{i,t}}{TA: t-1} \times ExportShare_c$	0.094	0.423***	0.044*	0.309***
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}} imes ImportShare_c$	-0.096	-0.036	0.003	0.193
Adjusted R2	0.101	0.287	0.050	0.101
N	145740	144310	146021	145960

• More export-oriented firms engage in carry trade via AR rather than cash eqiv.

Conclusion

- Our key innovation comes with a unique Korean firm-level dataset that contains the currency and maturity information about both assets and liabilities.
- The empirical relationship that we see from the data supports a widespread speculation in the literature that firm engages in carry trade activities when borrowing in short-term.
- We further show that the positive correlation between LC liquid assets and FC debt, supportive of
 carry trades, only arises when debt is issued at short-term with actual cash inflows, not when
 debt matures soon.
- Our sectoral analysis hints that more export-exposed and financially dependent sectors engage more in carry trades; the latter can be worrisome to emerging market policymakers.

Appendix: Controlling export/sales

	LC Cash	FC Cash	CapEx
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$	-0.043***	-0.009***	0.079***
$\frac{ST\ LCdebt_{i,t}}{TA_{i+1}}$	-0.072***	-0.007***	0.047***
$\frac{LT \ FCdebt_{i,t}}{TA_{i,t-1}}$	0.008	0.016**	0.092***
$\frac{ST \ FCdebt_{i,t}}{TA_{i,t-1}}$	0.106***	0.030***	-0.014**
Export to Sales	0.015***	0.012***	0.006**
	(0.003)	(0.002)	(0.002)
Adjusted R ²	0.102	0.053	0.076
N	143961	144236	252739

	LC Cash	FC Cash
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}} pre2008$	-0.036***	-0.005***
$\frac{LT\ LCdebt_{i,t}}{TA_{i,t-1}}$ post2008	-0.046***	-0.010***
$\frac{ST\ LCdebt_{i,t}}{TA_{i,t-1}} pre2008$	-0.060***	-0.003***
$\frac{ST\ LCdebt_{i,t}}{TA_{i,t-1}} post2008$	-0.078***	-0.009***
$\frac{LT\ FCdebt_{i,t}}{TA_{i,t-1}} pre2008$	0.007	0.010***
LT FCdebt _{i,t}	0.006	0.024**
ST FCdebt _{i,t}	0.114***	0.025***
$\frac{ST\ FCdebt_{i,t}}{TA_{i,t-1}} post2008$	0.100***	0.035***
**	(0.012)	(0.005)
Adjusted R ²	0.101	0.051
N	145740	146021

