

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1^{ère} année TD sur les Automates à Etats Finis

Exercice 1:

- 1. Les palindromes sont des mots ou des groupes de mots qui peuvent être lus indifféremment de gauche à droite ou de droite à gauche. Par exemple, on considère que 10000001 et 01000010 sont des séquences binaires palindromes à 8 bits. Un système séquentiel comporte une tête de lecture lisant à chaque instant d'horloge un nouveau bit. Donner un automate déterministe qui permet la conception de ce système séquentiel pour détecter si une séquence de 3 bits est palindrome ou non.
- 2. L'ADN est une énorme molécule formée d'une chaîne de centaines de milliers de molécules plus petites appelées nucléotides. Il y a dans l'ADN quatre sortes de nucléotides que l'on désigne respectivement par les lettres A, C, G et T. Un système séquentiel comporte une tête de lecture lisant à chaque instant d'horloge un nouveau nucléotide. Donner un automate déterministe qui permet la conception d'un tel système séquentiel pour détecter des séquences A*G¹T
 - Le symbole * à la deuxième position de la séquence veut dire qu'on accepte n'importe lequel des nucléotides et l'exposant n à la troisième position de la séquence indique qu'on accepte un nombre non déterminé (>0) du même nucléotide G.
- 3. Donner un automate déterministe permettant de reconnaître un horaire donné sous la forme 12:15.
- 4. Donner un automate déterministe permettant de reconnaître une date donnée sous la forme 08/01 (pour le 8 Janvier), sans tenir compte de l'année.

Exercice 2:

Serrure électronique

On veut réaliser une cellule électronique à combinaison, fonctionnant de la manière suivante :

- l'organe d'entrée est une clé à trois positions, engendrant deux signaux x1 et x2 tels que x1x2 = 10 ou x1x2 = 00 ou x1x2 = 01
- en sortie, un relai S commande l'ouverture d'une porte sur la séquence suivante : x1x2 = 00 / 10 / 00 / 01 / 00 / 10 / 00

Une fois l'ouverture obtenue, le retour du système à l'état initial se fait sur la combinaison d'entrée suivante.

Donner une représentation du comportement de cette machine à partir d'un modèle d'automate de Moore.

Exercice 3:

Système de test de réflexes

Un circuit permettant de tester les réflexes dispose de deux entrées : GO, STOP et 5 sorties : ON, T(richeur), E(xcellent), B(on), F(aible).

Le comportement de ce testeur peut se décrire de la façon suivante :

- ON passe à 1 lorsqu'une personne (le passager d'une voiture par exemple) appuie sur GO
- T passe à 1 si la personne testée appuie sur STOP avant GO. Le test est alors terminé.
- Dans le cas contraire :
 - o une occurrence d'horloge h s'est produite entre les 2 entrées, E passe à 1.
 - o deux tops d'horloge séparent les deux entrées : B passe à 1.
 - o plus de deux tops d'horloge séparent les deux entrées : F passe à 1.

Le test ne peut reprendre que suite à un RST asynchrone.

Donner une représentation du comportement du testeur à partir d'un modèle d'automate de Mealy.

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1^{ère} année TD sur les Automates à Etats Finis

Exercice 4:

Téléphone portable

Lorsqu'on sort un téléphone portable de son emballage, il est éteint et toutes les touches sont sans effet sauf la touche « ON » qui allume le téléphone en émettant un « bip ». Toutes les touches émettent alors un « bip » même la touche « OFF » qui éteint le portable.

Modéliser le fonctionnement de ce téléphone portable à l'aide d'un automate à états finis avec actions.

Le téléphone est muni d'une touche « MUTE » qui n'a aucun effet si le téléphone est éteint, mais qui peut faire passer le téléphone allumé du mode normal au mode silencieux, après avoir émis un « bip ». En mode silencieux, les touches n'émettent plus de « bip » sauf la touche « MUTE » qui fait repasser le téléphone en mode normal. Lorsque le téléphone est rallumé, il émet ou non un « bip » selon le mode dans lequel il a été éteint.

Proposer un nouvel automate à états finis avec actions pour ce téléphone.

Exercice 5:

Contrôle d'accès à une salle

1. La salle d'accueil de la clientèle d'une entreprise est munie de deux voies d'accès, comme l'illustre la figure ci-dessous :

Schéma de la salle et de ses voies d'accès (les flèches figurent les flux possibles de circulation des personnes)

- La première voie ne permet que l'entrée de la clientèle par le franchissement d'une porte P1.
 L'ouverture de la porte P1 signifie qu'une personne rentre dans la salle.
- La deuxième voie permet à la fois l'entrée et la sortie de la clientèle, par l'intermédiaire d'un sas muni de deux portes (**P2** et **P3**).

Ce sas ne peut contenir qu'une personne à la fois :

- Lorsque le sas est vide, une personne peut y entrer soit par la porte P2, soit par la porte P3 :
 - l'ouverture de la porte **P2** signifie que quelqu'un entre dans le sas en venant de la salle.
 - l'ouverture de la porte P3 signifie que quelqu'un entre dans le sas en venant de l'extérieur.
- Lorsqu'une personne est dans le sas, l'entrée dans le sas n'est plus possible :
 - l'ouverture de la porte **P2** signifie que cette personne quitte le sas pour aller dans la salle.
 - l'ouverture de la porte P3 signifie que cette personne quitte le sas pour aller à l'extérieur.

On suppose que l'ouverture d'une porte correspond au passage d'exactement une personne (plusieurs personnes ne peuvent pas entrer ou sortir ensemble, et toute personne qui ouvre la porte la franchit).

Modèles des Systèmes à Evénement Discrets TELECOM Nancy 1^{ère} année TD sur les Automates à Etats Finis

Un automate est chargé de tenir à jour le nombre de personnes présentes dans la salle : il contrôle à cet effet un compteur, en fonction des mouvements des portes.

Chaque porte est munie d'un capteur qui transmet un signal à chaque ouverture de la porte. Les signaux correspondants (entrées de l'automate) sont codés par les symboles **P1**, **P2** et **P3**.

Les sorties de l'automate sont des signaux indiquant qu'il faut modifier la valeur du compteur: le signal codé par le symbole **IN** correspond à l'entrée d'une personne dans la salle (par les portes **P1** ou **P2**). Le signal codé par le symbole **OUT** correspond à la sortie d'une personne de la salle (par la porte **P2**). Le signal **IN** a pour effet d'incrémenter le compteur et le signal **OUT** a pour effet de le décrémenter.

Recenser les états du système et les transitions entre ces états. Représenter l'automate à états finis correspondant.

2. On installe une porte P0 à coté de la porte P1, de manière à former un deuxième sas (sas 1 : portes P0 et P1 ; sas 2 : portes P2 et P3). Ce deuxième sas fonctionne de la même manière que le premier.

Représenter le nouvel automate de contrôle du compteur.

Exercice 6:

Système producteur consommateur avec tampon à 2 places.

Le "producteur" produit une seule pièce à la fois. Si sa "production" est finie, le producteur dépose la pièce produite dans un tampon dont la capacité est de 2 unités, s'il y a de la place libre. Dès qu'il a pu faire le dépôt, il commence à produire une autre pièce.

Le "consommateur" consomme une seule pièce à la fois. Si sa "consommation" est finie, le consommateur prélève une pièce dans le tampon, s'il n'est pas vide.

Donner l'automate à états finis correspondant.