Better models

The magical Gaussian

When have you found a good feature or features?

- When the input/output curve over your variable is interesting.
- How to quantify interesting?

When have you done a good job?

Tuning curve:
$$P(spike|s_f) = P(s_f|spike) P(spike) / P(s_f)$$

Boring: spikes unrelated to stimulus

Interesting: spikes are selective

Introducing the Kullback-Leibler divergence

$$D_{KL}(P(s),Q(s))) = \int ds P(s) \log_2 P(s)/Q(s)$$

Goodness measure: $D_{KL}(P(s_f|spike), P(s_f))$

Maximally informative dimensions

Choose filtar ir order to maximize D_{KL} between spike-conditiar al aid prior distributions

Sharpee, Rust and Bialek, Neural Computation (2004)

Image from Fairhall, Barreiro, Shea-Brown (2012)

Maximally informative dimensions

Choose filter in order to maximize D_{KL} between spike-conditional and prior distributions

Equivalent to maximizing mutual information between stimulus and spike

Does not depend on white noise inputs

Can be used for deriving models from natural stimuli

Finding relevant features

- 1. Single filter determined by the conditional average
- 2. A family of filters derived using PCA
- 3. Information theoretic methods use the whole distribution

Removes requirement for Gaussian stimuli

Modeling the noise

Bernoulli trials

Binomial spiking

Distribution: $P_n[k] = ?$

Mean: < k > = ?

Variance: Var(k) = ?

Poisson spiking

Distribution: $P_T[k] = (rT)^k \exp(-rT)/k!$

Mean: $\langle k \rangle = 0.7$

Variance: Var(k) = rT

Fano factor: F = 1

Interval distribution: $P(T) = r \exp(-rT)$

The Poisson distribution

Poisson or not?

Interspike interval distributions

The generalized linear model

GLM: P(spike at t) ~ exp(f_1 *s + h_1 *r)

But wait, there's more!

GLM:
$$r(t) = g(f_1*s + h_1*r_1 + h_2*r_2 + ...)$$

Time-rescaling theorem

Brown et al. (2001)

That's it for encoding!

Mext Week...

Peadir

- Reading minds!
- Decoding methods