

அநிவியல் பாடத்தில் சதமடிக்க என்ன செய்யவேண்டும்? வாங்க பார்ப்போம் !

- ★ புதிய பாடத்திட்டத்தின் படி மற்ற பாடங்களுடன் ஒப்பிடும்போது அறிவியலில் நூற்றுக்கு நூறு பெறுதல் மிக எளிது.
- ★ மருத்துவம் மற்றும் தொழில்நுட்பம் போன்ற உயர்கல்விக்கு அறிவியல் தான் அடிப்படைப் பாடம் என்பதை மனதில் கொள்ளவேண்டும்.
- ★ உயர்கல்விக்கு அடித்தளம் பத்தாம் வகுப்பு பாடங்கள்தான் என்பதை மனதில் நிறுத்தி திட்டமிட்டு படித்தால் அறிவியல் பாடத்தில் முழு மதிப்பெண் 75-க்கு 75 பெறுவது மிக சுலபம்.
 - ு PLANNING PROPERLY (சரியாக திட்டமிடல்)
 - ு MORE ATTENTION (அதிக கவனம்)
 - ு CHOOSE CLEAR QUESTIONS, (தெளிவான வினாக்கள் தேர்வு)
 - ு WRITING METHODS (தேர்வு எழுதும் முறை)
 - ு SELF CHECK UP (சுய பரிசோதனை)
 - ு TIME MANAGEMENT (நேர மேலாண்மை)

போன்றவை மூலம் அறிவியல் பாடத்தில் முழு மதிப்பெண் பெறுவது மிக எளிது.

புதிய பாடத்திட்டத்தின்படி அரசு வினாத்தாள் வடிவமைப்பு

ஒரு மதிப்பெண் வினாக்கள்	$12 \times 1 = 12$
இரண்டு மதிப்பெண் வினாக்கள்	7 x 2 = 14
நான்கு மதிப்பெண் வினாக்கள்	7 x 4 = 28
ஏழு மதிப்பெண் வினாக்கள்	$3 \times 7 = 21$
மொத்த மதிப்பெண்கள்	75

நேர மேலாண்மை :

கேள்வித்தாள் வாசித்தல்		15 நிமிடங்கள்
ஒரு மதிப்பெண் வினாக்கள்	12	15 நிமிடங்கள்
இரண்டு மதிப்பெண் வினாக்கள்	7	40 நிமிடங்கள்
நான்கு மதிப்பெண் வினாக்கள்	7	60 நிமிடங்கள்
ஏழு மதிப்பெண் வினாக்கள்	3	45 நிமிடங்கள்
திருப்புதல்		20 நிமிடங்கள்
மொத்த கால அளவு		15 நிமிடங்கள் + 3 மணி
மொத்த மதிப்பெண்கள்		75

100 மதிப்பெண்களை தீர்மானித்தல்

	Two Marks		Four Marks			Seven Marks		
1.	Physics	3	1.	Physics	3	1.	Physics	1
2.	Chemistry	2	2.	Chemistry	2	2.	Chemistry	1
3.	Biology	5	3.	Biology	5	3.	Biology	1
To	tal Questions	7 /10	Total	Questions	7/10	Tot	al Questions	3

முழு மதிப்பெண்கள் பெற சில முக்கிய குறிப்புகள்

- ூ பாடத்தோடு ஒன்றி, கவனம் வேறு திசைக்கு செல்லாமல், உங்கள் ஆசிரியர்கள் நடத்தும் போது நன்றாக கவனியுங்கள். அவ்வப்போது எழும் சந்தேகங்களை கேள்விகளாக கேட்டு தெளிவுபடுத்திக் கொள்ளுங்கள்.
- ^ச பத்தாம் வகுப்பு பாடத்தில் உள்ள முற்பகுதி ஒன்பதாம் வகுப்பு புத்தகத்தில் இடம் பெற்றுள்ளன. அவற்றை எடுத்து திருப்பி பார்க்கவும். உதாரணமாக (light)ஒளியியல், அணு மூலக்கூறு(Atoms and molecules), உயிரின அமைப்பு நிலைகள்(போன்ற பாடங்கள்.
- ^{சே} வீட்டில் படிப்பதற்கு என ஒரு நல்ல இடத்தை தேர்வு செய்து, அமைதியான சூழலில் தினமும் நடத்திய பாடங்களை கவனத்துடன் படித்து எழும் சந்தேகங்களை அடுத்த நாள் வகுப்பு அறிவியல் ஆசிரியரிடம் கேட்டு தெளிவுபடுத்தி கொள்ளுங்கள்.
- இவினாக்களில் கேட்கப்பட்ட பகுதிக்கு மட்டும் விடை கொடுக்கவும். வினாவிற்கு சம்பந்தமில்லாத பகுதியை எழுதினால் எந்த உபயோகமும் இல்லை.
- இ அரசுப் பொதுத்தேர்வுக்கு ஒரு மாதத்திற்கு முன்னரே அனைத்து பகுதிகளையும் படித்து தெளிவாக நினைவில் வைத்துக் கொள்ள வேண்டும்.
- இயற்பியல் பகுதியில் ஒவ்வொரு அளவீடுகளுக்கும் அலகுகள்(Unit) எழுத வேண்டும். ஒளியியல்(Light) பாடத்தில் ஒளிவிலகல், பிம்பம் தோன்றுதல் (formation of image), பிம்பத்தின் தன்மை இவற்றிற்கு கார்டீசியன் விதியை நன்கு அறிந்து பின்பு இந்த பாடத்தை படிக்க வேண்டும்.
- இயற்பியல் மற்றும் வேதியியல் (Physics and chemistry)பகுதியில் உள்ள புத்தகத்தில் உள்ள Worked Problems மற்றும் மதிப்பீடு வினாக்களில் (Exercise) உள்ள அனைத்து கணக்கீடுகளையும் (Problems) ஒன்றுக்கு இரண்டு முறை செய்து பார்க்கவும்.
- உயிரியல் பாடத்தில் (Biology) உயர் சிந்தனை வினாக்களை (Higher order thinking) சிறப்பாக படித்து நினைவில் வைத்துக் கொள்ளுங்கள். ஏனெனில், இயற்பியல், வேதியியல் மற்றும் உயிரியல் (Physics, Chemistry and Biology) பகுதியில் கட்டாய வினா எண் 22 மற்றும் 32 ஆகியவை இந்த பகுதியில் இருந்து கேட்பதற்கு சாத்திய கூறுகள் அதிகம்.
- ு படம் வரைந்து விளக்கும் (Draw and explain questions) கேள்விகளுக்கு தெளிவாக படம் வரைந்து காட்டவும். முடிந்த அளவிற்கு 7 மதிப்பெண் வினாவிற்கு விடையினை ஒரு படத்தில் குறிப்பிட்டு விளக்கம் தந்தால் மிகச் சிறப்பாக இருக்கும். எ.கா: மரபியல் (Genetics) பாடத்தில் இருபண்பு கலப்பு (Di-hybrid cross) வினாவிற்கு படம் வரைந்து காட்டி விடை எழுதினால் மிகச் சிறப்பானதாக அமையும்.
- ^{சே} வேதியியல் (Chemistry) பாடத்திற்கு சில அடிப்படையான தனிமங்களின்(Elements) அணுஎண்(Atomic Number), அணுநிறை(Atomic Mass), இணைதிறன்(Valency) தெரிந்து வைத்து கொள்வது நலம்.
- ூ சமன்பாடுகள் (Equations) சில இடங்களில் கண்டிப்பாக எழுதவேண்டும் அதனால், ஒருமுறைக்கு பல முறை எழுதிப்பார்த்து நம்மை தயார்படுத்திக்கொள்ள வேண்டும்.

வினாத்தாள் வாசித்தல்:

- ச வினாத்தாள் படிக்க ஒதுக்கப்படும் நேரத்தில் ஒரு மதிப்பெண் வினாக்களை படித்து நேரத்தை வீணடித்துக்கொண்டிருக்காதீர்கள்.
- **ு** முதலில் 4 மற்றும் 7 மதிப்பெண் வினாக்களைப் படித்து எந்த வினாக்களைத் தெரிவு செய்யலாம் என்பதை தீர்மானித்துக்கொள்ளுங்கள்.
- ூ பிறகு இரண்டு மதிப்பெண் வினாக்களில் எந்தெந்த வினாக்களுக்கு விடை எழுதலாம் என்பதை தீர்மானித்துக்கொள்ளுங்கள்.
- 쭉 எழுதும்போது முதலில் ஒரு மதிப்பெண் வினாக்களைப் படித்து விடை எழுதலாம்.

10ஆம் வ	குப்பு – அறிவியல் அரசு மாதிரி வினாத்தாள் ஒரு பார்வை
	(மொத்த மதிப்பெண்கள் : 75)
கேள்வி எண்	கேட்கப்படும் பகுதிகள்
	பகுதி - I (மதிப்பெண்கள் : 12) 1 x 12 = 12
1 - 12	 அனைத்து அலகுகளிலும் இருந்து ஒரு மதிப்பெண் வினாக்கள் கேட்கப்படும். பொருத்தமான விடையைத் தேர்ந்தெடுத்து எழுதும் வகையில் (Multiple Choice Questions) கேள்வித்தாள் அமையப்பெறும்.
	பகுதி $ \mathbf{II}$ (மதிப்பெண்கள் $:$ 14) $7 \times 2 = 14$
13 - 22 (7/10)	 எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கும் வகையில் அமையும் இரண்டு மதிப்பெண் வினாக்கள். 22* கட்டாய வினா (Compulsory Question) – கணக்கீடுகளில் (Problems)
	பகுதி — III (மதிப்பெண்கள் : 28) 7 x 4 = 28
23 - 32 (7/10)	 எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கும் வகையில் அமையும். 32* கட்டாய வினா (Compulsory Question) ஒவ்வொரு கேள்வியும் இரண்டு பகுதிகளாக அமையும் வகையில் பிரித்து கேட்கப்படும்.
	பகுதி $-$ IV (மதிப்பெண்கள் $:$ 21) $3 \times 7 = 21$
33 - 35	 அனைத்து வினாக்களுக்கும் விடையளிக்க வேண்டும். தேவையான இடங்களில் கட்டாயம் படம் வரைய வேண்டும். ஒவ்வொரு கேள்வியும் இரண்டு அல்லது மூன்று பகுதிகளாக அமையும் வகையில் பிரித்து கேட்கப்படும்.

1 மதிப்பெண் வினாக்கள்

- அறிவியல் பாடத்தை பொறுத்தவரை நூற்றுக்கு நூறு மதிப்பெண்ணை தீரமானிப்பது ஒரு மதிப்பெண் வினாக்கள் ஆகும். ஆகையால் பாடங்களை ஆழ்ந்து படித்து கூடுதல் 1 மதிப்பெண் வினாக்களை அடிக்கோடிட்டு தேர்வு செய்து படித்து வருவதன் மூலம் 12 வினாக்களுக்கும் சரியான விடை அளிக்க முடியும்.
- ூ மொத்தம் உள்ள 23 பாடங்களில் இருந்து 12 வினாக்கள் கேட்கப்படுகிறது. 2 அல்லது அதற்கு மேற்பட்ட வினாக்கள் பாடப்பகுதியின் உள்ளே (Inside Book Questions) இருந்து கேட்கப்பட வாய்ப்பு உள்ளது.
- ூ முதலில் புத்தக ஒரு மதிப்பெண் வினாக்களை (Book back one mark questions) தெளிவாக புரிந்து படித்துக் கொள்ள வேண்டும்.
- சிலவினாக்கள் புத்தகத்தின் உள்ளிருந்து கேட்கப்படுவதால் பாடங்களை நன்கு வாசித்திருக்க வேண்டும். நமது வெற்றிக்கு வழி / Way to Success அறிவியல் குறிப்பேட்டில் உள்ள முக்கிய குறிப்புகள் (Important Points to Remember) பகுதி இதற்காகவே கொடுக்கப்பட்டுள்ளது.
- ^{சே} புத்தகத்தில் உள்ள அனைத்து 'மேலும் அநிந்துகொள்வோம்' (More to know) பகுதியையும் கவனமாக வாசிப்பது நல்லது. ஏனெனில் சிலசமயங்களில் அதிலிருந்து சில வினாக்கள் தேர்வில் கேட்கப்படுகின்றன.
- ூ புத்தக ஒரு மதிப்பெண் வினாக்களையும் (Book back one mark questions), அநிவியல் குறிப்பேட்டில் உள்ள முக்கிய குறிப்புகள் (Important Hints to Remember) பகுதியையும் நன்றாக படித்திருந்தால் நாம் 12 க்கு 12 எளிமையாக பெற்றுவிடலாம்.

2 மதிப்பெண் வினாக்கள்

- ூ அரசு மாதிரி வினாத்தாளின் படி, இரண்டு மதிப்பெண் வினாக்கள் 10 கேட்கப்படும். எவையேனும் 7 எழுத வேண்டும். அவற்றில், வினா எண் (22) கட்டாயம் விடை கொடுக்க வேண்டும்.
- ூ கட்டாய வினா, இயற்பியல், வேதியியல் மற்றும் உயிரியல் (Physics, Chemistry, biology) என்ற எந்த பிரிவில் இருந்து வேண்டும் என்றாலும் கேட்கப்படலாம். அதில் கணக்கீடு கேட்க வாய்ப்பு இருக்கிறது.
- இயற்பியலில் 3 கேள்விகளும் வேதியியலில் 2 கேள்விகளும், உயிரியலில் 4 கேள்விகளும் கேட்கப்படலாம். (Three questions from Physics, two from chemistry, four from biology may be asked)
- கணக்கீடுகளும் (Problems), உயர் சிந்தனை விணக்களும் (Higher order thinking questions) கேட்கப்படலாம். 23 பாடங்களில் உள்ள கணக்கீடுகளையும், உயர் சிந்தனை விணக்களையும், தனியாக நோட்டு போட்டு செய்து பார்த்து கொள்ளவும்.

- 2 மதிப்பெண் கேள்விகள் பொருத்துக (Match the following), கோடிட்ட இடங்களை நிரப்புக (Fill in the blanks), படம் வரைந்து பாகம் குறிக்கவும் (Draw the picture and label the parts), தவறைத் திருத்தி எழுதுக (Find out the errors and correct it), கணக்கீடுகள் (Solve the problems) போன்ற வகையான வினாக்கள் கேட்கப்படலாம்.
- இரண்டு மதிப்பெண் வினாவில் முழு மதிப்பெண் பெற வேண்டும் எனில் படம் வரைதல்(Draw the diagram), வரையறு(Define), என்றால் என்ன?(What is) கணக்கீடுகள்(Problems), காரணம் கூறுக (Give reason), வேறுபடுத்துதல் (Distinguish) போன்ற வகையில் இருந்து தேர்ந்தெடுத்து எழுதவும்.
- ை கணக்கீடுகளை(Problems) பொருத்தவரை முதலில் வினாவில் கொடுக்கப்பட்டுள்ளவற்றை எழுதி(Given), அதற்குரிய சூத்திரம் (Formula) எழுதி விடை கண்ட பிறகு, அலகு(Units) இட்டு எழுத வேண்டும்.
- ூ படம் வரைந்து பாகம் குறி (Draw diagram and label the parts) போன்ற வினாவில் படத்தை தெளிவாக வரைய வேண்டும். வினாத்தாளில் எத்தனை பாகங்கள் குறிக்கப்பட்டுள்ளனவோ அவற்றை மட்டுமே குறித்தால் போதுமானது. பென்சிலில் மட்டுமே படம் வரைந்து பாகங்களை கோடிட்டு காட்டி எழுத வேண்டும்.
- [©] வேறுபடுத்துக கேள்விக்கு (Distinguish) எவையேனும் 2 Point எழுதினால் போதுமானது. ஆனாலும் 3 points எழுதினால் மதிப்பெண் குறையாமல் பார்த்துக் கொள்ளலாம்.

4 மதிப்பெண் வினாக்கள்

- ூ பத்து கேள்விகள் கேட்கப்படும். எவையேனும் 7 எழுத வேண்டும் அதில் வினா எண் 32 கட்டாயமாக விடை கொடுக்க வேண்டும். ஒரே கேள்வியாகவோ அல்லது இரண்டு பிரிவுகளாகவோ கேட்கப்படலாம்.
- அரசு வினாத்தாள் படி, இயற்பியலில் 3 கேள்விகளும், வேதியியலில் 2 கேள்விகளும் உயிரியலில் 4 கேள்விகளும் கேட்கப்படும். இந்த பகுதியில் கேட்கப்படும் வினாக்கள் விரிவான விடை பகுதியை சார்ந்தது. (three questions from Physics, two from chemistry, four from biology may be asked)
- ு கணக்கீடுகள் (Problems), விதிகளை நிறுவுதல் (Proof of the Law), பயன்கள் (Uses), நன்மைகள், வேறுபாடுகள் (Distinguish), தொடர்புகள் (Relation), படம் வரைந்து பாகம் குறித்தல் (Draw the diagram and label the parts) போன்ற வகைகளில் இருக்கலாம். இந்த மாதிரியான வினாக்களை தேர்ந்தெடுத்தால் முழு மதிப்பெண் பெற முடியும்.
- ூ 32-ம் கட்டாய வினா(Compulsory Question), கணக்கீடாகவோ(Problem), அல்லது உயர் சிந்தனை வினாவாகவோ(HOT Questions) இருக்கலாம். கேட்கப்படும் மதிப்பெண்ணுக்கு தகுந்தாற் போல் விடை எழுதினால் முழு மதிப்பெண் பெறலாம்.
- 🕝 ஒரு மதிப்பெண் / இரண்டு மதிப்பெண் கேள்விகளை இணைத்துக்கூட இப்பகுதியில் கேட்கலாம்.

7 மதிப்பெண் வினாக்கள்

- ூ வினாத்தாள் வடிவமைப்பின் படி Either Or type model -ல் கேள்விகள் கேட்கப்படும். இயற்பியலில்(Physics) 1 வினாவும், வேதியியலில்(Chemistry) 1 வினாவும், உயிரியலில்(Biology) 1 வினாவும் கேட்கப்படும்.
- ^{சு} இரண்டு அல்லது மூன்று பிரிவுகளாக வினாக்கள் கேட்கப்படும். நன்கு கவனம் செலுத்த வேண்டிய பகுதி இதுதான். இரண்டு, மூன்று பிரிவுகளாக கேட்கும் போது, அனைத்து பிரிவுகளையும் சரியாக எழுதினால் தான் முழு மதிப்பெண் பெறமுடியும்.
- ூ படம் தேவைப்படும் இடத்தில் படம் வரைய வேண்டும். எ.கா: கண்ணின் குறைபாடுகள் கூட்டு நுண்ணோக்கி, மனித மூளை, சீரண மண்டலம், இதயம், நியூரான் (Defects of Eye, Compound microscope, human brain, digestive system, heart and neuron) போன்றவை.
- இ வெற்றிக்கு வழி புத்தகத்தில் உள்ள கூடுதல் வினாக்களையும் நன்றாக புரிந்து படித்து கொண்டால் அனைத்து பிரிவிற்கும் சிறப்பாக விடை கொடுத்து முழு மதிப்பெண் பெற முடியும்.

தேர்வுக்குத் தேவையான சில முக்கிய குறிப்புகள்

முக்கிய சூ	<u>த்</u> திரங்கள்	அலகுகள்
★ உந்தம்	$p = m \times v$	கிகி மீவி¹¹
🖈 விசையின் திருப்புத்திறன்	$\tau = F \times d$	நியூட்டன் மீட்டர் கிகி மீ² வி²²
★ இரட்டையின் திருப்புத்திறன்	$M = F \times S$	நியூட்டன் மீட்டர்/கிகி மீ 2 வி $^{-2}$
★ விசை	$F = m \times a$	நியூட்டன் (\mathbf{N}) / கிகி மீவி $^{ ext{-}2}$
🖈 கணத்தாக்கு	$J = F \times t = \Delta p$	கிகி மீ வி ^{.1} (அ) நியூட்டன் வினாடி
🖈 நியூட்டனின் பொது ஈர்ப்பு விதி	$F = \frac{Gm_1m_2}{r^2}$ $g = \frac{GM}{R^2}$	நியூட்டன் மீ² கிகி-²
🛨 புவிஈர்ப்பு முடுக்கம்	$g = \frac{GM}{R^2}$	ഥ ° വി⁻²
★ எடை	$W = m \times g$	நியூட்டன் (\mathbf{N}) (அ)கிகி மீவி $^{-2}$
★ உந்த மாறுபாடு	$\Delta p = P_f - P_i$	கிகி மீவி ^{∙1}
🛨 இயக்க ஆற்றல்	$E_k = \frac{1}{2} m v^2 = \frac{p^2}{2m}$	ஜீல் (அ) கிகி மீ ² வி ⁻²
★ ஒளியின் திசைவேகம்	$c = v \lambda$	மீவி ⁻¹
🛨 ஸ்நெல் விதி	$\frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1}$	
🛨 ராலே சிதறல் விதி	சிதறல் அளவு $\alpha \frac{1}{24}$	
★ லென்சை உருவாக்குவோர் சமன்பாடு	$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	
🛨 லென்சு சமன்பாடு	$\left \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \right $	
🛨 லென்சின் திறன்	$P = \frac{1}{f}$	டையாப்டர்
🛨 குவியதூரம்	குழிலென்சு $f = \frac{xy}{x-y}$	குவிலென்சு $f = \frac{dD}{d-D}$
★ செல்சியஸ் மற்றும் கெல்வின்	K = C + 273	வெப்பநிலையின் அலகுகள்
🛨 நீள் வெப்பவிரிவு	$\left \frac{\Delta L}{L_0} = \alpha_L \Delta T \right $	கெல்வின் ⁻¹
🛨 பரப்பு வெப்பவிரிவு	$\frac{\Delta A}{A_0} = \alpha_A \Delta T$	கெல்வின் ⁻¹
🛨 பரும வெப்பவிரிவு	$\frac{\Delta V}{V_0} = \alpha_V \Delta T$	கெல்வின் ⁻¹
🛨 மின்னோட்டம்	$I = \frac{Q}{T}$	ஆம்பியர்(A)
★ மின்னோட்டத்தின் SI அலகு	1 ஆம்பியர் =	ஆம்பியர்(A)
🛨 மின்னழுத்த வேறுபாடு (V)	செய்யப்பட்ட வேலை (W) மின்னூட்டம் (Q)	வோல்ட் (V)
★ மின்னழுத்த வேறுபாட்டின் SI அலகு	1 வோல்ட் = $\frac{1 { m g}^* \dot{ m o}}{1 { m s}_n { m g}_{ m i} \dot{ m o}}$	வோல்ட் (V)

	** **			
★ ஓம் விதி	V= IR			
★ மின்கடத்து எண்	$\sigma = \frac{1}{\rho}$	ஓம் ⁻¹ மீ ⁻¹ (அ) மோ மீ ⁻¹		
மின்தடையாக்கிகள் தொடர்இணைப்பு	${ m R_S} = { m R_1} + { m R_2} + { m R_3}$. சம மதிப்பு உடைய 'n' தொடரிணைப்பில் இணைக்கப்படும் போது ${ m R_S} = { m n} \; { m R}$			
★ மின்தடையாக்கிகள் பக்க இணைப்பு	$rac{1}{R_{ m P}}=rac{1}{R}+rac{1}{R}+rac{1}{R}+rac{1}{R}=rac{n}{R}$ சம மதிப்பு உடைய 'n' பக்க இணைப்பில் இணைக்கப்படும் போது $R_{ m P}=rac{R}{n}$			
🛨 ஜுல் வெப்ப விதி	$H = I^2 R t$			
★ மின்திறன்	$P = \frac{\text{Gainn}}{\text{Свотій}} = \frac{VIt}{t}$	வாட் (W)		
★ அலைத்திசைவேகம்	$V=rac{ { m Spr m n n q}}{ { m Urj n} \ { m n G}\dot{ m s}\dot{ m s}m{g}}{ m s}{ m Sp m n m n} { m Sp m n} { m m} { $	ഥ° ബി⁻¹		
★ அடர்த்தியின் விளைவு	V α $\sqrt{rac{1}{d}}$, d – ஊடகத்தின் அடர்த்	நி		
🛨 வெப்பநிலையின் விளைவு	V α \sqrt{T} T — வெப்பநிலை V_T	$= (V_0 + 0.61 \text{ T})$		
🖈 ஒலியின் திசைவேகம்				
★ தோற்ற அதிர்வெண் n′	$\left(\frac{V+V_L}{V-V_S}\right)n$			
🛨 மோல்களின் எண்ணிக்கையைக் கணக்கிடும் முறைகள்.				
மோல்களின் எண்ணிக்கை	= <u>நிறை</u> = அணு நிறை	நிறை மூலக்கூறு நிறை		
	அ <u>ண</u> ுக்களின் எண்ணிக்கை	ഗ്രலக்கூறுகளின் எண்ணிக்கை		
	$=\frac{6.023\times10^{23}}{6.023\times10^{23}}$	6.023×10 ²³		
🛨 ஒப்பு மூலக்கூறு நிறை	2 × ஆவி அடர்த்தி	கி / மோல்		
★ அணுக்கட்டு எண்	மூலக்கூறு நிறை அணு நிறை			
🖈 ஒப்பு அணுநிறை	ஒரு தனிமத்தின் ஐசோடோப்புகளின் சராசரி அணு நிறை ஒரு C-12ன் அணு நிறையில் $\frac{1}{12}$ பங்கின் நிறை ஒப்பு அணுநிறை என்பது ஒரு விகிதம். அதற்கு அலகு இல்லை.			
★ கரைதிறன்	கரைபொருளின் நிறை கரைப்பானின் நிறை × 100	കി / രി		
🖈 கனஅளவு சதவீதம்	கரைபொருளின் கனஅளவு $\times 100$ (கரைபொருளின் கனஅளவு) $\times 100$			
🖈 நிறை சதவீதம்	கரைபொருளின் நிறை (கரைபொருளின் நிறை + கரைப்பானின் நிறை) × 100			

Important	t Formulae	Units	
★ Linear Momentum	$p = m \times v$	Kg ms ⁻¹	
★ Torque	$\tau = F \times d$	Nm (or) kg m ² s ⁻²	
★ Momentum of a couple	$M = F \times S$	Nm (or) kg m ² s ⁻²	
★ Force	$F = m \times a$ Newton (N) (or) kg ms ⁻²		
★ Impulse	$J = F \times t = \Delta p$ N s (or) Kg ms ⁻¹		
★ Gravitational Force	-		
★ Acceleration due to gravity	$F = \frac{Gm_1m_2}{r^2}$ $g = \frac{GM}{R^2}$	ms ⁻²	
★ Weight	$W = m \times g$	Newton (N) (or) kg ms ⁻²	
★ Change in momentum	$\Delta p = P_f - P_i$	Kg ms ⁻¹	
★ Kinetic Energy	$\Delta p = P_f - P_i$ $E_k = \frac{1}{2} m v^2 = \frac{p^2}{2m}$	Joule (or) kg m ² s ⁻²	
★ Velocity of light	$c = v \lambda$	ms ⁻¹	
★ Snell's law	$\frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1}$		
★ Rayleigh's law	'S' $\alpha \frac{1}{\lambda^4}$		
★ Lens makers formula	$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$ 1 1 1		
★ Lens Formula	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$		
★ Power of a Lens	$P = \frac{1}{f}$	Dioptre	
★ Focal length	For concave lens $f = \frac{xy}{x-y}$	For convex lens $f = \frac{dD}{d-D}$	
★ Celsius and Kelvin	K = C + 273	Unit of Temperature	
★ Linear expansion	$\frac{\Delta L}{L_0} = \alpha_L \Delta T$	K-1	
★ Superficial expansion	$\frac{\Delta A}{A_0} = \alpha_A \Delta T$	K ⁻¹	
★ Cubical expansion	$\frac{\Delta V}{V_0} = \alpha_V \Delta T$	K-1	
★ Electric current	$I = \frac{Q}{T}$	Ampere(A)	
★ SI Unit of Electric current	$1 \text{ ampere } = \frac{1 \text{ coulomb}}{1 \text{ second}} \qquad \text{Ampere(A)}$		
★ Potential difference (V)	Work done (W) Charge (Q)	Volt (V)	
★ SI Unit of Electric potential	$1 \text{ Volt } = \frac{1 \text{ joule}}{1 \text{ coulomb}} \qquad \qquad \text{Volt (V)}$		
★ Ohm's law	V= IR		
★ Conductance	$\sigma = \frac{1}{\rho}$	Ohm ⁻¹ (or) mho	

★ Resistors in Series	R_s = R_1 + R_2 + R_3 . When 'n' resistors of equal resistance are connected in series, R_s = n R			
★ Resistors in Parallel	$\frac{1}{R_P} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{n}{R}.$ When 'n' resistors of equal resistance are connected in parallel, $R_P = \frac{R}{n}$			
A 7 1 1 2 2 1		1, Kp – n		
★ Joule's law of heating	$H = I^2 R t$			
★ Electric Power	$P = \frac{Work}{Time} = \frac{VIt}{t}$	Watt		
★ Wave velocity	$V = \frac{\text{Distance}}{\text{Time taken}} V = \frac{\lambda}{T} = n\lambda$ $\lambda - \text{Wavelength } n - \text{Frequency}$	ms ⁻¹		
★ Effect of density	$V \propto \sqrt{\frac{1}{d}}$, d – Density of the med	dium		
★ Effect of Temperature	$V \alpha \sqrt{T}$ $T-$ Temperature V_T	$v = (V_0 + 0.61 \text{ T})$		
★ Speed of Sound	$\frac{\text{Distance travelled}}{\text{Time taken}} = \frac{2d}{t}$	$\frac{\text{Distance travelled}}{\text{Time taken}} = \frac{2d}{t}$		
★ Apparent Frequency n'	$\left(\frac{V + V_L}{V - V_S}\right)$ n			
★ Calculation of number of mole by different modes.				
Number of moles = -	Mass Mass	_		
	Atomic mass Molecular ma			
=	$\frac{\text{Number of Atoms}}{6.023 \times 10^{23}} = \frac{\text{Number of Molecules}}{6.023 \times 10^{23}}$			
★ Molecular mass	2 × Vapour density	g / mole		
+ Atomioity	Molecular mass			
* Atomicity	Atomic mass			
	Average mass of the isotopes of the ele			
★ Relative Atomic mass	$\frac{1}{12}$ th of the mass of one Carbon–12 at			
	Relative Atomic Mass is only a ratio, so it has no unit.			
★ Solubility	Mass of the solute $\times 100$	g/L		
	Mass of the solvent			
★ Volume percentage	Volume of solute × 100			
4.35	Volume of solute + Volume of the solvent × 100			
★ Mass percentage	$\frac{\text{Mass of solute}}{\text{Mass of solute} + \text{Mass of the solvent}} \times 100$			
	Mass of solute + Mass of the solvent			

மின்தூக்கியின் நகர்விற்கேற்ப தோற்ற எடை மாறுதல் Apparent weight of a person in a moving lift		
மின்தூக்கி Lift	தோற்ற எடை Apparent weight	
ஓய்வில் உள்ள போது / Lift is at rest	R = W	
மேலே நகரும் போது / Lift is moving upward	R > W	
கீழே நகரும் போது / Lift is moving downward	R < W	
தடையின்றி தானே விழும் போது / Lift is falling down freely	R = 0	

முக்கிய ப		Importan	t Values
1 டைன்	1 கி செ.மீ ²	1 Dyne	1 g cm ⁻²
1 நியூட்டன்	10 ⁵ டைன்	1 Newton	10^5 dyne
1 திகி வி	9.8 நியூட்டன்	1 kgf	9.8 Newton
1 കി ഖി	980 டைன்	1 gf	980 dyne
நிலவின் புவி ஈர்ப்பு முடுக்கம்	1. 625 மீவி ⁻²	Acceleration due to gravity of the moon	1. 625 ms ⁻²
ஈர்ப்பியல் மாறிலி G	6.674× 10 ⁻¹¹ ந்மீ² கிகி²	Gravitational constant	6.674x10 ⁻¹¹ Nm ² kg ⁻²
புவி ஈர்ப்பு முடுக்கம் g	9.8 மீ வி ⁻²	Acceleration due to gravity of the earth	9.8 ms ⁻²
புவியின் ஆரம் R	6378 கிமீ	Radius of the earth R	6378 Km
புவியின் நிறை M	5.972×10^{24} கிகி	Mass of the earth M	$5.972 \times 10^{24} \text{Kg}$
காற்றில் ஒளியின் திசைவேகம் C	3 × 10 ⁸ ഥ് ഖി ⁻¹	Speed of light in vaccum C	$3 \times 10^8 \text{ ms}^{-1}$
தெளிவுறு காட்சியின் மீச்சிறுத் தொலைவு	25 செ.மீ	Least distance of distinct vision	25 cm
அவோகேட்ரோ எண்	$6.023 imes 10^{23}$ /மோல்	Avagadro Number	6.023×10^{23} /mole
பொது வாயு மாறிலி R $(\mu N_A K_B)$	8.31 J mol ⁻¹ k ⁻¹	Universal gas constant R (µN _A K _B)	8.31 J mol ⁻¹ k ⁻¹
போல்ட்ஸ்மேன் மாநிலிK _B	$1.381 \times 10^{-23} Jk^{-1}$	Boltzmann constant K _B	$1.381 \times 10^{-23} Jk^{-1}$
1 குதிரை திறன்	746 வாட்	One Horse Power	746 watt
ஒரு கிலோ வாட் மணி	$(1000$ வாட் மணி) $3.6 imes 10^6$ ஜுல்	1 Kilo Watt hour (kWh)	(1000 watt hour) 3.6×10^6 Joule
வீடுகளுக்கு கொடுக்கப்படும் மின்னழுத்த வேறுபாடு	220 வோல்ட்	Voltage difference used in homes	220 volt
வீடுகளில் பயன்படுத்தப்படும் அதிர்வெண்	50 Hz	Frequency used in home	50 Hz
USA / UK -வில் வட்ட சுற்று மின்னழுத்தம்	110/ 120 v	Circular circuit of voltage in USA / UK	110/120 v
USA / UK -வில் வட்ட சுற்று அதிர்வெண்	60 Hz	Circular circuit of Frequency in USA/UK	60 Hz
ஒரு எலக்ட்ரான் வோல்ட் (eV)	1.602×10^{-19} J	1 Electron volt (eV)	1.602×10^{-19} J
1 மில்லியன் எலக்ட்ரான் வோல்ட் (MeV)	10 ⁶ ev	1 Million electron volt	10 ⁶ ev

அணுக்கரு பிளவின் மூலம் வெளியேற்றப்படும் சராசரி ஆற்றல்	200 Mev	Energy released in Nuclear fission process	200 M ev
அணுக்கரு இணைவின் போது வெளியாகும் சராசரி ஆற்றல்	$3.814 \times 10^{-12} \mathrm{J}$	Energy released in Nuclear fusion process	$3.814 \times 10^{-12} \mathrm{J}$
ஹைட்ரஜன் அணுக்கரு இணைவில் ஒவ்வொரு வினாடியில் 620 மில்லியன் மெட்ரிக் டன் நடைபெறுகிறது.		Hydrogen nucleus fuses about 620 million metric tons of each second.	
ஒவ்வொரு வினாடியில் 3 கதிரியக்கமாக வெளியே		Hydrogen nucleus radiates of energy per second.	about 3.8×10^{26} joule
பூமியின் வயது	$4.54 imes10^9$ ஆண்டுகள்	Age of the earth	4.54×10^9 years
ஒரு கியூரி	$3.7 imes10^{10}$ பெக்கொரல்	One Curie	3.7×10^{10} Becquerel
பரும வெப்ப விரி	வு குணகம் (\mathbf{k}^{-1})	Coefficient of cubic	expansion (k ⁻¹)
1. அலுமினியம்	7×10^{-5}	1. Aluminium	7×10^{-5}
2. பித்தளை	6×10^{-5}	2. Brass	6×10^{-5}
3. கண்ணாடி	2.5×10^{-5}	3. Glass	2.5×10^{-5}
4 - @: (II ())	20.7×10^{-5}	4. Water (H ₂ 0)	20.7×10^{-5}
4. நீர் (H ₂ O)	2017 74 10	,, (1120)	
4. நர (H ₂ O) 5. பாதரசம்	18.2×10^{-5}	5. Mercury	18.2×10^{-5}
5. பாதரசம்		<u> </u>	18.2×10^{-5}
5. பாதரசம்	18.2×10^{-5}	5. Mercury	18.2×10^{-5}
5. பாதரசம் சில பொருள்களி	18.2 × 10 ⁻⁵ ர் மின்தடை எண்	5. Mercury Electrical resistivity	18.2×10^{-5} of some materials
5. பாதரசம் சில பொருள்களின் 1. தாமிரம்	18.2×10^{-5} ன் மின்தடை எண் $1.62 \times 10^{-8}~\Omega m$	5. Mercury Electrical resistivity 1. Copper	18.2×10^{-5} of some materials $1.62 \times 10^{-8} \Omega m$
5. பாதரசம் சில பொருள்களி 1. தாமிரம் 2. நிக்கல்	18.2×10^{-5} ன் மின்தடை எண் $1.62 \times 10^{-8} \ \Omega m$ $6.84 \times 10^{-8} \ \Omega m$	5. Mercury Electrical resistivity 1. Copper 2. Nickel	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10^{14} Ωm
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம்	18.2×10^{-5} ன் மின்தடை எண் $1.62 \times 10^{-8} \Omega m$ $6.84 \times 10^{-8} \Omega m$ $12.9 \times 10^{-8} \Omega m$	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி	18.2×10^{-5} ல் மின்தடை எண் $1.62 \times 10^{-8}~\Omega m$ $6.84 \times 10^{-8}~\Omega m$ $12.9 \times 10^{-8}\Omega m$ 10^{10} முதல் $10^{14}~\Omega m$	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10^{14} Ωm
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம்	18.2×10^{-5} ல் மின்தடை எண் $1.62 \times 10^{-8} \Omega m$ $6.84 \times 10^{-8} \Omega m$ $12.9 \times 10^{-8} \Omega m$ $10^{10} $ முதல் $10^{14} \Omega m$ $10^{13} $ முதல் $10^{16} \Omega m$	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber	18.2×10^{-5} of some materials $1.62 \times 10^{-8} \Omega m$ $6.84 \times 10^{-8} \Omega m$ $12.9 \times 10^{-8} \Omega m$ $10^{10} \ to \ 10^{14} \Omega m$ $10^{13} \ to \ 10^{16} \ \Omega m$ $1.5 \times 10^{-6} \Omega m$
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome Speed of sound in	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm ங்களில் ஒலியின் நம் (மீவி -1)	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome Speed of sound in (ms	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media -1)
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக திசைவேல் 1. தாமிரம்	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm ந்களில் ஒலியின் கம் (மீவி ⁻¹)	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome Speed of sound in (ms 1. Copper	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media 1) 5010
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக திசைவேல் 1. தாமிரம் 2. இரம்பு	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm ங்களில் ஒலியின் கம் (மீவி ⁻¹) 5010 5950	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome Speed of sound in (ms 1. Copper 2. Iron	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media 1) 5010 5950
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக திசைவேல் 1. தாமிரம் 2. இரும்பு 3. அலுமினியம்	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm ங்களில் ஒலியின் கம் (மீவி ⁻¹) 5010 5950 6420	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome Speed of sound in (ms- 1. Copper 2. Iron 3. Aluminium	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media -1 5010 5950 6420
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக திசைவேல் 1. தாமிரம் 2. இரும்பு 3. அலுமினியம் 4. மண்ணெண்ணெய் 5. நீர் 6. கடல் நீர்	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm ங்களில் ஒலியின் கம் (மீவி ⁻¹) 5010 5950 6420 1324	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome Speed of sound in (ms 1. Copper 2. Iron 3. Aluminium 4. Kerosene 5. Water 6. Sea water	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media -1) 5010 5950 6420 1324
5. பாதரசம் சில பொருள்களில் 1. தாமிரம் 2. நிக்கல் 3. குரோமியம் 4. கண்ணாடி 5. இரப்பர் 6. நிக்ரோம் பல்வேறு ஊடக திசைவேக் 1. தாமிரம் 2. இரும்பு 3. அலுமினியம் 4. மண்ணெண்ணெய் 5. நீர்	18.2 × 10 ⁻⁵ ன் மின்தடை எண் 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ முதல் 10 ¹⁴ Ωm 10 ¹³ முதல் 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm ங்களில் ஒலியின் நம் (மீவி -1) 5010 5950 6420 1324 1493	5. Mercury Electrical resistivity 1. Copper 2. Nickel 3. Chromium 4. Glass 5. Rubber 6. Nichrome Speed of sound in (ms- 1. Copper 2. Iron 3. Aluminium 4. Kerosene 5. Water	18.2 × 10 ⁻⁵ of some materials 1.62 × 10 ⁻⁸ Ωm 6.84 × 10 ⁻⁸ Ωm 12.9 × 10 ⁻⁸ Ωm 10 ¹⁰ to 10 ¹⁴ Ωm 10 ¹³ to 10 ¹⁶ Ωm 1.5 × 10 ⁻⁶ Ωm different media -1) 5010 5950 6420 1324 1493

and/c				
	ர்களும் அறிவியல் கண்டுபிடிப்புகளும்			
நெகமய்யா க்ரு	தாவர உள்ளமைப்பின் தந்தை			
சாக்ஸ் (1875)	திசுத்தொகுப்பை வகைப்படுத்தியவர்			
ராபின் ஹில் (1939)	ஒளி வினையை கண்டறிந்தவர்			
மெல்வின் கால்வின்	ஒளிச்சேர்க்கை வேதியியல் நிகழ்வை கண்டறிந்தார்			
CN.R ராவ்	செயற்கை ஒளிச்சேர்க்கை மூலம் ஹைட்ரஜன் எரிபொருளை உற்பத்தி செய்தார்.			
கோலிக்கர்	மைட்டோகாண்ட்ரியாவை கண்டறிந்தார்.			
வில்லியம் ஹார்வி (1628)	உடற்செயலியலின் தந்தை			
ஹிஸ் (1893)	ஏட்ரியோ வெண்ட்ரிக்குலார் கற்றைகளை கண்டறிந்தார்			
காரல் லேண்ட்ஸ்டீனர் (1900)	இரத்த வகைகளை கண்டறிந்தார். (A, B, O)			
டிகாஸ்டிலோ மற்றும் ஸ்டய்னி (1902)	AB - இரத்த வகையினை கண்டறிந்தார்.			
லேண்ட்ஸ்டீனர் மற்றும் வீனர் (1940)	Rh காரணியை கண்டறிந்தார்.			
கால் மற்றும் ஹாஜன் ஸ்மித் (1931)	ஆக்சின்கள் என்ற சொல்லை அறிமுகப்படுத்தியவர்.			
சார்லஸ் டார்வின் (1880)	கேனரி புல் - ஆதிக்க பொருள்			
்.பிரிட்ஸ் வார்மால்ட்	தாவரங்களின் ஆக்சின் இருப்பதையும், அதன் விளைவுகளையும்			
வெண்ட் (1903 — 1990)	விளக்கினார்.			
குருசோவா	நெல்லில் - பக்கானே நோய் (அல்லது) கோமாளித்தன நோயை கண்டறிந்தார்.			
W.H. பேய்லிஸ் மந்நும் E.H. ஸ்டார்லிங்	ஹார்மோன் என்ற சொல்லை அறிமுகப்படுத்தியவர்.			
எட்வர்ட் C. கெண்டல்	தைராக்சின் ஹார்மோனின் படி நிலையை தனித்துப் பிரித்தார்.			
சார்லஸ் ஹாரிங்டன் மற்றும் ஜார்ஜ் பார்ஜன்	தைராக்சின் ஹார்மோனின் மூலக்கூறு வாய்ப்பாட்டை கண்டறிந்தார்.			
்.பிரெட்ரிக் பான்டிங், சார்லஸ் பெஸ்ட், மெக்லாட்	மனித இன்சுலின் ஹார்மோனை கண்டறிந்தனர்.			
கிரிகர் ஜோகன் மெண்டல்	மரபியலின் தந்தை			
ஜேம்ஸ் வாட்சன்,				
பிரான்சிஸ் கிரிக்	DNA - முப்பரிமாண அமைப்பை வெளியிட்டவர்கள்.			
	அடினைன் விகிதம் = தைமிடின் விகிதம்			
எச்வின் சார்காப்	குவானைன் விகிதம் = சைட்டோசின் விகிதம்			
லியோரைரடோ டாவின்சி	தொல்லுயிரியலின் தந்தை			
எர்னஸ்ட் ஹெக்கல்	உயிர் வழித் தோற்ற விதி (அல்லது) வழிமுறைத் தொகுப்பு கொள்கை			
ஜீன் பாப்டிஸ்ட் லாமார்க்	பரிணாமக் கோட்பாடு			
சார்லஸ் டார்வின்	இயற்கை தேர்வு கோட்பாடு			
கஸ்பர் மரியா வான் ஸ்டேர்ன் பெர்க்	தொல் தாவரவியலின் தந்தை			
பீர்பால் சகனி	இந்திய தொல் தாவரவியலின் தந்தை			
J.W. ஹார்ஸ்பெர்கர்	வட்டார இன தாவரவியல் என்ற சொல்லை முதலில் அறிமுகப்படுத்தியவர்.			
W.F.	கதிரியக்கக் கார்பன் முறையை கண்டுபிடித்தவர்.			
டாக்டர். நார்மன் E.போர்லாக்	பசுமைப்புரட்சியின் தந்தை			
டாக்டர். மா.சா.சுவாமிநாதன்	இந்தியாவில் பசுமைப் புரட்சியை கொண்டு வந்தார். (இந்திய			
,	பசுமைப்புரட்சியின் தந்தை)			
டாக்டர். கோ. நம்மாழ்வார்	இயற்கை வேளாண் வல்லுநர்			
டாக்டர் ஐயான் வில்முட்	டாலி உருவாக்கம் (குளோனிங் முறை)			
டாக்டர் சுனிதி சாலமோன்	இந்தியாவின் HIV ஆராய்ச்சி மற்றும் சிகிச்சையின் முன்னோடி.			
ஜோகன் லிப்ரஷே	தொலைநோக்கியை முதல் முதலில் உருவாக்கியவர்.			
ஜேம்ஸி P. மிட்சல்	முதல் LED தொலைக்காட்சி உருவாக்கப்பட்டது.			
மார்ட்டின் கிலாபிராத்	பிட்ச் பிளாண்ட் என்ற கதிரியக்க கனிமத் தாதுவில் இருந்து யுரேனியத்தை கண்டறிந்தார்.			

Scientist and Discoveries	
Nehemiah Grew	Father of Plant Anatomy.
Sachs(1875)	Classified tissue system
Robin Hill (1939)	Discovery of Light reaction.
Melvin Calvin	Discovery of chemical pathway for photosynthesis.
C.N.R. Rao	Production of Hydrogen fuel by a method of Artificial photosynthesis.
Kolliker	Discovery of mitochondria.
William Harvey(1628)	Father of Modern Physiology.
His (1893)	Discovery of Atrioventricular bundle.
Karl Landsteiner(1900)	Identified blood groups A, B and O.
Decastello and Steini(1902)	Recognization of AB blood group.
Landsteiner and Wiener(1940)	Discovery of Rh factor.
Kogl and Haagen- Smith(1931)	Introduction the term auxin.
Charles Darwin (1880)	canary grass - influence
Frits Warmolt Went (1903 – 1990)	Demonstrated the existence and effect of auxin in plants.
Kurosawa	observed Bakanae disease or foolish seedling disease in rice crops.
W.M.Bayliss and E.H.Starling	Introduced the term Hormone.
Edward C. Kendal	Crystallisation of thyroxine hormone.
Charles Harrington and George Barger	Identification of molecular structure of thyroxine.
Fredrick Banting, Charles Best and MacLeod	Discovery of Human insulin.
Gregor Johann Mendel	Father of Genetics
James Watson and Francis Crick.	Proposed the Three-dimensional model of DNA.
Erwin Chargaff	Adenine = Thymine, Guanine = Cytosine
Leonardo da Vinci	Father of Palaeontology.
Ernst Haeckel	Biogenetic law or Recapitulation theory
Jean Baptiste Lamarck	Theories of Evolution
Charles Darwin	Theory of Natural Selection
Kaspar Maria Von Sternberg	Father of Paleobotany
Birbal Sahani	Father of Indian Paleobotany
J.W. Harshberger	First coined the term Ethnobotany
W.F. Libby	Discovery of Radioactive carbon.
Dr. Norman E. Borlaug	Father of the Green Revolution.
Dr. M. S. Swaminathan	Father of Indian Green Revolution
Dr. G. Nammalvar	Organic farming expert.
Dr. Ian Wilmut	Development of Dolly (Cloning method)
Dr. Suniti Solomon	Pioneered HIV research and tre atment in India
Johann Lippershey	Invention of the first telescope
James P. Mitchell	Development of the first LED television screen.
Martin Klaproth	Discovery of Radioactive element Uranium was derived from a mineral pitchblende.

முக்கிய சேர்மங்கள் / Important Compounds • N₂ – நைட்ரஜன் மூலக்கூறு / Nitrogen Molecule • Cl₂ – குளோரின் மூலக்கூறு / Chlorine Molecule • F₂ - ∴ப்ளுரின் மூலக்கூறு / Fluorine Molecule ஹேலஜன்கள் / Halogens • Br₂ - புரோமின் மூலக்கூறு / Bromine Molecule • I₂ - அயோடின் மூலக்கூறு / Iodine Molecule — CO₂ - கார்பன் டை ஆக்ஸைடு / Carbon-di-oxide • CO - கார்பன் மோனாக்ஸைடு / Carbon monoxide • CH₄ - மீத்தேன் / Methane NH₃ - அம்மோனியா / Ammonia • HCl - ഇ്പെട്രോക്രേണ്ട്രോക്ക് എഥിയെ / Hydrochloric acid H₂SO₄ - கந்தக அமிலம் / Sulphuric acid - கனிம அமிலங்கள் / In-Organic acids HNO₃ - நைட்ரிக் அமிலம் / Nitric acid • CH₃COOH - அசிட்டிக் அமிலம் / Acetic acid • CH₃ – CH₂ – COOH– புரப்பணயிக் அமிலம் / Propanoic acid கரிம அமிலங்கள் / • COOH - ஆக்சாலிக் அமிலம் / Oxalic acid **Organic acids** • HCOOH - பார்மிக் அமிலம் / Formic acid Ca₃(PO₄)₂ - கால்சியம் பாஸ்பேட் / Calcium Phosphate C₆H₁₂O₆ - குளுக்கோஸ் / Glucose, CHO - வினைத்தொகுதி / Functional Group ullet $C_6H_{12}O_6$ - ப்ரட்டோஸ் / Fructose, CO - வினைத்தொகுதி / Functional Group C₁₂H₂₂O₁₁ - சுக்ரோஸ் / Sucrose • Al(OH)₃ - அலுமினியம் ஹைட்ராக்ஸைடு / Aluminium Hydroxide • Al₂O₃ - அலுமினா / Alumina SiO₂ - சிலிக்கா (சிலிக்கன் டை ஆக்ஸைடு) / Silica (Silicon-di-oxide) • Fe_2O_3 - இரும்பு ஆக்ஸைடு / Iron oxide • FeS - இரும்பு சல்பைடு / Iron Sulphide • CaO - கால்சியம் ஆக்ஸைடு / Calcium oxide • CaCO₃ - கால்சியம் கார்பனேட் / Calcium carbonate (or) மார்பின் / Marble (or) சுண்ணாம்பு கல் / Lime stone • NaCl - சோடியம் குளோரைடு / Sodium Chloride • CaCl₂ - கால்சியம் குளோரைடு / Calcium Chloride FeSO₄ - இரும்பு சல்பேட் / Iron Sulphate • CuSO₄ - காப்பர் சல்பேட் / Copper Sulphate • AgCl - சில்வர் குளோரைடு / Silver Chloride AgNO₃ - சில்வர் நைட்ரேட் / Silver nitrate • AgBr - சில்வர் புரோமைடு / Silver bromide CaO - சுட்ட சுண்ணாம்பு / Burnt lime Pb(NO₃)₂ - லெட் நைட்ரேட் / Lead nitrate KNO₃ - பொட்டாசியம் நைட்ரேட் / Potassium nitrate Na₂SO₄ - சோடியம் சல்பேட் / Sodium Sulphate

• ZnCO₃ - துத்தநாக கார்பனேட் / Zinc carbonate

நிறைவுற்ற ஹைட்ரோ கார்பன்கள் / Important Hydro carbons

- CH₄ மீத்தேன் / Methane
- CH₃ CH₃ ஈத்தேன் / Ethane
- CH₃ CH₂ CH₃ புரப்பேன் / Propane
- CH₃ (CH₂)₂ CH₃ பியூட்டேன் / Butane
- CH₃ (CH₂)₃ CH₃ பென்டேன் / Pentane

முக்கிய வேதிச்சமன்பாடுகள்

• CH₃ - (CH₂)₈ - CH₃ - டெக்டேன் / Dectane

• CH₃ - (CH₂)₄ - CH₃ - ஹெக்சேன் / Hexane

• CH₃ - (CH₂)₅ - CH₃ - ஹெப்டேன் / Heptane

• CH₃ - (CH₂)₆ - CH₃ - ஆக்டேன் / Octane

• CH₃ − (CH₂)₇ − CH₃ - நானேன் / Nonane

1. காப்பர் சல்பேட் பென்டா னைட்ரேட் (நீல விட்ரியால் அல்லது மயில் துத்தத்தின் வெப்பத்தின் விளைவு)

வெப்பப்படுத்துதல் CuSO₄·5H₂O CuSO₄ + 5 H₂O குளிர்வித்தல் (காப்பர் சல்பேட் (நீரற்ற காப்பர் பென்டாஹைட்ரேட்) சல்பேட் + நீர்)

2. மெக்னீசியம் சல்பேட் ஹெப்டாஹைட்ரேட்டின் (MgSO₄. 7H₂o – எப்சம் உப்பு) வெப்பத்தின் விளைவு

வெப்பப்படுத்துதல் \Rightarrow MgSO₄·7H₂O MgSO₄ + 7H₂O குளிர்வித்தல் (மெக்னீசியம் சல்பேட் (நீரம்ம ஹைப்டாஹைட்ரேட்) மெக்னீசியம் சல்பேட் + நீர்)

3. எத்தனால் தயாரித்தல்

4. ஓளிச்சேர்க்கை வினை

$$6CO_2 + 12H_2O \xrightarrow{\text{சூரியஒளி}} C_6H_{12}O_6 + 6H_2O + 6O_2$$

5. காற்று சுவாசம்

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$$

6. காந்நில்லா சுவாசம்

$$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH +$$
 ஆற்றல் (ATP)

Important Chemical Equations

1. Copper sulphate penta hydrate CuSO₄.5H₂O (Blue vitriol)

Heating $CuSO_4 + 5H_2O$ CuSO₄·5H,O Cooling (Copper sulphate (Anhydrous copper pentahydrate) sulphate)

2. Magnesium sulphate hepta hydrate MgSO₄.7H₂O (Epsom salt)

Heating $MgSO_4 + 7H_2O$ $MgSO_4 \cdot 7H_2O$ Cooling (Magnesium sulphate (Anhydrous Magnesium heptahydrate) sulphate)

3. Manufacture of Ethanol

$$\begin{array}{ccc} C_{12}H_{22}O_{11}+H_2O & \xrightarrow{invertase} & C_6H_{12}O_6+C_6H_{12}O_6\\ Sugar & & glucose & fructose \\ \end{array}$$

$$\begin{array}{ccc} C_6H_{12}O_6 & \xrightarrow{zymase} & 2C_2H_5OH+2CO_2\\ glucose & & ethanol \end{array}$$

4. Photosynthesis reaction

$$6\text{CO}_2 + 12\text{H}_2\text{O} \xrightarrow{\text{Light}} \text{C}_6\text{H}_12\text{O}_6 + 6\text{H}_2\text{O} + 6\text{O}_2\uparrow$$

5. Aerobic respiration

$$C_6H_{12}O_{6+}6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$$

6. Anaerobic respiration

$$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH + \text{Energy (ATP)}$$

www.waytosuccess.org