

Overview

- A Feed-Forward Neural Network
- Designed to a Curve-Fitting problem in a high dimensional space
- Strict Interpolation
- Three Layers: Input, Hidden, and Output

Comparison of RBF Networks and MLP-Similarities

- RBF Networks and MLP are examples of nonlinear layered feed-forward networks.
- Universal Approximators
- RBF networks capable of mimicking MLP or Vice versa.

Comparison of RBF Networks and MLP- Differences

Network Architecture-

MLP – One or more hidden layers RBF network - Single hidden layer

Computation nodes

MLP – Hidden or Output layer – Share a common neuronal model.

RBF Network – Hidden and Output layer serve different purpose

5

Comparison of RBF Networks and MLP- Differences

Hidden and Output Layer -

MLP – Usually hidden and output layer nonlinear RBF network - Hidden – Nonlinear, Output – Linear

Activation Function

MLP – Hidden - Inner product of input vector and synaptic weight vector

RBF Network – Hidden Euclidean Norm (distance) between the input vector and the center of the unit

Approximations to Nonlinear inputoutput mapping

MLP – Constructs **GLOBAL approximations**RBF network – Using exponentially decaying localized nonlinearities (e.g. Gaussian Functions) constructs **LOCAL approximations**.

The Regularization Network

- A universal approximator
- Has the best-approximation property
- Computes the optimal solution
- One-to-one correspondence
- Computationally complex for large N

Applications

- Image Processing
- Speech Recognition
- Pattern Recognition
- Time-Series Analysis
- Radar Point Source Location
- Medical Diagnosis
- Process Faults Detection

FERAT SAHIN

Bradley Department of Electrical Engineering Virginia Polytechnic Institute and State University

July 8, 1998

Overview of Presentation

- The Color Classification System
- Definitions
- RBFN Solution to the Color Image Classification Problem
- Comparisons and Discussion
- Conclusions and Future Directions

The Color Classification System

- Background
 - Automatic Vision-based Classification System
 - American Woodmark Corporation
- System Overview

The most important issues in a pattern recognition system

- Selection of a suitable color space
- Quantization of the color space(feature extraction)
- Finding an appropriate classification method
- Acquisition of a model database of images

Definitions

- Color Spaces
- Color Quantization
- Color Classification Methods

Normalized RGB Space

$$N_c = \frac{C}{(R+G+B)} \quad \text{for } C \in \{R,G,B\} \text{ and } R+G+B \neq 0$$

$$N_r + N_g + N_b = 1$$

$$Y = c_1 R + c_2 G + c_3 B$$
 where $c_1 + c_2 + c_3 = 1$

$$T_1 = \frac{R}{(R+G+B)}$$

$$T_2 = \frac{G}{(R+G+B)}$$

Y: Luminance

 T_1, T_2 : Chromatic

Color Quantization

- Uniform Quantization
- Nonuniform Quantization
- Clustering and Vector Quantization

- Color Classification Methods
- Minimum Distance Classifiers
- Radial Basis Function Networks

Minimum Distance Classifiers

- Euclidean Distance

$$d_{1}^{2}(x,y) = \sum_{i=1}^{k} (x_{i} - y_{i})^{2}$$

- City-block Metric Distance

$$d_{2}(x, y) = \sum_{i=1}^{k} |x_{i} - y_{i}|$$

RBFN Solution to the Color Image Classification Problem

- Network Structures
 - The Generalized RBFNs
 - Proposed One-dimensional RBFNs
- Input Features
- Methods

Input Features

- The Average Values of Colors
- Covariance Matrix

$$\Sigma = egin{bmatrix} \sigma_{rr} & \sigma_{rg} & \sigma_{rg} \ \sigma_{rg} & \sigma_{gg} & \sigma_{gb} \ \sigma_{rg} & \sigma_{gb} & \sigma_{bb} \end{bmatrix}$$

- The Image Partitioning
- Histogram

Methods

Method Name	Input Feature Type	# of Centers	Network	% Correct
		and RBFs	Structure	Classification
Method I	A verage Colors	8	Traditional	55.06
	(r, g, b)	8	RBFN	
Method II	Image Partitioning	8	Traditional	66.75
	$(r_1, g_1, b_1, r_4, g_4, b_4)$	8	RBFN	
Method III	A verage Colors	23	Traditional	67.79
	(r, g, b)	23	RBFN	
Method IV	Average Colors	8	O-RBFN	72.20
	(r, g, b)	24		
Method V	Av. Colors and STDs (r,	8	O-RBFN	77.66
	$g, b, \sigma_r, \sigma_g, \sigma_b$	48		
Method VI	Covariance Matrix	8	O-RBFN	78.12
	(Nine input features)	72		
Method VII	Histogram	8	Traditional	77.14
	(24 elements)	8	RBFN	
Method VIII	Histogram with white	8	Traditional	78.15
	noise (24 elements)	8	RBFN	
Method IX	Histogram	30	RBFN	77.34
	(24 elements)	30	(Fixed Dilation)	
Method X	Histogram	21, 21	RBFN	79.74 (red)
	(8 elements for each	19, 19	(Fixed Dilation)	80.25 (green)
	color)	16, 16	·	81.81 (blue)
Method XI	Histogram	80	RBFN	84.41 (blue)
	(Only blue 64 elements.)	80	(Fixed Dilation)	

Comparisons and Discussion

- Network structure
- The number of input feature
- The number of RBFs in the Network

Conclusions

- RBFNs are fast and generalize the solution well.
- RBFNs are the best for the nonlinear classification
- One-dimensional RBFNs are successful
- Only one color's histogram is enough
- RBFNs gave more accurate results

