

A04262E

60V N-Channel MOSFET

General Description

- Trench Power MV MOSFET technology
- $\label{eq:low_RDS(ON)} \mbox{-} \mbox{Low Gate Charge}$
- ESD protected

Product Summary

 $V_{\text{DS}} \\$ 60V I_D (at V_{GS} =10V) 16.5A R_{DS(ON)} (at V_{GS}=10V) < 6.5mΩ < 8.5mΩ $R_{DS(ON)}$ (at V_{GS} =4.5V)

Typical ESD protection HBM Class 2

Applications

- High efficiency power supply
- Secondary synchronus rectifier

100% UIS Tested 100% Rg Tested

SOIC-8

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AO4262E	SO-8	Tape & Reel	3000
		,	

Parameter		Symbol	Maximum	Units
Drain-Source Voltag	е	V _{DS}	60	V
Gate-Source Voltage	е	V _{GS}	±20	V
Continuous Drain	T _A =25°C		16.5	
Current	T _A =70°C	I _D	13.0	A
Pulsed Drain Current ^Ċ		I _{DM}	65	
Avalanche Current ^C		I _{AS}	23	A
Avalanche energy	L=0.3mH	E _{AS}	79	mJ
V _{DS} Spike ^G	10µs	V _{SPIKE}	72	V
	T _A =25°C	В	3.1	W
Power Dissipation ^B	T _A =70°C	$-P_{D}$	2.0	vv
Junction and Storage	e Temperature Range	T _J , T _{STG}	-55 to 150	°C

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	31	40	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	IX _θ JA	59	75	°C/W	
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	16	24	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC F	PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =60V, V _{GS} =0V				1	μA
יטאא	Zero Gate Voltage Drain Gurrent		T _J =55°C			5	μΛ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±10	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		1.2	1.65	2.2	V
		V _{GS} =10V, I _D =16.5A			5.2	6.5	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		8.3	10.5	
		V _{GS} =4.5V, I _D =14.5A			6.6	8.5	mΩ
9 FS	Forward Transconductance	V _{DS} =5V, I _D =16.5A			70		S
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Current					4	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =30V, f=1MHz			1650		pF
C _{oss}	Output Capacitance				520		pF
C _{rss}	Reverse Transfer Capacitance			52		pF	
R_g	Gate resistance	f=1MHz		0.6	1.3	2.0	Ω
SWITCHI	NG PARAMETERS	•			•	•	
Q _g (10V)	Total Gate Charge	-V _{GS} =10V, V _{DS} =30V, I _D =16.5A			30	45	nC
Q _g (4.5V)	Total Gate Charge				15	25	nC
Q_{gs}	Gate Source Charge				3.5		nC
Q_{gd}	Gate Drain Charge				6.5		nC
t _{D(on)}	Turn-On DelayTime				6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =1.8 Ω , R_{GEN} =3 Ω			5		ns
t _{D(off)}	Turn-Off DelayTime				29		ns
t _f	Turn-Off Fall Time				7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =16.5A, di/dt=500A		19		ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =16.5A, di/dt=500A/μs			60		nC

A. The value of $R_{\theta,IA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev.1.0: January 2016 www.aosmd.com Page 2 of 5

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using $<300\mu$ s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

G. The spike duty cycle 5% max, limited by junction temperature TJ(MAX)=125 $^{\circ}$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.1.0: January 2016 www.aosmd.com Page 5 of 5