NOTE: this is the SOLUTION to Quiz 5.

The correct answers are indicated for each question, with explanations as needed.

Dr. Manikas

# Your Answers:

1

4/4 points

We are given the following MIPS code with the following latencies. What is the **baseline performance** (number of cycles) for this code?

| ,     | •      |           |                         |         |
|-------|--------|-----------|-------------------------|---------|
| Label | Opcode | Operands  | Comment                 | Latency |
| Loop: | L.D    | F2,0(Rx)  | # F2 <= Mem[Rx+0]       | 3       |
| 10:   | MULT.D | F2,F0,F2  | # F2 <= F0 * F2         | 4       |
| l1:   | L.D    | F4,0(Ry)  | # F4 <= Mem[Ry+0]       | 3       |
| 12:   | ADD.D  | F4,F0,F4  | # F4 <= F0 + F4         | 2       |
| 13:   | S.D    | F4,0(Ry)  | # Mem[Ry+0] <= F4       | 1       |
| 14:   | ADDI   | Rx,Ry,#8  | # Rx <= Ry + 8          | 0       |
| 15:   | SUB    | R20,R4,Rx | # R20 <= R4 - Rx        | 0       |
| 16:   | BNZ    | R20, Loop | # If R20 ≠ 0, goto Loop | 1       |
|       |        |           |                         |         |



22

## **Feedback**

### **General Feedback**

Examine the code and add latencies. Recall that latencies are **extra clock cycles needed**, so add 1 to each latency. Sum all values to get the baseline performance.

| Label Opcode Operands |      |        | Operands | Comment          | Latency | y Cycles |
|-----------------------|------|--------|----------|------------------|---------|----------|
|                       | Loop | : L.D  | F2,0(Rx) | #F2 <= Mem[Rx+0] | 3       | 4        |
|                       | 10:  | MULT.D | F2,F0,F2 | #F2 <= F0 * F2   | 4       | 5        |

| I1: | L.D   | F4,0(Ry)  | # F4 <= Mem[Ry+0]      | 3   | 4  |
|-----|-------|-----------|------------------------|-----|----|
| 12: | ADD.D | F4,F0,F4  | # F4 <= F0 + F4        | 2   | 3  |
| 13: | S.D   | F4,0(Ry)  | # Mem[Ry+0] <= F4      | 1   | 2  |
| 14: | ADDI  | Rx,Ry,#8  | # Rx <= Ry + 8         | 0   | 1  |
| 15: | SUB   | R20,R4,R  | x # R20 <= R4 - Rx     | 0   | 1  |
| 16: | BNZ   | R20, Loop | # If R20 ≠ 0, goto Loo | p 1 | 2  |
|     |       |           |                        |     | 22 |

Thus, the total baseline performance of this code is 22 cycles.

2 4/4 points

We are given the following MIPS code. Registers that have **data dependencies** are (check all that apply):

| Label | Opcode | Operands  | Comment           | Latency |
|-------|--------|-----------|-------------------|---------|
| Loop: | L.D    | F8,0(Rx)  | # F8 <= Mem[Rx+0] | 2       |
| 10:   | MULT.D | F10,F0,F8 | # F10 <= F0 * F8  | 4       |
| I1:   | L.D    | F6,0(Ry)  | # F6 <= Mem[Ry+0] | 2       |
| 12:   | SUB.D  | F4,F0,F8  | # F4 <= F0 - F8   | 1       |
| 13:   | S.D    | F4,0(Ry)  | # Mem[Ry+0] <= F4 | 2       |
| 14:   | ADDI   | Rx,Ry,#8  | # Rx <= Ry + 8    | 0       |

Ry



\_\_\_ R>

F0



F10

# **Feedback**

### **General Feedback**

F8 value updated in Loop: L.D, used as input in I0: MULT.D

F4 value updated in I2: SUB.D, used as input in I3: S.D

We are given the following partial MIPS code with the following latencies. How many **stalls** should be added after the first line of code?

| Opcode | Operands  | Latency |
|--------|-----------|---------|
| L.D    | F8,0(Rx)  | 2       |
| MULT.D | F10,F0,F8 | 4       |

( ) 3



**O** 2

 $\bigcirc$  1

**4** 

 $\bigcirc$  C

## Feedback

### **General Feedback**

MULT.D has a data dependency in register F8 with L.D.

L.D has a latency of 2, so we need to add 2 stalls after instruction L.D.

### 4

4/4 points

We are given the following MIPS code with the following latencies:

|       |             | Latency |
|-------|-------------|---------|
| L.D   | F0, 10(R2)  | 2       |
| ADD.D | F10, F8, F0 | 1       |
| DIV.D | F2, F10, F6 | 5       |
| L.D   | F4, 0(R3)   | 2       |
| ADD.D | F12, F4, F2 | 1       |
|       |             |         |

The code has started executing using the following **Tomasulo's** architecture, up through clock cycle **2** as shown in the table below. Items updated during cycle 2 are shown in *red* font.

| Instruction stat  | us table: |       |                |           |              |              | Load buffer | rs:  |        |
|-------------------|-----------|-------|----------------|-----------|--------------|--------------|-------------|------|--------|
| Instruction       |           | j     | k              | Issue     | Exec<br>comp | Write result |             | Busy | Addres |
| L.D               | F0        | 10    | R2             | 1         |              |              | Load1       | Yes  | 10+R2  |
| ADD.D             | F10       | F8    | F0             | 2         |              |              | Load2       | No   | 5.     |
| DIV.D             | F2        | F10   | F6             | 3         |              | 20           | Load3       | No   | 5.5    |
| L.D               | F4        | 0     | R3             | 2         | c.           |              |             |      |        |
| ADD.D             | F12       | F4    | F2             |           |              |              |             |      |        |
| Reservation Sta   | ntions:   |       |                |           |              |              |             |      |        |
|                   |           |       |                | S1        | S2           | RS           | RS          |      |        |
| Time              | Name      | Busy  | Ор             | <u>Vi</u> | <u>Vk</u>    | Qį           | Qk          |      |        |
|                   | Add1      | Yes   | ADD.D          | F8        |              |              | Load1       |      |        |
|                   | Add2      | No    | and the second |           |              |              |             |      |        |
|                   | Add3      | No    | 33             | 3         |              | 89           |             |      |        |
|                   | Mult1     | No    | 55             | 3         | c.           |              |             |      |        |
|                   | Mult2     | No    |                |           |              |              |             |      |        |
| Register result s | status:   |       |                |           |              | <br>         |             |      |        |
| Clock             |           | F0    | F2             | F4        | F6           | F8           | F10         | F12  | F14    |
| 2                 | FU        | Load1 |                |           |              |              | Add1        |      |        |

During clock cycle **3**, which **Load buffers** get updated (select all that are updated during this cycle)?

| Load | 2 |
|------|---|
| LUdu | _ |

Load1

Load3



No load buffers get updated

# **Feedback**

### **General Feedback**

DIV.D instruction issued with latency 5. Assign to reservation station Mult1. Value of F6 known, but value of F10 waiting on result of Add1. Load1 completing.

Load1 is completing, but will not write result until next cycle. Therefore, no load buffers get updated.

| ı |   |  |
|---|---|--|
| ۰ | ١ |  |

### 4/4 points

We are given the following MIPS code with the following latencies:

| _  |    |    |               |   |
|----|----|----|---------------|---|
| Э. | ге | ın | $C \setminus$ | , |
| .a |    |    |               |   |

| L.D   | F0, 10(R2)  | 2 |
|-------|-------------|---|
| ADD.D | F10, F8, F0 | 1 |
| DIV.D | F2, F10, F6 | 5 |
| L.D   | F4, 0(R3)   | 2 |
| ADD.D | F12, F4, F2 | 1 |

Instruction status table:

Reservation Stations:

Register result status: Clock

3

Time

F0

F10

F2

F4

F12

Name

Add1

Add2

Add3

Mult1

Mult2

FU

j

10

F8

F10

0

F4

Busy

Yes

No

No

Yes

No

F0

Load1

k

R2

F0

F6

R3

F2

Op

ADD.D

DIV.D

F2

Mult1

Issue

1

2

3

**S1** 

Vi

F8

F4

Instruction

L.D

ADD.D

DIV.D

ADD.D

L.D

The code has started executing using the following **Tomasulo's** architecture, up through clock cycle **2** as shown in the table below. Items updated during cycle 2 are shown in **red** font.

Load buffers:

Load1

Load2

Load3

RS

Qk

Load1

F10

Add1

Busy

Yes

No

No

F12

Address

10+R2

F14

Write

result

RS

Qj

Add1

F8

Exec comp

S2

Vk

F6

F6

| Instruction stat | tus table: |       |       |           |              |              | Load buffer | rs:  |        |
|------------------|------------|-------|-------|-----------|--------------|--------------|-------------|------|--------|
| Instruction      |            | j     | k     | Issue     | Exec<br>comp | Write result |             | Busy | Addres |
| L.D              | F0         | 10    | R2    | 1         |              |              | Load1       | Yes  | 10+R2  |
| ADD.D            | F10        | F8    | F0    | 2         |              |              | Load2       | No   | 0.     |
| DIV.D            | F2         | F10   | F6    |           |              | 8            | Load3       | No   | 3.5    |
| L.D              | F4         | 0     | R3    | 9         |              |              |             |      |        |
| ADD.D            | F12        | F4    | F2    |           |              |              |             |      | -      |
| Reservation St   | ations:    |       |       |           |              |              |             |      |        |
|                  |            |       |       | S1        | S2           | RS           | RS          |      |        |
| Time             | Name       | Busy  | Op    | <u>Vi</u> | <u>Vk</u>    | Qį           | Qk          |      | 1      |
|                  | Add1       | Yes   | ADD.D | F8        |              |              | Load1       |      |        |
|                  | Add2       | No    |       |           |              |              |             |      |        |
|                  | Add3       | No    | 6 33  |           | i.           |              |             |      |        |
|                  | Mult1      | No    |       | 3         |              |              |             |      |        |
|                  | Mult2      | No    |       |           |              |              |             |      |        |
| Register result  | status:    |       |       |           |              |              |             |      |        |
| Clock            |            | F0    | F2    | F4        | F6           | F8           | F10         | F12  | F14    |
| 2                | FU         | Load1 |       |           |              |              | Add1        |      | ~      |

During clock cycle 3, which Reservation Stations get updated (select all that are updated during this cycle)?

| ✓ ✓ Mult1                           |  |
|-------------------------------------|--|
| No reservation stations get updated |  |
| Add1                                |  |
| Mult2                               |  |
| Add3                                |  |
| Add2                                |  |

## **Feedback**

### **General Feedback**

DIV.D instruction issued with latency 5. Assign to reservation station Mult1. Value of F6 known, but value of F10 waiting on result of Add1. Load1 completing.

DIV.D is assigned to Mult1, so this reservation station is updated.

| , |  |
|---|--|
| 4 |  |
| U |  |
|   |  |

### 4/4 points

Instruction status table:

Reservation Stations:

Register result status: Clock

3

Time

F0

F10

F2

F4

F12

Name

Add1

Add2

Add3

Mult1

Mult2

FU

j

10

F8

F10

0

F4

Busy

Yes

No

No

Yes

No

F0

Load1

k

R2

F0

F6

R3 F2

Op

ADD.D

DIV.D

F2

Mult1

Issue

1

2

3

**S1** 

Vi

F8

F4

Instruction

L.D

ADD.D

DIV.D

ADD.D

L.D

We are given the following MIPS code with the following latencies:

|        |           | Latency |
|--------|-----------|---------|
| L.D    | F2,0(R2)  | 2       |
| MULT.D | F8,F6,F2  | 3       |
| L.D    | F4,4(R4)  | 2       |
| ADD.D  | F12,F0,F4 | 1       |
| ADD.D  | F10,F8,F2 | 1       |

The code has started executing using the following **Tomasulo's** architecture, up through clock cycle **3** as shown in the table below. Items updated during cycle **3** are shown in **red** font.

Load buffers:

Load1

Load2

Load3

RS

Qk

Load1

F10

Add1

Busy

Yes

No

No

F12

Address

10+R2

F14

Write

result

RS

Qj

Add1

F8

Exec comp

S2

Vk

F6

F6

| Instruction status table: |           |      |        |          |              |              |       | Load buffers: |      |         |  |
|---------------------------|-----------|------|--------|----------|--------------|--------------|-------|---------------|------|---------|--|
| Instruction               |           | j    | k      | Issue    | Exec<br>comp | Write result |       |               | Busy | Address |  |
| L.D                       | F2        | 0    | R2     | 1        | 3            |              |       | Load1         | Yes  | 0+R2    |  |
| MULT.D                    | F8        | F6   | F2     | 2        |              |              |       | Load2         | Yes  | 4+R4    |  |
| L.D                       | F4        | 4    | R4     | 3        |              |              |       | Load3         | No   |         |  |
| ADD.D                     | F12       | F0   | F4     | 1800     | 8            | 5            |       |               |      |         |  |
| ADD.D                     | F10       | F8   | F2     |          |              |              |       |               |      |         |  |
| Reservation               | Station   | s:   |        |          |              |              |       |               |      |         |  |
|                           |           |      |        | S1       | S2           | RS           | RS    |               |      |         |  |
| Time                      | Name      | Busy | Op     | Χį       | <u>Vk</u>    | Qj           | Qķ    |               |      |         |  |
|                           | Add1      | No   | 8      |          |              |              |       |               |      |         |  |
|                           | Add2      | No   |        |          |              |              |       |               |      |         |  |
|                           | Add3      | No   |        |          |              |              |       |               |      |         |  |
|                           | Mult1     | Yes  | MULT.D | F6       |              |              | Load1 |               |      |         |  |
|                           | Mult2     | No   |        |          |              |              |       |               |      |         |  |
| Register res              | ult statu | s:   |        | <u>-</u> |              |              |       |               |      | I       |  |
| Clock                     |           | F0   | F2     | F4       | F6           | F8           | F10   | F12           | F14  |         |  |
| 3                         | FU        |      | Load1  | Load2    |              | Mult1        |       |               |      |         |  |

| During clock cycle 4, in the <b>Register result status</b> section, which registers get updated (select all that are updated during this cycle)? |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ FO                                                                                                                                             |
| F6                                                                                                                                               |
| F4                                                                                                                                               |
| F8                                                                                                                                               |
| ✓ <b>F</b> 2                                                                                                                                     |
| No registers get updated                                                                                                                         |
| ✓ <b>F</b> 12                                                                                                                                    |
| F14                                                                                                                                              |
| F10                                                                                                                                              |
|                                                                                                                                                  |

# **Feedback**

### **General Feedback**

- First L.D writes result to FU F2 and frees up Load Buffer Load 1.
- MULT.D has both input register values (F6, F2) and now starts executing with latency 3.
- First ADD.D instruction is issued and occupies Reservation Station Add1.
- Register F0 is available now, but Add1 must wait for Load2 to get value for F4.

# Both registers F2 and F12 are updated.

| Instruction status table: |           |                 |             |           |              | Load buffers:   |             |       |      |         |
|---------------------------|-----------|-----------------|-------------|-----------|--------------|-----------------|-------------|-------|------|---------|
| Instruction               |           | j               | k           | Issue     | Exec<br>comp | Write<br>result |             |       | Busy | Address |
| L.D                       | F2        | 0               | R2          | 1         | 3            | 4               |             | Load1 | No   |         |
| MULT.D                    | F8        | F6              | F2          | 2         |              |                 |             | Load2 | Yes  | 4+R4    |
| L.D                       | F4        | 4               | R4          | 3         |              |                 |             | Load3 | No   |         |
| ADD.D                     | F12       | F0              | F4          | 4         |              |                 |             |       |      |         |
| ADD.D                     | F10       | F8              | F2          |           |              |                 |             |       |      |         |
| Reservation               | Station   | s:              |             |           |              |                 |             |       |      |         |
| Time                      | Name      | Busy            | On.         | S1        | S2           | RS              | RS          |       |      |         |
| Time                      | Add1      | Yes             | Op<br>ADD.D | Vį.<br>FO | <u>Vk</u>    | Qj              | Qk<br>Load2 |       |      |         |
|                           | Add2      | No              | ADD.D       | FO        |              | î               | LUduz       |       |      |         |
|                           | Add3      | No              | 9           | (         | 4            |                 | 36          |       |      |         |
| 3                         | Mult1     | Yes             | MULT.D      | F6        | F2           |                 |             |       |      |         |
|                           | Mult2     | No              |             |           |              |                 |             |       |      |         |
| Register res              | ult statu | <u> </u><br> S: |             |           |              |                 |             |       |      |         |
| Clock                     |           | F0              | F2          | F4        | F6           | F8              | F10         | F12   | F14  |         |
| 4                         | FU        | , in the second | M[0+R2]     | Load2     |              | Mult1           | 46<br>46    | Add1  |      |         |