<u>Proposition</u> 3.4. Let \mathcal{T} be an identity preserving semigroup of Schwarz type on the predual of a W*-algebra M . Then the following assertions are equivalent.

- (a) T is irreducible and $P_{\sigma}(A) \cap i\mathbb{R} \neq \emptyset$.
- (b) T is relatively compact in the weak operator topology and the fixed space of T is generated by a faithful state.
- (c) T is strongly ergodic and the fixed space of T is generated by a faithul state.
- (d) The fixed space of 7 is generated by a faithful state.

<u>Proof.</u> Suppose (a) is satisfied. Since $Fix(T) \neq \{0\}$ there exists a faithful normal state ϕ on M such that $Fix(T) = \phi \mathbb{C}$ (D-III, Thm.1.10.). Therefore T is relatively compact in the weak operator topology by Proposition 3.1., whence (b) holds.

The implications from (b) to (c) and (c) to (d) are trivial.

Suppose that (d) holds. Let ϕ be a faithful normal state on M such that Fix(T) = $\phi\mathbb{C}$. By Proposition 3.1 the semigroup T is strongly ergodic. Therefore the fixed space of T separates the points of Fix(T') . Consequently Fix(T') = $\mathbb{C}1$. Thus the ergodic projection associated with T is given by P = 1 \otimes ϕ , i.e. P\psi = \psi(1)\phi for all \psi(M_* . Let F be a closed T-invariant face of M_*^+ . If $0 \neq \psi \in F$ then

$$\lim_{s\to\infty} C(s) \psi = \psi(1) \phi \in F$$
.

Hence $\phi \in F$ and therefore $F = M_{\star}^{+}$ by the faithfulness of ϕ which proves (a).

The next theorem is an extension of D-III,Thm.1.10 and shows the usefulness of the theory of semitopological semigroups. Assume $T\subseteq L(M_\star)$ to be relatively compact in the weak operator topology. Since T is commutative its closure $S=(T)^-\subseteq L_W(M_\star)$ contains a unique minimal ideal K, called the kernel of S, which is a compact Abelian group ([DeLeeuw-Glicksberg (1961); Junghenn (1971); Krengel (1985), § 2.4]. The identity Q of K is a projection onto