Tablica 4. Testy istotności dla wartości oczekiwanej, wariancji i wskaźnika struktury badanej cechy w jednej populacji X

lp.	H_0 :	H_1 :	Założenia	Statystyka	Rozkład statystyki	R_{α} – przedziały odrzuceń H_0
1	$\begin{cases} m = m_0 \\ m \le m_0 \\ m \ge m_0 \end{cases}$	$ \begin{cases} m \neq m_0 \\ m > m_0 \\ m < m_0 \end{cases} $	$X \sim \mathcal{N}(m; \sigma)$, parametr σ znany, n dowolne	$Z = \frac{\bar{X}_n - m_0}{\frac{\sigma}{\sqrt{n}}}$	$\mathcal{N}(0;1)$	$\begin{cases} (-\infty; \ \underline{z_{\alpha}}) \cup (\underline{z_{1-\alpha}}; \infty) \\ (\underline{z_{1-\alpha}}; \infty) \\ (-\infty; \ \underline{z_{\alpha}}) \end{cases}$
2	$\begin{cases} m = m_0 \\ m \le m_0 \\ m \ge m_0 \end{cases}$	$ \begin{cases} m \neq m_0 \\ m > m_0 \\ m < m_0 \end{cases} $	$X \sim \mathcal{N}(m; \sigma)$, parametr σ nieznany, n dowolne	$t = \frac{\bar{X}_n - m_0}{\frac{S_n}{\sqrt{n}}}$	t — Studenta z $n - 1$ st. swobody	$\begin{cases} (-\infty; \ t_{\frac{\alpha}{2};n-1}) \cup (t_{1-\frac{\alpha}{2};n-1}; \infty) \\ (t_{1-\alpha;n-1}; \infty) \\ (-\infty; \ t_{\alpha;n-1}) \end{cases}$
3	$\begin{cases} m=m_0\\ m\leq m_0\\ m\geq m_0 \end{cases}$	$ \begin{cases} m \neq m_0 \\ m > m_0 \\ m < m_0 \end{cases} $	$X \sim ? (m; \sigma),$ parametr σ nieznany, n > 30	$Z = \frac{\bar{X}_n - m_0}{\frac{S_n}{\sqrt{n}}}$	$pprox \mathcal{N}(0;1)$	$\begin{cases} (-\infty; \ \underline{z_{\alpha}}) \cup (\underline{z_{1-\alpha}}; \infty) \\ (\underline{z_{1-\alpha}}; \infty) \\ (-\infty; \ \underline{z_{\alpha}}) \end{cases}$
4	$\begin{cases} \sigma^2 = \sigma_0^2 \\ \sigma^2 \le \sigma_0^2 \\ \sigma^2 \ge \sigma_0^2 \end{cases}$	$\begin{cases} \sigma^2 \neq \sigma_0^2 \\ \sigma^2 > \sigma_0^2 \\ \sigma^2 < \sigma_0^2 \end{cases}$	$X \sim \mathcal{N}(m; \sigma)$, parametry m, σ nieznane, n dowolne	$\chi^2 = \frac{(n-1)S_n^2}{\sigma_0^2}$	chi-kwadrat z $n-1$ st. swobody	$\begin{cases} (0; \ \chi_{\underline{\alpha};n-1}^{2}) \cup (\chi_{1-\underline{\alpha};n-1}^{2}; \infty) \\ (\chi_{1-\alpha;n-1}^{2}; \infty) \\ (0; \chi_{\alpha;n-1}^{2}) \end{cases}$
5	$\begin{cases} p = p_0 \\ p \le p_0 \\ p \ge p_0 \end{cases}$	$\begin{cases} p \neq p_0 \\ p > p_0 \\ p < p_0 \end{cases}$	$X \sim B(p)$, parametr p nieznany, $0 < p_0 \mp 3 \sqrt{\frac{p_0(1-p_0)}{n}} < 1$	$Z = \frac{\bar{P}_n - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$pprox \mathcal{N}(0;1)$	$\begin{cases} (-\infty; \ \underline{z}\underline{\alpha}) \cup (\underline{z}_{1-\underline{\alpha}}; \infty) \\ (\underline{z}_{1-\alpha}; \infty) \\ (-\infty; \ \underline{z}_{\alpha}) \end{cases}$

Oznaczenia: X – model badanej cechy w populacji, X_1, X_2, \dots, X_n – prosta próba losowa, n – liczebność próby, m – wartość oczekiwana (średnia populacji), \overline{X}_n – średnia arytmetyczna, σ – odchylenie standardowe populacji, S_n – odchylenie standardowe z próby (statystyka nieobciążona), p – wskaźnik struktury populacji, \overline{P}_n frakcja wyróżnionych elementów w próbie, α – poziom istotności testu, z_α – kwantyl rzędu α standardowego rozkładu normalnego, $t_{\alpha;\nu}$ – kwantyl rzędu α rozkładu t-Studenta z ν stopniami swobody, $\chi^2_{\alpha;\nu}$ – kwantyl rzędu α rozkładu chi-kwadrat z ν stopniami swobody.