1

Indian Institute of Technology, Delhi Department of Computer Science and Engineering

CS 232 N Programming Languages Minor II March 15, 2000 16:00-17:00 Maximum Marks: 80

There are several varieties of λ -calculi — in this exam we will focus on a pure, simply-typed λ -calculus. Assuming a denumerable set of variables \mathcal{X} , the syntactic category of expressions is given inductively by the abstract grammar:

$$e ::= x \mid (\lambda x.e_1) \mid (e_1 \ e_2)$$

Expressions have types drawn from a set **Types** that has the following inductive characterization:

$$\tau ::= \alpha \text{ (type variable)} \mid \tau_1 \to \tau_2 \text{ (function types)}$$

The structural static semantics or typing rules are:

$$\Gamma \vdash x : \tau \quad \text{if } \tau = \Gamma(x) \qquad \frac{\Gamma[x \mapsto \tau_1] \vdash e_1 : \tau_2}{\Gamma \vdash (\lambda x. e_1) : \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2}{\Gamma \vdash (e_1 e_2) : \tau_2}$$

where $\Gamma \in \mathcal{X} \longrightarrow_{fin} \mathbf{Types}$ is called a type environment.

Q1 [5+10+1 Marks] **Typing.** (i) If β -equal terms must have the same types, what is the type of a combinator Y satisfying $(Y \ f) =_{\beta} f(Y \ f)$?

Y: $(\gamma \to \gamma) \to \gamma$. (let $f: \alpha, (Y|f): \beta$, then $Y: \alpha \to \beta$ and $\alpha = \beta \to \beta$)

(ii) Show that the λ -expression $(\lambda x.(x\ x))$ is not typable under the above typing rules.

Let $x: \alpha, (x \ x): \beta$, then $x: \alpha \to \beta$, which fails to unify with α .

From this example, what can we conclude about the typability of the following λ -calculus expressions? Not typable, because they contain self-application $(x \ x)$

$$\Omega \equiv ((\lambda x.(xx))(\lambda x.(xx)))$$
 and $Y_{Curry} \equiv \lambda f.((\lambda x.f(xx))(\lambda x.f(xx)))$

Q2 [8+16 marks] **Reduction Semantics.** "Call by lazy" is an evaluation strategy for the λ -calculus that is defined by the following evaluation rules:

$$((\lambda x.e_1) \ e_2) \triangleright_1 e_1[e_2/x] \qquad \frac{e_1 \triangleright_1 e_1'}{(e_1 \ e_2) \triangleright_1 (e_1' \ e_2)}$$

(a) Characterize the normal forms (called weak head normal forms) under this strategy?

$$b ::= x \parallel (\lambda x.e) \parallel x e_1 e_2 \dots e_k$$

(b) By the Principle of <u>Qualification</u>, we decide to extend our λ -calculus with a construct for local definitions: let $x \stackrel{\triangle}{=} e_1$ in e_2 end. Extend the typing rules and the reduction semantics of the call-by-lazy λ -calculus to deal with this new construct. Which principle guides the formulation of your new rule? Principle of Correspondence.

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma[x \mapsto \tau_1] \vdash e_2 : \tau}{\Gamma \vdash \mathbf{let} \ x \stackrel{\triangle}{=} e_1 \ \mathbf{in} \ e_2 \ \mathbf{end} : \tau} \quad \mathbf{let} \ x \stackrel{\triangle}{=} e_1 \ \mathbf{in} \ e_2 \ \mathbf{end} \triangleright_1 e_2[e_1/x]$$

Q3 [40 Marks] **Subject Reduction.** An important theorem about the typed λ -calculi is the "subject reduction" theorem which says that the type of an expression does not change during evaluation. A consequence is that if an expression type-checks (at compile time) one does not require type checking at run-time.

Assume lemmas that say (i) if $\Gamma'[y \mapsto \tau_1'] \vdash e' : \tau'$ then for fresh variable $z \not\in dom(\Gamma')$ $\Gamma'[z \mapsto \tau_1'] \vdash e'[z/y] : \tau'$ and (ii) if $\Gamma'[y \mapsto \tau_1'] \vdash e' : \tau'$ and $y \not\in FV(e')$, then $\Gamma' \vdash e' : \tau'$.

Prove the following proposition that types are preserved under substitution:

If
$$\Gamma[x \mapsto \tau_1] \vdash e : \tau$$
 and $\Gamma \vdash e_1 : \tau_1$, then $\Gamma \vdash e[e_1/x] : \tau$

PROOF. (by induction on length of e.)

Base cases: (i) $e \equiv x$: then $e[e_1/x] \equiv e_1$ and clearly $\Gamma \vdash e_1 : \tau$ (given). (ii) $e \equiv y \not\equiv x$: then $e[e_1/x] \equiv y$ and applying Lemma (ii) to $\Gamma[x \mapsto \tau_1] \vdash y : \tau$ (given), we have $\Gamma \vdash y : \tau$.

Induction Hypothesis: Assume that for all Γ', τ' and all e' of length $\leq n$, we have shown that if $\Gamma'[x \mapsto \tau_1] \vdash e' : \tau'$ and $\Gamma' \vdash e_1 : \tau_1$, then $\Gamma' \vdash e'[e_1/x] : \tau'$. (Note that the generalization to all Γ', τ', e' is absolutely necessary for the proof to work.)

Induction Steps Consider e of length n + 1.

(iii) $e \equiv (e'_1 \ e'_2)$, where e'_1, e'_2 are if length $\leq n$: Clearly, we must have $\Gamma[x \mapsto \tau_1] \vdash e'_1 : \tau_2 \to \tau$ and $\Gamma[x \mapsto \tau_1] \vdash e'_2 : \tau_2$ for some τ_2 . By the induction hypothesis applied on each of these, we have $\Gamma \vdash e'_1[e_1/x] : \tau_2 \to \tau$ and $\Gamma \vdash e'_2[e_1/x] : \tau_2$. So $\Gamma \vdash (e'_1[e_1/x] \ e'_2[e_1/x]) : \tau$, but $(e'_1[e_1/x] \ e'_2[e_1/x]) \equiv (e'_1 \ e'_2)[e_1/x]$.

(iv) $e \equiv (\lambda x. e_1')$: Note that $(\lambda x. e_1')[e_1/x] \equiv (\lambda x. e_1')$, and $x \notin FV(e)$, so applying Lemma (ii) to $\Gamma[x \mapsto \tau_1] \vdash e : \tau$ (given), we have $\Gamma \vdash e[e_1/x] : \tau$.

(v) $e \equiv (\lambda y.e_1'), x \not\equiv y$, where e_1' is of length $\leq n$. From $\Gamma[x \mapsto \tau_1] \vdash (\lambda y.e_1') : \tau$ (given), we must have $\Gamma[x \mapsto \tau_1][y \mapsto \tau_2] \vdash e_1' : \tau_3$ for some τ_2, τ_3 ($\tau = \tau_2 \to \tau_3$).

There are two subcases.

If $x \notin FV(e_1')$ or $y \notin FV(e_1)$, then $(\lambda y.e_1')[e_1/x] \equiv \lambda y.(e_1'[e_1/x])$. Since $\Gamma[x \mapsto \tau_1][y \mapsto \tau_2] = \Gamma[y \mapsto \tau_2][x \mapsto \tau_1]$, by the IH, we have $\Gamma[y \mapsto \tau_2] \vdash e_1'[e_1/x] : \tau_3$, and so we get $\Gamma \vdash (\lambda y.e_1')[e_1/x] : \tau_2 \to \tau_3$.

If $x \in FV(e_1')$ and $y \in FV(e_1)$, then $(\lambda y.e_1')[e_1/x] \equiv \lambda z.(e_1'[z/y][e_1/x])$ for some fresh z. Applying Lemma (i) we get $\Gamma[x \mapsto \tau_1][z \mapsto \tau_2] \vdash e_1'[z/y]$: τ_3 . Now, $e_1'[z/y]$ is also of length $\leq n$, so by the IH we get $\Gamma[z \mapsto \tau_2] \vdash e_1'[z/y][e_1/x]$: τ_3 , from which $\Gamma \vdash (\lambda y.e_1')[e_1/x]$: $\tau_2 \to \tau_3$ follows immediately.