Nordhaus-Guddam Type Relations of Three Graph Coloring Parameters

Kuo-Ching Huang

Department of Financial and Computational Mathematics

Providence University Taichung 43301, Taiwan

Email: kchuang@gm.pu.edu.tw

Ko-Wei Lih*

Institute of Mathematics

Academia Sinica

Taipei 10617, Taiwan

Email: makwlih@sinica.edu.tw

Abstract

Let G be a simple graph. A coloring of vertices of G is called (i) a 2-proper coloring if vertices at distance 2 receive distinct colors; (ii) an injective coloring if vertices possessing a common neighbor receive distinct colors; (iii) a square coloring if vertices at distance at most 2 receive distinct colors. In this paper, we study inequalities of Nordhaus-Guddam type for the 2-proper chromatic number, the injective chromatic number, and the square chromatic number.

Keywords: Nordhaus-Guddam type, 2-proper coloring, injective coloring, square coloring, chromatic number.

1 Introduction

Let G = (V, E) be a finite simple graph with vertex set V(G) and edge set E(G). The order |G| of G is the cardinality of V(G). The $degree d_G(v)$ of a vertex $v \in V(G)$ is the number of edges incident to v. The maximum and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The $neighborhood\ N_G(v)$ of a vertex $v \in V(G)$ is the set of vertices adjacent to v. The $distance\ d_G(u,v)$ between two vertices u and

^{*}Supported in part by the National Science Council under grant NSC99-2115-M-001-004-MY3

v is the length of a shortest (u, v)-path. We abbreviate $d_G(u, v)$ to d(u, v) when no ambiguity arises. A subset S of V(G) is an *independent* set of G if $uv \notin E(G)$ for all vertices u and v in S. A subset W of V(G) is a *clique* of G if $uv \in E(G)$ for all vertices u and v in W. A clique on n vertices is denoted by K_n . The *complement* \overline{G} of G is the graph defined on the vertex set V(G) of G such that an edge $uv \in E(\overline{G})$ if and only if $uv \notin E(G)$.

Let k be a positive integer. A mapping $f: V(G) \to \{1, 2, ..., k\}$ is called a (proper) k-coloring of G if $f(u) \neq f(v)$ whenever $uv \in E(G)$. The chromatic number $\chi(G)$ of G is the minimum number k such that G has a k-coloring. The following is a well-known theorem of Nordhaus and Guddam [7].

Theorem 1 If G is a graph of order n, then

1.
$$2\sqrt{n} \leqslant \chi(G) + \chi(\overline{G}) \leqslant n+1$$
.

2.
$$n \leqslant \chi(G)\chi(\overline{G}) \leqslant (n+1)^2/4$$
.

Inequalities involving the sum or product of a parameter applied to a graph and its complement are commonly known as Nordhaus-Guddam type relations. The reader is referred to Aouchiche and Hansen [1] for a recent survey.

A mapping $f: V(G) \to \{1, 2, \dots, k\}$ is called

- a 2-proper k-coloring of G if $f(u) \neq f(v)$ whenever d(u,v) = 2;
- an injective k-coloring of G if $f(u) \neq f(v)$ whenever the u and v have a common neighbor;
- a square k-coloring of G if $f(u) \neq f(v)$ whenever $d(u, v) \leq 2$.

The minimum number k such that G has a 2-proper, an injective, or a square k-coloring is called the 2-proper, injective, or square chromatic number of G. They are denoted by $\chi_2(G)$, $\chi_i(G)$, and $\chi_{\square}(G)$, respectively. Let G^2 be the square graph of G obtained by adding a new edge between any pair of vertices that are distance 2 apart in G. Obviously, $\chi_{\square}(G)$ is precisely $\chi(G^2)$.

The above graph colorings are closely related to a more general notion of graph labelings. Let p and q be two nonnegative integers. A k-L(p,q)-labeling of a graph G is a mapping $f:V(G)\to\{0,1,\ldots,k\}$ such that |f(u)-f(v)| is at least p if d(u,v)=1

and at least q if d(u, v) = 2. The L(p, q)-labeling number $\lambda(G; p, q)$ of G is the least k such that G has a k-L(p, q)-labeling with $\max\{f(v) \mid v \in V(G)\} = k$. Obviously, an L(1, 0)-labeling of a graph G is a proper coloring of G and $\chi(G) = \lambda(G; 1, 0) + 1$; an L(0, 1)-labeling of a graph G is a 2-proper coloring of G and $\chi_2(G) = \lambda(G; 0, 1) + 1$; an L(1, 1)-labeling is a square coloring and $\chi_{\square}(G) = \lambda(G; 1, 1) + 1$. Note that, if G is triangle-free, then $\chi_i(G) = \chi_2(G)$. The reader is referred to Yeh [8] for a survey on L(p, q)-labelings of graphs. The injective coloring has been studied in [2-6].

In this paper, we study inequalities of Nordhaus-Guddam type for the 2-proper chromatic number, the injective chromatic number, and the square chromatic number. Graphs attaining extrema are also obtained.

2 2-proper chromatic numbers

For a given coloring of a graph, a color class consists of all vertices of a fixed color. Note that any color class of a 2-proper coloring consists of disjoint cliques. For $n_1 \ge n_2 \ge \cdots \ge n_r \ge 1$, let K_{n_1,n_2,\ldots,n_r} denote the complete r-partite graph such that its vertex set has r disjoint parts with edges joining every pair of vertices belonging to different parts.

Lemma 2 For $r \ge 2$, $\chi_2(K_{n_1,n_2,...,n_r}) = n_1$.

Proof. Let $\{V_1, V_2, \ldots, V_r\}$ denote the parts of $G = K_{n_1, n_2, \ldots, n_r}$ with $|V_i| = n_i$, $1 \le i \le r$. For each i, color the vertices of V_i with colors $1, 2, \ldots, n_i$ such that no pair of vertices receiving the same color to obtain a 2-proper coloring. Hence $\chi_2(G) \le n_1$.

Theorem 3 For any graph G of order n,

$$1 \leqslant (\chi_2(G)\chi_2(\overline{G}))^{1/2} \leqslant \frac{\chi_2(G) + \chi_2(\overline{G})}{2} \leqslant \frac{n+1}{2}.$$

Proof. It suffices to prove that $\chi_2(G) + \chi_2(\overline{G}) \leq n+1$. Without loss of generality, we may suppose that $\chi_2(G) \geq \chi_2(\overline{G})$. If $\chi_2(G) \leq (n+1)/2$, then $\chi_2(G) + \chi_2(\overline{G}) \leq n+1$. Now assume that $\chi_2(G) > (n+1)/2$.

Among all 2-proper colorings of G using $\chi_2(G)$ colors, let f be chosen with the maximum number of singleton color classes. Let $\{X_i\}_{i=1}^a$, $\{Y_j\}_{j=1}^b$, and $\{Z_k\}_{k=1}^c$ denote, respectively, the collections of color classes of f such that each X_i is a singleton,

each Y_j consists of a single clique of size at least two, and each Z_k consists of at least two disjoint cliques. Thus $\chi_2(G) = a + b + c > (n+1)/2$. First note that a > 0, for otherwise $n \ge 2b + 2c = 2\chi_2(G) > n + 1$.

Let $\mathcal{X} = \bigcup_{i=1}^{a} X_i$, $\mathcal{Y} = \bigcup_{j=1}^{b} Y_j$, and $\mathcal{Z} = \bigcup_{k=1}^{c} Z_k$. Then \mathcal{X} must be an independent set, for otherwise we may re-color two adjacent vertices in \mathcal{X} with the same color to obtain a 2-proper coloring of G using $\chi_2(G) - 1$ colors. The complement $\overline{G[Z_k]}$ of the subgraph $G[Z_k]$ induced by Z_k in G is a complete multipartite graph. By Lemma $2, \chi_2(\overline{G[Z_k]}) \leq |Z_k| - 1$.

Now suppose that b>0. There is a vertex u_1 of Y_1 that is non-adjacent to any vertex in \mathcal{X} . Otherwise, we could re-color each vertex y of Y_1 with color $f(x_{iy})$, where $i_y=\min\{t\mid x_t\in N_G(y)\cap\mathcal{X}\}$, to obtain a 2-proper coloring of G with $\chi_2(G)-1$ colors. Next, we move any vertex $v\in Y_1$ that is different from u_1 and adjacent to all vertices of Y_2 from Y_1 to Y_2 . In view of the maximality of a, we are left with at least one $v_1\in Y_1$ that is different from u_1 and non-adjacent to a certain vertex $u_2\in Y_2$ if b>1. We may repeat this process of moving vertices to the next color class until we obtain a sequence of vertices $u_1,v_1,u_2,v_2,\ldots,u_b,v_b$ such that $u_j,v_j\in Y_j$, and $u_j\neq v_j$ for $1\leqslant j\leqslant b$ and $v_ju_{j+1}\in E(\overline{G})$ for $1\leqslant j\leqslant b-1$. Now, in \overline{G} , we color u_1 and the vertices in \mathcal{X} with color $1,v_j$ and u_{j+1} with color j+1 for $1\leqslant j\leqslant b-1$, and the vertices in $\mathcal{Y}\setminus\{u_1,v_1,\ldots,v_{b-1},u_b\}$ with colors $b+1,b+2,\ldots,|\mathcal{Y}|-b+1$ such that no pair of vertices receiving the same color. It follows that

$$\chi_2(\overline{G}) \leqslant \sum_{k=1}^c \chi_2(\overline{G[Z_k]}) + |\mathcal{Y}| - b + 1$$

$$\leqslant |\mathcal{Z}| - c + |\mathcal{Y}| - b + 1$$

$$= n - a - b - c + 1$$

$$= n - \chi_2(G) + 1.$$

The above inequalities hold even if b = 0. Therefore, $\chi_2(G) + \chi_2(\overline{G}) \leq n + 1$.

Let us consider the sharpness of inequalities in the above theorem. The lower bound is sharp since $\chi_2(K_n) = \chi_2(\overline{K_n}) = 1$. For the case of upper bound, we first construct an auxiliary graph H_k as follows. Let $k \ge 6$. The vertex set of H_k can be partitioned into an independent set $X = \{x_0, x_1, \ldots, x_{k-1}\}$ and a clique $Y = \{y_0, y_1, \ldots, y_{k-1}\}$ so that each x_i is joined to $y_i, y_{i+1}, \ldots, y_{i+\lfloor k/2 \rfloor}$ except $y_{i+\lfloor k/2 \rfloor-1}$. Here indices are taken modulo k.

For $0 \le i \ne j < k$, if $y_{i+\lfloor k/2 \rfloor - 1}$ and $y_{j+\lfloor k/2 \rfloor - 1}$ are not neighbors of both x_i and x_j , then x_i and x_j together have $2\lfloor k/2 \rfloor > k - 2$ edges joining Y. Hence, they must have a common neighbor and $d_{H_k}(x_i, x_j) = 2$. Suppose that x_i is adjacent to

 $y_{j+\lfloor k/2\rfloor-1}$. Since $k \geqslant 6$, there are three possibilities: (i) $y_{i+\lfloor k/2\rfloor} = y_{j+\lfloor k/2\rfloor-1}$; (ii) $y_{i+\lfloor k/2\rfloor-2} = y_{j+\lfloor k/2\rfloor-1}$; (iii) $y_{i+t} = y_{j+\lfloor k/2\rfloor-1}$ for some $0 \leqslant t \leqslant \lfloor k/2 \rfloor - 3$. Then x_i and x_j have a common neighbor z, where z is y_j for (i), y_{j+1} for (ii), and $y_{j+\lfloor k/2\rfloor}$ for (iii). Again, $d_{H_k}(x_i, x_j) = 2$.

The complement graph $\overline{H_k}$ can be isomorphically described as follows. Let $X = \{x_0, x_1, \ldots, x_{k-1}\}$ be a clique and $Y = \{y_0, y_1, \ldots, y_{k-1}\}$ be an independent set such that each y_i is joined to $x_i, x_{i+1}, \ldots, x_{i+\lceil k/2 \rceil}$ except $x_{i+\lceil k/2 \rceil-1}$. When k is even, $\overline{H_k}$ is isomorphic to H_k . When k is odd, any y_i and $y_j, i \neq j$, together have $2\lceil k/2 \rceil = k+1$ edges joining X. It follows that $d_{\overline{H_k}}(y_i, y_j) = 2$ for $0 \leq i \neq j < k$.

In the second step, we construct a graph $H_{\rm od}$ of order $2k+1 \geqslant 13$ and a graph $H_{\rm ev}$ of order $2k+2 \geqslant 14$ as follows. We join a new vertex ∞ to all y_i 's in H_k to obtain $H_{\rm od}$ and two new independent vertices ∞_1 and ∞_2 to all y_i 's in H_k to obtain $H_{\rm ev}$. It is straightforward to see that $\chi_2(H_{\rm od}) + \chi_2(\overline{H_{\rm od}}) = 2k+2$ and $\chi_2(H_{\rm ev}) + \chi_2(\overline{H_{\rm ev}}) = 2k+3$.

3 Injective chromatic numbers

For the injective chromatic number $\chi_i(G)$ of a graph G, it is clear that $\Delta(G) \leq \chi_i(G) \leq |G|$. Note that if S is a color class of an injective k-coloring, then $\Delta(G[S]) \leq 1$.

Suppose G is a graph of order $n \leq 4$. It is routine to check that (i) $n \leq \chi_i(G) + \chi_i(\overline{G}) \leq 2n$ except $\chi_i(C_4) + \chi_i(\overline{C_4}) = 3$; (ii) $n \leq \chi_i(G)\chi_i(\overline{G}) \leq n^2$ except $G \in \{K_2, \overline{K_2}, P_3, \overline{P_3}, C_4, \overline{C_4}\}$. Here, P_n and C_n denote a path and a cycle on n vertices, respectively.

Lemma 4 Suppose that the graph G has order $n \ge 5$. Then the following statements hold.

- (1) If $\delta(G) \geqslant (n+1)/2$, then $\chi_i(G) = n$.
- (2) If $\delta(G) = \lfloor (n-1)/2 \rfloor$, then $\chi_i(G) \geqslant \delta(G) + 1$.

Proof. (1) Since $\delta(G) \ge (n+1)/2$, $d_G(u) + d_G(v) \ge n+1$ for any two vertices u and v in G. Then u and v have a common neighbor. Hence, $\chi_i(G) = n$.

(2) If $\Delta(G) > \delta(G)$, then $\chi_i(G) \geqslant \Delta(G) \geqslant \delta(G) + 1$. Consider $\Delta(G) = \delta(G) = \lfloor (n-1)/2 \rfloor = k$. Suppose $\chi_i(G) = k$ and let $\{V_1, V_2, \dots, V_k\}$ be the set of color classes of an injective k-coloring of G. If $|V_i| \leqslant 2$ for all i, then $n = \sum_{i=1}^k |V_i| \leqslant 2k \leqslant n-1$, a contradiction. Assume that, for some i, V_i contains at least three vertices v_1, v_2, v_3 .

Since no two vertices in V_i have a common neighbor, $\Delta(G[V_i]) \leq 1$ and hence $n-3 \geq |\bigcup_{i=1}^3 N_G(v_i) \setminus \bigcup_{i=1}^3 \{v_i\}| \geq 2(k-1) + k > n-3$ when $n \geq 5$, again a contradiction.

Lemma 5 Suppose G is a k-regular graph of order $n \ge 5$.

- (1) If k > n/2 or k < (n-2)/2, then $n+1 \le \chi_i(G) + \chi_i(\overline{G}) \le 2n$.
- (2) If k = n/2 or (n-2)/2, then $n \leq \chi_i(G) + \chi_i(\overline{G}) \leq 2n$.

Proof. The upper bounds are obvious. Note that, since G is k-regular, \overline{G} is k'-regular, where k' = n - k - 1.

- (1) If k > n/2, by (1) of Lemma 4, $\chi_i(G) = n$. Then $\chi_i(G) + \chi_i(\overline{G}) = n + \chi_i(\overline{G}) \ge n + 1$. If k < (n-2)/2, then k' > n/2. By (1) of Lemma 4, $\chi_i(\overline{G}) = n$ and then $\chi_i(G) + \chi_i(\overline{G}) = \chi_i(G) + n \ge n + 1$.
- (2) If k = n/2, then k' = (n-2)/2. By (2) of Lemma 4, $\chi_i(\overline{G}) \ge k' + 1$ and then $\chi_i(G) + \chi_i(\overline{G}) \ge k + k' + 1 = n$. If k = (n-2)/2, by (2) of Lemma 4, $\chi_i(G) \ge k + 1$ and then $\chi_i(G) + \chi_i(\overline{G}) \ge k + 1 + k' = n$.

Theorem 6 Suppose G is a graph of order $n \ge 5$.

- (1) If n = 5 or n is even, then $n \leq \chi_i(G) + \chi_i(\overline{G}) \leq 2n$.
- (2) If $n \ge 7$ is odd, then $n + 1 \le \chi_i(G) + \chi_i(\overline{G}) \le 2n$.

Proof. The upper bounds are obvious. It is clear that $\chi_i(G) + \chi_i(\overline{G}) \ge \Delta(G) + \Delta(\overline{G}) = \Delta(G) - \delta(G) + n - 1 \ge n + 1$ if $\Delta(G) - \delta(G) \ge 2$.

Case 1. $\Delta(G) = \delta(G) = k$.

Then G is k-regular and \overline{G} is k'-regular, where k'=n-k-1. If n is even, then Lemma 5 implies $\chi_i(G)+\chi_i(\overline{G})\geqslant n$. Moreover, suppose that n is odd. If $k\neq (n-1)/2,\ \chi_i(G)+\chi_i(\overline{G})\geqslant n+1$ by (1) of Lemma 5. If k=(n-1)/2, then k'=(n-1)/2. By (2) of Lemma 4, $\chi_i(G)+\chi_i(\overline{G})\geqslant k+1+k'+1=n+1$. Case 2. $\Delta(G)-\delta(G)=1$.

Then $\chi_i(G) + \chi_i(\overline{G}) \geqslant \Delta(G) + \Delta(\overline{G}) \geqslant n$ and (1) is established. Next, let $n \geqslant 7$ be an odd integer. Suppose on the contrary that $\chi_i(G) + \chi_i(\overline{G}) = n$. Then $\chi_i(G) = \Delta(G)$, $\chi_i(\overline{G}) = \Delta(\overline{G})$ and $\Delta(G) + \Delta(\overline{G}) = n$. Without loss of generality, we may assume $\Delta(G) \geqslant \Delta(\overline{G})$. Hence, $\Delta(G) \geqslant n/2$ which implies $\Delta(G) \geqslant (n+1)/2$. If $\Delta(G) > (n+1)/2$, then $\delta(G) = \Delta(G) - 1 \geqslant (n+1)/2$. By (1) of Lemma 4, $\chi_i(G) = n$ and then $\chi_i(G) + \chi_i(\overline{G}) \geqslant n+1$. Suppose $\chi_i(G) = \Delta(G) = (n+1)/2$. Then $\chi_i(\overline{G}) = \Delta(\overline{G}) = (n-1)/2$ and $\delta(\overline{G}) = (n-3)/2$. Let p = (n-1)/2 and $\{V_1, V_2, \ldots, V_p\}$ be the set of color classes of an injective p-coloring of \overline{G} . Since

p=(n-1)/2, V_i contains at least three vertices v_1,v_2,v_3 for some i. Since no two vertices in V_i have a common neighbor, $\Delta(G[V_i]) \leqslant 1$ and hence $n-3 \geqslant |\bigcup_{i=1}^3 N_G(v_i) \setminus \bigcup_{i=1}^3 \{v_i\}| \geqslant 2(\delta(\overline{G})-1)+\delta(\overline{G})=(n-3)+(n-7)/2$. It follows that n=7 and $N_{\overline{G}}(v_1)=\{v_2,v_4\}$, $N_{\overline{G}}(v_2)=\{v_1,v_5\}$ and $N_{\overline{G}}(v_3)=\{v_6,v_7\}$. Then, in G, we have $v_1v_5 \in E(G)$, $v_2v_4 \in E(G)$, and $N_G(v_3)=\{v_1,v_2,v_4,v_5\}$. Therefore, any pair v_i and v_j , $1 \leqslant i < j \leqslant 5$, have a common neighbor. Then $5 \leqslant \chi_i(G)=(n+1)/2=4$, a contradiction. Therefore, $\chi_i(G)+\chi_i(\overline{G})\geqslant n+1$.

Theorem 7 For any graph G of order $n \ge 5$, $n \le \chi_i(G)\chi_i(\overline{G}) \le n^2$.

Proof. The upper bound is obvious. Let G be a graph of order $n \geq 5$. Suppose $\chi_i(G) = p$ and $\chi_i(\overline{G}) = q$. Let f and g be injective p-coloring and q-coloring of G and \overline{G} , respectively. Define a mapping $h: V(K_n) \to \{1, 2, ..., p\} \times \{1, 2, ..., q\}$ by h(u) = (f(u), g(u)) for all $u \in V(K_n)$. If $h(u) \neq h(v)$ for all vertices u and v, then h is an injective pq-coloring of K_n . Hence, $n = \chi_i(K_n) \leq pq = \chi_i(G)\chi_i(\overline{G})$. Suppose h(u) = h(v) for some vertices u and v. Without loss of generality, we may assume $uv \in E(G)$. Since f(u) = f(v), $N_G(u) \cap N_G(v) = \emptyset$. Since g(u) = g(v), $x \in N_G(u) \cup N_G(v)$ for all vertices x in G. Then $N_G(u) \cup N_G(v) = V(G)$ and any vertex x in G is adjacent to exact one of u and v. Suppose $d_G(u) = a \geqslant d_G(v) = n - a$. Then $\chi_i(G)\chi_i(\overline{G}) \geqslant d_G(u)d_{\overline{G}}(v) = a(a-1) \geqslant \lceil n/2 \rceil (\lceil n/2 \rceil - 1) \geqslant n$.

Consider the sharpness of the lower bounds. For n = 5, $\chi_i(P_5) + \chi_i(\overline{P_5}) = 5$. For $n = 2k \ge 6$, $\chi_i(K_{k,k}) + \chi_i(\overline{K_{k,k}}) = k + k = n$. For $n = 2k + 1 \ge 7$, $\chi_i(K_{k+1,k}) + \chi_i(\overline{K_{k+1,k}}) = k + 1 + k + 1 = n + 1$. For $n \ne 2$, $\chi_i(K_n)\chi_i(\overline{K_n}) = n$.

Now consider the sharpness of the upper bounds. Note that $\chi_i(G) = |G|$ if and only if any two distinct vertices in G have a common neighbor. Using this fact, we may see that $\chi_i(G) + \chi_i(\overline{G}) < 2|G|$ if 1 < |G| < 9. For $k \ge 3$, let $n = 3k + t \ge 9$, where t = 0, 1 or 2. We construct an auxiliary graph G_{3k} as follows. The vertex set of G_{3k} can be partitioned into three cliques $X = \{x_1, x_2, \ldots, x_k\}$, $Y = \{y_1, y_2, \ldots, y_k\}$, and $Z = \{z_1, z_2, \ldots, z_k\}$ such that $\{x_i, y_i, z_i\}$ forms a clique for all $1 \le i \le k$. We join a new vertex ∞ to all x_i 's in G_{3k} to obtain G_{3k+1} and two new vertices ∞_1 and ∞_2 to all x_i 's in G_{3k} to obtain G_{3k+2} . It can be verified that any two distinct vertices in G_n and $\overline{G_n}$ have a common neighbor. Hence, $\chi_i(G_n) + \chi_i(\overline{G_n}) = n + n = 2n$ and $\chi_i(G_n)\chi_i(\overline{G_n}) = n^2$.

4 Square chromatic numbers

Since any pair of vertices that are adjacent or distance 2 apart receive distinct colors in a square coloring, every color class of a square coloring must be an independent set.

Theorem 8 For any graph G of order n, $n+1 \leq \chi_{\square}(G) + \chi_{\square}(\overline{G}) \leq 2n$, or equivalently, $n+1 \leq \chi(G^2) + \chi(\overline{G}^2) \leq 2n$.

Proof. The upper bound is obvious. Suppose G is a graph of order n and $\chi(G^2) = p$. Let $f = (X_1, \ldots, X_a, Y_1, \ldots, Y_b)$ be a square p-coloring of G with a + b = p, $|X_i| = 1$ and $|Y_j| \ge 2$ for all i and j. If a = p, then a = n and $\chi(G^2) + \chi(\overline{G}^2) = n + \chi(\overline{G}^2) \ge n + 1$. Suppose a < p. Since f is a square coloring, each Y_j is an independent set of G and any vertex u in Y_i has at most one neighbor in Y_j for all $i \ne j$. Hence, $uv \in E(\overline{G})$ for some v in Y_j . Then $d_{\overline{G}}(u,v) \le 2$ for all vertices u and v in $\bigcup_{j=1}^b Y_j$. Therefore, $\chi(\overline{G}^2) \ge n - a \ge n - p + 1 = n - \chi(G^2) + 1$, or $\chi(G^2) + \chi(\overline{G}^2) \ge n + 1$.

Theorem 9 For any graph G of order n, $n \leq \chi_{\square}(G)\chi_{\square}(\overline{G}) \leq n^2$, or equivalently, $n \leq \chi(G^2)\chi(\overline{G}^2) \leq n^2$.

Proof. The upper bound is obvious. Since $\chi(G) \leq \chi(G^2)$ and $\chi(\overline{G}) \leq \chi(\overline{G}^2)$, the lower bound is a consequence of the Nordhaus-Guddam theorem.

Consider the sharpness of the lower bounds. It is clear that $\chi(K_n^2) = n$ and $\chi(\overline{K_n}^2) = 1$. Hence, $\chi(K_n^2) + \chi(\overline{K_n}^2) = n + 1$ and $\chi(K_n^2)\chi(\overline{K_n}^2) = n$.

Now consider the sharpness of the upper bounds. For $2 \le n \le 4$, it is routine to check that $\chi(G^2) + \chi(\overline{G}^2) \le 2n - 1$ if |G| = n. For $n \ge 5$, we construct a graph F_n of order n as follows. The vertex set of F_n can be partitioned into a 5-cycle $C_5 = x_1x_2x_3x_4x_5x_1$ and an independent set $Y = \{y_1, y_2, \dots, y_{n-5}\}$ such that each y_i is adjacent to both x_1 and x_3 . It can be verified that any two vertices in F_n , or $\overline{F_n}$, are at distance at most 2. Hence, $\chi(F_n^2) + \chi(\overline{F_n}^2) = n + n = 2n$ and $\chi(F_n^2)\chi(\overline{F_n}^2) = n^2$.

References

[1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Guddam type relations, Discrete Appl. Math. DOI:10.1016/j.dam.2011.12.018.

- [2] O. V. Borodin, A. O. Ivanova, List injective colorings of planar graphs, Discrete Math. 311 (2011) 154-165.
- [3] Y. Bu, D. Chen, A. Raspaud, W. Wang, Injective coloring of planar graphs, Discrete Appl. Math. 157 (2009) 663-672.
- [4] D. W. Cranston, S.-J. Kim, G. Yu, Injective colorings of sparse graphs, Discrete Math. 310 (2010) 2965-2973.
- [5] D. W. Cranston, S.-J. Kim, G. Yu, Injective colorings of graphs with low average degree, Algorithmica 60 (2011) 553-568.
- [6] B. Lužar, R. Škrekovski, M. Tancer, Injective colorings of planar graphs with few colors, Discrete Math. 309 (2009) 5636-5649.
- [7] E.A. Nordhaus, J. Guddam, On complementary graphs, Amer. Math. Monthly, 63(1956) 175-177.
- [8] R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217-1231.