

# MATEMÁTICA BÁSICA - CE82 SEMANA 6 – SP1



Temario: Ecuaciones exponenciales y logarítmicas. Cálculo de dominio de funciones exponencial y logarítmica.

Logro de la sesión: Al término de la sesión el estudiante resuelve ecuaciones exponenciales y logarítmicas. Calcula asertivamente el dominio de diversas funciones exponenciales y logarítmicas.

### **ECUACIONES EXPONENCIALES**

Estas ecuaciones se resuelven usando leyes de exponentes o de logaritmos. Una ecuación exponencial es aquella en la cual la incógnita aparece en el exponente.

Para resolver se aplica la definición:  $b^y = x \Leftrightarrow y = \log_b x$ , luego se escribe el conjunto solución.

### Ejemplo:

Resuelva la ecuación  $3^{x+1} - 4 = 0$ 

### Solución:

• Paso 1: Reescriba la ecuación para que uno de sus lados tenga una única expresión exponencial con la variable como parte del exponente.

$$3^{x+1} = 4$$

• Paso 2: Se aplica la definición.

$$x + 1 = log_3 4$$

• Se escribe le conjunto solución:

$$CS = \{-1 + log_3 4\}$$

**Ejercicios 1:** Resuelva las siguientes ecuaciones

1. 
$$5^{3x-2} + 3 = 9$$

**2.** 
$$e^{\frac{x+1}{2}} - 3 = 2$$

### ECUACIONES LOGARÍTMICAS

En las ecuaciones logarítmicas la variable aparece dentro del argumento de un logaritmo.

Para resolver se aplica la definición:  $\log_b x = y \Leftrightarrow b^y = x$ , luego se escribe el conjunto solución.

Nota: Antes de comenzar a resolver es importante determinar el conjunto de valores que puede tomar la variable (CVA)

### Ejemplo:

Resuelva la ecuación  $\log_2(2x+3)+2=0$ 

## Solución:

• Paso 1: Determine el conjunto de valores admisibles (CVA)

CVA: 2x+3>0 resolviendo la designaldad se obtiene  $x>\frac{-3}{2}$ , CVA =  $\left|\frac{-3}{2}\right|$ ;  $+\infty$ 

• Paso 2: Obtenga una única expresión logarítmica de un lado de la igualdad.

$$\log_2(2x+3) = -2$$





• Paso 3: Aplique la definición:  $\log_b x = y \iff b^y = x$ 

$$2x+3=2^{-2}$$

• Paso 4: Despeje la incógnita, verifique que pertenece al CVA y escriba el conjunto solución.

Verificando 
$$\frac{-11}{8} \in CVA$$
, por lo tanto C.S.= $\left\{\frac{-11}{8}\right\}$ 

Ejercicios 2: Resuelva las siguientes ecuaciones

1. 
$$3 + \log_3(2x - 5) = 5$$
 C.S.={7}

**2.** 
$$6 + 5\ln(4x - 3) = 2$$
 **C. S.**  $= \left\{ \frac{3 + e^{0.8}}{4} \right\}$ 

3. Halle las coordenadas de los puntos de intersección de la gráfica con los ejes coordenados.



## CÁLCULO DE DOMINIO DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

Recordar:

| FUNCIÓN                      | DOMINIO          | RANGO            |  |
|------------------------------|------------------|------------------|--|
| $f(x) = b^x$                 | R                | ] <b>0</b> ; +∞[ |  |
| $f(x) = \log_{\mathbf{b}} x$ | ] <b>0</b> ; +∞[ | R                |  |

Ejemplos: Halle el dominio en cada uno de los siguientes casos

1. 
$$f(x) = \log_2(4x - 12)$$
  
 $4x-12>0$   
 $Dom \ g = R$   
2.  $g(x) = 2^{x-4} + 3$   
 $Dom \ g = R$   
3.  $p(x) = \ln(x+3)$   
 $x+3>0$   
 $p(x) = \frac{5}{2^x - 8}$   
 $p(x) = \frac{5}{2^x - 8}$ 

2/3 EPE INGENIERÍA



## Ejercicios 3: Halle el dominio en cada uno de los siguientes casos:

| 1  | f(x) | 1 = 10g               | (4x-6)            | ١ |
|----|------|-----------------------|-------------------|---|
| 1. | I (A | $I - IU \mathbf{g}_2$ | $1 + \lambda - 0$ | • |

2.  $g(x) = \ln(9-x) + \ln(x-2)$ 

Solución:

$$4x-6>0$$

$$Dom f = \left| \frac{3}{2}; +\infty \right|$$

$$9-x>0 \land x-2>0$$

$$Dom g = ] 2;9 [$$

3. 
$$f(x) = \frac{\sqrt{5-x}}{\log_2 x - 2}$$

4. 
$$f(x) = \frac{\sqrt{x}}{3^x - 27}$$

Solución:

$$5-x>0 \land x>0 \land \log_2 x-2\neq 0$$

$$Dom f = ]0; 5] - \{4\}$$

Solución:

$$x > 0 \land 3^x - 27 \neq 0$$

**Dom** 
$$f = ]0; +\infty[-{3}]$$

#### **CIERRE DE CLASE**



A. Sea la función  $f(x) = 2^{\sqrt{x}}$ , luego ¿su dominio es  $]-\infty;0[$ ? No,

¿Por

qué? **Dom** 
$$f = [0; +\infty[$$

- B. Sea la función  $y = e^{-\frac{1}{x}}$ , luego ¿es cierto que  $]-\infty;\infty[$  es su dominio? No
- C. La función  $y = \ln(4-x)$ , ¿su dominio es? ] $-\infty$ ; 4[ Explique ¿por qué? 4-x>0

### **EJERCICIOS Y PROBLEMAS**

1. Resuelva cada una de las siguientes ecuaciones

| ECUACIÓN              | CONJUNTO SOLUCIÓN                           | ECUACIÓN                                  | CONJUNTO SOLUCIÓN               |
|-----------------------|---------------------------------------------|-------------------------------------------|---------------------------------|
| a) $4^{2-x} + 5 = 13$ | $C. S. = \{2 - \log_4 8\}$                  | c) $\log_3\left(\frac{x}{2}+3\right) = 2$ | $C.S. = \{12\}$                 |
| b) $e^{3x-1} - 2 = 3$ | $C.S. = \left\{\frac{1 + \ln 5}{3}\right\}$ | $d) \ln \left(4-x\right) = 5$             | $C.S. = \left\{4 - e^5\right\}$ |

2. Halle las coordenadas de los puntos de intersección de la gráfica con los ejes

coordenados.  $f(x) = 4 - 2^{x-2}$ 

