

ESM_12

Arithmetic Condition Flags Mouli Sankaran

Focus

- Arithmetic Conditional Flags
 - NZCV Flags
- About the Overflow Flag
- Unsigned and Signed Integers

Arithmetic Conditional Flags

- All the processors have the following conditional flags to indicate the result of Integer Arithmetic operations in the ALU (Arithmetic Logic Unit)
 - Sign Flag (**N**)
 - Zero Flag (Z)
 - Carry Flag (C)
 - Overflow Flag (V)
- In the following sections let us understand the significance of each of them

Definitions of Arithmetic Condition Codes

• Sign Flag (N): Negative

• The last ALU operation which changed the flags produced a negative result (the **Most Significant Bit** of the 32-bit result was a **one**)

Zero Flag (Z)

• The last ALU operation which changed the flags produced a zero result (every bit of the 32-bit result was zero)

Carry Flag (C)

• The last ALU operation which changed the flags generated a carry-out, either as a result of an arithmetic operation in the ALU or from the shifter

oVerflow Flag (V)

• The last arithmetic ALU operation which changed the flags generated a result which cannot be represented within the range of signed values

Interpretation of NZCV Flags

The numbers added in the previous quiz were:

1101 1011

	Binary Values	Unsigned Value	Signed Value	Flags for Unsigned ZC	Flags for Signed NZV
	1101	13	-3		
+	1011	11	-5		
Result	1000	8	-8	01	100

Wrong

Correct

Note: The Overflow (**V**) flag is set to indicate whether the **signed result** after the operation can be fit into the available bits or not. Here **V** is cleared because **-8** can be accommodated within four bits.

Quiz 2

Choose the correct option:

1. Consider a **four bit ALU** which does four bit arithmetic. When the following four bit numbers are added what is the status of **NZCV** flags after the addition is performed?

1101

+ 1011

- a) NZCV = 0111
- b) NZCV = 1000
- c) NZCV = 1001
- d) NZCV = 1010

Correct option: d

Note: Relevant flags needs to be interpreted after the above addition based on whether a signed or unsigned result was needed. Let us spend some time on this.

How is Overflow (V) Flag Set?

Note: Overflow (V) is got by **XOR**ing the carry coming out of the bits prior to Most Significant Bits and the carry from the Most **Significant Bits.**

Carry Flag: 1 1 1 0 1

Result of addition: $1 \ 0 \ \overline{0}$

One more Example

Let us take another example:

0111

+ 0011

	Binary Values	Unsigned Value	Signed Value	Flags for Unsigned ZC	Flags for Signed NZV
	0111	7	7		
+	0011	3	3		
Result	1010	10	-6	00	101

Notes:

- 1. The V (overflow flag) convey whether a **signed** arithmetic has given out a result which is **incorrect**.
- 2. If numbers are interpreted as **unsigned**, the **overflow flag is irrelevant**.
- 3. But if the numbers added are interpreted as **signed**, if **V** is set, it means, either two large positive numbers were added and the result became negative or two large negative numbers were added and the result became positive.

Unsigned and Signed Integers

- In C, an integer variable can be defined either as signed or unsigned
- When these variables are declared, compiler allocates memory space either in data or stack area depending on whether they are global/static/local variables
- When any arithmetic operation needs to be performed on these variables, they are brought into registers from memory
- The processor does not have any knowledge on whether a signed or unsigned integer is moved into a register
- When an arithmetic operation is performed they affect all the condition flags NZCV
- Later proper instructions are to be used by the compiler to check either C flag or V flag to interpret the result based on whether the variables are declared as **signed** or **unsigned**.

Find the solution

1. Assume i and j are 32 bit data. Find (i<<5 && j>>3) given int i = 0x12f and int j = 0xf

2. Assume i is a 32 bit data. Find i<<2 for signed int i = -1

Summary

- Arithmetic Conditional Flags
 - NZCV Flags
- About the Overflow Flag
- Unsigned and Signed Integers