UNIT-II

Contents

- Introduction to Number Theory
- Fermat's and Euler's Theorem
- The Chinese Remainder Theorem
- Euclidean Algorithm, and
- Modular Arithmetic

Prime Numbers

- prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is prime
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

```
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
```

Prime Factorisation

- to factor a number n is to write it as a product of other numbers: n=a × b × c
- note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes
 - **eg.** $91=7\times13$; $3600=2^4\times3^2\times5^2$
 - It is unique $a = \prod_{p \in P} p^{a_p}$

Relatively Prime Numbers & GCD

- two numbers a, b are relatively prime if have no common divisors apart from 1
 - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
 - **eg.** $300=2^1\times 3^1\times 5^2$ $18=2^1\times 3^2$ **hence** GCD $(18,300)=2^1\times 3^1\times 5^0=6$

Fermat's Little Theorem

- a^{p-1} mod p = 1
 where p is prime and a is a positive integer not divisible by p
- also known as Fermat's Little Theorem
- useful in public key and primality testing

Euler Totient Function \emptyset (n)

- when doing arithmetic modulo n
- complete set of residues is: 0..n-1
- reduced set of residues includes those numbers which are relatively prime to n
 - eg for n=10,
 - complete set of residues is {0,1,2,3,4,5,6,7,8,9}
 - reduced set of residues is {1,3,7,9}
- Euler Totient Function ø(n):
 - number of elements in reduced set of residues of n
 - $\phi(10) = 4$

Euler Totient Function Ø (n)

- to compute ø(n) need to count number of elements to be excluded
- in general need prime factorization, but
 - -for p (p prime) \varnothing (p) = p-1
 - for p.q (p,q prime) \varnothing (p.q) = (p-1) (q-1)
- eg.
 - $\emptyset (37) = 36$
 - $\varnothing (21) = (3-1) \times (7-1) = 2 \times 6 = 12$

Euler's Theorem

- a generalisation of Fermat's Theorem
- $a^{g(n)} \mod n = 1$
 - where gcd(a, n) = 1
- eg.
 - $-a=3; n=10; \emptyset (10)=4;$
 - -hence $3^4 = 81 = 1 \mod 10$
 - $-a=2; n=11; \varnothing (11)=10;$
 - -hence $2^{10} = 1024 = 1 \mod 11$

Chinese Remainder Theorem

- Used to speed up modulo computations
- Used to modulo a product of numbers
 - eg. mod $M = m_1 m_2 ... m_k$, where $gcd(m_i, m_j)=1$
- Chinese Remainder theorem lets us work in each moduli m_i separately
- since computational cost is proportional to size, this is faster than working in the full modulus M

Chinese Remainder Theorem

 to compute (A mod M) can firstly compute all (a_i mod m_i) separately and then combine results to get answer using:

$$\begin{split} A &\equiv \left(\sum_{i=1}^k a_i c_i\right) \bmod M \\ c_i &= M_i \times \left(M_i^{-1} \bmod m_i\right) \quad \text{for } 1 \leq i \leq k \end{split}$$

Divisors

- say a non-zero number b divides a if for some m have a=mb (a, b, m all integers)
- that is b divides into a with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24
- eg. 13 | 182; -5 | 30; 17 | 289; -3 | 33; 17 | 0

Properties of Divisibility

- If a|1, then $a = \pm 1$.
- If a|b and b|a, then $a = \pm b$.
- Any b /= 0 divides 0.
- If a | b and b | c, then a | c
 - e.g. 11 | 66 and 66 | 198 x 11 | 198
- If b|g and b|h, then b|(mg + nh)

for arbitrary integers m and n

e.g.
$$b = 7$$
; $g = 14$; $h = 63$; $m = 3$; $n = 2$

hence 7|14 and 7|63

Division Algorithm

 if divide a by n get integer quotient q and integer remainder r such that:

$$-a = qn + r$$
 where $0 \le r \le n$; $q = floor(a/n)$

remainder r often referred to as a residue

Greatest Common Divisor (GCD)

- > a common problem in number theory
- ➤ GCD (a,b) of a and b is the largest integer that divides evenly into both a and b
 - \bullet eg GCD(60,24) = 12
- \rightarrow define gcd(0, 0) = 0
- often want no common factors (except 1) define such numbers as relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904 \quad \gcd(1066, 904)
1066 = 1 \times 904 + 162 gcd(904, 162)
904 = 5 \times 162 + 94 \operatorname{gcd}(162, 94)
162 = 1 \times 94 + 68
                              gcd (94, 68)
94 = 1 \times 68 + 26
                           gcd(68, 26)
68 = 2 \times 26 + 16
                            gcd(26, 16)
26 = 1 \times 16 + 10
                            gcd(16, 10)
16 = 1 \times 10 + 6
                               gcd(10, 6)
10 = 1 \times 6 + 4 \quad gcd(6, 4)
6 = 1 \times 4 + 2
                        gcd(4, 2)
4 = 2 \times 2 + 0
                        gcd(2, 0)
```

GCD(1160718174, 316258250)

Dividend	Divisor	Quotient	Remainder
a = 1160718174	b = 316258250	q1 = 3	r1 = 211943424
b = 316258250	r1 = 211943424	q2 = 1	r2 = 104314826
r1 = 211943424	r2 = 104314826	q3 = 2	r3 = 3313772
r2 = 104314826	r3 = 3313772	q4 = 31	r4 = 1587894
r3 = 3313772	r4 = 1587894	q5 = 2	r5 = 137984
r4 = 1587894	r5 = 137984	q6 = 11	r6 = 70070
r5 = 137984	r6 = 70070	q7 = 1	r7 = 67914
r6 = 70070	r7 = 67914	q8 = 1	r8 = 2516
r7 = 67914	r8 = 2516	q9 = 31	r9 = 1078
r8 = 2516	r9 = 1078	q10 = 2	r10 = 0

Modular Arithmetic

- define modulo operator "a mod n" to be remainder when a is divided by n
 - where integer n is called the modulus
- b is called a residue of a mod n
 - since with integers can always write: a = qn + b
 - usually chose smallest positive remainder as residue
 - ie. 0 <= b <= n-1
 - process is known as modulo reduction
 - eg. $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$
- a & b are congruent if: a mod n = b mod n
 - when divided by n, a & b have same remainder
 - eg. $100 = 34 \mod 11$

Modular Arithmetic Operations

- can perform arithmetic with residues
- uses a finite number of values, and loops back from either end $Z_n = \{0, 1, ..., (n-1)\}$
- modular arithmetic is when do addition & multiplication and modulo reduce answer
- can do reduction at any point, ie
 - $-a+b \mod n = [a \mod n + b \mod n] \mod n$

Modular Arithmetic Operations

```
1. [(a \mod n) + (b \mod n)] \mod n
   = (a + b) mod n
2. [(a mod n) - (b mod n)] mod n
   = (a - b) mod n
3. [(a mod n) x (b mod n)] mod n
   = (a x b) mod n
   e.g.
   [(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2 (11 + 15) \mod 8 = 26 \mod 8 = 2
   [(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4 (11 - 15) \mod 8 = -4 \mod 8 = 4
   [(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5 (11 \times 15) \mod 8 = 165 \mod 8 = 5
```

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

+	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
		2						
3	0	3	6	1	4	7	2	5
		4						
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Modular Arithmetic Properties

Property	Expression
Commutative laws	$(w+x) \bmod n = (x+w) \bmod n$
Commutative laws	$(w \times x) \mod n = (x \times w) \mod n$
Associativa laves	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$
Associative laws	$[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$
Identities	$(0+w) \bmod n = w \bmod n$
Identities	$(1 \times w) \mod n = w \mod n$
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:

```
-GCD(a,b) = GCD(b, a mod b)
```

Euclidean Algorithm to compute GCD(a,b) is:

```
Euclid(a,b)
if (b=0) then return a;
else return Euclid(b, a mod b);
```

Extended Euclidean Algorithm

- calculates not only GCD but x & y:
 ax + by = d = gcd(a, b)
- useful for later crypto computations
- follow sequence of divisions for GCD but assume at each step i, can find x &y:

```
r = ax + by
```

- at end find GCD value and also x & y
- if GCD(a,b)=1 these values are inverses

Finding Inverses

```
EXTENDED EUCLID (m, b)
1. (A1, A2, A3) = (1, 0, m);
   (B1, B2, B3) = (0, 1, b)
2. if B3 = 0
  return A3 = gcd(m, b); no inverse
3. if B3 = 1
  return B3 = gcd (m, b); B2 = b^{-1} mod m
4. Q = A3 \text{ div } B3
5. (T1, T2, T3) = (A1 - Q B1, A2 - Q B2, A3 - Q B3)
6. (A1, A2, A3) = (B1, B2, B3)
7. (B1, B2, B3) = (T1, T2, T3)
8. goto 2
```

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B 1	B2	B3
	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1