

NAVODAYA INSTITUTE OF TECHNOLOGY, RAICHUR

DEPARMENT OF COMPUTER SCIENCE & ENGINEERING

Module - 3

1. Introduction

- **Air** is a vital natural resource, essential for respiration, photosynthesis, and maintaining life on Earth.
- **Air pollution**: Presence of one or more harmful substances in the atmosphere in quantities that cause harm to humans, animals, plants, or property.
- Causes: Industrialization, urbanization, automobiles, burning of fossil fuels, deforestation.

2. Composition of Air

- Nitrogen (N₂): 78%
- Oxygen (O₂): 21%
- Argon (Ar): 0.93%
- Carbon dioxide (CO₂): 0.03-0.04%
- Other gases (Ne, He, CH₄, O₃, etc.): Trace amounts
- Water vapour: Varies from 0–4% (important for weather & climate).

3. Sources of Air Pollutants

(a) Natural Sources

- Volcanic eruptions \rightarrow SO₂, ash
- Forest fires \rightarrow CO, CO₂, particulates
- Dust storms → suspended particles
- Sea spray \rightarrow chlorides, sulphates
- Biological decay → methane, hydrogen sulphide

(b) Anthropogenic (Man-made) Sources

- Industries \rightarrow SO₂, NOx, CO, particulates
- Automobiles → CO, NOx, hydrocarbons, lead
- Thermal power plants \rightarrow fly ash, SO₂, CO₂
- Domestic fuel burning (wood, coal, LPG)
- Agricultural activities → pesticide sprays, burning of crop residues

4. Classification of Air Pollutants

Based on Origin

- o Primary pollutants: Directly emitted (CO, SO₂, NOx, particulates).
- Secondary pollutants: Formed in atmosphere by chemical reactions (O₃, PAN, smog).

· Based on State

- o Particulates: Dust, smoke, ash, mist, fumes.
- o Gases: SO₂, CO, NOx, hydrocarbons.

• Based on Effect

- o Toxic pollutants: CO, lead, arsenic.
- o Greenhouse gases: CO2, CH4, N2O.
- o *Smog-forming pollutants*: NOx + hydrocarbons.

5. National Ambient Air Quality Standards (NAAQS – 2009, CPCB)

Parameters ($\mu g/m^3$):

Pollutant	Time Weighted Average	Industrial, Residential, Rural & Other Areas	Ecologically Sensitive Areas
SO_2	Annual	50	20
	24 hours	80	80
NO_2	Annual	40	30
	24 hours	80	80
PM10	Annual	60	60
	24 hours	100	100
PM2.5	Annual	40	40
	24 hours	60	60
CO	8 hours	2 mg/m³	2 mg/m ³

Pollutant	Time Weighted	Industrial, Residential, Rural &	Ecologically Sensitive
	Average	Other Areas	Areas
	1 hour	4 mg/m³	4 mg/m^3

6. Air Quality Index (AQI)

- AQI = measure to communicate air quality in a single number (0-500).
- Categories:
 - \circ 0–50 \rightarrow Good
 - \circ 51–100 \rightarrow Satisfactory
 - \circ 101–200 \rightarrow Moderate
 - \circ 201–300 \rightarrow Poor
 - \circ 301–400 \rightarrow Very Poor
 - \circ 401–500 \rightarrow Severe

7. Effects of Air Pollution on Human Health

- CO: Binds with haemoglobin \rightarrow reduces oxygen supply \rightarrow headache, dizziness, death.
- SO₂: Irritates lungs, causes bronchitis, asthma.
- NOx: Respiratory problems, eye irritation, contributes to smog.
- Particulates: Lung diseases, cancer, reduced visibility.
- Lead: Affects nervous system, brain damage in children.

8. Economic Effects of Air Pollution

- Damage to crops (ozone & acid rain).
- Corrosion of metals, buildings, and monuments (Taj Mahal \rightarrow acid rain).
- Reduced efficiency of solar panels.
- Increased healthcare costs.
- Loss of productivity due to worker illness.

9. Control of Air Pollution

(a) By Equipment

• **Cyclone separators** – remove larger dust particles by centrifugal force.

- **Electrostatic precipitators** use high voltage to collect fine particles (e.g., in thermal power plants).
- **Bag filters** fabric filters trap dust.
- **Scrubbers** absorb SO₂, NOx by spraying water/alkaline solution.

(b) Smoke & Its Control

- Smoke = mixture of particulates + gases from incomplete combustion.
- Control measures:
 - o Using electrostatic precipitators in industries.
 - o Proper maintenance of vehicles (catalytic converters).
 - o Using clean fuels (LPG, CNG).

10. Ozone Depletion

- Ozone layer protects Earth from harmful UV radiation.
- Cause: CFCs (Chlorofluorocarbons), halons, freons → release chlorine radicals → destroy ozone.
- Impacts:
 - o Skin cancer, cataracts in humans.
 - o Reduced crop yield.
 - Marine ecosystem damage (plankton).
- Photochemical changes:
 - o UV breaks down CFC → releases Cl radical.
 - \circ Cl + O₃ → ClO + O₂ (ozone destroyed).
 - \circ ClO + O → Cl + O₂ (chain reaction).

1. Introduction – Air and Air Pollution

Air – A Vital Natural Resource

• **Definition**: Air is the invisible mixture of gases that surrounds the Earth, forming the atmosphere.

• Importance:

- **Respiration**: All living beings (humans, animals) need oxygen (O₂) for respiration to release energy from food.
- o **Photosynthesis**: Plants absorb carbon dioxide (CO₂) from the air and release oxygen during photosynthesis.
- o **Climate regulation**: Air contains water vapour which regulates weather, rainfall, and climate.
- o **Protective function**: The ozone layer in the upper atmosphere absorbs harmful ultraviolet (UV) radiation from the Sun.
- o **Transportation**: Winds help in dispersal of seeds, pollination, and also in the distribution of heat and moisture globally.

Air Pollution

• Definition:

Air pollution is the presence of **undesirable solid, liquid, or gaseous substances** in the atmosphere in concentrations harmful to humans, animals, plants, or property.

- WHO Definition: "Air pollution is the presence of materials in the air in such concentration which are harmful to man and his environment."
- Examples of pollutants:
 - o Gases: Carbon monoxide (CO), Sulphur dioxide (SO₂), Nitrogen oxides (NOx), Hydrocarbons.
 - o Particulates: Dust, smoke, mist, fumes, fly ash.
 - o Toxic substances: Lead, arsenic, benzene.

Causes of Air Pollution

1. Industrialization

- o Factories and power plants burn fossil fuels (coal, oil, gas).
- o Emit SO₂, NOx, CO₂, and particulate matter.
- o Example: Thermal power plants \rightarrow fly ash and SO₂.

2. Urbanization

- o Rapid population growth leads to more energy demand, vehicles, waste burning.
- o Urban heat islands + high traffic increase pollution levels.
- \circ Example: Delhi \rightarrow high PM2.5 due to vehicles and construction.

3. Automobiles

- o Vehicles release CO, NOx, hydrocarbons, lead (in old engines).
- o Contribute to smog formation and respiratory problems.
- o Example: Metro cities like Bengaluru, Mumbai → high vehicular emissions.

4. Burning of Fossil Fuels

- o Coal, petroleum, natural gas used in industries, homes, and transport.
- o Release greenhouse gases (CO₂, CH₄) and SO₂, NOx.
- o Example: Household biomass burning in rural areas causes indoor air pollution.

5. **Deforestation**

- o Fewer trees \rightarrow less CO₂ absorption \rightarrow higher CO₂ concentration in atmosphere.
- o Forest fires release CO, CO₂, and smoke particles.
- Loss of vegetation worsens dust storms and soil erosion.

Conclusion

- Air is an essential resource for sustaining life.
- Human activities (industries, vehicles, urban growth, fuel burning, deforestation) are the **main contributors** to air pollution.
- If unchecked, air pollution leads to serious health, environmental, and economic consequences.

2. Composition of Air

Definition

- Air is a **mixture of gases** that surrounds the Earth, forming the atmosphere.
- It is **odorless**, **colorless**, **and tasteless** under normal conditions.
- The composition of air is **fairly constant up to about 80 km** above Earth's surface, though water vapour and dust vary with place and time.

Major Components of Air

Gas / Component Percentage by Volume		Importance	
Nitrogen (N₂)	~78%	Inert, dilutes oxygen, essential for protein formation (plants fix N₂ from air).	
Oxygen (O₂)	~21%	Required for respiration and combustion.	
Argon (Ar)	~0.93%	Inert, used in lighting and welding.	
Carbon dioxide (CO₂)	~0.03–0.04%	Essential for photosynthesis, greenhouse gas.	
Other trace gases (Ne, He, Kr, Xe, CH ₄ , O ₃ , H ₂)	<0.1%	Important in special roles (e.g., O₃ shields UV radiation, CH₄ is a greenhouse gas).	
Water vapour (H₂O) 0–4% (variable)		Controls humidity, rainfall, climate.	
Dust & aerosols Variable		Influence cloud formation, scattering of light (sunrise/sunset colors).	

Variation in Composition

- Altitude:
 - o Lower atmosphere (troposphere) has more water vapour and dust.
 - o Higher layers (stratosphere, mesosphere) → thinner air, contains ozone layer.
- Location:
 - \circ Coastal areas \rightarrow higher water vapour, salt particles.
 - \circ Desert areas → more dust.
 - o Industrial/urban areas \rightarrow pollutants (CO, SO₂, NOx).

Significance of Composition

- 1. **Nitrogen**: Stabilizes air, prevents fast burning of oxygen.
- 2. Oxygen: Essential for life (respiration) and energy production.
- 3. **Carbon dioxide**: Maintains Earth's temperature through greenhouse effect, vital for plants.
- 4. Ozone (O₃): Protects from harmful UV rays.
- 5. Water vapour: Regulates climate and hydrological cycle.
- 6. **Dust**: Helps in cloud condensation nuclei formation \rightarrow rainfall.

Conclusion

- The atmosphere is **not just empty space**, but a **balanced mixture of gases, vapour, and particles** that sustain life.
- Even small changes (e.g., increase in CO₂, depletion of O₃, rise in pollutants) disturb this balance → causing climate change and air pollution problems.

3. Sources of Air Pollutants

Definition of Air Pollutants

• **Air Pollutants** are undesirable solid, liquid, or gaseous substances present in the atmosphere in **sufficient concentration** and for **sufficient duration** to cause harm to humans, plants, animals, property, or climate.

A. Natural Sources

These are pollutants released into the atmosphere by **natural processes** without human interference.

- 1. **Volcanic eruptions** \rightarrow emit ash, dust, SO₂, CO₂.
 - o Example: Mt. Pinatubo eruption (1991) increased global SO₂ levels.
- 2. **Forest fires** (natural lightning) → release CO₂, CO, smoke, hydrocarbons.
- 3. **Dust storms** (from deserts, dry regions) \rightarrow increase particulate matter.
- 4. **Microbial decomposition** (swamps, wetlands) \rightarrow methane (CH₄), hydrogen sulfide (H₂S).
- 5. **Pollen grains, spores** \rightarrow cause allergies, asthma.
- 6. Sea spray \rightarrow sodium chloride particles.

B. Anthropogenic (Man-Made) Sources

These are pollutants **produced by human activities**, the main cause of modern air pollution.

1. Industrial Sources

- Thermal power plants \rightarrow SO₂, NOx, CO₂, fly ash.
- Cement, chemical, textile, paper, fertilizer industries → dust, acids, alkalis, toxic gases.
- Smelting of ores \rightarrow SO₂, heavy metals (Pb, Hg, As).

2. Transportation Sources

- Automobiles (cars, buses, trucks, two-wheelers, aircraft, ships).
- Pollutants:
 - \circ **CO** \rightarrow incomplete combustion of petrol/diesel.
 - \circ NOx \rightarrow high-temperature combustion.
 - o **HC** (hydrocarbons) \rightarrow unburnt fuel vapors.

- o **Particulates** → diesel exhaust (soot, black smoke).
- o **Pb** (from leaded petrol now phased out in India).

3. Agricultural Sources

- **Pesticides, insecticides, herbicides** → volatile organic compounds (VOCs).
- Stubble burning \rightarrow CO, CH₄, particulates.
- Fertilizer use \rightarrow releases ammonia (NH₃), nitrous oxide (N₂O a greenhouse gas).

4. Domestic Sources

- Household cooking (biomass fuel wood, cow dung, kerosene).
- Burning of waste \rightarrow smoke, dioxins, CO.
- Use of ACs/refrigerators → CFCs (chlorofluorocarbons) damaging ozone layer.

5. Miscellaneous

- Mining operations \rightarrow dust, toxic gases.
- Construction activities → cement dust, silica.
- Wars & explosions → smoke, chemicals, radioactive fallout.

C. Classification Based on Nature of Pollutants

- 1. **Primary Pollutants** \rightarrow Directly emitted into atmosphere.
 - o Examples: CO, CO₂, SO₂, NO, hydrocarbons, particulates.
- 2. **Secondary Pollutants** → Formed in atmosphere by chemical reaction of primary pollutants.
 - o Examples:
 - Ozone (O₃) in lower atmosphere.
 - **PAN** (Peroxyacetyl nitrate) \rightarrow from HC + NOx + sunlight.
 - **Smog** (photochemical or classical).

Conclusion

- Natural sources are unavoidable, but human-made sources are largely responsible for present air pollution problems.
- Understanding the sources is the first step in planning effective air pollution control strategies.

4. Classification of Air Pollutants

Air pollutants can be classified based on **different criteria**:

A. Based on Origin

1. **Primary Pollutants**

- o Directly emitted from natural or man-made sources.
- o Examples:
 - Carbon monoxide (CO)
 - Carbon dioxide (CO₂)
 - Sulphur dioxide (SO₂)
 - Nitric oxide (NO)
 - Hydrocarbons (HC)
 - Particulate matter (dust, soot, smoke)

2. Secondary Pollutants

- Formed in the atmosphere through chemical/photochemical reactions of primary pollutants.
- Examples:
 - Ozone (O₃) (in troposphere, harmful)
 - Peroxyacetyl nitrate (PAN)
 - Photochemical smog
 - Acid rain (H₂SO₄, HNO₃ formed from SO₂, NOx + water vapor)

B. Based on Physical State

- 1. Gaseous Pollutants
 - o CO, CO₂, SO₂, NOx, hydrocarbons, ozone, NH₃, H₂S, CFCs.

2. Particulate Pollutants

- Solid or liquid particles suspended in air.
- o Types:
 - **Dust** solid particles from crushing, grinding (cement, mining).
 - Smoke fine carbon particles from incomplete combustion.
 - **Fumes** condensed vapors (metals, plastics).
 - **Mist** liquid droplets (sulphuric acid mist).
 - Aerosols fine particles suspended (hairsprays, perfumes).

C. Based on Chemical Composition

- 1. Oxides \rightarrow CO, CO₂, SO₂, NOx.
- 2. **Hydrocarbons** \rightarrow methane, benzene, VOCs.
- 3. **Organic compounds** \rightarrow aldehydes, ketones.
- 4. Inorganic compounds \rightarrow NH₃, H₂S, HF.
- 5. **Particulate matter** \rightarrow soot, fly ash, asbestos, heavy metals.

D. Based on Duration of Stay in Atmosphere

- 1. Short-lived pollutants \rightarrow ozone, PAN, SO₂.
- 2. Long-lived pollutants → CO₂, CFCs, methane → contribute to global warming & climate change.

E. Based on Source

- 1. **Natural Pollutants** → volcanic gases, forest fires, pollen, sea spray, dust storms.
- 2. **Anthropogenic Pollutants** → industrial emissions, vehicular exhaust, household combustion, agricultural activities.

Summary Table

Basis	Types	Examples	
Origin	Primary, Secondary	SO ₂ , CO (primary); O ₃ , PAN (secondary)	
Physical state	Gaseous, Particulate	CO ₂ , SO ₂ (gas); dust, smoke (particulate)	
Chemical Oxides, Hydrocarbons, Organics, Inorganics		NOx, CH₄, NH₃, benzene	
Duration Short-lived, Long-lived		O ₃ (short); CO ₂ , CFCs (long)	
Source Natural, Anthropogenic		Volcanoes (natural); vehicles (anthropogenic)	

5. National Ambient Air Quality Standards (NAAQS)

Introduction

- To control and monitor air pollution, the **Central Pollution Control Board (CPCB)**, **Govt. of India**, has laid down **NAAQS**.
- These are **permissible limits** of major pollutants in the ambient air (outdoor environment).
- Ensures public health, vegetation, and property protection.

A. Major Pollutants Monitored under NAAQS (2009 Revision)

- 1. Sulphur dioxide (SO₂)
- 2. Nitrogen dioxide (NO₂)
- 3. Particulate Matter (PM₁₀, PM_{2.5})
- 4. **Ozone** (**O**₃)
- 5. Carbon monoxide (CO)
- 6. Ammonia (NH₃)
- 7. **Lead (Pb)**
- 8. Benzene (C₆H₆)
- 9. Benzo(a)pyrene (BaP) Particulate phase
- 10. Arsenic (As)
- 11. Nickel (Ni)

B. NAAQS (CPCB - 2009 Standards)

Pollutant	Time Weighted Avg.	Industrial, Residential, Rural & Other Areas	Ecologically Sensitive Area
SO₂	24 hrs	80 μg/m³	80 μg/m³
	Annual	50 μg/m³	20 μg/m³
NO ₂	24 hrs	80 μg/m³	80 μg/m³
	Annual	40 μg/m³	30 μg/m³
PM ₁₀	24 hrs	100 μg/m³	100 μg/m³

Pollutant	Time Weighted Avg.	Industrial, Residential, Rural & Other Areas	Ecologically Sensitive Area
	Annual	60 µg/m³	60 μg/m³
PM _{2.5}	24 hrs	60 µg/m³	60 μg/m³
	Annual	40 μg/m³	40 μg/m³
O ₃	1 hr	180 μg/m³	180 μg/m³
со	1 hr	4 mg/m³	4 mg/m³
NH₃	Annual	100 μg/m³	100 μg/m³
Pb	Annual	0.50 μg/m³	0.50 μg/m³

(Note: Only main pollutants shown in detail; other heavy metals/organics have specific smaller limits.)

6. Air Quality Index (AQI)

Definition

- A single **composite number** that indicates the overall **air quality status** at a location.
- Developed by CPCB (2014) for easy public understanding.

A. Pollutants Considered in AQI

• PM₁₀, PM_{2.5}, SO₂, NO₂, CO, O₃, NH₃, Pb.

B. AQI Categories (India – CPCB)

AQI Value	Category	Colour Code	Health Impact
0–50	Good	Green	Minimal impact

AQI Value	Category	Colour Code	Health Impact	
51–100	Satisfactory	Light Green	Minor breathing discomfort to sensitive people	
101–200	Moderate	Yellow	Breathing discomfort to people with lung/asthma/heart disease	
201–300	Poor	Orange	Breathing discomfort to most people	
301–400	Very Poor	Red	Respiratory illness on prolonged exposure	
401–500	Severe	Maroon	Serious health impacts, affects even healthy people	

Key Points

- AQI converts pollutant concentrations into public-friendly values.
- Helps government & citizens take **preventive measures**.
- Used in cities like Delhi, Bengaluru, Mumbai, Hyderabad for daily monitoring.

7. Effects of Air Pollution on Human Health

Air pollution has **short-term** (acute) and **long-term** (chronic) effects on human health. It affects the **respiratory system**, cardiovascular system, nervous system, and overall wellbeing.

A. Effects of Major Pollutants on Health

1. Particulate Matter (PM₁₀ & PM_{2.5})

- $PM_{2.5} \rightarrow can$ penetrate deep into lungs, even enter bloodstream.
- Health impacts:
 - o Asthma, bronchitis, lung cancer.
 - Reduced lung function, breathlessness.
 - o Cardiovascular diseases (heart attacks, strokes).

2. Carbon Monoxide (CO)

- Colorless, odorless gas → "silent killer."
- Binds with hemoglobin (Hb) forming **carboxyhemoglobin**, reducing oxygen transport.

• Health impacts:

- o Headache, dizziness, fatigue.
- \circ High exposure \rightarrow unconsciousness, even death.

3. Sulphur Dioxide (SO₂)

- Irritant gas, soluble in water → forms sulphuric acid in lungs.
- Health impacts:
 - o Throat irritation, coughing.
 - Worsens asthma & bronchitis.
 - \circ Long-term → lung damage.

4. Nitrogen Oxides (NOx)

- Causes inflammation of airways.
- Contributes to **smog & ozone** formation.
- Health impacts:
 - Eye, nose, throat irritation.
 - Reduced lung function.
 - Worsens respiratory infections.

5. Ozone (O₃) – Ground Level

- Good in stratosphere, bad in troposphere.
- Health impacts:
 - o Chest pain, coughing, throat irritation.
 - o Worsens asthma & COPD (Chronic Obstructive Pulmonary Disease).
 - Decreases lung function.

6. Lead (Pb)

- Heavy metal, accumulates in body tissues.
- Health impacts:
 - o Damage to nervous system, kidneys.
 - \circ Affects children \rightarrow learning disabilities, reduced IQ, behavioral problems.
 - o Anemia.

7. Volatile Organic Compounds (VOCs)

- Benzene, formaldehyde, toluene, etc.
- Health impacts:
 - o Eye & throat irritation, nausea.
 - o Benzene → blood cancer (leukemia).
 - \circ Long exposure → nervous system damage.

8. Ammonia (NH₃) & H₂S

- $NH_3 \rightarrow irritation of eyes, nose, throat.$
- H_2S ("rotten egg smell") \rightarrow affects nervous system, high levels cause death.

B. General Health Effects

- **Respiratory diseases** → asthma, lung cancer, COPD.
- Cardiovascular diseases → hypertension, stroke, heart attack.
- Neurological effects \rightarrow headache, fatigue, loss of concentration.
- **Reproductive & developmental issues** → low birth weight, birth defects.
- Premature deaths → WHO estimates 7 million deaths per year worldwide due to air pollution.

C. Vulnerable Groups

- **Children** → lungs still developing, more outdoor activity.
- Elderly people → weaker immune & cardiovascular systems.
- **People with pre-existing diseases** (asthma, TB, heart disease).
- Outdoor workers → traffic police, construction workers, farmers.

8. Economic Effects of Air Pollution

Air pollution not only affects **human health and environment**, but also causes **huge economic losses** to individuals, industries, and the nation.

A. Effects on Human Productivity

- Increased healthcare costs due to respiratory and heart diseases.
- Loss of working days because of illness (asthma, flu, lung infections).
- Reduced **life expectancy** → lowers economic productivity of the population.
- WHO & World Bank estimate **billions of dollars lost annually** due to air pollution—related diseases.

B. Effects on Agriculture

- SO_2 , NOx, $O_3 \rightarrow$ damage crops, reduce photosynthesis.
- Acid rain \rightarrow damages soil quality, reduces crop yield.
- Dust deposition → blocks sunlight, reduces growth.
- Example: Ozone reduces yield of wheat, rice, cotton.

C. Effects on Industries

- Corrosion of machinery, metals, and buildings due to SO₂, NO₂, acid rain.
- Reduced efficiency of power plants (ash, smoke).
- Higher **maintenance costs** for factories, vehicles, and infrastructure.

D. Effects on Materials & Property

- Buildings and monuments damaged:
 - o **Taj Mahal** (**Agra**) marble corrosion due to SO₂ ("Marble Cancer").
 - o Concrete, limestone, metals corrode faster.
- Paint, textiles, leather deteriorate due to ozone and UV radiation.
- Electronics sensitive to fine particulates suffer reduced lifespan.

E. Impact on National Economy

- Increased **public health expenditure** \rightarrow burden on government.
- Loss of tourism revenue (damaged heritage sites).
- Reduced agricultural productivity \rightarrow affects GDP.
- World Bank (2019): Air pollution costs India ~8.5% of its GDP annually.

Summary

- Air pollution causes **direct costs** (medical treatment, crop losses) and **indirect costs** (loss of productivity, heritage damage).
- Investing in **clean technologies & pollution control** can save billions of rupees in the long run.

9. Control of Air Pollution

Air pollution control aims to reduce emissions at source, treat pollutants before release, and adopt clean technologies.

A. General Approaches to Control

1. At Source (Prevention)

- o Use of cleaner fuels (CNG, LPG, ethanol blends).
- o Switching to renewable energy (solar, wind, hydropower).
- Process modification in industries to reduce emissions.
- o Regular maintenance of vehicles and engines.

2. Dilution & Dispersion

- o Use of tall chimneys in industries to disperse pollutants over a wide area.
- o Plantation of trees around industries to act as natural filters.

3. After-Emission Treatment

- o Use of air pollution control equipment.
- o Conversion of harmful gases into harmless forms.

B. Air Pollution Control Equipment

1. For Particulate Matter (Dust, Smoke, Fly Ash)

• Gravity Settling Chamber

- o Large chamber \rightarrow air velocity reduced \rightarrow heavy particles settle down.
- o Removes larger particles (>50 μm).

Cyclone Separator

- Uses **centrifugal force** to separate dust from air.
- o Medium efficiency, low cost.

• Fabric Filter (Baghouse Filter)

- \circ Polluted air passed through cloth bags \rightarrow dust trapped.
- Very efficient (up to 99%).

• Electrostatic Precipitator (ESP)

- o Uses **high voltage electric field** to charge and collect particles.
- o Removes fine particles (<1 μ m) \rightarrow widely used in power plants.

• Wet Scrubbers

- Polluted gas passed through liquid (water/alkali solution) → particles & gases absorbed.
- o Example: Venturi scrubber.

2. For Gaseous Pollutants (SO2, NOx, CO, VOCs)

- Absorption
 - o Pollutant gases absorbed in liquid (e.g., SO₂ absorbed in lime slurry).
- Adsorption
 - o Pollutant gases adsorbed on solid surfaces (activated carbon, silica gel).
- Catalytic Converters (in vehicles)
 - \circ Convert CO \rightarrow CO₂,
 - \circ HC \rightarrow CO₂ + H₂O,
 - \circ NOx \rightarrow N₂ + O₂.
- Combustion / Incineration
 - o VOCs and hydrocarbons oxidized at high temperature to CO₂ and H₂O.

C. Smoke and Its Control

- **Smoke** = fine carbon particles + unburnt hydrocarbons from incomplete combustion.
- Control Methods:
 - o Ensure **complete combustion** (use of proper fuel-air ratio).
 - Use of **mechanical collectors** (cyclones, scrubbers, ESPs).
 - o **Substitute cleaner fuels** (CNG, LPG, low-sulphur coal).
 - o Green belts around urban & industrial areas to trap smoke.

D. Administrative Measures

- Enforcing National Ambient Air Quality Standards (NAAQS).
- **Emission norms** for vehicles (BS-VI in India).
- Banning **crop burning** and open waste burning.
- Promoting public transport & electric vehicles (EVs).

10. Ozone Depletion

A. Introduction

- Ozone (O₃): A molecule made of three oxygen atoms.
- Ozone Layer: Located in the stratosphere (15–35 km above Earth).
- Function: Absorbs harmful ultraviolet (UV-B) radiation from the Sun → protects humans, animals, and plants.
- Ozone Depletion: Thinning of the ozone layer due to human-made chemicals.

B. Causes of Ozone Depletion

- 1. **Chlorofluorocarbons** (**CFCs**) Refrigerants, aerosols, foam production.
- 2. **Halons** Fire extinguishers.
- 3. Carbon tetrachloride (CCl₄) Solvents, industrial processes.
- 4. **Methyl chloroform** Cleaning agent.

Mechanism:

- CFCs are stable \rightarrow reach stratosphere \rightarrow broken by UV \rightarrow release chlorine (Cl) radicals.
- Cl radical reacts with $O_3 \rightarrow$ destroys ozone in a chain reaction.

C. Photochemical Reaction (Ozone Depletion)

1. UV breaks CFC → Cl radical formation:

$$CCl_3F + UV \rightarrow CCl_2F + Cl$$

2. Ozone destruction:

$$\mathrm{Cl} \bullet + \mathrm{O}_3 \to \mathrm{ClO} \bullet + \mathrm{O}_2$$

$$\text{ClO}ullet + \text{O} o \text{Cl}ullet + \text{O}_2$$

Chain reaction: 1 Cl radical can destroy ~100,000 O₃ molecules.

D. Impacts of Ozone Depletion

1. Human Health

o Increased **UV-B exposure** → skin cancer, sunburns, cataracts, immune system suppression.

2. Environment

- o **Crops**: Reduced yield (wheat, rice, soy).
- o **Marine life**: Plankton affected → disrupts food chain.
- o **Forests**: Reduced growth, leaf damage.

3. Materials

o Plastics, paints, rubber, wood degrade faster under UV radiation.

4. Climate Interaction

Ozone depletion interacts with greenhouse gases → impacts global climate patterns.

E. Measures to Reduce Ozone Depletion

- Montreal Protocol (1987) \rightarrow global phase-out of CFCs, halons.
- Substitute **CFCs with HFCs (hydrofluorocarbons)** or natural refrigerants (ammonia, CO₂).
- Reduce use of **ozone-depleting substances** (**ODS**) in industry and households.
- Promote **public awareness** about ozone-friendly products.