Daniel Hortelano Roig

UNIVERSITY OF OXFORD

daniel.hortelanoroig@materials.ox.ac.uk +44 7506 558137 St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS United Kingdom Canadian & Spanish citizenship

EDUCATION

University of Oxford, Department of Materials, Oxford, United Kingdom

Oct 2019 – Dec 2022

Doctor of Philosophy (D.Phil.) in Materials – Supervisors: Dr. E. Tarleton and Professor A. Wilkinson

- Developing state of the art computational dislocation-based models of metal plasticity.
- Simulating cracking in advanced engineering alloys such as those in nuclear reactors for submarine propulsion.

University of Oxford, Mathematical Institute, Oxford, United Kingdom

Class of 2019

MSc in Mathematical and Theoretical Physics – with Distinction (Highest attainable classification)

University of Guelph, College of Physical and Engineering Sciences, Guelph, ON, Canada

Class of 2018

Bachelor of Science in Theoretical Physics

Cumulative GPA: 3.85; Physics & Math GPA: 3.95; Dean's Honours List 2015 - 2018

AWARDS & DISTINCTIONS

- J.B. Reynolds Graduation Medal in Physics Awarded to graduating student with the highest physics cumulative average (2018)
- Marie Curie Scholarship in Physics Awarded to fourth year physics student with highest cumulative average (2018)
- Undergraduate Summer Research Award NSERC National Research Scholarship (2016, 2017, and 2018)
- University of Guelph Entrance Scholarship (2014)

RESEARCH & WORK EXPERIENCE

Mathematical Institute, University of Oxford, Oxford, United Kingdom

Oct 2018 - Jun 2019

Supervisor: Dr. Georgy Kitavtsev, Dr. Andreas Münch, and Dr. Dirk Peschka

Master's Dissertation (Derivation and numerics of thin-film models with moving contact lines for binary mixtures)

- Derived the equations of motion of an evolving viscous binary mixture droplet using Onsager's variational principle.
- Established the connection between the equations of motion of thin-film droplets with their respective gradient flow dynamics.
- Applied an Arbitrary Lagrangian-Eulerian based algorithm to model thin-film droplets with moving contact lines.
- Numerically modeled a thin-film mono-fluid using finite element methods on Python and Matlab.

Department of Physics & Astronomy, University of British Columbia, Vancouver, BC

May 2018 – Oct 2018

Supervisor: Dr. Colin Gay and Dr. Alison Lister

Physics Researcher, 50 hours/week

- Implemented a novel Tree-LSTM deep neural network architecture to tag Lorentz boosted top jets in the ATLAS calorimeter.
- Added to Delphes simulation code in C++; collaborated with CERN infrastructure through gitlab.
- Extracted energy deposits (constituents) in a specific order and hierarchy specified by the anti-kt algorithm.
- Produced visualizations of jet tree structure produced by anti-kt algorithm using igraph on Python.
- Used Python to preprocess constituents in preparation for training; used HDF5 datasets to deal with large memory requirements.
- Implemented GPU-accelerated training loop using PyTorch; used data science techniques to drastically lower training time.
- Future goals lie in evaluating tagging performance, optimize hyperparameters, and improving speed.

Department of Physics, University of Guelph, Guelph, ON

Sep 2017 – Apr 2018

Supervisor: Dr. Eric Poisson

Undergraduate Senior Year Physics Research Course (Honours Thesis)

- Studied the effects of external gravitational fields on rotating neutron stars in the framework of Post-Newtonian theory.
- Constructed a density profile of a perturbed neutron star with a polytropic equation of state using Python.
- Solved multi-dimensional non-linear systems of differential equations in Python and Maple to calculate Love numbers.
- Applied fluid perturbation theory, orbital dynamics, and thermodynamics for mathematical derivations.

Department of Physics, University of Guelph, Guelph, ON

May 2016 - Aug 2017

Supervisor: Dr. Carl Svensson

Physics Researcher, 50 hours/week

- Studied nuclear decay simulations of Argon 34 to predict actual experiments performed at TRIUMF, Vancouver.
- Learned how to manipulate programming framework of GRIFFIN detectors on GEANT4 with C++.
- Used ROOT to analyze and construct histograms from simulation data; used Deepview for simulation visualizations.

ADDITIONAL SKILLS

- o Proficiency in C++, Python, Matlab, Unix, Mathematica, Maple, PyTorch, & HDF5 datasets; excellent general programming skills.
- Native bilingual in English & Spanish, limited proficiency in French and Catalan.