Subject matter

Topic 1: Intermolecular forces and gases (13 hours)

Science understanding

Intermolecular forces

- Apply the valence shell electron pair repulsion (VSEPR) theory to determine the shape and bond angles of linear, bent, trigonal planar, tetrahedral and pyramidal molecules. (Hybridization involving d-orbitals are not required.)
- Determine the polarity of molecules using molecular shape, understanding of symmetry, and comparison of the electronegativity of elements.
- Explain the relationship between vapour pressure, melting point, boiling point and solubility, and the nature and strength of intermolecular forces (e.g. dispersion forces, dipole-dipole attractions, and hydrogen bonding) within molecular covalent substances.

Chromatography techniques

- Identify that paper and thin layer chromatography can be used to determine the composition and purity of substances.
- Explain how variations in the strength of the interactions between atoms, molecules or ions in the mobile and stationary phases can be used to separate components.
- Analyse paper and thin layer (TLC) chromatographs to determine the composition and purity of substances, including calculating R_F values.

Gases

- State the relationship between the volume of a gas, number of moles and molar volume at standard temperature and pressure (STP).
- Apply the kinetic theory of gases to explain the relationships between pressure, temperature, and volume of a gas.
- Identify that the kinetic theory of gases applies to ideal gases.
- Apply the ideal gas equation to calculate the mass of chemicals and/or the volume of a gas (STP) involved in a chemical reaction. (Formula: PV = nRT)
- Analyse data to determine the relationships between pressure, temperature, and volume of a gas.

Science as a human endeavour (SHE)

- Appreciate that science relies on chemical processes to analyse materials in order to determine the identity, nature or source of the material.
- Explore how chromatography techniques, including gas and high-performance liquid chromatography, can be used to determine the composition and purity of substances.
- Appreciate that safe scuba diving requires knowledge of the behaviour of gases.
- Explore Jacques Cousteau and Emile Gagnan's role in the invention of SCUBA.
- Appreciate that two- and three-dimensional graphical models have been developed and adopted by chemists to represent and communicate the shapes of molecules.
- Consider the limitations associated with the VSEPR theory.

Science inquiry

Investigate:

- Boyle's law or the molar volume of a gas
- the separation of a mixture using paper or thin layer chromatography* (TLC)
- 3D models of linear, bent, trigonal planar, tetrahedral and pyramidal molecules.*

*Note: Simulations may be used.

Topic 2: Aqueous solutions and acidity (22 hours)

Science understanding

Aqueous solutions and molarity

- Explain that the unique properties of water are related to molecular shape and hydrogen bonding between molecules.
- Discriminate between the terms solute, solvent, solution.
- Discriminate between the terms *strength* and *concentration*, e.g. acidic/basic solutions.
- State that square brackets ([]) are used to denote concentration.
- Discriminate between unsaturated, saturated and supersaturated solutions.
- Apply the mole concept to calculate moles of solute, concentration and volume of a solution.
 (Formula: Molarity/Concentration (c) = moles of solute (n) / volume of solution (V)

Identifying ions in solution

- Apply ionic and chemical formulas to construct balanced ionic and chemical equations (including states) for precipitation reactions.
- Apply solubility rules to predict if a precipitation will be formed.
- Analyse data, including precipitation and acid-carbonate reactions, to determine the presence of specific ions in solutions.

Chemistry 2025 v1.2 Units

Solubility

- Compare the solubility of ionic and molecular substance in water, and the intermolecular forces between species in the substances and water molecules.
- Identify that changes in solvent temperature can affect the solubility of solid and gaseous solutes (solids and gases).
- Analyse data, including solubility curves, to determine the solubility of ionic compounds and the concentration of ions in aqueous solutions.

рΗ

- State that pH is dependent on the concentration of hydrogen ions in solution.
- Identify that the pH scale is a logarithmic scale.
- Apply the pH scale to compare the levels of acidity or alkalinity of aqueous solutions.
- Apply the Arrhenius model to explain the behaviour of strong and weak acids and bases in aqueous solutions.

Reactions of acids

 Determine balanced chemical and ionic equation (including states) for the reactions of acids with bases, metals and carbonates.

Science as a human endeavour (SHE)

- Appreciate that most sulfur dioxide released to the atmosphere comes from burning coal or oil
 in electric power stations.
- Explore the chemistry of acid rain.
- Appreciate that blood plasma is an aqueous solution containing a range of ionic and molecular substances.
- Explore why blood is red and the chemistry of blood types.
- Appreciate that knowledge of the composition of water from different sources informs decisions about how that water is treated and used.
- Evaluate the measurable properties of water that are used to determine the water quality of a local water way.
- Explore the different water treatment methods used to provide safe drinking water.

Science inquiry

Investigate:

- precipitation reactions to identify cations and anions
- factors that affect solubility in aqueous solutions
- reactions of acids with bases, metals and carbonates.

Topic 3: Rates of chemical reactions (10 hours)

Science understanding

Rates of reactions

- Explain how temperature, surface area, pressure (gaseous systems), concentration and the presence of a catalyst can affect the rate of the reaction.
- Apply the collision theory to determine the effect of concentration, temperature, pressure and surface area on the rate of chemical reactions.
- Sketch Maxwell-Boltzmann distribution curves for reactions with and without catalysts.
- Describe activation energy (*E*_a).
- Explain the relationship between the strength and number of the existing chemical bonds, the magnitude of the activation energy and the rate of a chemical reaction.
- Sketch energy profile diagrams for reactions with and without catalysts.
- Analyse energy profile diagrams for reactions with and without catalysts, to determine the enthalpy change and activation energy.
- Explain how catalysts affect the rate of a chemical reaction.
- Calculate the rate of chemical reactions by measuring the rate of formation of products or the depletion of reactants. (Formula: rate of reaction = $\frac{\text{increase in product concentration }(\Delta[P])}{\text{time taken}}$ or $\frac{\text{decrease in reactant concentration }(-\Delta[R])}{\text{time taken}}$)
- Analyse data and graphical representations of relative changes in the concentration, volume and mass against time to determine rate of reaction. (Order of reaction is not required.)

Science as a human endeavour (SHE)

- Appreciate that catalysts work in a variety of ways, and knowledge of the structure of enzyme
 molecules helps scientists to explain and predict how they are able to lower the activation
 energy for reactions.
- Explore Mildred Cohn's use of isotopic tracers and NMR spectroscopy to study the mechanism of enzymatic catalysis.
- Appreciate that most contemporary methods of corrosion prevention rely on knowledge of chemical and electrochemical redox processes.
- Explore the historical theories on corrosion from the introduction of iron in Antiquity through to the impact of air pollution on the life span of modern metal structures.
- Appreciate that collision theory enables chemists to explain and predict the rates of a vast range of chemical reactions in many different contexts.
- Explore the history of collision theory, its uses and its limitations.

Science inquiry

Investigate factors that affect the rate of chemical reactions.