a.)
$$f(x) = \sin(2x)$$
 and $x_0 = 0$

$$f(x) = \sin(2x), f(0) = 0$$

$$f'(x) = 2\cos(2x), f(0) = 2$$

$$f'''(x) = -4\sin(2x), f(0) = -8$$

$$f''''(x) = -8\cos(2x), f(0) = -8$$

$$f''''(x) = 16\sin(2x), f(0) = 0$$

$$\sin(2x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} + \frac{f''(0)}{2!}$$

$$\sin(2x) = 0 + \frac{2x'}{1!} + \frac{0x^2 - 8x^3}{3!} + \frac{0x^4}{4!} + \frac{1}{1!}$$

$$\sin(2x) = \frac{2}{n=0} \cdot \frac{(-1)^n(2x)^{(2n+1)}}{(2n+1)!} \cdot \frac{1}{(-1)^n(2x)^{(2n+1)}}$$

$$= \lim_{n \to \infty} \left| \frac{(-1)^n(2x)^{(2n+1)}}{(2n+2)!} - \frac{(-1)^n(2x)^{(2n+1)}}{(2n+2)!} \right| = \lim_{n \to \infty} \frac{(-1)^n(2x)^{(2n+1)}}{(2n+2)!}$$

$$= \lim_{n \to \infty} \frac{-1(2x)^2}{(2n+2)!} \cdot \frac{(2n+1)!}{(2n+2)!} - \frac{1}{(2n+2)!} \cdot \frac{(2n+1)!}{(2n+2)!} = \frac{1}{(2n+2)!} \cdot \frac{(2n+1)!}{(2n+2)!}$$

$$= \lim_{n \to \infty} \frac{-1(2x)^2}{(2n+2)!} \cdot \frac{(2n+1)!}{(2n+2)!} - \frac{1}{(2n+2)!} \cdot \frac{(2n+1)!}{(2n+2)!} = \frac{1}{(2n+2)!} \cdot \frac{(2n+2)!}{(2n+2)!} = \frac{1}{(2n+2)!} \cdot \frac{(2$$

b)
$$f(x) = \ln(2x)$$
 and $x_0 = 1$,

 $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$, $f'''(x) = \frac{2}{x^2}$, $f'''(x) = -\frac{6}{x^4}$,

 $f(1) = \ln(2)$, $f'(1) = 1$, $f''(1) = -1$, $f'''(1) = 2$, $f'''(1) = -6$,

 $\ln(2x) = \ln(2) + x - \frac{2}{2!} + \frac{2x^3}{3!} - \frac{6x^4}{4!} \dots$
 $\ln(2x) = \ln(2) + \frac{20}{11} \left(\frac{\ln(1)}{x} \right) \left(\frac{1}{11} \right) \left($

C.) $f(x) = e^{2x}$ and $x_0 = 1$, $f(x) = 2e^{2x}$, $f(x) = 4e^{2x}$, $f''(x) = 8e^{2x}$, $f'''(x) = 16e^{2x}$, $f(1) = e^{2}$, $f'(1) = 2e^{2}$ $f''(1) = 4e^{2x}$, $f'''(1) = 8e^{2x}$, $f'''(1) = 16e^{2x}$

 $e^{2x} = e^2 + 2e^2(x-1) + \frac{4e^2(x-1)^2}{2!} + \frac{8e^2(x-1)^3}{3!} + \frac{16e^2(x-1)^4}{4!}$

= $e^2 + 2e^2(x+1) + 2e^2(x-1)^2 + \frac{4e^2(x-1)^3 + 2e^2(x-1)^4 + \dots}{3}$

 $= \sum_{n=0}^{\infty} \frac{2^n e^2(x-1)^n}{n!}.$

 $\lim_{n\to\infty} \left(\frac{2^{(n+1)}}{(n+1)!} \frac{e^2(x-1)^{(n+1)}}{(n+1)!} \right) \left(\frac{2^n}{2^n} \frac{e^2(x-1)^n}{(n+1)!} \right)$

 $- \lim_{N \to \infty} \left(\frac{2e^2(x-1)}{(n+1)} \right) = 2e^2(x-1)(0)$

Radius of convergence is 00

d.)
$$f(x) = 3x^2 - 2x + 5$$
 and $x_0 = 0$, $f(0) = 5$
 $f'(x) = 6x - 2$, $f'(0) = -2$
 $f''(x) = 6$, $f''(0) = 6$
 $f'''(x) = 0$ $f'''(0) = 0$

$$3x^2-2x+5 = 5-2x+\frac{(6x^2)^2}{2!} = 3x^2-2x+5$$

| X | < 1 is the radius of convergence.

e.)
$$f(1) = 4$$
, $f''(1) = 6$, $f''(1) = 6$
 $f'(1) = 4$, $f''(1) = 6$, $f'''(1) = 0$,
$$3x^2 - 2x + 5 = 6 + 4(x - 1) + 3(x - 1)^2 = 6 + 4x - 4 + 3x^2 - 6x + 3$$

 $= 3x^2 - 2x + 5$

| X-1 | < 1 is the radius of convergence.

f.)
$$f(x) = (3x^2 - 2x + 5)^{-1}$$
 and $X_0 = 1$ g $f(0) = 1/6$
 $f'(x) = -\frac{6x + 2}{(3x^2 - 2x + 5)^2}$ $f''(1) = -\frac{4}{300} = -\frac{1}{9}$
 $f''(x) = \frac{2(27x^2 - 17x - 11)}{(3x^2 - 2x + 5)^3}$ $f'''(1) = -\frac{1}{54}$
 $f'''(x) = -\frac{24(3x - 1)(9x^2 - 6x - 13)}{(3x^2 - 2x + 5)^4}$

$$f(x) = \frac{1}{6} - \frac{1}{9}(x-1)^2 + \frac{5}{81}(x-1)^3 + \dots$$

$$= \sum_{n=0}^{\infty} C \frac{(x-1)^n}{n!}.$$

$$C \left[\lim_{N \to \infty} \left| \left(\frac{(x-1)^{n+1}}{(n+1)!} \right) \left(\frac{n!}{(x-1)^n} \right) \right| = C(x-1)(0)$$

$$= C \left[\lim_{N \to \infty} \left| \frac{x-1}{(n+1)!} \right| \right] = C(x-1)(0)$$

radius of convergence is 00.

9)
$$f(x) = \cosh(x-3)$$
 and $x_0 = 1$, $f(0) = \cosh(2)$
 $f'(x) = \sinh(x-3)$, $f'(0) = -\sinh(2)$,
 $f''(x) = \cosh(x-3)$, $f''(1) = -\sinh(2)$,
 $f'''(x) = \sinh(x-3)$, $f'''(1) = -\sinh(2)$,
 $f'''(x) = \cosh(x-3)$, $f'''(1) = \cosh(2)$,
 $f(x) = \cosh(x) - \sinh(x)$ (x1) + $\cosh(x)$ (x-1)² - 2!
 $\sinh(x)$ (x-1)³ + $\cosh(x)$ (x-1)⁴
 $\frac{2!}{3!}$ + $\cosh(x)$ (x-1)⁴
 $\frac{2!}{3!}$ + $\cosh(x)$ (x-1)⁴
 $\frac{2!}{3!}$ + $\cosh(x)$ (x-1)⁴
 $\frac{2!}{(2n+1)!}$ (2n+1)!
 $(\cosh(x)) = \frac{(x-1)^2}{(x-1)^2}$ (2n+1)!