

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali

Tesi di Laurea Magistrale in Informatica

Titolo

Relatori

Prof. Vincenzo Auletta Dott. Diodato Ferraioli Candidato

Francesco Farina Matricola 0522500282

Anno Accademico 2015-2016

Dediche e ringraziamenti

Indice

1	Inti	roduzione			
2	Alc	uni concetti base			
	2.1	Teoria dei Grafi			
		2.1.1 Grafo come modello della realtà			
		2.1.2 Complex Networks			
	2.2	Modello di Ising			
		2.2.1 Partition Function			
	2.3	Cenni di probabilità e statistica			
	2.4	Processi Markoviani			
		2.4.1 Irriducibilità e periodicità			
		2.4.2 Distribuzione stazionaria			
		2.4.3 Catena di Markov Monte Carlo			
	2.5	Algoritmi di approssimazione			
3	Logit Dynamics				
	3.1	Definizione			
	3.2	Propiretà			
		3.2.1 Ergodicità			
		3.2.2 Logit dynamics e Glauber dynamics			
	3.3	Movitazioni			
	3.4	Alcuni Esperimenti			
4	Il la	avoro di Jerrum e Sinclair			
	4.1	Spins world e Subgraphs world			
	4.2	Stima della Partition Function			
	4.3	Analisi del subgraphs-world process			

INDICE					
5	Mig	glioramenti apportati	9		
	5.1	Stato dell'arte	9		
		5.1.1 Miglioramenti Rinaldi	9		
		5.1.2 Esperimenti	9		
	5.2	Stima della Partition Function	9		
		5.2.1 Numero di steps	9		
6	Mea	an Magnetic Moment	10		
	6.1	Lemma 8, Teorema 9	10		
	6.2	Approssimazione della funzione $odd(X)$	10		
		6.2.1 logm Subgraphs	10		
		6.2.2 Algoritmo L	10		
7	Implementazione e testing				
	7.1^{-}	Implementazione	11		
	7.2	Testing	11		
	7.3	DLib Python Wrapper	11		
8	Con	clusioni e sviluppi futuri	12		

12

Bibliografia

Introduzione

Alcuni concetti base

2.1 Teoria dei Grafi

La teoria dei grafi è una branca della matematica, nata nel 1700 con Eulero, che consente di descrivere le relazioni che intercorrono tra un insieme di oggetti.

Il grafo è lo strumento attraverso il quale tali relazioni possono essere espresse ed organizzate. Infatti, il grafo, consiste di oggetti chiamati nodi e relazioni tra coppie di questi oggetti detti archi; nodi connessi tra loro da un arco sono detti vicini o adiacenti.

Figura 2.1: Wikipedia Multilingual Network Graph (July 2013)

La relazione tra una coppia di nodi può essere di due tipi:

- Simmetrica: l'arco connette i nodi con un collegamento bidirezionale ed è detto *indiretto*. Un grafo costituito di soli archi indiretti è anch'esso detto indiretto.
- Asimmetrica: l'arco connette i nodi con un collegamento unidirezionale ed è detto *diretto*. Un grafo costituito di soli archi diretti è anch'esso detto diretto.

Figura 2.2: Grafo indiretto

Figura 2.3: Grafo diretto

Un grafo può essere formalmente descritto come una coppia di insiemi $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, dove V è l'insieme dei nodi ed E è l'insieme degli archi. Un arco e $\in \mathbf{E}$ è rappresentato come un sottoinsieme di due elementi di V, $e = \{u, v\}$ per $u, v \in V$.

Le rappresentazioni atte a descrivere un grafo sono molteplici:

- Rappresentazione grafica: ad ogni nodo corrisponde una figura circolare sul piano e ad ogni arco (i, j) corrisponde una linea che che collega il nodo i al nodo j.
- Matrice di adiacenza: matrice di dimensione $n \times n$, dove n è il numero di nodi, il cui elemento (i, j) assume valore 1 se esiste l'arco tra il nodo i ed il nodo j, 0 altrimenti.
- Lista di adiacenza: ad ogni vertice v è associata la lista dei nodi ad esso vicini.

Negli anni, gli studi sulla teoria dei grafi hanno prodotto una quantità enorme di definizioni e teoremi, per cui, di seguito vengono descritti solamente i concetti necessari alla comprensione di questo lavoro di tesi.

Sottografo. Un grafo H si dice sottografo di un grafo G se i vertici di H sono un sottoinsieme dei vertici di G e gli archi di H sono un sottoinsieme degli archi di G. Siano G = (V, E) ed $H = (V_1, E_1)$ due grafi. H è un sottografo di G se e solo se $V_1 \subseteq V$ ed $E_1 \subseteq E$. Un concetto particolarmente utile alla comprensione di questo lavoro è lo spanning subgraph: uno spanning subgraph H di un grafo G è un sottografo che contiene tutti i vertici di G, cioé $V_1 = V$.

Grado di un nodo. Il grado di un nodo v è il numero di nodi ad esso adiacenti ed è indicato con deg(v).

In un grafo diretto, si distinguono due tipi di grado:

- in-deg(v), il grado in ingresso del nodo v, dato dal numero di archi in cui v compare come nodo destinazione;
- out-deg(v), il grado in uscita del nodo v, dato dal numero di archi in cui v compare come nodo sorgente.

Cammino. Un cammino è una sequenza di nodi, in cui ogni coppia consecutiva della sequenza sia connessa da un arco. Formalmente, un cammino è una sequenza di vertici $v_0, v_1, \cdots, v_n \in V$ tale che $\{v_{i-1}, v_i\} \in E, \forall 1 \leq i \leq n$. Un cammino con almeno tre vertici distinti, i cui vertici di inizio e fine coincidono, è detto ciclo.

Grafo connesso. Un grafo è connesso se, per ogni coppia distinta di vertici (i, j), esiste un cammino da i a j.

2.1.1 Grafo come modello della realtà

I grafi hanno una grande utilità, in quanto consentono di astrarre le relazioni che intercorrono tra più oggetti, e di rappresentare tali relazioni in strutture su cui è possibile applicare modelli matematici. In [1] viene proposto un esempio reale: la Figura 2.4 rappresenta la struttura della rete Internet nel Dicembre del 1970, noto come ARPANET allora, composto solo da 13 macchine. I nodi rappresentano gli host, e vi è un arco tra due host se esiste una comunicazione diretta tra di essi. Come è possibile intuire, la posizione geografica dei nodi non ha molta importanza, ma quel che conta è il come ogni nodo sia connesso agli altri. Infatti la figura 2.5 mostra lo stesso grafo di ARPANET, attraverso una rappresentazione logica. Il grafo di ARPANET mostrato in precedenza è un esempio di communication network, i cui

Figura 2.4: ARPANET nel Dicembre 1970

nodi sono computer o altri dispositivi capaci di inviare messaggi mentre gli archi rappresentano i collegamenti diretti lungo i quali tali messaggi possono viaggiare.

- 2.1.2 Complex Networks
- 2.2 Modello di Ising
- 2.2.1 Partition Function
- 2.3 Cenni di probabilità e statistica
- 2.4 Processi Markoviani
- 2.4.1 Irriducibilità e periodicità
- 2.4.2 Distribuzione stazionaria
- 2.4.3 Catena di Markov Monte Carlo
- 2.5 Algoritmi di approssimazione

Figura 2.5: Grafo di ARPANET nel Dicembre 1970

Logit Dynamics

- 3.1 Definizione
- 3.2 Propiretà
- 3.2.1 Ergodicità
- 3.2.2 Logit dynamics e Glauber dynamics
- 3.3 Movitazioni
- 3.4 Alcuni Esperimenti

Il lavoro di Jerrum e Sinclair

- 4.1 Spins world e Subgraphs world
- 4.2 Stima della Partition Function
- 4.3 Analisi del subgraphs-world process

Miglioramenti apportati

- 5.1 Stato dell'arte
- 5.1.1 Miglioramenti Rinaldi
- 5.1.2 Esperimenti
- 5.2 Stima della Partition Function
- 5.2.1 Numero di steps

Mean Magnetic Moment

- 6.1 Lemma 8, Teorema 9
- 6.2 Approssimazione della funzione odd(X)
- 6.2.1 logm Subgraphs
- 6.2.2 Algoritmo L

Implementazione e testing

- 7.1 Implementazione
- 7.2 Testing
- 7.3 DLib Python Wrapper

Conclusioni e sviluppi futuri

Bibliografia

[1] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010.