IN THE CLAIMS:

Please amend the claims as follows:

1. (Currently amended) A method for tracking a pilot channel signal to discipline an oscillator, comprising:

downconverting an RF signal from a RF center frequency f_{RF} to an intermediate center frequency f_{L} where f_{L} is greater than or equal to a chip rate f_{c} , wherein downconverting includes incorporating bandpass filtering to remove extraneous signals while passing said pilot channel signal;

converting a signal format from analog to digital using a single analog-to-digital converter employing a sampling rate of f_s to create a digital signal $\{s(n)\}$;

employing a correlation circuit to establish a correlation between $\{s(n)\}$ and locally generated versions of I-channel and Q-channel PN signals, $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$, respectively; and

generating an estimate of a frequency error of the oscillator using correlation values corresponding to (2M+1) time shifts of $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$, the (2M+1) time shifts being K- Δ_M , K- $\Delta_{(M-1)}$, . . . , K- Δ_2 , K- Δ_1 , K, and K+ Δ_1 , K+ Δ_2 , . . . , K+ $\Delta_{(M-1)}$, K+ Δ_M , where a time shift of K corresponds to a time shift that provides a maximum correlation value, and M is greater than or equal to 1; and

disciplining the oscillator using the estimate of the frequency error of the oscillator, wherein correlation values between the digital signal $\{s(n)\}$ and at least one locally generated version of I-channel and Q-channel PN signals $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$ are averaged over multiple periods of the PN signals to improve a quality of pilot position estimation.

2. (Original) The method of claim 1, wherein the sampling rate, f_s , the intermediate

center frequency, f_L , and the chip rate f_c are related by $f_s=4f_c$, and $f_L=f_c+kf_s$ for k=0.

- 3. (Original) The method of claim 1, wherein the sampling rate, f_s , the intermediate center frequency, f_L , and the chip rate f_c , are related by $f_s = 4f_c$, and $f_L = f_c + kf_s$ for k=1.
- 4. (Original) The method of claim 1, wherein the sampling rate, f_s , the intermediate center frequency, f_L , and the chip rate f_c , are related by $f_s = 4f_c$, and $f_L = f_c + kf_s$ for k=2.
- 5. (Previously Presented) The method of claim 1, wherein the correlation circuit uses a single accumulator for generating both an in-phase ("real") part and a quadrature ("imaginary") part of a complex correlation between the digital signal $\{s(n)\}$ and a given time shifted version of the locally generated versions of $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$.
- 6. (Original) The method of claim 5, wherein both positive overflows and negative underflows are monitored.
- 7. (Original) The method of claim 1, wherein a matched filter is not employed.
- 8. (Canceled)
- 9. (Previously Presented) The method of claim 1, wherein correlations are computed at time shift lags which are commensurate with the sampling rate.
- 10. (Previously Presented) The method of claim 9, wherein correlations for lags smaller than the sampling interval are synthesized using a digital signal processing.

5

09/553,735 Customer ID: 38393

- 11. (Canceled)
- 12. (Previously Presented) The method of claim 1, further comprising computing correlations over a period less than the time period of the PN signals using an autonomous background correlator.
- 13. (Canceled)
- 14. (Currently amended) An apparatus to track a pilot signal to discipline an oscillator, comprising:
- a correlator circuit adapted to compute a complex correlation between a received version of the pilot signal and locally generated versions of I-channel and Q-channel PN signals, $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$, respectively; and

a signal processor circuit coupled to the correlator circuit,

wherein the signal processor circuit <u>disciplines the oscillator and</u> averages correlation values between the received version of the pilot signal and at least one locally generated version of I-channel and Q-channel PN signals $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$ over multiple periods of the PN signals to improve a quality of pilot position estimation.

- 15. (Original) The apparatus of claim 14, wherein said correlator circuit includes an FPGA.
- 16. (Original) The apparatus of claim 14, wherein the correlator circuit includes a single accumulator that computes both the real and imaginary part of the complex correlation.

- 17. (Canceled)
- 18. (Previously Presented) The apparatus of claim 14, wherein said signal processor circuit includes a DSP.
- 19. (Canceled)
- 20. (Previously Presented) A receiver including two of the apparatus according to claim 14 that are operated in parallel to track multiple pilots.
- 21. (Original) The receiver of claim 20, wherein at least one correlator computes correlation values over a time period of less than one period of the PN signals and is used as an autonomous background correlator.
- 22. (Canceled)
- 23. (Currently amended) A method for tracking a pilot channel to discipline an oscillator, comprising:

downconverting the RF signal from the RF center frequency, f_{RF} to an intermediate center frequency of f_{L} , where f_{L} is greater than or equal to the chip rate, f_{c} , said downconversion incorporating bandpass filtering to remove extraneous signals while passing said pilot channel signal;

converting signal format from analog to digital using a single analog-to-digital converter employing a sampling rate of f_s , to create the digital signal $\{s(n)\}$;

employing correlation to establish the correlation between $\{s(n)\}$ and locally generated versions of I-channel and Q-channel PN signals, $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$, respectively; and

generating an estimate of the frequency error of the oscillator using correlation values corresponding to (2M+1) time shifts of the locally generated versions of $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$, said time shifts being K- Δ_M , K- $\Delta_{(M-1)}$,..., K- Δ_2 , K- Δ_1 , K, and K+ Δ_1 , K+ Δ_2 ,..., K+ $\Delta_{(M-1)}$, K+ Δ_M , where time shift of K corresponds to the time shift that provides a the maximum correlation value, and the value of M is 4; and

disciplining the oscillator using the estimate of the frequency error of the oscillator,

wherein correlation values between the digital signal $\{s(n)\}$ and at least one locally generated version of I-channel and Q-channel PN signals $\{I_{PN}(n)\}$ and $\{Q_{PN}(n)\}$ are averaged over multiple periods of the PN signals to improve a quality of pilot position estimation.

24. (Currently amended) A method of tracking a pilot channel to discipline an oscillator, comprising:

disciplining an oscillator including generating a spectrum shaped channel pilot signal $\{\gamma(n)\}$ from a chip-rate PN sequence $\{i(n)\}$ by:

oversampling the chip-rate PN sequence $\{i(n)\}$ at a higher sampling rate to yield a signal $\{a(n)\}$;

passing $\{a(n)\}$ through a first FIR filter whose impulse response coefficients are $\{g(n)\}$ to yield a signal $\{g(n)\}$; and

filtering $\{\mathcal{S}(n)\}$ with a second FIR filter to yield the spectrum shaped channel pilot signal $\{\gamma(n)\}$; and

averaging correlation values between the signal $\{a(n)\}$ and the spectrum shaped channel pilot signal $\{\gamma(n)\}$ over multiple periods of the chip-rate PN sequence to improve a quality of pilot position estimation.

- 25. (Original) The method of claim 24, wherein the spectrum shaped channel pilot signal $\{\gamma(n)\}$ is a spectrum shaped I-channel pilot signal.
- 26. (Original) The method of claim 24, wherein both positive overflows and negative overflows are monitored.
- 27. (Original) The method of claim 24, further comprising translating the spectrum shaped I channel pilot signal $\{\gamma(n)\}$ down to a zero-offset-carrier frequency signal $\{s(n)\}$.
- 28. (Original) The method of claim 27, further comprising translating the zero-offset-carrier frequency signal $\{s(n)\}$ down to a baseband signal $\{w(n)\}$.
- 29. (Original) The method of claim 24, wherein a sampling clock is derived from a VCXO that is phase-locked to a reference frequency.
- 30. (Original) The method of claim 24, wherein a correlation is computed at lags which are commensurate with a sampling rate.
- 31. (Original) The method of claim 24, wherein a matched filter is not employed.
- 32. (Canceled)
- 33. (Previously Presented) The method of claim 24, wherein the spectrum shaped channel pilot signal $\{\gamma(n)\}$ is a spectrum shaped Q-channel pilot signal.

34. (Currently amended) An apparatus to track a pilot signal to discipline an oscillator, comprising:

a correlator circuit adapted to oversample a chip-rate PN sequence $\{i(n)\}$ at a higher sampling rate to yield a signal $\{a(n)\}$, pass $\{a(n)\}$ through a first FIR filter whose impulse response coefficients are $\{g(n)\}$ to yield a signal $\{g(n)\}$; and filter $\{g(n)\}$ with a second FIR filter to yield a spectrum shaped pilot channel signal $\{g(n)\}$; and

a signal processor circuit coupled to the correlator circuit,

wherein the signal processor circuit <u>disciplines the oscillator and</u> averages correlation values between the signal $\{a(n)\}$ and the spectrum shaped channel pilot signal $\{\chi(n)\}$ over multiple periods of the chip-rate PN sequence to improve a quality of pilot position estimation.

- 35. (Previously Presented) The apparatus of claim 34, wherein said correlator circuit includes a FPGA.
- 36. (Canceled)
- 37. (Original) The apparatus of claim 34, wherein said signal processor circuit includes a DSP.
- 38. (Previously Presented) The apparatus of claim 34, further comprising an A/D converter coupled to said signal processor circuit.
- 39. (Previously Presented) The apparatus of claim 34, wherein the first FIR filter includes a 4-point FIR filter having all 4 coefficients at least substantially equal.

- 40. (Previously Presented) The apparatus of claim 34, wherein the second FIR filter includes a 48-point FIR filter.
- 41. (Canceled)
- 42. (Previously Presented) The apparatus of claim 34, further comprising an autonomous background correlator coupled to the correlator circuit.
- 43. (Previously Presented) A receiver comprising at least two of the apparatus according to claim 34 that are operated in parallel to track multiple pilots.
- 44. (Previously Presented) The method of claim 1, wherein averaging includes averaging C_{MS} over multiple correlation computations to reduce noise
- 45. (Previously Presented) The apparatus of claim 14, wherein the signal processor averages C_{MS} over multiple correlation computations to reduce noise.
- 46. (Previously Presented) The method of claim 24, wherein averaging includes averaging C_{MS} over multiple correlation computations to reduce noise.
- 47. (Previously Presented) The apparatus of claim 34, wherein the signal processor averages C_{MS} over multiple correlation computations to reduce noise.
- 48. (Previously Presented) The method of claim 10, wherein using digital signal processing includes synthesizing an offset to improve precision of an estimate of time-of-arrival

of a received pilot code.

- 49. (Previously Presented) The apparatus of claim 18, wherein the DSP synthesizes an offset to improve precision of an estimate of time-of-arrival of a received pilot code.
- 50. (Previously Presented) The method of claim 24, wherein correlations for lags smaller than the sampling interval are synthesized using digital signal processing.
- 51. (Previously Presented) The method of claim 50, wherein using digital signal processing includes synthesizing an offset to improve precision of an estimate of time-of-arrival of a received pilot code.
- 52. (Previously Presented) The apparatus of claim 34, wherein the DSP synthesizes an offset to improve precision of an estimate of time-of-arrival of a received pilot code.
- 53. (Previously Presented) The method of claim 1, further comprising employing another correlator circuit in parallel to track multiple pilots.
- 54. (Previously Presented) The method of claim 24, further comprising disciplining another oscillator in parallel to track multiple pilots including generating another spectrum shaped channel pilot signal by:

oversampling to yield another signal;

passing the another signal through another FIR filter; and

filtering with another second FIR filter to yield the another spectrum shaped channel pilot signal.

- 55. (Previously Presented) The method of claim 1, wherein the correlation circuit is time shared to track multiple pilots.
- 56. (Previously Presented) The apparatus of claim 14, wherein the correlator circuit is time shared to track multiple pilots.
- 57. (Previously Presented) The method of claim 24, further comprising time sharing a correlator circuit to track multiple pilots.
- 58. (Previously Presented) The apparatus of claim 34, wherein the correlator circuit is time shared to track multiple pilots.
- 59. (Previously Presented) The method of claim 1, wherein the I-channel and Q-channel PN signals are different.
- 60. (Previously Presented) The apparatus of claim 14, wherein the I-channel and Q-channel PN signals are different.
- 61. (Previously Presented) The method of claim 24, wherein disciplining an oscillator includes generating another spectrum shaped channel pilot signal from another different chiprate PN sequence.
- 62. (Previously Presented) The apparatus of claim 34, wherein the correlator circuit adapted to oversample another different chip-rate PN sequence.