Chapitre-5: Dualité

Introduction

> Exemple: Problème de production.

Une entreprise fabrique deux produits P₁ et P₂. La fabrication de chaque produit nécessite trois ressources A, B et C disponibles en quantités données. L'entreprise cherche à maximiser le bénéfice total provenant de la vente des deux produits.

	Produit P ₁	Produit P ₂	Disponibilité
Ressource A	3	9	81
Ressource B	4	5	55
Ressource C	2	1	20
Bénéfice	6	4	social in the b

Le programme linéaire correspondant est:

$$(P) \begin{cases} 3x_1 + 9x_2 \le 81 \\ 4x_1 + 5x_2 \le 55 \\ 2x_1 + x_2 \le 20 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Introduction

- Supposons à présent qu'un acheteur se présente pour acheter toutes les ressources de l'entreprise. Il propose à l'entreprise les prix unitaires y₁, y₂, y₃ pour chacune des ressources.
- > L'entreprise acceptera de lui vendre toutes ses ressources uniquement si elle obtient, pour chaque produit, un prix de vente supérieur ou égal au profit qu'elle ferait en vendant ses produits.
- Quels prix unitaires y₁, y₂, y₃, l'acheteur doit-il proposer à l'entreprise en question pour qu'elle accepte de vendre toutes ses ressources?

Introduction

- \square Pour le produit P_1 :
- La valeur du paquet des RESSOURCES qui entre dans la production d'une unité du produit P₁?
 - ✓ La production d'une unité du produit P₁ nécessite:
 - 3 unités de la ressource A,
 - 4 unités de la ressource B,
 - 2 unités de la ressource C.
 - ✓ L'acheteur propose:
 - y₁ pour acheter 1 unité de A,
 - y₂ pour acheter 1 unité de B,
 - y₃ pour acheter 1 unité de C.

La valeur de ce paquet des ressources consommées par le produit P_1 est donc: . $3y_1 + 4y_2 + 2y_3$

Introduction

- \square Pour le produit P_1 :
- ➤ Le bénéfice provenant d'une unité du PRODUIT P₁ ?

Ce bénéfice est: 6

➤ L'entreprise n'acceptera pas de céder ce paquet de ressources pour moins de 6. L'acheteur devra donc fixer les prix offerts pour les ressources de l'entreprise de façon à ce que

$$3y_1 + 4y_2 + 2y_3 \ge 6$$

- \square Pour le produit P_2 :
- > Similairement à ce qui précède, on écrit:

$$9y_1 + 5y_2 + y_3 \ge 4$$

> Il raisonnable de penser que:

$$y_i \ge 0$$
, $i=1,2,3$.

Introduction

> De son coté, l'acheteur cherche à minimiser le prix total d'achat des ressources A (81), B (55), C (20):

Min
$$w=81y_1+55y_2+20y_3$$

Finalement, pour déterminer les prix unitaires minimaux qu'il proposera à l'entreprise, l'acheteur devrait résoudre le programme linéaire suivant: $Min \ w = 81y_1 + 55y_2 + 20y_3$

(D)
$$\begin{cases} 3y_1 + 4y_2 + 2y_3 \ge 6 \\ 9y_1 + 5y_2 + 1y_3 \ge 4 \\ y_1 \ge 0, y_2 \ge 0, y_3 \ge 0 \end{cases}$$

➤ La dualité associe à tout programme linéaire est un autre programme linéaire qui est appelé programme dual du programme initial; par opposition le programme initial est appelé programme primal.

Règles de dualisation

Considérons un PL sous la forme canonique:

$$Max \quad z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$\left\{ \begin{array}{c} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & i = 1, \dots, m \\ x_{j} \geq 0 & j = 1, \dots, n \end{array} \right.$$

Le programme dual est le suivant:

$$Min \ w = \sum_{i=1}^{m} b_i y_i$$

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad j = 1, \dots, n$$

$$y_i \ge 0 \qquad i = 1, \dots, m$$

Règles de dualisation

Dualisation d'un PL sous la forme canonique:

Primal (P)	Dual (D)=dual(P)	
$\begin{array}{c} \text{Max(z)} \\ \text{A matrice des containtes (m,n)} \\ \text{Second membre des contraintes} \\ \text{Coefficient de la fonction objectif} \\ \text{Nombre de contraintes} \\ \text{Nombre de variables de décision} \\ \text{Variable } x_{j} \geq 0 \\ \text{Contrainte i de type} \leq \end{array}$	$\begin{array}{c} \text{Min(w)} \\ \mathbf{A}^{\mathrm{T}} \text{matrice des containtes (n,m)} \\ \text{Coefficient de la fonction objectif} \\ \text{Second membre des contraintes} \\ \text{Nombre de variables de décision} \\ \text{Nombre de contraintes} \\ \text{Contrainte j de type } \geq \\ \text{Variable} y_i \geq 0 \end{array}$	

Le dual du programme dual est le programme primal.

Propriétés de la Dualité

- ☐ Dualité forte:
- ▶ Le primal possède une solution optimale (x₁*,..., x_n*) si et seulement si le dual possède une solution optimale (y₁*,..., y_m*).
- Dans ce cas, les fonctions objectifs z et w ont la même valeur optimale,

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Propriétés de la Dualité

- ☐ Théorème des écarts complémentaires:
- \triangleright Soit $(x_1^*,...,x_n^*)$ une solution réalisable d'un programme primal.

 $(x_1^*,...,x_n^*)$ est optimale si et seulement si

il existe (y_1^*, \ldots, y_m^*) tel que

 $({y_1}^*, \ldots, {y_m}^*)$ est une solution <u>réalisable</u> du dual. De plus,

$$\textstyle \sum_{j=1}^n a_{i,j} x_j^* < b_i \Rightarrow y_i^* = 0 \quad \text{et} \quad x_j^* > 0 \Rightarrow \sum_{i=1}^m a_{i,j} y_i^* = c_j$$

Autrement dit:

- ➤ La ième contrainte primale n'est pas saturée ⇒ la ième variable (de décision) duale est nulle.
- ➤ La jème variable (de décision) primale est non nulle ⇒ la jème contrainte duale est saturée.

Propriétés de la Dualité

> Exemple: Appliquons le TEC au programme linéaire suivant:

(P)
$$\begin{cases} \max 15x_1 + 25x_2 \\ x_1 + 3x_2 \leqslant 96 \\ x_1 + x_2 \leqslant 40 \\ 7x_1 + 4x_2 \leqslant 238 \\ x_1 , x_2 \geqq 0 \end{cases}$$

Soit la solution: $x_1=0$, $x_2=32$. Cette solution est elle optimale ? Le problème linéaire dual de (P) est:

(D)
$$\begin{cases} \text{Min } \mathbf{w} = 96\mathbf{y}_1 + 40\mathbf{y}_2 + 238\mathbf{y}_3 \\ \mathbf{y}_1 + \mathbf{y}_2 + 7\mathbf{y}_3 \ge 15 \\ 3\mathbf{y}_1 + \mathbf{y}_2 + 4\mathbf{y}_3 \ge 25 \\ \mathbf{y}_1 \cdot \mathbf{y}_2 \cdot \mathbf{y}_3 \ge 0 \end{cases}$$

Propriétés de la Dualité

- Cherchons y₁, y₂ et y₃ vérifiant le théorème des écarts complémentaires. S'ils existent alors la solution primale proposée est optimale. Sinon alors la solution primale proposée n'est pas optimale.
- On a
 - ✓ La 2^{ème} contrainte primale n'est pas saturée ⇒ la 2^{ème} variable duale est nulle.

$$\implies$$
 y₂=0.

✓ La 3^{ème} contrainte primale n'est pas saturée ⇒ la 3^{ème} variable duale est nulle.

$$\implies$$
 y₃=0.

Propriétés de la Dualité

- Et on a,
 - ✓ La 2^{ème} variable primale n'est pas nulle ⇒ la 2^{ème} contrainte duale est saturée.

$$\Rightarrow 3y_1+y_2+4y_3=25$$

\Rightarrow 3y_1=25 car y_2=y_3=0
\Rightarrow y_1=25/3.

- ➤ Cependant, cette solution $(y_1=25/3, y_2=y_3=0)$ ne satisfait pas la $1^{\text{ère}}$ contrainte duale $(y_1+y_2+7y_3\ge15)$. Par suite, elle n'est pas réalisable.
- \triangleright La solution primale précédente (x₁=0, x₂=32) n'est donc pas optimale.

Propriétés de la Dualité

- ➤ Le tableau optimal contient non seulement la solution (optimale) du programme initial mais également celle de son dual.
- Les fonctions objectifs z et w ont <u>la même valeur optimale</u>.
- Le coefficient d'une variable d'écart dans la ligne objective d'un programme est égale à l'opposé de la valeur optimale de la variable de base associée dans l'autre programme et réciproquement.

Exercices

> Execice (Résolution du dual en utilisant le tableau final du primal): Résoudre (implicitement) le programme dual de (P) suivant:

$$(P) \begin{cases} 3x_1 + 4x_2 \\ 3x_1 + 9x_2 \le 81 \\ 4x_1 + 5x_2 \le 55 \\ 2x_1 + x_2 \le 20 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

par la méthode du simplexe (mais en travaillant sur le tableau primal!).

Correction...

Exercices

> Execice:

Vérifier que $(x_1,x_2,x_3,x_4)=(3,0,7,0)$ est une solution réalisable optimale en appliquant le théorème des écarts complémentaires.

$$\begin{aligned} \operatorname{Max} \mathbf{z} &= 7x_1 + 9x_2 + 18x_3 + 17x_4 \\ & \begin{cases} 2x_1 + 4x_2 + 5x_3 + 7x_4 \leq 42 \\ x_1 + x_2 + 2x_3 + 2x_4 \leq 17 \\ x_1 + 2x_2 + 3x_3 + 3x_4 \leq 24 \\ x_i \geq 0. \end{cases} \end{aligned}$$

Correction...