## Interro20 - RSF

|   | Nom :<br>Prénom :                                                                                         |                                                                                      |    |   |   |   | Note: |   |    |   |     |     |    |   |    |      |      |    |     |       |
|---|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----|---|---|---|-------|---|----|---|-----|-----|----|---|----|------|------|----|-----|-------|
|   | Exe                                                                                                       | rci                                                                                  | ce | 1 | _ | R | SI    | F | (9 | p | oir | nts | s) |   |    |      |      |    |     |       |
|   | D<br>en ré                                                                                                |                                                                                      |    |   |   | - |       |   |    |   |     |     |    | _ |    | nts  | S SO | nt | étu | ıdiés |
| L | 1. Donner le signal réel associé à l'amplitude con $\underline{S_0} = S_0 e^{j\frac{\pi}{3}}.$            |                                                                                      |    |   |   |   |       |   |    |   |     |     |    |   | mp | lex€ |      |    |     |       |
|   |                                                                                                           |                                                                                      |    |   |   |   |       |   |    |   |     |     |    |   |    |      |      |    |     |       |
| L | 2.                                                                                                        | 2. Donner l'amplitude complexe associée au signal réel $u(t) = U_0 \sin(\omega t)$ . |    |   |   |   |       |   |    |   |     |     |    |   |    |      |      |    |     |       |
|   |                                                                                                           |                                                                                      |    |   |   |   |       |   |    |   |     |     |    |   |    |      |      |    |     |       |
| 2 | 3. Donner l'expression de l'impédance complexe d'une bobine. En rappeler les comportements asymptotiques. |                                                                                      |    |   |   |   |       |   |    |   |     |     |    |   |    |      |      |    |     |       |
|   |                                                                                                           |                                                                                      |    |   |   |   |       |   |    |   |     |     |    |   |    |      |      |    |     |       |
|   |                                                                                                           |                                                                                      |    |   |   |   |       |   |    |   |     |     |    |   |    |      |      |    |     |       |

On considère un circuit RLC série. L'amplitude complexe de l'intensité du courant s'écrit

$$\underline{I_m} = \frac{I_0}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}.$$

/1 4. Rappeler la relation entre la pulsation de résonance  $\omega_0$ , la largeur de la bande passante  $\Delta\omega$  et le facteur de qualité Q.



/2 **5.** Indiquer les valeurs de  $\varphi = \arg(\underline{I_m})$  en BF et pour  $\omega = \omega_0$ .



/2 6. Déterminer l'impédance complexe  $\underline{Z}$  équivalente à l'association en parallèle d'une résistance R et d'un condensateur de capacité C.

