i	x_i	y_i	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
1	1.0	0.6	-1.5	-0.5	0.75	2.25	0.25
2	2.9	1.1	0.4	0.0	0.0	0.16	0.0
3	3.6	1.6	1.1	0.5	0.55	1.21	0.25
Σ	7.5	3.3	0	0	1.3	3.62	0.5

$$\overline{x} = \frac{7.5}{3} = 2.5$$

$$\overline{y} = \frac{3.3}{3} = 1.1$$

$$Cov(x,y) = \frac{1}{n} \sum (x_i - \overline{x})(y_i - \overline{y}) = \frac{1.3}{3} = 0.4333$$

$$Var(x) = \frac{1}{n}\Sigma(x_i - \overline{x})^2 = \frac{3.62}{3} = 1.2067$$

$$Var(y) = \frac{1}{n}\Sigma(y_i - \overline{y})^2 = \frac{0.5}{3} = 0.1667$$

$$Kor(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}} = \frac{0.4333}{\sqrt{1.2067 \cdot 0.1667}} = 0.9663$$

$$koef.regresije = \frac{Cov(x,y)}{Var(x)} = \frac{0.4333}{1.2067} = 0.3591$$

jednadžba pravca:
$$y - \overline{y} = \frac{Cov(x,y)}{Var(x)}(x - \overline{x})$$

$$y - 1.1 = 0.3591(x - 2.5)$$

$$y = 0.3591x + 0.2023$$