# **Reducing Data Complexity**

Luis Francisco Gomez Lopez

**FAEDIS** 

2025-05-05



# Table of contents I

- Please Read Me
- 2 Purpose

3 Consumer brand perception survey

- Understanding the reduction of data complexity
- **5** Consumer brand perception survey



• This presentation is based on (Chapman and Feit 2019, chap. 8)



 Apply data complexity reduction by using the principal component analysis technique



- On a scale from 1 to 10, where 1 is least and 10 is most, how <perceptual adjective> is <brand>?
- 100 respondents rate 10 brands on 9 perceptual adjectives
  - **perform**: has strong performance (1, 2, ..., 10)
  - **leader**: is a leader in the field (1, 2, ..., 10)
  - **latest**: has the latest products (1, 2, ..., 10)
  - fun: is fun (1, 2, ..., 10)
  - **serious**: is serious  $(1, 2, \dots, 10)$
  - **bargain**: products are a bargain (1, 2, ..., 10)
  - value: products are a good value (1, 2, ..., 10)
  - **trendy**: is trendy (1, 2, ..., 10)
  - rebuy: I would buy from  $\langle brand \rangle$  again (1, 2, ..., 10)
  - **brand**: coffee brand rated by a consumer (a, b, ..., j)



### Import data

```
consumer_brand <- read_csv("http://goo.gl/IQ18nc")
consumer_brand |> head(n = 5)
```



#### Transform data

```
# A tibble: 6 x 10
 perform leader latest
                       fun serious bargain value trendy rebuy brand
   <dbl> <dbl> <dbl> <dbl> <dbl>
                             <db1>
                                    <dbl> <dbl> <dbl> <dbl> <chr>
1 -0.777 -0.160 0.586 0.704 -0.836
                                  1.78
                                          1.11 -0.445 0.893 a
 -1.09 -1.31 -0.713 0.340 -1.20 -1.22
                                        -1.39 -1.17 -0.679 a
 -0.777 -0.543 -0.388 1.07 -0.836
                                  1.78
                                          0.276 - 1.54
                                                     0.893 a
                      0.704 -0.476 -0.0971 0.276 -1.17 -1.07 a
 -1.09 0.607 1.24
 -1.09 -1.31 -0.388 0.704 -1.20 1.78 1.94 -1.54 -1.07 a
 -0.777 1.37
               0.911 -0.389 -0.476 1.40 1.11 -1.54 -0.679 a
```



### Summarize data

• Ups the table is really big!!! Try it in your console to see the complete table

consumer brand scale |> skim()

**Table 1:** Data summary

| Name                   | consumer_brand_scale |
|------------------------|----------------------|
| Number of rows         | 1000                 |
| Number of columns      | 10                   |
| Column type frequency: |                      |
| character              | 1                    |
| numeric                | 9                    |
| Group variables        | None                 |

#### Variable type: character

| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---------------|-----------|---------------|-----|-----|-------|----------|------------|
| brand         | 0         | 1             | 1   | 1   | 0     | 10       | 0          |

Variable type: numeric



skim variable n missing complete rate mean 0g p25 p50 p75 Luis Francisco Gomez Lopez (FAEDIS) Reducing Data Complexity

p100

#### Correlation matrices

Pearson correlation coefficients for samples in a tibble

```
# A tibble: 9 x 10
         perform leader
                       latest
                                  fun serious bargain value
                                                                trendy
 term
 <chr>>
           <db1>
                  <db1>
                          <db1>
                                 <dbl>
                                         <dbl>
                                                 <db1>
                                                        <dbl>
                                                                <db1>
                 0.500 -0.122
                                        0.359
                                                0.0571
                                                               0.00873
1 perform NA
                                -0.256
                                                        0.102
2 leader
         0.500 NA
                        0.0269
                               -0.290 0.571
                                                0.0331
                                                        0.118
                                                               0.0665
3 latest -0.122
               0.0269 NA
                                0.245
                                        0.00995 -0.254
                                                       -0.343
                                                               0.628
        -0.256
               -0.290
                       0.245
                                       -0.281
                                               -0.0666
                                                       -0.145
                                                               0.128
4 fun
                                NA
5 serious 0.359
               0.571
                        0.00995 -0.281 NA
                                               -0.00266 0.0238 0.121
6 bargain 0.0571 0.0331 -0.254
                               -0.0666 -0.00266 NA
                                                       0.740 -0.351
7 value 0.102
               0.118 -0.343 -0.145 0.0238 0.740
                                                       NA
                                                              -0.435
8 trendy 0.00873 0.0665 0.628
                              0.128 0.121 -0.351
                                                     -0.435 NA
                                                     0.506 -0.298
9 rebuv
         0.307
                 0.209 -0.397
                               -0.237
                                       0.181
                                             0.467
# i 1 more variable: rebuy <dbl>
```



### Correlation matrices

```
correlation_matrix |>
  autoplot(method = "HC", # Hierarchical clustering: More details in Chapter 11
  triangular = "lower")
```



Figure 1: Visualizing a correlation matrix



## Mean ratings by brand

```
brand_mean <- consumer_brand_scale |>
  group_by(brand) |>
  summarise(across(everything(), .fns = mean))
brand_mean
```

```
# A tibble: 10 x 10
                                fun serious bargain
  brand perform leader latest
                                                    value trendy
                                                                     rebuy
  <chr>
         <dbl> <dbl> <dbl> <dbl> <dbl>
                                      <dbl>
                                            <dbl>
                                                      <db1>
                                                              <db1>
                                                                      <db1>
        -0.886
                -0.528 0.411
                              0.657 -0.919
                                             0.214
                                                     0.185 -0.525
                                                                   -0.596
 1 a
         0.931
                 1.07
                        0.726 - 0.972
                                                     0.151
                                                             0.740
                                                                     0.237
 2 b
                                    1.18
                                             0.0416
         0.650
               1.16 -0.102 -0.845 1.22
                                            -0.607
                                                    -0.441
                                                             0.0255 -0.132
 3 c
 4 d
        -0.680 -0.593 0.352 0.187 -0.692
                                            -0.881
                                                    -0.933
                                                             0.737
                                                                   -0.494
        -0.564
                 0.193 0.456 0.296
                                    0.0421 0.552
                                                     0.418
                                                             0.139
                                                                    0.0365
5 e
        -0.0587 0.270 -1.26 -0.218 0.589
                                                                     1.36
6 f
                                             0.874
                                                     1.02
                                                            -0.813
7 g
        0.918
                -0.168 -1.28 -0.517 -0.534
                                             0.897
                                                     1.26
                                                            -1.28
                                                                    1.36
8 h
        -0.0150 -0.298 0.502 0.715 -0.141
                                            -0.738
                                                    -0.783
                                                             0.864
                                                                   -0.604
        0.335 -0.321 0.356 0.412 -0.149
                                           -0.255
                                                    -0.803
                                                                    -0.203
9 i
                                                             0.591
10 j
        -0.630 -0.789 -0.154 0.285 -0.602 -0.0971 -0.0738 -0.481
                                                                   -0.962
```



### Mean ratings by brand

```
# A tibble: 90 x 3
  brand perceptual_adjectives value_mean
  <fct> <fct>
                                   <dh1>
        perform
                                  -0.886
 1 a
2 a
        leader
                                  -0.528
        latest
                                  0.411
        fun
                                  0.657
        serious
                                  -0.919
                                  0.214
     bargain
7 a
        value
                                  0.185
        trendy
                                  -0.525
8 a
9 a
        rebuy
                                  -0.596
1.0 b
        perform
                                  0.931
# i 80 more rows
```



```
library(tidyheatmaps)
tidyheatmap(df = brand_mean_longer,
    rows = brand, columns = perceptual_adjectives, values = value_mean,
    cluster_rows = TRUE, cluster_cols = TRUE,
    clustering_method = "complete", # See ?hclust and chapter 11
    display_numbers = TRUE, border_color = "black", fontsize = 12)
```



Figure 2: Heat map mean ratings by brand



- Principal component analysis (PCA) and perceptual maps
  - PCA reduced example

```
set.seed(seed = 1234)
consumer_brand_sample <- consumer_brand |>
slice_sample(n = 1, by = brand) |>
select(brand, perform, leader)
consumer_brand_sample
```

```
# A tibble: 10 x 3
brand perform leader
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> 1 a 2 4
2 b 9 6
3 c 5 6
4 d 3 3 3
5 e 1 5
6 f 8 6
7 g 10 7
8 h 8 1
9 i 8 2
10 j 4 1
```





Figure 3: Visualizing original data





Figure 4: Centering data using the mean





Figure 5: Scaling data using the standard deviation





Figure 6: Fitting a line by performing an orthogonal regression





Figure 7: Find a line orthogonal to the fitted line





Figure 8: Find the orthogonal distances between the points and the new line





**Figure 9:** Project the points onto each line





**Figure 10:** Rotate the fitted line and the projected points around (0,0)





Figure 11: Fix the new points based on the projected points





Figure 12: Apply data complexity reduction by focusing on the horizontal axis





**Figure 13:** Recover the data that was reduced when focusing in the horizontal axis





Figure 14: Using an image to understand data complexity reduction



- Principal component analysis (PCA) and perceptual maps
  - Represent and image as data
    - x,y: position of a point in a cartesian plane (x,y)
    - ullet value: a gray scale where 0 is white, 1 is black and (0,1) is an intermediate color between white and black



- Principal component analysis (PCA) and perceptual maps
  - Prepare data for PCA

```
# A tibble: 512 x 513
       <int> <dbl> 
                 1 0.498 0.502 0.502 0.486 0.494 0.490 0.498 0.482 0.494 0.486 0.478 0.494
                2 0.482 0.494 0.486 0.498 0.490 0.498 0.498 0.529 0.502 0.502 0.494 0.498
                 3 0.490 0.502 0.502 0.502 0.502 0.494 0.494 0.471 0.486 0.498 0.502 0.490
                4 0.471 0.478 0.494 0.506 0.494 0.494 0.486 0.502 0.502 0.486 0.494 0.478
                5 0.494 0.490 0.498 0.475 0.494 0.502 0.471 0.475 0.490 0.498 0.482 0.490
                6 0 482 0 490 0 471 0 502 0 490 0 502 0 498 0 482 0 482 0 475 0 498 0 475
               7 0.498 0.478 0.502 0.506 0.498 0.502 0.502 0.494 0.502 0.502 0.486 0.498
                8 0.502 0.506 0.506 0.502 0.502 0.494 0.494 0.494 0.510 0.510 0.506 0.502
                9 0 490 0 498 0 502 0 506 0 514 0 510 0 502 0 502 0 502 0 518 0 514 0 514
10
               10 0.506 0.502 0.514 0.522 0.498 0.506 0.514 0.522 0.518 0.522 0.525 0.514
# i 502 more rows
# i 500 more variables: `13` <dbl>, `14` <dbl>, `15` <dbl>, `16` <dbl>,
          '17' <dbl>, '18' <dbl>, '19' <dbl>, '20' <dbl>, '21' <dbl>, '22' <dbl>,
          '23' <dbl>, '24' <dbl>, '25' <dbl>, '26' <dbl>, '27' <dbl>, '28' <dbl>,
         '29' <dbl>, '30' <dbl>, '31' <dbl>, '32' <dbl>, '33' <dbl>, '34' <dbl>,
         '35' <dbl>, '36' <dbl>, '37' <dbl>, '38' <dbl>, '39' <dbl>, '40' <dbl>,
          '41' <dbl>, '42' <dbl>, '43' <dbl>, '44' <dbl>, '45' <dbl>, '46' <dbl>, ...
```





Figure 15: Data complexity reduction example



- Principal component analysis (PCA) and perceptual maps
  - Applying to the reduced example

```
consumer_brand_sample_matrix <- consumer_brand_sample |>
select(-brand) |>
as.matrix()
consumer_brand_sample_matrix |> head()
```

```
perform leader
[1,] 2 4
[2,] 9 6
[3,] 5 6
[4,] 3 3
[5,] 1 5
[6,] 8 6
```



- Principal component analysis (PCA) and perceptual maps
  - prcomp output from R

```
consumer_brand_sample_matrix_pca <- consumer_brand_sample_matrix |>
    prcomp(center = TRUE, scale. = TRUE)
consumer_brand_sample_matrix_pca

Standard deviations (1, .., p=2):
```

```
[1] 1.1051789 0.8823716

Rotation (n x k) = (2 x 2):
    PC1    PC2
perform 0.7071068 0.7071068
Leader 0.7071068 -0.7071068
```



- Principal component analysis (PCA) and perceptual maps
  - Structure of prcompfrom R

consumer\_brand\_sample\_matrix\_pca |> str()

```
List of 5
$ sdev : num [1:2] 1.105 0.882
$ rotation: num [1:2, 1:2] 0.707 0.707 0.707 -0.707
... attr(*, "dimnames")=List of 2
....$: chr [1:2] "perform" "leader"
....$: chr [1:2] "pC1" "pC2"
$ center : Named num [1:2] 5.8 4.1
... attr(*, "names")= chr [1:2] "perform" "leader"
$ scale : Named num [1:2] 3.19 2.23
... attr(*, "names")= chr [1:2] "perform" "leader"
$ x : num [1:10, 1:2] -0.874 1.311 0.424 -0.969 -0.779 ...
... attr(*, "dimnames")=List of 2
....$: NULL
....$: chr [1:2] "PC1" "PC2"
- attr(*, "class")= chr "prcomp"
```



- Principal component analysis (PCA) and perceptual maps
  - Extracting scores: principle components space

```
scores <- consumer_brand_sample_matrix_pca$x
scores</pre>
```

```
[1,] -0.8739101 -0.81059416

[2,] 1.3107664 0.10776349

[3,] 0.4241852 -0.77881770

[4,] -0.9688445 -0.27236914

[5,] -0.7789757 -1.34881917

[6,] 1.0891211 -0.11388181

[7,] 1.8489914 0.01282907

[8,] -0.4937775 1.46901678

[9,] -0.19771978 1.15243706
```

[10,] -1.3803587 0.58243559

PC1

PC2



- Principal component analysis (PCA) and perceptual maps
  - Extracting loadings: map from principle components space back into the original space

```
loadings <- consumer_brand_sample_matrix_pca$rotation
loadings</pre>
```

```
PC1 PC2
perform 0.7071068 0.7071068
leader 0.7071068 -0.7071068
```



- Principal component analysis (PCA) and perceptual maps
  - Extracting loadings: map from principle components space back into the original space

```
consumer_brand_sample_matrix_center_scale <- consumer_brand_sample_matrix |>
    scale(center = TRUE, scale = TRUE)
consumer_brand_sample_matrix_center_scale
```

```
perform
                     leader
 [1.] -1.1911244 -0.04477113
 [2.] 1.0030521 0.85065153
 [3.] -0.2507630 0.85065153
 [4,] -0.8776706 -0.49248246
 [5.] -1.5045782 0.40294020
 [6,] 0.6895983 0.85065153
 [7.] 1.3165059 1.29836285
 [8.] 0.6895983 -1.38790512
 [9.] 0.6895983 -0.94019379
[10,] -0.5642168 -1.38790512
attr(, "scaled:center")
perform leader
    5.8
           4.1
attr(, "scaled:scale")
perform leader
```



3.190263 2.233582

- Principal component analysis (PCA) and perceptual maps
  - Using matrix multiplication, %\*%, the original centered and scaled data,  $X_{c,s}$ , and the loadings, L, loadings to obtain the scores, S

$$S = X_{c,s}L$$

consumer\_brand\_sample\_matrix\_center\_scale %\*% loadings

```
PC1 PC2

[1,] -0.8739101 -0.81059416

[2,] 1.3107664 0.10776349

[3,] 0.4241852 -0.77881770

[4,] -0.9688445 -0.27236914

[5,] -0.7789757 -1.34881917

[6,] 1.0891211 -0.11388181

[7,] 1.8489914 0.01282907

[8,] -0.4937775 1.46901678

[9,] -0.1771978 1.15243706
```

[10,] -1,3803587 0,58243559



- Principal component analysis (PCA) and perceptual maps
  - Recovering original centered and scaled data, X, using loadings, L, and scores, S

$$SL^t = X_{c,s}LL^t = X_{c,s}I = X_{c,s}$$

```
(scores %*% t(loadings)) |> set_colnames(c("perform", "leader"))
```

```
perform leader
[1,] -1.1911244 -0.04477113
[2,] 1.030521 0.85065153
[3,] -0.2507630 0.85065153
[4,] -0.8776706 -0.49248246
[5,] -1.5045782 0.40294020
[6,] 0.6895983 0.85065153
[7,] 1.3165059 1.29836285
[8,] 0.6895983 -1.38789512
[9,] 0.6895983 -0.94019379
[10,] -0.5642168 1.38789515
```

 $<sup>^1</sup>L$  is an orthogonal matrix, which means that L is a real square matrix such that  $L^tL=LL^t=I$  where I is the identity matrix.



- Principal component analysis (PCA) and perceptual maps
  - $\bullet$  Reconstructing original centered and scaled data using the first principal component,  $X_{c,s,p_1}$

$$S_{p_1} L_{p_1}^t = X_{c,s,p_1}$$

```
scores[, 1] %*% t(loadings[, 1])
```

```
perform leader
[1,] -0.6179478 -0.6179478
[2,] 0.9268518 0.9268518
[3,] 0.2999442 0.2999442
[4,] -0.6850765 -0.6850765
[5,] -0.5508190 -0.5508190
[6,] 0.7701249 0.7701249
[7,] 1.3074344 1.3074344
[8,] -0.3491534 -0.3491534
[9,] -0.1252977 -0.1252977
```

[10,] -0.9760610 -0.9760610



- Principal component analysis (PCA) and perceptual maps
  - $\bullet$  Reconstructing original centered data using the first principal component,  $X_{c,p_1}$

```
scores[, 1] %*% t(loadings[, 1]) |>
scale(center = FALSE, scale = 1/consumer_brand_sample_matrix_pca$scale)
```

```
[1,] -1,9714158 -1,3802370
[2,] 2.9569010 2.0701996
[3,] 0.9569010 0.6699501
[4,] -2.1855743 -1.5301747
[5,] -1.7572574 -1.2302994
[6,] 2.4659010 1.7201372
[7,] 4.1710595 2.9202620
[8,] -1.1138912 -0.7798628
[9,] -0.3997327 -0.2798628
[10,] -3.1138912 -2.1801123
attr(,"scaled:scale")
perform leader
```

0.3134538 0.4477113

perform

leader



- Principal component analysis (PCA) and perceptual maps
  - $\bullet$  Reconstructing original data using the first principal component,  $X_{p_1}$

```
scores[, 1] %*% t(loadings[, 1]) |>
scale(center = FALSE, scale = 1/consumer_brand_sample_matrix_pca$scale) |>
scale(center = -consumer_brand_sample_matrix_pca$center, scale = FALSE)
```

```
[1,] 3.828584 2.719763
 [2,] 8.756901 6.170200
 [3,] 6.756901 4.769950
 [4,] 3,614426 2,569825
 [5,] 4.042743 2.869701
 [6.] 8.256901 5.820137
 [7,] 9,971059 7,020262
 [8,] 4,686109 3,320137
 [9,] 5.400267 3.820137
[10,] 2,686109 1,919888
attr(, "scaled:scale")
 perform
           leader
0.3134538 0.4477113
attr(, "scaled:center")
perform leader
   -5.8
        -4.1
```

perform leader



40 / 48

- Principal component analysis (PCA) and perceptual maps
  - Eingevalues, in this case variance, represent the variance explained by each principal component

```
eigenvalues <- consumer_brand_sample_matrix_pca |>
    tidy(matrix = "eigenvalues") |>
    mutate(variance = std.dev^2, .after = std.dev)
eigenvalues
```



```
library(ggbiplot)
consumer_brand_sample_matrix_pca |>
    ggscreeplot() +
    scale_x_continuous(breaks = 1:2)
```



Figure 16: Variance explained by each principal component



- Principal component analysis (PCA) and perceptual maps
  - A biplot represents visually the scores of the first, x-axis, and second, y-axis, of the principal components and the corresponding loadings both scaled by a factor<sup>2</sup>
  - In the case of principal component analysis there are many different ways to produce a biplot
    - For the differents ways to build a biplot check out Positioning the arrows on a PCA biplot

<sup>&</sup>lt;sup>2</sup>For specific details check out ?stats:::biplot.prcomp, ?ggbiplot::ggbiplot and ?ggbiplot::get\_SVD



**Figure 17:** Building a biplot using the package ggbiplot



```
consumer_brand_pca <- consumer_brand |>
    select(-brand) |>
    prcomp(center = TRUE, scale. = TRUE)
consumer_brand_pca |>
    ggbiplot(groups = consumer_brand$brand, scale = 1, pc.biplot = FALSE)
```



Figure 18: Bibplot for all the consumer brand perception survey



- A biplot is a generalization of a scatterplot of 2 variables for the case of many variables (Greenacre 2010, 9)
- Variables of the brands that are grouped together are positively correlated to each other
  - For example serious, leader and perform or trendy and latest
- Variables of the brands that are displayed to the opposite sides of the biplot origin are negatively correlated to each other
  - For example fun in relation to serious, leader and perform or trendy and latest in relation to value and bargain



- A biplot is an approximated representation of a data table ordered by rows which represents some observations and columns which represents some variables
  - By the term approximated it means that the representation is not exact
  - In our case the last biplot was used to represent the data table consumer\_brand\_sample by reducing its complexity
- In a biplot the distance between points represent some measure of similarity
  - In the case of the last biplot for example brand g, that is colored in blue, tend to be spatially grouped in the plot



## References

Chapman, Chris, and Elea McDonnell Feit. 2019. *R For Marketing Research and Analytics*. 2nd ed. 2019. Use R! Cham: Springer International Publishing: Imprint: Springer. https://doi-org.ezproxy.umng.edu.co/10.1007/978-3-030-14316-9.

Greenacre, Michael J. 2010. *Biplots in Practice*. Bilbao: Fundación BBVA. https://www.fbbva.es/microsite/multivariate-statistics/biplots.html.

