Acoplamiento Molecular (Docking) y Simulaciones de Dinámica Molecular

Luis Garreta

Electiva de Bioinformática MAESTRÍA EN INFORMÁTICA BIOMÉDICA Universidad del Bosque Bogotá-Colombia

17 de marzo de 2023

Modelado Molecular

Conjunto de métodos computacionales y teóricos que se utilizan para la representación aproximada del comportamiento de moléculas, iones y partículas, considerando sus características tridimensionales.

Representación 3D

Proteína-Ligando

Aplicaciones Modelado Molecular

Docking: Acoplamiento Molecular

Método de simulación computacional que busca predecir la orientación preferida de una molécula o ligando cuando se une a un sitio activo de otra molécula o receptor para formar un complejo estable.

Objetivos del Docking

Lograr una conformación y orientación optimizada tanto para el receptor como para el ligando de modo que se minimice la energía libre del sistema general.

Objetivos Específicos:

- Predecir la conformación (comunmente llamado Pose).
- Evaluar su afinidad de unión.

Importancia del Docking

- Para el diseño de nuevos fármacos: Los resultados del acoplamiento se pueden utilizar para encontrar inhibidores de proteínas diana específicas.
- Para evaluar nuevas estructuras de proteínas: Es cada vez más necesario a medida que aumenta el número de proteínas cuya estructura se conoce.

Para identificación de la geometría de unión correcta (postura) del ligando en el sitio de unión.

Tipos de Docking: Flexibilidad Ligando-Receptor

Docking rígido (Llave-Cerradura):

En el acoplamiento rígido, la geometría interna tanto del receptor como del ligando se tratan como rígidas.

Docking rígido-flexible:

La proteína se trata como rígida, pero se exploran todos los grados de libertad del ligando (traslacionales, rotacionales y conformacionales).

Docking flexible-flexible:

La proteína se trata como total o parcialmente flexible y se exploran todos los grados de libertad del ligando.

Consideraciones

- Generalmente, los ligandos pequeños son muy flexibles y pueden generar un amplio rango de diferentes confórmeros (conocidos como poblaciones), los cuales adaptan su superficie para complementar la forma de la hendidura (o pocket en inglés) del receptor
- En acoplamiento flexible:
 - Se realiza una enumeración de las rotaciones de una de las moléculas (normalmente la más pequeña).
 - Cada rotación se calcula la energía.
 - Al final, se seleccionan la(s) pose(s) más óptimas.

Funciones de evaluación o score

Las funciones de score son métodos de aproximaciones matemáticas o fisicoquímicas que estiman la afinidad de unión entre una diana y un ligando.

Las funciones de score se pueden clasificar en tres tipos:

- Basados en campos de fuerza
- Basados en conocimiento
- Bunciones de score empíricas

Búsqueda Sitio de Unión: Algoritmo Genético

Evaluación de la Afinidad: Campos de Fuerza

- Estiman la energía potencial de un sistema bajo estudio y calculan las fuerzas de interacción que actúan sobre los átomos involucrados.
 - Los campos de fuerza utilizan varios tipos de cálculos y generalmente se verifican con valores experimentales.
 - Son elementos clave para el modelado y simulación de interacciones interatómicas de sistemas moleculares.

Metodología del docking

- Representación del sistema
- Búsqueda en el espacio conformacional
- Calificación de soluciones potenciales

Software

- AUTODOCK Scripps Research Institute, USA (autodock.scripps.edu/)
- AutoDock Vina, https://vina.scripps.edu/
- GOLD University of Cambridge ,UK
- SWISSDOCK, http://www.swissdock.ch/

Ejemplo 1: Docking Proteína-Ligando con Autodock

Requisitos:

- Software Autodock Tools (ADT).
- Programa autodock4
- Programa autogrid4.

Simulaciones de Dinámica Molecular

Simulating How Proteins Self-Assemble, Or Fold - YouTube: https://www.youtube.com/watch?v=gFcp2Xpd29I&t=3s

Protein Data Bank: https://www.rcsb.org/

Protein Data Bank

- El Protein Data Bank (PDB) es una base de datos donde se almacenan las estructuras cuya estructura tridimensional (es decir, sus coordenadas atómicas) ha sido resuelta.
- Estos datos, generalmente obtenidos por Cristalografía de rayos X o Resonancia Magnética Nuclear, son enviados por biólogos y bioquímicos de todo el mundo. Están bajo el dominio público y pueden ser usados libremente.

Archivo de secuencias de aminoácidos: Formato fasta

Formato Fasta:

- El encabezado en la primera línea
- Seguido de la secuencia

>sp|P26239|BCHI_RHOCB Magnesium-chelatase 38 kDa subunit OS=Rhodobacter capsulatus MTTAVARLOPSASGAKTRPVFPFSAIVGQEDMKLALLLTAVDPGIGGULVFGDRGTGKST AVRALAALLPEIEAVEGCPVSSPNVEMIPDWATVLSTNVIRKPTPVVDLPLGVSEDRVVG ALDIERAISKGEKAFEPGLLARANRGYLYIDECNLLEDHIVDLLLDVAQSGENVVERDGL SIRHPARFVLVGSGNPEEGDLRPQLLDRFGLSVEVLSPRDVETRVEVIRRDTYDADPKA FLEEWRPKDMDIRNQILEARERLPKVERAPNTALIYDCAALCIALGSDGLRGELTLLRSARA LAALEGATAVGRPHLKRVATMALSHRLRRDPLDEAGSTARVBRYDTEFTLP

Archivos de Estructuras de Proteíans: Formato PDB

Atomic Coordinates: PDB Format

	Chain name							
Amino Acid				/ Sequence Number				
		١.			/ /			
	Element	١.	/		/	Coordinates		
		\ '	١	_/	/	x	Y	Z
ATOM	1	N	ASP	L	1	4.060	7.307	5.186
ATOM	2	CA	ASP	L	1	4.042	7.776	6.553
ATOM	3	C	ASP	L	1	2.668	8.426	6.644
ATOM	4	0	ASP	L	1	1.987	8.438	5.606
ATOM	5	CB	ASP	L	1	5.090	8.827	6.797
ATOM	6	CG	ASP	L	1	6.338	8.761	5.929
ATOM	7	OD1	ASP	L	1	6.576	9.758	5.24
ATOM	8	OD2	ASP	L	1	7.065	7.759	5.948

Element position within amino acid