Q_2 . 设 f(x) 在 [0,1] 上连侯可微, $f^{(n)}$ = 0 ($\forall n \ge 0$),且存在 C > 0 使移 $\forall x \in [0,1]$ 有 $|xf(x)| \le C |f(x)|$ 证明。 (1) $\lim_{x\to 0^+} \frac{f(x)}{x^n} = 0$ ($\forall n \ge 0$)

(1) 求证: 点流f(x) = 0 (2) 水证: 日常数 C, st f(x) < Cf(x). 并水出偶足上式码表小学数 C. Q_4 . 设在>1, $f:(0,+\infty) \rightarrow (0,+\infty)$ 为可微速数, 求证, 存在趋于无穷的正数列 $f(x_n)$ 人行(ax_n).

Hint: 考虑 f(ax) - f(x)