Automatically Verifying Replicated Data Types

KC Sivaramakrishnan

Joint work with Vimala Soundarapandian, Aseem Rastogi and Kartik Nagar

WG 2.1 Sep 8th to 12th, 2025

Collaborative Applications

Collaborative Applications

Network Partitions

Centralised Apps provide limited support for offline editing

Enabling offline sync for one account prevents other accounts from working offline

Local-first software

Local-first software

How do we build such applications?

Embed the notion of replication into the data types

Mergeable Replicated Data Types (MRDTs)

MRDTs = Sequential data types + 3-way merge function à la Git

How do we automatically verify it?

Verification using Algebraic Properties

algebraic

properties

- State-based Convergent Replicated Data Types (CRDTs)
 - Merge is 2-way $-\mu(v_1, v_2)$
 - Verify algebraic properties of merge for strong eventual consistency

let merge v1 v2 = max v1 v2

Intent is not captured

Prior work: Capturing Intent through Axiomatic Spec

Is there a more natural spec?

 $\sigma_5 = \sigma_6 = linearization(\{op_1, op_2, op_3, op_4\}) \sigma_0$

Replication-aware Linearizability

- Replica states should be a linearisation of observed update operations
 - Linearisation total order lo compatible with partially-ordered visibility relation vis
 - No real-time ordering requirement unlike traditional linearizability
- Payoff
 - If a replicated object is RA-linearizable, reason about it using sequential semantics

Add-wins set CRDT

- Add-wins set
 - A concurrent set where add-wins in a concurrent add(e) and rem(e)

$$\begin{split} &(\Sigma_{a}, \Sigma_{r}) \xrightarrow{\operatorname{add}(a)} (\Sigma_{a} \cup \{(a, id)\}, \Sigma_{r}) \quad \text{where id is fresh} \\ &(\Sigma_{a}, \Sigma_{r}) \xrightarrow{\operatorname{rem}(a)} (\Sigma_{a}, \Sigma_{r} \cup \{(a, id) \mid (a, id) \in \Sigma_{a}\} \\ &(\Sigma_{a}, \Sigma_{r}) \xrightarrow{\operatorname{read}()} \{a \mid (a, id) \in \Sigma_{a} \backslash \Sigma_{r}\} \end{split}$$

Add-wins set sequential specification

States are asynchronously broadcast to other replicas

$$(\Sigma_a, \Sigma_r) \xrightarrow{\text{merge}(\Sigma'_a, \Sigma'_r)} (\Sigma_a \cup \Sigma'_a, \Sigma_r \cup \Sigma'_r)$$

Replication-aware Linearizability

A history h = (E, vis), $E \subseteq \text{Queries} \uplus \text{Updates}$, is RA-linearizable w.r.t. a sequential specification Spec if there exists a total order seq on E (same events) such that:

- (i) $vis \cup seq$ is acyclic;
- (ii) $seq \downarrow_{Updates} \in Spec;$

(iii)
$$\forall \ell_{qr} \in E$$
, $(seq \downarrow_{vis^{-1}(\ell_{qr}) \cap Updates}) \cdot \ell_{qr} \in Spec$.

- A CRDT is said to be RA-linearizable if every history h is RA-linearizable
- Add-wins set is RA-linearizable
- RA-linearizability makes program reasoning easier!

Using RA-linearizability for verification

```
add(a);

rem(a);

X = read();

a \in X \implies a \in Y
```

• Since Add-wins set is RA-linearizable, you can use *totally ordered trace* and the *sequential spec* to reason about correctness

```
add(a); rem(a); add(a); X = read(); Y = read()
(\{a_1\}, \{\}\}) (\{a_1\}, \{a_1\}) (\{a_1, a_2\}, \{a_1\}) X = \{a\} Y = \{a\}
```

Using RA-linearizability for verification

```
add(a); seq add(a); rem(a); seq X = read(); Y = read(); a \in X \implies a \in Y
```

- Let's try to make the statement false
 - Make $a \in X$ true and $a \in Y$ false

Replication-aware Linearizability

- Presented a proof methodology to show that a CRDT is linearisable
- Not automated or mechanised

Neem — Automatic verification of RDTs

- What's in the box?
 - Definition of RA-linearizability for MRDTs
 - A novel induction scheme for MRDTs and state-based CRDTs to automatically verify RAlinearizability
 - Implemented in F*

Resolving conflicts

- Not all operations commute
 - Add-wins set add(a) and rem(a) do not commute
 - Specify ordering using the Conflict Resolution relation $rc = \{(rem_a, add_a) \mid a \in \mathbb{E}\}$
 - Linearization order lo must be compatible with rc for concurrent events
- Neem developers provide
 - MRDT = Sequential Data Type + 3-way merge
 - Conflict Resolution rc relation

Increment-only Counter

```
State 1: \Sigma = \mathbb{N} Unique timestamp

Updates 2: O = \{ \text{inc} \}
Queries 3: Q = \{ \text{rd} \}
Replica ID

Init State 4: \sigma_0 = 0

Update behaviour 5: \operatorname{do}(\sigma, \_, \_, \operatorname{inc}) = \sigma + 1
Merge 6: \operatorname{merge}(\sigma_\top, \sigma_1, \sigma_2) = \sigma_\top + (\sigma_1 - \sigma_\top) + (\sigma_2 - \sigma_\top)
Query behaviour 7: \operatorname{query}(\sigma, rd) = \sigma
Resolve conflict 8: \operatorname{rc} = \emptyset
```

Add-wins Set

```
State 1: \Sigma = \mathcal{P}(\mathbb{E} \times \mathcal{T})
             Updates 2: O = \{add_a, rem_a \mid a \in \mathbb{E}\}
              Queries 3: Q = \{rd\}
            Init State 4: \sigma_0 = \{\}
               Update 5: do(\sigma, t, \_, add_a) = \sigma \cup \{(a, t)\}
           behaviour
                               6: do(\sigma, \_, \_, rem_a) = \sigma \setminus \{(a, i) \mid (a, i) \in \sigma\}
                               7: merge(\sigma_{\top}, \sigma_1, \sigma_2) =
                 Merge
                                        (\sigma_{\mathsf{T}} \cap \sigma_1 \cap \sigma_2) \cup (\sigma_1 \backslash \sigma_{\mathsf{T}}) \cup (\sigma_2 \backslash \sigma_{\mathsf{T}})
Query behaviour 8: query (\sigma, rd) = \{a \mid (a, \_) \in \sigma\}
Resolve conflict 9: rc = \{(rem_a, add_a) \mid a \in \mathbb{E}\}
```


$$\{(a,2)\} = add_a(rem_a\{(a,1)\})$$

$$rc = \{(rem_a, add_a) | a \in \mathbb{E}\}$$

To show

$$\mu(\sigma, e_1(\sigma), e_2(\sigma)) = e_2(e_1(\sigma))$$

[BOTTOMUP-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

[BOTTOMUP-1-OP]

$$\frac{(e_{\top} \neq \epsilon \land e_{1} \neq e_{\top}) \lor (e_{\top} = \epsilon \land l = b)}{\mu(e_{\top}(l), e_{1}(a), e_{\top}(b)) = e_{1}(\mu(e_{\top}(l), a, e_{\top}(b)))}$$

[BOTTOMUP-0-OP]

$$\mu(e_{\top}(l), e_{\top}(a), e_{\top}(b)) = e_{\top}(\mu(l, a, b))$$

[MergeIdempotence]

$$\mu(a, a, a) = a$$

$$\mu(l, a, b) = \mu(l, b, a)$$

$$rc = \{(rem_a, add_a) | a \in \mathbb{E}\}$$

To show

$$\mu(\sigma, e_1(\sigma), e_2(\sigma)) = e_2(e_1(\sigma))$$

[BottomUp-2-OP]

$$\frac{e_1 \neq e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

[BottomUp-1-OP]

$$\frac{(e_{\top} \neq \epsilon \land e_{1} \neq e_{\top}) \lor (e_{\top} = \epsilon \land l = b)}{\mu(e_{\top}(l), e_{1}(a), e_{\top}(b)) = e_{1}(\mu(e_{\top}(l), a, e_{\top}(b)))}$$

[BOTTOMUP-0-OP]

$$\mu(e_{\top}(l), e_{\top}(a), e_{\top}(b)) = e_{\top}(\mu(l, a, b))$$

[MergeIdempotence]

$$\mu(a, a, a) = a$$

$$\mu(l, a, b) = \mu(l, b, a)$$

$$rc = \{(rem_a, add_a) \mid a \in \mathbb{E}\}$$

To show

$$e_2(\mu(\sigma, e_1(\sigma), \sigma)) = e_2(e_1(\sigma))$$

[BottomUp-2-OP]

$$\frac{e_1 \neq e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

[BottomUp-1-OP]

$$\frac{(e_{\top} \neq \epsilon \land e_{1} \neq e_{\top}) \lor (e_{\top} = \epsilon \land l = b)}{\mu(e_{\top}(l), e_{1}(a), e_{\top}(b)) = e_{1}(\mu(e_{\top}(l), a, e_{\top}(b)))}$$

[BOTTOMUP-0-OP]

$$\mu(e_{\top}(l), e_{\top}(a), e_{\top}(b)) = e_{\top}(\mu(l, a, b))$$

[MergeIdempotence]

$$\mu(a, a, a) = a$$

$$\mu(l, a, b) = \mu(l, b, a)$$

$$rc = \{(rem_a, add_a) | a \in \mathbb{E}\}$$

To show

$$e_2(\mu(\sigma, e_1(\sigma), \sigma)) = e_2(e_1(\sigma))$$

[Воттом Up-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

[BOTTOMUP-1-OP]

$$\frac{(e_{\top} \neq \epsilon \land e_{1} \neq e_{\top}) \lor (e_{\top} = \epsilon \land l = b)}{\mu(e_{\top}(l), e_{1}(a), e_{\top}(b)) = e_{1}(\mu(e_{\top}(l), a, e_{\top}(b)))}$$

[BOTTOMUP-0-OP]

$$\mu(e_{\top}(l), e_{\top}(a), e_{\top}(b)) = e_{\top}(\mu(l, a, b))$$

[MergeIdempotence]

$$\mu(a, a, a) = a$$

$$\mu(l, a, b) = \mu(l, b, a)$$

$$rc = \{(rem_a, add_a) \mid a \in \mathbb{E}\}$$

To show

$$e_2(e_1(\mu(\sigma,\sigma,\sigma))) = e_2(e_1(\sigma))$$

[BOTTOMUP-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

[BOTTOMUP-1-OP]

$$\frac{(e_{\top} \neq \epsilon \land e_{1} \neq e_{\top}) \lor (e_{\top} = \epsilon \land l = b)}{\mu(e_{\top}(l), e_{1}(a), e_{\top}(b)) = e_{1}(\mu(e_{\top}(l), a, e_{\top}(b)))}$$

[BOTTOMUP-0-OP]

$$\mu(e_{\top}(l), e_{\top}(a), e_{\top}(b)) = e_{\top}(\mu(l, a, b))$$

[MergeIdempotence]

$$\mu(a, a, a) = a$$

$$\mu(l, a, b) = \mu(l, b, a)$$

$$rc = \{(rem_a, add_a) \mid a \in \mathbb{E}\}$$

To show

$$e_2(e_1(\mu(\sigma,\sigma,\sigma))) = e_2(e_1(\sigma))$$

[BOTTOMUP-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

[BOTTOMUP-1-OP]

$$\frac{(e_{\top} \neq \epsilon \land e_{1} \neq e_{\top}) \lor (e_{\top} = \epsilon \land l = b)}{\mu(e_{\top}(l), e_{1}(a), e_{\top}(b)) = e_{1}(\mu(e_{\top}(l), a, e_{\top}(b)))}$$

[BOTTOMUP-0-OP]

$$\mu(e_{\top}(l), e_{\top}(a), e_{\top}(b)) = e_{\top}(\mu(l, a, b))$$

[MergeIdempotence]

$$\mu(a, a, a) = a$$

$$\mu(l, a, b) = \mu(l, b, a)$$

$$rc = \{(rem_a, add_a) | a \in \mathbb{E}\}$$

To show

$$e_2(e_1(\sigma)) = e_2(e_1(\sigma))$$

[Воттом Up-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

[BottomUp-1-OP]

$$\frac{(e_{\top} \neq \epsilon \land e_{1} \neq e_{\top}) \lor (e_{\top} = \epsilon \land l = b)}{\mu(e_{\top}(l), e_{1}(a), e_{\top}(b)) = e_{1}(\mu(e_{\top}(l), a, e_{\top}(b)))}$$

[BOTTOMUP-0-OP]

$$\mu(e_{\top}(l), e_{\top}(a), e_{\top}(b)) = e_{\top}(\mu(l, a, b))$$

[MergeIdempotence]

$$\mu(a, a, a) = a$$

$$\mu(l, a, b) = \mu(l, b, a)$$

Making a good VC

$$rc = \{(rem_a, add_a) \mid a \in \mathbb{E}\}$$

To show

$$\mu(\sigma, e_1(\sigma), e_2(\sigma)) = e_2(e_1(\sigma))$$

{} $\neq \{(a, 2)\}$

[BottomUp-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

Cannot prove for an arbitrary \boldsymbol{l}

l must be a *feasible state*, obtained by application of updates on the initial state

Induction over event sequences

To show

$$\mu(\sigma, e_1(\sigma), e_2(\sigma)) = e_2(e_1(\sigma))$$

{} $\neq \{(a, 2)\}$

[Воттом Up-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

Induction over event sequences

[Воттом Up-2-OP]

$$\frac{e_1 \neq e_2 \quad e_1 \xrightarrow{\text{rc}} e_2 \lor e_1 \rightleftarrows e_2}{\mu(l, e_1(a), e_2(b)) = e_2(\mu(l, e_1(a), b))}$$

Induction on π_{\top}

$$\mu(\sigma_0, e_1(\sigma_0), e_2(\sigma_0)) = e_2(\mu(\sigma_0, e_1(\sigma_0), \sigma_0))$$

$$(a,2) \notin \sigma_0$$

Base case

To show

$$\mu(\sigma, e_1(\sigma), e_2(\sigma)) = e_2(e_1(\sigma))$$

{} $\neq \{(a, 2)\}$

Inductive case

Timestamps are unique

Linearizable MRDTs

Theorem 4.7. If an MRDT \mathcal{D} satisfies the VCs ψ^* (BottomUp-2-OP), ψ^* (BottomUp-0-OP), MergeIdempotence and MergeCommutativity, then \mathcal{D} is linearizable.

An MRDT that satisfies the algebraic properties is RA-linearizable

LEMMA 3.10. If MRDT \mathcal{D} is RA-linearizable, then for all executions $\tau \in [S_{\mathcal{D}}]$, for all transitions $C \xrightarrow{query(r,q,a)} C'$ in τ where $C = \langle N, H, L, G, vis \rangle$, there exists a sequence π consisting of all events in L(H(r)) such that $lo(C)_{|L(H(r))} \subseteq \pi$ and $a = query(\pi(\sigma_0), q)$.

RA-linearizable MRDT query results match those obtained on the linearised updates applied to the initial state

Verified MRDTs

MRDT	rc Policy	#LOC	Verification Time (s)
Increment-only counter [12]	none	6	0.72
PN counter [23]	none	10	1.64
Enable-wins flag*	disable \xrightarrow{rc} enable	30	29.80
Disable-wins flag*	enable \xrightarrow{rc} disable	30	37.91
Grows-only set [12]	none	6	0.45
Grows-only map [23]	none	11	4.65
OR-set [23]	$rem_a \xrightarrow{rc} add_a$	20	4.53
OR-set (efficient)*	$rem_a \xrightarrow{rc} add_a$	34	660.00
Remove-wins set*	$add_a \xrightarrow{rc} rem_a$	22	9.60
Set-wins map*	$del_{k} \xrightarrow{rc} set_{k}$	20	5.06
Replicated Growable Array [1]	none	13	1.51
Optional register*	unset \xrightarrow{rc} set	35	200.00
Multi-valued Register*	none	7	0.65
JSON-style MRDT*	Fig. 13	26	148.84

Neem also supports verification of RA-linearizability of state-based CRDTs https://github.com/prismlab/neem

Limitations

- Automated verification returns yes / no / _(ツ)_/
 - Not pleasant for engineering
 - No counterexamples!

Current work

- Optimal bounded model checking of MRDTs against RA-linearizability
 - Standard DPOR fails optimality
- Moving to Lean ITP with SMT backend, proof reconstruction, "Loom", etc.

Neem — Automatic verification of RDTs

- What's in the box?
 - Definition of RA-linearizability for MRDTs
 - A novel induction scheme for MRDTs and state-based CRDTs to automatically verify RAlinearizability
 - Implemented in F*

