Sistemas Electrónicos

Capítulo 6: Circuitos Digitais

Parte 3

Sistemas Electrónicos - 2020/2021

Sumário

Circuitos sequenciadores

- Introdução: função, tipos (latches vs registos), Principio de armazenamento (estáticos vs dinâmicos;
- Latches e registos estáticos: O biestável; Latch baseada em portas de transmissão; Registo master-slave.
- Latches e registos dinâmicos: Registo master-slave baseado em portas de transmissão;

Memórias

- Introdução: atributos característicos das memórias semicondutoras;
- Memórias Flash: transístor de porta flutuante, mecanismos de escrita, leitura e apagamento;
- Memórias SRAM e DRAM.

Circuitos Sequenciadores

Introdução

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

Introdução

- Elementos de memória, ou circuitos sequenciadores, permitem a implementação de circuitos sequenciais e.g. máquinas de estados e pipelines;
- São *latches* e registos. De particular importância são os sequenciadores síncronos que são controlados por um sinal de relógio.

Máquina de estados (com registos activos ao flanco positivo)

Tipos de sequenciadores: Latches e Registos

Latch

- Mais básico dos sequenciadores;
- Sensível ao nível do clock;
- <u>Latch</u> positiva em modo transparente quando *Clk=1*; modo de retenção quando *Clk=0*.

E. Martins, DETI Universidade de Aveiro

Registo ou flip-flop

- Sensível à transição do clock;
- Activo ao flanco ascendente: entrada é amostrada na transição L-H de Clk;
- Baseados em latches.

6.3-5

Sistemas Electrónicos - 2020/2021

Princípio de armazenamento

Estático

- Configurações baseadas em feedback positivo circuitos biestáveis;
- Mantêm o estado lógico enquanto a alimentação estiver ligada;
- Funcionamento independente da velocidade do clock.

Dinâmico

- Estado lógico corresponde à tensão aos terminais duma capacidade;
- Mantêm o estado lógico apenas durante alguns milisegundos (correntes de fugas) ⇒ frequência mínima de clock;
- Em geral mais simples do que os circuitos estáticos mais baratos, melhor performance, menor potência; menos robustos.

Latches e registos estáticos

E. Martins, DETI Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

O biestável

• Circuito com feedback positivo (regenerativo).

- A e B pontos de funcionamento estáveis;
- C não é estável qualquer perturbação faz o ponto de funcionamento deslocar-se para A ou B;
- Isto só acontece se o ganho da malha for maior que 1;

O biestável

- C é um ponto metaestável (ganho na região de transição é > 1);
- Só A e B são pontos de funcionamento estáveis (ganho da malha < 1) circuito tende sempre para um destes pontos.

E. Martins, DETI Universidade de Aveiro

6.3-9

Sistemas Electrónicos - 2020/2021

Latch baseada em portas de transmissão

• Abertura do *loop* como método de disparo.

 $CLK = 1 \Rightarrow T1 \text{ ON, } T2 \text{ OFF} \Rightarrow \text{latch transparente}$

 $CLK = 0 \Rightarrow T1 \text{ OFF}, T2 \text{ ON} \Rightarrow \text{latch retenção}$

Registo estático master-slave

- Maioria dos registos baseia-se numa configuração *master-slave* que combina duas *latches* sensíveis a diferentes níveis do relógio;
- Registo activo ao flanco ascendente do relógio: uma latch negativa master e outra positiva slave.

E. Martins, DETI Universidade de Aveiro

6.3-11

Sistemas Electrónicos - 2020/2021

Latches e registos dinâmicos

Registo master-slave com portas transmissão

Registo activo ao flanco ascendente.

- C_{p1} e C_{p2} são as capacidades intrínsecas concentradas nos nós respectivos;
- Implementação requer 10 transístores registo idêntico do tipo estático precisa de 20.

E. Martins, DETI Universidade de Aveiro

6.3-13

Sistemas Electrónicos - 2020/2021

Registo master-slave: funcionamento

Memórias

Introdução

E. Martins, DETI Universidade de Aveiro

6.3-15

Sistemas Electrónicos - 2020/2021

Caracterização das memórias

Atributos característicos das memórias semicondutoras

- Capacidade;
- Tempos de acesso;
- Funcionalidade leitura, leitura e escrita, volatilidade;
- Método de acesso aleatório, sequencial, baseado no conteúdo;
- ullet Princípio de armazenamento hardwired, fusível, transístor com V_T programável, biestável, condensador.

Uma classificação funcional das memórias semicondutoras

Não volátil			Volátil	
Só leitura (ROM)	Principal/ leitura (RMM)	Leitura e escrita (RWM)		
Acesso aleatório				Outro
ROM	EPROM	FRAM	SRAM	FIFO/LIFO
PROM	EEPROM	MRAM	DRAM	Registo desloc.
	Flash	PCRAM		CAM

Sistemas Electrónicos – 2020/2021

E. Martins, DETI Universidade de Aveiro

Memórias reprogramáveis: Flash

Memórias Flash

- Essencialmente de leitura (RMM); permitem a alteração ocasional do seu conteúdo;
- Células baseadas no Transístor de Porta Flutuante: permite programar o valor do V_T ;

DEFINIÇÕES:

- Tempo de retenção: tempo em que o estado lógico de uma célula de memória permanece inalterado: > 10 anos;
- Endurance: número máximo de ciclos de apagamento e programação que a memória suporta: $> 10^6$ ciclos.

E. Martins, DETI Universidade de Aveiro

6.3-19

Sistemas Electrónicos - 2020/2021

Transistor de porta flutuante

- MOSFET possui uma segunda porta chamada flutuante pois não está ligada a nada;
- Tensão de limiar (V_T) depende da carga eléctrica presente na porta flutuante
- Carga injectada na porta flutuante fica aí aprisionada por muito tempo, fixando o valor da tensão de limiar do transístor. O mecanismo é não volátil;
- Programação da célula corresponde à injecção de carga na porta flutuante;
 Apagamento corresponde à descarga.

Transístor de porta flutuante: leitura I_{DS}

- Cada célula Flash é constituída por um transístor de porta flutuante;
- Numa célula binária a porta flutuante ou está carregada (curva "1") ou está descarregada (curva "0");
- Identificação do estado lógico programado (leitura) faz-se aplicando na porta de controlo uma tensão V_{DD} , entre V_{T-0} e V_{T-1} , e verificar se o transístor conduz ou não.

 $V_{GS} = V_{DD}$ $Q_{FG} < 0$ $\Theta \Theta \Theta \Theta$ S $I_{DS} = 0$ D

Célula programada a '1'

E. Martins, DETI Universidade de Aveiro

6.3-21

Sistemas Electrónicos - 2020/2021

Transistor de porta flutuante: Programação e apagamento

Memórias SRAM e DRAM

E. Martins, DETI Universidade de Aveiro

6.3-23

Sistemas Electrónicos - 2020/2021

Célula SRAM 6T

- De longe a célula mais popular em memórias SRAM;
- Cada bit é armazenado num circuito biestável: uma latch.
- ullet Transístores de passagem M_5 e M_6 são usados para ler e escrever na célula;
- Linhas de bit complementares: embora seja redundante, permite melhorar as margens de ruído nas operações de leitura e de escrita.
- Perdem a informação logo que são desligadas da alimentação: são voláteis;

Célula DRAM 1T

- Cada célula é constituída por um transístor e um condensador;
- O valor de cada bit corresponde à carga de um condensador;
- Corrente de fugas obriga a um *refresh* com uma periodicidade de 32 a 64ms;
- Redução drástica da geometria da célula (em relação à SRAM) mais do que compensa a complexidade extra imposta pela operação de *refresh*;

E. Martins, DETI Universidade de Aveiro

6.3-25

Sistemas Electrónicos - 2020/2021

Célula DRAM 1-T: Funcionamento

- Escrita: Valor é colocado em BL
 - \triangleright V_{DD} para '1'
 - > 0V para '0'

e WL é activado;

• Leitura: Primeiro BL é précarregado à tensão $V_{PRE} = V_{DD}/2$;

Em seguida WL é activado, e a carga em C_{BL} e C_S é distribuída;

O sentido da variação da tensão em BL indica o valor lido:

- $\triangleright \Delta V_{RI} > 0 \Rightarrow 1$
- $\triangleright \Delta V_{RI} < 0 \Rightarrow '0'$

