

UNIVERSIDADE FEDERAL DO TOCANTINS CÂMPUS UNIVERSITÁRIO DE PALMAS CURSO DE CIÊNCIAS ECONÔMICAS

 $\mathbf{1}^{\scriptscriptstyle{0}}$ SEMINÁRIO AVALIAÇÃO FINANCEIRA DE INVESTIMENTOS

LORENZO COSTA MIRANDA

PALMAS (TO)

1 CAPITALIZAÇÃO COMPOSTA

Resolução:

1.1 Taxas de Juros Compostos Equivalentes

(a)
$$i_q = (1+i_t)^{\frac{q}{t}} - 1 \rightarrow i_q = (1+0,33)^{\frac{3}{12}} - 1 = 0,07389 \rightarrow 7,38\%$$

(b)
$$i_q = (1+i_t)^{\frac{q}{t}} - 1 \rightarrow i_q = (1+0,025)^{\frac{12}{1}} - 1 = 0,3448 \rightarrow 34,48\%$$

(c)
$$i_q = (1+i_t)^{\frac{q}{t}} - 1 \rightarrow i_q = (1+0,04)^{\frac{4}{1}} - 1 = 0,1698 \rightarrow \mathbf{16,98\%}$$

(d)
$$i_q = (1+i_t)^{\frac{q}{t}} - 1 \rightarrow i_q = (1+0,06)^{\frac{6}{12}} - 1 = 0,02956 \rightarrow 2,95\%$$

1.2 Capitalização Composta

(a)
$$M = C(1+i)^n \to M = 6.000(1+0.03)^3 = 6.556,362$$

(b)
$$M = C(1+i)^n \to M = 125.000(1+0,03)^6 = 149.256,537 - 125.000 =$$
24.256,53

(c)
$$M = C(1+i)^n \to 125.000 = C(1+0,03)^6 = 104.685,532$$

(d)
$$M = C(1+i)^n \to 26.000 = 2.600(1+i)^{28} \to \frac{26.000}{2600} = (1+i)^{28} \to 10 = (1+i)^{28} \to \sqrt[28]{10} = 1+i \to i = 8,57\%$$

(e)
$$M = C(1+i)^n \to 2C = C(1+0,03)^n \to n = \log_{1,03}(2) \to \frac{\log(2)}{\log(1,03)} = \frac{0,30102}{0.01283} \to \mathbf{23,44}$$

1.3 Desconto Comercial Composto

(a) 78 dias = 2,5 meses.
$$D_c = C(1-i)^n \to 1.110, 63 = 10.000(1-i)^{2,5} \to 0, 111063 = (1-i)^{2,5} \to \sqrt[25]{0,111063} = i-i \to i = 58,48\%$$

(b) 51 dias = 1,7 meses.
$$D_c = C(1-i)^n \to 6.168 = 6.730(1-i)^{1,7} \to \frac{6.168}{6730} = (1-i)^{1,7} \to \sqrt[17]{0,91649} = 1 - i \to i = 5\%$$

(c)
$$D_c = C(1-i)^n \to D_c = 35.000(1-0,05)^3 \to D_c = 35.000 \times 0,857375 \to \mathbf{30.008,125}$$

1.4 Valor do Dinheiro no Tempo

(a)
$$VP = \frac{VR}{(1+i)^n} \to VP = \frac{190.000}{(1+0.1455)^{\frac{152}{360}}} \to VP = \frac{190.000}{1.05903} = 179.409$$

(b)
$$VP = \frac{VR}{(1+i)^n} \to VP = \frac{30.000}{(1+0.0117)^{\frac{148}{30}}} \to VP = \frac{30.000}{1.059063} = 28.326$$

(c)
$$VP = \frac{VR}{(1+i)^n} \rightarrow 75.000 = \frac{VR}{(1+0.0113)^{\frac{153}{30}}} \rightarrow 75.000 \times 1,05898 = VR =$$
79.423

(d)
$$VP = \frac{VR}{(1+i)^n} \to 160.000 = \frac{VR}{(1+0.0892)^{\frac{60}{360}}} \to 160.000 \times 1,01434 = VR =$$
162.294

1.5 Séries de Pagamentos

(a)
$$FAC_{pos}: N = V\left[\frac{(1+i)^n - 1}{i}\right] \to N = 700\left[\frac{(1+0.028)^8 - 1}{0.028}\right] \to N = 700\left[\frac{0.24722}{0.028}\right] =$$
6.180,5

(b)
$$FAC_{ante}: VT = PMT \frac{(1+i)^n - 1}{i} (1+i) \rightarrow VT = 700 \frac{(1+0,028)^{10} - 1}{0,028} (1+0,028) \rightarrow VT = 700 \frac{1,31804 - 1}{0,028} (1,028) = 700 \frac{0,31804}{0,028} (1-0,028) \rightarrow 700 \times 11,35884 \times 1,028 = 8.173,827$$

(c)
$$FFC_{ante} := PMT = VF\frac{i}{(1+i)^n - 1}\frac{1}{1+i} \to PMT = 45.000\frac{0.03}{(1+0.03)^{30} - 1}\frac{1}{1+0.03} \to PMT = 45.000\frac{0.03}{1.42726}\frac{1}{0.03} \to 45.000 \times 0,021019 \times 0,9708 = \textbf{889,860}$$

(d) ?

(e)
$$FAC_{ante}: VF = PMT \frac{(1+i)^n - 1}{i} (1+i) \to VF = 670 \frac{(1+0.06)^{12} - 1}{0.06} (1+0.06) \to 670 \frac{1.012196}{0.06} (1+0.06) \to 670 \times 16,86994 \times 1,06 = 11.981,0322$$

(f)
$$122.000 - 40\% = 73.200 \rightarrow FRC_{ante} : V = VP\frac{(1+i)^n i}{(1+i)^n - 1}\frac{1}{1+i} \rightarrow V = 73.200\frac{(1+0.025)^{24}0.025}{(1+0.025)^{24} - 1}\frac{1}{1+0.025} \rightarrow V = 73.200\frac{1.80872 \times 0.025}{0.80872}\frac{1}{1.025} \rightarrow 73.200 \times 0.055913 \times 0.97560 = 3.992,983$$

1.6 Sistema de Amortização PRICE e SAC

(a) PRICE e SAC:
$$J = I.N \rightarrow 0,02 \times 30.000 = 600,00$$

(b) PRICE:
$$R = C\left[\frac{(1=i)^n i}{(1+i)^n - 1}\right] \to R = 30.000\left[\frac{(1+0.02)^{24}0.02}{(1+0.02)^{24} - 1}\right] \to R = 30.000\left[\frac{0.03216}{0.60843}\right] = 1.586, 15$$

$$\frac{\text{Depois:}}{\left[\frac{0.21899}{0.02437}\right]} = 8,9860$$

$$J_t = i.R.FVA(i,n-t) = \left[\frac{(1+i)^n-1}{(1+i)^ni}\right] \to FVA(0,02,24-14)FVA =$$

$$J_{t} = i.R.FVA(i,n,-1+1) \to J_{14} = 0,02 \times 1.586,15 \times 8,9860 = \textbf{285,06}$$

$$\underline{\text{Antes:}} \ FVA(i,n-t) = \left[\frac{(1+i)^n-1}{(1+i)^ni}\right] \to FVA(0,02,24-13)FVA =$$

$$\left[\frac{0.24337}{0.02486}\right] = 8,9860$$

$$J_t = i.R.FVA(i,n,-1+1) \to J_{14} = 0,02 \times 1.586,15 \times 9,789 = \textbf{310,53}$$

SAC: Amortização $(A): VP/n \to 30.000/24 = 1.250$ <u>Depois:</u> $J_t = i.A.(n-t+1) \to J_{14} = 0,02 \times A \times (24-14+1) \to J_{14} = 0,02 \times 1.250 \times 11 = \mathbf{275}$ <u>Antes:</u> $J_t = i.A.(n-t+1) \to J_{14} = 0,02 \times A \times (24-13+1) \to J_{14} = 0,02 \times 1.250 \times 12 = \mathbf{300}$

- (c) PRICE: 14° parcela da amortização (A_{14}) : $R J_{14} \rightarrow A_{14}$: 1.586, 15 285, 06 = **1.301,09** SAC: 14° parcela da amortização (A_{14}) : 30.000/24 = **1.250**
- (d) PRICE: $Sd_t = R.FVA(i, n t) \rightarrow Sd_{14} = R.FVA(0, 02, 14) \rightarrow Sd_{14} = 1.586, 15 \times 8,9860 =$ **14.253,14** $SAC: <math>P_t = A.(n - t) \rightarrow P_{14} = 1.250 \times 10 =$ **12.500**
- (e) Tabelas:

N°	Prestação	Juros	Amortização	Saldo devedor
0	00	00	00	30.000
1	1.586,15	600	986,15	29.014,18
2	1.586,15	580,28	1005,87	28.008,31
3	1.586,15	560,16	1025,99	26.982,33
4	1.586,15	539,64	1046,51	25.935,83
5	1.586,15	518,71	1067,44	24.868,39
6	1.586,15	497,36	1088,79	23.779,61
7	1.586,15	475,59	1110,56	22.669,05
8	1.586,15	453,38	1132,77	21.536,28
9	1.586,15	430,72	1155,43	20.380,86
10	1.586,15	407,61	1178,54	19.202,33
11	1.586,15	384,04	1202,11	18.000,22
12	1.586,15	360,00	1226,15	16.774,08
13	1.586,15	335,48	1250,67	15.523,41
14	1.586,15	310,46	1275,69	14.247,73
15	1.586,15	284,95	1301,2	12.946,53
16	1.586,15	258,93	1327,22	11.619,31
17	1.586,15	232,38	1353,77	10.265,55
18	1.586,15	205,31	1380,84	8.884,71
19	1.586,15	177,69	1408,46	7.476,25
20	1.586,15	149,52	1436,63	6.039,62
21	1.586,15	120,79	1465,36	4.574,27
22	1.586,15	91,48	1494,67	3.079,60
23	1.586,15	61,59	1524,56	1.555,04
23	1.586,15	31,10	1555,05	0

 ${\bf Tabela~1-Tabela~PRICE}$

N°	Prestação	Juros	Amortização	Saldo devedor
0	00	00	00	30.000
1	1.850	600	1.250	28.750
2	1.825	575	1.250	27.500
3	1.800	550	1.250	26.250
4	1.775	525	1.250	25.000
5	1.750	500	1.250	23.750
6	1.725	475	1.250	22.500
7	1.700	450	1.250	21.250
8	1.675	425	1.250	20.000
9	1.650	400	1.250	18.750
10	1.625	375	1.250	17.500
11	1.600	350	1.250	16.250
12	1.575	325	1.250	15.000
13	1.550	300	1.250	13.750
14	1.525	275	1.250	12.500
15	1.500	250	1.250	11.250
16	1.475	225	1.250	10.000
17	1.450	200	1.250	8.750
18	1.425	175	1.250	7.500
19	1.400	150	1.250	6.250
20	1.375	125	1.250	5.0002
21	1.350	100	1.250	3.750
22	1.325	75	1.250	2.500
23	1.300	50	1.250	1.250
23	1.275	25	1.250	0

Tabela 2 – Tabela SAC

2 FORMAÇÃO DO PREÇO DE VENDA E LUCRO

2.1 Com base nos dados da tabela a seguir, calcular o preço de venda da empresa MotorTem Ltda pelo método Mark-up:

Despesa Variável:
$$17\% + 1,65\% + 24\% + 1,50\% = 44,15$$

Despesa Fixa/Lucro:
$$3\% + 20\% = 30\%$$

$$44,15\% + 35\% = 74,15\%$$

Mark-up multiplicador:
$$100\% - 74, 15\% = 25, 85\% \rightarrow \frac{100\%}{25,85\%} = 3,8684$$

$$PreodeVenda: 700 \times 3,8684 = 2.707,88$$

2.2 Calcular o PV para a empresa SeiTudo Ltda para 30 dias pelo método Direto:

$$DA = \frac{(PE \times (1+i)^n - VR) \times i}{(1+i)^n - 1} \to \frac{(95.000(1+0.225)^{10} - 30.000) \times 0.225}{(1+0.225)^{10} - 1} = \frac{920.790.571 - 30.000}{8,69253}$$
$$= \frac{890.790,571}{8,69253} = \mathbf{102.477,7103}$$

2.3 A metalúrgica FerroAço Ltda dispõe dos seguintes dados de produção:

(a)
$$PPV = \frac{125+85}{1-0.15} = \frac{210}{0.85} = 247,05$$

$$PvP_{30} = PVV \times (1+i)^n \rightarrow 247,05(1+0,2275)^1 = 253,843$$

$$PvP_{60} = 247,05(1+0,0275)^2 \rightarrow 1,0557 \times 247,05 = 266,824$$

(b)
$$PE/u = \frac{CF}{MC} \rightarrow \frac{17.000}{85} =$$
 200 unidades $PE/v = PVV \times PE/v \rightarrow 247,05 \times 200 =$ **49.410** Justificativa pelo DRE: 49.410(vendas) - 17.411 (15% imposto) - 25.000(Custos diretos). MC = 16.998,5 - 27.000 (Custo fixo) = 00,00

(c)
$$MSO/u = 1.300 - 200 = 1.100$$

 $MSO/v = 1.100 \times 247,05 = 271.755$
 $MSO_{\%} = \frac{MSO/u - vendas(PE/v)}{MSO/u} \rightarrow \frac{1.100 - 200}{1.100} = \frac{900}{1.100} = 81,81\%$
 $\%MC: \frac{MC}{PVV} \rightarrow \frac{85}{427,05} = 0,3440 \text{ Lucro: } \frac{\%MC \times \%MSO}{100\%} \rightarrow \frac{34,40\% \times 31,81}{100\%} = 28,14\%$

3 PONTO DE EQUILÍBRIO EMPRESARIAL

3.1 Considerando os dados do item 2.3 da empresa FerroAço Ltda:

(a)
$$PEC_q = \frac{CF + DF}{Pu - CVu - DVu} \rightarrow PEC_q = \frac{17.000}{85} = 200$$

$$PEC_v = \frac{CF + DF}{MCu/PVu} \rightarrow PEC_v = \frac{17.000}{85/247,05} \rightarrow PEC_v = \frac{17.000}{0,3440} = 49.418,60$$

$$PEE_q = \frac{CF + DF + L}{Pu - CVu - DVu}$$

$$Lucro: 49.410 \times 0,2814 = 13.903,97$$

$$PEE_q = \frac{17.000 + 13.903,97}{85} =$$
363,57

$$PEE_v = \frac{CF + DF + L}{MCu/PVu} \rightarrow PEE_v = \frac{17.000 + 13.903.97}{85/247.05} \rightarrow PEE_v = \frac{30.903.97}{0.3440} = 89.837,12$$

(b) s

3.2 De acordo com a tabela a seguir: Vendas de ferramentas 60% e motores 40% das vendas totais. Calcular o PEC e PEE para o mix de vendas adas empresas

PRODUTOS	FERRAMENTAS	MOTORES	TOTAL
Receitas Unitárias	$70,00 \times 0,60 = 42,00$	$250,00 \times 0,40 = 100$	142,00
Custos Variáveis Unitários	$20 \times 0,60 = 12,00$	$150,00 \times 0,40 = 60,00$	72,00
= MC/U	$50,00 \times 0,60 = 30$	$100,00 \times 0,40 = 40,00$	70,00

PEC:
$$PE = (CustoFixo + DespesaFixa) / Margem de Contribuição
$$PE = (35.000/70) = 500unidades$$$$

PEC de ferramentas =
$$500 \times 60\% = 300$$
 unidades para ferramentas
PEC de motores = $500 \times 40\% = 200$ unidades para motores

PEE:
$$PE = (CustoFixo + DespesaFixa + L)/$$
 Margem de contribuição
$$PE = (35.000 + 7.000/70) = 600unidades$$

PEE de ferramentas =
$$600 \times 60\% = 360$$
 unidades para ferramentas
PEE de motores = $500 \times 40\% = 200$ unidades para motores

4 AVALIAÇÃO DE INVESTIMENTO DE PRODUÇÃO

4.1 A empresa MalaTem Ltda opera com capacidade de produção de 100 malas por mês. Atualmente a produção e as vendas são de 80 malas por mês. Os custos de produção são: custos variáveis unitários de R\$ 50,00 e custos fixos unitários de R\$ 30,00. O preço de venda é de R\$ 110,00 a unidade. O fabricante recebe uma encomenda de 10 malas por um valor de R\$ 105,00 a unidade. Deve aceitar essa encomenda?

Resposta: Sim, deve-se aceitar esse pedido, uma vez que o preço proposto pela encomenda é superior que o custo total por unidade do produto.

4.2 A empresa Tudobom Ltda fabrica bolos na cidade de Palmas. A empresa tem capacidade para fabricar 1.200 unidades mensalmente. A produção do mês está em 80% de sua capacidade, ou seja, 960 unidades. Seu produto é vendido a R\$ 20,00 por unidade.

(a) Tabelas:

Custo fixo por unidade (R\$1.210,00/1.100 unid)	R\$1,10
Custos variáveis por unidade	R\$5,50
Custo total por unidade	R\$6,60

Vendas Líquidas	R\$20,00
Custos Variáveis - CPV	(R\$5,50)
Despesas de Vendas Variáveis	R\$00,00
= Margem de contribuição	14,50

É viável aceitar o pedido.

(b) Tabelas:

Custo fixo por unidade (R\$1.210,00/1.200 unid)	R\$1,0083
Custos variáveis por unidade	R\$5,50
Custo total por unidade	R\$6,5083

Vendas $(100 \times R\$20)$	R\$2.000
Custos Variáveis $(100 \times R\$17, 50)$	(R\$1.750)
Deixa de ganhar	R\$250,00

Devemos acrescentar ao custo de produção unitário R\$ 0,73, que é o valor por unidade que a indústria deixará de ganhar com redução das vendas de 100 unidades em Palmas (R\$ 250,00 / 340 unidades = R\$0,73).

Custo fixo por unidade (R\$1.210,00/1.200 unid)	R\$1,0083
Custos variáveis por unidade	R\$5,50 + R\$0,73
Custo total por unidade	R\$7,2383

5 DECISÕES DE CONCESSÃO DE CRÉDITO