

SEMESTER 2 EXAMINATIONS 2021/2022

MODULE:	CA4007 - Computer Graphics and image Processing						
PROGRAMME(S): CASE ECSAO ECSA	BSc in Computer Applications (Sft.Eng.) Study Abroad (Engineering & Computing) Study Abroad (Engineering & Computing)						
YEAR OF STUDY:	4,O,X						
EXAMINER(S):	Dr. Hossein Javidnia (Internal) (Ext:6565)						
EXAM NUMBER: ——	SEAT NUMBER: ———						
TIME ALLOWED:	3 Hours						
INSTRUCTIONS:	Answer all questions.						
PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO. The use of programmable or text storing calculators is expressly forbidden.							

Requirements for this paper:

1. Exam Paper to be returned with Booklet

For the 4×4 image A calculate the normalized histogram. You must show the calculations.

$$A = \begin{array}{|c|c|c|c|c|} \hline 2 & 4 & 5 & 2 \\ \hline 1 & 2 & 6 & 3 \\ \hline 4 & 2 & 5 & 6 \\ \hline 3 & 1 & 4 & 0 \\ \hline \end{array}$$

[End of Question 1]

QUESTION 2 [TOTAL MARKS: 5]

In the following diagram, name parameters $\boxed{1}$ and $\boxed{2}$.

[End of Question 2]

QUESTION 3

Explain why the following histogram has such a distribution and how it can be fixed.

[End of Question 3]

QUESTION 4 [TOTAL MARKS: 5]

Which statement is correct?

- The larger the focal length, the larger the depth of field.
- The shorter the focal length, the larger the depth of field.
- The shorter the focal length, the shorter the depth of field
- There is no correlation between focal length and depth of field.

[End of Question 4]

Apply a 3×3 median filter to image B with 5×5 pixel resolution and provide the output. Zero padding must be used. Show the calculation process.

	12	3	4	53	23
	3	44	8	7	43
B =	87	3	1	54	0
	32	5	43	66	98
	81	22	6	73	23

[End of Question 5]

QUESTION 6 [TOTAL MARKS: 7.5]

Q 6(a) [2.5 Marks]

What is Ray Tracing?

Q 6(b) [2.5 Marks]

Describe how Ray Tracing works.

Q 6(c) [2.5 Marks]

Why is Ray Tracing used in computer graphics?

[End of Question 6]

Consider the 2D point A=(3,4). Translate point A to point p=(5,6), apply a rotation by $\theta=30^\circ$ and bring back the point to the original coordinates system. Show the calculation process.

$$sin(rad(30^\circ)) = 0.5$$

$$cos(rad(30^\circ)) = 0.8$$

[End of Question 7]

QUESTION 8 [TOTAL MARKS: 5]

In the generic shading model which includes Lambertian, Blinn-Phong and Ambient, what are the parameters k_a , k_d and k_s ?

$$L = k_a I_a + k_d Imax(0, \mathbf{n} \cdot \mathbf{l}) + k_s Imax(0, \mathbf{n} \cdot \mathbf{h})^n$$

- O Diffuse coefficient, Specular coefficient, Ambient coefficient.
- O Ambient coefficient, Diffuse coefficient, Specular coefficient.
- O Specular color, Ambient color, Reflectance color.
- Reflectance color, Specular color, Ambient color.

[End of Question 8]

Describe the Bilateral filter and its two parameters and how they influence the outcome of the filtering process.

[End of Question 9]

QUESTION 10 [TOTAL MARKS: 10]

Q 10(a) [5 Marks]

What are advantages in image processing of working in the frequency domain rather than the spatial domain?

Q 10(b) [5 Marks]

Describe specifically how we can use frequency-domain methods to perform a spatial convolution.

[End of Question 10]

QUESTION 11 [TOTAL MARKS: 10]

Q 11(a) [5 Marks]

What does the gradient of an image represent?

Q 11(b) [5 Marks]

What role does gradient play in edge detection?

[End of Question 11]

Describe **Bijectivity** and **Size distortion** in the concept of Texture Coordinate Function ϕ . No mathematical proof required.

[End of Question 12]

QUESTION 13 [TOTAL MARKS: 10]

For the given image below:

$$A = \begin{array}{|c|c|c|c|c|c|} \hline 6 & 5 & 4 & 3 \\ \hline 5 & 4 & 3 & 2 \\ \hline 4 & 3 & 2 & 1 \\ \hline 3 & 2 & 1 & 1 \\ \hline \end{array}$$

Q 13(a) [5 Marks]

Compute its approximation pyramid (also known as Gaussian pyramid) using an averaging filter.

Q 13(b) [5 Marks]

Compute the Laplacian pyramid using the pixel replication interpolation filter.

[End of Question 13]

[END OF EXAM]