SELECTED PUBLICATIONS

42. A. J. Anderson, et al., Performance of Al-Mn Transition-Edge Sensor Bolometers in SPT-3G. J. Low Temp. Phys. 199, 320-329 (2019).

- 41. A. N. Bender, A. J. Anderson, J. S. Avva, et al. On-sky performance of the SPT-3G frequency-domain multiplexed readout. J. Low Temp. Phys. 199, 182-191 (2019).
- 40. A. J. Anderson, et al., SPT-3G: A Multichroic Receiver for the South Pole Telescope. J. Low Temp. Phys. 193, 1057-1065 (2018).
- 39. E. Figueroa-Feliciano, A. J. Anderson, D. Castro, D. Goldfinger, et al. Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets. ApJ 814, 82 (2015).
- 38. R. Agnese, et al. Search for low-mass weakly interacting massive particles with SuperCDMS. Phys. Rev. Lett. 112, 241302 (2014).

REFEREED PUBLICATIONS

- 37. A. Nadolski, et al. Broadband, millimeter-wave antireflection coatings for large-format, cryogenic aluminum oxide optics. Appl. Opt. **59**, 3285-3295 (2020).
- 36. F. Bianchini, et al. Constraints on cosmological parameters from the 500 deg² SPTpol lensing power spectrum. ApJ 888, 119 (2020).
- 35. L. E. Bleem, et al. The SPTpol Extended Cluster Survey. ApJ Suppl. 247, 25 (2020).
- 34. J. S. Adams, et al., Micro-X Sounding Rocket: Transitioning from First Flight to a Dark Matter Configuration. J. Low Temp. Phys. 199, 1072-1081 (2019).
- 33. N. Huang, et al. Galaxy clusters selected via the Sunyaev-Zel'dovich effect in the SPTpol 100-square-degree survey. Astron. J. 159, 110 (2020).
- 32. S. Raghunathan, et al. A detection of CMB-cluster lensing using polarization data from SPTpol. Phys. Rev. Lett. 123, 181301 (2019).
- 31. N. Gupta, et al. Fractional polarisation of extragalactic sources in the 500-square-degree SPTpol survey. MNRAS 490, 5712-5721 (2019).
- 30. W. L. K. Wu, et al. A Measurement of the cosmic microwave background lensing potential and power spectrum from 500 square degrees of SPTpol temperature and polarization data. ApJ 884, 70 (2019).
- 29. S. Raghunathan, et al. Mass calibration of optically selected DES clusters using a measurement of CMB-cluster lensing with SPTpol data. ApJ 872, 170 (2019).
- 28. W. Everett, et al. Design and Bolometer Characterization of the SPT-3G First-Year Focal Plane. J. Low Temp. Phys. 193, 1085-1093 (2018).
- 27. V. Yefremenko, et al. Impact of Electrical Contacts Design and Materials on the Stability of Ti Superconducting Transition Shape. J. Low Temp. Phys. 193, 732-738 (2018).
- J. Ding, et al. Thermal Links and Microstrip Transmission Lines in SPT-3G. J. Low Temp. Phys. 193, 712-719 (2018).
- 25. J. S. Avva, et al. Design and Assembly of SPT-3G Cold Readout Hardware. J. Low Temp. Phys. 193, 547-555 (2018).

24. Z. Pan, et al. Optical Characterization of the SPT-3G Camera. J. Low Temp. Phys. 193, 305-313 (2018).

- C. M. Posada, et al. Fabrication of Detector Arrays for the SPT-3G Receiver. J. Low Temp. Phys. 193, 703-711 (2018).
- F. W. Carter, et al. Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti-Au-Ti-Au Thin-Film Stack. J. Low Temp. Phys. 193, 695-702 (2018).
- R. Agnese, et al. Nuclear-recoil energy scale in CDMS II Silicon Dark-Matter Detectors, Nucl. Instrum. Meth. A 905, 71-81 (2018).
- A. Leder, A. J. Anderson, J. Billard, et al. Unfolding Neutron Spectrum with Markov Chain Monte Carlo at MIT Research Reactor with He-3 Neutral Current Detectors. JINST 13, P02004 (2018).
- 19. J. W. Henning, et al. Measurements of the temperature and E-mode polarization of the CMB from 500 square degrees of SPTpol data. ApJ 852, 97 (2018).
- R. Agnese, et al. Low-mass dark matter search with CDMSlite. Phys. Rev. D 97, 022002 (2018).
- 17. R. Agnese, et al. Projected sensitivity of the SuperCDMS SNOLAB experiment. Phys. Rev. D **95**, 082002 (2017).
- R. Agnese, et al. New Results from the search for low-mass weakly interacting massive particles with the CDMS low-ionization threshold experiment. Phys. Rev. Lett. 116, 071301 (2016).
- 15. R. Agnese, et al. Improved WIMP-search reach of the CDMS II germanium data. Phys. Rev. D **92** 072003 (2015).
- A. J. Anderson, P. J. Fox, Y. Kahn, and M. McCullough. Halo-Independent Direct Detection Analyses Without Mass Assumptions. JCAP 1510, 012 (2015).
- 13. K. Schneck, et al. Dark matter effective field theory scattering in direct detection experiments Phys. Rev. D **91**, 092004 (2015).
- 12. R. Agnese, et al. Maximum likelihood analysis of low energy CDMS II germanium data. Phys. Rev. D **91**, 052021 (2015).
- 11. R. Agnese, et al. First direct limits on lightly ionizing particles with electric charge less than e/6. Phys. Rev. Lett. 114, 111302 (2015).
- R. Agnese, et al. Search for low-mass weakly interacting massively particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment. Phys. Rev. Lett. 112, 041302 (2014).
- 9. R. Agnese, et al. Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches. Appl. Phys. Lett. **103**, 164105 (2013).
- 8. A. J. Anderson, *Phonon-Based Position Determination in SuperCDMS iZIP Detectors*. J. Low Temp. Phys., **176**, 959 (2014).
- 7. R. Agnese, et al. Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111, 251301 (2013).

 R. Agnese, et al. Silicon detector results from the first five-tower run of CDMS II. Phys. Rev. D 88, 031104(R) (2013).

- A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, C. Ignarra, G. Karagiorgi, K. Scholberg, M. H. Shaevitz, and J. Spitz. *Measuring active-to-sterile neutrino* oscillations with neutral current coherent neutrino-nucleus scattering. Phys. Rev. D 86, 013004 (2012).
- A. J. Anderson, S. W. Leman, M. Pyle, E. Figueroa-Feliciano, K. A. McCarthy, T. Doughty, M. Cherry, B. A. Young. Simulations of noise in phase-separated transition-edge sensors for SuperCDMS. J. Low Temp. Phys., 167, 135 (2012).
- 3. K. A. McCarthy, et al. Validation of phonon physics in the CDMS detector Monte Carlo. J. Low Temp. Phys., **167**, 1160 (2012).
- 2. J. A. Formaggio, E. Figueroa-Feliciano, and A. J. Anderson. Sterile neutrinos, coherent scattering, and oscillometry measurements with low-temperature bolometers. Phys. Rev. D 85, 013009 (2012).
- A. J. Anderson, J. M. Conrad, E. Figueroa-Feliciano, K. Scholberg, and J. Spitz. Coherent neutrino scattering in dark matter detectors. Phys. Rev. D 84, 013008 (2011).

Non-Refereed Publications

- 9. J. S. Avva, et al. Particle Physics with the Cosmic Microwave Background with SPT-3G. J Phys. Conf. Ser. 1468, 012008 (2020).
- 8. D. Dutcher, et al. Characterization and performance of the second-year SPT-3G focal plane. Proc. SPIE, 10708, 107081Z (2018).
- J. A. Sobrin, et al. Design and characterization of the SPT-3G receiver. Proc. SPIE, 10708, 107081H (2018).
- A. Nadolski, et al. Broadband anti-reflective coatings for cosmic microwave background experiments. Proc. SPIE, 10708, 1070843 (2018).
- 5. J. Ding, et al. Optimization of Transition Edge Sensor Arrays for Cosmic Microwave Background Observations With the South Pole Telescope. IEEE Trans. Appl. Supercond. 27, 2100204 (2017).
- 4. A. Bender, et al. Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver. Proc. SPIE, **9914**, 99141D (2016).
- 3. A. J. Anderson, *Constraints on Light WIMPs from SuperCDMS*. Proceedings of Rencontres de Moriond Electroweak 2014, arXiv:1405.4210.
- 2. J. Sander, SuperCDMS status from Soudan and plans for SNOlab. AIP Conf. Proc. 1534, 129-135 (2013).
- A. J. Anderson, J. Conrad, E. Figueroa-Feliciano, J. A. Formaggio, J. Spitz, M. Pyle. Coherent Neutrino Scattering with Cryogenic Semiconductor Detectors. Proceedings of Moriond Electroweak 2012.

Preprints

3. C. L. Reichardt, S. Patil, et al. An Improved Measurement of the Secondary Cosmic Microwave Background Anisotropies from the SPT-SZ + SPTpol Surveys. 2002.06197 (2020).

2. J. T. Sayre, et al. Measurements of B-mode polarization of the cosmic microwave background from 500 square degrees of SPTpol data. 1910.05748 (2019).

1. Z. Ahmed, et al. Search for annual modulation in low-energy CDMS II data. 1203.1309~(2012).

Воокѕ

1. Y. Kahn and A. J. Anderson. Conquering the Physics GRE, 3rd ed. Cambridge University Press: 2018.