## BIL516 - Oyun Teorisi ve Uygulamaları Tercihler ve Faydalar

Feyza M. Hafızoğlu fmhafizoglu@ticaret.edu.tr

Bilgisayar Mühendisliği Bölümü İstanbul Ticaret Üniversitesi

### Ajanda

Temel Kavramlar

Fayda Teorisi (Utility Theory)

İşbirlikçi Olmayan Oyun Teorisi (Non-cooperative Game Theory)

### Self-interested Agents (Menfaatçi Etmenler)

#### Agent (Etmen):

Ortamını sensörler aracılığıyla algılayan ve aktüatörler aracılığıyla (hedefleri doğrultusunda) bu ortama etki eden özerk bir varlık.

- Self-interested agent ne demektir?
  - Başkalarına zarar veren demek değil
  - Sadece kendini düşünen demek değil
  - Dünyanın durumları arasından memnun olduğu durumları belirten kendi tanımları vardır ve eylemleri bu tanımla motive edilir.

#### **Tercihler**

#### Tercih İlişkisi (Preference Relation):

Oyuncu i'nin bir sonuç kümesi, O, üzerindeki tercih ilişkisi ikili bir ilişkidir.  $\succsim_i$  ile ifade edilir.

 $x,y \in O$ , oyuncu i:

- $ightharpoonup x \succsim_i y$ : x'i y'ye tercih eder ya da tarafsızdır (weakly prefers)
- $\triangleright x \succ_i y$ : x'i y'ye tercih eder (strictly prefers)

$$x \succ_i y \iff x \succsim_i y \text{ and } y \not\succsim_i x$$

 $ightharpoonup x pprox_i y$ : x ve y arasında tarafsızdır (indifferent)

$$x \approx_i y \iff x \succsim_i y \text{ and } y \succsim_i x$$

# Tercih İlişkisi

► Tercih ilişkisi, ≿, aşağıdaki özellikleri sağlamalıdır:

 $\mathsf{Tam} \ (\mathsf{Complete}) \ \forall x,y \in O \ \mathsf{için} \ x \succsim y \ \mathsf{ya} \ \mathsf{da} \ y \succsim x.$ 

Yansıyan (Reflexive)  $\forall x \in O \text{ için } x \succsim x.$ 

Geçişken (Transitive)  $x \succsim y$  ve  $y \succsim z \Longrightarrow x \succsim z$ .

# Fayda Teorisi (Utility Theory)

- Alternatifler arasındaki tercih derecesini nicelleştirir
- Belirsizliğin tercihler üzerindeki etkisini açıklar

#### Fayda fonksiyonu (Utility function):

O, sonuçlar kümesi ve  $\succsim$  bir tercih ilişkisi olsun.  $u:O\mapsto\mathbb{R}$  fonksiyonu,  $\succsim$  tercih ilişkisini  $(\forall x,y\in O)$  temsil eden fayda fonksiyonudur,

$$x \gtrsim y \iff u(x) \ge u(y)$$

Decision-theoretic rationality: Faydayı maksimize edecek eylemde bulunmak

# Örnek Tercih İlişkisi ve Fayda Fonksiyonu

- Gezi alternatifleri: Orman, Deniz, Çiftlik
- ► Ali'nin haftasonu gezisi için tercih ilişkisi:

Çiftlik 
$$\succsim_A$$
 Orman

Orman 
$$\succsim_A$$
 Çiftlik

Orman 
$$\succeq_A$$
 Deniz

Çiftlik 
$$\succsim_A$$
 Deniz

- ▶ Çiftlik  $\approx_A$  Orman  $\succsim_A$  Deniz  $\iff u_A(\zeta) = u_A(O) \ge u_A(D)$
- Mesela  $u_A(\zeta) = u_A(O) = 5$  ve  $u_A(D) = 3$

### Oyun Teorisi

İşbirlikçi Olmayan Oyun Teorisi Rasyonel ve self-interested etmenler arasındaki etkileşimin matematiksel olarak incelenmesi

- Çoğunlukla etmenlerin çıkarlarının çakıştığı durumlarla ilgilense de bu durumlarla sınırlı değildir
- Esas model, kendi çıkarlarının peşinden giden bireylerdir

İşbirlikçi Oyun Teorisi Esas model, takımlar/gruplar/koalisyonlardır

## Oyun Tanımı

- ▶ Sonlu, n-kişili oyun:  $\langle N, A, u \rangle$ 
  - N, n oyuncudan oluşan sonlu bir kümedir, i indisli
  - ►  $A = \langle A_1, \dots, A_n \rangle$  her bir oyuncu için bir dizi eylem kümesi ►  $a \in A$  bir eylem profili
  - $u = \langle u_1, \dots, u_n \rangle$  her bir oyuncu için fayda fonksiyonu:  $u_i : A \mapsto \mathbb{R}$
- 2-oyunculu oyun matrisi:
  - ightharpoonup satır oyuncusu oyuncu #1, sütun oyuncusu oyuncu #2
  - ▶ satır eylemleri  $a \in A_1$ , sütun eylemleri  $a' \in A_2$
  - elemanlar sonuçlardır (her bir oyuncu için fayda değerleri)

# TCP Geri Çekme Oyunu (Backoff Game)



- Paketlerinizi doğru uygulanmış TCP ("geri çekilme" mekanizmasına sahip) kullanarak mı göndermelisiniz yoksa hatalı bir uygulama ("geri çekilme" mekanizmasına sahip olmayan) ile mi?
- Bu durumu iki oyunculu bir oyun olarak düşünün:
  - her ikisi de doğru bir uygulama kullanırsa: her ikisi de 1 ms gecikme alır
  - biri doğru, biri hatalı: doğru için 4 ms gecikme, hatalı için 0 ms
  - ikisi de hatalı: her ikisi de 3 ms gecikme alır.

## Matris Formda Oyunlar: TCP Backoff Game

Eylemler: Doğru TCP protokolünü kullanmak, Hatalı TCP protokolünü kullanmak

Oyuncu #2 
$$D \qquad H$$
 Oyuncu #1 
$$D \qquad (-1,-1) \qquad (-4,0) \qquad H \qquad (0,-4) \qquad (-3,-3)$$

# Mahkum İkilemi (Prisoner's Dilemma)

Eylemler: **S**essiz kalmak, **İ**hanet etmek (Diğer oyuncuyu suçla)

Oyuncu #2 
$$S \qquad I$$
 Oyuncu #1 
$$S \qquad (-1,-1) \qquad (-3,0) \qquad I \qquad (0,-3) \qquad (-2,-2)$$

# Tam Rekabet Oyunları (Games of Pure Competition)

- Kesinlikle iki oyuncu olmalı (aksi takdirde tam olarak zıt çıkarlara göre eymel alamazlar)
- ▶ Tüm eylem profilleri için  $a \in A$ ,  $u_1(a) + u_2(a) = c$ , c sabit bir değer
  - Dizel durum: Sıfır toplamlı oyunlar (zero sum games)
- Bu nedenle yanlızca bir oyuncu için fayda fonksiyonu saklamamız yeterli
  - ▶ Bir anlamda tek-oyunculu bir oyun

# Matching Pennies

- Birinci oyuncu uyumlu olmak isterken; diğeri uyumsuz olmak istiyor.
- ► Eylemler: Yazı, Tura



# Taş-Kağıt-Makas

► Eylemler: Taş, Kağıt, Makas

|           |       | Oyuncu $\#2$ |         |         |
|-----------|-------|--------------|---------|---------|
|           |       | Tas          | KagIt   | Makas   |
|           | Tas   | (0,0)        | (-1,1)  | (1, -1) |
| Oyuncu #1 | KagIt | (1, -1)      | (0,0)   | (-1,1)  |
|           | Makas | (-1,1)       | (1, -1) | (0,0)   |

#### Battle of Sexes

- Farklı istekleri olan iki oyuncunun koordinasyon oyunu.
- ► Eylemler: Stravinsky, Bach

|           |            | Oyuncu #2  |       |  |
|-----------|------------|------------|-------|--|
|           |            | Stravinsky | Bach  |  |
| Oyuncu #1 | Stravinsky | (3, 2)     | (0,0) |  |
|           | Bach       | (0,0)      | (2,3) |  |

Ovuncu #2