Alcuni richiami sulle sommatorie

1 Definizione di sommatoria

Si consideri la seguente distribuzione

X
 n

$$x_1 = 0$$
 $n_1 = 5$
 $x_2 = 1$
 $n_2 = 10$
 $x_3 = 2$
 $n_3 = 7$
 $x_4 = 3$
 $n_4 = 3$

che, ad esempio, rappresenta la distribuzione di $n=n_1+n_2+n_3+n_4=5+10+7+3=$ $\sum_{i=1}^4 n_i=25$ famiglie in base al numero di figli (0, 1, 2, 3).

In generale, data la distribuzione

si scrive

$$n = \sum_{i=1}^{k} n_i$$

Pertanto il simbolo $\sum n_i$ indica che le quantità n_i devono essere sommate.

Si possono anche sommare valori elevati al quadrato. Nell'es. precedente si ha

$$\sum_{i=1}^{4} n_i^2 = n_1^2 + n_2^2 + n_3^2 + n_4^2 = 5^2 + 10^2 + 7^2 + 3^2 = 183$$

2 Alcune proprietà

1. La sommatoria non dipende dall'indice che conta (variabile muta)

$$n = \sum_{i=1}^{k} n_i = \sum_{i=1}^{k} n_i = \sum_{i=1}^{k} n_i$$

2. La sommatoria dei valori n_i moltiplicati per una costante c è uguale alla costante moltiplicata per la sommatoria delle n_i

$$\sum_{i=1}^{k} c n_i = c n_1 + c n_2 + \ldots + c n_k = c (n_1 + n_2 + \ldots + n_k) = c \sum_{i=1}^{k} n_i$$

Questa proprietà, ad esempio, è utile nei cambiamenti di unità di misura.

3.

$$\sum_{i=1}^{k} c = c + c + \ldots + c = kc$$

ad esempio $\sum_{i=1}^{100} 2 = 2 \cdot 100 = 200$

4. Proprietà della scomposizione

$$\sum_{i=1}^{k} n_i = n_1 + n_2 + \ldots + n_k = n_1 + n_2 + \ldots + n_m + n_{m+1} + \ldots + n_k = \sum_{i=1}^{m} n_i + \sum_{i=m+1}^{k} n_i$$

5.

$$\sum_{i=0}^{k} n_i = n_0 + n_1 + \ldots + n_k = n_k + n_{k-1} + \ldots + n_1 + n_0 = \sum_{i=0}^{k} n_{k-i}$$

Nell'esempio della distribuzione di 25 famiglie per numero di figli si ha

$$n_1 + n_2 + n_3 + n_4 = 5 + 10 + 7 + 3 = 25 = 3 + 7 + 10 + 5 = n_4 + n_3 + n_2 + n_1$$

6.

$$\sum_{i=1}^{k} n_i = \sum_{i=2}^{k+1} n_{i-1}$$

7.

$$\sum_{i=1}^{k} (a_i + b_i) = (a_1 + b_1) + \dots + (a_k + b_k) = (a_1 + \dots + a_k) + (b_1 + \dots + b_k) = \sum_{i=1}^{k} a_i + \sum_{i=1}^{k} b_i$$

Inoltre

$$\sum_{i=1}^{k} \sum_{j=1}^{m} (a_i b_j) = \sum_{i=1}^{k} a_i \left(\sum_{j=1}^{m} b_j \right) = \sum_{j=1}^{m} b_j \left(\sum_{i=1}^{k} a_i \right)$$
 (1)

In particolare $\sum_{i=1}^{k} \sum_{j=1}^{m} c = kmc$

2.1 Osservazioni

• Il quadrato di una sommatoria NON è uguale alla sommatoria dei quadrati

$$\left(\sum_{i=1}^k a_i\right)^2 \neq \sum_{i=1}^k a_i^2$$

ad esempio per k = 2, $(a_1 + a_2)^2 = a_1^2 + a_2^2 + 2a_1a_2 \neq a_1^2 + a_2^2$

• La sommatoria dei rapporti NON è uguale al rapporto delle sommatorie

$$\sum_{i=1}^{k} \frac{a_i}{b_i} \neq \frac{\sum_{i=1}^{k} a_i}{\sum_{i=1}^{k} b_i}$$

ad esempio per k = 2, $\frac{a_1}{b_1} + \frac{a_2}{b_2} \neq \frac{a_1 + a_2}{b_1 + b_2}$

• La sommatoria dei prodotti NON è uguale al prodotto delle sommatorie

$$\sum_{i=1}^{k} (a_i b_i) \neq \left(\sum_{i=1}^{k} a_i\right) \left(\sum_{i=1}^{k} b_i\right)$$

ad esempio per k=2, $a_1b_1+a_2b_2\neq (a_1+a_2)(b_1+b_2)=a_1b_1+a_2b_2+a_2b_1+a_1b_2$

Inoltre

$$\sum_{i=1}^{k} (a_{i+1} - a_i) = a_{k+1} - a_1 \tag{2}$$

ad esempio per k = 4, $(a_2 - a_1) + (a_3 - a_2) + (a_4 - a_3) + (a_5 - a_4) = a_5 - a_1$

e

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{3}$$

ovvero la somma dei primi n numeri interi è pari a n(n+1)/2

3 Le tabelle doppie

		Y		
X	Y_1	Y_2	 Y_m	Totale
X_1	n_{11}	n_{12}	 n_{1m}	$\sum_{j=1}^{m} n_{1j} = n_{1.}$
X_2	n_{21}	n_{22}	 n_{2m}	$\sum_{j=1}^{m} n_{1j} = n_{1.}$ $\sum_{j=1}^{m} n_{2j} = n_{2.}$
:	:	÷	 :	:
X_1	n_{k1}	n_{k2}	 n_{km}	$\sum_{j=1}^{m} n_{kj} = n_{k.}$
Totale	$\sum_{i=1}^{k} n_{i1} = n_{.1}$	$\sum_{i=1}^{k} n_{i2} = n_{.2}$	 $\sum_{i=1}^k n_{im} = n_{.m}$	$\sum_{i=1}^k \sum_{j=1}^m n_{ij} =$
				$\sum_{i=1}^{k} \sum_{j=1}^{m} n_{ij} =$ $= \sum_{i=1}^{k} n_{i.} = \sum_{j=1}^{m} n_{.j}$