Titre: Décomposition de Dunford

Recasages: 153,154,155,156,157

Thème: Algèbre linéaire, polynômes d'endomorphismes

Références : Gourdon algèbre (P. 194,195)

<u>Théorème</u> 1. (Dunford) Soit un endomorphisme $u \in \mathcal{L}(E)$, qui annule un polynôme scindé sur K. Il existe un unique couple (d, n) d'endomorphismes tels que

- -u = d + n
- d est diagonalisable et n est nilpotent.
- d et n commutent.

De plus, d et n sont alors des polynômes den u.

<u>Lemme</u> 2. Soit $u \in \mathcal{L}(E)$ et $P \in K[X]$ un polynôme annulateur de f. Soit $P = \beta M_1^{\alpha_1} \cdots M_s^{\alpha_s}$ la décomposition en facteurs irréductibles de K[X] du polynôme P. Pour tout $i \in [1, s]$, on pose $N_i = \text{Ker } M_i^{\alpha_i}(u)$. On a alors

$$E = \bigoplus_{i=1}^{s} N_i$$

et pour tout i, la projection sur N_i pour cette décomposition est un polynôme en u.

Démonstration. La décomposition en somme directe découle immédiatement du lemme des noyaux (les $M_i^{\alpha_i}$ sont premiers entre eux). Pour tout i, on note $Q_i = \prod_{i \neq j} M_j^{\alpha_j}$: les Q_i sont premiers entre eux globalement (ils n'ont aucun facteur tous commun), par l'égalité de Bézout, il existe $U_1, \dots, U_s \in K[X]$ tels que $\sum_{i=1}^s U_i Q_i = 1$, autrement dit

$$Id_E = \sum_{i=1}^n U_i(f) \circ Q_i(f)$$

Pour tout i, on pose $P_i = U_i Q_i$ et $p_i = P_i(f)$. On reformule donc $Id_E = \sum_{i=1}^s p_i$ (*). Par ailleurs, pour tout $i \neq j$, on a $P|Q_iQ_j$, donc

$$\forall i \neq j, p_i \circ p_j = Q_i Q_j(f) \circ U_i U_j(f) = 0$$

En composant par p_i dans (*), on obtient $p_i = p_i^2$ et donc p_i est un projecteur. Montrons que pour tout i, $\operatorname{Im} p_i = N_i$: soit $y = p_i(x) \in \operatorname{Im} p_i$, on a

$$M_i^{\alpha_i}(f)(y) = M_i^{\alpha_i}(f) \circ P_i(f)(x) = U_i(f) \circ P(f)(x) = 0$$

ainsi, $\operatorname{Im} p_i \subset \operatorname{Ker} M_i^{\alpha_i}(f) = N_i$.

Réciproquement, soit $x \in N_i = \text{Ker } M_i^{\alpha_i}(f)$, par (*), $x = p_1(x) + \cdots + p_s(x)$. Or, pour $j \neq i$, $p_j(x) = U_j(f) \circ Q_j(x) = 0$ car $M_i^{\alpha_j}(x) = 0$, donc $x = p_i(x) \in \text{Im } p_i$.

Calculons maintenant Ker p_i : pour tout $j \neq i$, on a $N_j \subset \text{Ker } p_i$ car si $x \in N_j$, alors $p_i(x) = U_i(x) \circ Q_i(f)(x) = 0$ car $M_j^{\alpha_j}$ divise Q_j . On en déduit que $\bigoplus_{i \neq j} N_j \subset \text{Ker } p_i$. Réciproquement, pour $x \in \text{Ker } p_i$, par (*), $x = \sum_{i \neq j} p_j(x)$, donc $x \in \bigoplus_{i \neq j} N_j$. Finalement, Ker $p_i = \bigoplus_{i \neq j} N_j$, ce qui termine la démonstration.

Passons à présent à la preuve proprement dite :

Existence: Écrivons $\chi_u = \prod_{i=1}^s (X - \lambda_i)^{\alpha_i}$ et pour tout i, notons $N_i = \text{Ker } (u - \lambda_i)^{\alpha_i}$. Notre lemme s'applique avec $P = \chi_f$ et pour tout i, $M_i = (X - \lambda_i)$. En utilisant les notations précédentes, pour tout i, $p_i = P_i(u)$ est le projecteur sur N_i parallèlement à $\bigoplus_{j \neq i} N_j$. Posons

$$d = \sum_{i=1}^{s} \lambda_i p_i$$
 et $n = f - d = \sum_{i=1}^{s} (u - \lambda_i I_d) p_i$

Les endomorphismes d et n sont bien des polynômes en u, ils commutent donc entre eux. Ensuite, d est diagonalisable (en prenant une base de la décomposition $E = \bigoplus_{i=1}^{s} N_i$), enfin, on remarque (par récurrence immédiate sur $q \in \mathbb{N}$)

$$n^q = \sum_{i=1}^s (u - \lambda_i I_d)^q p_i$$

qui devient nul pour $q = \max_{i \in [\![1,s]\!]} \alpha_i$, donc n est bien nilpotent.

<u>Unicité</u>: Soit (d', n') un autre couple vérifiant les conditions souhaitées, les endomorphismes d' et n' commutent avec d' + n' = u et donc avec d et n qui sont des polynômes en u. Ainsi, d et d' sont codiagonalisables, donc d - d' est diagonalisable. Comme d - d' = n' - n est nilpotente (n et n' commutent), on en déduit que d - d' = n - n' = 0 la seule matrice nilpotente et diagonalisable.