

FIG. 2

_												
	Electr	(eV)	F	7.127	6.601	5.948	8.122	7.139	6.597	5.946	8.119	7.867
	Dipole Moment	(debye)	E	12.744	2.933	0.01	25.323	25.52	0.025	0.124	52.726	0.148
	Connectivity Index	(order 2, standard)	D	11.632	11.985	12.692	11.071	17.289	17.642	18.349	16.728	16.935
Conformation	Minimum	Energy	(kcal/mole)	39.331	39.449	40.322	39.924	50.797	49.902	50.899	50.293	49.694
	D-Value	II Pd		2.86		1.75	2.6	3.3	0.42	1.59	3.22	0.89
-	Compound	nunoduno		DQ 18	DQ 16	DQ 10	DQ 14	DQ 17	DQ 15	DQ 12	DQ 13	D011

FIG. 3A

HOMO Energy (ev)		13.703	13.635	13.52	13.855	12.628	12.601	12.552	12.687	12.661
Heat of Formation (kcal/mole)		258.295	242.427	218.102	291.32	171.131	155.69	131.143	204.337	190.296
Total Energy (Hartree)		214.593	221.775	236.121	205.938	329.153	336.331	350.679	320.496	321.968
Steric Energy Total Energy (Kcal/mole)	H	39.331	39.597	40.322	39.924	50.797	49.902	50.899	50.293	49.694
Dielectric Energy (kcal)/mole)	9	7.7	7.211	6.602	8.438	7.759	7.301	6.62	8.487	8.312
Compound		DQ 18	DQ 16	DQ 10	DQ 14	DQ 17	DQ 15	DQ 12	DQ 13	DQ11

FIG. 3B

		,			_					
Valence Connectivity Solvent Accessible Index (order 2, Surface Area $(^{\mbox{\c Area}}_2)$	Ь	11.069	11.423	12.13	10.53	16.726	17.08	17.787	16.187	16.372
Valence Connectivity Index (order 2, standard)	Ø	521.24	539.815	576.054	485.397	813.7	831.853	883.721	778.615	793.278
Shape Index basic kappa, order 3)	0	21.031	22.027	23.967	13.04	36.681	37.686	39.658	26.747	35.716
LUMO (eV) Energy	~	-7.127	-6.601	-5.948	-8.122	-7.139	-6.598	5.946	-8.119	<i>-</i> 7.867
d 607	M	6.409	98.9	7.653	6.179	12.75	13.201	13.993	12.52	12.697
Ionization Potential (eV)	7	13.703	13.635	13.52	13.855	12.628	12.601	12.552	12.687	12.661
Сотроипа		DQ 18	DQ 16	DQ 10	DQ 14	DQ 17	DQ 15	DQ 12	DQ 13	DQ11

FIG. 3C

Experimental % Removal

FIG. 4C

Predictive Eq. for Pt IV

B=283.378*D+1.4239 9*E+173.825*F+212.2 66*G+2.69479*H+14 4354*I+167.3

FIG. 4D

Predictive Eq. for Rh III

B=0.00584793*E-0.90334*N-42.1486/N-12.3346

FIG. 4E

Figure 6. Effect of scale up of synthesis on yields of the reaction

Figure 7. Comparison of % of PGMs recovered during back extraction experiments

Figure 8. Comparison of efficiency of diquats in multiple extractions

Figure 9. Efficiency of DQ 13Cl in continuous Pd extractions

Figure 10. Concentration of Pd back-extracted in HCl

Figure 11. Selectivity of diquats towards extractability of PGMs from base metals

Figure 12. Synthetic scheme for synthesis of new diquaternary amine compounds

Figure 13. Longer side chain substitution increases PGM extraction efficiency

Figure 14. Material Balance Investigation of PGM's

Figure 15. Binding Capacities of different diquats

Figure 16. 13-Cl and 14-Cl outperform 17-Cl and 18-Cl and continue to extract a majority of PGMs at low concentrations.

Figure 17. 13-Cl and 14-Cl continue to extract over 90% of PGM's in multiple extractions

Figure 18. HCl can be reused effectively for multiple back extractions

Schematic diagram of electro deposition

France 19

