§15.9, #39*

Here

$$E = \{(x, y, z) | \sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2}, \quad 0 \le y \le \sqrt{1 - x^2}, \quad 0 \le x \le 1\}.$$

Using $z = \rho \cos(\phi)$, $r = \rho \sin(\phi)$, $x = r \cos(\theta)$ and $y = r \sin(\theta)$, we reduce $\sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2}$ to $r \le z$ or $\sin(\phi) \le \cos(\phi)$ or $\tan(\phi) \le 1$ together with $x^2 + y^2 + z^2 \le 2$ or $\rho^2 \le 2$ or $\rho \le \sqrt{2}$. Likewise, we reduce $0 \le y \le \sqrt{1 - x^2}$ to $y \ge 0$ and $x^2 + y^2 \le 1$ or $y \ge 0$ and $r \le 1$ or $\sin(\theta) \ge 0$ and $\rho \sin(\phi) \le 1$. Finally, we reduce $0 \le x \le 1$ to $\cos(\theta) \ge 0$ and $\rho \sin(\phi) \cos(\theta) \le 1$. Because $0 \le \phi \le \pi$, $\tan(\phi) \le 1$ implies $0 \le \phi \le \frac{1}{4}\pi$. Also $\sin(\theta) \ge 0$ and $\cos(\theta) \ge 0$ imply $0 \le \theta \le \frac{1}{2}\pi$. So now we have $0 \le \rho \le \sqrt{2}$, $0 \le \phi \le \frac{1}{4}\pi$ and $0 \le \theta \le \frac{1}{2}\pi$. Note that $0 \le \phi \le \frac{1}{4}\pi$ implies $\sin(\phi) \le 1/\sqrt{2}$, which together with $\rho \le \sqrt{2}$ implies $\rho \sin(\phi) \le 1$, which in turn implies $\rho \sin(\phi) \cos(\theta) \le 1$. So all of our inequalites are satisfied. In sum:

$$E = \{(\rho, \phi, \theta) | 0 \le \rho \le \sqrt{2}, 0 \le \phi \le \frac{1}{4}\pi, 0 \le \theta \le \frac{1}{2}\pi\}.$$

So, not forgetting our Jacobian,

$$I = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} xy \, dz \, dy \, dx$$

$$= \int_{0}^{\frac{1}{2}\pi} \int_{0}^{\frac{1}{4}\pi} \int_{0}^{\sqrt{2}} \rho \sin(\phi) \cos(\theta) \cdot \rho \sin(\phi) \sin(\theta) \cdot \rho^{2} \sin(\phi) \, d\rho \, d\phi \, d\theta$$

$$= \int_{0}^{\frac{1}{2}\pi} \sin(\theta) \cos(\theta) \, d\theta \int_{0}^{\frac{1}{4}\pi} \sin^{3}(\phi) \, d\phi \int_{0}^{\sqrt{2}} \rho^{4} \, d\rho$$

$$= \frac{1}{2} \sin^{2}(\theta) \Big|_{0}^{\frac{1}{2}\pi} \cdot \Big\{ \frac{1}{3} \cos^{3}(\phi) - \cos(\phi) \Big\} \Big|_{0}^{\frac{1}{4}\pi} \cdot \frac{1}{5} \rho^{5} \Big|_{0}^{\sqrt{2}}$$

$$= \frac{1}{2} \cdot \Big\{ \frac{1}{6\sqrt{2}} - \frac{1}{\sqrt{2}} - \left(\frac{1}{3} - 1\right) \Big\} \cdot \frac{4}{5} \sqrt{2} = \frac{4\sqrt{2}}{15} - \frac{1}{3}.$$