การทดลองที่ 3

การวัดความเร่งเนื่องจากแรงโน้มถ่วง

วัตถุประสงค์

- 1. เพื่อศึกษาการแกว่งของลูกตุ้มนาฬิกาอย่างง่ายและลุกตุ้มนาฬิกาฟิสิกัล
- 2. เพื่อวัดค่าความเร่งโน้มถ่วงของโลก จากคาบการแกว่งของลูกตุ้มนาฬิกาอย่างง่าย
- 3. เพื่อวัดค่าความเร่งโน้มถ่วงของโลก จากคาบการแกว่งของลูกตุ้มนาฬิกาฟิสิกัล

ความรู้พื้นฐานที่เกี่ยวข้อง

การเคลื่อนที่แบบฮาร์มอนิกเป็นการเคลื่อนที่กลับไปกลับมาผ่านตำแหน่งสมดุล โดย การกระจัดของวัตถุเป็นฟังก์ชันไซน์หรือโคไซน์ ซึ่งเป็นฟังก์ชันฮาร์โมนิก จึงเรียกว่าการเคลื่อนที่ แบบฮาร์โมนิก การเคลื่อนที่ที่ง่ายที่สุดของการเคลื่อนที่แบบฮาร์มอนิก เรียกว่า การเคลื่อนที่ แบบฮาร์มอนิก อย่างง่าย

ลูกตุ้มนาฬิกา เป็นตัวอย่างหนึ่งของการเคลื่อนที่แบบฮาร์โมนิก มีหลายประเภท ในการ ทดลองนี้ เราสนใจศึกษาลูกตุ้มนาฬิกาอย่างง่าย (Simple pendulum) และลูกตุ้มนาฬิกาฟิสิ กัล (Physical pendulum) เพื่อนำมาหาค่าความเร่งเนื่องจากความโน้มถ่วง

ลูกตุ้มนาฬิกาอย่างง่าย ประกอบด้วยวัตถุก้อนเล็ก ๆ ห้อยแขวนไว้ด้วยเชือกที่มีมวล น้อยเมื่อเทียบกับก้อนวัตถุ ตำแหน่งของลูกตุ้มขณะที่เส้นเชือกวางตัวอยู่ในแนวดิ่งเรียกว่า ตำแหน่งสมดุล ถ้าดึงลูกตุ้มให้เคลื่อนที่ออกไปจากตำแหน่งดังกล่าว จนเส้นเชือกทำมุม θ กับ แนวดิ่งแล้วปล่อย ลูกตุ้มจะเคลื่อนที่กลับไปกลับมาผ่านตำแหน่งสมดุล โดยมีเส้นทางการ เคลื่อนที่เป็นส่วนโค้งของวงกลมที่มีรัศมีเท่ากับความยาวของเส้นเชือก แรงที่กระทำต่อลูกตุ้ม ในขณะต่าง ๆ แสดงดังรูปที่ 3.1

รูปที่ 3.1 แสดงแรงทั้งหมดที่กระทำต่อลูกตุ้ม

จากรูปที่ 3.1 จะเห็นได้ว่าแรงที่ดึงให้ลูกตุ้มกลับสู่ตำแหน่งสมดุลคือ องค์ประกอบหนึ่ง ของน้ำหนักลูกตุ้มหรือ $mg\sin\theta$ นั่นเอง โดย m เป็นมวลของลูกตุ้ม และ g เป็นขนาดความเร่ง เนื่องจากความโน้มถ่วงของโลก ดังนั้นความเร่งขณะต่าง ๆ ในการกลับเข้าสู่ตำแหน่งสมดุลของ ลูกตุ้มจึงมีขนาดเท่ากับ $g\sin\theta$ ตามกฎการเคลื่อนที่ของนิวตัน (F=ma)

ในกรณีที่มุม θ มีขนาดเล็กมาก (ไม่เกิน 10 องศา) ค่า $\sin \theta$ สามารถแทนได้ด้วย θ ที่ วัดในหน่วย **เรเดียน (rad)** ทำให้ขนาดความเร่งในการกลับเข้าสู่ตำแหน่งสมดุลของลูกตุ้มเขียน แทนได้ด้วยสมการ

$$a = g\theta = \frac{gx}{L} \tag{3.1}$$

โดย x เป็นตำแหน่งของลูกตุ้มเทียบกับตำแหน่งสมดุล $\,$ และ $\,$ L เป็นความยาวของเชือก

สมการ (3.1) แสดงว่าขนาดความเร่งในการกลับเข้าสู่ตำแหน่งสมดุลของลูกตุ้มเป็น สัดส่วนโดยตรงกับตำแหน่งของลูกตุ้ม นั่นคือลูกตุ้มมีการเคลื่อนที่แบบซิมเปิลฮาร์โมนิก ซึ่งมี ช่วงเวลาที่ใช้ในการเคลื่อนที่ครบรอบหรือที่เรียกว่า คาบคงที่ ความสัมพันธ์ระหว่างขนาด

$$a = \omega^2 x = \frac{4\pi^2 x}{T^2}$$
 (3.2)

เมื่อ T เป็นคาบการแกว่งของลูกตุ้ม

จากการเทียบสมการ (3.1) และ (3.2) เข้าด้วยกันจะได้ว่า

$$\frac{4\pi^2}{T^2} = \frac{g}{L}$$

หรือ
$$T^2 = \frac{4\pi^2 L}{g} \tag{3.3}$$

ดังนั้นถ้าเปลี่ยนความยาวของเชือกที่ใช้แขวนลูกตุ้ม จะทำให้คาบของการแกว่งเปลี่ยนแปลงไป ด้วย เมื่อเขียนกราฟแสดงความสัมพันธ์โดยให้กำลังสองของคาบการแกว่งเป็นแกนตั้ง และ ความยาวของเชือกเป็นแกนนอน จะได้กราฟเส้นตรงที่มีความชัน (slope) เท่ากับ $\frac{4\pi^2}{g}$ จึงอาจ คำนวณขนาดความเร่งเนื่องจากแรงโน้มถ่วงของโลกได้ด้วยสมการ

$$g = \frac{4\pi^2}{slope} \tag{3.4}$$

ดังนั้น การวัดความเร่งเนื่องจากแรงโน้มถ่วงสามารถทำได้โดยอาศัยความจริงที่ได้จากการศึกษา การแกว่งของลูกตุ้มนาฬิกาอย่างง่าย

ลูกตุ้มนาฬิกาฟิสิกัล คือวัตถุแข็งเกร็งที่ถูกทำให้แกว่งในระนาบดิ่งรอบแกนที่ผ่านจุดใด จุดหนึ่งบนวัตถุนั้น ลูกตุ้มนาฬิกาฟิสิกัลอาจมีเป็นรูปทรงเรขาคณิตหรือรูปทรงใด ๆ ก็ได้ รูปที่ 3.2 วัตถุมวล m แกว่งรอบแกนที่อยู่ในแนวระดับและผ่านจุด O ขณะอยู่นิ่ง จุดศูนย์กลางมวล ของวัตถุ (จุด C.M.) จะอยู่ในแนวดิ่งใต้จุด O ให้ระยะระหว่างจุด O ถึงจุด C.M. เท่ากับ h และโมเมนต์ความเฉื่อยของวัตถุรอบแกนที่ผ่านจุด O เป็น I

รูปที่ 3.2 แสดงลูกตุ้มนาฬิกาฟิสิกัล

ถ้าออกแรงดึงวัตถุให้มีการกระจัดเชิงมุม heta จากแนวดิ่ง เมื่อปล่อยวัตถุมีน้ำหนัก mg จะทำให้เกิดทอร์กเรียกว่า ทอร์กคืนตัว (restoring torque) ซึ่งทำให้วัตถุแกว่งกลับสู่ตำแหน่ง สมดุล ทอร์กนี้หาได้จากสมการ

$$\Gamma = -mgh\sin\theta \tag{3.5}$$

เครื่องหมาย – แสดงว่า Γ เป็นทอร์กคืนตัว

ในกรณีที่มุม θ เป็นมุมเล็กๆ พบว่า $\sin \theta ~pprox \theta$ มีหน่วยเป็นเรเดียน ดังนั้น

$$\Gamma = -mg \, h \, \theta \tag{3.6}$$

จากกฎการเคลื่อนที่เชิงมุม

$$\Gamma = I\alpha \tag{3.7}$$

ได้คาบของลูกตุ้มนาฬิกาฟิสิกัลเท่ากับ

$$T=2\pi\sqrt{\frac{I}{mgh}}$$
(3.8)

$$T^2 = 4\pi^2 \frac{I_{cm} + mh^2}{mgh} \tag{3.9}$$

$$g = 4\pi^2 \left(\frac{I_{cm} + mh^2}{mT^2h} \right) \tag{3.10}$$

โมเมนต์ความเฉื่อยของไม้เมตรรอบแกนที่ผ่านจุด ${\cal O}$ เป็น

$$I_{cm} = \frac{1}{12}mL^2 \tag{3.11}$$

และคำนวณขนาดความเร่งเนื่องจากแรงโน้มถ่วงของโลกได้ด้วยสมการ

$$g = 4\pi^2 \left(\frac{\frac{1}{12}mL^2 + mh^2}{mT^2h} \right) \tag{3.12}$$

ดังนั้นการวัดความเร่งเนื่องจากแรงโน้มถ่วงสามารถทำได้โดยอาศัยความจริงที่ได้จากการศึกษา การแกว่งของลูกตุ้มนาฬิกาฟิสิกัลด้วย

อุปกรณ์การทดลอง

1.	เสาตั้งพร้อมขอสำหรับแขวนลูกตุ้ม	1	ชุด
2.	ลูกตุ้มโลหะ	1	ลูก
3.	เชื่อกขนาดเล็ก	1	เส้น
4.	ไม้เมตร	1	อัน
5.	นาฬิกาจับเวลาความละเอียด 0.01 s	1	เรือน
6.	ฐานตั้งและแกนหมุน	1	ชุด
7.	ไม้เมตรที่เจาะรู	1	อัน
8.	ลูกดิ่งพร้อมเชือกแขวน	1	ชุด
9.	เครื่องชั่งมวลพร้อมตุ้มน้ำหนัก	1	ชุด