Home morphism

We shall see applications later in.

Minimization

Hx
$$\in \mathbb{Z}^{\times}$$
, $\hat{S}'([P], n) = [\hat{S}(P, n)]$

$$x = \epsilon \rightarrow \hat{S}'([P], \epsilon) = [P] \quad \text{defined} \hat{S}'$$

$$= [\hat{S}(P, \epsilon)] \quad \text{defined} \hat{S}'$$

$$\hat{S}'([P], n) = [\hat{S}(P, n)], \quad \text{defined} \hat{S}'$$

$$\hat{S}'([P], n) = \hat{S}'(\hat{S}'(P, n)), \quad \text{defined} \hat{S}'$$

$$= \hat{S}'([\hat{S}(P, n)], \quad \text{defined} \hat{S}'$$

$$= [\hat{S}(P, n)], \quad \text{defined} \hat{S}'$$

$$= [\hat{S}(P, n)] \quad \text{defined} \hat{S}'$$

2.
$$L(M/x) = L(M)$$
 $\lambda \in L(M/x) \implies \hat{S}'(x,x) \in F'$
 $L(M/x) \implies \hat{S}'(x,x) \in F'$

Regular languages are cloud under

Let h be any homomorphism defined over Ξ'' .

(1) If R is a go segular expression defined over Ξ , h(R) is already with the really is h(R)? for any $a \in \Xi$ in R, then uplace in by the string h(a). A — can prove the string h(a). A — this inductively.

Let up ex

(2) Given, $h: Z'' \longrightarrow \Gamma''$, if some $L \subseteq Z''$ is sugarlar, $h(L) = \{ \{ \{ (\omega) \mid \omega \in L \} \subseteq \Gamma'' \text{ in also regular.} \}$

(3) Can show that, $L(L,UL_2) = h(L_1) U h(L_2)$, $h(L_1^*) = h(L_1) \circ h(L_2)$, $h(L_1^*) = (h(L_1))^*$