

TRAFFIC SIGNALS CLASSIFICATION

INTELIGÊNCIA COMPUTACIONAL

2024/2025

João Pedro Silveira da Costa, N.º 2022143368 Juliana Silva Teixeira, N.º 2022143370

ÍNDICE

- 1. Descrição do Problema
- 2. Descrição das Metodologias Utilizadas
- 3. Arquitetura de Código
- 4. Aplicação
- Descrição da Implementação dos Algoritmos
- 6. Análise de Resultados
- 7. Conclusões

U

1. DESCRIÇÃO DO PROBLEMA

Desenvolver um modelo de classificação de imagens de sinais de trânsito utilizando uma rede neural convolucional (CNN), com foco em sistemas de monitoramento e assistência ao condutor.

Desafios:

- Processar imagens de diferentes condições de iluminação, ângulos e qualidade.
- Garantir alta precisão e eficiência na classificação de sinais de trânsito, que apresentam variações visuais significativas.

Objetivos:

- Criar uma solução robusta para identificar sinais de trânsito em tempo real.
- Otimizar o desempenho do modelo ajustando hiperparâmetros e testando diferentes estruturas de rede.

Métricas de Avaliação:

Accuracy, precision, recall, F1-score e AUC para avaliar a performance do modelo.

Impacto:

• O modelo contribuirá para integrar soluções de reconhecimento de sinais de trânsito em sistemas de assistência ao condutor, como veículos autônomos e sistemas de segurança avançada, aumentando a segurança e eficiência nas estradas.

2. DESCRIÇÃO DAS METODOLOGIAS UTILIZADAS

Modelo Simples:

Uma abordagem direta, que não utiliza técnicas de otimização. Este programa foi treinado em um dataset com 5 classes, com 500 amostras cada.

Otimização por Random Search:

O Random Search é uma técnica de otimização de hiperparâmetros em modelos de machine learning. Escolhe combinações aleatórias dentro de um intervalo definido pelo utilizador.

3. ARQUITETURA DE CÓDIGO

```
import pickle
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score, f1_score, roc_auc_score, classification_report
import seaborn as sns
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import img_to_array, array_to_img
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout
from tensorflow.keras.optimizers import Adam
```

```
def preprocess_data(file, target_size=(224, 224)):
    with open(file, 'rb') as f:
        data = pickle.load(f, encoding='latin1')
        x = data['features'].astype(np.float32)
        y = data['labels']
        sizes = data['sizes']
        coords = data['coords']

df = pd.DataFrame({
        'features': list(x),
        'labels': y,
        'sizes': list(sizes),
        'coords': list(coords)
})

df_filtered = df[df['labels'].isin(classes)]

df_limited = df_filtered.groupby('labels').apply(lambda x: x.sample(n=500, random_state=42)).reset_index(drop=True)
```

```
# Pre-processamento
cropped images = []
mapped_labels = []
for i in range(len(df limited)):
    img = df limited['features'].iloc[i]
                                                   # Imagem original
    x1, y1, x2, y2 = df_limited['coards'].iloc[i]
   width, height = df limited['sizes'].iloc[i]
                                                   # Dimensões originais da imagem
   # Verificar que as coondenadas limitadoras estão dentro dos limites da imagem
    if x1 < 0: x1 = 0
    if v1 c 8: v1 - 8
    if x2 > width: x2 = width
    if y2 > height: y2 = height
    # Cortar a imagem pelos limites
   cropped img = img[y1:y2, x1:x2, :]
    # Redimensionar a imagem para o tamanho esperado pela arquitetura
    img resized = array to img(cropped img).resize(target size)
    img resized - img to array(img resized) / 255.0
                                                             # Normalizar
    # Guardar a imagem pré-processada
   cropped images.append(img resized)
   original label = df limited['labels'].iloc[i]
   mapped_labels.append(class_mapping[original_label])
# Converter listas para numpy arrays
cropped_images = np.array(cropped_images)
mapped labels = np.array(mapped labels)
```

3. ARQUITETURA DE CÓDIGO

```
# Dividir o conjunto de dados em treino e teste
X_train, X_test, y_train, y_test = train_test_split(cropped_images, mapped_labels, test_size=0.2, random_state=42, stratify=mapped_labels)
return X_train, X_test, y_train, y_test
```

```
def create_pretrained_model(input_shape, num_classes, learning_rate=0.001, dense_units=128):
   # Carregar o modelo MobileNetV2 pré-treinado no ImageNet
   base model = MobileNetV2(weights='imagenet', include top=False, input shape=input shape)
   # Congelar os pesos da base
   base model.trainable = False
   # Adicionar camadas customizadas no topo (top layers)
   x = base model.output
   x = GlobalAveragePooling2D()(x)
   x = Dense(dense_units, activation='relu')(x)
   x = Dropout(0.5)(x) \# Regularização com dropout
   x = Dense(dense units // 2, activation='relu')(x)
   x = Dropout(0.5)(x) # Regularização com dropout
   predictions = Dense(num classes, activation='softmax')(x)
   # Criar o modelo final
   model = Model(inputs=base model.input, outputs=predictions)
   # Compilar o modelo
   model.compile(optimizer=Adam(learning rate=learning rate),
                 loss='sparse categorical crossentropy',
                 metrics=['accuracy'])
   return model
```

```
input_shape = (224, 224, 3)  # Imagem 32x32 com 3 canais de cor (RGR)
num_classes = len(classes)

# Definir hiper-parâmetros
learning_rate = 8.001
dense_units = 256

pretrained_model = create_pretrained_model(input_shape, num_classes, learning_rate, dense_units)
pretrained_model.summary()

# Treinar o modelo
history = pretrained_model.fit(X_train, y_train, epochs=18, validation_data=(X_test, y_test), batch_size=32)
pretrained_model.save("traffic_sign_model.h5")
```

```
Avaliar o modelo
test_loss, test_acc = pretrained_model.evaluate(X_test, y_test)
print(f'Test accuracy: {test acc: 4f}')
y probs = pretrained model.predict(X test)
y pred = np.argmax(y probs, axis=1)
 Calcular as Métricas
accuracy = accuracy score(y test, y pred)
recall = recall score(y test, y pred, average='weighted')
precision = precision score(y test, y pred, average='weighted')
fmeasure = f1_score(y_test, y_pred, average='weighted')
 Exibir as métricas finais
 rint(f"Accuracy: {accuracy:.4f}")
print(f"Recall: (recall: 4f)")
print(f"Precision: {precision: .4f}")
print(f"f-measure: (fmeasure: 4f)")
 Calcular o AUC por classe
auc scores = []
 or i in range(num classes):
   auc = roc_auc_score((y_test == i).astype(int), y_probs[:, i])
   auc_scores.append(auc)
   print(f"AUC for class {classes[i]}: {auc:.4f}")
```

3. ARQUITETURA DE CÓDIGO

```
# Criar dataframes para salvar no Excel
df results = pd.DataFrame({
    'Metric': ['Accuracy', 'Recall', 'Precision', 'F-measure'],
    'Value': [accuracy, recall, precision, fmeasure]
df auc scores = pd.DataFrame((
    'Class': classes.
    'ADC': auc_scores
df confusion mtx = pd.DataFrame(
    confusion_matrix(y_test, y_pred),
    index=[f"True_{cls}" for als in classes],
    columns=[f"Pred (cls)" for cls in classes]
# Criar um relatório de classificação detalhado
class report = classification report(y test, y pred, target names=[f"Class (cls)" for cts in classes], output dict=True)
df_class_report = pd.DataFrame(class_report).transpose()
# Adicionar o tamanho das classes no conjunto de dados
df shapes = pd.DataFrame((
    "Dataset": ["Training", "Testing"],
    "Samples": [X train.shape[0], X test.shape[0]],
    "Features Shape": [X train.shape[1:], X test.shape[1:]]
```

```
# Matriz Confusão
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(10, 7))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()

# Salvar todos os dados em um único arquivo Excel
with pd.ExcelWriter("model_results.xlsx") as writer:
    df_shapes.to_excel(writer, sheet_name='Formas dos Conjuntos', index=False)
    df_results.to_excel(writer, sheet_name='Resultados Otimizacao', index=False)
    df_auc_scores.to_excel(writer, sheet_name='AUC por Classe', index=False)
    df_confusion_mtx.to_excel(writer, sheet_name='Matriz de Confusão')
    df_class_report.to_excel(writer, sheet_name='Relatório de Classificação')
```

```
# Plotar curvas de treino e validação
plt.figure(figsize=(12, 5))
# Curva de accuracy
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epochs')
plt.vlabel('Accuracy')
plt.legend()
# Curva de perda
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val loss'], label='Validation Loss')
plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.tight layout()
plt.show()
```

4. APLICAÇÃO

```
import streamlit as st
from PIL import Image
import numpy as np
import tensorflow as tf

# Carregar o modelo treinado (garanta que o modelo está no mesmo diretório do script)
@st.cache_resource
def load_model():
    model = tf.keras.models.load_model("traffic_sign_model.h5")
    return model
```

```
# Função para processar a imagem e fazer a previsão
def predict(image, model):
    try:
        # Pré-processar a imagem
        img = image.convert("RGG")  # Converter para RGB
        img = image.convert("RGG")  # Redimensionar para o tamanho esperado pelo modelo
        img_array = np.array(img) / 255.0  # Normalizar os valores de pixel
        img_array = np.expand_dims(img_array, axis=0)  # Adicionar dimensão batch

# Fazer a previsão
        predictions = model.predict(img_array)
        predicted_class_idx = np.argmax(predictions[0])
        confidence = predictions[0][predicted_class_idx]

        return predicted_class_idx, confidence
        except Exception as e:
        st.error(f"Erro ao processar a imagem: {e}")
        return None, None
```

```
# Dicionário de classes do modelo
classes = [2, 8, 9, 10, 11]
class_names = {
    0: "Sinal 2 - Speed limit (50km/h)",
    1: "Sinal 8 - Speed limit (120km/h)",
    2: "Sinal 9 - No passing",
    3: "Sinal 10 - No passing for vehicles over 3.5 metric tons",
    4: "Sinal 11 - Right-of-way at the next intersection",
}
```

```
Configurar título e descrição da página
st.title("Reconhecimento de Sinais de Trânsito")
st.write("Carregue uma imagem para classificar a sinal de trânsito utilizando o modela treinado.")
# Carregar o modelo
model = load_model()
# Carregar a imagem
uploaded image = st.file_uploader("Envie uma imagem no formato JPG ou PNG", type=["jpg", "jpeg", "png"])
  uploaded_image is not None:
   # Exibir a imagem carregada
   image = Image.open(uploaded image)
   st.image(image, caption="Imagem carregada", use_container_width=True)
   # Hotão para classificar a imagem
   if st.button("Classificar"):
       st.write("Classificando à imagem...")
       # Fazer a previsão
       with st.spinner("Processando...");
           predicted_class_idx, confidence = predict(image, model)
       # Exibir os resultados
       if predicted class idx is not None:
           predicted_class = class_names.get(predicted_class_idx, "Classe desconhecida")
           st.success(f"(lasse prevista: (predicted class)")
           st.write(f"Confiança: (confidence: .4f)")
           st.error("Erro ao classificar a imagem. Verifique o formato ou tente novamente.")
```

5. DESCRIÇÃO DA IMPLEMENTAÇÃO DOS ALGORITMOS

```
X_train_flat = X_train.reshape(X_train.shape[0], -1)
X_test_flat = X_test.reshape(X_test.shape[0], -1)
```

```
param_grid = {
        'n_estimators': [10, 50, 100, 200],
        'max_depth': [5, 10, 20, None],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4],
}
```

```
# Criar o modelo base para Random Forest
rf model = RandomForestClassifier(random state=42)
# Realizar Random Search
random search = RandomizedSearchCV(rf model, param distributions=param grid, n iter=20, cv=3, verbose=2, random state=42, n jobs=-1)
random search.fit(X train flat, y train)
# Melhor modelo encontrado
best rf = random search.best estimator
# Avaliar o modelo Random Forest no conjunto de teste
rf predictions = best rf.predict(X test flat)
rf accuracy = accuracy score(y test, rf predictions)
rf_recall = recall_score(y_test, rf_predictions, average='weighted')
rf_precision = precision_score(y_test, rf_predictions, average='weighted')
rf fmeasure = f1 score(y test, rf predictions, average='weighted')
print(f"Random Forest Accuracy: {rf_accuracy:.4f}")
print(f"Random Forest Recall: {rf recall:.4f}")
print(f"Random Forest Precision: {rf precision:.4f}")
print(f"Random Forest F-measure: {rf_fmeasure:.4f}")
```

6. ANÁLISE DOS RESULTADOS

Modelo Simples

Class	AUC
2	0,996775
8	0,9963
9	0,996825
10	0,994475
11	0,999975

	precision	recall	f1-score	support
Class_2	0,978947	0,93	0,953846	100
Class_8	0,913462	0,95	0,931373	100
Class_9	0,949495	0,94	0,944724	100
Class_10	0,930693	0,94	0,935323	100
Class_11	0,990099	1	0,995025	100
accuracy	0,952	0,952	0,952	0,952
macro avg	0,952539	0,952	0,952058	500
weighted avg	0,952539	0,952	0,952058	500

	Pred_2	Pred_8	Pred_9	Pred_10	Pred_11
True_2	93	6	1	0	0
True_8	0	95	2	3	0
True_9	0	2	94	4	0
True_10	2	1	2	94	1
True_11	0	0	0	0	100

6. ANÁLISE DOS RESULTADOS

Random Search

Hiperparâmetros	Perda
{'dropout_rate': np.float64(0.46475886306307707), 'learning_rate': np.float64(0.010369442666219138)}	0,148999074
{'dropout_rate': np.float64(0.0907898114535644), 'learning_rate': np.float64(6.07169171990872e-05)}	0,612426519
{'dropout_rate': np.float64(0.3463425699764095), 'learning_rate': np.float64(0.004313719224595805)}	0,158498078
{'dropout_rate': np.float64(0.22857961444137093), 'learning_rate': np.float64(0.044601842475536065)}	0,15648407
{'dropout_rate': np.float64(0.4581471858024578), 'learning_rate': np.float64(0.003630678861289458)}	0,178996838
{'dropout_rate': np.float64(0.3117777229678997), 'learning_rate': np.float64(0.004764053218977656)}	0,153996575
{'dropout_rate': np.float64(0.39645511792317695), 'learning_rate': np.float64(0.026417472396234383)}	0,132502818
{'dropout_rate': np.float64(0.4452305322593182), 'learning_rate': np.float64(0.001597516901363555)}	0,231487109
{'dropout_rate': np.float64(0.37807854817412656), 'learning_rate': np.float64(0.003598166934707306)}	0,187000344
{'dropout_rate': np.float64(0.20962145653664688), 'learning_rate': np.float64(0.020059100286424568)}	0,132492312

	precision	recall	f1-score	support
2	0,945946	0,7	0,804598	100
8	0,72093	0,93	0,812227	100
9	0,945055	0,86	0,900524	100
10	0,886792	0,94	0,912621	100
11	1	1	1	100
accuracy	0,886	0,886	0,886	0,886
macro avg	0,899745	0,886	0,885994	500
eighted av	0,899745	0,886	0,885994	500

Classe	AUC	
2	0,9789	
8	0,965175	
9	0,982025	
10	0,991175	
11	1	

7. CONCLUSÕES

O projeto abordou a classificação de sinais de trânsito utilizando modelos de machine learning e otimização. O modelo inicial foi baseado na rede **MobileNetV2** pré-treinada, adaptada para o problema específico, com um pré-processamento de dados adequado e balanceado.

Técnicas Utilizadas:

- Random Search para otimização de hiperparâmetros, mas sem superar os resultados do modelo inicial.
- Avaliação do desempenho com accuracy, precision, recall, f1score e AUC, mostrando um alto desempenho na classificação.

Resultados:

- A matriz de confusão indicou baixa taxa de erros de classificação, validando a robustez do modelo.
- **Streamlit** foi utilizado para criar uma interface gráfica, permitindo ao usuário carregar imagens e visualizar resultados de forma prática.

Conclusão:

A utilização de **redes neurais convolucionais** e **otimização de hiperparâmetros** mostrou-se eficaz para a classificação de sinais de trânsito, destacando a importância de um bom pré-processamento e avaliação rigorosa dos resultados.

5. REFERÊNCIAS

- Fichas Práticas de Inteligência Computacional;
- PDFs Teóricos de Inteligência Computacional;