

MICROCOPY RESOLUTION TEST CHART
DARDS-1963-A

SECURITY CLASSIFICATION OF THIS PAGE (Wh	en Deta Entered)	(3)	
REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED	
Possible Mechanisms of Atom T	ransfer in Scanning		
Tunneling Microscopy		6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)	
Robert Gomer		N00014-77-C-0018 0/L	
9. PERFORMING ORGANIZATION NAME AND A The University of Chicago	DORESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
The James Franck Institute			
5640 South Ellis Avenue, Chic	ago, Illinois 60637		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
Office of Naval Research		July 1985	
Physical Sciences Division (C 800 N. Quincy St., Arlington,		13. NUMBER OF PAGES	
14. MONITORING AGENCY NAME & ADDRESS/IS	different from Controlling Office)	18. SECURITY CLASS. (of this report)	

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

unclassified

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

18. SUPPLEMENTARY ICTES

Prepared for publication in IBM Journal of Research and Development

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Scanning Tunneling Microscopy Tunneling Field Desorption Thermal Desorption

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Various mechanisms for the sudden transfer of an atom from or to the tip of a scanning tunneling microscope are considered. It is concluded that thermal desorption could be responsible and also that quasi-contact in which the adsorbed atom is in effect "touching" both surfaces, which would still be separated from each other by 2-4 A can also lead to unactivated transfer via tunneling. For barrier widths as small as 0.5 A, however, tunneling becomes negligible.

DD 1 JAN 73 1473

unclassified

Possible Mechanisms of Atom Transfer in Scanning Tunneling Microscopy

Robert Gomer

Department of Chemistry and James Franck Institute University of Chicago Chicago, Illinois 60637

ABSTRACT

Various mechanisms for the sudden transfer of an atom from or to the tip of a scanning tunneling microscope are considered. It is concluded that thermal desorption could be responsible and also that quasi-contact in which the adsorbed atom is in effect "touching" both surfaces, which would still be separated from each other by 2-4 Å can also lead to unactivated transfer via tunneling. For barrier widths as small as 0.5 Å, however, tunneling becomes negligible.

Acce	ssion For	_
NTIS	GRA&I	
DTIC	TAB 5	
Unarr	nounced [7]	
Just	fication	
Ву		
	ibution/	
	The same of the sa	
	lability Codes	i
	Avail and/or	
Mat	Special	- 1
		i
D > 1		- 1
וי ח		- 1
<u></u>		
	/	0
	l.,	
	l"	VSPE !
	`	.3

Introduction

It is reported by various investigators [1] that there are occasional abrupt, usually irreversible, changes in tips and it has been speculated that these result from the transfer of an atom or group of atoms from substrate to tip or vice versa. This note examines various possibilities for such transfers. The mechanisms examined are atom tunneling, thermally activated desorption, and field ionization.

1. Atomic Tunneling

When two surfaces are brought into close proximity, there is the possibility that a weakly bound atom on one surface may tunnel to the other. For simplicity we assume a parabolic barrier of height V_0 and half-width x_0 . If we take the rate constant for tunneling to be

$$k_t = v \exp{-2(2m/\hbar^2)} \int_{-x_0}^{\frac{1}{2}} \int_{0}^{x_0} \sqrt{V(x) - E} dx$$
 (1)

with

$$V(x) = V_0 (1 - (x/x_0)^2)$$
 (2)

we find easily that

$$k_{t} = v \exp - (2\pi/\hbar^{2})^{\frac{1}{2}} \pi v_{o}^{\frac{1}{2}} x_{o}$$

$$= v \exp - 69 (MV_{o})^{\frac{1}{2}} x_{o}$$
(3)

where M is the mass in a.m.u., V_0 the barrier height in eV and x_0 its halfwidth in Å. Let us assume that a jumping event occurs on average once a day so that $k_t = (24x3600)^{-1} = 10^{-5} \text{ sec}^{-1}$. We then find assuming $v = 10^{12} \text{ sec}^{-1}$, that M $V_0 = (0.57/x_0)^2 (\text{a.m.u.}) \text{ eV/Å}^2$. If M = 28 a.m.u. corresponding to Si and $x_0 = 0.5$, so that the actual barrier base width is 1 Å, $V_0 = 0.05 \text{ eV}$. For such a small barrier thermally activated transfer would totally dominate and lead to a lifetime of 10^{-10} sec. The situation changes dramatically, however, when $x_0 = 0.1$ Å. For such a distance and again for M = 28 a.m.u. $V_0 = 1.1 \text{ eV}$. It should be noted that at such small separations i.e. with the

potential curves of the adsorbate on the two surfaces intersecting the barrier height can be much less than the heat of binding H₂ (Fig. 1).

Other assumed barrier shapes, for instance rectangular or triangular do not alter the above conclusions materially.

This calculation suggests that tunneling across gaps as small as 1 Å between the equilibrium atom positions corresponding to adsorption on the two substrates is prohibitively slow, but becomes quite probable when this distance is reduced to ~ 0.1 Å. Since the equilibrium separation of an adsorbed atom from its substrate is 1-2 Å the virtual overlap of positions corresponding to adsorption on the two substrates does not mean that the surfaces themselves are "touching", merely that they are both "in contact" with an adsorbed, or otherwise protruding atom. Such situations could arise for instance if the tip is moved over a local asperity. If the effective barrier width becomes < 0.1 Å in this process transfer by tunneling can become much more probable than once a day.

2. Thermally Activated Desorption

We assume that the appropriate rate constant, $\mathbf{k}_{\mathbf{d}}$ is given by

$$k_d = v \exp{-Q/kT}$$
 (4)

where ν is an attempt frequency and Q, the activation energy of desorption is equal, in this case to the binding energy H_a . Again we assume $k_d = 10^{-5} \text{ sec}^{-1}$ and find $H_a = 1 \text{ eV}$ if T = 300 K and $\nu = 10^{12} \text{ sec}^{-1}$. This makes thermal desorption at least a good possibility.

There is also, in theory, the possibility of tunneling through a much reduced barrier combined with thermal activation. The considerations of the previous section indicate that this effect must be extremely small for massive adsorbates and can be neglected.

3. Field Desorption

In STM it may happen that the work functions of tip and substrate differ by 1-2 eV, particularly if the tip is dirty tungsten with ϕ = 5-6.5 eV while the substrate is a clean semiconductor with ϕ = 4.5 eV. If tip and substrate are electrically connected a contact potential is thus created and if the separation is 1-2 Å fields of the order of 1 volt/Å can exist at or just in front of the surfaces. It has been shown previously [2] that the intersection of the field deformed ionic and undeformed neutral potential curves for a system M + A, where M is a conducting substrate and A and adsorbed atom is given by

$$\text{Fex}_{c} = \text{I} - \phi + \text{H}_{a} - \text{Q} - \text{e}^{2}/4x_{c}$$
 (5)

where F is the applied field, I the ionization potential of Å, ϕ the work function of M, H_a the zero field binding energy, Q the activation energy of field assisted but thermally activated desorption and $e^2/4x = 3.6/x$ in eV-Å units is an image correction (Fig. 2). Equation 5 holds for singly charged ions, and can of course be modified trivially for higher charges. Let us see if a field of 1 volt/Å can decrease the activation energy of thermal desorption appreciably. We assume I - ϕ = 4 eV, F = 1 volt/Å and then find that for H_a - Q = 0.5 eV x_c \cong 3.5 Å. If we pick x_c = 3 Å we find H_a - Q = 0.2 eV.

On reaching the other electrode the positive ion A^+ formed at x_c is then neutralized so that the entire process is equivalent to transferring A from M_1 to M_2 via a thermally activated process with an activation energy $Q < H_a$. If A has a high electron affinity and M_1 a low work function, field desorption of a negative ion from M_1 could also occur if F had the opposite sign from that assumed here, i.e. if M_1 were negative with respect to M_2 . In that case I - ϕ in Eq. 5 must be replaced by ϕ - Af where Af is the electron affinity of A, i.e. the energy gained in forming A^- , and the upper

curves in Fig. 2 must be relabeled M+ + A.

Conclusion

The foregoing suggests that tunneling across distances ≤ 0.1 Å, can occur with reasonably high probability. This can happen for adsorbed or protruding atoms when the bulk of the tip and substrate surfaces are still separated by 2-4 Å, depending on the details of the relevant atom-substrate potential curves. Tunneling across larger gaps than 0.1-0.2 Å, however, seems prohibitively slow. In addition, thermal desorption, possibly field assisted could also occur. The latter should show a strong temperature dependence, as indicated by Eq. 4 and it might therefore be possible to look for the frequency of atom transfers as function of temperature.

Acknowledgments

This work was supported in part by ONR Contract N00014-77-C-0018. I have also profited from the Materials Research Laboratory of the National Science Foundation at the University of Chicago. This work was stimulated by the Workshop on Scanning Tunneling Microscopy, organized by H. Rohrer and G. Binning and supported by IBM Europe. It is a pleasure to thank them for the opportunity to attend.

References

- [1] IBM Workshop on Scanning Tunneling Microscopy, Oberlech, Austria, July, 1985.
- [2] R. Gomer, L. W. Swanson, J. Chem. Phys. 38, 1613 (1963); R. Gomer,
 J. Chem. Phys. 31, 341 (1959).

Figure Captions

- 1) Potential energy diagram for an atom A adsorbed on either of two substrates M_1 and M_2 which are (a) moderately close, (b) so close that the potential curves overlap substantially. $x(M_1-A)$ separation of atom adsorbed on M_1 from M_1 ; $x(M_2-A)$ separation of same atom when adsorbed on M_2 from M_2 surface; $x(M_1-M_2)$ separation of M_1 surface from M_2 surface; $-x_0$, x_0 end points of tunneling barrier, measured from position of barrier maximum, so that barrier width is $2 \times_0 \cdot x_1^e$, x_2^e equilibrium positions of A relative to M_1 and M_2 .
- 2) Schematic diagram illustrating the mechanism of field desorption of an adsorbed atom A.I, ionization potential of A, φ, work function of substrate M, H_a, heat of adsorption, Q, activation energy of desorption when a field is applied. (a) neutral (M+A) and ionic (M-A) curves for F = 0. (b) same curves in the presence of an applied field, which deforms the ionic curve, but leaves the neutral curve unchanged, except for polarization effects which have been ignored here. For desorption of negative ions the sign of the field must be reversed and I-φ replaced by φ Af where Af is the electron affinity of A. x_C is the transition point where A becomes ionized, and is given by solution of Eq. 5.

Fig.2

END

FILMED

10-85

DTIC