4CCS1ELA: Tutorial list — Week 7

- 1. Consider the following predicate symbols with which we associate the following meanings:
 - S(x) represents "x is a student"
 - L(x) represents "x is a lecture"
 - A(x, y) represents "x attends y"

Provide a first-order formula encoding the following sentence:

"At least one student attended every lecture"

(be careful, this sentence is ambiguous..., provide a formula for each of the two different meanings)

SOLUTION

The sentence can have two different meanings:

(i) A first meaning could be "There exists one student that attend every lecture". In this case, a possible encoding in FOL could be:

$$\exists x (S(x) \land \forall y (L(y) \rightarrow A(x,y)))$$

The formula reads: there exists an object x such that x is a student and, for all objects y, if y is a lecture, then x attends y.

(ii) A second meaning could be "For every lecture there is at least a student attending the lecture". In this case, a possible encoding could be:

$$\forall x (L(x) \to \exists y (S(y) \land A(y,x)))$$

The formula reads: for all objects x, if x is a lecture, then there exists a object y such that y is a student and y attends x.

Notice that (ii) is a logical consequence of (i).

- 2. Consider the following predicate symbols with which we associate the following meanings:
 - B(x) means "x is a bird"
 - W(x) means "x is a worm"
 - E(x,y) means "x eats y"

Using these predicates, represent in first-order logic each of the following statements:

- (i) Every bird eats every worm
- (ii) Some birds do not eat some worms
- (iii) No bird is eaten by a worm
- (iv) Some worms do not get eaten by birds

$\underline{SOLUTION}$

- (i) Every bird eats every worm: $\forall x (B(x) \to \forall y (W(y) \to E(x,y))).$ Equivalently, $\forall x \forall y (B(x) \land W(y) \to E(x,y)).$
- (ii) Some birds do not eat some worms: $\exists x (B(x) \land \exists y (W(y) \land \neg E(x,y))).$ Equivalently, $\exists x \exists y (B(x) \land W(y) \land \neg E(x,y)).$

- (iii) No bird is eaten by a worm: $\forall x (B(x) \to \forall y (W(y) \to \neg E(y,x))).$ Equivalently, $\neg \exists x \exists y (B(x) \land W(y) \land E(y,x)).$
- (iv) Some worms do not get eaten by birds: $\exists x(W(x) \land \forall y(B(y) \rightarrow \neg E(y,x))).$ Equivalently, $\exists x(W(x) \land \neg \exists y(B(y) \land E(y,x))).$
- **3.** Identify which occurrences of variables in the formulas below are free and which occurrences are bound. Justify you answers.
 - (i) $y \ge 0 \land \forall x (N(x) \to x \ge y)$
 - (ii) $x \ge 0 \land \forall x (N(x) \to x \ge y)$
 - (i) $\forall x(N(x) \to \exists y(N(y) \land x \ge y))$

Here N is a unary predicate symbol, \geq is a binary predicate symbol in infix notation, and $x \geq y$ is an atom in infix notation (infix notation means that the predicate symbol appears in between the terms).

SOLUTION

(i) All occurrences of x are bound (therefore x is a bound variable in this formula). Both occurrences of y are free (therefore y is a free variable in this formula).

The free occurrences are boxed:

$$y \ge 0 \land \forall x (N(x) \to x \ge y)$$

(ii) The variable x is free and bound (i.e., there are free occurrences of x and there are bound occurrences of x). The variable y is free, i.e., all occurrences of y are free.

The free occurrences are boxed:

$$x \ge 0 \land \forall x (N(x) \to x \ge y)$$

- (iii) Both x and y are bound (i.e., all occurrences of x and y are bound).
- **4.** Let ϕ be a well-formed formula (wff), i.e. a σ -formula belonging to $\mathcal{L}[\sigma]$, interpreted over the domain set D and $d \in D$. Then $\phi(x/d)$ denotes the wff obtained from ϕ by replacing all *free* occurrences of X in ϕ by d.

Compute the following substitutions and determine the meaning (the truth-values) of the resulting sentences over the set $\mathbb{N} = \{0, 1, 2, \dots\}$ of natural numbers. Here N(x) denotes "x is a natural number", predicates \geq and > have their usual interpretation and are expressed with their usual infix notation.

- (i) $(y \ge 0 \land \forall x (N(x) \to x \ge y))(y/3)$
- (ii) $(x \ge 0 \land \exists y (N(y) \land x \ge y))(x/3)$
- (iii) $(\forall x(N(x) \to \exists y(N(y) \land x > y)))(x/3)$
- (iv) $(\forall x(N(x) \to \exists y(N(y) \land y > x)))(y/3)$

SOLUTION

- (i) $(3 \ge 0 \land \forall x(N(x) \to x \ge 3))$ is false (witness x = 1).
- (ii) $(3 \ge 0 \land \exists y (N(y) \land 3 \ge y)$ is true (witness y = 3).
- (iii) $(\forall x(N(x) \to \exists y(N(y) \land x > y)))$ is false (witness x = 0).
- (iv) $(\forall x(N(x) \to \exists y(N(y) \land y > x)))$ is true (witness y = x + 1).

Formula (iii) does not contain free occurrences of x. Similarly, all occurrences of y in formula (iv) are bound.