Lecture 18

Inference II

Lusi Li
Department of Computer Science
ODU

Reading for This Class: Chapter 7, Russell and Norvig

Review

- Last Class
 - Inference
 - Truth Table Approach
 - Inference Rule Approach
- This Class
 - Resolution Algorithm
- Next Class
 - First Order Logic

Limitations of Inference Rules Approach

- The inference rules can be applied whenever suitable premises are found in the KB
- The conclusion of the rule must follow regardless of what else is in the KB
- The inference rules covered so far are sound, but if the available inference rules are inadequate, then it's not complete
- Now, we introduce a single inference rule, resolution, that gives a complete inference algorithm when coupled with any complete search algorithm

Logical Inference Approaches

- KB $\mid = \alpha$?
- Three approaches:
 - Truth-table approach
 - Inference rules
 - Resolution algorithm
 - Proof by contradiction

- KB $\mid = \alpha$?
- Two inference rules:
 - unit resolution rule
 - full resolution rule
- Conversion to conjunctive normal form (CNF)
- Satisfiability (SAT) problem
- Resolution algorithm

- KB $\mid = \alpha$?
- Two inference rules:
 - unit resolution rule
 - full resolution rule
- Conversion to conjunctive normal form (CNF)
- Satisfiability (SAT) problem
- Resolution algorithm

Complementary Literals

A literal is an either an atomic sentence or the negated atomic sentence, e.g.:
 P or ¬P

Two literals are complementary if one is the negation of the other, e.g.:
 P and ¬P

A clause is a disjunction of literals, e.g.,

$$P \lor \neg Q \lor R$$

 $\neg P \lor Q$

A unit clause is a disjunction of a single literal, e.g.,

Inference Rules-Unit Resolution

Unit Resolution rule: (From a clause, if one of the literal is false, then you can infer the other one is true)

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha} \quad \text{or equivalently} \quad \frac{(\alpha \vee \beta) \wedge \neg \beta}{\alpha}$$

• If l_i and m are complementary literals, then

$$\frac{l_1 \vee \cdots \vee l_k, \quad m}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \dots \vee l_k}$$

If both sentences in the premise are true, then conclusion is true.

Inference Rules-Unit Resolution

KB:

- R1: ¬P_{1.1}
- R2: ¬B_{1.1}
- R3: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
- R4: ¬P_{2.1}
- R5: B_{2,1}
- R6: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
- **-** ...
- R13: P_{1,1} ∨ P_{2,2} ∨ P_{3,1}
- R14: P_{2,2} ∨ P_{3,1}

Apply unit resolution rule to R1 and R13

Inference Rules-Resolution

Resolution rule: (From two clauses, a new clause is produced containing all the literals of the two original clauses except the one pair of complementary literals. Or equivalently, implication is transitive.)

$$\frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

• If l_i and m_i are complementary literals, then

$$\frac{l_1 \vee \dots \vee l_k, \quad m_1 \vee \dots \vee m_n}{l_1 \vee \dots \vee l_{i-1} \vee l_{i+1} \dots \vee l_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \dots \vee m_n}$$

If both sentences in the premise are true, then conclusion is true.

Inference Rules-Resolution

Note: we can resolve only one pair of complementary literals at a time. E.g., we can resolve P and $\neg P$ to deduce

$$\frac{P \vee \neg Q \vee R, \quad \neg P \vee Q}{\neg Q \vee Q \vee R}$$

Or, we can resolve Q and $\neg Q$ to deduce

$$\frac{P \vee \neg Q \vee R, \quad \neg P \vee Q}{P \vee R \vee \neg P}$$

Then if the new clause contains complementary literals, it is discarded (as a tautology) since it is always-true.

Thus, we cannot resolve on both P and Q at once to infer R!

Inference Rules-Resolution

- Soundness of resolution inference rule:
 - If l_i is true, then m_i is false
 - hence $(m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \dots \lor m)$ must be true
 - If l_i is false, then m_i is true
 - hence $(l_1 \lor \cdots \lor l_{i-1} \lor l_{i+1} \ldots \lor l_k)$ must be true
 - no matter what
 - $(l_1 \lor \cdots \lor l_{i-1} \lor l_{i+1} \ldots \lor l_k) \lor (m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \ldots \lor m)$ is true
- In the inference rule approach, the resolution rule can also be applied.
- Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic.
- A resolution-based theorem prover can, for any sentences α and β in propositional logic, decide whether $\alpha \models \beta$

- KB $\mid = \alpha$?
- Two inference rules:
 - unit resolution rule
 - full resolution rule
- Conversion to conjunctive normal form (CNF)
- Satisfiability (SAT) problem
- Resolution algorithm

Resolution and CNF

- Resolution inference rule applies only to clauses (disjunctions of literals)
- Every sentence of propositional logic is logically equivalent to a conjunction of disjunctions of literals
- A sentence expressed as a conjunction of clauses is said to be in conjunctive normal form or CNF:
 - conjunction of clauses
 - E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

```
CNFSentence 
ightharpoonup Clause_1 \land \cdots \land Clause_n
Clause 
ightharpoonup Literal_1 \lor \cdots \lor Literal_m
Literal 
ightharpoonup Symbol 
ightharpoonup Symbol 
ightharpoonup P 
vert Q 
vert R 
vert \ldots
```


Procedure for Obtaining CNF

- 1. Replace $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
- 2. Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$
- 3. Move \neg inwards: \neg (\neg α), \neg (α \vee β), \neg (α \wedge β)
- 4. Distribute \vee over \wedge , e.g., $(\alpha \wedge \beta) \vee \gamma$ becomes $(\alpha \vee \gamma) \wedge (\beta \vee \gamma)$
- 5. Flatten nesting: $(\alpha \land \beta) \land \gamma$ becomes $\alpha \land \beta \land \gamma$

Example: Conversion to CNF

Convert the sentence $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ into CNF: The steps are as follows:

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move ¬ inwards using De Morgan rule:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (∨ over ∧) and flatten:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to read, but it can be used as input to a resolution procedure.

- KB $\mid = \alpha$?
- Two inference rules:
 - unit resolution rule
 - full resolution rule
- Conversion to conjunctive normal form (CNF)
- Satisfiability (SAT) problem
- Resolution algorithm

Inference Problem and Satisfiability

- Inference procedures based on resolution work by using the principle of proof by contradiction or proof by refutation.
- A sentence is satisfiable if it is true in some model, e.g., A v B, C
- A sentence is unsatisfiable if it is true in no models, e.g., P ∧ ¬P
- Entailment is connected to inference via the Deduction Theorem:

KB |=
$$\alpha$$
 if and only if (KB \Rightarrow α) is valid (note: KB \Rightarrow α is (\neg KB \vee α))

Satisfiability is connected to inference via the following:

```
KB \mid = \alpha if and only if (KB \land \neg \alpha) is unsatisfiable
```

Thus proof by contradiction:

proving α given KB by checking the unsatisfiability of (KB $\wedge \neg \alpha$)

Satisfiability (SAT) Problem

 Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (i.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \land \cdots$$

- Variables:
 - Propositional symbols (P, Q, R, T, S)
 - Values: True, False
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals in every conjunct must evaluate to true
- Thus, to show (KB $\wedge \neg \alpha$) is unsatisfiable is to show no models evaluate CNF to true.

$$... \land P \land \neg P$$

- KB $\mid = \alpha$?
- Two inference rules:
 - unit resolution rule
 - full resolution rule
- Conversion to conjunctive normal form (CNF)
- Satisfiability (SAT) problem
- Resolution algorithm

• To show that KB $|= \alpha$, we show that (KB $\wedge \neg \alpha$) is unsatisfiable

- 1. (KB $\wedge \neg \alpha$) is converted into CNF
- 2. Apply iteratively the resolution rule to the resulting clauses
 - Each pair that contains complementary literals is resolved to produce a new clause, which is added to the set if it's not present
- 3. Stop when:
 - Contradiction (empty clause {}) is reached:
 - E.g., P, ¬ P ⇒ {}
 - Prove the entailment
 - No more new clauses can be derived
 - Reject the entailment
- { } is a disjunction of no disjuncts is equivalent to False, thus the contradiction

• Proof by contradiction, i.e., show that KB $\wedge \neg \alpha$ is unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
   clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha
  new \leftarrow \{ \}
  loop do
      for each pair of clauses C_i, C_j in clauses do
           resolvents \leftarrow PL-RESOLVE(C_i, C_i)
           if resolvents contains the empty clause then return true
           new \leftarrow new \cup resolvents
       if new \subseteq clauses then return false
       clauses \leftarrow clauses \cup new
```


Resolution Example

- KB = $(B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1}$
- $\alpha = \neg P_{1,2}$
- (1) KB $\wedge \neg \alpha = (\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1}) \wedge \neg B_{1,1} \wedge P_{1,2}$
 - Set of clauses: $\{(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}), (\neg P_{1,2} \lor B_{1,1}), (\neg P_{2,1} \lor B_{1,1}), \neg B_{1,1}, P_{1,2}\}$
- (2) Apply resolution rules to all clauses

Partial application of PL-RESOLUTION to a simple inference in the wumpus world. $\neg P_{1,2}$ is shown to follow from the first four clauses in the top row.

Resolution Example

- KB: $P \land Q$; $P \Rightarrow R$; $(Q \land R) \Rightarrow S$
- $\alpha:S$

Resolution Example

- KB: $P \wedge Q$; $P \Rightarrow R$; $(Q \wedge R) \Rightarrow S$
- $\alpha:S$
- Step1: convert (KB ∧ ¬α) into CNF
 - $P \wedge Q \longrightarrow P \wedge Q$
 - $P \Rightarrow R \longrightarrow \neg P \lor R$
 - (Q ∧ R) \Rightarrow S \longrightarrow ¬Q \vee ¬R \vee S
 - $\neg \alpha \longrightarrow \neg S$
 - $(KB \land \neg \alpha) = P \land Q \land (\neg P \lor R) \land (\neg Q \lor \neg R \lor S) \land \neg S$
 - Set of clauses: $\{P, Q, (\neg P \lor R), (\neg Q \lor \neg R \lor S), \neg S\}$
- Step2: Apply resolution rule to on the set of clauses

Inference Rules Summary

♦ Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

♦ And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \ldots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}$$

♦ Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_l}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

♦ Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$$\frac{--\alpha}{\alpha}$$

♦ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{\alpha \vee \beta, \qquad \neg \beta}{\alpha}$$

 \Diamond **Resolution**: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

All of the listed

inference rules

We can prove

this through the

are sound.

truth table.

Enumeration of Models

Similarly:

P: Set of propositional symbols in $\{KB, \neg \alpha\}$

n: Size of P

ENTAILS?(KB, α)

For each of the 2^n models on P do If it is a model of $\{KB, \neg \alpha\}$ then return no Return yes

Summary

- Literal
- Unit Resolution Rule
- Full Resolution Rule
- Resolution algorithm

What I want you to do

Review Chapter 7

