O Processador (CPU)	
O FIOCESSAGOI (CFO)	
António de Brito Ferrari	
ferrari@ua.pt	
AC 23 name	
AC I – 2ª parte	
Os 5 componentes de um computador CPU Control Memory Input	
Datapath Output	
 Tema da segunda parte do programa de AC I: a estrutura interna do processador 	
ABF AC I - CPU	
Nível de desempenho do CPU	
Performance determinada por:	
Instruction countClock cycle time	
Clock cycles per instruction	
Clock cycle time Clock cycles per instruction	

Todas as instruções executadas num ciclo de relógio (CPI = 1)
 Disvantagem: cycle time longo (relógio lento)

Fases da conceção de um processador						
Fases da conceção de um processador 1. Analisar o instruction set => datapath requirements - O significado de cada instrução é dado pelas transferências entre registos - datapath tem de incluir hardware para os registos do ISA - datapath tem de suportar as transferências entre registos 2. Selecionar os components para o datapath e definir a metodologia para os impulsos de relógio 3. Construir o datapath de modo a satisfazer as especificações 4. Analisar a implementação de cada instrução para identificar os sinais de controlo que acionam as transferências entre registos 5. Realizar a lógica de controlo						
Analisar o instruction set						
ABF AC I - GPU						
Análise do instruction set						
3 formatos de instrução:						
- R-type 31 26 21 16 11 6 0						
- J-type 31 26 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
- op: operação da instrução - rs, rt, rd: especificam os registos source e destino						
– shamt: shift amount– funct: extensão do código de operação						
- address / immediate: address offset ou immediate value - target address: target address do jump						

Instruções a implementar ADD and SUB addU rd, rs, rt 5 bits subU rd, rs, rt 5 bits 5 bits 5 bits **OR** Immediate immediate ori rt, rs, imm16 5 bits 21 5 bits 16 LOAD e STORE immediate lw rt, rs, imm16 5 bits 16 bits sw rt, rs, imm16 **BRANCH** immediate op rs rt beq rs, rt, imm16 6 bits 5 bits ABF AC I - CPU Requesitos do IS • Memória: instruções e dados • Registos (32 x 32) - read RS - read RT - Write RT ou RD PC • Sign Extender • Add e Sub registos ou extended immediate • Add 4 ou extended immediate ao PC ABF AC I - CPU 2. Selecionar os componentes para o datapath e método de ${\it clocking}$ ABF AC I - CPU

Componentes do Datapath

- Elementos combinatórios
- Componentes para armazenar informação (registos)
 - Relógio

ABF AC I - CPU

Elementos combinatórios

Somador

Multiplexer

ALU

Elementos sequenciais: Registo

Registo: N Flip-Flops Negative edge-triggered Write Enable

- 0: Data Out não muda
- 1: Data Out = Data In na próxima frente ativa do relógio

ABF AC I - CPU

Register File

Register File: 32 registos 2 output buses de 32 bits busA e busB 1 input bus de 32 bits busW

Seleção dos registos:

RA seleciona o registo cujo conteúdo é colocado no busA RB seleciona o registo cujo conteúdo é colocado no busB RW seleciona o registo onde é escrito o dado no busW quando RegWrite = 1

ABF AC I - CPU

Memória

- 1 Address bus
- 1 Input data bus (Write Data
- 1 Output bus (Read Data)
- 2 sinais de controlo: MemRead MemWrite

Seleção da palavra de memória:

MemRead = 1: Address seleciona a palavra a colocar em Read Data MemWrite = 1: Address seleciona a palavra de memória onde é escrito o dado presente em Write Data

ABF AC I - CPU

Clocking

Todos os elementos de memória são sensíveis à mesma frente de relógio

Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew (CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time

3. Construção do datapath	
ABF AC1 - CPU	
RTL	
RTL - Register Transfer Logic – expressa o significado das instruções	
inst Register Transfers ADDU R[rd] <- R[rs] + R[rt]; PC <- PC + 4	
SUBU $R[rd] \leftarrow R[rs] - R[rt];$ $PC \leftarrow PC + 4$	
ORi R[rt] <- R[rs] + zero_ext(lmm16); PC <- PC + 4 LOAD R[rt] <- MEM[R[rs] + sign_ext(lmm16)]; PC <- PC + 4	
STORE MEM[R[rs] + sign_ext(lmm16)] <- R[rt]; PC <- PC + 4 BEQ if (R[rs] == R[rt]) then PC <- PC + sign_ext(lmm16)] 00 else PC <- PC + 4	
ABFACI-CPU	
Ciclo de Instrução	
 Instruction Fetch – PC endereça a memória; leitura do código de instrução; 	
Atualização do PC IR <- MEM[PC] ;	
PC <- PC + 4 (instruções de Branch e Jump – outro valor para o PC)	
Instruction Execution – a operação especificada no código de instrução é	
executada	
ASF AC I - CPU	

1. Instruction Fetch

ABF AC I - CPU

2.1. Execute Type R: Add & Subtract

- R[rd] <- R[rs] **op** R[rt] Exemplo: addU rd, rs, rt
 - Ra, Rb, Rw: campos rs, rt, e rd do código de instrução
 - ALUctr, RegWr: gerados pela lógica de controle depois de decodificar a instrução

Register-Register Timing

CIkDId Value

New Value

2.2. Execute Type I: a. Operações com Immediate

2.2. Execute Type I: b. Load Operations

2.2. Execute Type I: c. Store Operations

Mem[R[rs] + SignExt[imm16]] <- R[rt] Exemplo: sw rt, rs, imm16

2.2. Execute Type I: d. Branch

31 26	5 21	. 16	. 0
op	rs	rt	immediate
6 bits	5 bits	5 bits	16 bits

• beq rs, rt, imm16

Mem[PC] # Fetch da instrução

Equal <- R[rs] == R[rt] # Calcular a condição de branch if (COND eq 0) # Calcular endereço da instrução seguinte

PC <- PC + 4 + (SignExt(imm16) x 4)

else PC <- PC+4

ABF AC I - CPU

2.2. Execute Type I: d. Branch - Datapath

beq rs, rt, imm16 Datapath gera condição (igual)

Single Cycle Datapath Completo

Critical Path

- Register file e memória:
 - CLK input é um fator SÓ durante Memory Write
 - Durante Read, a memória comporta-se como lógica combinatória:
- Durante Read, a memória comporta-se como lógica comunica.

 Address valid => Output valid after "access time."

 Critical Path (Load Operation) =
 PC's Clk-to-Q +
 Instruction Memory's Access Time +
 ALU to Perform a 32-bit Add +
 Data Memory Access Time +
 ALU to Perform a 32-bit Add +
 Data Memory Access Time +
 Clock Skew Data
 32, Address Ideal 32 Ideal Data 32 32 32-bit Registers Data Memory Clk 0 Clk I 32