Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 8 • INDICATIONS Fonctions usuelles, Convexité, Trigonométrie

Exercice 8.1

1. Montrer que

$$\forall x > -1$$
, $\ln(1+x) \leqslant x$.

2. Montrer que

$$\forall n \geqslant 2, \quad \left(1 + \frac{1}{n}\right)^n \leqslant e \leqslant \left(1 - \frac{1}{n}\right)^{-n}.$$

— indication

- **1.** Étudier $f: x \mapsto x \ln(1+x)$.
- 2. Écrire sous forme exponentielle les deux termes de l'encadrement et appliquer la première question.

Exercice 8.2

Montrer que

$$\forall x > -1, \quad (1+x)^x \geqslant 1.$$

— indication —

Étudier $f: x \mapsto (1+x)^x = e^{x \ln(1+x)}$ pour chercher un minimum. Étudier une fonction pour étudier f'.

Exercice 8.3

Montrer que

$$\forall x \in \mathbb{R}, \quad \sin(\cos(x)) < \cos(\sin(x)).$$

indication -

On montre que $f: x \longmapsto \sin(\cos(x)) - \cos(\sin(x))$ ne s'annule pas sur \mathbb{R} . Le théorème des valeurs intermédiaires assure qu'elle a alors un signe constant.

1

On utilisera notamment que :

Exercice 8.4

1. Montrer que

$$\forall t \in]0,1], \quad 1-\frac{1}{t} \leqslant \ln(t) \leqslant t-1.$$

2. Soient $x, y \in \mathbb{R}_+^*$ tels que x < y.

Montrer que

$$\frac{1}{y} \leqslant \frac{\ln(x) - \ln(y)}{x - y} \leqslant \frac{1}{y}.$$

indication -

- 1. Faire deux études de fonctions.
- $2. \text{ Poser } t := \frac{x}{y}.$

Exercice 8.5

Laquelle des fonctions

$$x \longmapsto (x^2)^{\sqrt{x}}$$
 et $x \longmapsto \sqrt{x}^{x^2}$

est négligeable devant l'autre en $+\infty$?

—— indication ———

Calculer le quotient des deux en utilisant que $a^b=\mathrm{e}^{b\ln(a)}$. Un quotient tend vers 0 et l'autre vers $+\infty$.

régultat

En $+\infty$, $x \longmapsto (x^2)^{\sqrt{x}}$ est négligeable devant $x \longmapsto \sqrt{x}^{x^2}$.

Exercice 8.6

Laquelle des fonctions

$$x \longmapsto (e^x)^x$$
 et $x \longmapsto x^{e^x}$

est négligeable devant l'autre en $+\infty$?

— indication —

Calculer le quotient des deux en utilisant que $a^b={\rm e}^{b\ln(a)}$. Un quotient tend vers 0 et l'autre vers $+\infty$.

résultat —

2

En $+\infty$, $x \longmapsto (e^x)^x$ est négligeable devant $x \longmapsto x^{e^x}$.

Exercice 8.7

Laquelle des fonctions

$$x \longmapsto \ln(x)^x + x^4$$
 et $x \longmapsto x$

est négligeable devant l'autre en $+\infty$?

— indication –

Calculer le quotient des deux en utilisant que $a^b = e^{b \ln(a)}$ et les croissances comparées. Un quotient tend vers 0 et l'autre vers $+\infty$.

– résultat –

En $+\infty$, $x \mapsto x$ est négligeable devant $x \mapsto \ln(x)^x + x^4$.

Exercice 8.8

Déterminer $\max_{n \in \mathbb{N}} \sqrt[n]{n}$.

—— indication –

On étudie la fonction $f: x \longmapsto e^{\frac{\ln(x)}{x}}$, croissante sur]0,e], décroissante sur $]e,+\infty[$.

– résultat –

$$\max_{n\in\mathbb{N}} \sqrt[n]{n} = \sqrt[3]{3}.$$

Exercice 8.9

Soit $n \in \mathbb{N}^*$. Soient $x_1, \dots, x_n > 0$. Soit $\alpha > 0$.

Montrer que

$$\left|\sum_{k=1}^n x_k\right|^{\alpha} \leqslant n^{\alpha-1} \sum_{k=1}^n |x_k|^{\alpha}.$$

—— indication ——

3

Appliquer l'inégalité de Jensen avec $x \mapsto |x|^{\alpha}$.

Exercice 8.10 Inégalités de Young, Hölder et Minkowski.

Soient $p,q\in]1,+\infty[$ tels que $rac{1}{p}+rac{1}{q}=1.$

1. Montrer que

$$\forall x, y > 0, \quad xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}.$$

Soit $n \in \mathbb{N}^*$. Soient $(u_1, \dots, u_n), (v_1, \dots, v_n) \in (\mathbb{R}_+^*)^n$.

2. Montrer que

$$\sum_{k=1}^n u_k v_k \leqslant \left(\sum_{k=1}^n u_k^p\right)^{\frac{1}{p}} \times \left(\sum_{k=1}^n v_k^q\right)^{\frac{1}{q}}.$$

3. Montrer que

$$\left(\sum_{k=1}^n (u_k + v_k)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^n u_k^p\right)^{\frac{1}{p}} \times \left(\sum_{k=1}^n v_k^p\right)^{\frac{1}{p}}.$$

— indication —

- 1. Utiliser la convexité de l'exponentielle en utilisant que $a^b = e^{b \ln(a)}$.
- **2.** Utiliser l'inégalité précédente pour chaque $u_k v_k$ puis sommer.

3.
$$(u_k + v_k)^p = (u_k + v_k)(u_k + v_k)^{p-1} \leqslant u_k(u_k + v_k)^{p-1} + v_k(u_k + v_k)^{p-1}$$
 et $p - 1 = \frac{p}{q}$.

4