Microparticles and ultrasonic contrast means containing gas bubbles.

Patent number:

EP0123235

Publication date:

1984-10-31

Inventor:

HILMANN JURGEN; LANGE LOTHAR DR;

ZIMMERMANN INGFRIED DR

Applicant:

SCHERING AG (DE)

Classification:

- international:

A61K49/00

- european:

A61K49/22P4

Application number: EP19840104211 19840413

Priority number(s): DE19833313947 19830415

Aiso published as:

JP59205329 (A) FI841463 (A)

EP0123235 (A3) EP0123235 (B1)

IE840836L (L)

more >>

Cited documents:

EP0052575

EP0077752

US4265251

Abstract of EP0123235

1. Contrast medium containing microparticles and gas bubbles for ultrasound diagnostics, characterised in that it contains microparticles of a mixture of a semi-solid or liquid surface-active substance and a nonsurface-active solid in a liquid carrier.

Data supplied from the esp@cenet database - Worldwide

Europäisches Patentamt	
European Patent Office Office surropéen des breve	(i) Veröffendichungenummer: 0 123 23 ots A2
@ EUROPĀISC	CHE PATENTANMELDUNG
② Anmeldenummer: \$4104211.2 ② Anmeldetag: 13.04.84	⊕ டி. டி. А 61 К 49/00
Priorität: 15.84.83 DE 2312347 Verbffantlichungstag der Ammeldung: 21.10.84 Patenthist 94/44 Bertsnifts Vertragsstaeten: AT BE CM DE FR GB IT LJ LJ NS. 5E	(7) Anneider: SCHERING AKTRENGESELLSCHAFT Berlin end Berglasinen Ablilierstrasse (701778 Postfach 65 ES 11 D-1800 Berlin 65(DE) (2) Erfinder: Mileneam, Jürgen Ugendestrasse 9 D-1000 Berlin 65(DE) (3) Erfinder: Lasge, Lother, Dr. Beskidenstrasse 34 D-1000 Berlin 35(DE) (3) Erfinder: Zimmermann, Ingified, Dr. Gollancastrasse 28c D-1000 Berlin 28(DE)
Millropartikel und Gesbillichen enthaltendes Uitz Es wird ein Mikropartikel und Gesbillischen ent Uitzrachs II-Kontrastmittel beschrieben, des dedurch seichnet ist, daß es Mikropartikel einer Mischung v	haltende gelezn- on einer

Croydon Prisong Company (3d

EP 0 123 235 AZ

11/07/2000 13:23:44 page -1-

0123235

Beschreibung:

Die Erfindung betrifft die in den Ansprüchen gekennzeichnesen Gegenstände.

Die Untersuchung von Organen mit Ultraschall (Sonographie) ist eine seit einigen Jahren gut eingeführte und praktizierte diegnostische Nethode. Ultraschallwellen im Megahertz-Bereich (oberhalb 2 Mega-Hertz mit Wellenlängen zwischen 1 und 0,2 mm) werden an Grenzflächen von unterschiedlichen Gewebearten reflektiert. Die dadurch sichtbar gemacht. Von besonderer Bedeutung ist dabei die Untersuchung des Herzens mit dieser Methode, die Echokardiographie genannt wird (Haft, J.I. et al.: Clinical echocardiography, Futura, Mount Kisco, New York 1978; Eöhler, E. Klinische Echokardiographie, Enke, Stuttgart 1979; Stefan, G. et al.: Echokardiographie, Thieme, Stuttgart-New York 1981; G. Bismine, L. Lange: Echokardiographie, Hoechst AG, 1983.

Da Plüssigkeiten - auch das Blut - nur dann Ultraschall-Kontrast liefern, wenn Dichte-Unterschiede zur Umgebung bestehen, wurde nach Höglichkeiten gesucht, das Blut und seine Strömung für eine Ultraschall-Untersuchung sichtbar zu machen, was durch die Zugabe von feinsten Gasbläschen auch möglich ist.

Aus der Literatur sind mehrere Methoden zur Herstellung und Stabilisierung der Gasbläschen bekannt. Sie lassen sich beispielsweise vor der Injektion in den Blutstrom durch heftiges Schütteln oder Rühren von Lösungen wie Salzlösungen, Farbstofflösungen oder von vorher entnommenen Blut erzeugen. Obwohl men dadurch eine Ultraschell-Kontrastgebung erreicht, sind diese Methoden mit schwerviegenden Nachteilen verbunden, die sich in schlechter Reproduzierbarkeit, stark schwankender Größe der Gasbläschen und bedinge durch einen Anteil an sichtbaren großen Bläschen - einem gewissen Embolie-Risiko Kußern. Diese Nachteile wurden durch andere Herstellungsverfahren teilweise behoben, wie beispielsweise durch das US-Patent 3,640,271, in dem Bläschen mit reproduzierbarer Größe durch Filtration oder durch die Anwendung einer unter Gleichstrom stehenden Elektrodenvorrichtung erzeugt werden. Dem Vorteil in der Möglichkeit, Gasbläschen mit reproduzierbarer Größe herstellen zu können, staht der erhebliche technische Aufwand als Machteil gegenüber.

In dem US-Patent 4,276,885 wird die Herstellung von Gasblüschen mit definierter Größe beschrieben, die mit einer vor dem Zusammenfließen schützenden Gelatine-Hülle umgeben sind. Die Aufbewahrung der fertigen Blüschen kann nur im "eingefrorenen" Zustend erfolgen, beispielsweise durch Aufbewahren bei Kühlschranktemperatur, wobel sie zur Verwendung wieder auf Körpertemperatur gebracht werden müssen.

In dem US-Patent 4,265,251 wird die Herstellung und Verwendung von Gasbläschen mit einer festen Hille aus Sacchariden beschrieben, die mit einem unter Druck stehenden Gas gefüllt sein können. Stehen sie umter Normaldruck, so können sie als Ultraschallkontrastmittel eingesetzt werden; bei Verwendung mit erhöhtem Innendruck dienen sie der Blutdruckmessung. Obwohl hierbei die Aufbewahrung der festen Gasbläschen kein Problem darstellt, ist der technische Aufwand bei der Herstellung ein erheblicher Kostenfaktor.

Die Risilen der nach dem Stand der Technik zur Verfügung stehenden Kontrastmittel werden durch zwei Faktoren hervorgerufen: Größe und Anzahl sowohl der Feststoffpartikel als auch der Gasbläschen.

Der bisher geschilderte Stand der Technik gestattet die Herstellung von Ultraschalikontrastmitteln, die stets nur einige der geforderten Eigenschaften besitzen:

- 1.) Ausschalten des Embolierisikos
 - Gasbläschen (Größe und Anzahl)
 - Feststoffpartikel (Größe und Anzehl)
- 2.) Reproduzierbarkeit
- 3.) genügend lange Stabilität
- 4.) Lungengängigkeit, z.B. um Ultraschall-Kontrastierung des linken Berzteiles zu erhalten
- 5.) Kapillargängigkeit
- 6.) Sterilität und Pyrogenfreiheit der Zubereitung
- 7.) leichte Herstellbarkeit mit vertretbarem Kostenauf-
- 8.) und problemlose Bevorratung.

In der europäischen Patentanmeldung mit der Veröffentlichungs-Nummer 52575 wird zwar die Herstellung von Gasbläschen beschrieben, die diese erforderlichen Eigenschoften besitzen sollen. Zu ihrer Herstellung werden Hikropartikel einer festen kristallinen Substanz,

wie beispielsweise Galaktose, in einer Trägerflüssigkeit suspendiert, wobei das Gas, das an der Partikeloberfläche adsorbiert, in Hohlräumen zwischen den Partikel oder in interkristallinen Hohlräumen eingeschlossen ist, die Gasbläschen bildet. Die so entstandene Suspension von Gasblischen und Hikropartikel wird innerhalb von 10 Minuten injiziert. Obwohl in der europäischen Patentschrift 52575 behauptet wird, daß die nach der beschriebenen Hethode hergostellte Suspension geeignet ist, nach Injektion in eine periphere Vene sowohl auf der rechten Herzseite als auch nach Passage der Lunge in der linken Berz-Seite zu erscheinen und dort das Blut und dessen Strömung bei Ultraschall-Untersuchung sichtbar zu machen, hielt diese Behauptung einer Hachprüfung nicht stand. So wurde festgestellt, daß das nach der in der europäischen Anmeldung Er. 52575 beschriebenen Methode hergestellte und in eine periphere Vene injizierte Kontrastmittel keine Ultraschall-Echos im linken Hersteil erzeugten.

Es war die Aufgabe der vorliegenden Erfindung, ein Kontrasteittel für die Ultraschall-Diagnostik bereitzustellen, das in der Lage ist, nach intravenöser Applikation das Blut und dessen Strömungsverhältnisse nicht nur auf der rechten Seite des Herzens, sondern auch nach der Pansage des Kapillarbettes der Lunge auf der linken Herzseite für Ultraschall sichtbar zu machen. Darüberhinaus soll es auch die Darstellung der Durchblutung anderer Organs wie Hyogard, Leber, Milz und Niere gestatten.

Die neuen erfindungsgemäßen Mittel gemäß der Ansprüche 1 bis 11 besitzen alle Eigenschaften, die von einem solchen Kontrastmittel erwartet werden und die auf Seite 3 aufgezählt wurden. Es wurde überraschenderweise festgestellt, daß durch Suspendieren von Mikropartikel der Hischung von einer halbfesten oder flüssigen grenzflächensktiven Substanz mit einem nicht grenzflächenaktiven Feststoff in einer Trägerflüssigkeit ein Ultraschall-Kontrastmittel erhalten wird, das nach Injektion in eine periphere Vene auch vom Blut in der arteriellen linken Herzseite reproduzierbare Ultraschall-Aufnahme ermöglicht. Da mit dem erfindungsgemäßen Ultraschall-Kontrastmittel nach intravenöser Gabe die linke Herzseite erreicht werden kann, sind so auch Ultraschall-Kontraste von anderen von der Aorta aus mit Blut versorgten Organen nach venöser Applikation moglich, wie Hyokard, Leber, Milz, Niere u.a.w. Es versteht sich von selbst, daß das erfindungsgemäße Ultraschall-Kontrastmittel auch für Rechtsherz-Kontraste und für alle übrigen Amwendungen als Ultraschall-Kontrastmittel geeignet ist.

Als halbreste oder flüssige grenzflächenaktive Substanzen, die Bestandteil der für die Herstellung der Mikropartikel benötigten Mischung sind, sind alle Stoffe geeignet, die in den angewandten Mengen physiologisch verträglich sind, d.h. die eine geringe Toxizität besitzen und/oder biologisch abbaubar sind und deren Schmelzpunkt niedriger als Raumtemperatur ist, d.h. die bei Raumtemperatur halbfest oder flüssig sind. Insbesondere geeignet sind Lecithine, Lecithinfraktionen und deren Abwandlungsprodukte, Polyoxyethylenfattsäureester wie Polyoxyethylenfettalkoholäther, polyoxyethylierte Sorbitanfettsäureester, Glycerin-polyethylenglykoloxystearst, Glycerinpolyethylenglykolrizinolest, ethoxylierte Sojasterine, ethoxylierte Rizinusöle und deren hydrierte Derivate, Polyoxyäthylenfettsäurestearate und Polyoxyethylanpolyoxypropylen-Polymere, Saccharoseester oder Saccharoseglyceride sowie Xyloglyceride, wie Sojaölsaccharoseglycerid und Palmölxylid,

ungesättigte (C_4-C_{20}) -Fettalkohole oder (C_4-C_{20}) -Fettsäuren. Polyoxyäthylenfettsäureester, Mono-, Di- und Triglyceride. Fettsäureester der Saccharose oder Fettsäureester wie Butylstearat, Palmölsaccharoseglycerid, Baumwollsaatölsaccharoseglycerid, wobei Butylstearat, Sojaülsaccharoseglycerid und Polyäthylenglykolsorbitanmonostearat bevorzugt sind.

Die grenzflächensktive Substanz wird in einer Konzentration von 0,01 bis 5 Gewichtsprozent, vorzugsweise von 0,04 bis 0,5 Gewichtsprozent verwendet.

Als nicht grenzflächenaktive Substanzen, die Bestandteil der für die Herstellung der Mikropartikel benötigten Mischung sind, kommen in Frage organische und snorganische Verbindungen, zum Beispiel Salze, wie Matriumchlorid, Natriumcitrat, Natriumscatat oder Matriumtartrat, konosaccharide, wie Glucose, Fructose oder Galaktose Disaccharide, wie Saccharose, Lactose oder Maltose, Pentosen, wie Arabinose, Xylose oder Ribose oder Cyclodextrine wie g-, ß- oder y-Cyclodextrin, wobei Galactose, Lactose und g-Cyclodextrin bevorzugt sind. Sie sind in einer Konzentration von 5 bis 50 Gewichtsprozent, vorzugsweise von 9 bis 40 Gewichtsprozent, im erfindungsgemäßen Mittel enthalten.

Zur Herstellung der Mikropartikel wird die nicht oberflächenaktive Substanz unter sterilen Bedingungen rekristellisiert. Anschließend wird die grenzflächenaktive Substanz zusammen mit dem nicht grenzflächenaktiven Feststoff unter sterilen Bedingungen vermischt und zerkleinert, z.B. durch Vermahlung in einer Luftstrahlmühle, bis die gewünschte Partikelgröße erreicht ist. Erhelten wird eine Partikelgröße von 10 µm, vorzugsweise 8 µm, insbesondere 1-3 µm. Die Partikelgröße wird in geeigneten Hesgeräten bestimmt. Das Gewichtsverhältnis von grenzflächenaktiver Substanz zum nicht grenzflächenaktiven Feststoff kanm von 0,01 bis 5: 100 betragen. Sowohl die durch das Zerkleinerungsverfahren erreichte Größe der Mikropartikel als auch die Größe der im erfindungsgemäßen Kontrastmittel enthaltenen Gosbläschen gewährleistet eine gefahrlose Passage des Kapillarsystems und des Lungenkapillarbettes und schließt das Entstehen von Embolien aus.

Die für die Kontrastgebung benötigten Gasbläschen werden teilweise durch die suspendierten Mikropartikel transportiert, an der Oberfläche der Mikropartikel absorbiert, in den Hohlräumen zwischen den Mikropartikel oder interkristallin eingeschlossen.

Das von den Mikropartikel transportierte Gasvolumen in Form von Gasbläschen beträgt 0,02 bis 0,6 ml pro Gramm Mikropartikel.

Die Trägerflüssigkeit hat neben der Transportfunktion die Aufgabe, die aus Mikropartikel und Gasbläschen bestehende Suspension zu stabilisieren, z.B. das Sedimentieren der Mikropartikel und das Zusammenfließen der Gasbläschen zu verhindern bzw. den Lösevorgang der Mikropartikel zu verzögern.

Als flüssiger Träger kommen in Frage Wasser, wässrige
Lösungen eines oder mehrerer anorganischer Salze wie
physiologische Kochsalzlösung und Pufferlösungen, wässrige
Lösungen von Mono- oder Disacchariden wie Galactose,
Glucose oder Lactose, ein- oder mehrwertige Alkohole,
soweit sie physiologisch verträglich sind wie Äthanol,
Propanol, Isopropylalkohol, Polyethylenglykol, Ethylenglykol, glycerin, Propylenglykol, Propylenglycolmethylester
oder deren vässrige Lösungen.

Bevorzugt sind Wasser und physiologische Elektrolytlösungen, wie physiologische Kochsalzlösung sowie währige Lösungen von Galactose und Glucose. Werden Lösungen verwendet, beträgt die Konzentration des gelösten Stoffes 0,1 bis 30 Gewichtsprozent, vorzugsweise 0,5 bis 25 Gewichtsprozent, insbesondere vervendet man 0,9 %ige währige Kochsalzlösung oder 20 %ige währige Galactose-Lösung.

Die Erfingung betrifft auch ein Verfahren zur Herstellung des erfindungsgemäßen Mittels gemäß Anspruch 13.

Zur Herstellung des gebrsuchsfertigen UltraschallKontrestmittels gibt man die sterile Trägerflüssigkeit
zu den aus der Mischung von einer halbfesten oder
flüssigen granzflächenaktiven Substanz und einem nicht
grenzflächensktiven Feststoff bestehenden Mikropartikel
und schüttelt diese Mischung, bis sich eine homogene
Suspension gebildet hat, wofür ca. 5 bis 10 secerforderlich sind. Die entstandene Suspension wird
sofort nach ihrer Herstellung, spätestens jedoch bis
5 Minuten danach als Bolus in eine periphere Vene oder
einen schon vorhandenen Katheder injiziert, wobei von
0,01 ml bis 1 ml/kg Körpergewicht appliziert werden.

Aus Gründen der Zweckmäßigkeit werden die zur Herstellung des erfindungsgemäßen Mittels benötigten Komponenten, wie Trägerflüssigkeit (A) und Mikropartikel der Mischung von einer halbfesten oder flüssigen grenzflächensktiven Substant mit dem nicht-grenzflächensktiven Feststoff (B) in der für eine Untersuchung erforderlichen Menge steril in zwei getrennten Gefäßen aufbewahrt. Beide Gefäße haben Verschlüsse, die Entnahme und Zugabe mittels Injektionsspritze unter sterilen Bedingungen ermöglichen (Vials). Die Größe von Gefäß B muß so beschaffen sein, daß der Inhalt von Gefäß A mittels Injektionsspritze nach B überführt werden kann und die vereinigten Komponenten geschüttelt werden können. Die Erfindung betrifft deshalb auch ein Kit gemäß Anspruch 12.

Die Durchführung einer echokardiographischen Untersuchung an einem 10 kg schweren Pavian soll die Verwendung des erfindungsgemäßen Kontrastmittels demonstrieren:

5 ml Trägerfäussigkeit (hergestellt nach Beispiel 1 A) mit einer Injektionsspritze werden aus einem Vial entnommen und zu 2 g Mikropartikel (hergestellt nach Beispiel 1 B), die sich in einem zweiten Vial befinden etwa 5-10 sec geschüttelt, bis sich eine gegeben und homogene Suspension gebildet hat. Han injiziert 2 ml dieser Suspension in eine periphere Vene (V. jugularis, brachialis oder saphena) über einen 3-Wege-Hahm mit einer Infusionsgeschwindigkeit von mindestens 1 ml/sec., besser mit 2-3 ml/sec. An die Kontrastmittelinjektion schließt sich mit derselben Geschwindigkeit sofort die Injektion. von 10 ml physiologischer Kochsalzlösung an, damit der Kontrastmittel-Bolus so weitgehend wie möglich bis zum Erreichen des rechten Herzteils erhalten bleibt. Vor, während und nach der Injektion wird ein handelsüblicher Schallkopf für die Echokardiographie an den Thorax des Versuchstieres gehalten, so daß ein typischer Querschnitt durch das rechte und linke Herz erhalten wird. Diese Versuchsanordnung entspricht dem Stand der Technik und ist dem Fachmann bekannt.

Erreicht des Ultraschallkontrastmittel das rechte Herz, kann man im 2-D-Echobild oder im M-mode-Echo-Bild verfolgen, wie das durch das Kontrastmittel markierte Blut zumächst die Höhe des rechten Vorhofes, denn die des rechten Ventrikels und der Pulmonalarterie erreicht, wobei für ca. 10 sec. eine homogene Füllung auftritt. Während die Höhlen des rechten Herzens im Ultraschallbild wieder leer werden, erscheint das mit Kontrastmittel markierte Blut nach der Lungenpassage in den Pulmonalvenen wieder, füllt den linken Vorhof, den linken

Ventrikel und die Aorta homogen, wobei der Kontrast 2 bis 3 mal länger anhält als auf der rechten Herzseite. Neben der Darstellung des Blutflusses durch die Höhlen des linken Berzens kommt es auch zu einer Darstellung des Myokards, die die Durchblutung wiederspiegelt.

Die Verwendung des erfindungsgemäßen Ultraschall-Kontrastmittels ist aber nicht beschränkt auf die Sichtbarmschung des Blutstroms in arteriellen Teil des Hersens nach venöser Applikation sondern es wird mit ausgezeichmeten Erfolg auch bei der Untersuchung des rechten Hergens and anderer Organe als Kontrastmittel verwendet.

11/07/2000 13:23:44 page -11-

Deispiel

A. Herstellung der Trägerflüssigkeit

Wasser für Injektionszwecke wird zu jeweils 4 ml in 5 ml-Vals abgefüllt und 20 Minuten bei 120 °C steril siert.

B. Herstellung der Mikropartikel

Unter sterilen Bedingungen wird eine sterilfiltrierte Lösung von 0,5 g Butylstearst in 50 g Isopropanol auf 199,5 g sterile Galactosepartikel aufgezogen, bei 40 °C und 200 Torr das Isopropanol abgetrocknet und mit einer Luftstrahlmühle vermahlen, bis folgende Größenvarteilung der Partikel erreicht ist:

edianvert 1.9 µm min. 99 % < 6 µm

min. 90 % < 3 Am.

Die Bestimmung der Partikelgröße und deren Verteilung erfolgt in einem Partikelmeßgerät, z.B. nach Suspendierung in Isopropanol. Die Abpackung der Mikropartikel erfolgt in 5 ml-Vials zu jeweils 2 g.

C. Zur Herstellung von 5 ml des gebrauchsfertigen Ultraschall-Kontrastmittels wird der Inhalt eines Vials mit Trägerflüssigkeit (Vasser für Injektionszwacke, A) mittels einer Injektionsspritze in das Vial mit Mikropartikel (B) gegeben und bis zum Entstehen einer homogenen Suspension geschüttelt (5 bis 10 Sekunden).

Beisniel 2

A. Herstellung der Trägerflüssigkeit

Wasser für Injektionszwecke wird zu jeweils 4 ml in 5 ml-Vials abgefüllt und 20 Minuten bei 120 °C sterilimiert.

B. Herstellung der Mikropartikel

Unter sterilen Bedingungen wird eine sterilfiltrierte Lösung von 0,5 g Sojsölseccharoseglycerid in 40 g Isopropenol auf 199,5 g sterile Galactosepartikel aufgezogen, bei 40 °C und 200 Torr das Isopropenol abgetrocknet und mit einer Luftstrahlmühle vermahlen, bis folgende Größenverteilung der Partikel erreicht ist: Medienwert 1,9 mm

min. 99 % < 6 am min. 90 % < 3 am.

Die Bestimmung der Partikelgröße und deren Verteilung erfolgt in einem Partikelmeßgerät, z.B. nach Suspendierung in Isopropanol. Die Abpackung der Mikropartikel erfolgt in 5 ml-Vials zu jeweils 2 g.

C. Zur Eerstellung von 5 ml des gebrauchsfertigen Ultraschall-Kontrastmittels wird der Inhalt eines Vials mit frägerflüssigkeit (Wasser für Injektionszwocke, A) mittels einer Injektionsspritze in das Vial mit Mikropartikel (B) gegeben und bis zum Entstehen einer homogenen Suspension geschüttelt (5 bis 10 Sekunden).

Beispiel

A. Herstellung der Trägerflüssigkeit

Man löst 4,5 g Natriumchlorid in Wasser bis zum Volumen von 500 ml, drückt die Lösung durch ein 0,2 mm-Filter, füllt jeweils 4 ml dieser Lösung in 5 ml-Viels und sterilisiert 20 Minuten bei 120 °C.

B. Herstellung der Mikropartikel

Unter sterilen Bedingungen wird eine sterilfiltrierte Lösung von 0,5 g Polysethylenglykolsorbitanmonostearat in 40 g Isopropanol suf 199,5 g sterile Galactosepartikel sufgezogen, bei 40 °C und 200 Torr das Isopropanol abgetrocknet und mit einer Luftstrahlwühle vermahlen, bis folgende Größenverteilung der Partikel erreicht ist:

Medianvert 1,9 Am

min, 90 % · < 3 nm.

Die Bestimmung der Partikelgröße und deren Verteilung erfolgt in einem Partikelmeßgerät, z.B. nach Suspendierung in Isopropanol. Die Abpeckung der Mikropartikel erfolgt in 5 ml-Vials zu jeveils 2 g.

C. Zur Herstellung von 5 ml des gebrauchafertigen Ultraschall-Kontrestmittels wird der Inhalt eines Vials mit Trägerflüssigkeit (Wasser für Injektionszwecke, A) mittels einer Injektionsspritze in das Vial mit Mikropartikel (B) gegeben und bis zum Entstehen einer homogenen Suspension geschüttelt (5 bis 10 Sekunden). - 14-

Beispiel 4

A. Herstellung der Trägerflüssigkeit

Man löst 4,5 g Natriumchlorid in Wasser bis zum Volumen von 500 ml, drückt die Lösung durch ein 0,2 mm-Filter, füllt jeveils 4 ml dieser Lösung in 5 ml-Viels und sterilisiert 20 Minuten bei 120 °C.

B. Herstellung der Mikropartikel

Unter sterilen Bedingungen wird eine sterilfiltrierte Lösung von 0,5 g Palmölxylit in 40 g Isopropanol auf 199.5 g sterile Galactosepartikel sufgezogen, bei 40 °C und 200 Torr das Isopropanol abgetrocknet und mit einer luftstrahlmühle vermahlen, bis folgende Größenverteilung der Partikel erreicht ist: Medianwart 1,9 mm

< 6 /200 min. 99 %

< 3 Amամար. 90 メ

Die Bestimmung der Partikelgröße und deren Verteilung erfolgt in einem Partikelmeßgerät, z.B. nach Suspendierung in Isopropanol. Die Abpackung der Mikropartikel erfolgt in 5 ml-Vials zu jeweils 2 g.

C. Zur Herstellung von 5 ml des gebrauchsfertigen Ultraschall-Kontrastmittels wird der Inhalt eines Vials mit Trägerflüssigkeit (Wasser für Injektionszwecke, A) mittels einer Injektionsspritze in das Vial mit Mikropartikel (B) gegeben und bis zum Entstehen einer homogenen Suspension geschüttelt (5 bis 10 Sekunden).

11/07/2000 13:23:44 page -15-

Patent ansprüche

- Mikropartikel und Gasbläschen entheltendes Kontrastmittel für die Ultraschalldiagnostik, dadurch gokennzeichnet, daß es Mikropartikel der Mischung von einer halbfesten oder flüssigen grenzflächenektiven Substanz mit einem nicht-grenzflächenektiven Feststoff in einem flüssigen Träger enthält.
- 2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es Nikropartikel enthält, die als halbfeste oder flüssige grenzflöchensktive Substanz Lecithine, Polyoxyethylenfettsäureester, Glycerimpolyethylenglykolrizinoleat, Polyoxyethylenpolyoxypropylen-Polymere, Saccharoseester, Iyloglyceride, ungesättigte (C4-C20)-Pettalkohole, ungesättigte (C4-C20)-Pettsäuren, Mono-, II- und Triglyceride, Fettsäureester als Mikropartikel in einer Menge von 0,01 bis 10 Gewichtsprozent enthalten.
- 3. Mittel mach Anspruch 1 und 2, dadurch gekennzeichnet, daß es Mikropartikel enthält, die als halbfesten oder flüssigen grenzflächenaktiven Stoff Butylstearat, Sojaülsaccharoseglycerid oder Polyäthylenglykolsorbitahmonostearat in einer Konzentration von 0,01 bis 5 Gewichtsprozent, vorzugsweise 0,04 bis 1 Gewichtsprozent, enthalten.
- 4. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es Mikropartikel enthölt, die als nicht-grenzflächenativen Feststoff Cyclodextrine, Monosaccharide, Disaccharide, Trisaccharide, Polyole oder anorganische oder organische Salze mit einer Konzentration von 5 bis 50 Gewichtsprozent enthalten.

- 5. Mittel nach Anspruch 1 und 4, dadurch gekennzeichnet, daß es Mikropartikel enthält, die als
 nicht-grenzflächensktiven Feststoff Galactose,
 Lactose oder a-Cyclodextrin in einer Konzentration
 von 5 bis 50 Gewichtsprozent, vorzugsweise von
 9 bis 40 Gewichtsprozent, enthalten.
- 6. Hittel nach Anspruch 1, dadurch gekennzeichnet, daß es als physiologisch verträglichen flüssigen Träger Vasser, physiologische Elektrolytlusung, die wäßrige Lösung von ein- oder mehrwertigen Alkoholen wie Glycerin, Polyethylenglycol oder von Propylenglykolmethylester oder die wäßrige Lögung eines Mono- oder Disaccharides enthält.
- Nittel nach Anspruch 1 und 6, dadurch gekennzeichnet, daß es als physiologisch verträglichen ' flüssigen Träger Vasser oder physiologische Kochsalzlösung enthält.
- Mittel nach Anspruch 1, dadurch gekennzeichnet, das es Mikropartikel einer Mischung von Butylstearet und Galactose in Wasser enthält.
- 9. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es Mikropartikel einer Mischung von Sojaölseccharoseglycerid und Galactose in Vasser enthält.
- 10. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es Mikropartikel einer Mischung von Poly-Ethylenglycolsorbitanmonostearat und Galactose in physiologischer Kochsalzlösung enthält.

má

- 11. Nittel nach Anspruch 1, dadurch gekennzeichnet, daß es Nikropartikel einer Mischung von Palmölxylit und Galactose in physiologischer Kochsalzlösung enthält.
- 12. Ein Kir für die Herstellung eines Mikropartikel und Gesbläschen enthaltenden Ultraschall-Kontrastmittels bestehend
 - a) aus einem Behälter mit einem Volumen von 5 10 ml, versehen mit einem Verschluß, der die Entnahme des Inhalts unter sterilen Bedingungen ermöglicht, gefüllt mit aul des flüssigen Trägers
 - b) aus einem zweiten Behälter mit einem Volumen
 von 5 10 ml, versehen mit einem Verschluß,
 der die Entnahme des Inhalts oder Zugabe eines
 Stoffgemisches unter sterilen Bedingungen
 ermöglicht, gefüllt mit Mikropartikel einer
 Mischung von einer halbfesten oder flüssigen
 grenzflächensktiven Substanz mit einem nichtgrenzflächensktiven Peststoff mit einer durchschnittlichen Partikelgröße von <1 bis 10 pm,
 vobei das Gewichtsverhältnis von grenzflächenaktiver Substanz zu gegebemenfalls vorhandenen
 nicht-grenzflächensktiven Peststoff 0,01 bis
 5 zu 100 beträgt und die Mikropartikel in einer
 Menge von 5 bis 50 Gewichtsprozent, vorzugsweise
 von 9 bis 40 Gewichtsprozent, enthalten sind.

11/07/2000 13:23:44 page -18-

0123235

13. Verfahren zur Herstellung eines Mikropartikel und Gasbläschen enthaltenden Kontrastmittels für die Ultraschall-Diagnostik, dadurch gekennzeichnet, daß man Mikropartikel einer Mischung von einer physiologisch verträglichen, halbfesten oder flüssigen grenzflächenaktiven Substanz mit einem physiologisch verträglichen nicht-grenzflächenaktiven Feststoff mit einer physiologisch verträglichen Trägerflüssigkeit vereinigt und bis zum Entstehen einer homogenen Suspension schüttelt.

11/07/2000 13:23:44 page -19-