Algoritmi aleatorii

Calculul lui π

Problema lui Buffon

Problema lui Buffon

- $P=2I/d\pi$
- P=E(m)/n
- $\pi=n2I/md$

d

Algoritmi Monte Carlo

- Gasesc o solutie garantat corecta doar dupa un timp infinit de rezolvare
- Probabilitatea ca solutia sa fie corecta creste o data cu timpul de rezolvare
- Solutia gasita intr-un timp acceptabil este aproape corecta

Complexitatea algoritmilor

$$O(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \}$$

g(n) limita
 asimptotica
 superioara
 pentru f(n)

$$f(n) = O(g(n))$$
 says:

Complexitate algoritmi Monte Carlo

- algoritm Monte Carlo are complexitatea
 f(n)=Ő(g(n))
 - dacă $\exists c>0$ si $n_0>0$ a.î.
 - \forall $n \ge n_0$ 0<f(n)≤cαg(n) cu o probabilitate de cel puțin 1- $n^{-\alpha}$ pentru α>0 fixat și suficient de mare
 - Probabilitatea ca soluția determinată de algoritm să fie corectă este cel puțin $1-n^{-\alpha}$

Algoritmi Las Vegas

- Gasesc solutia corecta a problemei, insa timpul de rezolvare nu poate fi determinat cu exactitate.
- Cresterea timpului de rezolvare => cresterea probabilitatii de terminare a algoritmului
- Timp=∞=>algoritmul se termina sigur
- Probabilitatea de gasire a solutiei creste suficient de repede incat sa se determine solutia intr-un timp suficient de scurt

Complexitatea algoritmilor Las Vegas

- Un algoritm Las Vegas are complexitatea
 f(n)=Ő(g(n))
 - dacă $\exists c>0$ si $n_0>0$ a.î.
 - \forall n≥n₀ avem 0<f(n)<c α g(n) cu o probabilitate de cel puțin 1-n^{- α} pentru α >0 fixat și suficient de mare

Exemplu algoritm Las Vegas

Problema:

- Capitolele unei carti sunt stocate intr-un fisier text sub forma unei secvente nevide de linii
- Fiecare secventa este precedata de o linie contor ce indica numarul de linii din secventa
- Fiecare linie din fisier este terminata prin CR,LF
- Toate liniile din secventa au aceeasi lungime
- Fiecare secventa de linii contine o linie ce se repeta si care apare in cel putin 10% din numarul de linii al secventei.
- secventele sunt lungi

Cerinta:

Pentru fiecare secventa de linii sa se tipareasca linia care se repeta

Rezolvare "clasica"

```
detecteaza_linii(fisier)

pentru fiecare Secv∈fisier

Repeta i←0 cat timp i<dim(Secv)

Repeta j←i+1 cat timp j<dim(Secv)

prelucrare

Daca (linie(i,Secv)=linie(j,Secv)

atunci print(linie(i,Secv); i=j=dim(Secv))
```

complexitate – O(n²)

Algoritm Las Vegas pentru rezolvarea problemei

 sectiunea "prelucrare secventa" se inlocuieste cu urmatoarea functie:

```
selectie_linii(n,Secv) //n=dim secv

Repeta

i←random(0,n-1)

J←random(0,n-1)

Daca (I # j si linie(i,Secv)=linie(j,Secv))

atunci return linie(i,Secv)
```

Analiza algoritmului Las Vegas (I)

Notatii:

- n=numarul de linii din secventa curenta
- q=procentul de linii repetate in secventa
- r=numarul de aparitii al liniei repetate: r=n*q/100
- m=numarul de pasi necesari terminarii algoritmului
- Pk=probabilitatea ca la pasul k sa fie satisfacuta conditia de terminare a algoritmului
- P(m)= probabilitatea ca algoritmul sa se termine dupa m pasi

Analiza algoritmului Las Vegas (II)

- probabilitatea ca la pasul k linia i sa fie una din liniile repetate este r/n
- probabilitatea ca la pasul k linia j sa fie una din liniile repetate este (r-1)/n
- conditia de terminare= cele 2 evenimente trebuie sa se produca simultan=> Pk=r/n*(r-1)/n=q/100*(q/100-1/n)

Analiza algoritmului Las Vegas (III)

 Probabilitatea ca algoritmul sa nu se termine dupa m pasi=

$$\Pi_{k=1-m}(1-Pk)=(1-q/100*(q/100-1/n))^{m}$$

- => $P(m)=1-(1-q/100*(q/100-1/n))^m$
- n>100; q>10%
- => $P(m)\geq 1-(1-q(q-1)/10000)^m$

q	10%	20%	30%
m			
100	0.595083523989	0.979226618172	0.999888550595
300	0.933610966591	0.999991035592	0.99999999999
500	0.989115029844	0.99999996132	1
1000	0.999881517425	1	1
1500	0.999998710321	1	1
2000	0.999999985962	1	1
2500	0.99999999847	1	1
3000	0.99999999998	1	1
3500	1	1	1

Comparatie timp de rulare

- q=10% 3500 pasi P=1; 1000 pasi P=0,9988
- q=20% 1000pasi P=1
- q=30% 500 pasi P=1
- varianta clasica: cazul cel mai defavorabil 10000 pasi

Complexitate algoritm Las Vegas

- algoritmul Las Vegas are complexitatea
 f(n)=Ő(g(n)) daca ∃c>0 si n₀>0 a.i. ∀n≥n₀
 avem 0<f(n)<cαg(n) cu o probabilitate de cel
 putin 1-n⁻α pentru α>0 fixat si suficient de
 mare
- aratam ca f(n)= Ő(lg(n))
 - -a=(1-q(q-1)/10000)
 - calculam P(cα lg(n))≥1-n^{-α} (c≥lg⁻¹(1/a))

Exemplu algoritm Monte Carlo

- Problema testarea daca un numar n dat este prim
- rezolvare "clasica"

return true

prim-clasic(n)
 Pentru i←2 la sqrt(n) repeta
 Daca (n mod i=0) atunci return false

Determinarea numerelor prime - complexitate

- complexitate O(sqrt(n))
- pentru numere mari operatiile nu mai dureaza O(1)
- estimam numarul de operatii in functie de numarul de biti pe care este exprimat numarul
- =>prim_clasic O(2^{k/2}) unde k este numarul de biti ocupat de n

Complexitate nesatisfacatoare!

Algoritm aleator (I)

Teorema mică a lui Fermat: n este prim => $\forall 0 < x < n, (x^{n-1} \mod n) = 1$ • prim1(n, α) Daca (n<=1 sau (n mod 2)=0) atunci 'numar compus' $limit \leftarrow limita_calcul(n,\alpha)$ Pentru i←0 la limit repeta $x \leftarrow random(1, n-1)$ Daca (pow_mod(x,n) # 1) atunci return false return true pow_mod(x,n) r**←**1 Pentru m \leftarrow n-1 cat timp m>0, pas: m \leftarrow m/2 Daca (m mod 2 # 0) atunci r \leftarrow x*r mod n $x \leftarrow (x*x) \mod n$ return r

Algoritm aleator (II)

- problema nu putem stabili cu exactitate care este limita de calcul
 - nu se poate estima pentru un numar compus n numarul de numere x, 2<x<n pentru care nu se verifica ecuatia
 - exista numere compuse (Carmichael) pentru care orice numar x<n si prim in raport cu n satisface ecuatia lui Fermat
- => nu stim cu exactitate cate numere sunt=> nu putem calcula probabilitatea

Alta varianta de algoritm aleator

Teorema Pentru orice numar prim ecuatia
 x²mod n =1 are exact 2 solutii:

Definitie Fie n>1 si 0<x<n 2 numere a.i.

```
x<sup>n-1</sup> mod n #1 sau
x<sup>2</sup> mod n # 1, x # 1 si x # n-1
```

x este numit *martor al divizibilitatii* lui n

Algoritmul Miller-Rabin

prim2(n,α)
 Daca (n<=1 sau n mod 2=0) atunci return false limit←limita_calcul(n,α)
 Pentru i←0 la limit repeta
 X←random(1,n-1)
 Daca martor_div(x,n) atunci return false return true

Algoritmul Miller-Rabin (II)

```
    martor_div(x,n)
        r←1; y←x;
        Pentru m←n-1 cat timp m>0, pas m←m/2 repeta
            Daca (m mod 2 # 0) atunci r←y*r mod n
            y←y*y mod n
            z←y
            Daca (y=1 si z#1 si z#n-1) atunci return 1
            return r # 1 //mica teorema
```

calcularea numarului de pasi

Teorema

Pentru orice numar n, impar si compus exista cel putin (n-1)/2 martori ai divizibilitatii lui n

x=element generat la un pas al algoritmului

P(x)=probabilitatea ca x sa fie martor al divizibilitatii.

$$P(x)\geq (n-1)/2*1/(n-1)=0.5$$

Pincorect(n)= $\Pi_{1-\text{slimit}}(1-P(x)) \le 1/2^{\text{limit}}$

$$=>$$
Pcorect(n)=1-2^{-limit}=1-n^{- α}

=>Complexitatea =Ő(lg²n)

in functie de numarul de biti k=>complexitatea= Ő(k²)

Exemplu de utilizare practica

```
    QUICKSORT(A, p, r)

     - if p < r
     - then q \leftarrow PARTITION(A, p, r)
     - QUICKSORT(A, p, q - 1)
     - QUICKSORT(A, q + 1, r)

    PARTITION(A, p, r)

     -x \leftarrow A[r]
     -i \leftarrow p-1
     - for j ← p to r - 1
           • do if A[j] \leq x
                 - then i \leftarrow i + 1
                      » exchange A[i] \longleftrightarrow A[j]
           • exchange A[i ++ 1] \leftrightarrow A[r]
     - return i + 1
```

Exemplu de utilizare practica (II)

- problema quicksort cazul defavorabil –
 datele de intrare sunt sortate in ordine inversa
- Complexitate quicksort: O(n²)
- folosind algoritmi aleatori eliminam acest caz

Quicksort-aleator

- RANDOMIZED-QUICKSORT(A, p, r)
 - if p < r
 - then $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$
 - RANDOMIZED-QUICKSORT(A, p, q 1)
 - RANDOMIZED-QUICKSORT(A, q + 1, r)
- RANDOMIZED-PARTITION(A, p, r)
 - $-i \leftarrow RANDOM(p, r)$
 - exchange $A[r] \leftrightarrow A[i]$
 - return PARTITION(A, p, r)

Bibliografie

- curs preluat din Introducere in Analiza Algoritmilor – C. Giumale, Ed. Polirom capitolul 6.1 – p 291-301
- 2. slide-urile 25-27 v. Cormen, Leiserson, Rivest Introducere in Algoritmi, Cap. 7