Building on PCR and CS (via DW),

- I'm thinking it will be better to do this under the model in the paper. This means $U_{p-d} = 0 \Rightarrow R_d = 0$, but no harm in keeping it around for now.
- Eq.3 \rightarrow Eq.4, \tilde{U}_d became U_d , so $V\Lambda$ needs to be $V_d\Lambda_d$ in Eq.4 (fixed in Eq.5).
- Eq.4 \rightarrow Eq.5, factoring out $U_d^{\top}Y$, the second half got missed. So starting from Eq.6, we should have

$$= \left\| U_d(F)\Lambda_d(F)^{-1}U_d(F)^{\top}V_d\Lambda_d - V_d\Lambda_d^{-1} \right\| M_d + R_d \text{ (dropping } R_d \text{ now)}$$
 (1)

$$\leq \left\| U_d(F)\Lambda_d(F)^{-1}U_d(F)^{\top}V_d\Lambda_d - U_d(F)\Lambda_d(F)^{-1}\Lambda_d \right\| M_d \tag{2}$$

$$+ \left\| U_d(F)\Lambda_d(F)^{-1}\Lambda_d - V_d\Lambda_d^{-1} \right\| M_d \tag{3}$$

$$\leq \|U_d(F)\Lambda_d(F)^{-1}\| \|U_d(F)^{\top}V_d - I\| \|\Lambda_d\| M_d \tag{4}$$

$$+ \left\| U_d(F)\Lambda_d(F)^{-1/2}\Lambda_d(F)^{-1/2}\Lambda_d - V_d\Lambda_d^{-1} \right\| M_d \tag{5}$$

$$\leq \|U_d(F)\Lambda_d(F)^{-1}\| \|U_d(F)^{\top}V_d - I\| \|\Lambda_d\| M_d$$
(6)

+
$$\|U_d(F)\Lambda_d(F)^{-1/2}\| \|\Lambda_d(F)^{-1/2}\Lambda_d - I\| M_d + \|U_d(F)\Lambda_d(F)^{-1/2} - V_d\Lambda_d^{-1}\| M_d$$
 (7)

- Is there a relationship between $\|\Lambda_d\|$ and $\|\Lambda_d(F)\|$? This would be nice.
- M_d seems like it will be a pain: $\Theta(n)$.
- My thinking (up to now) had been to mimic Paul, Bair, et. al:
 - 1. Show that $\|\sin(\mathcal{E},\mathcal{F})\|$ is small where \mathcal{E} is the span of V_d and \mathcal{F} is the span of $U_d(F)$.
 - 2. Show that $\|\Lambda(F)_d \Lambda_d\|$ is small.
 - 3. See whether this gives anything about β_d .
- For the first step, this would amount to examining a function of $V_dV_d^{\top} U_d(F)U_d(F)^{\top}$. I was thinking with Lemma 4.2 or Corollary 4.1 in Lei and Vu's sparse PCA paper. Although, this again is just a different way of measuring the approximation accuracy of $U_d(F)$.
- My thoughts on the target journal here is JCGS. To that end, I think we need some or all of the following:
 - 1. Minor theoretical contributions along the lines above. Get as far as we can before it gets painful, likely under strong assumptions.
 - 2. Do the Nystrom version as well. (Already done in simulations, it's a bit worse, though not terrible)
 - 3. Implement GLMs.