Assignment #4 Solutions

due Friday, September 20th, 2019

1

(a) Let x_1 = number of salespeople assigned to south.

 x_2 = number of salespeople assigned to east.

 x_3 = number of salespeople assigned to midwest.

Then the model is as follows:

$$\max z = 600x_1 + 540x_2 + 375x_3$$
s.t. $x_1 \le 5$

$$80x_1 + 70x_2 + 50x_3 \le 750$$

$$x_1 + x_2 + x_3 = 12$$

 $x_i \geq 0, i = 1, 2, 3$ and integer.

(b) The results are shown below. The maximum profit is \$5715 with optimal solution = (1, 6, 5).

3	Items:	south	east	midwest			
4	Profit per unit:	600	540	375			
5	Conditions:				Usage	Constraint	Available
6	constrain1	1.00	0.00	0.00	1.00	<=	5.00
7	constrain2	80.00	70.00	50.00	750.00	<=	750.00
8	constrain3	1.00	1.00	1.00	12.00	=	12.00
9							
10	Production:						
11	south=	1.00					
12	east=	6.00					
13	midwest=	5.00					
14	Return =	5715.00					

 $\mathbf{2}$

1. Assume the time period is 1, 2, 3, 4, 5 and 6. Let $x_1 = \text{number of people beginning to work in period}$

 x_2 = number of people beginning to work in period 2.

 x_3 = number of people beginning to work in period 3.

 x_4 = number of people beginning to work in period 4.

 x_5 = number of people beginning to work in period 5.

 x_6 = number of people beginning to work in period 6.

Then the model is as follows:

$$\max z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

$$s.t. \quad x_1 + x_6 \ge 90$$

$$x_1 + x_2 \ge 215$$

$$x_2 + x_3 \ge 250$$

$$x_3 + x_4 \ge 65$$

$$x_4 + x_5 \ge 300$$

$$x_5 + x_6 \ge 125$$

$$x_i \ge 0, i = 1, 2, 3, 4, 5, 6$$
 and integer.

From the table, we can see that the minimum total number employees is 640 with optimal solution = (90, 250, 0, 175, 125, 0).

3 Items:	period1	period2	period3	period4	period5	period6			
4	1.00	1.00	1.00	1.00	1.00	1.00			
5 Conditions:							Usage	Constraint	Available
6 constrain1	1.00	0.00	0.00	0.00	0.00	1.00	90.00	>=	90.00
7 constrain2	1.00	1.00	0.00	0.00	0.00	0.00	340.00	>=	215.00
8 constrain3	0.00	1.00	1.00	0.00	0.00	0.00	250.00	>=	250.00
9 constrain4	0.00	0.00	1.00	1.00	0.00	0.00	175.00	>=	65.00
10 constrain5	0.00	0.00	0.00	1.00	1.00	0.00	300.00	>=	300.00
11 constrain6	0.00	0.00	0.00	0.00	1.00	1.00	125.00	>=	125.00
12									
13 Production:									
14 period1	90.00								
15 period2	250.00								
16 period3	0.00								
17 period4	175.00								
18 period5	125.00								
19 period6	0.00								
20 number of people =	640.00								

3

(a) Let x_1 = number of bracelets produce.

 x_2 = number of necklaces produce.

 x_3 = number of pins produce.

Then the model is as follows:

$$\max z = 1650x_1 + 850x_2 + 790x_3$$
 s.t. $6.3x_1 + 3.9x_2 + 3.1x_3 \le 125$ $17x_1 + 10x_2 + 7x_3 \le 320$ $x_i \ge 0, i = 1, 2, 3$ and integer

(b) From Fig. 1 and Fig. 2 , we can see that these two optimal solutions are different, so the rounded-down solution of the model with the integer restrictions relaxed is not optimal.

3	Items:	bracelets	necklaces	pins			
4	Profit per unit:	1650	850	790			
5	Conditions:				Usage	Constraint	Available
6	constrain1	6.30	3.90	3.10	125.00	<=	125.00
7	constrain2	17.00	10.00	7.00	320.00	<=	320.00
8							
9	Production:						
10	bracelets=	13.60					
11	necklaces=	0.00					
12	pins=	12.67					
13	Return =	32460.47					

Figure 1: Excel with the integer restrictions relaxed

3	Items:	bracelets	necklaces	pins			
4	Profit per unit:	1650	850	790			
5	Conditions:				Usage	Constraint	Available
6	constrain1	6.30	3.90	3.10	125.00	<=	125.00
7	constrain2	17.00	10.00	7.00	310.00	<=	320.00
8							
9	Production:						
10	bracelets=	10.00					
11	necklaces=	0.00					
12	pins=	20.00					
13	Return =	32300.00					

Figure 2: Excel with integer restrictions

4

(a) We can split 24 hour into six 4-hour periods. Assume the time period is 1, 2, 3, 4, 5, and 6. Then we assume the average fare made by the driver in period i, i = 1, ..., 6, is c_i . Based on the question, we know:

$$c_1 = 80$$

$$c_2 + c_3 = 500$$

$$c_3 + c_4 = 420$$

$$c_4 + c_5 = 300$$

$$c_5 + c_6 = 270$$

$$c_6 + c_1 = 210$$

Then we can get

$$c_1 = 80$$

 $c_2 = 240$
 $c_3 = 260$
 $c_4 = 160$
 $c_5 = 140$
 $c_6 = 130$

So, the average fare made by drivers who start their 8-hour shift at midnight is $c_1 + c_2 = 320$.

(b) Assume the time period is 1, 2, 3, 4, 5, and 6. Define x_i as the number of people beginning work in period i, i = 1, ..., 6.

Then the model is as follows:

$$\begin{aligned} \max z &= 320x_1 + 500x_2 + 420x_3 + 300x_4 + 270x_5 + 210x_6\\ s.t. & x_1 + x_6 \ge 10\\ x_1 + x_2 \ge 12\\ x_2 + x_3 \ge 20\\ x_3 + x_4 \ge 25\\ x_4 + x_5 \ge 32\\ x_5 + x_6 \ge 18\\ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 70\\ x_i \ge 0, i = 1, \cdots, 6 \ and \ integer \end{aligned}$$

The maximum revenue is \$25380 with optimal solution = (10, 17, 11, 14, 18, 0).

3 Items:	period1	period2	period3	period4	period5	period6			
4	320.00	500.00	420.00	300.00	270.00	210.00			
Conditions:							Usage	Constraint	Available
6 constrain1	1.00	0.00	0.00	0.00	0.00	1.00	10.00	>=	10.00
7 constrain2	1.00	1.00	0.00	0.00	0.00	0.00	27.00	>=	12.00
8 constrain3	0.00	1.00	1.00	0.00	0.00	0.00	28.00	>=	20.00
9 constrain4	0.00	0.00	1.00	1.00	0.00	0.00	25.00	>=	25.00
.0 constrain5	0.00	0.00	0.00	1.00	1.00	0.00	32.00	>=	32.00
1 constrain6	0.00	0.00	0.00	0.00	1.00	1.00	18.00	>=	18.00
2 constrain7	1.00	1.00	1.00	1.00	1.00	1.00	70.00	-	70.00
.3									
4 Production:									
5 period1	10.00								
.6 period2	17.00								
7 period3	11.00								
8 period4	14.00								
9 period5	18.00								
0 period6	0.00								
revenue=	25380.00								

(c) Add constraint $x_1 \leq 15$. The model is as follows:

$$\begin{aligned} \max z &= 320x_1 + 500x_2 + 420x_3 + 300x_4 + 270x_5 + 210x_6\\ s.t. & x_1 + x_6 \ge 10\\ x_1 + x_2 \ge 12\\ x_2 + x_3 \ge 20\\ x_3 + x_4 \ge 25\\ x_4 + x_5 \ge 32\\ x_5 + x_6 \ge 18\\ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 70\\ x_1 \le 15\\ x_i \ge 0, i = 1, \cdots, 6 \ and \ integer \end{aligned}$$

The maximum revenue is \$25380 with optimal solution = (10, 17, 11, 14, 18, 0).

3 Items:	period1	period2	period3	period4	period5	period6			
4	320.00	500.00	420.00	300.00	270.00	210.00			
5 Conditions:							Usage	Constraint	Available
6 constrain1	1.00	0.00	0.00	0.00	0.00	1.00	10.00	>=	10.00
7 constrain2	1.00	1.00	0.00	0.00	0.00	0.00	27.00	>=	12.00
8 constrain3	0.00	1.00	1.00	0.00	0.00	0.00	28.00	>=	20.00
9 constrain4	0.00	0.00	1.00	1.00	0.00	0.00	25.00	>=	25.00
10 constrain5	0.00	0.00	0.00	1.00	1.00	0.00	32.00	>=	32.00
11 constrain6	0.00	0.00	0.00	0.00	1.00	1.00	18.00	>=	18.00
12 constrain7	1.00	1.00	1.00	1.00	1.00	1.00	70.00	=	70.00
13 constrain8	1.00	0.00	0.00	0.00	0.00	0.00	10.00	<=	15.00
14									
15 Production:									
16 period1	10.00								
17 period2	17.00								
18 period3	11.00								
19 period4	14.00								
20 period5	18.00								
21 period6	0.00								
22 revenue=	25380.00								

(d) Add constraint $x_3 \leq 20$. The model is as follows:

$$\max z = 320x_1 + 500x_2 + 420x_3 + 300x_4 + 270x_5 + 210x_6$$
 s.t. $x_1 + x_6 \ge 10$
 $x_1 + x_2 \ge 12$
 $x_2 + x_3 \ge 20$
 $x_3 + x_4 \ge 25$
 $x_4 + x_5 \ge 32$
 $x_5 + x_6 \ge 18$
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 70$
 $x_1 \le 15$
 $x_3 \le 20$
 $x_i \ge 0, i = 1, \dots, 6 \text{ and integer}$

The maximum revenue is \$25380 with optimal solution = (10, 17, 11, 14, 18, 0).

3 Items:	period1	period2	period3	period4	period5	period6			
4	320.00	500.00	420.00	300.00	270.00	210.00			
5 Conditions:							Usage	Constraint	Available
6 constrain1	1.00	0.00	0.00	0.00	0.00	1.00	10.00	>=	10.00
7 constrain2	1.00	1.00	0.00	0.00	0.00	0.00	27.00	>=	12.00
8 constrain3	0.00	1.00	1.00	0.00	0.00	0.00	28.00	>=	20.00
9 constrain4	0.00	0.00	1.00	1.00	0.00	0.00	25.00	>=	25.00
0 constrain5	0.00	0.00	0.00	1.00	1.00	0.00	32.00	>=	32.00
constrain6	0.00	0.00	0.00	0.00	1.00	1.00	18.00	>=	18.00
2 constrain7	1.00	1.00	1.00	1.00	1.00	1.00	70.00	=	70.00
constrain8	1.00	0.00	0.00	0.00	0.00	0.00	10.00	<=	15.00
4 constrain9	0.00	0.00	1.00	0.00	0.00	0.00	11.00	<=	20.00
15									
l6 Production:									
7 period1	10.00								
period2	17.00								
period3	11.00								
period4	14.00								
period5	18.00								
period6	0.00								
revenue =	25380.00								

5

(a) Interpretation 1

Let Rugby fields, Football fields, Soccer fields, Dog park, Playground, Walking/running trails, Softball fields and Baseball fields are ith (i=1,...,8) project.

Assume

$$x_i = \left\{ \begin{array}{ll} 1 & \text{if ith project is constructed, } i=1,...,8 \\ 0 & \text{otherwise} \end{array} \right.$$

Then the model is as follows:

$$\max z = 4700x_1 + 12500x_2 + 32000x_3 + 7500x_4 + 41000x_5 + 47000x_6 + 23000x_7 + 16000x_8$$
 s.t.
$$7x_1 + 12x_2 + 20x_3 + 6x_4 + 3x_5 + 25x_6 + 5x_7 + 8x_8 \le 55$$

$$75000x_1 + 180000x_2 + 350000x_3 + 45000x_4 + 120000x_5 + 80000x_6 + 115000x_7 + 210000x_8 \le 550000$$

$$3x_1 + 2x_2 + x_3 + 3x_4 + 2x_5 + x_6 + 2x_7 + 3x_8 \le 1.75(x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8)$$

$$0 \le x_i \le 1, i = 1, \dots, 8, \text{ integer}$$

After simplification, the model becomes:

$$\begin{aligned} \max z &= 4700x_1 + 12500x_2 + 32000x_3 + 7500x_4 + 41000x_5 + 47000x_6 + 23000x_7 + 16000x_8\\ s.t. & 7x_1 + 12x_2 + 20x_3 + 6x_4 + 3x_5 + 25x_6 + 5x_7 + 8x_8 \leq 55\\ 75000x_1 + 180000x_2 + 350000x_3 + 45000x_4 + 120000x_5 + 80000x_6 + 115000x_7 + 210000x_8 \leq 550000\\ 1.25x_1 + 0.25x_2 - 0.75x_3 + 1.25x_4 + 0.25x_5 - 0.75x_6 + 0.25x_7 + 1.25x_8 \leq 0\\ 0 \leq x_i \leq 1, i = 1, \cdots, 8, \text{ integer} \end{aligned}$$

3 Items:	project1	project2	project3	project4	project5	project6	project7	project8			
4	4700.00	12500.00	32000.00	7500.00	41000.00	47000.00	23000.00	16000.00			
5 Conditions:									Usage	Constraint	Available
6 constrain1	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00	53.00	<=	55.00
7 constrain2	75000.00	180000.00	350000.00	45000.00	120000.00	80000.00	115000.00	210000.00	495000.00	<=	550000.00
8 constrain3	1.25	0.25	-0.75	1.25	0.25	-0.75	0.25	1.25	0.00	<=	0.00
9											
10											
11 Production:											
12 project1	0.00										
13 project2	1.00										
14 project3	0.00										
15 project4	0.00										
16 project5	1.00										
17 project6	1.00										
18 project7	1.00										
19 project8	0.00										
20 usage=	123500.00										

The maximum annual usage is 123500 with $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (0, 1, 0, 0, 1, 1, 1, 0)$.

Interpretation 2

Assume x_i = number of project 1 are constructed, i = 1, ..., 8.

Replace $0 \le x_i \le 1, i = 1, \dots, 8$, integer by $x_i \ge 0, i = 1, \dots, 8$, integer. Then the model is as follows:

Items:	project1	project2	project3	project4	project5	project6	project7	project8			
	4700.00	12500.00	32000.00	7500.00	41000.00	47000.00	23000.00	16000.00			
Conditions:									Usage	Constraint	Available
constrain1	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00	42.00	<=	55.00
constrain2	75000.00	180000.00	350000.00	45000.00	120000.00	80000.00	115000.00	210000.00	440000.00	<=	550000.00
constrain3	1.25	0.25	-0.75	1.25	0.25	-0.75	0.25	1.25	0.00	<=	0.00
0											
1 Production:											
2 project1	0.00										
3 project2	0.00										
4 project3	0.00										
5 project4	0.00										
6 project5	3.00										
7 project6	1.00										
8 project7	0.00										
9 project8	0.00										
0 usage=	170000.00										

The maximum annual usage is 170000 with $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (0, 0, 0, 0, 3, 1, 0, 0)$.

(b) Interpretation 1

In this case, the model is as follows:

$$\begin{aligned} \max z &= 3x_1 + 2x_2 + x_3 + 3x_4 + 2x_5 + x_6 + 2x_7 + 3x_8\\ s.t. &\quad 7x_1 + 12x_2 + 20x_3 + 6x_4 + 3x_5 + 25x_6 + 5x_7 + 8x_8 \leq 55\\ 75000x_1 + 180000x_2 + 350000x_3 + 45000x_4 + 120000x_5 + 80000x_6 + 115000x_7 + 210000x_8 \leq 550000\\ 4700x_1 + 12500x_2 + 32000x_3 + 7500x_4 + 41000x_5 + 47000x_6 + 23000x_7 + 16000x_8 \geq 120000\\ 0 &\leq x_i \leq 1, i = 1, \cdots, 8, \text{ integer} \end{aligned}$$

3 Items:	project1	project2	project3	project4	project5	project6	project7	project8			
4	3.00	2.00	1.00	3.00	2.00	1.00	2.00	3.00			
5 Conditions:									Usage	Constraint	Available
6 constrain1	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00	48.00	<=	55.00
7 constrain2	75000.00	180000.00	350000.00	45000.00	120000.00	80000.00	115000.00	210000.00	550000.00	<=	550000.00
8 constrain3	4700.00	12500.00	32000.00	7500.00	41000.00	47000.00	23000.00	16000.00	120000.00) >=	120000.00
9											
10											
11 Production:											
12 project1	0.00										
13 project2	0.00										
14 project3	1.00										
15 project4	0.00										
16 project5	1.00										
17 project6	1.00										
18 project7	0.00										
19 project8	0.00										
20 averagepriority=	4.00										

The minimum sum of priority is 4 with with $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (0, 0, 1, 0, 1, 1, 0, 0)$.

Interpretation 2

Assume x_i = number of project 1 are constructed, i = 1, ..., 8.

Replace $0 \le x_i \le 1, i = 1, \dots, 8$, integer by $x_i \ge 0, i = 1, \dots, 8$, integer. Then the model is as follows:

3 Items:	project1	project2	project3	project4	project5	project6	project7	project8			
4	3.00	2.00	1.00	3.00	2.00	1.00	2.00	3.00			
5 Conditions:									Usage	Constraint	Available
6 constrain1	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00	53.00	<=	55.00
7 constrain2	75000.00	180000.00	350000.00	45000.00	120000.00	80000.00	115000.00	210000.00	280000.00	<=	550000.00
8 constrain3	4700.00	12500.00	32000.00	7500.00	41000.00	47000.00	23000.00	16000.00	135000.00	>=	120000.00
9											
10											
11 Production:											
12 project1	0.00										
13 project2	0.00										
14 project3	0.00										
15 project4	0.00										
16 project5	1.00										
17 project6	2.00										
18 project7	0.00										
19 project8	0.00										
20 averagepriority=	4.00										

The minimum sum of priority is 4 with with $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (0, 0, 0, 0, 1, 2, 0, 0)$.

(c) Interpretation 1

In this case, the model is as follows:

$$\begin{aligned} \max z &= 7x_1 + 12x_2 + 20x_3 + 6x_4 + 3x_5 + 25x_6 + 5x_7 + 8x_8 \\ s.t. \quad 7x_1 + 12x_2 + 20x_3 + 6x_4 + 3x_5 + 25x_6 + 5x_7 + 8x_8 &\leq 55 \\ 75000x_1 + 180000x_2 + 350000x_3 + 45000x_4 + 120000x_5 + 80000x_6 + 115000x_7 + 210000x_8 &\leq 550000 \\ 1.25x_1 + 0.25x_2 - 0.75x_3 + 1.25x_4 + 0.25x_5 - 0.75x_6 + 0.25x_7 + 1.25x_8 &\leq 0 \\ 0 &\leq x_i \leq 1, i = 1, \cdots, 8, \text{ integer} \end{aligned}$$

3 Items:	project1	project2	project3	project4	project5	project6	project7	project8			
4 acreage per project	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00			
5 usage per project	4700.00	12500.00	32000.00	7500.00	41000.00	47000.00	23000.00	16000.00			
6 Conditions:									Usage	Constraint	Available
7 constrain1	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00	52.00	<=	55.00
8 constrain2	75000.00	180000.00	350000.00	45000.00	120000.00	80000.00	115000.00	210000.00	505000.00	<=	550000.00
9 constrain3	1.25	0.25	-0.75	1.25	0.25	-0.75	0.25	1.25	-0.25	<=	0.00
10											
11											
12 Production:											
13 project1	1.00										
14 project2	0.00										
15 project3	1.00										
16 project4	0.00										
17 project5	0.00										
18 project6	1.00										
19 project7	0.00										
20 project8	0.00										
21 acreage=	52.00										
22 usage=	83700.00										

The maximum acreage used is 52 with $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (1, 0, 1, 0, 0, 1, 0, 0)$. The annual usage with these facilities is 4,700 + 32,000 + 47,000 = 83,700.

Interpretation 2

Assume $x_i = \text{number of project 1 are constructed}, i = 1, ..., 8.$

Replace $0 \le x_i \le 1, i = 1, \dots, 8$, integer by $x_i \ge 0, i = 1, \dots, 8$, integer. Then the model is as follows:

3 Items:	project1	project2	project3	project4	project5	project6	project7	project8			
4 acreage per project	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00			
5 usage per project	4700.00	12500.00	32000.00	7500.00	41000.00	47000.00	23000.00	16000.00			
6 Conditions:									Usage	Constraint	Available
7 constrain1	7.00	12.00	20.00	6.00	3.00	25.00	5.00	8.00	55.00	<=	55.00
8 constrain2	75000.00	180000.00	350000.00	45000.00	120000.00	80000.00	115000.00	210000.00	275000.00	<=	550000.00
9 constrain3	1.25	0.25	-0.75	1.25	0.25	-0.75	0.25	1.25	-1.25	<=	0.00
10											
11											
12 Production:											
13 project1	0.00										
14 project2	0.00										
15 project3	0.00										
16 project4	0.00										
17 project5	0.00										
18 project6	2.00										
19 project7	1.00										
20 project8	0.00										
21 acreage=	55.00										
22 usage=	117000.00										

The maximum acreage used is 55 with $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (0, 0, 0, 0, 0, 0, 2, 1, 0)$. The annual usage with these facilities is 2 * 47,000 + 23,000 = 117,000.