

TECHNICAL REPORT NO. 130

MA 030816

Marian Marian Sala Comment Pind.

COMPUTER PROGRAMS FOR HELICOPTER AERODYNAMIC STABILITY EVALUATION

ROBERT R. OEHRLI

August 1976

OCT IS 1978

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

U.S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
Aberdeen Proving Ground, Maryland

DISPOSITION

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

WARNING

Information and data contained in this document are based on the input available at the time of preparation. The results may be subject to change and should not be construed as representing the DARCOM position unless so specified

TRADE NAMES

「日」 中の年末に は こ 日

The use of trad names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. The report may not be cited for purposes of advertisement.

	SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	REPORT DOCUMENTATION F	READ INSTRUCTIONS BEFORE COMPLETING FORM				
(0)	I. REPORT NUMBER	. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
4	Technical Report, No. 130					
الله أسراح	4: Tire (and Sability)	At Application Statements	5 TYPE OF REPORT & PERIOD COVERED			
61	Computer Programs for Helicopter Ae Stability Evaluation.	rodynamic				
- /	Stability Evaluation (6. PERFORMING ORG. REPORT NUMBER			
	7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)			
1	, and the same of	j	a. CONTRACT OR GRANT NUMBER(S)			
(10)	Robert R./Oehrli					
1	9. PERFORMING ORGANIZATION NAME AND ADDRESS		10.			
	5. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PPOGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
	US Army Materiel Systems Analysis A	ctivity 🖊 📗	DA Project No. 1R765706M541			
ļ	Aberdeen Proving Ground, MD 21005		<u> </u>			
	11. CONTROLLING OFFICE NAME AND ADDRESS		August 1976			
	US Army Materiel Development & Read 5001 Eisenhower Avenue	iness Command	13 HUMBER OF PAGES			
	Alexandria, VA 22333 14. MONITORING AGENCY NAME & ADDRESS(II different		110			
	14. MONITORING AGENCY NAME & ADDRESS(II dillerent	from Controlling Office)	15 SECURITY CLASS (of this report)			
(///	AMEAA-114,-12pl		UNCLASSIFIED			
0	- TITI - AM - ITI V		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
Í	16. DISTRIBUTION STATEMENT (of this Report)	(1) (1)	7			
		(12)14	<i>⊃F</i> · \			
j	Approved for public release, distribution unlimited.					
ď	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)					
	(2) LA-1-1-125111 -M-51111					
ł	ノシノ レイーエードー バンこう	リノーバーこ	1111			
	The second section of the second section is a supplication of the second section of the second section is a second section of the second section secti	and the second				
t	18. SUPPLEMENTARY NOTES					
l						
L						
[19 KEY WORDS (Continue on reverse side it necessary and	identify by block numt =r)				
1	MONE					
	NONE					
<u> </u>	20. ABSTRACT (Continue on reverse slop it necessary and identity by block number)					
ľ	The three equations of motion	for heliconters	are reviewed for both natch			
	The three equations of motion for helicopters are reviewed for both pitch and roll. These include provisions for a simplified second order stability					
	augmentation system. Two methods of calculating the required stability derivatives and solution of the equations of motion in terms of period and time to damp or time histories for various control motions are shown.					
ļ						
i	and the state of t	voiiviva iviati				
ļ						
L						

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered

TABLE OF CONTENTS

	<u>Pa</u>	ıge
1.	INTRODUCTION	5
2.	GENERAL STABILITY PROGRAM	7
3.	STABILITY EQUATIONS REVIEW	9
4.	LONGITUDINAL ROOTS	.4
5.	LATERAL ROOTS	20
6.	STABILITY DERIVATIVES	2:2
7.	EXAMPLE CALCULATION	23
	REFERENCES	<u>?</u> 7
	DISTRIBUTION LIST	29
	APPENDIX A. Helicopter Stability Derivative Program A	\-1
	APPENDIX B. Program for Solution of Longitudinal Equations	3-1
	APPENDIX C. Longitudinal Transient Motion Program	:-1
	APPENDIX D. Program for Solution of Lateral Equations I)-1
	APPENDIX E. Lateral Transient Motion Program E	-1
	APPENDIX F. Calculations	:-1

1. INTRODUCTION

The state of the s

September 1

The feasibility of new helicopter designs depends to a great extent upon an analysis of their flying qualities. Five programs have been developed to carry out feasibility analysis:

These programs evaluate:

- Helicopter Stability Derivatives
 including static stability analysis
- 2. Solution of Longitudinal Equations of Motion
- 3. Longitudinal Motion (Time History)
- 4. Solution of Lateral Equation of Motion
- 5. Lateral Motion (Time History)

Provisions are included in the programs for investigation of stability augmentation.

A sample calculation is included for a utility helicopter. The helicopter used in the sample calculation was chosen to demonstrate the application of the mathematics only and the type of evaluation that can be made but not to evaluate present capability.

It is recognized that the helicopter chosen is not a current inventory item but was used because the dynamic components are representative of present design and there was extensive flight data available with and without the SAS to compare to calculated results.

In general, the procedures and notation follow those established for fixed wing aircraft. Calculation of the rotor stability derivatives are added and the familiar aircraft elevator, ailcron, and rudder deflections $\frac{\delta}{A}$, $\frac{\delta}{A}$, and $\frac{\delta}{R}$ are replaced with the longitudinal cyclic,

lateral cyclic and tail rotor collective B_1 , A_1 , and Θ_{tR} . Differences in the rotor derivatives between articulated, rigid and teetering rotors may be evaluated with the stability derivative program.

2. GENERAL STABILITY PROBLEM

Normal aircraft have six equations of motion. The general solution of these equations is a breakdown of two sets of three into the longitudinal and lateral modes. Each of these are represented by a determinant, the solution of which is a quartic equation.

There are four possible solutions of the quartic according to the roots λ , being real or complex and having a positive or negative real part.

$$\lambda = a \pm b i$$
 etc.

A positive real part indicates an unstable or diverging motion and the complex root an oscillation. A measure of the damping of its oscillation is the time to damp to half or double amplitude.

$$T_{1/2} = \frac{.693}{a}$$

and period

William Little Commence of the control of the contr

$$p = \frac{2\pi}{b}$$

Another common way to write the stability quartic is to indicate the natural frequency, $\omega_{\rm n}$ and damping ratio, ς , as

$$(s^2 + 2\zeta_1 \omega_{n_1} s + \omega_{n_1}^2) (s^2 + 2r_2 \omega_{n_2} s + \omega_{n_2}^2)$$

The characteristic modes for nearly all aircraft in the longitudinal direction are two oscillations, one the long period or "phugoid" motion with very light damping and the other mode a short period one with

very heavy damping. In the lateral direction there are three normal modes. Two are aperiodic, one a very rapid convergence and the other a slow divergence known as "spiral divergence." The third mode is an oscillatory one, the well known "dutch roll."

In general, for stable oscillations, it is desirable to have damping ratios on the order of 0.6. Specifications for various types of aircraft generally give values of ζ , ω_n or P and $t_{1/2}$ that shall be contractually met, for example see MIL-H-8501A.

3. STABILITY EQUATIONS REVIEW

THE MOMENTS AND FORCES ACTING ON A VEHICLE ARE WRITTEN AS:

AIRPLANE	HELICOPTER	
L = CL 1/2 P V2S	$= C_1 P V_{TIP}^2 \pi R^2$	LIFT
D=C _D 1/2 P V2S	$= C_D \rho V_{TIP}^2 \pi R^2$	DRAG
$X = C_X 1/2 P V^2 S$	= $C_X P V_{TIP}^2 \pi R^2$	X AXIS FORCE
Y = C _Y 1/2 P V ² S	$= C_Y P V_{TIP}^2 \pi R^2$	Y AXIS FORCE
$Z = C_7 1/2 P V^2 S$	$= C_Z P V_{TIP}^2 \pi R^2$	7 AXIS FORCE
L = CL 1/2 P V2Sb	$=C_L P V_{\Pi P}^2 \pi R^3$	ROLLING MOMENT
M=CM 1/2 P V2ST	= $C_M \rho V_{TIP}^2 \pi R^3$	PITCHING MOMENT
N=CN1/2 P V2Sb	$=C_N P V_{TIP}^2 \pi R^3$	YAWING MOMENT

The equations themselves are broken down into two parts, the left and right hand sides. The right hand side represents the inertia forces.

$$\Sigma F_{x} = m \ u \qquad \qquad \Sigma F_{y} = m \ u \ (\dot{\beta} + \dot{\psi})$$

$$\Sigma F_{z} = m \ (\dot{w} - u \ \dot{\theta}) \qquad \qquad \Sigma L = I_{x} \ \dot{\phi}$$

$$\Sigma M = I_{y} \ \dot{\theta} \qquad \qquad \Sigma N = I_{z} \ \dot{\psi}$$

The left hand forces and moments are series expanded in terms of the changes resulting from the perturbations in the linear and angular velocities and accelerations of the aircraft. These are known as the stability derivatives where

$$\Sigma F_{y} = \frac{\partial F_{y}}{\partial 3} \beta + \frac{\partial f_{y}}{\partial \dot{\psi}} \dot{\phi} + \frac{\partial F_{y}}{\partial \dot{\psi}} \dot{\psi} + \text{etc.}$$

It is the purpose of this note to develop a program for estimating the stability derivatives of helicopters and additional programs to utilize these derivatives in solving the resulting equations of motion. A further objective is to develop step by step solutions so that a transient motion of the helicopter after a disturbance can be obtained.

Each of the forces varies with the disturbance velocities and their time derivatives:

$$X_{\mathbf{u}} = \frac{\partial X}{\partial \mathbf{u}}$$
 $\dot{\mathbf{u}} = \frac{\partial \mathbf{u}}{\partial \mathbf{t}}$

$$X_{\dot{u}} = \frac{\partial X}{\partial \dot{u}}$$
 $CX_{\dot{u}} = \frac{\partial C_{\dot{u}}}{\partial \dot{u}}$ etc

The standard aircraft longitudinal equations in terms of the stability derivatives are: (for example see reference 11).

$$X_{\mathbf{u}}\mathbf{u} + X_{\alpha}\mathbf{\alpha} \qquad -\mathbf{W}\theta \qquad + X_{\delta_{\mathbf{e}}}\delta_{\mathbf{e}} = \mathbf{m} \dot{\mathbf{u}}$$

$$Z_{\mathbf{u}}\mathbf{u} + Z_{\alpha}\mathbf{\alpha} + Z_{\alpha}\dot{\mathbf{\alpha}} \qquad Z_{\theta}\dot{\theta} + Z_{\delta_{\mathbf{e}}}\delta_{\mathbf{e}} = \mathbf{m} (\dot{\mathbf{w}} - \mathbf{V}\dot{\theta})$$

$$M_{\mathbf{u}}\mathbf{u} + M_{\alpha}\mathbf{\alpha} + M_{\alpha}\dot{\mathbf{\alpha}} \qquad M_{\theta}\dot{\theta} + M_{\delta_{\mathbf{m}}}\delta_{\mathbf{e}} = \mathbf{I}_{\mathbf{y}}\ddot{\theta}$$

 $\delta_{e} = B_{1}$ = Pitch Cyclic Longitudinal Control Deflection

The lateral equations are:

$$Y_{\beta}\beta + Y_{\dot{\psi}}\dot{\psi} + W\phi + Y_{\dot{\phi}}\dot{\phi} + Y_{\delta_{R}}\delta_{R} + Y_{\delta_{a}}\delta_{a} = m (\dot{v} + V\dot{\psi})$$

$$L_{\beta}\beta + L_{\dot{\psi}}\dot{\psi} \qquad L_{\dot{\phi}}\dot{\phi} + L_{\delta_{R}}\delta_{P} + L_{\delta_{a}}\delta_{a} = I_{x}\phi$$

$$N_{\beta}\beta + N_{\dot{\psi}}\dot{\psi} \qquad N_{\dot{\phi}}\dot{\phi} + N_{\delta_{R}}\delta_{R} + N_{\delta_{a}}\delta_{a} = I_{z}\psi$$

 $\delta_R = \theta_{tR} = Tail Rotor Collective Control Deflection$ $\delta_A = A_1 = Lateral Cyclic Control Deflection$ $C_{y_{\beta}} = Y_{\beta} / q \pi R^2 \quad Typical Derivative Coefficient$

Solution of these equations takes many forms.

For static lateral stability the variation of control deflection in steady sideslips based on solution of the determinants become:

$$\frac{d\phi}{d\beta} = \frac{-q \pi R^{2}}{W} \left({^{C}y_{\beta}} \left[{^{C}k_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right] + {^{C}n_{\beta}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right) + {^{C}n_{\beta}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}k_{\theta TR}} \right] + {^{C}n_{\beta}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}k_{\theta TR}} \right] + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right] + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right] + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right] + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right] + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right] + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \right] + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} - {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta TR}} \right]^{C} n_{A1} + {^{C}n_{\theta TR}} \right]^{C} n_{A1} + {^{C}n_{\theta TR}} \left[{^{C}y_{\theta T$$

$$\frac{\mathrm{d} A 1}{\mathrm{d} \phi} = -\frac{\binom{C_{\ell_{\beta}}}{C_{\beta}} \binom{C_{n_{\theta \mathrm{TR}}} + \binom{C_{n_{\beta}}}{C_{\theta \mathrm{TR}}} \binom{C_{\ell_{\theta \mathrm{TR}}}}{\mathrm{d} \phi}}{\binom{C_{\ell_{\theta \mathrm{TR}}}}{C_{n_{A 1}} - \binom{C_{n_{\theta \mathrm{TR}}}}{C_{n_{\theta \mathrm{TR}}}} \binom{C_{\ell_{\theta \mathrm{TR}}}}{A 1}} \frac{\mathrm{d} \beta}{\mathrm{d} \phi}$$

$$C_{y_{\beta}} = Y_{\beta}/q\pi R^{2} \qquad C_{x_{\beta}} = \frac{L_{\beta}}{u\pi R^{3}} \qquad \text{etc}$$

In a steady state turn $\beta = 0$ and the bank and turn rates become

$$\dot{\phi} = g \frac{\tan \phi}{v} \theta$$

$$\dot{\psi} = g \frac{\tan \phi}{V} \cos \phi$$

which leads to the result

$$\theta_{TR} = \frac{-g \frac{t en \phi}{v} \cdot [\theta \ (^{C} \ell_{A1}^{C} \ell_{\phi}^{c} - ^{C} r_{A1}^{C} r_{\phi}^{c}) - \cos \phi \ (^{C} \ell_{A1}^{C} \ell_{\psi}^{c} - ^{C} r_{A1}^{C} r_{\psi}^{c})]}{C_{\ell} \theta_{TR}^{C} r_{A1c}^{C} - C_{n} \theta_{TR}^{C} \ell_{A1c}^{c}}$$

A1 =
$$\frac{-g \frac{\tan \phi}{v} \left[\theta \left(\frac{-C}{L_{\theta_{TR}}} C_{n_{\dot{\phi}}} + \frac{C_{n_{\theta_{TR}}} C_{l_{\dot{\phi}}}}{C_{R}}\right) - \cos \phi \left(\frac{-C}{L_{\theta_{TR}}} C_{n_{\dot{\psi}}} + \frac{C_{n_{\theta_{TR}}} C_{l_{\dot{\psi}}}}{C_{R}}\right)\right]}{C_{L_{\theta_{TR}}} C_{n_{A1}} - C_{n_{\theta_{TR}}} C_{L_{\phi}} A_{1}}$$

In pitch the variation of control gradient with speed is

$$\frac{dB_1}{du} = \frac{C_{z_u} C_{m_\alpha} - C_{m_u} C_{z_\alpha}}{-C_{z_{B1c}} C_{m_\alpha} + C_{m_{B1c}} C_{z_\alpha}}$$

The longitudinal cyclic pitch control required in a steady turn is

$$B_{1} = \frac{g \frac{\tan \phi \sin \phi}{V} (C_{z_{\alpha}} C_{m_{\theta}^{*}} - C_{m_{\alpha}} C_{z_{\theta}^{*}}) + (\frac{1}{\cos \phi} - 1) C_{L_{\alpha}} C_{m_{\alpha}}}{C_{z_{\alpha}} C_{m_{B_{1}}} - C_{m_{\alpha}} C_{z_{B_{1}}}}$$

or

THE CONTRACTOR OF THE PROPERTY OF THE PROPERTY

$$B_{1} = \frac{g}{v} \frac{(n^{2} - 1)(C_{\alpha}C_{m_{\theta}} - C_{m_{\alpha}}C_{z_{\theta}}) + (n - 1)C_{\alpha}C_{n_{\alpha}}}{C_{z_{\alpha}C_{m_{\theta_{1}}} - C_{\alpha}C_{\alpha}}C_{z_{\theta_{1}}}}$$

$$C_{L_0} = W/q\pi R^2$$
, $n = Load Factor$

For pitch trim in stabilized level flight the load factor, n,is 1. Moments about the C.G. as shown in Figure 1 give:

$$B_{1} = \frac{\frac{X}{R} + \frac{H}{R} \frac{C_{H}}{C_{T}} + \frac{\mu^{2}}{2C_{T}} \frac{\lambda}{\mu} (2K_{f}V_{f} - C_{L_{\alpha_{t}}} \overline{TV}) - (2KV_{f} \alpha_{OL\beta} - C_{L_{\alpha_{t}}} \overline{TV} L_{t}) \frac{u^{2}}{2C_{T}}}{\frac{h}{R} - \frac{u^{2}}{2C_{T}}} (2K_{f}V_{f} - C_{L_{\alpha_{t}}} \overline{TV})$$

For steady pull ups the pitch damping term, $Cm_{\dot{\theta}}^*$, may be added as indicated in figure 1.

Solution of the static stability equilibrium equations has been added to the stability determinant program, Appendix'"A".

Dynamic stability analysis is considered in separate programs as discussed in the following section.

4. LONGITUDINAL ROOTS

The longitudinal determinant is

where

$$m' = \frac{mv}{qA_{D}}$$
, $I'y = Iyy/qA_{D}ROTR$

 $\frac{2}{\mu_2}$ CmaB = 2Kf \overline{V} f = $\frac{2KfVOLF}{Lo3}$

$$B_{1}\frac{h}{R} = \frac{X}{R} + \frac{C_{H}}{C_{T}} \times \frac{h}{R} + \frac{\mu^{2}}{2C_{T}} 2K_{1}\overline{V}_{1}^{2} (B_{1} + \frac{\lambda}{\mu} - \alpha_{0}B) - \frac{\mu^{2}}{2C_{T}}C_{L_{\alpha 1}}(B_{1} + \frac{\lambda}{\mu} + i_{1}) \cdot \frac{C_{m}\theta}{C_{T}} \frac{g(n-1)}{V}$$

$$\frac{X}{R} + \frac{C_{H}}{C_{T}} \frac{h}{R} + \frac{\mu}{2C_{T}} \frac{\lambda}{\mu} (2K_{1}\overline{V}_{1}^{2} - C_{L_{\alpha 1}} \overline{1V}) - \frac{\mu^{2}}{2C_{T}} (2K_{1}V_{1}^{2} \alpha_{0}L_{B} - C_{L_{\alpha 1}} \overline{1V}_{1}^{2}) + \frac{C_{m}\theta}{C_{T}} \frac{g(n-1)}{V}$$

 $\frac{h}{R} - \frac{\mu^2}{2C_T} \left(2K_f \overline{V_f} - C_L \alpha_f \overline{V} \right)$

. ا

This gives the stability quartic $A's^4 + B's^3 + C's^2 + D's + E'$. Let $A = C_{X_{\mu}}$, $B = C_{Z_{\mu}}$, $C = C_{X_{\alpha}}$, $E = C_{Z_{\alpha}}$, $D = C_{Z_{\alpha}^{*}}$ m', $F = C_{Z_{\alpha}^{*}} + m'$ Then: C' D١ B' E١ A١ $\frac{m'}{v}$ DIy' AECm• -AEIy' -ADIy' $\frac{m'}{v}$ Ely' +ADCm_{Θ} -AFC_m $EC_L^{C_{mu}}$ $-\frac{-m!}{v}DC_{m_{\dot{\Theta}}^{\bullet}} -AFCm_{\dot{\Theta}}^{\bullet} -BCC_{m\dot{\theta}}^{\bullet}$ $+\frac{m'}{v}FC_{m_{\alpha}^{\bullet}}$ $-\frac{m'}{v}EC_{m_{\alpha}^{\bullet}}$ $-BC_{L}C_{m_{\alpha}^{\bullet}}$ + $\frac{m}{v}$ FC_m +BCIy' DC_LC_{mu}

These are solved in the program of Appendix "B". For hover the Z equation V_{Υ}^{\bullet} term becomes $\dot{\omega}$. This is accomplished by setting v=1 in the input of the program.

It is easy to introduce various autopilot gains into the quartic. For example, $C_{52} = B_1/\theta$ adds these terms to the quartic coefficients (Table B.1).

ΔΕ'

ΔD'

If for a given aircraft and flight condition a set of desired longitudinal phugoid - short period characteristics are required, a desired quartic is known:

ΔC'

A's⁴ + B's³ + C's² +D's + E' Desired

A's⁴ + B's³ + C's² + D's + E' Aircraft Base
$$\frac{\Delta As^4 + \Delta B's^3 + \Delta C's^2 + \Delta D's + \Delta E'}{\Delta As^4 + \Delta B's^3 + \Delta C's^2 + \Delta D's + \Delta E'}$$
 Increment

For each flight condition it is possible to solve for a set of feedback gains to satisfy this condition. Five sets would be required. For example with:

$$C'_{52} = B1/\theta$$
 $C'_{15} = B1/\alpha$ $C'_{51} = B1/\dot{\alpha}$ $C'_{16} = B1/\dot{\alpha}$ $C'_{50} = B1/\ddot{\theta}$ $C'_{17} = B1/\ddot{\alpha}$

From the expansion of the stability quartic, obtain the coefficient increments due to each, see Table B.1.

$$A_{15} = \Delta A$$
 due to C'₁₅ etc.

which gives for each flight condition the set:

A15:C'15+A16·C'16+A50·C'50+A51·C'51+A52·C'52 = ΔA_R B15·C'15+B16·C'16+B50·C'50+B51·C'51+B52·C'52 = ΔB_R C15·C'15+C16·C'16+C50·C'50+C51·C'51+C52·C'52 = ΔC_R D15·C'15+D16·C'16+D50·C'50+D51·C'51+D52·C'52 = ΔD_R D15·C'15+E16·C'16+E50·C'50+E51·E'51+E52·C'52 = ΔE_R

Solution of this set will give the desired stability.

Scheduling of 5 multiple gains through the entire flight regime becomes quite cumbersome. Usually, a hunt and trial method using only one or two gains to obtain an approximate solution is used. To avoid this problem the idea of the high gain-model following autopilot has been used.

In this figure, if the autopilot gains are adjusted so that a desired damping ratio of .5 or .6 is obtained, and if the variable gain is made large enough, the airframe dynamics will tend to be masked and the damping ratio set in to the autopilot will be obtained.

This arrangement is similar to the adaptive autopilot scheme (references 6, 10, and 12), except that the aircraft function is multiplied by the autopilot function in the equivalent circuit.

with this simplified arrangement an insight into the dynamic stability problem can be obtained by using the standard quartic root procedure as used for the airframe alone, see Table B.1. The required inputs have been set into Appendix B. A corresponding transient analysis is set up with provision for a variable gain in Appendix C.

Inspection of the $\ddot{\theta}$ equation shows in another way the influence of the autopilot terms

$$\ddot{\theta} = \frac{C_{m\mu} + C_{m\alpha} + C_{m\alpha} + C_{m\alpha} + C_{m\alpha} + GVC52C_{mB1}}{1y' - GV + C50 C_{mB1}} + C_{m\theta} \theta$$

Thus it can be seen in the denominator an increase in GV or C50 is equivalent to a change in the moment of inertia.

5. Lateral Roots

The lateral determinant is

where

$$m' = \frac{mV}{q \Pi R^2}$$
, $I_X' = \frac{I_{XX}}{q \Pi R^3}$, $I_Y' = \frac{I_{YY}}{q \Pi R^3}$

which gives the stability quartic $A's^4 + B's^3 + C's^2 + D's + E'$

These determinants are solved in the program of Appendix D. For hover, the side force equation term $V \psi$ disappears. This is accomplished by setting V=1 in the input of Appendix D. As for the longitudinal case, a simplified autopilot study is included. Autopilot gain coefficients are shown in Table D.1.

The corresponding transient analysis is included in the calculation of Appendix E.

6. STABILITY DERIVATIVES

Helicopter stability derivatives are influenced by the type of rotor. In general three types of rotor are commonly used.

- 1. articulated rotor
- 2. rigid rotor
- 3. teetering rotor

The first two transfer cyclic control moments directly to the rotor shaft. The cyclic lift couple for the first has an arm equal to the radius of the flapping hinge and the second equal to the radius of the blade spanwise center of lift. The teetering rotor develops its moment by tilting the lift vector about the C.G. No moment is developed at zero lift.

Two programs have been developed for estimating stability derivatives. The first program was based on combining the equations and data of reference 1 and 2. In general, this work was based on the articulated rotor only. In addition contributions of the rotor to some of the small damping turns were neglected.

For this reason a second program based on a rotor strip analysis was developed to calculate complete sets of stability derivatives including a complete model build up. The first program is shown in table Al and the second table A2 of appendix A. The method of Al being a closed solution is much cheaper to operate than program A2 which requires a great deal of machine iteration and thus machine time.

In general values obtained from these methods may be used where wind tunnel or other test data are not available. Some useage of

these methods and results obtained are presented in the following examples.

7. EXAMPLE CALCULATION

Several initial studies have been completed using the methods of this report. These are shown in appendix F.

The first study was completed using the abbreviated derivative calculation of table Al. The purpose of this study was to illustrate the influence of variations of the stability derivatives in the dynamic stability of a marginally stable basic helicopter examples I and II. In addition, the static stability relations of a utility helicopter was investigated in example III.

Stability derivatives are shown in Table F.1, Appendix F for typical study helicopters whose characteristics are:

			I	II	111
W	Weight	lbs.	11867	11867	14800
CDA	Helicopter drag area	sq. ft.	36.5	36.5	21
V	Velocity	ft/sec	100	0	169

			I	11	III
TIPMS	Main Rotor Tip Mach No.		.6	.6	.65
SIGMA	Main Rotor Solidity	B*C/ (3.14*R)	.062	.062	.09
ROTR	Main Rotor Radius	ft.	28	28	28
Cĭ	Speed of Sound	ft/sec	1115	1115	1115
RHO	Density	slugs/ ft3	.0024	.0024	.0024
XR	Distance Rotor to CG Horiz.	ft-CG fw	d1	1	.5
HR	Distance Rotor to CG Vert.	ft+CG below	8.0	8.0	6,25
HF	Munks KF for Fuselages		.8	.8	.7
VOLF	Munks Fuselage Volume	cu. ft.	1000	1000	1500
ST	Area Horiz. Tail	sq. ft.	12.4	12.4	30
SVT	Area Vert. Tail	sq. ft.	20	20	25
LT	Tail Length	ft.	28	28	33.3
TI	Horiz. Tail Incidence	rad.	0	0	0
SIGMAT	Tail Rotor Solidity		.167	.167	.167
TRR	Tail Rotor Radius	ft.	4.7	4.7	5.0
DS	Angle Shaft to Body Axis (+δ AHD Z)	Rad.	.174	.174	.087
SG	<pre>1 for DP=RHO*VTIP*VTIP, 0 for DP=RHO*V*V/2</pre>		0	1	1.0
BMF	Blade Mass Factor = C*RHO*5.73 (ROTOR**2)/I		10	10	10
ETA	Load Factor		1.0	1.0	1.0

From the stability derivatives of Table F.1, dynamic flight characteristics have been calculated for examples I and II. These are shown in Appendix F, Tables F.2 through F.4. The effects of changes in stability derivatives and autopilot gains are shown. Figures F.1 to F.3 show typical motions of the aircraft with and without typical autopilot data.

Finally, static stability data are tabulated in Table F.4 for example III. The data include pitch, equilibrium sideslip trim and steady turn data. These data are also plotted in Figures F.4 to F.8.

Figure F.6 indicates that the utility helicopter of example III should have adequate longitudinal control for a CG range of 16.0 inches. This range could be extended to 27.0 inches by coupling the horizontal tail to the longitudinal cyclic control. However, this would be the maximum amount possible since the gradient of control position versus speeds becomes critical at the aft CG, see Figure F.5.

Some recent flight data is available on a series of Bell Hellicopters with stability augmentation off. These helicopters use a 44 foot diameter rotor with 27 inch chord operating at tip speed of 745 feet per second. Aircraît using this rotor include the UH-1C and AH-1 series. Tests of the AH-1 series found the airplane with stability augmentation off to be dynamically unstable although not uncontrollable for several flight conditions.

Stability derivatives were estimated for these aircraft at hover at 7100 lbs and level flight at 40 and 140 knots forward speed. All derivatives were estimated by the rotor strip analysis of table A-2. In addition for the hover condition derivatives were estimated by the method of both tables Al and A2. These are tabulated in Table F.6. The estimated differences between using an equivalent teetering, articulated or rigid rotor at hover are also shown in Table F.6.

Calculated values of the period, P, and time to damp, t, using these derivatives are compared with flight values as follows:

where P/t +t time to double

-t time to half

LONGITUDINAL (NO SAS)

	Calculated	Flight	AH-1 ()	
Hover	16/Divergent			
40 kts	5.5/+63	16/+4 5/Neutral	(R) (Q)	
140 kts	DEAD BEAT	DEAD BEAT	(Q)	
LATERAL (NO SAS)				
Hover	5./Divergenc			
40 kts	Divergent	Divergent 5./-5	(R) (Q)	
140 kts	2.8/100	4.5/Neutral	(Q)	

In summary the methods of computing stability derivatives shown in table A-1 and A-2 both need continual correlation and updating.

The methods may be used as a basis of correlation or for use in preliminary estimates where wind tunnels or other test data is not available.

REFERENCES

- Seckel, Edward, "Stability and Control of Airplanes and Helicopters," Academic Press, 1964.
- 2. Tanner, Watson, "Charts for Estimating Rotary Wing Performance in Hover and at High Forward Speeds," NASA CR-114, 1964.
- 3. Kisielowski, E., "Generalized Rotor Performance," AD 648874, 1967.
- 4. Rickano, R. R., Gentry, J. R., "Development Testing of High Gain Adaptive Control Augmentation," AD 877025, 1970.
- 5. Aerodynamic Design Manual, Glenn L. Martin, Co., 1950.
- 6. Blakelock, John, "Automatic Control of Aircraft and Missiles," Wiley, 1965.
- 7. Gessow, A., Meyers, G. C., "Aerodynamics of the Helicopter," Ungar, 1967.
- 8. Nikolsky, A. A., "Helicopter Analysis," Wiley, 1951.
- 9. Etkin, B., "Dynamics of Flight," Wiley, 1959.

- 10. Gibson, J. E., "Nonlinear Automatic Control," McGraw Hill, 1963.
- 11. Ashkenas, I., Bates, C., McRuer, D., "Dynamics of the Airframe, Vol. II," BuAer Report AE 61-4, 1953.

APPENDIX A HELICOPTER STABILITY DERIVATIVE PROGRAM

TABLE A-1

C

THE PROPERTY OF THE PARTY OF TH

CLOSED SOLUTION ANALYSIS HELICOPTER STABILITY DERIVATIVES UTILIZATION PROGRESS REPORT

```
C
C
          THIS PROGRAM EVALUATES STABILITY DERIVATIVES FOR A SINGLE ROTOR
C
                      THIS FIRST CUT PROGRAM IS LARGELY BASED ON METHODS
C
      OUTLINED IN SECKELS BOOK COMBINED WITH DATA FROM SIKORSKY AND
C
      BOEING RCTOR CHARTS.
C
          THE REQUIRED INPUT CARDS AND PROPER COLUMNS ALONG WITH THE SYMBOLS
       AND IDENTIFICATION ARE PRESENTED IN THE FOLLOWING TABLE.
C
C
C
     CARD
           COLUMN SYMB 'L
C
      1
             1-10
                   W
                            WEIGHT
                                                                 LBS
C
            11-20
                   CDA
                            HELICOPTER DRAG AREA
                                                                  SQ. FT.
      ı
C
                                                                  FT/SEC
            21-30
                            VELOCITY
       1
                   V
C
                            MAIN ROTOR TIP MACH NO
            31-40
                   TIPHS
      1
                                                                 B*C/(3.14*R)
C
                    SIGMA
                            MAIN ROTOR SOLIDITY
            41-50
      ı
C
                                                                 FT.
            51-60
                   ROTR
                            MAIN ROTOR RADIUS
       ı
C
            61-70
                   Cl
                            SPEED OF SOUND
                                                                 FT./SEC.
       1
C.
      2
             1-10
                   RHO
                            DENSITY
                                                                 SLUGS/FT3
                                                                 FT -C.G. FWD
C
      2
                            DISTANCE ROTOR TO C.G. HORIZ
            11-20
                    XR
      2
                                                                 FT +C.G. RFLOW
C
                            DISTANCE ROTOR TO C.G. VERT.
            21 - 30
                   HR
C
      2
                            MUNKS KF FOR FUSELAGES
            31-4C
                   HF
C
      2
            41-50
                   VOLF
                            MUNKS FUSELAGE VOLUME
                                                                 CU.FT.
C
      2
                            AREA HORIZ TAIL
                                                                  SQ.FT.
            51-60
                   ST
C
      2
            61-70
                   SVT
                            AREA VERT
                                        TAIL
                                                                  SQ.FT.
C
      3
             1-10
                   LT
                            TAIL LENGTH
                                                                 FT.
C
      3
                            HORIZ TAIL INCIDENCE
                                                                 RAD.
            11-2C
                   TI
C
                           TAIL ROTOR SOLIDITY
      3
            21-30
                    SIGMA
C
      3
                   IRR
                            TAIL ROTOR RADIUS
            31-40
C
      3
            41-50
                   DS
                            ANGLE SHAFT TO RODY AXIS +S AHD Z RAD
C
      4
            1-10
                    SG
                            1 FOR DP =RHO+VTIP+VTIP O FOR DP=RHO+V+V/2
C
      4
           11-20
                   BMF
                           BLADE MASS FACTOR=C*RH3*5.73*(ROTOR**4)/1
C
      4
           21-30
                   FTA
                           LOAD FACTOR
C
                           RATIO DBI/DTI PITCH CYCLIC TO TAIL INCIDENCE
           31-40
                  811
C
C
                      TYPICAL INPUT DATA ARE
                                             .062?
                                                        28.
C11867.
                       10c.
                                                                   1115.
            36.5
                                  • 6
C.0024
                       A.
                                  . 8
                                             1000.
                                                        12.4
                                                                   20.
            -l.
                       .167
C28.
            ũ.
                                  4.67
                                             .174
Cl.
            10.
                      1.
                                0.
C
      CALL TANNRHITIPMS, SIGMA, CTOSH, CUOSH, CTSTH, O)
      CALL TANNES(TIPMS, OMUHS, CLOS, CDOSS, CQOSS, CQDOSS, O, ACSS)
   77 READ(5,1) h, CPA, V, TIPMS, SIGMA, ROTR, C1
      READ(5,1)RHJ, XR, HR, HF, VOLF, ST, SVT
      READ(5,1) TL, TI, SISMAR, TRR, DS
            TO CALCULATE LONGITUDINAL CYCLIC, BIC, IN PULL UP SET ETA
C
                                    NORMALLY ETA =1.
C
      (LCAD FACTOR) I'I CARD 4.
                                                       FOR HOVER ETA =1.
      READ(5,1)SG,RMF,FTA,BTI
      WRITE(6, "1)
```

```
WRITE(6.2)
 2 FORMAT(16X,10HINPUT DATA)
   WRITE(6,1)W,CDA,V,TIPMS,SIGMA,ROTR,C1
   WRITE(6,1)RHO,XR,HR,HF,VOLF,ST,SVT
   WRITE(6,1)TL,TI,SIGMAR,TRR,DS
   WRITE(6,1)SG, RMF, ETA, BTI
   IF(ETA-1.)13.13.12
12 ETB=32.2*(ETA-1.)/V
   GOT014
13 ETB=0.
14 CONTINUE
51 FORMAT(1H1)
   VTIP=TIPMS*C1
   DP=RHO+V+V/2.
   OMUHS=V/VTIP
   AS4=SIGMA*5.13/4.
   AD=3.141*ROTR*ROTR
   CT=W/(AD+VTIP+VTIP+RHO)
   ELO=-1./((2./CT)**.5)
   CLOS=CT/SIGMA
   CTAS=2.*CT/(5.73*SIGMA)
   CDOS=(CDA+DP)+CTJS/W
   IF(OMUHS)60,61,60
60 CALL TANNES(TIPMS,OMUHS,CLOS,CDOS,CQOS,CQDOS,1,ACS2)
   GOT1 62
61 CALL TANNRH(TIPMH, SIGMA, LLOS , CQOS , CTSTH, 1)
   DP=RHO*VTIP*VTIP
   DP 1 = DP
   WRITE(6,95)
62 CONTINUE
   XU=(DX/DU)/M =(G/CT)*(BR) SECKEL SYSTEM
   CXU NATURAL AIRCRAFT SYSTEM=(M/Q+AD)+XU
                                               ALPHA=W/V
   CXU NATURAL HELICOPTER SYSTEM = USE QH=RHO+VTIP+VTIP = V=1. THEN AL=W
   THEREFORE SET SG=1 FOR HELICOPTER SYSTEM. SG=0 FOR AIRCRAFT SYSTEM
   NOTE COR ST PM IN DYNAMIC PROGRAMS TO MATCH
   IF(SG)91,41,40
90 DP=RHO*VTIP*VTIP
   WRITE(6,93)
   GOT092
91 WRITE(6,94)
92 CONTINUE
   DPF=RHO+V+V/(2.*DP)
   CQAS=2.*CQOS/5.73
   Q1=(4.2+38.*CTAS+2.*JMUHS)/10000.
   Q3=(-1.8-2.86*0MUHS**2.5)/10000.
   Q2=(CQAS-Q1)/(CTAS++2)
   ELS=-3.* MUHS-(.92-.5*0MUHS)*Q2
   QZ=QZ+Q3*ELS/CTAS
   ELh=ELS*CTAS
   TSRP=0MUHS*(2./CT)**.5
   IF(TSRP-1.)2C.20,21
2C DLDW=.5+.25*TSRP
   DLDCT=(.25+.03*TSRP)/ELO
   DLDU=.35*TSRP
   EL1=.4*TSRP
   GOTC 28
21 IF(TSRP-2.)22,22.23
22 DLDW=.75+.2*(TSRP-1.)
   DLDCT=(.28-(.06*(TSRP~1.)))/ELO
   DL CU=. 35-(.14*(TSRP-1.))
                                     A-3
```

C

C

C

C

```
EL.1=.4-(.08*(TSRP-1.))
   GOTO 28
23 IF(TSRP-3,)24,24,25
24 DLDW=.95+(.25*(TSRP-2.))
   DLDCT=(.22-(.04*(TSRP-2.)))/ELO
   DLDU=.21-(.1*(TSRP-2.))
   EL1=.32-(.04*(TSRP-2.))
   GOTO 28
25 IF(TSRP-6.)26.26.27
26 DLDW=1.
   DLDCT=(.18-(.0333*(TSRP-3.)))/ELO
   DLDU=.11-(.0333*(TSRP-3.))
   EL1=.28-(.04*(TSRP-3.))
   GOTO 28
27 DL DW = 1.
  DLDCT=.08/ELG
   DL DU=.01
   EL 1=.16
28 DLDU=DLDU+.QU5*ACS2
  DCTDT=(1.+1.5*OMUHS*OMUHS)//3.*(1.-AS4*DLDCT))
   DCT:)W=.5*DLDW/(1.-AS4*DLDCT)
   DCTDU=(3.*OMUHS/(1.+1.5*OMUHS*OMUHS))*(CTAS-ELW/2.)
  DCTDU=(DCTDU+.5*DLDU)/(1.-AS4*DLDCT)
  R=ROTR
31 UP=((XR/K)+(0MUHS+2.*ELS*(HF*VOLF-1.43*TL*ST)/(5.73*SIGMA*AD*ROTR)
  l-OMUHS*CMUHS*(HF*VOLF*O.+1.43*TL*ST*TI)/(CT*AD*ROTR)))
  DN=(HR/R)-OMUHS*UMUHS*(HF*VOLF-1.43*(BfI+1.)*ST*TL)/(CT*AD*RCTR)
  H4=(6.95*CMUHS**.92)-1.1*OMUHS*ELS
  UP=UP+(..125*OMUHS/(11.4*CTAS)+H4*CTAS-16.*ETB*R*(1.+ELS/4.)/(BMF*
  IVTIP))*HK/R
  B1C=UP/D"
  T1C=(CTAS-ELW/2.)*3.*57.3/(1.+1.5*0MUHS*0MUHS)
  H4P=1.+(10.*(1.-OMUHS)**2.95)*ELS
  H1P=15.7*CMUHS-.685*FLS*OMUHS**.605
  H2P=-.9+(MUHS+.003+5LS
  H3P=8.-5.*OMUHS-(1.5-2.25*OMUHS)*ELS
  H5P=1.0+3.1+GMUHS++2.04+(.25-.07+OMUHS)*ELS
  DCHOT=(-PIC+CTAS*(HIP+2.*AS4*H2P*DLDCT))*DCTDT
  DCHDW=(-d1C+CTAS+(H1P+2.*H2P))*DCTDW
  DCHDU=(-H1C+CTAS+(H1P+2.*AS4+H2P+DLDCT))+DCTU+H2P+CTAS*DLDU+H3P+CT
 1AS*CTAS+.C125/11.46
  DCHDQ=-16.*CTAS*H5P/BMF
  CCHDB1=- MUHS*DCHDW-CTAS
  DCTDB1 = - DCTDW * OMUHS
  DCTDP=(OMUHS/4.)/(1.-AS4*DLDCT)
  ASS=AS4*SIGMAR/SIGMA
  COl=W/(VTIP*CTAS*DP*AD)
  CXUR=C01*(-DCHDU+DS*(DCHDW+DCTDU)-DS*DS*DCTDW)
  CXU=CXUQ-2.*RHO*V*CDA/(DP*AD)
  CXW=C01*(-DCHDW+DS*DCTDW)
  CXA=CXW+V
  CO2=W/(CTAS*DP*AD)
  CXTC=CO2*(DCTDT*DS-DCHDT)
  CXB1=CC2*(DCTDB1*DS-DCHDB1)
  CZU=CO1*(CCTDU-DS*DCTDW)
  CZW=-CCl*DCTDW
  CZA=CZW*V
  CZTC=-COZ*DCIDT
  CZB1=-CC2*DCTDB1
  CO3=CC1/KCTR
```

```
CMUR=CO3*(XR*(DCTDU-DS*DCTDW)+HR*(DCHDU-DS*DCHDW))
      IF(V)70,70,71
   70 CO4=0.
      C05=0.
      CYBR=-.0C5*(VOLF**.67)/AD
      ENVF=0.
      C20=U.
      CMUF=0.
      CMUT=0.
      GOTO 73
   71 CO4=HF*VOLF*RHO*V/(DP*AD*ROTR)
      ENVF=-C01+HF*VOLF*2.*OMUHS/(AD*5.73*SIGMA*2.*RCTOR)
      CYBB=((-.20*CDA/(AD*.6))-2.86*SVT*RHO*V*V/(2.*DP*...))
      CYVB=CYBR/V
      CO5=-ST*TL*2.86*RHO*V/(DP*AD*ROTR)
      C20=-2.86*SVT*V*V/(2.*VTIP*VTIP*AD)
      CMUF=CO4+((ELW/OMUHS)+2.+(B1C-0.0+DCTDU-3.+OMUHS+(CTAS-ELW/2.)))
      CMUT=CO5*((ELW/CMUHS)+2.*(B1C+TI+DCTGU-3.*OMUHS*(CTAS~ELW/2.)))
   73 CONTINUS
C
      CMU FOR V GT 20.
      CMU=CMUR+CMUF+CMUT
      CO6=-W+2.86+ST+TL+TL/(VTIP+VTIP+CTAS+5.73+SIGMA+AD+DP+AD+ROTR)
      CMWD=C06*(1.-2.*DCTDW)
      CMWR=C03+(XR+DCTDW+HR+DCHDW)
      CMWT=C03+((OMUHS/(AS4+AD))+(VOLF+HF-(4.30+ST+TL/2.)))+DCTDW
      CMW=CMWR+CNWT
      CMAD=C06+V+(1.-2.+DCTDW)
      CMAR=CO3+V+(XR+DCTDW+HR+DCHDW)
      CMAT=C03*V+((OMUHS/(AS4*AD))+(VOLF*HF-(4.30*ST*TL/2.)))*DCTDW
      CMA=CMAR+CMAT
      CMTD=-C03+TL+2.86+OMUHS+ST+TL+DPF/(2.+AS4+AD)+C01+DCHDQ+HR/ROTR
      CMIT=-ST*TL*2.86/(AD*ROTR)
      CMIT=CMIT+RHC+V+V/(2.+DP)
      CO6=W/(CTAS*DP*AD*ROTR)
      CMTC=CO6*(DCTDT*XR+HR*DCHDT)
      CMB1=CO6+(XR+DCTDB1+HR+DCHDB1)
C
      END LONGITUDINAL DERIVATIVES START LATERAL
      Y01=1.55*CMUHS**.81
      YOP=Y01-(10.+ELS)+(Y01+.82+0MUHS++1.82)/12.
      Y02=-1.5+2.*OMUHS
      YODP=Y02-(10.+ELS)*(Y02-1.5-.05*0MUHS)/12.
      Y02=.90+0MUHS++.68
      Y1P=Y02-(10.+ELS)*(Y02+(1.85*0MUHS**2.7))/12.
      Y2P=-.238+0MUHS-(10.+ELS)+(.108+0MUHS)/12.
      Y02=-1.5+.5*0MUHS
      Y3P=Y02-(10.+ELS)*(Y02-1.+3.38*JMUHS**1.93)/17.
      Y02=22.5-13.*OMUHS
      Y4P=Y02-(10.+ELS)*(Y02-5.)/12.
      AIC=BIC
      DCYDT=DCTDT*(A1C+EL1*(1.+AS4*DLDCT/2.))
      DCYDV=-.0125/11.46-Y4P*CTAS+CTAS+DCTDW*41C*(A1C+1.5*EL1)
      DCYDT=DCYDT+DCTDT+BMF+CTAS+YOP+(Y1P+2.*AS4+Y2P+DLDCT)
      DCYDP=.0625*CMUHS*EL1+DCTDP*(A1C+EL1*(1.+AS4*DLDCT/2.))
      DCYDP=DCYDP-16.*CTAS*Y3P/BMF+DCTDP*BMF*(Y1P+2.*AS4*Y2P*DCLDT)*CTAS
      DCYDV=DCYDV-DCTDW*A1C*BMF*CTAS*(Y1P+2.*Y2P)
      CYVR=C31*DCYDV
      CTWTR=.25/(1.-AS5*.25)
      CYVTR=CO1*CThTR*SIGMAR*TRR*TRR/(SIGMA*ROTR*ROTR)
      CYVTR=-CYVTR
      CYB=V*(CYVR+CYVTR)+CYRB
                                         A-5
```

```
CYAIC=W/(DP*AD)
     CLB=C03+V+HR+DCYDV
     CLTD=CO1*HR*DCYDP
     CLA1=W+HR/(DP+AD+ROTR)
     ENVTR=CO3+TL+CTWTR+SIGMAR+TRR+TRR/(SIGMA+ROTR+ROTR)
      ENVT=ENVF+1.43+SVT+TL/(-HF+VOLF)
      ENVR=CO3+DS+HR+DCYDV
     CNB=V*(ENVF+ENVT+ENVTR+ENVR)
      ENRTR =-TL "ENVTR
      ENRT =-TL *ENVT
      ENRRR≈ROTR*DS*DS*HR*DCYDP*CO3
     CNSD=ENRT+ENRTR+ENRRR
     CNTD=ENRRR/DS
      CNA1=CLA1+DS
     CTTTR=1./(3.*(1.-AS5*.25))
     CNTTR=-W*TRR+TRR+TL+CTTTR/(CTAS+ROTR+ROTR+DP+AD+ROTR)
      FORMAT(7F10.4)
1
     CYV=(CYVR+CYVTR)+CYVB
     CLV=CO3+HR+DCYDV
     CNV=ENVF+ENVT+ENVTR+ENVR
     CYSD=-CYVTR+TL+C20
     WRITE(6.3)
    3 FORMAT(10X-11HOUTPUT DATA)
     CLSD=0.
     CYTD=0.
     WRITE(6.4)
    4 FORMAT(10x,71HLUNGITUDINAL DERIVATIVES ARE IN ORDER CXU.CXA.CZU.CZ
     1A.CMU.CMA.CMAD.CMTD)
     WRITE(6,5)CXU,CXA,CZU,CZA,CMU,CMA,CMAD,CMTD
    5 FORMAT(9214.7)
     WRITE(6.6)CZB1.CMB1.CXB1
   6 FORMAT(10X.19HCYCLIC CONTROLCZB1=.E15.8.1X.5HCMB1=.E15.8.1X.5HCXB1
     1=,E15.8)
     WRITE(6.7)CZTC.CMTC.CXTC
    7 FORMAT(10X,23HCOLLECTIVE CONTROLCZTC=,E15.8,1X,5HCMTC=,E15.8,1X,5H
     1CXTC=.E15.8)
     WRITE(6.8)CMIT
   8 FORMAT(1)X.25HHORIZ. TAIL CONTROL CMIT=.E15.8)
     WRITE(6.3)
   9 FORMAT(1)X,84HLATERAL STABILITY DERIVATIVES IN ORDER ARE CYB,CLB,C
     INB.CYSD.CLSD.CNSD.CYTD.CLTD.CNTD)
     WRITE(6,5)CYR,CLB,CNB,CYSD,CLSD,CNSD,CYTD,CLTD,CNTD
     WRITE(6, 1C)CYA1C, CLA1, CNA1
  10 FORMAT(10x.20HCYCLIC CONTROL CYA1=.F15.8.lx.5HCLA1=.E15.8.lx.5HCNA
     11=.615.31
     WRITE(6.11)CNTTR
  11 FORMAT(10X,28HTAIL ROTOR COLLECTIVE CNTTR=,E15.8)
     WRITE(6.80)
     WRITE(6.5)DLDU.DLDW.DLDCT.DCTDT.DCTDW.DCTDU.DCTDB1.DCTDP
     WRITE(6.81)
     WRITE(6,5)DCHDT.DCHDW.DCHDU.DCHDB1
     WRITE(6.82)
     B1C=B1C*>7.3
     WRITE(6,5)B1C,CTAS,CT,ELG,EL1,ELS,CQOS,T1C
  80 FORMAT(1x,68HAUXILIARY DERIVATIVES DLDU,DLDW,DLDCT,DCTDT,DCTDW,DCT
    IDU, OCTUBL, DC TOP)
  81 FORMAT(1x,25H DCHDT,DCHDW,DCHDU,DCHDB1)
  82 FORMAT(14,33H BIC,CTAS,CT,ELO,EL1,ELS,CQOS,T1C)
     WRITE(6, 96)
     WRITE(6,5)CXW,CZW,CMW,CMWD,CYV,CLV,CNV
```

1

*

TO STATE OF THE ST

```
96 FORMAT(10X,64HTHE VELOCITY DERIVATES ARE IN ORDER CXW,CZW,CMW,CMWD
     1,CYV,CLV,CNV)
   93 FORMAT(20X, 18H HELICOPTER SYSTEM)
   94 FORMAT(20X, 16H AIRCRAFT SYSTEM)
   95 FORMAT(25x, 5HHOVER)
   50 FORMAT(1HC)
      WRITE(6,5)CMUR, CMAR, CMWR, CZW, CZA
      WR ITE (6,50)
      IF(V)19.15.10
   19 CONTINUE
      CLTTR=0.
      CYTTR=-R*CNTTR/TL
C
      STATIC STABILITY
C
      STEADY SIDESLIPS
      DTDB=-(DP+AD/W)+(CYB+(CLTTR+CNA1-CNTTR+CLA1)-CLB+(CYTTR+CNA1-CNTTR
     1*CYA1C)+CNR*(CYTTR*CLA1-CLTTR*CYA1C))
      DTRDT=-(CLB*CNA1-CNB*CLA1)/DTDB
      DAIDT =- (CLB + CNTTR + CNB + CLTTR) /DTDB
      DN2=CLTTR+CNA1-CNTTR+CLA1
      DTDR=DTDR/DN2
      WRITE(6.18)DTDB.DTRDT.DAIDT
C
      STEADY TURN
      PHI=0.
      DPHI=10./57.3
      DO 15 K=1.5
      PHI=PHI+DPHI
      SN=32.2=SIN(PHI)/(COS(PHI)=V)
      THT=-30./57.3
      DTHT=15./57.3
      DO 15 KK=1,3
      THT=THT+DTHT
      TTR=-SN*(THT*(CLA1*CLTG-CNA1*CNTD)-GOS(PHI)*(CLA1*CLSD-CNA1*CNSD))
      TTR=TTR/DN2
      A1=-SN*(THT*(-CLTTR*CNTD+CNTTR*CLTD)-COS(PHI)*(CLTTR*CNSD+CNTTR*CL
     1SD11/DN2
      PF=1./COS(PHI)
      B1=SN+SIN(PHI)+(((1./COS(PHI))-1.)+CMA+W/(DP+AD))/(CZA+CMTD-CMA+CZ
     110)
      THP=THT+57.3
   16 FORMAT(1X,12H STEADY TURN,12H BANK ANGLE=.F5.0.13H CLIMB ANGLE=.F5
     1.0,13H L 'AD FACYOR=, F6.2)
      PHP=PHI+57.3
      WRITE(6,16)PHP,THP,PF
      TTRP=57. 3+TTR
      A1P=A1*57.3
      81P=81*57.3
      WR ITE(6, 17) TTRP, A1P, B1P
   17 FORMAT(1X,38H CONTROL ANGLES TAIL ROTOR COLLECTIVE=.F6.2,16H LATER
     14L CYCLIC =, F6.2, 14H PITCH CYCLIC=, F6.2)
   18 FORMAT(1X,33H STEADY SIDESLIP RATIOS PHI/BETA=,F9.5,27H TAIL ROTOR
     1 COLLECTIVE/PHI=,F9.5,20H LATERAL CYCLIC/PHI=,F9.5)
   15 CONTINUE
     GOTO77
      END
      SUBROUTINE TANNRHITIPMH, SIGMA, CTOSH, CQOSH, CTSTH, IREAD)
      DIMENSION SIG(7), CTH(9,5,3), CQH(9,5,3), CQX(3), CQXX(3)
      EQUIVALENCE (IN, INPUT)
 150 FORMAT(13F6.4)
      IN=5
     MADLY=6
```

N.

1

1

3

7

ŧ

X

*

ķ

```
IF(IREAD)153,153,154
153 READ(INPUT.150)(((CTH(K,J,I),K=1,9),J=1,5),I=1,3)
    READ(INPUT, 150)(((CQH(K,J,I),K=1,9),J=1,5),I=1,3)
    SIG(1)=.05
    DO 151 I=2,6
151 SIG(I)=SIG(I-1)+.025
149 FORMAT(1H , 38HTANNER DATA FOR HOVER HAS BEEN READ IN)
    WRITE(MADLY,149)
    GO TO 50
154 DO 155 J=1,4
    IF(SIG(J)-SIGMA)155,156,156
155 CONTINUE
156 CALL ZINDEX(J, JA, JB, JC)
    DO 157 K=1.8
    IF(CTH(K,1,1)-CT(SH)157,158,158
157 CONTINUE
158 CALL ZINDEX(K,KA,KB,KC)
    DO 160 I=1.3
    DO 159 J=JC.JA
    CALL CURVEB(CTH(KA,J,I),CTH(KB,J,I),CTH(KC,J,I),CQH(KA,J,I),
   1COH(KB.J.I).COH(KC.J.I).CYOSH.COX(J))
159 CONTINUE
    CALL CURVEB(SIG(JC).SIG(JB).SIG(JA).CQX(JC).CQX(JB).CQX(JA).SIGMA.
   1CQXX(I))
160 CONTINUE
    CALL CURVEB(0.5, G.6, G.7, CQXX(1), CQXX(2), CQXX(3), TIPMH, CQOSH)
    CALL CURVEB(SIG(JC),SIG(JB),SIG(JA),CTH(9,JC,1),CTH(9,JB,1),
   1CTH(9.JA.1).SIGMA.CTHX)
    CALL CURVEB(SIG(JC), SIG(JB), SIG(JA), CTH(8, JC, 2), CTH(8, JB, 2),
   1CTH(8.JA.2).SIGMA.CTHY)
    CALL CURVEB(SIG(JC), SIG(JB), SIG(JA), CTH(7, JC, 3), CTH(7, JB, 3),
   1CTH(7,JA,31,SIGMA,CTHZ)
    CALL CURVEB(C.5.0.6.0.7.CTHX,CTHY,CTHZ,TIPMH,CTSTH)
    CQOSH=1.1+CQ.SH
 50 RETURN
    END
    SUBROUTINE CURVEB(X1, X2, X3, Y1, Y2, Y3, X, Y)
    IF(X1-X2)111,110,111
110 X1=X1+.0001
    WRITE(6,120)X1,X2,X3,Y1,Y2,Y3
111 IF(X1-X3)113,112,113
112 X1=X1+.0CC1
    WRITE(6.120)X1.X2.X3.Y1.Y2.Y3
113 IF(X2-X3;115,114,115
114 X2=X2+.CCC1
    HR!TE(6.120)X1,X2,X3,Y1,Y2,Y3
115 CONTINUE
120 FORMAT(6515.8)
    B1=Y1/((X1-X2)*(X1-X3))
    B2=Y2/((X2-X1)*(X2-X3))
    83=Y3/((X3-X1)*(X3-X2))
    A1=(81*X2*X3)+(82*X1*X3)+(B3*X1*X2)
    A2=-B1*(X2+X3)-R2*(X1+X3)-B3*(X1+X2)
    A3=B1+R7+P3
    Y = A1 + (A2 + X) + (A3 + (X + + 2))
    RETURN
    END
    SUBPOUTI : CURVEC(X1, X2, X3, Y1, Y2, Y3, X, Y)
    ZD = ((Y2-Y1)/(X1-X2)) - ((Y3-Y1)/(X1-X3))
    IF(ABS(ZD)-...)C00001)1.2.2
```

```
1 ZD=.00000001
    2 ZA=((((Y1+X1)-(Y3+X3))/(X1-X3))-(((Y1*X1)-(Y2+X2))/(X1-X2)))/ZD
      ZC=((Y1*X1)-(Y1*ZA)-(Y3*X3)+(Y3*ZA))/(X1-X3)
      Y=ZC+(((X1-ZA)+(Y1-ZC))/(X-ZA))
      RETURN
      END
      SUBROUTINE ZINDEX(IT, ITA, ITB, ITC)
      ITA=IT
      ITB=IT-1
      ITC=IT-2
      IF(ITC)1,1,2
    1 1TA=3
      ITB=2
      ITC=1
      CONTINUE
      RETURN
      END
      SUBROUTINE TANNES(TIPM, OMU, CL, CD, CQ, CDM7, IREAD, AC)
      DIMFNSION CDS(4,6,25),CQS(4,6,25),EAC(4,6,25),J1(4),PU(4)
      DIMENSION CLA(4.6.5).CDM(4.6.5).K1(5).CD7(5).CQ7(5).FA7(5).PCC(5)
      BOE ROTOR PERF. CHARTS STRAIGHT LINE INTERPOLATION VALUES OF MT/MU
C
                                     MT=.95/.31..47..66
      MT=.68/.2,.5,.8,1.,1.2,1.5
C
      MT = .77/.33..52..79.1.06
                                  MT=.875/.35..52..75.1.05
                                                              VARIOUS CL
      INTERPOLATE BETWEEN HT IS DM, OMU IS PU. CL IS PCC
C
C
      NOTE IF ALADE IS STALLED ALPH 14 OR AL SIGMA IS INCREASED
Ċ
      NOTE IF OMU IS HIGH ROTOR THRUST IS LOW PROP THRUST IS ADDED
      IN READ (N1, J.K) N1 IS MT, J 15 OMU, K 5 VALUES OF ALPH FOR EACH
      OF 5 GROUPS OF CL CONTROLLED BY JJ
      IF(IREAD-1)86,70,70
   86 N1=1
      N2=6
    1 D02J=1.N2
  87 FORMAT(1015)
      IA=1
      18=5
      D02JJ=1.5
      READ(5,104)(CDS(N1,J,K),K=IA,IB)
      READ(5,104)(CQS(N1,J,K),K=IA,IB)
      READ(5,104)(EAC(N1,J,K),K=IA,IB)
      READ(5.104)CLA(N1.J.JJ).CDM(N1.J.JJ)
      IA=IA+5
      18=18+5
    2 CONTINUE
      N1=N1+1
      IF(N1-3)3,3,4
    3 N2=4
      GOTO1
    4 IF(N1-4)5,5,6
    5 N2=3
      GOT01
    6 WRITE(6,91)
      G01090
      FORMAT(1H , 11HBOE DATA IN)
   70 N1=1
      IF(TIPM-.77)7,7,8
    7 11=1
      PM=(TIPM-.675)/.095
      GOTOLL
    8 IF((TIPM/.875 )-1.)9,9,10
    9 11=2
                                         A-9
```

```
PM=(TIPM-.77)/.105
    GOT025
 10 11=3
    PM=(TIPM-.875)/.075
    GOT035
 11 IF(CMU-.5)12,12,13
 12 J1(N1)=1
    PU(N1)=(OMU-.2)/.3
    GOT020
 13 IF(OMU-.8)14,14,15
 14 J1(N1)=2
    PU(N1)=(OMU-.5)/.3
    GOT020
 15 IF(OMU-1.C)16,16,17
 16 J1(N1)=3
    PU(N1)=(OMU-.8)/.2
    GOT020
 17 IF(OMU-1.2)18,18,19
 18 J1(N1)=4
    PU(N1)=(,MU-1.C)/.2
    GOTO20
 19 J1(N1)=5
    PU(N1)=(:MU-1.2)/.3
 20 X2=2
    N1=N1+1
 25 IF(CMU-.52)26,26,27
 26 J1(N1)=1
    PU(N1)=(CMU-.33)/.19
    GOT030
 27 IF(OMU-.79)28,28,29
 28 J1(N1)=2
    PU(N1)=(/MU-.52)/.27
    GOTC30
 29 J1(N1)=3
    PU(N1)=(CMU-.79)/.37
 35 IF(N1-2)32,100,100
 32 X2=3
    N1=N1+1
 35 IF()MU-.52)36,36,37
 36 J1(N1)=1
    PU(N1)=(UMU-.35)/.17
    GOT 340
 37 IF(0MU-.75)38,38,39
 38 J1(41)=2
    PU(N1)=(0MU-.52)/.23
    GOTC40
 39 J1(N1)=3
    PU(N1)=()MU-.75)/.3
 40 IF(N1-2)42,100,100
 42 X2=4
    N1=N1+1
 42 IF(OMU-.47)43,43,44
 43 J1(N1)=1
    PU(N1)=()MU-.32)/.15
    GOTOLOG
44 J1(N1)=2
    PU(N1)=(UMU-.47)/.19
100 J=J1(1)
    1 = I 1
```

D054KK=1.4

```
D045KL=1.5
   IF(CLA(I,J,KL)-CL)45,45,46
45 CONTINUE
46 IF(N-1)47.47.48
47 N=2
48 DEN=CLA(I.J.N)-CLA(I.J.N-1)
   PCC(KK)=(CL-CLA(I,J,(N-1)))/DEN
   K1(KK)=1+5*N-5
   IF(KK-1)49,49,50
49 J=J1(1)+1
   GOT054
50 IF(KK-2)51.51.52
51 I=I+1
   J = J1(2)
   GOT054
52 IF(KK-3)53,53,54
53 J=J1(2)+1
54 CONTINUE
   112=11+1
   D055 KK = 1.5
   K11=K1(1)+KK-6
   K12=K11+5
   K13=K1(2)+KK-6
   K14=K13+5
   K15=K1(3)+KK-6
   K16=K15+5
   K17=K1(4)+KK-6
   K18=K17+5
   JX=J1(1)
   JY=J1(2)
   JW=JX+1
   JY=JY+1
   CD1=CDS(I1, JX, K11) + (1. - PCC(1)) + PCC(1) + CDS(I1, JX, K12)
   CD2=CDS(I1,JW.K13)*(1.-PCC(2))+PCC(2)*CDS(I1,JW,K14)
   CD3=CDS(112,JY,K15)*(1.-PCC(3))+PCC(3)*CDS(112,JY,K16)
   CD4=CDS(112.JV.K17)*(1.-PCC(4))+PCC(4)+CDS(112.JV.K18)
   CD5=CD1+PU(1)*(CD2-CD1)
   CD6=CD3+PU(2)*(CD4-CD3)
   CD7(KK)=CD5+PM*(CD6-CD5)
   CQ1=CQS(I1.JX.K11)*(1.-PCC(1))+PCC(1)*CQS(I1.JX.K12)
   CQ2=CQS(I1.Jw.K13)*(1.-PCC(2))+PCC(2)*CQS(I1.JW.K14)
   CQ3=CQS(I12.JY.K15)*(1.-PCC(3))+PCC(3)*CQS(I12.JY.K16)
   CO4=COS(112.JV.K17)*(1.-PCC(4))+PCC(4)*COS(112.JV.K18)
   CQ5=CQ1+PU(1)+(CQ2-CQ1)
   CQ6=CQ3+PU(2)*(CQ4-CQ3)
   CQ7(KK)=CQ5+PM+(CQ6-CQ5)
   EAC1=EAC([1,JX,K11)*(1.-PCC(1))+PCC(1)*FAC([1,JX,K12)
   EAC2=EAC(I1.JW.K13)*(1.-PCC(2))+PCC(2)*EAC(I1.JW.K14)
   EAC3=EAC(112,JY,K15)*(1.-PCC(3))+PCC(3)*FAC(112,JY,K16)
   EAC4=EAC(112,JV,K17)*(1.-PCC(4))+PCC(4)*FAC(112,JV,K18)
   EAS=EAC1+PU(1)+(EAC2-EAC1)
   EA6=EAC3+PU(2)*(EAC4-EAC3)
55 EA7(KK)=: A5+PM*(EA6+EA5)
   N11=(K1(1)+4)/5
   N12=N11-1
   N13 = (K1(2) + 4)/5
   N14=N13-1
   N15=(K1(3)+4)/5
                                     A-11
   N16=N15-1
```

```
N17=(K1(4)+4)/5
      N18=N17-1
      CD1=CDM(I1,JX,N12)+(1.-PCC(1))+PCC(1)+CDM(I1,JX,N11)
      CD2=CDM(I1,JW,N14)*(1.-PCC(2))+PCC(2)*CDM(I1,JW,N13)
      CD3=CDM(I12,JY,N16) + (1.-PCC(3)) +PCC(3) +CDM(I12,JY,N15)
      CD4=CDM(I12,JV,N18)*(1.-PCC(4))+PCC(4)*CDM(I12,JV,N17)
      CD5=CD1+PU(1)+(CD2-CD1)
      CD6=CD3+PU(2)+(CD4-CD3)
      CDM7=CD5+PM+(CD6-CD5)
      D057KK=1.5
      N=KK
      DEN=CO-CD7(KK)
      IF(CD-CD7(KK))57,157,157
   57 CONTINUE
      GOTC60
  157 IF(N-1)58.58.59
   58 N=2
   59 P=(CD-CD7(N-1))/(CD7(N)-CD7(N-1))
      AC=EA7('1-1)+P+(EA7(N)-EA7(N-1))
      CO=CO7(N-1)+P+(CQ7(N)-CQ7(N-1))
      GOT089
   60 AC=10000.
C.
      AC=10000. FOR ROTOR CONDITION OF INADEQUATE THRUST
   89 CONTINUE
   88 FORMAT(3X7E15.8)
  104 FORMAT(10F10.5)
   90 RETURN
      END
      LIST(STOP)
      LIST
      DATA
                          .08
                                .10
                                       .12
                                             .14
                                                    .163
                                                          ().
                                                                 . J2
                                                                       .04
                                                                              .06
0.
      .02
             .04
                   .06
      .10
                                       .02
                                             .04
                                                    . O i
89.
             .12
                   .14
                          .162
                                0.
                                                          .08
                                                                 .10
                                                                       .12
                                                                              .14
                                                    .14
                                                          .154
                                                                U.
                                                                              .04
.158
                   .04
                                .08
                                             .12
                                                                       .02
             .02
                          .06
                                       .10
      0.
                                                          .06
                                                                       .10
.06
      .08
                          .14
                                             .02
                                                    .04
                                                                 .08
                                                                              .12
             .10
                   .12
                                .15
                                       0.
                          .04
                                       .08
                                                          .14
                                                                 .144
                                                    .12
                                                                              .02
.14
      .146
                   .02
                                .06
                                             .10
                                                                       0.
             ů.
                                                                       .08
             .0ª
                                                          .04
                                                                 .06
                                                                              .10
                   .10
                          .12
                                .13
                                       .14
                                             0.
                                                    .02
.04
      .06
.12
      .13
                                                          .12
                                                                       .133
             .136
                          .02
                                .04
                                       . 06
                                             .08
                                                    .10
                                                                 .13
                                                                              0.
                   (.
                   .07
.32
             .06
                          .08
                                .79
                                       . 1
                                             .124
                                                          .02
                                                                 .04
                                                                       .06
                                                                              .07
      .04
                                                    ).
                                                                              .117
      .09
                                . 02
                                             . 06
                                                    .07
                                                          .08
                                                                 .09
                                                                       .10
.08
                   .12
                          0.
                                       .04
             . 1
      .02
             .04
                   .06
                          .07
                                                                 .02
                                                                       .04
                                                                              .06
0.
                                .08
                                       .09
                                             . 1
                                                    .114
                                                          0.
.07
                   -1
                          .112
      .08
             . ) 3
                                                          .00055.0018 .0032 .0045
                          .0053 .007 .00875.0109 .015
.00055.00162.00275.004
             .01C .0126 .0174 .00055.002 .0034 .0051 .0070 .0090 .0116 .015
.0062 .008
                                                          .0204 .00055.0022 .114
.0190 .00055.0021 .0037 .0055 .0076 .0104 .0132 .017
                  .0146 .0189 .0215 .00055.00162.00275.004
                                                                .0053 .0071 .0092
             211
.006
      .0134 .00055.0018 .0331 .0045 .0064 .0085 .011
                                                          .0145 .0155 .00055.0020
.012
.0034 .0051 .0071 .0084 .0125 .0144 .0168 .0055 .0021 .0037 .0055 .0378 .0105
                                                                       .01871.0055
             .018
                  .0055.0022 .004 .006 .0085 .0115 .0154 .018
.214
      .016
.00165.0028 .0042 .0049 .00575.00665.00775.0104 .00055.0018 .0032 .0049 .0058
.00675.0079 .0192 .0131 .00055.00195.0035 .00525.0064 .0076 .0088 .0105 .0140
.03055.0021 .0038 .0057 .0068 .0084 .0098 .0115 .0148 .00055.0022 .0040 .0060
.00725.0088 .0106 .0127 .0154
.00125
           .0002
                     -.OC1
                                -.0025
                                           -.0045
                                           .00233
.00084
           ·001 9
                     .0:149
                                .00183
                     -10.
                                -20.
                                           -30.
10.
           0.
          -80.
.01
.00575
           .001
                                -.00825
                     -.003
                                           -.0145
           .0019
                     .00203 •
                                .00307
.0061
                                           - CO441
                                -20.
                                           -30.
10.
           0.
                     71J.
```

2

	4.5			
.03	-60. .002	006	01475	02425
.01375 0003	.00119	.00277	.00455	.00658
10.	0.	-10.	-20.	-30.
.05	-60.			
.01825	.003	008	01975	03325
00084	.00139	.00376	.00614	•00921
10.	0.	-10.	-20.	-30.
.07	-50.		004	0245
.021	.00575	00925	024	0345 .01064
00109	.00183	.0047 -10.	.00817 -20.	-27.
10. .09	0∙ -33∘	-10.	-20•	
.00131	.00582	.00033	0.	00131
.00117	.00142	.00176	.00209	.00318
10.	0.	-10.	-20.	-30.
.01	-70.			
.00311	.00147	00048	00245	00523
.0005	.00109	.00209	.00334	.00502
10.	0.	-10.	-20.	-30.
.02	~55.		00/700	- 00049
.00507	0.00213	00098	004780 .00451	00948 .00736
00042	.00075	.00242 -10.	-20.	-30.
10.	0. -40.	-10.	-20.	700
.03 .00703	.00327	00131	00638	01226
00134	.000307	.00268	.00527	.00903
16.	0,	-10.	-20.	-30.
.04	-31.			
.00916	.00409	30131	00752	0104
00334	.00008	.00268	•00602	.00752
10.	0.	-10.	-20.	-25.
•05	-25.	00104	001.04	.00226
.0032	.00205	.00184	.00184 .00158	.00158
.00132	.00148 8.	.00158	0.	-4.
12. .01	-17.5	7.	J.	•••
.0041	.00262	.00205	.00205	. 00238
.00079	.00119	.00142	.00135	.00132
12.	8.	4.	0.	-4.
•02	-15.8			
.00525	.00361	.00262	.00258	.00246
.05132	•00059	.00106	.00106	.00116
12.	8.	4.	0.	-4.
.03	-10.5	06.300	.00348	.0032R
.00701	.00513 0004	.00389 .00023	.00026	.00053
00106	8.	4.	0.	-4.
.04	-11.	••		-
.01189	.00656	.0049?	.00438	.00402
00201	00125	00053	0003	.00023
12.	8.	4.	0.	-4.
.05	-9.			
.00597	.00343	.00267	.00267	.00337
.00051	.00127	.00140	.00178	.00133
12.	8.	4.	0.	-4.
.01	-14.	.00305	.00305	.00330
.00698 ⊃127	•00413 •00489	.00309	.00127	.00051
12.	8.	4.	0.	-4.
•••	• •	· -		-13

and the second s

. -				
•03 •00921	-9.5 .00603	.00419	.00413	.00540
00171	00025	.00006	00025	0.
12.	8.	4.	0•	-4.
.05	-6.	00400	00409	.0087
.0127	.00889 00241	.00698 00152	.00698 00127	0002
003R1 12.	8.	4.	0.	-4.
.07	-3.3	•••		
·C1778	.0141	301111	.0111	.0139
00711	30521	0033	00127	.9002 -4.
12.	8. 5	4.	0•	-4.
.09 .00712	.00398	•00351	.00527	.00925
0.	.00495	.00165	.00088	00132
8.	4.	0.	-4.	-8.
.01	-12.	40270	00/1/	.00601
.01027	.00481	.00370 .00165	.00416 0.	0022
0• 8•	.00132 4.	0.	-4.	-8.
• 7, 3	-7.	•	• •	-
.01341	.00666	.00388	.00462	.00555
00319	0.	.00132	.00066	00055
12.	8.	4.	J.	-2.
.05 .01554	-5.5 .00897	.00555	.00065	.00786
00429	00110	.00022	0011	00165
12.	8.	4.	0.	1.
.07	-3.7			01250
.01536	.01221	.0086 00209	.00999 00165	.01258 00143
0066 10.	00341 8.	4.	0.	-1.
.09	-2.	7.		
.C.77	.00598	.0057	.00656	.00883
.0002	.00064	.0015	.00086	00021
4.	2. -8.	0.	-2.	-4.
.01 .06627	.00513	.00542	.00627	.00926
.0002	.0015	.00193	.00064	00064
4.	2.	0.	-2.	-4.
.03	-5.3		00551	00013
.01083	.00593	.00513 .00193	.00556 .00129	.00817 000143
00129 H.	.009 ·3	2.	0.	-2.
.05	-4 3			
.01111	.01398	.0057	.00684	.001
(193	•0:064	.00172	ა.	00172
8.	4. -3 7	2.	0.	-2.
.07 .31111	.0,613	•0-656	.00855	.01126
OC?79	.0064	.00107	00172	00215
8.	4	2.	0.	1.
.03	-:.6	00035	00120	.00346
.00173	.00028	00035 .00137	.00139 .00182	.00274
.00091 10.	0C114	-10.	-20.	-37.
.01	-80,	• • •		
.00554	.00139	00277	00693	01247
00023	.001(3	.00239	.00376	.00593
10.	0.	-12.	-20. 4-14	-30.
			7-14	•

.03	-58.			
		00416	- A1247	0201
.01039	.90298		01247	
00068	.00068	.00235	.00559	.00866
10.	0.	10.	20.	30.
•05	-45.			
.01594	.00589	0045	01559	02772
00174	.00023	.00353	.00752	.C1254
10.	0.	-10.	-20.	-30.
.07	-28.			
.01951	.00728	0045	01745	02979
00228	0004	.00388	.00906	.01444
5.	0.	-10.	-15.	-20.
•08	-20.	-10.	-134	-200
		00000	00010	0010/
.00177	.00133	.00009	.00018	00106
.60117	.0014	.00164	.00206	.00309
10.	0.	-10.	-20.	-30.
.01	∽62•			
.00319	.00159	0.	00212	0046
.0004	.00112	.00187	.00318	.00486
10.	0.	-10.	-20.	-30.
.02	-48.			
.00478	.00195	00071	00372	00743
.00070	.00084	.00224	.0043	.00655
10.	0.	-10.	-20.	-30.
		-10.	-20•	- 300
.03	-39.	00000	00531	01040
.0069	.00301	00089	00531	01062
0014	.00037	.00252	.00514	.00832
10.	0.	-10.	-20.	-30.
.04	-31.			
.0089	.00407	00106	00655	01292
00182	00009	•93262	.00608	.01766
5.	0.	-10.	-20.	-30.
.05	-23.			
.00211	.00179	.00239	.00386	.00478
.00159	.00159	.00147	.00098	.00098
8.	0.	-5.	-10.	-15.
.01	-16.			
.0(235	.00223	. 70219	.00318	.00386
.00122	.00135	.00153	.00129	.00092
8.	0.	-5.	-10.	-15.
.02	-12.			
.00541	.00287	.00271	.00239	.0316
.00006	•00092	.00101	.00138	.00138
12.	5.	0.	-5.	-17.
.03	-12.			
.00689	.00398	.00342	.0033	.00318
00083	.00024	.00043	.00098	.00141
12.	5.	0.	-5.	-10.
.04	-11.		- •	• • • • • • • • • • • • • • • • • • • •
.00864	.00549	.00438	.00386	.00366
00184	00^61	00024	.00061	.00181
			-5.	-10.
12.	5.	0.	-50	-10.
.05	-9.5	04.344	00540	01170
.01533	.03361	•CU344	.00568	.01178
.00105	.00136	.0021	.00084	00159
8.	4.	0.	-5.	-10.
•01	-13.			
.00568	.00473	.00344	.00559	. 1161
.00084				
• 00004	.00126	.00168	.00084	00147

•03	-8.			
.00568	.00378	•00499	.00654	•00946
00116	.00147	.00042	.0002	•00084
8.	4.	0.	-3.	-6.
•05	-5.7			
.01144	•00672	.00662	.00877	. 1238
00252	.00021	00063	.00021	00179
10.	5.	0.	-3.	-6.
.07	-4.	00301	00055	01070
.01428	.00851	.00791	.00955	.01273
((431	00168	00168	00126	.^0126
10.	5.	3.	9•	-3.
.09 .0(198	-2. .001(3	.C0039	00119	00356
.00111	.00139	.00167	.00222	.00334
10.	0.	-10.	-20.	-30.
.01	-80.	-10,	200	,,,
.0(592	.00198	00047	00632	01146
• nt n2	.00139	.0(278	.00417	.00612
10.	0.	-10.	~20•	-30.
•03	-70.			
.01027	•0034	00348	01082	01935
00139	.00106	.00334	.00612	.00973
10.	0.	-10.	-20.	-30.
.05	-55.			
.01303	.00442	00395	01224	02291
00195	.00080	.00400	.00723	.01182
10.	0.	-10.	-20.	-30.
•06	-47.			
.01619	.00632	00395	01422	02528
00306	.00056	.00403	.00834	.01557
10.	Ú.	-10.	-20.	-30.
.07	-25.			
.0023	.00159	.00124	.00071	00057
·0/ 181	.03199	.0.238	.00371	.00541
10.	0.	-10.	-20.	-30.
.01	-57.	20252	001/0	00407
.0(372	.00146	• 70053	00142	00407
.OC 109	.00181	.0023A	.00352 -20.	•00542 -30•
10.	0. -48.	-10.	-20.	-30•
.02 .0⊹549	0.00266	0.	00319	00726
.0002	.00143	.00266	.00475	.00741
10.	0.	-10.	-20.	-30.
.03	-39.			
.00766	.00275	00004	00478	01027
00076	.00095	.00285	.00570	.00931
10.	0.	-1 /.	-20.	-30.
.04	-31.	•		
0.00991	0.00478	OCC35	0062	0094
00199	.00028	•Gu314	.00665	.0095
10.	0.	-1¢.	-20.	-25.
.05	-23.			
.0048	.00333	.00343	.00519	.01
.6 413	.00409	.00370	.00335	.00279
12.	6.	0.	-8.	-20.
.01	-19.			
.0 568	·00342	.00343	.00392	.00598
.CC 335	.00337	. 2034A	.00361	.00370
12.	6.	O.	-8.	-20.
			A 16	

4-16

•02	-17.8			
.00686	.00451	.00392	.00392	.00510
·00249	.00322	.00344	.00387	.00434
12.	6.	0.	-8.	-16.
•03	-16.	00534	.00441	. 00466
.0098	.00666	.00534	.00335	.00473
.00034	.00163	.00224 0.	-6.	-12.
12. .04	6. -11.	0.	-0.	- 1 - 4
.01372	.00931	.0076	.00637	.00539
00241	00043	.00077	.0031	.00464
12.	6.	0.	-6.	-10.
.05	-9.			
.00674	.00483	.00412	.00625	.01022
.00283	.00224	.00305	.00231	.00015
10.	6.	0.	-6.	-12.
.01	-12.5			01005
.00994	.00483	.00454	.00674	.01235
.00052	.00276	.00276	.00209	.00075 -12.
12.	6.	0.	-6.	-12.
.03	-8.5	.00554	.00596	.00817
.01193	.00625 .002:1	.00334	.00164	.00224
u0037	6.	3.	0.	-4.
.05	-5.7	,,	••	
.01526	.00923	.00795	.0088	.71122
00238	.0004	.00224	.00596	.00283
12.	6.	3.	0.	-3.
.07	-1.			
.0186	.01235	.0118	.01257	.01463
00447	00209	00112	.00127	•00343
12.	6.	3.	0.	-3.
.09	-80.			00007
.00307	.00192	.00004	00109	00307
•00223	.00244	.00325	.00294	.00355 -30.
10.	0.	-10.	-20.	- 50 •
.01	-70.	0016	0064	01152
.00685 .00091	.00307 .00253	. 30345	.00487	.0065
10.	0.	-10.	-20.	-30.
.03	-45.	200	200	
.00112	00397	06307	0112	01984
00041	.00173	.00416	.007	.01035
10.	0.	-10.	-20.	-30.
.05	-28.			
.01664	.0064	00397	01472	02637
00162	.00142	.00518	.00954	.01563
10.	0.	-10.	-20.	-30.
.67	-19.		4204	01/
.01971	.00794	00384	0096	016
0C223	.00158	.00599	.00832	.01157 -30.
10.	0.	-13.	-20.	- 3(/ 6
.08	-68. - 00251	00181	00098	.00056
0C335	+.00251 .00275	.00294	.00334	.00438
•00262 10•	0.	-10.	-20.	-30.
.01	-46.			- - •
.0067	.00349	.C007	00377	00809
.00098	.00229	.00379	.00549	.00798
10.	0.	-10.	-20.	-30.
			A-17	

A-17

.63	-36.					
.00893	.00413	00042	0053	01116		
.0004	.00196	.00405	.00719			
10.	0.	-10.	-20.	-30.		
.04	-28.					
.01144	.00558	00042	00684	01395		
00078	00144	.00432				
10.	0.	-10.	-20.	-30.		
.05	-20.					
.01381	.00698	00014	00405	00767		
.00196	.00098		.00654			
10.	0.	-10.	-20.			
•06	-52.					
.0r53	.00394	.00316	.00394	.00438		
.0042	.0051	.0066	.00495	.0044		
20.	10.	0.	-10.	-20.		
.01	-53.					
.00393	.00349	.00238	.00127	00055		
•00·348	.00379	.00512	.00659	.00997		
0.	-10.	-20.	-30.	-40.		
.02	-45.					
.0(465	.00316	.00122	00105	00377		
.00275	·00384	.00604	.00878	.01363		
0.	-10.	-20.	-30.	-40.		
•03	-38.					
.00543	.00366	.C0022	00111	00249		
.0' 229	.00412	.00714	• 00906	.01153		
0.	-10.	-20.	-25.	-30.		
•04	-29.					
.01.5	.00638	.Cu332	.00166	00014		
00037	0023	.0042	• 0062	•0090		
10.	0.	-16.	-15.	-20.		
•05	-15.					
7100.	24.	0.	.645	.0651	22.	1155.
•00525	5	6.	• R	600.	10.9	18.5
27.	0•	.1.5	4.3	0525		
1.	10.	1.	0.			

TABLE A-2

```
C
                STRIP ROTOR THELLY STABILITY DERIVATIVES
C
            LIST OF INPUT CARDS (AFTER 130 AIRFUIL SECTION DATA CARDS)
CCD
       COL
              SYMBOL
                TC
C
   1
       0-8
                           COLLECTIVE PITCH
                                                    DEG .
C
   1
       9-16
                DKJ
                           TIP SPEED RATIO
      17-24
                VI
                           TIP SPEED
                                                    F.P.S.
   1
C
   1
      25-32
                SIG
                           ROTOR SOLIDITY
      33-40
C
   1
                AK
                           ROTUR ANGLE OF ATTACK
                                                    DEG.
      41-48
                03
                           DELTA 3
   1
                                                    DEG .
C
      49-56
                В
                           NUMBER OF BLADES
   1
                           ROTOR RADIUS
C
   1
      57-64
                R
                                                    FT.
                           DENSITY
C
   1
      65-72
                RHD
C
   2
                           SHAFT ANGLE
                                                    DEG.
       0 -B
                DS
                XR
                           HORIZONTAL ARM C.G. TO SHAFT
C
   2
       9-16
                                                             FT. + UP
                           VERTICAL ARM C.G. TO SHAFT
C
                HR
   2
      17-24
                                                              FT.
                                                                  - FWD
C
   2
                           TAIL LENGTH
      25-32
                ET
                                                              FT.
                VII
                           TAIL ROTOR TIP SPEED
                                                             F.P.S
      33-40
C
   2
      41-48
                SIGT
                           YAIL ROTOR SOLIDITY
                                                             FT.
C
   2
      49-56
                RT
                           TAIL ROTOR RADIUS
   2
                SVI
                           AREA VERTICAL TAIL
                                                              SQ .FT.
      57-64
                SHT
                           AREA HORIZONTAL TAIL
   2
      65-72
                                                              SO .FT.
                VOLF
                           FUSELAGE VOLUME
   3
       0-8
                                                             CU .F T.
   3
                CDA
                           FUSELAGE DRAG AREA
       9-16
                                                              SQ .F T.
t
Ċ
   3
      17-24
                EC
                           ROTOR BLADE HINGE ECCENTRICITY EC/R
      TYPE OF RUTOR
                          EC=D. FOR TEETERING
C
                          EC=GT.O.LT1. FOR ARTICULATED
C
                          EC=2. FOR RIGID
C
                          EC=3.0 FOR RESTRICTED TEETERING
C
      25-32
                           TORSION SPRING RATE FOR EC = 3.0
      D3 15 DELTA 3 FUTURE USE NOW O
      DIMENSIONCDR (18.5).CDT(18.5)
      DIMENSIONCL1 (91.5).CD1(91.5)
      DIMENSION (1(2), (2(2), E3(2)
      DIMENSION E8(10), 29(10), C20(3)
      DIMENSION CC(12,7), UX(12,7), CB(12,7), CVT(12,7), CHT(12,7), CTR(12,7)
      DIMENSID% C10(2),C11(2),C12(2),C13(2),C14(2),C15(2),C16(2),C17(2)
      DD13J=1.5
      READ(5,1)(CL1(1,3),1=1,91)
      READ(5.1!(CO1(1.J).I=1.91)
      READ(5.1) (COT(1,J). 1=1.18)
      READ(5,1)(CDR(1,J),1=1,18)
      WRITE(6,1)(CL1(1,J),1=1,91)
      WRITE(6,1)(CD1(1,J),1=1,91)
      WRITE (6,1)(COT (1,J),I=1, 18)
      WRITE (6,1)(CDR(I,J),I=1,18)
   13 CONTINUE
      WRITE(6.6)
    6 FORMAT(15%,35HALL COEFFICIENTS BASED ON DISC AREA)
      WRITE (6.5)
   20 READ(5,2) TC, OMU, VT, SIG, AK, D3, B, R, RHO
      READ(5,4)DS, XR, HR, ET, VTT, SIGT, RT, SVT, SHT
      READ(5.7) VOLF, CDA, EC, RK
    4 FDRMAT(4F8.2.F8.0.F3.3.3F8.1)
                                          A-19
    7 FDRMAT(3F8.2.E15.8)
```

```
WRITE (5.5)
      WRITE (6,2)TC.OHU.VT.SIG.AK.D3.B.R.RHD
      WRITE (6,4)DS.XR.HR.ET.VTT.SIGT.RT.SVT.SHT
      WRITE(6,7)VOLF,CDA,EC,RK
      WRITE(6,152)
      DS=DS/57.3
      TV+UHQ=V
      AS=-12.
               SDAS=4.
                                      $ SK = SK / 57 .3
               $D$Y=15. $TB=T(/57.3
      SY=-15.
      J3=7
    1 FORMAT(9F8.5)
    2 FORMAT(2F8.5.F8.0.2F8.5.2F8.1.F8.2.F8.5)
    3 FDRMAT(3F8.3.5F10.5)
    5 FORMAT(/)
      RC=51G=3.141=R=R/B
      BIN=0.
      WB = 2.28 + R C = 1.164
      G=BIN/(RHO+3.141+2.7+VT++2+R++3)
      61=WB+B/(RHD+32.2+.50+3.141+R++3)
      (RK=RK/(RHO+3.14)+R++3+VT++2)
      G2=CRK
      IF(AK)30.31.30
   30 AS=AK-DAS $J3=1
   31 CONTINUE
C
      ALPHA LOOP
      DD102 JN=1.J3
      AS=AS+DAS $AA=A5/57.3
      CR=0. $CP=3. $CW=0. $CU=0 $CV=0.
      A1 = -1. $B1 = -1.
      SK =J.
      00 32 1=1.12
      DD 32 J=1.7
      CTR(1.J)=0.
      . O = (L. I) TV)
      CHI(I.J)=0.
      (B(1.J)=0.
   32 CC(1.J)=0.
      DD 107 L1=1.2
      A1=A1+1.
      SM = A1 /57 .3
      CALL NOTTB-DMU.VT.SIG.SK.SM.AA.CLI.CDR.CMYSS.CMXSS.CYSS.CDSS.CTSS.
     1CHSS.COSS.CLSS.CR.CP.CW.CU.CV.D3.G.CD1.CDT.SV.EC.G1.R.G2.HR)
      E9(L1)=5V
      C20(L1)=CMYSS $C11(L1)=CMXSS $C12(L1)=(YSS
      C16(L1) = CDSS
      C13(L1)=CTSS $C14(L1)=CHSS $C15(L1)=CQSS $C17(L1)=CLSS
 107 CONTINUE
      ((1)013-(5)013)-=ACX)
      CMXDA=C11(2)-C11(1) $CHDA=C14(2)-C14(1)
      CYDA=(12(2)-C12(1)
                           $ E 4DA = C15(2)-C15(1)
      1F(CMXDA.NE.O.) SM=-C11(1)/(57.3*CMXDA)
      DO 108 L1=1.2
      #1=f1+1.
      SK=61/57.3
      CALL ND(Tb+OMU,VT+SIG+SK+SH+AA+CL1+CDR+CMYSS+C4XSS+CYSS+CDSS+CISS+
     1CHS5, CQS5, CLS5, CR, CP, CW, CU, CV, D3, G, CD1, CDT, SV, EC, G1, K, G2, HR)
      (20(L1)=CMYSS + C11(L1)=CMXSS + C12(L1)=CYSS + C16(L1)=CDSS
      C13(L1)=CTSS $C14(L1)=CHSS $C15(L1)=CQSS $C17(L1)=CLSS
                                                                    A = 20
```

```
108 CONTINUE
    CMYDB=C20(2)-C20(1) $CTDB=C13(2)-C13(1)
    CXDB = -(C16(2) - C16(1))
    CMXDB=C11(2)-C11(1) $CHDB=C14(2)-C14(1)
    CYDB=C12(2)-C12(1) $CQDB=C15(2)-C15(1)
    SK=0.
    IF(C4YDB.NE.O.) SK=-C2O(1)/(57.3 *CMYDB)
    CALL NO (TB ODHU OVT , S )G, SK OSMOAAOC LI OCDROC MYSSOCM XSSOC YS SOCDSSOCTSSO
   1CHSS *CQSS *CLSS *CR *CP *CW *CU *CV *D3 *G *CD1 *CDT *SV *EC *G1 *R * G2 *HR }
                    $C11(1)=CMX55
                                     $C12(1)=CYSS
                                                    $ C 16 (1 )= CD 5 S
    C10(1) = CMYSS
                                     $C15(1)=CQSS
                                                     $C17(1)=CLSS
    C13(1)*CTSS
                    $C14 i11=CHSS
    81 = SK = 57.3 $A1 = SM = 57.3
    WRITE (6.166)
166 FORMAT(5x,29HFINAL VALUES IN PREVIOUS LINE)
    WRITE(6.152)
    WR1 TE (6,150)
150 FORMAT(1X,5HSHAFT,4X,4HCOLL,6X,3HLAT,5X,5HPITCH,4X,3HTIP,4X,5FSPEE
    WRITE (6,151)
151 FORMAT(1x,5HANGLE,4x,5HPITCH,5X,4HTRIM,4x,4HTRIM,4x,5HSPEED,4x,5HR
   1ATID)
    WRITE(6,10)AS,TC,A1,B1,VT,DHU
 10 FORMAT (4F8.2, F8.0, F8.3)
 11 FORMAT (15X.7E.5.8)
    WRITE(6,152)
152 FORMAT(/)
 15 FORMAT(10X-13HIN ROTOR AXIS)
    WRITE(6,15) SWRITE(6,152)
    WRITE (6.153)
153 FORMAT (5x,7HYAW MOM,6x,9HPITCH MOM,6x,8HROLL MOM,6x,10H
              .8X.5H X .1OX.6HTORQUE
   18X.6H Z
    WR 1 TE (6.154)
154 FORMAT(5x,24HLAT CYCLIC EFFECTIVENESS)
    WRITE(6.11)CMYDA,CMXDA,CYDA,CTDA,CHDA,CQDA
    WR1TE (6.155)
155 FORMAT(5x, 26HPITCH CYCLIC EFFECTIVENESS)
    WRITE (6:11) CMY DB, CMXDB, CYDB, CTDB, CHDB, CQDB
    CC(1.1)=CMYDA $CC(1.2)=CMXDA $CC(1.3)=CYDA
                    $CC(1.5)=CXDA
                                     $ CC (1 .6) = CQDA
    CC(1,4)=CTDA
                    $CC (2.2)=CMXDB
    CC (2.1)=CMYDB
                                     $CC (2.3) = CYDB
    CC(2.4)=CTDB
                    $CC (2.5)=CXDB
                                     $CC(2.6) = CQDB
    J1=2.
    TB1=TB+1./57.3
    DD99JJ=1.6
    J1=J1+1
                                    SCV=O.
    CR=D. $CP=0. $CH=0. $CU=0.
    IF(JJ.EQ.1) CR=1./57.3
    IF(JJ.E2.2) CP=-1./57.3
    IF(JJ.EQ.3)CU=-1.
    1F(JJ.E0.4)(W=1.
    1F(JJ.EQ.5)CV=+1.
    IF (JJ.EL.6)TR=TB1
    CALL NJ(TB-JMU-VT-SIG-SK-SM-AA-CL1-CDR-CMYSS-CMXSS-CYSS-CDSS-CTSS-
   1CHS5.CQS5.CLS5.CR,CP.CN,CU.CV.D3.G.CD1.CDT.SV.EC.G1.R.G2.HR1
    F8(11)=5V
    C10(2)=CMYSS $C11(2)=CMXSS $C12(2)=CYSS
    C16(2)=CDSS
                   $C14(2)=CHSS
    (13(2)=CTSS
                                 $C15(2)=CQSS
    CMYD = C10(2) - C10(1) CTD = C13(2) - C13(1)
                                                                         A - 21
    (XD = -(C16(2) - C16(1))
```

```
CMXD=C11(2)-C11(1) $CHD=C14(2)-C14(1)
    CYD=C12(2)-C12(1)
                         $CQD=C15(2)~C15(1)
    WR1TE (6.152)
    WRITE (6,153)
    IF(JJ.EQ.1) WRITE(6.157)
    1F(JJ.EQ.2) WRITE(6.158)
    IF(JJ.EQ.3) WRITE(6.160)
    1F(JJ.EQ.4) WRITE(6.159)
    1f(JJ.EQ.5) WRITE(6.161)
    1F(JJ.EQ.6)WRITE(6,163)
    1F(JJ.EQ.6)TB=TB1-1./57.3
    WRITE(6.11)CMYD, CMXD, CYD, CXD, CQD
    CC(J1.1) = CMYD $CC(J1.2) = CMXD $(C(J1.3) = CYU
                    $CC(J1,5) =CHD
                                    $CC (J1.61 =CQD
    (C(J1,4)=CTD
    1F(JJ.EB.6)GDT099
    1F(JJ-4)99.162.162
162 CMYD=CMYD+V $CMXD=CMXD+V $CYD=CYD+V $CTD=CTD+V
    CHD=CHD=V $CQD=CQD+V
    CXD=CXD=V
    1F(JJ.EG.4)WR1TE(6.164)
    IF (JJ.EQ.5) WRITE (6.163)
    WRITE (6.11)CMYD.CMXD.CYD.CTD.CXD.CQD
    J1=J1+1
    CC(J1.1) = CMYD $CC(J1.2) = CMXD $CC(J1.3) = CYD
    CC(J1.4)=CTD
                  $CC(J1.5)=CXD
                                    120 = ( 6.1L) 33 &
 99 CUNTINUE
163 FORMAT(5X.10HCOLLECTIVE)
164 FORMAT (5x, 15HANGLE OF ATTACK)
165 FORMAT(5x.8HSIDESLIP)
157 FURNAT(5X,12HRULL DAMPING)
158 FORMAT(5X.13HPITCH DAMPING)
159 FORMAT(5x.17HVERTICAL VELOCITY)
160 FORMAT (5x, 16HFDRWARD VELOCITY)
161 FORMAT (5x, 13HSIDE VELOCITY)
    WRITE(6,152)
                 SWR IT E(6,40) SWRITE(6,152)
    WRITE(6,150)
    hR1TE(6,151)
    WRITE (6,10)AS,TC,A1,B1,VT,DNU
    WRITE (6,152)
    WRITE (6, 153)
    DD41 1=1.4
    D041 J=1.7
 41 CC(1.J)=CC(1.J)=57.3
    D042J=1.7
 42 CC(10,J)=CC(10,J)*57.3
    CALL PRNT (CC)
 40 FORMATICEX . 15HSUMMARY OF DATA )
    A54=CC(5,4) $A64=CC(5,4) $A55=CC(5,5) $A65=CC(6,5)
        CHANGES ROTOR DERIVATIVES TO STABILITY AXIS
    CC(5,4)=-(A54-A64+D5)-(A55-A65+D5)+D5
    CC(5.5) =- (A54-A64+DS)+DS+(A55-A65+DS)
    CC(6,4)=-(A64+A54*DS)-(A65+A55*DS)*DS
    (C(6.5)=-(A64+A54*DS)*DS+(A65+A55*DS)
    (C(5.1) = -HR + C((5.5)/R + XR + C((5.4)/R)
    CC(6,1)=-HR+CC(6,5)/R-XR+CC(6,4)/R
    CC(1,4) = -CC(1,4)
    (C(2,4)=-(C(2,4)
    (((3,4)=-(((3,4)
    (((4,4) = -(((4,4)
                                        4-22
    (C(7,4) = -(C(7,4)
```

ì

•

```
CC(8.4) = -CC(8.4)
   (C(9.4)=-CC(9.4)
   CC(10,4)=-CC(10,4)
   CC( 1.2)=CC( 1.2)+CC( 1.3)*HR/R
   CC( 2,2)=CC( 2,2)+CC( 2,3)+HR/R
   CC( 3,2)=CC( 3,2)+CC( 3,3)*HR/R
   CC1 4,2)=CC1 4,2)+CC1 4,3)+HR/R
   CC( 5.2) = CC( 5.2) + CC( 5.3) + HR/R
   CC( 6.2)=CC( 6.2)+CC( 6.3)+HR/R
   CC( 8.2)=CC( 8.2;+CC( 8.3)+HR/R
   CC(10.2)=CC(10.2)+CC(10.3)+HR/R
   CC(11.2)=CC(11.2)+CC(11.3)+HR/R
   CC( 1.1)=CC( 1.1)+CC( 1.4)+XR/R-CC( 1.5) #HR/R
   (C( 2.1) = CC( 2.1) + CC( 2.4) + XR/R - (C( 2.5) + HR/R
   CC( 3,1)=CC( 3,1)+CC( 3,4)+XR/R-CC( 3,5)+HR/R
   CC( 4,1)=CC( 4,1)+CC( 4,4) * XR/R-CC( 4,5) * HR/R
   (C( 5.1)=CC( 5.1)+CC( 5.4)+XR/R-CC( 5.5)+HR/R
   CC( 6,1)=CC( 6,1)+CC( 6,4)+XR/R-CC( 6,5)+HR/R
   CC( 8.1) = CC( 8.1) + CC( 8.4) + XR/R - CC( 8.5) + HR/R
   CC(10.1)=CC(10.1)+CC(10.4)+XR/R-CC(10.5)+HR/R
   CC(11.1)=CC(11.1)+CC(11.4)+XR/R-CC(11.5)+HR/R
   DU 14 1=1,10
14 CC(1.7)=0.
   CC(10.7) = -CC(10.3) \times XR/R
   (C(1,7) = -CC(1,3) = XR/R
   CC(2.7)=-CC(2.3) * XR/R
   CHANGES TO COMPLETE MUDEL
       TAIL ROTOR
   TTV\TV*UPD=TUMO
   TB=0. $5K=3. $5M=0. $AA=0.
                                   $CR=0. $CP=0.
                                                      $ CW =0 .
          $ ( V = 0 .
                   $D3=0. $EC=2.
   CALL NOTTB.JMUT.VTT.SIGT.SK.SM.AA.CLI.CDR.CMYSS.CMXSS.CYSS.CDSS.CT
  155.CH$5.CQ$5.CL$5.CR.CP.CW.CU.CV.D3.G.CD1.CDT.$V.EC.G1.RT.G2.HR)
   (Te=CTSS
   TB=1./57.3
   CALL NO (TB.OMUT.VIT.SIGT.SK.SM.AA.CLI.CDR.CMYSS.CMXSS.CYSS.CDSS.CT
  1 SS. CHSS. CQSS. CLSS. CR. CP. CH. CU. CV. D 3. G. CD 1. CDT. SV. EC. G1 .R T. G2. +R)
   CTTB=(CTSS-CTB)*57.3
   CH=1.
   TB=0.
   CALL NOTTB. DNUT, VTT, SIGT. SK. SH. AA. CLI. CDR. CHYSS. CHXSS. CYSS. CDSS. CT
 155.CHS5.CQS5.CLS5.CR.CP.CH.CU.CV.D3.G.CD1.CDT.SV.EC.G1.RT.G2.HR)
   CTh=CISS-CTB
   TRR=(RT+VTT/(R+VT))++2.
   YVI=-CIW+TRR
                       $ZVT=-YVT=ET/R
                                             SYBTI= V + YVI
                                                             SZBTT=ZVT+V
   YTCT=CTTb+TRR
                       SZICI =-YICIPEI/R
   YSDT=-ET=YVT
                       $ZSDT =-YSDT=ET/R
   HT=5.
   YTDI =YVI +HI
   ZTDI=-YIDT =ET/R
       VERTICAL TAIL
   CLAT=2.0
                                            $QC=VT=VT=3.141=R+R
   EVT=CLAT+V=V+SVT/2. SYBTVT=-EVT/QC
                 SYVVI =O.
       ZBTVT=0.
                            $ZVVT=0.
   IF (V.LT.1.) GOTO8
   ZETVT=EVT = ET/(QC = R) $YVVT=YBTVT/V $2VVT=ZBTV \\
 8 CONTINUE
   YSDVT=-YVVT=ET
                    $2SVDT=-ZVVT*ET
       HCRIZONTAL TAIL
                                       A-23
   CLAT=2.6
```

C

C

```
EHT=CLAT+
                   V+V+SHT/2.
      ZAHT = -EHT *(1 .-(E8(4)-E9(1)))/QC
      ZWHI=Q.
      ZIHDT =0.
      IF (V.GT.1.) ZWHT =ZAHT/V
      IF (V.GT.1.) ZTHDT =-EHT +ET/(QC +V)
      CHAHT=ZAHTOET/R
      CHWHT = ZWHT +ET/R
      CMTDHT=ZTHDT+ET/R
C
           BUDY
      CXU =- CDA + V/( R + VT + VT)
           HF=.8
      CMAF=2.*HF*VOLF*().-(E8(4)-E9(1)))/(3.14]*R**3.)
      CNBF=2.*HF*VOLF/(3.141*R**3.)
      CHAF=CHAF+V+V/(2.+VT+VT)
      CNBF=CNBF+V+V/(2.+VT+VT)
      CMWF=0.
      CNVF=0.
      IF(V.GT.O.) CHWF=CMAF/V
      IF(V.GT.O.) CNVF=-CNBF/V
      CTR(8.3)=YVI$ CTR(8.7)=ZVT
      CTR(9,3)=YBTT$ CTR(9,7)=2BTT
      CTR(12,3)=YTCT$ CTR(12,7)=ZTCT
      CTR(11.3)=YSDT$ CTR(11.7)=ZSDT
      CTR(3.7) =YVT+HT
      CTR (3,7)=2TDT
      CTR( 5.2) =- TR( 3.7) +1/ET
      CTR ( B:2:1=-CTR ( B.7)=HT/ET
      CTR( 5,2)=-CTR( 9,7)+HT/ET
      CTR(11,2)=-CTR(11,7)+HT/ET
      CTR(12.2)=-CTR(12.7)*HT/ET
      CV1(8,3)=YVV1$ CV1(8,7)=ZVV3
      CVT(9.3)=YBTVT$ CVT(9.7)=ZETVT
      CVT(11.3)=YSOVT$ CVT(11.7)=25VDT
      CHT (7.4) = ZAHTS CHT (6.4) = ZNHT
      CHT(7.1)=CMAHTS CHT(6.1)=CMWHT
      CHT (4.1) = CF ( DHT & CHT (4.4) = 2 THDT
      (B(5.5)=(XU
      CVT( 8,2)=CVT( 8,7)*HI/(2.4FT)
      CVT( 9,2)=-CVT( 9,7)+HT/(2.+ET)
      CVT (11.2) =-CVT (11.7) +HT/(2.4ET)
      CVT( 3.3)=CVT( 8.3)+HT/2.
      CVT( 3.2) = CVT( 3.3) *HT/(2. *R)
      (VT( 3.7) = CVT( 3.3) = ET/(--k)
      CB(7.1) = CMAF$ CB (6.1) = CM hg
      CB (9.7) = CNBF$ CB (8.7) = CNY5
      WRITE (6, 152)$ WRITE (6, 164$ WRITE (6, 152)
      WRITE(6,153)$ WRITE(6,152)
   33 FURNAT (5x, 18HMAIN ROTOR PER DEG)
   34 FURMAT(5X,4HB(IDY)
   35 FORMAT (5X, 13HVERTICAL TALL)
   36 FORMAT (5X, 15HHORIZON(AL TAIL)
   37 FORMAT(5x.10HTAIL ROTOR)
   38 FORMAT(5X, 16HTOTAL PER PADIAN)
      WRITE(6.33)
      CALL PRNICCE
      WRITE (6,34)
      CALL PRITICES
      WRITE (6.35)
      CALL PRATICALL
                                       A-24
```

j

```
WRITE(6.36)
      CALL PRAT(CHT)
      WRITE (6.37)
      CALL PRNT (CTR)
      DB 39 I=1.12
      DB 39 J=1.7
   39 (C(1,J)=CC(1,J)+(B(1,J)+(VT(1,J)+CHT(1,J)+(TR(1,J)
      WRITE (6.38)
      CALL PRATICE
  102 CONTINUE
   16 FORMAT(10X-17HIN STABILITY AXIS)
      GOTD20 SEND
      SUBROUTINE NO(TB.DMU.VT.SIG.SK.SM.AA.CL1.CDR.CMYSS.CMXSS.CYSS.CDSS
     1.CTSS.CHSS.CQSS.CLSS.CR.CP.CW.CU.CV.D3.G.CD1.CD7.SV.EC.G1.R.G2.HR)
      DIMENSIONCOR (18,5), CDT (18,5)
      DIMENSIONCLI(91.5).CD1(91.5)
      DIHENSION C1(2), C2(2), E3(2)
      DIMENSION C10(2).C11(2).C12(2).C13(2).C14(2).C15(2).C16(2).C17(2)
      DIMENSION 86(24).87(24).810(24)
      DD 8 J7=1,24
      B6 (J7 )=0.
      810(J7)=0.
    8 B7(J7)=0.
      CRK=G2
      J=1
      DT=VT+57.3/(R# 15.)
      DT=1./DT
  152 FORMAT(/)
      DSY=15. $SY=-15.
      TC=TB+57.3
      AS=AA+57.3
      C = 1120.
      SMF = . 014
      SV=5.
      BLAM=0.
      SF=DMU+SIN(AA)
      S2=SF#SF
      D2 = CM U + D 4 U
C
      INDUCED VELOCITY LOOP
    4 FDRMAT(3F10.3,4F10.5,F10.3)
      DD 101 JJ=1.5
      1F(SV.GT.113.) SV=100.+.1*SY
      D0991J=1.2
      E1=SV/VT
      E2=E1+E1
      E3(1J)=E1
      (2(1J)=SQRT(4.=E2=(D2+S2-2.=SF=E1+E2))
      1F(SV.LT.O.) C2(13)=-C2(13)
   14 FORMAT(4X,2HAS,7X,2HSY,8X,3HAL2,8X,3HCLU,7X,3HCDU,6X,4HSPAN,7X,3HS
     1TH)
      1F(JJ-5)22,21,22
   21 HRITE (6.14)
   22 CONTINUE
      IF(J.EQ.1)60 TO 12
      DD 10 J7=1.24
      N1 = J7 - 1
      1f(N1.EU.O) V1=24
      N2 = J7 + 1
      IF(N2.FG.25)N2=1
                                       A-25
      88=(B7(J7)-37(N1))/UT
```

```
B9=(B7(N2)-B7(J7))/DT
   10 B6(J7)=(B8+B9)/2.
      DD 11 J7=1.24
      N1=J7-1
      IF(N1.EQ.O) N1=24
      N2 = J7 + 1
      IF (N2.EQ. 25)N2=1
      B8=(B6(J7)-B6(N1))/DT
      B9=(B6(N2)-B6(J7))/DT
   11 B10(J7)=(B8+B9}/8.
   12 CONTINUE
      D0157LK=1.2
      CISS=0. $CHSS=0.
      5Y=-15.
      AZIMUTH LOOP
C
      CMXSS = 0. $CMY 55 = 0. $CY 55 = 0.
      C755=0. $CD55=0. $CQ55=0.
      D0100KJ=1,24
      5Y=5Y+D5Y $5A=5Y/57.3
      DTH=0. $81=0.
      80=0.
      AR = EC
      IF(EC.GT.1.) AR=O.
      CTS=0.
              $CP5=0. $CH5=0.
      CMX=0. $CMY=0. $CYS=0.
      CRS=0.
C
      SPAN LOOP
      DTH=B7(JK)+D3/(57.3 +8.)
      8P=57.3+87(KJ)
      DU103KK=1.8
      DAR = (1.-EC 1/8.
      IF (EC.GT.1.) DAR=.125
      IF(KK.FU.1) DAR=DAR/2.
      AR = AR + DAR
      IF(AR.FO.O.) AR=.0625
C
      FOR THD/OMEGA RATES
      VY=DMU+VT+SIN(AA)-SV+AR+R +(CR+SIN(SA)+CP+CDS(SA))+CM
      VY=VY+AR+R+B6(JK)
      VX=VT =(AR+DMU=SIN(SA)=CUS(AA))+CU=SIN(SA)+CV=CDS(SA)
      STM=ABS(VX)/C
                    $1M= STH/.2
      1F(1M)28,27,28
   27 1M=1 $P4=0. $1MM=2
      601029
   28 IMM=IM+1 $AUM=IM $AJM=RUM+.2 $PH=(STM-AUH)/.2
   29 CONTINUE
      GA=ABS(VY/VX)
C
      AH LOCAL ANGLE OF ATTACK RELATIVE WIND TO PLANE PERPINDICULAR TO SHAFT
      AH=ATAN(GA)
      1F(VY)41.40.40
   40 IF(VX)44,43,43
   44 AH=3.141-AH $GDT043
   41 IF (VX)46,45,45
   45 AH=-AH $G0T043
   46 AH=AH-3.141
   43 AH= AH
      TT=-8.04R/57.3 $FN=1.
      SB=SA-03/57.3
      AL1=TE+6./57.3+TT-SMOSIN(SB)+SKOCUS(SB)-CTH+AH
      IF (AL1)47.47.49
                                         A-26
   47 AL1 =-AL1 SFN=-1.
```

```
49 AL2=AL1=57.3
      1D=AL2/2.+1.
      AUS=1D+2
      PU=1.-(AUS-AL2)/2.
C
      CLU. COU LOCAL LIFT AN DRAG COEFFICIENTS
      100=10+1
      CL3=(CL1(1D.IM)+PU+(CL1(1DD.IM)+CL1(1D.IM)))+FN
      CD3*(CD1(1D, IN)+PU+(CD1(1DD, I) }-CD1(1D, IN)))
      CL4 =FN+ (CL1(ID.IMM)+PU+(CL1(IUD.IMM)-CL1(ID.IMM))
      CD4=CD1(ID.IMM)+PU+(CD1(IDD.IMM)-CD1(ID.IMM))
      IF(ID-17)33.33.37
   33 IF(KK-6)34.34.35
   34 PTC=1-KK/6
      CD5=CDR(10.14)+PU+(CDR(IDD.IM)-CDR(ID.IM))
      CD6=CDR(ID.IMM)+PU+(CDR(IDD.IMM)-CDR(ID.IMM))
      601036
   35 PTC=(K4-6)/2
      CD5=CD1(10.1M)+PU=(CD1(1DD.1M)-CD1(1D.1M))
      CD6=CDT(ID.IMM)+PU+(CDT(IDD.IMM)-CDT(ID.IMM))
   36 CD3*CD3+PTC*(CD5-CD3)
      CD4=CD4+FTC+ (CD6-CD3)
   37 CONTINUE
      CLU=CL3+PM = (CL4-CL3) &CDU=CD3+PM + (CD4-CD3)
      CX. CZ CDEFF PARRALEL AND PERPINDICULAR TO BLADE TWIST AXIS IN PLANE
      PERPINDICULAR TO SHAFT AXIS
      CX=(-CLU+SIN (AH)+CDU+CD5 (AH))+(VX+VX+VY+VY)+SIG/VT++2
      CZ=(CLU+CDS(AH)+CDU+SIN(AH))+(V4+VX+VY+VY)+SIG/VT++2
      EA = EC
      SF(EC.GT.1.) EA=AR
      IF(EC.EQ.O.) EA=HR/R
      DIZ=0.
      .C=X30
      59 = SB
      CD5Y=-CX+CO5(5B)-CZ+SIN(B7(KJ)+SIN(S9)+DCX+CD5(SB)
      CDSC=CX+SIN(S6)-CZ+SIN(B7(KJ))*CDS(S9)-DCX+SIN(SB)
      IFLEC .EQ.O.) GDTD23
      601024
   23 EA=EA#SIN(B7(KJ))
      IF (KJ.GT.12.) EA =-EA
   24 CONTINUE
      CMX C=-CZ *CD: (B7(KJ)) *EA* SIN(S&)
      IFIEC . EQ . O . 1 GDT 025
      920109
  25 EA=EA=SIN(B7(KJ))
      1F (KJ.GT.7.DR.KJ.LT.19) EA =-EA
   26 CONTINUE
      CMYC=-CZ +COS(B7(KJ))+EA+CGS(SB)
      CYS=CYS+CDSY
      CMX=CMX+CMXC $CMY=CMY+CMYC
      (2=(1-002
      CTS=CTS+CZ &CHS=CHS+CDSC &CP5=CPS+CX+AR
      CRH =-CZ &COS(B7(KJ)) &EA
      CRS=CRS+CRM
      1F(KK-9)106,104,106
 104 CTS=CTS-CZ/2.
      CYS=CYS-CDSY/2.
      CHS=CHS-CDSC/2. $C+S=CP5-CX/2.
      CMX=CMX-CMXC/2. SCMY=CMY-CMYC/2.
      CRS=CRS-CRM/2.
                                         A-27
 106 CONTINUE
```

```
AS=AA+57.3
    AL2=FN+AL2
    B1=B1+C1/(G1*AR)-32.2*R/(AR*VT*VT)
    1F(EC.E0.2.) B1=0.
    IF(JJ-5)19.5.19
 6 CONTINUE
    1F (LK-2)19,20,19
20 CONTINUE
    1F(4J.EQ.1) GOTO17
    1FiKJ-7118.17.18
18 IF(KJ-19)19.17.19
17 hRITE(5,4)AS,SY,AL2,CLU,CDU,AR ,STM,BP
19 CONTINUE
103 CONTINUE
                            SCH=CHS/8.
    CT=CTS/8.
    (7=(MX/8. $C8=CMY/8.
    (MXDS=C7/2. $( MY DS=C8/2.
    CTOS=CT/2.
    CDUS=C4/2.
    (YDS=CYS/16.
    CRY=CRS/16.
    IF(EC.EQ.3.) 61=CRY/CRK
    CODS=CPS/16.
    BP=81 +57.3/9.
    80=61/8.
    87(KJ)=80
    B1=0.
    SJ=SK+57.3
 15 FDRMAT(4x,24A5,8x,2HTC,8x,2HTB,7x,4HCTD5,6X,4HCDU5,6X,4HCQD5,7X,2H
105 CTSS=CTSS+CT3S $CDSS=CDSS+CDDS $CQSS=CQSS+CQ3S
    CMXSS = CMXSS+CMXUS
    CHYSS = CHYSS+ CHYUS
    (YSS=CYSS+CYDS
100 CONTINUE
    1F (EC.EQ. 3.) GDTD7
    1F (EC.GT.O.) G0105
  7 CONTINUE
    D() 3 KJ=1.12
    KL=KJ+12
    A8=1.
    87 (KJ )=A8 = (B7 (KJ )-B7 (KL ) 1/2.
  3 B7(KL)=-87((J)
  5 CONTINUE
107 CONTINUE
    CTSS=CTSS/24. $CDSS=CDSS/24. $CQSS+CQSS/24.
    CMXSS=CMXSS/24. $CMYSS=CMYSS/24. $CYSS-CYSS/24.
     CLSS=CTSS+C3S(AA)-CDSS+SIN(AA)
    CHSS=CTSS+SIN(AA)+CDSS+CBS(AA)
    (T(=C2(IJ)
    55=5M =57.3
    ENC=DHJ&C155/CDS5
    WRITE (5.152)
    WRITE (6, 16)
    WRITE (5,2)
    WRITE(6,9)AS,TC,SJ.VT,(IMU,CTSS,CDSS,CLSS,CHSS,CQSS,SV,CTC,ENC
    WRITE(6,1)SS.CMXSS.CMYSS.CYSS.BQ.SB.AH
 16 FORMAT(4x,2HAS,5x,2HTC,7x,2HT8,6X,2HVT,4X,3H3HJ,5X,4HCT$S,8X,4HCD$
   15,8x,4H(L55,7x,4HCH55,7x,4HCQ55,7x,2H5V,7x,3HCTC,6X,3HENC)
                                                                         4-28
  9 FORMAT (3F8.2, F8.0, F6.3, 5F11.6, F11.3, F11.6, F8.3)
```

```
1 FORMAT(F6.3,6F11.6)
  2 FORMAT(2x,2HSS,5x,5HCMXSS,7X,5HCMYSS,7X,4HCYSS)
    C1(IJ) *CTSS
    J9=JJ-5
    IF (J9.EG. 0)G0T0102
    SMF = SMF -. 001
 99 SV=SV+SMF+VT
    SL=(C1(1)-C2(1)-C1(2)+L2(2))/(E3(1)-E3(2))
    E1=(C1(2)-C2(2))/SL
101 SV=(E3(2)-E1)*VT
102 WRITE (6.152)
    RETURN
    END
    SUPROUTINE PRNT(UX).
    DIMENSION UX(12.7)
    WRITE(6.21)
  1 FORMATISX.24HLAT CYCLIC EFFECTIVENESS)
  2 FORMAT (5x, 26HPITCH CYCLIC EFFECTIVENESS)
  3 FORMAT(5X.12HROLL DAMPING)
  4 FORMATISX.13HPITCH DAMPING)
  5 FORMAT(5x,16HFORWARD VELCCITY)
  6 FORMATISX.17HVERTICAL VELOCITY)
  7 FURMATISX, ISHANGLE UF ATTACK)
  8 FORMAT (5x.13HSIDE VELOCITY)
  9 FORMAT(5x.8HSIDESLIP)
 10 FORMAT(5x,16HROTOR COLLECTIVE)
 11 FORMATISX.11HYAW DAMPING!
 12 FURNATISX. 21HTAIL ROTOR COLLECTIVE)
 17 FORMAT(8F15.8)
    00 20 1=1.12
    1F(1.60.1) WR17E(6.1)
    1F(1.EQ.2) HRITE(6.2)
    1F(1.EQ.3) WRITE(6.3)
    1F (1.EQ.4) WRITE (6.4)
    1F(1.EQ.5) HRITE(6.5)
    IF(1.EQ.6) HRITE(6.6)
    1 F(1.EQ.7) AR 1 TE(6.7)
    IF(1.EQ.8) WRITE(6.8)
    1F(1.EQ.9) WRITE(6.9)
    IF (:. ED. 10) WRITE (6.10)
    IF (1.EQ.11) WRITE (6.11)
    1F(1.EQ.121dR17E(6.12)
 20 WR ! TE(6, 17) (UX(1,7), (UX(1,J), J=1,6))
 21 FORMAT(/)
    WRITE(6,21)
    RETURN
    END
    LISTISTUPI
    LIST
    DATA
```

1. 7. . .

```
0.
                                                 1.06
                                                           1.27
                                                                     1.32
                                                                               1.02
          .21
                    .42
                              .63
                                       .85
.9
                   . 3
                                       .88
                                                                     1.05
                                                                               1.08
          .91
                              .82
                                                 .95
                                                           1.02
1.09
          1.09
                    1.09
                              1.08
                                        1.06
                                                  1.C3
                                                           1.0
                                                                      .96
                                                                                .92
                              . 78
                                        .73
                                                                      -58
                                                                                •53
.88
          .84
                    .30
                                                  .68
                                                            .63
                                                                                       A - 29
                                                            .17
                                                                      -13
                                                                                .06
. 48
          .43
                    .38
                              .33
                                        .28
                                                  .23
```

0.	05	1	15	2	-, 25	29	33	37	L 6
.41	45	49	53	57	61	64	67	70	L 7
.73	75	77	78	79	80	81	82	82	L8
82	81	80	79	77	71	63	- , 55	47	L9
45	48	54	57	59	59	53	46	21	L 10
0.								• •	L11
.008	.008	.0085	-009	.01	.0125	.017	.038	- 16	
.22	.29	.33	.4	.45	.52	.54	.56	.58	
.60	.62	.64	. 66	.68	.70	.72	.74	.76	
.78	. 9 2	. 3 4	.86	.88	.90	.92	.94	.96	D. F.
.98	1.	1.02	1 -04	1.06	1.08	1.1	1.2	1.22	D 5
1.24	1 ~22	1.2	1.1	1.08	1.06	1.04	1.02	1.	06
.98	.96	.94	• 92	•90	.68	. 86	-84	.82	υ 7
.80	.78	.76	. 74	.72	.70	.68	.66	.64	D8
•62	.60	.58	• 56	.52	.45	.40	.33	.28	09
•22	.16	.038	.017	.0125	.01	.009	.0 08 5	.008	010
.008									011
.008	.006	.0085	.009	.01	.0125	-017	-0 38	. 16	051
.22	.28	•33	. 4	.45	.52	.54	.56	.58	055
8CQ •	.008	.3085	.009	.01	.0125	.017	.0 38	.16	021
.22	.28	•33	. 4	.45	.52	. 54	.56	-58	055
0.	.23	.46	. 69	.92	1.08	1.12	1.08	.92	L41
•9	.81	•8	.82	.88	.95	1 -0 5	1.05	1.08	L42
1.09	1.09	1.09	1.09	1.06	1.03	1.	.96	.92	L 43
.68	.84	. 8	.78	.73	.68	. 63	.58	.53	£ 44
.48	.43	.38	.33	.28	.23	. 17	-13	•06	L5
0.	05	1	15	- •2	25	29	33	37	L6
.41	45	49	53	57	61	64	67	70	1.7
.73	75	77	73	79	80	81	82	82	LB
~.82	81	80	79	77	71	63	55	47	L 9
45	48	54	57	59	59	53	46	21	L 10
J •									L11
.008	.008	.0085	.01	.015	.023	.058	•15	.21	041
• 26	.31	.42	. 48	.52	•53	-54	. 56	-58	042
•6	.62	.64	•66	.68	.7	.72	.74	•76	043
.78	5 4.	.84	-66	.88	.9	• 92	.94	.96	044
.98	1.	1.02	1.04	1.06	1.08	1.1	1.2	1.22	05
1.24	1.22	1.2	1.1	1.08	1.06	1.04	1.02	1.	D6
.98	.96	. 34	.92	• 90	.88	. 86	.84	.82	07
.80	.78	.76	. 74	.72	.70	.68	.66	.64	D 8
•62	•60	.58	•56	.52	•45	.40	.33	. 28	0.9
•22	.16	.038	.317	.0125	-01	-009	.0085	.008	610
.006									011
.338	.008	.0085	.01	.015	.023	.058	.15	.21	041
.26	.31	.42	. 48	•52	•53	.54	.56	•58	042
.008	.008	.3085	.01	.015	.023	.059	.15	-21	041
. 26	.31	•42	.48	.52	.53	.54	.56	•58	D42
0.	.27	•54	•75	.86	.91	. 93	.96	.98	161
• 53	. 85	.86	. 95	1.02	1.12	1.14	1.11	1.08	162
1.09	1.09	1.09	1.08	1.06	1.03	1.	.96	•92	163
.88	. B 4	.98	. 78	. 73	.68	.63	.58	•53	164
.48	.43	.38	•33	. 28	.23	.17	.13	•06	L 5
0.	- •05	1	15	2	25	29	33	37	L 6
.41	45	49	53	57	61	54	67	7C	L 7
.73	75	77	78	79	80	91	82	82	L8
82	81	80	79	77	71	63	55	47	19
45	48	54	57	59	59	53	46	21	L10
ο.							<u>.</u> .		L11
.008	800.	. 20 92	.019	.05	.10	. 19	.24	. 29	061
•35	-41	.48	.55	.55	.53	.54	.56	.58	A-30 D62

	78	.82	.94	. 86	.88	.9	.92	.94
	.98	1.	1.02	1.04	1.06	1.08	1.1	1.2
			1.2	1.1	1.08			1.02
	-98	.96	.94	•92	•90	.88	.86	.84
Ž.	.80	.78	.76	. 74	.72	.70	.68	.66
N.					.52			
	•55	.16	.038	.017	.0125	.01	• 00 9	-0085
	.008							
	.008		•00 92 •48	.019	.05	•10	. 19	.24
9	5	34 I	-48	•55	.55	,53		.56
			.0092		•05			
ñ	5				.55	•53	. 54	.56
8		• 39	•61	. 68	.70	.72	. 74	
<u>.</u>	•77	.78	.79 .8	.80 .8	. 8 . 8	.8 .8	•8 •8	•8 •8
	•8 •	.e 8.	•8		.73		•63	
i i	•8 •48				. 73		. 17	•13
Ü	0.	05	1	15	2	25	29	33
8	41	45	49	53	57	61	64	67
Ĭ	73	75	77	78	79	80	81	82
Ş	82	81	80	79	77	71	63	55
					59			
5	3.							
l	-019	.038	.08	.12	.16	.19	• 22	-28
	•37	.42	.5	. 55	•55	•53	.54	-56
1	6	.62	.64	.66	.68	.7	.72	.74
-	78	.82	.84	•86	.88	•9	. 92	.94
	-95	1.	1.02	1.04	1.06	1.08	1.1	1.2
į	1.24	1.22	1.2	1.1	1.08	1 • 66	1.04	1.02
l					•90			
		. 78	• 16	• 14	.72			
	•62	•60	.58	•56 •017	•56	.45 .01	.40 .009	.33 .0085
	•22	.16	.038	•017	•0125	•01	.009	.0005
	.008	038	. 08	12	.16	.19	• 55	.28
I			•5		.55	.53	.54	.56
	.019			.12		.19	•55	.28
	.37	.42	-5	-55	. 55		.54	.56
I	0.	.2	-4	•56	.55 .58	.59		
1			.78	.82	.88	.95		
1	1.09	1.09	1.09	1.08	1.06	1.03	1.	.96
Ì	.88	. 9 4	. 5	. 78	.73	.68	.63	.58
Į	.48	.43	.38	.33	. 28	.23	.17	.13
1	0.	05	1	15	2	25	29	··• 33
•	41	45	49	53	57	61	54	67
9	73	75	77	78	79	80	81	82
4	82	81	80	79	77	71	~.63	 55
ì	45 0.	48	54	57	59	59	53	46
È	•15	.17	.19	.23	.27	.3	•33	.35
1	•4	.42	.5	• 5 5	.55	.53	.54	.56
¥	5	.62	. 54	.66	.68	.7	.72	.74
į	.78	.82	.84	.86	.88	•9	•92	.94
*	.98	1.	1.02	1.04	1.06	1.08	1.1	1.2
Ŷ	1.24	1.22	1.2	1.1	1.08	1.06	1.04	1.02
Ž.	.98	.96	.94	•92	.90	.88	.85	.84
ğ	.80	.78	.76	• 74	.72	.70	-68	.66
	•62	• 60	.58	•56	.52	.45	.40	.33
Ĭ.	•23	.16	.638	.017	.0125	.01	.009	.0085
agna seon-peracteristicatora anticipi de Capalitatica de Capalitatica de Capalitatica de Capalitatica de Capal								
8								
Sacring.								
8								

-6	.62	.64	. 66	-68	.7	.72	.74	•76	D63
18	.82	.94	.86	.88	.9	.92	.94	.96	D64
.98	1.	1.02	1.04	1.06	1.08	1.1	1.2	1.22	05
1.24	1.22	1.2	1.1	1.08	1.06	1.04	1.02	1.	D 6
.98	.96	.94	•92	•90	.88	.86	.84	.82	07
.80	.78	.76	.74	.72	.70	.68	.66	.64	D8
						.40		.28	D9
•62	.60	.58	• 56	.52	.45		.33		
•55	.16	.038	.017	.0125	.01	.009	-0085	.008	010
.008						•-			011
.008	•008	•00 92	.019	.05	•1 O	. 19	.24	- 29	D 61
5	341	.48	• 55	.55	.53	.54	. 56	.58	0.62
.338	.008	.0092	.019	•05	.10	. 19	.24	.29	061
5	341	-48	• 55	.55	.53	• 54	.56	-58	D65
0.	.39	.61	. 68	.70	.72	. 74	•75	•76	L81
•77	.78	.79	.80	. 8	.8	. 8	.8	. 8	L82
.8	3.	.8	.8	. 8	.8	.8	.8	. 8	L 83
.8	.8	• 8	.73	.73	.68	•63	.58	.53	L 84
		.38	.33	.28	.23	.17	•13	.06	15
.48	.43		15	2	25	29	 33	37	16
0.	05	1							
41	45	49	53	57	61	64	67	70	L 7
73	75	77	78	79	80	8 1	82	82	L 8
82	81	80	79	77	71	63	 55	47	L 9
45	48	54	57	59	59	53	46	21	L 10
3.									L11
-019	.038	.08	.12	.16	.19	• 52	-28	•32	081
.37	.42	.5	. 55	•55	•53	.54	•56	.58	082
6	•62	.64	.66	.68	.7	.72	.74	.76	083
78	.82	.84	.86	.88	. 9	. 92	.94	.96	D 84
•98	1.	1.02	1.04	1.06	1.08	1.1	1.2	1.22	D5
		1.2	1.1	1.08	1.06	1.04	1.02	1.	06
1.24	1.22								D7
-98	.96	.94	•92	•90	.88	.86	.84	.82	
.80	.78	.76	. 74	.72	•70	•68	.66	.64	D 8
•62	.60	.58	•56	.52	.45	-40	.33	-28	D 9
•22	.16	.038	.017	.0125	-01	. 00 9	.0085	.008	D 10
.008									011
.019	.038	• O8	.12	.16	.19	. 22	.28	•32	081
.37	.42	.5	• 55	.55	.53	. 54	.56	۰58	D82
.019	.036	.08	-12	-16	.19	•55	.28	•32	081
.37	.42	•5	.55	.55	.53	.54	.56	. 8	0.82
0.	• 2	.4	-56	.58	.59	.60	.60	.62	L 101
.57	.7	.78	.82	.88	.95	1.02	1.05	1.08	L102
				1.06	1.03	1.	.96	.92	L103
1.09	1.09	1. 09	1.08				.58	•53	
.88	. 94	. 5	. 78	.73	.68	.63			L104
.48	.43	.38	•33	• 28	.23	.17	.13	•06	L5
0.	05	1	15	2	25	29	. 33	37	L 6
41	45	49	53	57	61	54	67	7C	L7
73	75	77	78	79	80	81	82	82	L8
82	81	80	79	77	71	~.63	55	47	L9
45	48	54	57	59	59	53	46	21	L10
٥.									L11
•15	.17	.19	.23	.27	.3	.33	.35	.38	0101
.4	.42	.5	.55	.55	.53	.54	.56	.58	C 102
5	•62	.54	.66	.68	.7	.72	.74	.76	0103
.78	.82	.84	-86	.88	• 9	.92	.94	.96	D104
									_
.98	1.	1.02	1.04	1.06	1.08	1.1	1.2	1.22	D5
1.24	1.22	1.2	1.1	1.08	1.06	1.04	1.02	1.	9.0
.98	.96	-94	•92	.90	.88	-85	-84	-82	07
.80	.78	.76	• 74	.72	.70	-68	.66	.64	D 8
.62	.60	.58	•56	.52	.43	.40	.33	.28	D 9
•55	. 16	. 638	.017	.0125	.01	.009	.0085	800.	A-31 D10

THE THE PROPERTY OF THE PARTY O

.008 15 .15	.17 .42 .17		•23 • •55 • •23 • •55	•27 •55 •27 •55	.3 .53 .3	.33 .54 .33	.35 .56 .35	.38 .58 .38	D101 D101 D101 D102
7.	0.	745.	.0651	1	0.	2.	22 • 18 •5	.00222 10.9	
-3.	-,5	6.	27.	745 .	.105	4.3	10.5	10.0	
630.	24.	0. 745.	.0651	1	0.	2.	22.	.00222	
7. -3.	0. 0.	6.	27.	745.	.105	4.3	18.5	10.9	
600. 7. -3. 600.	24. 0. 0. 24. PRDB	2. 745. 6. .15	.0651 27.	1 745.	0. .105	2. 4.3	22 • 18 •5	.0022 <i>2</i> 10.9	

APPENDIX B
PROGRAM FOR SOLUTION OF
LONGITUDINAL EQUATIONS

TABLE B.1
EXPANSION OF LONGITUDINAL DETERMINANT

$$C_{x_{\mu}} - \frac{\mu}{v} s \qquad C_{x_{\alpha}} \qquad \frac{\theta}{-C_{L}}$$

$$C_{Z_{\mu}} \qquad C_{Z_{\alpha}} + (C_{Z_{\alpha}^{*}} - m)s \qquad + (C_{Z_{\theta}^{*}} + m^{*})s$$

$$C_{m_{\mu}} \qquad C_{m_{\alpha}} + C_{m_{\alpha}^{*}} \qquad C_{m_{\theta}^{*}} - Iys^{2}$$

	A's ⁴	B's ³	C's ²	D's	E'
	- m' ² Iy'	-Cz.CxµIy'	C _{Zμ} C _χ Iy'	$C_{\mathbf{x}_{\alpha}}^{C_{\mathbf{m}_{\mu}}C_{\mathbf{Z}_{\dot{\theta}}}$	-C _{Z_µC_LC_m}
	m'CZ.Iy'	C _x m'Iy'	-C _x CZZq!y'	C _x C _m m'	$^{C_{m_{\mu}}C_{L}C_{Z_{\alpha}}}$
SS		m'C _m ⊕	$C_{Z_{\alpha}^{\bullet}C_{\mathbf{x}_{\mu}}m_{\dot{\theta}}^{\bullet}}$	-C _L C _{Z_µC_m}	
BASE VALUES		m'C _{Zα} Iy'	-C _{xume} m'	C _m C _L C _Z α	
BA		$-\frac{m'}{v}C_{Z_{\alpha}}C_{m_{\hat{\theta}}^{\bullet}}$	$-\frac{m!}{v}C_{Z_{\alpha}}C_{m_{\theta}^{\bullet}}$	-C _m C _L m*	
		$\frac{\underline{m}}{v}^{\prime}C_{\underline{m}_{\dot{\alpha}}}C_{Z_{\dot{\theta}}}$	$-C_{x_{\mu}}^{C_{m_{\alpha}}}C_{Z_{\theta}}^{C_{z_{\theta}}}$	-Czcccm	
		$\frac{m^{*2}}{v} C_{m_{\alpha}^{*}}$	-C _x C _m ,m'	-C _m C C C	
			$\frac{m}{v}^{'}C_{m_{\alpha}}^{C}C_{Z_{\hat{\theta}}}$	-C _m C m'	
			$\frac{m'^2}{v} C_{m_{\alpha}}$		

The state of the s

TABLE B.1 (Continued) EXPANSION OF LONGITUDINAL DETERMINANT PITCH CONTROLLER TERMS

	A's ⁴	B's ³	C's ²	D's	E'	
			m' 2 C _m B1	CzcccmB1	${}^{C}_{x_{\alpha}}{}^{m_{\mu}}{}^{C}_{B1}$	
	Gain C52		$-\frac{m'}{v} C_{m_{\alpha}^{\bullet}} C_{Z_{B1}}$ $-\frac{m'}{v} C_{Z_{\alpha}^{\bullet}} C_{m_{B1}}$	$-\frac{C_{x_{\mu}}^{m'C_{m_{B1}}}}{v}_{B1}$ $-\frac{m'}{v}C_{Z_{\alpha}^{m_{B1}}}$	$-C_{Z_{\mu}}^{C_{X_{\alpha}}}C_{m_{B1}}^{C_{m_{B1}}}$ $-C_{Z_{\alpha}}^{C_{X_{\alpha}}}C_{m_{B1}}^{C_{m_{B1}}}$	
CONTRIBUTIONS	C32			-C _x C _m C _Z B1	-C _m C _C C _{ZB1}	$\frac{\mathrm{d}^{\mathrm{B}}\mathrm{1}}{\mathrm{d}^{\mathrm{\theta}}}$
9 SAS CONT				m' C _{mα} C _{Z_{B1}}	-C _Z C _m C _{xB1}	
				$-C_{Z_{\mu}}^{C_{m_{\alpha}}} C_{x_{B1}}^{C_{x_{B1}}}$ $-C_{m_{\mu}}^{C_{m_{\alpha}}} C_{x_{B1}}^{C_{x_{B1}}}$	C _{mμ} C _{Zα} C _{xB1}	
			3 *	-C _m m'C _{xB1}	i	
	C ₅₁	34	2	1 4		dB ₁
П	C ₅₀ 3	24	1 4			$\frac{\mathbf{d}_{\vartheta}^{\bullet}}{\mathbf{d}_{\vartheta}^{\bullet}}$

*Note triangular relationship between

θ θ θ

SAS Contribution

TABLE B.1

EXPANSION OF LONGITUDINAL DETERMINANT (Continued)

		A's ⁴	B's ³	C's ²	D's	Ε¹	
	GAINS		m' Iy'CZB1	-C _{xu} Iy'C _{ZB} 1	C _{xμ} C _{me} C _Z B1	-CZ _U CLC _{mB1}	
UTIONS	c ₁₅			$-\frac{m^{\perp}}{v} C_{m_{\dot{\theta}}} C_{Z_{B1}}$	-C _x C _Z C _{mB1}	C _m CLCZB1	$\frac{dB_1}{d\alpha}$
SAS CONTRIBUTIONS				$\frac{m'}{v}^{C}Z_{\dot{\theta}}^{C}m_{B1}$	- m'C _{xu} C _{mB1}		
α SAS				m'2 CmB1			
			4	3	2	1	
	C 4	4	3 4	2	1 4		dB ₁ da
	C ₁₇ 3	+	2	1 4			$\frac{dB_1}{dB_1}$

* Note triangular relationship between $\alpha \qquad \text{ å } \qquad \overset{``}{\alpha}{}^{(1)} \text{ SAS Contribution}$ $\qquad \qquad {}^{(1)}\text{Quintic}$

THE PROPERTY OF THE PROPERTY O

11.

13 8 8 8 8 8 1 B

```
C
C
C
          THIS PROGRAM EVALUATES THE LONGITUDINAL STABILITY QUARTIC
Č
      COEFFICIENTS A.B.C.D.F OBTAINS THE RESULTING ROOTS, PERIOD
C
      AND TIME TO DAMP TO HALF AMPLITUDE. TO OBTAIN SATISFACTORY
C
      STABILITY AUTOPILOT GAINS C50=B1/TDD,C51xB1/TD, AND C50=B1/THFTA
C
C
      MAY BE USED.
          THE REQUIRED INPUT CARDS AND PROPER COLUMNS ALONG WITH THE SYMPOLS
C
       AND IDENTIFICATION ARE PRESENTED BELOW.
C
    CARD
           COLUMN
                    SYMBOL
C
            1-15
                    PM
                             MASS MAV/CHAD
C
     1
                                                  FT/SEC
C
           16-30
                             VELOCITY
      1
                                                            AD DISC AREA
                                                  W/G+AD
Č
           31 .. 45
                    CL1
                             LIFT COFFFICIENT
                    ALPH
      ī
                             ANGLE OF ATTACK
C
           46-60
                                                  IYY/Q#AD#ROTR
                             MOMENT OF INERTIA
C
           61-75
                    Y1
      122
                             STABLITTY DERIVATIVE
                                                      DCX/DU
                    CXU
C
            1-15
                                                      DCX/DALPHA
           16-30
                    CXA
C
C
      2 2 2 3
           31-45
                    CZU
C
           46-60
                    CZA
           61-75
C
                    CZAD
                    CZTD
            1-15
                                     FOR STABILITY DERIVATIVES SEE HELIO 4
Č
      3
                    CMU
            16-30
      3
C
            31-45
                    CMA1
            61-75
                    CMTD1
      3
C
                                   COLLECTIVE PITCH CONTROL EFFECT
                    CZTC
             1-15
      4
                                   COLLECTIVE PITCH
      4
             16-30
                    CMTC
C
                                   CYCLIC PITCH
             31-45
                    CZR1
                                   CYCLIC PITCH
                    CMP1
C
             46460
                                   HORIZONTAL TAIL
CCC
      4
             61-75
                    CMI
             1-15
                     CXI
      4 A
             1-15
                                  AUTOPILOT GAIN
      5
                     FM
C
                                  AUTOPILOT GAIN
Ċ
             1 -30
                     GV
                                  AUTOPILOT COEFFICIENT S2
                    C50
C
      5
             31-45
      5
             46-60
                     C51
CCC
      5
            460-75
                     C52
                     MORE=1 NEW GAINS, -1 NEW SFT, 0 END
             1-10
      6
 Č
                       TYPICAL INPUTS ARE
                                                                     .00051
                                   .0062
 C.000194
                                                    0.
                  1.
                                                    -.000043
                                                                     0.
                                   -.000009
                   .0000079
 c-.0000042
                                                                     .00000023
                                   8000000008
                                                    0.
                   .000000078
 CO.
                                                     -.0013
                                                                      0.
                    .00000336
 C--.041
                                    0.
 C.0045
                                   ٥.
                                               0.
 CO.
             0 .
                        0 .
 C1
                                   2:
                                               4.
 C1 .
             1.
 C-1
                                                                     .033
                   100.
                                    .405
 C1.26
                                                    -,793
                                                                     0.
 C.000486
                   .05207
                                    -.000173
```

DIMENSICNACOF(11), COF(11), ROOTR(10), ROOTI(10)

-:0427

.793

0 .

.00035

0.

.155

0.

CO,

CO.

CO C

C-3.14 C,353

0.

-.00088

-.108

-,13

-,0144

```
COMMONXCOF, COF, M, ROOTR, ROOTI, TER
   M=4
98 CONTINUE
   READ(5,6)PM, V, CL1, ALPH, YI
   READ(5,6)CXJ,CXA,CZU,CZA,CZAD
   READ(5,6)CZTD1,CMU,CMA1,CMAD,CMTD1
   READ(5,6)CZTC,CMTC,CZB1,CMB1,CM1
   READ(5,6)CXI
 1 FORMAT(7F10.6)
   WRITE(6,2)
 2 FORMAT(5X,48HAIRCRAFT GA INPUTS IN ORDER ARE PM, V, CL1, ALPH, YI)
   WRITE(6,6)PM,V,CL1,ALPH,YI
   WRITE(6,3)
 3 FORMAT(2X,74HCXU,CXA,CZU,CZA,CZAD,CZTD1,CMU,CMA1,CMAD,CMTD1,CZTC,C
  1MTC, CZB1, CMB1, CMI, CXI)
   WRITE(6,6)CXU,CXA,CZU,CZA,C7AP
   WRITE(5,6)CZTD1,CMU,CMA1,CMAD,CMTD1
   WRITE(6,6)CZTC,CMTC,CZ81,CMB1,CMI
   WRITE(6.6)CXI
   CMI=CMB1+CMI
   CZI=CZB1
   YI1=YI
97 CONTINUE
   READ(5.1)FM.GV.C50.C51.C52
   WRITE(6,1)F4,GV,C50,C51,C59
   FG=FM+GV
   YI=YI1-FG+CMI+C50
   C12=FG+C52
   C13=FG+C51
   C14=0.
   C15*FG*C50
   A=CXU
   8=C10
   CMTD=CMTD1+C13+CMI
   CZTD=CZTD1+C13+CZI
   C=CXA
   WHEN V=0 PM=M/Q*AD Q=RHO*VTIP*VTIP USE CZW ETC.
   IF(V-1.)9,9,8
 A F=CZTD+PM
   GOT010
 9 F=C4TD
10 CONTINUE
   D=CZAD-PM
   E=CZA+C14+CZI
   CMA=CMA1+C14+CMI
   A1=PM+D+Y1/V
   B1==(A+D+YI)=PM+D+C4Tn/v+PM+YI+F/v+PM+F+CMAD/v
   C1=A+D+CMTD-A+E+YI+PM+E+CMTD/V+PM+F+CMA/V-A+F+CMAD
   C1=C1+B+C+YI+C12+PM+(CZI+CMAD-CMI+D)/V
   D1=A.E.CMTi)-A.F.CMA+C.F.CMU
   D1=D1-B+C+CMTD-B+CL1+CMAD
   D1=D1+D+CL1 CMU
   D1=D1+C12*PM*(CMA*CZI-E*CMI)/V+C12*A*(D*CMI-C*AD*CZI)
   E1=-(8+CMA+CL1)+E+G 1+CMU
   E1=E1+C12*A*(E*CMI+CMA*CZty+C12*C*(CMU*CZi+B*CMI)
   C90=CZA+CMU-CZY+CMA
   C91=D*CMU-CZU*CMAD
   E1=E1+C12*CX1*C90
   D1=D1+C12*CX1*Co1
   C1=C1+C13+CX1+C91
```

C

:

```
D1=D1+C13+CX!+C90
  A1=A1+C15+CZI+CMAD+PM/V-C15+CMI+D+PM/V
  81=81+C15+CZ1+((PM/V)+CMA-CXU+CMAD)+C15+CMI+(CXU+D-CZA+PM/V)+C15+C
 1XI + C91
  C1=C1+C15+CZ!+(CMU+CXA-CMA+CXU)+C15+CM!+(CXU+CZA-CZU+CXA)+C15+CX!+
 1090
  A2=1,
  B2=B1/A1
  C2=C1/A1
   D2=D1/A1
  E2#E1/A1
  XCOF(1)=E2
   XCOF(2)=D2
   XCOF(3)=C2
   XCOF (4)=B2
   XCOF(5)=A2
5 FORMAT(2X, 43HQUARTIC COFFFICIENTS ARE IN ORDER A, B, C, D, E)
   WRITE(6.5)
   WRITE(6,6)A,B,C,D,E
   WRITE(6,6)A1,B1,C1,h1,E1
   WRITE(6.6)A2,B2,C2,D2,E2
 6 FORMAT(5E15.8)
   WRITE(6,1)C12,C13,C14
   CALL ROLRT(XCOF, COF, M, ROOTE, ROOTE, IER)
   WRITE(6,7)
 7 FORMAT(BX,9HREAL ROOT, BX, 10HIMAG, ROOT, 8x,6HPERIOD, 9X, 12HTIMF TO H
  1ALF)
   D0201=1,4
   IF (ROOTI(I))81,80,81
80 P=200000.
   GOTO82
81 P=2, 43.14/ROOTI(1)
82 D=,69/ROOTR(1)
20 WRITE(6,11)ROOTR(1),ROOT$(1),P.D
   READ(5,29)MORE
20 FORMAT(15)
   IF (MORE) 98.30.97
30 IER=2
11 FORMAT(5X,6E17.8)
   END
   SUBROUTINE ROLRT(XCOF, COF, M, RCOTR, ROOTI, 16R)
   DIMENSION XCOF(10), COF(10), ROOTR(10), ROOT((10)
   IFIT#0
   N=M
   IER=0
   IF (XCOF(N+1),10,25,10
10 JF(N)15.15.32
15 IER*1
20 RETURN
25 IER=4
   GOTO20
30 iER=0
   G0T020
32 IF(N=36)35.35,30
35 NX=N
   NXX=N+1
   N2=1
   KJ1=N+1
   D040L=1.KJ1
   MT=KJ1-L+1
```

```
40 COF(MT) = XCOF(L)
45 XO=.00500101
   YO=.01000101
   IN=U
50 X=X0
   X0==10. +YO
   Y0=-10.+X
   x = x0
   Y=YO
   IN=IN+1
   G0T059
55 IFIT#1
   XPREX
   YPR=Y
59 ICT=0
60 UX=0,
   UY⊒Ü.
   V=0.
   YT=U.
   XT=1.
   U=COF(N+1)
   IF (U) 65, 130, 65
65 D0701=1,N
   L=N=I+1
   XT2=X+XT-Y+YT
   YT2=X+YT+Y+XT
   U=U+COF(L)*XT2
   V=V+COF(L)+YT2
   Flal
   UY=UY-FI+YT+COF(L)
   UX=UX+FI#XT#COF(L)
   XT=XT2
70 YT=YT2
    SUMSQ=UX*UX+UY*UY
    IF (SUMSQ) 75, 110, 75
75 Dx=(V+UY=U+UX)/SUMSa
    X = X + DX
    DY=-(U*UY+V*UX)/SUMSQ
    Y=Y+DY
78 IF(ABS(DY)+ABS(DX)=.0000011100.80.80
80 ICT=ICT-1
    IF(ICT-500)60,85,85
85 IF(IFIT)100,96,100
90 IF(IN-5)50,95,95
95 IER=3
    G0T020
100 D01U5L=1.NXX
    MT=KJ1-L+1
    TEMP=XCOF (MT)
    XCOF(MT)=COF(L)
105 COF(L)=TEMP
    ITEMP=N
    N = N \times
    NX=ITEMP
    IF(IFIT)120,55,120
110 IF(IFIT)115,50,115
115 X=XPR
    Y=YPR
120 IFIT=0
122 IF(ABS(Y/X)-0.00001)135,125.125
```

```
125 ALPHA=X+X
     SUMSO=X+X+Y+Y
     N=N=2
     GCT0140
 130 X=G
     NXSNX
     NXX=NXX=1
 135 Y=0
      SUMSQ=0,
      ALPHA=X
      N=N-1
 140 COF(2) = COF(2) + ALPHA + COF(1)
      IF (N-2)147,146,146
 147 NN=2
      GOT0145
 146 NN*N
 145 D0150L=2,NN
      M11=L+1
 150 COF(M11)=COF(M11)+A_PHA+COF(L)+SUMSQ+COF(+-1)
 155 HOOTI(N2)=Y
      ROOTR(N2)=X
      N2=N2+1
      IF (SUMSQ)160,165,160
 160 Y=-Y
      SUMSQ=0.
      GOTU155
  165 IF(N)20,20,45
      RETURN
      END
      LIST(STOP)
      LIST
      DATA
                                                                    100051
.000194
                                  .0062
                                                   -. U000043
                                                                    0 .
                 .0000079
                                 -.000009
-.0000042
                                                                    .00000n22
                                  ,000000008
                                                   0,
                 .000000078
0,
                                                   -.0013
                                                                    0.
                 .00000336
                                  0.
-.041
.0045
                                  0.
                                             0.
           0.
                      0.
0.
1
                                             4.
                                  2.
                      1.
           1.
1.
-1
                                                                    .033
1.26
                 100.
                                  .405
                                                   -. 195
                                                                    0.
                 .05207
                                  -.000173
.000486
                                                   -.00088
                                                                    -.13
                 .00035
                                  -.0427
0.
                                                                    -.0144
                                                   -.168
                 .155
                                  1793
-3,14
, 353
                      0.
                                  0.
                                             0.
           0.
0,
0
```

PROB

-)

APPENDIX C LONGITUDINAL TF . LENT MOTION PROGRAM

```
Š
      MAX0(2400)
٠
      LIST(START)
C
                             LONG TUNINAL MOTION
C
C
      VARIABLE FWD LOOP GAINS LIMIT GVU GVL CORRESPOND TO RTU UPPER
C
      FEEDBACK GAINS C50(S2) C51(S) C52
C
C
            1-15
                    PM
                             MASS MAY/CHAD
C
     1
           16-30
                             VELOCITY
                                                  FT/SEC
Č
                             LIFT COFFFICIENT
     1
           31-45
                    CL1
                                                  W/Q+AD
                                                            AD DISC ARFA
ć
                    ALPH
                             ANGLE OF ATTACK
     1
           46-60
C
           61-75
     1
                             MOMENT OF INERTIA IYY/Q#AD#ROTR
                    YI
C
     2
            1-15
                             STABILITY DERIVATIVE
                                                     DCX/DU
                    CXU
C
     2
           16-30
                                                     DCX/DALPHA
                    CXA
     2
C
           31-45
                    CZU
C
     2
           46-00
                    CZA
C
           61-75
                    CZAD
     3
C
            1-15
                    CZTD
Č
     3
            16-30
                                     FOR STABILITY DERIVATIVES SEE HELIO 4
                    CML
C
     3
            31-45
                    CMA1
C
     3
            61-75
                    CMTD1
Č
                                  COLLECTIVE PITCH CONTROL EFFECT
            1-15
                    CZTC
C
                                  COLFCTIVE PITCH
            16=30
                    CMTC
Č
            31-45
                    CZB1
                                  CYCLIC PITCH
C
     4
            46=60
                    CMB1
                                  CYCLIC PITCH
C
      4
            61-75
                    CMI
                                  HORIZONTAL TAIL OFFECTIVENESS
C
     44
            1-15
                    CXI
C
     5
           01-10
                    RTU
                                  PITCH CYCLIC VARIABLE GAIN
     j
C
                    RTL
           16-30
           21-30
                    GVII
      2
C
     5
           31-40
                    GVL
C
     6
           01-10
                    FM
                                  AUTOPILOT GAINS
C
     ٥
           11-20
                    C50
č
     6
           21-30
                    C51
C
     5
           31-40
                    C52
C
     6
           41-50
                    SG
                             O END, -1 NEW PM, 1 NEW GAIN
C
C
                      LONGITUDINAL FQUATIONS
C
   FWS VEL)
                 ALPHA
                                 THETA
C
      XU#U
                 ALAX
                                -CL ST
                                             SMUOUD
C
      2U#U
                 ZA+A+ZAD+AD
                                 2TD#TC
                                             #M#(WD=VelD)
C
     MU*U
                 MA#A+MAD#AT
                                 MTDOTE
                                             #IYY#TD#
C
                      DETERMINANT IN FORWARD FLIGHT
   FWD VEL.
C
                      ANGLE OF ATTACK
                                             PITCH
C
    CXU-(PM/V)+S
                      CXA
                                                                  PM=MeV/(O+Ah)
C
    CZU
                      CZA + (CZAD=pM)#C
                                             (CZTD+py) "S
                                                                  YI=IYY/(naADeq)
Ç
    CMU
                      CMA + CMADOS
                                             CMTD+S +YI+S+S
                                                                  ALPHA=W/V
C
C
                      DETERMINANT FOR HOVER V=0
C
   FWD VEL.
                      VERTICAL VEL.
                                             PITCH
C
                                                                  PM=M/(Q+AD)
    CXU-PM+S
                      CXU
                                              CL
C
    CZU
                                             C7TDeS
                      CZW + (CZWD PM) +S
C
    CMU
                      CMW +CMWDaS
                                             CMTD & S-YI & S&S
   97 CONTINUE
      READ(5,7)PM, V, CL1, 4_PH, YI
      READ(5,7)CXJ,CXA,CZJ,CZA,CZAD
```

READ(5,7)CZTD1,CMU,CM41,CMAD, CMTD1

```
READ(5,7)CZTC,CMTC,CZB1,CMB1,CM1
     READ(5,7)CXI
   7 FORMAT (5E15.8)
   1 FORMAT(7F10.6)
     WRITE(6,100)
 100 FORMAT(5x,48HAIRCRAFT GA INPUTS IN ORDER ARE PM, V, CL1, ALPH, YI)
     WRITE(6,7)PM,V,CL1,ALPH,YI
     WRITE(6,101)
 101 FORMAT(2X,74HCXU,CXA,CZU,CZA,CZAD,CZTD1,CMU,CMA1,CMAD,CMTD1,CZTC,C
    1MTC.CZB1,CMB1,CMI,CXI)
     WRITE(6,7)CXU,CXA,CZU,CZA,CZAC
     WRITE(6,7)CZTD1,CMU,CMA1,CMAD,CMTD1
     WRITE(6,7)CZTC,CMTC,C781,CMR1.CMI
     WRITE(6,7)CXI
     CZTD=CZTD1
     CMA=CMA1
     CMTD=CMTD1
     CMDE=CMB1+CMI
     CZDE*CZB1
      TV=U.
      V9EV
  98 READ(5,1)RTJ,RTL,GVJ,GVL
      READ(5,1)FH,C50,C51,C52,SG
      WRITE (6, 102) RTU, RTL, GVU, GVL
 102 FORMAT(5X,4HRTU=,F9,3,1X,4HRT) =,F9,3,1X,4HGVU=,F9,3,1X,4HGVL=,F9,3
      WRITE(6,103)FM,C50,C51,C52
 103 FORMAT(DX,3HFM=,F9,4,1X,4HC50=,F9,4,1X,4HC51=,F9,4,1X,4HC52=,F9.4)
      V=V9
      DD1=0.
      TDD2=0.
      GV=0.
      DDS=0.
      TH0=0.
      THD=0.
      ALD=0.
      Vp≃0.
      TM=0.
      DTM=.05
      CD=0.
      DL =DTM/2.
      DEMX=1./57.3
      N = 0
      THETHO
      AO=TH
      V0=V
      AL = AO
      WHEN VED PHEM/GOAD GERHOWYTIPOVTTP USE CZW ETC.
C
      IF(VO)8,9,8
    8 F10aVO/PM
      GOTOSO
    9 F10=1./PM
   10 CONTINUE
      F11=PM-UZAD
      DO 80 1=1,800
      CD1=CD
      IF (TH-, 5)70,71,72
   70 CD=TM/.5
      GQT0 75
   71 CD=1.
```

```
201 IF(RT_RTL)202,202,203
202 GV=GVL
    GOTO 204
203 GV=GVL+((RT-RTL)/(RTU-RTL))*(GVU-GVL)
204 CONTINUE
    IF(TM-1,)350,350,351
350 GV=0.
351 CONTINUE
    FG=FM+GV
    VD1=(CXU+DV+CXA+DA-CL1+DTH+FG+CXI+(C50+TDD2+C51+THD-
    ALD1 = (CZU+DV+CZA+DA+(CZTD+PM+C51 +FG+CZDF) & THD+C52+F(
   1 * (DE + c50 * TDD2 * FG))/F11
    TDD1x(CMU+DV,CMA+DA,CMAD+ALD1,(CMTD,C51+FG*CMDE)+TH
   1FG+TH)+TV)/(YI+C50+FG+CMDF)
    DD1=FM+GV+(C50+TDD2+C51+THD+C52+TH)
    DD15=ABS(DD1)
    IF(DD15=,26)41,40,40
 40 DD12,26*DD1/DD15
    VD1=(CXU+DV+CXA+DA=CL1+DTH+CX(+(DD1+DE))+F10
    ALD1=(CZU+DV+CZA+DA+CZTD+THD+CZDE+(DD1+DF))/F11
    TDD1=(CMU+DV+CMA+DA+CMTD+THD+CMDE+(DD1+DE))/YI
 41 CONTINUE
    V1=V+VD1*DL
    AL1=AL+ALD1+DL
    TD1=THD+TDD1+DL
    T1=TH+THD+DL+.5+TDD1+DL+D!
    V2=V1+VD1*DL
    AL2=AL1+ALD1+DL
    TD2=TD1+TDD1+DL
    T2=T1+THD+DL+.5+TDD1+NL+DL
    DA=AL2-AO
    DV=V2-V0
    DTH=T2-THO
    DE=CD+DEMX
    DD13FM+GV+(C50+TDD1+C51+TD(+ 52+T1)
    RT=ABS((DD1-DD2)/DT4)
     IF(RT-RTU)301,300,300
300 GV=4VU
    GOTO 304
301 IF (HT-RTL) 302, 302, 303
302 GV=6VL
    GOTU 304
303 GV=GVL+((RT-RTL)/(RTU-RTL))*(GVU=GVL)
304 CONTINUE
     IF (TM-1:)2,2,6
   2 GV=0.
   6 CONTINUE
                                    C-4
```

72 IF(TH-1,)73,74,74 73 CD=(1,-TM)/.5 GOTO 75 74 CD=0,

RT=ABS((DD2-DD1)/DTM)
IF(RT-RTU)201,200,200

75 DE=CD1+DEMX DA=AL-AO DV=V+VO DTH=TH-THO

GOTU 204

200 GV # GVU

```
GOTO 75
72 IF(TH-1.)73,74,74
73 CD=(1.-TM)/.5
   GOTO 75
74 CD=0.
 75 DE=CD1+DEMX
   DA=AL-AO
   DV=V=VO
   OH#TH-THO
   RT=ABS((DD2-DD1)/DTM)
    IF(RT-RTU)201,200,200
200 GV=GVU
    GOTU 204
201 IF(RT_RTL)202,202,203
202 GV=GVL
    G0T0 204
203 GV=GVL+((RT-RTL)/(RTU-RTL))*(GVU-GVL)
204 CONTINUE
    IF(TM-1,)350,350,351
350 GV=0.
351 CONTINUE
    FG=FH+GV
    VD1#(CXU+DV+CXA+DA-CL1+DTH+FG+CXI+(C50+TDD2+C51+THD+C52+_TH))*F10
    ALD1=(CZU+DV+CZA+DA+(CZTD+PM+C51+FG+CZDF)+THD+C52+FG+CZDE+TH+CZDE
   1*(DE+C50*TDD2*FG))/F11
    TDD1=(CMU+DV-CMA+DA+CMAD+ALD1+(CMTD+C51+FG+CMDE)+THD+CMDE+(DF+C52+
   1FG+TH)+TV)/(YI=C50+FG+CMDF)
    DD1=FM+GV+(C50+TDD2+C51+THD+C52+TH)
    DD15=ABS(DD1)
    IF(DD15-,26)41,40,40
 40 DD1=.26*DD1/DD15
    VD1#(CXU+DV+CXA+DA-CL1+DTH+CX1+(DD1+DE))+F10
    ALD1=(CZU+DV+CZA+DA+CZTD+THD+CZDE+(DD1+DF))/F11
    TDD1=(CMU+DV+CMA+DA+CMTD+THD+CMDE+(DD1+DE))/YI
 41 CONTINUE
    V1=V+VD1*DL
    AL1=AL+ALD1+DL
    TD1=THD+TDD1+DL
    T1 = TH+THD+DL+.5 = TDD1 + DL + DL
    V2=V1+VD1+DL
    AL2=AL1+ALD1+DL
    TD2=TD1+TDD1+DL
    T2=T1+THD+DL+.5+TDD1+DL+DL
    DASAL2-AQ
    DV=V2-V0
    DTH=T2-THO
    DE=CD+DEMX
    DD1=FM+GV+(C50+TDD1+C51+TD1+ 52+T1)
    RT=ABS((DD1-DD2)/DT4)
    IF(RT-RTU)301,300,300
300 GV=6VU
    GOTO 304
301 IF(HT-RTL)302,302,303
302 GV=GVL
    GOTO 304
303 GV=GVL+((RT-RTL)/(RTU-RTL))*(GVU+GVL)
304 CONTINUE
    IF(TM-1:)2,2,6
  2 GV=0.
  6 CONTINUE
```

```
FG=FM+GV
     VD2=(CXU+DV+CXA+DA-CL1+DTH+FG+CX1+(C52+DTH+C51+THD+C50+TDD1))+F19
     ALD2*(CZU*DV*CZA*DA+(CZTD+PM+C51*FG*CZDE)*TD2+C52*FG*CZDE*T2+CZDF4
    1(DE+C50*TDD1*FG))/F11
     TDD2=(CMU+Dy+CMA+DA+CMAD+Al'D2+(CMTD+C51+Fd+CMDE)+TD2+CMDE+(DE+C52+
    1FG+T2)+TV)/(YI=C50+FG+CMDF)
     DD2=FM+GV+(C50+TDD1+C51+THD+C52+DTH)
     DD15=ABS(DD2)
     IF(DD15=.26)43,42,42
  42 DD2=,26*DD2/DD15
     VD2*(CXU*DV+CXA*DA=CL1*DTH+CX1*(DD2+DE))*f10
     ALD2*(CZU*DV+CZA*DA+CZTD*T02+CZDE*(DD2+DF))/F11
      TDD2=(CMU+DV+CMA+DA+CMAD+ALD2+CMTD+TD2+CMDE+(DD2+DE))/Y1
  43 CONTINUE
     V=V1+VD2+DL
      AL#AL1+ALD2+DL
     THD=TD1+TDD2+DL
     TH=T1+TD1+DL+.5+TDD2+DL+DL
      THP=57.3+TH
      IF(vo)11,12,11
  11 ALP=57.5*AL
      GP=THP-ALP
      GOT013
  12 ALP=0.
      GP#THP=ALP
      ALPSAL
  13 CONTINUE
      GL=ABS(GP)
      IF(GL-90.)79,81,81
  79 CONTINUE
      IF(N-1)20,20,21
  20 N=N+1
      GOTO 80
      DD2#FM+GV+(C50+TDD2+C51+THD+C52+TH)
      DX=57,3*DD2
      DX1*57.3*DD1
      IF(V)606,607,606
  606 WRITE(6,104)TM, V, DX1, DX, ALP, T-P, GP
  607 WRITE(6,605)TM, V, DX1, DX, ALP, THP, GP
  608 CONTINUE
  104 FORMAT(3X,34TM=,F6,2,1X,2HV=,F5,1,1X,4PDX1=,F9,5,1X,4H DX=,F9,5,1X
     1,4HALP=,F10,6,1x,4HTHP=,F10,6,1x,3HGP=,F10.6)
  605 FORMAT(3X,3HTM=,F6,2,1X,2HV=,F5,1,1X,4HDX1=,F9.5,1X,4H DX=,F9.5,1X
     1,4H W=,F10.6,1X,4HTHP=,F10.6,1X,3HTH=,F10.0)
   80 TM=TM+DTM
   81 IF(SG)97,30,98
   30 CONTINUE
      END
      LIST(STOP)
      LIST
      DATA
                                                               .00051
.000194
                               10062
                                               -.n00043
               .0000079
-,0000042
                               -.000009
                                                               C.
                               .000000008
                                               0.
                                                               -.0000043
               .000000078
-.041
               .00000336
                                               -.0013
.0045
10,
                     0.
                     2.
4 .
                                          1.
```

APPENDIX D PROGRAM FOR SOLUTION OF LATERAL EQUATIONS

٧ ,	•	\psi
C _{Yv} - 🔆 3	_. C _L	(-m+Cyy) s
CLV	s C _{L o} -I' _X s ²	C _{L y} s
C _{7 v}	C ₇ ¢ s	Cn + s-I'z s2

	A's 4	g's3	C's 2	D's	Ε']
BASE VALUES	- <u>m'</u> I' _X I' _Z	C _{Yυ} 1' _X I' _Z <u>"</u> (I' _Z C _{2φ} * I _X C _{7ψ})	-C _{Yυ} (I' _Z C _L + I _X C _{ηψ}) - m' / (C _L C _{ηψ} - C _L C _{ηψ}) - C _L I' _Z C _γ C _{ηψ} - m C _{ηυ} I' _X C _γ C _γ - m C _{ηυ} I' _X	C _{Yυ} (C _L ڼCηڼ -C _L ψCηφ) C _{Lυ} (C _L I'z-C _{Yφ} Cη _ψ + C _{Yψ} ·Cη _φ) Cηυ(C _{Yφ} ·C _L ψ - C _{Yψ} C _L ġ)	C _{7υ} Cι Cι CΩ _Ψ -G _{Lυ} Cι C _{7Ψ}	
♦ SAS CONTRIBUTIONS	GAIN Céo		" I'2 C2A1	-CYU IZ CRAI -W CT CRAI W CRU CTAI CRU I'Z CYAI	m'CTuCLAI CYuCLVCTAI CYuCLVCTAI CLuCYVCTAI -m'CLuCTAI CLuCTYCYAI CTuCTYCYAI CTuCLVCTAI CTuCLVCTAI	<u>d</u>
	C ₆₁	(1)	(2)	(3)		크슈! 기상
	C62 (1)	(5)-	(3)			4 A
	C,		(5)	(5)	[7]	(8)
	C8	(5)	(6)	(7)	(8)	de in
♦ SAS CONTRIBUTIONS		(6) -C _{YU} I _X C _{TθIR} -M C _{Iφ} C _{TθIR} -M C _{Tφ} C _{Iφ} C _{Tφ} C _{Iφ} C _{Tγ} I _X C _{YθIR}	$(7) \leftarrow C_{Y_U} C_{1 \phi} C_{7 \partial TR}$ $-C_{Y_U} C_{7 \psi} C_{2 \theta TR}$ $-C_{1 U} C_{7 \phi} C_{7 \dot{\theta} TR}$ $-C_{1 U} C_{7 \dot{\phi}} C_{7 \theta TR}$ $-C_{7 U} C_{7 \dot{\phi}} C_{2 \theta TR}$ $-C_{7 U} C_{7 \dot{\phi}} C_{2 \theta TR}$ $-C_{7 U} C_{2 \dot{\phi}} C_{7 \theta TR}$	(8) ← C ₁₀ C _L C _L C _R C _L C _{TOTR}		dθ ₁ ς

NOTE TRIANGULAR RELATIONSHIP

TABLE D.1 Expansion of Lateral - Directional Derivatives

```
LIST(START)
                      SOLUTION OF LATERAL EQUATIONS
C
C
                S۷
                                                            T
                                     SY
C
                                                                 CYTh(S)+CL
                               (-PM+V+CYSD)(S)
C
           -PM(S)+CYV
                                                     -XI(S##2)+CLTD(S)
                                       CI Sp(S)
C
                   CLV
                                                                 CNTD(S)
                            -ZI(S**2)+CNSD(S)
                   CNV
C
C
   CARD
                   SYMBOL
          COLUMN
CC
           01-15
                    PM
                                                    FT/SEC
           11-20
                              VELOCITY
      1
                                                               AD DISC AREA
                                                    W/Q+AD
Č
                              LIFT COFFFICIENT
           21-30
                     CL1
                                                    IXX/Q*AD*ROTR
           31-40
                              MOMENT OF INERTIA
      1
C
                     ΧI
                                                    IZZ/Q+AD+ROTR
                              MOMENT OF INERTIA
C
           41-50
                     ZΙ
      1
C
                     CYV
      2
            1-10
      2
           11-20
                     CL.V
C
      2
           21-30
                     CNV
C
      2
C
           31-40
                     CYSD
                     CL.SD
            41-50
CCC
      2
2
3
           51-60
                     CNSD
           61-70
                     SYPHD
            1-10
                     CLPHD
CCC
           11-20
      3
                     CNPHD
      3
                     CYDS
            21-30
            31-40
CCC
                     CI.DS
      3
            41-50
                     CHDS
                     CYDR
             1-10
C
            11-20
                     CLDR
C
            21-30
                     CNOR
C
      5
             1-10
                     FM
                                    MODEL GAIN
      5
                     G۷
                                   GAIN
Ç
            11-20
                                   AUTOPILOT COEFFICIENT S2
      5
C
            21-50
                     160
C
      5
            31-40
                     C61
                     C62
C
            41-50
C
                        TYPICAL INPUTS
C
                                                .0278
                                     .0071
C1.26
             100.
                         . 405
                                                            - . 193
                                     --011
                                                0.
C-.00094
             -.000072
                         .0004
                                                            - .0201
             -,000085
                                                -,116
co.
                         .000015
                                     - 405
             ,025
                         -,114
C.114
                                                0,
                                     0:
                         0.
CO.
             0.
C1
                                     2,
C4.
                         1.
C-1
                                                 .00043
                         .0062
 C.000194
                                     .00011
                                     .000148
                                                            -.000148
             -.000000076.0000052
C-.000061
                                                -.0013
                         .00000031
                                                            -.00023
             .0000018
                                    -. 0045
CO.
             .0004
                         -.0018
 C.0018
Co.
                                                 0 .
                                     0 .
             0.
                         0 .
C1
                                     2:
                                                 4,
C4.
             1.
                         1.
ÇO
 C
       PROB
       DIMENSION XCOF(11), COF(11), ROCTR(10), ROCTL(10), Z(4)
        COMMON XCOF, COF, M, ROOTR, ROOTI, IER
    11 FORMAT(2X,6E17.8)
                                                              T 1/2
                                                  PERIOD
                                                                          WN
    12 FORMAT(1x,50H
                          REA_
                                      IMAG
```

/1X.6F10.4)

Ξ,

110H

DR

```
97 CONTINUE
      J=0
      READ(5,1)PM,V,CL,XI,ZI
      READ(5,1)CYV,CLV,CNV,CYSD,CLSD,CNSD
      READ(5,1)CYPHD, CLPHD, CNPHD, CYRS, C, DS, CNDS
      READ(5,1)CYDR, CLDR, CNDR
      WRITE(6,95)PM, V, CL, XI, ZI
      WRITE(6,94)CYV,CLV,CNV,CYSD,CLSD,CNSD
      wRITE(0,93)CYPHD.CLPHD.CNPHD.CYDS.CLDS.CNDS
      WRITE(6,92)CYDR,CLDR,CNDR
   92 FORMAT(1X,54CYDR=,E15.8,1X,5HCLDR=,E15.8, 1X,54CNDR=,E15.8)
  93 FORMAT(1X,6HCYPHD=,E15.8,1X,6HCLPHD=,E15.8,1X,6HCNPHD=,E15.8,1X,5H
     1CYDS=,E15.8,1x,5HCLDS=,E15.8,1x,5HCNDS=,E15.8)
  94 FORMAT(1X,4HCYV=,E15.8,1X,4HC: V=,E15,8,1X,4HCNV=,E15,8,1X,5HCYSD=,
     1E15.8,1%,5HCLSD,E15.8,1%,5HCNSD#,F15.8)
  95 FORMAT(1X,3HPM=,E15.8,1X,2HV=,E15.8,1X,3HCL=,E15.8,1X,3HXI=,E15.8,
     11X, 3HZ[=,E15.8)
      IF INPUTS CYB IF NOT REMOVE NEXT 3 CARDS IE CYV=CYV/V
      CYV=CYV/V
      CLV=CLV/V
C
      CNV=CNV/V
   98 READ(5,1)FM,GV,C60,C61,C62
      WRITE(6,91)FM,GV,C60,C61,C62
   91 FORMAT(1X:3HFM=,F6,3:1X,3HGV=,F6,3:1X,4HC60=:F6,3:1X:4HC61=:F6.3:1
     1x,4HC62=,F6,3)
      FG=FM+GV
      M=4
      C10S=FG*C60
      C10=FG+C61
      C11*FG*C62
      FOR HOVER SET V=1 AND PM=M/(O+AD) Q=RHO+VTIP+VTIP
C
      IF(V-1.)3,3,4
    3 F10=0.
      F11=0.
      F12=0.
      WRITE(6,6)
    6 FORMAT (SHHOVER)
      GOTOS
    4 F10=CNV+XI+CYSD
      F11=CNV+CLPHD+PM-CLV+PM+CNPHD
      F12=PM+CNV+CLDS-PM+CLV+CNDS
    5 CONTINUE
      A=-PM+X1+ZI/V
      B=CYV+XI+ZI+PM+(CLPHD+ZI+CNSD+X1)/V
      C=-CYV*(CLPHD*ZI+XI*CNSD)-PM*(CLPHD*CNSD-CNPHD*CLSD)/V+CLV*CYPHD*7
     11+F10
      C=C+CNV+XI+PM
      D=CYV*(CLPHD*CNSD=CNPHD*CLSD)+CLV*(ZI*CL+CYPHD*CNSD+CNPHD*CYSD)+CN
     1V*(CYpHD*CLSD=CLpHD*CYSD)
      D=D+F11
      E=+CLV+CL+CNSD+CNV+CL+CLSD
      X1=CYV+(CLDS+CNSD-CNDS+CLSD)+~LV+(-CYDS+CNSU+CYSD+CNDS)+C 4V+(^YDS+
     1CLSD=CYSD+CLDS)
      X2=+cYV+cLD5+ZI-PM+(C:DS+cNSD-cLSp+cNDS)/V+cLV+cYpS+ZI
      X3=Pin+CLDS+Z1/V
      YI=PM+XI+CNDR/V
      Y2=-CYV*XI*CNDR-(PM/V, *(CIPHD*CNDR-CLDR*CNPHD)+CNV*CYDR*XI
      Y3=CYY#(CLPHD#CNDR=CLPR#CNPHD)+CLV#(CYPR#CNPHD-CYPHD#CNDR)+CNV# ~~
     1PHD#CLDK#CYDR#CLPHD)
```

```
Y4=CNV+CL+CLDR-CLV+CL+CNDR
   E1=C11+X1
  D1=C11+X2+C10+X1
   C1=C11+X3+C10+X2+C10S+X1
   B1=C10*X3+C10S*X2
   A1=C10S+X3
   A=A+A1
   8=8+B1
   C*C+C1
   D=D+D1
   E=E+E1
   A1=1,
   B1=8/A
   C1=C/A
   D1=D/A
   E1=E/A
   XCOF (1) = E1
   XCOF(2)*D1
   XCOF (3) *C1
   XCOF(4)=B1
   XCOF (5) = A1
   WRITE(6,1)A1,B1,C1,D1,E1
CALLRULRT(XCOF,COF,M,POOTR,ROOTI,TER)
   D0201=1,4
   IF(ROOTI(I))81,80,81
80 P=200000.
   GOTU82
81 p=2. *3.1417/g00TI(I)
82 D=.69/ROOTR(1)
   WN=(ROOTI(I)++2+ROOTR(I)++2)++,5
   DR=-ROOTR(I)/WN
20 WRITE(6, 40) ROOTR(1), ROOTI(1), P.D. WN. DR
90 FORMAT(1X,6HROOTR=,E12,5,1X,6+ROOTI=,E12,5,1X,7HPERIOD=,E12,5,1X,1
  14H TIME TO HALF=, E12.5, 1X, 3HW\=, E12.5, 1X, 3HDR=, E12.5)
 1 FORMAT(7F10.6)
 2 FORMAT([10)
   READ(5,2) MORE
   IF(MORE)97,30,98
30 CONTINUE
   END
   SUBROUTINE ROLRT (XCOF, COF, M. RCQTR, ROOTI, 1ER)
   DIMENSION XCOF(10), COF(10), ROCTR(10), ROCTI(10)
   IFIT=0
   N=M
   IER=0
   IF(XCOF(N+1))10,25,10
10 IF(N)15,15,32
15 IER#1
20 RETURN
25 IER=4
   GOTO20
30 1ER=0
   GOTU20
32 IF(N=36)35,35,30
35 NX=N
   NXX=N+1
   N2=1
   KJ1=N+1
   D040L=1,KJ1
   MT=KJ1-L+1
```

```
40 COF(MT)=XCOF(L)
45 X0=.00500101
   YO: 01000101
   IN=0
50 X=X0
   X0=-10.+Y0
   Y0==10.*X
   X=X0
   Y = Y0
   IN=IN+1
   BOT 159
55 IFIY = 1
   XFR=X
   YPR Y
59 ICT=0
60 UX=0.
   UY=U,
   V=0.
   YT=0.
   XT=1.
   U=CUF(N+1)
   IF(U)65,130,65
65 D0701=1,N
   L=N-1+1
   XT2=X+XT=Y+YT
   YT2=X+YT+Y+XT
   U=U+COF(L)+XT2
   V=V+COF(L)+YT2
   FIEL
   UY=UY-FI+YT+COF(L)
   UX=UX+F1+XT+CCF(L)
   XT=XT2
70 YT=YT2
   SUMSQ=UX+UX+UY+UY
    IF(SUMSQ)75,110,75
75 DX=(V+UY-U+UX)/SUMSo
    X=X+DX
    DY==(U+UY+V+UX)/SUMSQ
    Y=Y+DY
 78 [F(ABS(DY)+ABS(DX)=.000001;+00.80.80
 80 ICT=ICT-1
    IF(ICT->00)60,85,85
 85 IF([FIT)100,90,100
 90 IF(IN-5)50,95,95
 95 IER=3
    GOTO20
100 D0105L=1,NXX
    MT=KJ1-L+1
    TEMP=xCOF(MT)
    XCOF(MT)=COF(L)
105 COF(L)=TEMP
    ITEMP=N
    N=NX
    NX=ITEMP
    IF(IF(T)120,55,120
110 IF((FIT)115,50,115
115 X=XP9
    Y=YPR
120 IFIT=0
122 IF(ABs(Y/X)-0.00001)135,125,125
```

```
125 ALPHA=X+X
      SUMSQ=X+X+Y*Y
      N=N-2
      GOT0140
 130 X=0
      NX=NX
      NXX=NXX-1
 135 Y=0
      SUMSQ=0.
      ALPHA=X
      N=N=1
 140 COF(2)=COF(2)+ALPHA+COF(1)
      IF(N-2)147,146,146
  147 NN=2
      GOT0145
  146 NN=N
  145 D01>0L*2,NN
      M11=L+1
  150 COF(M11)=COF(M11)+A_PHA+COF(L)=SUMSO+COF(L-1)
  155 ROOTI(N2)=Y
      ROOTR(N2)=X
      N2=N2+1
      IF(SUMSQ)160,165,160
  160 Y=-Y
      SUMSQ = 0.
      GOT0155
  165 IF(N)20,20,45
      RETURN
      END
      LIST(STOP)
      LIST
      DATA
1,26
                      .405
                                            .0278
           100:
                                10071
                                           ٥.
-,00094
           -.000072
                      .0004
                                ·.011
                                                      -.193
                                                      - .02n1
                      .000015
                                .405
           -.000085
                                           -.116
0.
.114
           ,025
                      -.114
                                           0.
           0.
                                0.
0.
                      0.
1
4,
                                2.
           1.
                      1.
-1
.000194
                      .0062
           1.
                                .00011
                                           .00043
           -.00000076.0000052
                                                      -.000148
-.0000061
                                .000148
                                            0.
                                                      -.00023
                                           -.0013
           .0000018 .00000031 -.nn45
0.
.0018
           .0004
                      -.0018
                                0.
                                            0.
                      0.
           ٥.
٥.
1
                                2.
                                            4.
4.
           1.
                      1.
0
```

PROB

APPENDIX E LATERAL TRANSIENT MOTION PROGRAM

E-2

READ(5,1)CYTD, CLTD, CNTD, Cyng, clns, CNDS

```
READ(5,1)CYDR, CLDR, CNDR
    1 FORMAT (7F10.6)
      FRITE(6,2)PM,V,CL,X1,7I
      WRITE(6,3)CYV1,CLV1,CNV1,CYSD.CLSD.CNSD
      WRITE(6,4)CYTD, CLTD, CNTD, CYDS, CLDS, CNDS
      WRITE(6,5)CYDR.CLDR.CNDR
    2 FORMAT(1x,3HPM=,F6,3,1x,2Hv=,F5,1,1x,3HCL=,F6,3,1x,3Hx[=,F7,4,1x,7
     1HZI=,F7,4)
    3 FORMAT(1X,5HCYV1=,F10.6,1X,5HCLV1=,F10.6,1X,5HCNV1=,F10.6,1X,5HCYS
     1D*,F10.6,1x,5HCLSD*,F10.6,1x,5HCNSD=,F10.6)
    4 FORMAT(1X,5HCYTD#,F10.6,1X,5HCLTD=,F10.6,1X,5HCNTD#,F10.6,1X,5HCYD
     1S=,F10,6,1X,5HCLDS=,F10.6,1x,5HCNDS=,F10.6)
    5 FORMAT(1X,5HCYDR*,F10.6,1X,5HCLDR=,F10.6,1X,5HCNDR*,F10.6)
   98 READ(5,1)RTU.RTL.GVU.GVL
      READ(5,1)FM,C66,C61,C62,SG
      HRITE(6,9)RTU.RTL,GVU.GVL
      WRITE(6,6)F4.C60,C61,C62
    9 FORMAT(1X,4HRTU=,F6.3,1X,4HRT-=,F6.3,1X,4HGVU=,F6.3,1X,4HGVL=,F6.3
    6 FCRMAT(1X,44 FM=,F6.3,1X,4HC6n=,F6.3,1X,4HC61=,F6.3,1X,4HC62=,F6.3
     1)
      WRITE(6,87)
   8/ FORMAT(3X,2HTM,10X,2HSV,10X,2HSY,10X,2HTH,10X,2HDR,9X,3HDXR,9X,3HD
     1XA,9X,4HALAT)
C
      IF INPUT CYV REMOVE NEXT 3 CARDS OKE FOR CYB
C
      CNVECNV1/V
C
      CLV=CLY1/V
      CYV=CYV1/V
      CYV*CYV1
      CNV=CNV1
      CLV=CLV1
      SVD2=0.
      DD1=0.
      DD2=0.
      U12=0.
      DRMX=1./57.3
      TDD2=0.
      SY=0.
      SYED.
      TH=0.
      TDD=0.
      SVD=0.
      SD=n.
      TD=U.
      NN=0
      TM=0.
      DTM= . 05
      CD=0.
      DL=DTM/2.
      DR=0.
      FOR HOVER WHEN U=0 PH=M/(O.Ar) Q=RHO.VTIP.VTIP
      [F(V)10,10,11
  10 F10=C.
      F11=1./PM
      G07012
  11 F10=PM
      11=V/PM
  12 CONTINUE
      DO83 17=1'900
      CD1 = CD
```

THE RESERVE OF THE PARTY OF THE

```
T=TM
    IF(T=.5)70,71,72
 70 CD=T/.5
    GOTO75
 71 CD=1.
    GOT075
 72 IF(T-1.)73,74,74
 73 CD=(1,-T)/,5
    GOT075
 74 CD=U.
 75 DR=CD1+DRMX
    RT=ABS((DD2-DD1)/DTu)
    IF (HT-RTU)201,201,200
200 GV=GVU
    GOTU204
201 IF(HT-RTL)202,202,203
202 GV=GVL
    GOT0204
203 GV=GVL+((RT-RTL)/(RTU-RTL))+(GVU-GVL)
204 CONTINUE
    IF(TM-1:)350:350:351
350 GV=0.
351 CONTINUE
    FG=FM+GV
    SDD=(CNV=SV+CNSD=SD+(CNTD+FG+C6+3CNDS)+TD+CNDS+FG+C62+7H+CNDS+FG+C
   160+TDD+CNDR+DR)/ZI
    SVD1=(CL+SIN(TH)+CYV4<V+CY5D+5D+(CYTD+FG+061+CYDS)+TD+C60+FG+CYD5+
   1TDD+C62*FG*CVDS*TH+~YNR*DR+F10*SD)*F11
    TDD=(CLV*SV+CLSD*SD_(CLTD_FG*C64*CLDS)*TD+FG*C62*CLDS*TH+CLDR*DR)/
   1(XI=FG+C60+CLDS)
    DD1=FM+GV+(C60+TDD+C61+TD+C62+TH)
    DD1>=ABS(DD1)
    IF (DD15=.20)41,40,40
 40 DD1=.26+DD1/DD15
    SDD=(CNV+SV+CNSD+SD+CNTD+TD+CNDS+DD1+CNDR+DR)/ZI
    SVD1=(CL+SIN(TH)+CYV+SV+CYSN+SD+CYTN+TN+CYDS+DD1+CYDR+DR-F10+SD2)«
   1F11
    TDD=(CLV+SV+CLSD+SD+C: TO+TD+C: DS+DD1+C: DR*DR)/XI
 41 CONTINUE
    SD1=SD+S^D+DL
    TD1=TD+TDD+DL
    Sv12Sv+SvD1+DL+D12
    S1=SY+SD1+DL
    T1=TH+TD1+DL
    TD2=TD1+TDD.DL
    Sv2=Sv+SvD1*DL+DI2
    T2=T1+TD1+DL
    SD2=SD1+SDD+DL
    RT=ABS((DD1-DD2)/DT4)
    IF(RT-RTU)301,300,300
300 GV=GVU
    G0T0304
301 IF(HT-HTL)302,302,303
302 Gy=GVL
    G0T0304
303 GV=GVL+((RT-RTL)/(RTU_RTL))a(GVU=GVL)
304 CONTINUE
    IF(TM-1,)352,352,353
352 GV=Q.
353 CONTINUE
```

```
DR=CD+DRMX
      FG=FM+GV
      SDD2=(CNV+SV2+CNSD+SD2+(CNTn+FG+C61+CNDS)+TD2+CNDS+FG+C62+T2+CNDS+
     1FG+C60+TDD+CNDR+DR)/ZI
      $VD2=(CL+$IN(T2)+CYv+$V2+CY$D+$D2+(CYTD+FG+C61+CYD$)+TD2+C60+FG+CY
     1DS*TDD+C62*FG*CYDS*TH +CYDR*DR=F10*SD2)*F11
      TDD2=(CLV*SV2+CLSD*SD2+(CLTD+FG*C61*CLDS)*TD2+FG*C62*CLDS*T2+CLDR
     1*DR)/(XI-FG+C60*CLDS)
      DD2#FM+GV+(C60+TDD2+C61+TD2+C62+T2)
      DD15=ABS(DD2)
      IF(DD15=,26)43,42,42
   42 DD2#.26*DD2/DD15
      SDD2=(CNV+SV2+CNSD+SD2+CNTD+Tn2+CNDS+DD2+CNDR+DR)/ZI
      TDD2=(CLV+SV2+CLSD+SD2+CLTD+TD2+CLDS+DD2+CLDR+DR)/XI
      SVD2*(CL*SIN(Y2)+CYV*ŠV2+CYSD*Šn2+CYTD*Ťn2+CYDS*DD2+CYDR*DR~F10*Sn
     12) F11
   43 CONTINUE
      SV=SV1+SVD2*DL+D12
      SD=SD1+SDD2+DL
      ALAT=(SVD2+V+SD)/32.2
      TD=TD1+TDD2+DL
      SY*S1+SD +DL
      TH=T1+TD +DL
      TDD=TDD2
      SYP#SY#57.3
      THP=TH+57.3
      DRP=DR+57.3
      DXR#57.3*DU1
      DXA=57.3+DD2
      IF(NN-1)20,20,21
   20 NN=NN+1
      GOTORO
   21 NN=U
      WRITE(6.13)TM, SV, SYP, THP, DRP, DXR, DXA, ALAT
   80 TM=TM+DTM
   13 FORMAT(8E12.5)
      IF(SG)100,30,98
   30 CONTINUE
      END
      LIST(STOP)
      LIST
      DATA
1,26
           100,
                      ,405
                                            .0278
                                 .0071
-,00094
           -.000072
                      .0004
                                                       -.193
                                 -.011
                                           0.
           -.000085
0
,114
                      ,000015
                                -.405
                                            -.116
                                                       .02n1
           ,025
                      -.114
                     4,
10.
           ,1
                                 ٠5
.25
                      2.
                                 4.
           1.
                                           1.
                     4.
10.
                                 .5
           .1
1.0
                      2.
                                 4.
           1.
                                            -1.
.000194
                      .0062
           ٥.
                                            .00043
                                 .00011
-,000061
          ~.00000076.0000n52
                                 .000148
                                           0.
                                                       -.000148
           .0000018
                      .00000031 -. nn45
0.
                                            -.0013
                                                       -.00023
,0018
           .0004
                      -.0018
10.
                      4 .
           .1
                                 .5
. 25
                                4.
                      2.
           1.
                                           1.
                     4,
10.
           .1
                                 +5
1,
                      2.
                                4.
           1.
                                            0.
      PROB
```

APPENDIX F
CALCULATIONS

TABLE F.1
TYPICAL LATERAL STABILITY DERIVATIVES
AND NOTATION USED IN EQUATIONS OF MOTION

*

TABLE F. 1

TYPICAL LATERAL STABILITY DERIVATIVES
AND NOTATION USED IN EQUATIONS OF MOTION
(Continued)

			TYPIC	TYPICAL VALUES	
SYMBOL NORMAL FG	BOL FORTRAN		AIRCRAFT SYSTEM	HELICOPTER SYSTEM	ER
ر خ خ	CYDS	Side Force due to Lateral Cyclic Control	405	-4.5×10^{-3}	$8.1x10^{-3}$
$-c_{\ell_{A_1}}$	CLDS	Rolling Moment due to Lateral Cyclic	116	-1.3×10^{-3}	1.8×10^{-3}
٠, ۲	CNDS	Yawing Moment due to Lateral Cyclic	0201	$-2.3x10^{-4}$	1.6×10^{-3}
C AI	CYDR	Side Force due to Tail Rotor Pitch	.114	.0018	
C. LIN	CLDR	Rolling Moment due to Tail Rotor Pitch	.025	.0004	
C TR	CNDR	Yawing Moment due to Tail Rotor Pitch	114	0018	$-3.5x10^{-3}$
θ Γ = Τ	'IC, Main Ro	$\frac{1}{c}$ = TIC, Main Rotor Collective Pitch AD = Disc A	AD = Disc Area = $11 * \overline{ROTR}^2$		

IXX, IYY, IZZ Airplane Moments of Inertia ROTR = Rotor Radius W = Aircraft Weight M = Aircraft Mass = Main Rotor Longitudinal Cyclic Pitch A_1 = Main Rotor Lateral Cyclic Pitch t_{tR} = Tail Rotor Collective Pitch

W = Aircraft Weight
Q = RHØ * VTIP * VTIP Helicopter System
Q = RHØ * V * V/2 Aircraft System

TABLE F.1 (cont'd)
TYPICAL LONGITUDINAL STABILITY DERIVATIVES
AND NOTATION USED IN EQUATIONS OF MOTION

ŭ
Ė
Ξ
7
-
-
-
•
۳
2
ŀ

	HELICOPTER	SISIEM	.0425	169	.0081	0		-1.0×10^{-5}	-3.0×10^{-3}	3.7×10^{-6}	-3.15x10 ⁻²	0	0
TYPICAL VALUES	HELI		II .000194	0	.0062	0	.00051	-4.2x10 ⁻⁶	$7.9x10^{-6}$	$-9x10^{-6}$	$-4.3x10^{-5}$	0	0
TYPI	AIRCRAFT	SYSTEM	1.26	100	.405	0	.033	.0000486	.05207	000173	793	0	0
			Mass Coefficient	Velocity	Lift Coefficient	Angle of Attack	Inertia Coefficient	Var. of Drag and Thrust with Velocity	Var. of Drag and Thrust with Angle Attack	Var. of Lift with Velocity	Var. of Lift with Angle Attack	Var. of Lift with Angle Attack Rate	Var. of Lift with Pitch Velocity
	70r	FORTRAN	PM	>	CL1	АГРНА	Ιλ	СХО	CXA	CZD	CZA	CZAD	CZTD
	SYMBOL	NORMAL			ڻ،	ర		~ن	ځن ≃	د د در	ر 2 2	c_{Z}	α C _Z .

TABLE F.1 (continued)

TYPICAL LONGITUDINAL STABILITY DERIVATIVES AND NOTATION USED IN EQUATIONS OF MOTION (Continued)

				TYPICA	TYPICAL VALUES	
SYMBOL NORMAL F	3OL FORTRAN		AIRCRAFT SYSTEM	<u>.</u>	HELICOPTER SYSTEM	~
్	CMU	Velocity Stability	. 00035		7.8x.0 ⁻⁸	2.5x10 ⁻⁶
ءً ت	CMA	Angle Attack Stability	0		8x10 ⁻⁹	-1.1×10^{-3}
ະ ບ	CMAD	Angle Attack Damping	00088	m	0	-7.4×10^{-5}
کر ۔ آ	CMTD	Pitch Damping	0654		-4.3x10 ⁻⁶	-6.1×10^{-3}
÷ v×	CXTC	Var. Drag Due to Collective Pitch				$-8.1x10^{-3}$
C. C.	CZTC	Var. Lift due to Collective Pitch	-3.14		041	-7.9×10^{-2}
၁ _၉ ၂ ၂	CM1.C	Var. Pitching Moment due to Coll. Pitch	.155		3.36x10 ⁻⁶	$5.4x10^{-4}$
ာ မ္က သ	CXB1	Var. Drag Due to Cyclic Pitch Control	.353		.0045	1.06×10 ⁻²
ته ات رج	CZBI	Var. Lift due to Cyclic Pitch	. 793		0	3.14×10^{-2}
	CMBI	Var. Pitching Moment due to-Cyclis Pitch	168		0013	-1.33×10 ⁻³
BIC C _m j	CMI	Var. Pitching Moment due to Tail Incidence	0144		0	$-1.9x10^{-3}$
1		The state of the s	Forces X Z Moments M N Angular Velocities Velocities	₩ 1 ₩ 1	• + 3	

TABLE F.2

EFFECTS OF CHANGES OF LOGSTUDERAL DERIVATIVES (FFECTS OF CHANGES)

3=24Dovey/2. A=3.15efef [X=K/(Coal [4-4/(Goater) PN=1.26 [1=.465 FI=.033

		üüüüö	44444	*******
		90000	- N 0 0 0	¥ 56688
100. 100.		8868		x = 3
100014 - 600014 - 79 30014 - 6000014 - 600000		66668	• • • • • • • • • •	* 3 * 6 6 6 6
100 100 100 100 100 100 100 100 100 100		99999	********	2007
000000000000000000000000000000000000000	.0002800080027006		, , , , , , , ,	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		9 9 9 9 9	, , , , , , , , , , , , , , , , , , ,	1 2
100. 100. 100. 100. 100. 100. 100. 100.	0627006270062700008800	8888	****	2 2
100000 10000		. • • • • •	45588	38888
		ខ្លួនខ្លួន	, 18000	r Seese
		ម <u>ុំ ខ្</u> ល់ខ្លុំខ្	,	%
	26.770-25.27-20.28	85586	53086	55 55 55 55 55 55 55
100.00 10			686.00	
		90000	**************************************	22
		60000	\$ W 0 0 0	C 2000
**************************************		9 9 9 9 9	C	28 % 28
**************************************		99999	4 w www.u.u wooud	44
		ខុត្តកូច	8 P	
	**************************************	0000 0000 0000 0000	71/2= 11/2= 12=	71/2= 11/2= 11/2= 12=

	7		
0.0000 0000 0000 0000 0000 0000 0000 0	2, 700 2, 100 2, 100 3,		
	000000000000000000000000000000000000000	ø	
00.20 00 00 00 00 00 00 00 00 00 00 00 00 0	0000. 0000. 0000. 0000. 0000. 0000. 0000. 0000.	,	
	00000 00000 00000 00000 00000 00000 0000		
2 MCVR	0009 0009 0009 0009 0009 0009 0009 000		00000 00000 00000 00000 00000 00000 0000
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
C. CARACTES 3 24 C.	## ## ### ############################		2
2000 100 100 100 100 100 100 100 100 100			TOO SOCIOO TOO SOCIOO TOO TOO SOCIOO TOO TOO SOCIOO TOO TOO TOO
E F. 2A	2		117/2 117/2 117/2 117/2 117/2 117/2 117/2 117/2

	CXU* 0.486CE-02 CXU* -0.1720CE-03 CXU* -0.1720CE-03 CXA* -0.793CE-03 CXA* 0.005C0	CATOR 0.00000E 00 CMU = 0.350CE-03 CMAD=-0.630CE-03 CMTC=-0.16.5CE 01 CATC=-0.16.5CE 01 CATC=-0.16.5CE 01 CATC=-0.16.5CE 01 CATC=-0.16.5CE 01 CATC=-0.16.5CE 01 CATC=-0.16.5CE 01 CATC=-0.16.0CE 01 CATC=-0.16.0CE 01	CXU= -5.42006-05 CXA= 0.79006-05 CZA= -0.930006-05 CZAE -0.430006-06 CZAE -0.000006-00	CLID 0.0000E GC CNU 0.78000E-07 CNA 0.8000E-07 CNIA 0.8000E-08 CNIC 0.4000E-08 CNIC 0.72000E-08 CNIC 0.4000E-02 CX 0.3300E-02 CY 0.3300E-02 CX 0.3300E-02 CX 0.3300E-02 CX 0.3300E-02
	90000		0000 0000 0000	**************************************
	00000	**************************************	4 m m v/ 4	# 40000P 00
	9 8 8 8 9	4 40 00 0 M 40 0	0 0 0 0 0	*************
	Muuw4 60000	4 4 0 0 0 0 0 4 4 0 0	0.0000	N w a a a a a a a a a a a a a a a a a a
	00000	4 H G G G G A H G G		ନ୍ଦ୍ରପ୍ରପ୍ରମ୍ୟ ଅବର ଜଳପ୍ରଧ୍ୟ ଅପ୍ରମ୍ୟ ଅପ
ABIL ITY	00000	Waaqaaa	40000 40000	พ.พ.ฉ.ฉ.ฉ.ฉ.ฐ.พ.ฉ.ฉ ๔.ฉ.ฉ.ฉ.ฉ.ฐ.พ.ฉ.ฉ
INIL ST	N-100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0	# 4 0 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9	**************************************	a m n a g a a g a
0461130	440H0	,00,000,000 ,00,000,000	44400	
AS ON L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# G G M G G G M G G M G G M G G G M G G N	**********	0 W 0 C O O O O O O O O O O O O O O O O O O
3F AUTOSAS		WEGGGGE 400	44938	a na a a na a a a a a a a a a a a a a a
EFFECT 3	20000	@ M G G G G G G G G G G G G G G G G G G	2000	0 % W O O M & O O O
w	2000	พบบกกก หนอย อัพบีกกับพันบีย์	40,000	មួ ២០០០០ ២៣០០ ២៣០០០០ ២៣០០ ២៣០០០០
	99999		ស្ត្រភព្គម្ភា ស្ត្រភព្គម្ភា	, , , , , , , , , , , , , , , , , , ,
	525 525 525 525 525	1/2= 1/2= 2= 2= 1/2= 11/2= 12= 2=	1 4 4 0 20 0 4 8 0 20 0 4 8 0 0 0 0 0 4	Pa 11/2= 11/2= 12= 11/2= 11/2= 12=

V= 1C°C 1EC 0 1CCC 100.0 1CCC 100.0 1CCC 120.0 1C0.0 1C0.0 100.0 1 2.00 40 m m 0 m m 0 0 00.46 26.4 ANC AUTOSAS 00,000,000 FFFECT OF LATERAL INFRIVATIVES 00-00-00

																									9-9019-0	1.76QE-06	3.520F-05	1.1466-03	0000E 00	1-1486-03	-000E 00	1.180E-05	0.310E-06	1 105-02	1-230E-03	1.180E-02	1.400E-03	0-180E-02	10.00	00-1	200	300	1010	2.20	00.	00.	90.	3.60	2.	9	88
															٠											_		_		_							_		6. 9	00.1	00.7		1.20	3.40	80.	9•	80.	3.60	2:	8	88
	-0-410F-04	-0.76CE-06	0.5205-05	0-1485-03	C.CCCE 00	-0-14EE-03	00 3000.0	0-1-00-00	00-1116-0	70-206-0-	20-30E-02	0-1007-0-	20-22-1-0	0-1006-02	12.20	8	6	1.20	8	00.	2.C0	1.00	8		0.610F-C4	0.760E-06	0.52CE-05	0-1465-03	O.CCCE CO	0.1486-03	00 3000.0	C3-1341-0	0.310c-06	0-1106-02	0-23CE-03	0.180E-02	0.4CCE-03	0-100E-02													6.0
	-0.610F-04	-0.760E-06	0.520E-05	0-14#E-03	0.0000	-0-144E-03	00 4000	0.360t-03	0.310c=00	70-306-0-	70-2061-0-	60-1047°0	20-20-1-0		;	00	00	1,20	00	00.	2.00	1.00	00.	00.	-0.610E-04	-0-160E-06	0.520E-05	0-1445-03	00 3000° €	-0.1485-33	00 3000 O	C0-1021-0	0-310:-0	-0-130F-02	-0.230E-03	0-180F-02	0.400E-03	0.180E-02	\$2.	2.	200	00.4	1.30	29.40	8.	00.	8.	3.80	2.	3.5	90.
	į	-0.7+05-06	0.5235-05	6-14-5-03	00.000	-0-3036-03	2010-0	60-1061-0	80-3016 ·C	70-3364-3-	70-3061-0-	60-1067-0-	20-30-31-0	0-160#-02	12.30	99	8	1,20	00.	A6.40	10.	69•	00.		ž	-C-163E-06	0.5205-05	9-14-5-03	00 1000	-2.1446-03	00 3000-0	60-3091-0	0-3016-09- -0-4506-02	-0.130F-02	-0-2306-03	0.180£-02	0.4006-03	0-19CE-02	57.	20.	35	2	1.20	2.10	8	કૃ	00.	433°C0	224-00	3.5	38
3	-0-5105-36	-U. Test ? -ne.	0.5215-75	0.2-0-11	0.000	10-10-0	20.22.20.0		0.111.00	201-306-01	70-3061-0-	CO 200 0	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	0.1407-02	12.26	00,	90	2.20	S	99.	1.30	ري ء	ξ,	02.	*0-9019°0-	-0.7676-96	0.5205-05	0-146-01	0.000	-0-14-1-01	00.000.0	(O- D-10)	47-1-16-0- 0-30-30-0-	-0.1 (002	-0.2 106-31	2-1402-15	£0-30000	9-1806-02	00-1			, c	1.20	~	00*	69.	50,	5	1147.30	ę,	. 8
	0.6105-06															03	e e	3, 43	5	3.	1.30	1.00	8.			93-339	52-552	£3-3.5	00 300	# O - U.Z.	STATE OF THE STATE	70	-0-516-00	10-17	3CE-03	ACE-62	CCE-C3	ACE-C2	00-1			9	1.24	3.	9.	00-1	83.	•	3285.06	֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֝֝֞֝֝֝֝֝֟֝֟֝֟ <u>֚</u>	26
30 10 10	-0.6106-196	-6.6667 91	0.5201-35	0-1442-03	ن دورز د	10- 1977 C	2000		0-210-0-	201-201-01	20-3011-0-		20-100	R3+-02	9.70				00.					S	ş	-0.760:-0-	50-3255-3	C-14.5-01			0.000	FO - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	0.1010	-0-1365-02	-0-23C -03	21-3081-0	0.4005-73	0-180:-05	ટ. -	3:		, E	1.40		00.	. 10	80,	00.	1643.00		8
E F. 4A	15CF-C3	93-237	57-1021	かいしいます!		4 1 1 1 2	100 CC	10000	506-02	3050	201100	601001	10 - 10 CE - CE	C. IRCF-C2	13.PC	23.	2	1.29	33.	20.	1.5C	1.40	33.		₹		٠.	7	٦	Ξ,	~ -	•	27-2757-7-		٠.	7	7	•	2.		•	1.50	1.54	٠, در	2	.21	83.	1.60	*	35	37
TABLE F	-	٠.	3.0	ح	00 4 00 0	,				, ,				PCE	=		9	2.20	ç.	<u>ي</u>	1.56	1.00	Ç.		Ų,	U I		Ţ.		<u></u>	., ,	, (- C - 51 - C - C - C - C - C - C - C - C - C -		3	۳	Ü		0	•	۽ ڊ	1,000	1.75	33.	ະ	• 29	S-	Car	Ç.	2.0	20
	CYVE	Ct V*	ن.	25.0	בראו:							100	# # L	() () () () () () () ()		11/2	11/2:	12.	1/1	ģ	11/2=	11/2=	1 7								4 .	٠.	•			_			# (2 :		16.7	C 6 2 *	2.0	17/21	11/2*	12=	±21	; ; ;	11/2-	= 7 / 1 - 1	12*

TABLE F.S

EXAMPLE III - SUMMARY OF STATIC STABILITY

PITCH TRIM AND SIDESLIP

	dA ₁		-, 093	143	207			093	143	207			- 093	-, 14.3	207
SIDESLIP	de TR		1.98	3.54	5.6			1.98	3.54	5.6) •		1.98	3,54	5.6
0)	취형			.46						.34					4
	e He		-64.2	-11.4	-9.2			-64.2	-11.4	-9.2			-64.2	-11.4	-9.2
	विष् विष्ठ		031	31	61			031	31	61					61
TRIM	.	14.9	7.42	8.4	9.4		15	7.4	8.4	9.4		14.9	7.4	8.4	9.4
PITCH TI		4.6	5.1/9.3	/11.1	5.5/13/6		0	3.2/5.8	3.7/7.9	4.5/10.85					2.2/5.2
	¢	=													
	ه د	087	-	· • • • • • • • • • • • • • • • • • • •		,	r all lagel	-	 -		-				>
	ď	6.25					- de-constant	-	-					*******	>
	×	s.	45-4			-	0	-				-1	~	····	→
	V'/sec	0	169	212	254		0	169	212	254		0	169	212	254
	VKTS		100	125	150			100	125				100	125	150

(1)
$$\frac{d1t}{dB_1} = 1$$

TABLE F.S

EXAMPLE III - SUMMARY OF STATIC STABILITY (cont'd)

PITCH TRIM AND SIDESLIP

	dA dB										093	143	267		093	143	207
LIP	d HTR										1.98	3.54	5.6		1.98	3.54	5.6
SIDESLIP	¥ †										3.0	.46	.34		3.0	.46	.34
	d d d d d d d d d d d d d d d d d d d										-64.2	-11.4	2.6-		-64.3	-11.4	-9.2
	\$18 818										031	0.30	61		031	31	61
PITCH TRIM	_စ ပ	7.4	7.4	7.4	7.4	8.4	8.4	8.4	8.4	15.0	7.4	4.8	9.4	14.9	7.4	8.4	9.2
PITCH	(1) B ₁	3.1/5.7	3.0/5.5	2.9/5.25	2.74/5.0	3.7/8.0	3.6/7.8	3.5/7.6	3.4/7.45	0	3.0/5.8	3.4/5.8	4 0/7.9	O	/5.7	3.7/8.0	4.4/10.9
	Œ	1	1.5	2.0	2.5		1.5	2.0	2.5	—							
	°,	.087												.174			
	æ	6.25								5.25	5.25	5.25	5.25	6.25			
	×	0															
	V'/sec		169	212	254					0	169	212	254	0	169	212	254
	V _K rs		100	125	150	0	7 100	125	150	0	100	125	150	0	100	125	150

TABLE F.5 EXAMPLE III - STATIC STABILITY (Continued) STEADY TURNS

V = 100 KTS FWD C.G.

BANK ANGLE	CLIMB ANGLE	LOAD FACTOR	tr TAIL ROTOR COLLECTIVE	A ₁ LATERAL CYCLIC	B ₁ PITCH CYCLIC
0	-15				
	0	1		O	-1.8
	15				
10	-15	1.02	. 43	Ü	. 29
	0	1.02	. 43	0	.29
	15	1.02	. 43	0	. 29
20	-15	1.06	. 85	01	1.18
	0	1.06	. 85	0	1.18
	15	1.06	. 85	.01	1.18
30	-15	1.15	1.24	02	2.73
	0	1.15	1.24	0	2.73
	15	1.15	1.25	.02	2.73
40	-15	1.31	1.59	02	5.05
	0	1.31	1.60	0	5.05
	15	1.31	1.61	.02	5.05
: 0	-15	1.56	1.89	03	8.45
	0	1.56	1.90	0	8.45
	15	1.56	1.92	.03	8.45

•		-0.4704-09	-0.4105-05	0.200E-05	9-1405-02	-0.3505-01	-0.410E-02	0.000E 00	0.000E 00	0.000E 00	0.000E 00	-0.240E-03	-0.320E-03	0.1806-02	0.1505-02	-0-470E-03		-0-370F-07	-0.550E-03	0.520E-02	0.3505-03	7.620E-04	-0.430E-03	-0.680E-04	-0-140E-04	0.6306-04	0.2106-02	0.120E-02	0.300E 00	0.40CE-02	0.9106-03	-0.490E-02	
,		*0-1017-0-	-0.3105-05	0.9635-06	0.629F-05	-0.430E-02	0.PSCE-04	0.0006 30	O.CCCE DO	0-CC0E 00	O.OCCE DO	-0.620F-04	0.9006-04	0.1706-22	G.110E-02	-0-460E-03		-0-430E-03	-0-640E-04	0.490E-03	0.1506-03	9.230E-04	-0-1906-03	-0.730E-04	-0.220E-04	0.270E-04	0.160E-02	0.7105-03	0.000E 00	0.200E-02	0.460E-03	-0.250E-02	
•	30 - 30 V - 0 -	-0-14:05-75	-0.510=-05	0.77 35-06	\$0-30640	-0-3535-36	-0-200-0-	00 -0000	0°0000	0.000	0.000 000	-0-1106-06	0-1405-03	0.2305-02	0.2505-03	-0.650E-02		-0-220F-05	-0-S70E-06	0.450E-C6	0.140=-24	0.33GE-05	-0-10-1-O-	-9.48CE-04	-0-1906-03	0.1308-05	0-2405-02	0.6505-02	00 30000	0.5405-03	0-1306-03	-0.7206-03	
7	, , ,	CC-:011-0-	-0.4405-05	30-1009-0	0.4305-05	-0.8 3C E-1/4	-0.2305-09	0.00CF 50	0.COCE CO	C.000E SO	0.0004	-0.1003-06	0.6705-03	-0-410E-01	0.3705-03	-0.22301		-0.1905-05	-0-4000-36	0.6505-06	97-30-10	0.330=05	-0-190E-V4	-0.27CE-05	-0.670E-C3	0.3305-05	0.500E-07	10-3062-0	0.000E 00	0.5605-03	0-1706-03	-0.7205-03	•
•		-0.110-	-0.447[-35	90	0.4205-05	-0. A \$0E -04	-0.23 JE-05	000000	000000	0.000E 00	00 30000	-0-100E-06	-0.940E-05	0-1136-02	0.370E-03	-0.310=-03		-0-100F-05	-0.490F-05	0.650E-06	0.1475-04	90-3066-0	-0-1006-04	-0.370E-04	-0-1076-04	0.3235-05	C.110F-02	0.2495-03	0.0036 00	0.580E-03	0.1306-03	-0.7206-03	
•	, , , ,	-0-110	-0-4405-05	0.61CE-C6	0.420F-C5	-0.830c -C4	-0.230E-05	0. COOF CO			03 3000 CO	-0.1COE-C6	-0.940F-C5	0-110E-C2	0.370E-C3	-0.320F-C3	VES.	-0.280F-05	-0-400E-CS	2.650°-C6	0-140'-04	3.1308-05	-C-100E-C4	-0.370E-C4	-0-100E-C4	0.320E-C5	0.110f-C2	0.247F=C2	0.260F C4	0.540F-C3	0.139-C3	-0.720E-C3	
•	1000	-C-25CE-03	C-210E-05	C. CCCF-OC	C. 550E-05	-C-4C0E-04	3.CCE 00	C.COE OC	COCCE	C. CCCF CC	C.CCE OC	C.CCE CC	-C.17CE-05	0. 1PCE-02	C.CCE CO	-C.52CE-02	EGAL CERIVATIVES	-0.410F-34	-C. 6C.CF-Ue	C. 5CCE-05	C. 1CCF-03	CACCE DO	-2.13CE-03	3.cc0f &c	C. 27CE-04	-3.200E-03	2.370E-02	3.1CCE-02	-1.54CE-04	3.2406-02	2.550E=03	-C-3076-04	
	į	באח באח	2	2.5	ŝ	C2A	4.0	CKAD	C2 AC	CAAC	CKTC	C2.10	CMTD	CxB	873	E .	14.1		7	Š	CYSE	35 13	CASC	CYTC	01.10	CNTC	CVA	CL A	CNA	CYOR	CL DR	CNUR	

ç

ř

STATE FOR

Figure F-1. Effect of Autopilot Dynamics Longitudinal Stability 1° Longitudinal Cyclic Pulse.

į

Figure F-2 Effect of Autopilot Dynamic Lateral Stability Hover 1° Lateral Cyclic Pulse Example II.

Figure F-3: Effect of Autopilot Dynamic Lateral Stability Velocity = 100'/sec 1° Lateral Cyclic Pulse Example I.

かったい こうい

, \

; * ; **;**

Be to reduce the second

The state of the s

Figure F-4. Example III Level Flight Trim B vs V Effect of Horizontal Tail Coupling.

Figure F-5. Example III Estimated C.G. Travel for ±12° Longitudinal Cyclic Control Power Trim Limits Between Hover (Fwd C.G.) and High Speed.

Figure F-6. Example III Steady Sideslips Level Flight Power.

C.G. ON SHAFT AXIS

Figure F-7. Example III Pull Up Velocity 100 kts Control Position vs Load Factor.

Figure F-8: Example III Control Angle vs Bank Angle Steady Turn V=100 kts.

DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	Organization
12	Commander Defense Documentation Cen ATTN: TIPCR Cameron Station Alexandria, VA 22314	1 ter	Commander US Army Materiel Development and Readiness Command ATTN: DRCMM-E 5001 Eisenhower Avenue Alexandria, VA 22333
2	Commander US Army Materiel Develop- ment and Readiness Command ATTN: DRCPA-S 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Materiel Development and Readiness Command ATTN: DRCCP-E 5001 Eisenhower Avenue Alexandria, VA 22333
1	Commander US Army Materiel Develop- ment and Readiness Command ATTN: DRCDE-F 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Materiel Development and Readiness Command ATTN: DRCQA 5001 Eisenhower Avenue Alexandria, VA 22333
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDE-D 5001 Eisenhower Avenue Alexandria, VA 22333 Commander
1	Commander US Army Materiel Develop- ment and Readiness Command ATTN: DRCDE-R	_	US Army Materiel Development and Readiness Command ATTN: DRCPP-K 5001 Eisenhower Avenue Alexandria, VA 22333
	5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Materiel Development and Readiness Command
1	Commander US Army Materiel Develop- ment and Readiness Command ATTN: DRCPP 5001 Eisenhower Avenue Alexandria, VA 22333		ATTN: DRCCP 5001 Eisenhower Avenue Alexandria, VA 22333

DISTRIBUTION LIST (Contined)

No. of Copies	Örganization	No. of Copies	Organization
1	Commander US Army Materiel Develop- ment & Readiness Command ATTN: DRCRE-I 5001 Eisenhower Avenue Alexandria, VA 22333	3	Commander US Army Aviation Systems Command ATTN: DRSAV-EP DRSAV-X DRSAV-ERD PO Box 209 St. Louis, MO 63166
1.	Commander US Army Materiel Develop- ment & Readiness Command ATTN: DRCBSI-L 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Aviation Systems Command ATTN: DRCPM-AAH (COL Browne) PO Box 209 St. Louis, MO 63166
1	Commander US Army Materiel Develop- ment & Readiness Command ATTN: DRCPM Picatinny Arsenal Dover, NJ 07801		Commander US Army Aviation Systems Command ATTN: DRCPM-CO (COL Drenz) PO Box 209 St. Louis, MO 63156
1	Commander US Army Materiel Develop- ment & Readiness Command ATTN: DRCPA-P 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Armament Command ATTN: SARRI-LR (Mr. Dahl) Rock Island, IL 61201 Commande US Army Armament Command ATTN: SARRI-LW-W (Mr. Hansen) Rock Island, IL 61201
1	Commander US Army Logistics Center ATTN: ATCL-R Fort Lee, VA 23801	1	Commandant US Army Aviation School ATTN: Aviation Agency Ft. Rucker, AL 36601

DISTRIBUTION LIST (Continued)

No. of Copies	Organization	No. of Copies	Organization
1	Commander US Army Troop support Com ATTN: Sys Anal Ofc 4300 Goodfellow Blvd St. Louis, MO 63120	1 mand	Director Advanced Research Projects Agency Department of Defense Washington, DC 20301
i	Commander US Army Test & Evaluation Command ATTN: Sys Anal Ofc Aberdeen Proving Ground, 1 21005	,	Director US Army Research Office 3045 Columbia Pike Arlington, VA 22204 Commander
1 ,	Commander US Army Test & Evaluation Command ATTN: AMSTE-TE Aberdeen Proving Ground,		US Army Research Office - Durham Box CM, Duke Station Durham, NC 27706 Manager
4.	21005 Director		Defense Logistics Studies Information Exchange US Army Logistics Management
	US Army Air Mobility R&D Laboratory Ames Research Center ATTN: Sys Anal Ofc Moffett Field, CA 94035	1	Center ATTN: Mr. Leon T. Scarbrough Ft. Lee, VA 23801 Director
1	Commander US Army Air Mobility R&D Laboratory ATTN: Sys Anal Ofc		National Aeronautics & Space Administration Ames Research Center Moffett Field, CA 94035
	Eustis Directorate Ft. Eustis, VA 23604	1	Director National Aeronautics & Space Administration
1	Commander US Army Air Mobility R&D Laboratory		Ames Research Center Moffett Field, CA 94035
	Lewis Directorate ATTN: Sys Anal Ofc Ft. Lewis, WA 98433	1	Director National Aeronautics & Space Administration Langley Research Center
2	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-T ATAA-SA WSMR, NM 88002		Langley Station Hampton, VA 23665

DISTRIBUTION LIST (Continued)

No. of Copies	Organization
1	Commander US Army Aviation Systems Command ATTN: DRSAV-ERW PO Box 209 St. Louis, MO 63166
1	Commander US Army Aviation Systems Command ATTN: DRCPM-UA (MG Lauer) PO Box 209 St. Louis, MO 63166
1	Commander US Army Aviation Systems Command ATTN: DRCPM-ASH (COL Patnode) PO Box 209 St. Louis, MO 63166
1	J. Greenspon Engineering Research Associates 3831 Menlo Drive Baltimore, MD 21215

Aberdeen Proving Ground

C, Tech Lib, Bldg 305 Dir, BRL, Bld 328