1. Между населёнными пунктами A, B, C, D, E, F построены дороги, протяжённость которых приведена в таблице. Отсутствие числа в таблице означает, что прямой дороги между пунктами нет.

	Α	В	С	D	Е	F
Α		2	4	8		16
В	2			3		
С	4			3		
D	8	3	3		5	3
E				5		5
F	16			3	5	

Определите длину кратчайшего пути между пунктами А и F,

проходящего через пункт Е и не проходящего через пункт В. Передвигаться можно только по указанным дорогам.

2. Логическая функция F задаётся выражением $(x \to y) \land (y \to z)$.

?	?	?	F
1	0	0	0
1	0	1	1

^ЈНа рисунке приведён фрагмент таблицы истинности функции F.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

3. (А. Кабанов) В файле 3-5.xls приведён фрагмент базы фрагмент базы данных «Аудиотека». База данных состоит из четырёх таблиц. Таблица «Альбомы» содержит записи о записанных альбомах, а также информацию о исполнителях. Таблица «Артисты» содержит записи о названии исполнителей. Таблица «Треки» содержит записи о записанных композициях, а также информацию о альбомах и жанрах. Поле Длительность содержит длительность аудиозаписи в миллисекундах, поле Размер содержит размер аудиозаписи в байтах, а поле Стоимость содержит стоимость аудиозаписи в рублях. Таблица «Жанры» содержит данные о названии жанров. На рисунке приведена схема указанной базы данных.

Используя информацию из

приведённой базы данных, найдите исполнителя с наибольшим суммарным размером песен. В ответе укажите целую часть размера его песен в Мегабайтах.

- **4.** Заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известно, что все кодовые слова содержат не меньше двух и не больше трёх двоичных знаков, а слову АРКАН соответствует код 1011011110000. Какой код соответствует слову РАК?
- **5.** Алгоритм получает на вход натуральное число N > 1 и строит по нему новое число R следующим образом:
- 1) Строится двоичная запись числа N.
- 2) Подсчитывается количество нулей и единиц в полученной записи. Если их количество одинаково, в конец записи добавляется её последняя цифра. В противном случае в конец записи добавляется цифра, которая встречается реже.
- 3) Шаг 2 повторяется ещё два раза.
- 4) Результат переводится в десятичную систему счисления.

При каком наибольшем исходном числе $N \le 100$ в результате работы алгоритма получится число, которое делится на 4 и не делится на 8?

6. Определите, при каком наименьшем введенном значении переменной х программа выведет число 654.

Паскаль	Python	Си
var x, n: integer;	x = int(input())	#include
begin	n = 168	using namespace std;

```
readln(x);
                                  while (x+n)/1000 < 361234: int main()
n := 168;
                                  x = x - 3
while (x + n) div 1000 < 361234 n = n + 6
                                                                int x, n;
                                  print( n//1000 )
do begin
                                                                cin >> x;
x := x - 3;
                                                                n = 168:
n := n + 6;
                                                                while (x+n)/1000 < 361234
end:
writeln( n div 1000)
                                                                x = x - 3;
end.
                                                                n = n + 6;
                                                                cout << n / 1000 << endl:
                                                                return 0:
```

- 7. Рисунок размером 512 на 256 пикселей занимает в памяти 64 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- **8.** (А. Куканова) Ксюша составляет слова, меняя местами буквы в слове МИМИКРИЯ. Сколько различных слов, включая исходное, может составить Ксюша?
- **9.** Откройте файл электронной таблицы <u>9-0.xls</u>, содержащей результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите, сколько раз в апреле средняя температура с 19:00 до 22:00 оказывалась выше средней температуры с 05:00 до 08:00 на 5 и более градусов. В ответе введите только одно число количество таких дней.
- **10.** С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «поэт» или «Поэт» в тексте романа в стихах А.С. Пушкина «Евгений Онегин» (файл <u>10-0.docx</u>). Другие формы слова «поэт», такие как «поэты», «поэтами» и т.д., учитывать не следует. В ответе укажите только число.
- 11. Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 120) и дополнительная информация. Личный код содержит 11 символов и может включать латинские буквы (заглавные и строчные буквы различаются) и десятичные цифры. Для хранения кода используется посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Известно, что на карте хранится всего 28 байтов данных. Сколько байтов занимает дополнительная информация?
- 12. (Е. Джобс) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор.

Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось(1) или нашлось(100)
ЕСЛИ нашлось(100)
ТО заменить(100, 0001)
ИНАЧЕ заменить(1, 00)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

На вход приведённой ниже программе поступает строка, состоящая из единицы и идущих за ней 33 нулей. Сколько нулей будет в строке, которая получится после выполнения программы?

13. На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Какова длина самого длинного пути из города А в город М? Длиной пути считать количество дорог, составляющих

этот путь.

- **14.** (В. Шелудько) Значение выражения $4^{503} + 3 \cdot 4^{244} 2 \cdot 4^{444} 95$ записали в системе счисления с основанием 4. Сколько цифр 3 содержится в этой записи?
- **15.** На числовой прямой даны два отрезка: P = [20, 50] и Q = [30, 40]. Найдите наименьшую возможную длину отрезка A, при котором формула

$$\neg (x \in A) \rightarrow \neg ((x \in P) \lor (x \in Q))$$

тождественно истинна, то есть принимает значение 1 при любых х.

16. (Д.Ф. Муфаззалов) Определите количество различных значений n таких, что n и m — натуральные числа, а значение F(n, m) равно числу 30.

```
Python
    Паскаль
                                          C++
function F(n, m:
                                   int F(int n, int m)
integer): integer; def F(n,m):
begin
                  if m == 0:
                                   if (m == 0)
                  d = 0
if m == 0 then
                                   return 0;
F := 0
                  else:
                                   else
                  d = n + F(n,m-1)
else
                                   return n+F(n,m-1);
F := n + F(n,m-1) return d
end:
```

- 17. (М. Шагитов) В файле <u>17-316.txt</u> содержится последовательность целых чисел. Элементы последовательности четырёхзначные натуральные числа. Назовём два различных четырёхзначных числа удачной парой, если они различаются только одной цифрой в каком-то из разрядов. Найдите все тройки элементов последовательности, в которых есть хотя бы одна удачная пара, а сумма всех чисел тройки меньше максимальной суммы двух различных элементов последовательности. В ответе запишите количество найденных троек, затем минимальную из сумм элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.
- **18.** Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: влево или вниз. По команде влево Робот перемещается в соседнюю левую клетку, по команде вниз в соседнюю нижнюю. Квадрат ограничен внешними стенами. В начальный момент запас энергии робота равен числу, записанному в стартовой клетке. После каждого шага робота запас энергии изменяется по следующим правилам: если число в очередной клетке больше или равно предыдущему, запас увеличивается на величину этого числа, если меньше уменьшается на эту же величину. Определите максимальный и минимальный запас энергии, который может быть у робота после перехода из правой верхней клетки поля в левую нижнюю. В ответе запишите два числа: сначала максимально возможное значение, затем минимальное.

Исходные данные для Робота записаны в файле <u>18-123.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата.

- **19.** Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
 - а) добавить в кучу один камень;
 - б) увеличить количество камней в куче в два раза.

Игра завершается в тот момент, когда количество камней в куче становится не менее 25. Если при этом в куче оказалось не более 45 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. В начальный момент в куче было S камней, 1 < S < 24.

Ответьте на следующие вопросы:

Вопрос 1. Известно, что Ваня выиграл своим первым ходом после первого хода Пети. Назовите

минимальное значение S, при котором это возможно.

Bonpoc 2. Определите, два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

- Петя не может выиграть за один ход;
- Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

Вопрос 3. Найдите значение S, при которых одновременно выполняются два условия:

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
- **20.** (С.С. Поляков) Получив на вход натуральное число x, этот алгоритм печатает два числа: а и b. Укажите наибольшее трёхзначное натуральное число, при вводе которого алгоритм печатает сначала 1, а потом 8.

```
Паскаль
                           Python
                                                  C++
                                        #include
var x, a, b: longint;
                                        using namespace std;
begin
                      x = int(input())
                                        int main()
readln(x);
                      a = 0
a := 0; b := 1;
                      b = 1
                                        int x, a, b;
while x > 0 do begin while x > 0:
                                        cin >> x;
if x mod 2 > 0 then if x % 2 > 0:
                                        a = 0; b = 1;
a := a + x \mod 11
                      a = a + x \% 11
                                        while (x > 0) {
                      else:
                                        if (x\%2 > 0) a += x\%11;
b := b * (x mod 11); b = b * (x % 11)
                                        else b *= x\%11;
x := x \text{ div } 11;
                      x = x // 11
                                        x = x / 11;
                      print(a)
end;
writeln(a); write(b); print(b)
                                        cout << a << endl << b;
end.
```

- 21. Исполнитель Калькулятор преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
- 1. Прибавить 1
- 2. Умножить на 2

Программа для исполнителя Калькулятор — это последовательность команд. Сколько существует программ, для которых при исходном числе 2 результатом является число 34 и при этом траектория вычислений содержит число 12?

- **22.** (И. Женецкий) Системный администратор Алексей обслуживает крупную корпорацию. У него в текстовом файле <u>24-200.txt</u> находятся IP-адреса этих сотрудников. Ему необходимо посчитать количество таких IP-адресов, которые удовлетворяют маске 195.2*.?*.14, где символ? обозначает одну цифру от 0 до 9, а символ * комбинации цифр от 0 до 9 любой длины, в том числе и длины 0. Например, подходящие IP-адреса могут быть такими: 195.2.15.14, 195.20.185.14, 195.214.145.14 и т.д. Определите количество подходящих IP-адресов в файле.
- **23.** (Демовариант 2021 г.). Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [174457; 174505], числа, имеющие ровно два различных натуральных делителя, не считая единицы и самого числа. Для каждого найденного числа запишите эти два делителя в таблицу на экране с новой строки в порядке возрастания произведения этих двух делителей. Делители в строке таблицы также должны следовать в порядке возрастания.
- **24.** (Е. Джобс) Робот складывает монеты в ящики. Задача робота заполнить как можно большее количество ящиков монетами в количестве 100 штук. Роботу по конвейеру поступают корзины с монетами. В каждой корзине может быть от 1 до 99 монет. Известно, что робот может высыпать в ящик содержимое не более двух корзин. Необходимо определить, сколько ящиков можно заполнить монетами по 100.

Входные данные представлены в файле $\underline{26\text{-j}1.txt}$ следующим образом. В первой строке записано число N – количество корзин, в каждой из последующих N строк число K – количество монет в каждой корзине.

В качестве ответа дать одно число – количество ящиков, заполненными 100 монетами.

Пример входного файла:

/	
10	
44	
66	
90	
65	
47	
34	

При таких исходных данных можно заполнить только 2 ящика по 100 монет 10 + 90 и 66 + 34. Ответ: 2.

25. Дана последовательность натуральных чисел. Рассматриваются все её непрерывные подпоследовательности, в которых количество простых чисел кратно K = 9. Найдите наибольшую сумму такой подпоследовательности.

Входные данные. Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество чисел N ($2 \le N \le 100000$). Каждая из следующих N строк файлов содержит одно натуральное число, не превышающее 10000.

Пример входного файла (для K = 3):

7

В этом наборе можно выбрать две непрерывные последовательности, содержащие по 3 простых числа (23+13+4+11+6=57) и (13+4+11+6+19+8=61). Ответ (для K=3): 61.

В ответе укажите два числа: сначала искомое значение для файла А, затем для файла В.