Profesor: Felipe Osorio Ayudante: Nicolás Alfaro

Contacto: nicolas.alfaro@sansano.usm.cl Semestre: 2021-2 (Primavera 2021)

AYUDANTÍA 6

4 de Octubre, 2021

PROBLEMAS

P1 Suponga que X sigue una distribución binomial con parámetros $n y \theta$ ($X \sim \text{Bin}(n, \theta)$) donde solo θ es desconocido. Suponga que el parámetro de interés es

$$\gamma = g(\theta) = \theta^2 (1 - \theta)^2$$

Demuestre entonces que si $n \leq 3$ entonces no existe estimador insesgado de γ

 $\boxed{\mathbf{P2}}$ Considere $\{X_i\}_{i=1}^n$ un conjunto de observaciones IID con función de densidad

$$f(x;\theta) = \frac{1}{\theta}h'(x)\exp\left(-\frac{h(x)}{\theta}\right)$$

Donde $x>0,h:\mathbb{R}^+\to\mathbb{R}^+$ es una función diferenciable 1-1 conocida y $\theta>0$. Considere $T(X)=\sum_i^n h(X_i)$. Encuentre entonces el EMV de θ y demuestre que alcanza la cota de Crámer-Rao.

P3 Suponga que se tiene una muestra aleatoria $X = (X_1, X_2, ..., X_n)$ donde $\{X_i\}_i^n$ son observaciones IID provenientes de una distribución arbitraria $F(\theta)$. Sea $\delta(X)$ un estimador cualquiera de θ y asumiendo que el sesgo de este estimador es diferenciable como también que las condiciones de regularidad se cumplen, entonces pruebe que

$$V[\delta] \ge \frac{(1 + b'(\theta))^2}{nI(\theta)} \quad \forall \theta \in \Theta$$

Donde $I(\theta)$ es la matriz de información de Fisher individual y $b(\theta)$ es el sesgo. Suponiendo ahora que $X_i \sim \mathcal{N}(\mu, \sigma^2)$ y que δ es un estimador de μ . Demuestre entonces que el error cuadrático medio de δ cumple que

$$ECM(\delta) \ge \frac{\sigma^2}{n} (1 + b'(\mu))^2 + b(\mu)^2, \quad \forall \mu \in \mathbb{R}$$

P4 Suponga que se tienen 2 muestras aleatorias $\{X_i\}_{i=1}^n$ $\{Y_i\}_{i=1}^n$ independientes y provenientes de una distribución normal $\mathcal{N}(\mu, \sigma_1^2)$ y $\mathcal{N}(\mu, \sigma_2^2)$ respectivamente. Pruebe que entre los estimadores de μ de la forma

$$c\bar{X} + (1-c)\bar{Y} \text{ con } c \in \mathbb{R}$$

el mejor es aquel con $c = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$