Wavefunction-based Correlation Methods:

Basis rotations & Configuration Interaction (CI)

Zhendong Li

Beijing Normal University

April 16, 2021

Contents

- 1 Example for electron correlation: Hubbard dimer
- 2 Basis rotations
- Single-reference theories
 - HF
 - FCI and CISD
- Multi-reference theories
 - CASSCF
 - MRCISD

Hubbard model

The Hubbard model proposed in 1963 (named after John Hubbard) is a simple model of interacting particles in a lattice in order to describe the transition between conducting and insulating systems (Mott insulators). Since then, it has been applied to the study of high-temperature superconductivity, quantum magnetism, and charge density waves.

The Fermi-Hubbard Hamiltonian reads

$$\hat{H} = -t \sum_{\langle i,j \rangle} \sum_{\sigma} (a_{i\sigma}^{\dagger} a_{j\sigma} + \text{h.c.}) + U \sum_{i} n_{i\alpha} n_{i\beta}, \tag{1}$$

where $a_{i\sigma}^{(\dagger)}$ is the creation (annihilation) operator for i-th site, t represents the hopping parameter, and U represents the on-site Coulomb repulsion.

Hubbard dimer

The two-site Hubbard model is a simple example for understanding electron correlation

$$\hat{H} = -t \sum_{\sigma} (a_{1\sigma}^{\dagger} a_{2\sigma} + a_{2\sigma}^{\dagger} a_{1\sigma}) + U(n_{1\alpha} n_{1\beta} + n_{2\alpha} n_{2\beta}). \tag{2}$$

We focus on $N_e=N_{site}=K/2=2$ (half-filling), where the Hilbert space is

$$\mathcal{H}_{N_e=2} = \operatorname{span}\{|1\bar{1}\rangle, |2\bar{2}\rangle, |1\bar{2}\rangle, |2\bar{1}\rangle\} \oplus \operatorname{span}\{|12\rangle\} \oplus \operatorname{span}\{|\bar{1}\bar{2}\rangle\}. \tag{3}$$

By using the second quantization tool, we can find the Hamiltonian matrix (an exercise!) in the subspace $(N_e,M_S)=(2,0)$ is

$$H = \begin{bmatrix} U & 0 & -t & -t \\ 0 & U & -t & -t \\ -t & -t & 0 & 0 \\ -t & -t & 0 & 0 \end{bmatrix} \tag{4}$$

which can be diagonalized using softwares like MATHEMATICA.

Spin and spatial symmetry adapted basis

While the Hamiltonian over Slater determinants are simple to compute, they are not symmetry eigenfunctions. We can easily check $(\hat{H}, \hat{S}^2, \hat{S}_z, \hat{P}_{12})$ forms a set of mutually commutating operators, where \hat{P}_{12} is the spatial inversion, which exchanges sites 1 and 2. The group $\mathcal{G} = \{I, \hat{P}_{12}\}$ is a simple example of point group. The advantage of introducing spin and spatial symmetry adapted basis [or configuration state functions (CSF)] is that the representation of \hat{H} will become block-diagonal.

Spin and spatial symmetry adapted basis

We can introduce the following CSF

$$|\Phi_c^{Sg}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle + |2\bar{1}\rangle) \tag{5}$$

$$|\Phi_c^{Tu}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle - |2\bar{1}\rangle) \tag{6}$$

$$|\Phi_i^{Sg}\rangle = \frac{1}{\sqrt{2}}(|1\bar{1}\rangle + |2\bar{2}\rangle) \tag{7}$$

$$|\Phi_i^{Su}\rangle = \frac{1}{\sqrt{2}}(|1\bar{1}\rangle - |2\bar{2}\rangle) \tag{8}$$

where the subscript 'c' ('i') means covalent (ionic), and the superscript 'g' ('u') represents the symmetric/gerade (antisymmetric/ungerade) with respect to \hat{P}_{12} . Thus, the Hilbert space can be decomposed as

$$\mathcal{H} = \mathcal{H}^{Sg} \oplus \mathcal{H}^{Su} \oplus \mathcal{H}^{Tu}, \tag{9}$$

$$\mathcal{H}^{Sg} = \operatorname{span}\{|\Phi_c^{Sg}\rangle, \ |\Phi_i^{Sg}\rangle\}, \ \mathcal{H}^{Su} = \operatorname{span}\{|\Phi_i^{Su}\rangle\}, \ \mathcal{H}^{Tu} = \operatorname{span}\{|\Phi_c^{Tu}\rangle\}. \tag{10}$$

Spin and spatial symmetry adapted basis

The relation between the symmetry-adapted configurations with the original one is

$$(|\Phi_c^{Sg}\rangle, |\Phi_i^{Sg}\rangle, |\Phi_i^{Su}\rangle, |\Phi_c^{Tu}\rangle) = (|1\bar{1}\rangle, |2\bar{2}\rangle, |1\bar{2}\rangle, |2\bar{1}\rangle)W,$$
(11)

$$W = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
(12)

Consequently, the Hamiltonian in this basis $\tilde{H}=W^\dagger H W$ becomes block-diagonal,

$$\tilde{H} = \tilde{H}^{Sg} \oplus \tilde{H}^{Su} \oplus \tilde{H}^{Tu},$$
 (13)

$$\tilde{H}^{Sg} = \begin{bmatrix} 0 & -2t \\ -2t & U \end{bmatrix}, \quad \tilde{H}^{Su} = [U], \quad \tilde{H}^{Tu} = [0]. \tag{14}$$

Eigenvalues of Hubbard dimer

The eigenvalue of \tilde{H}^{Sg} satisfies E=xt

$$x^2 - Ux - 4 = 0, \quad x_{\pm} = \frac{U \pm \sqrt{U^2 + 16}}{2}.$$
 (15)

The lowest eigenvalue is $x_-(U)=\frac{U-\sqrt{U^2+16}}{2}$, and the unnormalized eigenvector is $(\frac{1}{4}(U+\sqrt{16+U^2}),1)$. The populations of the covalent and ionic components are

$$p_c(U) = \frac{1}{2}(1 + \frac{U}{\sqrt{U^2 + 16}}), \quad p_i(U) = \frac{1}{2}(1 - \frac{U}{\sqrt{U^2 + 16}}).$$
 (16)

Therefore, the two limiting behaviors are

- Noninteracting limit U=0: $p_c(U=0)=p_i(U=0)=\frac{1}{2}$;
- Strong interaction limit $U = \infty$: $p_c(U = \infty) = 1$ and $p_i(U = \infty) = 0$.

Eigenvalues of Hubbard dimer

The eigenvalue $x_-(U) = \frac{U - \sqrt{U^2 + 16}}{2}$ can be expanded around these two limits:

- Small U: $x_{-}(U) \approx -2 + \frac{U}{2}$
- Large U: $x_{-}(U) \approx -\frac{4}{U}$

Molecular orbital basis

We can alteratively view the problem from a molecular orbital perspective.

$$(a_g^{\dagger}, a_u^{\dagger}) = (a_1^{\dagger}, a_2^{\dagger})C, \quad C = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 (17)

The configuration written in this basis is related with the previous one by

$$|\Phi_c^{Sg}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle + |2\bar{1}\rangle) = \frac{1}{\sqrt{2}}(|g\bar{g}\rangle - |u\bar{u}\rangle)$$
 (18)

$$|\Phi_i^{Sg}\rangle = \frac{1}{\sqrt{2}}(|1\bar{1}\rangle + |2\bar{2}\rangle) = \frac{1}{\sqrt{2}}(|g\bar{g}\rangle + |u\bar{u}\rangle)$$
 (19)

$$|\Phi_i^{Su}\rangle = \frac{1}{\sqrt{2}}(|1\bar{1}\rangle - |2\bar{2}\rangle) = \frac{1}{\sqrt{2}}(|g\bar{u}\rangle + |u\bar{g}\rangle)$$
 (20)

$$|\Phi_c^{Tu}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle - |2\bar{1}\rangle) = \frac{1}{\sqrt{2}}(|g\bar{u}\rangle - |u\bar{g}\rangle)$$
 (21)

Molecular orbital basis

In the configuration basis $\{|g\bar{g}\rangle, |u\bar{u}\rangle\}$, the Hamiltonian reads

$$\tilde{\tilde{H}}^{Sg} = \begin{bmatrix} -2 + \frac{U}{2} & \frac{U}{2} \\ \frac{U}{2} & 2 + \frac{U}{2} \end{bmatrix} \tag{22}$$

Likewise, for the ground state, we can find the coefficients in this basis are

In summary, the two limits are described by

- Noninteracting limit: $\frac{1}{\sqrt{2}}(|\Phi_c^{Sg}\rangle+|\Phi_i^{Sg}\rangle)=|g\bar{g}\rangle$
- Strong correlation limit: $|\Phi_c^{Sg}\rangle=\frac{1}{\sqrt{2}}(|g\bar{g}\rangle-|u\bar{u}\rangle)$

Contents

- Example for electron correlation: Hubbard dimer
- 2 Basis rotations
- Single-reference theories
 - HF
 - FCI and CISD
- Multi-reference theories
 - CASSCF
 - MRCISD

We will show that Hartree-Fock (HF) theory, usually realized by solving the HF equation (stationary condition), can be viewed as an optimization problem, which can be solved by gradually rotating the orbitals to minimize $E = \langle \Phi(\theta) | \hat{H} | \Phi(\theta) \rangle$. This view is general and can be generalized to formulate CASSCF.

Figure 1: Hartree-Fock on a superconducting qubit quantum computer: Basis rotation circuit[1].

Consider a set of spin orbitals $\{\tilde{\phi}_p\}$ obtained from another set $\{\phi_q\}$ by a unitary transformation:

$$|\tilde{\phi}_p\rangle = \sum_q |\phi_q\rangle U_{qp} \tag{23}$$

Exponential parameterization of a unitary matrix

A unitary matrix \mathbf{U} ($\mathbf{U}\mathbf{U}^{\dagger}=\mathbf{U}^{\dagger}\mathbf{U}=\mathbf{I}$) can be parameterized as

$$\mathbf{U} = e^{\kappa}, \quad \kappa^{\dagger} = -\kappa, \tag{24}$$

where κ is an anti-Hermitian matrix.

Check (an exercise):

$$\mathbf{U}\mathbf{U}^{\dagger} = e^{\kappa}e^{\kappa^{\dagger}} = e^{\kappa}e^{-\kappa} = e^{\kappa-\kappa} = \mathbf{I}$$
 (25)

We demonstrate that the following unitary operator performs the orbital rotation.

Unitary operator for orbital rotations

$$\hat{U}(\kappa) = e^{\hat{\kappa}}, \quad \hat{\kappa} = \sum_{pq} \kappa_{pq} a_p^{\dagger} a_q,$$
 (26)

$$|\tilde{\phi}_p\rangle = \hat{U}(\kappa)|\phi_p\rangle = \sum_q |\phi_q\rangle [e^{\kappa}]_{qp}.$$
 (27)

Proof: It suffices to show that $\langle q|e^{-\hat{\kappa}}|p\rangle=[e^{-\kappa}]_{qp}.$ This can be verified term-by-term, e.g.,

$$\langle q|\hat{\kappa}^{2}|p\rangle = \langle q|\hat{\kappa}\hat{\kappa}|p\rangle = \sum_{r}\langle q|\hat{\kappa}|r\rangle\kappa_{rp} = \sum_{r}\kappa_{qr}\kappa_{rp} = [\kappa^{2}]_{qp}.$$

$$\langle q|\hat{\kappa}^{n}|p\rangle = \langle q|\hat{\kappa}^{n-1}\hat{\kappa}|p\rangle = \sum_{r}\langle q|\hat{\kappa}^{n-1}|r\rangle\kappa_{rp} = \sum_{r}[\kappa^{n-1}]_{qr}\kappa_{rp} = [\kappa^{n}]_{qp}.$$
(28)

The advantage of introducing the basis rotation operator $\hat{U}(\kappa)$ is that it can be used to transform not only the single particle states, but also many-particle basis. That is, $\hat{U}(\kappa)$ is an operator acting on the Fock space, describing the induced rotation by \mathbf{U} at the single particle level!

Orbital rotations

$$|\tilde{\Phi}\rangle = \hat{U}(\boldsymbol{\kappa})|\Phi\rangle = \hat{U}(\boldsymbol{\kappa})a_{1}^{\dagger} \cdots a_{N}^{\dagger}|vac\rangle$$

$$= \hat{U}(\boldsymbol{\kappa})a_{1}^{\dagger}[\hat{U}^{\dagger}(\boldsymbol{\kappa})\hat{U}(\boldsymbol{\kappa})] \cdots [\hat{U}^{\dagger}(\boldsymbol{\kappa})\hat{U}(\boldsymbol{\kappa})]a_{N}^{\dagger}[\hat{U}^{\dagger}(\boldsymbol{\kappa})\hat{U}(\boldsymbol{\kappa})]|vac\rangle$$

$$= [\hat{U}(\boldsymbol{\kappa})a_{1}^{\dagger}\hat{U}^{\dagger}(\boldsymbol{\kappa})][\hat{U}(\boldsymbol{\kappa}) \cdots \hat{U}^{\dagger}(\boldsymbol{\kappa})][\hat{U}(\boldsymbol{\kappa})a_{N}^{\dagger}\hat{U}^{\dagger}(\boldsymbol{\kappa})]\hat{U}(\boldsymbol{\kappa})|vac\rangle$$

$$= \tilde{a}_{1}^{\dagger} \cdots \tilde{a}_{N}^{\dagger}|vac\rangle$$
(30)

where $\tilde{a}_p^\dagger = \hat{U}(\kappa) a_p^\dagger \hat{U}^\dagger(\kappa)$. We will show that $\tilde{a}_p^\dagger = \sum_q a_q^\dagger U_{qp}$, which is consistent with the orbital rotation $|\tilde{\phi}_p\rangle = \sum_q |\phi_q\rangle U_{qp}$. The mathematical tool is called Baker-Campbell-Hausdorff (BCH) expansion.

Baker-Campbell-Hausdorff (BCH) expansion

$$e^{A}Be^{-A} = B + [A, B] + \frac{1}{2!}[A, [A, B]] + \frac{1}{3!}[A, [A, A, B]] + \cdots$$
 (31)

Proof: Let $f(x) = e^{xA}Be^{-xA}$, the derivative can be evaluated as

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = e^{xA}ABe^{-xA} - e^{xA}BAe^{-xA} = e^{xA}[A, B]e^{-xA}, \tag{32}$$

$$\frac{\mathrm{d}^2 f(x)}{\mathrm{d}^2 x} = e^{xA} [A, [A, B]] e^{-xA}, \tag{33}$$

Using
$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \frac{1}{3!}f'''(0)x^3 + \cdots$$
, then

$$e^{xA}Be^{-xA} = B + [A, B]x + \frac{1}{2}[A, [A, B]]x^2 + \frac{1}{3!}[A, [A, A, B]]]x^3 + \cdots$$
 (34)

$$\tilde{a}_{p}^{\dagger} = e^{\hat{\kappa}} a_{p}^{\dagger} e^{-\hat{\kappa}} = a_{p}^{\dagger} + [\hat{\kappa}, a_{p}^{\dagger}] + \frac{1}{2!} [\hat{\kappa}, [\hat{\kappa}, a_{p}^{\dagger}]] + \frac{1}{3!} [\hat{\kappa}, [\hat{\kappa}, [\hat{\kappa}, a_{p}^{\dagger}]]] + \cdots$$
 (35)

The commutators can be evaluated as

$$[\hat{\kappa}, a_p^{\dagger}] = \sum [\kappa_{rs} a_s^r, a^p] = \sum \kappa_{rs} a^r \delta_s^p = \sum a^r \kappa_{rp}, \tag{36}$$

$$[\hat{\kappa}, [\hat{\kappa}, a_p^{\dagger}]] = \sum_{r} [\hat{\kappa}, a^r] \kappa_{rp} = \sum_{r} \left(\sum_{s} a^s \kappa_{sr} \right) \kappa_{rp}$$
$$= \sum_{s} a^s \sum_{r} \kappa_{sr} \kappa_{rp} = \sum_{s} a^s [\kappa^2]_{sp}$$
(37)

Thus, indeed $\tilde{a}^\dagger_p=e^{\hat{\kappa}}a^\dagger_pe^{-\hat{\kappa}}$ corresponds to the creation operator for $|\tilde{\phi}_p\rangle$,

$$\tilde{a}_{p}^{\dagger} = a_{p}^{\dagger} + \sum_{r} a_{r}^{\dagger} \kappa_{rp} + \frac{1}{2!} \sum_{r} a_{r}^{\dagger} [\boldsymbol{\kappa}^{2}]_{rp} + \frac{1}{3!} \sum_{r} a_{r}^{\dagger} [\boldsymbol{\kappa}^{3}]_{rp} + \cdots$$

$$= \sum_{r} a_{r}^{\dagger} [e^{\boldsymbol{\kappa}}]_{rp} = \sum_{r} a_{r}^{\dagger} U_{rp} \tag{38}$$

Contents

- 1 Example for electron correlation: Hubbard dimer
- 2 Basis rotations
- Single-reference theories
 - HF
 - FCI and CISD
- Multi-reference theories
 - CASSCF
 - MRCISD

We have shown that an arbitrary determinant can be parameterized as

$$|\Phi(\kappa)\rangle \triangleq \hat{U}(\kappa)|\Phi_0\rangle$$
 (39)

In the Hartree-Fock approximation, the electronic wavefunction is approximated by a single Slater determinant, which is determined by variational optimization of the energy

$$E_{\mathrm{HF}} = \min_{\kappa} E(\kappa), \quad E(\kappa) = \langle \Phi(\kappa) | \hat{H} | \Phi(\kappa) \rangle$$
 (40)

where the HF energy function can be written as

$$E(\kappa) = \langle \Phi_0 | e^{-\hat{\kappa}} \hat{H} e^{\hat{\kappa}} | \Phi_0 \rangle$$

$$= \langle \Phi_0 | \hat{H} | \Phi_0 \rangle + \langle \Phi_0 | [\hat{H}, \hat{\kappa}] | \Phi_0 \rangle + \frac{1}{2!} \langle \Phi_0 | [[\hat{H}, \hat{\kappa}], \hat{\kappa}] | \Phi_0 \rangle + \cdots \quad (41)$$

We can set the current expansion point to $\kappa=0$ by updating $|\Phi_0\rangle$. Then, the stationary condition implies that

$$\langle \Phi_0 | [\hat{H}, \delta \hat{\kappa}] | \Phi_0 \rangle = 0 \tag{42}$$

In general, an anti-Hermitian operator $\hat{\kappa}$ can be written more explicitly as

$$\hat{\kappa} = \sum_{pq} \kappa_{pq} a_p^{\dagger} a_q = \sum_{p>q} \kappa_{pq} a_p^{\dagger} a_q + \sum_{p

$$= \sum_{p>q} (\kappa_{pq} a_p^{\dagger} a_q - \kappa_{pq}^* a_q^{\dagger} a_p) + \sum_{p} \kappa_{pp} a_p^{\dagger} a_p$$

$$= \sum_{p>q} \kappa_{pq}^R (a_p^{\dagger} a_q - a_q^{\dagger} a_p) + \sum_{p>q} i \kappa_{pq}^I (a_p^{\dagger} a_q + a_q^{\dagger} a_p) + \sum_{p} i \kappa_{pp}^I a_p^{\dagger} a_p \quad (43)$$$$

Given $|\Phi_0\rangle$, we can partition the orbitals into two sets: occupied (occ/closed: i,j,k,\cdots) and virtual (vir: a,b,c,\cdots).

Examine the variations term-by-term:

$$\delta\hat{\kappa} = \sum_{p>q} \delta\kappa_{pq}^R (a_p^\dagger a_q - a_q^\dagger a_p) + \sum_{p>q} \mathrm{i}\,\delta\kappa_{pq}^I (a_p^\dagger a_q + a_q^\dagger a_p) + \sum_p \mathrm{i}\,\delta\kappa_{pp}^I a_p^\dagger a_p^\dagger 44)$$

- Term 3: $\langle \Phi_0 | [\hat{H}, a_i^i] | \Phi_0 \rangle = \langle \Phi_0 | [\hat{H}, a_a^a] | \Phi_0 \rangle = 0$, such that $\delta \kappa_{pp}$ is redundant, which corresponds to the variation of the phase of each orbital.
- Terms 1 and 2: since $a_i^j|\Phi_0\rangle=a_a^b|\Phi_0\rangle=0$ for $i\neq j$ and $a\neq b$, then $\langle\Phi_0|[\hat{H},a_i^j\pm a_j^i]|\Phi_0\rangle=\langle\Phi_0|[\hat{H},a_a^b\pm a_a^b]|\Phi_0\rangle=0$. This shows that the occ-occ and vir-vir rotations are redundant, since they do not change $|\Phi_0\rangle$. However, occ-vir and vir-occ rotations are nonredundant,

$$\langle \Phi_0 | [\hat{H}, a_i^a - a_a^i] | \Phi_0 \rangle = \langle \Phi_0 | \hat{H} a_i^a | \Phi_0 \rangle + \langle \Phi_0 | a_a^i \hat{H} | \Phi_0 \rangle = f_{ia} + f_{ai}$$
$$\langle \Phi_0 | [\hat{H}, a_i^a + a_a^i] | \Phi_0 \rangle = \langle \Phi_0 | \hat{H} a_i^a | \Phi_0 \rangle - \langle \Phi_0 | a_a^i \hat{H} | \Phi_0 \rangle = f_{ia} - f_{ai}$$

The stationary condition $\langle \Phi_0 | [\hat{H}, a_i^a - a_a^i] | \Phi_0 \rangle = \langle \Phi_0 | [\hat{H}, a_i^a + a_a^i] | \Phi_0 \rangle = 0$ is equivalent to $f_{ia} = f_{ai} = 0$ (so-called Brillouin's theorem).

Therefore, nonredundant parameterization of $\hat{\kappa}$ for HF can be written as

$$\hat{\kappa} = \sum_{ai} \kappa_{ai}^R (a_a^{\dagger} a_i - a_i^{\dagger} a_a) + \sum_{ai} i \kappa_{ai}^I (a_a^{\dagger} a_i + a_i^{\dagger} a_a)$$
(45)

This means that the κ matrix has the following structure

$$\kappa = \begin{bmatrix} \mathbf{0}_{\mathrm{CC}} & \kappa_{\mathrm{CV}} \\ \kappa_{\mathrm{VC}} & \mathbf{0}_{\mathrm{VV}} \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{\mathrm{CC}} & -\kappa_{\mathrm{VC}}^{\dagger} \\ \kappa_{\mathrm{VC}} & \mathbf{0}_{\mathrm{VV}} \end{bmatrix}$$
(46)

The number of nonredundant parameters: $2n_Cn_V$ (n_Cn_V) for complex (real) HF.

Extensions: For ROHF and CASSCF (discussed later), in which orbitals are partitioned into three sets, κ has the following structure

$$\kappa = \begin{bmatrix} \mathbf{0}_{\mathrm{CC}} & \kappa_{\mathrm{CO}} & \kappa_{\mathrm{CV}} \\ \kappa_{\mathrm{OC}} & \mathbf{0}_{\mathrm{OO}} & \kappa_{\mathrm{OV}} \\ \kappa_{\mathrm{VC}} & \kappa_{\mathrm{VO}} & \mathbf{0}_{\mathrm{VV}} \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{\mathrm{CC}} & -\kappa_{\mathrm{OC}}^{\dagger} & -\kappa_{\mathrm{VC}}^{\dagger} \\ \kappa_{\mathrm{OC}} & \mathbf{0}_{\mathrm{OO}} & -\kappa_{\mathrm{VO}}^{\dagger} \\ \kappa_{\mathrm{VC}} & \kappa_{\mathrm{VO}} & \mathbf{0}_{\mathrm{VV}} \end{bmatrix}$$
(47)

Final remark: How is this formulation connected with the usual SCF formulation?

Recall the derivation of HF equation from variational principle

$$\delta L[\{\phi_i\}] = \delta[\langle \Phi_0 | \hat{H} | \Phi_0 \rangle - \sum_{ij} \epsilon_{ji} (\langle \phi_i | \phi_j \rangle - \delta_{ij})]$$
(48)

which leads to the HF equation

$$\hat{f}|\phi_i\rangle = \sum_j |\phi_j\rangle \epsilon_{ji} \tag{49}$$

This equation implies that $f_{ai}=\langle\phi_a|\hat{f}|\phi_i\rangle=\langle\phi_a|\sum_j|\phi_j\rangle\epsilon_{ji}=0.$ The canonical HF equation is obtained by choosing a special set of occupied orbitals, such that $\epsilon_{ji}=\langle\phi_j|\hat{f}|\phi_i\rangle$ is diagonalized, viz., $|\psi_i\rangle=\sum_j|\phi_j\rangle U_{ji}$ and $\epsilon=\mathbf{U}\varepsilon\mathbf{U}^\dagger$,

$$\hat{f}|\psi_i\rangle = |\psi_i\rangle\varepsilon_i \tag{50}$$

Full Configuration Interaction (FCI)

The configuration interaction (CI) is the earliest correlation method. The full CI (FCI) wavefunction can be written as:

$$|\Psi_{\text{FCI}}\rangle = |\Phi_{\text{HF}}\rangle + \sum_{i,a} C_i^a |\Phi_i^a\rangle + \sum_{i < j,a < b} C_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \cdots$$

$$= (1 + \hat{C}_1 + \hat{C}_2 + \cdots)|\Phi_{\text{HF}}\rangle$$

$$= (1 + \hat{C})|\Phi_{\text{HF}}\rangle$$
(51)

which is the exact method within a given one-electron basis. The coefficients (C_i^a , C_{ij}^{ab} , etc.) are linear variational parameters. The variational principle leads to a matrix eigenvalue problem

$$\mathbf{H}_{\mathrm{FCI}}\mathbf{C} = \mathbf{C}E \tag{52}$$

FCI

The FCI Hamiltonian matrix is

$$\mathbf{H}_{\mathrm{FCI}} = \begin{bmatrix} \left\langle \Phi_{0} \middle| \hat{H} \middle| \Phi_{0} \right\rangle & \left\langle \Phi_{0} \middle| \hat{H} \middle| \Phi_{m}^{d} \right\rangle & \left\langle \Phi_{0} \middle| \hat{H} \middle| \Phi_{mn}^{de} \right\rangle & \left\langle \Phi_{0} \middle| \hat{H} \middle| \Phi_{mnl}^{def} \right\rangle & \cdots \\ \left\langle \Phi_{i}^{a} \middle| \hat{H} \middle| \Phi_{0} \right\rangle & \left\langle \Phi_{i}^{a} \middle| \hat{H} \middle| \Phi_{m}^{d} \right\rangle & \left\langle \Phi_{i}^{a} \middle| \hat{H} \middle| \Phi_{mn}^{de} \right\rangle & \left\langle \Phi_{i}^{a} \middle| \hat{H} \middle| \Phi_{mnl}^{def} \right\rangle & \cdots \\ \left\langle \Phi_{ij}^{ab} \middle| \hat{H} \middle| \Phi_{0} \right\rangle & \left\langle \Phi_{ij}^{ab} \middle| \hat{H} \middle| \Phi_{m}^{d} \right\rangle & \left\langle \Phi_{ijk}^{ab} \middle| \hat{H} \middle| \Phi_{mnl}^{de} \right\rangle & \left\langle \Phi_{ijk}^{abc} \middle| \hat{H} \middle| \Phi_{mnl}^{def} \right\rangle & \cdots \\ \left\langle \Phi_{ijk}^{abc} \middle| \hat{H} \middle| \Phi_{0} \right\rangle & \left\langle \Phi_{ijk}^{abc} \middle| \hat{H} \middle| \Phi_{m}^{d} \right\rangle & \left\langle \Phi_{ijk}^{abc} \middle| \hat{H} \middle| \Phi_{mnl}^{def} \right\rangle & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix}$$

The dimension of the matrix is

$$1 + C_N^1 C_{K-N}^1 + C_N^2 C_{K-N}^2 + \dots + C_N^{\min(N,K-N)} C_{K-N}^{\min(N,K-N)} = C_K^N$$
 (53)

The matrix elements can be evaluated using Slater-Condon rules or second quantization methods discussed before.

FCI

Using the property that \hat{H} is two-body, as well as the Brillouin condition, \mathbf{H}_{FCI} based on the HF reference can be simplified to

$$\mathbf{H}_{\text{FCI}} = \begin{bmatrix} \langle \Phi_{0} | \hat{H} | \Phi_{0} \rangle & \mathbf{0} & \langle \Phi_{0} | \hat{H} | \Phi_{mn}^{de} \rangle & \mathbf{0} & \cdots \\ \mathbf{0} & \langle \Phi_{i}^{a} | \hat{H} | \Phi_{m}^{d} \rangle & \langle \Phi_{i}^{a} | \hat{H} | \Phi_{mn}^{de} \rangle & \langle \Phi_{i}^{a} | \hat{H} | \Phi_{mnl}^{def} \rangle & \cdots \\ \langle \Phi_{ij}^{ab} | \hat{H} | \Phi_{0} \rangle & \langle \Phi_{ij}^{ab} | \hat{H} | \Phi_{m}^{d} \rangle & \langle \Phi_{ij}^{ab} | \hat{H} | \Phi_{mn}^{de} \rangle & \langle \Phi_{ij}^{ab} | \hat{H} | \Phi_{mnl}^{def} \rangle & \cdots \\ \mathbf{0} & \langle \Phi_{ijk}^{abc} | \hat{H} | \Phi_{m}^{d} \rangle & \langle \Phi_{ijk}^{abc} | \hat{H} | \Phi_{mn}^{de} \rangle & \langle \Phi_{ijk}^{abc} | \hat{H} | \Phi_{mnl}^{def} \rangle & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix}$$

$$(54)$$

which is a highly sparse matrix with the number nonzero matrix elements per row goes as $O(N^2(K-N)^2)$. In comparison, its dimension C_K^N is exponential in the number of electrons N, as usually $K \sim O(N)$.

Truncated CI

FCI is only feasible for small systems! Rough estimation on the memory required to store a FCI vector: 2^{30} (8GB), 2^{40} (8TB), 2^{50} (8PB), etc. Therefore, we have to make some approximations in order to treat larger systems.

Truncated CI

CIS (configuration interaction singles):

$$\mathbf{H}_{\mathrm{CIS}} = \begin{bmatrix} \langle \Phi_0 | \hat{H} | \Phi_0 \rangle & 0\\ 0 & \langle \Phi_i^a | \hat{H} | \Phi_m^d \rangle \end{bmatrix}$$
 (55)

There is no improvement for the ground state if the orbitals are HF orbitals. Diagonalizing the block $\left[\langle\Phi_i^a|\hat{H}\left|\Phi_m^d\right\rangle\right]$ gives the simplest method for excited states.

CISD (configuration interaction singles and doubles):

$$\mathbf{H}_{\text{CISD}} = \begin{bmatrix} \left\langle \Phi_{0} \middle| \hat{H} \middle| \Phi_{0} \right\rangle & 0 & \left\langle \Phi_{0} \middle| \hat{H} \middle| \Phi_{mn}^{de} \right\rangle \\ 0 & \left\langle \Phi_{i}^{a} \middle| \hat{H} \middle| \Phi_{m}^{d} \right\rangle & \left\langle \Phi_{i}^{a} \middle| \hat{H} \middle| \Phi_{mn}^{de} \right\rangle \\ \left\langle \Phi_{ij}^{ab} \middle| \hat{H} \middle| \Phi_{0} \right\rangle & \left\langle \Phi_{ij}^{ab} \middle| \hat{H} \middle| \Phi_{m}^{d} \right\rangle & \left\langle \Phi_{ij}^{ab} \middle| \hat{H} \middle| \Phi_{mn}^{de} \right\rangle \end{bmatrix}$$
 (56)

This simple method is nowadays replaced by CCSD for several reasons.

Size-extensivity problem

Consider N noninteracting Hubbard dimer/hydrogen molecule in the minimal basis, the Hamiltonian can be written as

$$\hat{H} = \sum_{I=1}^{N} [\Delta b_I^{\dagger} b_I + V(b_I^{\dagger} + b_I)]$$
 (57)

where $[b_I,b_J]=0$ and $[b_I,b_J^\dagger]=\delta_{IJ}$. The exact ground state can be written as $|\Psi\rangle=\prod_{I=1}^N(|0_I\rangle+z|1_I\rangle)$. The exact can be written as

$$E_N^{\text{FCI}} = \frac{\langle \Psi | \dot{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{N(1 + z^* z)^{N-1} (\Delta z^* z + V(z^* + z))}{(1 + z^* z)^N}$$
(58)

$$= \frac{N(\Delta z^* z + V(z^* + z))}{1 + z^* z} = N E_{N=1}^{FCI}$$
(59)

This property, called size-extensivity, is desirable for correlation methods.

Size-extensivity problem

The CISD energy function amounts to keeping terms up to z^*z in the denominator and numerator in Eq. (58), respectively,

$$E_N^{\text{CISD}} = \frac{N(\Delta z^* z + V(z^* + z))}{(1 + Nz^* z)}$$
 (60)

The variational condition $\frac{\partial E_N^{\rm CISD}}{\partial z^*}=0$ leads to $V+\Delta z-NVz^2=0$. In fact,

$$E_N^{\text{FCI}} = N \frac{1}{2} (\Delta - \sqrt{\Delta^2 + 4V^2}), \quad E_N^{\text{CISD}} = \frac{1}{2} (\Delta - \sqrt{\Delta^2 + 4NV^2}),$$
 (61)

which agree with each other only for N=1. For large N, $z\sim -1/\sqrt{N}$ and $E_N^{\rm CISD}\sim \sqrt{N}V.$

This example shows the lack of size-extensivity in CISD. We will introduce CCSD to solve this problem later, but we will not cover methods for approximately restoring size-extensivity (Davidson's correction, CEPA, etc., see Ref. [2]).

Contents

- Example for electron correlation: Hubbard dimer
- 2 Basis rotations
- Single-reference theories
 - HF
 - FCI and CISD
- Multi-reference theories
 - CASSCF
 - MRCISD

CASSCF

Complete-active-space SCF (CASSCF) wavefunction Ansatz[2]:

$$|\Psi_{\text{CASSCF}}(\boldsymbol{\kappa}, \mathbf{S})\rangle = e^{\hat{\kappa}} e^{\hat{S}} |\Psi_0\rangle, \quad |\Psi_0\rangle = |\Psi_0^A\rangle |\Phi_0^C\rangle$$
 (62)

where the orbital and configuration transformations are parameterized as

$$\hat{\kappa} = \sum_{pq} \kappa_{pq} a_p^{\dagger} a_q, \quad \kappa = \begin{bmatrix} \mathbf{0}_{\mathrm{CC}} & \kappa_{\mathrm{CO}} & \kappa_{\mathrm{CV}} \\ \kappa_{\mathrm{OC}} & \mathbf{0}_{\mathrm{OO}} & \kappa_{\mathrm{OV}} \\ \kappa_{\mathrm{VC}} & \kappa_{\mathrm{VO}} & \mathbf{0}_{\mathrm{VV}} \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{\mathrm{CC}} & -\kappa_{\mathrm{OC}}^{\dagger} & -\kappa_{\mathrm{VC}}^{\dagger} \\ \kappa_{\mathrm{OC}} & \mathbf{0}_{\mathrm{OO}} & -\kappa_{\mathrm{VO}}^{\dagger} \\ \kappa_{\mathrm{VC}} & \kappa_{\mathrm{VO}} & \mathbf{0}_{\mathrm{VV}} \end{bmatrix}$$
(63)
$$\hat{S} = \sum_{n>0} (S_{n0}|n) \langle 0| - S_{0n}^* |0\rangle \langle n|), \quad \mathbf{S} = \begin{bmatrix} 0 & -S_1^* & -S_2^* & \cdots & -S_N^* \\ S_1 & 0 & 0 & \cdots & 0 \\ S_2 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S_N & 0 & 0 & \cdots & 0 \end{bmatrix}$$
(64)

CASSCF

The CASSCF energy function is

$$E(\boldsymbol{\kappa}, \mathbf{S}) = \langle \Psi_{\text{CASSCF}}(\boldsymbol{\kappa}, \mathbf{S}) | \hat{H} | \Psi_{\text{CASSCF}}(\boldsymbol{\kappa}, \mathbf{S}) \rangle$$

$$= \langle \Psi_{0} | e^{-\hat{S}} e^{-\hat{\kappa}} \hat{H} e^{\hat{\kappa}} e^{\hat{S}} | \Psi_{0} \rangle$$

$$= \langle \Psi_{0} | e^{-\hat{S}} (\hat{H} + [\hat{H}, \hat{\kappa}] + \frac{1}{2} [[\hat{H}, \hat{\kappa}], \hat{\kappa}] + \cdots) e^{\hat{S}} | \Psi_{0} \rangle$$

$$= \langle \Psi_{0} | \hat{H} | \Psi_{0} \rangle + \langle \Psi_{0} | [\hat{H}, \hat{\kappa}] | \Psi_{0} \rangle + \langle \Psi_{0} | [\hat{H}, \hat{S}] | \Psi_{0} \rangle$$

$$+ \frac{1}{2} \langle \Psi_{0} | [[\hat{H}, \hat{\kappa}], \hat{\kappa}] | \Psi_{0} \rangle + \frac{1}{2} \langle \Psi_{0} | [[\hat{H}, \hat{S}], \hat{S}] | \Psi_{0} \rangle$$

$$+ \langle \Psi_{0} | [[\hat{H}, \hat{\kappa}], \hat{S}] | \Psi_{0} \rangle + \cdots$$

$$= E_{0} + (g_{o}^{\dagger}, g_{c}^{\dagger}) \begin{pmatrix} x_{o} \\ x_{c} \end{pmatrix} + \frac{1}{2} (g_{o}^{\dagger}, g_{c}^{\dagger}) \begin{pmatrix} \mathbf{H}_{oo} & \mathbf{H}_{oc} \\ \mathbf{H}_{co} & \mathbf{H}_{cc} \end{pmatrix} \begin{pmatrix} x_{o} \\ x_{c} \end{pmatrix} + \cdots (65)$$

where x_o and x_c refers to the parameters for orbitals κ and configurations S, respectively. This nonlinear function can be optimized by Newton's method introduced before.

MRCISD

Uncontracted MRCISD (uc-MRCISD): union of single and double excitations from each configuration - the problem is the number of configurations $\propto O(N_{\rm CAS})$.

Internally contraction (ic-MRCISD): suppose $|\Psi_0\rangle$ is the CASSCF reference

• Three classes of singly excited configurations:

$$|\Psi_i^x\rangle, \ |\Psi_x^a\rangle, \ |\Psi_i^a\rangle$$
 (66)

Eight classes of doubly excited configurations:

$$\begin{array}{ll} |\Psi_{ij}^{wx}\rangle, \ |\Psi_{iw}^{xy}\rangle & \text{internal excitations,} \\ |\Psi_{ij}^{aw}\rangle, \ |\Psi_{iw}^{xa}\rangle, \ |\Psi_{wx}^{ya}\rangle & \text{semi-internal excitations,} \\ |\Psi_{ij}^{ab}\rangle, \ |\Psi_{iw}^{ab}\rangle, \ |\Psi_{wx}^{ab}\rangle & \text{double excitations,} \end{array} \tag{67}$$

classified by the number of electrons excited in the external space.

Exercises

Problem 1: Find the eigenvalues of the following matrix for s=+ and s=-,

$$\begin{bmatrix} \Delta + K & K \\ sK & -(\Delta + K) \end{bmatrix}, \tag{68}$$

and discuss when the eigenvalues are not real.

Problem 2: Prove the following identity for Fermionic creation/annihilation operator $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$[a_q^p, a_s^r] = \delta_q^r a_s^p - \delta_s^p a_q^r, \quad a_q^p \triangleq a_p^{\dagger} a_q \tag{69}$$

Problem 3: If $\kappa=-\mathrm{i}\theta\sigma_y=\theta\begin{bmatrix}0&-1\\1&0\end{bmatrix}$ for real θ , show that

$$\mathbf{U} = e^{\kappa} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \cos(\theta)I_2 - i\sin(\theta)\sigma_y \tag{70}$$

Problem 4: Let $|\Phi_0\rangle=|1\bar{1}\rangle$ and a double excitation operator $\hat{T}=\theta a_2^\dagger a_{\bar{2}}^\dagger a_{\bar{1}} a_1$ for real θ , show that

(i)
$$\hat{T}|\Phi_0\rangle = \theta|2\bar{2}\rangle$$
;

(ii)
$$e^{\hat{T}}|\Phi_0\rangle = |1\bar{1}\rangle + \theta|2\bar{2}\rangle;$$

(iii)
$$e^{\hat{T}-\hat{T}^{\dagger}}|\Phi_0\rangle = \cos(\theta)|1\bar{1}\rangle + \sin(\theta)|2\bar{2}\rangle$$
.

Reference I

- [1] Google Al Quantum et al. "Hartree-Fock on a superconducting qubit quantum computer". In: Science 369.6507 (2020), pp. 1084–1089.
- [2] Peter G Szalay et al. "Multiconfiguration self-consistent field and multireference configuration interaction methods and applications". In: *Chemical reviews* 112 (2012), pp. 108–181.