

Weight of Statistical Evidence

Detection and Correction of Publication Bias

Servan Grüninger Écublens, July 9th

Master's Programme in Computational Science and Engineering

The Woozle effect

Pooh and Piglet tracking down the elusive Woozle (Image: Ernest H. Shepard)

1

The Woozle effect—why care?

The Woozle effect—why care?

Table of Contents

- 1. Analysing and Testing Evidence
- 2. Detecting Publication Bias
- 3. Correcting Publication Bias
- 4. Conclusion

Analysing and Testing Evidence

Hypothesis Testing

$$H_0: \mu \le \mu_0$$

 $H_1: \mu > \mu_0$

To test hypotheses, we need a test statistic V_n .

To test hypotheses, we need a test statistic V_n . Ideally, test statistics fulfill the following properties Kulinskaya, Morgenthaler, and Staudte (2008):

To test hypotheses, we need a test statistic V_n . Ideally, test statistics fulfill the following properties Kulinskaya, Morgenthaler, and Staudte (2008):

 E_1 : V_n is monotonically increasing;

To test hypotheses, we need a test statistic V_n . Ideally, test statistics fulfill the following properties Kulinskaya, Morgenthaler, and Staudte (2008):

 E_1 : V_n is monotonically increasing;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

To test hypotheses, we need a test statistic V_n . Ideally, test statistics fulfill the following properties Kulinskaya, Morgenthaler, and Staudte (2008):

 E_1 : V_n is monotonically increasing;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

 $E_3 : Var[V_n] = 1;$

To test hypotheses, we need a test statistic V_n . Ideally, test statistics fulfill the following properties Kulinskaya, Morgenthaler, and Staudte (2008):

 E_1 : V_n is monotonically increasing;

 $E_2: V_n \sim \mathcal{N}(\tau, 1);$

 E_3 : $Var[V_n] = 1$;

 E_4 : $E_{\mu}[V_n] = \tau(\mu)$ is monotonically increasing in μ from $\tau(0) = 0$.

Example case: difference in means

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ with μ and σ^2 unknown.

Example case: difference in means

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ with μ and σ^2 unknown.

Student's t-statistic as test statistic:

$$T_n = \frac{\sqrt{n}(\hat{\mu} - \mu_0)}{\hat{\sigma}} \stackrel{H_0}{\sim} t(\nu = n - 1)$$

6

Example case: difference in means

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ with μ and σ^2 unknown.

Student's t-statistic as test statistic:

$$T_n = \frac{\sqrt{n}(\hat{\mu} - \mu_0)}{\hat{\sigma}} \stackrel{H_0}{\sim} \mathsf{t}(\nu = n - 1)$$

with

$$\hat{\mu} = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i; \quad \hat{\sigma}^2 = s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_N)^2$$

6

If n is large enough, T_n fulfills all properties E_1 to E_4 by virtue of the central limit theorem.

If n is large enough, T_n fulfills all properties E_1 to E_4 by virtue of the central limit theorem.

For small n, however, E_2 and E_3 are violated.

If n is large enough, T_n fulfills all properties E_1 to E_4 by virtue of the central limit theorem.

For small n, however, E_2 and E_3 are violated.

Solution: Transform T_n !

 $V_n = h_n(T_n) = \sqrt{2n} \sinh^{-1}(T_n/\sqrt{2n})$ yields improved approximation to standard normal distribution Kulinskaya, Morgenthaler, and Staudte (2008).

 $V_n = h_n(T_n) = \sqrt{2n} \sinh^{-1}(T_n/\sqrt{2n})$ yields improved approximation to standard normal distribution Kulinskaya, Morgenthaler, and Staudte (2008).

Further improvement by finite sample correction:

$$V_n^* = \frac{n - 1.7}{n - 1} \sqrt{2n} \sinh^{-1}(T_n / \sqrt{2n})$$

h_n improves normal fit

h_n stabilises variance

h_n improves empirical coverage probability of confidence intervals

Detecting Publication Bias

Aggregate study effects in the absence of publication bias

Without publication bias, the global effect size across k studies can be estimated by:

$$\bar{X}_N = \frac{\sum_{j=1}^k \bar{X}_{n_j} w_j}{\sum_{j=1}^k w_j} \sim \mathcal{N}(\mu, \sigma^2/N); \quad N = \sum_{j=1}^k n_j; \quad w_j = n_j/\sigma^2$$

Funnel plots: draw effect size against precision, look for gaps. Idea proposed by Light and Pillemer (1984, p. 64–69).

No publication bias

Significant studies only

Significant studies and 10% of non-significant studies

Many studies land in the file drawer (Image: Geckoboard)

Worst case assumption by Rosenthal (1979): Published results are Type I error only.

Worst case assumption by Rosenthal (1979): Published results are Type I error only.

Calculate number of omitted studies needed to make findings non-significant:

$$z_{(1-\alpha)} = \frac{k\overline{z}_k + o\overline{z}_0}{\sqrt{k+o}}$$

Worst case assumption by Rosenthal (1979): Published results are Type I error only.

Calculate number of omitted studies needed to make findings non-significant:

$$\begin{aligned} z_{(1-\alpha)} &= \frac{k\bar{z}_k + o\bar{z}_o}{\sqrt{k+o}} \\ \iff o &= \frac{(k\bar{z}_k + o\bar{z}_o)^2}{z_{(1-\alpha)}^2} - k. \end{aligned}$$

Assume that $\bar{z}_o = 0$:

$$o = \frac{(k\bar{z}_k)^2}{z_{(1-\alpha)}^2} - k.$$

Assume that $\bar{z}_o = 0$:

$$o = \frac{(k\overline{z}_k)^2}{Z_{(1-\alpha)}^2} - k.$$

More accurate is $\bar{z}_0 = E[Z \mid Z < z_{(1-\alpha)}]$:

Assume that $\bar{z}_o = 0$:

$$o = \frac{(k\overline{z}_k)^2}{z_{(1-\alpha)}^2} - k.$$

More accurate is $\bar{z}_0 = E[Z \mid Z < z_{(1-\alpha)}]$:

$$o^* = \frac{-2k\bar{z}_k\bar{z}_0 + z_{(1-\alpha)}^2 - z_{(1-\alpha)}\sqrt{4k\bar{z}_0^2 - 4k\bar{z}_k\bar{z}_0 + z_{(1-\alpha)}^2}}{2\bar{z}_0^2}.$$

Check whether $o^* < 5k + 10$.

	k	μ_1	0	0*	bias de- tected?
full sample (no bias)	200	0	-141	-181	o : no
	200	0.3	8123	884	o*: no o : no o*: no

Critical value: 5k + 10

	k	μ_1	0	0*	bias de- tected?
full sample (no bias)	200	0	-141	-181	o : no o*: no
	200	0.3	8123	884	o : no o*: no
significant studies	13	0	320	109	o : no o*: no
	38	0.3	2705	457	o : no o*: no

Critical value: 5k + 10

	k	μ_1	0	0*	bias de- tected?
full sample (no bias)	200	0	-141	-181	o : no
	200	0.3	8123	884	o*: no o : no o*: no
significant studies	13	0	320	109	o : no
	38	0.3	2705	457	o*: no o : no o*: no
significant studies and 10% of	32	0	99	43	o : yes
non-significant studies					o*: yes
	55	0.3	3086	494	o : no o*: no

Critical value: 5k + 10

Assuming σ^2 to be known, the (overestimated) power of the *j*th study is:

$$1 - \beta_j = \Phi(\sqrt{n_j} \frac{\bar{X}_N}{\sigma} - z_{(1-\alpha)})$$

Assuming σ^2 to be known, the (overestimated) power of the *j*th study is:

$$1 - \beta_j = \Phi(\sqrt{n_j} \frac{\bar{X}_N}{\sigma} - z_{(1-\alpha)})$$

Expected number of significant studies in the absence of publication bias (Ioannidis and Trikalinos, 2007):

$$E=\sum_{j=1}^k(1-\beta_j).$$

Assuming σ^2 to be known, the (overestimated) power of the *j*th study is:

$$1 - \beta_j = \Phi(\sqrt{n_j} \frac{\bar{X}_N}{\sigma} - z_{(1-\alpha)})$$

Expected number of significant studies in the absence of publication bias (Ioannidis and Trikalinos, 2007):

$$E=\sum_{j=1}^k(1-\beta_j).$$

Compare to observed number of studies O via χ^2 -test:

$$A = [(O - E)^{2}/E + (O - E)^{2}/(k - E)] \sim \chi_{1}^{2}.$$

	k	μ_1	\bar{x}_N	А	bias de- tected?
full sample (no bias, A)	200 200	0.3	-0.02 0.27	1.70 0.08	no no

Critical value: 3.84 (95%-quantile of χ_1^2 -distribution)

	k	μ_1	\bar{x}_N	А	bias de- tected?
full sample (no bias, A)	200 200	0.3	-0.02 0.27	1.70 0.08	no no
significant studies (B)	13 38	0 0.3	0.69 0.61	11.67 19.94	yes yes

Critical value: 3.84 (95%-quantile of χ_1^2 -distribution)

	k	μ_1	\bar{x}_N	А	bias de- tected?
full sample (no bias, A)	200	0	-0.02	1.70	no
	200	0.3	0.27	0.08	no
significant studies (B)	13	0	0.69	11.67	yes
	38	0.3	0.61	19.94	yes
significant studies and 10% of non-significant studies (C)	32	0	0.15	28.64	yes
	55	0.3	0.51	8.21	yes

Critical value: 3.84 (95%-quantile of χ_1^2 -distribution)

$$p = \Pr[Z \in [c,c'] \mid Z \in [c,c'']]$$

$$p = \Pr[Z \in [c, c'] \mid Z \in [c, c'']] = \frac{\Phi(c') - \Phi(c)}{\Phi(c'') - \Phi(c)}$$

$$p = \Pr[Z \in [c, c'] \mid Z \in [c, c'']] = \frac{\Phi(c') - \Phi(c)}{\Phi(c'') - \Phi(c)} \simeq \frac{(c' - c)\phi(c)}{(c'' - c)\phi(c)}$$

$$p = \Pr[Z \in [c,c'] \mid Z \in [c,c'']] = \frac{\Phi(c') - \Phi(c)}{\Phi(c'') - \Phi(c)} \simeq \frac{(c'-c)\phi(c)}{(c''-c)\phi(c)} = \frac{c'-c}{c''-c}.$$

$$p = \Pr[Z \in [c, c'] \mid Z \in [c, c'']] = \frac{\Phi(c') - \Phi(c)}{\Phi(c'') - \Phi(c)} \simeq \frac{(c' - c)\phi(c)}{(c'' - c)\phi(c)} = \frac{c' - c}{c'' - c}.$$

$$K'' \sim \text{Bin}(k', p = 0.5)$$

	k	μ_1	k'	k"	$q_{(1-\alpha/2)}$	bias de- tected?
full sample (no bias, A)	200 200	0 0.3	4 15	3 6	4 11	no no

Critical value: 97.5%-quantile of Bin(k', 0.5)-distribution

	k	μ_1	k'	k"	$q_{(1-\alpha/2)}$	bias de- tected?
full sample (no bias, A)	200 200	0 0.3	4 15	3 6	4 11	no no
significant studies (B)	13 38	0 0.3	3 6	3 6	3 5	no yes

Critical value: 97.5%-quantile of Bin(k', 0.5)-distribution

	k	μ_1	k'	k"	$q_{(1-\alpha/2)}$	bias de- tected?
full sample (no bias, A)	200	0	4	3	4	no
	200	0.3	15	6	11	no
significant studies (B)	13	0	3	3	3	no
	38	0.3	6	6	5	yes
significant studies and 10% of non-significant studies (C)	32	0	3	3	3	no
	55	0.3	7	6	6	no

Critical value: 97.5%-quantile of Bin(k', 0.5)-distribution

Correcting Publication Bias

Publication probabilities and truncated distributions

publication probability:

$$ppr(S_n, \pi) = \pi + (1 - \pi)\delta(S_n)$$

Publication probabilities and truncated distributions

publication probability:

$$ppr(S_n, \pi) = \pi + (1 - \pi)\delta(S_n)$$

· expected publication probability:

$$E[ppr(S_n, \pi)] = \pi Pr(ppr = \pi) + Pr(ppr = 1)$$

Publication probabilities and truncated distributions

publication probability:

$$ppr(S_n, \pi) = \pi + (1 - \pi)\delta(S_n)$$

· expected publication probability:

$$E[ppr(S_n, \pi)] = \pi Pr(ppr = \pi) + Pr(ppr = 1)$$

• truncated probability density function of S_n :

$$f_{S_n}^*(s_n) = \frac{\operatorname{ppr}(s_n, \pi)}{\operatorname{E}[\operatorname{ppr}(S_n, \pi)]} f_{S_n}(s_n)$$

Let

$$\mu_{\text{sig}} = E[\bar{X}_{n_j} \mid S_{n_j} > q_{(1-\alpha)}]; \quad \mu_{\text{ns}} = E[\bar{X}_{n_j} \mid S_{n_j} \leq q_{(1-\alpha)}]$$

Let

$$\begin{split} & \mu_{\text{sig}} = \text{E}[\bar{X}_{n_j} \mid S_{n_j} > q_{(1-\alpha)}]; \quad \mu_{\text{ns}} = \text{E}[\bar{X}_{n_j} \mid S_{n_j} \leq q_{(1-\alpha)}] \\ & \sigma_{\text{sig}}^2 = \text{Var}[\bar{X}_{n_j} \mid S_{n_j} > q_{(1-\alpha)}]; \quad \sigma_{\text{ns}}^2 = \text{Var}[\bar{X}_{n_j} \mid S_{n_j} \leq q_{(1-\alpha)}]. \end{split}$$

Let

$$\begin{split} & \mu_{\text{sig}} = \text{E}[\bar{X}_{n_j} \mid S_{n_j} > q_{(1-\alpha)}]; \quad \mu_{\text{ns}} = \text{E}[\bar{X}_{n_j} \mid S_{n_j} \leq q_{(1-\alpha)}] \\ & \sigma_{\text{sig}}^2 = \text{Var}[\bar{X}_{n_j} \mid S_{n_j} > q_{(1-\alpha)}]; \quad \sigma_{\text{ns}}^2 = \text{Var}[\bar{X}_{n_j} \mid S_{n_j} \leq q_{(1-\alpha)}]. \end{split}$$

Then

$$\bar{X}_{n_j} \mid S_n \sim \begin{cases} \mathcal{N}\left(\mu_{\text{sig}} \operatorname{ppr}_j, \sigma_{\text{sig}}^2 \frac{\operatorname{ppr}_j^2}{n_j}\right), & \text{if } S_n > q_{(1-\alpha)}; \\ \mathcal{N}\left(\mu_{\text{ns}} \operatorname{ppr}_j, \sigma_{\text{ns}}^2 \frac{\operatorname{ppr}_j^2}{n_j}\right), & \text{if } S_n \leq q_{(1-\alpha)}. \end{cases}$$

The biased weight $w_j^* = w_j \operatorname{ppr}_j$ yields biased estimator

$$\bar{X}_{\mathsf{N}} = \frac{\sum_{j=1}^{k} \bar{X}_{n_{j}} w_{j}^{*}}{\sum_{j=1}^{k} w_{j}^{*}} \sim \mathcal{N}(\mu^{*}, \sigma^{*})$$

The biased weight $w_j^* = w_j \operatorname{ppr}_j$ yields biased estimator

$$\bar{X}_{N} = \frac{\sum_{j=1}^{k} \bar{X}_{n_{j}} w_{j}^{*}}{\sum_{j=1}^{k} w_{j}^{*}} \sim \mathcal{N}(\mu^{*}, \sigma^{*})$$

with

$$\mu^* = \frac{\sum_{j=1}^{s} w_j^* \mu_{\text{sig}} + \sum_{j=s+1}^{k} w_j^* \mu_{\text{ns}}}{\sum_{j=1}^{k} w_j^*}$$

The biased weight $w_j^* = w_j \operatorname{ppr}_j$ yields biased estimator

$$\bar{X}_{N} = \frac{\sum_{j=1}^{k} \bar{X}_{n_{j}} W_{j}^{*}}{\sum_{j=1}^{k} W_{j}^{*}} \sim \mathcal{N}(\mu^{*}, \sigma^{*})$$

with

$$\mu^* = \frac{\sum_{j=1}^{s} w_j^* \mu_{\text{sig}} + \sum_{j=s+1}^{k} w_j^* \mu_{\text{ns}}}{\sum_{j=1}^{k} w_j^*}$$

$$\sigma^* = \frac{\sum_{j=1}^{s} (w_j^*)^2 \sigma_{\text{sig}} / n_j + \sum_{j=s+1}^{k} (w_j^*)^2 \sigma_{\text{ns}} / n_j}{(\sum_{j=1}^{k} w_j^*)^2}$$

Reweight each biased weight w_j^* by inverse of the publication probability to get unbiased estimator:

$$\bar{X}_{N}^{*} = \frac{\sum_{j=1}^{k} \bar{X}_{n_{j}} w_{j}^{*} / \operatorname{ppr}_{j}}{\sum_{j=1}^{k} w_{j}^{*} / \operatorname{ppr}_{j}} \sim \mathcal{N}\left(\mu, \sigma^{2} / N\right)$$

Reweight each biased weight w_j^* by inverse of the publication probability to get unbiased estimator:

$$\bar{X}_{N}^{*} = \frac{\sum_{j=1}^{k} \bar{X}_{n_{j}} w_{j}^{*} / \operatorname{ppr}_{j}}{\sum_{j=1}^{k} w_{j}^{*} / \operatorname{ppr}_{j}} \sim \mathcal{N}\left(\mu, \sigma^{2} / N\right)$$

Inspired by Hansen and Hurwitz (1943).

	k	μ_1	\bar{x}_N	\bar{X}_N^*
full sample (no bias, A)	200	0	-0.02	-0.07
	200	0.3	0.27	0.15

	k	μ_1	\bar{x}_N	\bar{X}_N^*
full sample (no bias, A)	200 200	0.3	-0.02 0.27	-0.07 0.15
significant studies (B)	13 38	0 0.3	0.69 0.61	0.69 0.61

	k	μ_1	\bar{x}_N	\bar{X}_N^*
full sample (no bias, A)	200 200	0 0.3	-0.02 0.27	-0.07 0.15
significant studies (B)	13 38	0 0.3	0.69 0.61	0.69 0.61
significant studies and 10% of non-significant studies (C)	32 55	0 0.3	0.15 0.51	-0.17 0.27

Truncated likelihood of μ given by

$$\mathcal{L}^*(\mu \mid \mathsf{v}_{n_1}, \dots, \mathsf{v}_{n_k}) = \frac{\mathcal{L}(\mu \mid \mathsf{v}_{n_1}, \dots, \mathsf{v}_{n_k})}{\mathsf{E}[\mathsf{ppr}(\mathsf{V}_{n_j}, \pi) \mid \mu]} \prod_{i=1}^k \mathsf{ppr}(\mathsf{V}_{n_j}, \pi).$$

Truncated likelihood of μ given by

$$\mathcal{L}^*(\mu \mid \mathsf{v}_{n_1},\ldots,\mathsf{v}_{n_k}) = \frac{\mathcal{L}(\mu \mid \mathsf{v}_{n_1},\ldots,\mathsf{v}_{n_k})}{\mathsf{E}[\mathsf{ppr}(\mathsf{V}_{n_j},\pi) \mid \mu]} \prod_{i=1}^k \mathsf{ppr}(\mathsf{V}_{n_j},\pi).$$

Can be maximised by grid search.

	k	μ_1	\bar{x}_N	$\hat{\mu}$	$\hat{\pi}$
full sample (no bias, A)	200	0	-0.02	-0.02	0.66
	200	0.3	0.27	0.27	1

	k	μ_1	\bar{x}_N	$\hat{\mu}$	$\hat{\pi}$
full sample (no bias, A)	200 200	0.3	-0.02 0.27	-0.02 0.27	0.66
significant studies (B)	13 38	0 0.3	0.69 0.61	0.31 0.31	0

	k	μ_1	\bar{x}_N	$\hat{\mu}$	$\hat{\pi}$
full sample (no bias, A)	200	0	-0.02	-0.02	0.66
	200	0.3	0.27	0.27	1
significant studies (B)	13	0	0.69	0.31	0
	38	0.3	0.61	0.31	0
significant studies and 10% of non-significant studies (C)	32 55	0 0.3	0.15 0.51	-0.07 0.33	0.05 0.16

Variety of methods available—none is a silver bullet.

Variety of methods available—none is a silver bullet.

Reliable empirical data about origin of publication bias is key.

Variety of methods available—none is a silver bullet.

Reliable empirical data about origin of publication bias is key.

Pre-registration can both reduce publication bias and improve correction accuracy.

Next Steps

- Systematically evaluate performance of methods
- · Extend assessment to additional methods
- · Create ensemble models

Coming Full Circle

Fighting publication bias is like hunting the Woozle—all too often it forces you to go in circles

References i

- Begg, Colin B. and Madhuchhanda Mazumdar (1994). "Operating Characteristics of a Rank Correlation Test for Publication Bias". In: *Biometrics* 50.4, p. 1088 (cit. on pp. 88–91).
- Egger, M. et al. (1997). "Bias in meta-analysis detected by a simple, graphical test". In: *BMJ* 315.7109, pp. 629–634 (cit. on pp. 95–99).
- Gerber, Alan and Neil Malhotra (2006). "Can political science literatures be believed? A study of publication bias in the APSR and the AJPS". In: Annual Meeting of the Midwest Political Science Association. CiteseerX (cit. on pp. 49–54).
- Hansen, Morris H. and William N. Hurwitz (1943). "On the Theory of Sampling from Finite Populations". In: *The Annals of Mathematical Statistics* 14.4, pp. 333–362 (cit. on pp. 68, 69).
- Ioannidis, J. P. and T. A Trikalinos (2007). "An exploratory test for an excess of significant findings". In: *Clinical Trials* 4.3, pp. 245–253 (cit. on pp. 41–43).

References ii

- Kulinskaya, Elena, Stephan Morgenthaler, and Robert G. Staudte (2008). *Meta analysis: a guide to calibrating and combining statistical evidence*. Wiley series in probability and statistics. OCLC: 603590364. Chichester: Wiley. 260 pp. (cit. on pp. 8–13, 20, 21).
- Light, Richard J. and David B. Pillemer (1984). Summing up: The Science of Reviewing Research. Harvard University Press (cit. on p. 27).
 - Rosenthal, Robert (1979). "The "File Drawer Problem" and Tolerance for Null Results". In: *Psychological Bulletin* 86.3, pp. 638–641 (cit. on pp. 32–34).

No correlation

Negative correlation

$$Z_j = \frac{\bar{X}_{n_j} - \bar{X}_N}{\sqrt{V_j}} \sim \mathcal{N}(0,1);$$

$$Z_j = \frac{\bar{X}_{n_j} - \bar{X}_N}{\sqrt{V_j}} \sim \mathcal{N}(0, 1); \quad V_j = 1/w_j - 1/\sum_{i=1}^k w_i.$$

$$Z_{j} = \frac{\bar{X}_{n_{j}} - \bar{X}_{N}}{\sqrt{v_{j}}} \sim \mathcal{N}(0,1); \quad v_{j} = 1/w_{j} - 1/\sum_{i=1}^{k} w_{i}.$$

$$Z_{k} = \frac{\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \operatorname{sgn}(Z_{i} - Z_{j}) \operatorname{sgn}(v_{i} - v_{j})}{\sqrt{(2k+5)k(k-1)/18}} \stackrel{\cdot}{\sim} \mathcal{N}(0,1).$$

	k	μ_1	\bar{x}_N	$ au/\sigma_{ au} $	bias de- tected?
full sample (no bias, A)	200 200	0.3	-0.02 0.27	1.33 0.51	no no

Critical value: 1.96 (97.5%-quantile of $\mathcal{N}(0,1)$ -distribution)

	k	μ_1	\bar{x}_N	$ au/\sigma_{ au} $	bias de- tected?
full sample (no bias, A)	200 200	0.3	-0.02 0.27	1.33 0.51	no no
significant studies (B)	13 38	0 0.3	0.69 0.61	2.81 5.70	yes yes

Critical value: 1.96 (97.5%-quantile of $\mathcal{N}(0,1)$ -distribution)

	k	μ_1	\bar{x}_N	$ au/\sigma_{ au} $	bias de- tected?
full sample (no bias, A)	200 200	0 0.3	-0.02 0.27	1.33 0.51	no no
significant studies (B)	13 38	0 0.3	0.69 0.61	2.81 5.70	yes yes
significant studies and 10% of non-significant studies (C)	32 55	0 0.3	0.15 0.51	0.36 1.60	no no

Critical value: 1.96 (97.5%-quantile of $\mathcal{N}(0,1)$ -distribution)

$$Z_j = \frac{\bar{X}_{n_j} - \bar{X}_N}{\sqrt{v_j}} \sim \mathcal{N}(0,1);$$

$$Z_j = \frac{\bar{X}_{n_j} - \bar{X}_N}{\sqrt{V_j}} \sim \mathcal{N}(0, 1); \quad v_j = 1/w_j - 1/\sum_{i=1}^k w_i;$$

$$Z_j = \frac{\bar{X}_{n_j} - \bar{X}_N}{\sqrt{V_j}} \sim \mathcal{N}(0, 1); \quad v_j = 1/w_j - 1/\sum_{i=1}^k w_i; \quad Z_j \sim \beta_0 + \beta_1/\sqrt{V_j}.$$

$$Z_{j} = \frac{\bar{X}_{n_{j}} - \bar{X}_{N}}{\sqrt{V_{j}}} \sim \mathcal{N}(0, 1); \quad V_{j} = 1/w_{j} - 1/\sum_{i=1}^{k} w_{i}; \quad Z_{j} \sim \beta_{0} + \beta_{1}/\sqrt{V_{j}}.$$

$$T_{k} = \frac{\hat{\beta}_{0} - \beta_{0}}{S_{\hat{\beta}_{0}}} = \frac{\hat{\beta}_{0}}{S_{\hat{\beta}_{0}}} \sim t(\nu = k - 2)$$

	k	μ_1	\bar{X}_N	t	$q_{(1-\alpha/2)}$	bias de- tected?
full sample (no bias, A)	200	0	-0.02	1.30	1.97	no
	200	0.3	0.27	0.95	1.97	no

Critical value: 97.5%-quantile of $t(\nu)$ -distribution

	k	μ_1	\bar{X}_N	t	$q_{(1-\alpha/2)}$	bias de- tected?
full sample (no bias, A)	200 200	0.3	-0.02 0.27	1.30 0.95	1.97 1.97	no no
significant studies (B)	13 38	0 0.3	0.69 0.61	3.77 8.54	2.20 2.03	yes yes

Critical value: 97.5%-quantile of $t(\nu)$ -distribution

	k	μ_1	\bar{X}_N	t	$q_{(1-\alpha/2)}$	bias de- tected?
full sample (no bias, A)	200	0	-0.02	1.30	1.97	no
	200	0.3	0.27	0.95	1.97	no
significant studies (B)	13	0	0.69	3.77	2.20	yes
	38	0.3	0.61	8.54	2.03	yes
significant studies and 10% of non-significant studies (C)	32	0	0.15	1.02	2.04	no
	55	0.3	0.51	4.05	2.01	yes

Critical value: 97.5%-quantile of $t(\nu)$ -distribution

Grid search:

1. Define a set of candidate values $\{\mu_1, \ldots, \mu_m\}$ and $\{\pi_1, \ldots, \pi_n\}$ for μ and π , respectively.

Grid search:

- 1. Define a set of candidate values $\{\mu_1, \ldots, \mu_m\}$ and $\{\pi_1, \ldots, \pi_n\}$ for μ and π , respectively.
- 2. For each combination of μ and π , calculate the likelihood.

Grid search:

- 1. Define a set of candidate values $\{\mu_1, \ldots, \mu_m\}$ and $\{\pi_1, \ldots, \pi_n\}$ for μ and π , respectively.
- 2. For each combination of μ and π , calculate the likelihood.
- 3. Choose the candidate value for μ and π that yields the highest likelihood.

Publication bias—the bane of scientific publishing

Publication bias in a nutshell (Image: Hilda Bastian)

