Early Epidemiological Model Parameters for COVID-19

Blake Bullwinkel

Advisor: Julie Blackwood

"It's time for facts, not fear"

-Tedros Adhanom, Feb 15th 2020

"It's time for facts, not fear"

"It's impossible to predict which direction this epidemic will take"

-Tedros Adhanom, Feb 15th 2020

Background

- Coronaviruses: A family of zoonotic viruses that cause illness ranging from the common cold to more severe diseases such as MERS-CoV and SARS-CoV
- 2019 novel coronavirus (2019-nCoV or COVID-19) has 70% similarity in genetic sequence to SARS-CoV
- First identified in Wuhan when a cluster of cases were linked to the Huanan Seafood Wholesale Market

SIR Model

 $S(t) = \{\text{number of susceptible individuals at time } t\}$

 $I(t) = \{\text{number of infected individuals at time } t\}$

 $R(t) = \{\text{number of removed individuals at time } t\}$

$$S(t) \longrightarrow I(t) \longrightarrow R(t)$$

SIR Model

$$\frac{dS}{dt} = -\frac{\beta}{N}S(t)I(t)$$

$$\frac{dI}{dt} = \frac{\beta}{N}S(t)I(t) - \gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

$$S(t) \qquad \frac{\beta}{N}SI$$

$$I(t)$$

R(t)

SIR Model

$$N = 1000$$

 $\beta = 0.5$
 $\gamma = 0.1$

Assumptions

- For all t, S(t) + I(t) + R(t) = N
- Homogeneous mixing of the population (β is constant)
- Constant rate of removal (γ is constant)
- No incubation period

Methodology

 Use new cases, deaths and recoveries data from the NHC to find the distribution of the infected population *I(t)* in mainland China from January 24 to February 11

卫生应急办公室

主站首页 | 首页 | 最新信息 | 政策文件 | 工作动态 | 关于我们 | 图片集锦 | 专题专栏

动态

◇ 您现在所在位置: 首页 > 最新信息 > 综合协调 > 动态

截至2月16日24时新型冠状病毒肺炎疫情最新情况

发布时间: 2020-02-17 来源: 卫生应急办公室

2月16日0—24时,31个省(自治区、直辖市)和新疆生产建设兵团报告新增确诊病例2048例,新增死亡病例105例(湖北100例,河南3例,广东2例),新增疑似病例1563例。

当日新增治愈出院病例1425例,解除医学观察的密切接触者28179人,重症病例减少628例。

截至2月16日24时,据31个省(自治区、直辖市)和新疆生产建设兵团报告,现有确诊病例57934例(其中重症病例10644例),累计治愈出院病例10844例,累计死亡病例1770例,累计报告确诊病例70548例,现有疑似病例7264例。累计追踪到密切接触者546016人,尚在医学观察的密切接触者150539人。

湖北新增确诊病例1933例(武汉1690例),新增治愈出院病例1016例(武汉543例),新增死亡病例100例(武汉76例),现有确诊病例49847例(武汉36385例),其中重症病例9797例(武汉8056例)。累计治愈出院病例6639例(武汉3458例),累计死亡病例1696例(武汉1309例),累计确诊病例58182例(武汉41152例)。新增疑似病例909例(武汉338例),现有疑似病例4826例(武汉1971例)。

累计收到港澳台地区通报确诊病例87例:香港特别行政区57例(出院2例,死亡1例),澳门特别行政区10例(出院5例),台湾地区20例(出院2例,死亡1例)。

(注: 媒体引用时, 请标注"信息来自国家卫生健康委员会官方网站"。)

分享到 🔡 🔀 🛐 🔟 👢 🔯

Methodology

 Assume exponential growth in the first few days to fill in missing data since the first confirmed cases in early January

For small t, $S(t) \sim N$, so

$$\frac{dI}{dt} = \frac{\beta}{N} S(t)I(t) - \gamma I(t)$$
$$\sim \beta I(t) - \gamma I(t)$$
$$= I(t)(\beta - \gamma)$$

 $I(t) = Ce^{(\beta - \gamma)t}$ is a solution

Methodology

- Define an objective function that returns the sum of squared differences between the infected population data and the model prediction
- Minimize this objective function using a numerical optimization method
- Extract optimal beta and gamma
- Analysis and simulation

Cumulative Cases

Distribution of R(t)

Distribution of I(t)

Fitted Model

Basic Reproduction Number R_0

We define
$$R_0 = \frac{\beta}{\gamma}$$

$$\frac{dI}{dt} = \frac{\beta}{N} S(t)I(t) - \gamma I(t) = \left(\frac{\beta}{N\gamma} S(t) - 1\right) \gamma I(t)$$

Basic Reproduction Number R_0

We define
$$R_0 = \frac{\beta}{\gamma}$$

$$\frac{dI}{dt} = \frac{\beta}{N} S(t)I(t) - \gamma I(t) = \left(\frac{\beta}{N\gamma} S(t) - 1\right) \gamma I(t)$$

At
$$t=0$$
,

$$\frac{dI}{dt} = \left(\frac{\beta}{N\gamma}S(0) - 1\right)\gamma I(0) = \left(\frac{R_0S(0)}{N} - 1\right)\gamma I(0)$$

Basic Reproduction Number R_0

$$\frac{dI}{dt}(0) = \left(\frac{R_0 S(0)}{N} - 1\right) \gamma I(0)$$

Therefore
$$R_0 > \frac{N}{S(0)} \sim 1 \Longrightarrow \frac{dI}{dt}(0) > 0$$
,

whereas
$$R_0 < \frac{N}{S(0)} \sim 1 \Longrightarrow \frac{dI}{dt}(0) < 0$$

$$\frac{dS}{dt} = -\frac{\beta}{N}S(t)I(t)$$

$$\frac{dI}{dt} = \frac{\beta}{N}S(t)I(t) - \gamma I(t)$$

$$\frac{dR}{dt} = \gamma I(t)$$

We want to express $\frac{dS}{dt}$ in terms of only S and t

$$\frac{dI}{dS} = \frac{\frac{dI}{dt}}{\frac{dS}{dt}} = \frac{\frac{\beta}{N}S(t)I(t) - \gamma I(t)}{-\frac{\beta}{N}S(t)I(t)} = \frac{\beta S(t) - N\gamma}{-\beta S(t)} = \frac{N\gamma}{\beta S(t)} - 1$$

$$\frac{dI}{dS} = \frac{\frac{dI}{dt}}{\frac{dS}{dt}} = \frac{\frac{\beta}{N}S(t)I(t) - \gamma I(t)}{-\frac{\beta}{N}S(t)I(t)} = \frac{\beta S(t) - N\gamma}{-\beta S(t)} = \frac{N\gamma}{\beta S(t)} - 1$$

$$\int \frac{dI}{dS} dS = \int \frac{N\gamma}{\beta S(t)} - 1 \, dS$$

$$\Rightarrow I(t) = \frac{N\gamma}{\beta} \ln S(t) - S(t) + c$$

$$\frac{dI}{dS} = \frac{\frac{dI}{dt}}{\frac{dS}{dt}} = \frac{\frac{\beta}{N}S(t)I(t) - \gamma I(t)}{-\frac{\beta}{N}S(t)I(t)} = \frac{\beta S(t) - N\gamma}{-\beta S(t)} = \frac{N\gamma}{\beta S(t)} - 1$$

$$\int \frac{dI}{dS} dS = \int \frac{N\gamma}{\beta S(t)} - 1 \, dS$$

$$\Rightarrow I(t) = \frac{N\gamma}{\beta} \ln S(t) - S(t) + c$$

$$c = I(0) - \frac{N\gamma}{\beta} \ln S(0) + S(0) = N \left(1 - \frac{\ln(N-1)}{R_0} \right)$$

$$\frac{dS}{dt} = -\frac{\beta}{N}S(t)I(t)$$

$$= -\frac{\beta}{N}S(t)\left(\frac{N\gamma}{\beta}\ln S(t) - S(t) + c\right)$$

$$= -\gamma S(t)\ln S(t) + \frac{\beta}{N}S^2(t) - \frac{\beta}{N}S(t)c$$

Call the length of the epidemic T. Then

$$T = \int_{S(0)}^{S(T)} \frac{1}{-\gamma S(t) \ln S(t) + \frac{\beta}{N} S^{2}(t) - \frac{\beta}{N} S(t) c} dS$$

Call the length of the epidemic T. Then

$$T = \int_{S(0)}^{S(T)} \frac{1}{-\gamma S(t) \ln S(t) + \frac{\beta}{N} S^{2}(t) - \frac{\beta}{N} S(t) c} dS$$

We get S(T) by finding where

$$I(t) = \frac{N\gamma}{\beta} \ln S(t) - S(t) + c$$

is equal to zero

Epidemiological Parameters

	COVID-19	SARS-CoV ¹
β	0.528	0.2586
γ	0.146	0.0821
1/γ	~7 days	~12 days
R_0	3.614	3.1511
T	$\sim \! 110$ days	~120 days

Simulation at Williams

SIQR Model

$$\frac{dS}{dt} = -\frac{\beta}{N}S(t)I(t)$$

$$\frac{dI}{dt} = \frac{\beta}{N}S(t)I(t) - \gamma I(t) - \varepsilon I(t)$$

$$\frac{dQ}{dt} = \varepsilon I(t) - \gamma Q(t)$$

$$\frac{dR}{dt} = \gamma I(t) + \gamma Q(t)$$

Assumptions

- For all t, S(t) + I(t) + Q(t) + R(t) = N = 2444
- Homogeneous mixing of the population (β is constant)
- Constant rate of removal (γ is constant)
- No incubation period

Simulation with $\varepsilon = 0$

Simulation with $\varepsilon=1$

Critical Value for ε

$$\frac{dI}{dt} = \frac{\beta}{N} S(t)I(t) - \gamma I(t) - \varepsilon I(t) = \left(\frac{\beta}{N\gamma} S(t) - 1 - \frac{\varepsilon}{\gamma}\right) \gamma I(t)$$

$$\frac{dI}{dt}(0) = \left(\frac{\beta}{N\gamma} S(0) - 1 - \frac{\varepsilon}{\gamma}\right) \gamma I(0)$$

Critical Value for ε

$$\frac{dI}{dt} = \frac{\beta}{N} S(t)I(t) - \gamma I(t) - \varepsilon I(t) = \left(\frac{\beta}{N\gamma} S(t) - 1 - \frac{\varepsilon}{\gamma}\right) \gamma I(t)$$

$$\frac{dI}{dt}(0) = \left(\frac{\beta}{N\gamma} S(0) - 1 - \frac{\varepsilon}{\gamma}\right) \gamma I(0)$$

An epidemic will occur if $\frac{dI}{dt}(0) > 0$, i.e.

$$\frac{\beta}{N\gamma}S(0) - 1 - \frac{\varepsilon}{\gamma} > 0 \Longrightarrow \varepsilon < \frac{\beta}{N}S(0) - \gamma \sim \beta - \gamma$$

Critical Value for ε

Define
$$\varepsilon_{CV} = \beta - \gamma$$

Therefore
$$\varepsilon < \varepsilon_{CV} \Longrightarrow \frac{dI}{dt}(0) > 0$$
,

whereas
$$\varepsilon > \varepsilon_{CV} \Longrightarrow \frac{dI}{dt}(0) < 0$$

Simulation with $\varepsilon = 0.1 < \varepsilon_{CV}$

Simulation with $\varepsilon = 0.2 < \varepsilon_{CV}$

Simulation with $\varepsilon = 0.3 < \varepsilon_{CV}$

Simulation with $\varepsilon = 0.4 > \varepsilon_{CV}$

Simulation with $\varepsilon = 0.5 > \varepsilon_{CV}$

Limitations and Extensions

- Inaccuracy of β and γ
- Population segmentations with different mixing rates