AdditionsForToric-Varieties

A package to provide additional structures for toric varieties

2020.01.16

16 January 2020

Martin Bies

Martin Bies

Email: martin.bies@alumni.uni-heidelberg.de Homepage: https://martinbies.github.io/

Address: Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter

Woodstock Road Oxford OX2 6GG United Kingdom

Contents

1	Intr	Introduction					
	1.1	What is the goal of the AdditionsForToricVarieties package?	4				
2	Central functions and constants						
	2.1	Input check for cohomology computations	5				
3	Irre	Irreducible, complete, torus-invariant curves and proper 1-cycles in a toric variety					
	3.1	GAP category of irreducible, complete, torus-invariant curves (= ICT curves)	6				
	3.2	Constructors for ICT Curves	6				
	3.3	Attributes for ICT curves	6				
	3.4	Operations with ICTCurves	8				
	3.5	GAP category for proper 1-cycles	8				
	3.6	Constructor For Proper 1-Cycles	8				
	3.7	Attributes for proper 1-cycles	9				
	3.8	Operations with proper 1-cycles	9				
	3.9	Examples in projective space	9				
4	Nef	Nef and Mori Cone					
	4.1	New Properties For Toric Divisors	11				
	4.2	Attributes	11				
	4.3	Nef and Mori Cone: Examples	13				
5	Wra	Wrapper for generators of semigroups and hyperplane constraints of cones					
	5.1	GAP Categories	14				
	5.2	Constructors	14				
	5.3	Attributes	15				
	5.4	Property	16				
	5.5	Operations	17				
	5.6	Check if point is contained in (affine) cone or (affine) semigroup	17				
	5.7	Examples	17				
6	Vanishing sets on toric varieties						
	6.1	GAP category for vanishing sets	20				
	6.2	Constructors	20				
	6.3	Attributes	20				
	6.4	Property	21				
	6.5	Improved vanishing sets via cohomCalg	21				

	AdditionsForToricVarieties	3
6.6	Examples	22
Index		26

Introduction

1.1 What is the goal of the AdditionsForToricVarieties package?

AdditionsForToricVarieties provides additional structures which are not provided by the ToricVarieties package in the homalg_project yet required for the computations of sheaf cohomologies on toric varieties.

Central functions and constants

2.1 Input check for cohomology computations

2.1.1 IsValidInputForAdditionsForToricVarieties (for IsToricVariety)

▷ IsValidInputForAdditionsForToricVarieties(V)

(property)

Returns: true or false

Returns if the given variety V is a valid input for the additional operations. This is the case if it is smooth and complete. If the boolean ADDITIONS_TORIC_VARIETIES_LAZY_INPUT is set to true, then this will also be satisfied if the variety is simplicial and projective.

Irreducible, complete, torus-invariant curves and proper 1-cycles in a toric variety

3.1 GAP category of irreducible, complete, torus-invariant curves (= ICT curves)

3.1.1 IsICTCurve (for IsObject)

▷ IsICTCurve(object)

(filter)

Returns: true or false

The GAP category for irreducible, complete, torus-invariant curves

3.2 Constructors for ICT Curves

3.2.1 ICTCurve (for IsToricVariety, IsInt, IsInt)

 \triangleright ICTCurve(X_Sigma, i, j)

(operation)

Returns: an ICT curve

The arguments are a smooth and complete toric variety X_{Σ} and two non-negative and distinct integers i, j. We then consider the i-th and j-th maximal cones σ_i and σ_j . ! If $\tau := \sigma_i \cap \sigma_j$ satisfies $dim(\tau) = dim(\sigma_1) - 1$, then τ corresponds to an ICT-curve. We then construct this very ICT-curve.

3.3 Attributes for ICT curves

3.3.1 AmbientToricVariety (for IsICTCurve)

▷ AmbientToricVariety(C)

(attribute)

Returns: a toric variety

The argument is an ICT curve C. The output is the toric variety, in which this curve C lies.

3.3.2 IntersectedMaximalCones (for IsICTCurve)

▷ IntersectedMaximalCones(C)

(attribute)

Returns: a list of two positive and distinct integers

The argument is an ICT curve C. The output are two integers, which indicate which maximal rays were intersected to form the cone τ associated to this curve C.

3.3.3 RayGenerators (for IsICTCurve)

▷ RayGenerators(C)

(attribute)

Returns: a list of lists of integers

The argument is an ICT curve C. The output is the list of ray-generators for the cone tau

3.3.4 Defining Variables (for IsICTCurve)

▷ DefiningVariables(C)

(attribute)

Returns: a list

The argument is an ICT curve *C*. The output is the list of variables whose simultaneous vanishing locus cuts out this curve.

3.3.5 LeftStructureSheaf (for IsICTCurve)

▷ LeftStructureSheaf(C)

(attribute)

Returns: a f.p. graded left S-module

The argument is an ICT curve C. The output is the f.p. graded left S-module which sheafifes to the structure sheaf of this curve C.

3.3.6 RightStructureSheaf (for IsICTCurve)

▷ RightStructureSheaf(C)

(attribute)

Returns: a f.p. graded right S-module

The argument is an ICT curve C. The output is the f.p. graded right S-module which sheafifes to the structure sheaf of this curve C.

3.3.7 IntersectionU (for IsICTCurve)

▷ IntersectionU(C)

(attribute)

Returns: a list of integers

The argument is an ICT curve C. The output is the integral vector u used to compute intersection products with Cartier divisors.

3.3.8 IntersectionList (for IsICTCurve)

▷ IntersectionList(C)

(attribute)

Returns: a list of integers

The argument is an ICT curve C. The output is a list with the intersection numbers of a canonical base of the class group. This basis is to take (e_1, \ldots, e_k) with $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in Cl(X_{\Sigma})$.

3.4 Operations with ICTCurves

3.4.1 ICTCurves (for IsToricVariety)

▷ ICTCurves(X_Sigma)

(attribute)

Returns: a list of ICT-curves.

For a smooth and complete toric variety X_{Σ} , this method computes a list of all ICT-curves in X_{Σ} . Note that those curves can be numerically equivalent.

3.4.2 IntersectionProduct (for IsICTCurve, IsToricDivisor)

▷ IntersectionProduct(C, D)

(operation)

Returns: an integer

Given an ICT-curve C and a divisor D in a smooth and complete toric variety X_{Σ} , this method computes their intersection product.

3.4.3 IntersectionProduct (for IsToricDivisor, IsICTCurve)

▷ IntersectionProduct(arg1, arg2)

(operation)

3.5 GAP category for proper 1-cycles

3.5.1 IsProper1Cycle (for IsObject)

▷ IsProper1Cycle(object)

(filter)

Returns: true or false

The GAP category for proper 1-cycles

3.6 Constructor For Proper 1-Cycles

3.6.1 GeneratorsOfProper1Cycles (for IsToricVariety)

(attribute)

Returns: a list of ICT-curves.

For a smooth and complete toric variety X_{Σ} , this method computes a list of all ICT-curves which are not numerically equivalent. We use this list of ICT-curves as a basis of proper 1-cycles on X_{Σ} in the constructor below, when computing the intersection form and the Nef-cone.

3.6.2 Proper1Cycle (for IsToricVariety, IsList)

▷ Proper1Cycle(X_Sigma, list)

(operation)

Returns: a proper 1-cycle

The arguments are a smooth and complete toric variety X_{Σ} and a list of integers. We then use the integers in this list as 'coordinates' of the proper 1-cycle with respect to the list of proper 1-cycles produced by the previous method. We then return the corresponding proper 1-cycle.

3.7 Attributes for proper 1-cycles

3.7.1 AmbientToricVariety (for IsProper1Cycle)

▷ AmbientToricVariety(C)

(attribute)

Returns: a toric variety

The argument is a proper 1-cycle C. The output is the toric variety, in which this cycle C lies.

3.7.2 UnderlyingGroupElement (for IsProper1Cycle)

▷ UnderlyingGroupElement(C)

(attribute)

Returns: a list

The argument is a proper 1-cycle. We then return the underlying group element (with respect to the generators computed from the method \emph{GeneratorsOfProper1Cycles}).

3.8 Operations with proper 1-cycles

3.8.1 IntersectionProduct (for IsProper1Cycle, IsToricDivisor)

▷ IntersectionProduct(C, D)

(operation)

Returns: an integer

Given a proper 1-cycle C and a divisor D in a smooth and complete toric variety X_{Σ} , this method computes their intersection product.

3.8.2 IntersectionProduct (for IsToricDivisor, IsProper1Cycle)

▷ IntersectionProduct(arg1, arg2)

(operation)

3.8.3 IntersectionForm (for IsToricVariety)

▷ IntersectionForm(vari)

(attribute)

Returns: a list of lists

Given a simplicial and complete toric variety, we can use proposition 6.4.1 of Cox-Schenk-Litte to compute the intersection form $N^1(X_{\Sigma}) \times N_1(X_{\Sigma}) \to \mathbb{R}$. We return a list of lists that encodes this mapping.

3.9 Examples in projective space

10

```
gap> C1 := ICTCurves( P2 )[ 1 ];
<An irreducible, complete, torus-invariant curve in a toric variety
  given as V( [ x_3 ] )>
  gap> IntersectionForm( P2 );
[ [ 1 ] ]
gap> IntersectionProduct( C1, DivisorOfGivenClass( P2, [ 1 ] ) );
1
gap> IntersectionProduct( DivisorOfGivenClass( P2, [ 5 ] ), C1 );
5
```

```
gap> P3 := ProjectiveSpace( 3 );

<A projective toric variety of dimension 3>
gap> C1 := ICTCurves( P3 )[ 1 ];

<An irreducible, complete, torus-invariant curve in a toric variety
given as V( [ x_3, x_4 ] )>
gap> vars := DefiningVariables( C1 );
[ x_3, x_4 ]
gap> structureSheaf1 := LeftStructureSheaf( C1 );;
gap> IsWellDefined( structureSheaf1 );
true
gap> structureSheaf2 := RightStructureSheaf( C1 );;
gap> IsWellDefined( structureSheaf2 );
true
```

Nef and Mori Cone

4.1 New Properties For Toric Divisors

4.1.1 IsNef (for IsToricDivisor)

▷ IsNef(divi) (property)

Returns: true or false

Checks if the torus invariant Weil divisor divi is nef.

4.1.2 IsAmpleViaNefCone (for IsToricDivisor)

▷ IsAmpleViaNefCone(divi)

(property)

Returns: true or false

Checks if the class of the torus invariant Weil divisor divi lies in the interior of the nef cone. Given that the ambient toric variety is projective this implies that divi is ample.

4.2 Attributes

4.2.1 CartierDataGroup (for IsToricVariety)

▷ CartierDataGroup(vari)

(attribute)

Returns: a list of lists

Given a toric variety vari, we compute the integral vectors in $\mathbb{Z}^{n|\Sigma_{max}|}$, n is the rank of the character lattice which encodes a toric Cartier divisor according to theorem 4.2.8. in Cox-Schenk-Little. We return a list of lists. When interpreting this list of lists as a matrix, then the kernel of this matrix is the set of these vectors.

4.2.2 NefConeInCartierDataGroup (for IsToricVariety)

▷ NefConeInCartierDataGroup(vari)

(attribute)

Returns: a list of lists

Given a smooth and complete toric variety vari, we compute the nef cone within the proper Cartier data in $\mathbb{Z}^{n|\Sigma_{max}|}$, n is the rank of the character lattice. We return a list of ray generators of this cone.

4.2.3 NefConeInTorusInvariantWeilDivisorGroup (for IsToricVariety)

▷ NefConeInTorusInvariantWeilDivisorGroup(vari)

(attribute)

Returns: a list of lists

Given a smooth and complete toric variety, we compute the nef cone within $Div_T(X_{\Sigma})$. We return a list of ray generators of this cone.

4.2.4 NefConeInClassGroup (for IsToricVariety)

▷ NefConeInClassGroup(vari)

(attribute)

Returns: a list of lists

Given a smooth and complete toric variety, we compute the nef cone within $Cl(X_{\Sigma})$. We return a list of ray generators of this cone.

4.2.5 NefCone (for IsToricVariety)

▷ NefCone(arg) (attribute)

4.2.6 ClassesOfSmallestAmpleDivisors (for IsToricVariety)

▷ ClassesOfSmallestAmpleDivisors(vari)

(attribute)

Returns: a list of integers

Given a smooth and complete toric variety, we compute the smallest divisor class, such that the associated divisor is ample. This is based on theorem 6.3.22 in Cox-Schenk-Little, which implies that this task is equivalent to finding the smallest lattice point within the nef cone (in $Cl(X_{\Sigma})$). We return a list of integers encoding this lattice point.

4.2.7 GroupOfProper1Cycles (for IsToricVariety)

▷ GroupOfProper1Cycles(vari)

(attribute)

Returns: a kernel submodule

Given a simplicial and complete toric variety, we use proposition 6.4.1 of Cox-Schenk-Litte to compute the group of proper 1-cycles. We return the corresponding kernel submodule.

4.2.8 MoriCone (for IsToricVariety)

▷ MoriCone(vari)

(attribute)

Returns: an NmzCone6

Given a smooth and complete toric variety, we can compute both the intersection form and the Nef cone in the class group. Then the Mori cone is the dual cone of the Nef cone with respect to the intersection product. We compute an H-presentation of this dual cone and use those to produce a cone with the normaliz interface.

4.3 Nef and Mori Cone: Examples

4.3.1 Projective Space

```
\_ Example _-
gap> P2 := ProjectiveSpace( 2 );
<A projective toric variety of dimension 2>
gap> P2xP2 := P2*P2;
<A projective toric variety of dimension 4
which is a product of 2 toric varieties>
gap> NefCone( P2 );
[[1]]
gap> NefCone( P2xP2 );
[[0,1],[1,0]]
gap> MoriCone( P2 );
[[1]]
gap> MoriCone( P2xP2 );
[[0,1],[1,0]]
gap> D1 := DivisorOfGivenClass( P2, [ -1 ] );
<A Cartier divisor of a toric variety with coordinates ( -1, 0, 0 )>
gap> IsAmpleViaNefCone( D1 );
gap> D2 := DivisorOfGivenClass( P2, [ 1 ] );
<A Cartier divisor of a toric variety with coordinates ( 1, 0, 0 )>
gap> IsAmpleViaNefCone( D2 );
true
gap> ClassesOfSmallestAmpleDivisors( P2 );
[[1]]
gap> ClassesOfSmallestAmpleDivisors( P2xP2 );
[[1, 1]]
```

Wrapper for generators of semigroups and hyperplane constraints of cones

5.1 GAP Categories

5.1.1 IsSemigroupForPresentationsByProjectiveGradedModules (for IsObject)

▷ IsSemigroupForPresentationsByProjectiveGradedModules(object)

Returns: true or false

The GAP category of lists of integer-valued lists, which encode the generators of subsemigroups of \mathbb{Z}^n .

5.1.2 IsAffineSemigroupForPresentationsByProjectiveGradedModules (for IsObject)

▷ IsAffineSemigroupForPresentationsByProjectiveGradedModules(object) (filter)
Returns: true or false

The GAP category of affine semigroups H in \mathbb{Z}^n . That means that there is a semigroup $G \subseteq \mathbb{Z}^n$ and $p \in \mathbb{Z}^n$ such that H = p + G.

5.2 Constructors

5.2.1 SemigroupForPresentationsByProjectiveGradedModules (for IsList, IsInt)

▷ SemigroupForPresentationsByProjectiveGradedModules(L)

(operation)

(filter)

Returns: a SemigroupGeneratorList

The argument is a list L and a non-negative integer d. We then check if this list could be the list of generators of a subsemigroup of \mathbb{Z}^d . If so, we create the corresponding SemigroupGeneratorList.

5.2.2 SemigroupForPresentationsByProjectiveGradedModules (for IsList)

▷ SemigroupForPresentationsByProjectiveGradedModules(arg)

(operation)

5.2.3 AffineSemigroupForPresentationsByProjectiveGradedModules (for IsSemi-groupForPresentationsByProjectiveGradedModules, IsList)

▶ AffineSemigroupForPresentationsByProjectiveGradedModules(L, p) (operation)
Returns: an AffineSemigroup

The argument is a SemigroupForPresentationsByProjectiveGradedModules S and a point $p \in \mathbb{Z}^n$ encoded as list of integers. We then compute the affine semigroup p + S. Alternatively to S we allow the use of either a list of generators (or a list of generators together with the embedding dimension).

5.2.4 AffineSemigroupForPresentationsByProjectiveGradedModules (for IsList, IsList)

▷ AffineSemigroupForPresentationsByProjectiveGradedModules(arg1, arg2) (operation)

5.2.5 AffineSemigroupForPresentationsByProjectiveGradedModules (for IsList, IsInt, IsList)

▶ AffineSemigroupForPresentationsByProjectiveGradedModules(arg1, arg2, arg3)
(operation)

5.3 Attributes

5.3.1 GeneratorList (for IsSemigroupForPresentationsByProjectiveGradedModules)

 \triangleright GeneratorList(L) (attribute)

Returns: a list

The argument is a SemigroupForPresentationsByProjectiveGradedModules L. We then return the list of its generators.

5.3.2 EmbeddingDimension (for IsSemigroupForPresentationsByProjectiveGraded-Modules)

▷ EmbeddingDimension(L)

(attribute)

Returns: a non-negative integer

The argument is a SemigroupForPresentationsByProjectiveGradedModules L. We then return the embedding dimension of this semigroup.

5.3.3 ConeHPresentationList (for IsSemigroupForPresentationsByProjectiveGraded-Modules)

▷ ConeHPresentationList(L)

(attribute)

Returns: a list or fail

The argument is a SemigroupForPresentationsByProjectiveGradedModules L. If the associated semigroup is a cone semigroup, then (during construction) an H-presentation of that cone was computed. We return the list of the corresponding H-constraints. This conversion uses Normaliz and can

fail if the cone if not full-dimensional. In case that such a conversion error occured, the attribute is set to the value 'fail'.

5.3.4 Offset (for IsAffineSemigroupForPresentationsByProjectiveGradedModules)

 \triangleright Offset(S) (attribute)

Returns: a list of integers

The argument is an AffineSemigroupForPresentationsByProjectiveGradedModules S. This one is given as S = p + H for a point $p \in \mathbb{Z}^n$ and a semigroup $H \subseteq \mathbb{Z}^n$. We then return the offset p.

5.3.5 UnderlyingSemigroup (for IsAffineSemigroupForPresentationsByProjectiveGradedModules)

▷ UnderlyingSemigroup(S)

(attribute)

Returns: a SemigroupGeneratorList

The argument is an IsAffineSemigroupForPresentationsByProjectiveGradedModules S. This one is given as S = p + H for a point $p \in \mathbb{Z}^n$ and a semigroup $H \subseteq \mathbb{Z}^n$. We then return the SemigroupGeneratorList of H.

5.3.6 EmbeddingDimension (for IsAffineSemigroupForPresentationsByProjectiveGradedModules)

▷ EmbeddingDimension(S)

(attribute)

Returns: a non-negative integer

The argument is an IsAffineSemigroupForPresentationsByProjectiveGradedModules *S*. We then return the embedding dimension of this affine semigroup.

5.4 Property

5.4.1 IsTrivial (for IsSemigroupForPresentationsByProjectiveGradedModules)

 \triangleright IsTrivial(L) (property)

Returns: true or false

The argument is a SemigroupForPresentationsByProjectiveGradedModules L. This property returns 'true' if this semigroup is trivial and 'false' otherwise.

5.4.2 IsSemigroupOfCone (for IsSemigroupForPresentationsByProjectiveGraded-Modules)

▷ IsSemigroupOfCone(L)

(property)

Returns: true, false

The argument is a SemigroupForPresentationsByProjectiveGradedModules L. We return if this is the semigroup of a cone.

5.4.3 IsTrivial (for IsAffineSemigroupForPresentationsByProjectiveGradedModules)

 \triangleright IsTrivial(L) (property)

Returns: true or false

The argument is an AffineSemigroupForPresentationsByProjectiveGradedModules. This property returns 'true' if the underlying semigroup is trivial and otherwise 'false'.

5.4.4 IsAffineSemigroupOfCone (for IsAffineSemigroupForPresentationsByProjectiveGradedModules)

▷ IsAffineSemigroupOfCone(H)

(property)

Returns: true, false or fail

The argument is an IsAffineSemigroupForPresentationsByProjectiveGradedModules *H*. We return if this is an AffineConeSemigroup. If Normaliz cannot decide this 'fail' is returned.

5.5 Operations

5.5.1 DecideIfIsConeSemigroupGeneratorList (for IsList)

▷ DecideIfIsConeSemigroupGeneratorList(L)

(operation)

Returns: true, false or fail

The argument is a list L of generators of a semigroup in \mathbb{Z}^n . We then check if this is the semigroup of a cone. In this case we return 'true', otherwise 'false'. If the operation fails due to shortcommings in Normaliz we return 'fail'.

5.6 Check if point is contained in (affine) cone or (affine) semigroup

5.6.1 PointContainedInSemigroup (for IsSemigroupForPresentationsByProjectiveGradedModules, IsList)

 \triangleright PointContainedInSemigroup(S, p)

(operation)

Returns: true or false

The argument is a SemigroupForPresentationsByProjectiveGradedModules S of \mathbb{Z}^n , and an integral point p in this lattice. This operation then verifies if the point p is contained in S or not.

5.6.2 PointContainedInAffineSemigroup (for IsAffineSemigroupForPresentations-ByProjectiveGradedModules, IsList)

 \triangleright PointContainedInAffineSemigroup(H, p)

(operation)

Returns: true or false

The argument is an IsAffineSemigroupForPresentationsByProjectiveGradedModules H and a point p. The second argument This method then checks if p lies in H.

5.7 Examples

The following commands are used to handle generators of semigroups in \mathbb{Z}^n , generators of cones in \mathbb{Z}^n as well as hyperplane constraints that define cones in \mathbb{Z}^n . Here are some examples:

We can check if a semigroup in \mathbb{Z}^n is the semigroup of a cone. In case we can look at an H-presentation of this cone.

```
gap> IsSemigroupOfCone( semigroup1 );
true
gap> ConeHPresentationList( semigroup1 );
[ [ 0, 1 ], [ 1, -1 ] ]
gap> Display( ConeHPresentationList( semigroup1 ) );
[ [ 0, 1 ],
        [ 1, -1 ] ]
gap> IsSemigroupOfCone( semigroup2 );
false
gap> HasConeHPresentationList( semigroup2 );
false
```

We can check membership of points in semigroups.

```
gap> PointContainedInSemigroup( semigroup2, [ 1,0 ] );
false
gap> PointContainedInSemigroup( semigroup2, [ 2,0 ] );
true
```

Given a semigroup $S \subseteq \mathbb{Z}^n$ and a point $p \in \mathbb{Z}^n$ we can consider

$$H := p + S = \{ p + x , x \in S \}.$$

We term this an affine semigroup. Given that $S = C \cap \mathbb{Z}^n$ for a cone $C \subseteq \mathbb{Z}^n$, we use the term affine cone_semigroup. The constructors are as follows:

We can access the properties of these affine semigroups as follows.

```
gap> IsAffineSemigroupOfCone( affine_semigroup2 );
false
gap> UnderlyingSemigroup( affine_semigroup2 );
<A non-cone semigroup in Z^2 formed as the span of 2 generators>
gap> Display( UnderlyingSemigroup( affine_semigroup2 ) );
A non-cone semigroup in Z^2 formed as the span of 2 generators -
generators are as follows:
[[ 2,  0 ],
       [ 1,  1 ] ]
gap> IsAffineSemigroupOfCone( affine_semigroup1 );
true
gap> Offset( affine_semigroup2 );
[ 2,  2 ]
gap> ConeHPresentationList( UnderlyingSemigroup( affine_semigroup1 ) );
[ [ 0,  1 ],  [ 1, -1 ] ]
```

Of course we can also decide membership in affine (cone_)semigroups.

```
gap> Display( affine_semigroup1 );
A non-trivial affine cone-semigroup in Z^2
Offset: [-1, -1]
Hilbert basis: [[1, 0], [1, 1]]
gap> PointContainedInAffineSemigroup( affine_semigroup1, [-2,-2]);
false
gap> PointContainedInAffineSemigroup( affine_semigroup1, [3,1]);
true
gap> Display( affine_semigroup2 );
A non-trivial affine non-cone semigroup in Z^2
Offset: [2, 2]
Semigroup generators: [[2, 0], [1, 1]]
gap> PointContainedInAffineSemigroup( affine_semigroup2, [3,2]);
false
gap> PointContainedInAffineSemigroup( affine_semigroup2, [3,3]);
true
```

Vanishing sets on toric varieties

6.1 GAP category for vanishing sets

6.1.1 IsVanishingSet (for IsObject)

▷ IsVanishingSet(arg)

(filter)

Returns: true or false

The GAP category of vanishing sets formed from affine semigroups.

6.2 Constructors

6.2.1 VanishingSet (for IsToricVariety, IsList, IsInt)

▷ VanishingSet(variety, L, d, i, or, s)

(operation)

Returns: a vanishing set

The argument is a toric variety, a list L of AffineSemigroups and the cohomological index i. Alternatively a string s can be used instead of d to inform the user for which cohomology classes this set identifies the 'vanishing twists'.

6.2.2 VanishingSet (for IsToricVariety, IsList, IsString)

▷ VanishingSet(arg1, arg2, arg3)

(operation)

6.3 Attributes

6.3.1 ListOfUnderlyingAffineSemigroups (for IsVanishingSet)

▷ ListOfUnderlyingAffineSemigroups(V)

(attribute)

Returns: a list of affine semigroups

The argument is a vanishing Set V. We then return the underlying list of semigroups that form this vanishing set.

AdditionsForToric Varieties 21

6.3.2 EmbeddingDimension (for IsVanishingSet)

▷ EmbeddingDimension(V)

(attribute)

Returns: a non-negative integer

The argument is a vanishing Set V. We then return the embedding dimension of this vanishing set.

6.3.3 CohomologicalIndex (for IsVanishingSet)

▷ CohomologicalIndex(V)

(attribute)

Returns: an integer between 0 and $dim(X_{\Sigma})$

The argument is a vanishingSet V. This vanishing set identifies those $D \in Pic(X_{\Sigma})$ such that $H^{i}(X_{\Sigma}, \mathcal{O}(D)) = 0$. We return the integer i.

6.3.4 Cohomological Specification (for IsVanishing Set)

▷ CohomologicalSpecification(V)

(attribute)

Returns: a string

The argument is a vanishingSet V. This could for example identify those $D \in Pic(X_{\Sigma})$ such that $H^{i}(X_{\Sigma}, \mathcal{O}(D)) = 0$ for all i > 0. If such a specification is known, it will be returned by this method.

6.3.5 AmbientToricVariety (for IsVanishingSet)

▷ AmbientToricVariety(V)

(attribute)

The argument is a vanishingSet V. We return the toric variety to which this vanishing set belongs.

6.4 Property

6.4.1 IsFull (for IsVanishingSet)

▷ IsFull(V)

Returns: true or false

The argument is a VanishingSet V. We then check if this vanishing set is empty.

6.5 Improved vanishing sets via cohomCalg

6.5.1 TurnDenominatorIntoShiftedSemigroup (for IsToricVariety, IsString)

▷ TurnDenominatorIntoShiftedSemigroup(arg1, arg2)

(operation)

6.5.2 VanishingSets (for IsToricVariety)

∀anishingSets(arg)

(attribute)

22

6.5.3 Compute Vanishing Sets (for IsToric Variety, IsBool)

```
▷ ComputeVanishingSets(arg1, arg2)
```

(operation)

6.5.4 PointContainedInVanishingSet (for IsVanishingSet, IsList)

```
▷ PointContainedInVanishingSet(arg1, arg2)
```

(operation)

6.6 Examples

```
\_ Example _-
gap> F1 := Fan( [[1],[-1]],[[1],[2]] );
<A fan in |R^1>
gap> P1 := ToricVariety( F1 );
<A toric variety of dimension 1>
gap> v1 := VanishingSets( P1 );
rec( 0 := <A non-full vanishing set in Z^1 for cohomological index 0>,
1 := <A non-full vanishing set in Z^1 for cohomological index 1> )
gap> Display( v1.0 );
A non-full vanishing set in Z^1 for cohomological index 0 formed from
the points NOT contained in the following affine semigroup:
A non-trivial affine cone-semigroup in Z^1
Offset: [ 0 ]
Hilbert basis: [ [ 1 ] ]
gap> Display( v1.1 );
A non-full vanishing set in Z^1 for cohomological index 1 formed from
the points NOT contained in the following affine semigroup:
A non-trivial affine cone-semigroup in Z^1
Offset: [ -2 ]
Hilbert basis: [ [ -1 ] ]
gap> P1xP1 := P1*P1;
<A projective smooth toric variety of dimension</pre>
2 which is a product of 2 toric varieties>
gap> v2 := VanishingSets( P1xP1 );
rec( 0 := <A non-full vanishing set in Z^2 for cohomological index 0>,
     1 := <A non-full vanishing set in Z^2 for cohomological index 1>,
     2 := \langle A \text{ non-full vanishing set in } Z^2 \text{ for cohomological index } 2 \rangle
gap> Display( v2.0 );
A non-full vanishing set in Z^2 for cohomological index 0 formed from
the points NOT contained in the following affine semigroup:
A non-trivial affine cone-semigroup in Z^2
Offset: [ 0, 0 ]
Hilbert basis: [ [ 0, 1 ], [ 1, 0 ] ]
gap> Display( v2.1 );
A non-full vanishing set in Z^2 for cohomological index 1 formed from
the points NOT contained in the following 2 affine semigroups:
```

23

```
Affine semigroup 1:
A non-trivial affine cone-semigroup in Z^2
Offset: [ 0, -2 ]
Hilbert basis: [ [ 0, -1 ], [ 1, 0 ] ]
Affine semigroup 2:
A non-trivial affine cone-semigroup in Z^2
Offset: [ -2, 0 ]
Hilbert basis: [ [ 0, 1 ], [ -1, 0 ] ]
gap> Display( v2.2 );
A non-full vanishing set in Z^2 for cohomological index 2 formed from
the points NOT contained in the following affine semigroup:
A non-trivial affine cone-semigroup in Z^2
Offset: [ -2, -2 ]
Hilbert basis: [ [ 0, -1 ], [ -1, 0 ] ]
gap> P2 := ProjectiveSpace( 2 );
<A projective toric variety of dimension 2>
gap> v3 := VanishingSets( P2 );
rec( 0 := <A non-full vanishing set in Z^1 for cohomological index 0>,
     1 := <A full vanishing set in Z^1 for cohomological index 1>,
     2 := <A non-full vanishing set in Z^1 for cohomological index 2> )
gap> P2xP1xP1 := P2*P1*P1;
<A projective smooth toric variety of dimension
4 which is a product of 3 toric varieties>
gap> v4 := VanishingSets( P2xP1xP1 );
rec( 0 := <A non-full vanishing set in Z^3 for cohomological index 0>,
     1 := <A non-full vanishing set in Z^3 for cohomological index 1>,
     2 := <A non-full vanishing set in Z^3 for cohomological index 2>,
     3 := <A non-full vanishing set in Z^3 for cohomological index 3>,
     4 := <A non-full vanishing set in Z^3 for cohomological index 4> )
gap> P := Polytope( [[ -2,2],[1,2],[2,1],[2,-2],[-2,-2]] );
<A polytope in |R^2>
gap> T := ToricVariety( P );
<A projective toric variety of dimension 2>
gap> v5 := VanishingSets( T );
rec( 0 := <A non-full vanishing set in Z^3 for cohomological index 0>,
     1 := <A non-full vanishing set in Z^3 for cohomological index 1>,
     2 := <A non-full vanishing set in Z^3 for cohomological index 2> )
gap> Display( v5.2 );
A non-full vanishing set in Z^3 for cohomological index 2 formed from
the points NOT contained in the following affine semigroup:
A non-trivial affine cone-semigroup in Z^3
Offset: [ -1, -2, -1 ]
Hilbert basis: [ [ 1, 0, -1 ], [ -1, 0, 0 ], [ -1, -1, 1 ], [ 0, -1, 0 ],
[ 0, 0, -1 ] ]
gap> H7 := Fan( [[0,1],[1,0],[0,-1],[-1,7]], [[1,2],[2,3],[3,4],[4,1]] );
<A fan in |R^2>
gap> H7 := ToricVariety( H7 );
<A toric variety of dimension 2>
gap> v6 := VanishingSets( H7 );
```

```
rec( 0 := <A non-full vanishing set in Z^2 for cohomological index 0>,
     1 := <A non-full vanishing set in Z^2 for cohomological index 1>,
     2 := \langle A \text{ non-full vanishing set in } Z^2 \text{ for cohomological index } 2 \rangle
gap > H5 := Fan([[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]]);
<A fan in |R^2>
gap> H5 := ToricVariety( H5 );
<A toric variety of dimension 2>
gap> v7 := VanishingSets( H5 );
rec( 0 := <A non-full vanishing set in Z^2 for cohomological index 0>,
     1 := <A non-full vanishing set in Z^2 for cohomological index 1>,
     2 := <A non-full vanishing set in Z^2 for cohomological index 2> )
gap> PointContainedInVanishingSet( v1.0, [ 1 ] );
gap> PointContainedInVanishingSet( v1.0, [ 0 ] );
gap> PointContainedInVanishingSet( v1.0, [ -1 ] );
gap> PointContainedInVanishingSet( v1.0, [ -2 ] );
gap> rays := [[1,0,0], [-1,0,0], [0,1,0], [0,-1,0], [0,0,1], [0,0,-1],
            [2,1,1], [1,2,1], [1,1,2], [1,1,1]];
[[1, 0, 0], [-1, 0, 0], [0, 1, 0], [0, -1, 0], [0, 0, 1], [0, 0, -1],
[2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1]]
gap> cones := [[1,3,6], [1,4,6], [1,4,5], [2,3,6], [2,4,6], [2,3,5], [2,4,5],
             [1,5,9], [3,5,8], [1,3,7], [1,7,9], [5,8,9], [3,7,8],
             [7,9,10], [8,9,10], [7,8,10]];
[[1, 3, 6], [1, 4, 6], [1, 4, 5], [2, 3, 6], [2, 4, 6], [2, 3, 5],
  [2, 4, 5], [1, 5, 9], [3, 5, 8], [1, 3, 7], [1, 7, 9], [5, 8, 9],
  [3, 7, 8], [7, 9, 10], [8, 9, 10], [7, 8, 10]]
gap> F := Fan( rays, cones );
<A fan in |R^3>
gap> T := ToricVariety( F );
<A toric variety of dimension 3>
gap> [ IsSmooth( T ), IsComplete( T ), IsProjective( T ) ];
[ true, true, false ]
gap> SRIdeal( T );
<A graded torsion-free (left) ideal given by 23 generators>
gap> v8 := VanishingSets( T );
rec( 0 := <A non-full vanishing set in Z^7 for cohomological index 0>,
     1 := <A non-full vanishing set in Z^7 for cohomological index 1>,
     2 := <A non-full vanishing set in Z^7 for cohomological index 2>,
     3 := \langle A \text{ non-full vanishing set in } Z^7 \text{ for cohomological index } 3 \rangle
gap> Display( v8.3 );
A non-full vanishing set in Z^7 for cohomological index 3 formed from \
the points NOT contained in the following affine semigroup:
A non-trivial affine cone-semigroup in Z^7
Offset: [ -2, -2, -2, -1, -3, -3 ]
Hilbert basis: [ [ 0, 0, -1, -1, -1, -2 ], [ 0, -1, 0, -1, -1, -2,\setminus
 -1],[-1,0,0,0,0,0,0],[-1,0,0,1,2,1,1],[0,-1,0,\
 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0], [0\
, 0, 0, 0, -1, 0, 0 ], [ 0, 0, 0, 0, 0, -1, 0 ], [ 0, 0, 0, 0, 0, -\
```

Index

AffineSemigroupForPresentationsBy-	GeneratorsOfProper1Cycles
ProjectiveGradedModules	for IsToricVariety, 8
for IsList, IsInt, IsList, 15	GroupOfProper1Cycles
for IsList, IsList, 15	for IsToricVariety, 12
for IsSemigroupForPresentationsByProjec-	
tiveGradedModules, IsList, 15	ICTCurve
AmbientToricVariety	for IsToricVariety, IsInt, IsInt, 6
for IsICTCurve, 6	ICTCurves
for IsProper1Cycle, 9	for IsToricVariety, 8
for IsVanishingSet, 21	${\tt Intersected Maximal Cones}$
	for IsICTCurve, 7
CartierDataGroup	IntersectionForm
for IsToricVariety, 11	for IsToricVariety, 9
${\tt ClassesOfSmallestAmpleDivisors}$	IntersectionList
for IsToricVariety, 12	for IsICTCurve, 7
CohomologicalIndex	IntersectionProduct
for IsVanishingSet, 21	for IsICTCurve, IsToricDivisor, 8
CohomologicalSpecification	for IsProper1Cycle, IsToricDivisor, 9
for IsVanishingSet, 21	for IsToricDivisor, IsICTCurve, 8
ComputeVanishingSets	for IsToricDivisor, IsProper1Cycle, 9
for IsToricVariety, IsBool, 22	IntersectionU
ConeHPresentationList	for IsICTCurve, 7
for IsSemigroupForPresentationsByProjec-	${\tt IsAffine Semigroup For Presentations By-}$
tiveGradedModules, 15	${\tt ProjectiveGradedModules}$
	for IsObject, 14
DecideIfIsConeSemigroupGeneratorList	IsAffineSemigroupOfCone
for IsList, 17	for IsAffineSemigroupForPresentations-
DefiningVariables	ByProjectiveGradedModules, 17
for IsICTCurve, 7	IsAmpleViaNefCone
EmboddingDimongion	for IsToricDivisor, 11
EmbeddingDimension for IsAffineSemigroupForPresentations-	IsFull
	for IsVanishingSet, 21
ByProjectiveGradedModules, 16	IsICTCurve
for IsSemigroupForPresentationsByProjectiveGradedModules, 15	for IsObject, 6
·	IsNef
for IsVanishingSet, 21	for IsToricDivisor, 11
GeneratorList	IsProper1Cycle
for IsSemigroupForPresentationsByProjec-	for IsObject, 8
tiveGradedModules, 15	

IsSemigroupForPresentationsBy-	Proper1Cycle
${\tt ProjectiveGradedModules}$	for IsToricVariety, IsList, 8
for IsObject, 14	
IsSemigroupOfCone	RayGenerators
for IsSemigroupForPresentationsByProjec-	for IsICTCurve, 7
tiveGradedModules, 16	RightStructureSheaf
IsTrivial	for IsICTCurve, 7
for IsAffineSemigroupForPresentations-	
ByProjectiveGradedModules, 17	SemigroupForPresentationsByProjective-
for IsSemigroupForPresentationsByProjec-	GradedModules
tiveGradedModules, 16	for IsList, 14
IsValidInputForAdditionsForToric-	for IsList, IsInt, 14
Varieties	m D ' ' T ' O' 'C' 10 '
for IsToric Variety, 5	TurnDenominatorIntoShiftedSemigroup
	for IsToricVariety, IsString, 21
IsVanishingSet	UnderlyingCrounFloment
for IsObject, 20	UnderlyingGroupElement
LeftStructureSheaf	for IsProper1Cycle, 9
for IsICTCurve, 7	UnderlyingSemigroup
ListOfUnderlyingAffineSemigroups	for IsAffineSemigroupForPresentations-
for IsVanishingSet, 20	ByProjectiveGradedModules, 16
for is vanishing set, 20	VanishingSet
MoriCone	_
for IsToricVariety, 12	for IsToricVariety, IsList, IsInt, 20
	for IsToricVariety, IsList, IsString, 20
NefCone	VanishingSets
for IsToricVariety, 12	for IsToricVariety, 21
NefConeInCartierDataGroup	
for IsToricVariety, 11	
NefConeInClassGroup	
for IsToricVariety, 12	
NefConeInTorusInvariantWeilDivisor-	
Group	
for IsToricVariety, 12	
for is force variety, 12	
Offset	
for IsAffineSemigroupForPresentations-	
ByProjectiveGradedModules, 16	
,	
PointContainedInAffineSemigroup	
for IsAffineSemigroupForPresentations-	
ByProjectiveGradedModules, IsList,	
17	
PointContainedInSemigroup	
for IsSemigroupForPresentationsByProjec-	
tiveGradedModules, IsList, 17	
PointContainedInVanishingSet	
for IsVanishingSet, IsList, 22	