データベースとは?

大量の情報を保存し、コンピュータから 効率よくアクセスできるように加工した データのあつまり

データベースとは?

由来は第二次世界大戦後の米軍

情報のアクセスを効率化するために

点在していた資料をひとつの基地にすべて集めた

⇒ これを情報 (Data) の基地 (Base) と呼んだ

システムがあれば、裏にはデータベースあり

ECサイトやSNSなどデータを扱うシステムの ほとんどすべてにデータベースが使われている

システムとデータベースは切っても切れない関係

データベースの種類

- リレーショナルデータベース(RDB)
- グラフ型データベース
- キー・バリュー型データストア
- ドキュメント指向データベース

RDBが圧倒的に主流で、広く使われている

データベースの利用

データベース設計とは?

システム開発のひとつのプロセスで、

データベースに保持するデータに関する設計のこと

システムの拡張性やパフォーマンスに多大な影響を与える、システム開発において極めて重要なプロセス

システム開発のプロセス

- 1. 要件定義(なにをつくるか?)
- 2. 設計(どうつくるか?) ←本コースのメインテーマ
- 3. 開発(実装)
- 4. テスト(期待通りに動くか?)

システム開発の設計のプロセスの内訳

- データベース設計(データの保持について決める)
 - ↑本コースのテーマ
- アプリケーション設計(提供機能を決める)
- インターフェース設計(使用画面などを決める)
- ・など

DBの種類ごとに、DB設計のやり方は異なる

- リレーショナルデータベース(RDB)
- グラフ型データベース
- キー・バリュー型データストア

DBの種類ごとにデータベース設計のやり方は異なる

本コースでは、RDBの設計について学ぶ

3層スキーマ

データベースは、3層のスキーマ(枠組み)からなる

- 外部スキーマ(ユーザーから見たDB、ビュー)
- 概念スキーマ(開発者から見たDB、テーブル)
- 内部スキーマ(DBMSから見たDB、データの物理的配置)

3層スキーマのイメージ

利用者 システム

外部スキーマと概念スキーマ

ビュー(外部スキーマ)

height
170.2
151.5
182.1
163.5
157.8
173.0
166.4
144.1
168.7
178.6

SELECT name, height FROM user;

テーブル(概念スキーマ)

id	name	height	weight	age	job_id
1	佐藤	170.2	65.2	60	4
2	鈴木	151.5	50.3	53	2
3	高橋	182.1	85.1	31	8
4	田中	163.5	70.6	36	3
5	渡辺	157.8	55.8	62	7
6	伊藤	173.0	65.3	75	1
7	山本	166.4	49.1	25	5
8	中村	144.1	56.9	45	7
9	小林	168.7	90.1	38	3
10	加藤	178.6	78.5	26	6

概念スキーマと内部スキーマ

テーブル(概念スキーマ)

id	name	height	weight	age	job_id
1	佐藤	170.2	65.2	60	4
2	鈴木	151.5	50.3	53	2
3	高橋	182.1	85.1	31	8
4	田中	163.5	70.6	36	3
5	渡辺	157.8	55.8	62	7
6	伊藤	173.0	65.3	75	1
7	山本	166.4	49.1	25	5
8	中村	144.1	56.9	45	7
9	小林	168.7	90.1	38	3
10	加藤	178.6	78.5	26	6

データファイル(内部スキーマ)

データファイルを テーブルとして 扱えるように設定

論理設計と物理設計

論理設計(概念スキーマの設計)

→ データを管理するためのデータモデルの設計

物理設計(内部スキーマの設計)

→ DDLによる実装やストレージの構成などの設計

概念スキーマはなぜ必要?

データファイル(内部スキーマ)から直接 ビュー(外部スキーマ)を取り出すでも良い?

→ **データ独立性**を確保するのに、

概念スキーマは絶対に必要

データ独立性とは?

外部スキーマを変更しても、内部スキーマを変更する必要 がない状態(**論理的データ独立性**)

もしくは、内部スキーマを変更しても、外部スキーマを変更 する必要がない状態(**物理的データ独立性**)

のことを、データ独立性があるという

3層スキーマによるデータ独立性

利用者 システム

3層スキーマのまとめ

- DBは外部スキーマ、概念スキーマ、内部スキーマの3 層からなる
- RDBにおいてそれぞれは、ビュー、テーブル、データの 物理的な配置に対応する
- 概念スキーマが他のスキーマの変更を吸収する緩衝材の役割を担うことで、データの独立性が確保できる

論理設計は超重要

逆に言うと、概念スキーマを変更すると、

外部スキーマにも内部スキーマにも影響が出る

- → 概念スキーマの設計(論理設計)は超重要
- → <u>質の高い論理設計のために、知識を身に着けよう</u>

コラム:3層スキーマの別の解釈

概念スキーマは内部スキーマを、**隠ぺいしている**と考えることもできる

データの物理的な配置は、ユーザーには理解しづらい

→ テーブルというわかりやすいインターフェースに変換することで、扱いやすくしているとも考えられる