問題 3.3.

(1)
$$y = x^2 - 2x - 1$$
 $(0 \le x \le 3)$

最大値は 2(x=3)

最小値は-2 (x=1)

最大値は $\frac{17}{8}$ $(x = \frac{3}{4})$

最小値は-4 (x=-1)

問題 **3.4.** y=f(x) のグラフは下に凸であるから,f(x) の最小値は頂点の y 座標である. f(x) を平方完成すると $f(x)=(x-k)^2-k^2+k+2$ であるから,f(x) の最小値は $-k^2+k+2=-(k-2)(k+1)$. これが 0 になるのは k=2 または k=-1 のときである.

問題 3.5.

- (1) -2, 3.
- $(2) -2, -\frac{1}{2}.$
- (3) 実数解なし. 虚数解は ±i.
- (4) $\frac{5 \pm \sqrt{33}}{4}$.
- (5) 実数解なし. 虚数解は $\frac{-3 \pm \sqrt{7}}{2}$.

問題 **3.6.** 重解をもつのは判別式が 0 のときである。 $x^2 - 2kx + k + 2 = 0$ の判別式は

$$4k^2 - 4(k+2) = 4(k^2 - k - 2)$$

であるから、これが0となるのはkが

$$k^2 - k - 2 = 0$$

を満たすときである. このkに関する2次方程式の解はk=2またはk=-1である.