Self-supervised Classification of Clinical Multivariate Time Series using Time Series Dynamics

Data Mining presentation P14

December 20th, 2023

Irene Dovichi, Giacomo Lagomarsini, Alice Nicoletta

Presentation scheme

Introduction

- The purpose is to improve the accuracy of multivariate time series
 classification with a novel self-supervised paradigm that captures the
 dynamics of MTS.
- The study is conducted on clinical data and the time series are multivariate because they are obtained from a sequence of measurements coming from multiple sensors.
- Theoretically grounded approach: Koopman theory allows us to project the complex and nonlinear dynamics of our time series into a linear space.

Electrocardiogram (ECG)

- An electrocardiogram (ECG) is a test that records the electrical activity of the heart.
- 10 electrodes (12 leads), each lead generates a time series of data.
- Duration of 10 seconds.
- Sampling frequency of 500 Hz.
- Combining the results of the different leads allows to infer cardiac activity and can help diagnose a variety of health conditions (arrhythmias, ventricular dysfunction, etc.)

Electroencephalogram (EEG)

- An electroencephalogram (EEG) is an electrical signal generated by the brain.
- 1-256 electrodes, each electrode generates a time series of data called channel.
- Duration of 20-60 minutes.
- From the raw EEG signal, specific frequency components are extracted:
 - Delta (< 4 Hz)
 - Theta (4-7 Hz)
 - Alpha (8-13 Hz)
 - Beta (14-30 Hz)
 - Gamma (> 30 Hz)
- The analysis of the different frequency components and waveforms allows to identify various neurological conditions (epilepsy, sleep disorders, brain tumor, etc.)

Method

- ECG and EEG signals can be modeled by ODEs.
- ODEs describe the evolution of a system over time, often in terms of nonlinear functions. In many cases, solving nonlinear ODEs analytically can be challenging.
- **Koopman theory** is a mathematical and dynamical systems framework used in the analysis of nonlinear systems.
- Koopman theory offers a method to linearize the dynamics of a nonlinear system.
- More specifically: we switch from a finite-dimensional nonlinear system to an infinite-dimensional linear one with the Koopman operator, which is an infinitedimensional linear operator that acts on scalar observable functions by composition.

Koopman Theory

We focus on discrete-time dynamical systems since ECG and EEG data describes a continuous-time system sampled in discrete time:

$$x_{t+1} = F(x_t)$$

with $F: \mathcal{M} \to \mathcal{M}$, $dim(\mathcal{M}) = L$

<u>Def</u>. Given $\mathcal{G}=\{g:\mathcal{M} o\mathbb{R}\}$, the Koopman operator for our dynamical system is

$$\mathcal{K}:\mathcal{G}\to\mathcal{G}\mid g\mapsto g\circ F$$

We observe that:

- $g(x_{t+1}) = g \circ F(x_t) = \mathcal{K}g(x_t)$
- \mathcal{K} is linear: $\mathcal{K}(\alpha g + \beta h) = \alpha \mathcal{K}g + \beta \mathcal{K}h$

Learning Koopman Embedding

We want to find $K: \mathbb{R}^D \to \mathbb{R}^D$ a finite-dimension approximation of \mathcal{K} and $\Gamma: \mathbb{R}^D \to \mathcal{G}$ s.t.

$$\Gamma \circ K \circ \Gamma^{-1} \approx K$$

Notice that: $\mathcal{G} \xrightarrow{\Gamma^{-1}} \mathbb{R}^D \xrightarrow{\mathcal{K}} \mathbb{R}^D \xrightarrow{\Gamma} \mathcal{G}$

We can rewrite the equation of the system as:

$$g(x_{t+1}) = \mathcal{K}g(x_t) = \Gamma K \Gamma^{-1}g(x_t)$$
$$\Gamma^{-1}g(x_{t+1}) = K \Gamma^{-1}g(x_t)$$

We define $\Phi = \Gamma^{-1} g: \mathbb{R}^L o \mathbb{R}^D$ and we obtain:

$$\Phi(x_{t+1}) = K\Phi(x_t)$$

We use a neural model to find Φ and K.

1. The encoder Φ encodes x_t into the Koopman embedding space G. In formula, $\Phi(x_t) = g(t)$.

2a. In the Koopman space, the dynamic is linear: K is a singe matrix, and $g_{t+1} = Kg_t$.

3a. The decoder Φ^{-1} brings g_{t+1} back to the original space. In formula, $\Phi^{-1}(g_{t+1}) = x_{t+1}$.

2b. The encoded input g_t also passes into a Feedforward Neural Network, which extracts useful features for classification $h_t = Q(g_t)$

3b. Finally, the sequence of features $[h_1, ..., h_t, ..., h_T]$ is passed through a Convolutional Neural Network, that outputs the classification results

Losses of the model

In order to learn the correct linearization of the dynamics, we need a combination of three loss functions.

Reconstruction Loss:

$$L_{rec} = ||x_t - \Phi^{-1}(\Phi(x_t))||$$

Linear Dynamics:

$$L_{lin} = || \Phi(x_{t+m}) - K^m \Phi(x_t) ||, \forall m \ge 1$$

Prediction of the Dynamics:

$$L_{pred} = ||x_{t+m} - \Phi^{-1}(K^m \Phi(x_t))||, \forall m \ge 1$$

In addition, a standard supervised loss (e.g. binary cross-entropy) is used to train the CNN

Datasets

ECG: two datasets

- G12EC: 10344 12-lead ECGs from 7871 patients
- PTB-XL: 21837 12-lead ECGs from 18885 patients
- 10 seconds, 500 Hz sampling frequence | length of TS 5.000
- Multi-Label classification task, up to 27 different diagnoses
- We focus on the 6 most common anomalies

EEG: Temple University Hospital dataset

- 2,993 recordings,
- various lengths, 21 channels with different frequencies
- Binary classification task, normal or abnormal EEG

Results (ECG)

- Compared against SotA, a ResNet CNN
- Improvements in sensitivity and specificity of recognising almost every type of diagnosis.
- All statistically significative results, p-value < 0.05

Table 1: Evaluation results - ECG (G12EC Dataset)

	Temporal 1 + ResN	•	ResNet	Based
Abnormality	Sensitivity Specificity		Sensitivity	Specificity
AF	0.88	0.89	0.88	0.83
TAb	0.88	0.76	0.85	0.72
QAb	0.89	0.79	0.84	0.72
VPB	0.80	0.55	0.77	0.54
SA	0.68	0.65	0.65	0.55
LAD	0.97	0.90	0.94	0.87

Table 2: Evaluation results - ECG (PTB-XL Dataset)

	Temporal 1 + ResN	•	ResNet	Based
Abnormality	Sensitivity	Specificity	Sensitivity	Specificity
AF	0.98	0.94	0.98	0.93
TAb	0.89	0.75	0.89 0.70	
QAb	0.85	0.77	0.84	0.74
SA	0.67	0.59	0.65	0.53
LAD	0.91	0.90	0.91	0.87

ROC Curves (ECG)

(a) Atrial fibrillation (AF)

(d) T wave abnormal (TAb)

(b) Q wave abnormal (QAb)

(e) Sinus arrhythmia (SA)

(c) Ventricular premature beats (VPB)

(f) Left axis deviation (LAD)

Results (EEG)

Table 3: Evaluation results - EEG

	Temporal 1 + CNN	•	CNN Based		
	Sensitivity Specificity		Sensitivity	Specificity	
Normal vs. Abnormal	0.81	0.84	0.80	0.76	

- Previous SotA: Convolutional Neural Network
- Huge improvement in specificity

Dimension of the Embeddings

- Choosing the right dimension for the embedding space is fundamental.
- For the ECGs a dimension of 30 turns out to be the best, for the EEGs is 40.
- Manually tune the hyperparameter for each task

Table 4: ECG Task: Koopman Embedding size

Temporal Projection
+ ResNet

	Dim	= 10	Dim = 20		Dim = 30		Dim = 40	
Abnormality	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity
AF	0.88	0.86	0.88	0.88	0.88	0.89	0.87	0.87
TAb	0.85	0.74	0.87	0.74	0.88	0.76	0.86	0.75
QAb	0.84	0.72	0.89	0.78	0.89	0.79	0.87	0.75
VPB	0.77	0.54	0.80	0.55	0.79	0.55	0.75	0.55
SA	0.65	0.55	0.66	0.58	0.68	0.65	0.68	0.65
LAD	0.94	0.89	0.95	0.89	0.97	0.90	0.97	0.89

Table 5: EEG Task: Koopman Embedding size

Temporal Projection +CNN

	Dim	= 20	Dim	= 30	Dim	= 40	Dim	= 50
Abnormality	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity
Normal vs.								
Abnormal	0.80	0.82	0.80	0.78	0.81	0.84	0.80	0.80

Importance of Linearity Constraint

 Experiment to evaluate the importance of the linearity loss

$$L_{lin} = ||\Phi(x_{t+m}) - K^m \Phi(x_t)||$$

 Training with only the autoencoder loss, results are worse

Table 6: The importance of the linearity constraint - ECG

	Temporal	•	AutoEncoder					
	+ ResN	et	+ ResNet					
Abnormality	Sensitivity	Sensitivity Specificity		Specificity				
AF	0.88	0.89	0.88	0.86				
TAb	0.88	0.76	0.85	0.74				
QAb	0.89	0.79	0.86	0.75				
VPB	0.80	0.55	0.77	0.55				
SA	0.68	0.65	0.66	0.59				
LAD	0.97 0.90		0.96	0.88				

Table 7: The importance of the linearity constraint - EEG

	Temporal 1 + CNN	- 1	AutoEncoder + CNN + CNN		
	Sensitivity Specificity		Sensitivity	Specificity	
Normal vs. Abnormal	0.81	0.84	0.80	0.79	

Conclusions

Major contributions:

- Self-supervised learning offers us additional information about multivariate time series dynamics, specifically ECGs and EEGs.
- Koopman embeddings are an approach that is grounded in theory of control of dynamical systems, and that proved to be very solid also experimentally.

Major limitations:

- Embedding size is an additional hyperparameter, not obvious from the context.
- Embedding size is also often bigger than the original size, which leads to more expensive computations.

Bibliography

- Y. Yehuda, D. Freedman, K. Radinsky. Self-supervised Classification of Clinical Multivariate Time Series using Time Series Dynamics. DOI: 10.1145/3580305.3599954.
- E. A. Maharaj, A. M. Alonso. Discriminant analysis of multivariate time series: Application to diagnosis based on ECG signals. DOI: 10.1016/j.csda.2013.09.006.
- P. Bevanda, S. Sosnowski, S. Hirche. Koopman Operator Dynamical Models: Learning, Analysis and Control. DOI: 10.1016/j.arcontrol.2021.09.002.

Thanks for the attention!

