Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження арифметичних циклічних алгоритмів» Варіант 2

Виконав	студент	ІП-12, Басараб Олег Андрійович
		(шифр, прізвище, ім'я, по батькові)
Перевіри	В	
		(прізвише, ім'я, по батькові)

Лабораторна робота №4 "Дослідження арифметичних циклічних алгоритмів"

Варіант 2

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Задача 2. Дано натуральне число п. Обчислити

$$\sum_{k=1}^{n} \frac{1}{k(2k+1)^2}$$

Розв'язок

Постановка задачі. Результатом розв'язку є дійсне число seriesSum. Для знаходження seriesSum повинне бути задане ціле число $n \ge 1$. Інших початкових даних для розв'язку задачі не потрібно.

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Кількість елементів ряду, суму яких	Цілий	n	Вхідне дане
потрібно знайти			
Порядковий номер елементу ряду	Цілий	k	Проміжне
			дане
Поточний елемент ряду	Дійсний	currentElem	Проміжне
			дане
Сума елементів ряду з 1-го по п-ий	Дійсний	seriesSum	Результат

Таким чином, формулювання завдання зводить до:

- 1) задання початкових значень змінних, а саме seriesSum = 0;
- 2) знаходження суми елементів ряду з 1-го по n-ий за допомогою арифметичного циклу. Лічильником арифметичного циклу є змінна k з

початковим значенням 1 та кінцевим значенням п. Вважаємо, що умовою невиходу з циклу ε k < n + 1. Крок дорівнює 1. В тілі циклу спершу знаходимо поточний елемент за формулою currentElem = 1.0 / (k * (2*k + 1) * (2 * k + 1)). Зауважимо, що в формулі використано запис одиниці «1.0», щоб зазначити дійсний тип змінної currentElem. Наступною дією додаємо поточний елемент ряду до суми елементів ряду seriesSum += currentElem.

Розіб'ємо алгоритм на кроки:

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію задання початкових значень змінних.

Крок 3. Деталізуємо дію знаходження суми елементів ряду з 1-го по п-ий.

Програмні специфікації запишемо у псевдокоді та в графічній формі в блок-схемі алгоритму.

Псевдокод.

Крок 1 Крок 2

початок початок

введення а введення а

задання початкових значень seriesSum = 0

змінних

знаходження суми елементів ряду знаходження суми елементів ряду

з 1-го по n-ий <u>з 1-го по n-ий</u>

вивід seriesSum вивід seriesSum

кінець кінець

Крок 3

початок

введення а

seriesSum = 0

повторити

currentElem =
$$1.0 / (k * (2*k + 1) * (2 * k + 1))$$

seriesSum += currentElem

все повторити

вивід seriesSum

кінець

Блок-схема алгоритму.

Крок 2

Крок 3

Випробування алгоритму.

Перевірка №1

Блок	Дія
	Початок
1	Введення: 5
2	seriesSum = 0
3	повторити
	для k від 1 до n + 1
	currentElem = $1.0 / (k * (2*k + 1) * (2 * k + 1))$
	seriesSum += currentElem
	все повторити
4	Вивід: 0.142653
	Кінець

На скріншоті можна побачити усі елементи ряду, отримані в результаті виконання алгоритму з такими вхідними даними:

```
Element[1] = 0.111111; Element[2] = 0.02; Element[3] = 0.00680272; Element[4] = 0.00308642; Element[5] = 0.00165289;
```

Перевірка №2

Блок	Дія
	Початок
1	Введення: 3

2	seriesSum = 0
3	повторити
	для k від 1 до n + 1
	currentElem = $1.0 / (k * (2*k + 1) * (2 * k + 1))$
	seriesSum += currentElem
	все повторити
4	Вивід: 0.137914
	Кінець

На скріншоті можна побачити усі елементи ряду, отримані в результаті виконання алгоритму з такими вхідними даними:

Висновки. Таким чином, в результаті виконання лабораторної роботи було досліджено особливості роботи арифметичних циклів на прикладі побудови циклу для обчислення членів ряду з 1-го по п-ий та знаходження їх суми, згадано правила задання лічильника циклу та умови виходу з нього та набуто практичних навичок їх використання під час складання програмних специфікацій.