

Low $V_{CE(sat)}$ IGBT High Speed IGBT

IXSH/IXSM 30N60 IXSH/IXSM 30N60A

$\mathbf{V}_{\mathtt{CES}}$	C25	V _{CE(sat)}	
600 V	50 A	2.5 V	
600 V	50 A	3.0 V	

Short Circuit SOA Capability

Symbol	Test Conditions	Maximum Ratings	
V _{CES}	T _J = 25°C to 150°C	600	V
V _{CGR}	T_J = 25°C to 150°C; R_{GE} = 1 $M\Omega$	600	V
V _{GES}	Continuous	±20	V
V _{GEM}	Transient	±30	V
I _{C25}	T _c = 25°C	50	A
I _{C90}	$T_{c} = 90^{\circ}C$	30	Α
I _{CM}	$T_c = 25^{\circ}C$, 1 ms	100	Α
SSOA (RBSOA)	$V_{\rm GE}$ = 15 V, $T_{\rm J}$ = 125°C, $R_{\rm G}$ = 4.7 Ω Clamped inductive load, L = 100 μH	$I_{cm} = 60$ @ 0.8 V_{ces}	Α
t _{sc} (SCSOA)	V_{GE} = 15 V, V_{CE} = 360 V, T_{J} = 125°C R_{G} = 33 Ω , non repetitive	10	μs
P _c	T _c = 25°C	200	W
T _J		-55 +150	°C
T_{JM}		150	°C
T_{stg}		-55 + 150	°C
M _d	Mounting torque	1.13/10	Nm/lb.in.
Weight		TO-204 = 18 g, TO-	247 = 6 g
	ad temperature for soldering 62 in.) from case for 10 s	300	°C

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless } c$ min.	therwi	istic Val se speci max.	
BV _{CES}	$I_{c} = 250 \mu\text{A}, V_{GE} = 0 \text{V}$	600			V
$V_{_{\mathrm{GE(th)}}}$	$I_{\rm C}$ = 2.5 mA, $V_{\rm CE}$ = $V_{\rm GE}$	5		8	V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 V$	T _J = 25°C T _J = 125°C		100 1	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nΑ
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V$	30N60 30N60A		2.5 3.0	V

TO-247 AD (IXSH)

TO-204 AE (IXSM)

G = Gate, C = Collector, E = Emitter, TAB = Collector

Features

- International standard packages
- Guaranteed Short Circuit SOA capability
- Low V_{CE(sat)}
 - for low on-state conduction losses
- High current handling capability
- MOS Gate turn-on
- drive simplicity
- Fast Fall Time for switching speeds up to 20 kHz

Applications

- AC motor speed control
- Uninterruptible power supplies (UPS)
- Welding

Advantages

- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- · High power density

Symbol	Test Conditions	Test Conditions Characteristic Values (T ₁ = 25°C, unless otherwise specified)			
	(.1	min.		max.	
g _{fs}	$I_{c} = I_{c90}$; $V_{cE} = 10 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, duty cycle \le	7 ≤2 %	13		S
C(on)	$V_{GE} = 15 \text{ V}, V_{CE} = 10 \text{ V}$		100		Α
C _{ies}			2760		рF
C_{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MH}$	z	240		pF
C _{res}			51		pF
\mathbf{Q}_{g}			110	150	nC
\mathbf{Q}_{ge}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 \text{ V}$	V_{ces}	34	45	nC
Q _{gc}			47	63	nC
t _{d(on)}	Inductive load, T _J = 25°C		60		ns
t _{ri}	$I_{_{\rm C}}$ = $I_{_{{\rm C90}}}$, $V_{_{{\rm GE}}}$ = 15 V, L = 100 μ	Н	130		ns
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.8 V_{CES}, R_G = 4.7 \Omega$		400		ns
t _{fi}	Remarks: Switching times	30N60 30N60A	400 200		ns ns
E _{off}	may increase for V_{CE} (Clamp) > 0.8 • V_{CES} ,	30N60	5.0		mJ
off	higher T _J or increased R _G	30N60A	2.5		mJ
t _{d(on)}	1		60		ns
t _{ri}	Inductive load, T _J = 125°C		130		ns
E _{on}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V},$ $L = 100 \mu\text{H}$		1.0		mJ
t _{d(off)}	$V_{CE} = 0.8 V_{CES},$ $R_{G} = 4.7 \Omega$	30N60 30N60A	540 340	1000 525	ns ns
t _{ri}	Remarks: Switching times may increase for	30N60 30N60A	600 340	1500 700	ns ns
	V_{CE} (Clamp) > 0.8 • V_{CES}				
E _{off}	higher T_J or increased R_g	30N60 30N60A	12 6		mJ mJ
R _{thJC}				0.63	KW
R _{thCK}			0.25		KW

IXSH 30N60 and IXSH 30N60A characteristic curves are located on the IXSH 30N60U1 and IXSH 30N60AU1 data sheets.

