\bigcirc	11011	dom	, ica	<u>[</u> ;	1 A O O	91														
					0000															
D	مالم	00.	09	n El	a^	d. 00.		Consideration	. 0	0 A A	~a /	7	(gr	10 0,01		ΙI	ando.	410 AAP	lente	2)
				unt				1					2000				10000			,
<i>-</i>	·	_cr_		wwi	L V	VV Cyax	icocc													
		ر ر		+ d,	18	- 6	_	,				6								
		2,101	+'''	T 01,	· ' U	_ () -/	~ 1	_ //	· &	· ~ -	. 0 ,								
\overline{C}					. 0	6.6	n	~		()	-		t.			<i>t.</i>			#-	
				ν,								9mml	nne (repe	wolln	Ma)	<i>,</i> 710	ejis	lem	
۷,	, .,,	d _m (<u>-۱۱۲</u>	-na	o li	oclos	nul	<i>os</i> ,	lais	Que										
						7	m	Λ ι	= O											
						i =	1			,										
(O)																				
	9 7 011	er Ei	یں اب	10,				l .			Ole 11	ma i	mato	uż /·	₹, e	nlov				
					~ 5	٠ - ٧ .	۸۹		t (? , \ :										
) =	1 31			٠ (۵	- M										
æ																				
d'a	go:																			
		10,		vn)	2000	L.]	1. 4	5 1	√(A)) =	{o}									
		101,	, 19,	n A	ão L	D.	D	Λ/(A)	lm	mai	ء ساد	tores	ىبى	u o	© _				
0	an																			
ν.	ordo	un	, e	yron	<u>(</u> 70	reet	orio	l E	= , ,	um	r U	ari	Œ	E,	e' l	m	con	juti	o	
de	ret	ous	}	νı.	, 🛷	~ },	L.	1	toir	çu	L									
					E		sylve	m {	ν _ι ,	. , No,	~ }_									
						1	} 2	n d;	ν ₁ ,	۲; (EIR 1	∀i=1	, . , , ,	n }.						
								1												

Algebra Linear - Lista de Exercícios 5

escreva seu nome aqui

1. Explique porque essas afirmações são falsas

Explique porque essas afirmações são falsas

(a) A solução completa é qualquer combinação linear de x_p e x_n . Nutro que sortisfar $A x_p = b$.

(b) Qualquer elemento $A x_p = b$.

Resolução: $A x_p = b$ occupante solução de $A x_p = b$ pora alayma le

 \rightarrow (b) O sistema Ax = b tem no máximo uma solução particular. O sustemos tum, no meigune. uma solução. Resolução:

(c) Se A é inversível, não existe nenhuma solução x_n no núcleo. $\Rightarrow A$ more $\Rightarrow \mathcal{M}(A) = \emptyset$ Resolução:

2. Sejam

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} e c = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Use a eliminação de Gauss-Jordan para reduzir as matrizes $[U\ 0]$ e $[U\ c]$ para $[R\ 0]$ e $[R\ d]$. Resolva Rx = 0 e Rx = d

Resolução:

3. Suponha que Ax = b e Cx = b tenham as mesmas soluções (completas) para todo b. Podemos concluir que A = C? (, y le, {x: Ax = le} = \ \ x: Cx = le}

Resolução: 1º juto: contradição

2° julo: lenton provon que os colurs de A são equais on colurs de C.
4. Ache o maior número possível de vetores linearmente independentes dentre os vetores:

$$\left(\begin{array}{c} 1\\ -1\\ 0\\ 0\end{array}\right), \begin{bmatrix} 1\\ 0\\ -1\\ 0\end{array}\right), \begin{bmatrix} 1\\ 0\\ 0\\ -1\end{array}\right], \begin{bmatrix} 0\\ 1\\ -1\\ 0\end{array}\right), \begin{bmatrix} 0\\ 1\\ 0\\ -1\end{array}\right] \in \begin{bmatrix} 0\\ 0\\ 1\\ -1\end{array}\right]$$

vernos ali un cumo

Resolução:

5. Ache uma base para o plano x-2y+3z=0 em \mathbb{R}^3 . Encontre então uma base para a interseção desse plano com o plano xy. Ache ainda uma base para todos os vetores perpendiculares a esse plano.

1

Resolução:

> retilizer a lears poura

Base = { v, w, 3} No Sunday 6. Ache (na sua forma mais simples) a matriz que é o produto das matrizes de posto 1 $\mathbf{u}\mathbf{v}^T$ e $\mathbf{w}\mathbf{z}^T$? Qual seu posto?

Resolução:

7. Suponha que a coluna j de B é uma combinação linear das colunas anteriores de B. Mostre que a coluna j de AB é uma combinação linear das colunas anteriores de AB. Conclua que posto $(AB) \leq$ posto(B).

Resolução: $AB = ALb_1 \cdots b_m$ =[Ab, ··· Ab, posto = numero de colus L.I da matouz

8. O item anterior nos dá $posto(B^TA^T) \leq posto(A^T)$. É $possível concluir que <math>posto(AB) \leq posto(A)$?

Gus a cuestão 7, Resolução:

Como posto(A) re relaciona con posto(AT)?

9. Suponha que $A \in B$ são matrizes quadradas e AB = I. Prove que posto(A) = n. Conclua que Bprecisa ser a inversa (de ambos lados) de A. Então, BA = I.

Resolução: questres 8 e 9,

10. $(B\hat{o}nus)$ Dado um espaço vetorial real V, definimos o conjunto

$$V^* := \{ f : V \to \mathbb{R} \mid f \text{ \'e linear} \}.$$

Ou seja, V^* é o conjunto de todas as funções lineares entre V e \mathbb{R} . Relembramos que uma função $f: E \to F$, onde E e F são espaços vetoriais, é dita linear se para todos $\mathbf{v}, \mathbf{w} \in E$ e $\alpha \in \mathbb{R}$ temos $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w}) \in f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Chamamos V^* de espaço dual de V.

(a) Mostre que V^* é um espaço vetorial.

Resolução:

(b) Agora, seja $V=\mathbb{R}^n$. Mostre que existe uma bijeção $\varphi:V^*\to V$ tal que , para toda $f\in V^*$ e para todo $\mathbf{v} \in V$, tenhamos $f(\mathbf{v}) = [\langle \widetilde{\varphi(f)}, \mathbf{v} \rangle] \quad \varphi(\mathcal{G}) \text{ represents } \mathcal{G}$

Dica: Utilize a dimensão finita de \mathbb{R}^n para expandir \mathbf{v} como uma combinação linear dos vetores da base canônica e aplique a linearidade de f.

Resolução:

$$V = \sum_{i=1}^{m} d_i l_i$$
, and $\{l_1, ..., l_m\}$ e a lease comornier

Em dimensão infinita, esse resultado é conhecido como Teorema da Representação de Riesz.

i) je metiva ! Dados a, az EA, j(a,) = j(az) miplica a, = az

ii) yé sobrejitres! Dade le e B, existe pelo menos um a e A tod que y (a) = lo.