

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

SISTEM KOMUNIKASI SUARA DAN DATA DUA ARAH DENGAN MEDIA LASER SEBAGAI ALAT BANTU KOMUNIKASI DAN PEMBERI TANDA BAHAYA DARI KORBAN KE TIM SAR

BIDANG KEGIATAN: PKM KARSA CIPTA

Diusulkan oleh:

Ketua	: Imam Abdul Aziz	161331017	Tahun Angkatan 2016
Anggota	: 1. Darul Rahman Wahid	141344007	Tahun Angkatan 2014
	2. Ghiffari Hendana	141344013	Tahun Angkatan 2014

POLITEKNIK NEGERI BANDUNG BANDUNG 2017

PENGESAHAN PKM-KARSA CIPTA

1. Judul Kegiatan : Sistem Komunikasi Suara dan Data Dua Arah Dengan

Media Laser Sebagai Alat Bantu Komunikasi dan

Pemberi Tanda Bahaya Dari Korban ke Tim SAR

2. Bidang Kegiatan : PKM-KC

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Imam Abdul Aziz

b. NIM : 161331017 c. Jurusan : Teknik Elektro

d. Politeknik : Politeknik Negeri Bandung

e. Alamat Rumah : Jalan Desa Nanjungmekar RT/RW 01/10 Kecamatan

Rancaekek Kabupaten Bandung

f. Nomor Tel/HP : 085864980318

g. Alamat email : Imam.a2.te@gmail.com

4. Anggota Pelaksana Kegiatan/Penulis : 3 orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Dr. Eril Mozef, MS, DEA.

b. NIDN : 0004046504

c. Alamat Rumah : jl. Mars utara I no.11 rt/rw 002/002 Margahayu Raya,

Bandung 40286

d. Nomot Tel/HP : 08122269339

6. Biaya Kegiatan Total

a. Kemristekdikti : Rp. 12,441,000

b. Sumber lain (..) : -

7. Jangka Waktu Pelaksanaan : 4 bulan

Bandung, 18 November 2017

Menyetujui

Sekretaris Jurusan Teknik Elektro Ketua Pelaksana Kegiatan

<u>Usman B. Hanafi, Ir., M.Eng.</u>

NIP. 19630103 199103 1 002

NIM.161331017

Pembantu Direktur Bidang Kemahasiswaaan, Dosen Pendamping

 Angki Aprilliandi Rachmat, SST., MT.
 Dr. Eril Mozef, MS, DEA.

 NIDN. 19810425 200501 1002
 NIP. 19650404 200003 1 001

DAFTAR ISI

Lembar Pengesahan	i
Daftar Isi	ii
Daftar Tabel	iii
Daftar Gambar	iv
BAB 1. PENDAHULUAN	1
BAB 2. TINJAUAN PUSTAKA	2
BAB 3. METODE PELAKSANAAN	
3.1. Cara Koleksi Awal	4
3.2. Rekayasa Keteknikan	4
3.3. Cara Uji Keandalan Karya	4
3.4. Teknik Koleksi Data	4
3.5. Pengolahan Data	4
3.6. Analisis Data	4
BAB 4. BIAYA DAN JADWAL KEGIATAN	
4.1. Anggaran Biaya	5
4.2. Jadwal Kegiatan	5
DAFTAR PUSTAKA	7
LAMPIRAN-LAMPIRAN	
Lampiran 1. Biodata ketua dan anggota serta Dosen Pembimbing yang	
ditandatangani	8
Lampiran 2. Justifikasi Anggaran Kegiatan	16
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	19
Lampiran 4. Surat Pernyataan Ketua Pelaksana	20
Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan	21

DAFTAR TABEL

Tabel 2.1. Tabel Tinjauan Pustaka	3
Tabel 4.1. Ringkasan Anggaran Biaya	
Tabel 4.2. Jadwal Kegiatan	
Tabel 4.2. Jacwai Regiatan	•••

DAFTAR GAMBAR

Gambar 1. Gambaran Umum Sistem Komunikasi Laser	.18
Gambar 2. Ilustrasi Pengaplikasian sistem saat terjadi bencana	. 18
Gambar 2. Blok Diagram Sistem secara keseluruhan	. 19

BAB 1 PENDAHULUAN

Kondisi geografis wilayah Indonesia yang termasuk daerah Cincin Api Pasifik (*Ring of Fire*) tentu menjadi momok menyeramkan bagi warga Indonesia. Warga harus siap siaga menghadapi hal yang terduga. Sehingga proses evakuasi bencana menjadi hal yang penting baik bagi semua warga terutama Tim SAR. Saat terjadi bencana alam, komunikasi antar korban dengan korban lainnya, korban dengan Tim SAR maupun antar anggota Tim SAR harus tetap terjalin agar dapat dilakukan evakuasi dengan tepat. Selain itu dengan memberikan tanda bahaya oleh korban dapat mempercepat proses evakuasi yang dilakukan oleh Tim SAR.

Sampai saat ini terdapat beberapa sistem komunikasi yang dapat menghubungkan suatu tempat dengan tempat lainnya tanpa perlu menggunakan infrastruktur komersial tersebut seperti misalnya menggunakan *Handy Talky* (HT), radio amatir ataupun radio SSB., ketiga sistem komunikasi tersebut juga memiliki batasan lain, yaitu berbasis *Half Duplex* dimana komunikasi hanya dapat dilakukan dengan satu arah pada satu waktu yang sama, sehingga saat diperlukan komunikasi dua arah pada saat yang bersamaan sistem tersebut tidak dapat memenuhinya. Selain hal yang disebutkan sebelumnya, untuk meng-implementasikan ketiga sistem tersebut membutuhkan biaya yang relatif tidak murah.

Sehingga dibuat Sistem Komunikasi yang berbasis VLC (*Visible Light Communication*), dimana informasi ditumpangkan pada sinar laser untuk dikirimkan. Keunggulannya jika dibandingkan dengan sistem yang sebelumnya disebutkan yaitu kebal terhadap propagasi maupun interferensi oleh gelombang elektromagnetik. Sebagai pengembangan dari komunikasi yang telah ada, diusulkan sistem komunikasi laser dua arah (*Full Duplex*) dimana digunakan *Transceiver* dikedua ujung peralatan untuk mengirim dan menerima informasi tersebut.

Alat ini dapat mengirimkan sinyal *Audio* maupun Pesan berupa Data ASCII secara bergantian. Kedua modul (pemancar dan penerima) harus pada kondisi yang sama baik ketika Mode Audio atau Mode Data. Sinyal berupa *Audio* terlebih dahulu dikuatkan oleh *Op-Amp* sebelum dipancarkan oleh *Laser Diode* sedangkan data berupa teks (ASCII) diolah pada *Arduino Uno* dengan *baud rate* 1200 baud kemudian dipancarkan melalui laser. Pada sisi penerima, sinyal baik *Audio* atau Pesan (Data) diterima oleh *Photodetector* kemudian, apabila modul Penerima pada posisi Mode Audio, sinyal yang diterima dikuatkan oleh *Op-Amp* kemudian dihubungkan pada *Speaker* agar menghasilkan Suara. Apabila modul Penerima pada posisi Mode Data, Cahaya yang diterima *Photodetector* kemudian dijadikan Sinyal Listrik lalu masuk ke Arduino Uno untuk kemudian diolah menjadi pesan dan ditampilkan pada *LCD Display*.

BAB 2 TINJAUAN PUSTAKA

Pada sistem oleh Dileep (2011) [1], intensitas cahaya dari laser akan berubah sesuai amplitudo dari suara atau musik yang dikirim dan dimana variasi intensitas cahaya ini akan diterima dan diubah menjadi tegangan oleh *calculator solar panel*, lalu tegangan yang diterima akan dikuatkan oleh penguat suara dan ditranslasikan oleh *speaker*. Sistem ini hanya dapat mengirimkan suara atau musik, pada sistem yang kami buat selain mengirimkan suara bisa mengirimkan data seperti pesan teks dan bersifat *full duplex*, sehingga media laser dapat digunakan sebagai alat komunikasi dua arah.

Pada sistem [5], data yang di transmisikan hanya berupa audio (suara) ataupun sinyal dari *function generator* saja. Sistem yang kami buat akan dapat melakukan proses pentransmisian data berupa teks dan lainnya, sehingga lebih banyak varian data yang dapat di jadikan bahan percobaan ataupun analisa.

Alat yang dibuat oleh Jacob (2011) [2] digunakan untuk mengirim data/sinyal suara berupa musik dari Tablet melalui *jack* berukuran 3.5mm di sisi pengirim menuju *speaker* di sisi penerima melalui kanal komunikasi laser. *Input* maksimal (*output* dari Tablet) yaitu 2Vpp dengan frekuensi 10Hz hingga 22Khz. *Output* yang diharapkan dari alat ini untuk masuk ke *jack speaker* sama dengan *input* yaitu 2Vpp dengan frekuensi 10Hz hingga 22KHz, namun berakibat *loss* di frekuensi tinggi. Kualitas suara yang dihasilkan lebih baik jika dibanding dengan radio AM. *Transmitter* maupun *Receiver* alat ini disuplai tegangan 9V dari baterai. Alat ini hanya berjalan satu arah (*half duplex*), alat yang kami rancang diharapkan bisa berjalan di *full duplex* atau dua arah, sehingga dua perangkat *transceiver* dapat digunakan untuk melakukan komunikasi.

Pada sistem [3], yang ditransmisikan oleh laser yaitu berupa data serial untuk komunikasi antar komputer dengan *port* RS-232. Data yang di transmisikan hanya bisa dilakukan satu arah (*device* a ke *device* b). Sistem yang akan kami kembangkan akan mampu membuat komunikasi dua arah, dimana tiap *device* akan memiliki kemampuan untuk menerima maupun mengirim data melalui dua kanal laser yang berbeda. Meskipun pengaplikasiannya berbeda bukan diperuntukkan komunikasi antar komputer.

Pada sistem [4], sama seperti pada umumnya komunikasi laser hanya bersifat *half-duplex* dan hanya mengirimkan sinyal audio saja, dengan cara kerja meng-konversi sinyal audio melalui *jack* standar 3.5mm, kemudian ditransmisikan melalui sinar laser ke *receiver* yang dapat mengubah sinyal yang dikonversi tadi menjadi sinyal audio semula. *Transmitter* dapat berputar secara horisontal dan menggunakan motor yang dikontrol oleh mikrokontroller untuk mengatur posisi secara otomatis agar searah dengan *receiver*. Secara garis besar alat ini terbagi menjadi dua bagian yaitu transmisi audio via perangkat keras dan pengontrolan arah via perangkat lunak. Pengarahan laser dilakukan oleh motor DC untuk memutar *transmitter* agar searah dengan *receiver*. Hal ini dapat dilakukan dengan mendeteksi cahaya yang ditranmisikan laser, pada sisi *transmitter*, oleh *receiver* menggunakan *phototransistor*.

Pada System yang dirancang oleh Rahmat Dwi Pargiono [6], Komunikasi suara dapat dilakukan dari ujung ke ujung secara *full duplex* atau dua arah secara bersamaan melalui media laser dengan menggunakan modulasi AM. Sistem ini menggunakan Gagang Pesawat Telepon sebagai masukan beserta keluaran sehingga mempermudah penggunaannya.

Tabel 2.1. Tabel Tinjauan Pustaka

Sistem	Komunikasi	Komunikasi	Arah	Metode yang
Sistem	Audio	Data Komunik		digunakan
Laser communication system [1]	V	-	Satu arah	Modulasi AM
Build a laser communication system [2]	V	-	Satu arah	Modulasi AM
RS-232 laser transceiver [3]	-	V	Dua arah	Komunikasi Serial
Laser communication device [4]	V	-	Satu arah	Modulasi AM
Laser audio transmitter [5]	V	-	Satu arah	Modulasi AM
Sistem Komunikasi Suara Menggunakan Media Transmisi Laser secara Dua Arah Full Duplex dengan Modulasi AM [6]	V	-	Dua arah	Modulasi AM
Sistem yang di usulkan	V	V	Dua arah	Modulasi FM

BAB 3 METODE PELAKSANAAN

3.1. Cara Koleksi Data Awal

Data dikumpulkan dari berbagai sumber yang berkaitan dengan judul PKM, khususnya komunikasi menggunakan laser baik dari *website* maupun dari buku ajar serta Tugas Akhir. Data yang diambil yaitu yang memiliki kesesuaian pada sistem yang kami kembangkan, mulai dari jenis komunikasi, arah maupun metode modulasi yang digunakan.

3.2. Rekayasa Keteknikan

Perancangan pertama dibuat melalui blok diagram sistem secara per-bagian kemudian dijadikan suatu blok diagram sistem yang utuh. Dari perancangan itu, dibuat skematik rangkaiannya dan disimulasikan menggunakan bantuan *software* **proteus**. Selanjutnya simulasi dilakukan, jika berjalan dengan baik maka kemudian dibuat rangkaian uji coba di sebuah *protoboard*. Pada tahap ini, diharapkan uji coba tersebut dapat memberikan hasil yang sama dengan hasil simulasi menggunakan *software*. Tahap selanjutnya, rangkaian yang telah di uji tersebut dibuat rangkaiannya di PCB.

3.3. Cara Uji Keandalan Karya

Sistem komunikasi yang telah dibuat akan diuji dalam beberapa kondisi, yaitu kondisi terbuka dan tertutup. Kondisi terbuka yaitu pengujian dilakukan lapangan terbuka, sedangkan kondisi tertutup dilakukan di dalam ruangan/gedung. Perbedaan kondisi pengujian ini bertujuan untuk menguji kinerja sistem dalam kondisi yang kurang menguntungkan seperti interferensi cahaya tampak secara berlebih. Sistem yang diuji diharapkan mampu ber-operasi sesuai yang diharapkan walaupun dalam kondisi yang kurang baik.

3.4. Teknik Koleksi Data

Data yang dikumpulkan merupakan sinyal keluaran (*output*) dari sinyal masukan (berasal dari *function generator*) yang di transmisikan. Teknik peng-koleksian data dilakukan dengan cara mengambil *sample* pada jarak dan kondisi ruang yang berbedabeda. Sebagai contoh suatu pengirim dan penerima akan diberikan jarak satu-sama lain sejauh 5 meter, 10 meter dan seterusnya sesuai dengan *sample* yang diambil.

3.5. Pengolahan Data

Data hasil sinyal keluaran yang telah didapatkan kemudian akan dibandingkan dengan sinyal asli/masukan menggunakan osiloskop, Dari hasil tersebut dapat dibandingkan kualitas sinyal masukan dengan sinyal keluaran yang telah melalui proses transmisi. Selain itu, hasil sinyal keluaran pun dibandingkan dengan sinyal serupa yang memiliki *sample* jarak dan kondisi ruangan yang berbeda.

3.6. Analisis Data

Data yang telah diperoleh kemudian dianalisis sehingga bisa didapatkan penyebab dari suatu permasalahan yang timbul. Jika suatu sinyal keluaran memiliki nilai yang lebih kecil ketimbang masukan maka akan dianalisa hal apa yang menyebabkan terjadi degradasi kualitas tersebut, jika sebaliknya maka dianalisa pula hal apa yang dapat membantu peningkatan kualitas sinyal tersebut.

BAB IV BIAYA DAN JADWAL KEGATAN

4.1 Anggaran Biaya

Table 4.1. Ringkasan Anggaran biaya

No.	Jenis Pengeluaran	Biaya (Rp)
1	Peralatan penunjang	6,333,000
2	Bahan habis pakai	3,474,000
3	Perjalanan	684,000
4	Lain-lain	1,950,000
	JUMLAH	12,441,000

Terbilang dua belas juta empat ratus empat puluh satu ribu rupiah.

4.2 Jadwal Kegiatan

Tabel 4.2. Jadwal kegiatan penelitian

No	Kegiatan		Waktu Pengerjaan (Minggu)														
110		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Mencari Teori																
	Dasar / Studi																
	Litelatur																
2	Survey Pasar																
	dan Pembelian																
	Alat & Bahan																
3	Perancangan																
	Transceiver																
	LASER pada																
	Protoboard																
4	Perancangan																
	bagian Modulasi																
	(FM Modulasi																
	dan PLL)																
5																	
	Perancangan																
	bagian Data																
	Processing																

			1	1	1	ı			ı	ı		
6	Penggabungan Keseluruhan Sistem dan Uji Coba (Trial and Error)											
7	Perancangan PCB dan Etching											
8	Pemindahan Rangkaian dari Protoboard ke PCB beserta Soldering											
9	Pembuatan dan Pembentukan Casing											
10	Finishing (Merapihkan Rangkaian dan Casing)											

DAFTAR PUSTAKA

- [1]. Chacko, dileep. (2011, Juni 5). *Laser communication system* [online]. Available: http://electronicsforu.com/electronics-projects/hardware-diy/laser-communication-system
- [2]. Smith, Jacob (2015, Oktober 22). *Build a laser communication system* [online]. Available: https://www.allaboutcircuits.com/projects/build-a-laser-communication-system/
- [3]. Electronics Australia (1997, Oktober). *RS-232 laser transceiver*[online]. Available: http://www.qsl.net/n9zia/wireless/laser/laser.htm
- [4]. Mechanical attraction. *Laser communication device[online]*. Available: http://www.instructables.com/id/Laser-Communication-Device-Arduino-Project/?ALLSTEPS
- [5].Liu, jenhal. Zuo, Daniel. *Laser audio* transmitter[online]. Available : https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2009/dyz2_jl589/dyz 2_jl589/
- [6]. Rahmat Dwi Pargiono, "Perancangan dan Realisasi Sistem Komunikasi Suara Menggunakan Media Transmisi Laser secara Dua Arah Full Duplex dengan Modulasi AM", POLBAN, Bandung, IDN, Rep. 000, 2017.

LAMPIRAN 1. Biodata Ketua, Anggota, Dan Dosen Pendamping

Biodata Ketua Pengusul

A. Identitas Diri

1	Nama Lengkap	Imam Abdul Aziz
2	Jenis Kelamin	Laki-Laki
3	Program Studi	D3-Teknik Telekomunikasi
4	NIM	161331017
5	Tempat dan Tanggal Lahir	Bandung 13 Desember 1997
6	E-mail	Imam.a2.te@gmail.com
7	Nomor Telepon/HP	085864980318

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN 1 Karapiak	Ma'had Darul	SMAN 1 Cicalengka
		Arqam	
		Muhammadiyah	
		Garut	
Jurusan			IPA
Tahun Masuk-Lulus	2004-2010	2010-2013	2013-2016

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Sistem Komunikasi Suara dan Data Dua Arah Dengan Media Laser Sebagai Alat Bantu Komunikasi dan Pemberi Tanda Bahaya Dari Korban ke Tim SAR"

Bandung, 18 November 2017 Pengusul,

Imam Abdul Aziz

Biodata Anggota Pengusul

A. Identitas Diri

1	Nama Lengkap	Darul Rahman Wahid
2	Jenis Kelamin	Laki-laki
3	Program Studi	D4 Teknik Telekomunikasi
4	NIM	141344007
5	5 Tempat dan Tanggal Lahir Tasikmalaya, 18 Maret 1996	
6	E-mail	Darul.rahman@ymail.com
7	Nomor Telepon/HP	082119608895

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN	SMPN 1	SMAN 1
	CEUNGCEUM	SINGAPARNA	SINGAPARNA
	JAYA		
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2002-2007	2008-2010	2011-2013

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Sistem Komunikasi Suara dan Data Dua Arah Dengan Media Laser Sebagai Alat Bantu Komunikasi dan Pemberi Tanda Bahaya Dari Korban ke Tim SAR"

Bandung, 18 November 2017 Pengusul,

Darul Rahman Wahid

Biodata Anggota Pengusul

A. Identitas Diri

1	Nama Lengkap	Ghiffari Hendana	
2	Jenis Kelamin	Laki-laki	
3	Program Studi	D4 Teknik Telekomunikasi	
4	NIM	141344013	
5	Tempat dan Tanggal Lahir	Bandung, 3 Maret 1996	
6	E-mail	Ghiffarihendana@gmail.com	
7	Nomor Telepon/HP	08562120039	

B. Riwayat Pendidikan

•			
	SD	SMP	SMA
Nama Institusi	SDPN SABANG	SMPN 35	SMAN 19
		BANDUNG	BANDUNG
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2002-2007	2008-2010	2011-2013

C. Pemakalah Seminar Ilmiah (Oral Presentation)

	No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
Ī	1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	JUARA 1 LIGA UKM BASKET	POLBAN	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Sistem Komunikasi Suara dan Data Dua Arah Dengan Media Laser Sebagai Alat Bantu Komunikasi dan Pemberi Tanda Bahaya Dari Korban ke Tim SAR"

Bandung, 18 November 2017 Pengusul,

Ghiffari Hendana

Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Dr. Eril Mozef, MS, DEA.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP	196504042000021001
5	Tempat dan Tanggal Lahir	Padang, 04 April 1965
6	E-mail	erilmozef@gmail.com
7	Nomor Telepon/HP	08122269339

B. Riwayat Pendidikan

	S1		S2		S3	
Nama Institusi	Universite	Henry	Universite	Henry	Universite	Henry
	Poincare,	Nancy	Poincare,	Nancy	Poincare,	Nancy
	Perancis		Perancis		Perancis	
Jurusan	Teknik Elektro		Teknik Elektro		Teknik Elektro	
Tahun Masuk-Lulus	1989-1992 1992-1994		1994-1997			

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	Real-Time Imaging International Journal, Elsevier eds.	Linear Array Processors with Multiple Access Modes Memory for Real- Time Image Processing -	Cambridge, UK, 2003.
2	UMIST-IEEE 3rd International Workshop on Image and Signal Processing	Real-time connected component labeling on one-dimensional array processors based on Content-Addressable Memory: optimization and implementation	Manchester, United Kingdom, November 1996
3	ISCA-IEEE 9th International Conference on Parallel and Distributed Computing Systems	Design of linear array processors with Content- Addressable Memory for intermediate level vision	Dijon, France, September. 1996
4	IAPR-IEEE 13th International Conference on Pattern Recognition	Parallel architecture dedicated to connected component analysis	Vienna, Austria, August 1996,
5	IAPR International Workshop on Machine Vision Applications.	LAPCAM, Linear Array of Processors using Content- Addressable Memories: A new design of machine vision for parallel image computations	Tokyo, Japan, November, 1996.

6	SPIE International Symposium on Las., Opt., and Vision for Product. In Manufact. II	Parallel architecture dedicated to connected component labelling in O(n log n): FPGA Implementation	Micropolis, Besancon, France, June 1996
7	3eme Journee Adequation Algorithme Architecture en Traitement du Signal et Images	Architecture dediee a l'algorithme parallel O(n log n) d'etiquetage de composantes connexes	Toulouse, France, Januari. 1996
8	International Conference on Quality Control by Artificial Vision	Architecture electronique de traitements d'images binaires: etiquetage et mesures pour le controle en temps reel video	Creusot, France, Mai 1995
9	Mediterranean Conference on Electronics and Automatic Control	Circuit configurables dans le traitement d'images: etiquetage et mesures en temps reel video	Grenoble, France, Sept 1995
10	XVIIème Colloque National de la Commision d'Imagerie Rapide et Photonique	Amelioration de l'Architecture Parallele pour le Traitement d'Image LAPCAM	Strasbourg, France, June 1998
11	Asia-Pacific Conference on Communications (APCC 2002)	Design and Simulation of High Speed Interconnection Network: Orthogonal Addressable Crossbar for LAPCAM Parallel Architecture for Image Processing	Bandung, Indonesia, September 2002
12	IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS 2002)	VHDL Design and Simulation of MAM Memory for LAPCAM Parallel Architecture for Image Processing	Singapore, December 2002
13	IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS 2002)	Linear Array Processors with Multiple Access Modes Memory for Real- Time Image Processing	Singapore, December 2002
14	Seminar on Intelligent Technology and Its Applications (SITIA)	Penghitung Jumlah Objek Bergerak Pada Citra Video Secara Waktu-Nyata	Surabaya, Indonesia, Mei 2002
15	Seminar on Intelligent Technology and Its Applications (SITIA)	Disain dan Simulasi Control Unit dengan VHDL untuk Prosesor Element RISC Arsitektur Paralel	Surabaya, Indonesia, Mei 2002

		Pengolahan Citra LAPCAM	
16	Industrial Electronics Seminar (IES 2002)	Disain dan Simulasi Arithmetic Logic Unit dan File Register untuk Prosesor Element RISC LAPCAM dengan VHDL	Surabaya, Indonesia, October 2002
17	One day Seminar On Science And Technology	LAPCAM: An Optimal Parallel Architecture for Image Processing: Realization and Evaluation	Jakarta, 29 Januari 2001
18	National Conference : Design and Application of Technology 2006	Perancangan dan Simulasi Protokol dan Penerima Serial Untuk Konfigurasi Jaringan Interkoneksi Berkecepatan Tinggi, Orthogonal Adressable Crossbar	Univ. Widya Mandala Surabaya, 29th June 2006,
19	Jurnal ICIS (Indonesian society on Computer and Information Systems)	Implementasi Paralel dan Waktu-Nyata Beberapa Algoritma Prapengolahan Citra dengan Multi- Mikrokontroler RISC	Oktober 2002, Jakarta, Indonesia.
20	Jurnal Teknik Elektro	Sistem Pengolahan Citra Stand-Alone Ekonomis Berbasis Mikrokontroler	Maret 2002, Surabaya, Indonesia
21	Jurnal Teknik Elektro	Memory MAM (Multi- mode Access Memory) untuk Pengolahan Citra Paralel: Prinsip, Aplikasi dan Performansi	September 2002, Surabaya, Indonesia
22	Jurnal Teknik Informatika	Algoritma Labeling Citra Biner Dengan Performansi Optimal Processor-Time	Surabaya, Indonesia
23	Prosiding Ilmu Komputer dan Teknologi Informasi (SNKK3)	Perancangan Pra- Pengolahan Citra Filtering dan Binerisasi Secara Waktu-Nyata dengan Virtual Peripheral	Jakarta, Indonesia, Agustus 2002
24	Prosiding Ilmu Komputer dan Teknologi Informasi (SNKK3)	Arsitektur Paralel Pengolahan Citra dan Performansi Optimal	Jakarta, Indonesia, Agustus 2002
25	Prosiding Ilmu Komputer dan Teknologi Informasi (SNKK3)	Implementasi FPGA Penghitung Objek Video Waktu-Nyata	Jakarta, Indonesia, Agustus 2002

26	Jurnal Spektrum, Politeknik Negeri Bandung	Desain Prosesor Element RISC untuk Arsitektur Paralel Pengolahan Citra	April 2002, Bandung, Indonesia
		LAPCAM	maonesia

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

		T	1
No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Medali Emas, Kategori Robot	Trinity College International Robot	2015
	Beroda (Pembimbing)	Contest, Trinity College, Hardford,	
	_	Connecticut, Amerika Serikat	
2	Medali Perak, Kategori Robot	Trinity College International Robot	2015
	Beroda (Pembimbing)	Contest, Trinity College, Hardford,	
		Connecticut, Amerika Serikat	
3	Medali Emas, Kategori Robot	Trinity College International Robot	2015
	Berkaki (Pembimbing)	Contest, Trinity College, Hardford,	
		Connecticut, Amerika Serikat	
4	Medali Perunggu, Kategori	Trinity College International Robot	2015
	Robot Berkaki (Pembimbing)	Contest, Trinity College, Hardford,	
		Connecticut, Amerika Serikat	
5	Medali Perak, Kategori Open	Robogames, San Mateo, Amerika	2015
	Fire Figting Robot (Beroda)	Serikat	
	(Pembimbing)		
6	Medali Perunggu, Kategori	Robogames, San Mateo, Amerika	2015
	Open Fire Figting Robot	Serikat	
	(Berkaki) (Pembimbing)		
7	Medali Perunggu, Kategori	Robogames, San Mateo, Amerika	2015
	Beam Speeder Robot	Serikat	
	(Pembimbing)		
8	Medali Perak, Kategori Beam	Robogames, San Mateo, Amerika	2015
	Photovore Robot (Pembimbing)	Serikat	
9	Medali Perak, Kategori Open	Robogames, San Mateo, Amerika	2015
	Ribbon Climber Robot	Serikat	
	(Pembimbing)		
10	Medali Perunggu, Kategori	Robogames, San Mateo, Amerika	2015
	Open Table Top Nav (auton)	Serikat	
	Robot (Pembimbing)		
11	Medali Perak, Kategori Robot	Trinity College International Robot	2014
	Berkaki (Pembimbing)	Contest, Trinity College, Hardford,	
		Connecticut, Amerika Serikat	
12	Medali Perunggu, Kategori	Trinity College International Robot	2014
	Robot Berkaki (Pembimbing)	Contest, Trinity College, Hardford,	

		Connecticut, Amerika Serikat	
13	Medali Perunggu, Kategori	Trinity College International Robot	2013
	Robot Berkaki (Pembimbing)	Contest, Trinity College, Hardford,	
		Connecticut, Amerika Serikat	
14	Emas, Kategori Robot Sumo	International Islamic School Robot	2013
	(Pembimbing)	Olympiad, Bandung	
15	Technical Award, Kategori	International Islamic School Robot	2013
	Robot Sumo (Pembimbing)	Olympiad, Bandung	
16	1 Special Award, Kategori	International Robot Olympiad 14th,	2012
	Robot Shove (Pembimbing)	Gwang Ju, Korea Selatan	
17	5 Technical Award, Kategori	International Robot Olympiad 14th,	2012
	Robot Prison Break	Gwang Ju, Korea Selatan	
	(Pembimbing)		
18	Medali Emas, Kategori Energy	International Robot Olympiad 13th,	2011
	Saving Robot (Pembimbing)	Jakarta, Indonesia	
19	Medali Emas, Kategori Energy	International Robot Olympiad 13th,	2011
	Saving Robot (Pembimbing)	Jakarta, Indonesia	
20	2 Medali Perak, Kategori Energy	International Robot Olympiad 13th,	2011
	Saving Robot (Pembimbing)	Jakarta, Indonesia	
21	3 Technical Award, Kategori	International Robot Olympiad 13th,	2011
	Energy Saving Robot	Jakarta, Indonesia	
	(Pembimbing)		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Program Kreativitas Bidang Karsa Cipta (PKM-KC) 2017.

Bandung, 19 Juni 2017 Dosen Pembimbing,

DR. Eril Mozef, MS, DEA

LAMPIRAN 2. Justifikasi Anggaran Kegiatan

1. Peralatan Penunjang

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)	
Toolset Elektronik	Alat perakit	1 set	500,000	500,000	
Multimeter Digital	Alat pengujian	1 set	500,000	500,000	
Osiloskop Portable USB	Alat pengujian	1 set	2,300,000	2,300,000	
Function Generator	Alat pengujian	1 set	1,500,000	2,000,000	
AC to DC Adaptor Variable	Alat pengujian	2 buah	50,000	100,000	
AC to DC Adaptor 5Volt	Alat pengujian	2 buah	40,000	80,000	
Battery Charger	Alat pengujian	1 set	150,000	150,000	
Male 3.5mm Stereo Jack	Komponen alat perakit	2 buah	30,000	60,000	
Female 3.5mm Stereo Jack	Komponen alat perakit	2 buah	30,000	60,000	
Resistor (Varian)	Komponen alat perakit	30 varian	500	15,000	
Potensiometer (Varian)	Komponen alat perakit	10 varian	5,000	50,000	
Kapasitor (Varian)	Komponen alat perakit	10 varian	3,000	30,000	
Dioda Penyearah	Komponen alat perakit	8 buah	1,000	8,000	
Kabel Tembaga	Komponen alat perakit	10 meter	2,000	20,000	
Kabel pelangi (male-to-male)	Komponen alat perakit	5 set	10,000	50,000	
Kabel pelangi (male-to-female)	Komponen alat perakit	5 set	10,000	50,000	
Battery Clip + Holder	Komponen alat perakit	6 buah	20,000	120,000	
Protoboard	Alat Perakitan prototype	6 buah	40,000	240,000	
	JUMLAH				

2. Bahan Habis Pakai

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Laser Diode	Sebagai pemancar sekaligus media transmisi	4 buah	100,000	400,000

Photo Transistor	Sebagai Penerima	4 buah	40,000	160,000
IC Amplifier LM1875T	Untuk penguat audio	4 buah	21,000	84,000
IC PLL CD4046	Untuk modulator dan demodulator FM	4 buah	6,000	24,000
IC Op-Amp LM741	Untuk pre-amp pada mic	4 buah	6,000	24,000
ARDUINO UNO R3 Original Full Set	Untuk pengolahan komunikasi data	2 set	370,000	740,000
LCD 16x2 dan Box Case LCD	Untuk menampilkan data berupa pesan teks	2 buah	80,000	160,000
Keypad	Untuk mengetik pesan	2 buah	100,000	200,000
Microphone	Untuk mengubah suara menjadi sinyal elektrik	2 buah	56,000	112,000
Speaker mini portable	Untuk output dari komunikasi audio	2 buah	100,000	200,000
Toggle Switch	Untuk mengubah mode audio atau pesan teks	2 buah	10,000	20,000
Box case	Casing alat	2 buah	100,000	200,000
Battery 9V Chargeable	Daya untuk laser dan amplifier jika digunakan secara portable	6 buah	100,000	150,000
Battery Li-Po 2S (7,4 Volt)	Daya untuk microcontroller jika digunakan secara portable	2 buah	400,000	800,000
PCB board fiber	Alas komponen	8 buah	20,000	160,000
Spacer	Pengokoh PCB	20 buah	1,000	20,000
Timah	Untuk men- solder komponen di PCB	1 roll	20,000	20,000
	JUMLAH			3,474,000

3. Perjalanan

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Perjalanan ke toko-toko	Survey,	20x2	6,500	260,000

di Bandung	pencarian, dan	liter		
	pembelian alat			
	dan bahan			
Perjalanan ke lokasi	Darakitan dan Hii	20x2		
pengujian disekitar dan	Perakitan dan Uji coba awal	20x2 liter	6,500	260,000
perakitan alat	coba awai	nter		
Perjalanan ke lokasi				
pengujian akhir di	Uji coba akhir	4x4liter	6,500	104,000
Lembang				
Tiket masuk tempat				
pengujian, di gunung	Uji coba akhir	2 orong	20,000	60,000
atau hutan di sekitar	Oji coba akiili	3 orang	20,000	00,000
Lembang				
			SUB TOTAL	684,000

4. Lain-lain

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Tinta Printer	Penyusunan laporan	4 set	40,000	160,000
Kertas HVS A4	Penyusunan laporan	3 rim	30,000	90,000
Penulisan laporan	Untuk pembuatan, penggandaan dll.	1 set	200.000	200,000
Seminar	Untuk penambahan penguasaan materi	3 orang	500,000	1,500,000
	1,950,000			
	TC	TAL KESI	ELURUHAN	12,441,000

LAMPIRAN 3. Susunan Organisasi Tim Pelaksana Dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Imam Abdul Aziz/161331017	D3 Teknik Telekomunikasi	Teknik Elektro	16 Minggu	Modulator dan Demodulator FM
2	Darul Rahman Wahid/141344007	D4 Teknik Telekomunikasi	Teknik Elektro	16 Minggu	Komunikasi Data dan Audio
3	Ghiffari Hendana/141344013	D4 Teknik Telekomunikasi	Teknik Elektro	16 Minggu	Transceiver Laser dan Amplifier

LAMPIRAN 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Imam Abdul Aziz

NIM : 161331017

Program studi : D3-Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal PKM KARSA CIPTA saya dengan judul Sistem Komunikasi Suara dan Data Dua Arah Dengan Media Laser Sebagai Alat Bantu Komunikasi dan Pemberi Tanda Bahaya Dari Korban ke Tim SAR yang diusulkan untuk tahun anggaran 2017 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 18 November 2017

Mengetahui, Yang menyatakan,

Pembantu Direktur Ketua

Bidang Kemahasiswaan,

Meterai Rp6.000 Tanda tangan

Angki Apriliandi Rachmat, SST., M.T.

Imam Abdul Aziz
NIP. 19810425 200501 1 002

NIM. 161331017

LAMPIRAN 5. Gambaran Teknologi Yang Hendak Diterapkembangkan

Gambar 1. Gambaran umum sistem komunikasi laser

Gambar 2. Ilustrasi Pengaplikasian sistem saat terjadi bencana

BLOK DIAGRAM KOMUNIKASI LASER TRANSCEIVER

Gambar 3. Blok diagram keseluruhan sistem