Übungsblatt 01

Angewandte Mathematik

Aufgabe 1

Gegeben ist die Funktion

$$f: \mathbb{R}^4 \to \mathbb{R}$$
$$f(x, y, z, t) = x^2 + z \cdot t \cdot e^y$$

- a) Berechnen Sie den Gradienten im allgemeinen Punkt $(x, y, z, t)^t$.
- b) Berechnen Sie den Gradienten im Punkt $(1,0,1,2)^t$.
- c) Berechnen Sie die Hessematrix H im allgemeinen Punkt $(x, y, z, t)^t$.
- d) Berechnen Sie die Hessematrix H im Punkt $(1,0,1,2)^t$.

Aufgabe 2

Berechnen Sie für die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$f(x,y) = x^2 - 2y^2$$

die Richtungsableitung am Punkt (1,2) in Richtung $h:=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}).$

Aufgabe 3

Warum ist die Funktion $f(x) = e^{|x|}$ nicht differnezierbar in 0.

Aufgabe 4

Gegeben ist der Bereich $A:=\{(x,y)\in\mathbb{R}^2\mid y\neq 0\}$ und die Funktion

$$f: A \to \mathbb{R}$$

$$f(x,y) = \frac{e^x}{y} \ .$$

Berechnen Sie Die Taylorreihe zweiter Ordnung für beliebige Punkte $(a_1, a_2) \in A$.

Aufgabe 5

Gegeben ist der Weg

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$
$$\gamma(t) = (\cos(t), \sin(t))^t$$

und die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $f(x,y) = \sqrt{x^2 + y^2}$.

Berechnen Sie $\frac{d}{dt}(f\circ\gamma)(t)$ mit und ohne Kettenregel.

Aufgabe 6

Berechnen Sie für die Funktionen

$$f: \mathbb{R}^3 \to \mathbb{R}$$

 $f(x, y, z) = 2x^2 + y^4 + 2z^2 + 4yz$

die kritischen Punkte und untersuchen Sie diese auf lokale Maxima, Minima oder Sattelpunkte.

Aufgabe 7

Gegeben sind die Funktionen

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

$$f(u,v) = \begin{pmatrix} u+v \\ u-v \\ u^2+v^2-1 \end{pmatrix}$$

und

$$g: \mathbb{R}^3 \to \mathbb{R}$$
$$g(x, y, z) = x^2 + y^2 + z^2.$$

Berechnen Sie den Gradienten von $f \circ g$.