

Applications of Robotics and Autonomous Systems (APP-RAS)

Project Course Module: 40305, 40889

Lecturer: Prof. Dr. Sahin Albayrak, Dr. Yuan Xu

Theme: Autonomous Driving

Supervisors: Yuan Xu, Philipp Grosenick, Martin Zehetner, Yuchen Liu

start time: 14:15

Contact: yuan.xu@dai-labor.de

Outline

- **►**Introduction
- ► Past projects
- ► Group topics
- **►**Course Details
- ► Next Tasks

Welcome ...

what are we doing ...

Autonomous Driving

Warehouse Automation

Service robots

UAV

What will you learn?

- ▶Robots are the next big thing, automation and collaboration are the biggest part of it.
- Our focus: autonomous cars and driving, from small scale to prototypes and the real car

What are our expectations?

- ► Obtaining reusable results/implementations for our projects
- Building a demonstrator
 - In the end of the class, you will:
 - Have an hands on exp. on perception, prediction and planning
 - Skills for teamwork, project management and reporting, simulation, good C++/Python skills
 - Ability to look at a problem with top-down + bottom-up approach
 - We are starting from a use-case

Applications of Robotics and Autonomous Systems

Autonomous Driving Introduction

Software Architecture

Autonomous Driving Test Platforms

Bear Car

Bear Cars

BEAR 3 CAR

Applications of Robotics and Autonomous Systems

Group Topics

Applications of Robotics and Autonomous Systems

Course Details

Course Details

- ► Project Course Module: 40305, 40889
- ► 9 ECTS (2h lecture + 16h remote)
- ► Status meetings: Wed 14:00-16:00 TEL
- ►All materials on the course ISIS page

- ►Max. 5 students / group (survey, selection)
- ► Enrollment via MOSES
- **►**Communication via SLACK
- ► Weekly meeting: attendance mandatory

Course Details - Grading

- **▶**35% Design, Implementation and Testing
- **▶30% Presentations** (M1, M2, M3)
- **▶10% Documentation** (Final report)
- ▶25% Individual Contribution: Attendance, Active Participation, Performance

Course Details - Preliminary Timeline

Date Agenda (NOTE: Due to the current situation, the plan may change!)

W1: (today) Welcome, introduction, course details, Use-Case and overall topics

W2 groups, possible work-division

W5 or W6 M1: Presentation (obj, motives, arch., specs)

W7 - W16 SPRINTS

W11 or W12 M2 (middle term status update)

W17 (last week) M3 (Final Presentation)

W18 / W19 Last day of Final Report and code submission

Course Details - Core Deliverables

►M1: Project Planning

- Literature review, specific use-cases, objectives (goals)
- System architecture(comp. and data flow), possible methods, test cases, timeline
- ►M2: Status Update: Status of the progress, achievements, changes in the plan, demonstration of target system for M2
 - ►M3: Final Presentation (~15 mins): Motivation, clear objectives, method, demonstration, results

►Final Submission:

- Code, data etc.
- **Final Report** (8+ pages):Same content of FP but details, results (numerical, statistical etc.), discussion

Next Tasks

- Please make a final decision: the next week we will start grouping
 - Please fill out the short survey:
 - Select your desired topic(s)
 - Please be advised from the readings / links under the slides
 - (Optional) tell us about your expectations and ideas too!
 - Announcing the groups next week!
 - ► Enrollment via MOSES but not urgent, after the next week!
 - ► Please decide till the end of this week! We will team up

Thank you for your interest!

