🙎 Formula, justifica y usa el teorema de Pitágoras para resolver

🛂 Usa las funciones trigonométricas para resolver problemas geo-

métricos con aplicación en la vida diaria.

problemas.

Soluciones propuestas

 3° de Secundaria Unidad 3 2024-2025

Practica la Unidad 3

Nombre del alumno: Fecha:													
Aprendizajes:			Puntuación:										
Comprende las series y sucesiones cuadraticas y geométricas y sus respectivas formulaciones algebraicas.	Pregunta	1	2	3	4	5	6	7	8	9	10	11	
	Puntos	6	3	3	3	3	3	3	3	3	3	6	
	Obtenidos												
Reconoce y aplica los principales productos notables y su interpretación geométrica.	Pregunta	12	13	14	15	16	17	18	19	20	21	Total	
	Puntos	6	6	12	10	3	3	3	6	6	6	100	
Resuelve problemas mediante la formulación y la solución algebraica de ecuaciones cuadráticas.	Obtenidos												

Ín	dice		3.	Ecuaciones cuadráticas	6
1.	Sucesiones cuadráticas y geométricas 1.1. Sucesión cuadrática 1.2. Completando la sucesión cuadrática 1.3. Término general 1.4. Sucesión geométrica 1.5. Razón de una sucesión geométrica	2 2 3 3 3 4	4.		6 6 7 8 8 10 11
2.	Productos notables 2.1. Binomios conjugados	4 4 5 5	5.	5.1. Identificando lados	11 12 13 14 15

Teorema de Pitágoras

El cuadrado de la hipotenusa c es igual a la suma de los cuadrados de los catetos a y b, como se muestra a continuación:

$$a^2 + b^2 = c^2$$

La Hipotenusa

La **hipotenusa** es el lado más largo y está enfrente del ángulo recto (ver Figura). Los dos catetos son los lados más cortos que forman el ángulo recto:

Ecuación cuadrática

Una ecuación cuadrática completa en una variable es una ecuación del tipo

$$ax^2 + bx + c = 0 \tag{1}$$

donde a, b v c son números reales v $a \neq 0$. Las soluciones a una ecuación cuadrática son:

$$x = \frac{-b \pm \sqrt{\delta}}{2a}$$
 donde, $\delta = b^2 - 4ac$

que se pueden escribir en una sola expresión:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

El discriminante δ es un parámetro que indica cuantas soluciones tiene una ecuación cuadrática:

Número de soluciones =
$$\begin{cases} 2 & \text{si } \delta > 0 \\ 1 & \text{si } \delta = 0 \\ 0 & \text{si } \delta < 0 \end{cases}$$

1 Sucesiones cuadráticas y geométricas

1.1 Sucesión cuadrática

Ejemplo 1

Escribe los primeros 4 términos de las siguientes sucesiones cuadráticas:

$$2n^2 + 5n + 2$$

$$9,20,35,54$$
 b n^2+5n

6, 14, 24, 36

$$n = 1 2(1)^2 + 5(1) + 2 = 9$$

$$n = 2 2(2)^2 + 5(2) + 2 = 20$$

$$n = 3 2(3)^2 + 5(3) + 2 = 35$$

$$n = 4 2(4)^2 + 5(4) + 2 = 54$$

$$n = 1 (1)^2 + 5(1) = 6$$

$$n = 2 (2)^2 + 5(2) = 14$$

$$n = 3 (3)^2 + 5(3) = 24$$

$$n = 4 (4)^2 + 5(4) = 36$$

Ejercicio 1 de 6 puntos

Escribe los primeros 4 términos de las siguientes sucesiones cuadráticas:

$$a$$
 $2n^2$

$$2,8,18,32$$
 b $5n^2+2n$

c
$$n^2 - 6n$$

$$n = 1$$
 $2(1)^2 = 2$
 $n = 2$ $2(2)^2 = 8$
 $n = 3$ $2(3)^2 = 18$
 $n = 4$ $2(4)^2 = 32$

$$\begin{vmatrix} n = 1 & 5(1)^2 + 2(1) = 7 \\ n = 2 & 5(2)^2 + 2(2) = 24 \\ n = 3 & 5(3)^2 + 2(3) = 51 \\ n = 4 & 5(4)^2 + 2(4) = 88 \end{vmatrix}$$

$$n = 1 (1)^2 - 6(1) = -5$$

$$n = 2 (2)^2 - 6(2) = -8$$

$$n = 3 (3)^2 - 6(3) = -9$$

$$n = 4 (4)^2 - 6(4) = -8$$

- 1.2 Completando la sucesión cuadrática
- 1.3 Término general

Ejemplo 2

Determina el término general de las siguientes sucesiones cuadráticas:

a 8, 15, 24, 35, . . .

b 6, 9, 14, 21, . . .

$$n^2 + 4n + 3$$

 $n^2 + 5$

Ejercicio 2 de 3 puntos

Determina el término general de las siguientes sucesiones cuadráticas:

a 4, 10, 18, 28, . . .

b 0, 3, 8, 15, . . .

c 1, 13, 33, 61, ...

$$n^2 + 3n$$

 $n^2 - 1$

 $4n^2 - 3$

1.4 Sucesión geométrica

Ejemplo 3

Escribe los primeros 4 términos de las siguientes sucesiones geométricas:

 $\mathbf{a} \quad a_n = -\left(\frac{1}{5}\right)^{n-1}$

b $a_n = 4(2)^{n-1}$

 $-1, -\frac{1}{5}, -\frac{1}{25}, -\frac{1}{125}$

4, 8, 16, 32

Ejercicio 3

de 3 puntos

Escribe los primeros 4 términos de las siguientes sucesiones geométricas:

- $a_n = (-2)^{n-1}$
- **b** $a_n = (4)^{n-1}$

 $a_n = 2(5)^{n-1}$

1, -2, 4, -8

1, 4, 16, 64

2, 10, 50, 250

1.5 Razón de una sucesión geométrica

Ejemplo 4

Determina la razón de las siguientes sucesiones geométricas:

 $3, \frac{3}{4}, \frac{3}{16}, \frac{3}{64}, \dots$ $r = \frac{1}{4}$

- **b** $3, \frac{6}{5}, \frac{12}{25}, \frac{24}{125}, \dots$ $r = \frac{2}{5}$
- Ejercicio 4 de 3 puntos

Determina la razón de las siguientes sucesiones geométricas:

- **a** $10, 4, \frac{8}{5}, \frac{16}{25}, \dots$ $r = \frac{2}{5}$ **b** $24, -12, 6, -3, \frac{3}{2}, \dots$ $r = \frac{1}{2}$ **c** $6, 9, \frac{27}{2}, \frac{81}{4}$ $r = \frac{3}{2}$

- 2 Productos notables
- 2.1 Binomios conjugados

Ejemplo 5

Desarrolla los siguientes productos notables:

 $(x-15)(x+15) = x^2-225$

b $(9x-1)(9x+1) = 81x^2 - 1$

Ejercicio 5

Desarrolla los siguientes productos notables:

$$(x+7)(x-7) = x^2 - 49$$

b
$$(x-12y)(x+12y) = x^2 - 144y^2$$

a
$$(x+7)(x-7) = x^2 - 49$$
 b $(x-12y)(x+12y) = x^2 - 144y^2$ **c** $(10x - 9y)(10x + 9y) = 100x^2 - 81y^2$

de 3 puntos

2.2 Binomios con término común

Ejemplo 6

Desarrolla los siguientes productos notables:

$$(x-5)(x-6) = x^2 - 11x + 30$$

b
$$(x+4)(x+6) = x^2 + 10x + 24$$

Ejercicio 6

de 3 puntos

Desarrolla los siguientes productos notables:

$$(x-2)(x+6) = x^2 + 4x - 12$$

b
$$(x+6)(x-10) = x^2 - 4x - 60$$

a
$$(x-2)(x+6) = x^2 + 4x - 12$$
 b $(x+6)(x-10) = x^2 - 4x - 60$ **c** $(x-9)(x-2) = x^2 - 11x + 18$

2.3 Binomio al cuadrado

Ejemplo 7

Desarrolla los siguientes binomios al cuadrado:

b
$$(x+3)^2 = x^2 + 6x + 9$$

Ejercicio 7

de 3 puntos

Desarrolla los siguientes binomios al cuadrado:

$$(x+7y)^2 = x^2 + 14xy + 49y^2$$

b
$$(x-9)^2 = x^2 - 18x + 81$$

a
$$(x+7y)^2 = x^2 + 14xy + 49y^2$$
 b $(x-9)^2 = x^2 - 18x + 81$ **c** $(6x+5y)^2 = 36x^2 + 60xy + 25y^2$

2.4 Binomios de la forma (mx+a)(nx+b)

Ejemplo 8

Desarrolla los siguientes productos notables:

$$(4x-3)(2x+9) = 8x^2 + 30x - 27$$

b
$$(3x-5)(3x+6) = 9x^2 + 3x - 30$$

Ejercicio 8

de 3 puntos

Desarrolla los siguientes productos notables:

$$(3x-3)(2x-8) = 6x^2 - 30x + 24$$

$$(4x-1)(3x+2) = 12x^2 + 5x - 2$$

a
$$(3x-3)(2x-8) = 6x^2 - 30x + 24$$
 b $(4x-1)(3x+2) = 12x^2 + 5x - 2$ **c** $(3x-3)(2x-8) = 8x^2 + 30x - 27$

2.5 Binomio al cubo

Ejemplo 9

Desarrolla los siguientes binomios al cubo:

$$(5x - 2y)^3 = 125x^3 - 150x^2y + 60xy^2 - 8y^3$$

b
$$(x-4)^3 = x^3 - 12x^2 + 48x - 64$$

Ejercicio 9

de 3 puntos

Desarrolla los siguientes binomios al cubo:

$$(x-3)^3 = x^3 - 9x^2 + 27x - 27$$

a
$$(x-3)^3 = x^3 - 9x^2 + 27x - 27$$
 b $(2x+5)^3 = 8x^3 + 60x^2 + 150x + 125$ **c** $(3x-4)^3 = 27x^3 - 108x^2 + 144x - 64$

$$(3x-4)^3 = 27x^3 - 108x^2 + 144x - 6$$

3 Ecuaciones cuadráticas

3.1 Discriminante

Ejemplo 10

Calcula el discriminante y el número de soluciones que tienen cada una de las siguientes equaciones cuadráticas:

- $25x^2 10x + 1$
- d=0, Soluciones: 1
- **b** $3x^2 + 8x 9$
- d=172, Soluciones: 2

$$d = b^2 - 4ac$$

$$d = (-10)^2 - 4(25)(1)$$

$$d = 100 - 100$$

$$d = 0$$

$$d = b^2 - 4ac$$

$$d = (8)^2 - 4(3)(-9)$$

$$d = 64 + 108$$

$$d = 172$$

Ejercicio 10 de 3 puntos

Calcula el discriminante y el número de soluciones que tienen cada una de las siguientes equaciones cuadráticas:

- $x^2 + 14x + 49$
- Soluciones: 1
- **b** $x^2 5x$
- Soluciones: 2
- $3x^2 + 7x + 13$
- Soluciones: 0

$$d=0$$

$$d=25$$

$$d = -107$$

3.2 Ecuaciones cuadráticas incompletas

Ejemplo 11

Resuelve las siguientes ecuaciones cuadráticas:

 $4x^2 - 7x = 0$

$$0 = 4x^2 - 7x$$

$$0 = x(4x - 7)$$

$$\therefore x_1 = 0 \text{ y } x_2 = \frac{7}{4}$$

b $3x^2 - 4x = 0$

$$0 = 3x^2 - 4x$$

$$0 = x(3x - 4)$$

$$\therefore x_1 = 0 \text{ y } x_2 = \frac{4}{3}$$

Ejercicio 11 de 6 puntos

Resuelve las siguientes ecuaciones cuadráticas:

$$x^2 + 9x = 0$$

b
$$x^2 - 49 = 0$$

$$x^2 + 4x = 0$$

$$0 = x^2 + 9x$$
$$0 = x(x+9)$$

$$\therefore x_1 = -9 \text{ y } x_2 = 0$$

$$0 = x^2 - 49$$

$$49 = x^2$$

$$\sqrt{49} = x$$

$$\pm 7 = x$$

$$\therefore x_1 = -7 \text{ y } x_2 = 7$$

$$0 = x(x+4)$$

 $\therefore x_1 = -4 \text{ y } x_2 = 0$

 $0 = x^2 + 4x$

3.3 Ecuaciones cuadráticas completas

Ejemplo 12

Resuelve las siguientes ecuaciones cuadráticas:

$$x^2 - 13x + 30 = 0$$

b
$$x^2 + 2x - 63 = 0$$

$$x_{1, 2} = \frac{-(-13) \pm \sqrt{(-13)^2 - 4 \cdot 1 \cdot 30}}{2 \cdot 1}$$

$$x_{1, 2} = \frac{-(-13) \pm 7}{2 \cdot 1}$$

$$x_{1} = \frac{-(-13) + 7}{2 \cdot 1} = 10$$

$$x_{2} = \frac{-(-13) - 7}{2 \cdot 1} = 3$$

$$x_{1, 2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-63)}}{2 \cdot 1}$$

$$x_{1, 2} = \frac{-2 \pm 16}{2 \cdot 1}$$

$$x_{1} = \frac{-2 + 16}{2 \cdot 1} = 7$$

$$x_{2} = \frac{-2 - 16}{2 \cdot 1} = -9$$

Ejercicio 12 de 6 puntos

Resuelve las siguientes ecuaciones cuadráticas:

$$x^2 - 3x - 40 = 0$$

$$x^2 - 2x - 15 = 0$$

$$x_1 = -5, x_2 = 8$$

$$x_1 = -3, x_2 = 5$$

$$x_1 = -\frac{3}{4}, x_2 = -\frac{2}{5}$$

b
$$x^2 - 3x - 28 = 0$$

f
$$4x^2 + 5x - 6 = 0$$

$$x_1 = -4, x_2 = 7$$

$$x_1 = -\frac{1}{2}, x_2 = 5$$

$$x_1 = -2, x_2 = \frac{3}{4}$$

4 Teorema de Pitágoras

4.1 Hallando la hipotenusa y catetos

Ejemplo 13

En los siguientes triángulos rectángulos, calcula el lado x que falta:

x = 38.11

x = 21.54

a

$$c^2 = a^2 + b^2$$

$$44^2 = 22^2 + x^2$$

$$44^2 - 22^2 = x^2$$

$$\sqrt{44^2 - 22^2} = x$$

$$38.11 \simeq x$$

$$c^2 = a^2 + b^2$$

$$x^2 = 8^2 + 20^2$$

$$x^2 = 64 + 400$$

$$x = \sqrt{464}$$

$$x \simeq 21.54$$

b

е

Ejercicio 13 de 6 puntos

En los siguientes triángulos rectángulos, calcula el lado \boldsymbol{x} que falta:

a x =

b

x =

x =

d

x =

4.2 Áreas y perímetros

4.3 Resolución de problemas

Ejemplo 15 Resuelve los siguientes problemas: O Desde la ventana de una torre en la playa se ve un b Calcula la altura de un triángulo isósceles cuya base barco a 85 metros, cuando realmente se encuentra a mide $12~\mathrm{cm}$ y sus lados iguales miden $25~\mathrm{cm}$. $84~\rm metros$ de la torre. ¿A qué altura está la ventana? 13 24.26

Ejercicio 15	de 10 puntos
Resuelve los siguientes problemas: © En una rampa, un ciclista avanza una distancia real de 85 de 78 metros. ¿Cuál es la altura de la rampa?	metros mientras que avanza una distancia horizontal
33.77	
b La altura de una portería de fútbol es de 2.4 metros y la gol es de 10.8 metros, ¿qué distancia recorre un balón si se más alta de la portería?	
11.06	

5 Trigonometría

5.1 Identificando lados

5.2 Identificando funciones

5.3 Encontrando lados

Ejemplo 18

Usando la función trigonométrica correcta, encuentra el valor de los lados x, para cada uno de los siguientes ejercicios:

Ejercicio 19

a

de 6 puntos

Usando la función trigonométrica correcta, encuentra el valor de los lados x, para cada uno de los siguientes ejercicios:

x = 26.29

5.4 Encontrando ángulos

Ejemplo 19

Usando la función trigonométrica correcta, encuentra el valor de los ángulos x, para cada uno de los siguientes ejercicios:

x = 13.13

Ejercicio 20

sando la función trigonométrica correcta, encuentra el valor de los ángulos x, para cada uno de los siguientes ejercicios:

b

x = 59.42

de 6 puntos

5.5 Resolución de problemas

Ejemplo 20

Resuelve los siguientes problemas:

el piloto de un avión debe aproximarse a la pista de aterrizaje con un ángulo de 7° con respecto a la horizontal. Si vuela a una altura de 8,000 metros, ¿a qué distancia de la pista debe iniciar su descenso?

b El sonar de un barco de salvamiento localiza los restos de un naufragio en un ángulo de depresión de 40°. Un buzo es bajado 40 metros hasta el fondo del mar, ¿cuánto necesita avanzar el buzo por el fondo para encontrar los restos del naufragio?

65154.77

47.67

Ejercicio 21

de 6 puntos

Resuelve los siguientes problemas:

• Cuando el sol se encuentra a 20° sobre el horizonte, ¿cuánto medirá la sombra proyectada por un edificio de 50 m de altura?

137.37

b Una escalera de extensión de 7.62 metros recargada contra un edificio forma un ángulo de 70° con el suelo. ¿A qué altura del edificio llega la escalera?

7.16

C La diagonal de un rectángulo mide 8.25 cm y el menor de sus lados mide 3.14 cm. Calcula el ángulo formado por la diagonal y el lado mayor del rectángulo.

22.33