2024/10/16(水)

参考問題

- 1. $v_r = \dot{r}, v_{\omega} = r\dot{\varphi}$ であることを図を書いて説明せよ。
- 2. $x = r\cos\varphi, y = r\sin\varphi$ と極座標表示を行う。ここで r, φ は時間の関数であることに注意し、x, y を時間で 微分することにより、 v_x, v_y を r, φ などを用いて表せ
- 3. 運動エネルギーKが $\frac{1}{2}m(\dot{r}^2+r^2\dot{\varphi}^2)$ であることを示せ。

4.

$$a_r = a_x \cos \varphi + a_y \sin \varphi, a_\varphi = -a_x \sin \varphi + a_y \cos \varphi$$

であることを説明せよ。

- 5. a_r, a_{φ} を r, φ などを用いて表せ。
- 6. 中心力の場合、 φ 方向には力をうけないため、 $m(2\dot{r}\dot{\varphi}+r\ddot{\varphi})=0$ となる。 $h=r^2\dot{\varphi}$ は一定であることを示せ。(ヒント $\frac{d}{dt}(r^2\dot{\varphi})$ を計算せよ。)
- 7. 面積速度は $\frac{1}{2}r^2\frac{d\varphi}{dt}$ となることを説明せよ。
- 8. 質量 M の太陽からの万有引力を受けて質量 m の天体が運動している。 万有引力定数を G とし、 $h=r^2\dot{\varphi}$ とする。ポテンシャルエネルギー U は $-\frac{GMm}{r}$ であり、天体のエネルギー E は運動エネルギー K とポテンシャルエネルギー U の和である。E を m,r,\dot{r},h などを用いて表わせ。
- 9. $E = \frac{1}{2}m\dot{r}^2 + W(r)$ と書き直す。ある h(h>0) に対し、有効ポテンシャル W(r) を縦軸にr を横軸にとり概形をプロットせよ。惑星のエネルギーを E<0 としたとき、r が取りうる範囲を図示せよ。
- 10. W(r) の極小値を与える r_0 を求めよ。このとき、惑星の軌道はどのようになるか?

課題

- 1. v_x, v_y を r, φ が時間の関数として時間で微分することにより $\frac{dv_x}{dt}, \frac{dv_y}{dt}$ を r, φ などを用いて表せ。
- 2. $mk/r^2(k>0)$ の中心力を受けて運動している場合の粒子が存在する。ただし、 m は粒子の質量である。 運動に対する有効ポテンシャルを求め、横軸 r に対して概形を示せ。粒子が最も原点に近づく時の距離を r_{\min} とする。この粒子のエネルギーを m, r_{\min}, h, k などを用いて表せ。