Package 'multifractal'

May 16, 2022

Type Pa	ckage				
Title Mu	ultifractal and Surrogate Analysis				
Version	1.0.0				
Author	Author Wolfgang Schadner				
Maintai	ner Wolfgang Schadner <wolfgang.schadner@unisg.ch></wolfgang.schadner@unisg.ch>				
tio	Description The package provides functions for performing improved MF-DFA analysis, simulation of multifractal signals and surrogate algorithms (IAAFT, IAAWT) for testing the significance of multifractality.				
License	GPL-2 GPL-3				
Encodin	g UTF-8				
LazyDat	ta true				
Imports	waveslim, pracma, grDevices				
R topi	ics documented:				
	ffGn iaaft iaawt iocalH mfdfa mfsim significance				
Index	1				
ffGn	Fast Fractional Gaussian Noise				
Descript	ion				
A fa	st algorithm for simulating fractal Gaussian noise.				
Usage					
	n(n=1000, H=0.5, mu=0, sigma=1)				

2 iaaft

Arguments

n length of the simulated series.

H a numeric value within 0 and 1 denoting the Hurst exponent. This describes the

persistence (i.e., level of linear auto-correlation). Above 0.5 is persistent, below

0.5 is anti-persistent.

mu mean value of the series.

sigma standard deviation of the series.

Value

Returns a series of simulated fractal Gaussian noise.

Note

Translated from Matlab into R. Original Matlab code by B. Scott Jackson.

Author(s)

Wolfgang Schadner

References

Mandelbrot, B. B., Fisher, A. J., & Calvet, L. E. (1997). A multifractal model of asset returns.

See Also

```
mfsim, mfdfa
```

Examples

```
x <- ffGn(H=0.8)
# fractal Brownian motion:
B <- cumsum(x)
plot(B)</pre>
```

iaaft

Iterated Amplitude Adjusted Fourier Transform

Description

Performs the iterated amplitude adjusted Fourier transformation (IAAFT) upon a time-series x.

Usage

```
iaaft(x, xdist=x, N=1, ...)
```

iaaft 3

Arguments

x a numeric vector containing the values of the time-series.

xdist a numeric vector containing the values of the distribution to match. Default is

set to xdist=x.

N number of surrogates to create. Default is 1.

... additional parameters to control for accuracy.

Details

The algorithm can be used to remove a time-series' x non-linear correlation structure (multi-fractality) while keeping the degree of linear correlation (persistence). It can further transform \itemx to match any empirical distribution xdist.

Value

Returns a numeric vector of the surrogated time-series.

Note

Code is based on Henning Rust (2006).

Author(s)

Wolfgang Schadner

References

T. Schreiber and A. Schmitz (2000), Surrogate time series, *Physica D*, 142, pp.346-382.

See Also

iaawt

Examples

```
n <- 1000
# random normal variable with positive auto-correlation:
x <- sort(rnorm(n))
# random variable from t-distribution:
y <- rt(n, 5)
z <- iaaft(x, y)</pre>
```

4 iaawt

iaawt

Iterated Amplitude Adjusted Wavelet Transform

Description

Performs the iterated amplitude adjusted Wavelet transformation (IAAWT) upon a time-series x. The algorithm was translated from Chris Keylock's Matlab code into R.

Usage

```
iaawt(x, xdist=x, N=1, ...)
```

Arguments

x a numeric vector containing the values of the time-series.

xdist a numeric vector containing the values of the distribution to match. Default is

set to xdist=x.

N number of surrogates to create. Default is 1.

... other parameters to control for the accuracy.

Details

The algorithm can be used to randomize a time-series x phase while keeping the non-linear correlation structure (point-wise Hölder regularity). It can further transform x to match any empirical distribution xdist.

Value

Returns a numeric vector or matrix of the surrogated time-series.

Note

Translated from Matlab into R. Original Matlab code by Chris Keylock.

Author(s)

Wolfgang Schadner

References

Keylock, C. J. (2017), Multifractal surrogate-data generation algorithm that preserves pointwise Holder regularity structure, with initial applications to turbulence, *Physical Review E*, 95(3), 032123.

See Also

iaaft

localH 5

Examples

```
n <- 1000
# random normal variable with positive auto-correlation:
x <- sort(rnorm(n))
# random variable from t-distribution:
y <- rt(n, 5)
z <- iaawt(x, y)</pre>
```

localH

Local Hurst Exponent

Description

Estimates the local Hurst exponent based on Ihlen and Vereijken (2014). This measures the current, temporal degree of persistence. A value larger 0.5 means positive auto-correlation and below 0.5 describes negative auto-correlation.

Usage

```
localH(x, mdl, scale=5:21, m=1, align="center")
```

Arguments

Х	a numeric vector containing the values of the time-series.
md1	an object of class multifractal estimated from the function mfdfa.
scale	an integer vector containing the time scales. These should be small to capture local correlation behavior, i.e. the current degree of persistence.
m	an integer representing the polynomial order of detrending, $m=1$ defines linear detrending.
align	specifies the alignment within the estimation windows. Possible values are 'center', 'left' or 'right'.

Details

The intertemporal persistence is estimated from the interpolating routine of Ihlen and Vereijken (2014). The multifractal model should be estimated in a first step using mfdfa.

Value

Returns a two-column matrix of local Hurst exponent and related interquartile range.

Author(s)

Wolfgang Schadner

References

Ihlen E. A. F., & Vereijken B. (2014). Detection of co-regulation of local structure and magnitude of stride time variability using a new local detrended fluctuation analysis. *Gait Posture*, 39(1), p.466-471.

6 mfdfa

See Also

mfdfa

Examples

```
n <- 1024
# random t-distributed variable:
x <- rt(n, 3)
mdl <- mfdfa(x, overlap=T)
Ht <- localH(mdl)
plot(Ht)</pre>
```

mfdfa

Multifractal Detrended Fluctuation Analysis

Description

Performs the multifractal detrended fluctuation analysis upon a time-series x. Allows the improvement of overlapping windows.

Usage

```
mfdfa(x, scale=NA, q=-5:5, m=1, overlap=FALSE)
```

Arguments

X	a numeric vector containing the values of the time-series.
scale	an integer vector containing the time scales. It is recommended to use a log-equally spaced sequence for scale, for example via the function $logseq()$. When set to NA then it is calculated as $scale = round(logseq(from=32,to=length(x)/10,n=20))$.
q	a numeric vector containing values of moment orders.
m	an integer representing the polynomial order of detrending, m=1 defines linear detrending.
overlap	a boolean indicating if using overlapping windows or not. If set to TRUE then

the estimation is more robust and reliable, if set to FALSE then the computational time is faster.

Details

The algorithm allows a basic but also improved (overlapping windows) estimation of a time-series' multi-scaling characteristica. It comes with the methods plot() and print() to easily visualize/access the multifractal spectra and statistics. The function significance() allows to easily test the significance of multifractality.

Value

Returns an object of class multifractal containg multifractal statistics and more.

mfsim 7

Author(s)

Wolfgang Schadner

References

Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. *Physica A: Statistical Mechanics and its Applications*, 316(1-4), 87-114.

See Also

```
significance
```

Examples

```
n <- 1024
# random t-distributed variable:
x <- rt(n, 3)
mdl <- mfdfa(x, overlap=T)
plot(mdl)
significance(mdl)</pre>
```

mfsim

Simulation of Multifractal Brownian Motion

Description

Simulates a multifaractal Brownian motion based on Mandelbrot's "Multifractal Model of Asset Returns" (MMAR) using a lognormal cascade.

Note: the series has a length of b^k .

Usage

```
mfsim(b=2, k=10, H=0.5, mu=0, sigma=1)
```

Arguments

b	an integer representing the number of subdivision (i.e., 2 for the binomial model).
k	an integer representing the number of iterations. Note: the series has a length of b^k .
Н	a numeric value within 0 and 1 denoting the Hurst exponent. This describes the persistence (i.e., level of linear auto-correlation). Above 0.5 is persistent, below 0.5 is anti-persistent.
mu	the mean value of the normal cascade.
sigma	the standard deviation of the normal cascade.

Value

Returns a simulated multifractal series.

8 significance

Note

Translated from Matlab into R. Original Matlab code by Christian Wengert.

Author(s)

Wolfgang Schadner

References

Mandelbrot, B. B., Fisher, A. J., & Calvet, L. E. (1997). A multifractal model of asset returns.

See Also

```
mfdfa, ffGn
```

Examples

```
# multifractal B.M.:
B <- mfsim()
plot(B)

# multifractal noise:
r <- diff(B) # e.g., stock returns</pre>
```

significance

Significance of MF-DFA

Description

Tests the significance of multifractality for an object of class multifractal based on iaaft surrogates.

Usage

```
significance(model, size, pval, ...)
```

Arguments

mdl an object of class multifractal. See mfdfa for further details.

size a numeric value indicating the number of surrogates.

pval a numeric value indicating the confidence level (p-value). Default is 0.05, i.e.

95% confidence.

Details

The significance of multifractality is computed by creating IAAFT surrogates and computing the corresponding multifractal spreads. The surrogates have same distribution, length and linear-correlation as the original series but are not exposed to multifractality. Therfore, the spread as computed on the surrogates represent the spourious degree of multifractality.

significance 9

Value

Returns a matrix of the original and spourious spreads of Hurst and Holder exponents.

Author(s)

Wolfgang Schadner

See Also

mfdfa

Examples

```
n <- 1024
# random t-distributed variable:
x <- rt(n, 3)
mdl <- mfdfa(x, overlap=T)
plot(mdl)
significance(mdl)</pre>
```

Index