Кот ученый

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Математическая Статистика (/Subjects/Details?id=5)

Тема

Метод максимального правдоподобия (/Topics/Details?id=31)

Раздел

Введение в ММП (/SubTopics/Details?id=109)

Дата публикации

08.01.2022

Дата последней правки

08.01.2022

Последний вносивший правки

sobody

Рейтинг

Условие

Каждый день кот ученый мяукает до тех пор, пока его не покормят. Вероятность того, что кота покормят после очередного "мяу", не зависит от числа изданных ранее "мяу" и всегда равняется $p \in (0,1)$. Ученый кот собрал выборку из количества мяуканий, которые ему пришлось произвести прежде, чем его покормили. Помогите ученому коту:

- 1. Оценить параметр p при помощи метода максимального правдоподобия.
- 2. Найти асимптотическое распределение ММП оценки параметра p.
- 3. Получить ММП оценку вероятности того, что ученого кота покормят раньше, чем он успеет трижды мяукнуть.
- 4. Найти асимптотическое распределение найденной в предыдущем пункте оценки, а также ее асимптотическую дисперсию и ее оценку.
- 5. По выборке из n=1000 наблюдений оказалось, что $\overline{x}_n=5$. Найдите, приблизительно, вероятность того, что оценка найденной в предыдущих пунктах вероятности превысит 0.35.

Решение

1. Поскольку в данном случае речь идет о выборке из геометрического распределения, то при $t \in \{1, 2, 3, \dots\}$ получаем:

$$P(X_1 = t) = (1 - p)^{t-1}p$$

Пользуясь соответствующей функций вероятностей запишем функцию правдоподобия:

$$L(p;x)=\prod_{i=1}^n (1-p)^{x_i-1}p$$

Логарифм функции правдоподобия имеет вид:

$$\ln L(p;x) = n \ln(p) + \ln(1-p) \sum_{i=1}^n (x_i-1)$$

В соответствии с условиями первого порядка:

$$rac{d\ln L(p;x)}{dp}=rac{n}{p}-rac{\sum\limits_{i=1}^{n}(x_i-1)}{1-p}=0$$

Решая данное равенство получаем точку, подозреваемую на максимум:

$$p^*=rac{1}{\overline{x}_n}$$

Покажем, что функция правдоподобия является вогнутой, рассмотрев условия второго порядка:

$$\frac{d^2 \ln L(p;x)}{d^2 p} = -\frac{n}{p^2} - \frac{\sum\limits_{i=1}^n (x_i-1)}{(1-p)^2} = n \left(\frac{1}{(1-p)^2} - \frac{1}{p^2} \right) - \frac{n\overline{x}_n}{(1-p)^2} \leq n \left(\frac{1}{(1-p)^2} - \frac{1}{p^2} \right) - \frac{n \times 1}{(1-p)^2} = -\frac{n}{p^2} < 0$$

Из полученного результата следует, что ММП оценка имеет следующий вид:

$${\hat p}_n = rac{1}{\overline{X}_n}$$

2. Сперва найдем информацию Фишера:

$$\ln L(p; X_1) = \ln(p) + \ln(1-p)(X_1 - 1)$$

$$\frac{d \ln L(p; X_1)}{dp} = \frac{1}{p} - \frac{X_1 - 1}{1 - p}$$

$$\frac{d^2 \ln L(p^2; X_1)}{dp} = -\frac{1}{p^2} - \frac{X_1 - 1}{(1 - p)^2}$$

$$i(p) = -E\left(-\frac{1}{p^2} - \frac{X_1 - 1}{(1 - p)^2}\right) = \frac{1}{p^2} + \frac{E(X_1) - 1}{(1 - p)^2} = \frac{1}{p^2} + \frac{1}{p^2} - \frac{1}{(1 - p)^2} = \frac{1}{(1 - p)^2}$$

Теперь найдем асимптотическую дисперсию ММП оценки и ее оценку:

$$As.\,Var(\hat{p}_n) = rac{1}{ni(p)} = rac{(1-p)p^2}{n}$$
 $A\widehat{s.\,Var}(\hat{p}_n) = rac{1}{ni(\hat{p}_n)} = rac{(1-\hat{p}_n)\hat{p}_n^2}{n} = rac{\overline{X}_n - 1}{n\left(\overline{X}_n
ight)^3}$

3. Обратим внимание, что:

$$P(X_1 < 3) = 1 - P(X_1 \ge 3) = 1 - (1 - p)^2$$

Поскольку данная вероятность является монотонной функцией от оцениваемого параметра, то применимо свойство инвариантности, вследствие которого получаем ММП оценку:

$$\hat{P}(X_1 < 3) = 1 - (1 - \hat{p}_n)^2 = 1 - \left(1 - rac{1}{\overline{X}_n}
ight)^2$$

4. Поскольку функция непрерывна, то для нахождения асимптотического распределения можно применить дельта метод. Обратим внимание, что:

$$P'(X_1 < 3) = 2(1 - p)$$

Отсюда получаем, что:

$$As. Var(\hat{P}(X_1 < 3)) = P'(X_1 < 3)As. Var(\hat{p}_n) = (2(1-p))^2 rac{(1-p)p^2}{n} = rac{4(1-p)^3p^2}{n}$$
 $As. Var(\hat{P}(X_1 < 3)) = rac{4(1-\hat{p}_n)^3\hat{p}_n^2}{n} = rac{4igg(1-rac{1}{\overline{X}_n}igg)^3igg(rac{1}{\overline{X}_n}igg)^2}{n}$

5. Поскольку $\overline{x}_n(x)=5$, то $\hat{p}_n(x)=0.2$, откуда:

$$\hat{P}(X_1 < 3) \dot{\sim} \mathcal{N}\left(1 - (1 - 0.2)^2, rac{4(1 - 0.2)^3 imes 0.2^2}{1000}
ight) = \mathcal{N}\left(0.36, 0.00008192
ight)$$

В результате получаем:

$$P\left(\hat{P}(X_1 < 3) > 0.35
ight) pprox 1 - \Phi\left(rac{0.35 - 0.36}{\sqrt{0.00008192}}
ight) pprox 0.865$$

Проверка в R:

```
options(scipen = 999)
n <- 1000
p < -0.2
n.sim <- 10000
p.est <- rep(NA, n.sim)
prob.est <- rep(NA, n.sim)
asvar.est <- rep(NA, n.sim)
asvar.prob <- rep(NA, n.sim)
for (i in 1:n.sim)
x \leftarrow rgeom(n, p) + 1
p.est[i] <- 1 / mean(x)
prob.est[i] <- 1 - (1 - p.est[i]) ^ 2
asvar.est[i] <- (1 - p.est[i]) * (p.est[i] ^ 2) / n
asvar.prob[i] <- 4 * (1 - p.est[i]) ^ 3 * p.est[i] ^ 2 / n
}
# 1
mean(p.est)
#2
var(p.est)
mean(asvar.est)
#3
mean(x < 3)
mean(prob.est)
1 - (1 - p) ^ 2
#4
mean(asvar.prob)
var(prob.est)
4*(1-p)^3 *p^2/n
#5
mean(prob.est > 0.35)
```

1 - pnorm((0.35 - prob.est[1]) / sqrt(asvar.prob[1]))

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 – 2022 Sobopedia