Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Організація циклічних процесів. Ітераційні цикли»

Варіант 3

виконав студент	111-12 БООРИК Максим I еннадиович
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
перевірнь	(прізвище, ім'я, по батькові)
	(lipisbuille, im n, ilo oaibkobi)

Лабораторна робота 3 Організація циклічних процесів. Ітераційні цикли

Мета – дослідити особливості організації ітераційних циклів.

Варіант 3

Задача. З точність $\varepsilon = 10^{-5}$ обчислити:

$$s=1-\frac{x^2+1}{3}+\frac{x^4+1}{5}-\ldots+(-1)^n\cdot\frac{x^{2n}+1}{2^n+1}+\ldots$$
, де $0 < x < 1$.

Розв'язок

- **1.** <u>Постановка задачі</u>. Під час розв'язування даної задачі будемо використовувати цикл з передумовою, оператор while.
- **2.** Математична постановка. Елементи даної послідовності задані рекурентною формулою. Для проведення всіх розрахунків будемо використовувати функції abs(), для знаходження модуля числа, та pow(), для піднесення числа до степеня. Так як елементи послідовності прагнуть до нуля, то точність обчислюємо за модулем елемента послідовності. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Значення х	Дійсний	X	Початкове дане
Значення є	Дійсний	e	Початкове дане
Номер члена послідовності	Цілий	n	Проміжне значення
Знак перед доданком	Цілий	sign	Проміжне значення
Знаменник дробу	Дійсний	demtor	Проміжне значення
Чисельник дробу	Дійсний	numtor	Проміжне значення
Елемент послідовності	Дійсний	deltS	Проміжне значення
Значення ѕ	Дійсний	S	Результат

```
3. Псевдокод алгоритму.
   Крок 1. Визначимо основні дії.
   Крок 2. Перевіримо значення х.
   Крок 3. Визначимо спосіб знаходження значення s.
   Крок 4. Деталізуємо дію знаходження значення ѕ.
  Псевдокод
  крок 1
  початок
  ввід х
  перевірка значення х
  визначення значення ѕ
  вивід ѕ
  кінець
  крок 2
  початок
  ввід х
  якщо 0 < x < 1
  TO
      визначення значення s
      вивід ѕ
  інакше
  все якщо
  кінець
  крок 3
  початок
  ввід х
  якщо 0 < x < 1
  TO
      поки s > \epsilon
         визначення значення п,
         sign, numtor, demtor, deltS, s
      інакше
         все поки
      вивід ѕ
  інакше
  все якщо
```

кінець

```
крок 4
початок
ввід х
якщо 0 < x < 1
TO
    поки s > \epsilon
      n += 1
      sign = (-1)^n
      numtor = x^{2n} + 1
      demtor = 2^n + 1
      deltS = sign * numtor / demtor
      s = s + deltS
    інакше
        все поки
    вивід ѕ
інакше
    все якщо
кінець
```

4. Блок-схема алгоритму

5. Випробування алгоритму.

Блок	Дія
	Початок
1	Введення х = 0.5
2	Виведення s = 0.721932
	Кінець

Блок	Дія
	Початок
1	Введення х = 0.99
2	Виведення s = 0.591111
	Кінець

6. Висновки. На цій лабораторній роботі ми дослідили особливості організації ітераційних циклів. Розробили власний алгоритм з використанням циклу while,