

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Calcolo degli autovalori e fondamenti della matematica numerica Lezione 4.4a

Il metodo delle potenze inverse e il metodo QR

Calcolo degli autovalori di una matrice

Calcolo degli autovalori da un punto di vista numerico

$$A\mathbf{x} = \lambda \mathbf{x}$$

- metodo delle potenze inverse, metodo QR
 - \checkmark Potenze inverse per λ più vicino al numero μ
 - \checkmark Potenze inverse per λ di modulo minimo
 - ✓ Trasformazioni di similitudine ed ortogonali
 - \checkmark Il metodo QR per determinare lo spettro di A

ightharpoonup Consideriamo un numero complesso $\mu\in\mathbb{C}$, $(\mu\notin\sigma(A))$ definiamo

$$M_{\mu} = A - \mu I$$

ightharpoonup Se $\lambda_i\in\sigma(A)$, lo spettro di M_μ risulta

$$\sigma(M_{\mu}) = \{\lambda_{1} - \mu, \dots, \lambda_{n} - \mu\}$$

$$M_{\mu}^{-1} = (A - \mu I)^{-1}$$

$$\sigma(M_{\mu}^{-1}) = \{(\lambda_{1} - \mu)^{-1}, \dots, (\lambda_{n} - \mu)^{-1}\}$$

Autovalore di modulo massimo di M_{μ}^{-1} corrisponde:

$$\lambda_i$$
 t.c. $|\lambda_i - \mu| = \min_i$

 \blacktriangleright Applicando il **metodo delle potenze** a $M_{\mu}^{-1}=(A-\mu I)^{-1}$

Si ottiene una success. di $\lambda^{(k)}$ che converge a $\lambda_i \ \mathrm{più} \ \mathrm{vicino} \ \mathrm{a} \ \mu$

Ponendo

$$\mu = 0 \longrightarrow M_0^{-1} = A^{-1}$$

ightharpoonup Supponendo che $\lambda_i \in \sigma(A)$ di modulo minimo sia unico

$$|\lambda_1| \ge |\lambda_2 > \dots| \ge |\lambda_{n-1}| > |\lambda_n|$$

Il metodo delle potenze applicato a $M_0=A^{-1}$ approssima $\lambda_n\in\sigma(A)$ di modulo minimo

> L'algoritmo del metodo delle potenze (inverse) a $M_{\mu}^{-1}=(A-\mu I)^{-1}$ dato $\mathbf{q^{(0)}}$ t.c. $\|\mathbf{q^{(0)}}\|_2=1$

$$k = 1, 2, \dots \begin{cases} (A - \mu I)\mathbf{z}^{(k)} = \mathbf{q}^{(k-1)} \neq \mathbf{z}^{(k)} = A\mathbf{q}^{(k-1)} \\ \mathbf{q}^{(k)} = \frac{\mathbf{z}^{(k)}}{\|\mathbf{z}^{(k)}\|_2} & A \to (A - \mu I)^{-1} \\ \eta^{(k)} = \mathbf{q}^{(k)} A\mathbf{q}^{(k)} \end{cases}$$

ightharpoonup Per calcolare $\mathbf{z}^{(k)}$ è necessario risolvere un sistema lineare $\forall k$

$$(A - \mu I)\mathbf{z}^{(k)} = \mathbf{q}^{(k-1)}$$

M. potenze-inverse computazionalmente più oneroso del M. potenze

> Esempio

$$A = \begin{pmatrix} 1 & 3 & 4 \\ 3 & 1 & 2 \\ 4 & 2 & 1 \end{pmatrix} \quad \lambda_1 = 7.0747, \quad \lambda_2 = 3.1879, \quad \lambda_3 = -0.8868$$

- \blacktriangleright L'autovalore di modulo minimo è $\lambda_3=-0.89 \rightarrow |\lambda_3|=0.89$
- \blacktriangleright L'autovettore associato a λ_3 è $\mathbf{x}_3 = [0.155, -0.824, 0.545]^T$
- > Partendo dal vettore $\mathbf{q}^{(0)} = \frac{1}{\sqrt{3}}[1,1,1]^T$

Dopo k=5 iterazioni

$$\eta^{(5)} = -0.886$$

 $\mathbf{q}^{(5)} = [0.156, -0.824, 0.544]^T$