Optische Schalter

Robert Appel 03.07.19 MOpti Seminar

<u>Motivation: Vortrag</u>

- Was sind optische Schalter?
- Wie werden optische Schalter gebaut?
- Was beantwortet dieser Vortrag?
 - Arten des Schaltens
 - Verschiedene physikalische Phänomene die Schalten ermöglichen
 - Funktionsweisen & Grundprinzipien verschiedener Schalter
 - Aufbau

<u>Inhalt:</u>

Grundlagen:

- 1. Motivation: Warum optische Schalter?
- 2. Überblick Was bedeutet optisches Schalten?

Verschiedene Schalter:

Weitere physikalische Phänomene die Schalten ermöglichen

Grundlagen

Motivation: Warum optische Schalter?

https://www.lowbeats.de/installation-das-ver steckteheimkino/

- HD-TV und 3D Kino
- Telekommunikation
- Netzausbau mit Glasfaser
- Datenraten 1000 Gbits/s

optische Multiplexer

P. De Dobbelaere, K. Falta, S. Gloeckner, S. Patra, IEEE Communications Magazine 40, 88–95 (März 2002)

http://getwallpapers.com/wallpaper/full/b/4/9/165631.jpg

<u> Überblick - Was bedeutet optisches Schalten?</u>

Alles beginnt mit einer Entscheidung...

Im optischen Bereich:

- ON/OFF Schalten
- räumliches Schalten
- Welches physikalische Phänomen?
 - Energiedissipation
 - Schaltgeschwindigkeit
 - Signalverluste
 - Anhand welcher Eigenschaft wird geschaltet?

Verschiedene Schalter

Verschiedene Schalter

- Elektro-optisch
- Thermo-optisch
- Magneto-optisch
- Schalten mit nichtlinearen Effekten
- Flüssigkristall Schalter
- Mikro-elektro-mechanisch (MEMS)
- Schalten mit photonischen Kristallen
- Faser-Schalter
- semiconductor optical amplifier (SOA)!
- Quanten-optisch

Elektro-optischer Schalter

- 1x1 optischer Schalter
- III-IV Materialien, z.B. Si(Ge), LiNbO₃, Polymere
- Einzel Moden Lamelle = Wellenleiter
- Anbringen von Ladungsträgern
 - n₁ wird reduziert
 - totale innere Reflexion
- Wahl der Brechungsindizes?
 - Wellenlänge
 - Maße des Bauteils/ Schichtdicken

B. Li, S. J. Chua, Hrsg., Optical Switches, Materials and Design (Woodhead Publishing, 2010).

Elektro-optischer Schalter

- Silizium auf Isolator (SIO)
- p-n-Übergang in Vorwärtsrichtung
 - Einbringen von Ladungsträger in die Lamelle
 - > Führt zum Abschneiden des Strahls
- Modulationstiefe = 96% bei 45mA
- Verlust beim Einkoppeln 3.65dB bei Wellenlänge
 1.3µm
- Schaltzeit 160ns

B. Li, S. J. Chua, Hrsg., Optical Switches, Materials and Design (Woodhead Publishing, 2010).

Thermo-optischer Schalter

- digital optischer Schalter (DOS)
- räumliches Schalten mit mehreren Wellenlängen
- zwei Einzelmoden-Ausgänge
- Heizen des Wellenleiters
 - Variation des effektiven Modal-Indizes
 - Reduktion des Brechungsindizes
 - Andert den Weg den das Licht nimmt
- Wärmezufuhr über Elektroden
- Zwei Schaltmöglichkeiten:

 Licht wird immer zum Arm mit dem höheren Brechungsindex geleitet der Eingang folgt adiabatisch

B. Li, S. J. Chua, Hrsg., Optical Switches, Materials and Design (Woodhead Publishing, 2010).

Magneto-optischer Schalter

- Basiert auf dem Faraday-Effekt
 - Drehung der Polarisationsebene, wenn:
 - B-Feld // Propagation des Lichts
- Problem:
 - Mangel an MO-Materialien mit ausreichend hoher Qualität
 - Wenig Forschung
- Eisengranaten in den Bismuth ersetzt wurde
 - gute MO Eigenschaften
 - geringer Verlust
 - große Bandbreite
 - großer Grad an Rotation für wenig

B. Li, S. J. Chua, Hrsg., Optical Switches, Materials and Design (Woodhead Publishing, 2010).

- ON/OFF EO-Schalter
- Prinzipiell gleich zu MO-Schalter
- E-Feld → B-Feld
- EO-Material → MO-Material

Schalten mit nichtlinearen Effekten

- Nonlinear optical loop mirror (NOLM)
- Prinzip:
 - Gegenläufige Lichtstrahlen erfahren unterschiedlich starke nichtlineare
 Phasenverschiebung im nichtlinearen Medium
- Koppler mit ungleicher Aufspaltungsrate α
- stärkste Strahl erzeugt SPM
- Interferenz nach Austritt aus der Schleife
- konstruktiver Teil E_{O2}, destruktiver Teil E_{O1}
- Verwendungsmöglichkeiten:
 - Autokorrelationssignal Extraktion
 - Rauschunterdrückung

B. Li, S. J. Chua, Hrsg., Optical Switches, Materials and Design (Woodhead Publishing, 2010).

Flüssigkristall Schalter

- LC-Material zwischen zwei Glassubstraten
- Platzhalter aus Plastikmicrosphären oder Glasfasern
- transparente Elektrodenschicht
- Polarisatoren auf beiden Seiten + andere photonische Applikationen
- Twisted nematic (TN) cell:
 - pos. dielektrische Anisotropie
 - diel. Konst. größer in langer Achse als in der kurzen
- Moleküle // Glassubstrat
- 90° Drehung entlang der Zelle

B. Li, S. J. Chua, Hrsg., Optical Switches, Materials and Design (Woodhead Publishing, 2010).

- Reorientierung der Mol. bei V ≤ V_{th}
- $\overline{V} = \overline{V}_{sw}$: Mol. $/\!/$ E-Feld (ON-Zust.)
- typ. Werte:
 - V_{th}: 1-2V
 - V_{sw}: 3-5V

Flüssigkristall Schalter - ON/OFF (1x1)

Flüssigkristall Schalter - (1x2) Schalter

Mikro-elektro-mechanisch (MEMS)

- mechanisch integrierter Schaltkreis
- Antriebskräfte:
 - elektrostatisch
 - elektromagnetisch
 - thermisch
- 2D MEMS (digital) (a)
 - Spiegelposition ON/OFF
- 3D MEMS (analog) (b)
 - Querschaltung
 - Kippen der Spiegel
 - router/selector Architektur
 - gut für >1000 ln/Outputs
 - Verlust ca. 3dB

P. De Dobbelaere, K. Falta, S. Gloeckner, S. Patra, IEEE Communications Magazine 40, 88–95 (März 2002)

Mikro-elektro-mechanisch (MEMS)

- Materialien mit guten elektrischen und mechanischen Eigenschaften
 - \circ Si, SiO_x, SiN_x
- Volumen microätzen
- Oberfläche microätzen
- Aktuatoren (a)
 - OFF: Winkel zwischen Aktuator und Substrat
 - Spannung anlegen
 - elektrostatische Anziehung des Aktuators
- Spiegel mit 90° zum Substrat geätzt
- geringe Energiedissipation ca. μW

P. De Dobbelaere, K. Falta, S. Gloeckner, S. Patra, IEEE Communications Magazine 40, 88–95 (März 2002)

- 2D MEMS
- 16x16 mit 256 Aktuatoren

Mikro-elektro-mechanisch (MEMS)

P. De Dobbelaere, K. Falta, S. Gloeckner, S. Patra, IEEE Communications Magazine 40, 88–95 (März 2002)

- zwei Reihen aus Spiegeln die gleichzeitig Schalten
 - Spiegelpaar aktiv:
 - Signal wird auf den Drop-Port geleitet und Add-Signal geht auf den Output
 - Spiegelpaar inaktiv:
 - Input → Output

<u>Weitere physikalische Phänomene die Schalten ermöglichen</u>

Schalten mit photonischen Kristallen

- Photonische Kristalle = period. opt. Nanokristalle
- Lochdurchmesser bestimmt Wellenlänge
- Anderung des Brechungsindex durch Puls
 - Phasenschub
 - Basis des Schalters

Faser-Schalter

- Schalten durch bewegen der Faser
- z.B. durch Piezo-Elemente

Danke für Eure Aufmerksamkeit!

Noch Fragen?

Notizen und Vortrag @github/Robubabu:

Anhang

Table 8.1 State-of-the-art and performance parameters of RotPol LC switches.

Contribution	LC cell	λ (nm)	Туре	Fiber	CT (dB)	IL (dB)	Turn-on/D. time	Control voltage	Elements
(Wagner and Cheng, 1980)	TN-LC	633	1 × 2	MM	-20	0.41	_	2.5V	2PBS, 2AP, 1LLC
(Soref, 1981)	TN-LC	632.8	2 × 2	MM	-27	2.5	50/150ms	5V	4PBS, 2 LLC, 7 AP
(Soref and McMahon, 1982)	TN-LC	633	2 × 2	None	-32	3	(2) (2) (3) (2)	6V	2 LC, 2 HWP, 3 Calcites
(McAdams et al., 1990)	NLC-FLC	-	2 × 2	_	-20	1.4	250µs	15Vrms	2 NLC 2 SS-FLC, 2 M, 4 HIEP
(McAdams and Goodman, 1990)	FLC	633	1 × 4		-21.6	3.5	50µs	_	4 FLC, 4 PBS
(Grimes et al., 1991)	FLC	820(670)	6 × 6	MM		11.1	150µs		6FLC, 6 GL
(Fujii, 1993)	TN-LC	1300	2 × 2	SM	-43.3	2.2	_	_	2 PBS, 2 AP, 5 LC, 2 BR
(Riza and Yuan, 1998)	FLC	1300	2 × 2	SM	-34.1	6.94	35.3µs	(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	4PBS, 2M, 4LC, 2AP, 2HWP, 2QWP, 1LB
(Riza and Yuan, 1999)	FLC	1550	2 × 2	SM	-40	6.76	35.3µs	=	1PBS, 2LC, 2P, 1M, 1HWP, 1QWP, 1AP
(Vázquez et al., 2003)	NLC	650-850	1 × 2	MM	-22	7	ms	8V	1PBS, 1LC, 1P
(Riza and Madamopoulus, 2005)	TN-LC	_		_	-20	2	_	_	2FO-Circulator, 2 PBS, 2 LC, 2 TIR, 2 BDP
(Lallana et al., 2006)	NLC	650–850	3 × 1	MM	-23	3	20–5 ms	3V	2 PBS, 4 L, 6LC, 1 P

Weitere physikalische Phänomene die Schalten ermöglichen

semiconductor optical amplifier (SOA)

- Propagation durch Aktives Lasermedium (Funktionsweise d. SOA) ändert
 - Wellenlänge
 - Polarisation
 - Phase
 - Amplitude
- Element das auf die Änderung reagiert, Bsp:
 - Polarisation Beam Splitter
 - Mach-Zehnder Interferometer

Weitere physikalische Phänomene die Schalten ermöglichen

Quanten-optisch

- quantum-confined Stark-Effekt
 - Anlegen einer Spannung über einen Quantentopf
 - Reduktion der Übergangsenergie der geringsten quantisierten Niveaus für Elektron und Loch
- Absorption ist für eine bestimmte Wellenlänge erhöht bei Anschluss einer Spannung