Tarea 04

David Gómez

VIGILADA MINEDUCACIÓN

Sección 2.6

Índice

1. Punto 2	2
2. Punto 11	2
3. Punto 12	3
4. Punto 13	4
5. Punto 14	5
6. Punto 18	5
7. Punto 19	5
8. Punto 23	6

Página 1 Tarea 04

1. Punto 2

Punto 2

A dice: "Soy escudero o B es un caballero"

$$\Gamma_0 = \{ (a \equiv ((\neg a) \lor b)), a \}$$

$$\Gamma_1 = \{ (a \equiv ((\neg a) \lor b)), (\neg a) \}$$

 \therefore A es caballero y B es escudero

Con Γ_0

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$

1. $\mathbf{v}[(a \equiv ((\neg a) \lor b))] = \mathsf{T}$ Def.(p0)

2. $\mathbf{v}[a] = \mathbf{T}$ Def.(p0)

3. $\mathbf{v}[((\neg a) \lor b)] = \mathsf{T}$ MT 2.23(\equiv)(p2, p1)

4. $\mathbf{v}[(\neg a)] = T \text{ o } \mathbf{v}[b] = T$ MT 2.23 (\vee)(p3)

5. $\mathbf{v}[b] = T$ MT 2.23(\vee)(p4, p2)

Con Γ_1

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$

1. $\mathbf{v}[(a \equiv ((\neg a) \lor b))] = T$ Def.(p0)

2. $\mathbf{v}[(\neg a)] = \mathbf{T}$ Def.(p0)

3. $\mathbf{v}[((\neg a) \lor b)] = \mathbf{F}$ MT 2.23(\equiv)(p2, p1)

4. $\mathbf{v}[(\neg a)] = F \ y \ \mathbf{v}[b] = F$ MT 2.23(\lor)(p3)

5. $\mathbf{v}[(\neg a)] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[(\neg a)] = \mathbf{T}$ Contradicción (p4, p2)

2. Punto 11

Punto 11

 \boldsymbol{B} dijo: " \boldsymbol{A} dijo que es escudero"

 ${\cal C}$ dijo: "No le crea a ${\cal B}$ porque está mintiendo"

 $\Gamma_0 = \{ (b \equiv (a \equiv (\neg a))), (c \equiv (\neg b)), b \}$

 $\Gamma_1 = \{ (b \equiv (a \equiv (\neg a))), (c \equiv (\neg b)), (\neg b) \}$

 \therefore B es escudero y C es caballero

Con Γ_0

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$

1. $\mathbf{v}[(b \equiv (a \equiv (\neg a)))] = \mathbf{T}$ Def.(p0)

 $2. \mathbf{v}[b] = \mathbf{T}$ Def.(p0)

3. $\mathbf{v}[(a \equiv (\neg a))] = \mathbf{F}$ MT 2.23 (\equiv)

4. $\mathbf{v}[b] = \mathbf{F}$ MT $2.23(\equiv)(p1)$

5. $\mathbf{v}[b] = \mathsf{T} \ \mathsf{y} \ \mathbf{v}[b] = \mathsf{F}$ Contradicción (p4, p2)

Página 2 Tarea 04

Con Γ_1 $0. (\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$ $1. \mathbf{v}[(b \equiv (a \equiv (\neg a)))] = \mathsf{T} \quad \text{Def.(p0)}$ $2. \mathbf{v}[b] = \mathsf{T} \quad \text{Def.(p0)}$ $3. \mathbf{v}[c] = \mathsf{T}$

3. Punto 12

Punto 12

B dijo: "A dijo que hay al menos un caballero entre nosotros"

C dijo: "B miente"

$$\Gamma_0 = \{(b \equiv (a \equiv (a \lor b \lor c))), (c \equiv (\neg b)), b\}$$

$$\Gamma_1 = \{(b \equiv (a \equiv (a \lor b \lor c))), (c \equiv (\neg b)), (\neg b)\}$$

 \therefore No es posible determinar su naturaleza

Con Γ_0 0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$ 1. $\mathbf{v}[(b \equiv (a \equiv (a \lor b \lor c)))] = \mathsf{T}$ Def.(p0)

2. $\mathbf{v}[(c \equiv (\neg b))] = \mathsf{T}$ Def.(p0)

3. $\mathbf{v}[b] = \mathsf{T}$ Def.(p0)

4. $\mathbf{v}[(\neg b)] = \mathsf{F}$ MT $2.23(\neg)(p3)$ 5. $\mathbf{v}[c] = \mathsf{F}$ MT $2.23(\equiv)(p4,p2)$

Con Γ_1 $0. \ (\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$ $1. \ \mathbf{v}[(b \equiv (a \equiv (a \lor b \lor c)))] = \mathsf{T} \qquad \text{Def.(p0)}$ $2. \ \mathbf{v}[(c \equiv (\neg b))] = \mathsf{T} \qquad \text{Def.(p0)}$ $3. \ \mathbf{v}[(\neg b)] = \mathsf{T} \qquad \text{Def.(p0)}$ $4. \ \mathbf{v}[c] = \mathsf{T} \qquad \text{MT } 2.23(\equiv)(\mathrm{p3, p2})$

Página 3 Tarea 04

4. Punto 13

Punto 13

A dice: "Todos nosotros somos escuderos"

B dice: "Exactamente uno de nosotros es caballero"

$$\Gamma_{0} = \{(a \equiv ((\neg a) \land (\neg b) \land (\neg c))), \\ (b \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c)), ((\neg a) \land (\neg b))\}$$

$$\Gamma_{1} = \{(a \equiv ((\neg a) \land (\neg b) \land (\neg c))), \\ (b \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c)), b\}$$

$$\Gamma_{2} = \{(a \equiv ((\neg a) \land (\neg b) \land (\neg c))), \\ (b \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c)), (\neg b)\}$$

 \therefore A es escudero, no se puede determinar la naturaleza de los demás

Con Γ_0

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$

1.
$$\mathbf{v}[(a \equiv ((\neg a) \land (\neg b) \land (\neg c)))] = \mathbf{T}$$
 Def.(p0)

2.
$$\mathbf{v}[(b \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c))]$$
 Def.(p0)

3. $\mathbf{v}[((\neg a) \wedge (\neg b))]$

4.
$$\mathbf{v}[(\neg c)] = \mathbf{F}$$
 MT 2.23(\equiv , \land)(p3, p1)

Con Γ_1

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_1)$

1.
$$\mathbf{v}[(a \equiv ((\neg a) \land (\neg b) \land (\neg c)))] = \mathbf{T}$$
 Def.(p0)

2.
$$\mathbf{v}[(b \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c))]$$
 Def.(p0)

3. $\mathbf{v}[b] = T$

4.
$$\mathbf{v}[((\neg a) \land b \land (\neg c))] = \mathbf{F}$$
 MT $2.23(\equiv, \land)$ (p2)

5. $\mathbf{v}[a] = \mathbf{F}$

MT
$$2.23(\land, \neg)$$

Def.(p0)

6.
$$\mathbf{v}[c] = \mathbf{F}$$
 MT 2.23(\wedge , \neg)

Con Γ_2

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_2)$

1.
$$\mathbf{v}[(a \equiv ((\neg a) \land (\neg b) \land (\neg c)))] = \mathbf{T}$$
 Def.(p0)

2.
$$\mathbf{v}[(b \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c))]$$
 Def.(p0)

3.
$$\mathbf{v}[(\neg b)] = \mathbf{T}$$

4.
$$\mathbf{v}[(a \wedge (\neg b) \wedge (\neg c))] = \mathbf{F}$$
 MT 2.23 $(\neg, \lor)(\mathbf{p3}, \mathbf{p2})$

5.
$$\mathbf{v}[(\neg b)] = \mathbf{F}$$
 MT 2.23(\land)(4)

6.
$$\mathbf{v}[(-b)] = \mathbf{F} \mathbf{y} \mathbf{v}[(-b)] = \mathbf{T}$$
 Contradicción (p5, p3)

Página 4 Tarea 04

5. Punto 14

```
Punto 14
  A dice: "Todos somos escuderos"
  B dice: "Exactamente uno de nosotros es escudero"
  \Gamma_0 = \{ (a \equiv ((\neg a) \land (\neg b) \land (\neg c))), 
              (b \equiv (((\neg a) \land b \land c) \lor (a \land (\neg b) \land c) \lor (a \land b \land (\neg c)))), (\neg a)\}
  \Gamma_1 = \{ (a \equiv ((\neg a) \land (\neg b) \land (\neg c))), 
               (b \equiv (((\neg a) \land b \land c) \lor (a \land (\neg b) \land c) \lor (a \land b \land (\neg c)))), a\}
  El ejercicio está mal planteado
      Con \Gamma_0
                   0. (\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)
                   1. \mathbf{v}[(a \equiv ((\neg a) \land (\neg b) \land (\neg c)))] = \mathbf{T}
                                                                                                                                                                                Def.(p0)
                   2. \mathbf{v}[(b \equiv (((\neg a) \land b \land c) \lor (a \land (\neg b) \land c) \lor (a \land b \land (\neg c))))] = \mathbf{T}
                                                                                                                                                                                Def.(p0)
                   3. \mathbf{v}[(\neg a)] = \mathbf{T}
                                                                                                                                                                                Def.(p0)
                   4. \mathbf{v}[a] = \mathbf{F}
                                                                                                                                                              MTT 2.23(\neg)(p3)
                   5. \mathbf{v}[(\neg a)] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[(\neg b)] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[(\neg c)] = \mathbf{F}
                                                                                                                                                  MT 2.23 (\equiv, \land)(p4, p1)
                   6. \mathbf{v}[(\neg a)] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[(\neg a)] = \mathbf{T}
                                                                                                                                                  Contradicción (p5, p3)
      Con\ \Gamma_1
                           0. (\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)
                           1. \mathbf{v}[(a \equiv ((\neg a) \land (\neg b) \land (\neg c)))] = \mathbf{T}
                                                                                                                                                                        Def.(p0)
                           2. \mathbf{v}[(b \equiv (((\neg a) \land b \land c) \lor (a \land (\neg b) \land c) \lor (a \land b \land (\neg c))))] = \mathbf{T}
                                                                                                                                                                        Def.(p0)
                           3. v[a] = T
                                                                                                                                                                        Def.(p0)
                           4. \mathbf{v}[(\neg a)] = \mathsf{T} \ \mathsf{v} \ \mathbf{v}[(\neg b)] = \mathsf{T} \ \mathsf{v} \ \mathbf{v}[(\neg c)] = \mathsf{T}
                                                                                                                                                           MT 2.23(\equiv, \land)
                           5. \mathbf{v}[a] = \mathbf{F}
                                                                                                                                                         MT 2.23(\neg)(p4)
                           6. \mathbf{v}[a] = T \ y \ \mathbf{v}[a] = F
                                                                                                                                                                      (p5, p3)
```

6. Punto 18

El habitante A dice "Yo dije que si soy caballero entonces soy escudero, y si soy escudero entonces soy caballero"

7. Punto 19

El habitante A dice "Si B es caballero, entonces soy caballero" El habitante B dice "Si soy caballero, entonces A es caballero"

Página 5 Tarea 04

Punto 23 8.

Punto 23

C dijo: "A lo sumo uno de nosotros es caballero"

$$\Gamma_0 = \{ (c \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c) \lor ((\neg a) \land (\neg b) \land (\neg c))), c \}$$

$$\Gamma_1 = \{ (c \equiv (a \land (\neg b) \land (\neg c)) \lor ((\neg a) \land b \land (\neg c)) \lor ((\neg a) \land (\neg b) \land c) \lor ((\neg a) \land (\neg b) \land (\neg c))), (\neg c) \}$$

C es el único caballero, y por ende el único hombre lobo (tomando la suposición dada por el enunciado).

 \dots Tomando lo que dijo C como ϕ \dots

Con Γ_0

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$

1.
$$\mathbf{v}[(c \equiv \phi] = \mathbf{T}$$

Def.(p0)

2.
$${\bf v}[c] = {\bf T}$$

Def(p0)

3.
$$\mathbf{v}[((\neg a) \land (\neg b) \land c)] = \mathbf{T} \quad \text{MT } 2.23(\equiv, \land)(p2, p1)$$

Con Γ_1

0. $(\exists \mathbf{v} \mid \mathbf{v} \text{ satisface } \Gamma_0)$

1.
$$\mathbf{v}[(c \equiv \phi] = \mathbf{T}$$

Def.(p0)

2.
$$\mathbf{v}[(\neg c)] = \mathbf{T}$$

3.
$$\mathbf{v}[(a \wedge (\neg b) \wedge (\neg c))] = \mathbf{F}$$

Def(p0)

4. $\mathbf{v}[(\neg c)] = \mathbf{F}$

MT $2.23(\equiv, \land) (p2, p1)$

$$5 \mathbf{v}[(\neg c)] - \mathbf{F} \mathbf{v} \mathbf{v}[(\neg c)] -$$

MTT 2.23 (\land)(p3)

5. $\mathbf{v}[(\neg c)] = \mathbf{F} \ \mathbf{v}[(\neg c)] = \mathbf{T}$ Contradicción (p4, p2)

Página 6 Tarea 04