情報統計 第13-15回

2020年9月19日 神奈川工科大学

櫻井 望

国立遺伝学研究所 生命情報・DDBJセンター

スケジュール

	16日(水) データの見える 化	17日(木) 検定のこれだけ は	18日(金) 分散分析と多変 量解析の雰囲気	19日(土) データ準備 発表会
1限	1 ガイダンスPC環境準備、データの見える化	5 区間推定、分布とその使い方	9 分布の仲間と、分散分析	13 補足自習(課題、質問)
2限	2 統計の基本と用語	6 t検定	10 相関、主成分分析	14 自習(課題、質 問)
3限	3 プログラミング の基礎	7 検定で注意すること	11 他の多変量解 析	15 発表会
4限	4 自習(課題検討、復習)	8 自習(課題検討、復習)	12 自習(課題検討、復習)	

楠足

- 数学記号
- ログ変換
- 主成分分析の例

2群のt検定(独立2群)

等分散が仮定できない場合 ウェルチの方法

1群目:標本数 n1, 不変標本分散 s1, 標本平均 $\overline{x1}$

2群目:標本数 n2, 不変標本分散 s2, 標本平均 $\overline{x2}$

検定統計量
$$t = \frac{\overline{x1} - \overline{x2}}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}}$$

(近似)自由度
$$v \approx \frac{\left(\frac{s1^2}{n1} + \frac{s2^2}{n2}\right)^2}{\frac{s1^4}{n1^2(n1-1)} + \frac{s2^4}{n2^2(n2-1)}}$$

帰無仮説: 2群の母集団の平均値は等しい

で、同様に検定できます。参考まで

ほぼ等しい

数学記号

		· · · · · · · · · · · · · · · · · · ·
0	合成写像	「 $f\circ g$ 」は写像 g と写像 f の合成を表す。すなわち $(f\circ g)(x)=f(g(x))$ である。
Im, Image, \bullet [\bullet]	像	写像 φ に対して、Image φ はその写像の像全体の集合(値域)を表す。写像 $\varphi\colon X \to Y$ に対して $\varphi[X]$ とも書く。

二項関係演算

記号	意味	解説
=	相等	x = y は x と y が等しいことを表す。
<i>≠</i>	不一致	$x \neq y$ は $x \geq y$ が等しくないことを表す。
≒, ≈	ほぼ等しい	$ \lceil x = y $

順序構造

記号	意味	解説
		「x < y」は x と y の間に Wikipedia
<.>	大小関係、順序	方が「先」であることを示す VVIKIDEUIC

Excelで数式表示

楠足

- 数学記号
- ログ変換
- 主成分分析の例

生物の遺伝子情報の流れとオミクス

オミクス

それぞれの要素を一斉に検出 しようとする技術・学問 一見、正規分布のように見えないデータでも、ログスケール(対数)にすることで、正規分布に近い分布になることがある

- ✓ 遺伝子発現量データ
- ✓ 質量分析での化合物検出データ

など

大葉(しそ)で検出された代謝物質

- 液体クロマトグラフィー-質量分析
- ESIポジティブモード

計5760ピーク

検出値 (リニアスケール)

log10変換後 (ログスケール)

Excel関数: LOGなど

ログスケールにするメリット

シグナル強度によるばらつき(分散)の変化を打ち 消すことができる

例)強度10のピークの10%のばらつきは1の差なのに対し、 強度1000のピークでは、同じ10%のばらつきで100の差 になる。

logに変換すると、どんな強度でも同じ数値幅のばらつきにすることができる(等分散)

データの分布をExcelで描いて判断

楠足

- 数学記号
- ログ変換
- 主成分分析の例

課題検討

発表会