

《On the relationship between bug reports and queries for text retrieval-based bug localization》	2020	ESE
《On Combining IR Methods to Improve Bug Localization》	2020	ICPC
《Industry-scale IR-based Bug Localization: A Perspective from Facebook》	2021	ICSE
《Improving Bug Localization by Mining Crash Reports: An Industrial Study》	2020	ICSME
《A Similarity Integration Method based Information Retrieval and Word Embedding in Bug Localization》	2020	QRS(水)

On Combining IR Methods to Improve Bug Localization

作者: Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud

汇报人:陈冰婷 导师:邹卫琴

PART 04 Performance

Motivation

Localizing bugs can become a tedious and error-prone task.

To minimize this effort, employing conventional Information Retrieval (IR) methods for automated support.

To improve the performance of existing IR-based bug localization tools, researchers have considered combining various IR methods into hybrid pairs.

Introduction

VSM

A representative of string matching methods

LSI

A representative of semantically-enabled methods

JSM

A representative of probabilisticmethods

PMI

A representative of informationtheoretic text retrieval methods.

$$J p_{i} = \frac{f(w_{i}, d)}{T_{d}} g_{2}(\frac{\frac{C(w_{1}, w_{2})}{N}}{\frac{C(w_{1})}{N} \frac{C(w_{2})}{N}}) = lo H(\hat{p}) = \sum_{j=1}^{n} \hat{p}(x_{j}) \cdot log_{2} \hat{p}(x_{j})$$

Hybrid Approach

Unoptimaized Hybrid Methods

 $sim_{i,j}(x,y) = \lambda \times sim_i(x,y) + (1-\lambda) \times sim_j(x,y)$

Borda Count

Score Addition

$$Borda(k) = \sum_{i=0}^{|C|} M_i - r_{i,k} \quad ScoreAddition(k) = \sum_{i=0}^{|C|} s_{i,k}$$

$$ScoreAddition(k) = \sum_{i=0}^{|S|} s_{i,k}$$

Experiment

Table 1: The experimental systems used in our analysis.

System	Bug Reports	Source File		
Aspect [39]	318	6503		
Eclipse [54]	3075	12300		
JodaTime [39]	43	315		
SWT [54]	98	484		
ZXing [54]	20	391		

Evaluation Measures

- · MRR
- · Top N

Porter Stemmer

Specifically, for each query in each of our systems,we generated the LSI space for all k values in the set [50, 100, 150,200, ..., 900]. The performance in terms of reciprocal rank (RR) wasthen measured for each query at eachkvalue.

System	Method	TR ₁ (%)	TR ₅ (%)	TR ₁₀ (%)	MRR
	VSM	5.66	16.04	22.64	0.12
	LSI	7.55	14.78	22.01	0.12
AspectJ	JSM	7.55	18.55	23.90	0.13
	PMI	15.72	35.22	45.28	0.25
	VSM	8.85	21.53	29.27	0.16
	LSI	18.34	33.92	42.47	0.26
Eclipse	JSM	14.24	29.98	38.76	0.22
	PMI	17.59	40.36	51.67	0.29
	VSM	20.93	51.16	67.44	0.35
	LSI	37.21	53.49	62.79	0.45
JodaTime	JSM	37.21	58.14	72.09	0.47
	PMI	18.60	62.79	83.72	0.40
	VSM	11.22	34.69	46.94	0.23
	LSI	8.16	19.39	24.49	0.14
SWT	JSM	11.22	29.59	43.88	0.22
	PMI	27.55	68.37	81.63	0.44
	VSM	30.00	40.00	55.00	0.37
	LSI	30.00	45.00	45.00	0.38
ZXing	JSM	35.00	55.00	65.00	0.44
	PMI	25.00	45.00	55.00	0.34

Individual Performance

Table 2: The performance of the individual IR methods in terms of TR₁, TR₅, TR₁₀, and MRR

Is there any global optimal λ that can be used for combining IR methods in Eq.10?

Figure 1: Optimizing λ for VSM in JodaTime.

	VSM	LSI	JSM	PMI
VSM	, - 12	0.5	0.3	0.2
LSI	0.5		0.3	0.2
JSM	0.7	0.7	(7 3)	0.5
PMI	0.8	0.8	0.5	-

Table 4: Average near-optimal values of λ of the hybrid methods across all experimental systems (Optimized for best MRR).

Method	System	VSM	LSI	JSM	PMI
	AspectJ	-	20.17	27.04	104.80
VSM	Eclipse	-	58.35	35.32	85.74
VSIVI	Joda	-	38.83	28.72	40.27
	SWT	-	-3.47	17.32	114.53
	ZXing	-	28.56	19.88	-1.70
Ave	rage	-	28.49	25.66	68.737
	AspectJ	13.46	(a .a .)	16.67	115.99
LSI	Eclipse	-6.42	12	3.29	38.09
LSI	Joda	8.79	=	25.06	31.70
	SWT	56.79	-	43.66	212.39
	ZXing	24.21	12	19.53	26.07
Average		19.36	<u>(14)</u>	21.64	84.85
	AspectJ	13.75	10.69	~	74.55
JSM	Eclipse	-5.58	21.96	75	37.24
JSIVI	Joda	-4.23	18.74	<u>_</u>	28.18
	SWT	27.96	-3.53	-	109.01
	ZXing	1.08	4.31	Ξ.	-6.11
Ave	rage	6.60	10.43	-	48.58
	AspectJ	-6.75	4.91	-11.24	9
PMI	Eclipse	0.69	26.71	6.68	-
FIVII	Joda	24.09	48.69	52.42	-
	SWT	15.28	3.35	2.97	2
	ZXing	5.96	40.66	20.04	-
Ave	rage	7.85	24.86	14.18	-

How effective is the hybrid approach in comparison to the individual IR methods?

Table 5: The performance gain (%MRR) of the hybrid methods in comparison to the individual IR methods.

Method S	System	Ado	litionSc		Borda Count			λ-optimized		
Method	System	TR ₁	TR ₅	TR ₁₀	TR ₁	TR ₅	TR ₁₀	TR ₁	TR ₅	TR ₁₀
	SWT	19.39	45.92	71.43	26.53	61.22	78.57	30.61	68.37	84.69
	ZXing	30.00	60.00	65.00	20.00	55.00	60.00	25.00	60.00	60.00
PMI-VSM	Joda	25.58	55.81	74.42	30.23	67.44	79.07	37.21	62.79	79.07
	AspectJ	8.81	21.38	29.25	12.26	27.67	38.05	12.58	28.93	38.05
	Eclipse	11.15	26.96	36.29	13.85	31.90	44.85	15.54	37.14	48.33
Ave	rage	18.99	42.02	55.28	20.58	48.65	60.11	24.19	51.45	62.03
	SWT	.00	16.33	44.90	2.04	14.29	24.49	23.47	57.14	80.61
	ZXing	40.00	50.00	65.00	30.00	55.00	60.00	35.00	60.00	65.00
PMI-LSI	Joda	51.16	69.77	79.07	46.51	72.09	86.05	44.19	79.07	86.05
	AspectJ	11.01	23.58	33.96	15.09	27.36	37.42	17.30	34.59	43.71
	Eclipse	22.63	44.16	52.62	24.23	45.04	56.65	24.65	50.21	60.29
Ave	rage	24.96	40.77	55.11	23.57	42.76	52.92	28.92	56.20	67.13
	SWT	20.41	57.14	71.43	23.47	55.10	72.45	20.41	57.14	71.43
	ZXing	30.00	65.00	65.00	25.00	60.00	60.00	30.00	65.00	65.00
PMI-JSM	Joda	44.19	76.74	93.02	37.21	79.07	86.05	44.19	76.74	93.03
******	AspectJ	12.58	25.79	33.33	12.89	25.16	34.91	12.58	25.79	33.33
	Eclipse	18.89	38.41	49.66	17.27	36.29	47.64	18.89	38.41	49.60
Ave	rage	25.21	52.62	62.49	23.17	51.12	60.21	25.21	52.62	62.49
	SWT	7.14	19.39	25.51	1.02	4.08	9.18	7.14	19.39	25.5
	ZXing	40.00	50.00	55.00	40.00	50.00	55.00	40.00	50.00	55.00
VSM-LSI	Joda	27.91	58.14	67.44	34.88	55.81	69.77	27.91	58.14	67.4
	AspectJ	7.86	17.30	24.53	6.92	16.04	23.58	7.86	17.30	24.53
	Eclipse	13.79	30.70	39.28	15.02	30.60	40.91	13.79	30.70	39.2
Ave	rage	19.34	35.10	42.35	19.57	31.31	39.69	19.34	35.10	42.35
	SWT	16.33	36.73	53.06	13.27	31.63	53.06	15.31	35.71	55.10
	ZXing	35.00	50.00	65.00	30.00	50.00	65.00	35.00	50.00	65.00
VSM-JSM	Joda	30.23	55.81	72.09	23.26	60.47	69.77	32.56	62.79	74.4
	AspectJ	8.81	17.92	26.10	7.86	18.24	26.42	8.81	18.55	26.73
	Eclipse	11.71	26.02	34.99	11.28	25.59	35.84	13.01	28.75	37.5
Ave	rage	20.41	37.30	50.25	17.13	37.19	50.02	20.94	39.16	51.7
	SWT	2.04	11.22	23.47	1.02	7.14	11.22	3.06	22.45	32.6
	ZXing	40.00	45.00	50.00	35.00	50.00	65.00	40.00	50.00	65.00
LSI-JSM	Joda	48.84	65.12	69.77	32.56	65.12	74.42	41.86	67.44	76.7
	AspectJ	8.81	18.55	26.42	10.06	17.92	24.21	8.81	19.18	25.47
	Eclipse	17.92	37.79	45.59	17.95	35.48	45.24	17.46	36.36	45.27
Ave	rage	23.52	35.54	43.05	19.32	35.13	44.02	22.24	39.09	49.03

How effective are the λ optimized IR-hybrids in comparison to the unoptimized hybrids?

Table 8: TR_1 , TR_5 , and TR_{10} for Score Addition, Borda Count, and the λ -optimized approach for all combinations of IR-methods used in our experiment.

How does the performance of individual IR methodsaffect the performance of their hybrid pairs?

	VSM	LSI	JSM	PMI
VSM	93	395	351	794
LSI	794	285	549	679
JSM	855	654	191	550
PMI	1585	1507	1273	1017

Figure 2: Example: An illustration of the calculation of the number of unique artifacts retrieved by three IR methods α , β , and γ .

Table 10: Each row shows the number of unique relevant artifacts (true positives) retrieved by each IR method in comparison to the other methods. The diagonal shows the number of relevant artifacts unique to the method (were not retrieved by any other method).

Results

- Combining different methods almost always resulted in improvement over all performance indicators.
- The amount of improvement was highly dependent on theperformance of individual IR methods.

• Borda Count: Borda Count [14] is a rank-only combination approach which assigns scores to the retrieved links based on their ranks in each IR method's ranked list. Formally, assuming a set of IR methods C. Each method c_i ∈ C ranks the link k at rank r_{i,k}. Let M_i be the number of links that received a non-zero score by c_i. Then, the Borda Count for k in c_i is calculated as M_i − r_{i,k}. The total Borda Count for k in the combination of the methods in C can be calculated as:

$$Borda(k) = \sum_{i=0}^{|C|} M_i - r_{i,k}$$
 (12)

After calculating the Borda scores for all retrieved links, the rank of each link in the combined list is calculated based on its total Borda Count.

Score Addition: Score Addition is a score-based combination approach that sums up the scores assigned by each individual IR methods to each retrieved link. Assuming a set of IR methods C, where each methods c_i ∈ C assigned a score of s_{i,k} to the link k. Then the Score Addition of k for the combination of IR methods in C is calculated as:

$$ScoreAddition(k) = \sum_{i=0}^{|C|} s_{i,k}$$
 (13)

THANK YOU FOR YOUR LISTENING.

谢谢您的聆听