Análisis Matemático II

Grado en Estadística

Curso 2017/18

Índice

1.	El espacio euclídeo	3
2.	Topología en \mathbb{R}^n	Ę
3.	Ejercicios	8
	3.1. Relación 1	8
Re	eferencias	

El espacio euclídeo

Como punto de partida para el estudio de las funciones de varias variables reales, debemos familiarizarnos con la estructura y propiedades del espacio en el que dichas funciones tendrán su conjunto de definición, el espacio euclídeo n-dimensional, donde n es un número natural. Al tiempo que estudiamos algunas propiedades de dicho espacio, las iremos abstrayendo, para entender ciertos conceptos generales que son importantes en Análisis Matemático. Partimos de la definición de \mathbb{R}^n y su estructura algebraica básica, la de espacio vectorial. Al estudiar el producto escalar en \mathbb{R}^n , completamos la definición del espacio euclídeo, así llamado porque formaliza analíticamente los axiomas y resultados de la geometría de Euclides.

Definición 1.1 (Espacio euclídeo). Definimos el espacio euclídeo n-dimensional como el producto cartesiano de n copias de \mathbb{R} , es decir, el conjunto de todas las posibles n-uplas de números reales:

$$\mathbb{R}^n = \mathbb{R} \ x \ \mathbb{R} \ x \ ...^{(n)} \ x \ \mathbb{R} = \{(x_1, ..., x_n) : x_i \in R, \forall i \in 1...n\}$$

Sin embargo, no siempre es conveniente usar subíndices para denotar las componentes de los elementos de \mathbb{R}^n , pues podemos necesitar los subíndices para otra finalidad. Para valores concretos de n, podemos denotar las componentes con letras diferentes, siendo habitual escribir:

$$\mathbb{R}^2 = \{(x,y) : x,y \in R\}$$

$$\mathbb{R}^3 = \{(x, y, z) : x, y, z \in R\}$$

En \mathbb{R}^n disponemos de las operaciones de suma y producto por escalares, definidas, para $x=(x_1,...,x_n)\in\mathbb{R}^n$, $y=(y_1,...,y_n)\in\mathbb{R}^n$ y $\lambda\in\mathbb{R}$, por

$$x + y = (x_1 + y_1, ..., x_n + y_n)$$

$$\lambda x = (\lambda x_1, ..., \lambda x_n)$$

Proposición 1.1. Sea $n \in \mathbb{N}$, x, y, $z \in \mathbb{R}^n$, α , $\beta \in \mathbb{R}$. Entonces:

a) (x + y) + z = x + (y + z) (Propiedad asociativa)

b)
$$0 = (0, ..., 0) \in \mathbb{R}^n \implies x + 0 = 0 + x = x$$

c) Dado
$$x=(x_1,...,x_n) \implies \exists! v \in \mathbb{R}^n : x+v=v+x=0 \implies v=(-x_1,...,-x_n)=-x$$

- d) x + y = y + x
- *e*) 1 * x = x

$$f) (\lambda + \beta)x = \lambda x + \beta x$$

$$g) \ \lambda(x+y) = \lambda x + \lambda y$$

$$h) (\lambda \beta) y = \lambda (\beta y)$$

Definición 1.2 (Producto escalar). Sea $n \in \mathbb{N}$. Definimos el producto escalar de $x = (x_1, ..., x_n) \in$

 \mathbb{R}^n , $y = (y_1, ..., y_n) \in \mathbb{R}^n$ como

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

Proposición 1.2. Sea $n \in \mathbb{N}$:

a)
$$x, y, z \in \mathbb{R}^n \implies \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

b) $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R} \implies \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
c) $\langle x, y \rangle = \langle y, x \rangle \forall x, y \in \mathbb{R}^n$

b)
$$x, y \in \mathbb{R}^n$$
, $\lambda \in \mathbb{R} \implies <\lambda x, y>=\lambda < x, y>$

$$c) < x, y > = < y, x > \forall x, y \in \mathbb{R}^n$$

Proposición 1.3 (Desigualdad de Cauchy-Schwartz). Sean $x=(x_1,...,x_n)\in\mathbb{R}^n$, $y=(y_1,...,y_n)\in\mathbb{R}^n$, entonces:

$$(\langle x, y \rangle)^2 \le (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2)$$

Demostración.

Para $x = (x_1, ..., x_n) \in \mathbb{R}^n$, $y = (y_1, ..., y_n)$, es cierto que $0 \le \sum_{i=1}^n (ax_i + y_i)^2 = \sum_{i=1}^n (a^2x_i^2 + y_i^2 + 2ax_iy_i) = \sum_{i=1}^n (a^2x_i^2 + y_i^2 + 2ax_iy_i)$ $a^2(\sum_{i=1}^n x_i^2) + (\sum_{i=1}^n y_i^2) + 2a(\sum_{i=1}^n x_i y_i)$ para todo número real y es igualdad si, y sólo si, cada término de la suma es cero. Esta desigualdad puede escribirse en la forma: $Ax^2 + Bx + C$ donde $A = \sum_{i=1}^n x_i^2$, $B = \sum_{i=1}^n x_i^2$ $\sum_{i=1}^{n} x_i y_i$, $C = \sum_{i=1}^{n} y_i^2$. En particular, la desigualdad se cumple para $\frac{-B}{2A}$: $A(\frac{-B}{A})^2 + 2B(\frac{-B}{A}) + C \ge 0$ $C \ge \frac{B^2}{2} \implies B^2 \le AC$.

Definición 1.3 (Norma). Dado $n \in \mathbb{N}$, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, se define la norma de x como:

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{\langle x, x \rangle}$$

Proposición 1.4. Sea $n \in \mathbb{N}$, $x, y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$.

- $a) \ ||x|| \geq 0 \wedge ||x|| = 0 \Leftrightarrow x = 0 \in \mathbb{R}^n$
- $b) ||\lambda x|| = |\lambda|||x||$
- c) $||x + y|| \le ||x|| + ||y||$ (Designaldad triangular)

Demostración. (Desigualdad triangular)

$$\begin{aligned} ||x+y||^2 &=< x+y, x+y> =< x, x>+< x, y>+< y, x>+< y, y> = ||x||^2 + ||y||^2 + 2 < x, y> \\ &\leq ||x||^2 + ||y||^2 + 2||x||||y|| = (||x|| + ||y||)^2 \end{aligned} \quad \Box$$

Definición 1.4 (Distancia). Sea $n \in \mathbb{N}$, $x, y \in \mathbb{R}^n$, se define la distancia de x a y como

$$d(x, y) = ||x - y||$$

Proposición 1.5. Sea $n \in \mathbb{N}$, $x, y \in \mathbb{R}^n$.

a)
$$d(x, y) \ge 0 \land d(x, y) = 0 \Leftrightarrow x = y$$

$$b) d(x, y) = d(y, x)$$

$$c)\;d(x,z)\leq d(x,y)+d(y,z)$$

Topología en \mathbb{R}^n

Definición 2.1 (Bola de centro a y radio r). Sea $n \in \mathbb{N}$, $a \in \mathbb{R}^n$, r > 0. Se definen las bolas abiertas, cerradas y esferas, respectivamente, de centro a y radio r como:

$$B(a,r) = \{x \in \mathbb{R}^n : d(x,y) < r\}$$

$$\overline{B}(a,r) = \{ x \in \mathbb{R}^n : d(x,y) \le r \}$$

$$S(a,r) = \{x \in \mathbb{R}^n : d(x,y) = r\}$$

Definición 2.2 (Sucesión convergente en \mathbb{R}^n **).** Sea $n \in \mathbb{N}$, y $\{x_n\}$ una sucesión convergente en \mathbb{R}^n . Diremos que $\{x_n\}$ es convergente hacia un límite $a \in \mathbb{R}^n$ si

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \ge m \implies d(x_n, a) < \varepsilon$$

Proposición 2.1. Sea $n \in \mathbb{N}$, $x, y \in \mathbb{R}^n$, $\{x_n\}$, $\{y_n\}$ dos sucesiones en \mathbb{R}^n .

a)
$$\{x_n\} \to x$$
, $\{x_n\} \to y \implies x = y$ (Unicidad de límites)

$$b) \{x_n\} \to x, \{y_n\} \to y \implies \{x_n + y_n\} \to x + y$$

c)
$$\{x_n\} \to x, \lambda \in \mathbb{R} \implies \{\lambda x_n\} \to \lambda x$$

d) $\{x_n\}$ converge $\implies \{x_n\}$ acotada. (∃ $M \in \mathbb{N} : ||x_n|| \le M \ \forall n \in \mathbb{N}$) (Acotación)

$$e) \; \{x_n\} \to x, \{y_n\} \to y \implies \{\langle x_n, y_n \rangle\} \to \langle x, y \rangle$$

$$f) \{x_n\} \to x \implies \{||x_n||\} \to ||x||$$

Demostración. (Unicidad de límites)

Supongamos $\{x_n\} \to x$, $\{x_n\} \to y$. Fijo $\varepsilon > 0$ y demuestro $||x - y|| < \varepsilon \implies ||x - y|| = 0 \implies x = y$.

Dado
$$\varepsilon > 0, \{x_n\} \to x \implies \exists m_1 \in \mathbb{N} : ||x_n - x|| < \frac{\varepsilon}{2} \ \forall n \ge m_1 \ \text{y} \ \exists m_2 \in \mathbb{N} : ||x_n - y|| < \frac{\varepsilon}{2} \ \forall n \ge m_2. \text{ Tomo}$$

$$n \geq \max\{m_1, m_2\} \implies ||x-y|| = ||(x-x_n) + (x_n-y)|| \leq ||x_n-x|| + ||x_n-y|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \implies x = y \quad \square$$

Topología en \mathbb{R}^n

Demostración. (Acotación)

Supongamos $\{x_n\} \to x \implies \exists m \in \mathbb{N} : ||x_n - x|| < 1 \ \forall n \ge m \implies ||x_n|| \le 1 + ||x|| \implies ||x_n|| \in \max\{||x_1||, ||x_2||, ..., ||x_m||, 1 + ||x|| = M\}$

Proposición 2.2. Sea $N \in \mathbb{N}$. Tomo $\{x_n\} \to x \in \mathbb{R}^N \text{con } x = (x^1, ..., x^N), x_n = (x_n^1, ..., x_n^N)$. Entonces

$$\{(x_n^1, ..., x_n^N)\} \to (x^1, ..., x^N) \Leftrightarrow \{x_n^i\} \to x^i \ \forall i \in \{1...N\}$$

Demostración. POR HACER

Definición 2.3 (Interior, adherente y frontera). Sea $n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$. Entonces:

- a) Un punto $x \in \mathbb{R}^n$ es adherente a A si $\forall \varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \emptyset \implies \overline{A} = \{x_n \in \mathbb{R}^n : x \text{ adherente a } A\}$ y A cerrado si $A = \overline{A}$.
- *b*) Un punto $a \in A$ es interior a A si $\exists r > 0 : B(a, r) \subseteq A$. Denotaremos $\mathring{A} = \{a \in A : a \text{ interior a } A\}$ y A abierto si $A = \mathring{A}$.
- c) Un punto $x \in \mathbb{R}^n$ es frontera de A si $x \in \overline{A}$ pero $x \notin \mathring{A}$. Denotaremos $Fr(A) = \{x \in \mathbb{R}^n : x \text{ es frontera de } A\}$

Ejemplo 2.1. .

a)
$$A = [0, 1[\cup \{4\}] \implies \overline{A} = [0, 1] \cup \{4\}, \ \mathring{A} =]0, 1[, Fr(A) = \{0, 1, 4\}]$$

b)
$$A = B(a,r) \implies \overline{A} = \overline{B}(a,r), \ \mathring{A} = A, \ Fr(A) = \overline{B}(a,r) - B(a,r) \text{ DEMOSTRAR}$$

Proposición 2.3 (Caracterización secuencial de la topología). Sea $n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$. Entonces:

- *a*) Un punto $x \in \mathbb{R}^n$ es adherente a A si $\Leftrightarrow \exists \{x_n\} \to x : \{x_n\} \in A \ \forall n \in \mathbb{N}$
- *b*) Un punto $a \in A$ es interior $\Leftrightarrow \forall \{x_n\} \to a, x_n \in \mathbb{R}^n \implies \exists m \in \mathbb{N} : \forall n \geq m, x_n \in A$
- *c*) Un punto $x \in \mathbb{R}^n$ es frontera de A si $\Leftrightarrow \exists \{x_n\} \to x : \{x_n\} \in A \ \forall n \in \mathbb{N} \land \{y_n\} \to x : \{y_n\} \notin A \ \forall n \in \mathbb{N}$

Demostración. . (Apartado a)

 \Rightarrow

 $\forall n \in \mathbb{N} \ \exists x_n \in B(x, \frac{1}{n}) \cap A \text{ por ser } x \text{ adherente } \Longrightarrow \{x_n\} \subseteq A. \text{ Además, } d(x_n, x) \leq \frac{1}{n} \wedge \{\frac{1}{n}\} \to 0 \Longrightarrow \{x_n\} \to x.$

 \Leftarrow

Sea $\varepsilon > 0, \{x_n\} \to x \implies \exists n \in \mathbb{N} : d(x_n, x) < \varepsilon \implies x_n \in B(x, \varepsilon) \text{ y } x_n \in A \text{ por hipótesis}$ $\implies x_n \in B(x, \varepsilon) \cap A \neq \emptyset \implies x \in \overline{A}.$

Proposición 2.4. Sea $n \in \mathbb{N}$:

- a) Los conjuntos abiertos cumplen las siguientes propiedades:
- \emptyset , \mathbb{R}^n son abiertos
- Si $A_1, ..., A_n$ abiertos $\Longrightarrow \bigcap_{k=1}^n A_k$ abierto.
- Si $\{A_{\alpha}: \alpha \in \wedge\}$ es una familia de abiertos $\implies \bigcup_{\alpha \in A} A_{\alpha}$ abierto.
- *b*) Un conjunto $A \subseteq \mathbb{R}^n$ es abierto $\Leftrightarrow \mathbb{R}^n/A$ es cerrado.
- c) Los cerrados cumplen:
- \emptyset , \mathbb{R}^n son cerrados Si $F_1, ..., F_n$ cerrados $\Longrightarrow \bigcup_{k=1}^n F_k$ cerrado.
- Si $\{F_\alpha : \alpha \in \Lambda\}$ es una familia de cerrados $\Longrightarrow \bigcap_{\alpha \in \Lambda} F_\alpha$ cerrado.

Demostración. . (Apartado b)

Tomo $x \in \mathbb{R}^n/A \implies \forall \varepsilon > 0, \ B(x,\varepsilon) \cap (\mathbb{R}^n/A) \neq \varnothing \implies B(x,\varepsilon) \not\subseteq A \implies x \notin \mathring{A} = A \implies x \in \mathring{A}$ $\mathbb{R}^n/A \implies \mathbb{R}^n$ es cerrado.

Suponemos \mathbb{R}^n/A cerrado y tomo $a \in A \implies a \notin \mathbb{R}^n/A = \overline{\mathbb{R}^n/A} \implies \exists r > 0 : B(a,r) \cap (\mathbb{R}^n/A) = \emptyset \implies$ $B(a,r) \subseteq A \implies a \in \mathring{A} \implies A \text{ abierto.}$

Definición 2.4 (Sucesión parcial). Sea $n \in \mathbb{N}$, $\{x_n\} \subseteq \mathbb{R}^n$. Una sucesión parcial de $\{x_n\}$ es otra sucesión $\{x_{\sigma(n)}\}\$ donde $\sigma:N\to N$ es creciente.

Definición 2.5 (Conjunto compacto). Sea $n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$. Diremos que A es compacto si $\forall \{x_n\} \subseteq \mathbb{R}^n$ $A, \exists \{x_{\sigma(n)}\} \rightarrow x \in A.$

Proposición 2.5. Sea $n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$ compacto. Entonces A es cerrado y acotado.

Demostración. .

Demostremos que A es cerrado. Tomo $x \in \overline{A}$, hay que ver si $x \in A$. Como $x \in \overline{A} \implies \exists \{x_n\} \to x, \{x_n\} \in A$. Como A es compacto $\implies \exists \{x_{\sigma(n)}\} \rightarrow a \in A$. Por las propiedades de las sucesiones parciales, $\{x_{\sigma(n)}\} \to x \implies x = a \in A$ por unicidad de límites. Es decir, A es cerrado.

Demostremos que A es acotado. Supongamos, por reducción al absurdo, que A no es acotado. Entonces $\forall n \in \mathbb{N} \exists x_n \in A : ||x_n|| > M$, $M \in \mathbb{N}$. Tenemos que $\{x_n\}$ no tiene parciales acotadas, luego no tiene parciales convergentes, en contradicción con la definición de compacidad. Es decir, A es acotado.

Teorema 2.1 (Teorema de Bolzano-Weirstrass n-dimensional). Sea $n \in \mathbb{N}$. Entonces, toda sucesión acotada admite una parcial convergente.

Demostración. COMPLETAR MÁS ADELANTE

Teorema 2.2. Sea $n \in \mathbb{N}$, $A \subseteq \mathbb{R}^n$ cerrado y acotado. Entonces, A es compacto.

Demostración. Tomo $\{x_n\}$ ⊆ A. Como A es acotado $\implies \{x_n\}$ acotada. $\implies \{x_n\}$ tiene una parcial convergente a $x \in \mathbb{R}^n$. Como x es límite de una sucesión de puntos de A $\implies x \in \overline{A} = A$ por ser A cerrado $\implies A$ es compacto.

Ejemplo 2.2. Dado $x \in \mathbb{R}^n$, $r > 0 \implies A = B(x, r)$ es compacto.

Demostración. Veamos que la bola es cerrada y acotada.

A es trivialmente acotado, pues $A \in \subseteq \overline{B}(0,||x||+r)$. Demostremos que es cerrado. Sabemos que $A = \{y \in \mathbb{R}^n : ||x-y|| \le r\}$, veamos que $\mathbb{R}^n/A = \{y \in \mathbb{R}^n : ||x-y|| > r\}$ es abierto. Para ver que es abierto, tomo $y \in \mathbb{R}^n/A$ y $\{y_n\} \to y$, $y_n \in A$. Como $\{y_n\} \to y \implies \{y_n-x\} \to y-x \implies \{||y_n-x||\} \to ||y-x|| > r \implies \exists m : \forall n \ge m \implies ||y_n-x|| > r \implies y_n \in \mathbb{R}^n/A \ \forall n \ge m \implies \mathbb{R}^n/A$ es abierto, luego A es cerrado.

Ejercicios

Relación 1

Ejercicio 3.1. Sea $A \subseteq R$ compacto. Entonces, A tiene máximo y mínimo.

Solución. HACER

Referencias

.