合肥工业大学试券(A)

共 1 页第 1 页

2019~2020 学年第 二 学期 课程代码 1400221B 课程名称高等数学 A(下) 学分 6 课程性质:必修 ☑、选修□、限修□ 考试形式:开卷□、闭卷 ☑ 考试日期 2020 年 08 月 25 日 08:00~10:00 命题教师 集体 系(所或教研室)主任审批签名 专业班级 (教学班)

一、填空题(本题满分15分,每小题3分)

- **1、**设 $z = e^{y-x}$,则 $dz|_{(1,0)} = _____.$
- **2**、曲面 $z = x^2 + y^2$ 在点 {1,1,2} 处的切平面方程为
- **3**、交换二重积分次序 $\int_{0}^{3} dx \int_{0}^{2} f(x, y) dy =$ ______.
- **4、**设幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x = -1 处条件收敛,则该幂级数的收敛区间为______.
- **5、**设 L 为 半 圆 $x^2 + y^2 = r^2, x \ge 0$,则 $\int_{\mathcal{C}} (x^2 + y^2) ds = \underline{\hspace{1cm}}$.

二、选择题(本题满分15分,每小题3分)

1、函数 $f(x, y) = \arctan(x^2 y)$ 在点 (1,1) 处的梯度等于 ().

(A)
$$\vec{i} - \frac{1}{2}\vec{j}$$
 (B) $\vec{i} + \frac{1}{2}\vec{j}$ (C) $\frac{1}{2}\vec{i} - \vec{j}$ (D) $\frac{1}{2}\vec{i} + \vec{j}$

- **2、**设函数 f(x, y) 在点 (x_0, y_0) 偏导数存在, 且取得极小值, 则下列结论正确的是(
 - (A) $f(x_0, y)$ 在 $y = y_0$ 处导数等于 0. (B) $f(x_0, y)$ 在 $y = y_0$ 处导数大于 0.
 - (C) $f(x_0, y)$ 在 $y = y_0$ 处导数小于 0. (D) $f(x_0, y)$ 在 $y = y_0$ 处导数不存在.
- **3、**设 α 是常数,则级数 $\sum_{n=1}^{\infty} \left(\frac{\cos(n\alpha)}{n^3} \frac{1}{\sqrt[3]{n^2}} \right)$ ().
 - (A) 发散
- (B) 绝对收敛
- (C) 条件收敛
- (D) 敛散性不定

$$a_n = 2\int_0^1 f(x)\cos(n\pi x)dx \quad \text{If } S\left(-\frac{5}{2}\right) = \underline{\qquad}.$$

$$(A) \frac{1}{4}$$

- (B) $\frac{1}{2}$ (C) $\frac{3}{4}$
- (**D**) 1
- **5、**设 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 上半部分,并取上侧,则下列结论不正确的是().

(A)
$$\iint_{\Sigma} y^2 dy dz = 0$$
 (B) $\iint_{\Sigma} y dy dz = 0$ (C) $\iint_{\Sigma} x^2 dy dz = 0$ (D) $\iint_{\Sigma} x dy dz = 0$

- 三、(本题共 12 分) 设 f(x,y) 具有连续二阶偏导数,且 $z = f(xy, \frac{x^2}{y})$,求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 四、(本题共 10 分) 求函数 $f(x,y) = 4(x-y)-x^2-y^2$ 的极值.
- 五、(本题共 12 分) 计算三重积分 $I=\iiint (x^2+y^2)dV$, Ω 是由旋转抛物面 $2z=x^2+y^2$ 以及平面 z = 2 所包围的立体部分.
- 六、 (本题共 12 分) 计算曲面积分 $I = \iint_{\Sigma} \sqrt{x^2 + y^2 + z^2} \left(x dy dz + y dz dx + z dx dy \right)$, 其中 Σ 为 球面 $x^2+y^2+z^2=1$ 的内侧
- 七、(本题共 12 分) 已知 $f(0) = -\frac{1}{2}$, 求可微函数 f(x), 使得曲线积分

 $\int_{L} [e^{x} + f(x)] y dx - f(x) dy = 5$ 与路径无关,并计算积分 $\int_{(0,0)}^{(1,1)} [e^{x} + f(x)] y dx - f(x) dy.$

八、(本题共 12 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{n(n+1)}{2} x^{n-1}$ 的收敛域及和函数,并求 $\sum_{n=1}^{\infty} \frac{n(n+1)}{2^n}$.