Введение в искусственный интеллект. Машинное обучение

Лекция 8. Ансамблирование моделей. Три метода на букву "Б"

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

7 апреля 2020 г.

План лекции

- Стековое обобщение
 - Блендинг
 - Стекинг
- Бутстрэп и пэстинг
- Бэггинг
- Бустинг с дискретными базовыми алгоритмами

Дорожная карта Scikit-Learn¹

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Дорожная карта Scikit-Learn¹

¹https://scikit-learn.org/stable/tutorial/machine_learning_map/

Ансамблирование

Ансамбль методов

Это способ использования нескольких обучающих алгоритмов с целью получения лучшей эффективности предсказания (классификации или регрессии), чем могли бы получить от каждого обучающего алгоритма по отдельности

Ансамблирование

Ансамбль методов

Это способ использования нескольких обучающих алгоритмов с целью получения лучшей эффективности предсказания (классификации или регрессии), чем могли бы получить от каждого обучающего алгоритма по отдельности

Замечание. Ансамбль методов не бесконечен: состоит из конкретного конечного множества альтернативных моделей.

Ансамблирование

Ансамбль методов

Это способ использования нескольких обучающих алгоритмов с целью получения лучшей эффективности предсказания (классификации или регрессии), чем могли бы получить от каждого обучающего алгоритма по отдельности

Замечание. Ансамбль методов не бесконечен: состоит из конкретного конечного множества альтернативных моделей.

Основные представители:

- Стековое обобщение (stacked generalization)
- Бэггинг (bagging)
- Бустинг (boosting)

Рассмотрим часто применяемый на практике метод простого голосования: $a(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$, где T – число базовых алгоритмов регрессии, $b_t(x)$ – сами базовые алгоритмы (для классификации с sign все рассматривается аналогично).

Рассмотрим часто применяемый на практике метод простого голосования: $a(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$, где T – число базовых алгоритмов регрессии, $b_t(x)$ – сами базовые алгоритмы (для классификации с sign все рассматривается аналогично). Если y(x) – истинная функция ответа, то среднеквадратичная ошибка для базового алгоритма: $E(b_t(x) - y(x))^2 = E\varepsilon_t^2(x)$.

Рассмотрим часто применяемый на практике метод простого голосования:

 $a(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$, где T – число базовых алгоритмов регрессии, $b_t(x)$ – сами базовые алгоритмы (для классификации с sign все рассматривается аналогично).

Если y(x) – истинная функция ответа, то среднеквадратичная ошибка для базового алгоритма: $E(b_t(x)-y(x))^2=E\varepsilon_t^2(x)$.

Средняя среднеквадратичная ошибка по всем базовым алгоритмам:

$$E_{avg} = \frac{1}{T}E\sum_{t=1}^{T} \varepsilon_t^2(x).$$

Рассмотрим часто применяемый на практике метод простого голосования:

 $a(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$, где T – число базовых алгоритмов регрессии, $b_t(x)$ – сами базовые алгоритмы (для классификации с sign все рассматривается аналогично).

Если y(x) – истинная функция ответа, то среднеквадратичная ошибка для базового алгоритма: $E(b_t(x)-y(x))^2=E\varepsilon_t^2(x)$.

Средняя среднеквадратичная ошибка по всем базовым алгоритмам:

$$E_{avg} = \frac{1}{T}E\sum_{t=1}^{T} \varepsilon_t^2(x).$$

Предположим, что ошибки несмещены и некоррелированы: $E arepsilon_t(x) = 0, E arepsilon_t arepsilon_u = 0, t
eq u.$

Рассмотрим часто применяемый на практике метод простого голосования:

 $a(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$, где T – число базовых алгоритмов регрессии, $b_t(x)$ – сами базовые алгоритмы (для классификации с sign все рассматривается аналогично).

Если y(x) – истинная функция ответа, то среднеквадратичная ошибка для базового алгоритма: $E(b_t(x)-y(x))^2=E\varepsilon_t^2(x)$.

Средняя среднеквадратичная ошибка по всем базовым алгоритмам:

$$E_{avg} = \frac{1}{T}E\sum_{t=1}^{T} \varepsilon_t^2(x).$$

Предположим, что ошибки несмещены и некоррелированы: $E\varepsilon_t(x)=0, E\varepsilon_t\varepsilon_u=0, t\neq u.$

Найдем среднеквадратичную ошибку для a(x):

$$E_{ens} = E(a(x) - y(x))^2 = E(\frac{1}{T} \sum_{t=1}^{T} b_t(x) - y(x))^2 = E(\frac{1}{T} \sum_{t=1}^{T} \varepsilon_t)^2 = \frac{1}{T^2} E(\sum_{t=1}^{T} \varepsilon_t^2 + \sum_{t \neq u} \varepsilon_t \varepsilon_u) = \frac{1}{T^2} E\sum_{i=1}^{T} \varepsilon_i^2(x) = \frac{1}{T} E_{avg}.$$

Рассмотрим часто применяемый на практике метод простого голосования:

 $a(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$, где T – число базовых алгоритмов регрессии, $b_t(x)$ – сами базовые алгоритмы (для классификации с sign все рассматривается аналогично).

Если y(x) – истинная функция ответа, то среднеквадратичная ошибка для базового алгоритма: $E(b_t(x)-y(x))^2=E\varepsilon_t^2(x)$.

Средняя среднеквадратичная ошибка по всем базовым алгоритмам:

$$E_{avg} = \frac{1}{T}E\sum_{t=1}^{T} \varepsilon_t^2(x).$$

Предположим, что ошибки несмещены и некоррелированы: $E\varepsilon_t(x)=0, E\varepsilon_t\varepsilon_u=0, t\neq u.$

Найдем среднеквадратичную ошибку для a(x):

$$E_{ens} = E(a(x) - y(x))^{2} = E(\frac{1}{T} \sum_{t=1}^{T} b_{t}(x) - y(x))^{2} = E(\frac{1}{T} \sum_{t=1}^{T} \varepsilon_{t})^{2} = \frac{1}{T^{2}} E(\sum_{t=1}^{T} \varepsilon_{t}^{2} + \sum_{t \neq u} \varepsilon_{t} \varepsilon_{u}) = \frac{1}{T^{2}} E\sum_{i=1}^{T} \varepsilon_{i}^{2}(x) = \frac{1}{T} E_{avg}.$$

Таким образом, простое голосование позволило уменьшить средний квадрат ошибки в T раз!

Предположим, что мы можем обучить T базовых алгоритмов.

После этого мы обучаем комбинирующий алгоритм верхнего уровня (мета-алгоритм), входом для которого являются выходы базовых.

Предположим, что мы можем обучить T базовых алгоритмов.

После этого мы обучаем комбинирующий алгоритм верхнего уровня (мета-алгоритм), входом для которого являются выходы базовых.

Схема стекового обобщения

- $oldsymbol{0}$ Обучаем по отдельности каждый базовый алгоритм $b_t(x), t=1,\ldots,T$
- \bigcirc Фиксируем алгоритмы $b_t(x)$
- **③** Обучаем комбинирующий алгоритм верхнего уровня $a(x) = a(b_1(x), \dots, b_T(x))$

Предположим, что мы можем обучить T базовых алгоритмов.

После этого мы обучаем комбинирующий алгоритм верхнего уровня (мета-алгоритм), входом для которого являются выходы базовых.

Схема стекового обобщения

- lacktriangledown Обучаем по отдельности каждый базовый алгоритм $b_t(x), t=1,\ldots,T$
- $oldsymbol{0}$ Фиксируем алгоритмы $b_t(x)$
- **③** Обучаем комбинирующий алгоритм верхнего уровня $a(x) = a(b_1(x), \dots, b_T(x))$

Замечание 1. Простое (или взвешенное) голосование является частным случаем стекового обобщения с необучаемым комбинирующим алгоритмом верхнего уровня.

Предположим, что мы можем обучить T базовых алгоритмов.

После этого мы обучаем комбинирующий алгоритм верхнего уровня (мета-алгоритм), входом для которого являются выходы базовых.

Схема стекового обобщения

- $oldsymbol{0}$ Обучаем по отдельности каждый базовый алгоритм $b_t(x), t=1,\ldots,T$
- $oldsymbol{2}$ Фиксируем алгоритмы $b_t(x)$
- **③** Обучаем комбинирующий алгоритм верхнего уровня $a(x) = a(b_1(x), \dots, b_T(x))$

Замечание 1. Простое (или взвешенное) голосование является частным случаем стекового обобщения с необучаемым комбинирующим алгоритмом верхнего уровня. Замечание 2. Стековое обобщение - один из главных методов достижения успехов на Kaggle :)

²Wolpert D. (1992) "Stacked Generalization"

Ранее мы рассмотрели общую схему, теперь рассмотрим конкретные варианты реализации на практике.

• Разбиваем обучающую выборку на две части

- Разбиваем обучающую выборку на две части
- На одной части обучаем базовые алгоритмы

- Разбиваем обучающую выборку на две части
- На одной части обучаем базовые алгоритмы
- 🔞 На второй получаем ответы базовых алгоритмов и обучаем мета-алгоритм

- Разбиваем обучающую выборку на две части
- 2 На одной части обучаем базовые алгоритмы
- На второй получаем ответы базовых алгоритмов и обучаем мета-алгоритм
- На тесте сначала получаем выходы базовых алгоритмов, к которым применяем мета-алгоритм

Блендинг – визуализация

Рассмотрим схему³ блендинга:

⁴

Проблема классического блендинга: ни базовые алгоритмы, ни мета-алгоритм не видят всей обучающей выборки. Поэтому можно немного усовершенствовать подход.

• Разбиваем обучающую выборку на две части

- Разбиваем обучающую выборку на две части
- На одной части обучаем базовые алгоритмы

- Разбиваем обучающую выборку на две части
- 2 На одной части обучаем базовые алгоритмы
- На второй части получаем их ответы (мета-признаки)

- Разбиваем обучающую выборку на две части
- На одной части обучаем базовые алгоритмы
- На второй части получаем их ответы (мета-признаки)
- Повторяем пп. 2-3 для другого разбиения обучающей выборки

- Разбиваем обучающую выборку на две части
- На одной части обучаем базовые алгоритмы
- На второй части получаем их ответы (мета-признаки)
- Повторяем пп. 2-3 для другого разбиения обучающей выборки
- Формируем мета-признаки для всех валидационных частей обучающей выборки путем конкатенации таблиц ответов базовых алгоритмов, обученных на разных разбиениях, и обучаем мета-алгоритм

- Разбиваем обучающую выборку на две части
- На одной части обучаем базовые алгоритмы
- На второй части получаем их ответы (мета-признаки)
- Повторяем пп. 2-3 для другого разбиения обучающей выборки
- Формируем мета-признаки для всех валидационных частей обучающей выборки путем конкатенации таблиц ответов базовых алгоритмов, обученных на разных разбиениях, и обучаем мета-алгоритм
- На тесте сначала получаем выходы базовых алгоритмов, обученных на разных разбиениях, затем запускаем мета-алгоритм

- Разбиваем обучающую выборку на две части
- На одной части обучаем базовые алгоритмы
- На второй части получаем их ответы (мета-признаки)
- 💿 Повторяем пп. 2-3 для другого разбиения обучающей выборки
- Формируем мета-признаки для всех валидационных частей обучающей выборки путем конкатенации таблиц ответов базовых алгоритмов, обученных на разных разбиениях, и обучаем мета-алгоритм
- На тесте сначала получаем выходы базовых алгоритмов, обученных на разных разбиениях, затем запускаем мета-алгоритм
- После чего усредняем ответы мета-алгоритма по количеству разбиений

Блендинг – визуализация усовершенствования

Рассмотрим схему усовершенствованного ⁴ блендинга:

Попытка решения той же проблемы: алгоритмы не видят всей обучающей выборки.

Попытка решения той же проблемы: алгоритмы не видят всей обучающей выборки. Опишем алгоритм $Super\ Learner^5$:

Разбиваем обучающую выборку на две части

Попытка решения той же проблемы: алгоритмы не видят всей обучающей выборки. Опишем алгоритм **Super Learner** 5 :

- Разбиваем обучающую выборку на две части
- Обучаем базовые алгоритмы с помощью кросс-валидации
 - Обучаем первую версию алгоритма на одной части, вторую на другой
 - В качестве ответа на входном примере берем усреднение ответов двух версий алгоритма

⁵Van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). "Super learner" > 4 @ > 4 @ > 4 @ > 4

Попытка решения той же проблемы: алгоритмы не видят всей обучающей выборки. Опишем алгоритм **Super Learner** 5 :

- Разбиваем обучающую выборку на две части
- ② Обучаем базовые алгоритмы с помощью кросс-валидации
 - Обучаем первую версию алгоритма на одной части, вторую на другой
 - В качестве ответа на входном примере берем усреднение ответов двух версий алгоритма
- Получаем выходы базовых кросс-валидационных алгоритмов на всей обучающей выборке

Стекинг (Stacking)

Попытка решения той же проблемы: алгоритмы не видят всей обучающей выборки. Опишем алгоритм **Super Learner** 5 :

- Разбиваем обучающую выборку на две части
- Обучаем базовые алгоритмы с помощью кросс-валидации
 - Обучаем первую версию алгоритма на одной части, вторую на другой
 - В качестве ответа на входном примере берем усреднение ответов двух версий алгоритма
- Получаем выходы базовых кросс-валидационных алгоритмов на всей обучающей выборке
- Обучаем мета-алгоритм на мета-признаках по всей обучающей выборке

Стекинг (Stacking)

Попытка решения той же проблемы: алгоритмы не видят всей обучающей выборки. Опишем алгоритм $Super\ Learner^5$:

- Разбиваем обучающую выборку на две части
- ② Обучаем базовые алгоритмы с помощью кросс-валидации
 - Обучаем первую версию алгоритма на одной части, вторую на другой
 - В качестве ответа на входном примере берем усреднение ответов двух версий алгоритма
- Получаем выходы базовых кросс-валидационных алгоритмов на всей обучающей выборке
- Обучаем мета-алгоритм на мета-признаках по всей обучающей выборке
- На тесте сначала получаем выходы базовых кросс-валидационных алгоритмов, к которым применяем мета-алгоритм

Стекинг – визуализация

Рассмотрим схему 6 стекинга:

• Блендинг очень прост в реализации

- Блендинг очень прост в реализации
- Усовершенствованный блендинг зачастую не дает прироста по сравнению с обычным усреднением ответов базовых алгоритмов, обученных на всей обучающей выборке

- Блендинг очень прост в реализации
- Усовершенствованный блендинг зачастую не дает прироста по сравнению с обычным усреднением ответов базовых алгоритмов, обученных на всей обучающей выборке
- Стекинг решает проблему обучения базовых алгоритмов на всем обучающем множестве, однако не всегда от этого есть ощутимый прирост

- Блендинг очень прост в реализации
- Усовершенствованный блендинг зачастую не дает прироста по сравнению с обычным усреднением ответов базовых алгоритмов, обученных на всей обучающей выборке
- Стекинг решает проблему обучения базовых алгоритмов на всем обучающем множестве, однако не всегда от этого есть ощутимый прирост
- Стековое обобщение подходит для использования алгоритмов разной природы

- Блендинг очень прост в реализации
- Усовершенствованный блендинг зачастую не дает прироста по сравнению с обычным усреднением ответов базовых алгоритмов, обученных на всей обучающей выборке
- Стекинг решает проблему обучения базовых алгоритмов на всем обучающем множестве, однако не всегда от этого есть ощутимый прирост
- Стековое обобщение подходит для использования алгоритмов разной природы
- В качестве мета-алгоритмов проще всего использовать регрессоры

- Блендинг очень прост в реализации
- Усовершенствованный блендинг зачастую не дает прироста по сравнению с обычным усреднением ответов базовых алгоритмов, обученных на всей обучающей выборке
- Стекинг решает проблему обучения базовых алгоритмов на всем обучающем множестве, однако не всегда от этого есть ощутимый прирост
- Стековое обобщение подходит для использования алгоритмов разной природы
- В качестве мета-алгоритмов проще всего использовать регрессоры
- Выходы базовых алгоритмов часто коррелируют, поэтому лучше использовать недообученные версии этих алгоритмов

- Блендинг очень прост в реализации
- Усовершенствованный блендинг зачастую не дает прироста по сравнению с обычным усреднением ответов базовых алгоритмов, обученных на всей обучающей выборке
- Стекинг решает проблему обучения базовых алгоритмов на всем обучающем множестве, однако не всегда от этого есть ощутимый прирост
- Стековое обобщение подходит для использования алгоритмов разной природы
- В качестве мета-алгоритмов проще всего использовать регрессоры
- Выходы базовых алгоритмов часто коррелируют, поэтому лучше использовать недообученные версии этих алгоритмов
- Можно для обучения мета-алгоритма использовать не только выходы базовых алгоритмов, но и исходные данные; однако так лучше не делать

Бутстрэп (Bootstrap)

Бутстрэп (Bootstrap)

Английская поговорка: "To pull oneself over a fence by one's bootstraps". Русский аналог: Мюнхгаузен, вытаскивающий себя за волосы из болота.

Бутстрэп

Определение

Бутстрэп - это методика тестирования на основе случайного семплирования (либо само это семплирование) из выборки с возвращением.

Бутстрэп

Определение

Бутстрэп - это методика тестирования на основе случайного семплирования (либо само это семплирование) из выборки с возвращением.

• Бутстрэп⁷ позволяет оценивать параметры алгоритмов (такие как смещение, разброс, доверительный интервал и т.п.) на основе семплированных выборок

Бутстрэп

Определение

Бутстрэп - это методика тестирования на основе случайного семплирования (либо само это семплирование) из выборки с возвращением.

- Бутстрэп⁷ позволяет оценивать параметры алгоритмов (такие как смещение, разброс, доверительный интервал и т.п.) на основе семплированных выборок
- Многократная генерация выборок происходит методом Монте-Карло на базе имеющейся выборки (т.о., из одной выборки генерируем любое число выборок)

О семплировании с возвращением

Теорема

При использовании бутстрэпа для генерации выборки той же мощности N, что и исходная выборка, доля объектов, не попавших в сгенерированную выборку, стремится к e^{-1} при $N \to \infty$.

О семплировании с возвращением

Теорема

При использовании бутстрэпа для генерации выборки той же мощности N, что и исходная выборка, доля объектов, не попавших в сгенерированную выборку, стремится к e^{-1} при $N \to \infty$.

Доказательство. На каждом шаге все объекты попадают в новую выборку с возвращением равновероятно, т.е отдельный объект – с вероятностью $\frac{1}{N}$. Вероятность того, что объект не попадёт в новую выборку после N шагов: $(1-\frac{1}{N})^N$. Вспоминаем второй замечательный предел:

$$\lim_{N o \infty} (1 - \frac{1}{N})^N = \lim_{N o \infty} \left((1 - \frac{1}{N})^{-N} \right)^{-1} = e^{-1}$$
. Ч.т.д.

О семплировании с возвращением

Теорема

При использовании бутстрэпа для генерации выборки той же мощности N, что и исходная выборка, доля объектов, не попавших в сгенерированную выборку, стремится к e^{-1} при $N \to \infty$.

Доказательство. На каждом шаге все объекты попадают в новую выборку с возвращением равновероятно, т.е отдельный объект – с вероятностью $\frac{1}{N}$. Вероятность того, что объект не попадёт в новую выборку после N шагов: $(1-\frac{1}{N})^N$.

Вспоминаем второй замечательный предел:

$$\lim_{N o\infty}(1-rac{1}{N})^N=\lim_{N o\infty}\left((1-rac{1}{N})^{-N}
ight)^{-1}=e^{-1}$$
. Ч.т.д.

Замечание. Т.о. можно тестировать алгоритм на оставшихся $e^{-1} \approx 37\%$ данных.

• **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?

⁸Breiman, L. (1999). "Pasting small votes for classification in large databases and on-line" 📳 🔻 📳

- **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?
- Ответ. Получим т.н. процедуру пэстинга⁸ (Pasting).

⁸Breiman, L. (1999). "Pasting small votes for classification in large databases and on-line" () + + () +

- **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?
- Ответ. Получим т.н. процедуру пэстинга⁸ (Pasting).

- **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?
- Ответ. Получим т.н. процедуру пэстинга⁸ (Pasting).

Приведем пример для сравнения различных процедур семплирования.

ullet Дано: обучающая выборка, состоящая из N=5 объектов $X=\{1,2,3,4,5\}$,

⁸Breiman, L. (1999). "Pasting small votes for classification in large databases and on-line" (2) (2) (2)

- **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?
- Ответ. Получим т.н. процедуру пэстинга⁸ (Pasting).

- ullet Дано: обучающая выборка, состоящая из N=5 объектов $X=\{1,2,3,4,5\}$,
- Проводим процедуру семплирования n=3 объектов,

⁸Breiman, L. (1999). "Pasting small votes for classification in large databases and on-line" 🚁 🗸 😩 🗦

- **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?
- Ответ. Получим т.н. процедуру пэстинга⁸ (Pasting).

- ullet Дано: обучающая выборка, состоящая из ${\it N}=5$ объектов ${\it X}=\{1,2,3,4,5\}$,
- ullet Проводим процедуру семплирования n=3 объектов,
- Бутстрэп: $\{2,2,5\},\{1,2,5\},\{2,4,4\},\dots$

⁸Breiman, L. (1999). "Pasting small votes for classification in large databases and on-line" 🚁 💵 💂

- **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?
- Ответ. Получим т.н. процедуру пэстинга⁸ (Pasting).

- ullet Дано: обучающая выборка, состоящая из ${\it N}=5$ объектов ${\it X}=\{1,2,3,4,5\}$,
- ullet Проводим процедуру семплирования n=3 объектов,
- Бутстрэп: $\{2,2,5\},\{1,2,5\},\{2,4,4\},\dots$
- Пэстинг: $\{2,3,5\},\{1,3,5\},\{2,3,4\},\ldots$

⁸Breiman, L. (1999). "Pasting small votes for classification in large databases and on-line" () - () = (

- **Bonpoc**. Что будет, если мы запретим при процедуре бутстрэп-семплирования возвращать объекты назад в выборку для их возможного выбора еще раз?
- Ответ. Получим т.н. процедуру пэстинга⁸ (Pasting).

Приведем пример для сравнения различных процедур семплирования.

- ullet Дано: обучающая выборка, состоящая из ${\it N}=5$ объектов ${\it X}=\{1,2,3,4,5\}$,
- ullet Проводим процедуру семплирования n=3 объектов,
- Бутстрэп: $\{2,2,5\},\{1,2,5\},\{2,4,4\},\dots$
- Пэстинг: $\{2,3,5\},\{1,3,5\},\{2,3,4\},\dots$

Замечание. Пэстинг имеет очевидную реализацию: сначала случайно перемешиваем объекты, затем берем из них n первых.

⁸Breiman, L. (1999). "Pasting small votes for classification in large databases and on-line" 🖘 🔻 👔 👢

• При бутстрэпе мы можем получить практически неограниченное количество подвыборок (за счет разрешения семплирования объектов с повторением),

- При бутстрэпе мы можем получить практически неограниченное количество подвыборок (за счет разрешения семплирования объектов с повторением).
- При пэстинге мы можем получить гораздо меньше подвыборок (поскольку все элементы должны быть различны),

- При бутстрэпе мы можем получить практически неограниченное количество подвыборок (за счет разрешения семплирования объектов с повторением),
- При пэстинге мы можем получить гораздо меньше подвыборок (поскольку все элементы должны быть различны),
- Пэстинг при размере выборке, совпадающей по порядку с размером исходной обучающей выборки ($n \sim N$), практически не имеет никакого смысла,

- При бутстрэпе мы можем получить практически неограниченное количество подвыборок (за счет разрешения семплирования объектов с повторением).
- При пэстинге мы можем получить гораздо меньше подвыборок (поскольку все элементы должны быть различны),
- Пэстинг при размере выборке, совпадающей по порядку с размером исходной обучающей выборки ($n \sim N$), практически не имеет никакого смысла,
- Пэстинг имеет смысл применять, когда нам важно, чтобы объекты не повторялись.

Вспомним разложение ошибки на разброс и смещение: $\sigma^2 + variance(a) + bias^2(f, a)$.

⁹Breiman L. (1994). "Bagging Predictors".

Вспомним разложение ошибки на разброс и смещение: $\sigma^2 + variance(a) + bias^2(f,a)$. Также мы видели, что простое усреднение T алгоритмов позволяет теоретически уменьшить разброс в T раз, при этом не влияя на смещение.

⁹Breiman L. (1994). "Bagging Predictors".

Вспомним разложение ошибки на разброс и смещение: $\sigma^2 + variance(a) + bias^2(f,a)$. Также мы видели, что простое усреднение T алгоритмов позволяет теоретически уменьшить разброс в T раз, при этом не влияя на смещение. Это и есть главная идея бэггинга 9 :

⁹Breiman L. (1994). "Bagging Predictors".

Вспомним разложение ошибки на разброс и смещение: $\sigma^2 + variance(a) + bias^2(f,a)$. Также мы видели, что простое усреднение T алгоритмов позволяет теоретически уменьшить разброс в T раз, при этом не влияя на смещение. Это и есть главная идея бэггинга 9 :

• уменьшить разброс алгоритма,

⁹Breiman L. (1994). "Bagging Predictors".

Вспомним разложение ошибки на разброс и смещение: $\sigma^2 + variance(a) + bias^2(f,a)$. Также мы видели, что простое усреднение T алгоритмов позволяет теоретически уменьшить разброс в T раз, при этом не влияя на смещение. Это и есть главная идея бэггинга 9 :

- уменьшить разброс алгоритма,
- как следствие, бороться с переобучением.

Вспомним разложение ошибки на разброс и смещение: $\sigma^2 + variance(a) + bias^2(f, a)$. Также мы видели, что простое усреднение T алгоритмов позволяет теоретически уменьшить разброс в T раз, при этом не влияя на смещение. Это и есть главная идея бэггинга⁹:

- уменьшить разброс алгоритма,
- как следствие, бороться с переобучением.

Определение

Бэггинг (Bootstrap AGGregatING) - это метод ансамблирования, основанный на:

- бутстрэп-семплировании для каждого обучения базового алгоритма.
- последующем усреднении ответов уже обученных базовых алгоритмов методом простого голосования.

⁹Breiman L. (1994). "Bagging Predictors".

- Дано: обучающая выборка X^m мощности m.
- ullet Цель: обучить ансамбль из T классификаторов $b_t(x), t=1,\ldots,T$.

- Дано: обучающая выборка X^m мощности m.
- ullet Цель: обучить ансамбль из T классификаторов $b_t(x), t=1,\ldots,T$.

Алгоритм

① Формируем T выборок $X_t^m, t = 1, \ldots, T$ мощности m с помощью бутстрэп-семплирования,

- Дано: обучающая выборка X^m мощности m.
- Цель: обучить ансамбль из T классификаторов $b_t(x), t = 1, ..., T$.

Алгоритм

- lacktriangle Формируем T выборок $X_t^m, t=1,\ldots,T$ мощности m с помощью бутстрэп-семплирования.
- ullet На каждой выборке $X_t^m, t = 1, \ldots, T$ обучаем свой алгоритм $b_t(x)$,

- Дано: обучающая выборка X^m мощности m.
- ullet Цель: обучить ансамбль из T классификаторов $b_t(x), t=1,\ldots,T$.

Алгоритм

- ① Формируем T выборок $X_t^m, t = 1, \ldots, T$ мощности m с помощью бутстрэп-семплирования,
- $oldsymbol{oldsymbol{eta}}$ На каждой выборке $X_t^m, t=1,\ldots,T$ обучаем свой алгоритм $b_t(x)$,
- Результат применения усреднение (для регрессии) или голосование (для классификации).

Оказывается, можно использовать бутстрэп-семплирование не только для обучающей выборки, но и для признаков!

Оказывается, можно использовать бутстрэп-семплирование не только для обучающей выборки, но и для признаков!

Это – метод случайных подпространств¹⁰.

Оказывается, можно использовать бутстрэп-семплирование не только для обучающей выборки, но и для признаков!

Это – метод случайных подпространств 10 .

Т.о., случайные деревья из прошлой лекции – это объединение:

• Бэггинга для работы с выборкой,

Оказывается, можно использовать бутстрэп-семплирование не только для обучающей выборки, но и для признаков!

Это – метод случайных подпространств 10 .

Т.о., случайные деревья из прошлой лекции – это объединение:

- Бэггинга для работы с выборкой,
- Метода случайных подпространств для работы с признаковым пространством.

Плюсы бэггинга

• Уменьшает разброс и, как следствие, борется с переобучением,

- Уменьшает разброс и, как следствие, борется с переобучением.
- Ошибки базовых алгоритмов взаимно компенсируются,

- Уменьшает разброс и, как следствие, борется с переобучением.
- Ошибки базовых алгоритмов взаимно компенсируются,
- Объекты-выбросы могут не попасть в некоторые обучающие подвыборки,

- Уменьшает разброс и, как следствие, борется с переобучением.
- Ошибки базовых алгоритмов взаимно компенсируются,
- Объекты-выбросы могут не попасть в некоторые обучающие подвыборки,
- Хорошо работает для нестабильных алгоритмов (нейронные сети),

- Уменьшает разброс и, как следствие, борется с переобучением.
- Ошибки базовых алгоритмов взаимно компенсируются,
- Объекты-выбросы могут не попасть в некоторые обучающие подвыборки,
- Хорошо работает для нестабильных алгоритмов (нейронные сети),
- Легко распараллеливается.

Плюсы бэггинга

- Уменьшает разброс и, как следствие, борется с переобучением,
- Ошибки базовых алгоритмов взаимно компенсируются,
- Объекты-выбросы могут не попасть в некоторые обучающие подвыборки,
- Хорошо работает для нестабильных алгоритмов (нейронные сети),
- Легко распараллеливается.

Минусы бэггинга

• Не борется со смещением,

Плюсы бэггинга

- Уменьшает разброс и, как следствие, борется с переобучением.
- Ошибки базовых алгоритмов взаимно компенсируются,
- Объекты-выбросы могут не попасть в некоторые обучающие подвыборки,
- Хорошо работает для нестабильных алгоритмов (нейронные сети).
- Легко распараллеливается.

Минусы бэггинга

- Не борется со смещением.
- Каждый базовый алгоритм видит всего 63% обучающих данных,

Плюсы бэггинга

- Уменьшает разброс и, как следствие, борется с переобучением.
- Ошибки базовых алгоритмов взаимно компенсируются,
- Объекты-выбросы могут не попасть в некоторые обучающие подвыборки,
- Хорошо работает для нестабильных алгоритмов (нейронные сети).
- Легко распараллеливается.

Минусы бэггинга

- Не борется со смещением,
- Каждый базовый алгоритм видит всего 63% обучающих данных,
- Не очень хорошо работает для стабильных алгоритмов (метод К-ближайших соседей).

22 / 35

Попробуем теперь бороться не только с разбросом, но и со смещением.

¹¹Schapire R. E. (1990). "The Strength of Weak Learnability".

Попробуем теперь бороться не только с разбросом, но и со смещением. Главная идея бустинга 11 :

² %

¹¹Schapire R. E. (1990). "The Strength of Weak Learnability".

Попробуем теперь бороться не только с разбросом, но и со смещением. Главная идея бустинга 11 :

• Отвечает на вопрос: "Может ли набор слабых обучающих алгоритмов создать сильный обучающий алгоритм?",

¹¹Schapire R. E. (1990). "The Strength of Weak Learnability".

Попробуем теперь бороться не только с разбросом, но и со смещением. Главная идея бустинга 11 :

- Отвечает на вопрос: "Может ли набор слабых обучающих алгоритмов создать сильный обучающий алгоритм?",
- Борется не только с разбросом, но и со смещением алгоритма.

¹¹Schapire R. E. (1990). "The Strength of Weak Learnability".

Попробуем теперь бороться не только с разбросом, но и со смещением. Главная идея бустинга 11 :

- Отвечает на вопрос: "Может ли набор слабых обучающих алгоритмов создать сильный обучающий алгоритм?",
- Борется не только с разбросом, но и со смещением алгоритма.

Определение

Бустинг (Boosting) - это метод ансамблирования, основанный на:

- \rm взвешенном голосовании композиции,
- 2 последовательном выборе нового классификатора на основе ошибок предыдущих.

¹¹Schapire R. E. (1990). "The Strength of Weak Learnability".

Разные виды бустинга можно описать в зависимости от:

• Функции потерь,

Разные виды бустинга можно описать в зависимости от:

- Функции потерь,
- Множества выходных значений базовых классификаторов.

Разные виды бустинга можно описать в зависимости от:

- Функции потерь.
- Множества выходных значений базовых классификаторов.

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}.$

Разные виды бустинга можно описать в зависимости от:

- Функции потерь,
- Множества выходных значений базовых классификаторов.

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^T \alpha_t b_t, \alpha_t \in \mathbb{R}.$

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

Разные виды бустинга можно описать в зависимости от:

- Функции потерь,
- Множества выходных значений базовых классификаторов.

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^T \alpha_t b_t, \alpha_t \in \mathbb{R}.$

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

AnyBoost

- ullet Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от отступа L(y_ia(x_i))

Разные виды бустинга можно описать в зависимости от:

- Функции потерь,
- Множества выходных значений базовых классификаторов.

Обозначим взвешенную сумму выходов базовых классификаторов $b_t(x)$ как $a(x) = \sum_{t=1}^T \alpha_t b_t, \alpha_t \in \mathbb{R}.$

AdaBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из дискретного множества (например, $\{-1,+1\}$),
- Функция потерь: $e^{-y_i a(x_i)}$

AnyBoost

- Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от отступа L(y_ia(x_i))

Gradient Boosting

- ullet Базовые алгоритмы $b_t(x)$ принимают значения из \mathbb{R} ,
- Функция потерь гладкая функция от пары L(y_i, a(x_i))

Пусть $X^m = \{(x_i, y_i)_{i=1}^m\}, y_i \in Y = \{+1, -1\}, b_t : X \to \{-1, 0, +1\}.$ Значение $b_t(x) = 0$ вводится для сигнализации неопределенности в классификации (аналогия: нахождение внутри полосы для SVM).

Пусть $X^m = \{(x_i, y_i)_{i=1}^m\}, y_i \in Y = \{+1, -1\}, b_t : X \to \{-1, 0, +1\}.$ Значение $b_t(x) = 0$ вводится для сигнализации неопределенности в классификации (аналогия: нахождение внутри полосы для SVM).

• Алгоритм классификации – взвешенное голосование: $a(x) = sign(\sum_{t=1}^{T} \alpha_t b_t(x)),$

Пусть $X^m = \{(x_i, y_i)_{i=1}^m\}, y_i \in Y = \{+1, -1\}, b_t : X \to \{-1, 0, +1\}.$ Значение $b_t(x) = 0$ вводится для сигнализации неопределенности в классификации (аналогия: нахождение внутри полосы для SVM).

- Алгоритм классификации взвешенное голосование: $a(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t b_t(x)),$
- Эмпирический риск число ошибок на X^m : $R_T = \sum_{i=1}^{m} [y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0]$

Пусть $X^m = \{(x_i, y_i)_{i=1}^m\}, y_i \in Y = \{+1, -1\}, b_t : X \to \{-1, 0, +1\}.$ Значение $b_t(x) = 0$ вводится для сигнализации неопределенности в классификации (аналогия: нахождение внутри полосы для SVM).

- Алгоритм классификации взвешенное голосование: $a(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t b_t(x)),$
- Эмпирический риск число ошибок на X^m : $R_{\tau} = \sum_{i=1}^{m} [y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0]$

Основные идеи обучения:

• Заморозка $\alpha_1 b_1(x_i), \dots, \alpha_{t-1} b_{t-1}(x_i)$ при добавлении $\alpha_t b_t(x_i)$,

Пусть $X^m = \{(x_i, y_i)_{i=1}^m\}, y_i \in Y = \{+1, -1\}, b_t : X \to \{-1, 0, +1\}.$ Значение $b_t(x) = 0$ вводится для сигнализации неопределенности в классификации (аналогия: нахождение внутри полосы для SVM).

- Алгоритм классификации взвешенное голосование: $a(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t b_t(x)),$
- Эмпирический риск число ошибок на X^m : $R_{\tau} = \sum_{i=1}^{m} [y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0]$

Основные идеи обучения:

- Заморозка $\alpha_1 b_1(x_i), \dots, \alpha_{t-1} b_{t-1}(x_i)$ при добавлении $\alpha_t b_t(x_i)$,
- Использовать аппроксимированный Э.Р.

25 / 35

Пусть $X^m = \{(x_i, y_i)_{i=1}^m\}, y_i \in Y = \{+1, -1\}, b_t : X \to \{-1, 0, +1\}$. Значение $b_t(x) = 0$ вводится для сигнализации неопределенности в классификации (аналогия: нахождение внутри полосы для SVM).

- Алгоритм классификации взвешенное голосование: $a(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t b_t(x)),$
- Эмпирический риск число ошибок на X^m : $R_T = \sum_{i=1}^m [y_i \sum_{t=1}^T \alpha_t b_t(x_i) < 0]$

Основные идеи обучения:

- Заморозка $\alpha_1 b_1(x_i), \dots, \alpha_{t-1} b_{t-1}(x_i)$ при добавлении $\alpha_t b_t(x_i)$,
- Использовать аппроксимированный Э.Р.

Обозначения

Аппроксимация Э.Р. с помощью функции потерь $e^{-y_i a(x_i)}$:

$$R_T \leq \widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)}$$

Обозначения

Аппроксимация Э.Р. с помощью функции потерь $e^{-y_i a(x_i)}$:

$$R_T \leq \widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)}$$

ullet Вектор весов (взвешиваем объекты) $W^m=(w_1,\ldots,w_m)$:

$$w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} \Rightarrow \widetilde{R}_{T-1} = \sum_{i=1}^m w_i,$$

ullet Нормировка: $\widetilde{w}_i = rac{w_i}{\sum_{j=1}^m w_j} \Rightarrow \sum_{i=1}^m \widetilde{w}_i = 1, \widetilde{w}_i \geq 0$

Обозначения

Аппроксимация Э.Р. с помощью функции потерь $e^{-y_i a(x_i)}$:

$$R_T \leq \widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)}$$

- Вектор весов (взвешиваем объекты) $W^m = (w_1, \dots, w_m)$: $w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} \Rightarrow \widetilde{R}_{T-1} = \sum_{i=1}^{m} w_i$.
- ullet Нормировка: $\widetilde{w}_i = rac{w_i}{\sum_{i=1}^m w_j} \Rightarrow \sum_{i=1}^m \widetilde{w}_i = 1, \widetilde{w}_i \geq 0$
- ullet Вероятностный вектор $U^m = (u_1, \dots, u_m)$: $\sum_{i=1}^m u_i = 1, u_i \geq 0$,
- Взвешенное число правильных классификаций алгоритма b(x) по вектору U^m : $P(b; U^m) = \sum_{i=1}^m u_i [b(x) = y_i]$
- Взвешенное число ошибочных классификаций алгоритма b(x) по вектору U^m : $N(b; U^m) = \sum_{i=1}^m u_i [b(x) = -y_i]$
- Взвешенное число отказов от классификации: 1 P N.

Основная теорема бустинга

Пусть A – достаточно богатое семейство базовых алгоритмов.

Теорема

Если для любого вероятностного вектора U^m существует алгоритм $b \in A$, т.ч. $P(b; U^m) > N(b; U^m)$, то минимум аппроксимированного Э.Р. \widetilde{R}_T достигается на:

•
$$b_T = \operatorname{arg\,max}_{b \in A} \sqrt{P(b; \widetilde{W}^m)} - \sqrt{N(b; \widetilde{W}^m)}$$

$$\bullet \ \alpha_T = \frac{1}{2} \ln \frac{P(b_T; \widetilde{W}^m)}{N(b_T; \widetilde{W}^m)}$$

Основная теорема бустинга

Пусть A – достаточно богатое семейство базовых алгоритмов.

Теорема

Если для любого вероятностного вектора U^m существует алгоритм $b \in A$, т.ч. $P(b; U^m) > N(b; U^m)$, то минимум аппроксимированного Э.Р. \widetilde{R}_T достигается на:

•
$$b_T = \operatorname{arg\,max}_{b \in A} \sqrt{P(b; \widetilde{W}^m)} - \sqrt{N(b; \widetilde{W}^m)}$$

$$\bullet \ \alpha_T = \frac{1}{2} \ln \frac{P(b_T; \widetilde{W}^m)}{N(b_T; \widetilde{W}^m)}$$

Замечание. В этом случае $\alpha \tau > 0$.

Если $b \in \{-1,0,+1\}$, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$.

Если $b \in \{-1,0,+1\}$, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} =$ $\sum_{i=1}^{m} w_i (e^{-\alpha_T}[b_T(x_i) = v_i] + e^{\alpha_T}[b_T(x_i) = -v_i] + [b_T(x_i) = 0]) =$

Если $b \in \{-1,0,+1\}$, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} =$ $\sum_{i=1}^{m} w_i \left(e^{-\alpha_T} [b_T(x_i) = y_i] + e^{\alpha_T} [b_T(x_i) = -y_i] + [b_T(x_i) = 0] \right) =$ $e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = v_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -v_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] =$

Если
$$b \in \{-1,0,+1\}$$
, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} = \sum_{i=1}^m w_i \left(e^{-\alpha_T} [b_T(x_i) = y_i] + e^{\alpha_T} [b_T(x_i) = -y_i] + [b_T(x_i) = 0] \right) = e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -y_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] = \left(e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = 0] \right) \sum_{i=1}^m w_i = e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = y_i] + e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = 0]$

Если $b \in \{-1,0,+1\}$, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^{m} e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} =$ $\sum_{i=1}^{m} w_i (e^{-\alpha_T}[b_T(x_i) = v_i] + e^{\alpha_T}[b_T(x_i) = -v_i] + [b_T(x_i) = 0]) =$ $e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -y_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] =$ $(e^{-\alpha_T}\sum_{i=1}^m \widetilde{w}_i[b_T(x_i) = y_i] + e^{\alpha_T}\sum_{i=1}^m \widetilde{w}_i[b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i[b_T(x_i) = 0])\sum_{i=1}^m w_i = 0$ $(e^{-\alpha_T}P + e^{\alpha_T}N + 1 - P - N)R_{T-1}$

Если
$$b \in \{-1,0,+1\}$$
, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} = \sum_{i=1}^m w_i \left(e^{-\alpha_T} [b_T(x_i) = y_i] + e^{\alpha_T} [b_T(x_i) = -y_i] + [b_T(x_i) = 0] \right) = e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -y_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] = \left(e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = 0] \right) \sum_{i=1}^m w_i = \left(e^{-\alpha_T} P + e^{\alpha_T} N + 1 - P - N \right) \widetilde{R}_{T-1}.$ $\widetilde{R}_T \to \min_{\alpha_T} \Rightarrow \frac{\partial \widetilde{R}_T}{\partial \alpha_T} = 0.$

Если
$$b \in \{-1,0,+1\}$$
, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} = \sum_{i=1}^m w_i \left(e^{-\alpha_T} [b_T(x_i) = y_i] + e^{\alpha_T} [b_T(x_i) = -y_i] + [b_T(x_i) = 0] \right) = e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -y_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] = \left(e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = 0] \right) \sum_{i=1}^m w_i = \left(e^{-\alpha_T} P + e^{\alpha_T} N + 1 - P - N \right) \widetilde{R}_{T-1}.$ $\widetilde{R}_T \to \min_{\alpha_T} \Rightarrow \frac{\partial \widetilde{R}_T}{\partial \alpha_T} = 0.$ $\frac{\partial \widetilde{R}_T}{\partial \alpha_T} = \left(-e^{-\alpha_T} P + e^{\alpha_T} N \right) \widetilde{R}_{T-1} = 0 \Rightarrow e^{-\alpha_T} P = e^{\alpha_T} N \Rightarrow e^{2\alpha_T} = \frac{P}{N} \Rightarrow \alpha_T = \frac{1}{2} \ln \frac{P(b_T; \widetilde{W}^m)}{N(b_T; \widetilde{W}^m)}.$

Если
$$b \in \{-1,0,+1\}$$
, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} = \sum_{i=1}^m w_i \left(e^{-\alpha_T} [b_T(x_i) = y_i] + e^{\alpha_T} [b_T(x_i) = -y_i] + [b_T(x_i) = 0] \right) = e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -y_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] = \left(e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = 0] \right) \sum_{i=1}^m w_i = \left(e^{-\alpha_T} P + e^{\alpha_T} N + 1 - P - N \right) \widetilde{R}_{T-1}.$ $\widetilde{R}_T \to \min_{\alpha_T} \Rightarrow \frac{\partial \widetilde{R}_T}{\partial \alpha_T} = 0.$
$$\frac{\partial \widetilde{R}_T}{\partial \alpha_T} = \left(-e^{-\alpha_T} P + e^{\alpha_T} N \right) \widetilde{R}_{T-1} = 0 \Rightarrow e^{-\alpha_T} P = e^{\alpha_T} N \Rightarrow e^{2\alpha_T} = \frac{P}{N} \Rightarrow \alpha_T = \frac{1}{2} \ln \frac{P(b_T; \widetilde{W}^m)}{N(b_T; \widetilde{W}^m)}.$$

Для поиска $b_T(x)$ подставим найденное α_T в формулу для \widetilde{R}_T :

Если
$$b \in \{-1,0,+1\}$$
, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} = \sum_{i=1}^m w_i \left(e^{-\alpha_T} [b_T(x_i) = y_i] + e^{\alpha_T} [b_T(x_i) = -y_i] + [b_T(x_i) = 0] \right) = e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -y_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] = (e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = 0]) \sum_{i=1}^m w_i = (e^{-\alpha_T} P + e^{\alpha_T} N + 1 - P - N) \widetilde{R}_{T-1}.$ $\widetilde{R}_T \to \min_{\alpha_T} \Rightarrow \frac{\partial \widetilde{R}_T}{\partial \alpha_T} = 0.$
$$\frac{\partial \widetilde{R}_T}{\partial \alpha_T} = (-e^{-\alpha_T} P + e^{\alpha_T} N) \widetilde{R}_{T-1} = 0 \Rightarrow e^{-\alpha_T} P = e^{\alpha_T} N \Rightarrow e^{2\alpha_T} = \frac{P}{N} \Rightarrow \alpha_T = \frac{1}{2} \ln \frac{P(b_T; \widetilde{W}^m)}{N(b_T; \widetilde{W}^m)}.$$

Для поиска $b_T(x)$ подставим найденное α_T в формулу для \widetilde{R}_T :

$$\widetilde{R}_{T} = (\sqrt{\frac{N}{P}}P + \sqrt{\frac{P}{N}}N + 1 - P - N)\widetilde{R}_{T-1} = (1 - (P - 2\sqrt{PN} + N))\widetilde{R}_{T-1} = (1 - (\sqrt{P} - \sqrt{N})^{2})\widetilde{R}_{T-1} \rightarrow \min_{b_{T}} \Rightarrow$$

Если
$$b \in \{-1,0,+1\}$$
, то верно тождество $e^{-\alpha b} = e^{-\alpha}[b=1] + e^{\alpha}[b=-1] + [b=0]$. $\widetilde{R}_T = \sum_{i=1}^m e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)} e^{-y_i \alpha_T b_T(x_i)} = \sum_{i=1}^m w_i \left(e^{-\alpha_T} [b_T(x_i) = y_i] + e^{\alpha_T} [b_T(x_i) = -y_i] + [b_T(x_i) = 0] \right) = e^{-\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m w_i [b_T(x_i) = -y_i] + \sum_{i=1}^m w_i [b_T(x_i) = 0] = \left(e^{-\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = y_i] + e^{\alpha_T} \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = -y_i] + \sum_{i=1}^m \widetilde{w}_i [b_T(x_i) = 0] \right) \sum_{i=1}^m w_i = \left(e^{-\alpha_T} P + e^{\alpha_T} N + 1 - P - N \right) \widetilde{R}_{T-1}.$ $\widetilde{R}_T \to \min_{\alpha_T} \Rightarrow \frac{\partial \widetilde{R}_T}{\partial \alpha_T} = 0.$

$$R_T o \min_{lpha_T} \Rightarrow rac{\partial R_T}{\partial lpha_T} = 0$$

$$\frac{\partial \widetilde{R}_T}{\partial \alpha_T} = (-e^{-\alpha_T}P + e^{\alpha_T}N)\widetilde{R}_{T-1} = 0 \Rightarrow e^{-\alpha_T}P = e^{\alpha_T}N \Rightarrow e^{2\alpha_T} = \frac{P}{N} \Rightarrow \alpha_T = \frac{1}{2}\ln\frac{P(b_T;\widetilde{W}^m)}{N(b_T;\widetilde{W}^m)}.$$

Для поиска $b_T(x)$ подставим найденное α_T в формулу для \widetilde{R}_T :

$$\widetilde{R}_{T} = (\sqrt{\frac{N}{P}}P + \sqrt{\frac{P}{N}}N + 1 - P - N)\widetilde{R}_{T-1} = (1 - (P - 2\sqrt{PN} + N))\widetilde{R}_{T-1} = (1 - (\sqrt{P} - \sqrt{N})^{2})\widetilde{R}_{T-1} o \min_{b_{T}} \Rightarrow b_{T} = \arg\max_{b \in A} \sqrt{P(b;\widetilde{W}^{m})} - \sqrt{N(b;\widetilde{W}^{m})}$$
 (т.к. $P > N$ по условию Теоремы). Ч.т.д.

Теорема

Если на каждом шаге t можно добиться выполнения

 $\sqrt{P(b_t;\widetilde{W}^m)} - \sqrt{N(b_t;\widetilde{W}^m)} = \beta_t \geq \beta$ при некотором $0 < \beta \leq 1$, то за конечное число шагов будет построен алгоритм, не допускающий ни единой ошибки на обучающем множестве.

Теорема

Если на каждом шаге t можно добиться выполнения

$$\sqrt{P(b_t;\widetilde{W}^m)} - \sqrt{N(b_t;\widetilde{W}^m)} = \beta_t \geq \beta$$
 при некотором $0 < \beta \leq 1$, то за конечное число шагов будет построен алгоритм, не допускающий ни единой ошибки на обучающем множестве.

Доказательство.

$$\widetilde{R}_T \leq \widetilde{R}_T = (1 - (\sqrt{P} - \sqrt{N})^2)\widetilde{R}_{T-1} \leq (1 - \beta^2)\widetilde{R}_{T-1} \leq \cdots \leq (1 - \beta^2)^{T-1}\widetilde{R}_1.$$

Теорема

Если на каждом шаге t можно добиться выполнения

 $\sqrt{P(b_t;\widetilde{W}^m)}-\sqrt{N(b_t;\widetilde{W}^m)}=eta_t\geq eta$ при некотором $0<eta\leq 1$, то за конечное число шагов будет построен алгоритм, не допускающий ни единой ошибки на обучающем множестве.

Доказательство.

$$\widetilde{R}_T \leq \widetilde{R}_T = (1-(\sqrt{P}-\sqrt{N})^2)\widetilde{R}_{T-1} \leq (1-\beta^2)\widetilde{R}_{T-1} \leq \cdots \leq (1-\beta^2)^{T-1}\widetilde{R}_1.$$
 Для любого $0<\beta\leq 1$ и любого \widetilde{R}_1 будет существовать такое T , что $R_T<1$.

Теорема

Если на каждом шаге t можно добиться выполнения

 $\sqrt{P(b_t;\widetilde{W}^m)}-\sqrt{N(b_t;\widetilde{W}^m)}=eta_t\geq eta$ при некотором $0<eta\leq 1$, то за конечное число шагов будет построен алгоритм, не допускающий ни единой ошибки на обучающем множестве.

Доказательство.

$$\widetilde{R}_{T} \leq \widetilde{R}_{T} = (1 - (\sqrt{P} - \sqrt{N})^{2})\widetilde{R}_{T-1} \leq (1 - \beta^{2})\widetilde{R}_{T-1} \leq \cdots \leq (1 - \beta^{2})^{T-1}\widetilde{R}_{1}.$$

Для любого $0 < \beta \le 1$ и любого R_1 будет существовать такое T, что $R_T < 1$.

Э.Р. R_T – это число ошибок на обучающем множестве (т.е. неотрицательное целое число) $\Rightarrow R\tau = 0$. Ч.т.л.

Следствие 2: Классический AdaBoost

Рассмотрим более частную ситуацию, когда базовый алгоритм не сигнализирует о неопределенности: $b_t: X \to \{-1, +1\}$. Тогда P + N = 1.

¹²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Следствие 2: Классический AdaBoost

Рассмотрим более частную ситуацию, когда базовый алгоритм не сигнализирует о неопределенности: $b_t: X \to \{-1, +1\}$. Тогда P+N=1. В этом случае конкретный алгоритм бустинга называется AdaBoost (Adaptive Boosting).

¹²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Следствие 2: Классический AdaBoost

Рассмотрим более частную ситуацию, когда базовый алгоритм не сигнализирует о неопределенности: $b_t: X \to \{-1, +1\}$. Тогда P + N = 1. В этом случае конкретный алгоритм бустинга называется $AdaBoost^{12}$ (Adaptive

Теорема

Boosting).

Если для любого вероятностного вектора U^m существует алгоритм $b \in A$, т.ч. $N(b; U^m) < \frac{1}{2}$, то минимум аппроксимированного Э.Р. R_T достигается на:

- $b_T = \arg\min_{b \in A} N(b; \widetilde{W}^m)$
- $\alpha_T = \frac{1}{2} \ln \frac{1 N(b; \widetilde{W}^m)}{N(b; \widetilde{W}^m)}$

¹²Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

Алгоритм

• Инициализация весов: $w_i = \frac{1}{m}, i = 1, ..., m$,

Алгоритм

• Инициализация весов: $w_i = \frac{1}{m}, i = 1, \dots, m$,

$oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

ullet Обучение базового алгоритма $b_t = \mathop{\sf arg\,min}_{b \in \mathcal{A}} \mathcal{N}(b; \widetilde{W}^m)$,

Алгоритм

• Инициализация весов: $w_i = \frac{1}{m}, i = 1, \dots, m$,

$oxedsymbol{\mathcal{I}}$ Для $t=1,\ldots,T$

- ullet Обучение базового алгоритма $b_t = \arg\min_{b \in \mathcal{A}} \mathcal{N}(b; \widetilde{W}^m)$,
- ullet Вычисление нового веса $lpha_t = rac{1}{2} \ln rac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)}$,

Алгоритм

• Инициализация весов: $w_i = \frac{1}{m}, i = 1, ..., m$,

Для $t = 1, \ldots, T$

- Обучение базового алгоритма $b_t = \arg\min_{b \in A} N(b; \widetilde{W}^m)$,
- ullet Вычисление нового веса $lpha_t = rac{1}{2} \ln rac{1 N(b_t; W^m)}{N(b_t; \widetilde{W}^m)}$,
- \bullet Обновление весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m$

Алгоритм

• Инициализация весов: $w_i = \frac{1}{m}, i = 1, ..., m$,

$oxed{Д}$ ля $t=1,\ldots,T$

- Обучение базового алгоритма $b_t = \arg\min_{b \in A} N(b; W^m)$,
- ullet Вычисление нового веса $lpha_t = rac{1}{2} \ln rac{1 N(b_t; W^m)}{N(b_t; \widetilde{W}^m)}$,
- Обновление весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m$.
- Перенормировка весов $w_i := \frac{w_i}{\sum_{i=1}^m w_i}, i=1,\ldots,m.$

Замечание относительно шага обновления весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i=1,\ldots,m$.

Замечание относительно шага обновления весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, ..., m.$

• Вес объекта x_i увеличивается в e^{α_t} раз, когда b_t допускает на нем ошибку $(\alpha_t > 0)$,

Замечание относительно шага обновления весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, ..., m.$

- Вес объекта x_i увеличивается в e^{α_t} раз, когда b_t допускает на нем ошибку $(\alpha_t > 0)$,
- \bullet Вес объекта x_i уменьшается в e^{α_t} раз, когда b_t правильно его классифицирует,

Замечание относительно шага обновления весов $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, ..., m.$

- Вес объекта x_i увеличивается в e^{α_t} раз, когда b_t допускает на нем ошибку $(\alpha_t > 0)$,
- Вес объекта x_i уменьшается в e^{α_t} раз, когда b_t правильно его классифицирует,
- Т.о. наибольший вес накапливается у тех объектов, которые чаще оказывались трудными для предыдущих алгоритмов.

• В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),

¹³Viola and Jones (2001). "Robust Real-time Object Detection"

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- В 2001 году 13 был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- \bullet В 2001 году¹³ был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.
 - Математической основой послужил модифицированный AdaBoost,

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- \bullet В 2001 году¹³ был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.
 - Математической основой послужил модифицированный AdaBoost,
 - Этот алгоритм детекции был лидирующим для детекции лиц на протяжении более 10 лет (до начала широкого применения сверточных нейросетей).

- В 2003 году создатели алгоритма AdaBoost Фройнд и Шапире получили премию Гёделя (вручается за выдающиеся труды по логике и теоретической информатике),
- В 2001 году 13 был создан алгоритм, позволяющий обнаруживать объекты на изображениях (прежде всего человеческое лицо) в реальном времени.
 - Математической основой послужил модифицированный AdaBoost,
 - Этот алгоритм детекции был лидирующим для детекции лиц на протяжении более 10 лет (до начала широкого применения сверточных нейросетей).

¹³Viola and Jones (2001). "Robust Real-time Object Detection"

Дорожная карта Scikit-Learn¹⁴

Источники

Ha основе материалов сайта http://www.machinelearning.ru.

