Problem 1. Circle T for true and F for false statements. Provide a counter-example or a brief explanation.

1) **T F** u_1, \dots, u_n are orthogonal vectors, then the associated Gram matrix is the identity matrix.

2) **T F** If a $n \times n$ matrix A has full rank, then A is diagonalizable.

3) **T F** If $A = CBC^{-1}$ for some non-zero invertible matrix C, then A and B have the same eigenvalues.

Problem 2. (a) Show that $(1,1,0)^t$, $(1,0,1)^t$, $(0,1,1)^t$ form a basis for \mathbb{R}^3 . (b)Let T be the linear map from \mathbb{R}^3 to \mathbb{R}^3 defined by

$$T(x,y,z) = \left(\frac{1}{2}(3x+y-3z), \frac{1}{2}(x+y+z), 2x-y+z\right)$$

- . Write down the matrix $A = \mathcal{M}(T)$ with respect to the basis in part (a).
 - (c) Find a Jordan basis and the Jordan decomposition of the matrix A in part (b).