everything changes, nothing perishes Omnia Mutantur, Nihil Interit: Connecting Past with Present by Finding Corresponding Terms across Time

Yating Zhang, Adam Jatowt, Sourav S Bhowmick, Katsumi Tanaka ACL 2015

TAKIMOTO Hiroki

Overview

- 時間を跨いだ対応を発見する問題
 e.g. 1980年代におけるiPodとは?
 - →Walkman
- 時代毎にベクトル空間を学習 →空間を変換する行列を学習し利用
- 対応を発見したい語句 (iPod) の文脈語を 参照点として利用し、品質の向上を目指す
 - 関連度、一般化語、クラスタリングの三つの 選択方法を比較した

目的と挑戦

挑戦

- 1. 年代が違うと文脈も異なる
 - →文脈ベクトルを直接比較しても見つけにくい
- 2. トレーニングデータ(対応語対)が少ない
 - →代表的な機械学習タスクに落としにくい

異なる時間からの対応語の発見

変換行列の学習

対応語対:
$$\{(\omega_1, w_1), \cdots, (\omega_k, w_k)\}$$

$$M = \underset{M}{\operatorname{arg\,min}} \sum_{i=1}^{K} \| M \cdot \omega_{i} - w_{i} \|_{2}^{2} + \gamma \| M \|_{2}^{2}$$

いや、対応語対が少ないのが問題なんじゃ? →Common Frequent Terms (CFTs)を使う

CFTs

- ・規定時間でも対象時間でも、統語論的形態が同じ
- ・どちらの時間でも頻繁に使われている (e.g., man, women, water, dog, see, three)

数はヒューリスティック頼み

関連語を使った精度の向上

参照点の選択方針三種類

語句の文脈語で以下の何れかを満たす

- 1. 語句と高い関連度を持つこと
 - → tfと relatednessにより計算
- 2. 十分に一般的であること → (Ohshima et al., 2010) の手法により Hypernymsを決定
- 3. (参照点が) お互いに独立していること → bisecting k-meansにより文脈語を クラスタリング、代表語を選出し利用

局所グラフ同士の比較

ある参照点に対応する点の選び方 →各参照点毎に二つの類似度を最大化する点を選択

訓練データとテストデータ

- 訓練データ
 - New York Times Annotated Corpus
 - 1987-1991, 1992-1996, 1997-2001, 2002-2007 の4つの期間に分けて利用
- テストデータ
 - 人、場所、物の3種類の対応語対を人手作成
 - 全95語対、54対を1987-1991用に、 50対を1992-1996用に
 - (これの妥当性はちょっと疑問)

テストデータと結果の一例 (表1の一部拡大)

q	tc	BOW	LSI-Com	LSI-Tran	GT	LT-Cooc
[2002,2007]	[1987,1991]	(baseline)	(baseline)	(baseline)	(proposed)	(proposed)
Putin	Yeltsin	1000+	252	353	24	1
Chirac	Mitterrand	1000+	8	1	7	19
iPod	Walkman	1000+	20	131	3	13
Merkel	Kohl	1000+	1000+	537	142	76
Facebook	Usenet	1000+	1000+	1000+	1	1
Linux	Unix	1000+	11	1	20	1
email	letter	1000+	1000+	464	1	35
email	mail	1000+	1	9	7	2
email	fax	1000+	1000+	10	3	1
Pixar	Tristar	1000+	549	1	1	1
Pixar	Disney	1000+	4	4	3	2
Serbia	Yugoslavia	1000+	15	1000+	1	1
mp3	compact disk	1000+	56	44	58	17
Rogge	Samaranch	1000+	4	22	12	82

•

Method	MRR	P@1	P@5	P@10	P@20
BOW	4.1E-5	0	0	0	0
LSI-Com	0.206	15.8	27.3	29.5	38.6
LSI-Tran	0.112	7.9	13.6	21.6	22.7
GT	0.298	16.8	44.2	56.8	73.7
LT-Cooc	0.283	18.8	35.3	50.6	62.4
LT-Lex	0.369	24.2	49.5	63.2	71.6
LT-Clust	0.285	14.7	42.1	55.1	65.2

BOW (bag of words) はあまりよい結果にならず →前提通り、年代が違うと文脈を直接比較してもダメ

Method	MRR	P@1	P@5	P@10	P@20
BOW	4.1E-5	0	0	0	0
LSI-Com	0.206	15.8	27.3	29.5	38.6
LSI-Tran	0.112	7.9	13.6	21.6	22.7
GT	0.298	16.8	44.2	56.8	73.7
LT-Cooc	0.283	18.8	35.3	50.6	62.4
LT-Lex	0.369	24.2	49.5	63.2	71.6
LT-Clust	0.285	14.7	42.1	55.1	65.2

LSIには今回の変換方法はうまく働かず →semanticの変換には向いていても Topicの変換には向いていなかったか

Method	MRR	P@1	P@5	P@10	P@20
BOW	4.1E-5	0	0	0	0
LSI-Com	0.206	15.8	27.3	29.5	38.6
LSI-Tran	0.112	7.9	13.6	21.6	22.7
GT	0.298	16.8	44.2	56.8	73.7
LT-Cooc	0.283	18.8	35.3	50.6	62.4
LT-Lex	0.369	24.2	49.5	63.2	71.6
LT-Clust	0.285	14.7	42.1	55.1	65.2

全体的に提案手法 (GTやLT) は他手法を凌ぐ結果中でもLT-Lex (文脈語を一般化した語を参照点に選択) が最も良い結果を出した他の二つの参照点はGTの改善に失敗した

Conclusions

- 入力語句に対応する、別の時代の語を 発見するタスク
- 異なる時代のベクトル空間を変換する行列を 学習し利用、更に入力語句の文脈語を参照点 として利用し、品質の向上を目論んだ
- 提案手法がベースラインを凌いだ
- 変換行列はLSIには上手く働かなかった
- 文脈語を一般化した語を参照点として利用すると品質が向上した

付錄

Method	MRR	P@1	P@5	P@10	P@20
BOW	4.1E-5	0	0	0	0
LSI-Com	0.206	15.8	27.3	29.5	38.6
LSI-Tran	0.112	7.9	13.6	21.6	22.7
GT	0.298	16.8	44.2	56.8	73.7
LT-Cooc	0.283	18.8	35.3	50.6	62.4
LT-Lex	0.369	24.2	49.5	63.2	71.6
LT-Clust	0.285	14.7	42.1	55.1	65.2

iPod→apple は walkman→Sony

- →hypernymsにすると両方共 →Company
- →他の二つではこうは行かないのが悪化の原因?
- 変換行列はCFTsを基準に学習される
- →LT-Lexは変換行列の基準とよく合いそう(所感)

結果(過去から現在)

Method	MRR	P@1	P@5	P@10	P@20
BOW	3.4E-5	0	0	0	0
LSI-Com	0.181	13.2	19.7	28.9	35.5
LSI-Tran	0.109	5.3	17.1	21.1	23.7
GT	0.226	15.2	27.3	33.3	45.5
LT-Cooc	0.231	14.7	30.7	36	46.7
LT-Lex	0.235	16.7	28.8	31.8	48.5
LT-Clust	0.228	13.6	28.8	31.8	47

逆方向でも何となく使えてるっぽい 現在から過去の結果とは非対称的

→過去から現在方向は物事の多様性が増すから 難しいのでは

参照点の選び方

```
Algorithm 3 Local Graph Matching
  Input: local graph of q, S_q^{F_B}
  W = \text{top } k \text{ corresponding terms of } q \text{ (by Eq. 2)}
 FF = \{ \text{top } k \text{ corresponding terms of each } f \text{ in } \}
 reference points F_B = \{f_0, f_1, ..., f_u\}\} (by Eq. 2)
                                            ある対応候補の…
  for w = W[1:k] do:
    sum cos = 0 # total graph similarity score
                                            ある参照点に対して…
    for F = FF/1:u do:
      max cos = 0 # current maximum similar-
      iv
                                            参照点対応候補の中から…
      for c = F/1:k do:
        find c which maximizes current graph
                                              -番良いものを選ぶ
        similarity ←
      end for
      sum cos += max cos
    end for
                                            ╳参照点候補の全組み
  end for
                                               合わせを試す
  sort W by sum \cos of each w in W.
                                               参照点毎に最適な物を
  Output: sorted W as ranked list of temporal
  counterparts
                                               選ぶ
```

異なる年代間での実験結果

Method	MRR	P@1	P@5	P@10	P@20
LSI-Com	0.115	10.6	14.9	21.3	23.4
GT	0.132	8.5	27.7	40.4	53.2
LT-Lex	0.169	10.6	34.1	48.9	55.3

Table 4: Results of searching from present to past (present: 2002-2007; past: 1992-1996).

Method	MRR	P@1	P@5	P@10	P@20	
LSI-Com	0.148	11.6	18.6	22.2	20.2	•
GT	0.184	11.6	23.3	│ あれ	、過去	から
LT-Lex	0.212	14	28	現在	のがい	い結果?
				→テ	ストセ	ットが

Table 5: Results of searching from

(present: 2002-2007; past: 1992-1996)

違うから?

CFTsが結果に与える影響

Figure 4: Results of MRR for **GT** method depending on number of used *CFT*s.

Parameters

- Skip-gramやLSIの次元数 200
- CFTsの数 トップ5% (18k words)
- 参照点の数5