Tacotron1, 2

Pattern Recognition & Machine Learning Laboratory
Hyeon-Woo Bae
Aug. 11, 2021

Tacotron: Towards End-to-End Speech Synthesis [*Y. Wang et al.*, 2017] (1/5)

Goal

Presenting end-to-end text-to-speech (TTS) system that can be trained on <text, audio> pairs

Motivation

- Complexity of modern text-to-speech (TTS) designs
 - Previous system consists of multiple stages, such as a text analysis frontend, an acoustic model and an audio synthesis module

Contribution

- Alleviates the need for laborious feature engineering
- Easily allows for rich conditioning on various attributes, such as speaker or language, or high-level features like sentiment
 - Conditioning can occur at beginning of the model
- Single model is likely to be more robust than a multi-stage model
 - Error of multi-stage model can compound

Tacotron: Towards End-to-End Speech Synthesis [**Y. Wang et al., 2017**] (2/5)

Model Architecture

- CBHG (1-D Convolutional Bank + Highway network + bidirectional GRU) Module
 - Bank of 1-D convolutional filters
 - Convolving input sequence
 - **Highway networks**
 - Extract high-level features
 - Bidirectional gated recurrent unit (GRU)
 - Extract sequential features from both forward and backward context

Architecture of Tacotron

Architecture of CBHG Module

Conv1D bank + stacking

Tacotron: Towards End-to-End Speech Synthesis [*Y. Wang et al.*, 2017] (3/5)

Model Architecture (Cont.)

- > Encoder
 - Extract robust sequential representations of text
 - Use bottleneck layer with dropout as the pre-net
 - Help convergence and improve generalization
 - CBHG reduce overfitting, make fewer mispronunciations
- Decoder
 - Concatenate context vector and attention RNN output
 - Predicting r frames at once
 - Reduce model size, training time
 - Increase convergence speed
 - Much faster and stable alignment
 - Use seq2seq target as mel spectrogram
- Post-processing net
 - Convert mel spectrogram to linear spectrogram
 - Can see full decoded sequence
 - Use a CBHG module
- > Griffin-Lim algorithm
 - Synthesize linear spectrogram to waveform
 - Fast and Simple

Architecture of Encoder

Architecture of Decoder

Tacotron: Towards End-to-End Speech Synthesis [*Y. Wang et al.,* 2017] (4/5)

Experiment

- > Training data set
 - Internal North American English dataset, contains about 24.6 hours of speech data spoken by a professional female speaker
- Ablation analysis
 - No pre-net and post-processing net
 - Attention tends to get stuck for many frames before moving forward
 - Bad speech intelligibility
 - CBHG encoder replaced by GRU encoder
 - GRU encoder is noisier
 - Noisy alignment leads to mispronunciations
 - CBHG encoder reduces overfitting and generalizes well

Attention alignment of Vanilla seq2seq+scheduled sampling

Attention alignment of GRU encoder

Attention alignment of Tacotron

Tacotron: Towards End-to-End Speech Synthesis [*Y. Wang et al.,* 2017] (5/5)

Result

- Benefit of using post-processing net
 - Prediction from the post-processing net contains better resolved harmonics and high frequency formant structure
- Mean opinion score test
 - Asked to rate the naturalness of the stimuli in a 5-point Likert scale score

80

Frame

100

120

- Tacotron achieves an MOS of 3.82
- Tacotron outperforms the parametric system

1241	mean opinion score			
Tacotron	3.82 ± 0.085			
Parametric	3.69 ± 0.109			
Concatenative	4.09 ± 0.119			

5-scale mean opinion score evaluation

Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions [*J. Shen et al.*, 2018] (1/4)

Goal

Presenting end-to-end text-to-speech (TTS) system that can be trained on <text, audio> pairs

Motivation

- Complexity of modern text-to-speech (TTS) designs
 - Previous system consists of multiple stages, such as a text analysis frontend, an acoustic model and an audio synthesis module

Contribution

- Modify architecture of Tacotron 1
 - Using LSTM instead of CBHG module
 - Using location-sensitive attention instead of additive attention mechanism
 - Using modified WaveNet vocoder instead of Griffin-Lim algorithm

Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions [*J. Shen et al.*, 2018] (2/4)

Model Architecture

- > Encoder
 - Convert character sequence into a hidden feature representation
 - Input characters are represented using character embedding
 - Output of final convolutional layer is passed into a single bidirectional LSTM

> Attention

- Use location-sensitive attention
 - Add attention weights from previous decoder time steps to additive attention mechanism
 - Reduce potential failure mode where some subsequences are repeated or ignored by decoder

Decoder

- Predict a mel spectrogram one frame at a time from the encoded input sequence
- Concatenation of LSTM output and the context vector is projected through a linear transform to predict the target spectrogram frame
- Stop token prediction is used to determine when to terminate generation

WaveNet vocoder

- Modified version of the WaveNet architecture
 - Can invert a mel spectrogram instead of linguistic condition

Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions [*J. Shen et al.,* 2018] (3/4)

Experiment

- Dataset
 - Internal US English dataset, which contains 24.6 hours of speech from a single professional female speaker
- > Evaluation
 - Tacotron 2 significantly outperforms all other TTS systems and results in a Mean Opinion Score (MOS) comparable to that of the ground truth audio
- Ablation studies
 - Predicted features versus Ground truth
 - Linear spectrograms
 - Post processing network

- Without post-net: 4.429 ± 0.071

- With post-net : 4.526 ± 0.066

Simplifying WaveNet

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	4.526 ± 0.066

MOS evaluations of TTS systems

	Synthesis			
Training	Predicted	Ground truth		
Predicted	4.526 ± 0.066	4.449 ± 0.060		
Ground truth	4.362 ± 0.066	4.522 ± 0.055		

Comparison of evaluated MOS for WaveNet

System	MOS
Tacotron 2 (Linear + G-L)	3.944 ± 0.091
Tacotron 2 (Linear + WaveNet)	4.510 ± 0.054
Tacotron 2 (Mel + WaveNet)	4.526 ± 0.066

Comparison of evaluated MOS for Griffin-Lim vs. WaveNet

Total layers	Num cycles	Dilation cycle size	Receptive field (samples / ms)	MOS
30	3	10	6,139 / 255.8	4.526 ± 0.066
24	4	6	505 / 21.0	4.547 ± 0.056
12	2	6	253 / 10.5	4.481 ± 0.059
30	30	1	61 / 2.5	3.930 ± 0.076

WaveNet with various layer and receptive field sizes

