GUIA SOBRE ARDUINO

1. Introducción	3
2. Hardware de Arduino	3
Modelos de Arduino	3
Componentes del Arduino Uno	3
3. Software de Arduino	3
Instalación del IDE de Arduino	3
Primer programa: "Blink"	3
4. Conceptos Básicos de Programación	
Estructura del Código	4
Funciones principales (setup y loop)	
5. Conexiones Básicas	
Entradas y Salidas Digitales	
Entradas y Salidas Analógicas	
6. Proyectos Iniciales	
Control de un LED	5
Lectura de un Sensor de Temperatura	5
Control de un Motor DC	
7. Recursos Adicionales	

1. Introducción

Arduino es una plataforma de hardware libre que facilita la creación de proyectos de electrónica. Combina una placa microcontroladora con un entorno de desarrollo (IDE) que permite escribir y subir código fácilmente.

2. Hardware de Arduino

Modelos de Arduino

Existen varios modelos de Arduino, cada uno con diferentes características. Algunos de los más comunes son:

- Arduino Uno: Ideal para principiantes.
- Arduino Mega: Tiene más pines y memoria, útil para proyectos más complejos.
- Arduino Nano: Más pequeño, perfecto para proyectos compactos.

Componentes del Arduino Uno

- Microcontrolador: ATmega328P.
- Pines Digitales: 14 (6 de ellos pueden ser usados como salidas PWM).
- Pines Analógicos: 6.
- Voltaje de Operación: 5V.
- Memoria Flash: 32 KB.
- Cristal Oscilador: 16 MHz.
- Conector USB: Para programar y alimentar la placa.
- Conector de Alimentación: Entrada de voltaje externo (7-12V).

3. Software de Arduino

Instalación del IDE de Arduino

- 1. Ve a la página oficial de Arduino.
- 2. Descarga la versión correspondiente a tu sistema operativo (Windows, macOS, Linux).
- 3. Sigue las instrucciones de instalación.

Primer programa: "Blink"

- 1. Conecta tu Arduino al computador usando un cable USB.
- 2. Abre el IDE de Arduino.
- 3. Ve a Archivo > Ejemplos > 01.Basics > Blink.
- Selecciona tu placa y puerto en Herramientas > Placa y Herramientas > Puerto.
- 5. Haz clic en el botón Subir (flecha hacia la derecha).

Este programa hará parpadear un LED conectado al pin 13 del Arduino Uno.

4. Conceptos Básicos de Programación

Estructura del Código

El código de Arduino se compone de dos funciones principales:

```
void setup() {
    // Inicialización de variables, pines, etc.
}

void loop() {
    // Código a ejecutar continuamente.
}
```

Funciones principales (setup y loop)

- **setup()**: Se ejecuta una vez cuando la placa se enciende o se reinicia. Aquí se configuran los pines y se inicializan las variables.
- **loop()**: Se ejecuta repetidamente. Aquí va el código que queremos que se repita continuamente.

5. Conexiones Básicas

Entradas y Salidas Digitales

Salida Digital: Para encender/apagar LEDs, relés, etc.

```
pinMode(LED_BUILTIN, OUTPUT); // Configura el pin como salida
digitalWrite(LED_BUILTIN, HIGH); // Enciende el LED
digitalWrite(LED_BUILTIN, LOW); // Apaga el LED
```

•

Entrada Digital: Para leer botones, interruptores, etc.

```
срр
```

Copiar código

```
pinMode(buttonPin, INPUT); // Configura el pin como entrada
int state = digitalRead(buttonPin); // Lee el estado del pin
```

•

Entradas y Salidas Analógicas

```
Entrada Analógica: Para leer sensores de temperatura, potenciómetros, etc. cpp
Copiar código
```

```
int sensorValue = analogRead(A0); // Lee el valor del pin analógico A0
```

•

Salida Analógica (PWM): Para controlar la intensidad de LEDs, velocidad de motores, etc.

```
analogWrite(ledPin, 128); // Escribe un valor PWM al pin (0-255)
```

•

6. Proyectos Iniciales

Control de un LED

1. Conecta un LED a un pin digital (por ejemplo, pin 13) con una resistencia de 220 ohmios en serie.

Escribe el siguiente código:

```
void setup() {
    pinMode(13, OUTPUT);
}

void loop() {
    digitalWrite(13, HIGH); // Enciende el LED
    delay(1000); // Espera 1 segundo
    digitalWrite(13, LOW); // Apaga el LED
    delay(1000); // Espera 1 segundo
}

2.
```

Lectura de un Sensor de Temperatura

1. Conecta un sensor de temperatura LM35 al pin A0.

Escribe el siguiente código:

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    int sensorValue = analogRead(A0);
    float voltage = sensorValue * (5.0 / 1023.0);
    float temperatureC = voltage * 100; // Convertir voltaje a
temperatura
    Serial.println(temperatureC);
    delay(1000);
}
```

Control de un Motor DC

1. Conecta un transistor (NPN) con una resistencia de 1k ohm al pin digital 9 y al motor DC.

Escribe el siguiente código:

```
void setup() {
    pinMode(9, OUTPUT);
}

void loop() {
    analogWrite(9, 128); // Controla la velocidad del motor (0-255)
    delay(5000);
    analogWrite(9, 0); // Apaga el motor
    delay(5000);
}

2.
```

7. Recursos Adicionales

- Documentación Oficial de Arduino
- Tutoriales en Arduino Project Hub
- Foro de Arduino