1) La ecuación de la obbita del cometa: r = 9

KT = 4 1+cosa

 $Cos d = \frac{d}{eT} - 1$

 $\chi = \cos^{-1}\left(\frac{q}{2T}-1\right)$

Par la tanto el unas y el final del trayecto dentro de la orbita de la tierra

00 = 2TT-00 , Ge = 00

 $\frac{\partial}{\partial A} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\partial}{\partial A} = \frac{\partial}{\partial A}$

19 valamos 1,200 = 1 dt

Mredo = dt

1 12 q2 d0 = dt

1 92 Ja (A100,0) = E

0

 $\left(\frac{1}{2}\right) + \frac{36an(x)}{2} - \left(\frac{1}{2}\pi - x\right) + 2(a(2\pi - x))$ en dias =

7		35/4				-		-			
$2 \setminus \sqrt{ r } = a$	+ 6										
$2) \ \forall (r) = \underline{a}$	F ²			2 K (I							
	1			E F	I						
al Determine		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	der	= rle))						
con la sustitu	con u=	<u> </u>	100	110	-					4	-
						V					
V(u) = au +	bu ²										
$\frac{L^2}{\mu}\left(\frac{d^2u}{d\theta^2} + u\right)$	= - 2V					1			1		
μ (clθ2)	24										
					3						P
d2u + u = (-	a - 26	U / 1/2						102			
				4.				-			
$\frac{d^2u + u + 2}{do^2}$	$\frac{2600}{1^2} =$	12			-	2			1		
							4				
de2 1 (1+2)	12	12				11	7				1
w1 + 1 w2 u =	70		v2 = 1	126	u.						
				72							
use = A.Cos(w	0 - 00)	9 1/2		1343	in these	700					
$U_c = -\frac{a\mu}{l^2 + 2b\mu}$				3 12	1			1			
12+26M				-	*						
$L(\theta) = -\frac{a\nu}{2\omega^2}$	+ Acost	wo-0	,)								
				-124							
T = - OH [1	1 e co	s (wo-	001	7	4						
7202								-	1.4		
g = 1+ ecoso								1			
r r	The last				10 Sec. 1						

3.
$$V(r) = -\frac{\kappa e^{-\frac{r}{4}}}{r}$$
, donde kan y and

a) suponiendo que está en un plano:

$$J = \frac{1}{2} m \cdot \vec{v}^2 - \frac{K \cdot e^{\frac{\pi}{6}}}{r}$$

$$= \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) + \frac{K \cdot e^{\frac{\pi}{6}}}{r}$$

$$\frac{\partial f}{\partial \dot{r}} = m \dot{r}^2 \dot{\theta}$$

$$E = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) - \frac{K \dot{\theta}^2}{r}$$

Como O es cíclica, O es constante.

Po = mr2 0 = constante.

La componente Le de I en coordenadas cartesianas es la misma

Lz=m(xy-xy) =m120=P0

$$\dot{\theta} = \frac{L}{mr^2}$$

Sustituyendo en la energía

$$E = \frac{\text{m · r'}}{z} + \frac{L^2}{2mr^2} - \frac{\text{Ke}^{-r_0}}{r}$$

Y el potencial efectivo:

$$Vef = \frac{L^2}{2mr^2} - \frac{Ke^{\frac{r}{a}}}{r}$$

Usando la condición de estabilidad: 3f (10) + f'(10) <0

$$-\frac{\partial v}{\partial r} = f(r) = -\kappa \left(\frac{1}{\alpha r} + \frac{1}{r^2} \right) e^{-\frac{r}{\alpha}}$$

$$\frac{\partial f}{\partial r} = f'(r) = \kappa \left(\frac{2}{r^2} + \frac{2}{\alpha r^2} + \frac{1}{\alpha^2 r} \right) e^{-\frac{r}{\alpha}}$$

La condición de estabilidad se puede escribir como:

$$3+\frac{r_0f'(r)}{f(r)}>0$$

$$-\left(\begin{array}{c} \frac{0 r_0^5 + 2 a^2 r_0^4 + 2 a^3 r_0^3}{a^2 r_0^3} \right) \frac{1}{r_0 + a} + 3 > 0$$

$$\frac{\sqrt{o^2 + 2a_1o + 2a_2}}{a_1(r_0 + a_1)} + 3 > 0$$

Usando Wolfram alpha:

$$\frac{q^{2}}{r_{0}^{2}} + \frac{q}{r_{0}} - 1 > 0 \qquad \qquad \frac{q}{f_{0}} \geq 0,618$$

$$Wr^{2} = \frac{1}{M} \frac{\partial^{2} Vef}{\partial r^{2}} \bigg|_{r_{0}} = \frac{1}{m} \left[\frac{3L^{2}}{mr_{0}^{4}} - K \left(\frac{2}{r_{0}^{3}} + \frac{2}{\alpha r_{0}^{2}} + \frac{1}{\alpha^{2} r_{0}} \right) \right]$$

$$T_{r} = 2\pi \cdot \left\{ \frac{1}{m} \left[\frac{3L^{2}}{mr_{o}^{4}} - K \left(\frac{2}{r_{o}^{3}} + \frac{2}{ar_{o}^{2}} + \frac{1}{a^{2}r_{o}} \right) \right] \right\}$$

4) Zi + yi = rcosot + rsenes r= a(1+ cose) $\begin{array}{c|c} \bullet & \downarrow & = & \downarrow \\ \hline & r & a(1+r\cos\theta) \end{array}$ 12 (d (sen 0 + 1 ua (de (11+10050)2 (1+0050)). (1+cose)3 (1+cose) (Coso + 1+Senza) + (1+cosa)2 (1+cosa)3 Cos0 + 1 + son20 + 1 + 20050 + cos20 $\frac{3(1+\cos\theta)}{(1+\cos\theta)^3} = \frac{3}{(1+\cos\theta)^2}$