Probability of detecting co-clusters and setting parameters

1 Notation

- $A \in \mathbb{R}^{M \times N}$ is a matrix with K co-clusters (co-cluster set $C = \{C_k\}_{k=1}^K$);
- A is partitioned into $m \times n$ blocks, each block has size $m_i \times n_j$, that is, $M = \sum_{i=1}^m m_i$ and $N = \sum_{j=1}^n n_j$;
- thus block set $B = \{B_{(i,j)}\}_{i=1}^m, \sum_{j=1}^n$;
- the size of sub-co-cluster $C_k \in \mathbb{R}^{M^{(k)} \times N^{(k)}}$ that falls into block $B_{(i,j)}$ is $M_{(i,j)}^{(k)} \times N_{(i,j)}^{(k)}$;
- T_m is the minimum number of rows, T_n is the minimum number of columns.

2 Probability

Consider co-cluster C_k ,

$$P(M_{(i,j)}^{(k)} = \alpha) = \frac{\binom{M_k}{\alpha} \binom{M - M_k}{m_i - \alpha}}{\binom{M}{m_i}}$$
$$P(N_{(i,j)}^{(k)} = \beta) = \frac{\binom{N_k}{\beta} \binom{N - N_k}{n_j - \beta}}{\binom{N}{n_j}}$$

The tail probability of $M_{(i,j)}^{(k)}$ and $N_{(i,j)}^{(k)}$ are

$$P(M_{(i,j)}^{(k)} < T_m) = \sum_{\alpha=1}^{T_m - 1} P(M_{(i,j)}^{(k)} = \alpha)$$

$$\leq \exp(-2(s_i^{(k)})^2 m_i)$$

where $s_i^{(k)} = \frac{M_k}{M} - \frac{T_m - 1}{m_i}$, and

$$P(N_{(i,j)}^{(k)} < T_n) = \sum_{\beta=1}^{T_n-1} P(N_{(i,j)}^{(k)} = \beta)$$

$$\leq \exp(-2(t_j^{(k)})^2 n_j)$$

where
$$t_j^{(k)} = \frac{N_k}{N} - \frac{T_n - 1}{n_j}$$
.

The joint probability of $M_{(i,j)}^{(k)}$ and $N_{(i,j)}^{(k)}$ are

$$P(M_{(i,j)}^{(k)} < T_m, N_{(i,j)}^{(k)} < T_n) = \sum_{\alpha=1}^{T_m-1} \sum_{\beta=1}^{T_n-1} P(M_{(i,j)}^{(k)} = \alpha) P(N_{(i,j)}^{(k)} = \beta)$$

$$\leq \exp[-2(s_i^{(k)})^2 m_i + -2(t_j^{(k)})^2 n_j]$$

If $m_i = \phi$ and $n_j = \psi$ for all i and j, then

Suppose event ω_k is that co-cluster C_k can't be find in any block $B_{(i,j)}$, then

$$P(\omega_k) = \prod_{i=1}^{m} \prod_{j=1}^{n} P(M_{(i,j)}^{(k)} < T_m, N_{(i,j)}^{(k)} < T_n)$$

$$\leq \prod_{i=1}^{m} \prod_{j=1}^{n} \exp\{-2\left[(s_i^{(k)})^2 m_i + (t_j^{(k)})^2 n_j \right] \}$$

$$= \exp\{-2\sum_{i=1}^{m} \sum_{j=1}^{n} \left[(s_i^{(k)})^2 m_i + (t_j^{(k)})^2 n_j \right] \}$$

If $m_i = m$ and $n_j = n$ for all i and j, then

$$s_i^{(k)} = s^{(k)} = \frac{M_k}{M} - \frac{T_m - 1}{p}$$
$$t_j^{(k)} = t^{(k)} = \frac{N_k}{N} - \frac{T_n - 1}{q}$$

$$P(\omega_k) \le \exp\left\{-2[pm(s^{(k)})^2 + qn(t^{(k)})^2]\right\}$$

And if we do T_p times of random sampling, the Probability of detecting the co-cluster is

$$P = 1 - P(\omega_k)^{T_p}$$

$$\geq 1 - \exp\left\{-2T_p[pm(s^{(k)})^2 + qn(t^{(k)})^2]\right\}$$

according to which, we can set $m, n, \phi, \psi, T_m, T_n$ and T_p to ensure the probability of detecting the co-cluster is larger than a given threshold.