

Course > Unit 5: ... > Proble... > 7. A joi...

7. A joint PDF on a triangular region

Problem Set due Mar 13, 2020 05:29 IST Completed

Problem 7. A joint PDF on a triangular region

10/10 points (graded)

This figure below describes the joint PDF of the random variables X and Y. These random variables take values in [0,2] and [0,1], respectively. At x=1, the value of the joint PDF is 1/2.

1. Are X and Y independent?

Yes			
○ No			

2. Find $f_X(x)$. Express your answers in terms of x, using the standard notation.

If $0 < x \le 1$:

 $f_{X}\left(x
ight) =% {\displaystyle\int_{X}^{\infty }} f_{X}\left(x
ight) dx$ x/2 ✓ Answer: x/2 $\frac{x}{2}$ If 1 < x < 2: $f_{X}(x) =$ -3*x/2+3 **✓ Answer:** 3-(3*x)/2 $-\frac{3\cdot x}{2}+3$ If x < 0 or $x \ge 2$: $f_{X}\left(x
ight) =% {\displaystyle\int_{X}^{\infty}} f_{X}\left(x
ight) dx$ ✓ Answer: 0 0 3. Find $f_{Y\mid X}\,(y\mid 0.5)$. If 0 < y < 1/2: $f_{Y\mid X}\left(y\mid 0.5\right) =$ ✓ Answer: 2 If y < 0 or y > 1/2: $f_{Y\mid X}\left(y\mid 0.5
ight)=$ **✓ Answer:** 0 4. Find $f_{X\mid Y}\left(x\mid 0.5\right)$. If 1/2 < x < 1: $f_{X\mid Y}\left(x\mid 0.5
ight)=$ **✓ Answer:** 1/2 1/2 If 1 < x < 3/2: $f_{X\mid Y}\left(x\mid 0.5
ight)=$ **✓ Answer:** 3/2 3/2

If x < 1/2 or x > 3/2:

$$f_{X\mid Y}\left(x\mid 0.5
ight)=egin{bmatrix} exttt{0} & lacksquare$$
 Answer: 0

5. Let R=XY and let A be the event that $\{X<0.5\}.$ Find ${f E}\,[R|A].$

STANDARD NOTATION

Solution:

1. In order for X and Y to be independent, the value of X should not give any information about Y. But if X is smaller than say 0.5, then we can infer that Y < 0.5.

In other words, $f_{Y\mid X}\left(y\mid 0.5
ight)
eq f_{Y}\left(y
ight)$. Therefore, X and Y are not independent.

2. Using the formula $f_{X}\left(x
ight)=\int f_{X,Y}\left(x,y
ight)dy$, we have,

$$egin{aligned} f_X\left(x
ight) &= egin{cases} \int_0^x rac{1}{2} \, dy, & ext{if } 0 < x \leq 1, \ \int_0^{2-x} rac{3}{2} \, dy, & ext{if } 1 < x < 2, \ 0, & ext{otherwise}, \ &= egin{cases} x/2, & ext{if } 0 < x \leq 1, \ -3x/2+3, & ext{if } 1 < x < 2, \ 0, & ext{otherwise}. \end{cases} \end{aligned}$$

A plot of the PDF is shown below:

3. Given that X=0.5, Y is uniformly distributed between 0 and 1/2. Thus,

$$f_{Y\mid X}\left(y\mid 0.5
ight) = egin{cases} 2, & ext{if } 0\leq y \leq 1/2, \ 0, & ext{otherwise}. \end{cases}$$

A plot of the conditional PDF is shown below:

4. Given that Y=0.5, the conditional distribution of X is piecewise constant:

$$f_{X \mid Y}\left(x \mid 0.5
ight) = \left\{ egin{array}{ll} 1/2, & ext{if } 1/2 \leq x \leq 1, \ 3/2, & ext{if } 1 < x \leq 3/2, \ 0, & ext{otherwise.} \end{array}
ight.$$

A plot of the conditional PDF is shown below:

5. Under event A, the pair (X,Y) takes values in a triangular region with sides of length 1/2, and area 1/8. The conditional point PDF is uniform, so that $f_{X,Y|A}\left(x,y\right)=8$ on that set. The conditional expectation is

$$\begin{split} \mathbf{E}\left[R\mid A\right] &= \mathbf{E}\left[XY\mid A\right] \\ &= \int\int xy f_{X,Y\mid A}\left(x,y\right) \; dx \; dy \\ &= \int_{0}^{0.5} \int_{y}^{0.5} 8xy \; dx \; dy \\ &= 1/16. \end{split}$$

Submit

You have used 3 of 5 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

 $\textbf{Topic:} \ \mbox{Unit 5: Continuous random variables:} \ \mbox{Problem Set 5 / 7. A joint PDF on a triangular region}$

Sho	w all posts 💙 by rec	ent activity 🗸
Q	Not understanding 3 (reviewing for exam) I don't understand getting the marginal PDF of Y here. I intuitively guessed 2 since the total probability of the "slice" had	<u>d</u>
?	<u>E[X A] and E[Y A]</u>	1
2	7.4	10
?	The marginal distribution of y. Now that the answers are here, can anybody show me how to derive the marginal distribution of y from the joint distribution.	<u>5</u>
?	7.4 Can anybody provide a solution to 7.4 using integrals? I understand it intuitively, but even after reading through all the	2
∀	How do we know the conditional PDF is uniform/piecewise constant in 7.3 and 7.4? I struggled with integrations on these two problems, but the solutions don't show any integrations. Did we need to integrate the solutions don't show any integrations.	8
?	<u>Understanding of part 5</u>	5
?	Why is the integral for Q2 part B from 0 to 2x-3 please? Still having trouble understanding how to determine integral range for marginal PDF. Any guide appreciated.	2
?	The same bug keeps happening	4
Q	How many hours did everybody spend on P-set 5? How many hours did everybody spend on P-set 5?	21
?	[Staff] - I have got some of the answer correct for above problem and have saved it as well, but when tried submitting it exam got closed [Staff] - I have got some of the answer correct for above problem and have saved it as well, but when i tried submitting	2
Q	Additional study material The classes and Solved Exercises we had on Unit 5 was not enough for me to have a good comprehension about all exercises.	4
?	7.4 Limits of Integration for fY(0.5) Having stipulated the limits for 0.5 < x < 1 and 1 < x < 1.5 in the 1st and 2nd part of question respectively, why the integration respectively.	<u>r</u>
•	ran out of time	2 •

© All Rights Reserved

