Reminder about homology: Top 3 (simplified 24s) (chain conjugation methodology abulian groups)

Inthomology: Top 3 (abulian groups)

. For a spec X, the singular complex 3(X) is the supplicated set with 3(X), = map ds (D7, X)

D" = topological n-stylex = { (xo1-, xn) \in Rn+1 : x, >, 0 , xo + ... + xn = 1 }

· For a suplicid at Y and an abelian group, the linearization is the characoupler C(Y,A) with

· For a chain complex C and here, the n-th homology group Hall is Ker (dn: Cn > (n-e)

Variation : Colomology

if whan homotopy between two morphisms fig: C -D of cochain confirms consults of homomorphisms of such that

The main tools and properties can over from chain complexes to couldin conflexes, with essentially the same profs, such as:

- a morphism f: C -> D of couldn conflexes there a honomorphism flof: Hono -> Honomorphism to ->

of word and the thing and choud along the

x = try(d1: (1 - (411)

- color how typic morphisms $f_{i,j}: C \to D$ between colors confixes bidue the same map in colors by, i.e. $f_{i,j} = f_{i,j}$.
- every short exact seguence of codom log y group.

 That the B that the B that the C of Hurs (A) of the B that A of the B that

where the connecting homomorphism I is defend as follows:

given $x \in C^n$ with $d^n(x) = 0$, choose $\hat{x} \in B^n$ such that $g^n(\hat{x}) = x$,

tun
$$g^{\mu\nu}(\partial_{\mathcal{B}}^{n}(x)) = \partial_{\mathcal{C}}^{n}(g^{n}(x)) = \partial_{\mathcal{C}}^{n}(x) = 0$$
, so the is a unique $y \in A^{\mu\nu}$ such that $f^{\mu\nu}(y) = \partial_{\mathcal{B}}^{n}(x)$. Six.

$$\partial_{\mathcal{C}}[x] = \mathcal{C}[y] \in H^{n}(A)$$

An isomorphism of categories:

On objects: $(DC)^n = C_{-n} , \quad d_{DC}^n = d_{-n}^n : C_{-n-2} = (DC)^{n+2}$ On the product is $(DC)^n = C_{-n-2} = (DC)^{n+2}$

On morphisms: let f: c-> c' be a charm map. Then

 $Df:DC \longrightarrow DC'$ is the co-doin map with $(Df)^n = f_{-n}:C_{-n} \longrightarrow C'_{-n} = (DC')^n$. The process is thereald on the nose (and not just up to natural isomorphism), so $(DC)^n$

we have defined on 130 mor phism of Categories.

(DC)7 The process is the end on the hose (and not just up to natural isomorphism), so we have defined on 130 mor phism of categories. Moreover: $H^{n}(\mathfrak{D}C) = H^{-n}(C)$ fig: C - c' ou darn how type (=) Df, Dg: DC - Dc' on sodain howdupe Construction: Let Che a chain couplex and A an abelian group, We define a cochain couplex Hom (C,A) Hom(C,A) = Hom(Cn,A) with difficul dn, Hom (C, A) n Hom (C, A) has Then: dnot dnot dnot, A) o Hom (dnot, A) Hom (dny, A): Hom (Cn, A) - Hom (Cny, A) = Hom (dng o dng , A) = Hom (0, A)=0 This construction becomes a contratorial fundar from claim coyless to colors coylesses Hom (-, A): (clair coplers) or ___ (colair coplers) on dan morphisms f: C-C', Hom (f, A): Hom (C', A) - Hom (C, A) is given by Hon(f, A) = Hom(fn, A): Hom(c'n, A) - Hom(Cn, A) Lemma: Let fig: C-c' be chain homotypic chain maps. Then the cochain maps Hom (f,A), Hom (g,A): Hom (C',A) one codam honotopic. Hom(C, A) Prod: Suppose that S= { Sn: Cn - C'n+2 In = 72 is claim homology, then I Hom (Sn, A): Hom (C'ny, A) - Hom (Cn, A) I note is a color howdgay between How (C', A) m, - How (C, A)? How (f, A) and How (g, A). I The singular colomology of spaces and srap licial suls Del: Let I be a simplical set and A on abelian group. The cotomology of I with welficials in A is $H^{n}(Y;A) = H^{n}(Hom(C(Y;R);A))$ If Y' C Y is a srupticial swit, the water colombogy of the pare (Y, V') is $H^{n}(V,Y'';A) = H^{n}(Hom(\frac{C(V,Z)}{C(V',Z)},A))$ If X is a space, the colony boy with coeff and in A is $H^{n}(X;A) = H^{n}(3 \circ x), A) = H^{n}(H^{n}(X;A) = H^{n}(X;A))$

If X' is a subspace of X, the Water cohomology +1" (X, X'; A) is the Water cohomology of the pair (3(x), 3(x1)).

The definition can be made more concerte / regular poets, as hollows:

Construction, Let Y be a supplicial set, A an abelian group. We define a coclary complex Co (Y, A) by Cn (1, A) = map (1, A) = obelian group of maps f: Yn > A wher pointwise addition.

The defluent rad is defined by: diff(y) = = (-1)' - 1 (0,"(y)) for y \ Yn1

Omitted: renficiely that Jn+1 (1)(1) = 0.

If Y is a supplicial subset of Y, we define ('T, Y', A) as Pollows. $C^{n}(Y,Y';A) = \{ f: Y_{n} \rightarrow A : f(Y'_{n}) = 0 \}$

Onitted: this dying a sub-rodain conflex of (" (), A)

Lemma: Let be a supplicid set and A on abd, an group. Then the is an 150 morphism of roclair Toyletos Ho (C(Y, R), A) = C* (Y,A), hunce on indust isomorphism of who milegry groups

HM (V,A) = HM/C*(V,A)). These isomorphisms ore natural for morphisms of supplied Eds in . For a strysliced subset Y' of Y there is an iso morphism of codars confere How $\left(\frac{C(Y;\mathbb{Z})}{C(Y';\mathbb{Z})},A\right)\cong C^*(Y,Y';A)$, natural for morphisms of pairs of supliced suls. Provid: In the associate case: define a specific isomorphism y: Hom (C(Y, R), A) - C*(Y, A) in dimension n > 0 $\varphi^n: H_{on} \left(C_n(Y; \mathcal{X}), A \right) = H_{om} \left(\mathcal{Z}[Y_n], A \right) \xrightarrow{\cong} map \left(Y_n, A \right)$ Omitted: the go is form a morphism of codain conflues. So yo lynd is an isomorphism of codain conflues. Schematically, Top 3 (simpliced silv) C(-, ?) (chain complians) Hon (-, A) (cochain coylus) °P (16) 1°P the Key properties of singular homology all have analys for colo no logy: Homotopy invariance: Let fig: X -> Y be homotopic continuous maps. Then for all 400 and all abelian groups A, [10(1,A) = Hn(g,A) : Hn(V,A) → Hn(X,A). Proof: Sme fal g ar homotopic, $C(1,2), C(g,2): C(x,2) \longrightarrow C(1,2)$ are dain homotopic. By an earli lema, Hom (C/1,2); A) and Hom (C/g,2); A) one codain homotopic, so they Induce the same map on cohomology groups. Long exact seque : Let Y' be a suplicial sus set of a suplicial set Y. Then we have a short exact segment of contain contains whichouse $C^*(Y,A) \longrightarrow C^*(Y,A) \longrightarrow C^*(Y,A) \longrightarrow C$ => long exact segunce of columbus grays -- -> Hr(Y,Y';A) -> Hr(Y,A) -> Hr(Y',A) -> Hr44 (Y,Y';A) -> ... For a subspace X' of a space X, we can apply this to the pair (3(x), 3(x')) to get a long exact Se guence of Singular who mology groups. Excision: let (X, Y, U) be an excisive briple of spaces, i.e. USYSX and USY. In the proof of excision for homo logy we showed that the indusions induce a quest-isomorphism of chain complexes $C \left(\mathcal{S}(Y \setminus U); \mathcal{Z} \right) \longrightarrow C \left(\mathcal{S}(Y \setminus U); \mathcal{Z} \right)$ C(g(x), z) , i.e. it induces an Iso morphism of all tomology groups. Prop: let f: C-D be a quasi roomorphism of claim complises of free abelian groups. Then f is a dain homotopy equivalence. Proof: Defeniel to a separate video.

Since is a claim homotopy equalities, Hom (i, A): Hom (C(3(x), Z), A) - Hom (C(3(x), Z), A) is a cocham homo topy equivalence.

So Hom (1, A) 14 deus iso morphisms of colomology graps

$$H^{n}(X,V;A) = H^{n}\left(\frac{C(S(X),Z)}{C(S(X),Z)},A\right) \xrightarrow{\simeq} H^{n}\left(\frac{C(S(X)U),Z}{C(S(X)U),Z}\right),A$$

$$= H^{n}\left(X,V,Y,V;A\right)$$

Given the same fundamental formal properties, the basic calendations for singular homology (an be repeated in weach the same way for singular cohomology:

for no ?

Hm (37; A) = { A for m=0, n

HIM (Dr, Smi, A) = { A for m= n O otherse.

Reminder: let X be an absolute CW-couplex with sheller $A : X_n \le_{n \ge 0}$. The cellular chain complet is given by $C_n^{all}(X, \mathbb{Z}) = H_n(X_n, X_{n+1}, \mathbb{Z})$, with cellular differential defined as the composite

 $C_{\mathfrak{M}}^{n}(X,Z) = H^{n}(X^{n},X^{n-1};Z) \xrightarrow{g} H^{n-1}(X^{n-1};Z) \xrightarrow{g} H^{n-2}(X^{n-1},X^{n-1};Z) = C_{\mathfrak{M}}^{n}(X,Z)$

We obtain the cellentar courans computer of X with coefficients in A as

 $C_{all}^*(X;A) = H_{om}(C_*^{all}(X,Z),A)$

Thus: There is an 100 nor phism $+1^n (Cau(X,A)) \cong +1^n (X,A)$ that is more on natural for collular rigin in X.

Proof: Copy for the proof for homology.

Example: We to a Ch- complex with no alls in any odd dimension.

Then Call (X, Z) has Grand differentials. So Hom (C, UM (X, Z), A) has brived differentials and so

 $H^{n}(X;A) \cong H^{n}(C^{*}_{old}(X,A)) = Hon(C^{old}_{n}(X,Z),A) \subset U^{*}_{old}(X,A)$

≥ Hom (Z[],J,A) ≥ map (Jn,A).

set of n-alls

Example I pur has a CV structure with exact by I all in every even distancions and no allo in odd distancions.

 $H^{n}(\mathbb{C}^{p\infty},A)\cong \left\{ \begin{array}{ll} A & \text{for } n>0 \text{ even} \\ 0 & \text{for } n \text{ odd} \end{array} \right.$