Ver también documento Nivel 7 de la práctica

En un sistema de ficheros tipo UNIX, en donde los inodos tienen dos punteros directos y uno indirecto simple, conocemos el contenido de los punteros de los siguientes inodos:

También conocemos el contenido de los siguientes bloques de datos:

Numero Bioque	7	125	10	18	120	32	13
	14 pepe	1 .	27	50 Linux	7 bin	33 indice.txt	Futuras
	16 carta1	1	34	60 tech-rep.	10 sbin	42 Backup	actualiza ciones
	27 carta2	8 etc	40	65 juegos	15 software	31 Juan	0.01.00 111
	32 carta4	120 home	41	150 publico	140 dev	17 Raul	
	150	100	95	15	3	50	22
	100	100 Xwin	18 nucleo	34 Matlab	70 INDICE	El direct	Daha
	95	7 usuarios	20 pepe	62 C++	63 Netscape	orio Back up contie ne	Debo hacer est o el dia
	135	11 tmp	25 hola1	40 docs	38 srv2,5		
	200	12 doc	30 hola	45 ms-dos	39 Linux_doc		
	45	16	19	33	4	75	80
	50	El directo	Este fic	98	El direct	Los fiche	
	4	rio srv2.5	hero es para re	25	orio Net scape	ros que	Esto es el indice
	16	contiene	cordarm e	27	contiene	hay aqui 	m
	13			49			

 a) Explicar detenidamente como se encontraría el contenido del fichero /usuarios/publico/indice.txt partiendo del directorio raíz.

Observemos primero los diferentes tipos de bloques de la zona de datos: bloques de índices (punteros), bloques de datos y bloques de entradas de directorio

Todos los tipos de bloques de la **zona de datos** deberían ocupar la misma cantidad de bytes: BLOCKSIZE¹:

- Bloques de datos: unsigned char buffer [BLOCKSIZE]
- Bloques de punteros: unsigned int punteros[BLOCKSIZE/sizeof(unsigned int)]
- Bloques de entradas de directorio: struct entrada entradas[BLOCKSIZE/sizeof(struct entrada)], siendo en nuestro caso:

```
struct entrada {
  char nombre[60];
  unsigned int ninodo;
};
```

La ruta+nombre que nos han dado es: /usuarios/publico/indice.txt.

Empezamos recorriendo el inodo raiz (en ese sistema de ficheros es el inodo 1) que es un inodo de tipo directorio y por tanto su contenido son entradas. Buscamos el primer directorio, "usuarios", dentro de las entradas del directorio raíz. Es un recorrido secuencial de todas sus entradas (que pueden ocupar más de un bloque lógico) hasta que la hayamos encontrado o hayamos llegado a la última entrada.

- Empezamos por el primer bloque lógico del directorio raíz. El BL 0 del inodo 1 está en el BF 125 (eso lo determinó la función traducir_bloque_inodo() cuando se escribió y ahora la utilizamos para consultarlo). Comparamos los nombres de las entradas de ese bloque. Como no la hemos encontrado, pasamos al siguiente bloque lógico.
- El BL 1 del inodo 1 está en el BF 120. Comparamos los nombres de las entradas de ese bloque. Como no la hemos encontrado, pasamos al siguiente bloque lógico, pero en este

¹ En este ejemplo BLOCKSIZE=256, sizeof(struct entrada) = 64, así que tenemos 4 entradas de directorio por bloque. Teniendo en cuenta que todos los bloques han de tener el mismo tamaño, los bloques de punteros deberían contener 256/4 = 64 elementos, pero por simplicidad del ejemplo, para hacer el seguimiento gráfico de cómo se buscan las entradas, se han considerado bloques de 4 punteros.

- caso, el siguiente campo del inodo no es un puntero directo, sino un puntero indirecto que nos apunta a un bloque de punteros que está en el BF 150.
- Leemos ese bloque y nos indica que hemos de leer el BF 100 para obtener el
 correspondiente bloque lógico (nuestra función de traducir_bloque_inodo() ya se encarga
 de ir atravesando los niveles de punteros que sean necesarios para proporcionarnos
 finalmente el bloque físico de datos). Leemos sus entradas y encontramos una cuyo
 nombre es "usuarios" y nos indica que su inodo es el 7.

Recordemos que nuestra ruta+nombre es: /usuarios/publico/indice.txt.

Ahora hemos de recorrer el inodo 7, correspondiente a "usuarios", buscando "publico" dentro de sus entradas. Empezamos por el primer bloque lógico del directorio usuarios. El BL 0 del inodo 7 está en el BF 15 (a nosotros nos lo devolverá la función traducir_bloque_inodo()). Comparamos los nombres de las entradas de ese bloque. Como no la hemos encontrado, pasamos al siguiente bloque lógico. El BL 1 del inodo 7 está en el BF 18. Comparamos los nombres de las entradas de ese bloque y encontramos una cuyo nombre es "publico" y nos indica que su inodo es el 150.

Seguimos analizando nuestra ruta+nombre: /usuarios/publico/indice.txt.

Ahora hemos de recorrer el inodo 150, correspondiente a "publico", buscando "indice.txt" dentro de sus entradas. Empezamos por el primer bloque lógico del directorio publico. El BL 0 del inodo 150 está en el BF 3 (a nosotros nos lo devolverá la función traducir_bloque_inodo()). Comparamos los nombres de las entradas de ese bloque. Como no la hemos encontrado, pasamos al siguiente bloque lógico. El BL 1 del inodo 150 está en el BF 32. Comparamos los nombres de las entradas de ese bloque y encontramos una cuyo nombre es "indice.txt" y nos indica que su inodo es el 33.

Ya tenemos localizado el inodo correspondiente a indice.txt. Ahora recorreríamos todos los bloques lógicos del inodo 33 para mostrar su contenido (nosotros tendremos una función mi_read() que llamará a mi_read_f() en un bucle (con un tamaño de buffer concreto) para leerlo completo, similar a lo que hace el programa ficticio leer.c).

