ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 31. Mean value theorem

► We recall:

Lecture 31. Mean value theorem

- ▶ We recall:
- ▶ Definition 29.1: Let $A \subseteq \mathbb{R}$. Let $c \in A$ be a cluster point of A. Let $f: A \to \mathbb{R}$ be a function. Then f is said to be differentiable at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists. In such a case, f'(c) is defined as this limit. If the limit does not exist f is said to be not differentiable at c.

▶ Theorem 30.9 (Interior Extremum theorem): Let $f: I \to \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f. If f is differentiable at c then

$$f'(c)=0.$$

▶ Theorem 30.9 (Interior Extremum theorem): Let $f: I \to \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f. If f is differentiable at c then

$$f'(c)=0.$$

Sketch of proof.

▶ Theorem 30.9 (Interior Extremum theorem): Let $f: I \to \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f. If f is differentiable at c then

$$f'(c)=0.$$

- Sketch of proof.
- ▶ Suppose $\{x_n\}_{n\in\mathbb{N}}$ is a sequence decreasing to c. Then

$$f'(c) = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \le 0.$$

▶ Theorem 30.9 (Interior Extremum theorem): Let $f: I \to \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f. If f is differentiable at c then

$$f'(c)=0.$$

- Sketch of proof.
- ▶ Suppose $\{x_n\}_{n\in\mathbb{N}}$ is a sequence decreasing to c. Then

$$f'(c) = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \le 0.$$

▶ Similarly if $\{y_n\}_{n\in\mathbb{N}}$ is a sequence increasing to c,

$$f'(c) = \lim_{n \to \infty} \frac{f(y_n) - f(c)}{y_n - c} \ge 0$$

▶ Theorem 30.9 (Interior Extremum theorem): Let $f: I \to \mathbb{R}$ be a function. Suppose c is an interior point of I and suppose c is a local extremum of f. If f is differentiable at c then

$$f'(c)=0.$$

- Sketch of proof.
- ▶ Suppose $\{x_n\}_{n\in\mathbb{N}}$ is a sequence decreasing to c. Then

$$f'(c) = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \le 0.$$

▶ Similarly if $\{y_n\}_{n\in\mathbb{N}}$ is a sequence increasing to c,

$$f'(c) = \lim_{n \to \infty} \frac{f(y_n) - f(c)}{y_n - c} \ge 0$$

▶ Combining two inequalities we get f'(c) = 0.

▶ Theorem 30.10 (Rolle's theorem): Let $f:[a,b] \to \mathbb{R}$ be a continuous function which is differentiable on (a,b). Suppose f(a) = f(b) = 0. Then there exists $c \in (a,b)$ such that

$$f'(c)=0.$$

▶ Theorem 30.10 (Rolle's theorem): Let $f:[a,b] \to \mathbb{R}$ be a continuous function which is differentiable on (a,b). Suppose f(a) = f(b) = 0. Then there exists $c \in (a,b)$ such that

$$f'(c)=0.$$

Sketch of proof.

▶ Theorem 30.10 (Rolle's theorem): Let $f:[a,b] \to \mathbb{R}$ be a continuous function which is differentiable on (a,b). Suppose f(a) = f(b) = 0. Then there exists $c \in (a,b)$ such that

$$f'(c)=0.$$

- Sketch of proof.
- If f is non-zero it attains either supremum or infimum at some interior point c in (a, b).

▶ Theorem 30.10 (Rolle's theorem): Let $f:[a,b] \to \mathbb{R}$ be a continuous function which is differentiable on (a,b). Suppose f(a) = f(b) = 0. Then there exists $c \in (a,b)$ such that

$$f'(c)=0.$$

- Sketch of proof.
- If f is non-zero it attains either supremum or infimum at some interior point c in (a, b).
- ▶ Then by interior extremum theorem f'(c) = 0.

$$f(b)-f(a)=f'(c)(b-a).$$

▶ Theorem 31.1 (Mean value theorem): Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

▶ Proof: Define $g:[a,b] \to \mathbb{R}$ by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

▶ Theorem 31.1 (Mean value theorem): Let $f : [a,b] \to \mathbb{R}$ be a continuous function which is differentiable on (a,b). Then there exists $c \in (a,b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

▶ Proof: Define $g:[a,b] \to \mathbb{R}$ by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then clearly g is continuous on [a, b] and is differentiable on (a, b). Also

$$g(a)=g(b)=0.$$

▶ Theorem 31.1 (Mean value theorem): Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b). Then there exists $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

▶ Proof: Define $g:[a,b] \to \mathbb{R}$ by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then clearly g is continuous on [a, b] and is differentiable on (a, b). Also

$$g(a)=g(b)=0.$$

▶ Hence Rolle's theorem is applicable to g, and we get $c \in (a, b)$ such that g'(c) = 0.

Continuation

Using linearity of differentiation,

$$g'(c) = f'(c) - 0 - \frac{f(b) - f(a)}{b - a}.1 = 0.$$

Continuation

Using linearity of differentiation,

$$g'(c) = f'(c) - 0 - \frac{f(b) - f(a)}{b - a}.1 = 0.$$

► Hence,

$$f'(c)(b-a)=f(b)-f(a).$$

Continuation

Using linearity of differentiation,

$$g'(c) = f'(c) - 0 - \frac{f(b) - f(a)}{b - a}.1 = 0.$$

► Hence,

$$f'(c)(b-a) = f(b) - f(a).$$

▶ Note that Rolle's theorem is a special case of mean value theorem.

▶ Theorem 31.2 (Cauchy's Mean value theorem): Let $f,g:[a,b] \to \mathbb{R}$ be continuous functions which are differentiable on (a,b). Then there exists $c \in (a,b)$ such that

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

Proof: Consider f, g as in the hypothesis of the theorem.

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof**: Consider f, g as in the hypothesis of the theorem.
- Define $h:[a,b]\to\mathbb{R}$ by h(x)=(f(b)-f(a))g(x)-f(x)(g(b)-g(a))-f(b)g(a)+f(a)g(b) for $x\in[a,b]$.

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof**: Consider f, g as in the hypothesis of the theorem.
- ▶ Define $h: [a,b] \to \mathbb{R}$ by h(x) = (f(b)-f(a))g(x)-f(x)(g(b)-g(a))-f(b)g(a)+f(a)g(b) for $x \in [a,b]$.
- Then h is continuous on [a, b], differentiable on (a, b) and h(a) = h(b) = 0.

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof**: Consider f, g as in the hypothesis of the theorem.
- ▶ Define $h: [a,b] \to \mathbb{R}$ by h(x) = (f(b)-f(a))g(x)-f(x)(g(b)-g(a))-f(b)g(a)+f(a)g(b) for $x \in [a,b]$.
- Then h is continuous on [a, b], differentiable on (a, b) and h(a) = h(b) = 0.
- Therefore Rolle's theorem is applicable.

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof**: Consider f, g as in the hypothesis of the theorem.
- ▶ Define $h:[a,b] \to \mathbb{R}$ by h(x) = (f(b)-f(a))g(x)-f(x)(g(b)-g(a))-f(b)g(a)+f(a)g(b) for $x \in [a,b]$.
- Then h is continuous on [a, b], differentiable on (a, b) and h(a) = h(b) = 0.
- ► Therefore Rolle's theorem is applicable.
- ▶ So we get $c \in (a, b)$ such that h'(c) = 0 and that gives the result.

$$(f(b) - f(a))g'(c) = f'(c)(g(b) - g(a)).$$

- **Proof**: Consider f, g as in the hypothesis of the theorem.
- Define $h:[a,b]\to\mathbb{R}$ by h(x)=(f(b)-f(a))g(x)-f(x)(g(b)-g(a))-f(b)g(a)+f(a)g(b) for $x\in[a,b]$.
- Then h is continuous on [a, b], differentiable on (a, b) and h(a) = h(b) = 0.
- Therefore Rolle's theorem is applicable.
- So we get $c \in (a, b)$ such that h'(c) = 0 and that gives the result.
- Note that mean value theorem is a special case of Cauchy's mean value theorem with g(x) = x, $x \in [a, b]$.

▶ Corollary 31.3: Let $f : [a, b] \to \mathbb{R}$ be a function continuous on [a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all $x \in (a, b)$. Then f is a constant.

- ▶ Corollary 31.3: Let $f : [a, b] \to \mathbb{R}$ be a function continuous on [a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all $x \in (a, b)$. Then f is a constant.
- ▶ Proof: Fix any $t \in (a, b]$ and consider f restricted to [a, t].

- ▶ Corollary 31.3: Let $f : [a, b] \to \mathbb{R}$ be a function continuous on [a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all $x \in (a, b)$. Then f is a constant.
- ▶ Proof: Fix any $t \in (a, b]$ and consider f restricted to [a, t].
- Clearly mean value theorem is applicable to this function and we get

$$f(t) - f(a) = 0.(t - a) = 0.$$

- ▶ Corollary 31.3: Let $f : [a, b] \to \mathbb{R}$ be a function continuous on [a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all $x \in (a, b)$. Then f is a constant.
- ▶ Proof: Fix any $t \in (a, b]$ and consider f restricted to [a, t].
- Clearly mean value theorem is applicable to this function and we get

$$f(t) - f(a) = 0.(t - a) = 0.$$

► Therefore f(t) = f(a).

- ▶ Corollary 31.3: Let $f : [a, b] \to \mathbb{R}$ be a function continuous on [a, b] and differentiable on (a, b). Suppose f'(x) = 0 for all $x \in (a, b)$. Then f is a constant.
- ▶ Proof: Fix any $t \in (a, b]$ and consider f restricted to [a, t].
- Clearly mean value theorem is applicable to this function and we get

$$f(t) - f(a) = 0.(t - a) = 0.$$

- ▶ Therefore f(t) = f(a).
- ▶ In other words f(t) = f(a) for every $t \in [a, b]$.

Equal derivatives

▶ Corollary 31.4: Let $f,g:[a,b] \to \mathbb{R}$ be continuous functions differentiable on (a,b). Suppose f'(x)=g'(x) for all $x \in (a,b)$. Then $f(x)=g(x)+C, \ x \in [a,b]$ for some $C \in \mathbb{R}$.

Equal derivatives

- Corollary 31.4: Let $f,g:[a,b]\to\mathbb{R}$ be continuous functions differentiable on (a,b). Suppose f'(x)=g'(x) for all $x\in(a,b)$. Then $f(x)=g(x)+C,\ x\in[a,b]$ for some $C\in\mathbb{R}$.
- ▶ Proof: This is clear from the previous corollary, by considering the function, $h:[a,b] \to \mathbb{R}$ defined by

$$h(x) = f(x) - g(x), \quad x \in [a, b].$$

▶ Recall that a function $f:[a,b] \to \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \le f(y)$ (respectively $f(x) \ge f(y)$) for all x, y in [a, b] with $x \le y$.

- ▶ Recall that a function $f:[a,b] \to \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \le f(y)$ (respectively $f(x) \ge f(y)$) for all x, y in [a, b] with $x \le y$.
- ▶ Theorem 31.5: Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b).

- ▶ Recall that a function $f:[a,b] \to \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \le f(y)$ (respectively $f(x) \ge f(y)$) for all x, y in [a, b] with $x \le y$.
- ▶ Theorem 31.5: Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b).
- ▶ (i) f is increasing on [a, b] if and only if $f'(x) \ge 0$ for all $x \in (a, b)$.

- ▶ Recall that a function $f:[a,b] \to \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \le f(y)$ (respectively $f(x) \ge f(y)$) for all x, y in [a, b] with $x \le y$.
- ▶ Theorem 31.5: Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b).
- (i) f is increasing on [a, b] if and only if $f'(x) \ge 0$ for all $x \in (a, b)$.
- ▶ (ii) f is decreasing on [a, b] if and only if $f'(x) \le 0$ for all $x \in (a, b)$.

Monotonicity

- ▶ Recall that a function $f:[a,b] \to \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \le f(y)$ (respectively $f(x) \ge f(y)$) for all x, y in [a, b] with $x \le y$.
- ▶ Theorem 31.5: Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b).
- (i) f is increasing on [a, b] if and only if $f'(x) \ge 0$ for all $x \in (a, b)$.
- ▶ (ii) f is decreasing on [a, b] if and only if $f'(x) \le 0$ for all $x \in (a, b)$.
- ▶ Proof: (i) Suppose f is increasing and $x \in (a, b)$.

Monotonicity

- ▶ Recall that a function $f:[a,b] \to \mathbb{R}$ is said to be increasing (respectively decreasing) if $f(x) \le f(y)$ (respectively $f(x) \ge f(y)$) for all x, y in [a, b] with $x \le y$.
- ▶ Theorem 31.5: Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b).
- (i) f is increasing on [a, b] if and only if $f'(x) \ge 0$ for all $x \in (a, b)$.
- (ii) f is decreasing on [a, b] if and only if $f'(x) \le 0$ for all $x \in (a, b)$.
- ▶ Proof: (i) Suppose f is increasing and $x \in (a, b)$.
- Consider any sequence $\{x_n\}$ in (a, b) with $x < x_n \le b$, converging to x. Then $f(x_n) f(x) \ge 0$ for all n and we get

$$f'(x) = \lim_{n \to \infty} \frac{f(x_n) - f(x)}{x_n - x} \ge 0.$$

▶ Conversely suppose $f'(x) \ge 0$ for all $x \in (a, b)$.

- ▶ Conversely suppose $f'(x) \ge 0$ for all $x \in (a, b)$.
- For any x, y in [a, b] with x < y, consider f restricted to [x, y]

- ▶ Conversely suppose $f'(x) \ge 0$ for all $x \in (a, b)$.
- For any x, y in [a, b] with x < y, consider f restricted to [x, y]
- Then f is continuous on [x, y] and is differntiable on (x, y) and hence mean value theorem is applicable.

- ▶ Conversely suppose $f'(x) \ge 0$ for all $x \in (a, b)$.
- For any x, y in [a, b] with x < y, consider f restricted to [x, y]
- Then f is continuous on [x, y] and is differntiable on (x, y) and hence mean value theorem is applicable.
- ► So we get

$$f(y) - f(x) = f'(z)(y - x)$$

- ▶ Conversely suppose $f'(x) \ge 0$ for all $x \in (a, b)$.
- For any x, y in [a, b] with x < y, consider f restricted to [x, y]
- Then f is continuous on [x, y] and is differntiable on (x, y) and hence mean value theorem is applicable.
- So we get

$$f(y) - f(x) = f'(z)(y - x)$$

▶ for some $z \in [x, y]$. Then by the hypothesis, $f'(z) \ge 0$ and therefore $f(y) - f(x) \ge 0$ or $f(y) \ge f(x)$.

- ▶ Conversely suppose $f'(x) \ge 0$ for all $x \in (a, b)$.
- For any x, y in [a, b] with x < y, consider f restricted to [x, y]
- ▶ Then f is continuous on [x, y] and is differntiable on (x, y) and hence mean value theorem is applicable.
- ► So we get

$$f(y) - f(x) = f'(z)(y - x)$$

- ▶ for some $z \in [x, y]$. Then by the hypothesis, $f'(z) \ge 0$ and therefore $f(y) f(x) \ge 0$ or $f(y) \ge f(x)$.
- ▶ Proof of (ii) is similar.

Suppose $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Suppose f'(x) > 0 for all $x \in (a,b)$ then by mean value theorem it is easy to see that f is strictly increasing.

- Suppose $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Suppose f'(x) > 0 for all $x \in (a,b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.

- Suppose $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Suppose f'(x) > 0 for all $x \in (a,b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.
- **Example 31.6**: Consider $f:[-1,1] \to \mathbb{R}$ defined by

$$f(x) = x^3, \quad x \in [-1, 1].$$

- Suppose $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Suppose f'(x) > 0 for all $x \in (a,b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- ▶ However, the converse is not true.
- **Example 31.6**: Consider $f:[-1,1] \to \mathbb{R}$ defined by

$$f(x) = x^3, x \in [-1, 1].$$

▶ Then f is strictly increasing but f'(0) = 0.

- ▶ Suppose $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Suppose f'(x) > 0 for all $x \in (a,b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- However, the converse is not true.
- **Example 31.6**: Consider $f:[-1,1] \to \mathbb{R}$ defined by

$$f(x) = x^3, x \in [-1, 1].$$

- ▶ Then f is strictly increasing but f'(0) = 0.
- Remark 31.7: In this Example, 0 is a point which is never picked up by the mean value theorem. That is, for no $x, y \in [-1, 1]$ with x < y, f(y) f(x) = f'(0)(y x). Can we characterize such points?

- ▶ Suppose $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Suppose f'(x) > 0 for all $x \in (a,b)$ then by mean value theorem it is easy to see that f is strictly increasing.
- However, the converse is not true.
- **Example 31.6**: Consider $f:[-1,1] \to \mathbb{R}$ defined by

$$f(x) = x^3, x \in [-1, 1].$$

- ▶ Then f is strictly increasing but f'(0) = 0.
- ▶ Remark 31.7: In this Example, 0 is a point which is never picked up by the mean value theorem. That is, for no $x, y \in [-1, 1]$ with x < y, f(y) f(x) = f'(0)(y x). Can we characterize such points?
- ► END OF LECTURE 31.

