Paragraph Embeddings & Attention

Kuan-Yu Chen (陳冠宇)

2018/05/03 @ NTUST

Autoencoder.

- An autoencoder is a DNN-based unsupervised learning of efficient codings
 - The training objective is to minimize the reconstructed errors

$$\min \frac{1}{N} \sum_{n=1}^{N} (x_n - x'_n)^2$$

$$\min - \sum_{n=1}^{N} x_n \log(x'_n)$$

Input Layer Bottleneck Feature x_n Hidden Layers

Autoencoder...

- An autoencoder is a DNN-based unsupervised learning of efficient codings
 - The training objective is to minimize the reconstructed errors

RNN-based Autoencoder.

RNN-based Autoencoder...

RNN-based Autoencoder...

RNN-based Autoencoder....

RNN-based Autoencoder.....

Sequence-to-sequence Learning

• Such a methodology also calls sequence-to-sequence (seq2seq) learning

Revisiting Classic Word Embeddings

CBOW and Skip-gram models are two representative word embedding methods

Paragraph Embeddings

- Learning of paragraph representations is more reasonable and suitable for some tasks
 - Summarization, Retrieval, and Sentiment Analysis
- A straightforward method is to represent a paragraph by averaging the vector representations of words occurring in the paragraph

$$\vec{d} = \sum_{w \in d} \frac{c(w, d)}{|d|} v_w$$

Distributed Memory (DM) Model

- Learning of paragraph representations is more reasonable and suitable for some tasks
 - The distributed memory model, the distributed bag-of-words model, and the thought vector model
- The DM model is inspired from the CBOW model

- The idea is that a given paragraph also contributes to the prediction of a next word

Distributed Bag-of-words (DBOW) Model

 Opposite to the DM model, a simplified version is to only leverage the paragraph representation to predict all of the words occurring in the paragraph

• Since the model ignores the contextual words at the input layer, it is named the distributed bag-of-words (DBOW) model

Skip-Thought Vector Model

- The skip-thought vector model presents an objective function that abstracts the **skip-gram** model to the sentence level
 - Instead of using a word to predict its surrounding context, thought vector encodes a sentence to predict the sentences around it

Classic Paragraph Embedding Methods

- Classic paragraph embedding methods infer the representation of a given paragraph by considering all of the words occurring in the paragraph
 - Such as the Distributed Memory model, the Distributed Bag-ofwords model, and the skip-though vector model
- The **stop** or **function words** that occur frequently may mislead the embedding learning process
 - The learned representation for the paragraph might be undesired
 - The performance is limited
 - Our goal is to
 - Distill the most representative information from a given paragraph
 - Get rid of the general background information

Learning to Distill

- We assume that each paragraph can be assembled by the paragraph specific information and the general background information
 - This assumption also holds in the low-dimensional representation space

 Reconstructed
 - Three modules
 - Paragraph encoder $f(\cdot)$
 - Background encoder $g(\cdot)$
 - Decoder $h(\cdot)$

Essence Vector-based Language Model

• A brilliant property inherits in the EV model is that it can be readily inferred a "paragraph" specific language model

育民 對此 提議 村民 的

Background Language Model

Paragraph LM General Background LM

Siamese CBOW.

 Siamese CBOW model aims at learning a set of word embeddings which can be directly used for the purpose of being averaged

Siamese CBOW...

$$L = -\sum_{s_i \in \{S^+, S^-\}} P(s_i, s_j) log P'(s_i, s_j)$$

I got back home I could see the cat This was strange

$$P(s_i, s_j) = \begin{cases} \frac{1}{|S^+|}, & \text{if } s_j \in S^+ \\ 0, & \text{if } s_j \in S^- \end{cases}$$
 to the target sentence

$$P'(s_i, s_j) = \frac{e^{\cos(\vec{s_i}, \vec{s_j})}}{\sum_{s_k \in \{S^+, S^-\}} e^{\cos(\vec{s_i}, \vec{s_k})}}$$

sentences that occur next

randomly chosen sentences that do not occur next to the target sentence

Machine Translation.

- RNN can be used to encode a variable-length source sentence, and then a variable-length target sentence will be generated by considering the encoded information
 - RNN Encoder-Decoder
 - Seq2seq
 - It is suitable for machine translation task

Machine Translation...

 A potential issue with this encoder-decoder approach is that a neural network needs to be able to compress all the necessary information of a source sentence into a fixed-length vector

Machine Translation...

• The performance will drop when the sentence being longer!

The Bottleneck Problem

• The bottleneck feature needs to capture all information about the source sentence

Attention Mechanism.

Attention Mechanism...

Attention Mechanism...

Attention Mechanism....

Attention Mechanism.....

Descriptions

- The attention mechanism
 - The encoder states $h_1^e, h_2^e, \cdots, h_i^e, \cdots, h_I^e \in \mathbb{R}^{d_1}$
 - The decoder states $h_1^d, h_2^d, \cdots, h_j^d, \cdots, h_J^d \in \mathbb{R}^{d_2}$
 - The attention score vector at time j is $s_i \in \mathbb{R}^I$
 - Softmax is taken on s_i to get the attention distribution $a_i \in \mathbb{R}^I$
 - A new vector representation h_j is derived by referring to a_j and the encoder states h_j

$$h_j = \sum_{i=1}^{I} a_j^i h_i^e$$

The Attention Scores.

• There are several ways for us to compute the attention scores

The Attention Scores...

- Basic dot-product Attention
 - Assume $d_1 = d_2$

$$s^i = h_i^e \cdot h_i^d$$

- Multiplicative Attention
 - $W \in \mathbb{R}^{d_1 \times d_2}$ is a learned parameter

$$s^i = (h_i^e)^{\mathrm{T}} W h_j^d$$

- Additive Attention
 - $W_1 \in \mathbb{R}^{d_3 \times d_1}$, $W_2 \in \mathbb{R}^{d_3 \times d_2}$, and $W_3 \in \mathbb{R}^{d_3}$ are learned parameters

$$s^i = W_3^{\mathrm{T}} \tanh(W_1 h_i^e + W_2 h_j^d)$$

The encoder states $h_1^e, h_2^e, \cdots, h_i^e, \cdots, h_I^e \in \mathbb{R}^{d_1}$ The decoder states $h_1^d, h_2^d, \cdots, h_i^d, \cdots, h_I^d \in \mathbb{R}^{d_2}$

Attention-based Modeling

Amazing!

- Neural Machine Translation went from a fringe research activity in 2014 to the leading standard method in 2016
 - 2014: First seq2seq paper published
 - 2016: Google Translate switches from SMT to NMT
- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

But.

But..

But...

Questions?

kychen@mail.ntust.edu.tw