

DID YOU HY?

1.5 Rule is used with IQR to find outliers

Statistical Reasoning

The empirical rule(1.5 rule) is derived from the Gaussian Distribution(refer below image)

- 68% of data lies within one Standard Deviation($<\sigma$) of the mean (μ).
- 95.4% of data lies within two Standard Deviation ($<2\sigma$) of the mean (μ).
- 99.7% of data lies within three Standard Deviation ($<3\sigma$) of the mean (μ).
- The rest of the data, which lies outside the three standard deviations of the mean (μ), is considered outliers.

Different scales with IQR

Whereas Q1= 0.675σ , Q3 = -0.675σ

Scale = 1:

- When scale is taken as 1, any data that lies beyond 2.025σ from the mean(μ) on either side shall be considered as an outlier
- However, we cannot use scale=1, as this makes the decision range so small (compared to 3σ) that it considers some data points as outliers, which is incorrect.

Scale = 2:

- When scale is taken as 2, any data that lies beyond 3.375σ from the mean (μ), on either side, shall be considered an outlier.
- However, we cannot use scale=2, as this makes the decision range too large (compared to 3σ) to consider some outliers as data points, which is undesirable.

Scale = 1.5:

- When scale is taken as 1.5, any data that lies beyond 2.7σ from the mean (μ), on either side, shall be considered an outlier.
- Hence, we are using scale=1.5 as this makes the decision range closest to 3σ
- It is neither as small as 1 nor as large as 2, so it's ideal to use 1.5 with IQR to detect outliers

LIKE & FOLLOW

for more