Basic Python

1. Split this string

```
In [11]:
s = "Hi there Sam!"

In [12]:
# Splits at space
s.split()

Out[12]:
['Hi', 'there', 'Sam!']
```

2. Use .format() to print the following string.

Output should be: The diameter of Earth is 12742 kilometers.

```
In [15]:
planet = "Earth"
diameter = 12742

In [16]:
# Reverse the index numbers with the
# parameters of the placeholders
'The diameter of {0} is {1} kilometer'.format(planet,diameter)

Out[16]:
'The diameter of Earth is 12742 kilometer'
```

3. In this nest dictionary grab the word "hello"

```
In [13]:
d =
{'k1':[1,2,3,{'tricky':['oh','man','inception',{'target':[1,2,3,'hello']}]}
]}
In [14]:
#In this nest dictionary grabing the word "hello"
print(d["k1"][3]["tricky"][3]["target"][3])
hello
```

Numpy

```
import numpy as np
```

4.1 Create an array of 10 zeros?

4.2 Create an array of 10 fives?

5. Create an array of all the even integers from 20 to 35

```
In [20]: #array of all the even integers from 20 to 35 array3=np.arange(20,36,2) print(array3)
[20 22 24 26 28 30 32 34]
```

6. Create a 3x3 matrix with values ranging from 0 to 8

```
In [21]:
#3x3 matrix with values ranging from 0 to 8
x = np.arange(0, 9).reshape(3,3)
print(x)
[[0 1 2]
  [3 4 5]
  [6 7 8]]
```

7. Concatenate a and b

a = np.array([1, 2, 3]), b = np.array([4, 5, 6])

```
In [22]:
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
#Concatenate
np.concatenate((a,b),axis=None)
Out[22]:
array([1, 2, 3, 4, 5, 6])
```

Pandas

8. Create a dataframe with 3 rows and 2 columns

In [23]:

```
import pandas as pd
                                                                            In [24]:
A = np.random.randint(10, size=(3,2))
#dataframe
df = pd.DataFrame(A, columns=['cola', 'colb'])
                                                                           Out[24]:
    cola colb
           3
 1
      8
           5
 2
      4
          5
                                                                            In [25]:
dict_a = {
   'col_a':[1,2,3],
   'col_b': [2,5,6],
#dataframe
df = pd.DataFrame(dict_a)
                                                                           Out[25]:
    col_a col_b
     1
            2
 1
      2
            5
 2
      3
            6
                                                                            In [26]:
lst_a = [['John', 23], ['Jane', 25], ['Mary', 21]]
#dataframe
df = pd.DataFrame(lst a,columns=['Name', 'Age'])
                                                                           Out[26]:
    Name
         Age
     John
           23
```

1

Jane

25

```
Name Age
```

2 Mary 21

9. Generate the series of dates from 1st Jan, 2023 to 10th Feb, 2023

```
In [27]:
import pandas as pd
# calling DataFrame constructor
df = pd.DataFrame()
# Create 6 dates
df['time'] = pd.date range(start="1/1/2023", end="2/10/2023", freq = '24H')
  # print dataframe
# Extract features - year, month, day, hour, and minute
df['year'] = df['time'].dt.year
df['month'] = df['time'].dt.month
df['day'] = df['time'].dt.day
# Show six rows
df.head(len(df["time"]))
                                                                         Out[27]:
         time year month day
    2023-01-01
             2023
    2023-01-02 2023
   2023-01-03 2023
   2023-01-04 2023
   2023-01-05 2023
   2023-01-06 2023
   2023-01-07 2023
 7 2023-01-08 2023
```

	time	year	month	day
8	2023-01-09	2023	1	9
9	2023-01-10	2023	1	10
10	2023-01-11	2023	1	11
11	2023-01-12	2023	1	12
12	2023-01-13	2023	1	13
13	2023-01-14	2023	1	14
14	2023-01-15	2023	1	15
15	2023-01-16	2023	1	16
16	2023-01-17	2023	1	17
17	2023-01-18	2023	1	18
18	2023-01-19	2023	1	19
19	2023-01-20	2023	1	20
20	2023-01-21	2023	1	21
21	2023-01-22	2023	1	22
22	2023-01-23	2023	1	23
23	2023-01-24	2023	1	24
24	2023-01-25	2023	1	25
25	2023-01-26	2023	1	26
26	2023-01-27	2023	1	27

	time	year	month	day
27	2023-01-28	2023	1	28
28	2023-01-29	2023	1	29
29	2023-01-30	2023	1	30
30	2023-01-31	2023	1	31
31	2023-02-01	2023	2	1
32	2023-02-02	2023	2	2
33	2023-02-03	2023	2	3
34	2023-02-04	2023	2	4
35	2023-02-05	2023	2	5
36	2023-02-06	2023	2	6
37	2023-02-07	2023	2	7
38	2023-02-08	2023	2	8
39	2023-02-09	2023	2	9
40	2023-02-10	2023	2	10

10. Create 2D list to DataFrame

```
lists = [[1, 'aaa', 22], [2, 'bbb', 25], [3, 'ccc', 24]]

ln [28]:
lists = [[1, 'aaa', 22], [2, 'bbb', 25], [3, 'ccc', 24]]

ln [29]:
#2D list to DataFrame
df = pd.DataFrame(lists, columns =['col1', "col2", "col3"])
df

Out[29]:
```

col1 col2 col3
 1 aaa 22
 2 bbb 25

3 ccc