

SL - Smart Leaf - Parte 1

Documento do Projeto

Versão 1.0

Quadros 1 Integrantes e as suas Funções

Ordem	Função	Nomes dos participantes do projeto	Github
1	Scrum Master	Matheus da Silva Costa	https://github.com/Matheus7p
2	Dev team	Adriano Valcacio Leão	https://github.com/Holanddez
3	Dev team	Guilherme Banik	https://github.com/13Anlkk
4	Dev team	Henrique Pedro Oliveira de Almeida	https://github.com/ShiningStarx
5	Dev team	Igor Gonçalves Pereira	https://github.com/igoor1
6	Dev team	Kaiki Kenji Fukumoto Aoto	https://github.com/kengiiGMs
7	Dev team	Victor de Souza Miralhas	https://github.com/Miralhas

Quadros 2 Lista de Disciplinas Relacionadas ao Projeto

Disciplinas	Função	Responsável Disciplina
Gestão Ágil de Projetos de Software	Disciplina Chave	Professor Bruno Zolotareff dos santos
Desenvolvimento Web III		Professor Vinícius Heltai Pacheco
Banco de Dados		Professor Marcos Vasconcelos De Oliveira
Técnicas de Programação III		Professor Vinícius Heltai Pacheco
Interação Humano Computador		Professora Patricia Gallo De França

Lista de Figuras

Figura 1 Smart	12
Figura 2 EAP	
Figura 3 Canvas	
Figura 4 Wireframe Tela LandingPage	
Figura 5 Wireframe Tela Home	

Lista de Quadros

Quadros 1 Integrantes e as suas Funções	
Quadros 1 Integrantes e as suas Funções	2
Quadros 3 Requisitos funcionais	
Quadros 4 Requisitos não funcionais	
Quadros 5 EAP Sprint - 1	14
Quadros 6 EAP Sprint - 2	15
Quadros 7 EAP Sprint - 3	15
Quadros 8 EAP Sprint - 4	15
Quadros 9 EAP Sprint - 5	
Quadros 10 Backlog Sprint - 1	17
Quadros 11 Backlog Sprint - 2	17
Quadros 12 Backlog Sprint - 3	17
Quadros 13 Stories dos Usuários	18
Quadros 14 Entrega de Sprints	18

Lista de Siglas

Sigla	Descrição da Sigla
ODS	(Objetivos de Desenvolvimento Sustentável) - Objetivos de Desenvolvimento Sustentável, estabelecidas pelas Nações Unidas para o Desenvolvimento Sustentável.
FATEC	(Faculdades de Tecnologia do Estado de São Paulo) - são instituições de ensino superior públicas localizadas no estado de São Paulo, Brasil.
SCRUM	(metodologia ágil de desenvolvimento de software) - visa aprimorar a eficiência e a flexibilidade no desenvolvimento de produtos.
SMART	representa critérios para estabelecer metas e objetivos específicos, mensuráveis, alcançáveis, relevantes e com prazo definido. Cada letra da sigla SMART representa um aspecto importante na definição de metas eficazes.
EAP	(Estrutura Analítica do Projeto) - ferramenta de gerenciamento de projetos que desagrega o escopo do projeto em partes menores e mais gerenciáveis, chamadas de pacotes de trabalho.

Curso: DSM Nome do Arquivo: SmartLeafDocumentoParte1

Sumário

1. INTRODUÇÃO	7
1.1. Problemática	7
1.2. Objetivo geral	7
1.2.1. Objetivos específicos	7
1.2.2. Metodologia de desenvolvimento para projeto	8
1.3. Descrição dos capítulos	8
2. LEVANTAMENTO DE REQUISITOS	10
2.1. Requisitos funcionais	10
2.2. Requisitos não funcionais	10
3. PLANEJAMENTO DE METAS	12
4. PLANEJAMENTO DO PROJETO COM EAP	14
4.1. Backlogs das Sprints	16
4.1.1. Entregas de Sprints	18
5. ELABORAÇÃO DO QUADRO DO LEAN CANVAS	19
6. WIREFRAME CONCEITUAL	20
7 CONCLUSÕES DA PRIMEIRA PARTE	23

1. Introdução

Este projeto propõe uma solução inovadora para a gestão de energia na Fatec e aos seus arredores utilizando energia solar para suas operações. A implementação da simulação de energia de painéis solares e tecnologias de gerenciamento dessa energia visam reduzir a dependência de fontes não renováveis, promovendo a sustentabilidade ambiental. Além de beneficiar a Fatec e sua comunidade acadêmica, serve como um modelo inspirador para outras instituições interessadas em práticas sustentáveis. Estamos seguindo a ODS 7 - Energia Limpa e Acessível, ODS 9 - Industria, Inovação e Infraestrutura e a ODS 11 - Cidades e Comunidades Sustentáveis.

1.1. Problemática

Uma gestão eficiente de energia elétrica é crucial em organizações como a FATEC, porém, a má manipulação da energia é um desafio significativo, especialmente evidente durante os períodos diurnos e noturnos. Durante a noite, a falta de iluminação próxima à FATEC aumenta a insegurança, potencializando riscos de acidentes e roubos. Durante o dia, o desperdício de energia por luzes acesas desnecessariamente impacta negativamente o meio ambiente e gera custos adicionais para a instituição. Esta má manipulação compromete a eficiência energética, coloca em risco a segurança e bem-estar das pessoas, e resulta em custos desnecessários.

1.2. Objetivo geral

Desenvolver e implementar um sistema de gestão de energia sustentável na Faculdade de Tecnologia (FATEC), visando otimizar o consumo de energia elétrica, promover a eficiência energética e reduzir os impactos ambientais negativos. Este sistema abrangerá a simulação de energia de painéis solares, a implementação de tecnologias de controle e monitoramento. O objetivo final é transformar a FATEC em um ambiente mais seguro, sustentável e economicamente viável, servindo como exemplo e inspiração para outras instituições educacionais e organizações locais interessadas em adotar práticas mais sustentáveis.

1.2.1. Objetivos específicos

- Realizar um levantamento detalhado do consumo de energia elétrica atual da FATEC, identificando padrões de consumo, pontos de desperdício e oportunidades de otimização.
- Projetar e dimensionar um sistema de simulação de geração de energia solar adequado às necessidades da FATEC, levando em consideração a demanda energética estimada e as condições físicas do local.
- Desenvolver e implementar um sistema de monitoramento e controle da geração e consumo de energia, permitindo a análise em tempo real dos dados e a identificação de possíveis melhorias na eficiência energética.
- Avaliar o impacto do sistema de gestão de energia sustentável na FATEC, analisando indicadores como redução do consumo de energia, economia

Curso: DSM Página 7/23

- financeira, redução das emissões de gases de efeito estufa e melhoria da segurança e bem-estar no ambiente acadêmico.
- Documentar e disseminar os resultados obtidos durante o projeto, compartilhando as lições aprendidas, melhores práticas e desafios enfrentados, para servir como referência e inspiração para outras instituições educacionais e organizações locais interessadas em implementar soluções similares.

1.2.2. Metodologia de desenvolvimento para projeto

O projeto Smart Leaf adotou uma abordagem ágil de desenvolvimento, utilizando a metodologia SCRUM para gerenciar as atividades de forma iterativa e incremental. Esta metodologia permite uma maior flexibilidade e adaptabilidade às mudanças, essenciais para um projeto com requisitos em constante evolução. Durante cada sprint, a equipe realiza reuniões semanais de acompanhamento para discutir o progresso, identificar obstáculos e ajustar o plano conforme necessário.

Para o desenvolvimento do sistema, optamos pela utilização do framework Spring, devido à sua robustez, modularidade e facilidade de integração com outras tecnologias. O Spring proporciona um ambiente de desenvolvimento coeso e eficiente, permitindo a construção de aplicativos web escaláveis e de alto desempenho. Utilizamos o Spring Boot para simplificar a configuração e inicialização do projeto, e o Spring Data JPA para facilitar a integração com o banco de dados.

Para o gerenciamento de tarefas e acompanhamento do progresso do projeto, adotamos a ferramenta Trello. O Trello oferece uma interface intuitiva e colaborativa, permitindo que a equipe organize suas atividades em quadros, listas e cartões. Através do Trello, é possível atribuir tarefas, definir prazos e acompanhar o status das atividades de forma transparente e eficiente.

Além disso, realizamos pesquisas detalhadas na internet para compreender o funcionamento e as melhores práticas relacionadas aos painéis solares. Estas pesquisas nos forneceram insights valiosos sobre os diferentes tipos de tecnologias disponíveis, os requisitos de instalação e manutenção, e as considerações ambientais e econômicas associadas à energia solar.

1.3. Descrição dos capítulos

Introdução

 Neste capítulo foi desenvolvido todos os elementos que serviram como base do projeto como a problemática abordada no trabalho, discutindo a importância e a relevância do tema. São definidos o objetivo geral e os objetivos específicos da pesquisa, bem como a metodologia de desenvolvimento utilizada para alcançar esses objetivos.

Levantamento de Requisitos

 Neste capítulo, são detalhados os requisitos funcionais e não funcionais do projeto, resultados de um processo de análise das necessidades dos usuários e das restrições do sistema.

Curso: DSM Página 8/23

Planejamento de Metas

 Aqui são definidas as metas e objetivos do projeto, alinhando-os com as expectativas dos stakeholders e as demandas do mercado, utilizando o SMART, para facilitar e esclarecer de forma clara as metas do projeto.

Planejamento do Projeto com EAP

 Este capítulo descreve o processo de planejamento do projeto, incluindo a elaboração da Estrutura Analítica do Projeto (EAP) e a divisão das atividades em sprints.

Elaboração do Quadro do Lean Canvas

 Aqui é apresentado o Quadro do Lean Canvas, uma ferramenta de planejamento estratégico que auxilia na definição e validação do modelo de negócios do projeto. Além disso é comentado sobre as informações das sprints realizadas durante o projeto.

Wireframe Conceitual

 Neste capítulo, são desenvolvidos os wireframes conceituais, proporcionando uma visualização inicial da interface do usuário e das principais funcionalidades do sistema.

Conclusões da Primeira Parte

 Finalmente, são apresentadas as conclusões da primeira parte do trabalho, destacando os principais insights e aprendizados obtidos até o momento.

Curso: DSM Página 9/23

2. Levantamento de requisitos

O levantamento de requisitos é uma etapa fundamental no processo de desenvolvimento do projeto Smart Leaf. Essa etapa foi necessária para entender as necessidades e expectativas dos stakeholders, bem como os requisitos funcionais e não funcionais do sistema.

2.1. Requisitos funcionais

Os requisitos funcionais descrevem as funcionalidades específicas que o sistema deve realizar para atender às necessidades dos usuários e alcançar os objetivos do projeto. Eles detalham as ações que o sistema deve ser capaz de realizar.

Quadros 3 Requisitos funcionais

Referência	Descrição dos backlogs
	O sistema deve permitir o registro de painéis solares,
Ref01	incluindo informações como, capacidade de geração de
	energia e estado operacional.
Ref02	O sistema deve ser capaz de monitorar em tempo real a quantidade de energia gerada por cada painel solar registrado.
Ref03	Os usuários devem poder distribuir a energia gerada pelos painéis solares para locais específicos ou dispositivos dentro da cidade inteligente.
Ref04	Os usuários devem poder programar dispositivos específicos, como lâmpadas, para ligar ou desligar em horários pré-determinados.
Ref05	O sistema deve oferecer opções para gerir a distribuição de energia tanto de forma manual quanto automática, permitindo que os usuários intervenham quando necessário ou deixem o sistema operar automaticamente.
Ref06	O sistema deve ser capaz de enviar alertas e notificações aos usuários em caso de falhas de energia, baixa geração de energia pelos painéis solares ou qualquer outra condição anormal.

Fonte: Autores

2.2. Requisitos não funcionais

Os requisitos não funcionais são critérios que descrevem as características ou qualidades do sistema, em vez de suas funcionalidades específicas. Eles representam as restrições e os padrões de desempenho que o sistema deve atender para ser considerado adequado

Curso: DSM Página 10/23

Quadros 4 Requisitos não funcionais

Referência	Descrição dos backlogs
	O sistema deve ser projetado para otimizar a distribuição de energia
Ref01	de maneira eficiente, minimizando o desperdício e maximizando o
	uso de energia renovável.
	O sistema deve garantir a segurança dos dados dos usuários e a
Ref02	integridade das operações, protegendo contra acesso não
	autorizado.
	O sistema deve ser projetado para lidar com um grande número de
Ref03	painéis solares e dispositivos conectados à medida que a cidade
	inteligente cresce e se expande.
	A interface do usuário deve ser intuitiva e de fácil utilização,
Ref04	permitindo que os usuários controlem e monitorem o sistema com
	facilidade.
	O sistema deve ser desenvolvido utilizando o framework Spring Web,
Ref05	garantindo uma arquitetura robusta e escalável para suportar as
	funcionalidades do projeto Smart Leaf.
	A interface do usuário do sistema deve ser responsiva, adaptando-se
Ref06	dinamicamente a diferentes tamanhos de tela e dispositivos móveis,
Keiuu	para garantir uma experiência de usuário consistente e amigável em
	smartphones e tablets.

Curso: DSM Nome do Arquivo: SmartLeafDocumentoParte1

3. Planejamento de metas

O planejamento de metas é um processo que envolve a definição de objetivos claros e mensuráveis que orientam o trabalho e ajudam a avaliar o progresso ao longo do tempo. No contexto desse projeto, o método SMART foi utilizado para estabelecer metas eficazes e alcançáveis.

O método SMART envolve a definição de metas que sejam Específicas, Mensuráveis, Atingíveis, Relevantes e Temporais. Esses critérios garantem que as metas sejam claras, alcançáveis e alinhadas com os objetivos do projeto.

Figura 1 Smart

S - ESPECÍFICO

 Aplicar o projeto de cidade inteligente com foco em energia sustentável, através de uma instalação de Fazenda de energia Solar com painéis solares fictícia que fornecera energia tanto para a FATEC quanto aos seus arredores, além do desenvolvimento de um sistema de distribuição inteligente para gerenciar e distribuir eficientemente a energia produzida

M – MENSURÁVEL

 Sistema de distribuição de energia deve operar de forma eficiente, permitindo observar o quanto de energia foi gerado pelos painéis e como ela está sendo utilizada, buscando maximizar sua eficiência e reduzir os custos de energia na região

A - ATINGÍVEL

 O sistema de distribuição de energia possuirá dados simulados sobre a produção de energia dos painéis solares, permitindo avaliar como a energia gerada por esses painéis seria distribuída e gerenciada por um sistema de distribuição inteligente. Isso nos ajudara a entender os benefícios potenciais da implementação de energia solar e da gestão inteligente da energia na região.

R - RELEVANTES

 O projeto se alinha com a ODS 7 – Energia Limpa e Sustentável, ODS 9 – Industria, Inovação e Infraestrutura e a ODS 11 – Cidades e Comunidades Sustentáveis. Além disso segue os princípios da indústria 4.0. Promovendo práticas sustentáveis e modernizando processos energéticos.

T - TEMPORAIS

 Vamos concluir o desenvolvimento da simulação de instalação de painéis solares e do sistema de distribuição inteligente até o final desse semestre acadêmico, o que nos dá aproximadamente quatro meses para realizar o trabalho necessário. Basicamente no mês de junho de 2024.

Curso: DSM Página 13/23

4. Planejamento do projeto com EAP

O planejamento do projeto com a Estrutura Analítica do Projeto (EAP) é uma ferramenta visual que desagrega o projeto em partes menores e mais gerenciáveis, chamadas de pacotes de trabalho.

No contexto desse projeto, a EAP foi utilizada para organizar e estruturar todas as atividades e entregas do projeto. Isso permitiu definir as principais áreas de trabalho, identificar os pacotes de trabalho necessários para cada uma delas e estabelecer uma hierarquia clara de tarefas e atividades. Além disso nesse tópico foi definido as datas de entrega de cada pacote de trabalho, cada uma separadas em SPRINTs.

Quadros 5 EAP Sprint - 1

Sprint – 1 (26/02/2024 – 10/03/2024)	
Item	Descrição
1.1	Planejamento e Análise
1.1.1	Definição de Requisitos e Documentação Inicial
1.1.1.1	Imagem do Projeto - Nome e Logo
1.1.1.2	Defnição do Escopo (SMART, EAP e CANVA)
1.1.1.3	Esboço Inicial do Sistema – Wireframe

Quadros 6 EAP Sprint - 2

Sprint – 2 (11/03/2024 – 24/03/2024)	
Item	Descrição
1.1.1.4	Reuniões Iniciais e Pesquisa de
1.1.1.4	Requisitos
1.1.2	Pesquisa e Análise de Viabilidade
1.1.2.1	Pesquisa de Tecnologias
1.1.2.1	Existentes
1.1.2.2	Avaliação Técnica e Financeira
1.1.2.3	Estudo dos Painéis Solares da UF-
1.1.2.3	PR
1.1.3	Projeto Inicial
1121	Elaboração da Arquitetura do
1.1.3.1	Sistema

Fonte: Autores

Quadros 7 EAP Sprint - 3

Sprint - 3 (25/03/2024 - 07/04/2024)	
Item	Descrição
1.1.3.2	Planta da Fatec e Arredores
1.1.3.3	Identificação de Componentes e Funcionalidades
1.2	Desenvolvimento e Implementação
1.2.1	Desenvolvimento da Infraestrutura
1.2.1.1	Configuração do Ambiente de Desenvolvimento
1.2.1.2	Desenvolvimento da Infraestrutura Básica
1.2.1.3	Início do Desenvolvimento do Banco de Dados
1.2.2	Desenvolvimento das Funcionalidades Principais
1.2.2.1	Desenvolvimento da Estrutura de Geração de Energia

Sprint 4 - (08/04/2024 - 29/04/2024)	
Item	Descrição
1.2.2.2	Implementação do Monitoramento
1.2.2.2	de Geração de Energia
1.2.2.3	Implementação do Monitoramento
	de Consumo de Energia
1.2.2.4	Implementação do Controle de
1.2.2.4	Distribuição
1.3	Testes e Validação
1.3.1	Teste Iniciais
1.3.1.1	Realização de Testes Unitários e de Integração
1.3.1.2	Identificação e Correção de Bugs

Quadros 9 EAP Sprint - 5

Sprint 5 – (29/04/2024 – 13/05/2024)					
Item	Descrição				
1.3.2	Testes Avançados e Finalização				
1.3.2.1	1.3.2.1 Testes de Aceitação do Usuário				
1.3.2.2	3.2.2 Ajustes Baseados em Feedback				
1.3.2.3	1.3.2.3 Finalização do Desenvolvimento				
1.4	1.4 Implantação				
1.4.1	Implantação em Ambiente de				
1.4.1	Produção				
1.4.2	Treinamento de Usuários Finais				

Fonte: Autores

4.1. Backlogs das Sprints

O backlog das sprints é uma lista de tarefas que devem ser concluídas durante uma sprint específica do projeto. Cada sprint representa um período definido, geralmente de duas a quatro semanas, durante o qual a equipe de desenvolvimento trabalha para entregar um conjunto específico de funcionalidades ou incrementos do produto.

Nome do Arquivo: SmartLeafDocumentoParte1

Sprint 1:

Quadros 10 Backlog Sprint - 1

Item	Descrição				
01	Tema do Projeto				
02	Canvas				
03	EAP				
04	Logo				
05	Wireframe				
06	Smart				
07	Mapa da Fatec e seus Arredores				
08	BPMN				

Fonte: autores

Sprint 2:

Quadros 11 Backlog Sprint - 2

Item	Descrição		
01	Requisitos		
02	Pesquisa sobre paineis solares		
03	03 Tags de Divulgação		
04	Diagrama de Classe		
05	Diagrama de Caso de Uso		

Fonte: Autores

Sprint 3:

Quadros 12 Backlog Sprint - 3

Item	Descrição		
01	Storys		
02	Desenvolvimento Código da API		

Stories dos Usuários:

Quadros 13 Stories dos Usuários

Item	Descrição					
01	Como um administrador, eu quero poder cadastrar outros usuários no					
	sistema.					
02	Como um usuário, eu quero poder fazer login no sistema utilizando meu e-					
UZ	mail e senha para ter acesso geral ao sistema.					
03	Como um usuário, eu quero poder me deslogar do sistema de forma rápida.					
04	Como um usuário, eu quero poder cadastrar as informações de modelo,					
	preço, consumo energético e valor energético do painel solar no sistema.					
05	Como um usuário, eu quero poder alterar as informações cadastradas dos					
05	painéis solares no sistema.					
06	Como um usuário, eu quero poder excluir as informações cadastradas dos					
00	painéis solares no sistema.					
07	Como um usuário, eu quero poder cadastrar as informações de modelo,					
07	consumo energético dos dispositivos no sistema.					
08	Como um usuário, eu quero poder alterar as informações cadastradas dos					
00	dispositivos no sistema.					
00	Como um usuário, eu quero poder excluir as informações cadastradas dos					
09	dispositivos no sistema.					
	Como um usuário, eu quero poder direcionar o fluxo de energia gerado por					
10	um painel solar para um determinado dispositivo, de forma que seja possível					
	visualizar esse procedimento.					
11	Como um usuário, eu quero poder visualizar gráficos sobre as informações					
''	sobre geração de energia, consumo de energia dos painéis solares.					
12	Como um usuário, eu quero poder acessar ao sistema em diferentes tipos de					
12	dispositivos que possuem diferentes tipos de largura de tela.					
13	Como um usuário, eu quero poder ter informações de passo a passo sobre					
13	como funciona o sistema.					
	ı.					

Fonte:autores

4.1.1. Entregas de Sprints

Cada entrega foi realizada a partir da criação de uma **tag**. Observe a relação a seguir:

Quadros 14 Entrega de Sprints

Curso: DSM Nome do Arquivo: SmartLeafDocumentoParte1

Sprint	Tag	Lançamento	Status	Histórico
01	sprint-01	26/02/2024	Entregue	ver relatório
02	sprint-02	11/03/2024	Entregue	ver relatório
03	sprint-03	25/03/2024	Entregue	ver relatório
04	sprint-04	08/04/2024	Em andamento	ver relatório
05	sprint-05	29/04/2024	Em andamento	ver relatório

5. Elaboração do quadro do lean Canvas

O Quadro do Lean Canvas é uma ferramenta de planejamento estratégico que ajuda a visualizar e validar um modelo de negócio de forma rápida e eficiente. Ele é composto por nove blocos, que representam os principais aspectos de um negócio, incluindo segmentos de clientes, proposta de valor, canais de distribuição, fontes de receita, entre outros.

Página 19/23

Nome do Arquivo: SmartLeafDocumentoParte1

Figura 3 Canvas

6. Wireframe conceitual

O wireframe conceitual é uma representação visual de baixa fidelidade que define a estrutura e a disposição geral dos elementos de uma interface de usuário, como botões, menus, campos de entrada e áreas de conteúdo. Ele não se concentra em detalhes visuais ou estilísticos, mas sim na organização e na hierarquia dos elementos na tela.

Curso: DSM Nome do Arquivo: SmartLeafDocumentoParte1

Figura 4 Wireframe Tela LandingPage

Figura 5 Wireframe Tela Home

7. Conclusões da primeira parte

Durante o desenvolvimento da primeira parte do projeto, foi preparado e criado um ambiente para compreender integralmente a proposta e objetivos do projeto. Foi utilizado uma grande variedade de ferramentas, incluindo diagramas como o Lean Canvas, Caso de Uso, IDEF e BPMN, além do método SMART, para refinar a compreensão do escopo e dos requisitos do projeto. Através dessas ferramentas foi possível adquirir uma visão detalhada do produto final que será desenvolvido, auxiliando estabelecer metas claras e alcançáveis.

Ao longo dessa etapa também foi possível, avançar significativamente na implementação prática do projeto, onde foi desenvolvido grande parte da sua programação, como a criação da API e o design das páginas web, permitindo assim transformar os conceitos, objetivos e ideias em uma solução pratica, pronta para ser testada e refinada.

Além do desenvolvimento do software, foi documentado todo o progresso realizado até o momento. Com o auxílio do Trello, foi possível exibir de forma visual e simples todo o progresso de nossos Sprints que abrange uma variedade de aspectos, desde requisitos técnicos até as decisões de design. Entretando ainda existem elementos que específicos a serem abordados e refinados durante as próximas fases do projeto. Onde através do forte comprometimento da equipe será possível desenvolver esses elementos, e assim finalizar toda documentação, garantindo que todas as informações relevantes estejam disponíveis para a equipe, stakeholders e professores.

Curso: DSM Página 23/23