Hypothesis tests for more than two means

	5	3	2		7			8
6		1	5					2
2			တ	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	ø	7
	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

Overview

Review/continuation of hypothesis testing for two means

Hypothesis tests for more than two means

If time: theories of hypothesis testing

Hypothesis tests for comparing two means

Question: Can we find out the *Truth* of whether the pill effective?

Five steps of hypothesis testing

- 1. State H₀ and H_A
 - Assume Gorgias (H₀) was right

 $= \sqrt{10.82}$ $s_d = 3.29$

- 2. Calculate the actual observed statistic
- 3. Create a distribution of what statistics would look like if Gorgias is right
 - Create the null distribution (that is consistent with H₀)
- 4. Get the probability we would get a statistic more than the observed statistic from the null distribution
 - p-value

- 5. Make a judgement
 - Assess whether the results are statistically significant

A study by Fonken et al, 2010, wanted to examine whether more weight was gained by mice who could eat late at night

Mice were randomly divided into 2 groups:

- <u>Dark condition</u>: 8 mice were given 8 hours of darkness at night (when they couldn't eat)
- Light condition: 9 were constantly exposed to light for 24 hours (so they could always eat)

1. State the null and alternative hypothesis

```
\begin{array}{lll} H_0: \ \mu_{Light} = \mu_{Dark} & \text{or} \ \mu_{Light} - \mu_{Dark} = 0 \\ H_A: \ \mu_{Light} > \mu_{Dark} & \text{or} \ \mu_{Light} - \mu_{Dark} > 0 \end{array}
```

Hypothesis tests for differences in two group means

What is step 2?

2. Calculate statistic of interest

•
$$\overline{X}_{effect} = \overline{X}_{Light} - \overline{X}_{Dark}$$


```
You can get the data from:
 download_class_data("mice.Rda")
 load("mice.Rda")
                     # length(dark BM increase)
 dark BM increase
                      # length(light BM increase)
 light BM increase
Can you calculate the observed statistic (step 2)?
  obs stat <- mean(light BM increase) - mean(dark BM increase)
What's next?
```

3. Create the null distribution!

One null distribution statistic: $\overline{X}_{Shuff_Light} - \overline{X}_{Shuff_Dark}$

What is the first thing we need to do for creating the null distribution? combo data <- c(light_BM_increase, dark_BM_increase)</pre> How do we create one point in our null distribution? # shuffle the data shuff_data <- shuffle(combo_data)</pre> # create fake light and dark data shuff_light <- shuff_data[1:9]</pre> shuff dark <- shuff data[10:17] # compute fake statistic mean(shuff_light) - mean(shuff_dark)

How do we create a full null distribution?

```
null_dist <- do_it(10000) * {
       shuff_data <- shuffle(combo_data)</pre>
       shuff_light <- shuff data[1:9]</pre>
       shuff dark <- shuff data[10:17]</pre>
       mean(shuff_light) - mean(shuff_dark)
```

Plot the null distribution: hist(null_dist, breaks = 50)

What do we do next?

Get the p-value

```
p_val <- pnull(obs_stat, null_dist, lower.tail = FALSE)
p-value = 0.02</pre>
```


Comparing more than two means

A group of Hope College students wanted to see if there was an association between a student's major and the time it takes to complete a small Sudoku-like puzzle

	5	3	2		7			8
6		1	5					2
2			တ	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	9	7
	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

Comparing more than two means

A group of Hope College students wanted to see if there was an association between a student's major and the time it takes to complete a small Sudoku-like puzzle

They grouped majors into four categories

- Applied science (as)
- Natural science (ns)
- Social science (ss)
- Arts/humanities (ah)

What is the first step of hypothesis testing?

Sudoku by field

1. State the null and alternative hypotheses!

$$H_0$$
: $\mu_{as} = \mu_{ns} = \mu_{ss} = \mu_{ah}$

 $\mathbf{H_A}$: $\mu_i \neq \mu_j$ for one pair of fields of study

What should we do next?

Let's plot the data first...

Step 0: Plot of completion time by major

What should we do next?

Sudoku by field

1. State the null and alternative hypotheses!

$$H_0$$
: $\mu_{as} = \mu_{ns} = \mu_{ss} = \mu_{ah}$

 $\mathbf{H_A}$: $\mu_i \neq \mu_j$ for one pair of fields of study

Thoughts on the statistic of interest?

Comparing multiple means

There are many possible statistics we could use. A few choices are:

1. Group range statistic:

 $\max \overline{x} - \min \overline{x}$

2. Mean absolute difference (MAD):

$$(|\overline{x}_{as} - \overline{x}_{ns}| + |\overline{x}_{as} - \overline{x}_{ss}| + |\overline{x}_{as} - \overline{x}_{ah}| + |\overline{x}_{ns} - \overline{x}_{ss}| + |\overline{x}_{ns} - \overline{x}_{ah}| + |\overline{x}_{ss} - \overline{x}_{ah}|)/6$$

3. F statistic:

$$F = \frac{\text{between-group variability}}{\text{within-group variability}}$$

Using the MAD statistic

Mean absolute difference (MAD):

$$(|\overline{x}_{as} - \overline{x}_{ns}| + |\overline{x}_{as} - \overline{x}_{ss}| + |\overline{x}_{as} - \overline{x}_{ah}| + |\overline{x}_{ns} - \overline{x}_{ss}| + |\overline{x}_{ns} - \overline{x}_{ah}| + |\overline{x}_{ss} - \overline{x}_{ah}|)/6$$

Observed statistic value = 13.92

How can we create the null distribution?

Null distribution

Null Distribution

P-value

Null Distribution

Conclusions?

@2007 lefthandedtoons.com

Either run: reinstall_class_package()

Or use workspace 3

Link is on Canvas

```
# get the data
library(ClassTools)
download_class_data("MajorPuzzle.txt")
sudoku_data <- read.table("MajorPuzzle.txt", header = TRUE)</pre>
```

```
# get the data
library(ClassTools)
download class data("MajorPuzzle.txt")
Sudoku data <- read.table("MajorPuzzle.txt", header = TRUE)
# Extract vectors from the data frame (how do we do this?)
completion time <- sudoku data$time
major <- sudoku_data$major
```

We can get the MAD statistic using the get_MAD_stat() function

```
get_MAD_stat(data_vector, grouping_vector)
```

- data_vector: a vector of quantitative data
- grouping_vector: a vector indicating which group the quantitative data is in

```
Can you get the MAD statistic for the sudoku data?
```

```
obs_stat <- get_MAD_stat(completion_time, major)
```

Can you visualize the data?

```
boxplot(completion_time ~ shuffled_majors)
```

Q: How could we create one point in a null distribution?

• A: Shuffle the grouping_vector (major vector) and calculate the MAD statistic

Q: How can we do this in R?

```
shuffled_majors <- shuffle(major)
get_MAD_stat(completion_time, shuffled_majors)</pre>
```

Q: How can we create a full null distribution?

```
null_dist <- do_it(10000) * {
    shuffled_majors <- shuffle(major)
    get_MAD_stat(completion_time, shuffled_majors)
}

# visualize the null distribution
hist(null_dist, breaks = 100)
abline(v = obs_stat, col = "red")</pre>
```

Null Distribution Null Distribution Output Output

Q: What do we do next and how do we do it?

• A: We get the p-value

pnull(obs_stat, null_dist, lower.tail = FALSE)

