Rozwiązywanie układów równań liniowych

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n
\end{cases}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \cdots \\ b_n \end{bmatrix}$$

$$Ax = b$$
, $det A \neq 0$

Układy trójkatne

$$\begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \cdots \\ b_n \end{bmatrix}$$

$$x_i = \frac{1}{u_{ii}} \begin{bmatrix} b_i - \sum_{k=i+1}^n u_{ik} x_k \\ l_{21} & l_{22} & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \cdots \\ b_n \end{bmatrix}$$

$$x_i = \frac{1}{l_{ii}} \begin{bmatrix} b_i - \sum_{k=1}^{i-1} l_{ik} x_k \\ \end{bmatrix}, \quad i = 1, 2, \dots, n$$

Schemat eliminacji Gaussa z częściowym wyborem elementu głównego

$$A^{(1)} = \begin{bmatrix} A & b \end{bmatrix}$$

Postępowanie w k-tym kroku $A^{(k)} \rightarrow A^{(k+1)}$

1. Wybrać r:

$$\left|a_{rk}^{(k)}\right| = \max_{k \le i \le n} \left|a_{ik}^{(k)}\right|$$

- 2. Przestawić wiersze k i r, przestawienie zapamiętać
- 3. Obliczyć

$$m_{i,k} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}},$$
 $i = k+1, k+2,..., n$
$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik}a_{kj}^{(k)},$$

4. Obliczyć i = k + 1, k + 2,..., nj = k + 1, k + 2,..., n + 1

Ostatecznie

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{21}^{(2)} & \cdots & a_{2n}^{(2)} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn}^{(n)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ \cdots \\ b_n^{(n)} \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ m_{21} & 1 & 0 & \cdots & 0 \\ m_{31} & m_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn-1} & 1 \end{bmatrix}$$

Sumy kontrolne:

$$s_{i}^{(1)} := \sum_{j=1}^{n+1} a_{ij}^{(1)}, \quad i = 1,2,3,...,n \qquad A^{(1)} = \begin{bmatrix} A & b & s \end{bmatrix}$$

$$a_{ij}^{(2)} = a_{ij}^{(1)} - m_{i1} a_{1j}^{(1)}, \quad i = 2,3,...,n, \quad j = 2,3,...,n + 2$$

$$s_{i}^{(2)} = s_{i}^{(1)} - m_{i1} s_{1}^{(1)}, \quad i = 2,3,...,n$$

$$s_{i}^{(2)} = \sum_{j=1}^{n+1} a_{ij}^{(1)} - m_{i1} \sum_{j=1}^{n+1} a_{1j}^{(1)} = \sum_{j=1}^{n+1} \left[a_{ij}^{(1)} - m_{i1} a_{1j}^{(1)} \right] = \sum_{j=1}^{n+1} a_{ij}^{(2)}, \quad i = 2,3,...,n$$

Rozkład trójkatny

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad A_k = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{bmatrix}$$

Twierdzenie:

Jeśli
$$\det A_k \neq 0, \quad k=1,2,...,n-1,$$
 to istnieje dokładnie jeden rozkład
$$A=LU$$

taki, że L jest macierzą trójkątna dolną z jedynkami na przekątnej , a U jest macierzą trójkątna górną.

Macierzowy zapis eliminacji Gaussa bez wyboru elementu głównego

Macierzowy zapis eliminacji Gaussa bez wyboru elementu głóv
$$A^{(1)} = A, A^{(i+1)} = L_i A^{(i)}$$

$$\begin{bmatrix}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -m_{i+1,i} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{i+1,i} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & m_{n,i} & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & m_{n,i}$$

$$U = L_{n-1}L_{n-2}\cdots L_1A = \widetilde{L}A \implies A = \widetilde{L}^{-1}U = LU$$

Jeżeli w trakcie eliminacji Gaussa wykonano przestawienia wierszy, to

$$LU = \tilde{A}$$

gdzie \tilde{A} powstała z A przez przestawienia tych samych wierszy.

Zastosowania rozkładu trójkątnego:

Rozwiązywanie układu równań liniowych Ax=b

$$A^{(1)} = \begin{bmatrix} A & b \end{bmatrix}$$

 \rightarrow El. Gaussa \rightarrow 1trójkatny układ r-nań \rightarrow x Inaczej:

- 1) $A \rightarrow El$. Gaussa, wyznaczenie macierzy L i U zapamiętanie przestawień wierszy
 - 2) wykonanie takich samych przestawień wierszy wektora $b \rightarrow \tilde{b}$
- 3) $LUx = \tilde{b}$, czyli $Ly = \tilde{b}$ i Ux = y 2 trójkątne układy równań do rozwiązania

Obliczanie wyznacznika

Jeżeli s to liczba wykonanych przestawień wierszy to:

$$\det A = (-1)^s \det \widetilde{A} = (-1)^s \det(LU) = (-1)^s a_{11}^{(1)} a_{22}^{(2)} \cdots a_{nn}^{(n)}$$

Odwracanie macierzy:

Sposób 1:

$$X = [x_1: x_2: \cdots : x_n] := A^{-1}
I = [e_1: e_2: \cdots : e_n] := \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$Ax_j = e_j$$

$$\begin{bmatrix} A & I \end{bmatrix} \rightarrow \text{el. Gaussa} \rightarrow n \text{ trójkatnych układów r-nań} \rightarrow A^{-1}$$

Sposób 2:

$$\hat{A}^{-1} = (LU)^{-1} = U^{-1}L^{-1}
(L^{-1})_{ij} = \frac{1}{m_{ii}} \left[\delta_{ij} - \sum_{k=j}^{i-1} m_{ik} (L^{-1})_{kj} \right] \quad i = j, j+1,..., n
(U^{-1})_{ij} = \frac{1}{u_{ii}} \left[\delta_{ij} - \sum_{k=j}^{i-1} (U)_{ik} (U^{-1})_{kj} \right] \quad i = j, j-1,..., 1
\delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
\tilde{A} = LU \rightarrow \tilde{A}^{-1} = (LU)^{-1} = U^{-1}L^{-1}$$

 A^{-1} powstaje z \widetilde{A}^{-1} przez analogiczne do wykonanego przestawienia wierszy przestawienie kolumn

Złożoność obliczeniowa eliminacji Gaussa

$$\sum_{k=1}^{n-1} k = \frac{n(n-1)}{2}, \quad \sum_{k=1}^{n-1} k^2 = \frac{n(n-1)(2n-1)}{6}$$

Rozwiązanie trójkątnego układu równań:

Mnożeń:
$$N_{T*} \approx \sum_{k=1}^{n} k = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$
, Dodawań: $N_{T+} \approx \sum_{k=1}^{n} (k-1) = \frac{n(n+1)}{2} - n = \frac{1}{2}n^2 - \frac{1}{2}n$

Wybór elementu głównego:

n-krotne przeszukiwanie zbioru co najwyżej n liczb - złożoność obliczeniowa takiego zadania jest rzędu $O(n^2)$, operacje wykonywane w procesie porównywania liczb są znacznie szybsze od operacji arytmetycznych

Pełny wybór elementu głównego oznaczałby n-krotne przeszukiwanie zbioru co najwyżej n^2 liczb, czyli zadanie o złożoności $O(n^3)$. Poniesienie tego kosztu nie jest uzasadnione i częściowy wybór elementu głównego jest powszechnie akceptowanym standardem.

Eliminacja Gaussa:

W przedstawionych algorytmach eliminację Gaussa prowadzi się na macierzy o liczbie kolumn:

- p = n (w celu otrzymania rozkładu trójkątnego macierzy),
- p = n + 1 (rozwiązując układ równań przez przekształcanie współczynników lewej i prawej strony macierzy dołączonej $[A \ b]$),
- p = n + 2 (jeżeli dodatkowo dodamy kolumnę sum kontrolnych $[A \ b \ s]$).

Łączną liczbę mnożeń i dzieleń dla p = n można obliczyć jako

$$N_{GE(p=n)*} = \sum_{k=1}^{n-1} (n-k+1)(n-k) = \sum_{k=1}^{n-1} (n^2+n-(2n+1)k+k^2)$$

$$= (n^2+n)(n-1)-(2n+1)\frac{n(n-1)}{2} + \frac{n(n-1)(2n-1)}{6}$$

$$= n^3-n-\frac{1}{2}(2n^3-n^2-n) + \frac{1}{6}(2n^3-3n^2+n) = \frac{1}{3}n^3 - \frac{1}{3}$$

dodawań: $N_{GE(p=n)+} = \frac{1}{3}n^3 - \frac{1}{2}n^2 + \frac{1}{6}n$.

Zwiększenie p o jeden spowoduje wzrost liczby i mnożeń i dodawań o $\Delta N = \sum_{k=1}^{n-1} (n-k) = \frac{1}{2}n^2 - \frac{1}{2}n$.

Wybierając standardową metodę rozwiązania układu równań liniowych bez sum kontrolnych (p = n + 1) wykonamy łącznie przy eliminacji Gaussa i rozwiązaniu trójkątnego układu równań

mnożeń:
$$N_{GE(p=n+1)T*} = \left(\left(\frac{1}{3}n^3 - \frac{1}{3}n\right) + \left(\frac{1}{2}n^2 - \frac{1}{2}n\right)\right) + \left(\frac{1}{2}n^2 + \frac{1}{2}n\right) = \frac{1}{3}n^3 + n^2 - \frac{1}{3}n$$
 dodawań: $N_{GE(p=n+1)T+} = \left(\left(\frac{1}{3}n^3 - \frac{1}{2}n^2 + \frac{1}{6}n\right) + \left(\frac{1}{2}n^2 - \frac{1}{2}n\right)\right) + \left(\frac{1}{2}n^2 - \frac{1}{2}n\right) = \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n$.

Alternatywną metodą rozwiazywania układu równań liniowych jest wykorzystanie przeprowadzanego najpierw rozkładu trójkątnego macierzy współczynników *A*. Wykonamy wtedy:

mnożeń:
$$N_{GE(p=n)2T*} = \left(\frac{1}{3}n^3 - \frac{1}{3}n\right) + \left(\frac{1}{2}n^2 - \frac{1}{2}n\right) + \left(\frac{1}{2}n^2 + \frac{1}{2}n\right) = \frac{1}{3}n^3 + n^2 - \frac{1}{3}n$$
 dodawań: $N_{GE(p=n)2T+} = \left(\frac{1}{3}n^3 - \frac{1}{2}n^2 + \frac{1}{6}n\right) + 2\left(\frac{1}{2}n^2 - \frac{1}{2}n\right) = \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n$

Efektywna implementacja eliminacji Gaussa nie jest prostym problemem. Istotna jest nie tylko liczba operacji arytmetycznych, ale także koszt pobrania i zapisu danych w pamięci. Na szczęście dostępne pakiety obliczeniowe oferują dobre rozwiązania i wystarczy w świadomy sposób z nich korzystać. Zwykle sprawdza się najpierw strukturę macierzy współczynników i stosuje się algorytmy dostosowane do szczególnych przypadków. Na przykład instrukcja x=A\b w Matlabie oznacza, że zostanie kolejno sprawdzone, czy macierz A jest prostokątna, trójkątna, trójkątna z przestawionymi wierszami, symetryczna, dodatnio określona, w postaci Hessenberga, a dopiero gdy żaden tych szczególnych przypadków nie występuje zostanie wyznaczony rozkład trójkątny metodą eliminacji Gaussa i rozwiązane dwa trójkątne układy równań. Podobnie działa funkcja linsolve (A, b).

Błędy rozwiązań układu równań liniowych

Norma macierzy indukowana przez normę wektorową:

$$\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

$$\text{np. } \|x\| = \max_{i} |x_{i}|, \qquad \|A\| = \max_{i,j} |a_{i,j}|$$

$$\text{Niech } Ax = b, \quad (A + \delta A)(x + \delta x) = b. \text{ Wtedy:}$$

$$\delta x = -A^{-1} \delta A(x + \delta x) \quad \|\delta x\| \le \|A^{-1}\| \|\delta A\| \|(x + \delta x)\|$$

$$\frac{\|\delta x\|}{\|(x + \delta x)\|} \le \|A\| A^{-1}\| \frac{\|\delta A\|}{\|A\|}$$

$$\text{Niech } Ax = b, \quad A(x + \delta x) = b + \delta b. \text{ Wtedy:} A \delta x = \delta b$$

$$\|\delta x\| \le \|A^{-1}\| \|\delta b\| \text{ i } \|b\| \le \|A\| \|x\|$$

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| A^{-1}\| \frac{\|\delta b\|}{\|b\|}$$

Wskaźnik uwarunkowania: $cond(A) := ||A|||A^{-1}||$

$n\varepsilon cond(A) \le 0.1$ - dobre uwarunkowanie.

$\mathbf{A} = 1.2969$	0.8648	b1=b-[1e-8; -1e-8]	b2=b+[1e-8; -1e-8]
0.2161	0.1441		
b = 0.8642			
0.1440		$x1=A\b1$	$x2=A\b2$
$x=A\setminus b$		$\mathbf{x1} =$	x2 =
x = 2.0000		0.9911	3.0089
-2.0000		-0.4870	-3.5130
r=b-A*x		r1=b-A*x1	r2=b-A*x2
$ \mathbf{r} = 1$		r1 =	r2 =
1.0e-015 *		1.0e-008 *	1.0e-007 *
0.1110		1.0000	-0.1000
0.0278		-1.0000	0.1000

$$cond(A) = 2.4973e+008$$

 $inv(A) = 1.0e+008 * 0.1441 -0.8648$
 $-0.2161 1.2969$

$$min(eig(A)) = 6.9396e-009, max(eig(A)) = 1.4410$$

 $2*1e-16*cond(A) = 4.9946e-008$
 Skalowanie

 $x_j = \alpha_j x'_j$ i *i*-te równanie mnożone przez β_i

$$D_{\alpha} = diag(\alpha_i), \qquad D_{\beta} = diag(\beta_i)$$

$$A' x' = b'$$
, $A' = D_{\beta}AD_{\alpha}$, $b' = D_{\beta}b$, $x = D_{\alpha}x'$

Iteracyjne poprawianie rozwiązań:

 $x^{(i)}$ i-te przybliżenie rozwiązania

Obliczyć z podwójną precyzją $r^{(i)} = b - Ax^{(i)}$

Oszacować
$$10^{-k_{(i)}} > \max_{1 \le j \le n} |r_j^{(i)}| > 10^{-k_{(i)}-1}$$

Niech $10^{k_{(i)}}v^{(i)}$ będzie zaokrągleniem do pojedynczej precyzji $10^{k_{(i)}}r^{(i)}$

Obliczyć w pojedynczej precyzji
$$w^{(i)}$$
: $Aw^{(i)} = 10^{k_{(i)}}v^{(i)}$,

$$x^{(i+1)} = x^{(i)} + 10^{-k_{(i)}} w^{(i)}$$

Wtedy
$$r^{(i+1)} = b - Ax^{(i+1)} = b - Ax^{(i)} - 10^{-k_{(i)}} Aw^{(i)} = r^{(i)} - v^{(i)}$$

Metody iteracyjne rozwiązywania układów r. liniowych-relaksacja:

- 1. $x^{(i)}$ *i*-te przybliżenie rozwiązania
- **2.** Obliczyć $r^{(i)} = b Ax^{(i)}$
- 3. Znaleźć składową o największym module: $r_l^{(i)}$, element o największym module w l-tym wierszu macierzy $A:a_{l,i}$
- 4. Obliczyć $x^{(i+1)}$ zmieniając tylko j-tą składową w $x^{(i)}$:

$$x_{j}^{(i+1)} = x_{j}^{(i)} + \frac{r_{l}^{(i)}}{a_{l,j}}$$

Wtedy

$$r^{(i+1)} = b - Ax^{(i+1)} = b - Ax^{(i)} + A(x^{(i)} - x^{(i+1)}) =$$

$$= r^{(i)} - \begin{bmatrix} a_{1,j} \\ \vdots \\ a_{l,j} \\ \vdots \\ a_{l,i} \end{bmatrix} \xrightarrow{r_l^{(i)}} \Rightarrow r_l^{(i+1)} = 0$$