Diffie-Hellman Key Exchange

Introduction to Basic Cryptography

Dr. Ryan Riley

Symmetric Key Crypto Problem

- Symmetric key crypto lets two parties share secret messages as long as they already have a shared key
- How do you share secret messages with someone when you don't already have a shared key?
 - Such as shared messages between computers on the internet

Problem: Eve

Eve the Eavesdropper

- Eve is an attacker who can see Alice and Bob's messages
- Eve can't modify them
- Eve is a passive attacker
- Real-world examples
 - Internet provider
 - Government
 - Anyone nearby if your wifi is unencrypted
 - Someone else on the same network
 - Lots of potential people...

Behold the Power of Eve

Trouble for Alice and Bob

- Obviously, Alice and Bob need to use encryption
- How do they choose a key?

Idea!

Ok, so...

- We can't pick a key and send it
- We could pick a key together offline
 - Not feasible in the general case
 - You want to use encrypted communication with a lot of different services on the internet...

Diffie-Hellman Key Exchange

- Invented by Whitfield Diffie and Martin Hellman in 1976
 - Independently invented at GCHQ a few years earlier, but never released
- Allows Alice and Bob to exchange a key without Eve learning it

DH in Colors

DH in Colors

- Eve can't determine the secret color because she doesn't have the right colors to mix together
- This works based on two assumptions:
 - Paint is easy to mix
 - Paint is hard to unmix
- This is just an analogy, the actual algorithm uses mathematics

DH in Math

- The mathematics of real DH is based on modulo exponentiation
- Makes use of prime numbers and primitive roots
- The basic math is not that hard

DH in Math Example

- 1. Alice and Bob agree on a prime number p and a base value g. Here, p=23 and g=5
- 2. Alice chooses a secret number, a, and sends Bob A=ga mod p. Here, a=6
 - $A=5^6 \mod 23$
 - A = 15625 mod 23
 - A = 8

DH in Math Example

- 3. Bob chooses a secret number, **b**, and sends Alice B=g^b mod p. Here, **b**=15
 - B=5¹⁵ mod 23
 - B = 30,517,578,125 mod 23
 - B = 19

DH in Math Example

- 4. Alice computes s = Ba mod p
 s = 196 mod 23
 s = 47,045,881 mod 23
 s = 2
 5. Bob computes s = Ab mod p
 s = 815 mod 23
 - $-s = 35,184,372,088,832 \mod 23$
 - -s=2
- 6. Alice and Bob now share a secret, s=2, that can't be derived from the public information

DH in Practice

- a, b, and p would need to be MUCH larger in practice
 - 100s of digits long
- This works because Eve can't use A and B to figure out the secret numbers a and b chosen by Alice and Bob
 - Called the discrete logarithm problem
- DH doesn't prove who you share the key with, just that the key isn't known by anyone else

Summing Up

- Symmetric Key crypto has a major problem: How do two people who don't know each other share a key?
- A Diffie-Hellman key exchange lets them compute a shared key even in the presence of an eavesdropper, Eve.
- Note: If Eve was active, instead of passive, this wouldn't work...

