Pandas (https://pandas.pydata.org/)

```
In [1]:
import pandas as pd
In [2]:
#pip install pandas
In [3]:
import pandas as pd
In [4]:
s1 = pd.Series(['a','b','c','d'])
s1
Out[4]:
1
2
dtype: object
In [5]:
type(s1)
Out[5]:
pandas.core.series.Series
In [6]:
s1.index
Out[6]:
RangeIndex(start=0, stop=4, step=1)
In [7]:
s1.index = ['num1','num2','num3','num4']
s1
Out[7]:
num1
        а
num2
        b
num3
        C
num4
        d
dtype: object
```

```
In [8]:
s1.dtype
Out[8]:
dtype('0')
In [9]:
fruits = ['Apple', 'Banana', 'Strawberry', 'Orange']
veg = ['Carrot','potato','Tomato','beans']
flowers = ['Lily','Sun Flower','Jasmine','Rose']
col = ['Fruits','Vegetables','Flowers']
df = pd.DataFrame([fruits, veg, flowers])
df
Out[9]:
       0
                  1
                            2
                                   3
   Apple
            Banana
                    Strawberry
                               Orange
  Carrot
              potato
                       Tomato
                                beans
2
     Lily Sun Flower
                      Jasmine
                                Rose
In [10]:
type(df)
Out[10]:
pandas.core.frame.DataFrame
In [11]:
df.index
Out[11]:
RangeIndex(start=0, stop=3, step=1)
In [12]:
df.index = ['Fruits','Vegetables','Flowers']
df
Out[12]:
               0
                          1
                                    2
                                           3
     Fruits
                     Banana
                            Strawberry
           Apple
                                       Orange
Vegetables
           Carrot
                      potato
                               Tomato
                                        beans
   Flowers
             Lily Sun Flower
                               Jasmine
                                        Rose
```

```
In [13]:
df.columns
Out[13]:
RangeIndex(start=0, stop=4, step=1)
In [14]:
df.columns = ['item1','item2','item3','item4']
Out[14]:
           item1
                      item2
                                item3
                                       item4
    Fruits
           Apple
                    Banana Strawberry
                                      Orange
Vegetables
                               Tomato
          Carrot
                     potato
                                       beans
   Flowers
             Lily Sun Flower
                              Jasmine
                                        Rose
In [15]:
col1 = df['item1']
col1
Out[15]:
Fruits
                Apple
Vegetables
              Carrot
                 Lily
Flowers
Name: item1, dtype: object
In [16]:
type(col1)
Out[16]:
pandas.core.series.Series
In [17]:
col2 = df[['item1','item3']]
type(col2)
Out[17]:
pandas.core.frame.DataFrame
```

```
In [18]:
```

col2

Out[18]:

	item1	item3
Fruits	Apple	Strawberry
Vegetables	Carrot	Tomato
Flowers	Lilv	Jasmine

In [19]:

```
df.sort_values(by = 'item3')
```

Out[19]:

	item1	item2	item3	item4
Flowers	Lily	Sun Flower	Jasmine	Rose
Fruits	Apple	Banana	Strawberry	Orange
Vegetables	Carrot	potato	Tomato	beans

In [20]:

```
df.to_csv('items.csv')
```

```
In [21]:
```

```
roll = '18A51A04'
rollNumbers = []
for num in range(1,101):
    if num < 10:
        s = roll + str(0) + str(num)
    else:
        s = roll + str(num)
    rollNumbers.append(s)
print(rollNumbers)</pre>
```

['18A51A0401', '18A51A0402', '18A51A0403', '18A51A0404', '18A51A0405', '18 A51A0406', '18A51A0407', '18A51A0408', '18A51A0409', '18A51A0410', '18A51A 0411', '18A51A0412', '18A51A0413', '18A51A0414', '18A51A0415', '18A51A041 6', '18A51A0417', '18A51A0418', '18A51A0419', '18A51A0420', '18A51A0421', '18A51A0422', '18A51A0423', '18A51A0424', '18A51A0425', '18A51A0426', '18A 51A0427', '18A51A0428', '18A51A0429', '18A51A0430', '18A51A0431', '18A51A0 432', '18A51A0433', '18A51A0434', '18A51A0435', '18A51A0436', '18A51A043 7', '18A51A0438', '18A51A0439', '18A51A0440', '18A51A0441', '18A51A0442', '18A51A0443', '18A51A0444', '18A51A0445', '18A51A0446', '18A51A0447', '18A 51A0448', '18A51A0449', '18A51A0450', '18A51A0451', '18A51A0452', '18A51A0 453', '18A51A0454', '18A51A0455', '18A51A0456', '18A51A0457', '18A51A045 8', '18A51A0459', '18A51A0460', '18A51A0461', '18A51A0462', '18A51A0463', '18A51A0464', '18A51A0465', '18A51A0466', '18A51A0467', '18A51A0468', '18A 51A0469', '18A51A0470', '18A51A0471', '18A51A0472', '18A51A0473', '18A51A0 474', '18A51A0475', '18A51A0476', '18A51A0477', '18A51A0478', '18A51A047 9', '18A51A0480', '18A51A0481', '18A51A0482', '18A51A0483', '18A51A0484', '18A51A0485', '18A51A0486', '18A51A0487', '18A51A0488', '18A51A0489', '18A 51A0490', '18A51A0491', '18A51A0492', '18A51A0493', '18A51A0494', '18A51A0 495', '18A51A0496', '18A51A0497', '18A51A0498', '18A51A0499', '18A51A0410 0'1

In [22]:

```
import numpy as np
python = [np.random.randint(0,100) for i in range(1,101)]
C = [np.random.randint(0,100) for i in range(1,101)]
pandas = [np.random.randint(0,100) for i in range(1,101)]
numpy = [np.random.randint(0,100) for i in range(1,101)]
```

Creating the Email Id's

username@domainName.extension

rollNumber@apssdc.in

```
In [23]:
```

```
email = [roll + '@apssdc.in' for roll in rollNumbers]
```

```
In [24]:
```

```
data = {'Roll Numbers':rollNumbers,'Email': email,'C':C,
   'Python':python,'Pandas':pandas,'Numpy':numpy}
print(data)
```

```
{'Roll Numbers': ['18A51A0401', '18A51A0402', '18A51A0403', '18A51A0404',
   '18A51A0405', '18A51A0406', '18A51A0407', '18A51A0408', '18A51A0409', '18A
 51A0410', '18A51A0411', '18A51A0412', '18A51A0413', '18A51A0414', '18A51A0
 415', '18A51A0416', '18A51A0417', '18A51A0418', '18A51A0419', '18A51A042
 0', '18A51A0421', '18A51A0422', '18A51A0423', '18A51A0424', '18A51A0425',
  '18A51A0426', '18A51A0427', '18A51A0428', '18A51A0429', '18A51A0430', '18A
 51A0431', '18A51A0432', '18A51A0433', '18A51A0434', '18A51A0435', '18A51A0
 436', '18A51A0437', '18A51A0438', '18A51A0439', '18A51A0440', '18A51A044
 1', '18A51A0442', '18A51A0443', '18A51A0444', '18A51A0445', '18A51A0446',
  '18A51A0447', '18A51A0448', '18A51A0449', '18A51A0450', '18A51A0451', '18A
 51A0452', '18A51A0453', '18A51A0454', '18A51A0455', '18A51A0456', '18A51A0
 457', '18A51A0458', '18A51A0459', '18A51A0460', '18A51A0461', '18A51A046
 2', '18A51A0463', '18A51A0464', '18A51A0465', '18A51A0466', '18A51A0467',
  '18A51A0468', '18A51A0469', '18A51A0470', '18A51A0471', '18A51A0472', '18A
 51A0473', '18A51A0474', '18A51A0475', '18A51A0476', '18A51A0477', '18A51A0
 478', '18A51A0479', '18A51A0480', '18A51A0481', '18A51A0482', '18A51A048
 3', '18A51A0484', '18A51A0485', '18A51A0486', '18A51A0487', '18A51A0488',
 '18A51A0489', '18A51A0490', '18A51A0491', '18A51A0492', '18A51A0493', '18A
 51A0494', '18A51A0495', '18A51A0496', '18A51A0497', '18A51A0498', '18A51A0
 499', '18A51A04100'], 'Email': ['18A51A0401@apssdc.in', '18A51A0402@apssd
 c.in', '18A51A0403@apssdc.in', '18A51A0404@apssdc.in', '18A51A0405@apssdc.
in', '18A51A0406@apssdc.in', '18A51A0407@apssdc.in', '18A51A0408@apssdc.i
in', '18A51A0406@apssdc.in', '18A51A0407@apssdc.in', '18A51A0408@apssdc.in', '18A51A0409@apssdc.in', '18A51A0410@apssdc.in', '18A51A0411@apssdc.in', '18A51A0412@apssdc.in', '18A51A0413@apssdc.in', '18A51A0414@apssdc.in', '18A51A0415@apssdc.in', '18A51A0416@apssdc.in', '18A51A0417@apssdc.in', '18A51A0418@apssdc.in', '18A51A0419@apssdc.in', '18A51A0420@apssdc.in', '18A51A0421@apssdc.in', '18A51A0422@apssdc.in', '18A51A0423@apssdc.in', '18A51A0424@apssdc.in', '18A51A0425@apssdc.in', '18A51A0426@apssdc.in', '18A51A0427@apssdc.in', '18A51A0428@apssdc.in', '18A51A0429@apssdc.in', '18A51A0430@apssdc.in', '18A51A0431@apssdc.in', '18A51A0435@apssdc.in', '18A51A0436@apssdc.in', '18A51A0437@apssdc.in', '18A51A0438@apssdc.in', '18A51A0439@apssdc.in', '18A51A0441@apssdc.in', '
n', '18A51A0436@apssdc.in', '18A51A0437@apssdc.in', '18A51A0438@apssdc.in', '18A51A0439@apssdc.in', '18A51A0440@apssdc.in', '18A51A0441@apssdc.in', '18A51A0442@apssdc.in', '18A51A0443@apssdc.in', '18A51A0444@apssdc.in', '18A51A0445@apssdc.in', '18A51A0447@apssdc.in', '18A51A0448@apssdc.in', '18A51A0449@apssdc.in', '18A51A0450@apssdc.in', '18A51A0451@apssdc.in', '18A51A0452@apssdc.in', '18A51A0453@apssdc.in', '18A51A0457@apssdc.in', '18A51A0458@apssdc.in', '18A51A0459@apssdc.in', '18A51A0459@apssdc.in', '18A51A0459@apssdc.in', '18A51A0459@apssdc.in', '18A51A0460@apssdc.in', '18A51A0463@apssdc.in', '1
n', '18A51A0457@apssdc.in', '18A51A0458@apssdc.in', '18A51A0459@apssdc.in', '18A51A0460@apssdc.in', '18A51A0461@apssdc.in', '18A51A0462@apssdc.in', '18A51A0463@apssdc.in', '18A51A0465@apssdc.in', '18A51A0466@apssdc.in', '18A51A0467@apssdc.in', '18A51A0469@apssdc.in', '18A51A0470@apssdc.in', '18A51A0471@apssdc.in', '18A51A0472@apssdc.in', '18A51A0473@apssdc.in', '18A51A0474@apssdc.in', '18A51A0475@apssdc.in', '18A51A0476@apssdc.in', '18A51A0477@apssdc.in', '18A51A0478@apssdc.in', '18A51A0478@apssdc.in', '18A51A0482@apssdc.in', '18A51A0483@apssdc.in', '1
n', '18A51A0481@apssdc.in', '18A51A0482@apssdc.in', '18A51A0483@apssdc.i
n', '18A51A0484@apssdc.in', '18A51A0485@apssdc.in', '18A51A0486@apssdc.i
n', '18A51A0487@apssdc.in', '18A51A0488@apssdc.in', '18A51A0489@apssdc.i
n', '18A51A0490@apssdc.in', '18A51A0491@apssdc.in', '18A51A0492@apssdc.i
n', '18A51A0493@apssdc.in', '18A51A0494@apssdc.in', '18A51A0495@apssdc.i
n', '18A51A0496@apssdc.in', '18A51A0497@apssdc.in', '18A51A0498@apssdc.i
n', '18A51A0499@apssdc.in', '18A51A04100@apssdc.in'], 'C': [65, 24, 7, 92,
 17, 27, 63, 8, 89, 59, 30, 50, 16, 80, 47, 70, 51, 81, 40, 20, 36, 46, 1,
 70, 68, 79, 14, 3, 14, 93, 34, 80, 36, 59, 17, 35, 6, 28, 93, 30, 29, 71,
 29, 20, 6, 91, 43, 5, 45, 40, 5, 1, 85, 85, 73, 63, 75, 70, 33, 6, 56, 28,
 55, 57, 23, 99, 38, 22, 89, 78, 76, 68, 15, 3, 90, 72, 1, 5, 45, 78, 80, 5
 0, 55, 51, 71, 8, 17, 4, 41, 37, 77, 47, 66, 79, 2, 28, 46, 72, 2, 9], 'Py
 thon': [27, 41, 28, 52, 50, 8, 44, 20, 59, 59, 15, 6, 15, 50, 83, 64, 52,
 55, 18, 20, 60, 87, 30, 56, 78, 6, 52, 62, 92, 39, 95, 85, 20, 20, 81, 47,
 63, 32, 66, 39, 45, 10, 64, 87, 73, 18, 46, 9, 81, 9, 4, 75, 70, 82, 26, 7
```

```
3, 48, 76, 84, 88, 41, 39, 55, 72, 3, 22, 61, 94, 37, 15, 72, 84, 32, 61,
6, 95, 79, 54, 45, 50, 86, 61, 95, 4, 26, 9, 27, 16, 29, 37, 82, 90, 45, 5
1, 54, 93, 81, 17, 42, 5], 'Pandas': [84, 7, 52, 46, 34, 40, 65, 54, 2, 9
1, 51, 63, 40, 31, 42, 35, 61, 59, 83, 25, 53, 33, 20, 10, 59, 63, 24, 29,
38, 99, 68, 48, 0, 28, 81, 99, 12, 55, 0, 52, 15, 73, 42, 11, 87, 15, 4, 6
8, 88, 77, 12, 86, 7, 17, 10, 92, 75, 91, 35, 39, 92, 90, 58, 21, 64, 59,
8, 17, 63, 84, 55, 21, 15, 64, 63, 65, 28, 33, 42, 83, 81, 75, 4, 35, 95,
99, 97, 68, 35, 61, 36, 37, 27, 31, 61, 28, 78, 5, 75, 80], 'Numpy': [52,
44, 78, 15, 27, 8, 6, 1, 11, 76, 17, 36, 96, 68, 6, 75, 1, 72, 9, 1, 35, 5
8, 10, 12, 31, 65, 12, 88, 94, 20, 55, 8, 74, 24, 98, 89, 84, 95, 63, 92,
14, 30, 49, 43, 69, 92, 67, 4, 59, 21, 51, 32, 68, 35, 82, 36, 5, 13, 16,
63, 98, 9, 47, 2, 73, 74, 91, 80, 61, 78, 31, 86, 14, 15, 0, 95, 47, 88, 1
2, 90, 75, 31, 10, 27, 17, 5, 12, 18, 97, 64, 42, 62, 79, 20, 97, 56, 86,
96, 61, 59]}
In [25]:
sdata = pd.DataFrame(data)
In [26]:
sdata['TotalMarks'] = sdata['C'] + sdata['Python'] + sdata['Numpy'] + sdata['Pandas']
In [27]:
sdata['Percentage'] = (sdata['TotalMarks'] * 100) / 400
In [28]:
sdata['Status'] = ['Pass' if data > 40 else 'Fail' for data in sdata['Percentage']]
In [29]:
# # Exporting the data as excel file to memory
sdata.to_excel('sdata.xlsx',sheet_name='Class1')
In [30]:
# Exporting the data as csv file to memory
sdata.to_csv('sdata.csv')
In [31]:
# Import data Python
rdata = pd.read_csv('sdata.csv',index_col = 0)
```

Getting the top rows

In [32]:

rdata.head(6)

Out[32]:

	Roll Numbers	Email	С	Python	Pandas	Numpy	TotalMarks	Percentage
0	18A51A0401	18A51A0401@apssdc.in	65	27	84	52	228	57.00
1	18A51A0402	18A51A0402@apssdc.in	24	41	7	44	116	29.00
2	18A51A0403	18A51A0403@apssdc.in	7	28	52	78	165	41.25
3	18A51A0404	18A51A0404@apssdc.in	92	52	46	15	205	51.25
4	18A51A0405	18A51A0405@apssdc.in	17	50	34	27	128	32.00
5	18A51A0406	18A51A0406@apssdc.in	27	8	40	8	83	20.75

4

Getting the Bottom data

In [33]:

rdata.tail(6)

Out[33]:

	Roll Numbers	Email	С	Python	Pandas	Numpy	TotalMarks	Percenta
94	18A51A0495	18A51A0495@apssdc.in	2	54	61	97	214	53
95	18A51A0496	18A51A0496@apssdc.in	28	93	28	56	205	51
96	18A51A0497	18A51A0497@apssdc.in	46	81	78	86	291	72
97	18A51A0498	18A51A0498@apssdc.in	72	17	5	96	190	47
98	18A51A0499	18A51A0499@apssdc.in	2	42	75	61	180	45
99	18A51A04100	18A51A04100@apssdc.in	9	5	80	59	153	38
4								•

Getting the Column data

In [34]:

```
rdata['Email'].head()
```

Out[34]:

0 18A51A0401@apssdc.in
1 18A51A0402@apssdc.in
2 18A51A0403@apssdc.in
3 18A51A0404@apssdc.in
4 18A51A0405@apssdc.in
Name: Email, dtype: object

Getting the row

In [35]:

rdata.iloc[50]

Out[35]:

Roll Numbers	18A51A0451
Email	18A51A0451@apssdc.in
C	5
Python	4
Pandas	12
Numpy	51
TotalMarks	72
Percentage	18
Status	Fail

Name: 50, dtype: object

In [36]:

rdata.iloc[10:20]

Out[36]:

	Roll Numbers	Email	С	Python	Pandas	Numpy	TotalMarks	Percentage
10	18A51A0411	18A51A0411@apssdc.in	30	15	51	17	113	28.2
11	18A51A0412	18A51A0412@apssdc.in	50	6	63	36	155	38.7
12	18A51A0413	18A51A0413@apssdc.in	16	15	40	96	167	41.7
13	18A51A0414	18A51A0414@apssdc.in	80	50	31	68	229	57.2
14	18A51A0415	18A51A0415@apssdc.in	47	83	42	6	178	44.5(
15	18A51A0416	18A51A0416@apssdc.in	70	64	35	75	244	61.00
16	18A51A0417	18A51A0417@apssdc.in	51	52	61	1	165	41.2
17	18A51A0418	18A51A0418@apssdc.in	81	55	59	72	267	66.7
18	18A51A0419	18A51A0419@apssdc.in	40	18	83	9	150	37.50
19	18A51A0420	18A51A0420@apssdc.in	20	20	25	1	66	16.50
4								•

```
In [37]:
rdata.shape
Out[37]:
(100, 9)
In [38]:
rdata.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 100 entries, 0 to 99
Data columns (total 9 columns):
Roll Numbers
               100 non-null object
Email
               100 non-null object
C
               100 non-null int64
Python
              100 non-null int64
              100 non-null int64
Pandas
Numpy
              100 non-null int64
              100 non-null int64
TotalMarks
Percentage
               100 non-null float64
               100 non-null object
Status
dtypes: float64(1), int64(5), object(3)
memory usage: 7.8+ KB
```

In [39]:

rdata.describe()

Out[39]:

	С	Python	Pandas	Numpy	TotalMarks	Percentage
count	100.00000	100.000000	100.000000	100.000000	100.000000	100.000000
mean	44.93000	49.110000	49.130000	47.600000	190.770000	47.692500
std	29.03055	27.621502	28.554628	32.127587	58.670085	14.667521
min	1.00000	3.000000	0.000000	0.000000	61.000000	15.250000
25%	19.25000	26.000000	27.750000	15.000000	154.500000	38.625000
50%	45.00000	50.000000	51.500000	48.000000	192.500000	48.125000
75%	71.00000	73.000000	73.500000	75.250000	231.000000	57.750000
max	99.00000	95.000000	99.000000	98.000000	327.000000	81.750000

In [40]:

```
rdata['Percentage'].plot(kind = 'hist')
```

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x17ad370dc18>

Matplotlib (https://matplotlib.org)

Matplotlib - History

Matplotlib Architecture

- 1. Scripting Layer (pyplot)
- 2. Artist Layer (Artist)
- 3. Backend Layer (FigureCanvas, Renderer, Event)

Basic and Specialized Visualization Tools

- Line Plots
- Scatter Plots
- · Histograms
- Bar Charts
- Pie Charts
- Box Plots

In [41]:

import matplotlib.pyplot as plt

Line Plot

In [42]:

```
x = [1,2,3,4,5]
y = [2,4,6,8,10]

plt.plot(x,y)
plt.title('Line Plot')
plt.xlabel('X_values')
plt.ylabel('Y_values')
plt.grid()
plt.show()
```


Scatter Plot

In [43]:

```
import numpy as np
x = np.array([i for i in range(-5,5)])
y = x ** 2

plt.scatter(x,y,color = 'r')
plt.title('Scatter Plot')
plt.xlabel('X_values')
plt.ylabel('Y_values')
plt.grid()
plt.show()
```


Overlapping of two plots

In [44]:

```
import numpy as np
x = np.array([i for i in range(-5,5)])
y = x ** 2

plt.plot(x,y,'-.')
plt.scatter(x,y,color = 'r')
plt.title('Scatter Plot')
plt.xlabel('X_values')
plt.ylabel('Y_values')
plt.grid()
plt.show()
```


Box Plot

In [45]:

```
import pandas as pd
rdata = pd.read_csv('sdata.csv',index_col = 0)
x = rdata['Python']

plt.boxplot(x)
plt.show()
```


Histogram

In [46]:

```
x = rdata['Numpy']
plt.hist(x)
plt.grid()
plt.show()
```


Bar Graph

In [47]:

```
x = [1,2,3,4,5]
y = [2,4,6,8,10]
plt.bar(x,y)
plt.show()
```


Pie Charts

In [48]:

```
x = [1,2,3,4,5]
plt.pie(x,labels=x,radius=2)
plt.savefig('pie.png')
```


Sub Plots

In [49]:

```
x = [1,2,3,4,5]
y = [2,4,6,8,10]
plt.figure(figsize=(5,5))
plt.subplot(2,2,1)
plt.pie(x,labels=x)

plt.subplot(2,2,2)
plt.plot(x,y)

plt.subplot(2,1,2)
plt.scatter(x,y)
```


In [50]:

only canvas
plt.plot()

Out[50]:

[]

http://bit.ly/AITAM-Python-Adv-Feb-2020 (http://bit.ly/AITAM-Python-Adv-Feb-2020)

http://bit.ly/APSSDC-Feedback (http://bit.ly/APSSDC-Feedback)

www.awseducate.com