

Update on Dimuon Resonances in "Lepton Jets"

Jim Pivarski Alexei Safonov Aysen Tatarinov

Texas A&M University

21 January, 2011

Motivated by phenomenology:

- ► Hidden sector's spectrum is unknown, but weak coupling to the Standard Model implies that it predominantly passes through the lightest hidden state
 - \longrightarrow search for low-mass dimuons
- ▶ Muon pairs may overlap, but cascades of light particles would be collimated in groups by their boost → first identify well-separated groups, then resolve combinatorics
- ▶ $\mathcal{B}(m_1 \to \mu\mu)$ is likely to be high, but not necessarily 100%

 look for muons, but neither
 - → look for muons, but neither require nor exclude other particles (e.g. by applying an isolation cut)

Jim Pivarski 2/22

- ▶ Unless the hidden spectrum has a very close degeneracy, the lightest state (m_1) will be on-shell
 - → search for a resonance peak
- ▶ Groups of four or more muons represent $m_2 o m_1 m_1$ cascades
 - \longrightarrow split them into the most consistent assignment of dimuon masses (assumes on-shell m_1)
- Different event topologies have different backgrounds
 - → partition signal region by number of collimated groups ("mu-jets") and number of dimuons within each mu-jet

Signal topologies

Jim Pivarski

momentum

backgrounds

- ▶ Look for new resonance in all channels that have small backgrounds
- Any one of the following reduce
 Standard Model backgrounds to O(1 pb):
 - $ho_T \gtrsim 80 \text{ GeV}/c$
 - ▶ ≥ 2 mu-jets in an event
 - ▶ ≥ 4 muons in a mu-jet

- Define non-overlapping signal regions:
 - (a) exactly one mu-jet per event
 - (a-1) $p_T > 80~{
 m GeV}/c$ mu-jet containing two muons $(m_1 o 2\mu)$

N mu-jets

- (a-2) any mu-jet containing four muons $(m_2 o m_1 m_1 o 4 \mu)$
- (a-3) more than four
- (b) two mu-jets per event
 - (b-1) 2μ , 2μ ($M \rightarrow m_1 m_1$, which is the NMSSM signature)
 - (b-2) 2μ , 4μ ($M \to m_1 m_2$)
 - (b-3) 4μ , 4μ ($M \to m_2 m_2$)
 - (b-4) either has more than four
- (c) more than two mu-jets per event

- ▶ Unlike jets, our signals have a well-defined but unknown mass
 - ightharpoonup all on-shell m_1 particles in an event have the same mass
 - $\,\blacktriangleright\,$ backgrounds fill the space of dimuon masses more uniformly
- Measure signal and backgrounds in a single "fit with sidebands"
 - ▶ topologies with *n* dimuons per event form an *n*-dimensional space of observables
 - signal is a sharp peak somewhere along the diagonal
 - background distribution is a Cartesian product of shapes derived from data

- Opening the box: results unblinded last weekend
- Signal and background shape templates
- ▶ Implications for benchmark models

Results: all consistent with SM

Jim Pivarski

137 events with a single, high- p_T dimuon (SM-like distribution)

1 event with a 4- μ mu-jet

11 events with two 2- μ mu-jets

0 events within 5σ (detector resolution) of a 2-D diagonal

0 events with 3 or more dimuons

Event displays of double-dimuons (which have unequal masses)

(a-2) two dimuons in one mu-jet

(b-1) two well-separated dimuons

- ▶ Limit-setting in RooFit/RooStats using the MCMC method
- ► Luminosity, efficiency, and background shape systematics folded in (to be described later)
- ▶ Set limits on $\sigma \times \mathcal{B} \times \alpha_{\rm gen}$, where $\alpha_{\rm gen}$ is the acceptance for a given model in a given signal region
 - signature-based limit, applicable to future theories

All other signal regions (3 or more dimuons per event) are also excluded at the level of 0.1 pb, independent of m_1 mass < 5 GeV/ c^2

Fit Shape Templates

Signal shape (the easy part)

Jim Pivarski

- Since the hidden sector couples weakly to the Standard Model, the m_1 resonance width must be dominated by detector resolution
- ▶ We have four Standard Model resonances in our background-enriched dataset (single dimuon, p_T < 80 GeV/c)

- Different resolution in the barrel and endcap
- ightharpoonup Filled in resolution vs. mass and p_T with MC pair-gun
- ▶ Data agree well with the minimum- p_T curve
- Modeled in final fit as double-Gaussian (barrel and endcap) with a Crystal Ball radiative tail, p_T variation is a systematic uncertainty

Background shape

Jim Pivarski 14/22

- ▶ Different physics sources contribute to each signal region, so the background shape templates must be individually constructed
- ▶ For (a-1): prompt & isolated, $b\bar{b}$ -like, and J/ψ components all scale as $\exp(-p_T/10 \text{ GeV})$ above 40 GeV/c
- Derive shape from high-statistics low-p_T data, test in medium-p_T, and use in high-p_T signal search

Background shape

Jim Pivarski 15/22

- ▶ Region (a-2): 4 muons in one mu-jet
- ► Dominant Standard Model backgrounds: decays-in-flight and misreconstruction (fakes)
- Simulate fake muons by putting non-muon tracks into mu-jets:

Background-enriched	Control	Signal Region
2 muons, 2 tracks	3 muons, 1 track	4 muons

Plots of control region with template shape overlaid:

Background shape

Jim Pivarski

▶ Region (b-1): 2 mu-jets with 2 muons each

▶ Dominant Standard Model backgrounds: $b\bar{b}$ with both b-quarks producing $\mu\mu X$ by double-semileptonic decay, resonances, etc.

Assume that each b-quark decays independently and construct 2-D distribution from Cartesian product of 1-D $b \rightarrow \mu \mu X$ distributions

► Background-enriched: selected dimuons (left); control region: off-diagonal part of signal (right; already seen)

Implications for Benchmark Models

Benchmark model acceptance

Jim Pivarski 18/22

SUSY dark matter
$$+$$
 extra $\mathcal{U}(1)_{\text{dark}}$ (inspired by PAMELA) $z_d \rightarrow 2\mu$ and $h_d \rightarrow z_d z_d \rightarrow 4\mu$

 $m_{z_d}=1~{
m GeV}/c^2$, $m_{h_d}=3~{
m GeV}/c^2$

NMSSM Higgs (inspired by hidden Higgs) $h \rightarrow aa \rightarrow 2\mu, \, 2\mu$ $m_h = 100 \; {\rm GeV}/c^2, \; m_a = 2 \; {\rm GeV}/c^2$

- ► Extra-U(1) model produces complicated events that have high acceptance but fall into many signal regions
- ▶ Because NMSSM is a "heavy \rightarrow light light" model, it produces 2 well-separated mu-jets, each with exactly 2 muons: (b-1)

- Below is the Dark SUSY model used in the Princeton studies
 - we're using the same MC samples (both types, $\gamma_{\sf dark} \to 2\mu$ and $h_{\rm dark} \to 4\mu$, with 11 $m_{\tilde{a}}$ mass points; three shown below)

- \triangleright $\mathcal{B}(\gamma_{\mathsf{dark}} \to \mu \mu) = 100\%$ in the Dark SUSY MC samples
- Varying the branching fraction changes the topologies of events (because there are multiple γ_{dark} per event)
- ▶ We varied the effective branching fractions by dropping muon pairs

Transitions from multimuons to mostly single-dimuon (a-1)

Produced by combining the model-independent limits on each signal region (page 10) with the appropriate model acceptances

Conclusions

Jim Pivarski 22/22

Switch to Alexei's slides

Backup 1: Detector Issues and Acceptance

Trigger efficiency

Jim Pivarski 24/22

- Some triggers' efficiencies depend strongly on whether the muon trajectories cross in the muon system
 - this is a problem for a model-independent study because different models have different fractions of muon crossing
 - parameterizing it would make the results too complicated
- Trigger efficiency vs. η for crossing and non-crossing muons:

▶ Only the single-muon barrel trigger is highly efficient for nearby muons, regardless of crossing, so we define acceptance: each event must have at least one $p_T > 15 \text{ GeV}/c$, $|\eta| < 0.9 \text{ muon}$

- GlobalMuons are also inefficient for crossing muons ($\varepsilon \sim 50\%$)
- ► TrackerMuons are much less sensitive to crossing, so all muons in the analysis must be:
 - ► TrackerMuons with at least 2 arbitrated segments,
 - $p_T > 5 \text{ GeV}/c$, $|\eta| < 2.4$,
 - track normalized $\chi^2 <$ 4, at least 8 hits.
- Quality TrackerMuon efficiency for crossing and non-crossing muons:

Backup 2: Understanding the Low-Mass Dimuon Spectrum

Low-mass dimuons

Jim Pivarski

27/22

- "Raw" mass spectrum has several components:
 - resonances (prompt and from b decays)
 - double-semileptonic $b \rightarrow \mu \mu X$ continuum
 - ▶ low-mass Drell-Yan

MC isn't perfect: study data/MC differences using isolation (defined such that $\mu\mu$ doesn't self-veto) and distance of flight (L_{xv})

lacktriangle Split sample into $bar{b}$ and Drell-Yan/prompt resonances with this cut:

$$lso > 4.5 \text{ GeV}/c \text{ or } L_{xy} > 2 \text{ mm}$$

- ▶ Much of the low-mass spectrum is Drell-Yan (not in any official samples, so we generated it with Pythia 8)
- ▶ Some resonances are not in inclusive-muon MC: $\omega(782)$, $\psi'(3686)$
- ► There's also a low-mass excess (red circle), too wide to be a resonance peak, and too low in mass to be $\eta \to \mu \mu \gamma$

Part of the explanation: the cut $Iso > 4.5 \text{ GeV}/c \text{ or } L_{xy} > 2 \text{ mm}$ depends on L_{xy} , which becomes imprecise for nearly collinear tracks: Drell-Yan leaks into the " $b\bar{b}$ " sample

- ► About 1/10th of what remains passes *Iso* > 4.5 GeV/*c* alone: misreconstructed Drell-Yan?
- ► History of this study is a geometric progression of explaining 90%, then explaining 90% of what's left, etc..