3.1 Introduzione

In questo capitolo introduciamo la

probabilità condizionata,

uno dei concetti più importanti della teoria della probabilità.

L'importanza del concetto è duplice.

Innanzitutto si è spesso interessati a calcolare la probabilità di un evento disponendo di qualche informazione parziale.

Inoltre le probabilità condizionate sono spesso utilizzate per calcolare più facilmente le probabilità richieste.

3.1 Probabilità condizionata

Supponiamo di lanciare 2 dadi e che ognuno dei 36 possibili esiti sia equiprobabile con probabilità $\frac{1}{36}$. Supponiamo inoltre di osservare che l'esito del primo lancio è 3. Allora, data questa informazione, qual è la probabilità che la somma dei due dadi sia uguale a 8? Dato che il primo dado vale 3, vi sono al più 6 possibili esiti dell'esperimento: (3,1), (3,2), (3,3), (3,4), (3,5), (3,6).

Dato che all'inizio questi esiti erano equiprobabili, essi devono avere anche ora la stessa probabilità. Sapendo che il primo dado vale 3, la probabilità (condizionata) di ognuno dei 6 esiti è uguale a $\frac{1}{6}$, mentre la probabilità (condizionata) degli altri 30 punti dello spazio campionario è pari a 0. Pertanto la probabilità richiesta vale $\frac{1}{6}$, perché uno solo dei 6 risultati dà somma 8: (3,5).

In assenza d'informazione sul primo lancio la probabilità di avere somma 8 vale $\frac{5}{36}$.

Definizione. Se P(F) > 0, la probabilità condizionata di E dato F è data da

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Tale definizione è giustificata dalle seguenti considerazioni:

Per esperimenti dotati di spazio campionario finito e con esiti equiprobabili, abbiamo visto che per ogni evento A risulta: P(A) = |A|/|S|.

Pertanto, volendo esprimere in tale ambito la probabilità condizionata di E dato F, siamo condotti ad usare il rapporto di casi favorevoli al verificarsi di E (sapendo che si è verificato F) su casi possibili (gli elementi di F), cosicché:

$$P(E|F) = \frac{|E \cap F|}{|F|} = \frac{|E \cap F|/|S|}{|F|/|S|} = \frac{P(E \cap F)}{P(F)}.$$

Esempio. Nell'esperimento del lancio di un dado non truccato calcolare le probabilità condizionate di $A = \{1, 2\}$ dati gli eventi $B_1 = \{4, 5, 6\}, B_2 = \{1, 5, 6\}, B_3 = \{1, 2, 6\}.$ **Soluzione.** Risulta

$$P(A|B_1) = \frac{P(A \cap B_1)}{P(B_1)} = \frac{P(\emptyset)}{1/2} = 0,$$

$$P(A|B_2) = \frac{P(A \cap B_2)}{P(B_2)} = \frac{P(\{1\})}{1/2} = \frac{1/6}{1/2} = \frac{1}{3},$$

$$P(A|B_3) = \frac{P(A \cap B_3)}{P(B_3)} = \frac{P(\{1,2\})}{1/2} = \frac{1/3}{1/2} = \frac{2}{3}.$$

Pertanto, sebbene gli eventi B_1 , B_2 , B_3 siano equiprobabili, la probabilità condizionata di A dato B_k cambia al variare di k, ed in particolare risulta $P(A|B_2) = P(A)$.

Esempio. Uno studente sta svolgendo un test da consegnare dopo un'ora. Si suppone che la probabilità che lo studente termini il test in meno di t ore sia uguale a t/2, per ogni $t \in [0,1]$. Qual è la probabilità che che lo studente usufruisca dell'intera ora? Qual è la probabilità condizionata che che lo studente usufruisca dell'intera ora

- (a) sapendo che egli è ancora al lavoro dopo 3/4 d'ora?
- (b) sapendo che egli è ancora al lavoro dopo t ore?

Soluzione. Sia $L_t = \{ \text{lo studente conclude l'esame in meno di } t \text{ ore} \}, \text{ con } P(L_t) = t/2$ per $0 \le t \le 1$. Posto $F = \{ \text{lo studente utilizza l'intera ora} \}, \text{ si ha } F = \overline{L_1} \text{ e pertanto} \}$

$$P(F) = P(\overline{L_1}) = 1 - P(L_1) = 1 - \frac{1}{2} = \frac{1}{2}.$$

(a) Poiché $F \subset \overline{L_{3/4}}$, si ha $F \cap \overline{L_{3/4}} = F$ e quindi la probabilità cercata è

$$P(F|\overline{L_{3/4}}) = \frac{P(F \cap \overline{L_{3/4}})}{P(\overline{L_{3/4}})} = \frac{P(F)}{1 - P(L_{3/4})} = \frac{\frac{1}{2}}{1 - \frac{3}{8}} = \frac{4}{5} = 0.8.$$

(b) Analogamente, poiché $F \subset \overline{L_t}$, si ha $F \cap \overline{L_t} = F$ e quindi

$$P(F|\overline{L_t}) = \frac{P(F \cap \overline{L_t})}{P(\overline{L_t})} = \frac{P(F)}{1 - P(L_t)} = \frac{\frac{1}{2}}{1 - \frac{t}{2}} = \frac{1}{2 - t}, \qquad 0 \le t \le 1.$$

Esempio. Nell'esperimento del lancio di una moneta ripetuto 2 volte, supponendo che i quattro punti dello spazio campionario $S = \{cc, ct, tc, tt\}$ siano equiprobabili, qual è la probabilità condizionata che venga testa in entrambi i lanci sapendo che esce testa (a) nel primo lancio; (b) in almeno un lancio?

Soluzione. Sia $E = \{tt\} = \{\text{testa in entrambi i lanci}\}$, e $F = \{tc, tt\} = \{\text{testa al primo lancio}\}$. La probabilità cercata in (a) è allora

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(\{tt\})}{P(\{tc, tt\})} = \frac{1/4}{2/4} = \frac{1}{2}.$$

Sia $A = \{ct, tc, tt\}$; la soluzione di (b) è

$$P(E|A) = \frac{P(E \cap A)}{P(A)} = \frac{P(\{tt\})}{P(\{ct, tc, tt\})} = \frac{1/4}{3/4} = \frac{1}{3}.$$

Notiamo che P(E|F) e P(E|A) sono diversi da $P(E) = \frac{1}{4}$.

Esempio. Nell'esperimento del lancio di una moneta ripetuto n volte, supponendo che i 2^n punti dello spazio campionario S siano equiprobabili, qual è la probabilità condizionata che venga testa in ogni lancio sapendo che esce testa (a) nel primo lancio; (b) in almeno un lancio?

Soluzione. Sia $E = \{\text{testa in ogni lancio}\}\ e\ F = \{\text{testa al primo lancio}\}\$. La probabilità cercata in (a) è allora

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{P(E)}{P(F)} = \frac{1/2^n}{1/2} = \frac{1}{2^{n-1}}.$$

Sia $A = \{ \text{testa in almeno un lancio} \}$. Poiché $P(A) = 1 - P(\overline{A})$, con $P(\overline{A}) = 1 - 1/2^n$, si ha

$$P(E|A) = \frac{P(E \cap A)}{P(A)} = \frac{P(E)}{1 - P(\overline{A})} = \frac{1/2^n}{1 - 1/2^n} = \frac{1}{2^n - 1}.$$

Notiamo che P(E|F) e P(E|A) sono diversi da $P(E) = \frac{1}{2^n}$.

Esempio. Nel gioco del bridge le 52 carte sono distribuite equamente a 4 giocatori (Est, Ovest, Nord e Sud). Se Nord e Sud hanno in tutto 8 picche, qual è la probabilità p_k che Est abbia k delle 5 carte di picche rimanenti? (k = 0, 1, 2, 3, 4, 5)

Soluzione. Si tratta di probabilità condizionata, ma è più semplice procedere con lo spazio campionario ridotto. Dato che Nord-Sud hanno in tutto 8 picche tra le loro carte, vi sono esattamente 5 picche nelle rimanenti 26 carte di Est-Ovest. Per la equiprobabilità delle distribuzioni delle carte, le probabilità cercate sono date da

$$p_{0} = \frac{\binom{5}{0}\binom{21}{13}}{\binom{26}{13}} = p_{5} = \frac{\binom{5}{5}\binom{21}{8}}{\binom{26}{13}} = \frac{1 \cdot 203490}{10400600} = \frac{9}{460} \approx 0,0196$$

$$p_{1} = \frac{\binom{5}{1}\binom{21}{12}}{\binom{26}{13}} = p_{4} = \frac{\binom{5}{4}\binom{21}{9}}{\binom{26}{13}} = \frac{5 \cdot 293930}{10400600} = \frac{13}{92} \approx 0,141$$

$$p_{2} = \frac{\binom{5}{2}\binom{21}{11}}{\binom{26}{13}} = p_{3} = \frac{\binom{5}{3}\binom{21}{10}}{\binom{26}{13}} = \frac{10 \cdot 352716}{10400600} = \frac{39}{115} \approx 0,339$$

Esempio. Da un'urna contenente r biglie (di cui b sono blu) si estraggono in sequenza n biglie a caso, senza reinserimento $(n \le r)$.

- (i) Qual è la probabilità che la prima biglia estratta sia blu?
- (ii) Qual è la probabilità condizionata che la prima biglia estratta sia blu, sapendo che k delle biglie estratte sono blu?

Soluzione. (i) Ponendo $E = \{ \text{la prima biglia estratta è blu} \}$, si ha

$$P(E) = \frac{b(r-1)(r-2)\cdots(r-n+1)}{r(r-1)(r-2)\cdots(r-n+1)} = \frac{b}{r}.$$

(ii) Ponendo B_k = {vengono estratte k biglie blu}, $0 \le k \le n$, la probabilità condizionata può essere calcolata come rapporto tra il numero di sequenze di lunghezza n aventi una biglia blu al primo posto e k-1 biglie blu nei rimanenti n-1 posti diviso il numero di sequenze di lunghezza n aventi k biglie blu all'interno. Pertanto si ha

$$P(E|B_k) = \frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{(n-1)!}{(k-1)!(n-k)!} \cdot \frac{k!(n-k)!}{n!} = \frac{k}{n}.$$

Moltiplicando ambo i membri dell'uguaglianza $P(E|F) = \frac{P(E \cap F)}{P(F)}$ per P(F), si ha

$$P(E \cap F) = P(F) P(E|F),$$
 se $P(F) > 0$.

Analogamente, si ha

$$P(E \cap F) = P(E) P(F|E), \quad \text{se } P(E) > 0.$$

Una generalizzazione delle formule precedenti è mostrata qui di seguito, ed è spesso anche nota come legge delle probabilità composte.

Proposizione. (Regola del prodotto) Se $P(E_1 \cap ... \cap E_{n-1}) > 0$, allora

$$P(E_1 \cap \ldots \cap E_n) = P(E_1) P(E_2|E_1) P(E_3|E_2 \cap E_1) \ldots P(E_n|E_1 \cap \ldots \cap E_{n-1})$$

Dimostrazione. Per la definizione di probabilità condizionata, dal 2º membro si ha

$$P(E_1) \frac{P(E_1 \cap E_2)}{P(E_1)} \frac{P(E_1 \cap E_2 \cap E_3)}{P(E_1 \cap E_2)} \dots \frac{P(E_1 \cap E_2 \cap \dots \cap E_n)}{P(E_1 \cap E_2 \cap \dots \cap E_{n-1})} = P(E_1 \cap \dots \cap E_n)$$

con le probabilità a denominatore strettamente positive perché $P(E_1 \cap ... \cap E_{n-1}) > 0$.

Esempio. Da un'urna contenente n biglie numerate da 1 a n si estraggono 3 biglie a caso (senza reinserimento). Assumendo che vi sia concordanza all'estrazione k-esima se in tale estrazione fuoriesce la biglia avente numero k, calcolare la probabilità

- (a) di avere 3 concordanze,
- (a) di avere concordanza solo nelle prime 2 estrazioni.

Soluzione. Posto $A_k = \{\text{si ha concordanza all'estrazione } k\text{-esima}\}$, dalla legge delle probabilità composte segue che la probabilità richiesta in (a) è data da

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2|A_1) P(A_3|A_1 \cap A_2) = \frac{1}{n} \cdot \frac{1}{n-1} \cdot \frac{1}{n-2}.$$

Analogamente, la probabilità richiesta in (b) è

$$P(A_1 \cap A_2 \cap \overline{A_3}) = P(A_1) P(A_2 | A_1) P(\overline{A_3} | A_1 \cap A_2) = \frac{1}{n} \cdot \frac{1}{n-1} \cdot \frac{n-3}{n-2}.$$

Esempio. Nel gioco del lotto si estraggono a caso 5 numeri da un'urna contenente 90 numeri compresi tra 1 e 90. (Le cinquine sono equiprobabili). (i) Se si sceglie un numero compreso tra 1 e 90 qual è la probabilità che questo sarà tra i 5 estratti? (ii) E se si scelgono 2 numeri distinti? (iii) E se, più in generale, se ne scelgono k ($1 \le k \le 5$)? **Soluzione.** (i) Definiamo l'evento $A_1 = \{$ il numero scelto è tra i 5 estratti $\}$; evidentemente risulta

$$P(A_1) = \frac{5}{90} = \frac{1}{18}.$$

(ii) Definiamo l'evento $A_2 = \{i \text{ 2 numeri scelti sono tra i 5 estratti}\};$ questo si può esprimere come intersezione degli eventi $B_1 = \{il \text{ primo numero scelto è tra i 5 estratti}\}$ e $B_2 = \{il \text{ secondo numero scelto è tra i 5 estratti}\}$. Quindi, usando la regola del prodotto e ricordando che le estrazioni sono senza reinserimento, si ha

$$P(A_2) = P(B_1 \cap B_2) = P(B_1) P(B_2|B_1) = \frac{5}{90} \cdot \frac{4}{89} = \frac{2}{801} \approx 0,0025.$$

(iii) Se si scelgono k numeri distinti $(1 \le k \le 5)$, definiamo l'evento $A_k = \{i \ k$ numeri scelti sono tra i 5 estratti $\}$. Questo si può esprimere in termini degli eventi $B_i = \{l'i\text{-esimo numero scelto } \hat{e} \text{ tra } i \text{ 5 estratti}\}, 1 \le i \le k$:

$$A_k = B_1 \cap B_2 \cap \ldots \cap B_k, \qquad 1 \le k \le 5.$$

Dalla regola del prodotto segue

$$P(A_k) = P(B_1 \cap B_2 \cap \ldots \cap B_k) = P(B_1) P(B_2|B_1) \ldots P(B_k|B_1 \cap \ldots \cap B_{k-1}).$$

Poiché le estrazioni sono senza reinserimento, si ottiene:

$$P(A_3) = P(B_1) P(B_2|B_1) P(B_3|B_1B_2) = \frac{5}{90} \frac{4}{89} \frac{3}{88} = \frac{1}{11.748},$$

$$P(A_4) = P(B_1) P(B_2|B_1) P(B_3|B_1B_2) P(B_4|B_1B_2B_3) = \frac{5}{90} \frac{4}{89} \frac{3}{88} \frac{2}{87} = \frac{1}{511.038},$$

$$P(A_5) = P(B_1) P(B_2|B_1) \cdots P(B_5|B_1B_2B_3B_4) = \frac{5}{90} \frac{4}{89} \frac{3}{88} \frac{2}{87} \frac{1}{86} = \frac{1}{43.949.268}.$$

Esempio. Da un'urna contenente r biglie (di cui b sono blu) si estraggono in sequenza n biglie a caso, senza reinserimento ($n \le r$). Sapendo che k delle biglie estratte sono blu,

- (a) qual è la probabilità condizionata che la prima biglia estratta sia blu?
- (b) qual è la probabilità condizionata che le prime 2 biglie estratte siano blu?

Soluzione. Poniamo $E = \{\text{la prima biglia estratta è blu}\}, F = \{\text{la seconda biglia estratta è blu}\}, e inoltre <math>B_k = \{\text{vengono estratte } k \text{ biglie blu}\}, 0 \le k \le n.$ Si ha allora

$$P(E|B_k) = \frac{k}{n}, \qquad P(E \cap F|B_k) = P(E|B_k) P(F|E \cap B_k) = \frac{k}{n} \cdot \frac{k-1}{n-1}.$$

Infatti, sapendo che si è verificato l'evento B_k , la sequenza delle n biglie estratte è costituita da k biglie blu e n-k biglie rosse.

- (a) In tal caso vi sono k casi favorevoli, su n, affinché la prima biglia sia blu.
- (b) Analogamente, vi sono k-1 casi favorevoli, su n-1, affinché la seconda biglia sia blu sapendo che la prima biglia è blu. Dalla legge delle probabilità composte segue il risultato.