

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP2 - 2° semestre de 2018.

Nome -

Assinatura -

Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
- ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- iii) Você pode usar lápis para responder as questões.
- iv) Ao final da prova devolva as folhas de questões e as de respostas.
- v) Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

- 1) Sobre o Vulkan...
 - A É a mesma coisa que o OpenGL
 - <u>B</u> É uma API gráfica baseada no OpenGL
 - C É uma API gráfica para Ray-tracing
 - D É um shader
 - E É um game engine
- 2) Sobre o CUDA, NÃO podemos afirmar
 - A função que é executada na GPU chama-se kernel
 - B Os kernels geram um número muito grande de threads
 - C Permite comunicar dados entre vários nós computacionais pela rede
 - D permite desenvolver algoritmos altamente paralelos
 - E requer que os dados da GPU sejam copiados a partir da memória da CPU
- 3) O culling de polígono consiste em:
 - A ordenar uma lista de polígonos
 - B evitar sobreposição de polígonos
 - C recortar parte do polígono que ficou fora da área de projeção
 - D eliminar polígonos desnecessários
 - E Transformar as coordenadas do polígono

- 4) Um pixel shader permite:
 - A Interferir na rasterização de um polígono
 - B implementar o ray-tracing pelo OpenGL
 - C Calcular a iluminação por vértice
 - D Realizar o clipping de polígonos
 - E realiza o estágio de projeção, dentre outras coisas
- 5) O Ray-tracing em GPU é viável :
 - A Em função do OpenGL
 - B Paralelizando os cálculos de raios e intereseções
 - C Calculando o Clipping de polígonos em paralelo
 - D Criando Octrees em tempo real
 - E fazendo com que cada thread cuide uma parte da recursão
- 6) As matrizes afins de transformação permitem:
 - A calcular o culling de polígonos
 - B resolver problemas de profundidade, na etapa de projeção
 - C acelerar o processo de iluminação
 - D pré-computar a iluminação global
 - E ser agrupadas em uma única matriz, através da multiplicação entre elas
- 7) Podemos dizer que os estágios do pipeline gráfico em tempo real podem ser resumidos na seguinte sequencia (atenção com a ordem!)
 - A Aplicação Geometria Rasterização
 - B Geometria Rasterização Aplicação
 - C Rasterização Aplicação Geometria
 - D Rasterização Geometria Aplicação
 - E Geometria Aplicação Rasterização
- 8) O reflexo pode ser obtido em tempo real:
 - A usando o ray-tracing juntamente com o raster
 - B usando environment textures
 - C Transformando uma textura num light map da cena
 - D usando métodos de radiosidade
 - E usando texturas procedurais
- 9) Se um artista lhe disser que o jogo está com um gargalo na geometria, uma das soluções de otimização seria:
 - A Diminuir a resolução das texturas
 - B Reduzir o número de triângulos
 - C Diminuir a resolução da janela
 - D Otimizar os pixel shaders
 - E reduzir a física do jogo

- 10) Um Sprite pode ter diversos problemas. Destaque qual das respostas abaixo NÃO é um problema referente aos sprites:
 - A Não se pode calcular uma iluminação correta sobre a geometria que eles representam
 - B São sempre constantes, independente da posição em que observa
 - C podem sofrer grandes problemas de aliasing se a câmera se aproximar
 - D Causam ambiguidades no Z-Buffer
 - E Devem obedecer sequencias corretas de desenho, para que sejam plotadas na ordem correta
- 11) Não podemos dizer que as texturas procedurais:
 - A Possuem resoluções arbitrárias
 - B Muitas vezes não requerem uma etapa de mapeamento de textura
 - C Podem ser usadas para aplicar rugosidade nas superficies
 - D Há muitas que usam funções fractais
 - E São métodos de anti-aliasing para imagens

12) <u>Um normal map</u>:

- A É usado para criar aparências de pequenas perturbações na superficie
- B deforma a malha geométrica
- C é usado no lugar de uma textura
- D Não podem ser usadas em tempo real
- E Apenas podem ser usadas no ray-tracing

Tabela de respostas. Preencha sem rasuras apenas uma resposta:

Questão	1	2	3	4	5	6	7	8	9	10	11	12
Resposta	В	C	D	A	В	E	A	В	В	D	E	A