Diviser pour régner

Table des matières

1	Intr	roduction	4			
2	Le tri-fusion					
	2.1	Trier la concaténation de deux listes triées	4			
		2.1.1 Principe	4			
		2.1.2 Un exemple	,			
	2.2	Le tri fusion	,			
		2.2.1 Exemple	ļ			
		2.2.2 Diviser pour régner appliqué au tri fusion	,			
		2.2.3 Un algorithme du tri-fusion	(
	2.3	Tri fusion pour une liste chainée	(
	2.4	Un autre algorithme qui permet de trier en place	,			
	2.5	Complexité du tri-fusion	-			

CE QU'IL FAUT SAVOIR FAIRE À L'ISSUE DU CHAPITRE :

• Écrire un algorithme utilisant la méthode "Diviser pour régner" (L'exemple de tri fusion permet d'exploiter la récursivité et d'exhiber un algorithme de coût en $nlong_2(n)$ dans le pire des cas.

1 Introduction

Le diviser pour régner est une méthode algorithmique basée sur le principe suivant :

On prend un problème (généralement complexe à résoudre), on divise ce problème en une multitude de petits problèmes, l'idée étant que les "petits problèmes" seront plus simples à résoudre que le problème original. Une fois les petits problèmes résolus, on recombine les "petits problèmes résolus" afin d'obtenir la solution du problème de départ.

Le paradigme "diviser pour régner" repose donc sur 3 étapes :

- DIVISER : le problème d'origine est divisé en un certain nombre de sous-problèmes
- RÉGNER : on résout les sous-problèmes (les sous-problèmes sont plus faciles à résoudre que le problème d'origine)
- COMBINER : les solutions des sous-problèmes sont combinées afin d'obtenir la solution du problème d'origine.

Les algorithmes basés sur le paradigme "diviser pour régner" sont souvent des algorithmes récursifs.

Nous allons maintenant étudier un de ces algorithmes basés sur le principe diviser pour régner : le tri-fusion

2 Le tri-fusion

2.1 Trier la concaténation de deux listes triées

2.1.1 Principe

On se donne deux listes triées A et B et on souhaite obtenir une liste triée C qui contient l'intégralité des termes présents dans ces deux listes. Une première idée naïve consisterait à trier la concaténation A.B de ces deux listes avec un algorithme de tri de son choix. Cette méthode ne faisant aucun cas de la croissance des deux listes initiales, la complexité de ce tri serait celle de l'algorithme de tri choisi.

On peut faire certainement faire mieux en exploitant cette croissance des deux listes

L'algorithme de fusionnement efficace est celui qui tombe sous le sens dès que l'on réfléchit quelques instants à un moyen économique de constituer une seule liste triée à partir de deux listes triées. C'est la réponse à un problème que tout le monde a été amené à résoudre dans le

monde physique. On dispose de deux boites contenant des fiches triées dans l'ordre croissant dont on ne voit que la première fiche :

Pour trier l'ensemble des valeurs, il suffit de comparer le premier terme de chacune des deux listes A et B, d'extraire le plus petit des deux de sa boite/liste et de l'insérer à la fin d'une liste auxiliaire C, puis répéter cette opération jusqu'à ce que tous les éléments des deux boites/listes aient été traités.

Il n'est pas difficile de démontrer que la complexité de cet algorithme est linéaire en le nombre d'éléments contenus dans ces deux listes.

2.1.2 Un exemple

La fusion des 2 tableaux déjà triés est assez simple, prenons comme exemple la fusion entre le tableau [4, 12, 23, 56] et le tableau [3, 32, 35, 42, 57] :

Soit C le tableau issu de la fusion du tableau A = [4, 12, 23, 56] et du tableau B = [3, 32, 35, 42, 57].

- On considère le premier élément du tableau A (4) et le premier élément du tableau B (3) : 3 est inférieur à 4, on place 3 dans le tableau C et on le supprime du tableau B. Nous avons donc alors C = [3], A = [4, 12, 23, 56] et B = [32, 35, 42, 57].
- On recommence ensuite à comparer le premier élément du tableau A (4) et le premier élément du tableau B (32) : 4 est inférieur à 32, on place 4 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4], A = [12, 23, 56] et B = [32, 35, 42, 57].
- On compare le premier élément du tableau A (12) et le premier élément du tableau B (32) : 12 est inférieur à 32, on place 12 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4, 12], A = [23, 56] et B = [32, 35, 42, 57].
- On compare le premier élément du tableau A (23) et le premier élément du tableau B (32) : 23 est inférieur à 32, on place 23 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4, 12, 23], A = [56] et B = [32, 35, 42, 57].
- On compare le premier élément du tableau A (56) et le premier élément du tableau B (32) : 32 est inférieur à 56, on place 32 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4, 12, 23, 32], A = [56] et B = [35, 42, 57].

• On compare le premier élément du tableau A (56) et le premier élément du tableau B (35) : 35 est inférieur à 56, on place 35 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4, 12, 23, 32, 35], A = [56] et B = [42, 57].

- On compare le premier élément du tableau A (56) et le premier élément du tableau B (35) : 35 est inférieur à 56, on place 35 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4, 12, 23, 32, 35], A = [56] et B = [42, 57].
- On compare le premier élément du tableau A (56) et le premier élément du tableau B (42) : 42 est inférieur à 56, on place 42 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4, 12, 23, 32, 35, 42], A = [56] et B = [57].
- On compare le premier élément du tableau A (56) et le premier élément du tableau B (57) : 56 est inférieur à 57, on place 56 dans le tableau C et on le supprime du tableau A. Nous avons donc alors C = [3, 4, 12, 23, 32, 35, 42, 56], A = [] et B = [57].
- Le tableau A est vide, il nous reste juste à placer le seul élément qui reste dans B (57) dans C : C = [3, 4, 12, 23, 32, 35, 42, 56, 57], A = [] et B = [].

La fusion est terminée.

A vous de jouer! 11.1

Reprenez tout le raisonnement qui vient d'être fait sur les tableaux A = [1, 2, 33, 444] et B = [5, 6, 77, 78, 79, 80].

A vous de jouer! 11.2

- Écrire un algorithme itératif qui définit une fonction fusion_ iteratif qui prend deux listes triées A et B en entrée, et qui renvoie la liste C, résultant de la concaténation des deux listes A et B, triée. On utilisera un procédé itératif.
- Implémenter cet algorithme en Python. ***

A vous de jouer! 11.3

Écrire un algorithme récursif qui définit une fonction fusion qui prend deux listes triées A et B en entrée, et qui renvoie la liste C, résultant de la concaténation des deux listes A et B, triée. Implémenter cet algorithme en Python.

Remarque

Cet exercice est utile uniquement afin de s'entraîner sur la récursivité. On constatera que l'écriture récursive n'apporte aucun bénéfice, même pas sur la forme du code.

Dans la suite du tri-fusion, c'est bien la version itérative de la fusion que nous allons utiliser

2.2 Le tri fusion

2.2.1 Exemple

Prenons comme exemple:

C = [23, 12, 4, 56, 35, 32, 42, 57, 3] que l'on veut trier par un tri-fusion.

Faire un tel schéma avec la liste [5,6,1,3,2,7]

2.2.2 Diviser pour régner appliqué au tri fusion

- DIVISER : Si milieu est le point milieu entre debut et fin, alors nous pouvons diviser le sous-tableau T[debut..fin] en deux tableaux T[debut..milieu] et T[milieu + 1, fin].
- RÉGNER : Dans l'étape Régner, nous essayons de trier les sous-réseaux T[debut..milieu] et T[milieu + 1, fin]. Si nous n'avons pas encore atteint le cas de base (le sous-tableau contient un seul élément), nous divisons à nouveau ces deux sous-réseaux et essayons de les trier.
- COMBINER : Lorsque l'étape de conquête atteint l'étape de base et que nous obtenons deux sous-tableaux triés T[debut..milieu] et T[milieu + 1, fin] pour le tableau T[debut..milieu], nous combinons les résultats en créant un tableau trié T[debut..milieu] à partir de deux sous-réseaux triés T[debut..milieu] et T[milieu + 1, fin].

2.2.3 Un algorithme du tri-fusion

```
1 VARIABLE
2 l : liste d'entiers
3 long : longueur de l
4 DEBUT
5 Function tri fusion(l)
      if lonq \ll 1 then
7
         Retourner 1
      end
8
      milieu = long // 2
9
      l1 = l[0 : milieu]
10
      12 = 1[milieu :]
11
      Retourner fusion__iteratif (tri__fusion(l1),tri__fusion(l2))
13 end
```

A vous de jouer! 11.5

Implémenter cet algorithme en Python.

Remarque

Ce n'est pas, ici, un tri en place : on a utilisé une copie (partielle) pour scinder la liste en 2.

2.3 Tri fusion pour une liste chainée

On suppose qu'on dispose de l'objet liste chaînée dont voici une implémentation :

```
class Cellule:
```

```
'''Une cellule d'une liste chaînée'''
def __init__(self,v,s):
    self.valeur = v
    self.suivante = s
```

On ne dipose pas de méthode pour cet objet.

Exercice 11.1

- Créer une fonction **coupe(lst)** de paramètre lst une liste chainée et qui renvoie deux listes issues de lst ayant le même nombre d'éléments, à un près.
- Créer une fonction **fusion(11,12)** de paramètres l1 et l2 deux listes chaînées triées et qui renvoie la fusion triée issue de la concaténation des deux listes l1 et l2
- Créer la fonction **tri_ fusion(lst)** de paramètre une liste chaînée lst et qui renvoie la liste chaînée triée, en utilisant les deux fonctions précédentes.

2.4 Un autre algorithme qui permet de trier en place

Exercice 11.2

- Créer en pseudo langage une fonction inserer_ element_ position qui :
 - a pour paramètre :
 - * l: liste
 - * element : entier à insérer
 - * p : indice sur lequel il fat insérer l'élément
 - modifie en place la liste
- $\bullet \;$ Implémenter cet algorithme en Python

Exercice 11.3

Créer une fonction $fusion_avec_indice$ qui trie en place de l'indice p à l'indice r inclus. Voici le prototype de cette fonction :

Avec ces deux fonctions, il est maintenant facile de créer la fonction $tri_fusion_avec_indice$:

```
def tri_fusion_avec_indice(1,p,r):
    if p < r: # ce qui signifie que l liste comporte au moins 2 éléments
        milieu = (p + r) // 2
        tri_fusion_avec_indice(1,p,milieu)
        tri_fusion_avec_indice(1,milieu+1,r)
        fusion_avec_indice(1,p,milieu,r)
    return l

def tri_fusion2(1):
    if len(1) <= 1:
        return l
    milieu = len(1) // 2
    tri_fusion2(1[:milieu])
    tri_fusion2(1[milieu:])
    return fusion iteratif(tri fusion2(1[:milieu]),tri fusion2(1[milieu:]))</pre>
```

2.5 Complexité du tri-fusion

Étudions la complexité pour tri_fusion :

Supposons d'abord que la taille du tableau initial est $N=2^n$ une puissance de 2. On a donc alors (complexité en nombre de tests) :

$$C(N) = \begin{cases} 1 \text{ si } N = 1 \text{ } (n = 0) \\ 2C(N/2) + N \text{ } sinon \end{cases}$$

(deux appels récursifs avec des tableaux de taille divisée par 2, plus le coût de la fusion). Si on réécrit :

$$C(2^n) = \begin{cases} 1 \text{ si } n = 0 \\ 2C(2^n/2) + 2^n \text{ sinon} \end{cases}$$

Soit:

$$C(2^n) = \begin{cases} 1 \text{ si } n = 0 \\ 2C(2^{n-1}) + 2^n \text{ sinon} \end{cases}$$

Ou encore, si on divise par 2^n

$$\frac{C(2^n)}{2^n} = \begin{cases} 1 \text{ si } n = 0\\ \frac{2C(2^{n-1})}{2^n} + \frac{2^n}{2^n} \text{ sinon} \end{cases}$$

Soit:

$$\frac{C(2^n)}{2^n} = \begin{cases} 1 \sin n = 0 \\ \frac{C(2^{n-1})}{2^{n-1}} + \frac{2^n}{2^n} \sin n \end{cases}$$

On pose $u_n = \frac{C(2^n)}{2^n}$:

$$u_n = \begin{cases} 1 \ si \ n = 0 \\ u_{n-1} + 1 \ sinon \end{cases}$$

 (u_n) est une suite arithmétique de premier terme $u_0 = 1$ et de raison 1, donc $u_n = 1 + n$.

On a donc

$$\frac{C(2^n)}{2^n} = 1 + n$$

Soit

$$C(2^n) = 2^n + n \times 2^n$$

On repasse en "N":

$$C(N) = N + log_2(N) \times N$$

On arrive finalement à une complexité en $O(Nlog_2(N))$.

Exercice 11.4

Vérifier l'intérêt d'avoir une complexité en $O(nlog_2(n))$ au lieu de $O(n^2)$, en remplissant le tableau suivant (les résultats seront exprimés en seconde) :

longueur de la liste	Tri par sélection	Tri par fusion
100		
1000		
10 000		
20 000		
40 000		

Avec une complexité en $O(n^2)$, si on double la taille de la liste, on va multiplier la durée par $4(2^2)$.

Avec une complexité en $O(log_2(n))$, si on double la taille de la liste, on va multiplier la durée par $2 (2 \times log_2(2) = 2)$.

Remarque

$$log_2(1) = 0$$
, $log_2(2) = 1$, $log_2(4) = 2$, $log_2(8) = 3$, $log_2(16) = 4$...

Exercice 11.5

Extrapoler ces données pour compléter le tableau avec $10\ 240\ 000$ éléments (convertir dans une unité facilement interprétable) :

longueur de la liste	Tri par sélection	Tri par fusion
10 240 000		
