Lin Mod M1: 6B

Complete Linear Model to a Bayesian Inference Model M

Bayes:
$$P(Y|B) = N(xB, \sigma^2 I_0)$$
, $P(B) = N(M_0, Z_0)$

Note: 02 is fixed.

Coal: Find mo, Zo such that E[BIY] = B

- $0 \quad Y = X\beta + E \quad E \sim N(0, \sigma^2 I_p) \quad \text{and want to add a prior on } \beta. \text{ Try } m_0 = 0 \text{ , as}$ an "uninformed" guess of the value (rather than expecting $\beta > 0$ or $\beta < 0$). So $\beta \sim N(0, \Sigma_0)$.
- D Just as O alone implies YNN(XB, 02Ir); O=IB+E, EN(0, Zo) implies BNN(0, Zo).

$$\begin{bmatrix} Y \\ 0 \end{bmatrix} = \begin{bmatrix} X \\ I \end{bmatrix} B + \begin{bmatrix} \varepsilon \\ \widetilde{\varepsilon} \end{bmatrix}, \text{ where } \begin{bmatrix} \varepsilon \\ \widetilde{\varepsilon} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \sigma_{px1} \\ I \\ \sigma_{ppx1} \end{bmatrix}, \sigma^2 \begin{bmatrix} I_p & 0 \\ 0 & \Sigma_o \end{bmatrix} \end{pmatrix}$$

Above is L.S. model whose estimates: $P(\beta|Y) \propto P(Y|B) \cdot P(B)$ characterize the complete Bayeslan model.

Setting Mo = 0 and keeping Σ_0 such that variance is large puts low weight on the prior and more weight on the L.S. estimate $\tilde{\beta}$: e.g. a Σ_{np} , $\alpha >> 1$.

The prior would thus be $\beta \sim N(\emptyset, (aI_{n-p})\sigma^2)$ for large α , and $E[\beta|Y] = \tilde{\beta}$.

$$M_0 = 0$$

$$\sum_{o} = a \prod_{n-p} o^2, a > 71$$