5. Introduction to Analysis of Algorithms

Analysis of Algorithms

Performance evaluation in terms of computer resources used:

- memory/disk space (space complexity)
- computing/cpu time (time complexity)

Space Complexity

- memory/disk space used by the algorithm
- Searching
 - Linear Search = n
 - Binary Search = n
- Sorting
 - Bubble Sort = n
 - Insertion Sort = n

Time Complexity

- computing/cpu time used by the algorithm
- Question: How to estimate the time required by a program?

Factors affecting execution/running time:

- computer used
- compiler
- algorithm used
- input to the algorithm

Two ways to estimate

- 1. empirical
 - code it up, then run it along with a timer
- 2. algorithm analysis
 - obtain the expected running time of a pseudocode (or actual code) without actually running it

Empirical Running Time

```
#include <time.h>
clock t start, stop;
double cpu time used;
start = clock();
/* DO THE WORK HERE */
stop = clock();
cpu time used = ((double)(stop-start)) / CLOCKS PER SEC
```

Algorithm Analysis

 A function that maps problem size(input size) into the time required to solve the problem, T(n)

• $T(n) \approx O(n^2)$

Mathematical Definitions

- O (Big-Oh) upper bound T(n) = O(f(n)) if there are constants c and n_0 such that $T(n) \le c \cdot f(n)$ when $n \ge n_0$.
- Ω (Big-Omega) lower bound $T(n) = \Omega(g(n))$ if there are constants c and n_0 such that $T(n) \ge c \cdot g(n)$ when $n \ge n_0$.
- Θ (Theta) asymptotically tight bound $T(n) = \Theta(h(n))$ if and only if T(n) = O(h(n)) and $T(n) = \Omega(h(n))$.

Mathematical Definitions

(a)
$$f(n) \in \theta(g(n))$$

$$f(n) = \theta(g(n))$$

(b)
$$f(n) \in \Omega(g(n))$$

$$f(n) = \Omega(g(n))$$

(c)
$$f(n) \in O(g(n))$$

$$f(n) = O(g(n))$$

Reference: Jacildo A.J. Mathematical Foundations. CMSC 142 slides.

Big-Oh notation – upper bound

T(n) = O(f(n)) if there are constants c and n_0 such that $T(n) \le c$ f(n) when $n \ge n_0$.

Example:

Compare $T(n) = 1,000n \text{ and } f(n) = n^2$.

Note: T(n) is larger than f(n) for small values of n, but n² grows at a faster rate than T(n).

Thus, T(n) \approx O(n²), for c=1 and n_0 =1,000 OR c=10 and n_0 =100.

 $c \cdot n^2$ is at least as large as 1,000n.

Big-Oh notation – upper bound

When we say T(n) = O(f(n)), then

- f(n) is an upper bound on T(n)
- $f(n) = \Omega(T(n))$, T(n) is a lower bound on f(n)

If $g(n) = 2n^2$, then

- $g(n) = O(n^2)$ or $O(n^3)$ or $O(n^4)$
- but the best is O(n²) tight bound

Lower bound vs. Upper bound

- Lower bound analysis
 - are used to describe how fast a given problem can be solved
- Upper bound analysis
 - are used to describe the worst-case performance of an algorithm

Complexity classes

Big-Oh notation	Description (speed of execution)
O(1)	constant
O(log n)	logarithmic
O(log ² n)	log-squared
O(n)	linear
O(n log n)	
O(n²)	quadratic
O(n ³)	cubic
O(n ^k), k≥1	polynomial
O(a ⁿ), a>1	exponential

Growth rate of complexity classes

class	n=2	n=16	n=256	n=1024
1	1	1	1	1
log n	1	4	8	10
n	2	16	256	1024
n log n	2	64	2948	10240
n ²	4	256	65536	1048576
n ³	8	4096	16777216	1.07E+09
2 ⁿ	4	65536	1.16E+77	1.8E+308

Reference: Jacildo A.J. Algorithm Analysis Techniques. CMSC 142 slides.

Analysis - Example

• Calculate: $\sum_{i=1}^{n} i^3$

```
int sum(int n) {
  int i, partial_sum;
  partial_sum = 0;
  for (i=1; i<=n; i++)
     partial_sum += i * i * i;
  return partial_sum;
}</pre>
```


Analysis - Example

```
int sum(int n) {
   int i, partial_sum;
   partial_sum = 0;
   for (i=1; i<=n; i++) (2)
      partial_sum += i * i * i; (3)
   return partial_sum;
}</pre>
```

- Lines 1 and 4: 1 unit each
- Line 3: 3 units per time executed = 3n
- Line 2: 1 to initialize, n+1 tests, n increments = 2n+2
- Total: 5n+4, Thus T(n) = O(n)

Rule 1 — FOR loops

The running time of a for loop is at most the running time of the statement inside the for loop (including tests) times the number of iterations.

Rule 2 — Nested FOR loops

The total running time of a statement inside a group of nested for loops is the running time of the statement multiplied by the product of the sizes of all the for loops.

Example:

```
for (i=0; i<n; i++)
for (j=0; j<n; j++)
k++;
```


Rule 3 — Consecutive statements

```
The maximum is the one that counts:

If T_1(n) = O(f(n)) and T_2(n) = O(g(n)) then

T_1(n) + T_2(n) = \max(O(f(n)), O(g(n)))
```

Example:

```
for (i=0; i<n; i++)
    a[i] = 0;
for (i=0; i<n; i++)
    for (j=0; j<n; j++)
    a[i] += a[j] + i + j;
```


Rule 4 − IF/ELSE:

For the fragment

```
if (cond)
$1
else
$2
```

the running time of an if/else statement is never more than the running time of the test plus the larger of the running times of \$1 and \$2.

```
sum = 0;
for (i=0; i<n; i++)
    sum++;</pre>
```

• $T(n) \approx O(n)$


```
sum = 0;
for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    sum++;</pre>
```

• $T(n) \approx O(n^2)$


```
sum = 0;
for (i=0; i<n; i++)
  for (j=0; j<n*n; j++)
    sum++;</pre>
```

• $T(n) \approx O(n^3)$


```
sum = 0;
for (i=0; i<n; i++)
  for (j=0; j<i; j++)
    sum++;</pre>
```

```
• i=0, 0
```

$$\sum\nolimits_{j=1}^{n-1} j$$

- i=1, 1
- i=2, 2
- i=3, 3
- i=n-1, n-1
- $T(n) \approx O(n^2)$

$$\sum_{j=1}^{n-1} j = \underline{n(n-1)}$$

- S = 1 + 2 + 3 + ... + (i-1)
- S = (n-1) + (n-2) + (n-3) + ... + 1
- 2S = n + n + n + ... + n
- 2S = n(n-1)
- S = n(n-1)/2
- $T(n) = O(n^2)$


```
sum = 0;
for (i=0; i<n; i++)
   if(i%2==0)
      sum++;
else
   for (j=0; i<n; i++)
      sum+=2;</pre>
```

• $T(n) = O(n^2)$

Search Algorithms

- Linear Search
 - Best-case complexity: O(?)
 - Worst-case complexity: O(?)
- Binary Search
 - Best-case complexity: O(?)
 - Worst-case complexity: O(?)

Linear Search

Linear Search - list is not necessarily sorted

```
int linear_search(int a[], int n, int x) {
   int i;
   for(i=0;i<n;i++)
      if (a[i]==x) break; //found x
   return(i<n); //if x is found i<n else i=n
}</pre>
```

```
a 5 2 1 4 3
a[0] a[1] a[2] a[3] a[4] n=5
```


Search Algorithms

- Linear Search
 - Best-case complexity: O(1)
 - Worst-case complexity: O(n)
- Binary Search
 - Best-case complexity: O(?)
 - Worst-case complexity: O(?)

Binary Search - list is sorted

```
int binary search(int a[], int n, int x){
   int lower, upper, middle;
   lower = 0;
   upper = n-1;
   while(lower <= upper) {</pre>
      middle = (lower + upper)/2;
       if (x > a[middle]) lower = middle+1;
       else if (x < a[middle] upper = middle - 1;
      else return(1);
   return(0);
```

x=24											
а	2	5	12	15	21	25	31	32	43	50	
	L=0				M=4					U=9	

x=24											
а	2	5	12	15	21	25	31	32	43	50	
	L=0				M=4					U=9	

25	31	32	43	50
L=5		M=7		U=9

Binary Search

25	31	32	43	50
L=5		M=7		U=9

Search Algorithms

- Linear Search
 - Best-case complexity: O(1)
 - Worst-case complexity: O(n)
- Binary Search
 - Best-case complexity: O(1)
 - Worst-case complexity: O(log n)

Sorting Algorithms

- Bubble Sort
 - Best-case complexity: O(?)
 - Worst-case complexity: O(?)
- Insertion Sort
 - Best-case complexity: O(?)
 - Worst-case complexity: O(?)

Bubble Sort

```
void bubble_sort(int a[], int n) {
   int i, j;

   for(i=0;i<n-1;i++)
       for(j=1;j<n;j++)
       if (a[j]<a[j-1])
        swap(&a[j],&a[j-1]);
}</pre>
```


	a[0]	a[1]	a[2]	a[3]	a[4]
i=0	5	4	3	2	1

n=5

	a[0]	a[1]	a[2]	a[3]	a[4]	n=5
i=0	5	4	3	2	1	
						1
	4	5	3	2	1	j=1
	4	5	3	2	1	

	a[0]	a[1]	a[2]	a[3]	a[4]	n=5
i=0	5	4	3	2	1	
i=1	4	3	2	1	5	
	3	4	2	1	5	j=1
	3	2	4	1	5	j=2
	3	2	1	4	5	j=3

	a[0]	a[1]	a[2]	a[3]	a[4]	n=5
i=0	5	4	3	2	1	
i=1	4	3	2	1	5	
i=2	3	2	1	4	5	
i=3	2	1	3	4	5	
			3		3	
	1	2	3	4	5	

Bubble Sort (pre-sorted input)

Sorting Algorithms

- Bubble Sort
 - Best-case complexity: O(n²)
 - Worst-case complexity: O(n²)
- Insertion Sort
 - Best-case complexity: O(?)
 - Worst-case complexity: O(?)

Insertion Sort

```
void insertion_sort(int a[], int n) {
    int i,j;

    for(i=1;i<n;i++)
        for(j=i;j>0;j--)
        if (a[j]<a[j-1])
            swap(&a[j-1],&a[j]);
        else
            break;
}</pre>
```


Insertion Sort (inversely sorted input)

Insertion Sort (inversely sorted input)

Insertion Sort (inversely sorted input)

	a[0]	a[1]	a[2]	a[3]	a[4]	n=5
i=1	5	4	3	2	1	
i=2	4	5	3	2	1	
i=3	3 _	4 -	5 _	2	1	
i_4	2	2	1	F	1	
i=4	2	3	4 🔨	5	1	
	1	2	3	4	5	

Insertion Sort (pre-sorted input)

Sorting Algorithms

- Bubble Sort
 - Best-case complexity: O(n²)
 - Worst-case complexity: O(n²)
- Insertion Sort
 - Best-case complexity: O(n)
 - Worst-case complexity: O(n²)

Tree-based Algorithms

- BST Operations
 - Search/Insert:
 - Worst-case complexity: O(?)
- AVL Operations
 - Search/Insert
 - Worst-case complexity: O(?)


```
typedef struct node{
  int value;
  struct node *left;
  struct node *right;
  struct node *parent;
}BST;
```

```
BST *search(BST *root, int x) {
  BST *temp=root;

while((temp!=NULL)&&(temp->value!=x)) {
  if(x < temp->value)
    temp = temp->left;
  else
    temp = temp->right;
}

return temp;
}
```



```
typedef struct node{
  int value;
  struct node *left;
  struct node *right;
  struct node *parent;
}BST;

int main(){
  BST *root=NULL;
}
```

```
void insert(BST *root, int x) {
  BST *temp;
  temp=(BST *) malloc(sizeof(BST));
  if(temp==NULL){
    printf("Insufficient Memory");
    exit(1);
  temp->value=x;
  temp->left=NULL;
  temp->right=NULL;
  temp->parent=NULL;
  insert2(root, temp);
```

```
typedef struct node{
  int value;
  struct node *left;
  struct node *right;
  struct node *parent;
}BST;

int main(){
  BST *root=NULL;
}
```

```
void insert2(BST *root, BST *temp){

if(root==NULL)
  root=temp;
else{
  temp->parent=root;
  if ((root)->value > temp->value)
    insert2(root->left, temp);
  else
    insert2(root->right, temp);
}
```


BST - drawback

Tree-based Algorithms

- BST Operations
 - Search/Insert:
 - Worst-case complexity: O(n)
- AVL Operations
 - Search/Insert
 - Worst-case complexity: O(log n)

Design technique

- Exponentiation
 Obvious Algorithm:
 - compute xⁿ using n-1 multiples
 Recursive Algorithm:
 - less number of multiplications

Design technique

Exponentiation

```
int pow(int x, int n) {
    if(n==0) return 1;
    if(n==1) return x;
    if(even(n))
        return (pow(x*x,n/2));
    else
        return (pow(x*x,n/2)*x);
}
```


Design technique

```
int pow(int x, int n) {
    if(n==0) return 1;
    if(n==1) return x;
    if(even(n))
        return (pow(x*x,n/2));
    else
        return (pow(x*x,n/2)*x);
}
```

- $2^9 = (4^4)^*2$
- $4^4 = (16^2)$
- $16^2 = (256^1)$
- $256^1 = 256$

