6.034 Artificial Intelligence: Lecture 6 Constraint Satisfaction

Professor Robert C. Berwick September 16, 2020

Rules

□Lines in a drawing can meet up in a few different ways (these are the "constraints")

☐Places where lines meet up are called junctions

□Not all junctions are physically realizable

Requirements

☐Three assumptions

☐ Vocabulary of Junction types

Three Assumptions

1) General position

no "screw cases"

2) Trihedral vertices

all line junctions formed by intersection of 3 planes

3) Four line labels

Note: also by convention, we assume boundaries are traversed "clockwise"

Vocabulary of Junction types

18 atomic <u>junction</u> (vertex) types (where 2 or 3 lines meet), assuming 3-faced vertices:

- (i) 6 <u>L</u>s
- (ii) 5 Forks
- (iii) 4 <u>T</u>s
- (iv) 3 Arrows

Vocabulary of junction types

These come from different views of the object

The full library of junction types – just 18 labels

any of the other 4 labels, +, -, >, or >

= Forks 4, 5

Total: 208 18 physically realizable out of 208 logically possible – constraints

Now let's see how to do "constraint satisfaction" using these constraints

Vocabulary for a general method: the Domain Reduction

- Variable V: something that can have an assignment
- Value x: something that can be assigned
- Domain D: a bag of values
- Constraint C: a condition that must be satisfied among variable values

Systematic Idea for Map Coloring: Domain Reduction Algorithm

- For each depth first search assignment
 - For each variable V_i considered \leq

we have choices here

- For each value x_i in D_i (domain of V_i)
 - For each constraint C between V_i and other variables V_j we use binary constraints (e.g., Y/N)
 - If $\nexists x_i \in D_i$ such that $C(x_i, x_i)$ is satisfied

Domain

- **Reduction** Then remove x_i from D_i
- Algorithm If D_i empty, then backtrack

Summary: Constraint satisfaction

Different architectures/algorithms that exploit

Constraints exposed by

Representations that support

Models of perception, thinking, and action

Many different, difficult problems can be solved this way!