Genetische Statistik

WS 2021/2022 R - Übung 2 - Deskription

Dr. Janne Pott (janne.pott@uni-leipzig.de)

November 16, 2021

Aufgabe 1: Deskriptive Statistik

Datensatz ergometer.RData

- Berechnung BMI, Deskription ergometer, lactate, BMI und Alter für Männer und Frauen getrennt.
- Erstellung QQ-Plots und Histrogramme; Test auf Normalverteilung.
- Vergleich ergometer zwischen den Geschlechtern
- Korrelation ergometer mit lactate, BMI und Alter.

Aufgabe 1: Lösung a) - BMI

```
# BMI
class(myDat[,weight])
## [1] "numeric"
class(myDat[,height])
  [1] "numeric"
myDat[,BMI:=round(weight/height^2,2)]
```

Aufgabe 1: Lösung a) - Deskription

```
myCols <- c("ergometer","lactate","alter","BMI")</pre>
tab1<-myDat[sex==1, sapply(.SD, summary),.SDcols=myCols]
tab2<-myDat[sex==1, sapply(.SD, sd),.SDcols=myCols]</pre>
tab3<-myDat[sex==1, sapply(.SD, var),.SDcols=myCols]
tab male<-rbind(tab1,tab2,tab3)</pre>
rownames(tab male) [c(7,8)] \leftarrow c("SD", "Var")
tab1<-myDat[sex==2, sapply(.SD, summary),.SDcols=myCols]
tab2<-myDat[sex==2, sapply(.SD, sd),.SDcols=myCols]
tab3<-myDat[sex==2, sapply(.SD, var),.SDcols=myCols]
tab female<-rbind(tab1,tab2,tab3)</pre>
rownames(tab female) [c(7,8)] < -c("SD","Var")
```

Aufgabe 1: Lösung a) - Deskription Männer

Table 1: Deskriptive Statistiken - Männer

	Ergometer	Laktat	Alter	ВМІ
Min.	1.81	8.00	51.93	21.05
1st Qu.	2.07	15.00	58.92	23.85
Median	2.25	17.00	67.91	25.29
Mean	2.28	17.09	66.11	25.25
3rd Qu.	2.42	19.00	72.15	26.79
Max.	3.20	26.00	76.90	30.52
SD	0.29	3.17	6.99	2.10
Var	0.08	10.06	48.84	4.42

Aufgabe 1: Lösung a) - Deskription Frauen

Table 2: Deskriptive Statistiken - Frauen

	Ergometer	Laktat	Alter	ВМІ
Min.	1.86	9.00	46.94	19.46
1st Qu.	2.10	13.00	58.92	22.20
Median	2.34	14.50	63.91	23.24
Mean	2.36	14.68	63.64	23.28
3rd Qu.	2.51	16.00	69.91	24.55
Max.	3.34	24.00	76.90	27.58
SD	0.32	2.75	7.52	1.78
Var	0.10	7.59	56.61	3.18

Aufgabe 1: Lösung b) - Plots Ergometer

Aufgabe 1: Lösung b) - Plots Laktat

Aufgabe 1: Lösung b) - Plots Alter

Aufgabe 1: Lösung b) - Plots BMI

Aufgabe 1: Lösung b) - Test Normalverteilung

```
p1 = ks.test(myDat$ergometer,
             pnorm,
             mean=mean(myDat$ergometer),
             sd=sd(myDat$ergometer))
p2 = ks.test(myDat$lactate,pnorm,mean=mean(myDat$lactate),sd=
p3 = ks.test(myDat$alter,pnorm,mean=mean(myDat$alter),sd=sd(myDat$alter)
p4 = ks.test(myDat$BMI,pnorm,mean=mean(myDat$BMI),sd=sd(myDat$
tab4 = data.table(parameter = c("Ergometer", "Laktat",
                                  "Alter", "BMI"),
                   KS Test = c(p1$p.value,p2$p.value,
                               p3$p.value,p4$p.value))
```

Aufgabe 1: Lösung b) - Test Normalverteilung

Table 3: Kolmogorov-Smirnov Test auf Normalverteilung

	Ergometer	Laktat	Alter	ВМІ
KS_Test	0.0666	0.0301	0.0202	0.6896

- 1 Die zwei Gruppen sind unabhängig voneinander
- ② Die zwei Gruppen haben gleiche Varianz oder Streuung
- Oie zwei Gruppen sind normal-verteilt

- Die zwei Gruppen sind unabhängig voneinander
 - Check, Männer & Frauen sind unabhängig
- ② Die zwei Gruppen haben gleiche Varianz oder Streuung
 - Check, visuell via Violinplot; 1a) Varianz sehr ähnlich
- 3 Die zwei Gruppen sind normal-verteilt

- Die zwei Gruppen sind unabhängig voneinander
 - Check, Männer & Frauen sind unabhängig
- ② Die zwei Gruppen haben gleiche Varianz oder Streuung
 - Check, visuell via Violinplot; 1a) Varianz sehr ähnlich
- 3 Die zwei Gruppen sind normal-verteilt
 - Check, One-sample Kolmogorov-Smirnov test p-Wert = 0.06 -> Normalverteilung kann nicht abgelehnt werden
- -> Student's t-Test

- 1 Die zwei Gruppen sind unabhängig voneinander
 - Check, Männer & Frauen sind unabhängig
- 2 Die zwei Gruppen haben gleiche Varianz oder Streuung
 - Check, visuell via Violinplot; 1a) Varianz sehr ähnlich
- Oie zwei Gruppen sind normal-verteilt
 - One-sample Kolmogorov-Smirnov test p-Wert ist grenzwertig
- -> Wilcoxon Rank Sum Test

- -> Bekannte Verteilung
- -> Bekannte Mathematische Formeln
- -> Bekannte Parameter, die die Form der Verteilung bestimmen
- -> Student's t-Test: parameter-abhängiger Test

Nullhypothese: Die Mittelwerte der zwei Gruppen sind gleich.

-> Wilcoxon Rank Sum Test: parameter-freier Test

Nullhypothese: Die Mediane der zwei Gruppen sind gleich.

Aufgabe 1: Lösung c) - Student's t-Test

```
t.test(myDat$ergometer ~ myDat$sex)
##
##
   Welch Two Sample t-test
##
## data: myDat$ergometer by myDat$sex
## t = -1.8014, df = 197.08, p-value = 0.07317
## alternative hypothesis: true difference in means between gr
## 95 percent confidence interval:
## -0.160775924 0.007273509
## sample estimates:
## mean in group 1 mean in group 2
```

2.281304 2.358056

Aufgabe 1: Lösung c) - Wilcoxon Rank Sum Test

wilcox.test(myDat\$ergometer ~ myDat\$sex)

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: myDat$ergometer by myDat$sex
## W = 4251, p-value = 0.07899
```

alternative hypothesis: true location shift is not equal to

Alter & Laktat sind nicht normalverteilt -> Spearmans rank correlation

```
# Korrelation
# All credits to https://www.r-bloggers.com/more-on-exploring
cor.prob \leftarrow function (X, dfr = nrow(X) - 2) {
  R <- cor(X, use="pairwise.complete.obs", method="spearman")
  above \leftarrow row(R) < col(R)
  r2 <- R[above]^2
  Fstat \leftarrow r2 * dfr/(1 - r2)
  R[above] <- 1 - pf(Fstat, 1, dfr)
  R[row(R) == col(R)] \leftarrow NA
  R.
```

Table 4: Correlation - spearmans rho p-value

	Ergometer	Laktat	Alter	BMI
ergometer	NA	0.00000	0.0000	0.62813
lactate	-0.47388	NA	0.0000	0.00000
alter	-0.55685	0.76555	NA	0.39244
BMI	-0.03445	0.60313	0.0608	NA

Table 5: Correlation - spearmans rho p-value

	Ergometer	Laktat	Alter	BMI	Watt
ergometer	NA	0.00000	0.00000	0.62813	0.00000
lactate	-0.47388	NA	0.00000	0.00000	0.10158
alter	-0.55685	0.76555	NA	0.39244	0.00001
BMI	-0.03445	0.60313	0.06080	NA	0.00000
watt	0.62047	0.11611	-0.31246	0.63012	NA

Aufgabe 1: Lösung c) - Student's t-Test - Wdh

```
t.test(myDat$watt ~ myDat$sex)
##
##
   Welch Two Sample t-test
##
## data: myDat$watt by myDat$sex
## t = 6.5682, df = 188.57, p-value = 4.821e-10
## alternative hypothesis: true difference in means between gr
## 95 percent confidence interval:
## 19.04469 35.39443
## sample estimates:
## mean in group 1 mean in group 2
```

##

180.0949 152.8754

Aufgabe 1: Lösung c) - Wilcoxon Rank Sum Test-Wdh

wilcox.test(myDat\$watt ~ myDat\$sex)

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: myDat$watt by myDat$sex
## W = 7410.5, p-value = 2.151e-09
## alternative hypothesis: true location shift is not equal to
```


Aufgabe 2: Gepaarte Tests

- Deskription
- Test Handlängenunterschied zwischen Männern & Frauen
- Test Längenunterschiede zwischen Schreib- und Nichtschreibhanden für Männer und Frauen getrennt
- Beziehung zwischen Schreibhand, Armverschränkung und Klatschen
- Beziehungen zwischen Größe, Länge der Hand und Unterschied zwischen Schreib-/Nichtschreibhand für Männer und Frauen getrennt

Aufgabe 2: Lösung a) - Deskription binär

```
# binäre oder kategoriale Parameter
myDat2[,.N,by=sex]
## sex N
## 1: 2 117
## 2: 1 116
myDat2[,.N,by=WHnd]
## WHnd N
## 1: 0 216
## 2: 1 17
myDat2[,.N,by=Fold]
```

Fold N ## 1: 0.0 119 ## 2: 0.5 18

Aufgabe 2: Lösung a) - Deskription kontinuierlich

Table 6: Deskriptive Statistiken

	Länge Schreibhand	Länge der Nichtschreibhand	Größe
Min.	13.000	12.500	1.500
1st Qu.	17.500	17.500	1.650
Median	18.500	18.500	1.710
Mean	18.691	18.627	1.723
3rd Qu.	19.800	19.800	1.800
Max.	23.200	23.500	2.000
SD	1.852	1.914	0.099
Var	3.430	3.662	0.010

Aufgabe 2: Lösung b) - Handlängenunterschiede Männer vs Frauen

Aufgabe 2: Lösung b) - Handlängenunterschiede Männer vs Frauen

Table 7: Student's t-Test

	WrHnd	NWHnd	
t_Test	2.16e-21	1.71e-23	

Aufgabe 2: Lösung c) - Handlängenunterschiede Schreib -vs Nichtschreibhand

```
female<-sex==2
par(mfrow=c(2,2))
hist(dif[female],breaks = 10,main="Histogram der Differenz (From the state of the st
```

boxplot(WrHnd[!female], NWHnd[!female], main="Boxplot - Männer"

Aufgabe 2: Lösung d) - Beziehung binäre Variablen

```
filt1<-Fold!=0.5 & Clap!=0.5
table(Fold[filt1],Clap[filt1])
##
##
       0 1
##
    0 71 22
##
     1 60 16
fisher.test(Fold[filt1],Clap[filt1])
##
   Fisher's Exact Test for Count Data
##
##
## data: Fold[filt1] and Clap[filt1]
## p-value = 0.715
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
```

```
cor.prob(myDat2[female,c(8,3,4,9)])
```

```
##
           height WrHnd
                                   NWHnd
                                               dif
## height NA 2.269064e-05
                             0.0005397787 0.223895998
                 NA
                             0.000000000 0.119617496
## WrHnd
        0.3808957
## NWHnd
        0.3150896 9.060405e-01
                                      NA 0.007931051
## dif
        0.1132948 1.446827e-01 -0.2443451677
                                                NA
```

```
cor.prob(myDat2[!female,c(8,3,4,9)])
```

```
##
         height
                       WrHnd
                                   NWHnd
                                               dif
## height NA 0.0001751341
                             0.0002678517 0.23436151
## WrHnd
        0.3415641
                          NΑ
                             0.0000000000 0.04027023
## NWHnd
        0.3323179 0.9485226249
                                      NA 0.35412989
        0.1112761 0.1907410515 -0.0868110059
## dif
                                                NΑ
```

Ein Blick auf die Histogramme zeigt, dass die Daten von Schreib- und Nicht-Schreibhand gut genug normal-verteilt sind. Daher kann hier ein