Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE210

A.A. 2010-2011 - Docente: Prof. A. Verra Tutori: Simona Dimase e Annamaria Iezzi

> Tutorato 6 (26 Novembre 2010) Coniche

- 1. Sia V uno spazio vettoriale reale di dimensione 3 e sia $\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3}$ una sua base \mathcal{B} ortonormale rispetto a un prodotto scalare $s: V \times V \to \mathbb{R}$. Si determinino:
 - (a) Le matrici rispetto a $\mathcal B$ delle forme bilineari simmetriche F tali che
 - F è non degenere;
 - $\overrightarrow{b_1}$, $\overrightarrow{b_2}$ sono isotropi;
 - $F(\overrightarrow{b_1}, \overrightarrow{b_3}) = F(\overrightarrow{b_2}, \overrightarrow{b_3}) = 0;$
 - $F(\overrightarrow{b_1}, \overrightarrow{b_2}) = F(\overrightarrow{b_3}, \overrightarrow{b_3}).$
 - (b) Determinare una base ortonormale diagonalizzante per ogniF.

(Prova di esonero del 10-11-2008)

2. Sia \mathcal{C} la conica di $\mathbb{A}^2(\mathbb{R})$ di equazione:

$$x^2 + 5xy + 6y^2 - 4 = 0.$$

- (a) Riconoscere che $\mathcal C$ è un'iperbole non degenere e determinare la forma canonica ad essa affinemente equivalente.
- (b) Trovare il luogo dei punti medi delle corde di \mathcal{C} parallele al vettore $\overrightarrow{v} = (1,0)$ e verificare che tali punti medi sono allineati.
- 3. Sia data in $\mathbb{A}^2(\mathbb{R})$ la conica $\mathcal{C}_{(a,b)}$ di equazione:

$$x^2 + 6xy - by^2 - a = 0.$$

- (a) Classificare $C_{(a,b)}$ al variare di $(a,b) \in \mathbb{R}^2$. Esistono valori di $a,b \in \mathbb{R}$ per cui $C_{(a,b)}$ sia una parabola non degenere?
- (b) Determinare a e b tali che la conica $C_{(a,b)}$ passi per i punti $P_1 = (0, \sqrt{2})$ e $P_2 = (1, -3 + \sqrt{10})$.
- (c) Sia \mathcal{C} la conica che verifica (b) e sia \mathcal{D} la conica di equazione xy 3x 2y + 4 = 0. Esiste un'affinità T tale che $T(\mathcal{C}) = \mathcal{D}$? In caso affermativo determinarla.
- 4. Sia \mathcal{C} una conica affine avente equazione

$$F(x,y) = \begin{pmatrix} 1 & x & y \end{pmatrix} A \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} = 0, \qquad A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{01} & a_{11} & a_{12} \\ a_{02} & a_{12} & a_{22} \end{pmatrix}$$

Sia
$$A_{00} = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$
.

- (a) Posto $X = \begin{pmatrix} x \\ y \end{pmatrix}$ e $\overrightarrow{a} = \begin{pmatrix} a_{01} \\ a_{02} \end{pmatrix}$, verificare che $F(x,y) = {}^t X A_{00} X + 2 {}^t \overrightarrow{a} X + a_{00}$.
- (b) Verificare che il rango di A e il segno di $\det A_{00}$ sono invarianti affini.

(c) Dimostrare che \mathcal{C} è una conica a centro $\Leftrightarrow \mathcal{C}$ è simmetrica rispetto ad un unico punto P_0 , dove le coordinate di $P_0 = (x_0, y_0)$ (detto *centro*) sono soluzione del sistema lineare:

$$\begin{cases} a_{01} + a_{11}x + a_{12}y = 0 \\ a_{02} + a_{12}x + a_{22}y = 0 \end{cases}$$

- (d) Sia \mathcal{D} è una conica a centro con centro nel punto Q_0 . Dimostrare che se \mathcal{C} e \mathcal{D} sono affinemente equivalenti tramite l'affinità f (cioè $f(\mathcal{C}) = \mathcal{D}$) allora risulta $f(Q_0) = P_0$.
- 5. Sia \mathcal{C} l'ellisse di $\mathbb{E}^2(\mathbb{R})$ di equazione:

$$2x^2 + 4xy + 5y^2 - 4x - 2y - 3 = 0.$$

- (a) Determinare tutte le isometrie di $\mathbb{E}^2(\mathbb{R})$ che trasformano \mathcal{C} nella forma canonica \mathcal{D} ad essa congruente.
- (b) Determinarne il centro, i due assi di simmetria e i quattro vertici.
- 6. Determinare le equazioni di tutte le coniche degeneri a centro \mathcal{C} in $\mathbb{A}^2(\mathbb{C})$:
 - (a) aventi centro in C = (0, -1) e passanti per i punti $P_1 = (1, 2i)$ e $P_2 = (2, 1)$.
 - (b) aventi centro in C = (-3, 1) e passanti per i punti $P_1 = (-1, 0)$ e $P_2 = (1, -1)$.