

Multimedia Systems

Dr Laura Toni

l.toni@ucl.ac.uk

University College London

Today Lecture

Introduction to Information compression

- Source Coding
- Information and Entropy
- Variable length coding
- Quantization

Multimedia Systems

- Image and Lossy Compression
 - Transforms
 - JPEG Quantization
 - JPEG Lossless Compression
- Video Compression
 - Motion Compensation

Block Diagram for Image Compression

Signal Decomposition:

- Compact energy into a small number of coefficients
- Decorrelate the components of the signal

Quantization:

- Make approximations to the transform coefficients
- Selectively throw away information

Lossless coding

- Variable length coding (e.g., Huffman Coding)
- Choose short/long codewords to minimize number of bits

Transform Coding

- We are interested in transforming a signal or image from the spatial domain to the frequency domain
- by itself, the transform does not save any bits
 does not introduce any distortion
- both of these happen when we throw away information -"lossy compression" implemented by the quantizer

2-d DCT Basis Functions

$$C(u,v) = \alpha(u)\alpha(v)\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)\cos\left[\frac{(2x+1)u\pi}{2N}\right]\cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

The whole array of basis functions looks
 like this:

DC coefficient

The array of DCT coefficients tells how much of each of these basis images we need to regenerate original image

Why is the DCT a good idea?

Smooth areas in the images have pixels highly correlated

- Pixels around edges are less correlated
- Our visual system is less sensitive to distortion around edges
- We want to protect smooth areas the most

- DCT has excellent energy compaction for highly correlated data (smooth areas).
- Low frequencies in the DCT correspond to smooth areas
- We can quantize less heavily low frequencies low fr. smooth more sensitive way fr. ldge less sensitive

Quantization after Transforming

- $\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & 10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$
- After the DCT, we still have N^2 numbers to represent a block: N^2 pixels \longleftrightarrow N^2 coefficients

- However, the N² coefficients will have
 - Lot of values near zero
 - Lot of values which represent high frequency info

Block Diagram for Image Compression

Signal Decomposition:

- Compact energy into a small number of coefficients
- Decorrelate the components of the signal

Quantization:

- Make approximations to the transform coefficients
- Selectively throw away information

Lossless coding

- Variable length coding (e.g., Huffman Coding)
- Choose short/long codewords to minimize number of bits

Let's continue the example

Pixel intensity (N² values)

Transformed coordinates (N² values)

How can we apply the quantizer?

Let's continue the example

We consider a quantizer matrix, in which higher frequency are quantized more heavily

Let's continue the example

Quantized DCT

Can we reconstruct the image?

however visually the blocks are not very different

Hence, we highly compressed the image without having "perceptual" losses!

Source Coding

Take Home Message

- Information theory tells us to look at the probability of the source when coding (most probable words, shortest bits)
- Quantizer follows the same concept: quantize heavily the least probable ranges
- Image compression is composed of
 - There is redundancy in the images.
 - Artefacts in high-frequencies (edges) are less noticeable from the human eye
 - Source transformation (to compact the energy most high frequency values will be low)
 - Quantizer (2D quantizer that will cut off high-frequencies)
 - Zig-zag rastering will maximize the probability of having 0s
 - Huffman lossless code as last step

Thank You