Indice delle domande degli esami orali: Ingegneria Informatica LM

Questo file contiene le testimonianze degli esami orali di vari studenti del corso di laurea in **Ingegneria Informatica Laurea Magistrale** all' **Unical** (*Università della Calabria*) e fa parte del progetto Indice Argomenti Orali gestito dall'organizzazione **UnicalLoveTelegram**

Leggi il nostro README per conoscere tutti i dettagli del progetto, sapere come partecipare e come sfogliare tutto il nostro materiale!

- Indice delle domande degli esami orali: Ingegneria Informatica LM
- Software Security
 - Angelo Furfaro
- · Analisi di Social Network e Media
 - Andrea Tagarelli
- Machine e Deep Learning
 - Angiulli Fabrizio
- Data Mining
 - Sergio Greco
- · Sistemi Informativi Ambientali
 - Davide Luciano De Luca
- Ethical Hacking
 - Francesco Lupia
 - Angelo Furfaro
- Metodi Informatici per l'analisi dei Processi
 - Antonella Guzzo
- Metodi e Strumenti per la Sicurezza Informatica
 - Michele lanni
- · Business Intelligence
 - Filippo Furfaro
- Strategie e Politiche Aziendali
 - Patrizia Pastore
- Modelli e Tecniche per i Big Data
 - Paolo Trunfio
- Architetture e programmazione dei sistemi di elaborazione
 - Fabrizio Angiulli
- · Crittografia e analisi reti sociali
 - Molinaro Cristian
- Linguaggi Formali
 - Domenico Saccà
 - Rullo
- · Informatica teorica

- Scarcello Francesco
- Palopoli Luigi
- Intelligenza Artificiale (9 CFU)
 - Scarcello Francesco
- Ottimizzazione
 - Maria Flavia Monaco
 - o Giovanni Giallombardo
- Valutazione delle prestazioni
 - Pasquale Legato
- Intelligenza Artificiale (6 CFU)
 - Palopoli Luigi
- Intelligenza Artificiale e rappresentazione della conoscenza (12 CFU)
 - Palopoli Luigi
 - Sergio Greco
- Rappresentazione della Conoscenza (6 CFU)
 - Sergio Greco
- · Sistemi Informativi
 - Cassavia
- ISSTRA Ingegneria del software per sistemi real-time ed agenti
 - Libero Nigro
- Sistemi Distribuiti e Cloud Computing (6 CFU e 9 CFU)
 - Talia Domenico
 - Loris Belcastro
- Basi di Dati evolute
 - Molinaro Cristian
- Calcolo Numerico
 - Yaroslav Sergeyev
 - Dmitry
 - Marat Mukhametzhanov
- · Algoritmi di Crittografia
 - Cristian Molinaro

Software Security

Angelo Furfaro

- Anonimo
 - format string
 - o fasi di compilazione
 - o il binario
 - formato Elf

Analisi di Social Network e Media

Andrea Tagarelli

2021 2022

- Anonimi
 - o Tim (algoritmo sketch based)
 - Modularità, Louvain con formule
 - Infomap con formule
 - Katz centrality
 - o Perché la soluzione di bonacich e loyd differisce da quella di katz di una costante
 - SimRank
 - qual è la sua ratio, ossia perché ci piace fare la media dei simRank dei vicini e che legame c'è con la katz centrality
 - simPath
 - Cosa introduce il Page Rank rispetto alla Katz Centrality
 - o concentrarsi molto sul significato delle formule e anche sulla memorizzazione della formula stessa (di qualsiasi difficoltà)
 - RIS di influence maximization
 - Metodo Montecarlo per l'influence maximization
 - o CNM community detection
 - Differenza tra small world e scale free
 - o Algoritmo di Louvian
 - o Metodi Girvan Newman
 - o Small world e come si comporta il modello al variare del parametro beta
 - o Preferential Attachment model

Machine e Deep Learning

Angiulli Fabrizio

- Anonimi
 - Pac learnability in generale
 - o Derivazione formula Agnostic Pac Learning
 - o stima di densità non parametrica, knn e KDE
 - Vita, morte e miracoli dell'SVM
 - Model selection(sia con validation set, che SRM e MDL)
 - o Problemi di learning convesso

- o Discesa del gradiente
- o Predittori lineari in generale
- o Regressione logistica
- Quale proprietà ha la cross entropy loss? Risposta: è una funzione convessa, si può applicare l'algoritmo di discesa del gradiente)
- Principal Component Analysis (PCA)
- o (Di ogni argomento il professore richiede passaggi, formule matematiche ed eventuali grafici)

- Anonimi
 - VAE
 - GAN
 - o agnostic PAC
 - learnability
 - o svm

Data Mining

Sergio Greco

2021 2022

- Alessio
 - o clustering gerarchico
 - entropia
 - reti neurali
- Anonimi
 - KNN

Sistemi Informativi Ambientali

Davide Luciano De Luca

- giovixo97
 - o cosa è un DEM?
 - o differenza file shape vettoriale e file raster
 - tecniche di geoprocessing
 - o tutti i tipi di interpolatori (esatto,non esatto,locale,globale...)

- cosa vuol dire la media o la varianza in un certo punto?
- o cosa rappresenta Z0? Ponendo Zi come i punti che hanno misura esatta con i>0
- o cosa è una misura?
 - lo strumento misura sicuramente bene
- o cosa è un GCP?
- o come è fatto un file di tipo geografico?
 - numero delle righe,colonne,risoluzione,xcornern,ycornern...

Ethical Hacking

Francesco Lupia

2020 2021

- Anonimi
 - o Reverse Shell e Bind Shell
 - o sql injection con script php (cosa è e cosa fa)
 - challenge web con loose comparison
 - o differenze attacchi x32 bit e x64 bit
 - rop chain e bruteforce sul indirizzo di ritorno
 - Metasploit cosa è
 - o tool simili a metasploit per windows
 - o challenge web che presentava degli endpoint e bisognava loggarsi come admin
 - o challenge web con form di login e registrazione
 - format string
 - o privilege escalation windows: cosa faresti?

- Anonimi
 - Spiegazione csrf
 - o Differenze tra csrf e xss
 - Cos'è kerberos
 - challenge SSRF presente sul sito di burp suite (in teoria vi registrate, andate in accademy e poi nei vulnerabilty lab e cercate ssrf)
 - o pass the hash: descrizione
 - o challenge presente su natas numero 8
 - Hash md5: come si riconosce?
 - siamo con una Macchina Windows e si devono rispondere alle seguenti domande poste dal prof:
 - psexec
 - pass the ticket
 - comandi vari del prompt o powershell

- rogue potato (e in generale da tenere sott'occhio qualsiasi cosa che sia potato, quindi juicy potato, hot potato...)
- si hanno degli output di eseguibili di Windows (permessi di un eseguibile e le info di un eseguibile) e fra i permessi di questo eseguibile c'era gitconfig e si poteva cambiare la configurazione per cambiare il /bin/path con una reverse shell
- query su un registro per vedere se era attivo il permesso su un utente (alwaysinstalledprivileged) e si poteva sfruttare per installare qualsiasi eseguibile come utente privilegiato
- pass the hash
- bind e reverse shell
- nishang
- XML
 - come funziona la direttiva system
 - come è strutturato il linguaggio
- SSRF
- DDL Hijacking
- ROP e mitigazioni
- buffer overflow con diff tra x32 e x64 e possibili mitigazioni
- o challenge: file binario main, un file sorgente lib.c, hijack delle sharedlibrary consigliata da hacktricks
- · Kerberosting.
 - lo ho prima introdotto kerberos, e poi gli ho parlato dell'attacco AS Rep Rosting.
- Over pass the Hash
 - lo non lo conoscevo e gli ho parlato di pass the hash.
- Cosa è necessario che sia presente per la tecnica pass the hash sulla macchina windows?
 - è necessatio sia presente SMB. Se non è presente allora si usa la tecnica Over Pass the hash.
- Conosci altri framework di post-exploitation oltre a mimikatz?
- In windows gli hash vengono memorizzati dove?
 - Ho risposto nel file SAM.
- o C'è un ulteriore luogo dove vengono memorizzati. Dove?
 - In un processo in memoria che prende il nome di LSASS
- Perché l'ultima versione di powershell empire client-server è migliore rispetto alla vecchia versione monolitica?
 - Perché, se c'è un target e la tua macchina, e tu riesci a prendere il controllo di una macchina intermedia sempre sulla stessa rete del target, che magari ha anche privileggi migliori rispetto a quelli che hai dalla tua macchina attaccante, puoi lanciare l'attacco di bruteforce (server) da questa seconda macchina, e sgravare (client) la tua macchina dal lavoro. Puoi pure chiuderla e ricollegarti giorni dopo, e la tua macchina non fa nessuno sforzo. Prima con la monolitica, dovevi lanciare l'attacco dalla tua macchina.
- Empire for Pentester: Active Directory Enumeration
- tool per prelevare password (mimikatz)
- dove vengono salvati gli hash delle password di windows?
 - i file importanti per le password hashate di windows (sam,lsas...)
 - come prelevi questi hash?

- come prelevare password dal file sas?
- pass the hash

- Anonimi
 - o come si fa a creare l'ambiente isolato di docker
 - o uso di docker
 - o Pass the hash e pass the ticket
 - come si fa la privilege escalation?
 - Active Directory
 - come si chiama il computer principale?
 - come si fa la privilege escalation?
 - cosa è?
 - è presente su un computer?
 - o come si esce da un ambiente docker?
 - come gestisci i servizi in linux?
- Anonimi
 - Kerberos
 - attacchi kerberos.
 - o Mimikatz.
 - SSTI
 - Active directory
 - Tool per rubare l'hash
 - o Utente di dominio per Active directory
- Anonimi
 - o ssti
 - o pass the hash
 - kerberos
 - docker
 - Idap con attacchi
 - rbash
 - pass the ticket
 - kerberoasting
 - o aes-reproasting
 - Xss
 - o La configurazione rete per macchine virtuali e container

Angelo Furfaro

- Anonimi
 - Kerberos: cosa è ed attacchi
 - o Docker:cosa è, configurazioni e comandi, attacchi (soprattutto privilege escalation)
 - Parte di privilege escalation disponibile su tryhackme (privesc)
 - o Metasploit: come usare i servizi e gli exploit
 - o nc: cosa è e come funziona
 - XXE: cosa è, scenari d'uso, esempi
 - XXS: cosa è, quali tipi ci sono, esempi
 - o Laboratorio di attacco
 - o Sudo con opzione -l
 - Utente con Alcuni privilegi di root
 - LDAP nel particolare
 - o come creare una sottorete con virtualbox e come collegare due macchine alla sottorete
 - o come creare un laboratorio con virtualbox
 - LDAP
 - qualche attacco
 - sfruttare il protocollo
 - o se tu penetri su un sistema con una shell, cosa usi per vedere il traffico?
 - tcpdump e comandi annessi
 - che traffico internet vedi? traffico mio ingresso/uscita
 - o metodi privilege escalation e post exploitation

Metodi Informatici per l'analisi dei Processi

Antonella Guzzo

2020/2021

- Anonimi
 - o C-Net vs Heuristic net
 - Petri net Vs heuristic net
 - o come viene fatta la classificazione delle attività iniziali e finali su ProM
 - workflow net (definizione)
 - o cos'è la threshold
 - o betweeness Nella resource analysis
 - differenze fra pattern merge e discriminator (bpmn)
 - o perché scegliere un modello (o un plugin) rispetto ad un altro
 - boundness
 - o quando il marking è dead?
 - o esercizi su boundness e deadlock

- o alpha miner (con i vari punti specifici)
- o qualità del modello
- o in cosa consiste la classificazione di un dato
- o perché è costoso l'alpha miner?
- o domande sul progetto in generale e nello specifico
- liveness
- o come ottenere un buon modello?
- o conformance e tipologie

Metodi e Strumenti per la Sicurezza Informatica

Michele Ianni

- · Giovanni Giordano
 - http://basicrce.challs.cyberchallenge.it/ risolvi la challenge edit: è andato down, la challenge consisteva in un form html che faceva una post all'indirizzo /ping dello stesso sito e ritornava semplicemente il codice di ritorno della shell linux collegata e il comando eseguito, altrimenti dava errore. Non c'era nient'altro, bisognava trovare la flag.txt da qualche parte nel sito.
 - GOT e PLT
- Anonimi
 - Canary
 - o gdb
 - o sito che ritorna un immagine, come capisci le tabelle?
 - nmap port scanning
 - fin scan
 - udp scan
 - syn scan
 - null scan
 - xmas scan
 - o arp poisoning
 - o reflected, DOM Based e stored XSS
 - ASLR
 - CSRF
 - chi genera il token
 - ROP
 - come mai i tool automatizzati trovano tanti gadget mentre una scansione manuale ne trova pochi?
 - i gadget sono una serie di istruzioni. Perché ropper va a guardare l'esadecimale, parte da una ret e va all'indietro se una sotto sequenza è un'istruzione valida viene restituito il gadget. Ad

esempio in esadecimale a3 aa bb cc 90 c3 è mov eax, 0x90aabbcc; ret, ma la sottosequenza 90 c3 è nop; ret. Sono entrambi gadget.

- o buffer overflow
 - mitigazioni
 - generarlo senza utilizzare le funzioni vulnerabili
- code reuse
- Mitigazioni SQL injection

2021 2022

- Anonimi
 - o format string
 - o XSS
 - le differenze tra i vari tipi di xss
 - ARP poisoning
 - o port scanning
 - FIN SCAN
 - XMAS SCAN
 - SYN SCAN
 - ret2libc
 - perché è meno conveniente rispetto alla code reuse?
 - Perchè ret2libc non può essere utilizzata in caso di chiamate a due o più funzioni che posseggono uno o più parametri, mentre la code reuse sì
 - o Plt e got
 - Xss
 - Canary
 - perché si usa il carattere 0
 - Ropper
 - Blind sql injection
 - per rompere ASLR basta solo un offset, detto in un altro modo supponiamo di avere l'indirizzo della printf questo basta per derandomizzare l'intero spazio degli indirizzi o serve altro?
 - Per rompere ASLR basta trovare un solo indirizzo della libc in quanto poi l'offset tra le funzioni è sempre uguale

- Anonimi
 - XSS
 - CSRF
 - Post scanning (varie domande su tcp scan, syn, ecc)
 - ASLR
 - o Mitigazione Relco e differenze tra Partial Relco e Full Relco
 - o Got, plt, got patching e perché ci sono due tabelle anziché una sola
 - XSS Dom-Based

- o domanda sulla libc (quanti indirizzi ti servono per derandomizzare)
- o Mitigazioni di SQL injection
- o format string exploitation
- o arp poisoning e mitigazione

Business Intelligence

Filippo Furfaro

2020 2021

- Anonimi
 - o gestione delle dimensioni degeneri
 - o gerarchie dinamiche
 - o a cosa serve attributo master nello scenario di verità storica
 - o a cosa servono le chiavi surrogate
 - o perchè non si usano i btree
 - star index
 - join index
 - o quando conviene fare snow flake
 - o gerarchie incomplete e soluzioni
 - indici bitmap a confronto con btree
 - o molap e rolap
 - Tutti i pro e tutti i contro dell'usare Chiavi surrogate
 - Star index
 - quando non è efficiente usare lo star index
 - aggregatori olistici
 - o indici di bit-sliced
 - o gerarchie ricorsive (pro e contro delle 2 soluzioni)

Strategie e Politiche Aziendali

Patrizia Pastore

- Anonimi
 - cosa faresti da imprenditore della tua azienda (cyber security), ovvero quali strategie sceglieresti tra quelle viste nel corso
 - classificazione outsourcing
 - o scelta di un settore in cui competere e forze di porter

- o esempi a lezione
- la valutazione comprende i punteggi dati al test online di fine corso (crocette) e i lavori in ppt di gruppo
- o Stakeholder amichevoli
- Outsourcing
- o Finalitá dell azienda

Modelli e Tecniche per i Big Data

Paolo Trunfio

- Anonimi
 - o parametri mpi speedrun tempo esecuzione parallelo e sequenziale
 - o lambda expression
 - o benefici java stream
 - o differenze spark hadoop
 - RDD
 - hama
 - costo del calcolo bsp
 - o zookeper
 - trajectory discovery
 - o java stream lazy
 - legge amdhal
 - wordcount
 - o mapper e reducer
 - o spark e hadoop convenienza
 - o bsp in generale
 - o send receive non blocanti e bloccanti
 - spark lazy execution
 - wordcount reverse (chiave lunghezza parole)
 - o logica di hive
 - legge di amdhal
 - o comunicazione in MPI sincrona e asincrona e meccanismi
 - o caratteristiche di un programma in parallelo
 - o combiner in mapreduce
 - numero di reducer e mapper
 - watermark
 - wordlenghtcount

- o codice word count
- che tipologia di programmi esegue storm
- o possono esserci piu spout?
- o quali metodi deve implementare spout e quali bolt
- o combiner di map reduce
- o codice word count reverse
- Superlinear speedup:
- o architettura hdfs e file di configurazione delle risorse

2023 2024

- Anonimi
 - o Modello BSP
 - Costo di BSP
 - Pseudocodice funzioni map e reduce
 - o Topologia Storm
 - nota: da quest'anno il programma è cambiato, non si fa più Hama e si studiano GraphX e Apache
 Airflow (slide su teams)

2024 2025

- OliG9
 - UPC++ cos'è e a che modello fa riferimento
 - Parlare di APGAS
 - \circ Esempio di calcolo del π con UPC++ visto in aula, descriverne in linea di massima il funzionamento
 - HDFS
 - Legge di Ahmdal cos'è (con la cosa dell'andamento sovralineare)
 - Come si fa a capire se abbiamo infiniti core quale sarà la prestazione del nostro programma (ahmdal)

Architetture e programmazione dei sistemi di elaborazione

Fabrizio Angiulli

- Roberto
 - cache completamente associativa
 - o open MP
 - o schema monociclo e segnali di controllo +1
 - o cache a k vie

- multithreading
- o grana fine
- o grana grossa
- vantaggi multithreading simultaneo (ogni thread a i suoi registri e PC)
- o differenza multithreading sw e multithread hw
- o dimensionamento clock multicolore
- o conflitti sul controllo
- statistica a 2 bit automa
- o nano programmazione
- o emissione fuori ordine
- o tabella segnali alpha monociclo
- o conflitti sui dati pipeline
- o conflitti superscalari
- o ottimizzazione unità di controllo (control store)
- o completamente fuori ordine e ritiro in ordine
- CPU vs GPU
- o una numa
- o macchina multiciclo
- o macchina monociclo
- o dimensionamento del clock della multi ciclo
- o ottimizzazione della parte di controllo microprogrammata
- o legge di moore e barriera dell'energia
- o speculazione nell'hardware
- speculazione hw (epr)
- buffer di ordinamento macchina super scalare
- o completamento fuori ordine
- o emissione fuori ordine
- o numero di posizioni
- ottimizzazione del controllo microprogrammato
- o predizione dei salti schema
- o politiche sostituzione della cache
- o disegno
- o speculazione hardware macchina super scalare
- o differenza uma e numa
- macchina hasswell
- o differenze cics e risc
- principi di progettazione risc
- riduzione parallela
- o rsr

- Legge di Moore e barriera energia
- Macchina multiciclo
- o ottimizzazione unità di controllo (control store programmato)
- Nano programmazione
- o dimensionamento del clock nella multi ciclo microprogrammata
- o differenze macchine cisc e risc
- o principi di progettazione macchina risc
- schema monociclo e tabella segnali alpha
- o conflitti sui dati pipeline
- o emissione fuori ordine
- Rsr
- o completamente ofuori ordine
- o ritiro in ordine
- o confliti sul controllo
- o predizione dei salti a schema branch prediction unità
- o statistica a due bit con automa
- o conflitti sulle super scalari
- o buffer di ordinamento macchina super scalare
- speculazione hardware (epr)
- o completamento fuori ordine macchina super scalare
- o Macchina di Haswell
- cache completamente associativa
- o cache a k vie
- politiche di sostituzione nella cache disegno
- o differenza uma e numa
- o multithreading hw: grana fine e grana grossa
- o vantaggi multithreading simultaneo
- o differenza multi threading hw e sw
- o cpu vs gpu
- riduzione parallela
- o open mp
- · Giovanni giordano
 - o cache a k vie
 - o cache a mappatura diretta
 - tipi di threading
 - o conflitti pipeline

- Erma TV
 - o conflitti sulla pipeline quali sono e come si risolvono

- CISC RISC
- o principi dei modelli di calcolatori di oggi
- UMA e NUMA con disegno della NUMA
- o speculazione hardware come avviene e dove avviene
- attacco spectr
- o c'é speculaizone hardware nella pipeline? No, come vengono gestiti i salti?

- Cache
- o Politiche di sostituzione
- o Unità di controllo monociclo
- o Segnali beta mono e multi
- Ottimizzazione controllo micro programmato
- o Circuito di selezione degli indirizzi
- o Disegno stack Iru
- o E disegno circuito di selezione degli indirizzi
- Ottimizzazione controllo microprogrammato
- Macchine parallele
- Nanoprogrammazione
- o circuito propagazione nella superscalare
 - circuito di bypass
- NUMA e UMA
- o conflitti sul controllo
- o conflitti nella pipeline: inserimento circuito di uguaglianza
- Confronto prestazionale fra tutte le macchine viste nel corso
- Clock fine
- Speculazione hw e cosa cambia rispetto alle predizioni della pipeline
- o Cache multilivello e come cambia il calcolo del tempo medio di accesso alla memoria

2024 2025

- Anonimi
 - Cache
 - o Politiche di sostituzione
 - o Unità di controllo monociclo
 - Segnali beta mono e multi
 - Ottimizzazione controllo micro programmato
 - Disegno stack Iru
 - Ottimizzazione controllo microprogrammato
 - o conflitti sui dati nella macchina pipeline
 - o conflitti nella pipeline: inserimento circuito di uguaglianza

Crittografia e analisi reti sociali

Molinaro Cristian

- Tassone
 - o Cifrario a flusso
 - o OTP
 - PRG
 - Shannon
 - o Cifrari a blocchi
 - Sicurezza semantica
 - PRP
 - ECP
 - o CBC
 - CBC+nonce
 - CTR
 - o CTR+nonce
 - MAC (funzionamento sicurezza e challange)
 - NMac
 - PMAC
 - HMAC
 - ECBC MAC
 - PAYLOAD
 - o HASH (funzionamento sicurezza e challange)
 - o PAradosso compleanno + attacco hash (collissioni)
 - Merkle damgard
 - Autenticazione cifrata (funzionamento sicurezza e challange)
 - tre tipologie costruzione autenticazione cifrata (e than m, e and m, m then e) più differenze e sicurezza
 - o differenza chiave simmetrica e asimmetrica
 - o principi chiave asimmetrica
 - RSA
 - o Complessità attacco RSA per scoprire chaive segreta
 - o complessita attacco RSA per un messaggio cifrato (differenza con sopra)
 - o Merkle puzzle
 - o autorità di certificazione e firma digitale (molto in generale più schema)
- Riccardo
 - generazione rsa per calcolo chiavi
 - come si cifra
 - come si decifra

- o rabin come si generano le chiavi
 - collegarsi alla fattorizzazione
 - output di 4 messaggi
 - cattiva proprietà del sistema
- ElGamal su cosa è basato
 - come si calcolano le chiavi
- o tutti i possibili attacchi di chiave che si muovono contro RSA
 - brute force
 - euclide
 - vari problemi
- o puzzle di merkle
- o introduzione key managment e scneari utilizzo rsa

- Anonimi
 - Sicurezza Prg (tutte e tre le definizioni)
 - o Puzzle Merkle
 - Sicurezza puzzle merkle
 - o paradosso compleanno
 - o attacco alle funzioni hash (col paradosso del compleanno)

Linguaggi Formali

Domenico Saccà

2016 2017

- PsykeDady
 - o Compilazione della tipizzazione dinamica dei linguaggi
 - tipizzazione dinamica che tipo di linguaggio è (risp: 2)
 - o cos'è un automa a pila
- · Marco Domenicano
 - o Tautologia
 - conraddizione
 - o memorizzazione di un json in calculista
 - o esercizio del minimo locale in calculist e prolog
- Anonimi
 - o come vengono memorizzati i json in memoria nella calculist

- Alfredo
 - json

- linguaggi di primo, secondo e terzo tipo
 - java di che tipo è
 - html di che tipo è
 - xml di che tipo è
- · Giovanni Giordano
 - calculist esercizio Unione(L1, L2, L3)
 - costruire L3 unendo L1 e L2
- Angelo
 - Scrivere automa a stati finiti deterministico che riconosce il linguaggio (a+b+)+b*c
 - fare esempio di una stringa che non appartiene al linguaggio
 - fare esempio di stringa che appartiene al linguaggio
- Anonimi
 - Calculist esercizio Intersezione(L1,L2,L3)
 - costruire L3 come intersezione di L1 e L2
 - o cos'è un modello logico
 - o quando un modello è minimo
 - o Calculist lista ordinata L
 - Calculist High Order Function espressione con lambda function
 - complessità del problema di stabilire se un programma logico ammette un unico modello (sol. PSPACE)
 - o Verificare se due Liste L1 e L2 hanno gli stessi elementi

- Anonimi
 - high order function
 - solito esempio con u(X),p(X),r(X),rc(X)
 - o universo di Herbrand, Base di Herbrand, modelli minimali
 - o verificare che 2 liste abbiano gli stessi elementi con lo stesso numero di occorrenze
 - o espressioni regolari
 - unificatore generale
 - o Palindroma in Calculist

Rullo

2016 2017

- Marco Domenicano
 - o scrivere un programma in prolog che riceve una lista L, T, T1 e restituisce una lista di copia in output L1 così composta: se elemento di L corrisponde a T inserisci T1 altrimenti L

- Alfredo
 - o 2 esercizi prolog

Giovanni Giordano

- esercizio prolog su traccia P(L1,L2,L3,L4), soddisfare:
 - a. L3 come L1 intersecato L2
 - b. L4 come L1 L2
- esercizio prolog su traccia su traccia P(T,T1,L,L1), soddisfare
 - se L[i]!=T verificare L[i]==L1[i] altrimenti L1[i]==T1

Angelo

- scrivere un metodo int(L1,L2,L3) che restituisce vero se:
 - a. L1 sotto insieme improprio di L3
 - b. L2 sotto insieme improprio di L3
 - c. L3 non contiene duplicati
 - d. L1,L2,L3 sono ordinati in modo crescente

Anonimi

- o scrivere un programma prolog che: dati due termini T e T1 e una lista L
 - produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione subst(T,T1,L,L1) dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con T1 lasciando gli altri elementi invariati
 - p(L1, L2) che restituisce true se L1 ed L2 contengono gli stessi elementi
- lanciare la computazione in calculist
 - descrivere stato memoria
 - dare risultato
- o Teorema di Rice (accenno)
- o quanti sono i modelli di un programma positivo
- o cos'è l'unificazione di due termini?
- o data:
 - g(x/2)/1: lambda z: x(y,z+y);
 - eseguire: g(molt,3)(4); risultato?
- Quanti modelli minimali ci sono in questo programma logico?

```
u(1).
u(2).
u(3).
p(1).
p(2).
r(X):
u(X), not(p(X)).
rc(X):- u(X), not(r(X)).
g(x/2,y)/1: lambda z: x(y,z+y);
pp(x,y): x+2*y;
^g(pp,3)(4);
```

- o quanti sono i modelli minimali (stesso modello)?
 - u(1).
 - u(2).
 - p(1).
 - r(X):-u(X), not(p(X)).
 - \blacksquare rc(X):- u(X), not(r(X)).
- o cos'è un universo
 - tutti i termini ground, nel caso di prima i primi due
- funziona calculist che dato x calcola fibonacci(x)
- dato:

```
u(1).

u(2).

p(1).

r(X):- u(X), not(p(X)).

rc(X):- u(X), not(r(X)).
```

- • quanti sono i modelli minimali
 - **Legenda**: u sono gli umani, p sono i poveri, r è una persona ricca, rc è il reddito di cittadinanza (i significati hanno poca rilevanza).
 - Risposta: quando si ha la negazione di solito si hanno piu modelli minimali
 - modello migliore: rc(X)=true solo in un caso (reddito di cittadinanza solo ad un elemento)
 - o scrivere un metodo che riceve in ingresso 4 liste q(L1, L2, L3, L4) che restituisce true se L3 è l'itersezione di L1+L2 ed L4=L1-L2 (sottrazione insieimistica), le liste vanno intese come insiemi.
 - scrivere un metodo q(A,B,L1,L2) che restituisce true L1=L2 con i caratteri A sostituiti con B in
 L2
 - o scrivere un q(X, L, Y) che restituisce vero se Y è l'elemento successivo a X nella L
 - o scrivere un q(X,L,Y) che restituisce vero solo se Y è nella posizione X di L

- Anonimi
 - riceve 2 liste: true se le due liste contengono gli stessi elementi, anche con numero di occorrenze diverso
 - ricerca binaria in prolog
 - Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione:
 subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi p(1,2,[1,1,2,2],[2,2,2,2])
 - Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2. Si supponga disponibile il predicato member p([a,r,t],[t,s,m,n,a],L3,L4) p([a,r,t],[t,s,m,n,a],[a,t],[r])
 - Scrivere un programma PROLOG per la seguente relazione: d(X,Y) se e solo se Y è la lista che si ottiene dalla lista X rimuovendo gli elementi di posizione pari

- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position. add_up_list([1,2,3,4], [1,3,6,10])
- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione:
 subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- o Definire il predicato Prolog fib(N,F) che sia vero se F rappresenta l'N-esimo numero della sequenza di fibonacci. Ricordiamo che la sequenza di Fibonacci è definita dalle seguenti: f(0) = 1, f(1) = 1, f(N) = f(N-1) + f(N-2)
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2. r([1,2,3],[3,4,5,6,1],L3,L4)
- Define a predicate reverse(L,K) which holds if and only if the list K is the reverse of the list L
- Define a predicate occurs(L,N,X) which holds iff X is the element occurring in position N of the list L
- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position. Example: ?- add_up_list([1,2,3,4],K). K = [1,3,6,10]
- Define a predicateoccurs(L,N,X)which holds iffXis the element occurring in positionNof the listL
- o palindroma
- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione: subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2. Si supponga disponibile il predicato member.
- Define a predicate occurrences(X,L,N) which holds iff the element X occurs N times in the list L
- o Definire il predicato Prolog fib(N,F) che sia vero se F rappresenta l'N-esimo numero della sequenza di fibonacci. Ricordiamo che la sequenza di Fibonacci è definita dalle seguenti: f(0) = 1, f(1) = 1, f(N) = f(N-1) + f(N-2)
- Scrivere un programma PROLOG per la seguente relazione: d(X,Y) se e solo se Y è la lista che si ottiene dalla lista X rimuovendo gli elementi di posizione pari.
- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position
- Define a predicate merge(L,K,M) which, given two ordered lists of integers L and K, returns an
 ordered list M containing all the elements of L and K
- dd(f/2,x)/1: lambda y: f(y)+2x: s2(x): 2x; ^dd(s,3)(4); funzione lambda proposta

- Anonimi
 - Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione:

- subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2
- o stessiElem(L1,L2), which holds if L1 and L2 have same elements
- o Define a predicate occurrences(X,L,N) which holds iff the element X occurs N times in the list L
- Scrivere un programma Prolog che, dati due termini T e T1 e una lista L, produce una lista L1 identica a L in cui sono state sostituite tutte le istanze di T con T1, ossia la relazione:
 subst(T,T1,L,L1), dove L1 è la lista ottenuta da L sostituendo tutte le istanze del termine T con il termine T1 e lasciando invariati gli altri elementi
- Si scriva un programma Prolog che, prendendo in ingresso due liste L1 e L2, restituisca in uscita due liste L3 e L4 tali che L3 contenga gli elementi di L1 che appartengono anche a L2, mentre L4 contenga gli elementi di L1 che non appartengono a L2.
- Define a predicate occurs(L,N,X) which holds iff X is the element occurring in position N of the list L.
- Define a predicate add_up_list(L,K) which, given a list of integers L, returns a list of integers in which each element is the sum of all the elements in L up to the same position

Informatica teorica

Scarcello Francesco

2016 2017

- PsykeDady
 - o Teorema di Cook
 - o Definizione di NP complete
- Riccardo
 - Partendo dal fatto che un problema è np-hard se qualsiasi problema np si riduce ad esso in tempo polinomiale
 - domanda: come cambia la classe np-complete se cambiamo la definizione di hardness considerando trasformazioni esponenziali invece che polinomiali?
 - risposta: Poiché np-complete è l'intersezione di np-hard ed np, i problemi di tale classe rappresentano il sottoinsieme dei problemi più difficili tra quelli appartenenti ad np (risolvibili in p-time da una NTM). Se si cambia la definizione di hardness considerando trasformazioni esponenziali però si estende la classe a problemi exp-time, in quanto si altera il rapporto di complessità durante la riduzione che supporta la hardness: intuitivamente, una trasformazione esponenziale trasferirebbe parte della complessità nella riduzione, permettendo poi di risolvere il problema risultante in tempo polinomiale, dunque tali problemi ricadrebbero in questa versione modificata di np-complete.

Anonimi

- Teorema di Cook
- o Definizioni di problema Np, Np-hard, Np-complete
- o Dimostrazione di appartenenza di Hamiltonian Cycle a Np-Complete

- Dimostrazione di non appartenenza di Ld a RE
- o Dimostrazione di appartenenza di Lu a RE
- o Definizione di riduzione
- o Teorema di Rice

- Marco
 - Linguaggio Empty
 - o dimostrazione NP complete
 - o dimostrazione indipendent Set

(continuare da 2016 2017 linguaggi formali sacca psykeS)

2018 2019

- Matteo Grollino
 - Teorema Rice
 - Teorema Cook
 - Knapsack Intero e Frazionario
 - subset sum
 - o approssimabilità knapsack
 - Algoritmo pseudo-polinomiale
 - FPTAS
 - Definizione NP
 - Definizione NP Hard
 - Definizione NP Complete
 - Dimostrazioen indecidibilità Lu e non appartenenza a RE di Ld
 - o Importanza riduzione polinomiale tra problemi decisionali
 - o Perché NP è incluso in PSpace con dimostrazione
 - o complessità parametrizzata con definizione di XP e FP
 - o Algoritmo FPT del vertex Cover
- Gianpaolo
 - Teorema 4.14.1 : un problema NP ha come definizione NP = {L|E R polinomialmente decidibile e bilanciata che caratterizza L } con PI1 R=L (dimostrazione)

- Angelo
 - definizione di problema np-completo
 - o cos' é una trasformazione polinomiale?
 - o dimostrazione del teorema di Rice
 - fixed parameter trattability
 - o cos' é uno schema di approssimazione polinomiale ?
 - o dimostrare che nap-sack é np-hard

- o perché usiamo trasformazioni polinomiali e non esponenziali?
- o dimostrare che ld é ricorsivamente enumerabile
- o definizione di np-hard
- o dimostrare che Hamiltonian cycle é np-hard
- Giovanni Giordano
 - Dimostrazione linguaggio NTM==DTM
 - o caratterizzazione NP dimostrato
 - Indipendent Set dimostrato
- Anonimi
 - cook
 - NP dentro PSpace (dimostrazione)
 - **Risposta**: Perchè la definizione di NP dice che NP appartiene a Ptime, poichè Ptime è un sottoinsieme di Pspace allora anche NP è un sottoinsieme di Pspace
 - o teorema di Rice
 - o np completo (definizione) e vantaggi nellúso
 - Teorema di Cook
 - o Definizione di problema NP-complete
 - Domanda: come cambia la clas shortcut multicursorsse np complete se cambiamo la definizione di hardness considerando trasformazioni esponenziali
 - Risposta: poiché np-complete é l'intersezione di np-hard ed np, i problemi di tale classe rappresentano il sottoinsieme dei problemi più difficili tra quelli appartenenti ad np (risolvibili in p-time da una NTM). Se si cambia la definizione di hardness considerando trasformazioni esponenziali però si estende la classe a problemi exp-time, in quanto si altera il rapporto di complessità durante la riduzione che supporta la hardness: intuitivamente una trasformazione esponenziale trasferirebbe parte della complessità nella riduzione, permettendo poi di risolvere il problema risultante in tempo polinomiale, dunque tali problemi ricadrebbero in questa versione modificata di np-complete.
 - o Dimostrazione di appartenenza di Hamiltonian Cycle a np-complete
 - dimostrazione di non appartenenza di Ld a RE
 - Dimostrazione di appartenenza di Lu a RE
 - o definizione di riduzione
 - Linguaggio Empty dimostrazione NP complete
 - mostrazione Indipendent SET
 - Knapsack intero e frazionario
 - subset sum
 - o Approssimabilità knpasack (algoritmo pseudo polinomiale e FPTAS)
 - o importanza della riduzione polinomiale tra problemi decisionali
 - o complessità parametrizzata con definizione di xp e di ffpt
 - o problema np ha come definizione $NP = \{L \mid E \mid R \mid Polinomialmente decidibile e bilanciata che caratterizza L\} con PI1 R=L (dimostrazione)$
 - FPTAS con costi
 - FPT con VC e con knapsack

knapsack con programmazione dinamica

2020 2021

- Erma TV
 - Dimostrazione NP incluso in PSPACE
 - Dimostrazione che Knapsack ammette un FPTAS
 - o Che sono le classi di approssimabilità
- Anonimi
 - Rice con dimostrazione
 - FPT
 - FPT con vertex cover (con le due soluzioni)
 - Dimostrare che Subset Sum è NP-Hard
 - Rice con dimostrazione
 - NL con dimostrazione che è NP-Hard
 - vertex cover
 - o indipendet set
 - hamiltonian cycle
 - ∘ NTM = DTM
 - o def di NP-complete (NP-HARD, NP)
 - L appartiene ad NP se e solo se esiste una relazione caratteristica RL di L (parte <=) e (parte =>)
 - Bisaccia FPTAS

Palopoli Luigi

- Anonimo
 - o cosa sono i linguaggi regolari?
 - o quali sono le caratteristiche dell automa di un linguaggio regolare?
 - o quanti simboli leggo per volta?
 - c è differenza di potenza di calcolo tra dfa e nfa? no, ma c'è differenza di? (risposta: taglia, dimensione, numero di stati)
 - o teorema di rice con dimostrazione
 - o teorema di savitch con dimostrazione
 - parliamo del concetto di approssimabilità
 - o i problemi sono tutti approssimabili?
 - o cos'è la classe p/poly
 - o classe di complessità IP
 - o legame che c'è tra complessita di circuito e di tempo nei linguaggi
 - un insieme r.e. lo possiamo definire in più modi, come e in che modo sono equivalenti le def(dimostrazione che la seconda def è equivalente alla terza)
 - o cos è la forma normale di Greinbach

- classe di complessita NC
- o confronta NCI con ACI
- o p/poly dove sta rispetto a NCI e ACI (non è sicuro sia questo confronto però è sicuro sia con p/poly)
- o nel linguaggio mini C non abbiamo l'if-than-else, riusciamo a realizzarlo?
- o pumping lemma linguaggi regolari
- o se due linguaggi sono regolari la loro unione è regolare, dimostrazione
- o consideriamo l'insieme degli indici delle funzioni totali, è ricorsivo r.e. o non r.e.
- o parliamo di p spazio e indichiamone un linguaggio completo
- data una macchina che dati n elementi in input si vuole stabilire se il numero di elementi dell'array sia pari o dispari, che complessità ha nello spazio
- esiste una forma normale per i problemi in psapzio che è anche la codifica di un problema completo,
 com è fatto
- domande su copspazio generiche
- o teorema di toda (ultimo fatto nel corso)
- dimostriamo che un automa a pila deterministico è sempre equivalente a uno a pila non deterministico, non è così in realtà, mi fai vedere un linguaggio che separa?
- o consideriamo ww^R perché l automa a pila det non è sufficiente in questo caso, dimostrazione
- Abbiamo due forme di automi a pila accettanti per stato finale e per stato vuoto, dimostrazione equivalenza che i linguaggi riconosciuti da uno sono "equivalenti" a quelli dell'altro

- Anonimo
 - MaxSat e perché è DeltaP2Completo
 - MaxCol e perché è DeltaP2CompletoLog
 - o Funzione di Ackerman
 - Exp e Nexp
 - Esempio di problema PSpace Completo
 - Gerarchia Polinomiale
 - o Teorema di Post
 - o Dimostrazione di equivalenza tra le due definizioni di Ricorsivamente enumerabile
 - o Teorema di Savitch
 - cos'è Ppoly
 - Ppoly contiene linguaggi indecidibili?
 - o Dimostrazione che se L è unario allora è PPoly
 - o Dimostrare che NP è chiuso rispetto alla stella di kleeny
 - o Teorema di Toda
 - o Cos'è #P
 - Cos'è IP? È equivalente a PSpace?
 - Simulare comportamento di una TM multi nastro con una multitraccia
 - Pumping lemma per linguaggi ctx free
 - o Principio della piccionaia

o Come funziona la tecnica di riduzione per problemi indecidibili

2024 2025

- Anonimo 1
 - L={| M accetta numero antropomorfi}
 - antropomorfi=sono numeri tali che n e n quadro terminano con stesso numero (potrebbe non chiamarsi antropomorfo ma è importante la sua struttura appena definita, esercizio che fa parte dello scritto)
 - Rice
 - Definire le composizioni.
 - o Combinazioni, esponenziazioni e ripetizioni.
 - Insieme a zero.
 - o Identità, successore e l'altro argomento correlato
 - o Definire classe IP
 - Np complete
- Anonimo 2
 - o All'altro ragazzo ha chiesto Rice,
 - o Dimostrazione che automa è uguale a regex
 - Una caratteristica dei context free
 - Un'altra domanda ma ora non ricordo
- Anonimo 3
 - o dimostrazione punto fisso

Intelligenza Artificiale (9 CFU)

Scarcello Francesco

- Anonimi
 - Semantica di ASP con esempio
 - 。 A*
 - Dimostrazione ottimalità A*
 - cos'è la soluzione ottima
 - calcolo frontiera
 - o Equilibrio di Nash normale e misti
 - o core e nucleoli nella teoria dei giochi
 - CSP

Anonimo 1

- o Giochi di coalizione
- Cos'è un contributo marginale
- dummy player, definizione formale
- Che tipo di algoritmi utilizziamo per i giochi con avversari?
- minimax con pruning
 - euristica di minimax con upper bound o lower bound
 - Questi giochi con avversari sono giochi a somma zero o arbitrari?
 - col pruning abbiamo l'ottimalità (considerando upper bound,lower bound)?
- o Cos'è un modello?
 - programma logico dato come esempio, trovare i modelli e gli answer set
 - Se dalla terza regola deduci C cosa succede?

Anonimo 2

- o answer set da un programma logico
- un modello quando si dice answer set
- o Dimostrare che A* è corretto e completo
 - tree search con spiegazione dell'ottimalità
- Definizione formale di ammissibilità
- o aste, second price
 - truthful

Anonimo 3:

- o Constraints satisfaction problem
- Come funziona il forward checking?
- Problema aciclico?
 - ipergrafo
- o problemi binari o con arità maggiore.
- o Cos'è un grafo?
- Equilibrio di nash, cos'è e definizione formale.
- o spiegazione di a*, perchè è ottimale?
- Cos'è l'ammissibilità?
- o Depth first search

Anonimo 4:

- o Equilibrio di nash
 - che possiamo dire per l'esistenza di questi equilibri?
- o Cos'è il nucleolo?
- o Differenza tra core e nucleolo
- Dato un programma logico trovami gli answer set

• Anonimo 5:

- Che cos'è un answer set
 - dato un programma logico, trovare il suo answer set
 - riduzione programma logico
- Cos'è il contributo marginale e il Contributo singolo?
- o Cos'è un dummy player e lo shapley value?
 - Esiste sempre lo shapley value?
- Csp aciclici
- Anonimo 6:
 - Csp con struttura associata.
- Anonimo 7:
 - o Differenza tra tree search e graph search
 - perché su graph search non è ottimale
 - o contributo marginale
 - coalizioni
 - o nucleolo
 - o core
- Anonimo 8:
 - o Che tipo di algoritmi abbiamo fatto per i problemi di soddisfacimento dei vincoli,
 - Core
 - se le due strutture sono acicliche che succede?
 - Qual è il beneficio se la struttura è aciclica? (Alla fine della procedura possiamo sapere qualcosa)
 - o Cos'è un answer set?
- Anonimo 9:
 - Giochi strategici
 - o definizione di equilibrio di nash
 - o cosa possiamo dire dell'esistenza invece nelle strategie miste?
 - Csp tree decomposition

Ottimizzazione

Maria Flavia Monaco

- PsykeDady
 - Argomento a piacere : Rilassato LaGrangiano
 - o Definizione di problema Rilassato

- Duale LaGrangiano (perché farlo? obiettivi)
- Vehicle Routing Problem formulazione

- o che ho a disposizione se voglio risolvere un problema piccolo con un algoritmo esatto ? (B&Bound)
- o Cosa si intende per "cut" e quindi un algoritmo di branch and cut
- o Gomory, tutto il procedimento
- Perché posso usare la funzione obiettivo in gomory per indurre un taglio?
- o come si valuta un euristica? Lagrangiano
- o Definire duale di Lagrangiano
- o Commesso viaggiatore
 - come calcolo un lowerbound ?
 - perché non si usa Lagrangiano?
 - perché ha un numero esponenziale di cicli e molto probabilmente avrà sempre sottocicli
- o Problema del commesso viaggiatore non orientato
 - taglio con Branch and Cut
 - oracolo di Separazione
- o Formulazioni commesso viaggiatore sia orientato che non
- Quando una formulazione è ottimale? (matrice TUM)
- Per quale problema ho una formulazione ottimale anche se non è TUM? problema del matching
- Set covering definizione
- o Commesso viaggiatore
 - perché è intrinsecamente combinatorio
 - complessità
- come risolvo il set-covering (max saving)
- o chvatal
- Vehicle routing
- Algoritmo clarke wright (massimo risparmio)
- o Epsilon approssimativo
 - definizione
 - TSP
 - algoritmo dell'albero
- o Differenza Hamilton eulero, con confronto tra i due
- o Teorema di minkowsky

- Anonimi
 - Set covering
 - o Formulazione valida
 - o ottima
 - o Problema di localizzazione
 - Rilassamento lagrangiano

• Se x è punto estremo => x appartiene ad S

2021 2022

- Erma_TV
 - o effetto orizzonte
 - o nucleolo
 - o semantica operazionale per la logica di default
 - o complessità ed espressività
 - o anomalia di Sussman
- Arbrane97
 - Bargaining Set
 - o Iterative deepening
 - o Algoritmo di Waltz
 - · Hill Climbing

Giovanni Giallombardo

2022 2023

- Anonimi
 - o svr
 - regressione
 - o l'algoritmo di Newton
 - o metodo del gradiente

2023 2024

- Anonimi
 - o Metodo di Newton
 - o Metodo Quasi Newton
 - formulazione SVR
 - o Generalmente fa tre domande, una sicura sulla parte di Machine Learning

Valutazione delle prestazioni

Pasquale Legato

- PsykeDady
 - o problema del professore in ritardo (su excel)
 - produttore consumatore (excel)

Intelligenza Artificiale (6 CFU)

Palopoli Luigi

2017 2018

- PsykeDady
 - o Estensione di Reiter
 - o Anomalia di Sussman
 - breadth first (vantaggi rispetto a depth first)
 - strips
 - frame problem
 - quantification problem
 - representation problem
 - deep learning
 - definizione
 - reti neurali
 - struttura neurone
 - altri approcci
 - deep learning
 - features extracton
 - hill climbing + simulated annealing
 - pac learning
 - Anonime
 - IDA* perchè c'è min nella funzione
 - Frame assension
 - strips
 - risoluzioni
 - problemi del non essere linguaggio logico
 - estensione di reithers
 - come calcolarla
 - che succede se togliamo TH da IN(pigreco)
 - nucleolo

Intelligenza Artificiale e rappresentazione della conoscenza (12 CFU)

Palopoli Luigi

- Anonimi
 - Iterative Broadening (ordine di visita degli alberi)
 - Iterative Deepening
 - o processi closed e successful
 - shapley value
 - o wsat e gsat
 - estensioni di reiter
 - o frame problem e perché strips non soffre del problema del frame
 - o approssimazione lower bound-upperbound con calcolo greatest lower bound

- Anonimi
 - o primo interrogato
 - hill climb simulated annealing
 - planning
 - nucleolo stable set
 - regole inferenza
 - entailment in logica di default perché è Pi P2-C?
 - gsat wsat con random walking
 - secondo interrogato
 - breadth first
 - Iterative broadening e come si fa con A*
 - Nucleolo di nuovo
 - Compilazione di conoscenza
 - datalog or not
 - terzo interrogato
 - metodi di ricerca blind e metodi di ricerca informata: differenze
 - iterative deepening con vantaggi
 - IDA*
 - semantica alla reiter default logic
 - semantica brave default logic
 - verifica coerenza teoria di default (NP Hard)
 - processo
 - nucleolo
 - quarto interrogato
 - iterative broadening
 - perché non usiamo A* per i giochi al posto di min max?
 - hill climb simulated annealing
 - modello stabile con negazione e disgiunzione
 - computer vision e algoritmo di waltz

- planning
 - quale sequenza di azioni va considerata?
 - perché la delete list deve essere vuota?
- stable set teoria giochi
- N=1,2,3 v1=v2=v3=0 e la coalizione di taglia due hanno valore 2, la coalizione di tagla tre vale 5: c'è stable set?
- o quinto interrogato
 - metodi olistici di riconoscimento ambiente
 - pianificazione: Strips
 - Strips Assumption
 - A1:precondizione vuota, add list è P, delete list vuota,A2:precondizione vuota, add list not P, delete list vuota e stato iniziale vuoto. Risultato?
 - concetti soluzione che danno equità, Shapley Value
 - effetto orizzonte
 - singolar extension
 - nodo quieto e nodo tattico
 - A*
 - modello stabile per datalog not
 - intersezione tra modelli che provoca?
 - semantica modelli perfetti o modell stabili
- sesto interrogato
 - test turing
 - regole di inferenza correttezza e completezza
 - Modus Ponens e completezza del modus ponens
 - esempio sound e non complete
 - quanto costa capire se f può essere generato da modus ponens con F?
 - versione arricchita del modus ponens Tp
 - di nuovo la cosa della add list di prima con riflessione su strips
 - waking sat
 - il numero dei GLB in una teoria CNF
 - bargening set
 - algoritmo della famiglia minmax a cui si applica alfa-beta con valori +0.001 e -0.001 in questo caso si taglia l'albero?
 - algoritmo waltz
- settimo interrogato
 - numero GLB teoria di horn di dimensione n
 - come scende la complessità del caution reasoning?
 - pure theory
 - se una teoria ha un estensione non calcolabile attraverso i processi cosa succede?
 - A* con differenza best-first
 - la funzione euristica non esegue mai il backtracking?
 - Core

- algoritmo waltz
- ottavo interrogato
 - numero dei GLB? la congiunzione degli UB è 1 (unico LUB congiunto), anche la congiunzione dei GLB è pure 1 solo se la teoria è di horn (esponenziale se teoria default)
 - kernel
 - teoria di default che abbia un estensione che non possa essere calcolata dall'albero de processi?
 - IDA*
 - a cosa serve il min?
 - programma datalog stratificato
- o altri
 - Verie testimonianze 04/02/2021
 - Descrizione algoritmo Iterative deepening
 - Precisare come si può uscire dal ciclo quando non ci sono goal
 - Risposta: la soluzione proposta dal prof è quella di utilizzare una variabile booleana (non sappiamo nel dettaglio come), un'altra soluzione è quella di uscire quando il cutting level sia pari all'altezza dell'albero ma costa troppo in termini temporali
 - Complessità di verificare la coerenza di una teoria in logica di default (ossia se ammette un'estensione), dimostrare almeno intuitivamente perché tale problema è almeno NP-hard
 - Risposta: intuitivamente se la complessità dell'entailment è CONP-c in logica proposizionale, poiché la logica di default ha sia una teoria proposizionale W che un'insieme di default D è facile capire che sarà almeno difficile quanto l'entailment è quindi ha almeno una sorgente di esponenzialità
 - Strips genera stati inconsistenti?
 - Risposta:un esempio è {f, not(f)} in cui abbiamo uno stato con due fluenti con valore logico opposto, ma strips NON è un linguaggio logico, f e not f potrebbero essere chiamati pluto e paperino quindi no, non genera stati inconsistenti in quanto il concetto di incosistenza è associato a linguaggi logici)
 - Esempio di teoria di default in cui non ci sia alcuna estensione che sia calcolabile con la semantica operazionale
 - Risposta: basta usare una teoria incoerente, {TRUE:A/¬A} è l'esempio tipico
- Giovanni
 - GSAT
 - espressività vs complessità
 - hill climb con simulated annealing
 - o modello perfetto

- Anonimi
 - primo interrogato
 - Semantica operazionale per DL
 - Insieme di regole d'inferenza corretto e completo
 - Iterative deepening
 - secondo interrogato

- Algoritmo di Waltz
- Algoritmo Bread First
- Shapley Value
- Complessità formalismi vs espressività
- Abduzione
- IDA*

Sergio Greco

- Anonimi
 - o come si valuta il maggiore o uguale e minore o uguale nel tableau (nota: contatela come domanda fatta, non badate a quale anonimo sia stata fatta)
 - o primo Anonimo
 - Algoritmo punto fisso (con esempio di possibile applicazione) Quando può essere applicato questo algoritmo?
 - In cosa consiste il problema della verifica? Cosa ha in Input? Che complessità ha?
 - Quando un interpretazione è stabile per un programma?
 - Cosa è un interpretazione? È un sottoinsieme della base di Herbrand.
 - Qual è la dimensione dell'universo di Herbrand?
 - Dimensione del ground di un programma.
 - Semantica della possibilità/Semantica della certezza.
 - Skeptical reasoning (definizione)
 - Struttura dei modelli completi.
 - o secondo Anonimo
 - Argomentazione in generale
 - 13 problemi nell'ambito di argomentazione con le complessità
 - Spiegazione delle complessità
 - o terzo Anonimo
 - Algoritmo semi-naïve in generale (cosa vogliamo ottenere) cosa abbiamo in input: una base di dati e un insieme di regole. Questo programma calcola il modello minimo per il programma P (insieme di regole)
 - Esempio di applicazione dell'algoritmo. Con questo esempio dire che cosa fa l'algoritmo naïve e dove interviene quello semi-naïve.
 - Che cosa fa eval rule()? Dato l'esempio, generare l'espressione in algebra relazionale.
 - Description logic in generale.
 - Linguaggio ALC, descrizione.
 - Perchè utilizziamo la description logic? Non potremmo usare le formule del calcolo dei predicati al suo posto? La domanda scaturisce dal fatro che qualunque formula la possiamo riscrivere con formule del calcolo dei predicati (FOL), e quindi perché utilizzare description logic?
 - Tbox e Abox
 - o quarto Anonimo

Algoritmo naïve (la sua descrizione formale, anche ad alto livello)

Rappresentazione della Conoscenza (6 CFU)

Sergio Greco

2024 2025

- Anonimo
 - o Algoritmo naive/semi-naive
 - o complessità ASP
 - o sistemi di argomentazione in generale
 - Linguaggio ALC

Sistemi Informativi

Cassavia

2017 2018

- Gianpaolo
 - Parte PENTAHO:
 - OLAP
 - o modellazione concettuale data warehouse
 - o realizzare in saiku roll up e roll down
 - o document datastore
 - o column family
- Luca
 - o Creare in saiku l'operazione slice e selezione
 - o modellazione logica dei data ware house
 - 4 fasi della modellazione
 - imputation mismatching
 - o schema di HBase
 - disegnare
 - nome delle componenti
 - modi per interfacciarlo con il client
 - o teorema CAP

- PsykeDady
 - o presentazione progetto
 - eseguire su pentaho:

- drill up
- roll down
- selection slice
- o fasi di progettazione Data Warehouse
- Schemi di fatto a stella e snowflake
- o Proprietà sistemi nosql
- o utilizzo di hbase

ISSTRA Ingegneria del software per sistemi realtime ed agenti

Libero Nigro

2018 2019

- Anonimi
 - o tempo di blocco FPS
 - conversione processo sporadico/periodico
 - o Ping Pong in Jade
 - o Grafo degli stati UPPAAL
 - Query In Uppaal
 - o Scrivere un parcheggio in reti di petri
 - template tTransaction pTransaction delle ptpn
 - o clock di uppaall
 - o come si rappresenta uno stato nel model state graph di uppaal
 - JSemaphore
 - Parametro Lambda delle simulazioni ad attori

Sistemi Distribuiti e Cloud Computing (6 CFU e 9 CFU)

Talia Domenico

- Aloeasy
 - Java Card
 - Replicazione
 - NFS
 - COnsistenza

- · Giovanni Giordano
 - Weak Consistency
 - release consistency
 - o differenze EC2, S3 e DNS
- Anonimi
 - eukaliptus
 - o Naming in generale
 - HT Condor

2020 2021

- Anonimi
 - o componenti del Cloud Amazon
 - o tecniche di scalabilità dei sistemi distribuiti
 - o grid computing
 - o Consistenza debole (synchronize)
 - o Naming in generale e p2p
 - Kerberos
 - o grid
 - o algoritmo elezioni
- Erma_TV
 - HTCondor
 - o Client Side Consistency (Eventual Consistency)
 - RPC (in prticolare RPC one-way)
 - Eucalyptus

- Anonimi
 - o prima sessione di interrogazione:
 - ClassAds di HTCondor
 - cos'è e come viene usato il KDC
 - algoritmi di elezione
 - Eucalyptus
 - Match macker (ht condor)
 - Locking nfs
 - Naming sistemi distribuiti
 - o seconda sessione di interrogazione:
 - MP
 - Modello di autenticazione challenge-response a 5 messaggi a 3 e reflection Attack
 - File locking in NFS

- sistemi distribuiti in generale e proprietà
- Coda
- Needham Shroeder
- Kdc
- RPC
- Globus Gram Home based
- mutua esclusione
- NFS
- lamport
- sincronizzazione
- Htcondor
- consistenza sequenziale
- read your writes
- o terza sessione di interrogazione:
 - Naming
 - Consistenza
- quarta sessione di interrogazione:
 - Sistemi grid
 - HT condor
 - KDC
 - NFS lock
 - Strong mobility

- Anonimo 1
 - o grid
 - o integrazione tra condor e globus
 - o come vengono raccolti i dati in un sistema distribuito
 - o modello di autenticazione challenge-response
 - o con la scalabilità vengono introdotte soluzioni non scalabili?
 - (Risposta: sì e avviene con la replicazione)
- Anonimo 2
 - o Agente mobile
 - NFS e protocolli principale
 - NFS Delegation
 - NFS Lock
 - o Modelli Cloud a Servizi
- Anonimo 3
 - o distributed garbage collector

- grid computing
- o Coda
 - come gestisce le repliche
 - mounting del file system
- o va nello specifico davvero di ogni tipologia di argomento chiedendo dettagli molto particolari e fini

Loris Belcastro

2018 2019

- Aloeasy
 - Distribuited garbage collector
 - o Storage di Azure
 - o Fabric Controller di Azure
 - o come si passano i parametri in JAva RMI

2019 2020

- · Giovanni Giordano
 - o distribuited garbage collector
 - o riferimenti Java RMI
 - o tabelle Azure
 - Combiner

2020 2021

- Anonimi
 - equals in RMI
 - o distributed garbage collector
 - o tables di azure
 - o json web token
 - o Dynamic class download
 - Oggetti attivabili
 - Modulo combiner in map reduce
 - combiner
 - jwt
 - o raw key e timestamp
- Erma_TV
 - MapReduce
 - o Distributed Garbage Collector
 - Tables Di Azure

- Anonimi
 - prima sessione di interrogazione:
 - Map Reduce
 - La table di azure
 - dynamic class download
 - problema dell'equals in RMI e Remote Object
 - CDN
 - Combiner di MapReduce
 - o seconda sessione di interrogazione:
 - Distributed Garbage Collector
 - storage di Azure
 - Docker in generale
 - come aggiungere un altro layer ad un'immagine
 - il vantaggio dei volumi sui bind mount
 - se esistono container con kernel Windows
 - differenze tra storage per oggetti e blocchi in aws
 - terza sessione di interrogazione:
 - Map reduce con Disegno e spiegazione del Partitioner e Combiner
 - Garbage collector
 - Table di azure
 - CND azure

- Anonimo
 - docker
 - o vantaggi di docker rispetto alle macchine virtuali
 - o come creare oggetti in Java rmi
 - o come vengono passati gli oggetti in Java rmi
 - o con quali operazioni viene caricato un oggetto in un registry
 - (risposta: bind e rebind)
 - o con quale operazione viene cercato un oggetto in un registry
 - (risposta: lookup)
 - o la struttura delle tabelle azure
- Anonimi
 - o meccanismi code Azure:
 - 3 tipi di proprietà obbligatorie
 - perché si utilizza UnicastRemoteObject.exportObject e non si usa il metodo normale (lookup e ribind)?
 - il meccanismo di Java obbliga a estendere la classe e questo dovrebbe farlo ogni client (soluzione scomoda)

Basi di Dati evolute

Molinaro Cristian

2019 2020

- Rak
 - o calcolo relazionale e definizione di linguaggio indipendente dal dominio di valutazione
 - lock su database distribuiti
 - tecniche di assegnazione
 - deadlock
 - risposta: che se due transazioni richiedono il lock in scrittura sulla stessa risorsa e ci sono dei ritardi nella rete, nessuna delle due transazioni ottiene il lock e quindi si va in deadlock

2020 2021

- Anonimi
 - o protocollo zero knowledge
 - o algoritmo fiat shamir
 - o proprietà funzioen hash firma digitale
 - o paradosso compleanno

Calcolo Numerico

Yaroslav Sergeyev

2019 2020

- Anonimi
 - o equazioni differenziali metodi conosciuti impliciti ed esplici
 - o esistenza polinomio di interpolazione e tecniche con vantaggi e svantaggi (LaGrange e Newton)
 - metodo romberg
 - o metodi Runge Kutta
 - metodi di interpolazione conosciuti (LaGrange ecc)
 - o punto fisso condizioni convergenza
 - o grafici di convergenza
 - o metodi di derivazione numerica

- Anonimi
 - le tecniche di preprocessamento dei sistemi lineari (pivoting parziale, totale e bilanciamento)
 - o indice di condizionamento
- Erma_Tv
 - o integrale di riferimento

- metodi di integrazione in più dimensione e perché non si può sempre suddividere in somma di integrali come in 1 dimensione
- o condizione convergenza metodi iterativi (sistemi)
- o ordine dell'errore (sia locale che globale) in tutti i metodi sulla risoluzione delle equazioni differenziali
- o può succedere che Jacobi converga e Gaus-Siedel diverga o viceversa?
- FARE BENE il metodo di Cavalieri-Simpson (con enfasi sul motivo per cui si fa l'ipotesi sull' uguaglianza tra la derivata in psi e psi con tilde
- o come scegliere i nodi per evitare fenomeno Runge
- o modo migliore per calcolare la somma di tanti numeri in virgola mobile (slide Marat)
- o come si migliora l'indice di condizionamento? -> PREPROCESSING

Anonimi

- Quando parliamo di integrazione, cos'è l'intervallo di riferimento?
- Qual'è il significato del condizionamento di un sistema lineare?
- o Cos'è la fattorizzazione di Cholesky?
- o Qual'è la differenza tra errore locale e errore globale
- Qual'è il grado più elevato che permette di usare un polinomio di interpolazione?
 - (Risposta: settimo, oltre avviene il fenomeno di Runge)
- Qual'è la migliore predisposizione dei nodi?
 - (Risposta: la peggiore sono i nodi equidistanti, la migliore sono i nodi di Chebyshev)
- Vantaggi e svantaggi di metodi iterativi rispetto ai metodi diretti
 - (Risposta: sono più semplici ma non è detto che convergano)
- o Da cosa dipende il condizionamento di un sistema lineare?
- o Cancellazione numerica e come si può evitare
- Prendendo un metodo iterativo qual'è la condizione della convergenza?
 - (Raggio spettrale (ovvero massimo degli autovalori della matrice d'iterazione) < 1)
- Cos'è uno spazio lineare?
- Data una grande seguenza di numeri positivi, qual'è il migliore modo di sommarli?
 - (Risposta: ordine crescente, minor perdita d'informazioni)
- Quale dei metodi (Gauss e Gauss-Jordan) è il più efficente? Risposta: Il migliore è il metodo di Gauss perché ha una complessità minore
- Svantaggi della formula del polinomio interpolante di LaGrange? Risposta: la complessità e non si possono aggiungere nodi senza dover ricalcolare il polinomio da capo
- o Significato di errore assoluto e relativo nell'approssimazione di un numero floating point
- Formula adattiva di Cavalieri-Simpson e qual'è il presupposto fatto? Risposta: la derivata quarta di f(xi) è supposta uguale all'aumentare del passo
- Quali sono i metodi per la risoluzione di equazioni differenziali ordinarie? Cosa vuol dire implicito ed esplicito?
- Residuo dei sistemi lineare? Se il residuo è piccolo cosa possiamo dire sulla soluzione?
 - Risposta: $r^{(k)} = b Ax^{(k)}$
- o Se il sistema è mal condizionato il fatto che il residuo è piccolo non ci dice nulla
- o Metodi per la risoluzione di equazioni differenziali e ordine degli errori

- Come funzionano i metodi di integrazione numerica in più dimensioni? Perchè non si può usare la formula che trasforma un
- o integrale a più dimensioni in una successione di integrali in una dimensione?
- Metodi per la derivazione numerica
- Estrapolazione di Richardson
- Migliorare il condizionamento di un sistema lineare?
 - Risposta: tecniche di pre-processing
- Metodi iterativi per la risoluzione dei sistemi lineari? Differenza in implementazione?
 - Risposta: Jacobi può essere parallelizzato
- o Cos'è una matrice di permutazione e quali sono le proprietà?
- o Formula di Cavaglieri-Simpson adattiva e come si valuta l'errore
- Fenomeno Runge e come si risolve?
 - Risposta: nodi di Chebyshev o uso di Spline
- Può capitare che uno dei metodi di risoluzione dei sistemi lineari (iterativi) converge e l'altro diverge?
 - Risposta: si perché avendo la matrice di iterazione due formule diverse il raggio spettrale potrebbe essere diverso
- o Teorema dell'esistenza di un unico polinomio d'interpolazione
- Vantaggi e svantaggi dei metodi diretti rispetto ai metodi iterativi per la soluzione di sistemi lineari.
- Quando i metodi diretti non sono applicabili?
 - Risposta: Quando le matrici sono di grandi dimensioni è preferibile usare il metodo di Jacobi che è parallelizzabile
- o Metodo dei coefficenti indeterminati?
- Metodo del punto fisso
- Condizione di Lipshiz e dove si applica
- Tipi di problemi computazionali (problema diretto, inverso e di indentificazione) ed esempi
- o Pre-processing sistemi lineari
- o polinomi osculatori
- spazi lineari
- o metodo dei coefficienti indeterminati
- classificazione problemi computazionali
- o integrazione in multi dimensioni
- CONDIZIONE DI LIPSCHITZ
- gauss e gauss jordan
- o come trovare la matrice inversa
- matrice di permutazione
- qual è il trucco dea formula di integrazione di cavalieri Simpson?
- o metodi di derivazione, i tipi e qual è il margine di errore, come si migliora, che grado di errore c'è
- clark nicolson
- calcolo delle matrici LU (con studio dell'errore)

- Anonimi
 - Metodo del punto fisso
 - o Sistema virgola mobile
 - Errore di arrotondamento
 - Interpolazione
 - Lagrange
 - o Forma di Newton
 - o Errore di interpolazione
 - o Fenomeno di Runge
 - Spline
 - Formula spline quadratica
 - o Estrapolazione di Ric
 - o Metodo di Romberg
 - o Formule adattive
 - Sistemi lineari
 - Condizionamento
 - Metodi iterativi
 - o Equazioni differenziali
 - o Problema di Cauchy

Marat Mukhametzhanov

2019 2020

- · Giovanni Giordano
 - o errore assoluto e relativo
 - o estrapolazione di Richardson
- Anonimi
 - o fenomeno Runge
 - o cancellazione numerica
 - o decomposizione triangolare con Teoremi

- Anonimi
 - o estrapolazione di richardson
 - o Problema di Cauchy
 - Equazione differenziale
 - Stima indice K(A)
 - o Differenze divise e proprietà
 - idea di fondo degli algoritmi

- jacobi
- o Spline lineari e quadratiche

Algoritmi di Crittografia

Cristian Molinaro

2019 2020

- · Giovanni Giordano
 - o CBC
 - funzioni hash
- Anonimi
 - o merkel puzzle
 - obiettivo
 - problemi
 - algoritmo
 - o One Time Pad
 - decifatura e cifratura deterministica
 - decifatura e cifratura randomizzata
 - sicurezza per mandare messaggi
 - problemi
 - o sicurezza Semantica
 - o probab adv dice 1 quando EXP1
 - modi operativi many time Key
 - o PRG e definizioni sicurezza
 - o firma digitale e CA

2020 2021

- Anonimi
 - Modi operativi many time key
 - Sicurezza modi operativi many time key
 - zero knowledge
 - Algoritmo che è capace di attaccare qualsiasi funzione hash e paradosso del compleanno

2022 2023

- Oscar
 - 3 des funzionamento come si cifra e come si decifra
 - o che costo ha des con ricerca esaustiva e con altri attacchi (complessità spaziale e temporale)
 - o funzioni hash e collisioni con l'attacco relativo (paradosso del compleanno)

Anonimo 1

- o puzzle di merkle
- o analisi sicurezza puzzle merkle
- o 3des e perché non usiamo 2des (analisi complessità attacco al 2des e come applicarlo al 3des)
- o cos'è una funzione hash e come attaccarla
- o padding nel mac
- definizione di sicurezza per generatori pseudocasuali e predicibilità con dimostrazione di predicibile=>non sicuro
- o definizione con p1 e p2 computazionalmente indistinguibili
- AE quale è il più sicuro e quale non lo è (perché non lo è)
- o modi operativi MTK con il gioco dell'avversario
- proof of knowledge
- o differenza e analogie tra rsa e rabin

Anonimo 2

- o diffie-helman
- o differenza tra attaccante attivo e passivo
- o sicurezza dei modi operativi many time key
- o cosa può fare l'attaccante attivo che scopre la chiave
- o fiat shamir
- o differenza tra attacco a forza bruta e attacco a forza bruta del paradosso del compleanno (la risposta "dovrebbe essere" che lo spazio di ricerca è diverso)
- se l'avversario si aspetta un valore di e ma ne arriva un altro puo correggere il tiro? (la risposta "dovrebbe essere" che non può perchè il calcolo ha complessita pari a radice modulare n)
- 3des
- come decifrare con 3des (se E(k1,k2,k3,m)=E(k1,D(k2,E(k3,m))) allora D(k1,k2,k3,m)=D(k3,E(k2,D(k1,c))))
- attacco e complessità dell'attacco a 2des
- o dimostra che l'attacco di 2des non si può fare su 3des