

DEPARTMENT OF

INDUSTRIAL ENGINEERING

MSc Degree in Mechatronic Engineering,

Academic Year 2024-2025

Lecture 16: Outline

Main topic:

Photovoltaic Energy Conversion Systems

- Trends of development of Photovoltaic (PV) systems
- Main components of a PV energy conversion systems
 - PV cells/modules/arrays
 - Modeling of PV cells
 - Maximum Power Point Tracking (MPPT)
 - Power electronic converters for PV applications

Photovoltaic (PV) Systems - Outlook

Share of Renewable Electricity Generation, by Energy Source, 2012 and 2022

The renewable share of electricity generation increased by almost 9 percentage points during 2012-2022.

Photovoltaic (PV) Systems - Outlook

Solar PV Global Capacity and Annual Additions, 2012-2022

Most used renewable energy source to produce electricity, after hydro-power

Source: REN21 (2023)

Photovoltaic (PV) Systems - Outlook

Solar PV Global Capacity, by Country, 2012-2022

Source: REN21 (2022)

Grid-connected PV systems

Main components:

- PV array (power generator)
- Power electronic converter
- Local grid/load

Optional components:

- Energy storage system
- Low frequency or high frequency transformer

Photovoltaic Effect

The photovoltaic effect is a physical and chemical phenomenon consisting in the generation of voltage and electric current in a material upon exposure to light

Source: Bayeh and Moubayed; (2015)

PV cells

Source: Wikipedia

- A photovoltaic cell converts the energy of light directly into electricity by the photovoltaic effect
- It is a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light
- The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 0.6 V
- The output current varies depending on the size of the cell. In general, a typical commercially-available silicon cell produces a current between 28 and 35 milliamps per square centimeter

From PV cells to modules

Source :Florida Solar Energy Center

PV module with series connected cells

- Photovoltaic cells are connected electrically in series and/or parallel circuits to produce higher voltages, currents and power levels.
- Photovoltaic modules consist of PV cell circuits sealed in an environmentally protective laminate and are the fundamental building blocks of PV systems.

A solar module is made of photovoltaic cells arranged in a configuration that can contain 32, 36, 48, 60, 72 and 96 cells. A solar panel comprising 32 cells typically can produce 14.72 volts output (each cell producing about 0.46 volt of electricity).

PV module

Source :Offgridsun.com

Solar Module 100 W

Monocrystalline 36 cells

ELECTRICAL DATA					
MODULE	FU 100 M next				
Standard Test Conditions STC 1000 W/sqm - AM 1.5 - 25 °C - measuring tolerance <3%					
Module power (Pmax)	W	100			
Module efficiency	%	15.29			
Maximum power voltage (Vmpp)	٧	18.40			
Maximum power current (Impp)	А	5.43			
Open circuit voltage (Voc)	٧	22.95			
Short circuit current (Isc)	А	5.85			
Maximum system voltage	٧	1000			

TEMPERATURE RATINGS					
Temperature coefficient (Isc)	%/°C	0.02			
Temperature coefficient (Voc)	%/°C	-0.33			
Temperature coefficient (Pmax)	%/°C	-0.48			
NOCT *	°C	47			
Operating temprature	°C	from -40 to +85			

^{*} Nominal Operating Cell Temperature

MECHANICAL SPECIFICATIONS				
Dimensions	1200 x 540 x 30 mm			
Weight	6.7 kg			
Glass	Tempered, transparent, 3.2 mm			
Cell encapsulation	EVA (Ethylene Vinyl Acetate)			
Cells	36 five bus-bar monocrystalline cutted-cells			
Backsheet	Composite multilayer film			
Frame	Anodized aluminium frame with mounting and drainage holes			
Junction box	Junction box with or without cables			

From PV cells to arrays

Source :Florida Solar Energy Center

- Photovoltaic cells are connected electrically in series and/or parallel circuits to produce higher voltages, currents and power levels.
- Photovoltaic modules consist of PV cell circuits sealed in an environmentally protective laminate and are the fundamental building blocks of PV systems.
- Photovoltaic panels include one or more PV modules assembled as a pre-wired, fieldinstallable unit.
- A photovoltaic array is the complete power-generating unit, consisting of any number of PV modules and panels.

PV cell efficiency

Source: NREL

PV module efficiency

Models of different complexity have been elaborated

Many of them are based on a (single) diode

$$I = I_{ph} - I_s \left[e^{\frac{V}{AV_T}} - 1 \right]$$

$$V_T = \frac{KT}{q}$$

Low accuracy

Simple & fast

$$I = I_{ph} - I_s \left[e^{\frac{V + IR_s}{AV_T}} - 1 \right]$$

$$V_T = \frac{KT}{q}$$

Better accuracy

Most used model for a PV cell

$$I = I_{ph} - I_{s} \left[e^{\frac{(V + IR_{s})}{AV_{T}}} - 1 \right] - \frac{V + IR_{s}}{R_{sh}}$$

If ideal
$$R_s=0$$
, $R_{sh}=\infty$

$$I_{ph} = (\frac{S}{S_{ref}})(I_{ph_ref} + \mu_{ISC}(T - T_{ref}))$$

FF=filling factor Isc= short circuit current
Vmp= Voltage at the maximulm power point
q= electron charge
K= Boltzmann constant

Voc=open circuit voltage S= irradiance

T=temperature V_T =thermal voltage

 μ_{ISC} =temperature coefficient of short circuit current

Most used model for a PV cell

Source: Romreo-Cadaval et al.

$$I = I_{ph} - I_{s} \left[e^{\frac{(V + IR_{s})}{AV_{T}}} - 1 \right] - \frac{V + IR_{s}}{R_{sh}}$$

Most used model for a PV cell

Source: Romreo-Cadaval et al.

$I = I_{ph} - I_{s} \left[e^{\frac{(V + IR_{s})}{AV_{T}}} - 1 \right] - \frac{V + IR_{s}}{R_{sh}}$

Irradiance variation

Temperature variation

 $I_{ph} = (\frac{S}{S_{ref}})(I_{ph_ref} + \mu_{ISC}(T - T_{ref}))$

 $\label{eq:posterior} \begin{array}{ll} \text{Voc=open circuit voltage} & \text{S=irradiance} & \mu_{\text{ISC}} \text{=temperature coefficient of short circuit current} \\ \text{Imp= Current at the maximulm power point} \\ \text{A=diode quality factor} & \text{Is= diode saturation current} \end{array}$

T=temperature V_T =thermal voltage

Derivation of PC cell model from manufacturer information

$$I = I_{ph} - I_s [e^{\frac{(V + IR_s)}{AV_T}} - 1] - \frac{V + IR_s}{R_{sh}}$$
5 parameters need to be determined: I_{ph} , I_s , A, R_s , R_{sh}

As 4 conditions can be found, one parameter needs to be assumed, which is normally A (e.g. A=1.2 for monocrystalline silicon). Some simplifications can also be applied

R_s and R_{sh} can be obtained from the MPPT conditions, applying simplifications of non-linear equations

 I_s can be obtained from the open-circuit operation I=0 V= V_{oc}

 I_{ph} can be obtained considering that I_{diode}^{0} under short-circuit condition ($I_{ph}=I_{sc}$)

Maximum Power Point Tracking (MPPT)

Goal: to keep the PV system operating at, or close to, the peak power point of the PV panel under changing conditions, like varying solar irradiance/shading, temperature, and load.

This is performed through the Maximum power point tracking (MPPT), i.e., an algorithm implemented in PV systems to continuously adjust the voltage, such that the PV works at P_{MP}

Multiple MPPT exist, the most common being 1) Fractional open circuit voltage 2) Perturb & Observe, 3) Incremental Conductance method;

MPPT: Fractional Open Circuit Voltage

This algorithm is based on the principle that the maximum power point voltage is always a constant fraction (k= 0.6-0.93) of the open circuit voltage. The open circuit voltage of the cells needs to be periodically measured to be used as controller's input

$$k = \frac{V_{MP}}{V_{OC}}$$

Source: Matlab.

MPPT: Fractional Open Circuit Voltage

Pros

- Simplest MPPT algorithm

Cons

- Needs to periodically measure the Voc, which cannot be measured on a running plant

MPPT: Perturb & Observe (P&O) method

In "peturb and observe" the operating voltage (V) is perturbed (by modifying the corresponding reference V_{ref}) to ensure maximum power output. Voltage is continuously varied

Source: Matlab.

MPPT: Perturb & Observe (P&O) method

Pros

- Simple implementation
- Most used in commercial PV panels

Cons

- Continuous oscillation around the operating (MPPT) point
- If DV is small: long convergence time, if DV is large it will never reach the MPP
- Can just find a local maximum

Source: Matlab.

MPPT: Incremental Conductance (IC) method

The incremental conduction method compares the incremental conductance and the instantaneous conductance of the system and acts on the voltage accordingly based on:

$$\frac{dP}{dV} = \frac{d(VI)}{dV} = I\frac{dV}{dV} + V\frac{dI}{dV} = I + V\frac{dI}{dV}$$

$$\frac{dP}{dV} = 0$$

MPPT: Incremental Conductance (IC) method

Pros

- Short time-response
- High accuracy
- Reaches steady-state operation

Cons

- Complex algorithm
- Increased costs
- Can just find a local maximum

Power electronic converters for PV - Overview

Source: Blaabjerg et al.

Centralized inverter

- DC power production
- **▶** Needs power conditioning
- String systems
- Maximum power point tracking possible with PE

PV panels in string with individual inverters

PV panels in multi-string inverter configuration

Single-phase, single-stage

Single-phase, multiple-stage

Three-phase, line transformer

Three-phase, high frequency transformer

PV configuration features

	SMALL SCALE MEDIUM SCALE		LARGE SCALE	
	AC MODULE	STRING	MULTISTRING	CENTRAL
Power range	<350 W	<10 kW	<500 kW	<850 kW (<1.6 MW for dual)
Devices	H MOSFET	MOSFET - IGBT	MOSFET - IGBT	J GBT
MPPT efficiency	Highest (one module—one MPPT)	Good (one large string—one MPPT)	High (one small string—one MPPT)	Good (one array—one MPPT)
Converter efficiency	Lowest (up to 96.5%)	High (up to 97.8%)	High (up to 98%)	Highest (up to 98.6%)
Features	 Flexible/modular Highest MPPT efficiency Easy installation Higher losses Higher cost per watt Two stage is mandatory 	 Good MPPT efficiency Reduced dc wiring Transformerless (very common) High component count One string, one inverter 	 Flexible/modular High MPPT efficiency Low cost for multiple string system Two stage is mandatory 	 Simple structure Highest converter efficiency Reliable Needs blocking diodes (for array) Poor MPPT performance Not flexible
Examples	Power One Aurora MICRO-0.3-I and Siemens SMIINV215R60	Danfoss DLX 4.6 and ABB PVS 300	SMA SB5000TL and SATCON Solstice	SMA MV Power Platform and 1.6 Siemens SINVERT PVS630

Source: Kouro et al.

Inverter configurations

Inverter topologies characteristics:

- Variable transistor/switch number
- With or without voltage transformer
- Single or three-phase
- Single or multi-stage

Drivers for PV converter evolution:

- Higher efficiency
- Higher compactness
- Higher reliability

Inverter efficiency

Source: Bacha et al.

Main factors affecting inverter efficiency:

- Inverter topology
- Switching frequency (linked to the type of semiconductors used)
- Presence of voltage transformer

$$\eta_{EU} = 0.03 \,\eta_{5\%} + 0.06 \,\eta_{10\%} + 0.13 \,\eta_{20\%} + 0.1 \,\eta_{30\%} + 0.48 \,\eta_{50\%} + 0.2 \,\eta_{100\%}$$

Efficiency weights performance in different operating conditions

Power electronics for PV – Cost outlook

Source: Fraunhofer ISE.

Power electronics for PV – Expected evolution

Source: https://www.powerelectronicsnews.com/.

Conclusions

- PV represents the largest share of renewable sources (after hydro) in electricity generation (~5% worldwide)
- Technology is rapidly evolving, aiming at higher efficiency and reduced costs
- Control through MPPT algorithms is crucial to increase energy harvesting
- Power electronic interfaces (with multiple topologies) are key components to enable the grid injection of produced power

Lecture 16: Reference material

REN21. 2023. Renewables 2023 Global Status Report collection, Renewables in Energy Supply

- S. Kouro, J. I. Leon, D. Vinnikov and L. G. Franquelo, "Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology," in IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47-61, March 2015
- Z. Tang, Y. Yang and F. Blaabjerg, "Power electronics: The enabling technology for renewable energy integration," in CSEE Journal of Power and Energy Systems, vol. 8, no. 1, pp. 39-52, Jan. 2022, doi: 10.17775/CSEEJPES.2021.02850.
- E. Romero-Cadaval, G. Spagnuolo, L. G. Franquelo, C. A. Ramos-Paja, T. Suntio and W. M. Xiao, "Grid-Connected Photovoltaic Generation Plants: Components and Operation," in IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 6-20, Sept. 2013
- G. Spagnuolo et al., "Renewable Energy Operation and Conversion Schemes: A Summary of Discussions During the Seminar on Renewable Energy Systems," in IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 38-51, March 2010,