Quiz 1A **CHEM 1141**

Fall 2012

Name:	KEY

Q1. [0.5 pt. ea.] Fill in the blanks:

Quantity	Name of Unit	Symbol of Unit	
mass	Kilogram	Kg	
time	second	S	
electrical current	Ampère	A	

Q2. [0.5 pt. ea.] Fill in the blanks:

Element Name	Element Symbol
lead	Pb
carbon	C
Mercury	Hg
tin	Sn

Q3. [1 pt. ea.] Fill in the blanks:

SI Prefix	Meaning
n	x10 ⁻⁹
С	×10 ⁻²
m	× 10→3

Q4. [2 pts.] What volume of mercury has a mass of 1.91 g? The density of mercury is 13.6 g/mL. SHOW ALL WORK.

$$\Rightarrow V = \frac{M}{4}$$

$$\Rightarrow V = \frac{1.91g}{13.69/mL} = 0.140mL$$

Quiz 2A Chemistry 1141 Fall 2012

Name:	KEY
-------	-----

Q1. [1 pt. ea.] Compute the following to the correct number of significant figures/decimal places:

a)
$$3.50 \times 12.00 = 42.0$$
 (3s.f.)
b) $12.920 - 11.420 = 1.500$ (3d.p.)

Q2. [2 pts.] Using the conversion-factor method, convert an area of 3.4 in² to cm². Note: 1 in = 2.54 cm (exactly). Show ALL work!

$$3.4 \text{ in}^2 \times \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^2 = 22 \text{ cm}^2 \quad (2s.f.)$$

Q3. [2 pts.] What are the horizontal rows on the periodic table called?

Q4. [2 pts.] Name the following ionic compounds:

Q5. [0.5 pts. ea.] Write out the formulas of the following ions:

a) sulfate	S04	
b) ferric	Fe ²⁺	_
c) nitrate	No.	
d) oxide	027	

Quiz 3A Chemistry 1141 Fall 2012

	VEV
Name:	CLI

9/17/2012

Q1. [1 pt. ea.] Name the following molecular compounds:

Q2. [1 pt.] Give the systematic name the following compound:

Q3. [1 pt.] How is the atomic mass unit defined?

Q4. [3 pts.] How many moles of CCl₄ are there in a 21.0 g sample? Show ALL work. You must use the conversion-factor method to receive credit.

Q5. [3 pts.] Element X is composed of two isotopes: X-76 and X-79. Using the data in the table below, calculate its (average) atomic mass. Show ALL work.

Isotope	Mass / u	Relative Abundance / %
X-76	75.904	82.1
X-79	78.890	17.9

Querage abomic Man =
$$75.904u + \frac{82.1}{100} + 78.890 + \frac{17.9}{100}$$

= $62.3u$ (35f.)
= $76.4u$ (1d.p.)

Quiz 4A Chemistry 1141 Fall 2012

Name:____KEY____

9/24/2012

Q1. [2 pts.] Balance the following chemical equation using the lowest set of whole number coefficients:

$$2C_2H_6(g) + 7S_2(s) \rightarrow 4CS_2(l) + 6H_2S(g)$$

Q2. [6 pts.] Using the balanced chemical equation from Q1, what mass of CS_2 can be formed from the reaction between 10.0 g of C_2H_6 and 10.0 g of S_2 ?

$$\frac{C_2H_6}{2*C} = 2*12.01$$

$$6*H = 6*1.01$$

$$30.08$$

$$\frac{S_2}{2*S} = 2*32.07$$

$$64.14$$

$$\frac{CS_2}{1*C} = 12.01$$

Q3. [2 pts.] What is the percent yield of this reaction if 2.40 g of CS2 was formed?

Quiz 5A Chemistry 1141 Fall 2012

Name: KE	10/1/2012
	Arrhenius definition of an acid?
forms Ht	ions when dissolved in water
Q2. [2 pts.] Predict who	ther the following compounds will be soluble or insoluble in water:
a) NH ₄ NO ₃	SOLUBLE
b) Fe ₂ S ₃	INSOLUBLE
c) Pb(OH) ₂	INSOLUOLE
d) AgBr	INSOLUBLE
Q3. [2 pts.] Write out to	he full-ionic equation given the following molecular equation:
	: 2HCl(aq) + Pb(NO3)2(aq) → PbCl2(s) + 2HNO3(aq)
FULL IONIC:	2Htag) + 2Ce (ag) + Pb2tag) + 2N03(ag) -> PbCe2(s) + 2Htag) + 2N03(ag)
Q4. [2 pts.] What does	the term "t riprotic acid " mean?
Can	release 3H+/molecule.
Q5. [2 pts.] What does	haihs an atom that has lost electrons
It con	stails an arom man has been so

Quiz 6A Chemistry 1141 Fall 2012

Name: KEY

10/8/2012

Q1. [2 pts.] Assign an oxidation number to the underlined atom in each compound:

N205 (+5) SO3 1 (-2)

- a) Na<u>3P</u>O₄ +5
- b) <u>N</u>₂O₅ <u>+5</u>
- c) <u>SO</u>₃ <u>+6</u>
- d) Mg(NO₂)₂ 43
- 3Nat, $P04^{3-}$ $\sum_{(-2)}^{3}$ ox# = charge

Mg2+ , 2 NO2-

Q2. [2 pts] How many moles of CaCl₂ are in 25.00 mL of 3.400 M CaCl₂(aq)? Show all work. You must use the conversion-factor method to receive credit.

VI M

Q3. [4 pts.] 35.0 mL of water is added to 25.0 mL of 15.0 M HNO₃(aq). Assuming the volumes are additive, what is the final concentration of the HNO₃? $V_2 = 25.0$ mL + 35.0mL = 60.0mL

 $M_1V_1 = M_2V_2$

 $M_2 = ?$

$$\Rightarrow M_2 = \frac{M_1 V_1}{V_2} = \frac{15.0 M \times 25.0 mL}{60.0 mL} = \frac{16.25 M}{1}$$

Q4. [2 pts.] Circle the elements that are gases at 25 °C and 1 atm:

- a) hydrogen e) bromine
- b) lithium
- c) nitrogen
- d) calcium

- f) chlorine
- g) neon
- h) iodine

Quiz 7A Chemistry 1141 Fall 2012

Name: KEY 10/15/2012

Q1. [3 pts.] 34.0 mL of helium gas at a pressure of 311 mmHg is compressed until its volume becomes 21.4 mL. What will its pressure become? Assume the temperature does not change.

Boyle's Law

$$P_1V_1 = P_2V_2$$
 \Rightarrow $P_2 = \frac{P_1V_1}{V_2} = \frac{311mmHg \times 34.0mL}{21.4mL} = \frac{494mmHg}{V_2}$

Q2. [3 pts.] 34.0 mL of helium gas at a temperature of 15 °C is cooled down to -15 °C. What is its new volume? Assume the pressure does not change.

Charles' Law
$$T_1 = 15 + 273.15 = 288 \text{ K}$$

 $V_1 = \frac{V_2}{T_1}$ $T_2 = -15 + 273.15 = 258 \text{ K}$

$$\Rightarrow V_2 = \frac{V_1 \times T_2}{T_1} = \frac{34.0 \text{ mL} \times 258 \text{ K}}{288 \text{ K}} = \boxed{30.5 \text{ mL}}$$

Q3. [4 pts.] What pressure will 4.00 g of helium gas exert if its temperature is 145 °C when it is confined to a volume of 902 mL?

$$=) p = \frac{nRT}{V}$$

$$= 145 + 273.15 = 418K T$$

$$= 0.902 L V$$

Quiz 8A Chemistry 1141 Fall 2012

1st Law

I all 20	1 4				
Name:	KEY	1.	(cooper)	10/22/2012	
Show ALL work to	receive credit!	10	(copper)	tf	(copper)
water at an initial t	of copper at a temperate temperature of 24.4 °C. nt of heat lost by the co	If the final tempera	ture of the system i	is 38.2 °C then	
: m.s. Dt	$= 10.09 \times 0$	·385 = × (38,2°C - 1	43.0°C)	
	= -4035			heat energy.	
Q2. [3 pts.] How i	nuch heat was gained by	v the water?			
: conservation	of energy!	9 H20 + 9 Cu	=0 =>	heat energy	= + 403.
Q3. [4 pts.] What	mass of water must have	water gained	4037 of	heat energy	•
9 = n	11 H20 × SH20 >	+ St H20			
ſ	$N_{H_2O} = \frac{9}{S_{H_2O}}$	1420 x Dt 420	= +40		-24.4°C
		,		t _F J	Lt _I water

Quiz 9A Chemistry 1141 Fall 2012

Name: KEY

10/29/2012

Show ALL work to receive credit!

Q1. [3 pts.] Write the thermochemical equation corresponding to $\Delta H_1^o(C_3H_7OH(l))$

Q2. [4 pts.] Given the following thermochemical equations:

$$\begin{array}{ccc} \text{(1)} & \text{H}_2(g) \longrightarrow 2\text{H}(g) & \Delta H^o = -436.4 \text{ kJ/mol} \\ \text{(2)} & \text{Br}_2(g) \longrightarrow 2\text{Br}(g) & \Delta H^o = +192.5 \text{ kJ/mol} \\ \text{(3)} & \text{H}_2(g) + \text{Br}_2(g) \longrightarrow 2\text{HBr}(g) & \Delta H^o = -72.4 \text{ kJ/mol} \end{array}$$

Determine ΔH^0 for the reaction

reverse and
$$\frac{1}{2}$$
 (1) $H(g) \longrightarrow \frac{1}{2}H_{2}(g)$; $\Delta H^{\circ} = -\frac{1}{2} \times -436.4 \frac{kT}{mol} = +218.2 \frac{k3}{mol}$

reverse and $\frac{1}{2}$ (1) $Br(g) \longrightarrow \frac{1}{2}Br_{2}(g)$; $\Delta H^{\circ} = -\frac{1}{2} \times +192.5 \frac{kT}{mol} = -96.25 \frac{kT}{mol}$
 $\frac{1}{2}(3)$ $\frac{1}{2}H_{2}(g) + \frac{1}{2}Br_{2}(g) \longrightarrow HBr(g)$; $\Delta H^{\circ} = \frac{1}{2} \times -72.4 \frac{kT}{mol} = -36.2 \frac{kT}{mol}$

H(g) + B(g) → HB(g) ; △H° = +85.8 KJ/mol

Q3. [3 pts.] Calculate the energy of a photon of green light, with a wavelength of 532 nm.

$$E = hv = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \text{ J.s.} \times 3.00 \times 10^{8} \text{m/s}}{532 \times 10^{-9} \text{m}}$$

$$= 3.74 \times 10^{-19} \text{ J}$$

Quiz 10A Chemistry 1141 Fall 2012

Name:	KEY

11/5/2012

Show ALL work to receive credit!

Q1. [6 pts.] Calculate the *wavelength* of light (in nm) emitted from a hydrogen atom undergoing a transition from n = 6 to n = 2.

$$\Delta E = E_2 - E_6 = -R_H \left(\frac{1}{2^2}\right) \Theta - R_H \left(\frac{1}{6^2}\right)$$

$$= -R_H \left(\frac{1}{2^2} - \frac{1}{6^2}\right) = -2.18 \times 10^{-18} J \left(\frac{1}{4} - \frac{1}{36}\right)$$

$$\Rightarrow \Delta E = -4.844 \times 10^{-19} J$$

$$= \frac{4.10 \times 10^{-7} \text{ nm}}{10^{-9} \text{ n}} = 410.\text{ nm}$$

Q2. [4 pts.] Write out the full electron configuration and the orbital diagram for an atom of silicon.

Quiz 11A **Chemistry 1141**

Гаі	11 2012		
Name	e: KEY		12/3/2012
Show A	LL work to receive credit!		
Q1. [6 _]	pts.] Predict the molecular geometry (i) A valid Lewis structure, (ii) A sk wedge notation, (iii) Approximate molecular geometry.	tetch of the molecular geometr bond angles written out, and (ry using line, dash, and (iv) the name of the
Say	(ii) 5 repu	lions around central	atom = trigonal bipyramidal
16+7+4=34e- :Cl: (i):Cl-5- :Cl:	ce:	10° Cl lp	ques equatorial (gives 2x lp-bp @ 9
	(iv) molecupts.] Using valence-bond theory, exp	0	ce-saw Ce simple Ce ce
-2 (lp ons)	NH3 H -	-N-H H Lewis	H NIIIH trigenal H 210910 pyrownido
, N 15 ² 25 ² 2p ³ , H 15'			(*) sp3 1s
if angles are	10930, need sp3 hy	bridization on N!	SP3 DH

overlop of sp3 on N w/ Is on H makes a 5-bond!