ПРИЛОЖЕНИЕ Г. Методика расчета ТОА

Принятые обозначения:

1 - прямой поток (высокого давления)

2 - обратный поток (низкого давления)

n - параметры потока на входе

k - параметры потока на выходе

т - среднее значение параметров

Рис. 1 Условная схема ТОА

Исходные данные:

1. Из расчета цикла:

Прямой	(теплый)
TT	

Теплоноситель Не

Pасход
$$G_1 = 460 \frac{\kappa \Gamma}{\Psi} = 0.128 \cdot \frac{\kappa}{\Theta}$$

Температура на входе $T_{1n} = 318.1K$

Температура на выходе $T_{1k} = 80K$

Давление на входе $p_{1n}=2.3 \mathrm{M}\Pi a$

Давление на выходе $p_{1k} = 2.264 M\Pi a$

Обратный (холодный)

He

$$G_1 = 460 \frac{K\Gamma}{V} = 0.128 \cdot \frac{K\Gamma}{C}$$
 $G_2 = 494.5 \frac{K\Gamma}{V} = 0.1374 \cdot \frac{K\Gamma}{C}$

 $T_{2n} = 75.98K$

 $T_{2k} = 297.7K$

 $p_{2n} = 0.1141M\Pi a$

 $p_{2k} = 0.105 M\Pi a$

2. Недорекуперации:

Недорекуперация на теплом конце: $\Delta T_h = T_{1n} - T_{2k} = 20.4 \, \mathrm{K}$

Недорекуперация на холодном конце: $\Delta T_c = T_{1k} - T_{2n} = 4.02 \, \mathrm{K}$

3. Допустимые падения давлений:

Падение давления в прямом потоке: $\Delta p_{\Pi p} = p_{1n} - p_{1k} = 36 \cdot \kappa \Pi a$

Падение давления в обратном потоке: $\Delta p_{\text{обр}} = p_{2n} - p_{2k} = 9.1 \cdot \text{к}$ Па

4. Средняя температура потоков:

$$T_{1m} = \frac{T_{1n} + T_{1k}}{2} = \frac{318.1 \cdot K + 80 \cdot K}{2} = 199.1 \, K$$

$$T_{2m} = \frac{T_{2k} + T_{2n}}{2} = \frac{297.7 \cdot K + 75.98 \cdot K}{2} = 186.8 \, K$$

5. Среднее давление потоков:

$$p_{1m} = \frac{p_{1n} + p_{1k}}{2} = \frac{2.3 \cdot M\Pi a + 2.264 \cdot M\Pi a}{2} = 2.282 \cdot M\Pi a$$

$$p_{2m} = \frac{p_{2n} + p_{2k}}{2} = \frac{0.1141 \cdot M\Pi a + 0.105 \cdot M\Pi a}{2} = 0.1095 \cdot M\Pi a$$

6. Значение энтальний потоков на входе и выходе из теплообменного аппарата:

$$\begin{split} h_{1n} &= h_{Tpz} \Big(T_{1n}, p_{1n}, x_{\pi p} \Big), \ h_{1k} &= h_{Tpz} \Big(T_{1k}, p_{1k}, x_{\pi p} \Big) \\ h_{2n} &= h_{Tpz} \Big(T_{2n}, p_{2n}, x_{oбp} \Big), \ h_{2k} &= h_{Tpz} \Big(T_{2k}, p_{2k}, x_{oбp} \Big) \\ h_{1n} &= 1664.4 \cdot \frac{\kappa \mathcal{J} \times}{\kappa \Gamma}, \ h_{1k} &= 425.3 \cdot \frac{\kappa \mathcal{J} \times}{\kappa \Gamma} \\ h_{2n} &= 400 \cdot \frac{\kappa \mathcal{J} \times}{\kappa \Gamma}, \ h_{2k} &= 1551.6 \cdot \frac{\kappa \mathcal{J} \times}{\kappa \Gamma} \end{split}$$

7. Значение теплоемкостей потоков на входе и выходе из теплообменного аппарата:

$$\begin{split} \text{Cp}_{1n} &= \text{C}_{p_Tpz} \big(\text{T}_{1n}, \text{p}_{1n}, \text{x}_{\pi p} \big), \text{ Cp}_{1k} = \text{C}_{p_Tpz} \big(\text{T}_{1k}, \text{p}_{1k}, \text{x}_{\pi p} \big) \\ \text{Cp}_{2n} &= \text{C}_{p_Tpz} \big(\text{T}_{2n}, \text{p}_{2n}, \text{x}_{oбp} \big), \text{ Cp}_{2k} = \text{C}_{p_Tpz} \big(\text{T}_{2k}, \text{p}_{2k}, \text{x}_{oбp} \big) \\ \text{Cp}_{1n} &= 5.194 \cdot \frac{\kappa \angle M}{\kappa \Gamma \cdot K}, \text{ Cp}_{1k} = 5.247 \cdot \frac{\kappa \angle M}{\kappa \Gamma \cdot K} \\ \text{Cp}_{2n} &= 5.197 \cdot \frac{\kappa \angle M}{\kappa \Gamma \cdot K}, \text{ Cp}_{2k} = 5.193 \cdot \frac{\kappa \angle M}{\kappa \Gamma \cdot K} \end{split}$$

8. Средняя удельная теплоемкость потоков:

$$Cp_{1m} = \frac{Cp_{1n} + Cp_{1k}}{2} = 5.22 \cdot \frac{\kappa \text{Дж}}{\kappa \text{г. K}}$$

$$Cp_{2m} = \frac{Cp_{2n} + Cp_{2k}}{2} = 5.195 \cdot \frac{\kappa \text{Дж}}{\kappa \text{г. K}}$$

9. Тепловой поток и Т-Q диаграмма теплооменного аппарата:

$$Q_{T\Pi} = G_1 \cdot (h_{1n} - h_{1k}) = 158.33 \cdot \kappa B_T$$

Проверка граничных условий:

$$T_{1i}(0) = 80 K$$

$$T_{1i}(0) = 80 \,\mathrm{K}$$
 $T_{2i}(0) = 76 \,\mathrm{K}$

$$T_{1i}(Q_{TII}) = 318.1 \,\mathrm{K}$$

$$T_{1i}(Q_{T\Pi}) = 318.1 \,\text{K}$$
 $T_{2i}(Q_{T\Pi}) = 297.92 \,\text{K}$

10. Температурный напор в сечениях:

11. Средняя разность температур:

$$\Delta T_{m} = \left| \begin{array}{l} \displaystyle \int_{0}^{Q_{T\Pi}} dT(Q) \, dQ \\ \hline Q_{T\Pi} & \text{if } \left(\left| \frac{Cp_{1k} - Cp_{1n}}{Cp_{1n}} \right| > 0.05 \right) \vee \left(\left| \frac{Cp_{2k} - Cp_{2n}}{Cp_{2n}} \right| > 0.05 \right) \\ \hline \frac{\left(T_{1n} - T_{2k} \right) + \left(T_{1k} - T_{2n} \right)}{2} & \text{if } 0.8 < \frac{T_{1n} - T_{2k}}{T_{1k} - T_{2n}} < 1.2 \\ \hline \frac{\left(T_{1k} - T_{2n} \right) - \left(T_{1n} - T_{2k} \right)}{\ln \left(\frac{T_{1k} - T_{2n}}{T_{1n} - T_{2k}} \right)} & \text{otherwise} \end{array} \right|$$

Условия:

$$\left| \frac{Cp_{1k} - Cp_{1n}}{Cp_{1n}} \right| > 0.05 = 0 \qquad \left| \frac{Cp_{2k} - Cp_{2n}}{Cp_{2n}} \right| > 0.05 = 0 \qquad \frac{T_{1n} - T_{2k}}{T_{1k} - T_{2n}} = 5.1$$

Средний температурный напор: $\Delta T_{m} = 10.08 \, \mathrm{K}$

- 12. 3апас поверхности: Z = 1.3
- 13. Допускаемые потери давления в намотке: коэффициент (a=0.65...0.70) a=0.65

$$\Delta P_{1'} = a \cdot \Delta p_{\Pi p} = 23.4 \cdot \kappa \Pi a$$
 $\Delta P_{2'} = a \cdot \Delta p_{oбp} = 5.92 \cdot \kappa \Pi a$

14. Плотность при средней температуре для прямого и обратного потока:

$$\rho_{1m} = \rho_{Tpz} \Big(T_{1m}, p_{1m}, x_{\pi p} \Big) \qquad \qquad \rho_{2m} = \rho_{Tpz} \Big(T_{2m}, p_{2m}, x_{obp} \Big)$$

$$\rho_{1m} = 5.4 \cdot \frac{\kappa \Gamma}{\frac{3}{M}}$$

$$\rho_{2m} = 0.28 \cdot \frac{\kappa \Gamma}{\frac{3}{M}}$$

15. Теплопроводность при средней температуре для прямого и обратного потока:

$$\lambda_{1m} = \lambda_{Tdx} (T_{1m}, \rho_{1m}, x_{\pi p}) \qquad \qquad \lambda_{2m} = \lambda_{Tdx} (T_{2m}, \rho_{2m}, x_{obp})$$

$$\lambda_{1m} = 0.1193 \cdot \frac{B_T}{M \cdot K} \qquad \qquad \lambda_{2m} = 0.1126 \cdot \frac{B_T}{M \cdot K}$$

16. Динамическая вязкость при средней температуре для прямого и обратного потока:

$$\mu_{1m} = \mu_{Tdx} (T_{1m}, \rho_{1m}, x_{\pi p}) \qquad \qquad \mu_{2m} = \mu_{Tdx} (T_{2m}, \rho_{2m}, x_{o6p})$$

$$\mu_{1m} = 1.53 \times 10^{-5} \cdot \Pi a \cdot c \qquad \qquad \mu_{2m} = 1.45 \times 10^{-5} \cdot \Pi a \cdot c$$

17. Типоразмер теплообменной поверхности:

Типоразмер

Timopasine
100 16 50
150 25 90
200 33.5 110
300 50 200
300 80 250
300 80 250
400 80 250
500 80 275
600 100 400
700 120 400
800 150 500
1000 160 550
1 1

Þ

Рис. 2 Параметры навивки

Параметры выбранной поверхности:

Коэффициент оребрения: Наружный диаметр трубы: $d_2 = 5 \cdot MM$ $\varphi = 2.59$

 $d_1 = 4 \cdot MM$ Внутренний диаметр трубы: Отношение площадей: $S_{VJI} = 0.303$

 $d_{\Pi} = 0.8 \cdot MM$ $\psi = 985 \cdot \frac{M^2}{3}$ Диаметр проволоки:

Компактность: $t_1 = 5.35 \cdot MM$ Поперечный шаг намотки:

 $t_2 = 6.1 \cdot MM$ Продольный шаг намотки: $M' = 0.35 \cdot \frac{M^2}{\kappa r}$ Приведененная масса:

 $d_{3} = 1.23 \cdot MM$ Эквивалентный диаметр:

І. Предварительный расчет

І.1 Критерий Прандтля:

$$Pr_1 = \frac{\mu_{1m} \cdot Cp_{1m}}{\lambda_{1m}} = 0.6672 \qquad Pr_2 = \frac{\mu_{2m} \cdot Cp_{2m}}{\lambda_{2m}} = 0.6674$$

I.2 Коэффициенты уравнения теплопередачи:

$$A_{1} = 0.023 \cdot \frac{\lambda_{1m}}{d_{1}} \cdot Pr_{1}^{0.33}$$

$$A_{2} = 0.168 \cdot \frac{\lambda_{2m}}{d_{9}} \cdot Pr_{2}^{0.33}$$

$$A_{1} = 0.6005$$

$$A_{2} = 13.46$$

$$\begin{split} P_1 &= \frac{Z \cdot Q_{T\Pi}}{8 \cdot \phi \cdot \rho_{1m} \cdot \Delta P_1 \cdot \Delta T_m \cdot G_1} \cdot \left(\frac{\mu_{1m}}{d_1}\right)^3 \\ P_2 &= \frac{Z \cdot Q_{T\Pi}}{2 \cdot \rho_{2m} \cdot \Delta P_2 \cdot \Delta T_m \cdot G_2} \cdot \left(\frac{\mu_{2m}}{d_3}\right)^3 \\ P_1 &= 3.3649 \times 10^{-9} \cdot \frac{B_T}{M^2 \cdot K} \end{split}$$

І.2.1 Граничные значения коэффециента теплоотдачи:

1. По трубному потоку:

$$g_1 = 3.3856 \cdot 10^8 \cdot P_1 = 1.139 \cdot \frac{BT}{M^2 \cdot K}$$
 при $Re_1 = 2300$

2. По межтрубному потоку:

$$g_{21} = 15.05 \cdot 10^3 \cdot P_2 = 1.091 \cdot \frac{BT}{M^2 \cdot K}$$
 при $Re_{21} = 20$ $g_{22} = 6.656 \cdot 10^5 \cdot P_2 = 48.245 \cdot \frac{BT}{M^2 \cdot K}$ при $Re_{22} = 100$

3. Критериальные коэффициенты в зависимости от гидравлического сопротивления:

трубный поток

$$S_{1}(k) = \begin{pmatrix} 64 \\ -1 \end{pmatrix} \text{ if } k \leq g_{1}$$

$$\begin{pmatrix} 0.3164 \\ -0.25 \end{pmatrix} \text{ otherwise}$$

$$B_1(k) = S_1(k)_0$$

 $x_1(k) = S_1(k)_1$

$$\operatorname{Re}_{1}(k) = \left(\frac{k}{B_{1}(k) \cdot P_{1}}\right)^{\frac{1}{x_{1}(k) + 3}}$$

$$\zeta_1(k) = B_1(k) \cdot Re_1(k)^{x_1(k)}$$

межтрубный поток

$$S_{2}(k) = \begin{pmatrix} 12.8 \\ -0.64 \end{pmatrix} \text{ if } g_{21} \le k \le g_{22}$$
$$\begin{pmatrix} 2.65 \\ -0.3 \end{pmatrix} \text{ otherwise}$$

$$B_2(k) = S_2(k)_0$$

 $x_2(k) = S_2(k)_1$

$$Re_2(k) = \left(\frac{k}{B_2(k) \cdot P_2}\right)^{\frac{1}{x_2(k) + 3}}$$

$$f_2(k) = B_2(k) \cdot Re_2(k)^{x_2(k)}$$

І.3 Число Нуссельта и Стантона:

$$\begin{aligned} \text{St}_2(\textbf{k}) &= 0.168 \cdot \text{Re}_2(\textbf{k})^{-0.3} \cdot \text{Pr}_2^{-0.66} \\ \text{Nu}_1(\textbf{k}) &= \begin{vmatrix} \text{Re}_{1'} &= \text{Re}_1(\textbf{k}) \\ 3.66 & \text{if } \text{Re}_{1'} \leq 2300 \\ \\ \begin{bmatrix} 3.66 \cdot \left(\frac{\text{Re}_{1'}}{2300} \right)^{\left(2.3 + \log\left(\text{Pr}_1\right) \right)} \right] & \text{if } 2300 < \text{Re}_{1'} \leq 4000 \\ \\ \begin{pmatrix} 0.023 \cdot \text{Re}_{1'} & 0.88 \cdot \text{Pr}_1 & 0.33 \end{pmatrix} & \text{if } 4000 < \text{Re}_{1'} \leq 10^5 \end{aligned}$$

Массовые скорости потоков:

трубный поток

$$w_1(k) = \text{Re}_1(k) \cdot \frac{\mu_{1m}}{d_1}$$
 $w_2(k) = \text{Re}_2(k) \cdot \frac{\mu_{2m}}{d_2}$

Коэффициент теплоотдачи:

$$\begin{split} \alpha_1(k) &= \frac{\text{Nu}_1(k) \cdot \lambda_{1m}}{d_1} \\ \alpha_1\Big(g_1\Big) &= 109.2 \cdot \frac{B_T}{\text{M}^2 \cdot K} \end{split} \qquad \begin{aligned} \alpha_2(k) &= \text{St}_2(k) \cdot \text{w}_2(k) \cdot \text{Cp}_{2m} \\ \alpha_2\Big(g_{22}\Big) &= 335.82 \cdot \frac{B_T}{\text{M}^2 \cdot K} \end{aligned}$$

Коэффициент теплопередачи:

$$F(k) = \frac{k}{\alpha_2(k)} + \frac{k \cdot \varphi}{\alpha_1(k)} - 1 \qquad F(g_{22}) = -0.691 \qquad F(g_{21}) = -0.964$$

$$F(g_{21}) < 1 = 1$$

Корень уравнения:

$$k' = \text{root}\left(F(k), k, g_{21}, 1000 \frac{B_T}{M^2 \cdot K}\right) = 244.79 \cdot \frac{B_T}{M^2 \cdot K}$$

Коэффициент теплоотдачи:

$$\alpha_1(\mathbf{k}') = 1212.52 \cdot \frac{\mathbf{B}_T}{\frac{\mathbf{k}^2 \cdot \mathbf{K}}{\mathbf{k}}}$$
 $\alpha_2(\mathbf{k}') = 513.04 \cdot \frac{\mathbf{B}_T}{\frac{\mathbf{k}^2 \cdot \mathbf{K}}{\mathbf{k}}}$

Факторы трения Дарси: $\zeta_1(\mathbf{k}') = 0.0293$ $f_2(\mathbf{k}') = 0.556$

Число Нуссельта и Стантена:

$$Nu_1(k') = 40.64$$
 $St_2(k') = 0.046$

II. Расчет геометрических и конструктивных параметров намотки теплообенного аппарага

II.1 Действительная площадь поверхности TOA:

$$F_{\mathcal{I}} = \frac{Z \cdot Q_{TII}}{k' \cdot \Delta T_{m}} = 83.4 \cdot M^{2}$$

II.2 Критерий Рейнольдса:

$$Re_1(k') = 13535.8$$
 $Re_2(k') = 182.5$

II.3 Массовые скорости потоков:

$$\begin{aligned} w_1(k') &= 51.62 \cdot \frac{\kappa \Gamma}{\frac{2}{M} \cdot c} \\ \frac{w_1(k')}{\rho_{1m}} &= 9.51 \cdot \frac{M}{c} \\ \frac{w_2(k')}{\rho_{2m}} &= 7.61 \cdot \frac{M}{c} \end{aligned}$$

II.4 Число труб:

$$n'_{Tp} = \frac{G_1}{\frac{\pi}{4} \cdot d_1^2 \cdot w_1(k')} = 197$$
 $n_{Tp} = ceil(n'_{Tp}) = 197$

•

Число труб на главной диагонали: $n_{\text{диа}\Gamma} = n_{\text{тр'}} (n_{\text{тр}})_1 = 16$

Оценка патрубка для размещения вводного пучка: $2 \cdot n_{\text{диаг}} \cdot d_1 = 128 \cdot \text{мм}$ $d_1 = 4 \cdot \text{мм}$

II.5 Средняя длина одной трубы:

$$L_{1\text{Tp}} = \frac{F_{\text{Д}}}{\varphi \cdot \pi \cdot d_1 \cdot n_{\text{Tp}}} = 13 \cdot M$$

II.6 Площадь среднего сечения свободного объема намотки:

$$S_2 = \frac{G_2}{W_2(k')} = 0.064 \cdot M^2$$

II.7 Площадь фронтального сечения:

$$S_{\Phi} = \frac{S_2}{E_1} = 0.2112 \cdot M^2$$
 $E_1 = 0.303$

II.8 Высота навивки:

$$H_{\text{HaB}} = \frac{F_{\text{M}}}{S_2 \cdot E_2} = 401.28 \cdot \text{mm} \qquad \qquad \frac{F_{\text{M}}}{\psi \cdot S_{\dot{\Phi}}} = 400.81 \cdot \text{mm} \qquad \qquad E_2 = 3247 \cdot$$

II.9 Число рядов труб по высотк намотки:

$$n_{p} = \frac{H_{HaB} - (d_{2} + 2 \cdot d_{\Pi})}{t_{2}} + 1 = 65.7$$

II.10 Наружный диаметр намотки:

Диаметр сердечника: $D_c = 20 \cdot d_2 = 100 \cdot MM$

$$D = \sqrt{\frac{S_{\phi}}{\frac{\pi}{4}} + D_{c}^{2}} = 528.12 \cdot MM$$

II.11 Средний диаметр намотки:

$$D_{cp} = \frac{D + D_c}{2} = 314.058 \cdot MM$$

II.12 Средняя относительная кривизна труб в намотке:

$$A_{Tp} = \frac{d_1}{D_{cp}} = 0.0127$$

II.13 Число слоев труб в намотке:

$$m'_{Tp} = \frac{0.5 \cdot (D - D_c) - d_2 - 2 \cdot d_{\Pi}}{t_1} + 1 = 39.8$$
 $m_{Tp} = ceil(m'_{Tp}) = 40$

II.14 Объем навивки:

$$V_{\text{HaB}} = \frac{F_{\mathcal{I}}}{E_3} = 0.0847 \cdot M^3$$

$$E_3 = 985 \frac{1}{m}$$

II.15 Масса навивки:

$${
m M}_{
m HaB} = rac{{
m F}_{
m I\!\!I}}{{
m E}_4} = 238.231 \cdot {
m K} {
m \Gamma}$$
 ${
m E}_4 = 0.35 rac{{
m m}^2}{{
m kg}}$

II.16 Гидравлическое сопротивление:

$$\Delta p'_{1} = \zeta_{1}(k') \cdot \frac{w_{1}(k')^{2}}{2 \cdot \rho_{1m}} \cdot \frac{L_{1Tp}}{d_{1}}$$

$$\Delta p'_{1} = 23397.7 \cdot \Pi a$$

$$\Delta p_{\Pi p} = 36 \cdot \kappa \Pi a$$

$$\Delta p_{\Pi p} = 36 \cdot \kappa \Pi a$$

$$\Delta p_{\Pi p} = 36 \cdot \kappa \Pi a$$

$$\Delta p_{\Pi p} = 36 \cdot \kappa \Pi a$$

$$\Delta p'_{2} = f_{2}(k') \cdot \frac{w_{2}(k')^{2}}{2 \cdot \rho_{2m}} \cdot \frac{F_{\mathcal{A}}}{S_{2}}$$

$$\Delta p'_{2} = 5915 \cdot \Pi a$$

$$\Delta p_{06p} = 9.1 \cdot \kappa \Pi a$$

$$\Delta p_{06p} = 9.1 \cdot \kappa \Pi a$$

III. Уточненный расчет геометрических и конструктивных параметров намогки теплообенного аппарата

Уточняем количество труб в намотке, для заполнения трубной решетки:

$$n''_{Tp} = n_{Tp'}(n_{Tp})_0 \qquad n''_{Tp} = 217$$

Количество слоев навивки:

$$m''_{Tp} = round \left(\frac{n_{Tp}}{n''_{Tp}} \cdot m_{Tp} \right) = 36$$

1. Наружный диаметр намотки:

$$D'' = D_c + 2 \cdot (m''_{Tp} - 1) \cdot t_1 + 2 \cdot (d_2 + 2 \cdot d_{\Pi}) = 487.7 \cdot MM$$

2. Средний диаметр намотки:

$$D''_{cp} = \frac{D'' + D_c}{2} = 293.8 \cdot MM$$

3. Средняя относительная кривизна труб в намотке:

$$A''_{Tp} = \frac{d_1}{D''_{Cp}} = 0.014$$

4. Площадь фронтального сечения:

$$S''_{\Phi} = \frac{\pi}{4} \cdot (D''^2 - D_c^2) = 0.179 \cdot M^2$$

5. Площадь среднего сечения свободного объёма:

$$S''_2 = S''_{\Phi} \cdot E_1 = 0.0542 \cdot M^2$$

6. Массовая скорость межтрубного потока:

$$w''_2 = \frac{G_2}{S''_2} = 2.533 \cdot \frac{\kappa \Gamma}{M^2 \cdot c}$$

7. Критерий Рейнольдса:

$$Re''_2 = \frac{w''_2 \cdot d_9}{\mu_{2m}} = 215.4$$

8. Критерий Прандтля:

$$Pr_2 = 0.6674$$

9. Критерий Стантона:

$$St''_2 = 0.168 \cdot \frac{Re''_2^{-0.3}}{Pr_2^{0.66}} = 0.0438$$

10. Коэффициент теплоотачи в межструбном пространстве:

$$\alpha''_{2} = \text{St''}_{2} \cdot \text{w''}_{2} \cdot \text{Cp}_{2m} = 576.13 \cdot \frac{\text{Bt}}{\text{M}^{2} \cdot \text{K}}$$

11. Площадь сечения труб:

$$S''_1 = \pi \cdot \frac{d_1^2}{4} \cdot n''_{Tp} = 2.7 \times 10^{-3} \cdot M^2$$

12. Массовая скорость трубного потока:

$$w''_1 = \frac{G_1}{S''_1} = 46.86 \cdot \frac{\kappa \Gamma}{\frac{2}{M^2 \cdot c}}$$

13. Критерий Рейнольдса:

$$Re''_1 = \frac{w''_1 \cdot d_1}{\mu_{1m}} = 12287$$

14. Критерий Прандтля:

$$Pr_1 = 0.6672$$

15. Критерий Нуссельта:

$$A''_{Tp} > 2 \cdot 10^{-3} = 1$$
 необходимо учесть кривизну при расчете сопротивления и числа Нуссельта

$$a_1 = 0.023$$
 $a_2 = 3.65$ $b_2 = 0.2903$ $b_1 = 14.8$ $R = 2.2 \cdot 10^4$

$$\begin{aligned} \text{Nu}_{1k} \Big(\text{Re1} \, , & A_{\text{Tp}} \Big) &= & \left[\text{Re}_{\text{K}} = 2300 \cdot \left(1 + 8.6 \cdot A_{\text{Tp}}^{\phantom{\text{0.45}}} \right) \right] \\ & \left[a_{2} + 0.08 \cdot \left(1 + 0.8 \cdot A_{\text{Tp}}^{\phantom{\text{0.9}}} \right) \cdot \text{Re1}^{\left(0.5 + b_{2} \cdot A_{\text{Tp}}^{\phantom{\text{0.194}}} \right)} \cdot \text{Pr}_{1}^{\phantom{\text{0.194}}} \right] \text{ if } 100 < \text{Re1} \le \text{Re}_{\text{K}} \\ & \left[a_{1} \cdot \left[1 + 14.8 \cdot \left(1 + A_{\text{Tp}} \right) \cdot A_{\text{Tp}}^{\phantom{\text{0.194}}} \right] \cdot \text{Re1}^{\left(0.8 - 0.22 \cdot A_{\text{Tp}}^{\phantom{\text{0.194}}} \right)} \cdot \text{Pr}_{1}^{\phantom{\text{0.194}}} \right] \text{ if } \text{Re}_{\text{K}} < \text{Re1} < \text{R} \\ & \left[a_{1} \cdot \left[1 + 3.6 \cdot \left(1 - A_{\text{Tp}} \right) \cdot A_{\text{Tp}}^{\phantom{\text{0.8}}} \right] \cdot \text{Re1}^{\left(0.8 - 0.22 \cdot A_{\text{Tp}}^{\phantom{\text{0.194}}} \right)} \right] \text{ if } \text{Re} < \text{Re1} < 1.5 \cdot 10^{5} \end{aligned}$$

$$Nu''_1 = Nu_{1k}(Re''_1, A''_{Tp}) = 44.7$$

16. Коэффициент теплоотдачи в трубном пространстве:

$$\alpha''_1 = \frac{Nu''_1 \cdot \lambda_{1m}}{d_1} = 1333.8 \cdot \frac{B_T}{M^2 \cdot K}$$

17. Коэффициент теплопередачи:

$$k'' = \frac{1}{\frac{\varphi}{\alpha''_1} + \frac{1}{\alpha''_2}} = 271.92 \cdot \frac{B_T}{M^2 \cdot K}$$

18. Необходимая площадь поверхности теплообмена:

$$F''_{H} = \frac{Q_{T\Pi}}{k'' \cdot \Delta T_{m}} = 57.74 \cdot M^{2}$$

19. Действительная площадь поверхности теплообмена:

$$F''_{\text{II}} = Z \cdot F''_{\text{H}} = 75.06 \cdot M^2$$

20. Высота намотки:

$$H''_{HAB} = \frac{F''_{\Pi}}{S''_{2} \cdot E_{2}} = 426.33 \cdot MM$$
 $\frac{F''_{\Pi}}{\psi \cdot S''_{\Phi}} = 425.83 \cdot MM$

21. Число рядов труб по высоте намотки:

$$n''_{p} = \frac{H''_{HaB} - (d_2 + 2 \cdot d_{\Pi})}{t_2} + 1 = 69.8$$

22. Средняя длина одной трубы:

$$L"_{1Tp} = \frac{F"_{\mathcal{I}}}{\varphi \cdot \pi \cdot d_1 \cdot n"_{Tp}} = 10.6 \cdot M$$

23. Объем навивки:

$$V''_{HaB} = \frac{F''_{\pi}}{E_3} = 76.205 \cdot \pi$$

24. Масса навивки:

$$M''_{HaB} = \frac{F''_{\mathcal{A}}}{E_4} = 214.461 \cdot \text{kg}$$

25. Коэффициент сопротивления в трубах:

 $A''_{Tp} > 2 \cdot 10^{-3} = 1$ необходимо учесть кривизну при расчете сопротивления и числа Нуссельта

$$\zeta_{1k}(\text{Re1}, A_{\text{Tp}}) = \begin{cases} \text{Re}_{K} = 2300 \cdot \left(1 + 8.6 \cdot \text{A}_{\text{Tp}}^{0.45}\right) \\ \left[1 + 0.14 \cdot \text{A}_{\text{Tp}}^{0.97} \cdot \text{Re1}^{\left(1 - 0.644 \cdot \text{A}_{\text{Tp}}^{0.312}\right)}\right] \cdot \frac{64}{\text{Re1}} & \text{if } 100 < \text{Re1} \le \text{Re}_{K} \end{cases}$$

$$\left(1 + 2.88 \cdot \frac{10^{4} \cdot \text{A}_{\text{Tp}}^{0.62}}{\text{Re1}}\right) \cdot \frac{0.3164}{\text{Re1}^{0.25}} & \text{if } \text{Re}_{K} < \text{Re1} < 2.2 \cdot 10^{4} \end{cases}$$

$$\left[1 + 0.0823 \cdot \left(1 + \text{A}_{\text{Tp}}\right) \cdot \text{A}_{\text{Tp}}^{0.53} \cdot \text{Re1}^{0.25}\right] \cdot \frac{0.3164}{\text{Re1}^{0.25}} & \text{if } 2.2 \cdot 10^{4} < \text{Re1} < 1.5 \cdot 10^{5} \end{cases}$$

$$\zeta''_1 = \zeta_{1k}(Re''_1, A''_{Tp}) = 0.035$$

26. Гидравлическое сопротивление по трубному потоку:

$$\Delta p"_1 = \zeta"_1 \cdot \frac{{w"_1}^2}{2 \cdot \rho_{1m}} \cdot \frac{L"_{1Tp}}{d_1}$$

$$\Delta p"_1 = 18.8 \cdot \kappa \Pi a$$

$$\Delta p_{\Pi p} = 36 \cdot \kappa \Pi a$$

$$\Delta p_{\Pi p} = 36 \cdot \kappa \Pi a$$

$$\Delta p_{\Pi p} = 47.8 \cdot \%$$

27. Коэффициент сопротивления в межтрубном пространстве:

$$f_2(\text{Re2}) = \begin{cases} \left(12.8 \cdot \text{Re2}^{-0.64}\right) & \text{if } 40 \le \text{Re2} \le 100 \\ \left(2.65 \cdot \text{Re2}^{-0.3}\right) & \text{if } 100 < \text{Re2} < 4000 \\ f_2(\text{k'}) & \text{otherwise} \end{cases}$$

28. Гидравлическое сопротивление по меж трубному пространству:

$$\Delta p''_{2} = f'_{2} \cdot \frac{w''_{2}^{2}}{2 \cdot \rho_{2m}} \cdot \frac{F''_{\mathcal{A}}}{S''_{2}}$$

$$\Delta p''_{2} = 8.33 \cdot \kappa \Pi a$$

$$\Delta p_{0\delta p} = 9.1 \cdot \kappa \Pi a$$

$$\Delta p_{0\delta p} = 9.1 \cdot \kappa \Pi a$$

Распределние трубок по слоям теплообменника

Средний диаметр слоя:
$$D_{cлоя}(j) = D_c + d_2 + 2 \cdot d_{\Pi} + 2 \cdot t_1 \cdot (j-1)$$

Наружный диаметр слоя:
$$D_H(j) = D_c + 2d_2 + 2 \cdot d_\Pi + 2 \cdot t_1 \cdot (j-1)$$

Расчетное число трубок в слое:
$$i(j) = \operatorname{round}\left(\frac{\operatorname{n"}_{Tp}}{\operatorname{m"}_{Tp}} \cdot \frac{D_{\operatorname{Cлоя}}(j)}{D_{\operatorname{"}_{Cp}}}\right)$$

Число витков одной трубки в слое: $\operatorname{n_{Tp}_{C\Pi}(j)} = \frac{\operatorname{n"}_{p}}{i(j)}$ $\operatorname{n"}_{p} = 69.8$

Длина одной трубки в слое: $\operatorname{l}_{Tp_{C\Pi}(j)} = \sqrt{\left(\pi \cdot D_{\operatorname{Cлоя}}(j)\right)^{2} + \left(i(j) \cdot t_{2}\right)^{2}}$

Длина одной трубки в слое: $\operatorname{l}(j) = \operatorname{l}_{Tp_{C\Pi}(j) \cdot \operatorname{n}_{Tp_{C\Pi}(j)}} = \operatorname{l}(j) = \operatorname{l}$

806.1

839.7

873.5

907.1

940.7

974.3

1.103

1.103

 $1.1 \cdot 10^{3}$

250.7

261.4

272.1

282.8

293.5

304.2

314.9

325.6

336.3

11.25

11.72

10.16

10.55

10.94

11.34

10.05

10.39

10.72

$$\sum_{i} i(j) = 217 \qquad \sum_{i} (i(j) \cdot l(j)) = 2321.9 \cdot M$$

14

14

11.6

11.6

11.6

11.6

10

10

10

5

5

6

6

6

6

7

7

7

256.4

267.1

277.8

288.5

299.2

309.9

320.6

331.3

342