Devoir maison de théorie de Hodge p-adique

Rayane Bait

Exercice 1

1)

On note $R := {\alpha \zeta_p^i}_{i=0,\dots,p-1}$. Alors R est l'ensemble des racines de f. En effet,

$$(\alpha \zeta_n^i)^p = \alpha^p (\zeta_n^p)^i = p$$

et $\alpha \zeta_i \neq \alpha \zeta_p^j$ pour $i \neq j \mod p$ car dans ce cas $\frac{\alpha \zeta_p^i}{\alpha \zeta_p^j} = \zeta_p^{i-j} \neq 1$, d'où $|R| = p = \deg(f)$ et l'assertion sur R.

En particulier, on en déduit que $K \subset Q(\alpha, \zeta_p^i)$. En plus, $\zeta_p = \alpha \zeta_p / \alpha \in K$ d'où $\mathbb{Q}_p(\zeta_p, \alpha) \subset K$.

2)

On assume pour l'instant que $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ est galoisienne de degré p-1 et que $\mathbb{Q}_p(\alpha)/\mathbb{Q}_p$ est de degré p. On remarque alors que $\mathbb{Q}_p(\alpha)/\mathbb{Q}_p$ et $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ sont linéairement disjointes car $p \wedge p - 1 = 1$. En particulier

$$[K : \mathbb{Q}_p] = [K : \mathbb{Q}_p(\zeta_p)][\mathbb{Q}_p(\zeta_p) : \mathbb{Q}_p]$$
$$= [\mathbb{Q}_p(\alpha) : \mathbb{Q}_p][\mathbb{Q}_p(\zeta_p) : \mathbb{Q}_p]$$
$$= p(p-1)$$

et $H = Gal(K/\mathbb{Q}_p(\zeta_p))$ est normal dans G car $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ est galoisienne. Enfin H est d'indice $|G/H| = |Gal(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p)| = p-1$ qui est le résultat voulu.

On prouve maintenant les assertions. On note $X^p-1=(X-1)\phi_p(X)$ et on a

$$(X+1)^p - 1 = X(\sum_{k=1}^{p-1} {p \choose k+1} X^k + p) = X\phi_p(X+1)$$

d'où on déduit que $\phi_p(X+1)$ est $p\mathbb{Z}_p$ -Eisenstein donc irréductible dans $\mathbb{Z}_p[X]$. Maintenant $\mathbb{Q}_p(\zeta_p)$ est le corps de décomposition de $\phi_p(X)$ sur \mathbb{Q}_p d'où $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ est galoisienne de degré $[\mathbb{Q}_p(\zeta_p):\mathbb{Q}_p]=\deg(\phi_p)=p-1$. De même X^p-p est $p\mathbb{Z}_p$ -Eisenstein de degré p et $\mathbb{Q}_p(\alpha)$ en est un corps de rupture d'où le résultat.

3)

Dans la partie 2) on a montré que $\phi_p(X+1)$ est $p\mathbb{Z}_p$ -Eisenstein. On en déduit directement que $\mathbb{Q}_p(\zeta_p-1)/\mathbb{Q}_p$ est totalement ramifiée et que ζ_p-1 , qui est une racine de $\phi_p(X+1)$, en est une uniformisante. De la même manière, $\mathbb{Q}_p(\alpha)/\mathbb{Q}_p$ est totalement ramifiée et α en est une uniformisante. Enfin on a

$$e_{K/\mathbb{Q}_p} = e_{K/\mathbb{Q}_p(\zeta_p)} e_{\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p} = e_{\mathbb{Q}_p(\alpha)/\mathbb{Q}_p} e_{\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p} = p(p-1)$$

ce qui prouve que K/\mathbb{Q}_p est totalement ramifiée et

$$v_p(\frac{\alpha}{\zeta_p - 1}) = \frac{1}{p} - \frac{1}{p - 1} = \frac{p - (p - 1)}{p(p - 1)} = \frac{1}{p(p - 1)}$$

si on note v_p la valuation sur K qui étend la valuation p-adique normalisée. On a prouvé que $\frac{\alpha}{\zeta_p-1}$ est une uniformisante de K/\mathbb{Q}_p .

4) A REFAIRE YA ERREUR

Le groupe de Galois G est formé des automorphismes

$$\{s_{ij}\}_{i=1,...,p-1;j=0,...,p-1}$$

définis par $s_{ij}(\zeta_p) = \zeta_p^i$ et $s_{ij}(\alpha) = \alpha \zeta_p^j$. De la ramification totale de K/\mathbb{Q}_p on déduit que $\mathbb{Z}_p[\lambda] = \mathcal{O}_K$ si l'on pose $\lambda = \frac{\alpha}{\zeta_p - 1}$. Soit maintenant s_{ij} un élément de G. Pour $g \in G$ si $i_G(g)$ désigne le plus grand entier i tel que $g \in G_{i-1}$, on a

$$i_G(g) = e_{K/\mathbb{Q}_p} v_p(g\lambda - \lambda).$$

Pour $g = s_{ij}$ on distingue deux cas, le cas i = j et $i \neq j$. En général on a

$$s_{ij}\lambda - \lambda = \frac{\alpha \zeta_p^j}{\zeta_p^i - 1} - \frac{\alpha}{\zeta_p - 1}$$
$$= \frac{\alpha(\zeta_p^j - \zeta_p^i + 1)}{(\zeta_p^i - 1)(\zeta_p - 1)}$$

et dans tout les cas, i > 0 assure que

$$v_p(\frac{\alpha}{(\zeta_p^i - 1)(\zeta_p - 1)}) = \frac{1}{p(p-1)} - \frac{1}{p-1} = \frac{-(p-1)}{p(p-1)} = \frac{-1}{p}.$$

Il reste à déterminer $v_p(\zeta_p^j-\zeta_p^i+1)$. Si i=j, alors $v_p(\zeta_p^j-\zeta_p^i+1)=v_p(1)=0$ et si $i\neq j$, alors $v_p(\zeta_p^j-(1-\zeta_p^i))=\min(v_p(\zeta_p^j),v_p(\zeta_p^i-1))=0$. On déduit dans tout les cas $i_G(s_{ij})=p(p-1)$

Exercice 2