Задание 1. C/C++/CAS

Вычисление весового спектра линейного подпространства

- а. Назовем вектором строку битов (значения 0 или 1) фиксированной длины N: то есть, всего возможно 2^N различных векторов
- b. Введем операцию сложения по модулю 2 векторов (операция хог), которая по двум векторам $a_{\rm u}$ $b_{\rm получает}$ вектор $a+b_{\rm TO}$ же длины N
- с. Пусть задано множество $A = \{a_i | i \in 1..K\}_{\text{ИЗ}} \ 0 \leq K \leq 2^N$ векторов. Назовем его порождающим: при помощи сложения a_i множества A можно получить 2^K векторов вида $\sum_{i=1}^K \beta_i a_i$, где β_i равно либо 0, либо 1
- d. Весом вектора назовем количество единичных (ненулевых) битов в векторе: то есть, вес это натуральное число от 0 до N

Требуется для заданных порождающего множества векторов и числа N построить гистограмму (спектр) количества различных векторов по их весу.

Можно использовать не только C/C++, но и CAS (Octave/Matlab/Mathematica) или скриптовые языки. Важное условие – использование только стандартных библиотек, без дополнительных пакетов.

Формат входных данных:

Текстовый файл из набора строк одинаковой длины по одному вектору в строке (символы 0 или 1 без разделителей).

Формат выходных данных:

Текстовый файл строк с парой значений вес/количество разделённых символом табуляции, по одной паре на строку, сортированный по числовому значению веса.

Результаты выполнения должны быть размещены в репозитории на github.com и передаваться в виде ссылки на репо. Вопросы по заданию можно задавать по email: interns.ml@syntacore.com. Рекомендуем также написать перед началом выполнения задания, а также сообщить примерные сроки ожидания результатов.

Дополнительный бонус:

- 1. Если удается идентифицировать возможности для распараллеливания, желательно реализовать параллельные вычисления и/или разметить код для применения параллельных итераций.
- 2. Оценить ресурсы, указать ограничения реализации, возможные методы дальнейшей алгоритмической и программной оптимизации.