Sistemas de Propulsión

Grado en Ingeniería Aeroespacial en Vehículos Aeroespaciales Escuela Técnica Superior de Ingenieros de Telecomunicaciones

Generación de empuje y prestaciones de los motores a reacción

Jorge Saavedra

Grado en Ingeniería Aeroespacial en Vehículos Aeroespaciales

Escuela Técnica Superior de Ingenieros de Telecomunicaciones

Contenidos

- Motor turbofan
- 2. Motor turbohélice
- Motor turbohélice/turbofan con caja de cambios

Contenidos

- 1. Motor turbofan
- 2. Motor turbohélice
- Motor turbohélice/turbofan con caja de cambios

Análisis termodinámico

Configuración de un eje con fan delantero y flujo separado

Análisis termodinámico

Configuración de un eje con fan delantero y flujo separado

Admisión/Difusor

$$\frac{p_{02}}{p_{00}} = \left(1 + \eta_d \frac{(\gamma - 1)}{2} M_0^2\right)^{\frac{\gamma - 1}{\gamma}}$$

$$T_{02} = T_{00} = T_0 \left(1 + \frac{\gamma - 1}{2} M_0^2 \right)$$

Fan

$$p_{03} = \pi_c p_{02}$$

$$T_{013} = T_{02} \left(1 + \frac{\pi_f^{\frac{\gamma - 1}{\gamma}} - 1}{\eta_f} \right)$$

 $p_{013} = \pi_f p_{02}$

$$T_{03} = T_{02} \left(1 + \frac{\pi_c^{\frac{\gamma - 1}{\gamma}} - 1}{\eta_c} \right)$$

Análisis termodinámico

Configuración de un eje con fan delantero y flujo separado

Cámara de combustión

$$\begin{split} p_{04} &= p_{04} \left(1 - \frac{\Delta p_{cc}}{100} \right) = p_{04} \pi_{34} \\ \left(\dot{m}_{\pi} + \dot{m}_{f} \right) h_{04} &= \dot{m}_{\pi} h_{03} + \eta_{cc} \dot{m}_{f} L \\ f &= \frac{\dot{m}_{f}}{\dot{m}_{\pi}} = \frac{C_{pe} T_{04} - C_{pc} T_{03}}{\eta_{cc} L - C_{pe} T_{04}} \end{split}$$

Turbina: balance de potencia

$$\dot{W}_T = \dot{W}_C + \dot{W}_f$$

$$(\dot{m}_{\pi} + \dot{m}_{f})(h_{04} - h_{05}) = \dot{m}_{\pi}(h_{03} - h_{02}) + \dot{m}_{\pi}(1 + \beta)(h_{013} - h_{02})$$

$$p_{05} = p_{04} \left[1 + \frac{1}{\eta_T} \left(1 - \frac{T_{05}}{T_{04}} \right) \right]^{\left(\frac{\gamma_e}{\gamma_e - 1} \right)}$$

Análisis termodinámico

Configuración de un eje con fan delantero y flujo separado

Tobera del núcleo (asumiendo p05=p06)

$$\frac{p_{06}}{p^*} = \left[1 - \frac{1}{\eta_{n,\pi}} \frac{\gamma - 1}{\gamma + 1}\right]^{-\frac{\gamma}{\gamma - 1}}$$

Si p* ≥ p0 **Bloqueada**

$$p_9 = p^*$$

$$\frac{T_{06}}{T_9} = \left(\frac{\gamma + 1}{2}\right)$$

$$V_9 = \sqrt{\gamma R T_9}$$

Si p* < p0 NO bloqueada/**Adaptada**

$$p_{9} = p_{0}$$

$$\frac{T_{06}}{T_{9}} = \left(\frac{p_{06}}{p_{0}}\right)^{\frac{\gamma - 1}{\gamma}}$$

$$V_{9} = \sqrt{2C_{pe}(T_{06} - T_{9})}$$

Análisis termodinámico

Configuración de un eje con fan delantero y flujo separado

Tobera del flujo secundario

$$\frac{p_{013}}{p^*} = \left[1 - \frac{1}{\eta_{n,\sigma}} \frac{\gamma - 1}{\gamma + 1}\right]^{-\frac{\gamma}{\gamma - 1}}$$

Si p* ≥ p0 **Bloqueada**

$$p_{19} = p^*$$

$$\frac{T_{013}}{T_{19}} = \left(\frac{\gamma + 1}{2}\right)$$

$$V_{19} = \sqrt{\gamma R T_{19}}$$

Si p* < p0 NO bloqueada/ Adaptada

$$p_{19} = p_0$$

$$\frac{T_{013}}{T_{19}} = \left(\frac{p_{013}}{p_0}\right)^{\frac{\gamma - 1}{\gamma}}$$

$$V_{19} = \sqrt{2C_{pc}(T_{013} - T_{19})}$$

Análisis termodinámico

Configuración de un eje con fan delantero y flujo separado

Cálculo de prestaciones

Empuje

$$E = \dot{m}_{\pi}(1+f)V_9 + \dot{m}_{\pi}\beta V_{19} - \dot{m}_{\pi}(1+\beta)V_0 + A_9(p_9 - p_0) + A_{19}(p_{19} - p_0)$$

Empuje Especifico

$$\frac{E}{\dot{m}_a} = \frac{E}{\dot{m}_\pi(1+\beta)} = \frac{1+f}{1+\beta}V_9 + \frac{\beta}{1+\beta}V_{19} - V_0 + \frac{A_9(p_9-p_0)}{\dot{m}_\pi(1+\beta)} + \frac{A_{19}(p_{19}-p_0)}{\dot{m}_\pi(1+\beta)}$$

Consumo especifico

$$TSFC = \frac{\dot{m}_f}{E}$$

Análisis termodinámico

Configuración de dos ejes con fan delantero y flujo separado

Fan y compresor de baja presión (booster) conducidos por el mismo eje

Admisión/Difusor

$$\frac{p_{02}}{p_0} = \left(1 + \eta_d \frac{(\gamma - 1)}{2} M_0^2\right)^{\frac{\gamma - 1}{\gamma}}$$

$$T_{02} = T_{00} = T_0 \left(1 + \frac{\gamma - 1}{2} M_0^2 \right)$$

$$p_{013} = \pi_f p_{02}$$

$$T_{013} = T_{02} \left(1 + \frac{\pi_f^{\frac{\gamma - 1}{\gamma}} - 1}{\eta_f} \right)$$

Análisis termodinámico

Configuración de dos ejes con fan delantero y flujo separado Fan y compresor de baja presión (booster) conducidos por el mismo eje

Compresor de baja presión (LPC)

$$p_{025} = \pi_{LPC} p_{013}$$

$$T_{025} = T_{013} \left(1 + \frac{\frac{\gamma - 1}{\gamma}}{\eta_{LPC}} - 1 \right)$$

Compresor de alta presion (HPC)

$$p_{03} = \pi_{HPC} p_{025}$$

$$\left(\frac{\frac{\gamma - 1}{\gamma}}{\pi_{HPC}} - \frac{1}{\gamma} \right)$$

$$T_{03} = T_{025} \left(1 + \frac{\pi_{HPC}^{\frac{\gamma - 1}{\gamma}} - 1}{\eta_{HPC}} \right)$$

Camara de combustion

$$p_{04} = p_{03} \left(1 - \frac{\Delta p_{cc}}{100} \right) = p_{03} \pi_{34}$$

$$(\dot{m}_{\pi} + \dot{m}_{f})h_{04} = \dot{m}_{\pi}h_{03} + \eta_{cc}\dot{m}_{f}L$$

$$f = \frac{\dot{m}_f}{\dot{m}_\pi} = \frac{C_{pe}T_{04} - C_{pc}T_{03}}{\eta_{cc}L - C_{pe}T_{04}}$$

Análisis termodinámico

Configuración de dos ejes con fan delantero y flujo separado Fan y compresor de baja presión (booster) conducidos por el mismo eje

Turbina de alta presión (HPT)

$$\dot{m}_{\pi}(1+f)(h_{04}-h_{045})=\dot{m}_{\pi}(h_{03}-h_{025})$$

$$T_{045S} = T_{04} - \frac{(T_{04} - T_{045})}{\eta_{HPT}}; P_{045} = P_{04} \left(\frac{T_{045S}}{T_{04}}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$p_{045} = p_{04} \left[1 - \frac{1}{\eta_{HPT}} \left(1 - \frac{T_{045}}{T_{04}} \right) \right]^{\left(\frac{\gamma_e}{\gamma_e - 1}\right)}$$

Turbina de baja presion (LPT) $\dot{W}_{LPT} = \dot{W}_{LPC} + \dot{W}_{FAN}$

$$\dot{W}_{LPT} = \dot{W}_{LPC} + \dot{W}_{FAN}$$

$$\dot{m}_{\pi}(1+f)(h_{045}-h_{05}) = \dot{m}_{\pi}(h_{025}-h_{013}) + \dot{m}_{\pi}(1+\beta)(h_{013}-h_{02})$$

$$p_{05} = p_{045} \left[1 - \frac{1}{\eta_{LPT}} \left(1 - \frac{T_{05}}{T_{045}} \right) \right]^{\left(\frac{\gamma_e}{\gamma_e - 1}\right)}$$

Análisis termodinámico

Configuración de dos ejes con fan delantero y flujo separado Fan y compresor de baja presión (booster) conducidos por el mismo eje

Tobera del primario (como monoeje)

Se supone $p_{06} = p_{05}$:

$$\frac{p_{06}}{p^*} = \left[1 - \frac{1}{\eta_{n,\pi}} \frac{\gamma - 1}{\gamma + 1}\right]^{-\frac{\gamma}{\gamma - 1}}$$

Si
$$p^* \geq p_0 \Rightarrow$$
 Bloqueada $p_9 = p^*$ $\frac{T_{06}}{T_9} = \left(\frac{\gamma + 1}{2}\right)$ $V_9 = \sqrt{\gamma R T_9}$

Si
$$p^* < p_0 \Rightarrow$$
 Adaptada

$$p_9 = p_0$$

$$\frac{T_{06}}{T_9} = \left(\frac{p_{06}}{p_0}\right)^{\frac{\gamma - 1}{\gamma}}$$

$$V_9 = \sqrt{2C_{pe}(T_{06} - T_9)}$$

Análisis termodinámico

Configuración de dos ejes con fan delantero y flujo separado Fan y compresor de baja presión (booster) conducidos por el mismo eje

Tobera del fan

Idéntico que en el monoeje

$$\frac{p_{013}}{p^*} = \left[1 - \frac{1}{\eta_{n,\sigma}} \frac{\gamma - 1}{\gamma + 1}\right]^{-\frac{\gamma}{\gamma - 1}}$$

Si
$$p^* \geq p_0 \Rightarrow$$
 Bloqueada $p_{19} = p^*$ $\frac{T_{013}}{T_{19}} = \left(\frac{\gamma+1}{2}\right)$ $V_{19} = \sqrt{\gamma R T_{19}}$

Si
$$p^* < p_0 \Rightarrow$$
 Adaptada $p_{19} = p_0$

$$\frac{T_{013}}{T_{19}} = \left(\frac{p_{013}}{p_0}\right)^{\frac{\gamma - 1}{\gamma}}$$

$$V_{19} = \sqrt{2C_{pc}(T_{013} - T_{19})}$$

Análisis termodinámico

Configuración de dos ejes con fan delantero y flujo separado, con SANGRADO Si existiese un sangrado $b = \dot{m}_b / \dot{m}_\pi$ para refrigerar a la entrada del HPC se obtendrían las siguientes expresiones:

Dosado (b, tanto por uno de sangrado)

$$f = \frac{\dot{m}_f}{\dot{m}_{\pi}} = \frac{(1-b)\left(C_{pe}T_{04} - C_{pc}T_{03}\right)}{\eta_{cc}L - C_{pe}T_{04}}$$

Balance de energía de la HPT

Estación 26: tras sangrado podrían cambiar las condiciones termodinámicas del flujo.

$$\eta_{m,H}\dot{m}_{\pi}(1+f-b)(h_{04}-h_{045})=\dot{m}_{\pi}(1-b)(h_{03}-h_{026})+\dot{m}_{\pi}(h_{026}-h_{025})$$

Balance de energía de la LPT

$$\eta_{m,L}\dot{m}_{\pi}(1+f-b)(h_{045}-h_{05}) = \dot{m}_{\pi}(h_{025}-h_{013}) + \dot{m}_{\pi}(1+\beta)(h_{013}-h_{02})$$

Análisis termodinámico

 $m_{\pi}(1+f)C_{ph}T_{05} + m_{\beta}c_{pc}T_{013} = m_{\pi}(1+f+\beta)c_{ph}T_{0mezcla}$

Configuración de dos ejes con fan delantero y flujo mezclado

El análisis de las toberas es idéntico al caso anterior En caso de sangrado para refrigeracion en el HPC

Análisis termodinámico

Configuración de dos ejes con fan delantero y flujo mezclado

Balance de energía

Eje de alta presión (asumiendo $\eta_{mhp} < 1$)

$$\Delta h_{HPC} = \eta_{mhp} \Delta h_{HPT}$$

$$\eta_{m,H}\dot{m}_{\pi}(1+f)(h_{04}-h_{045}) = \dot{m}_{\pi}(h_{03}-h_{025})$$

Eje de baja presión (asumiendo $\eta_{mlp} < 1$)

$$\Delta h_{fan} = \eta_{mlp} \Delta h_{LPT}$$

$$\eta_{m,L}\dot{m}_{\pi}(1+f)(h_{045}-h_{05}) = \dot{m}_{\pi}(1+\beta)(h_{013}-h_{02})$$

Proceso de mezclado (se asume que p_{13t} y p_{5t} son idénticas)

$$h_{013} + h_{05} = h_{06}$$

$$\dot{m}_{\pi}\beta h_{013} + \dot{m}_{\pi}(1+f)h_{05} = \dot{m}_{\pi}(1+f+\beta)h_{06}$$

$$C_{pm} = \frac{\beta C_{pc} + (1+f)C_{pe}}{1+f+\beta}$$

Análisis termodinámico

Otros ciclos

- Turbofan de flujo mezclado con post-combustión
- Tras el proceso de mezclado, el flujo entra en la zona de postcombustión, donde se produce una pérdida de presión y un incremento de temperatura debido a la inyección y quemado del combustible inyectado
- Turbofan tri-eje
- Turbofan de dos ejes con fan trasero (flujo no mezclado) La presión de parada de entrada al motor es diferente a la presión de parada de entrada al fan, pues se tienen dos entradas cuyos rendimientos pueden diferir
- Ciclos de despegue y aterrizaje vertical

RR Pegasus (Harrier): Turbofan convencional de flujo no mezclado con cuatro toberas que permiten vectorizar el empuje obtenido

Switch-in deflector system

Se trata de un concepto de turbofan de flujo mezclado

Consta de un tandem de fans. El primer fan es utilizado como director del flujo

Tobera con empuje direccional (F-22, F-35)

Análisis termodinámico

Otros ciclos

 Ciclos de despegue y aterrizaje vertical Switch-in deflector system

Se obtiene del primer fan propulsión con \dot{m}_1 .

El turbofan da empuje, mueve el fan 1 y propulsa con \dot{m}_2 .

Análisis termodinámico

Otros ciclos

 Ciclos de despegue y aterrizaje vertical Switch-in deflector system

Se obtiene del primer fan propulsión con \dot{m}_1 .

El turbofan da empuje, mueve el fan 1 y propulsa con \dot{m}_2 .

Análisis termodinámico

Otros ciclos

Ciclos de despegue y aterrizaje vertical Fan adicional

Se obtiene empuje con la tobera primaria deflectada Se obtiene empuje con el fan adicional

Análisis termodinámico

Otros ciclos

Ciclos de despegue y aterrizaje vertical
 Switch-in deflector system,
 Diagrama T-S durante crucero

- Las etapas 4 a 9 del ciclo, se calculan igual que un turbofan normal de flujo mezclado.
- En el eje de baja hay que incluir el primer fan y tener en cuenta la pérdida de presión entre 3 y 4.
- Las etapas 10 a 12 se calculan como en un postcombustor de un turborreactor.

Contenidos

- Motor turbofan
- 2. Motor turbohélice
- Motor turbohélice/turbofan con caja de cambios

Análisis termodinámico

<u>1 eje</u>

Esquema motor y diagrama TS

Análisis termodinámico

Configuración de un eje con propulsor delantero y flujo separado

Admisión/Difusor

$$\frac{p_{02}}{p_0} = \left(1 + \eta_d \frac{\gamma_c - 1}{2} M_0^2\right)^{\frac{\gamma_c - 1}{\gamma_c}}$$

 $T_{02} = T_{00} = T_0 \left(1 + \frac{\gamma_c - 1}{2} M_0^2 \right)$

Compresor

$$p_{03} = \pi_c p_{02}$$

$$T_{03} = T_{02} \left(1 + \frac{\frac{\gamma_c - 1}{\gamma_c}}{\eta_c} - 1 \right)$$

Cámara de combustion

$$p_{04} = p_{03} \left(1 - \frac{\Delta p_{cc}}{100} \right) = p_{03} \pi_{34}$$

$$(\dot{m}_{\pi} + \dot{m}_f)h_{4t} = \dot{m}_{\pi}h_{3t} + \eta_{cc}\dot{m}_f L$$

$$f = \frac{\dot{m}_f}{\dot{m}_a} = \frac{C_{pe}T_{04} - C_{pc}T_{03}}{\eta_{cc}L - C_{pe}T_{04}}$$

Análisis termodinámico

Configuración de un eje con propulsor delantero y flujo separado

Turbina – Tobera

Es posible demostrar que existe una expansión óptima en la turbina que maximiza el empuje para una velocidad de vuelo dada: ¿cuánta potencia suministramos a la hélice?¿Cuánta potencia desarrollar en la tobera?

Es necesario conocer la transmisión de potencia hasta la hélice

Análisis termodinámico

Configuración de un eje con propulsor delantero y flujo separado

Análisis termodinámico

Configuración de un eje con propulsor delantero y flujo separado

Turbina – Tobera

Expresión para calcular el empuje generado por la hélice a partir de la potencia suministrada a la misma a través del eje

Añadiendo este empuje al obtenido por los gases de escape se obtiene el empuje total en función de α .

Derivando respecto de α podremos obtener el valor óptimo de este parámetro

Empuje generado por la hélice
$$\frac{\eta_h \eta_r}{V_0} \left((1+d-b) \eta_{mT} \Delta h_h - \frac{\Delta h_c}{\eta_{mc}} \right)$$

$$E_h = \frac{\eta_{tr} \eta_h m_a}{V_0} \left((1+f-b) \eta_{mT} \Delta h_h - \frac{\Delta h_c}{\eta_{mc}} \right)$$

$$\Delta h_{propeller} = \Delta h_h = \eta_T \alpha \Delta h$$
 $\eta_t \equiv \text{Rendimiento turbina}$
 $\Delta h \equiv \text{Salto entálpico disponible}$

Análisis termodinámico

Configuración de un eje con propulsor delantero y flujo separado

Turbina – Tobera

La turbina mueve la hélice que propulsa al avión que se complementa con el empuje de los gases de escape que salen por la tobera.

Existe una expansión óptima en la turbina que maximiza el empuje para una velocidad de vuelo dada.

Es necesario, por tanto, conocer la transmisión de potencia hasta la hélice y la distribución de la cantidad de potencia suministrada a la hélice y desarrollada por

la tobera:

Análisis termodinámico

Configuración de un eje con propulsor delantero y flujo separado

Turbina – Tobera

Empuje generado por la hélice a partir de la potencia suministrada a través del eje:

$$E_h = \frac{\eta_{tr}\eta_h}{V_0}\dot{m}_a \left[(1+f-b)\eta_{mT}\Delta h_h - \left(\frac{\Delta h_C}{\eta_{mC}}\right) \right]$$

Añadiendo este empuje al obtenido por los gases de escape se obtiene el empuje total en función de α .

Derivando respecto de α podremos obtener el valor óptimo de este parámetro

 $\eta_{mT} \equiv$ Rendimiento mecánico turbina

 $\eta_{m\mathcal{C}} \equiv \text{Rendimiento mecánico compresor}$

 $\eta_{tr} \; \equiv \; {
m Rendimiento} \; {
m de} \; {
m transmisión} \; {
m potencia}$

 $\eta_h \equiv \text{Rendimiento hélice}$

Análisis termodinámico

Configuración de un eje con propulsor delantero y flujo separado

Turbina – Tobera

Empuje generado por la expansión de los gases en la tobera

$$E_{\mathbf{p}} = \dot{m}_{a}[(1+f-b)V_{9} - V_{0}] + A_{9}(p_{9} - p_{0})$$

Empuje total

$$E = E_h + E_n$$

$$\frac{E}{\dot{m}_{a}} = \frac{\eta_{tr}\eta_{h}}{V_{0}} \left[(1+f-b)\eta_{mT}\eta_{T}\alpha\Delta h - \left(\frac{\Delta h_{C}}{\eta_{mC}}\right) \right] + \left[(1+f-b)\sqrt{2\eta_{n}(1-\alpha)\Delta h} - V_{0} \right]$$

Optimizando frente a $\alpha \left(\frac{\overline{\partial}}{\partial \alpha} = 0 \right)$:

$$\alpha_{opt} = 1 - \frac{V_0^2}{2\Delta h} \left(\frac{\eta_n}{\eta_h^2 \eta_{tr}^2 \eta_{mT}^2 \eta_T^2} \right) \qquad V_9 = V_0 \left(\frac{\eta_n}{\eta_h \eta_{tr} \eta_{mT} \eta_T} \right)$$

Las condiciones de salida de la turbina se obtienen fácilmente a partir del valor de Δh y α

Análisis termodinámico

2 ejes

Esquema motor y diagrama T-S

Análisis termodinámico

2 ejes

Admisión, compresor y cámara de combustión, idénticas al caso de un único eje.

Turbina de alta (turbina del núcleo o turbina del generador de gas)

$$\eta_{mT} \Delta h_T (1+f-b) = \frac{\Delta h_C}{\eta_{mC}}$$

$$\Delta h_T = C_{pe} (T_{04} - T_{045})$$

$$\Rightarrow T_{045} = T_{04} - \frac{C_{pc} (T_{03} - T_{02})}{C_{pe} \eta_{mC} \eta_{mT} (1+f-b)}$$
 Luego, despejando

Y de la eficiencia isentrópica

$$p_{045} = p_{04} \left[1 - \frac{T_{04} - T_{045}}{\eta_T T_{04}} \right]^{\frac{\gamma_e}{\gamma_e - 1}}$$

Análisis termodinámico

2 ejes

Turbina libre (mueve a la hélice)

$$\Delta h = h_{045} \left[1 - \left(\frac{p_9}{p_{045}} \right)^{\frac{\gamma_e - 1}{\gamma_e}} \right]$$

$$\Delta h_{tl} = \eta_{tl} \alpha \Delta h$$

Análisis termodinámico

2 ejes

Turbina libre (mueve a la hélice).

$$\Delta h_{tl} = \eta_{tl} \alpha \Delta h$$

Empuje en la hélice

$$E_h = \frac{\eta_{tr}\eta_h}{V_0}\dot{m}_a(1+f-b)\eta_{mtl}\eta_{tl}\alpha\Delta h$$

Empuje en la tobera

$$E_n = \dot{m}_a[(1+f-b)V_9 - V_0]$$

Análisis termodinámico

2 ejes

$$E = E_h + E_n$$

Empuje total

$$\frac{E}{\dot{m}_a} = \frac{\eta_{tr}\eta_h}{V_0} \left[(1+f-b)\eta_{mT}\eta_T\alpha\Delta h \right] + \left[(1+f-b)\sqrt{2\eta_n(1-\alpha)\Delta h} - V_0 \right]$$

Optimizando frente a $\alpha \left(\frac{\partial}{\partial \alpha} = 0 \right)$:

$$\alpha_{opt} = 1 - \frac{V_0^2}{2\Delta h} \left(\frac{\eta_n}{\eta_h^2 \eta_{tr}^2 \eta_{mtl}^2 \eta_T^2} \right)$$

$$V_9 = V_0 \left(\frac{\eta_n}{\eta_h \eta_{tr} \eta_{mtl} \eta_T} \right)$$

Las condiciones de salida de la turbina libre se obtienen fácilmente a partir del valor de Δh y α

PO41 - TO45

Dhy = To45 - To

Cálculo Prestaciones

Condiciones estáticas

Cálculo de la potencia total equivalente (kW o CV)

$$\dot{W}_{eq} = \dot{W}_{eje} + \frac{E_n}{8.5}$$

Condiciones de vuelo

$$\dot{W}_{eq} = \dot{W}_{eje} + \frac{E_n V_0}{\eta_h}$$

$$\eta_h \approx 0.8$$

Potencia útil (potencia a la aeronave)

$$\dot{W}_u = \eta_h \dot{W}_{eje} + E_n V_0 = \eta_h \dot{W}_{eq}$$

La potencia del eje se refiere a la potencia disponible después de la transmisión (tr)

$$\dot{W}_{eje} = \eta_{tr} \eta_{mtl} \dot{W}_{tl}$$

Prestaciones

Rendimiento propulsivo

Definición 1 (no se ha considerado sangrado)

$$\eta_P = \frac{Potencia\ a\ la\ aeronave}{Potencia\ del\ eje + E_{cin} a\~nadida\ al\ flujo} = \frac{\eta_h \dot{W}_{eje} + E_n V_0}{\dot{W}_{eje} + \frac{1}{2} \left[\left(\dot{m}_a + \dot{m}_f \right) V_9^2 - \dot{m}_a V_0^2 \right]}$$

Rendimiento térmico/mecánico del motor

$$\eta_{th} = \frac{Potencia\ del\ eje + E_{cin} a \|adida\ al\ flujo}{Potencia\ calor \'ifica\ del\ combustible} = \frac{\dot{W}_{eje} + \frac{1}{2} \left[\left(\dot{m}_a + \dot{m}_f \right) V_9^2 - \dot{m}_a V_0^2 \right]}{\dot{m}_f L}$$

Rendimiento global

$$\eta_O = \eta_{MP} = \eta_{th}\eta_P = \frac{\eta_h \dot{W}_{eje} + E_n V_0}{\dot{m}_f L}$$

Contenidos

- Motor turbofan
- 2. Motor turbohélice
- Motor turbohélice/turbofan con caja de cambios

Turboprop/Turbohelice y la necesidad de una caja de cambios

Turboprop/Turbohelice y la necesidad de una caja de cambios

Para motores de elevado bypass o grandes propulsores

 $\Phi_{\text{fan}} >> \Phi_{\text{LPT}}$ El diámetro de la turbina de baja es muy inferior al diámetro del fan o de la hélice de propulsor

Si ambos discos giran a igualdad de revoluciones para evitar velocidades supersónicas en la punta del fan o del propulsor el eje debe girar a bajas revoluciones

Sin embargo a bajas revoluciones la eficiencia de la turbina es muy inferior. Por tanto para operar la turbina eficientemente, el régimen de giro de fan/propeler y turbina deben ser distintos

rpm_{I PT} >> rpm_{fan}

Turboprop/Turbohelice y la necesidad de una caja de cambios

Para motores de elevado bypass o grandes propulsores

 $\Phi_{fan} >> \Phi_{LPT}$ El diámetro de la turbina de baja es muy inferior al diámetro del fan o de la hélice de propulsor

In the spe HIC

Sin caja de cambios:

 $N_{LPT}(r.p.m.) = N_{fan/h}(r.p.m.) \Rightarrow$ Bajas velocidades para evitar velocidades supersónicas en punta de álabe \Rightarrow Baja mucho el rendimiento del LPT.

Para evitar ambos problemas entonces:

$$N_{LPT} \neq N_{fan/h} \Rightarrow N_{LPT} \gg N_{fan/h}$$

Turboprop/Turbohelice y la necesidad de una caja de cambios

Para motores de elevado bypass o grandes propulsores

Para que ambos discos giren a distintas revoluciones se ha de instalar una caja de cambios que reduzca las revoluciones para el fan

Dicha caja de cambios

- Debe tener altas relaciones de reduccion
- Mínimas perdidas mecanicas 1...
- Debería tener peso reducido
- Mayor complejidad del motor y aumento del peso del motor en vacío
- Debido a las perdidas por friccion es un componente que requiere de refrigeración continua, lo cual complica mas el diseño y aumenta el peso del motor instalado

$$W_t = 1 \, MW$$
 $\eta_{tr/gb} = 99\%$
$$W_h = 0.99 \, MW$$
 $p\'erdidas = 0.01 \, MW$

Comparativa de motores

Turbofan	Turboprop
Elevado empuje incluso a baja velocidad de vuelo	Elevada eficiencia propulsiva a baja velocidad
Menor consumo específico (TSFC) que el motor turbojet	Mayor complejidad mecánica y estructural que los motores turbojet y turbofan (Mayor peso)
Raia nivel de ruido	
comparado con el motor turbojet	Bajo consumo específico a bajas velocidades de vuelo
Baja eficiencia propulsiva a muy alta velocidad. Generalmente mejores prestaciones en el rango de velocidades subsónico y transónico	Los motores de más elevado nivel de ruido
	Elevado empuje incluso a baja velocidad de vuelo Menor consumo específico (TSFC) que el motor turbojet Baja nivel de ruido comparado con el motor turbojet Baja eficiencia propulsiva a muy alta velocidad. Generalmente mejores prestaciones en el rango de velocidades subsónico y

Comparativa de motores

Sistemas de Propulsión

Contenidos

- Motor turbofan
- 2. Motor turbohélice
- Motor turbohélice/turbofan con caja de cambios

- "Elements of propulsion, gas turbine and rockets" Jack D. Mattingly, Tema 4, 7, 8
- "Gas turbine theory". Cohen, Rogers & Saravanamuttoo. Prentice Hall. Tema 3, 8, 9
- "Aircraft Propulsion", Saeed Farokhi, Wiley, Tema 4, 6, 10