

2

CS 348 Computer Networks

Spring 2019

Instructor: Neha Karanjkar

Application Layer

- The layers below provide an abstraction of a **reliable bi-directional byte-stream** to the applications communicating over the Internet
- Interpretation of this byte-stream is application-specific
- Examples of Applications: Web-broswers, BitTorrent, Email, File Transfer, Multiplayer-games, Skype
- Examples of Protocols: HTTP (Web), SMTP (Email), FTP (File Transfer), SSH (Secure Shell), MQTT (used by IoT applications),....

Transport Layer

- Protocols:
 - **TCP** (**Transmission Control Protocol**): Connection Oriented, Reliable, requires Acknowledgements
 - **UDP** (User Datagram Protocol): Connectionless, No Acknowledgements
- TCP: Provides the notion of a "flow" to the application layer.
 - Reliable (receiver needs to send acks)
 - Re-ordering of segments, Detection of missing segments
 - Error-checking (using a checksum)
 - Flow control (prevent overwhelming the receiver)
 - Congestion control
 The source/destination each maintain a **State Machine** per connection

Transport Layer

APPLICATION TRANSPORT

- A TCP Header contains the following fields
 - Source port number, Destination port number
 - Sequence number (id of the first Byte in the segment)
 - useful at the receiver for re-sequencing and detecting missing segments
 - Ack, and ack sequence number (id of the next Byte expected)
 - Checksum

Network Layer (IP)

APPLICATION

TRANSPORT

NETWORK

Connectionless:

- Each datagram routed individually, no per-flow state
- Packets can be delivered out-of-order

• Unreliable, best-effort

- Packets can be dropped
- Prevents packets from looping forever (using a TTL field in the header: Time-To-Live)
- Fragments packets if too long, as per link-layer constraints
- Header checksum

Network Layer Header (IPv4)

IPv4 Header Format

Octet	0						1								2								3									
Bit	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30														30	31															
0	Version IHL DSCP ECN Total Length																															
32	Identification Flags Fragment Offset																															
64	Time To Live Protocol										Header Checksum																					
96	Source IP Address																															
128		Destination IP Address																														
160																																
192	Options (if IHL > 5)																															
224															Ори	UHS	(11 111		3)													
256																																

• Image source: Wikipedia

Link Layer

- Deliver a datagram (encapsulated inside a frame) over a single link
- Examples of link layer standards: Ethernet (IEEE 802.3), WiFi (IEEE 802.11)
- Control/collision avoidance in a shared medium
- Frame synchronization
- Some link-layer protocols provide basic error detection and recovery (using checksums)

Addressing

Addressing

APPLICATION	Application-specific addresses. Examples: URL (for web-browsing), Skype ID, torrent file, email ID							
TRANSPORT	Port Number. 16b							
NETWORK	IP address. 32b (for IPv4). 4 octets in dec. Example: 192.168.5.3							
LINK	Physical (MAC) address . 48b (for Ethernet, WiFi). Written as 6 octets in hex. Example: 01:AF:34:93:12:2E							

Physical (MAC) Address

LINK

Physical (MAC) address. 48b (for Ethernet, WiFi). Written as 6 octets in hex. Example: 01:AF:34:93:12:2E

- A unique identifier assigned to a NIC (Network Interface Card)
- Universally Administered Address: Assigned by manufacturer of NIC
- Locally Administered Address: Set by sysad by overriding the universal address
- Can be spoofed!

Physical (MAC) Address

NETWORK

IP address. 32b (for IPv4). 4 octets in dec. Example: 192.168.5.3

- Herarchical: contain a network ID and a host ID
- Historically, addresses were organized into 3 classes:

Class A: 0 NW (7) HOST (24)

Class B: 1 0 NW (14) HOST (16)

Class C: [1 | 1 | 0 | NW (21) HOST (8)

• **Issues:** Coarse granularity, wastful use of address space

NETWORK

IP address. 32b (for IPv4). 4 octets in dec. Example: 192.168.5.3

- Current: Classless Inter-Domain Routing (CIDR)
- Network-size can be any power of 2
- Notation example:
 - Original notation: IP: 10.107.1.4, Netmask:255.255.128.0
 - CIDR notation: 10.107.1.4/17<-----prefix length
- Who assigns IP addresses?
 - IANA (Internet Assigned Numbers Authority) specifies /8 addresses for regions such as Asia-Pacific, Europe, etc
 - Regional Internet Registeries---for each region

NETWORK

IP address. 32b (for IPv4). 4 octets in dec. Example: 192.168.5.3

- Routers, Switches and Local Networks (Intro)
- Address Resolution Protocol (ARP) (Intro)

NETWORK

IP address. 32b (for IPv4). 4 octets in dec. Example: 192.168.5.3

- Routers, Switches and Local Networks (Intro)
- Address Resolution Protocol (ARP) (Intro)
- Q: If MAC addresses are unique, why do we need IP addresses?
- Q: If IP addresses are unique, why do we need MAC addresses?