

Союз Советских
Социалистических
Республик

Государственный комитет
Совета Министров СССР
по делам изобретений
и открытий

ВСЕСОЮЗНАЯ
ПАТЕНТНО-ОБРАЗОВАТЕЛЬНАЯ
Библиотека МГА

О ПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Зависимое от авт. свидетельства № —

Заявлено 03.VI.1972 (№ 1792860/22-1)

с присоединением заявки № —

Приоритет —

Опубликовано 25.1.1974. Бюллетень № 3

Дата опубликования описания 21.VIII.1974

411962

М. Кл. В 221 9/00
С 22б 53/00

УДК 621.762.242(088.8)

Автор
изобретения

В. И. Евдокимов

Заявитель

Институт новых химических проблем АН СССР

СПОСОБ МЕТАЛЛОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ПОРОШКОВ ТУГОПЛАВКИХ МЕТАЛЛОВ

Изобретение относится к производству порошков тугоплавких металлов металлотермическим восстановлением.

Известен способ металлотермического получения порошков тугоплавких металлов, заключающийся в том, что восстановление хлорида, например титана, осуществляют металлом-восстановителем, например магнием, причем процесс ведут при непрерывной циркуляции жидкости восстановителя и образующегося хлорида, полученную сuspензию порошка в металло-восстановителе удаляют из реактора.

Предлагаемый способ отличается от известного тем, что, с целью повышения однородности порошка и предотвращения осаждения частиц на стенах реактора, осуществляют направленную циркуляцию металла-восстановителя, который в виде струи подают в реакционную зону навстречу парам хлорида, и процесс восстановления проводят на поверхности образующихся и находящихся во взвешенном состоянии частиц зародившей тугоплавкого металла до тех пор, пока укрупненные частицы под действием гравитационных сил не уходят в отстойник, откуда их удаляют из под слоя жидкого хлорида металла-восстановителя.

На чертеже изображена схема установки,

на которой может быть осуществлен предлагаемый способ.

Способ осуществляется следующим образом.

Жидкий металл-восстановитель, например магний, подают из котла-отстойника 1 в реакционную камеру 2 с помощью центробежного насоса 3, причем металл подают в реакционную камеру 2 в виде непрерывно циркулирующей вертикальной струи. Навстречу струе поступают пары хлорида тугоплавкого металла, например четыреххлористого титана.

В реакционной зоне происходит образование частиц-зародышей тугоплавкого металла и дальнейший процесс восстановления парообразного хлорида протекает главным образом на поверхности твердой фазы. Рост зародышей порошка происходит преимущественно во время протекания их через реакционную камеру 2.

Образовавшиеся частицы в струе жидкого металла находятся во взвешенном состоянии и непрерывно циркулируют в ней до тех пор, пока не достигнут определенного размера. По мере укрупнения они осаждаются под действием гравитационных сил в нижнюю часть котла-отстойника 1. Размер частиц порошка определяется соотношением скорости их осаждения к скорости циркуляции металла-вос-

BEST AVAILABLE COPY

BEST AVAILABLE COPY

Составлено Р. Портнова

Резидент Н. Кольцов

Текущий Е. Борисова

Корректор А. Васильева

Запас 1185/183 № 459 Тираж 811 Подписано
ЦНИИГЧИ Государственного комитета Совета Министров СССР
по делам изобретений и открытий
Москва, Ж.-И., Рузвельт, 16, д. 4/3

Тип. Харма фаб. пред. «Патент»

становителя, и поэтому может регулироваться изменением кратности циркуляции.

Таким образом, предлагаемая технология обеспечивает получение порошков однородного гранулометрического состава, не содержащего пирофорных фракций.

Осыпший порошок тугоплавкого металла, например титана, скапливается в нижней части котла-отстойника 1 под слоем жидкого хлористого металла-восстановителя, например магния, откуда он выгружается с помощью шнека 4.

Пример. 2—2,5 кг жидкого магния подают в предварительно заполненный аргоном и нагретый до температуры 700°C котел-отстойник 1, затем включают центробежный насос 3 и регулируют число оборотов таким образом, чтобы фонтанируемый жидкий магний не достигал крышки реакционной камеры 2. Далее тетрахлорид титана подают с такой скоростью, чтобы реакция восстановления в основном проходила в средней части реакционной камеры 2. О положении реакционной зоны можно судить по показаниям термопар, расположенных на различной высоте реакционной камеры 2.

В зоне прохождения реакции развивается наиболее высокая температура.

По мере накопления титанового порошка под слоем хлористого магния его выгружают шнеком 4 в приемник, а в котел-отстойник 1 подают новую порцию магния.

В таблице приведен гранулометрический состав различных образцов титанового по-

рошка, полученного по предлагаемой технологии.

№ проб №	Содержание фракций, %			
	+ 0,4 мк + 0,1 мк	- 0,4 + + 0,1 мк	- 1,5 + + 0,15 мк	- 1,5 мк
1	16,6	72,2	11,0	0,2
2	16,5	74,6	7,6	1,3
3	16,5	68,1	13,4	2,0
4	18,9	73,3	6,5	1,3
5	21,3	70,7	5,1	2,9

Предмет изобретения

Способ металлотермического получения порошков тугоплавких металлов восстановлением их хлоридов циркулирующим жидким металлом-восстановителем, отличающийся тем, что, с целью повышения однородности порошка и предотвращения осаждения частиц на стенах реактора, циркуляции подвергают металл-восстановитель, который в виде струи подают в реакционную зону навстречу парам хлорида, и процесс восстановления проводят на поверхности образующихся и находящихся во взвешенном состоянии частиц-зародышей тугоплавкого металла до тех пор, пока укрупненные частицы под действием гравитационных сил не уходят в отстойник, откуда их удаляют из-под слоя жидкого хлорида металла-восстановителя.

BEST AVAILABLE COPY

411962

BEST AVAILABLE COPY

Составитель Г. Петров

Редактор Н. Козлова

Техред Е. Барыкова

Корректор А. Васильева

Заказ 1185/183

Изд № 430

Тираж 811

Подписано

ЦНИИПИ Государственного комитета Совета Министров СССР
по делам изобретений и открытий
Москва, Ж-35, Рязанская ул., д. 4/5

Тип. Харк. факс. грез «Патент»