Greedy Algorithms

An activity-selection problem

Introduction

- Algorithms for optimization problems typically go through a sequence of steps, with a set of choices at each step.
- For many optimization problems, using dynamic programming to determine the best choices is overkill; simpler, more efficient algorithms will do.
- A *greedy algorithm* always makes the choice that looks best at the moment.
- That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.

• **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- Example: Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_{5}	a_{6}	a_7	a_{8}	a_9	a_{10}	a_{11}

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time

Activity, a_i	a_1	a_2	a_3	a_{4}	a_5	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}

Each activity a_i has a start time, s_i

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$

Each activity a_i has a start time, s_i

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$

Each activity a_i has a start time, s_i , $0 \le s_i$

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a *finish time*, f_i

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a **finish time**, f_i

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a finish time, f_i , $s_i < f_i$

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a finish time, f_i , $s_i < f_i$

$$0 \leq s_i < f_i < \infty$$

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a finish time, f_i , $s_i < f_i$

$$0 \leq s_i < f_i < \infty$$

If selected activity a_i takes place during the half-open interval [s_i , f_i)

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a finish time, f_i , $s_i < f_i$

$$0 \leq s_i < f_i < \infty$$

If selected activity a_i takes place during the half-open interval s_i, f_i

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- **Example:** Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a finish time, f_i , $s_i < f_i$

$$0 \leq s_i < f_i < \infty$$

If selected activity a_i takes place during the half-open interval [s_i , f_i)

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- Example: Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_{6}	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a start time, s_i , $0 \le s_i$

Each activity a_i has a finish time, f_i , $s_i < f_i$

$$0 \leq s_i < f_i < \infty$$

If selected activity a_i takes place during the half-open interval [s_i , f_i)

- **Problem Statement:** Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.
- Example: Consider the following set $S = \{a_1, a_2, ..., a_{11}\}$ of eleven activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a ₉	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Each activity a_i has a

start time, s_i , $0 \le s_i$

Each activity a_i has a finish time, f_i , $s_i < f_i$

$$0 \leq s_i < f_i < \infty$$

If selected activity a_i takes place during the half-open interval $[s_i, f_i]$

Activities are in monotonically increasing order of finish time, $f_1 \le f_2 \le ... \le f_{11}$

- Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.
- That is, a_i and a_j are *compatible* if $s_i \ge f_j$ or $s_j \ge f_i$.
- Hence, a_i and a_j are *not compatible* if $s_i < f_j$ and $s_j < f_i$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

- Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.
- That is, a_i and a_j are *compatible* if $s_i \ge f_j$ or $s_j \ge f_i$.
- Hence, a_i and a_j are *not compatible* if $s_i < f_j$ and $s_j < f_i$
- Thus, activities a_1 and a_2 are *not compatible*
 - since, $s_1 = 1 < f_2 = 5$ and $s_2 = 3 < f_1 = 4$

Activity, a_i	a_1	a_2	a_3	a_4	a_{5}	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

- Activities a_i and a_j are *compatible* if the **intervals** [s_i , f_i) and [s_j , f_j] do not overlap.
- That is, a_i and a_j are *compatible* if $s_i \ge f_j$ or $s_j \ge f_i$.
- Hence, a_i and a_j are *not compatible* if $s_i < f_j$ and $s_j < f_i$
- Thus, activities a_1 and a_2 are *not compatible*
 - since, $s_1 = 1 < f_2 = 5$ and $s_2 = 3 < f_1 = 4$
- Similarly, activities a_1 and a_3 are *not compatible*
 - since, $s_1 = 1 < f_3 = 6$ and $s_3 = 0 < f_1 = 4$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

- Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i)$ and $[s_j, f_j]$ do not overlap.
- That is, a_i and a_j are *compatible* if $s_i \ge f_j$ or $s_j \ge f_i$.
- Hence, a_i and a_j are *not compatible* if $s_i < f_j$ and $s_j < f_i$
- Thus, activities a_1 and a_2 are *not compatible*
 - since, $s_1 = 1 < f_2 = 5$ and $s_2 = 3 < f_1 = 4$
- Similarly, activities a_1 and a_3 are *not compatible*
 - since, $s_1 = 1 < f_3 = 6$ and $s_3 = 0 < f_1 = 4$
- But, activities a_1 and a_4 are *compatible*
 - since, $s_4 (= 5) \ge f_1 (= 4)$

Activity, a_i	a_1	a_2	a_3	a_4	a_{5}	a_6	a_7	a_8	a9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_4	a_5	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Compatible set with three activities $\{a_3, a_9, a_{11}\}$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

Activity, a_i	a_1	a_2	a_3	a_{4}	a_{5}	a_{6}	a_7	a_8	a_9	a_{10}	a_{11}
Start time, s_i	$s_1 = 1$	$s_2 = 3$	$s_3 = 0$	$s_4 = 5$	$s_5 = 3$	$s_6 = 5$	$s_7 = 6$	$s_8 = 8$	$s_9 = 8$	$s_{10} = 2$	$s_{11} = 12$
Finish time, f_i	$f_1 = 4$	$f_2 = 5$	$f_3 = 6$	$f_4 = 7$	$f_5 = 9$	$f_6 = 9$	$f_7 = 10$	$f_8 = 11$	$f_9 = 12$	$f_{10} = 14$	$f_{11} = 16$

- In the preceding slides we see that we can have different sets of mutually compatible activities.
- So, what is it that we want to achieve?
- We want to obtain the *maximum-size subset of mutually compatible* activities.
- Now, let us check the details of the activity-selection problem once again.

Problem Statement:

• Scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities.

• Input:

- A set $S = \{a_1, a_2, ..., a_n\}$ of n proposed *activities* that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.
- Each activity a_i has a *start time*, s_i and a **finish time**, f_i , $0 \le s_i < f_i < \infty$.

Output:

• A maximum-size subset of mutually compatible activities.

• Assumption:

• The activities are sorted in monotonically increasing order of finish time $f_1 \le f_2 \le \dots \le f_n$

To find the solution to the activity-selection problem

- We first look into the dynamic programming solution and provide the *optimal substructure*.
- Then we will delve into the possibility of making a *greedy choice* from the optimal substructure and check its correctness.
- Next, provide a recursive greedy algorithm.
- Finally, give an iterative greedy algorithm for the activity-selection problem.

Let

- S_{ij} : Set of activities that start after activity a_i finishes and finish before the activity a_j starts, such that $S_{ij} = \{a_{i+1}, a_{i+2}, \dots, a_{j-2}, a_{j-1}\}$
- A_{ij} : Maximum-size set of mutually compatible activities in S_{ij} , which is an optimal solution of S_{ij} . Let a_k be some activity in the set S_{ij} , such that, a_k starts after activity a_i finishes and finishes before activity a_i starts.

$$S_{ij} = \{a_{i+1}, a_{i+2}, \dots, a_{k-2}, a_{k-1}, a_k, a_{k+1}, a_{k+2}, \dots, a_{j-2}, a_{j-1}\}.$$

If now, a_k is included in the optimal solution, A_{ij} , then we are left with two subproblems: finding mutually compatible activities in the set, S_{ik} and finding mutually compatible activities in the set S_{kj} , where,

- Subproblem, $S_{ik} = \{a_{i+1}, a_{i+2}, \dots, a_{k-2}, a_{k-1}\}$, set of activities that start after activity a_i finishes and finish before the activity a_k starts.
- Subproblem, $S_{kj} = \{a_{k+1}, a_{k+2}, \dots, a_{j-2}, a_{j-1}\}$, set of activities that start after activity a_k finishes and finish before the activity a_i starts.

Now let,

- A_{ik} : Maximum-size set of mutually compatible activities in S_{ik} , which is an optimal solution to the subproblem, S_{ik} .
- $A_{ik} = A_{ij} \cap S_{ik}$, so that A_{ik} contains the activities in A_{ij} that finish before a_k starts.

and

- A_{kj} : Maximum-size set of mutually compatible activities in S_{kj} , which is an optimal solution for the subproblem, S_{kj} .
- $A_{kj} = A_{ij} \cap S_{kj}$, so that A_{kj} contains the activities in A_{ij} that start after a_k finishes.

```
Thus,
```

$$A_{ij} = \{..., a_k, ...\}$$

$$= A_{ik} \cup \{a_k\} \cup A_{kj}$$

$$= \{\text{Optimal solution to subproblem } S_{ik}\} \cup \{a_k\} \cup \{\text{Optimal solution to subproblem } S_{kj}\}$$

$$= (A_{ij} \cap S_{ik}) \cup \{a_k\} \cup (A_{ij} \cap S_{kj})$$

So the maximum-size set A_{ij} of mutually compatible activities in S_{ij} consists of

$$|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$$

The optimal solution A_{ij} must also include optimal solution to the two subproblems for S_{ik} and S_{kj} .

Proof:

Let us assume that there is a set A_{kj}' of mutually compatible activities such that $|A_{kj}'| > |A_{kj}|$, then A_{kj}' would be the optimal solution to the subproblem for S_{kj} rather than A_{kj} .

Therefore, the solution to the subproblem S_{ij} can be constructed as $|A_{ik}| + |A_{kj}'| + 1$ of mutually compatible activities in S_{ij} .

But, $|A_{ik}| + |A_{kj}'| + 1 > |A_{ik}| + |A_{kj}| + 1 = |A_{ij}|$ (since, $|A_{kj}'| > |A_{kj}|$)

This contradicts the assumption that A_{ij} is an optimal solution for S_{ij} .

Therefore, A_{ki} is the optimal solution for S_{ki} .

A symmetric argument applies to the activities in S_{ik} .

This way of characterizing optimal substructure suggests that we might solve the activity-selection problem by dynamic programming.

Let c[i, j] denote the size of an optimal solution for the set S_{ij} , hence the recurrence,

$$c[i, j] = c[i, k] + c[k, j] + 1$$

But, if we did not know that an optimal solution for the set S_{ij} , includes activity a_k , we would have to examine all activities in S_{ij} to find which one to choose, so that

$$c[i,j] = \begin{cases} \mathbf{0} & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ii}} \{c[i,k] + c[k,j] + \mathbf{1}\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

We could then develop a recursive algorithm and memoize it to obtain a dynamic programming solution.

But can we do better?

- What if we could choose an activity to add to our optimal solution without having to first solve all the subproblems?
- It will save us from having to consider all the choices inherent in the recurrence given in the previous slide.
- In fact, for the activity-selection problem, we need consider only one choice: *the greedy choice*.

- What do we mean by a *greedy choice* for the activity-selection problem?
- Intuition says that we should choose an activity that leaves the resource available for as many other activities as possible.
- Hence, if we *choose the activity having the earliest finish time* we are leaving the common resource available for the maximum possible time for other activities that follow the selected activity.
- Since the activities are sorted in monotonically increasing order of finish time, the first greedy choice is activity a_1 .

- Making the greedy choice, a_1 , we have only one remaining subproblem to solve: finding activities that start after a_1 finishes.
- We do not have to consider the activities that finish before a_1 starts because
 - $s_1 < f_1$ i.e., for any activity start time is less than its finish time.
 - f_1 is the earliest finish time of any activity, $f_1 \le f_2 \le \dots \le f_{11}$ since activities are sorted in the order of their finish time.
 - Therefore, $s_1 < f_1 \le f_2 \le \dots \le f_{11}$ i.e., no activity can have a finish time less than or equal to s_1 .
 - Thus, all activities that are compatible with activity a_1 must start after a_1 finishes.

Let $S_k = \{a_i \in S : s_i \ge f_k\}$ be the set of activities that start after activity a_k finishes.

As a_1 has the earliest finish time we make a greedy choice of activity a_1 , then S_1 (containing all activities that start after a_1 finishes) remains as the only subproblem to solve.

Now, activity-selection problem exhibits optimal substructure.

Hence, if a_1 is in the optimal solution, then an optimal solution to the original problem consists of activity a_1 and all the activities in an optimal solution to the subproblem S_1 .

But, is the greedy choice always part of some optimal solution?

The following theorem shows that it is.

Correctness of making the greedy choice

Theorem:

Consider any nonempty subproblem S_k and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Proof: Let A_k be a maximum-size subset of mutually compatible activities of S_k , and a_j be the activity in A_k with the earliest finish time.

If $a_j = a_m$, then we have shown that the activity a_m , which has the earliest finish time in S_k , is included in some maximum-size subset of mutually compatible activities of S_k .

If $a_i \neq a_m$, then, $f_m \leq f_i$, given a_m has the earliest finish time in S_k .

Let the set $A_k' = A_k - \{a_i\} \cup \{a_m\}$ (obtained by substituting a_m for a_i in A_k).

Activities in A_k are disjoint since it contains mutually compatible activities. (Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap.) Hence it follows that the activities in A_k' are also disjoint $(s_m < fm \le f_i, \forall a_i \in A_k', \text{ but } f_m \le s_i, \forall a_i \in A_k')$.

 a_i is the first activity to finish in A_k , and $f_m \leq f_i$. Thus a_m is the first activity to finish in A_k' .

Since $|A_k'| = |A_k|$ (from construction), we conclude that A_k' is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

Thus,

- We do not need a dynamic programming approach.
- We can repeatedly choose the activity that finishes first.
- Select only the activities compatible with the chosen activity.
- And repeat until no activities remain.
- Because we always choose the activity with the earliest finish time, the finish time of the activities that we choose must strictly increase.
- Each activity can be considered just once overall, in monotonically increasing order of finish time.
- Greedy algorithms typically have this top-down design: make a choice and then solve a subproblem, rather than the bottom-up technique of solving subproblems before making a choice.

Input:

- 1. Set, $S = \{a_1, a_2, ..., a_n\}$ of *n* activities that wish to use a common resource, which can serve only one activity at a time.
- 2. Array s that contains the start time of the activities.
- 3. Array f that contains the finish time of the activities.
- 4. Index k that defines the subproblem S_k it is to solve.
- 5. The size of the original subproblem, n.

Output:

Maximum-size subset of compatible activities of $S = \{a_1, a_2, ..., a_n\}$.

Assumption:

The n input activities are sorted by monotonically increasing finish time, $f_1 \le f_2 \le ... \le f_n$. If not sorted we can sort them in this order in $O(n \lg n)$ time, breaking ties arbitrarily.

Initially:

We add the fictitious activity a_0 with $f_0 = 0$, so that subproblem S_0 is the entire set of activities in S.

```
Initial call: Recursive-Activity-Selector (s, f, 0, n)
Algorithm:
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
       m = k + 1
       while m \le n and s[m] < f[k]
              m = m + 1
4
       if m \leq n
5
              return \{a_m\} U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)
6
       else return Ø
```

```
Initial call: Recursive-Activity-Selector (s, f, 0, n)
Algorithm:
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
                                                   Sets m to the index of the activity that comes after a_k
                                                   in the monotonically increasing order of finish time.
       m = k + 1
       while m \le n and s[m] < f[k]
               m = m + 1
        if m \leq n
4
5
                return \{a_m\} U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)
6
        else return Ø
```

```
Initial call: Recursive-Activity-Selector (s, f, 0, n)
Algorithm:
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
                                                          Sets m to the index of the activity that comes after a_k
                                                          in the monotonically increasing order of finish time.
         m = k + 1
        while m \le n and s[m] < f[k]
                                                       The while loop of lines 2-3 looks for the first activity in
                                                       S_k to finish by examining a_{k+1}, a_{k+2}, \dots a_n, until it finds
                 m = m + 1
                                                       the first activity a_m that is compatible with a_k, i.e., s_m \ge f_k.
4
         if m \leq n
                  return \{a_m\} U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)
5
6
         else return Ø
```

```
Initial call: Recursive-Activity-Selector (s, f, 0, n)
```

Algorithm:

6

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

m = k + 1

Sets m to the index of the activity that comes after a_k in the monotonically increasing order of finish time.

The while loop of lines 2-3 looks for the first activity in s_k to finish by examining s_{k+1}, s_{k+2}, ... s_m until it finds the first activity s_m that is compatible with s_m i.e., s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity in s_k to finish by examining s_k, i.e., s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity in the first activity s_m that is compatible with s_m i.e., s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity in the first activity s_m that is compatible with s_m i.e., s_m \ge f_k.
```

else return Ø

If the loop terminates because it finds an activity, a_m which is compatible with a_k , i.e., $s_m \ge f_k$, line 5 returns the union of $\{a_m\}$ and the maximum-size subset of compatible activities in S_m returned by the recursive call RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n).

```
Initial call: Recursive-Activity-Selector (s, f, 0, n)
```

Algorithm:

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

m = k + 1

Sets m to the index of the activity that comes after a_k in the monotonically increasing order of finish time.

The while loop of lines 2-3 looks for the first activity in s_k to finish by examining s_{k+1}, s_{k+2}, ... s_m until it finds the first activity s_m that is compatible with s_m i.e., s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity in s_k to finish by examining s_{k+1}, s_{k+2}, ... s_m until it finds the first activity s_m that is compatible with s_k, i.e., s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity in s_k to finish by examining s_k, ... s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity in s_k to finish by examining s_k, ... s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity in s_k to finish by examining s_k, ... s_m \ge f_k.

The while loop of lines 2-3 looks for the first activity s_m that is compatible with s_k, i.e., s_m \ge f_k.

The while s_m \le f_k to finish by examining s_k to finish by e
```

The loop may terminate because m > n, which means all activities in S_k have been examined without finding one that is compatible with a_k . Hence, $S_k = \emptyset$.

Procedure returns Ø in line 6.

```
Initial call: RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n)
```

Algorithm:

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

Times executed

1 \ m = k + 1

2 \ \text{while} \ m \le n \ \text{and} \ s[m] < f[k]

m - k + 1

m - k + 1

m - k + 1

m - k

m = m + 1

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k

m - k
```

```
Initial call: RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n)
```

Algorithm:

RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

```
1 \ m = k + 1
```

2 while $m \le n$ and s[m] < f[k]

$$3 m = m + 1$$

- 4 if $m \le n$
- 5 **return** $\{a_m\}$ U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)
- 6 else return Ø

Recursive call to subproblem S_m which consists of only activities that come after a_m in the order of monotonically increasing finish time. Size of the subproblem $|S_m| = n - m$

Times executed

L

m - k + 1

m-k

1

 ≤ 1

 ≤ 1

Initial call: RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n)

Algorithm:

RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

- $1 \ m = k + 1$
- 2 while $m \le n$ and s[m] < f[k]
- 3 m = m + 1
- 4 if m < n
- 5 **return** $\{a_m\}$ U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)
- 6 else return Ø

Recursive call to subproblem S_m which consists of only activities that come after a_m in the order of monotonically increasing finish time. Size of the subproblem $|S_m| = n - m$

Times executed

1

m - k + 1

m-k

1

≤ 1

 ≤ 1

In particular, only m - k activities, that finish after a_k finishes (starting from activity a_{k+1} to activity a_m) are examined in this call in the order of increasing finish time. These activities are not examined in any other recursive call.

Initial call: RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n)

Algorithm:

RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

- $1 \ m = k + 1$
- 2 while $m \le n$ and s[m] < f[k]
- m = m + 1
- 4 if m < n
- **return** $\{a_m\}$ U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)
- 6 else return Ø

Recursive call to subproblem S_m which consists of only activities that come after a_m in the order of monotonically increasing finish time. Size of the subproblem $|S_m| = n - m$

Times executed

m - k + 1

m-k

 ≤ 1

 ≤ 1

Over all recursive calls, each activity is examined exactly once in the **while** loop test of line 2.

In particular, only m - k activities, that finish after a_k finishes (starting from activity a_{k+1} to activity a_m) are examined in this call in the order of increasing finish time. These activities are not examined in any other recursive call.

Initial call: RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n)

Algorithm:

RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

- $1 \ m = k + 1$
- 2 while $m \le n$ and s[m] < f[k]
- 3 m = m + 1
- 4 if $m \le n$
- 5 **return** $\{a_m\}$ U RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n)
- 6 else return Ø

Recursive call to subproblem S_m which consists of only activities that come after a_m in the order of monotonically increasing finish time. Size of the subproblem $|S_m| = n - m$

1

1≤ 1≤ 1

m - k + 1

Times executed

In particular, only m - k activities, that finish after a_k finishes (starting from activity a_{k+1} to activity a_m) are examined in this call in the order of increasing finish time. These activities are not examined in any other recursive call.

Over all recursive calls, each activity is examined exactly once in the **while** loop test of line 2.

Hence, over all recursive calls the number of times lines 2-3 are executed is bounded by $\theta(n)$.

Assuming that the activities are sorted in the order of increasing finish time, the running time of the call Recursive-Activity-Selector(s, f, o, n) is $\theta(n)$.

Demonstration of the Recursive Greedy Algorithm to solve the Activity-selection problem

k	s[k]	f[k]																		
0		0	a_0																	-
1	1	4																		
2	3	5																		
3	0	6										Gi				es with sh tim		start tin	me,	
4	5	7															7 9 2 3			
5	3	9																		
6	5	9																		
7	6	10																		
8	8	11																		
9	8	12																		
10	2	14																		
11	12	16																		
		•	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	→ Tim

k	s[k]	f[k]																		
0	_	0	a_0												0 44					!
1	1	4	a_0							RE	CURSIVE-	Activity	/-SELECT	DR(S,f,	0, 11)					į
2	3	5																		
3	0	6										F	irst cal			ne com 1 ₂ , , (problei	n	
4	5	7												U	(]/	Σ, ,	117			
5	3	9																		
6	5	9																		
7	6	10																		
8	8	11																		
9	8	12																		
10	2	14																		
11	12	16																		
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	→ Tir

k	s[k]	f[k]		I	!	<u> </u>	<u> </u>	<u> </u>		Į.	Į.	<u> </u>	<u> </u>	<u>I</u>	<u> </u>	į	<u> </u>		
0 1	1	<u>0</u> 4	a_0			<i>a</i> ₁				Re	CURSIVE-	Астіvіту	SELECTO	r(<i>s, f,</i>	0, 11)				
2	3	5																	
3	0	6										First	activi		cted is		it has	the ea	rliest
4	5	7																	
5	3	9																	
6	5	9																	
7	6	10																	
8	8	11																	
9	8	12																	
10	2	14																	
11	12	16																	
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

k	s[k]	f[k]		-															
0	<u>-</u>	0	a_0			a_1		ļ	<u> </u>	De		Λ , ,,, ,	C = 1 = 6 = 6	-1 ₀ f	Λ 11\				
1	1	4	a_0			m=1				NE(URSIVE-	Астіvіту	-SELECTO	R(S, J,	0, 11)				
2	3	5																	
3	0	6											elected less th						
4	5	7																	
5	3	9																	
6	5	9																	
7	6	10																	
8	8	11																	
9	8	12																	
10	2	14																	
11	12	16																	
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

k	s[k]	f[k]	- —									
0		0	a_0									
1	1	4	a_0	a_1 $m=1$		Recursive-Ac	TIVITY SELECT	PR(s, f, 0, 11)				
			u_0	m-1				1 (1 11)				
2	3	5				KECURSIVE-AC	CTIVITY-SELECT	TOR(s, f, 1, 11)				
				a_1			NT	. 11	1 C	41 1	1.1	
3	0	6					Next recu	irsive call ma			proble	m
				a_1				$S_1 = \{a_2, a_4, a_5, a_6, a_7, a_8, a_8, a_9, a_9, a_9, a_9, a_9, a_9, a_9, a_9$	a_3, \ldots, a	₁₁ }.		
4	5	7										
				a_1								
5	3	9										
3	J			a_1								
6	5	9										
O	3	9		a_1								
7		10										
7	6	10		a_1								
8	8	11		a								
				a_1								
9	8	12										
				a_1								
10	2	14										
				a_1								
11	12	16										
				a_1				ļ				
				1 2 2 4	5	6 7 8	0 10	11 12	13	14	15	16 → 7
			0	1 2 3 4	5	6 7 8	9 10	111 12	13	14	13	10

k	s[k]	f[k]		٦	: :	:	: :	:	:	: :	:	:	:	:	:	:	:	: :	
0		0	a_0	ļ			ļ				а	<u> </u>	1 C	0 11\			<u></u>		
1	1	4	a_0		a_1 $m=1$		1		KE	CURSIVE-	Астіvіту	SELECTO	R(<i>S</i> , <i>J</i> ,	J, 11)					
2	3	5				а	<i>a</i> ₂		Red	CURSIVE-	А стіvіту	-Selecto	r(<i>s, f,</i>	1, 11)					
3	0	6			a_1		1									vities		_	
4	5	7			a_1		1				time	. Hen	ce a_2	is the	e nex	increa t activ	vity to		
5	3	9			a ₁		-				cons	<u>idered</u>	tor co	mpati	bility v	with a_1	<u>[• </u>		
6	5	9			a_1		_												
7	6	10			a ₁		1												
8	8	11			a_1														
9	8	12			a_1		L												
10	2	14			a ₁														
11	12	16			<i>a</i> ₁														
					a_1														
			0	1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	→ ⁻

k	s[k]	<i>f</i> [<i>k</i>]																	
0	-	0	$\overline{a_0}$																
 1	1	4			a_1				Re	CURSIVE-	Астічіту	SELECTO	R(s, f,	0, 11)					
 		· 	a_0		m=1									, 					
2	3	5				a	<i>l</i> ₂		Re	CURSIVE-	Астічіту	SELECTO	R(s,f,	1, 11)					
					a_1		Ì					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			į
3	0	6									a. is	not co	omnati	hle wi	th a	since	s[2] < 1	<i>f</i> [1]	
					a_1]				u_2 18	not co	mpan	OIC WI	$\mathfrak{m} \mathfrak{u}_1,$	Silice)[<u>~</u>] ~,	<i>)</i> [1]•	
4	5	7																	
 		,			a_1]												
5	3	9																	
3	3	9			a_1		j												
6	_	0																	
6	5	9			a_1		İ												
7		10																	
7	6	10			a_1		1												
_																			
8	8	11			a		i												
 					a_1		L				†						<u> </u>		
9	8	12					i												
					a_1		1												
10	2	14																	
					a_1		1												
11	12	16																	
 					a_1		<u> </u>				ļ			ļ			ļ 		
																			Tim
			0	1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	 → Tim

k	s[k]	<i>f</i> [<i>k</i>]																		
 0		0	a_0																	
1	1	4				a ₁				Red	URSIVE-	Астічіту	SELECTO	R(s,f,	0, 11)					ļ
 			a_0			m=1	x a	l ₂		<u> </u>						<u></u>				
2	3	5						2		Re	CURSIVE-	Астічіту	SELECTO	R(s,f,	1, 11)					
						a_1							<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		į
3	0	6										a_{α} is	s not co	omnati	ble wi	th a_{i}	since	s[2] < 1	<i>f</i> [1]	
						a_1						66 2 1 5	110000	Jinputi	010 111	tii tt ₁ ,		J [→])[¥]·	
4	5	7																		į
 						a_1						ļ						<u></u>		
5	3	9																		
						a_1														
6	5	9																		į
U	3	,				a_1														
7	6	10																		
/	O	10				a_1														
0	0	1.1																		į
8	8	11				a_1														
 		4.0																†		
9	8	12				a_1														i
						- 41														,
10	2	14				a														
						a_1														
11	12	16																		
 						a_1						<u> </u>						<u> </u>		
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	→ Tir
			V I	1	2	ا ع	7	5	0	I '	1 0	1 ,	10	11	12	13	14	1 13	1 10	ı

k	s[k]	f[k]																		
 0		0	a_0	L												<u> </u>				ŀ
 1	1	4				a_1				Re	ÇURSIVE-	Астічіту	SELECTO	R(s, f,	0, 11)					ł
 			a_0			m=1	a	1.								<u> </u>				į
2	3	5				a_1	a	2		Re	CURSIVE-	Астіуіту	SELECTO	PR(S,f,	1, 11)					
		_				a_3]		Nex	t we co	onside	$r a_{\circ}$ ir	the o	rder of	increa	sing	l
3	0	6				a_1						1 (011		3113140	finish		idei oi	1110100	151116	I
						<u> </u>							1	<u> </u>	11111511	i tillie.	<u> </u>	1		ł
4	5	7																		i
 						a_1												<u> </u>		!
5	3	9																		ŀ
						a_1														ŀ
6	5	9																		į
Ü						a_1														į
7	6	10																		į
1	U	10				a_1														i
0	0	11																		1
8	8	11				a_1														1
 												†			†			 		<u>!</u>
9	8	12																		i
						a_1														i
10	2	14																		<u>!</u>
						a_1														1
11	12	16																		l
						a_1						ļ			ļ			ļ 		ļ
																				l
			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	→ Tim

k	k	s[k]	<i>f</i> [<i>k</i>]																		
)		0	a_0												<u></u>					
1	1	1	4				a ₁				Red	CURSIVE-	Астіvіту	SELECTO	R(S, f,	0, 11)					
				a_0			m=1	x a	2		<u></u>			ļ			<u> </u>				į
2	2	3	5								RE	CURSIVE-	Астіліту	SELECTO	R(S, f,	1, 11)					
					4		a_1	2			İ			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		İ
3	3	0	6					,					a_2 is	not c	ompati	ble wi	th a_1 .	since	s[3] <	<i>f</i> [1].	
							a_1						,		· ·		:				
4	1	5	7																		
							a_1														İ
5	5	3	9																		į
							a_1														
ϵ	5	5	9																		į
							a_1														į
7	7	6	10																		
							a_1														
8	3	8	11																		į
							a_1								ļ	ļ			ļ		į
ç)	8	12																		
	•	O	12				a_1														
1	0	2	14																		
1	5	-	17				a_{I}														
1	1	12	16																		
1		1 4					a_{I}														
				0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	→ Tim

k	s[k]	f[k]												
0		0	a_0											
1	1	4		a ₁	R	CURSIVE-	ACTIVITY SELE	ector(s , f ,	0, 11)					
			a_0	m=1										
2	3	5		a_1	R	CURSIVE-	ACTIVITY-SELI	ECTOR(s, f,	1, 11)					
	0	_	←	a_3			<u> </u>	·	•			<u> </u>		
3	0	6		a_1			a_3 is no	t compati	ble wi	th a_1 ,	since.	s[3] < 0	<i>f</i> [1].	
4	5	7												
		,		a_1										
5	3	9												
	3			a_1										
6	5	9												
				a_1										
7	6	10												
				a_1										
8	8	11												
				a_1										
9	8	12												
				a_1										
10	2	14												
				a_1										
11	12	16												
				a_1										
								10				1.0		→ Time
			0	1 2 3 4	5 6	8	9	10 11	12	13	14	15	16	

k	s[k]	f[k]														
 0		0	a_0													
 1	1	4		a_1		Rec	URSIVE-	Астіуіту	SELECTO	R(S, f,	0, 11)					
 		·	a_0	m=1								<u>:</u> :				
2	3	5		a_1	2	Red	CURSIVE-	Астічітү	-Selecto	R(s, f,	1, 11)					
3	0	6	—	a_3 a_1				Nex	t we co		a_4 , in finish		rder of	increa	ising	
4	5	7		a_1		<u>a₄</u>										
 5	3	9		a_1												
6	5	9		a_1												
7	6	10		a_1												
8	8	11		a_1												
 9	8	12		a_1												
10	2	14		a_{I}												
 11	12	16		a_{I}												
			0 1	1 2 3 4	5	6 7	8	9	10	11	12	13	14	15	16	→ Tim

• The procedure RECURSIVE-ACTIVITY-SELECTOR can be converted to an iterative form, namely, GREEDY-ACTIVITY-SELECTOR in a straightforward manner.

Input:

- 1. Set, $S = \{a_1, a_2, ..., a_n\}$ of n activities that wish to use a common resource, which can serve only one activity at a time.
- 2. Array s that contains the start time of the activities.
- 3. Array f that contains the finish time of the activities.

Output:

• Maximum-size subset of compatible activities in *S*.

Assumption:

• The *n* input activities are sorted by monotonically increasing finish time, $f_1 \le f_2 \le ... \le f_n$. If not sorted we can sort them in this order in $O(n \lg n)$ time, breaking ties arbitrarily.

```
Greedy-Activity-Selector (s, f)
       n = s.length
     A = \{a_1\}
      k = 1
       for m = 2 to n
               if s[m] \ge f[k]
6
                      A = A \cup \{a_m\}
                      k = m
```

return A

8

Greedy-Activity-Selector (s, f)

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

```
n = s.length
       A = \{a_1\}
       k = 1
       for m = 2 to n
               if s[m] \ge f[k]
                       A = A \cup \{a_m\}
6
                        k = m
8
       return A
```

Greedy-Activity-Selector (s, f)

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

```
n = s.length
                                       Initialize A to contain activity a_1, because
                                       initially a_1 is the first activity to finish in S.
         A = \{a_1\}
          k = 1
         for m = 2 to n
                   if s[m] \ge f[k]
                             A = A \cup \{a_m\}
6
                              k = m
8
          return A
```

Greedy-Activity-Selector (s, f)

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

```
n = s.length
                                          Initialize A to contain activity a_1, because
                                          initially a_1 is the first activity to finish in S.
          A = \{a_1\}
                                      Initialize k to 1 the index of
                                      activity a_1. The variable k indexes
                                      the most recent addition to A.
          for m = 2 to n
                     if s[m] \ge f[k]
                               A = A \cup \{a_m\}
6
                                k = m
8
          return A
```

Greedy-Activity-Selector (s, f)

8

return A

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

1	$n = s.length$ Initialize A to contain activity a_1 , because
2	$A = \{a_1\}$ initially a_1 is the first activity to finish in S .
3	$k=1$ Initialize k to 1 the index of activity a_1 . The variable k indexes
4	for $m = 2$ to n the most recent addition to A .
5	$\mathbf{if}\ s[m] \ge f[k]$
6	$A = A \cup \{a_m\}$
7	k = m

Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is, $f_k = \max\{f_i : a_i \in A\}$.

Greedy-Activity-Selector (s, f)

8

return A

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

1	$n = s.length$ Initialize A to contain activity a_1 , because
2	$A = \{a_1\}$ initially a_1 is the first activity to finish in S .
3	$k=1$ Initialize k to 1 the index of activity a_1 . The variable k indexes
4	for $m = 2$ to n the most recent addition to A . The for loop of lines
5	if $s[m] \ge f[k]$ 4-7 finds the earliest activity in S_k to finish.
6	$A = A \cup \{a_m\}$
7	k = m

Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is, $f_k = \max\{f_i : a_i \in A\}$.

Greedy-Activity-Selector (s, f)

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

1
$$n = s.length$$
 Initialize A to contain activity initially a_1 is the first activity to $A = \{a_1\}$ Initialize k to 1 the index of activity a_1 . The variable k indexes the most recent addition to A .

1 **for** $m = 2$ **to** $m =$

return A

8

Initialize A to contain activity a_1 , because initially a_1 is the first activity to finish in S.

> The for loop of lines 4-7 finds the earliest

activity in S_k to finish.

Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is, $f_k = \max\{f_i : a_i \in A\}$.

The loop considers each activity a_m in turn and adds a_m to A if it is compatible with all previously selected activities; such an activity is earliest in S_k to finish. To see whether activity a_m is compatible with every activity currently in A, it suffices by $f_k = \max\{f_i : a_i \in A\}$ to check (in line 5) that its start time s_m is not earlier than the finish time f_k of the activity most recently added to A.

Greedy-Activity-Selector (s, f)

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

1
$$n = s.length$$

Initialize A to contain activity a_1 , because initially a_1 is the first activity to finish in S.

$$A = \{a_1\}$$

Initialize k to 1 the index of

activity a_1 . The variable k indexes the most recent addition to A.

for m = 2 to n

4-7 finds the earliest activity in S_k to finish.

The for loop of lines

Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is, $f_k = \max\{f_i : a_i \in A\}$.

5 **if**
$$s[m] \ge f[k]$$
6 $A = A \cup \{a_m\}$

$$k = m$$

8 return A

> If the activity a_m is compatible, then lines 6-7 add activity a_m to A and set k to m.

The loop considers each activity a_m in turn and adds a_m to A if it is compatible with all previously selected activities; such an activity is earliest in S_k to finish. To see whether activity a_m is compatible with every activity currently in A, it suffices by $f_k = \max\{f_i : a_i \in A\}$ to check (in line 5) that its start time s_m is not earlier than the finish time f_k of the activity most recently added to A.

Greedy-Activity-Selector (s, f)

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

1
$$n = s.length$$

$$A = \{a_1\}$$

$$k=1$$

for
$$m=2$$
 to $n=1$

6

8

The **for** loop of lines 4-7 runs until m > n.

return A

Initialize A to contain activity a_1 , because initially a_1 is the first activity to finish in S.

Initialize k to 1 the index of activity a_1 . The variable k indexes the most recent addition to A.

> The for loop of lines 4-7 finds the earliest

Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is, $f_k = \max\{f_i : a_i \in A\}$.

activity in S_k to finish.

The loop considers each activity a_m in turn and adds a_m to A if it is compatible with all previously selected activities; such an activity is earliest in S_k to finish. To see whether activity a_m is compatible with every activity currently in A, it suffices by $f_k = \max\{f_i : a_i \in A\}$ to check (in line 5) that its start time s_m is not earlier than the finish time f_k of the activity most recently added to A.

If the activity a_m is compatible, then lines 6-7 add activity a_m to A and set k to m.

 $\mathbf{if} \ s[m] \ge f[k]$ $A = A \cup \{a_m\}$

k = m

Greedy-Activity-Selector (s, f)

n is assigned the total no. of activities in the input which are ordered by monotonically increasing finish time.

1
$$n = s.length$$

$$2 A = \{a_1\} -$$

$$k=1$$

for
$$m = 2$$
 to $n = 2$

6

The **for** loop of lines 4-7 runs

until m > n.

return A

 $\mathbf{if} \ s[m] \ge f[k]$ $A = A \cup \{a_m\}$

$$A = A \cup \{a_m\}$$

$$k = m$$

If the activity a_m is compatible, then lines 6-7 add activity a_m to A and set k to m.

Initialize k to 1 the index of activity a_1 . The variable k indexes the most recent addition to A.

Initialize A to contain activity a_1 , because initially a_1 is the first activity to finish in S.

> The for loop of lines 4-7 finds the earliest activity in S_k to finish.

Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is, $f_k = \max\{f_i : a_i \in A\}$.

The loop considers each activity a_m in turn and adds a_m to A if it is compatible with all previously selected activities; such an activity is earliest in S_k to finish. To see whether activity a_m is compatible with every activity currently in A, it suffices by $f_k = \max\{f_i : a_i \in A\}$ to check (in line 5) that its start time s_m is not earlier than the finish time f_k of the activity most recently added to A.

Set A returns all the selected compatible activities in S.

8

Time complexity Analysis of Greedy-Activity-Selector

```
Initial call: Greedy-Activity-Selector (s, f)
Algorithm:
Greedy-Activity-Selector (s, f)
                                                                 Times executed
1 n = s.length
A = \{a_1\}
3 k = 1
4 for m = 2 to n
                                                                       n
   if s[m] \ge f[k]
                                                                       n-1
             A = A \cup \{a_m\}
                                                                       \leq (n-1)
                                                                       \leq (n-1)
     k = m
8 return A
```

Hence, the running time of the iterative Greedy-Activity-Selector(s, f) is $\theta(n)$.