

PRÁCTICA 6 "MENSAJE MULTIPLEXADO"

Código VHDL, Contador 7 bits

```
1 -- Santos Mèndez Ulises Jesùs
 2 --2CV8
 3 -- Practica 6 "Contadores"
4 -- Contador de 3 bits
 5 library ieee;
 6 use ieee.std logic 1164.all;
8 entity counter is
 9 port(clk,clr,en: in std logic;
       q: out std logic vector(2 downto 0));
10
11
12
       attribute pin numbers of counter: entity is
13
       "q(2):16 q(1):15 q(0):14 clr:2 en:3 ";
14 end counter;
15
16 architecture arq count of counter is
17 begin
18
      process(clk,clr)
19
      variable aux: std logic;
20
      begin
21
           if(clr='1')then
22
               q <= (others => '0');
23
           elsif (rising edge(clk))then
24
           aux := '1';
2.5
                for i in 0 to 2 loop
26
                     if(i-1 >= 0)then
27
                         for j in O to i-1 loop
28
                              aux := aux and q(j);
29
                         end loop:
30
                     end if:
31
                     aux := aux and en;
32
                     q(i) \ll q(i) xor aux;
33
                end loop:
34
            end if:
35
      end process;
36 end arq count;
```


Código VHDL, Contador Genérico

```
1 -- Santos Mèndez Ulises Jesùs
 2 --2CV8
 3 --Pràctica 6 "Contadores"
 4 library ieee;
 5 use ieee.std logic 1164.all;
 6 use ieee.std logic arith.all;
 7 use ieee.std logic unsigned.all;
8
9 entity contador is
10 port(clk,clr,en,le,ud: in std logic;
        D: in std logic vector(6 downto 0);
11
        c: out std logic;
12
       q: inout std logic vector(6 downto 0));
13
14
15
        attribute pin numbers of contador: entity is
        "c:22 q(6):20 q(5):19 q(4):18 q(3):17 q(2):16 "
16
17 €
       "q(1):15 q(0):14 clr:13 d(6):2 d(5):3 d(4):4 "
        "d(3):5 d(2):6 d(1):7 d(0):8 en:9 le:10 ud:11 ";
18 €
19 end contador;
20
21 architecture arq count of contador is
22 begin
23 --En O//Le x// Ud x// Retención
24 --En 1//Le 1// Ud x// Carga
```



```
25 -- En 1//Le O// Ud 1// Conteo ascendente
26 -- En 1//Le O// Ud O// Conteo descendente
27
28
       process(clk,clr)
29
       begin
30
           if(clr = '1')then
31
               q <= (others => '0');
32
           elsif(rising edge(clk))then
               if(en = '1')then
33
                    if(le = '1')then
34
35
                        q <= D;
36
                   elsif(ud = '1' and le = '0') then
37
                        q \ll q+1;
38
                   elsif(ud = '0' and le = '0')then
39
                        q <= q-1;
40
                   end if:
41
               else
42
                   q <= q;
43
               end if:
44
           end if:
45
     end process;
46 process(q,c)
47 begin
48
       case q is
49
            when "1111111" =>
50
                c <= '1';
51
            when "0000000" =>
                c <= '1';
52
53
            when others =>
54
                c <= '0';
55
       end case:
56 end process;
57 end arg count;
```


Análisis de contador con FF'D

Santos Mendez Uliser Jesús

do_Act	E	E00 - 519	Salida	02 -	Di	Do	
000	1	00 0 1	000	0	0	1	L
000	1	010	001	0	1.1	0	
010	1	0 11	0 1 0	0	1	1	
2 1 1	1	100	0111	1	0	0	
100	i	101	100		0	1	
101	1	110	101	1-1-	1	0	
110	1	1 1 1	, 10	1	1	1	
1 1 1	1	000	1111	D	0	0	
Edo_Act	E	EJa- 209	Salida	Da	Di	Do	
0 0 0	0	arai ac	000	0	0	O	
0 0 1	6	001	001	0	0	1	
0 1 0	0	0 10	010	0	1	0	
6 1 1	0	0 1 1	0 1 1	0	1	J.	
1100	0	100	100	- 1	0	0	
1011	0	101	101	1	0	1	
1110	ů.	110	1 10	1	1	0	
E 00 01		0 acc 00	01 11 10	001	0	01	11 10
00 01			1 1	aco.		To	
, , ,		0 00 0	1 1	000		1	0/1
000	0		1 1		0	11	0 (1
000	0	0 000	0 U 0	0.0	0		
000	0	0 000	000	00	0	1	0 1
000	0 0	0 00 0 0 0, T 1 10 0 2 00 D	000	00	0 0	1	0 1
000		0 00 0 0 0, T 1 10 0 2 00 D		00	00000	= 000	0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 00 0 0 01 0 1 10 0 2 00 D 0,00E E)	0 0 0	0	00000	= 000	0 1

Análisis de contador con FF'JK

Simulación en Active-HDL Sim y en Proteus

Contador de 3 bits

Contador Genérico

1) Carga del 87 (decimal)

2) Contar hasta llegar al 95 (decimal)

3) Retener 3 ciclos

Name	Value	Sti 100 1 200 1 300 1 400 1 5
⊏ dk	0	Clock
⊏ clr	0	<= 0
⊟ ⊳ d	01	(01
P d(6)	0	<= 0
d(5)	0	<= 0
P d(4)	0	<= 0
P d(3)	0	<= 0
P d(2)	0	<= 0
□ d(1)	0	<= 0
□ d(0)	1	<= 1
r en	0	<= 0
□- le	1	<= 1
⊳ ud	1	<= 1
⇔ c	0	
+ → q	01	(X X01

4) Contar hasta llegar al 78 (decimal)

5) Carga del 01 (decimal)

6) Mostrar acarreo descendente

Name	Value	Sti 1 · 20 · 1 · 40 · 1 · 60 · 1 · 80 · 1 · 10
⊏ clk	0	Clock
⊏ clr	0	<= 0
⊟ ⊳ d	01	(01
□ d(6)	0	<= 0
P- d(5)	0	<= 0
□ d(4)	0	<= 0
P- d(3)	0	<= 0
P d(2)	0	<= 0
□ d(1)	0	<= 0
□ d(0)	1	<= 1
D- en	1	<= 1
□- le	0	<= 0
⊳ ud	0	<= 0
⇔с	1	
. ↔ q	7F	(ZZ)(00)(7F

7) Carga del máximo

Name	Value	Sti 1 . 50 . 1 . 100 . 1 . 150 . 1 . 2
⊳ clk	0	Clock
P- clr	0	<= 0
⊟ ⊳ d	7F	(7F
□ d(6)	1	<= 1
P d(5)	1	<= 1
□ d(4)	1	<= 1
P d(3)	1	<= 1
P d(2)	1	<= 1
□ d(1)	1	<= 1
□ d(0)	1	<= 1
P- en	1	<= 1
P- le	1	<= 1
P- ud	0	<= 0
⇔ с	1	
+	7F	⟨ZZ

8) Mostrar acarreo ascendente

RPT del contador de 3 bits

C22V10

_				
clk =	1	24 *	not	used
clr =	2	23 *	not	used
en =	3	22 *	not	used
not used *	4	21 *	not	used
not used *	5	20 *	not	used
not used *	6	19 *	not	used
not used *	7	18 *	not	used
not used *	8	17 *	not	used
not used *	9	16 =	q(2)	
not used *	10	15 =	q(1)	
not used *	11	14 =	q(0)	
not used *	12	13 *	not	used

RPT del contador genérico

C22V10

= 1	24 *	not used
= 2	23 *	not used
= 3	22 =	C
= 4	21 *	not used
= 5	20 =	q(6)
= 6	19 =	q(5)
= 7	18 =	q(4)
= 8	17 =	q(3)
• 9	16 =	q(2)
= 10	15 =	q(1)
= 11	14 =	q(0)
1 12	13 =	clr
	2 3 4	2

Cuestionario:

- ¿Cuántos dispositivos PLD 22V10 son necesarios para el desarrollo de esta práctica?
 R= 2 PLD's 22V10.
- 2. ¿Cuántos dispositivos de la serie 74xx (TTL) ó 40xx (CMOS) hubieras necesitado para el desarrollo de esta práctica?
 - R=1 555, 13 Flip Flops 4013.
- ¿Cuántos pínes de entrada/salida del PLD 22V10 se usan en el diseño?
 R= Para el contador de 3 bits se tienen 3 entradas y 3 salidas, para el contador genérico se tienen 12 entradas y 8 salidas.
- 4. ¿Cuántos términos producto ocupan las ecuaciones para cada señal de salida y que porcentaje se usa en total del PLD 22V10?
 - R= Para el contador de 3 bits se ocupan 9 términos producto y un 27 % de las macroceldas, para el contador genérico se ocupan 56 términos producto y se ocupa un 90% de las macroceldas.
- 5. ¿Por qué se tienen que usar variables para implementar la ecuación genérica del contador con señal de control *enable*?
 - R= Porque el enable es el que se encarga que se cuente a una posición más o a una posición menos.
- 6. ¿Qué nivel de diseño se implementó al usar los operadores + y en el contador? R= Se utilizó la librería aritmética para el uso de signos para propósitos.
- 7. ¿Cuáles son las señales que funcionan de manera síncrona y cuáles de manera asíncrona? R= Las señales asíncronas son clear y clock, ud, d, l, son síncronas.
- 8. ¿Qué puedes concluir de esta práctica?
 - R= En conclusión se logró utilizar más herramientas que se nos proporciona por VHDL para facilitar más la codificación del programa.