КИЦАТОННА

Тема выпускной квалификационной работы магистра — «Исследование проблем безопасности облачных технологий».

Ключевые слова: безопасность, облачные вычисления, виртуализация, уязвимости, защита информации, стандартизация.

В данной выпускной квалификационной работе магистра рассмотрены проблемы обеспечения безопасности облачных технологий. Для достижения поставленной цели был необходим детальный анализ мировых стандартов безопасности для облачных провайдеров, а также практический пентестинг облачных систем с целью эксплуатации наиболее опасных уязвимостей.

Актуальность темы. В настоящее время наблюдается стремительное развитие облачных технологий, однако для эффективной работы облачной инфраструктуры требуется эффективная структура и организация. Зачастую небольшая команда, проектирующая инфраструктуру облака не всегда может полностью учесть все аспекты безопасности, так как нет единого документа, стандартизующего механизмы обеспечения безопасности. Особенно остро, вопрос безопасности встал в последнее время, в связи с обнаружением большого количества опасных уязвимостей в программном обеспечении, используемом для облаков.

Конечная цель проектирования — анализ проблем безопасности в облачных технологиях, а также практический пример эксплуатации опасной уязвимости в данной среде.

Выпускная квалификационная работа магистра изложена на ??? листах, включает ??? таблиц, ??? рисунков, ??? приложений, ??? литературных источников.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	6
1 ПОСТАНОВКА ЗАДАЧИ	7
2 ОБЗОР ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ ПО ТЕМАТИКЕ ИССЛЕ- ДОВАНИЯ	9
3 ОПИСАНИЕ РАБОТЫ, ПОКА ХЗ ЧТО ТУТ	20
4 АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ	25
ЗАКЛЮЧЕНИЕ	26
ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	27
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	28
СПИСОК ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА	20

ВВЕДЕНИЕ

Облачные услуги — это способ предоставления, потребления и управления технологией. Данный тип услуг выводит гибкость и эффективность на новый уровень, путем эволюции способов управления, таких как непрерывность, безопасность, резервирование и самообслуживание, которые соединяют физическую и виртуальную среду.

Для эффективной работы облачной инфраструктуры требуется эффективная структура и организация. Небольшая команда из специалистов и бизнеспользователей может создать обоснованный план и организовать свою работу в инфраструктуре. Данная выделенная группа может намного эффективнее построить и управлять нестандартной облачной инфраструктурой, чем если компании будут просто продолжать добавлять дополнительные сервера и сервисы для поддержки центра обработки данных (ЦОД).

Развитие информационного мира движется в сторону повсеместного распространения облачных вычислений, их технологий и сервисов. Очевидные преимущества данного подхода: [1]

- снижение затрат отсутствие необходимости покупки собственного оборудования, программного обеспечения (ПО), работы системного инженера;
- удаленный доступ возможность доступа к данным облака из любой точки мира, где есть доступ в глобальную сеть;
- отказоустойчивость и масштабируемость изменение необходимых ресурсов в зависимости от потребности проекта, техническое обслуживание оборудования лежит на плечах облачного провайдера.

В связи с этим можно сделать вывод, что основные недостатки облачных вычислений сводятся к информационной безопасности. Такого мнения придерживаются многие крупные информационные компании, что в некоторой степени препятствует более стремительному развитию рынка облачных сервисов.

1 ПОСТАНОВКА ЗАДАЧИ

Конечной задачей выпускной квалификационной работы магистра на тему «Исследование проблем безопасности облачных вычислений» является подробный анализ стандартов безопасности облачных вычислений, варианты решения данных проблем, а также технические возможности практической эксплуатации уязвимостей на нескольких уровнях работы облачной инфраструктуры.

Исследования должны состоять из следующих частей:

- составные части облачной инфраструктуры;
- анализ технологий используемых облачными провайдерами, необходимых для построения облачной инфраструктуры;
- специфика применений облачных вычислений в России;
- проблемы безопасности облачных вычислений;
- решение проблем безопасности облаков;
- практическое применение уязвимостей в облачной среде, с использованием программ, распространяющихся под свободными лицензиями, например GNU GPL.

Для применения практических навыков исследования уязвимостей необходима аппаратная платформа со следующими характеристиками:

- процессор 4xIntel Core® i3 @ 2.3GHz с поддержкой аппаратной виртуализации;
- минимальный объем ОЗУ 8 Гб, рекомендуемый не менее 10 Гб;
- минимум 15 Гб места на жестком диске (SSD);
- операционная система Ubuntu 16.04, CentOS 7 или Debian 8 GNU/Linux.

Данная задача также рассматривается с точки зрения системного и вариантного анализа.

Системный анализ включает в себя: [2]

системотехническое представление системы безопасности в виде «черного ящика»;

- описание входных и выходных данных;
- список функций, которые выполняет система безопасности;
- учет случайностей;
- декомпозицию системы и описание связей между ее элементами.
 Вариантный анализ произведен исходя выбранных критериев: [3]
- раз;
- два;
- три;
- **–** ...;
- последний критерий.

2 ОБЗОР ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ ПО ТЕМАТИКЕ ИССЛЕДОВАНИЯ

Исторически, ситуация сложилась так, что слово «облако» используется в качестве метафоры сети Интернет. Позже, оно было использовано для изображения Интернет в компьютерных сетевых диаграммах и схемах.

Облачные вычисления можно обозначить, как выделение ресурсов в облаке. В соответствии с NIST (Национальный институт стандартов и технологий), формальное определение облачных вычислений заключается в следующем: «Облачные вычисления являются моделью обеспечения повсеместного, удобного доступа по требованию по сети, общему пулу конфигурируемых вычислительных ресурсов (например сетей, серверов, систем хранения данных (СХД), приложений и услуг), которые могут быстро и с минимальными усилиями предоставлены для управления поставщиком услуг». [4]

Согласно опросам института Понемона в 2016 году, среди 3476 респондентов в сфере информационной безопасности из Соединенных Штатов Америки, Великобритании, Австралии, Германии, Японии, Франции, Японии, России, Индии и Бразилии, 73% респондентов так или иначе используют облачные вычисления в своей инфраструктуре. Особый рост внедрения облачных сервисов произошел в последние 2 года. [5]

Хранение данных пользователей, почты и потребительских данных в облаке выросло в 2016 году по сравнению с 2014 годом.

Рисунок 2.1 – Сравнение использования облачных вычислений для хранения данных

Облачные вычисления являются результатом объединения большого количества технологий и связующего ПО для обеспечения ресурсов, необходимых для решения задачи, балансировки процессов, мониторинга, автоматизации и прочего.

Основными отличиями облачного сервиса от классического являются:

- виртуализация;
- оркестратор;
- список услуг;
- портал самообслуживания;
- система тарификации и выставления счетов (биллинг).

В вычислениях, виртуализация является процессом создания виртуальной (не физической) версии чего-либо, в том числе аппаратных платформ виртуального компьютера, операционных систем, устройств хранения данных и вычислительных ресурсов.

Виртуализация может быть предоставлена на различных аппаратных и программных уровнях, таких как центральный процессор, диск, память, фай-

ловые системы и прочее. Чаще всего виртуализация используется для создания виртуальных машин и эмуляции различного оборудования для последующей установки операционных систем (ОС) на них.

Виртуальные машины создаются на основе гипервизора, который работает поверх операционной системы хост-компьютера (физического компьютера, не виртуального). С помощью гипервизора возможна эмуляция аппаратных средств, таких как процессор, диск, сеть, память, а также установка гостевых операционных систем на них. Возможно создание нескольких гостевых виртуальных машин с различными операционными системами на гипервизоре. Например, можно взять машину на Linux и установить ее на «голое» железо (bare-metal), и после настройки гипервизора возможно создание нескольких гостевых машин на Linux и Windows.

На данный момент все современные процессоры поддерживают аппаратную виртуализацию, это необходимо для безопасного и эффективного обмена ресурсами между хост-системой и гостевыми системами. Большинство современных процессоров и гипервизоров также поддерживают вложенную виртуальных ито позволяет создавать виртуальные машины внутри виртуальных машин.

Оркестратор является механизмом, выполняющий набор заданных операций по шаблону. В сервис-ориентированной архитектуре (SOA), оркестровка сервисов реализуется согласно стандарту BPEL (Business Process Execution Language). Это позволяет автоматизировать процессы создания услуг клиентов в облачной среде.

Список услуг как предоставляется пользователю в виде шаблонов готовых тарифов на портале самообслуживания, однако существуют и так называемые «конфигураторы», которые позволяют пользователю создать шаблон индивидуально.

Портал самообслуживания является инструментом, с которым работает непосредственно пользователь. Именно на портале обслуживания размещается список услуг, доступных клиенту.

Система тарификации и выставления счетов является необходимым механизмом для определения финансовых затрат пользователя в соответствии с затраченными ресурсами клиента.

Рисунок 2.2 – Составные части облачных вычислений

Провайдеры облачных услуг предлагают различные виды услуг, построенных поверх базового резервирования и освобождения ресурсов. Большинство из этих услуг попадают в одну из следующих категорий:

- инфраструктура как услуга (IaaS);
- платформа как услуга (PaaS);
- программное обеспечение как услуга (SaaS).

Рисунок 2.3 – Модели обслуживания облака

Большинство провайдеров используют различные виды веб-интерфейса, на основе которого можно построить необходимый стек технологий. Облачные провайдеры используют модель «pay-as-you-go», в которой оплата производится только за время использования ресурсов.

Ключевыми функциями облачных вычислений являются:

- скорость и масштабируемость, доступ к необходимым ресурсам можно получить одним щелчком мыши, что экономит время и обеспечивает гибкость, в зависимости от потребностей сервиса, можно легко масштабировать ресурсы как вверх, так и вниз;
- стоимость, снижение первоначальных затрат на развертывание инфраструктуры позволяет сосредоточиться на приложениях и бизнесе, облачные провайдеры имеют возможность заранее оценить стоимость, что значительно облегчает планирование бюджета;
- легкий доступ к ресурсам, пользователи могут получить доступ к инфраструктуре из любого места и устройства, до тех пор, пока существует подключение к провайдеру;
- обслуживание, все работы по техническому обслуживанию ресурсов осуществляются поставщиком облачных услуг, пользователи не должны беспокоиться об этом;

- мультиаренда, несколько пользователей могут использовать один и тот же пул доступных ресурсов;
- надежность, ресурсы могут быть размещены в разных дата-центрах, для обеспечения повышенной надежности.

Как правило, облако может быть развернуто согласно следующим моделям:

- частное облако;
- публичное облако;
- гибридное облако.

Рисунок 2.4 – Модели развертывания облака

Частное облако, эксплуатируется исключительно одной организацией, оно может быть размещено внутри или снаружи сети организации и управляться внутренними командами или третьей стороной. Частное облако можно построить с использованием такого программного обеспечения, как OpenStack;

Публичное облако доступно для всех пользователей, любой может использовать его после предоставления данных кредитной карты. AWS (Amazon Web Services) и GCE (Google Compute Engine) являются примерами публичных облаков;

Гибридное облако, является результатом объединения публичного и частных облаков. Гибридное облако может быть использовано для хранения секретной информации о частном облаке, предлагая при этом услуги на основе этой информации из публичного облака.

Актуальность: облака везде, облака нужны всем, не только бизнесклиентам, но и обычным людям.

Т.к. популярность облаков появилась сравнительно недавно и она стремительно развивается, не всегда успевают учесть все аспекты безопасности.

Также из-за того, что облако состоит из большого количества ПО на различных уровнях, нужно учитывать все уязвимости, так как они могут всплыть на каждом из уровней.

Мысли:

- * клиенты слабо представляют насколько защищены облака, поэтому предпочитают частное облаков, взамен публичного, не доверяют провайдеру
- * основные аспекты облаков: мониторинг, управление, безопасность, доступность
 - * если надо добавить часть по экономике файл 124.pdf
- * по поводу иаас, преимущества понятны, а вот минусы в том, что если получают доступ к хост-ноде, то все, также это может быть изнутри, например уязвимость на гипервизоре
 - * конкретные проблемы с табличками описаны тут 1608.08787v1.pdf
- * файл cloud-security-study-report.pdf конкретный отчет сравнение использования облаков в 2016 году по сравнению с 2014
- * в файле informatsionnaya-bezopasnost-pri-oblachnyh-vychisleniyahproblemy-i-perspektivy.pdf хорошо расписан вопрос по стандартизации облаков, также кратко написано про риски использования облаков

- * тут тоже про стандарты psta2011-4-17-31.pdf
- * в файле str50.pdf рассказывакется про проблемы в России, проблемы с точки зрения инф. безопасности
- * реальные опросы от интела 2012г, которые рассказывают, что препятствуют уходу в облака, файл whats-holding-back-the-cloud-peer-research-report.pdf
- * хорошая презентация Zegzhda-PD-supernova-2.pdf краткие тезисы, примеры картинок, модель безопасности даже есть

Рисунок 2.5 – Тестовая картиночка

Рисунок 2.6 – Тестовая картиночка

- + что такое облака
- + сравнение облаков 2014/16 тут графики
- + технологии облачных вычислений soa/asp/virt... тут картинки
- + saas/paas/iaas тут картинка
- + гибрдное/публ/прив облако тут картинка
- * стандартизация nist... тут можно табличку
- * облачные провайдеры тут табличка/картинка
- * специфика облаков в России

- * тенденции развития облаков в мире (зеленые цоды, уход в виртуализированные хранилища и сети) пример картинки какой-то
- * кратко по безопасности, основные пункты, кем регламентируется, как обеспечивается

Тут 10-20 страниц, без подпунктов, сплошной текст с картиночками, в общем теория.

* конкретный упор на безопасность уже в описании работы

3 ОПИСАНИЕ РАБОТЫ, ПОКА ХЗ ЧТО ТУТ

Пока я только знаю что тут примерно 20 страниц должно быть. Тут само исследование работы.

Все это должно быть с подпунктами.

почему именно linux и эти платформы? нужно собрать статистику использования дистрибутивов на серверах, а также платформ виртуализации возможно конкретно по россии эту цифру найти?

Уязвимости 2016, это нужно эксплуатировать

- * Linux kernel, CentOS/RHEL/buntu/Debian Dirty COW
- * Виртуализация: KVM/Xen/LXC/OpenVZ/Virtuozzo/VMWare/Hyper-V
- * Протоколы: NTP/SSL/TLS/HTTP2 DROWN/POODLE/HEARTBLEED TCP overflow libc GHOST
 - * mysql cve-2016-3477

чтобы не ребутаться использовать kernelcare/kpatch, постоянно мониторинг уязвимостей

использовать lts дистрибутивы для поддержки софта

пример уязвимостей по kvm: http://www.cvedetails.com/

ntp - только на винде позволяет устроить ддос

есть drown до этого еще poodle и heartbleed, это все уязвимости openssl, после этого появился libressl - она сложна в реализации http://www.opennet.ru/opennews/art.shtml?num=43971

нашумевшие еще это ghost, shellshock, CVE-2016-6663 (mysql) — конкретно

- + Linux kernel DIrty COW: CVE-2016-5195 http://www.opennet.ru/opennews/art.shtml?num=45354 получить рута можно
- Xen CVE-2016-6258 http://www.opennet.ru/opennews/art.shtml?num=44855 выполнение произвольного кода на хост-ноде нет эксплоитов

- TCP CVE-2016-5696 http://www.opennet.ru/opennews/art.shtml?num=44945 возможность обрыва tcp-соединения и подстановки данных в трафик тяжело эксплуатировать
- glibc CVE-2015-7547 http://opennet.ru/opennews/art.shtml?num=43886 ее вряд ли можно эксплуатировать
- xen CVE-2016-3710 http://www.opennet.ru/opennews/art.shtml?num=44409 работает только в hvm, выполнение кода на хост-ноде из гостевой
- linux kernel CVE-2016-8655 http://www.opennet.ru/opennews/art.shtml?num=45 тут возможно выйти за пределы lxc скорее всего, но тут сложно, для этого нужен CAP_NET_RAW и sysctl kernel.unprivileged_userns_clone=1 плюс нет экслоита для LXC
- LXC CVE-2016-8649 https://www.opennet.ru/opennews/art.shtml?num=45573 эксплоит есть, но у меня не работает на 11 строчке

Тестовый стенд для всего этого. лучше конечно это был бы дедик, но на крайняк kvm + nestedV

если все это можно эксплуатировать, то что делать?

- * мониторинг
- * если это что-то ядерное, то надо ребутать, так не пойдет, нужны патчи налету
 - * использование встроенных механизмов защиты selinux/apparmor
- * если не удается исправить онлайн патчем, то либо ребут (что критично), либо онлайн миграция

если связать это с опенсорсом, то

- 1. все источники уязвимостей из открытых данных
- 2. эксплуатация уязвимостей тоже осуществляется с помощью свободного ПО
- 3. если это мониторинг, то скорее всего он тоже опенсорсный, но надо поискать если ли коммерческие альтернативы

Поискать скрипты, которые могут по открытым базам чекать уязвимости. Эту возможность можно запихнуть в мониторинг. Дальше. Обзор наших провайдеров. Какие требования к ним предъявляются и как они их выполняют. Тут надо собрать стату по популярным облачным ребятам, почитать SLA и триальную услугу попробовать.

Если же речь идет не только об уязвимостях, но например еще о ддос, то тут помимо очевидного варианта атаки на инфраструктуру может быть, что в облаке клиента может быть зараза и это исходящий ддос. Это надо тоже както мониторить, решать это можно либо заблокировав клиента, либо если это легитимный трафик, то что-то делать с сетью.

Также в безопасность входят бекапы, фейловеры, все что соответствует SLA. Тут возможно сделать что-то с SDN и SDS, надо почитать.

```
ETO CHISTIJ ISO CENTOS 7.2
[root@master ~]# cat /etc/redhat-release
CentOS Linux release 7.2.1511 (Core)
[root@master ~]# uname -r
3.10.0-327.el7.x86 64
[root@master ~]# su dcow
[dcow@master ~]$ id
uid=1000(dcow) gid=1000(dcow) groups=1000(dcow) context=
  unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[dcow@master ~]$ git clone https://github.com/gbonacini/CVE
  -2016-5195.qit
[dcow@master ~] $ cd CVE-2016-5195/
[dcow@master CVE-2016-5195]$ make
g++ -Wall -pedantic -O2 -std=c++11 -pthread -o dcow dcow.cpp -lutil
[dcow@master CVE-2016-5195]$ ./dcow
Running ...
Received su prompt (Password: )
Root password is: dirtyCowFun
Enjoy! :-)
[dcow@master CVE-2016-5195]$ su root
Password: dirtyCowFun
[root@master ~]# id
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:
```

unconfined r:unconfined t:s0-s0:c0.c1023

```
[root@master ~] # rpm -i http://patches.kernelcare.com/kernelcare-
  latest.el6.x86_64.rpm
[root@master ~]# /usr/bin/kcarectl --info
kpatch-state: patch is applied
kpatch-for: Linux version 3.10.0-327.el7.x86_64 (builder@kbuilder.
  dev.centos.org) (gcc version 4.8.3 20140911 (Red Hat 4.8.3-9) (
  GCC) ) #1 SMP Thu Nov 19 22:10:57 UTC 2015
kpatch-build-time: Mon Nov 7 17:08:08 2016
kpatch-description: 20;3.10.0-327.36.3.el7.x86_64
[root@master ~]# /usr/bin/kcarectl --update
Kernel is safe
[root@master ~]# /usr/bin/kcarectl --uname
3.10.0-327.36.3.el7.x86_64
[root@master ~] # /usr/bin/kcarectl --patch-info | grep CVE
  -2016-5195 -A3 -B3
kpatch-name: 3.10.0/0001-mm-remove-gup_flags-FOLL_WRITE-games-from-
  __get_user-327.patch
kpatch-description: mm: remove gup_flags FOLL_WRITE games from
  ___get_user_pages()
kpatch-kernel: >kernel-3.10.0-327.36.2.el7
kpatch-cve: CVE-2016-5195
kpatch-cvss: 6.9
kpatch-cve-url: https://access.redhat.com/security/cve/cve
  -2016 - 5195
kpatch-patch-url: https://git.kernel.org/linus/19
  be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619
[root@master ~] # uname -r
3.10.0 - 327.e17.x86_64
PROVEROCHKA
[dcow@master CVE-2016-5195]$ ./dcow
```

Running ...
NE RABOTAET

4\$/YEAR ZA 1 LICENZIUY

OTKLUYCHAEM

[root@master ~]# /usr/bin/kcarectl --unload
Updates already downloaded
KernelCare protection disabled, kernel might not be safe
[root@master ~]# su - dcow
Last login: Wed Dec 7 17:18:42 MSK 2016 on pts/0
[dcow@master ~]\$ cd CVE-2016-5195/
[dcow@master CVE-2016-5195]\$./dcow
Running ...
Received su prompt (Password:)
Root password is: dirtyCowFun
Enjoy! :-)

4 АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Тут подводим итог работы.

2 страницы выходит

ЗАКЛЮЧЕНИЕ

Тут все понятно.

1 страница

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

ЦОД — центр обработки данных

ПО — программное обеспечение

GNU — проект по разработке свободного программного обеспечения

GPL — General Public License, универсальная общественная лицензия

ОЗУ — оперативное запоминающее устройство

SSD — Solid State Drive, твердотельный накопитель

NIST — National Institute of Standards and Technology, Национальный институт стандартов и технологий

СХД — система хранения данных

SaaS — Software as a Service, программное обеспечение как услуга

PaaS — Platform as a Service, платформа как услуга

IaaS — Infrastructure as a Service, инфраструктура как услуга

AWS — Amazon Web Services

GCE — Google Compute Engine

ОС — операционная система

SOA — service-oriented architecture, сервис-ориентированная архитектура

BPEL — Business Process Execution Language, язык описания бизнеспроцессов

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Прудникова, А.А. Безопасность облачных вычислений / А.А. Прудникова // Мир телекома. -2013. №1. -C.50-55.
- 2. Методические указания «Процедура системного анализа при проектировании программных систем» для студентов-дипломников дневной и заочной формы обучения специальности 7.091501 / Сост.: Сергеев Г.Г., Скатков А.В., Мащенко Е.Н. Севастополь: Изд-во СевНТУ, 2005. 32с.
- 3. Методические указания к расчетно-графическому заданию на тему «Метод анализа иерархий» по дисциплине «Теория оптимальных решений» для студентов специальности 7.091501 «Компьютерные системы и сети» дневной и заочной формы обучения / Сост.: Ю.Н. Щепин Севастополь: Изд-во СевНТУ, 2008. 28с.
- 4. Hogan, M., Liu, F., Sokol, A., Tong, J. NIST Cloud Computing Standarts Roadmap / NIST Special Publication 500-291, Version 2 Roadmap Working Group, 2013. 113p.
- 5. The 2016 Global Cloud Data Security Study. Ponemon Insitute LLC, 2016.- 40p.

СПИСОК ИЛЛЮСТРАТИВНОГО МАТЕРИАЛА

Картинки

1 страница