# Matematyka dyskretna 7. Podstawowe pojęcia grafowe

17.12.2020



Ile krawędzi/wierzchołków ma graf G z powyższego rysunku?

Zadanie A.1

Zadanie A.2



Ile krawędzi/wierzchołków ma graf G z powyższego rysunku?

zbiór wierzchołków: V(G) =

liczba wierzchołków:  $\nu(G) =$ 

zbiór krawędzi: E(G) =

Zadanie A.1

Zadanie A.2



Ile krawędzi/wierzchołków ma graf G z powyższego rysunku?

zbiór wierzchołków:  $V(G) = \{1, 2, 3, 4, 5, 6\}$ 

liczba wierzchołków:  $\nu(G) =$ 

zbiór krawędzi: E(G) =

Zadanie A.1

Zadanie A.2



Ile krawędzi/wierzchołków ma graf G z powyższego rysunku?

zbiór wierzchołków:  $V(G) = \{1, 2, 3, 4, 5, 6\}$ 

liczba wierzchołków:  $\nu(G) = 6$ 

zbiór krawędzi: E(G) =

Zadanie A.1

Zadanie A.2



Ile krawędzi/wierzchołków ma graf G z powyższego rysunku?

zbiór wierzchołków:  $V(G) = \{1, 2, 3, 4, 5, 6\}$ 

liczba wierzchołków:  $\nu(G) = 6$ 

zbiór krawędzi:  $E(G) = \{a, b, c, d, e, f\}$ 

Zadanie A.1

Zadanie A.2



Ile krawędzi/wierzchołków ma graf G z powyższego rysunku?

zbiór wierzchołków:  $V(G) = \{1, 2, 3, 4, 5, 6\}$ 

liczba wierzchołków:  $\nu(G) = 6$ 

zbiór krawędzi:  $E(G) = \{a, b, c, d, e, f\}$ 



Podaj funkcję incydencji grafu G.



$$\psi(a) = , \quad \psi(b) = , \quad \psi(c) = ,$$

$$\psi(d) = , \quad \psi(e) = , \quad \psi(f) = ;$$

Zadanie A.1

Zadanie A.2



$$\psi(a) = 23, \quad \psi(b) = \quad , \quad \psi(c) = \quad ,$$

$$\psi(d) = , \quad \psi(e) = , \quad \psi(f) = ;$$



$$\psi(a) = 23, \quad \psi(b) = 34, \quad \psi(c) = 34, \quad \psi(c$$

$$\psi(d) = , \quad \psi(e) = , \quad \psi(f) = ;$$



$$\psi(a) = 23, \ \psi(b) = 34, \ \psi(c) = 45,$$

$$\psi(d) = , \quad \psi(e) = , \quad \psi(f) = ;$$



$$\psi(a) = 23, \ \psi(b) = 34, \ \psi(c) = 45,$$

$$\psi(d) = 13, \ \psi(e) = \ , \ \psi(f) = \ ;$$

Zadanie A.1

Zadanie A.2



$$\psi(a) = 23, \ \psi(b) = 34, \ \psi(c) = 45,$$

$$\psi(d) = 13, \ \psi(e) = 46, \ \psi(f) =$$

Zadanie A.1

Zadanie A.2



$$\psi(a) = 23, \ \psi(b) = 34, \ \psi(c) = 45,$$

$$\psi(d) = 13, \ \psi(e) = 46, \ \psi(f) = 16;$$



Zadanie A.1

Zadanie A.2



$$d(1) = , d(2) = , d(3) = ,$$

$$d(4) = , d(5) = , d(6) = ;$$

Zadanie A.1

Zadanie A.2



$$d(1) = 2$$
,  $d(2) =$ ,  $d(3) =$ ,

$$d(4) = , d(5) = , d(6) = ;$$



Zadanie A.2



$$d(1) = 2$$
,  $d(2) = 1$ ,  $d(3) = 1$ ,

$$d(4) = , d(5) = , d(6) = ;$$

Zadanie A.1

Zadanie A.2



$$d(1) = 2$$
,  $d(2) = 1$ ,  $d(3) = 3$ ,

$$d(4) = , d(5) = , d(6) = ;$$

Zadanie A.1

Zadanie A.2



$$d(1) = 2$$
,  $d(2) = 1$ ,  $d(3) = 3$ ,

$$d(4) = 3$$
,  $d(5) =$ ,  $d(6) =$ ;

Zadanie A.1

Zadanie A.2



$$d(1) = 2$$
,  $d(2) = 1$ ,  $d(3) = 3$ ,

$$d(4) = 3$$
,  $d(5) = 1$ ,  $d(6) =$ ;

Zadanie A.1

Zadanie A.2



$$d(1) = 2$$
,  $d(2) = 1$ ,  $d(3) = 3$ ,

$$d(4) = 3$$
,  $d(5) = 1$ ,  $d(6) = 2$ ;

Zadanie A.2



Zadanie A.2



Maksymalny stopień:  $\Delta(G) =$ 

Minimalny stopień:  $\delta(G) =$ 

Zadanie A.2



Maksymalny stopień:  $\Delta(G) = 3$ 

Minimalny stopień:  $\delta(G) =$ 

Zadanie A.2



Maksymalny stopień:  $\Delta(G) = 3$ 

Minimalny stopień:  $\delta(G) = 1$ 







Podaj macierz przyległości grafu G?



|        | 1 | 2 | 3 | 4 | 5 | 6 |
|--------|---|---|---|---|---|---|
| 1      |   |   |   |   |   |   |
| 2      |   |   |   |   |   |   |
| 2      |   |   |   |   |   |   |
|        |   |   |   |   |   |   |
| 4<br>5 |   |   |   |   |   |   |
| 6      |   |   |   |   |   |   |



Podaj macierz przyległości grafu G?

|                            | 1 | 2 | 3 | 4 | 5 | 6 |
|----------------------------|---|---|---|---|---|---|
| 1                          | 0 |   |   |   |   |   |
| 2                          |   |   |   |   |   |   |
| 1<br>2<br>3<br>4<br>5<br>6 |   |   |   |   |   |   |
| 4                          |   |   |   |   |   |   |
| 5                          |   |   |   |   |   |   |
| 6                          |   |   |   |   |   |   |





|             | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------|---|---|---|---|---|---|
| 1           | 0 | 0 |   |   |   |   |
| 2           |   |   |   |   |   |   |
| 1<br>2<br>3 |   |   |   |   |   |   |
| 4           |   |   |   |   |   |   |
| 4<br>5<br>6 |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |



|             | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------|---|---|---|---|---|---|
| 1           | 0 | 0 | 1 |   |   |   |
| 2           |   |   |   |   |   |   |
| 1<br>2<br>3 |   |   |   |   |   |   |
|             |   |   |   |   |   |   |
| 4<br>5<br>6 |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |





Podaj macierz przyległości grafu G?

|             | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------|---|---|---|---|---|---|
| 1           | 0 | 0 | 1 | 0 |   |   |
| 2           |   |   |   |   |   |   |
| 1<br>2<br>3 |   |   |   |   |   |   |
|             |   |   |   |   |   |   |
| 4<br>5<br>6 |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |





Podaj macierz przyległości grafu G?

|             | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------|---|---|---|---|---|---|
| 1           | 0 | 0 | 1 | 0 | 0 |   |
| 2           |   |   |   |   |   |   |
| 1<br>2<br>3 |   |   |   |   |   |   |
| 4           |   |   |   |   |   |   |
| 4<br>5<br>6 |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |



Podaj macierz przyległości grafu G?

|             | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------|---|---|---|---|---|---|
| 1           | 0 | 0 | 1 | 0 | 0 | 1 |
| 2           |   |   |   |   |   |   |
| 1<br>2<br>3 |   |   |   |   |   |   |
|             |   |   |   |   |   |   |
| 4<br>5      |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |



Podaj macierz przyległości grafu G?

|             | 1 |   | 3 | 4 | 5 | 6 |
|-------------|---|---|---|---|---|---|
| 1           | 0 | 0 | 1 | 0 | 0 | 1 |
| 2           | 0 |   |   |   |   |   |
| 1<br>2<br>3 |   |   |   |   |   |   |
|             |   |   |   |   |   |   |
| 4<br>5<br>6 |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |



Podaj macierz przyległości grafu G?

|                            | 1 |   | 3 |   | 5 | 6 |
|----------------------------|---|---|---|---|---|---|
| 1                          | 0 | 0 | 1 | 0 | 0 | 1 |
| 2                          | 0 | 0 |   |   |   |   |
| 3                          |   |   |   |   |   |   |
| 1<br>2<br>3<br>4<br>5<br>6 |   |   |   |   |   |   |
| 5                          |   |   |   |   |   |   |
| 6                          |   |   |   |   |   |   |





Podaj macierz przyległości grafu G?

|                            | 1 | 2 |   | 4 | 5 | 6 |
|----------------------------|---|---|---|---|---|---|
| 1                          | 0 | 0 | 1 | 0 | 0 | 1 |
| 2                          | 0 | 0 | 1 |   |   |   |
| 3                          |   |   |   |   |   |   |
| 4                          |   |   |   |   |   |   |
| 1<br>2<br>3<br>4<br>5<br>6 |   |   |   |   |   |   |
| 6                          |   |   |   |   |   |   |





Podaj macierz przyległości grafu G?

|                            | 1 | 2 |        | 4 | 5 | 6 |
|----------------------------|---|---|--------|---|---|---|
| 1                          | 0 | 0 | 1<br>1 | 0 | 0 | 1 |
| 1<br>2<br>3<br>4<br>5<br>6 | 0 | 0 | 1      | 0 |   |   |
| 3                          |   |   |        |   |   |   |
| 4                          |   |   |        |   |   |   |
| 5                          |   |   |        |   |   |   |
| 6                          |   |   |        |   |   |   |



Podaj macierz przyległości grafu G?

|                       |   | 2 |   |   | 5 | 6 |
|-----------------------|---|---|---|---|---|---|
| 1                     | 0 | 0 | 1 | 0 | 0 | 1 |
| 1<br>2<br>3<br>4<br>5 | 0 | 0 | 1 | 0 | 0 |   |
| 3                     |   |   |   |   |   |   |
| 4                     |   |   |   |   |   |   |
| 5                     |   |   |   |   |   |   |
| 6                     |   |   |   |   |   |   |





Podaj macierz przyległości grafu G?

|                            | 1 | 2 |        | 4 | 5 | 6 |
|----------------------------|---|---|--------|---|---|---|
| 1                          | 0 | 0 | 1<br>1 | 0 | 0 | 1 |
| 2                          | 0 | 0 | 1      | 0 | 0 | 0 |
| 1<br>2<br>3<br>4<br>5<br>6 |   |   |        |   |   |   |
| 4                          |   |   |        |   |   |   |
| 5                          |   |   |        |   |   |   |
| 6                          |   |   |        |   |   |   |



Podaj macierz przyległości grafu G?

|   | 1 | 2 | 3<br>1<br>1<br>0<br>1<br>0<br>0 | 4 | 5 | 6 |
|---|---|---|---------------------------------|---|---|---|
| 1 | 0 | 0 | 1                               | 0 | 0 | 1 |
| 2 | 0 | 0 | 1                               | 0 | 0 | 0 |
| 3 | 1 | 1 | 0                               | 1 | 0 | 0 |
| 4 | 0 | 0 | 1                               | 0 | 1 | 1 |
| 5 | 0 | 0 | 0                               | 1 | 0 | 0 |
| 6 | 1 | 0 | 0                               | 1 | 0 | 0 |



Podaj jego macierz incydencji?



|                  | a | b | с | d | e | f |
|------------------|---|---|---|---|---|---|
| 1                |   |   |   |   |   |   |
| 2<br>3<br>4<br>5 |   |   |   |   |   |   |
| 3                |   |   |   |   |   |   |
| 4                |   |   |   |   |   |   |
|                  |   |   |   |   |   |   |
| 6                |   |   |   |   |   |   |





Podaj jego macierz incydencji?

|             | а | b | С | d | e | f |
|-------------|---|---|---|---|---|---|
| 1           |   |   |   |   |   |   |
| 2           | 1 |   |   |   |   |   |
| 1<br>2<br>3 | 1 |   |   |   |   |   |
|             |   |   |   |   |   |   |
| 4<br>5<br>6 |   |   |   |   |   |   |
| 6           |   |   |   |   |   |   |



Podaj jego macierz incydencji?

|   | a                     | b | С | d | e | f |
|---|-----------------------|---|---|---|---|---|
| 1 | 0                     |   |   |   |   |   |
| 2 | 1                     |   |   |   |   |   |
| 3 | 0<br>1<br>1<br>0<br>0 |   |   |   |   |   |
| 4 | 0                     |   |   |   |   |   |
| 5 | 0                     |   |   |   |   |   |
| 6 | 0                     |   |   |   |   |   |





Podaj jego macierz incydencji?

|   | a                     | b | С | d | e | f |
|---|-----------------------|---|---|---|---|---|
| 1 | 0                     |   |   |   |   |   |
| 2 | 1                     |   |   |   |   |   |
| 3 | 0<br>1<br>1<br>0<br>0 | 1 |   |   |   |   |
| 4 | 0                     | 1 |   |   |   |   |
| 5 | 0                     |   |   |   |   |   |
| 6 | 0                     |   |   |   |   |   |





Podaj jego macierz incydencji?

|   | a                     | b | с | d | e | f |
|---|-----------------------|---|---|---|---|---|
| 1 | 0<br>1<br>1<br>0<br>0 | 0 |   |   |   |   |
| 2 | 1                     | 0 |   |   |   |   |
| 3 | 1                     | 1 |   |   |   |   |
| 4 | 0                     | 1 |   |   |   |   |
| 5 | 0                     | 0 |   |   |   |   |
| 6 | 0                     | 0 |   |   |   |   |





Podaj jego macierz incydencji?

|   |   | _                          |   |   |   | _ |
|---|---|----------------------------|---|---|---|---|
|   | a | b                          | С | d | e | f |
| 1 | 0 | 0                          |   |   |   |   |
| 2 | 1 | 0                          |   |   |   |   |
| 3 | 1 | 0<br>0<br>1<br>1<br>0<br>0 |   |   |   |   |
| 4 | 0 | 1                          | 1 |   |   |   |
| 5 | 0 | 0                          | 1 |   |   |   |
| 6 | 0 | 0                          |   |   |   |   |



Podaj jego macierz incydencji?

|   | а | b                     | С | d | e | f |
|---|---|-----------------------|---|---|---|---|
| 1 | 0 | 0<br>0<br>1<br>1<br>0 | 0 |   |   |   |
| 2 | 1 | 0                     | 0 |   |   |   |
| 3 | 1 | 1                     | 0 |   |   |   |
| 4 | 0 | 1                     | 1 |   |   |   |
| 5 | 0 | 0                     | 1 |   |   |   |
| 6 | 0 | 0                     | 0 |   |   |   |



Podaj jego macierz incydencji?

|   | a | b | С | d                     | e | f |
|---|---|---|---|-----------------------|---|---|
| 1 | 0 | 0 | 0 | 1<br>0<br>1<br>0<br>0 | 0 | 1 |
| 2 | 1 | 0 | 0 | 0                     | 0 | 0 |
| 3 | 1 | 1 | 0 | 1                     | 0 | 0 |
| 4 | 0 | 1 | 1 | 0                     | 1 | 0 |
| 5 | 0 | 0 | 1 | 0                     | 0 | 0 |
| 6 | 0 | 0 | 0 | 0                     | 1 | 1 |

Bez rysowania grafu, na podstawie podanej poniżej macierzy przyległości, określ liczbę wierzchołków, liczbę krawędzi i stopnie wierzchołków grafu. Następnie narysuj ten graf i sprawdź wynik.

$$\left[\begin{array}{cccccc} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right]$$

Bez rysowania grafu, na podstawie podanej poniżej macierzy przyległości, określ liczbę wierzchołków, liczbę krawędzi i stopnie wierzchołków grafu. Następnie narysuj ten graf i sprawdź wynik.

$$\left[\begin{array}{cccccc} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right]$$

Liczba wierzchołków:  $\nu =$ 

Bez rysowania grafu, na podstawie podanej poniżej macierzy przyległości, określ liczbę wierzchołków, liczbę krawędzi i stopnie wierzchołków grafu. Następnie narysuj ten graf i sprawdź wynik.

$$\left[\begin{array}{cccccccc}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]$$

Liczba wierzchołków:  $\nu = 5$ 

Zadanie A.1

Zadanie A.2

Bez rysowania grafu, na podstawie podanej poniżej macierzy przyległości, określ liczbę wierzchołków, liczbę krawędzi i stopnie wierzchołków grafu. Następnie narysuj ten graf i sprawdź wynik.

$$\left[\begin{array}{cccccccc}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]$$

Liczba wierzchołków:  $\nu = 5$ 

Liczba krawędzi:  $\varepsilon =$ 

Zadanie A.1

Zadanie A.2

Bez rysowania grafu, na podstawie podanej poniżej macierzy przyległości, określ liczbę wierzchołków, liczbę krawędzi i stopnie wierzchołków grafu. Następnie narysuj ten graf i sprawdź wynik.

$$\left[\begin{array}{cccccccc}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]$$

Liczba wierzchołków:  $\nu = 5$ 

Liczba krawędzi:  $\varepsilon = 5$ 

Zadanie A.1

Zadanie A.2

Bez rysowania grafu, na podstawie podanej poniżej macierzy przyległości, określ liczbę wierzchołków, liczbę krawędzi i stopnie wierzchołków grafu. Następnie narysuj ten graf i sprawdź wynik.

$$\left[\begin{array}{cccccc} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right]$$

Liczba wierzchołków:  $\nu = 5$ 

Liczba krawędzi:  $\varepsilon = 5$ 

Stopnie wierzchołków:

Zadanie A.1

Zadanie A.2

Bez rysowania grafu, na podstawie podanej poniżej macierzy przyległości, określ liczbę wierzchołków, liczbę krawędzi i stopnie wierzchołków grafu. Następnie narysuj ten graf i sprawdź wynik.

$$\left[\begin{array}{cccccc} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array}\right]$$

Liczba wierzchołków:  $\nu = 5$ 

Liczba krawędzi:  $\varepsilon = 5$ 

Stopnie wierzchołków: 2, 2, 2, 3, 1

Zadanie A.1

Zadanie A.2

Uzasadnij, że dla każdego grafu G zachodzi

$$\delta(G) \leqslant 2\varepsilon(G)/\nu(G) \leqslant \Delta(G),$$

gdzie  $\varepsilon(G)$  jest liczbą krawędzi grafu G, a  $\nu(G)$  liczbą jego wierzchołków.

Zadanie A.1

Zadanie A.2

Uzasadnij, że dla każdego grafu G zachodzi

$$\delta(G) \leqslant 2\varepsilon(G)/\nu(G) \leqslant \Delta(G),$$

gdzie  $\varepsilon(G)$  jest liczbą krawędzi grafu G, a  $\nu(G)$  liczbą jego wierzchołków.

## Twierdzenie

Dla dowolnego grafu G = (V, E) zachodzi

$$\sum_{v\in V}d_G(v)=2|E|.$$

Zadanie A.1 Zadanie A.2

$$\sum_{v\in V(G)}d_G(v)=2\varepsilon(G)$$

Zadanie A.2

$$\sum_{v\in V(G)}d_G(v)=2\varepsilon(G)$$

Możemy oszacować sumę stopni w następujący sposób:

$$\leqslant \sum_{v \in V(G)} d_G(v) \leqslant$$

Zadanie A.2

$$\sum_{v \in V(G)} d_G(v) = 2\varepsilon(G)$$

Możemy oszacować sumę stopni w następujący sposób:

$$\delta(G) \cdot \nu(G) \leqslant \sum_{v \in V(G)} d_G(v) \leqslant$$

Zadanie A.2

$$\sum_{v \in V(G)} d_G(v) = 2\varepsilon(G)$$

Możemy oszacować sumę stopni w następujący sposób:

$$\delta(G) \cdot \nu(G) \leqslant \sum_{v \in V(G)} d_G(v) \leqslant \Delta(G) \cdot \nu(G)$$

Zadanie A.2

$$\sum_{v\in V(G)}d_G(v)=2\varepsilon(G)$$

Możemy oszacować sumę stopni w następujący sposób:

$$\delta(G) \cdot \nu(G) \leqslant \sum_{v \in V(G)} d_G(v) \leqslant \Delta(G) \cdot \nu(G)$$

Dzieląc stronami przez  $\nu(G)$  dostajemy:

Zadanie A.2

$$\sum_{v\in V(G)}d_G(v)=2\varepsilon(G)$$

Możemy oszacować sumę stopni w następujący sposób:

$$\delta(G) \cdot \nu(G) \leqslant \sum_{v \in V(G)} d_G(v) \leqslant \Delta(G) \cdot \nu(G)$$

Dzieląc stronami przez  $\nu(G)$  dostajemy:

$$\delta(G) \leqslant 2\varepsilon(G)/\nu(G) \leqslant \Delta(G).$$

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v)$$

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v) = \sum_{v \in V_n(G)} d_G(v) + \sum_{v \in V_p(G)} d_G(v)$$

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v) = \sum_{v \in V_n(G)} d_G(v) + \sum_{v \in V_p(G)} d_G(v)$$

Ponieważ 2|E(G)| oraz  $\sum_{v \in V_n(G)} d_G(v)$  są liczbami parzystymi,

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v) = \sum_{v \in V_n(G)} d_G(v) + \sum_{v \in V_p(G)} d_G(v)$$

Ponieważ 2|E(G)| oraz  $\sum_{v \in V_n(G)} d_G(v)$  są liczbami parzystymi,  $\sum_{v \in V_n(G)} d_G(v)$  też musi być liczbą parzystą.

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v) = \sum_{v \in V_n(G)} d_G(v) + \sum_{v \in V_n(G)} d_G(v)$$

Ponieważ 2|E(G)| oraz  $\sum_{v \in V_n(G)} d_G(v)$  są liczbami parzystymi,  $\sum_{v \in V_n(G)} d_G(v)$  też musi być liczbą parzystą. Aby suma nieparzystych składników była parzysta,

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v) = \sum_{v \in V_n(G)} d_G(v) + \sum_{v \in V_n(G)} d_G(v)$$

Ponieważ 2|E(G)| oraz  $\sum_{v \in V_n(G)} d_G(v)$  są liczbami parzystymi,  $\sum_{v \in V_n(G)} d_G(v)$  też musi być liczbą parzystą. Aby suma nieparzystych składników była parzysta, liczba tych składników musi być parzysta.

Zadanie A.1

Zadanie A.2

Uzasadnij, że w każdym grafie liczba wierzchołków stopnia nieparzystego jest parzysta.

Wprowadźmy oznaczenia:

 $V_n(G)$  – wierzchołki nieparzystego stopnia grafu G

 $V_p(G)$  – wierzchołki parzystego stopnia grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v) = \sum_{v \in V_n(G)} d_G(v) + \sum_{v \in V_p(G)} d_G(v)$$

Ponieważ 2|E(G)| oraz  $\sum_{v \in V_n(G)} d_G(v)$  są liczbami parzystymi,  $\sum_{v \in V_n(G)} d_G(v)$  też musi być liczbą parzystą. Aby suma nieparzystych składników była parzysta, liczba tych składników musi być parzysta. Stąd  $|V_n(G)|$  jest liczbą parzystą.

Zadanie A.1

Zadanie A.2

W grafie G o 19 krawędziach są tylko wierzchołki stopnia 3 i stopnia 5. Są cztery wierzchołki stopnia 5. Ile jest wszystkich wierzchołków?

Zadanie A.1

Zadanie A.2

W grafie G o 19 krawędziach są tylko wierzchołki stopnia 3 i stopnia 5. Są cztery wierzchołki stopnia 5. Ile jest wszystkich wierzchołków?

 $\nu$  – liczba wierzchołków grafu G

Zadanie A.1

Zadanie A.2

W grafie G o 19 krawędziach są tylko wierzchołki stopnia 3 i stopnia 5. Są cztery wierzchołki stopnia 5. Ile jest wszystkich wierzchołków?

 $\nu$  – liczba wierzchołków grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v)$$

Zadanie A.1

Zadanie A.2

W grafie G o 19 krawędziach są tylko wierzchołki stopnia 3 i stopnia 5. Są cztery wierzchołki stopnia 5. Ile jest wszystkich wierzchołków?

 $\nu$  – liczba wierzchołków grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v)$$

$$2 \cdot 19 = 4 \cdot 5 + (\nu - 4) \cdot 3$$

Zadanie A.1

Zadanie A.2

W grafie G o 19 krawędziach są tylko wierzchołki stopnia 3 i stopnia 5. Są cztery wierzchołki stopnia 5. Ile jest wszystkich wierzchołków?

 $\nu$  – liczba wierzchołków grafu G

$$2|E(G)| = \sum_{v \in V(G)} d_G(v)$$

$$2 \cdot 19 = 4 \cdot 5 + (\nu - 4) \cdot 3$$

7atem  $\nu = 10$ .

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

a) Pokaż, że jeżeli graf G jest grafem prostym na zbiorze wierzchołków  $\{1,\ldots,\nu\}$  o  $\varepsilon$  krawędziach, to  $\varepsilon\leqslant\binom{\nu}{2}$ .

(Przykład 7.2 z materiałów)

a) Pokaż, że jeżeli graf G jest grafem prostym na zbiorze wierzchołków  $\{1,\ldots,\nu\}$  o  $\varepsilon$  krawędziach, to  $\varepsilon\leqslant\binom{\nu}{2}$ .

G jest grafem prostym, to znaczy że nie zawiera

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

a) Pokaż, że jeżeli graf G jest grafem prostym na zbiorze wierzchołków  $\{1,\ldots,\nu\}$  o  $\varepsilon$  krawędziach, to  $\varepsilon\leqslant\binom{\nu}{2}$ .

G jest grafem prostym, to znaczy że nie zawiera pętli ani krawędzi wielokrotnych.

(Przykład 7.2 z materiałów)

a) Pokaż, że jeżeli graf G jest grafem prostym na zbiorze wierzchołków  $\{1,\ldots,\nu\}$  o  $\varepsilon$  krawędziach, to  $\varepsilon\leqslant\binom{\nu}{2}$ .

G jest grafem prostym, to znaczy że nie zawiera petli ani krawędzi wielokrotnych.

Każda krawędź wyznaczona jest przez

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

a) Pokaż, że jeżeli graf G jest grafem prostym na zbiorze wierzchołków  $\{1,\ldots,\nu\}$  o  $\varepsilon$  krawędziach, to  $\varepsilon\leqslant\binom{\nu}{2}$ .

G jest grafem prostym, to znaczy że nie zawiera pętli ani krawędzi wielokrotnych.

Każda krawędź wyznaczona jest przez parę wierzchołków.

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

a) Pokaż, że jeżeli graf G jest grafem prostym na zbiorze wierzchołków  $\{1,\ldots,\nu\}$  o  $\varepsilon$  krawędziach, to  $\varepsilon\leqslant\binom{\nu}{2}$ .

G jest grafem prostym, to znaczy że nie zawiera pętli ani krawedzi wielokrotnych.

Każda krawędź wyznaczona jest przez parę wierzchołków.

Zatem  $\varepsilon \leqslant \binom{\nu}{2}$ .

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

b) lle można utworzyć grafów prostych na zbiorze wierzchołków  $\{1,\ldots,\nu\}$ , które mają dokładnie  $\varepsilon$  krawędzi?

(Przykład 7.2 z materiałów)

b) lle można utworzyć grafów prostych na zbiorze wierzchołków  $\{1,\ldots,\nu\}$ , które mają dokładnie  $\varepsilon$  krawędzi?

Aby utowrzyć graf prosty o  $\varepsilon$  krawędziach wystarczy

(Przykład 7.2 z materiałów)

b) Ile można utworzyć grafów prostych na zbiorze wierzchołków  $\{1,\ldots,\nu\}$ , które mają dokładnie  $\varepsilon$  krawędzi?

Aby utowrzyć graf prosty o  $\varepsilon$  krawędziach wystarczy **wybrać**  $\varepsilon$  **krawędzi** z dostępnych  $\binom{\nu}{2}$  par wierzchołków.

(Przykład 7.2 z materiałów)

b) lle można utworzyć grafów prostych na zbiorze wierzchołków  $\{1,\ldots,\nu\}$ , które mają dokładnie  $\varepsilon$  krawędzi?

Aby utowrzyć graf prosty o  $\varepsilon$  krawędziach wystarczy **wybrać**  $\varepsilon$ **krawędzi** z dostępnych  $\binom{\nu}{2}$  par wierzchołków.

Liczba możliwych wyborów to:

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

b) lle można utworzyć grafów prostych na zbiorze wierzchołków  $\{1,\ldots,\nu\}$ , które mają dokładnie  $\varepsilon$  krawędzi?

Aby utowrzyć graf prosty o  $\varepsilon$  krawędziach wystarczy **wybrać**  $\varepsilon$ **krawędzi** z dostępnych  $\binom{\nu}{2}$  par wierzchołków.

Liczba możliwych wyborów to:

$$\binom{\binom{\nu}{2}}{\varepsilon}$$

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

c) Ile jest wszystkich grafów prostych na zbiorze wierzchołków  $\{1, \ldots, \nu\}$ ?

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

c) Ile jest wszystkich grafów prostych na zbiorze wierzchołków  $\{1, \ldots, \nu\}$ ?

Aby utworzyć graf prosty

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

c) lle jest wszystkich grafów prostych na zbiorze wierzchołków  $\{1, \ldots, \nu\}$ ?

Aby utworzyć graf prosty dla każdej pary wierzchołków musimy zdecydować

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

c) Ile jest wszystkich grafów prostych na zbiorze wierzchołków  $\{1,\ldots,\nu\}$ ?

Aby utworzyć graf prosty dla każdej pary wierzchołków musimy zdecydować **czy dana para tworzy krawędź** w naszym grafie, czy nie.

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

c) lle jest wszystkich grafów prostych na zbiorze wierzchołków  $\{1, \ldots, \nu\}$ ?

Aby utworzyć graf prosty dla każdej pary wierzchołków musimy zdecydować czy dana para tworzy krawędź w naszym grafie, czy nie.

Liczba sposobów to:

Zadanie A.1

Zadanie A.2

(Przykład 7.2 z materiałów)

c) lle jest wszystkich grafów prostych na zbiorze wierzchołków  $\{1, \ldots, \nu\}$ ?

Aby utworzyć graf prosty dla każdej pary wierzchołków musimy zdecydować czy dana para tworzy krawędź w naszym grafie, czy nie.

Liczba sposobów to:

$$2^{\binom{\nu}{2}}$$
.