Math 221 Lec 16

Asa Royal (ajr74)

October 12, 2023

Proposition 1. a_1, \ldots, a_n are dependent in \mathbb{R}^m if n > m

Proof. rank $(A) \leq m < n$, and if rank(A) < n, the columns of A are dependent.

Remark. The proof above shows that vectors are linearly independent iff they are a basis for their span.

Proposition 2. $A \in \mathbb{R}^{n \times n}$ is nonsingular iff the columns of A form a basis of \mathbb{R}^n

Proof. A is singular iff $N(A) = \{0\}$ iff the columns of A are linearly independent. Since n linearly independent vectors span \mathbb{R}^n , the columns of A are both liearly independent and span \mathbb{R}^n . They are thus a basis for \mathbb{R}^n .

Theorem 3 (Bases of subspaces). Every subspace $V \subset \mathbb{R}^n$ has a basis.

Proof. Every subspace can be expressed as a span of vectors. If $V = \{0\}$, is a basis. now build upwards. Take a vector in it. if it spans v, we have a basis. If not, take a vector not in its span. Do those vectors span? Then we have a basis. If not...

terminates at or before k = n by first prop on this page

Theorem 4 (All bases of a subspace have the same size). $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ and $\{\mathbf{w}_1, \dots, \mathbf{w}_\ell\}$ are two bases for the subspace $V \subset \mathbb{R}^n \Rightarrow k = \ell$.

Proof. $w_i \in \text{span}(v_1, \dots, v_k) \Rightarrow w_i = Ax_i$ for some $x_i \in \mathbb{R}^k$ where $A = \begin{bmatrix} | & & | \\ v_1 & \dots & v_k \\ | & & | \end{bmatrix}$ and x_i is the set of coefficients for a linear combination of the vectors \mathbf{v}_i .

linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$. We can express this in a single statement as an equation with a matrix on either side

$$\begin{bmatrix} | & & | \\ w_1 & \dots & w_\ell \end{bmatrix} = \begin{bmatrix} | & & | \\ v_1 & \dots & v_k \end{bmatrix} \begin{bmatrix} | & & | \\ x_1 & \dots & x_\ell \end{bmatrix}$$

By the bye, W is an $n \times \ell$ matrix and A is a $n \times k$ matrix, which means X is an $k \times \ell$ matrix. We're attempting to show that $k = \ell$.

Imagine that l > k. Then the columns of X are linearly dependent and $N(X) \neq \{\mathbf{0}\}$. This implies that $\exists \mathbf{y} \neq \mathbf{0} \in N(X)$. If we multiply the matrix equation above by that vector y, we get $W\mathbf{y} = (AX)\mathbf{y} = A(X\mathbf{y}) = A\mathbf{0} = \mathbf{0}$. Then $N(W) \neq \{\mathbf{0}\}$, so $\mathbf{w}_1, \ldots, \mathbf{w}_l$ are linearly dependent. That is a contradiction, so $l \leq k$. But if we repeat the same argument above, noting that $\mathbf{v}_i \in \operatorname{span}(\mathbf{w}_i, \ldots, \mathbf{w}_\ell)$, we see that $k \leq \ell$. Thus we conclude that $k = \ell$.

Definition 5 (dimension). dim V is the size of any basis of $V \subset \mathbb{R}^n$.

Proposition 6. Suppose V and W are subspaces of \mathbb{R}^n with the property that $W \subset V$. If $\dim V = \dim W$, then V = W.

Proof. Since $W \subset V$, V = W is true if $V \subset W$. Assume for contradiction that this is not true. Let $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ be a basis for W. Then $\exists v_i \in V$ s.t. $v_i \notin \operatorname{span}(\mathbf{w}_1, \ldots, \mathbf{w}_k)$. Then $\{\mathbf{w}_1, \ldots, \mathbf{w}_k, \mathbf{v}_i\}$ is a linearly independent set of size with dimension k+1. But k linearly independent vectors span V, so those k+1 vectors must be lienarly dependent, and each arbitrary $\mathbf{v}_i \in \operatorname{span}(\mathbf{w}_1, \ldots, \mathbf{w}_k)$. A symmetrical proof shows that each $\mathbf{w}_i \in \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$. Therefore V = W.

Proposition 7. Let $V \subset \mathbb{R}^n$ be a k-dimensional subspace. Then any k vectors that span V must be linearly independent and any k linearly independent vectors in V must span V.

Proof. We first prove that any k vectors that span V must be linearly independent. Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ span V. Assume for contradiction that they are linearly dependent. Them some $\mathbf{v}_i \in \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_k)$, and at most k-1 vectors in $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent. But k-1 vectors cannot span a subspace with $\dim k$, so we have a contradiction. We thus conclude that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent.

We now prove that any k linearly indepe3ndent vectors in V span \mathbf{V} . Let $A = \begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_k \\ | & | & | \end{bmatrix}$. Because $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent, A is nonsingular, so $\forall \mathbf{b} \in \mathbb{R}^k, \exists \mathbf{x} \text{ s.t. } A\mathbf{x} = \mathbf{b}$. In otherwords, $\mathbf{b} \in C(A)$, which means any arbitrary $\mathbf{b} \in V$ is $\in \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$.

Dimension of the fundamental subspaces

Theorem 8 (Dimension of the subspaces). Let A be an $m \times n$ matrix. Let U and R denote the echelon and reduced echelon form, respectively, of A, and let EA = U represent the product of A with the product of elementary matrices to produce U.

- 1. The nonzero rows of U or R give a basis for R(A)
- 2. The vectors obtained by setting each free variable equal to 1 and the remaining free variables equal to 0 in the general solution of $A\mathbf{x} = \mathbf{0}$ (read off from solutions to $R\mathbf{x} = \mathbf{0}$ give a basis for NA(A).
- 3. The pivot columns of A give basis for C(A).
- 4. The rows of E that correspond to the zero rows of U give a basis for $N(A^{\mathsf{T}})$ (also true of E' where E'A = R).

Theorem 9 (Relation of subspaces to pivots). Let A be an $m \times n$ matrix of rank r. Then

- 1. $\dim R(A) = \dim C(A) = r$
- $2. \dim N(A) = n r$
- 3. dim $N(A^{\mathsf{T}}) = m r$

Proof. Each basis vector for R(A) and C(A) contains a pivot, and there are r pivots.

The basis for the null space comes from free variables. There are n-r free variables.

The number of zero rows in U is equal to the number of rows m minus the number of nonzero rows r. Thus $\dim N(A^{\mathsf{T}}) = m - r$.

Corollary 10 (Nullity-rank theorem). Let A be an $m \times n$ matrix. Then $\operatorname{null}(A) + \operatorname{rank}(A) = n$

Proposition 11. Let $V \subset \mathbb{R}^n$ be a k-dimensional subspace. Then dim $V^{\perp} = n - k$

Proof. Let the basis vectors of V be the rows of a matrix A. $\operatorname{rank}(A)=k$, since each of the row vectors is linearly independent. The subspace perpendicular to R(A), i.e. V^{\perp} , is N(A), which must have $\dim n-k$ per rank-nullity theorem.

Theorem 12. Let $V \subset \mathbb{R}^n$ be a subspace. Then every vector in \mathbb{R}^n can be written uniquely as teh sum of a vector in V and a vector in V^{\perp} . In particular, we have $\mathbb{R}^n = V + V^{\perp}$