Directed equality with dinaturality

Andrea Laretto, Fosco Loregian, Niccolò Veltri

Tallinn University of Technology

Theory Seminar, Tallinn October 24th, 2024

Roadmap

- Motivation and background
 - Directed type theory
 - 2 Profunctors
 - 3 Lawvere equality in the presheaf hyperdoctrine
 - 4 Computing Kan extensions and reindexings
- 1 Dinaturality and (co)ends
- Semantics of a directed type theory with dinaturality
- 3 Directed equality as relative left adjoint
- Application: (co)end calculus via dinaturality
- 5 Future work and conclusions

Type theory and symmetric equality

• The most interesting aspect of Martin-Löf type theory: equality types.

$$\begin{array}{ccc} C: \mathsf{Type} & P: \prod_{a,b:C} (a =_C b \to \mathsf{Prop}) \\ \hline a,b:C & x:C & d: \prod_{z:C} P(z,z,\mathsf{refl}_z) \\ \hline a =_C b: \mathsf{Prop} & \overline{\mathsf{refl}_x: x =_C x} & J(d): \prod_{a,b:C} \prod_{e:a =_C b} P(a,b,e) \end{array}$$

Idea behind the ("diagonal") J rule:

To prove a proposition P(a,b,e) with a proof $e:a=_C b$, it is enough to prove it for the case a=b=z and $e=\operatorname{refl}_z$.

• Equality in MLTT is inherently symmetric: take $P(a,b,e) := (b =_C a)$,

$$\frac{\operatorname{refl}:\prod_{z:C}z=_{C}z}{\operatorname{sym}:=J(\operatorname{refl}):\prod_{a.b:C}a=_{C}b\to b=_{C}a}$$

• Question: can you prove that every equality p:a=a is the same as refl?

$$\operatorname{uip}:\prod_{a:C}\prod_{p:a=C} p=\operatorname{refl}_a$$
 No! There are countermodels.

Models of MLTT

What can types be?

Martin-Löf type theory admits a sound interpretation in:

• Types as sets. [Martin-Löf 1971]

Types as groupoids. [Hoffmann-Streicher 1999]
 Types as ∞-groupoids. [Voevodsky 2013], [van der Berg-Garner 2010]

• Types as **sSet**s, **Top**, cubical sets. [Awodey-Warren 2007], [CCHM 2007]

• Types as reflexive graphs for parametricity. [Atkey-Ghani-Johann 2007]

Intuition: types are groupoids, equalities are always-invertible morphisms.

General frameworks, from closest to syntax:

- Categories with families and natural models, [Dybjer 1996], [Awodey 2014]
- Locally cartesian closed categories, [Seely 1984]
- Homotopy theoretic models in model categories. [Awodey-Warren 2007]

Some familiar structures are missing... what about categories and posets?!

Motivation 1: Directed type theory

Martin-Löf type theory with refl/J is intrinsically about symmetric equality. **Directed type theory** is the generalization to "directed equality".

The interpretation of directed type theory with (1-) categories:

```
\begin{array}{c} \mathsf{Types} \leadsto \mathsf{Categories} \\ \mathsf{Terms} \leadsto \mathsf{Functors} \\ \mathsf{Relations} \leadsto \mathsf{Profunctors} \\ \mathsf{Points} \ \mathsf{of} \ \mathsf{a} \ \mathsf{type} \leadsto \mathsf{Objects} \ \mathsf{of} \ \mathsf{a} \ \mathsf{category} \\ \mathsf{Equalities} \ e : a = b \leadsto \mathsf{Morphisms} \ e : \hom(a,b) \\ \mathsf{Equality} \ \mathsf{types} =_A : A \times A \to \mathsf{Prop} \leadsto \mathsf{Hom} \ \mathsf{types} \ \mathsf{hom}_{\mathbb{C}} : \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbf{Set} \end{array}
```

- ightarrow Now types have a *polarity*, $\mathbb C$ and $\mathbb C^{op}$, i.e., the opposite category.
- ightarrow Now equalities $e: \hom(a,b)$ have *directionality:* rewrites, trans., processes.

We want to find which syntactic restriction of MLTT allow for types can be interpreted as categories.

Directed type theory and dinaturality

- Semantically, refl should be $id_c \in hom_{\mathbb{C}}(c,c)$ for $c : \mathbb{C}$.
- Transitivity of directed equality \leadsto composition of morphisms in \mathbb{C} .
- However, directed type theory is not so straightforward:

$$\frac{a:\mathbb{C}}{\mathsf{refl}_a...?:\mathsf{hom}_{\mathbb{C}}(a,a)} \quad \leadsto \quad \frac{a:\mathbb{C}^\mathsf{core}}{\mathsf{refl}_a:\mathsf{hom}(\mathsf{i}^\mathsf{op}(a),\mathsf{i}(a))} \ \ [\mathsf{North} \ 2018]$$

- *Problem:* rule is not functorial w.r.t. variance of $\hom_{\mathbb{C}}: \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$, since $a: \mathbb{C}$ appears both contravariantly and covariantly.
- Current approach to DTT in Cat: [North 2018], [Neumann 2024]
 - ightarrow Use the maximal subgroupoid $\mathbb{C}^{\mathsf{core}}$ to collapse the two variances, since $(\mathbb{C}^{\mathsf{core}})^\mathsf{op} \cong \mathbb{C}^{\mathsf{core}}$, then use $i: \mathbb{C}^{\mathsf{core}} \to \mathbb{C}$ and $i^\mathsf{op}: \mathbb{C}^{\mathsf{core}} \to \mathbb{C}^\mathsf{op}$.
- ullet Then a J-like rule is validated, but again using groupoidal structure.

Contribution 1 – Directed type theory

Is there a way to interpret directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

Our approach: yes, by validating rules with dinaturality.

- Intuition: dinatural transformations allow for the same variable to appear both covariantly and contravariantly \rightarrow solving the issue with refl.
- We will see how dinaturality validates both
 - ightarrow a refl rule (directed equality introduction),
 - \rightarrow a J rule (directed equality elimination).
- ullet The directed J rule is extremely similar to the standard MLTT J rule, but with a syntactic restriction which does **not** allow for symmetry.

Contribution 1 – Directed type theory

Comparison between symmetric equality and our directed equality rule:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom(a,b),\ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ \text{(hom)}$$

- Restriction: a, b must appear positively in P and negatively in Γ .
- (Again, dinaturality allows z to appear twice in P(z, z, x).)
- ▶ Using directed J, we obtain the same terms provable in MLTT about symmetric equality (e.g., transitivity, transport, congruence).
- ▶ Proving properties about them follows precisely the steps in MLTT. (e.g., the computation rules are the same as the classical case.)

Contribution 2 – (Co)end calculus

Another important open question:

What should the quantifiers of directed type theory be?

- Dinaturality again gives us a hint: ends and coends.
- We present a series of "logical rules", inspired by the doctrinal approach categorical logic, viewing (co)ends as the *directed quantifiers* of DTT.
- ▶ We then use the rules to give simple logical proofs of theorems in category theory, using dinaturality and viewing hom as directed equality.

Why is this useful?

Our goals for directed type theory, in increasing order of importance:

- **1** A synthetic theory to work with $(\infty$ -)categories. [Riehl-Shulman 2017]
 - Martin-Löf type theory \rightsquigarrow a synthetic theory of $(\infty$ -)groupoids. Directed type theory \rightsquigarrow a synthetic theory of $(\infty$ -)categories.
- 2 Directed higher inductive types: ([Altenkirch-Kaposi 2016], but directed)
 - *Idea*: you can *define* new types (categories) with specified equalities.
 - Internalize category theory in type theory: reason about categories via types.
 - Internalize the type of λ -calculus terms, with directed equalities

$$\beta: (\lambda x.M)N \rightsquigarrow M[N/x]$$

Like quotients, this greatly simplifies metatheory (e.g. congruence for free)

- In general: internalize semantics of type theory in TT (e.g., as with QIIT)
- **3** A doctrinal perspective on *directed logic* for profunctors and posets.
- **4 Claim**: we will show how (co)end calculus is the first-order instantiation of a directed type theory with quantifiers, with semantics in 1-categories.

Motivation 2: Profunctors

Another story, now in CT:

Relations
$$A \times B \to \{\top, \bot\} \leadsto \mathsf{Profunctors} \ \mathbb{C}^\mathsf{op} \times \mathbb{D} \to \mathbf{Set}$$
 Existential quantifiers $\exists x \leadsto \mathsf{Coends} \ \int^x$

Composition:
$$\exists b \in B. \ R(a,b) \land Q(b,c) \leadsto \int^{b:\mathbb{B}} R(a,b) \times Q(b,c)$$

Conjunction of truth values \leadsto Cartesian products of **Set**s Identity relation: $=_{\mathbb{C}} \leadsto$ Identity profunctor: $\hom_{\mathbb{C}}$

Why do unitality and associativity hold?

Because of rules for equality in FOL. \leadsto Because of the coYoneda lemma. Because of rules for \exists and \land in FOL. \leadsto Because of properties of coends.

What's missing from the profunctorial story?

- We use FOL in **Rel**: there are no rules for a *directed logic* in **Prof**.
- A proper treatment of coends as quantifiers *qua quantifiers*.
- A syntactic treatment of directed logic (with directed equality and its rules, and quantifiers) in terms of the doctrinal approach. [Jacobs 1999]

Andrea Laretto TSEM 2024 October 24th, 2024 10 / 50

Background: Categorical logic, in one slide

Categorical models of first order logic, by [Lawvere 1969]:

- Take **Ctx** the following syntactic category:
 - Objects: contexts Γ, Δ , i.e., sequences of types.
 - Morphisms $\Gamma \to \Delta$: a term $\Gamma \vdash t : \Delta$ of type Δ given in context Γ ,
 - Identity on $\Gamma := [x_1 : A, x_2 : B, ..., x_n : C]$: n-tuple of vars $\langle x_1, x_2, ..., x_n \rangle$.
 - Composition: substitution of terms.
- For any Γ : Ctx, there is a poset $\mathcal{P}(\Gamma)$:
 - Objects: lists of formulas Φ in context Γ .
 - Morphisms $\Phi \to \Psi$: entailments $\Gamma \mid \Phi \vdash \Psi$ of formulas.
 - Composition and identities: cut rule and axiom rule.
- This association is functorial: there is a functor $\mathcal{P}:\mathbf{Ctx}^{op}\to\mathbf{Pos}$, the action on morphisms is given by substitution of terms into formulas.
- Idea: Logical connectives, quantifiers, equality types, subset types, quotients, can be characterized solely as categorical properties of \mathcal{P} .
- A doctrine is a finite product category $\mathbb C$ and a functor $\mathcal P:\mathbb C^\mathsf{op}\to \mathbf{Pos}$.
- Morphisms of doctrines → interpretations/models in different categories.

Andrea Laretto TSEM 2024 October 24th, 2024 11/50

Background: Doctrines with $\land, \Rightarrow, \forall, \exists, =$

- Take $\mathcal{P}:\mathbb{C}^{\mathsf{op}}\to \mathbf{Pos}$ with \mathbb{C} all binary products, and assume:
- **1** [\land , ⇒]: Each $\mathcal{P}(\Gamma)$ has products and exponentials for every Γ ,
- 2 $[\forall, \exists]$: Given the projections $\pi_{A[\Gamma]}: A \times \Gamma \to \Gamma$, each reindexing $\mathcal{P}(\pi_{A[\Gamma]}): \mathcal{P}(\Gamma) \to \mathcal{P}(A \times \Gamma)$ has right and left adjoints

$$\exists_{A[\Gamma]}, \forall_{A[\Gamma]} : \mathcal{P}(A \times \Gamma) \to \mathcal{P}(\Gamma), \qquad \exists_{A[\Gamma]} \dashv \mathcal{P}(\pi_{A[\Gamma]}) \dashv \forall_{A[\Gamma]}.$$

such that for $f:\Gamma\to\Delta$ the Beck-Chevalley condition holds:

$$\exists_{A[\Delta]} \; ; \mathcal{P}(f) \cong \mathcal{P}(\mathsf{id}_X \times f) \; ; \exists_{A[\Gamma]}, \quad \text{for all } A \in \mathcal{P}(A)$$
 $\forall_{A[\Delta]} \; ; \mathcal{P}(f) \cong \mathcal{P}(\mathsf{id}_X \times f) \; ; \forall_{A[\Gamma]}.$

3 [=]: Left adjoints to reindexing along diagonals $\Delta_X : A \to A \times A$:

$$\mathsf{Eq}_A: \mathcal{P}(A) \to \mathcal{P}(A \times A), \qquad \qquad \mathsf{Eq}_A \dashv \mathcal{P}(\Delta_A).$$

Certain Frobenius conditions are automatic thanks to exponentials.

• The above capture the fact that \mathcal{P} is a doctrine with $\wedge, \Rightarrow, \forall, \exists, =$.

Motivation 3: Lawvere equality for categories

Can we interpret logic in **Cat**, viewed as a category of contexts?

From type theory: why Cat is not a model for Martin-Löf type theory:

- Cat is not locally cartesian closed,
- Cat is not even regular (but it is 2-regular [Street CBS 1982])

From the doctrinal perspective: **Set** plays the role of *generalized truth values* in **Prof**, and presheaves are "generalized logical predicates", but:

Equality in the presheaf hyperdoctrine Psh(C):=[C^{op}, Set]:Cat → CAT does not validate Frobenius and Beck-Chevalley: [Melliès-Zeilberger 2016]

$$\begin{split} \mathsf{Eq}_{\mathbb{C}} &:= \exists_{\Delta_{\mathbb{C}}}(\top_{\mathbb{C}}) \in \mathcal{P}\mathsf{sh}(\mathbb{C} \times \mathbb{C}) \\ \mathsf{Eq}_{\mathbb{C}} &= (a,b) \mapsto \int^{x \in \mathbb{C}} \hom_{\mathbb{C}}(a,x) \times \hom_{\mathbb{C}}(b,x) \end{split}$$

i.e., any two objects forming a cospan for some \boldsymbol{x} should be equated. *Note:* These conditions also fail in groupoids.

Motivation 3: Lawvere on hom as equality

Lawvere commenting on the failure of Frobenius/Beck-Chevalley for $\mathcal{P}sh$:

- [...] This should not be taken as indicative of a lack of vitality of \mathcal{P} sh as hyperdoctrine, or even of a lack of a satisfactory theory of equality for it.
- Rather, it indicates that we have probably been too naive in defining equality in a manner too closely suggested by the classical conception.
- Equality should be the "graph" of the identity term. But present categorical conceptions indicate that the graph of a functor $F:\mathbb{C}\to\mathbb{D}$ should be [...] a binary attribute of mixed variance $\mathcal{P}\mathit{sh}(\mathbb{C}^\mathit{op}\times\mathbb{D})$.
- Thus in particular "equality" should be the functor $\hom_{\mathbb{C}}$ [...].
- The term which would take the place of $\Delta_{\mathbb{C}}$ in such a more enlightened theory of equality would be the forgetful functor $\mathsf{Tw}(\mathbb{C}) \to \mathbb{C}^\mathsf{op} \times \mathbb{C}$. [...]
- Of course to abstract from this example would require at least the addition of a functor $T \xrightarrow{\text{op}} T$ to the structure of a [doctrine].

[Lawvere 1970, Equality in Hyperdoctrines]

Background on dinaturality and (co)ends

Background: Dinatural transformations

- Let $-^{\diamond}$: Cat \to Cat be the comonad defined by $\mathbb{C} \mapsto \mathbb{C}^{op} \times \mathbb{C}$.
- A **difunctor** from \mathbb{C} to \mathbb{D} is a functor $F, G : \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$.
- A dipresheaf on $\mathbb C$ is an endoprofunctor $P:\mathbb C^{\mathsf{op}} \times \mathbb C \to \mathbf{Set}$.
- Given diffunctors $F, G : \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$, a **dinatural transformation** $\alpha : F \xrightarrow{\bullet \bullet} G$ is a family of morphisms of \mathbb{D} for each $x : \mathbb{C}$,

$$\alpha_x: F(x,x) \longrightarrow G(x,x)$$

such that for every $a,b:\mathbb{C}$ and $f:a\to b$ this hexagon commutes:

$$F(\mathrm{id},f) \xrightarrow{F(\mathrm{id},f)} F(b,b) \xrightarrow{\alpha_b} G(b,b) \xrightarrow{G(f,\mathrm{id})} G(a,b)$$

$$F(b,a) \xrightarrow{F(f,\mathrm{id})} F(a,a) \xrightarrow{\alpha_a} G(a,a) \xrightarrow{G(\mathrm{id},f)} G(a,b)$$

Theorem (Naturals are dinaturals [Dubuc and Street 1969])

A dinatural between functors which do not depend on \mathbb{C}^{op} is just a natural.

Andrea Laretto TSEM 2024 October 24th, 2024 14 / 50

Background: Dinaturals don't always compose

• Dinaturals don't always compose: $\alpha: F \xrightarrow{\cdot \cdot \cdot} G$, $\beta: G \xrightarrow{\cdot \cdot \cdot} H$,

• They always compose with naturals: $\alpha: F \xrightarrow{\bullet \bullet} G$, $\beta: G \longrightarrow H$,

$$F(b,b) \xrightarrow{\alpha_b} G(b,b) \xrightarrow{\beta_{bb}} H(b,b) \xrightarrow{H(f,\mathrm{id})} F(b,a) \xrightarrow{G(a,b)} F(a,a) \xrightarrow{\alpha_a} G(a,a) \xrightarrow{\beta_{aa}} H(a,a)$$

Andrea Laretto TSEM 2024 October 24th, 2024 14 / 50

Background: (Co)wedges and (co)ends

A cone is a natural from a constant functor into P. A wedge is a dinatural from a constant difunctor into P. The terminal object in $\mathsf{Cone}(P)$ is the limit of P. The terminal object in $\mathsf{Wedge}(P)$ is the end of P.

- Fix $P: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$.
- A **wedge** for P is a pair (object $A : \mathbb{C}$, dinatural $\alpha : \mathsf{const}_A \to P$).
- A wedge morphism $(A, \alpha) \rightarrow (B, \beta)$ is an arrow $w : A \rightarrow B$, s.t. $\forall x : \mathbb{C}$,

• There are categories Wedge(P) and Cowedge(P).

Background: (Co)ends

The **end** of P is the terminal object in $\mathsf{Wedge}(P)$. The **coend** of P is the initial object in $\mathsf{Cowedge}(P)$.

• Given $P: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$, the terminal (co)wedge object is denoted as

End:
$$\int_{x:\mathbb{C}} P(\overline{x}, x)$$
 Coend: $\int^{x:\mathbb{C}} P(\overline{x}, x)$

- Theorem: (co)ends exist when D is (co)complete, they are (co)limits.
- We will always take $\mathbb{D} := \mathbf{Set}$, since we consider profunctors as relations.
- (Co)ends act as binders: given $P:(\mathbb{C}^{op}\times\mathbb{C})\times(\mathbb{D}^{op}\times\mathbb{D})\to \mathbf{Set}$,

$$\left((\overline{y},y)\mapsto \int_{x:\mathbb{C}}P(\overline{x},x,\overline{y},y)\right):\mathbb{D}^{\mathsf{op}}\times\mathbb{D}\to\mathsf{Set}.$$

Taking parametric (co)ends is functorial in P:

$$\int_{\mathbb{C}[\mathbb{D}]}, \int^{\mathbb{C}[\mathbb{D}]} : [(\mathbb{C}^{\mathsf{op}} \times \mathbb{C}) \times (\mathbb{D}^{\mathsf{op}} \times \mathbb{D}), \mathbf{Set}] \to [\mathbb{D}^{\mathsf{op}} \times \mathbb{D}, \mathbf{Set}].$$

Andrea Laretto TSEM 2024 October 24th, 2024 14 / 50

(Co)end calculus in one slide

- (Co)ends give elegant characterizations of theorems of category theory.
- Natural transformations as ends:

$$\operatorname{Nat}(F,G)\cong\int_{x:\mathbb{C}}\hom_{\mathbb{D}}(F(\overline{x}),G(x))$$

• Quantifier exchange $(Q: (\mathbb{C}^{op} \times \mathbb{C}) \times (\mathbb{D}^{op} \times \mathbb{D}) \rightarrow \mathbf{Set})$:

$$\int_{x:\mathbb{C}} \int_{y:\mathbb{D}} Q(\overline{x}, x, \overline{y}, y)$$

$$\cong \int_{y:\mathbb{D}} \int_{x:\mathbb{C}} Q(\overline{x},x,\overline{y},y)$$

$$\cong \int_{(x,y):\mathbb{C}\times\mathbb{D}} Q(\overline{x},x,\overline{y},y)$$

• (Co)Yoneda lemma: $(P: \mathbb{C} \to \mathbf{Set})$

$$P(a) \cong \int_{x:\mathbb{C}} \hom_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x)$$

$$P(a) \cong \int^{x:\mathbb{C}} \hom_{\mathbb{C}}(\overline{x}, a) \times P(x)$$

• Kan extensions: $(F:\mathbb{C}\to\mathbb{D})$

$$(\mathsf{Ran}_F P)(a) \cong \int_{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(a, F(\overline{x})) \Rightarrow P(x)$$

$$(\mathsf{Lan}_F P)(a) \cong \int^{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(F(\overline{x}), a) \times P(x)$$

Logical interpretation of (co)end calculus

(Co)Yoneda lemma:

• (Pointwise) right/left Kan extensions using ends/coends:

Motivation 4: Computing adjoints to reindexings

- Consider a doctrine $\mathcal{P}: \mathbb{C}^{op} \to \mathbf{Pos}$ with $\wedge, \Rightarrow, \forall_{A[\Gamma]}, \exists_{A[\Gamma]}, \mathsf{Eq}_A$.
- With just these assumptions, we can compute the adjoints $\forall_f, \exists_f: \mathcal{P}(C) \to \mathcal{P}(D)$ along any $f: C \to D$, not just projections:

$$\begin{split} \forall_f(P) &:= \forall_{C[D]} (\mathcal{P}(\mathsf{id}_Y \times f)(\mathsf{Eq}_Y(\top_Y)) \Rightarrow \mathcal{P}(\pi_{C[D]})(P)) \\ \exists_f(P) &:= \exists_{C[D]} (\mathcal{P}(\mathsf{id}_Y \times f)(\mathsf{Eq}_Y(\top_Y)) \wedge \mathcal{P}(\pi_{C[D]})(P)) \end{split}$$

• In the syntactic model, for $P: \mathcal{P}(C)$, $f: C \to D$:

$$(\forall_f(P))(y) := \forall x.(y =_D f(x) \Rightarrow P(x))$$

$$(\exists_f(P))(y) := \exists x.(f(x) =_D y \land P(x))$$

• Compare these to the formula to compute Kan extensions via (co)ends:

$$\begin{split} (\mathsf{Ran}_F P)(y) &\cong \int_{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(y, F(\overline{x})) \Rightarrow P(x) \\ (\mathsf{Lan}_F P)(y) &\cong \int^{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(F(\overline{x}), y) \times P(x) \end{split}$$

▶ there is yet no decomposition of these properties for doctrines, e.g., coends as quantifiers/adjoints, or "having directed equality".

Motivation 4: Computing Kan extensions with (co)ends

• A logical proof that $\forall_f(P)$ is right adjoint to precomposition with f:

$$\begin{array}{c}
[y:D] & \Gamma(y) \vdash (\forall_f P)(y) \\
 & := \forall x. (y = f(x) \Rightarrow P(x)) \\
\hline
[x:C,y:D] & \Gamma(y) \vdash y = f(x) \Rightarrow P(x) \\
\hline
[x:C,y:D] & y = f(x), \Gamma(y) \vdash P(x) \\
\hline
[x:C] & \Gamma(f(x)) \vdash P(x)
\end{array}$$

- ▶ There is yet no formal system to do this for the directed case;
- ➤ We follow exactly this proof for Lan/Ran, using our rules for dinaturality.

Andrea Laretto TSEM 2024 October 24th, 2024 18 / 50

Setting

We present the semantics for a *first-order* non-dependent directed type theory using dinaturality, where types are interpreted by categories, directed equality by hom-functors, quantifiers by (co)ends.

We consider the following interpretation:

```
Types \leadsto Categories (possibly with -^{\mathsf{op}})

Contexts \leadsto Lists of categories

Terms \leadsto Functors \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{D}

Propositions \leadsto Endoprofunctors \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{D}

Entailments \leadsto Dinatural transformations (not required to compose)

Directed equality \leadsto hom-functors \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbf{Set}.
```

- Warning: we do not give a formal presentation of this, e.g., using doctrines, precisely because dinaturals do not compose in general.
- ▶ Despite this, we can still validate and apply rules for directed equality, and use them in practice to prove theorems about category theory.

19/50

Directed type theory: notation

We use type theoretical notation to emphasize dinaturals-as-entailments:

$$[x:\mathbb{C},y:\mathbb{D}]\ F(\overline{x},\overline{y},x,y) \vdash \alpha:G(\overline{x},\overline{y},x,y)$$

says that α is a dinatural for $F,G:(\mathbb{C}\times\mathbb{D})^{\mathrm{op}}\times(\mathbb{C}\times\mathbb{D})\to\mathbb{E}$.

- The term context $[x:\mathbb{C},y:\mathbb{D}]$ are the indices of the dinatural.
- We give names to assumptions p, q:

$$[x:\mathbb{C}]\ p:P(\overline{x},x),q:Q(\overline{x},x)\vdash h[p,q]:R(\overline{x},x)$$

prop. context \rightarrow interpreted as the pointwise product of functors in Set.

• The following dinaturals are the same:

$$[x:\mathbb{C}] \ F(\overline{x}) \vdash \alpha : G(\overline{x},x)$$
$$[x:\mathbb{C}^{\mathsf{op}}] \ F(x) \vdash \alpha' : G(x,\overline{x})$$

• We use $F^{\mathsf{op}}:\mathbb{C}^{\mathsf{op}}\to\mathbb{D}^{\mathsf{op}}$ for $F:\mathbb{C}\to\mathbb{D}$, **no** swapping for difunctors.

20 / 50

Directed type theory: propositional rules – Products

Dinaturals support propositional conjunction, using products in Set.

Theorem (Product of dipresheaves) ("")

There is an isomorphism of sets natural in $\Gamma, P, Q : \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$:

$$\frac{[x:\mathbb{C}]\ \varGamma(\overline{x},x) \vdash P(\overline{x},x) \times Q(\overline{x},x)}{[x:\mathbb{C}]\ \varGamma(\overline{x},x) \vdash P(\overline{x},x), \qquad [x:\mathbb{C}]\ \varGamma(\overline{x},x) \vdash Q(\overline{x},x).}$$

Bottom side: product of sets of dinaturals.

Similarly, $\top_{\mathbb{C}} : \mathbb{C}^{\diamond} \to \textbf{Set} := (c, c') \mapsto \{*\}$ has a unique dinat $\Gamma \xrightarrow{\bullet \bullet} \top_{\mathbb{C}}$.

Andrea Laretto TSEM 2024 October 24th, 2024 21/50

Directed type theory: propositional rules – Exponentials

• Contrary to naturals, exponentials of dipresheaves are pointwise:

Theorem (Exponential of dipresheaves) ()

There is an isomorphism of sets natural in $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$:

$$\frac{[x:\mathbb{C}]\ F(\overline{x},x)\times G(\overline{x},x)\vdash H(\overline{x},x)}{[x:\mathbb{C}]\qquad G(\overline{x},x)\vdash F^{\mathsf{op}}(x,\overline{x})\Rightarrow H(\overline{x},x)}\ (\mathsf{exp})$$

Proof. Obvious by currying the families of morphisms.

• Why are exponentials of presheaves with naturals not pointwise?

$$\frac{[x:\mathbb{C}]\ F(x)\times G(x)\vdash H(x)}{[x:\mathbb{C}]\qquad G(x)\vdash F^{\mathsf{op}}(\overline{x})\Rightarrow H(x)}\ (\mathsf{exp})$$

but, the bottom family would be dinatural in x.

▶ We will show how to use our rules to justify the usual exponential.

22 / 50

Directed type theory: term rules – Reindexing

• Entailments/dinaturals can be reindexed by terms/difunctors:

Theorem (Reindexing with difunctors) ("")

Take a diffunctor $F: \mathbb{C}^{\diamond} \to \mathbb{D}$ and a dinat $\alpha: P \xrightarrow{\bullet \bullet} Q$ for $P, Q: \mathbb{D}^{\diamond} \to \mathbb{E}$.

$$\frac{[x:\mathbb{D}] \qquad P(\overline{x},x) \vdash \alpha: Q(\overline{x},x)}{[x:\mathbb{C}] \ P(F^{\mathsf{op}}(x,\overline{x}),F(\overline{x},x)) \vdash F^*(\alpha): Q(F^{\mathsf{op}}(x,\overline{x}),F(\overline{x},x))} \text{ (reindex)}$$
 defined by $F^*(\alpha)_x := \alpha_{F(x,x)}$.

As a special case, naturality in two variables can be collapsed into one:

Theorem (Naturality in two \rightarrow dinaturality) ((//))

Take $P,Q:\mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{D}$. For a natural $\alpha:P \longrightarrow Q$, there is a $P \xrightarrow{\bullet \bullet} Q$:

$$\frac{[x:\mathbb{C}^{\mathrm{op}},y:\mathbb{C}]\ P(x,y)\vdash \quad \alpha:Q(x,y)}{[z:\mathbb{C}]\ P(\overline{z},z)\vdash \Delta(\alpha):Q(\overline{z},z)}\ (\Delta)\ \textit{given by}\ \Delta(\alpha)_x:=\alpha_{xx}.$$

Directed type theory with dinaturality – refl

Dinaturality allows us to solve the variance issue of refl: [North 2016]

Theorem (Directed equality introduction) ("")

There is a dinatural transformation $\operatorname{refl}_{\mathbb{C}}: \top \xrightarrow{\bullet \bullet} \hom$,

$$\frac{}{[x:\mathbb{C}] \top \vdash \mathsf{refl}_{\mathbb{C}} : \mathsf{hom}_{\mathbb{C}}(\overline{x},x)}} \mathsf{(refl)}$$

where \top denotes the dipresheaf constant in \top_{Set} .

Proof. $\alpha_x(*) := \mathrm{id}_x$. Dinaturality: for any $f: a \to b$, f; $\mathrm{id}_b = \mathrm{id}_a$; f.

This is reflexivity of directed equality, via identities.

Directed type theory with dinaturality – Intermezzo

 Before introducing the directed J rule, we show its fundamental idea: the connection between naturality and dinaturality.

Theorem (Characterization of dinaturals via naturality) ()

There is an isomorphism, natural in $P,Q:\mathbb{C}^{op}\times\mathbb{C}\to \textbf{Set}$, between the set of dinaturals $P\overset{\bullet\bullet}{\longrightarrow}Q$ and certain natural transformations:

$$\frac{[x:\mathbb{C}]\ P(\overline{x},x) \xrightarrow{\bullet \bullet} Q(\overline{x},x)}{\overline{[a:\mathbb{C}^{\sf op},b:\mathbb{C}] \hom(a,b) \longrightarrow P^{\sf op}(b,a) \Rightarrow Q(a,b)}}$$

Proof.

- $(\Downarrow) \ \textit{Given } \alpha: P \xrightarrow{\bullet \bullet} Q \ \textit{and} \ f: \hom(a,b), \ \textit{the map} \ P(b,a) \to Q(a,b)$ is exactly the side of the hexagon in the definition of dinaturality. This is obtained via the functorial action of P,Q.
- (\uparrow) Take a=b and precompose with $id_a \in hom(a,a)$.

The isomorphism follows from (di)naturality of both maps.

Directed type theory with dinaturality – Directed J

Directed equality elimination is just this result, uncurried.

Theorem (Directed equality elimination) ("")

Take $\Gamma, P : (\mathbb{A}^{op}) \times (\mathbb{A}) \times (\mathbb{C}^{op} \times \mathbb{C}) \to \mathbf{Set}$.

Given a dinatural $h: \Gamma \xrightarrow{\cdot \cdot \cdot} P$, there is a dinatural J(h) as follows:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad k:\Gamma(\overline{z},z,\overline{x},x)\vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{op},b:\mathbb{A},x:\mathbb{C}]\ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x)\vdash J(h)[e,k]:P(a,b,\overline{x},x)}\ (J)$$

The dinatural J(h) satisfies the following "computation rule",

$$J(h)_{zzx}[\mathsf{refl}_{\mathbb{A}_z}, k] = h_{zx}[k]$$

for any object $z : \mathbb{A}, x : \mathbb{C}$ and $k \in \Gamma(z, z, x, x)$.

Proof. Explicitly, the dinatural J(h) is given by

$$J(h)_{abx}[e,k] := (\Gamma(\mathsf{id}_b, e, \mathsf{id}_x, \mathsf{id}_x) ; h_{bx} ; P(e, \mathsf{id}_b, \mathsf{id}_x, \mathsf{id}_x))[k].$$

Computation clearly holds for $e = id_z$, without dinaturality.

Directed type theory with dinaturality – Intuition for J

Intution for the directed J rule

- ▶ Whenever there are two positions $a : \mathbb{A}^{op}, b : \mathbb{A}$ in the conclusion P,
- \blacktriangleright and I have a directed equality in context $\hom_{\mathbb{A}}(a,b)$,
- ▶ it is enough to prove that P holds "on the diagonal", where a,b are identified with the same dinatural variable $z:\mathbb{A}$.
- lacktriangle Moreover, a,b can be identified in context only if they appear negatively.
- The directed J rule is the key to define maps with directed equality.
- Examples: transitivity, congruence, transport for directed equality.

Failure of symmetry for directed equality

These restrictions do not allow us to obtain directed equality is symmetric:

$$[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C}]\ e: \hom(a,b) \not\vdash \mathsf{sym}: \hom(\overline{b},\overline{a})$$

hom(a,b) cannot be contracted: a,b must appear positively in conclusion.

Andrea Laretto TSEM 2024 October 24th, 2024 27 / 50

Directed type theory with dinaturality – Example

Example (Composition in a category)

Transitivity of directed equality \leadsto categories $\mathbb C$ have *composition maps*. Composition is natural in $a:\mathbb C^{\mathrm{op}},c:\mathbb C$ and dinatural in $b:\mathbb C$:

$$\frac{\overline{[z:\mathbb{C},c:\mathbb{C}] \quad \text{hom}(\overline{z},c) \vdash \text{id}:\text{hom}(\overline{z},c)}}{[a:\mathbb{C}^{\text{op}},b:\mathbb{C},c:\mathbb{C}] \quad \text{hom}(a,b), \quad \text{hom}(\overline{b},c) \vdash J(\text{id}):\text{hom}(a,c)}} (J)$$

We contract hom(a, b). Rule (J) can be applied: a, b appear only negatively in ctx (a does not) and positively in conclusion $(\bar{b} \text{ does not})$.

The computation rule for f ; $g:=J(\mathrm{id})[f,g]$ states unitality on the left.

- How do we prove unitality on the right, and associativity?
- Using the same method of MLTT: by dependent hom induction.
- First, we need to show that we can compose certain dinats with refl.

Andrea Laretto TSEM 2024 October 24th, 2024 28 / 50

Directed type theory -J as iso

Theorem (J as isomorphism)

As in the classical case, directed J is an isomorphism, natural in Γ, P :

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad k:\Gamma(\overline{z},z,\overline{x},x) \vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x) \vdash J(h)[e,k]:P(a,b,\overline{x},x)} \ \text{(hom)}$$

Proof. The inverse is $J^{-1}(\alpha)_{zx}[k] := \alpha_{zzx}[\operatorname{refl}_{\mathbb{A}z}, k]$. The computation rule for hom-elimination is precisely J; $J^{-1} = \operatorname{id}$. On the other hand, J^{-1} ; $J = \operatorname{id}$ follows using (di)naturality.

- Crucial: when equalities can be contracted, $J^{-1}(lpha)$ is always dinatural!
- ▶ This is needed in the examples to contract and compose with refl.
- ▶ This isomorphism is the core rule for hom in (co)end calculus.

Theorem (hom \Rightarrow refl)

Rules (refl) and (J) are logically equivalent to (hom).

Proof. (refl) follows from J^{-1} by picking $\Gamma := \top$ and $J(h) := \mathrm{id}_{\mathrm{hom}(a,b)}$.

Directed type theory – equality of entailments

We work with *proof relevant entailments*: we need to express equality.

Definition (Judgement for equality of entailments)

The following judgement is interpreted semantically as $\alpha = \beta$:

$$[a:\mathbb{C},b:\mathbb{C},...\Gamma]\ h:P(...),h':Q(...),\cdots$$
$$\vdash \alpha[h,h',...] = \beta[h,h',...]:R(...)$$

Theorem (Dependent J rule for judgemental equality) (${}^{\prime\prime}{}^{\prime\prime}$)

Take $\Gamma, P: (\mathbb{A}^{op}) \times (\mathbb{A}) \times (\mathbb{C}^{op} \times \mathbb{C}) \to \textbf{Set}$. Given dinats α, β where J can be applied, then the above judgement implies the one below:

$$\frac{[z:\mathbb{A},x:\mathbb{C}]\ k:\Gamma(\overline{z},z,\overline{x},x)\vdash\alpha[\mathsf{refl}_z,k]=\beta[\mathsf{refl}_z,k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^\mathsf{op},b:\mathbb{A},x:\mathbb{C}]\ e:\mathsf{hom}(a,b),k:\Gamma(\overline{a},\overline{b},\overline{x},x)\vdash\alpha[e,k]=\beta[e,k]:P(a,b,\overline{x},x)}\ (J\mathsf{-eq})$$

i.e., $\forall k : P(z, z, x, x)$. $\alpha_{zzx}[\mathsf{refl}_z, k] = \beta_{zzx}[\mathsf{refl}_z, k]$ implies $\alpha = \beta$.

Proof. By hypothesis, $J^{-1}(\alpha) = J^{-1}(\beta)$, simply apply J.

Directed type theory – trans assoc/unit via dependent J

Example (Properties of composition)

Back to composition: we want to prove unitality and associativity.

$$\overline{[z:\mathbb{C},c:\mathbb{C}]\ g:\hom(\overline{z},c)\vdash \mathsf{refl}_z\ ;g=g:\hom(\overline{z},c)}\ \ (J\text{-comp})$$

Unitality on the right is shown by dependent hom induction:

$$\frac{[w:\mathbb{C}] \top \vdash \mathsf{refl}_w \; ; \mathsf{refl}_w = \mathsf{refl}_w : \hom(\overline{w}, w)}{[a:\mathbb{C}^\mathsf{op}, z:\mathbb{C}] \; f : \hom(a, z) \vdash f \; ; \mathsf{refl}_z = f : \hom(a, z)} \; (J\text{-eq})} \; (J\text{-eq})$$

To prove associativity, simply contract f : hom(a, b):

$$\frac{[z:\mathbb{C},c:\mathbb{C},d:\mathbb{C}] \qquad \qquad g:\hom(\overline{z},c),h:\hom(\overline{c},d)\vdash \mathsf{refl}_z\;;(g\;;h)=(\mathsf{refl}_z\;;g)\;;h:\hom(\overline{z},d)}{[a:\mathbb{C},b:\mathbb{C},c:\mathbb{C},d:\mathbb{C}]\;f:\hom(\overline{a},b),g:\hom(\overline{b},c),h:\hom(\overline{c},d)\vdash f\;;(g\;;h)=(f\;;g)\;;h:\hom(\overline{a},d)} \qquad (J\text{-eq})$$

where the top sequent = g; h by computation rules for comp := J(id).

• *Note!* These are exactly the steps in MLTT for transitivity of paths.

Andrea Laretto TSEM 2024 October 24th, 2024 31 / 50

Directed type theory – congr for directed equality

 Every term respects directed equality, i.e., it is a "congruence": semantically, this is just the functorial action of terms F on morphisms.

Example (Directed equality is a congruence)

Let $F: \mathbb{C} \to \mathbb{D}$ be a functor.

$$\frac{F:\mathbb{C}\to\mathbb{D}\text{ be a functor.}}{[z:\mathbb{C}]\top\vdash \hom_{\mathbb{D}}(F^{\mathsf{op}}(\overline{z}),F(z))} \text{ (reindex)+(refl)}$$
$$\frac{[z:\mathbb{C}]\to\mathbb{D}\text{ hom}_{\mathbb{C}}(\overline{x},y)\vdash \hom_{\mathbb{D}}(F^{\mathsf{op}}(\overline{x}),F(y))}{[J]} \text{ (}J\text{)}$$

Take $\operatorname{\mathsf{map}}_F[f] := J(F^*(\operatorname{\mathsf{refl}}_{\mathbb{C}}))$. Computation rule: F maps refl to refl:

$$\frac{}{[z:\mathbb{C}]\top\vdash\mathsf{map}_F[\mathsf{refl}_z]=F^*(\mathsf{refl}_z):\mathsf{hom}_{\mathbb{D}}(F^\mathsf{op}(\overline{x}),F(x))}}\;(J\text{-}\mathsf{comp})$$

Functoriality holds, since both top sides = $map_F[g]$ via computation rules:

$$\frac{[z:\mathbb{C},c:\mathbb{C}] \qquad \qquad g:\hom(\overline{z},c)\vdash \mathsf{map}_F[\mathsf{refl}_z\,;g]=\mathsf{refl}_{F(z)}\,;\,\mathsf{map}_F[g]:\hom(\overline{z},d)}{[a:\mathbb{C},b:\mathbb{C},c:\mathbb{C}]\,\,f:\hom(\overline{a},b),g:\hom(\overline{b},c)\vdash \mathsf{map}_F[f\,;g]=\mathsf{map}_F[f]\,;\,\mathsf{map}_F[g]:\hom(\overline{a},d)} (J\text{-eq})$$

Andrea Laretto **TSEM 2024** October 24th, 2024 32 / 50 • Transporting points of predicates (i.e., presheaves) along directed equalities is the functorial action of $P: \mathbb{C} \to \mathbf{Set}$:

Example (Transporting along directed equality)

For any $P: \mathbb{C} \to \mathbf{Set}$:

$$\frac{\overline{[z:\mathbb{C}]\ P(z)\vdash P(z)}}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C}]\ \hom(a,b),P(\overline{a})\vdash P(b)}\ (J)$$

Computation rule for subst[f, k] := J(id):

"transporting a point of P(a) along the path refl_z is the identity":

$$\overline{[z:\mathbb{C}]\,k:P(z)\vdash \mathsf{subst}[\mathsf{refl}_z,k]=k:P(z)} \ \, \big(J\text{-}\mathsf{comp}\big)$$

Andrea Laretto TSEM 2024 October 24th, 2024 33 / 50

Directed type theory – Groupoidal case

• When $\mathbb{A} \cong \mathbb{A}^{op}$ is a groupoid, hom is the characterization of symmetric equality as left adjoint to reindexing on diagonals. (with Frobenius)

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom(a,b), \ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ (\hom)$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a \ \cong \ b, \ \Gamma(b,a,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

• The *proof-relevant directness* of **Cat** seems to be the fundamental obstacle to a fully compositional theory of dinaturals:

Theorem (Dinaturals in groupoids compose) ("")

Given a groupoid $\mathbb{C} \cong \mathbb{C}^{op}$ and any \mathbb{D} for $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$, all dinaturals $\alpha : F \xrightarrow{\cdot \cdot \cdot} G$, $\beta : G \xrightarrow{\cdot \cdot \cdot} H$ compose.

Can the directed rule also be characterized as an adjunction? Yes!...

Directed equality as relative left adjoint

Symmetric equality is a left adjoint to identifying two variables together.

Claim: *Directed equality* is a *relative* left adjoint to identifying two *natural* variables together with a *dinatural* one.

- The relative part imposes the syntactic restrictions of directed J: the relative functor is just reindexing along projections.
- Unfortunately, for Cat we can only state this as a relative para-adjunction, because of compositionality of dinaturals.
- Para- indicates that composition is partial: paracategories, parafunctors, para-adjunctions. [Hermida 2003]

Background: Relative adjunctions

Definition (Left relative adjunction [Arkor 2024])

Consider this situation of functors and categories:

We say that L is the J-relative left adjoint to R, written $L \dashv_J R$, if

$$\mathbb{D}(L(x),y)\cong \mathbb{X}(J(x),R(y))$$

is a bijection natural in both arguments $x : \mathbb{C}, y : \mathbb{D}$.

Directed equality as adjoint (1)

Theorem (Directed equality as relative left adjoint) ($ilde{\!\!\!/}\!\!/\!\!\!\sim$)

- ▶ Let $[\mathbb{A}^{op} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ the paracategory where morphisms are dinats natural in \mathbb{A}^{op} , \mathbb{A} and dinatural in \mathbb{C} , and $[\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ as dinaturals.
- ▶ Take the parafunctor $\pi_{\mathbb{A}}^* : [\mathbb{C}^{\diamond}, \textbf{Set}] \to [\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ defined in the intuitive way by precomposing with projections.
- ▶ There is a dipresheaf $hom_{\mathbb{A}} \in [\mathbb{A}^{op} \times \mathbb{A}, \textbf{Set}]$ such that the functor

$$\hom_{\mathbb{A}} \times - : [\mathbb{C}^{\diamond}, \mathbf{Set}] \to [\mathbb{A}^{\mathsf{op}} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \mathbf{Set}]$$
$$\hom_{\mathbb{A}} \times \Gamma := (\overline{a}, a, \overline{x}, x) \mapsto \hom(\overline{a}, a) \times \Gamma(\overline{x}, x),$$
$$(\hom_{\mathbb{A}} \times \alpha_{x})_{abc} := \lambda(e \in \hom(a, b), k \in \Gamma(c, c)).(e, \alpha_{c}(k))$$

determines a $\pi_{\mathbb{A}}^*$ -relative left adjoint to the functor

$$egin{aligned} \Delta_{\mathbb{A}} imes-: [\mathbb{A}^{\mathsf{op}} imes\mathbb{A} imes\mathbb{C}^{\diamond}, extbf{\it Set}] & \rightarrow [\mathbb{A}^{\diamond} imes\mathbb{C}^{\diamond}, extbf{\it Set}] \ \Delta_{\mathbb{A}} imes P &:= P \ (\Delta_{\mathbb{A}} imeslpha_{abc})_{xx} := lpha_{xxx}. \end{aligned}$$

Directed equality as adjoint (2)

Theorem (Directed equality as relative left adjoint, cont.) (extstyle extstyle ex

► Thus the left relative adjointness situation

$$\hom_{\mathbb{A}} \times - \dashv_{\pi_{\mathbb{A}}^*} \Delta_{\mathbb{A}} \times -$$

is as follows:

Proof. The required isomorphism is the following:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \quad (\pi_{\mathbb{A}}^*(\varGamma)) = \varGamma(\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom_{\mathbb{A}}(a,b) \times \varGamma(\overline{x},x) \vdash P(a,b,\overline{x},x)} \ \text{(hom-rel-adj)}$$

which is an instance of directed J, where Γ is mute in $\overline{a}:\mathbb{A},\overline{b}:\mathbb{A}^{\mathsf{op}}$. (hom-rel-adj) \Leftrightarrow (hom): $\mathit{pick}\ P := \Gamma^{\mathsf{op}}(b,a,x,\overline{x}) \Rightarrow P(a,b,\overline{x},x)$, use (exp).

(Co)end calculus via dinaturality

- What are the quantifiers of directed type theory?
- Dinaturality allows us to view (co)ends as "adjoints" to weakening:

Theorem (Ends and coends as quantifiers) ((")

Take $P: \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$, and the functor precomposing with projections

$$\begin{split} \pi_{\mathbb{A}}^*(P) : \mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond} &\to \textit{Set} \\ \pi_{\mathbb{A}}^*(P) := (\overline{a}, a, \overline{x}, x) &\mapsto P(\overline{x}, x), \end{split}$$

There are isos of sets of dinats, natural in $P: \mathbb{C}^{\diamond} \to \textbf{Set}, Q: \mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond} \to \textbf{Set}$:

$$\frac{[a:\mathbb{A},x:\mathbb{C}]\ P(\overline{x},x)\vdash Q(\overline{a},a,\overline{x},x)}{[x:\mathbb{C}]\ P(\overline{x},x)\vdash \int_{a:\mathbb{A}}Q(\overline{a},a,\overline{x},x)} \text{ (end)}$$

$$\frac{[x:\mathbb{C}]\ \int^{a:\mathbb{A}}Q(\overline{a},a,\overline{x},x)\vdash P(\overline{x},x)}{\overline{[a:\mathbb{A},x:\mathbb{C}]}\ Q(\overline{a},a,\overline{x},x)\vdash P(\overline{x},x)} \text{ (coend)}$$

(Co)ends as quantifiers

Theorem (Beck-Chevalley and Frobenius condition for (co)ends)

(Co)ends satisfy a Beck-Chevalley condition: for $F: \mathbb{C}^{\diamond} \to \mathbb{D}$ there is a strict isomorphism in the (large) functor category $[[\mathbb{A}^{\diamond} \times \mathbb{D}^{\diamond}, \textbf{Set}], [\mathbb{D}^{\diamond}, \textbf{Set}]]$

$$\int_{\mathbb{A}[\mathbb{D}]} \mathbf{F}^* \cong (\mathrm{id}_{\mathbb{A}^{\diamond}} \times F)^* \mathbf{F}_{\mathbb{A}[\mathbb{C}]}$$

where $\int_{\mathbb{A}[\mathbb{C}]}$, $\int^{\mathbb{A}[\mathbb{C}]} : [\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \mathbf{Set}] \to [\mathbb{C}^{\diamond}, \mathbf{Set}]$ are parametric (co)ends, and $F^* : [\mathbb{D}^{\diamond}, \mathbf{Set}] \to [\mathbb{C}^{\diamond}, \mathbf{Set}]$ is precomposition with F^{\diamond} . Moreover, a Frobenius condition for coends holds: there is an isomorphism natural in $\Gamma : \mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond} \to \mathbf{Set}, P : \mathbb{C}^{\diamond} \to \mathbf{Set}$,

$$\int^{\mathbb{A}[\mathbb{C}]} (\pi_{\mathbb{A}[\mathbb{C}]}^*(P) \wedge \Gamma) \cong \pi_{\mathbb{A}[\mathbb{C}]}^*(P) \wedge \int^{\mathbb{A}[\mathbb{C}]} (\Gamma),$$

where $- \wedge -: [\mathbb{C}, \textbf{Set}] \times [\mathbb{C}, \textbf{Set}] \to [\mathbb{C}, \textbf{Set}]$ is the pointwise product. **Proof.** Beck-Chevalley is easy. For Frobenius, we can use logical rules to mirror the argument in [Jacobs 1999, 1.9.12(i)] with exponentials.

Our rules, so far

Rules for (co)ends as quantifiers + directed equality for logical proofs of:

- (Co)Yoneda,
- Adjointess of Kan extensions via (co)ends,
- Presheaves are closed under exponentials,
- Associativity of composition of profunctors,
- Right lifts in profunctors,
- (Co)ends preserve limits,
- Adjointness of (co)ends in natural transformations,
- Characterization of dinaturals as certain ends,
- Frobenius property of (co)ends using exponentials.

41/50

- Our rules mirror everyday (co)end calculus:
 - use Yoneda via a chain of isomorphisms in **Set**, either:
 - to prove (natural) isomorphisms of objects/functors.
 - to show adjunctions.
- Advantages of using our rules:
 - Structural properties are automatic because of contexts (e.g., Fubini)
 - hom is seen as directed equality, using dinaturality.
 - The rules are not ad-hoc lemmas, but follow the logical presentation.
- This technique sidesteps compositionality of dinaturals, no equational theory needed.
- Note: isomorphisms must end in sets of naturals, since composition is needed for Yoneda (no notion of "dinatural isomorphism")

On naturality of the rules

Crucially, we need to ensure naturality of the rules:

Theorem (Naturality for rules) ("")

All our isomorphisms of sets of dinats are natural in each functor involved. **Proof.** Easy to verify. This relies on the existence of a functor

$$\textit{Dinats}: [\mathbb{C}^{\mathsf{op}} \times \mathbb{C}, \mathbb{D}]^{\mathsf{op}} \times [\mathbb{C}^{\mathsf{op}} \times \mathbb{C}, \mathbb{D}] \to \textit{Set}$$

defined on functor categories, where morphisms are <u>naturals</u> (i.e., they always compose with dinaturals.)
For instance, the (exp) rule:

$$Dinats(-1 \times -2, -3) \cong Dinats(-2, -1) \Rightarrow -3)$$

as functors $[\mathbb{C}^{\mathsf{op}} \times \mathbb{C}, \mathbb{D}]^{\mathsf{op}} \times [\mathbb{C}^{\mathsf{op}} \times \mathbb{C}, \mathbb{D}] \times [\mathbb{C}^{\mathsf{op}} \times \mathbb{C}, \mathbb{D}] \to \textit{Set}$, where $-_1 \times -_2$ is the pointwise product, $-_1 \Rightarrow -_3$ is the pointwise hom.

(Co)end calculus with dinaturality (1)

$$\begin{array}{c} \text{Yoneda lemma: } (P, \varGamma : \mathbb{C} \to \textbf{Set}) \\ & \underbrace{ \begin{bmatrix} a : \mathbb{C} \end{bmatrix} \ \varGamma (a) \vdash \int_{x : \mathbb{C}} \hom^{\text{op}}_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x) }_{\left[a : \mathbb{C}, x : \mathbb{C} \right] \ \varGamma (a) \vdash \hom^{\text{op}}_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x)} \\ & \underbrace{ \frac{[a : \mathbb{C}] \ \hom_{\mathbb{C}}(\overline{a}, x) \times \varGamma (a) \vdash P(x)}{\left[z : \mathbb{C} \right] \ \varGamma (z) \vdash P(z)}} \ \text{(hom)} \end{array} }_{\left[z : \mathbb{C} \right] \ \varGamma (z) \vdash P(z)} \end{array}$$

CoYoneda lemma:

$$\frac{[a:\mathbb{C}] \ \int^{x:\mathbb{C}} \hom_{\mathbb{C}}(\overline{x},a) \times P(x) \vdash \Gamma(a)}{\underline{[a:\mathbb{C},x:\mathbb{C}] \ \hom_{\mathbb{C}}(\overline{a},x) \times P(a) \vdash \Gamma(x)}} \ \text{(coend)}}{[z:\mathbb{C}] \ P(z) \vdash \Gamma(z)} \ \text{(hom)}$$

Andrea Laretto TSEM 2024 October 24th, 2024 44 / 50

(Co)end calculus with dinaturality (2)

Presheaves are cartesian closed: $(\Gamma, A, B : \mathbb{C} \to \mathbf{Set})$

$$[x:\mathbb{C}]\ \varGamma(x) \vdash (A \Rightarrow B)(x) \\ := \ \operatorname{Nat}(\hom_{\mathbb{C}}(x,-) \times A, B) \\ \cong \int_{y:\mathbb{C}} \hom_{\mathbb{C}}^{\operatorname{op}}(x,\overline{y}) \times A^{\operatorname{op}}(\overline{y}) \Rightarrow B(y) \\ \frac{\overline{[x:\mathbb{C},y:\mathbb{C}]\ \varGamma(x) \vdash \hom_{\mathbb{C}}^{\operatorname{op}}(x,\overline{y}) \times A^{\operatorname{op}}(\overline{y}) \Rightarrow B(y)}}{[x:\mathbb{C},y:\mathbb{C}]\ A(y) \times \hom_{\mathbb{C}}(\overline{x},y) \times \varGamma(x) \vdash B(y)} \ (\operatorname{coend+frob.})} \ (\operatorname{exp}) \\ \frac{\overline{[y:\mathbb{C}]\ A(y) \times \left(\int^{x:\mathbb{C}} \hom_{\mathbb{C}}(\overline{x},y) \times \varGamma(x) \right) \vdash B(y)}}}{[y:\mathbb{C}]\ A(y) \times \varGamma(y) \vdash B(y)} \ (\operatorname{coYoneda})$$

Note: (hom) cannot be applied, y appears positive in context.

 \to use (coYoneda) "extensionally", i.e., $\Gamma\cong$ a certain coend, independently of the point in which it is evaluated.

Note: not obvious how to capture this via **Prof** as proarrow equipment.

Andrea Laretto TSEM 2024 October 24th, 2024 45 / 50

(Co)end calculus with dinaturality (3)

Right Kan extensions via ends are right adjoints to precomposition with $F: \mathbb{C} \to \mathbb{D}$ $(P: \mathbb{C} \to \mathbf{Set}, \Gamma: \mathbb{D} \to \mathbf{Set})$:

$$\begin{aligned} & [y:\mathbb{D}] \ \varGamma(y) \vdash (\mathsf{Ran}_F P)(y) \\ & := \int_{x:\mathbb{C}} \mathsf{hom}^{\mathsf{op}}_{\mathbb{D}}(y, F^{\mathsf{op}}(\overline{x})) \Rightarrow P(x) \\ & \overline{[x:\mathbb{C},y:\mathbb{D}] \ \varGamma(y) \vdash \mathsf{hom}^{\mathsf{op}}_{\mathbb{D}}(y, F^{\mathsf{op}}(\overline{x})) \Rightarrow P(x)}} \ \underline{[x:\mathbb{C},y:\mathbb{D}] \ \mathsf{hom}_{\mathbb{D}}(\overline{y}, F(x)) \times \varGamma(y) \vdash P(x)}} \ \underline{[x:\mathbb{C}] \ \int^{y:\mathbb{D}} \mathsf{hom}_{\mathbb{D}}(\overline{y}, F(x)) \times \varGamma(y) \vdash P(x)} \ \underline{[x:\mathbb{C}] \ \varGamma(F(x)) \vdash P(x)}} \ \mathsf{(coYoneda)} \end{aligned}$$

Andrea Laretto TSEM 2024 October 24th, 2024 46 / 50

(Co)end calculus with dinaturality (4)

Composition (on both sides) in **Prof** has a right adjoint (right lifts). $(P: \mathbb{C}^{\mathsf{op}} \times \mathbb{A} \to \mathsf{Set}, Q: \mathbb{A}^{\mathsf{op}} \times \mathbb{D} \to \mathsf{Set}, \ \Gamma: \mathbb{C}^{\mathsf{op}} \times \mathbb{D} \to \mathsf{Set})$:
$$\begin{split} [x:\mathbb{C}^{\mathsf{op}},z:\mathbb{D}] & \quad (P\;;-)(Q)(x,z) := \\ & \quad \int^{y:\mathbb{A}} P(x,y) \times Q(\overline{y},z) \vdash \Gamma(x,z) \end{split}$$
 $\frac{ (x,z) \cdot \mathbb{D}[P(x,y) \times Q(y,z) + P(x,z)]}{[x:\mathbb{C}^{op},y:\mathbb{A},z:\mathbb{D}]Q(\overline{y},z) \vdash P^{op}(\overline{x},\overline{y}) \Rightarrow \Gamma(x,z)} \text{ (exp)}$ $[y:\mathbb{A},z:\mathbb{D}]\ Q(\overline{y},z)\vdash \int_{x:\mathbb{C}}P^{\sf op}(\overline{x},\overline{y})\Rightarrow \varGamma(x,z)$ $[y:\mathbb{A}^{\mathsf{op}},z:\overline{\mathbb{D}}]\ Q(y,z)\vdash\int_{\mathbb{R}^{\mathcal{C}}}P^{\mathsf{op}}(\overline{x},y)\Rightarrow\Gamma(x,z)$ $:= \mathsf{Rift}_P(\Gamma)(y,z)$

the last (end) can be applied since $x : \mathbb{C}$ does not appear on the left.

Andrea Laretto TSEM 2024 October 24th, 2024 47 / 50

(Co)end calculus with dinaturality (5)

Fubini for ends
$$(\Gamma: \mathbf{Set}, P: (\mathbb{C}^{\mathsf{op}} \times \mathbb{C}) \times (\mathbb{D}^{\mathsf{op}} \times \mathbb{D}) \to \mathbf{Set})$$

$$= \underbrace{\frac{[] \ \Gamma \vdash \int_{x:\mathbb{C}} \int_{y:\mathbb{D}} P(\overline{x}, x, \overline{y}, y)}{[x:\mathbb{C}] \ \Gamma \vdash \int_{y:\mathbb{D}} P(\overline{x}, x, \overline{y}, y)}}_{[x:\mathbb{C}, y:\mathbb{D}] \ \Gamma \vdash P(\overline{x}, x, \overline{y}, y)} \text{ (end)}$$

$$= \underbrace{\frac{[x:\mathbb{C}, y:\mathbb{D}] \ \Gamma \vdash P(\overline{x}, x, \overline{y}, y)}{[y:\mathbb{D}, x:\mathbb{C}] \ \Gamma \vdash P(\overline{x}, x, \overline{y}, y)}}_{[y:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)} \text{ (end)}$$

$$= \underbrace{\frac{[y:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{D}} \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)}_{[x:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{D}} \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)}_{[x:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{D}} \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)} \text{ (end)}$$

Andrea Laretto TSEM 2024 October 24th, 2024 48 / 50

(Co)end calculus with dinaturality (6)

Composition of profunctors is associative: $(\Gamma : \mathbb{A}^{op} \times \mathbb{D} \to \mathbf{Set}, P : \mathbb{A}^{op} \times \mathbb{B} \to \mathbf{Set}, Q : \mathbb{B}^{op} \times \mathbb{C} \to \mathbf{Set}, R : \mathbb{C}^{op} \times \mathbb{D} \to \mathbf{Set})$

Andrea Laretto TSEM 2024 October 24th, 2024 49/50

Conclusion and future work

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

Future work:

- **1** Big piece missing from the story: compositionality of dinaturals.
 - ► Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
 - ▶ Find suitable structures that axiomatize sufficient conditions for composition (e.g., in the style of operads/multicategories but with explicit management of variances and variables).
- 2 Everything shown so far can be done in **Pos**, where all dinats compose.
 - ▶ This can be used to characterize *the directed logic of posets*.
 - ► Axiomatize this logic of directed equality via a doctrinal approach.
- 3 Claim: dinaturality arises whenever a notion of variance is involved.
 - ▶ instead of Cat, pick V-Cat for suitable V: e.g., a theory of metric spaces.

The \int .

Formalization: github.com/iwilare/dinaturality

Paper: "Directed equality with dinaturality" (arXiv:2409.10237)

Thank you for the attention!

- [Caccamo-Winskel 2001]: axiomatic system to manipulate (co)ends; quantifier exchange is postulated, no type theory presented.
- [Licata 2011]: a model in Cat with directed equality defined judgementally and not propositionally.
- [Nuyts 2015]: a preliminary system of contexts variances is given, with no formal syntax nor models.
- [North 2016]: dependent type theory, but uses groupoid structure to type the refl rule. We use dinaturality precisely to avoid this problem.
- [Riehl-Shulman 2017]: a synthetic theory of $(\infty, 1)$ -categories with a directed interval type, no model in Cat.
- [New-Licata 2022]: a DTT with models in virtual equipments, with directed equality and quantifiers, but very different syntax w.r.t. MLTT
- [Ahrens 2023]: judgemental structure for directed equality reminiscent of a bicategorical model.