$\begin{array}{c} Introduction \ to \ Real \ Analysis \\ {}_{Transcribed \ by \ Alex \ Menendez \ ({\tt alexm26@uw.edu})} \end{array}$

Abstract

These are lecture notes for Introductory Real Analysis (Math 327) at the University of Washington. Lectures were given by Fanny Dos Reis (fdr3@math.washington.edu).

Contents

1	Fields 1.1 The Commutative Field 1.2 The Totally-Ordered Field	2 2 3
2	Defining $\mathbb N$	4
3	Defining $\mathbb Q$	5
4	The Notion of sup and inf	5
	Sequences 5.1 Convergence	6
6	Open, Closed Sets 6.1 Accumulation Points	7
7	Cauchy Sequences	9
8	Series 8.1 Partial Sums	9 9
9	Pointwise and Uniform Convergence	11

1 Fields

1.1 The Commutative Field

Definition 1. $(\mathcal{F}, +, \cdot)$ is a commutative field if it has the following properties:

- 1. Associativity of addition: $\forall a, b, c \in \mathcal{F}$, one has that (a + b) + c = a + (b + c).
- 2. Associativity of multiplication: $\forall a, b, c \in \mathcal{F}$, one has that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 3. Commutativity of addition: $\forall a, b \in \mathcal{F}$, one has that a + b = b + a.
- 4. Commutativity of multiplication: $\forall a, b \in \mathcal{F}$, one has that $a \cdot b = b \cdot a$.
- 5. Distributivity: $\forall a, b, c \in \mathcal{F}$, one has that $a \cdot (b + c) = a \cdot b + a \cdot c$.
- 6. There is an additive identity in \mathcal{F} , denoted 0, such that $\forall a \in \mathcal{F}$, one has that 0+a=a.
- 7. There is a multiplicative identity in \mathcal{F} , denoted 1, such that $\forall a \in \mathcal{F}$, one has that $1 \cdot a = a$.
- 8. There is an additive inverse in \mathcal{F} , denoted -a, such that $\forall a \in \mathcal{F}$, one has that (-a) + a = 0.
- 9. There is a multiplicative inverse in \mathcal{F} , denoted a^{-1} , such that $\forall a \in \mathcal{F}$, one has that $a^{-1} \cdot a = 1$.

EXAMPLES:

- 1. \mathbb{R} is a commutative field.
- 2. \mathbb{Z} is not a commutative field; for any $x \in \mathbb{Z}$, one has that the multiplicative inverse $x^{-1} \notin \mathbb{Z}$.
- 3. $\mathbb{R}(x) = \left\{ \frac{a_0 + a_1 x + \ldots + a_n x^n}{b_0 + b_1 x + \ldots + b_n x^n} \ \middle| \ (a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_n) \in \mathbb{R} \right\}$ is a commutative field.

Proof. Let $p(x) = a_0 + a_1x + \ldots + a_nx^n$ and $q(x) = b_0 + b_1x + \ldots + b_nx^n$. Commutativity, associativity, and the distributive property are trivial. In particular,

- There is an additive identity: $\frac{p(x)}{q(x)} + \frac{0}{q(x)} = \frac{p(x)}{q(x)}$
- There is a multiplicative identity: $\left(\frac{p(x)}{q(x)}\right)\left(\frac{\bar{p}(x)}{\bar{q}(x)}\right) = \frac{p(x)}{q(x)}$ for $\bar{p}(x) = \bar{q}(x)$
- There is an additive inverse: $\frac{p(x)}{q(x)} + \frac{-p(x)}{q(x)} = \frac{0}{q(x)} = 0$
- There is a multiplicative inverse: $\left(\frac{p(x)}{q(x)}\right)\left(\frac{q(x)}{p(x)}\right) = 1$

THM 1. The additive identity is unique.

Proof. Let 0_1 and 0_2 be additive identities. For any $a \in \mathcal{F}$, one has that $a + 0_1 = a$ and $a + 0_2 = a$. In particular, $0 = \mathcal{F}$, so $0 + 0_1 = 0$ and $0 + 0_2 = 0$ and so $0 + 0_1 = 0 + 0_2$. But, for any $a \in \mathcal{F}$, one finds that 0 + a = a and so $0 + 0_1 = 0 + 0_2 \Longrightarrow 0_1 = 0_2$, as required.

THM 2. The multiplicative dentity is unique.

Proof. Let e and e' be multiplicative identities. By definition, one has that $e' = e \cdot e' = e' \cdot e = e$, as required.

THM 3. For any $a \in \mathcal{F}$, one has that $a \cdot 0 = 0$.

Proof.
$$a \cdot 0 = a(0+0) = (a \cdot 0) + (a \cdot 0)$$
 and so $(-a \cdot 0) + (a \cdot 0) + (a \cdot 0) = (-a \cdot 0) + (a \cdot 0) \Longrightarrow a \cdot 0 = 0$.

Remark 1. This is a consequence of \mathcal{F} being a commutative field; it is not a general property.

THM 4. (-1)(-1) = 1

Proof. By the previous result, we know that $-1 \cdot 0 = 0$ and that (-1) + 1 = 0. Thus, $(-1) \cdot 0 = (-1)(-1 + 1) = (-1)(-1) + (-1)(1) = (-1)(-1) + (-1) = 0$. Adding 1 to both sides gives (-1)(-1) = 1, as required.

Remark 2. Once again, this is simply a consequence of \mathcal{F} being commutative.

THM 5. The additive inverse of (a + b) is (-a) + (-b).

Proof. Let I be the additive inverse of (a+b). By definition, we know that $(a+b)+I=0 \Longrightarrow a+b+I=0$. Adding (-a) to both sides yields b+I=-a, and adding (-b) to both sides yields I=(-a)+(-b), as required.

THM 6. The multiplicative inverse of $a \cdot b$ is $(a^{-1})(b^{-1})$.

Proof. The proof follows in exactly the same manner as in the proof of Theorem 5.

1.2 The Totally-Ordered Field

Definition 2. A commutative field \mathcal{F} is totally-ordered if, for every $a \in \mathcal{F}$,

- 1. Exactly one of the following is true:
 - a = 0
 - *a* > 0
 - $\bullet \ -a > 0$
- 2. For every a > 0 and every b > 0, one has that a + b > 0.
- 3. For every a > 0 and every b > 0, one has that $a \cdot b > 0$.

As a consequence, for every a and b within \mathcal{F} , one finds that

- a > b if a b > 0.
- a < b if b a > 0.
- $a \ge b$ if a b > 0 or a b = 0.
- b > a if b a > 0 or b a = 0.
- If $a \neq 0$, $a^2 > 0$.

THM 7. If a > b and c > 0, then ac > bc.

Proof. Since a > b, one has that a - b > 0. We also know that c > 0 in which case $c(a - b) > 0 \Longrightarrow ac - bc > 0 \Longrightarrow ac > bc$. \square

THM 8. If a > b, then for any $c \in \mathcal{F}$, one has that a + c > b + c

Proof. Since a > b, one has that a - b > 0. It follows that $(a - b) + (c - c) > 0 \Longrightarrow (a + c) - (b + c) > 0 \Longrightarrow a + c > b + c$. \square

THM 9. If a > b and b > c, then a > c.

Proof. Since a-b>0 and b-c>0, we can take $(a-b)+(b-c)>0 \Longrightarrow a+(b-b)-c>0 \Longrightarrow a-c>0 \Longrightarrow a>c$. \square

Definition 3. For any $a \in \mathcal{F}$, the absolute value of a, denoted |a|, is defined as:

$$|a| = \begin{cases} a & \text{if } a > 0\\ 0 & \text{if } a = 0\\ -a & \text{if } a < 0 \end{cases}$$

Proposition 1. $|a| \cdot |b| = |ab|$

THM 10. Triangle Inequality: given a and b in \mathcal{F} , we have $|a+b| \leq |a| + |b|$.

Proof. We will break down the proof into cases:

• Take a > 0 and b > 0. Surely, then, |a| = a and |b| = b and so |a| + |b| = a + b. Similarly, since a and b are both positive, (a + b) > 0 and so |a + b| = a + b. Thus, we get |a + b| = |a| + |b|.

- Take -a > 0 and -b > 0. It follows that |a| = -a and |b| = -b and so |a| + |b| = (-a) + (-b) = -(a+b). By the same token, since -a > 0 and -b > 0, it holds that $(-a) + (-b) > 0 \Longrightarrow -(a+b) > 0$ and so |a+b| = -(a+b). Thus, |a+b| = |a| + |b|.
- Without loss of generality, take a > 0 and -b > 0. It follows that |a| = a and |b| = -b and so |a| + |b| = a + (-b). Now, since a > 0 and -b > 0 we have to be careful about what assumptions we make about |a + b| in particular, we find

$$|a+b| = \begin{cases} a+b & \text{if } (a+b) > 0\\ -(a+b) & \text{if } -(a+b) > 0 \end{cases}$$

But, we do know that, since a > 0, one has a > -a and similarly, since -b > 0, one has -b > b. Thus, a + (-b) > a + b and a + (-b) > (-a) + (-b) = -(a+b). In both cases, |a| + |b| > |a+b| under these assumptions.

In summary, it is clear that $|a+b| \le |a| + |b|$, as required.

Corollary 1. $|a - b| \le |a| + |b|$.

Corollary 2. $||a| + |b|| \le |a - b|$.

THM 11. Axiom of Continuity: Let \mathcal{F} be a totally-ordered, commutative field. If there are sets L and R so that

- L and R are nonempty
- Any element of \mathcal{F} is either in L or in R.
- For any $x \in L$ and $y \in R$, it holds that x < y

Then there exists a cut number, c, so that every x < c belongs to L and every y > c belongs to R.

Proposition 2. Archimedean Law: For any $a \in \mathbb{R}$ and $b \in \mathbb{R}$ where a > 0 and b > 0, there exists an $n \in \mathbb{N}$ so that na > b.

Proposition 3. The cut number c is unique.

Proof. Assume there are two cut numbers c_1 and c_2 and, without loss of generality, that $c_1 < c_2$. It follows that $c_1 < \frac{c_1 + c_2}{2} < c_2$. Now, since $c_1 < \frac{c_1 + c_2}{2}$, one finds that $\frac{c_1 + c_2}{2} \in R$. Alternatively, since $\frac{c_1 + c_2}{2} < c_2$, we see that $\frac{c_1 + c_2}{2} \in L$. This develops a contradiction, since we have identified an element of \mathcal{F} that is simultaneously in L and in R, which is impossible.

Proposition 4. If \mathcal{F} is a commutative, totally-ordered field that obeys the axiom of continuity, then \mathcal{F} is isomorphic to \mathbb{R} .

$\mathbf{2}$ Defining \mathbb{N}

The natural numbers, denoted \mathbb{N} , are often thought of as the "positive integers" or "counting numbers" – that is, $1, 2, 3, \ldots$

Definition 4. \mathbb{N} is the smallest set of numbers such that:

- $1 \in \mathbb{N}$
- if $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}$.

Proposition 5. Any natural number is greater than or equal to 1.

Proof. By definition, $1 \ge 1$. Now assume that $n \ge 1$. Since $1 \ge 0$, we find that $n + 1 \ge 1 + 0$, which is to say that $n + 1 \ge 1$, as required.

Proposition 6. For any $p \in \mathbb{N}$ and $m \in \mathbb{N}$ where m < p there exists a $k \in \mathbb{N}$ so that p = m + k.

Proposition 7. Let S be a nonempty set of natural numbers. S has a smallest element.

Proof. Let $T = \{n \mid \forall s \in S, n < s\}$. Since S is nonempty, there is a $s_0 \in S$ but in particular $s_0 \notin T$. So $T \neq \mathbb{N}$ – that is to say that T doesn't satisfy the definition of the natural numbers. So either $1 \notin T$ or there is a $p \in \mathbb{N}$ so that $p+1 \notin T$. But $1 \in T$ so it must be that there is a $p \in T$ so that $p+1 \notin T$. Possibly, however, $p+1 \in S$. We do know that for any $s \in S$, p < s. So there is a $s_1 \in S$ so that $p+1 \geq s_1$. So for any $s \in S$ p < s and thus there is no natural number between p and p+1. Also, for any $s \in S$, $s \geq p+1 \geq s_1$ and so s_1 is the smallest element.

3 Defining \mathbb{Q}

Definition 5. The rational numbers are the set of elements of the form $\pm p/q$ where $p \in \mathbb{N}$ and $q \in \mathbb{N}$. As a convention, 0 is a rational number.

THM 12. For any $a \in \mathbb{R}$ and for any $b \in \mathbb{R}$ so that a < b there exists a rational number between a and b.

4 The Notion of sup and inf

Definition 6. A bounded set is a set S such that for every $s \in S$, one has that $M \le s \le N$, or M < s < N.

Definition 7. Let S be a nonempty set.

- The least upper bound (LUB) of S, also called $\sup S$, is
 - an upper bound β . That is, for any $s \in S$, $s < \beta$.
 - $-\beta$ is the smallest upper bound. That is, any element smaller than β is not an upper bound.
- The greatest lower bound (GLB) of S, also called inf S, is
 - a lower bound α . That is, for any $s \in S$, $s \geq \alpha$.
 - $-\alpha$ is the largest lower bound. That is, any element larger than α is not a lower bound.

THM 13. If S is a nonempty, bounded set, then $\inf S$ and $\sup S$ are unique.

Proof. Sketch:

- To show that sup S is unique, use axiom of continuity with $L = \{x \mid x \text{ is not an upper bound of } S\}$ and $R = \{y \mid y \text{ is an upper bound of } S\}$.
- To show that inf S is unique, use axiom of continuity with $L = \{x \mid x \text{ is a lower bound of } S\}$ and $R = \{y \mid y \text{ is not a lower bound of } S\}.$

Show that, in each case, the cut number c is $\sup S$ or $\inf S$, and then show uniqueness.

5 Sequences

As a sequence is a function, it is necessary to first define a function:

Definition 8. A function $f: A \to B$ is a collection of (x, y) pairs such that $x \in A$ and $y \in B$.

- Any x belongs to at most one ordered pair.
- The domain of f is the set of all x that belong to an ordered pair.
- The range of f is the set of all y that belong to an ordered pair. That is, $Range(f) = \{y \mid y = f(x)\}.$

Definition 9. A sequence is a function $f: \mathbb{N} \to \mathbb{R}$ that consists of ordered pairs where the first coordinate is the term, whilst the second coordinate is the value of the term itself. That is, $(1, u_1), (2, u_2), \ldots, (n, u_n)$.

Proposition 8. A $u_n \in \mathbb{R}$ must be signed to every $n \in \mathbb{N}$, so a sequence $\{u_n\}$ is infinite.

5.1 Convergence

What does it mean when a sequence converges to a finite limit? To answer this question, we'll examine the meaning of

$$\lim_{n \to \infty} u_n = L$$

Definition 10. Convergence: For every $\epsilon > 0$, there exists an $M \in \mathbb{N}$ so that if n > M, one finds that $|u_n - L| < \epsilon$. That is, for large values of n beyond a specific threshold that depends on ϵ , u_n can be bounded to within ϵ units of L.

EXAMPLE. To show that $\lim_{n\to\infty}\frac{1}{n}=0$, we must find an M so that for any ϵ , if n>M then $\left|\frac{1}{n}\right|<\epsilon$.

Proof. We want $\frac{1}{n} < \epsilon$, which is to have $n > \frac{1}{\epsilon}$. So, given some $\epsilon > 0$ let $M = \frac{1}{\epsilon}$. Thus, if n > M, then $n > \frac{1}{\epsilon}$ which is to say that $\frac{1}{n} < \epsilon \Longrightarrow \left| \frac{1}{n} - 0 \right| < \epsilon$, as required.

Example.
$$\lim_{n \to \infty} \frac{2n+1}{3n+1} = \frac{2}{3}.$$

Proof. Let $\epsilon > 0$ be given and take $M = \frac{1}{3} \left(\frac{1}{3\epsilon} - 1 \right)$. Thus, if n > M, then

$$n > \frac{1}{3} \left(\frac{1}{3\epsilon} - 1 \right) \Longrightarrow 3n + 1 > \frac{1}{3\epsilon} \Longrightarrow \frac{1}{3(3n+1)} < \epsilon \Longrightarrow \left| \frac{1}{3(3n+1)} \right| < \epsilon \Longrightarrow \left| \frac{(6n+3) - (6n+2)}{3(3n+1)} \right| < \epsilon \Longrightarrow \left| \frac{2n+1}{3n+1} - \frac{2}{3} \right| < \epsilon$$

as required.

5.2 Divergence

Definition 11. Divergence: For every A > 0, there exists an $M \in \mathbb{N}$ so that if n > M, one finds that $u_n > A$.

Example. $\lim_{n \to \infty} n^2 + 5n = \infty$.

Proof. Let A > 0 be given and take M = A for which it follows that if n > M then $n > A \Longrightarrow 5n > A \Longrightarrow n^2 + 5n > A$, as required.

5.2.1 Special Case

Let $a \in \mathbb{R}$ be given so that

$$\lim_{n \to \infty} a^n = \begin{cases} \infty & \text{if } a > 1\\ 0 & \text{if } a < 1\\ 1 & \text{if } a = 1 \end{cases}$$

Proof. For the case when a=1, take M=0 and apply limit definition. For case where a>1, let $a=1+\delta$ and use Bernoulli principle that $a^n\geq 1+n\delta$. For case where a<1, apply limit definition.

5.3 Properties of Limits

Let $\{a_n\}$ and $\{b_n\}$ be two sequences such that $\lim_{n\to\infty}a_n$ and $\lim_{n\to\infty}b_n$ exist and are finite. We then have the following properties:

- 1. $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
- 2. $\lim_{n\to\infty} \lambda a_n = \lambda \lim_{n\to\infty} a_n$ for some $\lambda \in \mathbb{R}$
- 3. $\lim_{n \to \infty} a_n b_n = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right)$
- 4. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$ granted $\lim_{n \to \infty} b_n \neq 0$

Proof. We will prove some:

1. Take $\epsilon_b = \epsilon_a = \frac{\epsilon}{2}$ and $M = \max(M_a, M_b)$ and analyze $|(a_n - \alpha) + (b_n - \beta)| \ge |a_n - \alpha| + |b_n - \beta|$.

2. Know that $\lim_{n\to\infty} a_n = \alpha$, so for every $\epsilon_a > 0$ there is an M_a so that if $n > M_a \Longrightarrow |a_n - \alpha| < \epsilon_a$. We want to prove that for every $\epsilon > 0$, there is an M so that if $n > M \Longrightarrow |ca_n - c\alpha| < \epsilon$. This gives $|a_n - \alpha| < \frac{\epsilon}{|c|}$ for which we can take $\epsilon_a = \frac{\epsilon}{|c|}$ and $M = M_a$ and the result follows.

THM 14. Given three sequences $\{u_n\}$, $\{v_n\}$, and $\{w_n\}$ where $u_n \leq v_n \leq w_n$ and $\lim_{n\to\infty} u_n = \lim_{n\to\infty} w_n = L$, one has that $\lim_{n\to\infty} v_n = L$.

Definition 12. A sequence is

- increasing if for every $n \in \mathbb{N}$, $u_{n+1} > u_n$
- decreasing if for every $n \in \mathbb{N}$, $u_{n+1} < u_n$
- non-increasing if for every $n \in \mathbb{N}$, $u_{n+1} \leq u_n$
- non-decreasing if for every $n \in \mathbb{N}$, $u_{n+1} \ge u_n$

Definition 13. If a sequence is increasing or decreasing, it is called monotonic.

Proposition 9. If a sequence is monotonic and bounded, it is convergent.

6 Open, Closed Sets

Definition 14. A set U is open if, for every $x \in U$, there is a $\delta > 0$ so that $(x - \delta, x + \delta) \subset U$.

Definition 15. A set V is closed if V^c is open.

THM 15. If U and V are open sets, then $U \cup V$ is open.

Proof. We consider two possibilities:

- If $x \in U$, then there exists a $\delta_u > 0$ so that $(x \delta_u, x + \delta_u) \subset U$ since U is open. But since $U \subset U \cup V$, one finds that $(x \delta_u, x + \delta_u) \subset U \cup V$.
- If $x \in V$, then there exists a $\delta_v > 0$ so that $(x \delta_v, x + \delta_v) \subset V$ since V is open. But since $V \subset U \cup V$, one finds that $(x \delta_v, x + \delta_v) \subset U \cup V$.

Thus, for any $x \in U \cup V$, there is a $\delta > 0$ so that $(x - \delta, x + \delta) \subset U \cup V$.

The following results follow in exactly the same manner.

Proposition 10. If U and V are open sets, then $U \cap V$ is open.

Proposition 11. If U and V are closed sets, then $U \cup V$ is closed.

Proposition 12. If U and V are closed sets, then $U \cap V$ is closed.

6.1 Accumulation Points

Definition 16. Let S be a set. A point p is an accumulation point of S if, for every $\delta > 0$, the neighborhood $(p - \delta, p + \delta)$ contains an element of S that is not p itself.

Remark 3. p is not necessarily in S.

Example. The accumulation points of $S = \left\{ (-1)^n \left(1 + \frac{1}{n} \right) \; \middle| \; n \in \mathbb{N} \right\}$ are ± 1 .

THM 16. Bolzano-Weierstrass: If S is an infinite, bounded set, then S has at least one accumulation point.

Proof. Let m be a lower bound on S and M be an upper bound. Create a sequence of nested intervals $I_n = [a_n, b_n]$ where $I_0 = [a_0, b_0] = [m, M]$. Take $c_n = \frac{a_n + b_n}{s}$. Noting that $I_n \cap S$ has infinitely many elements, one finds that $([a_n, c_n] \cup [c_n, b_n]) \cap S$ has infinitely many elements. That is to say that at least one of $[a_n, c_n] \cap S$ or $[c_n, b_n] \cap S$ has infinitely many elements. If $[a_n, c_n] \cap S$ has infinitely many elements, than $I_{n+1} = [a_n, c_n]$. Otherwise, $I_{n+1} = [c_n, b_n]$. Thus, $b_n - a_n = \frac{M - m}{2^n}$ and so $\lim_{n \to \infty} b_n - a_n = 0$ and so $\bigcap_{n \in \mathbb{N}} I_n = \{p\}$. We must now show that p is an accumulation point. For any neighborhood $(p - \delta, p + \delta)$, insert a small interval $I_n \subset (p - \delta, p + \delta)$ so that I_n has infinitely many elements. By the definition of the limit, we know that $\frac{M - m}{2^n} \to 0$ implies that we can take $\epsilon = \delta$ for which there exists an M so that if n > M, one has that $\left|\frac{M - m}{2^n} - 0\right| < \delta$. For $n_0 > M$, I_{n_0} contains infinitely many elements of S, and since $\bigcap_{n \in \mathbb{N}} I_n = \{p\}$, $p \in I_n$ for all $n \in \mathbb{N}$. Surely, then, $p \in I_{n_0}$. Also, the width of I_{n_0} is strictly less than δ , and so $I_{n_0} \subset (p - \delta, p + \delta)$. And so $(p - \delta, p + \delta)$ has infinitely many elements of S contained within it. Pick some arbitrary $s_1 \in S \cap (p - \delta, p + \delta)$:

- If $s_1 \neq p$, then $s_1 \in S$ and $s_1 \in (p \delta, p + \delta)$, so p is an accumulation point.
 - If $s_1 = p$, then we may pick some $s_2 \neq s_1$ where $s_2 \in S$ and $s_2 \in (p \delta, p + \delta)$. Certainly $s_2 \neq p$ so p is once again an accumulation point.

THM 17. p is an accumulation point of S iff there exists a sequence of distinct terms that converge to p.

Example. We will re-visit $S = \left\{ (-1)^n \left(1 + \frac{1}{n} \right) \mid n \in \mathbb{N} \right\}$. Take n to be even, in which case

$$\lim_{n \to \infty} (-1)^n \left(1 + \frac{1}{n} \right) = 1$$

Alternatively, taking n odd gives

$$\lim_{n \to \infty} (-1)^n \left(1 + \frac{1}{n} \right) = -1$$

And so ± 1 are the accumulation points of S.

Proof. We prove two directions:

- \Longrightarrow : If p is an accumulation point of S then for every $\delta > 0$ there exists an element within $(p \delta, p + \delta)$ that is not p. Call this element s_1 . Now examine the neighborhood $\left(p \frac{|p s_1|}{2}, p + \frac{|p s_1|}{2}\right)$. There exists an s_2 within this neighborhood so that $s_2 \in S$ and $s_2 \neq s_1$. Thus, $s_1 \notin \left(p \frac{|p s_1|}{2}, p + \frac{|p s_1|}{2}\right)$ and $\frac{|p s_1|}{2} < \frac{1}{2}$. Now use induction to create a sequence s_n so that $\delta_n = \frac{|p s_n|}{2}$ which implies that $\delta_n < \frac{1}{2^{n-1}}$. So there exists an $s_n \in (p \delta_n, p + \delta_n)$ where $s_n \in S$ and $s_n \neq p$. So in particular $s_n \neq s_k$ for k < n. Thus, since $|p s_n| < \frac{1}{2^{n-1}}$ and so by squeezing, we have that $p s_n$ converges to 0 and so s_n converges to s_n .
- \sqsubseteq : For every $\delta > 0$, there exists an M so that n > M, $|s_n p| < \delta$, which implies that $p \delta < s_n < p + \delta$. In particular, $s_{N+1} \in S \cap (p \delta, p + \delta)$.
 - If $s_{N+1} \neq p$ then $s_{N+1} \in S \cap (p \delta, p + \delta) \setminus \{p\}$.
 - If $s_{N+1} = p$ then $s_{N+2} \neq s_{N+1}$ and so $s_{N+2} \neq p$. Thus, $s_{N+2} \in S \cap (p \delta, p + \delta) \setminus \{p\}$.

In either case, we have found an element in the desired interval that reveals that p is an accumulation point.

THM 18. Any bounded sequence has a convergent sub-sequence.

7 Cauchy Sequences

Definition 17. A sequence $\{u_n\}$ is Cauchy if for every $\epsilon > 0$, there is an $M \in \mathbb{N}$ so that if n > M and p > M, it holds that $|u_n - u_p| < \epsilon$.

Proposition 13. A sequence is convergent iff it is Cauchy.

Proof. We prove two directions:

- \Longrightarrow : Assume that $\{u_n\}$ is convergent that is, $\lim_{n\to\infty}u_n=L$. More formally, this indicates that for every $\epsilon_L>0$ there is an M_L so that if $n>M_L$ one has that $|u_n-L|<\epsilon_L$. In particular, re-name n as p in the premise so that if $p>M_L$ we have that $|u_p-L|<\epsilon_L$. Note that $u_n-u_p=(u_n-L)-(u_p-L)$ and by the triangle inequality, one has that $|u_n-u_p|\leq |u_n-L|+|u_p-L|$ which implies that $|u_n-u_p|<2\epsilon_L$. Take $\epsilon_L=\frac{\epsilon_c}{2}$ so that $|u_n-u_p|<\epsilon_c$, as required.
- \sqsubseteq : Take $\{u_n\}$ to be Cauchy so that for every $\epsilon_c > 0$, there is an $M_c > 0$ so that if $n > M_c$ and $p > M_c$ then $|u_n u_p| < \epsilon_c$. We first verify that $\{u_n\}$ is bounded. Take $\epsilon_c = L$, in which case there is an M_1 so that if $n > M_1$ and $p = M_1 + 1$ we have that $|u_n u_{M_1 + 1}| < 1$ so $u_{M_1 + 1} 1 < u_n < u_{M_1 + 1} + 1$ and so $\{u_n\}$ is bounded. We now verify that there is a convergent subsequence of $\{u_n\}$, which we shall call $\{(u_n)_k\}$. For every $\epsilon > 0$, there is an M_k so that if $n > M_k$ one has that $|(u_n)_k L| < \epsilon$. By the triangle inequality, we see that $|u_n L| = |(u_n (u_n)_k) + ((u_n)_k L)| \le |u_n L| + |(u_n)_k L| < \epsilon$, as required.

This result is very powerful, as we can now show that a sequence $\{u_n\}$ is Cauchy simply by showing convergence, rather than working off the definition.

EXAMPLE. $\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}}$ is a Cauchy sequence.

Proof. We know that $\lim_{n\to\infty}\frac{1}{n}=0$, and so since the sequence converges, it is Cauchy.

8 Series

8.1 Partial Sums

Let $\{u_n\}$ be a sequence and define $\{S_n\}$ as a sequence of partial sums where $S_n = \sum_{k=1}^n u_k = u_1 + u_2 + \ldots + u_n$. Note that this sum has finitely-many terms.

8.2 Defining a Series

To define a series, consider the partial sum S_n and let n tend to infinity: $\lim_{n\to\infty}\sum_{k=1}^n u_k = \sum_{n=1}^\infty u_n$. If it so happens that if

 $\lim_{n\to\infty} S_n \text{ is finite, then } \lim_{n\to\infty} S_n = \sum_{n=1}^{\infty} u_n.$

THM 19. Given a sequence $\{u_n\}$, if $\sum_{n=1}^{\infty} u_n$ converges, then $\lim_{n\to\infty} u_n = 0$.

Remark 4. We also find that, if $\lim_{n\to\infty} u_n \neq 0$, then $\sum_{n=0}^{\infty} u_n$ is divergent.

Proof. If $\sum_{n=1}^{\infty} u_n$ converges, then the sequence $S_n = \sum_{k=1}^n u_k$ converges to a finite limit. Thus, $\lim_{n \to \infty} S_n = L$ and so $\lim_{n \to \infty} S_{n-1} = L$. So,

$$\lim_{n \to \infty} \left(S_n - S_{n-1} \right) = L - L = 0$$

But also

$$S_n - S_{n-1} = (u_1 + u_2 + \ldots + u_{n-1} + u_n) - (u_1 + u_2 + \ldots + u_{n-1}) = u_n$$

And so
$$\lim_{n\to\infty} (S_n - S_{n-1}) = 0 \Longrightarrow \lim_{n\to\infty} u_n = 0.$$

THM 20. Given a sequence $\{u_n\}$ with non-negative terms, the series $\sum_{n=1}^{\infty} u_n$ converges iff $S_n = \sum_{k=1}^n u_k$ is bounded.

Proof. We prove two directions:

- \Longrightarrow : $\sum_{n=1}^{\infty} u_n$ converges, and so S_n converges. Thus, for every $\epsilon > 0$, there is an M so that if n > M one has that $|S_n L| < \epsilon$. This implies that any S_n with n > M is bounded between $L \epsilon$ and $L + \epsilon$, and any S_n with $n \leq M$ is a member of a finite set, so obviously there are finitely many of those. Thus, S_n is bounded.
- \sqsubseteq : S_n is bounded and so $u_n \ge 0$. Note that $S_n = u_1 + u_2 + \ldots + u_n$ and since S_n is bounded $m \le S_n \le M$. Observe that

$$S_{n+1} - S_n = (u_1 + u_2 + \dots + u_n + u_{n+1}) - (u_1 + u_2 + \dots + u_n) = u_{n+1}$$

But since $\{u_n\}$ only has non-negative terms, we see that $u_{n+1} \ge 0$ and so $S_{n+1} - S_n \ge 0 \Longrightarrow S_{n+1} \ge S_n$. Since S_n is bounded and monotone, we see that S_n converges to a finite limit.

THM 21. Let $\{u_n\}$ and $\{v_n\}$ be sequences with non-negative terms where, for every n, one has that $u_n \leq v_n$. We have the following:

- If $\sum v_n$ converges, then $\sum u_n$ converges.
- If $\sum u_n$ diverges, then $\sum v_n$ diverges.

THM 22. Let $\{u_n\}$ and $\{v_n\}$ be two non-negative sequences. If $\lim_{n\to\infty} \left(\frac{u_n}{v_n}\right) = L \neq 0$, then $\sum u_n$ and $\sum v_n$ are either both convergent or both divergent.

THM 23. If $\{u_n\}$ and $\{v_n\}$ are sequences with positive terms, then given that $\frac{u_{n+1}}{u_n} < \frac{v_{n+1}}{v_n}$ we then have

- $\sum v_n \ converges \Longrightarrow \sum u_n \ converges.$
- $\sum u_n \ diverges \Longrightarrow \sum v_n \ diverges.$

Definition 18. A geometric series takes the form $\sum_{n=0}^{\infty} a^n$.

- This series converges for |a| < 1.
- This series converges for $|a| \ge 1$.

Note that $S_n = \sum_{k=0}^{\infty} a^k = \frac{1-a^{n+1}}{1-a}$. Further observe that $\lim_{n\to\infty} S_n = \frac{1}{1-a}$. So, as a general rule,

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$$

Corollary 3. Let $\{u_n\}$ be a sequence with positive terms. If there is an r < 1 so that if $0 < \frac{u_{n+1}}{u_n} < r < 1$, then $\sum u_n$ converges. Alternatively, if there is an R > 1 so that if $\frac{u_{n+1}}{u_n} > R > 1$, then $\sum u_n$ diverges.

Corollary 4. Let $\{u_n\}$ be a sequence with positive terms, and assume that $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=L$.

- If L < 1, then $\sum u_n$ converges.
- If L > 1, then $\sum u_n$ diverges.
- If L=1, then nothing useful can be concluded.

Proposition 14. If f is integrable on any closed interval [0,c] and f is non-increasing (that is, $\forall x \leq y$ one has $f(x) \geq f(y)$) then $\sum_{n=1}^{\infty} f(n)$ and $\int_{0}^{\infty} f(t) dt$ are either both convergent or both divergent.

Proposition 15. The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for any $p \ge 2$.

Definition 19. A series $\sum u_n$ is absolutely convergent if $\sum |u_n|$ is convergent.

THM 24. A series that is absolutely convergent is convergent.

Definition 20. If $\sum u_n$ is convergent but not absolutely convergent, then it is conditionally convergent.

9 Pointwise and Uniform Convergence

Definition 21. Let $u_n(x)$ be a sequence of functions. We say $u_n(x)$ is pointwise convergent to L(x) on an interval I if, for every $x \in I$ and for every $\epsilon > 0$ there is an $M(x, \epsilon)$ so that if n > M then $|u_n(x) - L(x)| < \epsilon$.

Definition 22. Let $u_n(x)$ be a sequence of functions. We say $u_n(x)$ is uniformly convergent to L(x) on an interval I if, for every $\epsilon > 0$, there is an $M(\epsilon)$ so that if n > M then for every $x \in I$ one has $|u_n(x) - L(x)| < \epsilon$.

EXAMPLE.

- $f_n(x) = \sin\left(\frac{x}{n}\right)$ converges uniformly to f(x) = 0 on [0, 1].
- $g_n(x) = \left(x + \frac{1}{n}\right)^2$ converges pointwise to $g(x) = x^2$ on [0, 2].

THM 25. Let $u_n(x)$ be a sequence of continuous functions on an interval I. Also assume that $u_n(x)$ is also uniformly convergent to L(x) on I. If these conditions are satisfied, then L(x) is continuous.

Definition 23. $u_n(x)$ is continous at $x = x_0$ if $\lim_{x \to x_0} u_n(x) = u_n(x_0)$. That is to say that $\forall \epsilon > 0$ there exists an $\alpha > 0$ so that, if $|x - x_0| < \alpha$, then $|u_n(x) - u_n(x_0)| < \epsilon$.

Proof. Since $u_n(x)$ is uniformly convergent on I, we have that for every $\epsilon_1 > 0$, there is an M_1 so that if $n > M_1$ then for every $x \in I$ one has $|u_n(x) - L(x)| < \epsilon_1$. Now, take $\epsilon_1 = \epsilon/3$ and pick n = M + 1. Thus, for every $x \in I$, we see that $|u_n(x) - L(x)| < \epsilon/3$. In particular, this holds for $x = x_0$ so that $|u_n(x_0) - L(x_0)| < \epsilon/3$. But, we know that $u_n(x)$ is continuous at $x = x_0$ so for $\epsilon_2 = \epsilon/3$ there is an $\alpha > 0$ so that if $|x - x_0| < \alpha$ then $|u_n(x) - L(x)| < \epsilon/3$. Also observe that

$$|L(x) - L(x_0)| = |L(x) - u_n(x) + u_n(x) - u_n(x_0) + u_n(x_0) - L(x_0)|$$

$$\implies |L(x) - L(x_0)| \le \underbrace{|L(x) - u_n(x)|}_{< \epsilon/3} + \underbrace{|u_n(x) - u_n(x_0)|}_{< \epsilon/3} + \underbrace{|u_n(x_0) - L(x_0)|}_{< \epsilon/3}$$

$$\implies |L(x) - L(x_0)| < \epsilon$$

THM 26. Let $u_n(x)$ be a sequence of functions on an interval I. If there is an M_n so that $|u_n(x)| \leq M_n$ for every $x \in I$ and the series $\sum M_n$ converges, then the series $\sum u_n(x)$ is uniformly convergent on I.

EXAMPLE. Consider the series $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ for $x \in \mathbb{R}$. Note that since $|\sin(nx)| \le 1$, one has that $\frac{|\sin(nx)|}{|n^2|} \le \frac{1}{|n^2|} \Longrightarrow \left|\frac{\sin(nx)}{n^2}\right| \le \frac{1}{n^2}$. Thus, it is clear that $M_n = 1/n^2$ and observe that $\sum M_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, and thus $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ converges uniformly on \mathbb{R} .

Proposition 16. Let $S_n(x) = \sum_{k=1}^n u_k(x)$. One has that $S_n(x)$ is a uniform Cauchy sequence if and only if $S_n(x)$ converges uniformly.

THM 27. If $f_n(x)$ converges to f(x) uniformly on I, and $f_n(x)$ is continuous on I for every n, then for every $a \in I$ and every $b \in I$, one has

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) \ dx$$

Counterexample. Let $f_n(x) = (n+1)x^n$ for $x \in [0,1]$. Observe that $\int_0^1 (n+1)x^n dx = 1$ and that

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 \\ \infty \end{cases}$$

So that $\int_0^1 \lim_{n\to\infty} f_n(x) dx = 0$. Since $0 \neq 1$, we have a counter-example and thus we can verify that this property doesn't hold for functions $f_n(x)$ that do not converge uniformly.

THM 28. If:

- $f_n(x)$ is continuous in I
- $f_n(x)$ converges uniformly to L(x)
- $f'_n(x)$ is continuous on I
- $f'_n(x)$ converges uniformly to G(x)

then L(x) is differentiable on I and L'(x) = G(x).

This results from the fact that $\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) = \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right) \Longrightarrow \frac{d}{dx}(L(x)) = \lim_{n\to\infty}f'_n(x) \Longrightarrow L'(x) = G(x)$. Alternatively, take some $a\in I$ and some $t\in I$ and

$$\lim_{n \to \infty} \int_{a}^{t} f'_{n}(x) dx = \int_{a}^{t} \lim_{n \to \infty} f'_{n}(x) dx$$

$$\implies \lim_{n \to \infty} (f_{n}(t) - f_{n}(a)) = \int_{a}^{t} G(x) dx$$

$$\implies \lim_{n \to \infty} f_{n}(t) - \lim_{n \to \infty} f_{n}(a) = \int_{a}^{t} G(x) dx$$

$$\implies L(t) - L(a) = \int_{a}^{t} G(x) dx$$

which verifies that G(x) is the derivative of L(x).