Object Detection & Grasp Planning with an Omnidirectional Aerial Manipulator

Bachelor Thesis – Final Presentation Martin Inauen & Philippe Brigger

Object Detection & Grasp Planning with an Omnidirectional Aerial Manipulator

Bachelor Thesis – Final Presentation Martin Inauen & Philippe Brigger

Table of Contents

Autonomy

Flexible Grasping

Thesis Goals

Detect & locate target objects

Optimal flight mode for grasp

Calculate grasp point

Pipeline Overview

Flight Modes

Object Detection

Scan Routine & Color Segmentation

Scan Routine & Color Segmentation

Object Detection

Location - Blob Center

Location - Initial Centroid

3D centroid from 3D point cloud

Location – Approach & Centering

Object Grasp

Grasp Planning

Circularity Classification

Graspable on shelf

Plane Segmentation – Side Grasp

Transition - Side Grasp

Grasp Centroid - Side Grasp

Grasp Planning Step – Top Grasp

Cylinder Segmentation – Top Grasp

Grasp Centroid - Top Grasp

Testing & Results

- Workflow
- Precision
 - Blob Center
 - Initial Centroid
 - Grasp Centroid

Testing & Results – Precision

Decrease of Average Error of 3D Location [cm]

- To compensate pipeline error:
 - At least 0.5cm play in gripper opening width

Decrease of Average Error of 3D Location [cm]

Precision – Location Error of Top Grasp

Precision – Location Error of Top Grasp

- To compensate pipeline error:
 - At least 2cm play in gripper opening width

Outlook

Outlook - Noisy Odometry

Side Grasp

Decrease of Average Error of 3D Location [cm]

Top Grasp

Decrease of Average Error of 3D Location [cm]

Outliers - Noisy Odometry

Outlook - Outlier Rejection

Outlook - Real World

Outlook - Real World

Conclusion

Backup Slides

PrisMAV

Prismatic Micro Aerial Vehicle

PrisMAV – Design

PrisMAV – Design

PrisMAV – Design

Circularity Classification

$$C = \frac{4\pi * A}{P * P}$$

Circularity Classification

$$\bullet \quad C = \frac{4\pi * A}{P * P}$$

Threshold Value: Rectangle area and perimeter with I
= 0.2m and w = 0.08m

$$=> C_{rec} = \frac{4\pi * l * w}{(2l+2w)^2} = 0.64$$

Safety Factor: $C_{max} = 1.25 * C_{rec} = 0.8$

Cylinder Segmentation

- Adapt yaw angle ψ
- Principal Axis PA
- Camera axis y

•
$$\psi = \cos^{-1}\left(\frac{PA \cdot y}{\|PA\| \cdot \|y\|}\right)$$

Transition

- 1. Roll by 90 degrees
- 2. Adapt yaw angle
- 3. Approach grasp position

Color Segmentation

Adapt threshold values=> Binary mask

Computational Effort

Pipeline Step	Computational Time [s]	Relative Time [%]
Color Segmentation	0.15	9.3
Centroid Calculation	0.01	0.6
Circularity Classification	0.15	9.3
Cylinder Segmentation	1.3	80.2
Plane Segmentation	0.01	0.6
Overall	1.62	100.0

Blob Center Location Error

(a) Location error in xy-plane.

(b) Box plot with absolute errors in x, y and z location

Initial Centroid Location Error

(a) Location error in xy-plane.

(b) Box plot with absolute errors in x, y and z location

Plane Segmentation Error

(a) Average error for distance from object center to plane edge used for side grasp feasibility (b) Average error for angle between constructed line and reference frame used for side grasp pose

Plane Segmentation

- Threshold Value for plane segmentation
 - Flight height
- Create binary mask
- Find contours

Grasp Centroid Side Grasp

(b) Box plot with absolute errors in x, y and z location

Grasp Centroid Top Grasp

(b) Box plot with absolute errors in x, y and z location

Noise Replication

• +/- 7cm

Error Developement Top Grasp without Outliers

2D:

	Data	Blob Center Error	Initial Centroid Error	Grasp Centroid Error	
D .	Perfect	10.93 cm	$1.36\mathrm{cm}$	0.99cm	
D:	Noisy	$13.08\mathrm{cm}$	$4.26\mathrm{cm}$	$2.29\mathrm{cm}$	
	Δ	+19.7%	+213.2%	+131.3%	

3D:

Data	Blob Center Error	Initial Centroid Error	Grasp Centroid Error
Perfect	14.87cm	$3.95 \mathrm{cm}$	3.97cm
Noisy	15.50	$5.42\mathrm{cm}$	$4.12\mathrm{cm}$
Δ	+4.2%	+37.2%	+3.8%

Error Developement Top Grasp

Blob Center Error Initial Centroid Error Data. Grasp Centroid Error 2D: Perfect 10.93cm 1.36cm 0.99cm Noisy $11.79 \mathrm{cm}$ 5.16cm 5.27cm +7.9%+279.4%+432.3%Δ

Blob Center Error Initial Centroid Error Grasp Centroid Error Data 3D: Perfect 14.87cm 3.95cm 3.97cm Noisy 13.97cm $6.20\mathrm{cm}$ 6.75cm -6.1%+57.0%+70.0%

Error Developement Side Grasp

2D:

Data	Blob Center Error	Initial Centroid Error	Grasp Centroid Error
Perfect	$11.74\mathrm{cm}$	8.57cm	$0.17 \mathrm{cm}$
Noisy	$11.60\mathrm{cm}$	$8.68\mathrm{cm}$	$2.19\mathrm{cm}$
Δ	-1.2%	+1.3%	+1188.2%

3D:

Data	Blob Center Error	Initial Centroid Error	Grasp Centroid Error
Perfect	12.97cm	8.58cm	$3.28\mathrm{cm}$
Noisy	13.93cm	$8.89 \mathrm{cm}$	$4.38\mathrm{cm}$
Δ	+7.4%	+3.6%	+33.5%

Floor Grasp Centroid Outliers

Error from blob center propagates to grasp centroid approximation

Cylinder Model Fitting

 Random Sample and Consensus Approach (RANSAC)

