Present neatly on separate paper .	Justify	for full	credit.	No
<u>Calcu</u>	lators.			

Name KEY / SWBLEWA Score _____ F (6 minutes) x1

1) Determine whether the sequence converges or diverges. If it converges, find the limit.

 $a_n = \ln(n+1) - \ln n$

2) True or False: "If a sequence converges absolutely, then it converges." Explain.

1)
$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \left[\ln (n+1) - \ln n \right]$$

$$= \lim_{n \to \infty} \ln \left[\frac{n+1}{n} \right] = \ln 1 = 0$$
The sequence conerges to zero.

2) False. The correct version is "If it converges to O absolutely, then it converges to rexo".

If $|a_n| \rightarrow 0$, then $a_n \rightarrow 0$.

Ex. $(-1)^h$ Converges absolutely to 1, yet the given sequence diverges.

Present neatly on separate paper. Justify for full credit. No Calculators.

Name KEY/SHUBLEKA Score _____ A (6 minutes) x1

 Determine whether the sequence converges or diverges. If it converges, find the limit.

 $a_n = n\sin(1/n)$

2) True or False? "If a sequence is bounded, then it converges." Explain.

00. 0 L'Hôspital's Rule.

1) $q_n = n \sin(1/n)$ $\lim_{n \to \infty} q_n = \lim_{n \to \infty} n \cdot \sin(1/n) = \lim_{n \to \infty} \frac{\sin(1/n)}{1/n}$ $\frac{\sin(1/n)}{1/n} = \lim_{n \to \infty} \frac{\cos(1/n)}{1/n} = \lim_{n \to \infty} \frac{\cos(1/n)}{1/$

2) False. The Correct theorem says: { Bounded => Conveyer Monotonic Ex. $q_n = (-1)^n$ is bounded by 1 and -1.

"yet it diveges!"