UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ECUACIONES DIFERENCIALES ORDINARIAS (MAT. 521.218)

PRACTICA $N^{\circ}5$ (EDO de Orden Superior: Segunda Parte)

Problema 1. Determine si las siguientes funciones son l.i.

- a) $\{e^{ax}sen(bx); e^{ax}cos(bx)\}, a, b \in \mathbb{R}.$ b) $\{ \ln x, x \ln x \}$ en $[0, +\infty[$.
- c) $\{e^{\alpha x}, xe^{\alpha x}\}$ en \mathbb{R} $(\alpha \in \mathbb{R} \{0\})$.

Problema 2. En las siguientes EDO encuentre una solución de tipo polinomio. Luego, usando Abel encuentre otra solución linealmente independiente con la primera.

- a) $y'' + x^3y' 2(1+x^2)y = 0$
- b) $(1-x^2)y'' 2xy' + 2y = 0$, (*) c) $x^2y'' + x^2y' 2(1+x)y = 0$

Problema 3. Encuentre una EDO de coeficientes constantes:

- a) que tenga a $y_1(x) = e^{2x}$ entre sus soluciones ¿cuál es el mínimo orden de la EDO que cumple esos requisitos. (*)
- b) de orden 4 que tenga entre sus soluciones a $y_1 = e^{-2x}$ e $y_2 = x^2 e^{4x}$,
- c) de orden 5 ue tenga entre sus soluciones a $y_1(x) = e^{-3x}$, $y_2(x) = x^2 e^{4x}$. (*)

Problema 4. Muestre que si r es una raíz doble de $az^2 + bz + c = 0$, entonces e^{rx} y xe^{rx} son soluciones de $(aD^2 + aD + c)y = 0$. ¿Cómo es el espacio fundamental de $(aD^2 + aD + c)^m y = 0$ (donde m es un natural mayor que 1)?.

Problema 5. Resolver

- a) y'' + y' 6y = 0; b) y'' + 4y' + 4y = 0;
- c) y'' 2y' + 2y = 0;
- d) $(D^2 \sqrt{2}D + 1)y = 0$. (*)

Problema 6. Encontrar la solución general de la EDO dada:

- a) y''' 2y'' y' + 2y = 0, b) $y^{(4)} + 4y^{(3)} + 8y^{(2)} + 8y' + 4y = 0$. (*)
- c) $y^{(6)} 3y^{(4)} + 3y^{(2)} y = 0$. d) $y^{(4)} 16y = 0$, e) $y^{(4)} y = 0$ f) $(D^6 + 5D^4 + 9D^2 + 4)y = 0$; (*)

Problema 7. Resolver

a) 2y'' + 8y' + 6y = 0; y(0) = 2, y'(0) = 0 (*),

b)
$$(D^3 + 5D^2 + 17D + 13) y = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = 6$;(*)
c) $(D^3 + 6D^2 + 12D + 8) y = 0$, $y(0) = 1$, $y'(0) = -2$, $y''(0) = 2$;

Problema 8. Usando aniquiladores resuelva:

a)
$$y'' - y = x - 1$$
, $y(0) = 0$, $y'(0) = 0$;
b) $y'' + 9y = x^3 + 6$, $y(0) = 0$, $y'(0) = 0$;
c) $y'' + y = \operatorname{sen}(x)$, $y(0) = 0$, $y'(0) = 0$;
d) $y'' - y = x e^x$, $y(0) = 0$, $y'(0) = 1$;
e) $y'' + y' + y = \operatorname{sen}(x)$, $y(0) = 1$, $y'(0) = 0$; (*)
f) $y'' - 2y' + y = (1 - 2x) x e^x + x^3$, $y(0) = 1$, $y'(0) = 0$;
g) $y''' - 3y'' + 3y' - y = x e^x$, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$;
h) $y'' + 4y = x^2 \operatorname{sen}(2x) + (1 - x) \cos(2x)$, $y(0) = 0$, $y'(0) = 0$; (**)
i) $y'' + 2y' + 5y = 1 + x e^{-x} \operatorname{sen}(2x)$, $y(0) = 0$, $y'(0) = 0$;

Problema 9. Usando el método de variación de parámetros, resuelva los PVI:

a)
$$2y'' - 4y' + 2y = x^{-1} e^x$$
, $y(1) = 0$, $y'(1) = 0$; (**)
b) $y'' - 6y' + 9y = e^{3x} x^{\frac{3}{2}}$; c) $y'' + 2y' + y = \frac{e^{-x}}{1+x^2}$, $y(0) = 0$, $y'(0) = 0$;
d) $y'' - 3y' + 2y = e^{3x} \cos(e^x)$, $y(0) = 0$, $y'(0) = 0$;
f) $y'' + 2y' + y = e^{-x} \ln(x)$, $y(1) = 0$, $y'(1) = 2$.

Problema 10. Use variación de parámetros para encontrar la solución general.

a)
$$y''' + 3y'' + 3y' + y = x^{-3}e^{-x}$$
; (**)
b) $y''' - 6y'' + 12y - 8y = x^{\frac{7}{2}}e^{2x}$, ;
c) $y''' + 6y'' + 12y + 8y = x^{-1}e^{-2x}$ j) $y''' - y' = 3(2 - x)$, $y(0) = y'(0) = y''(0) = 1$ (**);

Problema 11. Proponga una solución particular para la EDO dada:

a)
$$y''' - 3y'' + 3y' - y = x^2 e^x - 3e^x$$
;
b) $y'''' - 4y''' + 6y'' - 4y' + y = x^3 e^x + x^2 e^{-x}$.

(*) Problemas a resolver en clases de Práctica con el Prof. Ayudante.

 $\frac{JMS/CMG}{jms}$. 24/09/2007.