Swarm Intelligence

Task Allocation

Akin Tatoglu

Objectives

- 1. Understanding the task allocation problem
- 2. Understanding the threshold model

References

- Theraulaz, G., Bonabeau, E., & Deneubourg, J.-L. (1998).
 Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society B.
 Biological Sciences, 265(1393), 327-332.
- Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: self-organised task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems, 30(1-2), 65-84.

Task Allocation

Problem Statement

Task allocation is the problem of establishing **who does what** in a swarm

- No predefined roles are assumed
- Dynamic allocation
- In general, time and space constraints might apply

The Threshold Model

Division of Labor in Insect Colonies

- Insect colonies are capable of dynamically reassign individuals to different tasks
- It is a form of colony flexibility that derives from individual flexibility
- What are the individual mechanisms that promote colony flexibility?

Tasks and Stimuli

Assume that *m* tasks must be performed by the colony

- Each task is associated to a stimulus that increases if the task is not satisfied
- Either because not enough individuals participate
- Or because the task is not performed fast enough

task 1 \cdots task j \cdots task m

The Threshold Model

One of the best models of division of labor among social insects is due to Theraulaz et al.

The model is based on the concept of response threshold

- Response thresholds refer to likelihood of reacting to task-associated stimuli
- Low-threshold individuals perform tasks at a lower level of stimulus than high threshold individuals

The Threshold Model

The hypothesis before Theraulaz et al. was that the **thresholds** are different among individuals, but **static**

- However, these early results did not show colony flexibility
- Idea (Theraulaz et al.): let the response thresholds vary over time

Workers

Assume there are *N* workers

- θ_{ii} is the **response threshold** of worker i to task j
- i.e. How likely worker *i* is to switch to *j*

And let's call s_j the **stimulus** to perform task j

All individuals perceive the same stimulus

8

The Fixed Threshold Model

The fixed threshold model is

$$T_{ heta_{ij}}(s_j) = rac{s_j^2}{s_j^2 + heta_{ij}^2}$$

Every individual engages in task s_i with a probability $T_{\theta_{ii}}(s_i)$

The Fixed Threshold Model

The higher the threshold, the lower the switch probability

Learning and Forgetting

Theraulaz et al. improve this model by assuming that

- The more you perform a task, the more you are willing to continue (lower $\theta_{i,j}$)
- The less you perform a task, the less you want to do it (higher $\theta_{i,j}$)

Therefore, considering a period Δt , we update θ_{ij} using

$$\theta'_{ij} \leftarrow \theta_{ij} - \xi \, \Delta t$$
 $i \text{ performs } j \text{ in } \Delta t \text{ (reinforce)}$ $\theta'_{ij} \leftarrow \theta_{ij} + \phi \, \Delta t$ $i \text{ doesn't perform } j \text{ in } \Delta t \text{ (forget)}$

where ξ and ϕ are the learning and forgetting coefficients

Time Dynamics

Given a time period Δt , an individual i spends a fraction of time x_{ij} engaged in task j

- For a total time of $x_{ij}\Delta t$
- And a time $(1-x_{ij})\Delta t$ doing other tasks

Therefore, we can write

$$\theta'_{ij} \leftarrow \theta_{ij} - x_{ij}\xi\Delta t + (1 - x_{ij})\phi\Delta t$$

Imposing a Range on θ_{ij}

To write the final model, we need to impose that

$$\theta_{ij} \in [\theta_{\mathsf{min}}, \theta_{\mathsf{max}}]$$

Let's introduce the indicator function

$$\Theta(y) = \begin{cases} 0 & \text{if } y \le 0 \\ 1 & \text{if } y > 0 \end{cases}$$

Then

$$\Theta(\theta_{ij} - \theta_{\min}) \cdot \Theta(\theta_{\max} - \theta_{ij})$$

is 0 when θ_{ij} is out of bounds, and 1 otherwise

Continuous-Time Model Formulation

The continuous model is then

$$\underbrace{\partial_t \theta_{ij}}_{\text{time derivative}} = \underbrace{\left[\left(1 - x_{ij}\right) \phi}_{\text{forget}} \underbrace{-x_{ij} \xi}_{\text{reinforce}} \right] \underbrace{\Theta(\theta_{ij} - \theta_{\min}) \Theta(\theta_{\max} - \theta_{ij})}_{\text{range indicator}}$$

Average Temporal Dynamics

Now we need to model the average temporal dynamics.

- $\sum_{k=1}^{m} x_{ik}$ is the time fraction spent working on tasks
- $(1 \sum_{k=1}^{m} x_{ik})$ is the idle time fraction
- $T_{ij}(s_j)(1 \sum_{k=1}^{m} x_{ik})$ says how much of the idle time can be spent on task j

$$\underbrace{\partial_t x_{ij}}_{\text{time derivative}} = T_{ij}(s_j)(1 - \sum_{k=1}^m x_{ik}) \underbrace{-p x_{ij}}_{\text{spontaneous switching}} + \underbrace{\psi(i,j,t)}_{\text{Gaussian noise}}$$

 1/p is the average time spent on a specific task, after which an individual switches to idle

Stimulus Dynamics

Stimulus j depends on how much time the individuals spend on a task j:

$$\partial_t s_j = \delta - \frac{\alpha}{N} \left(\sum_{i=1}^N x_{ij} \right)$$

- δ is the increase per unit time
- α is an efficiency factor

(Here α is a constant and is the same for all tasks and individuals, but in real life it can change wildly)

$$N = 5$$
, $m = 2$, $\alpha = 3$, $\delta = 1$, $p = .2$, $\xi = 10$, $\phi = 1$

$$\theta_{ij}(t=0) = 500 \ \forall i,j$$
: specialization occurs

Here workers 3,4,5 are task-1 specialists and 1,2 are task-2 specialists

Average task time dynamics

Workers 3,4,5 spend most time on task 1 while 1,2 on task 2

 $heta_{\it ij}(t=0)$ chosen uniformly $\in [heta_{
m min}=1, heta_{
m max}=1000]$

1,3,5 are task-1 specialists, 1,2,4 are task-2 specialists

individual 1 switches between tasks!

only individuals with low initial $\theta_{i,j}$ tend to become specialists

 T_c (convergence time): how long it takes to have specialization

Convergence is when $\theta_{ij} < 100 \text{ or } > 900$

 ${\it N}_1$ and ${\it N}_2$ number of specialists for each task

Results for $N=100,\ m=2,\ \phi+\xi=11$

 $\phi < \text{0.4}$ lots of specialists because forgetting rate is small

 T_c grows because the many specialists keep s_j low. . .

 \ldots and $\theta_{i,j}$ fluctuates a lot among idle workers

 $0.4 < \phi < 2$ number of specialists and T_c decrease

 $\phi >$ 2 no specialization because forgetting rate pushes $\theta_{i,j}$ to high values

Influence of spontaneous switching rate p

 $\it p < 0.04$: all specialists, because once they started a task, workers stay on it for a long time

p > 0.04: drop in the number of specialists

0.04 number of specialists increases

p > 0.42 everybody is a specialist

 \ldots because they spend so little time working, it takes a lot of specialists to keep the stimulus low

Back to Robotics

Krieger and Billeter (2002)

Krieger and Billeter (2002) took inspiration from this model and applied it to a robotic foraging scenario

- Collecting food items to store energy at the nest
- Robots choose between collecting and staying in the nest
- Low energy ⇒ higher stimulus to go collecting
- More people collecting ⇒ more energy used

Fixed-Threshold Behavior

Fig. 2. Individual choice between two activities with a fixed activation-threshold. Neglecting activity 1 causes the stimulus for activity 1 to increase, prompting individuals to change from activity 2 to activity 1; and conversely.

Goal

Taking inspiration from nature, Krieger and Billeter want to

- 1. Validate the threshold model using robots
- 2. Study what happens when the threshold is fixed but different among robots
 - So not the model we just saw
- 3. Test the effect of different food distributions on performance

Experimental Setup

Experimental Setup

Behavior

Recruitment

Krieger and Billeter tested two group behaviors:

- Robots behaving individually
- Robot recruiting other robots
 - A robot just back from collecting remembers where food was and leads another robot to the food location

Fig. 6. Tandem recruitment. (a) Recruiting robot (r) backs up toward the waiting robot (w) at the head of the waiting line. When w's proximity sensors detect r, w goes into follower mode. (b) Recruited robot (w) follows recruiting robot (r) to the food patch.

Experimental Scenarios

The initial response threshold was chosen at random

Each type of experiment was repeated eight times (the experiment with group size one was dropped in Series C for an obvious reason: a single robot cannot recruit another robot)

Recruitment		Food distribution	Group size				
Series A	No	Dispersed	1	3	6	9	12
Series B	No	Clumped	1	3	6	9	12
Series C	Yes	Clumped		3	6	9	12

Active Robots

Nest Energy

Fig. 11. Nest energy recorded during the experiments for the three, six, nine and twelve robot teams normalised for the number of robots in each team. (a) Dispersed food distribution with no information sharing, (b) clumped food distribution with information sharing.

Performance

Fig. 12. Performance relative to the one robot teams in an environment with clumped and a dispersed food distribution with no information sharing. Performance was measured as the inverse of the total energy used and the normalised for the number of robots.

Minimal Nest Enegy, No Recruitment

Fig. 13. Minimal nest-energy recorded during the experiments with no information sharing for the teams of different group size. The minimal nest-energy was normalised for the number of robots. Error bars indicate the 95% confidence interval.

Proportion of Time Active

Fig. 14. Proportion of time spent in an active (working) state depending on the threshold class and information sharing. The robots were categorised according to their activation-threshold in one of the three classes (high, middle, low). Error bars indicate the 95% confidence interval.