GATE - 2023 - XE

1

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 40 - 52

- 1) Water (density = 1000 kg/m³) flows steadily with a flow rate of 0.05 m³/s through a venturimeter having throat diameter of 100 mm. If the pipe diameter is 200 mm and losses are negligible, the pressure drop (in kPa, rounded of f to one decimal place) between an upstream location in the pipe and the throat (both at the same elevation) is _____.
- 2) Water flows around a thin flat plate (0.25 m long, 2 m wide) with a free stream velocity (U_{∞}) of 1 m/s, as shown in the figure. Consider linear velocity profile $\left(\frac{u}{U_{\infty}} = \frac{y}{\delta}\right)$ for which the laminar boundary layer thickness is expressed as $\delta = \frac{3.5x}{\sqrt{Re_x}}$. For water, density = 1000 kg/m³ and dynamic viscosity = 0.001 kg/m.s. Net drag force (in N, rounded of f to two decimal places) acting on the plate, neglecting the end effects, is

3) Axial velocity profile u(r) for an axisymmetric flow through a circular tube of radius R is given as,

$$\frac{u\left(r\right)}{U} = \left(1 - \frac{r}{R}\right)^{\frac{1}{n}}$$

where U is the centerline velocity. If V refers to the area-averaged velocity (volume flow rate per unit area), then the ratio $\frac{V}{U}$ for n=1 (rounded of f to two decimal places) is ____.

4) A stationary circular pipe of radius R = 0.5 m is half filled withwater (density = 1000 kg/m^3), whereas the upper half is filled with air at atmospheric pressure, as shown in the figure. Acceleration due to gravity is $g = 9.81 \text{ m/s}^2$. The magnitude

of the force per unit length (in kN/m, rounded of f to one decimal place) applied by water on the pipe section AB is

- 5) In age-hardening of an aluminium alloy, the purpose of solution treatment followed by quenching is to
 - a) form martensitic structure
 - b) increase the size of the precipitates
 - c) form supersaturated solid solution
 - d) form precipitates at the grain boundaries
- 6) The magnetization (M) magnetic field (H) curves for four different materials are given below. Which one of these materials is most suitable for use as a permanent magnet?

7) The band gap of a semiconducting material is ~ 2 eV. Which one of the following absorption (A) vs. energy (in eV) curves is correct?

8) Figures (i) and (ii) show a binary phase diagram and the corresponding Gibbs free energy (G) vs. composition (X_B) diagram, respectively. Figure (ii) corresponds to which one of the temperatures shown in Figure (i)?

- a) T1
- b) T2
- c) T3
- d) T4
- 9) Aliovalent doping of $MgCl_2$ in NaCl leads to the formation of defects. Which one of the following is the correct defect reaction?
 - a) $Mg_{Cl}^{\bullet} + Na_{Na} + V_{Cl}' = \emptyset$
 - b) $Mg_{Na}^{\bullet} + Cl_{Cl} + V_{Na}' = \varnothing$
 - c) $Mg_{Na} + Cl_{Cl} = \emptyset$
 - d) $Mg'_{Na} + Cl_{Cl} + V^{\bullet}_{Na} = \emptyset$
- 10) A screw dislocation in a FCC crystal has Burgers vector of $\frac{a}{2}$ [110], where a is the lattice constant. The possible slip plane(s) is/are:
 - a) $(11\bar{1})$
 - b) (111)
 - c) $(\bar{1}11)$
 - d) $(1\overline{1}1)$
- 11) The tensile true stress (σ) true strain (ϵ) curve follows the Hollomon equation:

$$\sigma = 500\epsilon^{0.15} \text{ MPa}$$

At the maximum load, the work-hardening rate $\left(\frac{d\sigma}{d\epsilon}\right)$ is (in MPa): ____ (rounded off to nearest integer)

12) A metal has a certain vacancy fraction at a temperature of 600 K. On increasing the temperature to 900 K, the vacancy fraction increases by a factor of ____ (rounded off to one decimal place)

Given: Gas constant, $R=8.31~\mathrm{J~mol^{-1}K^{-1}}$ and activation energy for vacancy formation, $Q=68~\mathrm{kJ~mol^{-1}}$

13) In a semiconductor, the ratio of electronic mobility to hole mobility is 10. The density of electrons and holes are $10^{15}m^{-3}$ and $10^{16}m^{-3}$, respectively. If the conductivity of the material is 1.6 $\Omega^{-1}m^{-1}$, then the mobility of holes is (in $m^2V^{-1}s^{-1}$): (rounded off to nearest integer)

Given: Charge of an electron: 1.6×10^{-19} C