Exact Formula for RX-Differential Probability Through Modular Addition for All Rotations

Alex Biryukov Baptiste Lambin Aleksei Udovenko

FSE 2025, March 18th

DCS and SnT, University of Luxembourg

Outline

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

New best RX-trails for Alzette

RX-backdoor from malicious constants - Malzette

Conclusions

Plan

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

Conclusions

Through XOR

Through XOR

Related-Key

Through XOR

Related-Key

Through ADD

Related-Key

Through ADD

$$\frac{\frac{2}{8}}{(k=\frac{n}{2})} \le \frac{p}{8} \le \frac{3}{8} + \epsilon$$

$$(k=1)$$

Through XOR

Related-Key

Through ADD

Through XOR-const

Through XOR

Related-Key

Through ADD

 $\frac{\frac{2}{8}}{(k=\frac{n}{2})} \le p \le \frac{3}{8} + \epsilon$ (k=1)

Through XOR-const

Theorem ([AL16], k = 1)

Theorem ([AL16],
$$k = 1$$
)

where

$$\begin{split} &(\chi_L||\chi_0) = \alpha \oplus \beta \oplus \Delta \\ &(\nu_L||\nu_0) = (\alpha \oplus \beta) \vee (\alpha \oplus \Delta) \quad \textit{(not-all-equal)} \\ &\mathsf{SHL}: \mathsf{shift} \ \mathsf{left} \ \mathsf{by} \ 1 \ \mathsf{position} \ (\mathsf{drop} \ \mathsf{MSB}) \\ & 2^{-\mathsf{wt}(\mathsf{SHL}(\nu_L))} \ \mathsf{is} \ \mathsf{a} \ \mathsf{normal} \ \mathsf{ARX} \ \mathsf{differential} \ \mathsf{prob.} \ (\mathsf{excl.} \ \mathsf{LSB}) \end{split}$$

Ours: probability, any k

$$p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$$

$$T_m(\chi, \nu, \hat{\chi}_i) = 2^{-\text{wt}(\mathsf{SHL}(\nu)) - 1} + \mathbb{1}_{\chi \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$$

[AL16], k = 1

Not fully correct:

∃ class of transitions with probability 2x lower or 1.5x higher

Ours: probability, any k

$$p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$$

$$T_m(\chi, \nu, \hat{\chi}_i) = 2^{-\text{wt}(\mathsf{SHL}(\nu)) - 1}$$

+1\(\chi_{\chi \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}

[AL16], k = 1

Not fully correct:

 \exists class of transitions with probability 2x lower or 1.5x higher

[HXW22], any k

Incorrect:

large discrepancies with experiments, imprecise validity condition

Ours: probability, any k

$$p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$$

$$T_{m}(\chi, \nu, \hat{\chi}_{i}) = 2^{-\text{wt}(\mathsf{SHL}(\nu))-1} + \mathbb{1}_{\chi \in \{0...0,1...1\}} \times (-1)^{\hat{\chi}_{i}} \times 2^{-m-1}$$

[AL16], k = 1

Not fully correct:

 \exists class of transitions with probability 2x lower or 1.5x higher

[HXW22], any k

Incorrect:

large discrepancies with experiments, imprecise validity condition

Ours: probability, any k

$$p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$$

$$T_m(\chi, \nu, \hat{\chi}_i) = 2^{-\text{wt}(\mathsf{SHL}(\nu))-1} + \mathbb{1}_{\chi \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$$

Ours: validity, any k

$$p > 0$$
 if and only if $u_i \le v_i$ $\forall i \ne 0, k$

$$u = (I \oplus \mathsf{SHL})(\alpha \oplus \beta \oplus \Delta)$$

$$\mathbf{v} = \mathsf{SHL}((\alpha \oplus \Delta) \vee (\beta \oplus \Delta))$$

[AL16], k = 1

Not fully correct:

∃ class of transitions with probability 2x lower or 1.5x higher

[HXW22], any k

Incorrect:

large discrepancies with experiments, imprecise validity condition

Ours: probability, any k

$$p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$$

$$T_m(\chi, \nu, \hat{\chi}_i) = 2^{-\text{wt}(\text{SHL}(\nu))-1} + \mathbb{1}_{\chi \in \{0...0,1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$$

Ours: validity, any k

p > 0 if and only if $u_i \leq v_i$ $\forall i \neq 0, k$

$$u = (I \oplus \mathsf{SHL})(\alpha \oplus \beta \oplus \Delta)$$

$$\mathbf{v} = \mathsf{SHL}((\alpha \oplus \Delta) \vee (\beta \oplus \Delta))$$

Extensively verified by experiments!

Plan

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

Conclusions

Theorem (Main, if p > 0)

$$p = T_{n-k}(\alpha_L, \beta_L, \Delta_L, \alpha_0 \oplus \beta_0 \oplus \Delta_0) \times T_k(\alpha_R, \beta_R, \Delta_R, \alpha_k \oplus \beta_k \oplus \Delta_k)$$

Theorem (Main, if p > 0)

$$p = T_{n-k}(\alpha_L, \beta_L, \Delta_L, \alpha_0 \oplus \beta_0 \oplus \Delta_0) \times T_k(\alpha_R, \beta_R, \Delta_R, \alpha_k \oplus \beta_k \oplus \Delta_k)$$

where

$$T_{m}(\alpha, \beta, \Delta, \mathbf{w}) = 2^{-d-1} + \mathbb{1}_{\alpha \oplus \beta \oplus \Delta \in \{0...0, 1...1\}} \times (-1)^{\mathbf{w}} \times 2^{-m-1}$$

$$d = \operatorname{wt}(\mathsf{SHL}(\nu)) = \operatorname{wt}(\mathsf{SHL}((\alpha \oplus \beta) \vee (\alpha \oplus \Delta)))$$

$$\begin{array}{c|ccccc}
(MSB) & n-1 & & & & & & \\
\alpha & & & \alpha_L & & \alpha_R & \\
\beta & & & \beta_L & & \beta_R & \\
\Delta & & & \Delta_L & & \Delta_R & \\
& & & & & & k
\end{array}$$

$$\chi = \alpha \oplus \beta \oplus \Delta$$
$$\nu = (\alpha \oplus \beta) \lor (\alpha \oplus \Delta)$$

Theorem (Main, if p > 0)

$$p = T_{n-k}(\chi_L, \nu_L, \chi_0) \times T_k(\chi_R, \nu_R, \chi_k)$$

where

$$T_m(\chi, \nu, \hat{\chi}_i) = 2^{-\text{wt}(\text{SHL}(\nu))-1} + \mathbb{1}_{\chi \in \{0...0, 1...1\}} \times (-1)^{\hat{\chi}_i} \times 2^{-m-1}$$

Our result (validity criterion, any k)

Theorem (RX-differential, 0 < k < n)

$$p = \Pr\left[\left(\overleftarrow{\mathbf{x}} \oplus \alpha\right) \boxplus \left(\overleftarrow{\mathbf{y}} \oplus \beta\right) \oplus \overleftarrow{\mathbf{x} \boxplus \mathbf{y}} = \Delta\right] > 0$$

if and only if $u_i \leq v_i$ for all $i \neq 0, k$, where

$$u = (I \oplus \mathsf{SHL})(\alpha \oplus \beta \oplus \Delta)$$
$$v = \mathsf{SHL}((\alpha \oplus \Delta) \vee (\beta \oplus \Delta))$$

Our result (validity criterion, any k)

Theorem (Normal differential (k = 0), Lipmaa and Moriai 2002)

$$p = \Pr[(x \oplus \alpha) \boxplus (y \oplus \beta) \oplus x \boxplus y = \Delta] > 0$$

if and only if $u_i \leq v_i$ for all i, where

$$u = (I \oplus \mathsf{SHL})(\alpha \oplus \beta \oplus \Delta)$$
$$v = \mathsf{SHL}((\alpha \oplus \Delta) \vee (\beta \oplus \Delta))$$

Theorem ([AL16], k = 1)

$$\begin{aligned} & \mathbf{p} = \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus \mathbf{1} \preccurlyeq \mathsf{SHL}(\nu_L)} \\ & + \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)} \end{aligned}$$

$$\cdot 2^{- \operatorname{wt}(SHL(\nu_L))} \cdot 2^{-3}$$

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$$

Theorem ([AL16], k = 1)

$$\rho = \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus \mathbf{1} \preccurlyeq \mathsf{SHL}(\nu_L)}
+ \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

$$\cdot 2^{- \operatorname{wt}(SHL(\nu_L))} \cdot 2^{-1.415}$$

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

Theorem ([AL16], k = 1)

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

• Correction factor: 2x lower or 1.5x higher actual prob.

Theorem ([AL16], k = 1)

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction

Theorem ([AL16], k = 1)

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Theorem ([AL16], k = 1)

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Conclusion: concrete trails are probably not affected, optimality claims do

Plan

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

New best RX-trails for Alzette

RX-backdoor from malicious constants - Malzette

Conclusions

MILP Model

Model 1 - Heuristic (NEQ)

- Ignore the approximation factor: $p \approx 2^{-\text{wt}\,\text{SHL}\,\nu_L \text{wt}\,\text{SHL}\,\nu_R 2}$
- A special case of the standard ARX model
- ullet Bonus: model [y=1] if and only if $x_1=\ldots=x_m]$ with 4 inequalities for any m

g

MILP Model

Model 1 - Heuristic (NEQ)

- Ignore the approximation factor: $p \approx 2^{-\text{wt}\,\text{SHL}\,\nu_L \text{wt}\,\text{SHL}\,\nu_R 2}$
- A special case of the standard ARX model
- Bonus: model $[y = 1 \text{ if and only if } x_1 = \ldots = x_m]$ with 4 inequalities for any m

Model 2 - Precise

- Model the weight of the correction factor using logarithm tables (PieceWise-Linear constraints - PWL)
- "Flag" variables to determine if the correction is needed

9

Alzette (64-bit ARX-box, 4 32-bit modular additions)

	CASCADA,[LWRA17]	This work	This work	[HXW22]	[HXW22]
	(k=1)	(k = 1)	(k > 1)	(k = 1)	(k > 1)
Ci	wt	wt	wt	wt	wt
<i>c</i> ₀	33.66	33.66	33.93	37.66	43.00
c_1	31.66	31.66	33.01	38.66	-
<i>c</i> ₂	37.66	37.66	34.00	52.66	-
<i>c</i> ₃	38.66	38.66	32.75	45.66	-
C4	35.66	35.66	33.00	45.66	-
<i>C</i> ₅	32.66	33.66	30.89	44.66	-
<i>c</i> ₆	30.66	30.66	32.97	40.66	-
<i>C</i> ₇	37.66	37.66	32.45	49.66	_

(all values are $-\log_2 p$)

Round	Constants	$log_2(prob)$
1	1c71c924:249cad47	-2.83
2	49249c71:1249871c	-1.83
3	6db6c71c:5b127ffe	-3.19
4	38e39249:152ad249	-1.83
5	638e36db:649cad55	-2.83
6	1c71c7ff:471c9492	-1.83
7	36db6d55:63f1c71d	-2.83
8	471c7249:36a4ff1c	-2.19
9	4924938e:5b6c8e47	-3.19
10	2aab6db6:71c736db	-1.83
11	6db638e3:55b9c71d	-2.83
12	fb3d2330:b6da4b61	-2.19
Total		-29.41

11

- Diff./lin. lower bounds 2⁵⁴ and 2³⁸
- RX-differential prob. $2^{-29.41}$ (k=3)
- Verified experimentally

Round	Round Constants	
1	1c71c924:249cad47	-2.83
2	49249c71:1249871c	-1.83
3	6db6c71c:5b127ffe	-3.19
4	38e39249:152ad249	-1.83
5	638e36db:649cad55	-2.83
6	1c71c7ff:471c9492	-1.83
7	36db6d55:63f1c71d	-2.83
8	471c7249:36a4ff1c	-2.19
9	4924938e:5b6c8e47	-3.19
10	2aab6db6:71c736db	-1.83
11	6db638e3:55b9c71d	-2.83
12	fb3d2330:b6da4b61	-2.19
Total		-29.41

- Diff./lin. lower bounds 2⁵⁴ and 2³⁸
- RX-differential prob. $2^{-24.86}$ (k = 3)
- Verified experimentally

Round	Constants	$log_2(prob)$
1	00000000:4e381c1c	-2.19
2	2aaaaaaa:36dbe492	-2.19
3	7ffffffff:1236db6c	-1.83
4	55555555:0763638e	-1.83
5	2aaaaaaa:1b6d4949	-2.19
6	55555555:638ef1c7	-1.83
7	00000000:47638e39	-2.19
8	2aaaaaaa:5236b6db	-2.19
9	55555555:4e381c1c	-1.83
10	7fffffff:638eb1c7	-2.19
11	7fffffff:47638e39	-2.19
12	3f2bb31e:b6c004cc	-2.19
Total		-24.86

11

Plan

Rotational-XOR Cryptanalysis

Exact Probability Formula for all Rotations k

Modeling and Applications

Conclusions

Conclusions

Theory

- Compact exact probability for all rotations k
- Useful ARX theory
- RXDP with constant addition state machine (Q: can be simplified?)

Conclusions

Theory

- Compact exact probability for all rotations k
- Useful ARX theory
- RXDP with constant addition state machine (Q: can be simplified?)

Applications

- MILP model using PWL
- Applied to Alzette, Toy Speck, etc. (Q: improve performance, SMT?)
- Malzette proof-of-concept RX-backdoor

Conclusions

Theory

- Compact exact probability for all rotations k
- Useful ARX theory
- RXDP with constant addition state machine (Q: can be simplified?)

Applications

- MILP model using PWL
- Applied to Alzette, Toy Speck, etc. (Q: improve performance, SMT?)
- Malzette proof-of-concept RX-backdoor

```
github.com/cryptolu/RX-Differentials-Probability tosc.iacr.org/index.php/ToSC/article/view/12087
```

References i

Ashur, Tomer and Yunwen Liu (2016), "Rotational Cryptanalysis in the Presence of Constants". In: IACR Trans. Symm. Cryptol. 2016.1, pp. 57–70. issn: 2519-173X. doi: 10.13154/tosc.v2016.i1.57-70. url: https://tosc.iacr.org/index.php/ToSC/article/view/535.

Daum. Magnus (2005). "Cryptanalysis of Hash functions of the MD4-family". PhD thesis. Ruhr University Bochum. url: http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/.

Huang, Mingjiang, Zhen Xu, and Liming Wang (2022). "On the Probability and Automatic Search of Rotational-XOR Cryptanalysis on ARX Ciphers". In: Comput. J. 65.12. pp. 3062-3080. doi: 10.1093/COMJNL/BXAB126.

References ii

- Khovratovich, Dmitry and Ivica Nikolic (Feb. 2010). "Rotational Cryptanalysis of ARX". In: FSE 2010. Ed. by Seokhie Hong and Tetsu Iwata. Vol. 6147. LNCS. Springer, Berlin, Heidelberg, pp. 333–346. doi: 10.1007/978-3-642-13858-4_19.
- Lipmaa, Helger and Shiho Moriai (Apr. 2002). "Efficient Algorithms for Computing Differential Properties of Addition". In: FSE 2001. Ed. by Mitsuru Matsui. Vol. 2355. LNCS. Springer, Berlin, Heidelberg, pp. 336–350. doi: 10.1007/3-540-45473-X_28.
- Liu, Yunwen, Glenn De Witte, Adrián Ranea, and Tomer Ashur (2017). "Rotational-XOR Cryptanalysis of Reduced-round SPECK". In: IACR Trans. Symm. Cryptol. 2017.3, pp. 24–36. issn: 2519-173X. doi: 10.13154/tosc.v2017.i3.24-36.

References iii

Ranea, Adrián and Vincent Rijmen (2022). "Characteristic automated search of cryptographic algorithms for distinguishing attacks (CASCADA)". In: *IET Inf. Secur.* 16.6, pp. 470–481. doi: 10.1049/ise2.12077.

Proof ideas - Decomposition

Proof ideas - Decomposition

$$\begin{cases} (x_R \oplus \alpha_{L'}) \boxplus (y_R \oplus \beta_{L'}) \boxplus c_L \oplus x_R \boxplus y_R = \Delta_{L'} \\ (x_L \oplus \alpha_{R'}) \boxplus (y_L \oplus \beta_{R'}) \oplus x_L \boxplus y_L \boxplus c_R = \Delta_{R'} \\ c_R = \mathbb{1}_{x_R + y_R \ge 2^{n-k}} \\ c_L = \mathbb{1}_{(x_L \oplus \alpha_{R'}) + (y_L \oplus \beta_{R'}) \ge 2^k} \end{cases}$$

Proof ideas - Decomposition

$$\begin{array}{c|cccc} & k & n-k \\ \hline x,y & x_L & x_R \\ \hline \overleftarrow{x},\overleftarrow{y} & x_R & x_L \\ \hline \alpha,\beta,\Delta & \alpha_{L'} & \alpha_{R'} \\ \hline & n-k & \overleftarrow{k} \end{array}$$

$$\begin{cases} (x_R \oplus \alpha_{L'}) \boxplus (y_R \oplus \beta_{L'}) \boxplus c_L \oplus x_R \boxplus y_R = \Delta_{L'} \\ (x_L \oplus \alpha_{R'}) \boxplus (y_L \oplus \beta_{R'}) \oplus x_L \boxplus y_L \boxplus c_R = \Delta_{R'} \\ c_R = \mathbb{1}_{x_R + y_R \ge 2^{n-k}} \\ c_L = \mathbb{1}_{(x_L \oplus \alpha_{R'}) + (y_L \oplus \beta_{R'}) \ge 2^k} \end{cases}$$

$$\begin{cases} (x \oplus \alpha) \boxplus (y \oplus \beta) \boxplus (\alpha_0 \oplus \beta_0 \oplus \Delta_0) \oplus x \boxplus y = \Delta \\ \mathbb{1}_{x+y \ge 2^m} = \mathsf{w} \end{cases}$$

Proof ideas - Recursion

Proposition (Carry-constrained Differential through ⊞)

Let

$$XDS_n = \#\{(x,y) \mid x \boxplus y \oplus (x \oplus \alpha) \boxplus (y \oplus \beta) = \Delta\} \ (\textit{Lipmaa-Moriai})$$

$$R_n(\alpha,\beta,\Delta) = \#\{(x,y) \in XDS_n(\alpha,\beta,\Delta) \mid x+y < 2^n\}$$

Then, for
$$\tilde{\alpha}=(\alpha'||\alpha), \tilde{\beta}=(\beta'||\beta), \tilde{\Delta}=(\Delta'||\Delta), \chi'=\alpha'\oplus\beta'\oplus\Delta'$$
 we have

$$\begin{aligned} & \textit{\textbf{R}}_{n+1}(\tilde{\alpha},\tilde{\beta},\tilde{\Delta}) = \begin{cases} 2\textit{\textbf{R}}_{n}(\alpha,\beta,\Delta) \text{ if not } (\alpha_{n-1}=\beta_{n-1}=\Delta_{n-1}) \text{ and } \chi' = 0 \\ \#\textit{\textbf{XDS}}_{n}(\alpha,\beta,\Delta) \text{ if not } (\alpha_{n-1}=\beta_{n-1}=\Delta_{n-1}) \text{ and } \chi' = 1 \\ \#\textit{\textbf{XDS}}_{n}(\alpha,\beta,\Delta) + 2\textit{\textbf{R}}_{n}(\alpha,\beta,\Delta) \text{ if } \alpha_{n-1}=\beta_{n-1}=\Delta_{n-1} = 0 \text{ and } \chi' = 0 \\ 2 \times \#\textit{\textbf{XDS}}_{n}(\alpha,\beta,\Delta) \text{ if } \delta_{n-1}=\alpha_{n-1}=\beta_{n-1}=\Delta_{n-1} = 1 \text{ and } \chi' = 1 \end{cases}$$

Theorem ([AL16], k = 1)

$$\begin{aligned} \mathbf{p} &= \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus \mathbf{1} \preccurlyeq \mathsf{SHL}(\nu_L)} \\ &+ \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)} \end{aligned}$$

$$\cdot 2^{-\operatorname{wt}(\operatorname{SHL}(\nu_L))} \cdot 2^{-3}$$

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$$

Theorem ([AL16], k = 1)

$$p = \mathbb{1}_{(I \oplus SHL)(\chi_L) \oplus \mathbf{1} \preccurlyeq SHL(\nu_L)}$$
$$+ \mathbb{1}_{(I \oplus SHL)(\chi_L) \preccurlyeq SHL(\nu_L)}$$

$$\cdot 2^{- \text{ wt}(SHL(\nu_L))} \cdot 2^{-3}$$

$$\cdot 2^{- \operatorname{wt}(SHL(\nu_L))} \cdot 2^{-1.415}$$

Theorem (Ours)

Theorem ([AL16], k = 1)

Theorem (Ours)

$$T_{1}(\chi_{0}, \nu_{0}, \chi_{1}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{0}))-1} + \mathbb{1}_{\chi_{0} \in \{0...0, 1...1\}} \times (-1)^{\chi_{1}} \times 2^{-2}$$

$$T_{n-1}(\chi_{L}, \nu_{L}, \chi_{0}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{L}))-1} + \mathbb{1}_{\chi_{L} \in \{0...0, 1...1\}} \times (-1)^{\chi_{0}} \times 2^{-n}$$

Theorem ([AL16], k = 1)

Theorem (Ours)

$$T_{1}(\chi_{0}, \nu_{0}, \chi_{1}) = 2^{-1} + (-1)^{\chi_{1}} \times 2^{-2} \in \{2^{-2}, 2^{-0.415}\}$$

$$T_{n-1}(\chi_{L}, \nu_{L}, \chi_{0}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{L}))-1} + \mathbb{1}_{\chi_{L} \in \{0...0, 1...1\}} \times (-1)^{\chi_{0}} \times 2^{-n}$$

Theorem ([AL16], k = 1)

$$\rho = \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \oplus \mathbf{1} \preccurlyeq \mathsf{SHL}(\nu_L)}
+ \mathbb{1}_{(I \oplus \mathsf{SHL})(\chi_L) \preccurlyeq \mathsf{SHL}(\nu_L)}$$

$$\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-3}
\cdot 2^{-\operatorname{wt}(\mathsf{SHL}(\nu_L))} \cdot 2^{-1.415}$$

Theorem (Ours)

$$T_{1}(\chi_{0}, \nu_{0}, \chi_{1}) = 2^{-1} + (-1)^{\chi_{1}} \times 2^{-2} \in \{2^{-2}, 2^{-0.415}\}$$

$$T_{n-1}(\chi_{L}, \nu_{L}, \chi_{0}) = 2^{-\text{wt}(\mathsf{SHL}(\nu_{L}))-1} + \boxed{\mathbb{1}_{\chi_{L} \in \{0...0, 1...1\}} \times (-1)^{\chi_{0}} \times 2^{-n}}$$

Theorem ([AL16], k = 1)

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

• Correction factor: 2x lower or 1.5x higher actual prob.

Theorem ([AL16], k = 1)

Theorem (Ours)

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction

Theorem ([AL16], k = 1)

Theorem (Ours)

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Theorem ([AL16], k = 1)

Theorem (Ours)

Thm [AL16] holds exactly when $\chi_L \notin \{0 \dots 0, 1 \dots 1\}$, where $(\chi_L || \chi_0) = \alpha \oplus \beta \oplus \Delta$.

- Correction factor: 2x lower or 1.5x higher actual prob.
- High prob. trail: $\chi_L = 0...0$ is likely to occur (sparse), but negl. correction
- Low prob. trail: unlikely to occur (dense)

Conclusion: concrete trails are probably not affected, optimality claims do