MATE 5150: Exam 01 Review

Alejandro Ouslan

Academic Year 2024-2025

Contents

1	Determine if T is a Vector Space	1
	1.1 Conditions	
	1.2 Summery of the Conditions	
	1.3 Example	2
2	Determine if T is in the Span of S	2
	2.1 Definition	2
	2.2 Example 1	2
	2.3 Example 2	3
	2.4 Example 2 (Alternative)	3
3	Proove that the pair of vectors is a basis for vector space V	3
	3.1 Example	3
4	Generate a polynomial of Lagrange Interpolation of degree 3	4
	4.1 Example for $n = 3$	4
5	Determine if T is bijective	4
6	Change of Basis	4
	6.1 Example	4
7	Answer of Given Questions	5
8	Answer of Given Questions 2	5
9	Answer of Given Questions 3	5
10	Answer of Given Questions 4	5

1 Determine if T is a Vector Space

1.1 Conditions

- 1. x + y = y + x
- 2. x + (y + z) = (x + y) + z
- 3. $\exists 0 \in V$ s.t. x + 0 = x
- 4. $\exists 0 \in V$ s.t. x + y = 0
- 5. 1x = x
- $6. \ a(bx) = (ab)x$

7.
$$a(x+y) = ax + ay$$

$$8. \ (a+b)x = ax + bx$$

1.2 Summery of the Conditions

- 1. 0x = 0
- 2. (-a)x = -ax = a(-x)
- 3. a0 = 0

1.3 Example

Let $S = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}\$ For $(a_1, a_2), (b_1, b_2) \in S$ and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 - b_2)$$
 and $c(a_1, a_2) = (ca_1, ca_2)$

Property 1: (fails to be a vector space)

$$(a_1, a_2) + (b_1, b_2) = (b_1, b_2) + (a_1, a_2)$$

 $(a_1 + b_1, a_2 - b_2) \neq (b_1 + a_1, b_2 - a_2)$

2 Determine if T is in the Span of S

2.1 Definition

Definition 1. The Span of the set S denoted by Span(S), is the smallest subspace of V that contains S. That is,

- Span(S) is a subspace of V
- For any subspaces $W \subseteq V$ such that $S \subseteq W \implies Span(S) \subset W$

Definition 2. Let S be a subset of a vector space V.

- If $S = \{v_1, v_2, \dots, v_n\}$, then Span(S) is the set of all combinations $r_1, r_2, \dots, r_n \in \mathbb{R}$
- If S is an infinite set then Span(S) is the set of all linear combinations $r_1v_1 + r_2v_2 + \ldots + r_nv_n$ where $v_1, v_2, \ldots, v_n \in S$ and $r_1, r_2, \ldots, r_n \in \mathbb{R}$, $n \geq 1$

2.2 Example 1

Let $v_1 = (1, 2, 0), v_2 = (3, 1, 1), \text{ and } w = (4, -7, 3).$ Determine whether w belongs to Span (v_1, v_2) .

$$w = r_1 v_1 + r_2 v_2$$

$$(4, -7, 3) = r_1(1, 2, 0) + r_2(3, 1, 1)$$

$$(4, -7, 3) = (r_1 + 3r_2, 2r_1 + r_2, r_2)$$

$$\begin{cases} 4 = r_1 + 3r_2 \\ -7 = 2r_1 + r_2 \\ 3 = 0r_1 + r_2 \end{cases}$$

Thus $w = -5v_1 + 3v_2 \in \text{Span}(v_1, v_2)$

2.3 Example 2

Let $v_1 = (2, 5)$, $v_2 = (1, 3)$, show that $\{v_1, v_2\}$ is a Span for \mathbb{R}^2 .

Take any vector $W = (a, b) \in \mathbb{R}^2$. We have to chack that there exist $r_1, r_2 \in \mathbb{R}$ such that

$$w = r_1 v_1 + r_2 v_2 \iff \begin{cases} a = 2r_1 + r_2 \\ b = 5r_1 + 3r_2 \end{cases}$$

Coeficients matrix $=\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$, $det = 1 \neq 0$. Since the matrix is invertible, the system has a unique solution for any a and b. Thus $\{v_1, v_2\}$ is a Span for \mathbb{R}^2 .

2.4 Example 2 (Alternative)

Same as before,

First let us show that vectors $e_1 = (1,0)$ and $e_2 = (0,1)$ are a $Span(v_1, v_2)$.

$$e_{1} = 2v_{1} + v_{2} \iff \begin{cases} 1 = 2r_{1} + r_{2} \\ 0 = 5r_{1} + 3r_{2} \end{cases} \iff \begin{cases} r_{1} = 3 \\ r_{2} = -5 \end{cases}$$

$$e_{2} = v_{1} + 3v_{2} \iff \begin{cases} 0 = 2r_{1} + 3r_{2} \\ 1 = 5r_{1} + 9r_{2} \end{cases} \iff \begin{cases} r_{1} = -1 \\ r_{2} = 2 \end{cases}$$

Thus $e_1 = 3v_1 - 5v_2$ and $e_2 = -v_1 + 2v_2$. Then for any $w = (a, b) \in \mathbb{R}^2$ we have

$$w = ae_1 + be_2 = a(3v_1 - 5v_2) + b(-v_1 + 2v_2) = (3a - b)v_1 + (-5a + 2b)v_2$$

3 Proove that the pair of vectors is a basis for vector space V

Definition 3. Let V be a vector space. A linearly independent set spanning set for V is called a **basis**.

Definition 4. A set of vectors $S = \{v_1, v_2, \dots, v_n\}$ is **linearly independent** if the only solution to the equation

$$r_1v_1 + r_2v_2 + \ldots + r_nv_n = 0$$

is
$$r_1 = r_2 = \ldots = r_n = 0$$
.

- 1. Proove that the set S is linearly independent.
- 2. Proove that the set S spans V.

3.1 Example

Determine which of the following sets of vectors is a basis for \mathbb{R}^3 .

1.
$$S_1 = \{(2, -4, 1), (0, 3, -1), (6, 0, -1)\}$$

$$r_1(2, -4, 1) + r_2(0, 3, -1) + r_3(6, 0, -1) = (0, 0, 0)$$

$$\begin{cases}
2r_1 + 0r_2 + 6r_3 &= 0 \\
-4r_1 + 3r_2 + 0r_3 &= 0 \\
r_1 - r_2 - r_3 &= 0
\end{cases} \implies \begin{cases}
r_1 = -3r_3 \\
r_2 = -4r_3 \\
0 = -3r_3 - 4r_3 - r_3
\end{cases}$$

Thus S_1 is not linearly independent and therefore not a basis for \mathbb{R}^3 , given that $0 = -3r_1 - 4r_2 + r_3$

2.
$$S_2 = \{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$$

4 Generate a polynomial of Lagrange Interpolation of degree 3

$$P(x) = \sum_{i=0}^{n} y_i \mathcal{L}_i(x)$$

$$\mathcal{L}_i(x) = \prod_{\substack{0 \le j \le n \\ i \ne i}} \frac{x - x_j}{x_i - x_j} = \frac{(x - x_0) \cdots (x - x_i) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1}) \cdots (x_i - x_n)}$$

4.1 Example for n = 3

$$\{(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))\}$$

$$P(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} f(x_0) + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} f(x_1) + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_2)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_2)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_2 - x_0)(x_2 - x_2)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_1 - x_2)(x_2 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_2 - x_3)}{(x_1 - x_2)(x_1 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_1 - x_3)}{(x_1 - x_2)(x_1 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_1 - x_3)}{(x_1 - x_2)(x_1 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_1 - x_3)}{(x_1 - x_2)(x_1 - x_3)} f(x_2) + \frac{(x - x_0)(x_1 - x_2)(x_1 - x_3)}{(x_1 - x_1)(x_1 - x_2)} f(x_1 - x_2) + \frac{(x - x_0)(x_1 - x_2)(x_1 - x_3)}{(x_1 - x_1)(x_1 - x_2)(x_2 - x_3)} f(x_1 - x_2) + \frac{(x - x_0)(x_1 - x_2)(x_1 - x_2)}{(x_1 - x_1)(x_$$

5 Determine if T is bijective

- 1. Proove that T is linear.
- 2. Find the kernel of T.
- 3. Find the Rank of T.
- 4. Determine if it is 1-1.

6 Change of Basis

The strategy is to find the change of basis matrix P such that $[v]_{\beta} = P[v]_{\alpha}$.

6.1 Example

Let
$$\beta = \{1 + x - x^2, x + x^2, -x + 3x^2\}$$
 and $\alpha = \{1 + x + x^2, 1 - 2x^2, 4x\}$. and let $p(x) \in P_2$ be such that $[p(x)]_{\alpha} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$. Find $[p(x)]_{\beta}$.

$$[p(x)]_{\alpha} = 3(1+x+x^{2}) + 2(1-2x^{2}) + 1(4x)$$

$$= 3+3x+3x^{2}+2-4x^{2}+4x+4x$$

$$= 5+5x-x^{2}$$

$$[p(x)]_{\beta} = 5+5x-x^{2} = c_{1}(1+x-x^{2}) + c_{2}(x+x^{2}) + c_{3}(-x+3x^{2})$$

$$[p(x)]_{\beta} = \begin{cases} 5 = c_{1}+0+0\\ 5 = c_{1}+c_{2}-c_{3}\\ -1 = -c_{1}+c_{2}+3c_{3} \end{cases} \implies \begin{cases} c_{1} = 5\\ c_{2} = 1\\ c_{3} = 1 \end{cases}$$

$$[p(x)]_{\beta} = \begin{bmatrix} 5\\ 1\\ 1 \end{bmatrix}$$

7 Answer of Given Questions

In R^2 , let L be the line y = mx, where $m \neq 0$. Find an expression for T(x, y), where

1. T is the reflection of \mathbb{R}^2 about L.

$$M_x = \frac{x_1 + x_2}{2}$$
 and $M_y = \frac{y_1 + y_2}{2}$
$$AB = \frac{y_2 - y_1}{x_2 - x_1} = -1/m$$

2. T is the projection on L along the line perpe qqndicular to L. (See the definition of projection in the exercises of Section 2.1.)

8 Answer of Given Questions 2

Let V be a vector space and S a subset of V with the property that whenever $v_1, v_2, \dots, v_n \in S$ and $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$, then $a_1 = a_2 = \dots = a_n = 0$. Prove that every vector in the span of S can be uniquely writen as a linear combination of vectors of S.

9 Answer of Given Questions 3

The combinattion $W = \{f(x) \in P(F) : f(x) = 0 \text{ or } f(x) \text{ is a polynomial of degree n } \}$ is a subspace of P(F) if $n \ge 1$. Justify your answer.

10 Answer of Given Questions 4

Let $T \in L(V, W)$. Since each subspace has a complement, we can write $V = N(T) \oplus N(T)^C$, where $N(T)^C$ is the complement of N(T) in V. Show that any complement of N(T) is a isomorphic to R(T).