Premessa: Metodo simbolico

Con il **metodo simbolico** possiamo dare una rappresentazione complessa ad ogni funzione che varia sinusoidalmente nel tempo, come il campo elettrico di un'onda:

$$f = f_o \sin(\omega t) \Leftrightarrow f = f_o e^{i\omega t}$$

$$corrispondenza$$

$$biunivoca$$

$$\mathbf{E} = \mathbf{E}_o \sin(\omega t - kz) \qquad \Leftrightarrow \qquad \mathbf{E} = \mathbf{E}_o e^{i(\omega t - kz)} = \mathbf{E}_o e^{i\omega t} e^{-ikz}$$

Consideriamo un'onda piana incidente sulla superficie di separazione tra due mezzi dielettrici 1 e 2:

$$\begin{split} \mathbf{E}_{i} &= \mathbf{E}_{0i} \, e^{i(\omega_{i}t - \mathbf{k}_{i} \cdot \mathbf{r})} \\ \mathbf{B}_{i} &= \mathbf{B}_{0i} \, e^{i(\omega_{i}t - \mathbf{k}_{i} \cdot \mathbf{r})} = \frac{\mathbf{u}_{ki} \times \mathbf{E}_{i}}{v_{1}} = \mu_{1} \mathbf{H}_{i} \\ \mathbf{E}_{r} &= \mathbf{E}_{0r} \, e^{i(\omega_{r}t - \mathbf{k}_{r} \cdot \mathbf{r})} \\ \mathbf{B}_{r} &= \mathbf{B}_{0r} \, e^{i(\omega_{r}t - \mathbf{k}_{r} \cdot \mathbf{r})} = \frac{\mathbf{u}_{kr} \times \mathbf{E}_{r}}{v_{1}} = \mu_{1} \mathbf{H}_{r} \\ \mathbf{E}_{t} &= \mathbf{E}_{0t} \, e^{i(\omega_{t}t - \mathbf{k}_{t} \cdot \mathbf{r})} \\ \mathbf{B}_{t} &= \mathbf{B}_{0t} \, e^{i(\omega_{t}t - \mathbf{k}_{t} \cdot \mathbf{r})} = \frac{\mathbf{u}_{kt} \times \mathbf{E}_{t}}{v_{2}} = \mu_{2} \mathbf{H}_{t} \end{split}$$

Supponiamo che sulla superficie sia: $\sigma = 0$ e $J_s = 0$. Per le condizioni al contorno per E, H, D e B:

$$\mathbf{u_{n}} \times (\mathbf{E_{i}} + \mathbf{E_{r}}) = \mathbf{u_{n}} \times \mathbf{E_{t}}$$

$$\mathbf{u_{n}} \times (\mathbf{H_{i}} + \mathbf{H_{r}}) = \mathbf{u_{n}} \times \mathbf{H_{t}}$$

$$\mathbf{u_{n}} \cdot (\epsilon_{1}\mathbf{E_{i}} + \epsilon_{1}\mathbf{E_{r}}) = \mathbf{u_{n}} \cdot \epsilon_{2}\mathbf{E_{t}}$$

$$\mathbf{u_{n}} \cdot (\mu_{1}\mathbf{H_{i}} + \mu_{1}\mathbf{H_{r}}) = \mathbf{u_{n}} \cdot \mu_{2}\mathbf{H_{t}}$$

$$\mathbf{u_{n}} \cdot (\mu_{1}\mathbf{H_{i}} + \mu_{1}\mathbf{H_{r}}) = \mathbf{u_{n}} \cdot \mu_{2}\mathbf{H_{t}}$$

$$\epsilon_{r} = n^{2}$$

$$\mu_{r} \cong 1$$

Queste condizioni sono soddisfatte eguagliando tra di loro gli esponenti e le ampiezze dei campi:

$$\omega_{i} = \omega_{r} = \omega_{t}$$

$$\mathbf{k}_{i} \cdot \mathbf{r} = \mathbf{k}_{r} \cdot \mathbf{r} = \mathbf{k}_{t} \cdot \mathbf{r}$$
Conservazione della quantità di moto \Rightarrow Leggi di Snell

(Nell'interpretazione corpuscolare: $E = hv e G = h/\lambda$)

$$\mathbf{u_n} \times (\mathbf{E_{oi}} + \mathbf{E_{or}}) = \mathbf{u_n} \times \mathbf{E_{ot}}$$

$$\mathbf{u_n} \times (\mathbf{H_{oi}} + \mathbf{H_{or}}) = \mathbf{u_n} \times \mathbf{H_{ot}}$$

$$\mathbf{u_n} \cdot (\epsilon_1 \mathbf{E_{oi}} + \epsilon_1 \mathbf{E_{or}}) = \mathbf{u_n} \cdot \epsilon_2 \mathbf{E_{ot}}$$

$$\mathbf{u_n} \cdot (\mu_1 \mathbf{H_{oi}} + \mu_1 \mathbf{H_{or}}) = \mathbf{u_n} \cdot \mu_2 \mathbf{H_{ot}}$$
Relazioni di Fresnel
$$\mathbf{u_n} \cdot (\mu_1 \mathbf{H_{oi}} + \mu_1 \mathbf{H_{or}}) = \mathbf{u_n} \cdot \mu_2 \mathbf{H_{ot}}$$

Occupiamoci prima della direzione di propagazione.

I vettori d'onda risultano complanari.

Piano di incidenza = Piano che contiene i vettori d'onda (ed è normale alla superficie di separazione).

Inoltre, le fasi devono eguali sulla superficie:

$$\mathbf{k}_i \cdot \mathbf{r} = \mathbf{k}_r \cdot \mathbf{r} = \mathbf{k}_t \cdot \mathbf{r}$$
 dove: $k = \frac{\omega}{v}$

Essendo:

$$\left|\mathbf{k}_{i}\right| = \frac{\omega}{\mathbf{v}_{1}} \qquad \left|\mathbf{k}_{r}\right| = \frac{\omega}{\mathbf{v}_{1}} \qquad \left|\mathbf{k}_{t}\right| = \frac{\omega}{\mathbf{v}_{2}}$$

$$\Rightarrow \frac{\omega}{\mathbf{v}_1} \sin \theta_i = \frac{\omega}{\mathbf{v}_1} \sin \theta_r$$

$$\Rightarrow \frac{\theta_i = \theta_r}{\theta_i} \qquad \text{I legge di Snell:} \\ \text{Legge della riflessione}$$

⇒ L'angolo di riflessione è uguale all'angolo di incidenza.

Inoltre:

$$\frac{\omega}{\mathbf{v}_1} \sin \theta_i = \frac{\omega}{\mathbf{v}_2} \sin \theta_t \quad \Rightarrow \quad \frac{n_1 \omega}{c} \sin \theta_i = \frac{n_2 \omega}{c} \sin \theta_t$$

$$\Rightarrow \frac{\sin \theta_i}{\sin \theta_t} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$
 II legge di Snell:
Legge della rifrazione

Le due leggi della riflessione e della rifrazione sono dette **leggi di Snell** e costituiscono la base dell'ottica geometrica.

L'origine della rifrazione è la diversa velocità nei due mezzi, mentre la frequenza deve rimanere la stessa (tutti gli oscillatori mantengono la frequenza della forzante).

Perchè i punti della superficie di separazione vedano la stessa frequenza da tutte e due le parti della superficie, la distanza tra due creste (= λ) lungo la superficie deve essere la stessa in tutti e due i mezzi.

$$\upsilon_1 = \frac{c}{n_1 \lambda_1} = \upsilon_2 = \frac{c}{n_2 \lambda_2} \implies \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$

Questo è possibile solo se cambia la direzione di propagazione.

Se l'<u>onda incidente</u> è <u>piana</u>, sia l'onda riflessa che quella rifratta sono piane.

Se l'<u>onda incidente</u> è <u>sferica</u>, quella riflessa lo è, mentre quella rifratta no.

Per la diversa velocità nei due mezzi, il fronte d'onda si deforma.

Relazioni di Fresnel

Occupiamoci ora dell'ampiezza delle onde.

Scomponiamo il campo \mathbf{E} in una componente parallela \mathbf{E}_p e in una normale \mathbf{E}_n al piano di incidenza.

a) Supponiamo: $\mathbf{E} = \mathbf{E}_{n}$

$$\mathbf{u_n} \times (\mathbf{E}_{0i} + \mathbf{E}_{0r}) = \mathbf{u_n} \times \mathbf{E}_{0t}$$
$$\mathbf{u_n} \times (\mathbf{H}_{0i} + \mathbf{H}_{0r}) = \mathbf{u_n} \times \mathbf{H}_{0t}$$

 $\mathbf{E}_{n} \perp$ al piano di incidenza $\Rightarrow \mathbf{B} //$ al piano di incidenza:

$$\mathbf{E} = \mathbf{E}_{\mathbf{n}} \implies \mathbf{B} = \mathbf{B}_{\mathbf{p}}$$

$$\begin{split} E_{ni} + E_{nr} &= E_{nt} \\ \boldsymbol{u_n} \times \left(\frac{\boldsymbol{u_{ki}} \times \boldsymbol{E_{ni}}}{\mu_1 \boldsymbol{v_1}} + \frac{\boldsymbol{u_{kr}} \times \boldsymbol{E_{nr}}}{\mu_1 \boldsymbol{v_1}} \right) = \boldsymbol{u_n} \times \left(\frac{\boldsymbol{u_{kt}} \times \boldsymbol{E_{nt}}}{\mu_2 \boldsymbol{v_2}} \right) \\ &\Rightarrow \qquad \left(\frac{E_{ni}}{\boldsymbol{v_1}} - \frac{E_{nr}}{\boldsymbol{v_1}} \right) cos \, \boldsymbol{\theta_i} = \frac{E_{nt}}{\boldsymbol{v_2}} cos \, \boldsymbol{\theta_t} \end{split}$$

Combinando le due equazioni:

$$\left(\frac{E_{ni}}{v_1} - \frac{E_{nr}}{v_1}\right) \cos \theta_i = \frac{E_{ni} + E_{nr}}{v_2} \cos \theta_t$$

$$\left(\frac{E_{ni}}{v_1} - \frac{E_{nt} - E_{ni}}{v_1}\right) \cos \theta_i = \frac{E_{nt}}{v_2} \cos \theta_t$$

dove: $v_1 = c/n_1$ e $v_2 = c/n_2$

$$E_{nr} = \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} E_{ni}$$

$$E_{nt} = \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_t} E_{ni}$$

Dalla legge di Snell, si ha:

$$\left[\frac{\sin \theta_{i}}{\sin \theta_{t}} = \frac{n_{2}}{n_{1}}\right]$$

$$E_{nr} = -\frac{\sin(\theta_{i} - \theta_{t})}{\sin(\theta_{i} + \theta_{t})} E_{ni}$$
$$E_{nt} = \frac{2\sin\theta_{t}\cos\theta_{i}}{\sin(\theta_{i} + \theta_{t})} E_{ni}$$

Relazioni di Fresnel per $E = E_n$

b) Supponiamo: $\mathbf{E} = \mathbf{E}_{p}$

 \mathbf{E} // al piano di incidenza $\Rightarrow \mathbf{B} \perp$ al piano di incidenza

$$\mathbf{E} = \mathbf{E}_{p} \implies \mathbf{B} = \mathbf{B}_{n}$$

Dalle condizioni al contorno su \mathbf{D}_{\perp} ed $\mathbf{E}_{//}$:

$$\mathbf{u_n} \cdot \varepsilon_1 \left(\mathbf{E}_{pi} + \mathbf{E}_{pr} \right) = \mathbf{u_n} \cdot \varepsilon_2 \mathbf{E}_{pt}$$
$$\mathbf{u_n} \times \left(\mathbf{E}_{pi} + \mathbf{E}_{pr} \right) = \mathbf{u_n} \times \mathbf{E}_{pt}$$

Sapendo che:

$$n_1 \sin \theta_i = n_2 \sin \theta_t$$

Si ricava che:

$$E_{pr} = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t} E_{pi}$$

$$E_{pt} = \frac{2n_1 \cos \theta_i}{n_2 \cos \theta_i + n_1 \cos \theta_t} E_{pi}$$

$$\Rightarrow \frac{E_{pr} = \frac{tg(\theta_{i} - \theta_{t})}{tg(\theta_{i} + \theta_{t})} E_{pi}}{E_{pt} = \frac{2\sin\theta_{t}\cos\theta_{i}}{\sin(\theta_{i} + \theta_{t})\cos(\theta_{i} - \theta_{t})} E_{pi}}$$

Relazioni di Fresnel per $E = E_p$

$$-\underline{E}_{nr} = 0$$
, se:

$$n_2 \cos \theta_t - n_1 \cos \theta_i = 0 \implies \operatorname{tg} \theta_t = \operatorname{tg} \theta_i$$

 $\Rightarrow \theta_i = \theta_t \implies n_1 = n_2$
 $\Rightarrow \text{E' sempre: } E_{nr} \neq 0$

 $-\underline{E}_{pr} = 0$, se:

$$n_{2} \cos \theta_{i} - n_{1} \cos \theta_{t} = \sin \theta_{i} \cos \theta_{i} - \sin \theta_{t} \cos \theta_{t} = 0$$

$$\sin(2\theta_{t}) = \sin(2\theta_{i})$$

$$\Rightarrow \theta_{t} = \theta_{i} \qquad 2\theta_{i} = \pi - 2\theta_{t}$$

La prima soluzione è banale. La seconda implica:

$$\theta_{i} + \theta_{t} = \frac{\pi}{2} \qquad \Rightarrow \qquad \frac{\sin \theta_{i}}{\sin \theta_{t}} = \frac{\sin \theta_{i}}{\cos \theta_{i}} = \frac{n_{2}}{n_{1}}$$

$$\theta_{B} = \frac{n_{2}}{n_{1}}$$

$$tg \theta_{B} = \frac{n_{2}}{n_{1}}$$

cioè:

L'angolo per cui questa condizione è soddisfatta è detto angolo di Brewster.

Applicazioni

- Un'onda polarizzata linearmente con $\mathbf{E} = \mathbf{E_p}$, che incide all'angolo di Brewster, <u>non</u> ha componente riflessa \Rightarrow Perdite per trasmissione minime
- Un'onda depolarizzata che incide all'angolo di Brewster, ha l'onda riflessa polarizzata linearmente (\(\perp \) al piano di incidenza)_{P.Taroni FSII-16}

9

Passando da un mezzo ad un altro con indice di rifrazione minore $(\mathbf{n_1} > \mathbf{n_2})$, esiste un angolo di incidenza detto **angolo limite** θ_1 per cui **non** c'è onda trasmessa:

$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{n_2}{n_1}$$

$$\theta_t = \frac{\pi}{2}$$
 \Rightarrow $\sin \theta_l = \frac{n_2}{n_1}$

Per angoli di incidenza maggiori o uguali dell'angolo limite non c'è trasmissione dell'onda.

⇒ Principio della **fibra ottica**

$$NA = n_0 \sin\left(\frac{\alpha}{2}\right) = Apertura numerica$$

Sapendo che:

$$\overline{I} = \overline{u}v = \left(\frac{1}{2}\varepsilon E^2\right)v = \frac{1}{2}\varepsilon_0 n^2 E^2 \frac{c}{n} \propto nE^2$$

Definiamo:

$$R = \frac{I_r}{I_i} = \frac{E_r^2}{E_i^2}$$

Trasmittanza
$$T = \frac{I_t}{I_i} = \frac{n_2 \cos \theta_t}{n_1 \cos \theta_i} \frac{E_t^2}{E_i^2}$$

$$R_{n} = \left[\frac{n_{1}\cos\theta_{i} - n_{2}\cos\theta_{t}}{n_{1}\cos\theta_{i} + n_{2}\cos\theta_{t}}\right]^{2} = \frac{\sin^{2}(\theta_{i} - \theta_{t})}{\sin^{2}(\theta_{i} + \theta_{t})}$$

$$T_{n} = \frac{n_{2}\cos\theta_{t}}{n_{1}\cos\theta_{i}} \left[\frac{2n_{1}\cos\theta_{i}}{n_{1}\cos\theta_{i} + n_{2}\cos\theta_{t}}\right]^{2} = \frac{\sin(2\theta_{i})\sin(2\theta_{t})}{\sin^{2}(\theta_{i} + \theta_{t})}$$

$$R_{p} = \left[\frac{n_{2}\cos\theta_{i} - n_{1}\cos\theta_{t}}{n_{2}\cos\theta_{i} + n_{1}\cos\theta_{t}}\right]^{2} = \frac{tg^{2}(\theta_{i} - \theta_{t})}{tg^{2}(\theta_{i} + \theta_{t})}$$

$$T_{p} = \frac{n_{2}\cos\theta_{t}}{n_{1}\cos\theta_{i}} \left[\frac{2n_{1}\cos\theta_{i}}{n_{2}\cos\theta_{i} + n_{1}\cos\theta_{t}}\right]^{2} = \frac{\sin(2\theta_{i})\sin(2\theta_{t})}{\sin^{2}(\theta_{i} + \theta_{t})\cos^{2}(\theta_{i} - \theta_{t})}$$

R e T esprimono la percentuale di energia riflessa e trasmessa.

In accordo con la conservazione dell'energia:

$$R+T=1$$

Per incidenza normale: $\theta_i = \theta_t = 0$

$$R_n = R_p = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

$$T_n = T_p = \frac{4n_1n_2}{\left(n_1 + n_2\right)^2}$$

Esempi:

- aria-vetro: $n_1 = 1, n_2 = 1.5$ $\implies R = 0.04$

- aria-acqua: $n_1 = 1$, $n_2 = 1.33 \implies R = 0.02$

Se $\theta_i = 0$, scambiando n_1 ed n_2 , R e T non cambiano.

 \mathbf{E}_{t} ed \mathbf{E}_{i} hanno sempre lo stesso segno, mentre \mathbf{E}_{r} può avere segno opposto ad \mathbf{E}_{i} :

$$\begin{split} &\frac{E_t}{E_i} > 0 \qquad \text{per:} \quad n_1 < n_2 \quad \text{ed} \quad n_1 > n_2 \\ &\frac{E_r}{E_i} > 0 \qquad \text{per:} \quad n_1 > n_2 \\ &\frac{E_r}{E_i} < 0 \qquad \text{per:} \quad n_1 < n_2 \end{split}$$

 \mathbf{E}_{i} si sfasa di π quando viene riflesso da un'interfaccia con un mezzo più rifrangente.

Per dimostrarlo si usano:

- la condizione al contorno per $\mathbf{E_{tg}}$ (con $\mathbf{E} = \mathbf{E_{tg}}$) nel passaggio da un mezzo all'altro
- la conservazione dell'energia (o dell'intensità) tra prima e dopo l'incidenza sulla superficie di separazione.

$$\begin{cases} E_i + E_r = E_t \\ n_1 E_i^2 = n_1 E_r^2 + n_2 E_t^2 \end{cases}$$
 (dove: $I = \frac{1}{2} \varepsilon_0 n E^2 c$)

$$\Rightarrow E_{r} = \frac{n_{1} - n_{2}}{n_{1} + n_{2}} E_{i} \qquad E_{t} = \frac{2n_{1}}{n_{1} + n_{2}} E_{i}$$

Per <u>incidenza normale</u> dal vuoto sulla superficie di un *conduttore ideale*, dove l'indice di rifrazione è puramente immaginario (*):

$$n_1 = 1$$
 $n_2 = in$

$$R = \left[\frac{1 - in}{1 + in}\right]^{2} = \left|\frac{\sqrt{1 + n^{2}}}{\sqrt{1 + n^{2}}} \frac{e^{-i\phi}}{e^{i\phi}}\right|^{2} = \left|e^{-2i\phi}\right|^{2} = 1 \qquad \left(n_{1} + in_{2} = \rho e^{i\phi}\right)$$

⇒ L'onda è totalmente riflessa.

.....

P.Taroni_FSII - 16

(*) Per
$$\omega < \omega_p$$
:
 $n_2^2 = 1 - \left(\frac{\omega_p}{\omega}\right)^2 < 0 \implies n_2 = in$

13