18.404/6.840 Lecture 22

shrink me \rightarrow

Last time:

- Finished NL = coNL
- Time and Space Hierarchy Theorems

Today:

- A "natural" intractable problem
- Oracles and P versus NP

Posted:

- Solutions to Problem Set 5
- Problem Set 6

Review: Hierarchy Theorems

Theorems:

 $\begin{aligned} & \mathsf{SPACE}\big(o(f(n))\big) \subsetneq & \mathsf{SPACE}\big(f(n)\big) \text{ for space constructible } f. \\ & \mathsf{TIME}\Big(o\big(f(n)/\log\big(f(n)\big)\big)\Big) \subsetneq & \mathsf{TIME}\big(f(n)\big) \text{ for time constructible } f. \end{aligned}$

Corollary: NL ⊊ PSPACE

Implies $TQBF \notin NL$ because the polynomial-time reductions in the proof that TQBF is PSPACE-complete can be done in log space.

Check-in 22.1

Which of these are known to be true? Check all that apply.

- (a) $\mathsf{TIME}(2^n) \subsetneq \mathsf{TIME}(2^{n+1})$
- (b) $\mathsf{TIME}(2^n) \subsetneq \mathsf{TIME}(2^{2n})$
- (c) $NTIME(n^2) \subsetneq PSPACE$
- (d) NP \subsetneq PSPACE

Exponential Complexity Classes

```
Defn: EXPTIME = \bigcup_k \text{TIME}\left(2^{(n^k)}\right)

EXPSPACE = \bigcup_k \text{SPACE}\left(2^{(n^k)}\right)

Time Hierarchy Theorem

\bot = \bot = \bot
\bot \subseteq \text{NL} \subseteq \text{P} \subseteq \text{NP} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \text{EXPSPACE}
\bot = \bot = \bot \vdash \bot = \bot = \bot
Space Hierarchy Theorem
```

Defn: *B* is <u>EXPTIME-complete</u> if

- 1) $B \in EXPTIME$
- 2) For all $A \in \mathsf{EXPTIME}$, $A \leq_{\mathsf{P}} B$

Same for **EXPSPACE-complete**

```
Theorem: If B is EXPTIME-complete then B \notin P intractable Theorem: If B is EXPSPACE-complete then B \notin PSPACE (and B \notin P)
```

Next will exhibit an EXPSPACE-complete problem

A "Natural" Intractable Problem

Defn: $EQ_{REX} = \{\langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are equivalent regular expressions} \}$

Theorem: $EQ_{REX} \in PSPACE$

Proof: Later (if time) or exercise (uses Savitch's theorem).

Notation: If R is a regular expression write R^k to mean $\widehat{RR \cdots R}$ (exponent is written in binary).

Defn: $EQ_{REX\uparrow} = \{\langle R_1, R_2 \rangle | R_1 \text{ and } R_2 \text{ are equivalent regular expressions with exponentiation} \}$

Theorem: $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete

Proof: 1) $EQ_{REX\uparrow} \in EXPSPACE$

2) If $A \in EXPSPACE$ then $A \leq_P EQ_{REX^{\uparrow}}$

- 1) Given regular expressions with exponentiation R_1 and R_2 , expand the exponentiation by using repeated concatenation and then use $EQ_{\text{REX}} \in \text{PSPACE}$. The expansion is exponentially larger, so gives an EXPSPACE algorithm for $EQ_{\text{REX}} \uparrow$.
- 2) Let $A \in \mathsf{EXPSPACE}$ be decided by TM M in space $2^{(n^k)}$.

Give a polynomial-time reduction f mapping A to $EQ_{REX\uparrow}$.

Showing $A \leq_{\mathbf{P}} EQ_{\mathbf{REX}\uparrow}$

Theorem: $EQ_{REX\uparrow}$ is EXPSPACE-complete

Proof continued: Let $A \in EXPSPACE$ decided by TM M in space $2^{(n^k)}$.

Give a polynomial-time reduction f mapping A to $EQ_{\text{REX}\uparrow}$.

$$f(w) = \langle R_1, R_2 \rangle$$

 $w \in A \text{ iff } L(R_1) = L(R_2)$

Construct R_1 so that $L(R_1) = \text{ all strings } \underbrace{\text{except}}_{\text{a rejecting computation history for } M \text{ on } w.$ Construct $R_2 = \Delta^*$ (Δ is the alphabet for computation histories, i.e., $\Delta = \Gamma \cup Q \cup \{\#\}$) \checkmark

R_1 construction: $R_1 = R_{\text{bad-start}} \cup R_{\text{bad-move}} \cup R_{\text{bad-reject}}$

Rejecting computation history for M on w:

Check-in 22.2

Roughly estimate the size of the rejecting computation history for M on w.

(a)
$$2^n$$
 (c) $2^{2^{(n^k)}}$

(b)
$$2^{(n^k)}$$

$A \leq_{\mathsf{P}} EQ_{\mathsf{REX}\uparrow}$ $(R_{\mathsf{bad-start}})$

Construct R_1 to generate all strings except a rejecting computation history for M on w.

$$R_1 = R_{\text{bad-start}} \cup R_{\text{bad-move}} \cup R_{\text{bad-reject}}$$

Rejecting computation history for M on w:

 $R_{\rm bad-start}$ generates all strings that do not start with $C_{\rm start} = q_0 w_1 w_2 \cdots w_n$... $R_{\text{bad-start}} = S_0 \cup S_1 \cup S_2 \cup \cdots \cup S_n \cup S_{\text{blanks}} \cup S_{\#}$

Remember: Δ is the alphabet for computation histories, i.e., $\Delta = \Gamma \cup Q \cup \{\#\}$

Notation:
$$\Delta_{\varepsilon} = \Delta \cup \{\varepsilon\}$$

$$\Delta_{-b} = \Delta \text{ without b}$$

$$\Delta^{7} = \text{all strings of length 7}$$

$$\Delta_{\varepsilon}^{7} = \text{all strings of length 0 thru 7}$$

es, i.e.,
$$\Delta = \Gamma \cup Q \cup \{\#\}$$
)
$$S_n = \Delta^n \Delta_{-w_n} \Delta^*$$

$$S_{\text{blanks}} = \Delta^{n+1} \Delta_{\varepsilon}^{2^{\binom{nk}{-(n+2)}}} \Delta_{-\Delta} \Delta^*$$

$$\vdots$$
 all strings of length $n+1$ thru $2^{(n^k)}-1$
$$S_{n+1} = \Delta^{n+1} \Delta_{-\Delta} \Delta^*$$

$$\vdots$$

$$S_{2^{n-1}} = \Delta^{2^{n-1}} \Delta_{-\Delta} \Delta^*$$

$$S_{n+1} = \Delta^{n+1} \Delta_{-\Delta} \Delta^*$$

$$S_{0} = \Delta_{-q_{0}} \Delta^{*}$$
 $S_{1} = \Delta \Delta_{-w_{1}} \Delta^{*}$
 $S_{2} = \Delta^{2} \Delta_{-w_{2}} \Delta^{*}$
 \vdots
 $S_{n} = \Delta^{n} \Delta_{-w_{n}} \Delta^{*}$
 \vdots
 $S_{n+1} = \Delta^{n+1} \Delta_{-} \Delta^{*}$
 \vdots
 $S_{2^{n}-1} = \Delta^{2^{n}-1} \Delta_{-} \Delta^{*}$
 $S_{\#} = \Delta^{2^{n}} \Delta_{-\#} \Delta^{*}$

$A \leq_{\mathrm{P}} EQ_{\mathrm{REX}\uparrow}$ ($R_{\mathrm{bad-move}} \& R_{\mathrm{bad-reject}}$)

Construct R_1 to generate all strings except a rejecting computation history for M on w.

$$R_1 = R_{\text{bad-start}} \cup R_{\text{bad-move}} \cup R_{\text{bad-reject}}$$

Rejecting computation history for M on w:

 $R_{
m bad-reject}$ generates all strings that do not contain $q_{
m reject}$

$$R_{\text{bad-reject}} = \Delta^*_{-q_{\text{reject}}}$$

 $R_{\rm bad-move}$ generates all strings that contain an illegal 2 imes 3 neighborhood

$$R_{\text{bad-move}} = \bigcup_{\substack{\text{illegal} \\ \frac{a \ b \ c}{d \ e \ f}}} \left[\Delta^* \ \text{abc} \ \Delta^{2^{\binom{n^k}{-2}} - 2} \ \text{def} \ \Delta^* \right]$$

Computation with Oracles

Let A be any language.

Defn: A TM M with oracle for A, written M^A , is a TM equipped with a "black box" that can answer queries "is $x \in A$?" for free.

Example: A TM with an oracle for SAT can decide all $B \in NP$ in polynomial time.

Defn: $P^A = \{B \mid B \text{ is decidable in polynomial time with an oracle for } A\}$ Thus $NP \subseteq P^{SAT}$ $NP = P^{SAT}$? Probably No because $coNP \subseteq P^{SAT}$

Defn: $NP^A = \{B \mid B \text{ is decidable in nondeterministic polynomial time with an oracle for }A\}$ Recall $MIN\text{-}FORMULA = \{\langle \phi \rangle \mid \phi \text{ is a minimal Boolean formula }\}$

Example: $\overline{MIN-FORMULA} \in NP^{SAT}$ "On input $\langle \phi \rangle$

- 1. Guess shorter formula ψ
- 2. Use SAT oracle to solve the coNP problem: ϕ and ψ are equivalent
- 3. Accept if ϕ and ψ are equivalent. Reject if not."

Oracles and P versus NP

Theorem: There is an oracle A where $P^A = NP^A$

Proof: Let A = TQBF

 $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$

Relevance to the P versus NP question

Recall: We showed $EQ_{\text{REX}\uparrow} \notin PSPACE$. Could we show $SAT \notin P$ using a similar method?

Reason: Suppose YES.

The Hierarchy Theorems are proved by a diagonalization. In this diagonalization, the TM D simulates some TM M. If both TMs were oracle TMs D^A and M^A with the same oracle A, the simulation and the diagonalization would still work. Therefore, if we could prove P \neq NP by a diagonalization, we would also prove that $P^A \neq NP^A$ for every oracle A.

But that is false!

Check-in 22.3

Which of these are known to be true? Check all that apply.

(a)
$$P^{SAT} = P^{\overline{SAT}}$$

(b)
$$NP^{SAT} = coNP^{SAT}$$

(c)
$$MIN$$
- $FORMULA \in P^{TQBF}$

(d)
$$NP^{TQBF} = coNP^{TQBF}$$

Quick review of today

- Defined EXPTIME and EXPSPACE
- 2. Defined EXPTIME- and EXPSPACE-completeness
- 3. Showed $EQ_{\text{REX}\uparrow}$ is EXPSPACE-complete and thus $EQ_{\text{REX}\uparrow} \notin \text{PSPACE}$
- 4. Defined oracle TMs
- 5. Showed $P^A = NP^A$ for some oracle A
- 6. Discussed relevance to the P vs NP question

$EQ_{REX} \in PSPACE$

Theorem: $EQ_{REX} \in PSPACE$

Proof: Show $\overline{EQ_{REX}} \in NPSPACE$

"On input $\langle R_1, R_2 \rangle$ [assume alphabet Σ]

- 1. Convert R_1 and R_2 to equivalent NFAs N_1 and N_2 having m_1 and m_2 states.
- 2. Nondeterministically guess the symbols of a string s of length $2^{m_1+m_2}$ and simulate N_1 and N_2 on s, storing only the current sets of states of N_1 and N_2 .
- 3. If they ever disagree on acceptance then accept.
- 4. If always agree on acceptance then reject."