WILLIAM WARDEngineering Physics Student

EDUCATION

2018-2023

B.Eng. Engineering Physics McMaster University

Co-op program GPA: 3.95 / 4

SKILLS

Embedded C & C++

Python

Java

C# & .NET

MATLAB

Linux

Git

PCB Design

Analog Electronics

Digital Electronics

Oscilloscope Usage

Autodesk Inventor

FreeRTOS

Soldering

3D Printing

Fusion360

NI Multisim

Zemax OpticStudio

EasyEDA

Confluence + JIRA

Numerical Data Analysis

AWARDS

Eagle Scout AwardBoy Scouts of America
2017

NSERC USRA

McMaster University Biophotonics Research Group 2019

CONTACT

- Birmingham, Michigan
- 1 +1 365-366-8453
- liam.ward144@gmail.com

% My Profile Site

WORK EXPERIENCE

Software Engineer Intern

KLA Corporation - FastScan R&D Group

Collaborated with an interdisciplinary team to build an optical test bench designed to quantify the response of a PN junction detector for an electron beam column

- Implemented a multi-threaded application to operate a test bench with Python
- Wrote hardware driver libraries in Python to control coupled linear translation stages, an oscilloscope, a pulse generator, and an optical source
- Developed a baseline understanding of scanning electron microscopy & electron optics
- · Assembled laser & associated optical components; performed optical alignment

Command & Data Handling Team Lead

Apr 22 - Jul 22

May 22 - Aug 22

McMaster Interdisciplinary Satellite Team (NEUDOSE)

As team lead, I was head of software development for the Command & Data Handling sub team. I managed a team of 7 people and continuously worked with systems level engineers to facilitate development of satellite flight software.

- Led technical development of the Command & Data Handling Finite State Machine with over 180 commits
- · Performed and submitted code reviews on a weekly basis

Embedded Software Specialist

Aug 21 - Apr 22

McMaster Interdisciplinary Satellite Team (NEUDOSE)

Developing embedded software using the Gomspace SDK & custom libraries / packages to control the satellite's On-Board Computer

- · Designed a finite state machine to control satellite interactions between subsystems
- Successfully integrated CubeSat Space Protocol (CSP) communication architecture with 3 existing sub-services
- · Collaborated with a team of 7 software specialists on a team repository using Git

Co-op Research & Development Scientist

Sep 20 - Sep 2

Mesomat

Collaborated with other engineers on 32 software packages, 15 electrical systems and 2 electromechanical systems for Mesomat.

- Designed 15 unique PCBs utilized by Mesomat's data acquisition platform and robotic production line system
- Spearheaded performance analysis of 2 unique event detection algorithms with Python
- Designed & built an automated electromechanical production robot on a \$5k budget
- Increased the reliability & efficiency of the sensor production process by 50%
- Developed desktop application for software version control, decreasing software distribution time by 25% for the management team
- Used C# to implement a real time signal processing algorithm for event detection
- Utilized Git for version control of 32 different collaborative software projects
- Improved robustness of existing production robotic system before overhauling the entire system; reduced downtime by 40%
- Overhauled a lacking client interface by developing a software distribution web application

COURSES

- Electronics: Non-Linear & Active Components
- Electronics: Embedded Systems
- · Solid State Devices
- · Semiconductor Junction Devices
- · Analog & Digital Circuits
- Electromagnetism
- · Computational Multi-Physics
- · Signals & Systems
- · Physical Optics
- Numerical Methods
- Data Structures, Algorithms & Discrete Mathematics
- · Mathematical Physics I & II
- · Quantum Mechanics
- · Thermal System Design

INTERESTS

- · Olympic Weightlifting
- Backpacking
- Rugby

Undergraduate Research Assistant

McMaster Biophotonics Research Group

Conceived of and implemented a graphical user interface to interact with an existing controller infrastructure for an ultra-fast fiber optic laser micro machining station

Orbital Simulation Specialist

Dec 19 - Sep 20

May 20 - Aug 20

McMaster Interdisciplinary Satellite Team (NEUDOSE)

Assisted in development of orbital models of the satellite in order to implement attitude determination and control using Passive Magnetic Attitude Control

TEACHING EXPERIENCE

Support Teaching Assistant

2019 - Present

Integrated Biomedical Engineering - McMaster University

Spent 3 years assisting students in a laboratory environment, encouraging further development of computing, computer-aided design & professional communication skills

Instructional Teaching Assistant

Sep 20 - Apr 21

Integrated Biomedical Engineering - McMaster University

Prepared & delivered labs to teach first-year engineering students the basics of computeraided design and programming on a weekly basis

Course Developer

May 19 - Aug 19

Integrated Biomedical Engineering - McMaster University

Created and updated Integrated Biomedical Engineering & Health Science lab content for 24 labs focused on CAD & Coding

- Generated a supplementary database of 66 Python Video Tutorials and associated educational slides in the interest of enhanced learning
- Generated lesson plans spanning the entire academic year to encourage a problem-based learning approach to relevant engineering challenges

ACADEMIC PROJECTS

Embedded PID Controller

April 2021

Embedded Systems

- Designed and implemented a PID controller on an embedded platform, interfaced with a MATLAB Graphical User Interface
- Successfully tuned the PID system to within $\pm 2 \deg C$, with minimal overshoot and steady-state oscillations

Ultrasonic Range Finder

Dec 2021

Non-Linear Electronics

- Cooperated with a team of other engineers to successfully design and build an ultrasonic range finder
- · Succeeded in building a device with an accuracy to within 1 cm up to 99 cm
- Constructed the device using 40 base-level analog and digital components such as amplifiers & logic gates

Preheat Thruster Optimization

Mar 2020

Computational Multi-physics

Optimized the design of a spacecraft thruster heating system; Utilized background in heat transfer physics to construct a simulation model for design verification