Commutative algebra HW3

Matei Ionita

September 24, 2013

Problem 1

Find a ring A and an ideal I such that I is generated by countably many elements $f_1, f_2, f_3, ...$ such that $f_i^2 = 0$ but such that I is not a nilpotent ideal (in other words for all n > 0 the ideal I^n is not zero).

Solution

Take $A = \mathbb{C}[x_1, x_2, \dots]/(x_1^2, x_2^2, \dots)$, and $I = (x_1, x_2, \dots)$. Then obviously each of the x_i 's is nilpotent, but I^n will contain the element $x_1 \dots x_n \neq 0$.

Problem 2

Let $A \subset B$ be an extension of domains. Let K be the fraction field of A and L be the fraction field of B, so that we have an extension of fields $K \subset L$. Show that if (a) B is a finite type A-algebra and (b) L is a finite extension of K, then the image of $Spec(B) \to Spec(A)$ contains a nonempty open subset of Spec(A).

Solution

$$\begin{array}{ccc} B & \longrightarrow & L \\ \downarrow & & \uparrow \\ A & \longrightarrow & K \end{array}$$

Let $b \in B$, then $b \in L$, and since L is a finite extension of K we have $k_n b^n + \cdots + k_0 = 0$ for some n. By cancelling denominators, we can get this to the form $a_n b^n + \cdots + a_0 = 0$ for $a_i \in A$, but we do not know that a_n has an inverse, so this polynomial may not be monic. But we can localize a_n , in order to make b integral. Therefore, if (x_1, \ldots, x_n) generate B as an A-algebra, let c_i denote the leading coefficient in the polynomial for x_i , and we localize A and B at the multiplicative subset $S = \{c_i\}$. Then $x_i \in S^{-1}B$ are integral over $S^{-1}A$, and this implies $S^{-1}\phi: S^{-1}A \to S^{-1}B$ is a finite map. The localization functor is exact, so $S^{-1}\phi$ is also injective. By Lemma 15 proved in class, $\operatorname{Spec}(S^{-1}\phi)$ is surjective. Then:

$$\operatorname{Spec}(S^{-1}A) = \operatorname{Im} \operatorname{Spec}(S^{-1}\phi) \subset \operatorname{Im} \operatorname{Spec}(\phi)$$
 (*)

But $\operatorname{Spec}(S^{-1}A)$ contains all primes in $\operatorname{Spec}(A)$ that avoid $S = \{c_i\}$, so:

$$\operatorname{Spec}(S^{-1}A) = \operatorname{D}(c_1 \dots c_n) \qquad (**)$$

By (*) and (**), $D(c_1 \dots c_n) \subset \operatorname{Im} \operatorname{Spec}(\phi)$.

Problem 3

Let k be a field. Let $f, g \in k[t]$ be two polynomials in a variable t with coefficients in k. Show that there exists a nonzero two variable polynomial $P \in k[x, y]$ such that P(f, g) = 0 in k[t].

Solution

Consider the map:

$$\phi: k[x, y] \to k[t]$$
$$P(x, y) \to P(f(t), g(t))$$

This is a ring homomorphism. Assume there is no nonzero P such that P(f(t), g(t)) = 0, then ϕ is injective. We want to show that ϕ is also finite. We have that k[t] is a finitely generated k[x, y]-algebra, with generator t. By Lemma 1 proved in class, if t satisfies a monic equation of the form

$$t^n + \phi(a_1)t^{n-1} + \dots + \phi(a_n) = 0$$

With $a_i \in k[x,y]$, then ϕ is finite. But we see that $\phi(x) = f(t) = \sum_{i=0}^n b_i t^i$, and therefore:

$$t^{n} + \sum_{i=0}^{n-1} b_{i}/b_{n}t^{i} + \phi(x)/b_{n} = 0$$

So ϕ is a finite injective map. By Lemma 15, $\operatorname{Spec}(\phi)$ is surjective, and then by Lemma 29 $\dim(k[x,y]) = \dim(k[t])$. But this is a contradiction, since $\dim(k[x,y]) = 2$ and $\dim(k[t]) = 1$.

Problem 4

Give an example of an Artinian ring which is not an algebra of finite type over a field.

Solution

 \mathbb{Z}_4 is Artinian because it has a finite number of ideals. It is not a finite-type algebra over a field because there exists no ring homomorphism from a field other than \mathbb{Z}_4 to \mathbb{Z}_4 .