Parcours Datascientist: projet 4

Anticipation des retards de vol

Francois BANGUI

Formulation du problème

Anticipation des retards

Données passées => Prediction future

Classe : Régression

Modèle linéaire

Hypothèses à vérifier :

- Bruit normal
- Observations I.I.D.
- Linéarité

Analyse des variables

DATATION

YEAR
QUARTER
MONTH
DAY_OF_MONTH
DAY_OF_WEEK
FL_DATE
CRS_DEP_TIME
CRS_ARR_TIME
CRS_ELAPSED_TIME

OPERATEUR

UNIQUE_CARRIER AIRLINE_ID CARRIER TAIL_NUM FL NUM

LOCALISATION

ORIGIN_AIRPORT_ID
ORIGIN_AIRPORT_SEQ_ID
ORIGIN_CITY_MARKET_ID
ORIGIN ORIGIN_CITY_NAME
ORIGIN_STATE_ABR
ORIGIN_STATE_FIPS
ORIGIN_STATE_NM
ORIGIN_WAC

DEST_AIRPORT_SEQ_ID
DEST_CITY_MARKET_ID
DEST
DEST_CITY_NAME
DEST_STATE_ABR
DEST_STATE_FIPS
DEST_STATE_NM
DEST_WAC
DEST_AIRPORT_ID

DISTANCE GROUP

CAUSES DU RETARD

CANCELLED
CANCELLATION_CODE
DIVERTED
TAXI_OUT
TAXI_IN
WHEELS_OFF
WHEELS_ON
AIR TIME

MESURES DU RETARD

DEP_TIME
DEP_DELAY
DEP_DELAY_NEW
DEP_DEL15
DEP_DELAY_GROUP
ARR_DELAY
DEP_TIME_BLK
ARR_TIME
ARR_DELAY_NEW
ARR_DEL15
ARR_DELAY_GROUP
ARR_TIME_BLK
ARR_TIME_BLK
ARR_DELAY_GROUP
ARR_TIME_BLK
ACTUAL ELAPSED TIME

Sélection des variables

DATATION	LOCALISATION	OPERATEUR	
DAY_OF_MONTH DAY_OF_WEEK MONTH CRS_DEP_TIME CRS_ELAPSED_TIME	ORIGIN_AIRPORT_ID DEST_AIRPORT_ID	AIRLINE_ID	

CIBLE	
ARR_DELAY	

Préparation des données : 1,2GB

Calcul

Exploration: Échantillonnage

Corrélation des variables

Modèle : 5 millions de de lignes Étude : ~ 50 000 lignes « shufflées »

DATA LEAKAGE

- · CRS ELAPSED TIME.
- CRS ARR TIME
- CRS DEP TIME.

Corrélation entre les variables

- DISTANCE / CRS ELAPSED TIME.
- CRS_ARR_TIME / CRS_DEP_TIME.

Il n'est pas nécessaire de garder dans le modèle ces deux variables.

Distribution des retards : ARR_DELAY

Moyenne: 4.0 mn
Mediane: -6.0 mn
Variance: 1906 mn
Ecart type: 44 mn

Retards par route

Disparités des distributions des retards

Activité au départ par route

- Variation dans les fréquences
- Variation des amplitudes

Retards par route

Variance des retards par route

Études des routes sur deux zones géographiques : côtes EST / OUEST :

NY / LA : courbes décentrées

Routes NORD / SUD : skewed et variance proches

Routes EST/OUEST : skewed et variance proches, décentrage

Incidence des fréquences des départs et arrivées sur les retards

Construction des routes

Distribution des routes

Variables retenues pour le modèle : par route (1)

Quantitatives

CRS_DEP_TIME

Catégorielles

AIRLINE_ID MONTH DAY_OF_MONTH DAY_OF_WEEK **CIBLE**

ARR_DELAY

Améliorations : modèle climatique

Variables retenues pour le modèle : par route (2)

Quantitatives

CRS_DEP_TIME

Catégorielles

AIRLINE_ID
MONTH
DAY_OF_MONTH
DAY_OF_WEEK
ORIGIN_STATE_CLM
DEST_STATE_CLM

CIBLE

ARR_DELAY

Traitement: one-hot encoding + scaling

	Avant	Augmentation	Après
MONTH	7	+12	28
DAY_OF_MONTH	28	+31	58
DAY_OF_WEEK	58	+7	64
AIRLINE_ID	64	+12	75
ORIGIN_STATE_CLM	75	+7	82
DEST_STATE_CLM	82	+7	88
CRS_DEP_TIME	88	+1	89
Dimension du modèle	89		

« One Hot » encoding

Scaling

Modèles linéaires : organisation des données

Benchmark des modèles

Modèle régression linéaire : ElasticNet

- SGDRegressor : adapté aux larges problèmes
- Hyper-paramètres :
 - Validation croisée GridSearchCV: 3 folders
- Erreur : MAE et R2 pondérées

Implémentation

Déploiement Heroku & Tests

Application: francoisbangui-flydelaypred.herokuapp.com Chargement du composant oLinearDelayPredictor en RAM Liste des vols disponibles OlinearDelayPredictor.dump 90 MB https://francoisbangui-flydelaypred.herokuapp.com/predictor?'*' {" select": {"id":"446011","flight":"3528","company":"WN","origin":"Oakland, CA","destination":"San Diego, CA","departure":"WED 12-28 10:40", "arrival": "12:05}, {"id":"348365","flight":"4220","company":"EV","origin":"Houston, TX","destination":"Nashville, TN","departure":"TUE 07-5 15:40"."arrival":"17:45\. {"id":"70245","flight":"48","company":"VX","origin":"Kahului, HI","destination":"San Francisco, CA","departure":"THU 07-7 22:15"."arrival":"06:25}. {"id":"366211","flight":"3004","company":"WN","origin":"Chicago, IL","destination":"Providence, RI","departure":"TUE 12-6 13:45", "arrival": "16:50}, {"id":"150956","flight":"1573","company":"AA","origin":"Chicago, IL","destination":"Kansas City, MO","departure":"SUN 07-17 07:25", "arrival": "08:51}}}

Résultat : Régression linéaire vs ElasticNet

```
{"_result":[{"id":"446011","model":"SGDRegressor","evaluated_delay":"0","model":"LinearRegression","evaluated_delay":"1","measured_delay":"23"}]}

{"_result":[{"id":"70245","model":"SGDRegressor","evaluated_delay":"-23","model":"LinearRegression","evaluated_delay":"-8","measured_delay":"-23"}]}

{"_result":[{"id":"366211","model":"SGDRegressor","evaluated_delay":"-2","model":"LinearRegression","evaluated_delay":"7","measured_delay":"-5"}]}

{"_result":[{"id":"150956","model":"SGDRegressor","evaluated_delay":"-2","model":"LinearRegression","evaluated_delay":"7","measured_delay":"13"}]}
```

Conclusions

- Linéarité : pas assez d'information pour une bonne évaluation.
- Avantage : performance
- Inconvénients : Flexibilité : nouvelle route ?

Axes d'améliorations:

- Informations transporteur
- Pré-classification binaire
- Modèle météorologique

Annexe 1 : fichiers du projet

Fichiers source python :

- heroku/flight_predictor/LinearDelayPredictor.py
- heroku/flight_predictor/config.py
- heroku/flight_predictor/views.py

Notebook de l'alnalyse exploratoire :

- P4.ipynb : Nettoyage / Exploration
- Notebook des approches de modélisation :
 - P4_ModelBuilder.ipynb : Évaluation / Tests / Pré-production / Génération d'un objet de type LinearDelayPredictor
- Rapport sous forme de présentation pdf:
 - Openclassrooms_ParcoursDatascientist_P4.pdf
- Points d'entrée de l'API :
 - Pour récupérer une liste de vols :
 - https://https://francois-bangui-oc-p4.herokuapp.com/predictor/?'*'
 - Pour récupérer l'évaluation du retard d'un vol à partir de son identifiant :
 - https://https://francois-bangui-oc-p4.herokuapp.com/predictor/?flight_id=<ID>

Annexe 2: Ingénierie logicielle

