# Netzwerke und Schaltungen II

D-ITET

HS2025

# Übung X

1.1.2000



Rares Sahleanu

# INHALTSVERZEICHNIS

| ABSCHNITT 1 | Grundlagen der Netzwerkanalyse                  | _ SEITE 2 |
|-------------|-------------------------------------------------|-----------|
| 1.1         | Kirchhoffsche Gesetze                           | 2         |
| 1.2         | Maschen- und Knotenanalyse                      | 2         |
| 1.3         | Zweipoltheorie                                  | 2         |
| 1.4         | Zusatzaufgaben                                  | 2         |
|             |                                                 |           |
| ABSCHNITT 2 | Frequenzgang und Filter                         | _ SEITE 3 |
| 2.1         | Tiefpass- und Hochpassfilter                    | 3         |
|             |                                                 |           |
| 2.2         | Bandpass- und Bandsperrfilter                   | 3         |
| 2.2<br>2.3  | Bandpass- und Bandsperrfilter<br>Bode-Diagramme | 3<br>3    |
|             |                                                 | -         |

# 1 Grundlagen der Netzwerkanalyse

Die Netzwerkanalyse beschäftigt sich mit der Berechnung von Strömen und Spannungen in elektrischen Netzwerken. Wichtige Konzepte sind:

#### 1.1 Kirchhoffsche Gesetze

Die Kirchhoffsche Regeln werden zur Analyse von elektrischen Netzwerken verwendet.

#### Theorie 1.1 Theorie

Das ist eine Theorie Box

#### Definition 1.1: Definition

Definitionen sind gut fürs Verständnis.

#### Korollar 1.1 Korollar

Wow! Ein Korollar!

#### 1.2 Maschen- und Knotenanalyse

Die Maschen- und Knotenanalyse ist eine wichtige Methode zur Netzwerkanalyse.

#### Lenma 1.1 Lenma

Braucht man Lenmas wirklich?

#### Vorschlag 1.1 Vorschlag

Ein Vorschlag ist immer gut!

#### Bemerkung:-

NUS ist cool!

#### 1.3 Zweipoltheorie

Ein elektrisches Zweipolnetz kann als Thevenin- oder Norton-Ersatzschaltung modelliert werden.

#### Behauptung 1.1

Die Erde ist flach!

#### Beispiel 1.1 (Beispiel)

Beispiele sind immer gut.

#### 1.4 Zusatzaufgaben

- Aufgabe 1: Berechnen Sie die Spannungen in einem einfachen Widerstandsnetzwerk mit zwei Maschen.
- Aufgabe 2: Verwenden Sie die Knotenpunktanalyse, um die Ströme in einem Netzwerk mit drei Widerständen und einer Spannungsquelle zu bestimmen.

# Aufgabe 1.1 Aufgabe

Diese Aufgabe ist in einer Box.

# 2 Frequenzgang und Filter

Der Frequenzgang eines Netzwerks beschreibt die Abhängigkeit der Übertragungsfunktion von der Frequenz.

## Lösung 1: Lösung

Das ist die Lösung zur Aufgabe

## 2.1 Tiefpass- und Hochpassfilter

Tiefpass- und Hochpassfilter ermöglichen die Frequenzselektion.

# 2.2 Bandpass- und Bandsperrfilter

Bandpass- und Bandsperrfilter entfernen spezifische Frequenzbereiche.

# 2.3 Bode-Diagramme

Bode-Diagramme stellen den Frequenzgang von Systemen grafisch dar.

#### 2.4 Zusatzaufgaben

- Aufgabe 1: Bestimmen Sie die Grenzfrequenz eines einfachen RC-Tiefpassfilters.
- Aufgabe 2: Zeichnen Sie das Bode-Diagramm eines gegebenen RLC-Bandpassfilters.