(IT BRANCHES)

Discrete and Integral Transforms (DIT) Subject Code: 18MA3GCDIT

Module - 1 (Curve Fitting & Statistics Modelling)

Q.No	QUESTIONS					
1.	The method of finding the curve of best fit is called the fitting.					
	a) Curve b) Straight line c) Parabola d) None of these					
2.	The method of least square provides a relationship $y = f(x)$ such that the sum of squares of the residuals is					
	a) Maximum b) Minimum c) maximum and Minimum d) None of these					
3.	Curve fitting is a method of finding a suitable relation or law in the form $y = f(x)$ for a set of observed values (x_i, y_i) , $i = 1,2,3, \dots$ Such relationship of connecting x and y is known as					
	a) Linear law b) Gauss law c) Empirical Law d) None of these					
4.	Average scores of two batsmen A and B are respectively 40, 45 and their S. D.'s are respectively 9, 11. Which batsman is more consistent?					
	a) Batsman – A b) Batsman – B c) Batsmen – A & B d) None of these					
5.	The mean of the numbers {11, 10, 12, 13, 9} is					
	a) 11 b) 10 c) 12 d) 13					
6.	The numerical measure of correlation between two variables x and y is known as a) Correlation coefficient b) Regression c) mean d) variance					
7.	The coefficient of correlation numerically does not exceed					
	a) Zero b) unity c) two d) None of these					
8.	The product of the regression coefficients is equal to a) r b) r^3 c) r^4 d) r^2					
9.	If the correlation coefficient is zero then the two regression lines are					
	a) Parallel b) perpendicular c) equal d) None of these					
10.	The equations of regression lines are $y = 0.5x + a$ and $x = 0.4y + b$, then the correlation					
	coefficient is					
	a) ± 0.5224 b) ± 0.4472 c) ± 0.5210 d) ± 0.4452					

Subject Code: 18MA3GCDIT

Module - 2 (Z - Transform)

Q.No	QUESTIONS					
1.	Z-transform of a function u_n where n is an integer, $n \ge 0$ is					
	a) $Z_T(u_n) = \sum_{n=0}^{\infty} u_n z^{-n}$ c) $Z_T(u_n) = \sum_{n=1}^{\infty} u_n z^{-n}$					
	b) $Z_T(u_n) = \sum_{n=0}^{\infty} u_n z^n$ d) $Z_T(u_n) = \sum_{n=1}^{\infty} u_n z^n$					
2.	The value of $z_T(1)$ is					
	a) $\frac{z}{z+1}$ b) $\frac{z}{z-1}$ c) $\frac{z^2}{z-1}$ d) $\frac{z^2}{z+1}$					
	z+1 $z-1$ $z-1$ $z+1$					
3.	Damping rule states that if $Z_T(u_n) = \bar{u}(z)$, then $Z_T(k^n u_n) =$					
	a) $\bar{u}\left(\frac{1}{k}\right)$ b) $\bar{u}\left(\frac{1}{kz}\right)$ c) $\bar{u}\left(\frac{z}{k}\right)$ d) $\bar{u}\left(\frac{k}{z}\right)$					
4.	The value of $z_T(k^n)$ is a) $\frac{z}{z+k}$ b) $\frac{z^2}{z+k}$ c) $\frac{z^2}{z-k}$ d) $\frac{z}{z-k}$					
	a) $\frac{1}{z+k}$ b) $\frac{1}{z+k}$ c) $\frac{1}{z-k}$					
5.	The value of $z_T(sinn\theta)$ is					
	a) $\frac{z \sin \theta}{z^2 - 2z \cos \theta + 1}$ b) $\frac{z \sin \theta}{z^2 + 2z \cos \theta + 1}$ c) $\frac{z \sin \theta}{z^2 - 2z \cos \theta - 1}$ d) $\frac{z \sin \theta}{z^2 + 2z \cos \theta - 1}$					
	$z^2-2z\cos\theta+1$ $z^2+2z\cos\theta+1$ $z^2-2z\cos\theta-1$ $z^2+2z\cos\theta-1$					
6.	If $Z_T(u_n) = \overline{u}(z)$ then $Z_T(u_{n-k}) = \underline{\hspace{1cm}}$. a) $z^k \overline{u}(z)$ b) $z^{-k} \overline{u}(z)$ c) $z^k \overline{u}(kz)$ d) $z^{-nk} \overline{u}(nz)$					
	a) $z^k \bar{u}(z)$ b) $z^{-k} \bar{u}(z)$ c) $z^k \bar{u}(kz)$ d) $z^{-nk} \bar{u}(nz)$					
7.	Initial Value theorem states that, if $Z_T(u_n) = \overline{u}(z)$, then					
	a) $\lim_{z\to 1} \bar{u}(z) = u_0$ c) $\lim_{z\to \infty} \bar{u}(z) = u_0$					
	b) $\lim_{z\to 0} \bar{u}(z) = u_0$ d) $\lim_{z\to -\infty} \bar{u}(z) = u_0$					
8.	The value of $Z_T(u_{n+1}) = \underline{\hspace{1cm}}$.					
3.	a) $z[\overline{u}(z) + u_0]$ b) $z[\overline{u}(z) - u_1]$ c) $z[\overline{u}(z) + u_1]$ d) $z[\overline{u}(z) - u_0]$					
9.	The value of $Z_T^{-1} \left[\frac{z}{z^2 + 1} \right]$ is					
	a) $\sin\left(\frac{n\pi}{2}\right)$ b) $\sin\left(\frac{n\pi}{3}\right)$ c) $\sin\left(\frac{n\pi}{6}\right)$ d) $\sin\left(\frac{n\pi}{4}\right)$					
	(2) (3) (6) (4)					
10.	The value of $Z_T^{-1} \left[\frac{kz}{(z-1)^2} \right] = \underline{\hspace{1cm}}$.					
	The value of $Z_T^{-1} \left[\frac{kz}{(z-k)^2} \right] =$ a) $k^{-n}n$ b) k^nn c) k^nn^2 d) $k^{-n}n^2$					

Subject Code: 18MA3GCDIT

Module - 3 (Fourier Series)

Q.No	QUESTIONS
1.	A real valued function f(x) is said to be periodic of period T if
	a) $f(x-T) = -f(x)$ b) $f(x+T) = -f(x)$ c) $f(x+T) = f(x)$ d) $f(x-T) = f(Tx)$
2.	If $f(x)$ is discontinuous at x then the Fourier series converges to where $f(x^+)$, $f(x^-)$ are respectively right hand and left hand limits of $f(x)$ $f(x^+)+f(x^-)$ $f(x^+)+f(x^-)$ $f(x^+)+f(x^-)$
	a) $\frac{f(x^+)+f(x^-)}{2}$ b) $\frac{f(x^+)-f(x^-)}{2}$ c) $\frac{f(x^+)+f(x^-)}{-2}$ d) $\frac{f(x^+)-f(x^-)}{-2}$
3.	A function $f(x)$ is said to be EVEN in the interval (-a, a) if
	a) $f(-x) = -f(x)$ b) $f(-x) = f(x)$ c) $f(a-x) = f(ax)$ d) $f(a+x) = f(ax)$
4.	A function $f(x)$ is said to be ODD ifin the interval $(0,2l)$
	a) $f(2l-x) = f(x)$ b) $f(2l+x) = f(x)$ c) $f(2l-x) = -f(x)$ d) $f(2l+x) = -f(x)$
5.	Half range cosine series contains only
	a)Cosine term b) Sine term c) Both cosine and Sine d) None of these
6.	In the Fourier series $\frac{a_0}{2}$ is calledterm
	a) Positive term b) negative term c) Remainder term d) Constant term
7.	In Fourier Series a_0 , a_n , b_n are called
	a) Fourier constants b) Fourier coefficients c) Half range values d) None of these
8.	In Fourier Series expansion, if f(x) is ODD then
	a) $a_0 = 0$, $a_n = 0$ b) $a_0 \neq 0$, $a_n = 0$ c) $a_0 = 0$, $a_n \neq 0$ d) $a_0 \neq 0$, $a_n \neq 0$
9.	is the process of finding the constant term and first few cosine and sine term
	numerically a) Numerical analysis b) Harmonic Analysis c) Theoretical analysis d) None of these
1.5	
10.	In harmonic analysis, $a_0 = $
	a) $a_0 = \frac{N}{2} \sum x$ b) $a_0 = \frac{N}{2} \sum y^2$ c) $a_0 = \frac{2}{N} \sum x$ d) $a_0 = \frac{2}{N} \sum y$

Subject Code: 18MA3GCDIT

Module - 4 (Integral Transform - I)

Q.No	QUESTIONS					
1.	Laplace transform (a) Definite integra (c) Improper integ	al (b) 1	Indefinite integral None of these			
2.	L[f(t)] is a function (a) s	of (b) t	(c) x	(d) None of these		
3.		•	nction of period T if (c) f(t+nT)=f(t)			
4.		(b) $\frac{s}{s+a}$	$(c)\frac{1}{s-a} \qquad (d)$	None of these		
5.	$L[\delta(t-2)] = \underline{\hspace{1cm}}$ (a) e^{2s}	(b) e^{-2s}	(c) e ^{-s}	(d) None of these		
6.	$L^{-1} \left[\frac{s^2 - 3s + 4}{s^3} \right] =$ (a) 1-3t+2t ²	(b) 1+3t+2 <i>t</i> ²	(c) 1-3t-2 <i>t</i> ²	(d) 1+3t-2 <i>t</i> ²		
7.	$L^{-1}[F(s+a)] = (a)e^{-at}L^{-1}(F(s))$	(b) $e^{at}L^{-1}(F(s))$	(c) $e^{at}L^{-1}(F'(s))$	(d) $e^{-at}L^{-1}(F'(s))$		
8.	(a)g(t) * f(t)		(c) g'(t) * f '(t)	(d) None of these		
9.) then $L^{-1}[-F'(s)]$ (b) t f(t)	= (c) s f(s)	(d) -s f(s)		
10	$L[f'(t)] = \underline{\hspace{1cm}}$ (a) $sL[f(t)] - f(0)$	(b) s^2 L[f(t)]-f(0]	(c) s^2 L[f(t)]-sf(0)	(d) None of these		

Subject Code: 18MA3GCDIT

Module - 5 (Integral Transform - II)

Q.No	QUESTIONS				
1.	Definition of Fourier transform is given by mathematical expression:				
	a) $\int_0^\infty f(x) \cos ux dx$ b) $\int_0^\infty f(x) \sin ux dx$ c) $\int_{-\infty}^\infty f(x) e^{iux} dx$ d) $\int_{-\infty}^\infty f(x) e^{-iux} dx$				
2.	Definition of Inverse Fourier transform is given by mathematical expression:				
	$a = \int_{\pi}^{2} \int_{0}^{\infty} F(u) \cos ux \ du$ $b = \int_{\pi}^{2} \int_{0}^{\infty} F(u) \sin ux \ du$				
	c) $\int_{-\infty}^{\infty} F(u)e^{-iux} ds$ d) $\frac{1}{2\pi} \int_{-\infty}^{\infty} F(u)e^{-iux} du$				
3.	Fourier transform of $f(x)=1$ in $-1 \le x \le 1$				
	a) $\frac{2\sin u}{u}$ b) $\frac{2\sin u}{\pi u}$ c) $\frac{\sin u}{\pi u}$ d) $\frac{\sin u}{u}$				
	μ πμ πμ μ				
4.	Boundary –value problem is a differential equation with				
	a) no conditions b) conditions at one point c) conditions at more than one point d) none of these				
	d) none of these				
5.	Definition of cosine Fourier transform is given by mathematical expression:				
	a) $\int_0^\infty f(x) \cos ux dx$ b) $\int_0^\infty f(x) \sin ux dx$ c) $\int_0^\infty f(x) e^{iux} dx$ d) $\int_{-\infty}^\infty f(x) \cos ux dx$				
6.	Fourier sine transform of $f(x) = \begin{cases} 1 & 0 < x < a \\ 0 & x > a \end{cases}$ $a) \frac{1 - \cos au}{u} \qquad b) \frac{\tan au}{u} \qquad c) \frac{\cos au}{u} \qquad d) \frac{1 - \cos au}{au}$				
	$\begin{cases} 1 - \cos au \\ \cos au \end{cases} \qquad $				
7.	Inverse cosine Fourier transform is given by mathematical expression:				
/.	a) $\frac{2}{\pi} \int_0^\infty F(u) \cos ux \ du$ b) $\frac{2}{\pi} \int_0^\infty F(u) \sin ux \ du$				
	c) $\int_{-\infty}^{\infty} F(u) cosux \ du$ d) $\frac{1}{2\pi} \int_{-\infty}^{\infty} F(u) e^{-iux} \ du$				
8.	Fourier transform is employed to solve				
О.	a) Initial- value problem b) Boundary-value problem				
	c) initial-boundary value problem d) none of these				
9.	Convolution of $f=f(x)$ and $g=g(x)$ denoted by $f*g$ is defined as				
	$a) \int_{-\infty}^{\infty} f(x-t)g(t)dt b) \int_{0}^{\infty} f(x-t)g(t)dt c) \int_{-\infty}^{\infty} f(t)g(t)dt d) \int_{-\infty}^{\infty} f(xt)g(t)dt$				
10.	If the Fourier transform of $f(x)$ and $g(x)$ are $F(s)$, $G(s)$ then $\frac{1}{2\pi} \int_{-\infty}^{\infty} [F(s)]^2 ds =$				
	a) $\int_{-0}^{\infty} f(x) ^2 dx$ b) $\int_{-\infty}^{\infty} f(x) ^2 dx$ c) $\int_{-\infty}^{\infty} f(x) dx$ d) $\int_{-\infty}^{\infty} f(x)g(x) ^2 dx$				
	2 3-00 C 21				