

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2016-2017 - 1º SEMESTRE

CI	Parte teórica. Duração: 30m
No	ome;Código:
- R	otas: Responda às questões seguintes, indicando a opção correta (em maiúsculas) Cada resposta errada vale -15% da cotação da pergunta
1.	A visita em pós-ordem de uma árvore binária de pesquisa (BST) é: 8, 15, 17, 12, 24, 37, 33, 20. A visita em ordem dessa mesma árvore é:
	 A. 8, 15, 17, 12, 24, 37, 33, 20 B. 8, 12, 15, 17, 20, 24, 33, 37 C. 20, 33, 37, 24, 12, 17, 15, 8 D. Impossível de determinar E. Nenhuma das possibilidades anteriores
	Resposta:
2.	Pretende-se construir um vetor ordenado com os valores existentes numa árvore binária de pesquisa (BST). Sem destruir a árvore, qual a menor complexidade temporal do algoritmo que implementaria?
	 A. O (n log n) B. O (n²) C. O (log n) D. O (n) E. Nenhuma das possibilidades anteriores
	Resposta:
3.	Considere uma tabela de dispersão de tamanho 11. A função de dispersão utilizada é h(x) = 3*x e a resolução de colisões é quadrática. Qual a posição onde é inserido o elemento 5, sabendo que a configuração atual da tabela é (x indica posição ocupada):
	A. 6 B. 9 C. 0 D. Não é possível inserir o elemento 5 E. Nenhuma das possibilidades anteriores
	Resposta:
4.	O vetor [10, 8, 6, 2, 1, 4, 5] representa uma fila de prioridade. Qual o vetor que representa a fila de prioridade após a operação de eliminar o valor máximo (pop)? A. [8, 6, 2, 1, 4, 5]
	 B. [5, 8, 6, 2, 1, 4] C. [6, 8, 5, 2, 1, 4] D. [8, 5, 6, 2, 1, 4] E. Nenhuma das possibilidades anteriores
	Resposta:

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2016-2017 - 1º SEMESTRE

C13 Parte teórica. Duração: 30m

- 5. Uma fila de prioridade de máximo contém múltiplos elementos, resultantes de várias inserções e remoções. Atualmente, x e y são os elementos de maior prioridade (a prioridade de x é igual à prioridade de y). A operação pop () elimina:
 - A. O primeiro dos elementos X ou Y a ser inserido na fila de prioridade
 - B. O último dos elementos X ou Y a ser inserido na fila de prioridade
 - C. X ou Y, é impossível saber qual dos elementos será eliminado
 - D. Uma fila de prioridade não pode conter elementos com igual prioridade
 - E. Nenhuma das possibilidades anteriores

Resposta:	

- **6.** Na árvore AVL representada na figura, pretende-se inserir o valor 18. Qual a operação a realizar para reequilibrar a árvore?
 - A. Rotação simples centrada no nó 20, o nó 20 provoca desequilíbrio
 - B. Rotação dupla centrada no nó 20, o nó 20 provoca desequilíbrio
 - C. Rotação simples centrada no nó 11, o nó 11 provoca desequilíbrio
 - D. Rotação dupla centrada no nó 11, o nó 11 provoca desequilíbrio
 - E. Nenhuma das possibilidades anteriores

Resposta:	

- 7. A pesquisa sem sucesso de um elemento possui complexidade temporal constante em:
 - A. Tabela de dispersão
 - B. Árvore Splay
 - C. Árvore AVL
 - D. Árvore B
 - E. Nenhuma das possibilidades anteriores

- **8.** Qual das seguintes estruturas de dados apresenta menor tempo de execução na operação de inserção de um elemento?
 - A. Árvore AVL
 - B. Árvore B
 - C. Tabela de dispersão
 - D. Fila de prioridade
 - E. Indiferente

Resposta:	

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2016-2017 - 1º SEMESTRE

CI3 Parte teórica. Duração: 30m

Nor	me:	Código:	
9.	Os valores 6 , 8 , 4 , 3 e 1 são inseridos, por esta ordem, numa de seguir, através de uma única operação, é eliminado o valor 1 . A estrutura		
	 A. Fila B. Pilha C. Árvore binária de pesquisa D. Fila de prioridade de mínimo 		
	E. Nenhuma das possibilidades anteriores		
	Resposta:		
10.	. Dado um conjunto de ${\tt n}$ valores não repetidos, para qual das seguintes encontrar uma configuração única contendo os ${\tt n}$ valores?	s estruturas de dados é possível	
	 A. Fila de prioridade B. Árvore binária de pesquisa C. Árvore AVL D. Árvore Splay 		
	E. Nenhuma das possibilidades anteriores		
	Resposta:		