Text Representation

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Text Representation

Deeper NLP: requires more human effort; less accurate

Closer to knowledge representation

Text Representation and Enabled Analysis

This course

Text Rep	Generality	Enabled Analysis	Examples of Application
String		String processing V	Compression
Words		Word relation analysis; topic analysis; sentiment analysis	Thesaurus discovery; topic and opinion related applications
+ Syntactic structures		Syntactic graph analysis	Stylistic analysis; structure- based feature extraction
+ Entities & relations		Knowledge graph analysis; information network analysis	Discovery of knowledge and opinions about specific entities
+ Logic predicates		Integrative analysis of scattered knowledge; logic inference	Knowledge assistant for biologists

Summary

- Text representation determines what kind of mining algorithms can be applied
- Multiple ways of representing text are possible
 - string, words, syntactic structures, entity-relation graphs, predicates...
 - can/should be combined in real applications
- This course focuses on word-based representation
 - General and robust: applicable to any natural language
 - No/little manual effort
 - "Surprisingly" powerful for many applications (not all!)
 - Can be combined with more sophisticated representations