Лекция 6 Инварианты графов

Внутренняя устойчивость Паросочетания Хроматическое число

Независимые множества

Множество вершин графа называется независимым (внутренне устойчивым), если в этом множестве никакая пара вершин не смежна. Внутренне устойчивое множество называется максимальным, если оно максимально по включению.

Независимые множества

Максимальное внутренне устойчивое множество называется *пустым подграфом* (подграф не содержит рёбер).

Число вершинной независимости

Число вершинной независимости (β_0) -наибольшая мощность внутренне устойчивого множества. Внутренне устойчивое множество с мощностью β_0 - наибольшее независимое множество.

1. Строится дерево с корнем, растущее вниз. Все вершины, кроме корня, имеют метку $\mathbf{v_i} \in \mathbf{V}$ и вес $\mathbf{W(v_i)} \subseteq \mathbf{V}$. Корень не метится, взвешивается всем носителем графа.

2. Рекурсивная процедура построения: выбирается произвольная вершина v; из веса W(v) некоторой вершины дерева v, помещается на следующий уровень. На этот же уровень помещаются все смежные с $\mathbf{v_i}$ вершины $\mathbf{v_i}$, из веса $\mathbf{W(v)}$ вершины у, они соединяются рёбрами с V.

Каждая из построенных вершин взвешивается множеством вершин, не смежных с ней, из веса W(v) вершины у предшествующего уровня. Процедура построения продолжается до получения пустого веса у всех построенных вершин.

3. Множество меток вершин каждой из ветвей дерева от корня до висячей вершины — пустой подграф.

Пустые подграфы:

 $\{f,a,e\}, \{f,c,b\}, \{g,c,b\}, \{d,a,e\}, \{d,c\}$

Пример {f,a,e}, {f,c,b},

Пример $\{g,c,b\},\{a,d,e\}$

Пример {d,c}

Пустые подграфы:

Клика графа

Клика графа G — максимальный по включению полный подграф графа G.

Каждая вершина графа принадлежит хотя бы одной клике.

Каждое ребро графа принадлежит хотя бы одной клике.

Клика графа

Для построения клик графа G используется тот же алгоритм, что и для построения пустых подграфов, только меняются местами выбор вершин на уровне и вес вершины в дереве.

Алгоритм нахождения клик графа

1. Строится дерево с корнем, растущее вниз. Все вершины, кроме корня, имеют метку $v_i \in V$ и вес $W(v_i)\subseteq V$. Корень не метится, взвешивается всем носителем графа.

Алгоритм нахождения клик графа

2. Рекурсивная процедура построения: выбирается произвольная вершина v_i из веса W(v) некоторой вершины дерева v, помещается на следующий уровень. На этот же уровень помещаются все вершины v_i, не смежные с выбранной v_i, из веса W(v)вершины v, они соединяются рёбрами с v.

Каждая из построенных вершин взвешивается множеством вершин, смежных с ней, из веса W(v) вершины у предшествующего уровня. Процедура построения продолжается до получения пустого веса у всех построенных вершин.

Алгоритм нахождения клик графа

3. Множество меток вершин каждой из ветвей дерева от корня до висячей вершины соответствуют клике графа.

Пример ${a,b,c,d,e,f,g}$

Клики:{a,e,g}, {c,e,g}, {d,e,g}, {a,e,f},{d, e,f}, {a,b,f}

Клики: $\{c,e,g\}$, $\{a,b,f\}$

Клика:{a,e,g}

Клика:{a,e,f}

Клика:{d,e,g}

Клика:{d,e,f}

Клики. Пример

Клики. Пример

Граф клик

Пусть S – множество,

$$F={S_1,S_2,...,S_p}-$$
 семейство его

непустых подмножеств. Граф

$$G(F)$$
=< F , U > пересечений

семейства F:

$$< S_i, S_i > \in U \Leftrightarrow (i \neq j) \& (S_i \cap S_i \neq \emptyset).$$

Граф клик

Граф клик – граф пересечений семейства всех клик графа G.

Граф клик

$$\{a,b,c,e\}$$
 $\{b,c,e,d\}$

Граф клик.

Клики:{a,e,g}, {c,e,g}, {d,e,g} {a,e,f},{d, e,f}, {a,b,f}

Паросочетания

Паросочетанием

неориентированного графа G=<V,U> называется М ⊆U, такое, что никакие два ребра из М не смежны.

Частный случай

Для двудольного графа — задача о назначениях.

Паросочетания Паросочетание совершенно, если любая вершина инцидентна паросочетанию (покрыта паросочетанием)[Н. Кристофидес]. Паросочетание максимальное (наибольшее), если в графе нет паросочетания большей мощности. Совершенное=> максимальное

Паросочетания

Чередующаяся цепь в графе G – цепь, в которой из каждой пары смежных рёбер ровно одно принадлежит паросочетанию. Чередующееся расширение в графе G – чередующаяся цепь, концевые вершины которой не покрыты паросочетанием.

Упрощённый алгоритм нахождения максимального паросочетания

- 1. Пусть есть некоторое паросочетание М (в начале М=Ø).
- 2. Находим чередующееся расширение С. Если его нет, конец.
- 3. Строим новое паросочетание как $M \oplus C$, $|M \oplus C| = |M| + 1$.

Возвращаемся к шагу 2.

Пример. Совершенное паросочетание

Паросочетания

Мощность наибольшего паросочетания — число рёберной независимости β_1 .

Теорема: Для любого нетривиального связного $G_{p,g}$ графа

$$\beta_1 + \alpha_1 = \beta_0 + \alpha_0 = p$$

Связь инвариантов

Для любого нетривиального связного $G_{p,g}$ графа

$$\beta_0 + \alpha_0 = p$$

Число вершинной независимости + вершинное покрытие рёбер = число вершин графа.

Доказательство

 $\alpha_0 \leq p - \beta_0$ (остальные образуют вершинное покрытие)

 $\beta_0 \ge p$ - α_0 (остальные вершины не смежны)

Связь инвариантов

Для любого нетривиального связного $G_{p,g}$ графа

$$\beta_1 + \alpha_1 = p$$

Рёберное покрытие вершин + мощность максимального паросочетания = число вершин графа

Теорема

Для двудольного графа G число ребер в наибольшем паросочетании равно числу вершинного покрытия,

$$\beta_1 = \alpha_0$$

Хроматическое число графа

Граф раскрашен *правильно*, если никакие две смежные вершины не раскрашены в один цвет.

 $\chi(G)$ – хроматическое число графа G, наименьшее число цветов, в которое можно правильно раскрасить граф.

Правильно раскрашенные графы

Хроматическое число

Граф называется *n*раскрашиваемым, если его
можно раскрасить правильно в п
цветов.

Теорема. Граф двухцветен ⇔ в графе нет циклов нечётной длины.

Двудольный граф

Граф двудольный ⇔ все его простые циклы – чётны.

Точная раскраска графа

- 1. Строится множество пустых подграфов.
- 2. Строится матрица, в которой по строкам пустые подграфы, по столбцам вершины.

Точная раскраска графа

3. Строится покрытие матрицы (столбцов строками). Каждое покрытие определяет раскраску, минимальное число строк в покрытии — хроматическое число.

Пустые подграфы:

{a,e,f},
{b,c,f},
{b,c,g},
{a,d,e}, {d,c}

Пример

	a	b	c	d	e	f	g
{a,e,f}	1				1	1	
{b,c,f}		1	1			1	
{b,c,g}		1	1				1
{a,d,e}	1			1	1		
{d,c}			1	1			

Пример

	a	b	c	d	e	f	g	
{a,e,f}	1				1	1		m
{b,c,f}		1	1			1		n
{b,c,g}		1	1				1	p
{a,d,e}	1			1	1			S
{d,c}			1	1				t

Пояснение к преобразованиям $(a \lor b)b=b; (a \lor b)(a\lor c)=a \lor bc$

```
(m\s) (n\p) (n\p\t)(s\t) (m\n) p =
(m\s) (n\p) (n\p\t)(s\t) (m\n) p =
(m\s) (n\p) (n\p\t)(s\t) (m\n) p =
(m\s) (s\t) (m\n) p = (mt\s) (m\n) p =
(mt \rangle mnt \rangle ms\ns) p=
pmt \rangle psn \rangle pms
```

Пример. Покрытия **pmt** ,psn ,pms

	a	b	c	d	e	f	g	
{a,e,f}	1				1	1		m
{b,c,f}		1	1			1		n
{b,c,g}		1	1				1	p
{a,d,e}	1			1	1			S
{d,c}			1	1				t

Пример. Покрытия pmt ,psn ,pms

	a	b	c	d	e	f	g	
{a,e,f}	1				1	1		m
{b,c,f}		1	1			1		n
{b,c,g}		1	1				1	p
{a,d,e}	1			1	1			S
{d,c}			1	1				t

Пример. Покрытия pmt ,psn ,pms

	a	b	c	d	e	f	g	
{a,e,f}	1				1	1		m
{b,c,f}		1	1			1		n
{b,c,g}		1	1				1	p
{a,d,e}	1			1	1			S
{d,c}			1	1				t

Пример. Покрытие psn

Пустые подграфы:

 ${a,e,f}(m),$ ${b,c,f}(n),$ ${b,c,g}(p),$ ${a,d,e}(s),$ $\{d,c\}(t)$

Пример. Возможные раскраски(pms) {b,c,f}, {b,c,g}, {a,d,e}

1. (Берж)

$$|\mathbf{V}|/\beta_0 \le \chi(G) \le |\mathbf{V}| - \beta_0 + 1$$

2.
$$\chi(G_1+G_2)=\chi(G_1)+\chi(G_2)$$
.

$$G_1 \cap G_2 = \emptyset$$

Пример. $|V|/\beta_0 = \chi(G)$

Пример. $\chi(G) = |\mathbf{V}| - \beta_0 + 1$ $\beta_0 = 2$

Пример. $\chi(G_1+G_2)=\chi(G_1)+\chi(G_2)$

3. $\chi(G) \leq \Delta(G) + 1$

Теорема (Брукс): $\chi(G) \leq \Delta(G)$ за исключением двух случаев:

- При $\Delta(G) > 2$ граф G содержит полный подграф на $\Delta(G)+1$ вершинах;
- При $\Delta(G) = 2$ граф G содержит цикл нечетной длины.

$$\chi(G) = \Delta(G) + 1$$

$$\chi(G) = \Delta(G) + 1$$

4.
$$G_1 \cap G_2 = \emptyset \Rightarrow$$

$$\chi(G_1 \cup G_2) = \max\{\chi(G_1), \chi(G_2)\}$$

5.
$$G_1 \cap G_2 \neq \emptyset \Rightarrow$$

 $\chi(G_1 \cup G_2) \leq \chi(G_1) \chi(G_2)$

6.
$$K_n \subseteq G$$
, $\chi(G) \ge n$.

Пример. $\chi(G_1 \cup G_2) = \chi(G_1) \chi(G_2)$

Однозначно раскрашиваемый граф Пусть G – помеченный граф с $\chi(G)=n$. Каждая его раскраска порождает разбиение V на *n* множеств. Если каждая *п*-раскраска порождает одно и то же разбиение, то G – однозначно *n*-раскрашиваемый или просто однозначно раскрашиваемый.

Примеры

Примеры

Неоднозначно раскрашиваемый граф (n=3)

Алгоритм Ершова

Выбираются 2 несмежные вершины, сливаются в одну с сохранением связей (лучше, если на чётном расстоянии). Процедура повторяется до получения полного графа.

Затем восстанавливается раскраска на исходном графе.

Распределение ресурсов

Приближённая и точная раскраска графа

Рёберная раскраска графа

Раскрашиваются рёбра графа так, чтобы никакие два смежных ребра не были окрашены в один цвет.

Хроматический класс

Хроматический класс графа G (обозначается $\chi'(G)$) — наименьшее n, что для графа G существует рёберная n-раскраска.

Для любого графа , не являющегося вполне несвязным, $\chi'(G) = \chi(L(G))$.

Вполне несвязный граф - K_{n}

Хроматический класс

Теорема [Визинг]

Для каждого графа G хроматический класс удовлетворяет неравенствам

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

Хроматический класс

$$\chi'(G) = \Delta(G)$$

$$\chi'(G) = \Delta(G) + 1$$

Раскраска карт

Раскраска карт (анклав)

Гипотеза 4-х красок

Теорема. Каждый планарный граф 5раскрашиваем.

Гипотеза 4-х красок. Каждый планарный граф 4-раскрашиваем.

Доказано до 41 области.

Двойственный граф

Граф G', двойственный графу G каждой грани G сопоставляем вершину графа G', каждому ребру G – ребро графа G'; может получиться мультиграф, если есть вершины степени 2.

Двойственный граф. Пример

Самодвойственный граф

Граф, изоморфный своему двойственному, называется *самодвойственным*.

Самодвойственный граф. Пример

Двойственный граф

Граф, двойственный двойственному, изоморфен исходному.

Раскраска карт = раскраска двойственного графа.