

3. ORBIT MANOEUVRES

Propellant mass consumption

FIGURE 6.1

Propellant mass fraction versus Δv for typical specific impulses.

Hohmann transfer efficiency

FIGURE 6.5

Contour plots of $\Delta v_{\text{lotal}})_{3'}/\Delta v_{\text{lotal}})_3$ for different relative sizes of the ellipses in Figure 6.4. Note that $r_B > r_{A'}$ and $r_{B'} > r_A$.

Hohmann transfer efficiency examples

Rb/Ra

Bi-elliptic transfer

FIGURE 6.8

Orbits for which the bi-elliptic transfer is either less efficient or more efficient than the Hohmann transfer.

Plane change manoeuvre

Plane change manoeuvre

Launch geometry

Launch geometry

Launch geometry

Lambert's problem (1)

Fig. 4.1 Transfer Orbit Geometry

Figure 7-8. Transfer Methods, t_{np} for the Lambert Problem. Traveling between the two specified points can take the long way or the short way. For the long way, the change in true anomaly exceeds 180°.

Lambert's problem (2)

Fig. 4.2 A Geometric Property of Ellipses

Figure 7-10. Geometry for the Lambert Problem (I). This figure shows how we locate the secondary focus—the intersection of the dashed circles. The chord length, ϵ , is the shortest distance between the two position vectors. The sum of the distances from the foci to any point, r or r_o , is equal to twice the semimajor axis.

Lambert's problem (3)

Fig. 4.3 Vacant Focus Locations

Lambert's problem (4)

Earth - Mars Transfer

$$r_2 = 1.524 r_1$$

 $.26 = e < e^* = .68$
 $\theta = 107^\circ$
 $a = 1.36 r_1$
 $a_m = 1.14 r_1$

Fig. 4.4 Two Elliptic Transfer Orbits with the Same Value of a

Lambert's problem (5)

Fig. 4.5 Locus of Eccentricity Vectors

Lambert's problem (6)

The time required to traverse an elliptic arc between two specified endpoints "depends only on the semi-major axis of the ellipse, and on two geometric properties of the space triangle, namely the chord and the sum of the radii from the focus to point P_1 and P_2 "

Lambert, 1761

Lambert's problem (7)

Lambert's problem (8)

Fig. 4.8 Transfer Time vs. Semimajor Axis

Transfer design strategy – pork-chop graph (1)

Transfer design strategy – pork-chop graph (2)

Table 7.2: Keplerian elements and their rates, with respect to the mean ecliptic and equinox of J2000, valid for the time-interval 1800 AD - 2050 AD.

Planet	semimaj.axis a [AU] (à) [AU/Cy]	eccentricity e (ė) [1/Cy]	inclination i [deg] (i) [deg/Cy]	true anomaly ν [deg] ($\dot{\nu}$) [avg.deg/y]	long.perihelion Π [deg] (Π) [deg/Cy]	long.asc.node Ω [deg] $(\dot{\Omega})$ [deg/Cy]
Mereury	0.38709927	0.20563593	7.00497902	252.25032350	77.45779628	48.33076593
	(0.00000037)	(0.00001906)	(-0.00594749)	(1494.72674111)	(0.16047689)	(-0.12534081)
Venus	0.72333566	0.00677672	3.39467605	181.97909950	131.60246718	76.67984255
	(0.00000390)	(-0.00004107)	(-0.00078890)	(585.17815387)	(0.00268329	(-0.27769418)
Earth	1.00000261	0.01671123	-0.00001531	100.46457166	102.93768193	0.0
	(0.00000562)	(-0.00004392)	(-0.01294668)	(359.99372450)	(0.32327364	(0.0)
Mars	1.52371034	0.09339410	1.84969142	-4.55343205	-23.94362959	49.55953891
	(0.00001847)	(0.00007882)	(-0.00813131)	(191.40302685)	(0.44441088)	(-0.29257343)
Jupiter	5.20288700	0.04838624	1.30439695	34.39644051	14.72847983	100.47390909
	(-0.00011607)	(-0.00013253)	(-0.00183714)	(30.34746128)	(0.21252668)	(0.20469106)
Saturn	(9.53667594	0.05386179	2.48599187	49.95424423	92.59887831	113.66242448
	(-0.00125060)	(-0.00050991)	(0.00193609)	(12.22493622)	(-0.41897216)	(-0.28867794)
Uranus	19.18916464	0.04725744	0.77263783	313.23810451	170.95427630	74.01692503
	(-0.00196176)	(-0.00004397)	(-0.00242939)	(4.28482028)	(0.40805281)	(0.04240589)
Neptune	30.06992276	0.00859048	1.77004347	-55.12002969	44.96476227	131.78422574
	(0.00026291)	(0.00005105)	(0.00035372)	(2.18459453)	(-0.32241464)	(-0.00508664)
Pluto	39.48211675	0.24882730	17.14001206	238.92903833	224.06891629	110.30393684
	(-0.00031596)	(0.00005170)	(0.00004818)	(1.45207805)	(-0.04062942)	(-0.01183482)

Table 7.3: Physical properties of Sun and planets.

Celestial Body	Diamet [km](Eart		Rotational period*	Oblateness	Axial tilt [deg]	$\begin{array}{c} {\rm Mass} \\ {\rm Earth} = 1 \end{array}$	$\frac{\text{Mass par.}}{[\text{km}^3 \text{s}^{-2}]}$					
Sun	1,392,000	(109)	≈ 25.4 days	≈ 10 ⁻⁵	7.25	333,432	$1.327\ 10^{11}$					
Mercury	4,879	(0.38)	58.65 days	0.0	2.0	0.088	$2.232\ 10^4$					
Venus	12,104	(0.95)	-243.02 days	0.0	177.4	0.815	$3.257 \cdot 10^{5}$					
Earth	12,742	(1.0)	23 hrs 56 min	0.0034	23.45	1.000	$3.986 \ 10^{8}$					
Mars	6,780	(0.53)	24 hrs 37 min	0.005	25.19	0.107	$4.305\ 10^4$					
Jupiter	139,822	(10.97)	9 hrs 55 min	0.065	3.12	317.830	$1.268 \ 10^{8}$					
Saturn	116,464	(9.14)	10 hrs 40 min	0.108	26.73	95.159	3.795 10 ⁷					
Uranus	50,724	(3.98)	-17.24 days	0.03	97.86	14.536	$5.820 \cdot 10^{6}$					
Neptune	49,248	(3.87)	16 hours 7 min	0.02	29.56	17.147	$6.896 \ 10^{8}$					
Pluto	2,390	(0.19)	-6.38 days	0.0	119.6	0.002	$0.797 \ 10^{3}$					

^{*} Negative numbers indicate retrograde rotation.

Transfer design strategy – pork-chop graph (3)

Initial orbit Final orbit Transfer

Lambert's Problem

For any possible P1 and P2

Transfer design strategy – pork-chop graph (4)

Plot the total cost considering any possible initial position (on the initial orbit) and final position (on the final orbit)

Transfer design strategy – pork-chop graph (5)

Chosen solution (minimum in the Pork-Chop graph)

Transfer design strategy – pork-chop graph (6)

- Data $\{a,e,i,\Omega,\omega,\vartheta\}_1 \text{ (first orbit)}$ $\{a,e,i,\Omega,\omega,\vartheta\}_2 \text{ (second orbit)}$ tof_{max}
- Compute initial and final orbits
- 2. Compute transfer arc using Lambert solver for any possible initial position (on the initial orbit, at time t_1) and final position (on the final orbit, at time $t_1 + tof$)
- 3. Compute the total cost of the transfer for any computed arc
- 4. Plot the total cost as function of initial time (starting position on the initial orbit) and time of flight (which depends on the arrival position on the final orbit)
- 5. Choose the minimum and plot the selected transfer arc

