

IN THE DRAWINGS

Please amend the drawings. Copies of figures with amendments in red ink are enclosed herewith.

REMARKS

The specification, claims, and drawings have been amended to comply add Sequence identification numbers in order to comply with sequence listing requirements.

It is respectfully submitted that no new matter has been introduced by the present amendments and entry of the same is respectfully requested.

CONCLUSION

Applicants believe all pending claims are now in condition for allowance and should be passed to issue. If the Examiner feels that a telephone conference would in any way expedite the prosecution of the application, please do not hesitate to call the undersigned at (408) 731-5875.

The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account 01-0431.

If the Examiner has any questions pertaining to this application, the Examiner is requested to contact the undersigned attorney.

Respectfully submitted,

Thomas Malone
Reg. No.: 40,078

Date: 1/24/03

**VERSION WITH MARKINGS TO SHOW CHANGES
MADE TO THE APPLICATION**

In the Specification

Please amend the third paragraph on page 3 of specification as follows.

In one embodiment, the present invention provides an isolated growth factor polynucleotide comprising a nucleic acid sequence depicted in Figure 1B (SEQ ID NO: 02). In one aspect of this embodiment, the isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of: (a) a nucleic acid sequence of at least 90 nucleotides that is essentially identical to a linear sequence of comparable length contained in the sequence shown in Figure 1B (SEQ ID NO:02); (b) a nucleic acid sequence of at least 90 nucleotides encoding a polypeptide that is essentially identical to a linear sequence of at least 30 amino acids contained in the sequence shown in Figure 1A (SEQ ID NO:01); and (c) a complement of (a) or (b). In another aspect, the isolated polynucleotide encodes a polypeptide comprising an amino acid sequence that is essentially identical to a linear sequence of comparable length shown in Figure 1A (SEQ ID NO:01). In yet another aspect, the isolated polynucleotide encodes a polypeptide comprising an amino acid sequence essentially identical to the entire amino acid sequence shown in Figure 1A (SEQ ID NO:01). In still another aspect, the isolated polynucleotide encodes a polypeptide comprising the amino acid sequence shown in Figure 1A (SEQ ID NO:01). The polynucleotide of the present invention can code for the whole or domain(s) of the growth factor, or a mutant, fusion or a functionally equivalent growth factor polypeptide. In a related aspect of this embodiment, the invention encompasses a method of diagnosing a pathogenic condition or susceptibility to a pathogenic condition that is associated with a genetic alteration in a growth factor polypeptide encoded by the claimed polynucleotide. The method comprises the steps of: (a) providing a biological sample of a subject containing nucleic acid molecules and/or polypeptides; (b) determining a genetic alteration associated with the growth factor; and (c) correlating the alteration with a pathogenic condition or susceptibility to a pathogenic condition.

Please amend the first paragraph on page 4 of the specification as follows.

In another embodiment, the present invention includes a polynucleotide sequence that is useful as a probe for diagnostic or research purposes. Preferably, the probe is between 5 and 100 nucleotides in length and may comprise any of the contiguous nucleotides shown in Fig. 1A (SEQ ID NO:01). Longer sequences may be used as probes depending on the type of assay used.

Please amend page 6, line 21 of the specification as follows.

Figure 1A (SEQ ID NO:01) depicts the amino acid sequence for the peptide encoded by polynucleotide A.ctg12831-000000.10.0.

Please amend page 6, line 23 of the specification as follows.

Figure 1B (SEQ ID NO:02) depicts the polynucleotide sequence of A.ctg12831-000000.10.0.

Please amend the first paragraph on page 19 of the specification as follows.

In a separate embodiment, the present invention provides an isolated polynucleotide comprising a nucleic acid sequence having at least about 90 nucleotides that is essentially identical to a linear sequence of comparable length contained in the sequence shown in 1B (SEQ ID NO:02). Preferably, the isolated polynucleotide contains at least about 90 nucleotide bases, more preferably at least about 150 nucleotides, more preferably at least about 450 nucleotides, and even more preferably at least about 1200 nucleotides. When the polynucleotide sequence is used as a probe, then it can also be shorter in length. For example, the sequence can be any contiguous nucleotides along the sequence shown in Fig. 1B (SEQ ID NO:02), its complement, or a variation of a few nucleotides. The length can be from 5, 13, 15, or 20 nucleotides to 25, 30, 50, 75, 100 or more nucleotides in length. In some embodiments very long sequences can be physically attached to a substrate that may be 500 to 5,000, or even 50,000 nucleotides long.

Please amend the second paragraph on page 19 of the specification as follows.

In another embodiment, the isolated polynucleotide comprises a nucleic acid sequence of at least 90 nucleotides that encodes a polypeptide essentially identical to a linear sequence of at least 30 amino acids depicted in Figure 1A (SEQ ID NO:01). Preferred linear peptide sequence is at least about 50 amino acids in length, more preferably at least 150 amino acids in length, and more preferably at least 350 amino acids. In yet another embodiment, the isolated polynucleotide may be any polynucleotide which encodes the polypeptide of Figure 1A (SEQ ID NO:01). In yet another embodiment, the isolated polynucleotide is a complement of any of the above mentioned growth factor polynucleotides.

Please amend the third paragraph on page 19 of the specification as follows.

These gene sequences can be identified, in whole or in part, by specifically hybridizing under moderate or stringent conditions to the exemplary polynucleotides shown in Figure 1B (SEQ ID NO:02). Alternatively, the invention sequences can be identified by their homology to published or known open reading frames, or pieces of genomic sequences using computer-assisted methods known in the art or those described herein.

Please amend the first paragraph on page 22 of the specification as follows.

Polynucleotides that correspond or align more closely to the exemplary sequences disclosed herein are comparably more preferred. A query polynucleotide of at least 90 nucleotides is considered to be essentially identical to a reference polynucleotide (e.g. sequences shown in 1B. (SEQ ID NO:02)), when the query polynucleotide exhibits at least about 80% sequence identity, more preferably at least about 90% identity, even more preferably at least about 95% identity using any of the above-mentioned alignment programs with the default settings. Likewise, a query polypeptide is essentially identical to a reference polypeptide of at least 30 amino acids, when the query polypeptide shares

at least 80% sequence identity, more preferably at least about 90% identity, even more preferably at least about 95% identity that can be discerned by the aforementioned programs using their respective default settings. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for example, 80% identical to a reference sequence of the present invention, the percentage of identity is preferably calculated over a linear sequence of comparable length that is contained in the reference sequence. Typically, the upper limit of gaps in homology is set at 20% of the total number of amino acid residues or nucleotide residues in the respective reference sequence. The altered residues may occur at the amino or carboxyl terminal positions of the reference sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. Allowable sequence alterations include but are not limited to deletion, insertion, translocation and substitution of individual residues.

In the Claims

Please amend Claims 1, 2, 6, 7, 8 as follows:

1. An isolated polynucleotide comprising a nucleic acid sequence shown in Figure 1B (SEQ ID NO:02).
2. An isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of:
 - a) a nucleic acid sequence of at least 90 nucleotides that is essentially identical to a linear nucleotide sequence of comparable length depicted in Figure 1B (SEQ ID NO:02);
 - b) a nucleic acid sequence of at least 90 nucleotides encoding a polypeptide that is essentially identical to a linear peptide sequence of at least 30 amino acids depicted in Figure 1A (SEQ ID NO:01); and
 - c) a complement of (a) or (b)

6. The isolated polynucleotide of claim 2 wherein said nucleic acid encodes a polypeptide - comprising an amino acid sequence that is essentially identical to a linear sequence of comparable length shown in Figure 1A (SEQ ID NO:01).
7. The isolated polynucleotide of claim 2 wherein said nucleic acid sequence encodes a polypeptide comprising the amino acid sequence shown in Figure 1A (SEQ ID NO:01)
8. The isolated polynucleotide of claim 2 wherein said nucleic acid encodes a polypeptide comprising an amino acid sequence essentially identical to the entire amino acid sequence shown in Figure 1A (SEQ ID NO:01).

Figure 1

Sequence Name:

A.ctg12831-000000.10.0

Figure 1A: SEQ ID NO: 01

MGKDFMSKTPKAMATKAKIDKWDLILKSFCTAKETTIRVNRLTEWEKIFATYSFDKGL
ISRIYNELQIYKKKTKNPIKKWVKDMNRHFSKEGIYAACKHMKYSSSLAIREMQIKTT
MRYHLTPVRMAIIKKSGNNRDMDEAGNHHSQQTITRTKNQTPHVLTHRWLQQSHWTVL
SDISELMHKTDRIVNLLMCMYLLTVLDLRLNDDAKRYSCTPRNYSVNIREELKLANVFF
PRCLLVQRGGNCGCGTVNWRSGTCNSGKTVKKYHEVLQFEPGHIKRRGRAKTMALVDIQ
LDHHERCDCICSSRPPR

Figure 1B: SEQ ID NO: 02

GTATATGTAAGAAAGCCTCATTTGATTTAATATACAAGATGCTTCTTAAGAGA
GCAAGATCAAATTGTTGTTCAAAAATTAAAAATAATTCTCCTAAATT
CTAAAGACATGTTCATATATTGACCATCCCTATTGGCAAAGGATTTAAGAGTCT
AACTCAAACATATGTAAGCTCTGGTGTACCTGGTTATATACCAAAAAAACATTGAT
CTATATACACATAGACATGAATATATTCTGTGTGTGCATATATAACCTCAAAC
ACTATTAAATGCAATCCTATATTCTAGGTATAGAAGTTGATGATATAACCTTCTAC
TTGCCATGGCATTAAACAAGCAAGGCTGAGACTCAGCAACCACTTGTCATTGATTG
CAGGCTAGTAGTAAGTTGGTCTGGTAGGAAAGGGTCTCTTATCTCACCCCTCTAA
ACTAAAGTTCTTCAGGCTTAATGTAAGGATGTGACATTCTCTTATCGAGGTGGCTT
GAGCTGAGATAACATCACATCGTCATGGTGTCAACTGGATGTCAACTAGAGCCATG
GTCTTAGCTCTACCCCTCCTGTGATGTGGCCAGGCTCAAACGTAACTACCTAGGACAAG
AAGCACATCTCCTGTTAGAAAGCCTTGAGGTTCAACTCAGTCAGATGCCACCTACTTAT
TACCTTTGACAACTAGTCTAGCCCTTGAGAACCCAACAGAACAGCTATGGCTTGCT
ATTAGAATGCACACGTTGCTATTAGAATGTACACATTTCAAATAATTGACTCCCTGAA
GTGGAGGAATCAATTGATCCCAGAGTAATGCCAGCATAACTACCTGAAGTACCCAGAT
GATTTCATGTGCTTAGCAGGTATTTATAATAGCTTCTAAGGGCTGTTGGCCAA
GTACTGTTCCAATATTATGTAAGATCCTCTGACCAAGGCATGTGTATAGATGAAT
ACAATACTTGAGCATATTAGCATGGAGAGGAAATGAATACAACCATGAATAAAATA
TGCTGGTATATCTAAATCTTGGTGAAGTAAAACATGTTGCCCTGGAGTTGCTGGCAAG
ATGGCCGAACAGGAACAGCTCTGGTCTGCAGTCCAGCGAGATCAATGCAGAAGGCCGG
TGATTTCTCCATTCCAACGTGAGGTACCCAGTTCTACTCACTGGACTGGTAGACATTG
GGTCAGCCCCACGGAAGGTGAGCTGAAGCAGGGTGGGTGTCCTCAGCCGCAAGTGC
AAGGGGGTGGGGATCTCCTCCCCCAGCCAAGGGCATGAGAGACTGTACCAAGGAG
GAATGGTGCACTCTAGTCCAGATACTGCACTTTCCCATAGTCTTGCAACTGGCAGACC
AGGAGATTCCCCAGTCCTATGCCACAGGCCCTGGTTCAAGCACAAACTGGC
GGCCATTGGACAGACACCGAGCTAGCCGAGCAGTTATTTCATACCCAGTGGCG
CTGGAATGCCAGCAAGACAGAACCTCACTCCAGGGATCCAAGTGGCTGGCTCAGTGG
GTCCCACCCCCATGGAGGCCAGCTAGCTAACATGGCTTGAAATTCTCCTGCCAGC
ACAGCAGTCTGAGATTGACCTGGATGCTTGGAGCTGGTGGAGGGAGGGCGTCTGCCAT
TGCTGAGGCTTGAGTAGGCGAGGGCGGTTTACCTCAAAGTGTAAACAAAGCTACTGGGA
AGTTTGAATGGGGCCTCAGCCAGCTCAGCAAGGCCGCTGGCAAACCTGCCCTCTAG
ATTCCCTCTTTGGGAGGTCTGAAAGAACAGCAGGCCAGTCAGGGACT
ATAGATAAAACCCCATCTCCCTGGGACAGAGAACCTGGGGAGGGGTGGCTGTGGTG
CAGCTCTCAGACTAAACATCTGCCCTGGAGGCTCTGAAGAGAGCAGCGGATCTCCA
GCACAGCATTGAGCTGATAAGGGACAGGCTGCCCTCAAGTGGCTGGCTGACCCCC
ATGTATCTGACTGGAGACATCTCCATTAGGGCCAATAGACATTCTACAGGAGAC
AGGGTCTGGAGTGGACCTCCAGCAAACCTCCAGCAGACCTGCAGCAGAGCGGGCTGACTGT
TAGAAGGAAAAGTAACAAACAGAAAGGAATAGTATCAACATTAAACAAAAGGACATCCAC
TCAGAGACCCCCATCTGAAGGTCAACAAACATCAAAGACCAAGGTAATAACCAAAAG

ATGGGAAAAACCAGTGCAGAACACTGAAAATTCCAAAACCAGAACTCCTCTTCTCAAC
CAAAGGATCACAACTCCTCGCCAGCAAGGGACAAAACCAGATGGAGAATGAGTTGAGG
AATTGACAGAAGTAGGCTTCAGAAGGTGGTAATAACAAACTCCTCGAGCTAAGGGAC
ATGTTCTAACCCAATGCAAGGAAGCTAAGAACCTGAAAAAAGGTTAGATGAATTGCTAA
CTAGAATAATCAGTGTAGAGAAGAACATAATGACTGATGGAGCTGAAAACGCAAGAC
AAGAACTCATGAAGCATAACACAAGCTCAATAGCCAATCGATCAAGCAGAAGAAGGA
TATCAGTGATTGAAGATCAAATTAAATAAAAGAAAGTGAGAAGACAAGATTACAGAAAAAA
GAGTGAAAAGAAACAAACAGCTCCAAGAATTATGGACTATGTGAAAAGACCAATC
TACATTTGATTGGTGTCCCCAAAGTGTGGGAGAATGGAATCAAGTTGGAAAACACTC
TTCAGGGTATTATCAGGAGAATTCCCCTATCTACAGGGCAGGCCAACATTCAAATTCA
GGAAATATGGAGAACCCATAAGATACTCCTCGAGAAGAACAACTCCAAGACACATAAT
CTTCAGATTCACCAAGGTTGAATGAAGGAAAATGTTAAGGGCAGCCAGAGAGAAGG
TTGGGTTACCCACAAAGGGAAGCCAATCAGACTAACAGCGGATCTCCGGCAGAAACCC
ACAAGCCAGAAGAGAGTGAGGGCCAATTCCACATTCTTAAAGAAAATAATTTCACCC
CAGAATTTCATATCCAGCCAACCAAGCTCTAAGTGAAGGGAGAAATAAAATCCTCTAC
AGAGAAGCAAATGCTGACAGATTTGTCAACCACCAGGCCTGCCCTACAAGAGCTCTGA
AGGAAGCACCAACATGGAAGAACAACTGGTACCAAGCCACTGCAAAACATCCCAAATT
GTAAAGACCATTGATGCTATGAAGAAAGTGCATCAACTAACGGCAAAATAACCAGCTAG
TGTCTATGGCAGGATCAAATTCACACATAATAATTAAACTTAAATGTAAATGGGCT
AAATTCCCAAATTAAAGACACAGACTGCCAAATTGGATAAAAGAGTCAGAACCCATCAGT
GTGCTGTATTCAAGGAGGCCATCTCACATGAAAAGACACACATAGGCTCAAATAAGGG
ATGGAGGAAGATTTACCAAGTAAATGGAAAACAAAAAAAGCAGGGGTTGCAATCCT
AGTCTGTATAAAACAGACTTTAAACCAACAAAGATCAAAAGAGACAAAGAAGGCCATTA
CATATGGTAAAGGCATCAATGGAACAAGAAGAGCTAACTATCCTAAATATACATGCC
CAATACAGGAGCACCAGATTCTAAAGCAAGTTCTAGAGACCTACAAGAGACTTTGA
CTCCCACACAATAATAGTGGAGCTAAATAATAAGACACTTTAACACCCACTGCC
AATATTAGGCAGATCAATGAGACAGAAAATTAAACAAGGATATCCAGGAGTTGAACTGAGC
TCTGGACCAAGCGGACCTAATAGATATCTACAGAACTCCCCACCCCAAATCAACAGAATA
TACACTCTCTCAGCATCACATTACACCTATTAAAATTGACCATGTAATTAAAGTAA
AACACTCCTCAGCAAATGCAAAAGAACAGAAATCTAACAAACAGTCTCAGACTACAG
TGCAATCTATTAGAACTCAGAATTAAAGAAACTCACTCAAAATCACACAACATACATGGAA
ACTGAACAACTGCTCCTGAATGACTACTGGTAAATAACAAATGAAGGCAAAATAAA
GATGTTCTTGAAACCAATGAGAACAAAGACACAATGTACCGAGAACATCTGGGCAATT
TAAAGCAGTGTGTAGAGGGAAATTATAGCACTAGATGCCTACAAGAGAAAGCAGGAAAT
ATCTAAAATAGACACCTTAACATCACAATTAAAGAAACTAGAGAACAGGAAACAAAA
TTCAAAAGCTAGCAGAACAGAACATAACTAAGATCAGAGCAGAACTGAAGGAGATAGA
GACACAAAAGGCCCTCAAAATAATCAATGAATCCAGGAGCTGGTTTTGAAAAGATCA
GCAAATAGACCAACTAGACAGACTAATAAGAACAGAACAGAGAACATCAAAGAGATGC
AATAAAAATGATAAGGGGATATCACCACCGATCCCACAGAAATCAAACATTATCAG
AGAATATTATAACACCTCTATGCAAATAAACTAGAAAATCTAGAAGAAATGGATAAATT
CCTGGACACATATGTAGCCTGTATGGACCTTGGGGGACAGAACAAAAGGGGGTGAATGCA
GAAATAAAAGACAAAGACAAAGAGTATGTTGGAAGTAGGGGTAGGGGCCACTGCC
TCTAATGGACAAGGCCCTGAGCTTACACCACCCCTGTATTATTAGGCAAAGAGAT
AGCGAGAGGGTGAGTTGGAAGAACAGGTCAGCTTGTAGGTCCAGAGTAGGCCCTGCAAGAC
TGCATTCTCAAACAAATAGGCTCTAGATGTCCCAGTAGATAACCTCAAGGAGCCAGTGC
AGGGAGTGTAGGCCCTCAGCAAACCTCTAGGGCAGGCACAGAACAGTAAGTTGCCACAT
TCTGTATTACGATAAAACAGTTGCTTTGATCAAGTAGCCTCCAGTGGATGCTGAGT
TGGTCATGATCCCTTGGCCTTTGGCTCCAAAACACATACACCCCTCTCAAGACTAAA
CCAGGAAGAAGTCAAATCCCTGAATATACCAGTAACAAGTTCTAAAATTGAAGCAGTAAT
TGATAGCCTACCAACCAAAAAAGTCCAGGACCAGACGGATTACAGCCAATTCTACCA
GAGGTACAAAGAGAACAGCTGGTACTATTCTCTGAAACTATTCCAAAAAATAGAAAATGG
GAATCCTCCCTAAACTCATTACGAGGCCAGCATCATCCTGATACCAAAACCTAGCAGTG
ACACAACAAAAGAGGAAATTTCAGGCCATATCCCTGATGAACATTGATGTAAAATCC
TCAATAAAACTGGCAAACCAAAATCCAGCAGCACATCAAAAGCTTATCTACCATGATC
AAGTTGGCGTCATCCCTGGGATGCAAGGCTGGTTCAAATATGCAAATCAATAATGTAG
GCCATCACATAACAGAACCAATGACAAAACACATGATTATCTCAATAGATGCAGAAA
AGGCCTTGTCAAATTCAACAGGCCCTCATGCTAAAATTCTCAGTAAACTAGGTATCG

ATGGAATGTATCTAAAATAAGAGCTATTACAAACCCACAGCCAATATCATACT
GAATGGGCAAAAACCTGGAAGCATTCCCTTGAGAACACTGGCACAAGACAAGGGATGCCCTCT
CTCACCACTCCTATTCAAGATACTATTGGAAGTCTGGCAGGGCAATCAGGCAATAGAA
AGAAATAAAGGGTATTCAAATAGAAAGAGAGGAAGTCATATTGTCCTGTTGCAGATGA
CATGTTGTATATTAGAAAACCCATCGTCTCAGGCCAAAACCTCCTTAAGCTGATAAG
CAACTCAGCAAAGTCTCAGGACACAAAATCAATGTGAAAAATCACAAGCATTCTATA
CGCCAATAATAGACAACAGAGAGCCAATCATGAGTGAACCTCATTACAATTGCTAC
AAAGAGAATAAAATACCTAGGAATACAACCTACAAGGGACACGTAGGAACCTTCAAGGA
GAACCTACAAACCACGTCAAGGAAATAAGAGAGGACACAAACAAATGGAAAAACATTCC
ATGCTCACAGATAGAAGAACATGAAATGCCATACTGCCAAAGTAAATTATAGATT
AGTGCTACCCCCATCAAGCTACCATTGACTTTCTCACAGAATTGGAAAAACAACTTTA
AATTTCATATGGAACCAAAAAAGAGCCCACAGAGCCAAGACAATCTTAAGCAAAAGAA
CAAAGCTGGAGGTATCATGCTACCTGACTTAAACTATAACTATAAGGCTACAGTAACCAA
AACTGCATGGTACTGGTACCAAAACAGATATATAGACCAATGGAACAGAACAGAGACCTC
AGAAATTACACTGCAATCTACATCCATCTGATCTTGACAAACCTGACAAAAACAGCAA
TGGAAAAGGATTCCCTATTAAATAATGGTGTGGAAAAACTGGCTAGCCATATGCAGA
AAGCTGAAACTGGATCCCTCTACACCTTACAAAAGTTAACTCAAGATGAATTAAA
GACTTAAATATAAGACATAAAACCATAAAACCCAGAAGAAAACCTAGGCAATACCATT
AGGATATGGACATGGCAAAGACTTCATGACTAAAACACCAAAAGCAATGGCAACAAAAG
CCAAAATAGACAAGGGATCTGATTAACCTATAGAGCTCTGCACAGCAGGAAAAAAACT
GTCATCAGAGTGAACAAGCAACCTACAGAATGGGAGAAAATTGGCAATCTATCGATCT
GACAAAGGCTAATATCCAGAGATCTACGAGACTTAAACAATTACAAGAAAAAAACA
ACCCCGTCAAAATATGGCAAAGGATATGAGCAGACACTTCTCAAAAGAAGACATTATG
CAGCCAACAAACATATGAAAAAAACCTCATCATCATTGGCGTTAGAGAAATGCAAAACA
AAACCACAGTGCACATACCATCTCATGCTAGTTAGAATGGTGCATCACTAAAAGTCAGGAA
ACAACAAATGCTGGAGAGGATGTGGAGAAAATAGAACACTTTCACTGTTGGTGGAAAT
GTAAATTAGTTCAACCATTGTTAGAGACAGTGTGGAGATTCTTAAGGATCTAGAACAG
AAATATCATTGACCCAGCAATCCCATTACTGAGTATATACCCAAAGGAATATAATCAT
TCTATTATAAAGACACATGCACACATATGTTATTGCAGCACTGATCACAATAGCAAAGA
CTTGGAACCAACCCAAATGTCATCAGTGCATAGACTGGATAAAAGAAAACATGGCACATAT
ACACCATGAAATACATGCAGCCATAAAAGGATGAGTTCATGTCCTTGCAGAGATATG
GATGAAGCTGGAAACCATCATTCTCAGCAAACACTAACACAAGAACAGAAAACCAACCCA
CATGTTCTCACTTGTAAAGTGGAGTTGAACAATGAGAACAGACATGGACACAGGGAGGGAA
CATCACACACCAGGGCTGTGTTGCGGGACTAGGGAGGGATAGCATTAGGAGAA
ATACCTAATGTAGATGACGGGTTGATGGGTGCAGCAAGCCACCATGGCACATGTATACCT
ATGTAACAAACCTGCACATTCTGCACATGTACCCACAACTTAAAGTATTAAAAAA
CACACAAACATGTTGCCCTGATGAAGGTCAATTAGTGGCATAAATAAGTAAATGTGTTT
ATGTTTTATATATTGTTAACATATAATCCTTACCATTTAAACAAATCAGGTTCC
ACTAAAATCTTGTATATTAATACCTGTGTATCAATACAGCATTCTTAAATCAATAAGT
ATATCATTAAATTAAATTCTAAAGTTAAACATAATTCTTAAATTAGTAGTTAAATA
GAAGCCAACCCCTCTCCCTGCAGTGGCCTTCATTAGTGAAAATATTAGCTATTACATAG
ACATATACTGGTAAATTCCATTCTGTTCTAATATAACATAGTCAGATTATATT
ATTTACTTTATGTTCTAGATCCCGGTTAGCCTTATTTGATTTGTCCTTCTTCT
TTTAGATTCTAAACTTGGTCATGGCACCATTAAACAATTCTATAGCATTTCAGTTTT
GAATAATTGACAGGCACTATTCTTCTTCTTACCCCTCAGACAAATCTTCACA
TGGTGGAAAAGGTATCATTATGCCACTTTACTGAGATTCTAAAGGAGGATAAGTACC
TTGTCAGGGCTTCCCTGACTTGGACCTGGGACCCAGGACCTGGGATCAGGACATTAA
GCTCCTAGCATATTCTGACTTGAGGCCTCTCTAACATGCCTCAATTCTTCTTATGTCT
CAAGGGTGTCTGGCTCCCATGTGAACCGGGCAGGGAGACCTGTGATGCTTGTGAA
CTTTGTCCTAGGTGAAAGTTAGATGCCTGGAGTCCCTGCACCATGCATCACGGTCTG
CACATTCTTCTATTAGAATTGCCATGCTGTTCCATAGACGGTCCAGTGAGGCAGGG
AATAAATCACTGCATTGTTAATGTTCAATCAAGTTAGGGCACTCTGCTGATGCAGAAAT
GGAAGATGGAGATCTGTTGTAGAAAACCTCAAAAGACTTGTCAAGTACAAGTTGGCAG
GGGGTGGAGGAAGGAATACCTAAGAAAGTTCTTAGGGAGACAAAGTGTCAAGAAATT
GATATTGGTAAAGCTAGTCCAAAGGCCAGTTGATAGTTGATTCTATTATCATCTCCTG
CAATTCTATTGCACTTACAATAGGTACCTTGGAGGGGTTGGACTCCCATAGC
TTGCCAAGAATTCTCCAAGATGAATTGCTATTTCAGACTATCTGGCCTGTA

AAAGAGAGTTGAGAAGTAGGGATGCAGGAGAGGAAATTATTCTAAGAACGCTGAGCAT
ATGATAAATATTCCCTGTTAAAGAACGACTGTTACAAGGCCATAATAATTGTGATGACT
GGCACCTGAAAATCAGAGCTTGTGATTGCTTCATTGACGGCAAACAAAAGTG
TGTGCTTGGGATAAGAGCAAGAGCCTGGGCAGTTCTAAGTGGTCTCTGATTGTC
AGGGATTCTCTGTGTTTATATTAGCAACGTGAGCACGGTATATATGTGTTGCTG
ATAAGAACGAGAAAATGAATTGGCAGACACCTTTCCCAGACAAGACAGGAGAGCACTAT
TTGAACAAAGTGGAAATTGGACTGCCTTAAGGATGATCACAGCACTGATGTTCAAAGCT
TTCAGATCATGTAATAGTCTTAGGTCAGGTACACAGCATTGAAAGAAGAACGAA
GGCTGATTGAGGGCATGTAGAAAAATGAAAGCCTTATCTGAGAAAGAACGAAACTGGCG
TTATAGTTATCTGGTCACCTTAAAGGGAAAGGAACACTGAATTAAATTATAGGAGCTGAA
GGGCACTGTTAATAGGTACCCCTCACACAACACTTCTTATTCTGAGCTATGATTAC
AGCTGGAAGCACACAACCAGAAATAACAAATCCACTGGCGGGCAACCAGCATTCTAAC
ACCTATGGGTGCAAATGGGATCTTGACTCCTCTCACTCTGAAAACCACACAAAGCCA
GGGAAACTTGACGCTACTAAATGGAGTGTGACTGAGCCAATTGGGGTTCATACCAC
CATACAAATCAAAGATGCTCAGTTGCAAATTACCTCATCACAAAGATATTAAC
CAGTTACTCACCTGTTGCCAATAACGCTGAAATAATCTCACCATAAGCTATTAC
ACTAATAAAACAATACCAGGCAGAAAAGCTATCTGCTGAGTCGGTTCTGTTATTGAG
AATATAAAAAAGGCTGTTAAGGCTGTAACAGTTCTCAAATTAAATGGCTGACTTAGGAA
ACAAGTACGTATTCAGGACAAATGCATTATATAAAACCAAATCATTAAGAGTTAAGA
TTCTCCTTTTTTTTTTTGAGATGGAGTTCTGAGTCTTCTGCCAGGC
TAGAGTGCAATGGGTGATCCGGTCACTGCAACTCCACCTCCGGGTTCAAGTGATT
CTCCTGCTCAGCCTCCAAAGTAGCTGGACTACAGGCACGTGCCACCACGCCCTGGCTAA
TTTTGTATTTTAGAGAGATGGGTTCCCCACGTTGGCCAGGCTGGTCTTGAACCT
GACCTCAGGTGATCGCCTGCCCTAGCCTCCAAATGCTGGGATTACAGGCATGAGCCA
CTGCGCCGGTCTCTCCTAACTCTAAACCAGGCAGCTGTTTCAGCACACACAGTTCTCA
AGGAAAAAAAGCTCTCTTTGATCTCTTCTGATCTCTTCTGCTTATAGCCTTATAAAAATGT
ACACAGAGTCATATTAAAGGGATGCTAGTGAATTATTCTGAAACCTAAGTGA
AGCAAAAATATCTGAGAAGGGATAACATATTATTCCCTCCCTGAGTAATTACTAACCT
GCAGGCAATAATCACAGCAGTGGCTGGCATTGTAACAGAACGGACTGATATCAAGTCCAA
GACACAGTACTCAGTAAAAAGACATAAATGACAACACAGCTCAACAGTGTATATTAAAGA
AGTTAAGCTGAAGGTGACAAAAGCTGGGTTAGTGGGAGTTATAACATGCTCATGA
ATTTGAAAATGCAATCATGATATCTGTCATATTACTCAAATAGATGCGTTCTGTA
GACTCTAGGGTTACTATGAGGTGTACTCAGTGCAGTTAACCTTACAGAACTAAATAG
TTAAATGATTTGACAGCACCTTAGAGGATTATTGACTACATGTTAGCCTACCAATTGC
AGAAAACATAATGAAAGCCTGGTGGGCACTACATTTCAGAGCATGGCATTAGCATTGG
GTATCACTCATGACACAGATGGGCTTGTGCTGCTGGGAGTACCTGCCCATGTGGCA
AGTTGCGCTTGGCAGGAAGGCCTGATGTGAAGCTAGATTGAGAAGGGAGAAGGTGTG
CAGTTGTAATACTAAACAGGAGTTCACTAACTGTAAGTGAAGTCATCAGGGAGAAA
TGTAACTCAGAACTGAGAAGGCCAGACAGGCTCTCATCTAAATTCCACCCACATCTGCTT
GTACTTTATAGTCTCAGATGCCCTCATCACCAGTATCCCAGGTGGTAAGAACGACA
TGTGTTATCATTGCATTGTCAGATGAGTGAATTAACTTTTATAAGCAGTCTATAAA
CATTTACTGTTCTGATCATATCTTATTCTTGCATTTACCTAGCATTCAACCCACC
AATTGTTTATTCTTACACAATTCTAAAGATTGGGGCAGGATAAAAGTGTAA
AACAGATAATGAATATGATGTAATTTCAGGTTGCCTGGGAACTCAAATTGTAGGTTAT
TATGGGGATAAGTGAAGGAAACCTGAGGGCCTGGGAAAGTTAAGTGGCTGGCCTCAGT
TGCCCCTCCATGTGGCAAAGCTGGAACCGAGAACCCACATCTTCTAGTCTGCAAGTT
TCTGCTCTATTGCCCTCTTGGTAGGAAAACATCACAGACCATGAGGCTTCACTTAAAG
GTGGAGAAGGACAAGAGGCAGAGAGACTCCACAAGTTCTAGCTATGAGGTTCCAAAAAA
ATAAACAGAAAAGAGATTCTGACTTTTATTAGGTTAGGTATAATCATGACCCAAAA
ACTCCCTCCATTGCTAGAGAAGGAAACTCCTGGCGAAATTATTCTGTTCT
TGGCTCAATTGAAAATTAGGTACTTTTCTAACTAACAAGACGTTCAAACATGTAA
AAACAAAGTACTATTCTTACCTCAAATCTGAAGGTCAACAGTGTATTACTCTAACCTC
ATATTCTATGTATAAACAGATGCTGTTGACTTATGATGGGCTATATCCTGATAAAC
CCATTGGAGGTTAAAATATTAAAGTGAAGGATGCTTAAATACCCCCCATAAACCCAC
TGAAAAGAAAAAAAAAATCTAAATCTAACCATCATTGAGGATAATCTGTACCAAT
TTATTAAACATCTCTAACTCTTAAACTGTGATAAAATGCAATGTTAATACAAAATT
CTACCTAGAACAGAAGAAGTCATTGTTCTAGTGTCTAAGTGTGATT

TAGATGCTATAAATGTGCCAGAACATCAGAGATAGGTATAGGCTTGTGCCATTCAACAAGGT
AGTCACGGCCTTGTGGTAATTAAATTCAATTAGTTAAAACTAAATAAAATTAAAAA
TTAGTTCTATTGTGCTACACACATTCAAGTGCCAACAGCCACATGTTGCTAGTGA
CTACCATATGGAACATTGCAAATATAGGTATTCCATCACTACAGGAAGATCTATTAGA
CAGTCAGGTGGTAGGTCAAGCATTGAGAAAATTATGAGAGGAAGAACAGAGGAAT
TAACATCTATCTTATCTCTTGATGCTCCTATGTTTGGCTGTTGACTAAATGGATA
CAGCCAGGGCACCAATCATGAAAAACAGTGAGTAATAATTAAATAGGTCACTATACCT
TTAGGAAATATCCTCTCCTTCAATTACACTATCAAGAGAAGAGAACTGAAATAATAGT
TTCTCTAATTGTCTACACAATACGTTTCTGGAATCCTCCCTTAACAAAAATCACTA
CCCAAAATTATCTTTATATTCTATGATGGGTTCAAGGACACTGTACTCCAAATGTTTA
AGCTGAAGGAATTGAGAAAACAAGAAAGCAGAAAGATCACTGACCTCCCATGAGTCA
CTCCATCTGAAGGAAGTCATAAAACCTAGGATTCTGACCTCCATGAGTCAAGTCA
TAAGACCCTCATGCGAGAGGGCCCTGTTACCCAGAAGAAAAGAAGAATTCCCCCG
CCTTTTGTGAGATGTGGCTTACTCTGTCACCCAGGCTAGAGTGCAGTTGCATGATC
ATGTTCTGCTGCAACCTTGAACCTCTGGCTCAAGCAATTCTCCTGCCTCAGCCTCCAA
GTAGCTCAGACCACAGACACATCCTCCACACTGGCTACTTAAAATAATTCTTTTT
TATTATTATTATTATTAGAGATGGGGGGTCTCGCTATGTTGACCCGGTGAT
CTTGAACTCATAGCCTCAAGGGATCATCCCACCTTGGCCTCTAAAGTGCAGGATTACA
GGCATGAGCCACTGCTCTGGCTAAGAATCCTATCTCAAAGACAAAGGTAGAACAAA
TAAGAATCTGAACAAACAGGCCCTGCTAATTTCCTCCAGTTATTACCAATTAGATCATA
TCTGCCCTATCATATTCTCCACAACATCCACACTTATCCTAAACTTACTGTAAAAAATT
ATCAGGTGAAACCACCTTTGGGTCTCCTTACCAAGGCCTGTGTCACGTAAACAT
ATTCAATAATGAGTACACTTTCTTGTATTCTGTCTTGTATAGTGGCCTCAGC
CATGAACCTAGGAAGGGTGGAGAAAAGTATTTCCTACTCTATATCTAGTATATTCC
AAGAAGCATAGAATGATTGTTAGAAAGAGGAAAATACTTCAACAGGGTACCTACAAAC
TTTGAGAGCAAGAAAATAAAAGACAGTCACATTACTGCACAGTGAACGGCTCAA
AACCCCTACAGGACAACATAATGACCTGTGAAAAAAGCAATTAGCTCGTTAGAAGCT
TTCCAGTTCCAGATTAAATTCTTAAGGTTGAGCACTGAAATATTGTGGAGAATCA
ACAAGCCTGTTATGTGACAAGGTCTCATTACCCCTTAAGGGTGCATCTTCACAGA
AACTCATTCACATCTCATCAGTGCAACCATGAGCTGGGAAACTGGTTCTCATTCT
CAGAGTAAGAATACAGACACAGAATTCAAAGACTAGAATTTCCTTAATGAG
ACTAGGCTCAAGCAACCCCCACTCTGAAATGGAATAAGCCTTGTGTTCCACAG
GGCACTTGACAGTGATAATTGACACATCTCAAAGGTATTCTAGGAGTCTCAGGGCAT
ATGACAGGAGTGTGTTGTCAGGTAAGCAGTTACTGGCTGGTGTGGATGTTATTTC
CTTCATCCAGCAGTGCAGAGTGATTATTAGAGCTTGCAGAGTTCTAGAAGTAAAA
ATATTAGGACACATGTCTTAAAGAGATGCTTAGATACAGTTCAAAGGATGCCAATGTT
TCAAATCCACTCATGCGACTGAACAAAGAGATCAAGAGTTTCCCTCTACACATTAAC
GAGAACAGAAATTGCAAGTAATGGTTATTGTGTAGAGAGATAAGAACAGGAACTAACAGG
AGGAGGGTAGCCAGGCCCTCAGTGTCTCAAAACACTGGCTGGGAGGAAGGGTCTT
TGGGGTCTATGGTCACTCTGCTCTTCCACAATAAGTAATTAAATCAAGCTAAA
AATTCTATCTGAGCATAGAGTCAGATAAAAGACTCCACAAATACATCAAAGTC
CTGACCTGAAATGTTCTCCTCACAGTTACTACTAGGTAGAGACCTGTCACTCCTAGA
TTATTAACTATAACCTGATTACTGCATTCTGCATTATCCTGGGGTATGATTAAAGG
TTATAAAATTCAAGGTCTTAGAAGTGAAGGACAACATCCAATCTAGAGTTCATCAGTTCA
TACAAAATAAAACACAAATGAACATAGATGATAGCATTCTCTAGATATGAGAACATT
TTCCCTTGAAAACACTGGGGTGGATCAAGCAATTCTTATGACTTAAGAAAATATGTTCC
ATGTAGGGCTAAAATAGTGTGTTCCCTGCTGAAGTAAGTATGGTCACTGGTGAACAAATT
CCTACATTTCAAGTTGAAAATCAATTATTACATACTCATTGCTTAATCCAGAA
GTTACCTCCTAACTACTACGATTGTTGTTGTTGAGAATAGAAATCAAACCAAAA
CACCACCAACCAACAAAGCTCCAAAAACAGTTTACAAGCTGGAGATTGTTA
GAGAGAACACTACCTATTCTTGTGTTGAGGACACTTTAAAAATTATTATTACTTT
AAGTTGTGGGATACTGTGCAGAACGTGCAGGTTGTTACGTAGGTATACACGTGCCATG
GTGGTTGCTGCAACCTTAAACCCATCACCTACATTAGGTATTCTCCTAATGCTATCCC
TCCCCCAACCCCCAACCCACCGACAGCCCCAGTGTGATGTTCCCTCCCTGTGCTCC
TGTGTTCAACTCTCACTTATGAGTGAGAACATGTGGTGGTTGTTCTGTTCTGTT
AGTTGCTGAGAATGATGGTTCTAGCTCATCCGTCTCTGCAAAGGACGTGAACTCA
TCCCTTTTAAGGCTGCAAAGTATTCCATGGTGTATGTGCCACATTCTTTATCCAG

TCTATCACTGATGGGCATTGGGTTGCCAAGTCTTGCTATTGTGAATAGTGCTGCA
ATAAACATATGTGTCATGTGCTTATAGCAGAATGATCTATAATCATTTGGTATATAC
CCAGTAATGGGATTGCTGTGGACACTGATGGAGAGCAACTCAAACAGTAATTCTAACAA
TGATGTTGCTTCATATTTAGTTATTTAAAACATATTCTGCATGATGTTAACAA
TCTTGCAAAATATATTCATATGCATTATTTATTGACCCTCAGAGCAACTCTGGAAGG
GGTTATCTGATATATTAATTTCAGTCTATTAAATATGTGAAAAGTGAACACTGAC
TTAGTGACTTGCATGTGTTCCACAATAATAAGTAATTAGAGCTGCTGCCATGTCACG
GAAGAGCTCTAACCTCTCTCAGTCACTCTCTCTCTCTATGTGTGTGCTG
TGTATATATATATATATACACAGACACACACACACATATATATATATATATA
TGTAATTTTTTTGAGATGGAGTTCTTTACCCAGGCTGGAGTGCAATGGCGCGATC
TCAGCTCACTGCAACCTCCGCCTCCGGTTCAAGTGATTCTCCGCCTCAGCCTCTGA
GTAGCTGGGATTACAGGTGCCATCACGCCTGGCTAATTGTTAGTAGAG
ACGGGGTTTGCCATGTTGGCACGCTGTTGACTCCTGACCTCAGGTGATCCACCC
ACCTCGGCCCTCCAAAGTGCTAGGATTACAGGCGTGAGCCACTGCGCCGGCTATCTT
TATGCTCAATAAAAGTGCTATATATTACTAGTGATAAGAAAAACCATAGACCCCTGGAACCA
GTGGATTGGAGTTGGAGTCCTGGCTCTGTGATTACTGACCAGGCCATGCTGGCCAACCT
ACTGATCCTCTTAGGGCTCAGTTACTCACCTATAAAAAAGAATAAAAGTACATT
TTTACAATATTGTTGATGGGGTGCTAAATGAGCTAATGATTACTTACAATAGTTTGTC
AAGCAATAATGCCATTGTTACTATTATAAGGTTATTGTCCTTTAAGTTTGTTCC
TCCTATATTCTTTACTTTGCTATTGCTATAATCCAAGAGCTGATCCCTGAGTAG
CACTTAATAATAGTAAAATAACTGAGCATTCCGGTTGAAACACATACCTCATATTAGA
AAATAAAAGATCTTGACAATTATTTGCTATCTTATTGTCCTTTAAGGCTAAATTAA
TGATATAATTGAATTAAAGGTTTGCTTGTGAGATTGTCATATCCTGAAATGAAT
AACATCATATTCTTTCTGTCTTCTGCAAGTAGGTCAGCTGAAATTACTG
TATCACATATTGATTATATTCTAACATGTTGATGTCATGTCACATGGTGTATTGTT
CAAATTAGAAAAACAGTGCCTCGTCAGGATAGGATTAAACCTGTCATCAGGACACTTGG
CTTGGCAACCTAGTGTGGGAGAATTCTGCTCTAATCAAACCTGGCTGGTGCCT
TGTGCAGTGAACAACCTGAACAACTGTATGCAATGCCCTGCTTCCTGAATCCTATAGA
TTAAGCATTGCAACAAGAAACTAACAGAATGACATACCTCATGATACTTTTACGGTTT
CCCTGAATTGCACTGTCAGGACCTCCAGTTGACAGTCCACAGCCACAATTCTCCACA
GCGCTGCACGAGGAGGCAACGTGGAAAGAAGACCAATTGCCACTCAGCTCTCT
TATATTGACCGAGTAATTCTGGGAGTGCACACTGTAACGCTTGGCATCATGAGCCT
ATCCAGGTCAACTGTAAGCAAACATGCACTGTGTAAGCAAACACAAAGTAAGCACAA
TTGCTCAGCATGTTGGGAAAGAGTGGGAGATTCTGTCAGGACAACCTTAATCC
TGGGATTAAATCCATCCTCAGGCTCTCAATTACTGGAACCTAAAGTAAAAGACCTAATT
TCTCTCTGATCCCATTACCTTGAAATAACAACAAAACAAAACAAAAC
TTGGCTAAAATTCTGTCATGTTGGTCAATTCTGTCATCTTATTGCAAAAAAGTT
CAGAGGAAAGAAAATGAAACATTGGCAATTAAATAATTGCTTATTCTCAAAAAGA
CAAATAAAACTGCTCTCATCTAAATAATCCTGACTCTAACGCATCACTAAATATA
ATTAAATTATATCTAGGACACATTAGAGACAACCAACTGTATTATTTACCTGGCAGTG
AAATTTCACACATAATGTAATAAGAAAAGGGTTTAGTTATTAACTTCAAAAGT
TAATCAACATGTTAGAGAAAATGATTGTTGTGTCATGATGGTCATATTGTCAC
TGGGTCTTAGATGGCAGTATAGCATAGTGGTTAAGTGCTTGGAGCCGAGTAAAGTTAC
AACTGCCTTCATCACATCATGGCTATGTTCTTCTAGTTGGAAAGTTATTTAATGGCT
CTGAACTCTGCTTCTCATCTAACATGTAATCATTGAAAGAATTGAAATGTAACGTGC
CTGCACTCAATGCCAGCTATTCTACTAATCTGATTCTGATCTGAATCTCCCTCTCACA
TTCTTCTTAAAGTCAAATGGACAAAATTAAATACAGTCTTCTCCCT
TTATGTTCTTCTTGGACATTATAAATGATTATCAAGGGATATGGTCAGTGGACT
TCTATGAACAAAAGCACCACAAATTCTCAAAGCTAAGTCATAAAATATTACTGAAATT
CAATTCCATTATGTTACATAAATTAGATTGATTCTGTTCTCCAGTCCATCCA
ATTATCCATTGGCAGCCAATCTTATTGGTCATACATGAGTATCTC
TCACAAGAACACAGTTAGAAGCAAGTCCCTTGTCTGCACAGAACCCACCACCTTCCC
AATGCACGCCATTGTCACAGGCCACACAGAAGGAATCCCATGAATGTTAGGCAGT
TATCACCAGTTCATTCTAAACTCTAGCCTGGTAATGTCTTAGGCTAAACTGAAACT
GCTTAAGGAGAAGGAAGAAAAAGCCTTGGGAGCAGAGGTCAAAAGTCAAGGACAGTG
TCAGTGAATGCACTAAGGAAAATTGCAAGGAACAAGTGTGGACCATGAGTCCACTAAC
GCATCCCTGTTGCTTTATCTACAACACTGTGCTTGATTCTCAAGGGCAGGGATT

ATCCCCAATTGTCAACGCTGAGCCCAGGATACTGTGGGAACTAAATAATGCCAAATAA
TCACTGTGCATAATTATTGTGTTTTCTTCCTTGTAAAGACATGTCATAACTTTA
GCTATAATCAATCCAGATTAAATTGAATGAACACTGTCTGGAAAGGAACCATTAT
TGCTGCTAAAGCCCTGAAAATAACTGCAAGCAAAGCAGAAAGGATTACATAATGGATTA
AGAAGTGCAGCAATCATCCATTACAAGTGTACCTTGAGATAAAACTGATGCTGCCCTG
TGCATTCCGGCTTGTGAACAGGGCTGATGCAGAGGGCCAATCTGCTTGTGATAA
TGGGAAGATATTGTCTAACACGGAGGACTAAAGAGGTACAATTAGCAGGAAGGGATCGT
GATGTGTGAGAAGGCAGAGAGGGACAGGACGCAAGCGAACACTGAGTCTGCTTCC
TTCAGCCCTCTGCTGAACTATGTCAACCTACAGATATGACTACATTAGTTGTTCCC
CACCCATTCAAGTGAGTATTATTGCTAAGAGTTAACAGTAATGGTAAACTGGAATT
GAAGCCTTCCCCCTTGCTCCATAGTCTGTCACTTAAGCAGAATAGAGGGATGGT
CAGTAAGCCATTAGTTGAAGGAAGAAGACAGTGTATGAGGGCTGACTGGACTTCC
GTCTGATGTTGAACCAGGGTGGGTGGTAATGGCCACATCCTATCTTCAGAAGACACC
CAAGCCAAAGTACAGCATGCCCTCCCTATAGGAATTCCAATAAAACTCCAAAGTCC
ACAAACCCAGGAGAAGGCATGTAAGCCTATTCTATTGAAACCAAACCTCCTCACATTGA
TAACCTTTGACTAGCATTGTTACTTCATTCTTACTCACCATGAGGAGATTACAAT
TCTGTCAGTTTATGCATCAATTCACTAATGTCATAAGAACTGTGACCCAGTGTGACTG
CTGAGAATCCACCTGCCCTACATATCAGGCATTGAAATCACCGAGGCACTCAATTAG
AATTAGAACTGAAAGGTTGTTCTGACTGGATGCAAATAACTTCAAAGCGTATTGAGAC
TTCTGAGGGGATATTGAGTTCCAGTCAGGAAAGACTGATAAGCCAGTGCAGCAGAGC
AGGGAGCCAGACAGAGGCTGAGCAGCAATTAGGTTCTGGTCTGGGTTAGAAGGAGA
ATTCTAGAGTGGACTTCTGGGAGGGAGACAGGCCAAGTGGTGTCAACCGAGAGAGGG
GCTGCCCTTCTGTCATCAGTCTCCATAGCTGAACATTAGCAGAGCATCAAGGGTGT
TCCAAATTAAATTCAAGGGCCGCTAATTCAACTAACGTCCTTATTTCATCCAGTCT
ACATCATGGAATAATCCCTTTTCTGTCATTCTGAATTAGTTCTGCTTATCAAAG
CTCTTGCACATCAATTAGTTTGGGCTCATACAGGCAGTTCTGGAAAGGCTGGG
AAGGCTCCCTGTCCTCAAAACTCCTTGGACATACTGGTAAAGTGTGGGGTGTGCA
CAGTGCACAGGGCCGACTTTCTGTCAGGCCCTGCCTCTAGGTGCAGCCTAACACA
GAGGTGCTTGAGATGTAATAAGAATGCTGGATCTGAGCTCTAGAATGGGATGTGAAT
GCACACCCCTTATAGTTCTAATATTAGGTGTGGAGGAAGGAGAGTCACCTGTTCT
TTTGATCCTGCCATCTAGACTACTAACGTCAGTGTGTTCATGAGTCATGAAATACTC
ATAATGCTATGAATTACATACAATCATTACTCTTACTTTGCAAGTGTGAGGAAACTGAGC
CTTCAAAAGTTAAGAAAAAAAAAAAAACTGTCCACAGCCATACAACCAAGTCAGTG
GTAGAGCCAGAGTTGAATCCAGGCCCTTCATGCCCTTGACATTATGAGGCCAGTGT
AAAGATTGAGGAGGGTTCAAGAGCAGCTCCACAAGCGATGCTGAAGTCTTCCACC
AGAGGACCAACTGCTGTGCAAATGACCTGGCTTCTAGGTGCACCCATAGGCACAACT
GTCATTTCACAATGTCTTACATACACATACCCAAAGCACGAGCAGCTGTGTATCCTCATC
CACCTATTCACTGACTAATAAACCAGGCAGCTATTCAAGACTACTTTGTCATTGG
TATTGTGATAAAACATTGCTCTTTATCTGAACCGAGTGGACTTGGCCAATGCACAC
TCTCCTTTGTCCTCATTCCTTGAACCTTCTGCTCATCTAGGAGCTGAATGG
ATTGATAGCAATGATTGTCCTCAGTGGAAACAAATGCCAGGATCCTAAAGATTCTAGTT
TCTGTAGGACAGATAAAACCAATATAATTTCACATACTGGCAAGCACAACATGGG
GTGATCAGCTTAAGATAAAATTAAAAATCTATTCTTATTAAAGTGAACATATTAT
TATTTTATACAAGTTACCTGTTCTGGTGACAGAAGTCAAATGTCCTTACTGGGCTAA
AATCAAGGTATGTAAGGTAAGTCTGTTTGTGAATACAAAAATTCTATTGAAACAAA
ATAATCTCCTCACTTGAACATGGAAAGCACCTTGTCTCCACATGCAAAATAATT
CTGCTTGGCTTGGCAACAAAGAGGATGTTCTGAGTCAGTCAGTCTAAACATTAGTT
TCAGTTGGCTTCACTGCTGCCATTCACTTCTGAGTCAGTCTAAACATTAGTACA
GCTTTTCTCTGATCATCCACAGACTGTCAGAGAATCCAATTAAACTGCTGCATGTCC
TTGAAGACAGTCAGTAATCTTTCTTTCTTTCTTTGAGACAGAGGTCT
GCTCTGCTGCCAGGCTGGAGTCAGTGGCATGATTCTCAGCTCACCATAACTCC
CCAGGTTAAGCAATTCTCCGCCTCAGCCTCTGAGTAGCTGGACTACAGGTGTG
CACATGCCAGCTAATTGTTGATTTCTTACAGAGATAGAGGTTCAACATGCTG
GTAATCATTGTTGTTACAAGGTCTAGCCTTATAATGCTAAAGTTCTTATAAAC
TCTTAGCAGGCATGCAGCAGCAGCCTACATACTAGTCATATTACCA
ATGTGGAGAATGAGCACTCAAAGTAGGGCCATGATGTTTGAAAACCATGCTCTG
TTCTGTTGCTTCTGGCATCTCAGCTGCTATTATTAAATCTTAGAGCTCA

AGTCAAAAGGCATATTCACTCTACATCTCCTATGACTCCTCTCTATGTACTCACCAACAC
TTTTCTGCCCTCTATTATAGCATTACTCATAGACCTTGGTTCTTGCAGAT
AGTCCAACCTACAATGGTCAACATGAGTTTTTTTACTTTTGATGGTGCTTC
AGCTGTGTATGTTAATGGTAGCCATAAAACCATTCTGTTTCACTTCAGTAAAG
TATTCAATAAATTATAATGAGCTATTAAACCTCTATTATAAAATAGGCTTGAGGAGATA
ATACTGACCAACTATAGGCTGATATCGCTTGAACATGTTAAGGTAGGCTAGGCTT
AGCTACGAAGTTCAGTAGGCTATGTGTATTGAATGTGGTTGACTTAACATATTTCCA
ATTACAATGTGTTATTGGGATGTAACCCATCAAAGTTAAGAAGCATCCATATTCAAGG
TGCTTCTCTTCTATTGAACAAAAAGTTGGAGGTAGAGAGCTAATCATCTTTAT
CCCTCTCTCTAGTACTTGTCCCTAATGTAAGGACCAAATGCAGCTATTCAAGCTCA
CTTCTAAAACCATTGACTTCAACGATTAGGAGCAAGGTGCTGCTGAAGGAAGCACAACA
TCGTCTTGTGCCAGATTCCCTTGCAAGAAATAGACACTCAATAATTACTACCTGAATG
AATCAGATAAACCATGGATTTTCAGTTAATTTTATCACAAAGGTGAAACAATTCC
AACTATCTTCAGGAATGCATAGTATTATAACTTTATGTTGAATGTTGGATC
TTATCTCAAGACTAGTCTAGGATGTGGTAGTGCAAAGTGTAGGTTAGAATTAAGAA
ACTAGGATTAGAACCATCTGCCAAGGATGAACCAAGATGCATGAGATGACTGGCACC
AAGATCTGTGAAATATAGGAGTGGCACACATGGTAGAGCATGGTCTGAGAAGACTGGTT
CTCAGATGCAAACATCAAGGTGCTAAGGAACATTGCTTGTCAAATGGGAGACAGTGCC
ATAATCTGTTATGAAAAGTGCTAACATTCCTTAAATGTTGAGCACCCAGGTTATGA
TGCTTGGGTGGGTGGAGGTGAGGGACTATAAGGAATAATTGTATTATTTGTTAA
ACAACCAGGGCTCTCAGCCTTCTCAAGGTCATAAGTTCACAGGAGTCTCATCCTT
ATGAATATTACAACCTCACTGTGATTTCAGAATCCCTCTCTATAAATCAGCACATAAT
TATGAAAATGTTTACATTCAATCCCAATGCAAGTGCAGAAATAATCTGAAAGGA
CAATTATTTATAAGTTAATGAGGGACTATCAGGAACTTTAACTTAAATTATGAAA
GACACTGAATTTGTGACTCCACATGTGGTTAACATCTAAAGAATAAAACATTAC
ACTTGTGTTTACAAATTAAACCTAAATCACAGCAAAGATTCTAATCAGACAATTCC
GATTTCAAGGTTAGAACGATTGTGAAGCAACGAGTGAATGCAAACATTACTGAGCAACT
ACTATGTATCCAGCACTTGTGAGATGCTTCACAAAATCAAATTCTATTAAATTCTCAC
AGCAAACCCATCTTAGATATTACAATTCCCATTGGATGGATGTAGAAACTGAGTGCA
GAGGACTTAAGTACTGCTAAAGCCACTGGACGTAAGTAGATATTAGCACATATGTA
CTGAAAATCAATGGATGACTGAATGAATATCTGAAAGGCAGTGAATTAGCCATGAAAGC
AGTAACACCATCATAAGCCATTCTGAACCCCTGGAATTCTGACCTGGGTGATGTA
TAAAGCATATCTATGAAATGAAAATTTTAAAAAACAGTTAGGAGATGAGGTCTTA
AAATTCTTGTCTCATTTACTAGACTATGAATCCCTGAGCTTAAACACCATTGAGTTG
CTCACAGCATGAGCTTGCAGCCAAACAGGCAAGTTCATGTCATGATTCTCTATTCT
AGCTCTCACAGAAACTTCTGAATTTTCTTTACTATGCAAATGGGAATCACAGTA
GCTCCTGCCAAGGAACTTGTAAAGATTAATGAGTTGAGTTGAGTGTGAAAGCACAGGTCTA
AATCCTACCTCTCAGTAGGTATGCCACATTAACTGAAGTGAAGTAAACACAGATCAAAG
AAGGAAGTTAAATCAGAACCTAAACTAGAAGGAGCTGAGATTCTGTAATTGGTGA
TTACTAAGGAATAGAACGCCATTGCCACCTGAACTAAATACAAAAGCAATGATCAGG
TGTCTTCAGTTGATTACATCAGACGTAACACTATCCTTGCAGTGTATTAGTCCATT
TCATACTGAGATAAAAGAACACCCAAAGACTGGTAGTTATAAGAAAAGAGGTTAATG
GCCTCACAGTTATGCATTGCCGGAGGCTAAGGAAACTTACAATCATGGCAGAAGGCG
AAGGAGAACGAAAGGCACGTCTACATGGTGGCAGGAGGGAGAGCATGTTGCAAGTGT
GGGGAACTGCCCTTATAAAATCATCAGATCTGTGCCACTCACTCACTATCACAAGAAT
AGCATGGGAAACCATCCCCATGATTCAATTATCTCATCTGTTCTCCCTGACATG
TGGGGATTATGGGATTATGGGATTGCAATTCAAGATGAGATTGGTGGGACACAAT
GCATAACTATATTAGCAAGTAAGACACTCAGTAGTGAAGTGGATCTCTCAGCACAGCAGGG
CCTACACAGCATATATGCTTAGGAGCAGTGTAGTGTCTCCTTAAGTCTAGTGGGGCATAA
AGGAAAACAATCCATAATAATTCCATTGCTTCAAGAAAAAAATTAGCACAGCAAAC
ACAAGGAACACACATTCTCTTAACAAGAGTAATGCAGTGGAAAATGCACATTGTT
ATCCGACGCTAAAGTTACCTATGGCTTCCACTGTCAACTGGATTTCCTATTGATT
GCATTGAAATGACATGCCATTGAGGGAAATAACTTGTATAATGAGGGTGGGTTAGGA
TATCCACAAAGACGGACAACCTGCGTAGGATGAAAGCAGAGGTGGCAGGGCAGG
GGAAAAACAACGAAAGTGTCCCAGTGTGAGATTCTTAAATATTGATGTGTG
CCCTCATAGACACACACAATGATAAAACAACATATGGTTTATGAAATGCTTGCTGG
AAACAGAGTAAGTGAAGGCAGCTAGATACTTACAATCATGAGTCATAAACAGTGGCAA

AAGTCTCTAAAAGAAAAGCTTAGCAGAAAAACATCCAATAAGCAAAATAGTGTAGAAA
ATTCTGGATAAATAGTATCAGAAAAGTTAGTACTTGGAGATAATTTGAAAACCTTTA
ATGAGTACACTGATTATACAGATAATTAAATAAGACAATATTGCCAATACTATCTGTG
AGGCTCTCCAGATTACTGATGGTTATCTTAGAGCCTTATAGGAAGACAGCAGAGCAATT
AATAGAAAATATCTGGTCTGTGCAGAGTTGCAAGCAATTCAAATAACAGTAGCT
ATCATTATTGAGGGTGTAGATACTCTTCATTACCTAACACAAAATTGCAA
GTGCTTATAATTAGAGCCATTTACAAAGAGAAAATAGAGAATCAGGGTCTGTAAG
TGACTTCTCCAAGGCCACTGCTACTGATTTAGGATTGAGTTAGAATTATTACAAGT
TAGTTGACTCTCAAGTCATGCTCTTCCATTGCAACGTCCTCTTGTCTAT
TTCTATTAAATTATGCCAACAACTTTAATATTGATAAAACTTTCACTTGGTAAA
GGTACCAAATATACCACATGGTCAGGAAACTCAATGAAGCTAACCATCTTCAATAATA
GAAACTATTATAACAATAATGTAATATTAAAGAACACAAGTTATTATAATGTCTA
TTATCTACTGATGTCACCAGTACCTCTTAATTACAGAGATGTAGTTACAGATATCTGA
AGACTGACTGATCTGACTCATCACTGGTGTGGCAACAGCTTTGGCAAATTCTAAC
CAAGTATCAAATAGGCAGACAGAGAAAATTGCAAGCAACTCAGTTCTAAAATATGTCAT
ATGTTAATGCTCTGAAATAATTCTACATTGAAATCATTGAAATTCAAACATT
GTGCTCCTGTTAGCATGCACTGGCATGACAAAGAAACAGCAATAATGATAAAATT
TTTAAAGAACCTATTCTGACTTAAGAGAACTCAGAACGAATGAAAACATACTGATATAA
AACATTATTCTCATTATTCTCAGTTCTTATGCTAGTTATTACCTGTAATAATTG
CAAATTAGAGTCAAATGTTAGATTAGAGGAAATGTATGGAGAAAATAATAGAAT
TGGTATTAGATCCTGGAAATGGGTGGTAACTGTCCACAGTTGTAACATCTAACCAATT
TAGAGTCGTAAAATCACATATTCAAACGTATCATTGAACTAATTAGTATCAAG
ATGTTACTGCACTCAATATTAAACTGTTTTGTTGTTGTTGTTTTGTTTT
TTTTAAAGCAGGGTCTTCACTCTGTTGACCAGGCTGGAGTGCAGTGGTGCAGTCACAGC
CCATGGTAGCCTGAACTACCCGGGCTCAAGTGTACCTCCCACCTCAGCCTCTGAGTAG
CTGGAACACTACAGGTATATGCTCACGCGTGGCTAACCTTTGTATTGTTGAGAGACAGG
TTCTCACCATGTTGCCAGGCTGGTCTCACTCTGGCTCAAGCGATCTGCCTACCTC
GGCCTCCAAAGTGTGGGATCACAGCAGTGCAGGCTGTGAGTCTAAAACACTTT
TAAAAGAGGAGTGGATTGAATTAGCATGTTGATCTAAAATGATTACTTTGGAGA
ACAATATATTAAATTATAATTAAACTATTAAATTGGAACACCCCCAATAATTGTT
CATATTAAATCAAAACACAAGTTGAAAACAGGTTCCCTCTGCCATTATGCTCTG
GATTTCTTGGTGAACACACTATCATTCTAGAAAGTCAGTTCTCTGGAATAAGAAA
AAGAACAGATCTTACTTATATTGTTATCTCATAAAATCACCTCTCGTTAATGTCAGT
CAGGGCTGATCATTCTTAATTAGTGAATTGTTATGCTATGAACTTGAATAAAAT
ATACATTGCTTAAATTCAAGTATGTTTTCTGTTTGTGTTTTGTTTTAATT
TTATGATTATTAACTTAAAGTTAGAGTACATATGCAAAATGTGAGGTTGTTACAT
ATGTATACATGTGCATGTTGGTGTGCTGCACCCATTAACCTGTCATTAAACATTAGGTA
TATCTCTAATGCTATCCCTCCCCCTCCCCACACAAAGTCCTCAGTGTGAT
GTTCCCTCTGTCATGTTCTCATGTTCAATTCCACCTATGAGTGAGAACAT
GCGGTGTTGGTTTTGTCCTTGTGATAGTTGCTGAGAATGATGGTTCCAGCTTCAT
CCATGTCCTACAAAGGACACGAACCTCATTTTATGGCTGCATAGTATTCCATGGT
GTATATGTGCCACATTCTTAATCCAGTCTATGTTGGACATTAGGTTGGTCCA
AGTCTTGCTATTGTAATAGTGTGCTATAACATACATGTGTTGTGTTTATAGCA
GCATGATTATAATCCTTGGTATATACCCAGTAATGGGATGGCTGGGCAAATGGTAT
TTCTAGTTCTAGATCCCTGAGGAATCACCACACTGACTTCCACAATGGTGAACAGTTC
ACAGTCCACCAACAGTGTAAAAGTGTCTTATTCCTCCACATTCTCTCAGCACCTGTT
GTTCTGACTTTTAATGATTGCCATTCTAACTGGTGTGAGATGGTATCTCATTGTT
TTGATTGCAATTCTCTGATGGCCAGTGTGAGTATTGTTCATGTTGTTTTGGC
TGCATAAAATGCCTCTTTGAGAAGTGTCTGTTCATATCCTCACCCACTTTGATGGG
GTTCTTGTGTTCTGTAATTGTTGAGTTGAGTTGATTGAGATTCTGGATATTAGCCC
TTTGTCAAATGAGTAGGTTGCAAAAATTCTCCATTCTGTAAGTGCCTGTTACTCT
GATGGTAGTTCTTGTGCTGCAGAAGCTTTAGTTAATTAGTCCATTGTCAAT
TTGGCTTGTGCTTGGCATTGCTTTGGTGTGTTAGACATGAAGTCCTGCCATGCCTAT
GTCCTGAATGGTATTGCCGGTTCTCTAGGGATTATGGTTTAGGTCTAACATT
TAAGTCTTAATCCATCTGAAATTAAATTGTTGATAAGGTGAAGGAAGGGATCCAGTT
CAGCTTCTACATAGGGCTAGCCAGTTCTCAGCACCATTATTAAATAGGAATCCTT
CCCCCATGCTGTTCTCAGGTTGTCAGGATGTCAGAATGAGTGTAGATATGCGGCAT

TATTTCTGAGGGCTCTGTTCTGTTCCATTGGTTGATATCTCTGTTTGGTACCA
TGTTGTTTGGTTACTGTAGCCTTGTAGTGTAGTTGAAGTCAGGTAGCATGATGCCTCC
AGCTTTGTTCTTTGGCTTAGGATTGACTGGCGATGTGGGCTCTTTTGGTTCCACAT
GAACTTAAAGTAGTTTTCCAATTCTGTGAAGAAAGTAA