The box contains a linear circu	ntains a linear circuit	
---------------------------------	-------------------------	--

When $R = R_1$, we measure $i = I_1$.

When $R = R_2$, we measure $i = I_2$.

What value of $R = R_3$ results in $i = I_3$?

What is the maximum value of $i = i_{max}$ that can be achieved (assuming of $R \ge 0$)?

$$R1 = 5 ohm$$

R2 = 8 ohm

11 = 4 A

12 = 3 A

13 = 2 A

$$(1) \quad 4 = \frac{\sqrt{TH}}{P_{TH} + 5} \implies 4 P_{TH} + 20 = V_{TH}$$

$$(1)^{-(2)}$$
 => $f_{TH} = 4.5c$
 $V_{TH} = 36 V$

(a)
$$I_3 = 2 = \frac{\sqrt{1+}}{R_{1+} + R} = \frac{36}{4+R} \implies R + R_{7+} = 18 \implies \boxed{R = 14.2}$$

$$C_{MAX} \quad \text{WHEN} \quad R=0 \implies C_{MAX} = \frac{V_{TH}}{A_{TH}} = \frac{36}{4} = 9$$

$$C_{MAX} = 9 \text{ A}$$