Dropout as a Structured Shrinkage Prior

Eric Nalisnick, Jose Miguel Hernandez-Lobato, Padhraic Smyth

Dropout: [Hinton et al '12]

Train: randomly set weights to 0

Test:

- use all weights to predict

Dropout: [Gal & Ghahramani '16]

Train: randomly set weights to 0

Test:

- randomly set weights to 0
- use weights to predict
- average predictions

Dropout: [Gal & Ghahramani '16]

Marginalizing

Train: randomly set weights to 0

Test:

- randomly set weights to 0

- use weights to predict

average predictions

Dropout: [This paper]

Multiplying bernoulli noise

Train: randomly set weights to 0

Test:

Marginalizing

- randomly set weights to 0
- use weights to predict
- average predictions

Regression: Maximum Likelihood

 $y|w \sim N(f(w, x), s)$

Regression: Maximum a Posteriori

Regression: Full Bayesian

I heard you like priors ...

 $e \sim Exp(\alpha)$

 $w \sim N(0, es_0)$

 $y|w \sim N(f(w, x), s)$

 $w|y \sim N(w_{map}, s_n)$

I heard you like priors ...

multiplicative noise $e \sim Exp(\alpha)$

Gaussian Scale Mixture, 'shrinkage prior'

Laplace distribution / L1 Reg.

$$w \sim N(0, s_0) Exp(\alpha)$$

$$y|w \sim N(f(w, x), s)$$

$$w|y \sim N(w_{map}, s_n)$$

Dropout == GSM

Let's assume a Gaussian prior on the NN weights...

$$f_l(\mathbf{h}_{n,l-1} \mathbf{\Lambda}_l \mathbf{W}_l)$$

SWITCH TO HIERARCHICAL PARAMETRIZATION

Gaussian Scale Mixture

$$f_l(\mathbf{h}_{n,l-1}\mathbf{W}_l)$$

$$w_{i,j} \sim N(0, \lambda_{i,i}^2 \sigma_0^2)$$

A Generalization of Dropout

Noise Model	Variance Prior	Marginal Prior		
$p(\xi)$	$p(\xi^2)$	p(w)		
Bernoulli	Bernoulli	Spike-and-Slab		
Gaussian	χ^2	Gen. Hyperbolic		
Rayleigh	Exponential	Laplace		
Inverse Nakagami	Γ^{-1}	Student-t		
Half-Cauchy	Unnamed	Horseshoe		

Table 1. Noise Models and their Corresponding GSM Prior.

Automatic Relevance Determination

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

Automatic Relevance Determination

	-0.25	0.1	0 0.50	0.00	0.00	1.00	0.7	5 0.10	0.20	0.50	1.00	0.30	0.1
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

ResNet

ResNet: Automatic Depth Determination

Figure 2. Posterior Structure.

Boston	$2.80 \pm .13$	$2.795 \pm .16$	$2.38 \pm .12$	$\textbf{2.158} \pm .20$	$2.343 \pm .31$	$2.367 \pm .18$
Concrete	$4.50 \pm .18$	$5.241 \pm .12$	$4.64 \pm .11$	$3.805 \pm .28$	$4.084 \pm .34$	$3.761 \pm .23$
Energy	$0.47 \pm .01$	$0.903 \pm .05$	$0.57 \pm .02$	$0.852 \pm .01$	$0.867 \pm .11$	$0.853 \pm .08$
Kin8nm	$0.08 \pm .00$	$0.071 \pm .00$	$0.05 \pm .00$	$0.066 \pm .01$	$0.064 \pm .00$	$0.064 \pm .00$

 $3.60 \pm .03$

 $0.50 \pm .01$

 $0.98 \pm .09$

 3.1 ± 1.8

Deep GP

ARD

 $3.486 \pm .10$

 $0.561 \pm .03$

 $0.691 \pm .12$

 3.0 ± 1.1

ARD-ADD

 $3.236 \pm .07$

 $0.538 \pm .03$

 $0.604 \pm .16$

 2.0 ± 1.1

ADD

 $3.290 \pm .06$

 $0.555 \pm .01$

 $0.657 \pm .14$

 2.9 ± 10

Test Set RMSE

COLICIECE	4.00 ±.16	9.241 ±.12	4.04 T.11	3.000 ±.20	ं
Energy	$0.47 \pm .01$	$0.903 \pm .05$	$0.57 \pm .02$	$0.852 \pm .01$	(
Kin8nm	$0.08 \pm .00$	$0.071 \pm .00$	$0.05 \pm .00$	$0.066 \pm .01$	(

 $4.028 \pm .03$

 $0.643 \pm .01$

 $0.848 \pm .05$

 5.6 ± 0.5

Prob. Backprop

Dropout

 $3.63 \pm .04$

 $0.60 \pm .01$

 $0.66 \pm .06$

 4.4 ± 1.7

Power

Yacht

Avg. Rank

Wine