Thesis

Ayden Lamparski

September 3, 2025

Chapter 1

Special Elements in Semigroups

1.1 Local identities in semigroups

Throughout, let S be a semigroup with associative multiplication, written multiplicatively.

Definition 1 (Left/right/two-sided identities). Let $e \in S$.

- e is a left identity if for all $s \in S$, es = s.
- e is a right identity if for all $s \in S$, se = s.
- e is an identity (two-sided) if it is both a left and a right identity; equivalently, for all $s \in S$, es = s = se.

Lemma 2 (Idempotence of one-sided identities). Let $e \in S$.

- If e is a left identity, then ee = e.
- If e is a right identity, then ee = e.

Proof. For a left identity, apply the defining property to s := e to get ee = e. For a right identity, apply the defining property to s := e to get ee = e.

Lemma 3 (Simplification lemma). Let $s \in S$ and let $e, f \in S$ be idempotents. If s = esf, then es = s = sf.

Proof. Assume s = esf. Then

$$es = e(esf) = (ee)sf = esf = s,$$

using associativity and $e^2 = e$. Similarly,

$$sf \ = \ (esf)f \ = \ es(ff) \ = \ esf \ = \ s,$$

using associativity and $f^2 = f$.

1.2 Zero elements and null semigroups

Throughout, let S be a semigroup with associative multiplication, written multiplicatively.

Definition 4 (Left/right/two-sided zeros). Let $e \in S$.

- e is a left zero if for all $s \in S$, es = e.
- e is a right zero if for all $s \in S$, se = e.
- e is a zero (two-sided) if it is both a left and a right zero; equivalently, for all $s \in S$, es = e = se.

Lemma 5 (Idempotence of one-sided zeros). Let $e \in S$.

- If e is a left zero, then ee = e.
- If e is a right zero, then ee = e.

Proof. For a left zero, apply the defining property to s := e to get ee = e. For a right zero, apply the defining property to s := e to get ee = e.

Lemma 6 (Uniqueness of zero (at most one zero element)). A semigroup has at most one zero element.

Proof. Suppose $e, e' \in S$ are both zeros. Then e = ee' since e' is a right zero, and ee' = e' since e is a left zero. Hence e = e'.

Definition 7 (Null semigroup). A semigroup S is null if it has a zero element 0_S and for all $x, y \in S$ one has $xy = 0_S$.

1.3 Cancellativity

Throughout, let S be a semigroup with associative multiplication.

Definition 8 (Right/left/two-sided cancellative element). Let $s \in S$.

- s is right cancellative if for all $x, y \in S$, $xs = ys \implies x = y$.
- s is left cancellative if for all $x, y \in S$, $sx = sy \implies x = y$.
- s is cancellative (two-sided) if it is both left and right cancellative.

Definition 9 (Right/left/two-sided cancellative semigroup). A semigroup S is

- $right\ cancellative\ if\ every\ s\in S$ is right cancellative,
- left cancellative if every $s \in S$ is left cancellative,
- cancellative (two-sided) if every $s \in S$ is cancellative.

1.4 Inverses

Terminology note. The term "inverse" has two distinct usages. In group theory (and, more generally, in monoids), an inverse is defined using a distinguished identity element 1. This notion does not make sense in a bare semigroup that lacks a specified unit. Semigroup theory also uses a different, intrinsic notion of inverse that does not require a unit and is formulated purely in terms of the multiplication.

These notions behave differently:

- In an *infinite* monoid, an element may have several right group inverses and several left group inverses.
- In a *finite* monoid, each element has *at most one* right group inverse and *at most one* left group inverse; if both exist, they coincide (hence give a two-sided group inverse).
- In a semigroup (finite or infinite), an element may have several semigroup inverses, or none at all.

Definition 10 (Semigroup inverse). Let S be a semigroup and $x \in S$. An element $x' \in S$ is a semigroup inverse of x if

$$xx'x = x$$
 and $x'xx' = x'$.

Definition 11 (Group inverse (monoid setting)). Let M be a monoid with identity 1 and let $x \in M$.

- A right group inverse of x is an element $x' \in M$ with xx' = 1.
- A left group inverse of x is an element $x' \in M$ with x'x = 1.
- A group inverse of x is an element $x' \in M$ that is both a right and a left group inverse, i.e. xx' = x'x = 1.

Lemma 12 (Group inverse \Rightarrow semigroup inverse). Let M be a monoid and $x, x' \in M$. If x' is a group inverse of x (so xx' = x'x = 1), then x' is a semigroup inverse of x in the underlying semigroup:

$$xx'x = x$$
 and $x'xx' = x'$.

Proof. Compute $xx'x = (xx')x = 1 \cdot x = x$ and $x'xx' = x'(xx') = x' \cdot 1 = x'$, using associativity and the unit laws.