Problem 1. Let x and y be two strings of length n and m, respectively. Suppose that x[n] = y[m]. Prove: the following are true for any LCS z of x and y.

- Let k be the length of z. It holds that z[k] = x[n] = y[m].
- z[1:k-1] is an LCS of x[1:n-1] and y[1:m-1].

Proof.

- Suppose $z[k] \neq x[n]$ (i.e. $z[k] \neq y[m]$), then we can always construct a longer LCS by concatenating z with x[n], which is longer than z, a contradiction.
- Suppose z[1:k-1] is not an LCS of x[1:n-1] and y[1:m-1], we can identify an LCS z' of x[1:n-1] and y[1:m-1] with length k longer than z[1:k-1]. Thus, by concatenating z' with x[n] and y[m], we have obtained a longer LCS with length k+1, which is a contradiction.

Problem 2. Let x be a string of length n, and y a string of length m. Define opt(i,j) to be the length of an LCS of x[1:i] and y[1:j] for $i \in [0,n]$ and $j \in [0,m]$. Explain an algorithm that can output an LCS of x and y in O(nm) time.

Solution. Recall that

$$f(i,j) = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0, \\ 1 + f(i-1,j-1), & \text{if } i,j > 0 \text{ and } x[i] = y[j], \\ \max\{f(i,j-1), f(i-1,j)\}, & \text{otherwise.} \end{cases}$$

By computing all the f(i,j) $(1 \le i \le n, 1 \le j \le m)$ in row-major order, we can achieve an O(nm) time complexity.

We can apply the piggyback technique by defining

$$best(i,j) = \begin{cases} \text{nil}, & \text{if } i = 0 \text{ or } j = 0, \\ (i-1,j-1), & \text{if } i,j > 0 \text{ and } x[i] = y[j], \\ \arg\max\{f(i,j-1), f(i-1,j)\}, & \text{otherwise.} \end{cases}$$

By referring to the table storing all the f(i,j)'s, we can compute best(i,j) in O(nm) time. We are ready to construct the LCS z of x and y. First, set z to the empty string if either x or y is an empty string. Second, if x[n] = y[m], we recursively obtain an LCS z' of x[1:n-1] and y[1:m-1] and set z as the concatenation of z' and x[n]. Otherwise, we recursively obtain z' by computing the LCS of x[1:n-1] and y[1:m] if best(i,j) = (i-1,j), or the LCS of x[1:n] and y[1:m-1], and then set z=z'.

Problem 3. (Matrix-Chain Multiplication) The goal in this problem to calculate $A_1A_2...A_n$ where A_i is an $a_i \times b_i$ matrix for $i \in [1, n]$. This implies that $b_{i-1} = a_i$ for $i \in [2, n]$, and the final result is an $a_1 \times b_n$ matrix. In O(abc) time, we can compute the matrix product AB using algorithm A, where A is an $a \times b$ matrix and B is a $b \times c$ matrix. To calculate $A_1A_2...A_n$, you can apply parenthesization, namely, convert the expression to $(A_1A_2...A_i)(A_{i+1}...A_n)$ for some $i \in [1, n-1]$, and then parenthesize each of $A_1...A_i$ and $A_{i+1}...A_n$ recursively. A fully parenthesized product is

- either a single matrix, or
- the product of two fully parenthesized products.

For example, if n = 4, then $(A_1A_2)(A_3A_4)$ and $((A_1A_2)A_3)A_4$ are fully parenthesized, but $A_1(A_2A_3A_4)$ is not. Each fully parenthesized product has a computation cost under A; e.g., given $(A_1A_2)(A_3A_4)$, the algorithm first calculate $B = A_1A_2$ and $B_2 = A_3A_4$, and then calculate B_1B_2 . The cost of the fully parenthesized product is the total cost of the three pairwise matrix multiplications. Design an algorithm to find in $O(n^3)$ time a fully parenthesized product with the smallest cost.

Solution. Let f(i,j) be the smallest cost of computing a fully parenthesized product of $A_i A_{i+1} \dots A_j$. Then, for every $i \leq j$,

$$f(i,j) = \begin{cases} 0, & \text{if } i = j, \\ \min_{k=i}^{j-1} (a_i b_k b_j + f(i,k) + f(k+1,j)), & \text{otherwise.} \end{cases}$$

Key observation: $\mathbf{B}_1 = \mathbf{A}_i \dots \mathbf{A}_k$ is an $a_i \times b_k$ matrix and $\mathbf{B}_1 = \mathbf{A}_{k+1} \dots \mathbf{A}_j$ is an $a_{k+1} \times b_j$ matrix. Hence, the computational cost of calculating $\mathbf{B}_1 \mathbf{B}_2$ is $O(a_i b_k b_j)$. We can let $k = i, i+1, \dots, j-1$ to determine the best way of computing the product.

Using dynamic programming, we can compute f(1,n) in $O(n^3)$ time. Namely, in round i we compute all f(a, a + i) where $1 \le a \le n - i$, in $O(n^2)$ time per round.

To use the the piggyback technique, we can define bestSub(i,j) to store k that minimizes $a_ib_kb_j+f(i,k)+f(k+1,j)$, in $O(n^3)$ time. Afterwards, we can generate an optimal parenthesization in $O(n^2)$ extra time. (Consider $g(i,j)=O(1)+\max_{k=i}^{j-1}g(i,k)+g(k+1,j)$.)

Problem 4. (Longest Increasing Subsequence) Let A be a sequence of n distinct integers. A sequence B of integers is a subsequence of A if it satisfies one of the following conditions:

- A = B, or
- we can convert A to B by repeatedly deleting integers.

The subsequence B is ascending if its integers are arranged in ascending order. Design an algorithm to find an ascending subsequence of A with the maximum length. Your algorithm should run in $O(n^2)$ time. For example, if A=(10,5,20,17,3,30,25,40,50,60,24,55,70,58,80,44), then a longest ascending sequence is (10,20,30,40,50,60,70,80).

Solution. Define f(i) as the length of the longest possible ascending subsequence of A[1:i] that ends with the element A[i]. Furthermore, let S(i) be a set of index satisfying $\{k: k < i \text{ and } A[k] < A[i]\}$.

$$f(i) = \max\{1, 1 + \max_{k \in S(i)} f(k)\}.$$

Observation: When f(i) = 1, it must be that $S(i) = \emptyset$ since all $f(k) \ge 1$; Otherwise, there is some ascending subsequence ending with A[j] that has A[i] < A[j] and forms a longer ascending subsequence ending with A[i].

Using dynamic programming, we can compute f(i) for all $i \in [1, n]$ in $O(n^2)$ time. The maximum length of ascending subsequence of A is thus the maximum length between all longest asending subsequence that ends with $A[1], A[2], \ldots, A[n]$.

By the piggyback technique, we can produce a longest as ending subsequence of A in $\mathcal{O}(n^2)$ extra time.

Problem 5. Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be positive or negative. Given i, j satisfying $1 \le i \le j \le n$, define subarray A[i:j] as the sequence $(A[i], A[i+1], \ldots, A[j])$, and the weight of A[i:j] as $A[i] + A[i+1] + \ldots + A[j]$. For example, consider A = (13, -3, -25, 20, -3, -6, -23, 18); A[1:4] has weight 5, while A[2:4] has weight A[3:4] has weight A[4:4] has w

Solution. Define f(i) to be the weight of the largest subarray that ends at i. Then,

$$f(i) = \begin{cases} A[1], & \text{if } i = 1, \\ \max\{A[i], f(i-1) + A[i]\}, & \text{otherwise.} \end{cases}$$

Proof of correctness: It is obviously true for i=1. Assume that $f(i-1) \leq 0$, then the weight of A[t:i-1] for any $t \leq i-1$ cannot exceed f(i-1). Hence, the weight of A[t:i] is at most A[i:i]. Thus, f(i) is exactly A[i] as we can take A[k:k] as the subarray. Next, assume that f(k-1) > 0 by taking A[t:k-1] as the subarray. Then, suppose that A[t':k] obtains a larger weight than A[t:k], it must be that A[t':k-1] has a larger weight than A[t:k-1] by subtracting A[k] from both subarrays. This is a contradiction.

Using dynamic programming, we can obtain f(i) for all $i \in [1, n]$ in O(n) time. The maximum weight of all subarrays of A is then the maximum weight of all subarrays ending at i = 1, 2, ..., n, which is

$$\max_{i=1}^{n} f(i),$$

and obtainable in an extra O(n) time.

Using the piggyback technique, we can obtain the subarray that sums up to the optimal weight in O(n) time.

Problem 6. Let x be a string of length n, and y a string of length m. Define opt(i,j) to be the length of an LCS of x[1:i] and y[1:j] for $i \in [0,n]$ and $j \in [0,m]$. Compute the values of all possible (i,j) for x = 10010101 and y = 010110110.

Solution.

opt(i,j)	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1
2	0	1	1	2	2	2	2	2	2	2
3	0	1	2	2	2	2	3	3	3	3
4	0	1	2	2	3	3	3	4	4	4
5	0	1	2	3	3	3	4	4	4	5
6	0	1	2	3	4	4	4	5	5	5
7	0	1	2	3	4	4	5	5	5	6
8	0	1	2	3	4	5	5	6	6	6

Problem 7. Find an LCS of x and y, where x = 10010101 and y = 010110110.

Solution. We first compute best(i, j) to identify the decision process happened for the computation of LCS for every substring x[1:i] and y[1:j].

best(i,j)	0	1	2	3	4	5	6	7	8	9
0	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
1	nil	(1,0)	(0,1)	(1,2)	(0,3)	(0,4)	(1,5)	(0,6)	(0,7)	(1,8)
2	nil	(1,0)	(2,1)	(1,2)	(2,3)	(2,4)	(1,5)	(2,6)	(2,7)	(1,8)
3	nil	(2,0)	(3,1)	(2,2)	(3,3)	(3,4)	(2,5)	(3,6)	(3,7)	(2,8)
4	nil	(3,1)	(3,1)	(4,2)	(3,3)	(3,4)	(4,5)	(3,6)	(3,7)	(4,8)
5	nil	(4,0)	(4,2)	(4,2)	(5,3)	(5,4)	(4,5)	(5,6)	(5,7)	(4,8)
6	nil	(5,1)	(5,1)	(5,3)	(5,3)	(5,4)	(6,5)	(5,6)	(5,7)	(6,8)
7	nil	(6,0)	(6,2)	(6,2)	(6,4)	(7,4)	(6,5)	(7,6)	(7,7)	(6,8)
8	nil	(7,1)	(7,1)	(7,3)	(7,3)	(7,4)	(8,5)	(7,6)	(7,7)	(8,8)

The LCS of x and y is thus 001011 $((2,0) \longrightarrow (3,1) \longrightarrow (4,2) \longrightarrow (5,4) \longrightarrow (6,5) \longrightarrow (8,8))$, each pair denotes that x[i] = y[j] is matched to construct the optimal LCS, and the path that reaches f(8,9) is shown in blue.

Problem 8. Given a string s of length n, stored in an array of characters, we call s[i:j] a substring of s, for all pairs of i, j satisfying $1 \le i \le j \le n$. Let x be a string of length n, and y a string of length m. Design an algorithm to find a longest common substring of x and y in O(nm) time

Solution. Define f(i, j) to be the longest common substring of x and y that ends at i and j, respectively. Then,

$$f(i,j) = \begin{cases} 0, & \text{if } i = 0 \text{ or } j = 0, \\ 0, & \text{if } i, j > 0 \text{ and } A[i] \neq B[j], \\ 1 + f(i-1, j-1), & \text{if } i, j > 0 \text{ and } A[i] = B[j]. \end{cases}$$

Proof of correctness: It is obviously true for i=0 or j=0 as x[1:0] and y[1:0] is empty. Now consider an optimal substring by the match of $x[t_1:i]$ and $y[t_2:j]$ that is overlooked by our algorithm. Apparently, when $x[i] \neq y[j]$, no common substring with ending with x at i and y at j exists as it would violate the definition of common substring, then it must be that such $x[t_1:i]$ and $y[t_2:j]$ does not exist. Otherwise, assume that x[i]=y[j]. It must be that $x[t_1:i-1]$ and $y[t_2:j-1]$ forms a better solution for f(i-1,j-1) that should have been considered by f(i-1,j-1), which is a contradiction.

Problem 9. Let M be an $n \times n$ matrix where each cell M[i,j] stores a distinct integer, for all $i \in [1,n]$ and $j \in [1,n]$. Define a path of length $\ell \geq 1$ to be a sequence of ℓ cells $M[i_1,j_1], M[i_2,j_2], \ldots, M[i_\ell,j_\ell]$ satisfying both conditions below:

- for each $k \in [2, n]$, $M[i_{k-1}, j_{k-1}]$ and $M[i_k, j_k]$ are neighboring cells (this means the former cell is above, below, to the left of, or to the right of the latter cell);
- for each $k \in [2, n]$, $M[i_{k-1}, j_{k-1}] < M[i_k, j_k]$.

Design an algorithm that finds a path of the maximum length in $O(n^2 \log n)$ time.

(Hint 1: Find the length of longest paths starting from each cell.)

(Hint 2: To choose a topological order, sort all the cells.)

Solution. Define f(i,j) to be the longest path that ends at cell (i,j). Furthermore, denote S(i,j) to be the set of legal neighbours for cell (i,j) so that any $(i',j') \in S$ satisfies |i-i'|+|j-j'|=1 and M[i',j'] < M[i,j]. Then,

$$f(i,j) = \begin{cases} 0, & \text{if } S(i,j) = \emptyset, \\ 1 + \max_{(i',j') \in S(i,j)} \{ f(i',j') \}, & \text{otherwise.} \end{cases}$$

Proof of correctness: It is apparently true for $S(i, j) = \emptyset$, as no edge flows into cell (i, j) forming a path longer than 1 while being constrained to end at (i, j). Now, assume that there is a path of

Obtain a list of cells with their coordinates and sort the list in ascending order in $O(n^2 \log n^2) = O(n^2 \log n)$ time. Then, when we calculate f(i,j), all the possible subproblems f(i',j')'s must have been solved since any $(i',j') \in S$ must have M[i',j'] < M[i,j].

Therefore, the longest path is the maximum amongst the longest paths ending with all (i, j)'s, computable in $O(n^2)$ time, which is

$$\max_{i=1}^{n} \max_{j=1}^{n} f(i,j).$$

Using the piggyback technique, we can obtain the longest path with an extra $O(n^2)$ time.

Problem 10. Improve the running time of the solution derived in Problem 9 to $O(n^2)$. (Hint: What is the dependency graph among the cells?)

Solution. We only need to consider a better way for the calculation of f(i,j).

The dependency graph among the cells must form a DAG. Consider each cell as a vertex and every edge $\{(i,j),(i',j')\}$ indicates that we can walk from (i,j) to (i',j') as they are neighbours and M[i,j] < M[i',j']. The graph has n^2 vertices, and at most 4n edges since each vertex has at most 4 neighbours, and thus bounding the size of S(i,j).

We can then build a DAG G and compute its topological order in O(|V| + |E|) time. Then, we can compute all f(i, j)'s in O(|V| + |E|) time as we have resolved all the dependencies.