编译原理第6次作业

Exercise 6.1

o Consider the grammar

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

- We have the following operator-precedence relations for the grammar.
 - Show the detailed process of the parsing of the sentence (a, (a, a)), follow the style in the previous slides.

	а	()	,	\$
а			7	λ	Υ
(λ	人	≡	Υ	
)			>	Υ	7
,	Y	Y	>	Y	
\$	Y	Y			

解:

Step	Stack	Input	Reference	Action	Output
1	\$	(a,(a,a))\$	\$ <(shift	
2	\$(a,(a,a))\$	$(\prec a$	shift	
3	\$(a	,(a,a))\$	$a \succ$,	reduce	S ightarrow a , $L ightarrow S$
4	\$(L	,(a,a))\$	(≺,	shift	
5	\$(L,	(a,a)	, ≺(shift	
6	\$(L,((a,a)	$(\prec a$	shift	
7	L, (a)	,a))\$	$a \succ$,	reduce	S ightarrow a , $L ightarrow S$
8	\$(L,(L	,a))\$	(≺,	shift	
9	\$(L,(L,	a))\$	$, \prec a$	shift	
10	L, (L, a)))\$	$a\succ)$	reduce	S o a
11	(L,(L,S))))\$,≻)	reduce	L o L, S
12	\$(L,(L))\$	(≡)	shift	
13	\$(L,(L))\$)≻)	reduce	S o (L)
14	\$(L,S)\$,≻)	reduce	L o L, S
15	\$(L)\$	(≡)	shift	
16	\$(L)	\$)≻ \$	reduce	S o (L)
17	\$S	\$		accept	

LR用句柄: 最左直接短语, 两层子树

OPP用Left-most prime phrase最左素短语:必须有终极符,可能不止两层。实践上算法和非终结符号是没有关系的,需要哪个就直接归约到哪一个,L、S在opp中是一样的。<mark>a归约的结果其实不能确定,也无关紧要,需要reduce的时候就执行相应的操作,并把对应的终结符转换为相应的非终结符进行归约。</mark>