Kapitel L:V

V. Erweiterungen und Anwendungen zur Logik

- Produktionsregelsysteme
- □ Inferenz für Produktionsregelsysteme
- □ Produktionsregelsysteme mit Negation
- □ Regeln mit Konfidenzen
- □ Nicht-monotones Schließen
- Logik und abstrakte Algebren
- Verifikation
- Verifikation mit dem Hoare-Kalkül
- □ Hoare-Regeln und partielle Korrektheit
- Terminierung

L:V-1 Logics Extensions 1996-2015

Vergleich von Deduktions- und Produktionsregelsystem

Deduktionssysteme:

- Verwendung von Resolution bzw. einem anderen vollständigen Inferenzverfahren, um Sätze in Prädikatenlogik erster Stufe (PL1) zu beweisen.
- Beantwortung einer Anfrage geschieht durch Variableninstantiierung beim Beweis eines Satzes.
- Formeln müssen keine spezielle Form haben.

L:V-2 Logics Extensions 1996-2015

Vergleich von Deduktions- und Produktionsregelsystem

Produktionsregelsysteme:

- Zentrale Repräsentationsform ist die Implikation (Regelform) d. h. die Formeln in der Datenbasis haben eine spezielle Form.
- Die rechte Seite einer Regel wird als Aktion interpretiert. Typische Aktionen sind die Hinzunahme und das Löschen von Fakten in einer Datenbasis sowie Ein- und Ausgabeoperationen.
- Wichtigster Schlussfolgerungsmechanismus ist die Vorwärtsverkettung.
 Stichwort: Produktion.
- Die Semantik der Regeln ist am Anwendungsbereich (Domäne) orientiert.
- Es gibt einen Konfliktauflösungsmechanismus, falls mehrere Aktionen zur Auswahl stehen.

L:V-3 Logics Extensions 1996-2015

Definition 1 (Produktionsregelsystem)

Sei Σ_P eine endliche Menge von Atomen, gebildet aus einer endlichen Menge von Objekten O_P , den Vergleichsoperatoren $\{=,\neq\}$ und einer endlichen Menge von Werten V_P .

- 1. Ein Atom in Σ_P hat die Form o = v bzw. $o \neq v$ und wird interpretiert als "o ist gleich v" bzw. "o ist ungleich v".
- 2. P = (D, R) ist ein Produktionsregelsystem; $D \subseteq \Sigma_P$ definiert die Datenbasis, R definiert eine endliche Menge von Regeln. Die Atome in D werden als Fakten bezeichnet.
- 3. Eine Regel $r \in R$ hat die Form "IF α THEN κ ". α ist eine Formel, zusammengesetzt aus Atomen aus Σ_P und den Junktoren \wedge und \vee . κ ist ein Atom aus Σ_P .
 - α wird als Bedingung oder Prämisse und κ als Konklusion der Regel bezeichnet.

L:V-4 Logics Extensions 1996-2015

Bemerkungen:

☐ Eine Konklusion als Konjunktion mehrerer Atome ist nicht zugelassen – jedoch

IF
$$\alpha$$
 THEN $\kappa_1 \wedge \kappa_2$ IF α THEN κ_1 IF α THEN κ_2

- □ Die Negation in der Regel ist nicht zugelassen.
- Anstatt Objekt-Wert-Tupeln als Atome sind auch Objekt-Attribut-Wert-Tripel (OAW-Tripel) denkbar und üblich. Beispiel: EMYCIN.
- Produktionregeln k\u00f6nnen einfach um ein Konfidenzfaktorkonzept erweitert werden, das die Sicherheit von Konklusionen bewertet oder miteinander verrechnet.

L:V-5 Logics Extensions 1996-2015

Definition 2 (Semantik Produktionsregelsystem)

Eine Bedingung α ist genau dann erfüllt (wahr) bzgl. einer Datenbasis D, wenn gilt:

- 1. α ist ein Atom und es gilt $\alpha \in D$.
- 2. α hat die Form $\alpha_1 \wedge \alpha_2$ und es gilt α_1 ist wahr und α_2 ist wahr bzgl. einer Datenbasis D.
- 3. α hat die Form $\alpha_1 \vee \alpha_2$ und es gilt α_1 ist wahr oder α_2 ist wahr bzgl. einer Datenbasis D.
- 4. Nur Bedingungen, die gemäß 1 bis 3 wahr sind, sind wahr.

Eine Regel IF α THEN κ , deren Bedingung α wahr ist bzgl. einer Datenbasis D, heißt anwendbar für D.

L:V-6 Logics Extensions 1996-2015

Definition 3 (Ableitung)

Seien P = (D, R) und P' = (D', R) zwei Produktionsregelsysteme.

Dann gilt: "P' ist in einem Schritt aus P herleitbar", in Zeichen: $(D,R)|_{\overline{PS}}^1(D',R)$, genau dann, wenn eine Regel $r\in R$ existiert, r= IF α THEN κ mit

- 1. α ist wahr bzgl. D, d.h. r ist anwendbar für D
- **2.** $D' = D \cup \{\kappa\}$

Abkürzend: $(D,R) \mid_{PS}^{1} \kappa$

 $(D,R) \mid_{\overline{PS}} (D',R)$ bezeichnet die reflexive und transitive Hülle der Einschritt-Ableitung $(D,R) \mid_{\overline{PS}} (D',R)$.

L:V-7 Logics Extensions 1996-2015

Bemerkungen:

- \Box Eine Regel kann genau dann angewendet (gefeuert) werden, wenn die Bedingung α bzgl. der aktuellen Datenbasis erfüllt ist.
- Offensichtlich stellt die Konklusion einer gefeuerten Regel eine Folgerung dar.
- \Box Die Wirkung einer Regelanwendung ist, dass die Konklusion κ der Regel mit in die Datenbasis aufgenommen wird.
- Der transitive Abschluss entspricht der Verkettung im Sinne der Hintereinanderausführung von Regeln.
- □ Ein Regelsystem ist prozedural: Implizit enthält das Feuern einer Regel eine Aktion: "Füge Fakt zur Datenbasis hinzu".
- Herleitungen in einem Produktionsregelsystem sind nicht deterministisch.

L:V-8 Logics Extensions 1996-2015

Regelinterpreter

Die Definition der Ableitung in Produktionsregelsystemen beschreibt den Kern eines *Regel-Interpreters*, den sogenannten Recognize-Act-Zyklus:

- 1. Bestimmung der Konfliktmenge der anwendbaren Regeln.
- 2. Auswahl einer Regel aus der Konfliktmenge durch ein Selektionsverfahren.
- 3. Feuern der Regel.

Insbesondere legt der Interpreter fest, wie die Konfliktmenge gebildet werden kann und aus welchen Kriterien das Selektionsverfahren aufgebaut ist.

L:V-9 Logics Extensions 1996-2015

Regelinterpreter

Die Definition der Ableitung in Produktionsregelsystemen beschreibt den Kern eines *Regel-Interpreters*, den sogenannten Recognize-Act-Zyklus:

- 1. Bestimmung der Konfliktmenge der anwendbaren Regeln.
- 2. Auswahl einer Regel aus der Konfliktmenge durch ein Selektionsverfahren.
- 3. Feuern der Regel.

Insbesondere legt der Interpreter fest, wie die Konfliktmenge gebildet werden kann und aus welchen Kriterien das Selektionsverfahren aufgebaut ist.

Zwei Möglichkeiten, um einen Finalzustand zu ereichen:

- Alle herleitbaren Fakten sind abgeleitet; keine Regel mehr anwendbar.
 Paradigma: "Finde soviel wie möglich heraus."
- 2. Ein gesuchter Fakt ist zu *D* hinzugefügt worden. Paradigma: "Ist ein bestimmtes Ziel folgerbar?"

L:V-10 Logics Extensions 1996-2015

Definition 4 (kommutativ)

Ein Produktionsregelsystem P = (D, R) heißt kommutativ, falls für jede Datenbasis D_i , die aus P ableitbar ist, gilt:

Eine für D_i anwendbare Regel ist auch für jede Datenbasis D_i' anwendbar, für die $(D_i,R) \mid_{\overline{PS}} (D_i',R)$ gilt.

L:V-11 Logics Extensions 1996-2015

Definition 4 (kommutativ)

Ein Produktionsregelsystem P=(D,R) heißt kommutativ, falls für jede Datenbasis D_i , die aus P ableitbar ist, gilt:

Eine für D_i anwendbare Regel ist auch für jede Datenbasis D_i' anwendbar, für die $(D_i,R) \mid_{\overline{PS}} (D_i',R)$ gilt.

Lemma 5

Für ein kommutatives Produktionsregelsystem P = (D, R) und zwei Datenbasen D_1, D_2 , die aus P ableitbar sind, gilt die folgende Eigenschaft:

Sei D_1' eine Datenbasis, die aus D_1 ableitbar ist, so existiert eine Folge von Regelanwendungen, um $D_1' \cup D_2$ aus D_2 abzuleiten. Die Generierung der Fakten in D_1' ist also unabhängig von der Anwendungsreihenfolge der anwendbaren Regeln.

Satz 6

Produktionsregelsysteme ohne Negation sind kommutativ.

L:V-12 Logics Extensions 1996-2015

Realisierung des Interpreters durch Regelverkettung

$$\underline{D_0}, \ \ \mathrm{IF} \ \alpha_1 \ \ \mathrm{THEN} \ \kappa_1 \ \ \ (\mathrm{und} \ \alpha_1 \ \mathrm{wahr} \ \mathrm{bzgl.} \ D_0)$$

$$\underline{D_1 = D_0 \cup \{\kappa_1\}, \ \ \mathrm{IF} \ \alpha_2 \ \ \mathrm{THEN} \ \kappa_2} \ \ (\mathrm{und} \ \alpha_2 \ \mathrm{wahr} \ \mathrm{bzgl.} \ D_1)$$

$$\underline{D_2 = D_1 \cup \{\kappa_2\}, \ \ \mathrm{IF} \ \alpha_3 \ \ \mathrm{THEN} \ \kappa_3} \ \ (\mathrm{und} \ \alpha_3 \ \mathrm{wahr} \ \mathrm{bzgl.} \ D_2)}$$

$$\underline{D_3 = D_2 \cup \{\kappa_3\}, \ \ldots}$$

$$\vdots$$

Die Kommutativität wird hier insofern ausgenutzt, als dass die Reihenfolge der Regelanwendungen keinen Einfluss auf die Menge der abgeleiteten Fakten hat.

L:V-13 Logics Extensions 1996-2015

Realisierung des Interpreters durch Regelverkettung

$$\underline{D_0, \text{ IF } \alpha_1 \text{ THEN } \kappa_1} \text{ (und } \alpha_1 \text{ wahr bzgl. } D_0)$$

$$\underline{D_1 = D_0 \cup \{\kappa_1\}, \text{ IF } \alpha_2 \text{ THEN } \kappa_2} \text{ (und } \alpha_2 \text{ wahr bzgl. } D_1)$$

$$\underline{D_2 = D_1 \cup \{\kappa_2\}, \text{ IF } \alpha_3 \text{ THEN } \kappa_3} \text{ (und } \alpha_3 \text{ wahr bzgl. } D_2)$$

$$\underline{D_3 = D_2 \cup \{\kappa_3\}, \ldots}$$

$$\vdots$$

Die Kommutativität wird hier insofern ausgenutzt, als dass die Reihenfolge der Regelanwendungen keinen Einfluss auf die Menge der abgeleiteten Fakten hat.

Vergleiche Modus Ponens in der Logik ($\alpha, \beta, \gamma, \delta, \ldots$ beliebige logische Formeln) :

ergieiche Modus Ponens in c
$$\frac{\alpha, \quad \alpha \to \beta}{\underline{\beta}, \quad \beta \to \gamma}$$
 $\underline{\gamma, \quad \gamma \to \delta}$ $\underline{\delta, \quad \dots}$ \cdots .

L:V-14 Logics Extensions 1996-2015

Vorwärtsverkettende Verfahren (Forward-Chaining)

Ausgehend von D_0 wird versucht, einen gegebenen Fakt κ_i bzw. die Menge aller ableitbaren Fakten zu abzuleiten. Stichwort: *datengetriebene Suche*

$$D_0$$
, IF α_1 THEN κ_1
$$D_1 = D_0 \cup \{\kappa_1\}$$
, IF α_2 THEN $\kappa_2 \dots$
$$D_2 = D_1 \cup \{\kappa_2\}, \dots$$

L:V-15 Logics Extensions 1996-2015

Vorwärtsverkettende Verfahren (Forward-Chaining)

Ausgehend von D_0 wird versucht, einen gegebenen Fakt κ_i bzw. die Menge aller ableitbaren Fakten zu abzuleiten. Stichwort: *datengetriebene Suche*

$$D_0$$
, IF α_1 THEN κ_1

$$D_1 = D_0 \cup \{\kappa_1\}, \text{ IF } \alpha_2 \text{ THEN } \kappa_2 \dots$$

$$D_2 = D_1 \cup \{\kappa_2\}, \dots$$

Rückwärtsverkettende Verfahren (Backward-Chaining)

Ausgehend von einem zu bestimmenden Fakt κ_i wird versucht, diesen über Regeln auf eine Teilmenge der vorhandenen Startdatenbasis D_0 zurückzuführen. Stichwort: *zielgetriebene Suche*

$$D_0$$
, IF α_1 THEN κ_1
$$D_1 = D_0 \cup \{\kappa_1\}, \text{ IF } \alpha_2 \text{ THEN } \kappa_2 \dots$$

$$D_2 = D_1 \cup \{\kappa_2\}, \dots$$

L:V-16 Logics Extensions 1996-2015

Recognize-Act-Zyklus realisiert als Forward-Chaining

- 1. Recognize: Konstruktion der Konfliktmenge R^* Bestimmung aller Regeln, deren Bedingung wahr ist.
- 2. Act: Feuern einer Regel Auswahl einer Regel aus R^* und Ausführung ihrer Konklusion.

```
Algorithm: FC
```

Input: Startdatenbasis D, Regelmenge R

Output: Menge aller aus D mit R ableitbaren Fakten D^*

```
BEGIN D^* = D \mathbf{REPEAT} D_{\mathsf{tmp}} = D^* R^* = \{(\mathsf{IF} \ \alpha \ \mathsf{THEN} \ \kappa) \in R \mid \alpha \ \mathsf{wahr} \ \mathsf{bzgl.} \ D^*\} D^* = D^* \cup \{\kappa \mid (\mathsf{IF} \ \alpha \ \mathsf{THEN} \ \kappa) \in R^*\} \mathbf{UNTIL} \ D^* = D_{\mathsf{tmp}} \mathsf{RETURN} \ (D^*) \mathsf{END}
```

L:V-17 Logics Extensions 1996-2015

Eigenschaften des Algorithmus FC

FC terminiert bei jeder Eingabe.

Die Größe von D^* ist beschränkt durch die endliche Menge der möglichen Atome in P.

□ FC bestimmt genau die Menge aller ableitbaren Fakten.

Beweis über die Kommutativität von P.

 \Box FC benötigt höchstens quadratische Zeit in der Größe von P=(D,R).

Lineare Zeit für jeden Schleifendurchlauf (falls Test, ob ein Fakt für D^* wahr ist, sowie das Hinzufügen von Fakten in einem Schritt möglich sind); die Größe von D^* bestimmt die Anzahl der Schleifendurchläufe.

L:V-18 Logics Extensions 1996-2015

Ableitbarkeitstest durch Forward-Chaining

Algorithm: FC-test. Überprüft, ob ein Atom κ^* ableitbar ist.

Input: Startdatenbasis D, Regelmenge R, Atom κ^*

Output: true, falls $(D, R) \mid_{\overline{PS}} \kappa^*$, false sonst

```
BEGIN D^* = D \mathbf{REPEAT} D_{\mathsf{tmp}} = D^* R^* = \{(\mathsf{IF} \ \alpha \ \mathsf{THEN} \ \kappa) \in R \mid \alpha \ \mathsf{wahr} \ \mathsf{bzgl}. \ D^*\} D^* = D^* \cup \{\kappa \mid (\mathsf{IF} \ \alpha \ \mathsf{THEN} \ \kappa) \in R^*\} \mathbf{UNTIL} \ D^* = D_{\mathsf{tmp}} \ \mathsf{OR} \ \kappa^* \in D^* \mathsf{IF} \ \kappa^* \in D^* \mathsf{THEN} \ \mathsf{RETURN} \ (\mathit{true}) \mathsf{ELSE} \ \mathsf{RETURN} \ (\mathit{false}) \mathsf{END}
```

L:V-19 Logics Extensions 1996-2015

Bemerkung:

Eine Verbesserung der Effzienz ist dadruch möglich, dass Regeln, die gefeuert haben, aus der Konfliktmenge entfernt werden.

- Warum bleibt Korrektheit?
- Wie verhält sich die Laufzeit?

L:V-20 Logics Extensions 1996-2015

Recognize-Act-Zyklus realisiert als Backward-Chaining

- 1. Recognize: Konstruktion der Konfliktmenge R^* Bestimmung aller Regeln, die das zu prüfende Atom als Konklusion haben, bzw. Prüfung, ob das Atom in der Startdatenbasis enthalten ist.
- 2. Act: Feuern einer Regel Auswahl einer bestimmten Regel aus R^* und Generierung neuer Ziele aus der Bedingung α dieser Regel.

Situationen mit Nichtdeterminismen:

- \Box Eventuell existieren mehrere Regeln mit der Konklusion κ .
- □ Die Bedingung kann zusammengesetzt sein dann ist die Reihenfolge der Bearbeitung entscheidend:

Konjunktion: Welche Teilformel ist nicht ableitbar?

Disjunktion: Welche Teilformel ist (schnell) ableitbar?

L:V-21 Logics Extensions 1996-2015

Definition 7 (Und-Oder-Baum)

Zu einem Produktionsregelsystem P=(D,R) und einem Ziel G wird ein Und-Oder-Baum $AOT_P(G)$ durch folgende Konstruktionsvorschrift induktiv definiert:

- 1. Die Wurzel von $AOT_P(G)$ erhält den Label G.
- Ist der Label eines Knotens ein Atom, so erhält der Knoten einen Nachfolger
 - \square mit Label \square , falls $\kappa \in D$,
 - \Box mit Label α für jede Regel IF α THEN κ in R.
 - Die Kanten zu den Nachfolgern sind vom Typ ODER.
- 3. Hat ein Knoten einen Label mit der Struktur $\alpha_1 \wedge \ldots \wedge \alpha_n$, so erhält der Knoten n Nachfolger mit den Labeln α_1 bis α_n .
 - Die Kanten zu den Nachfolgern sind vom Typ UND.
- 4. Hat ein Knoten einen Label mit der Struktur $\alpha_1 \vee \ldots \vee \alpha_n$, so erhält der Knoten n Nachfolger mit den Labeln α_1 bis α_n .
 - Die Kanten zu den Nachfolgern sind vom Typ ODER.
- 5. $AOT_P(G)$ enthält keine anderen Knoten und Kanten.

L:V-22 Logics Extensions 1996-2015

Beispiel: Und-Oder-Baum

Gegeben sei folgendes Produktionsregelsystem P = (D, R):

$$D = \{A = 1, E = 0\} \qquad R = \{r_1 : \text{IF } (A = 1 \land B = 1) \lor C = 0 \text{ THEN } X = 1, \\ r_2 : \text{IF } D = 1 \land (A = 1 \lor C = 0) \text{ THEN } X = 1, \\ r_3 : \text{IF } E = 0 \lor F = 1 \text{ THEN } D = 1\}$$

Für Ziel X = 1:

L:V-23 Logics Extensions 1996-2015

Algorithmus für das Backward-Chaining

Algorithm: BC-DFS

Input: Startdatenbasis D, Regelmenge R, Formel α

Output: true, falls α ableitbar, false sonst; evtl. Endlosschleife

```
BEGIN IF \alpha=\alpha_1\wedge\alpha_2 THEN RETURN (BC-DFS (\alpha_1) AND BC-DFS (\alpha_2) ) ENDIF
```

IF $\alpha = \alpha_1 \wedge \alpha_2$ THEN RETURN (BC-DFS (α_1) AND BC-DFS (α_2)) ENDIF

IF $\alpha \in D$ THEN RETURN (*true*) ENDIF

L:V-24 Logics Extensions 1996-2015

Backward-Chaining

Algorithmus für das Backward-Chaining

Algorithm: BC-DFS

Input: Startdatenbasis D, Regelmenge R, Formel α

Output: true, falls α ableitbar, false sonst; evtl. Endlosschleife

```
BEGIN
  IF \alpha = \alpha_1 \wedge \alpha_2 THEN RETURN (BC-DFS(\alpha_1) AND BC-DFS(\alpha_2)) ENDIF
  IF \alpha = \alpha_1 \vee \alpha_2 THEN RETURN (BC-DFS (\alpha_1) OR BC-DFS (\alpha_2)) ENDIF
  IF \alpha \in D THEN RETURN (true) ENDIF
  R^* = \{r \mid r = (\text{IF } \gamma \text{ THEN } \alpha) \text{ und } r \in R\}
  stop=false
  WHILE R^* \neq \emptyset AND stop=false do
       r = choose(R^*)
       IF BC-DFS (premise (r)) = true
       THEN stop=true
       ELSE R^* = R^* \setminus \{r\}
  END
  IF stop=true
  THEN RETURN (true)
  ELSE RETURN (false)
END
```

L:V-25 Logics Extensions 1996-2015

Bedingungen ohne Disjunktion

Im UND-ODER-Baum wird nicht zwischen alternativen Regeln und Disjunktionen unterschieden.

- ⇒ Die ausschließliche Verwendung von Konjunktionen ist ohne Einschränkung hinsichtlich der Ausdrucksstärke.
- ⇒ Konstruktion eines Ableitungsbaums, der nur Konjunktionen enthält.
- ⇒ Aufspaltung von Regeln mit Disjunktion (Fortsetzung Beispiel):

$$r_1:$$
 IF $(A=1 \land B=1) \lor C=0$ THEN $X=1,$ $r_2:$ IF $D=1 \land (A=1 \lor C=0)$ THEN $X=1,$ $r_3:$ IF $E=0 \lor F=1$ THEN $D=1$

Aus r_1 wird:

$$r_{1.1}:$$
 IF $A=1 \wedge B=1$ THEN $X=1$ $r_{1.2}:$ IF $C=0$ THEN $X=1$

Aus r_3 wird:

$$r_{3.1}$$
: IF $E=0$ THEN $D=1$
 $r_{3.2}$: IF $F=1$ THEN $D=1$

L:V-26 Logics Extensions 1996-2015

Bedingungen ohne Disjunktion (Fortsetzung)

Zwei Möglichkeiten, um r_2 umzuformen:

 $\sim \rightarrow$

1. Einführung von Atomen aux = 1, die bisher nicht in P nicht existieren.

$$r_{2.1}:$$
 IF $D=1 \land \textit{aux}=1$ THEN $X=1$ $r_{2.2}:$ IF $A=1$ THEN $\textit{aux}=1$, $r_{2.3}:$ IF $C=0$ THEN $\textit{aux}=1$

2. Erzeugung der disjunktiven Normalform durch iterative Anwendung der Distributivgesetze:

$$t \wedge (t_1 \vee \ldots \vee t_n) \approx (t \wedge t_1) \vee \ldots \vee (t \wedge t_n)$$

 $t \vee (t_1 \wedge \ldots \wedge t_n) \approx (t \vee t_1) \wedge \ldots \wedge (t \vee t_n)$
 $r_{2.1} : \text{IF } D = 1 \wedge A = 1 \text{ THEN } X = 1$
 $r_{2.2} : \text{IF } D = 1 \wedge C = 0 \text{ THEN } X = 1$

L:V-27 Logics Extensions

Definition 8 (Ableitungsbaum)

Zu einem Produktionsregelsystem P=(D,R) und einem Ziel G wird ein Ableitungsbaum $T_P(G)$ durch folgende Konstruktionsvorschrift induktiv definiert:

- 1. Die Wurzel von $T_P(G)$ erhält den Label G.
- 2. Jeder Knoten mit Label $\alpha = \alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$ erhält einen Nachfolger
 - \square mit Label $\alpha_2 \wedge \ldots \wedge \alpha_n$, falls $\alpha_1 \in D$ bzw.
 - \square mit Label \square , falls $\alpha_1 \in D$ und n=1
- 3. Jeder Knoten mit Label $\alpha = \alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$ erhält einen Nachfolger für jede Regel "IF $\beta_1 \wedge \ldots \wedge \beta_r$ THEN α_1 " $\in R$ mit dem Label $\beta_1 \wedge \ldots \wedge \beta_r \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$.
- 4. $T_P(G)$ enthält keine anderen Knoten und Kanten.

L:V-28 Logics Extensions 1996-2015

Beispiel: Ableitungsbaum für Backward-Chaining

Gegeben sei folgendes Produktionsregelsystem P = (D, R):

$$D = \{A = 1, E = 0\} \qquad R = \{r_{1.1} : \text{If } A = 1 \land B = 1 \text{ Then } X = 1 \\ r_{1.2} : \text{If } C = 0 \text{ Then } X = 1 \\ r_{2.1} : \text{If } D = 1 \land A = 1 \text{ Then } X = 1 \\ r_{2.2} : \text{If } D = 1 \land C = 0 \text{ Then } X = 1 \\ r_{3.1} : \text{If } E = 0 \text{ Then } D = 1 \\ r_{3.2} : \text{If } F = 1 \text{ Then } D = 1$$

Für Ziel X=1:

L:V-29 Logics Extensions 1996-2015

Analyse von Backward-Chaining mit Regelgraphen

Definition 9 (Regelgraph)

Sei R eine Regelmenge ohne Disjunktionen. Ein Regelgraph $G_R = \langle V, E \rangle$ ist ein gerichteter Graph, der wie folgt definiert ist:

- 1. Für jedes in R vorkommende Atom κ existiert ein Knoten v_{κ} in V.
- 2. Für jede Regel $r \in R$ existiert ein Knoten v_r in V.
- 3. Für jede Regel $r = \text{IF } \alpha_1 \wedge \ldots \wedge \alpha_n$ THEN κ existieren n Kanten von v_{α_i} nach v_r ($i = 1, \ldots, n$) und eine Kante von v_r nach v_{κ} in E.
- 4. G_R enthält keine anderen Knoten und Kanten.

L:V-30 Logics Extensions 1996-2015

Backward-Chaining

Analyse von Backward-Chaining mit Regelgraphen

Definition 9 (Regelgraph)

Sei R eine Regelmenge ohne Disjunktionen. Ein Regelgraph $G_R = \langle V, E \rangle$ ist ein gerichteter Graph, der wie folgt definiert ist:

- 1. Für jedes in R vorkommende Atom κ existiert ein Knoten v_{κ} in V.
- 2. Für jede Regel $r \in R$ existiert ein Knoten v_r in V.
- 3. Für jede Regel $r = \text{IF } \alpha_1 \wedge \ldots \wedge \alpha_n$ THEN κ existieren n Kanten von v_{α_i} nach v_r ($i = 1, \ldots, n$) und eine Kante von v_r nach v_{κ} in E.
- 4. G_R enthält keine anderen Knoten und Kanten.

Definition 10 (zyklenfreie Regelmenge)

Eine Regelmenge R heißt zyklenfrei, wenn der zugehörige Regelgraph G_R keine Zyklen enthält.

L:V-31 Logics Extensions 1996-2015

Beispiel: Regelgraph

Gegeben sei folgende Regelmenge:

$$R = \{r_{1.1} : \text{If } A = 1 \land B = 1 \text{ THEN } X = 1$$

$$r_{1.2} : \text{If } C = 0 \text{ THEN } X = 1$$

$$r_{2.1} : \text{If } D = 1 \land A = 1 \text{ THEN } X = 1$$

$$r_{2.2} : \text{If } D = 1 \land C = 0 \text{ THEN } X = 1$$

$$r_{3.1} : \text{If } E = 0 \text{ THEN } D = 1$$

$$r_{3.2} : \text{If } F = 1 \text{ THEN } D = 1$$

Zugehöriger Regelgraph G_R :

L:V-32 Logics Extensions 1996-2015

Bemerkungen:

- Die Zyklenfreiheit eines zusammenhängenden gerichteten Graphen kann in linearer Zeit (O(E)) festgestellt werden.
- Der Algorithmus BC-DFS ist korrekt für zyklenfreie Regelmengen.
- □ Die Voraussetzung "zyklenfrei" ist notwendig, da Tiefensuche auf unendlichen Graphen keine vollständige Suchstrategie darstellt.
- ⇒ Im Zusammenhang mit rückwärtsverkettenden Verfahren und der Kontrollstrategie Tiefensuche ist es notwendig, Schleifen während der Abarbeitung zu erkennen.

L:V-33 Logics Extensions 1996-2015

Beispiel: Zyklische Regelmenge

Sei folgendes Produktionsregelsystem P = (D, R) gegeben:

$$D = \{\kappa_3\}$$
 $R = \{r_1 : \text{IF } \kappa_1 \text{ THEN } \kappa_2$ $r_2 : \text{IF } \kappa_2 \text{ THEN } \kappa_1$ $r_3 : \text{IF } \kappa_3 \text{ THEN } \kappa_2\}$

Ableitungsbaum $T_P(\kappa_2)$ für Ziel κ_2 :

L:V-34 Logics Extensions 1996-2015

Laufzeit für Backward-Chaining

Satz 11

Die Laufzeit des Algorithmus BC-DFS ist auch bei zyklenfreien Regelmengen R nicht durch ein Polynom in Abhängigkeit von der Größe von P=(D,R) beschränkt.

Beweis

Gegeben sei folgendes Produktionsregelsystem $P_n = (D, R_n)$:

$$D = \{\kappa_0\} \qquad R_n = \{\text{IF } \alpha_{i,1} \wedge \alpha_{i,2} \text{ THEN } \kappa_i,$$

$$\text{IF } \kappa_{i-1} \text{ THEN } \alpha_{i,1},$$

$$\text{IF } \kappa_{i-1} \text{ THEN } \alpha_{i,2} \mid 1 \leq i \leq n\}$$

(Die Anzahl der Regeln ist 3n.)

Sei $\mu(n)$ die Anzahl der Aufrufe von BC-DFS für das Ziel κ_n .

L:V-35 Logics Extensions 1996-2015

Beweis Laufzeit BC-DFS (Fortsetzung).

$$\square$$
 $n=0$:

$$\mu(0) = 1$$
, da $\kappa_0 \in D$.

$$\square$$
 $n=1$:

$$\begin{array}{c} \longrightarrow \mathtt{BC-DFS}(\kappa_1) \\ \longrightarrow \mathtt{BC-DFS}(\alpha_{1,1}) \\ \longrightarrow \mathtt{BC-DFS}(\kappa_0) \quad (\Rightarrow \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{Aufrufe} \ \mathsf{für} \ \kappa_0) \\ \mathsf{AND} \\ \longrightarrow \mathtt{BC-DFS}(\alpha_{1,2}) \\ \longrightarrow \mathtt{BC-DFS}(\kappa_0) \quad (\Rightarrow \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{Aufrufe} \ \mathsf{für} \ \kappa_0) \end{array}$$

 \Box Allgemein für n > 0:

$$\mu(n) = 3 + 2 \cdot \mu(n-1) = 3 \cdot \sum_{i=0}^{n-1} 2^i + 2^{n+1} = 3 \cdot \frac{1-2^n}{1-2} + 2^{n+1}$$
$$= 3 \cdot 2^n + 2^{n+1} - 3 \ge 2^n$$

L:V-36 Logics Extensions 1996-2015

Inferenz für Produktionsregelsysteme

Verkettungsstrategien

Frage: Ist ein Atom ableitbar?

Bevorzugte Strategie: Backward-Chaining

L:V-37 Logics Extensions 1996-2015

Inferenz für Produktionsregelsysteme

Verkettungsstrategien (Fortsetzung)

Frage: Wie sieht die Welt nach Anwendung aller Regeln aus?

Bevorzugte Strategie: Forward-Chaining

L:V-38 Logics Extensions 1996-2015

Inferenz für Produktionsregelsysteme

Verkettungsstrategien (Fortsetzung)

Neben einer reinen Backward-Chaining oder Forward-Chaining-Strategie können auch Kombinationen hieraus sinnvoll sein: Inferenz rückwärts vom Ziel und "gleichzeitig" vorwärts von den Fakten.

Gemischte Strategie:

- 1. Fokussierung durch Erzeugung einer Teilwelt D' durch Forward-Chaining.
- 2. Uberprüfung von Hypothesen in D' mit Hilfe von Backward-Chaining.

L:V-39 Logics Extensions 1996-2015

Definition 12 (PS mit Negation)

Ein Produktionsregelsystem mit Negation $P_N=(D,R_N)$ ist ein Produktionsregelsystem, bei dem der Bedingungsteil von Regeln auch die Negation NOT enthalten kann.

Beispiel:

IF NOT
$$X \neq a \land \text{NOT} (Y = a \land Z \neq b)$$
 THEN $W = a$

Zwei Paradigmen zur Interpretation von NOT:

- 1. Negation-as-Failure
- 2. bezogen auf eine aktuelle, "statische" Datenbasis

L:V-40 Logics Extensions 1996-2015

Vereinfachung von Bedingungsteilen mit NOT

1. Mit Hilfe von de Morgan lassen sich Regeln mit NOT so umformen, dass die Negation nur bei Atomen steht. (Negationsnormalform des Bedingungsteils)

$$NOT (\alpha_1 \wedge \ldots \wedge \alpha_n) \approx NOT (\alpha_1) \vee \ldots \vee NOT (\alpha_n)$$

$$NOT (\alpha_1 \vee \ldots \vee \alpha_n) \approx NOT (\alpha_1) \wedge \ldots \wedge NOT (\alpha_n)$$

Beispiel:

IF NOT
$$X \neq a \land$$
 NOT $(Y = a \land Z \neq b)$ THEN $W = a \approx$ IF NOT $X \neq a \land$ (NOT $Y = a \lor$ NOT $Z \neq b$) THEN $W = a$

L:V-41 Logics Extensions 1996-2015

Vereinfachung von Bedingungsteilen mit NOT

1. Mit Hilfe von de Morgan lassen sich Regeln mit NOT so umformen, dass die Negation nur bei Atomen steht. (Negationsnormalform des Bedingungsteils)

$$NOT (\alpha_1 \wedge \ldots \wedge \alpha_n) \approx NOT (\alpha_1) \vee \ldots \vee NOT (\alpha_n)$$

$$NOT (\alpha_1 \vee \ldots \vee \alpha_n) \approx NOT (\alpha_1) \wedge \ldots \wedge NOT (\alpha_n)$$

Beispiel:

$$\text{IF NOT } X \neq a \land \text{NOT } (Y = a \land Z \neq b) \text{ THEN } W = a \\ \approx \text{ IF NOT } X \neq a \land (\text{NOT } Y = a \lor \text{NOT } Z \neq b) \text{ THEN } W = a$$

2. Darauf aufbauend lässt sich die disjunktive Normalform herstellen und die Regeln aufspalten:

IF NOT
$$X \neq a \land (\operatorname{NOT} Y = a \lor \operatorname{NOT} Z \neq b)$$
 THEN $W = a$
$$\approx \qquad \text{IF NOT } X \neq a \land \operatorname{NOT} Y = a \text{ THEN } W = a$$

$$\text{IF NOT } X \neq a \land \operatorname{NOT} Z \neq b \text{ THEN } W = a$$

L:V-42 Logics Extensions 1996-2015

Interpretation von NOT als Negation-as-Failure

- wird in der Programmiersprache PROLOG verwandt
- \Box hier rein aussagenlogischer Fall: Die "Bedingung NOT κ " für ein Atom κ ist erfüllt, falls κ nicht ableitbar ist.
- Hintergrund dieser Interpretation ist die Closed World Assumption (CWA).

Annahme:

- \Box Die Diskurswelt (Domäne, Situation) ist vollständig durch $P_N = (D, R_N)$ beschrieben.
- ⇒ Alle Fakten, die in der Diskurswelt gültig sind, sind auch ableitbar.

 \Rightarrow

Failure bzgl. des Ableitens von κ

 \Leftrightarrow

"NOT κ " gilt in der Diskurswelt

L:V-43 Logics Extensions 1996-2015

Interpretation von NOT als Negation-as-Failure

Definition 13 (Semantik von NOT unter CWA)

In einem Produktionsregelsystem $P_N = (D, R_N)$ ist eine Bedingung NOT α genau dann erfüllt (wahr), wenn α nicht aus P_N ableitbar ist. Das heißt:

- 1. Ist α eine Konjunktion von Teilformeln α_i darf mindestens ein α_i nicht ableitbar sein, damit NOT α erfüllt ist.
- 2. Ist α eine Disjunktion von Teilformeln α_i so darf kein α_i ableitbar sein, damit NOT α erfüllt ist.

L:V-44 Logics Extensions 1996-2015

Bemerkungen:

- □ Dieser Erfüllbarkeitsbegriff kann unmittelbar in den Algorithmus BC-DFS integriert werden.
- □ Mit Negation-as-Failure wird eine neue Schlussregel eingeführt in Zeichen:

$$(\alpha \mid_{\overrightarrow{PS}} \kappa) \mid_{\underset{CWA}{PS_N}} \neg \kappa$$

In Worten: Falls κ aus α nicht mittels $\mid_{\overline{PS}}$ ableitbar ist, so ist $\neg \kappa$ unter der Closed-World-Assumption ableitbar.

L:V-45 Logics Extensions 1996-2015

Algorithm: BC-DFS-N

Input: Startdatenbasis D, Regelmenge R, Formel α

Output: true, falls α ableitbar unter CWA, false sonst; evtl. Endlosschleife

```
BEGIN  \text{IF } \alpha = \text{NOT} \, \alpha_1 \text{ Then return } (\text{NOT } \textit{BC-DFS-N}(\alpha_1)) \text{ endif}   \text{IF } \alpha = \alpha_1 \wedge \alpha_2 \text{ Then return } (\textit{BC-DFS-N}(\alpha_1)) \text{ and } \textit{BC-DFS-N}(\alpha_2)) \text{ endif}   \text{IF } \alpha = \alpha_1 \vee \alpha_2 \text{ Then return } (\textit{BC-DFS-N}(\alpha_1)) \text{ or } \textit{BC-DFS-N}(\alpha_2)) \text{ endif}   \text{IF } \alpha \in D \text{ Then return } (\textit{true}) \text{ endif}
```

L:V-46 Logics Extensions 1996-2015

Algorithm: BC-DFS-N

Input: Startdatenbasis D, Regelmenge R, Formel α

Output: true, falls α ableitbar unter CWA, false sonst; evtl. Endlosschleife

```
BEGIN
  IF \alpha = NOT \alpha_1 THEN RETURN (NOT BC-DFS-N(\alpha_1)) ENDIF
  IF \alpha = \alpha_1 \wedge \alpha_2 THEN RETURN (BC-DFS-N(\alpha_1) AND BC-DFS-N(\alpha_2)) ENDIF
  IF \alpha = \alpha_1 \vee \alpha_2 THEN RETURN (BC-DFS-N(\alpha_1) OR BC-DFS-N(\alpha_2)) ENDIF
  IF \alpha \in D THEN RETURN (true) ENDIF
  R^* = \{r \mid r = (\text{IF } \gamma \text{ THEN } \alpha) \text{ und } r \in R\}
  stop=false
  WHILE R^* \neq \emptyset AND stop=false do
       r = choose(R^*)
       IF BC-DFS-N(premise(r)) = true
       THEN stop=true
       ELSE R^* = R^* \setminus \{r\}
  END
  IF stop=true
  THEN RETURN (true)
  ELSE RETURN (false)
END
```

L:V-47 Logics Extensions 1996-2015

Zyklische Regelmengen und NOT

Sei folgendes Produktionsregelsystem $P_N = (D, R_N)$ gegeben:

```
D = \{\} R_N = \{r_1 : \text{IF NOT } X = a \text{ THEN } Y = b, r_2 : \text{IF NOT } Y = b \text{ THEN } X = a\}
```

- \square R_N enthält eine Schleife für das Ziel Y=b und für das Ziel X=a.
- Schleifen (unendliche Ableitungen) dürfen nicht mit der Nicht-Ableitbarkeit eines Faktes gleichgesetzt werden.

L:V-48 Logics Extensions 1996-2015

Negation-as-Failure und Vorwärtsverkettung

Bei der Vorwärtsverkettung hängt die Erfüllung einer Bedingung von der aktuellen Datenbasis D ab.

 \Rightarrow Die Bildung der Konfliktmenge hängt vom aktuellen D ab.

Im Widerspruch dazu steht Negation-as-Failure:

- Die Erfüllung einer Bedingung hängt von der Ableitbarkeit ab.
- \Rightarrow Für (D,R_N) macht ein rein vorwärtsverkettendes Verfahren keinen Sinn, weil bei negierten Bedingungen die Ableitbarkeit von Atomen getestet werden muss.
- ⇒ Die Integration eines rückwärtsverkettenden Verfahrens und die Kombination beider Verkettungsstrategien ist notwendig.

L:V-49 Logics Extensions 1996-2015

Negation-as-Failure und Vorwärtsverkettung (Fortsetzung)

Sei folgendes Produktionsregelsystem $P_N = (D, R_N)$ gegeben:

```
D=\{\} R_N=\{r_1: 	ext{If } Z=a 	ext{ THEN } X=b, r_2: 	ext{If NOT } Y=b 	ext{ THEN } Z=a, r_3: 	ext{If } U=1 	ext{ THEN } Y=b\}
```

- \Box Test, ob r_2 in die Konfliktmenge kommt.
- \Rightarrow Test, ob Y = b abgeleitet werden kann.
- ⇒ Backward-Chaining

Alternative

Anwendung einer anderen Interpretation der Negation bei vorwärtsverkettenden Verfahren. Idee: Konfliktmengenbildung bei statischer Datenbasis D.

L:V-50 Logics Extensions 1996-2015

Interpretation von NOT bzgl. statischer Datenbasis und Vorwärtsverkettung

Definition 14 (Semantik von NOT unter *D***)**

Eine Bedingung NOT α ist in Bezug auf eine Datenbasis D genau dann erfüllt, wenn α in Bezug auf D nicht erfüllt ist:

- □ Ist α ein Atom, so muss $\alpha \notin D$ gelten.
- \Box Andernfalls wird das Erfülltsein von α entsprechend der Junktoren auf das Erfülltsein der Teilformeln zurückgeführt.

L:V-51 Logics Extensions 1996-2015

Lemma 15

Produktionsregelsysteme mit Negation und der Interpretation der Negation in Bezug auf die Datenbasis sind nicht kommutativ.

Beweis

Sei folgendes Produktionsregelsystem $P_N = (D, R_N)$ gegeben:

$$D=\{\}$$
 $R_N=\{r_1: \text{IF NOT } X=a \text{ THEN } Y=b,$ $r_2: \text{IF NOT } Y=b \text{ THEN } X=a\}$

Wegen $D = \emptyset$ ist sowohl r_1 als auch r_2 anwendbar. Wähle r_1 .

- $\Rightarrow (D, R_N) |_{PS}^1 (D_1, R_N) \text{ mit } D_1 = \{Y = b\}.$
- \Rightarrow Für D_1 ist die Bedingung von r_2 nicht länger erfüllt.
- $\Rightarrow r_2$ ist nicht anwendbar.
- $\Rightarrow P_N$ nicht kommutativ.

L:V-52 Logics Extensions 1996-2015

Algorithm: FC-N-test

Input: Startdatenbasis D, Regelmenge R_N , Atom κ^*

Output: true, falls $(D, R) \mid_{PS} \kappa^*$, unknown sonst

```
BEGIN
   D^* = D
   R_{\mathsf{tmp}} = R
   REPEAT
      R^* = \{ (\text{IF } \alpha \text{ THEN } \kappa) \in R_{\text{tmp}} \mid \alpha \text{ wahr bzgl. } D^* \}
      IF R^* \neq \emptyset
      THEN BEGIN
          r = choose(R^*)
          D^* = D^* \cup \{ conclusion(r) \}
          R_{\mathsf{tmp}} = R_{\mathsf{tmp}} \setminus \{r\}
      END
      ELSE R_{\mathsf{tmp}} = \emptyset
   UNTIL R_{\mathsf{tmp}} = \emptyset
   IF \kappa^* \in D^*
   THEN RETURN (true)
   ELSE RETURN (unknown)
END
```

L:V-53 Logics Extensions 1996-2015

Bemerkungen:

- □ FC-N-test terminiert bei jeder Eingabe.
- Aufgrund der Nicht-Kommutativität kommt dem Aufruf $choose(R^*)$ eine besondere Bedeutung zu: Nicht jede Auswahl von Regeln liefert das Ergebnis true, auch wenn $(D, R_N) \mid_{\overline{PS}} \kappa$ gilt.

L:V-54 Logics Extensions 1996-2015

Satz 16 (Korrektheit und Vollständigkeit von FC-N-test)

Es sei P_N ein Produktionsregelsystem mit Negation und κ ein Atom. Dann gilt FC-N-test $(D,R_N,\kappa)=$ true ist möglich genau dann, wenn sich κ aus P_N mit Interpretation der Negation in Bezug auf die Datenbasis ableiten lässt, d.h. $(D,R_N)\mid_{\overline{PS}}\kappa$ gilt.

L:V-55 Logics Extensions 1996-2015

Beweis (Korrektheit und Vollständigkeit von FC-N-test)

"⇒" Korrektheit

Aus FC-N-test (D, R_N, κ) = true ist möglich folgt $(D, R_N) \mid_{\overline{PS}} \kappa$.

Klar, weil jeder Iterationsschritt des Algorithmus genau einem Schritt der Ableitung $\frac{1}{PS}$ entspricht.

" —" Vollständigkeit

Aus $(D,R_N)|_{\overline{PS}} \kappa$ folgt, dass eine Ableitungsfolge für FC-N-test (D,R_N,κ) existiert mit FC-N-test (D,R_N,κ) = true.

Nach Voraussetzung existiert eine Folge von Regelanwendungen

$$(D,R_N) \mid_{PS}^{1} (D_1,R_N) \mid_{PS}^{1} \ldots \mid_{PS}^{1} (D_k,R_N) \text{ mit } \kappa \in D_k,$$

wobei D_i aus D_{i-1} durch Anwendung einer Regel entsteht.

- \Box Wähle die entsprechenden Regeln in dieser Reihenfolge für die ersten k Schleifendurchläufe in FC-N-test.
- $\Rightarrow D_k \subseteq D^*$
- $\Rightarrow \kappa$ wurde abgeleitet.

L:V-56 Logics Extensions 1996-2015

Nicht-Determinismus von FC-N-test

- \Box Aus $(D,R_N)|_{\overline{PS}} \kappa$ folgt nicht, dass FC-N-test (D,R_N,κ) den Rückgabewert *true* liefern muss.
- \Box Im Falle der Nichtableitung von κ ist der Rückgabewert von FC-N-test *unknown*.
- Unter der Voraussetzung P \neq NP lässt sich der Nichtdeterminismus von FC-N-test auch nicht so auflösen, dass ein polynomiell beschränktes deterministisches Verfahren zur Bestimmung der Ableitbarkeit entsteht:

Satz 17 (NP-Vollständigkeit des Ableitbarkeitsproblems)

Es sei P_N ein Produktionsregelsystem mit Negation und κ ein Atom. Das Entscheidungsproblem "Lässt sich κ aus P_N ableiten?" – kurz: "Gilt $P_N \mid_{\overline{PS}} \kappa$?" – ist NP-vollständig.

L:V-57 Logics Extensions 1996-2015

Beweis (Skizze: NP-Vollständigkeit des Ableitbarkeitsproblems)

- 1. Obere Schranke.
 - $P_N \mid_{\overline{PS}} \kappa$ ist in NP; Argumentation über FC-N-test.
- 2. Vollständigkeit. Reduktion von 3SAT auf $P_N \mid_{\overline{PS}} \kappa$. Konstruktion einer Menge R_α von Regeln zu einer aussagenlogischen Formel α mit

$$\alpha$$
 erfüllbar \Leftrightarrow $P_{\alpha} = (\emptyset, R_{\alpha}) \mid_{\overline{PS}} \kappa, \ \kappa = (Y = 1)$

Argumentation zu Punkt 2:

- " \Rightarrow " Mit Erfüllbarkeit von α folgt $P_{\alpha} \mid_{\overline{PS}} (Y=1)$: Die erfüllende Belegung \Im der Atome in α lässt die Regeln so feuern, dass Y=1 von P_{α} abgeleitet werden kann.
- " \Leftarrow " Mit $P_{\alpha} \mid_{\overline{PS}} (Y = 1)$ folgt die Erfüllbarkeit von α : Aus den gefeuerten Regeln folgt eine erfüllende Belegung \Im der Atome in α .

L:V-58 Logics Extensions 1996-2015