

Bluetooth Low Energy (BlueNRG)

What is Bluetooth® SMART (Low Energy) 2

Bluetooth® SMART is the latest enhancement of Bluetooth standard (V4.0), ultra-low power technology.

 Bluetooth® SMART enables devices with coin cell batteries to be wirelessly connected

- Bluetooth® **SMART** devices are used in a wide range of sensor applications transmitting small amounts of data.
 - Automotive
 - Sport and fitness
 - Healthcare
 - Entertainment
 - Home automation
 - Security and proximity

The Bluetooth® SMART Marks Overview 3

- Ultra low power consumption being a pure low energy implementation
- Months to years of lifetime on a standard coin cell battery

- Classic Bluetooth + Bluetooth low energy on a single chip (small price) delta)
- These are the hub devices of the Bluetooth ecosystem

Source: Bluetooth® SIG

Bluetooth vs Classic Bluetooth®

Feature	Bluetooth® Classic Mode	Bluetooth® Low energy Mode
Power Consumption Range	Between 1mA and 30mA	Between 1µA and 15mA
Over the air data rate	1–3 Mbit/s	1 Mbit/s
Range (typical)	30 m	50 m
Max TX power	+20 dBm (class 1) +4 dBm (class 2)	+10 dBm
RF Channels	79	40
Connection Time	100 ms	3 ms
Max packet Size	2875 μs = 1021 Bytes	328 µs = 27 Bytes
Encryption	Safer+	AES-128

Lower data-rate + Shorter connection time + less channels + smaller packet size

→ Bluetooth Smart® aims at saving current consumption!

BlueNRG BLE Solution 6

SINGLE MODE BLUETOOTH® SMART WIRELESS NETWORK PROCESSOR

Integration

- 2.4GHz RF transceiver
- Cortex-M0 microcontroller (running the BT Single Mode protocol)
- AES 128-bit co-processor

Flexibility

- Master and Slave Single Mode BLE (4.0) Network Processor.
- On chip non-volatile Flash memory allows OTA BLEstack upgrade. Stack qualified.

I_{CC}RX 7.3mA

Low power

I_{CC}TX 8.2mA @ 0 dBm

- I_{cc}Sleep 1.7μA
- I_{CC}Shutdown 2.5nA

Small size

- QFN32: 5x5x1mm
- Flip chip: 2.66x2.56x0.56mm

BlueNRG Application schematic

Component	High performance Mode	Standard Mode
C 9	0.8pF	0.7pF
C10	0.7pF	0.7pF
C11	51pF	51pF
C14	1pF	1pF
C15	1.2pF	0.8pF
C16	51pF	51pF
L2	1.2nH	1.4nH
L3	2.7nH	3.7nH
L4	1nH	1nH

High Performance or Standard Mode selectable through BOM

- High Performance: TX output power up to +8dBm
- Standard Mode: TX output power up to +5dBm

BlueNRG can be routed on a single layer PCB further reducing costs

BALUN companion chip for BlueNRG

9 external components into 1 die

1.19mm²

- ST IPD Technology on glass
- High space saving
- Faster Time to market
- High Reliability
- High performance RF solution
 - No temperature dispersion, parasitic elements

1.4x0.85x0.65

BALF-NRG-01D3 (for QFN) **BALF-NRG-02D3** (for WCSP)

BlueNRG avg current consumption

Average current consumption measured for various use-cases

Vin=3.3V - Slave Mode - 32KHz XOSC - - Pout 2dBm

Test Item	Measured Result	Comment
Advertising (16 Bytes	16 μA (1.28s interval)	All advertising channels, with data
advertising data)	38 μA (500ms interval)	(e.g. name, power level, flag)
Connected	5,4 μA (1.28s interval)	
No Data – Slave	11 μA (500ms interval)	
Connected	6,6 µA (1.28s interval, 19B data)	Current due to communication with
1 packet for each event.	14 µA (500ms interval, 19B data)	external micro is included

PC tool for current estimation

- Excellent correlation with real measurements
- User-friendly, easy to parameterize
- Inputs
 - Modes: Advertising / Connected as slave or Master
 - General settings (power / Payload / Intervals)
- Outputs:
 - Average current
 - · Battery life estimation
- STSW-BNRG001

BlueNRG Evaluation kit hardware 13

ST proposes a complete development kit including

Motherboard:

- STM32L1 µController
- Mini USB (A) / JTAG
- 1 user button, 1 joystick (G)
- Accelerometer (LIS3DH)
- Temperature sensor (STLM75)
- 5 user LEDs (I)
- AAA battery holder

Daughter Board

- BlueNRG Bluetooth smart network processor
- 16MHz Crystal, an Low power 32KHz
- Balun, matching and SMA connector

PC GUI

- Perform RF test/HCl commands/connection tests
- Unitary test of commands

Evaluation kit provided with

- Accelerometer F/W example loaded (IDB002V1)
- IAR project example (require an ST-Link device)

Full kit STEVAL-IDB002V1

STM32 Nucleo and BlueNRG Shield 14

STM32 NUCLEO

Arduino Connectors

BlueNRG Shield

X-NUCLEO-IDB04A1

BlueNRG Shield X-NUCLEO-IDB04A1

FEATURES:

- Ultra-low-power Bluetooth low-energy connectivity
- Compatible with both STM32-Nucleo and Arduino development kits
- Self-consistent RF design (includes antenna, balun filter, etc.)
- SPI communication interface with host MCU

OUT-OF-THE-BOX:

- Ready-to-use shield-plugin for RF BLE connectivity
- Application examples, quick starting guide and tutorials under dev.

SOFTWARE DEVELOPMENT KIT (SDK):

- Extensive examples (source-code) and API documentation
- Support both ACI and HCI control interfaces over SPI
- Growing library of BLE profiles
- Full support for STM32-Nucleo/Cube development environment

BENEFITS:

- Fast prototyping of user applications, start hands-on coding in 1-day
- No Bluetooth connectivity or RF specialist required

X-NUCLEO-IDB04A1

BlueNRG Software partitioning

- BlueNRG embeds all the Bluetooth® Smart protocol stack
- Only the application remains in the host MCU.
- Application Controller Interface links BlueNRG with the Host MCU through SPI bus.

- *BLE standard profiles are not mandatory
 - ST can provide example of proprietary application

Clear SW partitioning between BlueNRG and Host MCU

STEVAL-IDB002V1 Bluetooth Smart + Sensors demo

Bluetooth® 4.0 low-energy chip

STEVAL-IDB002V1

Android and iOS apps available on-line

Sensors

- LPS25H Barometer
- HTS221 Humidity Sensor
- LIS3DH Accelerometer

STM32L1 Nucleo - Bluetooth Smart + Sensors demo adaptation Bluetooth

Bluetooth® 4.0 low-energy chip

Cube spinning start / stop controlled by button on STM32L1 Nucleo All sensor data are SIMULATED only

