36710 - 36752

ADVANCED PROBABILITY OVERVIEW

FALL 2020

LECTURE 11: WED, OCT 7, 2020

· LAST TIME: PRODUCT 6-FLEZOS, PRINUCT MEASURES AND TONELL' THIMS PUBLINI THIMS

IF X AND Y ARE RANDOM VARIABLES ON A COMMON PROBABILITY SPACE (2, 5, P) THEY ARE INTERPENDENT WHEN 6(X) AND 6(Y) ARE INDEPENDENT [FOR EACH $A \in 6(X)$]
AND $B \in 6(Y)$, $P(A \cap B) = P(A) \cdot P(B)$]

Def (of mutual inder- FOR A COLLECTION OF RUS). LET $\{(S_t, A_t), t \in T\}$ BE MEASURE JAACES.

LET XE: A -> SE BE \$ / AE - MEAS. FUNCTIONS.

(THESE ARE RVS!) FOR EACH EET. THEN { XE, EET}

ARE MUTUALLY INDER. WHEN THER 6-FIELDS { 6 (XE), EET}

ARE MUTUALLY INDER. INDERNOENT.

Thin LET (12, F.P) BE A PROB- SPACE AND (SI, AI) AND (S2, A2) RE MEASURABLE SPACES. LET Xa: IL -> SI x = 1,2 BE RANDOM VARIABLES AND SET $X = (X, X_2)$ THE DISTRIBUTION OF X: 12 -> (S, S2), MX, IS THE PRIDUCE MEASURE MX & MXL 118 X1 AND X2 ARE INDEPENDENT. PT) IF DIRECTION. ASSUME X1 AND X2 ARE INDEP. THEN FOR ANY MEAS. RECT. A. X AZ Sw: X1(w) & A13 Mx (A, XA2) = P ({X1 e A1} ({X2 e A2}) = P({X1 e A1}) P({X2 e A2}) = Ux, (A) · Ux, (A2) FOR THE STUER DIRECTON, ASSUME MX IS THE PRODUCT MEASURE. Pr (X1eA1, X2e A2) = P ({ { X1 = A1 } N { X2 = A2 }) = ux (A, x A2) = ux1 (A1) ux2 (A2) = P({ x, e A 1 }) P({ x 2 e A 2 })

EXTENSION TO MUTUAL INDEPENDENCE IS DIRECT.

INFINITE PRODUCT SPACES AND STOCKLYTIC PROCESSES Def LET (12,5,P) BE A PROBABILITY SPACE AND T AN ARBITRARY SET. SUPPOSE THAN FOR EACH LET THERE EXISTS A MEASURABLE SPACE (Ht. FE) AND A RANDOM QUANTITY Xt: 12 1-5 26t. THE COLLECTION { XE, EET } IS CALLED A STOCKASTIC PROCESS AND T ITT INDEX SET. REMARK W = { X+(co), E eT} TYPICALLY RE=R ALL t (FE=B1), T=IN OR T=IR>0 DISCRETE TIME CONTINUOUS
PROCESS IE T = {1, ... k} AND EACH Xn IS A R.N. (ON A COMMON PROB. SPACE!) THE THE RANDOM VEGOD (X1 ... Xx) IS A WAY TO REPRESENT { X1, LET }. EXAMPLE (RANDOM PROBABILITY MEASURE : MIXTURE) LET (): IL > IR BE A RANDOM VECTOR, WITH DISTRIBUTION ME LET f: RXR" -> R>O BE MEAS S.T. Sf(x,A) dx=1 ALL DERK. [TAKE K=1 LET M@ BE N(0,1) AND $f(x, \theta) = \frac{1}{12\pi 6} \exp \left\{-\frac{(x-\theta)^2}{26^2}\right\}$ some 6>0. POP OF N(0,62) LET BET = B1 AND DEPENE $X_{\mathcal{B}}(\omega) = \int f(x, \mathcal{O}(\omega)) dx$ Lo Legesgue Measure

ANOTHER	Exam	ope of a	RANDOM	PROBABILIT	y MEASURE	1S Tre
EMPI	RICAL M	EASURE:	X, X2,	, & ,	RE (NDEPER	IDENT RU'S
WETH						ANDOM PROS. MEASU
(1)		B = 81 +	-> Pn ($8) = \frac{1}{n}$	51 1 5	Xa e B }
9	ARE BOTT	य हाज ८१८५९७	TC PROCE	ises wet	u T= 6	3 ¹ AND
HE.	= [0, 1]	all t.				
						-> CARTESIAN PRODUCT
						E = TI Xt
85	THE SET	OF ALL PUN	coons f	: T ->	U X to	SUCH THAT
FOR	EVERY	t, fct) E ZE.	WHEN	XE= Y	acc t, we
WR	TE TUS	as y				
example -	THENK (of R" 4	as R	,, 43	no of a	VECTOR
	(x, , z	k) eR"	S A FUNCT	70N 5.7.	f(1) = 21	1=1,u.
-	FOR THE	RINDOM P	ROB. EXAMP	LE X	= [0,2]	31 AND WE
	an Tu	NK OF EAC	G PRB. NE	ASURE ON	(R, G^1)	AS A FUNCTION
	Rom	3 ¹ 1190	[0, 1]	WARNING	THE PRO	Dua se X
	CONTAU	NS ALSO F	unams Tu	AT ARE	NOT PROBAB	SILTHES FOR
	EXAMPLE	THE PLAN	con f	(B) =1	ALL BE	G3 ¹ ,
KEY INT	MON .	WE CAN	NOW THIN	a of A	STOCKASTI	c process as
AR	CANDOM 7	Fur con !				

Det (coordinate
PROJECTION AND CYLINDER SETS). LET 26 = TI 26. FOR EACH
LET te T LET TE: H -> XE GE DEPENDED AS $\pi_{t}(f) = f(t)$ IS THE t- COORDINATE PROJECTION FUNCTION. A ONE-DIMENSIONAL CYLINDER SET IS A SET OF THE FORM TT Bt s.t. Bt. & F. Some to ET Bt = Xt ALL t = to-DEFINE ON IT THE PRODUCT 6-FRED & FE AS THE 6- FICLD GENERATED BY ALL CYLINDERS. INTERSECTION OF CYLINDER SOTS Lemma 34 THE PRODUCT 6-FIELD IS THE SMALLEST 6-FIELD S.T. ALL COORDINATE PROJECTIONS ARE MEAS. FUNCTIONS Thin 35 LET (I, F,P) BE PROB. SPACE, AND T BE A SET INDEXING MEASURABLE SPACE { (HE, FE), LET] S.F. XE: A DIE IS A PLACTON FOR ALL E. DEFINE X: 1 -> X = 11 XE BY SETTING X(w) TO BE THE FUNCTION FE IT DEFINED BY ft = Xt(w), act. X IS F/BFE HEACH XE IS S/FE MEAS

L> X (5 A RANDOM FUNCTION DESCRIBING THE STOCKASTIC PROCESS XCW) IS A REALIZATION OR PATH OF THE PROCESS HOW DO WE CONSTRUCT PROS. DISTRIBUTIONS OVER (#, &) FE) TO HANDLE STOCKASTIC PROCESSES? KOLMOGOROU EXTENSION TREOREM. Def (FINITE DIMENSIONAL PROTECTIONS). T. LET V CT FINITE, 59 $v = \{ t_1, t_2, \dots, t_n \}$. Let $\mathcal{X}_v = \mathcal{T}_v \mathcal{X}_t$ AND, SUMMARLY, LET ST BE THE PRODUCT 6-FIELD EVER DEV. FOR ANY UCV OF THE FORM V = {till till men and FOR ANY $x = (x(t_1), ..., x(t_n)) \in \mathcal{X}_{V}$ is $x_0 = (x(t_n), ..., x(t_n))$ BE THE CORRESPONDING SUB-VECTOR LET PULS A PROB. MEASURE ON (ZI, Fr). THE PROSECTION OF PU ON (ZN, FN) IS THE PROB. MEASURE TIU (PV) GUEN BY To (P) (B) = Pr ({xex. xceB}) Be for SIMILARLY IF Q IS A PROB DISTR OVER (IT IE, & JE) THE PROJECTION OF Q ON (XV, FU) IS Tru(Q) (B) = Q({x ∈ Ti Xe: xv ∈ B}) Be Fr