Листок 3

Доп. задачи из книг "Сборник задач по математическому анализу". Том 1. Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И. ФИЗМАТЛИТ, 2003 год ([1]); "Математический анализ в задачах и упраженениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

- 1. Вычислить пределы: а) $\lim_{n\to\infty}\frac{5^n-3^n}{5^n+3^n}$; б) $\lim_{n\to\infty}(\sqrt[3]{2n+1}-\sqrt[3]{n-1})$; в) $\lim_{n\to\infty}\frac{\ln n-3n^4-n^3}{\sqrt[3]{5n^{12}+3^{\frac{1}{n}}}}$; г) $\lim_{n\to\infty}\frac{n^2-10}{1+n\cdot 1,1^n}$; д) $\lim_{n\to\infty}\sqrt[n]{2^nn^2+2n-1}$; е) $\lim_{n\to\infty}\sqrt[n]{\arctan(n-1)^n}$. См. [1], с. 139, № 26, с. 140 с. 144, все задачи.
- - 2. Исследовать на сходимость следующие рекуррентно заданные последовательности:
- a) $a_1 = \sqrt{2}, a_{n+1} = \sqrt{2a_n};$ 6) $a_1 = \sqrt{2}, a_{n+1} = \sqrt{2+a_n};$ B) $a_1 = 2, a_{n+1} = \frac{1}{3}\left(2a_n + \frac{2}{a_n^2}\right).$ Cm. [1], c. 155, No 164, c. 160 No 218 No 227; [2], No 3. 56 No 3. 61, No 3.87 No 3.110.
- **3. а)** Пусть $a_n = \left(1 + \frac{1}{n}\right)^{n+1}$, а $b_n = \left(1 + \frac{1}{n}\right)^n$. Доказать, что a_n не возрастает, а b_n не убывает и $a_k \ge b_m$ при всех натуральных k и m, а также доказать, что $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.
- **б)** Пусть $a_n=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln n,$ а $b_n=1+\frac{1}{2}+\ldots+\frac{1}{n}-\ln(n+1).$ Доказать, что a_n не возрастает, а b_n не убывает и $a_k \geq b_m$ при всех натуральных k и m, а также доказать, что $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n.$ Cm. [1], c. 155 - c. 156, No 165 - No 169; [2], No 3. 79 - No 3. 82.

- **4.** Пусть $\lim_{n\to\infty} a_n = a$. **a)** Доказать, что $\lim_{n\to\infty} \frac{a_1 + a_2 + ... + a_n}{n} = a$; **б)** если $a_n > 0, n \in \mathbb{N}$, то и $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdot \dots \cdot a_n} = a.$
- Cm. [1], c. 155 c. 156, Nº 176 N287, c. 159, Nº 205, c. 160, Nº213; [2], Nº3. 70 N23. 74.
 - **5.** Доказать расходимость последовательности $\{a\}_{n=1}^{\infty}$, если:
- a) $a_n = n^{(-1)^n}$; 6) $a_n = \sin \pi \sqrt{n^2 + n}$. Cm. [1], Havuhaa co c. 138, No 13 No 15, No 20, No 150.
 - **6.** Доказать, что последовательность $\{a\}_{n=1}^{\infty}$, не имеет предела, если:
- а) $a_n = \sin n$; б) $a_n = \operatorname{tg} n$. См. [1], Начиная со с. 138, № 13 №15, № 20, № 150.
 - **7.** Доказать, что:
- а) $\lim_{n\to\infty}\left(1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!}\right)=e;$ б) $e=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!}+\frac{\alpha_n}{n\cdot n!},0<\alpha_n<1;$ в) число eиррационально. См. [1], с. 156, № 166 – № 168; [2], №3. 74 – №3. 78.
- **8*. а) (Теорема Тёплица.)** Пусть даны числа $c_{nk}, n \in \mathbb{N}, 1 \leq k \leq n$, образующие бесконечную нижнетреугольную матрицу

и удовлетворяющие условиям:

- 1) $\lim c_{nk} = 0 \ \forall k \in \mathbb{N}$ (столбцы матрицы являются бесконечно малыми последовательностями);
- **2**) $\lim_{n \to \infty} \sum_{k=1}^{n} c_{nk} = 1$ (сумма элементов строки стремится к 1 при $n \to \infty$);
- **3)** $\exists C>0: \ \forall n\in\mathbb{N} \ \sum_{k=1}^{n}|c_{nk}|\leq C$ (сумма модулей элементов строки ограничена).

Доказать, что тогда для любой сходящейся последовательности $\{a_n\}_{n=1}^{+\infty}$ последовательности ность $b_n = \sum_{k=1}^n c_{nk} a_k$ тоже сходится и $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n$.

б) Пусть $\lim_{n\to\infty} a_n = a$. Найти

$$\lim_{n \to \infty} \left(\frac{a_n}{1} - \frac{a_{n-1}}{2} + \dots + (-1)^{n-1} \frac{a_1}{2^{n-1}} \right).$$

- **9. а) (Теорема Штольца).** Пусть $y_{n+1} > y_n > 0$ при всех $n \in \mathbb{N}$ и $\lim_{n \to \infty} y_n = +\infty$, а также $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=l$. Доказать, что $\lim_{n\to\infty}\frac{x_n}{y_n}=l$;
- **б)** найти $\lim_{n \to \infty} \frac{1}{n\sqrt{n}} (1 + \sqrt{2} + ... + \sqrt{n});$
- в) найти $\lim_{n\to\infty} \frac{1 \cdot a + 2 \cdot a^2 + \dots + n \cdot a^n}{n \cdot a^{n+1}}, a > 1$. См. [2], №3. 122 №. 142.

Домашнее задание 3.

1. Вычислить пределы:

а)
$$\lim_{n\to\infty}\frac{n^3}{3}\left(\sqrt[3]{1+\frac{3}{n^3}}-1\right);$$
 б) $\lim_{n\to\infty}\left(\sqrt[n^2]{\frac{n-1}{n+1}}+\sqrt[n]{3^nn^3+2}\right);$ в) $\lim_{n\to\infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\ldots+\frac{n-1}{n^2}\right);$ г) $\lim_{n\to\infty}\sqrt[n]{n-\log_2 n};$ д) $\lim_{n\to\infty}\frac{n\cos n!}{2^n+1};$ е) $\lim_{n\to\infty}\frac{(2n-1)!!}{(2n)!!}\ln n.$ 2. Исследовать на сходимость следующие рекуррентно заданные последовательности

и найти пределы, если они есть:

a)
$$a_1 = \frac{1}{2}, a_{n+1} = \frac{4}{3}a_n - a_n^2$$
; 6) $a_1 = 1, a_{n+1} = \frac{4a_n + 2}{a_n + 3}$. B)* $a_1 = a > 0, a_{n+1} = \frac{a}{2 + a_n}$.

3. Доказать, что:

а) если
$$a_n > 0$$
 при всех $n \in \mathbb{N}$ и $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a$, то $\lim_{n \to \infty} \sqrt[n]{a_n} = a$; б) $\left(\frac{n}{e}\right)^n < n! \le en\left(\frac{n}{e}\right)^n$;

 $\mathbf{B)} \lim_{n \to \infty} \sin(2\pi e n!) = 0.$

4. Доказать расходимость последовательности: **a)** $\sin \frac{\pi n}{6}$; **б)** $a_n = \operatorname{ctg} n$.

5. Вычислить пределы:

a)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{2n}} \right)$$
; 6) $\lim_{n\to\infty} \frac{n}{a^{n+1}} \left(a + \frac{a^2}{2} + \dots + \frac{a^n}{n} \right)$, $a > 1$.