

# Cerebras HPC Research and SDK Overview



# Cerebras Wafer-Scale Engine

The fastest AI chip on earth again

4 trillion transistors

46,225 mm2 silicon

900,000 cores optimized for sparse linear algebra

5nm TSMC process

125 Petaflops of AI compute

44 Gigabytes of on-chip memory

25 PByte/s memory bandwidth

245 Pbit/s fabric bandwidth

## Does your application scale poorly across nodes?

**Examples:** FFT-based solvers, particle simulators, non-linear problems with iterative solvers

#### The Cerebras solution:

- The WSE-3 has a fabric that is high bandwidth and low-latency, allowing for excellent parallel efficiency for non-linear and highly communicative codes
- The CS-3 system has **900k cores** and can fit problems on an individual chip that take tens to hundreds of traditional small compute nodes.
  - Each core is individually programmable





## Is your application constrained by data access?



**Examples:** Stencil based PDE solvers, linear algebra solvers, signal processing, sparse tensor math, big data analysis

#### The Cerebras solution:

- The CS-3 system has 44 GB of SRAM uniformly distributed across the wafer that is 1 cycle away from the processing element
  - Speeds up memory access by orders of magnitude
- The CS-3 system is capable of 1.2 Tb/s bandwidth onto the chip
  - Stream data onto the chip as required



## Full Performance on All BLAS Levels





## **WSE-3 Architecture Basics**



The WSE appears as a logical 2D array of individually programmable Processing Elements

#### Flexible compute

- 900,000 general purpose CPUs
- 16- and 32-bit native FP and integer data types
- Dataflow programming: Tasks are activated or triggered by the arrival of data packets

#### Flexible communication

- Programmable router
- Static or dynamic routes (colors)
- Data packets (wavelets) passed between PEs
- 1 cycle for PE-to-PE communication

#### **Fast memory**

- 44GB on-chip SRAM
- Data and instructions
- 1 cycle read/write



## Flexible Compute



#### Dataflow Execution Model

- Tasks may be triggered by wavelets or activated
- Each color activates a distinct task
- Independent programs specified for regions of PEs
  - Programs specify computation for the processor and communication via colors
  - Parametrized programs allow execution of different control flow on different PEs
- Asynchronous operations performed by launching microthreads
- Control flow is straightforward to reason about
  - Tasks are non-preemptive
  - Instruction to activate another task enable statemachine behavior



## Flexible Communication



Router-to-router communication: 1 cycle

Router-to-processor communication: **5 cycles** 

- PEs communicate to adjacent PEs and their processor through their routers
- The router is a 24-entry table on each PE associating colors with directions
  - Table entries mapped to PE memory
  - Up to 24 routes (i.e. colors) may be specified at compile-time for each PE
- Complex communication patterns
  - Dynamic updating of routes at runtime
  - Multiple routing table entries per color enable multicast: broadcasting data in multiple directions at once each cycle
- Input/ output queues in each PE alleviate back pressure at routers during runtime
- Programmer feeds tensors into the fabric from outside world, specified in host program



## **Fast Memory**



PE local memory read-write: 1 cycle

- 44GB of on-chip SRAM
  - Uniformly distributed on wafer
  - 48kB per PE
- Programmer can read/write memory for regions of PEs at once from host
- Local PE memory is not directly addressable by other PEs, but is directly addressable by host program
- SIMD possible for vector instructions



## **Cerebras SDK**

A general-purpose parallel-computing platform and API allowing software developers to write custom programs ("kernels") for Cerebras systems.







## **Documentation:** sdk.cerebras.net



## SDK Documentation (1.2.0)



#### Documentation for Developing with CSL

This is the documentation for developing kernels for Cerebras system. Here you will find getting started guides, quickstarts, tutorials, code samples, release notes, and more.

#### Start Here

Computing with Cerebras

A conceptual, "mental model" view.

#### Installation Guide

Installing the Cerebras SDK

Setup your environment for using the fabric simulator or a real CS system.

#### **Introductory Tutorials**

Step-by-step instruction in CSL

Get started writing your first programs in CSL using our SDK.

#### Working with Code Samples

Learn how to run the code samples

A detailed look into compiling and running the provided code samples.

#### **CSL Code Samples**

Explore CSL programs

From simple single-PE programs to full-wafer conjugate gradients.

#### CSL Language Guide

See how to use CSL

Reference for the CSL language.



## From a Programmer's Perspective

## **Host CPU(s): Python**

- Loads program onto simulator or CS-3 system
- Streams in/out data from one or more workers
- Reads/writes device memory

#### **Device: CSL**

- Target software simulator or CS-3
- CSL programs run on groups of cores on the WSE, specified by programmer
- Executes dataflow programs











## **CSL: Language Basics**

- Types
- Functions
- Control structures
- Structs/Unions/Enums
- Comptime
- Builtins
- Module system
- Params
- Tasks
- Data Structure Descriptors
- Layout specification

Straight from C (via Zig)

CSL specific

# Used for writing device kernel code

Familiar to C/C++/HPC programmers



## **Familiar Features**

## **Types**

- Syntax similar to other modern languages Go, Swift, Scala, Rust
- Float (f16, f32), signed (i16, i32), unsigned (u16, u32), boolean (bool)

```
var x : i16;
const y = 42;
var arr : [16, 4]f32;
var ptr : *i16;
```

#### **Functions**

- Zig-style syntax
- Pass by value or reference and inlining automatically handled

```
fn factorial(x : i32) i32 {
   if (x <= 2) return x;
   return x * factorial(x - 1);
}</pre>
```

#### **Control Structures**

• Traditional control flow: **if**, **for**, **while**, with zig and C style syntax

```
if (x < 10) {
   y += 5;
} else {
   y += 10;
}</pre>
```

```
conditionals
```

```
var x: u16 = 100;
while(x > 99) {
    ...
}
```

while loop

```
var idx: u16 = 0;
while (idx < 5) : (idx += 1) {
   ...
}</pre>
```

**while** loop with iterator

```
const xs = [10]i16 { 0, 1, 2, 4 };
for (xs) |x,idx| {
   ...
}
```

range **for** loop (also provides C-style **for**)



## **Quality of Life Features**

## Comptime

- From Zig, block of code where all evaluation occurs at compile time
- Useful for frontloading computation to avoid runtime overhead

```
comptime {
  const f23 = factorial(23);
  ...
}
```

#### **Params**

- Like #define, but strongly typed
- Have to be "bound" completely during compilation

```
param M : i16;
param N : i16;
param is_left_edge : bool;
```

#### **Modules**

- Any CSL source code file is a "Module," importable into other modules
- Imported modules acts as an instance of a unique struct type
- Multiple imports of the same module allowed

```
var x = 0;
fn incr() void {
    x = x + 1;
}
```

```
const v1 = @import_module("m1.csl");
const v2 = @import_module("m1.csl");

v1.incr();
v2.incr(); v2.incr();

// v1.x == 1; v2.x == 2;
```



## **Performance Features**

#### **Builtins**

- Similar to function calls with @ in front of function name
- Language extensions without special syntax
- Used for invoking special compiler functionality

#### **Tasks**

- Core building blocks of CSL
- Special functions used to implement dataflow programs
- Triggered by incoming wavelets on a specific color

```
// Initialize a tensor of four rows
// and five columns with all zeros.
var matrix = @zeros([4,5]f16);
```



## **Performance Features**

## **Data Structure Descriptors (DSDs)**

- Provide a mechanism to consider an array, and an access pattern, as a complete unit
- Operations using DSDs run for multiple cycles to complete an instruction on all data referenced by the DSD
- Performance and ease of use: lifts level of program to talking about whole structures, while lowering cost of computing indexing into hardware

```
const dstDsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{5} -> dst[i] });
const src0Dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{5} -> src0[i] });
const src1Dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{5} -> src1[i] });

const fabDsd = @get_dsd(fabout_dsd, .{ .fabric_color = output_color, .extent = 1});

task main_task() void {
    @faddh(dstDsd, src0Dsd, src1Dsd);
    @fmovh(fabDsd, dstDsd);
}
```

DSDs are a *unifying concept* that provides for complex memory reads and writes and fabric reads and writes



## **SDK Example Programs Available**

Repository: github.com/Cerebras/csl-examples

- Introductory Tutorials
- GEMV
- GEMM
- Cholesky Decomposition
- 1D and 2D FFT
- 7-Point Stencil SpMV
- Power Method

- Conjugate Gradient
- Preconditioned Conjugate Gradient
- Finite Difference Stencil Computations
- Mandelbrot Set Generator
- Shift-Add Multiplication
- Hypersparse SpMV
- Histogram Computation



## **SDK Access and Next Steps**

Get local access to the SDK simulator!

• Email <a href="mailto:developer@cerebras.net">developer@cerebras.net</a> for access

Join the Cerebras Developer Community

Forums at <u>discourse.cerebras.net</u>

View our public SDK examples GitHub repository

• See <a href="mailto:github.com/Cerebras/csl-examples">github.com/Cerebras/csl-examples</a>

Questions? <a href="mailto:developer@cerebras.net">developer@cerebras.net</a>



discourse.cerebras.net



cerebras.net/developers/sdk-request



# TotalEnergies achieves 228x speedup vs. A100 on seismic imaging algorithm

Common computational approaches to solving seismic imaging problems, such as stencil methods, are typically memory-bound.

Additionally, strong scaling is typically limited by fabric bandwidth between compute nodes.

### Total has addressed these challenges with Cerebras:

- Implemented 25-point stencil for the 3D wave equation with source perturbation, achieved 228x speedup over A100.
   Presented at SC22.
- Implemented finite volume flux computation for single phase flow, achieved **204x speedup over A100**. Presented at SC23.
- Additionally developed proprietary RTM (Reverse Time Migration) code for internal use.

Papers: https://arxiv.org/abs/2204.03775 and https://arxiv.org/abs/2304.11274





## TotalEnergies achieves >200x *H100* on finite volume simulation

### TotalEnergies keeps innovating with Cerebras in 2024

- Matrix-free finite volume solvers are an essential tool for Total's work on geological carbon capture and storage
- Solver implementation for CS-2 achieved 210x speedup over H100 GPU
- Total has also developed StencilPy, a Python framework for stencil computations on the wafer-scale engine
- StencilPy 25-pt stencil for seismic acoustic wave propagation achieved 95x speedup over H100 GPU
- Both papers to appear at SC24

Papers: <a href="https://arxiv.org/pdf/2408.03452">https://arxiv.org/pdf/2408.03452</a> and <a href="https://arxiv.org/pdf/2309.04671">https://arxiv.org/pdf/2309.04671</a>

Blogs: Matrix-free finite volume and StencilPy





## Cerebras and KAUST break records on seismic processing

- Researchers redesigned a Tile Low-Rank Matrix-Vector Multiplication (TLR-MVM) algorithm for Cerebras CS-2, taking advantage of the ultra high memory bandwidth
- Provided researchers with CG-1 Al supercomputer to run this simulation
- Achieved sustained memory bandwidth of 92.58 PB/s across 48 CS-2 systems – higher than Frontier (#1 TOP500), comparable to Fugaku (#4 TOP500)



Paper: <a href="https://dl.acm.org/doi/10.1145/3581784.3627042">https://dl.acm.org/doi/10.1145/3581784.3627042</a>





# Argonne National Labs Uses CS-2 to Accelerate Monte Carto Particle Transport by 180x Over A100

"The WSE is found to run 130 times faster than a highly optimized CUDA version of the kernel run on an NVIDIA A100 GPU – significantly outpacing the expected performance increase given the relative number of transistors each architecture has"

New PHYSOR publication demonstrates 180x over A100.

Paper: <a href="https://arxiv.org/abs/2311.01739">https://arxiv.org/abs/2311.01739</a>

#### Efficient Algorithms for Monte Carlo Particle Transport on AI Accelerator Hardware

John Tramm<sup>a,\*</sup>, Bryce Allen<sup>a,b</sup>, Kazutomo Yoshii<sup>a</sup>, Andrew Siegel<sup>a</sup>, Leighton Wilson<sup>c</sup>

<sup>a</sup>Argonne National Laboratory, 9700 S Cass Ave., Lemont, 60439, IL, USA
 <sup>b</sup>University of Chicago, 5801 S. Ellis Ave., Chicago, 60637, IL, USA
 <sup>c</sup>Cerebras Systems Inc., 1237 E Arques Ave, Sunnyvale, 94085, CA, USA

#### Abstract

The recent trend in computing towards deep learning has resulted in the development of a variety of highly innovative AI accelerator architectures. One such architecture, the Cerebras Wafer-Scale Engine 2 (WSE2), features 40 GB of on-chip SRAM making it an attractive platform for latency- or bandwidth-bound HPC simulation workloads. In this study, we examine the feasibility of performing continuous energy Monte Carlo (MC) particle transport by porting a key kernel from the MC transport algorithm to Cerebras' CSL programming model. We then optimize the kernel and experiment with several novel algorithms for decomposing data structures across the WSE2's 2D network grid of approximately 750,000 user-programmable distributed memory compute cores and for flowing particles (tasks) through the WSE2's network for processing. New algorithms for minimizing communication costs and for handling load balancing are developed and tested. The WSE2 is found to run 130 times faster than a highly optimized CUDA version of the kernel run on an NVIDIA A100 GPU — significantly outpacing the expected performance increase given the relative number of transistors each architecture has.



# CS-2 Accelerates molecular dynamics for metallic alloys 179x faster than Frontier

"Measured performance and power efficiency of WSE, GPU, and CPU systems on 800,000-atom simulations. WSE used FP32 precision while GPU and CPU used FP64 precision. (a) A single WSE wafer results in 179x and 55x speedup compared to Frontier and CPU based simulations; (b) WSE provides one to two orders of magnitude improvement in power efficiency over both CPU and GPU systems; (c) Relative power efficiency and speedup of WSE compared to CPU and GPU systems."



2024 Gordon Bell Prize finalist

#### Fast Molecular Dynamics on a Wafer-Scale System

Kylee Santos\*, Stan Moore†, Tomas Oppelstrup‡, Amirali Sharifian\*, Ilya Sharapov\*, Aidan Thompson†,
Delyan Z Kalchev\*, Danny Perez§, Scott Pakin§, Edgar A. Leon‡, James H Laros III†,
Michael James\*, and Sivasankaran Rajamanickam†

\*Cerebras Systems, Sunnyvale, CA

†Sandia National Laboratories, Albuquerque, NM

‡Lawrence Livermore National Laboratory, Livermore, CA

§Los Alamos National Laboratory, Los Alamos, NM

Abstract—Molecular dynamics (MD) simulations have transformed our understanding of atomic systems, driving breakthroughs in material science, computational chemistry and several other fields like biophysics and drug design. Using the Cerebras Wafer-Scale Engine, we demonstrate an improvement in MD iteration rate that enables a transformative capability for longtime simulations. This unlocks currently inaccessible timescales of slow microstructure transformation processes that are critical for understanding material behavior and function.

Our dataflow algorithm runs an Embedded Atom Method (EAM) simulation at rates over 270,000 timesteps per second for problems with up to 800k atoms. This corresponds to a nearly 180-fold speedup versus the Frontier GPU-based Exascale platform. It simultaneously achieves an over 30-fold improvement in energy efficiency. This demonstrated performance is unprecedented for general-purpose processing cores. With further parallelization of the algorithm, we project performance in excess of one million timesteps per second for 200,000 atoms. This projected perfor-









## Example: GEMV

Run a program with non-trivial communication that performs general matrix-vector multiplication

#### Goals:

- Highlight (1) layout, (2) PE programming, and (3) runtime components of a non-trivial program
- Write a CSL program with multiple tasks and communication between PEs
- Use memory, fabric input, and fabric output DSDs
- Use the checkerboard pattern for communicating data across wafer
- Use the memcpy framework to move data on and off wafer

#### **Location of example:**

https://sdk.cerebras.net/csl/code-examples/tutorial-gemv-09-streaming









Problem is distributed onto 4 x 4 grid of PEs.





- Host streams in b from the West, x from the North; streams out y to the East
- A is copied to the wafer



# **GEMV Problem Steps**

**Device** 



















2. Host streams in  $0^{th}$ ,  $4^{th}$ ,  $8^{th}$ ,  $12^{th}$  elements of x into PEs (0,0), (1,0), (2,0), (3,0), respectively









### **Device**



# 3. Activated task forward elements to PEs (0,i), (1,i), (2,i), (3,i)

#### Host







#### **Device**





### **4. Device computes for** j = 0, 4, 8, 12:

$${
m tmp}_i = A_{i,j} x_j, \ i = 0:7$$
 on  ${
m 0^{th}}$  row PEs  ${
m tmp}_i = A_{i,j} x_j, \ i = 8:15$  on  ${
m 1^{st}}$  row PEs  ${
m tmp}_i = A_{i,j} x_j, \ i = 16:23$  on  ${
m 2^{nd}}$  row PEs  ${
m tmp}_i = A_{i,j} x_j, \ i = 24:31$  on  ${
m 3^{rd}}$  row PEs

#### Host









$$tmp_i = A_{i,0}x_0,$$
  

$$i = 0:7$$



PE (0,0)





PE (1,0)





PE (2,0)





PE (3,0)





$$tmp_i = A_{i,0}x_0,$$
  
 $i = 8:15$ 



PE (0,1)





PE (1,1)





PE (2,1)





PE (3,1)





$$tmp_i = A_{i,0}x_0,$$
  
 $i = 16:23$ 



PE (0,2)





PE (1,2)





PE (2,2)





PE (3,2)





$$tmp_i = A_{i,0}x_0,$$
  
 $i = 24:31$ 



PE (0,3)





PE (1,3)





PE (2,3)





PE (3,3)





5. Host streams in 1<sup>st</sup>, 5<sup>th</sup>, 9<sup>th</sup>, 13<sup>th</sup> elements of X into PEs (0,0), (1,0), (2,0), (3,0), respectively













# 6. Activated task forward elements to PEs (0,i), (1,i), (2,i), (3,i)

## Host











## **7. Device computes for** j = 1, 5, 9, 13:

$${
m tmp}_i = A_{i,j} x_j, \ i = 0:7$$
 on  ${
m 0^{th}}$  row PEs  ${
m tmp}_i = A_{i,j} x_j, \ i = 8:15$  on  ${
m 1^{st}}$  row PEs  ${
m tmp}_i = A_{i,j} x_j, \ i = 16:23$  on  ${
m 2^{nd}}$  row PEs  ${
m tmp}_i = A_{i,j} x_j, \ i = 24:31$  on  ${
m 3^{rd}}$  row PEs

### Host









$$tmp_i += A_{i,1}x_1,$$
  

$$i = 0:7$$

$$tmp_i += A_{i,5}x_5,$$
  
 $i = 0:7$ 

$$tmp_i += A_{i,9}x_9,$$
  
 $i = 0:7$ 

$$tmp_i += A_{i,13} x_{13}, i = 0 : 7$$









PE (0,0)

PE (1,0)

PE (2,0)

PE (3,0)





$$tmp_i += A_{i,1}x_1,$$
  
 $i = 8:15$ 

$$tmp_i += A_{i,5}x_5,$$
  
 $i = 8:15$ 



$$tmp_i += A_{i,13} x_{13},$$
  
 $i = 8:15$ 









PE (0,1)

PE (1,1)

PE (2,1)

PE (3,1)





$$tmp_i += A_{i,1}x_1,$$
  
 $i = 16: 23$ 

$$tmp_i += A_{i,5}x_5,$$
  
 $i = 16:23$ 

$$tmp_i += A_{i,9}x_9,$$
  
 $i = 16:23$ 

$$tmp_i += A_{i,13} x_{13},$$
  

$$i = 16: 23$$









PE (0,2)

PE (1,2)

PE (2,2)

PE (3,2)





$$tmp_i += A_{i,1}x_1,$$
  
 $i = 24 : 31$ 



$$tmp_i += A_{i,9}x_9,$$
  
 $i = 24 : 31$ 

$$tmp_i += A_{i,13} x_{13},$$
  

$$i = 24 : 31$$









PE (0,3)

PE (1,3)

PE (2,3)

PE (3,3)





- **8.** Host streams in  $X_2$ ,  $X_6$ ,  $X_{10}$ ,  $X_{14}$
- 9. Task forwards elements South
- 10. Device computes contributions to tmp







- **11.** Host streams in  $X_3$ ,  $X_7$ ,  $X_{11}$ ,  $X_{15}$
- 12. Task forwards elements South
- 13. Device computes contributions to tmp











14. Host streams in elements of b in equal chunks to PEs (0,0), (0,1), (0,2), (0,3), respectively









# 15. Send values along RAMP → RAMP routing to be received from fabric in compute task









16. When Ax chunk and b values are available, PEs along left edge calculate contribution of b to tmp

Host









$$tmp_i += b_i,$$
  
$$i = 0:7$$











PE (0,2)





PE (0,3)



# 17. PEs along left edge send their running sum tmp to the East





# 18. PEs in column 1 accumulate contribution to tmp sent by PEs from column 0







Let  $u_i$  be values sent in from West.

$$tmp_i += ui,$$
  
$$i = 0:7$$











PE (1,2)





PE (1,3)



# 19. PEs in column 1 send their running sum tmp to the East





# 20. PEs in column 2 accumulate contribution to tmp sent by PEs from column 1







Let  $u_i$  be values sent in from West.

$$tmp_i += ui,$$
  
$$i = 0:7$$







$$tmp_i += ui,$$
  
 $i = 16 : 23$ 







PE (2,3)



# 21. PEs in column 2 send their running sum tmp to the East





# 22. PEs in column 3 accumulate contribution to tmp sent by PEs from column 2







Let  $u_i$  be values sent in from West.  $y_i$  is in same memory location as  $tmp_i$ .

$$y_i = tmp_i + ui,$$
  
$$i = 0:7$$



$$y_i = tmp_i + ui,$$
  
$$i = 8:15$$



$$y_i = tmp_i + ui,$$
  
$$i = 16:23$$



PE (3,2)

$$y_i = tmp_i + ui,$$
  
$$i = 24 : 31$$



PE (3,3)



# 23. PEs along right edge send final sum y to the East









# **GEMV Color Routes Device**











Circle: RAMP

Outline: rx Solid: tx







### **Device**





### Color 5:

- On row 0, receive from Ramp
- On rows 1, 2, 3, receive from North
- On rows 0, 1, 2, transmit down
   Ramp and South
- On row 3, transmit down Ramp

### Host









Circle: RAMP

Outline: rx Solid: tx



# GEMV Color Routes—CSL Layout

```
// Set routes for color blue, used for communicating x
for (@range(i16, kernel x dim)) |i| { // Loop over all four columns
  for (@range(i16, kernel y dim)) |j| { // Loop over all four rows
    // Handle first row
    if (j == 0) {
      @set color config(i, j, blue, .{.rx=.{RAMP}, .tx=.{RAMP, SOUTH}});
    // Handle last row
    } else if (j == kernel y dim-1) {
      @set_color_config(i, j, blue, .{.rx=.{NORTH}}, .tx=.{RAMP}});
    } else {
     @set_color_config(i, j, blue, .{.rx=.{NORTH}}, .tx=.{RAMP, SOUTH}});
```



- Note that we use one color for sending values of x down fabric
- However, we can't do this for sending accumulated values across fabric
- Why?
  - PEs are also sending values to ramp, not just receiving from ramp
  - We must be able to differentiate values being sent up and down ramp
  - We need at least two colors, in a checkerboard pattern



### **Device**





### Color 3:

- On column 0 and 2, receive from Ramp and transmit East
- On column 1 and 3, receive from East and transmit down Ramp

### Host







## **Device**





### Color 4:

- On column 2, receive from West and transmit down Ramp
- On column 1, receive from Ramp and transmit East

Host









Circle: RAMP
Outline: rx

Solid: tx



## GEMV Color Routes—Simplified CSL Layout

Each PE has an "out color" and an "in color"

|           | Column 0      | Column 1 | Column 2 | Column 3 |
|-----------|---------------|----------|----------|----------|
| in color  | red* → yellow | green    | yellow   | green    |
| out color | green         | yellow   | green    | magenta* |

- "out color" is the routing color associated with transmitting accumulated sum
  - For the last column, this is the final result y
- "in color" is the routing color associated with receiving accumulated sum
  - For the first column, this is the input vector b
- \*italicized colors are memcpy colors



## GEMV Color Routes—CSL Layout

```
for (@range(i16, kernel_x_dim)) | i | { // Loop over all four columns
  for (@range(i16, kernel y dim)) |j| { // Loop over all four rows
    if (i == 0) { // Handle first column
     @set_color_config(i, j, yellow, .{.rx=.{RAMP}, .tx=.{RAMP}});
     @set color config(i, j, green, .{.rx=.{RAMP}, .tx=.{EAST}});
    } else if (i % 2) { // Handle even columns
     @set_color_config(i, j, yellow, .{.rx=.{WEST}, .tx=.{RAMP}});
     @set_color_config(i, j, green, .{.rx=.{RAMP}, .tx=.{EAST}});
    } else { // Handle odd columns
     @set_color_config(i, j, yellow, .{.rx=.{RAMP}, .tx=.{EAST}});
     @set color config(i, j, green, .{.rx=.{WEST}, .tx=.{RAMP}});
    *yellow is unused on last column
```



**GEMV Color Routes Device** 

#### Memcpy colors 0, 1, 2:

- Used to stream data into and out of our program area
- Memcpy handles the routing

Memcpy module uses 21, 22, 23

Host







## Memcpy User Color Routes

Color 0 Color 1 Color 2



Circle: RAMP
Outline: rx

**Solid:** tx



## Memcpy Module Routes

Color 21 Color 22 Color 23



Circle: RAMP
Outline: rx

Solid: tx

Routes shown are only in program rectangle.



## GEMV: Writing the CSL

We create a file named pe\_program.csl that defines our program

What do we need to do in our device code?

- 1. Define color parameters
- 2. Define global variables for each PE
- 3. Define DSDs for our PE
- 4. Define task that activates for multiplying elements of A by x
- 5. Define task that accumulates sum
- 6. Define initial state of our task and colors, bind tasks to a color
- 7. Define layout of program and set parameters
- 8. Define routes for each color



### What resources are available?

# Routable Colors

- 24 colors available
- Labeled by IDs 0–23
- memcpy uses 21–23

- 8 IQs available
- Associated w/ color

**Input Queues** 

memcpy uses IQ 0, 1

# **Output Queues**

- 8 OQs available
- Associated w/ color
- memcpy uses OQ 0

#### **Tasks**

- 8 data tasks (IDs 0–7)
  - Bound to IQs
- 23 local tasks (IDs 8–30)

#### **Microthreads**

- 12 microthreads
- Used for ops w/ fabric
- memcpy uses UT 0

# Data Structure Registers

- 48 DSRs
- CSL handles allocation
- memcpy uses 2



#### A Word on Tasks

- In this example, we have data tasks and local tasks
- Whenever a task finishes, a **task picker** chooses a task from eligible tasks in the task table
- A task is eligible if it activated and unblocked
- Data tasks are activated by the receipt of wavelets from the fabric
- Local tasks are activated by explicit command from the programmer

```
var result: f32 = 0.0;
var sum: f32 = 0.0;

task foo_task(wavelet_data: f32) {
    result = wavelet_data;
    @activate(foo_task_id);
}

task bar_task() {
    sum += result;
}
```

Activated by receipt of wavelet in queue to which foo\_task is bound

Activated by @activate call in foo\_task



#### A Word on Tasks

```
var result: f32 = 0.0;
var sum: f32 = 0.0;
task main_task(wavelet_data: f32) {
  result = wavelet data;
                                        Activate both foo task and bar task, but only
  @activate(foo task id);
                                         foo_task is eligible, as bar_task is blocked
  @activate(bar task id);
task foo task() {
                                         Unblock bar task when foo task
  sum += result;
                                        runs, so bar task runs next
  @unblock(bar_task_id);
task bar_task() {
  sum *= 2.0;
comptime { @block(bar task id); }
                                        Block bar task at compile time
```



### A Word on Queues and Microthreads

- IQs and OQs serve as "buffers" for sending and receiving wavelets to and from fabric
- In addition to data tasks, IQs are also used when an operation has an input fabric operand
- OQs are used when an operation has an output fabric operand
- Operations with fabric operands can execute on asynchronous microthreads
- By default, microthread ID is taken from ID of queue used in operation
- IQs and OQs are bound to colors (but can be re-bound to different color at runtime)

```
task foo_task() void {
    const in_dsd = @get_dsd(fabin_dsd, .{
        .fabric_color = recv, .extent = 2, .input_queue = recv_iq });

const out_dsd = @get_dsd(fabout_dsd, .{
        .fabric_color = send, .extent = 2, .output_queue = send_oq });

@fadds(out_dsd, in_dsd, 5.0, .{ .async = true, .activate = bar_task });
}
```



## Colors

| Color ID | Name                                                       | Purpose                                                           |
|----------|------------------------------------------------------------|-------------------------------------------------------------------|
| 0        | MEMCPYH2D_DATA_1_ID                                        | Receive x from host                                               |
| 1        | MEMCPYH2D_DATA_2_ID                                        | Receive b from host                                               |
| 2        | MEMCPYD2H_DATA_1_ID                                        | Send y to host                                                    |
| 3        | Even columns: send_east_color Odd columns: recv_west_color | Even columns: Transmit psum Odd columns: Receive psum             |
| 4        | Even columns: recv_west_color Odd columns: send_east_color | Even columns: Receive psum Odd columns: Transmit psum             |
| 5        | x_color                                                    | <b>Top row:</b> Transmit x elems <b>All rows:</b> Receive x elems |
|          |                                                            |                                                                   |
|          |                                                            |                                                                   |



## Tasks

| Task<br>ID | Name          | IQ<br>ID | IQ Name   | Color<br>ID | Color Name              | Purpose                                                                                                                                  |
|------------|---------------|----------|-----------|-------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | (reserved)    |          |           |             |                         |                                                                                                                                          |
| 1          | (reserved)    |          |           |             |                         |                                                                                                                                          |
| 2          | memcpy_recv_x | 2        | h2d_x_iq  | 0           | MEMCPYH2D_<br>DATA_1_ID | On top row, receive x from fabric and forward along x_color                                                                              |
| 3          | memcpy_recv_b | 3        | h2d_b_iq  | 1           | MEMCPYH2D_<br>DATA_2_ID | On left column, receive b from fabric and forward along send_east_color                                                                  |
| 4          | recv_x        | 4        | recv_x_iq | 2           | x_color                 | Receive x and compute Ax chunk. Activate reduce task when all x elems processed                                                          |
|            |               |          |           |             |                         |                                                                                                                                          |
|            |               |          |           |             |                         |                                                                                                                                          |
| 10         | reduce        |          |           |             |                         | Receive running sum from fabin DSD on recv_west_color, reduce with local chunk, send out on send_east_color.  Last column sends to host. |



## Input Queues

| IQ ID | Name       | Color ID                          | Color Name          | Purpose                                  |
|-------|------------|-----------------------------------|---------------------|------------------------------------------|
| 0     | (reserved) |                                   |                     |                                          |
| 1     | (reserved) |                                   |                     |                                          |
| 2     | h2d_x_iq   | 0                                 | MEMCPYH2D_DATA_1_ID | Bound to memcpy_recv_x task              |
| 3     | h2d_b_iq   | 1                                 | MEMCPYH2D_DATA_2_ID | Bound to memcpy_recv_b task              |
| 4     | recv_x_iq  | 5                                 | x_color             | Bound to recv_x task                     |
| 5     | recv_w_iq  | Even columns: 4<br>Odd columns: 3 | recv_west_color     | Receives running sum in fabric input DSD |
| 6     | • •        |                                   |                     |                                          |
| 7     | • •        |                                   |                     |                                          |



## **Output Queues**

| IQ ID | Name       | Color ID                          | Color Name          | Purpose                          |
|-------|------------|-----------------------------------|---------------------|----------------------------------|
| 0     | (reserved) |                                   |                     |                                  |
| 1     |            |                                   |                     |                                  |
| 2     | x_oq       | 5                                 | x_color             | On top row, send x to fabric     |
| 3     | recv_w_oq  | Even columns: 4<br>Odd columns: 3 | recv_west_color     | On left column, send b to fabric |
| 4     | d2h_oq     | 2                                 | MEMCPYD2H_DATA_1_ID | Send final result y to host      |
| 5     | send_e_oq  | Even columns: 3 Odd columns: 4    | send_east_color     | Send out running sum to the East |
| 6     |            |                                   |                     |                                  |
| 7     |            |                                   |                     |                                  |



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
var y: [M per PE]f32;
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y dsd = @get dsd(mem1d dsd, .{ .tensor access = |i|{M per PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num recv x == N per PE, we are done receiving x elements
var num_recv_x: i16 = 0;
task recv_x(x_val: f32) void {
   @fmacs(y dsd, y dsd, A dsd, x val);
   A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```



```
// 48 kB of global memory contain A, x, b, y
var A: [M_per_PE*N_per_PE]f32; // A is stored column major
var y: [M_per_PE]f32;
```

Global arrays in PE's memory

```
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num_recv_x == N_per_PE, we are done receiving x elements
var num_recv_x: i16 = 0;
task recv_x(x_val: f32) void {
   @fmacs(y dsd, y dsd, A dsd, x val);
   A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```



M\_per\_PE is rows per PE (8)

```
N per PE is cols per PE (4)
// 48 kB of global memory contain A, x, b, y
var y: M per PE f32;
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num_recv_x == N_per_PE, we are done receiving x elements
var num_recv_x: i16 = 0;
task recv_x(x_val: f32) void {
   @fmacs(y_dsd, y_dsd, A_dsd, x_val);
   A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
   num recv x += 1;
   if (num recv x == N per PE) @activate(reduce task id);
```



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
var y: [M per PE]f32;
                                                             accesses first M per PE
                                                             elems of A (1st column)
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y dsd = @get dsd(mem1d dsd, .{ .tensor access = |i|{M per PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num_recv_x == N_per_PE, we are done receiving x elements
var num_recv_x: i16 = 0;
task recv_x(x_val: f32) void {
    @fmacs(y_dsd, y_dsd, A_dsd, x_val);
    A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
                                                             accesses M_per_PE elems of y,
var y: [M per PE]f32;
                                                             used to store tmp (running sum
                                                             of A*x chunk)
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A dsd = @get dsd(mem1d dsd, .{ .tensor access = |i|{M per PE} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num_recv_x == N_per_PE, we are done receiving x elements
var num recv x: i16 = 0;
task recv_x(x_val: f32) void {
    @fmacs(y_dsd, y_dsd, A_dsd, x_val);
    A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
var y: [M per PE]f32;
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num recv x == N per_PE, we are done receiving x elements
var num recv x: i16 = 0;
                                                             Global var to keep track
                                                             of # x elems processed
task recv_x(x_val: f32) void {
    @fmacs(y_dsd, y_dsd, A_dsd, x_val);
    A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
var y: [M per PE]f32;
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num_recv_x == N_per_PE, we are done receiving x elements
var num_recv_x: i16 = 0;
task recv_x(x_val: f32) void {
   @fmacs(y_dsd, y_dsd, A_dsd, x_val);
   A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```

Task calculates x elem contribution to A\*x



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
var y: [M per PE]f32;
                                     Computes A<sub>i</sub>*x<sub>i</sub>,
                                     accumulates to y
// DSDs for accessing A, x, y
// A_dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd,/.{ .tensor_access = |i|{M_per
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per
// Use to keep track of # of invocations of recv_x task
// when num_recv_x == N_pe_r^p we are done receiving x elements
var num recv x: i16 = 0;
task recv_x(x_val: f32/) void
   @fmacs(y_dsd, y_dsd, A_dsd, x_val);
    A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
var y: [M per PE]f32;
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num_recv_x == N_per_PE, we are done receiving x elements
var num_recv_x: i16 = 0;
                                                            Advance A dsd to next
                                                            col of A
task recv_x(x_val: f32) void {
    @fmacs(y dsd, y dsd, A dsd, x val);
   A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num recv x == N per PE) @activate(reduce task id);
```



```
// 48 kB of global memory contain A, x, b, y
var A: [M per PE*N per PE]f32; // A is stored column major
var y: [M per PE]f32;
// DSDs for accessing A, x, y
// A dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M_per_PE} -> y[i] });
// Use to keep track of # of invocations of recv x task
// when num_recv_x == N_per_PE, we are done receiving x elements
var num recv x: i16 = 0;
                                                             After receiving last x
                                                             elem, begin reduction
task recv_x(x_val: f32) void {
    @fmacs(y_dsd, y_dsd, A_dsd, x_val);
    A_dsd = @increment_dsd_offset(A_dsd, M_per_PE, f32);
    num recv x += 1;
    if (num_recv_x == N_per_PE) @activate(reduce_task_id);
```



### **GEMV: Host Code**

```
runner.load(); runner.run() # Load and run program
# Copy chunks of A into all PEs. Each chunk stored column major
runner.memcpy_h2d(A_symbol, A_array, 0, 0, kernel_x_dim, kernel_y_dim, M_per_PE*N_per_PE,
streaming=False, ...)
# Stream x into PEs (0, 0) to (kernel x dim-1, 0)
runner.memcpy_h2d(MEMCPYH2D_DATA_1, x, 0, 0, 0, kernel_x_dim, 1, N_per_PE, streaming=True, ...)
# Stream b into PEs (0, 0) to (0, kernel y dim-1) runner.memcpy h2d(MEMCPYH2D DATA 2, b, 0,
0, 1, kernel_y_dim, M_per_PE, streaming=True, ...)
# Stream y back from PEs (kernel_x_dim-1, 0) to (kernel_x_dim-1, kernel_y_dim-1)
y result = np.zeros([M], dtype=np.float32)
runner.memcpy d2h(y result, MEMCPYD2H DATA 1, kernel x dim-1, 0, 1, kernel y dim, M per PE,
streaming=True, ...)
runner.stop() # Stop program
```



## **GEMV: Compiling and Running**

#### **Simulator:**

```
cslc --arch=wse3 layout.csl --fabric-dims=11,6 --fabric-offsets=4,1 ... -o out cs_python run.py --name out
```

#### Machine\*:

```
cslc --arch=wse3 layout.csl --fabric-dims=762,1172 --fabric-offsets=4,1 ... -o out
cs_python run.py --name out --cmaddr <CS_IP_ADDR>
```

\*Additional wrappers provided to compile and run on Wafer-Scale Cluster appliance





# Thank you