

Exame Modelo IV de Matemática A

Duração do Exame: 150 minutos + 30 minutos de tolerância | junho de 2018

Caderno 1 (75 minutos + 15min) + Caderno 2 (75 minutos + 15min)

12.º Ano de Escolaridade | Turma - G - K

Caderno 1

- Duração: 75 minutos + 15 minutos de tolerância
- É permitido o uso de calculadora gráfica

Indica de forma legível a versão da prova. A prova é constituída por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica de tinta azul ou preta. Só é permitido o uso de calculadora no Caderno 1. Não é permitido o uso de corretor. Risca o que pretendes que não seja classificado. Para cada resposta identifica o item. Apresenta as tuas respostas de forma legível. Apresenta apenas uma resposta para cada item. A prova apresenta um formulário no Caderno 1. As cotações dos itens de cada Caderno encontram-se no final de cada Caderno.

Na resposta aos itens de seleção (escolha múltipla), seleciona a resposta correta. Escreve na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação apresenta sempre o valor exato.

Geometria

Comprimento de um arco de circunferência:

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

área de um polígono regular: $Semiperímetro \times Apótema$

área de um setor circular:

 $\frac{\alpha r^2}{2}$ ($\alpha\text{-}$ amplitude, em radianos, do ângulo ao centro, r - raio)

área lateral de um cone: πrg (r - raio da base, g - geratriz)

área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume da pirâmide: $\frac{1}{3} \times \acute{a}rea \ da \ base \times Altura$

Volume do cone: $\frac{1}{3} \times \text{ área da base} \times \text{Altura}$

Volume da esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

 $\begin{array}{l} \textbf{Progress\~ao} \ \text{aritm\'etica:} \ \frac{u_1+u_n}{2}\times n \\ \textbf{Progress\~ao} \ \text{geom\'etrica:} \ u_1\times\frac{1-r^n}{1-r}, \ r\neq 1 \end{array}$

Trigonometria

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Lei dos senos

$$\frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b} = \frac{\sin \hat{C}}{c}$$

Lei dos cossenos ou Teorema de Carnot

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

Complexos

$$\begin{split} &(|z|cis\theta)^n = |z|^n cis(n\theta) \text{ ou } (|z|e^{i\theta})^n = |z|^n e^{i(n\theta)} \\ &\sqrt[n]{|z|cis\theta} = \sqrt[n]{|z|}cis\left(\frac{\theta+2k\pi}{n}\right) \text{ ou} \\ &\sqrt[n]{z} = \sqrt[n]{|z|}e^{i\left(\frac{\theta+2k\pi}{n}\right)}, \, k \in \{0;1;2;...;n-1\} \text{ e } n \in \mathbb{N} \end{split}$$

Probabilidades

Regras de derivação

$$\begin{aligned} & \text{Limites notáveis} \\ & \lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N}) \\ & \lim_{x \to 0} \frac{\sin x}{x} = 1 \\ & \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \\ & \lim_{x \to +\infty} \frac{\ln x}{x} = 0 \\ & \lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R}) \end{aligned}$$

1.1	1.2
P2001/2002	PMC2015

1.1. Seja (E, P(E), P) um espaço de probabilidade Sejam A e B dois acontecimentos possíveis de P(E)Sabe-se que: P(A) = 0.6, $P(\overline{A} \cap \overline{B}) = 0.1$ e $P(\overline{B}) = 0.5$

A afirmação falsa é:

- (A) A e B são acontecimentos independentes
- (B) $P(\overline{A}|\overline{B}) = 0.2$
- (C) $P(A \cap B) = 0.2$
- (D) $P(A \cup B) = 0.9$

Pelo Teorema de Lagrange, existe pelo menos um valor c em]e;2e[, para o qual a reta t tangente ao gráfico nesse ponto é paralela à reta AB

Em qual das opções está o valor de c?

- $(A) \ \frac{2}{\ln(2)}$
- (B) $\frac{e}{\ln(2)}$
- (C) $\frac{\ln(2)}{e}$
- (D) $\frac{\ln(2)}{2}$

Figura 1

2. Considera a sucessão (a_n) de termo geral $a_n = 3 \times 2^{1-n}$

Comenta a seguinte afirmação:

"A sucessão (a_n) é uma progressão geométrica de razão $\frac{1}{2}$ "

- 3. Supondo que $^{2017}C_{500}=x$ e $^{2017}C_{501}=y,$ então, pode-se afirmar que:
 - (A) $^{2018}C_{500} = x + y$
 - (B) $^{2018}C_{501} = x + y$
 - (C) $^{2018}C_{501} = x \times y$
 - (D) $^{2018}C_{500} = x \times y$

4. Considera a expressão $\left(-\frac{1}{x} + \frac{1}{\sqrt{x}}\right)^{16}$, com x > 0.

Averigua se existe algum termo do desenvolvimento da forma ax^{-4} , com $a \in \mathbb{R}$. Caso exista, determina-o.

- 5. Considera, para um certo número real k, a função f, de domínio \mathbb{R} , definida por $f(x) = ke^{-x} 2$ Para certos valores de k, o Teorema de Bolzano garante que a função f interseta a bissetriz dos quadrantes pares num ponto de abcissa pertencente ao intervalo]-2,0[A qual dos intervalos seguintes pode pertencer k?
 - (A) $]2; e^2[$
 - (B) $0; \frac{4}{e^2}$
 - (C) $\left[-2; -\frac{4}{e^2} \right]$
- 6. Um baralho de cartas completo é constituído por 52 cartas, distribuídas por quatro naipes (espadas, paus, copas e ouros)
 - 6.1. De um baralho de cartas completo extraem-se sucessivamente e sem reposição, duas cartas Qual é a probabilidade de pelo menos uma das cartas extraídas não ser de copas?
 - 6.2. Num certo jogo de cartas, utiliza-se um baralho completo e dão-se treze cartas a cada jogador Imagina que estás a participar nesse jogo Qual é a probabilidade de, nas treze cartas que vais receber, haver exatamente seis cartas do naipe de ouros?
 - Apresenta o resultado em percentagem e arredondado às décimas

7. Seja a função f, real de variável real, definida em \mathbb{R} , por $f(x) = x^2 e^{x+2} + 2x - e$ No referencial o.n. xOy, da figura 2, está representado parte do gráfico da função f e uma reta r, que é assíntota ao gráfico de f, quando $x \to -\infty$

- 7.1. Escreve a equação reduzida da reta \boldsymbol{r}
- **7.2.** Sabe-se que a função primeira derivada de f, é definida em \mathbb{R} , por $f'(x) = (x^2 + 2x)e^{x+2} + 2$ Estuda a função f quanto ao sentido das concavidades e pontos de inflexão do seu gráfico

Figura 2

8. Seja \mathbb{C} , conjunto dos números complexos A condição $\frac{\pi}{3} \leq Arg(z) \leq \frac{2\pi}{3} \wedge I_m(z-3) \leq R_e(\sqrt{3}-2i)$, define, no plano complexo, um triângulo [OAB], como o representado na figura 3

Em qual das opções está o valor da área do triângulo [OAB]

- (A) $\sqrt{2}$
- (B) $2\sqrt{3}$
- (C) $\sqrt{3}$
- (D) $4\sqrt{3}$

Figura 3

FIM DO CADERNO 1

COTAÇÕES

		TOTAL		100 pontos
			5 pontos	
о.			Enontos	
8.	1.4		10 pomos	
	7.2		15 pontos	
	7.1		15 pontos	
7.			-	
	6.2		15 pontos	
٠.	6.1		15 pontos	
6.				
			5 pontos	
5 .			10 pontos	
4.			10 pontos	
3.			5 pontos	
0			10 pontos	
2.			10	
1.			5 pontos	

PÁGINA EM BRANCO

Caderno 2

- Duração: 75 minutos + 15 minutos de tolerância
- Neste Caderno não é permitida a utilização de calculadora

9. .

9.1	9.2
P2001/2002	PMC2015

9.1. Numa caixa estão seis bolas numeradas, três com o número 6, duas com o número 4 e uma com o número 2. Considera a experiência aleatória que consiste em retirar, ao acaso, e de uma só vez, três bolas da caixa.

Seja X a variável aleatória: «menor dos números retirados».

Em qual das opções está o valor de P(X = 4)?

- (A) $\frac{5}{20}$
- (B) $\frac{6}{20}$
- (C) $\frac{7}{20}$
- (D) $\frac{9}{20}$

Figura 4

9.2. Considera a elipse, definida pela equação $\frac{x^2}{100} + \frac{y^2}{64} = 1$, e representada no referencial o.n. xOy, da figura 5

Em qual das opções estão as coordenadas dos focos da elipse?

- (A) $F_1(7;0) \in F_2(-7;0)$
- (B) $F_1(6;0) \in F_2(-6;0)$
- (C) $F_1(4;0) \in F_2(-4;0)$
- (D) $F_1(9;0) \in F_2(-9;0)$

Figura 5

10. Seja f, a função de domínio $\mathbb{R} \setminus \{0\}$, definida por $f(x) = \log\left(\frac{10^x \times x^2}{10^3}\right)$ Mostra que $f(x) = x + \log(x^2) - 3, \forall x \in \mathbb{R} \setminus \{0\}$ 11. No referencial ortonormado Oxyz, da figura 6 está representado um cubo [ABCDEFGH] de volume 64 u.v.

Sabe-se que:

- ullet a origem O do referencial situa-se no centro da face [EFGH]
- ullet a face [EFGH] está contida no plano xOy
- \bullet as faces [ABFE]e [CDHG]são paralelas ao plano yOz

Considera, ainda, o plano α de equação 2x-y+3=0

Figura 6

- 11.1. Escreve uma equação vetorial da reta r, perpendicular ao plano α , e que contém o ponto médio do segmento de reta [CF]
- 11.2. Escreve a equação do plano tangente à superfície esférica de diâmetro [BH], no ponto B
- 12. Numa das opções está uma expressão equivalente a $4\sin(x)\cos(x) 8\sin^3(x)\cos(x)$

Em qual delas?

- (A) $\sin(2x)$
- (B) $\cos(2x)$
- (C) $\sin(4x)$
- (D) $\cos(4x)$
- 13. Em \mathbb{C} , conjunto dos números complexos, considera os números complexos, $w_1 = 1 + i$ e $w_2 = 2\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$
 - **13.1.** Escreve $\frac{\overline{w_1} + i^{57} \times (1 3i) \times w_2}{\overline{2 + 2i}}$ na forma $a + bi, a, b \in \mathbb{R}$
 - **13.2.** Resolve, em \mathbb{C} , a equação $|z| \times z^4 iw_1 = 0$
 - **13.3.** Em qual das opções está o menor valor de $n \in \mathbb{N}$, para o qual $\left(\frac{w_1}{w_2}\right)^n$ é um imaginário puro com parte imaginária negativa?
 - (A) 2
 - (B) 4
 - (C) 10
 - (D) 18
- 14. Seja g, uma função contínua, de domínio \mathbb{R}^+

Sabe-se que:

•
$$\lim_{x \to +\infty} \left(g(x) - \frac{e}{2}x + e \right) = 0$$

Mostra que
$$\lim_{x \to +\infty} \frac{g(x) - \ln(x)}{x - e^{-x}} = \frac{e}{2}$$

15. Considera a função h, de domínio $[-\pi; 2\pi]$, definida por

$$h(x) = \begin{cases} \frac{1}{e} + \frac{e^{x-\pi} - 1}{2x - 2\pi} & se - \pi < x < \pi \\ \log\left(10^{\frac{1}{e} + \frac{1}{2}}\right) & se \quad x = \pi \\ -\frac{\pi - x}{e\sin(x - \pi)} + \frac{1}{2} & se \quad \pi < x \le 2\pi \end{cases}$$

Averigua se a função h é contínua no ponto $x=\pi$

FIM DO CADERNO 2

COTAÇÕES

	TOTAL		100 pontos
		10 pontos	
		5 pontos	
13.3		10 pontos	
13.2		15 pontos	
13.1		15 pontos	
		5 pontos	
		10 Pontos	
11.2		-	
11.1		15 pontos	
		5 pontos	
		5 pontos	
	11.2 13.1 13.2	11.1	11.1 15 pontos 11.2 15 pontos 13.1 5 pontos 13.2 15 pontos 13.3 10 pontos 5 pontos 5 pontos

PÁGINA EM BRANCO

PÁGINA EM BRANCO