Лекция 4. 4 марта 2025.

Независимость событий (заголовок на следующую лекцию)

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство.

Определение. Случайные события A и B называются **независимыми**, если $P(A\cap B)=P(A)P(B)$.

Таким образом, знание вероятностей по отдельности не позволяет вычислить вероятность их произведения.

Теоремы которые помогают вычислить вероятностть их произведения

Нам нужно отключить жизненное понимание независимости, потому что оно не вполне совпадает с математическим.

Пусть $A, B \in \mathcal{F}$ причем P(B) > 0

События A и B независимы $\Leftrightarrow P(A \mid B) = P(A)$ ("P от A при условии B равно P от A")

О больном. Вероятность вес, если мы едим булки? Вероятность набрать вес при поедании булок и вероятность набрать вес при поедании булок со знанием о конкретной начинке (варенье) одинаковы.

Доказательство:

Необх.: Пусть A, B независимы.

Тогда

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

Пусть верно, что $P(A\mid B)=P(A)$. Мы знаем, что это верно, но пока не знаем ничего о (не)зависимости событий. Поэтому по теореме умножения вероятностей

Тогда

$$P(A\cap B) = P(B)\cdot P(A\mid B) = P(B)\cdot P(A) \Rightarrow$$
 выполнено опредееление независимости собтыий

Теорема (о независимости противоположных событий)

Пусть A,B — независимые случайные события. Тогда независимы в парах события A и $\overline{B},\overline{A}$ и B,\overline{A} и $\overline{B}.$

Доказательство:

Докажем, что A и \overline{B} независимы.

$$P\Big(A\cap\overline{B}\Big)=P(A\setminus(AB))=P(A)-P(A\cap B)=$$

$$=P(A)-P(A)\cdot P(B)=P(A)(1-P(B))=P(A)\cdot P\Big(\overline{B}\Big)$$

$$\overline{A}\wedge\overline{B}\text{— самостаятельно}$$

Рассмотрим ещё одно определение, связанное с независимостю. Дело в том, что события наступают не в парах.

Опр Случайные события $A_1,A_2,...,A_n$ называются независимы в совокупности, если $\forall 2 \leq k \leq n,$ $Pig(\bigcap_{j=1}^k A_{ij}ig) = \bigcap_{j=1}^k Pig(A_{ij}ig)$

Из совокупности следует попарная независимость, но попарное неверно.

Для иллюстрации этого понятия приведём пример. Если говорить про бытовые вещи, то обсудим следующую ситуацию. У человека 5 по математике и по физкультуре. Вроде события независимые, но если сюда добавить знание биологии, то мы повышаем вероятность того, что это отличник.

Пример Сергея Николаевича Бернштейна:

Подбрасывается приамидка (тетраэдер):

- 1. грань красная
- 2. грань зеленая
- 3. грань синяя
- 4. содержащий 3 цвета

Покажем, что события K, C, 3 — оппарно независимы, но зависимы в совокупности. K — грань содержит красный цвет и т.д.

Пусть k=2

$$P(K) = P(C) = P(3) = \frac{2}{4} = \frac{1}{2}$$

$$P(K\cap C)=P(K\cap 3)=P(C\cap 3)=\frac{1}{4}$$

Для каждой пары

$$\underbrace{\frac{1}{2}}_{P(A)}\cdot\underbrace{\frac{1}{2}}_{P(B)}=\underbrace{\frac{1}{4}}_{P(A\cap B)}$$
это верно \Rightarrow независимы попарно

k = 3

$$P(K\cap C\cap 3)=rac{1}{4}$$
 $P(K)\cdot P(C)\cdot P(3)=rac{1}{2}\cdotrac{1}{2}\cdotrac{1}{2}=rac{1}{8}$ $rac{1}{4}
eqrac{1}{8}\Rightarrow$ зависимаы

Пример учить не нужно, но он имеет смысл

Теорема (Формула полной вероятности)

Пусть $\left\{A_i\right\}_{i=1}^{\infty}$ — полная группа попарно несовместимых событий

$$\bigsqcup_{i=1}^{\infty}A_{i}=\Omega;\ P(A_{i})>0\ \forall i$$

Пусть A — случайное событие для которого

$$P(A|A_i) \geq 0$$

Тогда

$$P(A) = \sum_{i=1}^{\infty} P(A_i) \cdot P(A \setminus A_i)$$

У нас есть элементы $a_1,...,a_i.$ $a_{i_1},...,a_{i_k}$ — это перестановка из элементов. Это алгебраическое соглашение об обозначениях, не более. В расшифровке не нуждается.

Это означает, что $a_{i1}, a_{i2}...a_{ik}$

КНиИТ сильнее мехмата на втором курсе, потому что КНиИТ умнее. А потом мы становимся умстенно отсталыми, потому что у нас не хватает математики, а мозги остаются программистскими и математически некультурными.

i — мнимая единица, а не счётчик цикла

Доказательство

Tarpezaen na kycku, bybennibaen u chragubalm

Мы нарисовали события:

Мы измеряем событие A...

Представим A как

$$\begin{split} P(A) &= P(A \cap \Omega) = P\Big(A \cap \Big(\bigsqcup_{i=1}^{\infty} A_i \Big) \Big) = \\ &= P\Big(\bigsqcup_{i=1}^{\infty} A \cap A_i \Big) = \sum_{i=1}^{\infty} P(A \cap A_i) = \\ &= \sum_{i=1}^{\infty} P(A_i) \cdot P(A \mid A_i) \end{split}$$

Рассмотрим следующий вопрос. Допустим, нам нужна ситуация, когда много экзаменаторов. Мы сдаём собеседование и вообще не знаем преподавателей. Гипотеза о попадании к каждому преподавателю равновозможна и по умолчанию есть равная вероятность, что конкретный из преподавателей добрый. Вопрос к уже сдавшему студенту "Кому ты сдавал? Каков он?" не влияет на фактическую вероятность того, что преподаватель добрый, но наша оценка конкретного преподавателя изменяется. Это связано с теоремой Байеса.

Теорема Байеса

Пусть
$$\left\{A_i\right\}_{i=1}^\infty$$
 такое, чтоо $\bigsqcup_{i=1}^\infty A_i = \Omega; P(A_i) > 0$ и для $A_i \in \mathcal{F}$ п

Тогда

$$P(A_i \mid A) = \frac{P(A_i) \cdot P(A \mid A_i)}{P(A)}$$

Док-во:

$$\begin{cases} P(A \cap A_i) = P(A_i) \cdot P(A \mid A_i) \\ P(A \cap A_i) = P(A) \cdot P(A_i \mid A) \end{cases}$$

Мы могли где-то слышать про Байесовскую теорию вероятности.

 A_i — гипотеза, $P(A_i)$ — априорные вероятности гипотез (как факт принемаем до опыта). $P(A_i \mid A)$ — апостериорные вероятности гипотез.

Байесовский подход к изменению среды: препод хочет узнать, умный ли студент, на экзамене. Для этого он задаёт вопросы и таким образом испытывает среду: с каждым ответом на вопрос вероятность меняется. Если студент отвечает на сложный вопрос, мы уменьшаем вероятность того, что он троечник, и увеличиваем шанс отличника. Этот метод зародился в геологии, где подобными экспериментами определяли залегающие в недрах металлы.

С классической теор. вер закончили

Задача 1.

Пусть в урне находятся некоторое кол-во шаров разных цветов (могут быть разных цветов). Шары не отличимы на на ощупь и тп. В урну опустили белый шар, а затем извлекли один шар, оказавшийся белым. Найти вероятность того, что в урне остались белые шары.

1. Гипотеза

- A_0 — в урне не было белых шаров

• A_1 — в урне бы 1 белый шар

• ..

• A_n — все шары были белыми

Определим вероятности гипотез.

$$P(A_i) = \frac{1}{n}$$
, поскольку нет уточнений относительно цветовых пропорций

2. Событие A — извлечен 1 белый шар

$$P(A \mid A_0) = \frac{1}{n+1},$$

$$P(A \mid A_1) = \frac{2}{n+1},$$
 ...
$$P(A \mid A_n) = \frac{n+1}{n+1}$$

3.

$$P(A) = \sum_{i=0}^n P(A_i) \cdot P(A \mid A_i) = \sum_{i=0}^n \frac{1}{n+1} \cdot \frac{i+1}{n+1} = \frac{1}{(n+1)^2} \sum_{i=0}^n (i+1) = \frac{1+n+1}{2(n+1)^2} = \frac{n+2}{2(n+1)^2} = \frac{n+2}{2(n+1)^2}$$

4. Остались ли белые?

B — остались белые

 \overline{B} — не остались белые

$$\begin{split} &P(A_0 \mid A) = P\Big(\overline{B}\Big) \\ &P(A_0 \mid A) = \frac{\frac{1}{n+1} \cdot \frac{1}{n+1}}{\frac{n+2}{2(n+1)}} = \frac{2}{(n+2)(n+1)} \\ &P(B) = 1 - \frac{2}{(n+1)(n+2)} \\ &P(B) = \sum_{i=1}^n = P(A_i \mid A) \end{split}$$