

## UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

| APPLICATION NO. FILING DATE |                       | FILING DATE FIRST NAMED INVENTOR |                   | ATTORNEY DOCKET NO. | CONFIRMATION NO |  |
|-----------------------------|-----------------------|----------------------------------|-------------------|---------------------|-----------------|--|
| 10/080,522                  | 10/080,522 02/25/2002 |                                  | Russel E. Kaufman | 1579-645            | 8638            |  |
| 23117                       | 7590                  | 10/25/2004                       |                   | EXAM                | INER            |  |
| NIXON &<br>1100 N GLE       |                       | RHYE, PC                         |                   | HELMS, LARI         | RY RONALD       |  |
| 8TH FLOOI                   |                       | Б                                | RECEIVED          | ART UNIT            | PAPER NUMBER    |  |
| ARLINGTO                    | N, VA                 | 22201-4714                       |                   | 1642                | -               |  |

OCT 2 7 2004

DATE MAILED: 10/25/2004

TECH CENTER 1600/2900

Please find below and/or attached an Office communication concerning this application or proceeding.

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Application No.                                                                                                                                                                                                                  | Applicant(s)                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/080,522                                                                                                                                                                                                                       | KAUFMAN ET AL.                                                                                                   |
| Office Action Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Examiner                                                                                                                                                                                                                         | Art Unit                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Larry R. Helms                                                                                                                                                                                                                   | 1642                                                                                                             |
| The MAILING DATE of this communic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cation appears on the cover sheet w                                                                                                                                                                                              | ith the correspondence address                                                                                   |
| A SHORTENED STATUTORY PERIOD FO<br>THE MAILING DATE OF THIS COMMUNIC<br>Extensions of time may be available under the provisions of<br>after SIX (6) MONTHS from the mailing date of this commu<br>If the period for reply specified above is less than thirty (30)<br>If NO period for reply is specified above, the maximum state<br>Failure to reply within the set or extended period for reply | CATION.  f 37 CFR 1.136(a). In no event, however, may a inication.  J days, a reply within the statutory minimum of thin utory period will apply and will expire SIX (6) MOI will, by statute. Cause the application to become A | reply be timely filed  ty (30) days will be considered timely.  THS from the mailing date of this communication. |
| Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                  |                                                                                                                  |
| 1) Responsive to communication(s) filed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I on 26 July 2004.                                                                                                                                                                                                               |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D)⊠ This action is non-final.                                                                                                                                                                                                    |                                                                                                                  |
| 3) Since this application is in condition for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or allowance except for formal mat                                                                                                                                                                                               | ters, prosecution as to the merits is                                                                            |
| closed in accordance with the practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e under <i>Ex parte Quayle</i> , 1935 C.D                                                                                                                                                                                        | D. 11, 453 O.G. 213.                                                                                             |
| Disposition of Claims                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                                                                                                                  |
| 4) ⊠ Claim(s) <u>1-32</u> is/are pending in the ap 4a) Of the above claim(s) <u>1-20,23-28,3</u> 5) □ Claim(s) is/are allowed. 6) ⊠ Claim(s) <u>21,22,29 and 30</u> is/are reject 7) □ Claim(s) is/are objected to. 8) □ Claim(s) are subject to restriction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 <u>1 and 32</u> is/are withdrawn from co                                                                                                                                                                                       | onsideration.                                                                                                    |
| Application Papers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                  |                                                                                                                  |
| 9)⊠ The specification is objected to by the 10)⊠ The drawing(s) filed on 06 January 200 Applicant may not request that any objection Replacement drawing sheet(s) including the 11)□ The oath or declaration is objected to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03 is/are: a)⊠ accepted or b)□ o<br>ion to the drawing(s) be held in abeyar<br>he correction is required if the drawing                                                                                                          | nce. See 37 CFR 1.85(a).<br>(s) is objected to. See 37 CFR 1.121(d).                                             |
| Priority under 35 U.S.C. § 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ocuments have been received. ocuments have been received in A the priority documents have been al Bureau (PCT Rule 17.2(a)).                                                                                                     | pplication No received in this National Stage                                                                    |
| Attachment(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                  |                                                                                                                  |
| Notice of References Cited (PTO-892)     Notice of Draftsperson's Patent Drawing Review (PTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4) Interview S                                                                                                                                                                                                                   | ummary (PTO-413)                                                                                                 |
| Notice of Dialisperson's Patent Drawing Review (PTC-18)  Information Disclosure Statement(s) (PTC-1449 or PT Paper No(s)/Mail Date <u>2/25/02</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                  | )/Mail Date formal Patent Application (PTO-152)                                                                  |

Application/Control Number: 10/080,522 Page 2

Art Unit: 1642

#### **DETAILED ACTION**

1. Applicant's election with traverse of Group III, claims 21-22, 29-30 in the reply filed on 7/26/04 is acknowledged. The traversal is on the ground(s) that Groups III and V should be examined together and no undue burden would be placed on the examiner. This is not found persuasive because as stated in the restriction requirement the groups are distinct based on classification as well as the fact that the antibody can be used for a different method as stated in the restriction requirement. Therefore, the restriction is maintained and it is acknowledged that Group V can be rejoined when Group III claims are allowable. Applicants attention is directed to paragraph 4 of the restriction requirement for rejoinder practice.

The requirement is still deemed proper and is therefore made FINAL.

- 2. Claims 1-20, 23-28, 31-32 are withdrawn from further consideration pursuant to 37 CFR 1.142(b), as being drawn to a nonelected inventions, there being no allowable generic or linking claim. Applicant timely traversed the restriction (election) requirement in the reply filed on 7/26/04.
- 3. Claims 21-22 and 29-30 are under examination.

#### Specification

4. The disclosure is objected to because of the following informalities:

Art Unit: 1642

Page 3

a. The first line of the specification needs to be updated to indicate application 09/539,774 is now US Patent 6,350,615.

b. The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed.

- c. Although this application appears to be in sequence compliance, it is requested that either the Figures or the Brief Description of the Drawings include any SEQ ID NOs that are in the Figures.
- d. The ATCC address needs to be updated on page 15 to the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209

Appropriate correction is required.

## Claim Objections

5. Claims 21-22 are objected to because of the following informalities: Claims 21 and 22 depend on non-elected claim 19. For examination all of the dependencies of claim 19 will be read into claim 21 and 22.

Appropriate correction is required.

# Claim Rejections - 35 USC § 112

6. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the

Art Unit: 1642

art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

7. Claims 21-22, 29-30 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

The claims encompass an antibody to any mammalian K12 protein or any compound that binds to K12 protein. There is insufficient written description encompassing "mammalian K12 protein" because the relevant identifying characteristics of the genus of such a structure is not given except for SEQ ID NO:1. In addition the only "compound that specifically binds to K12" is an antibody to SEQ ID NO:1. The identifying characteristics of the mammalian K12 protein or other physical and/or chemical characteristics of the protein are not set forth in the specification as-filed, commensurate in scope with the claimed invention. <a href="Vas-Cath Inc. v. Mahurkar">Vas-Cath Inc. v. Mahurkar</a>, 19 USPQ2d 1111, makes clear that "applicant must convey with reasonable clarity to those skilled in the art that, as of the filing date sought, he or she was in possession of the invention. The invention is, for purposes of the 'written description' inquiry, whatever is now claimed." (see page 1117). The specification does not "clearly allow persons of ordinary skill in the art to recognize that [he or she] invented what is claimed." (see <a href="Vas-Cath">Vas-Cath</a> at page 1116).

Adequate written description requires more than a mere statement that it is part of the invention and reference to a potential method for isolating it. See <u>Fiers v. Revel</u>,

Art Unit: 1642

25 USPQ2d 1601, 1606 (CAFC 1993) and Amgen Inc. v. Chugai Pharmaceutical Co. Ltd., 18 USPQ2d 1016.

One cannot describe what one has not conceived. See Fiddles v.Baird, 30 USPQ2d 1481, 1483. In Fiddles v. Baird, claims directed to mammalian FGF's were found unpatentable due to lack of written description for the broad class. The specification provided only the bovine sequence. Thus, the specification fails to describe these DNA sequences. The Court further elaborated that generic statements are not adequate written description of the genus because it does not distinguish the claimed genus from others, except by function. Finally, the Court indicated that while applicants are not required to disclose every species encompassed within a genus, the description of a genus is achieved by the recitation of a representative number of DNA molecules, defined by nucleotide sequence, falling within the scope of the genus, See The Reagents of the University of California v. Eli Lilly and Company, 43 USPQ2d 1398, 1406 (Fed. Cir. 1997).

Applicant is relying upon SEQ ID NO:1 as a species to support an entire genus of mammalian K12 protein for which applicant only had the human protein of SEQ ID NO:1. In addition the specification only teaches an antibody to SEQ ID NO:1 as a compound that binds. There is no other compound as broadly encompassed by small molecules, peptides, etc that are described in the specification that is a compound that binds.

With respect to a compound that would be suitable for use in the claimed invention, per the *Enzo* court's example of a description of an anti-inflammatory steroid

Art Unit: 1642

couched "in terms of its function of lessening inflammation of tissues," which, the court stated, "fails to distinguish any steroid from others having the same activity or function," and which therefore, fails to satisfy the written-description requirement. Similarly, "a compound that inhibits specific binding between a signal-transducing protein and a cytoplasmic protein..." does not distinguish the compound from others having the same activity or function and as such does not satisfy the written-description requirement. Mere idea or function is insufficient for written description; isolation and characterization at a minimum are required. The identity of the compound, and the description must convey what the compound is, and not just what it does. The instant application discloses no more than a hoped-for function (binding) for an as-yet-to-be-discovered compound.

The guidelines for the Examination of Patent Applications Under the 35 U.S.C. 112 first paragraph "written description" requirement make clear that if a claimed genus does not show actual reduction to practice for a representative number of species; then the requirement may be alternatively met by reduction to drawings, or by disclosure of relevant, identifying characteristics, i.e., structure or other physical and/or chemical properties, by functional characteristics coupled with a known or disclosed correlation between function and structure or by a combination of such identifying characteristics, sufficient to show the applicant was in possession of the genus (Federal register, Vol. 66, No. 4, pages 1099-1111, Friday January 5, 2001, see especially page 1106 column 3).

Art Unit: 1642

In the absence of structural characteristics that are shared by members of the genus of mammalian K12 proteins or compounds that bind to K12; one of skill in the art would reasonably conclude that the disclosure fails to provide a representative number of species to describe the genus. Thus, Applicant was not in possession of the claimed genus. See <u>University of California v. Eli Lilly and Co.</u> 119 F.3d 1559, 43 USPQ2d 1398 (Fed. Cir. 1997).

Applicant is reminded that <u>Vas-Cath</u> makes clear that the written description provision of 35 U.S.C. 112 is severable from its enablement provision (see page 1115).

8. Claim 22 is rejected under 35 U.S.C. § 112, first paragraph, because the specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to use the invention, because the specification does not provide evidence that the claimed biological materials are (1) known and readily available to the public; (2) reproducible from the written description.

It is unclear if a cell line which produces an antibody having the exact chemical identity of 7C3 is known and publicly available, or can be reproducibly isolated without undue experimentation. Therefore, a suitable deposit for patent purposes is suggested. Without a publicly available deposit of the above cell line, one of ordinary skill in the art could not be assured of the ability to practice the invention as claimed. Exact replication of: (1) the claimed cell line; (2) a cell line which produces the chemically and functionally distinct antibody claimed; and/or (3) the claimed antibody's amino acid or nucleic acid sequence is an unpredictable event.

Art Unit: 1642

For example, very different VH chains (about 50% homologous) can combine with the same VK chain to produce antibody-binding sites with nearly the same size, shape, antigen specificity, and affinity. A similar phenomenon can also occur when different VH sequences combine with different VK sequences to produce antibodies with very similar properties. The results indicate that divergent variable region sequences, both in and out of the complementarity-determining regions, can be folded to form similar binding site contours, which result in similar immunochemical characteristics. [FUNDAMENTAL IMMUNOLOGY 242 (William E. Paul, M.D. ed., 3d ed. 1993)]. Therefore, it would require undue experimentation to reproduce the claimed antibody species 7C3. Deposit of the hybridoma would satisfy the enablement requirements of 35 U.S.C. § 112, first paragraph. See, 37 C.F.R. 1.801-1.809.

Applicants referral on page 15 that the hybridoma producing the 7C3 antibody has been deposited at the ATCC is not persuasive because all of the assurances have not been met.

If the deposit is made under the provisions of the Budapest Treaty, filing of an affidavit or declaration by applicant or assignees or a statement by an attorney of record who has authority and control over the conditions of deposit over his or her signature and registration number stating that the deposit has been accepted by an International Depository Authority under the provisions of the Budapest Treaty and that all restrictions upon public access to the deposited material will be irrevocably removed upon the grant of a patent on this application. This requirement is necessary when deposits are made

Art Unit: 1642

under the provisions of the Budapest Treaty as the Treaty leaves this specific matter to the discretion of each State.

If the deposit is not made under the provisions of the Budapest Treaty, then in order to certify that the deposits comply with the criteria set forth in 37 CFR 1.801-1.809 regarding availability and permanency of deposits, assurance of compliance is required. Such assurance may be in the form of an affidavit or declaration by applicants or assignees or in the form of a statement by an attorney of record who has the authority and control over the conditions of deposit over his or her signature and registration number averring:

- (a) during the pendency of this application, access to the deposits will be afforded to the Commissioner upon request:
- (b) all restrictions upon the availability to the public of the deposited biological material will be irrevocably removed upon the granting of a patent on this application:
- (c) the deposits will be maintained in a public depository for a period of at least thirty years from the date of deposit or for the enforceable life of the patent of or for a period of five years after the date of the most recent request for the furnishing of a sample of the deposited biological material, whichever is longest; and
- (d) the deposits will be replaced if they should become nonviable or non-replicable.

Amendment of the specification to recite the date of deposit and the complete name and address of the depository is required. As an additional means for completing the record, applicant may submit a copy of the contract with the depository for deposit and maintenance of each deposit.

If a deposit is made after the effective filing date of the application for patent in the United States, a verified statement is required from a person in a position to corroborate that the biological material described in the specification as filed is the same as that deposited in the depository, stating that the deposited material is identical to the biological material described in the specification and was in the applicant's possession at the time the application was filed.

Applicant's attention is directed to <u>In re Lundak</u>, 773 F.2d. 1216, 227 USPQ 90 (CAFC 1985) and 37 CFR 1.801-1.809 for further information concerning deposit practice.

9. Claims 21-22 and 29-30 are rejected under 35 U.S.C. 112, first paragraph, because the specification, while being enabling for an antibody that binds SEQ ID NO:1 or a fragment of at least 5 amino acids of SEQ IS NO:1 wherein the antibody can be 7C3, with completion of the deposit requirements, does not reasonably provide enablement for just any compound that binds to just any K12 protein or an antibody to just any mammalian K12 protein. The specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the invention commensurate in scope with these claims.

Factors to be considered in determining whether undue experimentation is required, are summarized in Ex parte Forman, 230 USPQ 546 (BPAI 1986). They include the nature of the invention, the state of the prior art, the relative skill of those in the art, the amount of direction or guidance disclosed in the specification, the presence or absence of working examples, the predictability or unpredictability of the art, the

Art Unit: 1642

breadth of the claims, and the quantity of experimentation which would be required in order to practice the invention as claimed.

The claims are broadly drawn to an antibody or any compound that binds to just any K12 protein or a mammalian K12 protein.

The specification teaches only SEQ ID NO:1 as the human K12 protein and only an antibody as a compound that binds to SEQ ID NO:1 (see Figure 1 and Example IV)

The claims are not commensurate in scope with the enablement provided in the specification because the specification does not disclose a function of the K12 protein or what identifying characteristics would be needed for one to have a K12 protein.

Although the amino acid sequence of SEQ ID NO:1 is disclosed, there's no indication as to what parts of the protein are required to have a "K12" protein. The structure of the protein is required for a function to be determined and as evidenced from the following discussion protein chemistry is probably one of the most unpredictable areas of biotechnology.

For example, the replacement of a single lysine at position 118 of the acidic fibroblast growth factor by a glutamic acid led to a substantial loss of heparin binding, receptor binding, and biological activity of the protein (see Burgess et al, Journal of Cell Biology Vol 111 November 1990 2129-2138). In transforming growth factor alpha, replacement of aspartic acid at position 47 with asparagine, did not affect biological activity while the replacement with serine or glutamic acid sharply reduced the biological activity of the mitogen (see Lazar et al Molecular and Cellular Biology Mar 1988 Vol 8 No 3 1247-1252). Replacement of the histidine at position 10 of the B-chain of human

insulin with aspartic acid converts the molecule into a superagonist with 5 times the activity of nature human insulin. Schwartz et al, Proc Natl Acad Sci USA Vol 84:6408-6411 (1987). Removal of the amino terminal histidine of glucagon substantially decreases the ability of the molecule to bind to its receptor and activate adenylate cyclase. Lin et al Biochemistry USA Vol 14:1559-1563 (1975).

These references demonstrate that even a single amino acid substitution or what appears to be an inconsequential chemical modification, will often dramatically affect the biological activity of the protein.

The claims encompass an antibody or any compound that binds to any K12 protein and as evidenced from the above discussion it would be unpredictable what other proteins are a K12 protein. In addition, the specification has not disclosed any other "compound" that would bind to SEQ ID NO:1 that could be used for detection of SEQ ID NO:1

Therefore, in view of the unpredictability in the art of protein chemistry as indicated above, and in view of the lack or guidance in the specification and in view of the broadly claimed invention, it would require undue experimentation to practice the broadly claimed invention.

## Claim Rejections - 35 USC § 101

10. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

11. Claims 21-22 are rejected under 35 U.S.C. ' 101 because the claimed invention

Art Unit: 1642

is directed to non-statutory subject matter.

Claims 21-22 as written, do not sufficiently distinguish over antibodies as they exists naturally because the claim does not particularly point out any non-naturally occurring differences between the claimed antibodies and binding compositions and the structure of naturally occurring antibodies.

In the absence of the hand of man, the naturally occurring antibodies are considered non-statutory subject matter (<u>Diamond v. Chakrabarty</u>, 206 U.S.P.Q. 193 (1980)). It should be noted that the mere purity of a naturally occurring product does not necessarily impart patentability (<u>Ex parte Siddiqui</u>, 156 U.S.P.Q. 426 (1966)). However, when purification results in a new utility, patentability is considered (<u>Merck Co. v. Chase Chemical Co.</u>, 273 F.Supp 68 (1967), 155 USPQ 139, (District Court, New Jersey, 1967)). Amendment of the claim to recite "an isolated" or "purified" antibody or similar language would obviate this rejection.

#### Conclusion

- 12. No claim is allowed.
- 13. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Larry R. Helms, Ph.D, whose telephone number is (571) 272-0832. The examiner can normally be reached on Monday through Friday from 6:30 am to 4:00 pm, with alternate Fridays off. If attempts to reach the examiner by

Art Unit: 1642

telephone are unsuccessful, the examiner's supervisor, Jeffery Siew, can be reached at (571) 272-0787.

14. Papers related to this application may be submitted to Group 1600 by facsimile transmission. Papers should be faxed to Group 1600 via the PTO Fax Center. The faxing of such papers must conform with the notice published in the Official Gazette, 1096 OG 30 (November 15, 1989). The Fax Center telephone number is 703-872-9306.

Larry R. Helms

571-272-0832

LARRY R. HELMS, PH.D.
PRIMARY EXAMINER

### Notice of References Cited

Application/Control No.

10/080,522

Examiner

Larry R. Helms

Applicant(s)/Patent Under
Reexamination
KAUFMAN ET AL.

Page 1 of 2

U.S. PATENT DOCUMENTS

| * |   | Document Number<br>Country Code-Number-Kind Code | Date<br>MM-YYYY | Name | Classification |
|---|---|--------------------------------------------------|-----------------|------|----------------|
|   | Α | US-                                              |                 |      |                |
|   | В | US-                                              |                 |      |                |
|   | С | US-                                              |                 |      |                |
|   | D | US-                                              |                 |      |                |
|   | E | US-                                              |                 |      |                |
|   | F | US-                                              |                 |      |                |
|   | G | US-                                              |                 |      |                |
|   | Н | US-                                              |                 | ·    |                |
|   | 1 | US-                                              |                 |      |                |
|   | J | US-                                              |                 |      |                |
|   | к | US-                                              |                 |      |                |
|   | L | US-                                              |                 |      |                |
|   | М | US-                                              |                 |      |                |

#### **FOREIGN PATENT DOCUMENTS**

| * |   | Document Number<br>Country Code-Number-Kind Code | Date<br>MM-YYYY | Country | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Classification |
|---|---|--------------------------------------------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|   | N | _                                                |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | 0 |                                                  |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              |
|   | Р |                                                  |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | Q |                                                  |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | R | egy (*)                                          |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|   | s |                                                  |                 |         | All the second s |                |
|   | Т |                                                  |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

#### **NON-PATENT DOCUMENTS**

| *       |   | Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) |
|---------|---|-------------------------------------------------------------------------------------------|
|         | U | FUNDAMENTAL IMMUNOLOGY 242 (William E. Paul, M.D. ed., 3d ed. 1993)                       |
|         | ٧ | Burgess et al, Journal of Cell Biology Vol 111 November 1990 2129-2138                    |
| - A1 80 | w | Lazar et al Molecular and Cellular Biology Mar 1988 Vol 8 No 3 1247-1252                  |
|         | х | Schwartz et al, Proc Natl Acad Sci USA Vol 84:6408-6411 (1987                             |

\*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).) Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

#### Application/Control No. Applicant(s)/Patent Under Reexamination 10/080,522 KAUFMAN ET AL. Notice of References Cited Examiner Art Unit Page 2 of 2 Larry R. Helms 1642

#### **U.S. PATENT DOCUMENTS**

| * |   | Document Number<br>Country Code-Number-Kind Code | Date<br>MM-YYYY | Name | Classification |
|---|---|--------------------------------------------------|-----------------|------|----------------|
|   | Α | US-                                              |                 |      |                |
|   | В | US-                                              |                 |      |                |
|   | С | US-                                              |                 |      |                |
|   | D | US-                                              |                 |      |                |
|   | E | US-                                              |                 |      |                |
|   | F | US-                                              |                 |      |                |
|   | G | US-                                              |                 |      |                |
|   | Н | US-                                              |                 | ·    |                |
|   | ļ | US-                                              |                 |      | ·              |
|   | J | US-                                              |                 |      |                |
|   | к | US-                                              |                 |      |                |
|   | L | US-                                              |                 |      |                |
|   | М | US-                                              |                 |      |                |

#### FOREIGN PATENT DOCUMENTS

| * |   | Document Number<br>Country Code-Number-Kind Code | Date<br>MM-YYYY | Country | Name | Classification |
|---|---|--------------------------------------------------|-----------------|---------|------|----------------|
|   | N |                                                  |                 |         |      |                |
|   | 0 |                                                  |                 |         |      |                |
|   | P |                                                  |                 |         |      |                |
|   | Q |                                                  |                 |         |      |                |
|   | R |                                                  |                 |         |      |                |
|   | S |                                                  |                 |         |      |                |
|   | Т |                                                  |                 |         |      |                |

#### **NON-PATENT DOCUMENTS**

| * |   | Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) |
|---|---|-------------------------------------------------------------------------------------------|
|   | U | Lin et al Biochemistry USA Vol 14:1559-1563 (1975                                         |
|   | V |                                                                                           |
|   | w |                                                                                           |
|   | × |                                                                                           |

\*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).) Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

| INFORM             | IATION DISCLOSURE CITATION   |                  |                               | CONTINUATION OF   | APPLICATION SE                         | RIAL NO.                               |                  |
|--------------------|------------------------------|------------------|-------------------------------|-------------------|----------------------------------------|----------------------------------------|------------------|
|                    | CHATION                      | 1579-64          | 5<br>                         | 09/539,774        |                                        |                                        | <u> </u>         |
|                    | •                            | KAUFMAN          | N et al                       |                   | <u>بة</u>                              | <b>三</b>                               |                  |
| (Use               | several sheets if necessary) | FILING DATE      |                               | GROUP             |                                        | 30000000000000000000000000000000000000 | <del>-</del>     |
|                    |                              | February 2       | 25, 2002                      |                   | 3<br>6                                 |                                        | 725              |
| VALUED             |                              | U.S.             | PATENT DOCUMENTS              |                   | <del>0</del> <del>0</del> <del>0</del> |                                        | 9                |
| XAMINER<br>INITIAL | DOCUMENT NUMBER              | DATE             | NAME                          | CLASS             | SUBCLASS                               | IF APPR                                | G DATE<br>OPRIAT |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        | <del></del>                            |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   | <b>†</b>                               |                                        |                  |
|                    |                              |                  |                               |                   |                                        | ,                                      |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    | ·                            |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              | FORE             | GN PATENT DOCUMENTS           |                   | ·                                      |                                        |                  |
|                    | DOCUMENT                     | DATE             | COUNTRY                       |                   |                                        |                                        | LATION           |
| LRA T              | 0 652 232                    |                  | COUNTRY                       | CLASS             | SUBCLASS                               | YES                                    | NO               |
| 101                | WO 94/00601                  | 5/1995<br>1/1994 | EPO<br>PCT                    |                   |                                        |                                        |                  |
| g <sub>b</sub>     | WO 94/00603                  | 1/1994           | PCT                           |                   |                                        |                                        |                  |
| M                  | WO 92/13970                  | 8/1992           | PCT                           |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
|                    | OTHER DOC                    | UMENTS (inclu    | uding Author, Title, Date, Po | ertinent pages, e | etc.)                                  |                                        |                  |
|                    |                              |                  |                               |                   |                                        |                                        |                  |
| <del></del>        |                              |                  | 14                            |                   |                                        |                                        |                  |

Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 809; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to application.

**Date Considered** 

\*Examiner

Form PTO-FB-A820 (Also PTO-1449)

| INFO                                             | RMATION DISCLOSURE                                  | ATTY, DOCKET                         |                                       | CONTINUATION                               |                                                  | EHIAL NO                                         |           |
|--------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------|
| CITATION . (Use several sheets if necessary)     |                                                     | 1579-645                             |                                       | 09/539,774                                 | 09/539,774                                       |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  | 22 TO                                            |           |
|                                                  |                                                     | KAUFMAN                              | et al                                 |                                            |                                                  | S                                                |           |
|                                                  |                                                     | FILING DATE                          |                                       | GROUP                                      |                                                  | <del>-2</del>                                    |           |
|                                                  |                                                     | February 2                           | 5, 2002                               |                                            |                                                  | 00                                               |           |
|                                                  | ···                                                 | IIS                                  | PATENT DOCUMENTS                      |                                            |                                                  | <del>8-1</del>                                   |           |
| WINER                                            |                                                     |                                      |                                       |                                            |                                                  | FILI                                             | NG D      |
| ITIAL                                            | DOCUMENT NUMBER                                     | DATE                                 | NAME                                  | CLASS                                      | SUBCLASS                                         | IF APP                                           | ROP       |
|                                                  | 5,589,358                                           | 12/1996                              | Dawson                                |                                            |                                                  | <u> </u>                                         |           |
|                                                  |                                                     |                                      | · · · · · · · · · · · · · · · · · · · |                                            |                                                  | ļ                                                |           |
|                                                  |                                                     |                                      | <del>·</del>                          |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      | 4                                     |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  | 1                                                |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  |           |
|                                                  |                                                     | FOREIG                               | IN PATENT DOCUME!                     | NTS                                        |                                                  |                                                  |           |
|                                                  |                                                     | •                                    |                                       | , , , , , , , , , , , , , , , , , , , ,    |                                                  | TRAN                                             | ISLAT     |
|                                                  | DOCUMENT                                            | DATE                                 | COUNTRY                               | CLASS                                      | SUBCLASS                                         | YES                                              |           |
|                                                  |                                                     |                                      |                                       |                                            |                                                  |                                                  | Т         |
|                                                  |                                                     |                                      |                                       |                                            | · · · · · · · · · · · · · · · · · · ·            |                                                  | †         |
|                                                  |                                                     |                                      |                                       |                                            |                                                  | <del> </del>                                     | ╁         |
|                                                  |                                                     |                                      |                                       |                                            | <del>                                     </del> |                                                  | +         |
|                                                  |                                                     |                                      |                                       |                                            | <del>                                     </del> | <del>                                     </del> | $\dagger$ |
|                                                  |                                                     |                                      | •                                     |                                            | <b></b>                                          | <del>                                     </del> | +         |
| İ                                                |                                                     |                                      | ·                                     |                                            | <u> </u>                                         |                                                  | ╁         |
|                                                  | OTHER DOC                                           | JMENTS (inclu                        | ding Author, Title, Dat               | e. Pertinent pages                         | etc.)                                            | L                                                | т         |
| UM                                               | Lee, "The Accumulation                              | of Three Spec                        | ific Proteins Related to              | Glucose-Regulated F                        | Proteins in a                                    | Tempe                                            | rati      |
| 4-                                               | Sensitive Hamster Muta                              | ant Cell Line K1:                    | 2", Journal of Cellular P             | hysiology 106:119-12                       | 25 (1981)                                        | •                                                |           |
| 00                                               | Cole et al, "Cloning and                            | Expression in I                      | Escherichia coli K-12 of              | the Genes for Major                        | Outer Mem                                        | brane F                                          | rote      |
| V~                                               | OmpA from Shigella dy                               | senteriae, Enter                     | <i>robacter aerogenes,</i> and        | d Serratia marcescer                       | ns", Journal                                     | of Bacte                                         | eriol     |
| <del>                                     </del> | 149(1):145-150 (1982)                               | ntification and C                    | haracterization of K40                | (CECTAM) - No. 11                          | lumana A                                         | _ TL - ^ :                                       |           |
| [ NO                                             | Slentz-Kesler et al, "Ide<br>a Golgi-Associated Pro | minication and C<br>tein with Tranem | nembrane and Secreted                 | (SEUTMT), & Novel I<br>Lisoforms", Gonomic | Tuman Gen                                        | e inati                                          | ⊨nc∙      |
| <del>                                     </del> |                                                     | .car war ridiisii                    | Cumulana and Secietés                 | isolomis , Genomic                         | 13 41.321-34                                     | o (1998                                          | <u> </u>  |
|                                                  |                                                     |                                      |                                       | 1                                          |                                                  |                                                  |           |
|                                                  |                                                     |                                      | Date Consi                            | dered 0/2//                                | 324                                              |                                                  |           |
| niner                                            | 1                                                   |                                      | Date Cursi                            |                                            | ~7                                               |                                                  |           |

that a tremenous arrestity of antibody molecules must be available, from which some antibodies can be selected for every possible antigenic structure. In order to regulate such a diverse system, a network theory has been proposed, in which antibodies are themselves recognized as antigenic (see Chapters 12 and 24, and ref. 19), and the response to streptocoocal polysaccharide is a leading example in which anti-idiotypic antibodies can be shown to regulate the response to antigen (20).

Recent studies of a series of 17 monoclonal anti- $\alpha$  (1  $\rightarrow$  6) dextran hybridomas (21,22) have investigated whether the binding sites of closely related antibodies would be derived from a small number of variable region genes, for both heavy and light chains, or whether antibodies of the same specificity could derive from variable region genes with highly divergent sequences. Each monoclonal had a groove-type site that could hold six or seven sugar residues (with one exception), based on inhibition of immunoprecipitation by different length oligosaccharides. Thus, unlike monoclonals to haptenated proteins, the precise epitope could be well characterized and was generally quite similar among the entire series.

Studies of the V, sequences revealed that only three V, groups were used in these hybridomas. Use of each V, group correlated with the particular antigen used to immunize the animals, whether linear dextran or short oligosaccharides, so that 10 of the monoclonals from mice immunized the same way all used the same V.

In contrast, the 17 VH chains were derived from at least five different germline genes from three different VH gene families (23). The two most frequently used germline VH genes were found in seven and five monoclonals, respectively, with minor variations explainable by somatic mutations. Once again, VH gene usage correlated with size of the antigen used to immunize, although the length of each CDR did not correlate with the size of the groove-type binding site. The remarkable finding is that very different V<sub>H</sub> chains (about 50% homologous) can combine with the same V<sub>K</sub> to produce antibodybinding sites with nearly the same size, shape, antigen specificity, and affinity. A similar phenomenon can also occur when different V<sub>R</sub> sequences combine with different V<sub>K</sub> sequences to produce antibodies with very similar properties. This is a result of the fact that dextran binding depends on the antigen fitting into the groove and interacting favorably with the residues forming the sides and bottom of the groove. The results indicate that divergent variable region sequences, both in and out of the complementarity-determining regions, can be folded to form similar binding site contours, which result in similar immunochemical characteristics. Similar results

V, 19.1.2 and eleven used V, 9.14.7. Starting Will ent Vit genes, these two families of monoclonals an experiment of nature concerning the ability VH gene to combine with different light chain V genes, as well as lieavy chain D and JH genes to pri groove-shaped binding site of a given specificity, [ one of these 21 monoclonals, the same light ch: Oxl gene was used, but the VH19 family used a si sequence exclusively (JK2), while the Vit9 fatt cluded all four of the active IK segments (IKI, 2, 5). Similarly, the licavy chain In sequences of the family were all of a single type (J13), while those VH9 family included three types (JH1, 2, and 3). D region was used by both families (DFL16.1), junctional sequences between VH-D and D-JHW ferent, with the VHI9 using minimal substitutio the Vit9 allowing more variability in junctio quences, depending on the size of the IH with v was joining. Although the amino acid sequences, two VH genes are 73% identical, they use marke ferent strategies to arrive at the same groove-typ ing site with nearly identical size and specificiresults suggest that the two heavy chain variable t perhaps due to their conformation, may place d structural constraints on which minigene come can successfully contribute to forming a particu Two different strategies for generating antibody a ity are apparent, even though the same Vk and I genes were used by both families. For the V, 19 point mutations in the CDR2 generated the ac dextran specificity, while the rest of the structi held constant. For the V<sub>R</sub>9 family, a wide variet J<sub>K</sub>, and V<sub>H</sub>-D and D-J<sub>H</sub> sequences were used to ate the groove-type site. These two blueprints ( structing a binding site may also reflect distinct pathways for generating antibody diversity.

Protein and Polypeptide Antigenic Determinant:

Like the proteins themselves, the antigen c nants of proteins consist of amino acid residues i ticular three-dimensional array. The residues the contact with complementary residues in the at combining site are called contact residues. To matect, of course, these residues must be exposed surface of the protein, not buried in the hydrocore. Since the complementarity-determining in the hypervariable regions of antibodies has found to span as much as 30 to 40 Å × 15 to 20 Å (D. R. Davies, personal communication), these

FUNDAMENTAL IMMUNOLOGY RAVEN PRESS NY ED. WILLIAM E. PAUL CHAPTER B: IMMUNOGENICITY AND ANTIGEN STRUCTURE JAY A. BERKOWER AND ITLA. I. BERKOWER

THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S

Molecular and Cellular Biology, Mar. 1988, p. 1247-1252 0270-7306/88/031247-06\$02.00/0 Copyright © 1988, American Society for Microbiology

ar Y.

и. )(-

45.

in.

ap.

end

ıία.

. of

YOS

485.

gnir

ius.

785.

ıy a

æll. :nce

hin.

tone

NA

apo-

**smal** 

nini.

AWR-

as of

rotus

oility

opus

4 D.

gene

98:

# Transforming Growth Factor α: Mutation of Aspartic Acid 47 and Leucine 48 Results in Different Biological Activities

ELIANE LAZAR,† SHINICHI WATANABE,† STEPHEN DALTON, AND MICHAEL B. SPORN

Laboratory of Chemoprevention, National Cancer Institute, Bethesda, Maryland 20892

Received 22 July 1987/Accepted 30 November 1987

To study the relationship between the primary structure of transforming growth factor  $\alpha$  (TGF- $\alpha$ ) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF- $\alpha$ . The wild-type and mutant proteins were expressed in a vector by using a yeast  $\alpha$  mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF- $\alpha$  resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF- $\alpha$  and that the carboxy terminus of TGF- $\alpha$  is involved in interactions with cellular TGF- $\alpha$  receptors. The side chain of leucine 48 appears to be crucial either involved in interactions with cellular TGF- $\alpha$  receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF- $\alpha$  or directly in the molecular recognition of TGF- $\alpha$  by its receptor.

Transforming growth factor  $\alpha$  (TGF- $\alpha$ ) is a polypeptide of 50 amino acids. First isolated from a retrovirus-transformed mouse cell line (9), it has subsequently been found in human tumor cells (10, 29), in the early rat embryo (18), and recently in cell cultures from the pituitary gland (23). TGF- $\alpha$  appears to be closely related to epidermal growth factor (EGF) structurally and functionally (19, 20). The two peptides apparently bind to the same receptor, and both induce anchorage-independent growth of certain nontransformed cells, such as NRK cells, in the presence of TGF- $\beta$  (1).

Comparison of amino acid sequences reveals about 35% homology among the EGF-like peptides (rat [27], mouse [25], and human [13] EGFs and rat [19] and human [12] TGF-as). Some viral peptides (Shope fibroma growth factor [6], vaccinia growth factor [2], and myxoma growth factor [30]) also share homologies with the EGF-like peptides.

If TGF- $\alpha$  is involved in transformation, a TGF- $\alpha$  antagonist could be an important therapeutic tool in the treatment of certain types of malignancies. An understanding of the conformational and dynamic properties of the TGF- $\alpha$  molecule is basic to the design of an antagonist. A hypothetical antagonist would bind to the same receptor as TGF-a, but would not induce the series of proliferative and transforming events induced by TGF-a. To obtain such a molecule it is necessary to dissociate interactions responsible for binding from those involved in signal transduction. We decided to approach the problem by way of site-directed mutagenesis of a human sequence of TGF-a. In this report we describe our first series of mutations, which were carried out at residues Asp-47 and Leu-48, in the carboxy-terminal part of TGF-α; these two amino acids are highly conserved in the EGF-like family of peptides. We show that these two adjacent residues

play different roles in the structure and/or function of  $TGF-\alpha$ .

#### MATERIALS AND METHODS

Cells. Normal rat kidney (NRK) cells were grown in Dulbecco modified Eagle medium containing 10% (vol/vol) calf serum.

TGF-α gene. The sequence of the 50-amino-acid human TGF-α was originally derived from a human TGF-α precursor cDNA (12). The coding sequence is preceded by an ATG methionine codon and followed by a TAA stop codon and is flanked by EcoRI restriction sites. This EcoRI fragment combines the 59-base-pair EcoRI-NcoI fragment from plasmid pTE5 (12) with the 111-base-pair NcoI-EcoRI fragment from plasmid pyTE2 (11). The resulting EcoRI fragment was inserted in M13mp18 for site-directed mutagenesis.

Synthesis and purification of oligonucleotides and oligonucleotide-directed mutagenesis. The synthesis and purification of 20- to 27-nucleotide oligonucleotides were carried out as described previously (31). The one or two nucleotides responsible for the mutation were located in the middle of the oligonucleotide. Mutagenesis was performed by published procedures (21, 33). The sequences of the mutant clones were verified by the method of Sanger et al. (25).

Yeast shuttle vector. The vector YEp70 $\alpha$ T contains a yeast  $\alpha$ -factor pheromone promoter and prepro sequence for the expression of TGF- $\alpha$  (15). The mutant TGF- $\alpha$  coding sequence was inserted in the EcoRI site of plasmid YEp70 $\alpha$ T and expressed in the form of a fusion protein consisting of 92 amino acids from the prepro sequence of the yeast  $\alpha$  factor attached to the amino terminus of TGF- $\alpha$  (28). The yeast cleaves the precursor and secretes TGF- $\alpha$  with 8 amino acids fused to it (4 are encoded by the prepro sequence of  $\alpha$ -factor, and the other 4 are encoded by the DNA sequence added to insert of the TGF- $\alpha$  gene). The last of these residues is a methionine, which allows the cleavage of the secreted fusion

Corresponding author.
 † Present address: Unité d'Oncologie Moleculaire, IRSC, 94802
 Villejuif Cedex, France.

protein by cyanogen bromide (CNBr) and the release of a mature TGF-α (50 amino acids) (see Results).

Yeast strain and transformation. The yeast Saccharomyces cerevisiae 20B-12 (MATa trpl pep4-3) (17) was obtained from the Yeast Genetics Stock Center, Berkeley, Calif. S. cerevisiae 20B-12 was grown in YEPD medium (1% yeast extract [Difco Laboratories], 2% Bacto-Peptone [Difco], 2% glucose). When the culture reached an optical density at 660 nm of 1, spheroplasts were prepared (14) for transformation. For each transformation we used 10 to 15 µg of purified plasmid DNA.

Partial purification of TGF-& mutants. At 3 days after transformation, five individual colonies of transformants were grown to saturation in YEPD medium. The amount of protein in the yeast medium was measured by the method of Bradford (3), and the amount of mutant TGF-a secreted in the yeast medium was determined by radioimmunoassay. The clones which secrete the highest amount of mutant TGF-a were used to grow a 1-liter culture in YNB-CAA medium (0.67% yeast nitrogen base, 20 g of glucose per liter, 10 g of Casamino Acids [Difco] per liter). After the culture reached saturation (optical density at 660 nm of 10 to 12) (48 h in an air shaker at 30°C), the yeast conditioned medium was dialyzed extensively against 1 M acetic acid in 3,000molecular-weight cutoff dialysis tubing. Usually 250 ml of dialyzed culture was lyophilized, suspended in 10 ml of 70% formic acid, and treated with CNBr (molar excess of 500) for 20 h at room temperature. The CNBr was subsequently evaporated, and the samples were lyophilized. CNBr-treated samples were suspended in 1 ml of 1 M acetic acid, loaded on a Bio-gel P30 column (30 by 1.5 cm [Bio-Rad Laboratories]), and cluted with 1 M acetic acid. Fractions of 1 ml were collected. Aliquots were lyophilized, suspended in binding buffer (minimum essential medium containing 1 mg of bovine serum albumin per ml and 25 mM HEPES [N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid; pH 7.4]), neutralized if necessary to pH 7.4, and tested in EGF-binding competition and soft-agar assays, as well in radioimmunoassay.

Radioimmunoassays. The amounts of TGF- $\alpha$  secreted in the yeast medium were determined by radioimmunoassay with the immunoglobulin G fraction of a polyclonal antibody, 34D, raised against recombinant human TGF- $\alpha$  (4), in 0.1 M Tris (pH 7.5)-0.15 M NaCl-2.5 mg of bovine serum albumin per ml. The amounts of partially purified TGF- $\alpha$  present in the P30 column fractions were measured by using the Biotope RIA kit with polyclonal antibody against human TGF- $\alpha$  (a gift from W. Hargreaves, Biotope), under denaturing conditions, as recommended by the supplier.

EGF binding competition assay and soft agar assay. Both EGF-binding competition and soft-agar assays have been described previously (1).

#### RESULTS

Rationale for mutations in the carboxyl terminus of  $TGF-\alpha$ . Figure 1 shows the amino acid sequence of  $TGF-\alpha$  in which the residues that are conserved among all the EGF-like peptides described thus far (EGF,  $TGF-\alpha$ , and EGF-like viral proteins) are enclosed in bold circles. Among the 11 conserved amino acids, there are 6 Cys and 2 Gly residues, which presumably play essential roles in determining the overall conformation of the molecule. We concentrated on the two conserved amino acids in the carboxyl terminus, Asp-47 and Leu-48. The Asp in position 47 is conserved among the EGFs and  $TGF-\alpha$  (human or murine), but not



FIG. 1. Mutations in the carboxy terminus of human TGF- $\alpha$ . The amino acids conserved in all the family of EGF-like growth factors (human and murine EGFs and TGFs, as well as the gene products of the vaccinia virus [vaccinia growth factor], the Shope fibroma virus [Shope fibroma growth factor], and the myxoma virus [myxoma growth factor]) are enclosed in bold circles. The mutations of amino acids at positions 47 and 48 are indicated. Symbols: A, Ala; C, Cys: D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp: Y, Tyr.

among the EGF-like viral proteins (vaccinia growth factor, Shope fibroma growth factor, or myxoma growth factor), whereas Leu 48 is conserved among all the EGF-like peptides so far described. In both mouse and human EGF, the two corresponding residues (Asp-46 and Leu-47) are located near the surface of the protein (8, 22, 22a). We designed a series of mutations in these two positions.

Asp.47 has been mutated to Glu, Asn, Ser, and Ala. Glu was chosen because it has the same charge as and a larger size than Asp; Asn has a similar side-chain structure, but is uncharged; Ser is smaller but still polar; Ala is smaller and nonpolar.

Leu 48 has been mutated to Ile and Met, which are both large, nonpolar residues like Leu, and to Ala, which is nonpolar but smaller. We introduced the chosen mutations by site-directed mutagenesis of the cloned human TGF-a gene, using synthetic oligonucleotides.

Construction of the yeast  $\alpha$  mating pheromone-human TGF- $\alpha$  plasmid. The TGF- $\alpha$  expression vector pyTE1 (Fig. 2) was constructed by using plasmid YEp70 $\alpha$ T (15) which contains the  $2\mu$ m origin of replication and yeast TRP1 gene for its replication and selective maintenance, respectively. YEp70 $\alpha$ T also contains the yeast  $\alpha$ -factor promoter, the  $\alpha$ -factor prepro sequence coding for 89 amino acids, and the sequence for 3 amino acids resulting from the introduction of XbaI and EcoRI sites. The human mature TGF- $\alpha$  sequence (12) is contained in a 170-base-pair EcoRI fragment which includes an ATG (Met) codon preceding the sequence of TGF- $\alpha$  and a TAA (stop) codon followed by 8 nucleotides. This TGF- $\alpha$  sequence was inserted in the unique EcoRI site of YEp70 $\alpha$ T. Clones with the proper orientation were selected, and DNA was isolated for yeast transformation.

Measurement of TGF- $\alpha$  secreted by S. cerevisiae. The amount of total proteins secreted into the yeast culture was  $10 \pm 1 \mu g/ml$  for wild-type as well as mutant TGF- $\alpha$  a determined by the method of Bradford (3). Before further purification was attempted, we wanted to determine whether the mutated TGF- $\alpha$  proteins were being secreted by the yeast. The low pH of the yeast medium, as well as the aciding proteins secreted in the yeast culture, precluded biological assay of secreted mutants. Therefore, immunological methods

FIG. 2. Structure of the *S. cerevisiae* 8.2-kilobase shuttle vector pyTE1. The secretion of the TGF- $\alpha$  gene is under the transcriptional control of the yeast  $\alpha$ -factor promoter and prepro sequence ( $\boxtimes X$ ). The yeast  $2\mu$ m origin of replication ( $\boxtimes X$ ) and the selective yeast *TRPI* gene ( $\boxtimes X$ ) are indicated. The TGF- $\alpha$  gene, preceded by an initiation (ATG) codon and followed by a stop (TAA) codon, is inserted in the EcoRI site. Details are given in Materials and Methods and in Results.

ods were used. Wild-type and mutant TGF-α's were secreted at a level of 100 to 200 ng/ml and 10 to 500 ng/ml, respectively (as determined by radioimmunoassay with polyclonal antibody 34D). We thus estimate that the percentage of TGF-α secreted in the yeast culture is at least 1% of the total protein secreted. We cannot yet assess whether the variations in the levels of secretion of different mutant TGF-α proteins are real or whether one single-amino-acid substitution drastically affects the recognition by the antibody. The latter hypothesis is the more likely, since the use of another polyclonal antibody (Biotope) under denaturing conditions enabled us to detect certain TGF-\alpha mutants (such as [Ala 47]-TGF- $\alpha$ , in which the amino acid in position 47 of human TGF- $\alpha$  is mutated to an alanine) that were poorly detected by 34D, under nondenaturing as well as denaturing conditions. After the amount of TGF-α mutant proteins was estimated, the medium was extensively dialyzed against 1 M acetic acid and lyophilized as described in Materials and Methods.

Partial purification of yeast-secreted TGF- $\alpha$ . Although the yeast shuttle vector was constructed in such a way as to sccrete TGF- $\alpha$  with 8 amino acids fused to the N terminus, it was often observed that a significant fraction of the secreted TGF- $\alpha$  was in a higher-molecular-weight fragment corresponding to the size expected from an uncleaved (unprocessed) 92-amino-acid fusion protein. Since a Met had been introduced at the N terminus of TGF- $\alpha$  and since TGF- $\alpha$  contains no Met in its sequence, CNBr treatment could be used to cleave either of these 8- or 92-amino-acid N-terminal peptides and release the complete 50-amino-acid TGF- $\alpha$ . Indeed, CNBr treatment of yeast-secreted proteins resulted in the conversion of high-molecular-weight TGF- $\alpha$  into the 6,000-molecular-weight species, as revealed by Western immunoblot (data not shown).

CNBr-cleaved samples (see Materials and Methods) were purified on a Bio-Gel P30 column. Figure 3 shows the elution profile of the proteins, as well as the results of a radioreceptor assay and a soft-agar assay performed on aliquots of the column fractions. The A<sub>280</sub> profile shows two major peaks of



FIG. 3. Purification of yeast-secreted wild-type TGF- $\alpha$ . The purification procedure is described in Materials and Methods and in Results. Aliquots of every other fraction of the Bio-Gel P30 column were tested for their abilities to compete with <sup>125</sup>I-EGF for binding to the EGF receptor ( $\triangle$ ) and to induce colony formation (>62  $\mu$ m) on NRK cells in soft agar in the presence of TGF- $\beta$  (1 ng/ml) ( $\bullet$ ). The  $A_{280}$  profile of the proteins was determined (——).

eluted proteins, one corresponding to the void volume and the other one to proteins of molecular weight <3,000. Aliquots of the column fractions were tested for their ability to compete with <sup>125</sup>I-EGF for binding to the receptor. The fractions that were the most active in this assay were located between the two major protein peaks, in an area where relatively few proteins cluted. Although some activity was found in the first protein peak (void volume), this was considerably reduced on treatment with stronger CNBr (data not shown).

Aliquots of each fraction were also tested for their ability to induce anchorage-independent growth of NRK cells in soft agar in the presence of TGF-β (1 ng/ml). The receptor binding and colony-forming activity superimposed almost exactly (Fig. 3). Analysis by polyacrylamide gel electrophoresis with silver staining, as well as by Western blot, of the column fractions shows that our purification procedure (CNBr cleavage followed by P30 sizing column) eliminates high-molecular-weight proteins (data not shown). Since pure TGF-α migrates in a broad band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis (32), this technique cannot be used for proper assessment of the degree of separation of TGF-α from low-molecular-weight contaminating proteins. Nevertheless, within our detection levels the amounts of TGF- $\alpha$  present in the column fractions (detected by radioimmunoassay using the antibody from Biotope) correlated with the amounts observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (data not shown).

Comparison of binding and colony-forming activity of TGF- $\alpha$  partially purified from yeast media. It was important to show that wild-type TGF- $\alpha$  secreted from S. cerevisiae had the expected biological properties and that its activity in soft-agar and radioreceptor assays was equivalent. For these assays, the amount of EGF-competing activity present in the most active fraction of the P30 column of wild-type TGF- $\alpha$  was measured in terms of EGF equivalents. The dilution curve had a slope that was parallel to that of the EGF standard. This value was also used to measure the colony-forming activity of the partially purified wild-type TGF- $\alpha$  (with EGF as a standard in the assay). The colony-forming activity of the partially purified wild-type TGF- $\alpha$  corre-

is f sab

), ie id a lu er is id

th

is

۲,

an ig. ch ine ly. the tof

ich of es. site se-

ice

her ther the idic ical

eth-



FIG. 4. Correlation between the activities in the binding and colony-forming assay for the partially purified wild-type  $TGF-\alpha$  secreted by S. cerevisiae. The activity in the radioreceptor assay of the peak fraction from the P30 column was determined in EGF equivalent concentration. The value obtained was used for the soft-agar assay. Colonies of >62  $\mu$ m ( $\Delta$ ) and the EGF standard ( $\Phi$ ) are shown.

sponded exactly to that of EGF (Fig. 4). Thus, we have partially purified a wild-type 50-amino-acid TGF- $\alpha$  showing the expected binding and colony-forming activities, which provides a reference substance for mutant TGF- $\alpha$ s that might show a dissociation of binding and colony-forming shilities

abilities. Biological and biochemical activities of the partially purified TGF-a mutant proteins. Mutated TGF-as were expressed by using the yeast system and partially purified on Bio-Gel P30 columns as described in Materials and Methods. Mutant TGF-as were usually obtained from two different clones of yeast transformants. The CNBr-cleaved samples were purified through different Bio-Gel P30 columns for each mutant protein to avoid any possible contamination from one peptide to another. The purification profiles observed with the mutant TGF-as were similar to those obtained for the wild-type TGF-α. Aliquots of the P30 column fractions were tested in radioreceptor and soft-agar assays. For all mutant proteins, the highest activity in both assays was always found in the same fraction of the Bio-Gel P30 column effluent (peak fraction). Extensive purification of a series of mutant proteins for screening purposes is not practical. Therefore, we needed a quantitation system that would allow us to compare mutant proteins with each other. Thus, the amount of TGF-a present in the peak fraction was estimated by radioimmunoassay with an antiserum to native TGF-α (obtained from W. Hargreaves), under denaturing conditions, as described in Materials and Methods. All values given in Table 1 were obtained from the peak fraction.

The controls done with the wild-type  $TGF-\alpha$  showed (Fig. 4; Table 1) that binding and transforming activity were equivalent. The yeast vector without a  $TGF-\alpha$  insert did not secrete any EGF-like proteins, as determined by both radio-receptor and soft-agar assay.

Two types of results were obtained upon assay of mutant proteins having different amino acid substitutions at Asp-47. In both [Ala-47]—TGF- $\alpha$  and [Asn-47]—TGF- $\alpha$ , binding ability was retained. Soft-agar and radioreceptor activities correlated for [Asn-47]—TGF- $\alpha$ ; there was a lower value for

TABLE 1. Biological and biochemical activities of mutant TGPproteins secreted by S. cerevisiae and partially purified

|                     | EGF equivalence | c (ng/ml) in: | Ami of TOF-a    |
|---------------------|-----------------|---------------|-----------------|
| Insert in the yeast | Radioreceptor   | Soft-agar     | ni (lm\gn)      |
| expression vector   | assay           | assay         | zzeonummioibas  |
| Wild-type TGF-α     | 700             | 700           | 2,000           |
|                     | 400             | 300           | ND <sup>a</sup> |
| None                | 0               | 0             | 0               |
| [Ala-47]-TGF-α      | 100             | 44            | 220             |
|                     | 66              | 48            | ND              |
| [Asn-47]-TGF-α      | 80              | 72            | 180             |
|                     | 75              | 72            | 525             |
| (Glu-47)-TGF-α      | 3               | 3             | 42              |
| (Ser-47)-TGF-a      | 10              | 4             | 60              |
| [Ala-48]-TGF-a      | 0<br>0          | . 0           | 16<br>220       |
| [Ile-48]–TGF-α      | 4               | 12            | 470             |
|                     | 2               | 7             | 490             |
| [Met-48]-TGF-a      | 2               | 8             | 453             |
|                     | 0.5             | 2             | 420             |

<sup>\*</sup> ND, Not determined

colony-forming activity than for EGF-binding competit for [Ala-47]-TGF- $\alpha$ . [Ser-47]-TGF- $\alpha$  and [Glu-47]-TGl appeared to have lower activities in both assays than eit wild-type TGF- $\alpha$  or [Ala-47]-TGF- $\alpha$  and [Asn-47]-TGF These results indicate that neither the carboxyl charge the polarity of Asp-47 is essential for biological activity.

The effects of mutation of Leu-48, one of the 11 am acids perfectly conserved among all the EGFs, TGF-as, viral EGF-like proteins, are dramatic. [Ala-48]-TGF-α tally lacked binding and colony-forming activity. 48]-TGF-α and [Met-48]-TGF-α had very little biolog activity compared with wild-type TGF-a. Another subs tion, [Met-48]-TGF-a, resulted in a truncated mutant lac the last 2 amino acids and having a substitution of Le homoserine at position 48 following treatment with CI Alternatively, if [Met-48]-TOF-a was not treated CNBr, fusion proteins of TGF-a (mutated to Met in pos 48) with 8 or 92 amino acids attached at the N terminus obtained. Very low activities in binding and soft-agar as were found for these mutants, whether or not they cleaved with CNBr. Experiments on EGF and TGF-a shown that an N-terminal extension does not marl modify EGF-binding activity (12, 26). Therefore, the Ic activity obtained with [Met-48]-TGF-\alpha that has not CNBr treated was probably due to the mutation itsel not to the N-terminally extended fusion protein. We d know whether the loss of activity observed with the T shortened to 48 amino acids and having a substituti Leu-48 to homoserine is due only to the mutation of a the lack of the last 2 amino acids.

The data obtained by radioimmunoassay on the pa purified wild-type and mutant  $TGF-\alpha$  show that the air of  $TGF-\alpha$  detected was always higher than the air determined by measurement of biological activity. This be due to the presence in the fraction of a certain percof incorrectly folded  $TGF-\alpha$  that might be recognize

radioimmunoassay under denaturing conditions but would not be biologically active. None of the mutant proteins seemed to be present in amounts equivalent to those observed for wild-type TGF-a in the partially purified fractions (whether radioimmunoassay, radioreceptor, or soft-agar assay was used for quantitation). It is not clear whether consistently less TGF- $\alpha$  was produced by the mutant constructs than by the wild type or whether the secreted mutant proteins were simply less well recognized by the antibody. Because of these uncertainties, the biological activities of the different mutant proteins cannot be accurately related to a known amount of mutant TGF-α protein. Even though radioimmunoassay should be used with caution for a quantitative evaluation of mutant TGF-a proteins, a positive reaction demonstrates that immunoreactive TGF-a was present in the P30 peak fraction for each mutant. Therefore, the fact that one of the mutant proteins ([Ala-48]-TGF-a) is biologically inactive can be attributed to the mutation itself, and not to the lack of production of the mutant protein by the yeast or its loss through purification. However, if the mutant proteins are in fact as immunoreactive as the wild type, then [Ala-47]-TGF-\alpha and [Asn-47]-TGF-\alpha are as active as wildtype TGF-\alpha and [Glu-47]-TGF-\alpha and [Ser-47]-TGF-\alpha are less active; in contrast, [Ile-48]-TGF- $\alpha$  and [Met-48]-TGF- $\alpha$ are almost inactive. The differences between mutation of Asp-47 and Leu-48 would then be even more striking.

#### DISCUSSION

TGF-α shows sequence homologies with EGF, and both growth factors share the same cellular receptors (20). Even though EGF was discovered 25 years ago (7) and its properties have been extensively studied over the years (5), the binding site of EGF to its receptor has still not been determined, and the relationship between structure and function of EGF/TGF-\alpha is still to be discovered. Particularly, we do not know whether binding to the receptor and signal transduction occur through one or more domains of the molecule or through which amino acids. We approached the question by performing site-directed mutagenesis of TGF-a and focused our attention on two adjacent amino acids, Asp-47 and Leu-48, located in the carboxy terminus and highly conserved in the EGF-like family of peptides. Unexpectedly, these two amino acids showed very different sensitivities to mutation and particularly to a substitution to Ala: [Ala-47]-TGF-\alpha retained binding and colony-forming activities, whereas [Ala-48]-TGF-& completely lost both activities. These data show that Asp-47 and Leu-48 play very different roles in defining the structure and/or the activity of TGF-a. The other mutations performed on Asp-47 were substitutions to Asn, Ser, and Glu. [Asn-47]-TGF-α, like [Ala-47]-TGF-\alpha, was active in binding and induction of colony formation, but [Ser-47]-TGF-α and [Glu-47]-TGF-α showed weaker growth factor activities. These results indicate that neither the carboxyl charge nor the polarity of Asp-47 is essential for biological activity. Interestingly, two of the EGF-like viral proteins, myxoma growth factor and Shope fibroma growth factor (6, 30), have Asn instead of Asp in position 47; we have shown that [Asn-47]-TGF-α retains biological activity.

Substitution of Leu-48 to Met and Ile led to mutant proteins with very low activities, whereas substitution to Ala led to complete loss of activity. We did not expect that a mutation of Leu to Ile (which have similar sizes and polarities) would cause such a strong effect. Thus, Leu-48, which is conserved perfectly among all the EGF-like peptides,

seems to be essential, through its exact geometry, for the biological activity of TGP- $\alpha$ .

The mutant proteins tested so far, when active, showed parallel behaviors in binding and colony formation. Some mutant proteins lost all activities, and we assume that the binding capacity has been lost. We have not been able to dissociate the binding and colony-forming abilities by using any of the present series of mutant proteins, and it is necessary to screen more of them in search of an antagonist of  $TGF-\alpha$ .

Results relating to the biological activity of EGF show that derivatives of mouse EGF and human EGF (EGF 1-47) lacking the carboxy-terminal 6 amino acids as a result of enzymatic digestion are less potent than the intact molecule in mitogenic stimulation of fibroblasts, but retain full biological activity in in vivo assays (inhibition of gastric acid secretion) (16). On the other hand, naturally occurring truncated forms of rat EGF, which lack the carboxy-terminal 5 amino acids (rEGF 2-48) are as potent as mouse EGF (mEGF 1-53) in receptor-binding and mitogenic assays (27). We do not know whether the discrepancies observed are due to the origin of the molecule (artificial or natural) or to the type of bioassay used. In any event, all of these EGF-related molecules, which are shorter than mouse or human EGF, still retain Leu-47. We have shown that in TGF-α, the corresponding residue, Leu-48, is critical for the biological activity.

Recent data on the three-dimensional structure of mouse EGF obtained by nuclear magnetic resonance show that even though Asp-46 and Leu-47 (Asp-47 and Leu-48 in TGF-α) are both solvent accessible (8, 22, 22a), their side chains point in opposite directions in the beta-sheet structure. Therefore, the role of these adjacent amino acids in the structure and, consequently, the function of EGF might be very different. Our data show that the amino acids Asp-47 and Leu-48 of TGF-a are not equally important for the biological activity of TGF-a, despite their conservation among the EGF-like peptides. From the dramatic loss in biological activity which is characteristic of mutation of Leu-48, we also suggest that this residue is involved in binding to the cellular receptors either by direct interaction with the receptor or by providing the proper conformation to the molecule.

#### **ACKNOWLEDGMENTS**

We thank Rik Derynck (Genentech) for providing the  $TGP-\alpha$  gene, inserted in M13, and for his assistance throughout this project. We are indebted to Arjun Singh (Genentech) for helping us with the yeast transformation and expression. We are grateful to Tim Bringman (Genentech) and William Hargreaves (Biotope) for their generous gifts of  $TGF-\alpha$  antibodies. We thank Linda Durham for technical assistance, Irene Dalton for manuscript preparation, and our colleagues for helpful comments and moral support.

#### LITERATURE CITED

- Anzano, M. A., A. B. Roberts, J. M. Smith, M. B. Sporn, and J. E. De Larco. 1983. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type a and type β transforming growth factors. Proc. Natl. Acad. Sci. USA 80:6264-6268.
- 2. Blomquist, M. C., L. T. Hunt, and W. C. Barker. 1984. Vaccinite virus 19-kilodalton protein: relationship to several mammaliar proteins, including two growth factors. Proc. Natl. Acad. Sci USA 81:7363-7367.
- 3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

GF-a .zither JF-α. e nor ty. :amino s, and a to-[liclogical bstituacking Leu to CNBr. diw L osition IS WCFC assuy's y were a have arkedly

tition

partially
: amount
amount
This may
:reentage
ized in a

: loss of

ot been

self and

: do not

: TOF-«

ution of

4. Bringman, T. S., P. B. Lindquist, and R. Derynck, 1987. Different transforming growth factor-a species are derived from a glycosylated and palmitoylated transmembrane precursor. Cell 48:429-440.

5. Carpenter, G., and S. Cohen. 1979. Epidermal growth factor.

Annu. Rev. Biochem. 48:193-216.

6. Chang, W., C. Upton, S. Hu, A. F. Purchio, and G. McFadden. 1987. The genome of Shope fibroma virus, a tumorigenic poxvirus, contains a growth factor gene with sequence similarity to those encoding epidermal growth factor and transforming growth factor a. Mol. Cell. Biol. 7:535-540.

7. Cohen, S. 1962. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born

animal. J. Biol. Chem. 237:1555-1562.

8. Cooke, R. M., A. J. Wilkinson, M. Baron, A. Pastore, M. J. Tappin, I. D. Campbell, H. Gregory, and B. Sheard. 1987. The solution structure of human epidermal growth factor. Nature (London) 327:339-341.

9. De Larco, J. E., and G. J. Todaro. 1978. Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci.

USA 75:4001-4005.

- 10. Deryuck, R., D. V. Goeddel, A. Ullrich, J. U. Gutterman, R. D. Williams, T. S. Bringman, and W. H. Berger. 1987. Synthesis of messenger RNAs for transforming growth factors a and B and the epidermal growth factor receptor by human tumors. Cancer Res. 47:707-712.
- 11. Derynck, R., A. B. Roberts, D. H. Eaton, M. E. Winkler, and D. V. Goeddel. 1985. Human transforming growth factor-a: precursor sequence, gene structure, and heterologous expression. Cancer Cells 3:79-86.
- 12. Derynck, R., A. B. Roberts, M. E. Winkler, E. Y. Chen, and D. V. Goeddel. 1984. Human transforming growth factor-a: Precursor structure and expression in E. coli. Cell 38:287-297.
- 13. Gregory, H. 1975. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature (London) **257:**325–327.

14. Hinnen, A., J. B. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929-1933.

- 15. Hitzeman, R. A., C. N. Chang, M. Matteucci, L. J. Perry, W. J. Kohr, J. J. Wulf, J. R. Swartz, C. Y. Chen, and A. Singh. 1986. Construction of expression vectors for secretion of human interferons by yeast. Methods Enzymol. 119:424-433.
- 16. Hollenberg, M. D., and H. Gregory. 1980. Epidermal growth factor-urogastrone: biological activity and receptor binding of derivatives. Mol. Pharmacol. 17:314-320.

17. Jones, E. 1976. Proteinase mutants of Saccharomyces cerevislae. Genetics 85:23-30.

18. Lee, D. C., R. Rochford, G. J. Todaro, and L. P. Villarreal. 1985. Developmental expression of rat transforming growth factor a mRNA. Mol. Cell. Biol. 5:3644-3646.

19. Marquardt, H., M. W. Hunkapiller, L. E. Hood, and G. J. Todaro. 1984. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 223:1079-1082.

20. Massague, J. 1983. Epidermal growth factor-like transforming growth factor. II. Interaction with epidermal growth factor receptors in human placenta membranes and A431 cells. J. Biol Chem. 258:13614-13620.

Mot. Catt. Dioc

- 21. Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101:20-78.
- 22. Montelione, G. T., K. Wuthrich, E. C. Nice, A. W. Burges, H. A. Scheraga, 1986. Identification of two anti-parallel betasheet conformations in the solution structure of murine epider. mal growth factor by proton magnetic resonance, Proc. Natl. Acad. Sci. USA 83:8594-8598.
- 22a. Montelione, G. J., K. Wuthrich, E. C. Nice, A. W. Burgess, and H. A. Scheraga. 1987. Solution structure of murine epidermal growth factor: determination of the polypeptide backbook chain-fold by nuclear magnetic resonance and distance geome. try. Proc. Natl. Acad. Sci. USA 84:5226-5230.
- 23. Samsoondar, J., M. S. Kobrin, and J. E. Kudlow. 1986, a. Transforming growth factor secreted by untransformed bovioe anterior pituitary cells in culture. J. Biol. Chem. 261: 14408-14413.
- 24. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequence ing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- Savage, C. R., Jr., J. H. Hash, and S. Cohen. 1973. Epidermal growth factor: location of disulfide bonds. J. Biol. Chem. **248:7669-7672**.
- 26. Shechter, Y., J. Schlessinger, S. Jacobs, K. J. Chang, and ?. Cuatrecasas, 1978. Fluorescent labeling of hormone receptors in viable cells: preparation and properties of highly fluorescent derivatives of epidermal growth factor and insulin. Proc. Nat. Acad, Sci. USA 75:2135-2139.
- 27. Simpson, R. J., J. A. Smith, R. L. Moritz, M. J. O'Hare, P. S. Rudland, J. R. Morrison, C. J. Lloyd, B. Grego, A. W. Burgess, and E. C. Nice. 1985. Rat epidermal growth factor: complete amino acid sequence. Eur. J. Biochem. 153:629-637.
- 28. Singh, A., J. M. Lugovoy, W. J. Kohr, and L. J. Perry. 1984. Synthesis, secretion and processing of a factor-interferon fusion proteins in yeast. Nucleic Acids Res. 12:8927-8938.
- 29. Todaro, G. J., C. Fryling, and J. E. DeLarco. 1980. Transforming growth factors produced by certain human tumors: polypeptides that interact with epidermal growth factor receptors. Proc. Natl. Acad. Sci. USA 77:5258-5262.
- 30. Upton, C., J. L. Macen, and G. McFadden. 1987. Mapping and sequencing of a gene from myxoma virus that is related to those encoding epidermal growth factor and transforming growth factor α. J. Virol. 61:1271-1275.
- 31. Watanabe, S., E. Lazar, and M. B. Sporn. 1987. Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type a transforming growth factor gene. Proc. Natl. Acad. Sci. USA 84:1258-1262.
- 32. Winkler, M. E., T. Bringman, and B. J. Marks. 1986. The purification of fully active recombinant transforming growth factor-a produced in Escherichia coli. J. Biol. Chem. 261:13838-13843.
- 33. Zoller, M. J., and M. Smith. 1983. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 101:468-500.

# A superactive insulin: [B10-Aspartic acid]insulin(human)

(insulin analogue/peptide synthesis/biological activity)

GERALD P. SCHWARTZ, G. THOMPSON BURKE, AND PANAYOTIS G. KATSOYANNIS\*

Department of Biochemistry, Mount Sinar School of Medicine of the City University of New York, New York, NY 10029

Communicated by Josef Fried, June 8, 1987

The genetic basis for a case of familial hyper-ABSTRACT proinsulinemia has been elucidated recently. It involves a single point mutation in the proinsulin gene resulting in the substitution of aspartic acid for histidine-10 of the B chain of insulin. We have synthesized a human insulin analogue, [AspB10]insulin, corresponding to the mutant proinsulin and evaluated its biological activity. (Asp<sup>B10</sup>)Insulin displayed a binding affinity to insulin receptors in rat liver plasma membranes that was 534 ± 146% relative to the natural hormone. In lipogenesis assays. the synthetic analogue exhibited a potency that was 435 ± 144% relative to insulin, which is statistically not different from its binding affinity. Reversed-phase HPLC indicated that the synthetic analogue is more apolar than natural insulin. We suggest that the observed properties reflect changes in the conformation of the analogue relative to natural insulin, which result in a stronger interaction with the insulin receptor. Thus, a single substitution of an amino acid residue of human insulin has resulted in a superactive hormone.

Three cases of familial hyperproinsulinemia, a genetic disorder characterized by increased plasma levels of proinsulinlike material, have been recognized (1-3). In two of these cases, the defect has been identified as an amino acid substitution in the proinsulin molecule (4, 5) that resulted in an incomplete cleavage of that molecule. Specifically, cleavage only at the paired basic residues between the B chain and the C peptide occurs (6). In the third case of the disorder, unlike the other two, the proinsulin-like material appeared to be intact proinsulin, suggesting that there was a defect in the prohormone-to-hormone conversion (3). Recent studies have elucidated the genetic basis for the last case of this disorder. Chan et al. (7) extracted DNA from leukocytes of the affected family members and, upon cloning, isolated two clones containing the insulin gene. One of these clones contained the normal coding sequence for human preproinsulin, whereas the other clone revealed a single point mutation in the codon for the residue histidine corresponding to position 10 of the B chain of insulin. This mutation, which appears to be implicated as the cause of the hyperproinsulinemia in the affected family (7), predicts a substitution of aspartic acid for this histidine-B10 residue. In view of these findings, it was of interest to synthesize a human insulin analogue that differs from the parent molecule in that the histidine-B10 residue has been replaced with an aspartic acid residue. The present communication describes the synthesis and biological evaluation of this analogue, [AspB16]insulin(human).

#### EXPERIMENTAL PROCEDURES

Materials and Analytical Procedures. Details of materials and analytical procedures used in this study have been described (8). The homogeneity of all of the intermediate peptide derivatives was ascertained by thin-layer chroma-

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

tography on 6060 silica gel (Eastman Chromagram sheet). The solvent systems used were chloroform/methanol/water, 45:10:1, 89:10:1, and 200:75:13 (vol/vol).

Biological Evaluation. The potency of the synthetic analogue was measured in three types of assays: (i) insulin receptor binding in a rat liver plasma membrane fraction, in which the relative potency is defined as the ratio of insulin to insulin analogue required to displace 50% of specifically bound <sup>125</sup>I-labeled insulin (<sup>125</sup>I-insulin); (ii) lipogenesis in rat adipocytes, in which relative potency is defined as the ratio of insulin to insulin analogue required to achieve 50% of the maximum conversion of [3-<sup>3</sup>H]glucose into organic solvent-extractable material; and (iii) radioimmunoassay, in which insulin or the insulin analogue was used to compete with <sup>123</sup>I-insulin in binding to guinea pig antibodies raised against insulin. Complete details of these assays, including sources of reagents and equipment, have been described (9).

Synthesis. [AspB10]Insulin was prepared by the combination of the S-sulfonated form of human insulin A chain with the synthetic S-sulfonated Asp-10-substituted derivative of human insulin B chain in the presence of dithiothreitol (10). The S-sulfonated human A chain, which is identical with the respective chain of porcine insulin (11), was prepared by oxidative sulfitolysis of porcine insulin and separation of the resulting S-sulfonated A and B chains by column chromatography (12). The synthesis of the S-sulfonated Asp-10substituted human B chain was patterned after that of the human B chain (13). The C-terminal B-chain hexadecapeptide (residues B15-B30) was coupled with the adjacent hexapeptide (residues B9-B14) to produce the C-terminal docosapeptide (residues B9-B30). This in turn was coupled with the N-terminal octapeptide (residues B1-B8) to yield the protected B-chain analogue which, upon exposure to liquid hydrogen fluoride and oxidative sulfitolysis of the resulting sulfhydryl derivative, afforded the S-sulfonated form of the Asp-10-substituted B chain.

Z-Glu(cHex)-OH-DCHA (Compound I). This compound (where Z is benzyloxycarbonyl, cHex is cyclohexyl, and DCHA is dicyclohexylamine) was prepared from the respective tert-butoxycarbonyl (Boc) derivative (Peninsula Laboratories, San Carlos, CA) by deblocking with trifluoroacetic acid and carbobenzoxylation of the ensuing product. The resulting derivative was crystallized from ether as the DCHA salt (mp, 131-132°C). Analysis Calcd for C<sub>31</sub>H<sub>48</sub>N<sub>2</sub>O<sub>6</sub>: C, 68.4; H, 8.88; N, 5.4. Found: C, 68.3; H, 9.11; N, 5.1.

Z-Glu(cHex)-Ala-OBu<sup>1</sup> (Compound II). Compound I (9.8 g) was partitioned between 0.1 M H<sub>2</sub>SO<sub>4</sub> and ethyl acetate, and the organic layer was separated, washed with water, dried (MgSO<sub>4</sub>), and concentrated to dryness. To a solution of the residue in dimethylformamide (30 ml) cooled to 0°C, alanine tert-butyl ester (H-Ala-OBu<sup>1</sup>) [prepared from Z-Ala-OBu<sup>1</sup> (5.6

Abbreviations: Bzl. benzyl; Boc, tert-butoxycarbonyl; OBu', tert-butoxy; cHex, cyclohexyl; DCHA, dicyclohexylamine; Ph<sub>2</sub>CH, diphenylmethyl; DCC, N.N'-dicyclohexylcarbodiimide; HOBT, 1-hydroxybenzotriazole; Z. benzyloxycarbonyl; -ONp, p-nitrophenoxy; OBzl, benzyloxy.

\*To whom reprint requests should be addressed.

g: OBut is tert-butoxy) as described (13)] was added, followed by addition of 1-hydroxybenzotriazole (HOBT; 2.3 g) and V.N'-dicyclohexylcarbodiimide (DCC; 3.7 g). After 24 hr at room temperature, the urea by-product was filtered off, and the filtrate was diluted with ethyl acetate (500 ml); washed successively with 1 M NaHCO3, water, 0.2 M HCl, and water; dried; and concentrated under reduced pressure to dryness. The product was obtained as an oil [8 g (90%)] that was homogeneous in thin-layer chromatography and was used in the synthesis of the following compound without any further characterization.

Z-Val-Glu(cHex)-Ala-OBu! (Compound III). Compound II (8 g) in methanol (150 ml) was hydrogenated over a 10% Pd/C catalyst (2 g) for 3 hr. The catalyst was filtered off, and the filtrate was concentrated under reduced pressure to dryness. The residue was mixed with an activation mixture of Z-Val-OH (4.1 g). HOBT (2.7 g), and DCC (3.3 g) in dimethylformamide (30 ml) (activated for 30 min at room temperature before the addition of the amino acid component). After 24 hr the product was isolated in the same manner as described for compound II [oil, 8.7 g (85%)]. This material was homogeneous in thin-layer chromatography and was used in the following synthetic step without further characterization.

Z-Leu-Val-Glu(cHex)-Ala-OBut (Compound IV). Compound III (8 g) was hydrogenated as described above, and the resulting oily residue was dissolved in dimethylformamide (30 ml). To this solution benzyloxycarbonylleucine p-nitrophenyl ester (Z-Leu-ONp; 5.5 g) and HOBT (1.8 g) were added. After 48 hr, the mixture was diluted with ethyl acetate (250 ml); washed successively with 0.5 M NH4OH, water, 0.2 M HCl, and water; dried (MgSO<sub>4</sub>); and concentrated to dryness under reduced pressure. The residue was crystallized from 95% ethanol: weight, 8.4 g (88%); mp, 190-194°C; [a]b, -20,3° (c 1, dimethylformamide). Analysis Calcd for C37H39N4O9: C, 63.2; H, 8.31; N, 8.0. Found: C, 62.9; H, 8.37; N. 8.1.

Boc-Asp(cHex)-Leu-Val-Glu(cHex)-Ala-OBu (Compound V). Compound IV (1.5 g) was hydrogenated as described, and the residue was added to an activation mixture of Boc-Asp(cHex)-OH (Peninsula Laboratories) (0.8 g), HOBT (0.34 g), and DCC (0.52 g) in dimethylformamide (10 ml) (activated for 30 min at room temperature before addition of the amino component). After 24 hr the reaction mixture was processed as described for compound II, and the product was purified by reprecipitation from ethyl acetate/petroleum ether: weight, 1.5 g (85%); mp, 203-205°C; [α]δ -8.9° (c 1, dimethylformamide). Analysis Calcd for C44H75N5O12: C, 61.0; H, 8.72; N, 8.1. Found: C, 60.7; H, 8.56; N, 7.8.

Boc-Ser(Bzl)-Asp(cHex)-Leu-Val-Glu(cHex)-Ala-OH (Compound VI). A solution of compound V (1 g) in trifluoroacetic acid (10 ml) was stored at room temperature for 2-hr and then concentrated to dryness under reduced pressure, and the residue was triturated with cold ether. The solid deblocked pentapeptide trifluoroacetic acid salt formed was filtered and dried over KOH. An activation mixture of Boc-Ser(Bzl)-OH (1.2 g), HOBT (0.5 g), and DCC (0.6 g) in dimethylformamide (10 ml) was prepared; after a 30-min incubation, the mixture was filtered into a solution of the pentapeptide trifluoroacetic acid salt in dimethyl sulfoxide (Me<sub>2</sub>SO) (10 ml) containing N-methylmorpholine (0.13 ml). After 24 hr the reaction mixture was diluted with cold water (100 ml), and the precipitated product was filtered off, dried, and reprecipitated from ethyl acetate/petroleum ether: weight, 0.9 g (90%); mp, 200-203°C;  $[\alpha]_{0}^{6}$ , -17.8° (c 1, dimethylformamide). Analysis Calcd for CsoH78N6O14: C, 60.8; H, 7.96; N, 8.5. Found: Ć, 61.4; H, 8.25; N, 8.7. Amino acid ratios after acid hydrolysis: Asp. Sero. Glu. Ala. Val. Leu. o

Boc-Ser(Bzl)-Asp(cHex)-Leu-Val-Glu(cHex)-Ala-Leu-Tyr(Bzl)-Leu-Val-Cys(Ph1CH)-Gly-Glu(Bzl)-Arg(NO1)-Gly-Phe-Phe-Tyr(Bzi)-Thr-Pro-Lys(Z)-Thr(Bzi)-OBzi (Compound

VID. A suspension of the free base of the partially protected hexadecapeptide (residues B15-B30; where Obzl is benzyloxy and PhyCH is diphenylmethyl) of the human insulin B chain (8) (400 mg), compound VI (494 mg), and HOBT (80 mg) was stirred until solution occurred. This solution, after the addition of DCC (100 mg), was stirred at 4°C for 48 hr and then diluted with 95% ethanol (150 ml). The precipitated docosapeptide (residues B9-B30) was filtered off, washed with 95% ethanol, and dried: weight, 450 mg (88%). Amino acid analysis after acid hydrolysis gave the following composition expressed in molar ratios: Asp1.1Thr2.0Ser1.0Gluz.1Pro1.0Gly2.2Ala0.0Val1.0-Leuz. Tyr, Phez. Lys, Argo, (cysteine was not determined).

H-Phe-Val-Asn-Gin-His-Leu-Cys(SO3)-Gly-Ser-Asp-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys(SO))-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Thr-OH (Human Insulin Asp-10-Substituted S-Sulfonated B Chain (Compound VIII). A solution of compound VII (400 mg) in trifluoroacetic acid/acetic acid, 7:3 (vol/vol; 10 ml), was stored at room temperature for 1 hr and then diluted with ether. The precipitated trifluoroacetic acid salt of the docosapeptide was filtered off, washed with ether, and dried. A solution of this product in Nmethylpyrrolidone (6 ml) and dimethylformamide (6 ml) containing triethylamine (0.1 ml) was diluted with ether (100 ml), and the precipitated free base was filtered off, washed with ether, and dried. This product and Boc-Phe-Val-Asn-Gln-His-Leu-Cys(Ph2CH)-Gly-OH (13) (500 mg) were dissolved in a mixture of dimethylformamide (5 ml) and dimethyl sulfoxide (5 ml) containing HOBT (90 mg), and then DCC (100 mg) was added. After 48 hr at room temperature, the mixture was poured into cold.water (250 ml) containing 1 M NH4OH (5 ml), and the precipitated protected triacontapeptide was filtered off, washed (successively with water, 50% methanol, and methanol), dried, and reprecipitated from dimethylsulfoxide/methanol: weight, 400 mg (90%).

This product was converted to the S-sulfonated Asp-10substituted B chain by deblocking with liquid hydrogen fluoride, followed by oxidative sulfitolysis as described for the synthesis of S-suffonated human insulin B chain (13). In a typical experiment, the protected triacontapeptide (200 mg) was treated with anhydrous liquid hydrogen fluoride (9 ml) containing m-cresol (1 ml) at 0°C for 1 hr. The hydrogen fluoride was then removed, and the residue was triturated successively with ethyl acetale and petroleum ether. To a solution of this product in 8 M guanidine hydrochloride (20 ml) buffered with 0.1 M Tris-HCl (pH 8.8) were added sodium sulfite (700 mg) and sodium tetrathionate (500 mg). After 3 hr at room temperature, the reaction mixture was placed in Spectrapor membrane tubing no. 3, dialyzed against four changes of distilled water (4 liters each) at 4°C for 24 hr, and

lyophilized.

For purification, the lyophilized material was dissolved in 3 ml of 0.04 M acetate/8 M urea, pH 4.0, and applied to a CM-cellulose column (2.5 × 40 cm) that was eluted isocratically with the same buffer. The preparation of column and buffer has been described (12). The column effluent was monitored with an ISCO spectrophotometer (model U-5A), and the clution pattern is shown in Fig. 1. The cluate under the main peak (125-168 ml) was collected and dialyzed as described above; upon lyophilization, the S-sulfonated Asp-10-substituted B chain was obtained as a white powder: weight, 22 mg. Amino acid analysis of the purified chain, after acid hydrolysis, gave the following composition expressed in molar ratios, in agreement with the theoretically expected values: Asp2.1Thr2.1Ser1.1Pro1.1Glu3.0Gly2.9Ala1.0Val3.0Leu3.6 Tyr<sub>1.8</sub>Phc<sub>2.9</sub>Lys<sub>1.1</sub>His<sub>1.0</sub>Arg<sub>0.9</sub> (cysteine was not determined).

Synthesis and Isolation of [Asp<sup>Bio</sup>]Insulin (Human). To a solution of S-sulfonated porcine (identical with human) A chain (40 mg) and S-sulfonated human Asp-10-substituted B



Fig. 1. Chromatography of crude human Asp-10-substituted S-sulfonated B chain on a  $2.5\times40$  cm CM-cellulose column with urea/acetate buffer (pH 4.0). The column effluent was monitored with an ISCO recording spectrophotometer. The purified chain (125-168 ml) was recovered after dialysis and lyophilization.

chain (20 mg) in 10 ml of 0.1 M glycine buffer (pH 10.6) cooled to 4°C was added dithiothreitol (7 mg). After 24 hr at 4°C, the mixture was diluted with acetic acid (1 ml), and the resulting precipitate was removed by centrifugation (International HN; 3000 rpm). The supernatant, containing the active material, was passed through a 0.45-µm cellulose acetate filter (Sartorius) and subjected to reversed-phase HPLC using a Vydac 218 TP column (0.45 × 25 cm) connected to an LKB liquid chromatography system. Batches (ca. 5 mg of protein each) were chromatographed at a flow rate of 0.5 ml/min with a 10-50% linear gradient of 2-propanol in 0.1% trifluoroacetic acid over 70 min. The chromatographic pattern is shown in Fig. 2A. Biological assays indicated that only the material that was eluted at ca. 32.3 min had substantial insulin activity. Under these chromatographic conditions, bovine insulin is cluted at 30 min. The fraction containing the active material was concentrated and rechromatographed on the same column with a 20-35% linear gradient of 2-propanol in 0.1% trifluoroacetic acid at a flow rate of 0.5 ml/min over 85 min. The elution pattern is shown in Fig. 2B. The fraction containing the active material, cluting at ca. 47.2 min, was collected and used for biological studies. Under these chromatographic conditions, bovine insulin is cluted at ca. 38 min. From the mixture of A and B chains described above, 2 mg of highly purified product was obtained. Amino acid analysis of the purified synthetic material, after acid hydrolysis, gave the following composition, expressed in molar ratios, in good agreement with the theoretically expected values: Asp4.0Thr2.8Ser3.1Pro1.0Glu7.0Gly4.0Ala1.1Val3.4Ile1.4-Leus. Tyrz. Phez. Lys. Hist. Arg. (cysteine was not determined).

#### RESULTS AND DISCUSSION \*\*\*

The ability of synthetic human [Asp<sup>B10</sup>]insulin to compete with 1251-insulin in binding to receptors in rat liver plasma membranes was compared with that of natural bovine insulin (Fig. 3). Dose-response curves are essentially parallel, and the calculated potency of the analogue is  $534 \pm 146\%$  relative to bovine insulin. The stimulation of the incorporation of [3-3H]glucose into organic solvent-extractable material in isolated adipocytes (lipogenesis) was examined for synthetic human [Asp<sup>B10</sup>]insulin and natural bovine insulin (Fig. 4). The analogue is a full agonist reaching the same maximum stimulation of lipogenesis as seen with natural insulin. However, its relative potency is calculated to be 435 ± 144% relative to bovine insulin. The potency values in receptor binding and lipogenesis assays are not statistically different (0.4 > P > 0.3) by Student's t-test). It is apparent that [Asp<sup>B10</sup>]insulin, which differs from human insulin in a single amino acid residue, is a superactive insulin displaying in vitro



Fig. 2. (A) Reversed-phase HPLC of the combination mixture of human S-sulfonated A chain and hidman Asp-10-substituted S-sulfonated B chain on a 0.45 × 25 cm Vydac 218 TP column at 0.5 ml/min with a 10-50% linear gradient of 2-propanol ir 0.1% trifluoroacetic acid over 70 min. (B) Rechromatography of the material cluted at 32.3 min in A, using the same column and a 20-35% linear gradient of 2-propanol in 0.1% trifluoroacetic acid at a flow rate of 0.5 ml/min over 85 min. The active material cluted at 47.2 min was obtained by concentration of the effluent.

potency 4-5 times greater than that of the natural hormone. In radioimmunoassay the synthetic analogue exhibited potency approximately equal to that of bovine or porcine insulin. This indicates that substitution of aspartic acid for histidine at position 10 of the B chain has not significantly affected the immunogenic determinants of the molecule.

X-ray analysis indicates that histidine-B10 resides at the surface of the insulin monomer and is important in the formation of zinc insulin hexamers (14). Previous studies in this laboratory showed that replacement of histidine at this position with leucine (15, 16), lysine (17), or asparagine (18) produced synthetic insulin analogues displaying reduced biological activity, ca. 14-45% relative to the natural hormone. From these studies we concluded that hydrophilicity

<sup>&</sup>lt;sup>†</sup>After the present results were submitted for publication, Jonathan Whittaker (The University of Chicago) determined that [Asp<sup>B 16</sup>]insulin exhibits 5- to 6-fold greater potency than natural insulin in binding to IM-9 lymphocytes (personal communication).



Fig. 3. Effect of bovine insulin (e) and [Asp<sup>810</sup>]insulin(human) (o) on the binding of <sup>125</sup>I-insulin to rat liver plasma membranes. Inhibition of binding, expressed as percent of maximum, is plotted as a function of the concentration of competitor. The data points represent the mean of triplicate determinations in a representative experiment that was performed four times. In this experiment, the maximum binding amounted to 8.2% of the input radioactivity.

at position B10 per se is relatively unimportant in determining biological activity, and the presence of a strongly basic amino acid residue at that position is deleterious. We further suggested that the ability to exist in either a protonated or unprotonated state near physiological pH, a property unique to a histidine residue, might be a requirement at position B10 for high biological activity (17). The present analogue, which at physiological pH would have a negative charge at the B10 position, is several times more active than natural insulin in in vitro experiments. The superactivity of this compound results from stronger binding to the insulin receptor. This might be due to either (i) a change in conformation of the



Fig. 4. Effect of boyine insulin (e) and [Aspaio]insulin(human) (O) on the stimulation of lipogenesis in rat adipocytes. Stimulation. expressed as percent of maximum, is plotted as a function of the concentration of agonist. The data points represent the mean of triplicate determinations in a representative experiment that was performed four times. In this experiment, zero and 100% stimulation refer to 0.3 and 3.5 nmol of glucose per mg of cells per hour, respectively.

analogue more favorable for binding to the receptor, resulting from intramolecular interactions involving the negative charge at position B10 (c.g., a salt bridge), or (ii) a direct interaction with a complementary surface on the receptor containing a positive charge. In reversed-phase HPLC (Fig. 2), [Aspaio]insulin is cluted under two chromatographic conditions significantly later than is natural insulin. This behavior indicates that the synthetic analogue is a more apolar molecule. The large difference in polarity exhibited between natural insulin and the analogue cannot be ascribed to the substitution of one hydrophilic residue for another. Most reasonably, it reflects a change in conformation. Chan et al. (7) have suggested that the inhibition of the conversion of [Asp10] proinsulin to insulin, which results in hyperproinsulinemia in the affected patients, might be related to unfavorable folding of the proinsulin molecule. Since our data on the HPLC behavior of [Asp<sup>B10</sup>]insulin suggest conformation changes in this molecule as compared to natural insulin, it is not unreasonable to assume that conformation changes might be implicated as well in the abnormal behavior of [Asplo]proinsulin.

The authors express their appreciation to Dr. D. F. Steiner for communicating to them his early findings concerning [Asp<sup>16</sup>]proinsulin, to Drs. N. Ferderigos and S. H. Wang for their help in the synthesis of intermediate peptides used in this investigation, and to Dr. U. Roy for the amino acid analyses. This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (DK-12925).

Gabbay, K. H., DeLuca, K., Fisher, J. N., Mako, M. E. & Rubenstein, A. H. (1976) N. Engl. J. Med. 234, 911-913.

Kanazawa, Y., Hayoshi, M., Ikeuchi, M., Hiramatsu, K. & Kosaka, K. (1978) Eur. J. Clin. Invest. 8, 327-331.
Gruppuso, P. A., Gorden, P., Kahn, C. R., Comblath, M.,

Zeller, W. P. & Schwartz, R. (1984) N. Engl. J. Med. 311, 629-634.

Robbins, D. C., Blix, P. M., Rubenstein, A. H., Kanazawa, Y., Kosaka, K. & Tager, H. S. (1981) Nature (London) 291, 679-681.

Shibasaki, Y., Kawakami, T., Kanazawa, Y., Akanuma, Y. & Takaku, F. (1985) J. Clin. Invest. 76, 378-380.

Robbins, D. C., Shoelson, S. E., Rubenstein, A. H. & Tager,

H. S. (1984) J. Clin. Invest. 73, 714-719.
Chan, S. J., Seino, S., Gruppuso, P. A., Schwartz, R. & Steiner, D. F. (1987) Proc. Natl. Acad. Sci. USA \$4, 2194-

Schwartz, G., Burke, G. T. & Katsoyannis, P. G. (1981) Inc. J. Pept. Protein Res. 17, 243-255.

Kitagawa, K., Ogawa, H., Burke, G. T., Chanley, J. D. & Katsoyannis, P. G. (1984) Biochemistry 23, 1405-1413.
Chance, R. E., Hoffman, J. A., Kroef, E. P., Johnson, M. G., Schirmer, E. W., Bromer, W. W., Ross, M. J. & Wetzel, R. (1981) Beautiful Proceedings of the Square American Bandley. (1981) Peptides: Proceedings of the Seventh American Peptide Symposium (Pierce Chemical, Rockford, IL), pp. 721-728.

Nicol, D. S. H. W. & Smith, L. F. (1960) Nature (London)

181, 483-485. Katsoyannis, P. G., Tometsko, A., Zalut, C., Johnson, S. & Trakatellis, A. C. (1967) Biochemistry 6, 2635-2642

Schwartz, G. & Katsoyannis, P. G. (1973) L. Chem. Soc. Perkin Trans. 1, 2894-2901.

Blundell, T. L., Dodson, G. G., Hodgkin, D. C. & Mercola. D. (1972) Adv. Protein Chem. 26, 279-402

Schwartz, G. & Katsoyannis, P. G. (1977) J. Chem. Res.. 15. 220-221.

Schwartz, G. & Katsoyannis, P. G. (1977) J. Chem. Res., (M). 2453-2469.

Schwartz, G., Burke, G. T. & Katsoyannis, P. G. (1982) J Procein Chem. 1, 177-189.

Burke, G. T., Schwartz, G. & Katsoyannis, P. G. (1984) Int. J. Pept. Protein Res. 23, 394-401.

Subramanian, A. R., and Davis, B. D. (1970), Nature (London) 228, 1273-1278.

Van Diggelea, O. P., and Bosch, L. (1973), Eur. J. Biochem. 39, 499-510.

Van Diggelen, O. P., Oostrom, H., and Bosch, L. (1973), Eur. J. Biochem. 39, 511-523.

Van Knippenberg, P. H., Poldermans, B., and Wallaart, R. A. M. (1974) private communication.

Walters, J. A. L. L., and Van Os. G. A. J. (1970), Biochim.

Biophys. Acta 199, 453-463.

Walters, J. A. L. I., and Van Os, G. A. J. (1971). Biopolymers 10, 11-20.

Wishnia, A., Boussert, A., Graffe, M., Dessen, Ph., and Grunberg-Manago, M. (1975), J. Mol. Biol. (in press), Zamir, A., Miskin, R., and Elson, D. (1971), J. Mol. Biol. 60, 347-364.

Zitomer, R. S., and Flaks, J. G. (1972), J. Mal. Biol. 71, 263-279.

Structure Function Relationships in Glucagon: Properties of Highly Purified Des-His<sup>1</sup>-, Monoiodo-, and [Des-Asn<sup>28</sup>,Thr<sup>29</sup>](homoserine lactone<sup>27</sup>)-glucagon<sup>†</sup>

Michael C. Lin,\* David E. Wright, Victor J. Hruby, and Martin Rodbell

ABSTRACT: We have compared the ability of glucagon and three highly purified derivatives of the hormone to activate hepatic adenylate cyclase (an expression of biological activity of the hormone) and to compete with [125] glucagon for binding to sites specific for glucagon in hepatic plasma membranes. Relative to that of glucagon, biological activity and affinity of [des-Asn<sup>38</sup>,Thr<sup>29</sup>] (homoserine lactone<sup>27</sup>)-glucagon, prepared by CNBr treatment of glucagon, were reduced equally by 40- to 50-fold. By contrast, des-Hist-glucagon, prepared by an insoluble Edman reagent and highly purified (less than 0.5% contamination with native glucagon), displayed a 15-fold decrease in affinity but a 50-fold decrease in biological activity relative to that of the native hormone. At maximal stimulating concentrations,

des-Hist-glucagon yielded 70% of the activity given by saturating concentrations of glucagon. Thus, des-Hist-glucagon can be classified as a partial, weak agonist. Highly purified monoiodoglucagon and native glucagon displayed identical biological activity and affinity for the binding sites. Our findings suggest that the hydrophilic residues at the terminus of the carboxy region of glucagon are involved in the process of recognition at the glucagon receptor but do not participate in the sequence of events leading to activation of adenylate cyclase. The amino-terminal history role in the expression of hormone action and contributes to a significant extent in the recognition process.

The first event in the cascade of reactions leading to hormone response is the interaction of the hormone with its recognition site termed the "receptor". It is commonly assumed that binding of the hormone to the receptor induces certain transformations in the responding system. Studies of the structural requirements for hormonal recognition and action should provide further understanding of the mechanism of hormone action.

Although the structure of glucagon has been known since 1957 (Bromer et al., 1957), the structure function relationships for this polypeptide hormone have not been elucidated clearly as yet. The discovery of a primary target for glucagon, namely the adenylate cyclase system (for review, see Rodbell, 1972; Sutherland, 1972), has provided a means of evaluating these relationships. Numerous studies have been reported with chemically modified derivatives of glucagon

in attempting to establish the structure functional role of each amino acid residue in the peptide (Spiegel and Bitensky, 1969; Rodbell et al., 1971a; Grande et al., 1972; Epand and Epand, 1972; Epand, 1972; Epand et al., 1973). One major obstacle in obtaining clear-cut results is the purity of the various glucagon derivatives. Chemical modification seldom produces complete conversion of substrate to product. Therefore, extensive purification is essential to remove any remaining native glucagon. Characterization of each derivative requires the study of its affinity for the receptor as well as its intrinsic activity in stimulating adenylate cyclase activity. Obviously, a significant level of contaminating glucagon would make interpretation difficult.

[Des-Asn's, Thr's [(homoserine lactone23)-glucagon (CNBr-glucagon), 1 prepared by eyanogen bromide cleavage of glucagon, has been examined in two studies (Spiegel and Bitensky, 1969; Epand, 1972). In both cases, attempts to separate glucagon from CNBr-glucagon by either gel filtration or gel electrophoresis proved unsuccessful. Unreact-

<sup>\*</sup>Trom the Section on Membrane Regulation, Laboratory of Nutrition and Endocrinology, National Institute of Arthritis, Metabolism, and Digestive Diseases, Bethesda, Maryland 20014 (M.C.L. and M.R.), and the Department of Chemistry, The University of Arizona, Tueson, Arizona K5721 (D.F.W. and V.J.H.) Received November 18, 1024. The research carried out in Arizona was supported in part by a grant from the Public Health Service (AM, 15504 (V.J.H.) and from the National Institutes of Health (NOLAM-1-2125 (V.J.H.).

Abbreviations used are: CNBr-glucagon, [des-Asn?, Thr?4](homoserine lactone?)-glucagon; OH-glucagon, des-Hist-glucagon; cyclic AMP, 3.5% adenosine monophosphate.

of glucagon was estimated by amino acid analysis to be 2 to 3% of the final product. Thus, while CNBr-glucagon showed reduced activities relative to that of glucagon, it is not known whether this derivative has the same maximal activity as the native horn me. There is also no information available on its affinity for the glucagon receptor.

[1251]Glucagon is commonly used in studies of hormone binding. In the first such study of glucagon binding (Rodbell et al., 1971b), monoiodoglucagon was shown to have an identical concentration-activity dependency as native glucagon on hepatic adenylate cyclase. A recent study (Bromer et al., 1973), however, suggested that monoiodoglucagon has a greater activity in stimulating hepatic adenylate cyclase. If various iodinated derivatives indeed have different potencies from the native hormone, then the interpretation of the binding of [123] glucagon to membranes containing the gir agon receptor would be difficult.

Des-Hist-glucagon (DH-glucagon), prepared by conventional Edman one-step degradation (Rodbell et al., 1971a). showed a lack of biological activity on the hepatic adenylate cyclase system although the derivative binds to specific binding sites for glucagon in hepatic plasma membranes with about one-tenth the affinity of native glucagon. DIIglucagon prepared by Lande et al. (1972), judged by them to centain about 6% glucagon, apparently lacked the ability to activate adenylate cyclase; their studies also indicated that No-phenylthiocarbamylglucagon, a potential product of glucagon formed by the Edman procedure, is likely to be

biologically inactive.

In this study we have prepared CNBr-glucagon and purified this material to the extent that it contains less than 0.5% native glucagon. DH-Glucagon has been prepared by the insoluble Edman reagent described by Dowling and Stark (1969). In contrast to the conventional method, this procedure allows complete separation from the lysine-substituted derivative. Although the yields of DII-glucagon obtained by this procedure remain to be improved, it is feasible to prepare large quantities containing less than 0.5% glucagon. The glucagon-sensitive hepatic adenylate cyclase system (Pohl et al., 1971) is used for assaying biological activity of monoiodoglucagon, CNBr-glucagon, and DH-glucagon. The affinities of these derivatives for specific glucagon binding sites in hepatic plasma membranes (Rodbell et al., 1971b) have been compared with that of native glucagon as a means of determining the structural requirements for recognition vs. action of the derivatives and the native hormone.

#### **Experimental Section**

Materials, [a-32P]ATP was obtained from International Chemical and Nuclear: [411]cAMP was from New England Nuclear, ATP, cyclic AMP, creating phosphate, creating phosphokinase, and dithiothreitol were purchased from Sigma. CNBr was from Eastman Kodak. Oxoid membranes were purchased from Amersham-Scarle. Chemicals used in the solid phase Edman procedure were Sequanal grade from Pierce or best grade available and were used without further purification. Polystyrene beads crosslinked with 0.25% divinylbenzene (no. 1.982) (from Sondell Scientific Instruments, Palo Alto, Calif.) were a gift from Dr. George R. Stark. Crystalline porcine glucagon was provided by Eli-Lilly and Co. or was purchased from Schwarz/Mann; purified monoiodoglucagon was a gift from Dr. W. W. Bromer of Eli Lilly. Solvents for partition chromatography were pus

ritica as incriously

Preparation of Plasma Membranes from Rat Liver. Partially purified plasma membranes from rat liver were prenated by a modification of the procedure of Neville (1968) as previously described (Pohl et al., 1971), and stored in liquid nitrogen.

Assay for Adenylate Cyclase Activity. The assay medium consisted of [a-12P]ATP (about 40 cpm/pmol) at 2 mM: MgCl2, 5 mM: cyclic AMP, 0.4 mM; dithiothroital, 1 mAt: bovine serum albumin, 2 mg/ml; creatine phosphate, 5 mM; creatine phosphokinase, 0.3 mg (50 units)/ml; and Tris-Cl buffer, 30 mM at pH 7.5 in a final volume of 100 ul. Liver membranes, suspended in Tris-Cl buffer containing I mAf dithiothreital, were added to a final concentration of 0.2 0.5 mg/ml to initiate the reaction. After 5 min at 30°, the reaction was terminated by adding 100 µl of stopping solution (Salomon et al., 1974), Cyclic AMP formed was determined by a recently developed procedure with the use of Dowex 50 and alumina columns (Salomon et al., 1974).

Assay for [125] Glucagon Binding, [125] Glucagon was prepared as described previously (Rodbell et al., 1971b). The concentration of biologically active glucagon in the preparations of labeled hormone was estimated from assays of adenylate cyclase activity (see above); activities were compared with those generated by native glucagon over a wide range of concentrations. The incubation medium used for the binding assay contained [1251]glucagon at 1.5 × 10-9 M (see legend for specific activity); bovine serum albumin, 3 mg/ nl; liver membrane, 50-100 µg/ml; and Tris-C1 buffer, 20 mM at pH 7.5 or as indicated in a final volume of 1 ml. The assay was initiated by the addition of liver membranes and the whole mixture was poured on an oxoid membrane filter after 10 min at 30°. The filter was quickly washed twice with 1 ml of cold Tris-Cl buffer containing 2 mg/ml of bovine scrum albumin. Suction was applied during the washing so that each wash took less than 5 sec to complete. Then the filter was counted in a well-type Pack-. ard y-counter.

Analytical Methods. Protein concentration was determined according to Lowry et al. (1951) with scrum albumin as standard. The amino acid content was analyzed, after the hydrolysis with methanesulfonic acid (Liu, 1972), on a JEOL JLC-6AM analyzer. No correction is made for destruction of amino acids during hydrolysis. Glucagon concentration was determined by its absorbance at 280 nm (molar absorbance 8050) or by amino acid analysis. Fresh glucagon solution (in 0.1% bovine serum albumin and 20 mM Tris-Cl buffer, pH 7.5) was prepared each time prior to use, since we have found that storage of glucagon in solution decreased its effectiveness in activating adenylate cyclase.

#### Results

Preparation of DII-Glucagim. When DH-glucagon is prepared by the conventional one-step Edman degradation (Rodbell et al., 1971a), the difference between the pKx values of the a- and camino groups is too small to limit the phenyl isothiocyanate reaction to only the a-terminal histidyl residue. Therefore, the product requires extensive purification. It occurred to us that the insoluble Edman reagent (Dowling and Stark, 1969), where products of the reaction of the side-chain camino groups are not recovered, might

provide an ideal procedure for the preparation of DH-glucagon. The procedure for preparing glucosaminol-isothiocyanate-polystyrene described by Dowling and Stark (1969) was followed closely. After the reagent was prepared, a column (1 × 15 cm) of the isothiocyanate resin was packed, thoroughly washed with pyridine buffer (pyridine-N-ethylmorpholine-H2O (15:1.4), adjusted to pH 8.1 with glacial acetic acid), and maintained at 55° for the following reactions. Glucagon, 15 µmol, was dissolved in 2.5 ml of the same pyridine buffer and about 5 × 106 cpm of [1251]glucagon was added to monitor the recovery. After the sample was placed on the resin, I ml of the buffer was added to wash down the sample. All solvents used subsequent to the coupling step contained 1% mercaptoethanol to protect against oxidation. After allowing coupling of glucagon through its amino groups to the resin to proceed for 1.5 hr at 55°, the column was washed twice with 25 ml of pyridine buffer and six times with 25 ml of pyridine, until no radioactivity was detected in the cluate. The resin was washed again with four 50-ml portions of tetrahydrofuran, and the tetrahydrofuran was displaced by adding 3 ml of the cleavage solvent (trifluoroacetic acid-glacial acetic acid (4:1)) to the column; the column flow was stopped and 10 ml of cleavage solvent was added. After 30 min with occasional stirring, this step was repeated once to ensure a good yield of cleavage product. Finally the column was washed with 8 ml of the same solvent. All the cleavage cluates were combined and lyophilized to dryness. The yield of the DH-glucagon at this stage ranged from 10 to 20%. The product obtained at this stage has a brownish color; its amino acid analysis showed the presence of glucosamine and about 0.15 residue of histidine. Since the resin contained covalently bound glucosaminol and after extensive washing the only source for free histidine was the glucagon coupled through e-NH2 groups to the resin, it appears that hydrolysis had occurred at the isothiocyanate group and thus glucosaminol and intact glucagon were released. This contaminant was removed by chromatography on a Dowex 50 column. The product was dissolved in 5 ml of 0.1 M pyridine-acatate buffer (pH 3.3) and applied to a AG50W-X2 column (0.9 × 9 cm), equilibrated with the same buffer at 55°. After washing the column with 20 ml of 0.77 M pyridine-acctate buffer (pH 4.4), DH-glucagon was cluted with 60 ml of 1.38 M pyridine-acetate buffer (pH 4.8). After being concentrated to 3 ml, the product was gel filtered on a Sephadex G-10 column (1.5 × 28 cm) with 10% acctic acid and then lyor hillzed. The yield was 5-10%.

In order to ascertain the amount of unreacted glucagon in the final product, a large amount (20 nmol) of peptide was applied to the amino acid analyzer after methanesulfonic acid hydrolysis. With suitable controls, it was established that the analyzer could detect histidine at levels of 0.1 nmol as a distinct peak. As shown in Table I, DH-glucagon contained less than 0.5% of histidine residue whereas all other amino acid residues, including tryptophan and lysine, were unchanged. We conclude from this analysis that DH-glucagon contains at most 0.5% contaminating glucagon.

Preparation of CNBr-Glucagon. The preparation of CNBr-glucagon followed that general method for cyanogen bromide cleavages of peptides and proteins (Steers et al., 1965). Glucagon (12.0 mg or 3.70 μmol) was dissolved in 12 ml of 70% formic acid (redistilled), and 110 mg of cyanogen bromide was added. The mixture was stirred for 14 hr at 25° and then 30 mg more of cyanogen bromide was

Table 1: Amino Acid Compositions of Glucagon and Its Derivatives,

| Amino      | Porcine Glucagon |        | DHGI   | DII-Glucakan |        | lucagon  |
|------------|------------------|--------|--------|--------------|--------|----------|
| Acids      | Found            | Theory | Found  | Theory       | Friund | Theory   |
| Trp        | 11.9R            | 1      | 0.93   | 1            | O.RR   | 1        |
| Lys        | 1.03             | 1      | 80,1   | 1            | LAKI   | 1        |
| Hish       | 0.88             | 1      | <0.005 | ()           | 0.82   | 1        |
| Are        | 2,00             | 2      | 1.83   | 2            | 2,00   | 2        |
| ሊኒኮ<br>ሊኒኮ | 1.93             | 4      | 4.29   | 4            | 2.68   | I,       |
| The        | 2.88             | i      | 2.51   | 3            | 1.73   | 3        |
| Ser        | 1.46             | à      | 3.38   | 4            | 1,60   | 4        |
| Glu        | 3,03             | j      | 3,28   | ,3           | 3.03   | 3        |
| Gly        | (1,95            | ī      | 1.10   | 1            | 1.07   | ı        |
| Ala        | 0.93             | 1      | 1.03   | 1            | 4.9.3  | 1        |
| Val        | 0.89             | i      | 0.90   | 1            | 0,86   | ı        |
| Meth       | 0.93             | i      | 1.07   | 1            | <0.005 | (1       |
|            | 2.05             | 'n     | 2.23   | 3            | 2,02   | 2        |
| Leu        | 1,92             | ĭ      | 1.84   | ī            | 2.02   | 2        |
| Tyr<br>Phe | 2,00             | 3      | 1.84   | 2            | 2,02   | <u>.</u> |

A Amino acid compositions were analyzed after 20-hr hydrolysis at 115" in 4.7 methanesulfonic acid containg 0.2% tryptamine. The results expressed in residues per molecule are uncorrected for any destruction during hydrolysis. Histidine and methionine were measured in separate analyses, in which 20 or 30 nmol of DH- or CNBr-glucagon, respectively, was applied. In either analysis, no distinct peak was detected; it was established that the analyzer could detect 0.1 nmol of amino acid as a distinct peak.

added. After a total of 24 hr the solution was lyophilized.

A clean seguration of native glucagon (RF 0.32) from CNBr-glucagon (RF 0.57) was obtained by slightly modifying a solvent system already developed for partition chromatography of glucagon (Hruby and Groginsky, 1971). The system used was 1-butanol-ethanol-benzene-0.2 N ammonium hydroxide (5:2:1:8) adjusted to pH 9.4 by acetic acid. The sample was dissolved initially in 1 ml of 50% acctic acid, and then 2 ml of upper phase was added. The mixture was placed on a 2.2 × 57 cm column of Sephandex G. 25 (100-200 mesh) which had been equilibrated with the upper and lower phases (Hruby and Groginsky, 1971). The peptide peak was determined using the method of Lowry et al. (1951); the CNBr-glucagon peak was pooled and lyophilized. The peptide was subjected to gel filtration on Sephadex G-15 (1 × 56 cm) using 50% acetic acid. After lyophilization, 3.4 mg of white powder was obtained for a yield of

Amino acid analysis showed no methionine (<0.5%. Table 1) even when the concentration of the analyzed sample was extremely high.

Activation of Hepatic Adenylate Cyclase by Glucagon Derivatives. A typical concentration-activity curve for native glucagon is shown in Figure 1. Activation of adenylate cyclase was detectable at  $2 \times 10^{-10}$  M glucagon and maximal activity was reached at  $4 \times 10^{-8}$  M glucagon. By contrast, DH-glucagon did not stimulate adenylate cyclase activity until its concentration reached  $3 \times 10^{-9}$  M. Furthermore, even at  $10^{-6}$  M. a maximal stimulating concentration, DH-glucagon stimulated less than 70% of the maximal activity engendered with native glucagon. Based on the concentration of DH-glucagon required to give activities equivalent to that given with glucagon, it was estimated that the derivative, on a molar basis, has about 2% of the intrinsic activity given by native glucagon. Judging from amino acid analysis (Table 1) and the nature of the concentration-ac-



ETGURE 1: Concentration-activity curves for porcine glucagon and its derivatives. The activity of hepatic adenylate cyclase was measured as described in the Experimental Section. The concentration of each peptide was estimated from its absorbance at 280 nm or by amino acid analysis.

tivity curve, it is highly unlikely that the activity given by DH-glucagon is due to contaminating glucagon. Thus, while confirming a previous report (Rodbell et al., 1971a) that the NH<sub>2</sub>-terminal histidine plays an important role in the expression of hormone action, our data show that this residue is not essential for hormone action as previously thought.

In addition to removal of the terminal threonine and asparagine residues of glucagon, CNBr treatment converts methionine to homoserine lactone. These changes in the structure of glucagon reduced its effectiveness to activate the adenylate cyclase system by 40- to 50-fold (Figure 1). However, CNBr-glucagon, in contrast to DH-glucagon, was capable of causing the same degree of activation of adenylate cyclase as the native hormone. Judging from the amino acid analysis (Table 1), contaminating glucagon was less than 0.5%; therefore, the activity observed must represent the intrinsic activity of CNBr-glucagon.

It has been reported that the incorporation of iodine into the tyrosyl residues of glucagon reduces the concentration necessary for half-maximal stimulation of adenylate cyclase activity by about fivefold (Bromer et al., 1973). Previously it had been reported (Rodbell et al., 1971b) that glucagon iodinated with 12 was essentially identical with glucagon in its ability to stimulate adenylate cyclase activity. Because of the widespread use of iodinated glucagon in binding and activity studies, we considered it important to reexamine the effects of monoiodoglucagon, kindly supplied by Dr. Bromer, on the adenylate cyclase system. As shown in Figure 1, native and monoiodoglucagon gave essentially the same concentration-activity curves. As shown below (Figure 2), the relative affinities of glucagon and monoiodoglucagon for the glucagon binding sites in hepatic membranes are also the same.

Glucagon Binding and Competition with Its Derivatives. Hepatic plasma membranes contain binding sites that are highly specific for glucagon (Rodbell et al., 1971b). The relative affinities of native glucagon and the various derivatives for these sites were determined by their ability to compete with the binding of [1251] glucagon to hepatic membranes. As judged by the concentrations required for 50% displacement of the labeled hormone, monoiodoglucagon has the same affinity as native glucagon for the binding sites whereas the affinities of DH-glucagon and CNBr-glucagon for these sites were shifted 15-fold and 50-fold, re-



FIGURE 2: Effect of addition of unlabeled peptides on the binding of [125], glucagon. The binding assays were carried out with 4  $\times$  10<sup>-8</sup> M [125] glucagon (specific activity, 10% c<sub>1</sub>m/pmol) as described in the Experimental Section. Unlabeled peptides were added at the concentrations indicated.

spectively (Figure 2). It should be emphasized that the loss of affinity of the modified glucagon derivative lacking only histidine was relatively small (15-fcld) (in three other experiments of this type, the average was 17-fold) when compared to its loss of ability to activate the adenylate cyclase system (greater than 50-fold). On the other hand, CNBrglucagon displayed nearly identical decreases in both affinity for the binding sites and in ability to activate the adenylate cyclase system (40- to 50-fold). It is reasonable to conclude from these data that modification at the COOH-terminal region of glucagon by treatment with cyanogen bromide significantly reduces the affinity of the peptide for its receptor but apparently does not affect the intrinsic activity of the hormone derivative as compared to the native hormone. On the other hand, modification of the amino-terminal region of the hormone by removal of the terminal histidyl group not only significantly reduced the affinity of the peptide for these sites, but also decreased substantially the intrinsic activity of the hormone.

#### Discussion

Our data show that monoiodoglucagon behaves identically with native glucagon in both its binding to specific glucagon binding sites in hepatic plasma membranes and on adenylate cyclase activity in these membranes. Since the proparation of monoiodoglucagon tested in this study was obtained from the same laboratory which reported the increased biological activity of monoiodoglucagon (Bromer et al., 1973), the difference between the two studies is notreadily explainable. The tendency of glucagon to aggregate in aqueous solution (Gratzer and Beaven, 1969; Beaven et al., 1969) might be contributory to this discrepancy. We have found that the effectiveness of glucagon on adenylate cycluse activity decreases substantially after storage in solution, especially at concentrations above 10-5 M. Therefore, we have consistently used freshly prepared solutions of glucagon and the derivatives employed in this study.

It is essential to establish the purity of chemically modified hormones before any meaningful study can be carried out with the derivatives. We have taken great care to make certain that unreacted glucagon remaining after purification was minimal. Careful amino acid analyses indicated that contamination due to native glucagon was less than 0.5% for CNBr- and DH-glucagon. Therefore, the observed properties of these two derivatives cannot be attributed to

changes in the properties of glucagon produced by removal of two residues from the COOH-terminal region of glucagon by eyanogen by mide treatment. The contribution of Asna and The ard possibly the erminal carboxy group to the affinity of the hormone is a major one. The participation of these hydrophilic residues (Nozaki and Tanford, 1971) indicates that hydrophobic interactions between glucagon and its receptor are not the only forces involved in the binding process. The parallel loss of both binding and binlogical activity strongly suggests that the role of the last two residues is strictly in the recognition process. They do not appear to be involved in the sequence of events leading to activation of adenylate cyclase.

It has been reported previously (Rodbell et al., 1971a) that DH-glucagon was devoid of biological activity with only a loss of about tenfold in affinity for the receptor. The implication of this finding and the potential use of this derivative as inhibitor of glucagon action are apparent (Birnbaumer and Pohl, 1973). Our study has confirmed the previous finding that the NH2-terminal histidine residue in glucagon plays an important role in the expression of hormone action in addition to imparting some contribution to the binding of the hormone to the specific binding sites in hepatic plasma membranes. However, we found that DHglucagon, prepared and purified as described here, is actually a weak agonist since, at 10-6 M, the derivative was able to induce about 70% of the maximal stimulation given by 10- M glucagon. Thus, the histidyl residue, though important in the binding and actions of the hormone, does not play an obligatory role in these processes. It is unlikely. therefore, that the histidyl residue of native glucagon participates in a catalytic function as observed for the histidine residue in various enzymes (Moore and Stein, 1973; Bender and Kezdy, 1965). It is possible that the histidyl residue is liganded to an important region of the receptor, or even the catalytic unit of adenylate cyclase, that is important in the expression of hormone action. In this regard, it has been shown that while dissociation of bound glucagon from its receptor is facilitated by the actions of guanine nucleotides on the adenylate cyclase system (Rodbell et al., 1971, 1974), binding of DII-glucagon to the receptor was relatively unaffected (Rubalcava and Rodbell, 1973). Since glucagon and guanine nucleotides activate adenylate cyclase in a concerted fashion (Rodbell et al., 1974), it is conceivable that the histidyl residue of glucagon is involved in this concerted process.

#### Acknowledgments

The authors are indebted to Dr. George R. Stark for his advice on the use of insoluble Edman reagent and to Drs. T.-Y. Liu and Y.-L. Tai for their assistance in performing amino acid analysis.

Beaven, G. H., Gratzer, W. B., and Davies, H. U. (1909).
Eur. J. Biochem. 11, 37.

Bender, M. L., and Kerdy, F. J. (1965), Annu. Rev. Blochem. 34, 49.

Birnbaumer, L., and Pohl, S. L. (1973), J. Bial. Chem. 248, 2056.

Bromer, W. W., Boucher, M. E., and Patterson, J. M. (1973), Biochem. Biophys. Res. Commun. 53, 134.

Bromer, W. W., Sinn, L. G., and Behrens, O. K. (1957), J. Am. Chem. Soc. 79, 2801.

Dowling, L. M., and Stark, G. R. (1969), Biochemistry 8, 4728.

Epand, R. M. (1972), J. Biol. Chem. 247, 2132.

Epand, R. M., and Epand, R. F. (1972), Biochim. Biophys. Acta 285, 176.

Epand, R. M., Epand, R. F., and Grey, V. (1973), Arch. Biochem. Biophys. 154, 132.

Grande, F., Grisolia, S., and Diederich, D. (1972), Proc. Soc. Exp. Biol. Med. 139, 855.

Gratzer, W. B., and Beaven, G. H. (1969), J. Biol. Chem. 244, 6675.

PAĞ

Hruby, V. J., and Groginsky, C. M. (1971), J. Chromatogr. 63, 423.

Lande, S., Gorman, R., and Bitensky, M. (1972), Endocrinology 90, 597.

Liu, T. Y. (1972); Methods Enzymol. 25, 44.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265.

Moore, S., and Stein, W. 11. (1973), Science 180, 458, Neville, D. M. (196) Aliochim, Biophys. Acta 154, 540.

Nozaki, Y., and Tanford, C. (1971), J. Biol. Chem. 246, 2211.

Pohl, S. L., Birnbaumer, L., and Rodbell, M. (1971). J. Biol. Chem. 246, 1849.

Rodbell, M. (1972), in Glucagon, Lefebvre, P. J., and Unger, R. H., Ed., Oxford, Pergamon Press, p. 61.

Rodbell, M., Birnbaumer, L., Pohl, S. L., and Sundby, F. (1971a), Proc. Natl. Acad. Sci. U.S. A 68, 909.

Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L. (1971b), J. Biol. Chem. 246, 1861.

Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L. (1971c). J. Biol. Chem. 246, 1872.

Rodbell, M., Lin, M. C., and Salomon, Y. (1974), J. Biol. Chem. 249, 59.

Rubalcava, B., and Rodbell, M. (1973), J. Biol. Chem. 248, 3831.

Salomon, Y., Londos, C., and Rodbell, M. (1974), Anal. Biochem. 58, 541.

Spiegel, A. M., and Bitensky, M. W. (1969), Endocrinology 85, 638.

Steers, E., Jr., Craven, G. R., Anfinsen, C. B., and Bethune, J. L. (1965), J. Blot. Chem. 240, 2478.

Sutherland, E. W. (1972), Science 177, 401.

# Possible Dissociation of the Heparin-binding and Mitogenic Activities of Heparin-binding (Acidic Fibroblast) Growth Factor-1 from Its Receptor-binding Activities by Site-directed Mutagenesis of a Single Lysine Residue

Wilson H. Burgess,\* Anne M. Shaheen,\* Mark Ravera, Michael Jaye, Patrick J. Donohue, and Jeffrey A. Winkles\*

\*Laboratory of Molecular Biology, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, Maryland 20855; and †Rorer Biotechnology, Inc., King of Prussla, Pennsylvania 19406

Abstract. The fibroblast or heparin-binding growth factors (HBGFs) are thought to be modulators of cell growth and migration, angiogenesis, wound repair, neurite extension, and mesoderm induction. A better understanding of the structural basis for the different activities of these proteins should facilitate the development of agonists and antagonists of specific HBGF activities and identification of the signal transduction pathways involved in the mechanisms of action of these growth factors. Chemical modification studies of Harper and Lobb (Harper, J. W., and R. R. Lobb. 1988. Biochemistry. 27:671-678) implicated lysine 132 in HBGF-1 (acidic fibroblast growth factor) as being important to the heparin-binding, receptor-binding, and mitogenic activities of the protein. We changed lysine 132 to a glutamic acid residue by site-directed mutagenesis of the human cDNA and expressed the mutant protein in Escherichia coli to obtain sufficient quantities for functional studies. Replacement of this lysine with glutamic acid reduces the apparent affinity

of HBOF-1 for immobilized heparin (clutes at 0.45 M NaCl vs. 1.1 M NaCl for wild-type). Mitogenic assays established two points: (a) human recombinant HBOP-1 is highly dependent on the presence of heparin for optimal mitogenic activity, and (b) the change of lysine 132 to glutamic acid drastically reduces the specific mitogenic activity of HBGF-1. The poor mitogenic activity of the mutant protein does not appear to be due to a reduced affinity for the HBGF receptor. Similarly, the mutant HBGF-1 can stimulate tyrosine kinase activity and induce protooncogene expression. Differences in the biological properties of the wild-type and mutant proteins were observed in transfection studies. Mutant HBGF-1 expression in transfected NIH 3T3 cells did not induce the same transformed phenotype characteristic of cells expressing wild-type HBGF-1. Together these data indicate that different functional properties of HBGF-1 may be dissociated at the structural level.

Presently consists of seven structurally related polypeptides (3). The cDNAs for each have been cloned and sequenced. Two of the proteins, HBGF-1 and HBGF-2, have been characterized under many different names, but most often as acidic and basic fibroblast growth factor, respectively. Three sequence-related oncogenes have been identified; the hst oncogene was discovered based on its ability to transform NIH 3T3 cells (9, 25, 38, 45); the int-2 oncogene was first identified as a gene activated by mouse mammary tumor virus (7, 10, 11) and the FGF-5 oncogene was identified using NIH 3T3 transformation assays (46, 47). Recently a gene termed FGF-6 was identified by screening a mouse cosmid library with a human hst probe under re-

1. Abbreviation used in this paper: HBGF, heparin-binding growth factor.

duced stringency and was shown to be capable of transforming NIH 3T3 cells (32). Finally, an epithelial cell-specific growth factor termed KGF or FGF-7 has been identified and its cDNA cloned and sequenced (13).

Functions associated with HBGF-I and HBGF-2 include stimulation of mitogenesis, chemotaxis, mesoderm induction, neurite extension, and plasminogen activator activity. These HBGFs also induce angiogenesis in vivo and accelerate wound repair (for reviews see references 3, 18, 27, 36). The mechanisms by which HBGFs promote these functions are poorly understood but may include activation of protein tyrosine kinase activity (8, 15, 20), phosphorylation of phospholipase  $C-\gamma$  (6), and activation of immediate-early gene transcription (17). In addition, both HBGF-1 and HBGF-2 have been shown to be relatively resistant to degradation after internalization by receptor-mediated endocytosis (14, 24,

34). Intact growth factor persists intracellularly for several hours and large fragments (15,000 and 10,000 M, for HBGF-1; 16,000 M, for HBGF-2) are detectable after as many as 24 h. Further, nuclear or nucleolar localization of HBGF-2 has

been observed (2, 35).

Despite the identification of additional members of the HBGF family and a broad range of cells and tissues that contain the growth factors, and despite the availability of large quantities of recombinant protein and increased knowledge of the broad spectrum of activities of potential biological significance that can be attributed to the HBGFs, relatively little is known regarding the relationship of these highly conserved structures to any of their known functions. Baird et al. (1) reported the synthesis of 25 peptides, which together encompass and overlap the entire sequence of HBGF-2 as described by Ueno et al. (42). They reported the identification of two functional domains in the primary structure of HBGF-2 based on the abilities of synthetic peptides to interact with HBGF receptor, bind radiolabeled heparin in a solid phase assay, and inhibit HBGF-2 stimulation of thy midine incorporation into DNA. Using the numbering system of the authors (which does not correspond to full length HBGF-2) statistically significant functional activities could be assigned to peptides corresponding to residues 24-68 and 106-115 of HBGF-2. Similarly, Schubert et al. (39) demonstrated that peptides corresponding to residues 1-24, 24-68, and 93-120 of HBGF-2 are able to stimulate substratum adhesion of PC12 cells. We have shown that a synthetic peptide corresponding to residues 49-72 of HBGF-1 (using numbering of 1-154 for full length HBGF-1) is able to compete with HBGF-1 for heparin binding in a gel overlay assay (33). This region is homologous to one of the regions of HBGF-2 (residues 24-68) described above as possessing heparin-binding

To date, the most complete and informative studies documenting the effects of chemical modification of any HBGF on function are those of Harper and Lobb (19). Briefly, they were able to show that limited reductive methylation of bovine HBGF-1 with formaldehyde and cyanoborohydride resulted in stoichiometric methylation only of lysine 132 (using 1-154 numbering for full length HBGF-I). They reported 90% modification of this residue, with 60% dimethylysine. The modified protein exhibited significantly reduced apparcut affinity for immobilized heparin (cluted at ~0.7 M NaCl vz. ~1.2 M NaCl for unmodified HBGF-1), a fourfold reduction in its ability to stimulate DNA synthesis in NIH 3T3 fibroblasts and a similar reduction in its ability to compete with labeled ligand in a radioreceptor assay. A lysine residue is found at this position of HBGF-1 and HBGF-2 of all specles characterized to date. Together these data implicate a crucial role for lysine 132 in several of the known functions

of HBGF-1.

In this report we address the role of lysine 132 in HBGF-1 function using site-directed mutagenesis of this position to a glutamic acid. This approach offers several advantages over chemical modification studies including (a) the ability to produce large quantities of the desired product, (b) elimination of significant (although sub-stoichiometric) modification of other lysines, and (c) allowing the introduction of modified HBGF-1 into mammalian cells through transfection of cDNA expression vectors designed to produce the desired mutant. Despite these advantages the importance of chemi-

cal modification studies such as those of Harper and Lobb (19) should not be underestimated for they are extremely useful in the design of a rational approach to site-directed mutagenesis. The results described here demonstrate that replacement of lysine 132 of HBGF-1 with glutamic acid reduces significantly its apparent affinity for immobilized heparin and its mitogenic capacity. However, the apparent affinity of the mutant for high affinity cell surface receptors appears unaltered. When assayed in the presence of heparin where the difference in wild-type and mutant HBGF-1 mitogenic activity is most apparent, mutant HBGF-1 can stimulate tyrosine kinase activity and induce protooncogene expression. Functional differences between the wild-type and mutant HBGF-1 are also apparent after transfection of cDNA expression vectors into NIH 3T3 fibroblasts.

#### Materials and Methods

#### Materials

Heparin-Sepharose, protein A-Sepharose, pKK233 expression vectors, and low molecular weight markers were purchased from Pharmacia Fine Chemicals (Piacateway, N.D.). All reagents for PAGE and the Mighty Small Apparatus were from Hoefer Scientific Instruments (San Francisco, CA). Reagents for reversed-phase HPLC, amino acid analysis, and amino acid sequencing were purchased from Applied Biotystems, Inc. (Foster City, CA). Isotopes and the in vitro mutagenesis system were from Amerikam Corp. (Arliagion Heights, IL). The rabbit polyclonal HBGF-1-specific antibody was provided by R. Friesel (American Rad Cross, Rockville, MD) and the rabbit polyclonal anti-phospholipase C-y antibodies were provided by A. Ziliberstein (Rorer Biotechnology, Inc., King of Prussia, PA). Tissue culture media and plasticware were purchased from Gibco Laboratories (Grand Island, NY). High molecular weight molecular markers were from Bio-Rad Laboratories (Richmond, CA). Endoprovelnase ASP-N and the random primer DNA isbeling kit were from Bocturinger Maanholm Bioctiomicals (Indianspolis, IN). Other chemicals were reagent grade.

#### Construction of pREC and pl32E Prokaryotic Expression Plasmids

The plasmid expressing wild-type HBGF-I (corresponding to the or-form of endothelial cell growth factor (3), pRBC, was kindly provided by R. Forough (American Red Cross). This plasmid was constructed by cloning synthetic oligonucleotide cassettes into the Noo I/Hind III site of pKR233-2. The plasmid expressing mutant HBGF-I (glutamic acid instead of lysine at amino acid position 132; pt32E) was constructed as follows. The Boo RI/Hind III fragment of HBGF-I cDNA clone I (21) was subcloned into M13mpl8. Single-etranded template was prepared and used for oligonucleotide-directed in vitro mutagenesis. Double-stranded DNA was transformed into R. coli TG-I cells and the resultant plaques were screened by M13 dideoxy sequencing. The mutated HBGF-I cDNA was transferred leto the expression vector pKK223-3 using the original Eco RI and Hind III sites.

#### Production and Purification of Recombinant Proteins

Recombinant plasmids pREC or p132E were introduced into the laci<sup>Q</sup>-bearing Escherichia coli strain JM103. Cultures of JM103 bearing the recombinant plasmids were grown with shaking at 37°C in Luria broth containing 100 µg/ml ampicilitia. A fresh overnight culture was diluted and grown until the A530 reached ~0.2, at which point isopropyithio-figurations added to 1 mM. Cells were collected by centrifugation and from at -80°C for subsequent growth factor purification.

from at -80°C for subsequent growth factor purification.

The sen cell pellets from 2-liter cultures were resuspended in 50 ml of 10 mlM Tris-HCl, pH 7.5, 5 mM EDTA, 50 mM glucose. A fresh solution of ben egg lysozyme in the same buffer was added to 10 µg/ml. The cells were mixed at 4°C for 45 min. The viscous lysate was solicated at maximum intensity using a large probe and four 20-s pulses of a Heat Systems W-380 sonicator. The lysate was clarifed by centrifugation at 6,000 g for 15 min at 4°C. The supernatant was diluted to 100 ml with 50 mlM Tris-HCl, pH 7.5, 10 mlM EDTA and incubated with 20 ml of hydrated heparin-

Sephanose at 4°C with enc-over-end mixing for 2 h. The resin was cluted batchwise using a sintered glass funnel and successive washes of the same buffer containing Q, Q.I., Q.S., Q.G.S., and I.S. M. NaCl. The wild-type recombinant HBOF-I cluted with the I.S. M. NaCl. wash.

The mutant was cluted with the 0.5 M NaCl wash. Although the wild-type protoin was essentially pure after heparin-Sepharose chromatography, the mutant HBOF-I constituted only 10-20% of the 0.5 M NaCl wash. Both preparations were purified to >93 % purity using reversed-phase HPLC (4). The reversed-phase purified material was used for all reported studies.

#### Characterization of Recombinant Proteins

All preparations of purified recombinant human wild-type and mutant HBGF-I were enalyzed by SDS-PAGE, amino acid analysis, amino terminal sequencing, peptide mapping, and amino acid sequencing of the peptide encompassing the mutated residue. Protois concentrations were determined by amino acid analysis. Aliquots of wild-type and mutant HBOF-1 were sub-jected to electrophoresis using the SDS-PAGE system of Lacammii (26). A 15% acrylamida, 0.4% N.N-methylenobisacrylamide solution was polymorized in a Hoefer mini-gel apparatus and electrophoresis was carried out at a constant 200 V. Protein was visualized by staining the got with 0.1% Coomassie blue R-250 in 50% methanol, 10% glacial acetic acid, and destaining with 9% glacial acetic acid, 5% methanol. Samples for amino acid analysis were hydrolyzed with argon-purged, constant boiling 6 N HCl at 115°C for 18 h using a Pico-the workstation (Waters Associates, Milford, MA). Amino acids were derivatized with phenylisothiocyanate and separated with a PTC analyzer (model 130A; Applied Biosystems, Inc.). A Waters 840 system was used for data collection and reduction. Amino acid sequences were established using a protein sequencer (model 477A; Applied Biosystems, Inc.) using modified Edman chemistry and an on-line model 120A PTH analyzer. Peptide mapping of recombinant protein after digestion with endoproteinase Asp-N at a 1:25 ratio of enzyme to protein in 50 mM Na<sub>2</sub>HPO<sub>4</sub>, pH 8.0, 37°C for 18 h was performed using a microbore HPLC system (model 130A; Applied iti systems, Inc.). The appropriate peptides were subjected to amino acid sequence analysis to establish the fidelity of expression of the wild-type and mutant HBOF-1 vectors.

#### Stability Studies

Metabolically labeled recombinant proteins were prepared by growing bacterial cultures as described above until the Asso reached ~0.4, at which point the cells were collected by centrifugation. They were resuspended in 98.5% M9 minimal medium/1.5% Luria broth and [\*Hjleucine (140 Cl/mmol) was added to 45 µCl/ml. Cells were grown with shaking for 30 min, and then for an additional 4 h in the presence of 1 mM isopropylthio-6galactoside. Cells were collected and growth factors purified as described above. The purified, labeled growth factors were incubated for 48 h at 37 °C in the presence of media (DMEM containing 10% calf serum) that had been conditioned for 48 h by NIH 3T3 cells. The growth factor-containing media was analyzed by SDS-PAGE and autoradiography.

#### Mitogenic Assays

The mitogenic activities of wild-type and mutant recombinant HBGF-I re determined by measuring their ability to stimulate DNA synthesis in NIH 3T3 cells and to support the proliferation of human ambilical yein en-dothelial cells. DNA synthesis was determined by measuring the amount of [3H]thymidine incorporated into cells. Briefly, NIH 3T3 cells were scoded into 48-well plates and grown to near confluence in DME containing 10% calf serum. The cells were serum starved (DME, 0.5% calf serum) for 24 h. Mitogens were added to the wells and incubated for 18 h. The cells were pulsed with 0.5 \(\mu(1)\) Ci/ml of [3H]thymidine (25 Cl/mmol) for 4 h. The cells were riased with PBS, fixed with 10% TCA, riased with PBS, and then solubilized with 0.5 N NaOH. Incorporation of [3H]thymidine into scid-insoluble material was determined by scintillation counting. All assays were performed in triplicate.

Human umbilical vein endothelial cells were provided by T. Macing (American Red Cross, Rockville, MD). They were maintained on fibronectin-coated plates (2 µg/cm²) in medium 199 supplemented with 10% (vol/vol) heat-inactivated FBS, 1× antibiotic-antimycotic, 10 U/ml heparin, and 10 ng/ml human recombinant HBGF-L. For growth assays, cells were seeded in 24-well plates at 2,000 cells/well in medium 199 supplemented as above with the exception of HBOF-L. The indicated amounts of wild-type or mutant HEOF4 and heparin were added to the wells. The media was changed ever other day. After 7 d in culture, cells were trypsinized and

counted using a hemocytometer.

#### Competition for Binding and Cross-Linking to Cell Surface Receptors

Bovine brain-derived HBGF4 (4) was labeled with <sup>124</sup>I using immobilized lactoperoxidese and biologically active, labeled protein was isolated using hoperin-Sepharose as described (16). Confluent NIH 313 cells in 24-well plates were serum starved for 24 h before blading experiments in DMIS containing 0.5% calf serum. The cells were washed and incubated with DME containing 5 U/ml heperin, 0.5% BSA, and 25 mM Hepes, pH 7.2 (binding buffer) at room temperature for 20 min. The cells then were incubated with 121-HBGP-I and unlabeled wild-type or mutant HBGP-I in the presence of 5 U/ml heparin as indicated in the figure legend. The cells were incubated on loe for 90 min. The plates were aspirated and washed four times with binding buffer. The cells were then incubated for 20 min at 4°C with 1 mi of 0.3 and disuccinimidy subcrate in PBS. The cross-linker was then aspirated off and the reaction quenched by adding 2.0 M Tris-HCL, pH 8.0. The cells were wested with PBS, screped from the plates and pelleted for 10 s at 15,000 g. The pellets were extracted with 100 µl of 50 mM Tris, 1 mM EDTA, 200 mM NeCl, 1.0% Triton X-100, 0.1 mM phenylmethylmilionyl fluoride, pH 7.5 for 20 min at 4°C. The extracts were contributed for 10 min at 15,000 g. The supernatants were removed and mixed with an equal volume of Lacrimil sample buffer for SDS-PAGE analysis.

## Stimulation of Protein Tyrosine Kinase Activity

Neff 3T3 cells were grown to confluence in 100 mm dishes and serum starved as described above. The cells were then exposed to diluces LA, or 10 ng/ml of wild-type or mutant HBGF-1 for 10 min at 37°C. The cells were washed once with cold PBS then tysed in buffer containing 10 mM Tris.
50 mM NaCl. 5 mM EDTA, 50 mM NaR, 50 mM sodium pyrophosphate.
100 µM sodium orthoran-si-ze, 1.0% Triton X-100, 1 mM phenylirediy-teulfonyl fluoride, pli 7.4. The cells were scraped from the place, wortexed, and incubated on ice for 10 min. Lysates were clarified by centrifugation at 10,000 g for 10 min at 4 °C and the supernatants were mixed with an equal volume of 2× Laconnili sample buffer, Samples (normalized to cell sumber) were subjected to PAGE in the presence of SDS. The proteins were transferred to nitrocellulose and immunoblotted with and phosphotyrosine antibodies as described (15). The blots were incubated with 121-protein A and phosphotytosine-containing proteins were visualized by autoradiogra-phy. In some experiments the initial cell lysates were incubated with a pre-bound anti-phospholipase C-y antibody/protein A-Sepharose complex (31) for 90 min at 4°C. The beads were washed with 20 mM Hepes, 0.1% Triton X-100, 150 mM NaCl, 10% glycerol, pH 7.5. Immunoprecipitated proteins were eluted from the beads with 2× Lacmmli sample buffer and subjected to PAGE and Western blotting with anti-phosphotyrosine antibodies as described above.

#### RNA Gel Blot Analysis

NIH 3T3 cells were incubated for 48 h in DME/0.5% PCS and then either left unstimulated or stimulated with wild-type or mutant HBGFA for the. indicated times. Cells were harvested, total RNA was prepared (17), and 10 µg of each sample was separated by electrophoresis on 1.2% agarous gels containing formaldehyde. The gels were stained with ethidism broadde photographed to verify that each lane contained an agual amount of underraded ribosoma RNA. RNA was electroblotted onto Zetabiad mylon filters and cross-linked by UV kradiation. The restriction fragments used and source of the DNA probes were as follows: (4) e-fos, 2.2-th Noo I/ Xho I fragment of po-fos-1; American Type Culture Collection, Rockville, MD; (b) c-fun, 1.5-kb Hind III/Bam HI fragment of ph-cI-l; gift of P. Angel, University of California, La Jolla, CA; (c) o-mye, LA-lib Set I fragment of pHSR-1; ATCC; (d) glyceraldetyde 3-phosphate detydrogenase, Q.8-th Pxt I/Xba I fragment of pHoGAP; ATCC. The probes were labeled with [22P]dCTP (3,000 Cl/mmol) using a random primer labeling kit. Hybridtration and filter washes were as described (17). Blots were exposed to Kodak XAR5 film at -70°C.

#### Transfection of NIH 3T3 Cells with HBGF-1 Eukaryotic Expression Plasmids

NIH 3T3 cells in 100 mm dishes were transfected with plasmid DNA by the calcium phosphate precipitation method (44). Cells were incubated with either I µg of p5V2 neo (41) or co-transfected with a mixture (1:10 µg) of pSV2 neo and either HBGF-I wild-type expression vector (p267) or HBGF-I mutant expression vector (p268). The plasmid p267 is described in Jaye et



Figure 1. Stimulation of DNA synthesis in NIH 3T3 cells by wild-type and mutant HBGF-1. Cells were grown to near confluence and serum starved for 24 h as described in Materials and Methods. Cells were treated with the indicated concentrations of wild-type ( $\bullet$ ) or mutant ( $\Delta$ ) HBGF-1, incubated for 18 h, and then pulsed with 0.5  $\mu$ Cl of ['H]thymidine/ml for 4 h. The cells were harvested and incorporation of radioactivity was determined. Both wild-type and mutant HBGF-1 were assayed in the presence of 0 ( $\Delta$ ), 5 ( $\Delta$ ), or 50 U/mi beparin (C).

al. (23): p268 was constructed by replacing the 297nt Pvu II/Bgi II fragment of p267 (encoding amino acids 38-455) with the corresponding region from the protaryotic expression plasmid pE132 using standard subcloning methods. Cells were split to 10 dishes and transfected colonies were selected by incubating the cells in DMB, 10% call serum containing 500 µg/ml Geneticia. The media was changed every 3-4 d. After 4 wk, transfected colonies were analyzed for HBGF-I expression by Western blot analysis using rabbit polyclonal HBGF-I-specific amtibodies and 121-protein A as described above.

#### Results

#### Heparin-binding Properties of HBGF-1 Mutant p132E

A drastic reduction in the apparent affinity of HBGF-1 containing glutamic acid in place of lysine at position 132 was observed during the purification of the recombinant proteins



Figure 2. Ability of wild-type and mutant HBGF-1 to atimulate growth of human umbilical vein endothelial cells. Cells were seeded and cultured as described in Materials and Methods. Cell number after 7 d in culture in the presence of the indicated concentrations of wild-type (o/o) or mutant (a/a) HBGF-1 in the absence (o/a) or presence (o/a) of 50 U/ml heparin is shown.

from the Escherichia coli lysates. Recombinant wild-type HBGP-1 from E. coll lysates can be purified to near homogeneity with a single heparin-Sepharose step. The protein binds the immobilized heparin during extensive washing with 0.5 and 0.65 M NaCl-containing buffers and is cluted with a single step of 1.5 M NaCl-containing buffer. In contrast, heparin-Sepharose affinity-based chromatography could not be used as a single purification step for the mutant HBGF-1. The mutant protein binds immobilized heparin in the presence of 0.1 M NaCl but was cluted during the 0.5 M NaCl wash. Both wild-type and mutant HBGF-1 (1.5 and 0.5 M NaCl clustes, respectively) could be purified to apparent homogeneity using reversed-phase HPLC. Detailed analysis of the apparent affinities of the two purified proteins for immobilized heparin-Sepharose using relatively shallow, linear NaCl gradients indicated that the mutant HBGF-1 eluted with 0.45 M NaCl whereas wild-type required 1.1 M NaCl to be eluted (data not shown). For all of the assays described below we used reversed-phase HPLC purified wild-type or mutant HBGF-1. Protein concentrations were determined by amino acid analysis of preparations that had been shown to be the desired HBGP-1 form by peptide mapping and amino acid sequence analysis (data not shown).

#### Mitogenic Properties of HBGF-I Mutant p132E

The ability of the HBGF-I mutant to stimulate mitogenesis was compared to that of the wild-type protein using two different assays. In the first, the ability of the two proteins to stimulate DNA synthesis in NIH 3T3 cells as measured by [PH]thymidine incorporation was examined. The assays were conducted over a broad range of HBGF-I and heparin concentrations. Two important points can be made from the data in Fig. 1. One, the wild-type HBGF-I has a dramatic requirement for the presence of heparin for optimal mitogenic activity and, two, the mutant HBGF-I is significantly less potent than wild-type protein in the presence of added heparin. As can be seen in Fig. 1, the maximal difference in mitogenic potency was observed in the presence of 5 U/ml heparin (~30-fold). Little difference (approximately three-

|                  | Growth factor concentration (ng/ml) |     |     |     |      |      |
|------------------|-------------------------------------|-----|-----|-----|------|------|
|                  | o                                   | 0.1 | 0.5 | 1   | 5    | 10   |
| GLUIN HBGF-I     | 1.6                                 | 1,6 | 1.3 | 1.2 | 1.7  | 1.4  |
| Wild-type HBGF-1 | 1.7                                 | 2.0 | 1.9 | 2.9 | 12.6 | 16.6 |

fold) between the wild-type and mutant protein is seen in the absence of added heparin because of the relative lack of mitogenic activity of wild-type human recombinant HBGP-1 in the absence of heparin. The possibility that the reduced mitogenic activity of the mutant HBGP-1 is related directly to its reduced apparent affinity for immobilized heparin is supported by the observation that the difference in the mitogenic potency between the wild-type and mutant protein is reduced to ~18-fold in the presence of 50 U/ml heparin.

In the second mitogenesis assay the abilities of the wildtype and mutant proteins to support the proliferation of human umbilical vein endothelial cells were compared. The results shown in Fig. 2 are consistent with those described above in that they demonstrate a dramatic heparin requirement of the wild-type HBGF-1 for biological activity and that the mutant HBGP-1 is not able to support cell proliferation to the same extent as the wild-type protein. These experiments were conducted in the presence of 50 U/ml heparin and the endothelial cells were seeded in the presence of 10 ng/ml wild-type HBGF-1. When growth assays were conducted in the presence of 5 U/ml heparin without wild-type protein during the seeding, mitogenic deficiencies of the mutant protein were more pronounced (Table I). The results shown in Fig. 3 demonstrate that the reduced mitogenic activity of the mutant HBGF-1 does not appear to be the result of any increased susceptibility of the protein to proteolytic digestion by components in serum or the conditioned media of NIH 3T3 cells.

Receptor-binding Activity of HBGF-1 Mutant pl32E
The results presented above are consistent with the observa-

Figure 3. Analysis of the relative stability of wild-type and mutant HBGF-1 in NIH 3T3 cell-conditioned media. The wild-type and mutant proteins were labeled and purified as described in Materials and Methods. The proteins were incubated in the presence of NIH 3T3 cell-conditioned media for 48 h at 37°C and then subjected to SDS-PAGE. The gels were dried and labeled proteins visualized by autoradiography. Lane 1 contains wild-type HBGF-1 and iane 2 mutant HBGF-1. The apparent molecular weights of both proteins are identical to that of HBGF-1 before incubation.

tions of Harper and Loov (19) using bovine brain-derived HBGF-1 selectively methylated at lysine 132, although the magnitude of the reduction in mitogenic potency (~30-fold for 3T3 cell assay) as compared with the ~4-fold decrease reported by Harper and Lobb (19) is significantly greater. They also reported reduced receptor-binding activity for the modified protein. We examined the abilities of the wild-type and mutant recombinant HBGF-1 to compete with <sup>12</sup>I-labeled bovine HBGF-1 for binding to cell surface receptors on NIH 3T3 cells at a concentration of added heparin (5 U/ml) where the difference in mitogenic potencies of the two proteins was greatest.

The receptor-binding activity of the mutant HBGF-1 was established by competition for cross-linking of <sup>12</sup>I-HBGF-1

The receptor-binding activity of the mutant HBGF-1 was established by competition for cross-linking of EI-HBGF-1 to 150,000- and 130,000-M, proteins present on the surface of NIH 3T3 cells (16). The results shown in Fig. 4 demonstrate that the mutant HBGF-1 is similar to wild-type protein in its ability to compete for receptor-ligand cross-linking.

The functional consequences of HBGF-1 binding to its cell surface receptor include stimulation of protein tyrosine kinase activity (8, 15, 20) including phosphorylation of phospholipses  $C-\gamma$  (6). Fig. 5 A demonstrates that both wild-type and mutant HBGF-1 are able to increase the phosphotyrosine content of 150,000-, 90,000-, and 70,000-M, proteins and, to a lesser extent, proteins with lower relative molecular masses as judged by Western blot analysis with phosphotyrosine-specific antibodies. The dose response and extent of activation is similar for the two forms of the growth factor. Stimulation of the phosphotyrosine content of phospholipase C-y was examined by anti-phosphotyrosine Western blot analysis of 3T3 cell lysates after immunoprecipitation using antibodies that recognize phospholipase C-\gamma. Fig. 5 B demonstrates the' mutant HBGF-1 shares with wild-type HBGF-1 the ability to stimulate tyrosine phosphorylation of phospholipase C-y. These data regarding stimulation of tyrosine kinase activity by wild-type and mutant HBGP-1 are in good agreement with the receptor-binding data described above but do not provide insight into the functional basis for the relatively poor mitogenic capacity of this HBGF-1 mutant.

# Protooncogene Induction by Wild-Type and Mutant HBGF-1

The results described above indicate that the functional properties of the mutant HBGP-1 associated with events that occur at the cell surface (i.e., receptor-binding and tyrosine kimase activation) are normal with respect to those of wild-type HBGF-1. In addition to tyrosine kinase activation, another early response to HBGR-1 receptor-binding is the elevation of protooncogene mRNA levels (17). To determine the effect of wild-type and mutant HBGF-1 on protooncogene expression, NIH 3T3 cells were serum starved and then either left unstimulated or stimulated with 10 ng/ml wild-type or mutant HBGF-1. Heparin (5 U/ml) was also added to the cells receiving growth factor. Cells were collected at various times after stimulation, RNA was prepared, and levels of c-fos, c-jun, c-myc, and glyceraidehyde 3-phosphate dehydrogenase mRNA (as a control for the amount of RNA loaded in each lane) were assayed by RNA gel blot analysis. Wildtype and mutant HBGF-1 increased protooncogene mRNA levels to a similar degree; maximal levels were observed at 30 min (c-fos, c-jun) or 2 h (c-myc) after stimulation (Fig.

1 2





# 12345 678910

Figure 4. Ability of wild-type and mutant HBGF-1 to compete with 1211-labeled bovine HBGF-1 for cross-linking to 150,000- and 130,000-mol wt cell surface receptors. NIH 373 cells were incubated with 1 ng/ml bovine 1211-HBGF-1 and either 0.5, 1.0, 5.0, 10.0, or 50.0 ng/ml of wild-type (lanes 1-5) or mutant (lanes 6-10) human recombinant HBGF-1 in the presence of 5 U/ml heparia. After incubation, the cells were treated with cross-linking reagents as described in Materials and Methods. The apparent molecular weights of cross-linked species were determined after SDS-PAGE and autoradiography. The positions of two cross-linked 150,000- and 130,000-mol wt species, which correspond to the known apparent molecular weights of HBGF receptors, are indicated with arrows.

6). The addition of heparin alone did not induce protoon-cogene expression. Since the mitogenic differences between the wild-type and mutant HBGF-1 are more pronounced at lower growth factor concentrations, we also atimulated cells with 0.5, 1.0, 5.0, and 10 ng/ml wild-type and mutant growth factor (again in the presence of heparin). At all four concentrations used, the wild-type and mutant HBGP-1 were similar in their ability to induce c-fos mRNA expression (Fig. 7).

# Overexpression of Wild-Type and Mutant HBGF-1 in Transfected NIH 373 Cells

It was demonstrated previously that overexpression of wild-type HBGF-1 in transfected Swiss 3T3 cells resulted in cells with an elongated, transformed morphological phenotype that grew to higher saturation densities (23). This transformed phenotype occurred even though the HBGF-1 polypeptide was not detectable in the conditioned media of these cells. We have shown that the mutant HBGF-1 is not a potent mitogen although it can bind receptor and initiate early events associated with mitogenic signal transduction. To investigate whether the intracellular function of the mutant HBGF-1 was altered, we examined the ability of this protein to induce a transformed phenotype in NIH 3T3 cells. Cells were either transfected with a plasmid conferring neomycin resistance or co-transfected with the neomycin resistance plasmid and wild-type or mutant HBGF-1 expression vectors.

Fig. 8 shows the results of Western blot analysis of transfected cell lysates using HBGF-1-specific antibodies. The Western blot analysis was normalized to cell number and provides the basis for our designation of relatively high or low levels of HBGF-1 expression. The results shown in Fig. 9 demonstrate that cells expressing a high level of wild-type HBGF-1 (Fig. 9 B) and to some extent a low level of wild-



Figure 5. Stimulation of protein tyrosine kinase activity by wild-type and mutant HBGF-1. (A) Serum starved NIH 3T3 cells were either (lane I) unstimulated or treated with 5 U/mi heparin and (lane 2) 1 mg/ml wild-type; (lane 3) 10 ng/ml wild-type; (lane 4) 1 ng/ml mutant; or (lane 5) 10 ng/ml mutant HBGF-1. The cells were processed as described in Materials and Methods and phosphotyrosine-containing proteins were visualized using antiphosphotyrosine antibodies and tol-protein A. The arrows indicate the positions of 150,000-, 90,000-, and 70,000-mol wt proteins whose phosphotyrosine content are increased by the addition of wild-type or mutant HBGP-1. (B) Cells were incubated as in A with the exception that cell lysates were immunoprecipitated with anti-phospholipase C-y antibodies before Western blot analysis with anti-phosphotyrosine antibodies. Cells were either (lane 1) unstimulated or treated with (lane 2) 10 ng/ml wild-type, or (lane 3) 10 ng/ml mutant HBGP-L. The arrow shows the position of a 150,000-mol wt protein whose phosphotyrosine content is increased by treatment with wild-type or mutant HBGF-1.



Figure 6. Effect of wild-type and mutant HBGF-1 on protooncogene mRNA levels. Serum starved NIH 3T3 cells were either left unstimulated or treated with heparin (5 U/ml) and 10 ng/ml wild-type (wf) or mutant (mf) HBGF-1 for the indicated time periods. RNA was prepared and used for RNA gel blot hybridization using the radiolabeled DNA probes indicated on the left side (GAPDH, glyceraldehyde 3-phosphate dehydrogenase). The upper and lower tick marks on the left side of each panel represent the positions of 28 and 18S rRNA, respectively.

type HBGF-1 (Fig. 9 D) have acquired a more polar, elongated phenotype characteristic of transformed 3T3 cells. This phenotype is not seen in cells expressing neomycin resistance alone (Fig. 9 A) or in cells expressing relatively high levels of mutant HBGF-1 (Fig. 9 C). It should be noted that we have not been able to detect HBGF-1 immunoreactivity in the media conditioned by these cells and that the cells expressing relatively high levels of wild-type HBGF-1 show enhanced growth in soft agar relative to untransfected cells or cells expressing high levels of the mutant HBGF-1 (data not shown). These results are consistent with the results of the mitogenic assays described above which demonstrate that the growth-promoting activity of the mutant HBGF-1 is relatively low when compared to the wild-type protein.

#### Discussion

The experiments described in this report were initiated as a result of the chemical modification studies of HBGF-1 reported by Harper and Lobb (19). They demonstrated that reductive methylation of HBGF-1 resulted in selective,

stoichiometric modification of lysine residue 132 (using the 1-154 numbering system for full-length HBGF-1). It was suggested that modification of this residue, which is conserved in all HBGF-1 and HBGF-2 sequences reported to date, was responsible for the reduced apparent affinity for immobilized heparin, the reduced mitogenic capacity, and the reduced receptor-binding activity of the modified protein. The results presented here using site-directed mutagenesis to address the role of lysine 132 on the functional properties of HBGF-1 are in general agreement with the conclusions of Harper and Lobb (19). Specifically, substitution of lysine 132 for glutamic acid reduces the apparent affinity of the recombinant protein for immobilized heparin (clutes at 0.45 M NaCl compared with 1.1 M NaCl for wild-type) and significantly reduces the mitogenic potency of the growth factor. The reduced mitogenic potency may be a direct consequence of the reduced apparent affinity of the mutant HBGF-I for heparin since it has been demonstrated that the class I heparinbinding growth factors in general (29) and human HBGF-1 in particular (22, 43) are dependent on the presence of heparin for optimal biological activity.

Our results do not support the notion that the reduced mitogenic capacity of HBGP-1 containing glutamic acid in place of lysine at position 132 is due to reduced binding to cell surface receptors. The receptor-binding properties of the mutant HBGF-1 are not distinguishable from those of the wild-type protein as judged by cross-linking experiments (see Fig. 4). In addition, the mutant HBGF-1 is able to induce the same pattern of tyrosine kinase phosphorylation as is the wild-type protein (see Fig. 5) and can induce protooncogene expression (see Fig. 6). The majority of the studies presented here utilize a heparin concentration of 5 U/nul; the concentration where maximal difference between the mitogenic activity of wild-type and mutant HBGF-1 was observed in the 3T3 cell thymidine incorporation assay. It should be noted that in the absence of heparin, the mutant HBGF-1 competes poorly with labeled wild-type HBGP-1 in cross-



Figure 7. Effect of different concentrations of wild-type and mutant HBGR-1 on c-for mRNA levels. Serum starved NIH 3T3 cells were either left unstimulated or treated with heparin (5 U/ml) and (A) 0.5 ng/ml, (B) 1.0 ng/ ml, (C) 5.0 ng/ml, (D) 10 ng/ml wildtype (wt) or mutant (mt) HBGR-1 for the indicated time periods. RNA was prepared and used for RNA gel blot hybridization using the c-for DNA probe (upper panels) or glyceraldeiyde 3-phosphate dehydrogenase DNA probe (lower panels).

Figure 8. Western blot analysis of HBGF-1 in NIH 3T3 cells transfected with wild-type or mutant HBGF-1 expression plasmids. NIH 3T3 cells were transfected as described in Materials and Methods. The figure shows the relative levels of HBGF-1 immunoreactivity present in lysates of cells transfected with wild-type HBGF-1 (lane 1, clone producing relatively high level of HBGF-1; lane 3, clone producing relatively low level of HBGF-1) normal NIH 3T3 cells (lane 2), cells transfected with pSV2neo alone (lane 4), and

cells transfected with mutant HBGF-I (lane 5). For each cell type,  $10^6$  cells were lysed with 1 ml of  $2\times$  Laemmii sample buffer and a  $60-\mu l$  aliquot was used in the Western blot.

linking assays (data not shown). In addition, whereas the apparent affinity of the mutant HBGF-1 for immobilized heparin is reduced, it does bind at ionic strengths (i.e., ~0.5 M NaCl) that exceed those known to be physiologic. Thus, the data presented here indicate that the mutant can utilize the

presence of heparin to restore some (i.e., receptor-binding, tyrosine kinase activation, and protooncogene induction) but not all (i.e., stimulation of [PH]thymidine incorporation into DNA and endothelial cell proliferation) of the activities of the wild-type protein. Similarly, it is of interest that the wild-type protein competes with labeled HBGF-1 for receptor-binding and induces protooncogene expression at similar concentrations in the presence or absence of added heparin yet it requires added heparin in order to promote DNA synthesis and cell proliferation (Figs. 1, 2, 4, and 6; and data not shown). Thus, the relatively poor mitogenic activity of the mutant protein may be related to its reduced apparent affinity for heparin. The data presented here demonstrate that "high" affinity receptor-binding, activation of tyrosine kinase activity, tyrosine phosphorylation of specific substrates, and induction of protooncogene expression may be necessary but are not, by themselves, sufficient to sustain a mitogenic response to the presence of HBGF-1. These results are consistent with the observations of Escobedo and Williams (12) who showed by site-directed mutagenesis of the PDGF receptor and cDNA transfection that mutants could be constructed that were responsive to PDGF with respect to receptor tyrosine kinase activation and increased phosphatidylinositol turnover but did not elicit a mitogenic re-



Figure 9. Morphology of NIH 373 cells transfected with wild-type or mutant HBGF-1 expression plasmids. The figure shows micrographs of the same NIH 373 cells analyzed by Western blot analysis in Fig. 8. A shows cells transfected with pSV2neo only and B-D show cells co-transfected with pSV2neo and expression vectors for wild-type (B and D) and mutant (C) HBGF-1. The cells shown in B correspond to those expressing relatively high levels of HBGF-1 (Fig. 8, lane 1), whereas those shown in D correspond to those expressing relatively little HBGF-1 (Fig. 8, lane 3).

sponse to PDGF. Similarly, Severinsson et al. (40) used similar methods to generate a system where the mutant receptor could mediate an increase in c-fos expression in response to PDGF but not actin reorganization or mitogenesis.

The mitogenic deficiencies of the mutant HBGF-1 may be due to reduced biological stability in tissue culture medium, reduced binding to cell surface proteoglycans, an altered intracellular stability, and/or an altered affinity for an intracellular receptor or binding protein. It has been established that the presence of heparin protects HBGF-1 from thermal and proteolytic inactivation (28, 37). In addition, it has been shown that 1251-labeled HBGF-1 is relatively insensitive to lysosomal degradation after receptor-mediated endocytosis (14). There is no obvious difference in the susceptibility of wild-type and mutant HBGF-1 to proteolytic cleavage by the conditioned media of NIH 3T3 cells cultured in the presence of 10% calf sorum. However, the relative resistance of wildtype and mutant HBGF-I to proteolytic modification in the presence of target cells or after receptor-mediated endocytosis has not been established. It is also possible that the mutant protein is more susceptible than the wild type to nonproteolytic inactivation. Further studies should reveal whether the altered activities of the mutant HBGP-I are a consequence of its reduced apparent affinity for heparin.

In summary, the data presented here demonstrate that the various functions of HBGF-1 can be dissociated at the structural level. The observation that site-directed mutagenesis can be used to produce recombinant proteins with "normal" receptor-binding activity and reduced mitogenic activity indicates that similar methods could be used to produce potent antagonists of HBGF-1. More importantly, these results indicate that it may be possible through structure-function analysis and site-directed mutagenesis to generate mutants that retain certain (i.e., chemotactic, mitogenic, or heparinbinding) but not other biological functions characteristic of the wild-type protein. Pinally, whereas the data presented on the receptor-binding and tyrosine kinase activation properties of the p132E mutant demonstrate that a lysine residue at this position is not critical for these functions, it is still possible that methylation of a lysine at this position could lead to reduced receptor-binding activity of HBGF-1 (19).

The authors thank Tevic Mehlman and M. Leslie O'Connor for their help in the early stages of this work, and Sally Young for her help in the preparation of the manuscript. Portions of this work were done by P. J. Donohue in partial fulfillment of the Ph.D. requirements in the Graduate Genetics Program at George Washington University, Washington, D.C.

This work was supported in part by National Institutes of Health grants HL 35762 to Wilson H. Burgess and HL 39727 to Jeffrey A. Winkles, and a grant-in-aid from the American Heart Association (891047) to Wilson H. Burgess, with funds contributed in part by the American Heart Association Maryland Affiliate, Inc.

Received for publication 15 February 1990 and in revised form 23 July 1990.

#### References

- 1. Baird, A., D. Schubert, N. Ling, and R. Guillemin, 1986. Receptor- and bepartn binding domains of basic fibroblest growth factor. Proc. Natl. Acad. Sci. USA. 85:2324-2328.
- Bouche, G., N. Gas, H. Prets, V. Balden, J.-P. Tauber, J. Teisrić, and F. Amalric. 1987. Basic fibroblest growth factor enters the nucleolus and stimulates the transcription of ribotomal genes in ABAE cells undergoing G. O1 transition. Proc. Natl. Acad. Sci. USA. \$4:6770-6774.
- 3. Burgess, W. H., and T. Maciag. 1989. The heparin-binding (fibroblast)

- growth factor family of proteins. Annu. Rev. Biochem. \$4:575-606.

  4. Burgess, W. H., T. Mchimas, R. Friesel, W. V. Johnson, and T. Macie 1985. Meticle forms of endothelial cell growth factor: repid isolation at the control of the biological and chemical characterization. J. Biol. Chem. 260:11389-(139Ž.
- Burgess, W. H., T. Mehlman, D. R. Marshak, B. A. Fraser, and T. Maclag, 1986. Structural evidence that endothelial cell growth factor θ is the precursor of both endothelial cell growth factor α and acidic fibroblast growth factor. Proc. Natl. Acad. Sci. USA. \$3:7216-7220.
- Burgess, W. H., C. A. Diosne, U. Kaplow, R. Mudd, R. Friesel, A. Zilberstein, J. Schlessinger, and M. Jaye. 1990. "Characterization and cDNA cloning of phospholipase c-a major substrate for heparia-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinasc. Mol. Cell Biol. 10:4770-4777.
- 7. Casey, G., R. Smith, D. McGillivray, G. Peters, and C. Dickson. 1986 Characterization and chromosome assignment of the human homolog of int-2, a potential proto-oncogene. Mol. Cell. Biol. 6:502-510.

  8. Coughlin, S. R., J. Barr, L. S. Coussen, L. J. Fretto, and L. T. Williams.
- 1988. Acidic and basic fibroblast growth factors stimulant tyrosine kinase activity in vivo. J. Biol. Chem. 263:988-993.
- 9. Delli Bovi, P., and C. Besilico. 1987. Isolation of a rearranged human transforming gene following transfection of Kaposi sercome DNA. Proc. Natl. Acad. Sci. USA. 84:3660-3664.
  10. Dickson, C., and G. Peters. 1987. Potential opcogene product related to
- growth factors. Nature (Lond.). 326:833-836.
  11. Dickson, C., R. Smith, S. Brookes, and G. Peters. 1984. Tumorigenesis
- Dickson, C., R. Smith, S. Brookes, and G. Peters. 1984. Tumorigenesis by mouse mannary temor virus: provinal activation of a cellular gene in the common integration region int-2. Cell. 37:529-536.
   Escobedo, J. A., and L. T. Williams. 1988. A PDGF receptor domain essential for mitagenesis but not for many other responses to PDGF. Nature (Lond.). 355:83-87.
   Finch, P. W., J. S. Rubin, T. Miki, D. Ron, and S. Asrosson. 1989. Human KGF is PGF-related with properties of a paracrine effector of epithelial cell growth. Signam (Wash. DC). 245:752-755.
   Friesel, R., and T. Maciag. 1988. Internalization and degration of heparin-binding growth factor-1 by endothelial cells. Biochem. Biophys. Res. Commun. 151:957-964.
   Friesel, R., W. H. Burgess, and T. Maciag. 1989. Heparin-binding growth
- Friesel, R., W. H. Burgess, and T. Maciag. 1989. Heparin-binding growth factor 1 stimulates tyrosine phosphorylation in NIH 3T3 cells. Mol. Cell Biol. 9:1857-1865.
- 16. Friesel, R., W. H. Burgess, T. Mehlman, and T. Maciag. 1986. The char-
- Frietel, R., W. H. Burgets, T. Mehiman, and T. Maclag. 1986. The characterization of the receptor for endothelial cell growth factor by covalent ligand attachment. J. Biol. Chem. 261:7581-7584.
   Gay, C. G., and J. A. Winkles. 1990. Heparis-binding growth factor-1 stimulation of human endothelial cells induces platelet-derived growth factor A-chain gene expression. J. Biol. Chem. 265:3284-3292.
   Gospodarowicz, D., G. Neufeld, and L. Schweigerer. 1987. Fibroblast contribution of the contribution.
- growth factor: structural and biological properties. J. Cell. Physiol. 5:15-26.
- 19. Harper, J. W., and R. R. Lobb. 1988. Reductive methylation of hysine
- Harper, J. W., and R. K. Loob. 1983. Reductive mentytation of tysine residues in acidic fibroblest growth factor; effect on mitogenic activity and heparin affinity. Biochemistry. 27:671-678.
   Huang, S. S., and J. S. Huang. 1986. Association of bovine brain-derived growth factor receptor with protein tyrosine kinase activity. J. Biol. Chem. 261:9568-9571.
- Chem. 261:9568-9571.

  21. Jaye, M., R. Howk, W. Burgess, G. A. Ricca, L. Chier, M. W. Ravera, S. J. O'Brien, W. S. Modi, T. Macing, and W. N. Drohan. 1986. Human, endothelial cell growth factor: cloning, suchootide sequence, and chromosome localization. Science (Wash. D.C). 213:541-545.

  22. Jaye, M., W. H. Burgess, A. B. Shaw, and W. N. Drohan. 1987. Biological equivalence of natural borine and recombinant human o-endothelial cell and factor factors.
- growth factor. J. Biol. Chem. 262:16612-16617.
- Jave, M., R. M. Lyali, R. Maddy J. Schlessinger, and N. Sarver. 1988. Expression of acidic fibroblast growth factor cDNA confers growth advantage and aumorigenesis to Swiss 3T3 cells. EMBO (Eur. Mol. Biol. Organ.) J. 7:963-969.
   M. D. Dischen, J. Ham, H. Hacki, R. E. Manarcon, and W. L.
- Kan, M., D. DiSorto, J. Hou, H. Hoshi, P. E. Mansson, and W. L. McKechan. 1988. High and low affinity binding of heparin-binding growth factor to a 130-kDa receptor correlates with stimulation and inhibition of growth of a differentiated human hepatoma cell. J. Biol. Chem. 263:11306-11313.
- 25. Kode, T., A. Sesaki, S. Matsuchima, and M. Kakinama. 1987. A transforming gene, hst, found in NIH 3T3 cells transformed with DNA from stomach cancers and a colon cancer. *Ipn. J. Cancer Res.* 78:325-328.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of becteriophage T4. Nature (Lond.). 277:680-685.
   Lobb, R. R. 1988. Clinical applications of heparin-binding growth factors. Eur. J. Clin. Invert. 18:321-336.
- Lobb, R. R. 1988. Thrombia inactivates acidic abroblast growth factor but not basic abroblast growth factor. Biochemistry. 27:2572-2578.
   Lobb, R. R., J. W. Harper, and J. W. Fett. 1986. Partification of heparin-
- blisding growth factors. Anal. Biochem. 154:1-14.
- Deleted in proof.
   Margolia, B., S. G. Rhoe, S. Felder, M. Mervic, R. Lyall, A. Leviltzki, A. Ulirich, A. Zilberstein, and J. Schlessinger. 1989. EGF induces tyro-methodism for sine phosphorylation of phospholipase C-y: a potential mechanism for

BOF receptor signaling. Cell. 57:1101-1107.

32. Marics, I., J. Adelaide, H. Raybaud, M.-C. Middl, F. Coulier, J. Planche, O. Rappyriere, and D. Bluebaum. 1989. Characterization of the HST-related FOR.6 gene, a new member of the fibroblest growth factor gene family. Oncogene. 4:335-340.

33. Mehiman, T., and W. H. Burgesa, 1990. Identification and characterization of heparla-binding proteins using a get overlay procedure. Anal. Blochem. 18:139-163.

34. Moscatelli, D. 1988. Metabolism of receptor-bound and matrix-bound basic fibroblest growth factor by bovine capitlary endothelial cells. J. Cell Biol. 107:753-759.

35. Rento, M., N. Quario, T. Morimoto, and D. B. Rifkin. 1990, Nuclear and

Bloi: 107:753-759.

35. Renko, M., N. Quario, T. Morimoto, and D. B. Rifkin. 1990, Nuclear and cytoplasmic localization of different basic abroblast growth factor species. J. Cell. Physiol. 144:108-114.

36. Rifkin, D. B., and D. Moscastili. 1989. Recent developments in the cell biology of basic abroblast growth factor. J. Cell. Bloi. 109:1-6.

37. Rosengart, T. K., W. Johnson, R. Friesel, R. Clark, and T. Maclag. 1988. Heparin protects beparin-binding growth factor-1 from protectyric inactivation in wire. Biochem. Biophys. Res. Commun. 152:432-440.

38. Sakamoto, H., M. Mort, M. Taira, T. Yoshida, S. Massukawa, K. Shimizu, M. Terada, and T. Sugimura. 1986. Transforming gene from human stomach cancers and a poncancerous portion of stomach mucosa. Proc. Natl. Acad. Sci. USA. 83:3997-4001.

39. Schubert, D., N. Ling, and A. Baird. 1987. Multiple influences of a heparin-binding growth factor on neuronal development. J. Cell Bloi. 104:635-643.

104:635-643.

 $\{\hat{j}\}$ 

 Severinason, L., B. Ek, K. Melistrom, L. Claesson-Weish, and C.-ti. Heidin. 1990. Deletion of the kinase lasert sequence of the platelet-derived growth factor & receptor kinase activity and signal transduction. Mol. Cult. Mol. 10:801-809.
 Southern, F. J., and P. Berg. 1982. Transformation of mammalian cells to antiblotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327-341.
 Ueno, N., A. Baird, F. Bach, N. Ling, and R. Guillemin. 1986. Isolation of an aming terminal satended form of basic fibroblast growth factor. Biochem. Biophys. Res. Comm. 138:580-588.
 Uhirich, S., D. Lagente, J. Chosy, Y. Courois, and M. Lonfant. 1986. Structure activity relationship in heparin: stimulation of son-vascular cells by a synthetic heparin pentasaccharide in cooperation with human acidio fibroblast growth factors. Biochem. Biophys. Res. Commun. 139:728-732. 139:728-732.

139:728-732.
 Wigler, M., A. Pellicer, S. Silverstein, R. Axel, G. Urlaub, and L. Chasin. 1979. DNA-modiated transfer of the adenine phosphoribosyl transferase locus into mammalian cells. Proc. Natl. Acad. Sci. USA. 76:1373-1376.
 Yuasa, Y., and K. Sido. 1987. Transforming genes in human hepatomas detected with a tumorigenicity assay. Ipn. J. Cancer Res. 78:1038-1040.
 Zhan, X., A. Culpepper, M. Reddy, J. Loveless, and M. Goldfarb. 1987. Human encogenes detected by a defined medium culture assay. Oncogene. 1:507-376.
 Zhan, X., B. Betes, X. Hu, and M. Goldfarb. 1988. The human FOF-3 encogene encodes a novel protein related to fibroblest growth factors. Mol. Cell. Biol. 8:3487-3495.

Organization 16/60 Bldg.Room 1/40/50/U. S. DEPARTMENT OF COMMERCE COMMISSIONER FOR PATENTS

A Price

P.O. BOX 1450

ALEXANDRIA, VA 22313-1450 IF UNDELIVERABLE RETURN IN TEN DAYS

OFFICIAL BUSINESS

AN EQUAL OPPORTUNITY EMPLOYER

PHE CENTED TO THE PROPERTY OF 