Introduction to Deep-Learning and TDA

Generalities about deep learning

2 Deep-learning and TDA

Outline

Generalities about deep learning

Deep-learning and TDA

Some material

Book

- Deeplearning book, Goodfellow et al, 2016, MIT Press.
- Thousands of papers. Each years.

Alternative material

- Blog of C.Olah^a
- Videos of 3Blue1Brown about DL on Youtube^b
- aLink for Colah's blog
- ^bClick here to see the first video

What is a neural network?

Figure: A multi-layer perceptron, the most standard neural network model.

What is a neural network?

Mathematical formulation

A multi-layer perceptron (MLP) is a class of functions

$$\mathcal{F}_{\Theta} = \{f_{\theta} = f_{\theta_n}^{(n)} \circ ... \circ f_{\theta_1}^{(1)}\}$$
 with:

- ullet $\theta_k = (W_k, b_k)$ with $W_k \in \mathbb{R}^{d_{k+1} \times d_k}, b_k \in \mathbb{R}^{d_{k+1}}$
- $f_{\theta_k}^{(k)}: x \in \mathbb{R}^{d_k} \mapsto \sigma^{(k)}(W_k \cdot x + b_k) \in \mathbb{R}^{d_{k+1}}$:
- σ is an activation function, e.g. $\sigma(x) = \max(0, x)$ (ReLU) or $\sigma(x) = \frac{1}{1+e^{-x}}$ (sigmoid)

Deep-learning (supervised) problem

Framework

We have labeled data $(x_1, y_1)..(x_N, y_N) \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_n}$, and we consider the optimization problem:

minimize
$$\{\mathcal{L}((f_{\theta}(x_1)..f_{\theta}(x_N)),(y_1..y_n)): \theta \in \Theta\}$$
 (1)

where $\mathcal{L}: \mathbb{R}^{d_n} imes \mathbb{R}^{d_n} o \mathbb{R}_+$ is a loss function.

Example: classification

We have K class, each label (y_i) has the form $(0..0, 1, 0..0) \in \mathbb{R}^K$, and we want to solve:

minimize
$$\left\{\ell(\theta) := \sum_{i=1}^{N} ||f_{\theta}(x_i) - y_i||^2 : \theta \in \Theta\right\}$$
 (2)

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 0 0

Why does deep-learning work?

Theoretically:

Very few results.

- Universal approximation theorem, states that with sufficiently high $(d_k)_k$, \mathcal{F}_{Θ} can approximate any continuous function.
- In some cases, it can be shown that there is no bad local minima, despite $\theta \mapsto \ell(\theta)$ not being convex. It legitimates gradient descent approach in optimization process (empirically verified).^a

[&]quot;See this paper, Kawaguchi, NIPS 2016, for example.

Why does deep-learning work?

Theoretically:

Very few results.

- Universal approximation theorem, states that with sufficiently high $(d_k)_k$, \mathcal{F}_{Θ} can approximate any continuous function.
- In some cases, it can be shown that there is no bad local minima, despite $\theta \mapsto \ell(\theta)$ not being convex. It legitimates gradient descent approach in optimization process (empirically verified).^a

In practice:

- Involves only easy-to-compute functions, and differentiable, with easy-to-compute gradients.
- Structural form which allows to handle a lot of parameters. E.G. AlexNet (2012) has about 60M parameters.

^{*}See this paper, Kawaguchi, NIPS 2016, for example.

Figure: Backpropagation scheme on a computational graph, from Colah's blog

Take home message

Computing the gradient of $\theta \mapsto \ell(\theta) \in \mathbb{R}$ according to all parameters (variables) can be done with the same complexity as computing $\ell(\theta)$.

A word about convolution

Figure: Classic way to depict convolution in NN. From Colah's blog

Why?

- Leverage intrinsic geometry in your data ("stationarity in the signal").
- Reduce the number of parameters (compared to a fully-connected one)

Figure: An illustration of 2D convolution, from Gimp documentation

Why?

- Leverage intrinsic geometry in your data ("stationarity in the signal").
- Reduce the number of parameters (compared to a fully-connected one)

Outline

Generalities about deep learning

Deep-learning and TDA

Limitations and motivations

Why is it hard to merge TDA and DL?

- Different mathematical approach: theoretical vs experimental.
- TDA objects (eg PDs) are not deep-learning-friendly:
 - $ightharpoonup \mathsf{Non-linear}$ space, not in \mathbb{R}^d
 - Non-differentiable metrics

Why is it interesting?

- Use topological descriptors in deep-learning pipelines.
- Deep-learning could help TDA pipelines.
- TDA could help understanding deep-learning; share some vocabulary.
- Deep-learning is everywhere, well-developed, huge community, etc.

Upcoming sessions

Some potentially interesting references

- Deep Learning with Topological Signatures, Hofer et al, NIPS 2017.
- Applying Topo. Pers. in CNN for Music Audio Signals, Liu et al. Arxiv 2016.
- Persistent homology of time-dependent functional networks constructed from coupled time series, Stolz et al. AIP 2017
- TDA in NLP (not exactly DL, but use w2v):
 - Does the geometry of Word embedding help document classification? P. Michel et al. arxiv 2017
 - Persistent homology, an introduction and a new text representation for NLP, Zhu, Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
 - A Topological collapse for Document Summarization, *Guan et al. IEEE* 2016.