Otros problemas

Otros problemas

Sistemas de recomendación

Introducción

Definición

Los Sistemas de recomendación (SR) son algoritmos que ayudan a los usuarios a descubrir elementos relevantes (películas, textos, productos, etc.).

Los objetivos son múltiples:

- Aumentar las ventas.
- Facilitar las búsquedas.
- Mejorar la experiencia de usuario.
- Incrementar la duración de la interacción del usuario con la plataforma.

Introducción

Tipos

Según metodología empleada para realizar la recomendación, existen varios tipos.

- Recomendaciones no personalizadas: Iguales para todos los usuarios.
 - SR basados en popularidad.
- Recomendaciones personalizadas: Únicas para cada usuario.
 - SR colaborativos.
 - SR basados en contenido.

No personalizados

Basados en popularidad

Recomiendan, para cualquier usuario, los elementos más consumidos/vistos/comprados entre todos los usuarios. Útiles cuando no se dispone de información específica del usuario.

Detalles:

- Fáciles de implementar.
- No recomienda items 'long-tail'.
- Buena solución para casos de 'cold-start'.

Ejemplos:

- Productos más vendidos.
- Artículos más leidos.

Personalizados

Filtros colaborativos

Hacen recomendaciones personalizadas basadas en usuarios o items similares.

Detalles:

- Utiliza las valoraciones explícitas o implícitas.
 - Explícitas: Un usuario valora el ítem con Like, estrellas, review, ...
 - Implícitas: Un usuario ha visto un video entero, pero no lo valoró.

Tipos:

- Usuario-usuario.
- Item-item.

Personalizados

Filtros colaborativos: Usuario-usuario

Replica el funcionamiento de las recomendaciones en la vida real. Nos dejamos asesorar por gente similar a nosotros.

Funcionamiento:

- 1 Para cada usuario, buscar su similitud con el actual.
- Seleccionar los usuarios más parecidos.
- 3 Ponderar los votos de los usuarios seleccionados para el producto a recomendar.

Ejemplo

Un usuario compró p_1, p_2 y p_3 . Si otro usuario solo compró p_1 y p_2 le recomendaremos p_3 .

Personalizados

Filtros colaborativos: Usuario-usuario

Replica el funcionamiento de las recomendaciones en la vida real. Nos dejamos asesorar por gente similar a nosotros.

	Item 1	Item 2	Item 3	Item 4	Item 5
Usuario 1	5	3	4	4	?
Usuario 2	3	-	2	-	5
Usuario 3	4	3	-	3	-
Usuario 4	3	1	1	5	4
Usuario 5	5	5	5	2	3

Personalizados

Filtros colaborativos: Usuario-usuario

Replica el funcionamiento de las recomendaciones en la vida real. Nos dejamos asesorar por gente similar a nosotros.

	Item 1	Item 2	Item 3	Item 4	Item 5
Usuario 1	5	3	4	4	?
Usuario 2	3	-	2	-	5
Usuario 3	4	3	-	3	-
Usuario 4	3	1	1	5	4
Usuario 5	5	5	5	2	3

Personalizados

Filtros colaborativos: Usuario-usuario

Replica el funcionamiento de las recomendaciones en la vida real. Nos dejamos asesorar por gente similar a nosotros.

	Item 1	Item 2	Item 3	Item 4	Item 5
Usuario 1	5	3	4	4	?
Usuario 2	3	-	2	-	5
Usuario 3	4	3	-	3	
Usuario 4	3	1	1	5	4
Usuario 5	5	5	5	2	3

Personalizados

Filtros colaborativos: Item-item

Buscar la valoración que tienen items similares al que se pretende recomendar.

- Determinar la similitud entre los items.
- Seleccionar los más similares.
- 3 Ponderar las valoraciones dadas por el usuario a los items.

	Item 1	Item 2	Item 3	Item 4	Item 5
Usuario 1	5	3	4	4	→ ?
Usuario 2	-	-	3	-	5
Usuario 3	4	3	-	3	-
Usuario 4	3	1	3	2	4
Usuario 5	5	2	5	2	3

Personalizados

Basados en contenido

Utilizan e contenido de los items o usuarios (no solo las interacciones) para representar cada uno de ellos y buscar similitudes.

Ejemplos de contenido en usuarios:

- 1 Edad, género, dirección, ...
- Historial de consumo.
- 3 Imágenes que ha tomado.

Ejemplos de contenido en ítems:

- 1 Descripción del producto.
- 2 Géneros de una película.
- 3 Localización de un restaurante.
- 4 Reseñas (texto, imágenes, ...).

Otros problemas

Sistemas de recomendación: Arquitecturas

Arquitecturas

Objetivo

El objetivo final es rellenar todos los huecos de una matriz usuario item de forma coherente con los valores que ya existen.

En otras palabras, buscamos aprender $f_{\theta}(\mathbf{u}, \mathbf{p})$, siendo:

- u la representación de un usuario del conjunto de usuarios U.
- p la representación de un item del conjunto de items P.
- θ los parámetros de la función.

La salida de la función depende del problema a resolver, típicamente será:

- Numérica si intentamos predecir valoraciones (regresión o ranking).
- Categórica si intentamos predecir me gusta/no me gusta (clasificación).

Arquitecturas

Objetivo

El objetivo final es rellenar todos los huecos de una matriz usuario item de forma coherente con los valores que ya existen.

Ejemplo de regresión: $f_{\theta}(\mathbf{u}, \mathbf{p}) \rightarrow [0, 5]$

	Item 1	Item 2	Item 3	Item 4	Item 5
Usuario 1	5	-	-	4	-
Usuario 2	-	-	3	-	5
Usuario 3	4	0	-	3	-
Usuario 4	-	-	3	-	4
Usuario 5	5	-	-	2	-

Arquitecturas

Objetivo

El objetivo final es rellenar todos los huecos de una matriz usuario item de forma coherente con los valores que ya existen.

Ejemplo de clasificación: $f_{ heta}(\mathbf{u},\mathbf{p}) o \{0,1\}$

	Item 1	Item 2	Item 3	Item 4	Item 5
Usuario 1	1	-	-	0	-
Usuario 2	-	-	0	-	1
Usuario 3	1	1	-	0	-
Usuario 4	-	-	1	-	1
Usuario 5	0	-	-	1	-

Arquitecturas

Factorización de matrices

El método más utilizado para aprender la función $f_{\theta}(\mathbf{u}, \mathbf{p})$ suele ser la factorización de matrices.

Este método:

- Proyecta los usuarios $\mathbf{u} \in \mathbb{R}^{|U|}$ y los items $\mathbf{p} \in \mathbb{R}^{|P|}$ en un espacio de dimensión \mathbb{R}^k .
- Aprende las matrices **W** y **V** que retornan las proyecciones **Wu** y **Vp**.
- La compatibilidad entre usuario y producto proviene del producto escalar de las proyecciones.

Tipo de problema

Podemos utilizar (basado en contenido) o no (filtro colaborativo) información sobre el contenido de los ítems y usuarios.

Arquitecturas

Factorización de matrices

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Arquitecturas

Factorización de matrices

Arquitecturas

Factorización de matrices

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Arquitecturas

Factorización de matrices

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Arquitecturas

Factorización de matrices

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Arquitecturas

Clasificación multi-etiqueta

Si no existe un alto número de items, se puede plantear el problema de recomendación como una clasificación multi-etiqueta.

Detalles:

- Existirán tantas clases como ítems.
- Suele ser un problema complejo de aprender (muchos ceros).
- La lista final de items recomendados proviene de ordenar las predicciones de mayor a menor.

Arquitecturas

Si planteamos el problema como un *filtro colaborativo*, cualquiera de las propuestas anteriores se puede resolver mediante redes poco profundas.

Deep Learning

En el momento que utilicemos el *contenido* para codificar (usuarios, items o ambos), necesitaremos complicar las arquitecturas vistas manteniendo la esencia básica.

Posibles variaciones:

- Utilizar imágenes: Añadir redes CNN para proyectar en un espacio común.
- Utilizar texto: Añadir redes recurrentes o mecanismos de atención.

Otros problemas

Arquitecturas diseñadas para el procesamiento de conjuntos

Arquitecturas diseñadas para conjuntos

Existen arquitecturas de red especialmente diseñadas para tratar y modelar **conjuntos**. La clave en este tipo de problemas es que el orden de los elementos del conjunto no debería de influenciar la salida de la red. Algunas aplicaciones podrían ser:

- Detección de anomalías en un conjunto.
- Predicción de estadísticos de un conjunto.
- Cuantificación

Arquitecturas diseñadas para conjuntos

Definición del problema:

Dado un conjunto de entrenamiento $D = (\{x_i\}_{i=1}^n, y)$, es decir, un conjunto de muestras etiquetadas, tratamos de aprender un modelo que sea capaz de predecir una nueva muestra de test $T = \{x_i\}_{i=1}^m$.

Para resolver este problema necesitamos arquitecturas que sean capaces de procesar conjuntos de datos y representarlos de manera **invariante al orden**. Es decir, la evaluación de la red para una muestra \mathcal{T} debería de cumplir:

$$f(\{x_i\}_{i=1}^m) = f(\phi(\{x_i\}_{i=1}^m)),$$

siendo ϕ una permutación cualquier de los ejemplos de la muestra.

Arquitecturas diseñadas para conjuntos: DeepSets

DeepSets es una arquitectura de red que propone una capa de representación basada en **funciones de agregación simples**:

donde m sería el tamaño del conjunto de entrada y f la dimensión de cada ejemplo.

Funciones de agregación

Las funciones de agregación a utilizar pueden ser: suma, máximo, mínimo, media, mediana, etc.

Arquitecturas diseñadas para conjuntos: DeepSets

Las funciones de agregación utilizadas por DeepSets tienen como objetivo obtener una representación única de la muestra en un espacio latente.

A partir de esta representación la segunda parte de la red puede aprender a asociar estos vectores con su etiqueta final.

Arquitecturas diseñadas para conjuntos: DeepSets

Algunos puntos importantes sobre DeepSets son:

- La arquitectura está pensada funcionar como un **aproximador universal** de cualquier función que trabaje con conjuntos.
- La función de agregación es una manera **demasiado simple** de representar los ejemplos del conjunto, perdiéndose mucha información en el proceso.
- La función de agregación no captura iteraciones entre los elementos del conjunto.
- Algunas funciones de agregación como la suma pueden no sirven para conjuntos de tamaño variable.

Arquitecturas diseñadas para conjuntos: SetTransformers

SetTransformers es otra arquitectura diseñada para trabajar con conjuntos que explota el concepto de **atención** de los **transformers**.

- Modelan relaciones entre los diferentes ejemplos del conjunto.
- Aprovechan la atención para capturar relaciones entre elementos.
- Flexibilidad para manejar conjuntos de tamaños variables.
- Mejoran el rendimiento de DeepSets.

Arquitecturas diseñadas para conjuntos: SetTransformers

La idea básica de los SetTransformers es calcular la atención entre los elementos del conjunto. El principal problema de esta arquitectura es que su complejidad es $O(n \times n)$, siendo n el número de ejemplos del conjunto.

Para resolver este problema los autores de SetTransformers calculan la atención de cada ejemplo a una serie de puntos llamados **inducing points**, reduciendo por tanto la complejidad a $O(n \times i)$, siendo i el número de inducing points.

Nota importante

Ten en cuenta que **los transformers por defecto son invariantes al orden**. Es por ello que en problemas de NLP se les añade la posición de cada palabra en la frase para poder capturar esa información que es importante a la hora de procesar texto.

Arquitecturas diseñadas para conjuntos: HistNetQ

HistNetQ es un arquitectura de red pensada específicamente para **cuantificación**. En esta arquitectura se utiliza como capa de representación de la muestra **histogramas**. La idea es que un histograma es una herramienta de representación adecuada para este problema.

Cuantificación

Recuerda que la cuantificación consiste en estimar la **prevalencia de las clases** en un conjunto de test.

Arquitecturas diseñadas para conjuntos: HistNetQ

La arquitectura es similar a la de **DeepSets** pero utilizando histogramas para representar las muestras. La red calcula un histograma por cada una de las características de la representación de ejemplos.

Como usar histogramas en una red

El principal problema de usar histogramas es que **el cálculo de un histograma no es una operación diferenciable**.

Arquitecturas diseñadas para conjuntos: HistNetQ

La solución es utilizar histogramas diferenciables.

Histogramas diferenciables

Los histogramas diferenciables utilizan operaciones comunes (como las convoluciones), para calcular una aproximación a un histograma.