# Algorytmy Geometryczne

Sprawozdanie z ćwiczenia 2. "Otoczka wypukła"

Maciej Wiśniewski Grupa 3 Poniedziałek 16.45 A

Data wykonania 13.11.2024

Data oddania 17.11.2024

## 1. Dane techniczne

Specyfikacja komputera: system *Ubuntu 24.04.01 Linux 5.15 x64*, procesor *AMD Ryzen 7 5825U with Radeon 2GHz 8 rdzeni, 16GB pamięci RAM*.

Ćwiczenie zostało napisane w języku *Python 3.9.20* w *Jupyter Notebook* w środowisku programistycznym *Visual Studio Code*. Aby wykonać ćwiczenie posłużono się biblioteką *numpy*. Do wykonania wizualizacji użyto narzędzia graficznego wykonanego przez *Kolo Naukowe BIT*.

#### 2. Cel ćwiczenia

Celem ćwiczenia jest implementacja algorytmów *Grahama* i *Jarvisa* do wyznaczania **otoczki wypuklej**, porównanie ich złożoności czasowej oraz zastosowanie ich do obliczenia otoczek wypukłych dla wybranych zbiorów punktów. Zadanie obejmuje też wizualizację i opracowanie wyników oraz napisanie wniosków.

## 3. Wstęp teoretyczny

Podzbiór płaszczyzny Q nazywamy wypukłym, jeśli dla dowolnej pary punktów  $\mathbf{p},\mathbf{q} \in \mathbf{Q}$  odcinek pq jest całkowicie zawarty w  $\mathbf{Q}$ . Otoczka wypukła CH(Q) zbioru  $\mathbf{Q}$  to najmniejszy wypukły zbiór zawierający zbiór  $\mathbf{Q}(\mathrm{Rysunek}\ 1)$ . W ramach tego laboratorium wyznaczę otoczki wypukłe przy użyciu algorytmów Grahama i Jarvisa.

#### Algorytm Grahama

Algorytm Grahama tworzy otoczkę wypukłą, wykorzystując **stos S**, na którym gromadzone są punkty mogące stanowić część otoczki wypukłej. Kolejne punkty ze zbioru  $\mathbf{Q}$  są dodawane na stos, ale jeśli dany punkt nie należy do otoczki  $CH(\mathbf{Q})$  zostaje usunięty. Po zakończeniu działania algorytmy stos  $\mathbf{S}$  zawiera wykoznia punkty otoczki



Rysunek 1 Przykładowa wizualizacja otoczki

zakończeniu działania algorytmu stos S zawiera wyłącznie punkty otoczki wypukłej CH(Q), uporządkowane przeciwnie do ruchu wskazówek zegara.

Zasada działania algorytmu jest następująca:

- 1. Znajdź punkt  $p_0$  o najmniejszym położeniu y, jeśli jest kilka wybierz ten z najmniejszym x.
- 2. Posortuj pozostałe punkty względem  $p_0$  w kolejności przeciwnie do ruchu wskazówek zegara, tworząc ciąg  $(p_1, p_2,..., p_m)$  (jeśli kilka punktów tworzy ten sam kąt, wybierz najdalszy).
- 3. Utwórz pusty stos **S** i wstaw na niego punkty  $p_0$ ,  $p_1$ ,  $p_2$ .
- 4. Dla kolejnych punktów  $\langle p_3,...,p_m\rangle$ : dopóki punkty  $S_{-2}$ ,  $S_{-1}$ ,  $p_i$  (punkt pod wierzchołkiem stosu, wierzchołek stosu oraz aktualnie badany punkt) tworzą tzw. prawostronny skręt (trójkąt  $S_{-2}$ ,  $S_{-1}$ ,  $p_i$  jest zorientowany zgodnie z ruchem wskazówek zegara), zdejmij wierzchołek stosu; następnie dodaj na stos punkt  $p_i$ .
- 5. Zwróć stos S zawiera on punkty tworzące otoczkę wypukłą.

Szczegóły implementacji użytej w tutejszym przypadku.

- 1. Znajdujemy punkt o najmniejszym y, jeśli jest kilka to bierzemy pod uwagę najmniejszy x. Do tego użyto funkcji wbudowanej min() oraz warunku z funkcją anonimową.
- 2. Wybieramy nasz punkt referencyjny **p**<sub>0</sub> ( otrzymany w poprzednim kroku) i sortujemy resztę punktów względem kąta, pod jakim punkty znajdują się względem naszego punktu referencyjnego oraz względem odległości punktów od punktu referencyjnego. W tej operacji kąt liczymy używając funkcji *numpy.arctan2*(), użyto tej funkcji trygonometrycznej, ponieważ jest łatwa i czytelna w implementacji, zwraca pełny zakres kątów ( z zakresu [-π, π]), naturalnie rozróżnia kierunek obrotu, unika obliczania pierwiastka kwadratowego, jednakże wymaga uwagi, gdy różnica współrzędnych y-kowych wynosi 0. Wady innych funkcji: *arcsin*() daje kąty tylko z zakresu [-π/2, π/2], wymaga liczenia pierwiastka, *arccos*() daje kąty z zakresu [0, π], *arcctg*() daje kąty tylko z zakresu [-π/2, π/2].
- 3. Usuwamy punktu współliniowe poprzez porównywanie ich kąta punkty współliniowe mają ten sam kąt.

- 5. Utwórz pusty stos S i wstaw na niego punkty  $p_0$ ,  $p_1$ ,  $p_2$ . Dla kolejnych punktów  $\langle p_3,...,p_m \rangle$ : dopóki punkty  $S_{-2}$ ,  $S_{-1}$ ,  $p_i$  (punkt pod wierzchołkiem stosu, wierzchołek stosu oraz aktualnie badany punkt) tworzą tzw. prawostronny skręt (trójkąt  $S_{-2}$ ,  $S_{-1}$ ,  $p_i$  jest zorientowany zgodnie z ruchem wskazówek zegara), zdejmij wierzchołek stosu; następnie dodaj na stos punkt  $p_i$ . Tutaj używamy metody z użyciem wyznacznika macierzy  $mat\_det\_3x3$  aby wyznaczyć położenie punktu.
- 6. Zwróć stos S zawiera on punkty tworzące otoczkę wypukłą.

Użyto tutaj funkcji trygonometrycznych, ponieważ okazały się bardziej wydajniejsze na testach niż metoda używająca wyznacznika.

## Algorytm Jarvisa

Algorytm Jarvisa wyznacza otoczkę wypukłą dla zbioru punktów Q przy użyciu techniki nazywanej "owijaniem paczki" (ang. gift wrapping). Algorytm tworzy sekwencję  $H = \langle \mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_m \rangle$ , która zawiera wierzchołki CH(Q) - otoczki wypukłej, uporządkowane przeciwnie do ruchu wskazówek zegara.

#### Zasada działania:

- 1. Znajdź punkt  $p_0$ , który ma najmniejszą współrzędną y (a jeśli jest kilka takich punktów, wybierz ten o najmniejszej współrzędnej x).
- 2. Dodaj  $p_0$  do sekwencji H.
- 3. Każdy kolejny punkt  $p_i$ , dodawany do sekwencji, znajduje się jako punkt tworzący najmniejszy kąt względem poprzedniego punktu w sekwencji (w przypadku kilku punktów o tym samym kącie, wybierany jest ten najbardziej oddalony).
- 4. Algorytm kończy działanie, gdy następny znaleziony punkt jest równy punktowi  $p_0$ . Utworzona sekwencja H zawiera wierzchołki otoczki wypukłej.

Szczegóły implementacji użytej w tutejszym przypadku.

- 1. Znajdujemy punkt  $p_0$ , który ma najmniejszą współrzędną y (a jeśli jest kilka takich punktów, wybieramy ten o najmniejszej współrzędnej x). Do tego użyto funkcji wbudowanej min() oraz warunku z funkcją anonimową.
- 2. Dodajemy punkt do sekwencji.
- 3. Każdy kolejny punkt  $p_i$  znajduje się jako punkt tworzący najmniejszy kąt względem poprzedniego punktu w sekwencji (w przypadku kilku punktów o tym samym kącie, wybierany jest ten najbardziej oddalony). Tutaj używamy metody z użyciem wyznacznika macierzy  $mat\_det\_3x3$  aby wyznaczyć położenie punktu.
- 4. Algorytm kończy działanie, gdy następny znaleziony punkt jest równy punktowi  $p_0$ . Utworzona sekwencja H zawiera wierzchołki otoczki wypukłej.

Użyto tutaj wyznacznika macierzy, ponieważ okazał się bardziej wydajniejszy na testach niż funkcje trygonometryczne.

Szczegółowy opis otoczki wypukłej, jej zastosowań oraz algorytmów znajduje się w pliku implementacyjnym.

## 4. Realizacja ćwiczenia

Początkowo, w celu realizacji ćwiczenia przygotowano następujące cztery zbiory punktów:

- **Zbiór A**: 100 losowo wygenerowanych punktów o współrzędnych w przedziale [-100,100] (Rysunek 2)
- **Zbiór B**: 100 losowo wygenerowanych punktów na okręgu o środku O (0,0) i promieniu R = 10 (Rysunek 3)
- **Zbiór** C: 100 losowo wygenerowanych punktów znajdujących się na bokach prostokąta o wierzchołkach (-10, 10), (-10,-10), (10,-10), (10,10) (Rysunek 4)
- **Zbiór D** zawierający wierzchołki kwadratu (0, 0), (10, 0), (10, 10), (0, 10) oraz po 25 punktów na bokach leżących na osiach i po 20 punktów na przekątnych (Rysunek 5)



# 5. Testowe użycie algorytmów Grahama i Jarvisa

Dla każdego z powyższych zbiorów obliczono otoczkę z wykorzystaniem algorytmów Grahama i Jarvisa.

W poniższej tabeli przedstawiano liczbę wierzchołków otoczki wypukłej obliczonej przez każdy z dwóch algorytmów dla każdego ze zbiorów( Tabela 1).

| Zbiór punktów | Liczba wierzchołków otoczki – | Liczba wierzchołków otoczki – |  |  |
|---------------|-------------------------------|-------------------------------|--|--|
|               | algorytm Grahama              | algorytm Jarvisa              |  |  |
| Zbiór A       | 11                            | 11                            |  |  |
| Zbiór B       | 100                           | 100                           |  |  |
| Zbiór C       | 8                             | 8                             |  |  |
| Zbiór D       | 4                             | 4                             |  |  |

Tabela 1 Porównanie wyników algorytmu *Grahama* i *Jarvisa* dla zbiorów A-D

Jak zostało napisane w Tabeli 1, oba algorytmy wskazują taką samą liczbę wierzchołków otoczki dla zbiorów A-D. Okazuje się, że istotnie są to te same otoczki, dlatego tutaj zostały umieszczone tylko pojedyncze

przykłady otoczek(Rysunek 6, 7, 8, 9). Wszystkie przykłady są dostępne w pliku z kodem. Na poniższych rysunkach zaznaczono na czerwono punkty należące do otoczki jak i samą otoczkę. W celu wyraźniejszego uchwycenie działalności algorytmów *Grahama* i *Jarvisa* wykonano wizualizację poszczególnych kroków działania algorytmów w postaci plików *GIF*, gdzie na zielono oznaczano punkty w otoczce, na żółto krawędzie otoczki, a na czerwono punkty, które nie znajdą się w otoczce. Wszystkie pliki *GIF* są dostępne w oddzielnym pliku.



# 6. Porównanie złożoności czasowej algorytmów

Po przetestowaniu algorytmów *Grahama* i *Jarvisa* na *Zbiorach A-D* przystąpiono do porównania złożoności wydajnościowej algorytmów, a szczegółowiej złożoności czasowej. Teoretyczna złożoność czasowa algorytmu *Grahama* to O(nlogn), natomiast algorytmu *Jarvisa* O(kn), gdzie n oznacza liczbę wierzchołków zbioru, dla którego wyznaczamy otoczkę, a k to liczba wierzchołków otoczki. Pesymistycznie zatem algorytm *Jarvisa* ma złożoność  $\Theta(n^2)$ .

W celu porównania działalność obliczeniowej zostały utworzone nowe zbiory:

- Nowy Zbiór A: n losowych punktów o współrzędnych z przedziału [-1000, 1000]
- Nowy Zbiór B: m losowych punktów leżących na okregu o środku w punkcie (100,100) i promieniu R=500
- *Nowy Zbiór C*: n losowych punktów leżących na bokach prostokąta o wierzchołkach (-200,50), (-200,-150), (100,-150), (100,50)
- *Nowy Zbiór D*: zawierający wierzchołki kwadratu (0,0), (100,0), (100,100), (0,100) oraz po n1 punktów leżących na osiach i po n2 punktów na przekątnych (łącznie n),

gdzie  $n \in \{100,1000,5000,10000,50000\}$ ,  $m \in \{10,100,500,1000,3000\}$  oraz n1 i n2 są równe odpowiednio  $0,3 \cdot n-1$  oraz  $0,2 \cdot n-1$ .

Porównanie działalności algorytmów dla nowych zbiorów Tabel 2, Tabela 3.

| Zbiór        | Algorytm | Liczba punktów |         |         |         |         |
|--------------|----------|----------------|---------|---------|---------|---------|
|              |          | 100            | 1000    | 5000    | 10000   | 50000   |
| Nowy Zbiór A | Graham   | 0.0005s        | 0.0043s | 0.0153s | 0.0279s | 0.2103s |
|              | Jarvis   | 0.0004s        | 0.0045s | 0.0312s | 0.0652s | 0.3166s |
| Nowy Zbiór C | Graham   | 0.0004s        | 0.0030s | 0.0152s | 0.0320s | 0.2048s |
|              | Jarvis   | 0.0003s        | 0.0036s | 0.0157s | 0.0309s | 0.1578s |
| Nowy Zbiór D | Graham   | 0.0003s        | 0.0021s | 0.0112s | 0.0232s | 0.1391s |
|              | Jarvis   | 0.0002s        | 0.0016s | 0.0088s | 0.0192s | 0.0946s |

Tabela 2 Porównanie czasowe działania algorytmów Grahama i Jarvisa dla Nowych Zbiorów A,C.D

| Zbiór        | Algorytm | Liczba punktów |         |         |         |         |
|--------------|----------|----------------|---------|---------|---------|---------|
|              |          | 10             | 100     | 500     | 1000    | 3000    |
| Nowy Zbiór B | Graham   | 0.0001s        | 0.0003s | 0.0016s | 0.0032s | 0.0103s |
|              | Jarvis   | 0.0001s        | 0.0057s | 0.1252s | 0.5124s | 4.5908s |

Tabela 3 Porównanie czasowe działania algorytmów Grahama i Jarvisa dla Nowego Zbioru B

# 7. Przedstawienie danych na wykresach

Na poniższych wykresach (Wykresy 1-4 ) zostały przedstawione liniowe zależności algorytmów wyznaczania otoczki dla wybranych zbiorów.



Wykres 1 Porównanie Grahama i Jarvisa dla Nowego Zbioru A



Wykres 2 Porównanie Grahama i Jarvisa dla Nowego Zbioru B



Wykres 3 Porównanie Grahama i Jarvisa dla Nowego Zbioru C



Wykres 4 Porównanie Grahama i Jarvisa dla Nowego Zbioru D

Jak pokazano na Wykresach(1-4), oba algorytmy działają podobnie dla małej liczby punktów(do 1000 dla zbiorów A, C, D i 100 dla B). Dla większych liczby punktów, dla zbiorów *Nowy Zbiór A* i *Nowy Zbiór B* algorytm *Grahama* wyliczał otoczkę o wiele szybciej niż algorytm *Jarvisa*. Jest to spowodowane tym, że *Nowy Zbiór A* i *Nowy Zbiór B* posiadają sporo liczbę punktów w otoczce, więc rzeczywista różnica w długości czasowej wykonywania algorytmów pokrywa się z ich definicyjna złożonością czasową, *Grahama* to O(nlogn), natomiast algorytmu *Jarvisa* O(kn), gdzie n oznacza liczbę wierzchołków zbioru, dla którego wyznaczamy otoczkę, a k to liczba wierzchołków otoczki.

Dla zbiorów *Nowy Zbiór C* i *Nowy Zbiór D*, przy większej liczbie punktów, algorytm *Jarvisa* okazał się szybszy od algorytmu *Grahama*. W zbiorach *Nowy Zbiór C* i *Nowy Zbiór D* liczba punktów w otoczce jest mniejsze od 9 ( bardzo małe), więc tutaj również rzeczywista wartość czasu wykonywania algorytmów wskazuje na ich różnice w złożoności czasowej. Pokazuje to również, że stała przy złożoności czasowej algorytmu *Jarvisa* jest niewielki, co również wskazuje na to, że wykonana implementacja algorytmu *Jarvisa* jest poprawna.

Warto również zauważyć, że oś pozioma wykresu nie jest w skali liniowej, co oznacza, że większe nachylenie odcinków niekoniecznie świadczy o wyższym rzędzie lub większej stałej w złożoności. Punkty na wykresie zostały połączone, aby poprawić jego czytelność.

## 8. Wnioski

- 1. Porównanie algorytmów *Grahama* i *Jarvisa*:
  - Wyniki algorytmów *Grahama* i *Jarvisa* dla wszystkich testowych zbiorów punktów (A-D) były zgodne, co potwierdza poprawność implementacji obu metod.
  - Algorytm *Grahama* działa szybciej niż *Jarvisa* dla dużych zbiorów, w których liczba punktów w otoczce wypukłej k jest znaczna w stosunku do liczby punktów całkowitych n. Wynika to z niższej złożoności czasowej O(nlogn) w porównaniu do pesymistycznej  $\Theta(n^2)$  dla algorytmu *Jarvisa*.
  - Algorytm *Jarvisa* działa szybciej niż *Grahama* w przypadku zbiorów, w których liczba punktów w otoczce k jest mała, np. w prostokątach lub kwadratach, co potwierdza jego złożoność O(nk)
- 2. Zastosowanie algorytmów:
  - Algorytm *Grahama* jest bardziej odpowiedni do przetwarzania dużych, losowych zbiorów punktów, gdzie  $k \rightarrow n$ , np. punktów generowanych losowo na płaszczyźnie.
- 3. Efektywność implementacji:
  - Wykorzystanie funkcji trygonometrycznych w algorytmie *Grahama* przyspieszyło sortowanie punktów względem kąta, co okazało się bardziej wydajne niż alternatywne metody.
  - Implementacja algorytmu *Jarvisa* z wykorzystaniem wyznacznika macierzy zapewniła szybkie i precyzyjne wyznaczanie relacji kątowych między punktami, co zredukowało koszty obliczeniowe w porównaniu do trygonometrycznych odpowiedników.
- 4. Wnioski z analizy czasowej:
  - Wyniki pomiarów czasowych dla obu algorytmów były zgodne z ich teoretyczną złożonością czasową.
  - Dla zbiorów punktów generowanych losowo (*Nowy Zbiór A, Nowy Zbiór B*) algorytm *Grahama* wyraźnie przewyższał **Jarvisa** przy większej liczbie punktów.
  - Dla regularnych struktur geometrycznych (*Nowy Zbiór C, Nowy Zbiór D*) algorytm *Jarvisa* okazał się efektywniejszy dzięki mniejszej liczbie punktów w otoczce wypukłej.
- 5. Podsumowanie praktycznych zastosowań:
  - Algorytm *Grahama* można zarekomendować do aplikacji wymagających szybkiego przetwarzania dużych i złożonych zbiorów danych.
  - Algorytm *Jarvisa* jest bardziej odpowiedni do problemów, gdzie otoczka wypukła składa się z małej liczby punktów, np. w analizie struktur geometrycznych lub w aplikacjach z ograniczonymi zasobami obliczeniowymi.