

PO Box 1802, Boulder, CO 80306 USA

📕+1 (718) 704-9422 | 🗷 shawn.geller@colorado.edu | 🖸 ShawnGeller | 🔰 @ShawnGeller1 | 🞓 shawn-geller

Summary.

PhD student working in quantum information theory, specializing in characterization of quantum systems. I have used ideas from representation theory, statistical inference, and information theory towards this goal. I also use numerical simulations to study statistical inference methods.

Work Experience

National Institute of Standards and Technology

Boulder, CO

RESEARCH ASSISTANT, KNILL GROUP

January, 2019 - Present

- Developed theory for adaptive measurement strategies for application to repeated fluorescence measurements, for example in trapped-ion systems.
- · Worked with Ion storage group at NIST to characterize measurement fidelity of an ion system under repetitive fluorescence measurement.
- · Worked with Kaufman Lab at JILA to characterize indistinguishability of a neutral atom array.
- Worked with Aumentado group at NIST to characterize entanglement in coupled mechanical oscillators.

University of Colorado Boulder, CO

RESEARCH ASSISTANT, DESSAU GROUP

May, 2018 - January, 2019

· Performed characterization of various materials, using methods such as XRD, ARPES, SNOM

University of Colorado

Boulder, CO

TEACHING ASSISTANT

August, 2017 - May, 2018

• Taught recitation sections of introductory electrodynamics and introductory mechanics.

National Institute of Standards and Technology

Boulder, CO

RESEARCH ASSISTANT, KNAPPE GROUP

August, 2015 - August, 2016

- Performed testing of Rubidium atomic magnetometers and gradiometers.
- Designed PCBs for lasers to heat an array of atomic magnetometers.

Education

University of Colorado Boulder, CO

Ph. D. IN Physics Expected May 2023

University of Colorado Boulder, CO

M. S. IN PHYSICS Aug. 2017 - May 2021

Reed College Portland, OR

B. A. IN PHYSICS Aug. 2011 - May 2015

· Phi Beta Kappa

Publications

[1]

S GELLER, DC COLE, S GLANCY, E KNILL

"Improving quantum state detection with adaptive sequential observations" Quantum Science and Technology 7 (3), 034004

[2]

SD ERICKSON, JJ WU, PY HOU, DC COLE, S GELLER, A KWIATKOWSKI, S GLANCY, E KNILL, DH SLICHTER, AC WILSON, D

LEIBFRIED

"High-fidelity indirect readout of trapped-ion hyperfine qubits" Physical Review Letters 128 (16), 160503

[3]

S Kotler, GA Peterson, E Shojaee, F Lecocq, K Cicak, A Kwiatkowski, S Geller, S Glancy, E Knill, RW Simmonds, J Aumentado, JD Teufel

"Direct observation of deterministic macroscopic entanglement" Science 372 (6542), 622-625

OCTOBER 2, 2022 SHAWN GELLER · RÉSUMÉ

[4]

D Sheng, AR Perry, SP Krzyzewski, S Geller, J Kitching, S Knappe

"A microfabricated optically-pumped magnetic gradiometer" Applied Physics Letters 110 (3), 031106

Presentations

SQuInT 2022 Berkeley, CA

FUTURE CONTRIBUTED TALK, IMPROVING QUANTUM STATE DETECTION WITH ADAPTIVE SEQUENTIAL OBSERVATIONS

Oct. 20-22 2022

Software Projects

https://github.com/usnistgov/perm_hmm

STATE INFERENCE USING PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

March, 2022

Developed for the paper "Improving quantum state detection with adaptive sequential observations" arXiv:2204.00710 [quant-ph], ran on NIST cluster. Primary software tools used: PYTHON, PYTORCH, NUMPY