NCERT Presentation

Arjun Pavanje, EE24BTECH11005, IIT Hyderabad.

January 22, 2025

Table of Contents

Problem

Solution

Solution

Row Reduction

Doolittle's Algorithm

Backsubstitution

Forward substitution

Problem

Problem Statement

Solve the following system of equations,

$$2x + y - 6 = 0 (2.1)$$

$$4x - 2y - 4 = 0 (2.2)$$

Solution

Solution

Representing using matrices,

$$\begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} \tag{3.1}$$

We shall solve this system of equations by LU Decomposition. Any non-sigular matrix can be represented as a product of a lower triangular matrix L and an upper triangular matrix U

$$A\mathbf{x} = LU\mathbf{x} = \mathbf{b} \tag{3.2}$$

Row Reduction

Applying row reduction on A,

$$\begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix} \tag{3.3}$$

Let

$$L = \begin{pmatrix} 1 & 0 \\ l_{21} & 1 \end{pmatrix} \tag{3.4}$$

 \emph{I}_{21} is the multiplier used to zero \emph{a}_{21} , so $\emph{I}_{21}=1$. Now,

$$A = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix} \tag{3.5}$$

We have thus obtained LU Decomposition of the matrix A.

Doolittle's Algorithm

The LU Decomposition of matrix A can also be obtained by Doolittle's Algorithm. This gives us update equations to construct the L and U matrix.

Elements of *U* matrix:

For each column j,

$$U_{ij} = \begin{cases} A_{ij} & i = 0 \\ A_{ij} - \sum_{k=0}^{i-1} L_{ik} U_{kj} & i > 0 \end{cases}$$
 (3.6)

Elements of *L* matrix:

For each row i,

$$L_{ij} = \begin{cases} \frac{A_{ij}}{U_{ij}} & j = 0\\ \frac{A_{ij} - \sum_{k=0}^{j-1} L_{ik} U_{kj}}{U_{ij}} & j > 0 \end{cases}$$
 (3.7)

Backsubstitution

The above process decomposes any non-sigular matrix A into an upper-triangular matrix U and a lower-triangular matrix L. Now, let

$$U\mathbf{x} = \mathbf{y} \tag{3.8}$$

$$L\mathbf{y} = \mathbf{b} \tag{3.9}$$

Substituting L in equation (9),

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} \tag{3.10}$$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \end{pmatrix} \tag{3.11}$$

Forward substitution

Backsubstituting into equation (8),

$$\begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
(3.12)

Graph

