1 3.5 习题

3.5.5

说明. 按照定义证明即可

证明.

① $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$ 证明

令 $Z=(A\times B)\cap (C\times D),\ Z'=(A\cap C)\times (B\cap D)$ 现在我们只需证明属于 Z中的元素也属于 Z',反之亦然。

对任意 $(x,y)\in Z$ 那么 $(x,y)\in A\times B$ 且 $(x,y)\in C\times D$,所以 $x\in A,x\in C,\ y\in B,y\in D$,由定义可知 $(x,y)\in Z'$ 。

反之,对任意 $(x,y)\in Z'$ 那么 $(x,y)\in A\cap C$ 且 $(x,y)\in B\cap D$,所以 $x\in A,x\in C,\ y\in B,y\in D$,由定义可知 $(x,y)\in Z$ 。

剩下的证明类似, 故略

3.5.6

证明.

 $(\mathbf{I})A \times B \subset C \times D$ 当且仅当 $A \subset C$ 且 $B \subset D$ 证明

先证明 $A \times B \subseteq C \times D \implies A \subseteq C, B \subseteq D$ 任意 $x \in A, y \in B \implies (x,y) \in A \times B$ 又 $A \times B \subseteq C \times D$ 所以 $(x,y) \in C \times D$, 所以 $x \in C, y \in D$, 由此可知对任意 $x \in A \implies x \in C, y \in B \implies y \in D$, 所以 $A \subseteq C$ 且 $B \subset D$ 。

再证明 $A\subseteq C, B\subseteq D \Longrightarrow A\times B\subseteq C\times D$ 任意 $(x,y)\in A\times B$ 所以 $x\in A,y\in B$, 由 $A\subseteq C,B\subseteq D$ 知 $x\in C,y\in D$ 那么 $(x,y)\in C\times D$, 所以 $A\times B\subseteq C\times D$

 $(2)A \times B = C \times D$ 当且仅当 A = C 且 B = D 证明

先证明 $A \times B = C \times D \implies A = C, B = D$ 。因 $A \times B = C \times D$ 由 ①知 $A \subseteq C, B \subseteq D$,由集合相等的对称性可知 $C \times D = A \times B$,所以 $B \subseteq A, D \subseteq B$,综上 A = C 且 B = D

类似证明 $A = C, B = D \implies A \times B = C \times D$ 。

③去掉空集的限制,空集和自然数 0 的效果很类似,上面的①②都不再成立

3.5.7

说明. 证明唯一性,常见思路是先定义出目标对象,再证明其唯一性,即证明其他满足条件的对象,都与目标对象相等

证明.

定义 $h: Z \to X \times Y, h(z) := (f(z), g(z))$

由 h 的定义,显然 $\pi_{X \times Y \to X} \circ h = f$ 且 $\pi_{X \times Y \to Y} \circ h = g$ 现在证明其唯一性。假设存在另一个函数 h' 满足 $\pi_{X \times Y \to X} \circ h' = f$ 且 $\pi_{X \times Y \to Y} \circ h' = g$, 现需证明 h = h', 我们要说明对任意 z 有 h(z) = h'(z)。设 h(z) = (f(z), g(z)) = (x, y) h'(z) = (x', y') 由 $\pi_{X \times Y \to X} \circ h = f$ 和 $\pi_{X \times Y \to X} (x, y) := x$ 知 $\pi_{X \times Y \to X} \circ h(z) = x = f(z)$ 同理 $\pi_{X \times Y \to X} \circ h'(z) = x' = f(z)$,所以 x = x' 同理 y = y',综上对任意 z 有 h(z) = h'(z) 那么由函数的相等定义,有 h' = h,唯一性得到证明

3.5.8

证明.

如果每一个 X_i 都是非空集合,由引理 3.5.12 可知,集合 $\prod_{1\leqslant i\leqslant n} X_i$ 也是非空的,所以 \prod X_i 为空至少有一个 X_i 为空。

如果有一个 X_i 为空,由笛卡尔积的定义, $1\leqslant i\leqslant n$ 的 x_i 不存在,所以 $\prod X_i$ 为空。

1≤*i≤n* 综上,命题得证

3.5.9

说明. 按照集合相等的定义证明即可

证明.

任意 $x \in [(\bigcup_{\alpha \in I} A_{\alpha}) \cap (\bigcup_{\beta \in J} B_{\beta})] \Rightarrow$ 存在 $\alpha \in I$ 使得 $x \in A_{\alpha}$ 且存在 $\beta \in J$ 使得 $x \in B_{\beta}$,由此可知 $(\alpha, \beta) \in I \times J, x \in (A_{\alpha} \cap B_{\beta})$,所以 $x \in \bigcup_{(\alpha, \beta) \in I \times J} (A_{\alpha} \cap B_{\beta})$

任意 $x \in \bigcup_{(\alpha,\beta) \in I \times J} (A_{\alpha} \cap B_{\beta}) \Rightarrow$ 存在 $(\alpha,\beta) \in I \times J, x \in (A_{\alpha} \cap B_{\beta}),$ 由此可知存在 $\alpha \in I$ 使得 $x \in A_{\alpha}$ 且存在 $\beta \in J$ 使得 $x \in B_{\beta},$ 所以 $x \in [(\bigcup_{\alpha \in I} A_{\alpha}) \cap (\bigcup_{\beta \in J} B_{\beta})]$ 综上,命题得证

3.5.10

说明.

证明.

①先证明函数相等 ⇒ 图相等

假设两个函数 $f: X \to Y$ 和 $\tilde{f}: X \to Y$ 相等,那么由函数的相等定义,有任意 $x \in X$, $f(x) = \tilde{f}(x)$, 由图的定义可知图是一个集合,又 $(x, f(x)) \in f$ 的图, $(x, \tilde{f}(x)) \in \tilde{f}$ 的图,且 $f(x) = \tilde{f}(x)$, 所以两函数的图相等。

证明图相等 ⇒ 函数相等。

假设两函数 f, \tilde{f} 的图相等。对任意 $x \in X$, 有 $(x, f(x)) \in f$ 的图,由图相等可知 $(x, f(x)) \in \tilde{f}$ 的图。

同理: $(x, \tilde{f}(x)) \in \tilde{f}$ 的图, $(x, \tilde{f}(x)) \in f$ 的图,

假设两个函数不相等,应该存在 $x_0, f(x_0) \neq \tilde{f}(x_0)$,但由之前的说明可知, $(x_0, f(x_0)) \in \tilde{f}$ 的图,所以存在 $(x_1, \tilde{f}(x_1)) = (x_0, f(x_0)) \in \tilde{f}$ 的图,有序对相等的定义可知 $x_0 = x_1, f(x_0) = \tilde{f}(x_1)$,而由 $x_0 = x_1$,可以得到 $f(x_0) = \tilde{f}(x_1) = \tilde{f}(x_0)$ 这与 $f(x_0) \neq \tilde{f}(x_0)$ 矛盾,所以假设不成立

综上, 命题得证

② 先定义函数 $f: X \to Y$,其性质为 $(x,y) \in G$ 。由题设"子集 G 具有下述性质:对每一个 $x \in X$,集合 $y \in Y: (x,y) \in G$ 中恰好有一个元素",可知这里定义的 y 是存在且唯一,满足函数定义。由 f 的构造方式知,f 的图与 G 相等(这里不做证明了)。

现在证明 f 的唯一性。

综上所述,函数f唯一。

3.5.11

说明. 题目中的提示已经说明了证明思路

证明.

①对任意两个集合 X 和 Y, 利用引理 3.4.9 和分类公理构造出由 $X \times Y$ 的一切子集组成的集合,它满足垂线测试。

由引理 3.4.9 知存在集合 $\{a: a \in X \times Y\}$, 即 $X \times Y$ 的所有子集构成的集合 A, 有分类公里得到 $\{b \in A: b$ 满足垂线测试 $\}$ 集合 B。

②利用 3.5.10 和替代公理构造出一个集合, 该集合与公理 3.10 相同。如下:

 $f_G := \{f : \alpha \in B,$ 函数 f 是定义域为 X 值域为 Y,f 的图与 α 相同} 现在我们只需证明 f_G 集合与公理 3.10 描述的集合 $f_{ps} := \{f : f$ 是一个定义域 X 且值域为 Y 的函数} 相等。

若 $f_x \in f_G$,那么函数 f_x 的定义域是 X,值域是 Y,所以 $f_x \in f_{ps}$,若 $f_x \in f_{ps}$,那么函数 f_x 的定义域是 X,值域是 Y,又 f_x 的图 $\{(x, f_x(x)), x \in X\}$ 为 β ,由函数的定义可知 β 满足垂线测试,所以 $\beta \in B$ 。由此可以得到一个函数 $f_x': X \to Y$ 它的图为 β ,由 3.5.10 可知两函数 f_x 和 f_x' 相等,又 $f_x' \in f_G$,所以 $f_x \in f_G$ 。

综上所述, 命题得证。