Introduction to Machine Learning Clustering

Prof. Chang-Chieh Cheng
Information Technology Service Center
National Chiao Tung University

Unsupervised Learning

- Unlabeled or uncategorized training data
 - The training data without target information
- Example:
 - Data analysis from questionnaires
 - How many groups can be divided from the results of questionnaires
 - How many visitor types visited your web site.
 - Object recognition from a image database
 - You don't know how many objects and what kind of object in each image of the database.

• Clustering n data points \mathbf{X} into k disjoint subsets S_i containing n_i data points so as to minimize the sum-of-squares criterion.

$$X = \{x_1, x_2, ..., x_n\}, S = \{S_1, S_2, ..., S_k\}$$

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2$$

- where μ_i is the center of S_i
- K-means clustering is a type of **unsupervised learning**, which is used when data without defined categories.
- References:
 - https://en.wikipedia.org/wiki/K-means_clustering
 - http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html
 - https://www.datascience.com/blog/k-means-clustering
 - http://www.saedsayad.com/clustering_kmeans.htm

EM algorithm

Input: **X** and *k*.

- 1. Select *k* points at random as cluster centers.
 - These k points may not ∈ X

2. E step (expectation)

Assign data instances to their closest cluster center according to the Euclidean distance function.

Generating S

3. M step (maximization)

Updating the cluster center by the mean of data instances in each cluster.

- 4. Repeat steps 2 and 3 until a stopping criteria is met:
 - No data points change clusters.
 - The sum of the distances is minimized.
 - Some maximum number of iterations is reached.

Standard algorithm

Figuring by: Nathan Landman, Hannah Pang, Christopher Williams, https://brilliant.org/wiki/k-means-clustering/

- How to decide *k*?
 - There is no perfect method for determining exact value of K.
 - An approximate algorithm
 - Increasing the *k* will always reduce the distance to data points
 - Calculating

$$\alpha_k = \frac{1}{k} \sum_{i=1}^k \sum_{x \in S_i} ||x - \mu_i||^2$$

• Select k while $\frac{d\alpha_k}{dk}$ less than a small number

Figuring by: Andrea Trevino, https://www.datascience.com/blog/k-means-clustering

Acceleration

- Charles Elkan, "Using the triangle inequality to accelerate k-means," Proceedings of the Twentieth International Conference on International Conference on Machine Learning (ICML'03), pp.147-153, 2003.
- Let \mathbf{x} be a point and let \mathbf{b} and \mathbf{c} be centers. If $d(\mathbf{b}, \mathbf{c}) \ge 2d(\mathbf{x}, \mathbf{b})$ then $d(\mathbf{x}, \mathbf{c}) \ge 2d(\mathbf{x}, \mathbf{b})$
- Let x be a point and let b and c be centers.
 d(x, c) ≥ max(0, d(x, b) d(b, c))

KMeans in sklean

• 1D Gaussian

$$N(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multivariate normal distribution (n-dimensional space)

$$N(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

• where
$$\mathbf{x} = \{x_1, x_2, ... x_n\}$$
, $\mu = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$

 Σ is the covariance matrix, $\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}]$

and $|\Sigma|$ is the determinant of Σ

- Gaussian mixture models
 - 1D Gaussian:

$$N(x, \mathbf{u}, \boldsymbol{\sigma}, \mathbf{w}) = \sum_{S=1}^{K} w_S N(x, \mu_S, \sigma_S)$$

• where $\mathbf{w} = \{w_1, w_2, ... w_k\}$

- Gaussian mixture models
 - Multivariate Gaussian mixture models :

$$N(\mathbf{x}, \mathbf{u}, \boldsymbol{\Sigma}, \mathbf{w}) = \sum_{S=1}^{k} w_S N(\mathbf{x}, \boldsymbol{\mu}_S, \boldsymbol{\Sigma}_S)$$

https://www.researchgate.net/figure/3D-view-of-a-4D-Gaussian-Mixture-Model-used-in-our-experiments_fig1_224105715

Finding a Gaussian mixture model to fit the data distribution

http://yulearning.blogspot.com/2014/11/einsteins-most-famous-equation-is-emc2.html

- E step: Expectation
 - For each datum x_i
 - Compute r_{is} , the probability that is belongs to cluster s

• Example:

- *k*=3
- $r_{i1} = 0.8$
- $r_{i2} = 0.2$
- $r_{i3} = 0.0$
- So, we can say that x_i belongs to cluster 1

- M step: Maximization
 - Let $X = \{x_1, x_2, ... x_m\}$ (Training data set)
 - Log likelihood

$$\log p(\mathbf{X}) = \sum_{i}^{m} \log[N(\mathbf{x}_{i}, \mathbf{u}, \boldsymbol{\Sigma}, \mathbf{w})]$$

$$= \sum_{i}^{m} \log\left[\sum_{s=1}^{k} w_{s} N(\mathbf{x}_{i}, \boldsymbol{\mu}_{s}, \boldsymbol{\Sigma}_{s})\right]$$

• Compute w_s , μ_s , and Σ_s such that $\log p(\mathbf{X})$ is maximum

If any datum can be clustered with 100% accuracy, $\log p(\mathbf{X})$ is zero; Otherwise, $\log p(\mathbf{X})$ is a negative number

EX: One datum can be clustered to c_1 and c_2 with 50% probabilities respectively. And $w_1 = w_2 = 0.5$. Then, $\log_2 p(\mathbf{X}) = \log_2 (0.5 \times 0.5 + 0.5 \times 0.5) = -2$

- Given r_{is} for data point \mathbf{x}_i and Gaussian N_s .
 - Let

$$\alpha_S = \sum_{i=1}^m r_{iS}$$

• Then,

$$w_{\rm S} = \frac{\alpha_{\rm S}}{m}$$

$$\mathbf{\mu}_{S} = \frac{1}{\alpha_{S}} \sum_{i=1}^{m} r_{iS} \mathbf{x}_{i}$$

$$\Sigma_{S} = \frac{1}{\alpha_{S}} \sum_{i=1}^{m} r_{iS} (\mathbf{x}_{i} - \mathbf{\mu}_{S}) (\mathbf{x}_{i} - \mathbf{\mu}_{S})^{\mathrm{T}}$$

Algorithm

- 1. Given *k*
- 2. Initial guess of w_s , μ_s , and Σ_s
- 3. E step, compute r_{is}
- 4. M step, compute w_s , μ_s , and Σ_s
- 5. Repeat Step. 3 and 4. until $\log p(\mathbf{X})$ is larger than a threshold or the change of $\log p(\mathbf{X})$ is smaller that a constant.

 A. Khanna et al, "US Image Segmentation Based on Expectation Maximization and Gabor Filter," *International Journal of Modeling* and Optimization, vol. 2, no. 3, pp. 230-233, Jun. 2012.

- (a). Original image (b): one of the gabor filtered image
- (c): result using K-means clustering (d): segmentation result using EM algorithm

• Z. Huang and D. Liu, "Segmentation of Color Image Using EM algorithm in HSV Color Space," 2007 International Conference on Information Acquisition, Seogwipo-si, 2007, pp. 316-319.

The clusters number is bfive (C=5).

(a) is original color image; (b) kmeans in RGB color space; (c) k-means in HSV color (d). EM

- GMM in scikit-learn
- https://github.com/jameschengcs/ml/blob/master/EM_iris.py

 D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature space analysis," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

Overview

- 1. Finding the trend of each point
- 2. Shift each point by the trend
- 3. Repeat 1 and 2 until the trend is near to zero → the point is shifted to a region of a cluster

 A clustering method that doesn't require specifying the number of clusters

The kernel density estimator

• Given m data points \mathbf{x}_i , i = 1, 2, ..., m on a n-dimensional space **R**ⁿ, the multivariate kernel **density** estimate obtained with kernel $K(\mathbf{x})$ and window radius h is

$$f(\mathbf{x}) = \frac{1}{mh^n} \sum_{i=1}^{m} K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- where $\int_{\mathbb{R}^n} K(\mathbf{x}) = 1$ and $K(\mathbf{x}) \ge 0$
- $\bullet K(\mathbf{x}) = \varphi(\|\mathbf{x}\|^2)$
- Two frequently used φ for mean shift are:
 - $\varphi(s) = \begin{cases} 1 & \text{if } s \le \tau \\ 0 & \text{if } s > \tau \end{cases}$, where τ is a threshold. $\varphi(s) = e^{-\frac{s}{2\sigma^2}}$

 Shifting the positions of m data points that belong to a region, such the density is the highest

• Finding Δx to shift m data points of a region, and f'(x) = 0

$$f'(\mathbf{x}) = \frac{1}{mh^n} \sum_{i=1}^m K'\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$= \frac{1}{mh^n} \sum_{i=1}^m \varphi'\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)$$

$$= \frac{C}{mh^{n+2}} \sum_{i=1}^m (\mathbf{x} - \mathbf{x}_i) \varphi'\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)$$

$$= \frac{C}{mh^{n+2}} \sum_{i=1}^m (\mathbf{x}_i - \mathbf{x}_i) \varphi'\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)$$

$$= \frac{C}{mh^{n+2}} \sum_{i=1}^m (\mathbf{x}_i - \mathbf{x}_i) g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)$$

$$= \frac{C}{mh^{n+2}} \sum_{i=1}^m (\mathbf{x}_i - \mathbf{x}_i) g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)$$

$$= \frac{C}{mh^{n+2}} \left[\sum_{i=1}^{m} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right) \right] \left[\frac{\sum_{i=1}^{m} \mathbf{x}_{i} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right)}{\sum_{i=1}^{m} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right)} - \mathbf{x} \right]$$

The 1st term is > 0 and proportional to the density estimate as x computed with the kernel

The 2nd is the mean shift

The mean shift

$$\Delta \mathbf{x} = \frac{\sum_{i=1}^{m} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{m} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)} - \mathbf{x}$$

• let
$$\mathbf{y} = \frac{\sum_{i=1}^{m} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{m} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}$$
 $\Delta \mathbf{x}^{t} = \mathbf{y}^{t} - \mathbf{x}^{t}$

- computation of the mean shift vector \mathbf{y}^t
- translation of the region $\mathbf{x}^{t+1} = \mathbf{y}^t$
 - because $\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta \mathbf{x}^t = \mathbf{x}^t + \mathbf{y}^t \mathbf{x}^t$
- until $\|\Delta \mathbf{x}^t\|$ is closed to zero

• For example,
$$g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_i}{h}\right\|^2\right) = e^{-\left\|\frac{\mathbf{x}-\mathbf{x}_i}{h}\right\|^2}$$

$$\mathbf{y}^0 = \mathbf{x}$$

$$\mathbf{y}^{t} = \frac{\sum_{i=1}^{m} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{y}^{t-1} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{m} g\left(\left\|\frac{\mathbf{y}^{t-1} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}$$

 D. Comaniciu and P. Meer, "Mean shift: a robust approach toward feature space analysis," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 24, no. 5, pp. 603-619, May 2002.

- Mean shift in Scikit-learn
 - https://github.com/jameschengcs/ml/blob/master/MeanShift_iris.py