Veronika Ertl

Aufgabe 1 (Frühjahr 1985). Seien R ein kommutativer Integritätsring und $a, b \in R$ mit $b \neq 0$. Beweise die Äquivalenz folgender Aussagen:

- (a) Es gibt $c, d \in R$ mit $d \neq 0$, $\frac{a}{b} = \frac{c}{d}$ (im Quotientenkörper von R) und Rc + Rd = R.
- (b) Ra + Rb ist ein Hauptideal.

Lösung. (a) \Rightarrow (b): Nach Voraussetzung ist ad = bc (da R integritätsring ist) und es gibt $r_1, r_2 \in R$ mit $r_1c + r_2d = 1$. Dann ist

$$a = a \cdot 1 = a(r_1c + r_2d) = r_1ac + r_2ad = r_1ac + r_2bc = c(r_1a + r_2b)$$

$$b = b \cdot 1 = b(r_1c + r_2d) = r_1bc + r_2bd = r_1ad + r_2bd = d(r_1a + r_2b)$$

Es folgt, daß das Ideal Ra + Rb = (a, b) von dem Element $\xi = r_1a + r_2b$ erzeugt wird, denn nach obiger Rechnung ist $a, b \in (\xi)$, also $(a, b) \subset (\xi)$, und $(\xi) \subset (a, b)$ ist klar.

(b) \Rightarrow (a): Ist Ra + Rb ein Hauptideal, dann gibt es $\xi \in R$ mit $(\xi) = R\xi = Ra + Rb = (a, b)$. Insbesondere gibt es $c, d \in R$ mit $a = c\xi$ und $b = d\xi$, und da $b \neq 0$ ist auch $d \neq 0$ und $\xi \neq 0$. Also ist

$$ad\xi = bc\xi$$

und mit der Kürzungsregel in Integritätsringen ist

$$ad = bc$$

Also stimmen die Äquivalenzklassen $\frac{a}{b}$ und $\frac{c}{d}$ überein.

Da ξ in dem Ideal Ra + Rb liegt, gibt es $r_1, r_2 \in R$ mit $\xi = r_1a + r_2b$. Einsetzen von $a = c\xi$ und $b = d\xi$ ergibt

$$\xi = r_1 a + r_2 b = r_1 c \xi + r_2 d \xi$$

und Kürzen, da $\xi \neq 0$

$$1 = r_1c + r_2d.$$

Also ist R = Rc + Rd.

Aufgabe 2 (Herbst 1987). Man zeige: Der Körper Q enthält keinen echten Unterkörper.

Lösung. Sei $K \hookrightarrow \mathbb{Q}$ ein Unterkörper von \mathbb{Q} . Also sind $0,1 \in K$. Es folgt, daß $2 = 1 + 1 \neq 0$ ebenfalls in K ist. Angenommen $n \in K$. Dann ist $n + 1 = (1 + \ldots + 1) + 1$ nach Induktion ebenfalls in K. Es folgt $\mathbb{N} \subset K$. Da (K, +) eine abelsche Gruppe ist, ist für $n \in \mathbb{N}$ auch das additive Inverse $-x \in K$. Es folgt $\mathbb{Z} \hookrightarrow K$, und dies ist ein Ringhomomorphismus. Das Bild der multiplikativ abgeschloßenen Menge $S = \mathbb{Z} \setminus \{0\}$ unter diesem Ringhomomorphismus ist in $K \setminus \{0\} = K^{\times}$ enthalten. Nach der universellen Eigenschaft von Quotientenringen, gibt es also einen eindeutigen Ringhomomorphismus $\mathbb{Q} \to K$, so daß das Diagramm

kommutiert. Dieser ist invers zu $K \hookrightarrow \mathbb{Q}$. Also ist $K = \mathbb{Q}$.

Aufgabe 3. Sei $A = \left\{ \frac{m}{n} ; m \in \mathbb{Z}, n \in 2 \mathbb{N} + 1 \right\}$. Zeigen Sie, daß $(A, +, \cdot)$ ein Ring ist und bestimmen Sie seine invertierbaren Elemente.

Lösung. A ist ein Unterring von \mathbb{Q} : Sei $x = \frac{m}{n}, y = \frac{m'}{n'} \in A$. Dann ist

$$x - y = \frac{mn' - m'n}{nn'}$$
$$xy = \frac{mm'}{nn'}$$

Da $n, n' \equiv 1 \mod 2$ ist auch $nn' \equiv 1 \mod 2$, also $x - y, xy \in A$. Außerdem $1 = \frac{1}{1} \in A$, insbesondere ist $A \neq \emptyset$.

Die Inversen von A: Sei $x = \frac{m}{n} \in A$ invertierbar, also gibt es $y = \frac{m'}{n'}$ mit xy = 1, das heißt

$$\frac{mm'}{nn'}\frac{m}{n}\frac{m'}{n'}=1$$

oder mm' = nn'. Da nn' ungerade ist, gilt das insbesondere auch für m.

Ist andererseits $x = \frac{m}{n} \in A$ mit m undgerade, dann ist $y = \frac{n}{m} \in A$ (falls m > 0 und $y = \frac{-n}{-m} \in A$ falls m < 0). Und xy = 1, also ist x invertierbar.

Insgesamt: die invertierbaren Elemente von A sind genau die $\frac{m}{n}$ mit $m \in \mathbb{Z}$, $n \in \mathbb{N}$, m, n ungerade.

Bemerkung: Die ungeraden ganzen Zahlen sind $S = \mathbb{Z} \setminus (2)$. Also ist A genau der Ring

$$\mathbb{Z}_S = \mathbb{Z}_{(2)} = \left\{ \frac{r}{s} \; ; \; r \in \mathbb{Z}, s \in S \right\} = \left\{ \frac{r}{s} \; ; \; r, s \in \mathbb{Z}, 2 \nmid s \right\}.$$

Aufgabe 4 (Frühjahr 1997). Sei R ein Integritätsring mit Primring $\mathbb{Z}/(p)$, p > 0. Zeigen Sie, daß die Abbildung

$$F: R \to R, x \mapsto x^p$$

ein Ringhomomorphismus ist (der Frobenius).

Lösung. Es ist klar, daß F(1) = 1 ist und für alle $x, y \in R$ gilt $F(xy) = (xy)^p = x^p y^p = F(x)F(y)$, denn R ist kommutativ. Weiterhin berechnet man für $x, y \in R$

$$F(x+y) = (x+y)^{p}$$

$$= \sum_{k=0}^{p} {p \choose k} x^{k} y^{p-k} = x^{p} + y^{p} + \sum_{k=1}^{p-1} {p \choose k} x^{k} y^{p-k}$$

Es genügt nun nach dem vorherigen Beispiel zu zeigen, daß $p | \binom{p}{k}$ für $k = 1, \dots, p-1$. Nach Definition von $\binom{p}{k}$ gilt die Gleichheit

$$p! = \binom{p}{k} \cdot k! \cdot (p - k)!$$

Da offensichtlich p|p!, aber $p \nmid k!$ und $p \nmid (p-k)!$, und p eine Prmzahl ist, muß $p\binom{p}{k}$ teilen. Damit ist $\sum_{k=1}^{p-1} \binom{p}{k} x^k y^{p-k} = 0$ und $F(x+y) = x^p + y^p = F(x) + F(y)$.

Aufgabe 5 (Herbs 1974). (a) Sei K ein Körper der Charakteristik $\neq 0$. Zeigen Sie, daß dann die additive Gruppe von K nie isomorph zur multiplikativen Gruppe K^{\times} sein kann.

(b) Sei K ein Körper der Charakteristik 0. Beweisen Sie, daß dann die additive Gruppe von K nie isomorph zur multiplikativen Gruppe K^{\times} sein kann.

Lösung. Zu (a): Es ist char(K) = p eine Primzahl. Der Primkörper K_0 von K ist isomorph zu $\mathbb{F}_p = \mathbb{Z}/pZZ$.

Wir bemerken zunächst, daß für alle $x \in K$ gilt px = 0, denn $px = p(1 \cdot x) = (p \cdot 1)x = 0 \cdot x = 0$.

Angenommen (K, +) und $(K \setminus \{0\}, \cdot)$ wären isomorph (als Gruppen), das heißt es gäbe einen Gruppenisomorphismus

$$\psi: K^{\times} \to K$$

Es gilt für $x, y \in K \setminus \{0\}$

$$\psi(x \cdot y) = \psi(x) + \psi(y)$$

Insbesondere ist

$$\psi(x^p) = p\psi(x) = 0$$

Also enthält $\ker(\psi)$ alle Elemente der Form x^p . Wir müssen nun ausschließen, daß alle x^p trivial sind. Für \mathbb{F}_p gilt nach dem kleinen Satz von Fermat $x^p = x$ für alle $x \in \mathbb{F}_p$. Also gilt dies auch für $K_0 \cong \mathbb{F}_p$. Das heißt $\ker(\psi)$ enthält alle $x \in K_0^{\times}$, damit ist ψ nicht injektiv, also kein Isomorphismus.

Zu (b): Sei char(K) = 0, dann ist $K_0 \cong \mathbb{Q}$.

Angenommen es gäbe einen Gruppenisomorphismus

$$\psi: K^{\times} \to K.$$

Wieder gilt $\psi(x \cdot y) = \psi(x) + \psi(y)$. In $\mathbb Q$ und somit auch in K_0 und in K gilt $-1 \neq 1$ und $(-1)^2 = (-1) \cdot (-1) = 1$. Also ist

$$0 = \psi(1) = \psi((-1)^2) = 2\psi(-1)$$

und es folgt $\psi(-1) = 0$. Und damit ist ψ nicht injektiv, also kein Isomorphismus.