11.8 Basic properties of Boolean algebra

Some first properties

The benefit of building circuits from logic gates, rather than directly from transistors, becomes clear after learning some basic properties of Boolean algebra.

Table 11.8.1: A few basic properties of Boolean algebra.

Property	Name	Description
a(b + c) = ab + ac	Distributive (for AND)	Same as multiplication in regular algebra
a + a' = 1	Complement	Clearly one of a, a' must be 1 1 + 0 = 1 0 + 1 = 1
a · 1 = a	Identity	Result of a · 1 is always a's value $0 \cdot 1 = 0$ $1 \cdot 1 = 1$

PARTICIPATION ACTIVITY		e properties of Boolean alg simpler circuit: Out-of-bed		plify an equation,
St	art 2x s	peed	s = un + ı	ın'
Goa	n: nurse outs: s: sound Il behavior: So	n up from bed, call button pressed I alarm und alarm if person up and bu n up and button not pressed.	otton	s
s	= un + un' = u(n + n') = u(1) = u	Distributive (in reverse) Complement Identity	s = u u	s

Applying Boolean algebra properties led to a simpler expression and thus a simpler circuit. Simplifying expressions is a common use of Boolean algebra.

More properties

Below are more properties of Boolean algebra.

Table 11.8.2: More properties.

Property	Name	Description
ab = ba	Commutative (for AND)	Same as multiplication for regular algebra
a + b = b + a	Commutative (for OR)	Same as addition for regular algebra
a + 1 = 1	Null elements	OR only needs one 1 to evaluate to 1 $a = 0$ $0 + 1 = 1$

		a = 1 1 + 1 = 1
a + a = a aa = a	dempotent	0 + 0 = 0 $1 + 1 = 10 \cdot 0 = 0 1 \cdot 1 = 1$

Example: Motion-sensing light equation

A designer may initially write an equation that matches his/her natural thinking of desired behavior, as below. The designer can then apply Boolean algebra properties to obtain a simpler equation (and thus a simpler eventual circuit).

PARTICIPATION ACTIVITY	11.8.4: Simplifying an equation usin sensing light.	g Boolean algebra properties: Motion-	
Sta	art 2x speed		
	Inputs: m: motion sensed	I	
	t: test mode		
	Outputs: i: illuminate lamp		
E .		motion and not test mode, and no motion, or if test mode and motion	
	i = mt' + tm' + tm	Original equation	
	i = mt' + m't + mt	Commutative (for AND)	
	i = mt' + m't + mt + mt	Idempotent	
	i = mt' + mt + m't + mt	Commutative (for OR)	
	i = m(t' + t) + (m' + m)t	Distributive (twice)	
	i = m(1) + (1)t	Complement (twice)	
	i = m(1) + t(1)	Commutative (for AND)	
	i = m + t	Identity (twice)	
•			
PARTICIPATION ACTIVITY	11.8.5: Motion-sensing light exampl	e.	

The designer captured the desired behavior little-by-little as an equation, resulting in terms on the right side.	
O 1	
O 2	
O 3	
The first modification (commutative) just literals within terms.	
O rearranged	
O eliminated	
The next modification (idempotent) the number of terms.	
O decreased	
O did not change	
O increased	
Subsequent modifications resulted in a final equation having terms on the right side.	
O 2	
O 3	

Sumi

The fo

Table 11.8.3: Commonly-used basic properties of Boolean algebra.

Property	Name	Description
a(b + c) = ab + ac a + (bc) = (a + b)(a + c)	Distributive (AND) Distributive (OR)	(AND) Same as multiplication in regular algebra (OR) Not at all like regular algebra
ab = ba a + b = b + a	Commutative	Variable order does not matter. Good practice is to sort variables alphabetically.
(ab)c = a(bc) (a + b) + c = a + (b + c)	Associative	Same as regular algebra
aa' = 0 a + a' = 1	Complement (AND) Complement (OR)	(AND) Clearly one of a, a' must be 0 1 0 = 0 - 1 = 0 (OR) Clearly one of a, a' must be 1 1 + 0 = 0 + 1 = 1
a · 1 = a a + 0 = a	Identity (AND) Identity (OR)	(AND) Result of a \cdot 1 is always a's value $0 \cdot 1$ = 0 1 \cdot 1 = 1 (OR) Result of a + 0 is always a's value $0 + 0 = 0$ 0 1 + 0 = 1
a · 0 = 0 a + 1 = 1	Null elements	Result doesn't depend on the value of a.
a · a = a a + a = a	Idempotent	Duplicate values can be removed.
(a')' = a	Involution	(0')' = (1)' = 0 (1')' = (0)' = 1
(ab)' = a' + b' (a + b)' = a'b'	DeMorgan's Law	Discussed in another section

PARTICIPATION ACTIVITY 11.8.6: Basic properties of Boolean algebra.	
Which property allows one to change zxy into xyz?	
O Associative	
O Commutative	
O Identity	
2) Which property allows one to change a + a into just a?	
O Identity	
O Idempotent	
O Complement	
3) Which property allows transforming xy + xy' into x(y + y') O Complement	

4) Which property allows transforming	g x(y			
+ y') into x(1)?				
O Complement				
O Identity				
5) Which property allows transforming into x?	g x(1)			
O Complement				
O Identity				
CHALLENGE 11.00. Circuit Alana and				
ACTIVITY 11.8.2: Simplify the equa	tion using Boolean al	lgebra properties		
Start				
$_{\text{Start}}$ Simplify $z'w+z'w'$ to z'				
			Pro	perties
		Distributive	Prop	perties
		Distributive ab+ac	Prop	Id
			= a((b+c) Id
		ab+ac (a+b)(a+c)	= a((b+c) Id
		ab+ac (a+b)(a+c)	= a((b+c) a+bc No
		ab+ac (a+b)(a+c) Commutative ab a+b	= a((b+c) Id
		ab+ac (a+b)(a+c) Commutative ab a+b Complement	= a((b+c) Id
		ab+ac (a+b)(a+c) Commutative ab a+b Complement aa'	= a((b+c) Id (b+c) Nt ba b+a Id 0
	2	ab+ac (a+b)(a+c) Commutative ab a+b Complement	= a((b+c) Id (b+c) No ba b+a Id