Lab 2 - Strøm og spenning

Candidate 073402 FYS2150, University of Oslo* (Dated: 29. februar 2020)

Jeg har studert lys som er observert fra en fjern stjerne på ti forskjellige dager over en toukers periode. Ved å se på Doppler-forskyvning av en spektrallinje har jeg klart å beregne stjernens hastighet i forhold til oss ved hver av de ti målingene. På bakgrunn av dette kunne jeg slå fast at stjernen beveger seg bort fra oss med en gjennomsnittshastighet på ca. 15km/s. Den beveger seg i tillegg i bane med svært kort omløpsperiode, bare rundt 10 dager, og høy banefart, ca. 1.5km/s. Dette indikerer tilstedeværelsen av et annet massivt legeme like i nærheten.

For å finne eksakte verdier for bølgelengden til absorpsjonslinjen i det Doppler-forskjøvede spekteret brukte jeg minste kvadraters metode. Termiske bevegelser i gassene på stjernens overflate, og annen støy, gjør at dette kan være vanskelig å gjøre med øyemål. Jeg har anvendt modeller for fluks og støy som bygger på normalfordelingen, noe som har vist seg å være fornuftige antakelser.

I. INTRODUKSJON

Måling av støm, spenning og motstand er svært sentralt i eksperimentell fysikk, ikke bare fordi kunnskap om disse størrelsene og måling av dem er viktige i seg selv, men også fordi instrumenter vi bruker til å måle mange andre størrelser ofte gir elektriske signaler som vi må tolke. Dette gjelder både i vitenskapelige eksperimenter og i industrielle og praktiske anvendelser, eksempelvis temperatur og trykk.

Vi har i dette eksperimentet sett på egenskapene til multimetre som kan brukes til å måle både spenning, strøm og motstand. Vi har sett på forskjellen mellom å bruke multimetrene til å måle motstand direkte og i stedet måle strøm og spenning for siden å bruke Ohms lov til å beregne motstanden i kretsen. Til sist har vi brukt både multimetre og et oscilloskop til å studere elektrisk signal som er laget av en signalgenerator og brukt de samme redskapene til å se på forskjellige egenskaper ved en RC-krets.

II. TEORI

Ved å observere lyset som når oss fra fjerne stjerner kan vi finne ut hvilken fart stjernen har i forhold til oss her på jorda. På grunn av Doppler-Effekten vil lys sendt ut fra en kilde som beveger seg bort fra oss bli rødforskjøvet og lys fra en kilde som beveger seg mot oss vil bli bl

III. EKSPERIMENTELT

Vi har brukt to multimetre, Fluke 45 og Fluke 75, og brukt hver av dem til å måle på det andre. På den måten har vi målt motstand til et voltmeter og et amperemeter, strømmen og spenningen over et ohmmeter

A. Vekselspenninger med frekvensgenerator, oscilloskop og multimeter

De to signalene vi brukte i analysen var et sinus- og et firkantsignal. Bilder av signalene med innstillingene som ble brukt finnes i figur REF.

IV. RESULTATER

A. Multimeter måler multimeter

Den første delen av eksperimentet, å bruke hvert av multimetrene til å måle på det andre, ga resultatene presentert i tabell IV A.

Den første kretsen i figur REF svarer til Voltmeterfunksjonen. Den andre svarer til et Amperemeter, og den tredje er et Ohmmeter.

B. Motstand, likestrøm og likespenningsmålinger med multimeter

Ved å måle motstandene R1 og R2 direkte fikk vi
 disse verdiene:

- R1 = $10.10 \pm 0.01 \Omega$
- $R2 = 0.99 \pm 0.02 M\Omega$

Ved indirekte måling av motstanden ved Ohms lov fikk vi først verdiene for strøm og spenning som er vist i tabell REF. Ved likning REF fikk vi da disse verdiene for størrelsene på motstandene:

- R1 = $10.37 \pm 0.06\Omega$
- $R2 = 0.90 \pm 0.07 M\Omega$

C. Vekselspenninger med frekvensgenerator, oscilloskop og multimeter

Ting og tang, og blablabla

^{*} textme@lab.uio.no

Figur 1. Sinus- og firkantsignalet brukt til å måle vekselspenning med oscilloskop. Begge siganelene hadde en frekvens på 1 kHz og amplitude 1 V. Resten av innstillingene 500 μ s/div, 1 MS, \pm 2 V, AC, 12 bit.

V. DISKUSJON

Når jeg analyserte fluksdataen med minste kvadraters metode bruke jeg 30 testverdier for hver av de ukjente parametrene $F_{\rm min}$, σ og $\lambda_{\rm center}$. Ved å øke til 40 testverdier innenfor det samme intervallet forventet jeg å få mer nøyaktige svar. Det viste seg imidlertid at dette bare førte til en endring på mellom 0.00003% og 0.00013% av $\lambda_{\rm center}$ som er den parameteren vi bryr oss om. Jeg konkluderer derfor med at 30 testverdier gir så godt som så presise svar vi kan finne, og jeg er komfortabel med å bruke 30 testverdier videre. Som nevnt i metode-delen oppdaget jeg etter implementering av algoritmen at den øvre grensen for σ trygt kunne vært satt en del lavere enn den verdien jeg brukte. Dette ville antakeligvis gitt noe mer nøyaktige resultater.

Ved å se på vi tydelige periodiske svingninger i hastigheten til stjernen. Det betyr at stjernen beveger seg i bane og har en komponent av banehastigheten som er parallell med vår siktlinje. For at stjernen skal gå i bane, må den påvirkes av en gravita

VI. KONKLUSJON

blablabla

VII. APPENDIX

^[1] Hansen, F. K., 2017, Forelesningsnotat 1A i kurset AST2000

^[2] Hansen, F. K., 2017, Forelesningsnotat 1C i kurset AST2000

^[3] Hansen, F. K., 2017, Forelesningsnotat 1D i kurset AST2000

^{[4] 15889, 2019,} Ekstrasolare planeter

^[5] Solen, https://no.wikipedia.org/wiki/Solen, Lest 17.10.19

Tabell I. Tabell som viser resultatene av å bruke de to multimeterne til å måle på hverandre. Målingene merket med * var oppgitt med én desimal mer på måleinstrumentet enn det som er oppgitt her, men det siste sifferet er sløyfet fori det var umulig å avlese da verdien svingte hele tiden.

D 1 1/	G · [37]	C . [A1	M 1
Forsøk #	Spenning, [mV]	Strøm, [mA]	Motstand
1		F45: 0.501	F75: 10.9 Ω
2		F75: 0.81	F45: 5.94
3	F45: 0.01	F75: 0.00	
4	F75: 0.0	F45: 0.000	
5	F45: 722.4		F75: $10.03 \text{ M}\Omega$
	1982.2		OL. Ω
	1979.3		OL Ω
	1426.4		O.L kΩ
	1310.0		OL. kΩ
	722.3		.OL M Ω
6	F75: 1552		F45: 11.10 MΩ*
	1552		11.1 MΩ*
	1552		11.1 ΜΩ

Tabell II. Tabell som viser resultatene av å bruke de to multimeterne til å måle strøm og spenning gjennom kretsene i figur REF. Målingen merket med * er avlest for tidlig i forhold til den tiden som multimeter bruker på å stabilisere seg når man måler strøm med største presisjon, og er ikke egnet til å brukes i videre beregninger.

Komponent	Måling	Spenning, [V]	Strøm, [mA]
R1	Spenning inn	1.474 ± 0.007	$68.93 \pm 0.04*$
	Spenning over R1	0.716 ± 0.004	69.01 ± 0.04
R2	Spenning inn	17.78 ± 0.08	0.018 ± 0.002
	Spenning over R2	17.79 ± 0.08	0.020 ± 0.002

Day	$F_{ m min}$	σ	λ , [nm]	Δ
0	0.81742	0.00438	656.33020	3.73793
$\parallel 2$	0.81084	0.00438	656.33422	3.55735
3	0.81249	0.00438	656.33580	3.75985
$\parallel 5$	0.81334	0.00438	656.33498	3.69936
6	0.79401	0.00438	656.33100	4.00017
8	0.80051	0.00438	656.32920	3.65960
9	0.80140	0.00438	656.33002	3.83682
11	0.80581	0.00438	656.33418	3.88872
13	0.80998	0.00438	656.33618	3.65010
14	0.81709	0.00438	656.33440	3.68551

Tabell III. Tabell som viser resultatene av minste kvadraters metode anvendt på dataen registrert for hver av de 10 dagene. F^{model} er testet med alle kombinasjoner av 30 forskjellige verdier for F_{min} , σ og $\lambda_{\mathrm{center}}$. Den beste kombinasjonen ga totalt avvik Δ mellom F^{obs} og F^{model} .