

Photon quality distribution

- For events with at least 4 photons (we choose the first 4 highest Pt photons)
- Definitions:
 - Good photon: Come from a di-photon that passed pre-selection
 - Bad photon: Comes from a di-photon that did not pass pre-selection

 Events in solid colors are what we are interested in

- This tail could be coming from the case where one of the photons could actually be a jet, and the combination manages to pass the di γ mass > 55 GeV pre-selection cut
- Can try to minimize this contribution by applying selections on the photon MVA

DiPhotons + Jet: 2D plots of MVA distributions (all diphoton combinations)

Photon + Jet: 2D plots of MVA distributions (all diphoton combinations)

QCD + Jet: 2D plots of MVA distributions (all diphoton combinations)

MVA distribution of bad quality photons

h(125)→aa→yyyy

NEU Meeting 22nd August 2018

Tanvi Wamorkar¹, Toyoko Orimoto¹, Andrea Massironi²
[1] Northeastern University
[2] INFN Milano-Bicocca and CERN

Overview of the updates

- Presented at the Hgg working group meeting
 - Link
 - Presented trigger and pre-selection studies to help establish that the low mass h→xx online triggers can be utilized by us

- This presentation:
 - Focus on m(a) > 5 GeV Resolved photons case
 - Present signal and background MC comparison

Recap: 4 Resolved Photons case

- Using Gen-Reco matching, we can flag
 y's @Reco level as resolved or merged
- Moving forward, we can use this information and design the analysis for m(a) > 5 GeV

Background MC samples

- Background MC samples:
- DiPhotons + Jets
 DiPhotonJetsBox_M40_80-Sherpa
 DiPhotonJetsBox_MGG-80toInf_13TeV-Sherpa
- Photons + Jets
 GJet_Pt-20toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8
 GJet_Pt-20to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8
 GJet_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8
 - QCD

QCD_Pt-30to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-30toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8

- Was also asked by the Hgg convenors to add DYJetstoLL sample as a check
 - DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8

Selections applied

- Event selection (for m(a) > 5 GeV)
 - Events w/ at least 4 γ's
 - Event must pass AND of the trigger bit and the pre-selection requirements (pre-selection is tighter than the online trigger selections)

		R9 (5x5)	HoE	$\sigma_{i\eta i\eta}$ (5x5)	pfPhoIso	TrackerIso
Both photons in barrel	Barrel	> 0.5	< 0.07	< 0.0105	$< 4 \mathrm{GeV}$	< 6 GeV
At least one in endcap	Barrel	> 0.85	< 0.07	< 0.0105	< 4 GeV	< 6 GeV
At least one in endcap	Endcap	> 0.9	< 0.035	< 0.0275	$< 4 \mathrm{GeV}$	< 6 GeV

- Electron Veto: no Pixel seed
- p_T leading $\gamma > 30$ GeV, p_T subleading $\gamma > 18$ GeV
- For both γ 's $|\eta| < 2.5$, but not in the ECAL EB-EE gap
- M_{yy} > 55 GeV

P_T distribution

CMS Work in progress

γγ+Jets QCD

DYJetstoLL

60

γ₃ P_T [GeV]

Events/(2.3333333333 GeV)

- P_T distribution of the 4 γ 's
- The signal MC **y**'s are gen-matched (to ensure the reco level **y**'s are resolved)
- All MC samples have been scaled by $\frac{Luminosity*Xsection}{MCWeights}$
- For signal MC, chosen Xsection = 0.5 pb⁻¹
- DYJetstoLL sample has minimal contribution because of the requirement of 4 γ 's

y MVA score

- MVA score of the 4 γ's
- The γ 's are P_T ordered
- MC samples γ +Jets and $\gamma\gamma$ +Jets, have at least 1 real γ and a Double-EM Enriched filter is applied during production to the γ +Jets and QCD samples
- This is why the first two y's in background MC also have a high MVA score
- Discriminating power comes from the MVA score for the 3^{rd} and 4^{th} γ
- Based on these distributions, we can choose a selection on MVA score that keeps very high signal efficiency

Di-Photon Pairing

- \bullet From the 4 final γ 's, we select pairs that make di-photons with most similar masses
 - ullet Performs better than pairing the leading and sub-leading $oldsymbol{\gamma}$

Di-photon created using first 2 y's

Di-photon created using correct pairing

Di-Photon Pairing

- But, this pairing is also shaping the background MC
- Distribution of $\frac{|\mathit{Mass}_{\mathit{Diphoton1}} \mathit{Mass}_{\mathit{Diphoton2}}|}{\mathit{Mass}_{\mathit{4\gamma}}}$
- Will check the normalized distributions (this is a stack)
 - That can tell us if this variable can be used as a good handle on S/B

γ+Jets

200

250

300

TetraPhoton P_{T} [GeV]

350

γγ+Jets QCD DYJetstoLL

 Mass distribution of the Tetra-photon (Higgs) object

Ideas to define a control region

- Identifying a control region would help perform a closure test on the background modeling
- This can be done by inverting the selection on γ MVA score (for eg. 3 photons + 1 fake photon)
- Another possibility is to utilize the di-photon pairing information

• Since the two di-photons have the same invariant mass, it is interesting to look at the 2D distribution of Di-photon₁ mass and Di-

photon₂ mass

• Since this is a 4-body decay, it could also be interesting to look at different angular variables

- Cos θ between $\chi 1(3)$ and a1(2) (di-photon₁) in the rest frame of a1(2)
- The distribution is flat for signal MC

 \bullet Cos θ^* is defined through the unit vector of pseudo scalar "a", in the rest frame of the Higgs

- Can construct three planes from the Higgs decay products and the two pseudoscalar decay products in the Higgs rest frame
- ullet Φ and Φ_1 are the two azimuthal angles b/w these three planes
- How to use this information?
 - We cannot apply any selections based on the angular variables
 - But, we can exploit the difference in shapes for signal and background by designing an MVA based on the angular information

Conclusion and next steps

- Looked at the signal and background comparison plots
- Next steps include:
 - Investigating the possibilities of creating a photon signal and control region
 - Studying the angular variables and other possible discriminating variables to design an MVA

Backup

