AVL Trees

- Motivation: we want to guarantee O(log n) running time on the find/insert/remove operations.
- Idea: keep the tree balanced after each operation.
- Solution: AVL (Adelson-Velskii and Landis) trees.
- AVL tree property: for every node in the tree, the height of the left and right subtrees differs by at most 1.

AVL trees: find, insert

- AVL tree find is the same as BST find.
- AVL insert: same as BST insert, except that we might have to "fix" the AVL tree after an insert.
- These operations will take time O(d), where d is the depth of the node being found/inserted.
- What is the maximum height of an *n*-node AVL tree?

AVL tree insert

- Let x be the deepest node where an imbalance occurs.
- Four cases to consider. The insertion is in the
 - 1. left subtree of the left child of x.
 - 2. right subtree of the left child of x.
 - 3. left subtree of the right child of x.
 - 4. right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a double rotation.

Single rotation example

Single rotation in general

Cases 2 & 3

single rotation fails

Double rotation, step 1

Double rotation, step 2

Double rotation in general

TCSS 342 AVL Trees v1.0

Depth of an AVL tree

Theorem: Any AVL tree with *n* nodes has height less than 1.441 log *n*.

Proof: Given an *n*-node AVL tree, we want to find an upper bound on the height of the tree.

Fix *h*. What is the smallest *n* such that there is an AVL tree of height *h* with *n* nodes?

Let S_h be the set of all AVL trees of height h that have as few nodes as possible.

Let \mathbf{w}_h be the number of nodes in any one of these trees.

$$w_0 = 1, w_1 = 2$$

Suppose $T \in S_h$, where $h \ge 2$. Let T_L and T_R be T's left and right subtrees. Since T has height h, either T_L or T_R has height h-1. Suppose it's T_R .

By definition, both T_L and T_R are AVL trees. In fact, $T_R \in S_{h-1}$ or else it could be replaced by a smaller AVL tree of height h-1 to give an AVL tree of height h that is smaller than T.

Similarly,
$$T_L \in S_{h-2}$$
.

Therefore, $w_h = 1 + w_{h-2} + w_{h-1}$.

Claim: For $h \ge 0$, $w_h \ge \varphi^h$, where $\varphi = (1 + \sqrt{5}) / 2 \approx 1.6$.

Proof: The proof is by induction on *h*.

Basis step:
$$h=0$$
. $w_0 = 1 = \varphi_0$. $h=1$. $w_1 = 2 > \varphi_1$.

Induction step: Suppose the claim is true for $0 \le m \le h$, where $h \ge 1$.

Then

$$w_{h+1} = 1 + w_{h-1} + w_h$$

 $\geq 1 + \phi^{h-1} + \phi^h$ (by the i.h.)
 $= 1 + \phi^{h-1} (1 + \phi)$
 $= 1 + \phi^{h+1}$ (1+ ϕ = ϕ^2)
 $> \phi^{h+1}$

Thus, the claim is true.

From the claim, in an *n*-node AVL tree of height *h*,

$$n \ge w_h \ge \varphi^h$$
 (from the Claim)
 $h \le \log_{\varphi} n$
 $= (\log n) / (\log \varphi)$
 $\le 1.441 \log n$

AVL tree: Running times

- find takes $O(\log n)$ time, because height of the tree is always $O(\log n)$.
- insert: O(log n) time because we do a find (O(log n) time), and then we may have to visit every node on the path back to the root, performing up to 2 single rotations (O(1) time each) to fix the tree.
- remove: O(log n) time. Left as an exercise.