

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра ИУ5 «Системы обработки информации и управления»

Отчет по лабораторной работе №2 по дисциплине «Методы машинного обучения» по теме «Обработка признаков (часть 1)»

Выполнил: студент группы № ИУ5-21М Камалов М.Р. подпись, дата

Проверил: Балашов А.М. подпись, дата

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции.
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - устранение пропусков в данных;
 - кодирование категориальных признаков;
 - нормализация числовых признаков.

#Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

Загрузка и первичный анализ данных

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn.impute
import sklearn.preprocessing
%matplotlib inline
sns.set(style="ticks")
data=pd.read csv("sample data/
Video Games \overline{S}ales as at \overline{2}2 Dec 2016.csv")
from IPython.display import set_matplotlib_formats
set matplotlib formats("retina")
# Первые 5 строк датасета
data.head()
                        Name Platform Year_of_Release
                                                                 Genre
Publisher \
                 Wii Sports
                                  Wii
                                                 2006.0
                                                                Sports
Nintendo
          Super Mario Bros.
                                  NES
                                                 1985.0
                                                              Platform
Nintendo
             Mario Kart Wii
                                  Wii
                                                 2008.0
                                                                Racing
Nintendo
          Wii Sports Resort
                                  Wii
                                                 2009.0
                                                                Sports
Nintendo
4 Pokemon Red/Pokemon Blue
                                   GB
                                                 1996.0 Role-Playing
Nintendo
   NA Sales EU Sales JP Sales
                                  Other Sales
                                                Global Sales
Critic Score \
      41.36
                28.96
                            3.77
                                         8.45
                                                       82.53
0
76.0
                 3.58
                            6.81
                                         0.77
                                                       40.24
1
      29.08
NaN
      15.68
                12.76
                            3.79
                                         3.29
                                                       35.52
82.0
      15.61
                10.93
                            3.28
                                          2.95
                                                       32.77
80.0
      11.27
                 8.89
                           10.22
                                          1.00
                                                       31.37
NaN
```

Critic_Count User_Score User_Count Developer Rating

```
0
            51.0
                           8
                                    322.0
                                           Nintendo
                                                           Ε
1
                                                 NaN
                                                        NaN
             NaN
                         NaN
                                      NaN
2
                                    709.0
                                           Nintendo
            73.0
                         8.3
                                                           Ε
3
            73.0
                           8
                                    192.0
                                           Nintendo
                                                           Ε
4
             NaN
                                      NaN
                                                        NaN
                         NaN
                                                 NaN
```

total_count = data.shape[0]

print('Bcero cτροκ: {}'.format(total count))

Всего строк: 16719

типы колонок

data.dtypes

object Name Platform object Year_of_Release float64 Genre object object Publisher NA Sales float64 EU Sales float64 float64 JP Sales Other_Sales float64 Global Sales float64 Critic_Score float64 Critic Count float64 User_Score object User Count float64 Developer object Rating object

dtype: object

размер набора данных

data.shape

(16719, 16)

Обработка пропусков в данных

проверим есть ли пропущенные значения data.isnull().sum()

Name	2
Platform	0
Year_of_Release	269
Genre	2
Publisher	54
NA_Sales	0
EU_Sales	0
JP_Sales	0
Other_Sales	0

```
Global Sales
Critic Score
                   8582
Critic_Count
                   8582
User Score
                   6704
User Count
                   9129
Developer
                   6623
                   6769
Rating
dtype: int64
# Удаление колонок, содержащих пустые значения
data new 1 = data.dropna(axis=1, how='any')
(data.shape, data new 1.shape)
((16719, 16), (16719, 6))
data new 1.columns
Index(['Platform', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales',
       'Global Sales'],
      dtype='object')
# Удаление строк, содержащих пустые значения
data new 2 = data.dropna(axis=0, how='any')
(data.shape, data new 2.shape)
((16719, 16), (6825, 16))
# Найдем пропуски в данных в процентном соотношении
for col in data.columns:
    pct missing = np.mean(data[col].isnull())
    print('{} - {}%'.format(col, round(pct missing*100)))
Name - 0%
Platform - 0%
Year of Release - 2%
Genre - 0%
Publisher - 0%
NA Sales - 0%
EU Sales - 0%
JP Sales - 0%
Other Sales - 0%
Global_Sales - 0%
Critic Score - 51%
Critic_Count - 51%
User Score - 40%
User_Count - 55%
Developer - 40%
Rating - 40%
data[data.columns].isnull()
```

	Name	Platform	Year_c	of_Release	Genre	Publisher	NA_Sales	
EU_Sal 0		False		False	False	False	False	
False 1	False	False		False	False	False	False	
False 2 False 3 False 4 False	False	False		False	False	False	False	
	False	False		False	False	False	False	
	False False		False		False	False	False	
16714	False	False		False	False	False	False	
False 16715	False	False		False	False	False	False	
False 16716	False	False		False	False	False	False	
False 16717	False	False		False	False	False	False	
False 16718 False	False	False		False	False	False	False	
	JP_Sale	es Other_	Sales	Global_Sal	es Cri	tic_Score	Critic_Count	
\ 0	JP_Sale		Sales False	Global_Sal Fal		tic_Score False	Critic_Count False	
\		se			se			
\ 0	Fals	se se	False	Fal	se se	False	False	
\ 0 1	Fals	se se	False False	Fal Fal	se se se	False True	False True	
\ 0 1 2	Fals Fals	se se se	False False False	Fal Fal	se se se	False True False	False True False	
\ 0 1 2 3	Fals Fals Fals Fals	se se se	False False False False	Fal Fal Fal	se se se	False True False False	False True False False	
\ 0 1 2 3	Fals Fals Fals Fals	se se se	False False False False	Fal Fal Fal	se se se se	False True False False	False True False False	
\ 0 1 2 3 4	Fals Fals Fals Fals	se se se se	False False False False	Fal Fal Fal Fal	se se se se	False True False False True	False True False False True	
\ 0 1 2 3 4 16714	Fals Fals Fals Fals	se se se se	False False False False False	Fal Fal Fal Fal	se se se se se se se	False True False True True	False True False True True	
\ 0 1 2 3 4 16714 16715	Fals Fals Fals Fals Fals	se se se se se	False False False False False	Fal Fal Fal Fal Fal	se se se se se se se se	False True False True True True	False True False True True True	

```
User Score
                     User Count
                                   Developer
                                               Rating
0
             False
                           False
                                        False
                                                 False
1
              True
                            True
                                                  True
                                         True
2
             False
                           False
                                        False
                                                 False
3
             False
                           False
                                        False
                                                 False
4
              True
                            True
                                         True
                                                  True
                . . .
                              . . .
                                          . . .
16714
              True
                            True
                                         True
                                                  True
16715
              True
                            True
                                         True
                                                  True
              True
                            True
                                         True
                                                  True
16716
                                                  True
16717
              True
                            True
                                         True
16718
              True
                            True
                                         True
                                                  True
```

[16719 rows x 16 columns]

```
# Поработаем с заполнение пропусков в колонке "Year of release" colors = ['#FFF0F5', '#008B8B'] sns.heatmap(data[data.columns].isnull(), cmap=sns.color palette(colors))
```

<AxesSubplot:>

Заполним пропуски в колонке нулями sns.distplot(data['Year of Release'].fillna(0))

C:\Users\User\anaconda3\lib\site-packages\seaborn\
distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar

flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='Year_of_Release', ylabel='Density'>

Получаем совершенно не то, что нам нужно
С помощью класса SimpleImputer можно проводить импьютацию различными
показателями центра распределения
Применим заполнение средними значениями
mean=sklearn.impute.SimpleImputer(strategy="mean") # Среднее значение
mean_rate=mean.fit_transform(data[['Year_of_Release']])
sns.distplot(mean rate)

C:\Users\User\anaconda3\lib\site-packages\seaborn\
distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:ylabel='Density'>

med=sklearn.impute.SimpleImputer(strategy="median") # Половина элементов больше медианы, половина меньше med_rate=med.fit_transform(data[['Year_of_Release']]) sns.distplot(med_rate)

C:\Users\User\anaconda3\lib\site-packages\seaborn\
distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:ylabel='Density'>

freq=sklearn.impute.SimpleImputer(strategy="most_frequent")
freq_rate=freq.fit_transform(data[['Year_of_Release']])
sns.distplot(freq_rate)

C:\Users\User\anaconda3\lib\site-packages\seaborn\
distributions.py:2551: FutureWarning: `distplot` is a deprecated

function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

<AxesSubplot:ylabel='Density'>

Остановим выбор на средних значениях data['Year_of_Release'] = mean_rate

Обработка пропусков в категориальных данных

```
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений
{}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка Name. Тип данных object. Количество пустых значений 2, 0.01%. Колонка Genre. Тип данных object. Количество пустых значений 2, 0.01%. Колонка Publisher. Тип данных object. Количество пустых значений 54, 0.32%.

Колонка User_Score. Тип данных object. Количество пустых значений 6704, 40.1%.

Колонка Developer. Тип данных object. Количество пустых значений 6623, 39.61%.

Колонка Rating. Тип данных object. Количество пустых значений 6769, 40.49%.

```
cat temp data = data[['Genre']]
cat temp data.head()
          Genre
0
         Sports
1
       Platform
2
         Racing
3
         Sports
4 Role-Playing
cat temp data['Genre'].unique()
array(['Sports', 'Platform', 'Racing', 'Role-Playing', 'Puzzle',
'Misc',
       'Shooter', 'Simulation', 'Action', 'Fighting', 'Adventure',
       'Strategy', nan], dtype=object)
cat temp data[cat temp data['Genre'].isnull()]
      Genre
659
        NaN
14246
        NaN
# Импьютация наиболее частыми значениями
imp2 = sklearn.impute.SimpleImputer(missing values=np.nan,
strategy='most frequent')
data imp2 = imp2.fit transform(cat temp data)
data imp2
array([['Sports'],
       ['Platform'],
       ['Racing'],
       . . . ,
       ['Adventure'],
       ['Platform'],
       ['Simulation']], dtype=object)
# Пустые значения отсутствуют
np.unique(data imp2)
array(['Action', 'Adventure', 'Fighting', 'Misc', 'Platform',
'Puzzle',
       'Racing', 'Role-Playing', 'Shooter', 'Simulation', 'Sports',
       'Strategy'], dtype=object)
# Импьютация константой
imp3 = sklearn.impute.SimpleImputer(missing values=np.nan,
strategy='constant', fill_value='NA')
data imp3 = imp3.fit transform(cat temp data)
data imp3
array([['Sports'],
       ['Platform'],
```

```
['Racing'],
      ['Adventure'],
      ['Platform'],
      ['Simulation']], dtype=object)
np.unique(data imp3)
'Sports', 'Strategy'], dtype=object)
data imp3[data imp3=='NA'].size
2
data['Genre'] = data imp2
data['Genre'].unique()
array(['Sports', 'Platform', 'Racing', 'Role-Playing', 'Puzzle',
'Misc',
      'Shooter', 'Simulation', 'Action', 'Fighting', 'Adventure',
      'Strategy'], dtype=object)
Кодирование категориальных признаков
types=data["Genre"]
types.value_counts()
Action
              3372
Sports
              2348
Misc
              1750
Role-Playing
              1500
Shooter
              1323
Adventure
              1303
Racing
              1249
Platform
              888
Simulation
              874
Fighting
               849
Strategy
               683
Puzzle
               580
Name: Genre, dtype: int64
```

Кодирование категорий целочисленными значениями - label encoding

```
le=sklearn.preprocessing.LabelEncoder()
type_le=le.fit_transform(types)
print(np.unique(type_le))
le.inverse_transform(np.unique(type_le))
```


Pandas get_dummies - быстрый вариант one-hot кодирования

type_s=pd.get_dummies(types)
type_s.head(25)

DI av	Actio		Adventure	Fighting	Misc	Platform	Puzzle	Racing	Role-
Play 0		\ 0	0	0	0	Θ	0	0	
0	(0	0	0	0	1	0	0	
0 2	(0	Θ	0	0	0	0	1	
0 3	(0	0	0	0	0	0	0	
0 4	(0	0	0	0	0	0	0	
1 5	(0	0	0	0	Θ	1	0	
0 6		0	0	0	0	1	0	0	
0 7		0	0	0	1	0	0	0	
0 8	(0	0	0	0	1	0	0	
0 9	(0	0	0	0	0	0	0	
0 10	(0	0	0	0	0	0	0	
0 11	(0	0	0	0	Θ	0	1	
0 12	(0	0	0	0	Θ	0	0	
1 13	(0	0	0	0	0	0	0	
0 14	(0	0	0	1	Θ	0	0	
0 15	(0	0	0	0	Θ	0	0	
0 16		1	0	0	0	0	0	0	
0 17		1	Θ	0	0	0	0	0	
0 18	(0	0	0	Θ	1	0	0	

0							
19 0	0	0	0	1	Θ	0	0
20 1	0	0	0	0	0	0	0
21	0	0	0	0	1	0	0
0 22	0	0	0	0	1	0	0
0 23	1	0	0	0	Θ	0	0
0 24 0	1	0	0	0	0	0	0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Shooter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Simulation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sports 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Strategy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Переходим к масштабированию данных.

Масштабирование предполагает изменение диапазона измерения величины, а нормализация - изменение распределения этой величины.

Если признаки лежат в различных диапазонах, то необходимо их нормализовать. Как правило, применяют два следующих подхода:

MinMax масштабирование

plt.show()

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['Year_of_Release']])
plt.hist(data['Year_of_Release'], 80)
```



```
plt.hist(sc1_data, 80)
plt.show()
```


Масштабирование данных на основе Z-оценки - StandardScaler

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['Year_of_Release']])
plt.hist(sc2_data, 50)
plt.show()
```

