Assignment 12

Vishal Kumar, MIT2019090

Question

Discuss Semidefinite Programming (SDP) including Cone of PSD Matrices and SDP duality. Explain the barrier method for SDP.

Ans.-

Let $X \in S^n$. We can think of X as a matrix, or equivalently, as an array of n^2 components of the form $(x_{11},...,x_{nn})$. We can also just think of X as an object (a vector) in the space S^n . All three different equivalent ways of looking at X will be useful.

Now, the linear function of X can be written as, C(X) or $C \bullet X$, where

$$C \bullet X := \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$

If X is a symmetric matrix, there is no loss of generality in assuming that the matrix C is also symmetric.

Now, let's define a semidefinite program. A semidefinite program (SDP) is an optimization problem of the form:

$$SDP: minimise C \bullet X$$

$$s.t. A_i \bullet X = b_i, \quad i = 1,.,.,m,$$

$$X \succ 0$$

Semidefinite Programming Duality

The dual problem can be defined as:

SDD: maximise
$$\sum_{i=1}^{m} y_i b_i$$

s.t. $\sum_{i=1}^{m} y_i A_i + S = C$,
 $S \succeq 0$

And, the constraints of SDD state that the matrix S defined as:

$$S = C - \sum_{i=1}^{m} y_i A_i$$

must be semi-definite, that means:

$$C - \sum_{i=1}^{m} y_i A_i \succeq 0$$

Barrier Method for SDP:

For SDP, we need a barrier function whose values approach $+\infty$ as points X approach the boundary of the semi-definite cone S_n^+ .

Let's consider the logarithmic barrier problem $BSDP(\theta)$ parameterized by the positive barrier parameter θ :

$$BSDP(\theta): \quad C \bullet X - \theta ln(det(X)$$

$$s.t. \quad A_i \bullet X = b_i, \quad i = 1,..,m,$$

$$X \succ 0$$

Now, the objective function:

$$\Delta f_{\theta}(X) = C - \theta X^{-1}$$

Now, $X = LL^T$, because X is symmetric.

$$S = \theta X^{-1} = \theta L^{-T} L - 1.$$

and,

$$\frac{1}{\theta}L^T S L = I$$

So, the KKT conditions of BSDP are:

- $A_i \bullet X = b_i$, i=1,...,m
- $X \succ 0, X = LL^T$
- $\bullet \ \sum_{i=1}^{m} y_i A_i + S = C$
- I $\frac{1}{\theta}L^TSL = 0$