考试时间2019年1月22日(9:30-11:30)

改完卷已放假,查卷时间只能在下学期开学初

---试卷答题请步骤完整(要写上公式)---

- 1)考试可以使用计算器
- 2)可带半张A4自己整理的公式纸
- 3)考前的21日晚18:00-20:00在A教二楼有答疑
- 4)样卷见附件,以下为作业及答疑常见问题,与考试无关

总体分布,样本的经验分布,联合分布,抽样分布

例:设一个总体,含有4个元素(个体) ,即总体单位数N=4。4 个个体分别为 $x_1=1$ 、 $x_2=2$ 、 $x_3=3$ 、 $x_4=4$ 。总体X的分布及期望和方差如下

X	1	2	3	4
P	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

现从总体中抽取n=2的简单随机样本,在重复抽样条件下, 共有4²=16个样本。样本(X1,X2)所有的结果为:

所有可能的n = 2 的样本(共16个)								
第二个观察值								
1	3	4						
(1,1)	(1,2)	(1,3)	(1,4)					
(2,1)	(2,2)	(2,3)	(2,4)					
(3,1)	(3,2)	(3,3)	(3,4)					
(4,1)	(4,2)	(4,3)	(4,4)					
	1 (1,1) (2,1) (3,1)	第二个 1 2 (1,1) (1,2) (2,1) (2,2) (3,1) (3,2)	第二个观察值 1 2 3 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)					

计算出各样本的均值,如下表。并给出样本均值的抽样分布:

\overline{X}	1	1.5	2	2.5	3	3.5	4
P	$\frac{1}{16}$	$\frac{2}{16}$	<u>3</u>	$\frac{4}{16}$	<u>3</u>	<u>2</u> 16	<u>1</u>

16个样本的均值					.3 p
第一个		第二个	观察值		
观察值	1	2	3	4	.2
1	1.0	1.5	2.0	2.5	
2	1.5	2.0	2.5	3.0	
3	2.0	2.5	3.0	3.5	
4	2.5	3.0	3.5	4.0	1.0 1.5 2.0 2.5 3.0 3.5 4.0 样本均值的抽样分布
					11 平30 压出31四173 116

总体的期望和方差 与 样本均值的期望和方差 的比较

总体分布

 $\mu = 2.5$ $\sigma^2 = 1.25$

样本均值分布

$$\mu_{\overline{x}} = 2.5$$

$$\sigma_{\overline{x}}^2 = 0.625 = 1.25 / 2 = \sigma^2 / n$$

2.8 设 (X_1, X_2, \dots, X_m) 是 $\xi \sim N(0, \sigma^2)$ 的样本, (Y_1, Y_2, \dots, Y_n) 是 $\eta \sim N(0, \sigma^2)$ 的样本,两个样本相互

独立,证明: (1)
$$\frac{\sum\limits_{i=1}^{m}{X_{i}}^{2}+\sum\limits_{j=1}^{n}{Y_{j}}^{2}}{\sigma^{2}}\sim\chi^{2}(m+n)$$
 ; (2) $\frac{\sum\limits_{i=1}^{m}{X_{i}}}{\sqrt{\sum\limits_{j=1}^{n}{Y_{j}}^{2}}}\sqrt{\frac{n}{m}}\sim t(n)$.

证(1)因为 (X_1,X_2,\cdots,X_m) 是 $\xi \sim N(0,\sigma^2)$ 的样本,所以 $X_i \sim N(0,\sigma^2)$, $i=1,2,\cdots,m$, X_1,X_2,\cdots,X_m

相互独立。即有 $\frac{X_i}{\sigma} \sim N(0,1)$, $i=1,2,\cdots,m$, $\frac{X_1}{\sigma},\frac{X_2}{\sigma},\cdots,\frac{X_m}{\sigma}$ 相互独立。

由
$$\chi^2$$
 分布定义可知 $\frac{\sum\limits_{i=1}^m {X_i}^2}{\sigma^2} = \sum\limits_{i=1}^m \left(\frac{X_i}{\sigma}\right)^2 \sim \chi^2(m)$ 。 同理可证 $\frac{\sum\limits_{j=1}^n {Y_j}^2}{\sigma^2} \sim \chi^2(n)$ 。

而且由于两个样本相互独立,所以 $\frac{\sum\limits_{i=1}^{m}X_{i}^{2}}{\sigma^{2}}$ 与 $\frac{\sum\limits_{j=1}^{n}Y_{j}^{2}}{\sigma^{2}}$ 相互独立。

因此,由 χ^2 分布的可加性(定理 2.3)可知 $\frac{\sum\limits_{i=1}^m X_i^2 + \sum\limits_{j=1}^n Y_j^2}{\sigma^2} \sim \chi^2(m+n)$

(2) 因为 (X_1,X_2,\cdots,X_m) 是 $\xi\sim N(0,\sigma^2)$ 的样本,所以 $X_i\sim N(0,\sigma^2)$, $i=1,2,\cdots,m$,而且相互独

立。因此有
$$\sum_{i=1}^m X_i \sim N(0, m\sigma^2)$$
,所以 $\frac{\sum_{i=1}^m X_i - 0}{\sqrt{m\sigma^2}} = \frac{1}{\sigma\sqrt{m}} \sum_{i=1}^m X_i \sim N(0, 1)$ 。

同时,在上面(1)中已经证得 $\frac{\sum\limits_{j=1}^n Y_j^2}{\sigma^2} \sim \chi^2(n)$,而且由于两个样本相互独立,所以 $\frac{1}{\sigma\sqrt{m}}\sum\limits_{i=1}^m X_i$ 与 $\frac{\sum\limits_{j=1}^n Y_j^2}{\sigma^2}$ 相互独立。

因此,由
$$t$$
 分布的定义可知 $\frac{\sum\limits_{i=1}^{m}X_{i}}{\sqrt{\sum\limits_{j=1}^{n}Y_{j}^{2}}}\sqrt{\frac{n}{m}}=\frac{\frac{1}{\sigma\sqrt{m}}\sum\limits_{i=1}^{m}X_{i}}{\sqrt{\frac{\sum\limits_{j=1}^{n}Y_{j}^{2}}{\sigma^{2}}/n}}\sim t(n)$ 。

分析 根据
$$t$$
 分布的定义, $\sqrt{\frac{N(0,1)}{\sqrt{x^2(n)}/n}} \sim t(n)$ 。。

3.5 设总体 ξ 服从 [a,b] 上的均匀分布,概率密度为 $\varphi(x) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & \pm t \end{cases}$,其中,a < b 是未知参数, (X_1, X_2, \dots, X_n) 是 ξ 的样本,求:(1) a,b 的矩法估计;(2) a,b 的极大似然估计。

$$E\xi = \int_{-\infty}^{+\infty} x \, \varphi(x) \, dx = \int_{a}^{b} x \, \frac{1}{b-a} \, dx = \frac{a+b}{2} \quad , \quad E(\xi^{2}) = \int_{-\infty}^{+\infty} x^{2} \varphi(x) \, dx = \int_{a}^{b} x^{2} \, \frac{1}{b-a} \, dx = \frac{b^{2} + ab + a^{2}}{3} \quad .$$

解方程
$$\begin{cases} \frac{\hat{a}+\hat{b}}{2} = E \xi = \overline{X} & (1) \\ \frac{\hat{b}^2 + \hat{a}\hat{b} + \hat{a}^2}{3} = E(\xi^2) = \overline{X}^2 & (2) \end{cases}$$

$$(2)-(1)^2: \ \frac{(\hat{b}-\hat{a})^2}{12}=\frac{\hat{b}^2+\hat{a}\hat{b}+\hat{a}^2}{3}-(\frac{\hat{a}+\hat{b}}{2})^2=\overline{X}^2-\overline{X}^2=\frac{1}{n}\sum_{i=1}^n X_i^2-\overline{X}^2=S^2 \ ,$$

两边开方:
$$\frac{\hat{b}-\hat{a}}{2\sqrt{3}}=\pm\sqrt{S^2}=\pm S$$
, 即 $\frac{\hat{b}-\hat{a}}{2}=\pm\sqrt{3}\,S$ (3) ,

$$(1) - (3) \, \text{\hat{q}} \colon \quad \hat{a} = \frac{\hat{a} + \hat{b}}{2} - \frac{\hat{b} - \hat{a}}{2} = \overline{X} \mp \sqrt{3} \, \mathcal{S} \quad , \quad (1) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (2) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (3) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (3) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (3) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (3) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (3) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3} \, \mathcal{S} \quad , \quad (4) + (4) \, \text{\hat{q}} \colon \quad \hat{b} = \frac{\hat{a} + \hat{b}}{2} + \frac{\hat{b} - \hat{a}}{2} = \overline{X} \pm \sqrt{3}$$

即有
$$\begin{cases} \hat{a} = \overline{X} - \sqrt{3} S \\ \hat{b} = \overline{X} + \sqrt{3} S \end{cases}$$
 或 $\begin{cases} \hat{a} = \overline{X} + \sqrt{3} S \\ \hat{b} = \overline{X} - \sqrt{3} S \end{cases}$ 。 因为 $a < b$,第二组解应该舍去,所以矩法估计为 $\begin{cases} \hat{a} = \overline{X} - \sqrt{3} S \\ \hat{b} = \overline{X} + \sqrt{3} S \end{cases}$ 。

(2) 似然函数

$$L = \prod_{i=1}^n \varphi(x_i) = \begin{cases} \prod_{i=1}^n \frac{1}{b-a} & a \leq x_i \leq b \text{ , } i = 1,2,\cdots,n \\ 0 & \text{ if } t \end{cases} = \begin{cases} \frac{1}{(b-a)^n} & a \leq \min_i x_i \leq \max_i x_i \leq b \\ 0 & \text{ if } t \end{cases}.$$

当 $L \neq 0$ 时,对 L 取对数,得到 $\ln L = -n \ln(b-a)$ 。

但从 $L=\frac{1}{(b-a)^n}$ 可看出,它要达到最大,a 要尽可能大,但 a 不能大于 $\min_i x_i$,b 要尽可能小,但 b

不能小于 $\max_i x_i$,可见,当且仅当 $a=\min_i x_i$, $b=\max_i x_i$ 时 $L=\frac{1}{(b-a)^n}$ 取到最大值。

所以极大似然估计为
$$\begin{cases} \hat{a}_L = \min_i X_i \\ \hat{b}_L = \max_i X_i \end{cases} .$$

3.10 设总体 *ξ* 的概率分布为

ξ	0	1	2
$P\{\xi=k\}$	$1-3\theta$	θ	2θ

其中, θ ($0 < \theta < \frac{1}{3}$) 是未知参数,利用总体 ξ 的如下样本观测值

1, 0, 1, 2, 1,

求 θ 的矩法估计值和极大似然估计值。

$$(1) \quad E\xi = \sum_{k=0}^{2} kP\{\xi = k\} = 0 \times (1-3\theta) + 1 \times \theta + 2 \times 2\theta = 5\theta \quad , \quad \bar{x} = \frac{1+0+1+2+1}{5} = \frac{5}{5} = 1 \quad .$$

解方程 $5\hat{\theta} = \hat{E}\xi = \bar{x} = 1$, 得到 θ 的矩法估计值 $\hat{\theta} = \frac{1}{5}$ 。

(2) 似然函数
$$L = \prod_{i=1}^{n} P\{\xi = x_i\} = (1 - 3\theta)^1 \times \theta^3 \times (2\theta)^1 = 2(1 - 3\theta)\theta^4$$
 。 $\ln L = \ln 2 + \ln(1 - 3\theta) + 4\ln \theta$,

解方程
$$\frac{\mathrm{d} \ln L}{\mathrm{d} \theta} = -\frac{3}{1-3\theta} + \frac{4}{\theta} = \frac{-3\theta+4-12\theta}{(1-3\theta)\theta} = \frac{4-15\theta}{(1-3\theta)\theta} = 0$$
 得到 θ 的极大似然估计值 $\hat{\theta}_L = \frac{4}{15}$ 。

4.1 设总体 $\xi \sim N(\mu, \sigma^2)$,已知其中 $\sigma = \sigma_0$, (X_1, X_2, \cdots, X_n) 是 ξ 的样本, μ 的置信水平为 $1-\alpha$ 的置信区间为 $[\underline{\theta}, \overline{\theta}]$,其中 $\underline{\theta}$, $\overline{\theta} = \overline{X} \mp u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}}$; 检验 H_0 : $\mu = \mu_0$ 的统计量 $U = \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n}$ 。证明:在显著水平 α 下,拒绝假设 H_0 : $\mu = \mu_0$ 的充分必要条件是 $\mu_0 \notin [\underline{\theta}, \overline{\theta}]$ 。

这说明参数的区间估计与参数的假设检验有着一一对应的关系,可以用参数的区间估计代替参数的假设检验。

证 在显著水平 α 下,拒绝假设 $H_0: \mu = \mu_0$ 的充分必要条件是 $\left|U\right| > u_{1-\alpha_2}$,其中 $U = \frac{X - \mu_0}{\sigma_0} \sqrt{n}$,

即
$$\left| \frac{\overline{X} - \mu_0}{\sigma_0} \sqrt{n} \right| > u_{1-\alpha/2}$$
 ,也就是 $\left| \overline{X} - \mu_0 \right| > u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}}$,它等价于

$$\mu_0 < \overline{X} - u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}}$$
 或 $\mu_0 > \overline{X} + u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}}$,

即
$$\mu_0 \notin [\underline{\theta}, \overline{\theta}]$$
 , 其中 $\underline{\theta} = \overline{X} - u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}}$, $\overline{\theta} = \overline{X} + u_{1-\alpha/2} \frac{\sigma_0}{\sqrt{n}}$ 。

4.2 设 $(X_1, X_2, \dots, X_{16})$ 是取自正态总体 $N(\mu, 1)$ 的样本,在显著性水平 $\alpha = 0.05$ 下检验 $M_0: \mu = 0$, $M_1: \mu \neq 0$. 若正态总体的期望的真值为 $\mu = 0.08$,求该检验犯第二类错误的概率.

解 犯第二类错误的概率为

= 0.9495 + 0.9887 - 1 = 0.9382

$$\beta = P\left\{\frac{1}{8} + \frac{1}{9} + \frac{1}{9}$$

4.15 某厂从用新、旧工艺生产的灯泡中各取 n 只测试其寿命,设新、旧工艺生产的灯泡寿命分别为 $\xi \sim N\left(\mu_{1},\sigma_{1}^{2}\right)$ 和 $\eta \sim N\left(\mu_{2},\sigma_{2}^{2}\right)$,其样本分别记为 $\left(X_{1},X_{2},\ldots,X_{n}\right)$ 和 $\left(Y_{1},Y_{2},\ldots,Y_{n}\right).$ 令 $Z_{i}=X_{i}-Y_{i}\left(i=1,2,\ldots,n\right); Z_{i}$ 的均值为 \overline{Z} ;样本修正方差记为 $S_{z}^{*2}.$ (1) 证明 $\frac{\overline{Z}-\left(\mu_{1}-\mu_{2}\right)}{S_{z}^{*}}\sqrt{n} \sim t\left(n-1\right);$ (2) 求显著性水平 α 下, $H_{0}:\mu_{1}=\mu_{2}$

的拒绝域.

4.21 从某厂生产的布匹中抽查 50 匹,查得布匹上的疵点数如下:

疵点数	0	1	2	3	≥4
频数	20	16	8	6	0

问:是否可以认为每匹布上的疵点数 ξ 服从 Poisson(普阿松)分布?(显著水平 $\alpha = 0.05$)

$$\begin{split} \hat{p}_4 &= \hat{P}\{2.5 < \xi < +\infty\} = 1 - \hat{P}\{\xi \le 2.5\} = 1 - \hat{p}_1 - \hat{p}_2 - \hat{p}_3 \\ &= 1 - 0.36788 - 0.36788 - 0.18394 = 0.08030 \quad . \end{split}$$

$$\chi^2 = \frac{1}{n} \sum_{k=1}^4 \frac{n_k^2}{\hat{p}_k} - n = \frac{1}{50} \times (\frac{20^2}{0.36788} + \frac{16^2}{0.36788} + \frac{8^2}{0.18394} + \frac{6^2}{0.08030}) - 50 = 1.589 \quad .$$

对 $\alpha = 0.05$, $1-\alpha = 0.95$, 自由度 r-m-1=4-1-1=2 , 查 χ^2 分布表,可得

$$\chi^2_{1-\alpha}(r-m-1) = \chi^2_{0.95}(2) = 5.991$$
.

4.22 从某车床生产的滚珠中,抽取 50 颗,测得它们的直径(单位:mm)落在各区间中的 频数为:

区间	(14.14,14.51]	(14.51,14.88]	(14.88,15.25]	(15.25,15.62]	(15.62,15.99]
频数	6	8	20	11	5

已知滚珠直径的样本均值为 $\overline{X}=15.078$,样本标准差为 S=0.428154 。

问:滚珠的直径 ξ 是否服从正态分布?(显著水平 $\alpha = 0.05$)

$$\hat{\mu} = \overline{X} = 15.078$$
 , $\hat{\sigma} = S = 0.428154$.

作分点 $-\infty < 14.51 < 14.88 < 15.25 < 15.62 < +\infty$,把 ξ 的取值范围分成 5 个区间.

总体 ξ 落在各个区间 $(a_{k-1}, a_k]$ 中的概率的估计值 \hat{p}_k 可由下式求出:

$$\hat{p}_{k} = \hat{P}\{a_{k-1} < \xi \le a_{k}\} = \Phi(\frac{a_{k} - \hat{\mu}}{\hat{\sigma}}) - \Phi(\frac{a_{k-1} - \hat{\mu}}{\hat{\sigma}}) \quad .$$

用本题的数据代入,得计算结果如下:

(a a 1	(−∞,	(14.51,	(14.88,	(15.25,	(15.62,				
$(a_{k-1},a_k]$	14.51]	14.88]	15.25]	15.62]	+∞)				
n_k	6	8	20	11	5				
\hat{p}_k	\hat{p}_k 0.11682		0.26234	0.23495	0.19811				

$$\chi^2 = \frac{1}{n} \sum_{k=1}^{r} \frac{n_k^2}{\hat{p}_k} - n$$

$$= \frac{1}{50} \times (\frac{6^2}{0.09232} + \frac{8^2}{0.22956} + \frac{20^2}{0.33418} + \frac{11^2}{0.24117} + \frac{5^2}{0.10277}) - 50 = 2.214 \quad .$$

对 $\alpha = 0.05$, r - m - 1 = 2, 查 χ^2 分布表, 可得 $\chi^2_{1-\alpha}(r - m - 1) = \chi^2_{0.95}(2) = 5.991$ 。

4.26 为研究儿童智力发展与营养的关系,抽查了950名小学生,得到统计数据如下:

	智商						
	<80	80~89	90~99	≥100			
营养良好	245	228	177	219			
营养不良	31	27	13	10			

问: 儿童的智力发展是否与营养状况有关? (显著水平 $\alpha = 0.05$)

$$\chi^{2} = n \left(\sum_{i=1}^{7} \sum_{j=1}^{5} \frac{n_{ij}^{2}}{n_{i} \cdot n_{ij}} - 1 \right)$$

$$= 950 \times \left(\frac{245^{2}}{869 \times 276} + \frac{228^{2}}{869 \times 255} + \frac{177^{2}}{869 \times 190} + \frac{219^{2}}{869 \times 229} \right)$$

$$+ \frac{31^{2}}{81 \times 276} + \frac{27^{2}}{81 \times 255} + \frac{13^{2}}{81 \times 190} + \frac{10^{2}}{81 \times 220} - 1 \right) = 9.751 \quad .$$

对显著水平 $\alpha = 0.05$,自由度 $(r-1)(s-1) = (2-1) \times (4-1) = 3$,查 χ^2 分布表,

可得分位数 $\chi^2_{1-\alpha}((r-1)(s-1)) = \chi^2_{0.95}(3) = 7.815$ 。

5.7 设 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $\varepsilon_i \sim N(0, \sigma^2)$, $i = 1, 2, \cdots, n$, $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 相互独

立, \hat{eta}_0 , \hat{eta}_1 是 eta_0 , eta_1 的最小二乘估计。证明: $\operatorname{Cov}(\hat{eta}_0,\hat{eta}_1)=0$ 的充分必要条件是

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \, \circ$$

证 因为

$$\begin{split} \operatorname{Cov}(\hat{\beta}_0,\hat{\beta}_1) &= \operatorname{Cov}(\overline{y} - \hat{\beta}_1 \overline{x}, \hat{\beta}_1) = \operatorname{Cov}(\overline{y}, \hat{\beta}_1) - \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_1) \overline{x} \\ &= 0 - D(\hat{\beta}_1) \overline{x} = -\frac{\sigma^2}{L_{--}} \overline{x} \quad . \end{split}$$

5.11 多元线性回归模型中,若先根据变量 \jmath 和 x_{i} $\left(i=1,2,\ldots,m\right)$ 的观测值

$$\left(y_{1},y_{2},\ldots,y_{n}\right)^{T}$$
和 $\left(x_{1i},x_{2i},\ldots,x_{ni}\right)^{T}$ 对变量"标准化",即令

$$\mathbf{x}_{i}^{*} = \frac{\mathbf{x}_{i} - \overline{\mathbf{x}}_{i}}{\sqrt{L_{ii}}} (i = 1, 2, ..., m); \mathbf{y}^{*} = \frac{\mathbf{y} - \overline{\mathbf{y}}}{\sqrt{L_{\mathbf{y}\mathbf{y}}}}; \hat{\mathbf{y}}^{*} = \frac{\hat{\mathbf{y}} - \overline{\mathbf{y}}}{\sqrt{L_{\mathbf{y}\mathbf{y}}}}, \ \sharp \oplus$$

$$L_{ii} \; = \; \sum_{k=1}^{n} \left(\, \mathbf{x}_{ki} \; - \; \overline{\mathbf{x}}_{i} \, \right)^{2} ; \; \overline{\mathbf{x}}_{i} \; = \; \frac{1}{n} \sum_{k=1}^{n} \, \mathbf{x}_{ki} ; \, L_{yy} \; = \; \sum_{k=1}^{n} \left(\, \mathbf{y}_{i} \; - \; \overline{\mathbf{y}} \, \right) \; \; .$$

此时再求 y^* 关于 $x_i^*(i=1,2,\cdots,m)$ 的回归称为标准回归.

(1)证明标准回归方程的常数项为零,即
$$\hat{y}^* = \sum_{i=1}^n d_i x_i^*$$

(2)证明标准回归的总离差平方和
$$\hat{SS}_T = \sum_{i=1}^n \left(y_i^* - \bar{y}^*\right)^2 = 1.$$

证明(1)设y关于 x_1, x_2, \ldots, x_n 的线性回归方程为

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_m x_n$$

于是有

$$\frac{\hat{y} - \bar{y}}{\sqrt{L_{xx}}} = \frac{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_m x_n - \bar{y}}{\sqrt{L_{xx}}}$$

即

$$\hat{y^*} = \frac{\hat{\beta}_0 + \hat{\beta}_1 \left(x_1^* \sqrt{L_{11}} + \overline{x_1} \right) + \dots + \hat{\beta}_m \left(x_m^* \sqrt{L_{m}} + \overline{x_n} \right) - \overline{y}}{\sqrt{L_{yy}}}$$

$$= \frac{\hat{\beta}_0 + \hat{\beta}_1 \overline{x_1} + \dots + \hat{\beta}_m \overline{x_n} - \overline{y}}{\sqrt{L_{yy}}} + \hat{\beta}_1 \sqrt{\frac{L_{11}}{L_{yy}}} x_1^* + \dots + \hat{\beta}_m \sqrt{\frac{L_{m}}{L_{yy}}} x_m^*$$

$$= 0 + d_1 x_1^* + \dots + d_m x_m^*$$

注: 上式用到
$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \dots + \hat{\beta}_m \bar{x}_s$$

此外,从上式还可得
$$d_i = \hat{m{\beta}_i} \sqrt{\frac{L_{ii}}{L_{xx}}}, i = 1, 2, \ldots, m$$

(2)
$$SS_T = \sum_{i=1}^{n} \left(y_i^* - \overline{y^*} \right)^2 = \sum_{i=1}^{n} \left(y_i^* - 0 \right)^2 = \sum_{i=1}^{n} \left(\frac{y_i - \overline{y}}{\sqrt{L_{yy}}} \right)^2$$

$$= \frac{1}{L_{yy}} \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2 = \frac{L_{yy}}{L_{yy}} = 1 \text{ o}$$

班次				产量	<u>r</u>
早班	279	334	303	338	198
中班	229	274	310		
晚班	210	285	117		

问在显著性水平 $\alpha = 0.05$ 下能否认为不同班次的产量无显著性差异? **解** 方差分析的前提为早、中、晚班的产量均服从正态分布,相互独立且方差相等,

$$\xi_i \sim N(\mu_i, \delta^2), i = 1, 2, 3.$$

$$H_0: \mu_1 = \mu_2 = \mu_3$$

$$F_A = \frac{\frac{SS_A}{(r-1)}}{\frac{SS_C}{(n-r)}} = \frac{\frac{14365.53}{2}}{\frac{30453.2}{8}} = 1.8869$$

查表
$$F_{i-\alpha}\left(r-1,n-r\right)=F_{0.95}\left(2,8\right)=4.4589;\;F_{A}< F_{i-\alpha}\left(r-1,n-r\right)$$

故接受 H_0 ,即在显著性水平 $\alpha = 0.05$ 下认为不同班次产量无显著性差异。

方差分析						
差异源	SS	df	MS	F	P-value	F crit
组间	14365.53	2	7182.764	1.886899	0.213154	4. 45897
组内	30453.2	8	3806.65			
总计	44818.73	10				

课件及习题全解见课程主页:

http://59.78.108.56/msta/sltj/

建模用到相关数据分析的SPSS操作演示见

http://59.78.108.56/msta/MYCOURSES/SJFX.HTM

考前课程复习的在线答疑(密码你懂的):

"华理-数理统计学习群"

认真复习

祝你考出好成绩!