Примечание: Обратите внимание, что данные вариантов большей частью совпадают с теми, что использовались в **Лабораторной работе №2**. Допускается ссылаться на исследования, проведенные в рамках той работы, при наглядном оформлении итоговых результатов.

Задание 1. Исследование LQR.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A и B из **Таблицы 2** и рассмотреть систему

$$\dot{x} = Ax + Bu, \quad x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T. \tag{1}$$

Выполнить следующие шаги:

- Проверить систему на стабилизируемость.
- Построить схему моделирования системы (1), замкнутой регулятором u = Kx.
- Задаться подходящими значениями матриц $Q^* \succ 0$ и $R^* \succ 0$ и значением параметра $\alpha > 0$ и сформировать четыре набора пар матриц (Q, R):
 - \circ (Q,R);
 - $\circ (\alpha Q, R);$
 - $\circ (Q, \alpha R);$
 - $\circ (\alpha Q, \alpha R).$
- Для каждой из пар значений матриц (Q,R) синтезировать регулятор, минимизирующий функционал качества

$$J = \int_0^\infty \left(x^T(t)Qx(t) + u^T(t)Ru(t) \right) dt \tag{2}$$

путем решения соответствующего матричного уравнения Риккати при $\nu = 1$:

$$A^{\mathsf{T}}P + PA + Q - \nu PBR^{-1}B^{\mathsf{T}}P = 0, \quad K = -R^{-1}B^{\mathsf{T}}P.$$
 (3)

- \circ Найти соответствующую матрицу регулятора K, обеспечивающую минимизацию функционала качества (2).
- Вычислить соответствующее минимизированное значение функционала качества (2)

$$J_{min} = x_0^T P x_0, (4)$$

где P – решение соответствующего уравнения Риккати (3).

- \circ Выполнить компьютерное моделирование замкнутой системы и построить графики управления u(t), вектора состояния замкнутой системы x(t) и экспериментального значения функционала качества $J_{exp}(t)$ (2). Сопоставить последнее с вычисленным ранее J_{min} .
- ullet Сравнить полученные результаты для различных пар (Q,R), сделать выводы.

Ожидаемые результаты:

- Исследование стабилизируемости системы (1).
- Схема моделирования замкнутой системы.
- Набор выбранных пар (Q, R), для каждой из них:
 - \circ Матрица регулятора K.
 - \circ Минимизированное значение функционала качества J_{min} .
 - \circ Графики сигналов u(t), x(t) и $J_{exp}(t)$. Для наглядности рекомендуется группировать все графики u(t) и $J_{exp}(t)$ на соответствующих координатных плоскостях, дополнив графики $J_{exp}(t)$ выводом соответствующего значения J_{min} .
- Листинги аналитических расчетов.
- Выводы.

Задание 2. Исследование LQE/фильтра Калмана.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A и C из **Таблицы 3** и рассмотреть систему

$$\begin{cases} \dot{x} = Ax + f \\ y = Cx + \xi \end{cases} \quad x(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T, \tag{5}$$

В соответствии с вашим вариантом задаться:

- (Для нечетных вариантов) Детерминированными сигналами f(t) и $\xi(t)$ (гармонические возмущения), исследуя таким образом LQE.
- (Для четных вариантов) Cлучайными сигналами f(t) и $\xi(t)$ (гауссовский белый шум), исследуя таким образом фильтр Kалмана.

Выполнить следующие шаги:

- Проверить систему на обнаруживаемость.
- Построить схему моделирования системы (5) с наблюдателем состояния $\dot{\hat{x}} = A\hat{x} + L(C\hat{x} y)$.
- Задаться подходящими значениями матриц $Q^* \succ 0$ и $R^* \succ 0$ и значением параметра $\alpha > 0$ и сформировать четыре набора пар матриц (Q, R):
 - $\circ (Q^*, R^*);$
 - $\circ (\alpha Q^*, R^*);$
 - $\circ (Q^*, \alpha R^*);$
 - $\circ (\alpha Q^*, \alpha R^*).$

Также можете предложить дополнительный набор (Q,R), способный полностью отфильтровать влияние сигналов f(t) и $\xi(t)$ при помощи исследуемого наблюдателя.

ullet Для каждой из пар значений матриц (Q,R) синтезировать наблюдатель, минимизирующий «критерий доверия»

$$J = \int_0^\infty \left(f^T(t) Q^{-1} f(t) + \xi^T(t) R^{-1} \xi(t) \right) dt$$
 (6)

путем решения соответствующего матричного уравнения Риккати при $\nu = 1$:

$$AP + PA^{\mathsf{T}} + Q - \nu PC^{\mathsf{T}}R^{-1}CP = 0, \quad L = -PC^{\mathsf{T}}R^{-1}.$$
 (7)

- \circ Найти соответствующую матрицу наблюдателя K, обеспечивающую минимизацию функционала качества (2). где P решение соответствующего уравнения Риккати (3).
- \circ Выполнить компьютерное моделирование с нулевыми начальными условиями наблюдателя $\hat{x}(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$. Построить сравнительные графики x(t) и $\hat{x}(t)$, а также график ошибки наблюдателя $e(t) = x(t) \hat{x}(t)$.
- Сравнить полученные результаты для различных пар (Q, R), сделать выводы.

Ожидаемые результаты:

- Исследование обнаруживаемости системы (5).
- Выбранные сигналы f(t) и $\xi(t)$.

- Схема моделирования системы с наблюдателем.
- Набор выбранных пар (Q,R), для каждой из них:
 - \circ Матрица коррекции наблюдателя L.
 - \circ Графики сигналов x(t), $\hat{x}(t)$ и невязки e(t). Для повышения наглядности рекомендуется размещать графики x(t) и $\hat{x}(t)$ для одного спектра на одной координатной плоскости.
- Листинги аналитических расчетов.
- Выводы.

Задание 3. Синтез LQG.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A, B, C и D из **Таблицы 4** и рассмотреть систему

$$\begin{cases} \dot{x} = Ax + Bu + f \\ y = Cx + Du + \xi \end{cases} \quad x(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T, \tag{8}$$

В соответствии с вашим вариантом задаться:

- (Для нечетных вариантов) Cлучайными сигналами f(t) и $\xi(t)$ (гауссовский белый шум).
- (Для четных вариантов) Детерминированными сигналами f(t) и $\xi(t)$ (гармонические возмущения).

Выполнить следующие шаги:

- Проверить систему на стабилизируемость и обнаруживаемость.
- Построить схему моделирования системы (8), замкнутой регулятором, состоящем из наблюдателя состояния и закона управления и $u = K\hat{x}$.
- Задаться значениями пар матриц (Q_K, R_K) для регулятора и (Q_L, R_L) для наблюдателя.
- Синтезировать матрицу регулятора K используя решение соответствующего матричного уравнения Рикатти (3).

- \bullet Синтезировать матрицу коррекции наблюдателя L используя решение соответствующего матричного уравнения Рикатти (7).
- Выполнить компьютерное моделирование с нулевыми начальными условиями наблюдателя $\hat{x}(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$. Построить график формируемого регулятором управления u(t), сравнительные графики x(t) и $\hat{x}(t)$, а также график ошибки наблюдателя $e(t) = x(t) \hat{x}(t)$.

Ожидаемые результаты:

- Исследование стабилизируемости и обнаруживаемости системы (8).
- Схема моделирования системы замкнутой наблюдателем и регулятором.
- Выбранные значения пар матриц (Q_K, R_K) и (Q_L, R_L) .
- Матрица регулятора K.
- Матрица коррекции наблюдателя L.
- Графики сигналов u(t), x(t), $\hat{x}(t)$ и невязки e(t). Для повышения наглядности рекомендуется размещать графики x(t) и $\hat{x}(t)$ на одной координатной плоскости.
- Листинги аналитических расчетов.
- Выводы.

Контрольные вопросы для подготовки к защите:

- 1. В чем заключается идея LQR?
- 2. Как можно интерпретировать матрицы Q и R при синтезе LQR?
- 3. Каковы критерии существования единственного положительно определенного решения уравнения Риккати (3)?
- 4. В чем заключается идея LQE?
- 5. В чем заключается идея фильтра Калмана?
- 6. Что общего у LQE и фильтра Калмана? В чем между ними различия?
- 7. Каковы критерии существования единственного положительно определенного решения уравнения Риккати (7)?
- 8. В чём заключается Принцип разделения (Separation Principle)?

Таблица 1: Распределение Заданий по Вариантам

		пиня	Задания			Зада	пин	
Вариант	1 и 2	3	Вариант	1 и 2	3	Вариант	1 и 2	3
1	№ 1	№ 6	11	№ 6	№ 11	21	№ 11	№ 1
2	№ 2	№ 7	12	№ 7	№ 12	22	№ 12	№ 2
3	№ 3	№ 8	13	№ 8	№ 13	23	№ 13	№ 3
4	№ 4	№ 9	14	№ 9	№ 14	24	№ 14	№ 4
5	№ 5	№ 10	15	№ 10	№ 15	25	№ 15	№ 5
6	№ 1	№ 11	16	№ 6	№ 1	26	№ 11	№ 6
7	№ 2	№ 12	17	№ 7	№ 2	27	№ 12	№ 7
8	№ 3	№ 13	18	№ 8	№ 3	28	№ 13	№ 8
9	№ 4	№ 14	19	№ 9	№ 4	29	№ 14	№ 9
10	№ 5	№ 15	20	№ 10	№ 5	30	№ 15	№ 10

Таблица 2: Исходные данные для Задания 1

$N_{ar{o}}$	A	В	№	A	В	№	A	В
1	$\begin{bmatrix} 3 & 5 & 4 \\ -2 & -4 & -5 \\ 2 & 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	6	$ \begin{bmatrix} 11 & -2 & 13 \\ 6 & -1 & 6 \\ -6 & -1 & -8 \end{bmatrix} $	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	11	$\begin{bmatrix} 7 & 10 & 5 \\ -10 & -13 & -10 \\ 10 & 10 & 7 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$
2	$\begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$	7	$\begin{bmatrix} 5 & 8 & 5 \\ -6 & -9 & -8 \\ 6 & 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	12	$\begin{bmatrix} 17 & -5 & 20 \\ 10 & -3 & 10 \\ -10 & 0 & -13 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
3	$\begin{bmatrix} 3 & 4 & 2 \\ -4 & -5 & -4 \\ 4 & 4 & 3 \end{bmatrix}$	$\begin{bmatrix} -3\\7\\-7 \end{bmatrix}$	8	$\begin{bmatrix} 13 & 0 & 15 \\ 6 & 1 & 6 \\ -6 & -3 & -8 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$	13	$\begin{bmatrix} 5 & 6 & 4 \\ -4 & -5 & -6 \\ 4 & 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -7 \\ 7 \end{bmatrix}$
4	$ \begin{bmatrix} 7 & 0 & 10 \\ 4 & -1 & 4 \\ -4 & -2 & -7 \end{bmatrix} $	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$	9	$\begin{bmatrix} 4 & 6 & 4 \\ -4 & -6 & -6 \\ 4 & 4 & 4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$	14	$ \begin{bmatrix} 12 & -1 & 14 \\ 6 & 0 & 6 \\ -6 & -2 & -8 \end{bmatrix} $	$\begin{bmatrix} 11 \\ 7 \\ -7 \end{bmatrix}$
5	$\begin{bmatrix} 5 & 6 & 3 \\ -6 & -7 & -6 \\ 6 & 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	10	$\begin{bmatrix} 4 & 1 & 6 \\ 2 & 0 & 2 \\ -2 & -2 & -4 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$	15	$\begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$

Таблица 3: Исходные данные для Задания 2 (номера 1-10)

Nº	A	C^T	Ŋº	A	C^T
1	$\begin{bmatrix} 25 & 8 & -20 & 13 \\ -38 & -11 & 30 & -18 \\ 40 & 13 & -33 & 21 \\ 38 & 12 & -32 & 19 \end{bmatrix}$	$\begin{bmatrix} 7 \\ 2 \\ -5 \\ 3 \end{bmatrix}$	6	$\begin{bmatrix} 20 & 5 & -16 & 9 \\ 6 & 1 & -4 & 1 \\ 32 & 9 & -25 & 14 \\ 8 & 4 & -6 & 4 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\1\\-1 \end{bmatrix}$
2	$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -26 & -7 & 20 & -11 \\ 0 & 1 & -1 & 2 \\ 16 & 4 & -14 & 8 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\1\\-1 \end{bmatrix}$	7	$\begin{bmatrix} 25 & 6 & -20 & 11 \\ 14 & 3 & -10 & 4 \\ 40 & 11 & -31 & 17 \\ 6 & 4 & -4 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$
3	$\begin{bmatrix} -5 & 0 & 4 & -1 \\ -34 & -9 & 26 & -14 \\ -8 & -1 & 5 & -1 \\ 18 & 4 & -16 & 9 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$	8	$\begin{bmatrix} 35 & 9 & -28 & 16 \\ 4 & 0 & -2 & -1 \\ 56 & 16 & -44 & 25 \\ 18 & 8 & -14 & 9 \end{bmatrix}$	$\begin{bmatrix} -7 \\ -2 \\ 5 \\ -3 \end{bmatrix}$
4	$\begin{bmatrix} -40 & 16 & 9 & -7 \\ -64 & 25 & 14 & -12 \\ -26 & 11 & 7 & -3 \\ 48 & -18 & -14 & 8 \end{bmatrix}$	$\begin{bmatrix} -7 \\ -2 \\ 5 \\ -3 \end{bmatrix}$	9	$\begin{bmatrix} 25 & 40 & 18 & -30 \\ -17 & -27 & -13 & 20 \\ -10 & -14 & -7 & 14 \\ -7 & -10 & -6 & 9 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$
5	$\begin{bmatrix} 35 & 10 & -28 & 17 \\ -22 & -7 & 18 & -12 \\ 56 & 17 & -45 & 27 \\ 34 & 12 & -28 & 17 \end{bmatrix}$	$\begin{bmatrix} 7 \\ 2 \\ -5 \\ 3 \end{bmatrix}$	10	$\begin{bmatrix} 25 & 40 & 16 & -30 \\ -9 & -14 & -6 & 10 \\ -5 & -8 & -4 & 8 \\ 6 & 10 & 3 & -7 \end{bmatrix}$	$\begin{bmatrix} -7\\ -11\\ -5\\ 9 \end{bmatrix}$

Таблица 3: Исходные данные для Задания 2 (номера 11-15)

Nº	A	C^T
11	$\begin{bmatrix} 35 & 56 & 22 & -42 \\ -11 & -17 & -7 & 12 \\ -6 & -10 & -5 & 10 \\ 11 & 18 & 6 & -13 \end{bmatrix}$	$\begin{bmatrix} 7\\11\\5\\-9 \end{bmatrix}$
12	$\begin{bmatrix} -25 & 17 & 10 & -7 \\ -40 & 27 & 14 & -10 \\ -18 & 13 & 7 & -6 \\ -30 & 20 & 14 & -9 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -2 \\ 2 \\ -1 \end{bmatrix}$
13	$\begin{bmatrix} -25 & 9 & 5 & 6 \\ -40 & 14 & 8 & 10 \\ -16 & 6 & 4 & 3 \\ -30 & 10 & 8 & 7 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$
14	$\begin{bmatrix} -35 & 11 & 6 & 11 \\ -56 & 17 & 10 & 18 \\ -22 & 7 & 5 & 6 \\ -42 & 12 & 10 & 13 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0\\1\end{bmatrix}$
15	$\begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix}$	$\begin{bmatrix} -3\\2\\-2\\1 \end{bmatrix}$

Таблица 4: Исходные данные для Задания 3 (номера 1-5)

$N_{\overline{0}}$	A	В	C	D
1	$\begin{bmatrix} 4 & -2 & 0 & 6 \\ -2 & 4 & -6 & 0 \\ 0 & -6 & 4 & 2 \\ 6 & 0 & 2 & 4 \end{bmatrix}$	$ \begin{bmatrix} 5 & 0 \\ 7 & 0 \\ 1 & 0 \\ 9 & 0 \end{bmatrix} $	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 0 & 4 \end{bmatrix}$
2	$\begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & 2 & -2 & 4 \\ -4 & -2 & 2 & 0 \\ 2 & 4 & 0 & 2 \end{bmatrix}$	$ \begin{bmatrix} 8 & 0 \\ 6 & 0 \\ 4 & 0 \\ 2 & 0 \end{bmatrix} $	$\begin{bmatrix} 2 & 0 & 0 & 2 \\ -1 & 1 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ 0 & 2 \end{bmatrix}$
3	$\begin{bmatrix} 3 & -3 & -5 & 7 \\ -3 & 3 & -7 & 5 \\ -5 & -7 & 3 & 3 \\ 7 & 5 & 3 & 3 \end{bmatrix}$	$\begin{bmatrix} 7 & 0 \\ 5 & 0 \\ 13 & 0 \\ 17 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ -1 & 3 & 1 & 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$
4	$\begin{bmatrix} 5 & -7 & -5 & 1 \\ -7 & 5 & -1 & 5 \\ -5 & -1 & 5 & 7 \\ 1 & 5 & 7 & 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 0 \\ 7 & 0 \\ 1 & 0 \\ 9 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 2 & 2 \\ 1 & 1 & -1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 4 \\ 0 & 2 \end{bmatrix}$
5	$\begin{bmatrix} 5 & -9 & -7 & 1 \\ -9 & 5 & -1 & 7 \\ -7 & -1 & 5 & 9 \\ 1 & 7 & 9 & 5 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 3 & 0 \\ 1 & 0 \\ 3 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & -2 & 2 & 2 \\ -2 & 4 & 2 & 4 \end{bmatrix}$	$\begin{bmatrix} 0 & 4 \\ 0 & 1 \end{bmatrix}$

Таблица 4: Исходные данные для Задания 3 (номера 6-10)

$N_{\overline{0}}$	A	B	C	D	
6	$\begin{bmatrix} 5 & -5 & -9 & 3 \\ -5 & 5 & -3 & 9 \\ -9 & -3 & 5 & 5 \\ 3 & 9 & 5 & 5 \end{bmatrix}$	$ \begin{bmatrix} 1 & 0 \\ 9 & 0 \\ 7 & 0 \\ 5 & 0 \end{bmatrix} $	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 4 & 0 & 4 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix}$	
7	$\begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & 2 & -2 & 4 \\ -4 & -2 & 2 & 0 \\ 2 & 4 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 4 & 0 \\ 6 & 0 \\ 8 & 0 \end{bmatrix}$	$\begin{bmatrix} -2 & 2 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ 0 & 1 \end{bmatrix}$	
8	$\begin{bmatrix} 3 & -11 & -7 & 5 \\ -11 & 3 & -5 & 7 \\ -7 & -5 & 3 & 11 \\ 5 & 7 & 11 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 4 & 0 \\ 2 & 0 \\ 4 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & -2 & 2 & 2 \\ 2 & 4 & -2 & 4 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \\ 0 & 4 \end{bmatrix}$	
9	$\begin{bmatrix} 5 & -7 & -5 & 1 \\ -7 & 5 & -1 & 5 \\ -5 & -1 & 5 & 7 \\ 1 & 5 & 7 & 5 \end{bmatrix}$	$ \begin{bmatrix} 14 & 0 \\ 10 & 0 \\ 6 & 0 \\ 2 & 0 \end{bmatrix} $	$\begin{bmatrix} 1 & -1 & 3 & 3 \\ 2 & 2 & -2 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$	
10	$\begin{bmatrix} 4 & -2 & 0 & 6 \\ -2 & 4 & -6 & 0 \\ 0 & -6 & 4 & 2 \\ 6 & 0 & 2 & 4 \end{bmatrix}$	$ \begin{bmatrix} 11 & 0 \\ -1 & 0 \\ 7 & 0 \\ 9 & 0 \end{bmatrix} $	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 3 & -1 & 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ 0 & 4 \end{bmatrix}$	

Таблица 4: Исходные данные для Задания 3 (номера 11-15)

№	A	В	C	D
11	$\begin{bmatrix} 5 & -5 & -9 & 3 \\ -5 & 5 & -3 & 9 \\ -9 & -3 & 5 & 5 \\ 3 & 9 & 5 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 6 & 0 \\ 6 & 0 \\ 2 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 3 & -1 & 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$
12	$\begin{bmatrix} 3 & -3 & -5 & 7 \\ -3 & 3 & -7 & 5 \\ -5 & -7 & 3 & 3 \\ 7 & 5 & 3 & 3 \end{bmatrix}$	$ \begin{bmatrix} 16 & 0 \\ 12 & 0 \\ 12 & 0 \\ 12 & 0 \end{bmatrix} $	$\begin{bmatrix} 3 & -1 & 1 & 3 \\ -2 & 2 & 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 4 \\ 0 & 3 \end{bmatrix}$
13	$\begin{bmatrix} 3 & -11 & -7 & 5 \\ -11 & 3 & -5 & 7 \\ -7 & -5 & 3 & 11 \\ 5 & 7 & 11 & 3 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 \\ 4 & 0 \\ 2 & 0 \\ 2 & 0 \end{bmatrix}$	$\begin{bmatrix} -3 & 3 & 7 & 7 \\ 2 & 2 & -2 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 4 \\ 0 & 6 \end{bmatrix}$
14	$\begin{bmatrix} 5 & -9 & -7 & 1 \\ -9 & 5 & -1 & 7 \\ -7 & -1 & 5 & 9 \\ 1 & 7 & 9 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 5 & 0 \\ 3 & 0 \\ 5 & 0 \end{bmatrix}$	$\begin{bmatrix} -2 & 8 & 2 & 8 \\ 2 & -2 & 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 5 \\ 0 & 5 \end{bmatrix}$
15	$\begin{bmatrix} 6 & 0 & -12 & 6 \\ 0 & 6 & -6 & 12 \\ -12 & -6 & 6 & 0 \\ 6 & 12 & 0 & 6 \end{bmatrix}$	$\begin{bmatrix} 6 & 0 \\ 12 & 0 \\ 6 & 0 \\ 4 & 0 \end{bmatrix}$	$\begin{bmatrix} -6 & 6 & 6 & 6 \\ 3 & 0 & 0 & 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$