Name: Gururaj A. Bidnur

Roll no.: ME23MTECH12001

Assignment no.: 03

Output:

Logistic Regression Accuracy: 0.3133

ANN Accuracy: 1.0000

ANN Decision Boundary

Performance Comparison:

Metric	Logistic R	egression.	ANN
Accuracy	0.3133		1.0000
Precision	0.3131		1.0000
Recall	0.3133		1.0000
F1 Score	0.3094		1.0000

Why Logistic Regression Fails

1. Linear Decision Boundaries

Logistic regression creates **linear decision boundaries** through the feature space. For the circular dataset:

- Can only draw straight lines/hyperplanes
- Unable to capture radial patterns
- Visualized boundaries show intersecting lines that misclassify outer rings

2. Limited Model Capacity

- No hidden layers to learn hierarchical features
- Direct mapping from input to output using linear transformations
- Can't represent complex relationships between x1 and x2

Why ANN Succeeds

1. Non-Linear Transformations

- Hidden layer with ReLU activation enables non-linear feature learning
- Can approximate any continuous function (Universal Approximation Theorem)
- Learns combinations like: ReLU(w1x1+w2x2+b)ReLU(w1x1+w2x2+b)
 Which can represent radial patterns

2. Hierarchical Feature Learning

- 1. **Hidden Layer** detects circular patterns through: ReLU(WhiddenX+bhidden)ReLU(*WhiddenX*+bhidden)
- 2. **Output Layer** combines these detected patterns: softmax(WoutputH+boutput)softmax(WoutputH+boutput)

3. Architecture Advantages

- 64 hidden neurons provide sufficient capacity
- Mini-batch training (batch_size=32) stabilizes learning
- He initialization prevents vanishing gradients
- 5000 epochs allow complete convergence