Abstract

Long-baseline (LBL) accelerator neutrino oscillation experiments, such as NOvA and T2K in the current generation, and DUNE-LBL and HK-LBL in the coming years, will measure the remaining unknown oscillation parameters with excellent precision. These analyses assume external input on the solar parameters, θ_{12} and Δm_{21}^2 , from solar experiments such as SNO, SK, and Borexino, as well as reactor experiments like KamLAND. Here we investigate their role in long-baseline experiments. We show that, without input on solar parameters, the sensitivity to detecting and quantifying CP violation is significantly, but not entirely, reduced. Thus long-baseline accelerator experiments can actually determine the solar parameters, and thus all six oscillation parameters, without input from any other oscillation experiment. In particular, Δm_{21}^2 can be determined; thus DUNE-LBL and HK-LBL can measure both the solar and atmospheric mass splittings in their long-baseline analyses alone. While their sensitivities are not competitive with existing constraints, they are very orthogonal probes of solar parameters and provide a key consistency check of a less probed sector of the three-flavor oscillation picture. Furthermore, we also show that the true values of the solar parameters play an important role in the sensitivity of other oscillation parameters such as the CP violating phase δ .

Here Comes the Sun:

Solar Parameters in Long-Baseline Accelerator Neutrino Oscillations

Peter B. Denton

Pheno

May 8, 2023

2302.08513 with Julia Gehrlein

2/14

Global fit comparison

Esteban+ 2007.14792 de Salas+ 2006.11237 Capozzi+ 2107.00532

Global fit comparison

Esteban+ 2007.14792 de Salas+ 2006.11237 Capozzi+ 2107.00532

3/14

Global fit uncertainty $\Rightarrow \sim 1\sigma$ extra uncertainty

δ and CP violation

 $J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$

C. Jarlskog PRL 55, 1039 (1985)

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM \Rightarrow CP (nearly) conserved

$$\frac{\bar{\theta}}{2\pi} < 10^{-11}$$

J. Pendlebury, et al. 1509.04411

2. Quark mass matrix: non-zero but small CP violation

$$\frac{|J_{\rm CKM}|}{J_{\rm max}} = 3 \times 10^{-4}$$

CKMfitter 1501.05013

3. Lepton mass matrix: ?

$$\frac{|J_{\rm PMNS}|}{J_{\rm max}} < 0.34$$

PBD, J. Gehrlein, R. Pestes 2008.01110

 $J_{\text{max}} = \frac{1}{6\sqrt{3}} \approx 0.096$

CP violation

- ▶ Need appearance to measure it
- ▶ Appearance has only been clearly seen in long-baseline accelerator neutrinos at NOvA and T2K

T2K 1502.01550 NOvA 1601.05022

5/14

But see also solar, atmospheric, and astrophysical

▶ Appearance probabilities depend on all six parameters

CP violation

- ▶ Need appearance to measure it
- ▶ Appearance has only been clearly seen in long-baseline accelerator neutrinos at NOvA and T2K

T2K 1502.01550 NOvA 1601.05022

But see also solar, atmospheric, and astrophysical

▶ Appearance probabilities depend on all six parameters

Can't determine CP violation without knowing all five other parameters!

True in two ways

Which parameters are important?

DUNE-LBL and HK-LBL will have world-leading measurements of:

- 1. Δm_{31}^2
- 2. θ_{23}
- **3**. δ
- 4. θ_{13} (ish)

External information on those parameters won't help much

Which parameters are important?

DUNE-LBL and HK-LBL will have world-leading measurements of:

- 1. Δm_{31}^2
- 2. θ_{23}
- $3. \delta$
- 4. θ_{13} (ish)

External information on those parameters won't help much

What about Δm_{21}^2 and θ_{12} ?

Solar parameter status

Data	$\Delta m_{21}^2 \ [10^{-5} \ {\rm eV^2}]$	$\sin^2 \theta_{12}$	Ref.
SK+SNO	6.10	0.305	SK Neutrino 2022
KamLAND	± 7.54	0.316	1303.4667 SK Neutrino 2022
SK+SNO+KamLAND	$\bf 7.49$	0.305	SK Neutrino 2022
Global fit	7.42	0.304	Esteban+ 2007.14792
	7.5	0.318	de Salas+ 2006.11237
	7.36	0.303	Capozzi+ 2107.00532

Solar parameter status

Data	$\Delta m_{21}^2 \ [10^{-5} \ {\rm eV^2}]$	$\sin^2 \theta_{12}$	Ref.
SK+SNO	6.10	0.305	SK Neutrino 2022
KamLAND	± 7.54	0.316	1303.4667
			SK Neutrino 2022
SK+SNO+KamLAND	7.49	0.305	SK Neutrino 2022
Global fit	7.42	0.304	Esteban+ 2007.14792
	7.5	0.318	de Salas+ 2006.11237
	1.0	0.010	0.0 0.00000 2000000

	$\delta x/x$					
Generation	Data	Δm_{21}^2	$\sin^2 \theta_{12}$	Ref.		
Current	SK+SNO	15%	4.6%	SK Neutrino 2022		
	KamLAND	2.5%	9.5%	1303.4667		
				SK Neutrino 2022		
	SK+SNO+KamLAND	2.4 %	4.3%	SK Neutrino 2022		
	Global fit	2.8%	4.3%	Esteban+ 2007.14792		
		2.9%	5.0%	de Salas+ 2006.11237		
		2.2%	4.3%	Capozzi+ 2107.00532		
Future	DUNE-solar	5.9%	3.0%	Capozzi+ 1808.08232		
	JUNO	0.3%	0.5%	JUNO 2204.13249		

Neutrino mass eigenstate definition: aside

The mass eigenstates can be numbered in a number of different ways

- 1. $|U_{e1}| > |U_{e2}| > |U_{e3}|$
- 2. $m_1 < m_2 < m_3$
- 3. $m_1 < m_2$ and $|U_{e3}| < |U_{e1}|$ and $|U_{e3}| < |U_{e2}|$
- 4. :

Pheno: May 8, 2023

Neutrino mass eigenstate definition: aside

The mass eigenstates can be numbered in a number of different ways

- 1. $|U_{e1}| > |U_{e2}| > |U_{e3}|$
- 2. $m_1 < m_2 < m_3$
- 3. $m_1 < m_2$ and $|U_{e3}| < |U_{e1}|$ and $|U_{e3}| < |U_{e2}|$
- 4. :
- ▶ #3 was commonly used in solar neutrinos
- ▶ We know that in the solar sector all three are equivalent
- ▶ We take #1 as our definition

Pheno: May 8, 2023

Neutrino mass eigenstate definition: aside

The mass eigenstates can be numbered in a number of different ways

- 1. $|U_{e1}| > |U_{e2}| > |U_{e3}|$
- 2. $m_1 < m_2 < m_3$
- 3. $m_1 < m_2$ and $|U_{e3}| < |U_{e1}|$ and $|U_{e3}| < |U_{e2}|$
- 4. :
- ▶ #3 was commonly used in solar neutrinos
- ▶ We know that in the solar sector all three are equivalent
- \triangleright We take #1 as our definition

Thus $\theta_{12} \in [0, 45^{\circ}]$ by definition Only solar data tells us that $\Delta m_{21}^2 > 0$

PBD 2003.04319

Pheno: May 8, 2023

Impact of current priors

How much does removing one prior change the McDonald's plot?

 Peter B. Denton (BNL)
 2302.08513
 Pheno: May 8, 2023
 9/14

Precision on δ

So external information on solar parameters is crucial

So external information on solar parameters is crucial

Some sensitivity to CP violation with no solar information?

LBL can measure solar parameters!

True values matter

True values matter

Long-baseline solar parameter summary

- ▶ To reach δ goals, DUNE & HK need external input on Δm_{21}^2 and θ_{12}
- ▶ DUNE & HK can provide a very orthogonal cross check of solar parameters
- ▶ Pay attention to the exact value of Δm_{21}^2 that JUNO measures

Long-baseline solar parameter summary

- ▶ To reach δ goals, DUNE & HK need external input on Δm_{21}^2 and θ_{12}
- ▶ DUNE & HK can provide a very orthogonal cross check of solar parameters
- ▶ Pay attention to the exact value of Δm_{21}^2 that JUNO measures

Thanks!

Backups

References

M. Gonzalez-Garcia, et al. hep-ph/0009350 M. Maltoni, et al. hep-ph/0207227 SK hep-ex/0501064 SK hep-ex/0604011 T. Schwetz, M. Tortola, J. Valle 0808, 2016 M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524 T2K 1106.2822 D. Forero, M. Tortola, J. Valle 1205, 4018 D. Forero, M. Tortola, J. Valle 1405.7540 P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

SK hep-ex/9807003

δ : what is it really?

