

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL: SENAI VALINHOS CURSO: DESENVOLVIMENTO DE SISTEMAS

1TDS2

DESENVOLVIMENTO TÉCNICO

MIGUEL SARTI NICOLE CAU PABLO DELGADO VINICIUS PEREIRA VINICIUS ROCHA VITOR ARGERI

VALINHOS 2024

SUMÁRIO

Lista de Componentes de Hardware		
Explicação do Sistema Operacional do Arduino		
3 Lógica de Controle do Carrinho	6 7	

1 LISTA DE COMPONENTES DE HARDWARE

- -Arduino Uno ou microcontrolador similar
- -Módulo Bluetooth (HC-05 ou HC-06)
- -Driver do motor (L298N ou similar)
- -2 motores de rotação
- -2 motores DC com caixa de w48:1
- -4 rodas adicionais
- -Bateria AA
- -Compartimento de pilhas AA e um conjunto de pilhas alcalinas AA
- -Cabo USB para conectar a placa ao IDE
- -Chassi com rodas e espaço para montagem de eletrônicos

2 SISTEMA OPERACIONAL DO ARDUÍNO

O Arduino UNO não possui um sistema operacional tradicional. Ele opera sem um OS, usando firmware que você programa diretamente. Na prática, você escreve programas (chamados sketches) na linguagem C/C++ usando a Arduino IDE, uma ferramenta simples e intuitiva. Esses programas são então carregados e executados diretamente no microcontrolador ATmega328P da placa.

O processo de programação envolve duas funções principais: setup(), que é executada uma vez quando a placa é ligada ou reiniciada, e loop(), que é executada repetidamente, permitindo que o Arduino responda a eventos e execute tarefas continuamente.

Para projetos mais complexos que exigem multitarefa e gerenciamento de tempo real, é possível utilizar um Sistema Operacional em Tempo Real (RTOS) como o FreeRTOS. No entanto, isso não é comum para a maioria dos usos do Arduino UNO, que normalmente se beneficia da simplicidade e do controle direto oferecido pelo microcontrolador sem a necessidade de um sistema operacional intermediário.

3 LÓGICA DE CONTROLE DO CARRINHO

Definições de Pinos

Os pinos do Arduino são definidos para controlar os motores do carrinho. Cada motor é controlado por dois pinos de sinal e **um** pino de velocidade (PWM):

- IN1 e IN2 controlam o Motor 1.
- IN3 e IN4 controlam o Motor 2.
- ENA controla a velocidade do Motor 1.
- ENB controla a velocidade do Motor 2.

Configuração Inicial (setup)

A função setup configura todos esses pinos como saídas, o que permite que o Arduino controle os motores:

- O pino IN1 é configurado como saída.
- O pino IN2 é configurado como saída.
- O pino IN3 é configurado como saída.
- O pino IN4 é configurado como saída.
- O pino ENA é configurado como saída.
- O pino ENB é configurado como saída.

Funções de Movimento

Mover para Frente (moveForward)

Para mover o carrinho para frente, o código ativa os pinos de controle para que ambos os motores girem para frente. Isso é feito configurando IN1 e IN3 como HIGH (ligados) e IN2 e IN4 como LOW (desligados). Além disso, a velocidade dos motores é definida no máximo (255) usando os pinos ENA e ENB.

Mover para Trás (moveBackward)

Para mover o carrinho para trás, o código inverte os sinais dos pinos de controle. IN1 e IN3 são configurados como LOW, e IN2 e IN4 como HIGH. Isso faz com que ambos os motores girem para trás. A velocidade também é definida no máximo.

Virar à Esquerda (turnLeft)

Para virar o carrinho à esquerda, o motor esquerdo é parado (IN1 e IN2 são configurados como LOW), enquanto o motor direito continua girando para frente (IN3 é HIGH e IN4 é LOW). Isso faz com que o carrinho gire para a esquerda. A velocidade do motor direito é definida no máximo.

Virar à Direita (turnRight)

Para virar o carrinho à direita, o motor direito é parado (IN3 e IN4 são configurados como LOW), enquanto o motor esquerdo continua girando para frente (IN1 é HIGH e IN2 é LOW). Isso faz com que o carrinho gire para a direita. A velocidade do motor esquerdo é definida no máximo.

Parar o Carrinho (stopCar)

Para parar o carrinho, todos os pinos de controle dos motores são configurados como LOW, interrompendo a alimentação dos motores. As saídas de velocidade ENA e ENB são definidas para 0, garantindo que os motores parem completamente

4 FLUXOGRAMA DO CÓDIGO

5 CONFIGURAÇÃO DA TECNOLOGIA SEM FIO

```
Serial.begin(9600); // Define a taxa de transmissão serial em 9600 bps
}
void loop() {
 if (Serial.available() > 0) {
  char command = Serial.read();
  switch(command) {
    case 'F':
     moveForward();
     break;
    case 'B': // Trás
     moveBackward();
     break;
    case 'L':
     turnLeft();
     break;
    case 'R':
     turnRight();
     break;
    case 'S': // Parar
     stopCar();
     break;
  }
 }
}
```


6 DIAGRAMA DE MONTAGEM DO CARRINHO

7 CÓDIGO FONTE IMPLEMENTADO

Link do repositório:

https://github.com/Vinirocha388/logicacarro.git