Symulacja rozprzestrzeniania się dymu

Marcin Sawczuk Daniel Warloch Norbert Pilarek

Wstęp

Głównym zadaniem projektu było stworzenie trójwymiarowego modelu rozprzestrzeniania się dymu w pomieszczeniu. Model uwzględnia m.in. takie czynniki jak temperatura czy kierunek ruchu powietrza. W tej pracy opracowaliśmy model oraz przedstawiliśmy wyniki symulacji 3D dymu.

Teoria

Równania Naviera-Stokesa pozwalają zamodelować szeroki wachlarz zjawisk fizycznych.

Realizacja

- Narzędzie

- Miejsce

- Wizualizacja

Ewolucja pomysłu wykonania

- Python
- Pyjet
- Fluidity
- Wyświetlanie
- Konsultacje
- Blender
- Manta Flow

Implementacja

Symulacje

Wyniki

Wnioski

- Im większa temperatura dymu, rozprzestrzenia się on szybciej.

- Im cieplejszy dym, tym unosi się on wyżej, przez co czas wietrzenia jest dłuższy, w naszym modelu przy temperaturach w stosunku 1:16, czas wywietrzania wynosił 1.5 raza dłużej

Czas wywietrzania jest zależny od sumarycznej mocy oraz rozmieszczenia wentylatorów

Podsumowanie

Ciekawym kierunkiem rozwoju naszego projektu byłoby dodanie różnorodnych skryptów pozwalających na obliczanie oraz prezentowanie statystyk m.in zakresu widoczności w funkcji odległości przy różnym poziomie zadymienia pomieszczenia, wartości średniej temperatury powietrza w zależności od wysokości jej pomiarów.