ME 5243: ADVANCED MECHANISM DESIGN

Class #24

DH Parameters

Setting Up Parameters

• DH Parameters for Position Analysis

DH Parameters for Synthesis

Notes

- Report Deliverables
 - Draft Report Due Today
 - Submit as PDF to Ryan: fossx231@umn.edu
 - Peer Review Due Thursday, 12/7, by 9am
 - Final Paper Due 12/12
- Oral Presentations: Dec 5 & 7
- Peer Evaluation Due 12/19

Questions from Video: DH Parameters

- 1. Number joints consecutively, start at input
- 2. Joint axes: x_i is perp to z_{i-1} and z_i
- 3. Origin x_i , y_i , z_i is fixed in link w/joints i-1 and i

 $a_{i,i+1}$: dist along x_{i+i} from z_i to z_{i+1}

 $\alpha_{i,i+1}$: angle from z_i to z_{i+1} (as seen from x_{i+1})

 $\theta_{i,i+1}$: angle from x_i to x_{i+1} (as seen from z_i)

 $s_{i,i+1}$: dist along z_i from x_i to x_{i+1}

$$T_{i,i+1} = \begin{bmatrix} \cos\theta_{i,i+1} & -\cos\alpha_{i,i+1}\sin\theta_{i,i+1} & \sin\alpha_{i,i+1}\sin\theta_{i,i+1} & a_{i,i+1}\cos\theta_{i,i+1} \\ \sin\theta_{i,i+1} & \cos\alpha_{i,i+1}\cos\theta_{i,i+1} & -\sin\alpha_{i,i+1}\cos\theta_{i,i+1} & a_{i,i+1}\sin\theta_{i,i+1} \\ 0 & \sin\alpha_{i,i+1} & \cos\alpha_{i,i+1} & sin\theta_{i,i+1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DH Parameter Table					
Joint	a	α	θ	S	
0	$a_{0,1} =$	$\alpha_{0,1} =$	$\theta_{0,1} =$	$s_{0,1} =$	
1	$a_{1,2} =$	$\alpha_{1,2} =$	$\theta_{1,2} =$	$s_{1,2} =$	
2	$a_{2,3} =$	$\alpha_{2,3} =$	$\theta_{2,3} =$	$s_{2,3} =$	

Hooke (Cardan) Joint Analysis

Hooke / Cardan Joint

DH Parameters

- 1. Number joints consecutively, start at input
- 2. Joint axes: x_i is perp to z_{i-1} and z_i
- 3. Origin x_i , y_i , z_i is fixed in link w/joints i-1 and i

 z_{i+1} $\alpha_{i,i+1}$ α_{i,i

 $a_{i,i+1}$: dist along x_{i+i} from z_i to z_{i+1}

 $\alpha_{i,i+1}$: angle from z_i to z_{i+1} (as seen from x_{i+1})

 $\theta_{i,i+1}$: angle from x_i to x_{i+1} (as seen from z_i)

 $s_{i,i+1}$: dist along z_i from x_i to x_{i+1}

$$T_{i,i+1} = \begin{bmatrix} \cos\theta_{i,i+1} & -\cos\alpha_{i,i+1}\sin\theta_{i,i+1} & \sin\alpha_{i,i+1}\sin\theta_{i,i+1} & \alpha_{i,i+1}\cos\theta_{i,i+1} \\ \sin\theta_{i,i+1} & \cos\alpha_{i,i+1}\cos\theta_{i,i+1} & -\sin\alpha_{i,i+1}\cos\theta_{i,i+1} & \alpha_{i,i+1}\sin\theta_{i,i+1} \\ 0 & \sin\alpha_{i,i+1} & \cos\alpha_{i,i+1}\cos\theta_{i,i+1} & \alpha_{i,i+1}\sin\theta_{i,i+1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hooke Joint Analysis

3. Develop an expression for the angular position of the output link as a function of the angular position of the input link and β

Driveshaft Phasing

$$T_{12} \begin{pmatrix} 0 \\ \alpha_{12} \\ \theta_{12} \\ 0 \end{pmatrix} T_{23} \begin{pmatrix} 0 \\ \alpha_{23} \\ \theta_{23} \\ 0 \end{pmatrix} T_{34} \begin{pmatrix} 0 \\ \alpha_{34} \\ \theta_{34} \\ 0 \end{pmatrix} T_{41} \begin{pmatrix} 0 \\ \alpha_{41} \\ \theta_{41} \\ 0 \end{pmatrix} = I$$

Develop Expression for $\theta_{12} = f(\theta_{41})$

$$\frac{K_{1}}{\sin \alpha_{41} \cot \alpha_{12} \cos \theta_{41} + \sin \alpha_{41} \cot \alpha_{41} \cos \theta_{12}} + \frac{\cos \alpha_{23}}{\sin \alpha_{12} \sin \alpha_{34}} - \cos \alpha_{41} \cot \alpha_{12} \cot \alpha_{34}}$$

$$= \sin \theta_{41} \sin \theta_{12} - \cos \alpha_{41} \cos \theta_{41} \cos \theta_{12}$$

Pick α_{41} , Unknowns: α_{12} , α_{23} , α_{34}

$$K_2 \cos \theta_{41} + K_2 \cos \theta_{12} + K_3 = \sin \theta_{41} \sin \theta_{12} - \cos \alpha_{41} \cos \theta_{41} \cos \theta_{12}$$

Where:

$$\begin{split} K_1 &= \sin \alpha_{41} \cot \alpha_{12} \\ K_2 &= \sin \alpha_{41} \cot \alpha_{41} \\ K_3 &= \frac{\cos \alpha_{23}}{\sin \alpha_{12} \sin \alpha_{34}} - \cos \alpha_{41} \cot \alpha_{12} \cot \alpha_{34} \end{split}$$

$$K_2 \cos \theta_{41} + K_2 \cos \theta_{12} + K_3 = \sin \theta_{41} \sin \theta_{12} - \cos \alpha_{41} \cos \theta_{41} \cos \theta_{12}$$

Example: function $y = \log x$ for $1 \le x \le 10$

$$\theta_{41,initial} = 45^{\circ}, \qquad \Delta\theta_{41} = 60^{\circ}$$

$$\theta_{12,initial} = -45^{\circ}, \quad \Delta\theta_{12} = 90^{\circ}$$

PP	1	2	3
X	1	3	10
у	0	0.477	1
$ heta_{41}$	45°	58.3°	105°
$ heta_{12}$	-45°	-2.1°	45°

Plug θ_{41} and θ_{12} into 3 simultaneous equations, solve for K_1 , K_2 , K_3

$$K_2 \cos \theta_{41} + K_2 \cos \theta_{12} + K_3 = \sin \theta_{41} \sin \theta_{12} - \cos \alpha_{41} \cos \theta_{41} \cos \theta_{12}$$

Example: function
$$y = \log x$$
 for $1 \le x \le 10$

$$\theta_{41,initial} = 45^{\circ}, \qquad \Delta\theta_{41} = 60^{\circ}$$

$$\theta_{12,initial} = -45^{\circ}, \quad \Delta\theta_{12} = 90^{\circ}$$

$$K_1 = -1.225$$
 Where:

$$K_2 = 0.842$$
 $K_1 = \sin \alpha_{41} \cot \alpha_{12}$
 $K_2 = \sin \alpha_{41} \cot \alpha_{41}$

$$K_3 = -0.230$$
 $K_3 = \frac{\cos \alpha_{23}}{\sin \alpha_{12} \sin \alpha_{34}} - \cos \alpha_{41} \cot \alpha_{12} \cot \alpha_{34}$

Solve for central angles:

$$\alpha_{12} = -39.3^{\circ}$$
, $\alpha_{23} = 83.7^{\circ}$, $\alpha_{34} = 49.8^{\circ}$

Example: function $y = \log x$ for $1 \le x \le 10$

 $\theta_{41,initial} = 45^{\circ}, \qquad \Delta\theta_{41} = 60^{\circ}$

 $\theta_{12,initial} = -45^{\circ}, \quad \Delta\theta_{12} = 90^{\circ}$

Survey of Spatial Synthesis Methods

Anonymous Feedback

chimein.cla.umn.edu or text 1-503-770-6789 (text 22554 plus your answer)

- 1. What topics did you find most interesting/useful?
- 2. What topics would you like to see in the course review?