서울시 도로주변 및 주거지역의 오존농도 변화에 대한 장기연구

정수연* · 김기현**, · 김동호*** · 조석주**** · 김민영****

*국립환경과학원 대기제어연구과, **세종대학교 지구환경과학과 ***세종대학교 응용수학과, ****서울시 보건환경연구원

A Long-term Study on Ozone Concentration Profiles in Roadside and Residential Locations in Seoul, Korea

Su-Yeon Jung*, Ki-Hyun Kim**, Donghoh Kim**, S.-J. Cho*** and M.-Y. Kim***

*Air Quality Control Research Division ,National Institute of Environmental Research, Incheon 404-708, Korea
**Department of Earth & Environmental Sciences, Sejong University, Seoul 143-747, Korea

***Dept. of Applied Mathematics, Sejong University, Seoul 143-747, Korea

***Seoul Metropolitan Institute of Public Health and Environment, Seoul 137-734, Korea

Received August 14, 2009, accepted September 23, 2009

In this study, the concentrations of ozone were analyzed from both urban residential area (U-RA) and urban roadside (U-RS) sites located in Seoul, Korea for the 11 year duration (1996 to 2006). The ozone concentrations at U-RA (14 ± 8.8 ppb) were 50% higher than U-RS site (9.35 ± 5.9 ppb) in association with the local NO sources. The maximum hourly ozone concentration during the day reached 36.4 ppb at 1600 LST, while the minimum of 6.61 ppb was seen at 0800 LST (U-RA). Evaluation of seasonal trend indicated that high ozone concentrations were observed during summer followed by fall and winter. The monthly mean concentrations at U-RA were higher in June (21 ppb) and lower in December (6.8 ppb), while their counterparts at U-RS were 15.3 and 5.7 ppb, respectively. The annual mean values of O_3 tend to sensitively reflect the concentration changes in May through September over a year. Consequently, the trends of ozone are found to be fairly dependent on the photochemical activity. According to this study, the overall ozone trend at U-RA is characterized with a steady rise from 2004, while those fo at U-RS with a constant decrease from 2001. It also suggests that the ozone concentrations tend to vary in relation with a number of parameters including the precursor emissions (NO and NO $_2$) and meteorological factors (turbulent mixing, temperature, and solar radiation).

Key words: ozone, urban residential area, urban roadside, trend, photochemical activity

1. 서 론

1990년대 이후 청정연료의 보급, 저황유의 공급 등과 같은 정부의 대기오염개선대책에 따라 SO_2 와 CO 등 1 차 대기오염 물질들은 점차 감소하였다. $^{1)}$ 그러나 아직까지 O_3 와 NO_2 등과 같은 2차 오염물질들의 경우, 뚜렷하게 감소의 경향을 확인하기가 어렵다.

이들 중 오존은 대표적인 2차 광화학 오염물질로써

자동차, 사업장, 가정 등에서 배출되는 질소산화물 $(NO_X=NO+NO_2)$ 과 휘발성유기화합물(volatile organic compounds: VOCs)의 광화학 반응에 의하여 생성된 다. $^{2,3)}$ 이러한 오존은 시정감소를 유발할 뿐 아니라 고 농도 상태가 유지될 경우, 호흡기 질환 및 천식 악화와 생체면역 감소 등을 초래할 정도로 인체에 유해한 영향을 미친다. 그뿐 아니라 식물의 성장 방해와 잎의 탈색 등 자연환경에도 악영향을 주는 것으로 알려져 있

[†]To whom correspondence should be addressed.

Tel: +82-(0)2-499-9151, Fax: +82-(0)2-499-2354, E-mail: khkim@sejong.ac.kr (K.H.Kim)

다.^{4,5)} 또한 대류권에서 적외선을 흡수하므로서, 온실효과에도 영향을 미친다.⁶⁾ 따라서 오존은 우선적으로 해결해야 할 대기환경의 문제 중 하나에 속하며, 지속적인 관리를 필요로 하는 오염물질에 해당한다.

오존오염은 북미와 유럽의 산업화 지역에서는 이미 중요한 문제로 다뤄지고 있다. 급격한 경제성장을 경험 하고 있는 많은 아시아 도시에서도 심각한 환경문제로 부각하고 있다.7) 우리나라에서도 역시 1990년대 이후 경제성장과 도시화의 가속으로 인해 대도시를 중심으 로 한 오존농도가 증가하는 추세이다.8) 특히, 우리나라 의 주요 대도시 지역의 지표 오존농도는 평균농도의 상 승에 비해 고농도 발생일이 크게 증가하는 경향이 뚜 렷하다.⁹⁾ 이와 같은 내용을 미루어 볼 때, 대도시의 오존은 발생지역 내에서 생성과 소멸뿐 아니라 외부 유입과 같은 과정을 통해서도 영향을 받을 수 있음을 짐작할 수 있다. 기존의 연구들에 의하면 오존은 지리 지형적 요인이나 일사량, 기온, 국지풍, 대기안정도 등 의 기상조건, 배출원의 농도, 기후 등에 따라 상당한 차이를 보이는 것으로 알려져 있다.10,11) 이렇듯 지속 적인 농도 증가에도 불구하고, 오존은 2차 오염물질의 특성상 발생원의 관리만으로는 저감효과를 기대하기 어렵다.

본 연구에서는 오존오염이 뚜렷하고, 총 인구의 20% 이상이 거주하는 대도시 서울에서 입지적 조건이 다른 두 개의 측정지점을 선택하여 1996년부터 2006년까지 11년의 장기간 동안 수집한 자료를 토대로 오존오염의 시공간적 분포경향성을 비교분석하고자 하였다. 또한 오존을 중심으로 기타 다른 오염물질들과 기상조건을 함께 분석하여 타 오염물질들과의 연관성을 평가하고, 선행연구결과들과 비교를 통해 오존발생에 영향을 미치는 요인들을 파악하고자 하였다. 이들 자료에 대한 분석결과를 토대로 서울시 도심지역에 대한 오존농도를 총괄적으로 진단하고자 하였다.

2. 연구방법

본 연구에서는 환경부가 설치 및 운영중인 서울시의 대기오염측정망 중 도시대기측정소와 도로변 대기측정 소가 인접하게 위치한 지역에서 각각의 측정지점을 하 나씩 선택하였다. 이러한 목적에 맞게 도시대기측정소 로 마포구 대흥동측정소 그리고 도로변대기측정소로 신 촌측정소를 선택하였다. 그리고 이들 두 개 지역에서 관측한 오존농도의 장단기적 변화추이를 시공간적 기 준으로 구분하여 비교 분석하였다. 각 지점의 주변환경과 지리지형적 특성의 차이점을 오존농도의 분포특성과 함께 연관지여 비교하고자 하였다. 신촌지점의 경우, 도로 폭이 30 m인 8차선 도로에서 1 m 떨어진지점으로 3.8 m 높이에 위치한다. 따라서 주변도로를이동하는 차량의 배출에 직접적으로 노출되어 있다. 그리고 대흥동의 경우, 이 8차선 도로에서 904 m 더떨어진 5층 건물의 옥상(측정점 고도는 27.8 m)에 위치한다. 이 측정점은 토지사용분류를 기준으로 주거지역에 해당한다. 양 지점들에 대한 세부적인 분석을 위하여, 대흥동(DH)과 신촌(SC) 측정점을 각각 urban residential area(U-RA)와 urban roadside(U-RS)로 코드명을 정하여 구분해 주었다. 조사대상으로 설정한 두측정소의 위치는 Fig. 1에 제시하였다.

본 연구에서 선택한 두 곳의 측정점의 경우, 오존농 도 자료를 1996년부터 꾸준히 수집하고 있다. U-RA의 경우, 전체 기간 중 2003년 11월부터 2004년 5월까지 약 7개월 간 결측기간이 있었다. 그 외에 연속측정이

Fig. 1. A map of Seoul showing the geographical locations of two AQM stations investigated in this study such as Urban residential area (U-RA: DH) and Urban roadside (U-RS: SC) sites.

Table 1. A statistical summary of ozone and environmental parameters measured at hourly intervals (1996~2006)

	O_3	SO_2	NO	NO_2	NO_X	СО	CH_4	NMHC	THC	TSP	PM_{10}	$\mathrm{PM}_{2.5}$	TEMP	HUM	UV	Solra	WS
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppmC)	(ppmC)	(ppmC)	(μg/m ³)	(μg/m ³)	(μg/m ³)	(℃)	(%RH)	(mW/ cm ²)	(W/m ³)	(m/sec)
								A.	. U-RA (DH)							
Mean	14.0	7.33	34.6	34.9	67.1	1.07	2.06	0.37	2.43	84.1	65.0	25.4	15.6	63.0	0.21	131	1.78
Med	9.00	6.00	16.0	32.0	49.0	0.80	1.99	0.32	2.33	70.0	51.0	17.0	17.9	64.0	0.03	6.00	1.50
SD	14.2	10.0	50.9	17.8	59.9	0.90	0.31	0.26	0.46	84.8	62.7	29.0	10.1	18.6	0.40	200	1.33
Min	0.00	0.00	0.00	0.00	0.00	0.00	1.39	0.00	0.28	0.00	1.00	1.00	-14.5	10.0	0.01	0.00	0.00
Max	135	512	512	168	680	15.5	6.59	2.56	7.14	4176	2409	917	37.2	98.0	6.24	900	12.1
N(all)	82154	81375	79273	81144	80097	80697	33642	33643	33643	43637	68628	34949	36382	36433	36430	36433	35197
N(without DL)	80766	81259	79191	81091	80065	79918	33642	33460	33643	43603	68628	34949	36382	36433	36430	30039	33693
								В	. U-RS (SC)							
Mean	9.35	8.73	127	60.8	188	1.21	2.22	0.34	2.57	92.1	72.9	31.4	14.1	59.6	0.18	69.3	0.76
Med	7.00	7.00	106	55.0	164	1.00	2.11	0.28	2.43	77.0	62.0	27.0	15.4	59.0	0.03	1.00	0.70
SD	9.04	7.20	91.9	31.2	115	0.84	0.45	0.26	0.57	92.7	68.5	21.6	10.9	21.8	0.34	124	0.51
Min	0.00	0.00	1.00	0.00	0.00	0.00	0.64	0.00	0.70	1.00	1.00	0.00	-18.8	5.00	0.00	0.00	0.00
Max	165	141	926	578	1023	9.9	10.4	11.1	13.6	4323	3126	502	37.8	106	6.34	824	11.9
N(all)	88320	88436	89779	89755	89784	88836	79415	79414	79432	78975	55302	46029	91810	89301	90888	48840	92483
N(without DL)	87394	88398	89779	89753	89783	88834	79415	78013	79432	78975	55302	46028	91810	89301	58067	25260	91346

Note: TEMP(temperature), HUM(humidity), UV(ultraviolet), WS(wind speed).

중단된 경우는 그 시기가 길지 않아 장기간의 자료분석에 영향을 미치지는 않았다. 두 지점의 오존관측은 1996년부터 2006년까지 11년간의 자료 수집 기간 동안측정한 시간당 데이터(자료) 수는 U-RA에서 82,154회, U-RS에서 88,320회에 달한다.

자료 분석은 시간대별로 측정한 원자료를 바탕으로 오존 및 주요 환경변수들과의 상관관계와 빈도분포 등 을 조사하였다. 그리고 하루 주기의 농도변화를 알아보 기 위해, 시간대별 자료를 취합하여, 24시간 주기의 변 화모습을 평가하였다. 또한 기타 월별, 계절별, 연도별 과 같이 상대적으로 긴 주기로 오존의 경향성을 평가 하는데 용이하게, 시간 자료를 일평균으로 변환한 자료 를 기본으로 제시하였다. 그리고 결측데이터의 경우, 해 당일의 연도별 평균농도를 토대로 값을 예측하여 연속 데이터로 전환하였다. 이 연속자료를 바탕으로 경험적 모드 분해법(Empirical Mode Decomposition)을 사용 하여 전반적인 변화추세를 확인하였다. 시간농도자료의 변환은, 하루 24개에 해당하는 시간자료 중에서 유효한 자료가 18개 이상(75% 이상)인 경우에 국한하여 일평 균자료의 산출에 활용하였다. 그 결과, U-RA에서 전체 원자료의 83%인 3350일, U-RS에서 3642일(91%)에 달하는 일농도 자료로 산출할 수 있었다. 또한 대부분 의 고농도가 발생하는 오존월(5월~9월)과 비오존월(10 월~4월)을 구분 짓고, 이들 날짜의 시간대별, 연도별 평균 농도를 비교하였다. 이러한 분석결과를 토대로 오 존농도의 발생특성을 살펴보고자 하였다.

3. 결과 및 고찰

3.1 전체 결과의 비교

오존을 포함한 기타오염물질들과 기상변수를 총괄적으로 비교할 수 있도록 시간대별 측정자료들의 기본적인 통계분석 결과를 Table 1에 제시하였다. Table 2에는 측정소의 위치를 기준으로 11년 간의 전체평균, 계절평균, 연평균 농도를 구분하여 제시하였다. 그리고 각지점의 평균값으로 두 지역간의 농도차이를 %로 산출하여 제시하고, 지점들간의 상관관계를 분석하였다. 이들 자료를 비교해 보면, 오존의 농도는 U-RA가 U-RS보다 평균적으로 5 ppb 정도 높은 경향을 취한다. Table 1을 살펴보면, 오존농도가 U-RA에서 높게 나타나는 것과는 반대로 거의 대부분의 분석성분들은 U-RS에서 보다 더 높은 것을 확인할 수 있다. 이 같은 현상으로 인해, 오존의 발생 특성이 기타 대기오염물질들

과 현저한 차이를 보이는 것을 파악할 수 있다. 본 연 구에서 제시한 기타대기오염물질들의 경우, 자동차의 배기가스 등이 직접적인 발생원으로 작용한다. 따라서 교통량이 많은 U-RS의 농도가 U-RA에 비해 높은 것 은 당연하다. 그러나 오존은 2차 광화학오염물질로 NOx, VOC와 광화학 반응을 통해 생성되고 NO와의 반응을 통해 소멸된다. 이러한 발생 소멸과정의 차이로 인해, 기타 대기오염물질들과 현저하게 차이를 보이는 지역적 반응양상을 유지하는 것으로 사료된다. 두 지점 간의 거리가 1km 내로 비교적 서로 가깝게 위치하고 있으나 주변환경은 도로룀 사주거지역으로 분명하게 구 분할 수 있다. 따라서 두 지점에 직접적으로 영향을 미 치는 오염물질의 발생원이 근본적으로 다르다. 이러한 이유로 비교적 가까운 거리에 위치함에도 불구하고 오 염물질별 농도 특성이 뚜렷한 차이를 나타낸다. 이같이 동일 지역 내에서 오존의 농도가 주변환경에 따라 차 이를 보이는 경우를 선행연구에서도 쉽게 찾아볼 수 있 다. 대구지역을 중심으로 조사한 선행연구의 오존농도 경향을 보면 주거지역 > 상업지역 > 공업지역 순으로 서 일반적으로 주거지역의 농도가 기타 지역에 비해 높 게 나타났다.12) 위와 유사한 사례로 서울지역의 34개 대기오염측정망 자료를 분석한 결과에 의하면, 지역대 기 측정망의 오존농도가 도로변 측정망에 비하여 높은 것으로 나타났다. 이와 같은 현상에 대해 도로변의 경 우 자동차에서 배출되는 NO로 인해 오존의 소멸반응 이 일어나므로 평균 농도의 수준이 지역대기측정망에 비해 낮다고 평가하였다.6)

측정소의 위치적 특성에 따른 오존발생 특징을 구체적으로 평가하기 위해 농도크기에 따라 비교구간을 설정하였다. 그리고 이를 기초로 양 지역 오존농도의 발생빈도를 Fig. 2에 제시하였다. 두 지점 오존의 주발생농도대를 비교한 결과 양 지역 모두 5 ppb 이하의 저농도대에서 최대빈도를 이루고 있음을 알 수 있다. 양지역의 오존농도 자료 수는 U-RA와 U-RS에서 각각82,154회와 88,320회에 달한다. 이 중 5 ppb 이하의발생횟수가 각각 30,470회와 35,459회로 약 37%,40%를 큰 비중을 차지하고 있다. U-RS의 경우 고농도대일수록 그 발생빈도가 확연히 줄어들고, 대부분이 20 ppb 이하로 존재하고 있다(79,911회,전체의90.5%). 반면 U-RA의 경우, 20~50 ppb 사이 농도발생 빈도도 약 21%를 차지하는 등, U-RS에 비하여 농도가 높고 다양하게 분포하고 있다.

10 ppb 이하의 오존이 전체 오존출현빈도수 중

Table 2. Temporal trend of ozone concentration data measured at U-RA and U-RS sites

1. All trend for 11 years	3			
	U-RA	U-RS	% Difference ^{a]}	correlation coefficient
All	14.0	9.35	49.4	.591(**)
2. High ozone months (May-September) vs. le	ow ozone months (C	ctober-April)	
High months	18.1	11.7	54.0	.577(**)
Low months	10.7	7.66	39.1	.487(**)
3. Seasonal trend				
Spring	16.6	10.9	51.9	.553(**)
Summer	17.9	12.5	43.0	.568(**)
Fall	12.7	7.47	70.3	.592(**)
Winter	7.75	6.69	15.9	.495(**)
3. Annual trend				
1996	11.0	8.76	25.7	.657(**)
1997	9.89	8.95	10.5	.687(**)
1998	11.2	8.43	32.4	.844(**)
1999	14.3	10.3	38.6	.568(**)
2000	16.2	11.2	44.8	.763(**)
2001	10.8	12.1	-10.5	.498(**)
2002	16.2	10.3	57.9	.505(**)
2003	15.3	9.07	68.8	.561(**)
2004	14.7	7.06	109	.699(**)
2005	14.9	7.83	90.5	.546(**)
2006	18.8	9.10	107	.757(**)

al Percent difference= {U(RA)-U(RS)}*100/U(RS)

Fig. 2. Comparison of the frequency distribution patterns of ozone between urban residential area (U-RA: DH) and urban roadside (U-RS: SC) stations using the ozone data sets collected over a 11 year period.

40~60%를 차지한다는 기존의 연구결과¹³⁾와 비교하여 볼 때, U-RA에서 10 ppb 이하의 오존 발생 빈도가 전체의 55%로 일반적으로 서울지역에서 관측하는 농도범위에 속한다는 것을 알 수 있다. 그러나 U-RS의 경우 이 영역이 71%로 저농도 오존의 발생 빈도가 평균

보다 훨씬 높다는 것을 알 수 있다.

전체 자료수집 기간 동안 두 지역의 오존농도에 대한 증감경향을 포괄적으로 비교하기 위해, 11년 기간 동안의 오존 농도를 일평균 기준으로 제시하였다(Fig. 3). 그리고 오존농도의 반복적인 주기와 10여 년간의

Fig. 3. A plot of the daily mean concentration of ozone at U-RA and U-RS stations for a full study period (1996~2006).

변화추세를 알아보기 위해 일평균 연속데이터를 경험 적 모드 분해법(Empirical Mode Decomposition)을 사용하여 분해하였다. 그 결과, 다수의 주기함수들과 장 기적인 추세를 산출하였다. 주기함수들 중 에서 1년 단 위로 주기가 반복하는 양상을 확인할 수 있었으며 오 존농도가 6월 전후로 피크를 보이고 있다. 장기적인 양 상을 살펴보면 U-RA의 경우는 증가하나 U-RS의 경우 는 감소하는 추세이다. 10여 년간의 오존농도자료의 특 징을 살펴보면 주기가 반복적이나, 그 주기가 일정하지 않아 비정상적인(nonstationary) 시계열 자료임을 파악 할 수 있다(Fig. 3). Huang et al.(1998)¹⁴⁾이 제안한 경험적 모드 분해법(Empirical Mode Decomposition) 은 비정상 시계열 자료에도 적용가능하며, 자료에 내 제되어 있는 주기를 국소적인 주파수의 정도에 따라 내 재모드함수(intrinsic mode function)라는 함수들로 분 해한다. 분해방법은 다음과 같다. 첫째, 시계열 자료의 국소 최대값과 최소값들을 식별한다. 둘째, 국소 최대 값과 최소값을 이용하여 보간법(interpolation)에 의해 2개의 함수, 상위막(upper envelope)과 하위막(lower envelope)을 산출한다. 셋째, 원자료에서 상위막과 하위 막의 평균을 공제하여 원자료에 내재되어 있는 고주파 시그널을 산출한다. 이러한 과정을 고주파 시그널에 증 반복적으로 적용하여 국소평균이 0이고, 동시에 0에 대 해 대칭적인 주기함수인 내재모드함수를 추출하게 된 다. 넷째, 원자료에서 내재모두함수를 제거한 부분이 여 전히 다수의 주파수로 구성되어 있을 경우 위의 과정 을 반복 적용하여 순차적으로 내재모드함수들을 산출 한다. 최종적으로 유한개의 내재모드함수들과 원시계열 자료에서 내재모드함수들을 모두 분리하여 장기적인 추 세를 얻게 된다.

경험적 모드 분해법으로 오존자료에 내재되어 있는 특징들을 분리하여 그 양상을 살펴보면 다음과 같다. U-RA의 경우 1년 단위의 비교적 규칙적인 주기를 확인할 수 있었다. 추세는 2004년 이후로 크게 증가하는 양상을 띠고 있다. 그러나 U-RS의 경우 1년 주기의 변화는 비교적 일정하게 나타나고 있다. 그러나 그 크기가 상대적으로 작고 전반적인 추세는 U-RA와는 반대로 2001년을 정점으로 감소하는 경향을 보인다. 양지점에서는 공통적으로 매년 1월과 6월(겨울과 여름)을 기점으로 뚜렷한 피크의 주기를 확인할 수 있다. 특히 U-RA의 경우, 더욱 뚜렷하게 나타난다. 주로 오존농도가 낮게 발생한 1월 즈음을 기점으로 오존농도가 증가하기 시작하여, 6월 전후에서 피크를 보이며 감소한다.

또한 U-RA의 2000년과 2002년 최근의 2006년에서 고농도 발생이 많은 것으로 나타났다. 그런데 해가 지 날수록 발생 농도가 다양해지고, 변화의 폭도 크다는 것을 알 수 있다. U-RS에서는 해가 지날수록 피크의 주기가 예전과 같이 뚜렷하지 않으며, 오존의 고농도 발생도 초기에 비해 현저히 줄어들어 일정 농도대에서의 발생이 두드러지는 특징을 찾을 수 있다.

양 지역간의 상관분석결과를 통해서도 U-RS의 특이한 경향을 확인할 수 있다. Table 2에 제시한 두 지점간의 상관관계를 살펴보면, 전체 상관계수가 0.591로 꽤 높은 상관성을 보이는 편이다. 그리고 연도별로 보면, 자료수집의 초기시점에 비하여 최근 들어 양 지점의 상관성이 감소하는 것을 확인할 수 있다. 농도대의 분포에 있어서 U-RA의 오존발생 농도대가 다양한 반면, U-RS는 분포 폭이 좁으나 가끔씩 눈에 띄는 고농도를 나타내기도 한다. U-RA에서는 오존 농도의 증감이 뚜렷하게 지속되고 농도의 변화 폭도 커지는 편이다. 이에 반해 U-RS의 오존 농도 주기는 상대적으로미미하게 나타나는 편이다. 또한 양 지점의 오존농도 상관성은 사계절 중 여름과 가을에 가장 높게 나타났다. 이는 오존 발생이 활발해지는 시기와 관련 있는 것으로 여겨진다.

3.2. 일주기 농도변화

Fig. 4는 전체 오존농도의 시간대별 평균을 산출하는 방식으로 24시간 주기의 농도변화를 비교한 것이다. 또한 기상조건 등의 영향으로 오존 생성농도가 높은 5~9월을 오존월로 정의하였다. 그 외 10~4월을 비오존월로 구분하여 비교하고 평균적인 일주기 변화를 각각의 시간대별 평균으로 산출하여 제시하였다. 양 지점오존농도의 % 차이(percent difference)도 함께 제시하였다. Fig. 4에 의하면, 두 지점의 일 중 농도변화의상대적 경향은 상당히 유사하게 나타났다. 단지 U-RA의 농도가 오전 시간대에 0.7 ppb로 미미하다가 오후 4시에 12 ppb 정도 높게 차이가 나타났다.

오존의 일변화 경향은 오전 7시와 8시를 전후로 최저 농도를 보이며, 오후 3시와 4시에 최고농도를 보인다. 그리고 점차 감소하여 야간에는 낮은 농도로 평형을 유지하다가 새벽 3시경에 약간 상승하는 모습을 보인다. 이는 낮에 생성된 오존이 야간의 안정한 대기층 내에서 지표의 질소산화물들에 의해 소멸과정을 경험하고, 이른 새벽 혼합층의 발달에 의해, 상층의 오존이다시 지표로 유입되면서 증가하는 경향을 보일 수 있

Fig. 4. Diurnal variation of ozone between urban residential area (U-RA: DH) and urban roadside (U-RS: SC) sites.

다.4) 오전 시간에 최저농도를 보이는 현상은 출근 시간 대에 집중된 차량으로부터 배출되는 NO의 영향으로 해 석할 수 있다. 오존은 빠르게 NO와 반응하여 NO₂를 생성한다(NO + O₃->NO₂+O₉).또한 오후 시간의 피 크는 일사량이 일 최대치를 나타내는 오후 1시보다 두 세시간 늦게 나타난다. 이러한 일주기의 특징은 오전 중 오존의 화학적 소멸과 낮은 혼합고에 의한 저농도현 상, 오후 시간대에 활발한 광화학반응으로 인한 오존 의 생성 및 유입 등에 따른 것으로 여겨진다.^{15,16)} 양 지점 오존농도의 % 차이 값을 비교해 보아도 이러한 사실을 확인할 수 있다. 오존월과 비오존월에서 모두 출근시간인 8시를 기준으로 양 지점의 오존농도차가 가장 적게 나타났다. 그리고 낮 동안 벌어졌던 두 지 점의 농도차는 퇴근 무렵부터 다시 감소하는 것을 확 인 할 수 있다. 이처럼 오존농도는 같은 장소 내에서 도 국소적 발생원의 조건에 따라 그 농도가 크게 영향 을 받는다.

두 지점의 일변화 경향에는 큰 차이가 없어 보이지만, U-RA에서의 피크 시간대가 U-RS보다 약 한 시간정도 늦게 나타난다. 이러한 차이는 오후에 주로 발생하는 서풍 조건하에서 풍상지역인 U-RS의 오존농도가적게나마, U-RA 지점에 영향을 줄 가능성을 배제할 수

없다. 기존의 연구결과에 의하면 서풍으로 인해(서울의 동쪽지역을 중심으로) 고농도 오존의 발생이 나타난 바 있다. $^{10)}$ 일반적으로도 풍계가 오존의 국지수송과 깊은 관련이 있다고 알려져 있다. $^{17)}$

오존월에는 평균농도가 비오존월에 비해 50~60% 증가하였다. 특히 광화학반응이 가장 활발한 오후 시간대 (14~17시)에 그 차이가 9(U-RS)~18 ppb(U-RA)로 약80%로 가장 크게 나타났다. 두 지점사이의 농도차 또한 동시간대에서 가장 컸다. 이를 감안하면, 광화학 반응을 통해 생성된 오존량이 전체 평균농도에 특히 큰영향을 미친다는 것을 예측할 수 있다.

3.3 월별 및 계절 농도변화

앞서 살펴본 바와 같이 오존농도의 일주기 변화 차이를 계절적인 기준으로 구분하기 위하여, 두 지점의계절별 일주기 경향을 비교하였다(Fig. 5). 이에 따르면계절별로 여름 > 봄 > 가을 > 겨울 순의 고농도현상을보이며, 일주기의 농도변화 성향은 비슷하다. 그러나 오존의 일교차가 계절에 따라 매우 크게 나타나는 것을확인할 수 있다. 겨울의 경우, 오전 8시와 오후 3시를기준으로 한 일교차는 U-RA와 U-RS에서 각각 10과 5 ppb로 큰 차이를 보이지 않는다. 그러나 여름의 경우,

Fig. 5. Diurnal variation of ozone across seasons between urban residential area (U-RA: DH) and urban roadside (U-RS: SC) sites.

Fig. 6. Comparison of the monthly mean concentrations of ozone between urban residential area (U-RA: DH) and urban roadside (U-RS: SC) sites.

각각 28과 15 ppb로 겨울보다 약 3배가 큰 일교차를 보인다. 이는 겨울의 한낮 오존농도가 오전시간에 비해 100~230% 가량 증가하는 것에 반해, 여름에는 190~ 330% 이상 더 크게 증가하면서 광화학 반응도 활발하 게 일어난다는 것을 시사한다.

두 지점에 대한 오존의 월별 평균농도를 각각 Fig. 6에 제시하여 비교하였다. 두 지점에서 모두 일사량이 강해지는 봄철부터 오존농도가 증가하여, 6월 달에 최고치를 기록하였다(U-RA: 21, U-RS: 15.3 ppb). 7월 달부터 감소 후 일정상태를 유지하다가 서서히 줄어, 겨울철인 12월 달에 최소평균농도(U-RA: 6.8, U-RS: 5.7 ppb)를 보였다. 이렇듯 고농도 오존이 빈번하게 출현하고, 높은 평균농도를 보이는 5~9월 사이의 기간을 오존월로 구부하기도 한다. 18)

Fig. 6에 의하면, 6월에 비하여 7월의 오존농도가 21 ppb에서 16.9 ppb로 급격하게 감소하는 것을 알 수 있다(U-RA). 이는 여름철 강수의 영향으로 사료되는데, 선행연구에서도 이와 같은 월별 농도경향을 쉽게 볼 수 있다. 서울과 부산의 월별 오존농도를 비교한 연구에서도 확인할 수 있다. 김유근 외(2002)100에 따르면 3월부터 증가한 오존농도가 6월에 피크를 이루고, 장마가 시작하는 7월부터 가을에 걸쳐 지속적으로 감소하는 추세를 보인다. Fig. 6에는 또한 기온과 일사량이 줄어드는 9월에도 강수량의 급격한 감소와 풍속의 약화로 인해 한여름인 7, 8월과 비슷한 오존농도를 유지하는 양상을 볼 수 있다.19)

3.4 장주기 변화

11년 동안의 연평균 농도자료를 이용하여, 두 지점의 농도변화 차이를 살펴보았다(Table 2). 양 지점에서의

오존 농도가 적게는 약 10% 의 차이를 보이고(1997, 2001년), 2004년 이후 U-RA가 U-RS의 두 배에 이르 는 높은 농도도 큰 차이를 보였다, 11년 동안 오존의 평균농도는 U-RA에서 14.0 ppb, U-RS에서 9.35 ppb 를 기록하였다. 이는 약 5 ppb의 차이로 U-RA의 농도 가 49.4% 높다는 것을 의미한다. 이렇게 두 지점간 오 존농도의 차이는 해가 지날수록 점차 벌어지는 추세를 보였다. 1996년의 경우, 두 지점간의 오존농도 차이는 2.3 ppb(26%)에 불과하지만 10여 년 후인 2006년의 오 존농도 차이는 9.7 ppb(107%)로 1996년에 비해 330% 나 증가하는 변화를 보이고 있다. 양 지점의 연평균농 도의 전체적인 변화를 살펴보면, U-RA의 농도는 농도 관측 초기인 1996년에 비하여 2006년의 농도가 상당히 올라갔음을 확인할 수 있다(1996년: 11 ppb, 2006년: 18.8 ppb). 그러나, U-RS의 경우 오히려 평균농도가 감 소하였다고 볼 수 있다(2004, 2005년의 평균농도 기 준). 비록 계절적 요인에 의한 오존농도의 변화는 유사 한 정도를 유지하였으나 지난 11년간의 전반적인 농도 변화 추세는 두 지점이 큰 차이를 보인다는 것을 알 수 있다.

전체 시간 자료 중 60 ppb 이상의 오존농도가 발생했던 일수와 환경기준인 한시간 평균 100 ppb 이상의 농도가 발생한 횟수를 Table 3에 제시하였다. 60 ppb는 우리나라의 8시간 평균기준치이면서, 천식질환이 더욱 악화될 정도로 오존피해가 급격히 늘어나는 농도수준으로 제시한 바 있다. 12) Table 3의 결과를 보면, U-RA의 고농도 오존발생일수가 대체로 유지 또는 증가하였다. 이에 반해, U-RS의 경우 자료관측 초기에 연 10일 이상이었던 고농도 오존발생일이 2003년 이후에는 한차례 이하로 발생하였다. 농도 관측 초기인 1996년부

터 1998년까지의 U-RA의 고농도 발생일수는 연간 18~22일 이었다. 그러나 후반 3년인 2004년부터 2006 년까지의 경우, 그 발생일수가 최소 28일에서 최고 66 일에 달할 정도로 고농도 오존의 발생일이 증가하였 다. 또한 연 중 최고농도의 경우도 U-RA의 경우, 최근 5년간 100 ppb 이상인 경우가 지속적으로 나타났다 (106~135 ppb). 그러나 U-RS에서는 90년대 중반에 비 해 최근의 고농도 오존발생일이 크게 감소하였다. 특히 2001년 이후 급격히 감소하여, 2002년을 제외하고 2006년까지 환경기준인 100 ppb 이상을 초과 발생한 적이 없다. 연중 최고 농도 또한 최근 4년간 69 ppb (2006년)가 가장 높았던 것으로 나타났다. 이러한 차이 도 연평균의 변화추이와 같은 맥락으로 대도시적인 특 징을 반영하는 U-RA와 차량에서 배출되는 NO 등 주 변환경적 요인의 영향을 강하게 받는 U-RS 사이의 차 이로 해석할 수 있을 것이다.

고농도 발생일이 가장 많은 달은 두 지점에서 모두 6월 달로 U-RA의 고농도 오존의 약 24%, U-RS의 경 우 45%가 6월 달에 발생한 것으로 나타났다. 그 뒤로 7,8월 달에 가장 많고, 겨울철인 12,1월은 한차례도 없었다. 이는 오존의 월별 평균농도와 일치하는 결과로 오존의 고농도 발생이 평균농도에 지대한 영향을 미치는 것을 알 수 있다.

이러한 오존농도의 증가현상은 선행연구를 통해서도 확인할 수 있다. 1993년부터 2000년까지의 서울, 부산, 대구 도시의 오존농도를 분석한 자료에 의하면, 그기간 오존의 연평균과 고농도 발생일수는 연간 큰 변동 없이 점차 증가하는 경향을 보였다. 19) 이는 90년대 이후 뚜렷한 경제성장과 도시화로 인해, 대도시의 오존 농도가 증가추세를 보인 것으로 설명할 수 있다. 8) 그러나 U-RS의 경우 오히려 평균 농도가 감소하였다고 볼수 있다(2004, 2005년의 평균 농도 고려). 지리적으로 멀지 않은 두 곳에서 이러한 반대적인 경향을 보이는 것은 앞서 언급한 바와 마찬가지로 도로변에 근접한 U-RS의 특성상 차량에 의해 배출되는 NO의 영향을 우선적으로 고려할 수 있다. 해마다 늘어나는 자동차와

Table 3. Occurrence pattern of ozone concentration data at U-RA and U-RS

	Month Year	2	3	4	5	6	7	8	9	10	11	Number of days ^a (≥60 ppb)	Frequency ^b ≥ 100 ppb	Maximum O ₃ ^c (ppb)
	1996					1	4	10	6	1		22	5	128
	1997					2	9	5	3			19	0	96
	1998			1			2	5	10			18	0	99
U-RA	1999			2	6	17	6	2	6			39	6	116
	2000	1	1		10	16	15	10	3			56	10	119
	2001	1					3	2	1			7	0	81
	2002				12	18	9	6	7	3	1	56	9	134
	2003			1	17	12	7	1	3			41	2	106
	2004					2	8	10	7	1		28	8	120
	2005		2	3	4	5	9	5	1			29	3	135
	2006				11	17	6	13	11	7	1	66	3	111
	1996	3		1	1	3	5	3				16	2	109
	1997			5		13	2	1				21	1	123
	1998		1					1	2			4	0	70
	1999			2	1	10	1	4	2	1		21	0	99
	2000					10	8					18	13	165
U-RS	2001					3						3	0	84
	2002					3	3					6	1	120
	2003						1					1	0	60
	2004											0	0	50
	2005				1							1	0	61
	2006							2	1			3	0	69

^aNumber of days (for each year) with $O_3 > 60$ ppb.

^bHourly frequencyof above 100 ppb.

^cHourly maximum concentration of ozone.

Fig. 7. Comparison of the annual mean concentrations of ozone between urban residential area (U-RA: DH) and urban roadside (U-RS: SC) sites with different temporal groupings.

더불어 NO의 배출량이 증가함에 따라 대기중에서 오 존 적정 효과로 인한 오존의 화학적 소멸에 따른 영향 으로 해석할 수 있다. 이러한 특징들로 인해 두 지점의 오존농도 차이가 해마다 증가한다고 여겨진다.

두 지점의 연평균 오존농도와 함께 각 해의 오존월 과 비오존월의 경향을 비교해 보면, 2001년을 제외하고 꾸준히 증가하는 U-RA와 계속 감소 추세를 보이는 U-RS의 오존농도가 대조를 이룬다. U-RA의 경우 오존월 과 비오존월의 평균농도가 비슷하게 증가하고 있으나,

U-RS에서는 비오존월에 비해 오존월에 감소가 두드러 진다. 또한 연평균과 오존월의 평균을 비교해 보면, 두 지점의 연평균 증감이 오존월의 증감과 일치하는 것을 확인할 수 있다. 이처럼 그 해의 평균 오존농도는 5월 부터 9월 사이의 오존농도에 따라 크게 좌우되는 것을 알 수 있다.

3.5 오존농도를 조절하는 주변환경인자들에 대한 고찰 오존농도의 변화추이를 주변환경의 조건과 연관 지

	O_3	SO_2	NO	NO_2	NO_X	CO	CH_4	NMHC	THC	TSP	PM_{10}	$PM_{2.5}$	TEMP	HUM	UV	Solra	WS
. U-R	A (DH)																
O_3	1																
SO_2	105(**)	1															
NO	311(**)	.195(**)	1														
NO_2	290(**)			1													
NO_X	334(**)				1												
CO	282(**)																
	184(**)						1										
	317(**)							1									
	303(**)																
	015(**)									1							
	067(**)										1	1					
	054(**)											1	1				
TEMP	,												1 .269(**)	1			
HUM UV	.337(**)										.011(*)		.209(**)	1 248(**)	1		
Solra	.404(**)										. ,		.206(**)	396(**)	.765(**)	1	
WS	.512(**)												021(**)	161(**)	.149(**)	.234(**)	1
		.100()	.000()	.100()	.110() .101(₎	, 102()	, .200()	, ,200()	.010()	.000()	.021()	.021()	.101()	.110()	.201()	
	S (SC)																
O_3	1																
SO_2	125(**																
		·\	*) 1														
NO	235(**		-		_												
NO_2	068(**	.411(*	*) .659(1												
${ m NO_2} \ { m NO_X}$	068(** 207(**	.411(* 5) .537(*	*) .659(*) .979(**) .799	(**)	1											
${f NO_2} \ {f NO_X} \ {f CO}$	068(** 207(** 166(**	3 .411(* 5 .537(* 6 .556(*	*) .659(*) .979(*) .607(**) .799 **) .412)(**) !(**) .5	98(**)	1										
$ \begin{array}{c} \text{NO}_2 \\ \text{NO}_X \\ \text{CO} \\ \text{CH}_4 \end{array} $	068(** 207(** 166(** 097(**	3) .411(* 3) .537(* 4) .556(* 4) .221(*	*) .659(*) .979(*) .607(*) .319(**) .799 **) .412 **) .236	0(**) 2(**) .5 5(**) .3	98(**) 19(**) .:	364(**)	1	1								
NO ₂ NO _X CO CH ₄ NMHO	068(** 207(** 166(** 097(**	(a) .411(* (b) .537(* (c) .556(* (c) .221(* (c) .255(*	*) .659(*) .979(*) .607(*) .319(*) .354(**) .799 **) .412 **) .236 **) .225	0(**) 2(**) .5 5(**) .3 5(**) .3	98(**) 19(**) .3 44(**) .2	364(**) 271(**)	.219(**)	1	1							
NO ₂ NO _X CO CH ₄ NMHO THC	068(** 207(** 166(** 097(** 177(** 159(**	(i) .411(* (i) .537(* (i) .556(* (i) .221(* (i) .255(* (i) .293(*	*) .659(*) .979(*) .607(*) .319(*) .354(*) .417(**) .799 **) .412 **) .236 **) .225 **) .291	0(**) 6(**) .5 6(**) .3 6(**) .4	98(**) 19(**) .3 44(**) .2 13(**) .4	364(**) 271(**) 414(**)	.219(**) .890(**)	.639(**)	1	1						
NO ₂ NO _X CO CH ₄ NMHO THC	068(** 207(** 166(** 097(** 177(** 159(** 0.004	(i) .411(* (i) .537(* (i) .556(* (i) .221(* (i) .255(* (i) .293(* .079(*	*) .659(*) .979(*) .607(*) .319(*) .354(*) .417(*) .092(**) .799 **) .412 **) .236 **) .225 **) .291 **) .101	(**) (**) .5 (**) .3 (**) .3 (**) .4 (**) .1	98(**) 19(**) .2 44(**) .2 13(**) .4 01(**)	364(**) 271(**) 414(**) 034(**)	.219(**) .890(**) .105(**)	.639(**) .131(**)	.141(**)		٤\ 1					
NO_2 NO_X CO CH_4 $NMHC$ THC TSP PM_{10}	068(** 207(** 166(** 097(** 177(** 159(** 0.004 .041(**	(i) .411(* (i) .537(* (i) .556(* (i) .221(* (i) .255(* (i) .293(* .079(* (i) .221(*	*) .659(*) .979(*) .607(*) .319(*) .354(*) .417(*) .092(*) .197(**) .799 **) .412 **) .236 **) .225 **) .291 **) .101 **) .214	0(**) 0(**) .5 6(**) .3 6(**) .3 ((**) .4 ((**) .1 6(**) .2	98(**) 19(**) .2 44(**) .2 13(**) .4 01(**) 15(**) .5	364(**) 271(**) 414(**) 034(**) 129(**)	.219(**) .890(**) .105(**) .215(**)	.639(**) .131(**) .173(**)	.141(**)	.961(**) 1				
$\begin{array}{c} NO_2 \\ NO_X \\ CO \\ CH_4 \\ NMHO \\ THC \\ TSP \\ PM_{10} \\ PM_{2.5} \end{array}$	068(** 207(** 166(** 097(** 177(** 159(** 0.004 .041(** .085(**) .411(*) .537(*) .556(*) .221(*) .255(*) .293(* .079(*) .221(*) .345(*	*) .659(*) .979(*) .607(*) .319(*) .354(*) .417(*) .092(*) .197(*) .308(**) .799 **) .412 **) .236 **) .225 **) .291 **) .101 **) .214 **) .372	6(**) .5 6(**) .3 6(**) .3 6(**) .4 ((**) .1 6(**) .2 6(**) .3	98(**) 19(**) 44(**) 13(**) 01(**) 15(**) 48(**)	364(**) 271(**) 414(**) 034(**) 129(**)	.219(**) .890(**) .105(**) .215(**) .379(**)	.639(**) .131(**) .173(**) .351(**)	.141(**) .238(**) .414(**)	.961(** .686(**	*) .756(**		1			
NO ₂ NO _X CO CH ₄ NMHO THC TSP PM ₁₀ PM _{2.5} TEME	068(** 207(** 166(** 097(** 177(** 159(** 0.004 .041(** .085(** 2.280(**	(i) .411(* (i) .537(* (i) .556(* (i) .221(* (i) .255(* (i) .293(* .079(* (i) .221(* (i) .345(* (i) .239(*	*) .659(*) .979(*) .607(*) .319(*) .354(*) .417(*) .092(*) .197(*) .308(*) .221(**) .799 **) .412 **) .236 **) .225 **) .291 **) .101 **) .214 **) .372 (**)060	(**) (**) .5 (**) .3 (**) .4 (**) .4 (**) .2 (**) .3 (**) .2	98(**) 19(**) 44(**) 13(**) 01(**) 15(**) 48(**) 93(**)	364(**) 271(**) 414(**) 034(**) 129(**) 163(**) 067(**)	.219(**) .890(**) .105(**) .215(**) .379(**) .022(**)	.639(**) .131(**) .173(**) .351(**) 053(**)	.141(**) .238(**) .414(**) 042(**	.961(** .686(**)071(**	*) .756(** *)066(**)034(**)	1 234(**)	1		
$\begin{array}{c} NO_2 \\ NO_X \\ CO \\ CH_4 \\ NMHO \\ THC \\ TSP \\ PM_{10} \\ PM_{2.5} \\ TEMH \\ HUM \end{array}$	068(** 207(** 166(** 097(** 177(** 159(** 0.004 .041(** .085(** 280(** 141(**) .411(*) .537(*) .556(*) .221(*) .255(*) .293(* .079(*) .221(*) .345(*)239(*	*) .659(*) .979(*) .607(*) .319(*) .354(*) .417(*) .092(*) .197(*) .308(**)221(**)055(**) .799 **) .412 **) .236 **) .225 **) .291 **) .101 **) .214 **) .372 **)060 (**)173	(**) .5 (**) .5 (**) .3 (**) .4 (**) .1 .(**) .2 (**) .3 (**) .2 (**) .3	98(**) 19(**) 44(**) 13(**) 01(**) 15(**) 48(**) 93(**)	364(**) 271(**) 414(**) 034(**) 129(**) 163(**) 067(**)	.219(**) .890(**) .105(**) .215(**) .379(**) .022(**) .115(**)	.639(**) .131(**) .173(**) .351(**) 053(**) 064(**)	.141(**) .238(**) .414(**) 042(** .061(**)	.961(** .686(**)071(*)094(*	*) .756(** *)066(** *)065(**)034(**))059(**)	1 .234(**) 300(**)	1 - 221(**)	1	
$\begin{array}{c} NO_2 \\ NO_X \\ CO \\ CH_4 \\ NMHO \\ THC \\ TSP \\ PM_{10} \\ PM_{2.5} \\ TEMH \end{array}$	068(** 207(** 166(** 097(** 177(** 159(** 0.004 .041(** .085(** 2.280(**		*) .659(*) .979(*) .979(*) .607(*) .319(*) .354(*) .417(*) .092(*) .197(*) .308(*) .221(*) .055(*) .022(*) .022(*)	**) .799 **) .412 **) .236 **) .225 **) .291 **) .101 **) .214 **) .372 **)060 (**)173	(**) .5 (**) .5 (**) .3 (**) .4 (**) .4 (**) .1 .2 (**) .2 (**) .3 (**) .2 (**) .3 (**) .5 (**	98(**) 19(**) 44(**) 13(**) 01(**) 15(**) 48(**) 93(**) 93(**) 007(*)	364(**) 271(**) 414(**) 034(**) 129(**) 163(**) 067(**) 084(**) 023(**)	.219(**) .890(**) .105(**) .215(**) .379(**) .022(**) .115(**) .063(**)	.639(**) .131(**) .173(**) .351(**) 053(**)	.141(**) .238(**) .414(**) 042(** .061(**) 085(**	.961(** .686(**)071(**)094(**)022(**	*) .756(** *)066(** *)065(** *) .019(**	034(**) 059(**) .092(**)	` '	221(**)	1 96(**) 1	

^{**} denote number of observations and the significance at P < 0.01, respectively. * denote number of observations and the significance at P < 0.05, respectively.

어 해석하기 위해, 같은 기간 동안 함께 측정한 기타 대기오염물질들과 기상자료를 이용하여 상관분석을 시도하였다(Table 4). 오존과 기타 대기오염물질과의 상관성을 SO₂, NO, NO₂, NO_X, CO 등을 중심으로 살펴보았다. 우선 이들 1차 대기오염물질과의 상관계수(r)가 U-RA에서는 각각 -0.105, -0.311, -0.290, -0.334, -0.282(p<0.01), U-RS에서는 각각 -0.125, -0.235, -0.068, -0.207, -0.166(p<0.01)로 두 지점 모두에서 음의 상관관계를 보였다. 그 중 NO 및 NO_X와의 음의 상관성(U-RA: r=-0.311, -0.334, U-RS:-0.235, -0.207)이 가장 두드러졌다. 따라서 이들 물질들의 소멸이 오존의 생성에 가장 큰 영향을 미치는 것을 간접적으로 확인할 수 있다.

기상조건과의 관계를 보면, 두 지점에서 공통적으로 온도와 일사량 및 풍속의 상관성이 높게 나타났다. 이 들의 상관계수가 U-RA에서는 각각 0.299, 0.404와 0.512(p<0.01), U-RS에서는 각각 0.280, 0.333과 0.212 (p<0.01)로 높은 상관성을 보였다. 대구시 지표면의 오 존생성에 기여하는 인자를 연구한 최성우와이정환 (2005)¹²⁾의 연구에서도 이와 유사한 결과를 찾아볼 수 있다. 그 연구에 따르면 대구시 지표오존은 오염물질 중 SO₂, CO, NO₂와는 음의 상관성을 보이고, 기상인 자 중 온도와 풍속 양의 상관성, 상대습도는 음의 상관성을 보였다. 이를 감안하면, U-RA에서는 습도와 양의 상관성(0.337)을 취하는 차이점이 있었으나, U-RS에서는 음의 상관관계(-0.141)를 보여 대조적이다. 위의 결과를 보면, 일반적으로 알려진 바와 같이 오존의 생성은 온도와 풍속에 큰 영향을 받는 것을 다시 한번 확인할 수 있다.

Table 5에는 오존농도의 변화에 대한 기여도를 평

Table 5. Results of statistical analysis of ozone concentration data at each site a. ANOVA

Model			U-RA	(DH)		U-RS (SC)								
Wodei	SS	d.	f. 1	MS	F	` ;	Sig.	SS	3	d.f.	MS	F	Sig.	
Regression	3.81E+	06 1	4 272	450.21	2406	5.29 .0	00(a)	2.99E	+05	14	21369.08	547.60	.000(a)	
O_3 Residual	3.22E +	06 284	104 11	3.224				1.31E	+06	33480	39.023			
Total	7.03E +	06 284	118					1.61E	+06	33494				
b. Coefficients														
			U-RA (D	H)			U-RS (SC)							
Model	Unstand	lardized	Standar	Standardized				Unstand	ardized	l Stan	Standardized		Sig.	
Model	Coe	eff.	Coe	Coeff.			Sig.		eff.	(Coeff.	t	Sig.	
_	В	SE	Beta					В	SE		Beta			
(Constant)	32.088	0.579		55.3	398	0		4.27	0.349)		12.232	0	
SO_2	0.202	0.023	0.042	8.6	49	5.4E-1	8	0.031	0.01	. (0.017	3.028	0.002	
NO	-0.104	0.002	-0.288	-41.	966	0		-0.01	0.00	1 -	0.11	-14.784	2.6E-49	
NO_2	-0.304	0.005	-0.372	-59.	419 (0		0.017	0.002	2 (0.055	7.839	4.7E-15	
CO	10.103	0.321	0.278	31.5	504	3.8E-2	14	-0.129	0.087	7 -	0.008	-1.478	0.139	
NMHC	-2.351	0.441	-0.038	-5.3	331	9.8E-0	8	-6.009	0.285	5 -	0.214	-21.102	3.3E-98	
THC	-2.465	0.22	-0.072	-11.	184	5.6E-29	9	0.901	0.149) (0.063	6.042	1.5E-09	
O_3 TSP	-0.036	0.002	-0.219	-16.	132	2.8E-5	8	0	0.00	l -	0.007	-0.426	0.670	
PM_{10}	0.022	0.004	0.092	5.9	35	3.0E-0	9	-0.007	0.002	2 -	0.072	-3.641	2.7E-04	
$PM_{2.5}$	0.119	0.006	0.199	20.9	989	4.5E-9	7	0.063	0.003	3 ().195	22.004	1.5E-106	
TEMP	0.507	0.008	0.328	64.8	397	0		0.163	0.004	4 ().249	38.112	0.0E + 00	
HUM	-0.252	0.004	-0.293	-58.	156	0		-0.012	0.002	2 -	0.038	-6.51	7.6E-11	
UV	1.264	0.273	0.03	4.6	27	3.7E-0	6	-1.18	0.426	5 -	0.033	-2.769	5.6E-03	
Solra	0.019	0.001	0.243	34.9	916	1.5E-2	61	0.011	0.00	1 ().181	15.002	1.0E-50	
WS	1.082	0.052	0.092	20.7	783	3.1E-9	5	1.868	0.106	6 ().114	17.563	9.7E-69	

a. Dependent Variable : O_3 Significance (Sig.): Under 0.05

Note: B (Unstandardized), SE (Standard Error), and Beta (Standardized Coeff).

 PM_{10}

TSP

 $PM_{2.5}$

Solra

UV

 O_3

 CH_4

THC

HUM

TEMP

WS

Eigenvalue % variance

0.128

0.065

0.192

-0.021

0.001

-0.436

0.109

0.437

-0.06

-0.24

-0.388

5.486

32.27

0.97

0.958

0.928

-0.037

0.016

0.029

0.082

0.036

0.047

0.013

-0.006

2.688

15.81

-0.009

-0.009

0.017

0.894

0.862

0.653

-0.084

-0.083

-0.328

0.468

0.175

2.136

12.56

		U-R	A Compo	nent			U-RS Component					
	1	2	3	4	5	-	1	2	3	4		
NO_X	0.94	0.087	-0.088	0.146	0.007	THC	0.944	0.205	0.145	-0.098		
NO	0.879	0.013	-0.073	0.135	0.004	CH_4	0.859	0.116	0.153	-0.152		
CO	0.869	0.172	-0.147	0.162	-0.053	NMHC	0.809	0.261	0.099	-0.008		
NO_2	0.769	0.225	-0.092	0.124	0.012	SO_2	0.331	0.317	0.211	-0.064		
NMHC	0.648	-0.036	-0.046	0.482	0.035	NO_X	0.266	0.912	0.102	-0.09		
SO_2	0.515	0.212	0.129	-0.016	-0.354	NO	0.268	0.87	0.081	-0.147		

-0.017

-0.042

0.083

-0.187

-0.001

-0.133

0.058

0.058

0.755

0.671

-0.476

1.082

6.368

 NO_2

CO

 PM_{10}

TSP

 PM_{25}

Solra

UV

 O_3

HUM

WS

TEMP

0.181

-0.016

0.105

0.047

0.348

-0.055

-0.032

-0.141

-0.031

-0.359

0.028

4.855

28.558

0.784

0.524

0.114

0.098

0.241

0.039

0.036

-0.088

-0.077

-0.057

-0.1

2.734

16.081

0.142

0.086

0.962

0.944

0.764

-0.019

-0.02

0.117

0.013

0.142

-0.036

1.888

11.108

0.13

0.008

0.013

0.01

0.117

0.907

0.901

0.516

-0.298

0.162

0.565

1.842

10.837

Table 6. Factor analysis of ozone and all environmental parameters at each station

0.046

0.025

0.044

-0.048

-0.114

-0.046

0.909

0.886

0.019

0.17

-0.007

1.647

9.687

가하기 위해, 다중회귀 분석을 시도하였다. 그 결과 대부분의 물질에서 높은 기여도를 나타내고 있다. U-RA에서는 모든 항목의 유의 확률이 0.05 이하로 유의 하여 오존농도에 기여도가 높은 것으로 판단되었다. 이는 주거지역으로 분류하는 U-RA에서는 오존발생에 영향을 미치는 특정요인이 존재한다기 보다 전반적으로 여러 오염물질과 기상조건 등의 영향을 고루 받는 것으로 여겨진다. U-RS에서도 대부분 물질의 기여도가 0.05이하로 높게 평가되었다. 다만 CO와 TSP의기여도가 각각 0.139와 0.67로 다른 인자들에 비해상대적으로 낮은 것으로 분석되었다. U-RS의 경우, 상관분석 결과에서도 미세먼지 성분들과는 상관성이 낮아, 두 인자간의 상호관계가 극히 작은 것으로 여겨진다.

함께 측정한 대기오염물질 및 기상조건에 대해서 양조사지점의 대기질에 영향을 미치는 인자들을 조사하기 위하여 요인분석을 실시하였다(Table 6). 그 결과를 보면, 먼저 U-RA에서는 상위 5개 요인이 76.7%를 차지하였다. 이 중 1요인은 NO, NO₂, NO_x, CO 등 (32.3%)의 대기오염물질, 2요인은 각 입경영역의 미세먼지들(15.8%), 3요인은 자외선량, 일사량,자외선 등 (12.6%)의 순으로 나타났다. 도로변인 U-RS의 경우, 1

요인으로 THC, NMHC 등의 배출가스(28.6%), 2요 인으로 NO, NO $_2$, NOx(16.1%), 3요인으로는 PM2.5, PM10. TSP 등의 미세먼지들(11.1%), 요인요인이 자외선, 일사량,자외선(10.8자%)으로 나타났다. 이러한 결과를 통해서 양 지역의 대기질에 영향을 미치는 요소들 간에 상당한 차이가 있음을 알 수 있다. 이는 앞에서도 언급하였듯이, 두 지점의 를 차지 차이에 따른 오염물질의 배출원이 다르고, 그에 따른 오선 생성의기역인자들의 역할이 근본적으로 다르기 때문이라 볼수 있다.

5 0.091 -0.014 0.194 -0.286 -0.137 -0.131

-0.117

0.214

-0.048

-0.081

0.001

-0.207

-0.173

0.055

0.713

-0.712

0.661

1.121

6.597

4. 결 론

거리는 인접하나 주변환경적 특성이 다른 서울시의 도시대기측정소(U-RA)와 도로변대기측정소(U-RS)의 오 존농도 분포 및 발생 특성을 조사하였다(1996-2006).

이 기간의 전체 평균 오존농도는 U-RA와 U-RS에서 각각 14±8.8 ppb, 9.35±5.9 ppb로 U-RA가 약 50% 높았다. 이러한 차이는 서울지역의 34개 대기오염측정 망의 측정 결과와 일치하며, 그 원인으로는 도로변의 자동차 배기가스로부터 유입되는 NO에 의한 오존소멸 반응이 작용한 것으로 널리 알려져 있다. 일주기 변화

는 두 지점 모두 새벽 4시와 오전 8시를 전후로 최저 농도, 오후 4시경의 최고피크를 나타내 전형적인 도시형 오존변동패턴을 따랐다. 일중 최고 농도는 U-RA와 U-RS에서 각각 36.4 ppb, 16 ppb이며, 최저 농도는 각각 6.61 ppb, 5.83 ppb로 양 지점의 농도일교차가 매우큰 것으로 나타났다. 또한 오존월에는 오후시간의 농도가 크게 증가하여 비오존월의 평균농도에 비해 50~60% 증가하였다. 이러한 오존월의 농도 증감에 따라 연평균 농도 역시 유사한 패턴으로 나타남을 확인할 수 있었다.

오존의 계절특징으로는 여름 > 봄 > 가을 > 겨울 순의 고농도를 보인다. 일교차 또한 여름에는 190(U-RA)~330%(U-RS) 차이로 겨울(100~230%)에 비하여 3배 가량 크게 나타났다. 월평균농도는 6월 달에 가장 높고(U-RA: 21, U-RS: 15.3 ppb), 장마철인 7월 달에 줄어들어 유지되다가 겨울철인 12월 달에 최소평균농도(U-RA: 6.8, U-RS: 5.7 ppb)를 보였다.

U-RA의 경우, 지난 십여 년간 평균농도가 점차 증가하는 추세이며 60 ppb 이상의 고농도 오존발생일도 1990년대 중반에 비해 3배 이상 크게 증가하였다. 이에반해 U-RS의 경우 최근 4년간 69 ppb가 최고 농도일만큼 고농도 오존의 발생이 줄고, 연평균 또한 감소하고 있는 추세이다. 이는 서울의 경제성장에 따른 오존 농도의 대도시화 경향을 반영한다. 결과적으로, 도시의평균 오존 농도는 해마다 증가하는 반면, 급격하게 늘어나는 차량에 의한 NO의 배출량 증가에 따라 도로변에서는 오존의 화학적 소멸이 작용하여 오히려 오존 농도가 감소하는 결과라 볼 수 있다.

기상조건과의 상관분석에서 오존에 대해 온도와 일 사량 및 풍속의 상관성이 높게 나타났다. 이들의 상관계수(r)는 U-RA에서 각각 0.299, 0.404, 0.512(p<0.01)이고, U-RS에서는 각각 0.280, 0.333, 0.212(p<0.01)로 비교적 높았다. 대기오염물질 중에는 NO와 NO_X가U-RA에서 -0.311, -0.334(p<0.01), U-RS에서 -0.235, -0.207(p<0.01)로 음의 상관관계를 나타내고 있다. 따라서 이들 물질이 오존생성에 가장 큰 영향을 미친다는 것을 확인했다.

전체적으로, 서울 지역의 오존 농도는 일반적으로 대도시에서 나타나는 특성을 따르며, 기온, 일사량, 대기안정도, 강수량 등에 큰 영향을 받는다는 것을 충분히알 수 있다. 또한 도로변의 경우 NO에 의한 오존소멸반응이 평균농도에 크게 반영된다는 것을 확인할 수 있었다.

서울의 평균 오존농도의 증가 추세가 뚜렷하고 이는 전세계적으로 경제성장이 두드러진 대도시의 오존 농도 증가 현상을 그대로 반영하는 것으로 볼 수 있다. 따라서 오존의 효과적인 농도저감과 오존오염에 따른 피해를 줄이기 위해서는 선진외국의 오존저감 사례를 함께 분석하고 지속적인 연구로 서울지역 오존 발생의 특징을 고려한 대책을 마련이 필요하다. 이와 더불어 NO_2 와 VOCs 등 오존 전구물질에 대한 관리도 동시에 추진하여야 할 것이다. 또한 기상조건의 영향이 잘 알려진 만큼 연속적인 대기질의 관측과 기상변화를 다각도로 분석하는 연구를 계속하고, 측정도보다 다양한 지역에서 지속적으로 진행하여 향후 문제에 대해 효과적으로 대처할 수 있도록 하는 준비가필요할 것이다.

참고문헌

- 1. 권오상, 안동환, 김원희, *자원환경경제연구*, **2004**, 13, 83-117.
- 2. Coyle M., Smith R.I., Stedman J.R. and Weston K.J., *Atmospheric Environment*, **2002**, 36, 1013-1024.
- 3. 김주애, 이미애, 한지현, 황정훈, *한국대기환경학회* 2007년 환경공동학술대회 초록집, 2007, 1291.
- Lin C.H., Wu Y.L., Lai C.H. and Lin P.H., Atmospheric Environment, 2004, 38, 267-4278.
- 5. Tilton B.E., Environmental science and technology, 1989, 23, 257-263.
- 6. 박수진, 송영재, 김신도, 이재영, *대한환경공학회 2005 추계학술연구발표회 논문집*, **2005**, 700-707.
- 7. Liu C.M., Huang C.Y., Shieh S.L. and Wu C.C., *Atmospheric environment*, **1994**, 28, 159-173.
- 8. Jo W.K., Yoon I.H. and Nam C.W., *Environmental Pollution*, **2000**, 110, 11-18.
- 9. 이기호, 김대준, 허철구, *한국환경과학회지*, **2004**, 13, 377-387.
- 김유근, 문윤섭, 오인보, 황미경, 한국기상학회지,
 2002, 38, 319-331.
- 11. 조효정, 정장표, 장영환, 이승훈, *대한환경공학회 2005 추계학술연구발표회 논문집*, **2005**, 368-375.
- 12. 최성우, 이정환, *환경과학논집*, **2005**, 10, 195-203.
- 13. 윤성철, 박은우, 장영기, *한국대기환경학회지*, **1999**, 15, 429-439.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. Proceedings of the Royal Society London A, 1998, 454, 903-995
- 15. Lal S., Atmospheric Environment, 2000, 34, 2713-

2724.

- 16. Macdonald C.Y., Roberts P.P., Main H.H., Dye T.S., Coe D.L. and Yarbrough J., *The Science of the Total Environment*, **2001**, 276, 93-109.
- 17. McKendry I. G., Steyn D.G., Lundgren J. and Hoff
- R.M., Atmospheric Environment, 1997, 31, 2135-2146.
- 18. Ghim Y.S. and Chang Y.S., *Journal of Geophysical Research Atmospheres*, **2000**, 105, 8877–8890.
- 19. 오인보, 김유근, *한국대기환경학회지*, **2002**, 18, 253-264.