

Model Development Phase Template

Date	4 June 2024
Team ID	SWTID1720109344
Project Title	Rice Type Classification using CNN
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report:

Initial Model Training Code (5 marks):

Libraries importing:

```
6]: import numpy as np
    np.random.seed(42)
    import matplotlib.pyplot as plt
    import matplotlib.image as mpimg
    import cv2
    from PIL import Image
    from skimage import io
    import scipy
    import os
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import precision_score, recall_score, f1_score, roc_curve
    import seaborn as sns
    from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
    from sklearn.model_selection import GridSearchCV
    from imblearn.over_sampling import SMOTE
from sklearn.model_selection import StratifiedKFold
    from sklearn.model_selection import KFold
    import tensorflow as tf
    from tensorflow.keras.preprocessing.image import load_img, img_to_array
    from \ tensorflow.keras.preprocessing.image \ import \ ImageDataGenerator
    import keras
    from keras import Model
    from keras.models import load_model
    from keras.utils import normalize
    from keras.models import Sequential
    from keras.layers import Conv2D, MaxPooling2D
    from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization, GlobalAveragePooling2D
    from keras import layers
    from keras.utils import to_categorical
    from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, CSVLogger, LearningRateScheduler
    from keras.applications import VGG16, VGG19
```

Data splitting:

Split the dataset

```
[6]: X_train,X_test, y_train, y_test*train_test_split(dataset, labels, test_size=0.2, random_state=42, stratify=labels)

# Reshape = (n, image_width, image_height, n_channel)
print(X_train.shape)

print(y_train.shape)

print(Y_test.shape)
print(y_test.shape)

(2000, 120, 120, 3)
(2000,)
(500, 120, 120, 3)
(500,)
```

Normalize X values and apply one-hot encoding on y values

```
[7]: X_train=(X_train/255)
X_test=(X_test/255)

y_train=to_categorical(y_train , num_classes=5)
y_test=to_categorical(y_test , num_classes=5)
```

CNN-Model 1(using resnet):

Model building

```
[8]: from keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense
      from keras.models import Model
      def create_model(input_shape):
         inputs = Input(shape=input shape)
          x = Conv2D(32, (3, 3), input\_shape=input\_shape, activation='relu')(inputs)
          x = Conv2D(32, (3, 3), activation='relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
          x = Conv2D(64, (3, 3), activation='relu')(x)
          x = Conv2D(64, (3, 3), activation='relu')(x)
x = Conv2D(64, (3, 3), activation='relu')(x)
          x = MaxPooling2D(pool_size=(2, 2))(x)
          x = Conv2D(128, (3, 3), activation='relu')(x)
          x = Conv2D(25, (1, 1))(x)
          outputs = Dense(5, activation='softmax')(x)
          model = Model(inputs=inputs, outputs=outputs)
          return model
      input_shape = (120, 120, 3)
      model = create_model(input_shape)
      model.summary()
```

Train the model and save the best model

```
[11]: model.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy'])

history = model.fit(X_train, y_train,
batch_size=128,
verbose=1, epochs=25,
validation_data=(X_test, y_test),
shuffle=False, callbacks=callbacks_list)
```

CNN -Model2(using vgg16):

** Training the Model**

CNN-Model3(using xception):

```
CNN = tf.keras.models.Sequential()
CNN.add(tf.keras.layers.Conv2D(filters = 32,kernel_size = 3, activation="relu", input_shape=[150,150,3]))
CNN.add(tf.keras.layers.MaxPool2D(pool_size = 2, strides=2))
CNN.add(tf.keras.layers.Flatten())
CNN.add(tf.keras.layers.Dense(units=512, activation="relu"))
CNN.add(tf.keras.layers.Dense(units=5, activation="softmax"))
CNN.summary()
```

Training the CNN ¶

```
[14]: CNN.compile(optimizer="adam" , loss="categorical_crossentropy", metrics=['accuracy'])
history = CNN.fit(x=train_generator, validation_data=validation_generator, epochs=10)
```

Model Validation and Evaluation Report (5 marks):

Model	Summary			Training and Validation Performance Metrics
	Model: "functional_1"			
	Layer (type)	Output Shape	Param #	tpoch 1/25 1/16 — 6145 27m/step - eccuracy: 0.2009 - loss: 1.0008 swarmin: All log messages before absl::faltfalincog() is called are written to STOERA
	input_layer (InputLayer)	(None, 120, 120, 3)	0	10000 00:00:1715707300,504099 70 device_compiler.h:186] Compiled cluster using XIA! This line is logged at most once for the lifetime of the proce as. 18000 00:00:1715707300.523777 70 graph launch.cc:671[Fallback to up-by-up mode because memset node breaks graph update
	conv2d (Conv2D)	(None, 118, 118, 32)	896	180000 80:001137097000.222777 ne grapm_immun.ccrority railmonce to op-op-op mode occasie member node grapm update 18/16 —
	conv2d_1 (Conv2D)	(None, 116, 116, 32)	9,248	18000 80:00:1715787327.457559 70 graph launch.cc:671] Fallback to up-by-up mode because memset node breaks graph update 18/16 58s 2n/step - accuracy: 0.4865 - loss: 1.2466 - val_accuracy: 0.8140 - val_loss: 0.5017
	max_pooling2d (MaxPooling2D)	(None, 58, 58, 32)	0	#poih 2/25 18/000 80/01735787337,199789 70 graph_lounch_cc:071] Fallback to op-by-op mode because memset mode breaks graph update 18/15 213445/15cs - accuracy: 0.1469 - loss: 0.4255 - val accuracy: 0.0840 - val loss: 0.2855
	conv2d_2 (Conv2D)	(None, 56, 56, 64)	18,496	Epoch 3/25 16/16 2s 133ms/step - accuracy: 0.8994 - loss: 0.3003 - val_accuracy: 0.9660 - val_loss: 0.1500
Model	conv2d_3 (Conv2D)	(None, 54, 54, 64)	36,928	Epoch 4/25. 16/16 2s 155es/step - accuracy: 0.0545 - loss: 0.2225 - val_accuracy: 0.0660 - val_loss: 0.1804 Epoch 5/25
	conv2d_4 (Conv2D)	(None, 52, 52, 64)	36,928	16/16 2m 135es/step - accuracy: 0.9506 - loss: 0.1505 - val_accuracy: 0.9640 - val_loss: 0.1468 Epoch 8/25
1(resnet)	max_pooling2d_1 (MaxPooling2D)	(Nane, 26, 26, 64)	0	18/16 2s 13/ms/step - accuracy; 0.9004 - loss: 0.1416 - val_accuracy; 0.9520 - val_loss: 0.1647 18/16 2s 13/ms/step - accuracy; 0.9617 - loss: 0.1272 - val_accuracy; 0.9520 - val_loss: 0.1350
,	conv2d_5 (Conv2D)	(None, 24, 24, 128)	73,856	## 25 13465/Step - accuracy: 0.991/ - 1055: 0.11/2 - VB_accuracy: 0.9500 - VB_1055: 0.1500 ## 1056 25 13465/Step - accuracy: 0.9718 - 1055: 0.0948 - VB_accuracy: 0.9550 - VB_1055: 0.1640
	conv2d_6 (Conv2D)	(None, 24, 24, 25)	3,225	Spoch 9/25 18/16 2s 134es/step - accuracy: 0.9642 - loss: 0.0954 - vel_accuracy: 0.9460 - vel_loss: 0.1809 Spoch 18/25
	flatten (Flatten)	(None, 14400)	e	16/16 2s 135es/step - accuracy: 0.9608 - loss: 0.1057 - vol_accuracy: 0.9520 - vol_loss: 0.1549 8poth 11/25
	dense (Dense)	(Nane, 5)	72,865	16/16 2s 136ms/step - accuracy: 0.9600 - loss: 0.116) - val_accuracy: 0.9520 - val_loss: 0.1376 Epoch 12/25 16/16 2s 136ms/step - accuracy: 0.9657 - loss: 0.0754 - val_accuracy: 0.9660 - val_loss: 0.2500
	Total params: 251,582 (982.74 KB Trainable params: 251,582 (982.74 Non-trainable params: 0 (0.00 B)			Specia 31/28

	Model: "sequential"			
	7 1317	Output Shape	Param #	
	vgg16 (Functional)	(None, 7, 7, 512)	14714688	Epoch 1/98 SECOND
Model 2 (using vgg)	<pre>global_average_pooling2d (GlobalAveragePooling2D)</pre>	(None, 512)	0	<pre>tgoch 1: val_less Seprend from 16f to 0.0087, sering model to model.55 938/938 [************************************</pre>
	dense (Dense)	(None, 512)	262656	\$18738 [composed from \$6.75 to \$1.2010 \$4.584 - KECHENG \$4.585] \$290.0 1.2 val_loss (proced from \$6.5850 to \$6.5850, seeking sold to seekil-35 \$38738 [composed from \$6.5850 to \$6.5850, seeking sold to seeking; \$5.981 val_loss; \$6.214 val_access; \$5.993 to \$1.5850 etc.
	dropout (Dropout)	(None, 512)	0	\$200 3/50 318/555 [
v55)	dense_1 (Dense)	(None, 5)	2565	<pre>tpuch 4/98 336/938 {************************************</pre>
	Total params: 14979909 (57.14			936/938 [************************************
	Trainable params: 7344645 (28			
	Model: "sequential"			tpoth 1/19 unRDS: All log escape hefore shill-iditalizesq() is called are written to ITREM INDEX 00001/TREADILED.00005
M 112	Layer (type)	Output Shape	Param #	20000-00:00:1736240313.980977 110 service.cc:153 StreamExecutor device (0): Tesla T4, Compute Capability 7.5 20000-00:00:1736240313.9809083 110 service.cc:153 StreamExecutor device (1): Tesla T4, Compute Capability 7.5 7/2282 116 Zbm/step - accuracy: 0.2554 1055: 6.027 1055: 6.
Model 3	conv2d (Conv2D)	(None, 148, 148, 32)	896	10000 00:00:1716249118.339742 119 device_compiler.h:188] Compiled cluster using XIA! This line is logged at most once for the lifetime of the proce
	max_pooling2d (MaxPooling2D)	(None, 74, 74, 32)	0	3282/3382 91s 26ms/step - accuracy: 0.9291 - loss: 0.2791 - val_accuracy: 0.9669 - val_loss: 0.0902 Epoch 2/10
(mantion)	flatten (Flatten)	(None, 175232)	0	3842/3882
(xception)	dense (Dense)	(None, 512)	89,719,296	Epoch 4/10 3282/3282
	dense_1 (Dense)	(None, 5)	2,565	### Bpsch 5/10 ### 83s 25ms/step - accurecy: 0.9975 - loss: 0.0003 - val_accurecy: 0.9711 - val_loss: 0.1500 ### Bpsch 6/10
	Total params: 89,722,757 (342.22 MB) Trainable params: 89,722,757 (342.27 MB) Non-trainable params: 0 (0.00 B)			1082/2002