		MBEDKAR TECHNOLO		, LONERE	
	•	plementary Examination			
	Course: B. Tech.	Branch:	Semester:	III	
	Subject Code & Name:	BTBS301(Engineering	Mathematics III)		
	Max Marks: 60	Date:	Duration: 3 Hr.		
	which the question 3. Use of non-progra		() in front of the question tors is allowed.		
				(Level/CO)	Marks
Q. 1	Solve Any Two of the fol				
A)	Find the Laplace Transfor			CO1	6
B)	Evaluate $\int_0^\infty \frac{\cos at - \cos bt}{t} dt$	t by using Laplace transfo	rm.	CO1	6
C)	Express in terms of Heavis form. $f(t) = sint$, for, $0 < t < \pi$ $= sin2t$, for, $\pi < t < 2\pi$ $= sin3t$, for, $t > 2\pi$	-	find its Laplace trans-	CO1	6
Q.2 A)	Solve Any Two of the for Find the inverse Laplace t			CO2	6
B)	Find the inverse Laplace transform of $\frac{5s^2 - 15s - 11}{(s+1)((s-2^2))}$		CO2	6	
C)	Solve using Laplace trans $3\frac{dy}{dt} + 2y = e^{3t}$, $y = 1$ a			CO2	6
Q. 3	Solve Any Two of the fo	llowing.			
A)	Find the Fourier Transform Hence evaluate that $\int_0^\infty \frac{\sin x}{x}$	= 0, for $ x >$	_	CO3	6
B)	Find the Fourier cosine tra	ansform of e^{-x^2}		CO3	6
C)	Using Parseval's Identity,	, prove that $\int_0^\infty \frac{t^2}{(t^2+1)^2} dt =$	$=\frac{\pi}{4}$	CO3	6
Q.4	Solve Any Two of the fo	llowing.			

A)	Form the partial differential equation by eliminating the arbitrary function		6
	from: $f(x + y + z, x^2 + y^2 + z^2)$		
B)	Solve the partial differential equation: $(mz - ny)p + (nx - lz)q = ly -$		6
	mx.		
C)	If the initial displacement and velocity of a string stretched between		
	$x = 0 \& x = l$ are given by $y = f(x) \& \frac{dy}{dt} = g(x)$, determine the		6
	displacement y of any point at a distance x from one end at time t.		
Q. 5	Solve Any Two of the following.		
A)	If $f(z) = u + iv$ is an analytic function and $u - v = e^{x}(cosy - siny)$, find	CO5	6
	f(z) in terms of z .		
B)	Find the bilinear transformation that maps the points $z=0, -1, i$ into the	CO5	6
	points $w=i,0$, ∞ respectively.		
C)	Use Cauchy's Integral formula to evaluate $\oint_{c} \frac{e^{2z}}{(z+1)^4} dz$, Where C is the		
	circle $ z = 2$	CO5	6
	*** End ***		

The grid and the borders of the table will be hidden before final printing.