Unit: Derivatives and their applications (1)

Increasing and Decreasing Functions

A function f is **increasing** over the interval (a,b) if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in the interval (a,b).

A function f is **decreasing** over the interval (a,b) if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in the interval (a,b).

A function f is *constant* over the interval (a,b) if $f(x_1) = f(x_2)$ whenever $x_1 < x_2$ in the interval (a, b).

Ex 1. Find the intervals where the function y = f(x) is increasing, decreasing, or is constant.

Test for Intervals of Increase or Decrease

Let y = f(x) be a differentiable function over (a,b)Then:

- 1. If f'(x) > 0 for all $x \in (a, b)$ then f is increasing over (a, b).
- 2. If f'(x) < 0 for all $x \in (a, b)$ then f is decreasing over (a, b).
- 3. If f'(x) = 0 for all $x \in (a, b)$ then f is constant over (a, b)

Ex 2. Find the intervals of increase or decrease for

a.
$$f(x) = 2x^3 + 3x^2 - 12x$$

b.
$$g(x) = x^2$$

c.
$$h(x) = x^3$$

Critical Points. Local Maxima and Minim

Critical Points (Critical Number)

A critical number c is a number in the domain of f where either f'(c) = 0 or f'(c) does not exist. The point (c, f(c)) is called a **critical point**.

If f'(c) = 0, the critical point is called **stationary point**. If f'(c) does not exist, the critical point is called point of non-differentiability.

Local Maximum

A function has a local (relative) maximum at x = c if $f(x) \le f(c)$ when x is sufficiently close to c(on both sides of c). f(c) is called local (relative) maximum value and (c, f(c)) is called local (relative) maximum point.

Local Minimum

A function has a local (relative) minimum at f x = c if $f(x) \ge f(c)$ when x is sufficiently close to con both sides of c). f(c) is called local (relative) minimum value and (c, f(c)) is called local (relative) minimum point.

Note: The following points are neither local minimum or maximum points.

Global Maximum

A function f has a global (absolute) maximum at x = c if $f(x) \le f(c)$ for all $x \in D_f$.

f (c) is called the global (absolute) maximum value.

(c, f (c)) is called the global (absolute) maximum point

Global Minimum

A function f has a global (absolute) minimum at x = c if $f(x) \ge f(c)$ for all $x \in D_f$.

f (c) is called the global (absolute) minimum value.

(c, f (c)) is called the global (absolute) minimum point.

Extremum and Extrema

An extremum is either a minimum or a maximum (value, point, local or global). Extrema is the plural of extremum.

Ex 3. Find extrema for the function represented in the figure below by its graph.

Local (Relative) Extrema - First Derivative Test

Let c be a critical point of a continuous function f.

a. If f changes from positive to negative at c, then f has a local maximum at c.

b. If f'changes from negative to positive at c, then f has a local minimum at c.

c. If f' does not change sign at c, then has no maximum or minimum at c.

Ex 4. Given
$$f(x) = x^3 - 6x^2$$
.

- a. Find the critical numbers
- b. Find the intervals of increase and decrease
- c. Find the local maximum and local minimum points.

Ex 5. Find the local extrema for

$$y = f(x) = \left(\frac{1+x}{1-x}\right)^2$$

Global (Absolute) Extrema Algorithm

Global (Absolute) Extrema Algorithm

To find the global (absolute) extrema for a *continuous* function f over a closed interval [a,b]:

- 1) identify the *critical* numbers over (a,b)
- 2) find the *values* of the function f(c) at each critical number c in (a,b)
- 3) find the values f(a) and f(b)
- 4) from the values obtained at part 2) and 3):
- the largest represents the global (absolute) maximum value
- the *least* represents the *global (absolute) minimum* value

Note. c is a critical number if either f'(c) = 0 or f'(c) DNE

Ex 6. Find the global extrema for

$$f(x) = -2x + 3$$
, for $x \in [-1,2]$

Ex 7. Find a function of the form $f(x) = ax^4 + bx^2 + cx + d$ with a local maximum at (0, -6) and a local minimum at (1, -8).

Ex 8. For each case, use the first derivative sign to find the intervals of increase or decrease.

a.
$$f(x) = x^3(x-1)^4$$

b.
$$f(x) = \begin{cases} \frac{x}{2} + 2, & x < 1 \\ x^3, & x \ge 1 \end{cases}$$