Exploration for RL

Inductive biases in exploration strategies

Alexander Telfar

June 30th, 2019

What is RL?

(learning to) make optimal decisions

Context (S), potential actions (A), utility function / reward (r).

Markov decision problems

$$M = \{S, A, \tau, r\}$$
 (the MDP)
$$\tau: S \times A \to \Delta(S)$$
 (the transition fn)
$$r: S \times A \to \mathbb{R}^+$$
 (the reward fn)

2

MDPs

$$\pi:S o\Delta(A)$$
 (the policy) $s_{t+1}\sim au(s_t,a_t), a_t\sim \pi(s_t)$ (sampled actions and states) $V(\pi)=\mathbb{E}[\sum_{t=0}^{\infty}\gamma^t r(s_t,a_t)]$ (value estimate) $\pi^*=rgmax\ V(\pi)$ (the optimisation problem)

Alternative formulation

$$V(\pi^*) \equiv \underset{s_0 \sim d_0}{\mathbb{E}} \max_{a_0} r(s_0, a_0) + \gamma \underset{s_1 \sim p(\cdot | s_0, a_0)}{\mathbb{E}} \left[\max_{a_1} r(s_1, a_1) + \gamma \underset{s_2 \sim p(\cdot | s_1, a_1)}{\mathbb{E}} \left[\max_{a_2} r(s_2, a_2) + \gamma \underset{s_3 \sim p(\cdot | s_2, a_2)}{\mathbb{E}} \left[\dots \right] \right] \right]$$

Why are RL problems hard?

Because of three main properties;

- 1. they allow, evaluations, but dont give 'feedback',
- 2. the observations are sampled **non-IID**,
- 3. they provide **delayed** credit assignment.

Example: Multi-armed Bandits

The two armed bandit is one of the simplest problems in RL.

- Arm 1: [10, -100, 0, 0, 30]
- Arm 2: [2,0]

Which arm should you pick next?

Why do exploration strategies matter?

Why not just do random search?

- Too much exploration and you will take many sub optimal actions, despite knowing better.
- Too little exploration and you will take 'optimal' actions, at least you think they are optimal...

An example: MineRL

Goal: Find and mine a diamond.

Figure 1: http://minerl.io/competition/

What do we require from an exploration strategy?

 Non-zero probability of reaching all states, and trying all actions in each state.

Nice to have

- Converges to a uniform distribution over states.
- Scales sub-linearly with states
- Samples states according to their variance. More variance, more samples.

What about goal conditioned exploration?

• 1

What are some existing exploration strategies?

- Injecting noise: Epsilon greedy, boltzman
- Optimism in the face of uncertainty
- Bayesian model uncertainty and Thompson sampling
- Counts / densities and Max entropy
- Intrinsic motivation (Surprise, Reachability, Randomly picking goals)
- Disagreement

Note. They mostly require some form of memory and / or a model of uncertainty. Exploration without memory is just random search. . .

Counts / densities

In the simplest setting, we can just count how many times we have been in a state. We can use this to explore states that have have low visitation counts.

$$P(s=s_t) = rac{\sum_{s=s_t} 1}{\sum_{s\in S} 1}$$
 (normalised counts) $a_t = \mathop{\mathrm{argmin}}_a P(s= au(s_t,a))$ (pick the least freq s)

Intrinsic motivation

'Surprise' (prediction error)

$$r_t = || s_{t+1} - f_{dec}(f_{enc}(s_t, a_t)) ||_2^2$$

'Reachability' (is reachable within k steps?)

$$r_t = \min_{x \in M} D_k(s_t, x)$$

Maximum entropy

$$P^{\pi}(au|\pi) = d_0(s_0)\Pi_{t=0}^{\infty}\pi(a_t|s_t)P(s_{t+1}|s_t,a_t)$$
 $d^{\pi}(s,t) = \sum_{\substack{\mathsf{all } au \mathsf{ with } s = s_t}} P^{\pi}(au|\pi)$
 $d^{\pi}(s) = (1-\gamma)\sum_{t=0}^{\infty} \gamma^t d^{\pi}(s,t)$
 $\pi^* = rgmax \mathop{\mathbb{E}}_{s \sim d^{\pi}}[\log d^{\pi}(s)]$

Inductive biases in exploration strategies

So my questions are;

- do some of these exploration strategies prefer to explore certain states first?
- which inductive biases do we want in exploration strageties?
- how can we design an inductive biases to accelerate learning?
- what is the optimal set of inductive biases for certain classes of RL problem?
- how quickly does the state visitation distribution converge?

(we will come back to this)

Inductive bias

Underconstrained problems.

Occam's Razor and overfitting.

Human bias in Minecraft

Types of prior?

- relational
- visual
- subgoals
- exploration

Last time I tried to mine a yellow sparkly rock, nothing happened, this time, 1,000 actions later, I got gold. Which action(s) helped?

I took 10,000 actions, now I have an axe. It doesn't appear to help me get diamonds.

Relational priors

We know;

- what furnaces are 'for' (ore -> metal)
- that coal is needed for heat (furnace + coal -> on(furnace))
- that iron can be profuced via a furnace (on(furnace) + iron ore -> iron)

Visual priors

Figure 2: Which one is probably diamond?

(Sub)goal priors

We can easily generate a curriculum of subgoals;

- 1. Kill food
- 2. Find shelter
- 3. Build tools
- 4. Get money

Exploration priors

We quickly generalise spatial exploration to be much of the same; trees, rivers, mountains, . . . And focus on exploring the many crafting possibilities.

Also;

- we know that diamonds are likely to be found (deep) underground
- we know that pick axes will be useful for exploring underground

A quick aside: Implicit regularisation

Matrix factorisation $(m << d^2, Z \in \mathbb{R}^{d \times})$

$$y_i = \langle A_i, W^* \rangle \qquad \qquad \text{(matrix sensing)}$$

$$\mathcal{L}(X) = \frac{1}{2} \sum_{i=1}^m (y_i - \langle A_i, XX^T \rangle)^2 \quad \text{(factorisation from observations)}$$

$$X^* = \underset{X}{\operatorname{argmin}} \quad \mathcal{L}(X) \qquad \text{(the optimisation problems)}$$

When stochastic gradient descent is used to optimise this loss (with initialisation near zero and small learning rate), the solution returned also has minimal nuclear norm

$$X^* \in \{X : \operatorname{argmin}_{X \in S} \| X \|_*\}, \ S = \{X : \mathcal{L}(X) = 0\}.$$

How do RL algorithms implicitly regularise exploration?

Exploration via;

Surprise

Has a bias towards states with more noise in them.

Density

The approximation of the density may be biased.

Intrinsic motivation

Highly dependent on its history of samples.

The state visitation distribution

How can we reason, in a principled manner, about bias / regularisation in exploration strategies?

$$d^{\mathcal{A}}(s,t) = (1-\gamma)\sum_{t=0}^{t} \gamma^{t} Pr^{\mathcal{A}}(s=s_{t})$$

For each different RL algol;

- Does $d(s_i, t)$ converge monotonically to $\frac{1}{n}$?
- Which $d(s_i, t)$ converge first?
- What is the difference between the *i* different convergence rates?
- Does d(s,t) converge to uniform as $t \to \infty$?

Thank you!

And questions?