ТИПОВИЙ РОЗРАХУНОК № 6

Диференціальні рівняння

Завдання 1. Знайти загальний інтеграл диференціального рівняння:

1.1 a)
$$4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$
;

b)
$$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$$
.

1.2 a)
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0;$$

b)
$$xy' = \frac{3y^3 + 2yx^2}{2y^2 + x^2}.$$

1.3 a)
$$\sqrt{4 + y^2} dx - y dy = x^2 y dy;$$

$$\mathbf{b)} \qquad \mathbf{y'} = \frac{x+y}{x-y}.$$

1.4 a)
$$\sqrt{3 + y^2} dx - y dy = x^2 y dy;$$

b)
$$xy' = \sqrt{x^2 + y^2} + y$$
.

1.5 a)
$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx$$
;

b)
$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 3.$$

1.6 a)
$$x\sqrt{3+y^2}dx + y\sqrt{2+x^2}dy = 0$$
;

b)
$$xy' = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}.$$

1.7 a)
$$(e^{2x} + 5)dy + ye^{2x}dx = 0;$$

$$\mathbf{b)} \qquad \mathbf{y'} = \frac{x + 2y}{2x - y}.$$

1.8 a)
$$y'y\sqrt{\frac{1-x^2}{1-y^2}} + 1 = 0;$$

b)
$$xy' = 2\sqrt{x^2 + y^2} + y$$
.

1.9 a)
$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx$$
;

b)
$$3y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 4$$
.

1.10 a)
$$x\sqrt{5+y^2}dx + y\sqrt{4+x^2}dy = 0;$$

b)
$$xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}.$$

1.11 a)
$$y(4 + e^x)dy - e^x dx = 0;$$

b)
$$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}$$
.

1.12 a)
$$\sqrt{4-x^2}y' + xy^2 + x = 0$$
;

b)
$$xy' = \sqrt{2x^2 + y^2} + y$$
.

1.13 a)
$$2xdx - 2ydy = x^2ydy - 2xy^2dx$$
;

b)
$$y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 6$$
.

1.14 a)
$$x\sqrt{4+y^2}dx + y\sqrt{1+x^2}dy = 0;$$

b)
$$xy' = \frac{3y^3 + 8yx^2}{2y^2 + 4x^2}$$
.

1.15 a)
$$\left(e^{x}+8\right)dy-ye^{x}dx=0;$$

b)
$$y' = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}$$
.

1.16 a)
$$\sqrt{5+y^2} + yy'\sqrt{1-x^2} = 0$$
;

b)
$$xy' = 3\sqrt{x^2 + y^2} + y$$
.

1.17 a)
$$6xdx - ydy = x^2ydy - 3xy^2dx;$$

b)
$$2y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 8.$$

1.18 a)
$$y \ln y + xy' = 0;$$

b)
$$xy' = \frac{3y^3 + 10yx^2}{2y^2 + 5x^2}.$$

1.19 a)
$$(1+e^x)y' = ye^x;$$

b)
$$y' = \frac{x^2 + 3xy - y^2}{3x^2 - 2xy}$$
.

1.20 a)
$$\sqrt{1-x^2}y' + xy^2 + x = 0;$$

b)
$$xy' = 3\sqrt{2x^2 + y^2} + y$$
.

1.21 a)
$$6xdx - 2ydy = 2x^2ydy - 3xy^2dx;$$

b)
$$y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12.$$

1.22 a)
$$y(1 + \ln y) + xy' = 0;$$

b)
$$xy' = \frac{3y^3 + 12yx^2}{2y^2 + 6x^2}.$$

1.23 a)
$$(3 + e^x)yy' = e^x$$
;

b)
$$y' = \frac{x^2 + xy - 3y^2}{x^2 - 4xy}$$
.

1.24 a)
$$\sqrt{3+y^2} + y'y\sqrt{1-x^2} = 0;$$

b)
$$xy' = 2\sqrt{3x^2 + y^2} + y$$
.

1.25 a)
$$xdx - ydy = x^2 ydy - xy^2 dx;$$

b)
$$4y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 5.$$

1.26 a)
$$\sqrt{5+y^2}dx + 4(x^2y+y)dy = 0;$$

b)
$$xy' = \frac{3y^3 + 14yx^2}{2y^2 + 7x^2}.$$

1.27 a)
$$(1 + e^x)yy' = e^x;$$

b)
$$y' = \frac{x^2 + xy - 5y^2}{x^2 - 6xy}$$
.

1.28 a)
$$\sqrt{2+y^2}dx + 3(x^2y + y)dy = 0;$$

b)
$$xy' = 4\sqrt{x^2 + y^2} + y$$
.

1.29 a)
$$2xdx - ydy = x^2ydy - xy^2dx;$$

b)
$$3y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 10$$
.

1.30 a)
$$\sqrt{2-x^2}y' + 2xy^2 + 2x = 0;$$

b)
$$xy' = 4\sqrt{2x^2 + y^2} + y$$
.

Завдання 3. Знайти розв'язок задачі Коші:

3.1 a)
$$y' - y/x = x^2$$
, $y(1) = 0$;

3.2 a)
$$y' - yctgx = 2x \sin x, \ y(\pi/2) = 0;$$

3.3 a)
$$y' + y \cos x = \frac{1}{2} \sin 2x$$
, $y(0) = 0$;

3.4 a)
$$y' + ytgx = \cos^2 x, \ y(\pi/4) = \frac{1}{2};$$

3.5 a)
$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = 3/2$;

3.6 a)
$$y' - \frac{y}{x+1} = e^{x}(x+1), y(0) = 1;$$

3.7 a)
$$y' - y/x = x \sin x$$
, $y(\pi/2) = 1$;

3.8 a)
$$y' + y/x = \sin x$$
, $y(\pi) = 1/\pi$;

3.9 a)
$$y' + y/2x = x^2, y(1) = 1;$$

3.10 a)
$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, y(0) = \frac{2}{3};$$

3.11 a)
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$;

3.12 a)
$$y' + y/x = \frac{x+1}{x}e^x$$
, $y(1) = e$;

3.13 a)
$$y' - y/x = -2\frac{\ln x}{x}, y(1) = 1;$$

3.14 a)
$$y' - y/x = -12/x^3$$
, $y(1) = 4$;

3.15 a)
$$y' + 2y/x = x^3, y(1) = -5/6;$$

3.16 a)
$$y' + y/x = 3x, y(1) = 1;$$

3.17 a)
$$y' - \frac{2xy}{1+x^2} = 1+x^2, y(1) = 3;$$

3.18 a)
$$y' + \frac{1-2x}{x^2}y = 1, y(1) = 1;$$

3.19 a)
$$y' + 3y/x = 2/x^3, y(1) = 1;$$

3.20 a)
$$y' + 2xy = -2x^3$$
, $y(1) = e^{-1}$;

3.21 a)
$$y' + \frac{xy}{2(1-x^2)} = \frac{x}{2}, \ y(0) = \frac{2}{3};$$

3.22 a)
$$y' + xy = -x^3$$
, $y(0) = 3$;

3.23 a)
$$y' - \frac{2}{x+1}y = e^x(x+1)^2, y(0) = 1;$$

3.24 a)
$$y' + 2xy = xe^{-x^2} \sin x$$
, $y(0) = 1$;

3.25 a)
$$y' - 2y/(x+1) = (x+1)^3, y(0) = 1/2;$$

3.26 a)
$$y' - y \cos x = -\sin 2x, \ y(0) = 3;$$

3.27 a)
$$y' - 4xy = -4x^3$$
, $y(0) = -1/2$;

3.28 a)
$$y' - y/x = -\frac{\ln x}{x}, y(1) = 1;$$

3.29 a)
$$y' - 3x^2y = x^2(1 + x^3)/3, y(0) = 0;$$

3.30 a)
$$y' - y \cos x = \sin 2x, \ y(0) = -1;$$

Завдання 4. Знайти розв'язок задачі Коші:

4.1 a)
$$y' + xy = (1+x)e^{-x} \cdot y^2, y(0) = 1;$$

b)
$$4y^3y'' = y^4 - 1$$
, $y(0) = \sqrt{2}$, $y'(0) = 1/(2\sqrt{2})$.

4.2 a)
$$xy' + y = 2y^2 \ln x$$
, $y(1) = 1/2$;

b)
$$y'' = 128y^3$$
, $y(0) = 1$, $y'(0) = 8$.

4.3 a)
$$2(xy' + y) = xy^2, y(1) = 2;$$

b)
$$y''y^3 + 64 = 0$$
, $y(0) = 4$, $y'(0) = 2$.

4.4 a)
$$y' + 4x^3y = 4(1+x^3)e^{-4x}y^2$$
, $y(0) = 1$;

b)
$$y'' + 2 \sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

4.5 a)
$$xy' - y = -y^2 (\ln x + 2) \ln x, y(1) = 1;$$

b)
$$y'' = 32 \sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 4$.

4.6 a)
$$2(y'+xy)=(1+x)e^{-x}y^2$$
, $y(0)=2$;

b)
$$y'' = 98y^3, y(1) = 1, y'(1) = 7.$$

4.7 a)
$$3(xy' + y) = y^2 \ln x$$
, $y(1) = 3$;

b)
$$y''y^3 + 49 = 0$$
, $y(3) = -7$, $y'(3) = -1$.

4.8 a)
$$2y' + y \cos x = y^{-1} \cos x (1 + \sin x), y(0) = 1;$$

b)
$$4y^3y'' = 16y^4 - 1$$
, $y(0) = \sqrt{2}/2$, $y'(0) = 1/\sqrt{2}$.

4.9 a)
$$y' + 4x^3y = 4y^2e^{4x}(1-x^3), y(0) = -1;$$

b)
$$y'' + 8 \sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 2$.

4.10 a)
$$3y' + 2xy = 2xy^{-2}e^{-2x^2}, y(0) = -1;$$

b)
$$y'' = 72y^3$$
, $y(2) = 1$, $y'(2) = 6$.

4.11 a)
$$2xy' - 3y = -(5x^2 + 3)y^3, y(1) = 1/\sqrt{2};$$

b)
$$y''y^3 + 36 = 0$$
, $y(0) = 3$, $y'(0) = 2$.

4.12 a)
$$3xy' + 5y = (4x - 5)y^4$$
, $y(1) = 1$;

b)
$$y'' = 18\sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 3$.

4.13 a)
$$2y' + 3y \cos x = e^{2x} (2 + 3\cos x)y^{-1}, y(0) = 1;$$

b)
$$4y^3y'' = y^4 - 16, y(0) = 2\sqrt{2}, y'(0) = 1/\sqrt{2}.$$

4.14 a)
$$3(xy' + y) = xy^2, y(1) = 3;$$

b)
$$y'' = 50y^3$$
, $y(3) = 1$, $y'(3) = 5$.

4.15 a)
$$y' - y = 2xy^2, y(0) = 1/2;$$

b)
$$y''y^3 + 25 = 0$$
, $y(2) = -5$, $y'(2) = -1$.

4.16 a)
$$2xy' - 3y = -(20x^2 + 12)y^3$$
, $y(1) = 1/2\sqrt{2}$;

b)
$$y'' + 18 \sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 3$.

4.17 a)
$$y' + 2xy = 2x^3y^3$$
, $y(0) = \sqrt{2}$;

b)
$$y'' = 8\sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 2$.

4.18 a)
$$xy' + y = y^2 \ln x$$
, $y(1) = 1$;

b)
$$y'' = 32y^3$$
, $y(4) = 1$, $y'(4) = 4$.

4.19 a)
$$2y' + 3y \cos x = e^{2x} (8 + 12 \cos x) y^{-1}, y(0) = 2;$$

b)
$$y''y^3 + 16 = 0$$
, $y(1) = 2$, $y'(1) = 2$.

4.20 a)
$$4y' + x^3y = e^{-2x}(x^3 + 8)y^2, y(0) = 1;$$

b)
$$y'' + 32 \sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 4$.

4.21 a)
$$8xy' - 12y = -(5x^2 + 3)y^3, y(1) = \sqrt{2};$$

b)
$$y'' = 50 \sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 5$.

4.22 a)
$$2(y' + y) = xy^2, y(0) = 2;$$

b)
$$y'' = 18y^3$$
, $y(1) = 1$, $y'(1) = 3$.

4.23 a)
$$y' + xy = (x-1)e^x y^2$$
, $y(0) = 1$;

b)
$$y''y^3 + 9 = 0$$
, $y(1) = 1$, $y'(1) = 3$.

4.24 a)
$$2y' - 3y \cos x = -e^{-2x} (2 + 3\cos x)y^{-1}, y(0) = 1;$$

b)
$$y^3y'' = 4(y^4 - 1), y(0) = \sqrt{2}, y'(0) = \sqrt{2}.$$

4.25 a)
$$y' - y = xy^2, y(0) = 1;$$

b)
$$y'' + 50 \sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 5$.

4.26 a)
$$2(xy' + y) = y^2 \ln x, y(1) = 2;$$

b)
$$y'' = 8y^3$$
, $y(0) = 1$, $y'(0) = 2$.

4.27 a)
$$y' + y = xy^2, y(0) = 1;$$

b)
$$y''y^3 + 4 = 0$$
, $y(0) = -1$, $y'(0) = -2$.

4.28 a)
$$y' + 2y \operatorname{cth} x = y^2 \operatorname{ch} x$$
, $y(1) = 1/\operatorname{sh} 1$;

b)
$$y'' = 2\sin^3 y \cos y$$
, $y(1) = \pi/2$, $y'(1) = 1$.

4.29 a)
$$2(y' + xy) = (x-1)e^x y^2, y(0) = 2;$$

b)
$$y^3y'' = y^4 - 16, y(0) = 2\sqrt{2}, y'(0) = \sqrt{2}.$$

4.30 a)
$$y' - ytgx = -(2/3)y^4 \sin x$$
, $y(0) = 1$;

b)
$$y'' = 2y^3$$
, $y(-1) = 1$, $y'(-1) = 1$.

Завдання 5. Знайти загальний розв'язок диференціального рівняння:

5.1 a)
$$y'''x \ln x = y''$$
; b) $y''' + 3y'' + 2y' = 1 - x^2$.

5.2 a)
$$xy''' + y'' = 1$$
; b) $y''' - y'' = 6x^2 + 3x$.

5.3 a)
$$2xy''' = y'';$$
 b) $y''' - y' = x^2 + x.$

5.4 a)
$$xy''' + y'' = x + 1;$$
 b) $y^{IV} - 3y''' + 3y'' - y' = 2x.$

5.5 a)
$$tgx \cdot y'' - y' + \frac{1}{\sin x} = 0$$
; b) $y^{IV} - y''' = 5(x+2)^2$.

5.6 a)
$$x^2y'' + xy' = 1$$
; b) $y^{IV} - 2y''' + y'' = 2x(1-x)$.

5.7 a)
$$y'''ctg2x + 2y'' = 0$$
; b) $y^{IV} + 2y''' + y'' - y' = x^2 + x - 1$.

5.8 a)
$$x^3y''' + x^2y'' = 1$$
; b) $y^V - y^{IV} = 2x + 3$.

5.9 a)
$$tgx \cdot y''' = 2y''$$
; b) $3y^{IV} + y''' = 6x - 1$.

5.10 a)
$$cth2x \cdot y''' = 2y'';$$
 b) $y^{IV} + 2y''' + y'' = 4x^2.$

5.11 a)
$$x^4y'' + x^3y' = 1$$
; b) $y''' + y'' = 5x^2 - 1$.

5.12 a)
$$xy''' + 2y'' = 0$$
; b) $y^{IV} + 4y''' + 4y'' = x - x^2$.

5.13 a)
$$(1+x^2)y'' + 2xy' = x^3;$$
 b) $7y''' - y'' = 12x.$

5.14 a)
$$x^5y''' + x^4y'' = 1;$$
 b) $y''' + 3y'' + 2y' = 3x^2 + 2x.$

5.15 a)
$$xy''' - y'' + \frac{1}{x} = 0;$$
 b) $y''' - y' = 3x^2 - 2x + 1.$

5.16 a)
$$xy''' + y'' + x = 0$$
; b) $y''' - y'' = 4x^2 - 3x + 2$.

5.17 a)
$$thx \cdot y^{IV} = y'''$$
; b) $y^{IV} - 3y''' + 3y'' - y' = x - 3$.

5.18 a)
$$xy''' + y'' = \sqrt{x}$$
; b) $y^{IV} + 2y''' + y'' - y' = 12x^2 - 6x$.

5.19 a)
$$y'''tgx = y'' + 1$$
; **b)** $y''' - 4y'' = 32 - 384x^2$.

5.20 a)
$$y'''tg5x = 5y''$$
; b) $y^{IV} + 2y''' + y'' = 2 - 3x^2$.

5.21 a)
$$y'''th7x = 7y''$$
; b) $y''' + y'' = 49 - 24x^2$.

5.22 a)
$$x^3y''' + x^2y'' = \sqrt{x}$$
; b) $y''' - 2y'' = 3x^2 + x - 4$.

5.23 a)
$$cthx \cdot y'' - y' + \frac{1}{chx} = 0$$
; b) $y''' - 13y'' + 12y' = x - 1$.

5.24 a)
$$(x+1)y''' + y'' = x+1;$$
 b) $y^{IV} + y''' = x.$
5.25 a) $(1+\sin x)y''' = \cos x \cdot y'';$ **b)** $y''' - y'' = 6x+5.$

5.25 a)
$$(1 + \sin x)y''' = \cos x \cdot y'';$$
 b) $y''' - y'' = 6x + 5$

5.26 a)
$$xy''' + y'' = \frac{1}{\sqrt{x}}$$
; b) $y''' + 3y'' + 2y' = x^2 + 2x + 3$.

5.27 a)
$$-xy''' + 2y'' = \frac{2}{x^2}$$
; b) $y''' - 5y'' + 6y' = (x-1)^2$.

5.28 a)
$$cthx \cdot y'' + y' = chx$$
; b) $y^{IV} - 6y''' + 9y'' = 3x - 1$.

5.29 a)
$$x^4y'' + x^3y' = 4$$
; b) $y''' - 13y'' + 12y' = 18x^2 - 39$.

5.30 a)
$$y'' + \frac{2x}{x^2 + 1}y' = 2x$$
; **b)** $y^{IV} + y''' = 12x + 6$.

Завдання 6. Знайти загальний розв'язок диференціального рівняння:

6.1 a)
$$y''' - 4y'' + 5y' - 2y = (16 - 12x)e^{-x}$$
;

6)
$$y'' + 2y' = 4e^x(\sin x + \cos x);$$

B)
$$y'' - 2y' = 2ch2x$$
.

6.2 a)
$$y''' - 3y'' + 2y' = (1 - 2x)e^x$$
;

6)
$$y'' - 4y' + 4y = -e^{2x} \sin 6x$$
;

B)
$$y'' + y = 2\sin x - 6\cos x + 2e^x$$
.

6.3 a)
$$y''' - y'' - y' + y = (3x + 7)e^{2x}$$
;

6)
$$y'' + 2y' = -2e^x(\sin x + \cos x);$$

B)
$$y''' - y' = 2e^x + \cos x$$
.

6.4 a)
$$y''' - 2y'' + y' = (2x + 5)e^{2x}$$
;

6)
$$y'' + y = 2\cos 7x + 3\sin 7x$$
;

B)
$$y'' - 3y' = 2ch3x$$
.

6.5 a)
$$y''' - 3y'' + 4y = (18x - 21)e^{-x};$$

6)
$$y'' + 2y' + 5y = -\sin 2x$$
;

B)
$$y'' + 4y = -8\sin 2x + 32\cos 2x + 4e^{2x}$$
.

6.6 a)
$$y''' - 5y'' + 8y' - 4y = (2x - 5)e^x$$
;

6)
$$y'' - 4y' + 8y = e^x (5\sin x - 3\cos x);$$

B)
$$y''' - y' = 4e^x + 6\cos x + 10\sin x$$
.

6.7 a)
$$y''' - 4y'' + 4y' = (x-1)e^x$$
;

6)
$$y'' + 2y' = e^x(\sin x + \cos x);$$

B)
$$y'' - 4y' = 16ch4x$$
.

6.8 a)
$$y''' + 2y'' + y' = (18x + 21)e^{2x}$$
;

6)
$$y'' - 4y' + 4y = e^{2x} \sin 3x;$$

$$y'' + 9y = -18\sin 3x - 18e^{3x}.$$

6.9 a)
$$y''' + y'' - y' - y = (8x + 4)e^x;$$

6)
$$y'' + 6y' + 13y = e^{-3x} \cos 4x;$$

$$y''' - 4y' = 24e^{2x} - 4\cos 2x + 8\sin 2x.$$

6.10 a)
$$y''' - 3y' - 2y = -4xe^x$$
;

6)
$$y'' + y = 2\cos 3x - 3\sin 3x$$
;

B)
$$y'' - 5y' = 50ch5x$$
.

6.11 a)
$$y''' - 3y' + 2y = (4x + 9)e^{2x};$$

6)
$$y'' + 2y' + 5y = -2\sin x$$
;

$$y'' + 16y = 16\cos 4x - 16e^{4x}.$$

6.12 a)
$$y''' + 4y'' + 5y' + 2y = (12x + 16)e^x$$
;

6)
$$y'' - 4y' + 8y = e^x(-3\sin x + 4\cos x);$$

B)
$$y''' - 9y' = -9e^{3x} + 18\sin 3x - 9\cos 3x$$
.

6.13 a)
$$y''' - y'' - 2y' = (6x - 11)e^{-x}$$
;

6)
$$y'' + 2y' = 10e^{x}(\sin x + \cos x);$$

$$y'' - y' = 2chx.$$

6.14 a)
$$y''' + y'' - 2y' = (6x + 5)e^x;$$

6)
$$y'' - 4y' + 4y = e^{2x} \sin 5x$$
;

$$y'' + 25y = 20\cos 5x - 10\sin 5x + 50e^{5x}.$$

6.15 a)
$$y''' + 4y'' + 4y' = (9x + 15)e^{x};$$

6)
$$y'' + y = 2\cos 5x + 3\sin 5x$$
;

B)
$$y''' - 16y' = 48e^{4x} + 64\cos 4x - 64\sin 4x$$
.

6.16 a)
$$y''' - 3y'' - y' + 3y = (4 - 8x)e^x;$$

6)
$$y'' + 2y' + 5y = -17\sin 2x$$
;

B)
$$y'' + 2y' = 2sh2x$$
.

6.17 a)
$$y''' - y'' - 4y' + 4y = (7 - 6x)e^x$$
;

6)
$$y'' + 6y' + 13y = e^{-3x} \cos x;$$

B)
$$y'' + 36y = 24\sin 6x - 12\cos 6x + 36e^{6x}$$
.

6.18 a)
$$y''' + 3y'' + 2y' = (1 - 2x)e^{-x}$$
;

6)
$$y'' - 4y' + 8y = e^x (3\sin x + 5\cos x);$$

B)
$$y''' - 25y' = 25(\sin 5x + \cos 5x) - 50e^{5x}$$
.

6.19 a)
$$y''' - 5y'' + 7y' - 3y = (20 - 16x)e^{-x}$$
;

6)
$$y'' + 2y' = 6e^x(\sin x + \cos x);$$

B)
$$y'' + 3y' = 2sh3x$$
.

6.20 a)
$$y''' - 4y'' + 3y' = -4xe^{x};$$

6)
$$y'' - 4y' + 4y = -e^{2x} \sin 4x;$$

B)
$$y'' + 49y = 14\sin 7x + 7\cos 7x - 98e^{7x}$$
.

6.21 a)
$$y''' - 5y'' + 3y' + 9y = (32x - 32)e^{-x}$$
;

6)
$$y'' + 6y' + 13y = e^{-3x} \cos 5x;$$

B)
$$y''' - 36y' = 36e^{6x} - 72(\cos 6x + \sin 6x).$$

6.22 a)
$$y''' - 6y'' + 9y' = 4xe^x$$
;

6)
$$y'' + y = 2\cos 7x - 3\sin 7x$$
;

B)
$$y'' + 4y' = 16sh4x$$
.

6.23 a)
$$y''' - 7y'' + 15y' - 9y = (8x - 12)e^x;$$

6)
$$y'' + 2y' + 5y = -\cos x$$
;

B)
$$y'' + 64y = 16\sin 8x - 16\cos 8x - 64e^{8x}$$
.

6.24 a)
$$y''' - y'' - 5y' - 3y = -(8x + 4)e^x$$
;

6)
$$y'' - 4y' + 8y = e^x(2\sin x - \cos x);$$

B)
$$y''' - 49y' = 14e^{7x} - 49(\cos 7x + \sin 7x)$$
.

6.25 a)
$$y''' + 5y'' + 7y' + 3y = (16x + 20)e^x;$$

6)
$$y'' + 2y' = 3e^{x}(\sin x + \cos x);$$

B)
$$y'' + 5y' = 50sh5x$$
.

6.26 a)
$$y''' - 2y'' - 3y' = (8x - 14)e^{-x}$$
;

6)
$$y'' - 4y' + 4y = e^{2x} \sin 4x;$$

B)
$$y'' + 81y = 9\sin 9x + 3\cos 9x + 162e^{9x}$$
.

6.27 a)
$$y''' + 2y'' - 3y' = (8x + 6)e^x$$
;

6)
$$y'' + 6y' + 13y = e^{-3x} \cos 8x;$$

$$y''' - 64y' = 128\cos 8x - 64e^{8x}.$$

6.28 a)
$$y''' + 6y'' + 9y' = (16x + 24)e^x;$$

6)
$$y'' + 2y' + 5y = 10\cos x$$
;

$$y'' + y' = 2shx.$$

6.29 a)
$$y''' - y'' - 9y' + 9y = (12 - 16x)e^x$$
;

6)
$$y'' + y = 2\cos 4x + 3\sin 4x$$
;

B)
$$y'' + 100y = 20\sin 10x - 30\cos 10x - 200e^{10x}$$
.

6.30 a)
$$y''' + 4y'' + 3y' = 4(1-x)e^{-x}$$
;

6)
$$y'' - 4y' + 8y = e^x(-\sin x + 2\cos x);$$

B)
$$y''' - 81y' = 162e^{9x} + 81\sin 9x$$
.

Завдання 7. Знайти розв'язок задачі Коші:

7.1
$$y'' + \pi^2 y = \pi^2 / \cos \pi x$$
, $y(0) = 3$, $y'(0) = 0$.

7.2
$$y'' + 3y' = 9e^{3x}/(1 + e^{3x})$$
, $y(0) = \ln 4$, $y'(0) = 3(1 - \ln 2)$.

7.3
$$y'' + 4y = 8ctg2x$$
, $y\left(\frac{\pi}{4}\right) = 5$, $y'\left(\frac{\pi}{4}\right) = 4$.

7.4
$$y'' - 6y' + 8y = 4/(1 + e^{-2x})$$
, $y(0) = 1 + 2 \ln 2$, $y'(0) = 6 \ln 2$.

7.5
$$y'' - 9y' + 18y = 9e^{3x}/(1 + e^{-3x}), y(0) = 0, y'(0) = 0.$$

7.6
$$y'' + \pi^2 y = \pi^2 / \sin \pi x$$
, $y(1/2) = 1$, $y'(1/2) = \pi^2 / 2$.

7.7
$$y'' + \frac{1}{\pi^2} y = \frac{1}{\pi^2 \cos(x/\pi)}, y(0) = 2, y'(0) = 0.$$

7.8
$$y'' - 3y' = \frac{9e^{-3x}}{3 + e^{-3x}}, \ y(0) = 4 \ln 4, \ y'(0) = 3(3 \ln 4 - 1).$$

7.9
$$y'' + y = 4ctgx$$
, $y(\pi/2) = 4$, $y'(\pi/2) = 4$.

7.10
$$y'' - 6y' + 8y = 4/(2 + e^{-2x})$$
, $y(0) = 1 + 3 \ln 3$, $y'(0) = 10 \ln 3$.

7.11
$$y'' + 6y' + 8y = 4e^{-2x}/(2 + e^{2x}), y(0) = 0, y'(0) = 0.$$

7.12
$$y'' + 9y = 9/\sin 3x$$
, $y(\pi/6) = 4$, $y'(\pi/6) = 3\pi/2$.

7.13
$$y'' + 9y = 9/\cos 3x$$
, $y(0) = 1$, $y'(0) = 0$.

7.14
$$y'' - y' = e^{-x}/(2 + e^{-x})$$
, $y(0) = \ln 27$, $y'(0) = \ln 9 - 1$.

7.15
$$y'' + 4y = 4ctg2x$$
, $y\left(\frac{\pi}{4}\right) = 3$, $y'\left(\frac{\pi}{4}\right) = 2$.

7.16
$$y'' - 3y' + 2y = 1/(3 + e^{-x})$$
, $y(0) = 1 + 8 \ln 2$, $y'(0) = 14 \ln 2$.

7.17
$$y'' - 6y' + 8y = 4e^{2x}/(1 + e^{-2x}), y(0) = 0, y'(0) = 0.$$

7.18
$$y'' + 16y = 16/\sin 4x$$
, $y(\pi/8) = 3$, $y'(\pi/8) = 2\pi$.

7.19
$$y'' + 16y = 16/\cos 4x$$
, $y(0) = 3$, $y'(0) = 0$.

7.20
$$y'' - 2y' = 4e^{-2x}/(1 + e^{-2x})$$
, $y(0) = \ln 4$, $y'(0) = \ln 4 - 2$.

7.21
$$y'' + \frac{y}{4} = \frac{1}{4} ctg(x/2), \ y(\pi) = 2, \ y'(\pi) = 1/2.$$

7.22
$$y'' - 3y' + 2y = 1/(2 + e^{-x})$$
, $y(0) = 1 + 3\ln 3$, $y'(0) = 5\ln 3$.

7.23
$$y'' + 3y' + 2y = e^{-x}/(2 + e^x)$$
, $y(0) = 0$, $y'(0) = 0$.

7.24
$$y'' + 4y = \frac{4}{\sin 2x}$$
, $y\left(\frac{\pi}{4}\right) = 2$, $y'\left(\frac{\pi}{4}\right) = \pi$.

7.25
$$y'' + 4y = 4/\cos 2x$$
, $y(0) = 2$, $y'(0) = 0$.

7.26
$$y'' + y' = e^x/(2 + e^x)$$
, $y(0) = \ln 27$, $y'(0) = 1 - \ln 9$.

7.27
$$y'' + y = 2ctgx$$
, $y\left(\frac{\pi}{2}\right) = 1$, $y'\left(\frac{\pi}{2}\right) = 2$.

7.28
$$y'' - 3y' + 2y = 1/(1 + e^{-x})$$
, $y(0) = 1 + 2 \ln 2$, $y'(0) = 3 \ln 2$.

7.29
$$y'' - 3y' + 2y = e^x/(1 + e^{-x}), y(0) = 0, y'(0) = 0.$$

7.30
$$y'' + y = \frac{1}{\sin x}$$
, $y\left(\frac{\pi}{2}\right) = 1$, $y'\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$.

Завдання 8. Знайти лінію, що проходить через точку M_0 , яка має властивість, що в довільній її точці M нормальний вектор MN із кінцем на осі Oy має довжину, рівну a, та утворює гострий кут із додатним напрямом осі Oy:

- **8.1** $M_0(15,1)$, a=25.
- **8.2** $M_0(12,2)$, a=20.
- **8.3** $M_0(9,3)$, a=15.
- **8.4** $M_0(6,4)$, a=10.
- **8.5** $M_0(3,5)$, a=5.

Знайти лінію, що проходить через точку M_{θ} , якщо відрізок довільної її нормалі, що міститься між осями координат, ділиться точкою лінії у відношенні a:b (рахуючи від осі Oу).

- **8.6** $M_0(1,1)$, a:b=1:2.
- **8.7** $M_0(-2,3)$, a:b=1:3.
- **8.8** $M_0(0,1)$, a:b=2:3.
- **8.9** $M_0(1,0)$, a:b=3:2.
- **8.10** $M_0(2,-1)$, a:b=3:1.

Знайти лінію, що проходить через точку M_{θ} , якщо відрізок довільної її

дотичної між точкою дотику та віссю Oy ділиться в точці перетину з віссю абсцис у відношенні a:b (рахуючи від осі Oy).

- **8.11** $M_0(2,-1)$, a:b=1:1.
- **8.12** $M_0(1,2)$, a:b=2:1.
- **8.13** *M*₀(-1,1), *a*:*b*=3:1.
- **8.14** $M_0(2,1)$, a:b=1:2.
- **8.15** $M_0(1,-1)$, a:b=1:3.

Знайти лінію, що проходить через точку M_0 , якщо відрізок довільної її дотичної, що міститься між осями координат, ділиться в точці дотику у відношенні a:b (рахуючи від осі Oy).

- **8.16** $M_0(1,2)$, a:b=1:1.
- **8.17** $M_0(2,1)$, a:b=1:2.
- **8.18** $M_0(1,3)$, a:b=2:1.
- **8.19** $M_0(2,-3)$, a:b=3:1.
- **8.20** $M_0(3,-1)$, a:b=3:2.

Знайти лінію, що проходить через точку M_0 , яка має властивість, що в довільній її точці M дотичний вектор MN із кінцем на осі Ox має проекцію на вісь Ox, що обернено пропорційна абсцисі точки M. Коефіцієнт пропорційності дорівнює a.

- **8.21** $M_0(1,e)$, a = -1/2.
- **8.22** $M_0(2,e)$, a = -2.
- **8.23** $M_0(-1, \sqrt{e}), a = -1.$
- **8.24** $M_0(2,1/e)$, a=2.
- **8.25** $M_0(1,1/e^2)$, a=1/4.

Знайти лінію, що проходить через точку M_0 , яка має властивість, що в довільній її точці M дотичний вектор MN із кінцем на осі Oy має проекцію на вісь Oy, що дорівнює a.

- **8.26** $M_0(1,2)$, a = -1.
- **8.27** $M_0(1,4)$, a=2.
- **8.28** $M_0(1,5)$, a = -2.
- **8.29** $M_0(1,3)$, a = -4.
- **8.30** $M_0(1,6)$, a = 3.

Завдання 11. Знайти загальний розв'язок лінійної неоднорідної системи диференціальних рівнянь:

диференціальних рівнянь:
$$x' = x + y - \sin t$$

$$y' = x - y + e^{2t}$$

$$x' = 4x - y$$

$$y' = 3x + 2y - te^{-t}$$

$$x' = -3x + y + t^2$$

$$y' = -20x + 6y - \cos 2t$$

11.4
$$\begin{cases} x' = x - y + \sin 3t \\ y' = x + y - t \end{cases}$$
11.5
$$\begin{cases} x' = 2x + 2y - t^2 e^t \\ y' = x + y + t \end{cases}$$
11.6
$$\begin{cases} x' = 5x + 5y \\ y' = x + y + t \cos 3t \end{cases}$$
11.7
$$\begin{cases} x' = 4x + y - e^t \cos t \\ y' = 8x + y + t \end{cases}$$

11.7
$$\begin{cases} x' = 4x + y - e^{t} \cos t \\ y' = 8x + y + t \end{cases}$$
11.8
$$\begin{cases} x' = y - 7x + t^{2} \\ y' = -2x + 5y - 1 \end{cases}$$

11.9
$$\begin{cases} x' = x - 3y \\ y' = 3x + y + e^t \cos 2t + 3 \end{cases}$$

11.10
$$\begin{cases} x' = 3x + 4y - 5t \\ y' = 2x + y + \sin t \end{cases}$$

11.9
$$\begin{cases} x = x - 3y \\ y' = 3x + y + e^t \cos 2t + 3 \end{cases}$$
11.10
$$\begin{cases} x' = 3x + 4y - 5t \\ y' = 2x + y + \sin t \end{cases}$$
11.11
$$\begin{cases} x' = x + 2y - 10e^{3t} \\ y' = y - 2x + 5t \end{cases}$$

11.12
$$\begin{cases} x' = x + y + 8t^2 \\ y' = 2x - y - \cos t \end{cases}$$

11.13
$$\begin{cases} x' = 3x - y + e^{-3t} \\ y' = x + y + t^2 + 3 \end{cases}$$

11.14
$$\begin{cases} x' = y + e^{-t} \sin 3t \\ y' = x - y \end{cases}$$

11.15
$$\begin{cases} x' = x + y \\ y' = 5x + 5y - 3e^{-t} \cos t \end{cases}$$
11.16
$$\begin{cases} x' = 4x + y + te^{-t} \\ y' = 8x + y - \sin t \end{cases}$$

11.16
$$\begin{cases} x' = 4x + y + te^{-t} \\ y' = 8x + y - \sin t \end{cases}$$

11.17
$$\begin{cases} x' = 4x + y - 3t^{2} \\ y' = 8x + 2y + e^{-t} \end{cases}$$
11.18
$$\begin{cases} x' = -x - 3y - 2te^{t} \\ y' = -x - 3y + 10 \end{cases}$$

11.18
$$\begin{cases} x' = -x - 3y - 2te^t \\ y' = -x - 3y + 10 \end{cases}$$

11.19
$$\begin{cases} x' = 4x + y + t \\ y' = y - 2x + e^t \end{cases}$$

11.20
$$\begin{cases} x = 2x + y - 3t \\ y' = -7x - 7y + 2\sin t \end{cases}$$

11.20
$$\begin{cases} x' = 2x + y - 3t \\ y' = -7x - 7y + 2\sin t \end{cases}$$
11.21
$$\begin{cases} x' = 2x - y + 5t^2 \\ y' = 7x + y + e^t \cos t \end{cases}$$

11.22
$$\begin{cases} x' = y + te^{2t} \\ y' = x - 3\cos t \end{cases}$$

11.23
$$\begin{cases} x' = -y - 2\cos 2 - 5t \\ y' = x - y + t^2 \end{cases}$$

11.23
$$\begin{cases} y = x - 3\cos t \\ x' = -y - 2\cos 2 - 5t \\ y' = x - y + t^2 \end{cases}$$
11.24
$$\begin{cases} x' = 2x + te^{-3t} \\ y' = x + 2y - 5t \end{cases}$$

11.25
$$\begin{cases} x' = x - 7y - 2e^{-t} \sin t \\ y' = x + 2y + te^{-t} \end{cases}$$
11.26
$$\begin{cases} x' = y - 3\sin 2t \\ y' = 4x - 3y + t^3 \end{cases}$$

11.26
$$\begin{cases} x' = y - 3\sin 2t \\ y' = 4x - 3y + t^3 \end{cases}$$

11.27
$$\begin{cases} x' = x + 4y - t^2 e^t \\ y' = x + y + 3t \cos t \end{cases}$$

11.28
$$\begin{cases} x' = x + y + 5t \\ y' = 4x + y - e^{3t} \end{cases}$$

11.28
$$\begin{cases} x' = x + y + 5t \\ y' = 4x + y - e^{3t} \end{cases}$$
11.29
$$\begin{cases} x' = x + y + 5t \\ y' = 4x + y - e^{3t} \end{cases}$$

$$\begin{cases} x' = -4y - t^2 \sin 3t \\ y' = x - 3y + 5e^{2t} \end{cases}$$

11.30
$$\begin{cases} x' = -y + 6t^2 \\ y' = 9x^2 - 2y - 4e^{-2t} \end{cases}$$