Dummit & Foote Ch. 4.3: Groups Acting on Themselves by Conjugation — The Class Equation

Scott Donaldson

Feb. 2024

Let G be a group.

1. (2/22/24)

Suppose G has a left action on a set A, denoted by $g \cdot a$ for all $g \in G$ and $a \in A$. Denote the corresponding right action on A by $a \cdot g$. Prove that the (equivalence) relations \sim and \sim' defined by

 $a \sim b$ if and only if $a = g \cdot b$ for some $g \in G$

and

 $a \sim' b$ if and only if $a = b \cdot q$ for some $q \in G$

are the same relation (i.e., $a \sim b$ if and only $a \sim' b$).

Proof. To show that $a \sim b$ implies $a \sim' b$, we must show that, given a $g \in G$ with $a = g \cdot b$, there exists an $h \in G$ such that $a = b \cdot h$. By definition, the corresponding right action of a left action is specified to be $g \cdot x = x \cdot g^{-1}$ for all $g \in G$, $x \in A$. Letting $h = g^{-1}$, we have found an element where $a = g \cdot b = b \cdot h$, and so $a \sim' b$.

The proof for $a \sim' b$ implies $a \sim b$ is identical, letting $h = g^{-1}$ but with h acting on the left. \Box

2. (2/22/24)

Find all conjugacy classes and their sizes in the following groups:

(a) D_8 :

$$\{1\}_1 \qquad \{r^2\}_1 \qquad \{r,r^3\}_2 \qquad \{s,sr^2\}_2 \qquad \{sr,sr^3\}_2$$

(b) Q_8 :

$$\{1\}_1$$
 $\{-1\}_1$ $\{\pm i\}_2$ $\{\pm j\}_2$ $\{\pm k\}_2$

(c) A_4 :

$$\{1\}_1$$
 $\{(1\,2\,3), (1\,3\,4), (1\,4\,2), (2\,4\,3)\}_4$ $\{(1\,3\,2), (1\,2\,4), (1\,4\,3), (2\,3\,4)\}_4$ $\{(1\,2)(3\,4), (1\,3)(2\,4), (1\,4)(2\,3)\}_3$

3. (2/22/24)

Find all the conjugacy classes and their sizes in the following groups:

(a) $Z_2 \times S_3$:

$$\{(0,1)\}_1 \quad \{(1,1)\}_1 \quad \{(0,(1\,2)),(0,(1\,3)),(0,(2\,3))\}_3$$

$$\{(1,(1\,2)),(1,(1\,3)),(1,(2\,3))\}_3 \quad \{(0,(1\,2\,3)),(0,(1\,3\,2))\}_2$$

$$\{(1,(1\,2\,3)),(1,(1\,3\,2))\}_2$$

(b) $S_3 \times S_3$:

$$\begin{array}{lll} \{(1,1)\}_1 & \{(1,2\text{-cycle})\}_3 & \{(2\text{-cycle},1)\}_3 & \{(1,3\text{-cycle})\}_2 & \{(3\text{-cycle},1)\}_2 \\ & \{(2\text{-cycle},2\text{-cycle})\}_9 & \{(2\text{-cycle},3\text{-cycle})\}_6 & \{(3\text{-cycle},2\text{-cycle})\}_6 \\ & \{(3\text{-cycle},3\text{-cycle})\}_4 \end{array}$$

(c) $Z_3 \times A_4$ (using representatives from the conjugacy classes of A_4 above):

4. (2/22/24)

Prove that if $S \subseteq G$ and $g \in G$ then $gN_g(S)g^{-1} = N_G(gSg^{-1})$ and $gC_g(S)g^{-1} = C_G(gSg^{-1})$.

Proof. Let $x \in N_G(S)$. So $xsx^{-1} \in S$ for all $s \in S$. Then

$$gxsx^{-1}g^{-1} \in gSg^{-1}$$

$$gxg^{-1}gsg^{-1}gx^{-1}g^{-1} \in gSg^{-1}$$

$$(gxg^{-1})gsg^{-1}(gx^{-1}g^{-1}) \in gSg^{-1}$$

$$(gxg^{-1})gsg^{-1}(gxg^{-1})^{-1} \in gSg^{-1}$$

which implies that $gxg^{-1} \in N_G(gSg^{-1})$, and so $gN_G(S)g^{-1} \subseteq N_G(gSg^{-1})$. Conversely, let $x \in N_G(gSg^{-1})$. So $xgsg^{-1}x^{-1} \in gSg^{-1}$ for all $s \in S$. Then

$$xgsg^{-1}x^{-1} \in gSg^{-1}$$

$$g^{-1}xgsg^{-1}x^{-1} \in Sg^{-1}$$

$$g^{-1}xgsg^{-1}x^{-1}g \in S$$

$$(g^{-1}xg)s(g^{-1}xg)^{-1} \in S$$

$$g^{-1}xg \in N_G(S)$$

$$x \in gN_G(S)g^{-1},$$

which shows that $N_G(gSg^{-1}) \subseteq gN_G(S)g^{-1}$. This proves that $N_G(gSg^{-1}) = gN_G(S)g^{-1}$.

Next, let $x \in C_G(S)$. So xs = sx for all $s \in S$. Then

$$xs = sx$$

 $gsxg^{-1} = gsxg^{-1}$
 $gsg^{-1}gxg^{-1} = gsg^{-1}gxg^{-1}$
 $(gsg^{-1})(gxg^{-1}) = (gsg^{-1})(gxg^{-1}),$

and so $gxg^{-1} \in C_G(gSg^{-1})$, which implies that $gC_G(S)g^{-1} \subseteq C_G(gSg^{-1})$. Finally, let $x \in C_G(gSg^{-1})$. So $x(gsg^{-1}) = (gsg^{-1})x$ for all $x \in S$. Then

$$xgsg^{-1} = gsg^{-1}x$$

 $g^{-1}xgsg^{-1} = sg^{-1}x$
 $g^{-1}xgs = sg^{-1}xg$
 $(g^{-1}xg)s = s(g^{-1}xg),$

which implies that $g^{-1}xg \in C_G(S)$, so $x \in gC_G(S)g^{-1}$. It follows that $C_G(gSg^{-1}) \subseteq gC_G(S)g^{-1}$, and therefore $gC_g(S)g^{-1} = C_G(gSg^{-1})$.