THỰC HÀNH: PHÂN TÍCH KHÁM PHÁ DỮ LIỆU

1.1. THỐNG KÊ MÔ TẢ

1.1.1. Ôn tập lý thuyết

1.1.2. Bài làm mẫu

1.1.3. Bài tập thực hành 1

Thực hiện thống kê mô tả trên tập dữ liệu về phân loại chất lượng rượu đỏ. Dữ liệu lấy tại https://www.kaggle.com/code/eisgandar/red-wine-quality-eda-classification

Nhiêm vu 1: Khám phá dữ liêu chất lương rươu vang đỏ

Mean: 10.422983114446529

Median: 10.2

Mode: 9.5 (count: 139) Variance: 1.1356473950004693

Standard Deviation: 1.0656675818473926

Max: 14.9 Min: 8.4 60th Percentile: 10.5 Q3 (0.75 quantile): 11.1

Interquartile Range (IQR): 1.59999999999996

Nhiêm vu 2: Loai bỏ dữ liêu trùng lặp

Out[4]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	sulphates	alcohol	quality
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	0.56	9.4	5
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	0.68	9.8	5
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	0.65	9.8	5
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	0.58	9.8	6
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	0.56	9.4	5
	1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	0.58	10.5	5
	1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	0.76	11.2	6
	1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	0.75	11.0	6
	1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	0.71	10.2	5
	1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	0.66	11.0	6

1599 rows × 11 columns

Nhiêm vu 3: Thay thế dữ liêu và thay đổi đinh dang của dữ liêu

```
In [5]: # thay giá tri 3,4,5 của quality thành low, low, medium
    wine_data['quality_replaced'] = wine_data['quality'].replace([3,4,5], ['low','low','medium'])
    # dien giá tri 0 cho các ô trống trong cột alcohol
    wine_data['alcohol'] = wine_data['alcohol'].fillna(0)
    # chuyển kiểu dữ liệu alcohol sang int
    wine_data['alcohol_changed'] = wine_data['alcohol'].astype(int)
```

Nhiêm vu 4: Xử lý dữ liêu thiếu

```
In [6]: # đếm số giá trị thiếu của từng cột
wine_data.isnull().sum()
# xóa các hàng có giá trị thiếu
wine_data_withoutna = wine_data.dropna(how='any')
# xem kích thước dữ Liệu sau khi xóa
wine_data_withoutna.shape
```

Out[6]: (1599, 14)

1.1.4. Bài tập thực hành 2

Thực hiện thống kê mô tả trên tập dữ liệu về bệnh tiểu đường. Dữ liệu lấy tại https://www.kaggle.com/code/vincentlugat/pima-indians-diabetes-eda-prediction-0-906

Nhiệm vụ 1: Khám phá dữ liệu về bệnh tiểu đường

Glucose - Mean: 120.89453125 Glucose - Median: 117.0 Glucose - Mode: 99 (count: 17) Glucose - Variance: 1022.2483142519557 Glucose - Std: 31.97261819513622 Glucose - Min: 0 Max: 199 Range: 199 Glucose - 60th percentile: 125.0 Glucose - Q1: 99.0 Q3: 140.25 IQR: 41.25

Nhiêm vu 2: Loai bỏ dữ liêu trùng lặp

Out[8]:		Pregnancies	Glucose	BloodPressure	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	0	6	148	72	0	33.6	0.627	50	1
	1	1	85	66	0	26.6	0.351	31	0
	2	8	183	64	0	23.3	0.672	32	1
	3	1	89	66	94	28.1	0.167	21	0
	4	0	137	40	168	43.1	2.288	33	1
	763	10	101	76	180	32.9	0.171	63	0
	764	2	122	70	0	36.8	0.340	27	0
	765	5	121	72	112	26.2	0.245	30	0
	766	1	126	60	0	30.1	0.349	47	1
	767	1	93	70	0	30.4	0.315	23	0

768 rows × 8 columns

Nhiệm vụ 3: Thay thế dữ liệu và thay đổi định dạng của dữ liệu

```
In [9]: # Thay giá trị 0/1 của 'Outcome' thành chuỗi 'no_diabetes'/'diabetes'
diabetes['Outcome_replaced'] = diabetes['Outcome'].replace([0,1], ['no_diabetes','diabetes'])
# Diễn giá trị thiếu trong cột 'Insulin' bằng 0
diabetes['Insulin'] = diabetes['Insulin'].fillna(0)
# Chuyển kiểu dữ liệu cột 'Insulin' sang int
diabetes['Insulin_changed'] = diabetes['Insulin'].astype(int)
```

Nhiệm vu 4: Xử lý dữ liêu thiếu

```
Out[10]: (768, 11)
```

1.2. XỬ LÝ VÀ TRỰC QUAN HÓA DỮ LIỆU

1.2.1. Ôn tập lý thuyết

1.2.2. Bài làm mẫu

1.2.3 Bài tập thực hành 1

+ Thực hiện trực quan hóa dữ liệu trên tập dữ liệu về phân loại chất lượng rượu đỏ. Dữ liệu lấy tại https://www.kaggle.com/code/eisgandar/red-wine-quality-eda-classification

Nhiệm vụ 1: Chuẩn bị dữ liệu cho trực quan hóa dữ liệu

1. Chuẩn bị dữ liệu cho trực quan hóa dữ liệu

```
In [11]:
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

# Doc file rượu vang đổ (đặt file csv cùng thư mục làm việc hoặc thay đường dẫn cho đúng)
    wine_data = pd.read_csv("winequality-red.csv")

# Chọn các cột cần thiết: alcohol (nồng độ cồn) và quality (điểm chất lượng)
    wine_data = wine_data[['alcohol', 'quality']]

# Tạo biến alcohol_per_quality (nồng độ cồn chia cho điểm chất lượng) để so sánh
    wine_data['alcohol_per_quality'] = wine_data['alcohol'] / wine_data['quality']
```

Nhiêm vu 2: Trưc quan hóa dữ liêu với thư viên Matplotlib

Nhiệm vụ 3: Trực quan hóa dữ liệu với thư viện Seaborn

Out[13]: Text(0.5, 1.0, 'Top 10 samples: Alcohol per Quality')

1.2.3.Bài tập thực hành 2

+ Thực hiện trực quan hóa dữ liệu trên tập dữ liệu về bệnh tiểu đường. Dữ liệu lấy tại https://www.kaggle.com/code/vincentlugat/pima-indians-diabetes-eda-prediction-0-906

Nhiêm vu 1: Chuẩn bi dữ liêu cho trưc quan hóa dữ liêu

```
In [14]:
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

# Doc file dữ Liệu bệnh tiểu đường (đặt file 'diabetes.csv' cùng thư mục làm việc)
    diabetes_data = pd.read_csv("diabetes.csv")

# Chọn các cột quan trọng: Glucose và BMI
    diabetes_data = diabetes_data[['Glucose', 'BMI']]

# Tạo biến Glucose_per_BMI (ti lệ Glucose/BMI) để so sánh
    diabetes_data['Glucose_per_BMI'] = diabetes_data['Glucose'] / diabetes_data['BMI']
```

Nhiệm vụ 2. Trực quan hóa dữ liệu với thư viện Matplotlib

3. Trực quan hóa dữ liệu với thư viện Seaborn

+ Thực hiện EDA trên tập dữ liệu mua sắm tại siêu thị. Tập dữ liệu lấy từ https://www.kaggle.com/code/rajatkumar30/eda-online-retail

2. Trực quan hóa dữ liệu với Matplotlib

3. Trực quan hóa dữ liệu với Seaborn

1.3. Phân tích đơn biến và hai biến

- 1.3.1. Ôn lý thuyết
- 1.3.2. Bài làm mẫu
- 1.3.3. Bài tập thực hành 1

Tìm hiểu các tính năng và cách sử dụng sản phẩm SweetViz (https://pypi.org/project/sweetviz) áp dụng trên tập dữ liệu Marketing Campaign

- # Đọc file (dataset Kaggle dùng tab '\t' làm separator)
 marketing_data = pd.read_csv("marketing_campaign.csv", sep="\t")
- # Chọn một số cột tiêu biểu để phân tích marketing_data = marketing_data[['Education','Income','Kidhome','Teenhome']] marketing_data.head()

Phân tích đơn biến bằng Histogram (liên tục – Biến thu nhập)

Phân tích đơn biến bằng Bar Chart (rời rạc – Biến education)

Phân tích đơn biến bằng Biểu đồ tròn (Pie Chart – Education)

Customer Personality Analysis - Profiling Report

Overview Variables Interactions Correlations Missing values Sample

Overview

Brought to you by YData Overview Alerts 30 Reproduction **Dataset statistics** Variable types Number of variables 29 Numeric Number of observations Categorical 2240 13 Missing cells DateTime Missing cells (%) < 0.1% **Duplicate rows** 0 Duplicate rows (%) 0.0% Total size in memory 830.5 KiB

Kiểm tra giá trị thiếu print(marketing_data.isnull().sum())

Thống kê mô tả cho các biến số marketing_data.describe()

1.3.4. Bài tập thực hành

2. Tìm hiểu các tính năng và cách sử dung sản phẩm AutoViz (https://pypi.org/project/autoviz) áp dung trên tập dữ liệu Marketing Campaign

#Cài đặt & import #Nap dữ liêu

```
# Column
                          Non-Null Count Dtype
                           2240 non-null int64
     a TD
        Year_Birth
                           2240 non-null int64
     1
        Education 2240 non-null object
Marital_Status 2240 non-null object
Income 2216 non-null float64
     2 Education
     3
      5 Kidhome
                           2240 non-null int64
      6 Teenhome
                          2240 non-null int64
                          2240 non-null object
2240 non-null int64
        Dt_Customer
         Recency
                           2240 non-null int64
      9 MntWines
     10 MntFruits
                           2240 non-null int64
     11 MntMeatProducts 2240 non-null
12 MntFishProducts 2240 non-null
                                           int64
                                           int64
     13 MntSweetProducts 2240 non-null int64
      14 MntGoldProds
                           2240 non-null int64
      15 NumDealsPurchases 2240 non-null
                                           int64
         NumWebPurchases
                            2240 non-null
      16
     17 NumCatalogPurchases 2240 non-null
                                           int64
      18 NumStorePurchases 2240 non-null
      19 NumWebVisitsMonth 2240 non-null
                                           int64
                         2240 non-null int64
2240 non-null int64
      20 AcceptedCmp3
      21 AcceptedCmp4
      22 AcceptedCmp5
                           2240 non-null int64
     23 AcceptedCmp1
24 AcceptedCmp2
                           2240 non-null int64
                           2240 non-null
                                         int64
    26 Z_COSECONEACE Z240 NON-NUII
                                         IIIL64
₹ 27 Z_Revenue
                           2240 non-null
                                         int64
    28 Response
                           2240 non-null
    dtypes: float64(1), int64(25), object(3)
    memory usage: 507.6+ KB
    Shape of your Data Set loaded: (2240, 29)
    ############################## CLASSIFYING VARIABLES ###########################
    Classifying variables in data set...
       Number of Numeric Columns = 1
       Number of Integer-Categorical Columns = 15
       Number of String-Categorical Columns = 2
       Number of Factor-Categorical Columns =
       Number of String-Boolean Columns = 0
       Number of Numeric-Boolean Columns = 7
       Number of Discrete String Columns = 1
       Number of NLP String Columns = 0
       Number of Date Time Columns = 0
       Number of ID Columns = 1
       Number of Columns to Delete =
       29 Predictors classified...
           3 variable(s) removed since they were ID or low-information variables
           List of variables removed: ['ID', 'Z_CostContact', 'Z_Revenue']
    To fix these data quality issues in the dataset, import FixDQ from autoviz...
       All variables classified into correct types.
```

Data

Type

Missing

Values%

Unique

Values%

Minimum

Value

Maximum

Value

	Data Type	Missing Values%	Unique Values%	Minimum Value	Maximum Value	DQ Issue
ID	int64	0.000000	100	0.000000	11191.000000	Possible ID column: drop before modeling step.
Year_Birth	int64	0.000000	2	1893.000000	1996.000000	Column has 3 outliers greater than upper bound (2004.00) or lower than lower bound (1932.00). Cap them or remove them.
Education	object	0.000000	0			No issue
Marital_Status	object	0.000000	0			3 rare categories: ['Alone', 'Absurd', 'YOLO']. Group them into a single category or drop the categories.
Income	float64	1.071429	NA	1730.000000	666666.000000	24 missing values. Impute them with mean, median, mode, or a constant value such as 123, Column has 8 outliers greater than upper bound (-14525.50). Cap them or remove them.
Kidhome	int64	0.000000	0	0.000000	2.000000	No issue
Teenhome	int64	0.000000	0	0.000000	2.000000	No issue
Dt_Customer	object	0.000000	29			Possible high cardinality column with 663 unique values: Use hash encoding or text embedding to reduce dimension.
Recency	int64	0.000000	4	0.000000	99.000000	No issue
MntWines	int64	0.000000	34	0.000000	1493.000000	Column has 35 outliers greater than upper bound (1225.00) or lower than lower bound(-697.00). Cap them or remove them.
MntFruits	int64	0.000000	7	0.000000	199.000000	Column has 227 outliers greater than upper bound (81.00) or lower than lower bound (-47.00). Cap them or remove them.
Cửa sổ dòng lênh						

#Sinh báo cáo tự động

#Lưu thêm biểu đồ quan trọng

#Đồ thị heatmap

Bar plots for each Continuous by each Categorical variable