Tyler Pham, G3phamty, 999643382 Gilberto Aristizabal, G3aristi, 999845707 Assignment 3 December 1, 2014

Part 2: Functional Dependencies, Decompositions, Normal Forms

1. Consider a relation schema R with attributes ABCDEFGH with functional dependencies S:

$$S = \{A \rightarrow CF, BCG \rightarrow D, CF \rightarrow AH, D \rightarrow B, H \rightarrow DEG\}$$

- a. Which of these functional dependencies violate BCNF? Answer: $D \rightarrow B$ violates BCNF
- b. Employ the BCNF decomposition algorithm to obtain a lossless decomposition of R into a collection of relations that are in BCNF.

step1: check which FDs violate BCNF

$$A^+$$
 = ABCDEFGH (its a key, follows BCNF)

$$BCG^+ = BCDG *$$

CF⁺= ABCDEFGH (its a key, follows BCNF)

$$D^+=DB *$$

step2: in this case we chose $D^+=DB$ * to branch off.

^{*} represents the FDs that violate BCNF, therefore we can choose any of these to branch of.

step3: R₂ is final, it's in BCNF form. Therefore we move on with R₁ projections

 $A^{+} = ABCDEFGH \text{ (its a key)}$ $C^{+} = C \qquad \text{(none)}$ $D^{+} = DB \qquad \text{(none, B its not in our set)}$ $E^{+} = E \qquad \text{(none)}$ $F^{+} = F \qquad \text{(none)}$ $G^{+} = G \qquad \text{(none)}$ $H^{+} = DEGH \qquad \text{(This works to branch off)}$

step4: here we chose $H \rightarrow DEGH$ to branch off

step5: R_3 projections and R_4 projections

*since A and CF are keys, there is no need to compute their projections, as they do not violate BCNF and anything with them will not either.

$$C^+ = C$$
 $F^+ = F$
 $H^+ = GDEG$ (none are in ACFH)

*we have to consider all combinations with the above FDs, to make sure they do not violate BCNF.

$$CF^+ = CFAH$$

$$D_{+} = D$$

$$E_{+}=E$$

$$G^+ = G$$

 $H^+ = DEGH$ (not a new relation)

*Therefore, H does not have to be considered, as it was used to get to the current state.

$$DE^+ = DE$$

$$CH^{+}=BCEFGH \qquad \qquad DG^{+}=DG$$

$$FH^{+}=BDEFGH \qquad \qquad EG^{+}=EG$$

$$*the rest contain A or CF, so they are not computed.
$$DEG^{+}=DEG$$$$

step6: final decomposition.

From this graph we can see that the final decomposition yields relations:

ACFH DEGH DB

where they can not be further decomposed and they hole BCNF form

step7: project the dependencies onto each relation in that final decomposition.

ACFH⁺= ABCDEFGH

DEGH⁺= BDEGH

 $BD_{+}=BD$

CSC343 A3

g3phamty, 999643382, Tyler Pham g3aristi, 999845707, Gilberto Aristizabal

December 1 2014

Part 2: Functional Dependencies, Decompositions, Normal Forms

- 2. a) By inspection $B^+ = ABCDEF$ which means A is a key and no superset of B can be a key. Since B never appears on the right hand side there is no way to obtain B through FD's, this implies that B is a superkey
 - b) Simplified to singleton FD's

SET1

- $1 \text{ AB} \rightarrow \text{E}$
- $2 \text{ AB} \rightarrow \text{F}$
- $3 \text{ B} \rightarrow \text{C}$
- $4 \text{ B} \rightarrow \text{E}$
- $5 \text{ B} \rightarrow \text{F}$
- $6~\mathrm{BCD} \to \mathrm{A}$
- $7 \text{ BCD} \rightarrow F$
- 8 BCDE \rightarrow A
- 9 BCE \rightarrow D
- $10~\mathrm{DF} \to \mathrm{C}$

FD	To be excluded when computer closure	Closure	Decision
1	1	AB+=ABCDEF	Discard
2	1,2	AB+=ABCDEF	Discard
3	1,2,3	B+=BEF	Keep
4	1,2,4	B+=BCF	Keep
5	1,2,5	B+=ABCDEF	Discard
6	1,2,5,6	BCD+=ABCDEF	Discard
7	1,2,5,6,7	BCD+=BCDE	Keep
8	1,2,5,6,8	BCDE+=BCDE	Keep
9	1,2,5,6,9	BCE+=BCE	Keep
10	1,2,5,6,10	DF+=DF	Keep

SET2 (Kept 3,4,7,8,9,10)

$$3 \text{ B} \rightarrow \text{C}$$

$$4~\mathrm{B} \to \mathrm{E}$$

$$7~\mathrm{BCD} \to \mathrm{F}$$

$$8~\mathrm{BCDE} \to \mathrm{A}$$

9 BCE
$$\rightarrow$$
 D

10 DF
$$\rightarrow$$
 C

Reduce LHS

$$7' = BCD \rightarrow F \\ B^+ = ABCDEF$$

$$B \to F$$

$$8' = BCDE \rightarrow A$$

$$B^+ = ABCDEF \ B \to A$$

$$9' = BCE \rightarrow D$$

$$B^+ = ABCDEF$$

$$B \to D$$

SET3

$$3 B \rightarrow C$$

$$4~B \to E$$

$$7~B \to F$$

$$8~B \to A$$

$$9 B \rightarrow D$$

10
$$DF \rightarrow C$$

FD	To be excluded when computer closure	Closure	Decision
3	3	B+=ABCDEF	Discard
4	3,4	B+=ABCDF	Keep
7	3,7	B+=ABDE	Keep
8	3,8	B+=BCDEF	Keep
9	3,9	B+=ABEF	Keep
10	3,10	B+=ABDFE	Keep

The following set is a minimal basis

SET4 (Kept 4,7,8,9,10)

$$4~\mathrm{B} \to \mathrm{E}$$

$$7~\mathrm{B} \to \mathrm{F}$$

$$8 \text{ B} \rightarrow \text{A}$$

$$9~\mathrm{B} \to \mathrm{D}$$

10 DF
$$\rightarrow$$
 C

c) These minimal basis can be combined

R1 (BE)

R2 (BF)

R3 (BA)

R4 (BD) R5 (DFC)

Since B is a key, there are no need for duplicate tables with it, after combining tables we end up with

R1 (ABDEF) R2 (CDF)

d) Because DF is not a superkey, this schema allows redundancy