University of Ghana Department of Mathematics

Math126: Algebra and Geometry

Semester 2 2020/21

(Submit: 1b, 2c, 5, 6, 7, 8b, 11b, 12, 13c)

1. Matrices A and B are defined as follows

$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}.$$

Find:

- (a) *AB*
- (b) *BA*

2. Suppose

$$A = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} \quad \text{and } B = \begin{bmatrix} -1 & 1 \\ -2 & 0 \end{bmatrix}.$$

Compute the following matrices:

- (a) A + B
- (b) A B
- (c) 2B 3A
- (d) 2(A+B)-A

3. Suppose A and B are as given in question 2 and let

$$C = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \end{bmatrix}; \quad D = \begin{bmatrix} 0 & -2 & 1 \\ 2 & 2 & 0 \end{bmatrix}.$$

Compute the following matrices:

- (a) *AB*
- (b) CD^T
- (c) C^TD
- (d) AC
- (e) (A + B)(C + D)
- (f) $\left(C^TD\right)^2$

(g)
$$D^T (A^T + B)^T C$$

- 4. Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Compute A^{1000} . [Hint: Start by computing A^2 , A^3 ,... and see if you notive a pattern.]
- 5. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
 - (a) Compute A^2 .
 - (b) Compute A^3 .
 - (c) Find a general formula for A^k (where $k \geq 0$ is an integer).
- 6. Suppose $A_1, A_2, \dots A_n$ are 2×2 matrices. Prove that $(A_1 A_2 \dots A_n)^T = A_n^T \dots A_2^T A_1^T$ [Hint: Use induction].
- 7. Let A be a 2×2 matrix. Expand and simplify $(A + I)^2 (A I)$.
- 8. Suppose that A, B, C are 3×3 matrices with det (A) = 2, det (B) = 3 and det (C) = 5. Compute the following determinants:
 - (a) $\det(AB)$
 - (b) $\det (3AB^{-2}C^2)$
 - (c) $\det \left(A^2 C^T B^{-1} \right)$
- 9. Compute the determinant of the following matrices:
 - (a) $\begin{bmatrix} 2 & 2 \\ 4 & 5 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & 2 \\ 3 & 4 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}$
- 10. Compute all minors and cofactors of the following matrices:
 - (a) $\begin{bmatrix} 0 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 2 & 2 \\ 4 & 5 \end{bmatrix}$
- 11. Compute the determinant of the following matrices along the given row or column:
 - (a) $\begin{bmatrix} 1 & 3 & 0 \\ 0 & -2 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ column 2

(b)
$$\begin{bmatrix} 1 & 1 & 3 \\ -4 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix} row 3$$

12. Compute the determinant of the matrix

$$\left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right].$$

13. Suppose that

$$\det\left(\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right]\right) = 4.$$

Compute the determinant of the following matrices:

(a)
$$\begin{bmatrix} g & h & i \\ d & e & f \\ a & b & c \end{bmatrix}$$

(b)
$$\begin{bmatrix} a & b & c \\ 2d & 2e & 2f \\ 3g & 3h & 3i \end{bmatrix}$$

(c)
$$\begin{bmatrix} a & b+a & 2c \\ d & e+d & 2f \\ g & h+g & 2i \end{bmatrix}$$