AULA 18 – Fluxo em Redes (Parte I)

Prof. Daniel Kikuti

Universidade Estadual de Maringá

3 de agosto de 2015

Sumário

- ► Introdução
- Definições
- Um exemplo
- O problema do fluxo máximo
- Esboçando um algoritmo

Introdução

Redes de transoporte

Grafos podem ser usados para modelar **redes de trasporte**, onde as arestas representam algum tipo de tráfego e os vértices atuam como "conectores" distribuindo ou juntando o tráfego de diferentes arestas.

Introdução

Redes de transoporte

Grafos podem ser usados para modelar **redes de trasporte**, onde as arestas representam algum tipo de tráfego e os vértices atuam como "conectores" distribuindo ou juntando o tráfego de diferentes arestas.

Aplicações

- Rede de esgoto
- Rede de energia elétrica
- Rede de distribuição de produtos
- Rede de operações financeiras

Definições

Rede de fluxo (network flow)

Uma **rede de fluxo** G = (V, E) é um grafo direcionado com as seguintes características:

- ▶ cada aresta $(u, v) \in E$ possui uma **capacidade** não-negativa $c(u, v) \ge 0$;
- um único vértice **fonte** $s \in V$;
- ▶ um único vértice **sumidouro** $t \in V$;
- demais nós são chamados de nós internos e estão em algum caminho de s a t.

Exemplo

Um exemplo de uma rede

- ▶ s é a fonte;
- ▶ t é o sumidouro;
- u e v são nós internos;
- o número associado a cada aresta representa sua capacidade.

Mais definições

Definição de fluxo

Um fluxo em G é uma função f que relaciona cada aresta (u,v) a um número real não-negativo, $f:E\to R^+$; que satisfaz as seguintes propriedades:

- i) [Condição de Capacidade] para cada $(u, v) \in E$, $0 \le f(u, v) \le c(u, v)$;
- ii) [Condição de Conservação] para todo $v \in V \{s, t\}$

$$\sum_{u\in V} f(u,v) = \sum_{w\in V} f(v,w).$$

Mais definições

Definição de fluxo

Um fluxo em G é uma função f que relaciona cada aresta (u,v) a um número real não-negativo, $f:E\to R^+$; que satisfaz as seguintes propriedades:

- i) [Condição de Capacidade] para cada $(u, v) \in E$, $0 \le f(u, v) \le c(u, v)$;
- ii) [Condição de Conservação] para todo $v \in V \{s, t\}$

$$\sum_{u\in V} f(u,v) = \sum_{w\in V} f(v,w).$$

Valor de um fluxo

O valor de um fluxo f, denotado por v(f), é definido como sendo a quantidade de fluxo gerado na fonte:

$$v(f) = \sum_{v \in V} f(s, v).$$

Implicações

- O fluxo em uma aresta não pode exceder a capacidade da aresta.
- ▶ Para cada vértice exceto a fonte o sumidouro, a quantidade de fluxo entrando deve ser igual a quantidade de fluxo saindo.
- Assumimos que a fonte não possui arestas entrando, mas possui arestas saindo (em outras palavras gera fluxo).
- Similarmente, o sumidouro possui arestas entrando, mas não saindo (consome fluxo).

O problema do fluxo máximo

Definição de fluxo máximo

Dada uma rede de fluxo, encontre um tráfego de modo a usar as capacidades disponíveis de maneira mais eficiente possível; isto é, encontre um fluxo possível de valor máximo.

Exemplo

Na rede a seguir, os valores $\frac{x}{y}$ nas arestas representam: x = fluxo sendo transportado e y = capacidade da aresta. Pergunta-se: 1) Os valores constituem um fluxo? 2) Qual o valor deste fluxo (v(f))? 3) Ele é máximo?

Ideia do algoritmo

- Comece com um fluxo zero para todas as arestas (respeita as 2 condições).
- ► Tente aumentar o valor do fluxo ao longo do caminho de s a t, respeitando o limite de capacidade das arestas.
- O fluxo pode ser empurrado adiante em arestas com capacidade sobrando, ou pode ser retornado em arestas que já carregam um fluxo, para que seja redistribuído em outra direção.

Grafo residual

Dada uma rede de fluxo G, e um fluxo f em G, definimos o **grafo** residual G_f de G com respeito a f como segue:

- ightharpoonup O conjunto de vértices de G_f é o mesmo que o de G.
- Para cada aresta (u, v) em G com f(u, v) < c(u, v), existem c(u, v) f(u, v) unidades de capacidade "sobrando" as quais podemos tentar empurrar fluxo adiante. Portanto, inclua a aresta (u, v) em G_f , com capacidade c(u, v) f(u, v). Chamaremos as arestas incluídas desta forma de **arestas de avanço**.
- ▶ Para cada aresta (u, v) em G com f(u, v) > 0, existem f(u, v) unidades de fluxo que poderiam ser retornadas se quiséssemos. Então, inclua a aresta (v, u) em G_f , com capacidade f(u, v). Chamaremos as arestas incluídas desta forma de **arestas de retorno**.

Exemplo

Monte o grafo residual das redes a seguir:

Exemplo

Monte o grafo residual das redes a seguir:

Solução

