

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

Домашнее задание по курсу «Разработка PLM»

Студент: Абидоков Р. Ш.

Группа **РК6-11(м)**

Преподаватель: Жук Д. М.

Оглавление

1.	Жизненный цикл изделия (ЖЦИ)	2
1.	1.Конструкторская подготовка производства (КПП)	2
2.	Управление требованиями	3
3.	Классификация требований	.4
4.	Характеристики требований	5
5.	Создание требований	6
5.	1.Формирование структуры требований	7
5.	2.Построение функциональной структуры изделия	7
5.	З.Конструкторская структура изделия	8
5.	5.4. Логическая схема взаимодействия	
5.	5.Трассировка требований	8
5.	6.Валидация требований.	10
5.	7. Анализ процесса проектирования КСИ на основе требований	10

1. Жизненный цикл изделия (ЖЦИ)

Жизненный цикл изделия — весь путь изделия от возникновения идеи производства до утилизации изделия. Основные этапы жизненного цикла можно разделить на:

- Маркетинговые исследования
- Научно-исследовательская работа
- Конструкторская подготовка производства
- Технологическая подготовка производства
- Логистическая подготовка производства
- Производство
- Контроль
- Сбыт
- Эксплуатация
- Утилизация

1.1. Конструкторская подготовка производства (КПП)

На основании ГОСТ 2.103-68, проектирование наукоёмкой продукции состоит из 4 этапов: Аванпроект, Эскизный проект, Технический проект и Рабочий проект.

- Этап «Аванпроекта» имеются требования заказчика, производится первичная компоновка изделия, формируется дерево требований
- Этап «Эскизного проектирования» формируется календарный план работ, выполняются необходимые инженерные расчеты для выбранной компоновки изделия
- Этап «Технического проектирования» разрабатывается детализированный электронный макет, выполняется инженерный анализ оценивается технологичность, формируются списки использованных стандартных изделий и др., осуществляется валидация требований

• Этап «Рабочего проектирования» — разрабатывается конструкторское решение, техническая информация (допуска, шероховатости и т.д.), получаем аннотированную трехмерную модель

Требования появляются на втором этапе и связаны с изделием на всех этапах.

2. Управление требованиями

Управление требованиями помогает решить такие проблемы, как недостаток планирования и неоправданные ожидания, в наиболее критичной части проектирования, стадии принятия решения, когда планы и ожидания консолидируются в виде требований. Требования описывают изделие. Они связывают запросы заказчика с различными направлениями разработки изделия.

Процесс разработки нового или модификации существующего изделия, инициируется различными требованиями (требования стандартов, заказчиков, рынка). Например, это требования по шумности продукта, требования по эргономике, требования по ресурсу и т.п. Выполнение требований стандартов к выпускаемой продукции (как отечественных, так и зарубежных) - гарантия сертификации продукции. Чтобы быть уверенными, что готовое изделие удовлетворит всем этим требованиям, разработчики работают с ними на протяжении всего процесса разработки. Как только изделие отвечает всем требованиям, оно готово к поставке и, что более важно, оно имеет функции и качество, отвечающие требованиям заказчика. Проект, не полностью отвечающий требованиям, обречен на выход за бюджетные и временные ограничения, на доработки в последний момент, выполняемые посредством титанических усилий коллектива. Кроме того, расхождение результирующих функциональных требуемыми может быть причиной сокращения объема, снижения стоимости и даже отмены заказа.

Для предупреждения подобных трудностей существуют два подхода:

- Требования, их разработка и определение должны быть отправной точкой проекта, благодаря этому многие узкие места могут быть определены еще до начала проектирования.
- Требования должны быть однозначно связаны с элементами конструкции, к которым они предъявлены. Эти связи должны поддерживаться на всех этапах жизненного цикла изделия.

Понятие требования очень широкое, используем определение, которое чаще применяется, в соответствии с ГОСТ 2.114-95, в машиностроении. Определения требования:

- Утверждение, которое идентифицирует эксплуатационные, функциональные параметры, характеристики или ограничения проектирования продукта или процесса, которое однозначно, проверяемо и измеримо
- Документально изложенный критерий, который должен быть выполнен, если требуется соответствие документу, и по которому не разрешены отклонения

3. Классификация требований

Требования систематизируются несколькими способами. Ниже представлены общие классификации требований, которые касаются технического управления.

- *Требования клиентов* клиенты, это те, кто выполняет основные функции системного проектирования, со специальным акцентом на пользователе системы как ключевом клиенте
- *Функциональные требования* объясняют, что должно быть сделано. Они идентифицируют задачи или действия, которые должны быть выполнены

- *Нефункциональные требования* требования, которые определяют критерии работы системы в целом, а не отдельные сценарии поведения. Нефункциональные требования определяют системные свойства такие как производительность, надежность и др.
- *Производные требования* требования, которые подразумеваются или преобразованы из высокоуровневого требования

4. Характеристики требований

Для успешного достижения цели, все требования и их формулировки должны обладать определенными характеристиками. В соответствии с теорией S.M.A.R.T. все требования к изделию должны быть:

- *S Specific* (*Конкретный*) при постановке цели должен быть точно определен желаемый результат. Правило: одна цель один результат. Если при постановке цели выяснилось, что в результате требуется достичь нескольких результатов, то цель должна быть разделена на несколько целей
- *M- Measurable (Измеримый)* на этапе постановки цели необходимо установить конкретные критерии для измерения процесса выполнения цели, т.е. определить, в чем будет измеряться результат. Если показатель количественный, то необходимо выявить единицы измерения, если качественный, то необходимо выявить эталон отношения.
- Attainable, Achievable (Достижимый) должно быть объяснено за счёт чего планируется достигнуть цели. И возможно ли её достигнуть вообще
- R- Relevant (Актуальный) важно понимать, какой вклад решение конкретной задачи внесет в достижение глобальных стратегических задач
- *T- Time-bound (Ограниченный во времени)* должен быть определен

финальный срок, превышение которого говорит о невыполнении цели. Установление временных рамок для выполнения цели позволяет сделать процесс управления контролируемым

Актуальность задачи информационной поддержки управления требованиями заключается в том, что от качества процессов управления требованиями при проектировании технически сложной продукции в конечном счёте зависят трудоёмкость и эффективность реализации эскизного и технического проекта, техническая сложность и потенциал развития самого проекта. Для конструкторского бюро формирование дерева требований и связь его с конструкторским составом разрабатываемого изделия является первоочередной задачей после уточнения ТЗ.

5. Создание требований

Управление требованиями происходит на всем протяжении жизненного цикла изделия, включая эскизный, а затем и технический проект.

Процесс создания требований состоит из следующих этапов:

- Формирование структуры требований
- Построение Функциональной структуры изделия
- Логическая схема взаимодействия
- Трассировка требования
- Связка требований с геометрическими параметрами
- Валидация требований

Для реализации требований необходимо составить наглядную аналитическую модель связи объектов структур. Чтобы связать требования к изделию и конструкторский состав изделия, необходимо ввести функциональную структуру изделия, позволяющую объединять в группы и связывать между собой требования и структурные части изделия.

На примере трехфазного генератора, использовались 3 структуры:

- Требования к генератору
- Функциональная структура генератора

• Конструкторский состав генератора

5.1. Формирование структуры требований

Для создания структуры (дерева) требований на входе получаем ТЗ заказчика, справочники, стандарты, методики, с помощью которых отдел главного конструктора формирует требования на конструкторском уровне и вариантные правила. Для создания дерева, все требования должно отвечать характеристикам S.M.A.R.T.

Требования к генератору создавались при помощи ГОСТ Р 53471-2009 "Генераторы трехфазные синхронные мощностью свыше 100 кВт. Общие технические условия". Среди основных требований к генератору были выделены следующие:

- Номинальная мошность
- Возможные перегрузки
- Несимметричность нагрузки фаз
- Направление вращения вала
- Прочность вала
- Частота вращения вала
- Срок службы
- Температура
- Шумность
- Общие требования безопасности

5.2. Построение функциональной структуры изделия

Функциональная структура изделия (ФСИ) — Структура, состоящая из элементов, описывающих функции (поведение, действия, процессы) изделия и связей между ними, но не содержащая технических подробностей их реализации

Для связи требований с конструкторским составом генератора были

созданы следующие функции:

- Вращение вала
- Взаимодействие ротора и статора
- Смазывание
- Охлаждение
- Защита от внешних воздействий

Все функции связаны основной функцией генератора — генерацией электрического тока.

5.3. Конструкторская структура изделия

Конструкторская структуру изделия (КСИ) — комбинированная структура, содержащая как функциональные (система — подсистема — агрегат), так и конструктивные элементы (сборочные единицы, детали)

Конструкторская структура генератора:

- Вал
- Обмотки
- Подшипниковые узлы
- Охлаждающе-смазочная система
- Корпус

5.4. Логическая схема взаимодействия

Следующим этапом является проектирование динамической модели функционирования взаимодействий, которая описывает поведение функциональной Понятие модели изделия. динамической модели функционирования или схемы взаимодействия подразумевает представление логических интерфейсов и соединений в системе или продукте. Эта модель требований, получается структуры функциональной ИЗ модели И конструкторской структуры изделия.

5.5. Трассировка требований

После того, как все 3 структуры были созданы, где динамическая модель функционирования является частью ФСИ, поэтому не является отдельной структурой, нужно связать их с помощью трассировки, чтобы в последствии

провести валидацию требований уже на готовой 3D-модели всего изделия или на отдельных компонентах.

Под трассировкой понимается связи объектов различных структур. Они позволяют прослеживать связь от требований к изделию до конструкторского состава изделия, а также группировать объекты различных структур. Трассировка показывает переход информации от одного объекта к другому.

В общем случае, трассировка заверяет, что характеристики, установленные требованиям качества, будут выполнены.

- Список характеристик:
- Действительность
- Однозначность
- Проверяемость
- Изменяемость
- Соответствие
- Полнота
- Отслеживаемость

До реализации трассировки в Teamcenter, необходимо аналитически составить модель трассировок требований с функциональной структурой изделия, а также с конструкторским составом изделия. На примере генератора можно создать следующую иерархическую модель связи структур с помощью трассировок.

Рис. 1. Схема трассировок требований генератора

5.6. Валидация требований.

После связи всех 3 структур идет последний этап: валидация требований. Валидация требований — это процесс проверки выполнения каждого требования. Валидация, как и любая другая часть процесса развития требований, не является независимой от других видов деятельностей и должна осуществляться итеративно. Материалами для валидации могут быть и одно небольшое требование, и большой полный набор требований, описанных в спецификациях. После валидации спецификации могут привести к исправлениям или закрытию пробелов имеющихся в выявлении, отслеживании и анализе.

Валидация требований и их исправление в начале проекта поможет сократить затраты и время, отведенное для исправления их на более позднем этапе жизненного цикла.

5.7. Анализ процесса проектирования КСИ на основе требований

Следующим этапом является понятие принципа проектирования КСИ под управлением требований.

Сначала из ТЗ заказчика узнается, какое изделие в конечном итоге

должно получится. Потом уже формируется основа дерева требований, который описывает основные характеристики изделия. Требования могут быть вариативными, то есть ТЗ заказчика можно описать не одним деревом требований, а несколькими, что позволяет найти оптимальный вариант для решения задач. Позже составляется основа функциональной структуры, которая описывает главные функции и показывает, каким параметрам должны они соответствовать. На основе этих базовых структур формируется базовая КСИ, где будут все основные элементы, которые реализуют данные требований функции. В последствии, когда структура детализируются, расширяется КСИ до уровня деталей. Последним этапом являются детали/подсборки, связанные уже с конкретными проверками требований на соответствие их выполнения.