Отчет о выполнении внешнего курса:

Основы кибербезопасности

Ежова Алиса Михайловна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение внешнего курса	7
4	Безопасность в сети	8
5	2.1) Как работает интернет: базовые сетевые протоколы	9
6	2.2) Персонализация сети:	17
7	2.3) Браузер TOR. Анонимизация:	20
8	2.4) Беспроводные сети Wi-fi:	23
9	Защита ПК/телефона	27
10	3.1) Шифрование диска:	28
11	3.2) Пароли:	31
12	3.3) Фишинг:	36
13	3.4) Вирусы. Примеры:	38
14	3.5) Безопасность мессенджеров:	40
15	Криптография на практике	42
16	4.1) Введение в криптографию	43
17	4.2) Цифровая подпись:	47
18	4.3) Электронные платежи	52
19	4.4) Блокчейн	55
20	Выволы	5.8

Список иллюстраций

5.1	Протокол прикладного уровня	9
5.2	Уровень протокола ТСР	10
5.3	Корректные адреса IPv4	11
5.4	DNS сервер	12
5.5	Модель TCP/IP	13
5.6	Протокол http предполагает	14
5.7	Протокол http состоит из	14
5.8	Версия протокола TLS	15
5.9	Фаза "рукопожатия"	16
6.1	Хранение куки-файлов	17
6.2	Куки не используются для	18
6.3	Куки генерируются	19
6.4	Сессионное хранение куки-файлов	19
7.1	Узлы в луковой сети TOR?	20
7.2	IP-адрес получателя известен	21
7.3	Общий секретный ключ	22
7.4	Использование браузера Tor	22
8.1	Wi-Fi - это	23
8.2	Уроень протокола WiFi	24
8.3	Уроень протокола WiFi	25
8.4	Передача данных между хостом сети и роутером	25
8.5	Метод для домашней сети для аутентификации	26
10.1	Шифровка загрузочного сектора диска	28
10.2	На чем основано шифрование диска	29
10.3	С помощью каких программ можно зашифровать жесткий диск .	30
11.1	Стойкий пароль	31
	Менеджер паролей	32
	Необходимость капчи	33
	Хэширование паролей	34
	Соль дял улучшения стойкости	35
	Меры защищают от утечек данных	35
12.1	Фишинговые ссылки	36

12.2	Фишинговый имейл	37
	Еmail Спуфинг	38 39
14.1	Этап формирования ключа шифрования в протоколе мессендже-	
	poв Signal	40
14.2	Суть сквозного щифрования	41
16.1	Асимметричные криптографические примитивы	43
	Криптографическая хэш-функция	44
16.3	Алгоритмы цифровой подписи	45
16.4	Код аутентификации сообщения	46
16.5	Обмен ключам Диффи-Хэллмана	46
17.1	Протокол электронной цифровой подписи относится к	47
17.2	Требования на вход	48
	Электронная цифровая подпись не обеспечивает	49
17.4	Тип сертификата электронной подписи для налоговой отчетности	
	ФНС	50
17.5	Организация для выдачи сертификатов	51
18.1	Платежные системы	52
18.2		
	Многофакторнуя аутентификация	53 54
18.3	Многофакторнуя аутентификация	53
18.3 19.1	Многофакторнуя аутентификация	53 54
18.3 19.1 19.2	Многофакторнуя аутентификация	535455

1 Цель работы

Освоить основные принципы и концепции кибербезопасности, овладеть ключевыми навыками для обеспечения защиты информации и данных, улучшить понимание угроз в сети интернет и способов их предотвращения, а также подготовиться к применению полученных знаний в реальных ситуациях для обеспечения безопасности в цифровом пространстве.

2 Задание

- 1. Пройти курс.
- 2. Выполнить все задания и тесты.
- 3. Получить сертификат.

3 Выполнение внешнего курса

4 Безопасность в сети

5 2.1) Как работает интернет: базовые сетевые протоколы

1. Выберите протокол прикладного уровня:

HTTPS является протоколом прикдладного уровня Протокол прикладного уровня сетевой протокол верхнего уровня (7-го в сетевой модели OSI и 4-го в стеке протоколов TCP/IP), обеспечивает взаимодействие сети и пользователя.

Рис. 5.1: Протокол прикладного уровня

2. На каком уровне работает протокол ТСР?:

TCP — это протокол управления передачей (Transmission Control Protocol). Его задача — управлять отправкой данных и следить за тем, чтобы они были гаран-

тированно приняты получателем. Именно гарантия получения данных и сделала этот протокол таким востребованным

Рис. 5.2: Уровень протокола ТСР

3. Выберите все корректные адреса IPv4:

Стандартный IP-адрес называется IPv4. Это четыре числа, разделенные между собой точкой, причем каждое число в двоичном формате состоит из 8 цифр. В переводе в десятичные числа это значит, что все они находятся в диапазоне от 0 до 255. Одна цифра — один бит, и выходит, что в каждом IP-адресе четыре восьмибитных числа.

Рис. 5.3: Корректные адреса IPv4

4. DNS сервер:

DNS-сервер — это специализированный компьютер (или группа), который хранит IP-адреса сайтов. Последние, в свою очередь, привязаны к именам сайтов и обрабатывает запросы пользователя. В интернете много DNS-серверов, они есть у каждого провайдера и обслуживают их пользователей.

Рис. 5.4: DNS сервер

5. Выберите корректную последовательность протоколов в модели TCP/IP:

Прикладной – транспортный – сетевой – канальный Модель TCP/IP — это набор правил, по которым данные перемещаются по интернету. Главными здесь являются два протокола: TCP и IP. Они нужны, чтобы устанавливать надёжный канал связи между устройствами и передавать по нему данные. Кроме TCP и IP в модели есть и другие протоколы — например, HTTP, Ethernet, FTP и UDP.

Рис. 5.5: Модель ТСР/ІР

6. Протокол http предполагает:

Передачу данных между клиентом и сервером в открытом виде. HTTP — это протокол, позволяющий получать различные ресурсы, например HTML-документы. Протокол HTTP лежит в основе обмена данными в Интернете. HTTP является протоколом клиент-серверного взаимодействия, что означает инициирование запросов к серверу самим получателем, обычно веб-браузером (web-browser).

Рис. 5.6: Протокол http предполагает

7. Протокол https состоит из:

Двух фаз: рукопожатия и передачи данных. Система HTTPS похожа на провод, который состоит из двух слоёв: медная сердцевина и оболочка. Медная сердцевина В основная часть провода, по которой идёт ток. Оболочка защищает контакты от внешних воздействий. Так, медная сердцевина В это HTTP-протокол, а защитная оболочка В это SSL-сертификат.

Рис. 5.7: Протокол http состоит из

8. Версия протокола TLS определяется:

И клиентом, и сервером в процессе "переговоров". TLS — это протокол шифрования и аутентификации, разработанный для защиты интернет-коммуникаций.

Рис. 5.8: Версия протокола TLS

9. В фазе "рукопожатия" протокола TLS не предусмотрено:

Шифрование данных. Если проверка TLS не работает, убедитесь, что на устройстве нет сертификатов, добавленных вручную. Они могут конфликтовать с сертификатами, развернутыми с помощью консоли администратора. Чтобы узнать об альтернативных способах настройки, обратитесь к поставщику веб-фильтра.

Рис. 5.9: Фаза "рукопожатия"

6 2.2) Персонализация сети:

1. Куки хранят:

Идентификатор пользователя и id сессии. Файлы cookie – это небольшие фрагменты текста, передаваемые в браузер с сайта, который вы открываете. С их помощью сайт запоминает информацию о ваших посещениях.

Рис. 6.1: Хранение куки-файлов

2. Куки не используются для:

Улучшения надежности соединения. Информация является анонимной и используется исключительно в статистических целях. Данные веб-аналитики и соокіе-файлы невозможно использовать для того, чтобы установить Вашу лич-

ность, поскольку они никогда не содержат персональные данные, включая Ваши имя или адрес электронной почты.

Рис. 6.2: Куки не используются для

3. Куки генерируются:

Сервером. Когда устройство подключается к серверу, он генерирует данные, которые записываются в файлы cookie. Эти данные содержат уникальный идентификатор пользователя и его устройства. Компьютер отправляет эти данные на сервер, который узнает вас по ID и предлагает информацию с учетом ваших предыдущих взаимодействий с сайтом.

Рис. 6.3: Куки генерируются

4. Сессионные куки хранятся в браузере?:

Да, на время пользования веб-сайтом. Временные («сессионные») файлы соокіе — эти файлы позволяют Администрации Сайта соединять действия пользователя во время сеанса браузера. Сеанс браузера начинается, когда пользователь открывает окно браузера, и завершается, когда пользователь закрывает его. Временные файлы соокіе создаются на короткое время.

Рис. 6.4: Сессионное хранение куки-файлов

7 2.3) Браузер TOR. Анонимизация:

1. Сколько промежуточных узлов в луковой сети TOR?:

В луковой сети TOR 3 промежуточных узла. Зашифрованные данные передаются через несколько сетевых узлов, называемых «луковыми роутерами», каждый из которых открывает один слой шифрования, чтобы узнать следующую точку передачи данных.

Рис. 7.1: Узлы в луковой сети TOR?

2. ІР-адрес получателя известен:

Отправителю и выходному узлу. То есть каждый узел, принимая пакет отправителя, смотрит, может ли он доставить его конечному получателю. Если может, он его перенаправляет в соответствии со своей таблицей маршрутизации на следующий узел. Следующий узел видит, что он тоже может доставить пакет, ну и так далее, пока пакет не дойдёт до финального адреса.

Рис. 7.2: ІР-адрес получателя известен

3. Отправитель генерирует общий секретный ключ:

С охранным, промежуточным и выходном узлом. Он генерирует общие ключи последовательно с охранным узлом A, далее с промежуточным узлом B, а потом и с выходным узлом C. Вначале он непосредственно генерирует общий ключ KSA, то есть между отправителем S и охранным узлом A, потом охранный узел помогает сгенерировать общий ключ между S и между B, промежуточным узлом. Он перенаправляет данные, которые идут от отправителя к промежуточному узлу.

Рис. 7.3: Общий секретный ключ

4. Должен ли получатель использовать браузер Tor (или другой браузер, основанный на луковой маршрутизации) для успешного получения пакетов?:

Нет, браузер Тог использует сеть Тог для защиты конфиденциальности и анонимности. Использование сети Тог имеет две основных особенности: Ваш интернет-провайдер и все, кто способен наблюдать за вашими подключениями, не смогут отслеживать ваши действия в сети, включая названия и адреса посещаемых сайтов.

Рис. 7.4: Использование браузера Тог

8 2.4) Беспроводные сети Wi-fi:

1. Wi-Fi - это:

Технология беспроводной локальной сети, работающая в соответствии со стандартом IEEE 802.11. EEE 802.11 - набор стандартов связи, для коммуникации в беспроводной локальной сетевой зоне частотных диапазонов 2,4; 3,6 и 5 ГГц. Пользователям более известен по названию Wi-Fi, фактически являющемуся брендом, предложенным и продвигаемым организацией Wi-Fi Alliance.

Рис. 8.1: Wi-Fi - это

2. На каком уровне работает протокол WiFi?:

Канальном. Как и все стандарты этого семейства, Fi-Wi 802.11 работает на нижних двух уровнях модели ISO/OSI, физическом и канальном.

Рис. 8.2: Уроень протокола WiFi

3. Небезопасный метод обеспечения шифрования и аутентификации в сети Wi-Fi:

WEP, WEP был быстро признан небезопасным, и в 2003 году ему на смену пришел WPA (Wi-Fi Protected Access). WPA значительно превосходит WEP по уровню безопасности. В WPA используются более мощные алгоритмы шифрования, более надежный протокол аутентификации и более широкий набор функций безопасности.

Рис. 8.3: Уроень протокола WiFi

4. Данные между хостом сети (компьютером или смартфоном) и роутером:

Передаются в зашифрованном виде после аутентификации устройств. Wi-Fi-роутер раздает сигнал в виде радиоволн другим устройствам. Излучения разлетаются во все стороны, проходят сквозь воздух и стены, чтобы долететь до ноутбука и смартфонов. Телефон, Smart TV и другие устройства подключаются к маршрутизатору, чтобы получить доступ к интернету.

Рис. 8.4: Передача данных между хостом сети и роутером

5. Для домашней сети для аутентификации обычно используется метод:

WPA2 Personal, если вы подключаетесь к домашней сети и получаете сообщение о слабом шифровании, измените тип шифрования на более надежный. Распространенные типы шифрования беспроводных сетей: WEP, TKIP, WPA, WPA2 (AES/CCMP). Главное отличие между ними — уровень защиты.

Рис. 8.5: Метод для домашней сети для аутентификации

9 Защита ПК/телефона

10 3.1) Шифрование диска:

1. Можно ли зашифровать загрузочный сектор диска?:

Да, можно зашифровать загрузочный сектор диска. Защита загрузочного сектора диска позволяет усилить безопасность системы, так как это первый сектор, который загружается при запуске компьютера.

Рис. 10.1: Шифровка загрузочного сектора диска

2. Шифрование диска основано на:

Шифрование диска на основе использования ключей симметричного шифрования - это один из наиболее распространенных методов шифрования данных на диске. Симметричное шифрование использует один и тот же ключ как для шифрования, так и для расшифрования данных.

Рис. 10.2: На чем основано шифрование диска

3. С помощью каких программ можно зашифровать жесткий диск?: BitLocker и VeraCrypt

Да, с помощью программного обеспечения BitLocker и VeraCrypt можно зашифровать жесткий диск для обеспечения безопасности данных. Вот краткое объяснение обеих программ:

BitLocker - это интегрированное средство шифрования диска, предоставляемое компанией Microsoft для операционных систем Windows. VeraCrypt - это бесплатное программное обеспечение с открытым исходным кодом, которое предоставляет возможности шифрования дисков на различных операционных системах, включая Windows, macOS и Linux.

Рис. 10.3: С помощью каких программ можно зашифровать жесткий диск

11 3.2) Пароли:

1. Какие пароли можно отнести с стойким?:

Пароль - UQr9@j4!S\$ можно отнести к стойким, так как содержит 10 разнообразных символов, наличие специальных символов и случайность.

Рис. 11.1: Стойкий пароль

2. Где безопасно хранить пароли?:

В менеджерах паролей. Менеджеры паролей используют сильное шифрование для хранения паролей, что делает их практически непроницаемыми для злоумышленников.

Рис. 11.2: Менеджер паролей

3. Зачем нужна капча?:

Для защиты от автоматизированных атак, направленных на получение несанкционированного доступа. Капча необходима для защиты от различных видов автоматизированных атак, таких как спам-боты, бот-атаки на веб-ресурсы, попытки взлома аккаунтов и т.д. Поскольку автоматизированные программы часто не могут успешно пройти капчу, она помогает обеспечить защиту от несанкционированного доступа и злоупотреблений.

Рис. 11.3: Необходимость капчи

4. Для чего применяется хэширование паролей?:

Для того, чтобы не хранить пароли на сервере в открытом виде. Хэширование паролей применяется для обеспечения безопасности пользовательских данных. Когда пользователь создает учетную запись и устанавливает пароль, этот пароль хэшируется - таким образом, он преобразуется в набор символов, который нельзя прочитать обратно. Этот хэшированный пароль затем сохраняется на сервере. Когда пользователь входит в систему, введенный им пароль также хэшируется и сравнивается с хэшем, хранящимся на сервере.

Рис. 11.4: Хэширование паролей

5. Поможет ли соль для улучшения стойкости паролей к атаке перебором, если злоумышленник получил доступ к серверу?:

Нет, если злоумышленник уже получил доступ к серверу, соль не будет эффективной, потому что она хранится вместе с зашифрованными паролями на сервере. Поэтому, если злоумышленник имеет доступ к серверу, он сможет получить и соль, и зашифрованные пароли, и, возможно, восстановить исходные пароли с помощью атаки перебором.

Рис. 11.5: Соль дял улучшения стойкости

6. Какие меры защищают от утечек данных атакой перебором?:

Разные пароли на всех сайтах, Периодическая смена паролей, Сложные (=длинные) пароли, капча. Все варианты верны, в ходе прохождения курса мы в этом убедились.

Рис. 11.6: Меры защищают от утечек данных

12 3.3) Фишинг:

1. Какие из следующих ссылок являются фишинговыми?:

https://online.sberbank.wix.ru/CSAFront/index.do (вход в Сбербанк.Онлайн) и https://passport.yandex.ucoz.ru/auth?origin=home_desktop_ru (вход в аккаунт Яндекс). Эти ссылки выглядят как фишинговые, потому что они содержат доменные имена, отличные от официальных доменов Сбербанка и Яндекса. Настоящие сайты Сбербанка и Яндекса имеют другие домены: sberbank.ru и yandex.ru соответственно.

Рис. 12.1: Фишинговые ссылки

2. Может ли фишинговый имейл прийти от знакомого адреса?:

Да, фишинговый имейл может прийти от знакомого адреса. Киберпреступники могут подделывать адреса отправителей, чтобы создать впечатление, что имейлы приходят от знакомых или официальных организаций. Это может включать в себя подделку адресов электронной почты, чтобы выглядеть как отправитель известного человека или компании.

Рис. 12.2: Фишинговый имейл

13 3.4) Вирусы. Примеры:

1. Email Спуфинг – это:

Подмена адреса отправителя в имейлах.

Рис. 13.1: Email Спуфинг

2. Вирус-троян:

Маскируется под легитимную программу. Когда вирус-троян маскируется под легитимную программу, он представляет себя как полезное или безопасное программное обеспечение, чтобы обмануть пользователей и получить доступ к их компьютерам или украсть их конфиденциальные данные.

Рис. 13.2: Вирус-троян

14 3.5) Безопасность мессенджеров:

1. На каком этапе формируется ключ шифрования в протоколе мессенджеров Signal?:

При генерации первого сообщения стороной-отправителем. Signal использует протокол двухфакторной аутентификации для формирования ключа шифрования при генерации первого сообщения стороной-отправителем. Этот процесс включает в себя обмен ключами Diffie-Hellman, который позволяет сторонам обмениваться секретными ключами, не передавая их по открытым каналам связи. В итоге формируется общий секретный ключ, который используется для шифрования и расшифрования сообщений.

Рис. 14.1: Этап формирования ключа шифрования в протоколе мессенджеров Signal

2. Суть сквозного шифрования состоит в том, что:

Сообщения передаются по узлам связи (серверам) в зашифрованном виде. Сквозное шифрование используется для обеспечения конфиденциальности и безопасности передаваемых сообщений. Каждый узел расшифровывает сообщение только в том случае, если он является адресатом. Это обеспечивает защиту данных во время их передачи по сети.

Рис. 14.2: Суть сквозного щифрования

15 Криптография на практике

16 4.1) Введение в криптографию

1. В асимметричных криптографических примитивах?

Обе стороны имеют пару ключей. В асимметричной криптографии каждая сторона имеет два ключа: открытый и закрытый. Открытый ключ используется для зашифрования данных, в то время как закрытый ключ используется для их расшифровки. Использование пары ключей позволяет обеспечить безопасную передачу информации, поскольку один из ключей может быть использован для шифрования сообщения, а другой - для его расшифровки. Этот подход позволяет уменьшить риски компрометации безопасности, поскольку открытый ключ может быть распространен свободно, в то время как закрытый ключ хранится в секрете.

Рис. 16.1: Асимметричные криптографические примитивы

2. Криптографическая хэш-функция:

Стойкая к коллизиям, дает на выходе фиксированное число бит независимо от объема входных данных, эффективно вычисляется. Примитив, который выходит за рамки симметричной и асимметричной криптографии, поскольку он бесключевой. Примером такого криптографического примитива является криптографическая хэш-функция. В науке есть просто хэш-функция, а есть криптографическая хэш-функция. Криптографическая хэш-функция берет на вход произвольный объем данных, то есть какие-то биты и выдает на выходе фиксированную строку, например длины n.

Рис. 16.2: Криптографическая хэш-функция

3. К алгоритмам цифровой подписи относятся:

RSA, ECDSA, ГОСТ Р 34.10-2012. Ежедневное применение цифровой подписи – это сертификаты. К примерам цифровой подписи относятся интернет-сертификаты, подпись RSA, американский стандарт ECDSA и отечественный стандарт ГОСТ стандарт Р 34.20.2012.

Рис. 16.3: Алгоритмы цифровой подписи

4. Код аутентификации сообщения относится к:

Симметричным примитивам. Как правило, код аутентификации сообщения относится к симметричным примитивам криптографии, поскольку он использует один и тот же секретный ключ для создания и проверки подписи сообщения. В отличие от асимметричной криптографии, где используются пары открытого и закрытого ключей, симметричная криптография применяет только один общий ключ.

Рис. 16.4: Код аутентификации сообщения

5. Обмен ключам Диффи-Хэллмана - это:

Асимметричный примитив генерации общего секретного ключа. Этот метод использует асимметричное шифрование, где каждая сторона генерирует свой закрытый и открытый ключи. Стороны обмениваются открытыми ключами, после чего они могут вычислить общий секретный ключ, который будет использоваться для шифрования и дешифрования сообщений между ними.

Рис. 16.5: Обмен ключам Диффи-Хэллмана

17 4.2) Цифровая подпись:

1. Протокол электронной цифровой подписи относится к:

Протоколам с публичным (или открытым) ключом. Протокол электронной цифровой подписи относится к протоколам с публичным (или открытым) ключом, так как он использует асимметричное шифрование. В этом случае у каждого участника есть пара ключей: закрытый и открытый. Закрытый ключ известен только владельцу, а открытый ключ может быть распространен публично. При создании электронной цифровой подписи сообщения подписывается закрытым ключом отправителя, а затем можно проверить подлинность подписи с помощью открытого ключа получателя.

Рис. 17.1: Протокол электронной цифровой подписи относится к

2. Алгоритм верификации электронной цифровой подписи требует на вход:

Подпись, открытый ключ, сообщение. Алгоритм верификации электронной цифровой подписи использует подпись, открытый ключ и сообщение для проверки подлинности и целостности данных. Когда получатель получает подпись и сообщение, он использует открытый ключ отправителя для проверки подписи. Алгоритм проверяет, что подпись действительно была создана закрытым ключом отправителя и что данные не были изменены после создания подписи.

Рис. 17.2: Требования на вход

3. Электронная цифровая подпись не обеспечивает:

Конфиденциальность. Она предназначена для проверки подлинности и целостности данных, а не для их защиты от несанкционированного доступа. Для обеспечения конфиденциальности данных необходимо использовать другие методы, такие как шифрование. Шифрование позволяет скрыть содержимое сообщения от посторонних лиц, в то время как электронная цифровая подпись обеспечивает возможность проверки авторства и целостности данных.

Рис. 17.3: Электронная цифровая подпись не обеспечивает

4. Какой тип сертификата электронной подписи понадобится для отправки налоговой отчетности в ФНС?:

Усиленная квалифицированная. Усиленная квалифицированная электронная подпись (ЭП) - это самый высокий уровень сертификата электронной подписи, который обеспечивает наивысший уровень безопасности и подлинности. Для отправки налоговой отчетности в Федеральную налоговую службу (ФНС) требуется использование усиленной квалифицированной ЭП. Такой сертификат подтверждает личность владельца ЭП и его право действовать от имени организации или индивидуального предпринимателя.

Рис. 17.4: Тип сертификата электронной подписи для налоговой отчетности ФНС

5. В какой организации вы можете получить квалифицированный сертификат ключа проверки электронной подписи?:

В удостоверяющем (сертификационном) центре. Квалифицированный сертификат ключа проверки электронной подписи можно получить в удостоверяющем (сертификационном) центре. Удостоверяющие центры выпускают сертификаты, подтверждающие подлинность и квалификацию электронной подписи, что позволяет использовать ее для юридически значимых документов и процессов, включая отправку налоговой отчетности в налоговые органы.

Рис. 17.5: Организация для выдачи сертификатов

18 4.3) Электронные платежи

1. Выберите из списка все платежные системы:

MasterCard и MИР, самые распространненые платежные системы.

Рис. 18.1: Платежные системы

2. Примером многофакторной аутентификации является:

Комбинация проверка пароля + код в sms сообщении и комбинация код в sms сообщении + отпечаток пальца. Многофакторная аутентификация представляет собой процесс проверки личности пользователя с использованием нескольких различных методов подтверждения.

Рис. 18.2: Многофакторнуя аутентификация

3. При онлайн платежах сегодня используется:

Многофакторная аутентификация покупателя перед банком-эмитентом. Многофакторная аутентификация покупателя перед банком-эмитентом означает, что для завершения транзакции покупатель должен пройти процесс проверки личности с использованием нескольких различных методов подтверждения перед своим банком-эмитентом. Это делается для повышения безопасности онлайн платежей и защиты от мошенничества.

Рис. 18.3: Онлайн платежи

19 4.4) Блокчейн

1. Какое свойство криптографической хэш-функции используется в доказательстве работы?:

Сложность нахождения прообраза. Свойство криптографической хэшфункции, которое используется в доказательстве работы (Proof of Work), это сложность нахождения прообраза. Криптографическая хэшфункция преобразует входные данные произвольной длины в фиксированную строку определенной длины (хэш). Однако, важной характеристикой криптографической хэшфункции является то, что она должна быть устойчива к обратному поиску то есть, при известном хэше сложно найти исходные данные (прообраз), которые привели к этому хэшу.

Рис. 19.1: Доказательство функции

2. Консенсус в некоторых системах блокчейн обладает свойствами:

Консенсус, живучесть, открытость, постоянства. Консенсус в системах блокчейн означает достижение единства и согласия между всеми участниками сети относительно правильности и последовательности транзакций. Это важное свойство обеспечивает работоспособность и надежность блокчейн-сети.

Рис. 19.2: Свойства консенсуса в системах блокчейна

3. Секретные ключи какого криптографического примитива хранят участники блокчейна?:

Цифровая подпись. Участники блокчейна хранят секретные ключи для использования в криптографической подписи. Цифровая подпись - это криптографический примитив, который используется для аутентификации и подтверждения подлинности цифровой информации. При проведении транзакций в блокчейне участники создают цифровую подпись, используя свой секретный ключ, чтобы подтвердить свое согласие на выполнение операции.

Рис. 19.3: Секретные ключи

20 Выводы

Кибербезопасность также стала важной темой для многих образовательных программ. Университеты и колледжи по всему миру активно включают курсы по кибербезопасности в свои программы, понимая актуальность и востребованность данной профессии в современном мире.

В целом, кибербезопасность является многогранной проблемой, требующей постоянного внимания, инноваций и адаптации к меняющемуся цифровому миру.

В заключение можно сказать, что вопросы кибербезопасности требуют комплексного подхода, включая технические, организационные и образовательные меры. Только совместные усилия могут обеспечить адекватный уровень защиты в условиях постоянно меняющегося цифрового ландшафта.

В этой работе я: - поняла, как работает Интернет, и какие у него "слабые" места

- уяснила, почему 1245YOURNAME плохой пароль
- научилась отличать шифрование от электронной подписи
- узнать, как работают электронные платежи