Épreuve : Math1-Analyse Session principale

Date: 12/01/2023

Durée : 02 heures

Nombres de pages : **02**

Université de Sousse

Institut des Hautes Études Commerciales de Sousse Niveau : 1ère Année

Filière: Licence Gestion

Chargés de cours :

Boubaker Heni

Hamrita Mohamed Essaied

Nefzi Hana

Exercice 1 (5 points)

Soit f la fonction définie par $f(x) = \frac{\ln(1+x)}{x+x^2}$.

- 1) Déterminer le domaine de définition de f, D_f . (0.25 pt)
- 2) Montrer que f se développe au voisinage de 0 par : (1.75 pts)

$$f(x) = 1 - \frac{3}{2}x + \frac{11}{6}x^2 - \frac{25}{12}x^3 + o(x^3)$$

- 3) a) Montrer que f est prolongeable par continuité en $x_0 = 0$ par une fonction g que l'on précisera. (0.5 pt)
 - b) Donner l'équation de la tangente Δ à la courbe de g, \mathscr{C}_g au point $M_0(0,1)$. (0.5 pt)
 - c) Préciser la position de la courbe de g par rapport à la tangente Δ . En déduire la convexité de g au voisinage de 0 (0.5 pt).
- 4) Montrer que la fonction g est de classe \mathscr{C}^1 sur son domaine de définition et dresser son tableau de variation (1 pt).
- 5) Montrer que l'équation $g(x) = -\frac{1}{2}$ admet une unique solution α sur]0,1[(0.5).

1

Exercice 2 (4 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{2}(x-1)\arctan x$.

1) Calculer f' et f''. (1 pt)

- 2) Étudier les variations de f'. (2 pts)
- 3) Déterminer l'intervalle J image de $]-\infty,-1]$ par f'. (0.5 pt)
- 4) Montrer que l'équation f'(x) = 0 admet une unique solution $c \in]0,1[$ et que f admet un minimum au point c. (0.5 pt)

Exercice 3 (6 points)

Soit f la fonction de deux variables x et y définie par : $f(x,y) = (x+y) \exp\left(\frac{x}{y}\right)$.

- 1) Déterminer le domaine de définition de f et montrer que f est de classe \mathscr{C}^{∞} sur son domaine de définition. (1 pt)
- 2) Calculer, sur D_f , les dérivées partielles premières et secondes. (2 pts)
- 3) a) Montrer que f est homogène et déterminer son degré d'homogénéité. (0.5 pt)
 - b) Vérifier l'identité d'Euler. (0.5 pt)
 - c) Calculer $e_{f/x}(x,y) \ \forall (x,y) \in D_f$. En déduire, sans calcul, $e_{f/y}(x,y)$. (1 pt)
- 4) a) Montrer que l'équation f(x,y)=1 définit au voisinage de $M_0(0,1)$ une fonction implicite ϕ et calculer $\phi'(0)$. (0.75 pt)
 - b) Donner l'équation de la tangente, \mathcal{D} , à \mathscr{C}_{ϕ} au voisinage de 0. (0.25 pt)

Exercice 4 (5 points)

Soit f la fonction définie par $f(x, y) = x^2 + 4y^2 + 2x - 4y + 3$.

- 1) Trouver les points critiques et étudier leur nature de f. (2 pts)
- 2) Trouver les points critiques et étudier leur nature de f soumise à la contrainte g(x,y) = 0 où g(x,y) = x + 2y 2 (3 pts)

Bon Travail