HALH machine learning (ML)

머신러닝의 정의와 용어

알파고? 딥러닝? 머신러닝? 인공지능?

머신러닝의 정의와 용어

인공지능: 사람의 지능을 모방하여, 사람이 하는 것과 같이 복잡한 일을 할 수 있게 기계를 만드는 것 머신러닝: 기본적으로 알고리즘을 이용해 데이터를 분석 및 학습하며, 학습한 내용을 기반으로 판단이나 예측 딥러닝: 인공신경망에서 발전한 형태의 인공 지능. 머신러닝 중 하나의 방법론

머신러닝의 정의와 용어

데이터를 기반으로 패턴을 학습하여 결과를 추론하는 것

Data

Model

Prediction

과거에는…

데이터를 기반으로 패턴을 학습하여 결과를 추론하는 것

Data

Model

Prediction

머신러닝

데이터를 기반으로 패턴을 학습하여 결과를 추론하는 것

Data

Model

Prediction

머신러닝

머신러닝의 학습 방법

데이터를 기반으로 패턴을 학습하여 결과를 추론하는 것

Model **Prediction** Data 지도학습 (Supervised Learning) 비지도학습 (Unsupervised Learning) 강화학습 (Reinforcement Learning)

지도학습

입력 데이터

"자동차"

"비행기"

머신러닝의 위한 기초 수학

수식

y 실제값

 $\hat{\dot{y}}$ 예측값 (y hat)

 $ar{y}$ 평균값 (y bar)

수식

$$y = f(x)$$

$$y = ax + b$$
$$f(x) = ax + b$$

합계 (Summation), 평균 (Mean)

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n$$

$$\frac{1}{n} \sum_{i=1}^{n} a_i = \frac{1}{n} (a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n)$$

$$= \frac{(a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n)}{n}$$

a: 기울기, b: 절편

w: 가중치(weight), b: 편향 (bias)

$$f(x) = wx + b$$

$$f(x) = wx + b$$

$$f(x) = x^2$$

미분 (derivative)

한 점에서의 기울기!

미분 (derivative)

$$y = 3$$

$$y^{'}=0$$
 모든 상수의 미분은 "0"

$$y = 4x + 3$$

$$y'=4$$
 1차식의 미분은 "상수 값"

$$y = x^2$$

$$y' = 2x$$

편미분 (partial derivative)

변수가 2개 이상일 때의 미분?

$$y = 2a^2 + 3b + 6$$

편미분 (partial derivative)

a에 대한 미분

$$\frac{\partial}{\partial a}y = \frac{\partial y}{\partial a} = \frac{\partial}{\partial a}(2a^2 + 3b + 6)$$

a를 제외한 나머지는 상수 취급

$$\frac{\partial y}{\partial a} = 4a$$

편미분 (partial derivative)

b에 대한 미분

$$\frac{\partial}{\partial b}y = \frac{\partial y}{\partial b} = \frac{\partial}{\partial b}(2a^2 + 3b + 6)$$

b를 제외한 나머지는 상수 취급

$$\frac{\partial y}{\partial b} = 3$$

합성함수의 미분

$$f(x) = ax^2 + b \qquad g(x) = x^3$$

$$g(f(x)) = (ax^2 + b)^3$$

합성함수의 미분

$$g' = \frac{\partial g}{\partial x} = \frac{\partial}{\partial x} \left[ax^2 + b \right]^3$$
 $f(x) = A = ax^2 + b$

$$g'(x) = \frac{\partial}{\partial x}(A^3)$$

$$= 3A^2 \cdot A'$$

$$= 3(ax^2 + b)^2 \cdot \frac{\partial}{\partial x}(ax^2 + b)$$

$$= 3(ax^2 + b)^2 \cdot (2ax)$$

머신러닝의원리

머신러닝의 원리

y = wx + b 일때, 다음을 만족하는 w, b는 무엇일까요?

w = ?

b = ?

• X, Y 데이터가 주어졌을 때, 해를 구할 수 있는 잠정적인 수식

$$h(x) = wx + b$$

x	у
1	3
2	5
3	7

Trial 1. 임의의 w, b 값을 대입

$$\mathbf{w} = \mathbf{0.5}$$

$$b = 0.5$$

$$y = 0.5x + 0.5$$

x	y (actual)	$\widehat{m{y}}$ (prediction)
1	3	1
2	5	1.5
3	7	2

Trial 2. 임의의 w, b 값을 대입

$$w = 1$$

 $b = 1$

$$y = x + 1$$

x	y (actual)	$\widehat{oldsymbol{y}}$ (prediction)
1	3	2
2	5	3
3	7	4

Trial 3. 임의의 w, b 값을 대입

$$w = 2$$

$$b = 1$$

$$y=2x+1$$

x	y (actual)	$\widehat{oldsymbol{y}}$ (prediction)
1	3	3
2	5	5
3	7	7

No	Trial	x	y (actual)	$\widehat{oldsymbol{y}}$ (prediction)
	w = 0.5	1	3	1
1	b = 0.5	2	5	1.5
	y=0.5x+0.5	3	7	2
	w = 1 $b = 1$	1	3	2
2		2	5	3
	y = x + 1	3	7	4
	w = 2 $b = 1$ $y = 2x + 1$	1	3	3
3		2	5	5
		3	7	7

Error(오차) / Loss(손실)

No	Trial	x	${\cal Y}$ (actual)	$\widehat{oldsymbol{y}}$ (prediction)	Error $(y - \hat{y})$
	w = 0.5	1	3	1	2
1	h = 0.5	2	5	1.5	3.5
		3	7	2	5
	$ \begin{array}{c} w = 1 \\ b = 1 \end{array} $ $ y = x + 1 $	1	3	2	1
2		2	5	3	2
		3	7	4	3
	w = 2	1	3	3	0
3	b = 1	2	5	5	0
	y=2x+1	3	7	7	0

(참고)
Loss (손실) = Error (오차)
머신러닝/딥러닝 에서는
Error (오차)를
Loss혹은 Cost 라고
정의 합니다.

No	Trial	x	y (actual)	$\widehat{oldsymbol{y}}$ (prediction)	Error $(y - \hat{y})$	Sum of Errors $\Sigma(y-\widehat{y})$
	w = 0.5	1	3	1	2	
1	b = 0.5	2	5	1.5	3.5	2 + 3.5 + 5 = 10.5
	y=0.5x+0.5	3	7	2	5	
	$ \begin{array}{c c} w = 1 \\ b = 1 \end{array} $ $ y = x + 1 $	1	3	2	1	
2		2	5	3	2	1 + 2 + 3 = 6
		3	7	4	3	
		1	3	3	0	
3		2	5	5	0	= 0 0 + 0 + 0
		3	7	7	0	

No	Sum of Errors $\Sigma(y-\widehat{y})$
1	2 + 3.5 + 5 = 10.5
2	1+2+3 =6
3	= 0 0 + 0 + 0

$$\Sigma(y - \hat{y}) = \mathbf{0}$$

을 만족하는 w, b를 구하는 것

오차는 $y - \hat{y}$ 의 결과로 구해지므로 "양수"나 "음수"가 나올 수 있다.

오차가 "양수"와 "음수"로 이루어져 있다면 오차의 총합은

<mark>산술적인 오차의 합이 = "0"</mark> 되는 현상이 발생한다.

오차 $(y - \hat{y})$ 에 제곱을 씌워 음수 값이 나올 수 없게 만든다

$$\Sigma(y-\hat{y}) \qquad \Longrightarrow \qquad \Sigma(y-\hat{y})^2$$

제곱 과
$$\dot{\mathbf{v}}(\Sigma)$$
 을 하면 굉장히 큰 수가 나올 수 있어 n개로 나누어 평균으로 만든다

$$\left|\frac{1}{n}\Sigma(y-\hat{y})^2\right|$$

평균 제곱 오차 (Mean Squared Error)

- 평균 제곱 오차 (MSE)
 - 오차에 제곱에 평균을 취한 수식

$$\frac{1}{n}\Sigma(y-\hat{y})^2$$

평균 제곱 오차 (Mean Squared Error)

$$\frac{1}{n}\Sigma(y-\hat{y})^2 \approx 0$$

결국, MSE를 "0"에 가깝게 만드는 w, b를 구해야 합니다.

< MSE를 "0"에 가깝에 만드는 w, b를 구하는 법>
MSE를 w와 b에 대하여 각각 편미분하여 w와 b 값을 업데이트 해주는
"경사하강법" 을 알아보도록 하겠습니다.

경사하강법 (Gradient Descent)

경사 하강법

경사를 타고 내려와 최저점 (Loss가 가장 낮은 지점) 에 도달하는 최적화 알고리즘

경사하강법 (Gradient Descent)

$$w = w - w'$$

W (기울기)를 **감소**하면서 최저점에 도달할 때까지 **기울기를 업데이트**

학습률 (Learning Rate)

learning_rate

학습율이 너무 작은 경우 = 학습이 진행 X 학습율이 너무 큰 경우 = minimum 도달 X

경사하강법 (Gradient Descent)

$$w = w - \alpha \cdot w'$$

$$= w - \alpha \cdot \frac{\partial}{\partial w} (Loss) \longrightarrow Loss = \frac{1}{n} \sum (\hat{y} - y)^2$$

$$= w - \alpha \cdot \frac{\partial}{\partial w} \left(\frac{1}{n} \sum_{n} (\hat{y} - y)^2\right)$$

경사하강법 (Gradient Descent) 수식 유도

경사하강법 (Gradient Descent)

$$w = w - \alpha \cdot \frac{1}{n} \sum_{i} (\hat{y} - y) \cdot x$$

$$b = b - \alpha \cdot \frac{1}{n} \sum_{i} (\hat{y} - y)$$