已知 $\alpha_1,\alpha_2,\cdots,\alpha_s,\beta_1,\beta_2,\cdots,\beta_{s-1}$ 都是n维向量,下列命题中错误的是

(A) 如果
$$\begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix}$$
, $\begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix}$,..., $\begin{bmatrix} \alpha_{s-1} \\ \beta_{s-1} \end{bmatrix}$ 线性相关,则 α_1 , α_2 ,..., α_{s-1} , α_s 线性相关.

- (B) 如果秩 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_{s-1}) = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_{s-1}), 则 \boldsymbol{\alpha}_1,$ $\boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 线性相关.
- (C) 如果 α_1 , α_2 , …, α_s 线性相关,且 α_s 不能由 α_1 , α_2 , …, α_{s-1} 线性表出,则 α_1 , α_2 , …, α_{s-1} 线性相关.
 - (D) 如果 α ,不能由 α_1 , α_2 ,…, α_{s-1} 线性表出,则 α_1 , α_2 ,…, α_s 线性无关.

2、已知 n 维向量 a_1 , a_2 , a_3 线性无关,证明 $3a_1 + 2a_2$, $a_2 - a_3$, $4a_3 - 5a_1$ 线性无关

3、已知向量
$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, a_2 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, a_3 = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}, \beta = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix},$$
试用 a_1 , a_2 , a_3 线性表示 β 。