Are you being served: A Framework to manage Cloud outage repair times for Small Medium Enterprises

Jonathan Dunne, David Malone ISSC2016 – 21st June

Agenda:

- 1. Introduction
- 2. Background Research
- 3. Dataset
- 4. Analysis
- 5. Results
- 6. Conclusion

Introduction

- Software as a service (SaaS) is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted.
- Small to medium enterprises (SME's) represent 79% of all employment with the EU. Annual turnover in excess of €440 billion.
- Nine out of ten SME's in Europe have less than ten employees, which makes servicing of cloud outages a non-trivial effort.
- SME's need a framework which can best utilise their limited operations resources to service system outages
- The core idea of our framework is to outline which outages types contribute to higher service times.

Background Research

- Software as a Service
 - Key evangelists:

- Major Cloud Outage events in 2015
 - Verizon (40 hours offline)
 - iCloud (12 & 7 hours)
 - Windows Azure (2 hours)
 - Starbucks (2 hours)
 - Google (Multiple. < 1 hour)
- Related Studies
 - Kleyner & O'Connor : Outage times for repairable systems can be best modeled with a log-normal distribution

Data Set

- Our study collected data from:
 - 250 outage reports from a large cloud based system.
 - Data was collected over a 12-month period (Jan Dec)
 - Four main components: Business support System (BSS) Collaboration, Email and Social.
 - Three data centres deployed globally.
- Reviewing the data, the following questions needed answering:
 - How are the times of cloud outage events distributed?
 - Does the distribution vary by component?
 - Does the distribution differ by failure category?
 - Does the relationship differ by data centre?

Analysis – Outage Distribution

Fig. I shows the distribution of total outages events

Historgram of Outage Times (in Mins)

Summary Statistics:

Samples = 246

Mean = 314.14

Std Dev = 1414.43

Median = 105

Skew = 13.80

Distribution = Log Normal

AD Test statistic = 0.29

p-value = 0.95

•

Analysis – Distribution by Component

Fig. 2 shows the distribution of outage events by component: BSS-Social, Collaboration, Mail and Mixed component (More than 2 components).

BSS-Social Statistics:

Samples = 17 Mean = 274.23 Std Dev = 639.44 Median = 45 Skew = 3.56

Distribution = Log Normal Anderson Darling GOF AD = 0.555, p-value = 0.690

Collaboration Statistics:

Samples=34 Mean = 189 Std Dev = 379.33 Median = 61.5 Skew = 3.83

Distribution = Log Normal Anderson Darling GOF AD = 0.633, p-value = 0.616

Mail Statistics:

Samples= 152 Mean = 258.10 Std Dev = 423.27 Median = 126.5 Skew = 5.45

Distribution = Log Normal Anderson Darling GOF AD = 0.180, p-value = 0.995

Mixed Component Statistics:

Samples=43 Mean = 626.95 Std Dev = 3260.78 Median = 85 Skew = 6.30

Distribution = Log Normal Anderson Darling GOF AD = 0.608, p-value = 0.639

Analysis – Distribution by Failure Type

Fig. 4 shows the distribution of outage events by type: Configuration-Manual Process, Contention-Concurrency, Disaster Recovery, Network and Hardware-Other.

Configuration-Manual Statistics: Contention-Concurrency Statistics: Disaster Recovery Statistics: Network Statistics:

C - . - - I - -

9%

Hardware-Other Statistics:

Samples = 74
Mean = 488.61
Std Dev = 2488.21
Median = 114.5
Skew = 8.28

Samples = 64
Mean = 238.78
Std Dev = 468.62
Median = 86
Skew = 3.69

30%

% Of Total

Samples = 36
Mean = 134.03
Std Dev = 160.72
Median = 72
Skew = 2.33
Distribution = Log

Samples = 49
Mean = 314.59
Std Dev = 590.74
Median = 145
Skew = 5.30

Dis	tribution = Log Normal
An	derson Darling GOF
ΑD	= 0.491, p-value = 0.756

Samples = 23	
Mean = 243.44	
Std Dev = 357.54	ļ
Median = 91	
Skew = 2.11	

Distribution = Log Normal **Anderson Darling GOF** 6 AD = 0.275, p-value = 0.956

Distribution = Log Normal
Anderson Darling GOF
AD = 0.331, p-value = 0.913

Anderson Darling GOF AD = 0.248, p-value = 0.971	DISTRIBUTION = FOR MOLLING
AD = 0.248, p-value = 0.971	Anderson Darling GOF
	AD = 0.248, p-value = 0.971

26%

Anderson Darling GOF			
AD = 0.293	, p-value = 0.943		
15%	20%		

Normal

Analysis – Distribution by Data Centre

Fig. 3 shows the distribution of outage events by Data Centre: High, Medium, Low use.

Data Centre (A) High Use Statistics:

Samples = 160 Mean = 224.43 Std Dev = 312.83 Median = 113.5 Skew = 2.93

Distribution = Log Normal Anderson Darling GOF AD = 0.177, p-value = 0.995

Data Centre (B) Medium Use Statistics:

Samples = 24 Mean = 187.67 Std Dev = 279.97 Median = 89.5 Skew = 2.89

Distribution = Log Normal Anderson Darling GOF AD = 0.215, p-value = 0.986

Data Centre (C) Low Use Statistics:

Samples = 54 Mean = 645.39 Std Dev = 2961.09 Median = 79.5 Skew = 6.67

Distribution = Log Normal Anderson Darling GOF AD = 1.085, p-value = 0.316

Analysis – Regression testing for Correlation

 The purpose of the Regression analysis is to understand if there is a relationship between outage times and other factors. (e.g. Data centre, component or outage type)

Key findings:

- Outage times are strongly correlated with the E-mail component.
- Outage times are less strongly correlated to both the BSS components and network outages type outages.
- For all other variables there was little evidence of correlation.

Data Centre	Regression effect	p value	Component	Regression effect	p value	Trigger Type	Regression effect	p value
В	Little	0.651	BSS	Weak	0.075	Config-Manual	Little	0.473
С	Little	0.513	Collaboration	Little	0.164	Concurrence-Contention	Little	0.228
А	Little	0.72	Email	Strong	0.008	Disaster Recovery	Little	0.218
Mixed	Little	0.234	Mixed Component	Little	0.172	Hardware-Other	Little	0.723
			Social	Little	0.928	Network	Weak	0.06

Note: The Lower the P value the higher the level or association / correlation.

Analysis – TTD Vs TTR

Historgram of (Log Transformed) Time to Resolution (in Mins)

TTD Statistics (Untransformed):

Samples = 229 Mean = 228.81 Std Dev = 1450.44 Median = 24 Skew = 13.57

TTD Statistic (Log Transformed)

Distribution =Log Normal AD = 0.83, p-value = 0.46

Historgram of Time to Resolution (in Mins)

TTR Statistics:

Samples = 230 Mean = 108.25 Std Dev = 162.50 Median = 59 Skew = 4.75

Distribution = Log Normal Anderson Darling GOF AD = 0.79, p-value = 0.50

Results

Outage Distribution:

- Overall outage times can be successfully modeled by a log normal distribution
- The distribution is skewed which suggest great variability in service times.

Component:

- Mean outage times vary by component. Collaboration outages recorded the shortest mean outage times, with BSS & Social the longest.
- Operations teams can be elastic in size to target specific components on a per outage basis.

Data Centre:

- Mean outage times vary by component. Medium use data centres recorded the longest mean outage times, with Low usage the longest.
- Operations teams should standardize problem determination techniques to ensure uniform resolution times.

Failure Type:

- Mean outage times vary significantly by failure type. Configuration-Human error and Network outages take the longest to resolve.
- Investing in best of breed automation assets and state of the art monitoring will significantly reduce configuration issues while providing more awareness of network health.

Conclusion

- Our study has shown:
 - The log normal distribution is an effective method to model cloud outage events repair times.
 - Outage event data can be used to create outage event resolution frameworks.
 - Our framework will allow operation teams to focus on specific outage events and rapidly reduce their remediation times.