Analiza 4 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorice Jasne Prezelj2019/20

Kazalo

1	Dife	erenčne enačbe	3
	1.1	Uvod	3
	1.2	Linearne diferenčne enačbe in	
		sistemi linearnih diferenčnih enačb	4
	1.3	Stabilnost	6

1 Diferenčne enačbe

1.1 Uvod

Definicija 1.1 (Diferenca). Denimo, da je y = f(t) dana funkcija.

- 1. način: $\Delta y_t = f(t+h) f(t) = y_{t+h} y_t$
- 2. način: $\Delta y_t = f(t) f(t-h) = y_t y_{t-h}$

Posebej definiramo $\Delta^0 y_t = y_t$. Velja

$$\Delta^{n+1} y_t = \Delta(\Delta^n y_t)_t.$$

Definicija 1.2. *Navadna diferenčna enačba* je enačba, ki vsebuje (eno ali) več diferenc,

$$F(t, \Delta^0 y_t, \dots, \Delta^n y_t) = 0.$$

Red diferenčne enačbe je red najvišje diference. Če je F linearna v $\Delta^k y_t$, je enačba linearna.

Definicija 1.3. Sistem n diferenčnih enačb 1. reda je dan z

$$y_1(t+1) = f_1(t, y_1(t), \dots, y_n(t))$$

 \vdots
 $y_n(t+1) = f_n(t, y_1(t), \dots, y_n(t))$

Če t eksplicitno ne nastopa, rečemo, da je to *avtonomen sistem*. Če so f_1, \ldots, f_n linearne, lahko sistem zapišemo v matrični obliki:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad f_i(t) = b_i(t) + a_{i1}y_1(t) + \ldots + a_{in}y_n(t), \ i = 1, \ldots, n$$

$$\mathbf{y}(t+1) = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \vdots & a_{nn}(t) \end{bmatrix} \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} + \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix} = \mathbf{A}(t)\mathbf{y}(t) + \mathbf{b}(t)$$

Nelinearen sistem lahko vseeno zapišemo v vektorski obliki:

$$\mathbf{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}, \quad \mathbf{y}(t+1) = \mathbf{f}(t, \mathbf{y}(t))$$

Definicija 1.4. Če je sistem oblike

$$\mathbf{y}_{m+1} = \mathbf{A}\mathbf{y}_m,$$

se imenuje homogen.

1.2 Linearne diferenčne enačbe in sistemi linearnih diferenčnih enačb

Definicija 1.5. Sistem linearnih diferencialnih enačb reda n je dan s predpisom

$$\mathbf{y}(t+1) = \mathbf{A}(t)\mathbf{y}(t) + \mathbf{b}(t),$$

kjer je $\mathbf{A} \in \mathrm{GL}_n(\mathbb{R}), b \in \mathbb{R}^n$.

Definicija 1.6. Začetni pogoj (ali Cauchyjeva naloga) za sistem n linearnih diferenčnih enačb 1. reda je: reši

$$\mathbf{y}(t+1) = \mathbf{A}(t)\mathbf{y}(t) + \mathbf{b}(t)$$

pri začetnem pogoju $\mathbf{y}(t_0) = \mathbf{y}_0 \in \mathbb{R}^n$.

Izrek 1.1. Prostor rešitev homogenega sistema je n-dimenzionalen vektorski prostor. Rešitve so linearno neodvisne v času $t+m \iff$ so linearno neodvisne v času t.

Komentar (Nehomogen sistem). Opazili smo, da če y, z rešita

$$\mathbf{y}(t+1) = \mathbf{A}\mathbf{y}(t) + \mathbf{b}(t),$$

potem $\mathbf{y}(t) - \mathbf{z}(t) = \mathbf{w}(t)$ reši

$$\mathbf{w}(t+1) = \mathbf{A}\mathbf{w}(t).$$

Posledično je vsaka rešitev nehomogenega sistema oblike

$$\mathbf{y} = \mathbf{y}_h + \mathbf{y}_p,$$

kjer je \mathbf{y}_h rešitev homogenega sistema, \mathbf{y}_p pa
 - pravimo ji partikularna -rešitev nehomogenega sistema.

Definicija 1.7. Cauchyjeva naloga za linearne diferenčne enačbe s konstantnimi koeficienti je: reši

$$\mathbf{y}_{t+n} + a_{n-1}\mathbf{y}_{t+n-1} + \ldots + a_0\mathbf{y}_t = \mathbf{g}(t)$$

pri pogoju

$$\mathbf{y}(0) = \gamma_0, \dots, \mathbf{y}(n-1) = \gamma_{n-1}.$$

Enačbo lahko prevedemo na sistem:

$$\begin{bmatrix} \mathbf{y}_{1}(t+1) \\ \mathbf{y}_{2}(t+1) \\ \vdots \\ \mathbf{y}_{n-1}(t+1) \\ \mathbf{y}_{n}(t+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_{0} & -a_{1} & -a_{2} & \dots & -a_{n-1} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1}(t) \\ \mathbf{y}_{2}(t) \\ \vdots \\ \mathbf{y}_{n-1}(t) \\ \mathbf{y}_{n}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -\mathbf{g}(t) \end{bmatrix},$$

kjer je $\mathbf{y}_k(t) := \mathbf{y}(t+k-1)$ (torej velja $\mathbf{y}_k(t) = \mathbf{y}_{k-1}(t+1)$).

Izrek 1.2. Splošna rešitev homogene enačbe je dana z

$$\mathbf{y}_h = \sum_{i=1}^n a_i \mathbf{y}_i,$$

kjer so \mathbf{y}_i , $i=1,\ldots,n$ linearno odvisne rešitve enačbe. Prostor rešitev je vektorski prostor dimenzije n.

Metoda 1.1. Za iskanje linearnih neodvisnih rešitev homogene enačbe uporabimo nastavek $\mathbf{y}_t = \lambda^t$:

$$\lambda^{t+n} + a_{n-1}\lambda^{t+n-1} + \ldots + a_0\lambda^t = 0$$

Karakteristični polinom:

$$p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_n.$$

Naj bo λ_0 ničla $p(\lambda), p(\lambda_0) = 0$. Potem je

$$\lambda_0^{t+1} + \ldots + a_0 \lambda_0^t = \lambda_0^t \cdot p(\lambda_0) = 0.$$

Če ima $p(\lambda)$ n enostavnih ničel, $\lambda_0, \ldots, \lambda_{n-1}$, je vsaka rešitev oblike

$$\mathbf{y}(t) = \alpha_0 \lambda^t + \ldots + \alpha_{n-1} \lambda_{n-1}^t.$$

1.3 Stabilnost

Definicija 1.8. Naj bo $\mathbf{y}_{t+1} = \mathbf{f}(t, y_t)$ dan sistem in postavimo $t_0 = 0$. Rešitev \mathbf{y} je stabilna, če za $\forall \varepsilon > 0 \ \exists \delta > 0$: če je \mathbf{z} katerakoli druga rešitev, ki zadošča $|\mathbf{z}_0 - \mathbf{y}_0| < \delta \Rightarrow |\mathbf{z}_t - \mathbf{y}_t| < \varepsilon, t > 0$.

Rešitev je asimptotsko stabilna, če je stabilna in za $\forall \varepsilon > 0 \; \exists \delta > 0 \colon |\mathbf{z}_0 - \mathbf{y}_0| < \delta, \; |\mathbf{z}_t - \mathbf{y}_t| < \varepsilon, \; t \geq 0 \; \text{in } \lim_{t \to \infty} |\mathbf{z}_t - y_t| = 0.$

Za linearne sisteme:

$$\mathbf{y}_{t+1} = \mathbf{A}\mathbf{y}_t + \mathbf{b}_t$$

$$\mathbf{y}_n = \mathbf{y}_{n,p} + \mathbf{A}^n \mathbf{y}_0, \quad y_{0,p} = 0$$

$$\mathbf{z}_n = \mathbf{y}_{n,p} + \mathbf{A}^n \mathbf{z}_0$$

$$|\mathbf{y}_n - \mathbf{z}_n| = |\mathbf{A}^n (\mathbf{y}_0 - \mathbf{z}_0)| \le ||\mathbf{A}||^n ||\mathbf{y}_0 - \mathbf{z}_0||$$

 $\mathbf{y}_{n,p}$ je (asimptotsko) stabilna rešitev nehomogenega sistema $\iff \mathbf{0}$ je (asimptotsko) stabilna rešitev homogenega sistema. Torej: $\|\mathbf{A}\| < 1$: stabilnost.