Cálculo Diferencial

Juan Cribillero Aching

Abril 1, 2024

Contenido

- 1 Topología en \mathbb{R}
 - Vecindades
 - Punto de acumulación
- 2 Límite de una función en un punto
 - Definición del límite de una función
 - Unicidad del límite
- 3 Referencias

Sesión 01

- 1 Topología en \mathbb{R}
 - Vecindades
 - Punto de acumulación
- 2 Límite de una función en un punto
 - Definición del límite de una función
 - Unicidad del límite
- 3 Referencias

്റററ

Sean $a\in\mathbb{R}$ y δ un número positivo cualesquiera. La vecindad abierta de centro a y radio δ , denotada como $V_{\delta}(a)$, se define como el conjunto de números reales cuya distancia al valor a es menor que δ . Es decir,

$$V_{\delta}(a) = \{x \in \mathbb{R} : |x - a| < \delta\}$$

También,
$$V_{\delta}(a) = |a - \delta, a + \delta| = \{x \in \mathbb{R} : a - \delta < x < a + \delta\}$$

Definición (Vecindad abierta reducida)

Sean $a\in\mathbb{R}$ y δ un número positivo cualesquiera. La vecindad abierta reducida de centro a y radio δ , denotada como $V'_{\delta}(a)$, se define como el conjunto de números reales cuya distancia al valor a es menor que δ y diferente de a. Es decir son los números de $V_{\delta}(a)$ diferentes de a.

$$V'_{\delta}(a) = \{x \in \mathbb{R} : 0 < |x - a| < \delta\}$$

También $V'_{\delta}(a) = V_{\delta}(a) \setminus \{a\} =]a - \delta, a[\cup]a, a + \delta[.$

IGENIERÍA TEMÁTICA

Ejemplo

• Vecindad abierta de centro a=0 y radio $\delta=1$,

$$V_1(0) = \{x \in \mathbb{R} : |x - 0| < 1\} =] - 1, 1[$$

lacksquare Vecindad abierta reducida de centro a=0 y radio $\delta=1$,

$$V_1'(0) = V_1(0) \setminus \{0\} =]-1, 0[\cup]0, 1[$$

Topología en ℝ

Ejemplo

• Vecindad abierta de centro a=0 y radio $\delta=1$,

$$V_2(3) = \{x \in \mathbb{R} : |x - 3| < 2\} =]3 - 2, 3 + 2[=]1, 5[$$

lacksquare Vecindad abierta reducida de centro a=0 y radio $\delta=1$,

$$V_2'(3) = V_2(3) \setminus \{3\} =]1, 5[\setminus \{3\} =]1, 3[\cup]3, 5[$$

Proposición

Demuestre que: Si $a \in \mathbb{R}$ y $0 < \delta_1 < \delta_2$, entonces

- $V_{\delta_1}(a) \subset V_{\delta_2}(a).$

Definición (Punto de acumulación)

Dado $a \in \mathbb{R}$ y $A \subset \mathbb{R}$. Decimos que a es punto de acumulación de A si toda bola abierta reducida centrada en a tiene elementos de A.

De forma equivalente podemos decir que a es punto de acumulación de A si toda vecindad abierta centrada en a tiene puntos del conjunto A diferentes de a, esto es

para todo
$$\delta > 0 : V_{\delta}(a) \cap A \setminus \{a\} \neq \emptyset$$
.

De manera que cuando a no es punto de acumulación de A se cumple que: existe $\delta > 0$ tal que $V_{\delta}(a) \cap A \subset \{a\}$.

Observación

a es un punto de acumulación de A si está acompañado de otros de A.

Definición (Conjunto derivado)

El conjunto de todos los puntos de acumulación de un conjunto A se llama conjunto derivado de A y se denota A^\prime .

Ejemplo

- lacksquare a es punto de acumulación de $V_{\delta}'(a)$ para cualquier $\delta>0.$
- lacksquare a es punto de acumulación del intervalo $\langle a,b].$

$$A =]a, b]$$

Ejemplo

Si $A=[1,3]\cup\{5\}$, entonces 5 no es un punto de acumulación de A.

En efecto, para $\delta = 1$ se tiene

$$V_1(5) \cap A =]4, 6[\cap([1,3] \cup \{5\}) = \{5\}$$

Por lo tanto, 5 no es punto de acumulación de $A = [1,3] \cup \{5\}$.

Ejemplo

Demuestre que el conjunto $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, solo tiene un punto de acumulación en 0.

Demostración: En efecto, tome $\delta>0$ cualquiera. Como para cada número real existe un número natural mayor que dicho número, se tiene que existe $n\in\mathbb{N}$ tal que $\frac{1}{\delta}< n$, de modo que $0<\frac{1}{n}<\delta$, y por lo tanto $\frac{1}{n}\in V_\delta(0)\cap A$, cumpliendo la definición.

Ejercicio

Topología en ℝ

Demuestre que ningún número real $a \neq 0$ es punto de acumulación.

Sesión 01

- - Vecindades
 - Punto de acumulación
- 2 Límite de una función en un punto
 - Definición del límite de una función
 - Unicidad del límite

Definición (Límite de una función en un punto)

Dada una función f, y un punto a que es punto de acumulación de $\mathrm{Dom}(f)$. Decimos que un $L \in \mathbb{R}$ es el límite de la función fcuando x tiende a a, cuando para cualquier $\epsilon > 0$ es posible hallar $\delta > 0$ tal que

$$x \in \mathrm{Dom}(f) \ \ \mathbf{y} \ \ 0 < |x-a| < \delta \quad \text{implica} \quad |f(x) - L| < \varepsilon.$$

En ese caso escribimos

$$\lim_{x \to a} f(x) = L$$

Interpretación geométrica del limite de una función

Dado $\varepsilon > 0$, se debe encontrar $\delta > 0$ alrededor de x_0 tal que $f(V'_{\delta}(x_0) \cap \mathrm{Dom}(f)) \subset V_{\varepsilon}(L)$

Distintos modos de expresar la definición de $\lim f(x) = L$

- Para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $x \in V'_{\delta}(a) \cap \text{Dom}(f)$ implica $f(x) \in V_{\varepsilon}(L)$.
- $\blacksquare \forall \varepsilon > 0, \ \exists \delta > 0: \ x \in V_{\delta}'(a) \cap \text{Dom}(f) \Longrightarrow |f(x) L| < \varepsilon.$

En caso contrario decimos que $\lim_{x\to a} f(x)$ no existe. En símbolos $\lim_{x \to a} f(x) = \mathbb{Z}.$

¿Qué es lo que se cumple cuando $\lim f(x) = \mathbb{A}$?

- Cuando el límite existe: para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $x \in V'_{\delta}(a) \cap \text{Dom}(f) \text{ implica } f(x) \in V_{\varepsilon}(L).$
- Cuando el límite no existe: existe $\varepsilon_0 > 0$ tal que para todo $\delta > 0$ puedo hallar un x tal que $x \in V'_{\delta}(a) \cap \mathrm{Dom}(f)$ pero $f(x) \notin V_{\varepsilon_0}(L)$.

¿Qué es lo que se cumple cuando $\lim_{x \to a} f(x) = \beta$?

Cuando el límite existe:

$$\forall \varepsilon > 0, \ \exists \delta > 0 : x \in V_{\delta}'(a) \cap \text{Dom}(f) \Longrightarrow |f(x) - L| < \varepsilon$$

Cuando el límite no existe:

$$\exists \varepsilon_0 > 0 \backslash \forall \delta > 0 : x \in V_\delta'(a) \cap \mathrm{Dom}(f) \text{ pero } |f(x) - L| \geq \varepsilon_0$$

Ejemplo

Utilice la definición y demuestre que: $\lim c = c$

Demostración: Dado $\epsilon > 0$ necesito hallar $\delta > 0$ de modo que $|c-c| < \epsilon$ cuando se tenga $0 < |x-a| < \delta$.

Como $|c-c| < |x-a| < \delta < \epsilon$. Así, $\delta = \epsilon$, luego

$$\forall \epsilon > 0, \exists \delta > 0 : x \in Dom(f) \ \land \ 0 < |x-a| < \delta \ \text{implica} \ |c-c| < \epsilon$$

Utilice la definición de limite de una función para demostrar en cada caso.

Límite de una función en un punto

ŏooooooo

- a) $\lim_{x \to a} x = a$.
- b) $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.
- c) $\lim_{x \to -1} 2x 3 = -5$.
- d) $\lim_{x \to -1} \frac{x^2 1}{x + 1} = -2.$

Ejemplo

Utilice la definición del limite de una función para demostrar que:

$$\lim_{x \to 3} x^2 = 9$$

Demostración: Dado $\varepsilon > 0$ necesito hallar $\delta > 0$ de modo que $|x^2-9|<\epsilon$ cuando se tenga $0<|x-3|<\delta$.

Como. $|x^2-9|=|x+3||x-3|<|x+3|\cdot\delta<\varepsilon$, debemos acotar |x+3| en el intervalo $3-\delta < x < 3+\delta$.

Se obtiene $|x+3| < 6 + \delta$. Entonces si $\delta \le 1$ se tiene |x+3| < 7. Luego, $|x^2 - 9| = |x + 3||x - 3| < |x + 3| \cdot \delta < 7\delta < \varepsilon$.

Así, $\delta = \varepsilon/7$, tenemos entonces que para cualquier $\varepsilon > 0$, podemos elegir $\delta = \min\{1, \varepsilon/7\}$ y obtenemos que

$$0<|x-3|<\delta$$
 implica $|x^2-9|<\varepsilon$

Hemos probado que:

$$\forall \varepsilon > 0, \exists \, \delta = \min\{1, \varepsilon/7\} > 0: \, x \in V_{\delta}'(3) \cap \mathrm{Dom}(f) \Longrightarrow |f(x) - L| < \varepsilon$$

Teorema (Unicidad)

Si el límite de una función en un punto existe, entonces es único.

Observación

El enunciado indica que: Si $f:A\to\mathbb{R}$ es una función, $x_0\in A'$ y existen $L_1,L_2\in\mathbb{R}$ tales que $\lim_{x\to x_0}f(x)=L_1$ y $\lim_{x\to x_0}f(x)=L_2$, entonces $L_1=L_2$.

Proof.

Demostración Para la demostración solo es necesario recordar una propiedad de los números reales.

Proposición

Si $a \in \mathbb{R}$ es tal que $|a| < \epsilon$ para cualquier $\epsilon > 0$ entonces a tiene que ser 0.

Sesión 01

- - Vecindades
 - Punto de acumulación
- - Definición del límite de una función
 - Unicidad del límite
- Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards Cálculo, Tomo I. 10ma ed. Cengage Learning

