Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2035 - Álgebra Moderna - Catedrático: Ricardo Barrientos 22 de agosto de 2022

Tarea 13

Problemas 1, 2, 5, 9, 10, 20 y 21, sección 3.4.

1. Sección 3.4

Problema 1 (Problema 1). If U is an ideal of R and $1 \in U$, prove that U = R.

Demostración. Por definición de ideal, tenemos que que $1 \in U$ y para todo $r \in R$, tal que

$$1 \cdot r = r \cdot 1 = r \in U$$

Esto muestra que $U \subseteq R$ y $R \subseteq U$. Por lo tanto, U = R.

Problema 2 (Problema 2). If F is a field, prove its only ideals are (0) and F itself.

Demostración. Sea $U \neq \emptyset$ un ideal de F, tal que que comprobaremos las dos propiedades de la definición de ideal:

- Nótese que en un anillo R, $\{0\}$ y R son ideales, y que (0, +) y (R, +) son de subgrupos de R. \Longrightarrow Sabemos que un campo es un anillo. Por lo tanto, (0) y F son subgrupos de F bajo la adición.
- Por otra parte, sea $u \in U$ y $f \in F$.
 - Si U = (0), el resultado es trivial.
 - Si $U \neq (0)$, entonces U contiene al menos un elemento no cero u. Como F es un campo, tiene inverso multiplicativo $u^{-1} \in F$, tal que $uu^{-1} = 1 \in U \implies$ por el **Problema 1** que U = F.

Por lo tanto (0) y F son los únicos ideales de un campo F.

Problema 3 (Problema 5). If U, V are ideals of R, let $U + V = \{u + v \mid u \in U, v \in V\}$. Prove that U + V is also an ideal.

Demostración. Debemos probar los dos incisos de la definición de ideal:

- Previamente se había demostrado que la suma de dos subgrupos también es un subgrupo, es decir U + V es un subgrupo de de R bajo la adición.
- Ahora bien, sea $u \in U, v \in V$ y $r \in R$, tal que:

$$r(u+v) = ru + rv = (u+v)r \in U + V$$

Por lo tanto, U+V es un ideal de R

Problema 4 (Problema 9). If U is an ideal of R, let $r(U) = \{x \in R | xu = 0 \text{ for all } u \in U\}$. Prove that r(U) is an ideal of R.

Demostración. Sea $r(U) \neq \emptyset$ un ideal de R, tal que:

- lacktriangle Debemos comprobar r(U) es un subgrupo de R bajo la suma. Sea
 - Sea $x_1, x_2 \in r(U)$, es decir $(x_1 + x_2)u = x_1u + x_2u = 0 + 0 = 0$ para todo $u \in U$.
 - Sea $0 \in r(U)$, es decir (0)u = 0 = 0 para todo $u \in U$.
 - Sea $-x \in r(U)$, es decir (-x)u = -xu = 0 para todo $u \in U$.

Por lo tanto, se cumple la definición de subgrupo bajo la adición.

■ Ahora bien, sea $x \in r(U)$ y $r_0 \in R$. Nótese que

$$(xr_0)u = x(r_0u) = 0, \quad \forall u \in U \implies xr_0 \in r(U)$$

$$(r_0x)u = r_0(xu) = 0, \quad \forall u \in U \implies r_0x \in r(U)$$

Por lo tanto, r(U) es un ideal de R.

Problema 5 (Problema 10). If U is an ideal of R let $[R:U] = \{x \in R | rx \in U \text{ for every } r \in R\}$. Prove that [R:U] is an ideal of R and that it contains U.

Demostración. Sea $[R:U] \neq \emptyset$ un ideal de R, tal que:

- lacktriangle Debemos comprobar [R:U] es un subgrupo de R bajo la suma. Sea
 - Sea $x_1, x_2 \in [R:U]$, es decir $r(x_1 + x_2) = xr_1 + rx_2$ para cada $r \in R$.
 - Sea $0 \in [R:U]$, es decir r(0) = 0 para todo $r \in R$.
 - Sea $-x \in [R:U]$, es decir r(-x) = -rx para todo $r \in U$.

Por lo tanto, se cumple la definición de subgrupo bajo la adición.

• Ahora bien, sea $x \in [R:U]$ y $r_0 \in R$. Nótese que

$$r(r_0x) = (rr_0)x \in U \implies r_0x \in [R:U]$$

$$r(xr_0) = (rx)r_0 \in U \implies xr_0 \in [R:U]$$

Por lo tanto, [R:U] es un ideal de R. Por otra parte,

Problema 6 (Problema 20). If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R' prove that $\phi(1)$ is the unit element of R'.

Demostración. Debemos probar que $\phi(1)$ es elemento unitario de R'. Por hipótesis, tenemos que ϕ es sobreyectivo de R a R', es decir que $\forall r' \in R', \exists r' \in R \ni \phi(r) = r'$. Entonces, tenemos:

$$r' = \phi(r)$$
$$= \phi(1 \cdot r)$$

Usando la defición de homomorfismo:

$$= \phi(1)\phi(r)$$
$$= \phi(1)r'$$

Por lo tanto, $\phi(1)$ es elemento unitario de R'.

Problema 7 (Problema 21). If R is a ring with unit element 1 and ϕ is a homomorphism of R into an integral domain R' such that $I(\phi) \neq R$, prove that $\phi(1)$ is the unit element of R'.

Demostración. Debemos probar que $\phi(1)$ es elemento unitario de R'. Por hipótesis, tenemos que $I(\phi) \neq R \implies \exists x \in R \ni \phi(x) \neq 0$. Ahora bien, nótese que

$$\phi(1) = \underbrace{\phi(1 \cdot 1)}_{\text{homomorfismo}} = \phi(1) \cdot \phi(1) = \phi(1)^2,$$

es decir que la única posibilidad es que $\phi(1) = 1$, ya que $\phi(1) = 0$ no es posible por hipótesis. Por lo tanto, $\phi(1)$ es el elemento unitario de R'.