Towards Bringing Together Numerical Methods for Technology Partial Differential Equation and Deep Neural Networks

Progress Update, Supervisor - Markus Hoffmann Stanislav Arnaudov | September 26, 2019

CHAIR FOR COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Basic idea: Perform numerical simulation with ML-models

Basic idea: Perform numerical simulation with ML-models

 Concrete problem: Flow around an object according to the Navier–Stokes equations.

Figure: Simulation Setup

Basic idea: Perform numerical simulation with ML-models

Solutions of the simulation can be represented as images.

Figure: Simulation Image

Basic idea: Perform numerical simulation with ML-models

Or ML-model primarily use images as input and output.

Several cases to investigate

- Constant model
- Fluid speed model
- Fluid viscosity and density model
- Object in space model

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
 - inflow speed
 - fluid viscosity
 - fluid density
- Reynolds Number in the range of [90, 350]

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynolds Number in the range of [90, 350]

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynolds Number in the range of [90, 350]

Karman vortex street

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynolds Number in the range of [90, 350]
- Choosing appropriate color space
 - RGB
 - Grayscale

■ Two types of architectures based on our preliminary research:

- Two types of architectures based on our preliminary research:
 - ResNet

- Two types of architectures based on our preliminary research:
 - UNet

- Two types of architectures based on our preliminary research:
 - UNet turned out to perform better.

- Two types of architectures based on our preliminary research:
- Data being used by the network.

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - Usage of pressure field

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - Processing of real values

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - $lue{}$ Usage of pressure field ightarrow the pressure field turned out to be useful
 - \blacksquare Processing of real values \to extra image channel filled with the value

Evaluating the results

Evaluation cases

Data

Thank you for your attention.

Questions?

