

Ayudantía 8 EYP2805 - Métodos Bayesianos 14 de Octubre

1. Encuentre la priori de Jeffreys para el parámetro α de la distribución de Maxwell, la cuál su densidad está dada por

$$p(x|\alpha) = \sqrt{\frac{2}{\pi}} \alpha^{3/2} x^2 \exp\left(-\frac{1}{2}\alpha x\right)$$

Encuentre la distribución a posteriori para α si observa una muestra aleatoria de tamaño n proveniente de esta distribución.

2. Encuentre la priori de Jeffreys para la distribución Pareto, $Pa(\alpha, \beta)$, con densidad

$$p(x|\beta) = \beta \alpha^{\beta} x^{-\beta - 1}, \ x > \alpha$$

asumiendo que α es conocido.

- 3. Sea $X_i | \lambda \sim Exponential(\lambda)$.
 - (a) Encuentre la priori de Jeffreys de λ y discuta si es propia o no. Encuentre además la distribución a posteriori.
 - (b) Considere la transformación $\phi = \log \lambda$. Encuentre la priori de Jeffreys para ϕ .
 - (c) Encuentre la distribución de ϕ mediante un cambio de variables a partir de la distribución de λ , $f(\lambda)$.
- 4. Encuentre una transformación de θ , $\eta=g(\theta)$ tal que la información de Fisher $I(\eta)$ sea constante para
 - (a) $Poisson(\theta)$
 - (b) $Gamma(\alpha, \beta)$ con $\alpha = 1, 2, 3$.
 - (c) $Binomial(n, \theta)$
- 5. Demuestre que el prior de Jeffreys es invariante bajo transformaciones 1-a-1.