Step-1

Next we consider $v = Aq_1$.

Then we have $h_{1,n} = q_1^T v$

Thus, we have $h_{1,n} = q_1^T A q_1$.

Step-2

Then we have $v = v - h_{1,n}q_1$

This gives,

$$v = v - h_{1,n}q_1$$
$$= Aq_1 - (q_1^T Aq_1)q_1$$

Step-3

Then we consider $h_{2,1} = \|v\|_{\cdot}$ Therefore, $h_{2,1} = \|Aq_1 - (q_1^T A q_1)q_1\|_{\cdot}$

Finally,

$$q_{2} = \frac{v}{h_{2,1}}$$

$$= \frac{Aq_{1} - (q_{1}^{T}Aq_{1})q_{1}}{\|Aq_{1} - (q_{1}^{T}Aq_{1})q_{1}\|}$$

Step-4

Now we need to show that $q_1^T q_2 = 0$.

Consider

$$\begin{aligned} q_{1}^{\mathsf{T}} \Big(A q_{1} - (q_{1}^{\mathsf{T}} A q_{1}) q_{1} \Big) &= q_{1}^{\mathsf{T}} A q_{1} - q_{1}^{\mathsf{T}} (q_{1}^{\mathsf{T}} A q_{1}) q_{1} \\ &= q_{1}^{\mathsf{T}} A q_{1} - (q_{1}^{\mathsf{T}} A q_{1}) q_{1}^{\mathsf{T}} q_{1} \\ &= q_{1}^{\mathsf{T}} A q_{1} - (q_{1}^{\mathsf{T}} A q_{1}) \\ &= 0 \end{aligned}$$

Therefore, $q_1^{\mathsf{T}}q_2=0$. Thus, q_2 and q_1 are orthogonal vectors.