Few shot clinical entity recognition in three languages: Masked language models outperform LLM prompting

Marco Naguib^{a,}, Xavier Tannier^b, Aurélie Névéol^a

^aLISN, CNRS, Université Paris-Saclay, 1 Rue du Belvédère, 91400, Orsay, France ^bLIMICS, Sorbonne Université, Inserm, Université Sorbonne Paris-Nord, 15 rue de l'école de médecine, 75005, Paris, France

Abstract

Large Language Models are becoming the go-to solution for many natural language processing tasks, including in specialized domains where their few-shot capacities are expected to yield high performance in low-resource settings. Herein, we aim to assess the performance of Large Language Models for few shot clinical entity recognition in multiple languages. We evaluate named entity recognition in English, French and Spanish using 8 in-domain (clinical) and 6 out-domain gold standard corpora. We assess the performance of 10 auto-regressive language models using prompting and 16 masked language models used for text encoding in a biLSTM-CRF supervised tagger. We create a few-shot set-up by limiting the amount of annotated data available to 100 sentences. Our experiments show that although larger prompt-based models tend to achieve competitive F-measure for named entity recognition outside the clinical domain, this level of performance does not carry over to the clinical domain where lighter supervised taggers relying on masked language models perform better, even with the performance drop incurred from the few-shot set-up. In all experiments, the CO2 impact of masked language models is inferior to that of auto-regressive models. Results are consistent over the three languages and suggest that few-shot learning using Large language models is not production ready for named entity recognition in the clinical domain. Instead, models could be used for speeding-up the production of gold standard annotated data.

Keywords: Deep Learning, Natural Language Processing, Named Entity Recognition, Few-shot Learning, Large Language Models

1. INTRODUCTION

Electronic Health Records (EHR) are rich sources of clinical information [1], which often appear in unstructured text only [2]. Efficiently extracting information from EHRs into a more structured form can help advance clinical research, public health surveillance and automatic clinical decision support [3].

Named Entity Recognition (NER) is a critical primary step in information extraction. It consists in identifying mentions of relevant entities in text. In the context of clinical information extraction from EHRs, these can be mentions of clinical entities such as disorders or drugs. Extracting these entities can particularly benefit concept normalization [4, 5, 6] as well as facilitate interpreting patient profiling and phenotyping [7]. While general-domain NER (identifying entities such as persons and locations) has received much attention in the Natural Language Processing (NLP) community, clinical NER is widely considered as a harder problem: clinical entities are often jargon or ambiguous, and clinical texts have a nonstandard phrasal structure [8, 9].

Language Models have progressively become the main approach for tackling NER [10, 11]. Prior work has focused on general-domain NER [12] as well as clinical NER [7, 13]. This work can be mainly divided into two approaches, depending on the type of language models used.

The first approach is to use pre-trained Masked Language Models (MLM). This type of models is first pre-trained to predict randomly-selected masked words in large text corpora using a dense vector representation of every token (e.g., word) in the text [12, 14]. Leveraging these models for NER usually involves training a linear projection to map vector representations into an NER tagging of the sentence, while jointly fine-tuning the parameters of the language model itself for the downstream task of NER. This approach has gained a lot of attention in the community since the release of the BERT architecture [12], and became the go-to solution for building robust NER systems.

However, when dealing with clinical NER, this approach encounters two problems. First, due to the sensitive nature of EHRs, public corpora are rare, restrictively licensed, with limited availability in languages other than English. This leads the community to solutions built on MLMs pre-trained mainly on general-domain corpora, and thus suffering from the domain shift problem. Second, for fine-tuning to be efficient, large corpora of in-domain annotated text is required [15, 16]. But clinical NER annotation campaigns

are highly expensive and time-consuming due to the level of domain expertise needed to perform it [8, 17, 18, 19]. Additionally, due to the diversity of clinical cases, data annotated for one biomedical application might not necessarily be helpful for another. Hence the need for data-efficient clinical NER, also known as few-shot NER.

The second, novel, approach is to use pre-trained Causal Language Models (CLM). These substantially larger models are pre-trained on (often larger) corpora as generative, auto-regressive models. That is, the model is given a series of tokens or prompt as input and estimates the most probable following series of tokens. To leverage these language models for downstream tasks such as NER, one can formulate the task in natural language in a prompt. The prompt is formulated in such a way that the continuity of the text involves resolving the task. The language model is then used to predict this continuity. This process is often called "In-context learning" (ICL) [20]. Optionally, one can build a prompt featuring a few demonstrations of the task resolved for other instances (in this case, task-specific NER-labeled instances), along with the new test input [21]. The model thus outputs an estimation of the most probable NER tagging for the test input instance. While MLMs have been studied for few-shot NER [22], CLMs seem more naturally adapted to it. ICL learning has in fact proven particular success with LLMs in few-shot learning, showing state-of-the-art results in a wide set of NLP tasks [23, 24, 25].

However, the superiority of CLMs over MLMs for NER is questionable. First, many efforts towards "few-shot learning" with CLMs design prompts based on their performance on large held-out validation datasets [20, 26, 27, 28]. This is problematic because ICL is shown [29, 30, 31] to depend greatly on the prompt structure: a small change in task phrasing, the examples presented, the order of examples, or the tagging format can affect the performance. Therefore, making these choices assuming large annotated validation dataset leads to results that are shown [32] to be over-optimistic and impossible to find in a real few-shot setting. Second, most of these studies have been mainly concentrated on the English language, and on GPT-based models [33, 34, 35, 36]. This can lead to over-fitting the prompts for this language and this language model. Hence, we identify a need for a systematic, model-independent, study of the prompt building in the clinical context, and for languages other than English. The contributions of this work are as follows:

1. We present and compare the most recent NER prompting techniques

when applied to clinical NER in three languages: English, French and Spanish. To the best of our knowledge, this is the first work focused on NER prompts for languages other than English, and the first work comparing prompts for clinical NER.

- 2. We bring particular attention to tagging prompts, a novel NER prompting fashion, and measure the improvements brought by it.
- 3. We offer a fair comparison with the best-performing MLMs in a fewshot setting across languages, models, and prompt-structures when applied to few-shot clinical NER.
- 4. We conduct easily reproducible experiments, using easy-to-implement methods, exclusively on publicly available datasets and publicly available language models.

2. BACKGROUND AND SIGNIFICANCE

2.1. Few-shot NER with pre-trained Masked Language Models

The standard fashion of using MLMs for NER is as encoders. Usually, an NER tagging layer is trained from scratch to map the encoding of text into NER tagging of its tokens [12]. Other approaches have been proposed to leverage MLMs for few-shot learning. Namely, metric learning [37, 38, 39] proposes to train systems to instead learn a metric over the output space. New instances can then be classified based on the distance separating them from other labeled instances. Label encoding [40, 41, 42] suggests, instead, to leverage label names or textual label descriptions and encode them along with the instances in order to better tag them.

2.2. Few-shot NER with Causal Language Models

Recently, prompt construction has gained interest in the community [20, 43]. While most related work focused on studying prompt formulation and exploring better-performing prompt structures [24, 34, 44, 33] also known as "prompt engineering", other work proposed continuous optimization of the prompt through prompt tuning [45, 46, 47], usually reporting marginal improvements over baselines.

There is no standard, widely adopted manner of building NER prompts [43]. In fact, NER associates to each instance a set of spans, each of which having a type. This structured nature of the prediction make it hard to find an intuitive but efficient manner to prompt a language model for NER, that adapts well to all contexts.

For instance, the main practice is to use separate prompts for different entity types [48, 49, 50]. This choice seems well-suited when the task is interested in a handful of types of entities (typically 5-10). When interested in less entity types, a single prompt can be used for detecting all entities [34]. On the other hand, if there is more entity types, it could be interesting to enumerate every possible span in the input sentence and let the model predict the entity type of the span, if any [51]. This method, on the inverse, is impractical for long inputs.

We identify three families of manners to prompt LLMs:

- Constrained prompting attempts to better formulate the NER task by constraining the generation to fill in specific hand-crafted templates, usually adapted to MLMs [51, 52, 53, 54].
- **Listing prompts** consist in simply making the language model predict the entities in a list [34].
- Tagging prompts were studied more recently by [33]. They make the language model surround entity mentions with special tags.

2.3. Few-shot clinical NER

MLM-based few-shot NER has also been explored in the biomedical domain [55]. Metric leaning [38] and label encoding [40, 41] have been explored, as well as other approaches such as active learning [56], supervised pretraining [57] and MLM-based in-context learning [21].

Few studies have focused on CLM-based few-shot clinical NER. In [35], GPT-3 and ChatGPT are evaluated on the 2010 i2b2/VA task [58] in a zero-shot context. In [36], GPT-3 is evaluated on a set of biomedical information extractions tasks including the NCBI-Disease [18]. Another interesting direction is partly fine-tuning [59] a general-domain CLM on clinical text [60, 61], and prompting the resulting CLM.

3. MATERIALS AND METHODS

3.1. Evaluation tasks

In order to evaluate the models. We use 14 publicly-available NER datasets, described as follows. For each study language, we selected two out-domain datasets and two or three in-domain datasets, aiming to use comparable resources (same genre, tagset, annotation guidelines) across languages whenever possible.

3.1.1. General-domain evaluation datasets

WikiNER [62] is a multilingual *silver-standard* annotated NER dataset. It consists in a late-2010 snapshot of Wikipedia in nine languages. Hyperlinks referring to persons, locations or organizations were automatically annotated. We use the English, French and Spanish versions of this dataset.

CoNLL-2002 [63] and CoNLL-2003 [64] are two manually-annotated multilingual NER dataset released as a part of CoNLL shared tasks. Mentions of persons, locations, organizations and miscellaneous entities are annotated. We use the Spanish data of the 2002 version, which is a collection of news wire articles made available by the Spanish EFE News Agency, released in May 2000. We use the English data of the 2003 version, which consists of Reuters news stories between 1996 and 1997.

Quaero French Press [65] is a manually annotated corpus of about 100 hours of speech transcribed from French speaking radio broadcast. This corpus was used in the 2011 Quaero named entity evaluation campaign. It comprises annotations for 5 entity types further divided into 32 subtypes. Our experiments relied on the five entity types: persons, locations, organizations, functions, and facilities.

3.1.2. Clinical evaluation datasets

E3C [66] is a European multilingual corpus (Italian, English, French, Spanish, and Basque) of semantically annotated clinical narratives. The texts are collected from multiple publicly-available sources such as abstracts extracted from CC-licensed journals. We use the gold standard material available from the English, French and Spanish versions of this dataset. The clinical narratives are annotated with 6 entity types: actors, body parts, events, RMLs (measurements and test results) and clinical entities.

The n2c2-2019 [8] shared task focuses on medical concept normalization. It uses the MCN corpus developed by [67], often referred to as the n2c2-2019 dataset. It includes discharge summaries from the Partners HealthCare and Beth Israel Deaconess Medical Center. In order to convert the medical concept normalization task into an NER task, we use the annotated Concept Unique Identifiers (CUIs) to map each mention to the corresponding UMLS semantic group [68, 69].

The **NCBI-Disease** [18] corpus gathers 793 PubMed abstracts where mentions of diseases are annotated in four types depending on their syntax: Specific Diseases (e.g. diastrophic dysplasia), Disease Classes (e.g. an autosomal recessive disease), Composite Mentions (e.g. colorectal, endometrial,

and ovarian cancers), and Modifiers (e.g. C7-deficient).

QuaeroFrenchMed [17] consists of two text sources that we treat separately. The first part, EMEA is a collection of 13 patient information leaflets on marketed drugs from the European Medicines Agency (EMEA). The second part, MEDLINE, consist of 2,500 titles of research articles indexed in the MEDLINE database¹. The two parts are annotated with 10 entity types corresponding to UMLS semantic groups.

The Chilean Waiting List [19] corpus consists of 900 de-identified referrals for several specialty consultations in Spanish from the waiting list in Chilean public hospitals, manually annotated with 10 entity types: abbreviations, body parts, clinical findings, diagnostic procedure, diseases, family members, laboratory or test results, laboratory procedures, medications, procedures, signs or symptoms and therapeutic procedures. It can be noted that these types can be redundant (e.g. all diagnostic procedures are also annotated as procedures).

3.1.3. Few-shot learning set-up

In order to study our models in a few-shot context, we simulate the few-shot context by only providing the models with a few annotated examples. These are all the annotated examples models are allowed to use in training, in prompting and in validation. In this study, we choose to mainly focus on k = 100 sentences, which corresponds to one to two hours of annotation in the clinical domain [17, 70]. We use a fixed random seed p to choose k examples among all those available in the actual corpus. In section 5.4.2, we discuss the effect of the choice of k and the choice of p.

Additionally, we test the best-performing models with a full train dataset for a skyline comparison.

3.2. Language Models

Table 1 presents an overview of the language models used in our study. While French and Spanish are covered in many of the causal models, we can observe that English is ubiquitous. Except for mBERT and XLM-RoBERTa, masked language models cover only one of our study languages.

¹http://pubmed.ncbi.nlm.nih.gov/

	#	Model	Number of parameters	Training data size	Training corpus
	1	LLAMA-2-70B ^[en] [71]	70B	2 trillion tokens	A mix of publicly available online data, mainly in English
	2	Mistral-7B ^[?] [72]	7B	Undisclosed	Undisclosed
	3	BLOOM-7B1 ^{[en][fr][es]} [73]	7B	1.6 TB	ROOTS [74], a mix of datasets and pseudo-crawled data 59 languages
Causal	4	Falcon-40B ^{[en][fr][es]}	40B	1 trillion tokens	RefinedWeb [75], a dataset of filtered and deduplicated web data
S.	5	GPT-J-6B ^[en] [76]	6B	825 GiB	The Pile [77], a mixture of public datasets and web data in English
	6	OPT-66B ^[en] [78]	66B	180 billion tokens	Crawled data from the web, mainly in English
	7	Vicuna-13B ^[en] * [79]	13B	125K conversations	LLAMA 2, fine-tuned on conversations collected from ShareGPT.com, mainly in English
	8	Vicuna-7B ^[en] * [79]	7B	125K conversations	LLAMA 2, fine-tuned on conversations collected from ShareGPT.com, mainly in English
	9	Medalpaca-7B ^[en] * [60]	7B	400K Q.A. pairs	LLAMA 2, fine-tuned on semi-generated medical question-answer pairs in English
	10	Vigogne-13B[fr][en]*	13B	52K instructions	LLAMA 2, fine-tuned on English instructions automatically translated to French
	11	mBERT ^{[en][fr][es]} [12]	110M	Undisclosed	A corpus featuring 104 languages built from undisclosed sources
	12	XLM-R-large [en] [fr] [es] [80]	355M	2.5 TB	Filtered CommonCrawl data containing 100 languages
	13	BERT-large ^[en] [12]	345M	3,3 billion words	BookCorpus [81], a dataset consisting of unpublished books and English Wikipedia.
	14	RoBERTa-large ^[en] [82]	355M	160 GiB	BooksCorpus [81], English Wikipedia, and crawled web data
sed .	15	Bio_ClinicalBERT ^[en] [83]	110M	2 million clinical notes	$\overline{\text{MIMIC-III}}$ [84], a database containing electronic health records from hospitalized ICU patients
Masked	16	ClinicalBERT ^[en] [85]	110M	1.2 billion words	A large multi-center dataset with a corpus built from undisclosed sources
	17	MedBERT ^[en] [86]	110M	57 million words	Community datasets (including N2C2 [8]) and Crawled medical-related articles from Wikipedia $$
	18	CamemBERT-large ^[fr] [87]	335M	64 billion tokens	OSCAR [88], a corpus of web data in French
	19	FlauBERT-large ^[fr] [89]	335M	13 billion tokens	A mix of French Wikipedia, French books, and French web data
	20	DrBERT-4GB ^[fr] [90]	110M	1 billion words	A mix of publicly available biomedical corpora in French (including QuaeroFrenchMed $[17]$).
	21	CamemBERT-bio ^[fr] [91]	110M	413 million words	A mix of publicly available biomedical corpora in French (including E3C [66]).
	22	BETO ^[es] [92]	110M	3 billion words	Spanish Wikipedia and Spanish data from OPUS [93]
	23	PatanaBERT ^[es]	110M	Undisclosed	Spanish
	24	TulioBERT ^[es]	110M	Undisclosed	Spanish
	25	BSC-BioEHR ^[es] [94]	110M	1.1 billion tokens	A mixture of biomedical community datasets including EHR documents and crawled data in Spanish
	26	BSC-Bio ^[es] [94]	110M	963 million tokens	A mixture of biomedical community datasets and crawled data in Spanish

Table 1: Characterization of the language models used in our experiments in terms of parameters and training corpus. Models marked with ^[en] (respectively ^[fr], ^[es]) are heavily trained on English (respectively French, Spanish). CLMs marked with * are fine-tuned versions of other CLMs.

3.3. NER with Masked Language Models

As mentioned in section 2.1, Masked Language Models have been adapted to few-shot learning in architectures suited for low-ressource contexts [37, 38, 39, 40, 41, 42] However, in this work, we are interested in comparing the novel CLM approaches to the widespread, standard MLMs usage in without any further adaptation for few-shot learning. We use NLStruct [95], an open-source Python library that implements the standard approach described in section 2.1. In addition, it processes nested entities, which are present in some or the study corpora. Instead of classifying the representation of every token separately into a BIO scheme, NLStruct classifies every representation span directly into entity types using a biLSTM-CRF tagger. We train the model for 20 epochs on 80% of the data and use the remaining held-out 20% for early stopping.

3.4. NER with Causal Language Models

Our experiments prompt models to tag entities in the input sentence, instead of listing them. We discuss this choice in further detail in section 5.4.1.

The upper part of figure 1 shows a sample tagging prompt, highlighting sections in the prompt that guided use to design features for prompt phrasing. The 9 prompt phrasing features we considered are described below.

- 1. **Prompt language**: By default, we prompt all language models in English, as it is the most ubiquitous language in all of their training corpora. This feature allows the model to be prompted in French or Spanish, to align the prompt language with that of the test sentence.
- 2. Additional sentences: By default, we present 5 annotated sentences in the prompts. This feature presents 5 additional sentences (i.e., 10 sentences in total).
- 3. Self verification: By default, we follow [33] by selecting the 5 closest sentences to the test sentence in terms of TF-IDF distance. The mentions tagged by the model are then considered to be the model's final predictions. This feature selects instead the 5 sentences featuring the most entities of the target type and features them in an initial prompt. Intuitively, this prompt results in higher recall and lower precision. A second "self-verification" prompt is then used over the model's initial predictions in order to filter out the false positives. A sample

Figure 1: Example of a tagging prompt, used in the main experiment (top) and a self-verification prompt (bottom) for detecting DISO mentions in **n2c2-2019**

- self-verification prompt is shown in the bottom part of figure 1. The number of demonstrations follows that of the main prompt.
- 4. **Taggers**: By default, we follow [33] prompting the model to surround mentions with @@ and ##. This feature prompts it to surround mentions with quotes « and » instead.
- 5. Address a specialist in the prompt: By default, the first sentence is the task description shown in figure 1. This feature starts the prompt with You are an excellent <specialist>. You can identify all the mentions of <entity-type> in a sentence, by putting them in a specific format. Here are some examples you can handle: instead. The <specialist> is a linguist or a clinician, following the task domain.
- 6. **Include label definitions in the prompt**: This feature adds a one-sentence description for each entity type. Full entity descriptions used

can be found in appendix 1.

- 7. Introductory sentence for the test instance: By default, the demonstrations are immediately followed by the test instance. This feature separates them with *Identify all the mentions of <entity-type>* in the following sentence, by putting <begin-tag> in front and a <end-tag> behind each of them.
- 8. Require a long answer for the self-verification: By default, the self-verification prompt demonstrates Yes (respectively No) as answers. This feature demonstrates $< mention > is \ a(n) < entity-type >, \ yes.$ (respectively $< mention > is \ not \ a(n) < entity-type >, \ no.$) instead.
- 9. **Dialogue template**: This feature replaces the *Input*: and *Output*: in the prompt by dashes to imitate a dialog template.

ICL learning performance is shown to vary greatly depending on the exact phrasing of the prompt [30, 31]. In addition, the optimal choice for each of these features can vary depending on the model used. For instance, intuitively, models that are heavily pretrained on the English language tend to perform better with an English template than one in the language of the corpus.

While our system aims to search for the best combination of parameters for each model, a grid search over them would require $2^9 = 512$ experiments for each model, for each dataset. In order to build a lighter system, we choose to perform a greedy search. We iterate over the features in this order, testing the non-default value, and keeping it if it performs better than the default. In section 5.4.3, we compare this approach to a grid search for one model over one dataset.

Many efforts towards "few-shot learning" with CLMs optimize prompts on large held-out validation datasets [20, 26, 27, 28]. This leads to results that are shown [32] to be over-optimistic. A fair comparison between MLMs and CLMs should compare them with access to the same (small) number of annotated instances, which corresponds to our k = 100. In this no-training context, we follow [32] optimizing these features through a leave-one-out cross-validation (LOOCV).

3.5. Measures

We assess the performance of models using F-measure and grams of CO2 emissions.

- Micro-F1 for simplicity, we evaluate models over one global performance score. It is computed as the micro-average of F1-measures of the retrieval of each entity type.
- Carbon footprint we use GreenAlgorithms v2.2 [96] ² to estimate the carbon footprint of each experiment, based on factors such as runtime, computing hardware and location where electricity used by our computer facility was produced.

4. RESULTS

4.1. Performance

Table 2 and figure 2 describe the performance of the tested models.

4.2. Environmental Impact

Appendix 2 details the carbon emission estimations for all of our experiments. In particular, we estimate the experiment using Mistral-7B over ConLL-2003 to have generated 41g of CO2 equivalent. (6g for prompt optimization and 35g for inference on the test set). LLaMA-2-70B, around 10 times larger, is estimated to have generated 191g of CO2 equivalent. (44g for prompt optimization and 147g for inference on the test set).

On the other hand, the experiment on a the BERT-large MLM is estimated to have generated 6g of CO2 equivalent. (2g for fine-tuning and training and 4g for inference on the test set).

In total, the experiments described in this paper are estimated to have generated around 27kg of CO2 equivalent (25kg for the main experiments, and 2kg for ablation).

5. DISCUSSION

5.1. Comparison of model performance

Our experiments offer a comparative analysis of various masked and causal language models for named entity recognition. We further focus the scope to low resource settings commonly found in real-life biomedical applications. Our results show that, despite being smaller and theoretically

²http://calculator.green-algorithms.org/

				Engli	sh					Frenc	h			Spanish		
	#	Model	WikiNER	CoNLL2003	ЕЗС	n2c2	NCBI	WikiNER	QFP	ЕЗС	EMEA	MEDLINE	WikiNER	CoNLL2002	ЕЗС	CWL
Fe	w-sh	ot approaches														
	1	LLAMA-2-70B	0.728	0.721	0.312	0.309	0.400	0.740	0.400	0.483	0.201	0.312	0.805	0.616	0.021	0.339
	2	Mistral-7B	0.754	0.646	0.488	0.291	0.395	0.727	0.428	0.590	0.229	0.333	0.720	0.707	0.083	0.374
	3	BLOOM-7B1	0.524	0.557	0.279	0.113	0.151	0.148	0.206	0.320	0.197	0.120	0.470	0.419	0.051	0.117
	4	Falcon-40B	0.686	0.708	0.280	0.279	0.305	0.662	0.456	0.378	0.279	0.283	0.720	0.543	0.072	0.267
Causal	5	GPT-J-6B	0.521	0.493	0.167	0.179	0.238	0.423	0.244	0.334	0.080	0.177	0.005	0.142	0.021	0.162
,an	6	OPT-66B	0.608	0.495	0.227	0.157	0.234	0.624	0.406	0.019	0.206	0.283	0.166	0.273	0.043	0.204
0	7	Vicuna-13B	0.657	0.708	0.355	0.236	0.300	0.677	0.350	0.399	0.207	0.326	0.744	0.250	0.040	0.213
	8	Vicuna-7B	0.594	0.489	0.259	0.147	0.172	0.591	0.277	0.439	0.152	0.296	0.659	0.569	0.042	0.151
	9	Medalpaca-7B	0.537	0.586	0.272	0.138	0.132	0.529	0.142	0.259	0.162	0.252	0.581	0.490	0.088	0.220
	10	Vigogne-13B	0.593	0.655	0.252	0.176	0.309	0.515	0.250	0.464	0.099	0.142	0.580	0.561	0.010	0.198
	11	mBERT	0.768	0.804	0.624	0.378	0.401	0.801	0.728	0.741	0.588	0.428	0.812	0.760	0.324	0.432
	12	XLM-R-large	0.786	0.826	0.637	0.462	0.471	0.811	0.781	0.762	0.629	0.531	0.797	0.781	0.325	0.528
	13	BERT-large	0.776	0.835	0.626	0.435	0.422	_	-	-	-	-	_	-	-	-
	14	RoBERTa-large	0.790	0.862	0.626	0.462	0.552	_	-	-	-	-	_	-	-	-
	15	Bio_ClinicalBERT	0.528	0.542	0.621	0.469	0.420	_	-	-	-	-	_	-	-	-
	16	ClinicalBERT	0.462	0.597	0.622	0.480	0.397	_	-	-	-	-	_	-	-	-
_	17	MedBERT	0.613	0.673	0.607	0.478	0.504	_	-	-	-	-	_	-	-	-
kec	18	CamemBERT-large	_	-	-	-	-	0.829	0.793	0.768	0.661	0.577	_	-	-	-
Masked	19	FlauBERT-large	_	-	-	-	-	0.826	0.778	0.760	0.635	0.542	_	-	-	-
2	20	DrBERT-4GB	_	-	-	-	-	0.587	0.599	0.730	0.602	0.486	-	-	-	-
	21	CamemBERT-bio	_	-	-	-	-	0.782	0.761	0.779	0.636	0.549	-	-	-	-
	22	BETO	_	-	-	-	-	_	-	-	-	-	0.794	0.732	0.352	0.522
	23	PatanaBERT	_	-	-	-	-	-	-	-	-	-	0.802	0.769	0.343	0.487
	24	TulioBERT	_	-	-	-	-	-	-	-	-	-	0.804	0.798	0.340	0.482
	25	BSC-BioEHR	=	=	-	-	_	-	_	_	_	=	0.804	0.758	0.354	0.578
	26	BSC-Bio	-	=	-	-	-	-	-	-	=	=	0.804	0.775	0.358	0.552
Me	isked	fully-supervised (skyli	ine)													
		RoBERTa-large	0.919	0.939	0.718	0.712	0.815	-	_	_	-	-	-	-	-	-
		CamemBERT-large	_	-	-	-	-	0.928	0.834	0.828	0.748	0.713	_	-	-	_
		BETO	-	-	-	-	-	-	-	-		-	0.918	0.881	0.411	0.736

Table 2: This table presents the micro-F1 obtained from few-shot experiments. Skyline results are obtained using all training data available instead of the few-shot setting.

Figure 2: General vs. Clinical performance of studied models

requiring a larger amount of training data, masked, "BERT-like" models consistently outperform CLMs in this context. In addition, this performance comes at a much lower environmental impact (CO2 emissions are 10-50 times lower for MLMs vs. CLMs).

Another important finding is that, in addition to their higher scores, the

different MLMs achieve results that are relatively close to each other. For example, on the WikiNER generalist task in English, the 4 general-domain models tested achieved F1-scores of between 0.768 and 0.79.

Besides, we show that the MLMs specialized in the biomedical field (ClinicalBERT, CamemBERT-bio, etc.), on the one hand, suffer a sharp drop in general domain tasks, illustrating the classical issue of "catastrophic forgetting"; and on the other hand, do not bring any significant improvement in specialized tasks, with the exception of Spanish tasks. This comment must, however, be balanced by the difference in size between the models: all the specialized models only have 110 million parameters.

Named entity recognition based on BERT-type representations has received a great deal of attention in recent years, and is undoubtedly more mature than the use of CLMs for this task. We have implemented the CLM-based NER techniques recently published in the literature, to the best of our knowledge. It is, of course, possible that new approaches will make it possible to increase performance in the future. However, this is arguably a difficult task for a generative model, as it is highly constrained in its syntax and its evaluation. These results are no indication of performance on other tasks such as classification.

5.2. Practical use of language models for low-resource NER

Overall, our experiments suggest that the performance of language models for clinical named entity recognition is currently sub-optimal. In particular, even MLM-based models fail to approach the performance of fully supervised models. The three large models trained with the entirety of each training dataset (*skylines* Table 2) systematically outperform the best few-shot results, by between 5% and 16% for the general domain, and between 8% and 48% for the biomedical domain. However, performance can be judged satisfactory enough for pre-annotation use, to complement or accelerate manual annotation, for example in an online or active learning context.

5.3. Limitations of our study

Random Noise. In MLM experiments, the parameters of the NER tagging layer added on top of the pretrained language model are initialized randomly. Likewise, in CLM experiments, the demonstrations in the prompts are shuffled randomly, and the negative examples in the self verification prompts are selected randomly. These random decisions can introduce noise in our performance measurements. Replicating all the experiments would allow us to draw

more solid conclusions [97], but would also come at a considerable cost (25kg of CO2 equivalent, and around 56 hours of computation for each replication). The large number of models tested and tasks addressed can however comfort the main observations of this article. For instance, we use Almost Stochastic Order (ASO) ³ [98] with a confidence level $\alpha = 0.05$ to measure the significance of the superiority of MLMs over CLMs for each dataset separately. We do not always observe satisfying values of ϵ_{min} as to whether MLMs perform better than CLMs on general-domain NER (0.54, 0.121 and 0.019 respectively on WikiNER-English, CoNLL2003 and WikiNER-French). Regarding clinical NER, MLMs perform significantly better than CLMs: MLMs are stochastically dominant over CLMs (ϵ_{min} =0) for all clinical datasets.

Data contamination.. The size of the training corpora used for creating LLMs makes it increasingly difficult to control for data contamination, i.e. the presence of test corpora. The community is calling for efforts towards better documentation of training datasets [99]. While some datasets are by construction incompatible with some models (e.g., there is no Spanish training corpus in GPT-J or LLAMA-2) we are unable to affirm full exclusion of all datasets from all models studied.

5.4. Ablation

To better understand the contribution of each step of our approach, we carried out a series of complementary experiments.

5.4.1. Listing prompts

In this section, we compare the adopted tagging prompts to listing prompts. In listing prompts, demonstrations simply list the tagged mentions. The list separator is optimized (in the same way as the taggers) between a comma and a newline character. Eventually, the introductory sentences asks to list entities. The results shown in table 3 further corroborate our choice of only focusing on tagging prompts.

³Given the performance scores of two algorithms A and B, each of which run several times with different settings, ASO computes a test-specific value (ϵ_{min}) that indicates how far algorithm A is from being significantly better than algorithm B. If distance $\epsilon_{min} = 0.0$, one can claim that A stochastically dominant over B with the predefined significance level. The literature commonly interprets $\epsilon_{min} < 0.5$ as an indicator of a significant superiority of A over B.

	English					h			Spanish				
Model	WikiNER	CoNLL2003	E3C	n2c2	NCBI WikiNEI	R QFP	E3C	EMEA	MEDLINE	WikiNER	CoNLL2002	E3C	CWL
Listing pro	mpts												
Mistral-7B	0.659	0.533	0.417	0.281	0.340 0.676	0.083	0.451	0.169	0.403	0.697	0.620	0.211	0.273
Tagging pro	ompts												
Mistral-7B	0.754	0.646	0.488	0.291	0.395 0.727	0.428	0.590	0.229	0.333	0.720	0.707	0.083	0.374

Table 3: F1 scores obtained with the listing and tagging prompts.

	C	n2c2										
100	annot at	ed insta	nces									
$ p=1 p=2 p=3 \mid p=1 p=2 p=3$												
Mistral-7B XLM-R-large	0.646 0.826	$0.626 \\ 0.814$	0.714 0.786	0.291 0.462	$0.178 \\ 0.478$	$0.215 \\ 0.526$						
50 annotated instances												
	p=1	p=2	p=3	p=1	p=2	p=3						
Mistral-7B XLM-R-large	0.615 0.697	0.648 0.77	$0.637 \\ 0.714$	0.278 0.431	$0.176 \\ 0.476$	0.106 0.35						
25 c	innotate	d instar	nces									
	p=1	p=2	p=3	p=1	p=2	p=3						
Mistral-7B XLM-R-large	0.509 0.487	0.599 0.588	0.52 0.637	0.152 0.393	0.252 0.361	0.116 0.283						

Table 4: F1 scores obtained over experiments with different training samples and different training sample sizes.

5.4.2. Sample and sample size

We tested our approach with different samples and different sample sizes for one MLM: XLM-RoBERTa-large, and one CLM: Mistral-7B. The results are reported in table 4. It can be noted that, whereas the standard deviation with respect to p is rather high, a significant difference can still be consistently observed between the two models across samples of the same size. We also observe that, as the number of annotated instances decreases, the performance of the MLM drops faster than that of the CLM.

5.4.3. Hyperparameter grid search

In order to asses the quality of our adopted search method used to find the best feature combination to incorporate in the prompt, we compare this method to a naïve grid search over these features. We test all 512 combinations of our identified 9 features, for Mistral-7B over ConLL2003. The scores found through LOOCV vary between 0.0 and 0.656 with a mean value of 0.387 and a median of 0.46. The best-preforming combination is: Additional sentences, Self-verification, Introductory sentence for the test instance and Require a long answer for the self-verification, which is exactly the same combination we found initially through a greedy, tree search, that is around 20 times faster and less consuming.

6. CONCLUSION

This study assessed the performance of two types of large languages models, for few-shot entity recognition in three languages. Our experiments show that few-shot learning performance is significantly lower in the clinical vs. general domain. While masked language models perform better than causal language models (higher F1, lower CO2 emissions), few-shot use should be limited to assisting gold standard annotation rather than effective information extraction.

ACKNOWLEDGEMENT

This work was performed using HPC resources from GENCI-IDRIS (Grant 2023-AD011014533). The authors thank Dr. Juan Manual Coria for his help phrasing prompts in Spanish.

References

- [1] D. Demner-Fushman, W. W. Chapman, C. J. McDonald, What can natural language processing do for clinical decision support?, Journal of Biomedical Informatics 42 (5) (2009) 760-772, biomedical Natural Language Processing. doi:https://doi.org/10.1016/j.jbi.2009.08.007. URL https://www.sciencedirect.com/science/article/pii/ S1532046409001087
- [2] J.-B. Escudié, B. Rance, G. Malamut, S. Khater, A. Burgun, C. Cellier, A.-S. Jannot, A novel data-driven workflow combining literature and electronic health records to estimate comorbidities burden for a specific disease: a case study on autoimmune comorbidities in patients with celiac disease, BMC medical informatics and decision making 17 (1) (2017) 1–10.

- [3] Y. Wang, L. Wang, M. Rastegar-Mojarad, S. Moon, F. Shen, N. Afzal, S. Liu, Y. Zeng, S. Mehrabi, S. Sohn, H. Liu, Clinical information extraction applications: A literature review, Journal of Biomedical Informatics 77 (2018) 34–49. doi:https://doi.org/10.1016/j.jbi.2017.11.011. URL https://www.sciencedirect.com/science/article/pii/S1532046417302563
- [4] H. Cho, W. Choi, H. Lee, A method for named entity normalization in biomedical articles: Application to diseases and plants, BMC Bioinformatics 18 (10 2017). doi:10.1186/s12859-017-1857-8.
- [5] P. Wajsbürt, A. Sarfati, X. Tannier, Medical concept normalization in french using multilingual terminologies and contextual embeddings, Journal of Biomedical Informatics 114 (2021) 103684. doi:https://doi.org/10.1016/j.jbi.2021.103684. URL https://www.sciencedirect.com/science/article/pii/S1532046421000137
- [6] M. Sung, M. Jeong, Y. Choi, D. Kim, J. Lee, J. Kang, BERN2: an advanced neural biomedical named entity recognition and normalization tool, Bioinformatics 38 (20) (2022) 4837–4839. arXiv:https://academic.oup.com/bioinformatics/article-pdf/38/20/4837/46535173/btac598.pdf, doi:10.1093/bioinformatics/btac598. URL https://doi.org/10.1093/bioinformatics/btac598
- [7] C. Gérardin, P. Wajsbürt, P. Vaillant, A. Bellamine, F. Carrat, X. Tannier, Multilabel classification of medical concepts for patient clinical profile identification, Artificial Intelligence in Medicine 128 (2022) 102311. doi:https://doi.org/10.1016/j.artmed.2022.102311.
 URL https://www.sciencedirect.com/science/article/pii/S0933365722000768
- [8] Y.-F. Luo, S. Henry, Y. Wang, F. Shen, O. Uzuner, A. Rumshisky, The 2019 n2c2/UMass Lowell shared task on clinical concept normalization, Journal of the American Medical Informatics Association 27 (10) (2020) 1529–e1. arXiv:https://academic.oup.com/jamia/article-pdf/27/10/1529/39739985/ocaa106.pdf, doi:10.1093/jamia/ocaa106. URL https://doi.org/10.1093/jamia/ocaa106

- Leaman, R. Khare, Z. Lu, Challenges in clinical natulanguage processing for automated disorder normalizaral of Informatics 57 (2015)28 - 37.tion, Journal Biomedical doi:https://doi.org/10.1016/j.jbi.2015.07.010. URL https://www.sciencedirect.com/science/article/pii/ S1532046415001501
- [10] J. Li, A. Sun, J. Han, C. Li, A survey on deep learning for named entity recognition, IEEE Trans. on Knowl. and Data Eng. 34 (1) (2022) 50-70. doi:10.1109/TKDE.2020.2981314.
 URL https://doi.org/10.1109/TKDE.2020.2981314
- [11] Y. Wang, H. Tong, Z. Zhu, Y. Li, Nested named entity recognition: A survey, ACM Trans. Knowl. Discov. Data 16 (6) (jul 2022). doi:10.1145/3522593.
 URL https://doi.org/10.1145/3522593
- [12] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, in: North American Chapter of the Association for Computational Linguistics, 2019. URL https://api.semanticscholar.org/CorpusID:52967399
- [13] C. Sun, Z. Yang, L. Wang, Y. Zhang, H. Lin, J. Wang, Biomedical named entity recognition using bert in the machine reading comprehension framework, Journal of Biomedical Informatics 118 (2021) 103799. doi:https://doi.org/10.1016/j.jbi.2021.103799. URL https://www.sciencedirect.com/science/article/pii/ S1532046421001283
- [14] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized word representations, in: M. Walker, H. Ji, A. Stent (Eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, New Orleans, Louisiana, 2018, pp. 2227–2237. doi:10.18653/v1/N18-1202.

URL https://aclanthology.org/N18-1202

- [15] C. Jia, X. Liang, Y. Zhang, Cross-domain NER using cross-domain language modeling, in: A. Korhonen, D. Traum, L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy, 2019, pp. 2464–2474. doi:10.18653/v1/P19-1236.
 URL https://aclanthology.org/P19-1236
- [16] Z. Liu, Y. Xu, T. Yu, W. Dai, Z. Ji, S. Cahyawijaya, A. Madotto, P. Fung, Crossner: Evaluating cross-domain named entity recognition, Proceedings of the AAAI Conference on Artificial Intelligence 35 (15) (2021) 13452-13460. doi:10.1609/aaai.v35i15.17587. URL https://ojs.aaai.org/index.php/AAAI/article/view/17587
- [17] A. Névéol, C. Grouin, J. Leixa, S. Rosset, P. Zweigenbaum, The quaero french medical corpus: A ressource for medical entity recognition and normalization, Proc of BioTextMining Work (2014) 24–30.
- [18] R. I. Doğan, R. Leaman, Z. Lu, Ncbi disease corpus: Α for disease recognition and concept resource name Biomedical Informatics ization. Journal of 47(2014)1-10.doi:https://doi.org/10.1016/j.jbi.2013.12.006. URL https://www.sciencedirect.com/science/article/pii/ S1532046413001974
- [19] P. Báez, F. Villena, M. Rojas, M. Durán, J. Dunstan, The Chilean waiting list corpus: a new resource for clinical named entity recognition in Spanish, in: Proceedings of the 3rd Clinical Natural Language Processing Workshop, Association for Computational Linguistics, Online, 2020, pp. 291–300. doi:10.18653/v1/2020.clinicalnlp-1.32. URL https://aclanthology.org/2020.clinicalnlp-1.32
- [20] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in neural information processing systems 33 (2020) 1877–1901.
- [21] D.-H. Lee, A. Kadakia, K. Tan, M. Agarwal, X. Feng, T. Shibuya, R. Mitani, T. Sekiya, J. Pujara, X. Ren, Good examples make a faster learner: Simple demonstration-based learning for low-resource NER, in: S. Muresan, P. Nakov, A. Villavicencio (Eds.), Proceedings of the 60th Annual

- Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 2687–2700. doi:10.18653/v1/2022.acl-long.192. URL https://aclanthology.org/2022.acl-long.192
- [22] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, Q. Lei, Few-shot learning via learning the representation, provably, 2021.
- [23] S. Shin, S.-W. Lee, H. Ahn, S. Kim, H. Kim, B. Kim, K. Cho, G. Lee, W. Park, J.-W. Ha, N. Sung, On the effect of pretraining corpora on in-context learning by a large-scale language model, in: M. Carpuat, M.-C. de Marneffe, I. V. Meza Ruiz (Eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Seattle, United States, 2022, pp. 5168–5186. doi:10.18653/v1/2022.naacl-main.380.
 - URL https://aclanthology.org/2022.naacl-main.380
- [24] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., Chain-of-thought prompting elicits reasoning in large language models, Advances in Neural Information Processing Systems 35 (2022) 24824–24837.
- [25] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, A. Kluska, A. Lewkowycz, A. Agarwal, A. Power, A. Ray, A. Warstadt, A. W. Kocurek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain, A. Askell, A. Dsouza, A. Slone, A. Rahane, A. S. Iyer, A. J. Andreassen, A. Madotto, A. Santilli, A. Stuhlmüller, A. M. Dai, A. La, A. Lampinen, A. Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta, A. Gottardi, A. Norelli, A. Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubarajan, A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat, A. Erdem, A. Karakas, B. R. Roberts, B. S. Loe, B. Zoph, B. Bojanowski, B. Özyurt, B. Hedayatnia, B. Neyshabur, B. Inden, B. Stein, B. Ekmekci, B. Y. Lin, B. Howald, B. Orinion, C. Diao, C. Dour, C. Stinson, C. Argueta, C. Ferri, C. Singh, C. Rathkopf, C. Meng, C. Baral, C. Wu, C. Callison-Burch, C. Waites, C. Voigt, C. D. Manning, C. Potts, C. Ramirez, C. E. Rivera, C. Siro, C. Raffel, C. Ashcraft, C. Garbacea, D. Sileo, D. Garrette, D. Hendrycks,

D. Kilman, D. Roth, C. D. Freeman, D. Khashabi, D. Levy, D. M. González, D. Perszyk, D. Hernandez, D. Chen, D. Ippolito, D. Gilboa, D. Dohan, D. Drakard, D. Jurgens, D. Datta, D. Ganguli, D. Emelin, D. Kleyko, D. Yuret, D. Chen, D. Tam, D. Hupkes, D. Misra, D. Buzan, D. C. Mollo, D. Yang, D.-H. Lee, D. Schrader, E. Shutova, E. D. Cubuk, E. Segal, E. Hagerman, E. Barnes, E. Donoway, E. Pavlick, E. Rodolà, E. Lam, E. Chu, E. Tang, E. Erdem, E. Chang, E. A. Chi, E. Dyer, E. Jerzak, E. Kim, E. E. Manyasi, E. Zheltonozhskii, F. Xia, F. Siar, F. Martínez-Plumed, F. Happé, F. Chollet, F. Rong, G. Mishra, G. I. Winata, G. de Melo, G. Kruszewski, G. Parascandolo, G. Mariani, G. X. Wang, G. Jaimovitch-Lopez, G. Betz, G. Gur-Ari, H. Galijasevic, H. Kim, H. Rashkin, H. Hajishirzi, H. Mehta, H. Bogar, H. F. A. Shevlin, H. Schuetze, H. Yakura, H. Zhang, H. M. Wong, I. Ng, I. Noble, J. Jumelet, J. Geissinger, J. Kernion, J. Hilton, J. Lee, J. F. Fisac, J. B. Simon, J. Koppel, J. Zheng, J. Zou, J. Kocon, J. Thompson, J. Wingfield, J. Kaplan, J. Radom, J. Sohl-Dickstein, J. Phang, J. Wei, J. Yosinski, J. Novikova, J. Bosscher, J. Marsh, J. Kim, J. Taal, J. Engel, J. Alabi, J. Xu, J. Song, J. Tang, J. Waweru, J. Burden, J. Miller, J. U. Balis, J. Batchelder, J. Berant, J. Frohberg, J. Rozen, J. Hernandez-Orallo, J. Boudeman, J. Guerr, J. Jones, J. B. Tenenbaum, J. S. Rule, J. Chua, K. Kanclerz, K. Livescu, K. Krauth, K. Gopalakrishnan, K. Ignatyeva, K. Markert, K. Dhole, K. Gimpel, K. Omondi, K. W. Mathewson, K. Chiafullo, K. Shkaruta, K. Shridhar, K. Mc-Donell, K. Richardson, L. Reynolds, L. Gao, L. Zhang, L. Dugan, L. Qin, L. Contreras-Ochando, L.-P. Morency, L. Moschella, L. Lam, L. Noble, L. Schmidt, L. He, L. Oliveros-Colón, L. Metz, L. K. Senel, M. Bosma, M. Sap, M. T. Hoeve, M. Farooqi, M. Faruqui, M. Mazeika, M. Baturan, M. Marelli, M. Maru, M. J. Ramirez-Quintana, M. Tolkiehn, M. Giulianelli, M. Lewis, M. Potthast, M. L. Leavitt, M. Hagen, M. Schubert, M. O. Baitemirova, M. Arnaud, M. McElrath, M. A. Yee, M. Cohen, M. Gu, M. Ivanitskiy, M. Starritt, M. Strube, M. Swędrowski, M. Bevilacqua, M. Yasunaga, M. Kale, M. Cain, M. Xu, M. Suzgun, M. Walker, M. Tiwari, M. Bansal, M. Aminnaseri, M. Geva, M. Gheini, M. V. T, N. Peng, N. A. Chi, N. Lee, N. G.-A. Krakover, N. Cameron, N. Roberts, N. Doiron, N. Martinez, N. Nangia, N. Deckers, N. Muennighoff, N. S. Keskar, N. S. Iyer, N. Constant, N. Fiedel, N. Wen, O. Zhang, O. Agha, O. Elbaghdadi, O. Levy, O. Evans, P. A. M. Casares, P. Doshi, P. Fung, P. P. Liang, P. Vicol, P. Alipoormolabashi, P. Liao, P. Liang, P. W. Chang, P. Eckersley, P. M. Htut, P. Hwang, P. Miłkowski, P. Patil, P. Pezeshkpour, P. Oli, Q. Mei, Q. Lyu, Q. Chen, R. Banjade, R. E. Rudolph, R. Gabriel, R. Habacker, R. Risco, R. Millière, R. Garg, R. Barnes, R. A. Saurous, R. Arakawa, R. Raymaekers, R. Frank, R. Sikand, R. Novak, R. Sitelew, R. L. Bras, R. Liu, R. Jacobs, R. Zhang, R. Salakhutdinov, R. A. Chi, S. R. Lee, R. Stovall, R. Teehan, R. Yang, S. Singh, S. M. Mohammad, S. Anand, S. Dillavou, S. Shleifer, S. Wiseman, S. Gruetter, S. R. Bowman, S. S. Schoenholz, S. Han, S. Kwatra, S. A. Rous, S. Ghazarian, S. Ghosh, S. Casey, S. Bischoff, S. Gehrmann, S. Schuster, S. Sadeghi, S. Hamdan, S. Zhou, S. Srivastava, S. Shi, S. Singh, S. Asaadi, S. S. Gu, S. Pachchigar, S. Toshniwal, S. Upadhyay, S. S. Debnath, S. Shakeri, S. Thormeyer, S. Melzi, S. Reddy, S. P. Makini, S.-H. Lee, S. Torene, S. Hatwar, S. Dehaene, S. Divic, S. Ermon, S. Biderman, S. Lin, S. Prasad, S. Piantadosi, S. Shieber, S. Misherghi, S. Kiritchenko, S. Mishra, T. Linzen, T. Schuster, T. Li, T. Yu, T. Ali, T. Hashimoto, T.-L. Wu, T. Desbordes, T. Rothschild, T. Phan, T. Wang, T. Nkinyili, T. Schick, T. Kornev, T. Tunduny, T. Gerstenberg, T. Chang, T. Neeraj, T. Khot, T. Shultz, U. Shaham, V. Misra, V. Demberg, V. Nyamai, V. Raunak, V. V. Ramasesh, vinay uday prabhu, V. Padmakumar, V. Srikumar, W. Fedus, W. Saunders, W. Zhang, W. Vossen, X. Ren, X. Tong, X. Zhao, X. Wu, X. Shen, Y. Yaghoobzadeh, Y. Lakretz, Y. Song, Y. Bahri, Y. Choi, Y. Yang, Y. Hao, Y. Chen, Y. Belinkov, Y. Hou, Y. Hou, Y. Bai, Z. Seid, Z. Zhao, Z. Wang, Z. J. Wang, Z. Wang, Z. Wu, Beyond the imitation game: Quantifying and extrapolating the capabilities of language models, Transactions on Machine Learning Research (2023).

URL https://openreview.net/forum?id=uyTL5Bvosj

- [26] D. Tam, R. R. Menon, M. Bansal, S. Srivastava, C. Raffel, Improving and simplifying pattern exploiting training, in: M.-F. Moens, X. Huang, L. Specia, S. W.-t. Yih (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, 2021, pp. 4980–4991. doi:10.18653/v1/2021.emnlp-main.407. URL https://aclanthology.org/2021.emnlp-main.407
- [27] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever,

Learning transferable visual models from natural language supervision, in: M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning, Vol. 139 of Proceedings of Machine Learning Research, PMLR, 2021, pp. 8748–8763. URL https://proceedings.mlr.press/v139/radford21a.html

- [28] G. Qin, J. Eisner, Learning how to ask: Querying LMs with mixtures of soft prompts, in: K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, Y. Zhou (Eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Online, 2021, pp. 5203–5212. doi:10.18653/v1/2021.naacl-main.410. URL https://aclanthology.org/2021.naacl-main.410
- [29] Z. Zhao, E. Wallace, S. Feng, D. Klein, S. Singh, Calibrate before use: Improving few-shot performance of language models, in: International Conference on Machine Learning, PMLR, 2021, pp. 12697–12706.
- [30] Y. Lu, M. Bartolo, A. Moore, S. Riedel, P. Stenetorp, Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity, in: S. Muresan, P. Nakov, A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 8086–8098. doi:10.18653/v1/2022.acl-long.556. URL https://aclanthology.org/2022.acl-long.556
- [31] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, L. Zettlemoyer, Rethinking the role of demonstrations: What makes in-context learning work?, in: Y. Goldberg, Z. Kozareva, Y. Zhang (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2022, pp. 11048–11064. doi:10.18653/v1/2022.emnlp-main.759. URL https://aclanthology.org/2022.emnlp-main.759
- [32] E. Perez, D. Kiela, K. Cho, True few-shot learning with language models, in: A. Beygelzimer, Y. Dauphin, P. Liang, J. W. Vaughan (Eds.),

- Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=ShnM-rRh4T
- [33] S. Wang, X. Sun, X. Li, R. Ouyang, F. Wu, T. Zhang, J. Li, G. Wang, Gpt-ner: Named entity recognition via large language models (2023). arXiv:2304.10428.
- [34] D. Ashok, Z. Lipton, Promptner: Prompting for named entity recognition (May 2023).
- [35] Y. Hu, I. Ameer, X. Zuo, X. Peng, Y. Zhou, Z. Li, Y. Li, J. Li, X. Jiang, H. Xu, Zero-shot clinical entity recognition using chatgpt, arXiv preprint arXiv:2303.16416 (2023).
- [36] B. Jimenez Gutierrez, N. McNeal, C. Washington, Y. Chen, L. Li, H. Sun, Y. Su, Thinking about GPT-3 in-context learning for biomedical IE? think again, in: Y. Goldberg, Z. Kozareva, Y. Zhang (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2022, pp. 4497–4512. doi:10.18653/v1/2022.findings-emnlp.329.
 - URL https://aclanthology.org/2022.findings-emnlp.329
- [37] A. Fritzler, V. Logacheva, M. Kretov, Few-shot classification in named entity recognition task, in: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC '19, Association for Computing Machinery, New York, NY, USA, 2019, p. 993–1000. doi:10.1145/3297280.3297378. URL https://doi.org/10.1145/3297280.3297378
- [38] Y. Yang, A. Katiyar, Simple and effective few-shot named entity recognition with structured nearest neighbor learning, in: B. Webber, T. Cohn, Y. He, Y. Liu (Eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Online, 2020, pp. 6365–6375. doi:10.18653/v1/2020.emnlp-main.516. URL https://aclanthology.org/2020.emnlp-main.516
- [39] J. Huang, C. Li, K. Subudhi, D. Jose, S. Balakrishnan, W. Chen, B. Peng, J. Gao, J. Han, Few-shot named entity recognition: An empirical baseline study, in: M.-F. Moens, X. Huang, L. Specia, S. W.-t. Yih

(Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, 2021, pp. 10408-10423. doi:10.18653/v1/2021.emnlp-main.813.

URL https://aclanthology.org/2021.emnlp-main.813

- [40] R. Aly, A. Vlachos, R. McDonald, Leveraging type descriptions for zeroshot named entity recognition and classification, in: C. Zong, F. Xia, W. Li, R. Navigli (Eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Association for Computational Linguistics, Online, 2021, pp. 1516–1528. doi:10.18653/v1/2021.acl-long.120.
 - URL https://aclanthology.org/2021.acl-long.120
- [41] J. Ma, M. Ballesteros, S. Doss, R. Anubhai, S. Mallya, Y. Al-Onaizan, D. Roth, Label semantics for few shot named entity recognition, in: S. Muresan, P. Nakov, A. Villavicencio (Eds.), Findings of the Association for Computational Linguistics: ACL 2022, Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 1956–1971. doi:10.18653/v1/2022.findings-acl.155.
 - URL https://aclanthology.org/2022.findings-acl.155
- [42] Y. Hou, W. Che, Y. Lai, Z. Zhou, Y. Liu, H. Liu, T. Liu, Few-shot slot tagging with collapsed dependency transfer and label-enhanced taskadaptive projection network, in: D. Jurafsky, J. Chai, N. Schluter, J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online, 2020, pp. 1381–1393. doi:10.18653/v1/2020.aclmain.128.
 - URL https://aclanthology.org/2020.acl-main.128
- [43] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing, ACM Computing Surveys 55 (9) (2023) 1-35.
- [44] D. Vilar, M. Freitag, C. Cherry, J. Luo, V. Ratnakar, G. Foster, Prompting PaLM for translation: Assessing strategies and performance,

in: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Toronto, Canada, 2023, pp. 15406–15427. doi:10.18653/v1/2023.acl-long.859.

URL https://aclanthology.org/2023.acl-long.859

- [45] R. Ma, X. Zhou, T. Gui, Y. Tan, L. Li, Q. Zhang, X. Huang, Template-free prompt tuning for few-shot NER, in: M. Carpuat, M.-C. de Marneffe, I. V. Meza Ruiz (Eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Seattle, United States, 2022, pp. 5721–5732. doi:10.18653/v1/2022.naacl-main.420.
 - URL https://aclanthology.org/2022.naacl-main.420
- [46] A. Layegh, A. H. Payberah, A. Soylu, D. Roman, M. Matskin, Contrastner: Contrastive-based prompt tuning for few-shot ner, arXiv preprint arXiv:2305.17951 (2023).
- [47] N. Hu, X. Zhou, B. Xu, H. Liu, X. Xie, H.-T. Zheng, Vpn: Variation on prompt tuning for named-entity recognition, Applied Sciences 13 (14) (2023). doi:10.3390/app13148359. URL https://www.mdpi.com/2076-3417/13/14/8359
- [48] X. Li, J. Feng, Y. Meng, Q. Han, F. Wu, J. Li, A unified MRC framework for named entity recognition, in: D. Jurafsky, J. Chai, N. Schluter, J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online, 2020, pp. 5849–5859. doi:10.18653/v1/2020.acl-main.519.
 - URL https://aclanthology.org/2020.acl-main.519
- [49] A. T. Liu, W. Xiao, H. Zhu, D. Zhang, S.-W. Li, A. O. Arnold, Qaner: Prompting question answering models for few-shot named entity recognition, ArXiv abs/2203.01543 (2022). URL https://api.semanticscholar.org/CorpusID:247222693
- [50] J. Chen, Y. Lu, H. Lin, J. Lou, W. Jia, D. Dai, H. Wu, B. Cao, X. Han, L. Sun, Learning in-context learning for named entity recognition, in: A. Rogers, J. Boyd-Graber, N. Okazaki (Eds.), Proceedings of the

61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Toronto, Canada, 2023, pp. 13661–13675. doi:10.18653/v1/2023.acllong.764.

URL https://aclanthology.org/2023.acl-long.764

- [51] L. Cui, Y. Wu, J. Liu, S. Yang, Y. Zhang, Template-based named entity recognition using BART, in: C. Zong, F. Xia, W. Li, R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Association for Computational Linguistics, Online, 2021, pp. 1835–1845. doi:10.18653/v1/2021.findings-acl.161. URL https://aclanthology.org/2021.findings-acl.161
- [52] Y. Shen, Z. Tan, S. Wu, W. Zhang, R. Zhang, Y. Xi, W. Lu, Y. Zhuang, PromptNER: Prompt locating and typing for named entity recognition, in: A. Rogers, J. Boyd-Graber, N. Okazaki (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Toronto, Canada, 2023, pp. 12492–12507. doi:10.18653/v1/2023.acllong.698.

URL https://aclanthology.org/2023.acl-long.698

- [53] F. Ye, L. Huang, S. Liang, K. Chi, Decomposed two-stage prompt learning for few-shot named entity recognition, Information 14 (5) (2023). doi:10.3390/info14050262. URL https://www.mdpi.com/2078-2489/14/5/262
- [54] T. Schick, H. Schütze, It's not just size that matters: Small language models are also few-shot learners, in: K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, Y. Zhou (Eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Online, 2021, pp. 2339–2352. doi:10.18653/v1/2021.naacl-main.185.

URL https://aclanthology.org/2021.naacl-main.185

[55] Y. Ge, Y. Guo, S. Das, M. A. Al-Garadi, A. Sarker, Few-shot learning for medical text: A review of advances, trends, and opportunities, Journal of Biomedical Informatics 144 (2023) 104458.

- $\label{eq:doi:https://doi.org/10.1016/j.jbi.2023.104458.} \\ URL \qquad \text{https://www.sciencedirect.com/science/article/pii/S153204642300179X}$
- [56] A. Kormilitzin, N. Vaci, Q. Liu, A. Nevado-Holgado, Med7: A transferable clinical natural language processing model for electronic health records, Artificial Intelligence in Medicine 118 (2021) 102086. doi:https://doi.org/10.1016/j.artmed.2021.102086. URL https://www.sciencedirect.com/science/article/pii/S0933365721000798
- [57] J. Huang, C. Li, K. Subudhi, D. Jose, S. Balakrishnan, W. Chen, B. Peng, J. Gao, J. Han, Few-shot named entity recognition: An empirical baseline study, in: M.-F. Moens, X. Huang, L. Specia, S. W.-t. Yih (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, 2021, pp. 10408–10423. doi:10.18653/v1/2021.emnlp-main.813. URL https://aclanthology.org/2021.emnlp-main.813
- [58] Ö. Uzuner, B. R. South, S. Shen, S. L. DuVall, 2010 i2b2/va challenge on concepts, assertions, and relations in clinical text, Journal of the American Medical Informatics Association 18 (5) (2011) 552–556.
- [59] B. Liao, Y. Meng, C. Monz, Parameter-efficient fine-tuning without introducing new latency, in: A. Rogers, J. Boyd-Graber, N. Okazaki (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Toronto, Canada, 2023, pp. 4242–4260. doi:10.18653/v1/2023.acl-long.233. URL https://aclanthology.org/2023.acl-long.233
- [60] T. Han, L. C. Adams, J.-M. Papaioannou, P. Grundmann, T. Oberhauser, A. Löser, D. Truhn, K. K. Bressem, Medalpaca—an open-source collection of medical conversational ai models and training data, arXiv preprint arXiv:2304.08247 (2023).
- [61] A. Toma, P. R. Lawler, J. Ba, R. G. Krishnan, B. B. Rubin, B. Wang, Clinical camel: An open-source expert-level medical lan-

- guage model with dialogue-based knowledge encoding, arXiv preprint arXiv:2305.12031 (2023).
- [62] J. Nothman, N. Ringland, W. Radford, T. Murphy, J. R. Curran, Learning multilingual named entity recognition from wikipedia, Artificial Intelligence 194 (2013)151-175, artifi-Intelligence, Wikipedia Semi-Structured cial and Resources. doi:https://doi.org/10.1016/j.artint.2012.03.006. https://www.sciencedirect.com/science/article/pii/ S0004370212000276
- [63] E. F. Tjong Kim Sang, Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition, in: COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002), 2002. URL https://aclanthology.org/W02-2024
- [64] E. F. Tjong Kim Sang, F. De Meulder, Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition, in: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, 2003, pp. 142–147. URL https://aclanthology.org/W03-0419
- [65] C. Grouin, S. Rosset, P. Zweigenbaum, K. Fort, O. Galibert, L. Quintard, Proposal for an extension of traditional named entities: From guidelines to evaluation, an overview, in: N. Ide, A. Meyers, S. Pradhan, K. Tomanek (Eds.), Proceedings of the 5th Linguistic Annotation Workshop, Association for Computational Linguistics, Portland, Oregon, USA, 2011, pp. 92–100.
 URL https://aclanthology.org/W11-0411
- [66] B. Magnini, B. Altuna, A. Lavelli, M. Speranza, R. Zanoli, The e3c project: European clinical case corpus, Language 1 (L2) (2021) L3.
- [67] Y.-F. Luo, W. Sun, A. Rumshisky, Mcn: A comprehensive corpus for medical concept normalization, Journal of Biomedical Informatics 92 (2019) 103132. doi:https://doi.org/10.1016/j.jbi.2019.103132. URL https://www.sciencedirect.com/science/article/pii/ S1532046419300504

- [68] D. A. Lindberg, B. L. Humphreys, A. T. McCray, The unified medical language system, Yearbook of medical informatics 2 (01) (1993) 41–51.
- [69] A. McCray, A. Burgun, O. Bodenreider, Aggregating umls semantic types for reducing conceptual complexity, Studies in health technology and informatics 84 (2001) 216–20. doi:10.3233/978-1-60750-928-8-216.
- [70] L. Campillos, L. Deléger, C. Grouin, T. Hamon, A.-L. Ligozat, A. Névéol, A french clinical corpus with comprehensive semantic annotations: development of the medical entity and relation limsi annotated text corpus (merlot), Language Resources and Evaluation 52 (2018) 571– 601.
- [71] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., Llama 2: Open foundation and fine-tuned chat models, arXiv preprint arXiv:2307.09288 (2023).
- [72] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, et al., Mistral 7b, arXiv preprint arXiv:2310.06825 (2023).
- [73] B. Workshop, T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon, et al., Bloom: A 176b-parameter open-access multilingual language model, arXiv preprint arXiv:2211.05100 (2022).
- [74] H. Laurençon, L. Saulnier, T. Wang, C. Akiki, A. Villanova del Moral, T. Le Scao, L. Von Werra, C. Mou, E. González Ponferrada, H. Nguyen, et al., The bigscience roots corpus: A 1.6 tb composite multilingual dataset, Advances in Neural Information Processing Systems 35 (2022) 31809–31826.
- [75] G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, A. Cappelli, H. Alobeidli, B. Pannier, E. Almazrouei, J. Launay, The refinedweb dataset for falcon llm: outperforming curated corpora with web data, and web data only, arXiv preprint arXiv:2306.01116 (2023).
- [76] B. Wang, A. Komatsuzaki, GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model, https://github.com/kingoflolz/mesh-transformer-jax (May 2021).

- [77] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima, et al., The pile: An 800gb dataset of diverse text for language modeling, arXiv preprint arXiv:2101.00027 (2020).
- [78] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, et al., Opt: Open pre-trained transformer language models, arXiv preprint arXiv:2205.01068 (2022).
- [79] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing, et al., Judging llm-as-a-judge with mt-bench and chatbot arena, arXiv preprint arXiv:2306.05685 (2023).
- [80] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, V. Stoyanov, Unsupervised cross-lingual representation learning at scale, in: D. Jurafsky, J. Chai, N. Schluter, J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online, 2020, pp. 8440–8451. doi:10.18653/v1/2020.acl-main.747.
 - URL https://aclanthology.org/2020.acl-main.747
- [81] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, S. Fidler, Aligning books and movies: Towards story-like visual explanations by watching movies and reading books, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 19–27.
- [82] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692 (2019).
- [83] E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi, T. Naumann, M. McDermott, Publicly available clinical BERT embeddings, in: A. Rumshisky, K. Roberts, S. Bethard, T. Naumann (Eds.), Proceedings of the 2nd Clinical Natural Language Processing Workshop, Association for Computational Linguistics, Minneapolis, Minnesota, USA, 2019, pp. 72–78. doi:10.18653/v1/W19-1909.
 - URL https://aclanthology.org/W19-1909

- [84] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, R. G. Mark, Mimic-iii, a freely accessible critical care database, Scientific data 3 (1) (2016) 1–9.
- [85] G. Wang, X. Liu, Z. Ying, G. Yang, Z. Chen, Z. Liu, M. Zhang, H. Yan, Y. Lu, Y. Gao, et al., Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial, Nature Medicine (2023) 1–10.
- [86] C. Vasantharajan, K. Z. Tun, H. Thi-Nga, S. Jain, T. Rong, C. E. Siong, Medbert: A pre-trained language model for biomedical named entity recognition, in: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2022, pp. 1482–1488. doi:10.23919/APSIPAASC55919.2022.9980157.
- [87] L. Martin, B. Muller, P. J. Ortiz Suárez, Y. Dupont, L. Romary, É. de la Clergerie, D. Seddah, B. Sagot, CamemBERT: a tasty French language model, in: D. Jurafsky, J. Chai, N. Schluter, J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online, 2020, pp. 7203-7219. doi:10.18653/v1/2020.acl-main.645. URL https://aclanthology.org/2020.acl-main.645
- [88] P. J. O. Suárez, L. Romary, B. Sagot, A monolingual approach to contextualized word embeddings for mid-resource languages, arXiv preprint arXiv:2006.06202 (2020).
- [89] H. Le, L. Vial, J. Frej, V. Segonne, M. Coavoux, B. Lecouteux, A. Allauzen, B. Crabbé, L. Besacier, D. Schwab, FlauBERT: Unsupervised language model pre-training for French, in: N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference, European Language Resources Association, Marseille, France, 2020, pp. 2479–2490.
 - URL https://aclanthology.org/2020.lrec-1.302
- [90] Y. Labrak, A. Bazoge, R. Dufour, M. Rouvier, E. Morin, B. Daille, P.-A. Gourraud, DrBERT: A robust pre-trained model in French for biomed-

ical and clinical domains, in: A. Rogers, J. Boyd-Graber, N. Okazaki (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Toronto, Canada, 2023, pp. 16207–16221. doi:10.18653/v1/2023.acl-long.896.

URL https://aclanthology.org/2023.acl-long.896

[91] R. Touchent, L. Romary, E. De La Clergerie, CamemBERT-bio: Un modèle de langue français savoureux et meilleur pour la santé, in: C. Servan, A. Vilnat (Eds.), 18e Conférence en Recherche d'Information et Applications

16e Rencontres Jeunes Chercheurs en RI

30e Conférence sur le Traitement Automatique des Langues Naturelles 25e Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, ATALA, Paris, France, 2023, pp. 323–334.

URL https://hal.science/hal-04130187

- [92] J. Cañete, G. Chaperon, R. Fuentes, J.-H. Ho, H. Kang, J. Pérez, Spanish pre-trained bert model and evaluation data, in: PML4DC at ICLR 2020, 2020.
- [93] J. Tiedemann, Parallel data, tools and interfaces in OPUS, in: N. Calzolari, K. Choukri, T. Declerck, M. U. Doğan, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, S. Piperidis (Eds.), Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), European Language Resources Association (ELRA), Istanbul, Turkey, 2012, pp. 2214–2218.

URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf

[94] C. P. Carrino, J. Llop, M. Pàmies, A. Gutiérrez-Fandiño, J. Armengol-Estapé, J. Silveira-Ocampo, A. Valencia, A. Gonzalez-Agirre, M. Villegas, Pretrained biomedical language models for clinical NLP in Spanish, in: Proceedings of the 21st Workshop on Biomedical Language Processing, Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 193–199. doi:10.18653/v1/2022.bionlp-1.19.

URL https://aclanthology.org/2022.bionlp-1.19

- [95] P. Wajsbürt, Extraction and normalization of simple and structured entities in medical documents, Theses, Sorbonne Université (Dec. 2021). URL https://hal.archives-ouvertes.fr/tel-03624928
- [96] L. Lannelongue, J. Grealey, M. Inouye, Green algorithms: quantifying the carbon footprint of computation, Advanced science 8 (12) (2021) 2100707.
- [97] N. Reimers, I. Gurevych, Reporting score distributions makes a difference: Performance study of LSTM-networks for sequence tagging, in: M. Palmer, R. Hwa, S. Riedel (Eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Copenhagen, Denmark, 2017, pp. 338–348. doi:10.18653/v1/D17-1035.
 URL https://aclanthology.org/D17-1035
- [98] R. Dror, S. Shlomov, R. Reichart, Deep dominance how to properly compare deep neural models, in: A. Korhonen, D. R. Traum, L. Màrquez (Eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Association for Computational Linguistics, 2019, pp. 2773–2785. doi:10.18653/v1/p19-1266. URL https://doi.org/10.18653/v1/p19-1266
- [99] E. M. Bender, B. Friedman, Data statements for natural language processing: Toward mitigating system bias and enabling better science, Transactions of the Association for Computational Linguistics 6 (2018) 587–604. doi:10.1162/tacl_a_00041. URL https://aclanthology.org/Q18-1041

Appendix A. NER labels descriptions

Appendix B. Carbon footprint

Tag	Tag name (in singular)	Description
PER	person names (a person's name)	These are names of persons such as real people or fictional characters.
FAC	facilities (a facility)	These are names of man-made structures such as infrastructure, buildings and monuments.
LOC	locations (a location)	These are names of geographical locations such as landmarks, cities, countries and regions.
ORG	organizations (an organization)	These are names of organizations such as companies, agencies and political parties.
FUNC	functions and jobs (a function or a job)	These are words that refer to a profession or a job.
ACTI	activities and behaviors (an activity or behavior)	These are words that refer to human activities, behaviors or events as well as governmental or regulatory activities.
ANAT	anatomy (an anatomy)	These are words that refer to the structure of the human body, its organs and their position, such as body parts or organs, systems, tissues, cells, body substances and embryonic structures.
CHEM	chemicals and drugs (a chemical or a drug)	These are words that refer to a substance or composition that has a chemical characteristic, especially a curative or preventive property with regard to human or animal diseases, such as drugs, antibiotics, proteins, hormones, enzymes and hazardous or poisonous substances.
CONC	concepts and ideas (a concept or an idea)	These are words that refer to a concept or an idea, such as a classification, an intellectual product, a language, a law or a regulation.
DEVI	medical devices (a device)	These are words that refer to a medical device used to administer care or perform medical research.
DISO	disorders (a disorder)	These are words that refer to an alteration of morphology, function or health of a living organism, animal or plant, such as congenital abnormalities, dysfunction, injuries, signs or symptoms or observations.
GENE	genes and molecular sequences (a gene or a molecular sequence)	These are words that refer to a gene, a genome or a molecular sequence.
GEOG	geographical areas (a geographical area)	These are words that refer to a country, a region or a city.
LIVB	living beings (a living being)	These are words that refer to a living being or a group of living beings, such as a person or a group of persons, a plant or a category of plants, an animal or a category of animals.
OBJC	objects (an object)	These are words that refer to anything animate or inanimate that affects the senses, such as physical manufactured objects.
OCCU	occupations (an occupation)	These are words that refer to a professional occupation or discipline.
ORGA	organizations (an organization)	These are words that refer to an organization such as healthcare related organizations.
PHEN	phenomema (a phenomemon)	These are words that refer to a phenomenon that occurs naturally or as a result of an activity, such as a biologic function.
PHYS	physiology (a physiology)	These are words that refer to any element that contributes to the mechanical, physical and biochemical functioning or organization of living organisms and their components.
PROC	procedures (a procedure)	These are words that refer to an activity or a procedure that contributes to the diagnosis or treatment of patients, the information of patients, the training of medical personnel or biomedical research.
EVENT	events (an event)	These are words that refer to actions, states, and circumstances that are relevant to the clinical history of a patient such as pathologies and symptoms, or more generally words like "enters", "reports" or "continue".

Table A.5: Description of the NER tags used in our experiments for English.

Tag	Tag name (in singular)	Description
TIMEX3	time expressions (a time expression)	These are time expressions such as dates, times, durations, frequencies, or intervals.
RML	results and measurements (a result or a measurement)	These are test results, results of laboratory analyses, formulaic measurements, and measure values.
ACTOR	actors (an actor)	These are words that refer patients, healthcare professionals, or other actors relevant to the clinical history of a patient.
Abbreviatio	on abbreviations (an abbreviation)	These are words that refer to abbreviations.
Body Part	body parts (a body part)	These are words that refer to organs and anatomical parts of persons.
Clinical Finding	clinical findings (a clinical finding)	These are words that refer to observations, judgments or evaluations made about patients.
Diagnostic_ Procedure	-diagnostic procedures (a diagnostic procedure)	These are words that refer to tests that allow determining the condition of the individual.
Disease	diseases (a disease)	These are words that describe an alteration of the physiological state in one or several parts of the body, due to generally known causes, manifested by characteristic symptoms and signs, and whose evolution is more or less predictable.
Family Member	family members (a family member)	These are words that refer to family members.
	laboratory or test results (a laboratory or test result)	These are words that refer to any measurement or evaluation obtained from a diagnostic support examination.
Laboratory Procedure	laboratory procedures (a laboratory procedure)	These are words that refer to tests that are performed on various patient samples that allow diagnosing diseases by detecting biomarkers and other parameters. Blood, urine, and other fluids and tissues that use biochemical, microbiological and/or cytological methods are considered.
Medication	medications (a medication)	These are words that refer to medications or drugs used in the treatment and/or prevention of diseases, including brand names and generics, as well as names for groups of medications.
Procedure	procedures (a procedure)	These are words that refer to activities derived from the care and care of patients.
Sign_or Symptom	signs or symptoms (a sign or symptom)	These are words that refer to manifestations of a disease, determined by medical examination or perceived and expressed by the patient.
Therapeutic Procedure	c_therapeutic procedures (a therapeutic procedure)	These are words that refer to activities or treatments that are used to prevent, repair, eliminate or cure the individual's disease.
Composite	Mentioposite mentions of diseases (a composite mention of diseases)	These are words that refer to mentions of multiple diseases, such as "colorectal, endometrial, and ovarian cancers".
DiseaseClas	ss disease classes (a disease class)	These are words that refer to classes of diseases, such as "an autosomal recessive disease".
Modifier	modifiers (a modifier of diseases)	These are words that refer to modifiers of diseases, such as "primary" or "C7-deficient".
SpecificDise	eastriseases (a disease)	These are words that refer to specific diseases, such as "diastrophic dysplasia".

Table A.6: Description of the NER tags used in our experiments for English, continued.

Tag	Tag name (in singular)	Description
PER	de noms de personnes (un nom de personne)	Il s'agit des noms de personnes, qu'elles soient réelles ou fictives.
FAC	de productions humaines (une production humaine)	Il s'agit des noms de structures faites par les humains comme des infrastructures, des bâtiments ou des monuments.
LOC	de lieux (un lieu)	Il s'agit des noms de lieux comme des endroits, villes, pays ou régions.
ORG	d'organisations (une organisation)	Il s'agit des noms d'organisations comme des entreprises, des agences ou des partis politiques.
FUNC	de fonctions et métiers (une fonction ou un métier)	Il s'agit de mots qui se rapportent à une activité professionnelle.
ANAT	d'anatomie (une partie du corps)	Il s'agit d'une entité se rapportant à la structure du corps humain, ses organes et leur position. Il s'agit principalement des parties du corpus ou organes, des appareils, des tissus, des cellules, des substances corporelles et des organismes embryonaires.
СНЕМ	de médicaments et substances chimiques (un médicament ou une substance chimique)	Il s'agit d'une substance ou composition présentant des propriétés chimiques caractéristiques, en particulier des propriétés curatives ou préventives à l'égard des maladies humaines ou animales. Il s'agit principalement des médicaments disponibles en pharmacie, des antibiotiques, des proteines, des hormones, des substances dangereuses, des enzymes.
DEVI	de matériel (un matériel)	Il s'agit d'un matériel utilisé pour administrer des soins ou effectuer des recherches médicales.
DISO	de problèmes médicaux (un problème médical)	Il s'agit d'une altération de la morphologie, des fonctions, ou de la santé d'un organisme vivant, animal ou végétal. Il peut s'agir de malformations, de maladies, de blessure, de signe ou symptome ou d'une observation.
GEOG	de zones géographiques (une zone géographique)	Il s'agit d'un pays, une région, ou une ville.
LIVB	d'êtres vivants (un être vivant)	Il s'agit d'un être vivant ou groupe d'êtres vivants. Il peut s'agir d'une personne ou d'un groupe de personnes, d'une plante ou d'une catégorie de végétaux, d'un animal ou d'une catégorie d'animaux.
OBJC	d'objets (un objet)	Il s'agit de tout ce qui, animé ou inanimé, affecte les sens. Ici, il s'agit principalement d'objets physiques manufacturés.
PHEN	de phénomènes (un phénomène)	Il s'agit d'un phénomène qui se produit naturellement ou à la suite d'une activité. Il s'agit principalement de fonctions biologiques.
PHYS	de physiologie (une physiologie)	Il s'agit de tout élément contribuant au fonctionnement ou à l'organisation mécanique, physique et biochimique des organismes vivants et de leurs composants.
PROC	de procédures (une procédure)	Il s'agit d'une activité ou procédure contribuant au diagnostic ou au traitement des patients, à l'information des patients, la formation du personnel médical ou à la recherche biomédicale.
EVENT	d'événements (un événement)	Il s'agit d'une action, d'un état ou d'une circonstance qui est pertinent pour l'histoire clinique d'un patient. Il peut s'agir de pathologies et symptômes, ou plus généralement de mots comme "entre", "rapporte" ou "continue".
TIMEX3	d'expressions temporelles (une expression temporelle)	Il s'agit d'expressions temporelles comme des dates, heures, durées, fréquences, ou intervalles.
RML	de résultats et mesures (un résultat ou une mesure)	Il s'agit de résultats d'analyses de laboratoire, de mesures formelles, et de valeurs de mesure.
ACTOR	d'acteurs (un acteur)	Il s'agit de patients, de professionnels de santé, ou d'autres acteurs pertinents pour l'histoire clinique d'un patient.

Table A.7: Description of the NER tags used in our experiments for French.

Tag	Tag name (in singular)	Description
PER	nombres de personas (un nombre de persona)	Estos son nombres de personas, ya sean reales o personajes ficticios.
FAC	instalaciones (una instalación)	Estos son nombres de estructuras hechas por el hombre como infraestructura, edificios y monumentos.
LOC	lugares (un lugar)	Estos son nombres de ubicaciones geográficas como hitos, ciudades, países y regiones.
ORG	organizaciones (una organización)	Estos son nombres de organizaciones como empresas, agencias y partidos políticos.
ACTI	actividades y comportamientos (una actividad o comportamiento)	Estas son palabras que se refieren a actividades humanas, comportamientos o eventos, así como actividades gubernamentales o regulatorias.
ANAT	anatomía (una anatomía)	Estas son palabras que se refieren a la estructura del cuerpo humano, sus órganos y su posición, como partes del cuerpo u órganos, sistemas, tejidos, células, sustancias corporales y estructuras embrionarias.
CHEM	productos químicos y medicamentos (un producto químico o un medicamento)	Estas son palabras que se refieren a una sustancia o composición que tiene una característica química, especialmente una propiedad curativa o preventiva con respecto a las enfermedades humanas o animales, como medicamentos, antibióticos, proteínas, hormonas, enzimas y sustancias peligrosas o venenosas.
CONC	conceptos e ideas (un concepto o una idea)	Estas son palabras que se refieren a un concepto o una idea, como una clasificación, un producto intelectual, un idioma, una ley o un reglamento.
DEVI	dispositivos médicos (un dispositivo)	Estas son palabras que se refieren a un dispositivo médico utilizado para administrar atención o realizar investigaciones médicas.
DISO	trastornos (un trastorno)	Estas son palabras que se refieren a una alteración de la morfología, la función o la salud de un organismo vivo, animal o vegetal, como anomalías congénitas, disfunción, lesiones, signos o síntomas u observaciones.
GENE	genes y secuencias moleculares (un gen o una secuencia molecular)	Estas son palabras que se refieren a un gen, un genoma o una secuencia molecular.
GEOG	áreas geográficas (un área geográfica)	Estas son palabras que se refieren a un país, una región o una ciudad.
LIVB	seres vivos (un ser vivo)	Estas son palabras que se refieren a un ser vivo o un grupo de seres vivos, como una persona o un grupo de personas, una planta o una categoría de plantas, un animal o una categoría de animales.
OBJC	objetos (un objeto)	Estas son palabras que se refieren a cualquier cosa animada o inanimada que afecte los sentidos, como objetos físicos fabricados.
OCCU	ocupaciones (una ocupación)	Estas son palabras que se refieren a una ocupación o disciplina profesional.
ORGA	organizaciones (una organización)	Estas son palabras que se refieren a una organización, por ejemplo organizaciones relacionadas con la salud.
PHEN	fenómenos (un fenómeno)	Estas son palabras que se refieren a un fenómeno que ocurre naturalmente o como resultado de una actividad, por ejemplo una función biológica.

Table A.8: Description of the NER tags used in our experiments for Spanish.

Tag	Tag name (in singular)	Description
PHYS	fisiología (una fisiología)	Estas son palabras que se refieren a cualquier elemento que contribuya al funcionamiento mecánico, físico y bioquímico o la organización de los organismos vivos y sus componentes.
PROC	procedimientos (un procedimiento)	Estas son palabras que se refieren a una actividad o un procedimiento que contribuye al diagnóstico o tratamiento de pacientes, la información de pacientes, la capacitación del personal médico o la investigación biomédica.
EVENT	eventos (un evento)	Estas son palabras que se refieren a acciones, estados y circunstancias que son relevantes para la historia clínica de un paciente, como patologías y síntomas, o más generalmente palabras como "entra", "reporta" o "continúa".
TIMEX3	expresiones de tiempo (una expresión de tiempo)	Estas son expresiones de tiempo como fechas, horas, duraciones, frecuencias o intervalos.
RML	resultados y mediciones (un resultado o una medida)	Estos son resultados de análisis de laboratorio, mediciones formales y valores de medición.
ACTOR	actores (un actor)	Estas son palabras que se refieren a pacientes, profesionales de la salud u otros actores relevantes para la historia clínica de un paciente.
Abbreviatio	n abreviaciones (una abreviación)	Estas son los casos de siglas y acrónimos.
Body Part	partes del cuerpo (una parte del cuerpo)	Estas son palabras que se refieren a òrganos y partes anatómicas de personas.
Clinical Finding	hallazgos clínicos (un hallazgo clínico)	Estas son palabras que se refieren a observaciones, juicios o evaluaciones que se hacen sobre los pacientes.
Diagnostic_ Procedure	- procedimientos diagnósticos (un procedimiento diagnóstico)	Estas son palabras que se refieren a exámenes que permiten determinar la condición del individuo.
Disease	enfermedades (una enfermedad)	Estas son palabras que describen una alteración del estado fisiológico en una o varias partes del cuerpo, por causas en general conocidas, manifestada por síntomas y signos característicos, y cuya evolución es más o menos previsible.
Family Member	miembros de la familia (un miembro de la familia)	Estas son palabras que se refieren a miembros de la familia.
Laboratory or_Test Result	resultados de exámenes de laboratorio u otras pruebas (un resultado de un examen de laboratorio u otra prueba)	Estas son palabras que se refieren a cualquier medición o evaluación obtenida a partir de un exámen de apoyo diagnóstico.
Laboratory Procedure	-procedimientos de laboratorio (un procedimiento de laboratorio)	Estas son palabras que se refieren a exámenes que se realizan en diversas muestras de pacientes que permiten diagnosticar enfermedades mediante la detección de biomarcadores y otros parámetros. Se consideran los análisis de sangre, orina, y otros fluidos y tejidos que emplean métodos bioquímicos, microbiológicos y/o citológicos.
Medication	medicamentos o drogas (un medicamento o una droga)	Estas son palabras que se refieren a medicamentos o drogas empleados en el tratamiento y/o prevención de enfermedades, incluyendo marcas comerciales y genéricos, así como también nombres para grupos de medicamentos.
Procedure	procedimientos (un procedimiento)	Estas son palabras que se refieren a actividades derivadas de la atención y el cuidado de los pacientes.
Sign_or Symptom	signos o síntomas (un signo o un síntoma)	Estas son palabras que se refieren a manifestaciones de una enfermedad, determinadas mediante la exploración médica o percibidas y expresadas por el paciente.
Therapeutic Procedure	e_procedimientos terapéuticos (un procedimiento terapéutico)	Estas son palabras que se refieren a actividades o tratamientos que es empleado para prevenir, reparar, eliminar o curar la enfrmedad del individuo.

Table A.9: Description of the NER tags used in our experiments for Spanish, continued.

				Englis					Frenc	eh		Spanish				
	#	Model	WikiNER	CoNLL2003	ЕЗС	n2c2	NCBI	WikiNER	QFP	ЕЗС	EMEA	MEDLINE	WikiNER	CoNLL2002	ЕЗС	CWL
Fee	w-sh	ot approaches														
	1	LLAMA-2-70B	46	44	126	233	54	85	131	129	273	284	41	76	114	344
	2	Mistral-7B	4	6	12	24	8	5	8	14	13	25	7	5	11	27
	3	BLOOM-7B1	4	6	10	26	9	8	13	9	26	20	4	8	8	18
	4	Falcon-40B	49	45	56	176	45	31	58	75	162	129	33	25	82	99
ısal	5	GPT-J-6B	7	6	8	23	7	5	8	13	21	17	6	6	13	28
Causal	6	OPT-66B	73	50	120	253	96	38	64	138	273	240	57	52	106	247
\circ	7	Vicuna-13B	10	11	20	52	11	11	12	18	33	40	10	11	22	51
	8	Vicuna-7B	6	8	14	17	6	5	10	10	24	14	8	6	13	27
	9	Medalpaca-7B	8	4	17	24	10	7	14	11	19	21	5	8	15	26
	10	Vigogne-13B	14	14	29	37	11	13	20	26	36	39	11	14	32	44
	11	mBERT	2	1	2	2	2	2	2	2	1	1	1	2	1	2
	12	XLM-R-large	2	2	2	1	2	2	2	2	2	2	1	1	1	2
	13	BERT-large	2	1	2	2	2	-	-	-	-	-	=	=	-	-
	14	RoBERTa-large	1	2	2	2	2	-	-	-	-	=	-	=	-	-
	15	Bio_ClinicalBERT	2	2	1	2	1	-	-	-	-	=	=	=	-	-
	16	ClinicalBERT	1	1	2	2	1	-	-	-	-	=	=	=	-	-
	17	MedBERT	2	2	1	1	1	-	-	-	-	=	=	=	-	-
Masked	18	CamemBERT-large	-	=	-	-	-	1	1	1	2	2	=	=	-	-
Ţas	19	FlauBERT-large	-	=	-	-	-	2	2	2	2	2	=	=	-	-
4	20	DrBERT-4GB	-	=	-	-	-	2	2	2	2	2	=	=	-	-
	21	CamemBERT-bio	-	=	-	-	-	1	2	2	2	2	=	=	-	-
	23	BETO	-	=	-	-	-	-	-	-	-	=	2	1	1	1
	23	PatanaBERT	-	=	-	-	-	-	-	-	-	=	2	2	2	2
	24	TulioBERT	-	=	-	-	-	-	-	-	-	=	1	2	2	1
	25	BSC-BioEHR	-	=	-	-	-	-	-	-	-	=	2	2	2	2
	26	BSC-Bio	-	-	-	-	-	-	-	-	-	-	2	2	2	2
Mo	isked	fully-supervised (skyli	ine)													
-		RoBERTa-large	647	68	5	12	24	-	-	-	-	-	-	-	-	-
		CamemBERT-large	_	_	-	-	-	595	15	4	5	8	-	-	-	=
		BETO	-	-	-	-	-	-	-	-	-	-	579	41	3	21

Table B.10: This table presents the carbon emissions (in g) of the optimization on the validation set of each model over each dataset. For CLMs, this corresponds to the tree search over the prompt features through cross-validation. For MLMs, this corresponds to the supervised fine-tuning and training of the model.

				Englis					Frenc	ch		Spanish				
	#	Model	WikiNER	CoNLL2003	E3C	n2c2	NCBI	WikiNER	QFP	E3C	EMEA	MEDLINE	WikiNER	CoNLL2002	ЕЗС	CWL
Fee	Few-shot approaches															
	1	LLAMA-2-70B	812	147	36	196	33	508	11	13	92	47	514	201	11	198
	2	Mistral-7B	234	35	8	59	21	148	3	4	27	20	261	50	2	32
	3	BLOOM-7B1	220	33	8	44	16	255	3	5	38	29	261	47	2	46
	4	Falcon-40B	600	109	26	144	46	722	9	19	155	70	752	154	9	157
Causal	5	GPT-J-6B	146	17	4	53	20	245	2	6	14	26	154	40	3	53
Zan	6	OPT-66B	765	139	33	185	63	971	12	27	179	93	993	196	12	217
0	7	Vicuna-13B	314	47	11	63	24	363	5	8	61	46	502	67	4	74
	8	Vicuna-7B	146	17	4	53	20	246	2	6	14	26	155	65	3	53
	9	Medalpaca-7B	192	24	5	39	14	98	2	2	17	13	172	53	1	21
	10	Vigogne-13B	322	49	11	65	24	245	5	6	44	33	361	68	3	66
	11	mBERT	14	4	<1	2	<1	15	1	<1	1	1	13	2	<1	2
	12	XLM-R-large	14	4	<1	2	<1	15	1	<1	1	1	13	2	<1	2
	13	BERT-large	14	4	<1	2	<1	_	-	-	-	-	-	-	-	-
	14	RoBERTa-large	14	4	<1	2	<1	_	-	-	-	-	-	-	-	-
	15	Bio_ClinicalBERT	14	4	<1	2	<1	_	-	-	-	-	-	-	-	-
	16	ClinicalBERT	14	4	<1	2	<1	-	-	-	-	-	-	-	-	-
~	17	MedBERT	14	4	<1	2	<1	-	-	-	-	-	-	-	-	-
Masked	18	CamemBERT-large	-	-	-	-	-	15	1	<1	1	1	-	-	-	-
Įas	19	FlauBERT-large	-	-	-	-	-	15	1	<1	1	1	-	-	-	-
~	20	DrBERT-4GB	-	-	-	-	-	17	1	<1	1	1	-	-	-	-
	21	CamemBERT-bio	-	-	-	-	-	15	1	<1	1	1	-	-	-	-
	22	BETO	=	=	-	-	-	-	-	-	-	=	13	2	<1	2
	23	PatanaBERT	=	=	-	-	-	-	-	-	-	=	13	2	<1	2
	24	TulioBERT	-	=	-	-	-	-	-	-	-	=	13	2	<1	2
	25	BSC-BioEHR	-	=	-	-	-	-	-	-	-	=	13	2	<1	2
	26	BSC-Bio	-	-	-	-	-	-	-	-	-	-	13	2	<1	2
Ma	sked	fully-supervised (skyli	ine)													
		RoBERTa-large	14	4	<1	2	<1	_	-	_	-	-	-	-	_	-
		CamemBERT-large	-	_	-	-	-	15	1	<1	1	1	-	-	-	=
		BETO	-	-	-	-	-	-	-	-	-	-	13	2	<1	2

Table B.11: This table presents the carbon emissions (in g) of the inference on the test set of each model over each dataset.