4. Dátové modelovanie

Návrh je zvyčajne vykonaný v troch krokoch (4.1):

Obr. 4.1 Kroky návrhu informačného systému

• Systémový návrh

Obr. 4.2 Základné procesy pri vývoji informačného systému

4.1 Dátové modely

V súčasnej dobe je možné rozlíšiť 4 generácie dátových modelov [POKO92]:

- Primitívne dátové modely Ide vlastne o typicky súborovo orientovaný prístup, pričom definície súborov sú súčasťou užívateľských programov
- Klasické dátové modely sú reprezentované hlavne sieťovým modelom definovaným skupinou CODASYL DBTG, hierarchickým dátovým modelom, ktorý je špeciálnym prípadom sieťového a je reprezentovaný systémom IMS. K tejto skupine je možné priradiť aj relačný dátový model, ktorý však priniesol úplne nový pohľad na dátové modelovanie.

Obr. 4.3 Dátové modely druhej generácie

• Sémantické dátové modely - Tieto modely sa nazývajú sémantické, prípadne konceptuálne a sú založené na pojmoch entita, vzťah, vlastnosť, atribút, objekt a pod. Sémantické modely slúžia obvykle k vytvoreniu schém s následnou transformáciou na databázovú schému.

4.2 Postup tvorby dátového modelu

Obr. 4.5 Postup tvorby jednotlivých častí dátového modelu

4.3 Konceptuálne modelovanie

Každý konceptuálny, či databázový model rieši tri problémy:

• Štruktúra dát

Z tohto pohľadu je nutné zabezpečiť identifikáciu všetkých objektov a ich vlastností, vrátane popisu štruktúr pre vyjadrenie vzťahov medzi objektmi.

Manipulácia dát

Pre každý dátový model by bolo vhodné navrhnúť množinu prípustných operácií nad príslušným objektom dát.

• Integritné obmedzenia

Pre každý objekt, jeho vlastnosti a vzťahy medzi objektmi je potrebné definovať množinu integritných obmedzení, ktoré definujú základné vlastnosti dátových objektov.

Pokorný vo svojej práci [POHA92] uvádza štyri základné princípy konceptuálnych modelov, ktoré vychádzajú z predstavy, že je treba vytvárať a popisovať objekty a ich vzájomné vzťahy:

- **Orientácia na objekty**: myslí sa v objektoch a nie v identifikátoroch, ktoré ich označujú a vyžaduje sa i zložitá štruktúra objektov.
- Funkcionálna podstata vzťahov: do modelov sa zahŕňa pojem atribútu (E-R modely), ďalej funkcie ako jediného základného konštruktu, či systému funkcií.
- **ISA-hierarchia**: umožňuje sa práca s nadtypmi a podtypmi objektov.
- Hierarchický mechanizmus pre konštrukciu objektov z iných objektov (napr. agregácia, zoskupovanie, skladanie funkcií, vytváranie tried a pod.)

4.4 Entitno-Relačný konceptuálny model

Definícia – E-R konceptuálny model

E-R konceptuálny model (skrátene E-R model) je množina pojmov, ktoré nám pomáhajú na konceptuálnej úrovni abstrakcie popísať užívateľskú aplikáciu s cieľom následnej špecifikácie štruktúry databázy.

Definícia - Entita

Entita (entity) je objekt reálneho sveta, ktorý je schopný nezávislej existencie a je jednoznačne odlišný od ostatných objektov.

Definícia -Vzťah:

Vzťah (relationship) je väzba medzi dvoma (alebo viacerými) entitami.

Definícia – Hodnota popisného typu

Hodnota popisného typu (value) - pod popisným typom budeme rozumieť jednoduchý dátový typ, teda dvojicu (množina hodnôt, množina operácií).

Definícia - Atribút

Atribútom (attribute) budeme rozumieť funkciu priraďujúcu entitám, alebo vzťahom hodnotu (tu popisného typu), určujúcu niektorú podstatnú vlastnosť entity, alebo vzťahu.

4.4.1 Typ entity, typ vzťahu

Definícia – Identifikačný kľúč

Atribút (skupina atribútov), ktorého hodnota slúži na identifikáciu konkrétnej entity sa nazýva identifikačný kľúč.

4.4.2 Zápis konceptuálnej schémy v modeli E-R

Poznáme dva rôzne prístupy:

- Lineárny textový zápis
- E-R diagramy

Lineárny zápis

Najjednoduchšia syntax lineárneho zápisu by mohla vyzerať tak, ako na obrázku 4.7.

Obr. 4.7 Syntax lineárneho zápisu E-R schémy

Obr. 4.8 Typový E-R diagram

4.4.3 Atribúty

Pre každý entitný typ vypracujeme samostatnú tabuľku atribútov, ktorá obsahuje:

• meno atribútu

- typ atribútu, v prípade atomického atribútu ide o hodnotovú množinu (**doménu**) a množinu operácií, ktoré je možné na hodnotovú množinu previesť; v rámci tejto definície býva určená aj veľkosť priestoru (v znakoch), ktorý zaberá vonkajšia reprezentácia hodnoty atribútu (napr. na obrazovke)
- príznak, či je atribút **kľúčový** (t. j. je súčasťou identifikačného kľúča)
- príznak, či atribút môže mať tzv. **prázdnu hodnotu**. Je interpretovaná ako "nedefinovaná", "neznáma" a pod. Označuje sa obyčajne **NULL**
- príznak, že atribút musí mať unikátnu hodnotu (UNIQUE, DISTINCT)

Autor konceptuálnej schémy sa musí pokúsiť rozoznať existujúce entity a potenciálne druhy elementárnych informácií priraďovať ako popisné atribúty logicky príslušným typom entít.

Je to dôležitý problém, teraz ho však opustíme s odkazom na to, že sa k nemu vrátime v súvislosti s relačným databázovým modelom, kde podrobne preberieme metodiku návrhu relačných schém popisujúcich vlastnosti jednotlivých entitných typov.

4.4.3.1 Neatomické atribúty

4.4.3.1.1 Skupinové atribúty

4.4.3.1.2 Viachodnotové atribúty

4.4.4 Vzťahy a integritné obmedzenia pre vzťahy

Definícia –Kardinalita vzťahu

Kardinalita vzťahu je integritné obmedzenie, ktoré vyjadruje prípustný počet entít vo vzťahu.

Definícia – Kardinalita vťahu 1:1

Kardinalita vzťahu 1:1 je integritné obmedzenie, ktoré vyjadruje vzťah medzi maximálne jednou entitou a maximálne jednou entitou iného, resp. rovnakého typu.

Definícia – Kardinalita vzťahu 1:N

Kardinalita vzťahu 1:N je integritné obmedzenie, ktoré vyjadruje vzťah medzi maximálne jednou entitou a N entitami iného, resp. toho istého typu.

Definícia – Kardinalita vzťahu M:N

Kardinalita vzťahu M:N je integritné obmedzenie, ktoré vyjadruje vzťah medzi M entitami jedného typu a N entitami iného, resp. toho istého typu.

Definícia - Determinant

Determinant je entitou jedného typu, ktorý jednoznačne určuje entitu iného typu.

Obr. 4.14 Kardinalita ternárneho vzťahu

4.4.4.1 Členstvo vo vzťahu

Definícia – Členstvo vo vzťahu

Členstvo vo vzťahu je integritné obmedzenie, ktoré vyjadruje nutnosť existencie, resp. neexistencie entity jedného typu vo vzťahu k existencii entity iného typu.

Definícia – Povinné členstvo vo vzťahu

Povinné členstvo vo vzťahu je integritné obmedzenie, ktoré vyjadruje nutnosť existencie entity jedného typu vo vzťahu v prípade existencie entity iného typu.

Definícia – Nepovinné členstvo vo vzťahu

Nepovinné členstvo vo vzťahu je integritné obmedzenie, ktoré vyjadruje, že entita jedného typu nemusí existovať vo vzťahu v prípade existencie entity iného typu.

Každá katedra musí mať nejakých učiteľov, každý učiteľ musí byť pridelený na nejakú katedru.

Obr. 4.16 Typ členstva vo vzťahu - 2

Každá katedra musí mať nejakých učiteľov, ale učiteľ nemusí byť pridelený na žiadnu katedru.

Obr. 4.17 Typ členstva vo vzťahu - 3

Katedra nemusí mať žiadneho učiteľa, učiteľ nemusí byť pridelený na žiadnu katedru.

Obr. 4.18 Typ členstva vo vzťahu - 4

4.4.4.2 Slabé entitné typy

Obr. 4.19 Slabý entitný typ

4.4.4.3 Numerické vyjadrenie integritného obmedzenia pre vzťahy

Definícia – Numerické vyjadrenie IO

Majme typ vzťahu R(E₁:(min, max),E₂:(min, max)). Kde

 E_1 : (min, max) a E_2 : (min, max)

označuje minimálny a maximálny počet výskytov entity typu E₁ a E₂ vo vzťahovej množine R.

•

4.4.4.4 Dekompozícia M:N vzťahu

Obr. 4.20 Chybná dekompozícia vzťahu M:N

Obr. 4.22 Dekompozícia M:N vzťahu na 1:N vzťahy

4.4.4.5 Asociatívna entita

a) vzťah typu M:N s atribútmi

Obr. 4.23 Vznik asociatívnej entity pri vzťahu s atribútmi

4.4.4.6 Rekurzívny vzťah

Obr. 4.25 Rekurzívny vzťah

4.4.4.7 Typovanie

Obr. 4.26 Typovanie

4.4.4.8 Viacnásobné vzťahy

Obr. 4.27 Viacnásobné vzťahy

4.4.4.8.1 Viacnásobný vzťah typu OR

Obr. 4.28 Viacnásobné vzťahy typu OR

4.4.4.8.2 Viacnásobný vzťah typu AND

Obr. 4.29 Viacnásobné vzťahy typu AND

4.4.4.8.3 Viacnásobný vzťah typu XOR

Obr. 4.30 Viacnásobné vzťahy typu XOR

4.4.4.9 Modelovanie časových zmien

Obr. 4.31 Modelovanie časových zmien

4.4.4.10 Kategorizácia

Obr. 4.32 Kategorizácia

4.4.4.11 Agregácia

Obr. 4.33 Agregácia

4.4.5 ISA hierarchia, podtypy entít

Obr. 4.34 ISA hierarchia

4.4.5.1 Generalizácia

Obr. 4.35 Generalizácia

4.4.6 Korektná konceptuálna schéma v E-R modeli

Obmedzenie je možné formulovať takto:

- Žiadny typ entity nemá v konceptuálnej schéme viac ako jeden zdroj ISA hierarchie.
- ISA vzťahy netvoria v E-R diagrame orientovaný cyklus.

Podobné obmedzenie by malo platiť aj pre identifikačné vzťahy. Binárny identifikačný typ vzťahu je možné chápať taktiež ako orientovanú hranu v grafe (od typu slabej entity k identifikačnému vlastníkovi v identifikačnom vzťahu).

• Identifikačné typy vzťahov netvoria v E-R diagrame orientovaný cyklus.

Ďalšie obmedzenie zabraňuje problémom s identifikáciou istých slabých entitných typov.

• Typ entity v ISA hierarchii, ktorý nie je zdrojom, nie je identifikačne závislý od žiadneho typu entity.

Ďalšie predpoklady korektnej konceptuálnej schémy sa týkajú mien.

- Mená typov entít a vzťahov sú jednoznačné globálne mená, zatiaľ čo mená atribútov, vrátane zdedených, sú jednoznačné lokálne mená v rámci daného typu objektu.
- Ak vystupuje typ entity v type vzťahu viackrát, je charakterizovaný rôznymi úlohami, t. j. ďalšími identifikátormi.

Ďalej v pravidlách potvrdíme, ako zaobchádzať s identifikačnými kľúčmi.

• Ak je typ entity zdroj ISA hierarchie, potom má identifikačný kľúč. Ostatné typy entít nemajú identifikačný kľúč.

Bolo by však dosť násilné, aby od slabého typu entity viedli dve rôzne "identifikačné" cesty k rovnakému identifikačnému zdroju.

- Ak je identifikovaný slabý entitný typ E pre dva rôzne identifikačné vzťahy ten istý, potom buď:
 - a) pre E existujú dva rôzne identifikačné zdroje, alebo
 - b) ten istý identifikačný zdroj vystupuje v dvoch úlohách a tie je nutné odlíšiť označením úloh.

Konceptuálnu schému, ktorej E-R diagram spĺňa predchádzajúce vlastnosti, nazveme dobre definovaná schéma.

4.4.7 Grafické vyjadrenie konštrukcie E-R diagramu

Tab. 4.3 Prehľad symbolov používaných v ERA-ORACLE

Obr. 4.36 Príklad E-R modelu (ORACLE DESIGNER)