

PROFESOR: NIKOLA KAMBUROV

Ayudante: Carla Lepe Pérez - mail: cdlepe@uc.cl

Ayudantía 2: Sucesiones

Pregunta 1

Estudie la convergencia de las siguientes sucesiones:

a)
$$\{0, 1, 0, 0, 1, 0, 0, 0, 1, \dots\}$$

b)
$$a_n = \frac{n^3}{n+1}$$

c)
$$a_n = \frac{3 + 5n^2}{n + n^2}$$

d)
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$

$$e) a_n = \ln(n+1) - \ln n$$

$$f) a_n = \frac{n!}{2^n}$$

Pregunta 2

Calcule el límite de la sucesión

$$\left\{\sqrt{2},\sqrt{2\sqrt{2}},\sqrt{2\sqrt{2\sqrt{2}}},\ldots\right\}$$

Pregunta 3

- a) Pruebe que si lím $_{n\to\infty}\,a_n=0$ y b_n es acotada, entonces lím $_{n\to\infty}\,a_nb_n=0$
- b) Dado $a_n = \frac{\cos^2 n}{2^n}$ determine si $\{a_n\}$ converge o diverge. Si converge, encuentre el límite.

Pregunta 4

Para los siguientes ejercicios utilize el teorema de sucesiones monótonas y acotadas.

- a) Dada la sucesión $a_1 = 1$ y $a_{n+1} = \frac{9(a_n + 1)}{9 + a_n}$ Demuestre que es convergente y calcule su limite.
- b) La sucesión $\{a_n\}$ se define como $a_1 = 1$ y $a_{n+1} = 3 \frac{1}{a_n}$ para $n \ge 1$. Pruebe que $\{a_n\}$ es convergente y calcule su límite.