CSE 543 Information Assurance and Security IA Management, Evaluation Systems, and Formal Methods

Professor Stephen S. Yau
Spring 2017

Why Need IA Management?

- Many managers tend to overlook IA since it is not directly related to their revenue
- Two basic factors affecting competition for resources
 - Value of your products (including services) to customers
 - Cost of providing them
- IA management staff needs to <u>persuade senior managers</u> that IA comes with a price tag, and has a return for saving cost for damages due to information lost or misused
- *Outsourcing* is more popular, but it may bring in more threats and vulnerabilities

IA Management Personnel

■ Information Systems Security Officer (ISSO)

 Responsible to DAA who ensures that security of an information system is implemented properly and throughout its entire life cycle

Operation Security (OPSEC) Manager

 Responsible to ISSO who prevents sensitive information from being available to potential adversaries

System Manager

- Responsible for proper operations and management of classified and unclassified Automated Information System (AIS).
- Supervises system staff in implementing AIS security policies, provides advices, and supports to ISSO on AIS security issues.

IA Management Personnel (cont.)

Program or Functional Manager

- Responsible for determining, with system manager, which users have verified needs to access their applications.
- Responsible for informing ISSO of any security incidents related to the application or the users of the application.

Communication Security (COMSEC) Custodian

 Responsible for the receipt, transfer, accounting, safeguarding and destruction of COMSEC material assigned to a COMSEC account.

Telecommunications Officer

 Responsible for receipt, transfer, accounting, safeguarding telecommunication processes in organization

Challenges for IA Management

- Increasing complexity of systems, networks, and interconnectivity
- *More reliance* on information and information systems, which rapidly be improved and more complicated and powerful
- Ever-changing internal and external threats
- Increasing competing demands
- Unavailable resources
- Decreasing assets
- Lack of experience
- Lack of training
- Lukewarm support from management

IA Management Tasks

- 'Managing resources'
- Coordination
- Budgeting, including possible outsourcing
- Selling the need
- *Dispensing technical guidance:* A written regulation or directive or policy can ensure consistency between process and standard operating procedure
- **Dealing with legal issues:** IA manager should be familiar with applicable legal issues in order to know when it is appropriate and necessary to contact a law enforcement agency in the event of security incident.

Life-cycle Management

- *Initiation:* Determine how required operational functions can be accomplished in a secure manner
- **Definition:** The functions of the system will determine the security requirements
- *Design:* Security requirements, including risk, cost, operations, must be integrated in system design
- Acquisition: IA manager must ensure that only reliable sources are used for software procurement
- Development: Security controls are built into the system

Life-cycle Management (cont.)

- **Implementation:** Incorporating the following:
 - Risk Management
 - C&A Process: Certification and Accreditation
 - Approval to Operate (ATO): Upon successful security evaluation of the system, IA manager <u>recommends</u> to the DAA that ATO or Interim approval to operate (IATO) should be granted. IATO is a temporary approval pending an accreditation decision.
 - Operation and Maintenance: Once the system has been turned on for operation, security of the system must be scrutinized to verify that it continues to meet requirements
 - **Destruction and Disposal:** Ensure that information processed and stored in the system is not inadvertently compromised because of improper destruction and disposal.

Security Review and Testing

- Conducted throughout system life-cycle:
- Common process:
 - Review security policies, documents, patches and updates,
 - Develop security matrix summarizing threats and protected assets
 - Review audit capability and use
 - Run analysis tools
 - Correlate all information
 - Develop reports
 - Make recommendations to correct problems

Identify Weaknesses in a System

- Vulnerability scanning: Scan for unused ports, unauthorized software
- <u>Discovery scanning</u>: Inventory and classification of information on OS and available ports, identification of running applications to determine device functions
- *Workstation scanning:* Make sure standard software configuration is current with latest security patches, locate unauthorized software
- Server scanning: Make sure that software stored on server is updated with latest security patches, locate uncontrolled or unauthorized software
- Port scanning: Scan various active ports used for communication (TCP/UDP)
 - Stealth scans: also called spoofed scans
- Vulnerability <u>testing</u>
 - False positives and false negative
 - Heavy traffic
 - System crash
 - Unregistered port numbers

Methods to Promote Awareness

- Periodic awareness sessions to orient new employees and refresh senior employees which are direct, simple and clear
- Live/interactive presentations thorough lectures and videos
- Publishing/distributing posters, company newsletters
- Incentives: awards and recognition for security- related achievement
- Reminders

- Training often held in specific classroom or through one-on-one training
- InfoSec examples:
 - Security-related job training for operators and specific users
 - Awareness training for specific departments or personnel groups with security-sensitive positions
 - *Technical security training* for IT support personnel and system administrators
 - Advanced InfoSec training for security practitioners and auditors
 - Security training for senior managers, functional managers

Summary

- Ensure *security* is planned and developed into all new systems
- Certify security features performing properly before system operate
- Approve and verify configuration changes to IA baseline that changes do not affect the terms of the system's accreditation.
- Assess the status of security features and system vulnerabilities through manual and automated reviews
- Dispose hardcopy printouts and nonvolatile storage media in a way that eliminates possible compromise of sensitive data
- Keep system documentation current, reflecting patches, version upgrades, and other baseline changes
- Ensure that HW/SW changes are approved and tested before installation and operation; IA manager is part of approval process

Stephen S. Yau CSE543 13

- A process in which the evidence for assurance is gathered and analyzed against criteria for functionality and assurance.
- Can result in a measure of *trust*, indicating how well a system meets selected criteria
 - A system is trusted if it has been shown to meet users' security requirements under specific conditions
 - Trust is based on assurance evidence

- An evaluation methodology provides the following features:
 - A set of requirements defining security functionality
 - A set of assurance requirements specifying required evidence of assurance
 - A methodology for determining whether the security requirements are satisfied based on assurance evidence.
 - A *measure* of the evaluation result (called a level of trust) indicating how *trustworthy* the product or system is

Trusted Computer System Evaluation Criteria (TCSEC)

- Developed in 1983-1999 by DoD
 - Also known as the *Orange Book*
- Emphasizes *confidentiality*, especially protection of government classified information
- Limitations:
 - Focus on security needs of U.S. government and military
 - Not address integrity, availability or other requirements critical to business applications

- Developed in 1991-2001 by European Union
- Major distinction between TCSEC and ITSEC
 - ITSEC emphasizes integrity and availability, while TCSEC emphasizes confidentiality
- Impact:
 - Can be used to evaluate any kinds of products or systems
- Limitations:
 - Considered technically weak compared to TCSEC
 - Not used in Canada and US

Common Criteria (CC)

- Developed by Canada, France, Germany, Netherlands, United Kingdom and United States, starting 1998
 - Latest revision is Version 3.1 Revision 4 released in September 2012
- An international standard, also known as <u>ISO 15408</u>
- Combines best features of TCSEC, ITSEC and FC
- Provides a common language and structure to express both security functional requirements and security assurance requirements
- Limitation:
 - Protection profile used in CC may not be as strong as TCSEC

Federal Criteria (FC)

- Developed by NIST and NSA
 - FC never completed (the last draft version was released in 1992), but was supplanted by *Common Criteria* in 1998
 - Many ideas of FC were adopted by the Common Criteria.
 - The concept of *protection profile (PP)*, which is an abstract specification of the security aspects of an IT product
 - The concept of *profile registry*, which is a collection of FC-approved protection profiles available to public for general use

Federal Criteria

http://csrc.nist.gov/drivers/documents/Federal-IT-Security-Assessment-Framework.pdf

Common Criteria

http://www.commoncriteriaportal.org/cc/

- Development started in 1997 by US
- The SSE-CMM is now *ISO Standard 21827*
 - The last version was released in 2008
- A process-oriented methodology for developing secure systems based on Software Engineering Capability Maturity Model (SE-CMM)
- Can be used to assess the <u>capabilities of security</u> <u>engineering processes of an organization and</u> <u>provide guidance in designing and improving them</u>
- Limitation: Analysis of processes is complex

Security Evaluation – Formal Methods

- A formal method means a method which has a mathematical foundation, and thus employs techniques and tools based on mathematics that support modeling, specification, and verification for hardware, software, systems, etc,
- A *formal approach* to security is the employment of a formal method in analyzing the security of a given information system or constructing a secure one.
- Formal methods can be applied at various levels of abstraction and during various development phases.

Security Evaluation—Applications of Formal Methods

- Objective: More precisely determine requirements and analyze the system so that security incidents can be prevented (or at least identified).
- Steps in using formal methods for security:
 - **1.System Specification: Abstraction and modeling** with a well-defined syntactic and semantic structure. It **documents** how the system operates or should operate.
 - 2. Requirement Specification: Security modeling (e.g., BLP model). It documents the security requirements <u>unambiguously</u>
 - 3. Verification: It can be formally done to validate the system with respect to its requirements, including
 - *Model checking* (by searching the satisfiability of the given characteristics of the system in the possible models)
 - *Theorem proving* (by inference of the given characteristics of the system using syntactical inference rules in theory proving)
- Formal methods can be applied to part of the three steps, and/or certain critical parts of the system.

Formal Methods – Modeling

- Abstract representations of a system using mathematical entities and concepts
- *Model* should capture essential system characteristics and ignore irrelevant details
- *Model* can be used for *mathematical reasoning* to prove system properties or predict new behavior
- Two types of models:continuous and discrete
- Formal specification model does the following,
 - Clarify requirements and high level design
 - Articulate implicit assumptions
 - Identify undocumented or unexpected assumptions
 - Expose defects
 - Identify exceptions
 - Evaluate test coverage

Formal Methods – Generating Formal Specifications

- Need to translate non-mathematical description (diagrams, table, natural language) into a *formal specification language*
- The specification is a concise and precise description of highlevel behavior and properties of a system
- Well-defined language semantics are needed to support formal deduction of specification
- Types of formal specifications,
 - *Model oriented*: Based on a model of the system behavior in terms of mathematical objects, like sets, sequences etc.
 - Statecharts, SCR (Software Cost Reduction), VDM (Vienna Development Method)
 - Petri nets, automata theoretic models
 - **Property oriented**: Based on a set of properties sufficient to describe system behavior in terms of axioms, rules, etc.
 - Algebraic semantics
 - Temporal logic

Formal Method – Role in System Design and Engineering

- Motivated by the expectation that <u>performing</u> <u>appropriate mathematical analysis can contribute to the</u> <u>reliability and robustness of an information system</u> <u>design</u>
- Formal specification of an information system may be used as a guide while the system is developed.
 - If the formal specification is in *operational* semantics (executable), the observed behavior of the system can be compared with the behavior of the specification.
 - If the formal specification is in *axiomatic semantics*, the pre-conditions and post-conditions of the specification may become assertions in the executable code.*

^{* &}lt;a href="https://en.wikipedia.org/wiki/Formal_methods">https://en.wikipedia.org/wiki/Formal_methods

Formal Methods — Bell-LaPadula (BLP) Model

- For *enforcing <u>access control</u>* in information systems and built on the concept of a *state machine with allowable states in a computer system*.
- The model defines two MAC rules and one DAC rule with three security properties:
 - Simple Security Property a subject at a given security level may not read an object at a higher security level (no read-up)
 - ★-property (read "star"-property) a subject at a given security level must not write to any object at a lower security level (no write-down)
 - Discretionary Security Property use of an access matrix to specify the discretionary access control

http://en.wikipedia.org/wiki/Bell%E2%80%93LaPadula_model

- Limitations of Formal Methods
- Requires sound mathematical knowledge of the developer
- Different aspects of a design may be represented by different formal specification methods
- Useful for *consistency checks*, but cannot guarantee the *completeness* of a specifications
- For majority of systems, formal methods do not offer significant cost or quality advantages over others