

Natural Technological (NaTech) Accidents, Risk Assessment & Management

NaTech Accidents

Simone Pagliuca, Samule Mezzaro, Cyrille de Lurion

Index

- What are NaTech Accidents?
 - When should NaTech Scenarios be considered?
 - Current QRA
 - Example of Risk Assessment
 - Gaps & Issues

What are NaTech Accidents?

Def.:

Def.: NaTech accidents are <u>Tech-related accidents</u> influenced by <u>Natural Events</u> which can cause damages to infrastructures, people and the surrounding environment

Landslide

Great East Japan Earthquake and Tsunami (2011)

Injuries due to the H explosion, Two workers suffered radiation burns Some workers later died of leukemia

Substantial economic losses

Contamination of the surrounding environment

Severe social and political consequences on the local community and the rest of the world

Fukushima NPP Accident

Landslide of Mount Toc (1967)

1917 people died

Massive damages to close inhabited areas and infrastructure.

Closest villages were completely swept away

Severe social and political consequences...

Vajont Disaster

Index

- What are NaTech Accidents?
- When should NaTech Scenarios be considered?
 - Current QRA
 - Example of Risk Assessment
 - Gaps & Issues

When should NaTech Scenarios be considered?

Any industrial plant that handles Hazardous Materials

- Emergency Planning
- Economic Consequences
- Social & Political Implications

Causes and "Victims"...

Index

- What are NaTech Accidents?
- When should NaTech Scenarios be considered?
- - Example of Risk Assessment
 - Gaps & Issues

Current QRA

Basic Structure

- 1. Preliminary Data Gathering
- 2. Assessment of NaTech Scenario
- 3. *Assessment of Domino Escalation
- 4. Risk Evaluation

Choose the natural event and its magnitude.

1: Preliminary Data Gathering

Fire from a tank spread to others, 300 tons of oil lost

Oil storage ignited and collapsed, Involved 3 other tanks, It caused 33 fatalities

Crude oil tank with 40'000 tons ignited
China Involved 5 similar tanks
16 fatalities and 70 injuries

Earthquakes: Peak ground acceleration

Floods: Water depth and velocity

Lightnings: Flash density

Data can be extracted from:

- Historical data,
- Natural hazard maps (if they exist)
- Empirical correlations

•••

Poland

1971

1989

Lightning Impact

- 1. Pool Fire
- 2. Explosion
- 3. Jet Fire
- 4. Toxic Dispersion
- 5. No Consequence

Current QRA

2: Primary NaTech Scenario

- Individuate possible system states •
- Define the failure or damage probabilities •
- Include only plausible combinations of events •

Estimation of the failure probability:

- Fragility curves
- Vulnerability models
- Statistical models

Main difference between models

Current QRA

3: Domino Escalation

Not all methodologies include this step Useful for storage facilities closely packed together

Escalation Vectors:

Radiation heat from fire

Fragment collisions from explosions

Release of toxic substances are neglected

Conditional escalation probabilities established, for each:

- Component
- Escalation Vector
- Primary Event
- Geometry

Several levels of escalations can be considered.

4: Risk Evaluation

Multiple sources of physical effects, such as heat radiation and toxic concentration

Conventional models for consequence analysis cannot be applied

Map of death probability for the overall escalation scenario

Index

- What are NaTech Accidents?
- When should NaTech Scenarios be considered?
- Current QRA
- Example of Risk Assessment
 - Gaps & Issues

Methodology

Primary Scenarios: Single lightning.
This event has low probability to
cause damage to more than one unit.

Secondary Scenarios: nearby units are damaged as a consequence of the primary scenario.

Introduction

Focus on Domino effect of NaTech accidents triggered by lightning

Aim to extend previous QRA of NaTech scenarios induced by lightning to escalation scenarios caused by domino effects.

Lightnings are responsible for 95% of NaTech accidents in the Oil&Gas and Petrochemical sectors.

Results

6 atmospheric tanks storing gasoline, 3 pressurized horizontal vessels storing GPL 1 horizontal vessel storing ammonia

LSIR = Local-Specific Individual Risk

LISR =
$$10^{-6} \sim 10^{7}$$

Conventional Evaluation

Results

Conventional + NaTech

Conventional + NaTech + Domino

LISR =
$$\sim 10^{-4}$$

Index

- What are NaTech Accidents?
- When should NaTech Scenarios be considered?
- Current QRA
- Example of Risk Assessment

Common issues

Rare occurrence rate

Not all disasters are well documented

Accidents not always recognized as "NaTech"

Scarcity of Available Data

Famous disasters with numerous casualties but <u>very low probability</u> of occurrence like Tsunamis and earthquakes

are "more interesting" then

Frequently occurring but lower magnitude natural events: lightning, rain, landslides, extreme temperatures

Human Bias

Research gaps

Effects of the warning time before a disaster

Consequences of the event in respect to the **emergency response**

Effect on workers and emergency responders

Effect on Emergency infrastructure/resources

Post disaster planning:

BCP: Business Continuation Planning

R3: Recovery, Reconstruction, Renovation

Research gaps

Lack of models covering "Side Effects" beyond immediate damage:

Risk Communication

Risk Perception

Health impact

For all, the workers, the surrounding population and the general public

Outdated model approach

Most models use either quantitative or qualitative approaches instead of a, more promising, semi-quantitative approach

Methodologies

Type of analysis	Geological hazards								Hydro-meteorological hazards									Multi-									
	Earthquake			Volcanic eruptions		Landslides		Tsunami		Lightning		Weather related		Floods		Extreme Temp.		hazard									
	QL	SQ	QN	QL	SQ	QN	QL	SQ	QN	QL	SQ	QN	QL	SQ	QN	QL	SQ	QN	QL	SQ	QN	QL	SQ	QN	QL	SQ	QN
Accident analysis and return of experiences Risk																											
Assessment																											
Risk reduction																											
Risk communication and risk perception																	1:										
Health impacts																			i								

Number of publications

Natural Technological (NaTech) Accidents, Risk Assessment & Management

Thank you!

Simone Pagliuca, Samule Mezzaro, Cyrille de Lurion

			ogical ards		Hydi	rd			
Approach	Earthquake	Tsunami	Volcanic eruptions	Landslides	Weather	Lightning	Floods	Extreme temp.	Multi-haza
Qualitative									
Semi-quantitative									
Quantitative									

Number of publications

Sourrounding enviroment, Social and Psicological Effects, Politics...