Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 19

Esercizi svolti

Es. 1. Si minimizzi l'automa di Mealy specificato dalla seguente tabella:

	0	1
S0	S1/0	S0/0
S1	S2/0	S4/0
S2	S2/0	S1/0
S3	S1/0	S3/1
S4	S1/0	S0/0
S5	S2/0	S3/1

SOLUZIONE:

Costruiamo la tabella triangolare:

S1	(S1,S2) (S0,S4)				
S2	(S1,S2) (S0,S1)	(S1,S4)			
S3	X	X	X		
S4	0	(S1,S2) (S0,S4)	(S1,S2) (S0,S1)	X	
S5	X	X	X	(S1,S2)	X
	S0	S1	S2	S3	S4

Essendo S0 e S4 equivalenti, le dipendenze da tale coppia vanno eliminate. Nelle dipendenze restanti, notiamo che S1,S2 dipende da S1,S4, e viceversa. Pertanto, anche entrambe queste coppie sono equivalenti, da cui anche S0,S1 e S3,S5 sono equivalenti; infine, da ciò segue che tutte le restanti coppie sono equivalenti. Quindi l'automa minimo è costituito dagli stati $Q0 = \{S0, S1, S2, S4\}$ e $Q1 = \{S3, S5\}$ ed è rappresentato come segue:

Es. 2. Trovare il minimo automa di Moore equivalente al seguente automa di Mealy di stato iniziale S_0

SOLUZIONE:

La rappresentazione tabellare dell'automa è

Sta	$Input_t = 0$	$Input_t = 1$	
Stato Me Output Me	Stato Mo Outp	out _{Mo}	
S ₀ 0 0	T_0 0	T_0	T ₅
$S_0 = 0 - 1$	T_1 0	T_0	T_5
$S_0 = 1 = 0$	T_2 1	$0 T_0$	T_5
S ₀ 1 1	T ₃ 1	T_0	T_5
$S_1 = 0 = 0$	T_4 0	$0 T_1$	T ₁₁
$S_1 0 1$	T_5 0	1 T ₁	T ₁₁
S_1 1 0	T_6 1	$0 T_1$	T ₁₁
S ₁ 1 1	T ₇ 1	1 T ₁	T ₁₁
$S_2 = 0 = 0$	T ₈ 0	0 T_{10}	T ₈
S ₂ 0 1	T ₉ 0	1 T ₁₀	T ₈
S ₂ 1 0	T_{10} 1	$0 T_{10}$	T ₈
S ₂ 1 1	T_{11} 1	T_{10}	T ₈

Possiamo subito eliminare gli stati T_2 , T_3 , T_4 , T_6 , T_7 , T_9 poiché non saranno mai raggiunti dallo stato iniziale T_0 . Pertanto la tabella dell'automa è

Stato _t	$Input_t = 0$	$Input_t = 1$
$T_0 / 00$	T_0	T_5
$T_1/01$	T_0	T_5
$T_5 / 01$	T_1	T ₁₁
$T_8/00$	T ₁₀	T_8
$T_{10}/10$	T ₁₀	T_8
$T_{11}/11$	T ₁₀	T_8

Una minimizzazione sembrerebbe possibile (per esempio raggruppando assieme < T_8 , T_{10} , T_{11} > oppure < T_0 , T_1 >, che hanno righe uguali nella tabella appena vista) ma ciò non è possibile perché tutti gli stati con stessa funzione di transizione hanno output diverso, mentre quelli con stesso output hanno funzioni di transizione diverse. In base al carattere emesso dallo stato possiamo distinguere le seguenti coppie:

T ₁	X				
T_5	X			-	
T ₈		X	X		
T ₁₀	X	X	X	X	
T ₁₁	X	X	X	X	X
	T ₀	T ₁	T ₅	T ₈	T ₁₀

Osserviamo che : (T_0,T_8) è da marcare poiché leggendo 0 si va nella cella marcata (T_0,T_{10}) (T_1,T_5) è da marcare poiché leggendo 0 si va nella cella marcata (T_0,T_1) Pertanto gli stati sono tutti distinguibili e l'automa ottenuto è minimo. La sua rappresentazione

Esercizi da svolgere

Es. 1. Sia dato il seguente automa con stato iniziale T0:

Lo si minimizzi e si dia, tramite diagrammi temporali, l'output e le transizioni di stato ottenuti in corrispondenza della stringa di input 110001001001 (N.B.: si consideri l'automa realizzato mediante un circuito ideale, cioè senza ritardi).

Es. 2. Minimizzare il seguente automa

