Compression d'images par ondelettes

Benjamin CATINAUD

Année 2017 - 2018

Théorie des ondelettes Algorithme de Mallat Un algorithme efficace ? Bilan visuel

Introduction

- Plus de 2200 photos mises en ligne sur Facebook par seconde¹
- Débit moyen en France : 8.9 Mbps
- Taille d'une image : de l'ordre du mégaoctet

¹ Source : www.planetoscope.com

- 1 Théorie des ondelettes
 - Une ondelette, c'est quoi ?
 - Analyse multi-résolution Espaces d'approximation
 - Analyse multi-résolution Espaces de détails
- Algorithme de Mallat
 - Définitions
 - Algorithme de transformation WT
 - Algorithme de reconstruction WR
 - Et concrètement ?
- Un algorithme efficace ?
 - Complexité
 - Taux de compression
 - Estimation de l'erreur
- Bilan visuel
- Conclusion

Définition : Ondelette

- ullet Fonction ψ de carré intégrable sur $\mathbb{R}\left(\int_{\mathbb{R}}\mid\psi\mid^{2}<+\infty\right)$
- ullet Support de ψ compact
- $\int_{\mathbb{R}} \psi$ converge et vaut 0
- Création d'une famille d'ondelettes par dilatation et translation de l'ondelette mère $\left(\psi_{a,b}(t)=\psi\left(\frac{t-b}{a}\right)\right)$

Exemples : Ondelette de Daubechies et de Haar

Analyse multi-résolution : Espaces d'approximation

Définition

Soit $j \in \mathbb{Z}$. Espace d'aproximation à l'échelle 2^j : espace vectoriel V_j des fonctions de $L^2(\mathbb{R},\mathbb{R})$ constantes sur les intervalles de la forme $[2^jk;2^j(k+1)[,k\in\mathbb{Z}$

Propriétés fondamentales

- $\forall j \in \mathbb{Z}, V_{j+1} \subseteq V_j$
- ullet $\bigcup_{j\in\mathbb{Z}}V_j$ est dense dans $L^2(\mathbb{R},\mathbb{R})$

Caractérisation

$$\forall j \in \mathbb{Z}, V_j = \left\langle \left\{ \phi_{j,k} = \frac{1}{\sqrt{2^j}} \mathbb{1}_{[2^j k; 2^j (k+1)[}, \ k \in \mathbb{Z} \right\} \right\rangle$$

Analyse multi-résolution

Définition des espaces de détails

On définit W_j , pour $j \in \mathbb{Z}$, tel que

$$V_{j-1} = V_j \bigoplus^{\perp} W_j$$

Caractérisation des espaces de détails

$$\forall j \in \mathbb{Z}, W_j =$$

$$\left\langle \left\{ \psi_{j,k} = \frac{1}{\sqrt{2^{j}}} \left(\mathbb{1}_{[2^{j-1}k;2^{j-1}(k+1)[} - \mathbb{1}_{[2^{j-1}(k+1);2^{j-1}(k+2)[}), \ k \in \mathbb{Z} \right) \right\} \right\rangle$$

Propriété des fonctions génératrices

On remarque la relation de récurrence :

$$\phi_{j,k} = \frac{1}{\sqrt{2}} (\phi_{j-1,2k} + \phi_{j-1,2k+1})$$

$$\psi_{j,k} = \frac{1}{\sqrt{2}} (\phi_{j-1,2k} - \phi_{j-1,2k+1})$$

Définitions

Algorithme de transformation WT Algorithme de reconstruction WR Et concrètement ?

Définition : Vecteurs associés à la transformation par ondelettes de Haar

$$\mathcal{H}_a = \frac{1}{2}(1,1) \in \mathbb{R}^2$$
 pour les espaces $(V_j)_{j \in \mathbb{Z}}$
 $\mathcal{H}_d = \frac{1}{2}(1,-1) \in \mathbb{R}^2$ pour les espaces $(W_j)_{j \in \mathbb{Z}}$

Définition: Fonction filtre

Pour $b, x \in \mathbb{R}^n$ et $a \in \mathbb{R}^*$, la fonction filtre $\Phi_{a,b}$ est telle que

$$\forall i \in [1; n], \ \left(\Phi_{a,b}(x)\right)_k = \frac{1}{a} \sum_{i=1}^k b_i x_{k-i}$$

On notera \varPhi la fonction filtre sur les espaces d'approximation et \varPsi celle sur les espaces de détails

Définition : Fonction d'échantillonage

$$\downarrow_2 : \mathbb{R}^n \longrightarrow \mathbb{R}^{\lfloor n/2 \rfloor}$$
$$(x_1, x_2, ..., x_n) \longmapsto (x_2, x_4, ..., x_{2\lfloor n/2 \rfloor})$$

Algorithme 1 Transformée par ondelettes d'une matrice

```
Entrée(s) une matrice M \in M_{n,m}(\mathbb{R}) et un entier i_V \in \mathbb{N}
   Normaliser M
   pour k=0 à i_V-1 faire
       pour i=1 à n/2^k faire
           Affecter au vecteur M_{i,[1;\frac{m}{2k+1}]} le résultat de (\downarrow_2 \circ \Phi)(M_{i,[1;\frac{m}{2k+1}]})
           Affecter au vecteur M_{i,[\frac{m}{2k+1}+1;\frac{m}{2k}]} le résultat de (\downarrow_2 \circ \Psi)(M_{i,[1;\frac{m}{2k}]})
       fin du pour
       pour i=1 à m/2^k faire
           Affecter au vecteur M_{[1;\frac{n}{n^k+1}],j} le résultat de (\downarrow_2 \circ \Phi)(M_{[1;\frac{n}{n^k}],j})
           Affecter au vecteur M_{\left[\frac{n}{2k+1}+1;\frac{n}{2k}\right],j} le résultat de (\downarrow_2 \circ \Psi) \left(M_{\left[1;\frac{n}{2k-1}\right],j}\right)
       fin du pour
   fin du pour
Sortie(s) La matrice M ainsi obtenue
```

Algorithme 2 Reconstruction d'une matrice

```
Entrée(s) une matrice M \in M_{n,m}(\mathbb{R}) et un entier j_V \in \mathbb{N}
   pour k = i_V - 1 à 0 faire
       pour i=1 à m/2^k faire
           Affecter au vecteur M_{[1;\frac{n}{2k}],j} la somme de (\Gamma \circ \uparrow_2) (M_{[1;\frac{n}{2k+1}],j})
           et de (\Omega \circ \uparrow_2) \left( M_{\left[\frac{n}{2k+1}+1;\frac{n}{2k}\right],j} \right)
       fin du pour
       pour i = 1 à n/2^k faire
           Affecter au vecteur M_{i,[1;\frac{m}{L}]} la somme de (\Gamma \circ \uparrow_2)(M_{i,[1;\frac{m}{L}]}) et
           de (\Omega \circ \uparrow_2) \left( M_{i, \left[\frac{m}{2k+1} + 1; \frac{m}{2k}\right]} \right)
       fin du pour
   fin du pour
Sortie(s) La matrice M ainsi obtenue
```

Théorie des ondelettes Algorithme de Mallat Un algorithme efficace ? Bilan visuel Conclusion

Définitions
Algorithme de transformation WT
Algorithme de reconstruction WR
Et concrètement ?

Complexité de la fonction WT

Pour une image de taille nxm pixels, on a une complexité de :

$$O(nm + nm^2 + mn^2) = O((max(n, m))^3)$$

Distance de compression

On peut définir une distance de la manière suivante :

$$d: M_{n,m}(\mathbb{R}) \times M_{n,m}(\mathbb{R}) \longrightarrow \mathbb{R}^+$$
$$(M,N) \longmapsto \frac{\|M-N\|}{nm}$$

Définition: Fonction erreur

On définit la fonction erreur pour $j_V \in \mathbb{N}$ comme suit avec γ_{j_V} la fonction de compression et ρ_{j_V} la fonction de décompression :

$$\mathcal{E}_{j_{V}}: M_{n,m}(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$M \longmapsto d\left(M, \left(\rho_{j_{V}} \circ \gamma_{j_{V}}\right)(M)\right)$$

Théorie des ondelettes Algorithme de Mallat Un algorithme efficace ? Bilan visuel Conclusion

Théorie des ondelettes Algorithme de Mallat Un algorithme efficace ? Bilan visuel Conclusion

Conclusion

Théorie des ondelettes Algorithme de Mallat Un algorithme efficace ? Bilan visuel Conclusion

Merci pour votre attention!

Bibliographie

- René Alt, *La transformation en ondelettes*, Professeur à l'université Pierre et Marie Curie.
- Philippe Carré and Rémi Cornillet, *Code matlab*, professeur de l'université de Poitiers et responsable de l'équipe Icones, étudiant à l'ENS de Rennes.
- Phillip K.Poon, *Wavelets*, Ph.D. thesis, College of Optical Sciences, University of Arizona, 2012.
- Olivier Rioul, *Ondelettes régulières: application à la compression d'images fixes*, Ph.D. thesis, Télécom ParisTech, 1993.
- Pascal Szacherski, Compression, ondelettes et algorithmes afférents.

Figure: Exemple de la différence entre le choix du scalaire $\frac{1}{\sqrt{2}}$ (à gauche) et du scalaire $\frac{1}{2}$ (à droite)

Figure: Exemple graphique d'une fonction de V_0 (à gauche) et de V_1 (à droite)

Démonstration de la densité l

Soit $\varepsilon > 0$. Soit $f \in L^2(\mathbb{R}, \mathbb{R})$ telle que f est continue par morceaux un nombre fini de fois et de support compact et admettant une limite (nulle). f est continue par morceaux sur des intervalles que l'on va noter $(D_n)_{n \in I}$ avec $I \subset \mathbb{N}$, I fini.

On va donc limiter l'étude à un intervalle D_n pour $n \in I$.

On pose $D_n =]\alpha; \beta[$.

Cas 1 :
$$\alpha \neq -\infty$$
 et $\beta \neq +\infty$

Ainsi la fonction f est prolongeable par continuité sur $\overline{D_n} = [\alpha; \beta]$. Par conséquent, f est continue sur un segment donc, par théorème de Heine, elle y est uniformément continue.

Par définition de continuité uniforme, on a :

$$\exists \delta_n > 0, \forall x, y \in D_n, |x - y| \leqslant \delta_n \Rightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Démonstration de la densité II

Or, d'autre part,
$$\lim_{j \to -\infty} 2^j = 0$$
 et $\lim_{j \to +\infty} 2^j = +\infty$ donc $\exists j_n \in \mathbb{Z}, 2^{j_n} \leqslant \delta_n < 2^{j_n+1}$ Ainsi $\forall x, y \in D_n, \mid x - y \mid \leqslant 2^{j_n} \Rightarrow \mid f(x) - f(y) \mid \leqslant \varepsilon$. Cas $2: \alpha \neq -\infty$ ou $\beta \neq +\infty$

Dans ce cas, on procéde de même en se ramenant à un segment en utilisant la définition de la limite appliquée à ε en $\pm\infty$.

Dans tous les cas, on pose alors une fonction $\psi_n \in V_{j_n}$ telle que pour tout intervalle de la forme $[2^{j_n}k;2^{j_n}(k+1)[$ où $k\in\mathbb{Z}$, il existe un $x_{n,k}\in J_n$ tel que $\forall y\in[2^{j_n}k;2^{j_n}(k+1)[$, $\psi_n(y)=f(x_{n,k})$ (ce $x_{n,k}$ existe sous condition que $[2^{j_n}k;2^{j_n}(k+1)[\subset D_n$, si ce n'est pas le cas, on pose alors $\psi_n\mid_{[2^{j_n}k;2^{j_n}(k+1)[}=0)$.

On obtient donc un ensemble d'indices $J_n = \left\{j_n, n \in I\right\}$ et un ensemble de fonctions $\left\{\psi_n, n \in I\right\} \subset \bigcup_{i \in \mathbb{Z}} V_j$.

Démonstration de la densité III

Par propriété d'inclusion (i), en posant $j_{\varepsilon} = \min J_n$ (existe car I est fini), et en définissant $P_{V_{j_{\varepsilon}}}$ à l'aide des ψ_n pour $n \in I$, on obtient que :

$$\bigcup_{j\in\mathbb{Z}}V_j$$
 est dense dans $L^2(\mathbb{R},\mathbb{R})$

Démonstration de la complexité

Soit $j_V \in \mathbb{N}$. Soit $M \in M_{n,m}(\mathbb{R})$.

La complexité de la normalisation est de l'ordre de O(nm).

Soit $k \in [0; j_v - 1]$. Soit $i \in [1; n/2^k]$

Comme la complexité de l'affectation est linéaire en la taille du vecteur, l'affectation a une complexité de $\frac{m}{2k+1}$.

De plus, la fonction \downarrow_2 o Φ s'effectue en un temps quadratique en la taille du vecteur (due à la fonction filtre).

Ainsi, le calcul du résultat de cette fonction appliqué au vecteur $M_{i,[1;\frac{m}{2^k}]}$ a une complexité de $C(\frac{m}{2^k})^2$ avec C>0.

Ainsi, la première boucle s'effectue en $O\left(\frac{nm^2}{2^{3k-1}}\right)$.

On démontre de même que la deuxième boucle s'effectue en $O\left(\frac{mn^2}{2^{3k-1}}\right)$.

Ainsi la complexité de cet algorithme est bien de

$$O(nm + nm^2 + mn^2)$$

Démonstration de (WR)o(WT) = id

Soit $(x, y) \in \mathbb{R}^2$. Par définition des algorithmes, il s'agit en fait de démontrer que :

$$\begin{array}{lll} \Phi_{1,\mathcal{R}_a}\Big(\Phi_{1,\mathcal{H}_a}(x,y),\Phi_{1,\mathcal{H}_d}(x,y)\Big) &=& x \\ \Phi_{1,\mathcal{R}_d}\Big(\Phi_{1,\mathcal{H}_a}(x,y),\Phi_{1,\mathcal{H}_d}(x,y)\Big) &=& y \end{array}$$

C'est à dire, par définition des fonctions filtres, qu'il s'agit de montrer que :

$$\frac{x+y}{2} + \frac{x-y}{2} = x$$

$$\frac{x+y}{2} - \frac{x-y}{2} = y$$

Ce qui est clairement le cas ■

