Table of Laplace Transforms
$$f(t) = \mathfrak{L}^{-1}\{F(s)\} \qquad F(s) = \mathfrak{L}\{f(t)\} \qquad f(t) = \mathfrak{L}^{-1}\{F(s)\} \qquad F(s) = \mathfrak{L}\{f(t)\}$$
1. 1
$$\frac{1}{s} \qquad 2. \qquad e^{st} \qquad \frac{1}{s-a}$$
3. $t^{s}, \quad n = 1, 2, 3, ...$ $\frac{n!}{s^{s+1}} \qquad 4. \quad t^{p}, p > -1$ $\frac{\Gamma(p+1)}{s^{p+1}}$
5. \sqrt{t} $\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}} \qquad 8. \quad \cos(at)$ $\frac{s}{s^{\frac{2}{3}} + a^{2}}$
7. $\sin(at)$ $\frac{a}{s^{\frac{2}{3}} + a^{2}} \qquad 8. \quad \cos(at)$ $\frac{s}{s^{\frac{2}{3}} + a^{2}}$
8. $\cos(at)$ $\frac{s^{\frac{2}{3}} - a^{2}}{(s^{\frac{2}{3}} + a^{2})^{2}}$
10. $t\cos(at)$ $\frac{2a^{s}}{(s^{\frac{2}{3}} + a^{2})^{2}}$
11. $\sin(at) - at\cos(at)$ $\frac{2a^{3}}{(s^{\frac{2}{3}} + a^{2})^{2}}$ 12. $\sin(at) + at\cos(at)$ $\frac{2as^{2}}{(s^{\frac{2}{3}} + a^{2})^{2}}$
13. $\cos(at) - at\sin(at)$ $\frac{s(s^{2} - a^{2})}{(s^{\frac{2}{3}} + a^{2})^{2}}$ 14. $\cos(at) + at\sin(at)$ $\frac{s(s^{2} + a^{2})^{2}}{(s^{\frac{2}{3}} + a^{2})^{2}}$
15. $\sin(at + b)$ $\frac{s\sin(b) + a\cos(b)}{s^{\frac{2}{3}} + a^{2}}$ 18. $\cosh(at)$ $\frac{s}{s^{\frac{2}{3}} - a^{2}}$ 19. $e^{at}\sin(bt)$ $\frac{b}{(s-a)^{2} + b^{2}}$ 20. $e^{at}\cos(bt)$ $\frac{s-a}{(s-a)^{2} + b^{2}}$
21. $e^{at}\sin(bt)$ $\frac{b}{(s-a)^{2} - b^{2}}$ 22. $e^{at}\cosh(bt)$ $\frac{s-a}{(s-a)^{2} - b^{2}}$
23. $t^{*}e^{at}, \quad n = 1, 2, 3, ...$ $\frac{n!}{(s-a)^{a+1}}$ 24. $f(ct)$ $\frac{1}{c}F(\frac{s}{c})$
25. $u_{c}(t) = u(t-c)$ $\frac{e^{-ca}}{s}$ 26. $\delta(t-c)$ $\frac{e^{-ca}}{(s-a)^{2} - b^{2}}$
27. $u_{c}(t)f(t-c)$ $e^{-ca}F(s)$ 28. $u_{c}(t)g(t)$ $e^{-ca}\mathcal{L}\{g(t+c)\}$
29. $e^{at}f(t)$ $F(s-c)$ 30. $t^{*}f(t), \quad n = 1, 2, 3, ...$ $(-1)^{*}F^{(s)}(s)$
31. $\frac{1}{t}f(t)$ $\int_{s}^{\infty}F(u)du$ 32. $\int_{s}^{t}f(v)dv$ $\frac{F(s)}{s^{2}}F(s) = f(0)-f(0)$
35. $f'(t)$ $sF(s) = f(0)$ 36. $f''(t)$ $s^{2}F(s) = f(0)-f'(0)$

37. $f^{(n)}(t)$

 $s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$

Table Notes

- 1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.
- 2. Recall the definition of hyperbolic functions.

$$\cosh(t) = \frac{\mathbf{e}^t + \mathbf{e}^{-t}}{2} \qquad \qquad \sinh(t) = \frac{\mathbf{e}^t - \mathbf{e}^{-t}}{2}$$

- 3. Be careful when using "normal" trig function vs. hyperbolic functions. The only difference in the formulas is the "+ a²" for the "normal" trig functions becomes a "- a²" for the hyperbolic functions!
- 4. Formula #4 uses the Gamma function which is defined as

$$\Gamma(t) = \int_0^\infty \mathbf{e}^{-x} x^{t-1} \, dx$$

If *n* is a positive integer then,

$$\Gamma(n+1) = n!$$

The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

$$\Gamma(p+1) = p\Gamma(p)$$

$$p(p+1)(p+2)\cdots(p+n-1) = \frac{\Gamma(p+n)}{\Gamma(p)}$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Table 1: Table of Laplace Transforms

Number	f(t)	F(s)
1	$\delta(t)$	1
2	$u_s(t)$	$\frac{1}{s}$
3	t	$\frac{1}{s^2}$
4	t^n	$\frac{n!}{s^{n+1}}$
5	e^{-at}	$\frac{1}{(s+a)}$
6	te^{-at}	$\frac{1}{(s+a)^2}$
7	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$
8	$1 - e^{-at}$	$\frac{a}{s(s+a)}$
9	$e^{-at} - e^{-bt}$	$\frac{b-a}{(s+a)(s+b)}$
10	$be^{-bt} - ae^{-at}$	$\frac{(b-a)s}{(s+a)(s+b)}$
11	$\sin at$	$\frac{a}{s^2 + a^2}$
12	$\cos at$	$\frac{s}{s^2 + a^2}$
13	$e^{-at} \cos bt$	$\frac{s+a}{(s+a)^2+b^2}$
14	$e^{-at} \sin bt$	$\frac{b}{(s+a)^2+b^2}$
15	$1 - e^{-at}(\cos bt + \frac{a}{b}\sin bt)$	$\frac{a^2 + b^2}{s[(s+a)^2 + b^2]}$

Table 1: Properties of Laplace Transforms

Number	Time Function	Laplace Transform	Property
1	$\alpha f_1(t) + \beta f_2(t)$	$\alpha F_1(s) + \beta F_2(s)$	Superposition
2	$f(t-T)u_s(t-T)$	$F(s)e^{-sT}; T \ge 0$	Time delay
3	f(at)	$\frac{1}{a}F(\frac{s}{a}); a > 0$	Time scaling
4	$e^{-at}f(t)$	F(s+a)	Shift in frequency
5	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$	First-order differentiation
6	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - f^{(1)}(0^-)$	Second-order differentiation
7	$f^n(t)$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} f^{(1)}(0) - \dots - f^{(n-1)}(0)$	n th -order differentiation
6	$\int_{0^{-}}^{t} f(\zeta) d\zeta$	$\frac{1}{s}F(s)$	Integration
7	$f(0^+)$	$\lim_{s \to \infty} sF(s)$	Post-initial value theorem
8	$\lim_{t\to\infty} f(t)$	$\lim_{s \to 0} sF(s)$	Final value theorem
9	tf(t)	$-rac{dF(s)}{ds}$	Multiplication by time