```
# do the same thing, but use scikitlearn randomforest classifier
!pip install scikit-learn==1.3.0 --upgrade
!pip install --upgrade xgboost
     Requirement already satisfied: scikit-learn==1.3.0 in /usr/local/lib/python3.11/dist-packages (1.3.0)
     Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.11/dist-packages (from scikit-l
     Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.11/dist-packages (from scikit-le
     Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from scikit-l
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from s
     Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.4)
     Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.26.4
     Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboo
     Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.13.1
#classify with cycle features including alignment
import pandas as pd
# import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.metrics import classification_report
import xgboost as xgb
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc curve
import seaborn as sns
from matplotlib import pyplot as plt
import numpy as np
from IPython import get_ipython
from IPython.display import display
from sklearn.impute import SimpleImputer # Import SimpleImputer for imputation
import shap
shap.initjs()
\rightarrow
Set up
df = pd.read csv('/content/cycle and HMM features true dataset 48days.csv')
df.head()
```

```
# LOOK AT LAUREN'S GITHUB FOR CODE
# try w xgboost
# try w subset of features
# explanatory tools to see which variables are important (SHAP values)
df = df.loc[df['pat_cat_map'].isin(['Baseline', 'PCOS'])]
df['label_01'] = df['pat_cat_map'].map({'Baseline':0, 'PCOS':1})
→ <ipython-input-302-1fe60784182b>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing</a>
       df['label_01'] = df['pat_cat_map'].map({'Baseline':0, 'PCOS':1})
df = df.replace(-np.inf, np.nan)
df.columns
    Index(['hub_id', 'pat_cat_map', 'cycle_min', 'cycle_max', 'cycle_median',
             'cycle_mean', 'cycle_range', 'cycle_std', 'num_cycles',
             'viterbi_logprob_mean', 'viterbi_logprob_min', 'viterbi_logprob_max',
             'viterbi_logprob_std', 'viterbi_logprob_median',
             'complete_logprob_mean', 'complete_logprob_min', 'complete_logprob_max',
             'complete_logprob_std', 'complete_logprob_median', 'label_01'],
            dtype='object')
HMM_features = [ 'viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete logprob median']
cycle_features = ['cycle_min', 'cycle_max', 'cycle_median',
       'cycle_mean', 'cycle_range', 'cycle_std']
target = 'label_01'
```

All features

```
print('Performance with all features')
X_train_all, X_test_all, y_train_all, y_test_all = train_test_split(df[HMM_features+cycle_features], df[ta
                                                    shuffle=True, random_state=51)
→ Performance with all features
clf = xgb.XGBClassifier(random_state=51)
clf.fit(X_train_all, y_train_all)
y_pred_all = clf.predict(X_test_all)
y_score_all = clf.predict_proba(X_test_all)
print(confusion_matrix(y_test_all, y_pred_all, normalize='true'))
    [[0.25423729 0.74576271]
      [0.10497238 0.89502762]]
print(classification_report(y_pred_all, y_test_all))
₹
                                recall f1-score
                   precision
                                                   support
                0
                        0.25
                                  0.44
                                            0.32
                                                        34
                1
                        0.90
                                  0.79
                                            0.84
                                                       206
         accuracy
                                            0.74
                                                       240
                        0.57
                                  0.61
                                            0.58
                                                       240
        macro avg
                        0.80
                                  0.74
                                            0.76
                                                       240
     weighted avg
```

fpr_full, tpr_full, thresholds_full = roc_curve(y_test_all, y_score_all[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_full, y=tpr_full, label='Cycle + HMM features - False Missigness 0-3 Days', errorbar=No
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_full_features.pdf')

```
→ <Axes: >
```



```
#overall accuracy:
print((y_pred_all==y_test_all).sum()/len(y_pred_all))
```

precision

0.24

0.91

0

1

recall f1-score

0.31

0.84

0.47

0.79

→ 0.7375

 $\overline{2}$

Cycle features only

```
#PERFORMANCE WITH CYCLE FEATURES ONLY
print('Performance with cycle features only')

X_train_cycle, X_test_cycle, y_train_cycle, y_test_cycle = train_test_split(df[cycle_features], df[target] shuffle=True, random_state=51)

Therefore with cycle features only

clf = xgb.XGBClassifier(random_state=51)
clf.fit(X_train_cycle, y_train_cycle)
y_pred_cycle = clf.predict(X_test_cycle)
y_score_cycle = clf.predict(X_test_cycle)
print(confusion_matrix(y_test_cycle, y_pred_cycle, normalize='true'))

[[0.23728814 0.76271186]
[0.08839779 0.91160221]]

print(classification_report(y_pred_cycle, y_test_cycle))
```

support

30

210

accuracy			0.75	240
macro avg	0.57	0.63	0.58	240
weighted avg	0.83	0.75	0.78	240

fpr_cycle, tpr_cycle, thresholds_cycle = roc_curve(y_test_cycle, y_score_cycle[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_cycle, y=tpr_cycle, label='Cycle features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_cycle_features_only.pdf'

#overall accuracy:
print((y_pred_cycle==y_test_cycle).sum()/len(y_pred_cycle))

HMM Features only

```
clf = RFC(random_state=101)
clf.fit(X_train_hmm, y_train_hmm)
y_pred_hmm = clf.predict(X_test_hmm)
y_score_hmm = clf.predict_proba(X_test_hmm)
print(confusion_matrix(y_test_hmm, y_pred_hmm, normalize='true'))
fpr_hmm, tpr_hmm, thresholds_hmm = roc_curve(y_test_hmm, y_score_hmm[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_hmm_features_only.pdf')
```

[[0.18644068 0.81355932] [0.09392265 0.90607735]]

<Axes: >

print(classification_report(y_pred_cycle, y_test_cycle))

→		precision	recall	f1-score	support
	0	0.24	0.47	0.31	30
	1	0.91	0.79	0.84	210
	accuracy			0.75	240
	macro avg	0.57	0.63	0.58	240
	weighted avg	0.83	0.75	0.78	240

```
#overall accuracy:
print((y_pred_cycle==y_test_cycle).sum()/len(y_pred_cycle))
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

→ 0.74583333333333333

```
#make kdeplots of all features
for feature in HMM_features+cycle_features:
    sns.kdeplot(data=df, x=feature, hue='pat_cat_map', common_norm=False)
```

#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_kdeplots_feature_dis
plt.clf()

→ <Figure size 640x480 with 0 Axes>

ROC Curves

```
# put 3 ROC curves on one axis (cycle, hmm, all)
# # Create subplots
# fig, axes = plt.subplots(1, 3, figsize=(15, 5)) # 1 row, 3 columns
# Plot Cycle + HMM features
sns.lineplot(x=fpr_full, y=tpr_full, label='Cycle + HMM features', errorbar=None)
# axes[0].set_title("Cycle + HMM ROC Curve")
# Plot Cycle features only
sns.lineplot(x=fpr_cycle, y=tpr_cycle, label='Cycle features only', errorbar=None)
# axes[1].set_title("Cycle Only ROC Curve")
# Plot HMM features only
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
# axes[2].set_title("HMM Only ROC Curve")
# Adjust layout
# plt.tight_layout()
plt.show()
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_roc_curves.pdf')
```


use HMM features and take one out to see if any features are important (leave one out version)

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
without viterbi_logprob_mean
HMM_features = [
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_mean ')
X_train_without_viterbi_logprob_mean, X_test_without_viterbi_logprob_mean, y_train_without_viterbi_logprob
                                                    shuffle=True, random_state=51)
Performance with HMM features _without_viterbi_logprob_mean
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_mean = imputer.fit_transform(X_train_without_viterbi_logprob_mean)
X_test_without_viterbi_logprob_mean = imputer.transform(X_test_without_viterbi_logprob_mean)
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_mean, y_train_without_viterbi_logprob_mean)
y pred without viterbi logprob mean = clf.predict(X test without viterbi logprob mean)
y_score_without_viterbi_logprob_mean = clf.predict_proba(X_test_without_viterbi_logprob_mean)
print(confusion_matrix(y_test_without_viterbi_logprob_mean, y_pred_without_viterbi_logprob_mean, normalize
fpr_without_viterbi_logprob_mean, tpr_without_viterbi_logprob_mean, thresholds_without_viterbi_logprob_mea
sns.lineplot(x=fpr_without_viterbi_logprob_mean, y=tpr_without_viterbi_logprob_mean, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

[[0.18644068 0.81355932] [0.08839779 0.91160221]]

<Axes: >

print(classification_report(y_pred_without_viterbi_logprob_mean, y_test_without_viterbi_logprob_mean))

→	precision	recall	f1-score	support
0	0.19	0.41	0.26	27
1	0.91	0.77	0.84	213
accuracy			0.73	240
macro avg	0.55	0.59	0.55	240
weighted avg	0.83	0.73	0.77	240

```
#overall accuracy:
```

```
print((y_pred_without_viterbi_logprob_mean==y_test_without_viterbi_logprob_mean).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

without viterbi_logprob_min

Performance with HMM features _without_viterbi_logprob_min

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_min = imputer.fit_transform(X_train_without_viterbi_logprob_min)
X_test_without_viterbi_logprob_min = imputer.transform(X_test_without_viterbi_logprob_min)

clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_min, y_train_without_viterbi_logprob_min)
y_pred_without_viterbi_logprob_min = clf.predict(X_test_without_viterbi_logprob_min)
y_score_without_viterbi_logprob_min = clf.predict_proba(X_test_without_viterbi_logprob_min)
print(confusion_matrix(y_test_without_viterbi_logprob_min, y_pred_without_viterbi_logprob_min, normalize='transite to the property of the

[[0.16949153 0.83050847] [0.09392265 0.90607735]] <Axes: >

print(classification_report(y_pred_without_viterbi_logprob_min, y_test_without_viterbi_logprob_min))

→	precision	recall	f1-score	support
0 1	0.17 0.91	0.37 0.77	0.23 0.83	27 213
accuracy macro avg	0.54	0.57	0.73 0.53	240 240
weighted avg	0.82	0.72	0.76	240

```
#overall accuracy:

print((y_pred_without_viterbi_logprob_min==y_test_without_viterbi_logprob_min).sum()/len(y_pred_without_vi

#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')

#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.725
```

without viterbi_logprob_max

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_max ')
X_train_without_viterbi_logprob_max, X_test_without_viterbi_logprob_max, y_train_without_viterbi_logprob_m
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_viterbi_logprob_max
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_max = imputer.fit_transform(X_train_without_viterbi_logprob_max)
X_test_without_viterbi_logprob_max = imputer.transform(X_test_without_viterbi_logprob_max)
clf = RFC(random_state=101)
clf.fit(X train without viterbi logprob max, y train without viterbi logprob max)
y_pred_without_viterbi_logprob_max = clf.predict(X_test_without_viterbi_logprob_max)
y_score_without_viterbi_logprob_max = clf.predict_proba(X_test_without_viterbi_logprob_max)
print(confusion_matrix(y_test_without_viterbi_logprob_max, y_pred_without_viterbi_logprob_max, normalize='
fpr_without_viterbi_logprob_max, tpr_without_viterbi_logprob_max, thresholds_without_viterbi_logprob_max =
sns.lineplot(x=fpr_without_viterbi_logprob_max, y=tpr_without_viterbi_logprob_max, label='HMM features wit
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.20338983 0.79661017]
     [0.10497238 0.89502762]]
```

<Axes: >

print(classification_report(y_pred_without_viterbi_logprob_max, y_test_without_viterbi_logprob_max))

→	precision	recall	f1-score	support
(0.20	0.39	0.27	31
=	L 0.90	0.78	0.83	209
accuracy	/		0.73	240
macro av	g 0.55	0.58	0.55	240
weighted av	g 0.81	0.72	0.76	240

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_max==y_test_without_viterbi_logprob_max).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

 \rightarrow 0.725

without viterbi_logprob_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_std ')
```

X_train_without_viterbi_logprob_std, X_test_without_viterbi_logprob_std, y_train_without_viterbi_logprob_s shuffle=True, random_state=51)

→ Performance with HMM features _without_viterbi_logprob_std

Impute missing values using SimpleImputer imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed X_train_without_viterbi_logprob_std = imputer.fit_transform(X_train_without_viterbi_logprob_std) X_test_without_viterbi_logprob_std = imputer.transform(X_test_without_viterbi_logprob_std)

clf = RFC(random_state=101) clf.fit(X_train_without_viterbi_logprob_std, y_train_without_viterbi_logprob_std) y_pred_without_viterbi_logprob_std = clf.predict(X_test_without_viterbi_logprob_std) y_score_without_viterbi_logprob_std = clf.predict_proba(X_test_without_viterbi_logprob_std) print(confusion_matrix(y_test_without_viterbi_logprob_std, y_pred_without_viterbi_logprob_std, normalize=' fpr_without_viterbi_logprob_std, tpr_without_viterbi_logprob_std, thresholds_without_viterbi_logprob_std = sns.lineplot(x=fpr_without_viterbi_logprob_std, y=tpr_without_viterbi_logprob_std, label='HMM features wit #plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.20338983 0.79661017] [0.09944751 0.90055249]]

<Axes: >

print(classification_report(y_pred_without_viterbi_logprob_std, y_test_without_viterbi_logprob_std))

→	precision	recall	f1-score	support
0 1	0.20 0.90	0.40 0.78	0.27 0.83	30 210
accuracy macro avg weighted avg	0.55 0.81	0.59 0.73	0.73 0.55 0.76	240 240 240

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_std==y_test_without_viterbi_logprob_std).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

without viterbi_logprob_median

→ 0.7291666666666666

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_median ')
X_train_without_viterbi_logprob_median, X_test_without_viterbi_logprob_median, y_train_without_viterbi_log
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_viterbi_logprob_median
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_median = imputer.fit_transform(X_train_without_viterbi_logprob_median)
X_test_without_viterbi_logprob_median = imputer.transform(X_test_without_viterbi_logprob_median)
clf = RFC(random_state=101)
clf.fit(X train without viterbi logprob median, y train without viterbi logprob median)
y_pred_without_viterbi_logprob_median = clf.predict(X_test_without_viterbi_logprob_median)
y_score_without_viterbi_logprob_median = clf.predict_proba(X_test_without_viterbi_logprob_median)
print(confusion_matrix(y_test_without_viterbi_logprob_median, y_pred_without_viterbi_logprob_median, norma
fpr_without_viterbi_logprob_median, tpr_without_viterbi_logprob_median, thresholds_without_viterbi_logprob
sns.lineplot(x=fpr_without_viterbi_logprob_median, y=tpr_without_viterbi_logprob_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

[[0.20338983 0.79661017] [0.10497238 0.89502762]]

<Axes: >

print(classification_report(y_pred_without_viterbi_logprob_median, y_test_without_viterbi_logprob_median))

→		precision	recall	f1-score	support
	0	0.20	0.39	0.27	31
	1	0.90	0.78	0.83	209
ā	accuracy			0.73	240
ma	acro avg	0.55	0.58	0.55	240
weigh	nted avg	0.81	0.72	0.76	240

```
#overall accuracy:
```

print((y_pred_without_viterbi_logprob_median==y_test_without_viterbi_logprob_median).sum()/len(y_pred_with
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.725

without complete_logprob_mean

Performance with HMM features _without_complete_logprob_mean

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_mean = imputer.fit_transform(X_train_without_complete_logprob_mean)
X_test_without_complete_logprob_mean = imputer.transform(X_test_without_complete_logprob_mean)

clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_mean, y_train_without_complete_logprob_mean)
y_pred_without_complete_logprob_mean = clf.predict(X_test_without_complete_logprob_mean)
y_score_without_complete_logprob_mean = clf.predict_proba(X_test_without_complete_logprob_mean)
print(confusion_matrix(y_test_without_complete_logprob_mean, y_pred_without_complete_logprob_mean, normali
fpr_without_complete_logprob_mean, tpr_without_complete_logprob_mean, thresholds_without_complete_logprob_
sns.lineplot(x=fpr_without_complete_logprob_mean, y=tpr_without_complete_logprob_mean, label='HMM features
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.22033898 0.77966102] [0.08839779 0.91160221]] <Axes: >

print(classification_report(y_pred_without_complete_logprob_mean, y_test_without_complete_logprob_mean))

→		precision	recall	f1-score	support
	0	0.22	0.45	0.30	29
	1	0.91	0.78	0.84	211
	accuracy			0.74	240
	macro avg	0.57	0.62	0.57	240
	weighted avg	0.83	0.74	0.78	240

```
print((y_pred_without_complete_logprob_mean==y_test_without_complete_logprob_mean).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

without complete_logprob_min

→ 0.741666666666667

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_min ')
X_train_without_complete_logprob_min, X_test_without_complete_logprob_min, y_train_without_complete_logpro
                                                    shuffle=True, random_state=51)
Performance with HMM features _without_complete_logprob_min
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X train without complete logprob min = imputer.fit transform(X train without complete logprob min)
X_test_without_complete_logprob_min = imputer.transform(X_test_without_complete_logprob_min)
clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_min, y_train_without_complete_logprob_min)
y_pred_without_complete_logprob_min = clf.predict(X_test_without_complete_logprob_min)
y_score_without_complete_logprob_min = clf.predict_proba(X_test_without_complete_logprob_min)
print(confusion_matrix(y_test_without_complete_logprob_min, y_pred_without_complete_logprob_min, normalize
fpr_without_complete_logprob_min, tpr_without_complete_logprob_min, thresholds_without_complete_logprob_mi
sns.lineplot(x=fpr_without_complete_logprob_min, y=tpr_without_complete_logprob_min, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.22033898 0.77966102]
[0.08839779 0.91160221]]
```

<Axes: >

print(classification_report(y_pred_without_complete_logprob_min, y_test_without_complete_logprob_min))

₹	precision	recall	f1-score	support
0	0.22	0.45	0.30	29
1	0.91	0.78	0.84	211
accuracy			0.74	240
macro avg	0.57	0.62	0.57	240
weighted avg	0.83	0.74	0.78	240

```
#overall accuracy:
```

print((y_pred_without_complete_logprob_min==y_test_without_complete_logprob_min).sum()/len(y_pred_without_
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

3.741666666666666

without complete_logprob_max

Performance with HMM features _without_complete_logprob_max

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_max = imputer.fit_transform(X_train_without_complete_logprob_max)
X_test_without_complete_logprob_max = imputer.transform(X_test_without_complete_logprob_max)

clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_max, y_train_without_complete_logprob_max)
y_pred_without_complete_logprob_max = clf.predict(X_test_without_complete_logprob_max)
y_score_without_complete_logprob_max = clf.predict_proba(X_test_without_complete_logprob_max)
print(confusion_matrix(y_test_without_complete_logprob_max, y_pred_without_complete_logprob_max, normalize
fpr_without_complete_logprob_max, tpr_without_complete_logprob_max, thresholds_without_complete_logprob_ma
sns.lineplot(x=fpr_without_complete_logprob_max, y=tpr_without_complete_logprob_max, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.20338983 0.79661017] [0.09944751 0.90055249]] <Axes: >

print(classification_report(y_pred_without_complete_logprob_max, y_test_without_complete_logprob_max))

⇒	precision	recall	f1-score	support
0 1	0.20 0.90	0.40 0.78	0.27 0.83	30 210
accuracy macro avg weighted avg	0.55 0.81	0.59 0.73	0.73 0.55 0.76	240 240 240

without complete_logprob_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_std ')
X_train_without_complete_logprob_std, X_test_without_complete_logprob_std, y_train_without_complete_logpro
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_complete_logprob_std
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_std = imputer.fit_transform(X_train_without_complete_logprob_std)
X_test_without_complete_logprob_std = imputer.transform(X_test_without_complete_logprob_std)
clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_std, y_train_without_complete_logprob_std)
y_pred_without_complete_logprob_std = clf.predict(X_test_without_complete_logprob_std)
y_score_without_complete_logprob_std = clf.predict_proba(X_test_without_complete_logprob_std)
print(confusion_matrix(y_test_without_complete_logprob_std, y_pred_without_complete_logprob_std, normalize
fpr_without_complete_logprob_std, tpr_without_complete_logprob_std, thresholds_without_complete_logprob_st
sns.lineplot(x=fpr_without_complete_logprob_std, y=tpr_without_complete_logprob_std, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

[[0.18644068 0.81355932] [0.09944751 0.90055249]] <Axes: >

> 1.0 HMM features without complete_logprob_std 0.8 0.6 0.4 0.2 0.0

> > 0.4

print(classification_report(y_pred_without_complete_logprob_std, y_test_without_complete_logprob_std))

0.8

1.0

0.6

₹	precision	recall	f1-score	support
0	0.19	0.38	0.25	29
1	0.90	0.77	0.83	211
accuracy			0.73	240
macro avg weighted avg	0.54 0.81	0.58 0.72	0.54 0.76	240 240
weighted avg	0.01	0.72	0.70	240

0.2

0.0

```
#overall accuracy:
```

print((y_pred_without_complete_logprob_std==y_test_without_complete_logprob_std).sum()/len(y_pred_without_ #fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS') #sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.725

without complete_logprob_median

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std']
```

print('Performance with HMM features _without_viterbi_logprob_median ')

X_train_without_viterbi_logprob_median, X_test_without_viterbi_logprob_median, y_train_without_viterbi_log shuffle=True, random_state=51)

Performance with HMM features without viterbi logprob median

Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_median = imputer.fit_transform(X_train_without_viterbi_logprob_median)
X_test_without_viterbi_logprob_median = imputer.transform(X_test_without_viterbi_logprob_median)

clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_median, y_train_without_viterbi_logprob_median)
y_pred_without_viterbi_logprob_median = clf.predict(X_test_without_viterbi_logprob_median)
y_score_without_viterbi_logprob_median = clf.predict_proba(X_test_without_viterbi_logprob_median)
print(confusion_matrix(y_test_without_viterbi_logprob_median, y_pred_without_viterbi_logprob_median, norma
fpr_without_viterbi_logprob_median, tpr_without_viterbi_logprob_median, thresholds_without_viterbi_logprob
sns.lineplot(x=fpr_without_viterbi_logprob_median, y=tpr_without_viterbi_logprob_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w

[[0.20338983 0.79661017] [0.09392265 0.90607735]] <Axes: >

print(classification_report(y_pred_without_viterbi_logprob_median, y_test_without_viterbi_logprob_median))

₹		precision	recall	f1-score	support
	0	0.20	0.41	0.27	29
	1	0.91	0.78	0.84	211
	accuracy			0.73	240
	macro avg	0.55	0.60	0.55	240
	weighted avg	0.82	0.73	0.77	240