$$C_1 = 1$$
, $C_2 = \Gamma + \Gamma^3$, $C_5 = \Gamma^2$ $C_4 = S + \Gamma^2 S$ $C_5 = \Gamma S + \Gamma^3 S$

	Cı	Cz	Cs	G	<u> </u>
C,	Cı	$C_{\mathbf{z}}$	\subset_3	Cy	Cr
C2		24+29		1	J
c 2		1	- 1		
C_{φ}				}	
5	·	1			

 $C_2 \cdot C_1 = (\Gamma + \Gamma^3) (\Gamma + \Gamma^3) = \Gamma^2 + \Gamma^4 + \Gamma^6 + \Gamma^6 = 2 + 2\Gamma^2$ $= 2C_1 + 2C_3$

		ı	۲		Ch r2	arac S	ter 1	table for po	int grou	up D ₄
	D ₄	Е	2C ₄ (z	z)	C ₂ (z)	2C'2	2C"2	linear functions, rotations	quadratic functions	cubic functions
١	A_1	+1	+1		+1	+1	+1	-	x^2+y^2, z^2	-
	A_2	+1	+1		+1	-1	-1	z, R_z	-	z^3 , $z(x^2+y^2)$
	\mathbf{B}_1	+1	-1		+1	+1	-1	-	x^2-y^2	xyz
1	B_2	+1	-1		+1	-1	+1	-	xy)	$z(x^2-y^2)$
1	Е	+2	0		-2	0	0	$(x, y) (R_x, R_y)$	(xz, yz)	$(xz^2, yz^2) (xy^2, x^2y) (x^3, y^3)$

Muliken symbols.

subscript.

Characters of irreps of SOB) SU(2)

Conjugaço classes labeled by notation ayle of eround some axes

$$\chi^{j}(\varrho) = T_{r} d_{q} (e^{i\theta j}, e^{i\theta (j-1)} - e^{-i\theta j})$$

$$= e^{i0j} \frac{1 - e^{-i(2j+120)}}{1 - e^{-i0}} = \frac{\sin (j+\frac{1}{2})0}{\sin \frac{\theta}{2}}$$

Haar measure = 1 5 2 5 10 2 2 do

$$\langle \chi^{j}, \chi^{j'} \rangle = \delta_{jj'}$$

$$V^{j_1} \otimes V^{j_2} \stackrel{\checkmark}{=} \bigoplus_{j=1,j_1-j_2}^{j_1 \dagger_{j_2}} V^{j_2}$$

$$\chi_{j,QQ_{j_2}} = \chi_{j_1} \cdot \chi_{j_2} = \frac{\sum_{j_1+j_2} \chi_{j_2}}{|j_1-j_2|}$$

Application of group representations.

(Preselhaus . Group Theory)

ordina crystal
$$V^{j}$$
 is irrep of V^{j} is irrep irrep of V^{j} is irrep irrep of V^{j} is irrep irrep irrep irrep irrep of V^{j} is irrep irr

Point group Oh. C D(3)

Couple with in version

24];
$$8S_6 = 1.C_3$$
; $3\sigma_h = 1.C_2$; $6\sigma_d = 1.C_2$

Th: mirror I principle rot. axis
Th: dieng. plane

	1	0	h	=	- 6	48									
								\leq	7			\			
		O _h	Е	8C ₃	6C ₂	6C ₄	$3C_2 = (C_4)^2$	i	6S ₄	8S ₆	3σ _h	6σ _d	linear functions,	quadratic functions	cubic functions
	c	Alg	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-	$x^2+y^2+z^2$	-
		A _{2g}	+1	+1	-1	-1	+1	+1	-1	+1	+1	-1	- PCI) =1	-	-
3	$/ \mathbb{I}$	E_{g}	+2	-1	0	0	+2	+2	0	-1	+2	0	- ($(2z^2-x^2-y^2, x^2-y^2)$).
U		T _{1g}	+3	0	-1	+1	-1	+3	+1	0	-1	-1	(R_x, R_y, R_z)		-
		T _{2g}	+3	0	+1	-1	-1	+3	-1	0	-1	+1	- ((xz, yz, xy)	-
	0	A _{1u}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-	-	-
		A _{2u}	+1	+1	-1	-1	+1	-1	+1	-1	-1	+1	-	-	xyz
u		E _u	+2	-1	0	0	+2	-2	0	+1	-2	0	- ((I)) = -7	_	-
0.		T _{1u}	+3	0	-1	+1	-1	-3	-1	0	+1	+1	(x, y, z)	-	$(x^3, y^3, z^3) [x(z^2+y^2), y(z^2+x^2), z(x^2+y^2)]$
		T _{2u}	+3	0	+1	-1	-1	-3	+1	0	+1	-1	-	-	$[x(z^2-y^2), y(z^2-x^2), z(x^2-y^2)]$

 $\chi(\theta) = \frac{S_{in} (l + \frac{1}{2}) \theta}{S_{in} \frac{\theta}{2}}$

$$(X, X) = 2(9+3+6+6) = 1$$

© f
$$\ell=3$$
 7 $A_{2u} + T_{(u)} + T_{2u}$

Figure 2.8 | Structures of (a) La₂CuO₄ and (b) YBa₂Cu₃O₇.

terrayonal

	Character table for point group D _{4h}														
									(x axi	s coin	cident	with C'2 axis)		
		D _{4h}	Е	2C ₄ (z)	C ₂	2C'2	2C"2	i	2S ₄	σ_{h}	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$	linear functions, rotations	quadratic functions	cubic functions
	ر	A _{1g}	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	-	x^2+y^2, z^2	-
		A _{2g}	+1	+1	+1	-1	-1	+1	+1	+1	-1	-1	R_z	- 2	-
		B_{1g}	+1	-1	+1	+1	-1	+1	-1	+1	+1	-1	-	x ² -y ²	-
•	П	B_{2g}	+1	-1	+1	-1	+1	+1	-1	+1	-1	+1		xy	-
	U	E_{g}	+2	0	-2	0	0	+2	0	-2	0	0	(R_x, R_y)	(xz, yz)	L
	6	A _{1u}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-	-	-
		A _{2u}	+1	+1	+1	-1	-1	-1	-1	-1	+1	+1	z	-	$z^3, z(x^2+y^2)$
٨		$\mathbf{B}_{1\mathbf{u}}$	+1	-1	+1	+1	-1	-1	+1	-1	-1	+1	-	-	xyz
		B _{2u}	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	-	-	$z(x^2-y^2)$
	I	Eu	+2	0	-2	0	0	-2	0	+2	0	0	(x, y)	-	$(xz^2, yz^2) (xy^2, x^2y), (x^3, y^3)$
				1	\		(F		_		لمر	•		

$$a_{big} = x_{big} = 1$$

$$D_{h} \longrightarrow D_{h}$$

$$E_{g} \longrightarrow A_{ig} + B_{ig}$$

$$3x^{2} + x^{2} - y^{2} \longrightarrow x^{2} + x^{2} - y^{2}$$

$$T_{2g} \longrightarrow E_{g} + B_{2g}$$

$$xy/y^{2}/x^{2} \longrightarrow y^{2}/x^{2} \times y$$

$$Cu^{2g} \longrightarrow A_{ig} + B_{ig}$$

$$xy/y^{2}/x^{2} \longrightarrow A_{ig} + B_{2g}$$

Cuprate superconductors. only active orbital is
$$big = x^2 - y^2$$

Hint =
$$\frac{(\vec{p} + e\vec{A})^2}{2m} - \frac{\vec{p}^2}{2m} = \frac{e}{m} \cdot \vec{p} \cdot \vec{A} + \frac{e^2}{2m} \cdot \vec{A}$$
(coulomb gayle

Solection rules. Zm:=0

A:
$$-m' + 3 + m = 0$$
 $|\ell' - \ell| \le 1$

B: $\forall m = 0$. $\ell' + \ell + \ell = even$.

=> dipde trans: Hon selection rule:

$$\begin{cases} \Delta l = \pm 1 \\ \Delta m = 0, \pm 1 \end{cases}$$

$$dx^{2}-y^{2} = \sqrt{2} (Y_{2,2} + Y_{2,-2})$$

$$A \cdot \begin{pmatrix} d' & 1 & 1 = 1 \\ -m' & 9 & m \end{pmatrix} \neq 0$$

$$m' = \pm 2 \quad |\mathcal{E}| \in 1$$

