5 de diciembre de 2018	2018, FaMAF - UN
Nombre:	
Condición:	Hojas entregadas:
JUSTIFIQ	UE TODAS SUS AFIRMACIONES
NOTA: El examen se apru	eba con una nota mayor o igual a 50 puntos para alumnos
regulares y a 60 punt	os para alumnos libres. Ejercicio 8 sólo para libres
1 /	

- 1. (xx puntos) Resolver las siguientes inecuaciones, escribir cada conjunto solución como un intervalo o unión de intervalos y representarlo en la recta real:
 - (a) $(x^2 4)(x 3) > 0$. (b) $|x| \le x^2 2$.
- **2.** (xx puntos) Sean las funciones $f(x) = \sqrt[3]{x+6}$ y $g(x) = e^{x^2}$.
 - (a) Obtener $f \circ g$.
 - (b) Calcular $(f \circ g)(0)$.
 - (c) Decidir si f es bivectiva y, en caso de ser posible, obtener su inversa.
- **3.** (xx puntos)
 - (a) Determinar la constante c para la cual la función f resulta continua en \mathbb{R} .

$$f(x) = \begin{cases} \sin(x) + c & x < 0\\ \frac{cx+3}{x^2+2} & x \ge 0 \end{cases}$$

- (b) Decidir si f es derivable en el punto x = 0. Justificar.
- (c) Calcular f'(2).
- 4. (xx puntos) Calcular los siguientes límites:

(a)
$$\lim_{x \to 0} \left(\frac{\sin(3x)}{\sin(x)} \right)^3$$
 (b) $\lim_{x \to 1} \frac{\ln(x)}{x - \sqrt{x}}$

- 5. (xx puntos) Determinar si existe al menos una solución de la ecuación $x^3 \cos(x) = 1$ en el intervalo $[0,\pi]$. Justificar.
- **6.** (xx puntos) Dada la función $f(x) = \ln(x^2 + 1)$:
 - (a) Determinar su dominio y paridad o imparidad de la función, en caso de ser posible.
 - (b) Obtener las rectas asíntotas verticales y horizontales, en caso de existir.
 - (c) Calcular los puntos críticos de la función.
 - (d) Determinar intervalos de crecimiento y decrecimiento de f.
 - (e) Determinar, si los hay, máximos y mínimos locales de f.
 - (f) Determinar intervalos de concavidad hacia arriba y hacia abajo.
 - (g) Obtener, si los hay, los puntos de inflexión de f.
 - (h) Esbozar el gráfico de la función f.
- 7. (xx puntos)
 - (a) Calcular $\int \left(-4x^4 + e^x \frac{1}{\cos^2(x)}\right) dx$.
 - (b) Dada $f(x) = -x^2 + 1$, obtenga una primitiva F de f tal que F(1) = -1.
- 8. (xx puntos) Sea $f(x) = \frac{1}{|x|}$. Determinar si f satisface las hipótesis del teorema de Weiertrass en el intervalo [3,6]. De ser así, indicar cuál es el valor máximo y el valor mínimo alcanzado por la función.

1	a	1b	2a	2b	2c	3a	3b	3c	4a	4b	5	6a	6b	6c	6d	6e	6f	6g	6h	7a	7b	8	Tot	NOTA