

MIMO with linear processing

- 1 MIMO with linear processing
- MIMO without CSIT
 - ② RxMF
 - 3 RxZF
 - 4 RxMMSE
- MIMO with CSIT
 - ⑤ Joint SVD

- Let x_i , $\forall i = 1, ..., N_s$ and z_i , $\forall i = 1, ..., N_r$ follow zero-mean complex Gaussian distributions.
- Define $\mathbf{R}_{\mathbf{x}} \triangleq \mathrm{E}[\mathbf{x}\mathbf{x}^H] = \mathbf{I}_{N_S}, \ \mathbf{R}_{\mathbf{z}} \triangleq \mathrm{E}[\mathbf{z}\mathbf{z}^H], \ E_S \triangleq \mathrm{E}[|\mathbf{s}|^2], \ N_S \triangleq r = \mathrm{rank}(\mathbf{H}) = \min(N_t, N_r).$
- (1) Specify the dimensions of P, H, W.
- (2) Write an expression of the post-processed signal $\tilde{\mathbf{x}}$ in terms of \mathbf{W} , \mathbf{H} , \mathbf{P} , \mathbf{x} , \mathbf{z} .
- (3) Show that $E[|\mathbf{s}|^2] = ||\mathbf{P}||_F^2 = E_s$.
- (4) Show that the capacity is expressed by $C = \log_2 \left| \mathbf{I}_{N_S} + (\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H)^{-1}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\mathbf{W}^H\right|$. Cognitive Communications Systems Laboratory

- We maximize the correlation between x and \tilde{x} .
 - Correlation = Cosine ∝ Inner product
 - "Matched" = "Parallel"
- At the same time, we want to minimize the noise portion of $\tilde{\mathbf{x}}$.
- Thus, we solve the following problem:

$$\max_{\mathbf{W}} \frac{\mathrm{E}[\mathbf{x}^H \tilde{\mathbf{x}}]}{\mathrm{E}[|\mathbf{W}\mathbf{z}|^2]}$$

• Since the objective function is a ratio, we may fix the denominator to some $\delta > 0$ without altering the optimal value. $\max_{\mathbf{w}} \mathrm{E}[\mathbf{x}^H \tilde{\mathbf{x}}]$

s.t. $E[|\mathbf{W}\mathbf{z}|^2] = \delta$

- (1) Show that $E[\mathbf{x}^H \tilde{\mathbf{x}}] = \text{tr}(\mathbf{W}\mathbf{H}\mathbf{P})$ and $E[|\mathbf{W}\mathbf{z}|^2] = \text{tr}(\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H)$.
- Using the method of Lagrangian multipliers,

$$\max_{\mathbf{W}} \operatorname{tr}(\mathbf{WHP})$$
s.t.
$$\operatorname{tr}(\mathbf{WR_{z}W}^{H}) = \delta$$

• The optimal solution is one of the stationary points with $\frac{\partial g(\mathbf{W},\lambda)}{\partial \mathbf{W}} = 0$, $\frac{\partial g(\mathbf{W},\lambda)}{\partial \lambda} = 0$.

$$\max_{\mathbf{W}} g(\mathbf{W}, \lambda) \triangleq \operatorname{tr}(\mathbf{W}\mathbf{H}\mathbf{P}) + \lambda(\operatorname{tr}(\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^{H}) - \delta)$$

- (2) Show that $\frac{\partial g(\mathbf{W},\lambda)}{\partial \mathbf{W}} = (\mathbf{H}\mathbf{P})^T + \lambda \mathbf{W}^* \mathbf{R}_{\mathbf{z}}^T$ and $\frac{\partial g(\mathbf{W},\lambda)}{\partial \lambda} = \operatorname{tr}(\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H) \delta$.
- (3) Letting $\frac{\partial g(\mathbf{W},\lambda)}{\partial \mathbf{W}} = \mathbf{0}$, show that $\mathbf{W}_{\text{opt}} = -\frac{1}{\lambda} \mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1}$.
- (4) Letting $\frac{\partial g(\mathbf{W},\lambda)}{\partial \lambda} = 0$, show that $\lambda_{\mathrm{opt}} = \pm \sqrt{\frac{1}{\delta} \mathrm{tr}(\mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1} \mathbf{H} \mathbf{P})}$.
- Since $\delta > 0$ can be freely chosen, λ_{opt} can also be freely chosen.
- For simplicity, we let $\delta = \text{tr}(\mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1} \mathbf{H} \mathbf{P})$ and $\lambda_{\text{opt}} = -1$ such that $\mathbf{W}_{\text{opt}} = \mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1}$.
- (5) Show that $C = \log_2 |\mathbf{I}_{N_s} + \mathbf{P}^H \mathbf{H}^H \mathbf{R}_z^{-H} \mathbf{H} \mathbf{P}|$.

• ② MIMO without CSIT – RxMF TX_1 RX_1 Z_1 Y Z_1 Y Z_1 Y Z_1 Y Z_1 Z_1

• (6) For AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that $C = \log_2 \left| \mathbf{I}_{N_s} + \frac{1}{\sigma_z^2} \mathbf{P}^H \mathbf{H}^H \mathbf{H} \mathbf{P} \right|$.

• ③ MIMO without CSIT – RxZF TX_1 RX_1 Z_1 Y Z_1 Y Z_1 Y Z_1 Y Z_1 Z_1

- We suppress the inter-symbol interference in $\tilde{\mathbf{x}}$ by diagonalizing the symbol portion such that $\mathbf{WHPx} = \mathbf{x}$. ("Zero-forcing" the interference)
 - That is, WHP = I_{N_s}
- At the same time, we want to minimize the noise portion of $\tilde{\mathbf{x}}$.
- Thus, we solve the following problem:

$$\min_{\mathbf{W}} E[|\mathbf{W}\mathbf{z}|^2]$$
s.t. $\mathbf{W}\mathbf{H}\mathbf{P} = \mathbf{I}_{N_c}$

• We assume $rank(\mathbf{P}) = N_s$.

• From $E[|\mathbf{W}\mathbf{z}|^2] = tr(\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H)$ and using standard basis vectors \mathbf{e}_i 's in which the *i*-th element is

1 and the other elements are 0,

min tr(
$$\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^{H}$$
)
s.t. $\mathbf{e}_{i}^{H}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{e}_{i} = 1, \forall i = 1, ..., N_{s}$
 $\mathbf{e}_{i}^{H}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{e}_{i} = 0, \forall i \neq j$

• Using the method of Lagrangian multipliers, $\mathbf{e}_{i}^{H}\mathbf{WHPe}_{i} = 0, \forall i \neq j$

$$\max_{\mathbf{W}} g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\}) \triangleq \operatorname{tr}(\mathbf{W}\mathbf{H}\mathbf{P}) + \sum_{i=1}^{N_S} \lambda_i (\mathbf{e}_i^H \mathbf{W}\mathbf{H}\mathbf{P}\mathbf{e}_i - 1) + \sum_{i \neq j} \rho_{ij} \mathbf{e}_i^H \mathbf{W}\mathbf{H}\mathbf{P}\mathbf{e}_j$$

• The optimal solution is one of the stationary points with $\frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \mathbf{W}} = \mathbf{0}, \frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \lambda_i} = 0, \forall i = 0$

1, ...,
$$N_s$$
, $\frac{\partial g(\mathbf{w}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \rho_{ij}} = 0, \forall i \neq j$.

- (1) Show that $\frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \mathbf{W}} = \mathbf{W}^* \mathbf{R}_{\mathbf{z}}^T + \left(\mathbf{HP} \sum_{i=1}^{N_S} \lambda_i \mathbf{e}_i \mathbf{e}_i^H\right)^T + \left(\mathbf{HP} \sum_{i \neq j} \rho_{ij} \mathbf{e}_j \mathbf{e}_i^H\right)^T,$
- (2) Show that $\frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \lambda_i} = \mathbf{e}_i^H \mathbf{W} \mathbf{H} \mathbf{P} \mathbf{e}_i 1, \forall i = 1, ..., N_s \text{ and } \frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \rho_{ij}} = \mathbf{e}_i^H \mathbf{W} \mathbf{H} \mathbf{P} \mathbf{e}_j, \forall i \neq j$
- (3) Letting $\frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \mathbf{W}} = \mathbf{0}$, show that $\mathbf{W}_{\text{opt}} = -\left(\sum_{i=1}^{N_S} \lambda_i \mathbf{e}_i \mathbf{e}_i^H + \sum_{i \neq j} \rho_{ij} \mathbf{e}_j \mathbf{e}_i^H\right)^H \mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1}$.
- (4) Letting $\frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \lambda_i} = 0$, $\forall i = 1, ..., N_s$ and $\frac{\partial g(\mathbf{W}, \{\lambda_i\}, \{\rho_{ij}\})}{\partial \rho_{ij}} = 0$, $\forall i \neq j$, show that $\mathbf{W}_{\mathrm{opt}}\mathbf{HP} = \mathbf{I}_{N_s}$.
- (5) Show that $\mathbf{W}_{\text{opt}} = (\mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1} \mathbf{H} \mathbf{P})^{-1} \mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1}$.

- (6) Show that $C = \log_2 |\mathbf{I}_{N_s} + \mathbf{P}^H \mathbf{H}^H \mathbf{R}_z^{-H} \mathbf{H} \mathbf{P}|$.
- (7) For AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that $C = \log_2 \left| \mathbf{I}_{N_s} + \frac{1}{\sigma_z^2} \mathbf{P}^H \mathbf{H}^H \mathbf{H} \mathbf{P} \right|$.

- We minimize the mean square error (MSE) between x and \tilde{x}
- Thus, we solve the following problem:

$$\min_{\mathbf{W}} \mathbb{E}[|\mathbf{x} - \tilde{\mathbf{x}}|^2]$$
• (1) Show that $\mathbb{E}[|\mathbf{x} - \tilde{\mathbf{x}}|^2] = \text{tr}(\mathbf{I}_{N_s} - \mathbf{P}^H \mathbf{H}^H \mathbf{W}^H - \mathbf{W} \mathbf{H} \mathbf{P} + \mathbf{W} (\mathbf{H} \mathbf{P} \mathbf{P}^H \mathbf{H}^H + \mathbf{R}_z) \mathbf{W}^H).$

- Since this is an unconstrained convex problem, the optimal solution is a stationary point with $\frac{\partial E[|\mathbf{x}-\tilde{\mathbf{x}}|^2]}{\partial \mathbf{w}} = \mathbf{0}$.
- (2) Show that $\frac{\partial E[|\mathbf{x}-\tilde{\mathbf{x}}|^2]}{\partial \mathbf{w}} = -(\mathbf{H}\mathbf{P})^T + \mathbf{W}^*(\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H + \mathbf{R_z})^T$.
- (3) Letting $\frac{\partial E[|\mathbf{x}-\tilde{\mathbf{x}}|^2]}{\partial \mathbf{W}} = \mathbf{0}$, show that $\mathbf{W}_{\text{opt}} = \mathbf{P}^H \mathbf{H}^H (\mathbf{H} \mathbf{P} \mathbf{P}^H \mathbf{H}^H + \mathbf{R}_{\mathbf{z}})^{-1}$.
- (4) Using the Woodbury matrix identity, also show that $\mathbf{W}_{\text{opt}} = (\mathbf{I}_{N_s} + \mathbf{P}^H \mathbf{H}^H \mathbf{R}_z^{-1} \mathbf{H} \mathbf{P})^{-1} \mathbf{P}^H \mathbf{H}^H \mathbf{R}_z^{-1}$
- (5) If $\operatorname{rank}(\mathbf{P}) = N_s$, using $|\mathbf{I} + \mathbf{A}\mathbf{B}| = |\mathbf{I} + \mathbf{B}\mathbf{A}|$, show that $C = \log_2 |\mathbf{I}_{N_s} + \mathbf{P}^H \mathbf{H}^H \mathbf{R}_z^{-H} \mathbf{H} \mathbf{P}|$.
- (6) If rank(\mathbf{P}) = N_s , for AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that $C = \log_2 \left| \mathbf{I}_{N_s} + \frac{1}{\sigma_z^2} \mathbf{P}^H \mathbf{H}^H \mathbf{H} \mathbf{P} \right|$.

- By SVD, $\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H = [\mathbf{U}_1 \quad \mathbf{U}_0] \begin{bmatrix} \mathbf{\Sigma}_1 \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^H \\ \mathbf{V}_0^H \end{bmatrix} = \mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^H$, where \mathbf{U}_1 and \mathbf{V}_1 are singular vector matrices corresponding to non-zero singular values in $\mathbf{\Sigma}_1$.
- For joint SVD, we set $\mathbf{P} = \mathbf{V}_1 \mathbf{Q}_1^{1/2}$ for positive diagonal matrix $\mathbf{Q}_1 \in M_{N_S \times N_S}(\mathbb{R})$ and $\mathbf{W} = \mathbf{U}_1^H$.
- (1) Specify the dimensions of U_1 , U_0 , Σ_1 , V_1 , V_0 .
- (2) Show that $\tilde{\mathbf{x}} = \mathbf{\Sigma}_1 \mathbf{x} + \mathbf{U}_1^H \mathbf{z}$.
- (3) Show that $E[|s|^2] = tr(Q_1) = E_s$.

- (4) For AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that $C = \sum_{i=1}^{N_s} \log_2 \left(1 + \frac{1}{\sigma_z^2} \sigma_{\mathbf{H},i}^2 q_i\right)$, i.e., achieving the MIMO capacity when q_i 's are optimized.
- (5) Letting $P = V_1 Q_1^{1/2}$ for RxMF, RxZF, RxMMSE, show that C becomes equivalent to the case with CSIT, i.e., achieving the MIMO capacity when q_i 's are optimized.

- In the absence of the CSIT, one possible design for the precoder is $\mathbf{P} = \sqrt{\frac{E_S}{N_S}} \begin{bmatrix} \mathbf{I}_{N_S} \\ \mathbf{0}_{(N_t N_S) \times N_S} \end{bmatrix}$ such that the average transmit energy E_S is equally distributed to the symbols and by assigning x_i 's to TX_i 's in order. $(N_t N_S)$ antennas are unused.)
- (1) Show that $E[|s|^2] = E_s$.

⑥ Numerical results

- Setups
 - Unit average transmit energy, i.e., $E_s = 1$
 - AWGN, i.e., $\mathbf{R}_{\mathbf{z}} = \sigma_z^2 \mathbf{I}_{N_r}$
 - Rayleigh fading channel matrix, i.e., $h_{ij} \sim CN(0,1)$
- Curve 1: MIMO without CSIT

• For
$$\mathbf{P} = \sqrt{\frac{E_S}{N_S}} \begin{bmatrix} \mathbf{I}_{N_S} \\ \mathbf{0}_{(N_t - N_S) \times N_S} \end{bmatrix}$$
,

- Curve 1-1: MIMO without CSIT RxMF
 - $C = \log_2 |\mathbf{I}_{N_S} + (\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H)^{-1}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\mathbf{W}^H|$ with $\mathbf{W} = \mathbf{P}^H\mathbf{H}^H\mathbf{R}_{\mathbf{z}}^{-1}$
- Curve 1-2: MIMO without CSIT RxZF
 - $C = \log_2 \left| \mathbf{I}_{N_s} + (\mathbf{W} \mathbf{R}_z \mathbf{W}^H)^{-1} \mathbf{W} \mathbf{H} \mathbf{P} \mathbf{P}^H \mathbf{H}^H \mathbf{W}^H \right|$ with $\mathbf{W} = (\mathbf{P}^H \mathbf{H}^H \mathbf{R}_z^{-1} \mathbf{H} \mathbf{P})^{-1} \mathbf{P}^H \mathbf{H}^H \mathbf{R}_z^{-1}$
- Curve 1-3: MIMO without CSIT RxMMSE
 - $C = \log_2 \left| \mathbf{I}_{N_S} + (\mathbf{W} \mathbf{R}_{\mathbf{z}} \mathbf{W}^H)^{-1} \mathbf{W} \mathbf{H} \mathbf{P} \mathbf{P}^H \mathbf{H}^H \mathbf{W}^H \right| \text{ with } \mathbf{W} = \left(\mathbf{I}_{N_S} + \mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1} \mathbf{H} \mathbf{P} \right)^{-1} \mathbf{P}^H \mathbf{H}^H \mathbf{R}_{\mathbf{z}}^{-1}$

⑥ Numerical results

- Setups
 - Unit average transmit energy, i.e., $E_s = 1$
 - AWGN, i.e., $\mathbf{R}_{\mathbf{z}} = \sigma_z^2 \mathbf{I}_{N_r}$
 - Rayleigh fading channel matrix, i.e., $h_{ij} \sim CN(0,1)$
- Curve 1: MIMO without CSIT
 - For $\mathbf{P} = \mathbf{V}_1[:, 0: N_{s, \text{opt}}] \mathbf{Q}_{1, \text{opt}}^{1/2}[0: N_{s, \text{opt}}, 0: N_{s, \text{opt}}]$, where $N_{s, \text{opt}}$ is the number of non-zero $q_{i, \text{opt}}$'s in \mathbf{Q}_{opt}
 - Curve 1-4: MIMO without CSIT RxMF
 - $C = \log_2 \left| \mathbf{I}_{N_{s,\text{opt}}} + (\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H)^{-1}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\mathbf{W}^H \right| \text{ with } \mathbf{W} = \mathbf{P}^H\mathbf{H}^H\mathbf{R}_{\mathbf{z}}^{-1}$
 - Curve 1-5: MIMO without CSIT RxZF
 - $C = \log_2 \left| \mathbf{I}_{N_{s,\text{opt}}} + (\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H)^{-1}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\mathbf{W}^H \right| \text{ with } \mathbf{W} = (\mathbf{P}^H\mathbf{H}^H\mathbf{R}_{\mathbf{z}}^{-1}\mathbf{H}\mathbf{P})^{-1}\mathbf{P}^H\mathbf{H}^H\mathbf{R}_{\mathbf{z}}^{-1}$
 - Curve 1-6: MIMO without CSIT RxMMSE
 - $C = \log_2 \left| \mathbf{I}_{N_{s,\text{opt}}} + (\mathbf{W}\mathbf{R}_{\mathbf{z}}\mathbf{W}^H)^{-1}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\mathbf{W}^H \right| \text{ with } \mathbf{W} = \left(\mathbf{I}_{N_{s,\text{opt}}} + \mathbf{P}^H\mathbf{H}^H\mathbf{R}_{\mathbf{z}}^{-1}\mathbf{H}\mathbf{P} \right)^{-1}\mathbf{P}^H\mathbf{H}^H\mathbf{R}_{\mathbf{z}}^{-1}$
- Curve 3: MIMO with CSIT Joint SVD
 - $C = \log_2 |\mathbf{I}_{N_s} + (\mathbf{W}\mathbf{R}_z\mathbf{W}^H)^{-1}\mathbf{W}\mathbf{H}\mathbf{P}\mathbf{P}^H\mathbf{H}^H\mathbf{W}^H|$ with $\mathbf{P} = \mathbf{V}_1\mathbf{Q}_{1,\text{opt}}^{1/2}$ and $\mathbf{W} = \mathbf{U}_1^H$

- 6 Numerical results
 - For $(N_t, N_r) = (4,4)$ (Fig. 4.6 of "Introduction to Space-Time Wireless Communications")
 - 1000 samples

- 6 Numerical results
 - SIMO wih $(N_t, N_r) = (1.4)$
 - 1000 samples

- 6 Numerical results
 - MISO with $(N_t, N_r) = (4,1)$
 - 1000 samples

- 6 Numerical results
 - BPSK for $(N_t, N_r) = (2,2)$ (Fig. 2-3 of "Extending the capacity of next generation ... OFDM")
 - 20000 samples

- 6 Numerical results
 - QPSK for $(N_t, N_r) = (2,2)$ (Fig. 2-4 of "Extending the capacity of next generation ... OFDM")
 - 20000 samples

- 6 Numerical results
 - SIMO QPSK for $(N_t, N_r) = (1,4)$
 - 100000 sample

- 6 Numerical results
 - MISO QPSK for $(N_t, N_r) = (4,1)$
 - 100000 sample

