

EM-III- Tutorial-1 (CMPN) Dr. Uday Kashid

Module-1- Laplace Transform

(University Que. Paper Weightage Appx. 20 Marks)

Find
$$L[g(t)]$$
 If $g(t) = \begin{cases} \sin\left(\frac{2k-3t}{3}\right) & , \ t > \frac{2k}{3} \\ 0 & , \ 0 < t < \frac{2k}{3} \end{cases}$

2 Find Laplace Transform of $t\sqrt{1+\sin t}$ (**Dec-10,12,15,May -09,13,15,16,19**)

3 Find Laplace Transform of
$$\frac{e^{-at} - \cos(at)}{t}$$
 (Dec-08,13,16,May -13,18)

4. Find Laplace Transform of
$$e^{-t} \int_{0}^{t} \frac{\sin u}{u} du$$
 (Dec-14, May -15)

4. Find Laplace Transform of
$$e^{-t} \int_0^t \frac{\sin u}{u} du$$
 (Dec-14,May -15)

5. IF $\int_0^\infty e^{-2t} \sin(t+\alpha) \cos(t-\alpha) dt = \frac{3}{8}$ then find α (Dec 09,14, May -12,16)

6. Evaluate the integral
$$I = \int_{t=0}^{t=\infty} \frac{\sin(\sqrt{3}t)}{te^t} dt$$
 using Laplace Transform (**Dec-12**)

7. Find Laplace Transform of
$$f(t) = e^{-4t} \int_{u=0}^{u=t} u \sin(3u) du$$
 (**Dec-16, May -12,15**)

8. Prove that
$$L[erf(\sqrt{t})] = \frac{1}{s\sqrt{s+1}}$$
, hence find $L[erf_c(\sqrt{t})]$

9. Find
$$L[f(t)]$$
 if $f(t) = |t-1| + |t+1|$ for $t \ge 0$ (NIT Kurukshetra 03, IITD 10)

10 Find
$$L[f(t)]$$
 if $f(t) = \int_{t}^{\infty} \frac{\cos u}{u} du$

11. Answer the following MCQs with proper Justification.

11.1	The Sufficient conditions for Existence of Laplace transform of $f(t)$ are
Option A	If $f(t)$, $t \ge 0$ be Piecewise discontinuous on $[0, \infty)$ and of Exponential order a ,
	then $L[f(t)] = f(s)$ exists for $s > a \ge 0$
Option B	If $f(t)$, $t \ge 0$ be Piecewise continuous on $[0, \infty)$ and of Exponential order a ,
	then $L[f(t)] = f(s)$ exists for $s > a \ge 0$
Option C	If $f(t)$, $t \ge 0$ be Piecewise continuous on $[0, \infty)$ and of non-Exponential order a ,
	then $L[f(t)] = f(s)$ exists for $s > a \ge 0$

EM-III- Tutorial-1 (CMPN)

Dr. Uday Kashid

Option D	If $f(t)$, $t \ge 0$ be Piecewise discontinuous on $[0, \infty)$ and of non-Exponential order a ,
	then $L[f(t)] = f(s)$ exists for $s > a \ge 0$
11.2	If $f(t)$ is an exponential order of a' , means that
Option A	$ f(t) \le ae^{kt}$, $\forall t \ge 0$, where a, k > 0 and constants
Option B	$ f(t) \ge ke^{at}$, $\forall t \ge 0$, where a, k > 0 and constants
Option C	$ f(t) \ge ae^{kt}$, $\forall t \ge 0$, where a, k > 0 and constants
Option D	$ f(t) \le ke^{at}$, $\forall t \ge 0$, where a, k > 0 and constants
11.3	If $L[f(t)] = f(s)$ Then, Laplace transform of $\frac{d^3}{dt^3}f(t) =$
Option A	$s^{3} f(s) - s^{2} f(0) - s f'(0) - f'(0)$
Option B	$s^{3} f(s) - s^{2} f(0) - s f'(0) - f''(0)$
Option C	$s^3 f(s) - s^2 f(0) - s f(0) - f''(0)$
Option D	$s^3 f(s) - s^2 f(0) - sf(0) - f'(0)$
11.4	Which of the following function $f(t)$ satisfies the sufficient conditions for Existence
	of Laplace transform.
Option A	$f(t) = e^{t^2}$
Option B	$f(t) = \frac{e^{-at}}{t}$
Option C	$f(t) = \frac{\sin(t)}{t}$
Option D	$f(t) = \frac{\cos(t)}{t}$
11.5	If $L\{f(t)\}=\frac{1}{s+1}$, then value of $f(0) \& f(\infty)$ will be
Option A	1,0 respectively
Option B	-1,0 respectively
Option C	1,-1 respectively
Option D	2,0 respectively