Network Architecture

by

Ringki Das

Tezpur University

Network Architecture

What is Network Architecture

What is Network Architecture (contd..)

Data transfer between two remote machines

Data transfer between two remote machines

Data transfer between two remote machines

Protocols

- Protocol is a controlled sequence of messages that is exchanged between two or more systems to accomplish a given task.
- Protocol specifications define this sequence together with the format or layout of the messages that are exchanged.

OSI model layers

TCP/IP

- Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols has become the dominant standard for inter-networking.
- TCP/IP represents a set of public standards that specify how packets of information are exchanged between computers over one or more networks.

OSI and TCP/IP

TCP/IP

Application	Pine:		enet & ogin	FTP	SMTP	SHMP	Trace- route	
(Host To Host Layer)	DNS	TI	FΤΡ	воотр	RIP	OSPF	e	ic.
Transport	TCP			UDP		ICMP		
Network	IP							
Data Link	LLC			но		PPP		
	Ethernet	802.3	X.25	Token Ring	Frame Relay	ATM	SMDS	etc
Physical	Fiber Optics UTP			Coax	Satelli	Satellite STP		

OSI and TCP/IP

TCP/IP Packet encapsulation

LAN-Typical components

- Clients workstations
- Servers usually have more computing resources
- Network devices
 - Repeaters
 - Hubs
 - Transceivers
 - NICs
 - Bridges
 - Switches
 - Routers

WAN (Wide Area Network)

- A WAN is a data communications network covering a large geographic area.
- Unlike LANs, a WAN connection is generally rented from a service provider.
- WANs connect various sites at different geographic locations so that information can be exchanged.

Evaluation of LAN devices

- NICs, Repeaters, & Hubs
- Bridges
- Switches
- Routers

NIC Specific

- NICs provide hosts with access to media by using a MAC address.
- MAC stands for Media Access Control
- NICs operate at <u>Layer 2</u>!!

What is the problem

- Hubs share bandwidth between all attached devices.
- 2) Hubs are stupid, Layer 1 devices. They cannot filter traffic.
- Most LANs use a "broadcast topology," so every device sees every packet sent down the media.

What is the solution?

- We need a smarter hub!
- What's a "smarter hub" called?
- A Bridge!
- Bridges filter network traffic based on MAC addresses.
- Let's take a look at how this works.

Bridge

Bridge

Bridge

Switch

Switch

Switch

Router

Devices function at layer

Devices function at layer

Hierarchical Design Model

- A layered model for network design
- Consists of 3 tiers
- Access layer for end user connectivity
- Distribution layer for policy based routing and access control
- Core layer- for switching packets as fast as possible across the internetwork.

Few points to note...

- · Routers, by default, break up broadcast domain
- Broadcast domain Set of all devices on a network segment that hear all the broadcasts sent on that segment
- Breaking-up of network broadcast is important because when a host or server sends a network broadcast, every device on the network "must" read and process that broadcast.
- When a router's interface receives this broadcast it discards the broadcast without forwarding it on to other network
- · Router also breaks up "collision domain" as well!

Few points to note...

- Switches aren't used to create internetworks, they're employed to add functionality to an internetwork LAN
- Switches only "switches" frames from one port to other within a "switched network"
- Switches break-up collision domains.
- Collision domain Ethernet term! used to describe a network scenario in which
 one particular device sends a packet on a network segment, forcing other devices
 on the same segment to pay attention to it. At the same time, a different device tries
 to transmit, leading to collision, then both the devices must re-transmit a situation
 found in a Hub
- Each and every port on a switch represent its own collision domain (Hub represents only one collision domain and only one broadcast domain)

Performance of Network Architecture

Bandwidth

Latency

Jitter

Throughput

For more details you can follow

DATA AND COMPUTER COMMUNICATIONS by William Stallings

Any query?

THANK YOU