Name: Insha Manaucas.

Julakanan

Regno: 190906184 Sec B. Rell 16

Date: 18/11/2021

Brock: FEE

 $\beta = 2$ Ac = 3

from table,

(0.224)2+3(0.577) +3(0.353)2+3(0.129)2 + 3 10.034) + 310.007) -

= 1.476. 70.93.

B = 2 will have 3 sidebounds.

$$M=3$$
 $2M-1=7$

$$= t \int_{0}^{\infty} 9 d7 = 9t$$

Case 2

$$= -9(3) + 9(-6+1) + 9(-3+1) - 27$$

$$- 9+ 9(-3+1)$$

$$= 13t - 162$$

Case 3. -6+t>,3 pt>6.

$$\frac{b}{-6+t} = \frac{59-91-6+t}{-6+t}$$

Impulse oresponse of makined fulky

except of natched filler is obtained by considering hut and sut)

ab

binary data viate = 30 kbps

orequired bandwidth of M away PSK in

 $\partial^n = M$, $R_b = bit$ orate.

for BPSK, n=1.

$$B_1 = \frac{2 \times 30}{1} = 2 \times 30$$
= 60 kH₂

for Spsk, n = 2

$$B = \frac{2 \times 30}{2} = 30 \text{ kHz}$$

Qa

3. r=1 ラか=2 a) path I has 4 connections, $9'(0) = 1 + 0 + 0^2 + 0^3$ path 2 has 1071 connected. 940) = 1 + 02 + D3. b). We know, c'(b) = m(b) * 9'(0) M(D) = 1+D2+D3+D4. $(1 + D^2 + D^2 + D^4) (1 + D + D^2 + D^2)$ $= 1 + D + D^7$ C1 = [11 000000] Similarly, (2(D) = M(D) x g2(D) $= (1 + D^2 + D^3 + D^4) (1 + D^2 + D^2)$

Similarly, $(2(D) = M(D) \times g^{2}(D)$ $= (1 + D^{2} + D^{3}) (1 + D^{2} + D^{3})$ $= 1 + D^{7}$ $(^{2} - [10000001]$

.. C = [11, 10,00,00,00,00,00,00]

any

2a. du 1100110 Olp -> 0 51 51 0 0 0 0 7

bu	0	, i	0	1	0
dk-1	0	l	-	0	0
du	0	0	1	1	0

ynor bu & du-1.

aus: 0,1,1,0,0.

=) 0 51 51 ·D 0

4(1) = 0.

O

6n

 $\begin{cases} \frac{\text{case } 4}{9} & -6 + t > 6 & 9 & t > 6 \\ \frac{1}{9} & \frac{1}{9}$

 $9(t) = \begin{cases} 0 & t < 0 \\ 9t & 0 < t \leq 3 \\ 73t - 162 & 3t \leq 9 \\ 108 - 9t & 4 > 12 \end{cases}$

$$5.6 = 10$$
 $7.7 = 10$
 $-1.7 = 01$
 $-12.4 = 00$
 $13.4 = 11$
 $941 = 10 \cos 1209 + 1 \cos (2009 + 1)$
 $0 = 5 \cos 2209 + 1 \cos 1809 + 1$
 $0 = 2209$
 $0 = 5 \cos 2209 + 1 \cos 1809 + 1$
 $0 = 3609 + 1 \cos 1809 + 1$
 $0 = 5 \cos 2609 + 1 \cos 1809 + 1$
 $0 = 5 \cos 2609 + 1 \cos 1809 + 1$
 $0 = 5 \cos 2609 + 1 \cos 1809 + 1$
 $0 = 5 \cos 2609 + 1 \cos 1809 + 1$
 $0 = 5 \cos 2609 + 1 \cos 1809 +$

