

Ch.2 Basic Mathematical Tools in DIP

Digital Image Processing

Instructor: Dr. Yu-Wei Wen

Negative Image

For each pixel,

 $Intensity_{new} = Intensity_{max} - Intensity_{original}$

Negative Image

For each pixel,

$$Intensity_{new} = Intensity_{max} - Intensity_{original}$$

• Given a source image f(x, y) of size $H \times W$, the negative image can be denoted

$$g(x,y) = 255 - f(x,y) \quad \forall \ 0 < x \le H \text{ and } 0 < y \le W$$

- Noise of an image
 - Unwanted signal (electronic fluctuation)
 - Usually occurs in dark scenes
 - Sensor/circuit heat (illumination)

a b c d e f

FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)–(f) Results of averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)

- Given a *noiseless* image f(x,y), a corrupted (noisy) image g(x,y) can be formed by adding noise $\eta(x,y)$ to f(x,y).
- Assumption
 - The noise is uncorrelated.
 - The noise and image values are uncorrelated.
 - The noise has a zero average value $\bar{\eta}(x,y) = 0$

- Given a *noiseless* image f(x,y), a corrupted (noisy) image g(x,y) can be formed by adding noise $\eta(x,y)$ to f(x,y).
- Assumption
 - The noise is uncorrelated.
 - The noise and image values are uncorrelated.
 - The noise has a zero average value $\bar{\eta}(x, y) = 0$
- Noise can be reduced by adding (averaging) a set of noisy images

$$\bar{g}(x,y) = \frac{1}{n} \sum_{i=0}^{n} g_i(x,y)$$

 Noise can be reduced by adding (averaging) a set of noisy images

$$\bar{g}(x,y) = \frac{1}{n} \sum_{i=0}^{n} g_i(x,y)$$

- Since $g(x,y) = f(x,y) + \eta(x,y)$ and $\bar{\eta}(x,y) = 0$
- It follows that

$$E\{\bar{g}(x,y)\} = E\left\{\frac{1}{n}\sum_{i=0}^{n}g_{i}(x,y)\right\} = E\left\{\frac{1}{n}\sum_{i=0}^{n}f(x,y) + \eta_{i}(x,y)\right\}$$

$$= f(x, y)$$

Noise can be reduced by adding (averaging) a set of noisy images

$$\bar{g}(x,y) = \frac{1}{n} \sum_{i=0}^{n} g_i(x,y)$$

- Other applications
 - Moving object removal
 - Light trace photo (could use average or max)

Comparing Images using Subtraction

- In some cases, the difference between images is so minor that the images are indistinguishable to human eyes.
- Example:

Comparing Images using Subtraction

- In some cases, the difference between images is so minor that the images are indistinguishable to human eyes.
- Example:

Shading Correction using Image Division

 Suppose an imaging sensor produces shaded images due to lens/sensor fatigue. The shaded image is denoted

$$g(x,y) = f(x,y)h(x,y)$$

where f(x, y) is the perfect image and h(x, y) is the shading function.

Shading Correction using Image Division

 Suppose an imaging sensor produces shaded images due to lens/sensor fatigue. The shaded image is denoted

$$g(x,y) = f(x,y)h(x,y)$$

where f(x, y) is the perfect image and h(x, y) is the shading function.

• The perfect image can be obtained by image division g(x,y)/h'(x,y)

where h'(x, y) is the estimated shading function.

Image Masking using Multiplication

• Given an image f(x, y) and a mask h(x, y), the masked image can be denoted

$$g(x,y) = f(x,y)h(x,y)$$

Note that the multiplication here refers pixel-wise product.

Spatial Operations

- The simplest operation to a digital image
- Altering the intensity of individual pixel using a transformation function $T: \mathbb{Z} \to \mathbb{Z}$ as

$$p' = T(p)$$

 For example, the following transformation yields negative image effect:

$$T(p) = 255 - p$$

- The simplest operation to a digital image
- Altering the intensity of individual pixel using a transformation function T: Z → Z as

$$p' = T(p)$$

 For example, the following transformation yields negative image effect:

$$T(p) = 255 - p$$

Questions—What image of these transformation function yields?

$$T_1(p) = \min(p + 100, 255)$$

$$T_2(p) = \max(p - 100, 0)$$

$$T_3(p) = \begin{cases} \max(p - 50, & 0), & \text{if } p < \bar{p} \\ \min(p + 50, & 255), & \text{if } p \ge \bar{p} \end{cases}$$

Questions—What image of these transformation function yields?

 T_1

 T_2

 T_3

Neighborhood Operations

- Let S_{xy} denote the set of coordinates of a neighborhood centered on an arbitrary point (x, y) in an image f.
- The following neighborhood operation yields a blurred image *g*.

$$g(x,y) = \frac{1}{mn} \sum_{(r,c) \in S_{xy}} f(r,c)$$

Neighborhood Operations

$$g(x,y) = \frac{1}{mn} \sum_{(r,c) \in S_{xy}} f(r,c)$$

- Modify spatial arrangement of pixels
- Rubber-sheet transformations
 - Painting an image on a rubber sheet.
 - Stretching or shrinking the sheet.
- Consist of two basic operations
 - Spatial transformation of coordinates.
 - Intensity interpolation that assigns intensity values to the spatially transformed pixels.

- Affine Transformations
 - Straight lines and parallelism are preserved.
 - Scaling, rotation, shearing, translation, etc.
- Let (x, y) be the pixel coordinates in the **original** image and (x', y') be the pixel coordinates in the **transformed** image.
- For example, (x', y') = (x/2, y/2) shrinks the original image to half of its size.

- For example, (x', y') = (x/2, y/2) shrinks the original image to half of its size.
- Matrix form

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

General form

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• To support translation, an additional dimension is required.

The general form of affine transformation is rewritten as

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Identity transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Identity

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Affine transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Affine transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling

$$\mathbf{A} = \begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Affine transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$x = r \cos \emptyset \qquad x' = r \cos(\emptyset + \theta)$$

$$y = r \sin \emptyset \qquad y' = r \sin(\emptyset + \theta)$$

$$x' = r \cos(\emptyset) \cos(\theta) - r \sin(\emptyset) \sin(\theta)$$

$$y' = r \sin(\emptyset) \cos(\theta) + r \cos(\emptyset) \sin(\theta)$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

Affine transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shearing (vertical)

$$\mathbf{A} = \begin{bmatrix} 1 & s_v & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Affine transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shearing (horizontal)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ s_h & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$s_h < 0$$

Forward mapping

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Problems of forward mapping
 - Many-to-one mapping
 - Unmapped pixels

Forward mapping

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Backward mapping

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

Backward mapping

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

- Two basic operations
 - Coordinates transformation (see above)
 - Intensity interpolation (previously discussed)

- Two basic operations
 - Coordinates transformation (see above)
 - Intensity interpolation (previously discussed)

