# Лабораторная работа №4

Модель гармонических колебаний

Федотов Дмитрий Константинович

# Содержание

| 1 | Целі | ь работы                    | 5  |  |
|---|------|-----------------------------|----|--|
| 2 | Вып  | олнение лабораторной работы | 6  |  |
|   | 2.1  | Теоретическое введение      | 6  |  |
|   |      | 2.1.1 Модель хищник-жертва  | 6  |  |
|   | 2.2  | Условия моего варианта      | 7  |  |
|   | 2.3  | Решение на Python           | 8  |  |
| 3 | Выв  | ОДЫ                         | 10 |  |

### **List of Tables**

# **List of Figures**

| 2.1 | Начальные коэффиценты вектор-функция для решения дифферен-   |
|-----|--------------------------------------------------------------|
|     | циального уравнения                                          |
| 2.2 | Интервал и шаг                                               |
| 2.3 | Массив хищников и жертв                                      |
| 2.4 | График колебаний изменения числа популяции хищников и жертв  |
| 2.5 | Зависимости изменения численности хищников от изменения чис- |
|     | ленности жертв с начальными значениями v=18. x=3             |

## 1 Цель работы

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при начальных условиях. Найти стационарное состояние системы

### 2 Выполнение лабораторной работы

#### 2.1 Теоретическое введение

#### 2.1.1 Модель хищник-жертва

Простейшая модель взаимодействия двух видов типа «хищник-жертва» — модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях: 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории) 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса (по экспоненциальному закону), при этом число жертв увеличивается, а число хищников падает 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными 4. Эффект насыщения численности обеих популяций не учитывается 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{\partial x}{\partial t} = ax(t) + bx(t)y(t) \\ \frac{\partial y}{\partial t} = -cy(t) - dx(t)y(t) \end{cases}$$

В этой модели х – число жертв, у - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, с - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (ху). Каждый акт взаимодействия уменьшает

популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние, всякое же другое начальное состояние приводит к периодическому колебанию численности как жертв, так и хищников, так что по прошествии некоторого времени система возвращается в это состояние.

Стационарное состояние системы (положение равновесия, не зависящее от времени решение) будет в точке:  $x_0=\frac{c}{d}, y_0=\frac{a}{b}$ 

Если начальные значения задать в стационарном состоянии  $x(0) = x_0, y(0) = y_0$ , то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.

При малом изменении модели (прибавление к правым частям малые члены, учитывающие, например, конкуренцию жертв за пищу и хищников за жертв), вывод о периодичности (возвращении системы в исходное состояние), справедливый для жесткой системы Лотки-Вольтерры, теряет силу.

Вывод: жесткую модель всегда надлежит исследовать на структурную устойчивость полученных при ее изучении результатов по отношению к малым изменениям модели (делающим ее мягкой).

#### 2.2 Условия моего варианта

Для модели «хищник-жертва»:

$$\begin{cases} \frac{\partial x}{\partial t} = -0.48x(t) + 0.031x(t)y(t) \\ \frac{\partial y}{\partial t} = 0.68y(t) - 0.031x(t)y(t) \end{cases}$$

Постройть график зависимости численности хищников от численности жертв

и графики изменения численности хищников и численности жертв при следующих начальных условиях:  $x_0=3, y_0=18.$  Найдите стационарное состояние системы.

### 2.3 Решение на Python

1. Зададим начальные коэффиценты и напишем вектор-функцию для решения дифференциального уравнения (рис. 2.1)

```
a = 0.48 # коэффициент естественной смертности хищников
b = 0.68 # коэффициент естественного прироста жертв
c = 0.031 # коэффициент увеличения числа хищников
d = 0.031 # коэффициент смертности жертв

def syst2(x, t):
    dx0 = -a*x[0] + c*x[0]*x[1]
    dx1 = b*x[1] - d*x[0]*x[1]
    return dx0, dx1
```

Figure 2.1: Начальные коэффиценты вектор-функция для решения дифференциального уравнения

2. Зададим интервал и шаг, на котором будем решать задачу, интервал - [0; 200], шаг -0.01 (рис. 2.2)

```
x0 = [3, 18] # начальное значение x и y (популяция хищников и популяция жертв)
t = np.arange(0, 200, 0.1)
```

Figure 2.2: Интервал и шаг

3. Создадим массивы для хищников и для жертв (рис. 2.3)

```
y2 = y[:,1] # хищники
y1 = y[:,0] # жертвы
```

Figure 2.3: Массив хищников и жертв

4. Построение графика колебаний изменения числа популяции хищников и жертв (рис. 2.4)



Figure 2.4: График колебаний изменения числа популяции хищников и жертв

5. Построение графика зависимости изменения численности хищников от изменения численности жертв (рис. 2.5)



Figure 2.5: Зависимости изменения численности хищников от изменения численности жертв с начальными значениями y=18, x=3

# 3 Выводы

- 1. Построил график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при начальных условиях.
- 2. Нашел стационарное состояние системы