⑩ 日本国特許庁(JP)

⑩ 特 許 出 顧 公 開

⑫ 公 開 特 許 公 報 (A) 平4-111266

@Int. Cl. 5

識別記号

庁内整理番号

@公開 平成4年(1992)4月13日

G 11 B 21/02

301

7541-5D 7719-5D

審査請求 未請求 請求項の数 1 (全22頁)

69発明の名称 デイスク再生装置

> 20特 願 平2-229971

願 平2(1990)8月30日 **29**出

大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内 個発 明 Ξ

大阪府守口市京阪本通2丁目18番地 勿出 頭 三洋電機株式会社

個代 理 人 弁理士 丸山 敏之 外1名

- 1. 発明の名称 ディスク再生装置
- 2. 特許請求の範囲
- ① シャーシ(11)に対して昇降可能に取り付けた 可動ベース(2)上に、ターンテーブル(24)とピ ックアップアセンブリ(27)と該ピックアップア センブリのターンテーブル半径方向への往復動 を案内するガイド手段とを配備し、鉄可動ベー ス(2)は駆動機構(20)によって昇降駆動され、 シャーシ(11)上には、可動ベース(2)の上昇に 伴ってターンテーブル(24)上のディスクが押圧 されるべきクランプ盤(15)を設置したディスク 再生装置において、シャーシ(11)上に、ピック アップアセンブリ(27)をガイド手段に沿って移 送すべきピックアップ移送機構(8)を装備し、 前記可動ペース 駆動機構 (20)及びピックアップ 移送機構(8)は共通の駆動額となる原動機構(3) へ連繋され、ピックアップ移送機構(8)は、 ピックアップアセンブリ(27)の移送方向に伸

びるラック部(82)(85)を異え、シャーシ(11)上 に前記移送方向の往復動が可能に支持されたラ ック機構と、

シャーシ(11)上に、原動機構(3)へ連繋して 設置され、前記ラック機構のラック部(82)(85) と鳴合すべき原動ピニオン(38)と、

ラック機構に対して設機構と一体移動可能に 設けられ、原動機構(3)の動作に連動して、ビ ックアップ移送機構(8)の動作中はピックアッ プアセンブリ(27)を挟持すると共に、可動べっ ス(2)の昇降駆動過程ではピックアップアセシ プリ(27)の挟持を開放するピックアップ挟持機

ラック機構に設けられ、可動ペース(2)の昇 降中はピックアップアセンブリ (27)を何れかー 方の移動端に拘束するピックアップ拘束機構 とを具えていることを特徴とするディスク再生 装置。

3. 発明の詳細な説明

(産業上の利用分野)

時開平 4-1112G6 **(2)**

本発明は、コンパクト オディスクプレーヤ等のディスク再生装置に関するものである。

(従来の技術)

従来、ディスク再生装置において、固定シャーン上に可動ベースの基端部を枢支して、可動ベースを上下方向へ回動可能に支持し、該可動ベース上にターンテーブル及びピックアップで昇降なって、これらを可動ベースと共に昇降ない。可動ベースの上昇に伴ってターンテーブル上のディスクを上方のクランプを行なう装置が提案されている(特別昭 61-145758(G11B17/04))。

斯種ディスク再生装置に於ては、ピックアップアセンプリは可動ベースと共に昇降するから、ピックアップアセンプリをターンテーブル半径方向へ往復移送するためのピックアップ移送機構や、鉄機構の駆動源となるモータは、可動ベース上に配備する必要があった。

この結果、可動ベースを含む昇降部が重量化し、

置され、前記ラック機構のラック部(82)(85)と唸 合すべき原動ピニオン(38)と、

ラック機構に対して鉄機構と一体移動可能に設けられ、原動機構(3)の動作に連動して、ピックアップ移送機構(8)の動作中はピックアップアセンブリ(27)を挟持すると共に、可動ペース(2)の昇降駆動過程ではピックアップアセンブリ(27)の挟持を開放するピックアップ挟持機構と、

ラック機構に設けられ、可動ベース(2)の昇降中はピックアップアセンブリ(27)を何れか一方の移動館に拘束するピックアップ拘束機構とを具えている。

(作用)

可動ペース(2)の昇降駆動中、ピックアップアセンブリ(27)は、ピックアップ挟持機構による挟持が開放されると共に、ピックアップ拘束機構によって一方の移動端に拘束されている。従って、ピックアップアセンブリ(27)が前記移動端に静止したまま、原動機構(3)の動力が駆動機構(20)を経て可動ペース(2)に伝えられ、可動ペース(2)

可動ベースの駆動機構 大掛かりなものとなり、 装置の大形化、重量化を招来していた。

本発明の目的は、ピックアップ移送機構を固定シャーシ上に配備することによって、可動部の経量化を図り、これによって可動ベース駆動機構の負荷の軽減、ひいては装置全体の小形化、軽量化が可能なディスク再生装置を提供することである。(課題を解決する為の手段)

本発明に係るディスク再生装置は、シャーシ(11)上に、ピックアップアセンブリ(27)をガイド手段に沿って移送すべきピックアップ移送機構(8)を装備し、可動ベース(2)の駆動機構(20)及びピックアップ移送機構(8)は共通の駆動源となる原動機構(3)へ連撃している。

ピックアップ移送機構(8)は、

ピックアップアセンブリ(27)の移送方向に伸びるラック部(82)(85)を具え、シャーシ(11)上に前記移送方向の往復動が可能に支持されたラック機構と、

シャーシ(11)上に、原動機構(3)へ選繁して設

が昇降駆動される。

可動ペース(2)が上昇端まで駆動された後、更に原動機構(3)が動作にすることにより、該動作に連動して、ピックアップ挟持機構がピックアップアセンブリ(27)を挟持する。

この状態で、ラック機構のラック部(82)(85)が 原動ピニオン(38)によって駆動され、該ラック機 機と一体となってピックアップアセンブリ(27)が 往復移送される。このとき、ピックアップ拘束機 構はラック機構と一体移動するから、ピックアッ プアセンブリ(27)の移送は自由に行なわれる。

(発明の効果)

本発明に係るディスク再生装置によれば、ピックアップ移送機構(8)が全てシャーシ(11)上に設置されているから、可動ペース(2)を含む可動部は軽量であり、これによって可動ペース駆動機構の負荷が軽減される。又、ピックアップ移送機構(8)と可動ペース駆動機構(20)を共通の原動機構(3)によって駆動することが可能となり、これによって装置全体の小形化、軽量化が図られる。

(実施例)

以下、本発明をコンパクトディスクブレーヤに 実施した一例につき、図面に沿って辞述する。尚、 実施例は本発明を説明するためのものであって、 特許請求の範囲に記載の発明を限定し、或は範囲 を試縮する様に解すべきではない。

全体構成

第1図の如く扁平なキャビネット(1)のフロントパネルにトレイ(61)が出没可能に配備され、該トレイ(61)は、キャビネット(1)内のシャーシ(11)上に形成した複数のトレイガイド部(14)によって、水平方向の往復移動を案内されている。

シャーシ(11)の中央関口部に可動ペース(2)が上下動可能に取り付けられ、該可動ペース(2)上にターンテーブル(24)、該ターンテーブルを駆動するスピンドルモータ(25)、ピックアップアセンブリを往復移送するピックアップ移送機構(8)が配備される。

又、シャーシ(11)上には、トレイ(61)を出役取 動するためのトレイ駆動機構(6)、可動ベース(2)

ピックアップアセンブリ (27)がディスク半径線に、 沿って往復移動し、信号の再生が行なわれる。 可動ペース機構

第10図の如く可動ベース(2)は四角形の枠状に形成され、トレイ収納方向の端部には、両側へ突出する一対の支軸(21)(21)が形成され、第11図及び第12図の如くこれらの支軸(21)(21)がシャーシ(11)上に軸支されて、可動ベース(2)は上下に回動可能である。又、可動ベース(2)の自由端部の一側面には、外向きに突出する駆動軸(22)が設けられ、銃駆動軸(22)が後述の可動ベース駆動機構(20)に連載して上下に駆動される。

可動ベース(2)の自由蟾側の前面に、垂直方向に伸びる板状の位置決めリブ(23)を突設すると共に、シャーシ(11)には、該位置決めリブ(23)が密に嵌入可能なガイド凹部(18)を形成する(第3図参照)。第11図から第12図に示す様に可動ベース(2)が上昇する過程で、位置決めリブ(23)はガイド凹部(18)へ嵌入し、可動ベース(2)の垂直面内での移動を案内する。

を上下に駆動するための可動ペース駆動機構(20)が配備されると共に、トレイ駆動機構(6)、可動ペース駆動機構(20)及びピックアップ移送機構(8)へ動力を切換え伝達するための原動機構(3)及び切換え機構(7)が配備される。

更にシャーシ (11)上には、ターンチーブル (24) の上方位置に、支持板 (16)に回転自由に支持され たクランプ盤 (15)が設置されている。

図示の如くトレイ(61)がディスク排出位置に投資された状態で、可動ペース(2)は下降増に設置されており、はトレイ(61)上にディスクを載置して信号再生指令を発すると、トレイ駆動機構(6)によってトレイ(61)が水平方向にキャピネット(1)内へ向って駆動され、ターンテーブル(24)上の所定位まって可動ペース(2)が上昇し、トレイ(61)上のディスクがターンテーブル(24)によって持ち上げられ、更に、ディスククランプが行なわれる。この状態で、ターンチーブル(24)が回転すると共に、

従って、可動ペース(2)は、第5図及び第12 図に示す上昇端にて、回動軸に沿う方向のずれを 生じることなく正確に位置決めされ、この結果、 ターンテーブル(24)は所定位置に設置される。こ れによって確実なディスククランブ動作を実現し ている。

第10図乃至第12図に示す様に、可動ベース(2)の自由端部に、ターンテーブル(24)及び該ターンテーブルを駆動するスピンドルモータ(25)が取り付けられ、可動ベース(2)の中央閉口部には、ターンテーブル(24)の半径線に対して平行に伸びる2本のガイドシャフト(26)(26)によってピックアップアセンブリ(27)の往復移動が案内されている。原動機構(3)

トレイ駆動機構(6)、可動ベース駆動機構(20) 及びピックアップ移送機構(8)へ動力を伝えるべき原動機構(3)は、第1図及び第2図の如くシャーシ(11)上に、ピックアップ移行路の片側に配数され、動力額となる原動モータ(31)と、該モータ の出力軸に固定された原動 (32)と、 該ギアに 鳴合する大径ギア部 (34)及び小径ギア部 (35)からなる第1中継ギア (33)と、 該小径ギア部 (35)に鳴合する大径ギア部 (37)及びピニオン部 (38)からなる駆動ギア (36)と、 該ピニオン部 (38)によりピックアップ移行路に沿って往 復駆動される第1及び第2スライド板 (4)(5)と、 前記ピニオン部 (38)による両スライド板 (4)(5)の 駆動を相互に切り換えるためのタイミングギア (39)とを具えている。

第13図及び第14図に示す如くシャーシ(11) 上には、駆動ギア(36)及びタイミングギア(39)を 夫々枢支すべき2本の枢軸(13)(12)と、第1及び 第2スライド板(4)(5)に開設した長孔(40a)(50 a)へ嵌入して両スライド板の移動を案内すべきガ イドポス(19)とが、スライド板移動方向とは直交 する一直線上に配列されている。この結果、第1 及び第2スライド板(4)(5)の両側に、駆動ギア (36)のピニオン部(38)とタイミングギア(39)とが 配置されることになる。

第1スライド板(4)は、図中に矢印で示すスラ

(55)と、後述の切換え機構 (7)を動作させるための第3ラック部 (56)とが設けられ、第2ラック部 (55)の側部には、該ラック部の厚さ方向の上端部からスライド方向へ伸びる突条部 (57)が形成されている。又、垂直壁部 (52)には、階段状のカム溝 (53)が関設され、第2スライド板 (5)のディスク排出側の端部には突片 (52a)が形成されている。

<u>トレイ駆動機構(6)</u>

第3図の如くシャーシ(11)上には、第1スライド板(4)の第2ラック部(42)に噛合すべきピニオン部(64)及び大径ギア部(65)からなる第2中継ギア(63)が配置され、前記ガイドポス(19b)によって軸支されると共に、前記第2中継ギア(63)の大径ギア部(65)が噛合する小径ギア部(67)及びピニオン部(68)からなるトレイ送りギア(66)が設置されている。

一方、トレイ (61)の裏面には、トレイ出没方向に伸びるラック (62)が形成され、飲ラック (62)に前記トレイ送りギア (66)のピニオン部 (68)が常時 噛合している。

イド方向の前後に長れて(a)(40b)を有し、これらの長孔(40a)(40b)にシャーシ(11)上のガイドボス(19)(19a)が夫々貫通して、第1スライド板(4)の移動が案内されている。第1スライド板(4)には、駆動ギア(36)のピニオン部(38)が鳴合すべき第1ラック部(41)と、後述のトレイ駆動機構(6)へ動力を伝えるべき第2ラック部(42)と、タイミングギア(39)が鳴合すべき第3ラック部(43)とが形成される。又、第3ラック部(43)の側部には、該ラック部の厚さ方向の下端部からスライド方向へ伸びる突条部(44)が形成されている。

一方、第2スライド板(5)は第1スライド板(4)の上に重ねて配置され、図中に矢印で示すスライド方向の前後に開設した長孔(50a)(50b)に、シャーシ(11)上のガイドボス(19)(19b)が夫々質通して、第2スライド板(5)の移動が案内されている。第2スライド板(5)は水平壁部(51)及び垂直壁部(52)を有し、水平壁部(51)には、駆動ギア(36)のビニオン部(38)が噛合すべき第1ラック部(54)と、タイミングギア(38)が噛合すべき第2ラック部

この結果、トレイ(61)上のディスク(10)はターンテーブル(24)上方の所定位置に設置されることになる。

ディスク排出動作は、原動ギア(32)を逆転させて、上記ディスク収納動作とは逆の動作により行なわれる。

尚、トレイ駆動時に 第2スライド板(5)は 左方の移動端にあって、 該スライド板(5)の第1 ラック部(54)と駆動ギア(36)のピニオン部(38)と の鳴合は解除されており、第2スライド板(5)は 停止したままである。又、後述のピックアップ移 送機構(8)を構成する2枚のラック板(81)(84)は 右方の移動端にあって、 該ラック板(81)(84)のラック部(82)(85)と駆動ギア(36)のピニオン部(38) との鳴合は解除されており、ピックアップ移送機 機(8)は停止したままである。

可動ベース駆動機構(20)

第11図に示す可動ベース(2)の駆動軸(22)が、第13図に示す第2スライド板(5)のカム溝(53)に摺動可能に嵌入しており、第15図乃至第17図の如く第2スライド板(5)が水平方向にスライドすることによって、可動ベース(2)の駆動軸(22)が第2スライド板(5)のカム溝(53)の斜面に押圧され、可動ベース(2)は、第15図の下降端から第17図の上昇端まで駆動される。

可動ベース駆動時、原動機構(3)は第4図及び

更に円板部(24b)の上面によってディスク(10)が 持ち上げられる。この際、トレイ(61)のディスク 収納位置は、クランプ盤(15)の中心よりも僅かな 距離A、例えば0.7mm程度、ディスク排出側へ ずれた位置に設定されている。これは図示の如く、 ターンテーブル(24)は、水平姿勢に至る疽前の傾 斜姿勢にてディスク(10)をトレイ(61)から持ち上 げることを考慮したものある。即ち、前記傾斜姿 勢におけるターンテーブル (24)のテーパ 軸部 (24a) の位置は、最終的な水平姿勢における位置からず れており、彼テーパ軸部(24a)の回転中心に、ト レイ(61)上のディスク(10)の回転中心を一致せし め、これによってターンテーブル(24)のテーパ軸 部(24a)をディスク中央孔(10a)へスムーズに嵌入 せしめるのである。可動ペース(2)が最終的に水 平姿勢まで上昇したときには、ターンテーブル(24) の回転中心がクランプ盤(1.5)の中心に一致するこ ととなる。従って、ターンテーブル(24)上のディ スク(10)は第17図の如く偏心することなく、ク ランプ盤(15)へ押し付けられ、ディスククランプ

第8図に示す機事 (まつけ 数に 設定されており、駆動ギア (36)のピニオン部 (38)が第2スライド板 (5)の第1ラック部 (54)と鳴合している。原動ギア (36)が同方向に回転し、ピニオン部 (38)は第2スライド板 (5)の第1ラック部 (54)を駆動して、第2スライド板 (5)を右方へ移動せしめる。これによって、上記の如く可動ベース (2)が下降端から上方へ駆動される。

第2スライド板(5)のカム溝(53)には、上位側の水平カム面の始端に隆起部(53a)が形成されており、第16図の如く可動ベース(2)の上昇過程にで駆動軸(22)が該隆起部(53a)へ乗り上げることによって、可動ベース(2)は水平姿勢から僅かに上昇したオーバストロークの回動を行なった後、第17図の水平姿勢に戻る。この動作の目的については後述する。

可動ペース(2)の上昇過 程にて、第21図の如くターンテーブル(24)のテーパ軸部(24a)がトレィ(61)上のディスク(10)の中央孔(10a)へ嵌入し、

が完了する。

可動ベース(2)を下降せしめてディスククランプを解除する動作は、上記ディスククランプ動作とは逆の動作により行なわれる。

尚、可動ベース駆動時には、駆動ギア(36)のピニオン部(38)と第1スライド板(4)の第1スライド板(4)との鳴合は解除されており、第1スライド板(4)は右方の移動端にで停止したままである。可動ベース支持機構(9)

第18図乃至第20図の如くシャーシ(11)の裏面には回動レパー(91)が回動自在に取り付けられており、シャーシ(11)との間に介装したパネ(92)によって反時計方向に回転付勢されている。該回動レバー(91)の一方の自由端部(91a)は第2スライド板(5)の突片(52a)へ向って伸び、他方の自由端部(91b)は可動ベース(2)の裏面を受け止めることが可能な長さに伸びている。

第18図は第15図に対応しており、第2スライド板(5)は左方の移動端に位置して、突片(52a)は回動レバー(91)から離間し、回動レバー(91)は

期平4-111266(6)

バネ (92)の付勢によって反。 方向の回動姿勢に保持され、自由端部 (91b)は可動ベース (2)の裏面から離脱している。

第19図は第16図に対応しており、第2スライド板(5)が右方へ移動し、突片(52a)は回動レバー(91)の一方の自由熔部(91a)を押圧して、回動レバー(91)を優かに時計方向へ回転させている。 尚、このとき、回動レバー(91)の一部が可動べース(2)の裏面へ向って臨出し始めるが、第16図の如く可動ベース(2)は水平姿勢から更に上方へオーバストロークの回動を行なっているから、回動レバー(91)が可動ベース(2)と衝突することはない。

第20図は第17図に対応しており、第2スライド板(5)が右方の移動端へ遠し、突片(52a)は回動レバー(91)の一方の自由端部(91a)を更に押圧して、回動レバー(91)を時計方向の回動端まで回転させ、これによって他方の自由端部(91b)は可動ベース(2)の裏面へ十分に臨出する。このとき、可動ベース(2)は第17図の如く前記オーバ

している。従って、ビニオン部(38)の反時計方向の回転によって第1ラック部(41)が右方へ駆動されて、前述の如くトレイのディスク収納方向の搬送が行なわれる。このときタイミングギア(39)は第22図(b)の如く、歯幅方向の下端部に歯欠部を有する歯(39a)(第13図参照)が、第1スライド板(4)の突条部(44)の上方へ臨出すると共に、該歯(39a)の両側の歯(39b)(39c)が突条部(44)の端面に係合して、タイミングギア(39)にロックがかかっている。又、第22図(a)の如くタイミングギア(39)の歯(39a)は第2スライド板(5)にもロックがかかっている。

第24図(a)(b)及び第25図(a)(b)はトレイがディスク収納位置まで搬送されたときの歯車 鳴合状態を示している。第24図(b)の如くピニオン部(38)と第1ステイド板(4)の第1ラック部(41)との鳴合が終点に達すると共に、第1スライド板(4)の第3ラック部(43)がタイミングギア(39)との鳴合を開始して、タイミングギア(39)は億か

ストロークの位置から、本年でも、水平姿勢にて前記回動レバー (§1)の自由端部 (§)b)によって受け止められることになる。

この結果、可動ペース(2)は安定した状態で水平姿勢に保持されることになる。

トレイと可動ペースの駆動切換え動作

上述の如くトレイ (61) は第1スライド板 (4)によって、可動ベース (2) は第2スライド板 (5)によって夫々駆動されるが、駆動ギア (36)のピニオン部 (38)の動力を第1スライド板 (4)と第2スライド板 (5)へ切換え伝達するために、前記タイミングギア (39) による動力伝達切換え動作を第22図乃至第29図によって説明する。

第22図(a)(b)及び第23図(a)(b)はトレイ駆動中における歯車鳴合状態を示している。第2スライド板(5)は左方の移動端に設置され、駆動ギア(36)のピニオン部(38)は、第2スライド板(5)の第1ラック部(54)とは鳴合を解除しているが、第1ラック部(41)のピニオン部(38)とは鳴合

に時計方向へ回転する。 該タイミングギア(39)の回転によって、第24図(a)の第2スライド板(5)の第2ラック部(55)が駆動され、第2スライド板(5)は僅かに右方へ移動する。この結果、第2スライド板(5)の第1ラック部(54)がビニオン部(38)との鳴合を開始する。

第26図(a)(b)及び第27図(a)(b)は更に ピニオン部(38)が反時計方向に回転して、ピニオ ン部(38)による駆動が、第1スライド板(4)か 第2スライド板(5)へ移行した直後の歯車へ 態を示している。第26図(a)のの第1ラック状 (38)によって第2スライド板(5)の第1ラック部 (54)が右方へ駆動され、これに伴ってタイミンイギア(39)が値かに時計方向へ回転する。 類26図(b)の ギア(39)が値かに時計方へ移動し、ピニオン く第1スライド板(4)が右方へ移動し、ピニオン 部(38)と第1ラック部(41)との鳴合が完全に解除 される。

第28図(a)(b)及び第29図(a)(b)は、可動ベース駆動中における歯車鳴合状態を示してお

り、ピニオン部(38)が第一ラック部(54)を駆動して第2スライド板(5)が右方へ移動している。このとき、タイミングギア(39)は、歯幅方向の上環部に歯欠部を有する歯(39d)が第2スライド板(5)の突条部(57)の下方へ離出すると共に、該歯(38d)の両側の歯(39c)(39e)が突条部(57)の端面と係合して、タイミングギア(38)にロックがかかっている。又、第28図(b)の如くタイミングギア(39)の歯(39d)は第1スライド板(4)の第3ラック部(43)と鳴合しており、これによって第1スライド板(4)にもロックがかかっている。

尚、ディスク排出時に可動ベース(2)を降下せ しめた後、トレイ(61)を排出方向へ駆動する場合 は、ビニオン部(38)が逆転して、上記とは逆の切 換え動作が行なわれる。

上記の如く、第1スライド板(4)と第2スライド板(5)とを上下に重ね合せて配置し、これらのスライド板(4)(5)を挟んで両側に、駆動源となるピニオン部(38)と動力切換え用のタイミングギア(38)とを配置し、ピニオン部(38)とタイミング

ある。

ビックアップ移送機構(8)

第2図に示す如く、シャーシ(11)上には、ピックアップ移行路に沿って第1ラック板(81)と第2ラック板(84)とが上下に重ねて配備されている。第2ラック板(84)は、シャーシ(11)との係合部に形成した案内機構(図示省略)によって、ピックで、が1ラック板(81)は第35図及び第36図に示す如く、第2ラック板(84)に対し、ピックで、第1ラック板(81)と第2ラック板(84)の間には、第1ラック板(81)と第2ラック板(84)の間にはた方へ付勢する圧縮ばね(87)が介装されている。

第 1 ラック板 (81)にはピックアップアセンブリ (27)側の端部に、ラック板長手方向に突出する突起 (81a)が形成され、鼓突起にコイルスプリング (88)の基端部が係止されている。一方、第 2 ラック板 (84)にはピックアップアセンブリ (27)側の端部に、ストッパー(86)が突設されている。 該スト

ギア(18)の回転中心は、スイラド板移動方向とは 直交する同一直線上に揃えたから、両回転中心を ずらして配置した場合に比べて正確な動力伝達切 換え動作が実現される。

即ち、両回転中心がずれている場合は、両スライド板(4)(5)を成形する際の寸法精度のバラッキ、特に各スライド板(4)(5)に形成された複数のラック部相互の位相関係のズレや、スライド板(4)(5)の温度変化に伴う熱影張等が原因となって、タイミングギア(39)による切換えタイミングがずれ、上述の切換え動作が正常に行なわれない度れがある。

これに対して、両回転中心を揃えた本実施例の 場合は、上記原因によってスライド板(4)(5)に 長手方向の寸法誤差が生じたとしても、スライド 板(4)(5)のラック部に対するピニオン部(38)及 びタイミングギア(39)の位置関係に変化はないか ら、鳴合開始時点及び鳴合解除時点に変化はない。 切換えタイミングがずれることはない。従ってで 常に正常な動力伝達切換え動作が実現されるので

ッパー(86)は、第39図の如く下方へ伸びる突片 (86a)を具えている。

第35図は、ピックアップ移送時におけるピックアップアセンブリ (27)と両ラック板 (81) (84)の係合状態を示しており、ピックアップアセンブリ (27)のベース (27a)が第1ラック板 (81)のコイルスプリング (88)と第2ラック板 (84)のストッパー (85)との間に介在し、コイルスプリング (88)の付勢力によって挟圧保持されている (第40図参照)。従って、この状態で両ラック板 (81) (84) が駆動されることにより、ピックアップアセンブリ (27)は両ラック板と一体となって移送されるのである。

第37図及び第38図は、第1ラック板(81)の 突起(81a)に対するコイルスプリング(88)の取り 付け構造を示しており、第1ラック板(81)の突起 (81a)の基隘部には、第1ラック板(81)の端面(81 c)からコイルスプリング(88)のワイヤ径よりも値 かに大なる距離だけ離して、断面が略直角三角形 の係止片(81b)が突役されている。コイルスプリ ング(88)を突起(81a)に取り付ける原には、図中 に破算で示す様にコイルス ング(88)を回転させながら、突起(81a)の周囲へ被せる。これに伴って、コイルスプリング(88)の先端(88a)が第 1 ラック板(81)の矯面(81c)と係止片(81b)の間へ介入して、第 8 8 図の如く取付けが完了する。この状態で、コイルスプリング(88)の先端部は係止片(81b)によって係止され、確実な抜け止めが施されることになる。

ピックアップ移送時において、原動機構(3)及びピックアップ移送機構(8)は第 5 図及び第 9 図に示す歯車鳴合状態に設定され、駆動ギア(36)のピニオン部(38)が第 1 ラック板(81)の第 1 ラック部(82)及び第 2 ラック板(84)のラック部(85)に同時に噛合している。従って、原動ギア(32)が正逆に回転することによって、ピックアップアセンブリ(27)がガイドシャフト(26)(26)に沿って往復移送されることになる。

尚、ピックアップ移送時には、第1スライド板 (4)及び第2スライド板 (5)はともに右方の移動 端に設置されており、駆動ギア (36)のピニオン部

(27)が第 1 ラック板(81)のコイルスプリング(88) と第 2 ラック板(84)のストッパー(86)によって挟 圧され、この結果、ピックアップアセンブリ(27) と両ラック板(81)(84)とが一体となって移動する。 可動ペースとピックアップの駆動切換え動作

上述の如く可動ペース(2)は、駆動ギア(36)のビニオン部(38)によって第2スライド板(5)を駆動することにより、ビックアップアセンブリ(27)は駆動ギア(36)のビニオン部(38)によって第1及び第2ラック板(81)(84)を駆動することによって夫々動作するが、ビニオン部(38)の動力を第2スライド板(5)と両ラック板(81)(84)へ切換え伝達するために、第2図に示す如くシャーシ(11)上には切換え機構(7)が設けられている。

切換え機構 (7)は、第 1 ラック板 (81)の移動方向の延長線上に配置された切換えピニオン (71)と、 該切換えピニオン (71)を回転付勢するスプリング (72)を具えている。切換えピニオン (71)は第 3 0 図に示す如くシャーシ (11)上の枢軸 (12 g)に支持 され、上端部に円板状の 鍔部 (73)を具えると共に、 (38)と阿スライド板 (41)(54)との鳴合は解除されている。

可動ベース昇降時のピックアップの拘束

第39図は可動ベース(2)が降下位置に設定されているときのピックアップアセンブリ(27)と両スライド板(4)(5)の位置関係を示し、第40図はピックアップ移送時の両者の係合状態を示している。

第39図においては、第1ラック板 (81)及び第2ラック板 (84)は夫々右方の移動 端に 設置されおり、第1ラック板 (81)のコイルスプリング (88)はピックアップアセンブリ (27)から 離脱して、自由状態にあり、コイルスプリング (88)によるピックアップアセンブリ (27)の挟圧保持は 解除されている。しかし、第2ラック板 (84)に 設けたストッパー (86)の突片 (86a)がピックアップアセンブリ (27) に当接して、ピックアップアセンブリ (27)がターンテーブル (24)から離れる方向へ自由移動するのを阻止している。

第40図においては、ピックアップアセンブリ

下端部には外向きに突出するアーム部 (74)を具えており、前記詞部 (73)から突出する係止片 (73a)とシャーシ (11)上のフック (11c)との間にスプリング (72)を張設している。切換えピニオン (71)は、シャーシ (11)に所定の開き角度で形成した 2 つのストッパー面 (11a) (11b)にアーム部 (74)が当接することによって、回転角度範囲が規定される。

第31図乃至第34図は、ディスククランプ完 了後、切換え機構(7)の動作によって動力伝達経 路を第2スライド板(5)から両ラック板(81)(84) へ切り換える過程を示している。

ディスククランプ完了時を示す第 3 1 図の状態では、駆動ギア(36)のピニオン部(38)が第 2 スライド板(5)の第 1 ラック部(54)の終端部と鳴合しいる。又、第 2 ラック板(84)は右方の移動端にでシャーシ上のストッパー(図示省略)に当接して停止している。切換えピニオン(71)は、第 1 ラック板(81)の第 2 ラック部(83)と鳴合した状態で気に回転り、グリング(72)の付勢力を受けて時計方向に回転しており、切換えピニオン(71)のアーム部(74)がシ

ャーシ上のストッパー面 ()に当って停止している。スプリング (72)の付勢力を受けて切換えピニオン (71) が時計方向に回転することによって、第1ラック板 (81) は第2 ラック板 (84) に対して右方へ牽引され、これに伴って圧縮ばね (87) は圧縮されている。

第31図の状態から駆動ギア(36)が反時計方向に回転すると、ピニオン部(38)が第2スライド板(5)の第1ラック部(54)を駆動して、第2スライド板(5)を右方へ移動させる。これによって第2スライド板(5)の第3ラック部(56)が切換えピニオン(71)との噛合を開始し、切換えピニオン(71)をスプリング(72)に抗して反時計方向に回転させる。 該切換えピニオン(71)の回転によって第1ラック板(81)の第2ラック部(83)が駆動され、第1ラック板(81)は左方へ僅かに移動する。

第32図の状態から駆動ギア(36)が更に反時計方向に回転すると、第33図の如く切換えピニオン(71)に対するスプリング(72)の回転付勢力が、時計方向から反時計方向へ転換する。該反時計方

のラック部が同時に駆動ギア(36)のビニオン部 (38)と映合することになる。

以後、駆動ギア(36)のピニオン部(38)の駆動によって両ラック板(81)(84)が往復駆動され、ピックアップアセンブリの移送が行なわれる。

ピックアップアセンブリ(27)による信号再生後、ディスクを排出する版は、ピックアップアセンブリ(27)を第4図の如くターンテーブル(24)側の移送へ移送し、その後、切換え機構(7)の動作によって動力伝達経路を両ラック板(81)(84)から第2スライド板(5)へ切り換える。この遊程は、前述の切換え動作とは逆の動作、即ち第34図の状態から第33図、第32図の状態を経て、第31図の状態へ戻ることによって行なわれる。

前述の如くトレイ(61)の駆動及び可動ベース(2)の駆動は共に駆動ギア(36)の回転によって行なわれるが、これらの駆動過程では、第31図の如く第1ラック板(81)は、切換え機構(7)の動作により、圧縮ばね(87)に抗して右方へ牽引された状態に保持され、第1ラック板(81)の第1ラック部(82)

向の付勢力により切換え ピニオン (71)が更に反時計方向に回転することによって、第2スライド板 (5)の第3ラック部 (56)が右方へ駆動されると同時に、第1ラック板 (81)の第2ラック部 (83)が左方へ駆動される。この結果、第1ラック板 (81)の第1ラック部 (82)が、駆動ギア (36)のピニオン部 (38)に対する場合を開始する一方. ピニオン部 (38)と第2スライド板 (5)の第1ラック部 (54)との唱合が解除される。

その後、僅かな期間は、駆動ギア (36)の駆動力と切換えピニオン (71)の回転付勢力の両方によって、第1ラック板 (81)が左方へ移動し、最終的に第34図に示す状態では、切換えピニオン (71)は、アーム部 (74)がシャーシ上のストッパー面 (11b)に当って停止し、切換えピニオン (71)と第1ラック板 (81)の第2ラック板 (83)との 輸合は解除 1ラック板 (81)が圧縮 ばね (87)の付勢によって第2ラック板 (84)に対する左方の移動場まで移動した状態で、両ラック板 (81) (84)のラック紙 (82) (85)が互いに同一位相で置なり、これら

と駆動ギア(36)のピニオン部(38)とは互いに接触することなく、完全に切り離されている。従って、トレイ(61)或いは可動ペース(2)の駆動時に、ピックアップ移送機構(8)が負荷となって作用することはない。

ラックとピニオンの職合開始時の抱合せ構造

第34図の状態から第33図の状態へ移行する 過程で、切換えピニオン(71)と第1ラック版(81) の第2ラック部(83)とは、鳴合を完全に解除した 状態から、ラック部(83)がピニオン(71)側へ向っ て長手方向に移動して、両者の鳴合が開始される。 この際、ラック部(83)とピニオン(71)を夫々完全 な協っする通常の構成とすると、鳴合開始は に、ラック部(83)の先頭の歯がピニオン(71)の歯 に、ラック部(83)の先頭の歯がピニオン(71)の歯 に、異常な位置で接触を開始することになり、正 常な鳴合状態へ移行するまでの間、歯面に無理な 力が作用し、歯面欠損等の原因となる。

そこで、本実施例では第41図の如くラック部(83)の先頭の歯(81a)は、幅方向の略半分の部分(81b)が欠如した形状に形成する。又、第42図

の如くピニオン(71)は、前 ック部(83)の先頭 歯(83a)が嚙合すべき歯(71a)を、該先頭歯(83a) に対応する部分(71b)が欠如した形状に形成する。

第42図から第43図に示す如く、第1ラック板(81)が矢印方向に移動して、ピニオン(71)との噛合を開始する過程で、第1ラック板(81)の先頭歯(83a)は、ピニオン(71)の前配歯(71a)を通過して、次の歯(71c)と噛み合う。又、ラック部(83)の2番目の歯(83c)がピニオン(71)の歯(71a)と噛み合うこととなり、第43図の如くラック部(83)とピニオン(71)とが抱き合った状態となる。

この過程で、互いに鳴合する歯面どうしに無理な力が作用することはない。

鳴合開始後は、通常の完全な歯面どうしの喰合 状態となって、ラック板(81)の移動によりピニオ ン(71)が回転駆動される。

上記のラックとピニオンの抱合せ構造は、第31図に示す第2スライド板(5)の第3ラック部(56)と切換えピニオン(71)の組合せや、第5図に示す第1スライド板(4)の第2ラック部(42)と第2中

が可能であることは勿論である。

4. 図面の簡単な説明

第1図は本発明に係るディスクプレーヤの全体 構成を示す一部破断斜視図、第2図は第1図の分 解斜視図、第3図はトレイ駆動状態の平面図、第 4 図は可動ペース駆動状態の平面図、第5 図はピ ックアップ移送状態の平面図、第6図は第3図VI - VI線に沿う断面の要都を示す図、第7図は第3 関 WI ー VI 線に沿う断筋の要部を示す関、第8 関は 第4回11日11日に沿う断面の要部を示す図、第9 図は第5図以一区線に沿う断面の要部を示す図、 第10図は可動ペース機構の分解斜視図、第11 図及び第12図は夫々可動ペース下降状態及び上 昇状態における一部破断斜視図、第13回は第1 及び第2スライド板の分解料模図、第14図は第 1及び第2スライド板の組立状態の縦断面図、第 15 図乃至第17 図は可動ペース駆動機構の一連 の動作を示す一部破断側面図、第18図乃至第2 0 図は可動ベース支持機構の一連の動作を示す裏 面図、第21回はトレイのディスク収納位置を説 継ギア(63)のピニオンm(64)の組合せに対しても 採用されている。

前者の組合せにおいては、第2スライド板(5)が第31図の位置から右方へ移動して、第32図の如く第3ラック部(56)の右方の先頭歯が切換えピニオン(71)へ嚙み合う際、第3ラック部(56)と切換えピニオン(71)とが抱き合って、スムーズに融合が始まる。

マ、後者の組合せにおいては、可動ベース(2)を下降せしめた後、トレイを排出する過程で、第1スライド板(4)が第5図の位置から左方へ移動して、第4図の如く第2ラック部(42)の左側の先頭歯が第2中継ギア(63)のピニオン部(64)へ鳴み合う際、第2ラック部(42)とピニオン部(64)とが抱き合って、スムーズに鳴合が始まる。

上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。 又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形

明する一部破断側面図、第22図及び第23図は 夫々第1スライド板駆動状態を説明する平面図及 び斜視図、第24図及び第25図は夫々第1スラ イド板駆動状態から第2スライド板駆動状態への 切換わりの前半動作を説明する平面図及び斜視図、 第26図及び第27図は前記切換わりの後半動作 を説明する平面図及び斜視図、第28図及び第2 9 図は第2 スライド板駆動状態を説明する平面図 及び斜視図、第30図は切換え機構の分解斜視図、 第31図乃至第34図は第2スライド板駆動状態 から第1及び第2ラック板駆動状態への切換わり を示す一連の平面図、第35図はピックアップ移 送機構の組立状態を示す斜視図、第36図はピッ クアップ移送機構の分解斜視図、第37図は第1 ラック板に対するコイルスプリングの取付け構造 を拡大して示す分解斜視図、第38図は接取付け 構造の組立状態を示す一部破断側面図、第39図 及び第40図はコイルスプリングによるピックア ップアセンブリ挟圧動作を示す一部破断側面図、 第41図乃至第43図はラックとピニオンの抱合

せ構造を示し、第41図 ック部を示す斜視図、第42図は第2ラック部と 切換えピニオンの噛合前の斜 視図、第43図は嘘 合開始時の抱合せ状態を示す斜視図である。

(11)…シャーシ

(18)… ガイド凹部

(2)…可動ペース

(23)…位置決めリブ

(27)…ビックアップアセンブリ

(3)…原動機構

(32)…原動ギア

(36)…駆動ギア

(39)…タイミングギア

(4)… 第1スライド板 (5)… 第2スライド板

(6)…トレイ駆動機構 (61)…トレイ

(66)…トレイ送りギア (68)…ピニオン部

(71)…切換えピニオン (72)…スプリング

(8)…ピックアップ移送機構

(81)… 第 1 ラック 板

(84)… 第 2 ラック板

(87)…圧縮ばね

(88)…コイルスプリング

(9)…可動ペース支持機構

(91)…回動レバー

寿6図

第8図

第9図

-552-

第且【図

第12回

第17四

*180

*190

#37Z

#42図

第43図