Statistik 1, Test 5

Aufgabe 1

(a) Die 4-Felder-Tafel ist

	nicht infiziert	infiziert	Σ
Test positiv	0.0198	0.008	0.0278
Test negativ	0.9702	0.002	0.9722
Σ	0.99	0.01	1

Wobei $0.99 \cdot 0.98 = 0.9702$ und $0.01 \cdot 0.8 = 0.008$.

- (b) Die Wahrscheinlichkeit dafür ist $\frac{0.008}{0.0278}=0.2878.$
- (c) Die Wahrscheinlichkeit dafür ist $\frac{0.9702}{0.9722}=0.9979.$
- (d) Die neue 4-Felder-Tafel ist nun

	nicht infiziert	in fiziert	Σ
Test positiv	0.018	0.08	0.098
Test negativ	0.882	0.02	0.902
$\overline{\Sigma}$	0.90	0.1	1

Die Wahrscheinlichkeiten sind dann $\frac{0.08}{0.098}=0.8163$ bzw. $\frac{0.882}{0.902}=0.9778.$

Aufgabe 2

(a) Damit es sich um eine Dichtefunktion handelt, muss gelten

$$\int_{1}^{2} f(x) dx = 1$$

$$\int_{1}^{2} a \cdot x \cdot \exp(-x) dx = 1$$

$$\frac{(2e - 3)a}{e^{2}} = 1$$

$$a = \frac{e^{2}}{2e - 3}$$

$$= 3.0326$$

(b) Für die Verteilungsfunktion $F(t) = \int_{-\infty}^{t} f(x) dx$ gilt

$$F(x) = \begin{cases} \int_{1}^{x} f(t) dt & x \in [1, 2] \\ 0 & x \notin [1, 2] \end{cases} = \begin{cases} a \left(\frac{2}{\exp(1)} - \exp(-x)(x+1) \right) & x \in [1, 2] \\ 0 & x \notin [1, 2] \end{cases}$$

(c) Der Erwartungswert ist

$$\mathbb{E}(X) = \int_{1}^{2} x \cdot (3.0326 \cdot x \cdot \exp(-x)) \, dx$$
$$= 1.4740$$

(d) Der Erwartungswert ist

$$\mathbb{E}\left(\frac{1}{3}X^3 + 2X^2\right) = \int_1^2 \left(\frac{1}{3}X^3 + 2X^2\right) \cdot (3.0326 \cdot x \cdot \exp(-x)) \, dx$$
$$= 5.6971$$

(e) Die Varianz ist

$$Var(X) = \int_{1}^{2} x^{2} \cdot (3.0326 \cdot x \cdot \exp(-x)) dx - 1.4740^{2}$$
$$= 0.0815$$

Aufgabe 3

Die Aussagen sind

- Die Ereignisse A und B heißen genau dann stochastisch unabhängig, ... RICHTIG
- Die Varianz ist linear. FALSCH, es gilt $Var(a \cdot X) = a^2 \cdot Var(X)$.
- Der Erwartungswert ist linear. RICHTIG
- Es gilt $Var(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$. RICHTIG
- Die standardisierte Zufallsvariable hat Erwartungswert 1 und Varianz 0. FALSCH, der Erwartungswert ist 0 und die Varianz ist 1.

Aufgabe 4

Die richtigen Eigenschaften sind

- $\mathbb{P}(X > a) = \int_a^\infty f(t) dt$
- $\int_{-\infty}^{\infty} f(t) \, dt = 1$

Aufgabe 5

Die richtigen Eigenschaften sind

- F ist rechtsseitig stetig.
- $F(\infty) = 1$ und $F(-\infty) = 0$.
- \bullet F ist monoton wachsend.