import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

iris = pd.read_csv('/content/IRIS.csv')

iris.head(10)

→		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	5	5.4	3.9	1.7	0.4	Iris-setosa
	6	4.6	3.4	1.4	0.3	Iris-setosa
	7	5.0	3.4	1.5	0.2	Iris-setosa
	8	4.4	2.9	1.4	0.2	Iris-setosa
	9	4.9	3.1	1.5	0.1	Iris-setosa

iris.tail(10)

_		sepal_length	sepal_width	petal_length	petal_width	species
	140	6.7	3.1	5.6	2.4	Iris-virginica
	141	6.9	3.1	5.1	2.3	Iris-virginica
	142	5.8	2.7	5.1	1.9	Iris-virginica
	143	6.8	3.2	5.9	2.3	Iris-virginica
	144	6.7	3.3	5.7	2.5	Iris-virginica
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

iris.shape

→ (150, 5)

iris.info()

<</pre>
<<cl><class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object
dtvp	es: float64(4)	, object(1)	

dtypes: float64(4), object(1)
memory usage: 6.0+ KB

memory asager oro. K

iris.isna().sum()

} *		0
	sepal_length	0
	sepal_width	0
	petal_length	0
	petal_width	0
	species	0

dtype: int64

iris.duplicated().sum()

→ 3

iris= iris.drop_duplicates()

iris.shape

→ (147, 5)

iris

→		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	•••					
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

147 rows × 5 columns

fig,ax = plt.subplots(figsize=(10,5))
sns.boxplot(iris,ax=ax)

iris.describe()

₹

	sepal_length	sepal_width	petal_length	petal_width
count	147.000000	147.000000	147.000000	147.000000
mean	5.856463	3.055782	3.780272	1.208844
std	0.829100	0.437009	1.759111	0.757874
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

iris.species.unique()

⇒ array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

iris['species'].value_counts()

dtype: int64

sns.countplot(x = "species",data=iris,palette="Dark2")

<ipython-input-18-481d8148ff53>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.countplot(x = "species",data=iris,palette="Dark2")


```
ax[0,0].hist(iris['sepal_length'],bins=20,edgecolor='black')
ax[0,0].set_xlabel('sepal_length')
ax[0,0].set_ylabel('frequency')

ax[0,1].hist(iris['sepal_width'],bins=20,edgecolor='black',color='brown')
ax[0,1].set_xlabel('sepal_width')
ax[0,1].set_ylabel('frequency')

ax[1,0].hist(iris['petal_length'],bins=20,edgecolor='black',color='purple')
ax[1,0].set_xlabel('petal_length')
ax[1,0].set_ylabel('frequency')
```

fig,ax=plt.subplots(2,2, figsize=(12,8))

ax[1,1].hist(iris['petal_width'],bins=20,edgecolor='black',color='green')

```
ax[1,1].set_xlabel('petal_width')
ax[1,1].set_ylabel('frequency')
plt.show()
```


fig,ax=plt.subplots()
sns.heatmap(iris.drop(columns='species').corr(), annot=True,cmap='Spectral',fmt=".2f",ax=ax,linewidth=0.5)
plt.show()

fig,ax=plt.subplots(figsize=(8,6))
sns.scatterplot(x="petal_width",y="petal_length",hue="species",data=iris)
plt.show()

fig,ax=plt.subplots(figsize=(8,6))
sns.scatterplot(x="sepal_width",y="sepal_length",hue="species",data=iris)
plt.show()

Scatterplot for sepal length and petal length by species
fig,ax=plt.subplots(figsize=(8,6))
sns.scatterplot(x="petal_length",y="sepal_length",hue="species",data=iris)
plt.show()

sns.pairplot(iris, hue='species')

from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()

iris['species']=label_encoder.fit_transform(iris['species'])
inis

<u> </u>						
→		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
					•••	
	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

147 rows × 5 columns

```
from sklearn.model_selection import train_test_split

# Define feature and target variables
x= iris.drop('species',axis=1)
y=iris['species']

#Split dataset into training and testing sets
x_train,x_test,y_train,y_test = train_test_split(x,y, test_size=0.2)

train_data= x_train.join(y_train)
train_data
```

		sepal_length	sepal_width	petal_length	petal_width	species
	8	4.4	2.9	1.4	0.2	0
	47	4.6	3.2	1.4	0.2	0
	33	5.5	4.2	1.4	0.2	0
	143	6.8	3.2	5.9	2.3	2
	97	6.2	2.9	4.3	1.3	1
	115	6.4	3.2	5.3	2.3	2
	3	4.6	3.1	1.5	0.2	0
	118	7.7	2.6	6.9	2.3	2
	99	5.7	2.8	4.1	1.3	1
	44	5.1	3.8	1.9	0.4	0

117 rows × 5 columns

 $from \ sklearn.linear_model \ import \ LogisticRegression$

```
#Build a Logisitc Regression model
fitted_model_lr = LogisticRegression()
#Train the model
fitted_model_lr.fit(x_train,y_train)
#Make predictions
y_pred_lr = fitted_model_lr.predict(x_test)
from \ sklearn.metrics \ import \ accuracy\_score, \ classification\_report, \ confusion\_matrix
# Model's performance evaluating
accuracy = accuracy_score(y_test, y_pred_lr)
print(f' Accuracy for LR: {accuracy:.4f}')
print(classification_report(y_test, y_pred_lr))
cf=confusion_matrix(y_test,y_pred_lr)
\verb|sns.heatmap(cf,annot=True,fmt=".2f",cmap="Spectral",linewidth=0.5|)|
plt.title('Confusion Matrix for LR Model')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
```

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

```
n_iter_i = _check_optimize_result(
Accuracy for LR: 1.0000
```

,		precision	recall	f1-score	support
	0	1.00	1.00	1.00	7
	1	1.00	1.00	1.00	11
	2	1.00	1.00	1.00	12
accurac	у			1.00	30
macro av	g'g	1.00	1.00	1.00	30
weighted av	/g	1.00	1.00	1.00	30

 $from \ sklearn.neighbors \ import \ KNeighbors Classifier$

```
#Build a KNN model
fitted_model_knn = KNeighborsClassifier()
#Train the model
fitted_model_knn.fit(x_train,y_train)
#Make predictions
y_pred_knn = fitted_model_knn.predict(x_test)
# Model's performance evaluating
accuracy1 = accuracy_score(y_test, y_pred_knn)
print(f' Accuracy for KNN: {accuracy1:.4f}')
print(classification_report(y_test, y_pred_knn))
cf1=confusion_matrix(y_test,y_pred_knn)
sns.heatmap(cf1,annot=True,fmt=".2f",cmap="Spectral",linewidth=0.5)
plt.title('Confusion Matrix for KNN Model')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
```


#Build a KNN model
fitted_model_svm = SVC()
#Train the model
fitted_model_svm.fit(x_train,y_train)
#Make predictions
y_pred_svm = fitted_model_svm.predict(x_test)
Model's performance evaluating
accuracy2 = accuracy_score(y_test, y_pred_svm)
print(f' Accuracy for SVM: {accuracy2:.4f}')
print(classification_report(y_test, y_pred_svm))
cf2=confusion_matrix(y_test,y_pred_svm)
sns.heatmap(cf2,annot=True,fmt=".2f",cmap="Spectral",linewidth=0.5)
plt.title('Confusion Matrix for SVM Model')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')

from sklearn.svm import SVC

plt.show()

```
Accuracy for SVM: 1.0000
                 precision
                              recall f1-score
                                                support
              0
                      1.00
                                1.00
                                         1.00
              1
                      1.00
                                1.00
                                         1.00
                                                     11
                      1.00
                                1.00
                                         1.00
              2
                                                     12
                                         1.00
        accuracv
                                                     30
```

from sklearn.tree import DecisionTreeClassifier

```
#Build a KNN model
fitted_model_dt = DecisionTreeClassifier()
#Train the model
fitted_model_dt.fit(x_train,y_train)
#Make predictions
y_pred_dt = fitted_model_dt.predict(x_test)
# Model's performance evaluating
accuracy3 = accuracy_score(y_test, y_pred_dt)
print(f' Accuracy for DT: {accuracy3:.4f}')
print(classification_report(y_test, y_pred_dt))
cf3=confusion_matrix(y_test,y_pred_dt)
sns.heatmap(cf3,annot=True,fmt=".2f",cmap="Spectral",linewidth=0.5)
plt.title('Confusion Matrix for DT Model')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
```

₹	Accuracy	/ for	DT: 1.0000 precision	recall	f1-score	support
		0	1.00	1.00	1.00	7
		1	1.00	1.00	1.00	11
		2	1.00	1.00	1.00	12
	accur	acy			1.00	30
	macro	avg	1.00	1.00	1.00	30
	weighted	avg	1.00	1.00	1.00	30

