

SCIENCES INDUSTRIELLES DE L'INGÉNIEUR INTERROGATION DE COURS 5 – A

[Aucun document - Calculatrice interdite - Répondre directement sur le sujet]

Nom :

Cours

Question 1 Soit un solide S_0 munit d'un repère $\mathcal{R}_0 = (O_0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ et un solide S_1 munit d'un repère $\mathcal{R}_1 = (O_1, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$. Soit un point P appartenant au solide S_1 . Donner la vitesse du point P par rapport à \mathcal{R}_0 .

Question 2 Le vecteur instantané de rotation permettant de passer de \mathcal{R}_0 à \mathcal{R}_1 est noté $\overline{\Omega(\mathcal{R}_1/\mathcal{R}_0)}$. On donne $\overline{V(A \in \mathcal{R}_1/\mathcal{R}_0)}$ et \overline{AB} . Calculer $\overline{V(B \in \mathcal{R}_1/\mathcal{R}_0)}$. (Formule de Varignon)

EXERCICE

On donne la figure suivante :

On note $\mathcal{R}_0 = (O_0, \overrightarrow{X_0}, \overrightarrow{Y_0}, \overrightarrow{Z_0}), \mathcal{R}_1 = (O_0, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{Z_0}), \mathcal{R}_2 = (O_0, \overrightarrow{w}, \overrightarrow{Z_1}, \overrightarrow{u}) \text{ et } \mathcal{R}_3 = (O_0, \overrightarrow{X_1}, \overrightarrow{Y_1}, \overrightarrow{Z_1}).$

Question 1 Calculer $\vec{u} \wedge \vec{v}$ et $\vec{u} \wedge \overrightarrow{X_1}$.

Question 2 Donner $\overline{\Omega(\mathcal{R}_1/\mathcal{R}_0)}$.

Question 3 Calculer $\left[\frac{d\overline{u(t)}}{dt}\right]_{\mathcal{R}_{t}}$

Question 4 Calculer $\left[\frac{d\overline{Y_1(t)}}{dt}\right]_{\mathcal{R}}$