Anki Vector

A LOVE LETTER TO THE

LITTLE DUDE

AUTHOR

RANDALL MAAS

OVERVIEW

This is fascicle explores how the Anki Vector was realized in hardware and software.

RANDALL MAAS has spent decades in Washington and Minnesota. He consults in embedded systems development, especially medical devices. Before that he did a lot of other things... like everyone else in the software industry. He is also interested in geophysical models, formal semantics, model theory and compilers.

You can contact him at randym@randym.name.

LinkedIn: http://www.linkedin.com/pub/randall-maas/9/838/8b1

ANKI VECTOR	<u>. I</u>
A LOVE LETTER TO THE LITTLE DUDE	<u>. I</u>
PREFACE	<u>.1</u>
1.1. CUSTOMIZATION / REPAIRS AND PATCHING	
CHAPTER 2	<u>.3</u>
OVERVIEW OF VECTOR	<u>.3</u>
3. OVERVIEW	.3
PART I	<u>.5</u>
ELECTRONICS DESIGN	<u>.5</u>
CHAPTER 2	<u>.7</u>
ELECTRONICS DESIGN DESCRIPTION	<u>.7</u>
4. DESIGN OVERVIEW	.7
CHAPTER 4	<u>.8</u>
ACCESSORY ELECTRONICS DESIGN DESCRIPTION	<u>.8</u>
5. CHARGING STATION	.8 .9
PART II	<u>l 1</u>
BASIC OPERATION	<u>l 1</u>
CHAPTER 7	13

BLUE	TOOTH LE COMMUNICATION PROTOCOL	13
7. C	COMMUNICATION PROTOCOL OVERVIEW	
7.1.	SETTING UP THE COMMUNICATION CHANNEL	
7.2.	FRAGMENTATION AND REASSEMBLY	
7.3.	ENCRYPTION SUPPORT	_
7.3.1	FIRST TIME PAIRING	17
7.3.2	Reconnecting	17
7.3.3	ENCRYPTING AND DECRYPTION MESSAGES	17
7.4.	THE RTS LAYER	18
8. N	Лessage formats	19
8.1.	APPLICATION CONNECTION ID	20
8.1.1	Request	20
8.1.2	RESPONSE	20
8.2.	CANCEL PAIRING	21
8.2.1	REQUEST	21
8.2.2	RESPONSE	21
8.3.	CHALLENGE	22
8.3.1	REQUEST	22
8.3.2	RESPONSE	22
8.4.	CHALLENGE SUCCESS	23
8.4.1	Request	23
8.4.2	RESPONSE	23
8.5.	CLOUD SESSION	24
8.5.1	COMMAND	24
8.5.2	RESPONSE RESULT	24
8.6.	CONNECT	25
8.6.1	Request	25
8.6.2	RESPONSE	25
8.7.	DISCONNECT	27
8.7.1	Request	27
8.7.2	Response	27
8.8.	FILE DOWNLOAD	28
8.8.1	Request	28
8.8.2	RESPONSE	
8.9.		
8.9.1	REQUEST	
8.9.2		
8.10.		
	1 Request	
8.10.2		
8.11.		
8.11.1		
8.11.2	·	
8.12.		
8.13.		
	1 REQUEST	22

8.14. 8.14.1		33
	SSH	34
	1 Request	34
8.14.2	2 Response	34
8.15.	STATUS	35
8.15.1	1 Request	35
8.15.2	2 Response	35
8.16.	WIFI ACCESS POINT	36
8.16.1	1 Request	36
8.16.2	2 Response	36
8.17.	WIFI CONNECT	37
8.17.1	1 Request	37
8.17.2	2 Response	37
8.18.	WIFI FORGET	38
8.18.1	1 Request	38
8.18.2	2 Response	38
8.19.	WIFI IP ADDRESS	39
8.19.1	1 Request	39
8.19.2	2 Response	39
8.20.	WIFI SCAN	40
8.20.1	1 Request	40
8.20.2	2 Response	40
THE C	CLOUD SERVICES	41
9. Tı	HE JDOC SERVER	
<i>9</i> . II	HE JDOC SERVER	41
_	THE USER ACCOUNT SETTINGS	
9.1.		41
9.1. 9.2.	THE USER ACCOUNT SETTINGS	41 41
9.1. 9.2. 9.3.	THE USER ACCOUNT SETTINGS	41 41 42
9.1. 9.2. 9.3. 9.4.	THE USER ACCOUNT SETTINGS	41 41 42
9.1. 9.2. 9.3. 9.4.	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES	41 42 42
9.1. 9.2. 9.3. 9.4. REFER	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES CREDITS	41 42 42 44
9.1. 9.2. 9.3. 9.4. REFER	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES CREDITS REFERENCE DOCUMENTATION AND RESOURCES.	41 42 42 44
9.1. 9.2. 9.3. 9.4. REFER 10. (11. 11.1.	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES CREDITS REFERENCE DOCUMENTATION AND RESOURCES ANKI	41 42 42 44 44
9.1. 9.2. 9.3. 9.4. REFER 10. (11. (11.1.	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES CREDITS REFERENCE DOCUMENTATION AND RESOURCES ANKI	41 42 42 44 44
9.1. 9.2. 9.3. 9.4. REFER 10. (1) 11. (1) 11.1.	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES CREDITS REFERENCE DOCUMENTATION AND RESOURCES ANKI	4142444444
9.1. 9.2. 9.3. 9.4. REFER 10. (1) 11. 1. 11.1. APPEN	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES CREDITS REFERENCE DOCUMENTATION AND RESOURCES ANKI. OTHER	414244444444
9.1. 9.2. 9.3. 9.4. REFER 10. (11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	THE USER ACCOUNT SETTINGS ROBOT SETTINGS USER ENTITLEMENTS ROBOT LIFETIME STATS RENCES & RESOURCES CREDITS REFERENCE DOCUMENTATION AND RESOURCES ANKI	41424444444444

APPENDIX B	49
TOOL CHAIN	4 9
APPENDIX C	52
BLUETOOTH LE SERVICES & CHARACTERISTICS	52
12. CUBE SERVICES	52
12.1. CUBE'S ACCELEROMETER SERVICE	53
13. VECTOR SERVICES SERVICE	53
13.1. VECTORS SERIAL SERVICE	54
APPENDIX D	55
AT ENDIN D	
SERVERS & DATA SCHEMA	55
APPENDIX E	56
PHRASES AND THEIR INTENT	56
APPENDIX G	59
FILE SYSTEM	59
FIGURE 1: VECTOR'S MAIN FEATURES	3
FIGURE 2: CHARGING STATION BLOCK DIAGRAM	_
FIGURE 3: BLOCK DIAGRAM OF THE CUBE'S ELECTRONICS	
FIGURE 4: OVERVIEW OF ENCRYPTION AND FRAGMENTATION STACK	
FIGURE 5: THE FORMAT OF A FRAME	
FIGURE 6: THE FORMAT OF AN RTS FRAME	18
TABLE 1: THE CUBE'S ELECTRONIC DESIGN ELEMENTS	9
TABLE 2: PARAMETERS FOR HANDSHAKE MESSAGE	
TABLE 3: THE ENCRYPTION VARIABLES	
TABLE 4: SUMMARY OF THE COMMANDS	19
TABLE 5: PARAMETERS FOR APPLICATION CONNECTION ID REQUEST	20
TABLE 6: PARAMETERS FOR CHALLENGE REQUEST	22
TABLE 7: PARAMETERS FOR CHALLENGE RESPONSE	22
TABLE 8: PARAMETERS FOR CLOUD SESSION REQUEST	24
TABLE 9: PARAMETERS FOR CLOUD SESSION RESPONSE	24
TABLE 10: CLOUD STATUS ENUMERATION	24
TABLE 11: PARAMETERS FOR CONNECTION REQUEST	
TABLE 12: PARAMETERS FOR CONNECTION RESPONSE	25

TABLE 13: CONNECTION TYPES ENUMERATION.	. 25
TABLE 14: PARAMETERS FOR FILE DOWNLOAD REQUEST	. 28
TABLE 15: PARAMETERS FOR LOG REQUEST	. 29
Table 16: Log filter	. 29
TABLE 17: PARAMETERS FOR LOG RESPONSE	. 29
TABLE 18: PARAMETERS FOR NONCE REQUEST	. 30
TABLE 19: PARAMETERS FOR OTA REQUEST	. 31
Table 20: Parameters for OTA Response	. 31
TABLE 21: OTA STATUS ENUMERATION	. 31
Table 22: Parameters for Response	
TABLE 23: PARAMETERS FOR THE SDK PROXY REQUEST	. 33
TABLE 24: PARAMETERS FOR THE SDK PROXY RESPONSE	
Table 25: Parameters for SSH request	. 34
Table 26: SSH authorization key	-
TABLE 27: PARAMETERS FOR STATUS RESPONSE	. 35
TABLE 28: WIFI STATE ENUMERATION	
TABLE 29: PARAMETERS FOR WIFI ACCESS POINT REQUEST	
TABLE 30: PARAMETERS FOR WIFI ACCESS POINT RESPONSE	
TABLE 31: PARAMETERS FOR WIFI CONNECT REQUEST	
TABLE 32: WIFI AUTHENTICATION TYPES ENUMERATION	
TABLE 33: PARAMETERS FOR WIFI CONNECT COMMAND	
TABLE 34: PARAMETERS FOR WIFI FORGET REQUEST	
TABLE 35: PARAMETERS FOR WIFI FORGET RESPONSE	
TABLE 36: PARAMETERS FOR WIFI IP ADDRESS RESPONSE	
TABLE 37: PARAMETERS FOR WIFI SCAN RESPONSE	
TABLE 38: PARAMETERS ACCESS POINT STRUCTURE	-
TABLE 39: THE ROBOT SETTINGS	
TABLE 40: THE ROBOT LIFETIME STATS SCHEMA	
TABLE 41: COMMON ACRONYMS AND ABBREVIATIONS	
TABLE 42: GLOSSARY OF COMMON TERMS AND PHRASES	
TABLE 43: TOOLS USED BY ANKI	
TABLE 44: TOOLS THAT CAN BE USED TO ANALYZE AND PATCH VECTOR	
TABLE 45: THE BLUETOOTH LE SERVICES	
TABLE 46: THE CUBE'S DEVICE INFO SETTINGS	
TABLE 47: CUBE'S ACCELEROMETER SERVICE CHARACTERISTICS	
TABLE 48: VECTOR'S BLUETOOTH LE SERVICES	
TABLE 49: THE VECTOR'S DEVICE INFO SETTINGS	
Table 50: Vector's Serial Service Characteristics	
TABLE 51: THE SERVERS THAT VECTOR CONTACTS.	
Table 52: The "Hey Vector" phrases	
TABLE 53: THE VECTOR QUESTIONS PHRASES	
TABLE 54: THE FILE SYSTEM MOUNT TABLE	
TABLE 55: THE PARTITION TABLE	
TABLE 56: FILES	61

[This page is intentionally left blank for purposes of double-sided printing]

Preface

The Anki Vector is a charming little robot – cute, playful, with a slightly mischievous character. It is everything I ever wanted to create in a bot. Sadly Anki went defunct shortly after releasing Vector.

This book is my attempt to understand the Anki Vector and its construction. The book is based on speculation. Speculation informed by Anki's SDKs, blog posts, patents and FCC filings; by articles about Anki, presentations by Anki employees; by PCB photos, and foo'd hardware from others; and by experience with the parts, and areas.

1.1. CUSTOMIZATION / REPAIRS AND PATCHING

What can be customized – or patched – in Vector?

- The firmware in the main processor, that will be discussed in the rest of the document
- The base-board is not field updatable, without expertise. The STM32F030 can be extracted with a ST-Link (\$25), and the the firmware can be disassembled the microcontroller is conducive to this. Shy of recreating the firmware, the patches replace a key instruction here and there with a jump to the patch, created in assembly (most likely) code to fix or add feature, then jump back. (STM32's come with a boot loader, but the stlink is easier and inexpensive.)
- The cube firmware can be updated, but that seems both hard and not useful.
- The parts on the PCBAs, if identified, can be perhaps be replaced (for those with the soldering equipment). Saving and reselling some of the PCBAs from broken robots.
- Project Victor has done some work to locate a replacement LCD

2. ORGANIZATION OF THIS DOCUMENT

- CHAPTER 1: PREFACE. This chapter describes the other chapters.
- CHAPTER 2: OVERVIEW OF VECTOR'S ARCHITECTURE. Introduces the overall design of the Anki Vector.

PART I: ELECTRICAL DESIGN.

- CHAPTER 3: VECTOR'S ELECTRICAL DESIGN. A detailed look at the electrical design of Vector.
- CHAPTER 4: ACCESSORY ELECTRICAL DESIGN. A look at the electrical design of Vectors accessories.

PART II: BASIC OPERATION.

- CHAPTER 6: COMMUNICATION. A look at the communication stack in Vector.
- CHAPTER 7: BLUETOOTH LE. The Bluetooth LE protocol that Vector responds to.
- Chapter 8: Cloud. A look at the electrical design of Vectors accessories.

REFERENCES AND RESOURCES. This provides further reading and referenced documents.

APPENDICES: The appendices provides extra material

- APPENDIX A: ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of terms, abbreviations, and acronyms.
- APPENDIX B: TOOL CHAIN. This appendix lists the tools known or suspected to have been used by Anki to create, and customize the Vector, and for the servers. Tools that can be used to analyze vector
- APPENDIX C: BLUETOOTH LE PROTOCOLS. This appendix provides information on the Bluetooth LE interfaces to the companion Cube, and to Anki Vector
- APPENDIX D: SERVERS. This appendix provides the servers that the Anki Vector and App contacts
- APPENDIX E: PHRASES. This appendix reproduces the phrases that the Vector keys off of.
- APPENDIX F: FEATURES. This appendix enumerates the Vector OS "features" that can be enabled and disabled.
- APPENDIX G: FILE SYSTEM. This appendix lists the key files that are baked into the system.

Note: I use many diagrams from Cozmo literature. They're close enough

CHAPTER 2

Overview of Vector

Anki Vector is a cute, palm-sized robot; a buddy with a playful, slightly mischievous character. This chapter is provides an overview of Vector:

Overview

3. OVERVIEW

Vector is an emotionally expressive animatronic robot that we all love.

Although cute, small, and affordable, Vector's design is structured like many other robots.

[This page is intentionally left blank for purposes of double-sided printing]

PART I

Electronics Design

This part provides an overview of the design of the electronics in Vector and his accessories

- VECTOR'S ELECTRICAL DESIGN. A detailed look at the electrical design of Vector.
- ACCESSORY ELECTRICAL DESIGN. A look at the electrical design of Vectors accessories.

[This page is intentionally left blank for purposes of double-sided printing]

CHAPTER 2

Electronics design description

This chapter describes the electronic design of the Anki Vector:

- Main outline
- Overview
- Detailed design
- Power characteristics
- Connectors & Pin Maps

4. DESIGN OVERVIEW

CHAPTER 4

Accessory Electronics design description

This chapter describes the electronic design of the Anki Vector accessories:

- The charging station
- The companion cube

5. CHARGING STATION

The charging station is intended to provide energy to the Vector, allowing it to recharge. The charging station has a USB cable that plugs into an outlet adapter or battery. The adapter or battery supplies power to the charging station. The base of the station has two terminals to supply +5V (from the power adapter) to Vector, allowing him to recharge.

Figure 2: Charging station block diagram

The charging station has an optical marker used by Vector to identify the charging station and its pose (see chapter TBD).

6. CUBE

This section describes the companion cube's electronics. The companion cube is a small toy for Vector play with. He can fetch it, roll it, and use it to pop-wheelies. Each face of the cube has a unique optical marker used by Vector to identify the cube and its pose (see chapter TBD).

Figure 3: Block diagram of the Cube's electronics

The Cube's electronic design includes the following elements:

Element	Element Description			
accelerometer	Used to detect movement and taps of the cube.	 electronic design elements 		
battery	The cube is powered by a 1.5 volt N / E90 / LR1 battery cell. ¹			
crystal	The crystal provides the accurate frequency reference used by the Bluetooth LE radio.			
Dialog DA14580	This is the Bluetooth LE module (transmitter/receiver, as well as microcontroller and protocol implementation).			
EEPROM	The EEPROM holds the updatable application firmware.			
RGB LEDs	There are 4 RGB LEDs. They can flash and blink. Unlike the backpack LEDs, two LEDs can have independent colors.			

The communication protocol is given appendix C.

6.1. OVER THE AIR FIELD UPDATES

The DA14580 has a minimal ROM bootloader that initializes hardware, moves a secondary bootloader from "One Time Programmable" ROM (OTP) into SRAM, before passing control to it. The firmware is executed from SRAM to reduce power consumption. The secondary bootloader loads the application firmware from I2C or SPI EEPROM or flash to SRAM and pass control to it.

If the application passes control back to the bootloader – or there isn't a valid application in EEPROM –a new application can be downloaded. The bootloader uses a different set of services and characteristics to support the bootloading process.

6.2. DATASHEETS

Dialog, SmartBondTM DA14580 and DA14583 https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-energy/smartbond-da14580-and-da14583 Dialog, DA14580 Low Power Bluetooth Smart SoC, v3.1, 2015 Jan 29

¹ The size is similar to the A23 battery, which will damage the cubes electronics.

Dialog, UM-B-012 User manual DA14580/581/583 Creation of a secondary bootloader, CFR0012-00 Rev 2, 2016 Aug 24

Dialog, Application note: DA1458x using SUOTA, AN-B-10, Rev 1, 2016-Dec-2 https://www.dialog-semiconductor.com/sites/default/files/an-b-010_da14580_using_suota_0.pdf

PART II

Basic Operation

This part provides an overview of the design of the electronics in Vector and his accessories

- THE MAIN SOFTWARE MODULES. A detailed look at Vectors overall software architecture.
- THE BOOT. A look at the boot process.
- POWER MANAGEMENT
- SOUND.
- IMAGE PROCESSING & VISION.
- COMMUNICATION. A look at the communication stack in Vector.
- BLUETOOTH LE. The Bluetooth LE protocol that Vector responds to.
- CLOUD. A look at how Vector syncs with the cloud
- UPDATING. A look at how Vector updates itself

[This page is intentionally left blank for purposes of double-sided printing]

CHAPTER 7

Bluetooth LE

Communication

Protocol

This chapter is describes Vector's Bluetooth LE communication protocol.

- The kinds of activities that can be done thru communication channels
- The interaction sequences
- The communication protocol stack, including encryption, fragmentation and reassembly.

Note: communication with the Cube is simple reading and writing a characteristic, and covered in Appendix C.

7. COMMUNICATION PROTOCOL OVERVIEW

Communication with Vector, once established, is structure as a request-response protocol. The request and responses are referred to as "C-Like Abstract Data structures" (CLAD) which are fields and values in a defined format, and interpretation. Several of these messages are used to maintain the link, setting up an encryption over the channel.

The application layer messages may be arbitrarily large. To support Bluetooth LE 4.1 (the version in Vector, and many mobile devices) the CLAD message must be broken up into small chunks to be sent, and then reassembled on receipt.

Combined with application-level encryption, the communication stack looks like:

Bluetooth RTS Parama Shake CLAD Data

Encrypt Parama Data

Parama Data

Parama Data

Parama Data

CLAD Data

CLAD Data

Figure 4: Overview of encryption and fragmentation stack

THE BLUETOOTH LE is the link/transport media. It handles the delivery, and low-level error detection of exchanging message frames. The frames are fragments of the overall message. The GUID's for the services and characteristics can be found in Appendix C.

THE FRAGMENTATION & REASSEMBLY is responsible for breaking up a message into multiple frames, and reassembling them into a message.

The Encryption & Decryption Layer is used to encrypt and decrypt the messages, after the communication channel has been set up.

THE RTS is extra framing information that identifies the kind of CLAD message, and the version of its format. The format changed with version, so this version code is embedded at this layer.

THE C-LIKE ABSTRACT DATA (CLAD) is the layer that decodes the messages into values for fields, and interprets them,

7.1. SETTING UP THE COMMUNICATION CHANNEL

It sometimes helps to start with the over all process. This section will walk thru the process, referring to later sections where detailed information resides.

If you use "first time" – or wish to re-pair with him – put him on the charger, and press the backpack button twice quickly. He'll display a screen indicating he is getting ready to pair.

If you have already paired the application with Vector, the encryption keys can be reused.

- 1. The application opens Bluetooth LE connection (retrieving the service and characteristics handles), and subscribes to the "read" characteristic (see Appendix C for the UUID).
- Vector sends handshake message; which the application receives. The handshake message structure is given below. The handshake message includes the version of the protocol supported.

 Offset
 Size
 Type
 Parameter
 Description

 0
 1
 uint8_t
 type
 ?

 1
 4
 uint32_t
 version
 The version of the protocol/messages to employ

Table 2: Parameters for Handshake message

- 3. The application sends the handshake back
- 4. Then the Vector will send a *connection request*, consisting of the public key to use for the session. The application's response depends on whether this is a first time pairing, or a reuse.
 - a. First time pairing requires that Vector have already been placed into pairing mode prior to connecting to Vector. The application keys should be created (see section 7.3.1 First time pairing above).
 - Reconnection can reuse the public and secret keys, and the encryption and decryption keys from a prior pairing
- 5. The application should then send the publicKey in the response
- 6. If this is a first time pairing, Vector will display a *pin code*. This is used to create the public and secret keys, and the encryption and decryption keys (see section 7.3.1 First time pairing above). These can be saved for use in future reconnection.
- 7. Vector will send a *nonce* message. After the application has sent its response, the channel will now be encrypted.
- 8. Vector will send a *challenge* message. The application should increment the passed value and send it back as a challenge message.
- 9. Vector will send a challenge success message.
- 10. The application can now send other commands

If the user puts Vector on the charger, and double clicks the backpack button, Vector will usually send a *disconnect* request.

7.2. FRAGMENTATION AND REASSEMBLY

An individual frame sent over Bluetooth LE is limited to 20 bytes. (This preserves compatibility with Bluetooth LE 4.1) A frame looks like:

The control byte is used to tell the receiver how to reassemble the message using this frame.

- If the MSB bit (bit 7) is set, this is the start of a new message. The previous message should be discarded.
- If the 2nd MSB (bit 6) is set, this is the end of the message; there are no more frames.
- The 6 LSB bits (bits 0..5) are the number of payload bytes in the frame to use.

The receiver would append the payload onto the end of the message buffer. If there are no more frames to be received it will pass the buffer (and size count) on to the next stage. If encryption has been set up, the message buffer will be decrypted and then passed to the RTS and CLAD. If encryption has not been set up, it is passed directly to the RTS & CLAD.

Fragmenting reverses the process:

- 1. Set the MSB bit of the control byte, since this is the start of a message.
- 2. Copy up to 19 bytes to the payload.
- 3. Set the number of bytes in the 6 LSB bits of the control byte
- 4. If there are no more bytes remaining, set the 2nd MSB it of the control byte.
- 5. Send the frame to Vector
- 6. If there are byte remaining, repeat from step 2.

7.3. ENCRYPTION SUPPORT

For the security layer, you will need the following

```
uint8_t Vectors_publicKey[32];
uint8_t publicKey [crypto_kx_PUBLICKEYBYTES];
uint8_t secretKey [crypto_kx_SECRETKEYBYTES];
uint8_t encryptionKey[crypto_kx_SESSIONKEYBYTES];
uint8_t decryptionKey[crypto_kx_SESSIONKEYBYTES];
uint8_t encryptionNonce[24];
uint8_t decryptionNonce[24];
uint8_t pinCode[16];
```

The variables mean:

Variable	Table 3: The encryption variables	
decryptionKey	The key used to decrypt each message from to Vector.	
decryptionNonce	An extra bit that is added to each message. The initial nonce's to use are provided by Vector.	
encryptionKey	The key used to encrypt each message sent to Vector.	
encryptionNonce	An extra bit that is added to each message as it is encrypted. The initial nonce's to use are provided by Vector.	
pinCode	6 digits that are displayed by Vector during an initial pairing.	
Vectors_publicKey	The public key provided by Vector, used to create the encryption and decryption keys.	

There are two different paths to setting up the encryption keys:

- First time pairing, and
- Reconnection

7.3.1 First time pairing

First time pairing requires that Vector be placed into pairing mode prior to the start of communication. This is done by placing Vector on the charger, and quickly double clicking the backpack button.

The application should generate its own internal public and secret keys at start.

```
crypto_kx_keypair(publicKey, secretKey);
```

The application will send a *connection response* with first-time-pairing set, and the public key. After Vector receives the connection response, he will display the *pin code*. (See the steps in the next section for when this will occur.)

The session *encryption* and *decryption keys* can then created:

```
crypto_kx_client_session_keys(decryptionKey, encryptionKey, publicKey, secretKey,
    Vector_publicKey);
size_t pin_length = strlen(pin);

crypto_generichash(encryptionKey, sizeof(encryptionKey), encryptionKey,
    sizeof(encryptionKey), pin, pin_length);
crypto_generichash(decryptionKey, sizeof(decryptionKey), decryptionKey,
    sizeof(decryptionKey), pin, pin_length);
```

7.3.2 Reconnecting

Reconnecting can reused the public and secret keys, and the encryption and decryption keys. It is not known how long these persist on Vector. {Next pairing? Next reboot? Indefinitely?}

7.3.3 Encrypting and decryption messages

Vector will send a *nonce* message with the *encryption* and *decryption nonces* to employ in encrypting and decrypting message.

Each received enciphered message can be decrypted from cipher text (cipher, and cipherLen) to the message buffer (message and messageLen) for further processing:

Note: the decryptionNonce is incremented each time a message is decrypted.

Each message to be sent can be encrypted from message buffer (message and messageLen) into cipher text (cipher, and cipherLen) that can be fragmented and sent:

Note: the encryptionNonce is incremented each time a message is encrypted.

7.4. THE RTS LAYER

There is an extra, pragmatic layer before the messages can be interpreted by the application. The message has two to three bytes at the header:

Figure 6: The format of an RTS frame

- The type byte is either 1 or 4. If it is 1 the version of the message format is 1.
- If type byte is 4, the version is held in the next byte. (If the type is 1, there is no version byte).
- The next byte is the tag the value used to interpret the message.

The tag, parameter body, and version are passed to the CLAD layer for interpretation. This is described in the next section.

8. **MESSAGE FORMATS**

This section describes the format and interpretation of the CLAD messages that go between the App and Vector. It describes the fields and how they are encoded, etc. Fields that do not have a fixed location, have no value for their offset. Some fields are only present in later versions of the protocol. They are marked with the version that they are present.

Except where otherwise stated:

- Requests are from the mobile application to Vector, and responses are Vector to the application
- All values in little endian order

Table 4: Summary of the commands

	Request	Response	Min Version
Application connection ¹ id	F ₁₆	20 ₁₆	4
Cancel pairing 1	0 ₁₆		0
Challenge 0)4 ₁₆	04 ₁₆	0
Challenge success 0)5 ₁₆		0
Connect 0)1 ₁₆	02 ₁₆	0
Cloud session 1	D ₁₆	1E ₁₆	3
Disconnect 1	1 ₁₆		0
File download 2	2616		2
Log 1	8 ₁₆	19 ₁₆	2
Nonce 0)3 ₁₆	12 ₁₆	
OTA cancel	7 ₁₆		2
OTA update 0)E ₁₆	0F ₁₆	0
SDK proxy 2	22 ₁₆	23 ₁₆	5
Response 2	.1 ₁₆		4
SSH 1	5 ₁₆	16 ₁₆	0
Status 0)A ₁₆	0B ₁₆	0
WiFi access point 1	3 ₁₆	14 ₁₆	0
WiFi connect 0)6 ₁₆	07 ₁₆	0
WiFi forget 1	B ₁₆	1C ₁₆	3
WiFi IP 0)8 ₁₆	09 ₁₆	0
WiFi scan 0)C ₁₆	0D ₁₆	0

8.1. APPLICATION CONNECTION ID

8.1.1 Request

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description
0	2	uint16_t	name length	The length of the application connection id; may be 0
2	varies	uint8_t[name length]	name	The application connection id

Table 5: Parameters for Application Connection Id request

8.1.2 Response

There is no response.

8.2. CANCEL PAIRING

Speculation: this is sent by the application to cancel the pairing process

8.2.1 Request

The command has no parameters.

Response 8.2.2

There is no response.

8.3. CHALLENGE

This is sent by Vector if he liked the response to a nonce message.

8.3.1 Request

The parameters of the request body are:

Offset Size Type		Parameter	Description	Ta	
0	4	uint8_t	value	The challenge value	

Table 6: Parameters for challenge request

The application, when it receives this message, should increment the value and send the response (a challenge message).

8.3.2 Response

The parameters of the response body are:

Offset	Size	Туре	Parameter	Description	Table 7: Parameters for challenge response
0	4	uint8_t	value	The challenge value; this is 1 + the value that was received.	

If Vector accepts the response, he will send a challenge success.

8.4. CHALLENGE SUCCESS

This is sent by Vector if the challenge response was accepted.

8.4.1 Request

The command has no parameters.

Response 8.4.2

There is no response.

8.5. CLOUD SESSION

This command is used to request a cloud session [TBD]

8.5.1 Command

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description	Table 8: Parameters for Cloud Session request
0	2	uint16_t	token length	The number of bytes in the token; may be 0	·
2	varies	uint8_t	token	The session token	
	1	uint8_t	client name length	The number of bytes in the client name string; may be 0 version \geq 5	
	varies	uint8_t[]	client name	The client name [?] string version >= 5	
	1	uint8_t	application id length	The number of bytes in the application id string; may be 0 version \geq 5	
	varies	uint8_t[]	application id	The application id version >= 5	

Response result 8.5.2

The parameters for the connection response message:

Offset	Size	Туре	Parameter	Description	Table 9: Parameters for Cloud Session
0	1	uint8_t	success	0 if failed, otherwise successful	Response
1	1	uint8_t	status	See Table 10: Cloud status enumeration	
2	1	uint16_t	token length	The number of bytes in the client token GUID; may be 0	
	varies	uint8_t[]	token	The client token GUID	

The cloud status types are:

Index	Meaning	
0	unknown error	
1	connection error	
2	wrong account	
3	invalid session token	
4	authorized as primary	
5	authorized as secondary	
6	reauthorization	

Table 10: Cloud status enumeration

8.6. CONNECT

The connect request *comes from Vector* at the start of a connection. The response is from the application.

8.6.1 Request

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description	Table 11: Parameters for Connection request
0	32	uint8_t[32]	publicKey	The public key for the connection	10. 0000

The application, when it receives this message, should use the public key for the session, and send a response back.

8.6.2 Response

The parameters for the connection response message:

Offset	Size	Туре	Parameter	Description	Table 12: Parameters for Connection
0	1	uint8_t	connectionType	See Table 13: Connection types enumeration	Response
1	32	uint8_t[32]	publicKey	The public key to use for the connection	

The connection types are:

Index	Meaning	
0	first time pairing (requests pin code to be displayed)	
1	reconnection	

Table 13: Connection types enumeration

The application sends the response, with its publicKey (see section 7.2 Fragmentation and reassembly

An individual frame sent over Bluetooth LE is limited to 20 bytes. (This preserves compatibility with Bluetooth LE 4.1) A frame looks like:

Figure 5: The format of a frame

The control byte is used to tell the receiver how to reassemble the message using this frame.

- If the MSB bit (bit 7) is set, this is the start of a new message. The previous message should be discarded.
- If the 2nd MSB (bit 6) is set, this is the end of the message; there are no more frames.
- The 6 LSB bits (bits 0..5) are the number of payload bytes in the frame to use.

The receiver would append the payload onto the end of the message buffer. If there are no more frames to be received it will pass the buffer (and size count) on to the next stage. If encryption has been set up, the message buffer will be decrypted and then passed to the RTS and CLAD. If encryption has not been set up, it is passed directly to the RTS & CLAD.

Fragmenting reverses the process:

- 7. Set the MSB bit of the control byte, since this is the start of a message.
- 8. Copy up to 19 bytes to the payload.
- 9. Set the number of bytes in the 6 LSB bits of the control byte
- 10. If there are no more bytes remaining, set the 2nd MSB it of the control byte.
- 11. Send the frame to Vector
- 12. If there are byte remaining, repeat from step 2.

Encryption support). A "first time pairing" connection type will cause Vector to display a pin code on the screen

If a first time pairing response is sent:

- If Vector is not in pairing mode was not put on his charger and the backpack button
 pressed twice, quickly Vector will respond. Attempting to enter pairing mode now will
 cause Vector to send a *disconnect* request.
- If Vector is in pairing mode, Vector will display a pin code on the screen, and send a nonce message, triggering the next steps of the conversation.

If a reconnection is sent, the application would employ the public and secret keys, and the encryption and decryption keys from a prior pairing.

8.7. DISCONNECT

This may be sent by Vector if there is an error, and it is ending communication. For instance, if Vector enters pairing mode, it will send a disconnect.

The application may send this to request Vector to close the connection.

8.7.1 Request

The command has no parameters.

8.7.2 Response

There is no response.

8.8. FILE DOWNLOAD

This command is used to pass chunks of a file to Vector. Files are broken up into chunks, and sent.

Request 8.8.1

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description
0	1	uint8_t	status	
1	4	uint32_t	file id	
5	4	uint32_t	packet number	The chunk within the download
9	4	uint32_t	packet total	The total number of packets to be sent for this file download
13	2	uint12_t	length	The number of bytes to follow (can be 0)
	varies	uint8_t[length]	bytes	The bytes of this file chunk

8.8.2 Response

There is no response [?TBD?]

Table 14: Parameters for File Download

request

8.9. LOG

This command is used to request the Vector TBD logging

8.9.1 Request

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description	Table 15: Parameters for Log request
0	1	uint8_t	mode		
1	2	uint16_t	num filters	The number of filters in the array	
3	varies	filter[num filters]	filters	The filter names	

Each filter entry has the following structure:

Offset	Size	Туре	Parameter	Description	Table 16: Log f
0	2	uint16_t	filter length	The length of the filter name; may be 0	
2	varies	uint8_t[filter length]	filter name	The filter name	

8.9.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description	Table 17: Paramete for Log Response
0	1	uint8_t	exit code		
1	4	uint32_t	file id		

8.10. NONCE

A nonce is sent by Vector after he has accepted your key, and the application sends a response

8.10.1 Request

The parameters for the nonce request message:

Offset	Size	Туре	Parameter	Description
0	24	uint8_t[24]	toVectorNonce	The nonce to use for sending stuff to Vector
24	24	uint8_t[24]	toAppNonce	The nonce for receiving stuff from Vector

Table 18: Parameters for Nonce request

8.10.2 Response

After receiving a nonce, if the application is in first-time pairing the application should send a response, with a value of 3.

Offset	Size	Туре	Parameter	Description
0	1	uint8_t	connection tag	This is always 3

After the response has been sent, the channel will now be encrypted. If vector likes the response, he will send a challenge message.

8.11. OTA UPDATE

This command is used to request the Vector download firmware from a given server

8.11.1 Request

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description	Table 19: Parameters for OTA request
0	1	uint8_t	length	The length of the URL; may be 0	·
1	varies	uint8_t[length]	URL	The URL string	

8.11.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description	Table 20: Parameters for OTA Response
0	1	uint8_t	status	See Table 21: OTA status enumeration	
1	8	uint64_t	current	The number of bytes downloaded	
9	8	uint64_t	expected	The number of bytes expected to be downloaded	

The OTA status are:

Index	Meaning	Table 21: OTA status enumeration
0	idle	
1	unknown	
2	in progress	
3	complete	
4	rebooting	
5	error	

8.12. RESPONSE

It is not known why this message will be sent.

Offset	Size	Туре	Parameter	Description
0	1	uint16_t	code	0 if not cloud authorized, otherwise authorized
1	1	uint8_t	length	
	varies	uint8_t [length]	bytes	

Table 22: Parameters for Response

8.13. SDK PROXY

This command is used to pass the gRPC/protobufs messages to Vector over Bluetooth LE. It effectively wraps a HTTP request/response.

8.13.1 Request

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description
0	1	uint8_t	GUID length	The number of bytes in the GUID string; may be 0
2	varies	uint8_t[GUID length]	GUID	The GUID string
	1	uint8_t	msg length	The number of bytes in the message id string
	varies	uint8_t[msg id length]	msg id	The message id string
	1	uint8_t	path length	The number of bytes in the URL path string
	varies	uint8_t[path length]	path	The URL path string
	2	uint16_t	JSON length	The length of the JSON
	varies	uint8_t[JSON length]	JSON	The JSON (string)

8.13.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description
0	1	uint8_t	msg id length	The number of bytes in the message id string; may be 0
2	varies	uint8_t[msg id length]	msg id	The message id string
	2	uint16_t	status code	The HTTP-style status code that the SDK may return.
	1	uint8_t	type length	The number of bytes in the response type string
	varies	uint8_t[type length]	type	The response type string
	2	uint16_t	body length	The length of the response body
	varies	uint8_t[body length]	body	The response body (string)

Table 24: Parameters for the SDK proxy Response

Table 23: Parameters for the SDK proxy

request

8.14. SSH

This command is used to request the Vector allow SSH. It is not known which version of the Vector support SSH, or whether it is enabled in the release.

8.14.1 Request

The parameters for the request message:

Offset	Size	Туре	Parameter	Description	Table 25: Parameters for SSH request		
0	2	uint16_t	num keys	The number of SSH authorization keys; may be 0			
2	varies	keys[num keys]	keys	The array of authorization key strings (see below).			
Offset	Each authorization key has the following structure: Offset Size Type Parameter Description						
0	1	uint8_t	key length	The length of the key; may be 0	authorization key		
1	varies	uint8_t[key length]	key	The SSH authorization key			

8.14.2 Response

The response has no parameters

8.15. STATUS

This command is used to request the Vector act basic info.

8.15.1 **Request**

The request has no parameters

8.15.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description	Table 27: Parameters for Status Response
0	1	uint8_t	SSID length	The number of bytes in the SSID string; may be 0	
2	varies	uint8_t[SSID length]	SSID	The WiFi SSID (hex string)	
	1	uint8_t	WiFi state	See Table 28: WiFi state enumeration	
	1	uint8_t	access point	0 not acting as an access point, otherwise acting as an access point	
	1	uint8_t	Bluetooth LE state		
	1	uint8_t	Battery state		
	1	uint8_t	version length	The number of bytes in the version string; may be 0 version ≥ 2	
	varies	uint8_t [version length]	version	The version string; version >= 2	
	1	uint8_t	ESN length	The number of bytes in the ESN string; may be 0 version ≥ 4	
	varies	uint8_t[ESN length]	ESN	The <i>electronic serial number</i> string; version >= 4	
	1	uint8_t	OTA in progress	0 over the air update not in progress, otherwise in process of over the air update; version ≥ 2	
	1	uint8_t	has owner	0 does not have owner, otherwise has owner; version >= 3	
	1	uint8_t	cloud authorized	0 is not cloud authorized, otherwise is cloud authorized; version >= 5	

Note: a *hex string* is a series of bytes with values 0-15. Every pair of bytes must be converted to a single byte to get the characters. Even bytes are the high nibble, odd bytes are the low nibble.

The WiFi states are:

Index	Meaning
0	Unknown
1	Online
2	Connected
3	Disconnected

Table 28: WiFi state enumeration

8.16. WIFI ACCESS POINT

This command is used to request that the Vector act as a WiFi access point.

8.16.1 Request

The parameters of the request body are:

Offset	Size	Туре	Parameter	Description	Table 29: Parameters for WiFi Access Point
0	1	uint8_t	enable	0 to disable the WiFi access point, 1 to enable it	request

8.16.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description	Table 30: Parameters for WiFi Access Point
0	1	uint8_t	enabled	0 if the WiFi access point is disabled, otherwise enabled	Response
1	1	uint8_t	SSID length	The number of bytes in the SSID string; may be 0	
2	varies	uint8_t[SSID length]	SSID	The WiFi SSID (hex string)	
	1	uint8_t	password length	The number of bytes in the password string; may be 0	
	varies	uint8_t [password length]	password	The WiFi password	

8.17. WIFI CONNECT

This command is used to request the Vectors connect to a given WiFi SSID. Vector will retain this WiFi for future use.

8.17.1 Request

The parameters for the request message:

Offset	Size	Туре	Parameter	Description	Table 31: Parameters for WiFi Connect
0	1	uint8_t	SSID length	The number of bytes in the SSID string; may be 0	request
1	varies	uint8_t[SSID length]	SSID	The WiFi SSID (hex string)	
	1	uint8_t	password length	The number of bytes in the password string; may be 0	
	varies	uint8_t [password length]	password	The WiFi password	
	1	uint8_t	timeout	How long to given the connect attempt to succeed.	
	1	uint8_t	auth type	The type of authentication to employ; see <i>Table 32: WiFi</i> authentication types enumeration	
	1	uint8_t	hidden	0 the access point is not hidden; 1 it is hidden	

The WiFi authentication types are:

Index	Meaning
0	None, open
1	WEP
2	WEP shared
3	IEEE8021X
4	WPA PSK
5	WPA2 PSK
6	WPA2 EAP

Table 32: WiFi authentication types enumeration

8.17.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description	
0	1	uint8_t	SSID length	The length of the SSID that was deleted; may be 0	
1	varies	uint8_t[SSID length]	SSID	The SSID (hex string) that was deleted	
	1	uint8_t	WiFi state	See Table 28: WiFi state enumeration	
	1	uint8_t	connect result	version >= 3	

Table 33: Parameters for WiFi Connect command

8.18. WIFI FORGET

This command is used to request the Vectors forget a WiFi SSID.

8.18.1 Request

The parameters for the request message:

Offset	Size	Туре	Parameter	Description	Table 34: Parameters for WiFi Forget request
0	1	uint8_t	delete all	0 if Vector should delete only one SSID; otherwise Vector should delete all SSIDs	
1	1	uint8_t	SSID length	The length of the SSID that to be deleted; may be 0	
2	varies	uint8_t[SSID length]	SSID	The SSID (hex string) to be deleted	

8.18.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description	Table 35: Parameters for WiFi Forget response
0	1	uint8_t	did delete all	0 if only one; otherwise Vector deleted all SSIDs	
1	1	uint8_t	SSID length	The length of the SSID that was deleted; may be 0	
2	varies	uint8_t[SSID length]	SSID	The SSID (hex string) that was deleted	

8.19. WIFI IP ADDRESS

This command is used to request the Vectors WiFi IP address.

8.19.1 **Request**

The request has no parameters

8.19.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description
0	1	uint8_t	has IPv4	0 if Vector doesn't have an IPv4 address; other it does
1	1	uint8_t	has IPv6	0 if Vector doesn't have an IPv6 address; other it does
2	4	uint8_t[4]	IPv4 address	Vector's IPv4 address
6	32	uint8_t[16]	IPv6 address	Vector's IPv6 address

Table 36: Parameters for WiFi IP Address response

8.20. WIFI SCAN

This command is used to request the Vectors scan for WiFi access points.

8.20.1 Request

The command has no parameters.

8.20.2 Response

The parameters for the response message:

Offset	Size	Туре	Parameter	Description	Table 37: Parameters for WiFi scan response
0	1	uint8_t	status code		
1	1	uint8_t	num entries	The number of access points in the array below	
2	varies	AP[num entries]	access points	The array of access points	

Each access point has the following structure:

Offset	Size	Туре	Parameter	Description	Table 38: Parameters access point structure
0	1	uint8_t	auth type	The type of authentication to employ; see <i>Table 32: WiFi</i> authentication types enumeration	
1	1	uint8_t	signal strength	The number of bars, 04	
2	1	uint8_t	SSID length	The length of the SSID string	
3	varies	uint8_t[SSID length]	SSID	The SSID (hex string)	
	1	uint8_t	hidden	0 not hidden, 1 hidden; version >= 2	
	1	uint8_t	provisioned	0 not provisioned, 1 provisioned; version>= 3	

CHAPTER 8

The Cloud Services

This chapter is about the cloud

- The user's account settings and entitlements
- The robot's settings (user preferences)
- The robot's lifetime stats
- The crash uploader
- The firmware update process
- How to extract official program files

9. THE JDOC SERVER

9.1. THE USER ACCOUNT SETTINGS

Sent to the jdoc server

Schema: TBD

9.2. ROBOT SETTINGS

Sent to the jdoc server

These are an ad hoc set of locale preferences. The following are sent to the jdoc server by the mobile application, and retrieved by the robot:

Кеу	units	Description & Notes	Table 39: The robot settings.	
button_wakeword	?		J	
clock_24_hour	boolean			
default_location				
dist_is_metric				
eye_color		The color used for the eyes		
locale		American English, UK English, Australian English, German, French, Japanese, etc.		
master_volume				
temp_is_fahrenheit				
time_zone				

9.3. USER ENTITLEMENTS

Sent to the jdoc server

Schema: TBD

Appear to be the private and public keys

9.4. ROBOT LIFETIME STATS

Sent to the jdoc server

The following are held in the server, updated by the robot (I don't know if the robot has a local copy), and retrievable by the application. A JSON hash of the following:

Key	units	Description & Notes
Alive.seconds	seconds	Vectors age, since he was given preferences (a factory reset restarts this)
Stim.CumlPosDelta		Cumulative stimulation of some kind
BStat.AnimationPlayed	count	The number of animations played
BStat.BehaviorActivated	count	
BStat.AttemptedFistBump	count	The number of fist bumps (attempted)
BStat.FistBumpSuccess	count	
BStat.PettingBlissIncrease		
BStat.PettingReachedMaxBliss		
BStat.ReactedToCliff	count	
BStat.ReactedToEyeContact	count	
BStat.ReactedToMotion	count	
BStat.ReactedToSound	count	
BStat.ReactedToTriggerWord	count	
Feature.AI.DanceToTheBeat		
Feature.AI.Exploring		
Feature.AI.FistBump		
Feature.AI.GoHome		
Feature.Al.InTheAir		
Feature.Al.InteractWithFaces	count	The number of times recognized / interacted with faces
Feature.AI.Keepaway		
Feature.AI.ListeningForBeats		
Feature.AI.LowBattery		
Feature.AI.Observing		
Feature.AI.ObservingOnCharger		
Feature.AI.Onboarding		
Feature.Al.Sleeping		

Table 40: The robot lifetime stats schema Feature.Al.Petting

Feature. AI. React To Cliff

Feature.AI.StuckOnEdge

Feature.AI.UnmatchedVoiceIntent

Feature.Voice.VC_Greeting

Feature Type. Autonomous

Feature Type. Failure

FeatureType.Sleep

Feature Type. Social

FeatureType.Play

FeatureType.Utility1

Pet.ms ms The number of milliseconds petted?

Odom.LWheel The left wheel odometer

'Odom.Rwheel The right wheel odometer

Odom.Body

References &

Resources

Note: most references appear in the margins, significant references will appear at the end of their respective chapter.

10. CREDITS

Credit and thanks to Anki, C0RE, MelanieT for access to the partition file-system, and decode keys; board shots. Fictiv for board shots. The board shots that help identify parts on the board and inter-connection on the board.

11. REFERENCE DOCUMENTATION AND RESOURCES

11.1. ANKI

Anki, "Vector Quick Start Guide," 293-00036 Rev. B, 2018

Anki, Molly Jameson & Daria Jerjomina, "Cozmo: Animation pipeline for a physical robot," 2017 Game Developers conference

Anki, Nathaniel Monson, Andrew Stein, Daniel Casner *Reducing Burn-in of Displayed Images*, Patent US 20372659 A1, 2017 Dec 28

Anki, Daniel Casner, Lee Crippen, Hanns Tappeiner, Anthony Armenta, Kevin Yoon, *Map Related Acoustic Filtering by a Mobile Robot*, Patent US 0212441 A1, 2019 Jul 11

Anki, Andrew Stein, *Decoding Machine-Readable Optical codes with Aesthetic Component*, Patent US 9,607,199 B2, 2017 Mar. 28

11.2. OTHER

FCC ID 2AAIC00010 internal photos

https://fccid.io/2AAIC00010

FCC ID 2AAIC00011 internal photos

https://fccid.io/2AAIC00011

Fictiv, Swetha Sriram, Anki Vector Robot Teardown, 2019 Aug 6

https://www.fictiv.com/blog/anki-vector-robot-teardown

Kinvert, Anki Vector Customer Care Info Screen (CCIS)

https://www.kinvert.com/anki-vector-customer-care-info-screen-ccis/

Appendices

- ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of terms, abbreviations, and acronyms.
- TOOL CHAIN. This appendix lists the tools known or suspected to have been used by Anki to create, and customize the Vector, and for the servers. Tools that can be used to analyze vector
- BLUETOOTH LE PROTOCOLS. This appendix provides information on the Bluetooth LE interfaces to the companion Cube, and to Anki Vector
- SERVERS. This appendix provides the servers that the Anki Vector and App contacts
- PHRASES. This appendix reproduces the phrases that the Vector keys off of.
- FEATURES. This appendix enumerates the Vector OS "features" that can be enabled and disabled.
- FILE SYSTEM. This appendix lists the key files that are baked into the system.
- CONFIGURATION. This appendix recaps the configuration values.
- BEHAVIOURS. This appendix provides a list of the behaviours that Vector has built in.
- Animations. This appendix provides a list of the animations that Vector has built in.
- ACTIONS. This appendix provides a list of the actions that Vector has built in.

[This page is intentionally left blank for purposes of double-sided printing]

APPENDIX A

Abbreviations,

Acronyms, Glossary

Abbreviation / Acronym	Phrase
ADC	analog to digital converter
AG	animation group
AVS	Alexa Voice Service
BIN	binary file
CCIS	customer care information screen
CLAD	C-like abstract data structures
CRC	cyclic redundancy check
DAS	data analytics service ?
DFU	device firmware upgrade
EEPROM	electrical-erasable programmable read-only memory
ESD	electro-static discharge
ESN	electronic serial number
GPIO	general purpose IO
I2C	Inter-IC communication
IMU	inertial measurement unit
IR	infrared
JTAG	Joint Test Action Group
LCD	liquid crystal display
LED	light emitting diode
LUKS	linux unified key setup
MEMS	micro-electromechanical systems
MISO	Master-in, slave-out
MOSI	Master-out, slave-in
OLED	organic light-emitting diode display
ОТА	over the air updates
RRT	rapidly-expanding random tree
SCLK	(I2C) serial clock

Table 41: Common acronyms and abbreviations

SDA	(I2C) serial data
SDK	software development kit
SPI	serial-peripheral interface
SSH	secure shell
SSID	service set identifier (the name of the Wifi network)
STM32	A microcontroller family from ST Microelectronics
SWD	single wire debug
TTS	text to speech
UART	universal asynchronous receiver/transmitter
USB	universal serial bus
UUID	universally unique identifier
vic	short Victor (Vector's working name)

Phrase	Description	
A*	A path finding algorithm	
attitude	orientation	
bootloader	A piece of software used to load and launch the application firmware.	
C-like abstract data structure	Anki's phrase for when information is packed into fields and values with a define binary format, and interpretation.	
capacitive touch		
characteristic (Bluetooth LE)	A key (or slot) that holds a value in the services key-value table. A characteristic is uniquely identified by its UUID.	
control	motors and forces to move where and how it is told to. (smooth arcs)	
D*-lite	A path-finding algorithm	
flash	A type of persistent (non-volatile) storage media.	
guidance	desired path	
navigation	knowing where it is in the map	
nonce	An initially random number, incremented after each use .	
pose	position and orientation of an object relative to a coordinate system	
power source	Where the electric energy comes from.	
path planning	smooth arcs and line segments	
rapidly-expanding random tree	A path-finding algorithm	
service (Bluetooth LE)	A key-value table, grouped together for a common purrpose. A service is uniquely identified by its UUID.	
universally unique identifier (UUID)	A 128bits number that is unique.	

Table 42: Glossary of common terms and

phrases

APPENDIX B

Tool chain

This appendix tries to capture the tools that Anki is known or suspected to have used for the Anki Vector and its cloud server.

Note: Several of these the licenses requiring Anki to post their versions of the GPL tools, and their modification, Anki never did. Qualcomm may have; as the license requirement only to those their customer, they may have provided the changes to them.

Tool Description		Table 43: Tools used by Anki
Acapela	Vector uses Acapela's text to speech synthesizer, and the Ben voice. https://www.acapela-group.com/	•
Advanced Linux Sound Architecture (alsa)	The audio system https://www.alsa-project.org	
Amazon Alexa	A set of software tools that allows Vector to integrate Alexa voice commands, probably in the AMAZONLITE distribution https://developer.amazon.com/alexa-voice-service/sdk	
Amazon Web services	used on the server https://aws.amazon.com/	
android boot-loader	Vector uses the Android Boot-loader;	
AudioKinetic Wwise ²	Used to craft the sounds https://www.audiokinetic.com/products/wwise/	
clang	A C/C++ compiler, part of the LLVM family https://clang.llvm.org	
bluez5	Bluetooth LE support http://www.bluez.org/	
busybox	The shell on the Anki Vector linux https://busybox.net	
chromium update	?	
civetweb	The embedded webserver that allows Mobile apps and the python SDK to communicate with Vector. https://github.com/civetweb/civetweb	
connman	Connection manager for WiFi https://01.org/connman	
GNU C Compiler (gcc)	GCC version 4.9.3 was used to compile the kernel	
golang	on the server	
Google RPC (gRPC)	A "remote procedure call" standard, that allows mobile apps and the python SDK	

 $^{^2\} https://blog.audiokinetic.com/interactive-audio-brings-cozmo-to-life/?hsFormKey=227ccf4a650a1cffd6562c16d655a0ef$

to communicate with Vector.

https://grpc.io/docs/quickstart/cpp/

hdr-histogram Unknown use

https://github.com/HdrHistogram/HdrHistogram

libchromatix Qualcomm camera support

libsodium Cryptography library suitable for the small packet size in Bluetooth LE

connections. Used to encrypt the mobile applications Bluetooth LE connection

with Vector.

https://github.com/jedisct1/libsodium

linux, yocto³ The family of linux distribution used for the Anki Vector

(v3.18.66)

linux on the server

linux unified key storage

(LUKS)

Maya A character animation tool set, used to design the look and movements of Cozmo

and Vector. The tool emitted the animation scripts.

mpg123 A MPEG audio decoder and player. This is needed by Alexa; other uses are

unknown.

https://www.mpg123.de/index.shtml

ogg vorbis Audio codec

https://xiph.org/vorbis

open CV Used for the first-level image processing – to locate faces, hands, and possibly

accessory symbols. https://opencv.org/

openssl used to validate firmware update signature

https://www.openssl.org

opkg Package manager, from yocto

https://git.yoctoproject.org/cgit/cgit.cgi/opkg/

Opus codec Audio codec; may be used to encode speech sent to servers

http://opus-codec.org/

perl A programming language, on Victor

https://www.perl.org

protobuf Used to describe the format/encoding of data sent over gRPC to and from Vector.

This is used by mobile and python SDK, as well as on the server.

https://developers.google.com/protocol-buffers

Pryon The recognition for the Alexa keyword at least the file system includes the same

model as distributed in AMAZONLITE https://www.pryon.com/company/

python A programming language and framework, used with desktop tools to communicate

with Vector. Vector has python installed. Probably used on the server as well.

https://www.python.org

Qualcomm's device drivers, and other kit appears to be used.

Segger ICD A high-end ARM compatible in-circuit debugging probe. Rumoured to have been

used by Anki engineers, probably with the STM32F030 https://www.segger.com/products/debug-probes/j-link/

50

³ https://www.designnews.com/electronics-test/lessons-after-failure-anki-robotics/140103493460822

	riki/Sensory,_Inc.
SQLite This is needed by Alexa; of https://www.sqlite.org/ind	
systemd Used by Vector to launch https://www.freedesktop.o	
` ,	te the object marker symbols, and maybe hands rg/lite/microcontrollers/get_started

Other tools, useful for analyzing and patching Vector:

Toool	Description	Table 44: Tools that can be used to	
Segger ICD	An education version of the J-Link, suitable for the STM32F030, can be found on ebay for <\$60 https://www.segger.com/products/debug-probes/j-link/	analyze and patch Vector	
ST-Link (v3)	Suitable for extracting the STM32F030 and installing patched firmware; \$35 https://www.st.com/en/development-tools/stlink-v3set.html		
TI BLE sniffer	\$50 http://www.ti.com/tool/CC2540EMK-USB https://www.ti.com/tool/PACKET-SNIFFER		
Wireshark	To decode what is said to the servers https://support.citrix.com/article/CTX116557		

APPENDIX C

Bluetooth LE Services

& Characteristics

This Appendix describes the configuration of the Bluetooth LE services – and the data access they provide – for the accessory cube and for Vector.

12. CUBE SERVICES

times and other feature parameters:

Service	UUID⁴	Description & Notes	Table 45: The Bluetooth LE service
Device Info Service ⁵	180A ₁₆	Provides device and unit specific info – it's manufacturer, model number, hardware and firmware versions	
Generic Access Profile ⁶	1800 ₁₆	The device name, and preferred connection parameters	
Generic Attribute Transport ⁷	1801 ₁₆	Provides access to the services.	
Cube's Service	C6F6C70F-D219-598B-FB4C- 308E1F22F830 ₁₆	Service custom to the cube, reporting battery, accelerometer and date of manufacture	

Note: It appears that there isn't a battery service on the Cube. When in over-the-air update mode, there may be other services present (i.e. by a bootloader)

Element	Value	Table 46: The Cube's Device info settings
Device Name (Default)	"Vector Cube"	· ·
Firmware Revision	"v_5.0.4"	
Manufacturer Name	"Anki"	
Model Number	"Production"	
Software Revision	"2.0.0"	

⁴ All values are a little endian, per the Bluetooth 4.0 GATT specification

⁵ http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

⁶ http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml

⁷ http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_attribute.xml

12.1. CUBE'S ACCELEROMETER SERVICE

Values are little-endian, except where otherwise stated.

UUID	Access	Size	Notes	Table 47: Cube's accelerometer service
0EA75290-6759-A58D-7948-598C4E02D94A ₁₆	Write	unknown		characteristics
450AA175-8D85-16A6-9148-D50E2EB7B79E ₁₆	Read	The date a	nd time of manufacture (?)	
		char[]	A date and time string	
43EF14AF-5FB1-7B81-3647-2A9477824CAB ₁₆	Read, Notify, Indicate	Reads the	battery and acceleromter	
		uint16_t	battery ADC value accelerometer X ADC value #1 accelerometer Y ADC value #1 accelerometer Z ADC value #1 accelerometer X ADC value #2 accelerometer Y ADC value #2 accelerometer Z ADC value #2 accelerometer Z ADC value #3 accelerometer Y ADC value #3 accelerometer Z ADC value #3	
9590BA9C-5140-92B5-1844-5F9D681557A4 ₁₆	Write		Unknown	

Presumably some of these will cause the Cube to go into over the air update (OTAU) mode, allowing its firmware to be updated.

Others turn the RGB on to an RGB color, possibly duty cycle and pulsing duty cycle

13. VECTOR SERVICES SERVICE

times and other feature parameters:

Service	UUID ⁸	Description & Notes	Table 48: Vector's Bluetooth LE services
Generic Access Profile	1800 ₁₆	The device name, and preferred connection parameters	
Generic Attribute Transport	1801 ₁₆	Provides access to the services.	
Vectors Serial Service	FEE3 ₁₆	The service with which we can talk to Vector.	

It appears that there isn't a battery service on the Vector.

Element	Value	Table 49: The Vector's Device info
Device Name (Default)	"Vector" followed by his serial number	settings

53

⁸ All values are a little endian, per the Bluetooth 4.0 GATT specification

13.1. VECTORS SERIAL SERVICE

UUID	Access	Format Notes	Table 50: Vector's serial service
30619F2D-0F54-41BD-A65A- 7588D8C85B45 ₁₆	Read, Notify,Indicate		characteristics
7D2A4BDA-D29B-4152-B725- 2491478C5CD7 ₁₆	write		

APPENDIX D

Servers & Data

Schema

This Appendix describes the servers that Vector contacts⁹

Description & Notes	Table 51: The servers that Vector contacts.
The speech recognition engine lives here	inat voter comatte.
Used to check to see if it can connect to Anki	
Storage of some sort of data. Name, faces, prefs?	
Used to get the API certificate. 10	
Vector posts crashes to this server	
This is used to synchronize with data analytics services.	
Where Vector checks for updates	
For the Developer branch	
Where does the visual go?	
	The speech recognition engine lives here Used to check to see if it can connect to Anki Storage of some sort of data. Name, faces, prefs? Used to get the API certificate. 10 Vector posts crashes to this server This is used to synchronize with data analytics services. Where Vector checks for updates For the Developer branch

The servers that the mobile app contacts:

TBD

 $^{^9}$ Todo: sync up with info at: https://github.com/anki-community/vector-archive 10 XYZ had a write up, reference that.

APPENDIX E

Phrases and their

Intent

This Appendix maps the published phrases that Vector responds to and their intent:

Intent	Phrase
movement_backward	Back up
imperative_scold	Bad robot
	Be quiet
global_stop	Cancel the timer
check_timer	Check the timer
imperative_come	Come here
imperative_dance	Dance.
play_popawheelie	Do a wheelstand
imperative_fetchcube	Fetch your cube
imperative_findcube	Find your cube
play_fistbump	Fist Bump
play_fistbump	Give me a Fist Bump
movement_backward	Go backward
explore_start	Go explore
movement_forward	Go forward.
movement_turnleft	Go left
movement_turnright	Go right
	Go to sleep
	Go to your charger
	Good afternoon
greeting_goodbye	Goodbye
	Good evening
	Good night
greeting_goodmorning	Good morning

Table 52: The "Hey Vector" phrases

imperative_praise Good robot

seasonal_happyholidays
seasonal_happynewyear
Happy New Year

greeting_hello Hello

He's behind you

character_age How old are you

imperative_abuse I hate you.

knowledge_question I have a question ...

imperative_love I love you. imperative_apology I'm sorry.

play_blackjack Let's play Blackjack

Listen to music

imperative_lookatme Look at me

Look behind you

My name is [Your Name]

imperative_negative No

play_anygame Play a game

play_anytrick Play a trick
play_blackjack Play Blackjack

play_pickupcube Pick up your cube.

play_popawheelie Pop a wheelie.
play_rollcube Roll your Cube

Run

set_timer Set a timer for [length of time]

explore_start Start Exploring

Stop Exploring

global_stop Stop the timer

take_a_photo Take a picture of [me/us]

take_a_photo
Take a picture
take_a_photo
Take a selfie
movement_turnaround
Turn around
movement_turnleft
Turn left
movement_turnright
Turn right

 $imperative_volume level \\ Volume [number].$

 $\begin{tabular}{lll} imperative_volumedown & Volume down \\ imperative_volumeup & Volume up. \\ \end{tabular}$

Volume maximum

ANKI VECTOR · 2019.10.06

57

names_ask	What's my name?
weather_response	What's the weather in [City Name]?
weather_response	What's the weather report?
show_clock	What time is it?
imperative_affirmative	Yes

Note: Vector's NLP server doesn't recognize "home" ..

Questions

Subject	Example Phrase
Current conversion	What's 1000 Yen in US Dollars?
Flight status	What is the status of American Airlines Flight 100?
Equation solver	What is the square root of 144?
General knowledge	What is the tallest building?
places	What is the distance between London and New York?
People	Who is Jarvis?
Nutrition	How many calories are in an avocado?
Sports	Who won the World Series?
Stock market	How is the stock market?
Time zone	What time is it in Hong Kong?
Unit conversion	How fast is a knot?
Word definition	What is the definition of Artificial Intelligence?

Table 53: The Vector questions phrases

APPENDIX G

File system

This Appendix describes files systems

As the Vector uses the Android bootloader, it reuses - or at least reserves - many of the Android partitions¹¹ and file systems. Many are probably not used. Quotes are from Android documentation.

The file system table tells use where they are stored in the partitions, and whether they are non volatile.

Mount point	Partition name	Description & Notes
/	BOOT_A	The primary linux kernel and initramfs
/data ¹²	USERDATA	The data created for the specific robot (and user) that customizes it. A factory reset wipes out this user data. This portion of the file system is encrypted using "Linux Unified Key Setup" (LUKS).
/firmware	MODEM	The firmware for the WiFi/Bluetooth radio
/factory	OEM	Customizations, such as bootloader property values Or the factory recovery?
/persist	PERSIST	Device specific "data which shouldn't be changed after the device is shipped, e.g. DRM related files, sensor reg file (sns.reg) and calibration data of chips; wifi, bluetooth, camera etc."
/media/ram /run /var/volatile /dev/sm		Internal temporary file systems; holds temporary files, interprocess communication

Table 54: The file system mount table

The partition table found on the Vector:

Partition name	Size	Description & Notes	Table 55: Th partition table
ABOOT	1 MB	The application bootloader, which may load the kernel, recovery, or fastboot.	F
ABOOTBAK	1 MB	The application bootloader, which may load the kernel, recovery, or fastboot.	
BOOT_A	32 MB	The primary linux kernel and initramfs.	
BOOT_B	32 MB	The backup linux kernel and initramfs.	
CONFIG	512 KB	Configuration of TBD.	
DDR	32 KB	Configuration of the DDR RAM.	
DEVINFO	1 MB	"device information including: is_unlocked (aboot), is_tampered, is_verified, charger_screen_enabled, display_panel, bootloader_version, radio_version etc. Contents of this partition are displayed by "fastboot oem device-info" command	_

 $^{^{11}}$ https://forum.xda-developers.com/android/general/info-android-device-partitions-basic-t3586565 12 This is mounted by "mount-data.service" The file has a lot of information on how it unbricks

		in human readable format. Before loading boot.img or recovery.img, bootloader verifies the locked state from this partition."
EMR	16 MB	????
FSC	1KB	"Modem FileSystem Cookies"
FSG	1.5 MB	Golden backup copy of MODEMST1, used to restore it in the event of error
KEYSTORE	512 KB	"Related to [USERDATA] Full Disk Encryption (FDE)"
MISC	1MB	"a tiny partition used by recovery to communicate with bootloader store away some information about what it's doing in case the device is restarted while the OTA package is being applied. It is a boot mode selector used to pass data among various stages of the boot chain (boot into recovery mode, fastboot etc.). e.g. if it is empty (all zero), system boots normally. If it contains recovery mode selector, system boots into recovery mode."
MODEM	64 MB	Binary "blob" for the WiFi/Bluetooth radio firmware
MODEMST1	1.5MB	Binary "blob" for the WiFi/Bluetooth radio firmware
MODEMST1	1.5MB	Binary "blob" for the WiFi/Bluetooth radio firmware
OEM	16MB	Customizations, such as bootloader property values.
PAD	1MB	"related to OEM"
PERSIST	64MB	Device specific "data which shouldn't be changed after the device is shipped, e.g. DRM related files, sensor reg file (sns.reg) and calibration data of chips; wifi, bluetooth, camera etc."
RECOVERY	32 MB	An alternate partition holding systems applications and libraries that let the application boot into a mode that can download a new system. Often used to wipe out the updates.
RECOVERYFS	640 MB	An alternate partition holding systems applications and libraries that let the application boot into a mode that can download a new system. Often used to wipe out the updates.
RPM	512KB	The primary for resource power management[?]
RPMBAK	512KB	The backup for resource power management[?]
SBL1	512KB	Secondary bootloader. Responsible for loading ABOOT; may also have an "Emergency" download mode.
SBL1BAK	512KB	Secondary bootloader. Responsible for loading ABOOT; may also have an "Emergency" download mode.
SEC	16KB	The secure boot fuse settings, OEM settings, signed-bootloader stuff
SSD	8KB	"Secure software download" for secure storage, encrypted RSA keys, etc
SYSTEM_A	896MB	The (primary) systems applications and libraries with application specific code.
SYSTEM_B	896MB	The bakcup systems applications and libraries with application specific code.
SWITCHBOARD	16 MB	????
TZ	768KB	The TrustZone of key-value pairs, encrypted by the hardware and other keys
TZBAK	768KB	The TrustZone of key-value pairs, encrypted by the hardware and other keys
USERDATA	768MB	The data created for the specific robot (and user) that customizes it. A factory reset wipes out this user data. This partition is encrypted using "Linux Unified Key Setup" (LUKS).

File	Description
/anki/etc/version	
/data/data/com.anki.victor	
/data/data/com.anki.victor/cache/crashDumps	
/data/etc/localtime	The time zone
/data/misc/bluetooth/abtd.socket	The IPC socket interface to Bluetooth LE
/data/unbrick	
/dev/block/bootdevice/by-name/emr	
/dev/spidev0.0	The SPI channel to communicate with the IMU
/dev/socket/_anim_robot_server_	The IPC socket with Vector's animation controller
/dev/socket/_engine_gateway_server_	The IPC socket interface to Vector's Gateway [TBD] server
/dev/socket/_engine_gateway_proto_server_	The IPC socket interface to Vector's Gateway [TBD] server
/dev/socket/_engine_switch_server_	The IPC socket interface to Vector's Switchbox [TBD] server
/dev/ttyHS0	Console log? (but then, where is the connection to the base-board?)
/factory/cloud/something.pem	
/proc/sys/kernel/random/boot_id	A random identifier, created each boot
/sys/devices/system/cpu/possible ¹³ /sys/devices/system/cpu/present	The number of CPUs and whether they can be used.
/data/data/com.anki.victor/cache/crashDumps	Parameters and values specific to the ST LIS2DH accelerometer
/run/anki-crash-log	
/run/das_allow_upload	
/run/fake-hwclock-cmd ¹⁴	Sets the fake time to the time file (Vector doesn't have a clock)
/run/fault_code	
/tmp/data_cleared	
/tmp/vision/neural_nets	

 $^{^{13}}$ https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-system-cpu 14 https://manpages.debian.org/jessie/fake-hwclock/fake-hwclock.8.en.html