

Inteligencia Artificial

Pensar como humano	Pensar racionalmente
"[La automatización de] actividades que asociamos con el pensamiento humano, tales como tomar decisiones, resolver problemas, aprender" (Bellman, 1978)	"El estudio de las facultades mentales mediante el uso de modelos computacionales." (Charniak y McDermott, 1985)
Actuar como humano	Actuar racionalmente
"El arte de crear máquinas que realizan tareas que requieren inteligencia cuando son realizadas por humanos." (Kurzweil, 1990)	"La inteligencia computacional es el estudio del diseño de los agentes inteligentes." (Poole et al, 1998)

Agentes

El agente es lo que actúa con su entorno.

Perciben -> Actúan -> Solucionan problemas

Racionalidad

Un agente se considera racional si actúa para lograr los mejores resultados, o si hay incertidumbre el mejor esperado en función de su conocimiento.

<<Hacer lo correcto>>

Búsqueda

A partir de grafos podemos crear arboles de búsqueda que vayan indicando las posibilidades y decisiones del agente.

Búsqueda

Ciega

- DFS
- BFS
- UCS

Informada

- Voraz
- A*

Heurísticas

Mejoras: Filtrado / Ordenamiento

DFS

Depth First Search

"Búsqueda por profundidad"

Implementa una pila

LIFO: Last In First Out

Explora siempre la rama más a la izquierda hasta alcanzar el fondo.

BFS

Breadth-first search

"Búsqueda por amplitud"

Implementa una cola

FIFO: First In Fisrt Out

Es una estrategia simple en la que el nodo raíz (estado inicial) se expande primero y luego sus sucesores.

UCS

Uniform Cost Search

"Búsqueda de coste uniforme"

Implementa una cola de prioridad ordenada por el costo.

Expande el nodo que tiene el menor costo g(n)

Costo acumulativo:

Costo acumulativo:

Función heurística

La heurística es una FUNCIÓN que EVALÚA qué tan cerca está un ESTADO de ser la SOLUCIÓN

h(x); $x \rightarrow estado$

Distancia euclídea: En línea recta directa

Distancia Manhattan: Línea recta

escalonada

Búsqueda voraz

Expande lo que le indica la heurística.

Elige opciones óptimas locales sin asegurar llegar a la óptima general.

Algoritmo A*

Su función de evaluación consiste en sumar la heurística con el costo:

$$f(n) = g(n) + h'(n)$$

S-B S-A S-B-C S-A-B S-A-C S-A-G

CSPs

Constraint Satisfaction Problems

"Problemas de satisfacción de restricciones"

Grafos de restricciones

Donde los arcos representan restricciones

Algoritmo backtrack

Consiste en retroceder pasos para evitar cumplir con las restricciones.

Mejoras para backtracking

Filtrado: consiste en llevar un registro de las posibilidades para variables aún no asignadas. Parar cuando ya no existan valores legales.

Consistencia del arco: Un arco X -> Y es consistente si para cada x en la cola, existe alguna y en la cabeza que pueda ser asignada sin violar ninguna restricción.

Consistencia de arco completo Se verifican/forzan todos los arcos hasta un punto de convergencia WA NT NSW SA

Ordenamiento

Minimum Remaining Values (MRV)

"Valores mínimos restantes"

Se elige la variable con menores valores legales

