УДК 576.893.162 + 595.341.1 (268.43)

ВЛИЯНИЕ ПАРАЗИТИЧЕСКИХ ДИНОФЛАГЕЛЛЯТ ELLOBIOPSIS CHATTONI (PROTOZOA: MASTIGOPHORA) ИА СМЕРТНОСТЬ ВЕСЛОНОГИХ РАЧКОВ CALANUS FINMARCHICUS (CRUSTACEA: COPEPODA) В ЗИМНИЙ ПЕРИОД В НОРВЕЖСКОМ МОРЕ

© С. Ф. Тимофеев

На материале, собранном в осенний и весенний сезоны (март—апрель 1989 г. и сентябрь 1990 г.) в Норвежском море, изучено влияние паразитических динофлагеллят *Ellobiopsis chattoni* на смертность веслоногих рачков *Calanus finmarchicus* в зимний период. Экстенсивность инвазии популяции *C. finmarchicus* осенью составляет в среднем 15 %, весной же паразиты обнаружены не были. Суточная смертность рачков, обусловленная *E. chattoni*, составляет около 0.08 %. Таким образом, паразиты «ответственны» за десятую часть общей смертности *C. finmarchicus* в зимний период.

Calanus finmarchicus (Gunnerus, 1765) — самый массовый представитель зоопланктона Северной Атлантики и прилежащих вод Северного Ледовитого океана. Рачки составляют основу рационов большинства пелагических беспозвоночных и рыб этого региона, и по этой причине интенсивность изучения распределения, биологии и экологии C. finmarchicus поддерживается на достаточно высоком уровне. В 1990-е годы эти исследования еще больше активизировались, что было связано с реализацией международного проекта TASC (Trans-Atlantic Study of Calanus finmarchicus). Однако некоторые особенности биологии рачков по-прежнему остаются слабоизученными. В первую очередь это касается влияния паразитов на динамику популяций C. finmarchicus (Shields, 1994; Тимофеев, 1997; Mauchline, 1998).

Цель нашей работы — изучение влияния паразитических динофлагеллят *Ellobiopsis chattoni* Scott, 1897 на смертность *C. finmarchicus* в зимний период.

материал и методы

Материал собран в Норвежском море в конце марта—начале апреля 1989 г. и в первой половине сентября 1990 г. (52-й и 53-й рейсы НИС «Дальние Зеленцы»). Зоопланктон облавливался конической планктонной сетью (площадь входного отверстия 0.5 м², сторона ячеи капронового сита 500 мкм) с глубины 50 м до поверхности (вертикальный лов). Пробы фиксировали 4 %-ным раствором нейтрального формалина.

Станции, на которых отбирался материал, расположены в прибрежной зоне Норвегии (см. таблицу) в районах банок Склина и Викинг.

РЕЗУЛЬТАТЫ

Экстенсивность инвазии группировок *C. finmarchicus* на каждой станции представлена в таблице. В весенний период 1989 г. рачки с *E. chattoni* не обнаружены, осенью 1990 г. зараженность может достигать 20% на банке Викинг и 45.4— на банке Склина, в среднем составляя для прибрежных вод Норвегии примерно 15%.

Экстенсивность инвазии Ellobiopsis chattoni в группировках Calanus finmarchicus в Норвежском море

Infection rate with *Ellobiopsis chattoni* in groupings of *Calanus finmarchicus* in the Norwegian sea

Номер стан- ции	Координаты				Количество рачков, экз.		
	широта	долгота	Дата	Глубина, м	всего	с парази- тами	% зараже- ния
			Район банки (Склина			
25	65°45′	13°00′	24.03.1989	170	176	0	0
26	65°45′	12°00′	24.03.1989	210	201	0	0
4 (суточная)	65°18′	09°46′	06-07.09.1990	196			
0900					45	6	13.3
1315					22	10	45.4
1730					65	8	12.3
2130					85	17	20
0130					75	10	13.3
0520					120	10	8.3
0930					55	14	25.4
Среднее							19.7
			Район банки	Викинг			
48	60°35′	04°20′	06.04.1989	310	314	0	0
49	60°35′	03°20′	06.04.1989	250	193	0	0
50	60°35′	02°20′	06.04.1989	120	169	0	0
			Район банки	Викинг			
8 (суточная)	60°33′	02°17′	10-11.09.1990	91			
0900				'-	28	2	7.1
1300					28	0	0
1700					33	6	18.2
2100					30	6	20
0100					34		8.8
0500					54	3 2 7	3.7
0900					92	7	7.6
Среднее							9.3

В весенний период 1989 г. рачки были представлены преимущественно копеподитными стадиями V, VI и самками; самцы присутствуют в единичных экземплярах. Осенью 1990 г. в популяции *C. finmarchicus* доминировали копеподиты стадии IV.

Характеристика динофлагеллят, паразитирующих на *C. finmarchicus* в Норвежском море, приведена в ранее опубликованной работе (Тимофеев, 1997).

обсуждение

Проведенное исследование показало, что в прибрежных водах Норвегии в группировках веслоногого рачка *C. finmarchicus* паразитические динофлагелляты *E. chattoni* встречаются в осенний период и совершенно отсутствуют весной. Для того чтобы понять, почему так происходит, необходимо рассмотреть в самых общих чертах жизненный цикл рачков.

В прибрежных водах Норвегии, т. е. там, где собран материал для настоящей работы, жизненный цикл *С. finmarchicus* может быть представлен следующим образом (Грузов, 1963; Тимохина, 1969; Fiksen, Carlotti, 1998; Heath, Coombs, 1999; Båmstedt, 2000; Hind e. a., 2000). Зимний период рачки проводят на глубинах более 500 м, откуда

весной поднимаются к поверхности и перемещаются с течениями к берегам и банкам, где и происходит нерест. Особи новой генерации весну и лето проводят в верхнем 50-метровом слое, где активно откармливаются преимущественно фитопланктоном. В конце лета начинается погружение рачков на глубину и перемещение их в районы с глубинами более 500 м, где рачки зимуют, находясь в стадии физиологического покоя (диапауза). При этом они активно выедаются разнообразными хищниками. В Норвежском море среди хищников, потребляющих *C. finmarchicus*, наибольшее значение имеют медузы *Aglantha digitale*, щетинкочелюстные *Sagitta elegans* и хищные ракообразные (Грузов, 1963; Тимохина, 1969; Dale e. a., 1999).

Исходя из общей картины жизненного цикла рачков и наших данных по их зараженности паразитическими динофлагеллятами, можно сделать следующие предположения. Во-первых, заражение рачков происходит на ранних стадиях развития, когда животные начинают питаться. Отфильтровывая из воды пищевые частицы, рачки поглощают и споры динофлагеллят. Последние позднее проникают из желудочно-кишечного тракта в репродуктивную систему (Shields, 1994). Однако детали миграции паразита внутри хозяина совершенно не изучены. Происходит это в весенне-летний период.

Во-вторых, в летние месяцы паразиты созревают, и к осени уровень инвазии достигает максимального значения. Образующиеся споры выходят в воду и формируют своеобразный «зимующий фонд» спор паразита, который дает начало подъему зараженности в следующий весенне-летний период. При этом, правда, неизвестно, как часто у паразита, живущего в одном хозяине, образуются споры (один раз в сезон или чаще). Кроме того, неясно, где зимуют споры, в толще воды или на дне. Некоторые косвенные данные позволяют предполагать, что на дне (Тимофеев, 1997), но достоверных данных, подтверждающих это, пока нет.

В-третьих, зараженные динофлагеллятами особи *C. finmarchicus* в зимний период погибают, что обусловлено негативным влиянием паразита на хозяина. Скорее всего, как и у других веслоногих рачков (Ianora e. a., 1987; Kimmerer, McKinnon, 1990; Weissman e. a., 1993; Pasternak e. a., 1995; Olsen e. a., 2000), заражение паразитами (в том числе и одноклеточными) серьезно влияет на физиологию и биологию *C. finmarchicus*: снижается продолжительность выживания при голодании, появляются аномалии поведения при плавании, нарушается реакция на опасность, снижаются скорость погружения, подвижность в целом и т. п. Закономерным итогом таких изменений является большая доступность рачков для разнообразных хищников. Следовательно, в прибрежных водах Норвегии не менее 15 % численности *C. finmarchicus* элиминируются хищниками в зимний период вследствие того, что копеподы были заражены паразитическими динофлагеллятами *E. chattoni*.

Смертность морских веслоногих рачков, особенно в зимний период, исследована весьма слабо, что обусловлено чрезвычайной сложностью изучения смертности в целом (Myers, Runge, 1983). Для прибрежных вод Норвегии и прилежащих акваторий имеется сравнительно немного данных о смертности в зимующих популяциях C. finmarchicus. Например, во фьордах Западной Норвегии по разным оценкам смертность рачков варьирует от величин, не превышающих 1 % (Aksnes, Magnesen, 1983), до 1.1—1.2 % (Hygum e. a., 2000) и даже 2—37 % в сутки (Matthews e. a., 1978). Наши данные свидетельствуют о том, что в результате влияния паразитических динофлагеллят за период с октября по апрель (180 суток) погибает не менее 15 % всех ракообразных, т. е. суточная смертность, обусловленная паразитами, составляет примерно 0.08 %. Динамика популяций C. finmarchicus во фьордах и в открытом море может быть детерминирована разным набором экологических факторов (Miller, Tande, 1993; Meise, O'Reilly, 1996; Fiksen, Carlotti, 1998; Irigoien, 1999; Båmstedt, 2000; Hygum е. а., 2000), что создает трудности при сравнении данных по смертности, полученных в различных частях ареала этого вида. Однако для первых самых приблизительных оценок такое сравнение все-таки оправдано, и в результате мы можем предполагать, что паразитические динофлагелляты ответственны примерно за десятую часть общей смертности рачков в зимний период.

Список литературы

- Грузов Л. Н. Основные закономерности сезонного развития зоопланктона в различных районах Норвежского моря // Норвежское море. Калининград: Изд-во АтлантНИРО, 1963. С. 5—30.
- Тимофеев С. Ф. Встречаемость паразитической динофлагелляты Ellobiopsis chattoni (Protozoa, Mastigophora) на веслоногом рачке Calanus finmarchicus (Crustacea, Copepoda) и возможность использования паразита в качестве биологического маркера локальных популяций хозяина // Паразитология. 1997. Т. 31, вып. 4. С. 334—340.
- Тимохина А. Ф. Зоопланктон Норвежского моря как кормовая база атлантическо-скандинавской сельди: Автореф. дис. ... канд. биол. наук. М.: МГУ, 1969. 24 с.
- Aksnes D. L., Magnesen T. Distribution, development, and production of Calanus finmarchicus (Gunnerus) in Lindåspollene, western Norway, 1979 // Sarsia. 1983. Vol. 68. P. 195—208.
- Båmstedt U. Life cycle, seasonal vertical distribution and feeding of Calanus finmarchicus in Skagerrak coastal water // Mar. Biol. 2000. Vol. 137. P. 279—289.
- Dale T., Bagfien E., Melle W., Kaartvedt S. Can predator avoidance explain varying overwintering depth of Calanus in different oceanic water masses? // Mar. Ecol. Progr. Ser. 1999. Vol. 179. P. 113—121.
- Fiksen Ø., Carlotti F. A model of optimal life history and dial vertical migration in Calanus finmarchicus // Sarsia. 1998. Vol. 83. P. 129—147.
- Heath M. R., Coombs S. H. (eds.) Investigation of Calanus finmarchicus migrations between oceanic and shelf seas of north-west Europe (ICOS) // Fish. Oceanogr. 1999. Vol. 8 (Suppl. 1). P. 1—176.
- Hind A., Gurney W. S. C., Heath M., Bryant A. D. Overwintering strategies in Calanus finmarchicus // Mar. Ecol. Progr. Ser. 2000. Vol. 193. P. 95—107.
- Hygum B. H., Rey C., Hansen B. W., Tande K. Importance of food quantity to structural growth rate and neutral lipid reserves accumulated in Calanus finmarchicus // Mar. Biol. 2000. Vol. 136. P. 1057—1073.
- Ianora A., Mazzocchi M. G., di Carlo B. S. Impact of parasitism and intersexuality on Mediterranean populations of Paracalanus parvus (Copepoda: Calanoida) // Dis. Aquat. Org. 1987. Vol. 3. P. 29—36.
- Irigoien X. Vertical distribution and population structure of Calanus finmarchicus at station India (59° N, 19° W) during the passage of the great salinity anomaly, 1971—1975 // Deep-Sea Res. Pt. I. 1999. Vol. 47. P. 1—26.
- Kimmerer W. J., McKinnon A. D. High mortality in a copepod population caused by a parasitic dinoflagellate // Mar. Biol. 1990. Vol. 107. P. 449—452.
- Matthews J. B. L., Hestad L., Bakke J. L. W. Ecological studies in Korsfjorden, western Norway. The generations and stocks of Calanus hyperboreus and C. finmarchicus in 1971—1974 // Oceanol. Acta. 1978. Vol. 1. P. 274—284.
- Mauchline J. The biology of calanoid copepods. London: Academic Press, 1998.
- Meise C. J., O'Reilly J. E. Spatial and seasonal patterns in abundance and age-composition of Calanus finmarchicus in the Gulf of maine and on Georges Bank: 1977—1987 // Deep-Sea Res. Pt. II. 1996. Vol. 43. P. 1473—1501.
- Miller C. B., Tande K. S. Stage duration estimation for Calanus populations, a modeling study // Mar. Ecol. Progr. Ser. 1993. Vol. 102. P. 15—34.
- Myers R. A., Runge J. A. Predictions of seasonal natural mortality rates in a copepod population using life-history theory // Mar. Ecol. Progr. Ser. 1983. Vol. 11. P. 189—194.
- Olsen E. M., Jorstad T., Kaartvedt S. The feeding strategies of two large marine copepods // J. Plankton Res. 2000. Vol. 22. P. 1513—1528.
- Pasternak A. F., Huntingford F. A., Crompton D. W. T. Changes in metabolism and behavior of the freshwater copepod Cyclops strenuus abyssorum infected with Diphyllobothrium spp. // Parasitology. 1995. Vol. 110. P. 395—399.
- Shields J. D. The parasitic dinoflagellates of marine crustaceans // Ann. Rev. Fish Diseases. 1994. Vol. 4. P. 241—271.
- Weissman P., Lonsdale D. J., Yen J. The effect of peritrich ciliates on the production of Acartia hudsonica in Long Island Sound // Limnol. Oceanogr. 1993. Vol. 38. P. 613—622.

ММБИ РАН, Мурманск, 18300 Поступила 3.01.2001

THE EFFECT OF THE PARASITIC DINOFLAGELLATE ELLOBIOPSIS CHATTONI (PROTOZOA: MASTIGOPHORA) ON THE WINTER MORTALITY OF THE CALANOID COPEPOD CALANUS FINMARCHICUS (CRUSTACEA, COPEPODA) IN THE NORWEGIAN SEA

S. F. Timofeev

Key words: parasitic dinoflagellate, Ellobiopsis chattoni, calanoid copepods, Calanus finmarchicus, winter mortality.

SUMMARY

We studied the effects of the parasitic dinoflagellate *Ellobiopsis chattoni* on the winter mortality of natural population of the calanoid copepod *Calanus finmarchicus* in the Norwegian Sea (materials was collected in March-April 1989 and September 1990). Dinoflagellate infection occurred during autumn (the infection rates of copepods with *E. chattoni* was 15 %, as average). Average mortality rate in *C. finmarchicus* was about 0.08 % per day, or about one-tenth of total mortality in winter period.