Calculus Made EasieR

William Murrah

2021-08-01

Contents

P	reface	5
1	Introduction 1.1 Algebra and Calculus Basics	7 7
2	Functions	9
3	Methods	11
4	Applications4.1 Example one4.2 Example two	13 13 13
5	Final Words	15

4 CONTENTS

Preface

This is a collection of notes I generated while using R to learn calculus for statistics in general and nonlinear modeling specifically. The notes are based multiple sources including a classic book by Thompson and Gardner (1998), and a great textbook focusing on calculus and probability in the life sciences (Adler, 2012).

6 CONTENTS

Logarithms can have

Introduction

1.1 Algebra and Calculus Basics

1.1.1 Exponentials and Logarithms

An exponential is represented as e^x or $\exp(x)$, with e being the constant 2.718.... Some things to know about exponentials, and how to generate them in are include (Bolker, 2008):

```
\exp(1) = e = 2.718282,
\exp(1)
## [1] 2.718282
\exp(0) = 1,
\exp(0)
## [1] 1
\exp(-\infty) = 0,
\exp(-\ln f)
## [1] 0
\operatorname{and} \exp(\infty) = \infty,
\exp(\ln f)
## [1] Inf
```

Functions

Two functions, f(x) and g(x) are below:

$$f(x) = 4 + x - x^2$$

$$g(x) = 2x$$

```
f <- function(x) 4 + x - x^2
g <- function(x) 2*x
```

2.0.1 Composition of Functions

$$(f \circ g)(x) = f(g(x))$$

modelsummary::datasummary_df(data.frame(x, fx, gx, f_gx, f.gx, fgx), title = "Combining Functions"

```
x <- seq(0, 3, .001)
plot(f(x) ~ x, type = "l", ylim = c(0, 10), ylab = "")
text(2.8, .3, labels = "f(x)")
lines(g(x) ~ x, col = "grey")
text(2.6, 6.1, "g(x)", col = "grey")
lines(f(x) + g(x) ~ x, col = "red")</pre>
```

X	fx	gx	f_gx	f.gx	fgx
0.00	4.00	0.00	4.00	0.00	4.00
0.50	4.25	1.00	5.25	4.25	4.00
1.00	4.00	2.00	6.00	8.00	2.00
1.50	3.25	3.00	6.25	9.75	-2.00
2.00	2.00	4.00	6.00	8.00	-8.00
2.50	0.25	5.00	5.25	1.25	-16.00
3.00	-2.00	6.00	4.00	-12.00	-26.00

Table 2.1: Combining Functions

Note that when x is zero, f(x) is 4, and g(x) is zero. So it makes sense that g(x) starts at 0 on the y-axis. It also make sense that (f*g) starts at zero on the y-axis, because any value of f(x) will be multiplied by zero, which will result in zero. It is also intuitive that both f(x) and f(x) + g(x) start at 4 on the y axis, because f(x) is 4 when x is zero (f(x) = 0), and adding zero to this does not change this value (f(x) + g(x)) = (4 + 0) = 4, when x = 0.

2.0.2 1.2.4 Finding Inverse Functions

Methods

We describe our methods in this chapter.

Applications

Some significant applications are demonstrated in this chapter.

- 4.1 Example one
- 4.2 Example two

Final Words

We have finished a nice book.

Bibliography

Adler, F. R. (2012). Modeling the dynamics of life: calculus and probability for life scientists. Cengage Learning.

Bolker, B. M. (2008). *Ecological models and data in R.* Princeton University Press.

Thompson, S. P. and Gardner, M. (1998). Calculus made easy. Macmillan.