Simulation and reverse-engineering of mechanistic GRN-driven models of gene expression

Hands-on session 1: modeling and simulation

Ulysse Herbach & Elias Ventre Inria (Nancy & Marseille)

CompSysBio 2025 - Aussois

6 October 2025

The transcriptional bursting phenomenon

D. Suter, N. Molina et al., Science, 2011

The transcriptional bursting phenomenon

D. Suter, N. Molina et al., Science, 2011

Confirmation of biological variability

C. Albayrak, C. Jordi et al., Molecular Cell, 2016

1. Modeling

Simplification steps

$$E \xrightarrow[k_{\text{off}}]{k_{\text{off}}} E^*$$

$$E^* \xrightarrow{s_0} E^* + M$$

$$M \xrightarrow{s_1} M + P$$

$$M \xrightarrow{d_0} \varnothing$$

$$P \xrightarrow{d_1} \varnothing$$

Simplification steps

Trajectories vs. distributions

Dynamical GRN model

Dynamical GRN model

Interaction function (burst frequency of gene i)

$$k_{\text{on},i}(P_1,\ldots,P_n) = \frac{k_{1,i} \exp(\beta_i + \sum_{j=1}^n \theta_{ji} P_j)}{1 + \exp(\beta_i + \sum_{j=1}^n \theta_{ji} P_j)}$$

E. Ventre, U. Herbach et al., PLOS Computational Biology, 2023

2. Simulation

The time-dependent multivariate distribution p(t, y, z) of mRNA y and proteins z follows a **continuous master equation**:

Complete model (used for simulation)

$$\frac{\partial}{\partial t}p(t,y,z) = \sum_{i=1}^{n} \left[d_{0,i} \frac{\partial}{\partial y_{i}} \left\{ y_{i}p(t,y,z) \right\} + d_{1,i} \frac{\partial}{\partial z_{i}} \left\{ (z_{i} - y_{i})p(t,y,z) \right\} \right.$$
$$\left. + k_{\text{on},i}(z) \left(\int_{0}^{y_{i}} p(t,y - he_{i},z)b_{i}e^{-b_{i}h} dh - p(t,y,z) \right) \right]$$

The time-dependent multivariate distribution p(t, y, z) of mRNA y and proteins z follows a **continuous master equation**:

Complete model (used for simulation)

$$\begin{split} \frac{\partial}{\partial t} p(t, y, z) &= \sum_{i=1}^{n} \left[d_{0,i} \frac{\partial}{\partial y_{i}} \left\{ y_{i} p(t, y, z) \right\} + d_{1,i} \frac{\partial}{\partial z_{i}} \left\{ (z_{i} - y_{i}) p(t, y, z) \right\} \right. \\ &+ \left. k_{\text{on},i}(z) \left(\int_{0}^{y_{i}} p(t, y - he_{i}, z) b_{i} e^{-b_{i}h} dh - p(t, y, z) \right) \right] \end{split}$$

The time-dependent multivariate distribution p(t,x) of proteins x follows a **continuous master equation**:

Reduced model (used for inference)

$$\frac{\partial}{\partial t}p(x,t) = \sum_{i=1}^{n} \left[d_{1,i} \frac{\partial}{\partial x_i} \{ x_i p(x,t) \} - k_{\text{on},i}(x) p(x,t) \right]$$
$$+ \int_{0}^{x_i} k_{\text{on},i}(x - he_i) p(x - he_i, t) c_i e^{-c_i h} dh$$

The time-dependent multivariate distribution p(t,x) of proteins x follows a **continuous master equation**:

Reduced model (used for inference)

$$\frac{\partial}{\partial t}p(x,t) = \sum_{i=1}^{n} \left[d_{1,i} \frac{\partial}{\partial x_i} \{ x_i p(x,t) \} - k_{\text{on},i}(x) p(x,t) \right]$$
$$+ \int_{0}^{x_i} k_{\text{on},i}(x - he_i) p(x - he_i, t) c_i e^{-c_i h} dh$$

Mathematical setting

Waiting time distribution

$$\mathbb{P}_{y,z}(T_1 > t) = \exp\left(-\int_0^t \sum_{i=1}^n k_{\mathsf{on},i}(\varphi_\mathsf{P}(y,z, au)) \mathsf{d} au\right)$$

Problem: numerical integration would be inefficient!

Mathematical setting

Waiting time distribution

$$\mathbb{P}_{y,z}(T_1 > t) = \exp\left(-\int_0^t \sum_{i=1}^n k_{\mathsf{on},i}(\varphi_{\mathsf{P}}(y,z,\tau)) \mathsf{d}\tau\right)$$

Problem: numerical integration would be inefficient!

Main assumption:
$$\exists \lambda \geqslant \sup_{z \in \mathbb{R}^n_+} \left\{ \sum_{i=1}^n k_{\text{on},i}(z) \right\}$$

Mathematical setting

Waiting time distribution

$$\mathbb{P}_{y,z}(T_1 > t) = \exp\left(-\int_0^t \sum_{i=1}^n k_{\mathsf{on},i}(\varphi_{\mathsf{P}}(y,z,\tau)) d\tau\right)$$

Problem: numerical integration would be inefficient!

Main assumption:
$$\exists \lambda \geqslant \sup_{z \in \mathbb{R}^n_+} \left\{ \sum_{i=1}^n k_{\text{on},i}(z) \right\}$$

Acceptance-rejection (aka thinning) method

$$p_{i}(z) = \begin{cases} 1 - \frac{1}{\lambda} \sum_{i=1}^{n} k_{\text{on},i}(z) & \text{if } i = 0\\ \frac{k_{\text{on},i}(z)}{\lambda} & \text{if } 1 \leqslant i \leqslant n \end{cases}$$

Basic algorithm (SSA-like)

```
Require: initial state (Y_0, Z_0) and final time t > 0
 1: Y, Z \leftarrow Y_0, Z_0
                                                           ▷ Initialize current state
 2: T \leftarrow 0
                                                    ▷ Initialize current jump time
 3: while T < t do
     Y_{\text{old}}, Z_{\text{old}} \leftarrow Y, Z
 4.
 5: T_{\text{old}} \leftarrow T
 6: U \leftarrow \mathsf{Exp}(\lambda)
                                                                ▷ Draw waiting time
 7: Y, Z \leftarrow \varphi(Y_{\text{old}}, Z_{\text{old}}, U)
                                                  > Apply the deterministic flow
 8: i \leftarrow \mathcal{P}(Z)
                                                                         ▷ Draw gene i
     if i \neq 0 then
 9:
               Y[i] \leftarrow Y[i] + \operatorname{Exp}(b_i)
10:
                                                                          ▶ Apply jump
          end if
11:
12.
          T \leftarrow T + U
                                                     ▶ Update current jump time
13: end while
14: return \varphi(Y_{\text{old}}, Z_{\text{old}}, t - T_{\text{old}})

    Extend to final time
```

Illustration of the algorithm

Example 1: toggle switch (two-state model)

Example 1: toggle switch (bursty model)

Example 2: repressilator

$$\beta_1 = \beta_2 = \beta_3 = 5$$
, $\theta_{12} = \theta_{23} = \theta_{31} = -10$

Example 2: repressilator

$$\beta_1 = \beta_2 = \beta_3 = 5$$
, $\theta_{12} = \theta_{23} = \theta_{31} = -10$

Single-cell vs. bulk (average) trajectories

3. Inference

How do we switch to statistical learning?

Main idea

- We consider the invariant distribution p(x) as a **statistical** likelihood parametrized by $\theta = (\theta_{ij})_{1 \le i,j \le n}$
- Proteins $X = (X_1, ..., X_n)$ are interpreted as a **latent space**, with mRNA levels $Y = (Y_1, ..., Y_n)$ being sampled from

$$rac{\mathsf{Y}}{\mathsf{V}} \sim igotimes_{i=1}^n \mathsf{Gamma}(k_{\mathrm{on},i}(\mathsf{X})/d_{0,i},b_i)$$

i.e. the *quasi-steady-state* distribution of the complete model.

How do we switch to statistical learning?

Main idea

- We consider the invariant distribution p(x) as a **statistical** likelihood parametrized by $\theta = (\theta_{ij})_{1 \le i,j \le n}$
- Proteins $X = (X_1, ..., X_n)$ are interpreted as a **latent space**, with mRNA levels $Y = (Y_1, ..., Y_n)$ being sampled from

$$rac{\mathsf{Y}}{\mathsf{V}} \sim igotimes_{i=1}^n \mathsf{Gamma}(k_{\mathrm{on},i}(\mathsf{X})/d_{0,i},b_i)$$

i.e. the quasi-steady-state distribution of the complete model.

Two possible strategies

- 1. Use analytically tractable solutions
- 2. Use self-consistent approximation (pseudo-likelihood)

1. Using a class of very nice models

Analytical solution

Assume that there exists a function $V:(\mathbb{R}_+)^n \to \mathbb{R}$ such that for all $i=1,\ldots,n$, $k_{n}:(x)$ ∂V

$$\frac{k_{\mathsf{on},i}(x)}{d_{1,i}x_i} = -\frac{\partial V}{\partial x_i}(x)$$

Then the protein distribution is

$$p(x) \propto e^{-V(x)} \prod_{i=1}^{n} x_i^{-1} e^{-c_i x_i}$$

1. Using a class of very nice models

Analytical solution

Assume that there exists a function $V:(\mathbb{R}_+)^n\to\mathbb{R}$ such that for all $i=1,\ldots,n$,

$$\frac{k_{\mathsf{on},i}(x)}{d_{1,i}x_i} = -\frac{\partial V}{\partial x_i}(x)$$

Then the protein distribution is

$$p(x) \propto e^{-V(x)} \prod_{i=1}^{n} x_i^{-1} e^{-c_i x_i}$$

Corollary 1: "GRN-informed MCMC"

We can sample from virtually any distribution using a GRN!

Corollary 2: "GRN-informed autoencoder"

Choose a **relevant parametric class** (V_{θ}) and learn θ from data

2. Besag's pseudo-likelihood

Definition

Besag's *pseudo-likelihood* associated with p(x) is the **product of** conditional densities

$$\widetilde{p}(x) = \prod_{i=1}^{n} p^{(i)}(x)$$
 where $p^{(i)}(x) = p(x_i | \{x_j\}_{j \neq i})$

2. Besag's pseudo-likelihood

Definition

Besag's *pseudo-likelihood* associated with p(x) is the **product of** conditional densities

$$\widetilde{p}(x) = \prod_{i=1}^{n} p^{(i)}(x)$$
 where $p^{(i)}(x) = p(x_i | \{x_j\}_{j \neq i})$

Mechanistic interpretation

 $\widetilde{p}(x)$ turns out to be the **product of "frozen" steady-state** solutions of the master equation:

$$\begin{split} -d_{1,i}\partial_{x_{i}}\{x_{i}p^{(i)}(x)\} &= -k_{\mathsf{on},i}(x)p^{(i)}(x) \\ &+ \int_{0}^{x_{i}}k_{\mathsf{on},i}(x-he_{i})p^{(i)}(x-he_{i})c_{i}e^{-c_{i}h}\mathrm{d}h \end{split}$$

Similar as "self-consistent field approximation" in physics

Exact distribution vs. pseudo-likelihood

Inference in practice - version 0.1 (2017)

Step 1. Calibration

Step 2. EM algorithm

Step 3. Score matrix

Current inference procedure - Harissa

Step 1: estimate the frequency modes $\alpha_k \in \{0,1\}^n$ in each cell k

Current inference procedure - Harissa

Step 1: estimate the frequency modes $\alpha_k \in \{0,1\}^n$ in each cell k

Step 2: match the observed modes α_k with model fixed points

1. Likelihood-based cost:

$$R(\theta,\alpha) = -\sum_{k} \sum_{i=1}^{n} L_{i}(\theta;\alpha_{k})$$

Current inference procedure - Harissa

Step 1: estimate the frequency modes $\alpha_k \in \{0,1\}^n$ in each cell k

Step 2: match the observed modes α_k with model fixed points

1. Likelihood-based cost:

$$R(\theta, \alpha) = -\sum_{k} \sum_{i=1}^{n} L_{i}(\theta; \alpha_{k})$$

2. Sequential optimization (update $\hat{\theta}$ at each time point):

$$\begin{split} \widehat{\theta}(t_0) &\leftarrow \arg\min_{\theta \in \Theta} \left\{ R(\theta, \widehat{\alpha}(t_0)) + \lambda \|\theta\|_1 \right\} \\ \widehat{\theta}(t_1) &\leftarrow \arg\min_{\theta \in \Theta} \left\{ R(\theta, \widehat{\alpha}(t_1)) + \lambda \|\theta - \widehat{\theta}(t_0)\|_1 \right\} \\ \widehat{\theta}(t_2) &\leftarrow \arg\min_{\theta \in \Theta} \left\{ R(\theta, \widehat{\alpha}(t_2)) + \lambda \|\theta - \widehat{\theta}(t_1)\|_1 \right\} \end{split}$$

• • •

Current inference procedure - Cardamom

- **Step 1:** estimate the frequency modes $\alpha_k \in \{0,1\}^n$ in each cell k
- **Step 2:** match the observed modes α_k with model fixed points
 - 1. Quadratic cost:

$$R(\theta, \alpha) = \sum_{k} \sum_{i=1}^{n} \left(\sigma_{i}^{\theta}(\alpha_{k}) - \alpha_{k,i} \right)^{2}$$

2. Sequential optimization (update $\hat{\theta}$ at each time point):

$$\begin{split} \widehat{\theta}(t_0) &\leftarrow \arg\min_{\theta \in \Theta} \left\{ R(\theta, \widehat{\alpha}(t_0)) + \lambda \|\theta\|_1 \right\} \\ \widehat{\theta}(t_1) &\leftarrow \arg\min_{\theta \in \Theta} \left\{ R(\theta, \widehat{\alpha}(t_1)) + \lambda \|\theta - \widehat{\theta}(t_0)\|_1 \right\} \\ \widehat{\theta}(t_2) &\leftarrow \arg\min_{\theta \in \Theta} \left\{ R(\theta, \widehat{\alpha}(t_2)) + \lambda \|\theta - \widehat{\theta}(t_1)\|_1 \right\} \end{split}$$

24 / 28

Real data example: inferred network (data from Semrau et al., 2017)

E. Ventre, U. Herbach et al., PLOS Computational Biology, 2023

Dynamical viewpoint

Simulation of the inferred network

Simulation of the inferred network

E. Ventre, U. Herbach et al., PLOS Computational Biology, 2023

References

Gaillard, M. and Herbach, U. (2025).

Efficient stochastic simulation of gene regulatory networks using hybrid models of transcriptional bursting.

Accepted in CMSB 2025 conference in Lyon (sept. 10-12).

Ventre, E., Herbach, U., Espinasse, T., Benoit, G., and Gandrillon, O. (2023).

One model fits all: Combining inference and simulation of gene regulatory networks.

PLOS Computational Biology, 19(3):e1010962.

Ventre, E. (2021).

Reverse engineering of a mechanistic model of gene expression using metastability and temporal dynamics.

In Silico Biology, 14(3-4):89-113.

Herbach, U., Bonnaffoux, A., Espinasse, T., and Gandrillon, O. (2017). Inferring gene regulatory networks from single-cell data: a mechanistic approach.

BMC Systems Biology, 11(1):105.