

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

University Theory Examination (Regular) April 2024 Sixth Semester of B.Tech. (CSE)

THEORY OF COMPUTATION [CS353]

Marks: 70 **Duration: 195 mins.**

Section - 1							
Answer 10	out of 11 questions.			Section Duration	n: 40 mins		
1	Which one of the following languages over the alphabet $\{0,1\}$ is described by the regular expression: $(0+1)*0(0+1)*0(0+1)*$?						
	The set of all strings containing the substring 00.	The set of all strings containing at most two 0's.	The set of all strings containing at least two 0's.	The set of all strings that begin and end with either 0 or 1.			
2	Which of the following <u>â€< r*s* = r* +</u> (r* <u>s*</u> s)	$\frac{(r+s)}{(r+s)}$	identity is true? None of these		(2)		
3	The context free grants at XYX X at at aX bX ^ Y at bbb generates the langua (a + abbb(ab)*bbb b)*	ge which is defined	· · ·		(2)		
4	•	Only L2 and L3 are context free	Only L1 and L2 context free	are All are context	(2)		
5	Consider the machine M:						
	The language recognize {w â^^ {a, b}* / every a in w is followed by exactly two b's}	<u>{w â^^ {a, b}* eve</u>		not contain 'aa' as			
6	turing turing	tape of The tape machine is the language.	is infinite when m	ne tape of turing achine is finite when the nguage is nonregular.	(2)		

Choose the incorrect statement.

(2)

	machine generates no language as	A Mealy machine has no terminal state	string genera	ated by a e length	g, length of the outp Moore machine is no of the output string a Mealy machine		All of these	
8	What is the highe S â†' Aa A â†' Ba B â†' abc Type 0 Type 1			e assigne	ed to the following gr	ammar'i	? (2	2)
9	Consider the following statements about the context free grammar $G = \{S \ \hat{a} \ ' \ SS, \ S \ \hat{a} \ ' \ ab, \ S \ \hat{a} \ ' \ \hat{i} \ ' \}$ I. G is ambiguous II. G produces all strings with equal number of a 's and b 's III. G can be accepted by a deterministic PDA. Which combination below expresses all the true statements about G ? I and III I and III I and III I I and III I I I I I I I I I I I I I I I I I						2)	
10	Which of the follo consisting of strin (0 + 1) * 11(0 +	gs that conta	ain exactly tw	o 1's?	* 1(0 + 1) * 1 (0 + 1)	{0, 1}	(2	2)
11	The regular expressions with 1 and does regular (1 + 01) * (10 + 01)		ubstring 00 }	s:	ge L where L = { x ϵ (10 + 01) * 01	(0, 1)*	x ends (2	2)
			Section	ı - 2				
Answer 5 ou	It of 7 questions.						(5	-\
	Find minimum sta	b 2	a b a	b				5)
			_	b				
2	Discuss P problem theory.	n, NP proble	em, Decision	problem,	applications of comp	outationa	al (5	5)
3	•	nata for follov + 00)(0 + 1)	wing regular			outationa	al (5	
3 4 1	theory. Draw Finite auton (i). (0 + 1) â^— (1	nata for follow + 00)(0 + 1) ^—0	wing regular (â^—			outationa		5)
3 4	theory. Draw Finite auton (i). (0 + 1) â^— (1 (ii). (111 + 100) â	nata for follow + 00)(0 + 1) ^—0 II NFA to NFA 2 oression of for	wing regular of a — A b b collowing substituted begin or	ets of {0, end with	1}* 00 or 11.	putationa	(5	5)

0	M1 = The language accepting strings not ending with '01' M2 = The language of all strings that end with 11. Draw FAs recognizing the following languages. a) M1 U M2	
7	Design and melay machine that gives output 1 if input of sequence abb comes, other wise 0 then convert Melay to Moore machine.	(5)
	Section - 3	
Answer 5 o	ut of 7 questions.	
1	Construct the PDA for the following language L = {a^m b^n c^m+n m, n ≥ 1}	(5)
2	Write a short note on Universal Turing Machine.	(5)
3	Using kleene's Theorem Draw NFA- \hat{l} , for $((0+1)*10 + (00)*)*$	(5)
4	Write CFG for following language L={a^i b^j c^k i=j or j=k}	(5)
5	Define: CNF. Show the steps to convert CFG into CNF. Convert the following CFG into equivalent CNF. S \hat{a} †' X Y X \hat{a} †' 0 X 1 $\hat{l}\mu$ Y \hat{a} †' 1 Y 0 $\hat{l}\mu$	(5)
6	Construct PDA with transition function for L ={a^n b^m c^m d^n / n>=1, m>=2}	(5)
7	Construct the Turing machine and its transition table over $\hat{l}\mathfrak{L}=\{0,1\}$ for the language $L=\{ww\ /\ w\ \hat{a}^{\{0,1\}^*}\}$	(5)

-----End-----