МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 5.1.2 Исследование эффекта Комптона

	Салтыкова дарья
	Б04-105
Допуск	
Зыполнени	e
Спача	

1 Введение

Цель работы: Исследование энергетического спектра γ -квантов, рассеянных на графите, с помощью сцинтилляционного спектрометра. Определение энергии рассеянных γ -квантов в зависимости от угла рассеяния. Определение энергии покоя частиц, на которых происходит комптоновское рассеяние.

В работе используются: источник излучения, графитовая мишень, сцинтилляционный счётчик, ФЭУ, ЭВМ.

2 Теоретические сведения

Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим. Он интерпретируется как результат упругого соударения двух частиц - γ -кванта и свободного электрона.

Пусть электрон до соударения покоился, а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 , где $\gamma=(1\beta^2)^{1/2},\ \beta=v/c,$ а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс рассеянного излучения — $\propto \omega_1$. Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv \cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv \sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решая совместно эти уравнения и переходя от частот к длинам волн, получаем изменение длины рассеянного излучения

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta),$$

где $\Lambda_k = \frac{h}{mc} = 2.42\dot{1}0^{-10}$ см - комптоновская длина волны электрона.

Основной целью работы является проверка соотношения (1). Преобразуем его от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta,$$

где $\varepsilon_0 = E_0/(mc^2)$ - энергия γ -квантов, падающих на рассеиватель (в единицах mc^2), $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяния на угол θ , m - масса электрона.

3 Экспериментальная установка

Рис. 1: Блок-схема установки по изучению рассеяния γ -квантов

Рис. 2: Блок-схема измерительного комплекса

Источником излучения служит $^{137}\mathrm{Cs}(1)$, испускающий γ -кванты с энергией 662 кэВ. Узкий пучок после коллиматора попадает на графитовую мишень (2). Кванты, испытавшие комптоновское рассеяния в мишени, регистрируются сцинтилляционным счетчиком и проходят на ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Штанга с измерительным блоком может вращаться относительно мишени.

4 Ход работы

- 1. Проверим, что при увеличении угла фотопик смещается влево.
- 2. Устанавливая сцинтилляционный датчик под разными углами,получаем картины пиков, по которым измеряем номера каналов. Полученные данные занесем в таблицу.

Угол,°	Канал	$1 - cos(\theta)$	$1/N(\theta)$
0	804	0	0,001244
10	856	0,01519	0,001168
20	757	0,06031	0,001321
30	697	0,13397	0,001435
40	639	0,23396	0,001565
50	575	0,35721	0,001739
60	510	0,50000	0,001961
70	448	0,65798	0,002232
80	401	0,82635	0,002494
90	368	1	0,002717
100	336	1,17365	0,002976
110	314	1,34202	0,003185
120	293	1,50000	0,003413

Заметим, что для более точного анализа погрешностей следовало бы сохранять первоначальные данные полностью, но программное обеспечение не позволяет это делать. Оцифровка была сделана для $\theta=0^{\circ}$ с нашими данными и для некоторых других углов с данными коллег (см. ниже).

3. Перейдем к проверке соотношения $\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1-\cos\theta)$. Построим график зависимости $\frac{1}{N(\theta)} - \frac{1}{N(0)}(1-\cos\theta)$.

Рис. 3: Зависимость $\frac{1}{N(\theta)} - \frac{1}{N(0)} (1 - \cos \theta)$

4. Рассчитаем энергию покоя частицы, на которой происходит комптоновское рассеяние.

Из графика:
$$N_{\text{наил}}(0^{\circ})=819\pm13, \frac{1}{N_{\text{наил}}(90^{\circ})}=(270\pm4)\cdot10^{-5}, N_{\text{наил}}(90^{\circ})=370\pm6.$$

$$mc^2 = E_\gamma rac{N_{
m Hauj}(90^\circ)}{N_{
m Hauj}(0^\circ) - N({}_{
m Hauj}90^\circ)} = 545 \pm 17 \ {
m K}{
m 9B}.$$

Погрешность складывается из погрешностей определения угла и погрешности опредления положения пика.

5 Оценка погрешностей

Оцифруем получившиеся графики, аппроксимируем фотопики по Гауссу и определим точное положение пиков. Сравним полученные таким образом значения с теми, что были полчены в ходе эксперимента. Оцифрованные графики см. в Приложении.

Угол,°	0	20	50	60	90
Грубо	804	771	542	486	338
Точно	806	766	546	480	341

Как видим, грубая оценка в среднем отличается от точной на 0,75%.

6 Вывод

В работе был исследован эффект Комптона на графите с помощью сцинтилляционного спектрометра. При этом была выяснена зависимость энергии рассеянного γ -кванта от угла рассеяния, а также определена величина энергии покоя электрона $mc^2=545\pm17$ кэВ. Теоретическое

значение $(mc^2)_{\text{теор}} = 511$ кэВ. Разницу в значениях можно объяснить тем, что в нашем эксперименте расчетная формула недостаточно точна, ввиду того что электронѕ в составе атомов исследуемого вещества не являются свободными.

7 Приложение

Рис. 4: $\theta = 0^{\circ}$

Рис. 5: $\theta=20^\circ$

Рис. 6: $\theta=50^\circ$

Рис. 7: $\theta=60^\circ$

Рис. 8: $\theta = 90^{\circ}$