James M. Luther, MD MSCI

Familial Hypertension Syndromes

Abbreviations:	Synonyms/Mutation	References ¹⁻⁴
GRA = Glucocorticoid Remediable Aldosteronism	Familial Hyperaldosteronism type I; CYP11B2/B1 cross-over	3, 4
FH-II = Familial Hyperaldosteronism type II	CLCN2 mutation	3-6
FH-III = Familial Hyperaldosteronism type III	KCNJ5 mutation	3, 4, 7, 8
FH-IV = Familial Hyperaldosteronism type IV	CACNA1H mutation	3, 4, 9
PASNA = Primary Aldosteronism with Seizures and Neurologic A	3, 4	
CAH (11 β) = Congenital Adrenal Hyperplasia	11βhydroxylase deficiency, CYP11B1 deficiency	10
CAH (<i>CYP17</i>) = Congenital Adrenal Hyperplasia	17α-hydroxylase/17,20-Lyase deficiency, CYP17 deficiency	10
GR = Glucocorticoid Resistance	Primary Cortisol resistance	11, 12
FHH = Familial Hyperkalemic Hypertension	Gordon's syndrome, Chloride Shunt syndrome	13, 14
AME = Apparent Mineralocorticoid Excess	11βHydroxysteroid Dehydrogenase type II Deficiency	15
AMR = Activating MR mutation	Geller's syndrome, MR _{L810} , HTN worsened in Pregnancy	16
HTN-Br = HTN with Brachydactyly		

Sy	<u>ndrome I</u>	<u>Ieritance</u>	Aldo	PRA	K ⁺	Diagnostic Clues	Specific Treatment
1.	FH-I/GRA	AD	$\uparrow \uparrow$	\downarrow	-/↓	↑Aldo, Dex suppression, Fam. Hx., 18-OH steroids, CYP11B2/B1	Glucocorticoid
2.	FH-II	AD	$\uparrow \uparrow$	\downarrow	-/↓	↑Aldo, No Dex suppression, Fam. Hx., adrenal nodules, CLCN2	MR antagonist
3.	FH-III	AD	$\uparrow \uparrow$	\downarrow	-/↓	↑Aldo, childhood onset, <i>KCNJ5</i>	MR antagonist
4.	FH-IV	AD	$\uparrow \uparrow$	\downarrow	-/↓	↑Aldo, incomplete penetrance, <i>CACNA1H</i>	MR antagonist
5.	PASNA	sporadic	$\uparrow \uparrow$	\downarrow	-/↓	↑Aldo, incomplete penetrance, <i>CACNA1H</i>	MR antagonist
6.	CAH (11β)	AR	\downarrow	\downarrow	-/↓	↓Cortisol, ↑Androgen, ↑DOC, ↑11-deoxycortisol	Glucocorticoid replacement
7.	CAH (CYP1	7) AR	\downarrow	\downarrow	-/↓	↓Cortisol, ↓Androgens, ↑DOC, ↑18OHB	Glucocorticoid/Androgen replacement
8.	GR	AD	-	-/↓	\downarrow	↑↑Cortisol, ↑↑ACTH	MR antagonist
1.	Liddle's	AD	\downarrow	\downarrow	\downarrow	Amiloride response	Amiloride/Triamterene
2.	FHH	AD	-	-/↓	↑	Hyperkalemia, mild Acidosis, Hypercalciuria	Thiazides
3.	AME	AR	\downarrow	\downarrow	\downarrow	MR antagonist response, ↑Cortisol/Cortisone ratio	MR antagonist
4.	AMR	AD	\downarrow	\downarrow	-	Worsens with spironolactone	Block downstream (Amiloride)
5.	HTN-Br	AD	-	-	-	brachydactyly, Turkish/German heritage	Unknown

References:

- 1. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. *Cell.* 2001; 104: 545-556.
- 2. Vehaskari VM. Heritable forms of hypertension. *Pediatr Nephrol.* 2009; 24: 1929-1937.
- 3. Monticone S, Buffolo F, Tetti M, *et al.* GENETICS IN ENDOCRINOLOGY: The expanding genetic horizon of primary aldosteronism. *Eur J Endocrinol.* 2018; 178: R101-R111.
- 4. Perez-Rivas LG, Williams TA, Reincke M. Inherited Forms of Primary Hyperaldosteronism: New Genes, New Phenotypes and Proposition of A New Classification. *Exp Clin Endocrinol Diabetes*. 2018; 10.1055/a-0713-0629.
- 5. Fernandes-Rosa FL, Daniil G, Orozco IJ, *et al.* A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. *Nat Genet.* 2018; 50: 355-361.
- 6. Scholl UI, Stolting G, Schewe J, *et al.* CLCN2 chloride channel mutations in familial hyperaldosteronism type II. *Nat Genet.* 2018; 50: 349-354.
- 7. Choi M, Scholl UI, Yue P, *et al.* K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. *Science*. 2011; 331: 768-772.
- 8. Zennaro MC, Jeunemaitre X. Mutations in KCNJ5 gene cause hyperaldosteronism. *Circ Res.* 2011; 108: 1417-1418.
- 9. Scholl UI, Stolting G, Nelson-Williams C, *et al.* Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. *eLife*. 2015; 4: e06315.
- 10. New MI. Inborn errors of adrenal steroidogenesis. *Mol Cell Endocrinol*. 2003; 211: 75-83.
- 11. Karl M, Lamberts SW, Detera-Wadleigh SD, *et al.* Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. *J Clin Endocrinol Metab.* 1993; 76: 683-689.
- 12. Hurley DM, Accili D, Stratakis CA, *et al.* Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. *J Clin Invest.* 1991; 87: 680-686.
- 13. Hadchouel J, Ellison DH, Gamba G. Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases. *Annu Rev Physiol.* 2016; 78: 367-389.
- 14. Wilson FH, Disse-Nicodeme S, Choate KA, *et al.* Human hypertension caused by mutations in WNK kinases. *Science*. 2001; 293: 1107-1112.
- 15. Yau M, Haider S, Khattab A, *et al.* Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11beta-hydroxysteroid dehydrogenase type 2 deficiency. *Proc Natl Acad Sci U S A.* 2017; 114: E11248-E11256.
- 16. Geller DS, Farhi A, Pinkerton N, *et al.* Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. *Science*. 2000; 289: 119-123.