Results are obtained with h_0^P estimated

	$\textbf{CALIBRATED PARAMETERS ON WEDNESDAYS}, \ h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}, \ \textbf{WITH} \ \omega_0, \alpha_0, \beta_0, \gamma_0^{*2} \ \textbf{FROM MLE UNDER P}$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	20	
ω	5.5653e - 06 $(1.8137e - 05)$	$3.1846e - 05 \\ (6.7466e - 05)$	4.1728e - 09 $(2.4287e - 08)$	6.6836e - 10 $(4.1701e - 09)$	$ \begin{array}{l} 1.2521e - 10 \\ (3.4804e - 10) \end{array} $	5.0176e - 08 $(2.3727e - 07)$	$ 2.2306e - 06 \\ (1.1338e - 05) $	$ 2.9310e - 11 \\ (4.3379e - 11) $	5.2549 (2.6010	
α	2.7628e - 05 $(1.4333e - 05)$	2.8256e - 05 $(2.1615e - 05)$	$2.1205e - 05 \\ (6.7009e - 06)$	$2.4167e - 05 \\ (6.1638e - 06)$	2.2086e - 05 $(5.2764e - 06)$	1.5516e - 05 $(6.3090e - 06)$	1.7227e - 05 $(8.5668e - 06)$	2.1659e - 05 (4.0113e - 06)	1.3892 (8.3183	
β	0.1441 (0.2597)	0.0708 (0.1733)	0.0886 (0.1780)	0.0266 (0.0987)	0.0209 (0.0886)	0.0639 (0.1432)	0.0851 (0.1893)	0.0000 (0.0000)	0.1 (0.2	
γ^*	189.1694 (123.8594)	191.9448 (157.0711)	189.3692 (36.8535)	159.3598 (33.9014)	162.6329 (52.4628)	269.3219 (235.2829)	233.1026 (281.6028)	111.4031 (37.9426)	334 (396	
h_0^Q	1.5139e - 04 $(2.0497e - 06)$	1.5528e - 04 $(4.7438e - 06)$	$ 1.5668e - 04 \\ (4.6952e - 06) $	1.4638e - 04 $(1.1105e - 06)$	$ \begin{array}{r} 1.4938e - 04 \\ (1.8748e - 06) \end{array} $	$0.0002 \\ (1.0674e - 06)$	1.5480e - 04 $(1.5528e - 06)$	$ \begin{array}{l} 1.4806e - 04 \\ (3.7445e - 06) \end{array} $	1.272 (1.436	
MSE	2.5101	6.9234	3.8345	5.4914	10.8165	8.2407	13.1889	32.4968	20.	
IVRMSE	0.1325	0.1588	0.1500	0.1307	0.1585	0.1403	0.1535	0.2131	0.	