Subject:
Train a Nueval Network:
Train a Neural Network in TensorFlow import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense model = Sequential([Dense (units=25, activation='sigmoid'), Dense (units=15, activation='sigmoid'), Dense (units=1, activation='sigmoid'), Dense (units=1, activation='sigmoid'), from tensorflow.keras.losses import BinaryCrossentropy model.compile(loss=BinaryCrossentropy()) Given set of (x,y) examples model.fit (X, Y, epochs=100)
How to build and train this in code? epochs: number of steps in gradient descent
in gradient descent
Training Details:
() Specify how to compute output given input x and parametres with $f_{\overline{w},b}(\overline{v}) = 2$
@ Specify loss and Cost
L(f=, (7), y)
$J(\vec{\omega}, b) = \frac{1}{m} \sum_{i=1}^{m} L(f\vec{\omega}, b(\vec{x}^{(i)}), y^{(i)})$
3 Train on data to minimize J(wib)
For a nueral network,
(i) model = Sequential (i) model .compile (loss = Binary Crossentropy ()) (ii) model .compile (loss = Binary Crossentropy ())

4	Subject:
4	Joss and Cost function:
9	Classifications
1	
9	$L\left(f(\overline{x}),y\right) = -y\log\left(f(\overline{x})\right) - (1-y)\log\left(1-f(\overline{x})\right) \rightarrow 8\pi\alpha y \text{ cross}$
4	enthropy
9	model.compile (loss = Brazy Crossenthropy ())
4	
9	legression:
2	
9	model. compile (loss = Mean Squared Error
2	
9	$\mathcal{J}(W,B) = \frac{1}{2} \sum_{i=0}^{\infty} \mathcal{I}\left(f(\bar{x}^{(i)}), \gamma^{(i)}\right)$
2	m == 0
9	
2	M (23, WE) 1 ME3 PC3, PC3, PC3
9	
2	3. hyadient descent:
2	Repeat {
1	- Figure 2
2	$\omega_{j}^{(n)} = \omega_{j}^{(n)} - \alpha = 0$
9	Dwij Back propagation
2	$b_{j}^{(2)} = b_{j}^{(2)} - x $
1	$bj^{(2)} = bj^{(2)} - x $
2	- Barana and a second a second and a second
1	
2	
1	
1	
4	Alternatives to Sigmoid activation:
4	THE ME TO SIGNATIONS

$$Z_{j} = \overline{w_{j}} \cdot \overline{x} + b_{j} \qquad j = 1, \dots, N$$

$$a_{j}^{2} = \frac{e^{z_{j}^{2}}}{\sum_{k=1}^{N} e^{z_{k}}} = P(y=j|\overline{z})$$

$$a_1 + a_2 + \cdots + a_N = 1$$

$$\log (a_1, \dots, a_{0,1} y) = \begin{cases} -\log a_1 & \text{if } g = 1 \\ -\log a_2 & \text{if } g = 2 \end{cases}$$

$$-\log a_3 & \text{if } g = N$$

- · Loss is more if ag is small
- . Motivates model to make as as close as possible to 1.

loss = Sparse Categorical Crossenthropy()

Subject:
Multiclass is classifying single piece, y is scalar Multi-lakel is classifying many pieces, y is vector
$J(w_{1}b) = -\frac{1}{m} \left\{ \sum_{i=1}^{m} \frac{1}{j=1} y^{(i)} = -\frac{1}{j} \right\} \log \frac{e^{z_{0}^{(i)}}}{\sum_{k=1}^{m} e^{z_{k}^{(i)}}}$
Advanced propagation: x is beging done automatically x is small
in same direction, Why not make x bigger? Adam does
Adaptive Moment estamation . x is diff for each parametre
Additional layer types:
Convolutional layer

0				/	,
1	Subject:				
1	· Helps avoid overfilling	70			
0					
1)			
	Back propagation:				
1	Back propagation:	ight — left			
1					
1	Computation graph:				
0	Carparation grapin.				
	$\frac{1}{2}$ 0 $\omega = 2$	h-0	$\chi = -2$ $y = 2$		
1	2 - 3	D=0	z=-2 $y=2$		
To					
1	T(1-2 1 10 11)2				> Forward
do	$J(w_{0}b) = \underbrace{J(a-y)^{2}}_{2}$			_	- back
1					
1	2 - 4 - 4 - 4	1 - 11	2 - 1 12 2		P/0P
1	w=> c=wz -4 a=c+b 4	a=a-y	2		
1	8/				
1	6				
1			<u>35</u> = 20		
1	27 = 2				
7	99		да		
7	44				
7			1		
1	21 0.001 J10.00	1	at 0.001 dt	0.001	0.002
1	81 0.00T 11.0.W	12	a = 4.001 d= 3	2.001	
1					
1					
7.			27 - 26 ,	22	
7			$\frac{\partial J}{\partial a} = \frac{\partial d}{\partial a} \times \frac{1}{a}$	24	
1			aa v-	30	
7			=1x2		
7	$\partial \mathcal{I} = \mathcal{I}$				
7	$\frac{3}{3} = 2$	25		92	= _4
7		47	=2		= -4
7		26		300	
7.	c10.001 a10.001			1	. 11 000
7				w 10.001	C=-4.002
7	J10.002	BA 0.	001 at 0.001	w=2.001	CJ 2x0.001
7					
33333333	77 2	740	0.002		C1-2x0.001
7	$\frac{\partial J}{\partial c} = \frac{\partial a}{\partial c} \times \frac{\partial J}{\partial a}$			JA-4x0.0	001
7	de de da	32	90 × 90		
7		96	db da	25 = 2c.	x 95
7	= 1 x 2		1 x 2	$\frac{\partial n}{\partial t} = \frac{\partial n}{\partial c}$	2c
7			1 X Z	= -2 x	

4	Subject:		/ /
4	500 501.		
4			
7			
*			
7			
7			
7			
1		11 - 101	
To	w == 0 = 0 = 0	J=a2 121	7
		3.4	
4	2w = 66	<u> 35</u> = 22	
9	97	да	
4		1 1.001	JA 0.022 => 22x0.002
4			
*	w10.001 a1 0.003	a = 11.001	J= 121.022
7	3 x 0.001		
7			
To			
4			
9			
9			
4			
*			
*			
1			
1			
To			
1			
4			
9			
4			
7			
7			
7			
7			
1			
To			