

Al-Azhar University Faculty of Pharmacy

Department of Pharmacognosy and Pharmaceutical chemistry

General chemistry

Final exam.

Student name:....
Time: 120 minutes.

Q1	/18
Q2	/7 -
Q3	/15
Q4	/10
Q5	/10
Fir	nal Mark /60

First semester 2019-2020

Question 1:

A- For each of the following molecules, draw lewis structures that have no formal charges, and then use VSEPR model to predict the geometric shape of the molecule and type of hybridization of the central atom.

The molecule	Lewis structure	Geometric shape (name + drawing)	Type of hybridization of the central atom
AsF ₅ As is the central atom		÷	8
HCN C is the central atom		₩. * · *	
OSbCI Sb is the central atom		. e	
OPCI ₃ P is the central atom	4		
H ₂ CO C is the central atom			6.40

Part Marie .			
Question 3:			
	e containing concent the solution is 1.18 g		that is 37% HCl by
1- What volume	f this bottle should be u	sed to prepare 250 ml o	of 2 M HCI solution?

		Year	
2- Calculate the	nolality of the concentra	ted solution?	
······		P	
B- When H ₃ PO ₄ (aq Ba ₃ (PO ₄₎₂ (s) precipi equation for the reac	ates. What is the	ml of a solution molarity of the I	of BaCl ₂ , 3.26g o BaCl ₂ solution. The
3 BaCl ₂ (aq) +	2 H ₃ PO ₄ (aq)	>Ba₃(PO₄)₂(s) + 6 HCl(aq)

		-
	-	a And 使制度 a just
C- Write Lewis s	tructures for tl	nese ions: (a) C_2^{-2} , (b) NO^+ . Show formal charges.
	(a) C ₂ ⁻²	
	(b) NO ⁺	
D- Draw the mos		esonance structures for: (a) ClO ₃ ion, (b) FNNN
(a) ClO ₃ io	on	
(b) FNNN mol	ecule	
Question 2:		
		ar forces that exist in each of these species:
(c) 14113		ompounds has a higher boiling point: CH ₃ OH o

B- Which of	the following two	о molecules has a higher polarity: PF ₃ or BF ₃ ?
Justify your ar	nswer using lewis	structures.
		-
		The state of the s
C- Write Lewi	s structures for th	nese ions: (a) C2-2, (b) NO+. Show formal charges.
	(a) C ₂ -2	
* *	(b) NO ⁺	
	most acceptable row formal charges.	esonance structures for: (a) ClO ₃ ion, (b) FNNN
(a) ClO	j ion	
(b) FNNN r	molecule	14
Question 2:		
A- List the type	es of intermolecul	ar forces that exist in each of these species:
(a) Benzen	e (C ₆ H ₆)	
(b) CH ₃ Cl.		
B- Which of the CH3Br? Justify	e following two co y your answer.	ompounds has a higher boiling point: CH ₃ OH or

Question 4: A- Consider the following equilibrium at 395 K:
A-Consider the following equilibrium at 395 K:
$NH_4HS(s) \longrightarrow NH_2(s) + H_2S(s)$
Write the equation of Kc and Kp (if found) for the reaction.
- and the reaction.
B- Consider the equilibrium between molecular oxygen and ozone:
$\Delta H^{\circ} = 284 \text{ kJ/mol}$
What would be the effect of the following changes on the position of equilibrium: (a) increasing the pressure on the system
(b) adding O2 to the system
(c) decreasing the temperature
(d) adding a catalyst
C- A sample of 20 mL of 0.10 M Ba(NO ₃) ₂ is added to 50 mL of 0.10 M Na ₂ CO ₃ . Given that: K _{sp} for Barium carbonate (BaCO ₃) is 8.1× 10 ⁻⁹ .Will BaCO ₃
precipitate? Justify your answer by calculations.
•••••••••••••••••••••••••••••••••••••••

······································

Lastion 4:
Onestion 4: A- Consider the following equilibrium at 395 K:
$NH_4HS(s) \longrightarrow NH_2(s) + H_2S(s)$
Write the equation of Kc and Kp (if found) for the reaction.
. ₩
B- Consider the equilibrium between molecular oxygen and ozone:
$\Delta H^{\circ} = 284 \text{ kJ/mol}$
What would be the effect of the following changes on the position of equilibrium: (a) increasing the pressure on the system
(b) adding O2 to the system
(c) decreasing the temperature
(d) adding a catalyst
C- A sample of 20 mL of 0.10 M Ba(NO ₃) ₂ is added to 50 mL of 0.10 M Na ₂ CO ₃ .
Given that: K _{sp} for Barium carbonate (BaCO ₃) is 8.1× 10 ⁻⁹ .Will BaCO ₃
precipitate? Justify your answer by calculations.
. * * **** * *

C-Balance the following equations:

$$MnO_4 + I^- \longrightarrow MnO_2 + I_2$$
 in basic media

八分替的"

Final equation			
See 17.		10	
	-		

$$Fe^{2+} + MnO_4^- \longrightarrow Fe^{3+} + Mn^{2+}$$
 in acidic media

s execute to the

Final equation

$$HNO_3 + H_2S \longrightarrow NO + S + H_2O$$

Final equation	

A- Identify the acid-base conjugate pairs in each of these reactions:

1-
$$HC1O + CH_3NH_2 \rightleftharpoons CH_3NH_3^+ + C1O^-$$

2-
$$CO_3^{2-} + H_2O \Longrightarrow HCO_3^{-} + OH^{-}$$

B- Compare the strengths of the following pairs of acids:

- 1-H2SO4 and H2SeO4.
- 2- HNO3 and HNO2.
- 3- H2O and H2S.

C- Complete the following sentences:

1. In 2s subshell, 2 denotes the value ofnumber, and s denote the symbol ofnumber.

2. The ground state electron configuration of Cs represented by noble gas core is

Secretary Secretary

3. The elements in which the differentiating electron is filled in the f subshells are called.....

 is defined as the energy required to completely separate one mole of a solid ionic compound into gaseous ions.

6. The name of P₄O₆ is...., while the molecular formula of boron trichloride is....

Jonestion 5:

A- Identify the acid-base conjugate pairs in each of these reactions:

APOSTAGE.

2-
$$CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{-} + OH^{-}$$

B- Compare the strengths of the following pairs of acids:

- 1-H2SO4 and H2SeO4.
- 2- HNO3 and HNO2.
- 3- H2O and H2S.

C- Complete the following sentences:

- 1. In 2s subshell, 2 denotes the value ofnumber, and s denote the symbol ofnumber.
- 2. The ground state electron configuration of Cs represented by noble gas core is.....
- 3. The elements in which the differentiating electron is filled in the f subshells are called.....
- is defined as the energy required to completely separate one mole of a solid ionic compound into gaseous ions.
- 6. The name of P₄O₆ is....., while the molecular formula of boron trichloride is.....

Question 5:

A. Identify the acid-base conjugate pairs in each of these reactions:

1- HC10 + CH₂NH₂
$$\Longrightarrow$$
 CH₂NH₃ + C10

2-
$$CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{-} + OH^{-}$$

B- Compare the strengths of the following pairs of acids:

- 1-H2SO4 and H2SeO4.
- 2- HNO3 and HNO2.
- 3- H2O and H2S.

C- Complete the following sentences:

- 1. In 2s subshell, 2 denotes the value ofnumber, and s denote the symbol ofnumber.
- 2. The ground state electron configuration of Cs represented by noble gas core is.....
- 3. The elements in which the differentiating electron is filled in the f subshells are called.....
- 4. Group have the highest electron affinity values, while groups have the lowest electron affinity.
- 5.is defined as the energy required to completely separate one mole of a solid ionic compound into gaseous ions.
- 6. The name of P₄O₆ is....., while the molecular formula of boron trichloride is.....