Final Project 06 Final Project Presentation

NSGC - Neural Spell & Grammar Checker (en/pt)

Rafael Ito 25/06/2020

Presentation

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

Presentation

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

GEC shared tasks: (Grammatical Error Correction) Introduction

- HOO (Helping Our Own)
 - o HOO-2011
 - o HOO-2012
- CoNLL (The SIGNLL Conference on Computational Natural Language Learning)
 - CoNLL-2013
 - o CoNLL-2014
- NLPCC 2018 (Chinese)
- BEA 2019 (Building Educational Applications)

Presentation

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

Presentation

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

- Datasets

- CoNLL-2013
- CoNLL-2014
- JFLEG
- BEA
- ReGRA

- Datasets

- CoNLL-2013
- CoNLL-2014
- JFLEG
- BEA
- ReGRA

CoNLL-2013 Datasets

- language: English
- corpus: NUCLE
- data format: SGML (Standard Generalized Markup Language)
- annotation format: M2
- **metric**: M² (MaxMatch), F₁ score
- test set available: yes

- Datasets

- CoNLL-2013
- CoNLL-2014
- JFLEG
- BEA
- ReGRA

CoNLL-2014 Datasets

- language: English
- corpus: NUCLE
- data format: SGML (Standard Generalized Markup Language)
- annotation format: M2
- metric: M² (MaxMatch), F_{0.5} score
- test set available: yes

- Datasets

- CoNLL-2013
- CoNLL-2014
- JFLEG
- BEA
- ReGRA

JFLEG Datasets

- language: English
- corpus: GUG
- data format: text
- annotation format: text
- metric: GLEU
- test set available: yes

- Datasets

- CoNLL-2013
- CoNLL-2014
- JFLEG
- BEA
- ReGRA

BEA Datasets

- language: English
- corpus: W&I, LOCNESS
- data format: JSON, M2
- annotation format: JSON, M2
- metric: ERRANT
- test set available: no

- Datasets

- CoNLL-2013
- CoNLL-2014
- JFLEG
- BEA
- ReGRA

ReGRA Datasets

- language: Portuguese
- corpus: Own (?)
- data format: text (adjusted by hand)
- annotation format: text (adjusted by hand)
- metric: GLEU
- provided by: Osvaldo Novais de Oliveira Junior

Presentation

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

- Metrics

- M² (MaxMatch)
- GLEU
- Edit distance

- Metrics

- M² (MaxMatch)
- GLEU
- Edit distance

M² (MaxMatch)

Metrics

```
4.1.2 Testing the M^2 scorer
      2 print('source sentences:')
      3 print(*read_file(src), sep='\n')
     A cat sat on mat .
    The dog .
     Giant otters are apex predator .
      2 print('reference sentences:')
      3 print(*read_file(ref), sep='\n')
     S The cat sat at mat .
    S The dog .
    S Giant otters is an apex predator .
```

- Metrics

- M² (MaxMatch)
- GLEU
- Edit distance

GLEU Metrics

```
3 src = 'jfleg/test/test.src'
 4 ref = ['jfleg/test/test.ref0']
 6 print(f'GLEU = {calc_gleu(src, ref, hyp):.2f}')
There is one reference. NOTE: GLEU is not computing the confidence interval.
         'jfleg/test/test.ref3']
13 print(f'GLEU = {calc_gleu(src, ref, hyp):.2f}')
```

- Metrics

- M² (MaxMatch)
- GLEU
- Edit distance

Edit distance

```
Metrics
```

```
1 levenshtein = get_distance_algorithm('levenshtein')
                  = get_distance_algorithm('damerau')
     2 damerau
     3 normalized = get_distance_algorithm('normalized')
     4 weighted
                   = get_distance_algorithm('weighted')
                   = get distance algorithm('osa')
4.3.2 Testing Damerau-Levenshtein distance algorithm
     2 print('distance =', damerau.distance('Covid-19', 'Covid-9'))
G distance = 1
     2 print('distance =', damerau.distance('Covid-19', 'Codiv-19'))
     2 print('distance =', damerau.distance('Covid-19', 'Covid-91'))
C distance = 1
```

Presentation

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

Steps:

Methodology

- 1. get source sentence
- 2. tokenize it
- 3. mask each token one at a time
- 4. input masked sentences to the model
- 5. get predictions
- 6. compare with the original masked token (edit distance)
- 7. decide whether change or keep original token

- 1. get source sentence
- 2. tokenize it

source:

Ele comprou este carro à prazo.

reference (gold):

Ele comprou este carro a prazo.

tokenize:

['Ele', 'comprou', 'este', 'carro', 'à', 'prazo', '.']

Methodology

BERT's special tokens:

[CLS] → ID: 101

 $[SEP] \rightarrow ID: 102$

[MASK] → ID: 103

Methodology

4. input masked sentences to the model

convert to IDs:

[101, 787, 10107, 860, 3883, 353, 6620, 119, 102]

mask:

```
[CLS, MASK, 10107, 860, 3883, 353, 6620, 119, SEP]
[CLS, 787, MASK, 860, 3883, 353, 6620, 119, SEP]
```

[CLS, 787, 10107, 860, 3883, 353, 6620, MASK, SEP]

5. get predictions

Methodology

6. compare with the original masked token (edit distance)

hyperparameters:

topk = 2

Case 1: masked token in prediction threshold = 2

Ele comprou este carro à prazo .

[CLS, MASK, 10107, 860, 3883, 353, 6620, 119, SEP]

predictions: ['Você', 'Ele'] ⇒ keep original!

7. decide whether change or keep original token

- 5. get predictions
- 6. compare with the original masked token (edit distance)

• Case 2: masked token not in prediction

Ele comprou <u>este</u> carro à prazo

[CLS, 787, 10107, MASK, 3883, 353, 6620, 119, SEP

predictions: ['o', 'um'], edit distance > 2 ⇒ keep original!

Methodology

<u>hyperparameters:</u>

topk = 2

threshold = 2

7. decide whether change or keep original token

5. get predictions

Methodology

6. compare with the original masked token (edit distance)

<u>hyperparameters:</u>

• Case 3: masked token not in prediction

topk = 2threshold = 2

Ele comprou este carro <u>à</u> prazo

[CLS, 787, 10107, 860, 3883, MASK, 6620, 119, SEP]

predictions: ['a', 'no'], edit distance < 2 ⇒ change!

7. decide whether change or keep original token

Methodology

source:

Ele comprou este carro à prazo.

reference (gold):

Ele comprou este carro a prazo.

system output:

Ele comprou este carro a prazo

keep keep keep change keep keep

hyperparameters:

topk = 2

threshold = 2

Hyperparameters

Methodology

source: Ele comprou este carro à prazo.

- <u>k = 2, threshold = 3:</u>
 - Ele comprou este carro a prazo .
- k = 3, threshold = 3:
 - Ele comprou seu carro à prazo .
- <u>k = 2, threshold = 1:</u>
 - Ele comprou este carro a prazo . 🗸
- k = 5, threshold = 5:

Ele comprou esse carro à parte . 💢

Doing the same with T5

source:

People also do not do nothing.

references:

- People also do not do anything.
- People also do not do nothing.
- People also do something.
- People also do not do nothing.

Methodology

T5's special tokens:

<extra_id_0> → ID: 32099

Doing the same with T5

mask:

```
<extra_id_0> also do not do nothing . </s>
People <extra_id_0> do not do nothing . </s>
People also <extra_id_0> not do nothing . </s>
People also do <extra_id_0> do nothing . </s>
People also do not <extra_id_0> nothing . </s>
People also do not do <extra_id_0> nothing . </s>
People also do not do <extra_id_0> . </s>
People also do not do nothing <extra_id_0> . </s>
```

model's output:

People also do not do anything.

Methodology

<u>hyperparameters:</u>

topk = 5

threshold = 2

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

Notebooks

```
[349] 1 # mask tokens
     2 for i in range(len(input_ids)):
           input_ids[i][i+1] = tokenizer.mask_token_id
      4 input_ids
   tensor([[ 101, 103, 117, 1142, 1331, 1110, 1515, 170, 1992, 1849, 119, 102],
            [ 101, 8094, 103, 1142, 1331, 1110, 1515, 170, 1992, 1849, 119, 102],
            [ 101, 8094, 117, 103, 1331, 1110, 1515, 170, 1992, 1849, 119, 102],
            [ 101, 8094, 117, 1142, 103, 1110, 1515, 170, 1992, 1849, 119, 102],
            [ 101, 8094, 117, 1142, 1331, 103, 1515, 170, 1992, 1849, 119, 102],
            [ 101, 8094, 117, 1142, 1331, 1110, 103, 170, 1992, 1849, 119, 102],
            [ 101, 8094, 117, 1142, 1331, 1110, 1515, 103, 1992, 1849, 119, 102],
            [ 101, 8094, 117, 1142, 1331, 1110, 1515, 170, 103, 1849, 119, 102],
            [ 101, 8094, 117, 1142, 1331, 1110, 1515, 170, 1992, 103, 119, 102],
            [ 101, 8094, 117, 1142, 1331, 1110, 1515, 170, 1992, 1849, 103, 102]])
```

https://colab.research.google.com/drive/194LQ5UyrmFJOKUPL7qyAcDFkcfWF3qV1?authuser=1#scrollTo=qTGvw969QXqO

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- **Experiments**
- Results
- Problems
- Conclusion
- Future Work

Experiments

```
8.1 English
   8.1.1 Using BERT
       CoNLL-2013
                                          4 m2 = '/content/conll14st-test-data/noalt/official-2014.1.m2'
          Baseline
          Test #1
          Test #2
       CoNLL-2014
        Baseline
                                         12 M2_score = m2scorer(hyp, m2)
                                         13 print(f'M^2 score\n----\n{M2_score}')
          Test #1
          Test #2
                                         16 !cp $hyp '/gdrive/My Drive/Colab Notebooks/IA376E/Final Project/Corrections/En_BERT_CoNLL-2014_test1_(th=2,k=10).txt'
          Test #3
          Test #4
       JFLEG
          Baseline
          Test #1
          Test #2
         Test #3
          Baseline
          Test #1
                                          6 corrections = read_file(hyp)
   8.1.2 Using T5
```

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

Results

	baseline (0~100)	number of tests	best result	metric
CoNLL-2013	0	3	15.3	M^2
CoNLL-2014	0	9	18.44	M ²
JFLEG	40.47	4	44.56	GLEU
BEA	0	2	16.82	M ²
ReGRA	36.99	8	38.29	GLEU

CoNLL-2014 results

Team ID	Precision	Recall	$\mathbf{F}_{0.5}$
CAMB	39.71	30.10	37.33
CUUI	41.78	24.88	36.79
AMU	41.62	21.40	35.01
POST	34.51	21.73	30.88
NTHU	35.08	18.85	29.92
RAC	33.14	14.99	26.68
UMC	31.27	14.46	25.37
PKU*	32.21	13.65	25.32
NARA	21.57	29.38	22.78
SJTU	30.11	5.10	15.19
UFC*	70.00	1.72	7.84
IPN*	11.28	2.85	7.09
IITB*	30.77	1.39	5.90

Table 7: Scores (in %) without alternative answers. The teams that submitted their system output after the deadline have an asterisk affixed after their team names.

Results

My results				
Precision	26.35			
Recall	8.38			
F _{0.5}	18.44			

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

Problems

- Subwords when tokenizing
- Insert tokens
 - source: Forexample , My cousin is 12years old .
 - reference: For example, my cousin is 12 years old.
- Remove tokens
 - Example: I often look at TV → I often watch TV
- Portuguese dataset

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

- Introduction
- Methodology
- Datasets
- Metrics
- Notebooks
- Experiments
- Results
- Problems
- Conclusion
- Future Work

Future Work

- soft check:
 - dictionary-based
 - back translation

- committee machines (one for each "rule")
- test Portuguese GEC with T5
- use commercial GEC system to get a superior reference for pt-br
- package to be installed with pip and/or run on regular terminal

- Insert token:
 - Ex: I like pizza
 - [MASK] I like pizza
 - I [MASK] like pizza
 - I like [MASK] pizza

- 2-gram substitution:
 - Ex: I like pizza
 - [MASK] pizza
 - I [MASK]
- edit distance threshold based on the length of the word masked

Future Work

