Rocket Motor Calculations R3.6

Optimisation of a solid fuel motor using RNX-N180 propellant

Malcolm Snowdon

21 August 2009, updated 20 September 2009

Recalculated A and n for Nuplex 180 system epoxy from static tests of R3.3 and R3.5.

Operating Parameters

p chamber :=
$$4.5 \times 10^6$$
 *Design pressure

Casing Geometry

t casing :=
$$0.002_*$$
 Tube wall thickness N screws := 8_*

$$\phi_segment := \phi_i_casing - 0.002 \quad * \quad Propellant \ OD \qquad \qquad t_segment := 0.020 * \\ Segment \ wall \ thickness = 0.020 * \\ Segment \ wal$$

$$\phi$$
 screw := 0.006* Cap screw diameter N segments := 3* # propellant segments

Material Properties

$$\sigma_{\text{yield_casing}} := 250 \cdot 10^6 \text{ supplier (Atlas Steels) spec for mild steel tubing}$$

$$\tau_{\text{screws_yield}} := 500 \cdot 10^6 * \text{Standard black finish cap screws}$$

Aerodynamic Parameters

$$Cd := 0.75_*$$
 Drag coeff from CFD simulation $m_d ry := 6_*$ Allowing 1.2 kg more than 1st rocket for payload and ϕ airframe := .087

φ_airframe := .087 electronics, assuming some mass will be lost from tube

Area :=
$$\pi \cdot \frac{\phi_{airframe}^2}{4}$$
 * Compatible with Cd $\rho_{air} := 1.2_*$ Assume 25 deg. C, Patmos

Propellant Parameters

A RNX :=
$$512.0_*$$
 From Nakka's charts, adjusted after static test

$$n RNX := 0.2580_*$$
 From Nakka's charts

$$k := 1.055_*$$
 Determined from Nakka's charts

 $R \ RNX := 287_*$ Universal gas constant, will not be accurate with high temperatures $R \ RNX := 1664_*$ Measured by volumetric displacement, agrees with literature

Burn Surface Area

$$A_ends(d_burn) := \frac{N_segments \cdot 2 \cdot \pi}{4} \cdot \left[\phi_segment^2 - \left(\phi_segment - 2 \cdot t_segment + 2 \cdot d_burn \right)^2 \right] *$$

 $A_core(d_burn) := N_segments \cdot \pi \cdot (\phi_segment - 2 \cdot t_segment + 2 \cdot d_burn) \cdot (L_segment - 2 \cdot d_burn) \\ *$

A burn(d burn) := A core(d burn) + A ends(d burn)*

 $N_points := 100_*$

 $d_b := 0, \frac{t_segment}{N \text{ points}} .. t_segment_*$

Array of burn distance for plotting against burn surface are ϵ

Solve for the maximum burn area

$$Grad(d) := \frac{d}{dd} A_burn(d) \rightarrow 6 \cdot \pi \cdot (.8e-1 - 2 \cdot d) - 6 \cdot \pi \cdot (.11e-1 + 2 \cdot d) + \frac{3}{2} \cdot \pi \cdot [(-.44e-1) - 8 \cdot d]_*$$

 $guess := 0_*$ Initail guess for the solver to work with

d_A_max := root(Grad(guess), guess)*

 $A_burn_max := A_core(d_A_max) + A_ends(d_A_max)_*$

Propellant mass assuming square end faces

$$m_propellant := N_segments \cdot \rho_RNX \cdot \frac{\pi}{4} \cdot \left[\phi_segment^2 - \left(\phi_segment - 2 \cdot t_segment \right)^2 \right] \cdot L_segment \\ * \left[\phi_segment - 2 \cdot t_segment \right] \cdot \left[\phi_segment - 2 \cdot t_segment - 2 \cdot t_segment \right] \cdot \left[\phi_segment - 2 \cdot t_segment - 2 \cdot t_segment \right] \cdot \left[\phi_segment - 2 \cdot t_segment - 2 \cdot t_segm$$

Motor Operating Conditions

Potter and Wiggert Equation 9.3.12:

$$Mach_exit := \left[\left(\frac{2}{k-1} \right) \cdot \left(\frac{p_chamber}{p_exit} \right)^{\frac{k-1}{k}} - \frac{2}{k-1} \right]^{\frac{1}{2}}$$
* Mach_exit = 2.85

Combining Potter and Wiggert Equations 9.3.12 and 9.3.13:

$$T_{chamber} := T_{exit} \cdot \left[1 + \left(\frac{k-1}{2} \right) \cdot Mach_{exit}^{2} \right] * T_{chamber} = 1.571 \times 10$$

Casing Stresses

$$\sigma_{hoop} := p_chamber \cdot \frac{\phi_i_casing}{2 \cdot t_casing} * \sigma_{hoop} = 5.963 \times 10$$

$$\sigma_{axial} := p_chamber \cdot \frac{\phi_{_i_casing}^2}{\left(\phi_{_i_casing} + 2 \cdot t_casing\right)^2 - \phi_{_i_casing}^2} * \sigma_{axial} = 2.873 \times 1$$

$$\sigma_{\text{von_Mises}} := \left[\frac{1}{2} \cdot \left[\left(\sigma_{\text{hoop}} - \sigma_{\text{axial}}\right)^2 + \left(\sigma_{\text{axial}} - p_{\text{chamber}}\right)^2 + \left(p_{\text{chamber}} - \sigma_{\text{hoop}}\right)^2 \right] \right]^{\frac{1}{2}} *$$

Safety_factor_casing :=
$$\frac{\sigma_{\text{yield_casing}}}{\sigma_{\text{von_Mises}}} *$$
 $\sigma_{\text{von_Mises}} = 4.786 \times 10^7$ Safety_factor_casing = 5.224

$$\tau_screws := p_chamber \cdot \frac{\phi_i_casing^2}{\phi_screw} \cdot N_screws$$
 (Assumes pure shear)

$$\tau_screws = 4.389 \times 10$$
 Safety_factor_screws := $\frac{\tau_screws_yield}{\tau_screws}$ * Safety_factor_screws = 11.392

$$\sigma_{\text{holes}} := p_{\text{chamber}} \cdot \frac{\frac{\pi}{4} \phi_{i_casing}^2}{\phi_{\text{screw}} \cdot t_{\text{casing}} \cdot N_{\text{screws}}} * \text{ (Assumes pressure acts uniformly over a rectangle of dimensions } \phi_{\text{hole x } t_{\text{wall}}})$$

$$Safety_factor_holes := \frac{\sigma_yield_casing}{\sigma_holes} * \\ \sigma_holes = 1.034 \times 10$$

$$Safety_factor_holes = 2.417$$

Nozzle Geometry at Design Condition

$$K_n := A_R NX \cdot \left(\frac{p_chamber}{10^6}\right)^{n_R NX}$$

 $K_n := A_R NX \cdot \left(\frac{p_chamber}{10^6}\right)^{n_RNX}$ (Ratio of burn surface area to throat area, p conv. to MPa Note: For p_chamber = 1 MPa, n_RNX has no effect on RNX only was adjusted to correct chamber (Ratio of burn surface area to throat area, p conv. to MPa K_n. A_RNX only was adjusted to correct chamber pressure from previous iteration

Nakka Equation 14 - Nozzle Theory

Expansion_ratio :=
$$\left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \cdot \left(\frac{p_{exit}}{p_{chamber}}\right)^{\frac{1}{k}} \cdot \left[\frac{k+1}{k-1} \cdot \left[1 - \left(\frac{p_{exit}}{p_{chamber}}\right)^{\frac{k-1}{k}}\right]\right]^{\frac{1}{2}} *$$

Expansion ratio = 0.116

$$A_star := \frac{A_burn_max}{K_n} * A_star = 3.347 \times 10^{-1}$$

$$A_{\text{exit}} := \frac{A_{\text{star}}}{\text{Expansion ratio}} * A_{\text{exit}} = 2.877 \times 10^{-4}$$

$$\phi_throat := \sqrt{4 \cdot \frac{A_star}{\pi}} * \qquad \qquad \phi_throat = 6.528 \times 10^{-1}$$

$$\phi_{\text{exit}} := \sqrt{\frac{4 \cdot A_{\text{exit}}}{\pi}} * \qquad \qquad \phi_{\text{exit}} = 0.019$$

Perfromance Metrics

Nakka Equation 3 - Solid Rocket Motor Thrust Calculations:

Thrust := A_star·p_chamber·
$$\frac{2 \cdot k^2}{k-1} \cdot \left[\left(\frac{2}{k+1} \right)^{\frac{k+1}{k-1}} \cdot \left[1 - \left(\frac{p_exit}{p_chamber} \right)^{\frac{1}{2}} \right]^{\frac{1}{2}} \right]$$
 Thrust = 244.548

Potter and Wigert Equation ???:

$$\begin{aligned} \text{m_dot} &:= \text{p_chamber} \cdot \text{A_star} \cdot \left(\frac{k}{R_RNX \cdot T_\text{chamber}}\right)^{\frac{1}{2}} \cdot \left(\frac{k+1}{2}\right)^{\frac{k+1}{2 \cdot (1-k)}} \\ \text{Burn_time} &:= \frac{\text{m_propellant}}{\text{m_dot}} * & \text{(Assumes constant burn rate throughout)} \end{aligned} \quad \text{Burn_time} = 5.604$$

Trajectory Approximation by Numerical Method

$$\underline{t_inc} := 0.1_{\textcolor{red}{\bullet}} \quad \underline{t_sim} := 70_{\textcolor{red}{\bullet}} \quad N_sim := floor \bigg(\frac{\underline{t_sim}}{\underline{t_inc}} \bigg) \\ tim := 0, \underline{t_inc..} \; \underline{t_sim}$$

$$mass(tim) := \begin{bmatrix} m_propellant + m_dry - \frac{m_propellant}{Burn_time} \cdot tim & if tim < Burn_time \\ m_dry & otherwise \end{bmatrix}$$

$$\begin{split} \mathbf{U} \coloneqq & \begin{bmatrix} \mathbf{U}_0 \leftarrow 1 \cdot 10^{-12} \\ \text{for } \mathbf{i} \in 1 ... \mathbf{N_sim} - 1 \end{bmatrix} \\ & \begin{bmatrix} \mathbf{Fd}_i \leftarrow \frac{1}{2} \cdot \mathbf{Cd} \cdot \rho_air \cdot Area \cdot \left(\mathbf{U}_{i-1}\right)^2 \cdot \frac{\mathbf{U}_{i-1}}{\left|\mathbf{U}_{i-1}\right|} \\ \mathbf{F_total}_i \leftarrow thrust(\mathbf{i} \cdot \mathbf{t_inc}) - \mathbf{Fd}_i - 9.81 \cdot mass(\mathbf{i} \cdot \mathbf{t_inc}) \\ & \mathbf{U}_i \leftarrow \mathbf{U}_{i-1} + \frac{\mathbf{F_total}_i}{mass(\mathbf{i} \cdot \mathbf{t_inc})} \cdot \mathbf{t_inc} \\ \end{aligned}$$
 return \mathbf{U}

$$h := \begin{bmatrix} h_0 \leftarrow 0 \\ \text{for } i \in 0.. \text{ N_sim} - 1 \\ h_{i+1} \leftarrow h_i + U_i \cdot t_\text{inc} \\ \text{return } h \end{bmatrix}$$

$$h_{max} := max(h)$$

$$h_{max} = 1.146 \times 1$$

$$U_{max} := max(U)$$

$$U_{max} = 143.0$$

CAD Geometry

$$\label{eq:L_igniter} \begin{split} L_igniter &:= 0.01 \quad Shoulder := 0.022 \quad L_overlap := 0.008 \quad Clearance := 0.00003 (Radial Clearance) \\ L_tube &:= L_segment \cdot N_segments + L_igniter + Shoulder \cdot 2 + L_overlap \end{split}$$

Hole_offset :=
$$\frac{\text{Shoulder} - 0.01}{2} + \frac{\text{L_overlap}}{2}$$

Results Summary

```
m_propellant = 0.778 *

Mach_exit = 2.82 *

T_chamber = 1.571 \times 10^3 *

Safety_factor_casing = 5.224 *

Safety_factor_screws = 11.392 *

Safety_factor_holes = 2.417 *

\phi_throat = 6.528 \times 10^{-3} *

\phi_exit = 0.019 *

Thrust = 244.548 *

Burn_time = 5.604 *

\phi_max = 1.146 \times 10^3
```

Propellant Proportions

 $U_{max} = 143.013$

```
Excess := 1.7 Mix excess propellant to allow for spillage, machining etc.
```

 $n_Hardener := 0.034 \qquad \qquad n_Resin := 0.206 \qquad \qquad n_Rust := 0.08 \qquad \qquad n_Nitrate := 0.68$

 $Mass := m_propellant \cdot Excess \qquad \quad Mass = 1.322$

 $Hardener:= n_Hardener\cdot Mass \quad Resin:= n_Resin\cdot Mass \quad Rust:= n_Rust\cdot Mass \quad Nitrate:= n_Nitrate\cdot Mass \quad Rust:= n_Rust\cdot Mass \quad Nitrate:= n_Nitrate\cdot Mass \quad Rust:= n_Rust\cdot Mass \quad Nitrate:= n_Nitrate\cdot Mass \quad Nitrate\cdot Mass \quad Nitr$

Hardener = 0.045

Resin = 0.272

Rust = 0.106

Nitrate = 0.899

Mass=1.322

Output to Design Tables

Nozzle							
Revision	Dimension	Throat	Exit	ID tube	Shoulder	Clearance	Cap Screw
R3.4	Comment	Radius	Radius	Radius			
Throat@Sketkit@Sketcl ID@Sketch1 Ider@SketClearance(Diameter@						Diameter@S	
	Default	3.264244	9.569476	26.5	22	0.05	6

$$\left(\frac{\phi_\text{throat}}{2} \cdot 1000 \quad \frac{\phi_\text{exit}}{2} \cdot 1000 \quad \frac{\phi_\text{i_casing}}{2} \cdot 1000 \quad \text{Shoulder} \cdot 1000 \quad \text{Clearance} \cdot 1000 \quad \phi_\text{screw} \cdot 1000\right)$$

Tube					
Revision	Dimension	ID tube	L tube	Cap Screw	Hole offset
R3.4	Comment				
		ID@Sketch1	ngth@Extrud	Diameter@Sketc	Offset@Sketch2
	Default	53	302	6	10

 $\left(\phi_i_casing \cdot 1000 \ L_tube \cdot 1000 \ \phi_screw \cdot 1000 \ Hole_offset \cdot 1000 \right)$

Balkhead					
Revision	Dimension	ID tube	Shoulder	Clearance	Cap Screw
R3.4	Comment	Radius			
		ID@Sketch1	Shoulder@Sketch1	Clearance@SI	Diameter@5
	Default	26.5	22	0.05	6

$$\left(\frac{\phi_i_casing}{2} \cdot 1000 \text{ Shoulder} \cdot 1000 \text{ Clearance} \cdot 1000 \phi_screw} \cdot 1000\right)$$

Cap Screw		
Revision	Dimension	Diameter
R3.4	Comment	
		Diameter@Sketch1
	Default	6

φ_screw·1000

Propellant Grain				
Revision	Dimension	OD	t	L
R3.4	Comment			
		OD@Sketch1	t@Sketch1	L@Extrude
	Default	51	20	80

 $\left(\begin{array}{ccc} \varphi_segment \cdot 1000 & t_segment \cdot 1000 & L_segment \cdot 1000 \end{array} \right)$

Noge: To update, right click on each table and select 'Save As'. **Delete previous version before saving or Mathcad will crash.**