

- Digital systems typically have a considerable number of registers N.
 - ► Typically 8 ≤ N ≤ 256
 - Programmer need to be able to make transfers between any pair of them.
 - ► Let us consider the N=3 and use 2:1 MUXs to interconnect R0, R1, R2.
 - ▶ The result is on the next slide.

Register Transfer via MUXs

This is a very flexible system for it can make up to three independent transfers in one clock period.

RT 1 1 5 9 4 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	S2 S	1 SO E AFF	L2 L1 L0	Description
R2 ← R1	1 X	X	1 0 0	Point-to-Point
R2 ← R1, R1 ← R2	1 1	X 10 10 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0	Reg. Exchange
R2 ← R1, R1 ← R0 R0 ← R2	1 0	0	1 1 COUNTER 5V 74LS293 +V 14.	Reg. Rotate
R2 ← R0, , R1 ← R0	0 0	X	1 1 0	Reg. broadcast

- ▶ But this is very costly in terms of interconnect, requiring 6*n MUX input connections.
- ➤ To connect N*n-bit registers will require (N-1)*N*n wires.

CSU22022, 4th Lecture, Dr. M. Manzke, Page: 3

Register Transfer via 3-1 MUXs and MUX-to-Register Bus

This results in the loss of some flexibility:

FT 720 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.7	\$1 \$0 GALL 40 GALCEVIO GALCE	L2 L1	LO dic?	Description
R0 ← R2		1 0 (10 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1	0 0	1	Point-to-Point
R0 ← R1, R2		0 1 1 = -	1 0	1 counter 50	Reg. Broadcast
R0 ← R1, R1		IMPOSSIBLE			Single source only

- But the MUX input connections have reduced from 6*n to 3*n.
- For N Register we need only N*n wires.

Tri-state Bus

Tri-state buffers provide the means to construct a wired-or of arbitrary fan-in, with which we can effectively disperse the MUX on the previous slide right back to the register latches. That is we build our 3:1 MUX as:

CSU22022, 4th Lecture, Dr. M. Manzke, Page: 6

Load

 $R \nabla$

En

With this arrangement it is possible to connect N*n-bit register with N-1

Memory Transfers

- Typically processor memories are addressed by a number of address registers:
 - ▶ PC, MAR, IOR
- Address register information is transmitted over an address bus to memory M.
- Similarly data is transferred to/from a number of data registers over a data bus.
 - ▶ Data register: IR, DR, BUF
- ► The schematic on the next slide illustrates how we may organise three address register A, selected by I, and data register D, selected by J, to implement read/write on memory M.

CSU22022, 4th Lecture, Dr. M. Manzke, Page: 9

Register File & Functional Unit

- In practice the three functional micro-ops are implemented in one compact circuit, the Function Unit, composed of the ALU and Shifter.
- Data for this Functional Unit comes from a physical adjacent Register file, with dual MUX-busses able to supply two operands per clock cycle.
- ➤ Since the register file is itself modest in size typically 8-32 register, there must be provision to send and receive data to/from the main memory system via DATA IN and DATA

OUT.