Introdução à Computação Gráfica Recorte

Claudio Esperança Paulo Roma Cavalcanti

O Problema de Recorte

- Dada uma superfície M fechada de codimensão 1 do Rⁿ, o complemento de M, (Rⁿ-M), possui duas componentes conexas.
- Se *S* é um subconjunto do *R*ⁿ, chama-se de recorte de *S* por *M* à operação que consiste em determinar os subconjuntos de *S* que estão em cada uma das componentes conexas.

Recorte (Clipping)

- Problema definido por:
 - Geometria a ser recortada
 - Pontos, retas, planos, curvas, superfícies
 - Regiões de recorte
 - Janela (2D)
 - Volume de visibilidade
 - Frustum (tronco de pirâmide)
 - Paralelepípedo
 - Polígonos
 - Convexos
 - Genéricos (côncavos, com buracos, etc)

Resultado

- Depende da geometria:
 - Pontos: valor booleano (visível / não visível)
 - Retas: segmento de reta ou coleção de segmentos de reta
 - Planos: polígono ou coleção de polígonos

Recorte de Segmento de Reta x Retângulo

- Problema clássico 2D
- Entrada:
 - Segmento de reta P_1 P_2
 - ◆ Janela alinhada com eixos (*xmin*, *ymin*) (*xmax*, *ymax*)
- Saída: Segmento recortado (possivelmente nulo)
- Variantes
 - Cohen-Sutherland
 - Liang-Barksy / Cyrus-Beck
 - Nicholl-Lee-Nicholl

- A janela é definida pela interseção de 4 semi-planos:
 - $ymin \le y \le ymax$ e
 - $xmin \le x \le xmax$
- Os vértices do segmento são classificados em relação a cada semi-plano que delimita a janela, gerando um código de 4 bits:
 - Bit1 = (y > ymax)
 - Bit2 = (y < ymin)
 - Bit3 = (x < xmin)
 - Bit4 = (x > xmax)
- Se ambos os vértices forem classificados como fora, descartar o segmento (totalmente invisível)
- Se ambos forem classificados como dentro, testar o próximo semi-plano
- Se um vértice estiver dentro e outro fora, computar o ponto de interseção Q e continuar o algoritmo com o segmento recortado $(P_1-Q \text{ ou } P_2-Q)$

Códigos

Cohen-Sutherland - Detalhes

- Recorte só é necessário se um vértice estiver dentro e outro estiver fora
- Classificação de cada vértice pode ser codificada em 4 bits, um para cada semi-plano
 - ◆ Dentro = 0 e Fora = 1
- Rejeição trivial:
 - Classif(P_1) & Classif(P_2) $\neq 0$
- Aceitação trivial:
 - Classif(P_1) | Classif(P_2) = 0
- Interseção com quais semi-planos?
 - Classif(P_1) ^ Classif(P_2)

- Refinamento que consiste em representar a reta em forma paramétrica
- É mais eficiente visto que não precisamos computar pontos de interseção irrelevantes
- Porção da reta não recortada deve satisfazer

$$x_{\min} \le x_1 + t \Delta x \le x_{\max}$$
 $\Delta x = x_2 - x_1$
 $y_{\min} \le y_1 + t \Delta y \le y_{\max}$ $\Delta y = y_2 - y_1$

• Linha infinita intercepta semi-espaços planos para os seguintes valores do parâmetro *t*:

$$t_k = \frac{q_k}{p_k} \quad \text{onde} \quad p_1 = -\Delta x \quad q_1 = x_1 - x_{\min}$$

$$p_2 = \Delta x \quad q_2 = x_{\max} - x_1$$

$$p_3 = -\Delta y \quad q_3 = y_1 - y_{\min}$$

$$p_4 = \Delta y \quad q_4 = y_{\max} - y_1$$

- Se p_k < 0, à medida que t aumenta, reta **entra** no semi-espaço plano
- Se p_k > 0, à medida que t aumenta, reta **sai** do semi-espaço plano
- Se p_k = 0, reta é paralela ao semi-espaço plano (recorte é trivial)
- Se existe um segmento da reta dentro do retângulo, classificação dos pontos de interseção deve ser entra, entra, sai, sai

Liang-Barsky – Pseudo-código

- Computar valores de t para os pontos de interseção
- Classificar pontos em entra ou sai
- Vértices do segmento recortado devem corresponder a dois valores de *t*:
 - t_{min} = max (0, t's do tipo **entra**)
 - t_{max} = min (1, t's do tipo sai)
- Se $t_{min} < t_{max}$, segmento recortado é não nulo
 - Computar vértices substituindo os valores de t
- Na verdade, o algoritmo calcula e classifica valores de *t* um a um
 - Rejeição precoce
 - Ponto é do tipo **entra** mas t > 1
 - Ponto é do tipo **sai** mas t < 0

Recorte de Polígono contra Retângulo

- Inclui o problema de recorte de segmentos de reta
 - Polígono resultante tem vértices que são
 - Vértices da janela,
 - Vértices do polígono original, ou
 - Pontos de interseção aresta do polígono/aresta da janela
- Dois algoritmos clássicos
 - Sutherland-Hodgman
 - Figura de recorte pode ser qualquer polígono convexo
 - Weiler-Atherton
 - Figura de recorte pode ser qualquer polígono

Recorte de Polígono contra Retângulo

Casos Simples

Casos Complicados

Algoritmo de Sutherland-Hodgman

- Idéia é semelhante à do algoritmo de Sutherland-Cohen
 - Recortar o polígono sucessivamente contra todos os semi-espaços planos da figura de recorte

Algoritmo de Sutherland-Hodgman

- Polígono é dado como uma lista circular de vértices
- Vértices e arestas são processados em seqüência e classificados contra o semi-espaço plano corrente
 - Vértice:
 - Dentro: copiar para a saída
 - Fora: ignorar
 - Aresta
 - Intercepta semi-espaço plano (vértice anterior e posterior têm classificações diferentes) : Copiar ponto de interseção para a saída
 - Não intercepta: ignorar

Algoritmo de Sutherland-Hodgman

Sutherland-Hodgman – Exemplo

Sutherland-Hodgman – Exemplo

Sutherland-Hodgman – Exemplo

Sutherland Hodgman – Eliminando Arestas Fantasmas

- Distinguir os pontos de interseção gerados
 - De dentro para fora: rotular como do tipo α
 - De fora para dentro: rotular como do tipo β
- Iniciar o percurso de algum vértice "fora"
- Ao encontrar um ponto de interseção α, ligar com o último β visto
- Resultado pode ter mais de uma componente conexa

Sutherland Hodgman – Eliminando Arestas Fantasmas – Exemplo

Sutherland Hodgman – Eliminando Arestas Fantasmas – Exemplo

Sutherland Hodgman – Eliminando Arestas Fantasmas – Exemplo

Sutherland-Hodgman - Resumo

- Facilmente generalizável para 3D
- Pode ser adaptado para implementação em hardware
 - Cada vértice gerado pode ser passado pelo pipeline para o recorte contra o próximo semiespaço plano
- Pode gerar arestas "fantasma"
 - Irrelevante para propósitos de desenho
 - Podem ser eliminadas com um pouco mais de trabalho

- Recorta qualquer polígono contra qualquer outro polígono
- Pode ser usado para computar operações de conjunto com polígonos
 - União, Interseção, Diferença
- Mais complexo que o algoritmo de Sutherland-Hodgman
- Idéia:
 - Cada polígono divide o espaço em 3 conjuntos
 - Dentro, fora, borda
 - Borda de cada polígono é "duplicada"
 - Uma circulação corresponde ao lado de dentro e outra ao lado de fora
 - Nos pontos de interseção, é preciso "costurar" as 4 circulações de forma coerente

Interior do polígono à esquerda da seta (circulação anti-horária)

Exterior do polígono à direita da seta (circulação horária)

Pontos de interseção são calculados

Circulações são costuradas

