Team. Two-rillion

EIS-MONTI

23-2 가을학기 이산수학_PBL2

금융공학과 박수빈 / 금융공학과 서보규 금융공학과 선두연 / 금융공학과 전민욱 e-비즈니스학과 심푸름

목치

- 01. 몬티홀 문제 설명
- 02. 몬티홀 문제 해결법
 - 2-1 조건부 확률; 경우의 수
 - 2-2 베이즈 정리
 - 2-3 몬테카를로 방법
- 03. 몬티홀 문제의 원리; 이유 불충분의 원리
- 04. 몬티홀 문제 일반화
- 05. 공평한 몬티홀 문제

01

몬티홀 문제 설명

몬티홀 문제 설명

몬티홀 문제 설명

'진행 순서의 정보' 중요

자동차 배치 → 참여자의 선택 → 사회자가 선택적으로 문을 개방

배치 순서 (자동차, 염소, 염소), (염소, 자동차, 염소), (염소, 염소, 자동차)

선택 확률에 대한 대칭성 존재 = 한 가지 배치에 대한 확률을 구하면 됨

02

몬티홀 문제 해결방법

문제 해결 - 조건부확률

Ī,

처음에 **염소**가 있는 문을 선택할 확률 = 2/3

사회자는 무조건 염소가 있는 문을 선택 = 1/1

문을 바꿨을 때 자동차가 있을 확률 = 1/1

 $\therefore 2/3 \times 1/1 \times 1/1 = 2/3$

나는 문을 무조건 **바꾼다**

2/3 + 0/6= 2/3 ii.

처음에 **자동차**가 있는 문을 선택할 확률 = 1/3

a) 사회자가 염소가 있는 문 중 첫 번째 선택 = 1/2 문을 바꿨을 경우 자동차가 있을 확률 = 0/1

b) 사회자가 염소가 있는 문 중 두 번째 선택 = 1/2 문을 바꿨을 경우 자동차가 있을 확률 = 0/1

$$\therefore 1/3 * 1/2 * 0/1 = 0/6$$
$$0/6 + 0/6 = 0/6$$

문제 해결 - 조건부확률

i,

처음에 **염소**가 있는 문을 선택할 확률 = 2/3

사회자는 무조건 염소가 있는 문을 선택 = 1/1

문을 바꾸지 않았을 떼 자동차가 있을 확률 = 0/1

$$\therefore 2/3 \times 1/1 \times 0/1 = 0/3$$

나는 문을 바꾸지 **않는다**

ii.

처음에 **자동차**가 있는 문을 선택할 확률 = 1/3

a) 사회자가 염소가 있는 문 중 첫 번째 선택 = 1/2 문을 바꾸지 않았을 경우 자동차가 있을 확률 = 1/1

b) 사회자가 염소가 있는 문 중 두 번째 것을 선택 = 1/2 문을 바꾸지 않았을 경우 자동차가 있을 확률 = 1/1

문제 해결 - 베이즈 정리

n개의 사건 $B_1, B_2, ..., B_n$ 은 표본공간 S를 분할하고, 사건 A가 표본공간 S의 임의의 사건이라면,

$$P(B_i \mid A) = \frac{P(B_i) * P(A \mid B_i)}{\sum_{i=1}^{n} P(B_i) * P(A \mid B_i)}$$

$$P(B_i) > 0, P(A) > 0$$

증명

$$P(B_{i} | A) = \frac{P(B_{i} \cap A)}{P(A)}$$

$$= \frac{P(B_{i}) * P(A | B_{i})}{P(A)}$$

$$= \frac{P(B_{i}) * P(A | B_{i})}{\sum_{i=1}^{n} P(B_{i}) * P(A | B_{i})}$$

분자 = 확률의 곱셈정리 분모 = 전체 확률의 법칙

문제 해결 - 베이즈 정리

가정: 참가자 A문 엶 → 사회자 C문 열어서 염소 확인

문 뒤에 **차**가 있는 사건 : **A, B, C**

사회자가 C문을 고르는 사건: D

P(A) = P(B) = P(C) = 1/3 (생략 가능)

사건 D가 일어났을 때, 선택을 바꿀 때의 당첨 확률 $P(B \mid D)$ 안 바꿀 때의 당첨 확률 $P(A \mid D)$

문제 해결 - 베이즈 정리

어떤 **조건부 사건이 일어날** 확률 = 모든 **역사건의 가짓수** 중 해당 사건의 **역사건이 일어날** 확률

안 바꿀 때의 당첨 확률 $P(A \mid D)$

$$= \frac{P(D \mid A) * P(A)}{P(D \mid A) * P(A) + P(D \mid B) * P(B) + P(D \mid C) * P(C)} = \frac{0.5}{0.5 + 1 + 0} = \frac{1}{3}$$

선택을 바꿀 때의 당첨 확률 $P(B \mid D)$

$$= \frac{P(D \mid B) * P(B)}{P(D \mid A) * P(A) + P(D \mid B) * P(B) + P(D \mid C) * P(C)} = \frac{1}{0.5 + 1 + 0} = \frac{2}{3}$$

문제 해결 - 큰 수의 법칙

사건을 무한히 반복할 때

일정한 사건이 일어나는 비율은 횟수를 **거듭하면** 할수록 **일정한 값에 수렴**하는 법칙 (전제 조건 : 샘플링하는 것은 복원 추출을 기반으로하며 각 사건은 동일하다.)

Ex) 동전을 던지는 횟수(n)를 무한히 늘리면 앞면이 나올 확률은 결국 0.5에 근사할 것

1. 땅에 가로, 세로 길이가 동일한 **정사각형**을 그리고, 정사각형의 각 면과 **맞닿도록 원**을 그린다.

2. 정사각형이 가득 찰 때까지 돌을 던진다.

3. 던진 돌의 개수와, 던진 돌 중 몇 개가 원 안으로 들어갔는지 센다.

4. 원의 면적/정사각형의 면적 = 원 안의 돌 개수/정사각형 안의 돌 개수

큰 수의 법칙에 따라, 시행 횟수가 늘어나면 실제 면적 비율에 근사

import random

```
door = [1,2,3] # 문 3개에 대한 리스트 설정
trial = 1000000
```

```
import random

door = [1,2,3] # 문 3개에 대한 리스트 설정
trial = 1000000
change_no = 0 # 선택 미변경
change_yes = 0 # 선택 변경

for i in range(0,trial):
    car_door = random.choice(door) # 차가 있는 문 랜덤 설정
    select_door = random.choice(door) # 참여자가 고를 문 랜덤 설정
    if car_door == select_door:
        change_no = change_no + 1 # 참여자가 차가 있는 문을 고를 때마다 +1
```

```
for i in range(0,trial):
    car_door = random.choice(door)
    select_door = random.choice(door)
    monthy_door = []
    new_yes = []
    for j in door:
        if j != car_door and j != select_door:
            monthy_door = monthy_door + [j] # 사회자가 개방 가능한 문

monthy_open = random.choice(monthy_door) # 개방 가능한 문에서 무작위 개방

for k in door:
        if k != monthy_open and k != select_door:
            new_yes = new_yes + [k] # K는 참여자가 선택을 바꿀 수 있는 나머지 문의 번호

if car_door == new_yes[0]:
        change_yes = change_yes + 1 # 나머지 문이 차가 있는 문일 때마다 +1
```

```
print(change_yes/trial)
print(change_no/trial)
```

0.666279 0.333838

문의 개수를 입력하세요: 3 상품의 개수를 입력하세요: 1

사회자가 여는 문의 개수를 입력하세요: 1 시뮬레이션 횟수를 입력하세요: 1000000

1000000번 시도 중 처음선택을 바꾸지 않았을 때 승리 확률은 약 33.325600%입니다. 1000000번 시도 중 처음선택을 바꾸어서 얻을 승리 확률은 약 66.674400%입니다. 이론적으로 처음선택을 바꾸지 않았을 때 승리 확률은 약 33.333333%입니다. 이론적으로 처음선택을 바꾸어서 얻을 승리 확률은 약 66.666667%입니다.

Monty Hall by Monte Carlo Simulation (3 doors, 1 prizes, 1 open doors)

03

몬티홀 문제 원리

이유 불충분의 원리(principle of indifference)?

관련 증거가 **없는** 경우 고려 가능한 모든 결과에 대해 동등한 신뢰도

자동차가 있는 문이 선택 될 때, 나머지 문들에 대한 사회자의 선호도는 동등하다.

상호배타 (Mutual exclusivity)

전체 포괄 (Collectively exhaustive)

AUBUC =U

상호 배타적이면서 전체 포괄적인 관계 (Mutually Exclusive Collectively Exhaustive)

이유 불충분의 원리(principle of indifference)?

가능한 세계의 집합 S를 **상호배타적이며 전체 포괄적인 관계**를 갖게 자연수 n만큼 분할할 때 이들의 집합 $W=\{w_{1'}\ _{'}w_{2'}\ ...\ w_n\}$ 이면,

원소들을 구분해야 할 어떠한 정보가 없다 = 각 원소의 1/n의 동등한 초기 확률을 부여

Q. 사회자가 이것을 어기고 <mark>특정 전략</mark>을 가지면 어떻게 될까?

가정: 사회자가 왼쪽에 가까운 문은 p의 확률로, 오른쪽에 가까운 문은 1-p의 확률로 개방, 참가자가 당첨될 때. 여전히 **대칭성이 유지**되므로 [자동차,염소,염소]에 대해서만 고려, 이유 불충분의 원리 적용 **불가능**

	참여자	방향	사회자	선택		결과
좌측	0	좌측				
중앙		중앙	0		$\frac{1}{3} \times p \times 1 = \frac{p}{3}$	
우측		우측		바꾸지	3 3	1
				않음	+	$\frac{1}{3}$
좌측	0	좌측				
중앙		중앙			$\frac{1}{3} \times (1-p) \times 1 = \frac{(1-p)}{3}$	
우측		우측	0		3	
좌측		좌측				
중앙	0	중앙			$\frac{1}{3} \times 1 \times 1 = \frac{1}{3}$	
우측		우측	0		3 3	2
				바꿈	+	$\frac{2}{3}$
좌측		좌측				
중앙		중앙	0		$\frac{1}{3} \times 1 \times 1 = \frac{1}{3}$	
우측	0	우측			3 3	

여전히 선택을 바꿀 때 차를 얻을 확률이 더 높다

가정: 사회자가 **중앙** 문을 **될 수 있는 한 개방**하는 전략, 참가자가 당첨될 때 [염소,염소,자동차]에 대해서 고려, 이유 불충분의 원리 적용 **불가능**

	참여자	방향	사회자	선택		결과
가측	0	좌측				
중앙		중앙	0	바꿈	$\frac{1}{3} \times 1 \times 1 = \frac{1}{3}$	2
구측		우측			3 3	
					+	$\frac{2}{3}$
가측		좌측	0	바꿈		
중앙	0	중앙			$\frac{1}{2} \times 1 \times 1 = \frac{1}{2}$	
구측		우측			3 3	
하측		좌측				
중앙		중앙	0		$\frac{1}{2} \times 1 \times 1 = \frac{1}{2}$	
P측	0	우측		话급	5 5	3
중앙 우측 가측 중앙		중앙 우측 좌측 중앙		바꾸지않음	$\frac{1}{3} \times 1 \times 1 = \frac{1}{3}$ $\frac{1}{3} \times 1 \times 1 = \frac{1}{3}$	$\frac{1}{3}$

여전히 선택을 바꿀 때 차를 얻을 확률이 더 높다

Q. 진행 순서가 바뀐다면?

가정: 순서를 바꿔서

사회자가 왼쪽에 가까운 문은 p의 확률로, 오른쪽에 가까운 문은 1-p의 확률로 개방, 참가자가 당첨될 때. **대칭성이 유지**되므로 <u>참여자의 1번 문 선택의 경우</u>만 고려.

전통적인 몬티 홀 문제

순서가 바뀐 문제

참여자가 문을 선택

↓

사회자가 선택적으로 문을 개방

↓

자동차를 배치

Q. 진행 순서가 바뀐다면?

참여자가 1번 문을 선택

	사회자	방향	자동차	선택		결과			
좌측		좌측	0	ᄪ	_				
중앙	0	중앙		바꾸지	$p*\frac{1}{2}$	$\frac{p}{2}$			
우측		우측		않음					
좌측		좌측			$p*\frac{1}{2}$	<u>p</u> 2			
중앙	0	중앙		바꿈					
우측		우측	0						
좌측		좌측	0	바꾸지 않음	$(1-p)*\frac{1}{2}$	$\frac{1-p}{2}$			
중앙		중앙							
우측	0	우측			2	2			
좌측		좌측			_				
중앙		중앙	0	바꿈	$(1-p)*\frac{1}{2}$	$\frac{1-p}{2}$			
우측	0	우측				4			

선택을 바꿀 때 자동차를 얻을 확률:

$$\frac{p}{2} + \frac{1-p}{2} = \frac{1}{2}$$

-선택을 바꾸지 않을 때 자동차를 얻을 확률:-

$$\frac{p}{2} + \frac{1-p}{2} = \frac{1}{2}$$

Q. 진행 순서만 바꾼다면?(특정 전략X)

참여자가 2번 문을 선택

	사회자	방향	자동차	선택		결과			
좌측	0	좌측		ul 77 TI					
중앙		중앙	0	바꾸지 않음	$\frac{1}{2} * \frac{1}{2} * 1$	$\frac{1}{4}$			
우측		<u></u> 수		<u> </u>	<u> </u>	T			
좌측	0	좌측				_			
중앙		중 중		바꿈 $\frac{1}{2} * \frac{1}{2} * 1$	$\frac{1}{4}$				
우측		우측	0		£ £	-			
좌측		좌측	0	바꿈	4 4	$\frac{1}{4}$			
중앙		항 중			바꿈 $\frac{1}{2}*\frac{1}{2}*1$				
우측	0	우측			Z Z				
좌측		좌측		바꾸지 않음	$\frac{1}{2} * \frac{1}{2} * 1$	_			
중앙		중앙	0			$\frac{1}{4}$			
우측	0	우측			ت ت	T			

'진행 순서의 정보'가 확률에 영향을 줌

- 1. 자동차가 배치 참여자가 문을 선택 **사회자가 전략에 맞춰 개방**
- 2. 참여자가 문을 선택 자동차가 배치 사회자가 전략에 맞춰 개방
- 3. 참여자가 문을 선택 **사회자가 전략에 맞춰 개방** 자동차가 배치
- 4. 자동차가 배치 사회자가 전략에 맞춰 개방 참여자가 문을 선택
- 5. 사회자가 전략에 맞춰 개방 자동차가 배치 참여자가 문을 선택
- 6. 사회자가 전략에 맞춰 개방 참여자가 문을 선택 자동차가 배치

전통적인 몬티 홀 문제 (2/3,1/3)

비전통적인 몬티 홀 문제 (1/2,1/2) 04

모티홀 문제 일반호|

몬티홀 문제 일반화 전제 조건

1 2 3

전체 문의 개수 n

상품의 수 w

문의 수 r

제거하는 문(*r*)에 상품(*w*)을 포함하지 **않는다**

 $1 \le w, r (w, r \in N)$ $w + r + 1 \le n(w, r, n \in N)$

사회자가 **제거하는** 문의 수를 말함

몬티홀 문제 조건이 다른 문제

$$n = 7 w = 2 r = 3 일 때 몬티홀 문제의 확률$$

- 1. 처음 선택한 문이 상품이 있는 문일 때 $\frac{2}{7}$
- 1) 문을 사회자가 제거한 후 바꿔서 당첨인 확률 3
- 2) 문을 사회자가 제거한 후 바꿔서 꽝일 확률 $\frac{2}{3}$

- 2. 처음 선택한 문이 상품이 없는 문일 때 $\frac{5}{7}$
- 1) 문을 사회자가 제거한 후 바꿔서 당첨인 확률
- 2) 문을 사회자가 제거한 후 바꿔서 꽝일 확률 $\frac{1}{3}$

문을 바꿨을 때 당첨이 될 총 확률
$$\frac{2}{7} \times \frac{1}{3} + \frac{5}{7} \times \frac{2}{3} = \frac{12}{21}$$

몬티홀 일반화

$$\frac{w}{n}$$

$$\frac{w-1}{n-1-r}$$

$$\frac{n-w-r}{n-1-r}$$

$$\frac{n-w}{n}$$

$$\frac{w}{n-1-r}$$

$$\frac{n-1-r-w}{n-1-r}$$

문을 바꿨을 때 당첨이 될 총 확률

$$\frac{w}{n} \times \frac{w-1}{n-1-r} + \frac{n-w}{n} \times \frac{w}{n-1-r}$$

$$= \frac{w}{n} \times \frac{n-1}{n-1-r}$$

몬테 카를로 시뮬레이션

문의 개수를 입력하세요: 7 상품의 개수를 입력하세요: 2

사회자가 여는 문의 개수를 입력하세요: 3 시뮬레이션 횟수를 입력하세요: 1000000

1000000번 시도 중 처음선택을 바꾸지 않았을 때 승리 확률은 약 28.597300%입니다. 1000000번 시도 중 처음선택을 바꾸어서 얻을 승리 확률은 약 57.121100%입니다. 이론적으로 처음선택을 바꾸지 않았을 때 승리 확률은 약 28.571429%입니다. 이론적으로 처음선택을 바꾸어서 얻을 승리 확률은 약 57.142857%입니다.

Monty Hall by Monte Carlo Simulation (7 doors, 2 prizes, 3 open doors)

05

공명한 몬티홀 문제

공평한 몬티홀 문제

공평한 몬티홀 문제 만들기 1

처음 선택한 문의 당첨확률과 사회자가 문을 제거한 이후 바꿨을 때, 당첨확률이 같은 <u>n,w,r이</u> 존재하는가?

$$\frac{w}{n} = \frac{w}{n} \times \frac{n-1}{n-1-r}$$
을 만족해야 하는데

 $\frac{w}{n}$ 는 w<n이고 문제조건에 의해 둘 다 1보다 크므로 0이 아니다. 따라서

$$\frac{n-1}{n-1-r}$$
=1을 만족하는 $n_{,}w_{,}r$ 이 존재해야 하는데 1< r 이므로 $\frac{n-1}{n-1-r}>$ 1 따라서 만족하는 $n_{,}w_{,}r$ 은

존재하지 않는다.

공평한 몬티홀 문제

공평한 몬티홀 문제 만들기 2

그렇다면 사회자가 문을 제거한 후에 문을 바꾸든 바꾸지 않든 당첨확률이 같은 n,w,r은 존재하는가?

 $\frac{w}{n} \times \frac{n-1}{n-1-r} = \frac{1}{2}$ 를 만족하는 n,w,r을 찾아보자

문제 조건에 의해 분모들이 모두 0보다 크므로 양변에 곱해주면

 $2w \times (n-1) = n \times (n-1-r)$

여기서n-1=N으로 가정하자 ($N \in \mathbb{N}$ 이고, N > 1)

2wN = (N+1)(N-r)

,좌변이N의 배수이므로 우변도 N의 배수여야 한다 따라서 $N^2+(1-r)N-r$ 은 N의배수r은 N의배수이다.

여기서 N=n-1이므로 문제조건 w+r+1< n에서 r+w< N

따라서 r은 N의배수이며 r < N인 자연수 r이 존재해야 하는데 이는 불가능하므로 문제조건에 <u>위배된다</u>.

'따라서 이를 만족하는 자연수 <u>n.w.r</u>은 **존재하지 않는다.**

Team. TWO-rillion