Essentials of Computer Systems - Exercises #4

1 Performance Equations

Execution time =
$$T = IC \times t_{\text{CLK}} \times CPI = \frac{\#insn}{program} \cdot \frac{\#seconds}{cycle} \cdot \frac{\#cycpes}{insn}$$

Performance = $\frac{1}{T}$

Speedup=
$$\frac{Told}{Tnew}$$

Amdahl's law: the total speedup depends on

- fraction of X being used in original system $\Rightarrow f$
- enhancement/speedup of X \Rightarrow S

$$S_{\text{total}} = \frac{1}{\frac{f}{S} + (1-f)}$$

Exercise 1.1 Average CPI

When running a given benchmark we found the frequency and CPIs of instructions given in table 1. Afterwards, two separate modifications were made and benchmarking repeated:

- a) hardware modifications resulting in changed CPIs of the instructions (see table 2)
- b) modifications to the compiler resulting in changed frequencies if the instructions (see table 3)

Compare all three options and identify the best one!

Table 1				
insn	f_i	CPI_i		
ALU	50%	1		
load	20%	5		
store	10%	3		
other	20%	2		

Table 2				
insn	f_i	CPI_i		
ALU	50%	1		
load	20%	4		
store	10%	4		
other	20%	2		

Table 3				
insn	f_i	CPI_i		
ALU	55%	1		
load	10%	5		
store	10%	3		
other	25%	2		

Exercise 1.2 Amdahl's law

The old CPU takes 5 seconds to execute a given program. A new CPU with four times faster adder 1 is available. The adder is used in 25% of the instructions in the given program. Compute the new execution time for the given program when using the new CPU.

¹adder is a part of the ALU

2 Execution on the Pipelined CPU

Exercise 2.1 For the following code snippet show:

- a) analysis of data dependencies. Identify the data hazards.
- b) show the timing diagram of execution on pipelined CPU without bypassing logic (see lecture slides)
- c) show the timing diagram of execution on pipelined CPU with bypassing logic from EX/MEM and MEM/WB interstage registers
- d) show the timing diagram of execution on pipelined CPU with bypassing logic from EX/MEM and MEM/WB interstage registers and with RegFile bypassing. RegFile bypassing allows the "overlap" of ID and WB stage by adding MUXes on the inputs to the interstage registers ID/EX.A and ID/EX.B, allowing to select either the RegFile outputs rs and rt or the data value from WB stage please see schematic below.

recap:	
$insn\ syntax$	operation
and Rd, Rs, Rt	$Rd \leftarrow Rs \ AND \ Rt$
$or\ Rd,\ Rs,\ Rt$	$Rd \leftarrow Rs \ OR \ Rt$
lw Rt, offset(Rs)	$Rt \leftarrow MEM[Rs + offset]$

code snippet:

lw R3, 0(R1)

and R4, R3, R2

or R5, R3, R2

and R3, R4, R5