EECE 451 - POWER ELECTRONICS

Instructor: Dr. Martin Ordonez TAs: Franco Degioanni

Daniel Hsu Lucas Sinopoli

Assignment #2

Due December 10th, 2021

Submit a typed report (Canvas submission).

Include the procedure, steps and any relevant comment to obtain the results.

- 1. Design a PWM DC/AC Converter (Inverter) with the following specifications:
 - DC Input Voltage $(V_{dc}) = 380 \text{ V}$
 - Desired AC Output Voltage $(V_o) = 220 \text{ V}_{\text{RMS}} / 50 \text{ Hz}$
 - Switching Frequency $(F_{sw}) = 20 \text{ kHz}$
 - Output Current $(I_o) = 10 \text{ A}_{\text{RMS}}$
 - a) Select the corresponding topology and justify.
 - b) Calculate the required modulation index (m_a) to achieve the desired output voltage.
 - c) Select the value of the load resistor (R_L) to obtain the desired output current.
 - d) Find the value of the filter inductor (L) and capacitor (C) for a characteristic impedance (Z_0) of 5 Ω and cut-off frequency (F_0) of 600 Hz.
 - e) Simulate the designed converter in PSIM. Analyze the obtained results and include relevant waveforms.
 - f) Redesign the output filter (L & C) for:

i.
$$F_o = 1200 \, Hz, Z_o = 5 \, \Omega$$

ii.
$$F_o = 300 \, Hz, Z_o = 5 \, \Omega$$

By using the FFT tool in PSIM, explain the effects of the filter cut-off frequency in the obtained output voltage.

- 2. Design a DC/DC <u>isolated</u> power supply using a full-bridge converter with the following specifications:
 - DC Input Voltage $(V_{dc}) = 170 \text{ V}$
 - DC Output Voltage $(V_o) = 5 \text{ V}$
 - Output Voltage Ripple (ΔV_0) = +/- 1%
 - Maximum Output Current $(I_o) = 75 \text{ A}$
 - Inductor Current Ripple (Δi_L) = 3%
 - Switching Frequency $(F_{sw}) = 150 \text{ kHz}$
 - a) Derive the converter's gain equation $\left(\frac{V_o}{V_{in}}\right)$ and find the corresponding duty cycle (D) for this design.
 - b) Select the value of the load resistor (R_L) to obtain the maximum output current.
 - c) Select the value of the filter inductor (L) and capacitor (C) to obtain the desired current and voltage ripples.
 - d) Simulate the designed converter using PSIM. Include relevant waveforms and comments.
 - e) Find the value of the load resistor to operate the converter in the boundary of discontinuous conduction mode. Simulate the converter under this operating mode and include relevant waveforms.