Série3 de S.C: Estimation et Prevision

Ex1:

I) En supposant que le correlogramme d'une série temporelle consistant en 100 observations donne les valeurs: $\hat{\rho}_1 = 0.31$, $\hat{\rho}_2 = 0.37$, $\hat{\rho}_3 = -0.05$, $\hat{\rho}_4 = 0.06$, $\hat{\rho}_5 = -0.11$, $\hat{\rho}_6 = 0.11$, $\hat{\rho}_7 = 0.08$, $\hat{\rho}_8 = 0.07$, $\hat{\rho}_9 = 0.12$, $\hat{\rho}_{10} = -0.01$. Suggérer un modéle ARMA pouvant être approprié.

II) Les valeurs des AC et ACP de 60 observations d'une série economique et de la série de difference sont données:

		1	2	3	4	5	6	7	8
X_t	$\widehat{ ho}_h$	0.95	0.91	0.87	0.82	0.79	0.74	0.70	0.67
	$\widehat{\varphi}_{hh}$	0.95	0.04	-0.05	0.07	0.00	0.00	-0.04	-0.02
ΔX_t	$\widehat{\rho}_h$	0.02	0.08	0.12	0.05	-0.02	-0.05	-0.01	0.03
	$\widehat{\varphi}_{hh}$	0.02	0.08	0.06	0.03	-0.05	-0.06	-0.04	-0.02

Identifier un modèle pour les séries.

Ex2:

I) On vous donne les valeurs suivantes provenant d'un processus autorégressif d'ordre 1: -1.1, 2.6, 4.3, - 1.1, 9.7, 4.1 - 0.6, 2.2.

Estimer la valeur de φ_{11} à partir des données ci-dessus.

II) Trouver les estimateurs de Yule–Walker des paramètres θ et σ^2 du modèle MA(1) en supposant que $|\rho_1| < \frac{1}{2}$.

<u>Ex3</u>:

I) a) On suppose que X_t est un processus AR(2), estimer les paramètres par la methode des moments.

b) Les estimateurs des moments suivants ont été obtenus après l'observation de $X_1,...,X_{200}$: $\widehat{\gamma}_0=6.06,\widehat{\rho}_1=0.687,\widehat{\rho}_2=0.610.$

Trouver des estimateurs de φ et σ^2 à l'aide des équations de Yule-Walker. Ces estimateurs sont ils significatifs?

II) On vous donne les estimations suivantes: $\widehat{\gamma}_0 = 8.903$, $\widehat{\rho}_1 = 0.849$, $\widehat{\rho}_2 = 0.519$ et n = 144. Estimer les paramètres d'un AR(2) par la methode des moments. Donnez l'IC du paramètre φ_2 au niveau $\alpha = 0.05$.

IV) Calculer les estimateurs des moindres carrés pour un processus: ${}^*AR(1) *AR(2)$. Donnez la distribution asymptotique des coefficients.

Ex4:

I) La table suivante montre les 10 premières valeurs des AC et ACP pour une série de 60 observations:

h	1	2	3	4	5	6	7	8	9	10
$\widehat{\rho}_h$	0.912	0.801	0.649	0.486	0.322	0.162	0.027	-0.088	-0.164	-0.221
$\widehat{\varphi}_{hh}$	0.912	-0.412	-0.144	-0.115	-0.072	-0.100	0.050	-0.070	0.115	-0.135

1-Faire les graphes des AC et ACP.

2-Identifier un modèle pour la série.

3-Estimer les paramètres avec leur écart type. Conclure.

(On donne $\sigma_X^2 = 0.089$).

II) Une série de n=82 observations a été modélisé par le modèle: $\Delta X_t = (1 - 0.6L) \varepsilon_t$, les

AC résiduelles sont

110 Tobicatories borie										
h	1	2	3	4	5	6	7	8	9	10
$\rho_h\left(\widehat{\varepsilon}\right)$	0.39	0.20	0.09	0.04	0.09	-0.13	-0.05	0.06	0.11	0.02

1-Faire le graphe des AC résiduelles.

2-Faire le test de Box-Ljung de non corrélation des résidus. Conclure.

Ex5:

 \overline{I}) Trouver une expression pour $\widehat{X}_t(h)$ pour les processus suivants:

*MA(1)-*AR(1)-*(1 - L)(1 - 0.2L) $X_t = (1 - 0.5L) \varepsilon_t$.

Trouver la variance de l'erreur de prévision pour h = 1, 2, 3.

Si $\varepsilon_N = 1, X_N = 4, X_{N-1} = 3$ et $\sigma_{\varepsilon}^2 = 2$. Montrer que $\widehat{X}_N(2) = 3.64$ et l'écart type de l'erreur de prévision est $1.72.(3^{eme} \text{modèle})$.

II) 1-Soit X_t un processus ARIMA(2,1,0).

Trouver une expression pour la prévision $\hat{X}_t(h)$.

2-Soit X_{t} un processus $ARIMA\left(0,1,1\right) .$

a- Trouver une expression pour la prévision $\widehat{X}_t(h)$.

b-Trouver la variance de l'erreur de prévision $\forall h$.

III) Donner la prévision pour les horizons h = 1 et h = 2, pour les modèles suivants:

$$1-X_t - 0.5X_{t-1} = \varepsilon_t. \quad 2-\Delta X_t = \varepsilon_t - 0.5\varepsilon_{t-1}$$

$$3-(1-0.6L)\,\Delta X_t = \varepsilon_t$$

Ex6:

1-Soit X_t un processus ARIMA(1,2,0), trouver une expression pour $\widehat{X}_t(h)$.

2-On vous donne les valeurs suivantes d'une série X_t :

0- 0- 3- 4- 5- 7- 6- 3- 8- 9.

Après analyse, le modèle suivant est jugé adéquat pour cette série :

$$(1 + 0.6L)(X_t - 2X_{t-1} + X_{t-2}) = \varepsilon_t \text{ où } \varepsilon_t \to BB(0, 9)$$

a-Identifier le modèle ci-dessus.

b-Soit $W_t = \Delta^2 X_t$.Identifier ce processus.

c-Calculer la meilleure prévision de X_{12} et l'erreur quadratique moyenne de $X_{10}(2)$.