# 9平面向量的運算





#### 1. 向量的內積:

當兩個非零向量  $\overrightarrow{a}=(a_1,a_2)$ 與  $\overrightarrow{b}=(b_1,b_2)$ 的夾角為 $\theta$  (0°  $\leq \theta \leq 180$ °) 時,定義  $\overrightarrow{a}$  與  $\overrightarrow{b}$  的內積為  $|\overrightarrow{a}|$   $|\overrightarrow{b}|$   $\cos\theta$ ,以  $|\overrightarrow{a}\cdot\overrightarrow{b}|$  表示。

$$(1) \ \overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 \circ$$

$$(2) \cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right|} \circ$$

註:  $\overrightarrow{a} \cdot \overrightarrow{b}$  並不是向量, 而是實數。

#### 2. 向量的平行與垂直:

設兩非零向量 $\overrightarrow{a}=(a_1,a_2)$ , $\overrightarrow{b}=(b_1,b_2)$ ,且 $b_1b_2\neq 0$ 。

(1)若
$$\overrightarrow{a}$$
  $\perp$   $\overrightarrow{b}$  ,则 $\overrightarrow{a}$  ·  $\overrightarrow{b}$  =  $a_1b_1 + a_2b_2 = 0$  。

(2)若
$$\overrightarrow{a}$$
// $\overrightarrow{b}$ ,則 $\overrightarrow{a} = r\overrightarrow{b} \Rightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2}$  (各分量成比例)。





#### 4. 柯西不等式:

設  $a_1$ 、 $a_2$ 、 $b_1$ 、 $b_2$  為實數,則  $\left(a_1^2+a_2^2\right)\left(b_1^2+b_2^2\right) \geq \left(a_1b_1+a_2b_2\right)^2$ ,當等號成立時,  $a_1b_2=a_2b_1$ ,又若  $b_1b_2\neq 0$ ,則  $\frac{a_1}{b_1}=\frac{a_2}{b_2}$ 。

# 70 單元 9 平面向量的運算

### 5. 面積與二階行列式:

(1) 二階行列式:
$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 \circ$$

(2) 設
$$\overrightarrow{a} = (a_1, a_2)$$
、 $\overrightarrow{b} = (b_1, b_2)$ ,則以 $\overrightarrow{a}$ 、 $\overrightarrow{b}$ 所決定的

①三角形面積為 
$$\frac{1}{2}\sqrt{\left|\overrightarrow{a}\right|^2\left|\overrightarrow{b}\right|^2-\left(\overrightarrow{a}\cdot\overrightarrow{b}\right)^2}=\frac{1}{2}\left|\begin{vmatrix}a_1 & a_2\\b_1 & b_2\end{vmatrix}\right|$$

②平行四邊形面積為
$$\sqrt{\left|\overrightarrow{a}\right|^2\left|\overrightarrow{b}\right|^2-\left(\overrightarrow{a}\cdot\overrightarrow{b}\right)^2}=\left|\begin{vmatrix}a_1 & a_2\\b_1 & b_2\end{vmatrix}\right|$$
。



### 6. 兩直線的夾角:

- (1) 直線的法向量:向量  $\overrightarrow{n} = (a,b)$  為直線 L: ax + by + c = 0 的一個法向量。
- (2) 二直線的夾角: 只要求得兩法向量的夾角,就可求得兩直線的其中一個夾角。 因為 $\theta_1 + \theta_2 = 180^\circ$ ,所以只需求出其中任一個夾角, 另一個夾角就可求出。



#### 7. 三角不等式:

- (1) 代數觀點: ① $|a|+|b| \ge |a+b|$ ,當等號成立時,  $ab \ge 0$ 。
  - ② $||a|-|b|| \le |a+b|$ ,當等號成立時, $ab \le 0$ 。
- (2) 幾何觀點: ①已知平面上兩非零向量  $\overrightarrow{a}$  、  $\overrightarrow{b}$  , 則  $|\overrightarrow{a}|$  +  $|\overrightarrow{b}| \ge |\overrightarrow{a} + \overrightarrow{b}|$  ,

當等號成立時, $\frac{1}{a}$ 與 $\frac{1}{b}$ 同向。

②已知平面上兩非零向量 $\overrightarrow{a}$ 、 $\overrightarrow{b}$  ,則  $|\overrightarrow{a}| - |\overrightarrow{b}| \le |\overrightarrow{a} + \overrightarrow{b}|$  ,

當等號成立時, $\overline{a}$ 與 $\overline{b}$ 反向。



觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

)**1.** 正 $\triangle ABC$ 中, $\overrightarrow{AB}$ 與 $\overrightarrow{BC}$ 的夾角為 $60^{\circ}$ 。



) **2.** 正六邊形 *ABCDEF* 中,  $\overrightarrow{AB} \cdot \overrightarrow{AC} > \overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AB} \cdot \overrightarrow{AB} > \overrightarrow{AB} \cdot \overrightarrow{AE} > \overrightarrow{AB} \cdot \overrightarrow{AF} \circ$ 



) **3.** 若 $\overrightarrow{a} \neq 0$ ,且 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$ ,則 $\overrightarrow{b} = \overrightarrow{c}$ 。



) **4.** 若非零向量  $\overrightarrow{a}$  、  $\overrightarrow{b}$  滿足  $|\overrightarrow{a}+\overrightarrow{b}| = |\overrightarrow{a}-\overrightarrow{b}|$  ,則  $\overrightarrow{a}\perp\overrightarrow{b}$  。



) **5.** 由向量  $\vec{a} = (2,3)$ 與  $\vec{b} = (5,1)$ 所決定的平行四邊形面積為  $\begin{vmatrix} 2 & 3 \\ 5 & 1 \end{vmatrix}$  。



# 72 單元 9 平面向量的運算

# 一、填充題(每題7分,共70分)

**1.** 平行四邊形 ABCD中, $\overline{AB}=5$ , $\overline{BC}=8$ ,則 $\overrightarrow{AC}\cdot\overrightarrow{BD}=$ \_\_\_\_\_。



2. 設  $|\overrightarrow{a}| = 2$  ,  $|\overrightarrow{b}| = 3$  ,  $|\overrightarrow{a}|$  與  $|\overrightarrow{b}|$  的夾角  $|\overrightarrow{a}|$  的夾角  $|\overrightarrow{a}|$  的  $|\overrightarrow{AP}| = |\overrightarrow{a}| + 2|\overrightarrow{b}|$  ,  $|\overrightarrow{AQ}| = 2|\overrightarrow{a}| + |\overrightarrow{b}|$  ,  $|\overrightarrow{AQ}| = 2|\overrightarrow{a}| + |\overrightarrow{b}|$  ,



**3.** 若 $\overrightarrow{a} = (1,-3)$ 與 $\overrightarrow{b} = (k,2)$ 的夾角為135°,則實數k的值為\_\_\_\_\_。



**4.** 如圖,在梯形  $\overrightarrow{ABCD}$ 中,若  $\overrightarrow{AB} / (\overrightarrow{CD})$ ,  $\overrightarrow{AB} = \overrightarrow{BC} = 4$ 、  $\overrightarrow{CD} = 9$ 、  $\overrightarrow{AD} = 6$ ,則  $\overrightarrow{AD} \cdot \overrightarrow{BC} = \underline{\phantom{AD}}$ 。



解

**5.** 若  $\overline{a}$  與  $\overline{b}$  為兩非零向量,已知  $2\overline{a}$  +  $\overline{b}$  與  $2\overline{a}$  -  $\overline{b}$  垂直,且  $\overline{a}$  與  $\overline{a}$  -  $\overline{b}$  垂直,則  $\overline{a}$  與  $\overline{b}$  的夾角為\_\_\_\_\_。

解

**6.** 如圖,三個拉力  $\overrightarrow{a}$  、  $\overrightarrow{b}$  、  $\overrightarrow{c}$  同時施力於 P 點,並達到三力平 衡。已知  $|\overrightarrow{a}| = 5$  ,  $|\overrightarrow{b}| = 3$  ,且  $\overrightarrow{a}$  與  $\overrightarrow{b}$  的夾角為  $60^{\circ}$  ,



解

# 74 單元 9 平面向量的運算

7. 設 $\overrightarrow{a} = (x, y)$ , $\overrightarrow{b} = (-2, 1)$ , $\overrightarrow{c} = (1, 1)$ ,若 $\left(\overrightarrow{a} + 2\overrightarrow{c}\right) \perp \overrightarrow{b}$ ,且 $\left(\overrightarrow{a} - \overrightarrow{c}\right) / / \overrightarrow{b}$ , 則數對 $(x, y) = \underline{\hspace{1cm}}$ 。

解

8. 設 $\overrightarrow{p} = (-11,2)$ 、 $\overrightarrow{a} = (-4,3)$ 。若  $\overrightarrow{p} = \overrightarrow{u} + \overrightarrow{v}$ ,其中 $\overrightarrow{u} / / \overrightarrow{a}$ , $\overrightarrow{v} \perp \overrightarrow{a}$ ,则 $\overrightarrow{v} = \underline{\phantom{a}}$ 。

**9.** 設 $\overrightarrow{a} = (x,-2)$ 、 $\overrightarrow{b} = (1,y)$ ,其中x,y為實數。若 $x^2 + y^2 = 5$ ,則 $\overrightarrow{a} \cdot \overrightarrow{b}$ 的最大值為



**10.** 如圖,一圓形花圃的半徑為 2 公尺,內建步道 $\overline{AB}$ 、 $\overline{EF}$ 、 $\overline{CD}$ ,其中  $\overline{AB}$  =  $\overline{CD}$ ,試求: $\overline{AB}$  +  $\overline{CD}$  +  $\overline{EF}$  總長的最大值為\_\_\_\_\_\_ 公尺。 (請化為最簡根式)





# 二、素養混合題(共20分)

#### 第 11 至 13 題為題組

為了提醒同學某臺自動販賣機會「吃錢」,班聯會想在機上漆一個小圓與一個缺六分之一圓的大圓相切的圖案,如圖所示。基於空間考量,圖形的寬度要恰好 24 單位長,而且小圓必須與直線 PQ 有兩相異交點。漆大圓的油漆,每平方單位需要 6 元;漆小圓的油漆,每平方單位需要 45 元。設小圓的半徑為x,大圓的半徑為y。

- **11.** 已知 *x* 、 *y* 滿足 *ax* + *by* = 24 ,求數對 (*a*,*b*) = \_\_\_\_\_。 (填充題,8分)
- **12.** 求油漆總費用  $(以x \cdot y 表示)$ 。(非選擇題, 4分)
- **13.** 當 $x \times y$ 為何時,油漆費用最少? (非選擇題,8分)



