Experiment-4

Arithmetic And Logical Operation

Student Name: Pratibha UID: 18bcs6093

Branch: CSE-AI&ML Section/Group:1(Group-2)

Semester: 5 **Date of Performance:**

Subject Name: DIP Subject Code: CSF-336

1. AIM/OVERVIEW of the Practical

In this experiment we have perform image arithmetic and logical operations using opency. In this we have used the jupyter notebook software.

2. Task to be Done

Various tasks which we have to performed in this experiment that are

- Read images
- Perform arithmetic operation on images
- Display image

3. Required Libraries Or Softwares

Software – Jupyter Notebook

Libraries – numpy, matplotlib, pil, scikit Image, opencv

4. Algorithm/Flowchart

Steps for Experiment/Practical

1. # Image Addition

```
import cv2
  import numpy as np
  imag1 = cv2.imread('./img1.png')
  imag2 = cv2.imread('./img2.png')
  add = imag1 + imag2
  cv2.imshow('addition window',add)
  cv2.waitKey(0)
  cv2.destroyAllWindows()
2. # Image Addition
   import cv2
   import numpy as np
   img1 = cv2.imread('./img1.png')
   img2 = cv2.imread('./img2.png')
   add = cv2.add(img1,img2)
   cv2.imshow('addition window',add)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
3. # Image Blending
   import cv2
   import numpy as np
   img1 = cv2.imread('./img1.png')
   img2 = cv2.imread('./img2.png')
   weighted = cv2.addWeighted(img1, 0.6, img2, 0.4, 0)
   # Notation: addWeighted method, the parameters are the first image, the weight, the second
   image, that weight, and gamma, which is a measurement of light.
   cv2.imshow('add weighted window',weighted)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
```

5. # To show the mask inverse using threshold

```
import cv2
import numpy as np
```

```
# Load two images
   img1 = cv2.imread('./img1.png')
   img2 = cv2.imread('./img2.png')
   # I want to put logo on top-left corner, So I create a ROI
   rows,cols,channels = img2.shape
   roi = img1[0:rows, 0:cols]
   # Now create a mask of logo and create its inverse mask, mask generly would be to grey scale
   img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
   # add a threshold
   # Threshold: it works is that, it will convert all pixels to either black or white, based on a
   threshold value.
   ret, mask = cv2.threshold(img2gray, 220, 255, cv2.THRESH_BINARY_INV)
   cv2.imshow('mask window', mask)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
6. # Bitwise Operation
   import cv2
   import numpy as np
   # Load two images
   img1 = cv2.imread('./img1.png')
   img2 = cv2.imread('./img2.png')
   # I want to put logo on top-left corner, So I create a ROI
   rows,cols,channels = img2.shape
   roi = img1[0:rows, 0:cols]
   # Now create a mask of logo and create its inverse mask, mask generly would be to grey scale
   img2gray = cv2.cvtColor(img2,cv2.COLOR BGR2GRAY)
   # add a threshold
   # Threshold: it works is that, it will convert all pixels to either black or white, based on a
   threshold value.
   ret, mask = cv2.threshold(img2gray, 220, 255, cv2.THRESH_BINARY_INV)
   #This is a bitwise operation.black area of mask
   mask inv = cv2.bitwise not(mask)
   # bitwise not : mask or not mask
   # bitwise and : when two are equal
```

```
# bitwise or : When both values are true it runs, if only one value iss true it runs
   # bitwise xor : onle when one value is true
   # we want to black out this area in the first image, and then take image 2 and replace it's
   contents in that empty spot.
   # Now black-out the area of logo in ROI, bitwise is a lowlevel logical operation.
   img1 bg = cv2.bitwise and(roi,roi,mask = mask inv)
   # Take only region of logo from logo image.
   img2 fg = cv2.bitwise and(img2,img2,mask = mask)
   dst = cv2.add(img1 bg,img2 fg)
   img1[0:rows, 0:cols] = dst
   cv2.imshow('res window', img1)
   cv2.imshow('mask inv window', mask inv)
   cv2.imshow('img1_bg window', img1_bg)
   cv2.imshow('img2 fg window', img2 fg)
   cv2.imshow('dst window', dst)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
7. # Performing bitwise operation without using mask inverse
   img1 = cv2.imread('./img1.png')
   img2 = cv2.imread('./img2.png')
   # I want to put logo on top-left corner, So I create a ROI
   rows, cols, channels = img2.shape
   roi = img1[0:rows, 0:cols]
   # Now create a mask of logo and create its inverse mask also
   img2gray = cv2.cvtColor(img2,cv2.COLOR BGR2GRAY)
   ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
   mask inv = cv2.bitwise not(mask)
   # Now black-out the area of logo in ROI
   img1 bg = cv2.bitwise and(roi,roi,mask = mask inv)
   # Take only region of logo from logo image.
   img2 fg = cv2.bitwise and(img2,img2,mask = mask)
   # Put logo in ROI and modify the main image
   dst = cv2.add(img1 bg,img2 fg)
   img1[0:rows, 0:cols] = dst
```

```
cv2.imshow('res',img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

4. The command that we have learned today in the program:

In this program we have learnt various command performing the arithmetic or logical operations on image.

5. Output

```
In [*]: # Importing required modules
import cv2
import numpy as np|
imag1 = cv2.imread('./img1.png')
imag2 = cv2.imread('./img2.png')
add = imag1+imag2
cv2.imshow('addition window',add)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

```
In [*]: # Importing required modules
   import cv2
   import numpy as np
   img1 = cv2.imread('./img1.png')
   img2 = cv2.imread('./img2.png')
   add = cv2.add(img1,img2)
   cv2.imshow('addition window',add)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
```



```
In [*]: # Importing required modules
import cv2
import numpy as np
# Load two images
img1 = cv2.imread(','img1.png')
img2 = cv2.imread(','img2.png')
# I want to put logo on top-Left corner, So I create a ROI
rows, cols, channels = img2.shape
roi = img1[0:rows, 0:cols]
# Now create a mask of logo and create its inverse mask, mask generly would be to grey scale
img2gray = cv2.cvtColor(img2.cv2.COLOR_BGR2GRAY)
# add a threshold
# Threshold: it works is that, it will convert all pixels to either black or white, based on a threshold
ret, mask = cv2.threshold(img2gray, 220, 255, cv2.THRESH_BINARY_INV)
cv2.waitKey(0)
cv2.waitKey(0)
cv2.destroyAllWindows()
```



```
In [4]: # Importing required modules
import cv2
import numpy as np
# Load two images
img1 = cv2.imread('./img1.png')
img2 = cv2.imread('./img2.png')
# I want to put logo on top-left corner, So I create a ROI
rows,cols,channels = img2.shape
roi = img1@:rows, 0:cols ]
# Now create a mask of logo and create its inverse mask, mask generly would be to grey scale
img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
# add a threshold
# Threshold: it works is that, it will convert all pixels to either black or white, based on a threshold value.
ret, mask = cv2.threshold(img2gray, 220, 255, cv2.THRESH_BINARY_INV)
#This is a bitwise operation.black area of mask
mask_inv = cv2.bitwise_not(mask)
# bitwise or: when both values are true it runs, if only one value iss true it runs
# bitwise_or: when both values are true it runs, if only one value iss true it runs
# bitwise_xor: onle when one value is true
# we want to black out this area in the first image, and then take image 2 and replace it's contents in that empty spot.
# Now black-out the area of logo in ROI, bitwise is a lowlevel logical operation.
img1 bg = cv2.bitwise_and(roi.roi.mask = mask_inv)
# Take only region of logo from logo image.
img2 fg = cv2.bitwise_and(img2.jmg2,mask = mask)
dst = cv2.add(img1.bg,img2.fg)
img1[0:rows, 0:cols ] = dst
cv2.imshow('img1.bg window', img1.bg)
cv2.imshow('img1.bg window', img1.bg)
cv2.imshow('img2.fg window', img2.fg)
```



```
In [*]: # Load two images
    img1 = cv2.imread('./img1.png')
    img2 = cv2.imread('./img2.png')
    # I want to put logo on top-left corner, So I create a ROI
    rows,cols,channels = img2.shape
    roi = img1[0:rows, 0:cols]
    # Now create a mask of Logo and create its inverse mask also
    img2gray = cv2.cvtColor(img2,cv2.ColOR_BGR2GRAY)
    ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
    mask_inv = cv2.bitwise_not(mask)
    # Now black-out the area of Logo in ROI
    img1_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)
    # Take only region of logo from Logo image.
    img2_fg = cv2.bitwise_and(img2,img2,mask = mask)
    # Put logo in ROI and modify the main image
    dst = cv2.add(img1_bg,img2_fg)
    img1[0:rows, 0:cols] = dst
    cv2.waitKey(0)
    cv2.destroyAllWindows()
```