

Iris Brook and Mackenzie Lees

Table of contents

01

02

Problem Statement

Optimizing Airport Arrival Times

03

Data

Where and how we got our data

04

Methodology

Optimal Regression
Trees and Policy Trees

Impact

How can our project be applied

Data

Date, Flight Number, Destination Airport, Carrier Code(Airline), Scheduled Departure Time, Delayed minutes

TSA

Security Wait Time, Baggage claim Time

NWS

Precipitation, Visibility, minimum(temperature), maximum(temperature), Average Temperature

Calculated Columns

- Range from 60 to 90 minutes in 5 minute intervals
- Worse weather → earlier arrival time on average

Outcomes

- Outcome: Treatment –
 security wait time –
 baggage wait time –
 30(buffer) delayed minutes
- If negative: +90

Baseline

Decision Tree

CART

3-fold cross validation

Average MSE: 17.33

Prescribe 75 minutes

Same treatment for each observation

Mean outcome: 21.62

Models

Optimal Regression Tree

MSE: 0.066

Optimal Regression Tree with Hyperplanes

MSE: 0.064

Policy Trees with Different Constants

Optimal Policy Tree

Mean Test Outcome: 10.45

Reccommendations

Security Wait Times

Prioritize management of security line traffic flow

Day Specific

Tailored staffing and resource allocation by day

Communicate with Passengers

With app, mitigate bottlenecks and enhance efficiency of airport operations

Contingency Plans

Operational plans for peak-times or bad weather

Extensions

Passenger Facing App

Input flight details and receive personalized reccommendation for optimal arrival time

7

Real-Time Data

Integrate real-time weather, security, and baggage check-in data

7

Case Study

Case study to observe passenger stress levels to use as outcome for the OPT

Any questions?

Iris Brook MBAn '24 <u>irisb211@mit.edu</u>

Mackenzie Lees MBAn '24 mlees28@mit.edu

