Auto-Sklearn: Automated **Machine Learning in Python**

Matthias Feurer // mfeurer__

Department of Computer Science University of Freiburg, Germany

Find slides, notebooks and more here: https://github.com/automl/auto-sklearn-talks

Machine Learning for everyone in 4 lines of code

```
import autosklearn.classification
>>> cls = autosklearn.classification.AutoSklearnClassifier()
>>> cls.fit(X_train, y_train)
>>> predictions = cls.predict(X_test)
```


Goals for today & Outline

Goals

- 1. Understand how Auto-sklearn works
- 2. Apply Auto-Sklearn

Outline

1.	Introduction to Auto-sklearn	(20 mins)
2.	Moving to Gathertown & Setup	(10 mins)
3.	Task 1: BYOP	(15 mins)
4.	Task 2: ASKL	(20 mins)
5.	Task 3: EXTEND	(15 mins)
6.	+ Bonus Tasks	(? mins)

Design Space: Traditional ML with scikit-learn

Design Space: Traditional ML with scikit-learn

Black Box Optimization

Black Box Optimization: The Human Optimizer

Black Box Optimization: Grid Search

Black Box Optimization: Random Search

Black Box Optimization: Bayesian Optimization

Design Space: Traditional ML with scikit-learn

More I: Meta-Learning

How to reuse previous experience?

→ Warmstart Bayesian Optimization

Offline / Before:

- 1) Collect >200 datasets
- 2) Find the best pipeline on each dataset

Online / For a new dataset:

- Compute 38 meta-features, select 25 most similar previous datasets
- Initialize optimization with best pipelines on those datasets

More II: Ensembling

How to get the best out of all evaluated models?

→ Build an ensemble

Auto-Sklearn 1.0

However, some things to be improved

- meta-features can be expensive to compute
- large datasets can be an issue

Even More I: Portfolios

Goal: Meta-Learning without

meta-features

Idea: Construct a Portfolio

(a list of diverse pipelines)

Even More II: Successive Halving

Goal: Scale to large datasets.

Idea: Allocate more resources to promising pipelines

But what about small datasets?

Impact of the Optimization Strategy

But wait ... did we make it worse?

Can we automatically select an optimization policy?

Yes, with a learned selector!

For more details see "Feurer et al. (2021): Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning"

PoSH-Auto-sklearn

- Simplicity → follows scikit-learn API
- Parallelism → Uses Dask
- Extensibility → Simply add new algorithms
- Robustness → Limits on time and memory usage

- and many more:
 - configurable (access to underlying SMAC)
 - compatible with Pandas/numpy arrays
 - **—** ...

Auto-sklearn vs SMAC vs NASLib

Ē	SMAC	NASLib	Auto-sklearn
Goal	 Algorithm configuration Hyperparameter tuning Blackbox optimization 	Neural Architecture Search research	 ML in 4 lines of code Automated Machine Learning Drop-in replacement for scikit-learn
Comments	Formed the basis for the winning entry to the NeurIPS 2020 Black-Box optimization competition!	Uses Blackbox and Greybox optimization under the hood	Uses SMAC under the hood
Alternatives	Hyperopt, Optuna, Ray, AX, DEHB, mlrMBO, etc	None (so far)	Auto-PyTorch, AutoXGBoost, H2O, Auto-Gluon, etc

Summary

import autosklearn.classification

- >>> cls = autosklearn.classification.AutoSklearnClassifier()
- >>> cls.fit(X_train, y_train)
- >>> predictions = cls.predict(X_test)
 - based on scikit-learn; simple & familiar API
 - integrates latest research (>1K citations)
 - >20K downloads per month

- **BSD-3-Clause** License
- works best under Linux
- requires Python>=3.7

Matthias
Feurer
PhD Student @ ML Lab
Freiburg

Katharina Eggensperger PhD Student @ ML Lab

Freiburg

Edward

Bergman

Research Engineer @ ML Lab

Prof. Dr.

Marius Lindauer

Head of the ML Lab

Hannover

Prof. Dr.
Frank Hutter
Head of the ML Lab
Freiburg

Now: Hands-On Session

- Go to the hands-on session room in Gathertown
- Open the Colab notebook (see <u>here</u>)
- Work through
 - 1: BYOP (10min; warmup)
 - 2: ASKL (20min)
 - 3: EXTEND (20min)
 - + Bonus tasks

