Section 1.2 – Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value.

Definition

A compound proposition that is always true, no matter what the truth values of the proposition variables that occur in it, is called a *tautology*. A compound proposition that is always false is called *contradiction*. A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

Example

p	$\neg p$	$p \lor \neg p$	<i>p</i> ∧¬ <i>p</i>
T	F	T	F
F	T	T	F

 $p \lor \neg p$ is always true, it is tautology

 $p \land \neg p$ is always false, it is contradiction.

Logical Equivalences

Definition

Compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

De Morgan's Laws
$\neg (p \land q) \equiv \neg p \lor \neg q$
$\neg (p \lor q) \equiv \neg p \land \neg q$

Example

Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

Solution

p	\boldsymbol{q}	$p \vee q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
T	T	T	F	F	F	F
T	F	T	$\boldsymbol{\mathit{F}}$	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

The truth table shows that $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ is a tautology and these compound propositions are logically equivalent.

Example

Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

Solution

p	\boldsymbol{q}	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	$oldsymbol{F}$	\boldsymbol{F}
F	T	T	T	T
F	F	T	T	T

The truth table shows that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

Example

Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent. This is the *distributive law* of disjunction over conjunction.

Solution

p	\boldsymbol{q}	r	$q \wedge r$	$p \vee (q \wedge r)$	$p \vee q$	$p \vee r$	$(p \vee q) \wedge (p \vee r)$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	\boldsymbol{F}	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	$oldsymbol{F}$	T	F	$oldsymbol{F}$
F	F	T	\boldsymbol{F}	$oldsymbol{F}$	F	T	$oldsymbol{F}$
F	F	F	F	$oldsymbol{F}$	F	F	F

The truth table Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.

In these equivalences, T denotes the compound proposition that is always true and F denotes the compound proposition that is always false.

Logical Equivalences					
Equivalence	Name				
$p \wedge T = p$	Identity laws				
$p \vee \mathbf{F} = p$					
$p \lor T \equiv T$	Domination Inva				
$p \wedge \mathbf{F} \equiv \mathbf{F}$	Domination laws				
$p \lor p \equiv p$	Idempotent laws				
$p \wedge p \equiv p$	зистрогені шжз				
$\neg(\neg p) \equiv p$	Double negation law				
$p \lor q \equiv q \lor p$	Commutative laws				
$p \wedge q \equiv q \wedge p$	Commutative taws				
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws				
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	Associative taws				
$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Distributive laws				
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive taws				
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws				
$\neg (p \lor q) \equiv \neg p \land \neg q$	De morgan s taws				
$p \vee (p \wedge q) \equiv p$	Absorption laws				
$p \land (p \lor q) \equiv p$	Absorption laws				
$p \lor \neg p \equiv T$	N 1				
$p \land \neg p \equiv \mathbf{F}$	Negation laws				

Logical Equivalences Involving				
Conditional Statements				
$p \to q \equiv \neg p \lor q$				
$p \to q \equiv \neg q \lor \neg p$				
$p \lor q \equiv \neg p \to q$				
$p \land q \equiv \neg (p \to \neg q)$				
$\neg (p \to q) \equiv p \land \neg q$				
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$				
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$				
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$				
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$				

Logical Equivalences Involving
Biconditional Statements
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow r)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

$$\neg (p_1 \lor p_2 \lor \dots \lor p_n) \equiv (\neg p_1 \land \neg p_2 \land \dots \land \neg p_n)$$
$$\neg (p_1 \land p_2 \land \dots \land p_n) \equiv (\neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n)$$

Using De Morgan's Laws

The two logical equivalences known as De Morgan's laws are particularly important. The equivalence $\neg (p \lor q) \equiv \neg p \land \neg q$ and similarly $\neg (p \land q) \equiv \neg p \lor \neg q$

Example

Use De Morgan's laws to express the negations of "Miguel has a cellphone and he has a laptop computer" and "Heather will go to the concert or Steve will go to the concert."

Solution

Let: p be "Miguel has a cellphone" q be "Miguel has a laptop computer" can be expressed as $p \wedge q$

By De Morgan's laws $\neg(p \land q)$ is equivalent to $\neg p \lor \neg q$. We can express the negation of our original statement as "Miguel does not have a cellphone or he does not have a laptop computer"

Let: r be "Heather will go to the concert" s be "Steve will go to the concert" can be expressed as $r \lor s$

By De Morgan's laws $\neg(r \lor s) \equiv \neg r \land \neg s$. We can express the negation of our original statement as "Heather will not go to the concert **and** Steve will not go to the concert."

Example

Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

Solution

$$\neg (p \rightarrow q) \equiv \neg (\neg p \lor q)$$
$$\equiv \neg (\neg p) \land \neg q$$
$$\equiv p \land \neg q$$

p	\boldsymbol{q}	$p \rightarrow q$	$\neg (p \rightarrow q)$	$\neg q$	$p \wedge \neg q$
T	T	T	F	F	F
T	F	F	T	T	T
F	T	T	F	F	F
F	F	T	F	T	F

Example

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences.

Solution

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\equiv \mathbf{F} \lor (\neg p \land \neg q)$$

$$\equiv (\neg p \land \neg q) \qquad \neg p \land p \equiv \mathbf{F}$$

$$\equiv (\neg p \land \neg q) \lor \mathbf{F}$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p \land \neg q) \lor (\neg p \land \neg q)$$

$$\vdash (\neg p$$

Example

Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution

$$(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q)$$

$$\equiv T \lor T$$

$$\equiv T$$

$$\equiv T$$

$$By De Morgan's law$$

$$By Associative and commutative laws$$

Exercises Section 1.2 – Propositional Equivalences

- 1. Use the truth table to verify these equivalences
 - a) $p \wedge T \equiv p$
 - b) $p \vee \mathbf{F} \equiv p$
 - c) $p \wedge \mathbf{F} \equiv \mathbf{F}$
 - $d) \quad p \vee T \equiv T$
 - e) $p \lor p \equiv p$
 - f) $p \wedge p \equiv p$
- 2. Show that $\neg(\neg p)$ and p are logically equivalent
- **3.** Use the truth table to verify the commutative laws
 - a) $p \lor q \equiv q \lor p$
 - b) $p \wedge q \equiv q \wedge p$
- **4.** Use the truth table to verify the associative laws
 - a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - b) $(p \land q) \land r \equiv p \land (q \land r)$
- **5.** Show that each of these conditional statements is a tautology by using truth result tables.
 - $a) \quad (p \land q) \to p$
 - $b) \quad p \to (p \vee q)$
 - $c) \neg p \rightarrow (p \rightarrow q)$
 - $(p \land q) \rightarrow (p \rightarrow q)$
 - $e) \neg (p \rightarrow q) \rightarrow p$
 - $f) \quad \left[\neg p \land (p \lor q) \right] \rightarrow q$
 - $g) \left[(p \rightarrow q) \land (q \rightarrow r) \right] \rightarrow (p \rightarrow r)$
 - $h) \ \left[p \land (p \rightarrow q) \right] \rightarrow q$
- **6.** Show that $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent
- 7. Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equivalent
- **8.** Show that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent
- **9.** Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent
- **10.** Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent
- 11. Show that $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$ are logically equivalent

- 12. Show that $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ is a tautology
- 13. Show that $(p \lor q) \lor (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology
- **14.** Show that | (NAND) is functionally complete