*** Applied Machine Learning Fundamentals *** Logistic Regression

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2023/2024

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Regression

Unit V Classification I

Unit VI Evaluation

Unit VII Classification II

Unit VIII Clustering

Unit IX Dimensionality Reduction

Agenda for this Unit

- Introduction
- Model Architecture

- 3 Non-linear Data
- Multi-Class Classification
- 6 Wrap-Up

Section:

Introduction

What is logistic Regression? Why you should not use linear Regression

What is logistic Regression?

- Logistic regression is a learning algorithm for classification (!!!)
- In its standard form it is applicable to binary classification problems only
- Class labels:
 - ullet The 'positive class' \oplus is encoded as ${f 1}$
 - The 'negative class' \ominus as $oldsymbol{0}$
- Probabilistic interpretation: The raw output of the algorithm is between 0 and 1 and can be interpreted as the probability of the instance belonging to the positive class

Why you should not use linear Regression...

• Linear regression:

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$$

- We can turn linear regression into a classifier by putting a **threshold** at $h_{\theta}(x) = 0.5$ (or any other value between 0 and 1)
 - If $h_{\theta}(x) \geqslant 0.5$, predict y = 1
 - If $h_{\theta}(\mathbf{x}) < 0.5$, predict y = 0
- Problems:
 - Outliers heavily affect the decision boundary (see example below)
 - 2 Furthermore, we only want $0 \leqslant h_{\theta}(x) \leqslant 1$; Linear regression can output values $h_{\theta}(x) \ll 0$ or $h_{\theta}(x) \gg 1$

Why you should not use linear Regression... (Ctd.)

Consider the following dataset:

Row	Object	Radius (×10 ⁶ m)	Label	Label encoded
1	Ceres	1.0	dwarf planet	0
2	Eris	2.3	dwarf planet	0
3	Pluto	2.4	dwarf planet	0
4	Mercury	4.9	planet	1
5	Earth	12.8	planet	1
6	Jupiter	143.0	planet	1

Why you should not use linear Regression... (Ctd.)

• Let us train a linear regression model for classification:

 Both, Mercury and Earth, are classified as dwarf planets due to Jupiter's massive radius!

Linear regression is sensitive to outliers! We need a better cost function!

Why you should not use linear Regression... (Ctd.)

Logistic regression to the rescue:

Logistic regression is less sensitive to outliers

(It is a valuable exercise to reproduce this result. See the exercise sheet!)

Section: Model Architecture

Sigmoid Function Probabilistic Interpretation Model Training Decision Boundary

Logistic Regression Model

- Remember that we want: $0 \leqslant h_{\theta}(x) \leqslant 1$
- Solution: Logistic function / Sigmoid function:

$$g(z) := \frac{1}{1 + e^{-z}} \tag{1}$$

• We plug $\theta^{T}x$ into the sigmoid function to obtain our new model function:

$$h_{\theta}(\mathbf{x}) := g(\theta^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-(\theta^{\mathsf{T}}\mathbf{x})}} \tag{2}$$

Logistic/Sigmoid Function

- g(z) is symmetric around z = 0
- $0 \leqslant g(z) \leqslant 1$ holds true

O lie

Where does the Sigmoid come from?

$$\begin{split} \rho(\mathcal{C}_1|\mathbf{x}) &= \frac{\rho(\mathbf{x}|\mathcal{C}_1)\rho(\mathcal{C}_1)}{\rho(\mathbf{x})} = \frac{\rho(\mathbf{x}|\mathcal{C}_1)\rho(\mathcal{C}_1)}{\sum_k^K \rho(\mathbf{x},\mathcal{C}_k)} = \frac{\rho(\mathbf{x}|\mathcal{C}_1)\rho(\mathcal{C}_1)}{\sum_k^K \rho(\mathbf{x}|\mathcal{C}_k)\rho(\mathcal{C}_k)} \\ &= \frac{\rho(\mathbf{x}|\mathcal{C}_1)\rho(\mathcal{C}_1)}{\rho(\mathbf{x}|\mathcal{C}_1)\rho(\mathcal{C}_1) + \rho(\mathbf{x}|\mathcal{C}_2)\rho(\mathcal{C}_2)} \\ &= \frac{1}{1 + \rho(\mathbf{x}|\mathcal{C}_2)\rho(\mathcal{C}_2)/(\rho(\mathbf{x}|\mathcal{C}_1)\rho(\mathcal{C}_1))} \\ &= \frac{1}{1 + \exp\{-z\}} = g(z) & \longrightarrow \text{logistic sigmoid} \\ z &:= \log \frac{\rho(\mathbf{x}|\mathcal{C}_1)\rho(\mathcal{C}_1)}{\rho(\mathbf{x}|\mathcal{C}_2)\rho(\mathcal{C}_2)} & \longrightarrow \log \text{ odds} \end{split}$$

Interpretation of Hypothesis Output

- ullet $h_{m{ heta}}(x)$ is interpreted as the probability of instance x belonging to class y=1
- Example:

$$x = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1 \\ tumorSize \end{pmatrix} \tag{3}$$

- If $h_{\theta}(x) = 0.7 = p(y = 1|x, \theta)$, we have to tell the patient that there is a 70 % chance of the tumor being malignant
- Binary case:

$$p(y = 0 | \mathbf{x}, \boldsymbol{\theta}) = 1 - p(y = 1 | \mathbf{x}, \boldsymbol{\theta})$$

Training Setup

• We have a labeled training set:

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), \dots, \left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)} \right) \right\} = \left\{ \left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)} \right) \right\}_{i=1}^{n}$$
 (4)

• Each $y \in \{0, 1\}$ and each x is a vector of features:

$$\mathbf{x} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_m \end{pmatrix} \in \mathbb{R}^{m+1} \tag{5}$$

Logistic Regression Cost Function

• We require a suitable cost function:

$$\mathcal{J}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)})$$
 (6)

• In our case, the cost function $\ell(h_{\theta}(x), y)$ is defined as follows: (square loss would be **non-convex** due to the sigmoid non-linearity...)

$$\ell(h_{\theta}(x), y) := \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$(7)$$

Logistic Regression Cost Function (Ctd.)

$$y = 1$$
:

y = 0:

Logistic Regression Cost Function (Ctd.)

• $\ell(h_{\theta}(x), y)$ can be written in a more compact form:

$$\ell(h_{\theta}(x), y) := -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$
(8)

- If y=1, we get: $\ell(h_{\theta}(x),y)=-\log(h_{\theta}(x))$ \checkmark
- If y = 0, we get: $\ell(h_{\theta}(x), y) = -\log(1 h_{\theta}(x)) \checkmark$
- This gives rise to the (binary) cross entropy cost function $\mathcal{J}(\theta)$:

$$\mathcal{J}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \left[-y^{(i)} \log(h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})) \right]$$
(9)

Derivation of (binary) Cross Entropy using Maximum Likelihood

• The likelihood function for logistic regression can be written in the form:

$$p(y|\theta) := \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} \cdot (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$
(10)

The cost function is then given by the negative log-likelihood:

$$\mathcal{J}(\boldsymbol{\theta}) = -\frac{1}{n} \log p(\mathbf{y}|\boldsymbol{\theta}) \tag{11}$$

We consider the **negative** log-likelihood because – in machine learning – we prefer minimizing functions over maximizing them. This is allowed since $\max\{f(x)\}=\min\{-f(x)\}$.

Derivation of (binary) Cross Entropy (Ctd.)

$$\log p(\mathbf{y}|\boldsymbol{\theta}) = \log \left(\prod_{i=1}^{n} h_{\boldsymbol{\theta}} (\mathbf{x}^{(i)})^{\mathbf{y}^{(i)}} \cdot (1 - h_{\boldsymbol{\theta}} (\mathbf{x}^{(i)}))^{1 - \mathbf{y}^{(i)}} \right)$$

Remember the rules:

$$\log(ab) = \log a + \log b$$

$$\log(a^b) = b \log a$$

Where have we used which rule?

$$= \sum_{i=1}^{n} \log \left(h_{\boldsymbol{\theta}} (\mathbf{x}^{(i)})^{y^{(i)}} \cdot \left(1 - h_{\boldsymbol{\theta}} (\mathbf{x}^{(i)}) \right)^{1-y^{(i)}} \right)$$

$$= \sum_{i=1}^{n} \left[\log \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right)^{y^{(i)}} \right) + \log \left(1 - h_{\theta} \left(\boldsymbol{x}^{(i)} \right) \right)^{1 - y^{(i)}} \right) \right]$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \cdot \log \left(h_{\theta}(\mathbf{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \cdot \log \left(1 - h_{\theta}(\mathbf{x}^{(i)}) \right) \right]$$

Optimization of (binary) Cross Entropy

- Unfortunately, there is **no closed-form solution** to logistic regression (due to the sigmoid non-linearity in the model function)
- We have to resort to an iterative method like gradient descent

The partial derivative of $\mathcal{J}(\boldsymbol{\theta})$ (based on a single example) with respect to the j-th model parameter θ_j is given by:

$$\frac{\partial}{\partial \theta_i} \mathcal{J}(\boldsymbol{\theta}) = \left(h_{\boldsymbol{\theta}}(\mathbf{x}) - \mathbf{y} \right) \cdot \mathbf{x}_j \tag{12}$$

Optimization of (binary) Cross Entropy (Ctd.)

• The stochastic gradient of the binary cross entropy cost function is:

$$\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}) = \begin{pmatrix} \left(g(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}) - y \right) \cdot x_1 \\ \vdots \\ \left(g(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}) - y \right) \cdot x_m \end{pmatrix} = \left(g(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}) - y \right) \boldsymbol{x}$$
(13)

• The **batch gradient** for logistic regression is given by the expression:

$$\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}) = \frac{1}{n} \mathbf{X}^{\mathsf{T}} (\mathbf{g}(\mathbf{X}\boldsymbol{\theta}) - \mathbf{y})$$
 (14)

Derivation of the Gradient based on a single Example (x, y)

- We give a proof of equation (12)
- In the derivation we will need the derivative of the sigmoid function:

$$\frac{\mathrm{d}}{\mathrm{d}z}g(z) = g(z) \cdot (1 - g(z)) \tag{15}$$

(You will be asked to proof this in the exercises!)

Please find the derivation ⇒ here

Gradient Descent

• The goal is to minimize the cost function $\mathcal{J}(\boldsymbol{\theta})$:

$$oldsymbol{ heta}^\star = rg\min_{oldsymbol{ heta}} \mathcal{J}(oldsymbol{ heta})$$

• Repeat until convergence

$$\left\{oldsymbol{ heta}_{t+1} \longleftarrow oldsymbol{ heta}_t - lpha
abla_{oldsymbol{ heta}} \Im(oldsymbol{ heta}_t)
ight\}$$

• The gradient $\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta})$ is given by equation (14)

The algorithm looks identical to linear regression, but the model function is different due to the sigmoid function!

Decision Boundary

- Our trained model outputs probabilities
- To obtain a classifier, we have to apply a threshold ρ to the raw outputs
- Setting the threshold to $\rho := 0.5$ means:
 - Predict the positive class ⊕, if

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) \geqslant 0.5 \Longleftrightarrow \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} \geqslant 0$$

Predict the negative class ⊕, if

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) < 0.5 \Longleftrightarrow \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} < 0$$

Decision Boundary (Ctd.)

Example: Decision Boundary

- Let us consider a simple example
- Suppose our model function takes the form:

$$h_{\theta}(\mathbf{x}) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

• Assume we obtain the following model parameters using gradient descent:

$$\theta_0 = -3$$
, $\theta_1 = 1$, $\theta_2 = 1$

• Predict y = 1, if $-3 + x_1 + x_2 \ge 0$

Example: Decision Boundary (Ctd.)

- Predict y = 1, if $-3 + x_1 + x_2 \ge 0$
- The decision boundary satisfies $-3 + x_1 + x_2 = 0$
- If $x_2 = 0$, then $x_1 = 3$ and vice versa

Logistic regression is not a maximum-margin classifier, but the cost function can be adjusted to get that ⇒ Hinge loss

Another Example: Decision Boundary

Where is the sigmoid function?

Another Example: Logistic Function

Section:

Non-linear Data

Feature Mapping Regularization

Non-Linear Decision Boundaries

Feature mapping can be used to obtain non-linear decision boundaries/surfaces (same procedure already introduced for linear regression)

Example:

- Let a circular two-dimensional dataset be given (features x_1 and x_2)
- We choose the following model function:

$$h_{\theta}(\mathbf{x}) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

- ullet The algorithm could choose the parameters $oldsymbol{ heta}^\star := ig(-1,0,0,1,1ig)^{\mathsf{T}}$
- So we would get: $x_1^2 + x_2^2 = 1$ (equation of a unit circle)

Example: Non-Linear Decision Boundary

It is still linear!

Basis function classification

Logistic Regression with Regularization

- Again, we should apply regularization when using the feature mapping approach to avoid running into <a> overfitting <a> overfitti
- Add a regularizer to the cost function:

$$\widetilde{\mathcal{J}}(\boldsymbol{\theta}) := \mathcal{J}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|^2$$
 (16)

- The regularizer prevents the parameters θ_j from becoming too large
- $\lambda \geqslant 0$ controls the degree of regularization
- This leads to smoother decision boundaries

Section:

Multi-Class Classification

Techniques Overview One-vs-Rest (OvR) One-vs-One (OvO)

Multi-Class Classification

- In its basic form logistic regression can handle two classes only
- What if there are more than two classes?
- Two approaches:
 - Change the algorithm so that it can deal with more classes
 (→ Multinomial Logistic Regression / Softmax Regression)
 - 2 Transform the problem into several binary problems Two common techniques are:
 - One-vs-Rest (OvR) → One-against-All
 - One-vs-One (OvO) → Pairwise classification
- Let's have a closer look into the second approach!

Transforming the Problem into several binary Problems

- Instead of adjusting the algorithm, we can also transform the multi-class problem into several binary problems
- Two common techniques are:
 - One-vs-Rest (OvR) → One-against-All
 - One-vs-One (OvO) → Pairwise classification
- General idea:
 - Several classifiers are trained individually
 - During prediction the classifiers vote for the correct class
- Such techniques can be used for all binary classifiers

Multi-Class Classification: One-vs-Rest (OvR)

- Train one classifier per class (expert for that class)
- We get K classifiers
- The k-th classifier learns to distinguish the k-th class from all the others
- Set the labels of examples from class k to 1, all the others to 0

Multi-Class Classification: One-vs-One (OvO)

- Train one classifier for each pair of classes
- We get $\binom{K}{2}$ classifiers
- Ignore all other examples that do not belong to either of the two classes
- Voting: Count how often each class wins; The class with the highest score is predicted

Section:

Wrap-Up

Summary Self-Test Questions Lecture Outlook

Summary

- Logistic regression is used for classification (!!!)
- It is used for binary classification problems (generalizations exist)
- Output: Probability of instance belonging to positive class
- Apply a **threshold** ρ to get the classification
- The algorithm minimizes the cross entropy cost function
- There is **no closed-form solution** (unlike for linear regression)
- Basis functions can be used for non-linear data
- Multi-class classification: One-vs-Rest, One-vs-One

Self-Test Questions

- 1 Why should you not use linear regression for classification?
- 2 How is the logistic function defined?
- 3 Why do we use cross entropy instead of the squared error?
- 4 Does logistic regression find the best-separating (i.e. maximum margin) hyper-plane?
- 5 What techniques do you know for multi-class classification problems?

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Regression

Unit V Classification I

Unit VI Evaluation

Unit VII Classification II

Unit VIII Clustering

Unit IX Dimensionality Reduction

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Logistic Regression

Term: Winter term 2023/2024

Contact:

Daniel Wehner, M.Sc. SAPSE / DHBW Mannheim daniel.wehner@sap.com

Do you have any questions?