NEURALNET - Problem Solving Session II

FER

December, 2021

Administrative information about the final exam

- Thursday, January 26th, 2022
- 11:30 14:00
- 30 points
- covers BOTH the first and the second half of the course materials
- other information regarding the exam can be found on the Neural Net website

Exam preparation resources

- all lecture notes that cover topics from the first and the second cycle
- the chapters of the textbook "Neural Networks A Comprehensive Foundation" by Simon A. Haykin available on the Neural Net website
- Jupyter notebooks for hands-on sessions (exercise 1/2/3/4)
- problem solving sessions

Hopfield neural network I

General

- works in the same way as associative memory
- has ability to reconstruct the whole memorized pattern when only its fragment or its noisy version is presented to the network

Properties

- recurrent network consisting of only one layer of input-output nodes
- \bullet states of discrete Hopfield networks can achieve values $\{-1,1\}$ or $\{0,1\}$
- connection strengths or weights are symmetrical
- no self-connections
- states can be updated asynchronously and synchronously

Hopfield neural network II

Learning phase

Let us assume we want to store a set of p N-dimensional vectors: $\{\xi_m | m = 1, ..., p\}$

$$W = \frac{1}{N} \sum_{m=1}^{p} \xi_m \xi_m^T - \frac{p}{N} I$$
 (1)

Retrieval phase

- A probe vector x is imposed on the discrete HN as its state.
- The network operates using an updating rule
- Eventually, the network will converge to the stable state which satisfies the following alignment (stability) condition:

$$y = sgn(Wy - \Theta) \tag{2}$$

Hopfield neural network - Example

Consider a Hopfield network made up of four neurons which is required to store the following three fundamental memories:

$$s_1 = [1, 1, -1, -1]^T$$

 $s_2 = [1, -1, 1, -1]^T$
 $s_3 = [1, 1, 1, -1]^T$

Let threshold vector Θ be zero.

- Determine synaptic weight matrix W.
- Show that the states s₂ and s₃ are stable.
- \odot Find a stable state on which the state s_2 converges by using asynchronous state update.
- **a** Find a stable state on which the state s_2 converges by using synchronous state update.

AdaBoost algorithm

- **1** Data: $D = \{x, y\}_{i=1}^{N}$
- ② Define the initial uniform pdf: $D_1(i) = \frac{1}{N}$ for i = 1, ...N
- **③** Train a classifier $h_t(x)$ using the pdf D_t
- **③** Calculate estimation error: $\epsilon_t = \sum D_t(i)$ for $i : h_t(x^i) \neq y^i$
- Calculate α factor: $\alpha_t = \frac{1}{2} ln(\frac{1 \epsilon_t}{\epsilon_t})$
- **o** Define new pdf $D_{t+1}(i)$:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t) \text{ for } h_t(x^i) == y^i$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(\alpha_t) \text{ for } h_t(x^i) \neq y^i$$

- Repeat steps 3 6 for each classifier
- **1** Result: $H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$

AdaBoost example - binary classification problem

AdaBoost example - weak classifier 1

i	$D_1(i)$	$D_2(i)$	$D_2(i)$
1	0.1	0.05	0.0625
2	0.1	0.05	0.0625
3	0.1	0.2	0.25
4	0.1	0.2	0.25
5	0.1	0.05	0.0625
6	0.1	0.05	0.0625
7	0.1	0.05	0.0625
8	0.1	0.05	0.0625
9	0.1	0.05	0.0625
10	0.1	0.05	0.0625
sum	1	8.0	1

$$\alpha_1 = 0.69314$$

AdaBoost example - weak classifier 2

i	$D_2(i)$	$D_3(i)$	$D_3(i)$
1	0.0625	0.03	0.0385
2	0.0625	0.03	0.0385
3	0.25	0.12	0.159
4	0.25	0.12	0.159
5	0.0625	0.13	0.167
6	0.0625	0.13	0.167
7	0.0625	0.13	0.167
8	0.0625	0.03	0.0385
9	0.0625	0.03	0.0385
10	0.0625	0.03	0.0385
sum	1	0.78	1

 $\alpha_{\text{2}}=\text{0.73317}$

AdaBoost example - weak classifier 3

$$\alpha_{3} = 1.0184$$

AdaBoost example - strong classifier

$$H(x) = sign(0.6931h_1(x) + 0.73317h_2(x) + 1.0184h_3(x))$$

PCA - Principal Component Analysis, example

Let $T = \{(x^{(i)}, d^{(i)}), i = 1...N\}$ be the set of datapoints used for learning. $x^{(i)}$ is the feature vector and $d^{(i)}$ is the class label. $T = \{([0, 0]^T, 0), ([1, 1]^T, 0), ([0, 2]^T, 0), ([2, 0]^T, 0), ([7, 5]^T, 1), ([6, 6]^T, 1), ([5, 7]^T, 1)\}.$

- Calculate the covariance matrix of the input data.
- Reduce the dimensionality of the input data to one dimension by using PCA.

