Lösung zur Aufgabe der Woche

zur Analysis in einer Variable für das Lehramt

für 08.06.2020

Differenzieren zum Zweiten

Untersuche die Differenzierbarkeit der folgenden Funktionen und bestimme ihre Ableitungsfunktion falls möglich.

(a)
$$\sqrt{e^{\sin\sqrt{x}}}$$

(b)
$$\left(\frac{1+x}{1-x}\right)^{x^2}$$

Lösungsvorschlag:

(a) Da die einzelnen Funktionen differenzierbar sind (Exponentialfunktion, Sinus sowie Wurzel) dürfen wir die Kettenregel anwenden:

$$\left(\sqrt{e^{\sin\sqrt{x}}}\right)' = \frac{1}{2\sqrt{e^{\sin\sqrt{x}}}} e^{\sin\sqrt{x}} \cos(\sqrt{x}) \frac{1}{2\sqrt{x}}$$
$$= \frac{\cos(\sqrt{x})}{4\sqrt{x}} \frac{e^{\sin\sqrt{x}}}{\sqrt{e^{\sin\sqrt{x}}}}$$
$$= \frac{\cos(\sqrt{x})}{4\sqrt{x}} \sqrt{e^{\sin\sqrt{x}}}$$

(b) Hierbei handelt es sich wiederum um eine Verkettung mehrerer differenzierbarer Funktionen. Bei diesem Beispiel ist allerdings noch zusätzlich zu beachten, dass wir es hier mit einer allgemeinen Potenz zu haben:

$$\left(\left(\frac{1+x}{1-x} \right)^{x^2} \right)' = \left(\exp\left(x^2 \log\left(\frac{1+x}{1-x} \right) \right) \right)' \\
= \exp\left(x^2 \log\left(\frac{1+x}{1-x} \right) \right) \left(2x \log\left(\frac{1+x}{1-x} \right) + x^2 \left(\frac{1-x}{1+x} - \frac{1(1-x) - (1+x)(-1)}{(1-x)^2} \right) \right) \\
= \left(\frac{1+x}{1-x} \right)^{x^2} \left(2x \log\left(\frac{1+x}{1-x} \right) + x^2 \left(\frac{1-x}{1+x} - \frac{2}{(1-x)^2} \right) \right) \\
= \left(\frac{1+x}{1-x} \right)^{x^2} \left(2x \log\left(\frac{1+x}{1-x} \right) + \frac{2x^2}{1-x^2} \right) \\
= \left(\frac{1+x}{1-x} \right)^{x^2} 2x \left(\log\left(\frac{1+x}{1-x} \right) + \frac{x}{1-x^2} \right)$$