Nome & Cognome:	
-----------------	--

Algebra Lineare, Esame Finale Febbraio 8, 2024

- Tutto il lavoro deve essere unicamente vostro.
- L'utilizzo di calcolatrici è vietato.
- L'esame dura 2 ore.
- Scrivete il vostro nome su tutte le pagine, nel caso qualche foglio si staccasse.
- Controllate di avere tutte le 10 pagine dell'esame.
- Ogni domanda a risposta multipla vale 1 punto.
- Le risposte alle domande aperte valgono 11 punti l'una.
- Le domande aperte verranno corrette solo a chi totalizzi almeno 6 punti su 10 nella parte a crocette.

Buon Lavoro!

	PER	FAVOR	E MAF	RCATE	LE RIS	SPOSTE CON UN	NA X, non un cerchio!
1.	(a)	(ullet)	(c)	(d)	(e)		
2.	(a)	(b)	(c)	(ullet)	(e)		
3.	(a)	(b)	(c)	(ullet)	(e)		
4.	(a)	(b)	(ullet)	(d)	(e)		
5.	(a)	(b)	(c)	(ullet)	(e)		
6.	(a)	(b)	(c)	(ullet)	(e)		
7.	(ullet)	(b)	(c)	(d)	(e)		
8.	(a)	(b)	(c)	(d)	(ullet)		
9.	(a)	(b)	(c)	(d)	(ullet)		
10.	(a)	(ullet)	(c)	(d)	(e)		
						Non scrivere o	qua sotto!
						Risp. Multiple	
						Risp. Aperte	
						Totale	

Risposta multipla

1.(1 pt.) Trovare il numero $z \in \mathbb{C}$ tale che (i-1)(i-2)z = (i+1)(i+2)(i+3)?

- (a) z = 10 + 3i.
- (b) z = i 3. (c) z = 30 + 10i.
- (d) z = 3i 1.
- (e) z = 1 30i.

Soluzione. Calcoliamo: (i-1)(i-2) = 1-3i, e (i+1)(i+2)(i+3) = (1+3i)(i+3) = 10i, per cui l'egazione diventa (1-3i)z=10i, e

$$z = \frac{10i}{1 - 3i} = \frac{10i \cdot (\overline{1 - 3i})}{|1 - 3i|^2} = \frac{10i \cdot (1 + 3i)}{10} = i - 3.$$

2.(1 pt.) Quale degli seguenti insiemi **non** è un sottospazio di $\mathbb{R}_2[x]$:

- $\{p(x) \in \mathbb{R}_2[x] \mid p(0) = 0\}.$ (a)
- (b) $\{(t+s)x^2 tx s \mid s, t \in \mathbb{R}\}.$
- (c) $\{p(x) = ax^2 + bx + c \mid a = 2c, b = 0\}$. (d) $\{(1+t)x^2 + tx \mid t \in \mathbb{R}\}$.
- (e) $\{p(x) \in \mathbb{R}_2[x] \mid p(1) = 0 = p(2)\}.$

Soluzione 1. Si nota che il polinomio nullo non è nell'insieme (d), poiché p(x) = $(1+t)x^2+tx$ ha almeno uno dei coefficienti nonzero. Questo pertanto non può essere un sottospazio.

Soluzione 2. Prendendo due polinomi p_1 e p_2 in uno degli insiemi, si nota che abbiamo sempre anche $p_1 + p_2$ nello stesso insieme, tranne per (d) dove troviamo $(p_1 + p_2)(x) =$ $(2+t+s)x^2+(t+s)x$, allora un polinomio che non è del tipo dell'insieme.

3.(1 pt.) I polinomi

$$p_1(x) = x^2 + x + 1,$$
 $p_2(x) = x^2 + x - 1,$ $p_3(x) = x - 2$

formano una base di $\mathbb{R}_2[x]$. Il vettore delle coordinate di $q(x)=(x+1)^2$ in questa base

- (a) (1,2,1).
- (b) $(2p_1, -p_2, p_3)$. (c) (3, -2, -1).
- (d) (2,-1,1). (e) $(x^2,2x,1)$.

Soluzione 1. Dobbiamo calcolare (a, b, c) tali che $q(x) = x^2 + 2x + 1$ è uguale a $ap_1(x) + bp_2(x) + cp_3(x) = (a + b)x^2 + (a + b + c)x + (a - b - 2c)$:

$$\begin{cases} a+b=1\\ a+b+c=2\\ a-b-2c=1 \end{cases}$$

Sottraendo la seconda equazione alla prima si ottiene c=1 e le equazioni rimanenti danno a+b=1, a-b=3, da cui a=2 e b=-1. Dunque la soluzione è (2,-1,1).

Soluzione 2. Le risposte (b) e (e) non hanno senso. Per le altre tre risposte calcoliamo il polinomio con le coordinate date:

- (a) $p_1(x) + 2p_2(x) + p_3(x) = x^2 + x + 1 + 2x^2 + 2x 2 + x 2 = 3x^2 + 4x 3 \neq q(x)$,
- (c) $3p_1(x) 2p_2(x) p_3(x) = 3x^2 + 3x + 3 2x^2 2x + 2 x + 2 = x^2 + 7 \neq q(x)$,
- (d) $2p_1(x) p_2(x) + p_3(x) = 2x^2 + 2x + 2 x^2 x + 1 + x 2 = x^2 + 2x + 1 = q(x)$.

4.(1 pt.) Date le matrici

$$A = \begin{pmatrix} \sqrt{2} & 0 & -\sqrt{2} \\ \sqrt{3} & \sqrt{3} & 0 \\ \sqrt{5} & 0 & \sqrt{5} \end{pmatrix}, \quad B = \begin{pmatrix} \sqrt{3} & -\sqrt{2} & 0 \\ 0 & \sqrt{2} & \sqrt{5} \\ \sqrt{3} & 0 & \sqrt{5} \end{pmatrix}$$

calcolare tr(AB):

(a)
$$30$$
.

(b)
$$(\sqrt{2} + \sqrt{3} + \sqrt{5})^2$$
. (c)

(d)
$$\sqrt{30}$$
.

(e)
$$\sqrt{5}$$
.

Soluzione. Calcoliamo gli elementi sulla diagonale di AB:

$$AB = \begin{pmatrix} 0 & \star & \star \\ \star & 0 & \star \\ \star & \star & 5 \end{pmatrix}$$

per cui tr(AB) = 5.

Attenzione. $tr(AB) \neq tr(A) tr(B)$.

5.(1 pt.) La composizione $S \circ T$ di $S : \mathbb{R}^3 \to \mathbb{R}^2$, S(x,y,z) = (x+y,2z) e $T : \mathbb{R}^2 \to \mathbb{R}^3$, T(x,y) = (x + y, x - y, y) è:

- (a) $(x, y, z) \mapsto (2x, 2y, 2z)$.
- (b) $(x, y) \mapsto (x + 2y, 2x 2y)$.
- (c) $(x, y, z) \mapsto (x + y + 2z, x + y 2z, 2z)$.
- $(x,y)\mapsto (2x,2y).$ (d)
- Non è ben definito. (e)

Soluzione. $(S \circ T)(x, y, z) = S(T(x, y, z)) = S(x + y, x - y, y) = ((x + y) + (x - y), 2y) = ((x + y) + (x - y) + (x - y) + (x - y) = ((x + y) + (x - y), 2y) = ((x + y) + (x - y), 2y) = ((x + y) + (x - y) + (x - y) + (x - y) = ((x + y) + (x - y), 2y) = ((x + y) + (x - y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y) + (x - y) = ((x + y) + (x - y)$ (2x, 2y). La risposta corretta è quindi (d).

6.(1 pt.) Il nucleo dell'applicazione lineare $T: M(n) \to M(n), T(A) = A + A^T$:

- (a) Consiste in matrici diagonali.
- (b) Consiste nella matrice zero.
- Consiste di matrici simmetriche.
- Consiste in matrici antisimmetriche.
- (e) È vuoto.

Soluzione. $A \in \ker(T)$ se e solo se $T(A) = A + A^T = 0$, ovvero $A = -A^T$. In altre parole, $A \in \ker(T)$ se e solo se A è antisimmetrica.

7.(1 pt.) La forma quadratica $q(x) = 2x_1^2 + 2x_1x_2 + 2x_3^2$ si può scrivere come $q_S(x)$ con matrice S uguale a:

(a)
$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. (b) $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. (c) $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. (d) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$. (e) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

(d)
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
. (e) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

Soluzione. Ricordiamo che S è la matrice i cui elementi sulla diagonale sono i coefficienti degli x_i^2 (nel nostro caso uguali a 2,0,2), mentre gli altri coefficienti a_{ij} sono la metà del coefficiente di $x_i x_i$. Nel nostro caso:

$$S = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

8.(1 pt.) In $\mathbb{R}_2[x]$, sia dato il prodotto

$$\langle p(x), q(x) \rangle = p(0)q(0) + p(1)q(1) + p(-1)q(-1).$$

Rispetto a questo prodotto, l'angolo tra p(x) = x e $q(x) = x^2$ è:

(a)
$$x^3$$
.

(b)
$$\pi/4$$
. (c) 0.

$$(c) \quad 0$$

$$(d)$$
 1

(d) 1. (e)
$$\pi/2$$
.

Soluzione. Calcoliamo $\langle x, x^2 \rangle = 0 \cdot 0 + 1 \cdot 1 + (-1) \cdot 1 = 0$, per cui $\cos \theta = \frac{\langle x, x^2 \rangle}{\|x\| \cdot \|x^2\|} = 0$ e quindi $\theta = \pi/2$.

9.(1 pt.) Quale delle seguenti applicazioni lineari $T:\mathbb{C}^2\to\mathbb{C}^2$ non è autoaggiunto rispetto al prodottto hermitiano Euclideo?

(a)
$$T(x,y) = (2x - y, -x + 2\sqrt{2}y).$$

(b)
$$T(x,y) = (x - (i+2)y, (i-2)x + y).$$

(c)
$$T(x,y) = (x+2y,2x)$$
.

(d)
$$T(x,y) = (x - 2iy, 2ix + y).$$

(e)
$$T(x,y) = (2ix - (1+i)y, -(1-i)x + 2y).$$

Soluzione. Ricordiamo che una applicazione lineare T è autoaggiunta rispetto al prodotto Euclideo, se e solo se la matrice associata di T rispetto alla base canonica è Hermitiana (ovvero $A = {}^{t}A$). Calcoliamo le matrici associate agli operatori proposti:

$$(a) = \begin{pmatrix} 2 & -1 \\ -1 & 2\sqrt{2} \end{pmatrix} \quad (b) = \begin{pmatrix} 1 & -(i+2) \\ i-2 & 1 \end{pmatrix} \quad (c) = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$
$$(d) = \begin{pmatrix} 1 & -2i \\ 2i & 1 \end{pmatrix} \quad (e) = \begin{pmatrix} 2i & -(1+i) \\ -(1-i) & 2 \end{pmatrix}$$

L'unica non Hermitiana é la (e), in quanto ha un elemento non reale sulla diagonale.

10.(1 pt.) La distanza tra le rette $r_1 = (2,0,0) + \operatorname{Span}(1,1,1)$ e $r_2 = (1,2,0) + \operatorname{Span}(1,1,1)$ Span(-1, 1, -1) è:

(a)
$$2\sqrt{2}$$
.

(b)
$$\frac{1}{\sqrt{2}}$$
. (c) 2. (d) $\frac{4}{\sqrt{2}}$.

(d)
$$\frac{4}{\sqrt{2}}$$
.

Soluzione. Chiamiano $p_1=(2,0,0),\ v_1=(1,1,1)$ il punto e la direzione di $r_1,$ e similmente $p_2=(1,2,0),\ v_2=(-1,1,-1)$ il punto e la retta di r_2 . Ricordiamo la formula:

$$d(r_1, r_2) = \frac{|\det(p_1 - p_2, v_1, v_2)|}{\|v_1 \times v_2\|}$$

Calcoliamo

$$v_1 \times v_2 = (-2, 0, 2)$$
 \Rightarrow $||v_1 \times v_2|| = 2\sqrt{2}$
 $\det(p_1 - p_2, v_1, v_2) = \det\begin{pmatrix} 1 & -2 & 0\\ 1 & 1 & 1\\ -1 & 1 & -1 \end{pmatrix} = -2$

Per cui

$$d(r_1, r_2) = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Risposta aperta

Per ricevere punteggio parziale, dovete mostrare il vostro lavoro!

11.(11 pts.) Data la matrice

$$A = \left(\begin{array}{ccc} 2k & 0 & 0\\ 1 & 0 & 1\\ 0 & k^2 & 0 \end{array}\right)$$

con un parametro $k \in \mathbb{C}$.

- (1) Al variare di k, trovare gli autovalori di A.
- (2) Per quali valori di k la matrice A è diagonalizzabile?
- (3) Per k = i, trovare una base di autovettori di A.

Soluzione.

(1) Calcoliamo il polinomio caratteristico di A:

$$p_A(t) = \det \begin{pmatrix} 2k - t & 0 & 0 \\ 1 & -t & 1 \\ 0 & k^2 & -t \end{pmatrix} = (2k - t) \det \begin{pmatrix} -t & 1 \\ k^2 & -t \end{pmatrix}$$
$$= (2k - t)(t^2 - k^2) = (2k - t)(t - k)(t + k)$$

Pertanto gli autovalori di A sono k, -k, e 2k.

(2) Se $k \neq 0$, i tre autovalori sono tutti distinti, e dunque A è diagonalizzabile. Per k=0 la matrice diventa

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

e il polinomio caratteristico (calcolato prima) diventa $p_A(t) = -t^3$. In questo caso pertanto abbiamo solo un autovalore 0 con molteplicità algebrica 3, tuttavia la molteplicità geometrica è

$$m_g(0) = \dim \ker A = 3 - \operatorname{rk}(A) = 3 - \operatorname{rk}\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = 3 - 1 = 2 \neq 3$$

pertanto A non è diagonalizzabile se k = 0.

(3) Per k = i, la matrice diventa

$$A = \left(\begin{array}{ccc} 2i & 0 & 0\\ 1 & 0 & 1\\ 0 & -1 & 0 \end{array}\right)$$

e gli autovalori di A sono 2i, i, -i. Calcoliamo gli autovettori:

$$\frac{\lambda = 2i:}{V_{2i}} = \ker(A - 2i) = \ker\begin{pmatrix} 0 & 0 & 0 \\ 1 & -2i & 1 \\ 0 & -1 & -2i \end{pmatrix} \ \text{è dato da:}$$

$$V_{2i} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} 0 = 0 \\ x - 2iy + z = 0 \\ -y - 2iz = 0 \end{array} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} x = 3t \\ y = -2it \\ z = t \end{array} \right\} = \operatorname{Span} \begin{pmatrix} 3 \\ -2i \\ 1 \end{pmatrix}$$

$$\frac{\lambda = i:}{V_{i}} = \ker(A - i) = \ker\begin{pmatrix} i & 0 & 0 \\ 1 & -i & 1 \\ 0 & -1 & -i \end{pmatrix} \ \text{è dato da:}$$

$$V_{2i} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} ix = 0 \\ x - iy + z = 0 \\ -y - iz = 0 \end{array} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} x = 0 \\ y = -it \\ z = t \end{array} \right\} = \operatorname{Span} \begin{pmatrix} 0 \\ -i \\ 1 \end{pmatrix}$$

$$\frac{\lambda = -i:}{V_{-i}} = \ker(A + i) = \ker\begin{pmatrix} 3i & 0 & 0 \\ 1 & i & 1 \\ 0 & -1 & i \end{pmatrix} \ \text{è dato da:}$$

$$V_{2i} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} 3ix = 0 \\ x + iy + z = 0 \\ -y + iz = 0 \end{array} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{array}{c} x = 0 \\ y = it \\ z = t \end{array} \right\} = \operatorname{Span} \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$$

Pertanto la base ti autovettori è ottenuta scegliendo una base da ogni autospazio:

$$\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ -2i \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -i \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix} \right\}$$

12.(11 pts.) Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo dato da

$$T(^{t}(x, y, z)) = {}^{t}(x + 2y + 3z, 2x + 4y + 6z, 3x + 6y + 8z).$$

- (1) Determinare la matrice A associata a T rispetto alla base canonica di \mathbb{R}^3 , e calcolare il rango di T.
- (2) Calcolare **tutti** i vettori $^t(x, y, z)$ tali che $T(^t(x, y, z)) = ^t(5, 10, 5)$.
- (3) Determinare **tutti** i valori reali di k tali che il vettore ${}^{t}(k, k^{2}, 0)$ appartiene all'immagine di T.

Soluzione. (1) La matrice associata a T rispetto alla base canonica è la matrice con colonne $Te_1 = {}^t(1,2,3), Te_2 = {}^t(2,4,6)$ e $Te_3 = {}^t(3,6,8)$:

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 8 \end{array}\right)$$

Applichiamo l'algoritmo di Gauss ad A:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 8 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 3 & 6 & 8 \end{pmatrix} \xrightarrow{R_3 - 3R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \xrightarrow{R_3 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

La matrici a scalini ottenuta ha due pivots, dunque rk(A) = 2.

(2) Se $v = {}^t(x, y, z)$ è tale che $T(v) = {}^t(5, 10, 5)$, allora

$$\begin{pmatrix} x + 2y + 3z \\ 2x + 4y + 6z \\ 3x + 6y + 8z \end{pmatrix} = T(v) = \begin{pmatrix} 5 \\ 10 \\ 5 \end{pmatrix} \Rightarrow \begin{cases} x + 2y + 3z = 5 \\ 2x + 4y + 6z = 10 \\ 3x + 6y + 8z = 5 \end{cases}$$

Risolviamo il sistema:

$$\begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 6 & 10 \\ 3 & 6 & 8 & 5 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 0 & 0 \\ 3 & 6 & 8 & 5 \end{pmatrix} \xrightarrow{R_3 - 3R_1} \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -10 \end{pmatrix}$$

$$\xrightarrow{R_3 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & -1 & -10 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 + 3R_2} \begin{pmatrix} 1 & 2 & 0 & -25 \\ 0 & 0 & -1 & -10 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{-R_2} \begin{pmatrix} 1 & 2 & 0 & -25 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Le soluzioni richieste soddisfano pertanto le equazioni $x+2y=-25,\,z=10.$ In forma parametrica, abbiamo che

$$\left(\begin{array}{c} x\\y\\z \end{array}\right) = \left(\begin{array}{c} -25 - 2t\\t\\10 \end{array}\right)$$

(3) Ricordiamo che un vettore $w = \begin{pmatrix} k \\ k^2 \\ 0 \end{pmatrix} \in \mathbb{R}^3$ appartiene all'immagine di T se esiste

un vettore $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ che verifichi l'equazione Tv = w, ovvero tale che

$$\begin{pmatrix} x + 2y + 3z \\ 2x + 4y + 6z \\ 3x + 6y + 8z \end{pmatrix} = T(v) = w = \begin{pmatrix} k \\ k^2 \\ 0 \end{pmatrix}.$$

Come nel punto precedente, questo equivale a scrivere il sistema

$$\begin{cases} x + 2y + 3z = k \\ 2x + 4y + 6z = k^2 \\ 3x + 6y + 8z = 0 \end{cases} \leftrightarrow \begin{pmatrix} 1 & 2 & 3 & k \\ 2 & 4 & 6 & k^2 \\ 3 & 6 & 8 & 0 \end{pmatrix}$$

e i vettori $^t(k, k^2, 0)$ nell'immagine corrispondono ai valori di k per cui il sistema sopra ammette soluzione. Per Rouché Capelli, questo avviene quando il rango della matrice completa è uguale al rango della matrice dei coefficienti A, che è = 2 per il primo punto. Calcoliamo dunque:

$$\operatorname{rk} \left(\begin{array}{cc|c} 1 & 2 & 3 & k \\ 2 & 4 & 6 & k^{2} \\ 3 & 6 & 8 & 0 \end{array} \right) \xrightarrow{R_{2}-2R_{1}} \operatorname{rk} \left(\begin{array}{cc|c} 1 & 2 & 3 & k \\ 0 & 0 & 0 & k^{2}-2k \\ 3 & 6 & 8 & 0 \end{array} \right)$$

$$\xrightarrow{R_{3}-3R_{1}} \left(\begin{array}{cc|c} 1 & 2 & 3 & k \\ 0 & 0 & 0 & k^{2}-2k \\ 0 & 0 & -1 & -3k \\ 0 & 0 & 0 & k^{2}-2k \end{array} \right) \xrightarrow{R_{3}\leftrightarrow R_{2}} \left(\begin{array}{cc|c} 1 & 2 & 3 & k \\ 0 & 0 & -1 & -3k \\ 0 & 0 & 0 & k^{2}-2k \end{array} \right)$$

Il rango di questa matrice è 2 se e solo se la terza riga non ha pivot, cioè se e solo se $k^2 - 2k = k(k-2) = 0$. Pertanto, $w = {}^t(k, k^2, 0)$ appartiene all'immagine di T, se e solo se il sistema T(v) = w ammette soluzione, se e solo se $k \in \{0, 2\}$.