

Validity Threats

Samuel Fricker | sfr@bth.se | 111130

www.bth.se

BLEKINGE INSTITUTE OF TECHNOLOGY

Research

Every Research is Flawed

- What are potential problems?
- How can we plan research and report results to
 - be ethically correct?
 - remain credible?

Contents

Understand

Threats to validity

Agenda

- Threats to Validity in Experimentation
- Threats to Validity in Other Research Methods

Theory vs. Observation

- Research Questions: Which prioritization technique is superior?
 - Pair-wise comparisons
 - Planning game
- Constructs: superior =
 - Time to conclude prioritization is shorter
 - Technique is easier to use
 - Prioritization results are more accurate

Pairwise Comparisons (PWC): Analysis

Weight	Count	ID	Item	Preferences					
30%	3	a	Acquisition	a	d	a	а		
20%	2	b	Debt Collection	е	b	b			
20%	2	С	VAT	С	С				
10%	1	d	Reporting	е					
20%	2	е	Interfaces			Doir	vico	Comi	aarican
						Pall	vise	Comp	oarisor

Planning Game (PG):
 Dialogue between customer and developers

Developers estimate risk and effort, while customer clarifies.

3. Customer selects the highest-value set of requirements that are feasible withing given budget.

- Research Questions: Which prioritization technique is superior?
 - Pair-wise comparisons (PWC)
 - Planning game (PG)
- Hypotheses
 - H₀1: Time to conclude prioritization is equal
 - H₀2: The ease of use of the techniques is equal
 - H₀3: The accuracy of the prioritization results is equal
 - H_A1: Time to conclude prioritization is NOT equal
 - H_A1: The ease of use of the techniques is NOT equal
 - H_A1: The accuracy of the prioritization results is NOT equal

Karlsson et al (2006): Pair-wise comparisons versus planning game partitioning—experiments on requirements prioritisation techniques. Empirical Software Engineering 12:3-33.

Conducted Activities

Results: time

Karlsson et al (2006): Pair-wise comparisons versus planning game partitioning—experiments on requirements prioritisation techniques. Empirical Software Engineering 12:3-33.

Results: accuracy

Nbr of requirements	Criteria	Favour PG	Equal	Favour PWC
8	Value	6	2	0
	Price	1	3	4
16	Value	4	1	3
	Price	4	2	2
Total		15	8	9
Total %		47%	25%	28%

Results: ease of use

Nbr of requirements	PG much easier	Easier	Equally easy	Easier	PWC much easier
8	4	3	1	0	0
16	4	1	2	1	0
Total	8	4	3	1	0
Total %	50%	25 %	19%	6%	0%

Validity Threat Categories

Conclusion Validity

- Are we observing a relationship?
 - Is the relationship between treatment and outcome statistically significant?

Conclusion Validity Threats

Example: Requirements Prioritization Study

- Mitigated
 - Robust statistical techniques are used: nonparametric tests because data was not normally distributed
 - High measurement realiability: wording and work support were piloted and adjusted
- Remaining
 - Statistical power is low: only 16 subjects used
 - Measurement objectivity: ease of use and accuracy are subjective

Typical Conclusion Validity Threats

- Low statistical power
- Violated assumption of statistical tests
- Fishing and the error rate
 - The researchers may influence the result by looking for a specific outcome
- Reliability of measures
- Reliability of treatment implementation
- Random irrelevancies in experimental setting
 - Elements outside the experimental setting may disturb the results
- Random heterogeneity of subjects
 - Variation due to individual differences is larger than due to the treatment.

Internal Validity

- Does the treatment affect the outcome?
 - Is the relationship between treatment and outcome causal?

Internal Validity Threats

Example: Requirements Prioritization Study

- Mitigated
 - Consistency of the results does not differ: learning effects did not affect the experiment
 - Consistency index for PWC did not change: subjects did not get tired during the experiment (concentration not affected)
 - Time used and consistency of the results do not correlate: there was no group pressure to rush
- Remaining
 - (none reported)

Typical Internal Validity Threats

- History
- Maturation
- Testing
 - Subjects learn and improve when they know the results
- Instrumentation
 - Documents and forms can hint at desired results
- Statistical regression
 - Subjects are grouped according to their pre-experiment performance
- Selection
 - Subjects are grouped according to their natural performance
- Mortality
 - Subject that drop out may have particular characteristics
- Ambiguity about direction of causal influence
 - (A correlates with B) is not the same as (A implies B)
- Diffusion or imitation of treatments
 - One group may imitate the other group
- Compensatory equalization of treatments
 - Compensation of the non-treatment affects the behavior of the control group
- Compensatory rivalry
 - Subjects receiving less desirable treatments may reduce the expected outcome
- Resentful demoralization
 - Subjects receiving less desirable treatments may give up

Correlation and Causation

- Examples of wrong causation
 - The more firemen fighting a fire, the bigger the fire is observed to be. Therefore firemen cause fire.
 - Increased pressure is associated with increased temperature.
 Therefore pressure causes temperature.
 - As ice cream sales increase, the rate of drowning deaths increases sharply. Therefore, ice cream causes drowning.
 - With a decrease in the number of pirates, there has been an increase in global warming over the same period. Therefore, global warming is caused by a lack of pirates.
- Determining causation:
 - Equality of groups
 - Comparison of treatment vs. no treatment
 - Confirming absence of internal threats
 - Statistical testing of likeliness of the treatment having a causal effect on the disease (e.g. P-value).

Construct Validity

- Do we observe the right things?
 - Does the treatment reflect the cause construct?
 - Does the outcome reflect the effect construct?

Theory

Construct Validity Threats

Example: Requirements Prioritization Study

- Remaining
 - Judgment of accuracy may be flawed: subjects had their own interpretation of the requirements (requirements initially not explained)

Typical Construct Validity Threats

- Inadequate preoperational explication of constructs
- Mono-operation bias
 - A single independent variable, case, subject or treatment may under-represent cause constructs
- Mono-method bias
 - A single measurement variable may under-represent effect constructs
- Confounding constructs and levels of constructs
 - Variables are sometimes not binary, but have more values
- Interaction of different treatments
 - Treatments from different studies may interact
- Interaction of testing and treatment
 - The testing itself may make subjects more sensitive to the treatment
- Restricted generalizability across constructs
 - A construct may be interpreted in inconsistent ways
- Hypothesis guessing
 - Subjects may guess the intended results of the study
- Evaluation apprehension
 - People try to look better when being evaluated (Hawthorne effect)
- Experimenter expectancies
 - Experimenter can bias the study unconsciously

External Validity

Can the results be generalized outside the scope of the study?

External Validity Threats

Example: Requirements Prioritization Study

- Remaining
 - Subjects are sampled from software engineering PhD students. One study shows, however, that if a student experiment shows that one technique is better than another it is rather unlikely that professionals would come to the opposite conclusion.
 - Number of prioritised requirements is few.
 - The requirements used in this experiment are rather independent.

Typical External Validity Threats

- Interaction of selection and treatment
 - Having a subject population not representative of the population we want to generalize
- Interaction of setting and treatment
 - Not having the experimental setting or material representative of, for example, industrial practice
- Interaction of history and treatment
 - The experiment is conducted on a special time or day which affects the results

Contents

Understand

Threats to validity

Agenda

- Threats to Validity in Experimentation
- Threats to Validity in Other Research Methods

Exercise

- Goal:
 - Understand specific kinds of validity threats
- Research types:
 - SLR
 - Case study
 - Survey
- Tasks
 - Study research report
 - Summarize study design and results
 - Discuss reported threats to validity and their differences with those of an experimental setting

Contents

Understand

Threats to validity

Agenda

- Threats to Validity in Experimentation
- Threats to Validity in Other Research Methods