BERLIN, 10.06.2025

HOMOMORPHE VERSCHLÜSSELUNG EINE KRYPTOLOGISCHE PERSPEKTIVE

Dr. Matthias Minihold (Referatsleiter Kryptologie)
Agentur für Innovation in der Cybersicherheit GmbH

DAS CLOUD-ZEITALTER

"CLOUD COMPUTING IST DAS RÜCKGRAT DER DIGITALISIERUNG"

DIGITALISIERUNG IM CLOUD-ZEITALTER BEDEUTET:

- EXPONENTIELLER DATENZUWACHS (PRIVAT, MEDIZINISCH, VERWALTUNG, ...)
- VERLAGERUNG SENSIBLER DATEN IN GEMEINSAM GENUTZTE CLOUDS

Anforderungen: Vertraulichkeit, Integrität und Verfügbarkeit

KERNFRAGE: WIE BLEIBT SICHERHEIT UND DATENSCHUTZ GEWAHRT?

Ø ZIEL: SICHERE SPEICHERUNG, NUTZUNG UND VERARBEITUNG IN DER CLOUD.

(VOLL)HOMOMORPHE VERSCHLÜSSELUNG

SCHEMA / PROTOKOLLABLAUF

MULTIPARTY COMPUTATION

Andere Szenarien profitieren von MPC (z.B.: via Secret Sharing)

HOMOMORPHE VERSCHLÜSSELUNG

VARIANTEN

PARTIALLY HOMOMORPHIC ENCRYPTION (PHE): ERMÖGLICHT ANWENDUNG
 EINER MATHEMATISCHEN OPERATION AUF DEN VERSCHLÜSSELTEN DATEN.

Entweder additiv homomorph oder multiplikativ homomorph

• SOMEWHAT HOMOMORPHIC ENCRYPTION (SHE): ERMÖGLICHT (BEGRENZTE) ANWENDUNG **MEHRERER** MATHEMATISCHER OPERATIONEN AUF DEN DATEN.

• FULLY HOMOMORPHIC ENCRYPTION (FHE): ERMÖGLICHT BELIEBIG OFTMALIGE ANWENDUNG MATHEMATISCHER OPERATIONEN AUF VERSCHLÜSSELTEN DATEN.

BEGRIFFSERKLÄRUNG HOMOMORPHISMUS

DEFINITION: GRUPPE

Eine Gruppe ist ein Paar (G, \circ) . G ist eine Menge und \circ eine zweistellige Verknüpfung $\circ: G \times G \to G$ und $(a, b) \mapsto a \circ b$.

mit den folgenden Eigenschaften:

- Assoziativität $\forall a, b, c \in G : (a \circ b) \circ c = a \circ (b \circ c)$
- neutrales Element: $\exists e \in G \ \forall a \in G : a \circ e = e \circ a = a$
- inverses Element: $\forall a \in G \exists a^{-1} \in G : a \circ a^{-1} = a^{-1} \circ a = e$

Eine Gruppe heißt abelsch, wenn das Kommutativgesetz gilt:

$$\forall a, b \in G : a \circ b = b \circ a$$

BEGRIFFSERKLÄRUNG HOMOMORPHISMUS

DEFINITION: GRUPPENHOMOMORPHISMUS

Seien (G,\circ) und (F,\circ) Gruppen, dann heißt die Abbildung $f\colon G \to F$ Gruppenhomomorphismus, wenn $\forall a,b \in G$ gilt: $f(a\circ b)=f(a)\circ f(b)$

Beispiel: Die Exponentialfunktion $f(x) = e^x$ ist ein *Homomorphismus* der additiven Gruppe der reellen Zahlen in die multiplikative Gruppe der positiven reellen Zahlen. Es gilt: $f(a + b) = e^{a+b} = e^a e^b = f(a)f(b)$.

MODULARE ARITHMETIK

ZAHLENBEISPIEL

Modulare Arithmetik basiert auf "Division mit Rest"; $a\ mod\ p=r$ heißt, dass beim Teilen von $a\ durch\ p$ Rest r bleibt.

$$69 \ mod \ 11 = 3$$

$$69 \ mod \ 10 = 9$$

$$69 = 6 * 11 + 3$$

$$69 = 6 * 10 + 9$$

Der konkrete Faktor ist egal!

Der konkrete Faktor ist egal!

HOMOMORPHE VERSCHLÜSSELUNG

Ver- und Entschlüsselung

Um ein Bit $m \in \{0,1\}$ zu verschlüßeln, wählt man ganze Zahlen q und p zufällig, mit der Bedingung 2r < p-1 und definieren die Ganzzahl c als Chiffretext wie folgt:

$$c = pq + 2r + m$$

Der Rest cmod p hat damit die gleiche Parität wie der Klartext m.

Entschlüsselung: Mit dem geheimen Schlüssel p bekommt man den Klartext:

$$c \pmod{p} = 2r + m \text{ und somit: } m = (c \pmod{p}) \pmod{2}$$

HOMOMORPHE VERSCHLÜSSELUNG - ADDITION

ZAHLENBEISPIEL

Wir betrachten die **Summe** zweier Chiffretexte

$$c_1 = pq_1 + 2r_1 + m_1$$
, $c_2 = pq_2 + 2r_2 + m_2$,
 $c_1 + c_2 = p(q_1 + q_2) + 2(r_1 + r_2) + (m_1 + m_2)$.

Entschlüsselung: Mit dem geheimen Schlüssels p kann man die Summe entschlüsseln:

$$(c_1+c_2) (mod p) = 2(r_1+r_2) + (m_1+m_2),$$

 $m_1 + m_2 = ((c_1+c_2)(mod p))(mod 2).$

MIT DER RANDBEDINGUNG: $2(r_1 + r_2) <math>\xrightarrow{D. H.}$ $r_i < \frac{p-2}{4}$.

HOMOMORPHE VERSCHLÜSSELUNG - ADDITION

ZAHLENBEISPIEL

$$c_1 = pq_1 + 2r_1 + m_1, \qquad \qquad \textit{Beispiel}: \ c_1 = 11 * 6 + 4 * 2 + 1 = 75, \\ c_2 = pq_2 + 2r_2 + m_2, \qquad \qquad c_2 = 11 * 5 + 3 * 2 + 0 = 61, \\ c_1 + c_2 = p(q_1 + q_2) + 2(r_1 + r_2) + (m_1 + m_2). \qquad c_1 + c_2 = 134 = 11(6 + 5) + (4 + 3)2 + (1 + 0) = 121 + 14 + 1. \\ \text{DER GEHEIME SCHLÜSSEL SEI } p = 19, \qquad \overset{\text{D. H.}}{\longrightarrow} \quad r_i < \frac{17 - 2}{4} = 4.25, \ \textit{SEIEN } r_1 = 4, r_2 = 3, \\ \textit{UND DIE NACHRICHTENBITS GEGEBEN ALS } m_1 = 1 \ \text{UND } m_2 = 0. \\ \end{cases}$$

Entschlüsselung: Mit dem Schlüssel p=19 kann man die Summe berechnen.

$$(c_1+c_2)\ (mod\ p)$$
 = $2(r_1+r_2)+(m_1+m_2)$, Beispiel: 134 $(mod\ 19)$ = $7*$ 19 +1 $(mod\ 19)$ = 1, $m_1+m_2=\big((c_1+c_2)(mod\ p)\big)(mod\ 2)$. $m_1+m_2=1+0=1=1\ (mod\ 2)$.

HOMOMORPHE VERSCHLÜSSELUNG - MULTIPLIKATION

ZAHLENBEISPIEL

WIR BETRACHTEN DAS **PRODUKT** ZWEIER CHIFFRETEXTE

$$c_1 = pq_1 + 2r_1 + m_1$$
, $c_2 = pq_2 + 2r_2 + m_2$,

$$c_1c_2 = p(q_1q_2p + 2q_1r_2 + 2q_2r_1 + q_1m_2 + q_2m_1) + 2(2r_1r_2 + m_1r_2 + m_2r_1) + (m_1m_2).$$

Entschlüsselung: Mit dem geheimen Schlüssel p kann man das Produkt entschlüsseln:

$$(c_1c_2) (mod p) = 2(2r_1r_2 + m_1r_2 + m_2r_1) + (m_1m_2),$$

$$m_1m_2 = ((c_1c_2)(mod p))(mod 2).$$

Es gilt die Randbedingung:
$$2(2r_1r_2 + r_2 + r_1) .$$

FULLY HOMOMORPHIC ENCRYPTION (FHE) BOOTSTRAPPING

- **HOMOMORPHIC ENCRYPTION** ERLAUBT **BEGRENZTE** ANZAHL AN RECHENOPERATIONEN.
- Anwendung homomorpher Operationen führt zu Fehlerwachstum im Chiffrat.
- Hauptinnovation für FHE war die Einführung der Bootstrapping-Technik, die Chiffretexte auffrischt und das Fehlernivaeu verringert, um weiterzurechnen.
- DURCH **FULLY HOMOMORPHIC ENCRYPTION** KÖNNEN **MATHEMATISCHE OPERATIONEN BELIEBIG OFT** AUF FHE-VERSCHLÜSSELTEN DATENSÄTZEN ANGEWENDET WERDEN.

HERAUSFORDERUNGEN FÜR ENCRYPTED COMPUTING

SKALIERUNG, VERTRAUEN UND RECHTSLAGE

1. ... BEZÜGLICH EFFIZIENZ & SKALIERUNG

- HOMOMORPHE VERSCHLÜSSELUNG: ALGORITHMISCH EFFIZIENZ STEIGERN
- SICHERE MEHR-PARTEIEN BERECHNUNG: KOMMUNIKATIONSAUFWAND SENKEN

2. ... BEZÜGLICH VERTRAUENSWÜRDIGE UMGEBUNG & KRYPTOAKTUALITÄT

- NOTWENDIGKEIT AUDITIERBARER & OFFENER IMPLEMENTIERUNGEN
- MATHEMATISCHE ERKENNTNISSE, **KRYPTANALYSE** & SEITENKANALANGRIFFE

3. ... BEZÜGLICH RECHTSLAGE & DATENFLÜSSE

INTERNATIONALE CLOUDANBIETER +> DATENSCHUTZ EUROPÄISCH & NATIONAL