lab1_block2

Thijs Quast 30-11-2018

${\bf Contents}$

Question 1 Ensemble Methods	2
Question 2 Mixture Models	4
Appendix	96

Question 1 Ensemble Methods

```
# Loading packages and importing files ####
library(mboost)
## Loading required package: parallel
## Loading required package: stabs
## This is mboost 2.9-1. See 'package?mboost' and 'news(package = "mboost")'
## for a complete list of changes.
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
##
       margin
## The following object is masked from 'package:mboost':
##
       %+%
sp <- read.csv2("spambase.csv", header = FALSE, sep = ",", stringsAsFactors = FALSE)</pre>
num_sp <- data.frame(data.matrix(sp))</pre>
num_sp$V58 <- factor(num_sp$V58)</pre>
# shuffling data and dividing into train and test ####
n <- dim(num_sp)[1]</pre>
ncol <- dim(num_sp)[2]</pre>
set.seed(1234567890)
id \leftarrow sample(1:n, floor(n*(2/3)))
train <- num_sp[id,]</pre>
test <- num_sp[-id,]</pre>
# Adaboost
ntree <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
error <- c()
for (i in seq(from = 10, to = 100, by = 10)){
bb <- blackboost(V58 ~., data = train, control = boost_control(mstop = i), family = AdaExp())
bb_predict <- predict(bb, newdata = test, type = c("class"))</pre>
confusion_bb <- table(test$V58, bb_predict)</pre>
miss_class_bb <- (confusion_bb[1,2] + confusion_bb[2,1])/nrow(test)</pre>
error[(i/10)] <- miss_class_bb</pre>
}
error_df <- data.frame(cbind(ntree, error))</pre>
# Random forest ####
ntree_rf <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
```

```
error_rf <- c()

for (i in seq(from = 10, to = 100, by = 10)){
    rf <- randomForest(V58 ~., data = train, ntree= 10)
    rf_predict <- predict(rf, newdata = test, type = c("class"))
    confusion_rf <- table(test$V58, rf_predict)
    miss_class_rf <- (confusion_rf[1,2] + confusion_rf[2,1])/nrow(test)
    error_rf[i/10] <- miss_class_rf
}

error_df_rf <- data.frame(cbind(ntree_rf, error_rf))

df <- cbind(error_df, error_df_rf)
    df <- df[, -3]

plot_final <- ggplot(df, aes(ntree)) +
        geom_line(aes(y=error, color = "Adaboost")) +
        geom_line(aes(y=error_rf, color = "Random forest"))

plot_final <- plot_final + ggtitle("Error rate vs number of trees")
    plot_final</pre>
```

Error rate vs number of trees

The error rate for the AdaBoost model are clearly going down when the number of trees increases. Finally the model arrives at an error rate below 7% when 100 trees are included in the model. For the randomforest the pattern is less obvious, the error rate seems to go up and down as the number of trees in the model increases. 50 trees result in the lowest error rate. This error rate is also lower than the error rate produced by the best Adaboost model (100 trees). Therefore, for this spam classification, a randomforest with 50 trees

Question 2 Mixture Models

```
my_own_em <- function(K){</pre>
# 2 - Mixture Models ####
set.seed(1234567890)
max_it <- 100 # max number of EM iterations</pre>
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions
x <- matrix(nrow=N, ncol=D) # training data
true_pi <- vector(length = K) # true mixing coefficients</pre>
true_mu <- matrix(nrow=K, ncol=D) # true conditional distributions</pre>
true pi=c(rep(1/3, K))
if (K == 2){
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
else if (K == 3){
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
  points(true_mu[3,], type="o", col="green")
}else{
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
points(true_mu[4,], type="o", col="yellow")
# Producing the training data
for(n in 1:N) {
 k <- sample(1:K,1,prob=true_pi)</pre>
  for(d in 1:D) {
    x[n,d] \leftarrow rbinom(1,1,true_mu[k,d])
}
 # number of quessed components
```

```
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
# Random initialization of the paramters
pi <- runif(K,0.49,0.51)</pre>
pi <- pi / sum(pi)
for(k in 1:K) {
 mu[k,] \leftarrow runif(D,0.49,0.51)
}
рi
mıı
for(it in 1:max it) {
  if (K == 2){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
  else if (K == 3){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
  }else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")
  }
  Sys.sleep(0.5)
  # E-step: Computation of the fractional component assignments
  m <- matrix(NA, nrow = 1000, ncol = k)</pre>
  #Here I create the Bernouilli probabilities, lecture 1b, slide 7. I use 3 loops to do it for the thre
  # not very efficient, but it works.
  for (j in 1:k){
    for(each in 1:nrow(x)){
      row <- x[each,]
      vec <- c()
      for (i in 1:10) {
        a <- mu[j,i]^row[i]
        b \leftarrow a * ((1-mu[j,i])^(1-row[i]))
        vec[i] <- b
        c <- prod(vec)
      m[each, j] \leftarrow c
  }
  # Here I create a empty matrix, to store all values for the numerator of the formula on the bottom of
  # slide 9, lecture 1b.
  m2 \leftarrow matrix(NA, ncol = k, nrow = 1000)
  # m2 stores all the values for the numerator of the formula on the bottom of slide 9, lecture 1b.
  for (i in 1:1000){
    a <- pi * m[i,]
```

```
m2[i,] <- a
  }
  # Sum m2 to get the denominator of the formula on the bottom of slide 9, lecture 1b.
  m2_sum <- rowSums(m2)</pre>
  m_final \leftarrow m2 / m2_sum
  #Log likelihood computation.
  11 <- matrix(nrow = 1000, ncol = K)</pre>
  for (j in 1:K){
   for (i in 1:1000){
      ll[i, j] \leftarrow sum(((x[i,] * log(mu[j,])) + (1 - x[i,])*log(1-mu[j,])))
  }
  11 <- 11 + pi
  llnew <- m_final * 11</pre>
  llik[it] <- sum(rowSums(llnew))</pre>
  cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
  flush.console()
  # Stop if the lok likelihood has not changed significantly
  if (it != 1){
  if (abs(llik[it] - llik[it-1]) < min_change) {break}</pre>
  #M-step: ML parameter estimation from the data and fractional component assignments
  # Create the numerator for pi, slide 9, lecture 1b.
  numerator_pi <- colSums(m_final)</pre>
  # Create new values for pi, stored in the vector pi_new
  pi_new <- numerator_pi / N</pre>
  pi_new
  mnew <- matrix(NA, nrow = 1000, ncol = 10)</pre>
  mu_new <- matrix(NA, nrow = K, ncol = 10)</pre>
  for (j in 1:k){
    for (i in 1:1000){
      row <- x[i,] * m_final[i,j]
      mnew[i,] <- row</pre>
    mnewsum <- colSums(mnew)/numerator_pi[j]</pre>
    mu_new[j,] <- mnewsum</pre>
  # Now, to create the iterations, I have to run the code again and again, and specifying mu as new the
  # created for mu. Same goes for the other variables.
  mu <- mu_new
  pi <- pi_new
z <- m_final
output1 <- pi
output2 <- mu
```

```
output3 <- plot(llik[1:it], type="o")</pre>
result <- list(c(output1, output2, output3))</pre>
return(result)
}
my_own_em(2)
       0.8
true_mu[1, ]
       9.0
       0.4
       0.2
       0.0
                        2
                                          4
                                                            6
                                                                              8
                                                                                               10
                                                     Index
       0.8
       9.0
       0.4
       0.2
       0.0
                        2
                                          4
                                                            6
                                                                              8
                                                                                               10
                                                     Index
```

iteration: 1 log likelihood: -6430.751

iteration: 2 log likelihood: -6417.599

iteration: 3 log likelihood: -6270.298

iteration: 4 log likelihood: -5381.969

iteration: 5 log likelihood: -4538.463

iteration: 6 log likelihood: -4463.134

iteration: 7 log likelihood: -4455.903

iteration: 8 log likelihood: -4453.165

iteration: 9 log likelihood: -4451.653

iteration: 10 log likelihood: -4450.674

iteration: 11 log likelihood: -4449.981

iteration: 12 log likelihood: -4449.461

iteration: 13 log likelihood: -4449.057

iteration: 14 log likelihood: -4448.734

iteration: 15 log likelihood: -4448.47

iteration: 16 log likelihood: -4448.251

iteration: 17 log likelihood: -4448.068

iteration: 18 log likelihood: -4447.913

iteration: 19 log likelihood: -4447.781

iteration: 20 log likelihood: -4447.669

iteration: 21 log likelihood: -4447.571

[[1]]
[1] 0.511053119 0.488946881 0.493173475 0.498954318 0.397460637
[6] 0.625582274 0.596781124 0.380436306 0.278547959 0.717147834
[11] 0.692791708 0.323034348 0.218495730 0.777869929 0.801849083
[16] 0.204955853 0.111647688 0.914091323 0.880544386 0.089979192
[21] 0.004290353 0.999714736

my_own_em(3)

iteration: 1 log likelihood: -6597.778

iteration: 2 log likelihood: -6595.239

iteration: 3 log likelihood: -6592.753

iteration: 4 log likelihood: -6573.7

iteration: 5 log likelihood: -6446.022

iteration: 6 log likelihood: -5978.865

iteration: 7 log likelihood: -5537.074

iteration: 8 log likelihood: -5429.225

iteration: 9 log likelihood: -5401.95

iteration: 10 log likelihood: -5389.023

iteration: 11 log likelihood: -5380.443

iteration: 12 log likelihood: -5373.845

iteration: 13 log likelihood: -5368.41

iteration: 14 log likelihood: -5363.759

iteration: 15 log likelihood: -5359.682

iteration: 16 log likelihood: -5356.051

iteration: 17 log likelihood: -5352.782

iteration: 18 log likelihood: -5349.816

iteration: 19 log likelihood: -5347.113

iteration: 20 log likelihood: -5344.641

iteration: 21 log likelihood: -5342.375

iteration: 22 log likelihood: -5340.295

iteration: 23 log likelihood: -5338.385

iteration: 24 log likelihood: -5336.63

iteration: 25 log likelihood: -5335.015

iteration: 26 log likelihood: -5333.529

iteration: 27 log likelihood: -5332.16

iteration: 28 log likelihood: -5330.9

iteration: 29 log likelihood: -5329.738

iteration: 30 log likelihood: -5328.666

iteration: 31 log likelihood: -5327.676

iteration: 32 log likelihood: -5326.762

iteration: 33 log likelihood: -5325.917

iteration: 34 log likelihood: -5325.135

iteration: 35 log likelihood: -5324.41

iteration: 36 log likelihood: -5323.739

iteration: 37 log likelihood: -5323.115

iteration: 38 log likelihood: -5322.537

iteration: 39 log likelihood: -5321.999

iteration: 40 log likelihood: -5321.498

iteration: 41 log likelihood: -5321.031

iteration: 42 log likelihood: -5320.596

iteration: 43 log likelihood: -5320.19

iteration: 44 log likelihood: -5319.81

iteration: 45 log likelihood: -5319.454

iteration: 46 log likelihood: -5319.121

iteration: 47 log likelihood: -5318.809

iteration: 48 log likelihood: -5318.515

iteration: 49 log likelihood: -5318.239

iteration: 50 log likelihood: -5317.979

iteration: 51 log likelihood: -5317.734

iteration: 52 log likelihood: -5317.503

iteration: 53 log likelihood: -5317.284

iteration: 54 log likelihood: -5317.077

iteration: 55 log likelihood: -5316.881

iteration: 56 log likelihood: -5316.695

iteration: 57 log likelihood: -5316.518

iteration: 58 log likelihood: -5316.349

iteration: 59 log likelihood: -5316.189

iteration: 60 log likelihood: -5316.036

iteration: 61 log likelihood: -5315.89

iteration: 62 log likelihood: -5315.75

iteration: 63 log likelihood: -5315.616

iteration: 64 log likelihood: -5315.487

iteration: 65 log likelihood: -5315.364

iteration: 66 log likelihood: -5315.246

iteration: 67 log likelihood: -5315.132

iteration: 68 log likelihood: -5315.022

iteration: 69 log likelihood: -5314.916

iteration: 70 log likelihood: -5314.814

iteration: 71 log likelihood: -5314.715


```
## [[1]]
## [1] 0.32411556 0.30717327 0.36871116 0.47383554 0.49067297 0.50907301
## [7] 0.38106095 0.47962547 0.58355730 0.62860603 0.47050854 0.41965465
## [13] 0.30784064 0.47936473 0.71594258 0.69512193 0.53269167 0.29039403
## [19] 0.19764738 0.49158731 0.76736739 0.78836950 0.46597001 0.23146477
## [25] 0.13424145 0.48919757 0.85221677 0.89207742 0.49348782 0.10652662
## [31] 0.01757154 0.39918885 0.99992807
```


iteration: 1 log likelihood: -6680.657

iteration: 2 log likelihood: -6654.874

iteration: 3 log likelihood: -6650.741

iteration: 4 log likelihood: -6628.679

iteration: 5 log likelihood: -6525.998

iteration: 6 log likelihood: -6241.218

iteration: 7 log likelihood: -5962.695

iteration: 8 log likelihood: -5852.656

iteration: 9 log likelihood: -5804.099

iteration: 10 log likelihood: -5774.053

iteration: 11 log likelihood: -5754.55

iteration: 12 log likelihood: -5741.968

iteration: 13 log likelihood: -5733.572

iteration: 14 log likelihood: -5727.573

iteration: 15 log likelihood: -5722.953

iteration: 16 log likelihood: -5719.164

iteration: 17 log likelihood: -5715.91

iteration: 18 log likelihood: -5713.019

iteration: 19 log likelihood: -5710.383

iteration: 20 log likelihood: -5707.926

iteration: 21 log likelihood: -5705.593

iteration: 22 log likelihood: -5703.335

iteration: 23 log likelihood: -5701.111

iteration: 24 log likelihood: -5698.879

iteration: 25 log likelihood: -5696.603

iteration: 26 log likelihood: -5694.243

iteration: 27 log likelihood: -5691.767

iteration: 28 log likelihood: -5689.141

iteration: 29 log likelihood: -5686.341

iteration: 30 log likelihood: -5683.349

iteration: 31 log likelihood: -5680.162

iteration: 32 log likelihood: -5676.789

iteration: 33 log likelihood: -5673.256

iteration: 34 log likelihood: -5669.605

iteration: 35 log likelihood: -5665.886

iteration: 36 log likelihood: -5662.158

iteration: 37 log likelihood: -5658.48

iteration: 38 log likelihood: -5654.903

iteration: 39 log likelihood: -5651.468

iteration: 40 log likelihood: -5648.201

iteration: 41 log likelihood: -5645.114

iteration: 42 log likelihood: -5642.206

iteration: 43 log likelihood: -5639.468

iteration: 44 log likelihood: -5636.879

iteration: 45 log likelihood: -5634.418

iteration: 46 log likelihood: -5632.056

iteration: 47 log likelihood: -5629.768

iteration: 48 log likelihood: -5627.526

iteration: 49 log likelihood: -5625.304

iteration: 50 log likelihood: -5623.08

iteration: 51 log likelihood: -5620.832

iteration: 52 log likelihood: -5618.543

iteration: 53 log likelihood: -5616.204

iteration: 54 log likelihood: -5613.809

iteration: 55 log likelihood: -5611.36

iteration: 56 log likelihood: -5608.87

iteration: 57 log likelihood: -5606.356

iteration: 58 log likelihood: -5603.846

iteration: 59 log likelihood: -5601.369

iteration: 60 log likelihood: -5598.96

iteration: 61 log likelihood: -5596.652

iteration: 62 log likelihood: -5594.475

iteration: 63 log likelihood: -5592.454

iteration: 64 log likelihood: -5590.605

iteration: 65 log likelihood: -5588.94

iteration: 66 log likelihood: -5587.461

iteration: 67 log likelihood: -5586.164

iteration: 68 log likelihood: -5585.04

iteration: 69 log likelihood: -5584.076

iteration: 70 log likelihood: -5583.259

iteration: 71 log likelihood: -5582.571

iteration: 72 log likelihood: -5581.998

iteration: 73 log likelihood: -5581.523

iteration: 74 log likelihood: -5581.132

iteration: 75 log likelihood: -5580.812

iteration: 76 log likelihood: -5580.552

iteration: 77 log likelihood: -5580.341

iteration: 78 log likelihood: -5580.169

iteration: 79 log likelihood: -5580.029

iteration: 80 log likelihood: -5579.915

iteration: 81 log likelihood: -5579.821


```
## [[1]]
## [1] 0.26041646 0.25364281 0.29318139 0.19275935 0.38658629 0.52163416
## [7] 0.44004028 0.32167671 0.39321260 0.61225557 0.40500112 0.71886505
## [13] 0.48795286 0.38916318 0.54876590 0.53607077 0.57710846 0.71360156
## [19] 0.33179850 0.61441593 0.50636776 0.27235697 0.65703184 0.51059837
## [25] 0.51395263 0.77891604 0.20540033 0.46364689 0.24003794 0.21316485
## [31] 0.78592225 0.72631841 0.34159808 0.93237925 0.17009121 0.63127091
## [37] 0.37660293 0.08737204 0.80624121 0.43780078 0.47606925 0.99886761
## [43] 0.04609842 0.49363597
```

Appendix

```
# Loading packages and importing files ####
library(mboost)
library(randomForest)
library(ggplot2)
sp <- read.csv2("spambase.csv", header = FALSE, sep = ",", stringsAsFactors = FALSE)</pre>
num_sp <- data.frame(data.matrix(sp))</pre>
num_sp$V58 <- factor(num_sp$V58)</pre>
# shuffling data and dividing into train and test ####
n <- dim(num_sp)[1]</pre>
ncol <- dim(num_sp)[2]</pre>
set.seed(1234567890)
id \leftarrow sample(1:n, floor(n*(2/3)))
train <- num_sp[id,]</pre>
test <- num_sp[-id,]</pre>
# Adaboost
ntree \leftarrow c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
error <- c()
```

```
for (i in seq(from = 10, to = 100, by = 10)){
bb <- blackboost(V58 ~., data = train, control = boost_control(mstop = i), family = AdaExp())
bb_predict <- predict(bb, newdata = test, type = c("class"))</pre>
confusion_bb <- table(test$V58, bb_predict)</pre>
miss_class_bb <- (confusion_bb[1,2] + confusion_bb[2,1])/nrow(test)</pre>
error[(i/10)] <- miss_class_bb
}
error_df <- data.frame(cbind(ntree, error))</pre>
# Random forest ####
ntree_rf <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
error_rf <- c()
for (i in seq(from = 10, to = 100, by = 10)){
rf <- randomForest(V58 ~., data = train, ntree= 10)</pre>
rf_predict <- predict(rf, newdata = test, type = c("class"))</pre>
confusion_rf <- table(test$V58, rf_predict)</pre>
miss_class_rf <- (confusion_rf[1,2] + confusion_rf[2,1])/nrow(test)</pre>
error_rf[i/10] <- miss_class_rf
error_df_rf <- data.frame(cbind(ntree_rf, error_rf))</pre>
df <- cbind(error_df, error_df_rf)</pre>
df \leftarrow df[, -3]
plot_final <- ggplot(df, aes(ntree)) +</pre>
  geom_line(aes(y=error, color = "Adaboost")) +
  geom_line(aes(y=error_rf, color = "Random forest"))
plot_final <- plot_final + ggtitle("Error rate vs number of trees")</pre>
plot_final
my_own_em <- function(K){</pre>
# 2 - Mixture Models ####
set.seed(1234567890)
max_it <- 100 # max number of EM iterations</pre>
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions
x <- matrix(nrow=N, ncol=D) # training data
true_pi <- vector(length = K) # true mixing coefficients</pre>
true_mu <- matrix(nrow=K, ncol=D) # true conditional distributions</pre>
true_pi=c(rep(1/3, K))
if (K == 2){
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
```

```
}else if (K == 3){
  true mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
  points(true_mu[3,], type="o", col="green")
true mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
points(true_mu[4,], type="o", col="yellow")
# Producing the training data
for(n in 1:N) {
  k <- sample(1:K,1,prob=true_pi)</pre>
  for(d in 1:D) {
    x[n,d] <- rbinom(1,1,true_mu[k,d])</pre>
}
 # number of guessed components
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
# Random initialization of the paramters
pi <- runif(K,0.49,0.51)</pre>
pi <- pi / sum(pi)
for(k in 1:K) {
  mu[k,] \leftarrow runif(D,0.49,0.51)
рi
for(it in 1:max_it) {
  if (K == 2){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
  }else if (K == 3){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
  }else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")
```

```
Sys.sleep(0.5)
\# E-step: Computation of the fractional component assignments
m <- matrix(NA, nrow = 1000, ncol = k)
#Here I create the Bernouilli probabilities, lecture 1b, slide 7. I use 3 loops to do it for the thre
# not very efficient, but it works.
for (j in 1:k){
  for(each in 1:nrow(x)){
    row <- x[each,]</pre>
    vec <- c()
    for (i in 1:10) {
      a <- mu[j,i]^row[i]
      b \leftarrow a * ((1-mu[j,i])^(1-row[i]))
      vec[i] <- b
      c <- prod(vec)
    m[each, j] \leftarrow c
  }
}
# Here I create a empty matrix, to store all values for the numerator of the formula on the bottom of
# slide 9, lecture 1b.
m2 <- matrix(NA, ncol = k, nrow = 1000)
# m2 stores all the values for the numerator of the formula on the bottom of slide 9, lecture 1b.
for (i in 1:1000){
  a <- pi * m[i,]
  m2[i,] \leftarrow a
}
# Sum m2 to get the denominator of the formula on the bottom of slide 9, lecture 1b.
m2_sum <- rowSums(m2)</pre>
m_final \leftarrow m2 / m2_sum
#Log likelihood computation.
11 <- matrix(nrow = 1000, ncol = K)</pre>
for (j in 1:K){
  for (i in 1:1000){
    ll[i, j] \leftarrow sum(((x[i,] * log(mu[j,])) + (1 - x[i,])*log(1-mu[j,])))
  }
}
11 <- 11 + pi
llnew <- m_final * ll</pre>
llik[it] <- sum(rowSums(llnew))</pre>
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the lok likelihood has not changed significantly
if (it != 1){
if (abs(llik[it] - llik[it-1]) < min_change) {break}</pre>
}
```

```
#M-step: ML parameter estimation from the data and fractional component assignments
  # Create the numerator for pi, slide 9, lecture 1b.
  numerator_pi <- colSums(m_final)</pre>
  # Create new values for pi, stored in the vector pi_new
  pi_new <- numerator_pi / N</pre>
  mnew <- matrix(NA, nrow = 1000, ncol = 10)</pre>
  mu_new <- matrix(NA, nrow = K, ncol = 10)</pre>
  for (j in 1:k){
    for (i in 1:1000){
      row <- x[i,] * m_final[i,j]
      mnew[i,] <- row</pre>
    mnewsum <- colSums(mnew)/numerator_pi[j]</pre>
    mu_new[j,] <- mnewsum</pre>
  }
  # Now, to create the iterations, I have to run the code again and again, and specifying mu as new the
  # created for mu. Same goes for the other variables.
  mu <- mu_new
  pi <- pi_new
}
z <- m_final
output1 <- pi
output2 <- mu
output3 <- plot(llik[1:it], type="o")</pre>
result <- list(c(output1, output2, output3))</pre>
return(result)
my_own_em(2)
my_own_em(3)
my_own_em(4)
```