



Figure 1 (A-F)

Construct Forms Comprising at Least one Single-Stranded Region



Figure 2 (A-F)

Functional Forms of the Construct







Figure 3 (A-C)

Three Constructs with an RNA Polymerase Covalently Attached to a Transcribing Cassette

### 4/29



Figure 4 (A-C)

Three Constructs with Promoters for Endogenous RNA Polymerase

5/29

| M13mp | 18. Seq Len | gth: 7250     |             |             |              |
|-------|-------------|---------------|-------------|-------------|--------------|
| 1.    | AATGCTACTA  | CTATTAGTAG    | AATTGATGCC  | ACCTTTTCAG  | CICCOCC      |
| 51.   | AAATGAAAAT  | ATAGCTAAAC    | AGGITATIGA  | CCATTTCCCCA | AATGTATCTA   |
| 101.  | ATOGTCAAAC  | TAAATCTACT    | OGTTOGCAGA  | ATTOGGAATC  | AACTGTTACA   |
| 151.  | TOGAATGAAA  | CTTOCAGACA    | COGTACTTTA  | GTTGCATATT  | TAAAACATGT   |
| 201   | TGAGCTACAG  | CACCAGATTC    | AGCAATTAAG  | CTCTAAGCCA  | TOOGCAAAAA   |
| 251   | TGACCTCTTA  | TCAAAAGGAG    | CAATTAAAGG  | TACTCTCTAA  | TOCTGAOCTG   |
| 301.  | TTGGAGTTTG  | CITCOGGICT    | GGTTOGCTTT  | GAAGCTOGAA  | TTAAAACGCG   |
| 351.  | ATATTTGAAG  | TCTTTCGGGC    | ТТССТСТТАА. | TCTTTTGAT   | GCAATCCCCT   |
| 401.  | TTECTTCTGA  | CTATAATAGT    | CAGGGTAAAG  | ACCTGATTTT  | TGATTTATGG   |
| 451.  | TCATTCTCGT  | TTTCTGAACT    | GTTTAAAGCA  | TTTGAGGGGG  | ATTCAATGAA   |
| 501.  | TATTTATGAC  | GATTOOGCAG    | TATTEGACCC  | TATCCAGTCT  | AAACATTTTA   |
| 551.  | CTATTACCCC  | CTCTGGCAAA    | ACTICITITIE | CAMAGOCTIC  | TOGCTATTTT   |
| 601.  | GGTTTTTATC  | GIOGICIGGI    | AAAOGAGGGT  | TATGATAGTG  | TIGCTCTTAC   |
| 651.  | TATECCTOCT  | AATTCCTTTT    | GEOGITATGI  | ATCTGCATTA  | GTTGAATGTG   |
| 701.  | GTATTCCTAA  | ATCTCAACTG    | ATGAATCTTT  | CTACCTGTAA  | TAATGTTGTT   |
| 751.  | COGITAGITC  | GTTTTATTAA    | CGTAGATTTT  | TCTTCCCAAC  | GICCIGACIG   |
| 801.  | GTATAATGAG  | CCAGTTCTTA    | AAATOGCATA  | AGGTAATTCA  | CAATGATTAA   |
| 851.  | AGTTGAAATT  | AAACCATCTC    | AAGCCCAATT  | TACTACTOGT  | TCTCGTGTTC   |
| 901.  | TOGTCAGGGC  | AAGCTTATT     | CACTGAATGA  | GCAGCITIGI  | TACGTTGATT   |
| 951.  | TGGGTAATGA  | ATATCCGGTT    | CITGTOGAAG  | ATTACTCTTG  | ATGAAGGTCA   |
| 1001  | GOCAGOCTAT  | GOGGOTTEGTTC  | TGTACACCGT  | TCATCTGTCC  | TCTTTCAAAG   |
| 1051  | TTGGTCAGTT  | COSCITICACITY | ATGATTGACC  | GICTGOGGCT  | CONTROCACT   |
| 1101  | AAGTAACATG  | GAGCAGGTOG    | COGATTTCGA  | CACAATTTAT  | CACCOCCATICA |
| 1151  | TACAAATCTC  | OGTTGTACCTT   | тстттововс  | TTGGTATAAT  | COCTOCCCCT   |
| 1201  | CAAAGATGAG  | TGTTTTAGTG    | TATTCTTTCG  | CCICITICGI  | TTTAGGTTGG   |

Figure 5

6/29

| 1251  | TGCCTTCGTA        | GTGGCATTAC         | GTATTTTACC   | COTTTAATOG        | AAACTTOCTC       |
|-------|-------------------|--------------------|--------------|-------------------|------------------|
| 1301  | ATGAAAAGT         | CTTTAGTCCT         | CAAAGCCTCT   | GTAGCOGTTG        | CTACCCTCGT       |
| 1351  | TOOGATECTG        | TCTTTCGCTG         | CTGAGGGTGA   | OGATOCOGCA        | AMAGOGGCCT       |
| 1401  | TTAACTCCCT        | GCAAGOCTCA         | GOGACOGAAT   | ATATOGGTTA .      | TGOGTGGGGGG      |
| 1451  | ATGGTTGTTG        | TCATTGTCGG         | OGCAACTATC   | <b>GGTATCAAGC</b> | TGTTTAAGAA       |
| 1501  | ATTCACCTCG        | AAAGCAAGCT         | GATAAACCGA   | TACAATTAAA        | COCTOCTTTT       |
| 1551  | <b>GGAGOCTTTT</b> | TTTTTGGAGA         | TTTTCAACGT   | GAAAAAATTA        | TTATTOGCAA       |
| 1601  | TTCCTTTAGT        | TGTTCCTTTC         | TATTCTCACT   | COCCTGAVAC        | TGTTGAAAGT       |
| 1651  | TGTTTAGCAA        | AACCCCATAC         | AGAAAATTCA   | TTTACTAACG        | TCTGGAAAGA       |
| 1701  | CGACAAAACT        | TTAGATCGTT         | ACCCTAACTA   | TGAGGGTTGT        | CTGTGGAATG       |
| 1751  | CTACAGGCGT        | TGTAGTTTGT         | - ACTEGTGACG | AAACTCAGTG        | TTACGGTACA       |
| 18,01 | TEGGTTCCTA        | THEGGETHEC         | TATOCCTGAA   | AATGAGGGTG        | GTEECTCTGA       |
| 1851  | CCCTCCCCCCTT      | TCTGAGGGTG         | COCCTTCTCA   | ecciecceci        | ACTAAACCTC       |
| 1901  | CTGAGTACGG        | TGATACACCT         | ATTOCOGCOCT  | ATACTTATAT        | CAACCCTCTC       |
| 1951  | GACGGCACTT        | ATCCCCCTCCC        | TACTGAGCAA   | AACCCCCTA         | ATOCTAATOC       |
| 2001  | TTCTCTTGAG        | GAGTCTCAGC         | CTCTTAATAC   | TITCATGTTT        | CAGAATAATA       |
| 2051  | <b>GGTTCCGAAA</b> | TAGGCAGGGG         | CCATTAACTG   | TTTATACGGC        | CACTGITACT       |
| 2101  | CAAGGCACTG        | ACCCCCGTTAA        | AACTTATTAC   | CAGTACACTC        | CTGTATCATC       |
| 2151  | AAAAGOCATG        | TATGACGCTT         | ACTOGRACOGG  | TAAATTCAGA        | GACTGOGCTT       |
| 2201  | CAAGGCACTG        | ACCCCCCTTAA        | AACTTATTAC   | CAGTACACTC        | CTGTATCATC       |
| 2151  | AAAAGCCATG        | TGCCTCAACC         | TOCTGTCAAT   | GC1090390G        | ecticiestes      |
| 2201  | TOCATTCTGG        | CTTTAATCAA         | GATOCATTOG   | TTTGTGAATA        | TCAAGGCCAA       |
| 2251  | TOGTCTGACC        | TECCTCAACC         | TOCTGTCAAT   | ecteeceecs        | ectictegreg      |
| 2301  | TEGTICIEGT        | <b>CECCECTICIG</b> | AGGGTGGTGG   | CICTGAGGGT        | <b>eccentric</b> |
| 2351  | AGGGTGGCGG        | CTCTGAGGGA         | GEÓCELLOCO   | GIEGTEECTC        | TOGTTOOGGT       |
| 2401  | GATTTTGATT        | ATGAAAAGAT         | COCAMACGET   | AATAAGGGGG        | CTATGACCGA       |
| 2451  | AAATGCCGAT        | CAAAACCCCCC        | TACAGTOTGA   | COCTAMAGEC        | AAACTTGATT       |
|       |                   |                    | -1           |                   |                  |

Figure 5

# 7/29

| 2501 | CTGTCGCTAC        | TGATTACGGT         | OCTOCTATOG        | ATGGTTTCAT        | TEGTGACGTT |
|------|-------------------|--------------------|-------------------|-------------------|------------|
| 2551 | TOOGGOOTIG        | CTAATGGTAA         | TOGTOCTACT        | COTGATTTTG        | CTEGCTCTAA |
| 2601 | TTOOCAAATG        | <b>GCTICAAGTOG</b> | GTGACGGTGA        | TAATTCACCT        | TTAATGAATA |
| 2651 | ATTTCCGTCA        | ATATTTACCT         | TOOCTOOCTC        | AATOGGTTGA        | ATGTCGCCCT |
| 2701 | TTTGTCTTTA        | COCCTECTAA         | ACCATATGAA        | TTTCTATTG         | ATTGTGACAA |
| 2751 | AATAAACTTA .      | TTOOGTEGTE         | TCTTTGCGTT        | TCTTTTATAT        | GITGOCACCT |
| 2801 | TTATGTATGT        | ATTITICTACG        | TTTGCTAACA        | TACTGCGTAA        | TAAGGAGTCT |
| 2851 | TTATCATGCC        | AGTTCTTTTG         | <b>CONTACT</b>    | TATTATTGCG '      | THOCTOGGT  |
| 2901 | TTCCTTCTGG        | TAACTITIGIT        | COCCTATCTG        | CTTACTTTTC        | TTAMAAGGG  |
| 2951 | CTTCGGTAAG        | ATAGCTATTG         | CTATTTCATT        | GITICHIGCT        | CTTATTATTG |
| 3001 | <b>GECTTAACTC</b> | AATTCTTGTG         | <b>GGTTATCTCT</b> | CTGATATTAG        | COCTCAATTA |
| 3051 | COCTCTGACT        | TIGHICAGGG         | TGTTCAGTTA        | ATTICTICCCCGT     | CTAATGOGCT |
| 3101 | тсостаттт         | TATGTTATTC         | TCTCTGTAAA        | <b>GCTCCTATT</b>  | TICATTTITG |
| 3151 | ACGTTAÁACA        | AAAAATCGTT         | TCTTATTTGG        | ATTGGGATAA        | ATAATATGGC |
| 3201 | TGTTTATTTT        | GTAACTGGCA         | AATTAGGCTC        | TOGAMAGACG        | CTOGTTAGOG |
| 3251 | TTGGTAAGAT        | TCAGGATAAA         | ATTGTAGCTG        | <b>OCTOCAAAAT</b> | AGCAACTAAT |
| 3301 | CTTGATTTAA        | GGCTTCAAAA         | OCTOCCOCAA        | GTOSGGAGGT        | TOGCTAAAAC |
| 3351 | COCTOCOGIT        | CTTAGAATAC         | COGGATAAGCC       | TTCTATATCT        | GATTIGCTIG |
| 3401 | CTATTGGGCG        | COGTAATGAT         | TOCTACGAATG       | AAAATAAAAA        | озеспесп   |
| 3451 | GTTCTCGATG        | AGTGCGGTAC         | TTGGTTTAAT        | ACCOGTTCTT        | GGAATGATAA |
| 3501 | GGAAAGACAG        | COCCATTATTG        | ATTGGTTTCT        | ACTECTOGT         | AAATTAGGAT |
| 3551 | GGGATATTAT        | тпспсп             | CAGGACTTAT        | CTATTGTTGA        | TANACAGGOG |
| 3601 | OGTTCTGCAT        | TAGCTGAACA         | TGTTGTTTAT        | TGTOGTOGTC        | TOGACAGAAT |
| 3651 | TACTTTACCT        | TTTGTCGGTA         | CTTTATATTC        | TCTTATTACT        | GGCTCGAAAA |
| 3701 | тесстстесс        | TAAATTACAT         | alleccalle        | TTAAATATGG        | CGATTCTCAA |
| 3751 | TTAAGCCCTA        | CTGTTGAGOG         | TTGGCTTTAT        | ACTOGTAAGA        | ATTTGTATAA |
| 3801 | OGCATATGAT        | ACTAMACAGG         | CTTTTTCTAG        | TAATTATGAT        | TOOGGIGITT |
|      |                   |                    |                   |                   |            |

Figure 5

## 8/29

| 3851<br>3901 | ATTCTTATTT  AATTTAGGTC | AACGCCTTAT AGAAGATGAA | TTATCACAOG        | GICGGIATTT        | CAAACCATTA |
|--------------|------------------------|-----------------------|-------------------|-------------------|------------|
| 3901         | AATTTAGGTC             | ACAACATCAA            |                   |                   |            |
| •            |                        | AGMONIGM              | ATTAACTAAA        | ATAATATTGA        | AAAAGTTTTC |
| 3951         | TOGOGITICIT            | TGTCTTGOGA            | TTGGATTTGC        | ATCAGCATTT        | ACATATAGTT |
| 4001         | ATATAACCCA             | ACCTAAGCCG            | GAGGTTAAAA        | AGGTAGTCTC        | TCAGACCTAT |
| 4051         | GATTTTGATA             | AATTCACTAT            | TGACTCTTCT        | CAGOGTICTTA       | ATCTAAGCTA |
| 4101         | TOGOTATGTT             | TTCAAGGATT            | CTAAGGGAAA        | ATTAATTAAT        | AGOGACGATT |
| 4151         | TACAGAAGCA             | AGGTTATTCA            | CTCACATATA        | TTGATTTATG        | TACTGTTTCC |
| 4201         | ATTAAAAAAG             | GTAATTCAAA            | TGAAATTGTT        | AAATGTAATT        | AATTITGTTT |
| 4251         | TCTTGATGTT             | TGTTTCATCA            | TCTTCTTTTG        | CTCAGGTAAT        | TGAAATGAAT |
| 4301         | AATTOGOCTC             | TECCECCATTT           | TGTAACTTGG        | TATTCAAAGC        | AATCAGGGGA |
| 4351         | AATCCGTTATT            | GITTCTCCCCG           | ATGTAAAAGG        | TACTGTTACT        | GTATATTCAT |
| 4401         | CTGACGTTAA             | ACCTGAAAAT            | CTACGCAATT        | TCTTTATTTC        | TGTTTTACGT |
| 4451         | GCTAATAATT             | TTGATAATGGT           | TGGTTCAATT        | CCTTCCATAA        | TTCAGAAGTA |
| 4501         | TAATOCAAAC -           | AATCAGGATT            | ATATTGATGA        | -ATTGCCATCA       | TCTGATAATC |
| 4551         | AGGAATATGA             | TGATAATTCC            | ecicciicig        | GIGGITTCTT        | TGTTCCGCAA |
| 4601         | AATĢATAATG             | TTACTCAAAC            | TTTAAAATTT        | AATAAOGTTC        | GGGCAAAGGA |
| 4651         | TTTAATAOGA             | GTTGTCGAAT            | TGTTTGTAAA        | GTCTAATACT        | TCTAAATCCT |
| 4701         | CAAATGTATT             | ATCTATTGAC            | <b>GCTCTAATC</b>  | TATTAGTTGT        | TAGTGCTCCT |
| 4751         | AAAGATATTT             | TAGATAACCT            | TOCTCAATTC        | CTTTCTACTG        | TTGATTTGCC |
| 4801         | AACTGACCAG             | ATATTGATTG            | AGGGTTTGAT        | ATTTGAGGTT        | CAGCAAGGTG |
| 4851         | ATGCTTTAGA             | TTTTTCATTT            | ectecteect        | CTCAGOGTEG        | CACTGTTGCA |
| 4901         | <b>GGOGGIGITA</b>      | ATACTGACCG            | CCTCACCTCT        | GTTTTATCTT        | CIECTEGIEG |
| 4951         | TTOGTTCGGT             | ATTTTTAATG            | GCGATGTTTT        | AGGGCTATCA        | GITOGOGCAT |
| 5001         | TAAAGACTAA             | TAGCCATTCA            | AAAATATTGT        | CTGTGCCACG        | TATTCTTACG |
| 5051         | CTTTCAGGTC             | AGAAGGGTTC            | TATCTCTGTT        | <b>CCCCAGAATG</b> | TCCCTTTTAT |
| 5101         | TAAAGACTAA             | TAGOCATTCA            | AAAATATTGT        | CTGTGCCACG        | TATTCTTACG |
| 5151         | OGATTICAGOG .          | TCAAAATGTA            | <b>GGTATTTCCA</b> | TGAGCGTTTT        | TOCTGTTGCA |

-Figure 5

## 9/29

| 5201  | ATGGCTGGGG - | GTAATATTGT. | TCTGGATATT  | ACCAGCAAGG   | COGATAGTTT  |
|-------|--------------|-------------|-------------|--------------|-------------|
| 5251  | GAGTTCTCT    | ACTCAGGCAA  | GTGATGTTAT  | TACTAATCAA   | AGAAGTATTG  |
| 5.301 | CTACAACGGT   | TAATTTGCGT  | GATGGACAGA  | CTCTTTTACT   | COGTECCOCTC |
| 5351  | ACTGATTATA   | AAAACACTTC  | TCAAGATTCT  | GEOGTACOGT   | TOCTGTCTAA  |
| 5401  | AATCCCTTTA   | ATCGGCCTCC  | TGTTTAGCTC  | COSCTICTIGAT | TOCAACGAGG  |
| 5451  | AAAGCACGTT   | ATACGTGCTC  | GTCAAAGCAA  | CCATAGTACG   | COCCTGTAG   |
| 5501  | ATTA SECRETO | AGOGGGGGG   | GIGIGGIGGI  | TACGCGCAGC   | GTGACCECTA  |
| 5551  | CACTTGCCAG   | COCCTAGCG   | COOCCICCTT  | TOGOTHICH    | остостт     |
| 5601  | CTCGCCACGT   | TOSCOGGCTT  | TOOCOGTCAA  | CCTCTAAATC   | GGGGGC TOOC |
| 5651  | TTTAGGGTTC   | CGATTTAGTG  | CTTTACCGCCA | CCTCGACCCC   | AAAAAACTTG  |
| 5701  | ATTTGGGTGA   | TEGTTCACGT  | AGTGGGCCAT  | CCCCTGATA    | GACGGTTTTT  |
| 5751  | OCCOUNTINGA  | COTTOCACTO  | CACGITCITT  | AATAGTGGAC   | TCTTGTTCCA  |
| 5801  | AACTGGAACA   | ACACTCAACC  | CTATCTCGGG  | CTATTCTTTT   | GATTTATAAG  |
| 5851  | GGATTTTGCC   | GATTTOGGAA  | CCACCATCAA  | ACAGGATTTT   | COCCIOCIOC  |
| 5901  | CCCAAACCAG   | CGTTGGACCCC | TTGCTGCAAC  | TCTCTCAGGG   | CCAGGCGGTG  |
| 5951  | AAGGGCAATC   | AGCTGTTGCC  | OGICIOGCIG  | GTGAAAAGAA   | AAAOCAOOCT  |
| 6001  | GEOGEOCCAAT  | ACGCAAACCG  | CTCTCCCCCG  | OCCUTTO COCC | GATTCATTAA  |
| 6051  | TOCAGCTOGC   | ACGACAGGIT  | TOCOGACTEG  | AAAGOOGGCA   | GTGAGOGCAA  |
| 6101  | COCAATTAAT   | GTGAGTTAGC  | TCACTCATTA  | GGCACCCCAG   | GCTTTACACT  |
| 6151  | TTATGCTTCC   | GCTCGTATG   | TIGIGIGGAA  | TTGTGAGOGG   | ATAACAATTT  |
| 6201  | CACACAGGAA   | ACAGCTATGA  | CCATGATTAC  | GAATTOGAGC   | TOGGTACCCG  |
| 6251  | COCATOCTCT   | AGAGTOGACC  | TOCAGGCATG  | CAAGCTTGGC   | ACTEGEOCETC |
| 6301  | GTTTTACAAC   | GTOGTGACTG  | GGAAAACCCT  | GEOGTTACCC   | AACTTAATOG  |
| 6351  | CCTTCCACCA   | CAATCCCCTT  | TOGOCAGCTG  | GCGTAATAGC   | GAAGAGGCCCC |
| 6401  | CCACCGATCG   | COCTTOOCAA  | CAGTTGCGCA  | GOCTIGAATIGG | CCAATCCCCCC |
| 6451  | THEOCIGGE    | TITOGGGCACC | AGAAGCCGTG  | CCCGAAAGCT   | GECTEEAGTG  |
| 6501  | COATCTTCCT   | GAGGCCCATA  | COGTOGTOGT  | COCCTCAVAC   | TOGCAGATGC  |

Figure 5

# 10/29

| 6551  | ACGGITACGA | TEXCECCATC | TACACCAACG         | TAACCTATCC | CATTACGGTC |
|-------|------------|------------|--------------------|------------|------------|
| 6601  | AATOOGOOGT | TIGTTCCCAC | <b>CCACAATTOOG</b> | ACGCGTTGTT | ACTOGCTCAC |
| 6651  | ATTTAATGTT | GATGAAAGCT | GGCTACAGGA         | ACCOCAGACG | CGAATTATTT |
| 67:01 | TIGATGGGGT | TOCTATTGGT | TAAAAAATGA         | GCTGATTTAA | CAAAAATTTA |
| 6751  | ACCCCAATTT | TAACAAAATA | TTAACGTTTA         | CAATTTAAAT | ATTTGCTTAT |
| 6801  | ACAATCTTCC | TGTTTTT@GG | GCTTTTCTGA         | TTATCAACOG | GGGTACATAT |
| 6851  | GATTGACATG | CTAGTTTTAC | GATTACCGTT         | CATOGATTCT | спептест   |
| 6901  | CCAGACTCTC | AGGCAATGAC | CTGATAGOCT         | TTGTAGATCT | CTCAAAAATA |
| 6951  | GCTACCCTCT | COGGCATGAA | TTTATCAGCT         | AGAACGGTTG | AATATCATAT |
| 7001  | TGATGGTGAT | TIGACIGICT | COCCOCTITIC        | TCACCCTTTT | GAATCTTTAC |
| 7051  | CTACACATTA | CTCAGGCATT | GCATTTAAAA         | TATATGAGGG | TTCTAAAAAT |
| 7101  | TTTTATCCTT | COCTTCAAAT | AAAGGCTTCT         | CCCCCAAAAG | TATTACAGGG |
| 7151  | TCATAATGTT | TTTGGTACAA | COGATTTAGC         | TTTATGCTCT | GAGGCTTTAT |

Figure 5

#### 11/29

#### COMPLEMENTARY TO M<sub>13</sub>

| POSITION<br>645 | 5 ' 3'<br>AGCAACACTATCATA | POSITION<br>631 | M <sub>13</sub> /1  |
|-----------------|---------------------------|-----------------|---------------------|
| 615             | ACGACGATAAAAACC           | 601             | M <sub>13</sub> /2  |
| 585             | TTTTGCAAAAGAAGT           | 571             | M <sub>13</sub> /3  |
| 555             | AATAGTAAAATGTTT           | 541             | M <sub>13</sub> /4  |
| 525             | CAATACTGOGGAATG           | 511             | M <sub>13</sub> /5  |
| 495             | TGAATCCCCCTCAAA           | 481             | M <sub>13</sub> /6  |
| 465             | AGAAAACGAGAATGA           | 451             | M <sub>13</sub> /7  |
| 435             | CAGGTCTTTACCCTG           | 421             | M <sub>13</sub> /8  |
| 405             | AGGAVAGCGGATTGC           | 391             | M <sub>13</sub> /9  |
| 375             | AGGAAGOOOGAAAGA           | 361             | M <sub>13</sub> /10 |

#### COMPLEMENTARY TO SS PHAGE DNA

| POSITION | 5' * 3'         | POSITION |                       |
|----------|-----------------|----------|-----------------------|
| 351      | ATATTIGAAGTCTTT | 366      | M <sub>13</sub> /11   |
| 371      | TCTTTTGATGCAAT  | 386      | M <sub>13</sub> /12   |
| 391      | CTATAATACTCAGGG | 406      | M <sub>13</sub> /13   |
| 411      | TGATTTATGGTCATT | 426      | · M <sub>13</sub> /14 |
| 431      | GTTTAAAGCATTTGA | 446      | M <sub>13</sub> /15   |
| 451      | TATTTATGACGATTC | 466      | M <sub>13</sub> /16   |
| 471      | TATOCAGTCTAAACA | 486      | M <sub>13</sub> /17   |
| 491      | CTCTGGCAAAACTTC | 506      | M <sub>13</sub> /18   |
| 5 1-1    | TOGOTATITTGGTTT | 526      | M <sub>13</sub> /19   |
| -531     | AAAOGAGGGTTATGA | 546      | M 13/20               |

Figure 6

Primers for Nucleic Acid Production Derived from M13mp18 Sequence

# 12/29



Figure 7

Appropriate M13mp18 Restriction Sites

13/29



Lane 1: from calf thymus + Taq digested mp18 amplification reaction

Lane 2: from Taq digested mp18 amplification reaction

Lane 3: from calf thymus amplification reaction

Lane 4: øX174 Hinf1 size marker

Figure 8

## 14/29



Lane 1: no template

Lane 2: mp18 template, phosphate buffer

Lane 3: Mspl/pBR322 size marker Lane 4: mp18 template, MOPS buffer

Figure 9

## 15/29



Top= (+) Template
Bottom= (-) Template

Lane 1: phosphate buffer

Lane 2: MES Lane 3: MOPS Lane 4: DMAB Lane 5: DMG

Lane 6: pBR322/Mspl size marker

Figure 10

16/29



Lane 1: DMAB buffer, no template Lane 2: DMAB buffer, mp18 template Lane 3: DMG buffer, no template Lane 4: DMG buffer, mp18 template

Lane 5: No reaction

Lane 6: 200 ng Taq I digested mp18 size marker/positive control

Figure 11

## 17/29



First Time Interval Second Time Interval

#### Agarose Gel Analysis

Lane 1: lambda Hind III marker

Lane 2: Amp/Untreated

Lane 3: Amp/Kinased

Lane 4: Amp/Kinased/Ligated

Lane 5: PCR/Untreated

Lane 6: PCR/Kinased

Lane 7: PCR/Kinased/Ligated

Lane 8: øX174/Hinf1 marker

Figure 12

18/29



Figure 13

19/29

#### 1 2 3 4 5 6



Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

Lane 5: Primers alone

Lane 6: M13 digested DNA

Buffer was dimethyl amino glycine, pH 8.6

Figure 14

### 20/29



Lane 1: Primers alone

Lane 2: Primers + taq digested M13 DNA

Lane 3: Molecular weight markers

Lane 4: Primers + RNA

. Lane 5: Primers alone

Lane 6: M13 digested DNA

Buffer was dimethyl amino glycine, pH 8.6

Figure 15





Figure 16



Figure 17

#### 23/29

pIBI 31-BH5-2

fmet AUG of Lac z {T7 Promotor region---- LAC PROMOTOR.ATG ACC ATG ATT ACG CCA GAT ATC AAA TTA ATA CGA CTC ACT ATA

oligo 50-mer 3'- tac t'aa t'gc ggt' ct'a t'ag t'Vt aat' tat' gct' gag t'ga t'at' c-5' 10 base insert

T7 RNA Start («« T3 Promotor Region )
IGGG CTC ICCT TTA GTG ACG GTT AAT
....») «- T3 Start Signal

#### pIBI 31 BSII/HCV

{"- T7 Promotor Region }

MULTIPLE CLONING SITE + 390 BASE INSERT CTA /TAG TGA GTC CGT ATT AAT....

"- T7 Start Signal

5'-ct'a t'ag t'ga gt'c gt'a tt'a at'...........

24/29

| _ | _          |   |   |   |   | _ |   | _ | - |   |   |   | _ | - |   |   |   |   | ٠ |   | _ | _ |     |   |   | • |   |   | _ |   |   | _ | _ | _ | _ | _     | _ |   | _ |   |   |   |   | _ | 5      |
|---|------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|--------|
| _ |            | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | - | - | - | ~ ' | - | - | - | - | • | _ | - | - | _ | _ |   |   |       |   |   |   |   |   |   |   | _ | ์<br>ว |
| _ | <b>.</b> . | _ | _ | _ | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ~   | • | - | - | - | - | - | - | - | _ | _ | - | _ | <br>_ | • | - | - | • | - | _ | _ | _ | J      |

25/29

Replication Bubble with Nucleotide Analogs



Primer-Dependent DNA Production Using Nucleic Acid Construct

26/29



Hairpin Product

27/29



Linked Complementary Production Constructs

28/29



Cloning Site in Production Constructs

29/29

# ARRANGEMENT OF OLIGONUCLEOTIDE PRIMERS IN AMPLIFICATION REACTION

| 1  | 2  | 3    | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|------|----|----|----|----|----|----|----|
|    |    |      |    |    |    |    |    |    |    |
| 20 | 19 | . 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 |