ELTD13 Laboratório de Microcontroladores/Microprocessadores

Prática_02a3

Prof. Enio R. Ribeiro

Modos de endereçamento

- Inerente (INH)
- Imeditato (IMM)
- Direto (DIR)
- Estendido (EXT)

Sentença (expressão): significado->INSTRUÇÃO **§**mnemônico § operando **§** comentário label **OP CODE OPERANDO** 1 ou 2 bytes 1 a 5 bytes

Fig. 1 – Diagrama da estrutura da Linguagem Assembly.

2. Modo INERENTE (INH)

Instrução

- 1 ou 2 bytes
- apenas OP CODE
- registros CPU -> "operandos"

Fig. 2 - Diagrama em blocos (expandido) do microcontrolador MC9S12DG256.

2.1 Modo INERENTE: exemplo

```
; Endereçamento INERENTE (INH) - * [código fonte] *
       equ $4000 ;end.mem.ROM
rom
                     ;inic.área programa
       orq
              rom
       clra
                     ; zerar A, A=0
       incb
                     ;incremen. B, B=B+1
                     ; decr. iy, iy<-iy-1
       dey
aki
      bra aki
                     ; "parar"programa
                     ;diretiva
       end
```

Abs. Rel.		Loc	Obj. code	Source 1	ine	* [a	arquivo listing]*
1 2	1 2		0000 4000	rom	camento equ	INERENTE \$4000	(INH); end.mem. ROM
3 4 5	3 4 5	a004000	87	;	org clra	rom	;inic.área programa ;zerar A,A=0
6 7 8	6 7 8	a004001 a004002 a004003	03	aki	incb dey bra	aki	<pre>;incrementar B, B=B+1 ;decr. iy, iy<-iy-1 ;"parar"programa</pre>
Ü	Ü	4001005	2011	GIVI.	DIG	anı	, parar programa

Fig. 3 – Exemplo endereçamento inerente: a) código fonte; (b) listing do programa.

3. Modo IMEDIATO (IMM)

Instrução

• 2, 3 ou 4 bytes

• OP CODE + OPERANDO

OP CODE

OPERANDO

1 ou 2 bytes

1 ou 2 bytes

3.1 Modo IMEDIATO: exemplo

```
;Endereçamento IMEDIATO (IMM)
                $4100
                         ; end.mem.ROM
        equ
rom
                              ;inic.área programa
        org
                rom
                #$cf
                              ;A<-$cf,A=$cf
        ldaa
        ldab
                #%00100010
                             ;B<-%00100010=($22)
        bra
                *
                              ;"parar"progr.(loop infinito)
                              ;diretiva
        end
```

Abs. Rel.		Loc (Obj. c	ode	Source :	line		
	- 1 2 3		0000	4100	rom	eçamento equ		(IMM); end.mem.ROM
4	4	a004100	9 6 C E		;	org		;inic.área programa ;A<-\$cf,A=\$cf
	6	a004100 a004102 a004104	C622			ldaa ldab bra	#%001000	;A<-\$C1,A-\$C1 010 ;B<-%00100010=(\$22) ;"parar"progr.(loop
infinito)	/	a004104	20f£			nra	,	, parar progr. (100p

4. Modo DIRETO (DIR)

Instrução → (op code + operando) • 2 bytes

Exceções (bclr, bset, brclr, brset)

Instrução → (op code + operando) • 3 ou 4 bytes

4.1 Modo DIRETO: exemplo

```
;Endereçamento DIRETO (DIR)
                       ; end.mem.ROM
               $4048
       equ
rom
               $50
                       ; end. mem. RAM
       equ
ram
       org
               ram
z1
       dc.b
               $c9
                       ;inic.área programa
       org
               rom
       ldaa
               z1
                       ;A<-$z1,A=$c9
                       ;**EVITAR!!!NÃO FAZER!
       ldaa
               $50
       stab
               z1
                       ;$z1<-(B)
                       ;"parar"progr.-loop infinito
       bra
       end
                       ;diretiva
```

Abs.	Rel.	Loc	Obj.	code	Source	line		
	1 1	Ĺ			;Ender	eçamento	DIRETO	(DIR)
	2 2	2	0000	4048	rom	equ	\$4048	;end.mem.ROM
	3	3	0000	0050	ram	equ	\$50	;end.mem.RAM
4	4 4	Į.			;			
!	5 5	5				org	ram	;
	6 6	a000050	C9		z1	dc.b	\$c9	;
	7 7	7			;			
	3 8	3				org	rom	;inic.área programa
9	9 9	a004048	9650			ldaa	z1	;A<-\$z1,A=\$c9
1) 10	a00404A	9650			ldaa	\$50	;**EVITAR!!!NÃO FAZER!
1:	1 11	a004040	5B50			stab	z1	;\$z1<-(B)
1:	2 12	2 a00404E	20FE			bra	*	;"parar"progloop inf

4.1 Modo DIRETO: exemplo

;Endererom ram	çamento equ equ	DIRETO \$4048 \$50	(DIR) ; end.mem.ROM ; end.mem.RAM
z1 :	org dc.b	ram \$c9	; ;
,	org ldaa stab bra end	rom z1 z1 *	<pre>;inic.área programa ;A<-\$z1,A=\$c9 ;\$z1<-(B) ;"parar"progrloop inf ;diretiva</pre>

Abs. Re	el.	Loc	Obj. code	Source	line		
							
1	1			;Ender	eçamento	DIRETO	(DIR)
2	2		0000 4048	rom	equ	\$4048	;end.mem.ROM
3	3		0000 0050	ram	equ	\$50	;end.mem.RAM
4	4			;			
5	5				org	ram	;
6	6	a000050	C9	z1	dc.b	\$c9	;
7	7			;			
8	8				org	rom	;inic.área programa
9	9	a004048	9650		ldaa	z 1	;A<-\$z1,A=\$c9
10	10	a00404A	5B50		stab	z1	;\$z1<- (B)
11	11	a00404C	20FE		bra	*	;"parar"prog.loop inf

4.2 Modo ESTENDIDO

ESTENDIDO (EXT)

 Instrução
 3 bytes (em geral)

 OP CODE + OPERANDO
 OP CODE OPERANDO
 1 byte 2 bytes

ENDEREÇO

5. Exercícios de programação

- 1) Escreva um programa p/ fazer B=\$?? e faça A=\$??. Use <u>somente</u> instruções com endereçamento inerente. Assemblar o programa e analisar o arquivo *.LST. Simule o programa. Sugestões: (A=\$0c e B=\$60); (A=\$34 e B=\$c2)
- 2) Faça um programa para somar 47+27+85. Use, <u>essencialmente</u>, instruções com endereçamentos imediato (ou inerente). Mantenha o resultado em accB. Assemblar, analisar o arquivo *.LST e simular o programa.
- 3.1) Faça um programa para somar três valores quaisquer (constantes previamente definidas). Use, <u>essencialmente</u>, instruções com endereçamentos direto (e ou inerente ou imediato). Assemblar, analisar o arquivo *.LST e simular o programa. Admita que o resultado da soma seja de 1 byte. (memória disponível: \$0050 \$005f)
- 3.2) Faça alterações no exercício 3 para que os endereçamentos estejam no modo estendido.
- 4) Faça um programa para somar três valores (variáveis) quaisquer e armazenar adequadamente o resultado. Use, <u>essencialmente</u>, instruções com endereçamentos estendido (e ou inerente ou imediato). Assemblar, analisar o *.LST e simular o programa. Admita que o resultado da soma seja de 1 byte.