Chap. 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

In Chapter 2 we saw that we could solve a few first-order differential equations by recognizing them as separable, linear, exact equations. We turn now to the solution of ordinary differential equations of order two or higher.

INITIAL-VALUE PROBLEM

For a linear differential equation an *n*th-order initial-value problem is

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 (1)

Subject to:
$$y(x_0) = y_0$$
, $y'(x_0) = y_1$, ..., $y^{(n-1)}(x_0) = y_{n-1}$.

Recall that for a problem such as this one we seek a function defined on some interval I, containing x_0 , that satisfies the differential equation and the n initial conditions specified at x_0 : $y(x_0) = y_0$, $y'(x_0) = y_1$, ..., $y^{(n-1)}(x_0) = y_{n-1}$.

HOMOGENEOUS EQUATIONS

A linear *n*th-order differential equation of the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
 (6)

is said to be homogeneous, whereas an equation

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), \tag{7}$$

with g(x) not identically zero, is said to be **nonhomogeneous.** For example, 2y'' - 3y' - 5y = 0 is a homogeneous linear second-order differential equation, whereas $x^3y''' + 6y' + 10y = e^x$ is a nonhomogeneous linear third-order differential equation. The word *homogeneous* in this context does not refer to coefficients that are homogeneous functions.

We shall see that to solve a nonhomogeneous linear equation (7), we must first be able to solve the **associated homogeneous equation** (6).

Superposition Principle—Homogeneous Equations

Let y_1, y_2, \ldots, y_k be solutions of the homogeneous *n*th-order differential equation (6) on an interval *I*. Then the linear combination

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_k y_k(x),$$

where the c_i , i = 1, 2, ..., k are arbitrary constants, is also a solution on the interval.

EXAMPLE 4 The functions $y_1 = x^2$ and $y_2 = x^2 \ln x$ are both solutions of the homogeneous linear $x^3y''' - 2xy' + 4y = 0$ on the interval $(0, \infty)$. By the superposition principle the linear combination

$$y = c_1 x^2 + c_2 x^2 \ln x,$$

is also a solution of the equation on the interval.

The function $y = e^{7x}$ is a solution of y'' - 9y' + 14y = 0. Because the differential equation is linear and homogeneous, the constant multiple $y = ce^{7x}$ is also a solution.

Linear Dependence/Independence

A set of functions $f_1(x)$, $f_2(x)$, . . . , $f_n(x)$ is said to be **linearly dependent** on an interval I if there exist constants c_1, c_2, \ldots, c_n , not all zero, such that

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$

for every *x* in the interval. If the set of functions is not linearly dependent on the interval, it is said to be **linearly independent.**

DEFINITION 4.1.2 Wronskian

Suppose each of the functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ possesses at least n-1 derivatives. The determinant

$$W(f_1, f_2, \ldots, f_n) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix},$$

where the primes denote derivatives, is called the Wronskian of the functions.

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y_1, y_2, \ldots, y_n be n solutions of the homogeneous linear nth-order differential equation (6) on an interval I. Then the set of solutions is linearly independent on I if and only if $W(y_1, y_2, \ldots, y_n) \neq 0$ for every x in the interval.

DEFINITION 4.1.3 Fundamental Set of Solutions

Any set y_1, y_2, \ldots, y_n of n linearly independent solutions of the homogeneous linear nth-order differential equation (6) on an interval I is said to be a fundamental set of solutions on the interval.

THEOREM 4.1.5 General Solution — Homogeneous Equations

Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the homogeneous linear nth-order differential equation (6) on an interval I. Then the general solution of the equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),$$

where c_i , i = 1, 2, ..., n are arbitrary constants.

EXAMPLE 7 General Solution of a Homogeneous DE

The functions $y_1 = e^{3x}$ and $y_2 = e^{-3x}$ are both solutions of the homogeneous linear equation y'' - 9y = 0 on the interval $(-\infty, \infty)$. By inspection the solutions are linearly independent on the x-axis. This fact can be corroborated by observing that the Wronskian

$$W(e^{3x}, e^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6 \neq 0$$

for every x. We conclude that y_1 and y_2 form a fundamental set of solutions, and consequently, $y = c_1 e^{3x} + c_2 e^{-3x}$ is the general solution of the equation on the interval.

THEOREM 4.1.6 General Solution—Nonhomogeneous Equations

Let y_p be any particular solution of the nonhomogeneous linear nth-order differential equation (7) on an interval I, and let y_1, y_2, \ldots, y_n be a fundamental set of solutions of the associated homogeneous differential equation (6) on I. Then the general solution of the equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x) + y_p,$$

where the c_i , i = 1, 2, ..., n are arbitrary constants.

Exercise 4.1

In Problems 1–4 the given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem.

1.
$$y = c_1 e^x + c_2 e^{-x}$$
, $(-\infty, \infty)$;
 $y'' - y = 0$, $y(0) = 0$, $y'(0) = 1$

2.
$$y = c_1 e^{4x} + c_2 e^{-x}$$
, $(-\infty, \infty)$;
 $y'' - 3y' - 4y = 0$, $y(0) = 1$, $y'(0) = 2$

3.
$$y = c_1 x + c_2 x \ln x$$
, $(0, \infty)$;
 $x^2 y'' - x y' + y = 0$, $y(1) = 3$, $y'(1) = -1$

4.
$$y = c_1 + c_2 \cos x + c_3 \sin x$$
, $(-\infty, \infty)$;
 $y''' + y' = 0$, $y(\pi) = 0$, $y'(\pi) = 2$, $y''(\pi) = -1$

In Problems 23–30 verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Form the general solution.

23.
$$y'' - y' - 12y = 0$$
; e^{-3x} , e^{4x} , $(-\infty, \infty)$
24. $y'' - 4y = 0$; $\cosh 2x$, $\sinh 2x$, $(-\infty, \infty)$
25. $y'' - 2y' + 5y = 0$; $e^x \cos 2x$, $e^x \sin 2x$, $(-\infty, \infty)$
26. $4y'' - 4y' + y = 0$; $e^{x/2}$, $xe^{x/2}$, $(-\infty, \infty)$
27. $x^2y'' - 6xy' + 12y = 0$; x^3 , x^4 , $(0, \infty)$

28.
$$x^2y'' + xy' + y = 0$$
; $\cos(\ln x), \sin(\ln x), (0, \infty)$

29.
$$x^3y''' + 6x^2y'' + 4xy' - 4y = 0$$
; $x, x^{-2}, x^{-2} \ln x, (0, \infty)$

30.
$$y^{(4)} + y'' = 0$$
; 1, x, cos x, sin x, $(-\infty, \infty)$

In Problems 31–34 verify that the given two-parameter family of functions is the general solution of the nonhomogeneous differential equation on the indicated interval.

31.
$$y'' - 7y' + 10y = 24e^x$$
;
 $y = c_1e^{2x} + c_2e^{5x} + 6e^x$, $(-\infty, \infty)$

32.
$$y'' + y = \sec x$$
;
 $y = c_1 \cos x + c_2 \sin x + x \sin x + (\cos x) \ln(\cos x)$,
 $(-\pi/2, \pi/2)$

33.
$$y'' - 4y' + 4y = 2e^{2x} + 4x - 12;$$

 $y = c_1e^{2x} + c_2xe^{2x} + x^2e^{2x} + x - 2, (-\infty, \infty)$

34.
$$2x^2y'' + 5xy' + y = x^2 - x;$$

 $y = c_1x^{-1/2} + c_2x^{-1} + \frac{1}{15}x^2 - \frac{1}{6}x, (0, \infty)$