

sGRB Precursor Flares and Gravitational Waves

Jordan Camp NASA Goddard Space Flight Center

> Fermi / LIGO Workshop Mar 14, 2015

sGRB Precursor Flares

- Three short Gamma-Ray Bursts (out of 41) have been preceded by a lower intensity signal known as a "Precursor"
 - < 3 seconds before main Burst
 - same source position as main Burst
 - also seen by Fermi or Suzaku

- One model suggests Precursors due to Resonant Shattering of NS Crusts during BNS inspiral
 - Resonant excitation by tidal deformation during NS binary inspiral
 - f_{res} depends on crust EOS
 - Tsang et al (PRL 108, 2012)

Looking for Precursor and GW

- Effect of Resonant Crust Shattering on GW is too small to be directly observed
 - $-\Delta \phi \sim 10^{-3} \text{ rad}$
- However NS Crust Cracking flares will be isotropic
 - -10^{46-47} erg (vs. 10^{48-49} erg for main beamed Burst)
 - Observable to ~ 100-200 Mpc
 - Could possibly be observed in coincidence with GW
- Sub-threshold GBM search will help detections
 - Fits in with proposed O1 Fermi-LIGO sub-threshold search (discussed Sunday)

sGRB Precursors

Troja et al, Ap J 723 (2010)

Table 1 Image Significance of the Candidate Precursors

GRB	T_i	T_f	Significance	Probability ^a	Others
	(s)	(s)	(σ)		
050724 (EE)	-108.5	-107.5	3.7	5×10^{-4}	
080702A	-140.6	-139.5	3.2	3×10^{-3}	
081024A	-1.70	-1.45	5.5	$<10^{-5}$	Fermi
090510	-13.0	-12.6	5.2	$< 10^{-5}$	
	-0.55	-0.5	4.6	10^{-5}	Fermi
091117	-2.75	-2.65	1.8	6×10^{-2}	Suzaku

Neutron Star Structure

Cracking: Inner and Outer Crust

Damping: Core and Crust

Resonant Shattering Process (Tsang)

Available Tidal Energy

Resonant Excitation of NS crust Tsang et al, PRL 108 (2012)

Crust-Core Interface Mode

EOS	$f_{ m mode}$ [Hz]	Q	$\Delta E_{\rm max}$ [erg]	E_b [erg]	$\dot{E}_{\rm tidal}$ [erg/s]
SLy4	188	0.041	5×10^{50}	5×10^{46}	
APR	170	0.061	1×10^{51}	2×10^{46}	
SkI6	67.3	0.017	8×10^{49}	3×10^{45}	
SkO	69.1	0.053	7×10^{50}	1×10^{46}	1×10^{49}
Rs	32.0	0.059	7×10^{50}	1×10^{46}	
$G_{\mathbf{S}}$	28.8	0.060	8×10^{50}	1×10^{46}	3×10^{48}

TABLE I: Resonant mode properties for the l=2 i-mode. The background star is taken to be a $1.4\,M_{\odot}$ NS, with various equations of state given in [15]. The crust/core transition baryon density is fixed to be $n_{\rm t}=0.065\,{\rm fm}^{-3}$ for each model.

 $t_{res} \sim 0.1 \text{ sec } \rightarrow \Delta E_{tidal} >> E_{fracture}$

Resonant frequency depends on EOS

Investigating NS Crust Equation of State

NS mass, f_{res} (from GW) and Precursor timing \rightarrow NS EoS

Coherent Analysis of GBM Detectors (L. Blackburn)

Evaluate Λ by marginalizing over source amplitude, position

 r_i provided by GBM detector model (Connaughton, UAH)

- NS Resonant Excitation Model
 - Inclusion of damping
 - Core (bulk and shear viscosity)
 - Crust (shear viscosity)
- Tests of GBM coherent analysis
 - Does it raise SNR of precursors and marginal sGRBs
- Other potential Precursor mechanisms
 - NS Magnetosphere Interaction
 - Pre-ejected Neutrino-Driven Wind