Week 1 Chapter 1: Basic Concepts

Class 2,3

Translating Binary to Decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

$$\begin{aligned} dec &= (D_{n-1} \times 2^{n-1}) + (D_{n-2} \times 2^{n-2}) + ... + (D_1 \times 2^1) + (D_0 \times 2^0) \\ & \text{D = binary digit} \end{aligned}$$

binary 00001001 = decimal 9:

$$(1 \times 2^3) + (1 \times 2^0) = 9$$

Translating Unsigned Decimal to Binary

 Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Division	Quotient	Remainder
37 / 2	18	1
18 / 2	9	0
9 / 2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

37 = 100101

Binary Addition

 Starting with the LSB, add each pair of digits, include the carry if present.

Tip: How many bits? There's a simple formula to find b, the number of binary bits you need to represent the unsigned decimal value n. It is $b = \text{ceiling } (\log_2 n)$. If n = 17, for example, $\log_2 17 = 4.087463$, which when raised to the smallest following integer, equals 5. Most calculators don't have a log base 2 operation, but you can find web pages that will calculate it for you.

Integer Storage Sizes

Standard sizes:

Table 1-4 Ranges of Unsigned Integers.

Storage Type	Range (low-high)	Powers of 2
Unsigned byte	0 to 255	0 to $(2^8 - 1)$
Unsigned word	0 to 65,535	0 to $(2^{16} - 1)$
Unsigned doubleword	0 to 4,294,967,295	0 to $(2^{32} - 1)$
Unsigned quadword	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)

What is the largest unsigned integer that may be stored in 20 bits?

Hexadecimal Integers

Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Translating Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits.
- Example: Translate the binary integer 000101101010011110010100 to hexadecimal:

1	6	A	7	9	4
0001	0110	1010	0111	1001	0100

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

$$dec = (D_3 \times 16^3) + (D_2 \times 16^2) + (D_1 \times 16^1) + (D_0 \times 16^0)$$

- Hex 1234 equals $(1 \times 16^3) + (2 \times 16^2) + (3 \times 16^1) + (4 \times 16^0)$, or decimal 4,660.
- Hex 3BA4 equals $(3 \times 16^3) + (11 * 16^2) + (10 \times 16^1) + (4 \times 16^0)$, or decimal 15,268.

Powers of 16

Used when calculating hexadecimal values up to 8 digits long:

16 ⁿ	Decimal Value	16 ⁿ	Decimal Value
16 ⁰	1	16 ⁴	65,536
16 ¹	16	16 ⁵	1,048,576
16 ²	256	16 ⁶	16,777,216
16 ³	4096	16 ⁷	268,435,456

Converting Decimal to Hexadecimal

Division	Quotient	Remainder
422 / 16	26	6
26 / 16	1	A
1 / 16	0	1

decimal 422 = 1A6 hexadecimal

Hexadecimal Addition

• Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

Hexadecimal Subtraction

 When a borrow is required from the digit to the left, add 16 (decimal) to the current digit's value:

Practice: The address of var1 is 00400020. The address of the next variable after var1 is 0040006A. How many bytes are used by var1?

Signed Integers

The highest bit indicates the sign. 1 = negative, 0 = positive

If the highest digit of a hexadecimal integer is > 7, the value is negative. Examples: 8A, C5, A2, 9D

Forming the Two's Complement

- Negative numbers are stored in two's complement notation
- Represents the additive Inverse

Starting value	0000001
Step 1: reverse the bits	11111110
Step 2: add 1 to the value from Step 1	11111110 +00000001
Sum: two's complement representation	11111111

Note that 00000001 + 11111111 = 00000000

Binary Subtraction

- When subtracting A B, convert B to its two's complement
- Add A to (–B)

```
00001100
- 0000011
1111101
00001001
```

Practice: Subtract 0101 from 1001.

Learn How To Do the Following:

- Form the two's complement of a hexadecimal integer
- Convert signed binary to decimal
- Convert signed decimal to binary
- Convert signed decimal to hexadecimal
- Convert signed hexadecimal to decimal

See Book's page No 16, 17

Ranges of Signed Integers

The highest bit is reserved for the sign. This limits the range:

Storage Type	Range (low–high)	Powers of 2
Signed byte	-128 to +127	-2^7 to $(2^7 - 1)$
Signed word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$
Signed doubleword	-2,147,483,648 to 2,147,483,647	-2^{31} to $(2^{31}-1)$
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2^{63} to $(2^{63} - 1)$

Practice: What is the largest positive value that may be stored in 20 bits?

Character Storage

- Character sets
 - Standard ASCII (0 127)
 - Extended ASCII (0 255)
 - ANSI (0 255)
 - Unicode (0 65,535)
- Null-terminated String
 - Array of characters followed by a null byte
- Using the ASCII table
 - back inside cover of book

See Book's page No 19

Numeric Data Representation

- pure binary
 - can be calculated directly
- ASCII binary
 - string of digits: "01010101"
- ASCII decimal
 - string of digits: "65"
- ASCII hexadecimal
 - string of digits: "9C"

What's Next

- Welcome to Assembly Language
- Virtual Machine Concept
- Data Representation
- Boolean Operations

Boolean Operations

- NOT
- AND
- OR
- Operator Precedence
- Truth Tables

Boolean Algebra

- Based on symbolic logic, designed by George Boole
- Boolean expressions created from:
 - NOT, AND, OR

Expression	Description
\neg_{X}	NOT X
$X \wedge Y$	X AND Y
$X \vee Y$	X OR Y
$\neg X \lor Y$	(NOT X) OR Y
$\neg(X \land Y)$	NOT (X AND Y)
X ∧ ¬Y	X AND (NOT Y)

NOT

- Inverts (reverses) a boolean value
- Truth table for Boolean NOT operator:

Digital gate diagram for NOT:

AND

Truth table for Boolean AND operator:

Х	Υ	$\mathbf{X} \wedge \mathbf{Y}$
F	F	F
F	Т	F
Т	F	F
Т	T	Т

Digital gate diagram for AND:

OR

Truth table for Boolean OR operator:

Х	Υ	$X \vee Y$
F	F	F
F	T	T
Т	F	T
Т	Т	T

Digital gate diagram for OR:

Operator Precedence

Examples showing the order of operations:

Expression	Order of Operations
$\neg X \lor Y$	NOT, then OR
$\neg(X \lor Y)$	OR, then NOT
$X \vee \ (Y \wedge Z)$	AND, then OR

Truth Tables (1 of 3)

- A Boolean function has one or more Boolean inputs, and returns a single Boolean output.
- A truth table shows all the inputs and outputs of a Boolean function

Example: -X V Y

Х	Τх	Υ	¬x ∨ y
F	Т	F	Т
F	Т	T	Т
Т	F	F	F
Т	F	Т	Т

Truth Tables (2 of 3)

Example: X ∧ ¬Y

X	Y	$\neg_{\mathbf{Y}}$	X ∧¬Y
F	F	Т	F
F	Т	F	F
Т	F	Т	Т
Т	Т	F	F

Truth Tables (3 of 3)

Example: (Y ∧ S) ∨ (X ∧ ¬S)

X	Y	S	$\mathbf{Y} \wedge \mathbf{S}$	$\neg_{\mathbf{S}}$	X∧¬S	$(\mathbf{Y} \wedge \mathbf{S}) \vee (\mathbf{X} \wedge \neg \mathbf{S})$
F	F	F	F	T	F	F
F	T	F	F	Т	F	F
Т	F	F	F	Т	Т	Т
Т	T	F	F	Т	Т	Т
F	F	T	F	F	F	F
F	T	T	Т	F	F	Т
Т	F	T	F	F	F	F
Т	Т	Т	Т	F	F	T

Two-input multiplexer

Summary

- Assembly language helps you learn how software is constructed at the lowest levels
- Assembly language has a one-to-one relationship with machine language
- Each layer in a computer's architecture is an abstraction of a machine
 - layers can be hardware or software
- Boolean expressions are essential to the design of computer hardware and software