Outline

- Monsoon
- Radiative forcing
- Climate Feedbacks

Monsoon

Monsoon

- Monsoon is a climatological feature covering roughly half the tropics (1/4 of the global surface)
- Strictly, a system where the winds and precipitation reverses (summer rain, winter dry)
- Host 65% of the world's population
- Small changes in year-to-year climate can be catastrophic

DEMOGRAPHICS OF THE MONSOON REGIONS

1950		1995		2025	
Rank -	Country	Rank ⁻	Country	Rank -	Country
1	China	1	China	1	India
2	India	2	India	2	China
3	USA	3	USA	3	Pakistan
4	Russia	4	Indonesia	4	USA
5	Japan	5	Brazil	5	Nigeria
6	Indonesia	6	Russia	6	Indonesia
7	Germany	7	Pakistan	7	Brazil
8	Braz il	8	Japan	8	Bangladesh
9	UK	9	Bangladesh	9	Ethopia
10	Itlay	10	Nigeria	10	Iran

Data from World Population Estimate (1995).

Seasonal monsoon circulations

A Summer monsoon

B Winter monsoon

Seasonal monsoon circulations

The abrupt onset of the modern South Asian Monsoon winds

Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt Monsoon onset

The Winter Monsoon

- During autumn and winter, air above land cools faster than over the water.
- The winds are reversed from the summer monsoon flow—at the surface from land to sea
- Winter monsoon is a dry season

Modern Precipitation

Modern Precipitation

Abnormal monsoon years

Monsoon-onset phase

Monsoon precipitation

Figure 2 Mean June–September rainfall over the Indian region south of 30 $^{\circ}$ N.

Source: Gadgil, 2003

Core monsoon zone

Source: Gadgil, 2003

Interannual and Interdecedal variability

Interannual variability

- •The long term mean of the Indian summer monsoon rainfall (ISMR) is about 85cm.
- •Consider the interannual (year to year) variation of the anomaly (defined as the actual value in any year minus the mean value) of ISMR as a percentage of the mean value during 1876-2010.

Interannual Variation of the anomaly of ISMR (as % of the mean) during 1876-2010

Drought: ISMR anomaly <-10% of the mean

Excess rainfall seasons: ISMR anomaly >10% of the mean

Frequent droughts: 1899-1920 (7 in 21 years);1965-87 (10 in 28 years) and again since 2002

Variation of the all-India daily rainfall during the summer monsoon seasons of 2009 and 2010

Increasing Trend of Extreme Rain Events Over India in a Warming Environment

B. N. Goswami, 1* V. Venugopal, 2 D. Sengupta, 2 M. S. Madhusoodanan, 2 Prince K. Xavier 2

Forcing factors of Indian monsoon

Snow cover

- Indian Monsoon
- North American Monsoon

Connection with neighboring snow cover of the preceding winter.

Blanford Hypothesis: Winter/Spring snow cover in the
Himalayas mountain region has an inverse relationship with
June-September Indian rainfall.

Snow cover

Contradictory results

- In recent years there have been contradictions against the Blanford Hypothesis.
- Fusallo (2004), Bamzai & Shukla (1999) and Ye & Bao (2001):
 - Positive correlation between snow cover and monsoonal rainfall anomalies
 - These results are at odds with the Blanford Hypothesis for the spatial distribution of snow cover.

Indian Ocean Dipole

What is IOD?

- First described by Dr. Saji et al. in 1999
- Dipole Mode Index (DMI)

A dipole mode in the tropical indian Ocean

N. N. SaliP, B. N. Goswardt, P. N. Wraya drandran? & T. Yama gala?‡

"Institute for Cibilal Change Amearch, SEAMANS N 71, 1-2-1 Shiharra. Minato-ku, Takja 105 6791, Japan

† Center for Abraugh ere and Ócumer Science, Indian Institute of Science, Bangalare SEE 072, India

‡ Expartment of Earth and Planetary Physics, Graduate School of Saume, The University of Tokyo, Tokyo 115 0055, Japan.

Positive & Negative Phases of IOD

- •Positive: cooler in the tropical eastern Indian Ocean and warmer in the tropical western Indian Ocean
- •Negative: warmer in the tropical eastern Indian Ocean and cooler in the tropical western Indian Ocean

Positive IOD Phase

Negative IOD Phase

IOD Influence on Surrounding Climate

 A positive phase of the IOD tends to cause droughts in East Asia and Australia, and flooding in parts of the Indian subcontinent and East Africa.

Indian Ocean Dipole

Questions still unsolved?

A better understanding of the relationship between the Indian Ocean Dipole and extreme weather events

- How IOD formed
- Relationship between ENSO and IOD
- How they affect the climate together

ENSO-monsoon teleconnections

Surface Layer of Low Latitude Pacific Ocean (Warm Layer)

T of oscillation ~ 4 years

Historically Speaking

El Niño and La Niña events tend to develop during the period Apr-Jun and they:

- Tend to reach their maximum strength during Dec-Feb
- Typically persist for 9-12 months, though occasionally persisting for up to 2 years
- Typically requirevery 2 to 7 years

Largest El Niños of 20th century

1982

SST <u>Anomaly</u> (relative to the average state)

1997

SOI: Tahiti and Darwin as "centers of action", mslp correlations between two locations

Tahiti and Darwin are at opposite ends of the Southern Oscillation's seesaw,

SOI = Tahiti SLP - Darwin SLP

Global teleconnections: ENSO

Spatial inhomogeneity in monsoon precipitation associated with teleconnections

(Anoop, $\frac{33}{2013}$)

Association of monsoon rainfall and agriculture

- (a) The relationship between Indian rainfall and rice production from 1960 to 1996 relative to 1978 production.
- (b) the All-India rainfall Index for the corresponding years:,

On the Weakening Relationship Between the Indian Monsoon and ENSO

K. Krishna Kumar, 14† Balaji Rajago palan, 2 Mark A. Cane 2.

Analysis of the 140 year historical record suggests that the inverse relationship between the EL Nifo-Southern Oscillation (ENSO) and the Indian summer moreon (weak moreon arising from warm ENSO event) has broken down in recent decades. Two possible reasons emerge from the analyses. A southeast ward shift in the Walker disculation anomalies associated with ENSO events may lead to a reduced subsidence over the Indian region, thus favoring normal moreon conditions. Additionally, increased surface temperatures over Eurasia in winter and spring which are a part of the midlatifude continental warming trend, may favor the enhanced land-ocean thermal gradient conducive to a strong moreon. These observations raise the possibility that the Eurasian warming in recent decades helps to sustain the moreon rainfall at a normal level despite strong ENSO events.

Break Monsoon

Breaks in Indian summer monsoon

Breaks in Indian summer monsoon

