Conceptual Issues in Causal Inference

Jasjeet S. Sekhon

May 19, 2013

Unification and Single Interventions

- So many possible interventions, so little time
- Spend most of my time:
 - evaluating a given empirical design/identification strategy with specific data and a specific intervention
- SWIGs are easier to interpret, but are also closer to how some of us think
- If there is no experiment can be performed to verify a particular assumption, what are we doing?

Dorn's Question

- ▶ If there is no experiment can be performed to verify a particular assumption, what are we doing?
- New theory: the absence of an edge in a graph in terms of the absence of a population level direct effect
 - Absence of an edge no longer implies: Y(x) = Y(x')
- New theory: interventions are only defined on a strict subset of variables
 - not all the counterfactual implied by NPSEM exist
- ► Question: SWIGS versus structural equations?

Backdoor Criterion

Figure 5: Adjusting for confounding. (a) The original causal graph. (b) The template $\mathcal{G}(x)$, which shows that $Y(x) \perp \!\!\! \perp \!\!\! \perp X \mid L$. (c) The DAG \mathcal{G}_X obtained by removing edges from X advocated in Pearl (1995, 2000, 2009) to check his 'backdoor condition'.

Backdoor Criterion and Descendants

Figure 7: Simplification of the backdoor criterion. (a) The original causal graph \mathcal{G} . (b) The template $\mathcal{G}(x)$, which shows that $Y(x) \perp \!\!\! \perp X \mid L_1$, but does not imply $Y(x) \perp \!\!\! \perp X \mid \{L_1, L_2\}$ when there exists an arrow from X to Y, i.e. the null hypothesis is false. (c) The DAG \mathcal{G}_X obtained by removing edges from X advocated in Pearl (2000, 2009).

Before one-time redistricting

One-time redistricting

After one-time redistricting

First identification strategy: old-neighbors design

Second identification strategy: new neighbors design

Formally

- ▶ Let *T_i* be equal to 1 if precinct *i* is moved from one district to another before election *t* and equal to 0 if it is not moved
- Let D_i be equal to 1 if precinct i has new voters in its district at t and equal to 0 otherwise
- Let $Y_{00}(i, t)$ be precinct *i*'s outcome $T_i = 0$ and $D_i = 0$ it is not moved and does not have new neighbors
- Let $Y_{01}(i, t)$ be precinct i's outcome if $T_i = 0$ and $D_i = 1$ the precinct is not moved and has new neighbors
- Let $Y_{11}(i, t)$ be precinct i's outcome if $T_i = 1$ and $D_i = 1$ the precinct is moved and has new neighbors

Fundamental Problem of Causal Inference

For each precinct, we observe only one of its three potential outcomes:

$$Y(i,t) = Y_{00}(i,t) \cdot (1 - T_i) \cdot (1 - D_i) + Y_{01}(i,t) \cdot (1 - T_i) \cdot D_i + Y_{11}(i,t) \cdot T_i \cdot D_i$$

We can estimate two different ATT's:

$$ATT_{0} \equiv E[Y_{11}(i,t) - Y_{00}(i,t) | T_{i} = 1, D_{i} = 1]$$
 $ATT_{1} \equiv E[Y_{11}(i,t) - Y_{01}(i,t) | T_{i} = 1, D_{i} = 1]$

Identification of ATT_0

$$ATT_{0} \equiv E[Y_{11}(i,t) - Y_{00}(i,t) | T_{i} = 1, D_{i} = 1]$$

Is identified if:

$$E[Y_{00}(i,t) | T_i = 1, D_i = 1] = E[Y_{00}(i,t) | T_i = 0, D_i = 0]$$

 ATT_0 requires that voters who stay in A and voters who are moved from A to B would have the same average outcomes if they hadn't been moved.

Identification of ATT_1

$$ATT_1 \equiv E[Y_{11}(i,t) - Y_{01}(i,t) | T_i = 1, D_i = 1]$$

Is identified if:

$$E[Y_{01}(i,t) | T_i = 1, D_i = 1] = E[Y_{01}(i,t) | T_i = 0, D_i = 1]$$

 ATT_1 requires that voters who are originally in B and voters who are moved from A to B would have the same average outcomes if A's voters would not have been moved even though they would be in different districts.

Randomization does not imply that *B*'s old voters are a valid counterfactual for *B*'s new voters

Before two-time redistricting (election *t-1*)

Before two-time redistricting (election *t-1*)

Two-time redistricting (election t)

Two-time redistricting (election *t*+1)

Formally

After two-time redistricting (election t+1)

The Best Design: Multiple Redistrictings

Let $W_{i,t+1} = 1$ if precinct i is moved from district A to district B at election t + 1.

Let $W_{i,t+1} = 0$ if precinct i is moved from A to B at election t.

Let $Y_0(i, t+1)$ denote the outcome of i at election t+1 if $W_{i,t+1}=0$

Let $Y_1\left(i,t+1\right)$ denote the outcome of i at election t+1 if $W_{i,t+1}=1$

The parameter of interest ATT_B is

$$ATT_{B} \equiv E[Y_{1}(i, t+1) - Y_{0}(i, t+1) | W_{i,t+1} = 1]$$

The parameter of interest ATT_B is

$$ATT_{B} \equiv E[Y_{1}(i, t+1) - Y_{0}(i, t+1) | W_{i,t+1} = 1]$$

which is identified by

$$E[Y_0(i, t+1) | W_{i,t+1} = 1] = E[Y_0(i, t+1) | W_{i,t+1} = 0]$$

By randomization we have

$$E[Y_0(i, t-1) | W_{i,t+1} = 1] = E[Y_0(i, t-1) | W_{i,t+1} = 0]$$

Randomization along with the following stability assumption provides identification:

$$E[Y_0(i, t+1) - Y_0(i, t-1) | W_{i,t+1} = 1] = E[Y_0(i, t+1) - Y_0(i, t-1) | W_{i,t+1} = 0]$$

One-Time Redistricting Designs

There are two obvious designs under the randomization where everyone is in a certain district at t-1 and some precincts are randomly moved to another district at t.

- Compare new voters with old neighbors
- Compare new voters with new neighbors
- Randomization ensures exchangeability for the first design, but not the second
- This occurs because the history of new voters with new neighbors is not balanced by randomization