# **Business Analytics in Practice**



Hakeem-Ur-Rehman, PhD IQTM-PU

### **Outlines**

- What is Business Analytics?
- Types of Business Analytics
- Business Analytics in Practice
  - HR Analytics
  - Marketing Analytics
  - Supply Chain Analytics
- Data Visualization Using R
  - R: Graphics Packages
  - Descriptive Analysis of Qualitative Data
  - Descriptive Analysis of Quantitative Data
  - Data Visualization for Different Data Stories
    - Data Visualization to Show Deviations, Correlations, Rankings, Distributions, Magnitudes
- Correlation & Regression Analysis Using R (YouTube Links)
- Parametric Testing of Hypothesis (YouTube Link)
- Business Analytics Using Python (YouTube Links)

# What is Business analytics?

■ Business analytics is the scientific process of transforming data into insight for making better decisions (fact-based management to drive decision making)

A Visual Perspective of Business Analytics



# **Types of Business Analytics**



### **Business Analytics in Practice: HR Analytics**

Google refers to its HR Analytics function as "people analytics."

Google has analyzed substantial data on their own employees

- to determine the characteristics of great leaders,
- o to assess factors that contribute to productivity, and
- to evaluate potential new hires

Google also uses predictive analytics to continually update their forecast of future employee turnover and retention

HR Data: https://www.aihr.com/blog/hr-data-sources/

**Data Science / Machine Learning Data:** https://www.kaggle.com/

### **Business Analytics in Practice: Marketing Analytics**

Customer segmentation and a better understanding of consumer behavior through analytics leads to the

better use of

- advertising budgets,
- more effective pricing strategies,
- improved forecasting of demand,
- improved product-line management, and
- increased customer satisfaction and loyalty

Marketing analytics tells you how your marketing programs are really performing by using important business metrics, such as ROI, marketing attribution and overall marketing effectiveness.

# **Business Analytics in Practice: Supply Chain Analytics**

| SCOR Domain                          | Source                                                                           | Make                                                                                                | Deliver                                                                                                       | Return                                                          |
|--------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Activities                           | Order and receive materials and products                                         | Schedule and manufacture, repair, remanufacture, or recycle materials and products                  | Receive, schedule,<br>pick, pack, and<br>ship orders                                                          | Request, approve, and determine disposal of products and assets |
| Strategic<br>(time frame:<br>years)  | <ul><li>Strategic sourcing</li><li>Supply chain mapping</li></ul>                | <ul><li>Location of plants</li><li>Product line mix<br/>at plants</li></ul>                         | <ul><li>Location of<br/>distribution centers</li><li>Fleet planning</li></ul>                                 | • Location of return centers                                    |
| Tactical<br>(time frame:<br>months)  | <ul><li>Tactical sourcing</li><li>Supply chain contracts</li></ul>               | <ul><li>Product line<br/>rationalization</li><li>Sales and<br/>operations planning</li></ul>        | <ul> <li>Transportation and<br/>distribution planning</li> <li>Inventory policies<br/>at locations</li> </ul> | Reverse distribution plan                                       |
| Operational<br>(time frame:<br>days) | Materials<br>requirement<br>planning<br>and inventory<br>replenishment<br>orders | <ul> <li>Workforce scheduling</li> <li>Manufacturing, order<br/>tracking, and scheduling</li> </ul> | Vehicle routing<br>(for deliveries)                                                                           | Vehicle routing (for<br>returns collection)                     |
| Plan                                 | Demand forecasting (long term, mid term, and short term)                         |                                                                                                     |                                                                                                               |                                                                 |

| Analytics<br>Techniques | Source                                                                                                                                                                                                                                             | Make                                                               | Deliver                                                     | Return |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------|--|
| Descriptive             | Supply chain mapping                                                                                                                                                                                                                               | Supply chain visualization                                         |                                                             |        |  |
| Predictive              | <ul> <li>Time series methods (e.g., moving average, exponential smoothing, autoregressive models)</li> <li>Linear, non-linear, and logistic regression</li> <li>Data-mining techniques (e.g., cluster analysis, market basket analysis)</li> </ul> |                                                                    |                                                             |        |  |
| Prescriptive            | Analytic hierarchy process     Game theory (e.g., auction design, contract design)                                                                                                                                                                 | Mixed-integer linear programming (MILP)     Non-linear programming | Network fi<br>algorithms     MILP     Stochastic<br>dynamic | 5      |  |

Souza, G. C. (2014). Supply chain analytics. Business Horizons, 57(5), 595-605.

# **Business Analytics in Practice**

Map-Reduce

To perform tasks such The Process of Using In domains such as... techniques such as... as... Measure Sales Force Effectiveness **Forecasting** Descriptive Management **Statistics Time Series** Science **Supply Chain** Campaign & Promotion Analysis Causal Sampling Relationships Mean **Linear Programming** Mode Sensitivity Analysis **Data Mining** Median **Integer Programming** Customer segmentation & Profiling Cluster Analysis Standard Deviation **Goal Programming** Human Range & Variance Association Analysis **Nonlinear Programming** Marketing/Sales **Multiple Regression** Stem & Leaf Diagram Resource Transportation Logistic Regression Logistics Histogram Demand forecasting Interquartile Range **Decision Tree Methods Optimization Heuristics Neural Networks** Simulation Modeling Quartiles **Frequency Distributions** Text Mining Warehouse planning **Descriptive Prescriptive Predictive Analytics** Inventory Management **Analytics Analytics Analytics** Healthcare Retail **Logistics Optimization Databases & Data Warehousing** Analysis of clinical trails **Relational Database Modeling** Structured Query Languages Report Generation and Data Visualization Fraud Detection **Dimensional Modeling Extract-Transform-Load** Finance Manufacturing **Data Warehousing Schemas** Online Analytical Processing Many more **Nonstructured Query Languages Distributed File Systems** 

# **Data Visualization Using R**

Data Visualization: Best practices for Business Users



Data Visualization Techniques for Better Data Story Telling

# R: Graphics Packages

tidyverse

ggplot2

- 1. ggplot2
- 2. ggvis
- 3. ggforce
- 4. Lattice
- 5. Plotly
- 6. patchwork
- 7. quantmod
- 8. RGL
- 9. Colourpicker
- 10.Esquisse





# R Package: ggplot2

#### ggplot Syntax:

- Based on Grammar of Graphics book by Leland Wilkinson hence 'gg'
- Data → must be stored as an R data frame
  - o ggplot(data = df)
- Aesthetic mapping ("aes" → x-axis, y-axis, fill("inside color"), color ("outside"), line type, size, shape "of points")
  - o ggplot(data = df, aes(x=categorical.var, fill=group.var)) + geom\_bar()
- Geometric Object → "geom " + Plot Type → "A plot must have at least one geom; there is no upper limit"
  - o ggplot(data = df) + geom\_bar()

All non-data ink.
The space on which the data will be plotted.

Coordinates

Representations of our data to aid understanding.

Plotting small multiples.

Facets



| Data        | {variables of interest} |                |                |                |                         |
|-------------|-------------------------|----------------|----------------|----------------|-------------------------|
| Aesthetics  | x-axis<br>y-axis        | colour<br>fill | size<br>labels | alpha<br>shape | line width<br>line type |
| Geometries  | point                   | line           | histogram      | bar            | boxplot                 |
| Facets      | columns                 | rows           |                |                |                         |
| Statistics  | binning                 | smoothing      | descriptive    | inferential    |                         |
| Coordinates | cartesian               | fixed          | polar          | limits         |                         |
| Themes      | non-data ink            |                |                |                |                         |

## **Descriptive Analysis of Qualitative Data**



#### **Line Plot:**

- Line graphs are used to track changes over short and long periods of time.
- When smaller changes exist, line graphs are better to use than bar graphs.
- Line graphs can also be used to compare changes over the same period of time for more than one group.

# **Descriptive Analysis of Quantitative Data**



### **Data Visualization for Different Data Stories**

#### **Data Visualization to Show Deviations**

Variations, be it positive or negative, are compared with a reference point, which is usually zero. However, reference points can also be a target or a long-term average.

- Diverging Bar Chart
- Diverging Dot Plot
- Diverging Lollipop Chart









### Data Visualization for Different Data Stories

#### **Data Visualization to Show Correlations**

- To show the relationship between two or more variables.
  - Scatter Plot
  - **Bubble Plot**
  - Correlogram









# **Exam Anxiety Data**

Data File: Exam Anxiety.dat

- Code: a number indicating from which participant the scores came.
- Revise: the total hours spent revising.
- Exam: mark on the exam as a percentage.
- Anxiety: the score on the Exam Anxiety Questionnaire (EAQ).
- Gender: whether the participant was male or female (stored as strings of text).

|                  | Α    | В      | С    | D       | Е      |
|------------------|------|--------|------|---------|--------|
| 1                | Code | Revise | Exam | Anxiety | Gender |
| 2                | 1    | 4      | 40   | 86.298  | Male   |
| 3                | 2    | 11     | 65   | 88.716  | Female |
| 4                | 3    | 27     | 80   | 70.178  | Male   |
| 5                | 4    | 53     | 80   | 61.312  | Male   |
| 6                | 5    | 4      | 40   | 89.522  | Male   |
| 7                | 6    | 22     | 70   | 60.506  | Female |
| 8                | 7    | 16     | 20   | 81.462  | Female |
| 9                | 8    | 21     | 55   | 75.82   | Female |
| 10               | 9    | 25     | 50   | 69.372  | Female |
| 11               | 10   | 18     | 40   | 82.268  | Female |
| 12               | 11   | 18     | 45   | 79.044  | Male   |
| 13               | 12   | 16     | 85   | 80.656  | Male   |
| 14               | 13   | 13     | 70   | 70.178  | Male   |
| 15               | 14   | 18     | 50   | 75.014  | Female |
| 16               | 15   | 98     | 95   | 34.714  | Male   |
| 17               | 16   | 1      | 70   | 95.164  | Male   |
| Exam Anxiety (+) |      |        |      |         |        |

### **Data Visualization for Different Data Stories**

#### **Data Visualization to Show Rankings**

- Ordered lists or rankings are useful to quickly identify top or bottom performers.
  - Ordered Bar
  - Pareto Chart





### Data Visualization for Different Data Stories...

#### **Data Visualization to Show Distributions**

- Histogram
- Box plot
- Violin Plot
- Frequency Polygons









### Data Visualization for Different Data Stories...

#### **Data Visualization to Show Huge Magnitudes**

- Set of charts to show size comparisons in data.
- o These charts are good to show counted numbers rather than a value such as changing rate or percentage.
  - Simple Bar Chart
  - Multiple Bar Chart

#### Gender Wise Employee





### **Correlation & Regression Analysis Using R**

#### **Correlation Analysis (Part-1 to 3)**

- https://www.youtube.com/watch?v=ZLikejwTtIA
- https://www.youtube.com/watch?v=aEL-bUsOOSk
- https://www.youtube.com/watch?v=qmpWjtrQGdk&t=161s

#### **Regression Analysis**

- Simple Regression Analysis
  - https://www.youtube.com/watch?v=RH5NyPAdwuA&t=2619s
- Multiple Regression Analysis
  - o https://www.youtube.com/watch?v=FAKS3vbve0Y
- Multiple Regression Analysis Robust Regression: Bootstrapping Using R
  - https://www.youtube.com/watch?v=iCofhLpZc9o&t=171s
- Regression Analysis with Dummy Variables Using R
  - https://www.youtube.com/watch?v=mlp3o8AhOHM&t=2s

### **Parametric Testing of Hypothesis**



https://www.youtube.com/watch?v=cle6mvlgn0Q

### **Business Analytics Using Python**

#### Data Manipulation & Analysis Using Python

https://www.youtube.com/watch?v=FYvwgsKZkXo

#### Predictive Analytics

- Time Series Forecasting Using Python
  - o <a href="https://www.youtube.com/watch?v=xSn9aEtPIDs">https://www.youtube.com/watch?v=xSn9aEtPIDs</a>

#### Perspective analytics – Operations Research / Optimization

- Linear & Integer Programming Using Python (Playlist)
  - o <a href="https://www.youtube.com/watch?v=NNmRQEgupuo&list=PLW39o\_Nls7NwOmVjYprSySpeHjexDHt3i">https://www.youtube.com/watch?v=NNmRQEgupuo&list=PLW39o\_Nls7NwOmVjYprSySpeHjexDHt3i</a>

