Termodinâmica

Termodinâmica

A **Termodinâmica** é a área da Física que investiga os processos pelos quais calor se converte em trabalho ou trabalho se converte em calor.

Energia interna de um gás

As moléculas de um gás estão em constante movimentação. Dentre outras formas de energia, as moléculas possuem energia cinética.

A energia interna do gás, que passamos a representar por *U*, corresponde à soma das energias cinéticas de todas as moléculas do gás.

Energia interna de um gás

Essa energia depende da quantidade de gás e de sua temperatura absoluta. Para um gás perfeito monoatômico, desmonstra-se que:

$$U = \frac{3}{2} \cdot n \cdot R \cdot T \quad \xrightarrow{\text{Mas: } p \cdot V = n \cdot R \cdot T} \quad U = \frac{3}{2} \cdot p \cdot V$$

Lei de Joule

Para uma dada massa de gás perfeito, n = constante, a energia interna U depende exclusivamente de sua temperatura absoluta T.

Trabalho em uma transformação gasosa

Consideremos determinada quantidade de gás contida em um cilindro provido de êmbolo que pode deslizar sem atrito.

Expansão do gás

Cálculo do trabalho da força F

Como: $\tau = F \cdot d$

Então, $\tau = p \cdot S \cdot d$

Mas: $S \cdot d = \Delta V$

Portanto, $\tau = p \cdot \Delta V$

(válido quando p = constante)

Trabalho numa transformação gasosa

A expressão deduzida só é válida nas transformações em que a pressão do gás permanece constante (transformação isobárica).

Em um diagrama Pressão · Volume (diagrama de Clapeyron): Portanto,

$$\tau = p \cdot \Delta v$$

$$|\tau|$$
 = "área" sob $p \times V$

Trabalho numa transformação gasosa

Essa propriedade pode ser generalizada e válida mesmo que a pressão *p* exercida pelo gás durante a transformação varie. Então, em qualquer transformação gasosa:

Se
$$V$$
 aumenta $\Rightarrow \tau > 0$ (o gás realiza trabalho)
$$|\tau| = \text{``área'' sob } p \times V$$
 Se $V = \text{constante} \Rightarrow \tau = 0$ (transformação isocórica)
$$\text{Se } V \text{ diminui} \Rightarrow \tau < 0 \text{ (o gás realiza trabalho)}$$

A primeira lei da Termodinâmica é uma lei de conservação de energia que mostra a equivalência entre calor e trabalho. De acordo com essa lei:

A variação da energia interna ΔU do sistema é igual à diferença entre o calor Q trocado pelo sistema e o trabalho τ envolvido na transformação.

Então:

$$Q = \Delta U + \tau$$

Portanto, a variação da energia interna ΔU de um sistema termodinâmico é o resultado de um balanço energético entre o calor Q trocado e o trabalho τ envolvido na transformação.

$$\Delta U > 0 \Leftrightarrow T \text{ aumenta} \Leftrightarrow \text{ o sistema esquenta}$$

$$\Delta U < 0 \Leftrightarrow T \text{ diminui} \Leftrightarrow \text{ o sistema esfria}$$

$$\Delta U = 0 \Leftrightarrow T \text{ constante (transformação isotérmica) ou}$$

$$T_{\text{final}} = T_{\text{inicial}}$$

$$Q = \Delta U + \tau$$

$$Q = 0 + \tau$$

 $Q > 0 \Leftrightarrow \text{ o sistema recebe calor}$ $Q < 0 \Leftrightarrow \text{ o sistema cede calor}$ $Q = 0 \Leftrightarrow \text{ o sistema não troca calor (transformação adiabática)}$

$$Q = \Delta U + \tau$$

$$0 = \Delta U + \tau$$

$$-\Delta U = + \tau$$

 $au > 0 \Leftrightarrow V \text{ aumenta} \Leftrightarrow \text{o sistema realiza trabalho}$ $au < 0 \Leftrightarrow V \text{ diminui} \Leftrightarrow \text{o sistema recebe trabalho}$ $au = 0 \Leftrightarrow V \text{ constante (transformação isocórica)}$

$$Q = \Delta U + \tau$$

$$Q = \Delta U + 0$$

$$Q = \Delta U$$

Uma transformação gasosa é chamada de **transformação cíclica** ou **ciclo** quando o estado final do gás coincide com o estado inicial.

Durante o processo, a temperatura poderá variar continuamente. Ao retornar ao estado inicial, a temperatura final será a mesma do início. Portanto, em qualquer transformação cíclica:

$$\Delta U = 0$$

Trabalho na transformação cíclica

Em uma transformação cíclica, o trabalho é calculado pela soma algébrica dos trabalhos de todas as etapas do ciclo.

No exemplo ao lado:

$$\tau_{\text{ciclo}} = \tau_{AB} + \tau_{BA}$$

Trabalho na transformação cíclica

Portanto, em qualquer ciclo:

$$|\tau_{ciclo}|$$
 = "área"

 $|\tau_{ciclo}|$ = "área" | interna do ciclo no diagrama $p \times V$

ou

Ciclo horário

Ciclo anti-horário

Exemplo

Segunda lei da Termodinâmica

A segunda lei da Termodinâmica pode ser enunciada de diferentes maneiras.

Calor não flui espontaneamente de um corpo com menor temperatura para um corpo com maior temperatura.

Enunciado de Kelvin-Planck

Para as máquinas térmicas:

É impossível a uma máquina térmica operando em ciclo converter integralmente calor em trabalho.

Enunciado de Kelvin-Planck

Segunda lei da Termodinâmica

A segunda lei da Termodinâmica, aplicada às máquinas térmicas, pode ser assim resumida:

Pela primeira lei da Termodinâmica:

$$\tau = Q_1 - Q_2$$

Segunda lei da Termodinâmica

A segunda lei da Termodinâmica, aplicada às máquinas térmicas, pode ser assim resumida:

Define-se o rendimento η como:

$$\eta = \frac{\text{trabalho útil}}{\text{calor recebido}} \Rightarrow \boxed{\eta = \frac{\tau}{Q_1}} \quad \text{ou} \quad \eta = \frac{Q_1 - Q_2}{Q_1} \Rightarrow \boxed{\eta = 1 - \frac{Q_2}{Q_1}}$$

Ciclo de Carnot

O ciclo de Carnot é o ciclo teórico que, ao operar entre as temperaturas T_1 e T_2 , apresenta o máximo rendimento, quando comparado a qualquer outro ciclo.

É constituído por duas transformações isotérmicas alternadas a duas transformações adiabáticas:

A ___ B: Expansão isotérmica

B _ C: Expansão adiabática

C __ D: Compressão isotérmica

D ___ A: Compressão adiabática

O ciclo de Carnot

Rendimento

No ciclo de Carnot, o calor trocado é proporcional à temperatura absoluta da fonte, isto é:

$$Q = k \cdot T$$

Calculemos, então, o rendimento de uma máquina de Carnot:

$$\eta = 1 - \frac{Q_2}{Q_1}$$

$$\eta_{\text{Carnot}} = 1 - \frac{1}{V \cdot T_2}$$

$$\eta_{\text{Carnot}} = 1 - \frac{T_2}{T_1}$$

Exemplo