Karta Ćwiczenia 2. Charakterystyki inwertera CMOS

Imię i Nazwisko: Andrzej Kapczyński	Grupa L8 Semestr 7		
Dzień tygodnia i godzina: wtorek 15:10			
Data wykonania ćwiczenia: 11.12.2022r.	Podpis prowadzącego:		

I.Przygotowanie do ćwiczenia

Wykonanie "przygotowania do ćwiczenia" jest warunkiem koniecznym dopuszczenia do ćwiczenia i powinno być przygotowane w domu.

Do niniejszej kartki dołącz (zszyte zszywaczem) pisane odręcznie (zabronione jest pisanie na komputerze) odpowiedzi na następujące zagadnienia:

- 1. Narysuj schemat inwertera (uwzględnij tranzystory 4-pinowe).
- 2.Określ na szkicach odpowiednich wykresów definicje i pełne nazwy parametrów inwertera określonych skrótami: (tr, tf, tdr, tdf, td, VIL, VIH, Vth). Definicje te będą potrzebne do wyznaczenia wymienionych parametrów z odpowiednich wykresów.
- 3. Opisz jak można sterować parametrami inwertera (tr, tf, tdr, tdf, td, VIL, VIH, Vth) oraz jaka powinna być optymalna wartość danego parametru. W celu określenia wartości optymalnych można skorzystać z wykresów z punktu 1.
- 4. Wylicz na podstawie wzorów teoretycznych parametry VIL, VIH, Vth dla przypadku $(W/L)_p = 940 \text{ nm} / 65 \text{ nm}, (W/L)_n = 200 \text{ nm} / 65 \text{ nm}, C_{out} = 50 \text{fF}.$ Inne potrzebne wartości parametrów tranzystora można znaleźć w pliku zawierającym opis modelu tranzystora. Użyj parametru VTO jako V_t (threshold voltage) danego tranzystora. Wyliczone wartości wpisz w przygotowane nawiasy w tabeli 2. Przebieg obliczeń, w szczególności wzory wyjściowe i kolejne przekształcenia muszą być dołączone. Podanie jedynie wartości końcowej nie jest wystarczające.

II.Wyniki symulacji

Tabela 4. Wyniki analizy TRAN					
Dimensions and	Rise	Fall	Delay Time *)		
Loading	Time	Time	tdf	tdr	td
W/L and Cout	tr	tf	high-to-	low-to-	delay time
(W/L)p - PMOS[nm]	[ns]	[ns]	<i>low delay</i> [ns]	high	[ns]
(W/L)n - NMOS [nm]			[IIS]	delay	
$(W/L)_p=940/65,$	2.6903	5.4298	2.0075	1.4659ns	2.1867
$(W/L)_n=200/65$	2.0000	0.4200	2.9075	1.4039115	2.1007
$\frac{\text{C}_{\text{out}}=500 \text{ fF}}{(\text{W/L})_{\text{p}}=940/65,}$					
$(W/L)_n=200/65$	7.6198	16.044	8.2484	3.9478ns	6.0981
$C_{\text{out}} = 1500 \text{ fF}$		10.011	0.2.0		
$(W/L)_p=1600/65$,					
$(W/L)_n=200/65$	1.7620	5.4334	2.9125	991.87ps	1.952185
Cout=500 fF					
$(W/L)_p=1600/65,$					
$(W/L)_n=200/65$	4.7363	16.049	8.2523	2.4668ns	5.35955
C _{out} =1500 fF			0.2020		
$(W/L)_p=940/180,$					
$(W/L)_n=200/180$	4.9646	9.0073	4.6850	2.6245ns	3.65475
Cout=500 fF					
$(W/L)_p=940/180,$					
$(W/L)_n=940/180$	4.9648	2.2141	1.3166	2.6305ns	1.97355
Cout=500 fF					

Tabela 5. Parametry odczytane z VTC					
Dimensions and Loading W/L and Cout (W/L)p – PMOS (W/L)n – NMOS	VIL	Vth	VIH	NMH	NML
(W/L) _p =940/65, (W/L) _n =200/65 C _{out} =500 fF	0.53038V	0.61805V	0.71392V	0.44456V	0.48754V
(W/L) _p =940/65, (W/L) _n =400/65 C _{out} =500 fF	0.50128V	0.59332V	0.68718V	0.46958V	0.46135V
(W/L) _p =940/65, (W/L) _n .=800/65 C _{out} =500 fF	0.464V	0.564V	0.652V	0,5068 V	0.42498V

Tabela 6. Maksymalny prąd				
Dimensions and Loading W/L and Cout (W/L)p – PMOS (W/L)n – NMOS	IDMAX	Vin	PMAX	PAVG*
(W/L) _p =940/65, (W/L) _n .=800/65 C _{out} =500 fF	19.861uA	0.56V	18.213uW	235.79nW

Tabela 7. Analiza PVT – process mismatch				
Dimensions and Loading (W/L)p – PMOS (W/L)n – NMOS	<i>td=tdr+tdf</i> [ps]	<i>fmax=1/td</i> [GHz]		
(W/L) _p =940/65, T (W/L) _n .=200/65, T	22,549	44,348		
(W/L) _p =940/65, F (W/L) _n .=200/65, F	15,873	63,000		
(W/L) _p =940/65, S (W/L) _n .=200/65, S	29,249	34,189		
(W/L) _p =940/65, F (W/L) _n .=200/65, S	23,245	43,020		
(W/L) _p =940/65, S (W/L) _n .=200/65, F	21,781	45,912		

Tabela 8. Analiza PVT	– voltage mismatch		
Dimensions and Loading (W/L)p – PMOS (W/L)n – NMOS	<i>td=tdr+tdf</i> [ps]	fmax=1/td [GHz]	Chart: fmax = f(VDD)
(W/L) _p =940/65, VDD=0.9V (W/L) _n =200/65 , TT	35,34	28,297	fmax=f(VDD)
(W/L) _p =940/65, VDD=1.0V (W/L) _{n.} =200/65 , TT	31,267	31,983	50,000
(W/L) _p =940/65, VDD=1.1V (W/L) _n =200/65 , TT	26,281	38,050	30,000 W1=X EE 20,000
(W/L) _p =940/65, VDD=1.2V (W/L) _n =200/65 , TT	22,519	44,407	0,000 0,9 1,0 1,1 1,2 1,3
(W/L) _p =940/65, VDD=1.3V (W/L) _{n.} =200/65 , TT	20,418	48,976	VDD

Tabela 9. Analiza PVT – temperature mismatch					
Dimensions and (W/L)p - F (W/L)n - N	PMOS	<i>td=tdr+tdf</i> [ps]	fmax=1/td [GHz]	Chart	fmax = f(TEMP)
(W/L) _p =940/65, (W/L) _{n.} =200/65		23,034	43,41408353	fmax=f(temp	
(W/L) _p =940/65, (W/L) _n .=200/65		22,94	43,59197908	40,000	
(W/L) _p =940/65, (W/L) _n .=200/65		22,8627	43,73936587	30,000	
(W/L) _p =940/65, (W/L) _{n.} =200/65		22,7881	43,88255274	50,000 max=1/ld	
(W/L) _p =940/65, (W/L) _{n.} =200/65		22,7219	44,01040406	10,000	
(W/L) _p =940/65, (W/L) _n .=200/65		22,6627	44,125369	0,000	25 50 75 100 TEMP

Andrzej Kapczyński 145358 ga. L8 wtorek 15:10 1. Narysuj schemat invertera (unzględnij tranzystony 4-pinave) VDD B OUT 0 C 1.20 = GROUND Vin VIL VH VIH Vth - naplycle progone VIL - hapteche refocione mistre
VIH - napteche response Afra

a) B= M · Cox · W = K-W kn = 1.1.10-2. 3.9.8,854.10-12 = 1.46.10-4 Lp= 0.45.102. 39-8.854 10-12 = 5,549.10-5 P= 1.46 -10-4 - 2.10-8 = 4.49 10-4 Pp = 5.549 · 10-5 · 9.4 · 10-4 = 8.02 · 10-4 V+p = -0.48V VTN = 0.4V VOD = 1.2V & Cont = 50F &= Pp Vth = 18. V+n + VDD + V+p = 1.2-0.48

1+ 18 - V+n + VDD + V+p = 0.248.0,4+1.2-0.48 Vti = 0.583V b) Vrp = 0.48 V Vrn = 0.4V Vpp = 1.2V Cour = 50F Pn= 4,49-10-4 Pp= 8.02-10 J Bn Ed (VIN-VIN)-Vout] Vour = Pp (VOD-VIN+VID) 1: Bp [BM & Bm. Vont - Pm (Vin-VTn) = - Pp Vpp+ 3p (Vin-VTP) /: Pp Pp · [2(Vin-Vin) - Vout] · Vout = (VDD - Vin + VTP) Po (2 Vant - Vin + Vin) z - Vpo + Vine - Vip [0.56 (2V12 - 0.8 - Vont) Vont = (0,72 - Vin)2 1.12 Vont - 0,56 (Vin-0,4)= Vin-0.72 [0.56 (2V. - 0.5 - Vont) Vont = (0,22. VIn)2 Vont = 1.99 Vin - 0, 84 0.56 (201 - 0.8 - 1.39 Vin + 0.84) (1.39 Vin - 0.84) = (0.42 - V.n) 0,56 (1.39 Vin - 0,84) (0.61 Vin - 0.04) = (0,72 - Vin)2 0,474 VIN2 - 0.255 x -0,018 = Vin2-144 Vin + 0,518 -0,525 Vm 2+ 1,184 Vin -0,537 =0 A=1,401-1,127=0,073 Vima = - (1,18)-0522) = 0,6304 Vinz = -(1,18+0,522) = 1,6247 \$D 1,62 > VDO Odp : VIL = VIH = 0,6304

```
4. c) VTP = -0,484 VTN = 0.44 VDD = 1.24 CONT = 50F
        Br= 4.49-10" Br= 8.02.10"
       [Bn (Vin-Vin)2 = Po [2 (Voo-Vin + Vip) - (Voo-Vont](Voo-Vont)
      (Bn (Vin - Vm) = Pp (VDO - Vin + VTP) - & Bp (VOD - VOLT)
      $ 4.48. 10" (V: 2-0.4)= 8.02. 10" [2. (1.2-Vin -0.48) -1.2+Vont](1,2-Vont)
      [4.49-10-4 (Vin-0,4) = 8.02 10-4 (12-Vin-0,48-2 8 02.10-4(1,2-Voit)
     10.56. (Vin 0.4)2 = (2 (0,72-Vin) -(1,2-Vont)). (1,2-Vont)
      (0.56 (Vm -0,4) = (0, 22 - Vm) -2(1,2-but)
     1 0.56 (Vin -0,4)2=[2.(0,42-Vin)-(1,2-Vont)](1,2-Vont)
     LO.56 Vin & -0,22 = - Vin + 2 Vont - 1,68
     D& Vont = 1.56 Vin + 146
     PV 2 0,78 V; ~ 0,73
     0,56 (Vin - 0,8Vin + 0,16) = (1,44-2Vin - 1,2+0,78 Vin+0,73)(1,2-0,28vin-073)
    0.56 Vin 2-0,45Vin +0,08= (0,97-1,22 Vin) (-0,78 Vin +0,47)
    0,56 Vin2 -0, USVin +0,08 = 0,95 Vin2 -0,57Vin -0,78 Vin +0,47
             0,39 V. ~ 2 = -0,8 XV. ~ + 0,38 = 0
               39 Vin - 87 Vin +38 =0
            Δ = 872 - 4.39-38 = 1641
            Vinz 87140,5 = 1,63 & D spreame
            Vinz = 87-40.5 = 0,59
           Odp: Vin=VIL = 0,59
```