Corpus based Part-of-Speech Tagger (HMM, CRF)

Hyunjoong Kim

soy.lovit@gmail.com

github.com/lovit

Part-of-Speech tagging

• 품사 판별은 주어진 단어의 품사를 구분합니다

[토크나이징, 은, 어절, 에서, 단어,를, 나누는, 것, 입니다] →
 [(토크나이징, 명사),
 (은, 조사),
 (어절, 명사),

(에서, 조사),

(단어, 명사),

(를, 조사),

(나누는, 동사),

(것, 명사),

(입니다, 형용사)]

Noise canceling (spelling, spacing)

Tokenizing

Part-of-speech tagging

filtering; stopwords removal

Term vector representation

Transformation tf into tfidf (or others)

Applying algorithm

Morphological analysis

- 형태소 분석은 단어의 형태소를 인식합니다.
 - 형태소는 단어를 구성하는 최소단위 입니다.
 - 품사 판별: "입니다" → 형용사
 - 형태소 분석: "입니다"
 - → 이/형용사어근 + ㅂ니다/어미

Noise canceling (spelling, spacing) **Tokenizing** Part-of-speech tagging filtering; stopwords removal Term vector representation Transformation tf into tfidf (or others)

Applying algorithm

- 품사 판별과 형태소 분석의 과정은 비슷합니다.
 - 형태소 분석이 품사 판별보다 조금 더 세분화된 단위로 문장의 구성요소를 인식하는 것 뿐입니다.
- 품사 판별을 위하여 형태소 분석이 이용될 수도 있습니다.
 - 먹는 = '먹다/verb'+ 는/eomi' 로 분해하여 '먹는/verb' 로 판단할 수도 있으며,
 - '먹는/verb' 자체가 동사 사전에 포함되어 있어도 됩니다.
 - 품사 판별을 위하여 반드시 형태소 분석을 해야 하는 것은 아닙니다.

- 품사 판별, 형태소 분석의 과정은 두 단계로 구성됩니다.
 - (1) 주어진 문장으로부터 단어/형태소 열의 후보들을 만들고 (generation),
 - (2) 그 중 가장 높은 점수를 얻는 후보를 선택합니다 (evaluation).

- 품사 판별, 형태소 분석의 과정은 두 단계로 구성됩니다.
 - (1) 주어진 문장으로부터 단어/형태소 열의 후보들을 만들고 (generation),
 - (2) 그 중 가장 높은 점수를 얻는 후보를 선택합니다 (evaluation).

문장: '이것은 예문이다'

후보 1: [이것/Noun, 은/Josa, 예문/Noun, 이다/Adj]

후보 2: [이것/Noun, 은/Josa, 예문/Noun, 이/Noun, 다/Noun],

후보 3: [이/Noun, 것/Noun, 은/Josa, 예문/Noun, 이/Noun, 다/Noun],

• • •

- 품사 판별, 형태소 분석의 과정은 두 단계로 구성됩니다.
 - (1) 주어진 문장으로부터 단어/형태소 열의 후보들을 만들고 (generation),
 - (2) 그 중 가장 높은 점수를 얻는 후보를 선택합니다 (evaluation).

문장: '이것은 예문이다'

후보 1: [이것/Noun, 은/Josa, 예문/Noun, 이다/Adj] → prob = 0.57

후보 2: [이것/Noun, 은/Josa, 예문/Noun, 이/Noun, 다/Noun], → prob = 0.23

후보 3: [이/Noun, 것/Noun, 은/Josa, 예문/Noun, 이/Noun, 다/Noun], → prob = 0.02

. . .

- 품사 판별, 형태소 분석의 과정은 두 단계로 구성됩니다.
- Evaluation 과정은 sequential labeling 을 이용할 수 있습니다.

- 길이가 n 인 $x = [x_1, x_2, ... x_n]$ 에하여 category sequence 인 $y = [y_1, y_2, ... y_n]$ 을 출력하는 문제를 sequential labeling 이라 합니다.
- Word sequence x 에 대하여 tag sequence y 를 출력하면 품사 판별을 할 수 있습니다.

- One hot representation 을 이용하는 sequential labeling 이 있습니다.
 - HMM → MEMM → CRF 순으로 이용되었으며,
 CRF 가 품사 판별에서 가장 좋은 성능을 보였습니다.
- 이들은 확률 모형으로, 이들의 목적은 다음과 같습니다.

 $argmax_{y_{1:n}} P(y_{1:n} \mid x_{1:n})$

^{^1} Hidden Markov Model (HMM)

^{^2} Maximum Entropy Markov Model (MEMM)

^{^3} Conditional Random Field (CRF)

• 최근에는 word embedding 정보를 이용하여 품사 판별을 하기 위하여 Recurrent Neural Network (RNN) 을 기반으로 하는 품사 판별 알고리즘도 이용되고 있습니다.

Brief review of Hidden Markov Model

• HMM 은 $P(y_{1:n}|x_{1:n})$ 을 다음처럼 정의합니다.

•
$$P(y_{1:n}|x_{1:n}) = \frac{P(x_{1:n}|y_{1:n}) \times P(y_{1:n})}{P(x_{1:n})}$$
 Bayes rule

- 우리가 풀 문제는 $x_{1:n}$ 이 고정이므로 $P(x_{1:n})$ 는 모든 $y_{1:n}$ 에 대하여 동일합니다. 즉 이를 무시합니다.
 - $argmax_{y_{1:n}} P(y_{1:n}|x_{1:n}) = argmax_{y_{1:n}} P(x_{1:n}|y_{1:n}) \times P(y_{1:n}) \ \ \Box \ \ \Box \ \Box$.

- HMM 은 $P(y_{1:n}|x_{1:n})$ 을 다음처럼 정의합니다.
 - $argmax_{y_{1:n}} P(y_{1:n}|x_{1:n}) = argmax_{y_{1:n}} P(x_{1:n}|y_{1:n}) \times P(y_{1:n})$
 - $P(x_{1:n} | y_{1:n}) := \prod_i P(x_i | y_i)$
 - $P(y_{1:n}) := \prod_i P(y_i|y_{i-1})$
 - $\rightarrow P(x_{1:n} | y_{1:n}) \times P(y_{1:n}) = \prod_{i} P(x_i | y_i) P(y_i | y_{i-1})$

- $P(y_{1:n}|x_{1:n}) = \prod_i P(x_i|y_i)P(y_i|y_{i-1})$ 이 되는 것은 HMM 의 정의입니다.
- 다른 sequential labeling model 은 $P(y_{1:n}|x_{1:n})$ 을 다른 방식으로 정의합니다.

emission probability

• HMM 은 P(품사열 | 단어열) 의 확률을 다음처럼 계산합니다.

```
P([Noun, Josa, Noun, Adj] [이것, 은, 예문, 이다])
                  = P(이것 | Noun) x P(은 | Josa) x P(예문 | Noun) x P(이다 | Adj) x P(Noun) x P(Josa | Noun) x P(Noun | Josa) x P(Adj | Noun)
                                                                           transition probability
: state (y_i) 에서 observation (x_i) 가 발생할 확률
                                                                            : state (y_i) 가 변하는 확률
: 품사 "Noun" 에서 "이것"이 등장할 확률
                                                                            : "Noun → Josa" 일 확률
```

Training

• 말뭉치를 이용하여 HMM 을 학습할 때에는 두 종류의 parameter 를 학습합니다. 학습은 counting 입니다.

• emission:
$$P(x_i|y_i) = \frac{\#(x_i,y_i)}{\#y_i}, \frac{\#(,0) \not \supset, Noun)}{\#Noun}$$

• transition :
$$P(y_i|y_{i-1}) = \frac{\#(y_i,y_{i-1})}{\#y_{i-1}}, \frac{\#(Noun \to Josa)}{\#Noun}$$

Decoding

- HMM 에 $x_{1:n}$ 이 주어졌을 때 확률이 가장 큰 $y_{1:n}$ 를 찾기 위해서 주로 Viterbi style decoding 이 이용됩니다.
 - 이는 shortest path 의 계산 과정으로도 설명할 수 있습니다.

HMM as Shortest path

- HMM 의 목적식에 -log 를 취한 뒤, argmax 를 argmin 으로 바꿉니다.
 - $argmax_{w,t} P(w_{1:m}, t_{1:m}|S) = \prod_{i=1}^{m} P(t_i|t_{i-1}) \times P(w_i|t_i)$
 - $argmin_{w,t} \log \prod_{i=1}^{m} P(t_i|t_{i-1}) \times P(w_i|t_i)$
 - $= \sum_{i=1}^{m} -\log(P(w_i|t_i) \times P(t_i|t_{i-1}))$ shortest path edge weight

• (w_i, t_i) 를 그래프의 마디로, $\log(P(w_i|t_i) \times P(t_i|t_{i-1}))$ 를 마디의 weight 로 설정하면 HMM 의 최적해는 shortest path 로 찾을 수 있습니다.

HMM as Shortest path

- 사전에 등록되어 있는 단어를 lookup 하여 마디 후보를 만듭니다.
- 마디 (U, V) weight 는 $-\log(P(V_t|U_t) \times P(V_w|V_t)$ 를 이용하면 Hidden Markov Model (HMM) 을 이용하는 품사 판별기가 됩니다.

- $w(BOS \rightarrow \delta \dot{o} / Noun) = -\log(P(Noun|BOS) \times P(\delta \dot{o} |Noun))$
- $w(\delta \circ / Noun \rightarrow \vdash / Josa) = -\log(P(Josa \mid Noun) \times P(\vdash \mid Josa))$

HMM as Shortest path

• (예문) 청하는 아이오아이의 출십입니다

- Issue #1. 학습데이터에 등장하지 않은 x 는 P(x|y) = 0 입니다.
 - 학습데이터의 '명사' 집합에 '아이오아이'가 존재하지 않았다면, '아이오아이' 라는 단어를 인식할 수 없습니다.

- Solution #1. 사용자 사전을 추가할 수 있습니다.
 - P(x|y) 에 새로운 단어를 추가하고, $\sum_{x} P(x|y) = 1$ 이 되도록 scaling 합니다.

- Issue #2. Unguaranteed Independency Problem
 - 단어열은 앞, 뒤 단어 간에 상관성이 있습니다.
 - HMM 은 오로직 품사열 (y_{i-1}, y_i) 에 대해서만 상관성을 학습할 수 있습니다.
 - (x_{i-1}, x_i) 간의 상관성을 학습할 수 없기 때문에, 문맥을 고려하여 x_i 의 품사 y_i 를 추정할 수 없습니다.

- Issue #3. Number of words
 - HMM 은 $P(word \mid tag)$ 의 확률을 학습합니다.
 - 단어의 종류가 작은 품사의 emission prob. 는 상대적으로 큽니다. Bias 가 발생합니다.
 - P(0 | Noun) < P(0 | Josa)

Tag	Number of unique words					
Noun	63968					
Verb	3598					
Adverb	3190					
Eomi	1460					
Adjective	849					
Exclamation	464					
Josa	158					
Determiner	123					

- Issue #4. Length bias
 - HMM 은 길이가 n 인 문장을 m 개의 단어/품사열로 decode 합니다.
 - 각 단어 품사열의 $P(y_{1:m}, x_{1:m}) = \prod_i P(x_i | y_i) \cdot P(y_i | y_{i-1})$ 값을 계산합니다.
 - 여러 번 확률을 곱할수록 그 값은 작아지기 때문에 HMM 은 적은 수의 단어/품사로 구성된 후보를 선호합니다.

Brief review of Conditional Random Field

- Unigram (independent classifier)
 - 단어 x_i 에 대하여 각각 품사 t_i 를 추정합니다. $t_i = argmax P(t_i|x_i)$
 - 한 단어는 여러 품사를 지니기 때문에 모호성이 발생합니다.
 - 이: 이빨(명사), 숫자(수사), 조사, 지시사, ...

- 더 좋은 방법은 앞, 뒤의 단어와 품사 정보를 모두 활용하는 것입니다.
 - 문맥을 반영할 수 있습니다.
 - 이전 단어의 품사를 반영하면 큰 도움이 됩니다.
 - $(y_{i-1}, y_i) = (\Delta A, \Delta A)$ 인 경우를 방지할 수 있습니다.

- 길이가 3 인 x = [3.2, 2.1, -0.5] 에 두 개의 필터를 적용할 수도 있습니다.
 - 길이가 3 인 2 차원 벡터열이 만들어집니다.

$$F_1 = 1 \text{ if } x_i > 0 \text{ else } 0$$

$$F_2 = 1 \text{ if } x_i > 3 \text{ else } 0$$

$$v = [(1,1)(1,0), (0,0)]$$

• 단어열도 필터를 적용하여 벡터열로 표현할 수 있습니다

$$x = [0]$$
것, 은, 예문, 이다]
 $F_1 = \mathbf{1}$ if $x_{i-1} = 0$ 것 & $x_i = 0$ 은 else 0
 $F_2 = \mathbf{1}$ if $x_{i-1} = 0$ 것 & $x_i = 0$ 에운 else 0
 $F_3 = \mathbf{1}$ if $x_{i-1} = 0$ 은 & $x_i = 0$ 에운 else 0
 $v = [(0,0,0), (1,0,0), (0,0,1), (0,0,0)]$

• (x_{i-1}, x_i, y_{i-1}) 을 이용하는 품사 판별을 위하여 x_i 를 k 차원의 F_i 로 표현합니다.

$$F_{i1} = \mathbf{1}$$
 if $(x_{i-1} = ' \circ) \circlearrowleft$, $x_i = ' \circ \hookrightarrow$, $y_{i-1} = ' \circ \circlearrowleft$) else $\mathbf{0}$ $F_{i2} = \mathbf{1}$ if $(x_{i-1} = ' \circ \hookrightarrow$, $x_i = ' \circ \circlearrowleft$, $y_{i-1} = ' \circ \circlearrowleft$) else $\mathbf{0}$... $F_{ik} = \mathbf{1}$ if $(x_{i-1} = ' \circ)$, $x_i = ' \circ \circlearrowleft$, $y_{i-1} = ' \circ \circlearrowleft$) else $\mathbf{0}$

• Potential function 은 x_i 가 F_{ij} 와 같은지 Boolean 으로 표현하기 때문에 대부분의 값이 0 인 sparse vector 입니다.

$$F_{i2} = 1$$
 if $(x_{i-1} = '은', x_i = '예문', y_{i-1} = '조사')$ else **0**

- 품사 판별을 위하여 (x_{i-1}, x_i, y_{i-1}) 를 이용한다면,
 - [이것, 은, 예문, 이다] 를 다음의 template을 이용
 - X[-1:0] : 앞 단어와 현재 단어
 - Y[-1] : 앞 단어의 품사

```
• [ [ ('x[-1:0]=BOS-이것', 1), ('y[-1]=BOS', 1)],
 [ ('x[-1:0]=이것-은', 1), ('y[-1]=Noun', 1) ],
 [ ('x[-1:0]=은-예문', 1), ('y[-1]=Josa', 1) ],
 [ ('x[-1:0]=예문-이다', 1), ('y[-1]=Noun', 1) ]]
```

단어 (feature)

• 마치 document – term frequency vector 처럼 해석할 수 있습니다.

```
• [[('x[-1:0]=BOS-이것', 1), ('y[-1]=BOS', 1)],
[('x[-1:0]=이것-은', 1), ('y[-1]=Noun', 1)],
[('x[-1:0]=은-예문', 1), ('y[-1]=Josa', 1)],
[('x[-1:0]=예문-이다', 1), ('y[-1]=Noun', 1)]]
```

char	Υ	x[-1:0]=BOS-이것	x[-1:0]=이것-은	x[-1:0]=은-예문	x[-1:0]=예문-아다	••	y[-1] =BOS	y[-1] =Noun
이것	Noun	1	0	0	0	••	1	0
은	Josa	0	1	0	0		0	1
예문	Noun	0	0	1	1		0	0
이다	Adj	0	0	0	0		0	1

- $(x_{i-1}, x_{i+1}, y_{i-1})$ 을 feature 로 이용한다면, 모르는 단어에 대한 품사 추정도 가능합니다.
 - (의/Josa, w, 는) → 'Noun' 의 λ 는 큰 값으로 학습됩니다 한 단어 w 앞/뒤로 '의/Josa', '는' 이 위치하면 w 는 주로 'Noun' 입니다.

Classification

- CRF는 문장 전체, $x_{1:n}$, $y_{1:n}$ 를 이용하여 만든 features 를 이용하여 logistic regression 을 수행합니다.
 - $x_{1:n}$ 가 될 수 있는 다양한 $y_{1:n}$ 중에서 확률이 가장 큰 $y_{1:n}$ 를 선택합니다.

CRF
$$P(y|x) = \frac{exp(\sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_{j} f_{j}(x, i, y_{i}, y_{i-1}))}{\sum_{y} exp(\sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_{j} f_{j}(x, i, y_{i}, y_{i-1}))}$$
HMM
$$P(y|x) = \prod_{i} P(x_{i}|y_{i}) P(y_{i}|y_{i-1})$$

Conditional Random Field

- CRF 는 HMM 의 정보를 학습할 수도 있습니다.
 - Potential function 을 y_i, y_{i-1} 성분이 있는 $g_j(y_i, y_{i-1}, i)$ 와 x_i, y_i 성분이 있는 $f_j(x, y_i, i)$ 로 나눌 수 있습니다.
 - g_i 는 transition 을, f_i 은 emission 을 학습합니다.

$$P(y|x) = \frac{exp(\sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_{j} f_{j}(x, i, y_{i}, y_{i-1}))}{\sum_{y^{`}} exp(\sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_{j} f_{j}(x, i, y_{i}, y_{i-1}))} = \frac{exp(\sum_{j=1}^{m} (\sum_{i=1}^{n} \lambda_{j} f_{j}(x, y_{i}, i) + \sum_{i=1}^{n} \mu_{j} g_{j}(y_{i}, y_{i-1}, i)))}{\sum_{y^{`}} exp(\sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_{j} F_{j}(x, i, y_{i}, y_{i-1}))}$$

Conditional Random Field

- CRF 는 HMM 보다 다양한 features 를 학습할 수 있습니다.
 - 문맥 정보를 학습할 수 있으며,
 - potential function 을 설계하기에 따라 미등록 단어도 인식할 수 있습니다.
- 우리가 풀어야 하는 식은 $argmax_y P(y|x)$ 입니다.
 - CRF 는 직접적으로 P(y|x) 로부터 y 를 구하지만, HMM 은 $P(x|y) \times P(y) = P(x,y)$ 로부터 간접적으로 y 를 구합니다.

Generating (word, pos) candidates from sentence

- 품사 판별, 형태소 분석의 과정은 두 단계로 구성됩니다.
 - (1) 주어진 문장으로부터 단어/형태소 열의 후보들을 만들고 (generation),
 - (2) 그 중 가장 높은 점수를 얻는 후보를 선택합니다 (evaluation).

문장: '이것은 예문이다'

후보 1: [이것/Noun, 은/Josa, 예문/Noun, 이다/Adj]

후보 2: [이것/Noun, 은/Josa, 예문/Noun, 이/Noun, 다/Noun],

후보 3: [이/Noun, 것/Noun, 은/Josa, 예문/Noun, 이/Noun, 다/Noun],

• • •

• HMM, CRF 모두 사전을 기반으로 (단어,품사) 후보를 만듭니다.

'이것은 예문이다'

Tag	b	е
Noun	0	1
Josa	0	1
Noun	0	2
Noun	1	2
Josa	2	3
Noun	3	5
Noun	5	6
Josa	5	6
Adjective	5	7
Noun	6	7
	Noun Josa Noun Josa Noun Josa Noun Noun Josa Adjective	Noun 0 Josa 0 Noun 0 Noun 1 Josa 2 Noun 3 Noun 5 Josa 5 Adjective 5

품사	단어
Noun	이것, 예문, 집, 말, 이, 것, 다
Josa	은, 는, 에, 이
Adjective	이다,
Verb	가다, 하다

• HMM, CRF 모두 사전을 기반으로 (단어,품사) 열 후보를 만듭니다.

'이것은 예문이다'

Word	Tag	b	е
0	Noun	0	1
0	Josa	0	1
이것	Noun	0	2
것	Noun	1	2
0	Josa	2	3
예문	Noun	3	5
0	Noun	5	6
0	Josa	5	6
이다	Adjective	5	7
다	Noun	6	7

• 중복 계산을 피하기 위하여 beam-sarch 나 shortest path 가 이용됩니다.

'이것은 예문이다'

Word	Tag	b	е
0	Noun	0	1
0	Josa	0	1
이것	Noun	0	2
것	Noun	1	2
0	Josa	2	3
예문	Noun	3	5
0	Noun	5	6
0	Josa	5	6
이다	Adjective	5	7
다	Noun	6	7

• HMM, CRF 모두 사전을 기반으로 (형태소,품사) 후보도 만듭니다.

'집에 간다고 말했다'

	Word	Tag	b	е	
	집	Noun	0	1	
	에	Josa	1	2	
	간	Noun	2	3	
	가 + ㄴ다고	Verb + Eomi	2	5	▼
	다	Noun	3	4	
	고	Unknown	4	5	
_	말	Noun	5	6	
	하+았다	Verb + Eomi	6	8	4

품사	단어
Noun	이것, 예문, 집, 말, 이, 것, 다, 간
Josa	은, 는, 에, 이
Adjective	이다,
Verb	가다, 하다
Eomi	-다, - ㄴ다고 , -았다

형태소 사전에 어간의 원형과 어미가 있을 경우, "어간 + 어미 결합 규칙"을 이용하여 용언을 인식합니다.

• HMM 은 미등록 단어에 대한 인식이 불가능합니다.

'집에 간다고 말했다'

Word	Tag	b	е
집	Noun	0	1
에	Josa	1	2
간	Noun	2	3
가 + ㄴ다고	Verb + Eomi	2	5
다	Noun	3	4
고	Unknown	4	5
말	Noun	5	6
하+았다	Verb + Eomi	6	8

(집/Noun, 에/Josa, 간/Noun, 다/Noun, 고/?, 말/Noun, 하+았다/Verb+Eomi)

$$P_{HMM}(y|x) = P(집|Noun) x P(에|Noun) x ... P(고|?) x ...$$
 x P(Josa|Noun) x ...

- HMM 은 미등록 단어에 대한 품사 추정을 할 수 있습니다.
 - 앞/뒤 품사의 transition probability 를 이용합니다.

'집에 간다고 말했다'

Word	Tag	b	е	
집	Noun	0	1	
에	Josa	1	2	
간	Noun	2	3	
가 + ㄴ다고	Verb + Eomi	2	5	
다	Noun	3	4	
고	Unknown	4	5	
말	Noun	5	6	
하+았다	Verb + Eomi	6	8	

(집/Noun, 에/Josa, 간/Noun, 다/Noun, 고/?, 말/Noun, 하+았다/Verb+Eomi)

$$argmax_t \sum_{t} P(t \mid Noun) + P(Noun \mid t)$$

- HMM 은 사용자 사전 등록이 쉽습니다.
 - 분석 후보마다 상대 비교를 하기 때문에 $\sum_{w} P(w \mid t) = 1$ 일 필요는 없습니다.

'집에 간다고 말했다'

Word	Tag	b	е
집	Noun	0	1
에	Josa	1	2
간	Noun	2	3
가 + ㄴ다고	Verb + Eomi	2	5
다	Noun	3	4
고	Unknown	4	5
말	Noun	5	6
하+았다	Verb + Eomi	6	8

(집/Noun, 에/Josa, 간/Noun, 다/Noun, 고/?, 말/Noun, 하+았다/Verb+Eomi)

set P(고 | Eomi) = your_preference

• CRF 는 생성한 (단어,품사) 후보열을 이용하여 feature 를 생성합니다. 이를 이용하여 evaluation 을 할 수 있습니다.

'집에 간다고 말했다'

단어열: (집, 에, 가+ㄴ다고, 말, 하+았다), 품사열: (Noun, Josa, Verb+Eomi, Noun, Verb+Eomi)

$$F_1 = 1 \text{ IF } x_{i-1} = '집' & x_i = '에' \text{ ELSE } 0$$

 $F_2 = 1 \text{ IF } x_i = '말' \text{ ELSE } 0$

• • •

오	늘	<u></u>	날	W
(오/Noun) (오/Verb) (오/Eomi)	(오/Noun, 늘/Noun) (오/Verb, 늘/Noun) (오늘/Noun)			
		(오/Noun, 늘/Noun, 의/Josa) (오/Verb, 늘/Noun, 의/Josa) (오/Verb, 늘/Noun, 의/Noun) (오늘/Noun, 의/Josa) (오늘/Noun, 의/Noun)		

· · · /					
오	늘	<u>o</u>	날	씨	
(오/Noun)	(오/Noun, 늘/Noun)	(오/Noun, 늘/Noun, 의/Josa)			
(오/Verb)	(오/Verb, 늘/Noun)	(오늘/Noun, 의/Josa)			
(오/Eomi)	(오늘/Noun)	(오늘/Noun, 의/Noun)			
			(오/Noun, 늘/Noun, 의/Josa,	날/Noun)	
			(오/Noun, 늘/Noun, 의/Josa,	날 _{/Verb)}	
			(오/Noun, 늘/Noun, 의/Josa,	나 = /Verb+Eomi)	
			(오늘/Noun, 의/Josa, 날/Nou	n)	
			(오늘/Noun, 의/Josa, 날/Verb)	
			(오늘/Noun, 의/Josa, 나+ㄹ/	/Verb+Emi)	
			(오늘/Noun, 의/Noun, 날/No	un)	
			(오늘/Noun, 의/Noun, 날/Ver	-b)	
			(오늘/Noun, 의/Noun, 나 + =	¹/Verb+Eomi)	52

오	늘	<u>o</u>	날	씨
(오/Noun)	(오/Noun, 늘/Noun)	(오/Noun, 늘/Noun, 의/Josa)	(오늘/Noun, 의/Josa, 날/Nou	n)
(오/Verb)	(오/Verb, 늘/Noun)	(오늘/Noun, 의/Josa)	(오늘/Noun, 의/Josa, 날/Verk	o)
(♀/Eomi)	(오늘/Noun)	(오늘/Noun, 의/Noun)	(오늘/Noun, 의/Josa, 나+ㄹ,	/Verb+Emi)
			(오늘/Noun, 의/Josa	a, 날/Noun, 씨/Noun)
			(오늘/Noun, 의/Josa	a, 날/Verb, 씨/Noun)
			(오늘/Noun, 의/Josa	n, 나+ㄹ/Verb+Emi, 씨/Noun)
			 (오늘/Noun, 의/Josa	a, 날씨/Noun)

- Issue #1. Occurrence bias
 - CRF 는 P(word | tag) 대신 Score(feature → tag) 를 학습합니다.
 - 그러나 한 단어 w 가 품사 t 로 등장한 횟수는 여전히 차이가 납니다.

Tag	Frequency / Unique numbers
Noun	49.38
Eomi	1492.17
Josa	14478.32
Verb	414.16
Modifier	176.73

• (w,t) 의 빈도수가 높을수록 feature "x[0] = w" 이나 " $x[-1,0] = w_{-1}w$ " 의 빈도수도 많아집니다.

- Issue #1. Occurrence bias
 - Gradient descent 를 이용하는 CRF solver 들은 확실한 features 에 대해서는 자주 등장할수록 그 방향으로 coefficient 의 크기를 증가시킵니다.

Tag	Max coef of x[0]=w (Frequency / Unique numbers)
Noun	4.739 (49.38)
Eomi	10.900 (1492.17)
Josa	13.669 (14478.32)

- " $s(x[0] = 0] \rightarrow Noun) \ll s(x[0] = 0] \rightarrow Josa)$ " 경향이 발생합니다.
- L2 regularization 을 적용하여도 전반적인 coef 의 크기가 작아질 뿐, 순위는 거의 동일합니다

- Issue #1. Occurrence bias
 - 명사는 가장 많이 등장하며, 그 종류도 많은 품사입니다.
 - Bias 를 보완하기 위하여 다른 품사보다 명사를 선호하는 preference score 를 부여할 수 있습니다.

- Issue #2. Preference shorter words
 - 대부분의 글자는 단어로 등록되어 있으며, 긴 단어 (특히 명사)의 빈도수는 짧은 단어의 빈도수보다 작습니다.
 - 짧고 품사가 명확한 단어는 큰 coefficient 를 지닙니다.
 - '아이오' 보다 '아 + 이 + 오' 가 더 선호될 수 있습니다.

- Issue #2. Preference shorter words
 - Heuristics 가 이용될 수 있습니다.
 - 길이가 1 인 경우에 penalty 를 부여합니다.
 - 길이가 긴 명사에 대하여 preference 를 부여합니다.

- HMM ^{^1} 과 CRF ^{^2} 를 이용한 구현체를 github 에 올려두었습니다.
 - 세종 말뭉치를 이용한 학습된 모델도 제공합니다