Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Original) An enzyme substrate of the formula (I):

(I) and biologically acceptable salts, and pro-reporter molecules thereof;

wherein

$$Y_{is}$$
 $C=O$, $C=CH_2$, $C-R1$, and

n is 1 or 0;

W is =CH-, -S-, -O-, or -N(R_3)-;

M is oxygen, nitrogen or sulfur;

 $\begin{array}{l} \textbf{R_1 and R_2} \ \text{are, each independently, hydrogen, halogen, nitro, azido, mercapto,} \\ \textbf{sulfeno, sulfino, sulfo, cyano, amino, } R_4\text{-}, R_4\text{O-}, R_4\text{C}(=\text{Z})\text{-}, R_4\text{X-C}(=\text{Z})\text{-}, \\ R_4\text{-}C(=\text{Z})\text{-}X\text{-}, R_4\text{X-C}(=\text{Z})\text{-}Q\text{-}, R_4\text{S-}, R_4\text{-}S(=\text{O})\text{-}, R_4\text{-}S(=\text{O})\text{-}O\text{-}, R_4\text{-}S(=\text{O})\text{-}O\text{-}, R_4\text{O-S-}, \\ R_4\text{O-S}(=\text{O})\text{-}, R_4\text{O-S}(=\text{O})\text{-}, R_4\text{R}_5\text{N-S}(=\text{O})\text{-}, R_4\text{R}_5\text{N-S}(=\text{O})\text{-}, R_4\text{R}_5\text{N-}, [R_4\text{-}C(=\text{Z})][R_5]\text{N-}, [R_4\text{-}C(=\text{Z})][R_5\text{-}C(=\text{X})]\text{N-}, R_4\text{R}_5\text{N-C}(=\text{Z})\text{-}, R_4\text{R}_5\text{N-C}(=\text{Z})\text{-}X\text{-}, [R_4\text{R}_5\text{N-C}(=\text{Z})\text{-}X\text{-}, [R_4\text{R}_5\text{N-C}($

 $(R_4)(R_5X)P(=Z)-S-, (R_4)(R_5R_6N)P(=Z)-S-, [(R_4)(R_5X)P(=Z)][R_6]N-, [(R_4)(R_5R_6N)P(=Z)][R_7]N-;$

wherein X, Z and Q are each independently oxygen or sulfur;

 \mathbf{R}_3 is R_4 , R_4 -C(=Z)-, R_4 X-C(=Z)-, R_4 R₅N-C(=Z)-, R_4 O-S(=O)-, R_4 O-S(=O)₂-, R_4 R₅N-S(=O)-, R_4 R₅N-S(=O)₂-, $(R_4$ X)(R_5 Q)P(=Z)-, $(R_4$ R₅N)(R_6 X)P(=Z)-, $(R_4$ R₅N)(R_6 R₇N)P(=Z)-;

wherein $\mathbf{R_4}$, $\mathbf{R_5}$, $\mathbf{R_6}$, $\mathbf{R_7}$ and $\mathbf{R_8}$ are, each independently, hydrogen, $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, $C_{3.7}$ cycloalkyl, aryl, Het^1 , Het^2 ;

each q is independently 0, 1, 2, 3, or 4;

wherein any C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl or amino group, may be further mono, di-, or tri- substituted (if the valency allows it) with C_{1-4} alkoxy, C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbonyl, C_{1-4} alkylsulfenyl, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylamino, halogen, nitro, azido, mercapto, sulfeno, sulfino, sulfo, cyano, amino, aryl, Het^1 or Het^2 substituents;

wherein the **BLOCKING GROUP** is a mono- or polysaccharide derivate, phosphate derivate, or sulfate derivate;

with the proviso that at least one R_1 , R_2 and R_3 is a moiety with at least 4 carbons.

2. (Original) An enzyme substrate of the formula (I):

 (I) and biologically acceptable salts and pro-reporter molecules thereof; wherein

Y is
$$C = O$$
, $C = CH_2$, $C - R1$, and n is 1 or 0;
W is $= CH_2$, $-S_2$, $-S_3$, or $-S_4$;
M is $-O_2$, $-N(R_3)_2$, or $-S_3$;

each $\mathbf{R_1}$ and each $\mathbf{R_2}$ present in formula (I) are, independently, hydrogen, halogen, nitro, azido, mercapto, sulfeno, sulfino, sulfo, cyano, amino, R_4 -, R_4O -, R_4 -C(=Z)-, R_4X -S(=O)-, R_4X -S(=O)-, R_4X -S(=O)-, R_4X -S(=O)-, R_4X -C(=Z)][R_5 N-, [R_4X -C(=Z)][R_5 N-, [R_4X -C(=Z)][R_5 N-, [R_4X -C(=Z)][R_5 -C(=Z)]N-, R_4X -C(=Z)][R_5 -C(=Z)]N-, R_4X -C(=Z)][R_5 N-, [R_4X -S(=O)][R_5 N-, [R_4X -S(=S)N(R_5 N)(R_5 N)P(=Z)-O-, (R_4X -S(=S)N(R_5 N)P(=Z)-S-, (R_4X -S(=S)N(R_5 N)P(=Z)][R_5 N-, [R_4X -S(=S)N(R_5 N)P(=Z)][R_5 N-, [R_4X -S(=S)N(R_5 N)P(=Z)-S-, [R_5 N-S(=S)N(R_5 N)P(

wherein X, Z and Q are each, independently, O or S;

R₃ is R₄, R₄-C(=Z)-, R₄X-C(=Z)-, R₄R₅N-C(=Z)-, R₄O-S(=O)-, R₄O-S(=O)₂-, R₄R₅N-S(=O)-, R₄R₅N-S(=O)₂-, (R₄X)(R₅Q)P(=Z)-, (R₄R₅N)(R₆X)P(=Z)-, (R₄R₅N)(R₆R₇N)P(=Z)-;

wherein $\mathbf{R_4}$, $\mathbf{R_5}$, $\mathbf{R_6}$, $\mathbf{R_7}$ and $\mathbf{R_8}$ are each, independently, hydrogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 ;

each q present in formula (I) is, independently, 0, 1, 2, 3, or 4;

wherein any C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl or amino group, may be further mono, di-, or tri- substituted (if the valency allows it) with C_{1-4} alkoxy, C_{1-4} alkylcarbonyl, C_{1-4} alkoxycarbonyl, C_{1-4} alkylthio, C_{1-4} alkylsulfenyl, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylamino, halogen, nitro, azido, mercapto, sulfeno, sulfino, sulfo, cyano, amino, aryl, Het¹ or Het² substituents;

wherein the **BLOCKING GROUP** is a mono- or polysaccharide derivate, phosphate derivate, sulfate derivate, carboxylic acid derivate, or oligopeptide derivate;

with the proviso that at least one of R_1 , R_2 and R_3 is C_{4-8} alkyl, C_{4-8} alkenyl, or C_{4-8} alkynyl.

- 3. (Currently Amended) A substrate according to any one of claims claim 1 to 2, wherein at least one of R_1 , R_2 and R_3 is independently chosen from the group consisting of straight and branched butyl, pentyl, hexyl, heptyl, octyl.
- 4. (Currently Amended) A substrate according to any one of claims claim 1 to 3, wherein W is -N(R3)-, Y is -C(=O)-, and n is 1 and having the formula (II)

wherein M, R_1 , R_2 , R_3 , q and the BLOCKING GROUP are as defined as in any one of claims claim 1 to 3.

5. (Currently Amended) A substrate according to any one of claims claim 1 to 4, having the formula (III)

(III)

wherein R_1 , R_2 , R_3 , and the BLOCKING GROUP are as defined as in any one of elaims claim 1 to 3.

6. (Original) An enzyme substrate of the formula (V):

and biologically acceptable salts, and pro-reporter molecules thereof;

Y is
$$C = O$$
, $C = CH_2$, $C = R1$, and n is 1 or 0;
W is $= CH_2$, $C = R1$, and C

wherein the R₂ substituent can replace one or more hydrogens on any carbon atom of the naphtyl group, such as carbon atoms C1, C4, C5, C6, C7, and C8, provided that the carbon's valency is not exceeded; wherein X, Z and Q are each, independently, O or S;

 R_3 is R_4 , R_4 -C(=Z)-, R_4 X-C(=Z)-, R_4 R₅N-C(=Z)-, R_4 O-S(=O)-, R_4 O-S(=O)₂-, R_4 R₅N-S(=O)-, R_4 R₅N-S(=O)₂-, $(R_4$ X)(R₅Q)P(=Z)-, $(R_4$ R₅N)(R_6 X)P(=Z)-, $(R_4$ R₅N)(R_6 R₇N)P(=Z)-;

wherein R_4 , R_5 , R_6 , R_7 and R_8 are each, independently, hydrogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 ;

each q present in formula (V) is, independently, 0, 1, 2, 3, or 4;

wherein any C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl or amino group, may be further mono, di-, or tri- substituted (if the valency allows it) with C_{1-4} alkoxy, C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbonyl, C_{1-4} alkylsulfenyl, C_{1-4} alkylsulfinyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylsulfonyl, C_{1-4} alkylamino, halogen, nitro, azido, mercapto, sulfeno, sulfino, sulfo, cyano, amino, aryl, Het^1 or Het^2 substituents;

wherein the **BLOCKING GROUP** is a mono- or polysaccharide derivate, phosphate derivate, sulfate derivate, carboxylic acid derivate, or oligopeptide derivate;

with the proviso that at least one of $\mathbf{R_1}$, $\mathbf{R_2}$ and $\mathbf{R_3}$ is C_{4-8} alkyl, C_{4-8} alkenyl, or C_{4-8} alkynyl.

- 7. (Currently Amended) Use of a substrate according to any one of claims claim 1-to-6, for permeation through the membrane of a biological cell.
- 8. (Currently Amended) Method for preparing a substrate according to any one of claims claim 1 to 6 comprising the steps of:
- synthesizing a blocking group, whereby said blocking group may be optionally protected;
- synthesizing a substituted fluorophore;
- coupling the optionally protected blocking group to said substituted fluorophore;
- optionally deprotecting said blocking group; and
- purifying the resulting substituted substrate.

9. (Currently Amended) A fluorescent precipitate obtainable by cleavage of the **BLOCKING GROUP** moiety from the substrate of formula (I), (II), and (III) of any one of the claims claim1 to 5, having the formula (IV)

$$(R_1)_q$$
 $(R_2)_q$
 $(R_2)_q$

(IV)

wherein Y, n, W, M, R_1 , R_2 and q are as defined as in any one of claims claim 1 + to 5.

10. (Original) A fluorescent precipitate obtainable by cleavage of the **BLOCKING GROUP** moiety from the substrate of formula (**V**) of claim 6, having the formula (**VI**):

$$(R_1)_q$$
 $(R_2)_q$
 (VI)

wherein Y, n, W, M, R₁, R₂ and q are as defined as in claim 6.

- 11. (Currently Amended) Method for detecting the activity of an enzyme comprising the steps of:
- contacting a sample containing said enzyme with a substrate according to any one of claims claim 1 to 6;

applying conditions suitable to allow formation of a fluorescent precipitate, <u>said</u> fluorescent precipitate-comprising a fluorescent precipitate obtainable by cleavage of the BLOCKING GROUP moiety from the substrate of formula (I)-of claim1, having the formula (IV)

$$(R_1)_q$$
 $(R_2)_q$

(IV)

wherein Y, n, W, M, R_1 , R_2 and q are as defined as in claim 1 according to any one of claims 9 to 10; and

- quantitatively or qualitatively analyzing said fluorescent precipitate.
- 12. (Original) Method according to claim 11 wherein analyzing said fluorescent precipitate comprises the steps of:
- exposing the fluorescent precipitate to a light source capable of producing light at a wavelength of absorption of the fluorescent precipitate; and
- detecting the resultant fluorescence of the precipitate.