Preuves assistées par ordinateur – TD n° 3

Théories et modèles

Exercice 1 (Indépendance-1) Soit $p(_,_)$ un symbole de prédicat d'arité 2. On considère les formules

$$\begin{array}{lll} R & \equiv & \forall x \; p(x,x) \\ S & \equiv & \forall x \; \forall y \; [p(x,y) \; \Rightarrow \; p(y,x)] \\ T & \equiv & \forall x \; \forall y \; \forall z \; [p(x,y) \; \wedge \; p(y,z) \; \Rightarrow \; p(x,z)] \end{array}$$

Montrer que les formules R, S et T sont indépendantes, en ce sens qu'aucun des trois séquents $S, T \vdash R$, $R, T \vdash S$ et $R, S \vdash T$ n'est dérivable.

Exercice 2 (Modèles finis)

On considère la théorie \mathcal{T} (du premier ordre) dont la signature est formée par

- deux symboles de constante 0 et 1,
- un symbole de prédicat < d'arité 2,

et dont les axiomes sont :

- (A_1) 0 < 1
- (A_2) $\forall x \neg (x < x)$
- (A_3) $\forall x \ \forall y \ \forall z \ (x < y \ \land \ y < z \ \Rightarrow \ x < z)$
- (A_4) $\forall x \ \forall y \ [x < y \Rightarrow \exists z \ (x < z \land z < y)]$
- 1. Donner un modèle de \mathcal{T} . En déduire que \mathcal{T} est cohérente.
- 2. Montrer que tout modèle de \mathcal{T} est infini.
- 3. Montrer que pour tout $i \in \{1; 2; 3; 4\}$, la théorie $\mathcal{T}_i = \mathcal{T} A_i$ (« \mathcal{T} privée de l'axiome A_i ») admet en revanche un modèle fini. On exhibera un tel modèle pour chaque valeur de i.

Exercice 3 (Indépendance-2) Soit la signature formée par le symbole de constante 0, le symbole de fonction unaire s et le symbole de prédicat binaire =. Dans la théorie égalitaire induite par cette signature, montrer l'indépendance des axiomes de Peano :

- $\forall x \ \forall y \ [s(x) = s(y) \ \Rightarrow \ x = y]$
- $\forall x \ \neg [s(x) = 0]$
- $\forall x_1 \ldots \forall x_n \ [A\{x := 0\} \land \forall x \ (A \Rightarrow A\{x := s(x)\}) \Rightarrow \forall x \ A]$ pour toute formule A telle que $FV(A) \subset \{x_1; \ldots; x_n; x\}$

(Le principe de récurrence n'est pas réellement un axiome, mais un schéma d'axiomes.)

Exercice 4 (Théories égalitaires) Soit \mathcal{T} une théorie égalitaire. On dit qu'un modèle \mathcal{M} de \mathcal{T} est égalitaire lorsque le prédicat binaire d'égalité = est interprété par la relation d'égalité dans le modèle, c'est-à-dire : $[t=u]_{\rho}^{\mathcal{M}}=1$ ssi $[t]_{\rho}^{\mathcal{M}}=[u]_{\rho}^{\mathcal{M}}$ (pour toute valuation ρ sur \mathcal{M}). Montrer que tout modèle \mathcal{M} d'une théorie égalitaire \mathcal{T} peut être transformé en un modèle

égalitaire \mathcal{M}' de \mathcal{T} . (On justifiera les différentes étapes de la construction de \mathcal{M}' .)

Exercice 5 (Isomorphisme de modèles) Soit Σ une signature.

- 1. Définir une notion d'isomorphisme entre deux Σ -modèles \mathcal{M}_1 et \mathcal{M}_2 .
- 2. En déduire que si \mathcal{M}_1 et \mathcal{M}_2 sont deux Σ -modèles isomorphes, alors pour toute formule close A, on a $\mathcal{M}_1 \models A$ si et seulement si $\mathcal{M}_2 \models A$.

Exercice 6 (Modèles standard de l'arithmétique) À tout modèle égalitaire 1 \mathcal{M} de l'arithmétique, on associe naturellement une application $\phi^{\mathcal{M}}: \mathbb{N} \to \mathcal{M}$ définie par

$$\phi^{\mathcal{M}}(n) = \underbrace{\left[\underbrace{s(\cdots s}_{n}(0)\cdots)\right]^{\mathcal{M}}}_{n}$$

pour tout $n \in \mathbb{N}$.

1. Vérifier que $\phi^{\mathcal{M}}$ est injective. Est-elle nécessairement surjective?

On dit d'un modèle \mathcal{M} de l'arithmétique qu'il est standard lorsque $\phi^{\mathcal{M}}$ est bijective.

2. Montrer que tous les modèles standard de l'arithmétique sont isomorphes.

Exercice 7 (Arithmétique non-standard) Pour tout $n \in \mathbb{N}$, on note \mathcal{T}_n l'extension de l'arithmétique obtenue en introduisant :

- Un nouveau symbole de constante ω ;
- Un nouveau symbole de constante ω , Les n axiomes $\neg[\omega=0], \neg[\omega=s(0)], \dots, \neg[\omega=\underbrace{s(\cdots s(0)\cdots)}_{n-1}]$

Enfin, on note \mathcal{T}_{ω} la théorie limite, obtenue en réunissant les axiomes des théories \mathcal{T}_n $(n \in \mathbb{N})$.

- 1. Montrer que chacune des théories \mathcal{T}_n $(n \in \mathbb{N})$ est cohérente.
- 2. Peut-on en déduire que \mathcal{T}_{ω} est cohérente? Pourquoi?
- 3. Déduire des deux questions précédentes que l'arithmétique admet un modèle non standard.

Précision: Dans cet exercice, on présuppose la cohérence de l'arithmétique.

^{1.} On ne s'intéresse ici qu'aux modèles égalitaires de l'arithmétique.