Homework 1

(Due Sept 16th, 2022)

- 1. Calculate the variance of the process $y_t = y_{t-1} + \varepsilon_t$ where $\varepsilon_t \xrightarrow{iid} (0, \sigma^2)$. Hence, show that it is not stationary.
- 2. Part 1: For each of the following, determine whether $\{y_t\}$ represents a stable process.

a.
$$y_t - 1.2y_{t-1} + .2y_{t-2} = 0$$

b.
$$y_t - 1.2y_{t-1} - 1.2y_{t-2} = 0$$

- Part 2: Write each of the above equations using lag operators. Determine the characteristic roots of the inverse characteristic equation.
- 3. Consider the second-order autoregressive process $y_t = a_0 + a_2y_{t-2} + \varepsilon_t$, where $|a_2| < 1$.
- **a**. Find: i. $E_{t-2}y_t$
- ii. $E_{t-1}y_t$
- iii. $E_t y_{t+2}$

- iv. $Cov(y_t, y_{t-1})$
- v. $Cov(y_t, y_{t-2})$
- vi. the partial autocorrelations ϕ_{11} and ϕ_{22}
- **b**. Find the impulse response function. Given y_{t-2} , trace out the effects on an ε_t shock on the $\{y_t\}$ sequence.