MATLAB/Octave matrices vs. Python NumPy arrays

Note: in order to use the "np" shortcut notation for the numpy package, make sure you import the NumPy package as follows

>>> import numpy as np

	MATLAB/Octave matrices & vectors	NumPy arrays
Matrices (here: 3x3 matrix)	octave:1> A = [1 2 3; 4 5 6; 7 8 9] A = 1 2 3 4 5 6 7 8 9	>>> A = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> A array([[1, 2, 3],
Access rows (here: first row)	octave:10> A(1,:) ans = 1 2 3	>>> A[0,] array([1, 2, 3])
Access columns (here: first column)	octave:11> A(:,1) ans = 1 4 7	>>> A[:,0] array([1, 4, 7]) >>> A[:,[0]] array([[1],
Access elements (here: first element)	octave:8> A(1,1) ans = 1	>>> A[0,0] 1
1-D column vector	octave:3> a = [1; 2; 3] a = 1 2 3	<pre>>>> a = np.array([[1],[2],[3]]) >>> a array([[1],</pre>
1-D row vector	octave:4> b = [1 2 3] b = 1 2 3	>>> b = np.array([1,2,3]) >>> b array([1, 2, 3])

	MATLAB/Octave matrices & vectors	NumPy arrays
Random m x n matrix	octave:6> rand(3,2) ans = 0.21977 0.10220 0.38959 0.69911 0.15624 0.65637	>>> np.random.rand(3,2) array([[0.29347865, 0.17920462],
Zero-matrix, m x n	octave:16> zeros(3,2) ans = 0 0 0 0 0 0	>>> np.zeros((3,2)) array([[0., 0.],
m x n matrix of ones	octave:36> ones(3,2) ans = 1 1 1 1 1 1	>>> np.ones([3,2]) array([[1., 1.],
Identity matrix	octave:39> eye(3) ans = Diagonal Matrix 1 0 0 0 1 0 0 0 1	>>> np.identity(3) array([[1., 0., 0.],
Matrix diagonal (left-upper corner to right lower)	octave:40> diag(A) ans = 1 5 9	>>> np.diagonal(A) array([1, 5, 9]) >>> np.diagonal([A]) array([[1],

	MATLAB/Octave matrices & vectors	NumPy arrays
Diagonal matrix from a column vector	octave:42> diag(a) ans = Diagonal Matrix 1 0 0 0 2 0 0 0 3	>>> np.diag(a[:,0]) array([[1, 0, 0],
Matrix-scalar multiplication (*), subtraction (-), addition (+), division (/)	octave:18> A * 2 ans = 2	>>> A * 2 array([[2, 4, 6],
Matrix element-wise power	octave:23> A.^2 ans = 1	>>> np.power(A,2) array([[1, 4, 9],
Element-wise matrix multiplication	octave:32> A .* A ans = 1	>>> A * A array([[1, 4, 9],
Matrix- multiplication	octave:31> A * A ans = 30 36 42 66 81 96 102 126 150	>>> np.dot(A,A) array([[30, 36, 42],

	MATLAB/Octave matrices & vectors	NumPy arrays
Matrix transpose	octave:24> A' ans = 1	>>> A.transpose() array([[1, 4, 7],