AMATH 352: Problem set 1 solutions

Dave Moore, dmmfix@uw.edu January 10, 2017

Column Vectors:

1. Show that for any $\alpha \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$.

Solution:

By definitions (1.2) and (1.3):

$$\alpha(\mathbf{x} + \mathbf{y}) = \begin{bmatrix} \alpha(x_1 + y_1) \\ \alpha(x_2 + y_2) \\ \vdots \\ \alpha(x_m + y_m) \end{bmatrix}$$

$$= \begin{bmatrix} \alpha x_1 + \alpha y_1 \\ \alpha x_2 + \alpha y_2 \\ \vdots \\ \alpha x_m + \alpha y_m \end{bmatrix}$$

$$= \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_m \end{bmatrix} + \begin{bmatrix} \alpha y_1 \\ \alpha y_2 \\ \vdots \\ \alpha y_m \end{bmatrix}$$

$$= \alpha \mathbf{x} + \alpha \mathbf{y}$$

2. Show that for every vector $\mathbf{x} \in \mathbb{R}^m$, $1\mathbf{x} = \mathbf{x}$.

Solution:

By definition (1.3):

$$1 oldsymbol{x} = egin{bmatrix} 1 x_1 \ 1 x_2 \ dots \ 1 x_m \end{bmatrix} = egin{bmatrix} x_1 \ x_2 \ dots \ x_m \end{bmatrix} = oldsymbol{x}$$

Norms and inner products:

- 3. Determine whether each of the following functions is a norm. Justify your answer, i.e. if you claim it is a norm, show that it satisfies the five criteria discussed in class, and if not, give a concrete example that shows it doesn't satisfy one of the criteria.
 - (a) $\mathbf{x} \in \mathbb{R}^3$, $\|\mathbf{x}\| := \|\mathbf{x}\|_2 \|\mathbf{x}\|_1$
 - (b) $\mathbf{x} \in \mathbb{R}^3$, $\|\mathbf{x}\| := \|\mathbf{x}\|_2 + \|\mathbf{x}\|_1$
 - (c) $x \in \mathbb{R}^3$, ||x|| := the number of nonzero entries in x.
 - (d) $\mathbf{x} \in \mathbb{R}^3$, $\|\mathbf{x}\| := 4|x_1| + |x_1 x_2 + x_3| + |x_2 + x_3|$

Solution:

- (a) $\|\boldsymbol{x}\|_2 \|\boldsymbol{x}\|_1$ violates (1.4b). If $\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^t$, then $\|\boldsymbol{x}\|_2 \|\boldsymbol{x}\|_1 = 1 1 = 0$
- (b) $\|x\|_{2+1} = \|x\|_2 + \|x\|_1$ is a valid norm. Since both $\|\cdot\|_2$ and $\|\cdot\|_1$ are valid norms, we can observe that
 - i. $\forall x, ||x||_{2+1} \ge 0$ because both the sub-components are ≥ 0 .
 - ii. Since both components are ≥ 0 , $\|\boldsymbol{x}\|_{2+1} = 0 \implies \|\boldsymbol{x}\|_2 = 0$ and $\|\boldsymbol{x}\|_1 = 0$. These are satisfied only when $\boldsymbol{x} = \boldsymbol{0}$.
 - iii. $\|\mathbf{0}\|_{2+1} = \|\mathbf{0}\|_2 + \|\mathbf{0}\|_1 = 0$
 - iv. We know that the sub-components already satisfy (1.4d) so we have

$$\|\alpha \boldsymbol{x}\|_{2+1} = \|\alpha \boldsymbol{x}\|_{2} + \|\alpha \boldsymbol{x}\|_{1}$$

$$= |\alpha|\|\boldsymbol{x}\|_{2} + |\alpha|\|\boldsymbol{x}\|_{1}$$

$$= |\alpha|(\|\boldsymbol{x}\|_{2} + \|\boldsymbol{x}\|_{1})$$

$$= |\alpha|\|\boldsymbol{x}\|_{2+1}$$

v. It satisfies the triangle inequality, since

$$\|x + y\|_{2+1} \le \|x\|_{2+1} + \|y\|_{2+1}$$

can be rewritten as

$$\|x + y\|_2 + \|x + y\|_1 \le (\|x\|_2 + \|y\|_2) + (\|x\|_1 + \|y\|_1)$$

Which is the sum of two inequalities we already know are satisfied

$$\|x + y\|_2 \le \|x\|_2 + \|y\|_2$$

 $\|x + y\|_1 \le \|x\|_1 + \|y\|_1$

by the properties of the $\|\cdot\|_2$ and $\|\cdot\|_1$ norms.

(c) "Number of nonzeros" violates (1.4d), since the number of non-zero entries is unchanged when multiplied by a non-zero scalar and therefore

$$\|\alpha \boldsymbol{x}\|_{nonzero} \neq |\alpha| \|\boldsymbol{x}\|_{nonzero}$$

- (d) $4|x_1| + |x_1 x_2 + x_3| + |x_2 + x_3|$ is a valid norm. (Written as $||.||_{sum}$ below.)
 - i. $\forall x, \|x\|_{sum} \geq 0$ because the absolute value is always non-negative.
 - ii. Because the absolute value is 0 iff its input is 0, in order to verify that $\|x\|_{sum} = 0 \implies x = 0$ we can treat the components as independent and look for solutions to Ax = 0 where

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

That is, we're asking if A has a null space. Since det(A) = -8, it has no null space, and the only solution for $||x||_{sum} = 0$ is x = 0.

iii. If $\boldsymbol{x} = 0$,

$$\|\boldsymbol{x}\|_{sum} = (4|0| + |0 - 0 + 0| + |0 + 0|)$$

= 0

iv. Recalling that for scalars, $|\alpha s| = |\alpha||s|$

$$\|\alpha \boldsymbol{x}\|_{sum} = 4|\alpha x_1| + |\alpha x_1 - \alpha x_2 + \alpha x_3| + |\alpha x_2 + \alpha x_3|$$

$$= 4|\alpha||x_1| + |\alpha(x_1 - x_2 + x_3)| + |\alpha(x_2 + x_3)|$$

$$= 4|\alpha||x_1| + |\alpha||x_1 - x_2 + x_3| + |\alpha||x_2 + x_3|$$

$$= |\alpha|(4|x_1| + |x_1 - x_2 + x_3| + |x_2 + x_3|)$$

$$= |\alpha|\|\boldsymbol{x}\|_{sum}$$

v. Let's first consider the sub-terms in isolation. If we can show that they individually satisfy the triangle inequality, then their sum will as well. So we want to show that

$$4|x_1 + y_1| \le 4|x_1| + 4|y_1| \tag{1}$$

$$|x_1 + y_1 - x_2 - y_2 + x_3 + y_3| \le |x_1 - x_2 + x_3| + |y_1 - y_2 + y_3|$$
(2)

$$|x_2 + y_2 + x_3 + y_3| \le |x_2 + x_3| + |y_2 + y_3| \tag{3}$$

Recalling that for scalars, $|a+b| \le |a| + |b|$ is satisfied by the absolute value, we can see that (1) is straighforwardly true. By substitution

$$a = x_1 - x_2 + x_3$$

$$b = y_1 - y_2 + y_3$$

we can rewrite (2) as $|a+b| \le |a| + |b|$. By similar substitution, we can similarly verify (3) is satisfied. Therefore their sum

$$\|x + y\|_{sum} \le \|x\|_{sum} + \|y\|_{sum}$$

is a valid inequality.

4. Find and sketch the closed unit ball in \mathbb{R}^2 for the infinity norm. Justify your drawing (your answer for this problem should be more than just a drawing).

Solution:

The set of points in \mathbb{R}^2 that satisfy $\|\boldsymbol{x}\|_{\infty} = 1$ are those for which either $x_1 = \pm 1$ and $|x_2| \leq |x_1|$, or vice versa. This is just a square with sides of length 2 centered at the origin.

