MATH 321: 10-22 IN-CLASS WORK

Exercise 1. Use induction to prove for all natural numbers n,

$$2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1.$$

Exercise 2. Explain what's wrong with the following "proof".

Theorem. Every integer $x \in \mathbb{Z}$ satisfies $x^3 > -1$.

Proof. We prove this by induction. The base case x=0 is easy. Clearly, $0^3=0>-1$. Next is the induction step. Suppose $x^3>-1$. Then $(x+1)^3>x^3$, because the cube function is an increasing function, and so $(x+1)^3>-1$. So we have seen that $x^3>-1$ for all integers x.

Exercise 3. Prove that every logical formula is equivalent to one without any $\exists s \text{ or } \forall s$.