Lecture	17	p.1
---------	----	-----

	Lecture 17 p.1
	Last topic-chaotic dynamics
	Itallmark: "Sensitive dependence on initial conditions" on a bounded invariant set
	excludes linear exponential growth
	existence of chaos makes long-term prediction impossible.
-	Det. Flow of exhibits sonsitive dependence on
	is a fixed r>o s.t. For each x ∈ X and any €>0, there is a nearby y ∈ Be(x) ∩X
	s.t. (p. (x) -(p. (y) >r for some & +70.
	(X)
-	$\beta_{\epsilon}(x)$ $\gamma_{\epsilon}(y)$
	If &= precision with which you can specify x, then inevitably you only know (fx(x) to be
	within some radius V, which may be

of invariant set decreasing & may increase time horizon knowing &(x) to some precision

Lecture 17 p.2

Additional ingredients: We want some recurence (aperiodic) - an orbit that visits everywhere on X, the invariant set.

Def. A flow G_t is topologically transitive on an invariant set X if for each pair of non-empty set $V, V \in X$ there is a t>0 s.t. $G_t(U) \cap V \neq \emptyset$

9₄ (U)

This (Birkahoff transitivity): A flow quis transitive on X if and only if pe has an orbit that is dense on X.

dense orbit $\mathcal{L}(x) \in X$: for each e > 0, and $y \in X$, there is a T > 0 s.t. $d(\mathcal{L}(x), y) \leq e$ distance function

orbit comes arbitrarily close to each pt. yEX.

Lectru	17	p.5
--------	----	-----

$$X_0 = 0, a_1 a_2 a_3 \cdots a_N a_{N+1} a_{N+2} a$$

$$\leq \left(\frac{1}{2}\right)^{N} \sum_{j=1}^{\infty} |a_{N+j} - b_{N+j}| \left(\frac{1}{2}\right)^{j}$$

$$\leq \left(\frac{1}{2}\right)^{N} = \epsilon$$

after Niterations

XN = 0, 9N+1 9N+2 4N+3 ---

1xN-yN > \frac{1}{2} for sujtable challet

We can also construct an initial condition for a dense orbit.

Lecture	17	p.6
---------	----	-----

-:

Given any E>0, th	ere exists an N s,t, of any pt, in our
We come within E	of any pt. in our
interval.	
distance (E)	approximation of Xo
2 1	$\chi_o = O_r \circ I$
0,0 0,1	
1 + 1 + 1	Xf=0000+
4 0,00 0,01 0,10	$X_0 = 0, 010001 \text{ fo } 11$
	2 8
3	X0=0,0100011011000001
	$X_0 = 0.0100011011000001$ $= 2x1 = 4x2 = 8x3$
	- IXZ - 7 X 5
	and so on.
There are also periodic	pes of all periods
apperiodic pts.	pts of all previous &
Shift map on 2	-symbols is relevant to
Smale horseshoe, u	-symbols is relevant to high is velevant to aga that arises in ode in 2+1 démensions
the homoslinic ta	ngle that carises in
pero o di rally - for ecd	ode in 2+1 démensions

....

Lecture 17 p.7
Smale horse shoe: elements of chaos — "Is tretching" & "Folding" gives exponential separation of heighboring trajectories Smale horse shoe: elements of chaos — (Folding) keeps it bounded.
D=unit square X,y e[0,1]
Step 1: Stretch by Factor > 2 in y-direction, Compress by forctor < \frac{1}{2} in x-direction Ted H, red H, blue blue thu

Lecture 17 p.8
Step 2: Fold & overlay it on D
(DVF(D)
No Verred $f = map$ $f(H_0) = V_0$ $f(H_1) = V_1$
$D \cap f(D) = V_0 \cup V_1$
= U V 5.1 ES S-1
5={0,1}
Forward & backward
idea: keep iterating may to determine the
invariant set & examine its dynamics. We'll see it can be related to the
We'll see it can be related to the
shift on 2-symbols.