Candidate's Name:	•••••			•••••			
School:		C	entro	No.	Pe	rsona	l No.
Sign:	U						

545/1

CHEMISTRY

Paper 1

July/Aug. 2023

11/2 hours

HOIMA DIOCESE EXAMINATIONS BOARD

UCE Mock Examination, 2023

CHEMISTRY Paper 1

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of 50 objective-type questions.

Answer all questions.

You are required to write the correct answer; A, B, C or D in the box provided on the right-hand side of each question.

Do not use pencil.

For Examiners' Use Only			
		100	
		4 30 F	

© 2023 Hoima Diocese Examinations Board

Turn Over

1.	Steel	is a form of iron which contains
	A. B. C. D.	carbon magnesium oxygen sulphur
2.	Nitro have	gen and oxygen in the air can be separated by fractional distillation because they different
	A. B. C. D.	densities solubilities melting points boiling points.
3.	Whic	ch of the following represents the electron arrangement of a period 3 element?
	A. B. C. D.	2:5 2:3 2:8:3 2:8:8:2
4.		ch one of the following elements burns in oxygen to produce a residue which olves in an acid?
	A. B. C. D.	Carbon Magnesium Phosphorus Sulphur
5.	Duri in co	ng the manufacture of sulphuric acid, sulphur trioxide is not dissolved in water but ncentrated sulphuric acid in order to
	A. B. C. D.	increase the percentage yield of the acid. avoid the formation of sulphur trioxide fumes. increase the rate of reaction. produce a very concentrated acid.
6.	Elem of at	nents P , Q , R and S have atomic numbers 8, 11, 13 and 17 respectively. Which pair oms will form a molecular compound?
	A. B. C.	Two atoms of P . Two atoms of Q . An atom of P and an atom of R . An atom of R and an atom of S .

•	acidi	fied lead (II) nitrate to give a white precipitate?	reacts with
	A. B. C. D.	Calcium iodide Iron (II) iodide Copper (II) chloride Sodium chloride	
8.	A sal	It whose mass remains the same upon strong heating is likely to be a car	bonate of
	A. B. C. D.	calcium copper magnesium potassium	
9.	other	ream of ammonia was passed over heated iron wool and a lighted splint rend of the combustion tube was extinguished with a 'pop' sound. The experiment acts as	
	A. B. C. D.	a dehydrating agent. an oxidising agent. a catalyst. a reducing agent.	
10.	The	isotopes $^{35}_{17}Cl$ and $^{37}_{17}Cl$ have similar chemical properties because they have	ave
	A. B. C. D.	the same number of electrons. the same mass number. different numbers of neutrons. the same chemical symbol.	
11.	Whi	ch one of the following contains layers of carbon atoms?	
	A. B. C. D.	Diamond Lamp black Graphite Wood charcoal	
12.	give	ibasic acid, H_2J has a concentration of 0.5 M. Which of the followings the volume of 1.0 M potassium hydroxide that can neutralise 25.0 cm solution?	g expressions n^3 of the H_2J
	A.	$\left(\frac{0.5\times25}{2}\right)$ cm ³	
	В.	$(0.5 \times 25) \text{ cm}^3$	
	c.	$(0.5 \times 25 \times 2) \text{ cm}^3$	
	D.	$(25 \times 2) \text{ cm}^3$	Turn Over
		gryn is a transfer to the second of the sec	

13. The table below shows some properties of substances H, I, J and K.

Substance	Melting point	Boiling point	Electrical conductivity		
		Ī	in liquid state	in aqueous state	
H	low	Low	none	None	
I	low	Low	none	Good	
J	high	High	none	None	
K	high	High	good	Good	

	\boldsymbol{J}	high	High	none	None
	K	high	High	good	Good
14.	Which on A. H. B. I. C. J. D. K. What is the solution, I.	he concentration of the (NO ₃) ₂ ?	s could be hydrog	gen chloride?	f 2 M lead (II) nitrate
	B. 0.56 C. 2.0	8 M 0 M 0 M 0 M			
15.	From whi	ch of the followin	g will a gas be pr	oduced?	
	B. Add C. Add D. Add	ding calcium to widing dilute hydrocoding dilute sulphuding sodium oxide	hloric acid to silvic acid to copper to water.		
16.	A. are B. are C. are D. car	not decomposed in not harmful to live not broken down anot be obtained fi	by strong heat. ing organisms. by microorganis om plant or anin	nal matter.	
17.	A. ato	ge which takes pla omic number of cl om loses 1 electro ass number of chl ectrons in the ator	nlorine increases n. orine decreases b	by 1.	hloride ion is that the

18.	Whic	h one of the following gases constitutes the most chemically active part of air?
	A. B. C. D.	Nitrogen Oxygen Carbon dioxide Rare gases
19.	Whic	ch of the following salts can be prepared by the neutralisation method?
	A. B. C. D.	Aluminium sulphate Ammonium sulphate Copper (II) sulphate Iron (II) sulphate
20.	Whi	ch of the following reactions will take place readily?
	A. B. C. D.	$Zn (s) + CuSO_4 (aq) \longrightarrow ZnSO_4 (aq) + Cu (s)$ $Fe (s) + ZnSO_4 (aq) \longrightarrow FeSO_4 (aq) + Zn (s)$ $Mg (s) + CaCl_2 (aq) \longrightarrow MgCl_2 (aq) + Ca (s)$ $3Zn (s) + Al_2 (SO_4)_3 \longrightarrow 3ZnSO_4 (aq) + 2Al (s)$
21.	Carl	oon disulphide reacts with oxygen according to the following equation:
	A. B. C.	$CS_2(l) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g)$ at volume of oxygen is required to react with excess carbon disulphide to produce 10 s of carbon dioxide? $30 l \\ (22.4) l$ $(3 \times 22.4) l$
22.	Eler of th	ments K and L have atomic numbers 6 and 9 respectively. What is the likely formula ne compound formed between K and L?
	A. C.	KL_3 K_2L B. KL_4 D. K_2L_3 L. Abeleving as an acid?
23.	In v A. B. C. D.	which of the following reactions is dilute nitric acid not behaving as an acid? Mg (s) + 2HNO ₃ (aq) \longrightarrow Mg(NO ₃) ₂ (aq) + H ₂ (g) Fe(OH) ₂ (aq) + 2HNO ₃ (aq) \longrightarrow Fe(NO ₃) ₂ (aq) + H ₂ O (l) ZnCO ₃ (s) + 2HNO ₃ (aq) \longrightarrow Zn(NO ₃) ₂ (aq) + CO ₂ (g) + H ₂ O (l) 3Cu (s) + 8HNO ₃ (aq) \longrightarrow 3Cu (NO ₃) ₂ (aq) + 2NO (g) + 4H ₂ O (l) Turn Over

24.	Methanoic	acid,	нсоон,	neutralises	barium	hydroxide	solution	according	to	the
	following e									

2HCOOH (aq) + Ba (OH)₂ (aq) \longrightarrow (HCOO)₂ Ba (aq) + 2H₂ O (l)

What is the mass of methanoic acid that is just enough to react with 1000 cm³ of 0.02 M barium hydroxide solution? (H = 1, C = 12, O = 16)

A.
$$\left(\frac{2 \times 46}{1 \times 0.02}\right) g$$

B.
$$\left(\frac{2 \times 0.02}{1 \times 46}\right)$$
 g

C.
$$\left(\frac{1 \times 0.02 \times 46}{2}\right)$$
 g

D.
$$(2 \times 0.02 \times 46)$$
 g

- 25. When a substance T is heated strongly, it releases a colourless gas that forms a white precipitate with aqueous calcium hydroxide and leaves a white residue on cooling. What is substance X?
 - A. Zinc carbonate

- B. Sodium carbonate
- C. Lead (II) carbonate

- D. Copper (II) carbonate
- 26. Gas X, with a pungent smell burn in oxygen rich air to form a colourless gas Y which is insoluble in water and neither burns nor supports combustion. Identify gases X and Y.

A. Sulphur dioxide

B. Ammonia

C. Hydrogen sulphide

D. Nitrogen monoxide

Nitrogen dioxide

27. Methane burns in oxygen according to the following equation:

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$$

When 1 g of methane is burnt, 56 kJ of energy is released. The enthalpy of combustion of methane is (C = 12, H = 1)

- A. $\left(\frac{56}{16}\right) \text{ kJ mol}^{-1}$ B. $\left(\frac{56}{2}\right) \text{ kJ mol}^{-1}$ C. $(56 \times 2) \text{ kJ mol}^{-1}$

 - D. $(56 \times 16) \text{ kJ mol}^{-1}$

28.	When fact, s	n sulphuric acid is heated with substance $m{X}$, sulphur dioxide is produc	ed. From this
	A. B. C. D.	an oxidising agent a reducing agent a metal a base	
29.	What at s.t.	is the volume occupied by 22 g of carbon dioxide at s.t.p? (Molar vo p is 22.4 dm ³)	lume of a gas
	A.	$(22.4 \times 22) dm^3$	
	B.	$\left(\frac{22.4\times22}{44}\right)\mathrm{dm}^3$	
	C.	$\left(\frac{44\times22}{22.4}\right) dm^3$	
	D.	$\left(\frac{44 \times 22.4}{22}\right) dm^3$	
30.	Durin water	ng the process of water treatment, a calculated amount of chlorine is in order to	added to the
	A. B. C. D.	prevent tooth decay. sediment the impurities. kill any bacteria present. remove any dissolved salt.	
31.	Whic	h one of the following equations represents a redox reaction?	
	A. B. C. D.	$H_2 SO_4$ (aq) + 2NaOH (aq) \longrightarrow Na ₂ SO ₄ (aq) + 2H ₂ O (l) CuSO ₄ (aq) + 5H ₂ O (l) \longrightarrow CuSO ₄ .5H ₂ O (aq) Na ₂ CO ₃ (aq) + Pb(NO ₃) ₂ (aq) \longrightarrow PbCO ₃ (s) + 2NaNO ₃ (aq) 2FeCl ₃ (aq) + SnCl ₂ (aq) \longrightarrow 2FeCl ₂ (aq) + SnCl ₄ (aq)	
32.	The e	quation below shows the reaction of calcium and chlorine gas.	
	(Ca =	Ca (s) + Cl ₂ (g) \longrightarrow CaCl ₂ (s) $\Delta H = -900 \text{ kJ mol}^{-1}$ is the mass of calcium that reacts with chlorine gas to release 360 kJ of 40 , Cl = 35.5) $\left(\frac{40 \times 900}{360}\right)$ g	f heat energy?
	B.	$\left(\frac{40\times360}{900}\right)g$	
	C.	$\left(\frac{900}{369\times40}\right)g$	
	D.	$\left(\frac{360}{40\times900}\right)g$	Turn Over

33.	Which of the following reactants will produce the highest rate of reaction with excess zinc powder?
	A. 25 cm³ 0.1 M nitric acid. B. 25 cm³ of 0.1 M ethanoic acid. C. 25 cm³ of 0.1 M sulphuric acid D. 25 cm³ of 0.1 M hydrochloric acid.
34.	The reaction between hydrochloric acid and sodium carbonate is shown below.
	Na ₂ .CO ₃ (aq) + 2HCl (aq) \longrightarrow 2NaCl (aq) + CO ₂ (g) + H ₂ O (l) Given that 2.0 g of hydrated sodium carbonate (Na ₂ , CO ₂ , n H ₂ O) requires 25.0 cm ³ of

1.01	vi ilyu	rocmoric	acid for com	piete reaction,	what is the	value of n? (Na ₂ CC	$J_3 = 106$
A.	3						
B.	5						
C.	7						

- 35. Which one of the following reactions is suitable for the laboratory preparation of carbon dioxide?
 - A. $CaCO_3(s) + H_2SO_4(aq) \longrightarrow CaSO_4(s) + H_2O(l) + CO_2(g)$
 - B. $PbCO_3$ (s) + H_2SO_4 (aq) $\longrightarrow PbSO_4$ (s) + $H_2O(l)$ + CO_2 (g)
 - C. $PbCO_3$ (s) + $2HNO_3$ (aq) $\longrightarrow Pb(NO_3)_2$ (s) + $H_2O(1) + CO_2$ (g)
 - D. $PbCO_3$ (s) + 2HCl (aq) $\longrightarrow PbCl_2$ (s) + H_2O (l) + CO_2 (g)
- 36. The table below gives information about three metals X, Y and Z.

Metal	Method of extraction of metal
X	Found uncombined.
Y	Electrolysis of molten oxide.
Z	Heating oxide with carbon.

In which of the following orders are the metals arranged in decreasing ease of extraction?

Α.	X,	Y.	Z
7.	21,	-,	_

D.

10

B.
$$Y, Z, X$$

C.
$$Z, Y, X$$

D.
$$X, Z, Y$$

37. The carbonate of metal X decomposes when heated according to the following equation:

$$XCO_3(s) \longrightarrow XO(s) + CO_3(g)$$

What mass of the carbonate is needed to produce 492 cm3 of carbon dioxide gas at s.t.p? (C = 12, O = 16, X = 52; Molar gas volume at s.t.p = 22.4 dm³)

A.
$$\left(\frac{112\times492}{22.4}\right)$$
 g

B.
$$\left(\frac{112 \times 492}{22.4 \times 1000}\right)$$
 g

C.
$$\left(\frac{22.4}{112 \times 492}\right)$$
 g

D.
$$\left(\frac{22.4 \times 1000}{112 \times 492}\right)$$
 g

- 38. A solution forms a white precipitate with excess aqueous ammonia but not with excess aqueous sodium hydroxide. What cation could the solution contain?
 - A. Cu2+
 - B. Zn 2+
 - C. Pb 2+
 - D. Ca2+
- Q and R are two elements in the same group of the Periodic Table. If the atomic number 39. of Q is 7, the possible electron arrangement of R is
 - A. 2:7
 - B. 2:8:5
 - C. 2:8:7
 - 2:8:8:1 D.
- 40. What is the mass of one molecule of nitrogen?

$$(N = 14; Avogadro constant = 6.02 \times 10^{23} \text{ mol}^{-1})$$

A.
$$\left(\frac{6.02 \times 10^{23}}{2 \times 14}\right) g$$

$$B. \qquad \left(\frac{2 \times 14}{6.02 \times 10^{23}}\right) g$$

$$C. \quad \left(\frac{14}{2 \times 6.02 \times 10^{23}}\right) g$$

D.
$$\left(\frac{2\times6.02\times10^{23}}{14}\right)g$$

Turn Over

Each of the questions 41 to 45 consists of an assertion (statement) on the left side and a reason on the right-hand side.

Select

- A. if both the assertion and reason are true statements and the reason is a correct explanation of the assertion.
- B. if both the assertion and reason are true statements but the reason is not a correct explanation of the assertion.
- C. if the assertion is true but the reason is not a correct statement.
- D. it the assertion is not correct but the reason is a correct statement.

INSTRUCTIONS SUMMARISED

Assertion		Reason	
Α.	True	True and is a correct explanation	
В.	True	True but is not a correct explanation	
C.	True	Incorrect	
D.	Incorrect	Correct	

				To a second
41.	Nitrogen and oxygen in liquid air can be separated by fractional crystallisation	because	nitrogen is more volatile than oxygen.	
42.	Sulphur dioxide is dried using concentrated sulphuric acid	because	concentrated sulphuric acid is an oxidising agent.	
43.	When water containing magnesium hydrogen carbonate is boiled, it forms a lather readily with soap	because	the soluble magnesium hydrogen carbonate decomposes on heating to insoluble magnesium carbonate.	
44.	Dry ammonia reacts with heated lead (II) oxide to form nitrogen	because	lead (II) oxide is an amphoteric oxide.	
45.	The rate of a reaction increases with the increase in the concentration of the reactants	because	high concentration increases the possibility for collision between the reacting molecules.	

	F_{ov} .		
	1 or each of the questions 46 50		
	carefully and then write.		
	For each of the questions 46 - 50, one or more answers may be correct. Read question A. If answers 1.2	l	
	and 3 only		
	1 alla 3 only one		
	and 4 only ore		
	D. If only answer 4 is correct	,	
46.	When hydrogen chloride is dissolved in water, it reacts with		
	1. copper to form hydrogen.		
	2. zinc to form hydrogen.		
	3. sodium hydroxide to form an acid salt.		
	4. calcium carbonate to form carbon dioxide.		
17.			
	Which of the following molecular formulae is/are of alkanes?		
	1. C_2H_6		
	2. C ₂ H ₄		
	3. C ₃ H ₈		
	4. C ₃ H ₆		
40	500명하다 100명이 1명하는 경기에 있는 100명이 있는 100명이 되었다. 100명이 100명이 1909년 100명이 10		
48. Which of the following statement(s) is/are true about a solution with a pH of			
	solution solution		
400	1. accepts a proton.		
	2. turns red litmus paper blue.		
	3. gives a pink colour with phenolphthalein indicator.		
	4. contains hydrogen ions as the only positively charged ions.		
19 .	Calcium carbonate, zinc powder, copper (II) oxide powder and aqueous potassium carbonate were separately placed in test tubes labelled <i>P</i> , <i>Q</i> , <i>R</i> and <i>S</i> respectively. A solution of hydrogen chloride in methylbenzene was poured into each of the four test tubes. In which test tube(s) did a reaction occur?		
	1. P		
	2. Q 3. R		
	그렇게 하는 그렇게 내용을 하는 집에 가라면 어디지는 모든 살을 내고 없어요. 그는 그 나를 하는 것이 없는 그는 그는 그는 그는 그를 내용했다.		
50.	Which of the following substance(s) is/are formed when calcium is burnt in air?		
	1. Calcium nitrate		
	2 Calcium nitride		
	2 Calcum nitrite		
	4. Calcum oxide END		
	END		
	11		