Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 3

Abgabe: 20.11.2019, 14 Uhr Gruppennummer angeben!

Aufgabe 1 (4 Punkte).

Betrachte die Strukturen $(\mathbb{Z}, +)$ und $(\mathbb{Q}, +)$ in der Sprache $\mathcal{L} = \{*\}$, wobei * ein zweistelliges Funktionszeichen ist. Sind sie elementar äquivalent?

Aufgabe 2 (6 Punkte).

Sei \mathcal{L} die Sprache, welche aus einem einstelligen Funktionszeichen f sowie aus zwei einstelligen Relationszeichen P und Q besteht. Betrachte die Klasse \mathcal{K} aller \mathcal{L} -Strukturen \mathcal{A} mit folgenden Eigenschaften:

- Das Universum ist die disjunkte Vereinigung der beiden unendlichen Mengen $P^{\mathcal{A}}$ und $Q^{\mathcal{A}}$;
- Die Funktion $f^{\mathcal{A}}$ eingeschränkt auf $Q^{\mathcal{A}}$ ist die Identität;
- Die Funktion $f^{\mathcal{A}}$ eingeschränkt auf $P^{\mathcal{A}}$ ist eine Surjektion $f^{\mathcal{A}}: P^{\mathcal{A}} \to Q^{\mathcal{A}}$ derart, dass jede Faser $f^{-1}(a)$, für a in $Q^{\mathcal{A}}$, unendlich ist.
- (a) Ist die Klasse \mathcal{K} leer?
- (b) Sind je zwei Strukturen aus K elementar äquivalent?

Aufgabe 3 (5 Punkte).

Sei \mathcal{L} die Sprache mit einem 2-stelligen Relationszeichen E. Betrachte die Klasse \mathcal{K} aller \mathcal{L} -Strukturen \mathcal{A} derart, dass $E^{\mathcal{A}}$ eine Äquivalenzrelationen mit zwei Äquivalenzklassen ist und ferner beide Klassen unendlich sind.

- (a) Ist die Klasse \mathcal{K} leer?
- (b) Sind je zwei Strukturen aus K elementar äquivalent?

Aufgabe 4 (5 Punkte).

In einer Sprache \mathcal{L} sei F eine Einbettung der \mathcal{L} -Struktur \mathcal{A} in die \mathcal{L} -Struktur \mathcal{B} . Zeige durch Induktion über den Aufbau des Termes $t = t[x_1, \ldots, x_n]$, dass

$$F(t^{\mathcal{A}}[a_1,\ldots,a_n])=t^{\mathcal{B}}[F(a_1),\ldots,F(a_n)],$$

für alle a_1, \ldots, a_n aus A. Schliesse daraus, dass

$$t^{\mathcal{A}}[a_1,\ldots,a_n] = t^{\mathcal{B}}[a_1,\ldots,a_n],$$

für alle a_1, \ldots, a_n aus A, wenn \mathcal{A} eine Unterstruktur von \mathcal{B} ist.

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.