```
In [2]:
```

test_data.shape

Out[4]:

(15060, 14)

```
# Importig Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn import svm
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split, cross_val_score
# Loading data
train_data = pd.read_csv('SalaryData_Train(1).csv')
test_data = pd.read_csv('SalaryData_Test(1).csv')
In [3]:
#EDA & Data Preprocessing
train_data.shape
Out[3]:
(30161, 14)
In [4]:
```

In [5]:

train_data.head()

Out[5]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Ma
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Ma
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Ma
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Ma
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fema
4									•

In [6]:

test_data.head()

Out[6]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	Male
4									•

In [7]:

```
# Checking for null values
train_data.isna().sum()
```

Out[7]:

0 age workclass 0 ${\it education}$ 0 educationno 0 0 maritalstatus occupation 0 relationship 0 race 0 0 sex capitalgain 0 0 capitalloss hoursperweek 0 native 0 0 Salary dtype: int64

In [8]:

```
test_data.isna().sum()
```

Out[8]:

0 age workclass 0 education 0 educationno 0 maritalstatus 0 occupation 0 0 relationship race 0 0 sex capitalgain 0 capitalloss 0 hoursperweek 0 native 0 Salary 0 dtype: int64

In [9]:

```
train_data.dtypes
```

Out[9]:

int64 age workclass object education object educationno int64 maritalstatus object occupation object relationship object race object object sex capitalgain int64 capitalloss int64 hoursperweek int64 native object Salary object dtype: object

In [10]:

```
# frequency for categorical fields
category_col =['workclass', 'education','maritalstatus', 'occupation', 'relationship', 'rac
for c in category_col:
    print (c)
    print (train_data[c].value_counts())
    print('\n')
```

1st-4th 151
Preschool 45

Name: education, dtype: int64

maritalstatus

Married-civ-spouse 14065
Never-married 9725
Divorced 4214
Separated 939
Widowed 827
Married-spouse-absent 370
Married-AF-spouse 21
Name: maritalstatus, dtype: int64

occupation

Prof-specialty 4038 Craft-repair 4030 Evec_managerial 3992

In [11]:

```
# countplot for all categorical columns
import seaborn as sns
sns.set(rc={'figure.figsize':(15,8)})
cat_col = ['workclass', 'education', 'maritalstatus', 'occupation', 'relationship', 'race',
for col in cat_col:
    plt.figure() #this creates a new figure on which your plot will appear
    sns.countplot(x = col, data = train_data, palette = 'Set3');
```



```
In [12]:
```

```
# printing unique values from each categoricla columns
print('workclass',train_data.workclass.unique())
print('education',train_data.education.unique())
print('maritalstatus',train_data['maritalstatus'].unique())
print('occupation',train_data.occupation.unique())
print('relationship',train_data.relationship.unique())
print('race',train_data.race.unique())
print('sex',train_data.sex.unique())
print('native',train data['native'].unique())
print('Salary',train_data.Salary.unique())
workclass [' State-gov' ' Self-emp-not-inc' ' Private' ' Federal-gov' ' Loca
1-gov'
 ' Self-emp-inc' ' Without-pay']
education [' Bachelors' ' HS-grad' ' 11th' ' Masters' ' 9th' ' Some-college'
 'Assoc-acdm' '7th-8th' 'Doctorate' 'Assoc-voc' 'Prof-school'
 '5th-6th' '10th' 'Preschool' '12th' '1st-4th']
maritalstatus [' Never-married' ' Married-civ-spouse' ' Divorced'
 ' Married-spouse-absent' ' Separated' ' Married-AF-spouse' ' Widowed']
occupation [' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-s
pecialty'
 'Other-service' 'Sales' 'Transport-moving' 'Farming-fishing'
 ' Machine-op-inspct' ' Tech-support' ' Craft-repair' ' Protective-serv'
 ' Armed-Forces' ' Priv-house-serv']
relationship [' Not-in-family' ' Husband' ' Wife' ' Own-child' ' Unmarried'
 ' Other-relative'
race ['White' 'Black' 'Asian-Pac-Islander' 'Amer-Indian-Eskimo' 'Othe
sex [' Male' ' Female']
native [' United-States' ' Cuba' ' Jamaica' ' India' ' Mexico' ' Puerto-Ric
o'
 ' Honduras' ' England' ' Canada' ' Germany' ' Iran' ' Philippines'
 ' Poland' ' Columbia' ' Cambodia' ' Thailand' ' Ecuador' ' Laos'
 'Taiwan' 'Haiti' 'Portugal' 'Dominican-Republic' 'El-Salvador'
 'France' 'Guatemala' 'Italy' 'China' 'South' 'Japan' 'Yugoslavia'
 'Peru' 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago'
 'Greece' 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary']
Salary [' <=50K' ' >50K']
In [13]:
train_data[['Salary', 'age']].groupby(['Salary'], as_index=False).mean().sort_values(by='ag
Out[13]:
   Salary
              age
    >50K 43.959110
0 <=50K 36.608264
```

In [14]:

Out[14]:

<AxesSubplot:xlabel='race', ylabel='prop'>

<Figure size 1440x360 with 0 Axes>

In [15]:

C:\Users\sowmya sandeep\anaconda3\lib\site-packages\seaborn\axisgrid.py:218
2: UserWarning: The `size` parameter has been renamed to `height`; please up date your code.

warnings.warn(msg, UserWarning)

C:\Users\sowmya sandeep\anaconda3\lib\site-packages\seaborn_decorators.py:3 6: FutureWarning: Pass the following variables as keyword args: x, y. From v ersion 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misin terpretation.

warnings.warn(

Out[15]:

<AxesSubplot:xlabel='age', ylabel='hoursperweek'>

In [16]:

#Feature encoding

from sklearn.preprocessing import LabelEncoder

train_data = train_data.apply(LabelEncoder().fit_transform)
train_data.head()

Out[16]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	22	5	9	12	4	0	1	4	1
1	33	4	9	12	2	3	0	4	1
2	21	2	11	8	0	5	1	4	1
3	36	2	1	6	2	5	0	2	1
4	11	2	9	12	2	9	5	2	0
4									•

In [17]:

test_data = test_data.apply(LabelEncoder().fit_transform)
test_data.head()

Out[17]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	8	2	1	6	4	6	3	2	1
1	21	2	11	8	2	4	0	4	1
2	11	1	7	11	2	10	0	4	1
3	27	2	15	9	2	6	0	2	1
4	17	2	0	5	4	7	1	4	1
4									•

In [19]:

```
#Test-Train-Split
drop_elements = ['education', 'native', 'Salary']

X = train_data.drop(drop_elements, axis=1)

y = train_data['Salary']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
```

In [20]:

```
#Building SVM Model
from sklearn import metrics

svc = SVC()
svc.fit(X_train, y_train)
# make predictions
prediction = svc.predict(X_test)
# summarize the fit of the model
print(metrics.classification_report(y_test, prediction))
print(metrics.confusion_matrix(y_test, prediction))

print("Accuracy:",metrics.accuracy_score(y_test, prediction))
print("Precision:",metrics.precision_score(y_test, prediction))
print("Recall:",metrics.recall_score(y_test, prediction))
```

	precision	recall	f1-score	support
0	0.80	0.99	0.89	7466
1	0.86	0.28	0.42	2488
accuracy			0.81	9954
macro avg	0.83	0.63	0.65	9954
weighted avg	0.82	0.81	0.77	9954

[[7355 111] [1789 699]]

Accuracy: 0.8091219610206952 Precision: 0.8629629629629 Recall: 0.2809485530546624

In [21]:

```
#Testing it on new test data from SalaryData_Test(1).csv
drop_elements = ['education', 'native', 'Salary']
X_new = test_data.drop(drop_elements, axis=1)

y_new = test_data['Salary']

# make predictions
new_prediction = svc.predict(X_new)
# summarize the fit of the model
print(metrics.classification_report(y_new, new_prediction))
print(metrics.confusion_matrix(y_new, new_prediction))

print("Accuracy:",metrics.accuracy_score(y_new, new_prediction))
print("Precision:",metrics.precision_score(y_new, new_prediction))
print("Recall:",metrics.recall_score(y_new, new_prediction))
```

	precision	recall	f1-score	support
0	0.80	0.99	0.89	11360
1	0.87	0.26	0.40	3700
accuracy			0.81	15060
macro avg	0.84	0.63	0.65	15060
weighted avg	0.82	0.81	0.77	15060

[[11216 144] [2727 973]]

Accuracy: 0.8093625498007968 Precision: 0.8710832587287377 Recall: 0.26297297297297295

In [22]:

```
#Building SVM model with Hyper Parameters kernel='rbf',gamma=15, C=1
model = SVC(kernel='rbf',gamma=15, C=1)

model.fit(X_train, y_train)
# make predictions
prediction = model.predict(X_test)
# summarize the fit of the model
print(metrics.classification_report(y_test, prediction))
print(metrics.confusion_matrix(y_test, prediction))

print("Accuracy:",metrics.accuracy_score(y_test, prediction))
print("Precision:",metrics.precision_score(y_test, prediction))
print("Recall:",metrics.recall_score(y_test, prediction))
```

	precision	recall	f1-score	support
0	0.76	0.98	0.86	7466
1	0.56	0.08	0.15	2488
accuracy			0.75	9954
macro avg	0.66	0.53	0.50	9954
weighted avg	0.71	0.75	0.68	9954

[[7304 162] [2280 208]]

Accuracy: 0.754671488848704 Precision: 0.5621621621621622 Recall: 0.08360128617363344

In [23]:

```
#Testing above model on SalaryData_Test(1).csv
# make predictions
new_prediction = model.predict(X_new)
# summarize the fit of the model
print(metrics.classification_report(y_new, new_prediction))
print(metrics.confusion_matrix(y_new, new_prediction))

print("Accuracy:",metrics.accuracy_score(y_new, new_prediction))
print("Precision:",metrics.precision_score(y_new, new_prediction))
print("Recall:",metrics.recall_score(y_new, new_prediction))
```

support	f1-score	recall	precision	
11360	0.86	0.98	0.76	0
3700	0.13	0.07	0.55	1
15060	0.76			2661102614
15060	0.76	0.53	0.66	accuracy macro avg
15060	0.68	0.76	0.71	weighted avg

[[11147 213] [3437 263]]

Accuracy: 0.7576361221779548 Precision: 0.5525210084033614 Recall: 0.07108108108108108

In [24]:

```
#Building SVM model with Hyper Parameters kernel='linear',gamma=0.22, C=0.1
model_2 = SVC(kernel='linear',gamma=0.22, C=1)

model_2.fit(X_train, y_train)
# make predictions
prediction = model.predict(X_test)
# summarize the fit of the model
print(metrics.classification_report(y_test, prediction))
print(metrics.confusion_matrix(y_test, prediction))

print("Accuracy:",metrics.accuracy_score(y_test, prediction))
print("Precision:",metrics.precision_score(y_test, prediction))
print("Recall:",metrics.recall_score(y_test, prediction))
```

	precision	recall	f1-score	support
0	0.76	0.98	0.86	7466
1	0.56	0.08	0.15	2488
accuracy			0.75	9954
macro avg	0.66	0.53	0.50	9954
weighted avg	0.71	0.75	0.68	9954

[[7304 162] [2280 208]]

Accuracy: 0.754671488848704 Precision: 0.5621621621621622 Recall: 0.08360128617363344

In [25]:

```
#Testing above model on SalaryData_Test(1).csv
# make predictions
new_prediction = model_2.predict(X_new)
# summarize the fit of the model
print(metrics.classification_report(y_new, new_prediction))
print(metrics.confusion_matrix(y_new, new_prediction))

print("Accuracy:",metrics.accuracy_score(y_new, new_prediction))
print("Precision:",metrics.precision_score(y_new, new_prediction))
print("Recall:",metrics.recall_score(y_new, new_prediction))
```

	precision	recall	f1-score	support
0	0.81	0.97	0.88	11360
1	0.77	0.29	0.42	3700
accuracy			0.80	15060
macro avg	0.79	0.63	0.65	15060
weighted avg	0.80	0.80	0.77	15060

[[11044 316] [2639 1061]]

Accuracy: 0.8037848605577689 Precision: 0.7705156136528686 Recall: 0.28675675675675

In []:			