Disciplina: Fundamentos e Arquitetura de Computadores (FAC)

Nome: Daniel Maike Mendes Gonçalves

Matrícula: 16/0117003 Professor: Tiago Alves

PROJETO 1

1. Sistema Operacional utilizado na construção do sistema

O projeto foi feito no sistema operacional Windows 10 PRO 64 bits.

2. Ambiente de Desenvolvimento Utilizado

O ambiente de desenvolvimento utilizado foi o Mars (*MIPS Assembler and Runtime Simulator*), um ambiente de desenvolvimento interativo leve (IDE) para programação de linguagem de montagem MIPS.

3. Telas (instruções de uso)

Execute o MARS

Abra cada exercício no MARS

Selecione o arquivo do exercício

E após abir o arquivo, monte e execute

Caso deseje ver o programa executando passo a passo, selecione a seguinte opção

Exercício 1

O conteúdo 0x5555555 é inserido no registrador \$s1, após isso registramos no registrador \$s1 o conteúdo de \$s1 deslocando um bit para a esquerda, em \$s2 é calculado o OU bit-a-bit de \$s1 e \$s2, em \$s3 é calculado o E bit-a-bit de \$s1 e \$s2 em \$s4 e em \$s5 é inserido o resultado do OU Exclusivo entre \$s1 e \$s2.

Resultados finais:

\$s1 = 0x55555555

\$s2 = 0xaaaaaaaaa

s3 = 0xfffffff

\$s4 = 0x00000000

\$s5 = 0xfffffff

Registers	Coproc 1	Coproc 0		
	Name		Number	Value
\$zero			0	0x0000000
\$at			1	0x1001000
\$v0			2	0x0000000
\$v1			3	0x0000000
\$a0			4	0x0000000
\$al			5	0x0000000
\$a2			6	0x0000000
\$a3			7	0x0000000
\$t0			8	0x0000000
\$t1			9	0x0000000
\$t2			10	0x0000000
\$t3			11	0x0000000
\$t4			12	0x0000000
\$t5			13	0x0000000
\$t6			14	0x0000000
\$t7			15	0x0000000
\$80			16	0x0000000
\$sl			17	0x555555
\$s2			18	0xaaaaaa
\$83			19	0xffffff
\$84			20	0x0000000
\$85			21	0xffffff
\$86			22	0x0000000
\$87			23	0x0000000
\$t8			24	0x0000000
\$t9			25	0x0000000
\$k0			26	0x0000000
\$kl			27	0x0000000
\$gp			28	0x1000800
\$sp			29	0x7fffeff
\$fp			30	0x0000000
\$ra			31	0x0000000
pc				0x0040001
hi				0x0000000
10				0x000000

2) Implemente um programa em assembly MIPS que atenda aos seguintes comados:

Insira o conteúdo 0x0000FACE no registrador \$1. O seu programa deverá funcionar com qualquer padrão que ocupe os 16 bits menos significativos de um registrador. Os 16 bits mais significativos sempre serão 0 (zero).

Usando apenas lógica registrador-registrador e instruções de deslocamento lógico de bits, reorganize o conteúdo de forma que o registrador \$2 possua o conteúdo 0x0000CAFE ao final do programa

Exercício 2

O conteúdo 0x0000FACE é inserido no registrador \$s1, por meio de instruções de deslocamento e operações lógicos (E, OU e OU EXCLUSIVO) obtemos o resultado final 0x0000CAFE no registrador \$s2

Name	Number	Value
\$zero	0	0x00000000
Şat	1	0x0000f000
\$v0	2	0x00000000
\$vl	3	0x0000000
\$a0	4	0x00000000
\$al	5	0x0000000
\$a2	6	0x0000000
\$a3	7	0x0000000
\$t0	8	0x0000000
\$t1	9	0x0000000
\$t2	10	0x0000000
\$t3	11	0x0000000
\$t4	12	0x0000000
\$t5	13	0x0000000
\$t6	14	0x0000000
\$t7	15	0x0000000
\$s0	16	0x0000000
\$s1	17	0x0000fac
\$s2	18	0x0000caf
\$83	19	0x000000f
\$84	20	0x0000c00
\$85	21	0x00000a0
\$86	22	0x0000000
\$87	23	0x0000000
\$t8	24	0x0000000
\$t9	25	0x0000000
\$k0	26	0x0000000
\$kl	27	0x0000000
\$gp	28	0x1000800
\$sp	29	0x7fffeff
\$fp	30	0x0000000
\$ra	31	0x0000000
рс		0x0040003
hi		0x0000000
10		0x0000000

4. Limitações conhecidas

Não foram constatadas limitações no programa desenvolvido.