Find orthogonal matrix $U \in \mathbb{R}^{d \times 2}$ that maximize variance of data χ_i (l2-norm squared of $AA^T\chi_i$) onto 2D space K

 $\hat{U} = \underset{A \in \mathbb{R}^{d \times 2}}{\text{arg}} \max \sum_{i=1}^{n} \| A A^{T} \chi_{i} \|_{2}^{2}$

We can find \hat{U} by singular value decomposition of data $X \in R^{d \times n}$

 $X = USV^{T}$ $U \in R^{d \times d}$ $S \in R^{d \times d}$ $V^{T} \in R^{d \times n}$

 \Rightarrow $\hat{V} = V_2$ the first 2 column of U

then calculate coordinate d

 $\widetilde{\alpha} = U^{\mathsf{T}} \chi_i = (\alpha_1, \alpha_2)$

then we plot on a scatter plot

 $\begin{cases} x_1 \text{ axis } : d_1 \\ x_2 \text{ axis } : d_2 \end{cases}$

Qustion 2: low-rank approximation

we want to find a low-rank matrix approximation of X

 $\hat{X}_2 = arg min || Y - X||_F^2$ Y || rant(Y) = 2

=> X2 = U2S2 V2T