

Gameboard

Maths

Quadratics

Algebra

Essential GCSE Maths 29.1

Essential GCSE Maths 29.1

Express the following in completed square form.

Part A
$$x^2-2x-8$$

$$x^2 - 2x - 8$$

$$(x-2)^2-12$$

$$(x-1)^2-6$$

$$(x+1)^2 - 8$$

$$\bigcirc \quad (x-1)^2-9$$

Part B x^2+6x-5

$$x^2 + 6x - 5$$

$$\bigcirc \quad (x+6)^2-5$$

$$(x+6)^2-41$$

$$(x+3)^2-14$$

$$(x-3)^2-14$$

<u>Gameboard</u>

Maths

Algebra Quadratics

Essential GCSE Maths 29.3

Essential GCSE Maths 29.3

Express the following in completed square form.

Give your answers in the form $b(x+a)^2+c$, use improper (top heavy) fractions rather than mixed fractions in your answers.

Part A
$$2x^2-8x+2$$

$$2x^2 - 8x + 2$$

The following symbols may be useful: x

Part B
$$3x^2 - 18x - 7$$

$$3x^2 - 18x - 7$$

The following symbols may be useful: x

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

<u>Gameboard</u>

Algebra Quadratics

Factorise 1

Factorise 1

Consider the equation $3b^2 - 2b - 1 = 0$.

Maths

Part A Factorise the left hand side

Give the factorised form of the expression on the left hand side of the equation.

The following symbols may be useful: b

Part B Find the root closest to zero

Give the exact value of the root closest to zero.

The following symbols may be useful: b

Created for isaacphysics.org by Julia Riley.

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

<u>Gameboard</u>

Maths

Algebra Quadratics

Quadratic Equations 4

Quadratic Equations 4

Find the value of v closest to zero if

$$rac{3-v}{1-3v} = rac{2+v}{1+2v}.$$

Please answer to 3 s.f.

Created for isaacphysics.org by Julia Riley.

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

Gameboard

Maths

Functions

Graph Sketching

Essential GCSE Maths 27.4

Essential GCSE Maths 27.4

Without drawing graphs, find for each function:

(i) the y-intercept (ii) where the graph crosses the x-axis.

Part A
$$y=x^2+x-2$$

$$y=x^2+x-2$$

- (i) Find the y-intercept
- (ii) Where does the graph cross the x-axis?

Enter the lower value.

Enter the higher value.

Part B $y=x^2+6x+5$

$$y = x^2 + 6x + 5$$

- (i) Find the y-intercept
- (ii) Where does the graph cross the x-axis?

Enter the lower value.

Enter the higher value.

Part C
$$y=x^2-8x+15$$

$$y = x^2 - 8x + 15$$

- (i) Find the y-intercept
- (ii) Where does the graph cross the x-axis?

Enter the lower value.

Enter the higher value.

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

Gameboard

Maths

Functions Graph Sketching

Essential GCSE Maths 27.11

Essential GCSE Maths 27.11

The formula $s = ut + \frac{1}{2}at^2$ is used to calculate the height s of projectiles (such as balls) as a function of time.

Plot a graph of s against t for $0 \le t \le 7$, given that $u = 29.43 \, \mathrm{m/s}$ and $a = -9.81 \, \mathrm{m/s^2}$.

Part A What is the maximum height?

What is the maximum height reached? Give your answer to 3 s.f..

Part B How long to return to its starting height?

How long does a projectile modelled by this graph take to return to its starting height? You may assume the projectile was launched at t=0. Give your answer to 3 s.f..

Part C What is the relative position of the projectile?

At $t=7\,\mathrm{s}$, what is the height of the projectile relative to its starting position? Give your answer to 3 s.f..

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

<u>Gameboard</u>

Maths

Quadratics: Graphs and Discriminants 1ii

Quadratics: Graphs and Discriminants 1ii

Part A Find discriminant

Calculate the discriminant of $-2x^2 + 7x + 3$.

Hence choose the correct option that gives the number of *distinct* real roots to the equation

$$-2x^2 + 7x + 3 = 0$$

- Zero
- Two
- One

Part B Possible values of p

The quadratic equation $2x^2 + (p+1)x + 8 = 0$ has equal roots. Find the possible values of p and enter the greatest possible value of p.

The following symbols may be useful: p

Used with permission from UCLES, A Level, June 2007, Paper 4721, Question 4.

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

<u>Gameboard</u>

Maths

Quadratics: Graphs and Discriminants 3ii

Quadratics: Graphs and Discriminants 3ii

Part A Roots of equation

Find the roots of the equation $x^2 + 8x + 10 = 0$. Give your answer in the form $a \pm b$, where a and b are in simplified surd form.

The following symbols may be useful: ±

Part B Sketch the curve

Sketch the curve $y=x^2+8x+10$, giving the coordinates of the points where the curve crosses the axes.

Give the y coordinate of the point at which the curve crosses the y-axis.

The following symbols may be useful: y

Part C Solve inequality

Solve the inequality $x^2 + 8x + 10 \le 0$.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- $\bigcirc x < a$
- $x \leq a$
- () x > a
- () x > a
- $\bigcirc \quad a < x < b$
- $a \le x \le b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Used with permission from UCLES, A Level, January 2008, Paper 4721, Question 6.

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

<u>Gameboard</u>

Maths

Algebra

Manipulation

Quadratic Inequalities

Quadratic Inequalities

Solve the following quadratic inequalities.

Part A
$$3x^2-2x-8\leq 0$$

Solve the inequality $3x^2 - 2x - 8 \le 0$. Firstly select the form of your answer from the choices given below, where a and b are constants and a < b, and then find a and/or b.

Select the form of your answer from the choices given below.

- x>b only
- $x \le a \text{ or } x \ge b$
- x < a or x > b
- $() \quad a < x < b$
- $x \geq b$ only
- $x \leq a$ only
- x < a only
- $a \le x \le b$

Given your deduction above, find a.

Given your deduction above, find b.

Part B $-2x^2 + 5 < 7x + 11$

Solve the inequality $-2x^2 + 5 < 7x + 11$. Firstly select the form of your answer from the choices given below, where c and d are constants, and then find c and/or d.

Select the form of your answer from the choices given below.

- x < c only
- $c \le x \le d$
- x>d only
- c < x < d
- x < c or x > d
- $x \le c \text{ or } x \ge d$
- $x \leq c$ only
- $x \geq d$ only

Given your deduction above, find c.

Given your deduction above, find d.

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 2 - Quadratic Equations

<u>Home</u> <u>Gameboard</u>

Maths

Algebra

Quadratics

Quadratic Equations 5

Quadratic Equations 5

Show that the solution to the equation $mp^2+bp+k=0$ can be written as $p=-\gamma\pm\sqrt{\gamma^2-\omega^2}$.

Part A Find an expression for γ

Hence find an expression for γ in terms of one or more of the constants m, b and k in the original equation.

The following symbols may be useful: b, gamma, k, m, omega

Part B Find an expression for ω

Also give an expression for ω in terms of one or more of the constants m, b and k.

The following symbols may be useful: b, gamma, k, m, omega

Created for isaacphysics.org by Julia Riley.