Question Number	Scheme	Marks	
9(a)(i)	$\frac{2}{p} = 2 \text{so } p = 1^*$	M1A1cso	
(ii)	$\frac{dy}{dx} = \frac{q(x-1) - (qx-2)}{(x-1)^2}$	M1A1	
(h)	When $x = 0$ $\frac{dy}{dx} = \frac{-q+2}{1} = -1$, $\Rightarrow q = 3$	M1A1,A1 (7)	
(b)			
	3	B1ft	
	2	B1ft	
	$O \left(\begin{array}{c c} 2 \\ \hline 3 \end{array} \right)$	B1	
		B1ft B1ft (5)	
(c)	$x+2=\frac{3x-2}{x-1}$	M1	
	$x^2 - 2x = 0$ $x(x-2) = 0 x = 2$	M1	
	$x(x-2)=0 \qquad x=2$	dM1A1cao(4) [16]	
(a)(i)M1	Set $x = 0$ in the curve equation and equate result to 2. Obtain a value for p		
Alcso	Correct value of p obtained from a correct equation.	•	
(ii)M1	Attempt the quotient rule. (formula is given on formula page). Denominator must be		
	$(x-1)^2$. Numerator to be $q(x-1)-(qx-2)$ or $(qx-2)-q(x-1)$		
A1	Must use $p = 1$ now or later. Fully correct derivative		
ALT	Use product rule: $\frac{dy}{dx} = q(x-1)^{-1} - (qx-2)(x-1)^{-2}$		
	M1 for attempt with 2 terms similar to above, either term to be correct A1 Both terms correct		
M1 A1 A1	Set $x = 0$ in their derivative and equate to -1 Correct equation $q = 3$		

Question Number	Scheme	Marks		
(b)	No value for q: B0B1B0B1B1 available. Incorrect q: B1B1B0B1B1 available.			
B1ft	Equations of asymptotes seen or lines parallel to axes passing through $x = 1$, $y = 3$ drawn.			
	y = 3 or their q. Must have a value for q.			
B1ft	Coordinates of crossing points seen explicitly or marked on the sketch. M	ust have $y = 2$;		
	may have $x = 2/q$ (value for q not needed)			
B1	Two branches in the correct "quadrants" Must have $q = 3$ for this mark.			
	Asymptotes drawn.			
B1ft	There must be at least one branch of the curve drawn and 2 asymptotes drawn and			
	labelled on the diagram by showing the coords of the points where they cross the a			
	with their equations.			
	The curve must not touch (or cross) either asymptote. ft their asymptotes, inc $y = q$			
B1ft	Both crossing points clearly marked on their diagram. ft their crossing points.			
(c)				
M1	Eliminate y between the line and the curve equation. May use q or their value for q			
M1	Obtain a 2 or 3 term quadratic. May use q or their value for q .			
dM1	Solve their equation to obtain 1 or 2 values of x Depends on both M marks above.			
Alcao	x = 2 from a correct equation. If $x = 0$ is seen it must be clear that $x = 2$ is the only answer			
	If x is eliminated: M1 elimination M1 obtain quadratic in y M1 solve for y			
	All complete to a single value of x			