UPAAA. 2025

Triangles

Mathematics

Lecture - 01

By - Ritik Sir

Basic Proportionality Theorem (Thales Theorem)

Converse of Basic Proportionality Theorem

DE//BC

$$\frac{AP}{AB} = \frac{AE}{AC}$$

Topam: AD = AE
AR

Sing DE//BC AD AE DB EC

E Add (1) both EC + I wides.

AB AE

AB AE

$$x(x-1)=(x-2)(x+2)$$
 $x=x^2-y$
 $x=y$

[CBSE Term - 1, 2015, 2016]

AY = 5 and YC = 9, then state whether XY and BC parallel or not.

Convoad BPT

Then, (toh) PELIBC

#Q. In fig. PQ || BC and PR || CD. Prove that

(i)
$$\frac{AR}{AD} = \frac{AQ}{AB}$$

(ii)
$$\frac{QB}{AQ} = \frac{DR}{AR}$$

#Q. In fig. DE || BC and CD || EF. Prove that $AD^2 = AB \times AF$.

$$AD^{2} = ABXAF_{D}$$

$$B$$

#Q. DE || AC and DC || AP, prove that $\frac{BE}{EC} = \frac{BC}{CP}$

Homework

DPP-9-tay
Next class wait.

