PRODUCTS OF CHARACTERS AND FINITE p-GROUPS III

EDITH ADAN-BANTE

ABSTRACT. Let G be a finite p-group and χ, ψ be irreducible characters of G. We study the character $\chi \psi$ when $\chi \psi$ has at most p-1 distinct irreducible constituents.

1. Introduction

Let G be a finite p-group. Denote by Irr(G) the set of irreducible complex characters of G. Let $\chi, \psi \in Irr(G)$. Then the product of $\chi \psi$ can be written as

$$\chi\psi = \sum_{i=1}^{n} a_i \theta_i$$

where $\theta_i \in \text{Irr}(G)$ and $a_i = [\chi \psi, \theta] > 0$. Set $\eta(\chi \psi) = n$. So $\eta(\chi \psi)$ is the number of distinct irreducible constituents of the product $\chi \psi$. The purpose of this note is to study the case when the product $\chi \psi$ has "few" irreducible constituents, namely when $\eta(\chi \psi) < p$.

If χ is a character of G, denote by $V(\chi) = \langle g \in G \mid \chi(g) \neq 0 \rangle$. So $V(\chi)$ is the smallest subgroup of G such that χ vanishes on $G \setminus V(\chi)$. Through this work, we use the notation of [3]. In addition, we are going to denote by $\text{Lin}(G) = \{\lambda \in \text{Irr}(G) \mid \lambda(1) = 1\}$ the set of linear characters. The main results are

Theorem A. Let G be a finite p-group and $\chi, \psi \in Irr(G)$. Assume that $\eta(\chi\psi) < p$. Let $\theta \in Irr(G)$ be a constituent of $\chi\psi$. Then

- (i) $\mathbf{Z}(\chi\psi) = \mathbf{Z}(\theta)$.
- (ii) $V(\chi \theta) \ge V(\theta)$. Therefore $V(\chi) \cap V(\psi) \ge V(\theta)$.

Theorem B. Let G be a finite p-group and $\chi, \psi \in \operatorname{Irr}(G)$. Assume that $\eta(\chi\psi) < p$. Let N be normal subgroup of G and $\alpha, \gamma \in \operatorname{Irr}(H)$. If $\alpha^G = e\chi$, for some integer e, and $[\gamma, (\chi\psi)_N] \neq 0$, then γ^G is a multiple of an irreducible. In particular, if |G:N| = p then $\gamma^G \in \operatorname{Irr}(G)$.

Theorem C. Let p be a finite p-group and $\chi \in Irr(G)$.

- (i) If $\chi \neq 1_G$ then $[\chi^2, \chi] = 0$
- (ii) If $p \neq 2$ and $\chi(1) > 1$ then $[\chi^2, \lambda] = 0$ for all $\lambda \in \text{Lin}(G)$.
- (iii) Assume also that either $p \neq 2$ or $\eta(\chi^2) < p$. Then there exists a subgroup H of G and $\alpha \in \text{Lin}(H)$ such that $\alpha^G = \chi$ and $(\alpha^2)^G \in \text{Irr}(G)$. Thus χ^2 has an irreducible constituent of degree $\chi(1)$.

Let G be a p-group and $\chi \in Irr(G)$. Assume that $\chi(1) = p^n$ with $n \ge 1$. Denote by $\overline{\chi}$ the complex conjugate of χ . In [2] it is proved that $\eta(\chi\overline{\chi}) \ge 2n(p-1) + 1$.

Date: 2003.

¹⁹⁹¹ Mathematics Subject Classification. 20c15.

Key words and phrases. Products of characters, p-groups, irreducible constituents.

Thus $\eta(\chi \overline{\chi}) > p$. We can check that the principal character $1_G \in \operatorname{Irr}(G)$ is a constituent of $\chi \overline{\chi}$. Thus Theorem A (i) and (ii) may not hold true without the condition of $\eta(\chi \psi) < p$. Also, since $\chi(1) > 1$ and G is a p-group, there exist a subgroup N of G and $\alpha \in \operatorname{Irr}(N)$ such that |G:N| = p and $\alpha^G = \chi$. Observe that $[1_N, (\chi \overline{\chi})_N] \neq 0$ and $\eta(1_N^G) = p$. Thus Theorem B may not hold true without the condition of $\eta(\chi \psi) < p$.

Consider the group SL(2,3) and the character $\chi \in Irr(SL(2,3))$ such that $\chi(1) = 3$. We can check that $[\chi^2, \chi] = 2$. Thus Theorem C (i) may not hold true without the condition of G being a p-group. Let G be the dihedral group of order 8 and $\chi \in Irr(G)$ with $\chi(1) = 2$. We can check that

$$\chi^2 = \sum_{\lambda \in \text{Lin}(G)} \lambda.$$

Thus Theorem C (ii) and (iii) may not hold true without the additional hypotheses.

2. Proofs

Let H be a subgroup of G and $\lambda \in Irr(H)$. Denote by $Irr(G \mid \lambda) = \{\chi \in Irr(G) \mid [\chi_H, \lambda] \neq 0\}$ the set of irreducible characters of G lying above λ .

Proof of Theorem A. (i) Observe that $\mathbf{Z}(\chi\psi) \leq \mathbf{Z}(\theta)$. Set $Z = \mathbf{Z}(\chi\psi)$. So $(\chi\psi)_Z = \chi(1)\psi(1)\gamma$ for some $\gamma \in \operatorname{Lin}(Z)$.

Suppose that $Z < \mathbf{Z}(\theta)$. Let Y/Z be chief factor of G such that $Y \leq \mathbf{Z}(\theta)$. Since Y/Z is a chief factor of a p-group, it is cyclic. Thus the character $\gamma \in \text{Lin}(Z)$ extends to Y. We can check that

$$(\chi \psi)_Y = \frac{\chi(1)\psi(1)}{p} \sum_{\delta \in \text{Lin}(Y|\gamma)} \delta.$$

If there exists some G-invariant δ in $\operatorname{Lin}(Y \mid \gamma)$, then all the elements in $\operatorname{Lin}(Y \mid \gamma)$ are G-invariant since G is a p-group and Y/Z is a chief factor. But then $\chi\psi$ must have at least p distinct irreducible constituents since $\theta_Y = \theta(1)\delta$ for some $\delta \in \operatorname{Lin}(Y \mid \gamma)$. Therefore the set $\operatorname{Lin}(Y \mid \gamma)$ forms a G-orbit. In particular $\mathbf{Z}(\theta)$ can not contain Y. We conclude that $Z = \mathbf{Z}(\theta)$.

(ii) Suppose that $V(\chi\psi)\cap V(\theta) < V(\theta)$. Set $V = V(\theta)$. We are going to conclude that necessarily we have that $\chi\psi$ has at least p distinct irreducible constituents.

Let V/W be a chief factor of G such that $W \geq \mathrm{V}(\chi\psi) \cap V$. Observe that if $g \in \mathrm{V}(\theta) \setminus W$, then $g \notin \mathrm{V}(\chi\psi)$. Therefore, by definition of $\mathrm{V}(\chi\psi)$, we have that $(\chi\psi)(g) = 0$ for all $g \in \mathrm{V}(\theta) \setminus W$. In particular, for all $\gamma \in \mathrm{Lin}(V/W)$ we have that

$$(2.1) (\chi \psi)_V \gamma = (\chi \psi)_V.$$

Let $v \in V \setminus W$ such that $\theta(v) \neq 0$. Observe that such an element exist because otherwise $W = V(\theta) = V$. Let $\sigma \in Irr(V)$ be a constituent of $(\theta)_V$ and $\{\sigma^g \mid g \in T\}$ be the G-orbit of σ in G. By Clifford Theory we have that $\theta_V = e \sum_{g \in T} \sigma^g$, for some positive integer e. Thus

(2.2)
$$\sum_{g \in T} \sigma^g(v) = \frac{\theta(v)}{e} \neq 0.$$

Since G is a p-group and V/W is a chief factor of G, we have that G acts trivially on V/W. Therefore the set of characters Lin(V/W) are G-invariant. Thus the

G-orbit of $\sigma\gamma$ is the set $\{\sigma^g\gamma\mid g\in T\}$. By (2.1) $\sigma\gamma$ is an irreducible constituent of $(\chi\psi)_V$. Thus, there exists some character $\theta_\gamma\in\operatorname{Irr}(G)$ such that $[(\theta_\gamma)_V,\sigma\gamma]\neq 0$. By Clifford theory we have that $(\theta_\gamma)_V=f\sum_{g\in T}\sigma^g\gamma$ for some positive integer f. Therefore

(2.3)
$$\frac{\theta(v)}{e}\gamma(v) = \left[\sum_{g \in T} \sigma^g(v)\right]\gamma(v) = \sum_{g \in T} (\sigma^g \gamma)(v) = \frac{\theta_{\gamma}(v)}{f}.$$

We conclude that if $\gamma(v) \neq 1$, then $\theta(v) \neq \theta_{\gamma}(v)$ and therefore $\theta \neq \theta_{\gamma}$. Similarly we can check that if $\delta \in \text{Lin}(V/W)$ and $\delta \neq \gamma$, then there exists a constituent $\theta_{\delta} \in \text{Irr}(G)$ of the product $\chi \psi$ such that $[\delta, (\theta_{\delta})_{V}] \neq 0$ and $\theta_{\gamma} \neq \theta_{\delta}$. Since Lin(V/W) has p distinct irreducible constituents, then $\chi \psi$ has at least p distinct irreducible constituents. A contradiction with our hypothesis. Therefore $V(\theta) \leq V(\chi \psi)$. \square

Lemma 2.4. Let G be a finite p-group and N be a normal subgroup of G. Let $\phi \in \operatorname{Irr}(N)$. Then the set $\operatorname{Irr}(G \mid \phi)$ of all $\chi \in \operatorname{Irr}(G)$ lying over ϕ has either one or at least p members.

Proof. Let G_{ϕ} be the stabilizer of ϕ in G. By Clifford theory we have that $\eta(\phi^{G_{\gamma}}) = \eta(\phi^G)$. If $|G_{\phi}| < |G|$, by induction we have that either $\eta(\phi^{G_{\gamma}}) = 1$ or $\eta(\phi^{G_{\gamma}}) \ge p$ and the result holds. We may assume that $|G_{\phi}| = |G|$. In Lemma 4.1 [1], it is proved that the result holds if ϕ is a G-invariant character.

Proof of Theorem B. Since N is normal in G and $\gamma^G = \chi$, the irreducible constituents of χ_N are of the form α^g , for some $g \in G$, and $(\alpha^g)^G = e\chi$. Since $[\gamma, (\chi\psi)_N] \neq 0$, there exist some $g \in G$ and some $\beta \in \operatorname{Irr}(N)$ such that $[\alpha^g\beta, \gamma] \neq 0$. By Exercise 5.3 of [3] we have that $(\alpha^g\psi_N) = (\alpha^g)^G\psi = e\chi\psi$. Thus the irreducible constituents of $(\alpha^g\psi_N)^G$ are irreducible constituents of $\chi\psi$. In particular, the irreducible constituents of $(\alpha^g\beta)^G$ are irreducible constituents of $\chi\psi$. Thus the irreducible constituents of γ^G are irreducible constituents of $\chi\psi$. By Lemma 2.4, either $\eta(\gamma^G) = 1$ or $\eta(\gamma^G) \geq p$. Since $\eta(\chi\psi) < p$, it follows that $\eta(\gamma^G) = 1$, i.e γ^G is a multiple of an irreducible.

Proof of Theorem C. (i) Observe that $[\chi^2, \chi] = [\chi, \chi \overline{\chi}]$. Observe also that $\operatorname{Ker}(\chi \overline{\chi}) = \mathbf{Z}(\chi)$. Thus if $[\chi, \chi \overline{\chi}] \neq 0$, then $\operatorname{Ker}(\chi) \geq \mathbf{Z}(\chi)$. Therefore $\operatorname{Ker}(\chi) = \mathbf{Z}(\chi)$. Since $\mathbf{Z}(G/\operatorname{Ker}(\chi)) = \mathbf{Z}(\chi)/\operatorname{Ker}(\chi)$ and G is a p-group, it follows that $G = \operatorname{Ker}(\chi)$ and so $\chi = 1_G$.

(ii) Assume that $[\chi^2, \lambda] \neq 0$ for some $\lambda \in \text{Lin}(G)$. Since $p \neq 2$ and G is a p-group, there exists some character $\beta \in \text{Lin}(G)$ such that $\beta^2 = \lambda$. Thus $[\chi^2, \lambda] = [\chi^2, \beta^2] = [\chi \overline{\beta}, \overline{\chi} \beta]$. Since $\chi \overline{\beta}, \overline{\chi} \beta \in \text{Irr}(G)$, it follows that

$$\chi \overline{\beta} = \overline{\chi} \beta = \overline{\chi} \overline{\beta}.$$

Since $\chi \overline{\beta} \in Irr(G)$ is a real character and G is a p-group with $p \neq 2$, it follows that $\chi \overline{\beta} = 1_G$. Thus $\chi = \beta$ and $\chi(1) = 1$.

(iii) Observe that $\operatorname{Ker}(\chi^2) \geq \operatorname{Ker}(\chi)$. Working with the group $G/\operatorname{Ker}(\chi)$, without lost of generality we may assume that $\operatorname{Ker}(\chi) = 1$. We may also assume that $\chi(1) > 1$. We are going to use induction on the order of |G|.

Let $Z = \mathbf{Z}(\chi)$ be the center of the character χ . Let Y/Z be a chief factor of G. Let $\zeta \in \text{Lin}(Z)$ be the unique character of Z such that $\chi_Z = \chi(1)\zeta$. Since G is a p-group and Y/Z is a chief factor, it follows that ζ extends to Y. Let $\iota \in \text{Lin}(Y)$ be an extension of ζ . Since $Z = \mathbf{Z}(\chi)$ and Y/Z is a chief factor of a p-group, it follows that ι lies below χ . Let G_{ι} be the stabilizer of ι in G. Observe that the stabilizer G_{ι^2} of ι^2 contains G_{ι} . Since $|G:G_{\iota}|=p$, either $G=G_{\iota^2}$ or $G_{\iota^2}=G_{\iota}$. If $\eta(\chi^2) < p$, by Theorem A (i) we have that $G_{\iota^2}=G_{\iota}$. If G is a p-group with $p \neq 2$, then $(\iota^g(y))^2 = (\iota(y))^2$ implies that $\iota^g(y) = \iota(y)$. Thus $G_{\iota^2} = G_{\iota}$ if $\eta(\chi^2) < p$ or $p \neq 2$.

Let $\chi_{\iota} \in \operatorname{Irr}(G_{\iota})$ be the Clifford correspondent of χ and ι , i.e. $\chi_{\iota}^{G} = \chi$ and χ_{ι} lies above ι . Observe that $(\chi_{\iota}^{2})_{Y} = \chi_{\iota}^{2}(1)\iota^{2}$ and $\iota^{2} \in \operatorname{Lin}(Y)$. Thus all the irreducible constituents of the character χ_{ι}^{2} lie above ι^{2} . Since $G_{\iota} = G_{\iota^{2}}$, by Clifford theory all the irreducible constituents of χ_{ι}^{2} induce irreducibly to G. Since $|G_{\iota}| < |G|$, by induction there exist a subgroup H of G_{ι} and a character $\alpha \in \operatorname{Lin}(H)$ such that $\alpha^{G_{\iota}} = \chi_{\iota}$ and $(\alpha^{2})^{G_{\iota}} \in \operatorname{Irr}(G_{\iota})$. Since all the irreducible constituents of χ_{ι}^{G} induce irreducibly, it follows that $(\alpha^{2})^{G} \in \operatorname{Irr}(G)$. Since $\chi_{\iota}^{G} = \chi$, it follows that $(\alpha)^{G} = \chi$. Since $[(\chi^{2})_{H}, \alpha^{2}] \neq 0$ and $(\alpha^{2})^{G} \in \operatorname{Irr}(G)$, it follows that $(\alpha^{2})^{G}$ is an irreducible constituent of χ^{2} . Therefore χ^{2} has an irreducible constituent of degree $\chi(1)$. \square

Acknowledgment. I would like to thank Professor Everett C. Dade for helpful discussions.

References

- [1] E. Adan-Bante, Products of characters and finite p-groups, preprint.
- E. Adan-Bante, Products of characters and finite p-groups II, to appear Archiv der Mathematik.
- [3] I. M. Isaacs, Character Theory of Finite Groups. New York-San Francisco-London: Academic Press 1976.

University of Southern Mississippi Gulf Coast, 730 East Beach Boulevard, Long Beach MS $39560\,$

E-mail address: Edith.Bante@usm.edu