# Battery Management System Dashboard

This repository contains code for a web-based dashboard to display and monitor simulated sensor data using an ESP8266 microcontroller. The data includes voltage, current, temperature, and humidity, simulating a real-world scenario.

### **Project Overview**

The project uses an ESP8266 microcontroller connected to a Wi-Fi network. It hosts a web server that serves a dashboard displaying simulated sensor readings. The web server provides two main endpoints:

- / The main dashboard page.
- /data A JSON endpoint that provides the latest sensor data.

#### **Features**

- Web Dashboard: Displays simulated sensor data on a simple HTML page.
- JSON Data Endpoint: Supplies sensor data in JSON format for integration with other applications.
- **Simulated Sensor Data**: Simulates voltage, current, temperature, and humidity to mimic a real-world sensor setup.

### Hardware Required

- ESP8266 microcontroller (e.g., NodeMCU, Wemos D1 Mini)
- USB cable for programming and power

### Software Required

- Arduino IDE or PlatformIO for programming the ESP8266
- ESP8266 board package installed in the Arduino IDE

#### Installation

#### 1. Clone the Repository

```
git clone https://github.com/your-username/esp8266-sensor-dashboard.git
```

#### 2. Open the Project

Open the Arduino IDE and navigate to File > Open, then select the esp8266-sensor-dashboard.ino file from the cloned repository.

#### 3. Install Dependencies

Ensure the ESP8266 board package is installed in the Arduino IDE. Go to Tools > Board > Board Manager, search for "ESP8266", and install the package if not already installed.

#### 4. Update Wi-Fi Credentials

In the code, update the ssid and password variables with your Wi-Fi network credentials:

```
const char* ssid = "Your_SSID";
const char* password = "Your_PASSWORD";
```

#### 5. Upload the Code

Select the appropriate ESP8266 board and port from the Tools menu, then upload the code to the ESP8266.

#### 6. Open the Serial Monitor

Open the Serial Monitor (Tools > Serial Monitor) and set the baud rate to 9600. Wait for the ESP8266 to connect to your Wi-Fi network. It will display the local IP address once connected.

#### 7. Access the Dashboard

Open a web browser and navigate to the local IP address displayed in the Serial Monitor. You should see the sensor dashboard.

#### Code Overview

ESP8266 Code (esp8266-sensor-dashboard.ino)

- Wi-Fi Connection: Connects to the specified Wi-Fi network.
- Web Server: Hosts a web server on port 80.
  - /: Serves the main dashboard page.
  - /data: Provides sensor data in JSON format.
- Simulated Sensor Data: Generates random values for voltage, current, temperature, and humidity.

#### Dashboard HTML

The dashboard displays:

- Voltage
- Current
- Temperature
- Humidity

The page includes a link to fetch sensor data in JSON format.

#### License

This project is licensed under the MIT License. See the LICENSE file for details.

## Contributing

