

Today's speaker

Ali Aljaani

Developer Marketing Manager

Practicalities

- Duration: 60 min presentation, 10 min Q&A
- Questions are encouraged!
 - Please type questions on the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
 - We will answer them toward the end
- The chat on the bottom of the right sidebar is not anonymous, and it should not be used for questions.
- Go to DevZone if you have more questions
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com/on-demand

Agenda

- What is a "board" in the context of nRF Connect SDK/Zephyr?
- Hardware support hierarchy in nRF Connect SDK/Zephyr.
- Mandatory, optional, and special use case board files.
- Special considerations for the nRF91 and nRF53 Series.
- Hands-on demo:
 - Translating Hardware schematics to devicetree syntax in nRF Connect for VS Code.
 - How to write your board Kconfig files for your hardware design.

What is a "board"?

- Your target hardware
 - Which SoC/SiP used
 - Configurations (HW/SW)
 - Components (sensors, connectors, etc.)
- A board is a directory that contains several files:
 - Devicetree files
 - Kconfig files
 - CMake/.c for special use cases
 - Optionally, documentation for your hardware
 - Optionally, YAML files

Hardware Support Hierarchy

- Board: a particular SoC/SiP instance and its peripherals in a concrete hardware specification
- SoC: the exact system on a chip the board's CPU is part of
- SoC Series: a smaller group of tightly related SoCs
- SoC Family: a wider group of SoCs with similar characteristics
- CPU Core: a particular CPU in an architecture
- Architecture: an instruction set architecture

Board	SoC	SoC Series	SoC Family	CPU Core	Architecture
nrf52833dk_ nrf52833	nRF52833	nRF52	Nordic nRF	Arm Cortex- M4	<u>Arm</u>

Board	SoC	SoC Series	SoC Family	CPU Core	Architecture
nrf52833dk nrf52833	<u>nRF52833</u>	nRF52	Nordic nRF	Arm Cortex- M4	<u>Arm</u>

Board	SoC	SoC Series	SoC Family	CPU Core	Architecture
nrf52833dk nrf52833	<u>nRF52833</u>	nRF52	Nordic nRF	Arm Cortex- M4	<u>Arm</u>

Board	SoC	SoC Series	SoC Family	CPU Core	Architecture
nrf52833dk nrf52833	nRF52833	nRF52	Nordic nRF	Arm Cortex- M4	Arm

Board	SoC	SoC Series	SoC Family	CPU Core	Architecture
nrf52833dk nrf52833	nRF52833	nRF52	Nordic nRF	Arm Cortex- M4	<u>Arm</u>

Drivers

- Drivers are needed for some external components connected to the SoC's/SiP's peripherals (Ex: sensors)
- Drivers reside outside the board directory
- Zephyr and nRF Connect SDK comes with a rich set of drivers
- Drivers are specified through the compatible property in devicetree
- Examples of boards with sensors
 - micro:bit v2, Thingy:53, Thingy:91

Board

Hardware Support (For the target SoC)

Drivers

```
&izce {
    compatible = "nordic,nrf-twim";
    status = "okay";
    clock-frequency = <IZC_BITRATE_FAST>;

/* See https://tech.microbit.org/hardware/izc/ for board variants */
pinctrl-0 = <&izce_default>;
pinctrl-1 = <&izce_sleep>;
pinctrl-names = "default", "sleep";
lsm303agr_magn; lsm303agr_magn@ie {
        compatible = "st,lis2mdl", "st,lsm303agr_magn";
        status = "okay";
        reg = <0xle>;
        irq-gpios = <&gpio0 25 GPIO_ACTIVE_HIGH>; /* A3 */
};

lsm303agr_accel: lsm303agr_accel@i9 {
        compatible = "st,lis2dh", "st,lsm303agr_accel";
        status = "okay";
        reg = <0xle>;
        irq-gpios = <&gpio0 25 GPIO_ACTIVE_HIGH>;
};

reg = <0xle>;
        irq-gpios = <&gpio0 25 GPIO_ACTIVE_HIGH>;
};
};
```


Naming convention

- Name your board a unique name
 - Run west boards in CLI for all available boards.
- It is recommended to include the target SoC in the board name
- Specify target, If the board has multiple targets
- Your board will have:
 - Human-readable name "DevAcademy nRF52833"
 - Board ID "devacademy nrf52833" (Build target)
 - Kconfig board symbol "Board_Devacademy_NRF52833"

Where to define your custom board

- In a dedicated directory (out-of-tree board)
 - Suitable for close-source designs
 - Demoed in this webinar
- In a "boards" folder in your application directory (out-of-tree board)
 - Suitable for prototyping/debugging
- Upstream Zephyr (in-tree board)
 - Suitable for a development kit, a prototyping platform, or a reference design (Public)
 - Need to provide documentation
 - Zephyr maintainer(s) need to approve your board PR

Point the build system to an out-of-tree board

- The build system goes to specific folders to look for boards:
 - <nRF Connect SDK Path>/zephyr/boards/arm/
 - <nRF Connect SDK Path>/nrf/boards/arm/
- For out-of-tree boards, you need to update BOARD ROOT
 - From within nRF Connect for VS Code
 - > File->Preferences-> Settings-> Extensions-> nRF Connect-> Board Roots
 - (Or) Pass the directory location to west
 - > west build -b <board name> -- -DBOARD_ROOT=<path to boards>
 - (Or) Inside CMakeLists.txt
 - > list(APPEND BOARD_ROOT \${CMAKE_CURRENT_SOURCE_DIR}/<extra-board-root>)

Board files

- Board files classifications
 - Mandatory

- Types
 - Devicetree
 - Kconfig

Board files

- Board files classifications
 - Mandatory
 - Optional and special use case
- Types
 - Devicetree
 - Kconfig
 - Cmake
 - C files
 - YAML
 - Documentation

```
boards/<ARCH>/devacademy nrf52833
- Kconfig.board

    Kconfig.defconfig

    devacademy nrf52833 defconfig

   - devacademy nrf52833.dts
   - devacademy nrf52833-pinctrl.dtsi

    board.cmake # Used for flash and debug

    CMakeLists.txt # Needed in special cases

  -- c files.c # Needed in special cases
 ├─ doc # Optional
    - devacademy nrf52833.png
    └── index.rst
 ├─ Kconfig # Optional to create a board Kconfig options menu
  — devacademy_nrf52833.yaml # Optional for Test Runner (Twister)
  — devacademy nrf52833 <revision>.conf # Needed to support multiple hardware revisions

    devacademy_nrf52833_<revision>.overlay # Needed to support multiple hardware revisions

- revision.cmake # Needed to support multiple hardware revisions
 └─ dts # Optional
    L-- bindings
```

Mandatory Kconfig files

- Kconfig.board
 - Makes a Boolean Kconfig Symbol for your board
 BOARD_DEVACADEMY_NRF52833
 - Specifies a dependency to the SoC hardware support layer(through the depends on Keyword)

```
Kconfig.board
1  # Copyright (c) 2023 Nordic Semiconductor ASA
2  # SPDX-License-Identifier: Apache-2.0
3
4  config BOARD_DEVACADEMY_NRF52833
5  bool "DevAcademy nRF52833"
6  depends on SOC_NRF52833_QIAA
7
```

Mandatory Kconfig files

- Kconfig.defconfig
 - Board-specific <u>default values</u> for Kconfig options
 - Placed inside if /ENDIF pair
 - Sets the Kconfig BOARD symbol to your board ID

```
Kconfig.defconfig

1  # Copyright (c) 2023 Nordic Semiconductor ASA
2  # SPDX-License-Identifier: Apache-2.0
3
4  if BOARD_DEVACADEMY_NRF52833
5
6  config BOARD
7  | default "devacademy_nrf52833"
8
9  config BT_CTLR
10  | default BT
11
12  endif
13
```

Mandatory Kconfig files

- devacademy nrf52833 defconfig
 - Kconfig fragment merged as-is into the final build of <u>any application</u> built for the specified board
 - Must enable
 - > The SoC hardware support layer
 - > The SoC Series hardware support layer
 - > The Board's Kconfig symbol
 - GPIO/Serial are enabled for convenience
 - Boards must enable the bare minimum
 - It's the application configuration prj.conf responsibility to configure what is needed

```
devacademy_nrf52833_defconfig
    # SPDX-License-Identifier: Apache-2.0
    CONFIG BOARD DEVACADEMY NRF52833=v
    # Enable MPU
    CONFIG HW STACK PROTECTION=v
   # enable GPIO
    CONFIG SERIAL=v
    # enable console
    CONFIG UART CONSOLE=y
    # additional board options
    CONFIG GPIO AS PINRESET=V
```

Devicetree files

- devacademy nrf52833.dts
 - Board-level devicetree file
 - Describes your board hardware schematic using devicetree syntax.
 - Must include the SoC specific variant devicetree file
- You can structure it into multiple files
- devacademy_nrf52833-pinctrl.dtsi
 - Pin-mapping for peripherals
- We will cover this in-depth in the demo

Optional and special use case files

- board.cmake: Used for <u>Flash and debug support</u>, if the board has flash or debug support.
- CMakeLists.txt: Add source files to be executed Pre- or Post- kernel. This is
 in case your hardware uses some muxes or needs to be configured in a
 particular way. (EX: nRF52840 Dongle)
- doc/index.rst, doc/devacademy_nrf52833.png: Documentation and a picture of your board. You only need this if you're contributing your board to Zephyr.
- Kconfig: Give us the flexibility of creating a board Kconfig menu
- devacademy_nrf52833.yam1: A YAML file with miscellaneous metadata used by the <u>Test Runner (Twister)</u>

Board revisons

- In case you have a new hardware revision
 - Add the changes as Kconfig fragment and dts overlay
- devacademy nrf52833 <revision>.conf
 - Will be merged into the board Kconfig files.
- devacademy nrf52833 <revision>.overlay
 - Will overlay the board level devicetree.
- revision.cmake
 - Controls how the build system matches the <board>@<revision>
 - > west build nrf9160dk_nrf9160_ns@0.7.0
- Example: nRF9160 DK
 - 0.7.0 and 0.14.0 revisions

Available boards definitions

- nRF Connect SDK comes with many boards definitions
 - From Zephyr RTOS (in <u>sdk-zephyr repository</u>)
 - Available locally in <nRF Connect SDK Path>/zephyr/boards/arm/
 - > Includes Nordic and non-Nordic-based boards
 - From the SDK itself (in <u>sdk-nrf repository</u>)
 - > Available locally in <nRF Connect SDK Path>/nrf/boards/arm/
 - > Includes only Nordic-based boards
- Mainly for development kits, prototyping platforms, reference designs
- Can be used as a sample/starting point for creating your own custom board

Multi-Core and Trusted Firmware-M (TF-M)

Series	CPU	Architecture	Number of User Programmable Cores	TrustZone Hardware
nRF52	Cortex-M4	Armv7-M	1	No
nRF53	Cortex-M33	Armv8-M	2	Yes
nRF91	Cortex-M33	Armv8-M	1	Yes

TF-M support

- TF-M enforces "Security by Separation"
- Creates two worlds: Secure and Non-secure Processing Environment
- This creates multi-target boards
 - Two build targets:
 - > <Board ID> ns
 - > <Board_ID>

Option 1 (With TF-M)

- Option 1: Enforce security by separation by utilizing TF-M
- TF-M runs in the Secure Processing Environment
- Application runs in the Non-Secure Processing
 Environment

Option 2 (Without TF-M)

- Option 2: Do not enforce security by separation by having the application run as a single image with full access privileges
- The application is built as a single image without security by separation

Multi-core device

- The nRF5340 SoC has two fully programmable cores
- Application core can run with/without TF-M
 - <BoardID>_cpuapp for build targets with TF-M disabled.
 - <BoardID>_cpuapp_ns for build targets that have TF-M enabled
- Network core
 - <BoardID>_cpunet

Demo placeholder

Extra resources

- Nordic Developers Academy
 - nRF Connect SDK Fundamentals
 - > Great start if you are new to nRF Connect SDK or Zephyr
 - Bluetooth Low Energy Fundamentals
 - Cellular IoT Fundamentals
 - More courses are coming very soon
 - > Register to get news about new courses!
- Zephyr Board Porting Guide
- Devicetree specifications
- Kconfig Tips and Best Practices
- Custom Kconfig Preprocessor Functions
 - > Useful to get devicetree information into Kconfig files

