Inductance

Inductance from Physical

Dimension

Current-Voltage Relationship

(Derivative Form)

Current-Voltage Relationship

(Integral Form)

Power Delivered to the

Inductor

Energy Stored in an Inductor

Inductance in Series

Inductance in Parallel

	capacitation and made and remains	
Q = CV	Capacitance	$v = L \frac{di}{dt}$

Capacitance from Physical

Dimension

Current-Voltage Relationship

(Derivative Form)

Current-Voltage Relationship

(Integral Form)

Power Delivered to the

Capacitor

Energy Stored in a Capacitor

Capacitance in Series

Capacitance in Parallel

 $C = \frac{\varepsilon_0 \varepsilon_r A}{A}$

 $i = c \frac{dV}{dt}$

 $V = v(t_0) + \frac{1}{C} \int i(t) dt$

 $P = CV \frac{dV}{dt}$

 $W = \frac{1}{2}CV^2$

 $C_{eq} = \frac{1}{\frac{1}{C} + \frac{1}{C} + \dots + \frac{1}{C}}$

 $C_{eq} = C_1 + C_2 + \cdots + C_n$

 $L = \frac{N^2 \mu_0 \mu_r A}{L}$

 $v = L \frac{di}{dt}$

 $i = i(t_0) + \frac{1}{L} \int v(t) dt$

 $P = LI \frac{dI}{dt}$

 $W = \frac{1}{2}LI^2$

 $L_{eq} = L_1 + L_2 + \dots + L_n$