

PROJECT COALS AND MOTIVATION

To have a second pair of eyes.

What and Why LSTM

- \bullet Cell state (c_t) This represents the internal memory of the cell which stores both short term memory and long-term memories
- Hidden state (h_t) This is output state information calculated w.r.t. current input, previous hidden state
 and current cell input which you eventually use to predict the future stock market prices. Additionally,
 the hidden state can decide to only retrieve the short or long-term or both types of memory stored in
 the cell state to make the next prediction.
- Input gate (i,) Decides how much information from current input flows to the cell state
- Forget gate (f_t) Decides how much information from the current input and the previous cell state flows into the current cell state
- Output gate (o_t) Decides how much information from the current cell state flows into the hidden state, so that if needed LSTM can only pick the long-term memories or short-term memories and long-term memories

2.1.1: Importing Data

```
LSTM.py
import yfinance as yf
def getData(symbol, data):
    ticker = yf.Ticker(symbol)
    histData = ticker.history(period='5y')
    return histData[data][:-360]
price = getData("PTT.BK", "Close")
volume = getData("PTT.BK", "Volume")
```

```
Date
             31,940359
2017-04-04
2017-04-05
            31.777393
2017-04-07
           31.940359
2017-04-10
             32,184795
2017-04-11
             32.103321
2020-10-01
             30.750196
2020-10-02
            30.051325
2020-10-05
            30.051325
2020-10-06
           30.750196
2020-10-07
             30.750196
Name: Close, Length: 857, dtype: float64
```


2.1.2: Applying MinMax Scaler

```
LSTM.py
import numpy as np
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature range=(0,1))
df1=scaler.fit_transform(np.array(price).reshape(-1,1))
scalerPrice = MinMaxScaler(feature_range= (0,1))
scalerVolume = MinMaxScaler(feature range= (0,1))
df1 = scalerPrice.fit_transform(np.array(price).reshape(-1,1))
df2 = scalerVolume.fit_transform(np.array(volume).reshape(-1,1))
```


2.1.3: Splitting Datasets

```
LSTM.py

def splitData(df):
    trainingSize = int(len(df)*0.65)
    testSize = len(df)-trainingSize
    trainData, testData = df[0:trainingSize,:], df[trainingSize:len(df),:1]
    return trainData, testData

df1TrainData, df1TestData = splitData(df1)
    df2TrainData, df2TestData = splitData(df2)
```


2.1.4: Data Pre-Processing

Training Dataset = [104, 129, 112, 102, 131, 141, 122, 152]

Timestep = 3

	X_Train			Y_Train
Price	104	129	112	102
	129	112	102	131

2.1.4: Data Pre-Processing

```
LSTM.py
def create_dataset(dataset, time_step):
    dataX, dataY = [], []
    for i in range(len(dataset)-time step-1):
        a = dataset[i:(i+time step), 0]
        dataX.append(a)
        dataY.append(dataset[i + time_step, 0])
    return np.array(dataX), np.array(dataY)
df1XTrain, df1YTrain = create_dataset(df1TrainData, 100)
df1XTest, df1YTest = create dataset(df1TestData, 100)
df2XTrain, df2YTrain = create_dataset(df2TrainData, 100)
df2XTest, df2YTest = create dataset(df2TestData, 100)
```


2.2: Initializing Model

```
LSTM.py
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
priceModel=Sequential()
priceModel.add(LSTM(50,return_sequences=True,input_shape=(100,1)))
priceModel.add(LSTM(50, return_sequences=True))
priceModel.add(LSTM(50))
priceModel.add(Dense(1))
priceModel.compile(loss='mean_squared_error',optimizer='adam')
volumeModel=Sequential()
volumeModel.add(LSTM(50,return_sequences=True,input_shape=(100,1)))
volumeModel.add(LSTM(50, return_sequences=True))
volumeModel.add(LSTM(50))
volumeModel.add(Dense(1))
volumeModel.compile(loss='mean_squared_error',optimizer='adam')
```


2.2: Initializing Model

priceModel.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 100, 50)	10400
lstm_1 (LSTM)	(None, 100, 50)	20200
lstm_2 (LSTM)	(None, 50)	20200
dense (Dense)	(None, 1)	51

Total params: 50,851 Trainable params: 50,851 Non-trainable params: 0 volumeModel.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
lstm_3 (LSTM)	(None, 100, 50)	10400
lstm_4 (LSTM)	(None, 100, 50)	20200
lstm_5 (LSTM)	(None, 50)	20200
dense_1 (Dense)	(None, 1)	51

Total params: 50,851 Trainable params: 50,851 Non-trainable params: 0

2.2: Initializing Model

LSTM.py

priceModel.fit(df1XTrain,df1YTrain,validation_data=(df1XTest,df1YTest),epochs=100,batch_size=64,verbose=1)
volumeModel.fit(df2XTrain,df2YTrain,validation_data=(df2XTest,df2YTest),epochs=100,batch_size=64,verbose=1)

2.3.1: Predict Output

```
LSTM.py
import tensorflow as tf
df1TrainPredict=priceModel.predict(df1XTrain)
df1TestPredict=priceModel.predict(df1XTest)
df2TrainPredict=volumeModel.predict(df2XTrain)
df2TestPredict=volumeModel.predict(df2XTest)
df1TrainPredict=scalerPrice.inverse_transform(df1TrainPredict)
df1TestPredict=scalerPrice.inverse_transform(df1TestPredict)
df2TrainPredict=scalerVolume.inverse_transform(df2TrainPredict)
df2TestPredict=scalerVolume.inverse transform(df2TestPredict)
```


2.3.2: RMSE Performance

import math

from sklearn.metrics import mean_squared_error
math.sqrt(mean_squared_error(df1YTrain,df1TrainPredict))

40.82547518029299

math.sqrt(mean_squared_error(df1YTest,df1TestPredict))

35.28085723288469

import math

from sklearn.metrics import mean_squared_error
math.sqrt(mean_squared_error(df2YTrain,df2TrainPredict))

77521299.5104038

math.sqrt(mean_squared_error(df2YTest,df2TestPredict))

84757047.79172568

2.3.3: Plotting

2.4.1: Predicting Future (30 Days)

```
LSTM.py

def tempInput(testData):
    xInput=testData[200:].reshape(1,-1)
    tempInput=list(xInput)
    tempInput=tempInput[0].tolist()
    return tempInput, xInput

priceTempInput, priceInput = tempInput(df1TestData)
volumeTempInput, volumeInput = tempInput(df2TestData)
```

```
LSTM.pv
from numpy import array
priceOutput=[]
n steps=100
i=0
while(i<30):
    if(len(priceTempInput)>100):
        priceInput=np.array(priceTempInput[1:])
        priceInput=priceInput.reshape(1,-1)
        priceInput = priceInput.reshape((1, n steps, 1))
        vhat = priceModel.predict(priceInput, verbose=0)
        priceTempInput.extend(vhat[0].tolist())
        priceTempInput=priceTempInput[1:]
        priceOutput.extend(yhat.tolist())
        i=i+1
    else:
        priceInput = priceInput.reshape((1, n steps,1))
        yhat = priceModel.predict(priceInput, verbose=0)
        print(yhat[0])
        priceTempInput.extend(yhat[0].tolist())
        print(len(priceTempInput))
        priceOutput.extend(vhat.tolist())
        i=i+1
print(priceOutput)
```


2.4.2: Plotting

PRICE

VOLUME

3

Analyzing Results

3.1: Why Both?

VALIDATION

ANOMALY

3.2: Analyzing

PRICE

VOLUME

3.2: Analyzing

PRICE

VOLUME

3

Final Remark

