Universidad Industrial de Santander

Introducción a la Física (2014)

• Unidad: 02

• Clase: 06

• Fecha: 20140619J

Contenido: Trabajo y energía

Web: http://halley.uis.edu.co/fisica_para_todos/

• Archivo: 20140619J-HA-trabajo.pdf

□ ☆ 1	yo	18 de jun. yo
🗌 🦙 🖿 fabio almeida, cesar villalobos, andres flores , jhon pabon y willian gutierres	yo	17 de jun. yo
🗌 🦙 🖿 fabio almeida, cesar villalobos, andres flores y willian	yo	17 de jun. yo
□ ☆ ■ grupo 1	yo	17 de jun. yo
□ ☆ ■ hhjj	yo	18 de jun. уо
☐ ☆ Introduccion a la fisica	yo	17 de jun. уо
☐ ☆ ■ Introducción a la Física	yo	17 de jun. yo
□ ☆ ■ P	yo	18 de jun. уо
□ ☆ ■ p83	yo	18 de jun. уо
□ ☆ ■ P84	yo	17 de jun. yo
□ ☆ ■ p86	yo	18 de jun. уо
Rafael chona , Daniel Agudelo, Daniela Otalora	yo	16 de jun. yo

Expresión para la energía cinética

Energía cinética

La energía cinética de un cuerpo a velocidad v es

$$E_k = \frac{1}{2} m v_i^2$$

 Si debido a algún cambio de energía, su nueva velocidad es v, la variación es:

$$\Delta E_{k} = E_{kf} - E_{ki} = \frac{1}{2} m v_{f}^{2} - \frac{1}{2} m v_{i}^{2}$$

$$\Rightarrow \Delta E_{k} = \frac{1}{2} m \left(v_{f}^{2} - v_{i}^{2} \right) = m g \left(h_{f} - h_{i} \right)$$

¡Recordar ese signo y de donde viene!

Lo mismo podría hacerse con la general

$$\Delta E_{g12} = -G M m_2 \left(\frac{1}{(R+h)} - \frac{1}{R} \right) = \frac{-1}{2} m_2 (v_2^2 - v_1^2) = -\Delta E_{k12}$$

- Imaginemos lo siguiente: $v_2 = 0$ y h $\rightarrow \infty$
- Luego, si h $\rightarrow \infty$, 1/(R+h) $\rightarrow 0$. Entonces,

$$-G M m_{2} \left(\frac{-1}{R}\right) = \frac{-1}{2} m_{2} \left(-v_{1}^{2}\right)$$

$$\frac{G M}{R} = \frac{1}{2} v_{1}^{2}$$

$$v_{1}^{2} = \frac{2G M}{R}$$

$$v_{1} = \sqrt{\frac{2G M}{R}} \equiv v_{e}$$

 $-GMm_2\left(\frac{-1}{R}\right) = \frac{-1}{2}m_2\left(-v_1^2\right)$ v_e es la **velocidad de escape**: hay que darle esa velocidad a un cuerpo para que sea capaz de liberarse de la atracción gravitatoria de un planeta y **llegar al infinito con velocidad 0**.

$$v_{e\,\oplus} = \sqrt{\frac{2\,G\,M_{\,\oplus}}{R_{\,\oplus}}}$$
 Calcular $v_{\rm e}$ para la Tierra

Energía potencial y fuerza

 ¿Cuál es la tasa de cambio de la energía potencial gravitatoria ante un cambio en la posición relativa?

$$\frac{\Delta E_g}{\Delta r} = \frac{E_{g2} - E_{g1}}{r_2 - r_1}$$

- Y ahora, dos posibles caminos:
 - a) Hacemos la cuenta
 - b) Ponemos unos números

Ok. Pongamos unos números

• Usamos:

$$\frac{\Delta E_g}{\Delta r} = \frac{-G M_{\oplus} m}{h} \left(\frac{1}{(R_{\oplus} + h)} - \frac{1}{R_{\oplus}} \right)$$

- G = $6.67x10-11 \text{ m}^3/(\text{kg s}^2)$ R ~ $6 x10^6 \text{ m m}=1 \text{ kg}$
- h=10000m
- h= 1000m
- h= 100m
- Ahora calculen el peso del cuerpo m=1 kg (recordar g=9.8 m/s²)
- ¿Qué pasó?

Y ahora hagamos la cuenta

Empecemos

$$\frac{\Delta E_g}{\Delta r} = \frac{-G M_{\oplus} m}{(R_{\oplus} + h) - R_{\oplus}} \left(\frac{1}{(R_{\oplus} + h)} - \frac{1}{R_{\oplus}} \right)$$

Y entonces:

$$\frac{\Delta E_g}{\Delta r} = \frac{G M_{\oplus} m}{R_{\oplus}} \left(\frac{1}{R_{\oplus} + h} \right)$$

• Y si hacemos $h \rightarrow 0$:

$$h \to 0 \Rightarrow \frac{\Delta E_g}{\Delta r} \to m \left(\frac{G M_{\oplus}}{R_{\oplus}^2} \right) = m g$$

Esta es la interacción (fuerza) asociada a la energía potencial gravitatoria: el peso

jQue trabajo fue llegar hasta aquíl

- Alto. Si h \rightarrow 0 entonces vale $\Delta E_g = mgh$, ¿no?
- ¿Qué es (mg)? ¿Qué es h?
- Entonces:

$$\Delta E_g = (mg) h = Fuerza x Distancia$$

TRABAJO

- Finalmente:
- La variación de la energía potencial gravitatoria es igual al trabajo de (o contra) la fuerza de gravedad

La variación neta de la energía total de un sistema es igual al trabajo realizado por un agente externo para lograr dicho cambio