100052205

数字信号处理 Digital Signal Processing

李慧琦教授

信息与电子学院 北京理工大学

Tel: +86 (10) 68918239

Email: huiqili@bit.edu.cn

第五章 数字滤波器本节主要内容

IIR滤波器设计

- 模拟低通滤波器设计
- 脉冲响应不变法
- 双线性变换法
- 频率变换

§ 5-2 IIR滤波器设计

数字滤波器设计四个步骤

技术指标:按设计任务,确 定滤波器性能要求,制定技术 指标。

函数逼近: 根据技术指标构造 某一有理传递函数 H(z):

有限精度实现:将传递函数 转化为方框图或程序(软件)。

缺陷研究:考虑滤波器系数的量化 效应,乘积量化影响和动态范围限制

产品实现:用硬件或计算机实现

Copyright © Prof. Huiqi Li

电路实现

若不能满足技术

要求, 需重新进

前言:整体考虑

· LTI系统(线性非时变系统)可视为频率选择数字滤波器

$$y(n) = x(n) * h(n)$$
$$Y(w) = X(w) \bullet H(w)$$

通过系统频率响应 $H(\omega)$ 来改变输入信号频谱 $X(\omega)$ 。

· 滤波器设计: 设计LTI系统来完成频率选择功能。

• 理想滤波器

低通、高通、带通、带阻

理想滤波器特性:

- 通带常值增益,阻带增益为零。
- 通带线性相位响应

• 理想滤波器是非因果的,因而物理上不可实现。

如: 低通滤波器

$$H(\omega) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

$$h(n) = \begin{cases} \frac{\omega_c}{\pi}, & n = 0\\ \frac{\omega_c}{\pi} \frac{\sin \omega_c n}{\omega_c n}, & n \neq 0 \end{cases}$$

理想滤波器是非因果的。

Figure 10.1.1 Unit sample response of an ideal lowpass filter.

• 数字滤波器设计

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M-1} b_k x(n-k)$$

$$H(\omega) = \frac{\sum_{k=0}^{M-1} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} a_k e^{-j\omega k}}$$

· 滤波器设计的基本问题就是如何选择 {a_k} 和 {b_k} 去逼近理想滤波器。

▶技术指标

技术指标以对滤波器的频率响应在幅值和相位的要求来描述。通常希望滤波器在通带内具有线性相位特性。

- FIR 滤波器, 通带内可能具有线性相位。
- IIR 滤波器, 通带内线性相位不可实现。
- 所以IIR设计我们多只考虑滤波器的频率响应幅值特性。

- 幅值特性 技术指标
 - 绝对指标
 - |H(eiw)|幅值特性的一些具体要求.
 - 相对指标

用对数尺度(dB)表示

$$dB \quad scale = 20 \log_{10} \frac{|H(e^{j\omega})|_{\text{max}}}{|H(e^{j\omega})|} \ge 0$$

数字滤波器系统函数特性

福度平今响应(Magnitude Response)

$$\left|H(e^{j\omega})
ight|^2 = \left|H(z)H(z^{-1})
ight|_{z=e^{j\omega}}$$

• 滤波器技术指标

图 10.1.2 物理上可实现滤波器的幅度特性

• 滤波器技术指标

- 1. 最大允许的通带波动波纹 $20\log_{10} \delta_1$
- 2. 最大允许的阻带波动波纹 $20\log_{10} \delta_2$
- **3.** 通带截止频率 ω_p
- 4. 阻带截止频率 ως

基于以上技术指标选取 $\{a_k\}$ 和 $\{b_k\}$ 。

IIR 数字滤波器设计

系统函数

$$H(z) = rac{\displaystyle\sum_{r=0}^{M} b_r z^{-r}}{1 - \displaystyle\sum_{k=1}^{N} a_k z^{-k}} = A rac{\displaystyle\prod_{i=1}^{M} (1 - c_i z^{-1})}{\displaystyle\prod_{i=1}^{N} (1 - d_i z^{-1})}$$

差分方程

$$y(n) = \sum_{k=1}^{N} a_k y(n-k) + \sum_{r=0}^{M} b_r x(n-r)$$

IIR滤波器设计 方法

一、先设计一个合适的模拟滤波器,将其数字化,即将 S平面映射到Z平面;

IIR数字滤波 器设计 二、直接设计IIR数字滤波器:在Z平面直接设计IIR数字滤波器,给出闭合形式的公式;(参考系统频率响应几何法)

三、IIR数字滤波器的优化设计方法:利用最优化技术设计参数,选定极点和零点在Z平面上的合适位置,在某种最优化准则意义上逼近所希望的响应。

IIR滤波器设计 方法

1、根据给定指标设计 模拟原型低通滤波器

从模拟滤波器 设计数字滤波器

2、从模拟低通滤波器 设计数字低通滤波器

3、IIR数字低通滤波器 的频率变换(高通、带 通、带阻数字滤波器的 设计

- (1) 脉冲/阶跃响应不变法
- (2) 双线性变换法
- (1) 直接由模拟原型 到各种类型数字滤波器 的转换
- (2) 从数字低通滤波器到各种类型数字滤波器的转换

模拟滤波器数字化设计法的优点

- 1. 可以利用模拟滤波器较为成熟的设计理论和方法;
- 2. 很多模拟滤波器设计方案具有简单的闭式设计公式,由此可得到简单的数字滤波器设计。

常用模拟低通滤波器的设计

为从模拟滤波器设计IIR数字滤波器,须先设计满足技术指标的模拟原型。

模拟低通逼近:

- ▶ 巴特沃思滤波器 (Butterworth Filter) 重点掌握!
- ▶切比雪夫滤波器 (Chebyshev Filter)
 - Chebyshev Type I
 - Chebyshev Type II

为什么以低通为原型?

可转换为其他频率选择滤波器 (高通、带通、带阻等)

$$m{A}^2(\Omega)
ightarrow m{H}_a(s)
ightarrow m{H}(m{z})$$

模拟滤波器的设计:

设计模拟系统函数 $H_a(s)$

图 5-21 理想低通滤波器特性

模拟逼近: 幅度平方函数 $A^2(\Omega)$ 逼近理想低通滤波器

$$oxed{A^2(\Omega)} = ig|oldsymbol{H}_a(j\Omega)ig|^2 = ig|oldsymbol{H}_a(s)oldsymbol{H}_a(-s)ig|_{s=j\Omega}$$

如何由 $A^2(\Omega)$ 确定 $H_a(s)$?

▶如何由 $A^2(\Omega)$ 确定 $H_a(s)$?

$$oxed{A^2(\Omega)} = ig|oldsymbol{H}_a(j\Omega)ig|^2 = ig|oldsymbol{H}_a(s)oldsymbol{H}_a(-s)ig|_{s=j\Omega}$$

- $A^{2}(\Omega)$ 的零极点以j Ω 为对称轴成象限对称。对实系数滤波器,零极点以共轭对称对分布。 $\Omega^{2}=-s^{2}$
- H_a(s) 应该是稳定的,将H_a(s)H_a(-s)左半平面极点分给H_a(s).
- · 若要求最小相位,H_a(s)H_a(-s)左半平面零极点属于H_a(s)的零极点。 jΩ轴上的的零极点都是偶次的,其中一半属于H_a(s).
- 增益常数通过对比 $A(\Omega)$ 和 $H_a(s)$ 的低频特性确定。

例:由下列 $|H(j\Omega)|^2$ 确定 $H_a(s)$ 。

$$|H_a(j\Omega)|^2 = \frac{16(25-\Omega^2)^2}{(49+\Omega^2)(36+\Omega^2)}$$

解:
$$|H_a(j\Omega)|^2 = \frac{16(25-\Omega^2)^2}{(49+\Omega^2)(36+\Omega^2)}$$

$$H_a(s)H_a(-s) = |H_a(j\Omega)|^2|_{\Omega^2 = -s^2} = \frac{16(25 + s^2)^2}{(49 - s^2)(36 - s^2)}$$

极点: s= ±7, s=±6 零点: s= ±j5

选极点: s=-7, s=-6. 零点: s= ±j5

$$H_a(s) = \frac{K_0(s^2 + 25)}{(s+7)(s+6)}$$

$$H_a(s)|_{s=0} = H_a(j\Omega)|_{\Omega=0}$$

$$K_0 = 4.$$

$$H_a(s) = \frac{4(s^2 + 25)}{(s+7)(s+6)} = \frac{4s^2 + 100}{s^2 + 13s + 42}$$

Butterworth Filter: 巴特沃思滤波器

- 低通巴特沃思滤波器是全极点系统
- N 阶幅度平方频率响应为

$$|H_a(j\Omega)|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}$$

其中N为滤波器阶数

Ω。为3dB截止频率

 $\Omega_{\rm p}$ 为通带截止频率

(1+ε²)-1为通带截止频率处幅度平方频响值

在阻带起始频率 Ω_s 处 $|H_a(j\Omega)|^2 = \delta^2$

巴特沃思低通滤波器

- $\Omega = 0$, $|H_a(j0)|^2 = 1$.
- $\Omega = \Omega_{c_s} |H_a(j\Omega_c)|^2 = 1/2$ $|H_a(j\Omega_c)| = 1/\sqrt{2} = 0.707$ 20lg $|H_a(j0)/H_a(j\Omega_c)| = 3dB$
- $\Omega = \Omega_s$, -20lg | H_a(j Ω_s)|

$$egin{align} oldsymbol{H}_a(s) oldsymbol{H}_a(-s) &= A^2(\Omega)ig|_{\Omega=-js} = ig| oldsymbol{H}_a(j\Omega) ig|^2ig|_{\Omega=-js} \ &= rac{1}{1+(rac{s}{j\Omega_c})^{2N}} \end{aligned}$$

由 $A^2(\Omega)$ 确定 $H_a(s)$, 结果并不唯一,但只有一种情形对应于因果系统 (也即极点均在 s 左半平面),以此作为巴特沃思滤波器的 $H_a(s)$

先考察 $A^2(\Omega)$ 的极点分布:

$$1 + \left(\frac{s}{j\Omega_c}\right)^{2N} = 0$$

 \Rightarrow

$$\left(\frac{\mathbf{S}}{\mathbf{j}\Omega_{\mathbf{c}}}\right)^{2N} = -1 = e^{\mathbf{j}(2\mathbf{k}-1)\pi} = \left[e^{\mathbf{j}\left(\frac{2\mathbf{k}-1}{2N}\right)\pi}\right]^{2N}$$

 \bigcup

$$\begin{aligned} \mathbf{s}_{k} &= \mathbf{j} \Omega_{c} e^{\mathbf{j} \left(\frac{2k-1}{2N}\right)\pi} = \Omega_{c} e^{\mathbf{j} \left(\frac{1}{2} + \frac{2k-1}{2N}\right)\pi} \\ &= \Omega_{c} \cos \left(\frac{\pi}{2} + \frac{2k-1}{2N}\pi\right) + \mathbf{j} \Omega_{c} \sin \left(\frac{\pi}{2} + \frac{2k-1}{2N}\pi\right) \\ \mathbf{k} &= 0, 1, \dots, 2N - 1 \end{aligned}$$

极点位置

- •在 $\mathbf{r} = \Omega_{c}$ 的圆上有 **2N**个极点。
- ·左半平面的N个极点为 H_a(s)的极点。
- ·角度间隔为: π/N。
- \cdot j Ω 虚轴上无极点。
- •N 为奇数时,实轴上 有极点。

N 为偶数时,实轴上 无极点。

・滤波器之阶数:N・ $3\mathsf{dB}$ 截止频率: Ω_c

$$oldsymbol{H}_a(s) = rac{oldsymbol{K}}{\prod\limits_{k=0}^{N-1} (s-s_k)}$$
 (因果稳定)

$$egin{aligned} s_k &= \Omega_c e^{j\left(rac{\pi}{2}+rac{2\,k-1}{2\,N}\pi
ight)};\ ec{\kappa} &= 1,\,2,\,...\,,\,N \end{aligned}$$

给定指标,如何求 $N\&\Omega_c$?

- 在通带范围内允许的最大衰减为 $lpha_p$ (dB),截止频率为 Ω_p
- 在阻带范围内允许的最小衰减为 α_s (dB), 临界频率为 Ω_s

$$egin{aligned} &\mathbf{10} \lg \left[rac{1}{\mid oldsymbol{H}_a(joldsymbol{\Omega}_p) \mid^2}
ight] \leq oldsymbol{lpha}_p \Rightarrow &\mathbf{10} \lg \left[\mathbf{1} + \left(rac{oldsymbol{\Omega}_p}{oldsymbol{\Omega}_c}
ight)^{2N}
ight] \leq oldsymbol{lpha}_p \ &\mathbf{10} \lg \left[rac{1}{\mid oldsymbol{H}_a(joldsymbol{\Omega}_s) \mid^2}
ight] \geq oldsymbol{lpha}_s \Rightarrow &\mathbf{10} \lg \left[\mathbf{1} + \left(rac{oldsymbol{\Omega}_s}{oldsymbol{\Omega}_c}
ight)^{2N}
ight] \geq oldsymbol{lpha}_s \ &\Rightarrow \left[rac{oldsymbol{\Omega}_s}{oldsymbol{\Omega}_p}
ight)^N \geq \sqrt{rac{\mathbf{10}^{lpha_s/10} - \mathbf{1}}{\mathbf{10}^{lpha_s/10} - \mathbf{1}}}
ight] = rac{\lg \left(\sqrt{oldsymbol{\delta}^{-2} - \mathbf{1}}
ight)}{\lg \left(rac{oldsymbol{\Omega}_s}{oldsymbol{\Omega}_p}
ight)} \ &= rac{\lg \left(rac{oldsymbol{\delta}^{-2} - \mathbf{1}}{\varepsilon}
ight)}{\lg \left(rac{oldsymbol{\Omega}_s}{oldsymbol{\Omega}_p}
ight)} \end{aligned}$$

$$oldsymbol{\Omega}_c = oldsymbol{\Omega}_p \left(oldsymbol{10}^{rac{lpha_p}{10}} - oldsymbol{1}
ight)^{\!\!-rac{1}{2N}} \,\, rac{1}{2N} \,\, oldsymbol{\Omega}_s \left(oldsymbol{10}^{rac{lpha_s}{10}} - oldsymbol{1}
ight)^{\!\!-rac{1}{2N}}$$

例:

设计一个满足下述指标要求的模拟巴特沃斯低通滤波器: 在通带截止频率 $\omega_c = 2\pi \times 4000 \, rad \, / \, s$ 处的衰减为 $3 \, dB$, 在阻带截止频率 $\omega_c = 2\pi \times 8000 \, rad \, / \, s$ 处的衰减不小于 $20 \, dB$.

解:

1. 确定N

$$egin{align} -20\lg \mid m{H}_a(m{j}\Omega_c) & \models \mathbf{10}\lg [\mathbf{1} + (\Omega_c \mid \Omega_c)^{2N}] \ -20\lg \mid m{H}_a(m{j}\Omega s) & \models \mathbf{10}\lg [\mathbf{1} + (\Omega_s \mid \Omega_c)^{2N}] \ & rac{\mathbf{10}^{\delta_2/10} - \mathbf{1}}{\mathbf{10}^{\delta_1/10} - \mathbf{1}} = (rac{\Omega_s}{\Omega_c})^{2N} \end{array}$$

$$N = \lg(rac{10^{\delta_2/10}-1}{10^{\delta_1/10}-1})/2\lg(rac{\Omega_s}{\Omega_c}) = \lg(rac{10^2-1}{10^{0.3}-1})/2\lg2 = 3.249$$

N=4

2. 确定极点

$$s_{\!\scriptscriptstyle 1} = s_{\!\scriptscriptstyle 4}^{^*} = \Omega_{c} e^{j5\pi/8} \qquad \qquad s_{\!\scriptscriptstyle 2} = s_{\!\scriptscriptstyle 3}^{^*} = \Omega_{c} e^{j7\pi/8}$$

3. 确定 H_a(s)

$$m{H}_a(s) = rac{\Omega_c^N}{\prod\limits_{k=1}^{N}(s-s_k)} = rac{\Omega_c^2}{s^2 + 0.7653\Omega_c s + \Omega_c^2} ullet rac{\Omega_c^2}{s^2 + 1.8478\Omega_c s + \Omega_c^2}$$

阶次	$\mathbf{H}_{\mathbf{a}}(\mathbf{s}) = \frac{(-1)^{N} \mathbf{s}_{0} \mathbf{s}_{1} \cdots \mathbf{s}_{N-1}}{(\mathbf{s} - \mathbf{s}_{0})(\mathbf{s} - \mathbf{s}_{1}) \cdots (\mathbf{s} - \mathbf{s}_{N-1})}$
1	$\Omega_{\rm c}/({\rm s}+\Omega_{\rm c})$
2	$\Omega_{\rm c}^2/({\rm s}^2+\sqrt{2}\Omega_{\rm c}{\rm s}+\Omega_{\rm c}^2)$
3	$\Omega_c^3/(s^3+2\Omega_c s^2+2\Omega_c^2 s+\Omega_c^3)$
4	$\Omega_{c}^{4}/(s^{4}+2.613\Omega_{c}s^{3}+3.414\Omega_{c}^{2}s^{2}+2.613\Omega_{c}^{3}s+\Omega_{c}^{4})$

Chebyshev Filters: 切比雪夫滤波器

- 巴特沃斯滤波器在通带阻带内频率的单调函数。
- 切比雪夫滤波器:等波纹特性的函数逼近
 - ─ 切比雪夫I型:振幅在通带内是等波纹的,阻带内是单调的。
 - 切比雪夫Ⅱ型:振幅在通带内是单调的,阻带内是等波纹。
- 对于相同技术指标,切比雪夫滤波器比巴特沃斯滤波器需要的阶数 低。

· 切比雪夫I型模拟低通滤波器

N 阶幅度平方频率响应为

$$egin{align} oldsymbol{A}^{\,2}(oldsymbol{\Omega}\,) = & oldsymbol{H}_{\,a}(oldsymbol{j}oldsymbol{\Omega}\,) \mid^2 = rac{1}{1 + arepsilon^2 oldsymbol{C}_{\,N}^{\,2} \left(rac{oldsymbol{\Omega}}{oldsymbol{\Omega}_c}
ight)} & 1 + arepsilon^2 oldsymbol{C}_{\,N}^{\,2} \left(rac{oldsymbol{\Omega}}{oldsymbol{\Omega}_c}
ight) & 1 + arepsilon^2 oldsymbol{\Omega}_c^{\,2} \left(rac{oldsymbol{\Omega}}{oldsymbol{\Omega}_c}
ight) & 1 + arepsilon^2 oldsymbol{C}_{\,N}^{\,2} \left(rac{oldsymbol{\Omega}}{oldsymbol{\Omega}_c}
ight) & 1 + arepsilon^2 oldsymbol{\Omega}_c^{\,2} \left(rac{oldsymbol{\Omega}}{oldsymbol{\Omega}_c}
ight) & 1 + arepsilon^2 oldsymbo$$

其中 $C_N(\Omega)$ 为N阶切比雪夫多项式:

$$C_N(\Omega) = \left\{egin{array}{ll} \cos[N\cos^{-1}(\Omega)] & \mid \Omega \mid \leq 1 \ \cosh[N\cosh^{-1}(\Omega)] & \mid \Omega \mid > 1 \end{array}
ight.$$

·切比雪夫II型低通滤波器

$$\mid H_a(j\Omega)\mid^2 = rac{1}{1 + arepsilon^2 iggl[rac{oldsymbol{C}_N(oldsymbol{\Omega}_s \, / \, oldsymbol{\Omega}_p)}{oldsymbol{C}_N(oldsymbol{\Omega}_s \, / \, oldsymbol{\Omega})}iggr]^2}$$

带内极值点个数=N

- $|C_N(x)| \le 1$ for all $|x| \le 1$
- $|C_N(1)| = 1$ for all N

$C_{N+1}(x) = 2xC_N(x) - C_{N-1}(x)$ $C_4(x)$ $[C_N(x)]^2$ $C_N(x)$ $C_0(x) = 1$ $C_1(x) = x$ $C_2(x) = 2x^2 - 1$ $C_3(x) = 4x^3 - 3x$ $C_3(x)$ $|H_a(j\Omega)|^2$ N = 4 $(1+\varepsilon^2)^{-1}$ Butterworth $C_0(x)$ 0.5 $\Omega_p \Omega_{3db}$ 滤波器阶数: N通带截止频率: Ω_p 通带波动: ε 39/97 Copyright © Prof. Huiqi Li

切比雪夫多项式的递推公式

Frequency response of lowpass Type I Chebyshev filter

$$|\mathsf{H}(\Omega)|^2 = 1/[1 + \varepsilon^2 C_N^2(\Omega/\Omega_p)]$$

Frequency response of lowpass Type II Chebyshev filter

$$|H(\Omega)|^2 = 1/[1 + \varepsilon^2 \{C_N^2(\Omega_s/\Omega_p)/C_N^2(\Omega_s/\Omega)\}]$$

40/97

给定指标,如何求 $\epsilon, N\&\Omega_p$?

- 在通带范围内允许的最大衰减为 $\alpha_p(\mathrm{dB})$,截止频率为 Ω_p
- 在阻带范围内允许的最小衰减为 $\alpha_s(dB)$,临界频率为 Ω_s

$$(1) \left[10 \lg \left(1 + arepsilon^2
ight) = lpha_p
ight] \Rightarrow arepsilon = \sqrt{10^{lpha_p/10} - 1}$$

$$oxed{2} \left[\left| oldsymbol{H}_a(j\Omega_s)
ight|^2
ight] \leq -lpha_s$$

$$\Rightarrow oldsymbol{C}_N(oldsymbol{\Omega}_s \, / \, oldsymbol{\Omega}_p) \geq arepsilon^{-1} \sqrt{10^{lpha_s/10} - 1} = \sqrt{rac{10^{lpha_s/10} - 1}{10^{lpha_p/10} - 1}}$$

$$0 \Rightarrow \operatorname{cosh}[N \operatorname{cosh}^{-1}(\Omega_s \operatorname{/}\Omega_p)] \geq arepsilon^{-1} \sqrt{10^{lpha_s \operatorname{/}10} - 1}$$

$$\Rightarrow N \geq rac{\cosh^{ ext{-}1}igg(\sqrt{rac{10^{lpha_s/10}-1}{10^{lpha_p/10}-1}igg)}}{\cosh^{ ext{-}1}ig(\Omega_s/\Omega_pig)} = rac{\cosh^{ ext{-}1}igg(\sqrt{\delta^{-2}-1}igg)}{\cosh^{ ext{-}1}ig(\Omega_s/\Omega_pig)}$$

切比雪夫I型低通滤波器的极点,是一组分布在S平面椭圆上的点。

图 5-29 三阶切比雪夫滤波器的极点位置

两种模拟低通幅度逼近方法的比较:

	·
巴特沃思滤波器	切比雪夫I型滤波器
① 幅度平方响应	① 幅度平方响应
$egin{aligned} A^2(\Omega) = \ m{H}_a(j\Omega) \ ^2 = & rac{1}{1 + \left(rac{\Omega}{\Omega_c} ight)^{2N}} = rac{1}{1 + arepsilon^2 \left(rac{\Omega}{\Omega_p} ight)^{2N}} \end{aligned}$	$A^2(\Omega) = H_a(j\Omega) ^2 = rac{1}{1+arepsilon^2C_N^2iggl(rac{\Omega}{\Omega_p}iggr)}$
$Q(s) = oldsymbol{H}_a(s) oldsymbol{H}_a(-s) = rac{1}{1 + \left(rac{s}{j\Omega_c} ight)^{2N}}$	$Q(s) = oldsymbol{H}_a(s) oldsymbol{H}_a(-s) = rac{1}{1 + arepsilon^2 oldsymbol{C}_N^2 \left(rac{s}{j oldsymbol{\Omega}_p} ight)}$
② 通、阻带衰减要求: $lpha_{_p}\setminusarepsilon$, $lpha_{_s}\setminus\delta$	② 通、阻带衰减要求: $lpha_p \setminus arepsilon$, $lpha_s \setminus \delta$
③ 滤波器阶数 N 和截止频率 ω_c	③ 滤波器阶数 N
$N \geq \lgig[arepsilon^{-1}(\delta^{-2}-1)^{1/2}ig]/\lg(arOmega_s/arOmega_p)$	$N \geq \coshig[arepsilon^{-1}(\delta^{-2}-1)^{1/2}ig]/\cosh(arOmega_s/arOmega_p)$
$= \lg \left[\sqrt{rac{10^{lpha_s/10}-1}{10^{lpha_p/10}-1}} ight] \!\! / \!\! \lg(\Omega_{\!\scriptscriptstyle s}/\Omega_{\!\scriptscriptstyle p}) \;\;\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$	$=\coshigg[\sqrt{rac{10^{lpha_s/10}-1}{10^{lpha_p/10}-1}}igg]\!$
④ 左半平面极点位置	④ 左半平面极点位置
$oxedsymbol{s}_k = oldsymbol{\Omega}_c e^{j\left[rac{(2k+1)}{2N}+rac{1}{2} ight]^{\pi}}, oldsymbol{k} = oldsymbol{0} \sim oldsymbol{N} - oldsymbol{1}$	$oxed{s_k = \Omega_pig[rac{\gamma-\gamma^{-1}}{2}ig] \cos\phi_k + j\Omega_pig[rac{\gamma+\gamma^{-1}}{2}ig] \sin\phi_k, k = 0 \sim N-1}$
	$\phi_k = rac{(2k+1)\pi}{2N} + rac{\pi}{2}; \gamma = \left(rac{\sqrt{1+arepsilon^2+1}}{arepsilon} ight)^{1/N}$
⑤ 频率响应	⑤ 頻率响应
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$
	$egin{aligned} oldsymbol{H}_a(s) = egin{cases} \left[-\prod_{k=0}^{N-1} s_k ight] \!\!\!\! / \!\! \left[\prod_{k=0}^{N-1} (s-s_k) ight] & N:odd \ \left[(1+arepsilon^2)^{-1/2} \prod_{k=0}^{N-1} s_k ight] \!\!\!\! / \!\! \left[\prod_{k=0}^{N-1} (s-s_k) ight] & N:even \end{cases} \end{aligned}$
(ONVIONT & PROT HUIGI II INVI	

1、根据给定指标设计 模拟原型低通滤波器

从模拟滤波器 设计数字滤波器

- 2、从模拟低通滤波器设计数字低通滤波器
- 3、IIR数字低通滤波器 的频率变换(高通、带 通、带阻数字滤波器的 设计

- (1) 脉冲响应不变法
- (2) 双线性变换法
- (1) 直接由模拟原型 到各种类型数字滤波器 的转换
- (2) 从数字低通滤波器到各种类型数字滤波器的转换

- > 从模拟低通滤波器设计数字低通滤波器步骤:
 - 1. 将数字滤波器技术指标转换成模拟低通滤波器技术指标。
 - 2. 依据技术指标确定模拟低通滤波器幅度响应 |H_a(Ω)|及系统函数H_a(s)。
 - 3. 由模拟滤波器设计数字滤波器: 由 H_a(s) 求得 H(z)。

- ▶ 由模拟滤波器设计数字滤波器:由 H_a(s) 求得 H(z) 转换要求
 - ①系统稳定性能够保持: *s*-平面的左半平面应映射至*z*-平面的单位圆内;
 - ② 保形要求(频率选择能力): s平面的虚轴j Ω 应该映射到z平面的单位圆上。

方法:

- ① 脉冲响应不变变换法
- ② 双线性变换法

脉冲响应不变法 (Impulse Invariance) -- 变换原理

 $\begin{array}{c|c} & H_1(\Omega T_1) & --H(\mathrm{e}^{\mathrm{jw}1}) \\ \hline & W & 2\pi/T_1 \end{array}$

Time domain

Frequency domain

结论: 由 $H_a(s)$ 和H(z)之间不是单值映射 频率坐标变换是线性的 $\omega = \Omega T$

$$z = e^{sT} s = \sigma + j\Omega z = re^{j\omega}$$

$$re^{j\omega} = e^{\sigma T}e^{j\Omega T}$$
 $r = e^{\sigma T}$ $\omega = \Omega T$

S平面与Z平面多值映射关系

过程:
$$H_a(s) \rightarrow h_a(t) \rightarrow h(n) \rightarrow H(z)$$

$$H_a(s) = \sum_{i=1}^N rac{A_i}{s+s_i}$$
 并联,部分分式

$$A\Rightarrow h_a(t)=\sum_{i=1}^N A_i e^{-s_i t} u(t)\Rightarrow h(n)=h_a(n\,T)=\sum_{i=1}^N A_i e^{-s_i T n} u(n\,T)$$

$$H(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n} = \sum_{n=-\infty}^{\infty} \sum_{i=1}^{N} A_i (e^{-s_i T})^n z^{-n} u(n) = \sum_{i=1}^{i=1} A_i \sum_{n=0}^{\infty} \left(e^{-s_i T} z^{-1}
ight)^n$$

$$=\sum_{i=1}^{N} A_i \lim_{N o \infty} rac{1-(e^{-s_i T} z^{-1})^N}{1-e^{-s_i T} z^{-1}}$$

$$\stackrel{|z|>|e^{s_iT}|}{=}\sum_{i=1}^Nrac{A_i}{1-e^{-s_iT}z^{-1}}$$

$$rac{A_i}{s+s}\Leftrightarrow rac{A_i}{1-e^{-s_iT}z^{-1}}=rac{A_iz}{z-e^{-s_iT}}$$
 一 极点可直接由 $z=e^{sT}$ 变换

可直接由H_a(s)确定H(z)

零点之间无一一对应关系

优缺点

优: 频率坐标变换是线性的 $\omega = \Omega T$

1、增益过高(*T*-1)

$$oldsymbol{H}(e^{j\omega}) = rac{1}{T}oldsymbol{H}_aigg(jrac{\omega}{T}igg) = rac{1}{T}oldsymbol{H}_aig(j\Omegaig) \quad igg|\omegaigg| \leq \pi$$

$$m{H}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} m{H}_a ig(j rac{\omega}{T} - j rac{2\pi}{T} m{m} ig)$$

$$oldsymbol{H}(e^{j\omega}) = oldsymbol{H}_aiggl(jrac{\omega}{T}iggr), iggl|\omegaiggr| \leq \pi$$

脉冲响应不变法的主要步骤

- 步骤一: 确定滤波器的技术指标(通常在数字域给出)
 - 通、阻带的波动
 - 通、过渡、阻带的截止频率
 - 频率选择特性(低通)
- 步骤二: 对截止频率作如下线性变换(如果给定的是数字指标): $\Omega = \omega/T$ (数字化过程中从模拟到数字频率变换的逆关系)
- 步骤三: 选择模拟逼近方法(巴特沃思)并确定其传递函数 H_a(s);
- 步骤四:按下述方法将H_a(s)转变为H(z),完成数字化:

$$H_a(s) = \sum_{k=1}^{N} \frac{c_k}{s - s_k}$$
 \rightarrow $H(z) = \sum_{k=1}^{N} \frac{Tc_k}{1 - e^{s_k T} z^{-1}}$

• 步骤五: 检验结果是否满足指标,如果不满足,返回步骤三

双线性变换方法 (Bilinear Transformation)

原理推导

脉冲响应不变法的主要缺点是频谱交叠产生的混淆,这是从S平面到Z平面的标准变换z=esT的多值对应关系导致的,为了克服这一缺点,设想变换分为两步:

蕌

第一步: 将整个S平面压缩到S1平面的一条横带里;

第二步:通过标准变换关系将此横带变换到整个Z平面上去。蕌

由此建立S平面与Z平面一一对应的单值关系,消除多值性,也就消除了混淆现象。

双线性变换的映射关系

Complex-plane mapping in bilinear transformation

映射关系:

$$H_{\,a}(s)
ightarrow \,H\left(z
ight)$$

频
$$(1)$$
 $z = \frac{2/T + s}{2/T - s}; s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$ 什么是双线性变换? 直接 映 (2) $|z| = \sqrt{\frac{(2/T + \sigma)^2 + \Omega^2}{(2/T - \sigma)^2 + \Omega^2}}$ $(s = \sigma + j\Omega)$

$$\alpha < 0 \rightarrow |z| < 1$$

$$\alpha = 0 \rightarrow |z| = 1$$

$$\alpha > 0 \rightarrow |z| > 1$$

图 5-37 双线性变换的映射关系

因果稳定性数字化后可以保持

$$(3) \hspace{0.5cm} s \hspace{0.1cm} = \hspace{0.1cm} j\Omega \hspace{0.1cm}, \hspace{0.1cm} z \hspace{0.1cm} = \hspace{0.1cm} e^{\hspace{0.1cm} j\hspace{0.1cm} \omega} \hspace{0.1cm} = \hspace{0.1cm} rac{2}{T} \hspace{0.1cm} + \hspace{0.1cm} j\hspace{0.1cm} \Omega \hspace{0.1cm} \ rac{2}{T} \hspace{0.1cm} - \hspace{0.1cm} j\hspace{0.1cm} \Omega \hspace{0.1cm}$$

$$\Rightarrow \left\{egin{array}{lll} oldsymbol{\omega} &=& 2 \, \, \mathrm{t} \, \mathrm{a} \, \mathrm{n}^{-1} \left(rac{\Omega \, \, T}{2}
ight) \ oldsymbol{\Omega} &=& rac{2}{T} \, \mathrm{t} \, \mathrm{a} \, \mathrm{n} \, \left(rac{\omega}{2}
ight) \end{array}
ight.$$

- 模拟滤波器的通带或阻带变换成数字滤波器的通带或阻带。
- 若模拟滤波器是稳定的,数字滤波器一定是稳定的。
- s平面整个jΩ 轴映射为z平面的单位 圆,没有混叠误差。
- 频率Ω与ω之间存在严重非线性。

图 5-38 双线性变换的频率非线性关系

优缺点

优点:消除了混叠误差

缺点: 频率ω与Ω之间非线性

为什么要预畸呢?

- 若数字带通滤波器的四个截止频率为 $\omega_1, \omega_2, \omega_3, \omega_4;$
- 按线性变换所对应的四个模拟截止频率分别为:

$$\Omega_{\!\scriptscriptstyle 1} = rac{\omega_{\scriptscriptstyle 1}}{T}, \, \Omega_{\!\scriptscriptstyle 2} = rac{\omega_{\scriptscriptstyle 2}}{T}, \, \Omega_{\!\scriptscriptstyle 3} = rac{\omega_{\scriptscriptstyle 3}}{T}, \, \Omega_{\!\scriptscriptstyle 4} = rac{\omega_{\scriptscriptstyle 4}}{T}$$

- 再进行模拟带通滤波器的系统函数的求解;
- 求出后,如用双线性变换将模拟滤波器变换成为数字滤波器

$$s = rac{2}{T} rac{1 - z^{-1}}{1 + z^{-1}} \qquad \qquad \omega = 2 an^{-1} iggl(rac{\Omega T}{2}iggr)$$

• 显然就不等于原来给出的数字滤波器的频率要求,即现在带通的四个 截止频率不等于原来的 $\omega_1, \omega_2, \omega_3, \omega_4$,需对第二步进行预畸。即模拟 滤波器按预畸后的 $\Omega_k = (2/T) \operatorname{tg}(\omega_k/2)$ 进行设计。

由数字到模拟,再由模拟到数字

$$z = rac{2 \, / \, T + s}{2 \, / \, T - s} \, ; \quad s = rac{2}{T} rac{1 - z^{-1}}{1 + z^{-1}}$$

$$H(z) = H_a(s) \Big|_{s = rac{2}{T} rac{1-z^{-1}}{1+z^{-1}}} = H_a(rac{2}{T} rac{1-z^{-1}}{1+z^{-1}}).$$

$$m{H}(e^{jw}) = m{H}_a(j\Omega) \Big|_{\Omega = rac{2}{T} an\left[rac{\omega}{2}
ight]} = m{H}_a(rac{2}{T} an\left[rac{\omega}{2}
ight])$$

双线性变换法的主要步骤

- 步骤一: 确定滤波器的技术指标(通常在数字域给定)
 - 通、阻带的波动
 - 通、过渡、阻带的截止频率
 - 频率选择特性(低通)
- 步骤二: 进行下述频率预畸(针对数字域指标): $\Omega = (2/T) \tan(\omega/2)$
- 步骤三: 选择模拟逼近方法(巴特沃思)并确定其传递函数 H_a(s);
- 步骤四: 双线性变换,即将 H_a(s) 中的"s"按下式进行变换以得到 H(z),而完成数字化:

$$s = (2/T)[(1-z^{-1})/(1+z^{-1})]$$

• 步骤五: 检验结果是否满足指标,如果不满足,返回步骤三

11R数字滤波器的频率变换

Ignore! PPT 67~97

(数字带通、带阻、高通滤波器的设计)

图 5-43 数字滤波器的各种理想响应形式

(a)低速 (b) 高通 (c)带通 (d) 带阻

- 把一个归一化原型模拟低通滤波器变换成另一个所需类型的模拟滤波器,再将其数字化(脉冲响应不变法或双线性法)。
- 直接从模拟滤波器通过一定的频率变换关系完成所需类型数字滤波器的设计。
- 先设计低通型的数字滤波器,再用数字频率变化方法将其转换成所需类型数字滤波器。

1 模拟原型方法:模拟低通-〉模拟带通

低通(p平面)到带通(家平面)的变换是

$$p = \overline{s} + \frac{\overline{\Omega}_{2}^{2}}{\overline{s}}, \quad \begin{cases} p = j\Omega_{p} \\ \overline{s} = j\overline{\Omega} \end{cases} \Leftrightarrow \Omega_{p} = \frac{\overline{\Omega}^{2} - \overline{\Omega}_{2}^{2}}{\overline{\Omega}}$$

$$\begin{cases} \Omega_{pc} = \frac{\overline{\Omega}_{3}^{2} - \overline{\Omega}_{2}^{2}}{\overline{\Omega}_{3}} \\ -\Omega_{pc} = \frac{\overline{\Omega}_{1}^{2} - \overline{\Omega}_{2}^{2}}{\overline{\Omega}_{1}} \end{cases} \Rightarrow \begin{cases} \overline{\Omega}_{2} = \sqrt{\overline{\Omega}_{1}\overline{\Omega}_{3}} \\ B = \overline{\Omega}_{3} - \overline{\Omega}_{1} = \Omega_{pc} \end{cases}$$

由模拟低通滤波器到模拟带通滤波器变换:

1.
$$B = \overline{\Omega}_3 - \overline{\Omega}_1 = \Omega_{pc}$$
, 2. $H_{bp}(\overline{s}) = H_{lp}(p)\Big|_{p=\overline{s}+\frac{\overline{\Omega}_2^2}{\overline{s}}}$

数字带通滤波器设计

利用双线性变换将模拟带通滤波器转换为数字带通滤波器

$$H(z) = H_{bp}(\overline{s})|_{\overline{s} = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}}$$

推导:利用双线性变换将模拟低通滤波器转换为数字带通滤波器

$$\overline{s} = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \Rightarrow p = \overline{s} + \frac{\overline{\Omega}_{2}^{2}}{\overline{s}} = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} + \frac{\overline{\Omega}_{2}^{2}}{\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}}, \qquad \overline{\Omega} = \frac{2}{T} tg \frac{\Omega T}{2}$$

2 模拟原型方法:模拟低通-〉模拟带阻

73/97

低通(p平面)到带阻(家平面)的变换是

$$p = \frac{\overline{\Omega}_{2}^{2}\overline{s}}{\overline{s}^{2} + \overline{\Omega}_{2}^{2}}, \begin{cases} p = j\Omega_{p} \\ \overline{s} = j\overline{\Omega} \end{cases} \Leftrightarrow \Omega_{p} = \frac{\overline{\Omega}_{2}^{2}\overline{\Omega}}{\overline{\Omega}_{2}^{2} - \overline{\Omega}^{2}}$$

$$\begin{cases} \Omega_{pc} = \frac{\overline{\Omega}_{2}^{2}\overline{\Omega}_{1}}{\overline{\Omega}_{2}^{2} - \overline{\Omega}_{1}^{2}} \\ -\Omega_{pc} = \frac{\overline{\Omega}_{2}^{2}\overline{\Omega}_{3}}{\overline{\Omega}_{2}^{2} - \overline{\Omega}_{3}^{2}} \Rightarrow \begin{cases} \overline{\Omega}_{2} = \sqrt{\overline{\Omega}_{1}\overline{\Omega}_{3}} \\ \overline{B} = \overline{\Omega}_{3} - \overline{\Omega}_{1} = \frac{\overline{\Omega}_{1}\overline{\Omega}_{3}}{\Omega_{pc}} \end{cases}$$

由模拟低通滤波器到模拟带阻滤波器变换:

$$H_{br}(\overline{s}) = H_{lp}(p)\Big|_{p = \frac{\overline{\Omega}_2^2 \overline{s}}{\overline{s}^2 + \overline{\Omega}_2^2}}$$

数字带阻滤波器设计

利用双线性变换将模拟带阻滤波器转换为数字带阻滤波器

$$H(z) = H_{br}(\overline{s})|_{\overline{s} = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}}$$

推导:利用双线性变换将模拟低通滤波器转换为数字带阻滤波器

$$\overline{s} = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \Rightarrow p = \frac{\overline{\Omega}_{2}^{2} \overline{s}}{\overline{s}^{2} + \overline{\Omega}_{2}^{2}} = \frac{\overline{\Omega}_{2}^{2} \left(\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}\right)}{\left(\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}\right)^{2} + \overline{\Omega}_{2}^{2}}$$

$$\int_{1}^{p = j\Omega_{p}} \text{代入}$$

$$\Rightarrow \Omega_{p} = D_{1} \frac{\sin \Omega T}{\cos \Omega T - E_{1}/2}$$

$$(\mathbb{R} \times \mathbb{R} \times \mathbb{R}$$

$$p = j\Omega_{p}$$

$$z = e^{j\Omega T} \text{ then } \Delta$$

$$\Rightarrow \Omega_{p} = D_{1} \frac{\sin \Omega T}{\cos \Omega T - E_{1}/2}$$

$$\exists E_1 = 2 \frac{\left(\frac{2}{T}\right)^2 - \overline{\Omega}_2^2}{\left(\frac{2}{T}\right)^2 + \overline{\Omega}_2^2} = 2\cos(\Omega_2 T) \Rightarrow p = D_1 \left[\frac{(1 - z^{-2})}{1 - E_1 z^{-1} + z^{-2}}\right]$$

$$\Rightarrow H(z) = H_{lp}(p)\Big|_{p=D_1\left[\frac{(1-z^{-2})}{1-E_1z^{-1}+z^{-2}}\right]}$$

3 模拟原型方法:模拟低通-〉模拟高通

数字高通滤波器设计

利用双线性变换将模拟高通滤波器转换为数字高通滤波器

$$H(z) = H_{hp}(\overline{s})\Big|_{\overline{s} = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}}$$

推导:利用双线性变换将模拟低通滤波器转换为数字高通滤波器

推导: 利用双线性变换将模拟低通滤波器转换为数字高通滤波器
$$\overline{s} = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \Rightarrow p = \frac{\Omega_{pc} \overline{\Omega}_{c}}{\overline{s}} = \frac{\Omega_{pc} \overline{\Omega}_{c}}{\left(\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}\right)} = c_{1} \frac{1 + z^{-1}}{1 - z^{-1}}$$

$$p = \frac{\Omega_{pc} \overline{\Omega}_{c}}{\overline{s}}, \begin{cases} p = j\Omega_{p} \\ \overline{s} = j\overline{\Omega} \end{cases}$$

$$\Rightarrow H(z) = H_{lp}(p)\Big|_{p=c_1\frac{1+z^{-1}}{1-z^{-1}}}$$

$$p = \frac{\Omega_{pc}\overline{\Omega}_{c}}{\overline{s}}, \begin{cases} p = j\Omega_{p} \\ \overline{s} = j\overline{\Omega} \end{cases}$$

$$\Rightarrow \Omega_{p} = -\frac{\overline{\Omega}_{c}}{\overline{\Omega}}\Omega_{pc}$$

$$\Rightarrow \begin{cases} \overline{\Omega} = \frac{2}{T}tg\frac{\Omega T}{2} \\ c_{1} = \Omega_{pc}tg\frac{\Omega_{c}T}{2} \end{cases}$$

$$\Rightarrow \Omega_{p} = -c_{1}ctg\frac{\Omega T}{2}$$

(用来确定低通原型滤波器截止频率Ω

根据模拟低通原型设计各类数字滤波器的频率变换式

寒	•	_	1 (1)
-00	3		300

滤波器类型	频率变换式	有关的设计公式
高通	$p = c_1 \frac{1 + z^{-1}}{1 - z^{-1}}$ $ \Omega_p = c_1 \operatorname{ctg} \frac{\Omega T}{2}$	$c_1 = \Omega_{\kappa} \operatorname{tg} \frac{\Omega_c T}{2}$
带 通	$p = D \left[\frac{1 - Ez^{-1} + z^{-2}}{1 - z^{-2}} \right]$ $\Omega_p = D \frac{\frac{E}{2} - \cos \Omega T}{\sin \Omega T}$	$D = \Omega_{\kappa} \operatorname{ctg} \left[\frac{(\Omega_{3} - \Omega_{1})}{2} \right] T$ $E = \frac{2 \operatorname{cos} \left[\frac{(\Omega_{3} + \Omega_{1})}{2} \right] T}{\operatorname{cos} \left[\frac{(\Omega_{3} - \Omega_{1})}{2} \right] T}$ $= 2 \operatorname{cos} \Omega_{2} T$
带阻	$p = \frac{D_1(1-z^{-1})}{1-E_1z^{-1}+z^{-2}}$ $\Omega_r = D_1 \frac{\sin \Omega T}{\cos \Omega T - \frac{E_1}{2}}$	$D_{1} = \Omega_{pc} \operatorname{tg} \left[\frac{(\Omega_{3} - \Omega_{1})}{2} \right] T$ $E_{1} = \frac{2 \operatorname{cos} \left[(\Omega_{3} + \Omega_{1}) \frac{T}{2} \right]}{\operatorname{cos} \left[(\Omega_{1} - \Omega_{1}) \frac{T}{2} \right]}$ $= 2 \operatorname{cos} \Omega_{2} T$

▶ 直接由给定的数字低通滤波器转换成其他类型的数字滤波器

数字滤泡	皮器类型	变 换	有关的设计公式
低	通	$z^{-1} = \frac{\mathcal{Z}^{-1} - a}{1 - a\mathcal{Z}^{-1}}$	$a = \frac{\sin\left(\frac{\theta_c - \omega_c}{2}\right)}{\sin\left(\frac{\theta_c + \omega_c}{2}\right)}$ ω_c 为要求的截止頻率
髙	通	$z^{-1} = -\frac{\mathcal{Z}^{-1} + a}{1 + a\mathcal{Z}^{-1}}$	$a = -\frac{\cos\left(\frac{\theta_{\ell} + \omega_{\ell}}{2}\right)}{\cos\left(\frac{\theta_{\ell} - \omega_{\ell}}{2}\right)}$ ω_{ℓ} 为要求的截止頻率
带	通	$z^{-1} = -\frac{2^{-2} - \frac{2ak}{k+1}2^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}2^{-2} - \frac{2ak}{k+1}2^{-1} + 1}$	$a = \frac{\cos\left(\frac{\omega_2 + \omega_1}{2}\right)}{\cos\left(\frac{\omega_2 - \omega_1}{2}\right)}$ $k = \cot\left(\frac{\omega_2 - \omega_1}{2}\right) \cot\frac{\theta_c}{2}$ $\omega_2 \text{ 和 } \omega_1 \text{ 为要求的上,下截止频率}$
带	SEL.	$z^{-1} = \frac{2^{-2} - \frac{2a}{1+k}2^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}2^{-2} - \frac{2a}{1+k}2^{-1} + 1}$	$a = \frac{\cos\left(\frac{\omega_2 + \omega_1}{2}\right)}{\cos\left(\frac{\omega_2 - \omega_1}{2}\right)}$ $k = \operatorname{tg}\left(\frac{\omega_2 - \omega_1}{2}\right) \operatorname{tg}\frac{\theta_c}{2}$ $\omega_2, \omega_1 \text{ 为要求的上,下截止频率}$

频率变换1一数字带通滤波器设计(书P203)

设一取样频率为2kHz的数字带通滤波器,满足如下要求:通带范围为300Hz到400Hz,在300Hz和400Hz处衰减不大于3dB,在200Hz和500Hz频率处衰减不小于18dB;用双线性变换法设计一个满足下述指标要求的数字巴特沃斯带通滤波器,

- (1)确定滤波器的阶数N
- (2)确定滤波器的系统函数H(z)
- (3)给出滤波器的任意一种结构实现形式

解: (1)

$$D = \Omega_{pc} ctg \left(\frac{\Omega_3 - \Omega_1}{2} T \right) = \Omega_{pc} ctg \left(\frac{2\pi (400 - 300)}{2} \frac{1}{2000} \right) = 6.31 \Omega_{pc}$$

$$E = \frac{2\cos\left(\frac{\Omega_3 + \Omega_1}{2}T\right)}{\cos\left(\frac{\Omega_3 - \Omega_1}{2}T\right)} = \frac{2\cos(0.35\pi)}{\cos(0.05\pi)} = \frac{2 \times 0.45}{0.99} = 0.92$$

$$\Omega_p = D \, \frac{E/2 - \cos \Omega \, T}{\sin \Omega \, T}$$

Ω,,,为满足所设计的数字带通滤波器要求的模拟原型的阻带起始频率

$$\begin{cases} -\Omega_{ps} = D \frac{E/2 - \cos(2\pi \times 200 \times \frac{1}{2000})}{\sin(2\pi \times 200 \times \frac{1}{2000})} = 6.31\Omega_{pc} \frac{0.46 - 0.81}{0.59} = -3.74\Omega_{pc} \\ \Omega_{ps} = D \frac{E/2 - \cos(2\pi \times 500 \times \frac{1}{2000})}{\sin(2\pi \times 500 \times \frac{1}{2000})} = 6.31\Omega_{pc} \frac{0.46 - 0}{1} = 2.90\Omega_{pc} \end{cases}$$

$$\Omega_{ps} = D \frac{E/2 - \cos(2\pi \times 500 \times \frac{1}{2000})}{\sin(2\pi \times 500 \times \frac{1}{2000})} = 6.31\Omega_{pc} \frac{0.46 - 0}{1} = 2.90\Omega_{pc}$$

 $\mathfrak{R} \Omega_{ps} = 2.90 \Omega_{pc}$

已经预畸

(2)由己知条件列出对模拟低通滤波器的衰减要求

$$A^{2}(\Omega) = \left| H_{a}(j\Omega) \right|^{2} = \frac{1}{1 + \left(\frac{\Omega}{\Omega_{pc}}\right)^{2N}}$$

$$\Rightarrow 20 \lg |H_a(j\Omega)| = -10 \lg \left[1 + \left(\frac{\Omega}{\Omega_{pc}} \right)^{2N} \right]$$

$$\Rightarrow \begin{cases} 20 \lg |H_a(j\Omega_{pc})| \ge -3 dB \\ 20 \lg |H_a(j\Omega_{ps})| \le -18 dB \end{cases}$$

$$\begin{cases} -10 \lg \left[1 + \left(\frac{\Omega_{pc}}{\Omega_{pc}} \right)^{2N} \right] \ge -3 dB \\ -10 \lg \left[1 + \left(\frac{\Omega_{ps}}{\Omega_{pc}} \right)^{2N} \right] \le -18 dB \end{cases}$$

$$-10\lg\left[1+\left(\frac{\Omega_{ps}}{\Omega_{pc}}\right)^{2N}\right] = -18dB$$

$$\Rightarrow 1 + (2.9)^{2N} = 10^{1.8}$$

$$H_{LP}(p) = \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}}$$

$$(4)H_{LP}(p) = \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}}$$

$$p = D\left[\frac{1 - Ez^{-1} + z^{-2}}{1 - z^{-2}}\right] = 6.31\Omega_{pc}\left[\frac{1 - 0.92z^{-1} + z^{-2}}{1 - z^{-2}}\right]$$

$$H(z) = H_{LP}(p)\Big|_{p=D\left[\frac{1 - Ez^{-1} + z^{-2}}{1 - z^{-2}}\right]}$$

$$= \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}} = \frac{1}{6.31^{2}\left[\frac{1 - 0.92z^{-1} + z^{-2}}{1 - z^{-2}}\right]^{2} + \sqrt{2} \times 6.31\left[\frac{1 - 0.92z^{-1} + z^{-2}}{1 - z^{-2}}\right] + 1}$$

$$= \frac{(1 - z^{-2})^{2}}{39.82(1 - 0.92z^{-1} + z^{-2})^{2} + 8.92(1 - 0.92z^{-1} + z^{-2})(1 - z^{-2}) + (1 - z^{-2})^{2}}$$

$$= \frac{0.02(1 - z^{-2})^{2}}{1 - 1.64z^{-1} + 2.34z^{-2} - 1.31z^{-3} + 0.64z^{-4}}$$

$$= \frac{0.02 - 0.04z^{-2} + 0.02z^{-4}}{1 - 1.64z^{-1} + 2.34z^{-2} - 1.31z^{-3} + 0.64z^{-4}}$$

$$H(z) = \frac{0.02 - 0.04z^{-2} + 0.02z^{-4}}{1 - 1.64z^{-1} + 2.34z^{-2} - 1.31z^{-3} + 0.64z^{-4}}$$

(4)频率响应

频率变换2—数字带阻滤波器设计

设计一取样频率为100kHz的二阶巴特沃斯数字带阻滤波器, 其3dB带边频率分别为12.5kHz,22.5kHz

解: 由于设计二阶带阻数字滤波器, 所以模拟原型系统函数为

$$\begin{split} H_{LP}(p) &= \frac{\Omega_{pc}}{\Omega_{pc} + p} \\ D_{1} &= \Omega_{pc} tg \left(\frac{\Omega_{3} - \Omega_{1}}{2} T \right) = \Omega_{pc} tg \left(\frac{2\pi (22.5 - 12.5)}{2} \frac{1}{100} \right) = 0.32 \Omega_{pc} \\ &= 2 \cos \left(\frac{\Omega_{3} + \Omega_{1}}{2} T \right) = 2 \cos \left(\frac{2\pi (22.5 + 12.5)}{2} \frac{1}{100} \right) \end{split}$$

$$E_{1} = \frac{2\cos\left(\frac{\Omega_{3} + \Omega_{1}}{2}T\right)}{\cos\left(\frac{\Omega_{3} - \Omega_{1}}{2}T\right)} = \frac{2\cos\left(\frac{2\pi(22.5 + 12.5)}{2}\frac{1}{100}\right)}{\cos\left(\frac{2\pi(22.5 - 12.5)}{2}\frac{1}{100}\right)} = 0.95$$

$$p = D_1 \left[\frac{(1 - z^{-2})}{1 - E_1 z^{-1} + z^{-2}} \right] = 0.32 \Omega_{pc} \frac{(1 - z^{-2})}{1 - 0.95 z^{-1} + z^{-2}}$$

$$H(z) = H_{LP}(p)|_{p=D_1}\left[\frac{(1-z^{-2})}{1-E_1z^{-1}+z^{-2}}\right]$$

$$= \frac{\Omega_{pc}}{\Omega_{pc} + p} \bigg|_{p = 0.32 \Omega_{pc} \frac{(1-z^{-2})}{1 - 0.95 z^{-1} + z^{-2}}} = \frac{\Omega_{pc}}{\Omega_{pc} + 0.32 \Omega_{pc} \frac{(1-z^{-2})}{1 - 0.95 z^{-1} + z^{-2}}} = \frac{1}{1 + 0.32 \frac{(1-z^{-2})}{1 - 0.95 z^{-1} + z^{-2}}}$$

$$= \frac{1 - 0.95z^{-1} + z^{-2}}{1 - 0.95z^{-1} + z^{-2} + 0.32(1 - z^{-2})} = \frac{1 - 0.95z^{-1} + z^{-2}}{1.32 - 0.95z^{-1} + 0.68z^{-2}} = \frac{0.76 - 0.72z^{-1} + 0.76z^{-2}}{1 - 0.72z^{-1} + 0.52z^{-2}}$$

频率变换3—数字带阻滤波器设计

设一取样频率为2kHz的数字带阻滤波器,满足如下要求: 阻带范围为300Hz到400Hz,在300Hz和400Hz处衰减不小于16dB, 在200Hz和500Hz频率处衰减不大于3dB;用双线性变换法设计 一个满足下述指标要求的数字巴特沃斯带阻滤波器,

- (1)确定滤波器的阶数N
- (2)确定滤波器的系统函数H(z)
- (3)给出滤波器的任意一种结构实现形式

解: (1)

$$D_{1} = \Omega_{pc} tg\left(\frac{\Omega_{3} - \Omega_{1}}{2}T\right) = \Omega_{pc} tg\left(\frac{2\pi(500 - 200)}{2} \frac{1}{2000}\right) = 0.51\Omega_{pc}$$

$$E_{1} = \frac{2\cos\left(\frac{\Omega_{3} + \Omega_{1}}{2}T\right)}{\cos\left(\frac{\Omega_{3} - \Omega_{1}}{2}T\right)} = \frac{2\cos\left(\frac{2\pi(500 + 200)}{2} \frac{1}{2000}\right)}{\cos\left(\frac{2\pi(500 - 200)}{2} \frac{1}{2000}\right)} = \frac{2\times0.45}{0.89} = 1.01$$

$$\Omega_p = D_1 \frac{\sin \Omega T}{\cos \Omega T - E_1/2}$$

Ω_{ps}为满足所设计的数字带阻滤波器要求的模拟原型的阻带起始频率

$$\begin{cases} \Omega_{ps} = D_1 \frac{\sin(2\pi \times 300 \times \frac{1}{2000})}{\cos(2\pi \times 300 \times \frac{1}{2000}) - E_1/2} = 0.51\Omega_{pc} \frac{0.81}{0.59 - 0.50} = 4.59\Omega_{pc} \\ -\Omega_{ps} = D_1 \frac{\sin(2\pi \times 400 \times \frac{1}{2000})}{\cos(2\pi \times 400 \times \frac{1}{2000}) - E_1/2} = 0.51\Omega_{pc} \frac{0.95}{0.31 - 0.50} = -2.55\Omega_{pc} \end{cases}$$

$$\mathfrak{R} \Omega_{ps} = 2.55 \Omega_{pc}$$

(2)由已知条件列出对模拟低通滤波器的衰减要求

$$A^{2}(\Omega) = |H_{a}(j\Omega)|^{2} = \frac{1}{1 + \left(\frac{\Omega}{\Omega_{pc}}\right)^{2N}}$$

$$\Rightarrow 20 \lg |H_a(j\Omega)| = -10 \lg \left| 1 + \left(\frac{\Omega}{\Omega_{pc}} \right)^{2N} \right|$$

$$\Rightarrow \begin{cases} 20 \lg |H_a(j\Omega_{pc})| \ge -3dB \\ 20 \lg |H_a(j\Omega_{ps})| \le -16dB \end{cases}$$

$$\begin{cases} -10 \lg \left[1 + \left(\frac{\Omega_{pc}}{\Omega_{pc}} \right)^{2N} \right] \ge -3 dB \\ -10 \lg \left[1 + \left(\frac{\Omega_{ps}}{\Omega_{pc}} \right)^{2N} \right] \le -16 dB \end{cases}$$

$$-10\lg\left[1+\left(\frac{\Omega_{ps}}{\Omega_{pc}}\right)^{2N}\right] = -16dB$$

$$\Rightarrow$$
 1 + (2.55)^{2N} = 10^{1.6}

$$\Rightarrow N = 1.95,$$
 $\Re N = 2$

$$H_{LP}(p) = \frac{{\Omega_{pc}}^2}{p^2 + \sqrt{2}\Omega_{pc}p + {\Omega_{pc}}^2}$$

$$(4)H_{LP}(p) = \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}}$$

$$p = D_{1} \left[\frac{(1 - z^{-2})}{1 - E_{1}z^{-1} + z^{-2}} \right] = 0.51\Omega_{pc} \frac{(1 - z^{-2})}{1 - 1.01z^{-1} + z^{-2}}$$

$$H(z) = H_{LP}(p)|_{p=D_{1}} \left[\frac{(1-z^{-2})}{1-E_{1}z^{-1}+z^{-2}} \right] = \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}}|_{p=0.51\Omega_{pc} \frac{(1-z^{-2})}{1-1.01z^{-1}+z^{-2}}}$$

$$= \frac{1}{0.51^{2} \left[\frac{(1-z^{-2})}{1-1.01z^{-1}+z^{-2}} \right]^{2} + \sqrt{2} \times 0.51 \left[\frac{(1-z^{-2})}{1-1.01z^{-1}+z^{-2}} \right] + 1}$$

$$= \frac{(1-1.01z^{-1}+z^{-2})^{2}}{0.51^{2}(1-z^{-2})^{2} + \sqrt{2} \times 0.51(1-z^{-2})(1-1.01z^{-1}+z^{-2}) + (1-1.01z^{-1}+z^{-2})^{2}}$$

$$= \frac{1-2.02z^{-1} + 3.02z^{-2} - 2.02z^{-3} + z^{-4}}{1.98 - 2.57z^{-1} + 2.5z^{-2} - 1.29z^{-3} + 0.54z^{-4}}$$

$$= \frac{0.51 - 1.02z^{-1} + 1.53z^{-2} - 1.02z^{-3} + 0.51z^{-4}}{1-1.3z^{-1} + 1.26z^{-2} - 0.65z^{-3} + 0.27z^{-4}}$$

$$H(z) = \frac{0.51 - 1.02z^{-1} + 1.53z^{-2} - 1.02z^{-3} + 0.51z^{-4}}{1 - 1.3z^{-1} + 1.26z^{-2} - 0.65z^{-3} + 0.27z^{-4}}$$

(4)频率响应

频率变换4—数字高通滤波器设计

设计一取样频率为10kHz的二阶巴特沃斯数字高通滤波器, 其3dB截止频率分别为2kHz。

解: 由于设计二阶高通数字滤波器,所以模拟原型系统函数为

$$\begin{split} H_{LP}(p) &= \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}} \\ c_{1} &= \Omega_{pc}tg\left(\frac{\Omega_{c}}{2}T\right) = \Omega_{pc}tg\left(\frac{2\pi \times 2000}{2} \times \frac{1}{10000}\right) = 0.73\Omega_{pc} \\ p &= c_{1}\frac{1+z^{-1}}{1-z^{-1}} = 0.73\Omega_{pc}\frac{1+z^{-1}}{1-z^{-1}} \\ H(z) &= H_{LP}(p)\big|_{p=c_{1}\frac{1+z^{-1}}{1-z^{-1}}} = \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}}\bigg|_{p=0.73\Omega_{pc}\frac{1+z^{-1}}{1-z^{-1}}} \\ &= \frac{\Omega_{pc}^{2}}{\left(0.73\Omega_{pc}\frac{1+z^{-1}}{1-z^{-1}}\right)^{2} + \sqrt{2}\Omega_{pc}\left(0.73\Omega_{pc}\frac{1+z^{-1}}{1-z^{-1}}\right) + \Omega_{pc}^{2}} \\ &= \frac{1}{\left(0.73\frac{1+z^{-1}}{1-z^{-1}}\right)^{2} + \sqrt{2}\left(0.73\frac{1+z^{-1}}{1-z^{-1}}\right) + 1} = \frac{(1-z^{-1})^{2}}{\left(0.73(1+z^{-1})\right)^{2} + \sqrt{2}\left(0.73(1+z^{-1})\right) + (1-z^{-1})^{2}} \\ &= \frac{0.39 - 0.78z^{-1} + 0.39z^{-2}}{1 - 0.37z^{-1} + 0.2z^{-2}} \end{split}$$

频率变换5—数字高通滤波器设计

如果所要设计的数字高通滤波器满足下列条件:

- (a) 在 $\omega \leq \pi$ / 8的通带范围内幅度衰减不小于20dB,
- (b) $\tan \pi / 2 \le \omega \le \pi$ 的阻带范围内幅度变化不大于3dB,试用双线性变换法,设计相应的数字巴特沃斯高通滤波器,
- (1)确定滤波器的阶数N
- (2)确定滤波器的系统函数H(z)
- (3)确定滤波器的频率响应 $H(e^{j\omega})$
- (4)给出滤波器的任意一种结构实现形式

设: T=1

解:(1)
$$c_1 = \Omega_{pc} tg\left(\frac{\Omega_c}{2}T\right) = \Omega_{pc} tg\left(\frac{\pi/2}{2}\right) = \Omega_{pc}$$

(2)列出对模拟原型滤波器的衰减要求

$$\Rightarrow \Omega_{ps} = -c_1 ctg \frac{-\Omega_s T}{2} = -\Omega_{pc} ctg \frac{-\pi/8}{2}$$

$$=5.03\Omega_{pc}$$

$$A^{2}(\Omega) = \left| H_{a}(j\Omega) \right|^{2} = \frac{1}{1 + \left(\frac{\Omega}{\Omega_{pc}}\right)^{2N}}$$

$$\Rightarrow 20 \lg |H_a(j\Omega)| = -10 \lg \left[1 + \left(\frac{\Omega}{\Omega_{pc}} \right)^{2N} \right]$$

$$\Rightarrow \begin{cases} 20 \lg |H_a(j\Omega_{pc})| \ge -3dB \\ 20 \lg |H_a(j\Omega_{ps})| \le -20dB \end{cases}$$

$$-10\lg\left[1+\left(\frac{\Omega_{ps}}{\Omega_{pc}}\right)^{2N}\right] \leq -20dB$$

$$\Rightarrow$$
 1 + (5.03)^{2N} = 10²

解出:
$$N=1.42$$
,取 $N=2$

直接由表5-1

$$H_{LP}(p) = \frac{{\Omega_{pc}}^2}{p^2 + \sqrt{2}\Omega_{pc}p + {\Omega_{pc}}^2}$$

$$(3)p = c_{1} \frac{1+z^{-1}}{1-z^{-1}} = \Omega_{pc} \frac{1+z^{-1}}{1-z^{-1}}$$

$$H(z) = H_{LP}(p)\Big|_{p=c_{1} \frac{1+z^{-1}}{1-z^{-1}}} = \frac{\Omega_{pc}^{2}}{p^{2} + \sqrt{2}\Omega_{pc}p + \Omega_{pc}^{2}}\Big|_{p=\Omega_{pc} \frac{1+z^{-1}}{1-z^{-1}}}$$

$$= \frac{\Omega_{pc}^{2}}{\left(\Omega_{pc} \frac{1+z^{-1}}{1-z^{-1}}\right)^{2} + \sqrt{2}\Omega_{pc}\left(\Omega_{pc} \frac{1+z^{-1}}{1-z^{-1}}\right) + \Omega_{pc}^{2}}$$

$$= \frac{1}{\left(\frac{1+z^{-1}}{1-z^{-1}}\right)^{2} + \sqrt{2}\left(\frac{1+z^{-1}}{1-z^{-1}}\right) + 1} = \frac{(1-z^{-1})^{-2}}{(1+z^{-1})^{2} + \sqrt{2}(1+z^{-1})(1-z^{-1}) + (1-z^{-1})^{-2}}$$

$$= \frac{1-2z^{-1}+z^{-2}}{3.41+0.39z^{-2}} = \frac{0.29-0.59z^{-1}+0.29z^{-2}}{1+0.11z^{-2}}$$

$$H(z) = \frac{0.29 - 0.59z^{-1} + 0.29z^{-2}}{1 + 0.11z^{-2}}$$

(4)频率响应

$$H(e^{j\omega}) = H(z)\Big|_{z=e^{j\omega}}$$

(5)滤波器结构

直接I

