Цифровая обработка изображений

4. Введение в нейронные сети

План занятия

- 4.1 Принципы работы нейронной сети
 - о перцептрон
 - о логические операции
- 4.2 Полносвязная нейронная сеть
 - о структура полносвязной сети
 - о функции активации и нелинейность
 - о матричные операции
 - о граф вычислений

План занятия

- 4.3 Обучение
 - о функции потерь логит, софтмакс
 - о градиентный спуск и методы оптимизации
 - обратное распространение градиента и граф вычислений, автоматическое дифференцирование
 - о регуляризация
 - инициализация весов

Примеры применения нейронных сетей

ALPHAGO

Консольные игры ATARI

Консольные игры ATARI

Economist.com

Автоматическая аннотация изображений

Машинный перевод

Принцип работы нейронной сети

Задача. Предсказать поступление в университет по результатам теста и оценкам

Линейная регрессия

Объединяем линейные регрессии

Объединяем линейные регрессии

Объединяем линейные регрессии

Функция активации

$$\begin{cases}
f(x_1, x_2, ..., x_m) = \\
0 & \text{if } b + \sum_{i=1}^{m} w_i \cdot x_i < 0 \\
1 & \text{if } b + \sum_{i=1}^{m} w_i \cdot x_i \ge 0
\end{cases}$$

х - значения признаков

w - веса регрессии

b - свободный член

Логические операции. AND, OR

Логические операции. XOR

IN	IN	OUT
1	1	0
1	0	1
0	1	1
0	0	0

Логические операции. XOR

Принцип работы нейронной сети

- перцептрон может иметь один или несколько входов
- значение на каждом входе взвешивается соответствующим весом
- выходом перцептрона является линейная комбинация входных значений и соответствующих весов
- к выходу перцептрона применяется функция активации
- изменяя веса перцептрона мы изменяем его функциональность

Полносвязная нейронная сеть

Структура полносвязной сети

- содержит один входной слой, один выходной
- и один или несколько внутренних слоев
- каждый нейрон предыдущего слоя связан с нейроном последующего слоя

Структура полносвязной сети

Функции активации

- в случае линейной функции активации нейронная сеть вырождается в линейное преобразование
- линейную функцию активации на практике используют только на выходном слое в задачах регрессии
- для внутренних слоев в качестве функции активации как правило используют relu или tanh

Функции активации

Sigmoid

$$\sigma(x) = 1 / (1 + \exp(-x)) \qquad \tanh(x) = 2\sigma(2x) - 1 \qquad f(x) = \max(0, x)$$

tanh

ReLU

Функции активации

- **sigmoid** как правило используется для выходного слоя
- для внутренних слоев обычно используют tanh или relu
- выбор этих функций в качестве активации для внутренних слоев связан с особенностью процесса обучения

Матричные операции

Граф вычислений

- процесс вычисления выходного значения нейронной сети можно представить в виде графа
- перемещаемся от входа нейронной сети к выходу, выполняя операции
- структура сети может быть сложной
- перед запуском вычислений необходимо определить последовательность выполнения операций

Топологическая сортировка

Обучение нейронной сети

Функция потерь

- необходимо сформулировать оптимизационную задачу, те выбрать функцию потерь
- функция потерь определяет величину штрафа в случае неверной классификации
- функция потерь должна быть дифференцируема по параметрам модели
- решение задачи сводится к подбору параметров модели при которых функция потерь будет минимальна

Бинарная классификация - Logistic Loss

$$\widetilde{y} = \frac{1}{1 + e^{-(hw^T + b)}}$$

$$E_i(\widetilde{y}) = -\left[y_i log(\widetilde{y}_i) + (1 - y_i) log(1 - \widetilde{y}_i)\right]$$

і - номер объекта в обучающей выборке

у~_і - предсказание вероятности модели для і-го объекта

у_і - истинное значение і-го объекта из обучающей выборки

h - вектор значений скрытого слоя

w - вектор весов выходного слоя

b - свободный член

Несколько классов - Softmax (Cross-Entropy)

$$E(w) = -\sum_{k} (d_k \log y_k + (1 - d_k) \log(1 - y_k)) \quad \text{where} \quad y_k = \frac{\exp(\sum_{j} w_{k,j}^{(2)} h_j^{(1)})}{\sum_{k'} \exp(\sum_{j} w_{k',j}^{(2)} h_j^{(1)})}$$

$$net_1^{(1)} \quad h_2^{(1)}$$

Минимизация функции потерь

$$w_{t+1} := w_t - \eta_t \frac{1}{N} \sum_{i=1}^N \frac{\partial E(w)}{\partial w}$$

w - параметр моделиeta - параметр скорости обученияN - число объектов в выборке/батчеЕ - функция потерь

Дифференцирование сложной функции

$$\frac{\partial E(\widetilde{y}(w))}{\partial w} = \frac{\partial E(\widetilde{y}(w))}{\partial \widetilde{y}(w)} \frac{\partial \widetilde{y}(w)}{\partial w}$$

Дифференцирование сложной функции

$$f(x, y, z) = (x + y)z$$

$$q = x + y$$

$$f = qz$$

Дифференцирование сложной функции

$$f(x, y, z) = (x + y)z$$
$$f = qz \qquad q = x + y$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1.$

Обратное распространение ошибки

$$f(x, y, z) = (x + y)z$$

Обратное распространение ошибки

Обратное распространение ошибки

Исчезающие градиенты

Исчезающие градиенты

Функции активации

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$

Функции активации

Nanc	Plot	Equation	Derivative
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU)	-/-	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU)		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Инициализация весов

- не стоит инициализировать одинаковыми значениями
- простой способ: случайные числа из равномерного распределения в диапазоне 0..1
- можно инициализировать случайными ортогональными значениями
- некоторые алгоритмы инициализируют веса пропорционально числу входов в узел

- оцениваем направление градиента функции потерь в текущей точке (для текущих значений параметров модели)
- делаем шаг в направлении противоположном направлению вектора градиента
- оценку градиента можно уточнить взяв среднее оценок по нескольким примерам из обучающей выборки (batch)

- необходимо чтобы функция была выпуклой (можно посчитать производную в любой точке)
- при большом числе параметров функция потерь как правило имеет локальные минимумы
- седловые точки такие точки градиент в которых равен нулю, при этом точка не является ни минимумом, ни максимумом

Седловая точка

Оптимизация

- существует несколько оптимизационных алгоритмов основанных на градиентном спуске
- стандартного градиентного спуска может быть недостаточно для стабильного и быстрого поиска минимума
- основная идея алгоритмов коррекция длины и направления вектора градиента с учетом предыдущих итераций

Оптимизация - Момент

Оптимизация

- Стандартный градиентный спуск
 - о требует тонкого подбора параметра скорости обучения
- Градиентный спуск с моментом
 - корректирует направление вектора градиента с учетом направления на предыдущем шаге
- ADAGRAD
 - о адаптивный подбор параметра скорости сходимости
- ADAM
 - ADAGRAD + момент

An overview of gradient descent optimization algorithms

Tensorflow Playground

Резюме

- изучили принцип работа нейронной сети
- познакомились с процессом обучения нейронной сети
- реализовали решение задачи классификации MNIST с помощью фреймворка Keras

Полезные материалы

- Neural Networks and Deep Learning
- Deep Learning
- CS231n Winter 2016
- Yes you should understand backprop
- An overview of gradient descent optimization algorithms
- The Neural Network Zoo
- Tensorflow Playground
- Loss Functions