IN THE CLAIMS

Kindly add new claims 36-40.

- 1. (Original) A pancreatic controller, comprising:
- 5 a glucose sensor, for sensing a level of glucose or insulin in a body serum;
 - at least one electrode, for electrifying an insulin producing cell or group of cells;
 - a power source for electrifying said at least one electrode with a pulse that does not
 - initiate an action potential in said cell and has an effect of increasing insulin secretion; and
 - a controller which receives the sensed level and controls said power source to electrify said at least one electrode to have a desired effect on said level.
 - 2. (Original) Apparatus according to claim 1, wherein said insulin producing cell is contiguous with a pancreas and wherein said electrode is adapted for being placed adjacent said pancreas.
 - 3. (Previously Presented) Apparatus according to claim 1, wherein said controller comprises a casing suitable for long term implantation inside the body.
- 4. (Previously Presented) Apparatus according to claim 1, wherein said electrode is adapted for long term contact with bile fluids.
 - 5. (Previously Presented) Apparatus according to claim 1, comprising an electrical activity sensor for sensing electrical activity of said cell and wherein said power source electrifies said electrode at a frequency higher than a sensed depolarization frequency of said cell, thereby causing said cell to depolarize at the higher frequency.
 - 6. (Previously Presented) Apparatus according to claim 1, wherein said pulse is designed to extend a plateau duration of an action potential of said cell, thereby allowing more calcium inflow into the cell.
 - 7. (Original) Apparatus according to claim 1, wherein said pulse is designed to reduce an action potential frequency of said cell, while not reducing insulin secretion from said cell.

10

15

30

015/02367 A02

- 8. (Original) Apparatus according to claim 1, wherein said pulse is designed to extend a duration of a burst activity of said cell.
- 9. (Original) Apparatus according to claim 1, wherein said pulse has an amplitude sufficient to recruit non-participating insulin secreting cells of said group of cells.
 - 10. (Previously Presented) Apparatus according to claim 1, comprising at least a second electrode adjacent for electrifying a second cell or group of insulin secreting cells, wherein said controller electrifies said second electrode with a second pulse different from said first electrode.
 - 11. (Original) Apparatus according to claim 10, wherein said second pulse is designed to suppress insulin secretion.
- 12. (Original) Apparatus according to claim 11, wherein said controller is programmed to electrify said second electrode at a later time to forcefully secrete said insulin whose secretion is suppressed earlier.
- 13. (Original) Apparatus according to claim 11, wherein said second pulse is designed to hyper-polarize said second cells.
 - 14. (Previously Presented) Apparatus according to claim 1, wherein said controller electrifies said at least one electrode with a pacing pulse having a sufficient amplitude to force a significant portion of said cells to depolarize, thus aligning the cells' action potentials with respect to the non-excitatory pulse electrification.
 - 15. (Previously Presented) Apparatus according to claim 1, wherein said controller synchronizes the electrification of said electrode to a burst activity of said cell.
- 30 16. (Previously Presented) Apparatus according to claim 1, wherein said controller synchronizes the electrification of said electrode to an individual action potential of said cell.

10

015/02367 A02

- 17. (Previously Presented) Apparatus according to claim 1, wherein said controller does not synchronize the electrification of said electrode to electrical activity of said cell.
- 18. (Previously Presented) Apparatus according to claim 1, wherein said controller does not apply said pulse at every action potential of said cell.
 - 19. (Previously Presented) Apparatus according to claim 1, wherein said controller does not apply said pulse at every burst activity of said cell.
 - 20. (Previously Presented) Apparatus according to claim 1, wherein said pulse has a duration of less than a single action potential of said cell.
 - 21. (Original) Apparatus according to claim 20, wherein said pulse has a duration of less than a plateau duration of said cell.
 - 22. (Previously Presented) Apparatus according to claim 1, wherein said pulse has a duration of longer than a single action potential of said cell.
- 23. (Previously Presented) Apparatus according to claim 1, wherein said pulse has a duration of longer than a burst activity duration of said cell.
 - 24. (Previously Presented) Apparatus according to claim 1, wherein said controller determines said electrification in response to a pharmaceutical treatment applied to the cell.
 - 25. (Original) Apparatus according to claim 24, wherein said pharmaceutical treatment comprises a pancreatic treatment.
- 26. (Previously Presented) Apparatus according to claim 24, wherein said controller applies said pulse to counteract adverse effects of said pharmaceutical treatment.
 - 27. (Previously Presented) Apparatus according to claim 24, wherein said controller applies said pulse to synergistically interact with said pharmaceutical treatment.

25

- 28. (Previously Presented) Apparatus according to claim 24, wherein said controller applies said pulse to counteract adverse effects of pacing stimulation of said cell.
- 5 29. (Previously Presented) Apparatus according to claim 1, comprising an alert generator.
 - 30. (Original) Apparatus according to claim 29, wherein said controller activates said alert generator if said glucose level is below a threshold.
 - 31. (Original) Apparatus according to claim 29, wherein said controller activates said alert generator if said glucose level is above a threshold.
 - 32. (Original) A method of controlling insulin secretion, comprising: providing an electrode to at least a part of a pancreas;
- applying a non-excitatory pulse to the at least part of a pancreas, which pulse increases secretion of insulin.
 - 33. (Original) A method according to claim 32, comprising applying an excitatory pulse in association with said non-excitatory pulse.
 - 34. (Original) A method according to claim 32, comprising applying a secretion reducing non-excitatory in association with said non-excitatory pulse.
- 35. (Previously Presented) A method according to claim 32, comprising applying aplurality of pulses in a sequence designed to achieve a desired effect on said at least a part of a pancreas.
 - 36. (New) A pancreatic controller, comprising:
- at least one electrode, adapted for electrifying an insulin producing cell or group of cells;
 - a power source for electrifying said at least one electrode with a waveform that does not initiate an action potential in said cell and has an effect of increasing insulin secretion; and

015/02367 A02

a controller which controls said power source to have a desired effect on a blood glucose level.

37. (New) A controller according to claim 36, wherein said power source electrifies said at least one electrode with an AC waveform.

38. (New) A pancreatic controller, comprising:

a glucose sensor, adapted for sensing a level of glucose or insulin in a body serum; at least one electrode, for electrifying an insulin producing cell or group of cells;

a power source for electrifying said at least one electrode with a pulse that extends an action duration of a burst activity of said cell; and

a controller which receives the sensed level and controls said power source to electrify said at least one electrode to have a desired effect on said level.

15 39. (New) A method of controlling insulin secretion, comprising:

providing an electrode adapted to electrify to at least a part of a pancreas having an electrical activity;

applying an AE pulse to the at least part of a pancreas, not synchronized to said electrical activity, which pulse modifies an insulin response of said pancreas to glucose levels.

40. (New) A method of controlling body glucose levels, comprising:

providing an electrode adapted to electrify at least a part of a pancreas having an electrical activity;

applying an AC pulse to the at least part of a pancreas, not synchronized to said electrical activity, which pulse causes a reduction in glucose levels in a body containing said pancreas.

25

10