ADDIS ABABA CITY ADMINISTRATION EDUCATION BUREAU, ADDIS ABEBA GRADE 12 MATHEMATICS MODEL EXAMINATION GINBOT 2013/MAY 2021

NUMBER OF QUESTIONS: 65 TIME ALLOWED: 3 HOURS

GENERAL DIRECTIONS

THIS BOOKLET CONTAINS **MATHEMATICS EXAMINATION** FOR **SOCIAL SCINCE STUDENTS ONLY**. IN THIS EXAMINATION, THERE ARE A TOTAL OF 65 MULTIPLE CHOICE QUESTIONS. CAREFULLY SELECT THE MOST APPROPRATE ANSWER AND BLACKEN ONLY THE LETTER OF YOUR CHOICE ON THE SEPARATE ANSWER SHEET PROVIDED. FOLLOW THE INSTRUCTIONS ON THE ANSWER SHEET AND THE EXAMINATION PAPER CAREFULLY. USE ONLY PENCIL TO MARK YOUR ANSWERS. YOUR ANSWER MARK SHOULD BE HEAVY AND DARK, COVERING THE ANSWER SPACE COMPLETELY. PLEASE ERASE ALL UNNECESSARY MARKS COMPLETELY FROM YOUR ANSWER SHEET.

YOU ARE ALLOWED TO WORK ON THE EXAM FOR 3 HOURS. WHEN TIME IS CALLED, YOU MUST IMMEDIATELY STOP WORKING, PUT YOUR PENCIL DOWN, AND WAIT FOR FURTHER INSTRUCTIONS

ANY FORM OF CHEATING OR AN ATTEMPT TO CHEAT IN THE EXAMINATION WILL RESULT IN AN AUTOMATIC DISMISSAL FROM THE EXAMINATION HALL AND CANCELLATION OF YOUR SCORE (S).

PLEASE MAKE SURE THAT YOU HAVE WRITTEN ALL THE REQUIRED INFORMATION ON THE ANSWER SHEET BEFORE YOU START TO WORK ON THE EXAMINATION.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

DIRECTION: Each of the following questions is followed by four possible

alternatives. Read choice on the sep	•	•		ACKEN tl	ne letter of your	
1. Which of the follow	ving functions is ne	ither even r	nor odd?	•		
A) $f(x) = x^5$	$B) g(x) = 2x^2$	x C) h(x) = x	x+1	D) $k(x) = x^6$	
2. The equation of th	e conic section 4x2	$= 64 + 8y^2 r$	epresen	ts:		
A) Circle	B) Hyperbola	(C) Parat	oola	D) Ellipse	
3. Which of the follow	ving is the solution	set of $\frac{x+1}{2-2x^2}$	$+\frac{6}{x+1} = \frac{2}{x}$	$\frac{2x-1}{x^2-1} - \frac{1}{2-2x}$		
$A)\left\{\frac{8}{7}\right\}$	B)Ø	С	$\left\{\frac{5}{3}\right\}$		D){2}	
4. What is the focus	of the parabola y^2 +	-6y+8x=7?				
A) (0 ,-3)	B)(0,3)	С	3)(4,-3)		D) (4,3)	
5. Which one of the f	ollowing statement	s has truth	value T	□ for x , $y \in \mathbb{I}$??	
A) $(\Box x)$ $(\Box y)$ (x^2+y)	y < 0)	(C) (□ <i>x</i>)	(□ <i>y</i>) (x+y²	<0)	
B) $(\Box x)$ $(\Box y)$ (x^2+y)	['] < 0)	Г	O) (□ <i>x</i>)□	$(\Box y)(x^2+y)$	< 0)	
6. Three women W_1 ,	W_2 and W_3 are firin	g at a targe	et indepe	endently ar	nd have a probability	
0.60,0.70 and 0.50	0.60,0.70 and 0.50, respectively of hitting the target. What is the probability that at least					
one of them hits th	e target?					
A)0.94	B)0.21		C)0.79		D)0.75	
7. For the given set of	of data below, what	is the value	e mean	$(ar{x})$ and the	variance (σ^2)	
respectively?						
Marks			08-03	80-100		
No. of studer		10	4	2		
A. 58and 316	B. 54 and 304	C. 6	64 and 3	50	D.48 and 250	
8. Suppose $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.If X is a 2× 2 mate	rix such tha	at AX-A ^T	=2A, then	what is the value of	
X?						

A) $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ B) $\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$ C) $\begin{pmatrix} 3 & 6 \\ 6 & 9 \end{pmatrix}$ D) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$

9. For what value of x is the matrix $A = \begin{pmatrix} -1 & 1 & x \\ 0 & 6 & 1 \\ -x & 1 & 0 \end{pmatrix}$ singular?						
A) ¹ / ₁₂	$B)\frac{1}{2}, -\frac{1}{3}$	C) x $\epsilon \mathbb{R}$	D) No value for x			
10. If $Z = \frac{3+i}{1-i}$ is a g	iven complex numb	er, then what is th	ne conjugate $ar{Z}$ of Z?			
A) $1 - 2i$	B) $-1 + 2i$	C) -1-i	D) $1 + 2i$			
11. Let f be the fur	nction given by $f(x)$	$=\frac{(x-1)(x^2-4)}{x^2-a}$. For	what positive values of a is f			
continuous for	all real numbers x?					
A. 1	B. 2	C. 4	D. None of the above			
12. The sum of firs	st two terms of a G.F	P is -4 and 5^{th} term	m is 4 times that of third term			
. Which one of t	he following is the G	Seometric sequen	ce, if $r > 0$?			
A) 4, -8, 16, -32	2, B. $\frac{-4}{3}$, $\frac{-8}{3}$,	$\frac{-16}{3}$, C 4, 8	8, -16,32, $D.\frac{4}{3}, \frac{8}{3}, \frac{16}{3}, \dots$			
13. What is the su	m of the series $\sum_{n=1}^{\infty}$	$\frac{5}{n(n+3)}$?				
			D $\frac{55}{18}$			
14. What is $\lim_{x\to 0} \frac{\sqrt{1-x}}{\sqrt[3]{1-x}}$	B $\frac{33}{18}$ $\frac{\overline{x}-1}{\overline{x}-1}$ equals: B) $\frac{4}{3}$					
A) $\frac{2}{3}$	B) $\frac{4}{3}$	C) $\frac{3}{2}$	D) $\frac{3}{4}$			
15. $\lim_{n\to\infty} \frac{\sum_{i=1}^n i^3}{n^4}$ is eq	ual to					
A. $\frac{1}{3}$	B. $\frac{1}{4}$	C. $\frac{1}{2}$	D. None			
16. Let $\{A_n\}$ be an A_{15} is:	arithmetic sequence	e with $A_{12} = 16 \text{ a}$	$A_{23} = 49$, then the value of			
A. 30	B. 45	C. 25	D. 40			
17. $\lim_{x \to \infty} \left(1 - \frac{1}{x+3}\right)^x$	is equal to:					
A) e^3	B. e^{-3}	C. e	$D.\frac{1}{e}$			
	he following is conv	- 0				
A. $\left\{\left(\frac{5}{3}\right)^n\right\}$	$B.\left\{\frac{2n}{n+1}\right\}$					
19. Let $f(x) = \begin{cases} \frac{1}{\pi} & \text{if } x > 0 \\ \frac{1}{\pi} & \text{if } x > 0 \end{cases}$	$\frac{35x}{-2x}, \text{ if } x \neq \frac{\pi}{2}$ $5, \text{ if } x = \frac{\pi}{2}$	s continuous at x	$t=\frac{\pi}{2}$, then what is the value of k?			
A. 10	B. 5	C5	D10			
20. $\min_{x \to 4} \frac{-x^3 + 3x^2 + 10x - 10x}{x^2 - 16}$	⁻²⁴ is equal to:					
A. $-\frac{5}{2}$	B. $\frac{7}{2}$	C. $-\frac{7}{4}$	D. $\frac{5}{4}$			

21.The least upp	er bound of $\left\{1 - \frac{(-1)^n}{n}\right\}$ i	S				
A. 2	B. 1	C. 0	D. $\frac{1}{2}$			
22.Which one of	the following is Not true	about $f(x) = \begin{cases} \frac{x^2}{x}, x \\ 0 & x \end{cases}$	≠ 0 ? = 0			
A) f continuouB) f is continue	s at x = 0 ous everywhere	C. f has an infiniteD. f has no hole or	discontinuity at x =0			
23. If $f(x) = x x $	and $g(x) = \frac{\sqrt{x-1}}{x-1}$ then $\lim_{x \to \infty} \frac{1}{x}$					
A.1	B. $-\frac{1}{2}$	C. $-\frac{1}{4}$	D. $\frac{1}{2}$			
24. What is the la	rgest possible interval o	n which $f(x) = \sqrt{\frac{16 - x^2}{1 + x^2}}$?			
A. ℝ	B. (-∞,-4] U[4, ∞)	C. [-4,4]	D. [-4, -1]U[1,4]			
25. If $\lfloor x \rfloor$ is the g	reatest integer not gred	ater than x , then $\lim_{x \to \frac{1}{2}} x $	ː/ is:			
A. 3	B.1.5	C. 2	D 1			
26. What is the d	ifference quotient of $f(x)$	$(x) = 2x^3 - x^2 + 1$ at x	₀ =1?			
A. $\frac{2x^3-x^3+1}{x-1}$	B. $6x^2 - 2x$	C. $2x^2 - x + 1$	D. $2x^2 + x + 1$			
27. In the xy-plan	ne, the line x+ y=k, wher	e k is a constant, is ta	angent to the graph			
of $y = x^2 + 3$	x + 1.What is the value	of k?				
A3	B2	C1	D. 0			
28. The gradient	of the function $f(x) = 2cc$	os(3x)-3sin(2x) at the	point where $x=\pi$ is:			
A. 6	B.12	C6	D. 0			
29. The range of	the function $f(x) = -x^4$	$+2x^2 + 1$ is:				
A. [2,∞)	B. (-∞, 2]	$C.(-\infty,\infty)$	D.[0,2]			
30. A tangent dra	awn to the parabola $y =$	$=4-x^2$ at the point ((1,3) forms a right			
triangle with the coordinate axes. The area of the triangle is:						
A. $\frac{25}{4}$	B. $\frac{9}{4}$	C. 10	D. $\frac{5}{4}$			
31. Given the fun	ctions $f(x) = \left(\frac{1}{4}\right)^x$ and	$g(x) = \log_2(2 + x^2)$, 1	then what is the			
derivative of t	derivative of the composition function (fog)(x)?					
A. $\frac{-4x}{(2+x^2)^2}$	B. $\frac{4x}{(2+x^2)^2}$	C. $\frac{-4x}{(2+x^2)^3}$	$D.\frac{4x}{(2+x)^2}$			

32.	Let $p(x) = \sin^2(2x) + \cos^2(2x)$	cos²(2x) ,then p	o'(0)equals to:			
	A. 0	B. 2	C. 4	D. 1		
33	. Let f be a functior	n defined by f(x)	$ = \begin{cases} cx + d & for \ x \le 2 \\ x^2 - cx & for \ x > 2 \end{cases} $	where c and d		
	are constants. If t	f is differentiable	at x=2, what is the value	of c + d?		
	A4	B2	C. 0	D6		
34.	Suppose $f(x) = e$	$^{-x}$,then the n th o	derivative of f is:			
	A. e^{-x}	B. $(-1)^n e^{-x}$	C. $(-1)^{n+1} e^{-1}$	D. $-e^{-x}$		
35.	The set of all critic	al numbers of th	the function $f(x) = (x - 2)$	$^{2}(1-x)^{3}$ is:		
	A. {2,1}	B. $\{-2,-1,1,\frac{7}{3}\}$	C. $\{1,2,\frac{3}{4}\}$	D. $\{1,2,\frac{8}{5}\}$		
36.	Which one of the f	following does n	ot fulfill the conditions of	Rolle's Theorem?		
	A. $f(x) = \sin(2\pi x)$ o	n [-1,1]	B. $p(x) = x^2 - 4x + 1$	on [0,4]		
	C. $q(x) = 6- x $ on	[-1,1]	D. $h(x) = 5x^4 - 3x^2$	on [-4,4]		
37	37. The interval in which the graph of the function $f(x) = \frac{x}{x^2 + 1}$ decreasing is:					
	A. $(-\infty, -1]$ and [1	,∞) B. [-1,∝	o) C. [-1,1]	D. (-∞,1]		
38	. Which one of the	following is false	e about the graph of the f	unction $(x) = \frac{x}{x+1}$?		
	A. it has no local e	extreme	B. it is increasing in (-	$-\infty,\infty)$		
	C. it has no inflect	ion point	D. it is concave down	vard on (-1,∞)		
39.	Which one is the i	nflection point of	the graph the function $f($	$(x) = x^3 + 3x^2 + x - 3?$		
	A. (-2,-1)	B. (1,2)	C. (0,-3)	D. (-1,-2)		

40. Suppose the graph of the derivative of a continuous function f with x-intercepts -2, 0, and 3 is given below

which one is false about the graph of *f*?

- A. f has local maximum at x=0
- C. f is concave downward on (-1,2)
- B. f has inflection points at x=-2, x=0 & x=3
- D. f is decreasing on [0,3]
- 41. A dairy farmer plans to fence in a rectangular pasture adjacent to a river. He has 360m of fencing material. What is the maximum area if no fencing is needed along the river?
 - A. 8,100m²
- B. 16.200m²
- C. 32.400m²
- D. 3,600m²
- 42. A 25m long ladder is leaning against the side of a house. The foot of the ladder is pulled away from the house at a rate of 2 m/sec. How fast the top of the ladder is descending when the foot of the ladder is 15m far from the house?
 - A. 1.5m/sec
- B. 15m/sec
- C. -15m/sec
- D. -1.5m/sec
- 43. If you are inflating a spherical balloon at the rate of 32 cm³/sec, how fast is its radius increasing when the diameter is 8 cm?
 - A) $\frac{1}{32\pi}$ cm/sec B. $\frac{32}{\pi}$ cm/sec C. $\frac{1}{2\pi}$ cm/sec D. $\frac{2}{\pi}$ cm/s

- 44. If $x^3 + xy = 5$, then what is the value of $\frac{dy}{dx}$ when x = 5?

- A. $-\frac{51}{5}$ B. $\frac{51}{5}$ C. $\frac{119}{5}$ D. $\frac{-119}{5}$
- 45. If $f''(x) = e^x$, f'(0) = 2 and f(0) = -5, then f(1) is equal to: A. e 8 B. e 5 C. e + 8

D.e + 5

46. $\int \frac{x}{x+2} dx$ is equal to:

A.
$$x + \ln|(x+2)^2| + c$$
 B. $x - \ln|(x+2)^2| + c$ C. $\ln|x+2| + c$ D. $x \ln|x+2| + c$

B.
$$x - \ln |(x+2)^2| + c$$

C.
$$\ln |x+2| + c$$

D.
$$x \ln |x + 2| + c$$

47. When $\int \frac{2x+1}{x^2+x} dx$ is evaluated, it is equal to:

A.
$$\ln |2x+1| + c$$

B.
$$\frac{1}{2} \ln |2x+1| + c$$

C.
$$\ln |x^2 + x| + c$$

A.
$$\ln|2x+1|+c$$
 B. $\frac{1}{2}\ln|2x+1|+c$ C. $\ln|x^2+x|+c$ D. $\frac{1}{2}\ln|x^2+x|+c$

48. $\int_0^3 (x+1)^{\frac{1}{2}} dx$ is equal to ______ A. $\frac{21}{2}$ B. $\frac{14}{3}$

A.
$$\frac{21}{2}$$

B.
$$\frac{14}{3}$$

D.
$$\frac{16}{3}$$

49. The area of the region enclosed between the curve of $f(x) = -x^2 + 3x + 3$ and $g(x) = 2x^2 - 3x - 6$ is:

A.45 sq. units

B. 12 sq.units

C. 32 sq.units

D.25 sq.units

50. $\int_{0}^{3} \sqrt{20-4x} \, dx$ is equivalent to:

A.
$$\frac{-1}{4} \int_{-\frac{1}{5}}^{\frac{1}{5}} \sqrt{u} \, du$$
 B. $\frac{-1}{4} \int_{1}^{3} \sqrt{u} \, du$ C. $\frac{1}{4} \int_{8}^{16} \sqrt{u} \, du$

$$B. \frac{-1}{4} \int_{1}^{3} \sqrt{u} \, du$$

$$C. \frac{1}{4} \int_{8}^{16} \sqrt{u} \, du$$

D.
$$4\int_{8}^{16} \sqrt{u} \, du$$

51. Which one of the following is **False?**

A.
$$\frac{d}{dx} \int f(x) dx = f(x)$$

$$B. \int f'(x)dx = f(x) + c$$

C.
$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$$

D.
$$\int f(x)f'(x)dx = 2[f(x)]^2 + c$$

52. The volume of the solid revolution generated by revolving the region between f(x) = 2x and $g(x) = x^2$ along the x-axis is given by:

A.
$$\frac{64}{15}\pi$$

B.
$$\frac{32}{3}\pi$$

C.
$$\frac{32}{5}\pi$$

D.
$$\frac{4}{15}\pi$$

53. Which one of the following is **Not** integrable function on the respective interval?

A.
$$f(x) = \frac{2x}{x^2 - 9}$$
; $\{-2, 2\}$

C.
$$g(x) = \frac{x^2 - 16}{x - 4}$$
; [-3,5]

B.
$$h(x) = \frac{x^3 + x}{x^2 + 1}, (-\infty, \infty)$$

D.
$$r(x) = |x|$$
; [-3,5]

54. Addis Ababa city administration education bureau divided Birr 88,000,000 for four	ır			
secondary schools for their best performance and number of students in the rati 4:3:2:2				
. Which of the following is the share of each secondary school ?				
 A. Birr 22,000,000, Birr22,000,000, Birr 22.000,000, Birr 22,000,000 B. Birr 28,000,000, Birr21,000,000, Birr 20.000,000, Birr 19,000,000 C. Birr 32,000,000, Birr24,000,000, Birr 16.000,000, Birr 16,000,000 D. Birr 24,000,000, Birr22,000,000, Birr 21.000,000, Birr 21,000,000 				
55. If the mean test score of the first group of 20 students is 8.5 and the mean score	of the			
second group of 25 students is 6.88, then the combined mean is:				
A. 7 B. 7.4 C.7.6 D. 7.3	3			
~ 0.37	≥ 0			
56. What is the maximum value of the Z=3x+2y subject to the constraints $\begin{cases} x \ge 0, y \ge 0 \\ x + 3y \le 0 \end{cases}$				
	16			
$(4x + y \le$	16			
A) 13 B)15 C) 17 D)19	16			
A) 13 B)15 C) 17 D)19 57. Someone invested Birr 500 at a rate of 6% compounded semi-annually. What is	16) the			
A) 13 B) 15 C) 17 D) 19 57. Someone invested Birr 500 at a rate of 6% compounded semi-annually. What is amount at the end of the 3^{rd} year?	the (1.06)			
A) 13 B)15 C) 17 D)19 57. Someone invested Birr 500 at a rate of 6% compounded semi-annually. What is amount at the end of the 3^{rd} year? A) Birr $500(1.03)^6$ B) Birr $500(1.06)^6$ C) Birr $500(1.03)^3$ D) Birr $1000(1.03)^6$	the (1.06)			
A) 13 B)15 C) 17 D)19 57. Someone invested Birr 500 at a rate of 6% compounded semi-annually. What is amount at the end of the 3 rd year? A) Birr 500(1.03) ⁶ B) Birr 500(1.06) ⁶ C) Birr 500(1.03) ³ D) Birr 1000(58. If Birr 18000 is to be divided between Fenet and Ahmed in the ratio 5:4, then Ahmed in the ratio 5:4, the ratio 5:4, then Ahmed in the ratio 5:4, then Ahmed in the ratio 5:	the (1.06) med's			
A) 13 B)15 C) 17 D)19 57. Someone invested Birr 500 at a rate of 6% compounded semi-annually. What is amount at the end of the 3^{rd} year? A) Birr $500(1.03)^6$ B) Birr $500(1.06)^6$ C) Birr $500(1.03)^3$ D) Birr $1000(58)$. If Birr 18000 is to be divided between Fenet and Ahmed in the ratio $5:4$, then Ahreshare is;	116 the (1.06) med's			
A) 13 B)15 C) 17 D)19 57. Someone invested Birr 500 at a rate of 6% compounded semi-annually. What is amount at the end of the 3^{rd} year? A) Birr $500(1.03)^6$ B) Birr $500(1.06)^6$ C) Birr $500(1.03)^3$ D) Birr $1000(1.03)^6$ B) Birr $1000(1.03)$	the (1.06) med's			
A) 13 B) 15 C) 17 D) 19 57. Someone invested Birr 500 at a rate of 6% compounded semi-annually. What is amount at the end of the 3^{rd} year? A) Birr $500(1.03)^6$ B) Birr $500(1.06)^6$ C) Birr $500(1.03)^3$ D) Birr $1000(58)$. If Birr 18000 is to be divided between Fenet and Ahmed in the ratio 5:4, then Ahrshare is; A. Birr $8,000$ B. Birr 900 C. Birr $10,000$ D. Birr $200(59)$. From a population of size 100 listed $1-100$, if you need to select a sample of size	the (1.06) med's			

60. The grouped frequency distribution of a data is given in the following table

Class	8-12	13-17	18-22	23-27	28-32
Interval					
Frequency	4	8	10	5	3

What is its median (m_d) and mean deviation about the median $(MD (m_d))$?

A) $m_d = 20$, MD(m_d)) = 4.7

C) m_d =19 , MD(m_d)) =4.7

B) m_d =19 , MD (m_d)) =4.2

- D) m_d =19 , MD(m_d)) =4.5
- 61. Ten students took two tests, Test I and Test II. The mean mark in Test I is 12 with standard deviation 3, and the mean mark in Test II is 15 with standard deviation 3.
 - . Which one of following is **True**?
 - A) The coefficient of variation of Test I is 30%
 - B) The coefficient of variation of Test II is 20%
 - C) The students' mark in Test I is more consistent than in Test II.
 - D) The students' mark in Test I and Test II have the same degree of variability.
- 62. Which one of the following is **Not True**?
 - A) If $\bar{x} = 8$, $m_o = 6$ and $m_d = 6.5$, then the distribution is positively skewed.
 - B) If $\bar{x} = 4$, $m_d = 6$ and $\delta = 2$, then the distribution is negatively skewed.
 - C) If a distribution is negatively skewed, then its mean is greater than its second quartile.
 - D) If $Q_1=7$, $Q_2=10$ and $Q_3=13$, then the distribution is symmetrical.
- 63. In a shop, the marked price of an item was Birr 480 with 30% mark up based on its cost price. Later on, the shop owner sold the item with 30% discount. What is the profit or loss from the item?
 - A) No profit and No loss
- B) Birr 156 profit
- C) Birr 140 loss
- D) Birr 144 loss

64. Ato Debella bought a house from Flint Stones Homes by paying 20% of the purchase price which is Birr 400,000. What is the mortgage amount?

A. Birr 320,000

B. Birr 120,000

C. Birr 160,000

D. Birr 80,000

65. The surface area of the earth is approximately 162,778,000 km^2 . If 70% of its surface is covered by water, Then the area of the land which is **not** occupied by water is:

 $A.78,653,000 \ km^2$

C. 48.833,400 km²

B. 93,840,000 km²

D.113,944,600 km²