Traduction d'un programme fouine en fouine CPS

Dans la suite, on notera λx . e au lieu de fun $x \rightarrow e$, pour abréger les notations... • $\llbracket n \rrbracket := \lambda k$. (fst k) n $\blacktriangleright [b] := \lambda k. (fst \ k) \ b$ $\qquad \qquad \blacksquare () \blacksquare := \lambda k. (fst \ k) ()$ • $[x] := \lambda k$. (fst k) x $\bullet \ [\![\lambda x.\ e]\!] := \lambda k.\ (fst\ k)\ (\lambda x.\ [\![e]\!])$ $\bullet \ \llbracket e_1 \ e_2 \rrbracket = \lambda k. \ \llbracket e_2 \rrbracket \ (\lambda v. \ \llbracket e_1 \rrbracket \ (\lambda f. \ f \ v \ k, \operatorname{snd} \ k), \operatorname{snd} \ k)$ $\bullet \ \llbracket e_1 \circledast e_2 \rrbracket \coloneqq \lambda k. \ \llbracket e_2 \rrbracket \ (\lambda v_2. \ \llbracket e_1 \rrbracket \ (\lambda v_1. \ (\mathsf{fst} \ k) \ (v_1 \circledast v_2), \mathsf{snd} \ k), \mathsf{snd} \ k)$ • $\llbracket \text{if } b \text{ then } e_1 \text{ else } e_2 \rrbracket \coloneqq \lambda k. \llbracket b \rrbracket (\lambda v. \text{ if } v \text{ then } \llbracket e_1 \rrbracket k \text{ else } \llbracket e_2 \rrbracket k, \text{snd } k)$ • $\llbracket \circledast e \rrbracket := \lambda k$. $\llbracket e \rrbracket (\lambda v. (fst \ k) (\circledast v), snd \ k)$ $ho ext{ } \llbracket e_1 ext{ } ; ext{ } e_2 \rrbracket := \lambda k. \llbracket e_1 \rrbracket \left(\lambda_{-}. \llbracket e_2 \rrbracket k, \text{ snd } k \right)$ $\blacktriangleright \ [\![\mathbf{C}(e_1,\ldots,e_n)]\!] \coloneqq \pmb{\lambda k}. \ [\![e_n]\!] \ (\pmb{\lambda v_n}. \ \ldots \ ([\![v_1]\!] \ (\pmb{\lambda v_1}. \ (\mathsf{fst} \ k) \ \ \mathbf{C}(v_1,\ldots,v_n), \mathsf{snd} \ k) \ldots), \mathsf{snd} \ k)$ $\label{eq:while} \left[\!\!\left[\mathtt{while}\ b\ \mathtt{do}\ e\right]\!\!\right] \coloneqq \mathtt{let}\ \mathtt{rec}\ boucle\ k = \\$ [b] $(\lambda v.$ if v then [e] (λ _. boucle k, snd k) else (fst k) () in boucle• [let rec f = e in e'] := λk . let rec f = [e] in [e'] k, [for i = e_1 to e_2 do e_3 done] := λk . [e_1] (λv_1 . [e_2] (λv_2 . if $i \leq v_2$ then $[e_3]$ (λ . boucle (i+1) k, snd k) else (fst k) () in boucle v_1)) $\text{\tt [for } i = e_1 \text{ downto } e_2 \text{ do } e_3 \text{ done} \text{\tt]} \coloneqq \pmb{\lambda} k. \, \llbracket e_1 \rrbracket \, (\pmb{\lambda} v_1. \, \llbracket e_2 \rrbracket \, (\pmb{\lambda} v_2. \,) = 0$ let rec boucle i k =if $i \geq v_1$ then $[e_3]$ (λ . boucle (i-1) k, snd k) else (fst k) () in boucle v_2)) $[\![\mathtt{match}\ e\ \mathtt{with}\ p_1\ \mathtt{when}\ e_1' \to e_1\ | \cdots |\ p_n\ \mathtt{when}\ e_n' \to e_n]\!] \coloneqq \pmb{\lambda} k.\ [\![e]\!]\ (\pmb{\lambda} v.$ ${\tt match}\ v\ {\tt with}$ $|p_1|$ when $[e_1]$ $(id, snd k) \rightarrow [e_1]$ k: : : : : : : : : $|p_n|$ when $[e_{n'}]$ (id, snd k) $\rightarrow [e_n]$ k, $\text{ [[try e with p_1 when e_1' \rightarrow e_1 $| \cdots |$ p_n when e_n' \rightarrow e_n]$:= $\lambda k.$ [[e]] (fst $k, \lambda v.$)}$ ${\tt match}\ v\ {\tt with}$ $\mid p_1 \text{ when } \llbracket e_{1'} \rrbracket \text{ } (\text{id}, \text{snd } k) \rightarrow \llbracket e_1 \rrbracket \text{ } k$ $|p_n|$ when $[e_{n'}]$ (id, snd k) $\rightarrow [e_n]$ k $\mid _ \rightarrow (snd \ k) \ v$) ightharpoonup [raise e] := λk . [e] (snd k, snd k) On définit \rightarrow id := λx . x• $fst := \lambda(x, y)$. x

 \rightarrow snd := $\lambda(x,y)$. y