521 M7410 -Adjustment and Analysis of Spatial Information

Fall Semester 2015

Homework No. 4

handed out Thursday, October 15, 2015 due Thursday, October 29, 2015, 09:10 Name: _____

Covariance Propagations

1. Given:
$$\mathbf{y} = \mathbf{x}_1^3 - 3\mathbf{x}_1\mathbf{x}_2 + 3\mathbf{x}_2^2 - 11$$
, $\mathbf{z}_1 = 3\mathbf{y} + \mathbf{y}^{-2} + 1$, $\mathbf{z}_2 = 3\mathbf{x}_1 - 2\mathbf{y}$, $\mathbf{x}_1 = \mathbf{x}_2 = 1$, and $\Sigma_{\mathbf{x}\mathbf{x}} = \begin{bmatrix} 16 & 1 \\ 1 & 4 \end{bmatrix}$.

Ask: σ_{yx_1} , σ_{yz_1} , and σ_{yz_2} .

2. Given
$$\Sigma_{xx} = \begin{bmatrix} 9 & -3 \\ -3 & 16 \end{bmatrix}$$
:

- 1) If $s = x_1 + 2x_2$, find σ_s^2 .
- 2) If you write $s = x_1 + x_2 + x_3$, find σ_s^2 .
- 3) Justify the difference (if any) between the answers you obtained from 1) and 2).
- 3. Given: $y = ax_1 + bx_2 + 5$, 3a b = 3, a and b are errorless, $\sigma_{x_1} = \pm 0.8$ cm, and $\sigma_{x_2} = \pm 1.5$ cm. Find the values for a and b such that the uncertainty of y is minimized.

Your (individual) final report should contain (use A4 papers):

- this page as the cover sheet
- source code(s) and outputs; do not forget to add your name and lots of comment cards to the source listing (%)
- input and output files from program [input/output values used and calculated], if any
- plots, including captions on axes, title, your name, LB#/HM#, course title, date (if any)
- derivation and description of formulas used, accompanied by figures where applicable
- evidence of computational accuracy
- discussion of results