Tutorat Mathématiques

Université François Rabelais

Analyse

Développements limités

Soient les fonctions suivantes, calculez les développements limités associés.

- 1. $f(x) = \frac{1+x^3}{1+x^2}$ (à l'ordre 4 en 0, on pensera à une division selon les puissances croissantes.)
- 2. $u(x) = e^x \cdot \ln(x+1)$ (à l'ordre 4 en 0)
- 3. $v(x) = \frac{\sqrt{x}}{x+1}$ (à l'ordre en 2 en 1)
- 4. $g(x) = \frac{x}{arctan(x)}$ (à l'ordre 2 en 0)
- 5. $h(x) = (1+x)^{\frac{1}{x}}$ (à l'ordre 2 en 0)

Quelques applications

Limites de fontions

Calculez les limites des fonctions suivantes.

1.
$$h(x) = \frac{\sin(x)}{x(\cos(x))}, \lim_{x \to 0} h(x)$$

2.
$$g(x) = \sqrt{x^2 + 3x + 2} + \frac{1}{x}, \lim_{x \to +\infty} g(x)$$

3.
$$f(x) = \frac{\ln(x+1)}{\arctan(\sin(x))}, \lim_{x \to 0} f(x)$$

Formules de Taylor

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par l'application $f(x) = \frac{x^3}{1+x^6}$, calculez $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$. On pensera ici à s'aider de l'unicité du developpement limité et des formules de Taylor.

Démonstration des formules d'Euler

À l'aide du développement en série de Maclaurin (donné par le n-ème terme du développement limité), démontrez que :

$$e^{ix} = \cos(x) + i\sin(x)$$

$$\textbf{N.B}\,:\, \text{On rappelera alors que}:\, e^t=1+t+\ldots+\frac{t^n}{n!}=\sum_{n=0}^{\infty}\,\frac{t^n}{n!}$$

Mathématiques, analyse :