Matemática Discreta para Computação

Thiago Figueiredo Marcos

26 de maio de 2024

Resumo

Essa disciplina será baseada no livro: Elementos da Matemática Discreta para computação do Prof. Dr. Jorge Stolfi, além das orientações em vídeo aula do no youtube do Prof. Dr. Rudini Menezes Sampaio

1 Lógica Proposicional

Uma proposição é uma sentença que pode assumir valores Verdadeiro ou Falso, não é necessário que se saiba o valor da sentença, apenas que seja possivel atribuir algum desses dois valores.

Sentenças que não são proposições, logicamente, não podem receber valores Verdadeiros ou Falsos, porém, observa-se que sentenças interrogativas, imperativas em geral não são proposições. Uma sentença declarativa que tenha dependencia de variáveis pode ser considerada proposição, dês de que os valores das variáveis sejam definidos.

1.1 Conectivos lógicos e proposições compostas

Conectivos lógicos podem ser entendidos como: e, ou, não, se ... então. Esses conectivos permitem formar proposições compostas.

Uma proposição composta, possui na sua estrutura, composições simples ou atômica.

1.2 Notação para cálculo proposicional

A lógica proposicional é um formalismo que nos permite determinar o valor lógico das proposições. As letras minúsculas será a representação das proposições. Abaixo descreveremos os sinais dos conectivos lógicos (operadores).

Conjunção : $p \wedge q$

Disjunção : $p \lor q$

Negação : $\neg p$ ou ainda \bar{q}

Implicação : $p \longrightarrow q$

Equivalência : $p \iff q$

Disjunção Exclusiva : $p \oplus q$

A implicação é um dos mais importantes conectivos da lógica matemática. Descreve-se da seguinte forma:

Hipotese, premissa ou antecedente $\operatorname{Verdadeira} \longrightarrow \operatorname{Tese}$, conclusão ou consequência $\operatorname{verdadeira}$

1.3 Procedência dos operadores lógicos

Em uma proposição que usa dois ou mais operadores lógicos a ordem em que são aplicados é importante. Podemos aplicar parenteses nas proposições para indicar a maior precedência. Também há regras para indicar a maior precedência entre os operadores:

Operador	Precedência
_	1
\wedge	2
∨,⊕	3
\longrightarrow , \Longleftrightarrow	4

1.4 Tautologia e Contradições

Tautologia é uma proposição que é sempre verdadeira, para qualquer valor atômico que a componha.

Pense na seguinte sentença: $P \vee \neg p$, neste caso, **p** pode assumir qualquer valor que sua resposta será sempre verdadeira e isso é uma tautologia. Veremos como isso é aplicado diretamente na computação na disciplina de circuitos digitais em algebra boolena.

Já a contradição é uma proposição composta que é sempre falsa, para qualquer valor atômico que a componha.

Análogo a sentença da tautologia, porém com outro operador podemos exemplificar a contradição, observe: $p \land \neg p$, ou seja, p pode assumir qualquer valor, que sua proposição será sempre falsa.

1.5 Equivalência Lógica

Duas proposições são ditas equivalentes se possuirem valores lógicos iguais. Por exemplo: $p \iff \neg(\neg p)$ ou seja, operações com valores tautológicos, chegam a equivalências.

1.5.1 Leis de equivalência

```
Leis do elemento identidade: p \wedge V \to p \\ p \vee F \to p
```

$$p \leftrightarrow V \rightarrow p$$

$$p \leftrightarrow v \rightarrow p$$
$$p \oplus F \rightarrow p$$

Leis da idempotência:

$$p \wedge p \rightarrow p$$

$$p \lor p \to p$$

Leis da dominação:

$$p \wedge V \to V$$

$$p \vee F \to F$$

Leis da comutatividade:

$$p \wedge q \to q \wedge p$$

$$p \vee q \to q \vee p$$

$$p \oplus q \to q \oplus p$$

$$p \leftrightarrow q \rightarrow q \leftrightarrow p$$

Lei da redução ao absurdo:

$$-p \longrightarrow q \Rightarrow (p \land \neg q) \longrightarrow F$$

Existem outras leis como a de De Morgan que vai ser vista com profundidade na disciplina de circuitos digitais e não será comentada aqui. Outras como associatividade e distributivas também não será vista, pois, segue a mesma lógica que operações aritméticas.

1.6 Síntese de proposições