Modelos Estocásticos para Manufactura y Servicios (INDG-1008): **Unidad 01**

Luis I. Reyes Castro

Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil - Ecuador

2017 - Primer Término

Contenido del Tema

- 1 Repaso de Variables Aleatorias
- Proceso Bernoulli
- 3 Proceso Poisson
- 4 Cadenas de Markov

Contenido del Tema

- 1 Repaso de Variables Aleatorias
- 2 Proceso Bernoulli
- 3 Proceso Poisson
- 4 Cadenas de Markov

Valor Esperado:

■ Si X es una variable aleatoria discreta entonces

$$\mathbb{E}[X] = \sum_{x \in \text{soporte}(X)} x \, \mathbb{P}(x)$$

donde la sumatoria es sobre todos los valores que puede tomar X.

■ Si X es una variable aleatoria continua entonces

$$\mathbb{E}[X] = \int_{x \in \text{soporte}(X)} x f(x) dx$$

donde la integración es sobre todos los valores que puede tomar X.

■ Si X, Y son variables aleatorias y a, b son constantes entonces:

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

Independecia de Variables Aleatorias:

■ Decimos que las variables aleatorias discretas X, Y son independientes si para todo posible par de valores (x, y) que las variables aleatorias pueden tomar es el caso que:

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$$

■ Si X, Y son variables aleatorias independientes entonces:

$$\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$$

Nótese que esta relación en general no es válida par variables aleatorias dependientes.

Condicionalmiento:

■ Si X, Y son dos variables aleatorias entonces la probabilidad del valor x de la primera variable condicional en el valor y de la segunda esta dado por:

$$\mathbb{P}(x \mid y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

■ Claramente, si X, Y son variables aleatorias independientes entonces para todo valor x de la primera variable y todo valor y de la segunda:

$$\mathbb{P}(x \mid y) = \mathbb{P}(x)$$

Si X, Y son dos variables aleatorias entonces para todo valor y de la segunda variable aleatoria:

$$\mathbb{E}[X \mid y] = \sum_{x \in \mathsf{soporte}(X)} x \, \mathbb{P}(x \mid y)$$

■ Si X, Y son dos variables aleatorias entonces:

$$\mathbb{E}[X] \,=\, \mathbb{E}[\,\mathbb{E}[\,X\mid Y\,]\,] \,=\, \sum_{y \,\in\, \mathsf{soporte}(\,Y\,)} \mathbb{E}[\,X\mid y\,]\,\mathbb{P}(y)$$

Variable Aleatoria Geométrica:

- Tenemos dos tipos, denotadas $Geo(p; \mathbb{Z}_{\geq 0})$ y $Geo(p; \mathbb{N})$.
- Geo(p; $\mathbb{Z}_{\geq 0}$) representa el número de ensayos que tenemos que realizar hasta obtener el primer experimento exitoso, por lo que toma valores en los enteros no-negativos. Si $X \sim \text{Geo}(p; \mathbb{Z}_{\geq 0})$ entonces:

$$\mathbb{E}[X] = \frac{1-p}{p} \qquad \qquad \mathsf{var}(X) = \frac{1-p}{p^2}$$

■ $Geo(p; \mathbb{N})$ representa el índice del ensayo que resultó en el primer experimento exitoso, por lo que toma valores en los números naturales. Si $X \sim Geo(p; \mathbb{N})$ entonces:

$$\mathbb{E}[X] = \frac{1}{p} \qquad \text{var}(X) = \frac{1-p}{p^2}$$

Contenido del Tema

- 1 Repaso de Variables Aleatorias
- 2 Proceso Bernoulli
- 3 Proceso Poisson
- 4 Cadenas de Markov

Ejemplo:

En una fábrica una máquina tiene un componente que usualmente debe ser reemplazado. A pesar de que reemplazar el componente toma unos pocos minutos al final de la jornada de trabajo, cada día de operación de la máquina el componente se puede dañar con probabilidad p, independientemente de lo que haya pasado antes. Con esto en mente:

- Cuántas veces a la semana, en promedio, tendrán que reemplazar el componente?
- Si han pasado cuatro días desde la última vez que se cambió en componente, cuál es la probabilidad de que se dañe mañana?

Proceso Bernoulli con parámetro p:

- Es una secuencia de variables aleatorias Bernoulli con parámetro *p* independientes e indénticamente distribuidas que representan la presencia o ausencia de arribos.
- Formalmente es una secuencia de variables aleatorias $X_1, X_2, X_3, X_4, \ldots$ donde:
 - Para todo índice *i* tenemos que $X_i \sim \text{Bernoulli}(p)$.
 - Para todo par de índices i, j es el caso que X_i es independiente de X_j .
- Ocurre un arribo en el período t si $X_t = 1$; caso contrario no ocurrió un arribo en ese período.
- Claramente, el número esperado de arribos a lo largo de *n* períodos es:

$$\mathbb{E}\left[\sum_{t=1}^{n} X_{t}\right] = \sum_{t=1}^{n} \mathbb{E}[X_{t}] = np$$

Tiempo entre arribos:

- **P**ara todo índice i la variable aleatoria T_i representa el número de períodos que transcurrieron desde el i^{avo} arribo hasta el $(i+1)^{avo}$ arribo.
 - Nótese que soporte(T_i) = $\mathbb{Z}_{\geq 0}$.
- Cuál es la distribución de T_1 ? *I.e.*, para cada valor $k \in \mathbb{Z}_{>0}$, cuál es la probabilidad de que $T_1 = k$?
 - Claramente k = 0 con probabilidad p.
 - Si k=1 entonces $X_1=0$ y $X_2=1$, i.e., en el primer período no hubo un arribo y en el segundo período hubo un arribo, lo cual sucede con probabilidad (1-p)p.
 - Si k = 2 entonces $X_1 = 0$, $X_2 = 0$ y $X_3 = 1$, lo cual sucede con probabilidad $(1-p)^2 p$.

■ Continuando por inducción matemática, vemos que:

$$\forall k \in \mathbb{Z}_{\geq 0} : \mathbb{P}(T_1 = k) = (1 - p)^k p \iff T_1 \sim \mathsf{Geo}(p; \mathbb{Z}_{\geq 0})$$

- **Teorema:** Para cada índice i es el caso que $T_i \sim \text{Geo}(p; \mathbb{Z}_{>0})$.
- Corolario: En un proceso Bernoulli con parámetro p los tiempos entre arribos constituyen una secuencia de variables aleatorias independientes e identicamente distribuidas; en particular, con distribución geométrica con parámetro p soportada en $\mathbb{Z}_{\geq 0}$.

Número de arribos en un intervalo:

■ Si para todo índice i denotamos a la variable aleatoria N_i como el número de arribos desde el comienzo del proceso hasta el i^{avo} periodo, entonces:

$$N_i = \sum_{k=1}^i X_k$$

- *I.e.*, la variable aleatoria N_i es la suma de i variables aleatorias independientes e identicamente distribuidas (IID).
- **Teorema:** Para cada índice i es el caso que $N_i \sim \text{Binomial}(i, p)$.
- **Corolario:** En un proceso Bernoulli con parámetro *p* el número de arribos a lo largo de un intervalo de *n* períodos es una variable aleatoria con distribución binomial con parámetros *n* y *p*.

Combinación de Procesos Bernoulli:

- Supongamos que tenemos dos procesos Bernoulli independientes.
 - El primero tiene parámetro p.
 - El segundo tiene parámetro q.
- Consideremos un nuevo proceso donde se produce un arribo si y solo si ocurre un arribo en ambos procesos.
 - Los arribos en el nuevo proceso son independientes entre si, pues en cada período solo dependen en los arribos de los procesos generadores, los cuales no dependen de arribos en tiempos anteriores.
 - La probabilidad de un arribo en el nuevo proceso es el producto de las probabilidades de arribo en cada proceso generador, pues los procesos generadores son independientes.
 - En conclusión el nuevo proceso es un proceso Bernoulli con parámetro pq.

- Consideremos un nuevo proceso donde se produce un arribo si y solo si ocurre un arribo en alguno de los dos procesos.
 - Los arribos en el nuevo proceso son independientes entre si, pues en cada período solo dependen en los arribos de los procesos generadores, los cuales no dependen de arribos en tiempos anteriores.
 - La probabilidad de un arribo en el nuevo proceso es uno menos la probabilidad de que no haya un arribo, la cual es el producto de las probabilidades de que no hayan arribos en cada uno de los procesos generadores, pues los procesos generadores son independientes.
 - En conclusión el nuevo proceso es un proceso Bernoulli con parámetro 1 (1 p)(1 q).

División de Procesos Bernoulli:

- Supongamos que tenemos un proceso Bernoulli con parámetro *p* que genera dos procesos.
- En cada período:
 - Si el proceso principal produce un arribo, lanzamos una moneda sesgada con probabilidad de cara igual a q.
 - Si la moneda sale cara enviamos el arribo al primer proceso.
 - Si la moneda sale sello enviamos el arribo al segundo proceso.
- Entonces:
 - El primer proceso será un proceso Bernoulli con parámetro p q.
 - El segundo proceso será un proceso Bernoulli con parámetro p(1-q).

Contenido del Tema

- 1 Repaso de Variables Aleatorias
- 3 Proceso Poisson

Proceso Poisson con parámetro λ :

- lacktriangle Es una secuencia de variables aleatorias exponenciales con parámetro λ independientes e indénticamente distribuidas que representan los tiempos entre arribos.
- Formalmente es una secuencia de variables aleatorias $X_1, X_2, X_3, X_4, \ldots$ donde:
 - Para todo índice *i* tenemos que $X_i \sim \mathbb{E}(\lambda)$.
 - Para todo par de índices i, j es el caso que X_i es independiente de X_j .
- El proceso empieza en el tiempo cero, *i.e.*, t = 0.
- El primer arribo ocurre en el tiempo $t = X_1$, el segundo en el tiempo $t = X_1 + X_2$, y así sucesivamente; *i.e.*, el i^{avo} arribo ocurre en:

$$t = X_1 + \cdots + X_i = \sum_{k=1}^i X_k$$

Problema - H&L 17.4-3:

El tiempo que requiere un mecánico para reparar una máquina tiene una distribución exponencial con media de 4 horas. Sin embargo, una herramienta especial reduciría esta media a 2 horas. Si el mecánico repara una máquina en menos de 2 horas, se le pagan \$100; de otra manera se le pagan \$80. Determine el aumento esperado en el pago del mecánico si usa esta herramienta especial.

Resolución:

■ Si denotamos a *X* como el tiempo que demora el mecánico en arreglar una máquina actualmente entonces:

$$X \sim \mathsf{Exponencial}(\lambda = 0.25)$$

- Pago del mecánico actualmente:
 - Si $0 \le X \le 2$ gana \$100, lo cual sucede con probabilidad:

$$\int_{t=0}^{2} \lambda \, e^{-\lambda \, t} dt = \int_{t=0}^{2} 0.25 \, e^{-0.25 \, t} dt = 0.393469$$

■ Si X > 2 gana \$80, lo cual sucede con probabilidad:

$$1 - 0.393469 = 0.606531$$

Consecuentemente el pago esperado es:

$$100(0.393469) + 80(0.606531) = 87.87$$

■ Luego, con la nueva máquina tenemos que:

$$X \sim \mathsf{Exponencial}(\lambda = 0.5)$$

- Pago del mecánico con la nueva máquina:
 - Si $0 \le X \le 2$ gana \$100, lo cual sucede con probabilidad:

$$\int_{t=0}^{2} \lambda \, e^{-\lambda t} dt = \int_{t=0}^{2} 0.50 \, e^{-0.50 \, t} dt = 0.632121$$

■ Si X > 2 gana \$80, lo cual sucede con probabilidad:

$$1 - 0.632121 = 0.367879$$

■ Consecuentemente el pago esperado es:

$$100 (0.632121) + 80 (0.367879) = 92.64$$

■ Finalmente, el aumente en el pago del mecánico gracias a que usa la nueva máquina es de \$4.67.

Combinación de Procesos Poisson:

- Supongamos que tenemos dos procesos Poisson independientes.
 - El primero tiene parámetro λ_1 .
 - El segundo tiene parámetro λ_2 .
- Consideremos un nuevo proceso que combina los arribos de los dos procesos anteriores.
- Entonces el nuevo proceso es un proceso Poisson con parámetro $\lambda_1 + \lambda_2$.

División de Procesos Poisson:

- \blacksquare Supongamos que tenemos un proceso Poisson con parámetro λ que genera dos procesos.
- En cada instante:
 - Si el proceso principal produce un arribo, lanzamos una moneda sesgada con probabilidad de cara igual a p.
 - Si la moneda sale cara enviamos el arribo al primer proceso.
 - Si la moneda sale sello enviamos el arribo al segundo proceso.
- Entonces:
 - El primer proceso será un proceso Poisson con parámetro λp .
 - El segundo proceso será un proceso Poisson con parámetro $\lambda (1-p)$.

Contenido del Tema

- Repaso de Variables Aleatorias
- 2 Proceso Bernoulli
- 3 Proceso Poissor
- 4 Cadenas de Markov

FI Modelo:

- Conjunto finito de *n* estados, donde cada estado es una representación de una posible situación de interés.
- Matriz de transición $\mathbf{P} \in \mathbb{R}^{n \times n}$
 - Para cada par de estados i, j:

$$P(i,j) = \mathbb{P}(\text{siguiente estado sea } j \mid \text{estado actual es } i)$$

■ Cada una de las filas de la matriz suman a uno.

H&L, Sección 16.1 - Ejemplo de Clima:

El clima en el pueblo de Centerville puede cambiar con rapidez de un día a otro. Sin embargo, las posibilidades de tener clima seco (sin lluvia) mañana es de alguna forma mayor si hoy está seco, es decir, si no llueve. En particular, la probabilidad de que mañana este seco es de 0.8 si hoy está seco, pero es de solo 0.6 si hoy llueve. Estas probabilidades no cambian si se considera la información acerca del clima en los días anteriores a hoy.

Modele este proceso climático como una Cadena de Markov.

Estados:

- 1 Está seco
- 2 Llueve

Matriz de transición:

$$\boldsymbol{P} = \left[\begin{array}{cc} 0.8 & 0.2 \\ 0.6 & 0.4 \end{array} \right]$$

Modelos Estocásticos: Unidad 01

H&L, Sección 16.1 - Ejemplo en Manejo de Inventario:

La tienda de fotografía de Dave se admministra semanalmente y está abierta al público desde el lunes en la mañana hasta el sábado en la noche. Dave tiene en almacén un modelo especial de cámara que se vende relativamente bien. Sean $D_1,\,D_2,\,D_3,\ldots$ las demandas semanales de la cámara en unidades, *i.e.*, el número de unidades que se venderían si el inventario fuere inagotable. Más precisamente, suponga que las demandas D_t son variables aleatorias i.i.d. que siguen una distribución Poisson con parámetro $\lambda=1$.

Dave maneja el inventario de acuerdo a la siguiente política:

- Si no hay unidades de la cámara en inventario, se hace un pedido al proveedor por tres unidades. En este caso, el proveedor entregará el pedido el lunes a primera hora, justo antes de que la tienda abra.
- Caso contrario, no se hace un pedido.

Definiendo a los cuatro posibles número de cámaras en inventario al final de cada semana como los estados, modele la política de inventario descrita como una Cadena de Markov.

Por si acaso, el orden de las actividades de la t^{ava} semana es:

- I Si se hizo un pedido al proveedor de las cámaras al final de la $(t-1)^{ava}$ semana se reciben las unidades que se pidieron.
- 2 Se abre la tienda desde el lunes en la mañana hasta el sábado en la noche. Durante este tiempo se venden entre cero y tres cámaras.

Modelos Estocásticos: Unidad 01

- 3 Se cierra la tienda.
- 4 De ser necesario, se hace un pedido al proveedor de las cámaras.

Estados:

- 1 Quedan 0 unidades en inventario al final de la semana
- 2 Quedan 1 unidades en inventario al final de la semana
- 3 Quedan 2 unidades en inventario al final de la semana
- 4 Quedan 3 unidades en inventario al final de la semana

Matriz de transición:

$$\mathbf{P} = \left[\begin{array}{cccc} 0.08 & 0.18 & 0.37 & 0.37 \\ 0.63 & 0.37 & 0 & 0 \\ 0.26 & 0.37 & 0.37 & 0 \\ 0.08 & 0.18 & 0.37 & 0.37 \end{array} \right]$$

Definición Formal:

- Es una secuencia de variables aleatorias discretas $X_0, X_1, X_2, X_3, \ldots$ donde para cada índice de tiempo discreto t la variable aleatoria X_t es el estado del proceso en el tiempo t.
- Tiene la **Propiedad Markoviana**, *i.e.*, que para cualquier historia de estados que culmina en el estado actual x_0, x_1, \ldots, x_t y para cualquier posible estado futuro x_{t+1} es el caso que:

$$\mathbb{P}(X_{t+1} = x_{t+1} \mid X_0 = x_0, X_1 = x_1, \dots, x_t = x_t)$$

$$= \mathbb{P}(X_{t+1} = x_{t+1} \mid X_t = x_t)$$

Observe además que por definición de la matriz de transición P:

$$\mathbf{P}(i,j) = \mathbb{P}(X_{t+1} = j \mid X_t = i)$$

Propagación de la Distribución Inicial:

■ Supongamos que el estado inicial de una Cadena de Markov no es conocido a priori sino que obedece una distribución inicial $\pi_0 \in \mathbb{R}^n$, donde:

$$\forall x : \boldsymbol{\pi_0}(x) = \mathbb{P}(X_0 = x)$$

■ Como caso especial, supóngase que el estado inicial es conocido, *e.g.*, que $X_0 = x_0$. Entonces la distribución inicial sería:

$$\pi_0(x_0) = 1; \quad \forall x \neq x_0 : \pi_0(x) = 0;$$

Modelos Estocásticos: Unidad 01

■ Ahora, si denotamos a π_1 como la distribución del primer estado, tenemos que para todo posible primer estado x_1 :

$$\forall x_1 : \ \boldsymbol{\pi_1}(x_1) = \mathbb{P}(\ X_1 = x_1\)$$

$$= \sum_{\text{estados } x_0} \mathbb{P}(\ X_0 = x_0\) \ \mathbb{P}(\ X_1 = x_1 \mid X_0 = x_0\)$$

$$= \sum_{\text{estados } x_0} \boldsymbol{\pi_0}(x_0) \ \boldsymbol{P}(x_0, x_1)$$

■ Matricialmente, eso equivale a:

$$\pi_1' \,=\, \pi_0'\, extcolor{P}$$

■ Luego, si denotamos a π_2 como la distribución del segundo estado, tenemos que para todo posible segundo estado x_2 :

$$\forall x_2 : \ \pi_2(x_2) = \mathbb{P}(\ X_2 = x_2\)$$

$$= \sum_{\text{estados } x_1} \mathbb{P}(\ X_1 = x_1\) \ \mathbb{P}(\ X_2 = x_2\ |\ X_1 = x_1\)$$

$$= \sum_{\text{estados } x_1} \pi_1(x_1) \ \boldsymbol{P}(x_1, x_2)$$

■ Matricialmente, tenemos que:

$$\pi_2' = \pi_1' P$$

Modelos Estocásticos: Unidad 01

■ Más generalmente, si conocemos la distribución del estado actual π_t , entonces para la distribución del siguiente estado, denotada π_{t+1} , es el caso que:

$$\forall x_{t+1} \colon \pi_{t+1}(x_{t+1}) = \mathbb{P}(X_{t+1} = x_{t+1})$$

$$= \sum_{\text{estados } x_t} \mathbb{P}(X_t = x_t) \, \mathbb{P}(X_{t+1} = x_{t+1} \mid X_t = x_t)$$

$$= \sum_{\text{estados } x_t} \pi_t(x_t) \, \boldsymbol{P}(x_t, x_{t+1})$$

Matricialmente, tenemos que:

$$\pi'_{t+1} = \pi'_t P$$

Usando inducción matemática, es fácil ver que:

$$\forall t \geq 1$$
: $\boldsymbol{\pi_t'} = \boldsymbol{\pi_0'} \, \boldsymbol{P}^t$

Además, si la Cadena de Markov no tiene ciclos determinísicos entonces sin importar la distribución inicial π_0 es el caso que la distribución del estado actual π_t converge a una única distribución π^* , conocida como la distribución en estado estable o estacionaria de la cadena. I.e.:

$$\exists ! \, \pi^* \in \mathbb{R}^n \colon \lim_{t \to \infty} \pi_t = \pi^*$$

■ Finalmente, si la distribución en estado estable (estacionaria) existe entonces dicha distribución es invariante:

$$(\pi^*)'=(\pi^*)'P$$

■ Esto implica que si la distribución del estado inicial es igual a la distribución estacionaria, *i.e.*, que si $X_0 \sim \pi^*$, entonces la distribución del primer estado es igual a la distribución estacionaria, *i.e.*, que $X_1 \sim \pi^*$, lo que a su vez implica que la distribución del segundo estado es igual a la distribución estacionaria, *i.e.*, que $X_2 \sim \pi^*$, y asi sucesivamente.

Cálculo de la Distribución en Estado Estable:

1 Escribimos una ecuación para cada uno de los *n* estado:

$$\forall e \colon \boldsymbol{\pi}(e) = \sum_{\text{estados } x} \boldsymbol{\pi}(x) \boldsymbol{P}(x, e)$$

2 Desechamos arbitrariamente una de las *n* ecuaciones anteriores y la reemplazamos por:

$$\sum_{\text{estados } e} \pi(e) = 1$$

Resolvemos el sistema de ecuaciones lineales resultante, el cual tiene n incógnitas y n ecuaciones linealmente independientes.

Clases de estados:

- Transitorios
- Recurrentes

Ejercicio en Clase:

- H&L Problema 16.5-4
- H&L Problema 16.5-1

Ejercicio en Clase:

- H&L Problema 16.4-1
- H&L Problema 16.4-2
- H&L Problema 16.4-3
- H&L Problema 16.4-4
- H&L Problema 16.4-5