Peripherals

Overview

- Liquid Crystal Display (LCD)
- Touchscreen
- Interfacing Methods
- Sensors
- Mass Storage

• Use google and wikipedia to get more information

LCD

Basics

- Sandwich of polarizer, glass, electrode, liquid crystal, electrode, glass, polarizer (90 deg. from first)
- Liquid crystal is twisted to change polarization of light passing through, so it makes it through both polarizers (light/clear)
- Apply voltage to electrodes to reduce twist, reducing polarization and hence darkening the display element (dark/opaque)

Backlighting

- LED low voltage (e.g. 1.5 4 V)
- CCFL (cold-cathode flourescent) high voltage (e.g. 100V)

Arranging the Dots

- Segmented (e.g. 7-segment, 16-segment)
- Dot matrix
 - Text only
 - Text and graphics

Passive vs. Active

- Becomes an issue when you have a multiplexed display (don't have a wire per pixel or segment)
- Passive Rely on LC to stay in same state of twistiness before it is refreshed next. Slow response time, limited contrast
- Active Build transistors onto the display right next to the electrode to retain the state between refreshes

Driving the LCD

- Direct
 - Dedicated wire per segment. Just apply a voltage.
 - Lots of wires and pins
- Multiplexing options
 - Need to turn on and off pixels frequently enough to keep them from fading
 - Multiplexed segments
 - Connections
 - Segment 1-40 (5x8 segments per character location)
 - Common 1-16 (8x2 = 16 character locations
 - Select the character with the Common line, then turn on the appropriate segments
 - Use a controller chip (e.g. HD44780, KS0066)
 - Could also use MCU to do it in software or with DMA

More Multiplexing

- Rectangular matrix of rows and columns
 - Select the row, then turn on the appropriate pixels (columns)
 - Shift registers are used to simplify interface, so timing evolbed from raster scanning of CRTs
 - For each frame, VSync signal resets vertical counter
 - For each row, HSync signal resets horizontal shift register and advances vertical counter
 - » For each pixel, Clock signal shifts some data into horizontal (column driver) shift register. E.g. 1 pixel's worth (18 or 24 bits)
 - Use a controller chip (e.g. T6963, SED1335)

Resistive Touchscreen

- Other technologies available too (capacitive, acoustic, optical, etc.)
- Sandwich
 - Conductive flexible membrane (has an electrode if 5-wire)
 - Spacers
 - Substrate (has 4 electrodes (X+, X-, Y+, Y-) along edges)
 - Display
- Using it
 - Determine X position
 - Apply V+ to X+, V- to X-
 - Measure analog voltage at electrode (5-wire) or at Y+ and Y-
 - Determine Y position
 - Apply V+ to Y+, V- to Y-
 - Measure analog voltage at electrode (5-wire) or at X+ and X-
 - Linearize X and Y based on calibration
- More Information
 - http://www.edn.com/archives/1995/110995/23dfcov.htm

Interfacing Methods

- Analog use ADC or comparator
- Digital
 - Pulse width modulation
 - Measure width of pulse with timer or interrupts
 - RS232
 - Use UART
 - Bit-bang with GPIO if not available
 - synchronous (clocked) serial
 - Use UART in clocked serial mode
 - Bit-bang with GPIO if not available
 - parallel
 - Use GPIO port

Clocked (Synchronous) Serial Interfacing

Basic ideas

- Send data serially between chips to reduce pin count and PCB complexity
- Provide *a clock* with the serial data to make interfacing easy

Example protocols

- SPI serial peripheral interconnect.
- I²CTM inter-integrated circuit bus.

SPI – Serial Peripheral Interface

- Based on shift registers
- Example: AD7877
- Signals to get bytes in and out
 - DCLK Data clock
 - DIN Data into peripheral device.
 - Is read at rising edge of DCLK (Must be ready 12 ns before)
- DCLK t_1 t_2 t_3 t_5 t_6 t_7 DOUT MSB LSB t_8 t_8 DOUT MSB LSB t_8

Figure 2. Detailed Timing Diagram

- Also called MOSI: master out, slave in
- DOUT Data out of peripheral device.
 - Is valid 16 ns after falling edge of DCLK
 - Also called MISO: master in, slave out
- Need to provide individual chip-selects if multiple SPI devices share DCLK/DIN/DOUT

Other Comments

- Other SPI-based devices will have different protocol details
 - Command length
 - Register address length
 - Register addresses

I²CTM – inter-integrated circuit bus.

- Full-fledged protocol created by Philips (now NXP Semiconductor, see document UM10204 for details)
- TWI two wire interface generic name for I²CTM
- Signals
 - SCK serial clock
 - SDA serial data bidirectional
- 100-400 kbps

• Foundation for other protocols (SMBus and PMBus)

Fig 9. A complete data transfer

SPI – Serial Peripheral Interface

- In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by the master. An additional pin controlled by the master, UCxSTE, is provided to enable a device to receive and transmit data.
- Three or four signals are used for SPI data exchange:
- Master mode: UCxSIMO is the data output line.
- Master mode: UCxSOMI is the data input line.
- Master mode: UCxCLK is an output.
- Master mode: Chip Select is a user defined port pin.
- Master controls clock for both data transfer from Master to Slave and from Slave to master.

SPI – Serial Peripheral Interface

- Serial Clock Polarity and Phase
- The polarity and phase of UCxCLK are independently configured via the UCCKPL and UCCKPH control bits of the eUSCI.

Sensors, and Applications

• Remember these?

- Temperature
 - Thermometer (do you have a fever?)
 - Thermostat for building, fridge, freezer
 - Car engine controller
 - Chemical reaction monitor
 - Safety (e.g. microprocessor processor thermal management)
- Light (or infrared or ultraviolet) intensity
 - Digital camera
 - IR remote control receiver
 - Tanning bed
 - UV monitor
- Rotary position
 - Wind gauge
 - Knobs
 - Compass
- Humidity
- Proximity

Pressure

- Blood pressure monitor
- Altimeter
- Car engine controller
- Scuba dive computer
- Tsunami detector
- Acceleration
 - Air bag controller
 - Vehicle stability
 - Video game remote
- Mechanical strain
- Pressure
- Capacitive (touch)
- Other
 - Touch screen controller
 - EKG, EEG
 - Breathalyzer

Example Sensors

- Compass
 - RS232 interface
 - 1 degree accuracy
 - Tilt-compensated
 - Model rocket, robot, etc.
- Accelerometer
 - Analog or PWM output
 - 2-10 G ranges available
 - Model rocket, tilt, etc.
- Ultrasonic rangefinder
 - RS232, PWM and analog outputs
 - 0-255 inch range, 1 inch resolution
 - 20Hz update rate
- Inertia Measurement System
 - Acceleration in X,Y,Z directions
 - Rotation around X,Y,Z axes (gyros)
 - Temperature
 - Federal funds discount rate ;-)
 - Logic-level RS232 serial interface
- Images courtesy SparkFun Electronics

Fixed Mass Storage of Non-Volatile Data

- Use MCU's flash program memory. 384KB!
 - Programming interface
 - Write these bytes starting at this address
 - Read from address in MCU memory
- Add external flash memory chips to circuit board
 - Atmel DataFlash chips
 - SPI-based interface
 - Programming interface
 - Read page N from flash into an SRAM buffer
 - Transfer SRAM buffer contents to the MCU
 - Load the SRAM buffer (or part) with these bytes
 - Write SRAM buffer to Flash page N

A Brief Digression – File Systems

- What's there
 - Lots of bytes, each individually addressable
- What we want
 - Individual files of different lengths
 - Ability to create, delete, append, overwrite these files
 - Perhaps even a hierarchical collection of folders/directories
- File system
 - Provides abstractions to give us the above
 - Index (directory table) in each directory tells about each item (file or directory)
 - Name, starting address, length, access date, etc.
- Examples
 - FAT12, FAT32, NTFS

Removable Mass Storage 1

- Secure Digital card
 - Based on MMC (multimedia card) Toshiba added encryption hardware to make it Secure
- SO THE CONTROL OF THE
- SD cards support MMC's SPI interface mode
 - How to use MMC/SDC: http://elm-chan.org/docs/mmc/mmc_e.html
 - Also Maxim application note AN3969.pdf
- Interface is low-level
 - Read, write block (e.g. 512 bytes)
 - Doesn't directly support a file system
 - User must provide this (e.g. ChaN, FatFs, TinyFatFs)
 - Or else use your own scheme for tracking used/free blocks

Removable Mass Storage 2

- USB Mass storage device (flash drive)
 - Use an interface module to avoid having to hack USB support
 - Vinculum VDIP1 and VDIP2 modules
 - http://www.vinculum.com/prd_vdip1.html
 - USB peripheral device (e.g. mass storage)
 - MCU interface: UART, SPI or FIFO (parallel)
 - Interface includes high-level features:
 - Has built in-support for FAT file systems
 - Open, close, delete files,
 - List files in directory, get sizes
 - Append data, read data, seek offset
 - Lots of other features

