Computer Networks

Transport Layer Services User Datagram Protocol

Jianping Pan Fall 2022

Review: application layer

- HTTP: hypertext transfer protocol
 - client-server model
 - request-reply transaction
 - normally based on TCP
- DNS: domain name system
 - DNS hierarchy
 - DNS queries
 - normally based on UDP

10/4/22

Today's topics

- Transport-layer protocol elements
 - services provided to application layer
 - to support HTTP, DNS, etc
 - services provided by network layer
 - e.g., by IP
 - transport-layer protocol mechanisms
 - i.e., how to fill the gap

51113	
₁ 5	Application layer
4	Transport layer
3	Network layer
2	Data link layer
1	Physical layer

10/4/22

CSc 361

Transport layer services

- Services provided by transport layer
 - endpoint-to-endpoint communication
 - endpoint: an application process in end-hosts
 - connection-oriented vs connectionless
 - data transfer: reliable vs unreliable
- Example: Internet transport-layer services
 - connection-oriented, reliable by TCP
 - connectionless, unreliable by UDP

Apps HTTF DNS

Network layer services

- Services provided by network layer
 - move packets from one end-host to another
 - possibly through many intermediate systems*
- Example: Internet network-layer services
 - IP: store-and-forward packet switching
 - packets may get
 - lost at communication link, router or receiver buffer
 - duplicated
 - corrupted

Q: possible causes?

reordered

CSc 361

Transport layer protocols

- Protocol mechanisms
 - addressing and multiplexing
 - how to identify an endpoint in an end-host
 - connection management
 - for connection-oriented transport services
 - flow control: avoid overwhelming the receiver
 - error control
 - for reliable transport services
 - congestion control: avoid overloading the network

10/4/22

Example: Socket API

CSc 361

- Connection establishment
 - bind(), listen()
 - connect()
 - accept()
- Data transfer
 - send(), recv()
- Connection release
 - close()

What's under Socket?

Socket

User Datagram Protocol

- Service provided by UDP
 - connectionless
 - no connection management
 - unreliable
 - no flow, error, congestion control
- Service provided by IP
 - connectionless, best-effort packet delivery
- Why UDP?

Why UDP?

- Sometimes TCP is an overkill
 - TCP is an all-in-one package
 - connection management
 - flow, error and congestion control
- Not all applications need TCP
 - e.g., voice over IP
 - loss tolerable to a certain degree, delay sensitive
- Why not just IP?
 - transport-layer multiplexing

UDP header

- Multiplex
 - source/destination port number
- Error checking (optional)
 - checksum (TCP/IP-style)
- Why "UDP length"?

Internet checksum

- Mandatory in TCP
 - including TCP pseudo header
- Optional in UDP
- Also used in IP header checksum
- Checksum generation
 - 16-bit aligned, one's complement sum with carry
 - · most significant carry bit wrapping around
 - "one's complement of one's complement sum"
- Checksum verification

This lecture

- Transport layer services
 - addressing and multiplexing
 - connection management
 - flow, error and congestion control
- User Datagram Protocol (UDP)
 - protocol header fields
 - port number: multiplexing
 - checksum algorithms
 - · checksum: error control

Next lecture

- Transmission Control Protocol (TCP)
 - connection management
 - read KR4: Computer Networking
 - Chapter 3 (all sections required this month)

