CARRO EXPLORADOR

1 COMPONENTES DO CARRO EXPLORADOR

Tabela 1 - Lista de componentes do carro explorador.

Quantidade	Descrição
2	Bateria de Li-lon 18650
4	Cabo jumper macho-macho
5	Cabo jumper macho-fêmea
12	Cabo jumper fêmea-fêmea
1	Fio estanhado em forma de Y
1	Interruptor mini chave gangorra (KCD11-101)
1	Kit Chassi 4wd
1	MicroSd de 16gb
4	Motores DC (3~6v)
2	Ponte H Dupla L298N
1	Protoboard com 50 Pontos 8 x 1 x 1cm (CxLxA)
1	Raspberry pi 4 8gb
4	Rodas de borracha 7 x 7 x 2,6 x 7cm (CxLxPxD)
1	Step-down com capacidade de 5A
1	Suporte para 2 Baterias de Li-lon 18650

Fonte: do autor, 2025.

2 FERRAMENTAS DE MONTAGEM

Tabela 2 - Lista de ferramentas de montagem.

Quantidade	Descrição
1	Chave de fenda com ponta 3mm
1	Estação de solda
1	Esponja vegetal 7 x 4,5 x 1cm (CxLxP)
1	Pistola de Cola Quente Solda de estanho 60x40 500g 1mm
1	Solda de estanho 60x40 500g 1mm
1	Tubo de cola quente 11mm x 30cm (DxC, tamanho varia por pistola)

Fonte: Lucas Pizoni, 2025.

2.1 Itens aconselháveis ao projeto

Quantidade	Descrição
1	Alicate universal 5 polegadas
	(Conclusão)
Quantidade	Descrição
1	Carregador de baterias de Li-lon 18650
1	Fita isolante (preta ou branca) 20mm x 10m (LxC)
1	Fluxo de solda
1	Multímetro digital
1	Pinça antiestática curva
1	Sugador de solda
1	Suporte para sensores infravermelhos 6 x 2,5cm (CxL)
1	Tesoura

Fonte: Lucas Pizoni, 2025.

3 MONTAGEM

3.1 Parte inferior do chassi

3.1.1 Pontes H

Posicione e fixe usando cola quente as pontes H como na imagem demostrada.

Figura 1 – Pontes H fixadas.

3.1.2 Motores

Solde os fios estanhados nos motores como no exemplo abaixo. Utilize o fluxo de solda na região que será soldada para melhor aderência da solda.

Figura 2- Motores soldados.

Fonte: Lucas Pizoni, 2025.

Anotação

Deixe a esponja úmida para limpar o ferro de solda do acúmulo de estanho.

Após posicionado os suportes entre o motor, ajuste os parafusos M3 de 30mm nas entradas e enrosque-os com as porcas M3. Certifique-se que o motor não esteja frouxo - pode utilizar o alicate para segurar as porcas enquanto parafusa. Repita o processo nos motores seguintes para ficar como na figura abaixo.

Figura 1 - Motores parafusados.

Em seguida encaixe os fios dos motores em suas respectivas pontes H como mostrado na figura abaixo caso sinta-se à vontade prenda os fios com fita isolante para ficar de forma mais consistente.

Figura 2 – Fios dos motores encaixados.

3.1.3 Protoboard

Utilizando cola quente, posicione a protoboard (apenas a parte do positivo e negativo) exatamente ao centro do chassi entre os motores.

Figura 5 - Protoboard fixada.

3.1.4 Cabos

Após posiciona a ponte H para deixamos nossa parte inferior pronta retire os jumpers do ENA e ENB de cada uma das pontes H e então encaixe nos pinos de ENA até ENB, cabos macho-fêmea como na imagem abaixo.

Figura 6 – Cabos macho-fêmea posicionados.

3.2 Preparando o Raspberry pi 4

3.2.1 Sistema

Para usamos o nosso Raspberry precisamos de um sistema operacional instale o Raspberry desktop OS em um cartão microSd de mais ou menos 16gb e o encaixe na entrada microSd do Raspberry como mostrado abaixo.

Figura 7 – MicroSd inserido no Raspberry.

3.2.2 Inserindo a câmera

Com a câmera em mãos insira a fita na parte da câmera e da placa Raspberry para ligar as duas corretamente a mesma deve ficar como mostrado abaixo.

Figura 8 - Câmera fixada na placa.

3.3 Parte superior do chassi

3.3.1 Preparando a bateria

Antes de posiciona seu suporte de bateria pegue um cabo macho-macho que não está sendo usado, o corte e então solde uma das pontas na saída negativa da bateria de modo que fique como abaixo.

Figura 9 - Ponta macho soldada na bateria.

3.3.2 Posicionando a bateria

Posicione a bateria em uma extremidade da parte superior do Chassi a fixando com cola quente esta agora será considerada a parte traseira do carro explorador.

Figura 10 - Bateria posicionada devidamente na parte traseira.

3.3.3 Switch

Caso não seja possível encaixá-lo corretamente fure um espaço extra para o botão e o posicione como mostrado abaixo.

Figura 11 - Botão no Chassi

Após isso utilize a solda para fixar a saída positiva de energia da bateria na ponta OFF do botão.

Figura 12 – Positivo soldado.

Agora usaremos um cabo soldado em estanho em forma de Y como este a seguir.

Figura 13 – Cabo em forma de Y.

E finalmente soldamos a ponta menor do cabo em Y na saída do botão para ele fornece energia as duas outras pontas.

Figura 14 – Cabo em forma de Y soldado.

3.3.4 Step-down

Calibre seu step-down para que a saída seja regulada para aproximadamente 5V usando uma chave de fenda e o verificando através de uma fonte e o potenciômetro assim que ajustado o fixe usando cola quente a frente do switch do chassi.

Figura 15 – Step-down posicionado.

3.3.5 Raspberry pi

Após posicionar o step-down posicione o Raspberry a frente dele fixando o mesmo com cola quente, é importante ressaltar que o GPIO do Raspberry deve estar virado na mesma direção que a saída de seu step-down.

Figura 16 – Raspberry posicionado.

3.3.6 Servo motor

Para finalizar a preparação da parte superior do chassi antes de unimos as duas fixaremos na parte dianteira do chassi superior um servo motor para posteriormente fixamos a câmera.

Figura 17 – Servo posicionado.

3.4 Unindo as partes

3.4.1 Preparando os espaçadores

Utilizando uma chave de fenda fixe os espaçadores para que possamos unir a parte superior e inferior como mostrado abaixo tenha certeza de que estejam o mais firme possível.

Figura 18 - Espaçadores posicionados.

3.4.1 Preparando os espaçadores

Utilizando uma chave de fenda fixe os espaçadores para que possamos unir a parte superior e inferior como mostrado abaixo tenha certeza de que estejam o mais firme possível.

Figura 18 - Espaçadores posicionados.

3.4.2 Conectando as entradas positivas no V12

Conecte as saídas de energia do botão nas entradas V12 das pontes H e conecte um cabo macho-macho extra na entrada mais próxima do Step-down IN + o conectando no mesmo.

Figura 19.1 - Conectado a ponte H mais proxíma do step.

Figura 19.2- Conectado a ponte H mais distante do step.

Figura 19.3 - Conectado ao step.

3.4.3 Conectando as entradas negativas

Conecte a saída negativa da bateria na protoboard então conecte 3 fios macho-macho junto dela e use 2 para alimentar as pontes H e 1 para alimentar o IN -.

Figura 20.1 - Conectado a protoboard

Figura 20.2- Conectado a ponte H.

Figura 20.3 - Conectado ao step.

3.4.4 Fixando as duas partes

Passe os cabos do ENA ao ENB para a parte superior do chassi e então parafuse as duas partes do chassi usando uma chave de fenda como mostrado abaixo.

Figura 21 – Cabos na parte superior e chassi parafusado.

3.4.5 Fixando a câmera

Cole a câmera de cabeça para baixo em uma hélice de servo motor e então posicione a mesma em cima dele.

Figura 22 – Câmera fixada.

3.4.5 Cabeamento

Tabela 4 – Ponte H dianteira

Ponte H	Raspberry	
ENA	21	
IN1	20	
IN2	16	
IN3	7	
IN4	8	
ENB	25	

Fonte: do autor, 2025.

Tabela 5 – Ponte H traseira

Ponte H	Raspberry
ENA	11
IN1	10
IN2	9
IN3	27
IN4	22
ENB	17

Tabela 6 – Servo motor

Servo	Raspberry
5V	5V
GND	GND
Controle	19
	Fonte: do autor, 2025.

Tabela 7 – Step-down

Servo	Raspberry
OUT+	5V
OUT-	GND

Fonte: do autor, 2025.

4 RESULTADO FINAL

Após a conclusão dos passos anteriormente listados, o seguidor de linha ficará como no exemplo a seguir.

Figura 3 – Carro explorador completo.

5 CÓDIGO DE EXEMPLO

https://github.com/jhonicauan/Carro_remoto.git

LINKS DE COMPRA

Caso seja necessário, a seguir uma lista de links para comprar os componentes do carrinho seguidor de linha montado no projeto:

Item	Link
Alicate universal 5 polegadas	https://lista.mercadolivre.com.br/alicate-universal-5-
	polegadas
Bateria Li-Ion (18650)	https://www.moduloeletronica.com.br/produto/bateria-li-
,	ion-cr18650-37v-2200mah-green/5519308
Câmera Raspberry	<u>Câmera</u>
Carregador de baterias Li-lon	https://encurtador.com.br/IHYi6

Cartão microSd 16gb	Cartão
Chave de fenda	https://encurtador.com.br/Ovqdo
Estação de solda Yihua 852	https://encurtador.com.br/Zk4ID
Esponja vegetal	https://encurtador.com.br/ki6WY
Fluxo de solda	https://encurtador.com.br/5lqfO
Fio estanhado 20cm	https://pt.aliexpress.com/item/1005005685884056.html
Jumper macho-fêmea de 10cm	https://goo.su/WFz30sx
Jumper fêmea-fêmea de 20cm	Jumpers
Jumper macho-fêmea de 20cm	https://goo.su/hzbYH
Jumper macho-macho de 10cm	https://goo.su/eFrkVt
Jumper macho-macho de 20cm	https://goo.su/MU7zFO
Kit de montagem	https://www.robocore.net/kit-plataforma-robotica/kit-chassi-4wd-com-motores-e-rodas
Multímetro digital Hikari HM- 2082	https://goo.su/xNbRKE
Pistola de cola quente Vonder	https://lc.cx/uMrdaY
Raspberry pi 4 8gb	Raspberry
Tubo de cola quente	https://lc.cx/_Nwzwm
Step-down	StepDown
Solda de estanho Cobix 60/40	https://lc.cx/uRLuau

DATASHEETS DE COMPONENTES

Os datasheets são documentos com informações técnicas de componentes, módulos, placas e etc. São usados como material de consulta para entender sua natureza.

Item	Link
Raspberry pi 4	Raspberry
Circuito L298N	https://lc.cx/9St9Mw
Motor DC 5V	https://cdn.sparkfun.com/datasheets/Robotics/DG01D.jpg
Guia da ponte H	https://lc.cx/9nQJmO
Step-down	XL4016 pdf, XL4016 Description, XL4016 Datasheet,
·	XL4016 view ::: ALLDATASHEET :::