# Phrase-Based MT: Decoding



February 7, 2013

# Phrase Based MT

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{f})$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{f} \mid \mathbf{e}) \times p(\mathbf{e})$$

$$\approx \arg \max_{\mathbf{e}} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) \times p(\mathbf{e})$$



- Recipe
  - Segmentation / Alignment model
  - Phrase model
  - Language Model

# Phrase Tables

| $ar{\mathbf{f}}$     | $\overline{\mathbf{e}}$ | $p(\overline{\mathbf{f}} \mid \overline{\mathbf{e}})$ |
|----------------------|-------------------------|-------------------------------------------------------|
|                      | the issue               | 0.41                                                  |
| das Thema            | the point               | 0.72                                                  |
| das i liellia        | the subject             | 0.47                                                  |
|                      | the thema               | 0.99                                                  |
| oo eiba              | there is                | 0.96                                                  |
| es gibt<br>there are | there are               | 0.72                                                  |
| morgen               | tomorrow                | 0.9                                                   |
| fliege ich           | will I fly              | 0.63                                                  |
|                      | will fly                | 0.17                                                  |
|                      | I will fly              | 0.13                                                  |

# Reordering Model



| phrase | translates | movement           | distance |
|--------|------------|--------------------|----------|
| 1      | 1–3        | start at beginning | 0        |
| 2      | 6          | skip over 4-5      | +2       |
| 3      | 4–5        | move back over 4-6 | -3       |
| 4      | 7          | skip over 6        | +1       |

Scoring function:  $d(x) = \alpha^{|x|}$  — exponential with distance

• Task: translate this sentence from German into English

er geht ja nicht nach hause

• Task: translate this sentence from German into English



• Pick phrase in input, translate

• Task: translate this sentence from German into English



- Pick phrase in input, translate
  - it is allowed to pick words out of sequence reordering
  - phrases may have multiple words: many-to-many translation

• Task: translate this sentence from German into English



• Pick phrase in input, translate

• Task: translate this sentence from German into English



• Pick phrase in input, translate

## **Computing Translation Probability**

Probabilistic model for phrase-based translation:

$$\mathbf{e}_{\mathsf{best}} = \mathsf{argmax}_{\mathbf{e}} \ \prod_{i=1}^{I} \phi(\bar{f}_i | \bar{e}_i) \ d(start_i - end_{i-1} - 1) \ p_{\scriptscriptstyle \mathrm{LM}}(\mathbf{e})$$

- Score is computed incrementally for each partial hypothesis
- Components

**Phrase translation** Picking phrase  $\bar{f}_i$  to be translated as a phrase  $\bar{e}_i$ 

ightarrow look up score  $\phi(\bar{f}_i|\bar{e}_i)$  from phrase translation table

**Reordering** Previous phrase ended in  $end_{i-1}$ , current phrase starts at  $start_i$ 

 $\rightarrow$  compute  $d(start_i - end_{i-1} - 1)$ 

**Language model** For n-gram model, need to keep track of last n-1 words

 $\rightarrow$  compute score  $p_{\text{LM}}(w_i|w_{i-(n-1)},...,w_{i-1})$  for added words  $w_i$ 

Chapter 6: Decoding

7

### **Translation Options**



- Many translation options to choose from
  - in Europarl phrase table: 2727 matching phrase pairs for this sentence
  - by pruning to the top 20 per phrase, 202 translation options remain

### **Translation Options**



- The machine translation decoder does not know the right answer
  - picking the right translation options
  - arranging them in the right order
- $\rightarrow$  Search problem solved by heuristic beam search

# **Decoding: Precompute Translation Options**



consult phrase translation table for all input phrases

# **Decoding: Start with Initial Hypothesis**





initial hypothesis: no input words covered, no output produced

# **Decoding: Hypothesis Expansion**





pick any translation option, create new hypothesis

# **Decoding: Hypothesis Expansion**





create hypotheses for all other translation options

# **Decoding: Hypothesis Expansion**



also create hypotheses from created partial hypothesis

# **Decoding: Find Best Path**



backtrack from highest scoring complete hypothesis

# Complexity

- This is an NP-complete problem
  - Reduction to TSP (sketch)
    - Each source word is a city
    - A bigram LM encodes the distance between pairs of cities
  - Knight (1999) has careful proof
- How do we solve such problems?
  - Dynamic programming [risk free]
    - The state is the current city C & the set of previous visited cities
    - Doesn't matter the order the previous list was visited in as long as we keep the best path to C through
    - How many states are there?
  - Approximate search [risky]

#### Recombination

- Two hypothesis paths lead to two matching hypotheses
  - same number of foreign words translated
  - same English words in the output
  - different scores



• Worse hypothesis is dropped



#### Recombination

- Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
  - same number of foreign words translated
  - same last two English words in output (assuming trigram language model)
  - same last foreign word translated
  - different scores



Worse hypothesis is dropped



#### **Restrictions on Recombination**

- Translation model: Phrase translation independent from each other
  - → no restriction to hypothesis recombination
- Language model: Last n-1 words used as history in n-gram language model
  - $\rightarrow$  recombined hypotheses must match in their last n-1 words
- Reordering model: Distance-based reordering model based on distance to end position of previous input phrase
  - → recombined hypotheses must have that same end position

## **Pruning**

- Recombination reduces search space, but not enough (we still have a NP complete problem on our hands)
- Pruning: remove bad hypotheses early
  - put comparable hypothesis into stacks
     (hypotheses that have translated same number of input words)
  - limit number of hypotheses in each stack

#### **Stacks**



- Hypothesis expansion in a stack decoder
  - translation option is applied to hypothesis
  - new hypothesis is dropped into a stack further down

### **Stack Decoding Algorithm**

```
1: place empty hypothesis into stack 0
2: for all stacks 0...n-1 do
      for all hypotheses in stack do
          \  \, \text{for all translation options } \  \, \text{do} \\
4:
           if applicable then
5:
              create new hypothesis
              place in stack
7:
              recombine with existing hypothesis if possible
8:
              prune stack if too big
9:
           end if
10:
         end for
11:
      end for
13: end for
```

 ē: <s>

 c: ---- 

 p: 1.0













### **Pruning**

- Pruning strategies
  - histogram pruning: keep at most k hypotheses in each stack
  - stack pruning: keep hypothesis with score  $\alpha \times$  best score ( $\alpha < 1$ )
- Computational time complexity of decoding with histogram pruning

 $O(\max \text{ stack size} \times \text{translation options} \times \text{sentence length})$ 

• Number of translation options is linear with sentence length, hence:

 $O(\text{max stack size} \times \text{sentence length}^2)$ 

• Quadratic complexity

### **Reordering Limits**

- Limiting reordering to maximum reordering distance
- Typical reordering distance 5–8 words
  - depending on language pair
  - larger reordering limit hurts translation quality
- Reduces complexity to linear

 $O(\max \text{ stack size} \times \text{ sentence length})$ 

• Speed / quality trade-off by setting maximum stack size

## Translating the Easy Part First?

#### the tourism initiative addresses this for the first time



both hypotheses translate 3 words worse hypothesis has better score

## **Estimating Future Cost**

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
  - translation model: cost known
  - language model: output words known, but not context
    - → estimate without context
  - reordering model: unknown, ignored for future cost estimation

#### **Cost Estimates from Translation Options**

the tourism initiative addresses this for the first time



cost of cheapest translation options for each input span (log-probabilities)

#### **Cost Estimates for all Spans**

• Compute cost estimate for all contiguous spans by combining cheapest options

| first      | future cost estimate for $n$ words (from first) |      |      |      |      |      |      |       |       |
|------------|-------------------------------------------------|------|------|------|------|------|------|-------|-------|
| word       | 1                                               | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9     |
| the        | -1.0                                            | -3.0 | -4.5 | -6.9 | -8.3 | -9.3 | -9.6 | -10.6 | -10.6 |
| tourism    | -2.0                                            | -3.5 | -5.9 | -7.3 | -8.3 | -8.6 | -9.6 | -9.6  |       |
| initiative | -1.5                                            | -3.9 | -5.3 | -6.3 | -6.6 | -7.6 | -7.6 |       | •     |
| addresses  | -2.4                                            | -3.8 | -4.8 | -5.1 | -6.1 | -6.1 |      | •     |       |
| this       | -1.4                                            | -2.4 | -2.7 | -3.7 | -3.7 |      |      |       |       |
| for        | -1.0                                            | -1.3 | -2.3 | -2.3 |      | •    |      |       |       |
| the        | -1.0                                            | -2.2 | -2.3 |      | •    |      |      |       |       |
| first      | -1.9                                            | -2.4 |      | -    |      |      |      |       |       |
| time       | -1.6                                            |      | •    |      |      |      |      |       |       |

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)

#### **Combining Score and Future Cost**



- Hypothesis score and future cost estimate are combined for pruning
  - left hypothesis starts with hard part: the tourism initiative score: -5.88, future cost:  $-6.1 \rightarrow \text{total cost -}11.98$
  - middle hypothesis starts with easiest part: the first time score: -4.11, future cost: -9.3 → total cost -13.41
  - right hypothesis picks easy parts: this for ... time score: -4.86, future cost:  $-9.1 \rightarrow \text{total cost } -13.96$





Future costs make these hypotheses comparable.

#### **Other Decoding Algorithms**

- A\* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)

#### A\* Search



- Uses admissible future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created

#### **Greedy Hill-Climbing**

- Create one complete hypothesis with depth-first search (or other means)
- Search for better hypotheses by applying change operators
  - change the translation of a word or phrase
  - combine the translation of two words into a phrase
  - split up the translation of a phrase into two smaller phrase translations
  - move parts of the output into a different position
  - swap parts of the output with the output at a different part of the sentence
- Terminates if no operator application produces a better translation

### Marginal Decoding

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{f})$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{f} \mid \mathbf{e}) \times p(\mathbf{e})$$

$$\approx \arg \max_{\mathbf{e}} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) \times p(\mathbf{e})$$

#### Does this last approximation matter?

- Variational & MCMC explored
- marginal benefits, depending on training
- Really hard problem (Sima'an, 1997)



Adapted from Koehn (2006)



Adapted from Koehn (2006)



Adapted from Koehn (2006)

### Decoding algorithm

- Translation as a search problem
- Partial hypothesis keeps track of
  - which source words have been translated (coverage vector)
  - *n*-I most recent words of English (for LM!)
  - a back pointer list to the previous hypothesis + (e,f) phrase pair used
  - the (partial) translation probability
  - the estimated probability of translating the remaining words (precomputed, a function of the coverage vector)
- Start state: no translated words, E=<s>, bp=nil
- Goal state: all translated words

### Decoding algorithm

- Q[0] ← Start state
- for i = 0 to |**f**|-**l** 
  - Keep b best hypotheses at Q[i]
  - for each hypothesis h in Q[i]
    - for each untranslated span in h.c for which there is a translation <e,f>in the phrase table
      - h' = h extend by <e,f>
      - Is there an item in Q[|h'.c|] with = LM state?
        - yes: update the item bp list and probability
        - no:  $Q[|h'.c|] \leftarrow h'$
- Find the best hypothesis in  $Q[|\mathbf{f}|]$ , reconstruction translation by following back pointers

<u>e</u>: <s>

*p*: 1.0













#### Reordering

- Language express words in different orders
  - bruja verde vs. green witch
- Phrase pairs can "memorize" some of these
- More general: in decoding, "skip ahead"
- Problem:
  - Won't "easy parts" of the sentence be translated first?
- Solution:
  - Future cost estimate
  - For every coverage vector, estimate what it will cost to translate the remaining untranslated words
  - When pruning, use p \* future cost!









Future costs make these hypotheses comparable.

### Decoding summary

- Finding the best hypothesis is NP-hard
  - Even with no language model, there are an exponential number of states!
  - Solution I: limit reordering
  - Solution 2: (lossy) pruning