# Projeto final:

# Otimização de roteamento da empresa Entrega Tudo

Emanuel Souza Costa, João Marcelo Candido Boregs e Saulo Costa Maranhão



CENTRO DE INFORMÁTICA UNIVERSIDADE FEDERAL DA PARAÍBA

| Emanuel Souza Costa, João Marcelo | Candido Boregs e Saulo C | osta Maranhão |
|-----------------------------------|--------------------------|---------------|
|                                   |                          |               |

# Projeto final

Relatório apresentado à disciplina Análise e Projeto de Algoritmo, do curso de Engenharia de Computação, do Centro de informática, da Universidade Federal da Paraíba

Professor: Bruno Bruck

Outubro de 2023

## **RESUMO**

Este projeto teve como objetivo comparar e avaliar o desempenho de três abordagens de otimização: algoritmo Guloso, Variable Neighborhood Descent (VND) e Iterated Local Search (ILS) para o problema de omitização de roteamento. O intuito por trás do projeto é entender e comparar estratégias de otimização, visando encontrar soluções mais próximas do ótimo global. Os resultados revelaram que o algoritmo Guloso ofereceu soluções iniciais rápidas, porém distantes do ótimo global. O VND melhorou essa solução o ILS aprimorou ainda mais a solução do VND em alguns casos, atingindo resultados mais próximos do ótimo global.

# 1 INTRODUÇÃO

A resolução de problemas de otimização é uma área crucial em diversas disciplinas, desde logística e engenharia até inteligência artificial. A busca por soluções ideais ou aproximadas a problemas complexos tem impulsionado o desenvolvimento de algoritmos e técnicas sofisticadas. Este projeto concentra-se na comparação e análise de três abordagens de otimização para o problema de roteamento: algoritmo Guloso, Variable Neighborhood Descent (VND) e Iterated Local Search (ILS).

### 2 METODOLOGIA

Para realizar a análise comparativa dos algoritmos de otimização, foram implementados os algoritmos Guloso, Variable Neighborhood Descent (VND) e Iterated Local Search (ILS) na linguagem de programação C++ na versão 20. O ambiente de desenvolvimento escolhido foi o Visual Studio Code, reconhecido por sua flexibilidade e recursos de depuração que facilitam a escrita e o teste de código.

### 2.1 Implementação em C++ (Versão 20)

Utilizando as estruturas de dados e as funcionalidades oferecidas pela linguagem C++ na versão 20, cada algoritmo foi traduzido e adaptado para atender às exigências do problema de otimização em questão.

#### 2.2 Visual Studio Code

O ambiente de desenvolvimento escolhido, o Visual Studio Code, proporcionou um suporte flexível e robusto para o desenvolvimento em C++. Com a integração de extensões e plugins especializados para C++ e a depuração eficiente oferecida pelo Visual Studio Code, foi possível realizar a escrita, compilação e depuração dos códigos dos algoritmos de forma integrada e eficaz.

#### 2.3 Testes e Validação

Cada algoritmo implementado passou por testes extensivos para verificar sua funcionalidade, corretude e desempenho. Diversos conjuntos de dados de teste foram utilizados para validar o comportamento dos algoritmos, considerando diferentes instâncias do problema de otimização.

#### 2.4 Avaliação de Desempenho

A comparação de desempenho dos algoritmos foi realizada considerando métricas como tempo de execução, qualidade da solução encontrada e eficiência na convergência para o ótimo global. Essas métricas foram cruciais para avaliar e comparar o desempenho relativo dos algoritmos Guloso, VND e ILS.

## 3 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Os resultados obtidos pela aplicação dos algoritmos Guloso, Variable Neighborhood Descent (VND) e Iterated Local Search (ILS) são apresentados na tabela abaixo, demonstrando o valor da solução encontrada, o tempo de execução e o GAP em relação ao valor ótimo, no contexto do problema de otimização.

|           |       | Heurística Construtiva |            | VND      |               |            | ILS      |               |            |          |
|-----------|-------|------------------------|------------|----------|---------------|------------|----------|---------------|------------|----------|
|           | Ótimo | Valor solução          | Tempo (ms) | GAP      | Valor solução | Tempo (ms) | GAP      | Valor solução | Tempo (ms) | GAP      |
| n9k5_A    | 428   | 496                    | 1,53       | 15,8879  | 456           | 3,05       | 6,5421   | 456           | 115,67     | 6,5421   |
| n9k5_B    | 506   | 652                    | 1,49       | 28,8538  | 534           | 2,37       | 5,5336   | 534           | 115,67     | 5,5336   |
| n9k5_C    | 559   | 652                    | 1,53       | 16,6369  | 632           | 2,93       | 13,0590  | 632           | 252,00     | 13,0590  |
| n9k5_D    | 408   | 428                    | 1,50       | 4,9020   | 408           | 3,58       | 0,0000   | 408           | 120,33     | 0,0000   |
| n14k5_A   | 471   | 556                    | 1,30       | 18,0467  | 496           | 2,39       | 5,3079   | 496           | 133,00     | 5,3079   |
| n14k5_B   | 565   | 744                    | 1,32       | 31,6814  | 590           | 2,60       | 4,4248   | 590           | 131,00     | 4,4248   |
| n14k5_C   | 569   | 1030                   | 1,30       | 81,0193  | 817           | 3,15       | 43,5852  | 817           | 490,67     | 43,5852  |
| n14k5_D   | 471   | 508                    | 1,31       | 7,8556   | 496           | 2,58       | 5,3079   | 496           | 155,33     | 5,3079   |
| n22k3_A   | 605   | 928                    | 1,34       | 53,3884  | 656           | 3,11       | 8,4298   | 651           | 257,67     | 7,6033   |
| n22k3_B   | 777   | 1272                   | 1,37       | 63,7066  | 828           | 3,05       | 6,5637   | 823           | 256,67     | 5,9202   |
| n22k3_C   | 777   | 1272                   | 1,34       | 63,7066  | 1047          | 3,05       | 34,7490  | 1047          | 806,00     | 34,7490  |
| n22k3_D   | 605   | 928                    | 1,30       | 53,3884  | 641           | 3,41       | 5,9504   | 641           | 223,33     | 5,9504   |
| n31k5_A   | 650   | 1509                   | 1,34       | 132,1538 | 1314          | 3,19       | 102,1538 | 1314          | 832,00     | 102,1538 |
| n31k5_B   | 933   | 2340                   | 1,35       | 150,8039 | 1868          | 2,96       | 100,2144 | 1868          | 828,00     | 100,2144 |
| n31k5_C   | 939   | 2681                   | 1,37       | 185,5165 | 2210          | 3,20       | 135,3568 | 2209          | 1034,67    | 135,2503 |
| n31k5_D   | 656   | 1357                   | 1,73       | 106,8598 | 1330          | 3,16       | 102,7439 | 1330          | 229,67     | 102,7439 |
| n43k6_A   | 801   | 1928                   | 1,72       | 140,6991 | 1821          | 3,43       | 127,3408 | 1821          | 1207,00    | 127,3408 |
| n43k6_B   | 1203  | 3134                   | 1,71       | 160,5154 | 3027          | 3,74       | 151,6209 | 3027          | 1198,33    | 151,6209 |
| n43k6_C   | 1208  | 3541                   | 2,06       | 193,1291 | 3386          | 4,34       | 180,2980 | 3343          | 1480,33    | 176,7384 |
| n43k6_D   | 802   | 2038                   | 1,78       | 154,1147 | 2025          | 3,21       | 152,4938 | 2025          | 273,67     | 152,4938 |
| n64k9_A   | 934   | 3174                   | 1,82       | 239,8287 | 3062          | 4,72       | 227,8373 | 2675          | 2192,67    | 186,4026 |
| n64k9_B   | 1503  | 5418                   | 1,77       | 260,4790 | 5306          | 4,69       | 253,0273 | 4269          | 1805,33    | 184,0319 |
| n64k9_C   | 1510  | 6863                   | 1,84       | 354,5033 | 5848          | 5,32       | 287,2848 | 5572          | 2500,00    | 269,0066 |
| n64k9_D   | 932   | 3005                   | 1,89       | 222,4249 | 2908          | 3,50       | 212,0172 | 2908          | 374,00     | 212,0172 |
| n120k7_A  | 1029  | 4743                   | 2,63       | 360,9329 | 4503          | 11,97      | 337,6093 | 3915          | 6936,67    | 280,4665 |
| n120k7_B  | 2052  | 7752                   | 3,13       | 277,7778 | 7512          | 11,77      | 266,0819 | 7018          | 6739,33    | 242,0078 |
| n120k7_C  | 2040  | 9950                   | 3,43       | 387,7451 | 9781          | 11,73      | 379,4608 | 7197          | 11764,00   | 252,7941 |
| n120k7_D  | 1046  | 4834                   | 3,20       | 362,1415 | 4770          | 4,70       | 356,0229 | 4770          | 3146,00    | 356,0229 |
| n199k17_A | 1672  | 11216                  | 4,77       | 570,8134 | 9837          | 25,63      | 488,3373 | 8546          | 14069,00   | 411,1244 |
| n199k17_B | 3302  | 22619                  | 5,57       | 585,0091 | 19611         | 25,17      | 493,9128 | 16437         | 11365,67   | 397,7892 |
| n199k17_C | 3301  | 30985                  | 4,50       | 838,6550 | 25720         | 39,40      | 679,1578 | 22639         | 33769,67   | 585,8225 |
| n199k17_D | 1672  | 8831                   | 4,23       | 428,1699 | 8565          | 10,01      | 412,2608 | 8563          | 4870,67    | 412,1411 |

Figura 1: Planilha que mostra os resultados obtidos de cada caso de teste (autoria própria)

A análise desses resultados revela as capacidades e limitações de cada algoritmo na resolução do problema de otimização, considerando a qualidade da solução encontrada, o tempo de execução e a proximidade em relação ao valor ótimo. Essas métricas são essenciais para compreender a eficácia de cada abordagem e sua adequação à busca de soluções ideais ou aproximadas em contextos de otimização.

## 4 CONCLUSÕES

Este projeto visou comparar a eficácia de três abordagens para resolver um problema de otimização: algoritmo guloso, Variable Neighborhood Descent (VND) e Iterated Local Search (ILS). O algoritmo guloso ofereceu uma solução rápida, porém distante do ótimo global. O VND melhorou essa solução, explorando diferentes vizinhanças. Contudo, o ILS se destacou, aprimorando significativamente a solução do VND e alcançando resultados mais próximos do ótimo global. Conclui-se que, para problemas complexos, abordagens mais avançadas, como o VND e o ILS, são fundamentais para alcançar soluções mais próximas do ótimo global, enquanto o algoritmo guloso serve como um ponto de partida, mas não é suficiente para soluções ideais.