

planetmath.org

Math for the people, by the people.

proof of Vitali convergence theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfVitaliConvergenceTheorem}$

Date of creation 2013-03-22 17:31:04 Last modified on 2013-03-22 17:31:04 Owner stevecheng (10074) Last modified by stevecheng (10074)

Numerical id 5

Author stevecheng (10074)

Entry type Proof

Classification msc 28A20

Theorem. Let $f_1, f_2,...$ be \mathbf{L}^p -integrable functions on a measure space (X, μ) , for $1 \leq p < \infty$. The following conditions are necessary and sufficient for f_n to be a Cauchy sequence in the $\mathbf{L}^p(X, \mu)$ norm:

- (i) the sequence f_n is Cauchy in measure;
- (ii) the functions $\{|f_n|^p\}$ are uniformly integrable; and
- (iii) for each $\epsilon > 0$, there is a set A of finite measure, with $||f_n \mathbf{1}(X \setminus A)|| < \epsilon$ for all n.

Proof. We abbreviate $|f_n - f_m|$ by f_{mn} .

Necessity of (i). Fix t > 0, and let $E_{mn} = \{f_{mn} \ge t\}$. Then

$$\mu(E_{mn})^{1/p} = \frac{1}{t} \|t \mathbf{1}(E_{mn})\| \le \frac{1}{t} \|f_{mn}\| \to 0, \text{ as } m, n \to \infty.$$

Necessity of (ii). Select N such that $||f_n - f_N|| < \epsilon$ when $n \ge N$. The family $\{|f_1|^p, \ldots, |f_{N-1}|^p, |f_N|^p\}$ is uniformly integrable because it consists of only *finitely* many integrable functions.

So for every $\epsilon > 0$, there is $\delta > 0$ such that $\mu(E) < \delta$ implies $||f_n \mathbf{1}(E)|| < \epsilon$ for $n \leq N$. On the other hand, for n > N,

$$||f_n \mathbf{1}(E)|| \le ||(f_n - f_N) \mathbf{1}(E)|| + ||f_N \mathbf{1}(E)|| < 2\epsilon$$

for the same sets E, and thus the entire infinite sequence $\{|f_n|^p\}$ is uniformly integrable too.

Necessity of (iii). Select N such that $||f_n - f_N|| < \epsilon$ for all $n \ge N$. Let φ be a simple function approximating f_N in \mathbf{L}^p norm up to ϵ . Then $||f_n - \varphi|| < 2\epsilon$ for all $n \ge N$. Let $A_N = \{\varphi \ne 0\}$ be the support of φ , which must have finite measure. It follows that

$$||f_n \mathbf{1}(X \setminus A_N)|| = ||f_n - f_n \mathbf{1}(A_N)|| \le ||f_n - \varphi|| + ||\varphi - f_n \mathbf{1}(A_N)||$$
$$= ||f_n - \varphi|| + ||(\varphi - f_n)\mathbf{1}(A_N)||$$
$$< 2\epsilon + 2\epsilon.$$

For each n < N, we can similarly construct sets A_n of finite measure, such that $||f_n \mathbf{1}(X \setminus A_n)|| < 4\epsilon$. If we set $A = A_1 \cup \cdots \cup A_{N-1} \cup A_N$, a finite union, then A has finite measure, and clearly $||f_n \mathbf{1}(X \setminus A)|| < 4\epsilon$ for any n.

Sufficiency. We show f_{mn} to be small for large m, n by a multi-step estimate:

$$||f_{mn}|| \le ||f_{mn}\mathbf{1}(A \setminus E_{mn})|| + ||f_{mn}\mathbf{1}(E_{mn})|| + ||f_{mn}\mathbf{1}(X \setminus A)||.$$

Use condition (iii) to choose A of finite measure such that $||f_n \mathbf{1}(X \setminus A)|| < \epsilon$ for every n. Then $||f_{mn} \mathbf{1}(X \setminus A)|| < 2\epsilon$.

Let $t = \epsilon/\mu(A)^{1/p} > 0$, and $E_{mn} = \{f_{mn} \geq t\}$. By condition (ii) choose $\delta > 0$ so that $||f_n \mathbf{1}(E)|| < \epsilon$ whenever $\mu(E) < \delta$. By condition (i), take N such that if $m, n \geq N$, then $\mu(E_{mn}) < \delta$; it follows immediately that $||f_{mn}\mathbf{1}(E_{mn})|| < 2\epsilon$.

Finally, $||f_{mn}\mathbf{1}(A \setminus E_{mn})|| \le t\mu(A)^{1/p} = \epsilon$, since $f_{mn} < t$ on the complement of E_{mn} . Hence $||f_{mn}|| < 5\epsilon$ for $m, n \ge N$.

Remark. In the statement of the theorem, instead of dealing with Cauchy sequences, we can directly speak of convergence of f_n to f in \mathbf{L}^p and in measure. This variation of the theorem is easily proved, for:

- a sequence converges in \mathbf{L}^p if and only if it is Cauchy in \mathbf{L}^p ;
- a sequence that converges in measure is automatically Cauchy in measure;
- a simple adaptation of the argument shows that $f_n \to f$ in \mathbf{L}^p implies $f_n \to f$ in measure; and
- the limit in measure is unique.