

IN THE CLAIMS:

1 1-10. (Cancelled)

1 11. (Currently Amended) A method of dynamically controlling and managing operating characteristics of a fuel cell system, including the steps of comprising:

2 (A) providing a DC-DC converter circuit having an input connection to receive the output of a fuel cell, and connected to place a load across the fuel cell, said DC-DC converter circuit having internal switches that are operated at a duty cycle that is adjustable;

3 (B) providing a programmable controller that receives as an input, present and stored values of one or more operating characteristics, said programmable controller also being programmed to signal said DC-DC converter switches to adjust its duty cycle;

4 (C) identifying a weakest cell in a fuel cell stack;

5 (D) measuring the output voltage of the weakest cell;

6 (E) dynamically determining a desired value for said output voltage;

7 (F) comparing a present value of said weakest cell output voltage with a desired value;

8 (G) calculating a new duty cycle for the associated DC-DC converter within the fuel cell system required to substantially achieve said desired value for the output voltage of the weakest cell; and

9 (H) signaling said DC-DC converter to adjust its duty cycle to said new duty cycle.

1 12-14. (Cancelled)

1 15. (Currently Amended) A method of dynamically controlling and managing operating characteristics of a fuel cell system used to power a battery or an application device,
2 including the steps of comprising:

3 (A) providing a DC-DC converter circuit having an input connection to receive the output of a fuel cell, and connected to place a load across the fuel cell, said DC-
4 DC converter circuit having internal switches that are operated at a duty cycle that is ad-
5 justable;

6 (B) providing a programmable controller that receives as an input, present and stored values of one or more operating characteristics, said programmable controller also
7 being programmed to signal said DC-DC converter switches to adjust its duty cycle;

8 (C) dynamically determining a desired value for a plurality of operating characteristics of the fuel cell system, depending upon the operating conditions of the fuel cell
9 system;

10 (D) measuring said plurality of operating characteristics;

11 (E) dynamically determining an output power of the fuel cell stack that does not exceed a maximum power needed by at least one of the battery or the application de-
12 vice being powered by the system, but maintains said desired values of said operating
13 characteristics;

14 (F) comparing a present value of said output power with a desired value;

15 (G) calculating a new duty cycle for the associated DC-DC converter within
16 the fuel cell system required to substantially achieve said desired value for the output
17 power; and

18 (H) signaling the DC-DC converter to adjust its duty cycle to said new duty
19 cycle.

20 16. (Currently Amended) A method of controlling a fuel cell system, including the
21 steps of comprising:

22 (A) dynamically determining desired values for a plurality of operating char-
23 acteristics being monitored in a current mode of operation of a fuel cell system;

24 (B) measuring each of said selected operating characteristics;

6 (C) determining a duty cycle required to substantially achieve each individual
7 desired value and storing each duty cycle;
8 (D) comparing stored values and selecting the minimum duty cycle; and
9 (E) using this duty cycle as the new duty cycle of the DC-DC converter circuit
10 switches within said fuel cell system.

1 17. (Currently Amended) The method as defined in claim 16 ~~including the further~~
2 step of further comprising:

3 periodically repeating determining the desired values and the measurements and
4 updating the duty cycle.

1 18. (Cancelled)

1 19. (Currently Amended) A method of dynamically controlling and managing tem-
2 perature in a fuel cell system, ~~including the steps of~~comprising:

3 (A) measuring the stack output voltage of the fuel cell system;
4 (B) determining whether the stack output voltage is at a desired value depend-
5 ing upon the present desired temperature range of the fuel cell system, for the present op-
6 erating conditions, and

7 (C) adjusting the duty cycle of an associated DC-DC converter to change the
8 output stack voltage to substantially the desired value.

1 20. (Cancelled)