LECTURE NOTE 10

OPTIMAL WEIGHT MATRIX

1. INTRODUCTION

As in Note 9, we shall work with the following general framework:

$$Q_i = R_i \gamma + V_i, \tag{1}$$

$$E(W_i V_i) = 0, (2)$$

where we observe (Q_i, R_i, W_i) for i = 1, ..., n. As in Note 6, we shall assume random sampling, so that (Q_i, R_i, W_i) are independent and identically distributed (i.i.d.) from some joint distribution. The system aspect is that Q_i can be a vector: Q_i is $H \times 1$, R_i is $H \times K$, the parameter vector γ is $K \times 1$, and the vector of errors V_i is $H \times 1$. Estimation of γ is based on the orthogonality between W_i and the error V_i . The matrix W_i is $L \times H$, so $W_i V_i$ is a $L \times 1$ vector, and $E(W_i V_i) = 0$ provides L orthogonality conditions to estimate the K components of γ . We need $L \geq K$.

Note 9, equation (26') has the following moment equation:

$$S_{WQ} = S_{WR}\gamma + S_{WV},$$

which leads to the minimum distance estimator:

$$\hat{\gamma} = \arg\min_{a} (S_{WQ} - S_{WR}a)' \hat{C}(S_{WQ} - S_{WR}a)$$
$$= (S'_{WR} \hat{C}S_{WR})^{-1} S'_{WR} \hat{C}S_{WQ}.$$

Here \hat{C} is a positive definite, symmetric matrix that converges in probability to a nonrandom matrix C, which is positive definite and symmetric. By random sampling, W_iV_i is

i.i.d., and so

$$Cov(S_{WQ} - S_{WR}\gamma) = Cov(S_{WV}) = \frac{1}{n}Cov(W_iV_i) = \frac{1}{n}\Sigma.$$

Suppose that Σ is proportional to an identity matrix. Then symmetry suggests that we simply use Euclidean distance, so that $\hat{C} = C = I$. We shall show in Section 2 that C = I is in fact optimal in this special case. So in this special case, we should obtain $\hat{\gamma}$ from a least-squares fit of S_{WQ} on S_{WR} .

Now let Σ be a general, positive definite, symmetric matrix. It has a square root:

$$\Sigma = \Sigma^{1/2} \Sigma^{1/2},$$

where $\Sigma^{1/2}$ is positive definite, symmetric. Define

$$\Sigma^{-1/2} = (\Sigma^{1/2})^{-1}$$

and use it to transform the moment equation:

$$\Sigma^{-1/2} S_{WQ} = (\Sigma^{-1/2} S_{WR}) \gamma + \Sigma^{-1/2} S_{WV},$$

which we can write as

$$\tilde{S}_{WQ} = \tilde{S}_{WR}\gamma + \tilde{S}_{WV}.$$

Then

$$\operatorname{Cov}(\tilde{S}_{WV}) = \Sigma^{-1/2}(\frac{1}{n}\Sigma)\Sigma^{-1/2} = \frac{1}{n}I_L.$$

Now we are in the special case and should obtain $\hat{\gamma}$ from a least-squares fit of \tilde{S}_{WQ} on \tilde{S}_{WR} :

$$\hat{\gamma} = (\tilde{S}'_{WR} \tilde{S}_{WR})^{-1} \tilde{S}'_{WR} \tilde{S}_{WQ}$$

$$= (S'_{WR} \Sigma^{-1/2} \Sigma^{-1/2} S_{WR})^{-1} S'_{WR} \Sigma^{-1/2} \Sigma^{-1/2} S_{WQ}$$

$$= (S'_{WR} \Sigma^{-1} S_{WR})^{-1} S'_{WR} \Sigma^{-1} S_{WQ}.$$

So the optimal choice for the weight matrix in the general case is $C = \Sigma^{-1}$, and \hat{C} should be a consistent estimate of Σ^{-1} :

$$\hat{C} = \hat{\Sigma}^{-1} \xrightarrow{p} \Sigma^{-1} = C.$$

An alternative is to apply a weight matrix \hat{D} directly to the moment equation, as in Note 9, equations (30), (31), and (32). The optimal choice is

$$\hat{D} = S'_{WR} \hat{\Sigma}^{-1} \stackrel{p}{\to} [E(W_i R_i)]' \Sigma^{-1},$$

with

$$\hat{\gamma} = (\hat{D}S_{WR})^{-1}\hat{D}S_{WQ}.$$

2. OPTIMAL WEIGHT MATRIX WHEN $\Sigma = I$

Note 9, Section 5 shows in Claim 2 that the limit distribution is

$$\sqrt{n}(\hat{\gamma} - \gamma) \stackrel{d}{\to} \mathcal{N}(0, \Lambda)$$

with $\Lambda = \alpha \Sigma \alpha'$ and

$$\alpha = [DE(W_i R_i)]^{-1} D, \quad \Sigma = E(W_i V_i V_i' W_i').$$

Define $B = E(W_i R_i)$. When $\Sigma = I$, we have

$$\Lambda = (DB)^{-1}DD'(B'D')^{-1}.$$

If D = B', this reduces to

$$\Lambda^* = (B'B)^{-1}.$$

So we need to show that for any choice of D such that DB is nonsingular, $\Lambda \geq \Lambda^*$. Here the inequality means that $\Lambda - \Lambda^*$ is a positive semidefinite matrix, so that $l'(\Lambda - \Lambda^*)l \geq 0$ for any $K \times 1$ vector l.

Claim 1. For any $K \times L$ matrix D such that DB is nonsingular,

$$(DB)^{-1}DD'(B'D')^{-1} \ge (B'B)^{-1}.$$

Proof. First note that

$$I_L - B(B'B)^{-1}B' \ge 0,$$

because for any $L \times 1$ vector a,

$$a'(I_L - B(B'B)^{-1}B')a = a'(a - \hat{a}) = (a - \hat{a})'(a - \hat{a}) \ge 0,$$

with

$$\hat{a} = B(B'B)^{-1}B'a.$$

(This says that the sum of squared residuals from a least-squares fit of a on B is non-negative, and we have used $(a - \hat{a})$ orthogonal to \hat{a} .) If an $L \times L$ matrix G is positive semidefinite, then so is HGH' for any $K \times L$ matrix H, because

$$l'(HGH')l = a'Ga \ge 0,$$

where the $L \times 1$ vector a = H'l. So with

$$H = (DB)^{-1}D$$

(so $HB = I_K$), we have

$$H(I_L - B(B'B)^{-1}B')H' = (DB)^{-1}DD'(B'D')^{-1} - (B'B)^{-1} \ge 0.$$
 \diamond