Collect tweets from Twitter API and use batch and online ML methods

Done by: Salma EZZINA Chaima ELMESSAI

 Scrapping tweets that are related to the word 'UKRAINE' using the twitter api

- Scrapping tweets that are related to the word 'UKRAINE' using the twitter api
- Labellisation: using SentimentIntensityAnalyzer from nltk.sentiment.vader import

- Scrapping tweets that are related to the word 'UKRAINE' using the twitter api
- Labellisation: using SentimentIntensityAnalyzer from nltk.sentiment.vader import
- 3. Text preprocessing and feature extraction:

2 approaches: Tfidf and Word embeddings

- Scrapping tweets that are related to the word 'UKRAINE' using the twitter api
- Labellisation: using SentimentIntensityAnalyzer from nltk.sentiment.vader import
- 3. Text preprocessing and feature extraction:
 - 2 approaches: Tfidf and Word embeddings
- 4. Saving the dataset into a csv file for batch comparaison

- Scrapping tweets that are related to the word 'UKRAINE' using the twitter api
- Labellisation: using SentimentIntensityAnalyzer from nltk.sentiment.vader import
- 3. Text preprocessing and feature extraction:
 - 2 approaches: Tfidf and Word embeddings
- 4. Saving the dataset into a csv file for batch comparaison
- 5. Training models: kNN, one Vs one logistic regression, Hoeffding tree for online task

- 1. Scrapping tweets that are related to the word 'UKRAINE' using the twitter api
- 2. Labellisation: using SentimentIntensityAnalyzer from nltk.sentiment.vader import
- 3. Text preprocessing and feature extraction:

2 approaches: Tfidf and Word embeddings

- 4. Saving the dataset into a csv file for batch comparaison
- 5. Training models: kNN, one Vs one logistic regression, Hoeffding tree for online task
- 6. Training models: kNN and one Vs one logistic regression for batch data (2 cases: using all the data as train & splitting data)

Online classification

Each 10 samples:

kNN results

Samples processed: 9

BalancedAccuracy: 20.83%

WeightedF1: 41.30% CohenKappa: -3.45%

one_vs_one logistic regression results

Samples processed: 9

BalancedAccuracy: 16.67%

WeightedF1: 40.00% CohenKappa: 1.64%

Hoeff tree results

Samples processed: 9

BalancedAccuracy: 20.83%

WeightedF1: 43.50% CohenKappa: 1.64%

one_vs_one logistic regression results With embeddings

1/1 [======] - 0s 107ms/step

Samples processed: 9
BalancedAccuracy: 22.22%

WeightedF1: 29.32% CohenKappa: -27.27%

Study data distribution, each 100 samples

Plots of the scores:

Batch learning

Data distribution on 1000 samples

i. kNN with Tfidf

Train data results

					weighted f1 score 0.7868823231775172				
LAINI						precision	recall	f1-score	support
kNN					-1	0.77	0.89	0.83	334
					0	0.72	0.66	0.69	120
All the data	aset trained:	Results	5		1	0.87	0.70	0.78	216
	0.00403	7.55055.40	4.7		accuracy			0.79	670
weighted t1	score 0.80483				macro avg	0.79	0.75	0.77	670
	precision	recall	f1-score	support	weighted avg	0.79	0.79	0.79	670
-1	0.79	0.91	0.85	490	Test data re	esults			
0	0.73	0.70	0.71	181	weighted f1	scopo a 70606	06171601	2	
1	0.89	0.71	0.79	329	weighted ii	precision	recall		support
accuracy			0.81	1000	-1	0.69	0.88	0.77	156
					0	0.59	0.44	0.50	61
macro avg		0.77	0.78	1000	1	0.84	0.64	0.72	113
weighted avg	0.81	0.81	0.80	1000				100.000	
					accuracy		0 1000	0.72	330
					macro avg		0.65		330
					weighted avg	0.72	0.72	0.71	330

ii. 1 Vs 1 Logistic Regression with Tfidf

V = 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -					weighted f1 sc	ore 0.83456	812544141	.53	
oneVso	ne_logr		precision	recall	f1-score	support			
					-1	0.77	1.00	0.87	334
All the data	0	1.00	0.40	0.57	120				
All the data	1	1.00	0.87	0.93	216				
weighted f1	score 0.89594	066505297	41		accuracy			0.85	670
precision recall f1-score				support	macro avg	0.92	0.76	0.79	670
	pi cersion	recuir	11 30010	Suppor c	weighted avg	0.88	0.85	0.83	670
-1	0.83	1.00	0.91	490	- 20 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
0	1.00	0.60	0.75	181	Test data results				
1	1.00	329	weighted f1 score 0.654865936771163						
1	1.00	0.92	0.96	329		precision		f1-score	support
accuracy			0.90	1000	-1	0.61	0.99	0.75	156
	0.94	0.84	0.87	1000	0	1.00	0.16	0.28	61
macro avg					1	0.98	0.57	0.72	113
weighted avg	0.92	0.90	0.90	1000					
					accuracy		211242	0.69	330
					macro avg	0.86	0.57	0.59	330
					weighted avg	0.81	0.69	0.65	330

Train data results

iii. 1 Vs 1 Logistic Regression with embeddings

oneVsone_logreg

All the dataset trained: Results

	precision	recall	f1-score	support
-1	1.00	1.00	1.00	490
0	0.99	1.00	1.00	181
1	1.00	1.00	1.00	329
accuracy			1.00	1000
macro avg	1.00	1.00	1.00	1000
weighted avg	1.00	1.00	1.00	1000

Train data results

weighted	†1 SC	ore 0.99701	732133123	56	
50		precision	recall	f1-score	support
	-1	1.00	0.99	1.00	334
	0	1.00	1.00	1.00	120
	1	0.99	1.00	1.00	216
accur	racy			1.00	670
macro	avg	1.00	1.00	1.00	670
weighted	avg	1.00	1.00	1.00	670

Test data results

weighted	f1 s	core 0.67514	981615184	19	
		precision	recall	f1-score	support
	-1	0.67	0.88	0.76	156
	0	0.62	0.43	0.50	61
	1	0.78	0.56	0.65	113
accur	racy			0.69	330
macro	avg	0.69	0.62	0.64	330
weighted	avg	0.70	0.69	0.68	330

This task is a clustering task.

- We begin with a data preparation step in which we extract TF-IDF features
- Then we will test:
- online learning algorithms: Kmeans, STREAMKmeans and DBSTREAM.
- batch learning algorithms: Kmeans, DBSCAN, AgglomerativeClustering.
- Finally we will evaluate these algorithms using silhouette score

- The issue with the clustering algorithms is to determine the number of clusters.
- The number of clusters found using the DBSCAN algorithm is equal to 103.
- We used n_clusters=103 for K_means and AgglomerativeClustering.
- We found the following performances :
 - For DBSCAN : Silhouette Coefficient = 0.433
 - For Kmeans : Silhouette Coefficient = 0.414
- For Agglomerative Clustering : Silhouette Coefficient = 0.467

Online clustering

- We displayed for each ten samples the coefficient silhouette and we plotted the evolution of this coefficient in function of the number of samples.
- When we set the number of clusters to 103 like in the batch learning algorithms we get a coefficient silhouette equal to 1 for the STRFAMKmeans.
- We fixed the number of clusters to n clusters=3

• For the first 10 samples

After 80 samples

Conclusions

Batch is always faster, even with the same algorithms

You can't know if your model is overfitting

Online models can detect change distributions in data and are better in case of frequent updates

Thank you!