Dimensionality Reduction & Principal Components

Challenge

- When we have a large number of features, there is often multi-collinearity
 - Design doesn't fill the space
 - One (or more) variable(s) highly correlated with a combination of other variables
- Some times we have more features than observations
 - Design is over-determined

Goal

- Create a few new features that are functions (combinations) of original features and that preserve as much information as possible
- Analyze the new features
 - Cluster observations
 - Fit models with new features

2D Simple Example Which

dimension has the greatest variability?

3D Simple Example

Theory

Principal Component Idea

- Data $X = [x_1, x_2, ..., x_p]$
 - $-x_i$ is a feature with n values (one for each record)
- Standardize data $Z = [z_1, z_2, ..., z_p]$
 - z_j has mean 0 and variance 1
- Transform to new basis $ZA = W = [w_1, ..., w_p]$
 - w₁ accounts for max collective variation in Z
 - w_2 orthogonal to w_1 and accounts for max variation, etc.
- Reduce to the first few w_i

Set Up

Consider the first vector

$$\mathbf{w}_1 = \mathbf{a}_{11}\mathbf{z}_1 + \mathbf{a}_{12}\mathbf{z}_2 + \dots + \mathbf{a}_{1p}\mathbf{z}_p$$

= Za_1

Maximize w₁ variance,

$$s_1^2 = w_1^t w_1 / (n-1)$$

$$= a_1^t Z^t Z a_1 / (n-1)$$

$$= a_1^t R_{xx} a_1$$

Maximization

- Maximize w_1 variance, $s_1^2 = a_1^t R_{xx} a_1$
- Subject to the constraint $a_1^t a_1 = 1$

$$\max_{a_1\lambda_1} a_1^t R_{xx} a_1 - \lambda_1 (a_1^t a_1 - 1)$$

- Differentiate $2R_{xx}a_1 2\lambda_1a_1$
- Set to 0

$$R_{xx}a_1 = \lambda_1 a_1$$

Repeat

Eigenvector of $R_{_{\chi\chi}}$ and corresponding eigenvalue

Properties of the new basis

- w₁ is the first principal component
- The w_i are orthogonal
- \mathbf{w}_{j} has variance λ_{j}
- The eigenvalues are decreasing

$$\lambda_1 \ge \lambda_2 \cdots \ge \lambda_p > 0$$

 The sum of the eigenvalues is p, which equals the sum of the variances of z_i

How to use this information

- Collinearity occurs when some of the basis vectors are very short (dimensions are nearly collapsed)
- The relative size of variances (the eigenvalues) serves as indicator for collinearity
- The loadings (the eigenvectors) can reveal important relationships among the features
- The new basis can reveal clusters in the data

Italian Wines

Italian Wines

- Chemical analysis of wines grown in the same region in Italy
- Derived from 3 different cultivars.
- Features quantities of 13 chemicals found in each wine sample.
- 178 records, one for each sample.

Is the chemical composition useful in clustering the wine samples?

Seeing clusters in 13 dimensions...

Visualizing Pairwise Correlations

Interpretation of Loadings

	PC1	PC2	PC3	PC4
chem1	-0.144329395	0.483651548	-0.20738262	0.01785630
chem2	0.245187580	0.224930935	0.08901289	-0.53689028
chem3	0.002051061	0.316068814	0.62622390	0.21417556
chem4	0.239320405	-0.010590502	0.61208035	-0.06085941
chem5	-0.141992042	0.299634003	0.13075693	0.35179658
chem6	-0.394660845	0.065039512	0.14617896	-0.19806835
chem7	-0.422934297	-0.003359812	0.15068190	-0.15229479
chem8	0.298533103	0.028779488	0.17036816	0.20330102
chem9	-0.313429488	0.039301722	0.14945431	-0.39905653
chem10	0.088616705	0.529995672	-0.13730621	-0.06592568
chem11	-0.296714564	-0.279235148	0.08522192	0.42777141
chem12	-0.376167411	-0.164496193	0.16600459	-0.18412074
chem13	-0.286752227	0.364902832	-0.12674592	0.23207086

Eigenvector with greatest variance

Interpretation of Loadings

```
PC1
                           PC2
                                        PC3
                                                     PC4
chem1
       -0.144329395
                      0.483651548 - 0.20738262
                                                0.01785630
chem2
                      0.224930935
                                    0.08901289
                                               -0.53689028
        0.245187580
        0.002051061
chem3
                      0.316068814
                                    0.62622390
                                                0.21417556
        0.239320405
chem4
                     -0.010590502
                                    0.61208035 - 0.06085941
       -0.141992042
chem5
                      0.299634003
                                    0.13075693
                                                0.35179658
       0.394660845
                      0.065039512
                                    0.14617896 - 0.19806835
chem6
chem7
       0.422934297
                     -0.003359812
                                    0.15068190 - 0.15229479
chem8
        0.298533103
                      0.028779488
                                    0.17036816
                                                0.20330102
       10.313429488
chem9
                      0.039301722
                                    0.14945431 - 0.39905653
        0.088616705
chem10
                      0.529995672 - 0.13730621 - 0.06592568
       -0.296714564
                     -0.279235148
                                    0.08522192
                                                0.42777141
chem11
chem12 +0.376167411
                     -0.164496193
                                    0.16600459 - 0.18412074
chem13 - 0.286752227
                      0.364902832 - 0.12674592
                                                0.23207086
```

Contrast chem2&4&8 against chem6&7&9&12

Interpretation of Loadings

```
PC1
                           PC2
                                       PC3
                                                    PC4
                     0.483651548
chem1
       -0.144329395
                                  -0.20738262
                                                0.01785630
chem2
        0.245187580
                                   0.08901289 - 0.53689028
                     0.224930935
      0.002051061
chem3
                     0.316068814
                                   0.62622390
                                                0.21417556
chem4
      0.239320405 - 0.010590502
                                   0.61208035 - 0.06085941
chem5
       -0.141992042
                     0.299634003
                                   0.13075693
                                                0.35179658
chem6
       -0.394660845
                    0.065039512
                                   0.14617896 - 0.19806835
chem7
       -0.422934297 -0.003359812
                                   0.15068190 - 0.15229479
chem8
      0.298533103
                     0.028779488
                                   0.17036816
                                                0.20330102
chem9
       -0.313429488
                    0.039301722
                                   0.14945431 - 0.39905653
                     0.529995672
        0.088616705
                                  -0.13730621 -0.06592568
chem10
chem11 - 0.296714564
                                   0.08522192
                                                0.42777141
                     0.279235148
                    -0.164496193
chem12 - 0.376167411
                                   0.16600459 - 0.18412074
chem13 - 0.286752227
                      0.364902832 - 0.12674592
                                                0.23207086
```

Contrast chem1 and chem10 against chem11

Rules of Thumb for Selecting Components

Choose components such that at least 85% of variance captured

Ratio of largest to smallest variance > 10 indicates collinearity

3-means cluster on PC 1 & 2

4 wines incorrectly clustered

Applications

- Portfolio management in finance
- High throughput genetics data
- Image analysis pattern recognition and compression
- Intrusion detection in network traffic