And Operation TAAND

Given an array of n non-negative integers: ${\bf A_1},~{\bf A_2},~...,~{\bf A_N}.$ Your mission is finding a pair of integers ${\bf A_u},~{\bf A_v}~(1 \le u < v \le N)$ such that $({\bf A_u}$ bit_and ${\bf A_v})$ is as large as possible.

(\boldsymbol{And} is a bit-wise operation which is corresponding to $\boldsymbol{\&}$ in C++)

Input

The first line of the input contains a single integer N. The i-th line in the next N lines contains the A_i .

Output

Contains a single integer which is the largest value of ${\bf A_u}$ and ${\bf A_v}$ where 1 \leq u < v \leq N .

Constraints

50 points:

- $2 \le N \le 5000$
- $\bullet \quad 0 \leq \mathbf{A_i} \leq 10^9$

50 points:

- $2 \le N \le 3 \times 10^5$
- $0 \le A_i \le 10^9$

Example

Input:

1 **-**

2

4

10

Output:

8

Explanation

- 2 and 4 = 0
- 2 and 8 = 0
- 2 and 10 = 2
- 4 and 8 = 0
- 4 and 10 = 0
- 8 and 10 = 8