2) **4 คะแนน** (Lab14_1_6XXXXXXXX.py) ให้เขียนฟังก์ชัน remove_row_col(*list_a*, *row*, *col*) เพื่อ<u>คืนค่า</u>
ผลลัพธ์ที่ได้จากการลบทุก Element ในแถวที่ *row* และ คอลัมน์ที่ *col* ออกจาก List สองมิติ *list_a* ทั้งนี้หาก *row*หรือ *col* อยู่นอกขอบเขตที่จะทำการลบได้ จะต้องไม่มีการเปลี่ยนแปลงในแนว *row* หรือ *col* ดังกล่าว

<u>Input</u>	Output
[[2, 3, 4, 5], [8, 7, 6, 5], [0, 1, 2, 3]] 1 2	[[2, 3, 5], [0, 1, 3]]
[[2, 3, 4, 5], [8, 7, 6, 5], [0, 1, 2, 3]] 1	[[2, 4, 5], [0, 2, 3]]

• การวิเคราะห์ปัญหา

• Input: จำนวนข้อมูล ชนิดข้อมูล ชนิดข้อมูล
 • Output: (แสดงค่า) จำนวนข้อมูล ชนิดข้อมูล ชนิดข้อมูล
 (คืนค่า) จำนวนข้อมูล ชนิดข้อมูล

3) 4 คะแนน (HW14_1_6XXXXXXXX.py) ให้เขียนฟังก์ชัน Destructive reshape (matrix) เพื่อเปลี่ยนแปลงขนาด ของ list สองมิติในตัวแปร matrix ให้มีขนาด m × n โดยกำหนดให้ m น้อยกว่าหรือเท่ากับ n เสมอ และความ ต่างของ m และ n จะต้องมีค่าไม่เกิน 1 ทั้งนี้ผลลัพธ์ที่ได้จะต้องมีจำนวนสมาชิกเท่ากันในทุก row และเรียงสมาชิก ตามลำดับในเดิมในตัวแปร matrix ทีละ row และ column จากซ้ายบนไปขวาล่าง โดยสามารถเพิ่มจำนวนสมาชิกที่ เป็น 0 ได้ถ้าจำเป็น โดยจำนวน element ที่มีค่า 0 ที่เพิ่มเข้าไปจะต้องมีค่าน้อยที่สุดที่เป็นไปได้

Output Input [[2, 3, 4],[[2, 3, 4],[1, 2, 3]] [1, 2, 3]] [[1, 2, 1, 2],[[1, 2],[1, 2, 3],[3, 1, 2, 1], [2, 1, 0, 0]] [1, 2], [1, 2], [1]] [[1, 2, 3],[[1, 2],[3, 4], [4, 5, 6]] [5, 6]]

2	1	1
J	/	4

ชื่อ-นามเ	ชกล		รหัสนักศึกษ	ታገ	ตอนเรียน	ลำดับที่	
	9						
•	การวิเคราะห์ปั	ฎหา					
	• Input:		จำนวนข้อมูล	ชนิดข้อมูล			
	Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล			

____ชนิดข้อมูล

จำนวนข้อมูล_

4) **4 คะแนน** (HW14_2_6XXXXXXXX.py) ให้เขียนฟังก์ชัน append_ranking(*infile_name*='score_in.txt', outfile_name='score_out.txt') เพื่ออ่านข้อมูลจากไฟล์ที่ระบุชื่อด้วยตัวแปร infile_name แล้ว<u>เขียนผลลัพธ์</u> ลงในไฟล์ที่มีชื่อระบุด้วยตัวแปร outfile_name โดยกำหนดให้ content ภายในไฟล์มีลักษณะเดียวกันกับไฟล์ที่อ่าน เข้า แต่<u>ให้เพิ่ม</u>ลำดับในรายวิชาที่นักศึกษาได้รับไว้ที่ส่วนท้ายของแต่ละบรรทัด โดยนักศึกษาที่ได้ลำดับที่ 1 จะเป็น นักศึกษาที่ได้คะแนนเก็บ 10% มากที่สุด

เช่นเดียวกันกับใน Lab12_1 จากสัปดาห์ที่ 12 การประมวลผลคะแนนจะคิดจากการสอบทั้งหมด 3 ครั้ง ที่แต่ ละครั้งมีคะแนนเต็ม 100 คะแนน แล้วเลือกคะแนนสูงสุดเพียงสองครั้ง เพื่อเก็บคะแนนรวม 10 % ของคะแนนเก็บทั้ง ภาคการศึกษา (ครั้งละ 5%) ทั้งนี้สามารถเรียกใช้ฟังก์ชันจากการบ้านในสัปดาห์ที่ 12 ได้

Hint:

• พิจารณาเรียกใช้ฟังก์ชัน sorted()

(คืนค่า)

• พิจารณาการใช้ dictionary ในการแก้ปัญหา

Input: 'score in.txt'

Output: 'score out.txt'

_	- -	
6	5XXX10111 53.57 59.69 55.36	6XXX10111 53.57 59.69 55.36 <mark>3</mark>
6	XXX10112 64.04 None 62.84	6XXX10112 64.04 None 62.84 <mark>2</mark>
6	SXXX10113 88.53 91.22 84.45	6XXX10113 88.53 91.22 84.45 <mark>1</mark>

•	การวิเคราะห์ปัญหา
	11 19 99119 10 11 10 9111 1

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
(คืนค่า)	จำนา	านข้อมล	ชนิดข้อมล	

COMPUTER SCIENCE

Chiang Mai University

5) **4 คะแนน** (HW14_3_6XXXXXXXX.py) ให้เขียนฟังก์ชัน count_vote(*pref_matrix*) เพื่อ<u>คืนค่า</u>คะแนนโหวต ของ Pokémon แต่ละตัวที่คำนวนได้จากการลงคะแนนโหวต Twitter-wide Favorite Pokémon แบบจัดลำดับ (ranked voting)

การลงคะแนนแบบจัดลำดับ (อังกฤษ: ranked voting) หรือเรียกอีกอย่างว่า การลงคะแนนตามลำดับความชอบ (อังกฤษ: ranked-choice voting) หรือ การลงคะแนนตามความชอบ (อังกฤษ: preferential voting) เป็นระบบการ ลงคะแนนใด ๆ ที่ผู้ลงคะแนนเสียงใช้การจัดลำดับผู้สมัคร (หรือลำดับความชอบ) ในบัตรลงคะแนนเพื่อเลือกผู้สมัคร มากกว่าหนึ่งรายขึ้นไป และเพื่อเรียงลำดับตัวเลือกผู้สมัครทั้งหมดเป็นลำดับที่หนึ่ง สอง สาม ไปจนครบ (Wikipedia)

ในตัวแปร $pref_matrix$ แต่ละ row จะแทนการเลือกของ voter แต่ละคน และ จำนวน column ทั้งหมดแทน ตัวเลือกที่เลือกได้ โดยการคำนวนคะแนนจะให้น้ำหนักคะแนนที่สูงที่สุดแก่ตัวเลือกอันดับแรกเช่น กรณีเลือกได้ 4 ตัวเลือก ตัวเลือกแรกจะได้น้ำหนักคะแนน 4 ตัวเลือกที่ 2 จะได้น้ำหนักคะแนน 3 ลดหลั่นกันไป จนตัวเลือกสุดท้าย จะมีน้ำหนักคะแนนเท่ากับ 1 ในกรณีที่เลือกได้ n ตัวเลือก อันดับที่ 1 ก็จะได้น้ำหนักคะแนนเท่ากับ n แทน เช่นใน ตัวอย่างด้านล่าง คะแนนของ Pikachu จะเท่ากับ n + 1 + 3 + 2 = 8

ฟังก์ชันจะคืนค่า list ของ tuple ที่ประกอบด้วยชื่อ Pokémon ทั้งหมดที่มีผู้ vote ให้ และคะแนนที่ได้ เรียง ตามลำดับคะแนนและลำดับตัวอักษรในกรณีที่คะแนนเท่ากัน

<u>Input</u> <u>Output</u>:

[['Mewtwo', 'Pikachu', 'Suicune'],	[('Pikachu', 8),
['Mewtwo', 'Suicune', 'Pikachu'],	('Mewtwo', 6),
['Pikachu', 'Rayquaza', 'Charizard'],	('Suicune', 6),
['Suicune', 'Pikachu', 'Charizard']]	('Charizard', 2),
	('Rayquaza', 2)]

• การวิเคราะห์ปัญหา

• Input: จำนวนข้อมูล_____ชนิดข้อมูล_____

การ<u>ส่งงาน</u>

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ**ต้องเป็นไปตามที่ระบ**ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ https://cmu.to/gdr223