Physics Dataset Practice Problems

Week of July 13, 2020

1 Compton Scattering

How does the differential Compton Scattering cross section $\frac{d\sigma}{d\Omega}$ depend on direction? You devise an experiment in which you are able measure the differential cross section "seen" by individual scattered photons at polar and azimuthal angles θ and ϕ . You perform your measurements using LINAC energies of $E_L = 6$, 10, 15, or 18 MV, each time measuring $\frac{1}{\sigma(E_L)} \frac{d\sigma}{d\Omega}(\theta, \phi)$ for photons of individual energy $E_{\gamma} \leq E_L$. Your measurements are tabulated in the dataset compton.csv.

1.1 Visualize the Dataset

Plot

- 1. The measured cross section versus polar and azimuthal angles for a single beam energy.
- 2. The average scattering polar angle $|\bar{\theta}| = \frac{\sum_{i} |\theta_{i}| \frac{d\sigma}{d\Omega_{i}}}{\sum_{i} \frac{d\sigma}{d\Omega_{i}}}$ versus E_{L} . You should find that higher energy beams are more forward-scattered.

1.2 Build a Model

Use machine learning to model the function $\frac{1}{\bar{\sigma}}\frac{d\sigma}{d\Omega}=f(E_L,\theta,\phi)$. Use your model(s) to predict the fraction of Compton photons scattered into $d\Omega$ given $(E_L=12~{\rm MV},\theta=0.25,\phi=2)$, and $(E_L=8~{\rm MV},\theta=-1,\phi=1)$. Additionally, compare the RMSE of your models on a testing dataset (20% held out), and plot predicted scattering profiles for a new beam energy using your models.