МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА «КОМПЬЮТЕРНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ» (№12)

Отчет по курсовой работе по дисциплине Схемотехника цифровых устройств

Тема: Разработка модуля протокольного обмена (обмен с FT2232, SerDes, FIFO)

Студенты	Карпухин С.А. Пойда И.А.	Группа	C20-501
	ФИО		
Руководитель	Решеты	ко Валерий Михайлович	
	ФИО, ст	гепень, звание, должност	ГЬ
	Студент		Карпухин С.А.
		подпись	ФИО
	Студент		Пойда И.А.
		подпись	ФИО
	Руководи	итель	Решетько В.М.
		полнись	ФИО

Оглавление

1.	Введение	3
2.	Спецификация	3
3.	Симуляция	6
4.	Проверка согласования с соседними модулями	.7
5.	Синтез схемы и временные характеристики	11
6.	Заключение	13
Сп	исок использованных источников	14
Пр	иложение. RTL-схемы	15

Введение

Модуль протокольного обмена играет важную роль в разработке генератора сигнала. Он служит связующим звеном между генератором и хостом. Благодаря модулю протокольного обмена генератор сигналов получает данные от хоста и передает данные хосту.

В рамках выполнения курсовой работы решается задача разработки части модуля протокольного обмена, а именно обмен с интерфейсной микросхемой FT2232, сериализатор и десериализатор (SerDes), FIFO. У модуля существует 2 сценария работы: получение данных от микросхемы FT2232H и передача данных на микросхему FT2232H. При получении данных, информация сериализуется и передается в FIFO. При передаче данных, информация из FIFO десериализуется и передается на микросхему FT2232H.

Спецификация

Условное графическое представление модуля протокольного обмена с упрощенным описанием внутреннего устройства представлено на рис. 1.

Рис. 1 — Условное графическое представление модуля протокольного обмена.

Описание сигналов модуля представлено в таблице 1.

Таблица 1 — Описание сигналов модуля протокольного обмена.

№ п.п.	Chenan	Цопр	Онизония		
JNº II.II.	Сигнал	Напр.	Описание		
	Системные сигналы				
1	Clk	in	Тактовый сигнал для BackEnd стороны шлюза.		
			Активность — ↑		
2	nRst	in	Общий сигнал сброса. Активный уровень – '0'.		
Сигналы FT2232H (FrontEnd – на стороне источника управления)					
3	FT2232H_FSDO	in	Шина входных данных, обеспечивает обмен		
			данными между шлюзом и FT2232H		
4	FT2232H_FSCTS	in	Fast serial Clear To Send. Сигнал готовности		
			FT2232H к приему данных. При значении «0»		
			данные могут передаваться от шлюза к FT2232H.		
5	FT2232H_FSDI	out	Шина выходных данных, обеспечивает обмен		
			данными между шлюзом и FT2232H		

№ п.п.	Сигнал	Напр.	Описание
6	FT2322H_FSCLK	out	Входной тактовый сигнал для микросхемы FT2232H.
	Внутренние сигна	лы (пред	цназначенные для второй части модуля)
1	data_input (15:0)	in	Полученный из входного fifo вектор, который
			является пакетом. Добавлен по договорённости со
			второй частью модуля как сигнал FIFO выходных
			из FT2232 пакетов
2	rdreq_output	in	Сигнал запроса на считывание из fifo на выход из
			FT2232. Добавлен по договорённости со второй
			частью модуля как сигнал FIFO выходных из
			FT2232 пакетов
3	wrreq_input	in	Сигнал запроса на запись во входное fifo в FT2232.
			Добавлен по договорённости со второй частью
			модуля как сигнал FIFO входных из FT2232
			пакетов
4	q_output (15:0)	out	Полученный из выходного fifo вектор, который
			является пакетом. Добавлен по договорённости со
			второй частью модуля как сигнал FIFO выходных
			из FT2232 пакетов
5	usedw_input_count	out	Счётчик-количество элементов в fifo на входе из
	(10:0)		FT2232. Добавлен по договорённости со второй
			частью модуля как сигнал FIFO входных из
			FT2232 пакетов
6	usedw_output_count	out	Счётчик количества элементов в fifo на выходе из
	(10:0)		FT2232. Добавлен по договорённости со второй
			частью модуля как сигнал FIFO выходных из
			FT2232 пакетов

Для удобства написания проекта модуль был поделен на несколько подмодулей: сериализатор, десеариализатор и два FIFO (один на приём и другой на передачу данных). Описание сигналов сериализатора представлено в таблице 2.

Таблица 2 — Описание сигналов сериализатора.

№ п.п.	Сигнал	Нап р.	Описание
1	clk	in	Тактовый сигнал для десериализатора
2	rst	in	Сигнал сброса. Активный уровень – '1'
3	FT2232H_FSCTS	out	Шина выходных данных, обеспечивающий обмен
			данными между шлюзом и FT2232H
4	FT2232H_FSDI	in	Сигнал запроса на считывание в fifo на выход из
			FT2232
5	data_input (15:0)	in	Полученный из входного fifo вектор, который
			является пакетом. Добавлен по договорённости со

№ п.п.	Сигнал	Нап р.	Описание
			второй частью модуля как сигнал FIFO входных из FT2232 пакетов
6	wrreq_input	in	Сигнал запроса на запись в fifo на вход в FT2232. Добавлен по договорённости со второй частью модуля как сигнал FIFO входных из FT2232 пакетов
7	usedw_input_count (10:0)	out	Счётчик количества элементов в fifo на входе в FT2232. Добавлен по договорённости со второй частью модуля как сигнал FIFO входных из FT2232 пакетов

Описание сигналов десериализатора представлено в таблице 3.

Таблица 3 — Описание сигналов десериализатора.

№ п.п.	Сигнал	Нап р.	Описание
1	clk	in	Тактовый сигнал для десериализатора
2	rst	in	Сигнал сброса. Активный уровень – '1'
3	FT2232H_FSDO	in	Шина входных данных, обеспечивающий обмен данными между шлюзом и FT2232H
4	rdreq_output	in	Сигнал запроса на считывание в fifo на выход из FT2232. Добавлен по договорённости со второй частью модуля как сигнал FIFO выходных из FT2232 пакетов
5	q_output (15:0)	out	Полученный из выходного fifo вектор, который является пакетом. Добавлен по договорённости со второй частью модуля как сигнал FIFO выходных из FT2232 пакетов
6	usedw_output_count (10:0)	out	Счётчик количества элементов в fifo на выходе из FT2232. Добавлен по договорённости со второй частью модуля как сигнал FIFO выходных из FT2232 пакетов

Принцип функционирования модуля протокольного обмена представлен на рисунке

1. Сначала данные от хоста поступают на микросхему FT2232H и по последовательному

интерфейсу «Fast Serial Interface» передаются на ПЛИС Cyclone 10LP [1] в виде сигналов, представленных на рисунке 2. После этого полученные данные десериализуются и записываются в эластичный буфер FIFO. При передаче данных от устройства хосту, информация из FIFO сериализуется и передается на микросхему FT2232H в виде сигналов, представленных на рисунке 3, после чего передаются на хост.

Рис. 2 — Временная диаграмма сигналов, получаемые при чтении данных из FT2232H [2].

Рис. 3 — Временная диаграмма сигналов, генерируемые при передаче данных в FT2232H [2].

На рис. 4 показана конфигурация использованных нами FIFO. И входная, и выходная очередь имеют одинаковые настройки: максимальная вместимость 2048 слов, каждое из которых занимает 16 бит.

Рис. 4 — Конфигурация FIFO.

Симуляция

На рис. 5 представлена временная диаграмма чтения данных с микросхемы FT2232H и их запись в FIFO, и чтения данных из FIFO и передача данных на микросхему FT2232H. Как видно из диаграммы, при чтении данных с микросхемы FT2232H, в модуль протокольного обмена поступает сигнал FT2232H_FSDO. Это обведено рамкой №1. При передаче информации на микросхему FT2232H, модуль ждет, когда сигнал

FT2232H_FSCTS устанавливается в 0, что сигнализирует о готовности FT2232H принимать данные, после чего модуль с помощью сигнала FT2232H_FSDI передает данные. Это обведено рамкой №2.

Рис. 5 — Временная диаграмма чтения данных из FT2232H и запись данных в FT2232H.

Проверка согласования с соседними модулями

Для проверки согласования и возможности интеграции в проект был собран специальный тестбенч, содержащий три модуля: симуляция работы FT2232 (тестовая процедура), модуль протокольного обмена (часть SerDes) и модуль протокольного обмена (часть, работающая с WishBone).

На рис. 6 изображена стыковочная схема модуля протокольного обмена в анализаторе. На рис. 7 изображена стыковочная схема модуля протокольного обмена в генераторе. На рис. 8 стыковочная схема модуля протокольного обмена при одновременном подключении к анализатору и генератору. Сгенерированные программой Quartus RTL-схемы можно найти в приложении.

Рис. 6 – стыковочная схема модуля протокольного обмена в анализаторе.

Рис. 7 - стыковочная схема модуля протокольного обмена в генераторе

 $Puc.\ 8$ — стыковочная схема модуля протокольного обмена, подключенного к генератору и анализатору.

На временных диаграммах (рис. 9 и рис. 10.) видно, что данные, поступающие из FT2232H в FSDO передаются во вторую часть модуля протокольного обмена и выходят на входы в Wishbone. И наоборот, вторая часть модуля протокольного обмена (работа с Wishbone) пишет сигналы в очередь, а первая часть (SerDes) их считывает и передаёт на вход в FT2232 в FSDI, когда FSCTS стоит в положении '0'. Работает это следующем образом: модуль пишет первый бит ('0'), и ждёт, когда FSCTS перейдёт в положение, разрешающее запись в FSDI, затем передаются 8 бит данных, затем отправляется Source Bit (бит, равный '1').

На рис. 9 в рамке №3 изображена передача частотного слова на модуль синтеза частоты дискретизации для АЦП. В FSDO отправляются данные, и увеличивается размер очереди ко второй части модуля протокольного обмена (usedw_input_fi). Три слова

заголовка отправляются, затем отправляются данные и аккумулятор ACC_г начинает считать в соответствии с заданным частотным словом. В рамке №4 происходит отправка запроса на уменьшение частоты сигнала, в результате чего в рамке №5 сигнал ACC_г имеет другую частоту. В этой же в рамке по FSDO отправляется сигнал остановки подачи частоты дискретизации на АЦП. В рамке №6 видно, что аккумулятор перестал считать, т.к. nEnable = '1'. А также по FSDO в рамке №6 заметно, что, когда пакеты в FSDO не отправляются, ничего не происходит. При передаче данных во всех заголовках бит FB равен '0'.

Рис. 9 – Временная диаграмма при чтении данных из FT2232H (FB = '0')

На рис. 10 изображена отправка тех же сигналов, что и на рисунке 9. Единственное отличие — бит FB во всех заголовках при передаче данных = '1'. Таким образом есть соответствие между процессами в рамках: рамка 3 соответствует рамке 7, 4 – 9, 5 – 9 и 6 – 10. Как можно заметить, на графиках появилось отличие — от второй части модуля протокольного обмена поступают данные в FSDI. На рис. 9 данных в FSDI нет.

Рис. 10 – Временная диаграмма при чтении данных из FT2232H (FB = '1')

На рис. 11 в FSDO отправляются слова заголовков для проверки работы бита FB. Этот бит обозначает, является ли запрос с подтверждением или нет. При FB = '1' запрос будет с подтверждением, при FB = '0' – запрос без подтверждения [3].

Заметим, что на рис. 11 в рамках № 11 при отправлении слов по FSDO увеличивается размер очереди usedw_input_fi. Затем вторая часть нашего модуля, получив три слова, считывает их, опустошая очередь (рамка №8), и пишет в другую очередь на вход,

увеличивая usedw_input_fo. Наша первая часть считывает элементы очереди и пишет их в FSDI. По графикам видно, что изменение сигнала на входе в модуль и на выходе из него одинаковое (обозначено рамками №11).

На рис. 11 в рамке № 12 находится процесс отправки того же заголовка, но с битом FB равным '0'. Таким образом, ответа от второй части модуля протокольного обмена не поступает FIFO на вход, и поэтому первая часть модуля ничего не записывает в FSDI.

 $Puc.\ 11 - Временная диаграмма при записи данных в FT2232H$ $11 - FB = '1';\ 12 - FB = '0'$

На рис. 12 и 13 изображается отправка 255 слов данных с битом FB в заголовке, который равен '0'. На рис. 12 отправляются слова данных '111111111111111111, а на рис. 13 отправляются слова данных '00000000000000000'. Как видно из графика, все данные передаются корректно.

Рис. 12 – Временная диаграмма отправки 255 слов '1111111111111111

Puc. 13 – Временная диаграмма отправки 255 слов '0000000000000000'

Синтез схемы и временные характеристики

На рис. 14 представлена схема модуля протокольного обмена (обмен с FT2232, SerDes, FIFO). Эту же схему, но сгенерированную программой Quartus можно найти в приложении. Для удобства восприятия схема была перерисована.

Рис. 14 — Схема модуля протокольного обмена (обмен с FT2232, SerDes, FIFO).

Для проверки синтезируемости были проведены стадии Analysis & Synthesis, Place & Route, Generate programming files и Timing Analysis спроектированной схемы для ПЛИС семейства Cyclone 10 LP. На рисунках 15-18 представлены результаты проведенного синтеза. На рис. 15 — отчет о занимаемых ресурсах, на рис. 16 — отчет о временных характеристиках модуля при 85 С, на рис. 17 — отчет о временных характеристиках модуля при 0 С, на рис. 18 — использованные тактовые сигналы. Все этапы синтеза пройдены успешно.

Рисунок 15 — Отчет о занимаемых ресурсах.

Рисунок 16 — Отчет о временных характеристиках модуля при 85 С.

Рисунок 17 — Отчет о временных характеристиках модуля при 0 С.

Рисунок 18 — Использованные тактовые сигналы.

Заключение

В данной курсовой работе разрабатывалась часть модуля протокольного обмена, обеспечивающего обмен с FT2232H, сериализатор и десериализатор (SerDes), FIFO. Было реализовано чтение данных с микросхемы FT2232H и передача данных на микросхему FT2232H, сериализация и десериализация данных, а также запись и чтение из FIFO. В процессе разработки модуля было использована библиотечная реализация FIFO.

Во время разработки был изучен язык описания аппаратуры интегральных схем VHDL, получен опыт разработки и тестирование проекта, описанного с помощью языка описания VHDL, был получен опыт создания IP-ядер на примере FIFO.

Все задание курсовой работы выполнено в полном объеме и в срок.

Список использованных источников

- 1. Intel® Cyclone® 10 LP Core Fabric and General Purpose I/Os Handbook, C10LP51003, 2020.05.21. www.intel.com;
- Future Technology Devices International Ltd FT2232H Dual High Speed USB to Multipurpose UART/FIFO IC [Электронный ресурс] режим доступа: http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS FT2232H.pdf
- 3. Генератор сигналов [Электронный ресурс] режим доступа: https://github.com/S20-501/lab2/blob/main/FunctionalSignalGenerator/Protocol%20Exchange%20Module%20 %5BKarpukhin%20Poyda%5D/docs/%D0%93%D0%B5%D0%BD%D0%B5%D1%80 %D0%B0%D0%BE%D1%80%20%D1%81%D0%B8%D0%B3%D0%BD%D 0%B0%D0%BB%D0%BE%D0%B2.docx

Приложение. RTL-схемы

Стыковочная RTL-схема модуля протокольного обмена в генераторе:

Стыковочная RTL-схема модуля протокольного обмена в анализаторе:

Стыковочная RTL-схема модуля протокольного обмена при одновременном подключении к анализатору и генератору

RTL-схема нашей части модуля протокольного обмена

