Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2024/25 in Trier

Henning Fernau Universität Trier

fernau@uni-trier.de

24. Oktober 2024

Näherungsalgorithmen Gesamtübersicht

- Organisatorisches
- Einführung / Motivation
- Grundtechniken für Näherungsalgorithmen
- Approximationsklassen (Approximationstheorie)

Organisatorisches

Vorlesung Besprechung bzw. Übungen (nach Absprache) Termin: donnerstags 10-12 Uhr im H13

Modulprüfungen werden bei uns immer als mündliche Prüfungen abgelegt

Meine Sprechstunde: DO, 13-14 Uhr im F213

Sprechstunde Kevin Mann: DI, 13-14 Uhr im H407

Kontakt: fernau@uni-trier.de, mann@uni-trier.de

Ein allgemeines Überdeckungsproblem

g ist gegeben durch ein Tripel (X, f, w), wobei gilt:

- X ist eine endliche Menge;
- $f: 2^X \to \{0, 1\}$ ist eine *monotone Abbildung*, d.h. $A \subseteq B \to f(A) \le f(B)$, und es gelte f(X) = 1; (Eine Menge C mit f(C) = 1 heiße Überdeckung.)
- $w: X \to \mathbb{R}^+$ ist die *Gewichtsfunktion*, erweitert zu $w(A) = \sum_{x \in A} w(x)$.

Gesucht: Überdeckung C^* mit kleinstmöglichem Gewicht $OPT(w) = w(C^*)$.

Beobachtungen: Sind $f,g:2^X\to\{0,1\}$ monoton, so auch ihr "Maximum" $\overline{h:2^X\to\{0,1\}}$ mit $h(A)=\max\{f(A),g(A)\}$. Sind $u,v:X\to\mathbb{R}^+$ Gewichtsfunktionen, so auch ihre "Summe" $u+v:=w:X\to\mathbb{R}^+$ mit w(x)=u(x)+v(x).

Gewichtetes Knotenüberdeckungsproblem

Ggb.: gewichteter Graph, i.Z.: $G = (V, E), w : V \to \mathbb{R}^+$ In obiger Terminologie:

Bemerke: f ist hier implizit durch E gegeben und muss **nicht** explizit gespeichert werden bzw. gehört nicht explizit zur Eingabe.

Literatur: R. Bar-Yehuda: One for the price of two: a unified approach for approximating covering problems. *Algorithmica*, **27**, 131–144, 2000.

Ein kleines Beispiel:

Gewichtsfunktion w definiert durch Zahlen an Knoten. Gewichtsfunktionen werden auch gerne mengenwertig aufgefasst.

Ein kleines Beispiel: mit möglicher Lösung

rote Knoten: Große-Grad-Heuristik

blaue Knoten aus Heuristik: Grad=1? → Nimm Nachbar!

Ein hilfreiches Lemma für Überdeckungsprobleme

Zerlegungsbeobachtung für ein allgemeines ÜP:

Sind w_1, w_2 Gewichtsfunktionen, so gilt für die Gewichte $OPT(w_i)$ der jeweiligen kleinstmöglichen Überdeckungen:

$$OPT(w_1) + OPT(w_2) \le OPT(w_1 + w_2)$$

Beweis: Ist C^* optimal für $w_1 + w_2$, so gilt:

$$OPT(w_1 + w_2) = (w_1 + w_2)(C^*) = w_1(C^*) + w_2(C^*) \ge OPT(w_1) + OPT(w_2)$$
. \square

Anwendung des Lemmas

Betrachte nun als *Gewichtsreduktionsfunktion* $\delta: X \to \mathbb{R}^+$ mit $\forall x \in X: 0 \leq \delta(x) \leq w(x)$, d.h. δ und $w - \delta$ sind Gewichtsfunktionen.

Setze $\triangle OPT := OPT(w) - OPT(w - \delta)$. Zerlegungsbeobachtung \rightsquigarrow

$$\Delta OPT = OPT(w) - OPT(w - \delta)$$

$$\geq OPT(\delta) + OPT(w - \delta) - OPT(w - \delta) = OPT(\delta)$$

Eine Gewichtsreduktion δ führt daher zu einer Minimumsreduktion um wenigstens $OPT(\delta)$.

Wir nennen δ r-effektiv, falls $\delta(X) \leq r \cdot OPT(\delta)$.

<u>Hinweis:</u> Der nächste Beweis funktioniert auch, falls $\delta(X) \leq r \cdot \delta(C^*)$ gilt, C^* optimal für w.

Grundnäherungsalgorithmus für Überdeckungsprobleme

$$A(X, f, w)$$
:

- ullet Wähle r-effektive Gewichtsreduktion δ .
- Berechne durch $B(X, f, w \delta)$ eine Überdeckung C.
- Gib C aus.

Der erwähnte Algorithmus B wird häufig A selbst wieder sein (oder eine leichte Modifikation).

Approximationen mit konstantem Faktor

Ein Verfahren A heißt (Faktor) r-Approximation für ein Minimierungsproblem, falls A eine Lösung C liefert, die nur um einen Faktor von höchstens r schlechter ist als das Minimum C^* .

Satz über lokale Verhältnisse für den Grundnäherungsalgorithmus: Ist B eine r-Approximation, dann ist A ebenfalls eine r-Approximation.

Beweis:

$$\begin{array}{ll} w(C) &=& (w-\delta)(C) + \delta(C) \text{ [Linearität]} \\ &\leq& (w-\delta)(C) + \delta(X) \text{ [Monotonie von } \delta] \\ &\leq& r \cdot OPT(w-\delta) + r \cdot OPT(\delta) \text{ [}B\text{'s Eigenschaft und } \delta \text{ }r\text{-effektiv]} \\ &\leq& r \cdot OPT(w) \text{ [Zerlegungsbeobachtung]} \end{array}$$

Der Algorithmus von Bar-Yehuda und Even für gewichtetes VC:

Kante e definiert Gewichtsreduktionsfunktion δ_e durch

$$\delta_e(v) = \begin{cases} \min\{w(u) \mid u \in e\} &, v \in e \\ 0 &, v \notin e \end{cases}$$

1. Rekursive Variante

$$\mathsf{BErec}\;(G=(V,E),w)$$

- Falls $\forall e \in E : \delta_e = 0$, gib $C = \{v \in V \mid w(v) = 0\}$ aus; exit.
- Nimm irgendeine Kante e aus G (mit $\delta_e \neq 0$);
- Berechne BErec $(G, w \delta_e)$

In blau sind die Werte der zu e gehörenden (auf e) konstanten Funktion eingetragen.

Wir wählen die Kante links, reduzieren dann die Gewichte der inzidenten beiden Knoten und hernach die Werte der adjazenten Kanten; in violett erscheinen die Überdeckungs-Knoten

Wähle die grüne Kante rechts unten

Wähle die braune Kante rechts oben

Unser kleines Beispiel mit Gewichtsreduktionsfunktion δ_e und Lösung: erst gelb, dann die pinken Kanten

Unser kleines Beispiel;

die gewonnene Lösung enthält eine inklusions-minimale mit Gewicht 14:

Der Algorithmus von Bar-Yehuda und Even für gewichtetes VC:

2. Iterative Variante

$$\mathsf{BEiter}\ G = (V, E), w)$$

- Für jedes $e \in E$
 - Bestimme $\varepsilon = \min\{w(v) \mid v \in e\}$
 - Für jedes $v \in e$ setze $w(v) = w(v) \varepsilon$
- Gib $C = \{c \in V \mid w(v) = 0\}$ aus.

Satz: Der Algorithmus von Bar-Yehuda und Even ist eine 2-Approximation.

Beweis: für BErec durch Induktion über die Rekursionstiefe t:

- Ist t = 0, so liefert BErec sogar eine optimale Lösung.
- Ist die Behauptung, BErec liefere 2-Approximationen, für t=0,..,T gezeigt, so liefert der Satz über die lokalen Verhältnisse den Induktionsschritt, denn δ_e ist 2-effektiv. Ist nämlich $C_{\delta_e}^*$ eine optimale Überdeckung für δ_e , so wird insbesondere e abgedeckt, d.h.

$$\delta_e(C^*_{\delta_e}) = \min\{w(v_1), w(v_2)\};$$

andererseits ist natürlich

$$\delta_e(V) = \delta_e(v_1) + \delta_e(v_2) = 2 \cdot \min\{w(v_1), w(v_2)\},$$
 also $\delta_e(V) \leq 2 \cdot OPT(\delta_e)$.

Frage: (Warum) liefert die iterative Variante dasselbe?

Wie gut ist die gefundene Lösung "wirklich"?

Wichtiges Problem beim *Benchmarking* (Leistungsvergleich) heuristischer Algorithmen für NP-schwere Probleme.

Hierbei sind auch Approximationen hilfreich, nämlich durch "möglichst ungeschickte Wahl." Das haben wir schon im Beispiel gesehen!

Wir könnten eine Lösung vom Gewicht 22 erhalten haben.

 \rightarrow Eine kleinstmögliche Überdeckung C^* hat Gewicht $w(C^*) \geq 11$.

Der Algorithmus von Clarkson: Hilfsdefinitionen

 δ_e als Hilfsgröße aus dem vorigen Algorithmus B $\operatorname{\mathsf{Erec}}$

N(v): Menge der Nachbarn von Knoten v (offene Nachbarschaft).

d(v) sei der *Grad* (engl.: degree) des Knoten v, also: d(v) = |N(v)|. Setze d'(v) = |N'(v)| mit $N'(v) = \{u \in N(v) \mid w(u) > 0\}$ für Graph mit Knotengewichten w:

$$\varepsilon(v) = \frac{w(v)}{d(v)}, \quad \varepsilon'(v) = \frac{w(v)}{d'(v)}$$
 (undef. bei Division durch Null)

Gewichtsreduktionsfunktionen (falls $\varepsilon^{(\prime)}(v)$ definiert):

$$\delta_v^{(\prime)}(u) = \begin{cases} w(v) &, u = v \\ \varepsilon^{(\prime)}(v) &, u \in N^{(\prime)}(v) \\ 0 &, \text{sonst} \end{cases}$$

Der Algorithmus von Clarkson: Rekursive Variante

Crec (G = (V, E), w) Annahme $E \neq \emptyset$

- Falls $\forall e \in E, \ \delta_e = 0$, gib $C = \{c \in V \mid w(v) = 0\}$ aus; exit.
- Suche Knoten $v \in V$, der $\varepsilon'(v)$ minimiert. Es ex. ein v, sodass $\varepsilon'(v)$ def. ist, nach dem ersten Schritt.
- Berechne $\operatorname{Crec}(G, w \delta'_v)$.

Der Algorithmus von Clarkson: Iterative Variante Citer (G, (V, E), w)

- \bullet $C := \emptyset$
- Solange $E \neq \emptyset$, tue
 - Suche $v \in V$, der $\varepsilon(v)$ minimiert.
 - Für jeden Nachbarn $u \in V$ von v: setze $w(u) := w(u) \varepsilon(v)$.
 - Setze $G := G v \text{ und } C := C \cup \{v\}.$
- Gib C aus.

Was müssen wir zeigen?

Die iterative Variante liefert dasselbe wie die rekursive.

Beachte: Bei Crec bleiben nullgewichtete Knoten unbeachtet (ε'), bei Citer werden sie bevorzugt gelöscht.

• Die rekursive Variante ist eine 2-Approximation: (per Induktion aus dem Satz über Iokale Verhältnisse). Wesentlich ist dafür noch zu zeigen, dass δ_v eine 2-effektive Gewichtsfunktion ist.

Überlegen Sie sich, wie der Algorithmus von Clarkson auf unserem Beispiel arbeitet.

Lemma: δ_v ist eine 2-effektive Gewichtsfunktion.

Beweis:

- a) Gewichtsfunktion: Klar für $u \notin N^{(\prime)}[v] = N^{(\prime)}(v) \cup \{v\}$ (abgeschlossene Nachbarschaft). Ist $u \in N^{(\prime)}(v)$, so ist $\delta_v^{(\prime)}(u) = \frac{w(v)}{d^{(\prime)}(v)} \leq \frac{w(u)}{d^{(\prime)}(u)} \leq w(u)$ aufgrund der minimalen Wahl von v.
- b) 2-effektiv:

$$\delta_{v}^{(\prime)}(V) = \delta_{v}^{(\prime)}(v) + \delta_{v}^{(\prime)}(N^{(\prime)}(v)) + \delta_{v}^{(\prime)}(V - N^{(\prime)}[v])$$

$$= w(v) + \left| N^{(\prime)}(v) \right| \frac{w(v)}{d^{(\prime)}(v)} + 0$$

$$= 2 \cdot w(v) = 2 \cdot OPT(\delta_{v}^{(\prime)})$$

Randomisierte *r***-Approximation**

Eine Wahrscheinlichkeitsverteilung auf dem Raum der Gewichtsreduktionsfunktionen zu (X, f, w) heit r-effektiv, falls

$$\mathcal{E}[\delta(X)] \leq r \cdot \mathcal{E}[\delta(C^*)]^*, \quad C^* \text{ ist Opt. bzgl. } w$$

Erinnerung: Der Erwartungswert ist ein "lineares Funktional",

d.h. insbesondere: $\mathcal{E}[A + B] = \mathcal{E}[A] + \mathcal{E}[B]$.

Damit überträgt sich fast wörtlich der (Beweis vom) Satz über lokale Verhältnisse vom deterministischen Fall.

^{*} \mathcal{E} ist Erwartungswert (bzgl. der angenommenen Verteilung); wir nehmen die stärkere Def. von r-effektiv aus dem det. Fall

Satz über lokale Verhältnisse — Randomisierte Version

Betrachte dazu folgenden *Grundalgorithmus* (bei Verteilung F) A(X, f, w)

- Wähle Gewichtsreduktion $\delta: X \to \mathbb{R}^+$ gemäß r-effektiver Verteilung F.
- Berechne durch $B(X, f, w \delta)$ eine Überdeckung C.
- Gib C aus.

Falls B eine Überdeckung C liefert mit

$$\mathcal{E}[(w - \delta)(C)] \le r \cdot \mathcal{E}[OPT(w - \delta)],$$

dann gilt: A liefert eine randomisierte r-Approximation.

Beispiel für randomisierte Approximation: RandomGreedyVC (G = (V, E), w)

- Setze $C := \{v \in V \mid w(v) = 0\}$ und G := G C.
- Solange $E \neq \emptyset$:

$$- \overline{w} := \left(\sum_{v \in V} \frac{d(v)}{w(v)}\right)^{-1}$$

- Wähle zufällig $v \in V$ mit Wahrscheinlichkeit $p(v) = \frac{d(v)}{w(v)} \cdot \overline{w}$
- Setze $C := C \cup \{v\}$ und G := G v.
- Gib C aus.

Satz: RandomGreedyVC ist eine randomisierte 2-Approximation.

Beweis:

- 1. Überführe RandomGreedyVC in eine äquivalente rekursive Form.
- 2. Zeige die Behauptung durch vollständige Induktion über die Rekursionstiefe unter Benutzung der randomisierten Version des Satzes über lokale Verhältnisse.
- 3. Dazu ist zu klären: Wie sieht die Wahrscheinlichkeitsverteilung auf dem Raum der Gewichtsreduktionsfunktionen aus?

Die Reduktionsfunktion $\delta^v(u) = w(u)\delta_{uv}$ wird mit Wahrscheinlichkeit p(v) gezogen, alle übrigen Gewichtsfunktionen mit Wahrscheinlichkeit 0.

$$\sum_{v \in V} p(v) = 1$$
 gilt nach Definition von $p(v)$.

4. Zu zeigen bleibt: die Wahrscheinlichkeitsverteilung ist 2-effektiv.

a)
$$\mathcal{E}[\delta(C^*)] = \sum_{v \in V} \delta^v(C^*) \cdot p(v) = \sum_{v \in C^*} w(v) p(v) = \sum_{v \in C^*} d(v) \cdot \overline{w} \ge |E| \cdot \overline{w}$$

b)
$$\mathcal{E}[\delta(V)] = \sum_{v \in V} w(v) p(v) = \sum_{v \in V} d(v) \overline{w} = 2 \cdot |E| \cdot \overline{w}$$

Verallgemeinerung: $(\triangle$ -)Hitting-Set

Ggb.: Grundmenge U ("Universum") von n Elementen x_1, \ldots, x_n und Mengen $S_1, \ldots, S_m \subseteq U$, genannt *Hyperkanten*

Ges.: Kleinstmögliche Menge $C \subseteq U$, die alle Hyperkanten "trifft",

d.h.: $\forall \ 1 \leq k \leq m \ C \cap S_k \neq \emptyset$ (Überdeckungseigenschaft).

Ist bekannt, dass $\forall 1 \leq k \leq m$: $|S_k| \leq \Delta$ für eine Konstante Δ , so lassen sich die Algorithmen von Bar-Yahuda, Clarkson (!) und Random-Greedy auch für Δ -Hitting-Set lesen. Insbesondere: Kante e definiert Gewichtsreduktionsfunktion δ_e durch

$$\delta_e(v) = \begin{cases} \min\{w(u) \mid u \in e\} &, v \in e \\ 0 &, v \notin e \end{cases}$$

Satz: \triangle -Hitting-Set ist Faktor- \triangle -approximierbar.

Motivation: Systemanalyse á la Reiter

Was ist ein System? (nach R. Reiter)

- Systembestandteile (Komponenten) C
- Systembeschreibung (wie? → Logik) SD:
 Aussagen über erwartetes Systemverhalten,
 d.h., Beziehungen zwischen den Komponenten.
- beobachtetes Systemverhalten (Observationen) *OBS*

Was ist ein fehlerbehaftes System?

spezielles Prädikat ab(c) für jede Komponente c∈ C: kennzeichnet abnormes Verhalten (Fehler)
SD enthält auch Aussagen der Form: "Wenn ab(c), dann gilt:..." bzw.
"Wenn ¬ab(c), dann gilt:..."

• ein System (C, SD, OBS) ist *fehlerbehaftet*, wenn in

$$SD \cup OBS \cup \{ \neg ab(c) \mid c \in C \}$$

ein Widerspruch zu erkennen ist.

Konfliktmengen und Diagnosen

Eine Konfliktmenge ist eine Menge C' von Komponenten, so dass in

$$SD \cup OBS \cup \{ \neg ab(c) \mid c \in C' \}$$

ein Widerspruch zu erkennen ist.

Eine *Diagnose* ist eine möglichst kleine Menge C' von Komponenten, so dass $C \setminus C'$ keine Konfliktmenge ist.

Übersetzung in Hitting Set:

Die Hypergraphknoten sind die Komponenten,

die Konfliktmengen sind die Kanten,

die Diagnose die Überdeckungsmenge.

Ein abstrakteres Beispiel

Eine kleinste Überdeckung

Datenreduktionsregeln

- 1. Kantendominierung: $f \subset e$. \leadsto entferne e
- 2. <u>Kleine Kanten</u>: $e = \{v\} \rightsquigarrow v$ kommt ins HS; entferne e (und alle anderen Kanten, die v enthalten)
- 3. Knotendominierung: Ein Knoten x heiße dominiert durch einen Knoten y, falls $\{e \in E \mid x \in e\} \subseteq \{e \in E \mid y \in e\} \leadsto$ entferne x
- R. S. Garfinkel and G. L. Nemhauser. *Integer Programming*. John Wiley & Sons, 1972. Oft wiederentdeckt: K. Weihe (Zugnetzoptimierung), R. Niedermeier & P. Rossmanith (param. HS, 2003), Ebenso: R. Reiter (Theory of Diagnosis → HS Bäume, 1987)

Knotendomination

Kantenregeln

Knotendomination

Kantenregeln

Knotendomination

Ein irreduzibles Beispiel

Ein Näherungsverfahren — übersetzt von VC N1 - 3HS(G = (V, E), C)

• (Wende Reduktionsregeln an.)

Falls E leer, gib C aus; exit.

• Nimm irgendeine "kleine Kante" e aus G und berechne $N1-3HS(G-e,C\cup e)$ (e aufgefasst als Knotenmenge)

Dies ist ein **3**-Approximations-Verfahren.

Ein irreduzibles Beispiel wird approximiert

Wie gut ist die Approximation "wirklich"?

Faktor 3 nur schlimmster Fall!

Wir erreichen 5 Knoten-Lösung mit dem 'banalen' Algorithmus.

Da unser Beispiel das frühere als Teilfall enthält, wissen wir:

4 ist eine untere Schranke.

Am Lauf des Algorithmus sehen wir:

zweimal haben wir zwei Knoten statt möglicherweise einem genommen, beim dritten Schritt waren wir optimal

- → untere Schranke 3 (auch ohne das früher behandelte Teilproblem).
- → Der Satz über lokale Verhältnisse gestattet das Auffinden besserer Schranken im konkreten Beispiel.

Tatsächlich gibt es Lösung mit 4 Knoten, und die findet unser Algorithmus ,fast'.