

The Downward Closure Property of Frequent Patterns

Observation: From TDB_{1:} T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
We get a frequent itemset: {a₁, ..., a₅₀}
Also, its subsets are all frequent: {a₁}, {a₂}, ..., {a₅₀}, {a₁, a₂}, ..., {a₁, ..., a₄₉}, ...
There must be some hidden relationships among frequent patterns!
The downward closure (also called "Apriori") property of frequent patterns
If {beer, diaper, nuts} is frequent, so is {beer, diaper}
Eyery transaction containing {beer, diaper, nuts} also contains {beer, diaper}
Apriori: Any subset of a frequent itemset must be frequent
Efficient mining methodology
If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!?

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

2