Developing an Aquaponics Interface

Justin Bare

University of Washington

Laurel Hart

University of Washington hart1a@uw.edu

Sam Wilson

University of Washington

ABSTRACT

Abstract.

Author Keywords

Aquaponics; sustainability; value sensitive design;

ACM Classification Keywords

H.5.2. Information Interfaces and Presentation: User Interfaces

INTRODUCTION

This paper documents the process of designing an interface for monitoring and controlling

RELATED WORK

Aquaponics
See Figure 1.

Value Sensitive Design Blah [2][3]

METHODS

Intro to methods

Value Sensitive Design

Some stuff about VSD

Although we identified an extensive list of potential stakeholders, we decided to focus on only a few principle ones (see Table 1).

Direct Stakeholders

Indirect Stakeholders

Initially, the intent of our investigation was to design an interface that addressed the needs of both direct and indirect stakeholders. The intuition was that the information used by system managers to monitor the operations of the aquaponics system could also be used to assess its sustainability.

Iterative Design

D3.js: [1]

Paste the appropriate copyright statement here. ACM now supports three different copyright statements:

- ACM copyright: ACM holds the copyright on the work. This is the historical approach.
- License: The author(s) retain copyright, but ACM receives an exclusive publication license.
- Open Access: The author(s) wish to pay for the work to be open access. The additional fee must be paid to ACM.

This text field is large enough to hold the appropriate release statement assuming it is single spaced.

Figure 2. Initial sketch in response to system manager's desire to see all information at a glance.

Figure 3. Refinement upon first sketch.

RESULTS

Out design efforts resulted in a live prototype.¹

FUTURE WORK

Additional Stakeholders

Although the original list of stakeholders was thought to be extensive—including everyone who could conceivably be influenced by the aquaponics system or its interface—an interview with Batya Friedman revealed a particular bias: only humans were considered as stakeholders. The fish living in the aquaponics system, possibly the most direct stakeholder of all, had been overlooked.

Another insight Friedman provided was the consideration of how to handle hardware aging.

¹Accessible for the forseeable future at http://homes.cs.washington.edu/~samw11/510/

Direct Stakeholders	Benefits/Harms	Values	Conflicts
System managers	Benefits: Able to fix	Human welfare	Physical interaction with
	problems more quickly	Autonomy	systems and awareness
	Benefit or harm: Less	Calmness	may conflict with calm-
	time doing maintenance	Free time away from	ness and free time away
	and tending plants by	work	from work
	hand	Interaction with nature	
	Harm: Could be alerted	Physical interaction with	
	of emergencies at any	systems	
	time	Awareness (of system	
		functioning)	
Indirect Stakeholders	Benefits/Harms	Values	Conflicts
Restaurants and	Benefits: Know about	Trust	Ownership and property
restaurant customers	where their food comes	Accountability	(in the form of profitabil-
	from	Environmental sustain-	ity) may compete with en-
	Provide feedbacks or im-	ability	vironmental sustainability
	provements to owner	Autonomy	
	Harms: Could be lied to if	Ownership and property	
	presented with false infor-	(restaurants)	
	mation		

Table 1. Paired down list of stakeholders

Other extensions to this interface include moving from a passive, monitoring role to being able to actively control certain functions in response to the incoming data, e.g., remotely activating

CONCLUSION

Blah

REFERENCES

- 1. D3.js Data-Driven Documents. http://d3js.org/.
- 2. Friedman, B., Kahn, Jr., P. H., and Borning, A. "Value Sensitive Design and Information Systems". Human-Computer Interaction and Management Information Systems: Foundations (2006).
- 3. Kahn, P. Chapter 5: Structural-developmental methods. In *The human relationship with nature: Development and culture*, The MIT Press (1999), 77–93.

The Skales Prototype includes (from left to right): a 200 gallon tank where tilapia are raised, a grow bed with gravel media and microorganisms to process the fish waste into fertilizer, and a floating raft bed ideal for growing microgreens and herbs. A recirculating pump will return the water to the fish tank.

Figure 1. Skales Cooperative aquaponics system

Figure~4.~Color~mockup~based~on~D3. js~aesthetics.