Cinemate

User & Builder Guide

None

None

Table of contents

l.	Getting started	5
2.	Software	6
2	.1 Installation steps	6
	2.1.1 libcamera 1.7.0 raspberry pi fork	6
	2.1.2 nvm	6
	2.1.3 cpp-mjpeg-streamer cinemate fork	6
	2.1.4 cinepi-raw	6
	2.1.5 Enabling I ² C	7
	2.1.6 Hostname	7
	2.1.7 Add camera modules to config.txt	7
	2.1.8 Add the IMX585 tuning file (optional)	7
	2.1.9 IR filter switch script (optional)	7
	2.1.10 Change the console font (optional)	7
	2.1.11 Create post-processing configs	7
	2.1.12 Install PiShrink	8
	2.1.13 Create a Python virtual environment	8
	$2.1.14~$ Grant sudo privileges and enable ${ m I}^2{ m C}$	8
	2.1.15 Cinemate	8
	2.1.16 Cinemate services	9
	2.1.17 Starting Cinemate	9
3.	Configuration	10
3	3.1 CineMate settings.json User Guide	10
	3.1.1 welcome message	10
	3.1.2 system	10
	3.1.3 geometry	10
	3.1.4 output	10
	3.1.5 preview	10
	3.1.6 anamorphic_preview	10
	3.1.7 gpio_output	10
	3.1.8 arrays	11
	3.1.9 settings	11
	3.1.10 analog_controls	11
	3.1.11 free_mode	11
	3.1.12 buttons	11
	3.1.13 two_way_switches	11

	3.1.14 rotary_encoders	11
	3.1.15 quad_rotary_encoders	12
	3.1.16 i2c_oled	12
3	3.2 CinePi-raw CLI User Guide	13
	3.2.1 1. Checking available options	13
	3.2.2 2. Camera modes	13
	3.2.3 3. Low-resolution (lores) stream	13
	3.2.4 4. Preview window	13
	3.2.5 5. Post-processing and tuning files	13
	3.2.6 6. Cinemate-specific flags	13
	3.2.7 7. Example commands	14
4.	Redis	19
4	4.1 Redis API quick start	19
	4.1.1 How CineMate and cinepi-raw interact	19
	4.1.2 The cp_controls channel	19
	4.1.3 The cp_stats channel	19
	4.1.4 Inspecting and changing values with redis-cli	19
	4.1.5 Controlling the camera from your own script	19
_	4.2 Redis key reference	20

Welcome to the ${\bf Cinemate}$ documentation.

1. Getting started

1.0.1 Overview

TBA

2. Software

2.1 Installation steps

This guide walks you through installing libcamera, cinepi-raw and cinemate and accompanying software on the Raspberry Pi.

Although Raspberry Pi 4 (and even 3) has been known to work with the stack below, a Raspopberry Pi 5B or Compute Module 5 is recommended. Also note that for high speed USB 3, a Raspberry Pi 4 or 5 is needed.

This guide assumes fresh Raspbery Pi Bookworm installation running kernel 6.12.20+.

If you run Raspberry Pi OS Lite, begin by installing the following packages:

sudo apt install -y python-pip git python3-jinja2

2.1.1 libcamera 1.7.0

```
git clone https://github.com/raspberrypi/libcamera && \
sudo find ~/libcamera -type f \( -name '*.py' -o -name '*.sh' \) -
exec chmod +x {} \; && '
sudo meson setup build --buildtype=release \
 -Dpipelines=rpi/vc4, rpi/pisp
  -Dipas=rpi/vc4,rpi/pisp
  -Dv412=true
  -Dgstreamer=enabled
  -Dtest=false '
  -Dlc-compliance=disabled \
  -Dcam=disabled
  -Dqcam=disabled
  -Ddocumentation=disabled
  -Dpycamera=enabled &&
sudo ninja -C build install && \
cd ~/libcamera/utils && sudo chmod +x *.py *.sh && sudo chmod +x
libcamera/src/ipa/ipa-sign.sh && cd ~/libcamera && sudo ninja -C
build install
```

sudo apt-get install --reinstall libtiff5-dev && sudo ln -sf \$(find / usr/lib -name "libtiff.so" | head -n 1) /usr/lib/aarch64-linux-gnu/ libtiff.so.5 && export LD_LIBRARY_PATH=/usr/lib/aarch64-linux-gnu: \$LD_LIBRARY_PATH && sudo ldconfig

sudo apt install -y python3-pip git python3-jinja2 libboost-dev libgnutls28-dev openssl pybind11-dev qtbase5-dev libgt5core5a meson cmake python3-yaml python3-ply libglib2.0-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev libaydevice59

2.1.2 nvm

```
wget -q0- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.3/
install.sh | bash
source ~/.bashrc
nvm install --lts
```

Cinemate uses nvm (Node Version Manager) for its web ui. If you plan to use cionepi-raw only, nvm is not needed.

2.1.3 cpp-mjpeg-streamer

```
sudo apt install -y libspdlog-dev libjsoncpp-dev cd /home/pi git clone https://github.com/Tiramisioux/cpp-mjpeg-streamer.git -- branch cinemate cd cpp-mjpeg-streamer && mkdir build && cd build
```

cmake .. && make make install-here

Cinemate uses a custom fork of cpp-mjpeg-streamer. If you plan to use only cinepi-raw, you can use the original app found at https://github.com/nadjieb/cpp-mjpeg-streamer

2.1.4 cinepi-raw

Dependencies

sudo apt install -y cmake libepoxy-dev libavdevice-dev build-essential cmake libboost-program-options-dev libdrm-dev libexif-dev libcamera-dev libjpeg-dev libiff5-dev libpng-dev redis-server libhiredis-dev libasound2-dev libjsoncpp-dev libpng-dev meson ninja-build libavcodec-dev libavdevice-dev libavformat-dev libswresample-dev && sudo apt-get install libjsoncpp-dev && cd - && git clone https://github.com/sewenew/redis-plus-plus.git && cd redis-plus-plus && mkdir build && cd build && cmake ... && make && sudo make install && cd -

cinepi-raw

```
git clone https://github.com/Tiramisioux/cinepi-raw.git --branch rpicam-apps_1.7_custom_encoder cd /home/pi/cinepi-raw sudo rm -rf build (if you have a previous build) export PKG_CONFIG_PATH=/home/pi/cpp-mjpeg-streamer/build: $PKG_CONFIG_PATH sudo meson setup build sudo ninja -C build meson install -C build
```

Cinemate depends on a custom branch of cinepi-raw created by Csaba Nagy. If you plan to use the original version you can find it adapted for rpicam-apps 0.7 here: https://github.com/Tiramisioux/cinepi-raw/tree/rpicam-apps_1.7

Join the CinePi Discord here!

imx585 driver

sudo apt install linux-headers dkms git

git clone https://github.com/Tiramisioux/imx585-v4l2-driver.git
cd imx585-v4l2-driver/
./setup.sh

The imx585 is written by Will Whang. For original drivers and startup guides, visit https://github.com/will127534/ StarlightEye

imx283 driver

```
sudo apt install linux-headers dkms git

git clone https://github.com/Tiramisioux/imx283-v4l2-driver.git
cd imx283-v4l2-driver/
./setup.sh
```

The imx283 is written by Will Whang. For original drivers and startup guides, visit https://github.com/will127534/imx283-v4l2-driver

2.1.5 Enabling I2C

```
sudo apt update && apt upgrade sudo raspi-config nonint do_i2c 0
```

Enabling I2C is needed for using the camera modules.

2.1.6 Hostname

```
sudo hostnamectl set-hostname cinepi
```

You will find the pi as cinepi.local on the local network, or at the hotspot Cinemate creates

2.1.7 Add camera modules to config.txt

```
sudo nano /boot/firmware/config.txt
```

Paste this into your file, and uncomment the sensor you are using.

Also specify which physical camera port you have connected your sensor to.

```
# Raspberry Pi HQ camera
#camera_auto_detect=1
#dtoverlay=imx477,cam0
# Raspberry Pi GS camera
#camera_auto_detect=1
#dtoverlay=imx296,cam0
# OneInchEye
#camera_auto_detect=0
#dtoverlay=imx283,cam0
# StarlightEye
camera auto detect=0
dtoverlay=imx585,cam0
# StarlightEve Mono
#dtoverlay=imx585,cam1,mono
# CFE Hat (pi 5 only)
dtparam=pciex1
dtparam=pciex1_gen=3
dtoverlay=disable-bt
```

And at the very bottom of the file:

```
[all]
avoid_warnings=1
disable_splash=1
```

2.1.8 Add the IMX585 tuning file (optional)

```
curl -L -o /home/pi/libcamera/src/ipa/rpi/pisp/data/imx585.json \
   https://raw.githubusercontent.com/will127534/libcamera/master/src/
ipa/rpi/pisp/data/imx585.json
sed -i '8s/"black_level": *[0-9]\+/"black_level": 0/' /home/pi/
libcamera/src/ipa/rpi/pisp/data/imx585.json
# cp /home/pi/libcamera/src/ipa/rpi/pisp/data/imx585.json /usr/local/
share/libcamera/ipa/rpi/pisp/
```

For the mono sensor use imx585_mono.json instead.

2.1.9 IR filter switch script (optional)

```
wget https://raw.githubusercontent.com/will127534/StarlightEye/master/software/IRFilter -0 /usr/local/bin/IRFilter
sudo chmod +x /usr/local/bin/IRFilter
```

Cinemate has its own way of handling the IR switch but the installation above can be convenient for use outside of Cinemate

2.1.10 Change the console font (optional)

```
sudi apt update
sudo apt install console-setup kbd
sudo dpkg-reconfigure console-setup # choose Terminus / 16x32
```

Verify /etc/default/console-setup contains:

```
FONTFACE="Terminus"
FONTSIZE="16x32"
```

Then enable the service:

```
sudo systemctl enable console-setup.service
sudo systemctl start console-setup.service
```

This can be useful if running the Pi on a small HD field monitor

2.1.11 Create post-processing configs

Paste this into the terminal and hit enter:

```
sudo bash -c 'cat > post-processing.json << EOF
{
    "sharedContext": {},
    "mjpegPreview": {
        "port": 8000
    }
}
EOF' && \
sudo chmod +x post-processing.json && \
sudo bash -c 'cat > post-processing0.json << EOF
{
    "sharedContext": {},
    "mjpegPreview": {
        "port": 8000
    }
}
EOF' && \
sudo chmod +x post-processing0.json && \
sudo bash -c 'cat > post-processing1.json << EOF
{</pre>
```

2.1.12 Install PiShrink

```
wget https://raw.githubusercontent.com/Drewsif/PiShrink/master/
pishrink.sh
sudo install -m755 pishrink.sh /usr/local/bin/pishrink
```

PiShrink is a great tool for compressing SD image file backups of the SD card. See here for instructions

Reboot before installing Cinemate:

```
reboot
```

You should now have a working install of cinepi-raw. To try it out, see this section [TBA]

To continue installing Cinemate, follow the steps below:

2.1.13 Create a Python virtual environment

```
sudo apt update && apt install -y python3-venv
python3 -m venv /home/pi/.cinemate-env
echo "source /home/pi/.cinemate-env/bin/activate" >> ~/.bashrc
source /home/pi/.cinemate-env/bin/activate
```

2.1.14 Grant sudo privileges and enable I2C

```
echo "pi ALL=(ALL) NOPASSWD: /home/pi/.cinemate-env/bin/*" | sudo tee /etc/sudoers.d/cinemate-env sudo chown -R pi:pi /home/pi/.cinemate-env sudo chown -R pi:pi /media && chmod 755 /media sudo usermod -aG i2c pi sudo modprobe i2c-dev && echo i2c-dev | sudo tee -a /etc/modules echo "pi ALL=(ALL) NOPASSWD: /home/pi/run_cinemate.sh" | sudo tee -a / etc/sudoers.d/pi_cinemate
```

Reboot so the group changes take effect:

```
reboot
```

2.1.15 Cinemate

Dependencies

```
source /home/pi/.cinemate-env/bin/activate
python3 -m pip install --upgrade pip setuptools wheel
sudo apt-get install -y i2c-tools portaudio19-dev build-essential
python3-dev python3-pip python3-smbus python3-serial git
pip3 install adafruit-circuitpython-ssd1306 watchdog psutil Pillow
redis keyboard pyudev sounddevice smbus2 gpiozero RPI.GPIO evdev
termcolor pyserial inotify_simple numpy rpi_hardware_pwm
pip3 uninstall -y Pillow && pip3 install Pillow
pip3 install sugarpie flask_socketio board adafruit-blinka adafruit-
circuitpython-seesaw luma.oled grove.py pigpio-encoder gpiod
sudo apt install python3-systemd e2fsprogs ntfs-3g exfatprogs console-
terminus
```

Replace RPi.GPIO with Igpio

```
sudo apt install -y swig python3-dev build-essential git
git clone https://github.com/joan2937/lg
```

```
cd lg && make
sudo make install
cd .. && pip install lgpio
```

Clone the Cinemate repo

```
git clone https://github.com/Tiramisioux/cinemate.git
```

Allow Cinemates main.py to run with sudo

Edit the sudoers file:

```
sudo visudo
```

add this to the end of the file:

```
pi ALL=(ALL) NOPASSWD: /home/pi/cinemate/src/main.py
pi ALL=(ALL) NOPASSWD: /bin/mount, /bin/umount, /usr/bin/ntfs-3g
pi ALL=(ALL) NOPASSWD: /home/pi/cinemate/src/logs/system.log
pi ALL=(ALL) NOPASSWD: /sbin/mount.ext4
```

Enable NetworkManager

```
sudo systemctl enable NetworkManager --now
```

Rotate logs

Paste this into the terminal and hit enter:

```
# tee /etc/logrotate.d/general_logs <<'EOP'
/var/log/*.log {
    size 100M
    rotate 5
    compress
    missingok
    notifempty
}</pre>
```

Seed Redis with default keys

```
redis-cli <<'EOF'
SET anamorphic_factor 1.0
PUBLISH cp_controls anamorphic_factor
SET bit_depth 12
PUBLISH cp_controls bit_depth
...
EOF
```

(See the settings guide for the full list.)

Add a convenience alias

Append to ~/.bashrc:

```
alias Cinemate='python3 /home/pi/Cinemate/src/main.py'
```

Then, inside cinemate folder:

```
make install
```

2.1.16 Cinemate services

Cinemate with two small helper services under services/:

- storage-automount mounts and unmounts removable drives such as SSDs, NVMe enclosures and the CFE HAT. Partitions named RAW are attached at /media/RAW; all others are mounted under /media/<LABEL>.
- wifi-hotspot keeps a simple Wi-Fi hotspot running via NetworkManager so you can reach the web UI even without other networking. The SSID and password come from the system.wifi_hotspot section of settings.json.

Install and enable both services with:

cd /home/pi/cinemate/services sudo make install sudo make enable

You can manage each one individually with make <action>-<arrive>, for example make status-wifi-hotspot.

2.1.17 Starting Cinemate

If you are not using the service file for autostart, anywhere in the terminal, type:

cinemate

This would be the recommended way of trying out Cinemate as you will get extended logging in the terminal which can be helpful when troubleshooting. The Cinemate logger also relays logging messages from the running cinepi-raw instance.

3. Configuration

3.1 CineMate settings.json User Guide

This file controls how the camera behaves and how your buttons, switches and displays are mapped. It lives in ~/cinemate/src/settings.json on the Raspberry Pi. You can edit it with any text editor; the settings take effect the next time you start CineMate.

The configuration is structured as JSON. Each top-level key describes a feature area of the system. Below is a tour of every section and what the options do.

3.1.1 welcome message

Text or image displayed briefly when Cinemate starts.

```
"welcome_image": null
"welcome_message": "THIS IS A COOL MACHINE",
```

Set welcome_image to the path of a bitmap file to show a logo instead of text.

Example path: /home/pi/welcome_image.bmp.

If welcome image path is set, this will override the text message.

3.1.2 system

```
"system": {
    "wifi_hotspot": {
        "name": "CinePi",
        "password": "11111111",
        "enabled": false
    }
}
```

- **name** the Wi-Fi network name (SSID) broadcast by the Pi when hotspot mode is enabled.
- password password for joining the hotspot.
- enabled set to true to start the hotspot automatically on boot. If set to false, CineMate will still start its web ui but stream it on whatever network the Pi is connected to.

3.1.3 geometry

Controls image orientation for each camera port (cam0, cam1, etc.). These settings let you mount cameras in any orientation and still get an upright preview and recording. Example:

```
"geometry": {
  "cam0": { "rotate_180": false, "horizontal_flip": false,
"vertical_flip": false },
  "cam1": { "rotate_180": false, "horizontal_flip": false,
```

```
"vertical_flip": false }
}
```

- rotate_180 flip the image upside-down.
- horizontal_flip mirror the image left/right.
- vertical_flip mirror the image top/bottom.

3.1.4 output

Maps each camera to an HDMI connector. Use -1 for automatic selection.

```
"output": {
    "cam0": { "hdmi_port": 0 },
    "cam1": { "hdmi_port": 1 }
}
```

3.1.5 preview

Adjusts zoom levels for the HDMI/browser preview.

```
"preview": {
   "default_zoom": 1.0,
   "zoom_steps": [1.0, 1.5, 2.0]
}
```

- default_zoom magnification factor used at startup.
- zoom_steps list of zoom factors you can cycle through with the set_zoom_step command.

3.1.6 anamorphic_preview

For stretching the preview when using anamorphic lenses.

```
"anamorphic_preview": {
  "default_anamorphic_factor": 1,
  "anamorphic_steps": [1, 1.33, 2.0]
}
```

- default_anamorphic_factor factor loaded when Cinemate starts.
- anamorphic_steps selectable squeeze factors; values above 1.0 widen the image.

3.1.7 gpio_output

Defines pins used for visual feedback or sync signals.

```
"gpio_output": {
    "pwm_pin": 19,
    "rec_out_pin": [6, 21]
}
```

- pwm_pin outputs a strobe for shutter sync or external devices.
- rec_out_pin list of pins pulled high while recording (useful for tally LEDs).

3.1.8 arrays

Preset lists for exposure and frame-rate settings. Cinemate will step through these values unless you enable free mode, either in the settings file or during runtime.

```
"arrays": {
    "iso_steps": [100, 200, 400, 640, 800, 1200, 1600, 2500, 3200],
    "shutter_a_steps": [1, 45, 90, 135, 172.8, 180, 225, 270, 315,
346.6, 360],
    "fps_steps": [1, 2, 4, 8, 12, 16, 18, 24, 25, 33, 40, 50],
    "wb_steps": [3200, 4400, 5600]
}
```

3.1.9 settings

General options for runtime behaviour.

```
"settings": {
    "light_hz": [50, 60],
    "conform_frame_rate": 24
}
```

- light_hz list of mains frequencies used to calculate flicker-free shutter angles. These are added to the shutter angle array and also dynamically calculated upon each fps change. This way, there is always a flicker free shutter angle value close by, when toggling through shutter angles, either via the cli or using buttons/pots/rotary encoder.
- **conform_frame_rate** frame rate intendend for project conforming in post. This setting is not really used by CineMate except for calculating the recording timecode tracker in redis but might be used in future updates.

3.1.10 analog_controls

Maps Grove Base HAT ADC channels to analogue dials (potentiometers). Use null to disable a dial.

```
"analog_controls": {
    "iso_pot": 0,
    "shutter_a_pot": 2,
    "fps_pot": 4,
    "wb_pot": 6
}
```

Note that even if you are using a Grove Base Hat, it might be useful to disable the dials not connected to pots, since noise from these connectors might trigger false readings.

3.1.11 free mode

When enabled, ignores the preset arrays and exposes the full range supported by the sensor.

```
"free_mode": {
    "iso_free": false,
    "shutter_a_free": false,
    "fps_free": true,
    "wb_free": false
}
```

3.1.12 buttons

Defines GPIO push buttons. Each entry describes one button and the actions it triggers.

```
{
  "pin": 5,
  "pull_up": true,
  "debounce_time": 0.1,
  "press_action": {"method": "rec"}
}
```

- pin BCM pin number the button is connected to.
- pull_up set true if the pin idles high (internal pull-up). Use false for pull-down wiring.
- **debounce_time** ignore additional presses within this time window (seconds).
- press_action, single_click_action,
 double_click_action, triple_click_action, hold_action
 actions to perform for each type of interaction. Actions
 call Cinemate CLI commands with optional args.

HOW "INVERSE" (1-0-1) BUTTONS ARE AUTO-DETECTED

Some push-buttons are wired closed = logic 1 and open = 0. At start-up, CineMate automatically detects buttons in state true and reverses them. This way the user can use any type of push buttons, both 1-0-1 and 0-1-0 types.

3.1.13 two_way_switches

Latching on/off switches. Cinemate triggers an action whenever the state changes.

```
{
  "pin": 27,
  "state_on_action": {"method": "set_all_lock", "args": [1]},
  "state_off_action": {"method": "set_all_lock", "args": [0]}
}
```

3.1.14 rotary encoders

Rotary encoders used for fine adjustment of settings. These can be wired straight to the GPIO pins of the Pi.

```
{
  "clk_pin": 9,
  "dt_pin": 11,
  "encoder_actions": {
    "rotate_clockwise": {"method": "inc_iso"},
    "rotate_counterclockwise": {"method": "dec_iso"}
```

```
}
```

- clk_pin and dt_pin the two pins of the encoder.
- encoder_actions commands to run when turning the dial.

3.1.15 quad_rotary_encoders

Support for the Adafruit Neopixel Quad I2C rotary encoder breakout with four dials. Each entry assigns a dial to a setting and clones the behaviour of a button pin.

```
"quad_rotary_encoders": {
  "0": {"setting_name": "iso", "gpio_pin": 5},
  "1": {"setting_name": "shutter_a", "gpio_pin": 16},
  "2": {"setting_name": "fps", "gpio_pin": 26},
  "3": {"setting_name": "wb", "gpio_pin": 5}
}
```

3.1.16 i2c oled

Configuration for the optional OLED status screen. This can be useful for presenting extra information appart from the HDMI/web display.

```
"i2c_oled": {
    "enabled": true,
    "width": 128,
    "height": 64,
    "font_size": 30,
```

```
"values": ["write_speed_to_drive"]
}
```

- enabled turn the OLED display on or off.
- width / height pixel dimensions of your screen.
- font_size size of the displayed text.
- values list of Redis keys or pseudo-keys to show (for example cpu_temp).

Available keys come from src/module/i2c_oled.py. Here are some examples:

- iso, fps basic camera settings.
- shutter_a shown as **SHUTTER** with a ° suffix.
- wb_user shown as **WB** with a trailing K.
- space_left displayed as **SPACE** in gigabytes.
- write_speed_to_drive write speed in MB/s.
- resolution prints width*height@bit_depth on the first line.
- is_recording draws a bullet when recording.
- cpu_load, cpu_temp, memory_usage Pi system statistics.

Other keys will display their name in uppercase and the raw value from Redis.

3.2 CinePi-raw CLI User Guide

This guide explains how to start **CinePi-raw** from the command line. The tool is a fork of the <code>rpicam-apps</code> project and allows capturing CinemaDNG files using Raspberry Pi cameras. The examples below assume you have installed the software and its dependencies as described in the repository README.

3.2.1 1. Checking available options

Before running the program you can view all command-line flags with:

cinepi-raw -h

This prints a long list of options supported by the application. It includes the standard parameters from rpicam-apps (such as resolution and exposure settings) plus additional flags specific to the CinePi project. If you just want to confirm that your build works, you can also display the version number using:

cinepi-raw --version

3.2.2 2. Camera modes

CinePi-raw uses **Libcamera** to talk to your Raspberry Pi camera module. Each sensor supports one or more *modes*, which define the resolution and bit depth of the RAW images that the sensor can produce. A mode is written as:

<width>:<height>:<bit-depth>[:<packing>]

- width and height select the active pixel area of the sensor
- bit-depth is usually 12 or 16 bits per pixel.
- \bullet packing can be P for packed or U for unpacked data.

The mode must match the sensor you are using. For example, an IMX477 camera can run at 4056:3040:12 (full sensor) or at smaller cropped resolutions. When specifying a mode you typically also set the output --width and --height which control the size of the image written to disk. These can be equal to the mode values or smaller when scaling is applied.

3.2.3 3. Low-resolution (lores) stream

CinePi-raw can produce a secondary low-resolution stream alongside the full-resolution RAW frames. This is useful for monitoring or for algorithms that need a lighter image to work with. You enable it using:

--lores-width <pixels> --lores-height <pixels>

Setting either width or height to $\, \sigma \,$ disables the lores output.

3.2.4 4. Preview window

By default the program opens an HDMI preview so you can see what the camera captures. The size and position of this window are controlled with:

-p x,y,width,height

For example -p 0,30,1920,1020 positions the preview 30 pixels from the top of the screen with a 1920×1020 window. If you do not want any preview, use --nopreview.

CineMate (the companion project) uses the preview window for its graphical interface, so you can adjust it to fit your monitor or leave it fullscreen with --fullscreen.

3.2.5 5. Post-processing and tuning files

Two JSON files influence how frames are processed:

- Tuning file describes the camera's colour and lens characteristics. Use --tuning-file <path> to point to a file supplied with Libcamera (for example imx477.json for the HQ camera or imx585.json for the Sony IMX585 sensor).
- 2. **Post-process file** for cinepi-raw, this file defines the port used by cpp-mjpeg-streamer (default :8000)

3.2.6 6. Cinemate-specific flags

The CineMate fork introduces several extra options:

Flag	Description		
cam-port	Select the physical CSI port to use (camo or cam1).		
hdmi-port	Choose the HDMI connector		
<int></int>	for the preview: $0 = HDMI-0$,		
	1 = HDMI-1, -1 = auto.		
same-hdmi	Force both capture and controller GUI to share the		
	same HDMI output.		
keep16	Save full 16-bit DNGs instead		
	of 12-bit packed files.		

At this moment though, Cinemate is 12bit only. The flag is for future updates of the IMX585 16bit clear HDR modes.

3.2.7 7. Example commands

Below are sample commands for different sensors and modes.

IMX477 (12-bit, full width)

```
cinepi-raw --mode 4056:2160:12 --width 4056 --height 2160 \
    --lores-width 1280 --lores-height 720 \
    -p 0,30,1920,1020 \
    --post-process-file /home/pi/post-processing.json \
```

IMX585 (12-bit unpacked)

```
cinepi-raw --mode 1928:1090:12:U --width 1928 --height 1090 \
    --lores-width 1280 --lores-height 720 \
    -p 0,30,1920,1020 \
    --post-process-file /home/pi/post-processing.json \
    --tuning-file /home/pi/libcamera/src/ipa/rpi/pisp/data/
imx585.json \
```

Now, with an SSH shell running redis-cli you should be able to capture RAW footage from the command line!

CineMate "Pseudo-CLI"

CineMate doesn't use a real shell parser. Instead, a background thread reads simple text commands from SSH or the serial port and calls the corresponding controller methods.

AVAILABLE COMMANDS

Command	Input type	Example	Function
rec / stop	none	rec	Toggle recording on or off
set iso <value></value>	int	set iso 800	Set ISO to nearest allowed step
inc iso / dec iso	none	inc iso	Step ISO up or down
set shutter a <angle></angle>	float	set shutter a 180	Set actual shutter angle (snaps unless free/sync)
inc shutter a / dec shutter a	none	inc shutter a	Cycle through shutter angles
set shutter a nom <angle></angle>	float	set shutter a nom 180	Set nominal shutter angle for motion blur
inc shutter a nom / dec shutter a nom	none	inc shutter a nom	Step the nominal shutter angle
set fps <value></value>	float	set fps 24	Change frame rate (snaps unless free)
inc fps / dec fps	none	inc fps	Step through FPS list
set wb [<kelvin>]</kelvin>	int or none	set wb 5600	Set white balance or cycle presets
inc wb / dec wb	none	inc wb	Cycle white balance steps
set resolution [<mode>]</mode>	int or none	set resolution 2	Apply or cycle sensor mode
set anamorphic factor [<float>]</float>	float or none	set anamorphic factor	Set or toggle anamorphic stretch
set zoom [<float>]</float>	float or none	set zoom 2	Change digital zoom; omit to cycle
inc zoom / dec zoom	none	inc zoom	Step preview zoom factor
mount / unmount	none	mount	Mount or unmount external storage
toggle mount	none	toggle mount	Mount if not mounted, otherwise unmount
time	none	time	Show system and RTC time
set rtc time	none	set rtc time	Copy system time to the RTC
space	none	space	Report remaining SSD space
get	none	get	Print all current settings
set shutter a sync [0/1]	0/1 or none	set shutter a sync 1	Enable exposure sync mode
set iso lock [0/1]	0/1 or none	set iso lock	Lock or unlock ISO setting
set shutter a nom lock [0/1]	0/1 or none	set shutter a nom lock	Lock or unlock nominal shutter
set shutter a nom fps lock	0/1 or none	set shutter a nom fps	Lock nominal shutter and FPS together
set fps lock [0/1]	0/1 or none	set fps lock 1	Lock or unlock the frame rate
set all lock [0/1]	0/1 or none	set all lock 0	Toggle all exposure locks at once
set fps double [0/1]	0/1 or none	set fps double	Instant or toggled 2× FPS mode
reboot / shutdown	none	reboot	Safely reboot or halt the Pi
restart camera	none	restart camera	Restart the libcamera pipeline

Command	Input type	Example	Function
restart cinemate	none	restart cinemate	Restart the Cinemate process
set iso free [0/1]	0/1 or none	set iso free 1	Allow any ISO instead of presets
set shutter a free [0/1]	0/1 or none	set shutter a free 0	Allow any shutter angle
set fps free [0/1]	0/1 or none	set fps free 1	Allow any FPS
set wb free [0/1]	0/1 or none	set wb free	Allow any white balance
set filter <0/1>	0/1	set filter 1	Toggle IR-cut filter (IMX585)

Commands without an explicit argument will toggle the current state when possible (e.g. set fps lock flips the lock; set fps lock 1 forces it on).

4. Redis

4.1 Redis API quick start

Cinemate talks to the cinepi-raw recorder through a local Redis server. Parameters such as ISO, FPS or the recording state are stored as simple keys. Two pub-sub channels (cp_controls and cp_stats) carry notifications and status updates.

Here is an overview of how the pieces fit together and how you can experiment with them using redis-cli or your own Python scripts.

4.1.1 How CineMate and cinepi-raw interact

Cinepi-raw exposes an API over Redis. Cinemate acts as the user interface. When you change a value in Cinemate (for example by pressing a button or turning a rotary encoder) it writes the new value to Redis and publishes the key name on the cp_controls channel. cinepi-raw subscribes to this channel and reacts to changes.

Conversely, cinepi-raw periodically publishes camera statistics on the cp_stats channel. Cinemate listens and updates the on-screen GUI.

4.1.2 The cp_controls channel

CineMate writes values and immediately publishes the key name. The recorder only reacts when it receives that publish event.

Any key may be sent this way. For example, to adjust the preview zoom:

```
# Set preview zoom level

redis-cli SET zoom 1.5

redis-cli PUBLISH cp_controls zoom
```

Execpt for the recording trigger **is_recording**. Here, the Cinemate cinepi-raw fork *immediately* starts and stops recording upon edge detection (the variable changes from 0 to 1 or vice versa). The reason for this exception has to do with how the cinepi-raw fork handles recording with multiple cameras

```
# Start recording
redis-cli SET is_recording 1  # triggers 0 - 1 edge

# Stop recording
redis-cli SET is_recording 0  # triggers 1 - 0 edge
```

4.1.3 The cp_stats channel

Every frame, cinepi-raw sends a small JSON object containing live statistics.

```
Json::Value data;
Json::Value histo;
data["framerate"] = completed_request->framerate;
data["colorTemp"] = info.colorTemp;
data["focus"] = info.focus;
data["frameCount"] = app_->GetEncoder()->getFrameCount();
data["bufferSize"] = app_->GetEncoder()->bufferSize();
redis_->publish(CHANNEL_STATS, data.toStyledString());
```

CineMate's RedisListener parses these messages and updates Redis keys like framecount, BUFFER and fps_actual .

4.1.4 Inspecting and changing values with redis-cli

Because everything is plain Redis you can poke around from the command line. Here are a few handy commands:

```
# List all keys
redis-cli KEYS '*'

# Read the current ISO value
redis-cli GET iso

# Start a recording (same as pressing the Rec button)
redis-cli SET is_recording 1
redis-cli PUBLISH cp_controls is_recording
```

4.1.5 Controlling the camera from your own script

You can use any Redis client. Below is a very small example using redis-py:

```
import redis
r = redis.Redis(host='localhost', port=6379, db=0)

# toggle recording
current = r.get('is_recording')
new_value = b'0' if current == b'1' else b'1'
r.set('is_recording', new_value)
r.publish('cp_controls', 'is_recording')
```

Note that in this example, the publishing of the is_recording key is not strictly needed for recording to start/stop, but for formality's sake I think we should keep the publish command.

4.2 Redis key reference

This page lists all Redis keys used by Cinemate and cinepi-raw. Values are simple strings so you can read or write them with redis-cli.

Each entry explains which component normally writes the key and what happens when you change it manually.

Key	Written by	Description	Safe to change manually?
anamorphic_factor	Cinemate	Preview squeeze for anamorphic lenses	Yes (publish key to apply)
iso	Cinemate → cinepi-raw	Sensor gain in ISO	Yes
shutter_a	$Cinemate \rightarrow cinepi\text{-raw}$	Actual shutter angle in degrees	Yes
shutter_angle_nom	Cinemate	Desired shutter angle before sync/ free adjustments	Yes
shutter_a_sync_mode	Cinemate	Keep exposure constant when changing FPS	Yes
fps	$Cinemate \rightarrow cinepi\text{-raw}$	Target frames per second	Yes
sensor_mode	$\begin{aligned} \text{Cinemate} &\rightarrow \text{cinepi-raw} \\ \text{startup} \end{aligned}$	Active sensor resolution/mode	Yes (causes pipeline restart)
wb	$Cinemate \rightarrow cinepi\text{-raw}$	White-balance temperature (Kelvin)	Yes
zoom	Cinemate	Digital zoom for preview streams	Yes
ir_filter	$Cinemate \rightarrow cinepi\text{-raw}$	Toggle IR-cut filter (IMX585 only)	Yes
rec / is_recording	$Cinemate \rightarrow cinepi\text{-raw}$	Start/stop recording when toggled	Yes (edge-triggered)
bit_depth	Cinemate → cinepi-raw startup	Sensor bit depth (10 or 12)	No (set at startup)
height / width	Cinemate → cinepi-raw startup	Active sensor resolution	No
lores_width / lores_height	cinepi-raw startup	Preview stream resolution	No
cg_rb	Cinemate → cinepi-raw	White-balance gain pair "1/R,1/B"	Yes (advanced)
fps_user	Cinemate	Temporary storage for the UI slider	No
fps_last	Cinemate	Previous stable fps from stats	No
fps_actual	cinepi-raw → Cinemate	Measured FPS from pipeline	No
framecount	cinepi-raw → Cinemate	Total frames recorded	No
buffer	cinepi-raw → Cinemate	Raw frames currently in RAM	No
buffer_size	cinepi-raw → Cinemate	Size of RAM buffer in frames	No
is_buffering	cinepi-raw → Cinemate	1 while buffer pre-fills	No
is_writing	cinepi-raw → Cinemate	1 while frames are flushing to disk	No
is_writing_buf	Cinemate	Internal countdown after recording stops	No
is_mounted	Cinemate (SSD monitor)	1 when storage is mounted	No
storage_type	Cinemate (SSD monitor)	Drive type (NVME/USB/SD)	No

Key	Written by	Description	Safe to change manually?
write_speed_to_drive	Cinemate (SSD monitor)	Current write speed MB/s	No
file_size	Cinemate	Bytes per frame for current mode	No
last_dng_cam0/1	$cinepi\text{-raw} \rightarrow Cinemate$	Path to last written DNG frame	No
recording_time	Cinemate	HH:MM:SS:FF timer while recording	No
memory_alert	Cinemate	1 if RAM usage high	No
cam_init	cinepi-raw	Internal flag during startup	No
cameras	cinepi-raw	JSON list of detected cameras	No
gui_layout	Cinemate	Path to GUI layout preset	No
pi_model	Cinemate	Raspberry Pi model string	No
sensor	cinepi-raw	Active camera model	No
tc_cam0/tc_cam1	$cinepi\text{-raw} \rightarrow Cinemate$	SMPTE time code per camera	No
shutter_angle_actual	Cinemate	Calculated shutter angle applied after clamping or sync	No
shutter_angle_transient	Cinemate	Temporary value during ramping	No
exposure_time	Cinemate	Current exposure time in seconds	No
wb_user	Cinemate	Kelvin value set before converting to cg_rb	No