THE GEOECOLOGICAL HISTORY OF PICEA ABIES IN NORTHERN SWEDEN AND ADJACENT PARTS OF NORWAY

A CONTRARIAN HYPOTHESIS OF POSTGLACIAL TREE IMMIGRATION PATTERNS.

LEIF KULLMAN, UMEÅ, SWEDEN

ZUSAMMENFASSUNG

Die geoökologische Geschichte von Picea abies im nördlichen Schweden und angrenzenden Teilen Norwegens. Eine konträre Hypothese zum Verlauf der postglazialen Baum-Immigration.

Die postglaziale Einwanderung von Picea abies (Norwegenfichte) nach Schweden und ins angrenzende (östliche) Norwegen sowie die Entwicklung des Baumgrenz-Ökotons wurde mittels radiokarbondatierter subfossiler Baumrelikte (Zapfen und Holz) in Torf- und Rohhumus-Böden rekonstruiert. Picea abies erschien danach zum ersten Mal auf einem früh ausgeschmolzenen Nunatakker in der Übergangszeit vom Alleröd zur Jüngeren Dryas, etwa um 11.000 BP¹⁴C yr BP. Während des Frühholozäns (bis ca 8000^{14} C yr BP) war *Picea* strikt an höhere Erhebungen im Westen gebunden. In tieferen Lagen, östlich der Skanden, tauchte *Picea* im Subfossil-Rekord hauptsächlich nach ca. 6000¹⁴C yr BP auf.

Im Zeitraum danach könnte eine - nach dem Milankovitch-Modell - sukzessive abnehmende Klima-Saisonalität bei gleichzeitig wachsender Netto-Bodenfeuchte und möglicherweise auch zunehmender und länger andauernder Schneedecke sowohl das Wachstum der Population wie auch deren Ausbreitung im Landschaftsmaßstab vorangetrieben haben. Das Baumgrenz-Ökoton existierte jedenfalls schon im Übergang von der Weichsel-Eiszeit zum Holozän, als baumgroße Picea mindestens 400 m höher wuchsen als heute.

GREN and LOTTE SELSING for useful comments on the manuscript. Moreover, I am indepted to THOMAS BARTHOLIN for species identification of subfossil wood and to JONAS ERIKSSON, OLA ENGELMARK, ERIK OWUSU-ANSAH and LENA KJÄLLGREN for field- and laboratory assistance.

REFERENCES

- ALLEN, J.R.M. & HUNTLEY, B. 1999: Estimating past floristic diversity in montane regions from macrofossil assemblages. Journal of Biogeography 26:55-73.
- ALM, T. 1993: Øvre Æråsvatn palynostratigraphy of a 22,000 to 10,000 BP lacustrine record on Andøva, northern Norway. Boreas 22:171-188.
- ANDERSSON, G. 1902: Hasseln i Sverige fordom och nu. Sveriges Geologiska. Undersökning Ser. Ca 3:1-168.
- BENNETT, K.D. 1986: The rate of spread and population increase of forest trees during the postglacial. Philosophical Transactions of the Royal Society of London B 314:523-531.
- BENNETT, K.D. 1988: Holocene geographic spread and population expansion of *Fagus grandifolia* in Ontario, Canada. Journal of Ecology **76**:547-557.
- BERGER, A. 1988: Milankovitch theory and climate. Reviews of Geophysics 26:624-657.
- BIRKS, H.H. 1994a: Late-glacial vegetational ecotones and climatic patterns in Western Norway. Vegetation History and Archaeobotany 3:107-119.
- BIRKS, H.H. 1994b: Plant macrofossils and the nunatak theory of periglacial survival. Dissertationes Botanicae 234:129-143.
- BIRKS, H.J.B. 1993: Is the hypothesis of survival on glacial nunataks necessary to explain the present-day distributions of Norwegian mountain plants? Phytocoenologia 23:399-426.
- BJÖRCK, S. & 10 OTHERS 1996: Synchronized terrestrial-atmospheric deglacial records around the North Atlantic. Science 274:1155-1160.
- BLIKRA, L.H. & SELVIK, S.F. 1998: Climatic signals recorded in snow avalanche-dominated colluvium in western Norway. The Holocene 8:631-658.
- BLÜTHGEN, J. 1960: Der skandinavische Fjällbirkenwald als Landschaftsformation. Petermanns Geographische Mitteilungen 104:119-144.
- BOBROV, E.G. 1972: Die introgressive Hybridisation in der Gattung *Picea*. Symp. Biol. Hung. 12:141-148.
- BORGSTRÖM, I. 1989: Terrängformerna och den glaciala utvecklingen i södra fjällen. Meddelanden från Naturgeografiska Institutionen, Stockholms Universitet A234:1-133
- COHMAP MEMBERS 1988: Climatic changes of the last 18000 years: observations and model simulations. Science 241:1043-1052.
- COOPE, G.R., LEMDAHL, G., LOWE, J.J. & WALKING, A. 1998: Temperature gradients in northern Europe during the last glacial Holocene transition (14 9 ¹⁴C kyr BP) interpreted from coleopteran assemblages. Journal of Quaternary Science 13:419-433.
- DAHL, E. 1998: The Phytogeography of Northern Europe. 295 pp. Cambridge University Press, Cambridge.
- DAHL, E. & MORK, E. 1959: On the relationships between temperature, respiration and growth in Norway spruce (*Picea abies* (L.) Karst.). Meddelelser fra Det Norske Skogforsøksvesen 53:82-93.

- DAVIS, M.B. 1976: Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13:13-26.
- DONNER, J. 1995: The Quaternary History of Scandinavia. 200 pp. Cambridge University Press, Cambridge.
- ELLIOTT, D.L. 1979: The current reproductive capacity of the northern Canadian trees, Keewatin, N.W.T., Canada: some preliminary observations. Arctic and Alpine Research 11:243-251.
- FÆGRI, K. 1950: Studies on the Pleistocene of western Norway. IV. On the immigration of *Picea abies* (L.) Karst. Universitetet i Bergen Årbok 1949, Naturvitenskapelig rekke1:1-52.
- FROMM, E. 1965: Beskrivning till jordartskarta över Norrbottens län. Sveriges Geologiska Undersökning Serie Ca 39:1-236.
- GRANLUND, E. 1943: Beskrivning till jordartskarta över Västerbottens län nedanför odlingsgränsen. Sveriges Geologiska Undersökning Serie Ca 26:1-165.
- HAFSTEN, U. 1987: Vegetation, climate and evolution of the cultural landscape in Trøndelag, Central Norway, after the last ice age. Norsk Geografisk Tidsskrift 1:101-120.
- HAFSTEN, U. 1992: The immigration and spread of Norway spruce (*Picea abies* (L.) Karst.) in Norway. Norsk Geografisk Tidsskrift 46:121-158.
- HAGEMANN, A. 1890: Altenskoven. Norske Forstforenings Aarbog 1890:1-74.
- HANSEN-BRISTOW, K.J. 1984: Changes in the forest-alpine tundra ecotone: Colorado Front Range. Physical Geography 5:186-197.
- HANSEN-BRISTOW, K.J. & IVES, J.D. 1985: Composition, form, and distribution of the forest-alpine tundra ecotone, Indian Peaks. Erdkunde 39:286-295.
- HØEG, H.I. 1972: En pollenanalytisk undersøkelse i Skaitidalen, Saltdal kommune, Nordland. Unpublished thesis. 67 pp. University of Oslo.
- HOLTMEIER, F.-K. 1993: Der Einfluss der generativen und vegetativen Verjüngung auf das Verbreitungsmuster der Bäume und die ökologische Dynamik im Waldgrenzbereich. Geoökodynamik 14:153-182.
- HOLTMEIER, F.-K. 1999: Ablegerbildung im Hochlagenwald und an der oberen Waldgrenze in der Front Range, Colorado. Mitteilungen der Deutschen Dendrologischen Gesellschaft 84:39-61
- HULTÉN, E. 1949: On the races in Scandinavian flora. Svensk Botanisk Tidskrift 43:383-406.
- HUNTLEY, B. 1988: Europe. In: HUNTLEY, B & WEBB T. III (eds.): Vegetation History, 341-383. Kluwer, Dordrecht.
- HUNTLEY, B., BERRY, P.M., CRAMER, W. & MCDONALD, A.P. 1995: Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography 22:967-1001.
- HUNTLEY, B. & BIRKS, H.J.B. 1983: An Atlas of Past and Present Pollen Maps for Europe 0-13 000 years ago. 667 pp. Cambridge University Press, Cambridge.
- HUSTICH, I. 1966: On the forest-tundra and the northern tree-lines. Reports from the Kevo Subarctic Research Station 3:7-47.
- JUUL, J.G. 1924: Granens vestgraense i Norge. Tidsskrift for Skogbruk 32:218-227.
- JUUL, J.G. 1925: Furuens utbredelse i Finnmark og Troms. Tidsskrift for Skogbruk 33:359-440.
- KALLIO, P., LAINE, U. & MÄKINEN, Y. 1971: Vascular flora of Inari Lapland. 2. Pinaceae and Cupressaceae. Reports from the Kevo Subarctic Research Station 8:73-100.
- KILANDER, S. 1955: Kärlväxternas övre gränser på fjäll i sydvästra Jämtland samt angränsande delar av Härjedalen och Norge. Acta Phytogeographica Suecica 35:1-198.

- KOC, N., JANSEN, E. & HAFLIDASON, H. 1993: Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms. Quaternary Science Reviews 12: 115-140.
- KRISTIANSEN, I.L., MANGERUD, J. & LØMO, L. 1988: Late Weichselian/Early Holocene pollenand lithostratigraphy in lakes in the Ålesund area, western Norway. Review of Palaeobotany and Palynology 53:185-231.
- KULLMAN, L. 1981: Some aspects of the ecology of the Scandinavian subalpine birch forest belt. Wahlenbergia 7:99-112.
- KULLMAN, L. 1986: Recent tree-limit history of *Picea abies* in the southern Swedish Scandes. Canadian Journal of Forest Research 16:761-771.
- KULLMAN, L. 1987: Little Ice Age decline of a cold marginal *Pinus sylvestris* forest in the Swedish Scandes. New Phytologist **106**:567-584.
- KULLMAN, L. 1995a: Holocene tree-limit and climate history from the Scandes Mountains, Sweden. Ecology 76:2490-2502.
- KULLMAN, L. 1995b: New and firm evidence for Mid-Holocene appearance of *Picea abies* in the Scandes Mountains, Sweden. Journal of Ecology **83**:439-447.
- KULLMAN, L. 1996a: Norway spruce present in the Scandes Mountains, Sweden at 8000 BP: new light on Holocene tree spread. Global Ecology and Biogeography Letters 5:94-101.
- KULLMAN, L. 1996b: Recent cooling and recession of Norway spruce (*Picea abies* (L.) Karst.) in the forest-alpine tundra ecotone of the Swedish Scandes. Journal of Biogeography 23:843-854.
- KULLMAN, L. 1996c: Rise and demise of cold-climate *Picea abies* forest in Sweden. New Phytologist 134:243-256.
- KULLMAN, L. 1997: Tree-limit stress and disturbance. A 25-year survey of geoecological change in the Scandes Mountains of Sweden. Geografiska Annaler 79A:139-165.
- KULLMAN, L. 1998a: Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312-321.
- KULLMAN, L. 1998b: The occurrence of thermophilous trees in the Scandes Mountains during the early Holocene: evidence for a diverse tree flora from macroscopic remains. Journal of Ecology 86:412-428.
- KULLMAN, L. 1998c: Palaeoecological, biogeographical and palaeoclimatological implications of early Holocene immigration of *Larix sibirica* Ledeb. into the Scandes Mountains, Sweden. Global Ecology and Biogeography Letters 7:181-188.
- KULLMAN, L. 1998d: Non-analogous tree flora in the Scandes Mountains, Sweden, during the early Holocene macrofossil evidence of rapid geographic spread and response to palaeoclimate. Boreas 27:153-161.
- KULLMAN, L. 1999: Early Holocene tree growth at a high elevation site in the northernmost Scandes of Sweden (Lapland). A palaeobiogeographical case study based on megafossil evidence. Geografiska Annaler 81A:63-74.
- KULLMAN, L. 2000. Tree-limit rise and recent warming: a geoecological case study from the Swedish Scandes. Norwegian Journal of Geography 54:49-59.
- KULLMAN, L. & ENGELMARK, O. 1997: Neoglacial climate control of subarctic *Picea abies* stand dynamics and range limit in northern Sweden. Arctic and Alpine Research 29: 315-326.
- KULLMAN, L. & KJÄLLGREN, L. 2000: A coherent postglacial tree-limit chronology (*Pinus sylvestris* L.) for the Swedish Scandes. Aspects of paleoclimate and "recent warming", based on megafossil evidence. Arctic, Antarctic, and Alpine Research 32:000-000.

- KUUSELA, K. 1990: The Dynamics of Boreal Coniferous Forest. 172 pp. Finnish National Fund for Research and Development, Helsinki.
- LAGERCRANTZ, U. & RYMAN, N. 1990: Genetic structure of Norway spruce (*Picea abies*): concordance of morphological and allozymic variation. Evolution 44:38-53.
- LAMB, H.H. 1995: Climate, History and the Modern World. 433 pp. Routledge, London.
- LANG, G. 1994: Quartäre Vegetationsgeschichte Europas. 462 pp. Gustav Fischer Verlag, Jena.
- LAVOIE, C. & PAYETTE, S. 1996: The long-term stability of the boreal forest limit in subarctic Québec. Ecology 77:1226-1233.
- LEDIG, F.T. 1989: Heterozygosity, heterosis, and fitness in outbreeding plants. In: SOULÉ, M.E. (ed.): Conservation Biology, 77-104. Sinauer, Sunderland.
- LILJEQUIST, G.H. 1974: Notes on meteorological conditions in connection with continental land-ices in the Pleistocene. Geologiska Föreningens i Stockholm Förhandlingar 96:293-298.
- LINDQUIST, B. 1932: Om den vildväxande skogsalmens raser och deras utbredning i Nordvästeuropa. Acta Phytogeographica Suecica 4:1-56.
- LINDQUIST, B. 1948: The main varieties of *Picea abies* (L.) Karst. in Europe, with a contribution to the theory of a forest vegetation in Scandinavia during the last Pleistocene glaciation. Acta Horti Bergiani 14:249-342.
- LUNDQVIST, G. 1952: Beskrivning till jordartskarta över Kopparbergs län. Sveriges Geologiska Undersökning Serie Ca 21:1-213.
- LUNDQVIST, J. 1969: Beskrivning till jordartskarta över Jämtlans län. Sveriges Geologiska Undersökning Serie Ca 45:1-418.
- LUNDQVIST, J. 1994: Inlandsisens avsmältning. In: Fredén, C. (ed.): Berg och Jord Sveriges Nationalatlas, 124-135. Bra Böcker, Höganäs.
- MACDONALD, G.M., CWYNAR, L. & WHITLOCK, C. 1998a: In: RICHARDSON, D.M. (ed.): The Late Quaternary dynamics of pines in northern North America. Ecology and Biogeography of *Pinus*, 122-136. Cambridge University Press, Cambridge.
- MACDONALD, G.M., SZEICZ, J.M., CLARICOATES, J. & DALE, K.A. 1998b: Response of central Canadian treeline to recent climatic changes. Annals of the Association of American Geographers 88:183-208.
- MANNERFELT, C. 1940: Glacial-morfologiska studier i norska högfjäll. Norsk Geografisk Tidsskrift 8:7-47.
- MOE, D. 1970: The post-glacial immigration of *Picea abies* into Fennoscandia. Botaniska Notiser 123:61-66.
- MOE, D. 1994: Climatic variations in western Norway during the last 13,000 years. A review. Geologija 17:159-165.
- MÖRNER, N.-A. 1980: The Fennoscandian uplift: geological data and their geodynamical implication. In: MÖRNER, N.-A. (ed.): Earth Rheology, Isostasy and Eustasy, 251-284. John Wiley & Sons, Chichester.
- NESJE, A. & DAHL, S.O. 1992: Equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene glaciers in Fosdalen, inner Nordfjord, western Norway. Norsk Geologisk Tidsskrift 72:209-216.
- NILSSON, E. & NILSSON, Ö. 1986: Nordisk Fjällflora. 272 pp. Bonniers, Stockholm.
- OLSSON, I.U. & POSSNERT, G. 1992: The interpretation of ¹⁴C measurements on pre-Holocene samples. Sveriges Geologiska Undersökning Serie Ca 81:201-208.
- ÖRTENBLAD, T. 1895: Har Norrlands skogsflora erhållit några bidrag från Norge? Tidskrift för Skogshushållning 23:25-34.

- PAUS, A. 1989: Late Weichselian vegetation, climate, and floral migration at Liastemmen; North Rogaland, south-western Norway. Journal of Quaternary Science 4:223-242.
- PAYETTE, S. 1993: The range limit of boreal tree species in Québec-Labrador. An ecological and palaeoecological interpretation. Review of Palaeobotany and Palynology **79**:7-30.
- PEACOCK, J.D. & HARKNESS, D.D. 1990: Radiocarbon ages and the full-glacial to Holocene transition in seas adjacent to Scotland and southern Scandinavia: a review. Transactions of the Royal Society of Edinburgh. Earth Sciences 81:385-396.
- POST, L. von 1918: Ett finiglacialt granfynd i södra Värmland. Geologiska Föreningens i Stockholm Förhandlingar 40:19-25.
- POST, L. von 1930: Norrländska torvmossestudier II. Några huvudpunkter i skogens och myrarnas postarktiska historia inom södra Norrland. Geologiska Föreningens i Stockholm Förhandlingar 52:63-90.
- RESVOLL-HOLMSEN, H. 1917: Lit om granen og birken ved deres høidegrense i Valdresfjeldene. Tidsskrift for Skogbruk 25:148-154.
- RIND, D., PETEET, D., BROECKER, W., MCINTYRE, A. & RUDDIMAN, W. 1986: The impact of cold North Atlantic sea surface temperatures on climate: implications for the Younger Dryas cooling (11-10 ky). Climate Dynamics 1:3-33.
- RUNDGREN, M. & INGÓLFSSON, Ó. 1999: Plant survival in Iceland during periods of glaciation. Journal of Biogeography 26:387-396.
- SANDEGREN, R. 1924: Ragundatraktens postglaciala utvecklingshistoria enligt den subfossila florans vittnesbörd. Sveriges Geologiska Undersökning Serie Ca 12:1-55.
- SELSING, L. 1996: The climatic interpretation of Holocene megafossils of pine (*Pinus sylvestris* L.) from the mountain area of southern Norway; the importance of the precession in controlling Holocene climate. Palaeoclimate Research 20:147-156.
- SERNANDER, R. 1892: Die Einvanderung der Fichte in Skandinavien. Englers Botanische Jahrbücher 15:1-94.
- SIEGERT, M.J., DOWDESWELL, J.A. & MELLES, M. 1999: Late Weichselian glaciation of th Russian High Arctic. Quaternary Research 52:273-285.
- SMITH, H. 1911: Postglaciala regionförskjutningar i norra Härjedalens och södra Jämtlands fjälltrakter. Geologiska Föreningens i Stockholm Förhandlingar 33:503-530.
- SMITH, H. 1920: Vegetationen och dess Utvecklingshistoria i det Centralsvenska Högfjällsområdet. 238 pp. Almqvist & Wiksells, Uppsala.
- SPEAR, R.W. 1989: Late-Quaternary history of high-elevation vegetation in the White Mountains of New Hampshire. Ecological Monographs 59:125-151.
- SPEAR, R.W., DAVIS, M.B. & SHANE, L.C.K. 1994: Late Quaternary history of low- and midelevation vegetation in the White Mountains of New Hampshire. Ecological Monographs 64:85-109.
- SVENDSEN, J.I. & MANGERUD, J. 1987: Late Weichselian and Holocene sea-level history for a cross-section of western Norway. Journal of Quaternary Science 2:113-132.
- TALLANTIRE, P.A. 1977: A further contribution to the problem of the spread of spruce (*Picea abies* (L.) Karst.) in Fennoscandia. Journal of Biogeography 4:219-227.
- VORREN, T.O., VORREN, K.D., ALM, T., GULLIKSEN, S. & LØVLIE, R. 1988: The last deglaciation (20,000 to 11,000 B.P.) on Andøya, northern Norway. Boreas 17:41-77.
- WATTS, W.A. 1973: Rates of change and stability in vegetation in the perspective of long periods of time. In BIRKS, H.J.B. & WEST, R.G. (eds.): Quaternary Plant Ecology, 195-206. Blackwell, Oxford.

172 KULLMAN

WILLIS, K.J., BENNETT, K.D. & BIRKS, H.J.B. 1998: The late Quaternary dynamics of pines in Europe. In: RICHARDSON, D.M. (ed.): Ecology and Biogeography of *Pinus*, 107-121. Cambridge University Press, Cambridge.

WILLIS, K.J., RUDNER, E. & SÜMEGI, P. 2000: The full-glacial forests of central and southeastern Europe. Quaternary Research 53: 203-213.

Eingang des Manuskripts: 10. 3. 2000 Annahme des Manuskripts: 12. 6. 2000

Adress of the author: Leif Kullman, Physical Geography, Department of Ecology and Environm Science, Umeå University, S-901 87 Umeå, Sweden