控制

	Е] .	录			6.2 z变换	19
1 自动控制基础 4 7 控制系统 19 1.1 自动控制基础 4 7.1 状态空间 19 1.2 数学模型 5 8 控制系统的结构性质 19 1.2.1 拉氏变换 5 8 控制系统的结构性质 19 1.2.2 控制微分方程 6 8.1 能控性与能观测性 19 1.2.3 传递函数 7 8.2 稳定性 19 1.2.4 结构图 8 9 反馈控制系统 19 1.2.5 信号流图 9.1 反馈 19 2 时域分析 10 9.2 李雅普诺夫方法设计反馈系统 19 2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 10 状态观测器与动态反馈 19 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.1 观测器 19 2.4 稳定性分析 14 10.2 动态反馈 19 3 根轨迹分析 19 11 最优控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11 最优控制 19 3.4 概念 19 11 概念 19 4.4 概念 19 12 连续时间最优控制	_		八			6.3 线性定常离散系统	19
1 自动控制基础 4 7 控制系统 19 1.1 自动控制 4 7.1 状态空间 19 1.2 数学模型 5 8 控制系统 19 1.2.1 拉氏变换 5 8 控制系统的结构性质 19 1.2.2 控制微分方程 6 8.1 能控性与能观测性 19 1.2.3 传递函数 7 8 空性生与能观测性 19 1.2.4 结构图 8 9 反馈控制系统 19 1.2.5 信号流图 9 9.1 反馈 19 2.1 性能指标 10 9.2 李雅普诺夫方法设计反馈系统 19 2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 10 状态观测器与动态反馈 19 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.2 动态反馈 19 3 根轨迹分析 19 11 最优控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.2 各方法的关系 19 4.1 概念 19 12.1 变分法 19 4.2 图像 19 12.2 最大值原理 19 <		白	动控制	4	Ш	现代控制	19
1.1 自动控制 4 7.1 状态空间 19 1.2 数学模型 5 8 控制系统 19 1.2.1 拉氏变换 5 8 控制系统的结构性质 19 1.2.2 控制微分方程 6 8.1 能控性与能观测性 19 1.2.3 传递函数 7 8.2 稳定性 19 1.2.4 结构图 8 9 反馈控制系统 19 1.2.5 信号流图 9.1 反馈 19 2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 9.4 解耦 19 2.2 一阶系统 11 0.1 观测器 19 2.4 稳定性分析 14 10.1 观测器 19 2.4.1 判据 15 10.2 动态反馈 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3.1 概念 19 III 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11 最优控制 19 3.3 广义根轨迹 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.4 解念 19 12.4 动态规划 19 5.5 反馈校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13 离散时间最优控制 19					7	控制系统	19
1.2 数学模型 5 7.2 线性控制系统 19 1.2.1 拉氏变换 5 8 控制系统的结构性质 19 1.2.2 控制微分方程 6 8.1 能控性与能观测性 19 1.2.3 传递函数 7 8.2 稳定性 19 1.2.4 结构图 8 9 反馈控制系统 19 1.2.5 信号流图 9.1 反馈 19 2 时域分析 10 9.2 李雅普诺夫方法设计反馈系统 19 2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 9.4 解耦 19 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.1 观测器 19 2.4.1 判据 15 10.2 动态反馈 19 3 根轨迹分析 19 11 最优控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.2 绘制 19 11 概念 19 3.2 经制 19 11 概念 19 3.3 广义根轨迹 19 11 概念 19 4.4 概念 19 12 连续时间最优控制 19 4.2 图像 19 12 连续时间最优控制 1	1					7.1 状态空间	19
1.2.1 拉氏变换 5 8 控制系统的结构性质 19 1.2.2 控制微分方程 6 8.1 能控性与能观测性 19 1.2.3 传递函数 7 8.2 稳定性 19 1.2.4 结构图 8 9 反馈控制系统 19 1.2.5 信号流图 9 1. 反馈 19 2.2 李雅普诺夫方法设计反馈系统 19 9.2 李雅普诺夫方法设计反馈系统 19 2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.2 动态反馈 19 2.4.1 判据 15 10.2 动态反馈 19 10.3 鲁棒控制 19 11 最优控制 19 3.3 广义根轨迹 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 11.1 概念 19 4.1 概念 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5.3 反馈校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13 3 数量时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19						7.2 线性控制系统	19
1.2.1 拉氏交换 5 8.1 能控性与能观测性 19 1.2.2 控制微分方程 6 8.2 稳定性 19 1.2.3 传递函数 7 8.2 稳定性 19 1.2.4 结构图 8 9 反馈控制系统 19 1.2.5 信号流图 9 9.1 反馈 19 2.2 李雅普诺夫方法设计反馈系统 19 9.2 李雅普诺夫方法设计反馈系统 19 2.2 一阶系统 11 2.3 从点配置 19 9.4 解耦 19 2.4 稳定性分析 10 70.2 动态反馈 19 2.4 稳定性分析 14 10.2 动态反馈 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3.3 模轨迹分析 19 11 最优控制 19 3.3 广义根轨迹 19 11 最优控制 19 3.3 广义根轨迹 19 11 最优控制 19 4.2 图像 19 12.1 变分法 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 12.2 最大值原理 19 5.3 反馈校正 19 13 离散时间最优控制 19 15.3 反馈校正 19 13 离散时间最优控制 19		1.2			8	控制系统的结构性质	19
1.2.3 传递函数 7 8.2 稳定性 19 1.2.4 结构图 8 9 反馈控制系统 19 1.2.5 信号流图 9 9.1 反馈 19 2 时域分析 10 9.2 李雅普诺夫方法设计反馈系统 19 2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 9.4 解耦 19 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.1 观测器 19 2.4.1 判据 15 10.2 动态反馈 19 3 根轨迹分析 19 11 最优控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.4 动态规划 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>8.1 能控性与能观测性</td><td></td></t<>						8.1 能控性与能观测性	
1.2.4 结构图						8.2 稳定性	19
1.2.5 信号流图 9			3	_	9		19
2 时域分析 10 9.2 李雅普诺夫方法设计反馈系统 19 2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 9.4 解耦 19 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.1 观测器 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3.3 广义根轨迹 19 III 最优控制 19 3.3 广义根轨迹 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5.4 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19			,			9.1 反馈	
2.1 性能指标 10 9.3 极点配置 19 2.2 一阶系统 11 9.4 解耦 19 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.1 观测器 19 2.4.1 判据 15 10.2 动态反馈 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3 根轨迹分析 19 11 最优控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.3 线性二次型 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19	2	다넘				9.2 李雅普诺夫方法设计反馈系统 .	19
2.2 一阶系统 11 9.4 解耦 19 2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.1 观测器 19 2.4.1 判据 15 10.2 动态反馈 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19	2					9.3 极点配置	19
2.3 二阶系统 12 10 状态观测器与动态反馈 19 2.4 稳定性分析 14 10.1 观测器 19 2.4.1 判据 15 10.2 动态反馈 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3 根轨迹分析 19 III 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.4 动态规划 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19						9.4 解耦	19
2.4 稳定性分析 14 10.1 观测器 19 2.4.1 判据 15 10.2 动态反馈 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3 根轨迹分析 19 III 最优控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19			17,744,72		10	状态观测器与动态反馈	19
2.4.1 判据 15 10.2 动态反馈 19 2.4.2 稳态误差 16 10.3 鲁棒控制 19 3 根轨迹分析 19 11 最优控制 19 3.1 概念 19 11 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19						10.1 观测器	19
2.4.2 稳态误差 16 10.3 鲁棒控制 19 3 根轨迹分析 19 III 最优控制 19 3.1 概念 19 III 最优控制 19 3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19		- .4				10.2 动态反馈	19
3 根轨迹分析 19 3.1 概念 19 3.2 绘制 19 3.3 广义根轨迹 19 4 频域分析 19 4.1 概念 19 4.2 图像 19 4.3 稳定性分析 19 5 校正 19 5.1 概念 19 5.2 串联校正 19 5.3 反馈校正 19 13.1 最大值原理 19 15.1 概念 19 13.1 最大值原理 19 15.1 概念 19 15.2 串联校正 19 15.3 反馈校正 19 15.1 概念 19 15.2 串联校正 19 15.3 反馈校正 19 15.1 概念 19 15.2 串联校正 19 15.3 反馈校正 19 15.1 最大值原理 19 15.2 本技校正 19 15.3 反馈校正 19			•			10.3 鲁棒控制	19
3.1 概念 19 III 最优控制 3.2 绘制 19 11 最优控制 3.3 广义根轨迹 19 11.1 概念 4 频域分析 19 12 连续时间最优控制 4.1 概念 19 12 连续时间最优控制 4.2 图像 19 12.1 变分法 4.3 稳定性分析 19 12.2 最大值原理 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19	2	根封	•				
3.2 绘制 19 11 最优控制 19 3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19	3				Ш	最 优	10
3.3 广义根轨迹 19 11.1 概念 19 4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19			**			- 10 10 00 00 00 00 00 00 00 00 00 00 00	
4 频域分析 19 11.2 各方法的关系 19 4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19		,			11		-
4.1 概念 19 12 连续时间最优控制 19 4.2 图像 19 12.1 变分法 19 4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19	4						
4.2 图像	4				4.0		-
4.3 稳定性分析 19 12.2 最大值原理 19 5 校正 19 12.3 线性二次型 19 5.1 概念 19 12.4 动态规划 19 5.2 串联校正 19 13 离散时间最优控制 19 5.3 反馈校正 19 13.1 最大值原理 19		•			12	Y	
5 校正 19 12.3 线性二次型		•					
5.1 概念	_						
5.2 串联校正	5					at the bull	
5.3 反馈校正				_		•	
3					13		
U 内拟示列 19 13.2 线性— (人坐 · · · · · · · · · · 19	6						
6.1 概念	U						_

冬	片		图 4	二阶欠阻尼系统	10
ш	71		图 5	一阶系统结构图	11
			图 6	二阶系统结构图	12
图 1	自动控制系统方框图	4	图 7	改善二阶系统结构图	14
图 2	结构图	8	图 8	稳态误差	16
图 3	信号流图	9	图 9	前馈复合控制	17
=	- ₩		表 4	典型传递函数(单位阶跃)	8
表	格		表 4 表 5	典型传递函数(单位阶跃)	
表	格 控制方式分类	4	•		11
			表 ₅	性能指标	11 11
表 1	控制方式分类	5	表 ₅ 表 ₆	性能指标	11 11 13

要 点

Part I.

自动控制

1 自动控制基础

1.1 自动控制

没有人直接参与,通过控制器使被控对象的被控量自动地按预定规律运行。

组成

- 被控对象。
- 被控/输出量C(s)。
- 控制量。
- 期望/给定/输入量R(s)。
- 扰动N(s)。

图 1: 自动控制系统方框图

分类

	价格	复杂度	精度	抗干扰性能	其它		
开环	低	简单	低	差	稳定		
闭环/反馈	高	复杂	高	强			
前馈	高				补偿可测量扰动		
复合	闭环 + 前馈						

表 1: 控制方式分类

输入量变化特性: 系统特性: 传输数据类型:

恒值。

- 非线性: 常数、幂。
- 连续。

- 随动:未知时间函数。 线性:导数。(齐次性,线 离散。

性)

- •程序控制: 预设时间函 数。
- 定常: 常系数。
- 时变: 系数不全是常

数。

- 时延: 变量位移。

性能

• 稳定性: 有无稳态。

• 快速性: 到达稳态快慢。

• 准确性: 稳态误差大小。

信号	阶跃	斜坡	加速度	脉冲	脉动	正弦
$f(t)(t \geqslant 0)$	R(t)	Rt	$\frac{1}{2}Rt^2$	$f(0) = \infty, \int_{-\infty}^{\infty} f(t)dt = A$		$A\sin(\omega t - \phi)$
单位化		R = 1		$A = 1, \delta(t)$		
图像	$R \xrightarrow{f(t)} t$			$ \begin{array}{c} f(t) \\ \uparrow \\ 0 \end{array} $		

表 2: 典型输入信号

外作用

1.2 数学模型

1.2.1 拉氏变换

微分方程(时域) ^{拉氏变换} 代数方程(频域) ^{蒸解} 输出量表达式(频域) ^{反拉氏变换} 方程解(时域)

变换 单边衰减的傅里叶变换,记 $s = \sigma + i\omega t$

$$F(s) = L[f(t)] = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty f(t)e^{-\sigma t}e^{-j\omega t}dt$$

而傅里叶变换为 $F(\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt$ 。

性质

- 微分定理(非零初始条件): $L[f^{(n)}(t)] = s^n F(s) f^{(n-1)}(0) s f^{(n-2)}(0) \cdots s^{n-1} f(0)$ 。
- 线性: $f(t) = f_1(t) + f_2(t) \Rightarrow F(s) = F_1(s) + F_2(s)$ 。
- 终值定理: $f(\infty) = \lim_{s \to 0} sF(s)$ 。 初值定理: $f(0^+) = \lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$ 。
- 位移定理: $L[f(t)] = F(s) \Rightarrow L[f(t-\tau)] = e^{-\tau s}F(s), L[f(t)e^{\alpha t}] = F(s-\alpha)$ 。
- 相似定理: $L[f(t)] = F(s) \Rightarrow L[f(\frac{t}{\alpha})] = \alpha F(\alpha s)$ 。

时域	$\delta(t)$	1(t)	$\frac{t^{n-1}}{(n-1)!}$	e ^{-at}	sin wt	cos wt	$e^{-at}\sin \omega t$	$e^{-at}\cos \omega t$
频域	1	$\frac{1}{s}$	$\frac{1}{s^n}$	$\frac{1}{s+a}$	$\frac{\omega}{s^2+\omega^2}$	$\frac{s}{s^2+\omega^2}$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$	$\frac{s+a}{(s+a)^2+\omega^2}$

表 3: 典型输入信号

常用变换

1.2.2 控制微分方程

输入输出方程 ⇒ 按信号传递顺序列微分方程 ⇒ 消去中间变量 ⇒ 输出量归一得到标准形式

非线性微分方程的线性化

- 泰勒展开: $y = f(x_0) + \frac{df(x)}{dx}|_{x_0} \cdot \Delta x + o(\Delta x)$ 。
- 增量线性化方程: $\Delta y = \frac{df(x)}{dx}|_{x_0} \cdot \Delta x$ 。

解

- 解 = 特解 + 通解 (特征根)。
- 解的模态: 几点。

1.2.3 传递函数

概念 系统在零初始条件下,输出输入量拉式变换之比, $G(s) = \frac{C(s)}{R(s)}$ 。反应线性系统特性,与输入量无关,对应微分方程为s的有理真分式。

求解

- 零初始条件: G(s) = L[q(t)], 其中q(t)为单位脉冲响应(等效反馈函数)。
- 非零初始条件: 微分定理。

应用

$$R(s) = L[r(t)] \Rightarrow C(s) = G(s)R(S) \Rightarrow c(t) = L^{-1}[C(s)]$$

输入输出关系 输入是微积分关系,则输出也是,常数用零初始条件确定。

$$r_2(t) = r_1(t) \Rightarrow c_2(t) = c_1(t)$$

零极点

$$\begin{split} G(s) &= \frac{C(s)}{R(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}, \quad n > m \\ &= K^* \frac{\prod_{i=1}^m (s - z_i)}{\prod_{j=1}^n (s - p_j)} \end{split}$$

- 零点z_i: 影响比重、曲线形状,不决定模态。
- 极点p_i: 特征根,决定模态,对系统响应影响大(近原点、远零点的影响大)。
- 传递系数/根轨迹增益K*。

	微分方程	输出X _c (t)	传递函数G(s)	图像
				X _c (t) K
比例	$X_{c}(t) = KX_{r}(t)$)	K	$\begin{array}{c} \\ \\ \\ \\ \\ \end{array} $
				$\begin{array}{c} X_{c}(t) \\ 1 \\ 0.632 \\ \end{array} \longrightarrow t$
惯性	$T\frac{dX_c(t)}{dt} + X_c(t) = X_r(t)$	$1 - e^{-\frac{t}{T}}$	$\frac{1}{Ts+1}$	0.832
				X _c (t)
积分	$X_{c}(t) = K \int X_{r}(t)dt$	t	<u>K</u> s	$\stackrel{\textstyle \searrow}{\underset{\scriptstyle 0}{\longrightarrow}} t$
				X _c (t)
微分	$X_c(t) = K \frac{dX_r(t)}{dt}$	$\delta(t)$	Ks	$\stackrel{\longleftarrow}{0} t$
				X _c (t) ↑
滞后	$X_{c}(t) = X_{r}(t - $	τ)	$e^{-T s}$	$\bigcup_{\mathfrak{g} \; \tau} t$

表 4: 典型传递函数(单位阶跃)

典型传递函数

开环与闭环

- 开环 (断开主反馈): $G_k(s) = G(s)H(s)$ 。
- 闭环: $G_B(s) = \frac{G(s)}{1+G_k(s)}$ 。

1.2.4 结构图

图 2: 结构图

简化 原则:等效原则,引出点信号保持不变。

- 串联和并联积。
- 反馈: G(s) 1∓G(s)H(s)。
- 比较点、引出点移动: 前后通路/回路乘积不变。
- 相邻信号相加点、同一信号分支点位置可互换,二者间不可互换。

1.2.5 信号流图

适用于复杂系统。

图 3: 信号流图

概念

- 混合节点: 流向该结点信号代数和。
- 支路: 方向+传递函数,相当于乘法器,保证信号单向传递。
- 前向通路: 输入到输出, 不重复过节点。
- 回路: 起止于同一节点,不重复过节点。
- 不接触回路: 回路间无公共节点。

简化

- 串联积并联和。
- 回路消除: 反馈消去。自回路消除: 节点自延长,增益为1,有回路,反馈消去。

绘制 根据结构图或拉屎变换得到的微分方程。

- 节点: 比较点右侧、分支点, 可多画再删除。
- 源点、阱点不要和相邻节点合并。

梅森公式

$$\begin{split} P &= \frac{1}{\underbrace{\Delta}} \sum_{k=1}^{n} \underbrace{P_k}_{\text{$\hat{\mathbf{h}}$ $\hat{\mathbf{h}}$ $\hat{\mathbf$$

其中, Δ_k 是余子式,由 Δ 略去与 P_k 接触项获得。

- 两节点间增益为1, 若合并后两回路接触, 则不可合并。
- 求解的是输出对输入的增益, 若求解中间变量, 可省去前面输入、比值进行计算。

2 时域分析

2.1 性能指标

典型输入信号:线性系统选取单位阶跃信号。

图 4: 二阶欠阻尼系统

状态	指标	符号	定义			
	延迟时间	t _d	首次达到终值50%的时间			
	上升时间	终值10%-90%的时间(有振荡系统为0%-100%)				
动态	峰值时间	tp	首次达到最大值的时间			
	超调量	σ	$\frac{h(t_p) - h(\infty)}{h(\infty)} \times 100\%$			
	调整时间	t_s	达到并保持在误差带的时间			
稳态	稳态误差	ess	$e(t) _{t\to\infty} = r(t) _{t\to\infty} - h(t) _{t\to\infty}$			

表 5: 性能指标

2.2 一阶系统

图 5: 一阶系统结构图

$\boxed{r(t) \to R(s)}$	c(t)	e(t)	e_{ss}	备注	图像
					h(t) 1 ↑
$1(t) \to \frac{1}{s}$	$1 - e^{-\frac{t}{T}}$	$-\frac{1}{T}e^{-\frac{t}{T}}$	0		$0 \longrightarrow t$
					h(t) ¹ / _T
$\delta(t) \rightarrow 1$	$\frac{1}{7}e^{-\frac{t}{7}}$	$-\frac{1}{T}e^{-\frac{t}{T}}$	0		$0 \longrightarrow t$
					h(t) ↑ //
$t o rac{1}{s^2}$	$t-T+Te^{-\frac{t}{T}}$	$T(1-e^{-\frac{t}{T}})$	Т	T越小跟踪精度越高	$0 \longrightarrow t$
$\frac{1}{2}t^2 \rightarrow \frac{1}{s^3}$	$(\frac{1}{2}t^2 + Tt) + T^2(1 - e^{-\frac{t}{T}})$	$Tt - T^2(1 - e^{-\frac{t}{T}})$	∞	无法跟踪	

表 6: 一阶系统响应情况

响应情况

单位阶跃响应 T越大,惯性越大,响应越慢。

$$h(T) = 0.632, \qquad \qquad h(2T) = 0.865, \qquad \qquad h(3T) = 0.95$$

$$t_d = 0.69T, \qquad \qquad t_r = 2.2T, \qquad \qquad t_s = 3T$$

2.3 二阶系统

图 6: 二阶系统结构图

概念

- 自然角频率(无阻尼振荡圆频率) $\omega_n > 0$ 。
- 阻尼比 ξ : 增大过程中,从无衰减周期运动变为有衰减正弦运动,最后无振荡。 $\xi > 1$, t_s 长; $\xi \leqslant 0$,不能稳定工作; ξ 较小时, σ 大,振荡次数多, t_s 长; 最佳为 $\xi = \frac{1}{\sqrt{2}} \approx 0.707。$
- 特征方程 $s^2 + 2ξω_n s + ω_n^2$ 。
- 特征根(0<ξ<1):

$$s_{1,2} = - \underbrace{\xi\omega_n}_{\hbox{衰減系数\sigma}} \pm j \underbrace{\omega_n\sqrt{1-\xi^2}}_{\hbox{阻尼振荡圆频率}\omega_d}$$

阻尼角 $\beta = \arctan(\frac{\omega_d}{\sigma})$ 。

特征根(ξ>1):

$$\begin{split} s_{1,2} &= -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1} \\ \text{UT}_{1,2} &= \frac{1}{\omega_n(\xi \pm \sqrt{\xi^2 - 1})} \text{, } \text{Ms}_{1,2} = -\frac{1}{T_{1,2}} \text{, } s_1 s_2 = \frac{1}{T_1 T_2} = \omega_n^2 \text{.} \end{split}$$

ξ,	阻尼	阶跃响应	稳定性	C(s)	c(t)
$(-\infty,0)$	负	振荡/发散	不稳定		
0	无/零	等幅振荡	临界	$\frac{1}{s} - \frac{s}{s^2 + \omega_n^2}$	$1-\cos\omega_n t$
(0,1)	欠	衰减振荡	稳定	$\frac{1}{s} - \frac{s + 2\xi \omega_n}{s^2 + 2\xi \omega_n s + \omega_n^2}$	$1 - \frac{e^{-\sigma t}}{\sqrt{1 - \xi^2}} \sin(\omega_d t + \beta)$
1	临界	单升非振荡	稳定	$\frac{1}{s} - \frac{1}{s + \omega_n} - \frac{\omega_n}{(s + \omega_n)^2}$	$1 - e^{-\omega_n t} (1 + \omega_n t)$
$(1,\infty)$	过	单升非振荡	稳定	$\frac{1}{s} + \frac{T_1}{T_2 - T_1} \frac{1}{s + \frac{1}{T_1}} + \frac{T_2}{T_1 - T_2} \frac{1}{s + \frac{1}{T_2}}$	$1 + \frac{T_1}{T_2 - T_1} e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} e^{-\frac{t}{T_2}}$

表 7: 阻尼情况讨论

阻尼情况讨论

动态性能

$$\begin{split} \bullet & \ 0 < \xi < 1 \text{:} \\ & - \ t_d = \frac{1 + 0.7 \xi}{\omega_n} \circ \\ & - \ t_r (0 - 100\%) = \frac{\pi - \beta}{\omega_d} \circ \\ & - \ t_p = \frac{\pi}{\omega_d} \circ \\ & - \ \sigma = e^{-\frac{\xi \pi}{\sqrt{1 - \xi^2}}} \times 100\% \circ \\ & - \ t_s = -\frac{\ln(\sqrt{1 - \xi^2} \times \Delta\%)}{\xi \omega_n} \Rightarrow \begin{cases} \frac{4}{\xi \omega_n}, \Delta = 2 \\ \frac{3}{\xi \omega_n}, \Delta = 5 \end{cases} \end{aligned}$$

$$\begin{split} \bullet & \; \xi > 1 \colon \\ & - \; t_d = \frac{1 + 0.6 \xi + 0.2 \xi^2}{\omega_n} \circ \\ & - \; t_r (10\% - 90\%) = \frac{1 + 1.5 \xi + \xi^2}{\omega_n} \, \circ \end{split}$$

$$- t_{\rm r}(10\% - 90\%) = \frac{1 + 1.5\xi + \xi^2}{\omega_{\rm n}}$$

-
$$t_s = 3T_1 \circ$$

•
$$\xi = 1$$
: $t_s = 4.75T_1$, 为最小值。

有零点的二阶欠阻尼系统 $\Phi(s) = \frac{\omega_n^2(1+\tau s)}{s^2+2\xi\omega_n s+\omega_n^2}$,具有零点 $z = \frac{1}{\tau}$ 。

$$\begin{split} C(s) &= \underbrace{\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} \frac{1}{s}}_{c_1(s)} + \underbrace{\frac{\omega_n^2 \tau}{s^2 + 2\xi\omega_n s + \omega_n^2}}_{c_2(s)} \\ c(t) &= c_1(t) + \frac{1}{z} \frac{dc_1(t)}{dt} = 1 - \underbrace{\frac{e^{-\xi\omega_n t}}{\sqrt{1 - \xi^2}} \cdot \frac{l}{z} sin(\sqrt{1 - \xi^2}\omega_n t + \beta + \phi)}_{location} \end{split}$$

其中, $\beta = \arctan(\frac{\sqrt{1-\xi^2}}{\xi})$, $\phi = \arctan(\frac{\omega_n\sqrt{1-\xi^2}}{z-\xi\omega_n})$, $t = \sqrt{z^2 - 2\xi\omega_n z + \omega_n^2}$ 。

图 7: 改善二阶系统结构图

改善

- PD (微分顺馈): ω_n 不变, $\xi_d = \xi + \frac{\tau}{2}\omega_m$,零点 $z = -\frac{1}{\tau}$,放大噪声。
- 测速反馈: ω_n 不变, $\xi_t = \xi + \frac{\tau}{2}\omega_m$ 。

2.4 稳定性分析

概念

$$G_B(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}$$

- 稳定: t:0 → ∞,系统能达到新的稳态。
- 充要条件: 特征方程的根均在根平面的左半平面(闭环传递函数的极点严格分布在s平 面左半平面)。
- 最小相位系统: 闭环传递函数的零极点都分布在s平面左半平面, 必要条件为特征多项 式的系数全同号(非零)。

2.4.1 判据

赫尔维茨判据 系统稳定⇔n阶赫尔维茨矩阵 $\Delta_i > 0$ 。

$$\Delta_x = \begin{vmatrix} a_1 & a_3 & a_5 & \cdots & a_{2n-1} \\ a_0 & a_2 & a_4 & \cdots & a_{2n-2} \\ 0 & a_1 & a_3 & \cdots & a_{2n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{vmatrix}$$

其中横向相邻项差2,纵向相邻项差-1,对角线相邻项差1,序数大于n的项为0。

- -\$\hat{\begin{aligned}\hat{\alpha}\ha
- $= \text{M}: a_0, a_1, a_2 > 0.$
- $\equiv \mathfrak{M}$: $a_0, a_1, a_2, a_3 > 0, a_1a_2 a_0a_3 > 0$.
- 四阶: $a_0, a_1, a_2, a_3, a_4 > 0, a_1a_2a_3 a_1^2a_4 a_0a_3^2 > 0$.

劳斯判据

第i行第j列的元素为i-1,i-2两行1,j+1两列的行列式的相反数比上第i-1行第1列的元素。

- 第一列元素变号次数为右半平面根数,全同号则稳定。
- 第一列有0, 用 $\epsilon \to 0$ 代替。

• 某行全为0, 用上一行作为辅助方程(系统不稳定, 判断根的情况) 求导:

$$s^n$$
 a b c \cdots
 s^{n-1} na $(n-2)b$ $(n-4)c$ \cdots

• 应用:求解使系统稳定的k。拓展为使跟在-x左侧(预留波动空间)时,用s=s'-x代 换,对s'求解劳斯判据。

2.4.2 稳态误差

c(t) = 稳态 + 暂态 $(t \to \infty)$ 稳定系统暂态 $\to 0$)。

图 8: 稳态误差

误差

• 给定误差(输入端) E(s):

$$\begin{split} &e(t) = r(t) - b(t) \\ \Rightarrow &E(s) = R(s) - B(s) = R(s) - H(s)C(s) = \frac{R(s)}{1 + G_k(s)} \\ \Rightarrow &ess = \lim_{s \to 0} s \cdot E(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G_k(s)} \end{split}$$

扰动误差(输出端)B(s) = E(s) - C(s)H(s):

$$\begin{split} e_N(t) &= c_d(t) - c(t) \\ \Rightarrow E_N(s) &= C_d(s) - C(s) = \frac{E(s)}{H(s)} = -C_N(s) \\ \Rightarrow ess_N &= \lim_{s \to 0} s \cdot E_N(s) = -\lim_{s \to 0} s \cdot C_N(s) \end{split}$$

$$G_k(s) = \tfrac{k\Pi_{i=1}^m(\tau_i s+1)}{s^\nu \Pi_{i=1}^{n-\nu}(T_j s+1)} \, \circ \,$$

r(t)	k	ess	o型	1型	2型
1(t)	$k_p = \lim_{s \to 0} G_k(s)$	$\frac{1}{1+k_p}$	$\frac{1}{1+k_k}$	0	0
t	$k_{\nu} = \lim_{s \to 0} sG_k(s)$	$\frac{1}{k_{\nu}}$	∞	$\frac{1}{k_k}$	0
$\frac{t^2}{2}$	$k_{a} = \lim_{s \to 0} s^{2} G_{k}(s)$	$\frac{1}{k_a}$	∞	∞	$\frac{1}{k_k}$

表 8: 阻尼情况讨论

减小稳态误差的方法

- 增大开环放大系数kk: 增益裕度变小, 易使系统不稳定。
- 增多积分环节v: 相位裕度变小, 易使系统不稳定。
- 串级控制已知内回路扰动。
- 加前馈:
 - 补偿给定量: $G_c(s) = \frac{1}{G_2(s)} \Rightarrow E(s) = 0$ 。
 - 补偿扰动量: $G_c(s) = \frac{1}{G_1(s)} \Rightarrow C_N(s) = 0$ 。

图 9: 前馈复合控制

- 根轨迹分析 3
- 概念 3.1
- 3.2 绘制
- 3.3 广义根轨迹
- 频域分析
- 4.1 概念
- 4.2 图像
- 4.3 稳定性分析
- 校正 5
- 概念 5.1
- 5.2 串联校正
- 5.3 反馈校正
- 离散系统 6
- 概念 6.1
- 6.2 z变换
- 6.3 线性定常离散系统

Part II. 现代控制

返回目录

控制系统