Független altér analízis képes megbirkózni a "dimenzionalitási átokkal"

Szabó Zoltán, Lőrincz András

Információs Rendszerek Tanszék, Informatikai Kar Eötvös Loránd Tudományegyetem

WWW: http://nipg.inf.elte.hu szzoli@cs.elte.hu, lorincz@inf.elte.hu

Kivonat

Új algoritmuscsaládot vezettünk be, amely a független komponens analízis módszer kiterjesztése többdimenziós komponensekre és időbeli összefüggésekre. Zajok egy osztályára megmutattuk, hogy az algoritmuscsalád megtalálja a struktúrákat olyan feladatokban, amelyek más algoritmusok számára kombinatorikus robbanásra vezetnek. Kísérleteink azt mutatják, hogy a matematikai tételek szélesebbek lehetnek, mint amit bizonyítani tudtunk. A numerikus kísérletekben több 100 dimenziós problémákban is sikeres volt az algoritmus.

1. A független folyamat analízis modell

1.1 Az IPA egyenletek

A független folyamat analízis (IPA) modellje a következő:

$$\mathbf{s}^{m}(t+1) = \mathbf{F}^{m}\mathbf{s}^{m}(t) + \mathbf{e}^{m}(t), \tag{1}$$

$$\mathbf{z}(t) = \mathbf{A}\mathbf{s}(t), \quad t = 1, \dots, T.$$
 (2)

Itt: $\mathbf{A} \in \mathbb{R}^{D \times D}$ az ismeretlen *keverő mátrix*, $\mathbf{s}^m \in \mathbb{R}^d \ (m=1,\ldots,M)$ a rejtett *komponensek*, és $\mathbf{s}(t) := [\mathbf{s}^1(t);\ldots;\mathbf{s}^M(t)] \in \mathbb{R}^D$.

Az IPA feladat célja: az $\mathbf{s}(t)$ forrás és \mathbf{A} (vagy az $\mathbf{W} := \mathbf{A}^{-1}$ szeparáló mátrix) becslése a $\mathbf{z}(t)$ megfigyelések birtokában. Speciálisan: (i) független altér analízis, ISA ($\forall \mathbf{F}^m = \mathbf{0}$), (ii) független komponens analízis (ICA), ha $\forall \mathbf{F}^m = \mathbf{0}$ és d = 1.

1.2 Feltételek

- $e^m(t)$ i.i.d. t-ben, $e^i(t)$ független $e^j(t)$ -től ($i \neq j$),
- \mathbf{F}^m : stabil mátrixok,
- A: invertálható.
- ullet Általánosság rovása nélkül feltehető, hogy az ${f e}(t)$ meghajtó folyamat *fehér*, azaz

$$E[\mathbf{e}(t)] = \mathbf{0}, E\left[\mathbf{e}(t)\mathbf{e}(t)^T\right] = \mathbf{I}_D, \quad \forall t, \quad \textbf{(3)}$$

$$\mathbf{I}_D = \mathbf{A}\mathbf{A}^T. \quad \textbf{(4)}$$

és A ort. ($\Leftarrow A$ invertálható, innováció trükk).

1.3 Az IPA modell többértelműségei

- IPA identifikációja többértelmű, mint ICA/ISA.
- ullet IPA $\xrightarrow{\text{innováció trükk } [1,2]}$ ISA, ahol egy $\mathbf{u}(t)$ folyamat innovációja

$$\tilde{\mathbf{u}}(t) := \mathbf{u}(t) - E[\mathbf{u}(t)|\mathbf{u}(t-1), \mathbf{u}(t-2), \ldots].$$
 (5)

AR folyamat innovációja megegyezik a meghajtó zajával, ezért

$$\mathbf{s}(t+1) = \mathbf{F}\mathbf{s}(t) + \mathbf{e}(t), \tag{6}$$

$$z(t) = AFA^{-1}z(t-1) + Ae(t-1),$$
 (7

$$\tilde{\mathbf{z}}(t) = \mathbf{A}\mathbf{e}(t-1) = \mathbf{A}\tilde{\mathbf{s}}(t),$$
 (8)

ahol $\mathbf{F} := blockdiag(\mathbf{F}^1, \dots, \mathbf{F}^M)$.

- ullet Az ISA feladatban, ha f s és f z fehér \Rightarrow
 - ISA többértelműségek: (i) komponensek permutációja, (i) altereken belüli ortogonális transzformáció,

-W ortogonális.

Az ISA feladat többértelműségeiről részletek: [3].

2. Az ISA szeparációs tétel

Régi sejtés [4]. Szemléletesen: ISA = ICA + permutációkeresés (ISA költségfüggvénnyel).

Tétel (ISA szeparációs tétel) Legyen H a Shannon-féle differenciális entrópia. Tfh: az $u := e^m$ komponensek kielégítik a

$$H\left(\sum_{i=1}^{d} w_i u_i\right) \ge \sum_{i=1}^{d} w_i^2 H\left(u_i\right), \quad \forall \|\mathbf{w}\|^2 = 1$$
 (9)

entrópiaegyenlőtlenséget. Ekkor az ISA feladat megoldását elég az ICA megoldás permutáltjaként keresni. Szeparáló mátrixokkal: $\mathbf{W}_{\mathsf{ISA}} = \mathbf{PW}_{\mathsf{ICA}}$, alkalmas $\mathbf{P} \in \mathbb{R}^{D \times D}$ permutációmátrixszal.

Bizonyítás [5]-ben. Segítségével több 100 dimenziós ISA/IPA feladatok kezelhetővé válnak [6]. Elégséges feltételek:

- szférikus szimmetrikusság,
- 2-dimenzióban invariancia (d=2) 90° -os \circlearrowleft -ra,
- "gyengén összefüggő" koordináták.

3. Nem-kombinatorikus dimenzióbecslési megközelítések

3.1 IPA: prediktív mátrixszal

Időbeli összefüggésekkel gyakran könnyebb [7]:

- AR bázistranszformáció \Rightarrow $\mathbf{F}_s = \mathbf{W}\mathbf{F}_z\mathbf{W}^{-1}$.
- ullet ISA szeparációs tétel \Rightarrow $\hat{\mathbf{F}}_{s}$ permutáció erejéig blokkpermutációmátrix.
- Csoportosítás: " $\hat{\mathbf{F}}_s$ -kapcsoltság" alapján. Def.: $i \leftrightarrow j$, ha $\max([\hat{\mathbf{F}}_s]_{ij}, [\hat{\mathbf{F}}_s]_{ji}) > \epsilon \ (\geq 0)$.
- Legrosszabb eset ideje: D-ben kvadratikus.

3.2 ISA: nem-lineáris korrelációkkal

I.i.d esetre is megy:

- Szeparációs tétel ⇒ elég permutációt keresni.
- ullet Csoportosítás: $\sum_{\mathbf{f} \in \mathcal{F}} corr[\mathbf{f}(\hat{\mathbf{s}})]$. 2-kapcsoltság.
- IPA-ra is kiterjeszthető az innováció trükkel.

4. Illusztráció

4.1 Forrásgenerálás

Tesztfelület (e): 4 db 3-dimenziós komponens ($d=3,\ M=4$). Eloszlásuk geometriai formákon egyenletes, lásd 1. ábra.

ábra 1: A 3D-geom adatbázis illusztrációja.

4.2 Demo

Az A keverőmátrix: véletlen ortogonális. ICA modul: fastICA [8].

ábra 2: A becslés illusztrációja. 1. sor: rejtett komponensek (bal), megfigyelt kevert komponensek (jobb). 2. sor: nem-lineáris korreláció mátrix csoportosítás előtt (bal), után (jobb). 3. sor a becsült szeparáló mátrix és a keverőmátrix szorzata (3×3 blokkokból álló blokkpermutációmátrix, bal), becsült komponensek (\mathbf{e}^m , jobb).

Hivatkozások

- [1] Hyvärinen, A.: Independent Component Analysis for Time-dependent Stochastic Processes. In: ICANN 1998. (1998) 541–546
- [2] Póczos, B., Takács, B., Lőrincz, A.: Independent subspace analysis on innovations. In: ECML 2005. (2005) 698–706
- [3] Theis, F.J.: Uniqueness of Complex and Multidimensional Independent Component Analysis. Signal Proc. **84** (2004) 951–956
- [4] Çardoso, J.: Multidimensional independent component analysis. In: ICASSP '98. Volume 4. (1998) 1941–1944
- [5] Szabó, Z., Póczos, B., Lőrincz, A.: Separation theorem for K-independent subspace analysis with sufficient conditions. Technical report, Eötvös Loránd University, Budapest (2006) http://arxiv.org/abs/math.ST/0608100.
- [6] Szabó, Z., Lőrincz, A.: Real and complex independent subspace analysis by generalized variance. In: ICARN 2006. (2006) 85–88 http://arxiv.org/abs/math.ST/0610438.
- [7] Póczos, B., Lőrincz, A.: Non-combinatorial estimation of independent autoregressive sources. Neurocomputing Letters (2006)
- [8] Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation **9** (1997) 1483–1492