النهايات والاستمرارية

1– <u>نهايات دوال مألوفة</u>

$\lim_{x \to -\infty} x^2 = +\infty$	$\lim_{x \to +\infty} x^2 = +\infty$
$\lim_{x \to -\infty} x^3 = -\infty$	$\lim_{x \to +\infty} x^3 = +\infty$
$\lim_{x \to -\infty} x = +\infty$	$\lim_{x \to +\infty} x = +\infty$
$\lim_{x \to -\infty} \frac{1}{x} = 0^-$	$\lim_{x \to +\infty} \frac{1}{x} = 0^+$
$\lim_{x \le 0} \frac{1}{x} = -\infty$	$\lim_{x \to 0} \frac{1}{x} = +\infty$
$\lim_{x \to 0} \sqrt{x} = 0$	$\lim_{x \to +\infty} \sqrt{x} = +\infty$
$\lim_{x \to -\infty} [ax + b] = -\infty (a > 0)$	$\lim_{x \to +\infty} [ax + b] = +\infty(a > 0)$
$\lim_{x \to -\infty} [ax + b] = +\infty(a < 0)$	$\lim_{x \to +\infty} [ax + b] = -\infty (a < 0)$

2- التفسير الهندسي للنهايات

تفسيرها الهندسي	النهاية
يقبل مستقيم مقارب أفقي $(\mathbf{C_f})$ يعبل مستقيم معادلته $y=a$ بجوار	$\lim_{x \to \pm \infty} f(x) = a$
يقبل مستقيم مقارب عمودي $x=x_0$ معادلته $x=x_0$	$\lim_{x \to x_0} f(x) = \pm \infty$
معادلة من الشكل مستقيم مقارب مائل له $y=ax+b$ معادلة من الشكل	
$\pm\infty$ بجوار	

إذا كان $0=\lim_{x o\pm\infty}\left[f\left(x
ight)-(ax+b)
ight]=0$ إذا كان 0=0 مستقيم مقارب مائل للمنحنى y=ax+b بجوار $\pm\infty$

3- العمليات على النهايات

 $-\infty$ فيما يلي يمثل a عدد حقيقي أو

أ- نهاية مجموع دالتين

		.اسین	<u>ي. معجموع د</u>	<u>*</u>
$\lim_{x \to a} f\left(x\right)$	l	1	$\pm \infty$	$\pm \infty$
$\lim_{x \to a} g\left(x\right)$	l'	$\pm \infty$	$\pm \infty$	$\mp \infty$
$\lim_{x \to a} (f + g)(x)$	l + l'	$\pm \infty$	$\pm \infty$	ح.ع.ت

ب- نهاية جداء دالتين

		ت المالي		
$\lim_{x \to a} f\left(x\right)$	l	$l \neq 0$	∞	∞
$\lim_{x \to a} g\left(x\right)$	l'	∞	∞	0
$\lim_{x \to a} (f \times g) (x)$	$l \times l'$	∞	∞	ح.ع.ت

الإشارة تعين حسب قواعد إشارة الجداء

ج- نهاية حاصل قسمة دالتين

			. داسین	حسم	يد ساحبن	& (.
$\lim_{x \to a} f\left(x\right)$	l	l	$l \neq 0$	∞	∞	0
$\lim_{x \to a} g\left(x\right)$	$l' \neq 0$	∞	0	l'	∞	0
$\lim_{x \to a} \left(\frac{f}{g} \right) (x)$	$\frac{l}{l'}$	0	∞	∞	ح.ع.ت	ح.ع.ت

الإشارة تعين حسب قواعد إشارة حاصل قسمة

4- بعض طرق إزالة حالات عدم التعيين

1- الاختزال 2- التحليل 3- المرافق 4- العدد المشتق 5- المقارنة 6- الحصر ■

5- الاستمرارية

تعریف:

- مستمرة عند قيمة x_0 معناه $f\left(x_0\right)$ معرفة $\lim_{x o x_0} f\left(x\right) = \lim_{x o x_0} f\left(x\right) = f\left(x_0\right)$ و
- مستمرة على مجال I من \mathbb{R} معناه f مستمرة عند كل قيمة x_0 من هذا المجال x_0

6- تطبيقات مبرهنة القيم الوسطى

<u>حالة 1</u>:

y=kيقطير هندسي: المنحنى $(\mathbf{C_f})$ يقطع مستقيم معادلته [a,b]في نقطة وحيدة فاصلتها [a,b]

حالة 2:

- [a,b] معرفة ، مستمرة و رتيبة تماما على المجال f(a) imes f(b) < 0 π حسب مبرهنة القيم الوسطى المعادلة f(x) = 0 تقبل
- [a,b] على وحيدا a في المجال $[C_{\mathbf{f}}]$ يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها [a,b] في المجال [a,b]

ملاحظة:

اذا كان المجال غير محدود مثلاً $[a,+\infty[$ فإننا نكتب إذا كان المجال غير محدود مثلاً $\lim_{x\to+\infty}f(x)$ أي : $f(a) imes \lim_{x\to+\infty}f(x) < 0$