Analysis of a Complex Kind Week 1

Lecture 1: History of Complex Numbers

Petra Bonfert-Taylor

Welcome

About me:

- Petra Bonfert-Taylor
- Born, raised and educated in Germany (Berlin).
- Ph.D. 1996, Technical University of Berlin.
- Postdoc at University of Michigan.
- Professor at Wesleyan University since 1999.

Complex numbers, their geometry and algebra.

Riemann Parse Weierstrass Cauchy open set lim

Complex dynamics: Mandelbrot set, Julia sets.

Complex functions, continuity, complex differentiation.

 Conformal mappings, Möbius transformations and the Riemann mapping theorem.

Complex integration, Cauchy theory and consequences.

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - a} dz$$

Fundamental Theorem of Algebra:

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

$$= a_n (z - z_1)(z - z_2) \dots (z - z_n)$$

 Power series representation of analytic functions, Riemann hypothesis.

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 prime numbers?

$$= \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Brief History of Complex Numbers

Consider a quadratic equation

$$x^2 = mx + b$$

Solutions are

$$x = \frac{m}{2} \pm \sqrt{\frac{m^2}{4} + b}$$

and represent intersection of $y = x^2$ and y = mx + b.

Solutions: $x = \frac{m}{2} \pm \sqrt{\frac{m^2}{4} + b}$

- What if $\frac{m^2}{4} + b < 0$?
- In particular, $x^2 = -1$ has no real solutions.
- It is often argued that this led to $i = \sqrt{-1}$.
- But... Historically, no interest in non-real solutions since the graphs of $y=x^2$ and y=mx+b simply don't intersect in that case.

History

Cubic equations were the real reason. Consider

$$x^3 = px + q$$

- Represents intersection of $y = x^3$ and y = px + q.
- There always must be a solution.

Solution to Cubic

• Del Ferro (1465-1526) and Tartaglia (1499-1577), followed by Cardano (1501-1576), showed that $x^3 = px + q$ has a solution given by

$$x = \sqrt[3]{\sqrt{\frac{q^2}{4} - \frac{p^3}{27}} + \frac{q}{2} - \sqrt[3]{\sqrt{\frac{q^2}{4} - \frac{p^3}{27}} - \frac{q}{2}}}$$

• Try it out for $x^3 = -6x + 20$!

Bombelli's Problem

About 30 years after the discovery of this formula,
 Bombelli (1526-1572) considered the equation

$$x^3 = 15x + 4$$

• Plugging p = 15 and q = 4 into the formula yields

$$x = \sqrt[3]{2 + \sqrt{-121}} + \sqrt[3]{2 - \sqrt{-121}}$$

Bombelli had a "wild thought"....

Bombelli's Idea

Bombelli discovered that

$$\sqrt[3]{2+\sqrt{-121}} = 2+\sqrt{-1}$$
 and $\sqrt[3]{2-\sqrt{-121}} = 2-\sqrt{-1}$

- These clearly add up to 4, the desired solution.
- Check it out:

$$(2+\sqrt{-1})^3=2+\sqrt{-121}$$
 and $(2-\sqrt{-1})^3=2-\sqrt{-121}$

Check it out...

$$(2+\sqrt{-1})^3 =$$

The Birth of Complex Analysis

- Bombelli's discovery is considered the "Birth of Complex Analysis".
- It showed that perfectly real problems require complex arithmetic for their solution.
- Note: Need to be able to manipulate complex numbers according to the same rules we are used to from real numbers (distributive law, etc).
- We'll study this next.