Practice #3: NN with TensorFlow

2018008395 박정호

1. Experiment

이번 과제는 지난 과제의 Task #3을 TensorFlow를 사용해서 구현하는 것이었다. 테스트해야 할 것은 크게 3가지로, Loss Function, Optimizer, Mini-Batch Size에 대한 정확도, 학습 시간이었다.

여기서 Loss Function, Optimizer 비교 테스트에서는 M = 10000, N = 500, K = 5000으로 지난 과제와 같은 값을 사용했다. 다만, Mini-Batch Size 비교 테스트에서는 데이터 크기로 인해 학습 시간이 너무 길어져서 <math>M = 1000, N = 100, K = 2000으로 조정했다.

또한 Loss Function, Optimizer 비교 테스트는 로컬(노트북)에서, Mini Batch Size 비교 테스트는 Google Colab을 사용했음을 밝힌다.

1. Overall Result

1. Compare Loss Functions

	BinaryCrossEntropy	MeanSquaredError
Train Set Accuracy	99.91%	99.87%
Test Set Accuracy	100%	99.80%
Train Time [sec]	21.891254	24.088511

Cross Entropy가 MSE보다 높은 정확도를 보이는 것을 알 수 있다.

2. Compare Optimizers

	SGD	RMSProp	Adam
Train Set Accuracy	99.88%	99.92%	99.97%
Test Set Accuracy	99.60%	100%	100%
Train Time [sec]	13.606119	14.327573	21.268476

쉬운 데이터인데다가, iteration 횟수가 많아 정확도 차이가 크진 않았으나, RMSProp과 Adam이 SGD 보다 높은 정확도를 보였다.

3. Compare Mini-Batch Size

	Mini-Batch = 1	Mini-Batch = 32	Mini-Batch = 128
Train Set Accuracy	99.90%	99.90%	99.90%
Test Set Accuracy	100%	100%	100%
Train Time [sec]	3587.801998	141.294795	37.358122
Test Time [sec]	0.225864	0.107755	0.101342

Mini Batch 사이즈가 작을수록 학습 시간은 길어지는 것을 볼 수 있다. 다만, 본래 관찰되어야 할 정확도 차이는 데이터의 복잡도가 너무 낮아서 잘 관찰되지 않았다.

2. Discussion

처음에 Cross Entropy 클래스 설정을 잘못해서, [0,1]의 값이 아닌 [-1, 1]의 범위를 상정한 에러를 계산한 것으로 인해 정확도가 약 3% 정도 저하되는 문제가 있었다. 다만, 이런 큰 실수가 있었음에도 NN의 학습으로 인해 아주 우수한 정확도를 이끌어 주는 것을 볼 수 있었다.

로컬에서 진행한 Loss Function, Optimizer 비교 테스트에서는 데이터의 복잡도에 비해 데이터의 양, 학습에 사용된 epoch의 횟수가 너무 많아서인지, 정확도의 비교가 쉽지 않았다. 그래도 차이가 0.01, 0.1% 단위로 있어서 어느 정도 차이를 확인할 수 있었다. 좀 더 복잡한 데이터를 사용하면 차이가 극명하게 나올 것으로 예상한다.

가장 극명한 차이를 보인 테스트는 Mini Batch Size 에 따른 비교였는데, Mini-Batch Size가 1일 때는 학습하는데에 엄청 오랜 시간이 걸리는 것을 볼 수 있었다. 이는 학습시에 vectorize의 효과를 전혀 보지 못하기 때문일 것이며, 실제로 Mini-Batch Size가 커질수록 vectorize로 인해 학습 시간이 짧아지는 것을 확인할 수 있었다. 다만, Mini Batch의 크기와 학습 시간 간에는 어느 정도의 tradeoff가 있을 것이므로 무조건적으로 큰 Mini Batch가 좋다고 볼 수도 없을 것이다.