1 Généralités

Introduction: une remarque sur les fonctions affines

Définition 1 (Fonctions affines)

Une **fonction affine** est une fonction $f : \mathbb{R} \to \mathbb{R}$ telle que, pour deux constantes $a, b \in \mathbb{R}$, l'on puisse écrire : $\forall x \in \mathbb{R}, f(x) = ax + b$.

Interprétation graphique

Le graphe de la fonction f est alors une droite \mathcal{D} (qui n'est pas verticale)

Les coefficients a, b s'interprètent comme suit : a: le coefficient directeur de \mathcal{D} ,

• b: son ordonnée à l'origine, soit b = f(0).

Le coefficient directeur a peut se retrouver par la formule du \mathbf{taux} d'accroissement :

$$a = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
, pour x_0, x_1 quelconques, avec $x_0 \neq x_1$.

Changement de point

$$y = a'(x - x_0) + b'$$
$$a' = a \ a' = a$$

Les coefficients peuvent être calculés après la

1.1 Définitions

Définition 2 (Dérivabilité, nombre dérivé)

Soit $f: I \to \mathbb{R}$ une fonction réelle, et $x_0 \in I$.

• On dit que f est **dérivable** en x_0 si, pour $x \to x_0$, on peut écrire **l'approximation**:

$$f(x) = f(x_0) + a(x - x_0) + o(x - x_0),$$

pour $a \in \mathbb{R}$ une constante.

- La droite d'équation $y = f(x_0) + a(x x_0)$ est alors la **tangente** au graphe de f en x_0 .
- Son coefficient directeur est noté $a = f'(x_0)$, le **nombre dérivé** de f en x_0 ,

avec
$$\epsilon(x) = f(x) - [f(x_0) + f'(x_0)(x - x_0)]$$

En réécrivant, pour $x \to x_0$, la formule : $f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$, comme : $\frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + \underbrace{\frac{o(x - x_0)}{x - x_0}}_{\longrightarrow 0}$, on retrouve la formulation familière :

Proposition 3 (Limite du taux d'accroissement)

Soit $f: I \to \mathbb{R}$ une fonction réelle, et $x_0 \in I$. Alors f est dérivable en x_0 ssi la limite du taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ existe pour $x \to x_0$.

Si c'est le cas, alors le nombre dérivé vérifie :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

(La corde s'approche de la tangente)

Définition 4 (Fonction dérivée)

Soit $f:I\to\mathbb{R}$ une fonction réelle.

- On dit que f est dérivable sur l'intervalle I si f est dérivable en tout point $\forall x_0 \in I$.
- La fonction dérivée $x \mapsto f'(x)$ est alors bien définie sur I.

Exemples : dérivation de puissances :

▶ La fonction carré $f(x) = x^2$.

On pose $x = x_0 + h$, et alors $x \to x_0 \iff h \to 0$. On trouve alors :

$$f(x) = f(x_0 + h) = (x_0 + h)^2 = \underbrace{x_0^2 + 2x_0 h}_{\text{affine en } h} + \underbrace{h^2}_{=o(h)}$$

Ainsi, on trouve bien $f'(x_0) = 2x_0$ (soit $(x^2)' = 2x$).

▶ La fonction cube $f(x) = x^3$.

On trouve alors :
$$f(x) = f(x_0 + h) = (x_0 + h)^3 = \underbrace{x_0^3 + 3x_0^2 h}_{\text{affine en } h} + \underbrace{3x_0h^2 + h^3}_{=o(h)}$$
.

Ainsi, on trouve bien $f'(x_0) = 3x_0^2$ (soit $(x^3)' = 3x^2$).

▶ La fonction inverse $f(x) = \frac{1}{x}$. (un peu plus subtil!)

Pour se donner des idées, on commence par calculer le taux d'accroissement :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \frac{\frac{x_0 - x}{x_0 x}}{x - x_0} = \frac{-1}{x_0 x},$$

soit la formule : $f(x) = f(x_0) - \frac{x - x_0}{x_0} \times f(x)$ ou $f(x_0 + h) = f(x_0) - \frac{h}{x_0} \times f(x_0 + h)$.

Par suite il vient $f(x_0 + h) = f(x_0) - \frac{h}{x_0} \left[f(x_0) - \frac{h}{x_0} \times f(x_0 + h) \right]$ soit :

$$f(x_0 + h) = \underbrace{f(x_0) - f(x_0) \frac{h}{x_0}}_{\text{affine en } h} + \underbrace{f(x_0 + h) \frac{h^2}{x_0^2}}_{=o(h)}.$$

1.2 Inégalité des accroissements finis

Proposition 5 (Inégalité des accroissements finis)

Soit $f:[a,b]\to\mathbb{R}$ une fonction numérique. On suppose que f est dérivable sur [a,b].

1. Soit $M \in \mathbb{R}$.

Supposons que la **dérivée** f' est **majorée** par M: si $\forall x \in]a,b[, f'(x) \leq M,$ alors le **taux d'accroissement** $\tau_{a,b}f$ l'est aussi : alors $\frac{f(b)-f(a)}{b-a} \leq M.$

2. Soit $k \ge 0$.

Supposons que la **dérivée** f' est **bornée** par k: si $\forall x \in]a,b[, |f'(x)| \leq k,$ alors le **taux d'accroissement** $\tau_{a,b}f$ l'est aussi : alors $\left|\frac{f(b)-f(a)}{b-a}\right| \leq k.$

Résumé de la proposition:

Le taux d'accroissement s'interprète comme la valeur moyenne de la dérivée :

$$\underbrace{\frac{f(x_1) - f(x_0)}{x_1 - x_0}}_{\text{taux d'accroissement de } f} = \underbrace{\frac{1}{x_1 - x_0} \int_{x_0}^{x_1} f'(t) \, dt}_{\text{valeur moyenne de } f'}$$

Ainsi, si la dérivée vérifie une certaine inégalité sur tout l'intervalle I, alors les taux d'accroissement satisfont « la même inégalité ».

En particulier, l'énoncé 1. s'étend mutatis mutandis pour

- une minoration $m \leq f'(x)$ (on retourne l'inégalité pour le taux d'accroissement)
- un encadrement $m \leq f'(x) \leq M$ (on obtient un encadrement du taux d'accroissement).
- des inégalités strictes m < f'(x) ou f'(x) < M. (\leadsto inégalité stricte sur le taux d'accroissement)

Remarque sur la portée du résultat

Par définition, la dérivée s'obtient à partir du taux d'accroissement (par passage à la limite). L'inégalité des accroissements finis nous permet de faire le trajet en sens inverse :

partant d'informations sur la dérivée, on conclut sur le taux d'accroissement.

Démonstration (Si f est \mathcal{C}^1): Supposons f de classe \mathcal{C}^1 (au lieu de « seulement dérivable »). Alors la dérivée f' est continue et on peut l'intégrer sur le segment $[x_0; x_1]$. Il vient :

$$\int_{x_0}^{x_1} f'(t) dt = \left[f(t) \right]_{x_0}^{x_1} = f(x_1) - f(x_0).$$

Si on a $\forall t \in I, f'(t) \leq M$, alors $\int_{x_0}^{x_1} f'(t) dt \leq \int_{x_0}^{x_1} M dt = M(x_1 - x_0)$ (on rappelle que $x_0 \leq x_1$!) Il vient donc bien alors $f(x_1) - f(x_0) \leq M(x_1 - x_0)$.

Proposition 6 (Sens de variations)

Soit $f: I \to \mathbb{R}$ une fonction numérique dérivable.

- 1. La fonction f est **croissante** ssi $f' \ge 0$ sur I.
- **2.** Si f' > 0 sur I, alors la fonction f est **strictement croissante**.

1.3 Règles de dérivation

2 Convexité

2.1 Définition

Définition 7 (Fonction convexe sur un intervalle)

Soit $f: I \to \mathbb{R}$ une fonction continue.

On dit que f est **convexe** sur I si pour tous $a, b \in I$, et

$$p, q \in [0; 1[, \text{ avec } p + q = 1,$$

on a l'inégalité :

$$\underline{f(qa+pb)} \leqslant \underline{qf(a)+pf(b)}$$
image de la moyenne moyenne des images

Convexité sur \mathbb{R} de la fonction $f: x \mapsto x^2$:

Soient $a, b \in \mathbb{R}$ et $p, q \in]0; 1[$, avec p + q = 1. On a :

$$qf(a) + pf(b) - f(qa + pb) = qa^{2} + pb^{2} - (qa + pb)^{2}$$
$$= (q - q^{2})a^{2} + (p - p^{2})b^{2} - 2pqab = pq(a^{2} - 2ab + b^{2})$$

Ainsi $qf(a) + pf(b) = f(qa + pb) + pq(a - b)^2 \ge f(qa + pb)$ et f est donc bien convexe.

Remarques (pour f une fonction convexe)

Notamment pour
$$p = q = \frac{1}{2}$$
, on obtient $f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a) + f(b)}{2}$

▶ Généralisation

Si on a davantage de coefficients $p_1, p_2, ..., p_n$, avec $\forall i \in [1, n], p_i \ge 0$ $\sum_{i=1}^n p_i = 1 \quad (=100\%)$

on a aussi, pour toute suite $(a_i) \in I^n$, l'inégalité : $f\left(\sum_{i=1}^n p_i a_i\right) \leqslant \sum_{i=1}^n p_i f(a_i)$.

2.2Convexité et dérivation

Avec des taux d'accroissements

On écrit ici : x = qa + pb, et on a donc : x - a = p(b - a). et b-x=q(b-a).

L'inégalité de convexité $f(qa+pb) \leq qf(a)+pf(b)$ s'écrit :

$$f(x) \leqslant \frac{b-x}{b-a} f(a) + \frac{x-a}{b-a} f(b)$$

$$\frac{b-x}{b-a} + \frac{x-a}{b-a} = 1$$

On regroupe avec la formule $\frac{b-x}{b-a}+\frac{x-a}{b-a}=1,$ et on obtient les deux reformulations suivantes pour cette inégalité :

ou encore $\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(b) - f(a)}{b - a}$

(On note ici $\tau_{a,b}$ le taux d'accroissements de f entre a et b, et idem pour $\tau_{a,x}$, $\tau_{x,b}$.)

Convexité sur \mathbb{R}_+^* de $f: x \mapsto \frac{1}{x}$:

Soient $a, x, b \in]0; +\infty[$ avec a < x < b.

Le taux d'accroissement de f entre a et b est : $\tau_{a,b} = \frac{\frac{1}{b} - \frac{1}{a}}{b-a} = \frac{\frac{a-b}{ab}}{b-a} = \frac{-1}{ab}$.

De même : $\tau_{a,x} = \frac{-1}{ax}$, et $\tau_{x,b} = \frac{-1}{xb}$. Comme 0 < a < x < b, on a bien $\frac{-1}{ax} \leqslant \frac{-1}{xb} \leqslant \frac{-1}{xb}$, soit $\tau_{a,x} \leqslant \tau_{a,b} \leqslant \tau_{x,b}$.

Ainsi f est bien convexe sur $]0; +\infty[$.

Proposition 8 (Croissance de la dérivée)

Soit $f: I \to \mathbb{R}$ une fonction dérivable.

- Alors f est convexe sur I ssi sa dérivée f' est croissante sur I.
- ▶ Si f est deux fois dérivable, alors f est convexe ssi f'' est positive (≥ 0) sur I.

Démonstration (hors-progamme, et que l'on peut omettre):

• f convexe $\Longrightarrow f'$ croissante On suppose $f: I \to \mathbb{R}$ dérivable et convexe.

Montrons que si $a, b \in I$ vérifient $a \leq b$, alors $f'(a) \leq f'(b)$.

D'après la Remarque 2.1, pour $x \in]a; b[$, on a : $\frac{f(b)-f(a)}{b-a} \leqslant \frac{f(b)-f(x)}{b-x}, \text{ et } \frac{f(x)-f(a)}{b-x} \leqslant \frac{f(b)-f(a)}{b-x}.$

On passe à la limite pour $x \to b$ et $x \to a$ respectivement. Il vient : $\frac{f(b)-f(a)}{b-a} \leqslant f'(b)$

Ainsi on a bien : $f'(a) \leq f'(b)$, et f' est croissante.

• f' croissante $\Longrightarrow f$ convexe On suppose $f: I \to \mathbb{R}$ dérivable et f' croissante.

Pour
$$a \leqslant b \in I$$
, et $x \in]a; b[$, d'après les accroissements finis, et la croissance de f' , on a :
$$\frac{f(b) - f(x)}{b - x} \geqslant f'(x) \text{ et } \frac{f(x) - f(a)}{x - a} \leqslant f'(x). \text{ Ainsi } \frac{f(x) - f(a)}{x - a} \leqslant \frac{f(b) - f(x)}{b - x}.$$

Or le taux d'accroissement s'écrit comme une moyenne

$$\frac{f(b) - f(a)}{b - a} = \frac{x - a}{b - a} \frac{f(x) - f(a)}{x - a} + \frac{b - x}{b - a} \frac{f(b) - f(x)}{b - x}.$$

On a donc bien $\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(b) - f(a)}{b - a}$, et f est convexe par la Remarque 2.1.

Proposition 9 (Caractérisation par les tangentes)

Soit $f: I \to \mathbb{R}$ une fonction dérivable.

Alors f est convexe \rightarrow ssi le graphe de f est au-dessus de ses tangentes,

• c'est-à-dire $ssi \ \forall a, x \in I, \quad f(x) \geqslant f(a) + f'(a)(x - a).$

Démonstration: On suppose que f est de classe C^2 . On a donc $f''(t) \ge 0$ pour $t \in I$. On va écrire f(x) en faisant apparaître une intégrale avec f''(t):

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt$$

= $f(a) + \left[(t - x)f'(t) \right]_{a}^{x} - \int_{a}^{x} (t - x)f''(t) dt$

où l'on a fait l'intégration par parties : $\begin{cases} u(t) = f'(t) \\ v'(t) = 1 \end{cases} \rightsquigarrow \begin{cases} u'(t) = f''(t) \\ v(t) = t - x. \end{cases}$

Ainsi: $f(x) = f(a) + f'(a)(x-a) + \underbrace{\int_a^x (x-t)f''(t) \, dt}_{\geqslant 0}, \text{ d'où } f(x) \geqslant f(a) + f'(a)(x-a).$

2.3 Exemples d'application

3 Développements limités à l'ordre 2

3.1 Comparaison des fonctions au voisinage d'un point

Proposition 10 (Unicité)

Soit $f: I \to \mathbb{R}$ une fonction numérique, et $x_0 \in I$.

Si f admet un développement limité en x_0 , celui-ci est unique.

En d'autres termes, si l'on peut écrire : $f(x) = a + b(x - x_0) + c(x - x_0)^2 + o((x - x_0)^2)$, = $a' + b'(x - x_0) + c'(x - x_0)^2 + o((x - x_0)^2)$

pour $a,b,c,a',b',c'\in\mathbb{R}$, alors on a nécessairement : a=a',b=b', et c=c'.

3.2 La formule de Taylor à l'ordre 2

Développements limités à l'ordre 1

(On s'intéresse, comme dans la suite, à l'étude en 0.)

On a l'approximation de f(x) pour $x \to 0$, par une fonction affine, grâce à la dérivée :

$$f(x) = \underbrace{f(0) + f'(0) x}_{\text{fonction affine + terme d'erreur}} + \underbrace{o(x)}_{\text{degree of a fine + terme d'erreur}}$$

Cette formule est exacte (le terme d'erreur = 0) pour une fonction affine en f(x) = ax + b, car alors, on a bien f(0) = b, et f'(0) = a.

Recherche d'analogue pour un polynôme de degré 2

Pour une fonction donnée par : $f(x) = ax^2 + bx + c$,

on a: f'(x) = 2ax + b,

et: f''(x) = 2a. Ainsi en prenant x = 0, on trouve l'expression

des coefficients : c = f(0), b = f'(0) et $a = \frac{f''(0)}{2}$.

On a obtenu, pour f fonction polynomiale de degré $2: f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2$.

Proposition 11 ($Formule\ de\ Taylor\ \grave{a}\ l'ordre\ 2)$

Si $f: I \to \mathbb{R}$ est \mathcal{C}^2 au voisinage de x_0 , alors $x \to x_0$, et $h \to 0$:

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + o(x - x_0)^2$$
$$f(x_0 + h) = f(x_0) + f'(x_0) h + \frac{f''(x_0)}{2} h^2 + o(h^2)$$

3.3 Cas à connaître

e^x	$\ln(1+x)$	$(1+x)^a, \ a \in \mathbb{R}$
$1 + x + \frac{x^2}{2} + o(x^2)$	$x - \frac{x^2}{2} + o(x^2)$	$1 + ax + \frac{a(a-1)}{2}x^2 + o(x^2)$

Pour la fonction exponentielle

Proposition 12

Pour
$$x \to 0$$

$$e^{x} = 1 + x + \frac{x^{2}}{2} + o(x^{2})$$

Pour la fonction logarithme

Proposition 13

Pour
$$x \to 1$$

$$\ln(x) = x - 1 - \frac{(x-1)^2}{2} + o((x-1)^2)$$
Pour $h \to 0$

$$\ln(1+h) = h - \frac{h^2}{2} + o(h^2)$$

Démonstration: On a : $\forall x > 0$, $\ln'(x) = \frac{1}{x}$, et $\ln''(x) = \frac{-1}{x^2}$.

Ainsi : $\ln(1) = 0$, $\ln'(1) = 1$, $\ln''(1) = -1$.

Le développement limité suit par la formule de Taylor.

Pour les fonctions puissances

Proposition 14 ($D\acute{e}v^t$ limité de $(1+x)^a$) Démonstration:

Soit $a \in \mathbb{R}$.
Alors, pour $x \to 0$, on a: $(1+x)^a = 1 + ax \frac{a(a-1)}{2} \cdot x^2 + o(x^2)$ Pour x > 0, notons $f(x) = (1+x)^a$.
Cette fonction est bien de classe \mathcal{C}^2 .
Pour x > 0, on a $f'(x) = a(1+x)^{a-1}$ et $f''(x) = a(a-1)(1+x)^{a-2}$, d'où: f(0) = 1, f'(0) = a, et f''(0) = a(a-1).

Les cas $(1+x)^a$, pour $a \in \mathbb{N}$

On développe par la formule du **binôme de Newton** : $(1+x)^0 = 1$ $(1+x)^1 = 1+x$ $(1+x)^2 = 1+2x+x^2$ $(1+x)^3 = 1+3x+3x^2+x^3$ $(1+x)^4 = \underbrace{1+4x+6x^2}_{\text{dev}^t \text{ lim.}_2} + \underbrace{4x^3+x^4}_{=o(x^2)}$

En général, de la formule $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ on ne garde pour développement limité que les trois premiers termes, soit : $\sum_{k=0}^2 \binom{n}{k} x^k = 1 + nx + \frac{n(n-1)}{2} x^2$.

Le cas a = -1 (la fraction $\frac{1}{1+x}$)

On peut écrire : $\frac{1}{1+x} = \frac{1+x-x}{1+x} = 1 - x \cdot \frac{1}{1+x}.$ On réinjecte : $\frac{1}{1+x} = 1 - x \cdot \left(1 - x \cdot \frac{1}{1+x}\right) = 1 - x \cdot \left(1 - x \cdot \left(1 - x \cdot \frac{1}{1+x}\right)\right).$

On a trouvé la formule du développement limité à l'ordre 2 : $\frac{1}{1+x} = \underbrace{1-x+x^2}_{\text{dev. lim}_2} - \underbrace{\frac{x^3}{1+x}}_{\text{dev. lim}_2}.$ (en itérant, on trouve $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \frac{x^4}{1+x}$, etc.)

Application aux formes indéterminées

4 Exercices

Exercice 1 (Calculs de taux d'accroissements)

- 1. $f(x) = x^2$ Montrer que le taux d'accroissement est donné par : a + x
- 2. $f(x) = x^3$ Montrer que le taux d'accroissement est donné par : $a^2 + ax + x^2$
- 3. $f(x) = \frac{1}{x}$ Montrer que le taux d'accroissement est donné par : $\frac{-1}{ax}$
- **4.** En faisant le passage à la limite $x \to a$, retrouver les dérivées de ces fonctions.

Exercice 2 (Moyenne harmonique)

- 1. Montrer que la fonction $x \mapsto \frac{1}{x}$ est convexe sur $]0; +\infty[$
- **2.** En déduire que pour a, b > 0, on a : $\frac{1}{\frac{a+b}{a}} \leqslant \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$.
- 3. Conclure que la moyenne harmonique $H(a,b)=\frac{2ab}{a+b}$ est majorée par la moyenne arithmétique $A(a,b) = \frac{a+b}{2}$.
- **4.** Montrer que si 0 < a < b, alors on a a < H(a, b) < b.

Exercice 3 (Moyenne géométrique)

- **1.** Montrer que la fonction $x \mapsto \ln(x)$ est concave sur $[0; +\infty[$.
- **2.** En déduire que pour a, b > 0, on a : $\frac{1}{2} \left[\ln(a) + \ln(b) \right] \leqslant \ln \left(\frac{a+b}{2} \right)$.
- 3. Conclure que la moyenne harmonique $G(a,b) = \sqrt{ab}$ est majorée par la moyenne arithmétique $A(a,b) = \frac{a+b}{2}$.
- **4.** Montrer que si 0 < a < b, alors on a a < G(a, b) < b.

Exercice 4 (Relation entre les trois moyennes)

Pour deux réels a, b > 0, on définit : • leur moyenne **arithmétique** par : $A(a, b) = \frac{a+b}{2}$

• leur moyenne **harmonique** par : $H(a,b) = \frac{2ab}{a+b}$

• leur moyenne **géométrique** par : $G(a,b) = \sqrt{ab}$.

1. Calculer le produit $A(a,b) \times H(a,b)$.

2. En déduire la moyenne géométrique de A(a,b) et de H(a,b).

3. En déduire l'encadrement $H(a,b) \leq G(a,b) \leq A(a,b)$.

Exercice 5 (La parabole et la moyenne arithmétique)

Exercice 6 (L'hyperbole et les moyennes Pythagoriciennes)

Soit \mathcal{H} l'hyperbole d'équation $y = \frac{1}{x}$, et on place $\frac{1}{a}$ deux points $A_0 = \left(x_0, \frac{1}{x_0}\right)$ et $A_1 = \left(x_1, \frac{1}{x_1}\right)$ et où $x_0, x_1 > 0$.

On pose $a = \frac{x_0 + x_1}{2}$, $g = \sqrt{x_0 x_1}$ et $h = \frac{2x_0 x_1}{x_0 + x_1}$. Montrer que :

• on a : $ah = g^2$ et $\frac{1}{h} = \frac{1}{2} \left(\frac{1}{x_0} + \frac{1}{x_1} \right)$.

ightharpoonup le point $\left(a, \frac{1}{h}\right)$ est le milieu du segment $[A_0A_1]$,

le point $(h, \frac{1}{a})$ est l'intersection des tangentes à \mathcal{H} en A_0 et A_1 ,

le point $\left(g, \frac{1}{g}\right)$ est un point de \mathcal{H} où la tangente est parallèle à $[A_0A_1]$,

ces trois points sont alignés avec l'origine, sur la droite d'équation $y = g^2x$.

Exercice 7 (Démonstration de la Proposition 8)

Démonstration : On considère la fonction : $\varphi(t) = qf(x - tp\ell) + pf(x + tq\ell)$

Alors on a les deux valeurs remarquables :

- $\qquad \varphi(0) = f(x)$
- $\varphi(1) = qf(qa + pb p(b a)) + pf(qa + pb + q(b a)) = qf(a) + pf(b)$

On dérive par rapport à t, tous les autres coefficients restant constants : $\varphi'(t) = -pqf'(x-tp\ell) + pqf'(x+tq\ell) = pq(f'(x+tp\ell)-f'(x-tp\ell))$