Геораспределённые транзакции в YTSaurus

Магистерская диссертация

Смородинов Александр, МСКН231

Научный руководитель: руководитель службы разработки динамических таблиц, ООО "Яндекс.Технологии", Савченко Руслан Алексеевич

Современные Компьютерные Науки ФКН НИУ ВШЭ (Москва)

Июнь 2025

- Введение в предметную область
- 📵 Постановка задачи
- 3 Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- Результаты тестирования
- Заключение

- Введение в предметную область
- 🔃 Постановка задачи
- ③ Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- 🕖 Результаты тестирования
- 3аключение

Транзакции

 Транзакция - последовательность из одной или нескольких операций с базой данных (БД), рассматриваемых как единое целое

Транзакции

- Транзакция последовательность из одной или нескольких операций с базой данных (БД), рассматриваемых как единое целое
- Основные свойства:
 - Атомарность (atomicity)
 - Консистентность (consistency)
 - Изоляция (isolation)
 - Устойчивость (durability)

Транзакции

- Транзакция последовательность из одной или нескольких операций с базой данных (БД), рассматриваемых как единое целое
- Основные свойства:
 - Атомарность (atomicity)
 - Консистентность (consistency)
 - Изоляция (isolation)
 - Устойчивость (durability)
- Виды транзакций:
 - Последовательные
 - Параллельные
 - Распределённые
 - Геораспределённые

Шардирование и репликация

- Если хранить все данные на одном сервере, то возникают следующие проблемы:
 - Ограничения по ресурсам одного сервера
 - Высокая задержка
 - Нарушение требований по хранению персональных данных
 - Единая точка отказа

Шардирование и репликация

- Если хранить все данные на одном сервере, то возникают следующие проблемы:
 - Ограничения по ресурсам одного сервера
 - Высокая задержка
 - Нарушение требований по хранению персональных данных
 - Единая точка отказа
- Поэтому, необходимо:
 - Разделить таблицу на несколько частей (шардов, или таблетов)
 - Реплицировать данные

Пример геораспределённой базы данных

Cockroachdb: The resilient geo-distributed sql database / Rebecca Taft, Irfan Sharif, Andrei Matei и др.

Геораспределённые транзакции

- Необходимо гарантировать свойства ACID для распределённых транзакций
- Походы по сети дорогие ⇒ необходимо минимизировать походы в другие локации

ACID

- Атомарность с помощью двухфазного коммита (2РС)
- Изоляция с помощью Multiversion Concurrency Control (MVCC) + двухфазной блокировки (2PL)
- Консистентность следует из свойств транзакций и изоляции
- Устойчивость с помощью репликации и записи данных на диск (не рассматривается в данной работе)

Multiversion Concurrency Control

- Multiversion concurrency control (MVCC) один из распространённых методов для изоляции транзакций
- Основная идея MVCC хранить для каждого ключа историю его изменений
- Нужно на каждое чтение и коммит генерировать временные метки
- Временные метки должны быть уникальны и монотонны

Генерация временных меток

- YTSaurus единый источник (timestamp_provider)
- Google Spanner TrueTime
- CockroachDB гибридные логические часы (HLC)

- Введение в предметную область
- 2 Постановка задачи
- Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- 🕖 Результаты тестирования
- 3аключение

Цели работы

- Изучить, реализовать и протестировать геораспределённые транзакции
- Добавить поддержку в YTSaurus локального источника времени (HLC), избавиться от timestamp_provider
- Сравнить производительность методов

Задачи работы

- Изучить материалы по геораспределённым транзакциям
- Реализовать алгоритмы для обеспечения ACID с использованием HLC: 2PC, 2PL+MVCC
- Подготовить тестовый стенд для симуляции геораспределённой системы
- Написать тесты для проверки корректности и производительности
- Написать текст диссертации и сопроводительную документацию (readme файл)

- Введение в предметную область
- Постановка задачи
- Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- 🕖 Результаты тестирования
- Заключение

Актуальность задачи

- Востребованность:
 - Транзакции значительно упрощают написание надёжных и производительных сервисов
 - Всё больше и больше приложений становятся геораспределёнными

Актуальность задачи

- Востребованность:
 - Транзакции значительно упрощают написание надёжных и производительных сервисов
 - Всё больше и больше приложений становятся геораспределёнными
- Нерешённость:
 - Геораспределённые транзакции эффективно реализованы в CockroachDB и в Spanner, но не в YTSaurus

Значимость задачи

- YTSaurus используется в Яндексе во многих внутренних сервисах ⇒ оптимизация транзакций позволит улучшить задержку запросов и уменьшить потребление ресурсов
- У Яндекса есть 5 датацентров, хотя они расположены относительно близко друг к другу
- ullet YTSaurus имеет открытый исходный код \Rightarrow любая компания может поднять свою инсталяцию (например Yango, Nebius)

Датацентры Яндекса

https://yandex.ru/jobs/services/datacenters

- Введение в предметную область
- 2 Постановка задачи
- Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- 🕖 Результаты тестирования
- 3аключение

- Google Spanner
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: TrueTime
 - TrueTime позволяет синхронизировать часы с небольшим (\sim 7 мс) расхождением.

- Google Spanner
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: TrueTime
 - TrueTime позволяет синхронизировать часы с небольшим (\sim 7 мс) расхождением.
- YTSaurus
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: timestamp_provider

- Google Spanner
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: TrueTime
 - TrueTime позволяет синхронизировать часы с небольшим (~ 7 мс) расхождением.
- YTSaurus
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: timestamp_provider
- CockroachDB
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: HLC

- Google Spanner
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: TrueTime
 - TrueTime позволяет синхронизировать часы с небольшим (~ 7 мс) расхождением.
- YTSaurus
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: timestamp_provider
- CockroachDB
 - (2PL (RW) + MVCC (RO)) × 2PC
 - Генерация временных меток: HLC
- YugabyteDB
 - Аналогично CockroachDB

Отличия от существующих решений

- Идея использовать HLC взята из CockroachDB, в этом плане, работа не имеет теоретической новизны
- Основные результаты:
 - Обзор существующих решений
 - Имплементация HLC
 - Сравнение производительности и тесты корректности
 - 🕚 Стенды для симуляции геораспределённой БД
- В тестовом окружении есть допущения, например, что сервера не отказывают

- Введение в предметную область
- 2 Постановка задачи
- З Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- 🕖 Результаты тестирования
- 3аключение

Полученные результаты

- Код на C++ для клиентской и серверной части БД https://github.com/asmorodinov/distributed_transactions
- 🥝 Реализованные алгоритмы:
 - Двухфазный коммит (2РС)
 - Двухфазная блокировка (2PL)
 - Мультиверсионное хранилище (MVCC)
 - Предотвращение дедлоков (Wait-Die)
 - 5 Гибридные логические часы (HLC)
 - Неблокирующие чтения
- Конфигурация docker и docker compose для симуляции геораспределённой системы
- Отресс-тесты
- Техническая документация (readme файл)
- 💿 Текст диссертации

Полученные результаты

- На текущий момент, код в YTSaurus ещё не закоммичен
- Вместо этого, HLC реализация была написана в отдельном тестовом окружении
- Коммит в YTSaurus остаётся для будущей работы

- Введение в предметную область
- Постановка задачи
- 3 Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- Результаты тестирования
- Заключение

Детали реализации

- Приложение на С++
- Зависимости: yt/yt/core
- Система сборки: yatool (ya make)
- Кроме самого приложения написаны тесты и конфигурация для docker и docker compose
- Репозиторий: https://github.com/asmorodinov/distributed_transactions

- Введение в предметную область
- Постановка задачи
- ③ Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- Результаты тестирования
- 3аключение

1 тест (инкременты)

- **1** Начальное состояние: $X_1 = X_2 = ... = X_N = 0$
- **②** Транзакция: $X_1 += x, X_2 += x, \dots, X_N += x$, где x случайное число
- **③** Проверка консистентности: $X_1 = X_2 = ... = X_N$

2 тест (переводы)

- **1** Начальное состояние: $X_1 = X_2 = ... = X_N = 0$
- ② Транзакция: $X_i = x, X_j + x$, где x случайное число, $i \neq j$ случайные индексы
- **③** Проверка консистентности: $X_1 + X_2 + ... + X_N = 0$

Конфигурация сети

- Для каждого контейнера можно настроить исходящую задержку
- Было протестировано 3 сценария:
 - $oldsymbol{0}$ Между всеми контейнерами задержка t
 - У timestamp_provider задержка t, у других контейнеров нулевая
 - У клиента задержка t, у остальных контейнеров нулевая

1 сценарий

(а) Задержка записей

(b) Задержка чтений

Зависимость задержки записей и чтений от задержки между контейнерами

2 сценарий

(d) Задержка чтений

Зависимость задержки записей и чтений от задержки между кластером и timestamp_provider

3 сценарий

(f) Задержка чтений

Зависимость задержки записей и чтений от задержки между клиентом и кластером

- Введение в предметную область
- Постановка задачи
- Актуальность и значимость
- Обзор существующих решений
- Полученные результаты
- Детали реализации
- Результаты тестирования
- 8 Заключение

Заключение

- Были реализованы алгоритмы для геораспределённых транзакций
- По итогам тестов, было показано, что метод с HLC более эффективный, при этом корректность не нарушается
- Тесты можно запускать с помощью docker compose и настраивать задержку между контейнерами
- Коммит в YTSaurus остаётся для будущей работы

Спасибо за внимание Готов ответить на вопросы