Cyclic Codes

Kyle Cook & Jacob Hauck

November 7, 2019

1 Review of Ideals

Definition 1.1. Let R be a ring with operations + and \cdot . An ideal I of R is a subset of R satisfying the following properties:

- 1. I is a subgroup of R under +
- 2. for any $r \in R$ and any $i \in I$, $ri \in I$

Definition 1.2. Let R be a ring and I a two sided ideal of R. We can define an equivalence relation \sim on R as follows:

$$a \sim b \iff a - b \in I$$

The equivalence class of the element a in R is given by

$$[a] = a + I := \{a + r | r \in I\}$$

The set of all equivalence classes is denoted R/I; it becomes a ring, the factor ring, or quotient ring of R modulo I, if one defines

$$(a+I) + (b+I) = (a+b) + I$$

 $(a+I)(b+I) = (ab) + I$

In practice one must check these definitions are well defined.

Definition 1.3. Let $a \in R$. The set $\langle a \rangle = \{ra | r \in R\}$ is an ideal of R generated by a. Ideals with such a generator element are called Principal Ideals.

Definition 1.4. An integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero.

Theorem 1.5. In an integral domain, every nonzero element a has the cancellation property, that is, if $a \neq 0$, then $ab = ac \implies b = c$

Definition 1.6. A principal ideal domain is an integral domain in which every ideal is a principal ideal.

Definition 1.7. I is a maximal ideal of a ring R if there are no other ideals contained between I and R.

Theorem 1.8. Given a ring R and a proper ideal I of R, that is $I \neq R$, I is a maximal ideal of R if any of the following equivalent conditions hold:

- 1. There exists no other proper ideal J or R so that $I \subset J$.
- 2. For any ideal J with $I \subseteq J$, either J = I or J = R.
- 3. The quotient ring R/I has no nontrivial ideals.

Definition 1.9. Given a field \mathbb{F} we define the ring of polynomials in x over \mathbb{F} , $\mathbb{F}[x]$, as the set of all polynomials $p = p_0 + p_1 x + p_2 x^2 + \cdots + p_k x^k$ where p_i are coefficients in \mathbb{F}