

NebulaGUITool 使用指南

Windows

2023.04

Vzense Technology Co., Ltd.

目录

1.	概这	<u>†</u>		3
2.	支持	寺设省		4
	2.1.	DS	77 Lite/Pro	4
	2.2.	DS	77C Lite/Pro	5
	2.3.	DS	86 & DS87	. 6
3.	安装	专		7
	3.1.	推荐	享系统配置	7
	3.2.	目表	录结构	7
	3.3.	设律	备连接	8
	3.3	5.1.	固定地址	8
	3.3	.2.	DHCP	. 9
4.	功能	它介绍	л п	10
	4.1.	设律	备列表	10
	4.2.	显示	示区	11
	4.3.	操作	乍区	12
	4.3	5.1.	设备控制	13
	4.3	.2.	曝光时间设置	15
	4.3	.3.	图像处理	17
	4.3	.4.	滤波处理	21

	4.3.5.	设备信息	25
	4.3.6.	导出、导入参数	29
5.	FAQ		30

1. 概述

NebulaGUITool 是基于 Nebula SDK 开发的图形界面工具,提供 Depth 图像彩色映射显示、3D 点云显示、滤波参数调节、设备参数设置以及 RGB & Depth 对齐等功能。 对于 Ethernet 类产品,可通过设置页面对设备进行 IP 地址设置与固件升级操作。

NebulaGUITool 下载链接:

国内:

https://gitee.com/Vzense/NebulaGUITool

海外:

https://github.com/Vzense/NebulaGUITool

2. 支持设备

目前 NebulaGUITool 支持的产品有:

- DS77 Lite/Pro
- DS77C Lite/Pro
- DS86 & DS87

2.1. DS77 Lite/Pro

Sensor	DS77 Lite	DS77 Pro
Sensor	SONY DepthSense ToF	
Laser	940nm	VCSEL * 2
TOF Resolution	640 * 480, Max. 25fps	
TOF FOV	70°(H) * 50°(V)	
Pixel Format	12bit Depth, 8bit IR	
Digital Interface	1000M Ethernet, RS485	
Power Supply	12V ~ 24V DC	12V ~ 24V DC or POE+
Accuracy	< 1% (4mm@1m)	
Detect Range	0.15m ~ 5m	
Operating Temperature	-20°C ~ 50°C	
OS Support	Windows, Linux, Arm Linux	
Software Support	Nebula SDK, C++, C, Python, ROS, ROS2	
Ingress Protection	IP42	IP67

2.2. DS77C Lite/Pro

C Pro
OC or POE+
OS2
67

2.3. DS86 & DS87

Model	DS87	DS86	
Sensor	SONY DepthSense ToF CMOS		
Laser	940nm V	/CSEL * 2	
TOF Resolution/Frame rate	640 * 480, Max. 15fps		
ToF HDR Mode	Supported with Max. 10fps		
ToF FOV	70°(H) * 50°(V)		
RGB Camera	1600 * 1200, , Global Shutter, 77°(H)*55°(V)		
Output Format	RAW12(Depth, IR) + JPG(RGB)		
Interface	1000Mbps Ethernet and RS485		
Physical Connection	Aviation Plug x 2	RJ45 x1 8pin Connector x 1	
Power Supply	PoE+ or 12V~24V (DC)	12V~24V (DC)	
Accuracy	< ′	1%	
Working Range	0.15m ~ 5m		
Working Temperature	-20°C to +50°C		
Operation System&Platform Windows/Linux/Art		n Linux/ROS1/ROS2	
SDK	C/C++/Python		
Enclosure Rating	IP67	IP42	
Conformity	CE, FCC, FDA		

3. 安装

3.1. 推荐系统配置

配置项	推荐配置
	Win7 32/64 位
操作系统	Win10 64 位
	Win11 64 位
内存	4g 以上

3.2. 目录结构

NebulaGUITool 包含 NebulaGUITool.exe 可执行文件,用户手册文档,最新固件及相关动态链接库。

图 3.1 NebulaGUITool 目录结构

3.3. 设备连接

图 3.2 硬件模组安装示意图

网线连接分为固定地址与 DHCP 两种方式。Ethernet 产品默认使用固定地址方式,如需更改 IP 地址、子网掩码、DHCP,可以使用 NebulaGUITool 进行更改。

3.3.1. 固定地址

固定地址连接可以设备与电脑直连,也可以配置在同一网段的交换机中使用。

直连: 一端连接设备,另一端连接 PC 主机的网线接口。设备默认 IP 为 192.168.1.101,在 PC 端将"本地连接"的,子网掩码设为 255.255.255.0, IP 地址设为同一网段(如 192.168.1.100)。

图 3.3 固定地址方式

3.3.2. DHCP

DHCP 连接方式,需要将设备连接到开启 DHCP 功能的路由器上,使用在相同局域网中的 PC 进行连接,PC 的"本地连接"设置为自动获取 IP 地址。设备也需要配置为 DHCP 方式,配置方式见 4.3.5.1。

图 3. 4 DHCP 方式

注意:

- 1、PC 端使用的网卡、路由器、交换机都要满足干兆要求。
- 2、在首次运行 Nebula GUITool 时,要为程序设置通过系统防火墙的权限,如下图所示。

图 3.5 防火墙配置

4. 功能介绍

4.1. 设备列表

设备列表用于设备的搜索与连接。本软件出于展示目的,仅支持同一时刻打开一台相机, SDK 支持多台同时工作。

图 4.1 NebulaGUITool 识别设备

设备连接:

图 4.2 连接设备

- 1. 搜索设备
- 2. 选中设备的 SN
- 3. 点击 Open 打开设备,或者双击设备 SN 打开设备

设备断开:

图 4.3 设备断开方式

1. 点击 Close 关闭设备。

4.2. 显示区

图 4.4 NebulaGUITool 显示区

显示区用于显示图像,从左到右依次为深度图视窗、IR 图视窗、彩色图视窗、点云图 视窗(默认关闭)。

深度图视窗中显示数值为白点处**实时像素点**的深度值,单位为 mm,如上图该点深度值为 2038mm 。

注意: 鼠标右键单击可自行选择白点位置, 同时显示对应点的深度值。

4.3. 操作区

图 4.5 NebulaGUITool 操作区

操作区用于控制设备的工作模式与参数,设置图像处理算法,查看设备信息等功能。

4.3.1. 设备控制

4.3.1.1. 工作模式

图 4.6 设备工作模式

ActiveMode: 主动出图模式。

HardwareTriggerMode: 硬触发模式,通过硬件信号触发出图,具体请参考对应产品规格书。

SoftwareTriggerMode: 软触发模式,通过调用软件接口触发出图,单击按钮发送软触发指令。

图 4.7 设备软触发模式

开启软触发模式后,点击 "Trigger" 按钮可触发设备出图。

4.3.1.2. 伪彩色图映射

Depth ColorMap_Max: 7495

Depth ColorMap_Min: 0

图 4.8 伪彩图映射

深度图采用伪彩色图映射显示,将单通道 16 位的原始深度图在范围 ColorMap_Min至 ColoMap_Max 的深度值线性映射到 0-255 的值域范围,再将单通道 8 位的深度图映射到伪彩色空间(即色度图)COLORMAP RAINBOW,如下示意图:

图 4.9 色度图

伪彩色图映射效果如图 4.10:

图 4.10 伪彩色图映射效果

4.3.1.3. IR 图像增益

图 4.11 IR 图像增益

设定 IR 图像的增益,表现为 GmmGain 值越高, IR 图像越亮。设备默认 GmmGain 值为 64。

图 4.12 IR 图像效果

4.3.1.4. RGB 图像分辨率设置

图 4.13 RGB 图像分辨率

RGB 图像分辨率可根据实际列表显示进行切换,如上图示例的分辨率有三种: 1600*1200, 800*600, 640*480.

4.3.2. 曝光时间设置

4.3.2.1. ToF 曝光时间

图 4.14 ToF 传感器曝光时间设置

设定 ToF 传感器的曝光模式与时间。

Auto: ToF 传感器设置为自动曝光,设备会根据图像距离进行曝光时间调节。

Manual: ToF 传感器设置为手动曝光,通过滑条或输入框对曝光时间进行手动调节。

ToF 传感器默认使用手动曝光模式,可以设定的最大曝光时间与帧率有关。

帧率	最大曝光时间(us)
5fps	4000
10fps	2000
15fps(HDR 模式最大支持)	1300
25fps	1000

HDR Mode: HDR (高动态范围)功能通过设置多个不同曝光时间的方式,将采集到的

多个图像合成到一帧中,完成对整个复杂场景的成像。

曝光时间 58us

曝光时间 1000us

HDR 曝光时间 1000us

图 4.15 ToF 传感器曝光时间对比效果

4.3.2.2. RGB 曝光时间

图 4.16 RGB 传感器曝光时间设置

设定 RGB 传感器曝光模式与时间

Auto: RGB 传感器设置为自动曝光。

AETimeMax(us): 设置自动曝光的最大曝光时间,与帧率有关。

帧率	最大曝光时间(us)
5fps	30000
10fps	16000
15fps(HDR 模式最大支持)	10000
20fps	5000
25fps	3000

Manual: RGB 传感器设置为手动曝光。

ExposureTime(us):设置手动曝光的曝光时间

RGB 传感器的默认曝光模式为自动曝光。

4.3.3. 图像处理

4.3.3.1. 图像显示

图 4.17 图像显示按钮

可设定在显示区显示图像内容。取消选中后,显示区将不再显示对应图像视窗。

软件默认打开 Depth 图像、IR 图像和 RGB 图像 (如有)。

4.3.3.2. 点云图

图 4.18 点云显示按钮

勾选 Point Cloud 可以设定是否显示点云,点云默认使用深度伪彩显示。

Point Cloud White:设定点云使用单色显示(白色)。

Point Cloud + RGB: 设定点云填充 RGB 映射。

点云控件操作:

双击点云: 全屏显示点云

按住鼠标左键并拖动: 旋转点云

按住鼠标右键并拖动: 平移点云

鼠标滚轮:缩放点云

图 4.19 点云图

4.3.3.3. RGBD 对齐

1. DepthImgToColorSensor

图 4.20 深度对齐到 RGB

设定 Depth 图像对齐到 RGB 域的功能。启用后将输出并显示 Depth 像素点对齐到 RGB 像素空间的图像,即与 RGB 像素逐一对应的 Depth 图像。

对齐后的 Depth 图像

原始 RGB 图像

图 4.21 深度对齐到 RGB 效果

2. ColorImgToDepthSensor

图 4.22 RGB 对齐到深度

设定 RGB 图像对齐到 Depth 域的功能。启用后将输出并显示 RGB 像素点对齐到 Depth像素空间的图像,即与 Depth 像素逐一对应的 RGB 图像。

原始 Depth 图像

对齐后的 RGB 图像

图 4.23 RGB 对齐到深度效果

4.3.3.4. 保存图像

图 4.24 保存按钮

SaveImg:保存一帧当前所有显示区域的图像,点击一次保存一张。如果显示区域未 开启,则不会保存。

注意:保存的所有图像/点云会存储在同一文件夹,文件夹以当前时间命名,存放在 NebulaGUITool.exe 的同级目录下的 Savelmage 文件夹中。如下图目录所示:

 Nebula > NebulaGUITool-master > NebulaGUITool > SaveImage > 2022_08_10_10_11_32 >

 名称
 修改日期
 类型
 大小

 Depth
 2022/8/10 10:11
 文件夹

 IR
 2022/8/10 10:11
 文件夹

 PointCloud
 2022/8/10 10:11
 文件夹

图 4.25 原始数据保存路径

Record: 连续保存当前所有显示区域图像(不支持点云连续保存)。

图 4.26 连续保存深度效果

文件格式:

Depth 图存储格式为 16 位单通道 png 格式,数值单位 mm;

IR 图存储格式为 8 位单通道 png 格式;

RGB 图存储格式为 8 位三通道彩色图,采用 JPG 格式保存;

PointCloud 数据以 txt 格式保存,每行数据表示一个点的三维坐标(Float: X, Y, Z),单位 mm。保存后的文件可使用 CloudCompare 工具打开。

注意:

NebulaGUITool 保存的深度图是 16bit 单通道 png 格式图像,每个 pixel 由 2 个字节表示。Windows 默认的图像显示工具只能显示 8bit 单通道的图像,所以看上去是黑色的。可以使用 Image J 来显示并查看像素距离值。

4.3.4. 滤波处理

4.3.4.1. 图像滤波

图 4.27 滤波按钮

1. All

开启/关闭所有滤波。

2. Black BG

Black BG: 开启/关闭黑色背景, 仅用于显示效果, 对实际数值无影响。效果如下:

图 4.28 开启/关闭黑色背景的效果

3. FillHole

FillHole:数据填补,弥补部分空洞数据,默认开启。

4. Spatial Filter

Spatial Filter:平滑滤波,减少平面噪声与抖动。默认关闭。

Spatial Filter 开启

图 4.29 Spatial Filter 关闭/开启效果

5. Time Filter

图 4.30 Time Filter 开关及阈值

Time Filter: 时间滤波,降低图像帧间抖动。默认开启,默认值 1(值越大,滤波效果越强)。

6. Flying Pixel Filter

图 4.31 Flying Pixel Filter 开关及阈值

Flying Pixel Filter: 飞点消除滤波,消除边界的深度值飞点。默认开启,默认值 15 (值越大,滤波效果越强)。

图 4. 32 Flying Pixel Filter 关闭

图 4.33 Flying Pixel Filter 值为 15

7. Confidence Filter

图 4.34 Confidence Filter 开关及阈值

Confidence Filter: 置信度滤波,消除信号质量较差点,默认开启,默认值 15 (值越 大,信号质量要求越高)。

图 4.35 Confidence Filter 不同阈值效果

4.3.5. 设备信息

图 4.36 设备信息

SN:设备序列号。

FW:设备固件版本。

IP:设备当前 IP 地址。

MAC:设备 MAC 地址。

Model:设备类型。

: 设备 IP 设置与固件升级页面。

4.3.5.1. IP 地址更改

点击 , 弹出如下页面。

图 4.37 设备设置界面

Obtain an IP address automatically(DHCP): 设置设备的 IP 地址为 DHCP 模式,由 局域网内的路由器分配 IP 地址,使用该模式,主机端也需要设置为 DHCP 模式.

Use the following IP address:设置设备的 IP 地址为固定地址。使用该模式,需要注意主机的 IP 地址以及子网掩码,确保主机和设备的 IP 地址在同一网段。

1. 设置动态 IP:

evice Settings	>
Setting IP Address Obtain an IP address automatically(DHCP) Use the following IP address: IP address: 192 . 168 . 1 . 101 Subnet mask: 255 . 255 . 0	OK Cancel
Upgrade Firmware	
FirmwareImg path:	Upgrade

图 4.38 设备设置 DHCP

Step1: 选择 "Obtain an IP address automatically (DHCP) "。

Step2: 点击 OK 保存。

Step3: 设备自动重启后生效。

2. 设置静态 IP:

Step1: 选择 "Use the following IP address" 。

Step2: 更改 IP 地址和子网掩码。

Step3: 点击 OK 保存。

Step4:设备自动重启后生效。

4.3.5.2. 升级固件

图 4.39 设备设置界面-升级

设备固件升级操作方法:

1. 点击 ,选择 NebulaGUITool 文件夹内的固件镜像,如图:

图 4.40 固件镜像保存路径

注意: 暂不支持中文路径

- 2. 点击 "Upgrade" 按钮, 等待升级开始 (升级过程中设备不可断电)。
- 3. 升级开始后, 进度条会开始增长, 增长到 "100%" 升级完成。
- 4. 提示设备重启,点击确定后软件自动关闭。

4.3.5.3. 信号参数配置 (仅限 DS86/DS87)

信号参数配置在 Device Setting 页面,如下图所示:

图 4.41 信号参数配置

硬触发相关的输入信号参数配置:

1) polarity:信号有效性检测极性。0代表低电平有效,1代表高电平有效。

取值范围: [0,1]

2) width: 信号宽度有效性检测,小于宽度设置的信号不予响应。16-bit,单

位为µs。

取值范围: [1,65535]

3) interval: 连续信号间隔有效性检测,小于间隔设置的信号不予响应。

取值范围: [34000,65535]

输出信号参数配置:

1) polarity: 输出信号极性。0代表低电平有效,1代表高电平有效。

取值范围: [0,1]

2) width: 输出信号宽度。总共 16-bit, 单位为µs。

取值范围: [1,65535]

3) delay: 输出信号延时,即收到输入信号后,延时多久再开始输出信号。

取值范围: [0,65535]

4.3.6. 导出、导入参数

Export: 导出通过 NebulaGUITool 设置的参数

Import: 导入参数到 NebulaGUITool 中

导出的参数可以通过调用 API 函数在自编写的程序中直接使用。

5. FAQ

Q1: 为什么可以搜索到网口类设备但却打不开相机?

A1: 1.确认相机的连接和供电没有问题,相机的蓝色指示灯闪烁

2.查看相机 IP (默认 192.168.1.101) 是否能 ping 通

①若无法 ping 通,查看主机端的 IP 是否和相机默认 IP 处于同一网段

②若可以 ping 通,查看防火墙是否关闭,或允许工具使用公用网络和专用网络

如以上措施均不能解决问题,请用 ipconfig 指令查看 PC 端网络状态,将除与相机同

一网段之外的网络禁用再次搜索设备。关于网口类产品的连接方式及常见问题也可参考视频:

https://www.bilibili.com/video/BV1EG4y1h7E2

Q2: 通过 GUI 保存的 IR 图和深度图为什么打不开?点云图如何查看?

A2: NebulaGUI 保存的 IR 和 Depth 图像是 16bit 图片数据,可以使用 ImageJ 打开

查看; GUI 保存的点云图是.txt 格式,可使用 CloudCompare 进行查看,相关说明请参考

链接: https://cdn.yun.sooce.cn/4/62267/pdf/16339227552770a0bd9e3dcaf8a6b.pdf

Q3: 如何改善相机对黑色物体的检测

A3: 可以尝试下述方法: 1.将产品帧率降低 (例如 5 帧),增加曝光时间 (例如 4000);

2.将 Confidence 滤波阈值更改为 2 或 5

联系方式: 邮箱: info@vzense.com

技术支持平台: https://support.gq.com/products/377143

https://www.vzense.com/faq

Gitee: https://gitee.com/Vzense/NebulaGUITool/issues

GitHub: https://github.com/Vzense/NebulaGUITool/issues