Tecnológico de Costa Rica

Escuela de Computación Maestría en Computación con énfasis en Ciencias de la Computación

Curso: Sistemas Operativos Avanzados

Profesor: Francisco Torres

Estudiante: Oscar Rodríguez Arroyo

Apuntes: 27 de Febrero, 2017

Administrativo

Quiz #2

- 1. Defina los siguientes conceptos
 - a. Trap vs interrupción
 - b. Protección de memoria
 - c. Modo privilegiado
 - d. Garantías de multiprogramación.
- 2. Compare el concepto de safety en SPIN y exokernel
- 3. Mencione los principales argumentos de Liedtke respecto al uso de microkernels

Papers a leer

- 602, 603, 608
- Perfecto no va a presentar un resumen

Sincronización

Es la coordinacion y cooperacion de un conjunto de procesos para asegurar la comparación de recursos de cómputo.

**Recurso: Puede ser una variable, estructura de datos, dispositivo, etc

Problema

Sin una sincronización adecuada entre procesos, la actualización de variables compartidas puede inducir a errores de tiempo relacionados con la concurrencia que son con frecuencia difíciles de depurar.

Procesos Concurrentes

- Es un concepto de tiempo.
- La concurrencia puede ser igual que la infidelidad (según Torres)
- Dos procesos son concurrentes si uno empieza antes de que otro termine.

- El P1 no es concurrente con P2
- El P3 es concurrente con P2
- El P1 y P3 no son concurrentes
- El P4 es concurrente con P1, P2 y P3

Región Crítica

Es la parte del código donde un proceso concurrente usa un recurso compartido. Distintos procesos pueden tener su recurso compartido en distintos lugares.

Problema de la región crítica

- Hay un recurso compartido por 2 o más procesos.
- NO se debe permitir que varios lo usen al mismo tiempo.
- Arbitrar el uso del recurso compartido.

Estructura de la solución

Busy Waiting - Espera Activa

- El proceso no puede ejecutar la región crítica si ya hay otro proceso en la misma región crítica
- IDEA: hacer lo que ejecute otro código
- Usualmente un loop del que sale sólo si puede usar la región crítica
- Busy Waiting = espera ocupada

Ventajas	Desventajas
No hay necesidad de invocar al sistema operativo	 Pregunta por condiciones que no se dan Puede haber mucho tiempo de espera

Solución al problema de la región crítica

Debe cumplir lo siguiente:

- RC1 Exclusión mutua
 - o Sólo un proceso puede estar en la región crítica en un momento dado
- RC2 Progreso
 - Si algún proceso no le permite a otro entrar en la región crítica, es porque está interesado en la región crítica.
- RC3 Espera acotada (Acceso en tiempo finito)
 - Una vez que un proceso manifiesta interés en la región crítica, debe esperar un tiempo que puede ser grande, pero finito.

Algoritmo 1 [2 procesos]

Conclusión: la solución **no funciona** dado que impone un patrón de acceso y no cumple RC2.

Algoritmo 2 [2 procesos]

Conclusión: En este algoritmo los procesos anuncian que quieren entrar a la región crítica pero **no funciona** debido a que la espera no es acotada

Algoritmo 3 [2 procesos]

Conclusión: En esta solución no hay problema, turn es i o es j, nos salva el memory inter-lock (sucede a nivel de hardware). **FUNCIONA**

Instrucciones de Hardware

- El Hardware puede ayudar a implementar soluciones de Busy Waiting
- Son instrucciones atómicas que hacen "varias" cosas
- Test & Set
 - Test&Set(variable, valor);
 - o **Test**: devuelve el valor de *variable* (posición de memoria)
 - o Set: asigna valor a variable
 - o Read + Write
 - o En arquitectura Intel se llama

Algoritmo 4 [N procesos]

Otro...

while(Test&Set(lock, TRUE))

Región Crítica

lock = FALSE;

Otro...

Ventajas	Desventajas
Puede manejar N procesosLa atomicidad es la clave	- NO HAY

Conceptos de Scheduling

- 1. Inicio a Ready: un proceso que no está ejecutándose pide correr.
- 2. Ready a Run: escoger un proceso de ready y darle el CPU.
- 3. Run a Blocked: un proceso está corriendo y hace petición de un recurso que no está disponible o un recurso muy lento, esto dispara un System Call y el Sistema Operativo suspende al proceso.
- 4. Blocked a Ready: se activa por una interrupción de un dispositivo externo.
- 5. Run a Ready: le quitan el CPU al proceso, por causa de timeslice o otro criterio del Sistema Operativo.
- 6. Ready a Blocked: el proceso estaba listo y le guitaron algún recurso.
- 7. Blocked a Run: pueden haber procesos con altísima prioridad, que cuando se le devuelven los recursos se corren inmediatamente.
- 8. Run a Fin: el proceso terminó felizmente.
- 9. Blocked a Fin: el sistema operativo mató el proceso.
- 10. Ready a Fin: el sistema operativo mató el proceso.

Conceptos

- Job Scheduling/ Long Term Scheduling: Escoge el proceso a ejecutar
- + I/O-bound: aquellos procesos que están ligados a los dispositivos de entrada

y salida.

+ CPU-bound: procesos que se dedica a hacer cálculos

• Job mix: conjunto de procesos corriendo al mismo tiempo. Debe ser variado.

Edsger Dijkstra

- Científico de computación. Holandés (1930 - 2002)
 - Turing Award 1972
- Uno de los más influyentes en la disciplina
- Contribuciones en: algoritmos, sistemas operativos, compiladores, lenguajes de programación
 - Primer programador oficial
- Usualmente recordado por e algoritmo de Dijkstra, también llamado algoritmo de caminos mínimos.

Semáforos de Dijkstra

- Son objetos manejados por el sistema operativo
- Tienen operaciones limitadas
- Se usan con System Calls
- Tiene 2 operaciones fundamentales
 - o P(S): proberen. Ocurre la lectura de la variable
 - o V(S): vergohen. Incrementar.

```
P(S)\{ \\ S = S - 1; \\ if(S < 0)\{ \\ *****SUSPENDER PROCESO****** \\ Enviar a BLOCKED, en la cola asociada a S \\ \} \\ V(S)\{ \\ S = S + 1; \\ if(S <= 0)\{ \\ *****DESBLOQUEAR PROCESO***** \\ Selecciona algún proceso de la cola asociada a S. \\ \end{cases}
```

```
Pasar a la cola de READY
}

P(S) y V(S) tienen que ser instrucciones atómicas.

Algoritmo 5 [Proceso i]

Otro...

P(S);

Región Crítica
```

- Bajo este modelo se resuelve el problema de la región crítica
- Son implementados por el sistema operativo

Otro...

V(S);

- Deben ser atómicos para que funcionen
 - Usan variables compartidas (semáforos y estructuras de PCBs)
 - Código relativamente pequeño y efectivo
 - o Se inhiben las interrupciones durante su ejecución
- ¿En múltiples CPUs?Se deben rodear al P y al V de busy waiting