NAME	SOLUTION	

Last week, we looked at HRV data from Exam I. Now, we group it into two weeks; one before the onset of symptoms, and one after.

Week	Day	Date	HRV	Notes
	W	7/28	33	
	R	7/29	43	
	F	7/30	43	
1	S	7/31	39	
	U	8/1	23	
	М	8/2	47	
	Т	8/3	31	
	W	8/4	37	Presentation of COVID symptoms
	R	8/5	40	Confirmed positive COVID test
	F	8/6	31	
2	S	8/7	39	
	U	8/8	52	Reported feeling "loads better"
	М	8/9	48	
	Т	8/10	49	

First, compute sample means and variances for the two different weeks.

$$s^{2} = \frac{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}}{n-1}$$

$$S_{1}^{2} = \frac{10007 - \frac{259^{2}}{7}}{6}$$

$$S_2 = \frac{12860 - \frac{296^2}{7}}{6}$$

$$S_2^2 = 57.24 \text{ (ms)}^2$$

Test the following hypotheses on the difference in mean HRV using the p-value approach. State your final conclusion with respect to a significance level of α = 0.05. Population variances are <u>unknown</u> and assumed unequal.

 H_0 : $\mu_1 - \mu_2 = 0$

 $H_1: \mu_1 - \mu_2 \neq 0$

Based on available evidence, state whether you think HRV is a useful indicator of a COVID infection.

Unknown and unequal
$$\rightarrow$$
 need $\sqrt{\frac{S_1^2}{N_1}} = \frac{70.67}{7} = 10.10$

$$V = \frac{(10.10 + 8.177)^2}{10.10^2 + 8.177^2} = \frac{11.87}{(10.10 + 8.177)}$$

$$V = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.237 + 12$$

$$V_{00} = \frac{37 - 42.29 - 0}{10.10 + 8.177} = -1.23$$

Write a 95% confidence interval on the equality of HRV standard deviations and use it to test the following hypotheses:

$$H_0: \sigma_1 = \sigma_2$$

$$H_1: \sigma_1 \neq \sigma_2$$

Based on available evidence, was the assumption of unequal population standard deviations justified in the first problem?

$$\begin{cases}
\frac{1}{6/2}, \frac{1}{92-1}, \frac{1}{91-1} &= \frac{1}{6.025}, \frac{1}{6}, \frac{1}{6} &= \frac{1}{5.82} \\
\frac{1}{6-4/2}, \frac{1}{92-1}, \frac{1}{91-1} &= \frac{1}{6.025}, \frac{1}{6}, \frac{1}{6} &= \frac{1}{5.82} \\
\frac{70.67}{57.24} \cdot 0.1718 &= \frac{0.1718}{0.2} &= \frac{0.1718}{57.24} \cdot 5.82
\end{cases}$$

$$\frac{70.67}{57.24} \cdot 0.1718 = \frac{0.2}{0.2} \cdot \frac{70.67}{57.24} \cdot 5.82$$

$$\frac{70.67}{57.24} \cdot 0.1718 = \frac{0.2}{0.2} \cdot \frac{70.67}{57.24} \cdot 5.82$$

$$\frac{70.212}{0.212} = \frac{0.2}{0.2} \cdot \frac{7.186}{0.2} \cdot \frac{1}{2} \cdot \frac{$$

0.4606 = 0, 22 = 2.681 (+1) (ms)

C. I. contains unity; of fail to reject

Probably should have said earlal variances!