# Overcoming Issues of 3D Software Visualization through Immersive Augmented Reality

Alice Truong
Sarah Zurmühle

## **Table of Content**

- 1. Introduction
- 2. Usability Issues with 3D visualizations
- 3. Importance of Paper
- 4. Research Questions
- 5. Hypothesis
- 6. Procedures
  - a. Good Parts
  - b. Limitations
- 7. Findings
- 8. Discussion

## Software Visualization

- Software is no physical object → You cannot touch it
- 3D Visualization provides a way to represent software
  - Structure
  - Components

```
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader:
public class MainController {
   BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    public MainController() {
    public Oueen askForCoordinate(Oueen gueenA, int rank) {
       System.out.println("Please enter the position of the queen " + (rank+1) +".");
           String positionA = br.readLine();
            int Ax = Integer.valueOf(positionA.split(",")[0]);
            int Ay = Integer.valueOf(positionA.split(",")[1]);
            queenA = new Queen(Ax, Ay);
       } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        return queenA;
```





Jim Barritt (2015)

## Introduction

What do you think about this 3D visualization? Are you able to see all components?



Merino et al. (2018, p. 3)

Navigation

Selection

Occlusion

## Why is this Paper important?

Usability issues influence developer's

- Effectiveness
- Experience

No previous research on overcoming usability issues

## Why is this Paper important?

Improvement of Comprehension Tasks of Developers

## Research Question

#### Can Immersive Augmented Reality help to

RQ.1 Overcome Usability Issues of general 3D Visualizations?

| RQ.1.1 Navigation       |
|-------------------------|
| RQ.1.2 Selection        |
| RQ.1.3 Occlusion        |
| RQ.1.4 Text Readability |

RQ.2 Increase Developers Effectiveness?



Merino et al. (2018, p. 1)

## Hypothesis about Usability Issues (RQ.1)

Displaying Comprehension Tasks in Immersive Augmented Reality can help to overcome usability issues of 3D visualization.

## Hypothesis about Effectiveness (RQ.2)







**Emotions** 

## 3D City Visualization



Richard Wettel (2017)

## How did they proceed? Increase Developers Effectiveness?

#### **Controlled experiment**

#### Immersive augmented reality



9 Participants





#### Computer screen



9 Participants



#### User performance

- Completion time
- Correctness
- Recollection → Drawing

#### User experience

- Difficulty → Likert scale
- Emotion → Cards



#### **Construct Validity**

Same building settings



#### **Construct Validity**

Same building settings

#### **Internal Validity**

- Same building settings
- Similar groups
- Similar experiment rooms
- Identical procedure



#### **Construct Validity**

Same building settings

#### **Internal Validity**

- Same building settings
- Similar groups
- Similar experiment rooms
- Identical procedure

#### **External Validity**

- Training sessions
- Between-groups design:No learning effects

## Limitations **A**





#### **Construct Validity**

- Usability issues not completely covered
- Visualization quality
- Recollection measure

## Limitations **A**





#### **Construct Validity**

- Usability issues not completely covered
- Visualization quality
  - Recollection measure

#### **Internal Validity**

Different method of instruction

## Limitations (1)





#### **Construct Validity**

- Usability issues not completely covered
- Visualization quality
  - Recollection measure

#### **Internal Validity**

Different method of instruction

#### **External Validity**

- Small sample
- Only one data set
- Selection bias: Students
- \*\* Participant characteristics

## Types of Visualizations

3D City Visualizations



Richard Wettel (2017)

Space-Time Cube Visualizations Technique



Merino et al. (2018, p. 5)

## How did they proceed? Overcome Usability Issues of 3D Visualizations?

#### **User Study**

3D City Visualization



Same 9 Participants



Space-Time Cube Visualization





Comprehension tasks



Comprehension tasks

Reported Experiences



- Same participants → Comparison of different techniques
- ❖ Qualitative study → More detailed impressions collected
- ◆ Different tasks → Reduced learning effect

## Limitations **A**





- Unclear period of time between controlled experiment and user study
- Same data set → Learning effect
- Selection bias: Students
- Participant characteristics

## Findings

RQ.1 Does Immersive Augmented Reality Help Overcoming 3D Usability Issues?

| RQ.1.1 Navigation       |
|-------------------------|
| RQ.1.2 Selection        |
| RQ.1.3 Occlusion        |
| RQ.1.4 Text Readability |

RQ.2 Does the Usage of Immersive Augmented Reality Increase Developers Effectiveness?

Immersive Augmented Reality helps to overcome:

But these aspects still remain an issue:

**RQ.1.1 Navigation** 

RQ.1.2 Occlusion

RQ.1.3 Selection

**RQ.1.4 Text Readability** 

• 3D visualizations in immersive augmented reality support developers in software comprehension tasks

They increase pattern detection











**Emotions** 



Recollection





**Emotions** 











## Summary



Comprehension tasks

- 1. What are the two most surprising findings?
- 2. Find two ways in which the study can be improved?
- 3. Name two possible future researches?

- 1. What are the two most surprising findings?
- 2. Find two ways in which the study can be improved?
- 3. Name two possible future researches?

- 1. What are the two most surprising findings?
- 2. Find two ways in which the study can be improved?
- 3. Name two possible future researches?

- 1. What are the two most surprising findings?
- 2. Find two ways in which the study can be improved?
- 3. Name two possible future researches?

### Literature

- Merino, L., Bergel, A., & Nierstrasz, O. (2018). Overcoming issues of 3D software visualization through immersive augmented reality. Proc. of VISSOFT, page in review. IEEE.
- Wettel, R. (2017). Welcome to CodeCity!.
   <a href="https://wettel.github.io/codecity.html">https://wettel.github.io/codecity.html</a>. Last visited: 22.10.2018
- Barritt, J. (2015). Walk the streets of your codebase: inFusion, Code City and a MOOSE).
  - http://jimbarritt.com/non-random/2010/10/25/walk-the-streets-of-your-codebase-infusion-code-city-and-a-moose/. Last visited: 22.10.2018