Année universitaire : 2020-2021

Equations différentielles ordinaires

Exercice 1 : Simuler un tir de canon

Considérons à nouveau le problème d'artillerie utilisé lors de la dernière séance de TP. La trajectoire d'un projectile tiré par un canon d'artillerie peut être déterminée à partir des équations du mouvement

$$\ddot{x} = -\alpha f(\dot{x}, \dot{y})\dot{x}$$
$$\ddot{y} = -\alpha f(\dot{x}, \dot{y})\dot{y} - 1$$

où $f(\dot{x},\dot{y})$ modélise les frottements. On adjoint également les conditions initiales

$$x(0) = y(0) = 0$$
, $\dot{x}(0) = \cos(\theta)$ et $\dot{y}(0) = \sin(\theta)$

où θ est l'angle de hausse du canon. Nous avons vu au TP précédent qu'en absence de frottement (i.e. $\alpha = 0$), la trajectoire était donnée par

$$y(x,\theta) = -\frac{1}{2} \frac{x^2}{\cos(\theta)} + \tan(\theta)x$$

Pour des frottements linéaires (i.e. $f(\dot{x}, \dot{y}) = 1$), la trajectoire est maintenant donnée par

$$y(x, \theta, \alpha) = \left(\tan(\theta) + \frac{1}{\alpha \cos(\theta)}\right)x + \frac{1}{\alpha^2}\ln\left(1 - \frac{\alpha}{\cos(\theta)}x\right).$$

L'objectif de cet exercice est alors de simuler le système et de comparer les prédictions de notre simulation numérique avec ces solutions analytiques.

Absence de frottement

En absence de frottement, les équations du mouvement se réduisent à

$$\ddot{x} = 0$$
$$\ddot{y} = -1$$

auxquelles on adjoint les conditions initiales décrites précédemment. Il s'agit d'un système de deux équations du second ordre. Afin de le simuler à l'aide de scipy, il est nécessaire tout d'abord de le transformer en un système d'équations du premier ordre. Pour cela, introduisons les variables suivantes :

$$x_1 = x$$
, $x_2 = \dot{x}$, $x_3 = y$ et $x_4 = \dot{y}$.

1. Montrez que le système de deux équations du second ordre est équivalent au système suivant

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = 0$$

$$\dot{x}_3 = x_4$$

$$\dot{x}_4 = -1$$

avec les conditions initiales données par

$$x_1 = x_3 = 0$$
, $x_2 = \cos(\theta)$ et $x_4 = \sin(\theta)$.

2. Ecrivez la fonction python correspondant à ce système dynamique. L'entête de la fonction doit être la suivante

```
def sans_frottement(t, u):
```

- 3. A l'aide de la fonction solve_ivp du package scipy.integrate, écrivez un script python permettant de simuler le système. On prendra les paramètres suivant :
 - Angle de hausse $\theta = \pi/4$,
 - Temps d'intégration : tspan = (0.0, 10.0)
 - Valeurs de t pour lesquelles on souhaite avoir la trajectoire :
 t_eval = np.linspace(tspan[0], tspan[1], 128)
- 4. En supposant que vous avez appelée sol la variable de retour de solve_ivp, vous pouvez accéder à la solution à l'aide de sol.y. En utilisant matplotlib.pyplot, tracez la trajectoire du projectile (i.e. $x_3(t)$ en fonction de $x_1(t)$) et comparez avec la solution analytique. Vous penserez à ajouter des titres aux axes ainsi qu'une légende.

Frottement linéaire

Intéressons-nous maintenant au cas où les frottements sont linéaires. Physiquement, cela correspond à un projectile se déplaçant à basse vitesse. Les équations du mouvement sont données par

$$\ddot{x} = -\alpha \dot{x}$$

$$\ddot{y} = -\alpha \dot{y} - 1$$

avec les conditions initiales mentionnées au début de l'exercice.

1. En introduisant les mêmes variables que précédemment, montrez que le système équivalent d'équations du premier ordre est donné par

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -\alpha x_2$
 $\dot{x}_3 = x_4$
 $\dot{x}_4 = -\alpha x_4 - 1$.

2. Ecrivez la fonction python correspondant à ce nouveau système. L'entête de la fonction doit être la suivante

```
def frottement_lineaire(t, u, alpha):
```

- 3. Simulez le système dans les mêmes conditions qu'à l'étape précédente. On choisira par ailleurs $\alpha=0.01$.
- 4. En supposant que vous avez appelée sol la variable de retour de solve_ivp, vous pouvez accéder à la solution à l'aide de sol.y. En utilisant matplotlib.pyplot, tracez la trajectoire du projectile (i.e. $x_3(t)$ en fonction de $x_1(t)$) et comparez avec la solution analytique. Vous pouvez également ajouter la solution du cas sans frottement afin de les comparer. Vous penserez à ajouter des titres aux axes ainsi qu'une légende.

Orbite planétaire

La force gravitationnelle exercée par un corps de masse M et un corps de masse m est de la forme

$$\boldsymbol{F} = -\frac{GMm}{r^3}\boldsymbol{r},$$

où G est la constante de gravitation. En supposant que la masse M est immobile et à l'origine de notre système de coordonnées, le mouvement du corps de masse m se mouvant sous l'action de cette unique force obéit alors à l'équation du mouvement

$$\ddot{\boldsymbol{r}} = -\frac{GMm}{r^3}\boldsymbol{r}$$

où r est le vecteur position de la masse m et $r=\sqrt{x^2+y^2}$ sa distance à l'origine. Il est possible encore une fois grâce à un changement de variables de ré-écrire ce système comme

$$\ddot{\boldsymbol{r}} = -\frac{1}{r^3}\boldsymbol{r}.$$