Асимптотическая сложность

Расставить по возрастанию следующие функции:

$\overline{\lg(\lg^* n)}$	$2^{\lg^* n}$	$(\sqrt{2})^{\lg n}$	n^2	n!	$(\lg n)!$
$\binom{3}{2}^n$	n^3	$\lg^2 n$	$\lg(n!)$	2^{2^n}	$n^{^{rac{1}{\lg n}}}$
$-\ln \ln n$	$\ln^* n$	$n \cdot 2^n$	$n^{\lg\lg n}$	$\ln n$	1
$2^{\lg n}$	$(\lg n)^{\lg n}$	e^n	$4^{\lg n}$	(n+1)!	$\sqrt{\lg n}$
${\lg^*(\lg n)}$	$2^{\sqrt{2 \lg n}}$	n	2^n	$n \lg n$	$2^{2^{n+1}}$

Сразу следует отметить, что в данной задачи:

lg - десятичный логарифм (логарифм по основанию 10)

ln - натуральный логарифм (логарифм по основанию e)

Также можно заметить пару интересных вещей:

$$n^{rac{1}{\lg n}}=10$$
 $n^{\lg\lg n}=(\lg n)^{\lg n}$

В результате функции будут расположены следующим образом:

$$1 < n^{\frac{1}{\lg n}} < \lg(\lg^* n) < \lg^*(\lg n) < \ln^* n < 2^{\lg^* n} < \ln \ln n < \sqrt{\lg n} < \ln n < \lg^2 n < 2^{\sqrt{2 \lg n}} < (\sqrt{2})^{\lg n} < 2^{\lg n} < 4^{\lg n} < n < n \lg n < \lg (n!) < n^2 < n^3 < (\lg n)! < (\lg n)^{\lg n} = n^{\lg \lg n} < (2)^n < 2^n < n^2 < n^2 < n^2 < 2^{2^{n+1}} < (n+1)! < 2^{2^n} < 2^{2^{n+1}} < (n+1)! <$$