FOSE1025 — Scientific Computing

Week 7 Lecture 1: Transforming Data

Diego Mollá

Department of Computer Science Macquarie University

FOSE1025 2020H1

Programme

- Dates
- 2 Measures
- 3 Long and Wide Formats

Reading

Lecture notes

Programme

- Dates
- 2 Measures
- 3 Long and Wide Formats

Processing Dates

(This part belongs to "cleaning data," really . . .)

- Dates come in many formats, we need to make sure they are in the format we need.
 - dd/mm/yyyy (Australia)
 - dd.mm.yyyy (Germany)
 - mm/dd/yyyy (USA)
 - yyyy/mm/dd (Japan)
 - . . .
- If input manually, check if there are errors!
 - 24 Maye 2020

Dates Are Not Text or Numbers

- A common problem: treat dates as text or as Numbers. But they are not! They are called "serial numbers" and they represent the number of days since a specific date: 1st January 1900.
- Exercise 1: Look at a cell with the date 12/9/22 and change the cell format to text, or change it to number. What do you see?
- Exercise 2: Type the number 44818.231 in a cell and change the format to date, what do you see? Change the format now to time. What do you see? What does it all mean??

Useful Functions to Manipulate Dates

Creating Dates and Times

```
DATE(year,month,day): Create a date from numbers.
```

```
TIME(hours, minutes, seconds): Create a time from numbers.
```

```
DATE(year,month,day) + TIME(hours,minutes, seconds): Create a date with time.
```

Useful Functions to Manipulate Dates

Formatting Dates to Text

```
TEXT(serial_number,pattern)
```

Represent a date as text using a specific pattern. For example, if cell A1 has the date =DATE(2020,12,23) + TIME(21,35,12):

TEXT(A1, "dd/mm/yy") has the value "23/12/20"

TEXT(A1, "dd/mm/yyyy hh:mm") has the value "23/12/2020 21:35"

TEXT(A1, "dd mmm yyyy hh:mm:ss") has the value "23 Dec 2020 21:35:12" (notice the three "m"?)

TEXT(A1, "dd mmmm yyyy hh:mm AM/PM") has the value "23 December 2020 09:35 pm"

Example 1: Dates in Different Formats

Ch-03.xlsx from https://www.linkedin.com/learning/excel-2016-cleaning-up-your-data

	Α	В	С	D
1	Month Year	=DATE(Year, Month, Day)	Year Month	=DATE(Year, Month, Day)
2	10 2016		2016 10	
3	4 2016		2016 4	
4	5 2016		2016 5	
5	9 2015		2015 9	
6	10 2016		2016 10	
7	6 2016		2016 6	
8	4 2015		2015 4	
9	5 2016		2016 5	
10	1 2016		2016 1	
11	12 2015		2015 12	
12	12 2015		2015 10	
13	11 2015		2015 11	
14	8 2016		2016 8	
15	11 2016		2016 11	
16	8 2015		2015 8	
17	0.2015		2015.0	

Exercise: Mixed date formats in one column

Create a blank Excel worksheet, import this CSV file, and normalise the dates.

dates.csv

```
Date , Name , Email , Consultation Times , Zoom 12/01/2020 , Diego Molla — Aliod , diego . molla — aliod mq.edu May 2020, Gaurav Gupta, gaurav.guptamq . edu . au , , 15 Apil 2020 , Urvashi Khanna , urvashi . khannamq.edu.au, W 12-1, https://macquarie.zoom.us/j/4725684612020-11-23, Munazza Zaib, munazza-zaibmq . edu . au , Wed 11-12, https://macquarie.
```

- If you just double-click on the CSV file and let Excel import the file using defaults, the resulting dates look strange... why?
- Hint: don't let Excel use the General format for the first column.

Programme

- Dates
- 2 Measures
- 3 Long and Wide Formats

Normalising Measures

- Beware with the measures.
- One column might be in metres, another in centimetres, another in inches . . .

Los Angeles Times

Mars Probe Lost Due to Simple Math Error

By ROBERT LEE HOTZ

OCT. 1, 1999 | 12 AM

TIMES SCIENCE WRITER

NASA lost its \$125-million Mars Climate Orbiter because spacecraft engineers failed to convert from English to metric measurements when exchanging vital data before the craft was launched, space agency officials said Thursday.

https://www.latimes.com/archives/la-xpm-1999-oct-01-mn-17288-story.html

Re-scaling

- Depending on the application (e.g. for machine learning), one may want to ensure that all values are within a certain range.
- For example, between 0 and 1:
 - Identify the minimum and the maximum of all values
 - Change all values using this formula:

$$newvalue = \frac{oldvalue - minimum}{maximum - minimum}$$

- Another common normalisation approach uses the mean and the standard deviation.
 - Calculate the mean (in Excel: AVERAGE) and the standard deviation (in Excel: STDEV.P)
 - 2 Change all values using this formula:

$$\textit{newvalue} = \frac{\textit{oldvalue} - \textit{mean}}{\textit{stdev}}$$

Example: Normalising Values in Excel

14, 11.7, 69, 21.3

```
Can you normalise the girth, height, and volume?
File trees.csv from
https://people.sc.fsu.edu/jburkardt/data/csv/csv.html
 "Index", "Girth (in)", "Height (ft)", "Volume(ft^3)"
 1, 8.3, 70, 10.3
 2, 8.6, 65, 10.3
 3, 8.8, 63, 10.2
 4, 10.5, 72, 16.4
 5, 10.7, 81, 18.8
 6, 10.8, 83, 19.7
 7, 11.0, 66, 15.6
 8, 11.0, 75, 18.2
 9, 11.1, 80, 22.6
10, 11.2, 75, 19.9
11, 11.3, 79, 24.2
12, 11.4, 76, 21.0
13, 11.4, 76, 21.4
```

Programme

- 1 Dates
- 2 Measures
- Solution States Stat
 - Long and Wide Formats
 - Introducing Pivot Tables

Tables as 2D Data

- Remember that tables represent 2-dimensional information.
 - Rows indicate different records.
 - Columns indicate different types of data in the record.
- We can, for example, represent the work address (street, city, postcode, etc) of a group of people.

(file WorkAddresses.xlsx)

First Name	Last Name	Address	City	State	Post	Phone
Deane	Haag	9 Hamilton B	Sydney South	NSW	1235	02-9718-2944
Edelmira	Pedregon	50638 North	Bandy Creek	WA	6450	08-8484-3223
Andrew	Keks	51 Bridge Av	Carwarp	VIC	3494	03-5251-3153
Miesha	Decelles	457 St Sebas	Eltham	VIC	3095	03-5185-6258
Javier	Osmer	6 Ackerman	Doncaster Ea	VIC	3109	03-8369-6924
Kizzy	Stangle	8 W Lake St	Welbungin	WA	6477	08-1937-3980
Sharan	Wodicka	8454 6 17 N	Shenton Park	WA	6008	08-4712-2157
Novella	Fritch	5 Ellestad Dr	Girraween	NSW	2145	02-2612-1455
German	Dones	9 N Nevada	Woronora	NSW	2232	02-2393-3289
Robt	Blanck	790 E Wiscon	Woodbury	TAS	7120	03-6517-9318
Rossana	Biler	60481 N Clar	Lee Point	NT	810	08-9855-2125

15/23

Tables as 3D, 4D . . . ?

- How would you keep information about the work and the home address?
- What if one person has 15 different properties, how do you store the information for all people?
- A solution: Add one column that indicates the type of address.
- (Databases can encode this information more efficiently using relational tables but this is not the topic of this unit.)

Long and Wide Formats

- The tables that we are used to see are in the wide format.
 - Each column indicates a specific data: name, address, location, temperature, etc.
- For complex data we may want to use a long format.
 - One column indicates the type of data.
 - Another column (or columns) indicate the value.

(file weather₋data.csv)								
	A	В	С	D	E	F		
L		data	date	param	siteid			
2	1	0	1/1/03	Precipitation	ACRE			
3	2	0	2/1/03	Precipitation	AlbertLea			
1	3	11.3199997	3/1/03	Precipitation	Ames			
5	4	0	4/1/03	Precipitation	Antigo			
5	5	3.03999996	5/1/03	Precipitation	Appleton			
7	6	0.49000001	6/1/03	Precipitation	Arlington			
3	7	0	7/1/03	Precipitation	Bean&Beet			
)	8	0	8/1/03	Precipitation	Brookings			
0	9	0	9/1/03	Precipitation	Brownstown			
1	10	0	10/1/03	Precipitation	Columbia			

W07L1: Transforming

17/23

Diego Mollá

Processing Tables in Long Format

The lecturer will demonstrate how to use filters and pivot tables to process tables in long format

- Many tables are expressed in long format for some columns.
- Excel does not have a specific tool to process these tables.
- You can use filters to focus on specific values.
- You can also use pivot tables.
- We will see pivot tables more in detail next week, but here we see how to use them to process tables in long format.

Pivot Tables: A Motivational Example

(data from https://www.linkedin.com/learning/excel-pivottables-for-beginners)

- Find the total shopping in each category "Fuel", etc, of file shopping.csv.
- Find the total shopping of each month.
- What shopping per month and per category??
- Pivot tables can help you generate data for all of above and more.

A Simple Pivot Table

Anatomy of a Pivot Table

Filters

- What column to use to filter values.
- Only for columns with categorical data.

Rows

- What column to use in the rows of the pivot table.
- Only for columns with categorical data.

Columns

- What column to use in the columns of the pivot table.
- Only for columns with categorical data.

Values

- What value we want to aggregate.
- Only for columns with numerical data.

Take-home Messages

- Dates and times are all the same thing in Excel . . . and very different to other data types!
- Pay attention when importing files that use unconventional date and time expressions.
- You need to understand why you want to normalise data, and be able to do some simple data normalisation.
- You need to be explain the difference between wide and long formats, and process tables in each kind of format.

What's Next

- Week 8 lecture: Summarising, Visualising and Analysing Data.
- Week 8: in-class quiz before the lecture.