

UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Program	B. Tech SCS	Semester	II
Course	Mathematics II	Course Code	MATH 1005
Session	Jan-May 2018	Topic	Numerical Methods

1. Prove the following relation:

$$D \equiv \frac{1}{h} \left[\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \cdots \right],$$

where h is the interval of differencing, D denotes the differentiation operator and Δ is the forward difference operator.

2. In a class of 100, the students are placed into following categories according to the marks they have obtained in a test out of 60.

Marks Obtained	0 – 9	10 – 19	20 – 29	30 – 39	40 – 49	50 – 59
No. of Students	3	12	15	35	25	10

Find the number of students who have secured 85% and above marks using Newton's backward difference interpolation formula.

3. (a). For a function f(x) the divided difference table is given by:

x f(x)		First divided difference	Second divided difference		
$x_0 = 0.0$	$f(x_0) = ?$	$[x_0, x_1] = ?$	$[x_0, x_1, x_2] = \frac{50}{7}$		
$x_1 = 0.4$ $x_2 = 0.7$	$f(x_1) = ?$ $f(x_2) = 6$	$[x_1, x_2] = 10$			

Determine the missing terms.

- (b). A curve y = f(x) passes through the points (0, 18), (1, 10), (3, -18) and (6, 90). Find the slope of the curve at x = 2 by using Newton's divided difference interpolation formula.
- **4.** Let $P_3(x)$ be the interpolating polynomial for the data (0,0), (0.5,k), (1,3) and (2,2). Find k if the coefficient of x^3 in $P_3(x)$ is 6, by using Newton's divided difference interpolation formula.

- **5.** (a) Use Simpson's rule to find the value of the definite integral $\int_{-1}^{1} e^{-|x|} dx$ by dividing the range of integration (-1,1) into four equal parts. Compare this result with the exact value of the integral and hence compute the approximate value of e.
 - (b) The value of the integral $\int_{1}^{9} x^{2} dx$ by Trapezoidal rule is $2\left[\frac{1}{2}(1+9^{2}) + \alpha^{2} + \beta^{2} + 7^{2}\right]$ for n = 4. Find the value of α and β .
- **6.** A curve y = f(x) is drawn to pass through the points given by the following table:

x	1	1.5	2	2.5	3	3.5	4
у	2	2.4	2.7	2.8	3	2.6	2.1

Find the area bounded by the curve y = f(x), the x-axis and the lines x = 1, x = 4 using Simpson's $\left(\frac{1}{3}\right)^{\text{rd}}$ rule.

7. (a). Solve the following system of equations using Gauss-Jacobi iteration method

$$5x - y + z = 10$$
$$2x + 4y = 12$$
$$x + y + 5z = -1$$

Start the iterations with the initial solution (2,3,0). Perform five iterations.

(b). Solve the following system of equations

$$3x + 2y = 4.5$$

 $2x + 3y - z = 5$
 $-y + 2z = -0.5$

by using Gauss-Seidel method correct to two places of decimal, starting with the initial approximations as $x_0 = 0.4$, $y_0 = 1.6$, $z_0 = 0.4$.

- **8.** Estimate y(1) if $2yy' = x^2$ and y(0) = 2 using Runge-Kutta method of fourth order by taking h = 0.5. Also compare the result with the exact value.
- 9. Use Picard's method to obtain the value of y correct to three decimal places when x = 0.25 given that

$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}; y(0) = 0.$$

10. (a). Derive the expression for Newton-Raphson formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
; $n = 0,1,2,...$

to find a root of f(x) = 0.

(b). The graph of the curve y = f(x) where $f(x) = x^2 - 12$ crosses the X-axis twice. Use Newton-Raphson method to compute the abscissa of the point correct to 3 decimal places where it crosses the positive X-axis.