CLAIMS

What is claimed is:

1	1. A capacitor comprising:
2	m electrode plates;
3	wherein each of said m electrode plates are arranged spaced apart in parallel;
4	wherein m is an integer greater than 1;
5	wherein each of said m electrode plates comprises a first extension;
6	n first external terminals;
7	wherein n is an integer greater than 1;
8	wherein said n first external terminals are arranged on a first common exterior
9	surface of the capacitor;
10	wherein said first extension of even ones of said m electrode plates are coupled to
11	even ones of said n first external terminals;
12	wherein said first extension of odd ones of said m electrode plates are coupled to odd
13	ones of said n first external terminals;
14	wherein said n first external terminals are arranged at a predefined minimal distance
15	from each other to minimize parasitic inductance.
1	7. The capacitor of claim 1, whorein said modelined minimal distance in the
	2. The capacitor of claim 1, wherein said predefined minimal distance is a minimal
2	distance that prevents crosstalk between said n first external terminals.
1	3. The canacitor of claim 1, whorein acid - first and and a to the continuous
	3. The capacitor of claim 1, wherein said n first external terminals are arranged in
2	parallel.
1	

MP0352

1	4. The capacitor of claim 1, wherein n=2; wherein said n first external terminals are
2	arranged in parallel.
1	5. The capacitor of claim 1, wherein n=3; wherein said n first external terminals are
2	arranged in parallel and wherein said even one of said n first external terminals is arranged
3	between the odd ones of said n first external terminals.
1	
1	6. The capacitor of claim 1, wherein a dielectric material is disposed between each of
2	said m electrode plates.
1	
1	7. The capacitor of claim 6, wherein said dielectric material is ceramic material.
1	
1	8. The capacitor of claim 1, wherein exterior ones of said n first external terminals are
2	disposed on said common exterior surface of said capacitor and corresponding side surfaces
3	of said capacitor.
1	
1	9. The capacitor of Claim 1, wherein n is 4;
2	wherein a first one and a second one of said n first external terminals are
3	arranged in a first row;
4	wherein a third one and a fourth one of said n first external terminals are
5	arranged in a second row;
6	wherein said first one of said n first external terminals is arranged adjacent said
7	second and fourth ones of said n first external terminals and diagonal to said third one
8	of said n first external terminals;
9	wherein said second one of said n first external terminals is arranged diagonal to said
10	fourth one of said n first external terminals.
1	MP0352 -21- Customer No.: 23624

1	10. The capacitor of Claim 1,
2	wherein each of said m electrode plates comprises a second extension;
3	wherein said capacitor comprises s second external terminals;
4	wherein s is an integer greater than 1;
5	wherein said s second external terminals are arranged on a second common
6	exterior surface of the capacitor;
7	wherein said second extensions of said even ones of said m electrode plates are
8	coupled to said even ones of said s second external terminals;
9	wherein said second extensions of said odd ones of said m electrode plates are
10	coupled to odd ones of said s second external terminals.
1	
1	11. The capacitor of Claim 10, wherein said second common exterior surface is
2	arranged opposite to said first common exterior surface.
1	
1	12. The capacitor of Claim 1,
2	wherein each of said m electrodes comprises a second extension;
3	wherein the capacitor comprises s second external terminals;
4	wherein s is an integer greater than 1;
5	wherein even ones of said s second external terminals are arranged on a third
6	exterior surface of the capacitor;
7	wherein odd ones of said s second external terminals are arranged on a fourth
8	exterior surface of the capacitor;
9	wherein said second extensions of even ones of said m electrode plates are
10	coupled to even ones of said s second external terminals; and
11	wherein said second extensions of odd ones of said m electrode plates are coupled
12	to odd ones of said s second external terminals.
1	MP0352 -22- Customer No.: 23624

1	13. The capacitor of Claim 12, wherein said third exterior surface is arranged opposite
2	to said fourth exterior surface.
1	14. The capacitor of claim 1, further comprising a housing that encloses at least a part
2	of said capacitor.
1	15. The capacitor of claim 1, wherein height of said capacitor is greater than width of
2	said capacitor.
1	16. The capacitor of claim 1, wherein a portion of at least one of said n first external
2	terminals wraps around a corner of said capacitor.
1	17. The capacitor of claim 1, wherein said n first external terminals have a bar
2	structure.
1	18. A filter comprising:
2	an inductor;
3	a capacitor of Claim 1,
4	
5	wherein said inductor is connected to even ones of said n first external terminals;
	wherein an output terminal is connected to even ones of said n first external
6	terminals; and
7	wherein a reference voltage is connected to odd ones of said n first external
8	terminals.
1	MD0252
	MP0352 -23- Customer No.: 23624

N:\MP0352\MP0352 Patent Application R7.doc

1	19. The filter of claim 18,
2	wherein n=3;
3	wherein said n first external terminals are arranged in parallel and wherein said even
4	one of said n first external terminals is arranged between the odd ones of said n
5	first external terminals;
6	wherein first and third ones of said n first external terminals are coupled to
7	the reference voltage;
8	wherein one terminal of said inductor is coupled to a first end portion of a
9	second one of said n first external terminals; and
10	wherein the output terminal of said filter is provided at a second end
11	portion of said second one of said n first external terminals.
1	20. The filter of claim 18,
2	wherein n=2;
3	wherein said n first external terminals are arranged in parallel;
4	wherein first one of said n first external terminals is coupled to a reference
5	voltage;
6	wherein one terminal of said inductor is coupled to a first end portion of a
7	second one of said n first external terminals; and
8	wherein an output terminal of said filter is provided at a second end
9	portion of said second one of said n first external terminals.
1	21. A voltage regulator comprising the filter of claim 18.
1	21. 12 volumes regulator comprising the filter of claim 16.

1

1	22. The voltage regulator of claim 21 further comprising a multilayer printed circuit
2	board;
3	wherein said capacitor is mounted on said multilayer printed circuit board;
4	wherein said inductor is connected to a first trace of said multilayer printed circuit
5	board;
6	wherein said first trace is connected to said even ones of said n first external terminals
7	by way of a first plurality of vias;
8	wherein said output terminal is connected to a second trace on said multilayer printed
9	circuit board;
10	wherein said second trace is connected to said even ones of said n first external
11	terminals by way of a second plurality of vias;
12	wherein the reference voltage is connected to a third trace on said multilayer printed
13	circuit board; and
14	wherein said third trace is connected to said odd ones of said n first external terminals
15	by way of a third plurality of vias.
1	
1	23. A printed circuit board ("PCB") comprising:
2	a plurality of PCB contacts; and
3	a plurality of capacitors of Claim 1 coupled to said plurality of PCB contacts to
4	facilitate parallel connections of at least two capacitors.
1	24. A connector etweety-re-communicipal
	24. A capacitor structure comprising:
2	a first capacitor comprising:
3	m electrode plates;
4	wherein each of said m electrode plates are arranged spaced apart in parallel;

5	wherein m is an integer greater than 1;
6	wherein each of said m electrodes comprises a first extension;
7	wherein each of said m electrodes comprises a second extension;
8	n first external terminals;
9	wherein n is an integer greater than 1;
10	wherein said n first external terminals are arranged on a first common
11	exterior surface of said first capacitor;
12	wherein said first extension of even ones of said m electrode plates are
13	coupled to even ones of said n first external terminals;
14	wherein said first extension of odd ones of said m electrode plates are
15	coupled to odd ones of said n first external terminals;
16	s second external terminals;
17	wherein s is an integer greater than 1;
18	wherein said s second external terminals are arranged on a second common
19	exterior surface of the first capacitor;
20	wherein said second extension of even ones of said m electrode plates are
21	coupled to even ones of said s second external terminals;
22	wherein said second extension of odd ones of said m electrode plates are coupled to
23	odd ones of said s second external terminals
24	a second capacitor comprising:
25	x electrode plates;
26	wherein each of said x electrode plates are arranged in parallel;
27	wherein x is an integer greater than 1;
28	wherein each of said x electrodes comprises a third extension;
29	s third external terminals;

30	wherein said s third external terminals are arranged on a third common
31	exterior surface of said second capacitor;
32	wherein said third extension of even ones of said x electrode plates are
33	coupled to even ones of said s third external terminals;
34	wherein said third extension of odd ones of said x electrode plates are
35	coupled to odd ones of said s third external terminals;
36	wherein said second capacitor is mounted on said first capacitor; and
37	wherein said s third external terminals are coupled to corresponding ones of
38	said s second external terminals.
1	25. The capacitor structure of claim 24, further comprising a housing that encloses at
2	least a part of said first and said second capacitors.
1	26. The capacitor structure of claim 24, wherein said n first external terminals are
2	arranged in parallel; wherein said s second external terminals are arranged in parallel; and
3	wherein said s third external terminals are arranged in parallel.
1	
1	27. The capacitor structure of claim 24, wherein s=2; wherein said s second external
2	terminals are arranged in parallel and wherein said s third external terminals are arranged in
3	parallel.
1	28. The capacitor structure of claim 24, wherein s=3; wherein said s second external
2	terminals are arranged in parallel and wherein said even one of said s second external
3	terminals is arranged between the odd ones of said's second external terminals and wherein

Customer No.: 23624

said s third external terminals are arranged in parallel and wherein said even one of said s

MP0352

4

1	23. The capacitor structure of chain 24, wherein a first diefecting material is disposed
2	between each of said m electrode plates of said first capacitor; and wherein a second dielectric
3	material is disposed between each of said x electrode plates of said second capacitor.
1	
1	30. The capacitor structure of 29, wherein said first and second dielectric material are
2	different.
1	
1	31. The capacitor structure of 29, wherein said first and second dielectric material are
2	the same.
1	
1	32. The capacitor structure of claim 29, wherein at least one of said first dielectric
2	material and said second dielectric material comprises a ceramic material.
1	
1	33. The capacitor structure of Claim 24, wherein s is 4;
2	wherein a first one and a second one of said s second external terminals are arranged
3	in a first row;
4	wherein a third one and a fourth one of said s second external terminals are arranged
5	in a second row;
6	wherein said first one of said s second external terminals is arranged adjacent to said
7	second and fourth ones of said s second external terminals and diagonal to said
8	third one of said s second external terminals;
9	wherein said second one of said s second external terminals is arranged diagonal to
10	said fourth one of said s second external terminals;
11	wherein a first one and a second one of said s third external terminals are arranged in a
12	first row;

13	wherein a third one and a fourth one of said s third external terminals are arranged in a
14	second row;
15	wherein said first one of said s third external terminals is arranged adjacent to said
16	second and fourth ones of said s third external terminals and diagonal to said
17	third one of said s third external terminals; and
18	wherein said second one of said s third external terminals is arranged diagonal to said
19	fourth one of said s third external terminals.
1	
1	34. The capacitor structure of Claim 24,
2	wherein each of said x electrodes plates comprises a fourth extension;
3	wherein said capacitor comprises u fourth external terminals;
4	wherein u is an integer greater than 1;
5	wherein said u fourth external terminals are arranged on a fourth common exterior
6	surface of said second capacitor;
7	wherein said fourth extensions of said even ones of said x electrode plates are coupled
8	to said even ones of said u fourth external terminals;
9	wherein said fourth extensions of said odd ones of said x electrode plates are coupled
10	to odd ones of said u fourth external terminals.
1	
1	35. The capacitor structure of Claim 34, wherein said third common exterior surface
2	is arranged opposite to said fourth common exterior surface.
1	
1	36. The capacitor structure of claim 24, wherein said s second and s third external

2

Customer No.: 23624

terminals have a bar structure.

1	37. A filter comprising:
2	an inductor;
3	a capacitor structure of Claim 24;
4	wherein said inductor is connected to even ones of said n first external terminals;
5	wherein an output terminal is connected to even ones of said n first external terminals;
6	and
7	wherein a reference voltage is connected to odd ones of said n first external terminals.
1	
1	38. The filter of claim 37, wherein n=3;
2	wherein said n first external terminals are arranged in parallel and wherein said even
3	one of said n first external terminals is arranged between the odd ones of said n
4	first external terminals;
5	wherein first and third ones of said n first external terminals are coupled to the
6	reference voltage;
7	wherein one terminal of said inductor is coupled to a first end portion of a second one
8	of said n first external terminals; and
9	wherein the output terminal of said filter is provided at a second end portion of said
10	second one of said n first external terminals.
1	
1	39. The filter of claim 37, wherein n=2;
2	wherein said n first external terminals are arranged in parallel;
3	wherein first one of said n first external terminals is coupled to a reference voltage;
4	wherein one terminal of said inductor is coupled to a first end portion of a second one
5	of said n first external terminals; and
6	wherein an output terminal of said filter is provided at a second end portion of said
7	second one of said n first external terminals.

-30-

i	40. A voltage regulator comprising the filter of claim 37 further comprising a
2	multilayer printed circuit board; wherein said capacitor structure is mounted on
3	said multilayer printed circuit board;
4	wherein said inductor is connected to a first trace of said multilayer printed circuit
5	board; and
6	wherein said first trace is connected to said even ones of said n first external terminals
7	by way of a first plurality of vias;
8	wherein said output terminal is connected to a second trace on said multilayer printed
9	circuit board;
10	wherein said second trace is connected to said even ones of said n first external
11	terminals by way of a second plurality of vias;
12	wherein the reference voltage is connected to a third trace on said multilayer printed
13	circuit board; and
14	wherein said third trace is connected to said odd ones of said n first external terminals
15	by way of a third plurality of vias.
1	41. A capacitor structure comprising:
2	a first capacitor comprising:
3	m electrode plates;
4	wherein each of said m electrode plates are arranged spaced apart in
5	parallel;
6	wherein m is an integer greater than 1;
7	wherein each of said m electrodes comprises a first extension and a second
8	extension;
9	n first external terminals;

10	wherein n is an integer greater than 1;
11	wherein said n first external terminals are arranged on a first common
12	exterior surface of said first capacitor;
13	wherein said first extension of even ones of said m electrode plates are
14	coupled to even ones of said n first external terminals;
15	wherein said first extension of odd ones of said m electrode plates are
16	coupled to odd ones of said n first external terminals;;
17	s second external terminals;
18	wherein s is an integer greater than 0;
19	wherein said s second external terminals are arranged on a second common
20	exterior surface of the first capacitor;
21	wherein said second extension of even ones of said m electrode plates are
22	coupled to said s second external terminals;
23	a second capacitor comprising:
24	x electrode plates;
25	wherein each of said x electrode plates are arranged spaced apart in
26	parallel;
27	wherein x is an integer greater than 1;
28	wherein each of said x electrodes comprises a third extension;
29	s third external terminals;
30	wherein said s third external terminals are arranged on a third common
31	exterior surface of said second capacitor;
32	wherein said third extension of even ones of said x electrode plates are
33	coupled to said s third external terminals;
34	wherein said second capacitor is disposed adjacent to said first capacitor.

33	wherein said s third external terminals are coupled to corresponding ones of
36	said s second terminals.
1	
1	42. The capacitor structure of claim 41, wherein said n first external terminals are
2	arranged in parallel; wherein said s second external terminals are arranged in parallel; and
3	wherein said s third external terminals are arranged in parallel.
l	
1	43. The capacitor structure of claim 41, wherein s=2; wherein said s second external
2	terminals are arranged in parallel and wherein said s third external terminals are arranged in
3	parallel.
1	44. The capacitor structure of claim 41, wherein s=3; wherein said s second external
2	terminals are arranged in parallel and wherein said even one of said s second external
3	terminals is arranged between the odd ones of said n second external terminals and wherein
4	said s third external terminals are arranged in parallel and wherein said even one of said s
5	third external terminals is arranged between the odd ones of said s third external terminals.
1	
1	45. The capacitor structure of claim 41, wherein a first dielectric material is disposed
2	between each of said m electrode plates of said first capacitor; and wherein a second dielectric
3	material is disposed between each of said x electrode plates of said second capacitor.
1	
1	46. The capacitor structure of 45, wherein said first and second dielectric material are
2	different.
1	
1	47. The capacitor structure of 45, wherein said first and second dielectric material are
2	the same.
1	MP0352 -33- Customer No : 23624

N:\MP0352\MP0352 Patent Application R7.doc

1	48. The capacitor of claim 41, wherein said in first external terminals are arranged in
2	parallel.
1	
1	49. The capacitor of claim 41, wherein n=2; wherein said n first external terminals are
2	arranged in parallel.
1	50. The capacitor of claim 41, wherein n=3; wherein said n first external terminals are
2	arranged in parallel and wherein said even one of said n first external terminals is arranged
3	between the odd ones of said n first external terminals.
1	
1	51. The capacitor of claim 45, wherein at least one of said first second dielectric
2	material and said second dielectric material comprises a ceramic material.
1	
1	52. The capacitor of Claim 41, wherein n is 4;
2	wherein a first one and a second one of said n first external terminals are arranged in a
3	first row;
4	wherein a third one and a fourth one of said n first external terminals are arranged in a
5	second row;
6	wherein said first one of said n first external terminals is arranged adjacent to said
7	second and fourth ones of said n first external terminals and diagonal to said
8	third one of said n first external terminals; and
9	wherein said second one of said n first external terminals is arranged diagonal to said
10	fourth one of said n first external terminals.
1	
1	53. The capacitor of claim 41, wherein said n first external terminals have a bar
2	structure.
	MP0352 -34- Customer No.: 23624

Ţ	54. A filter comprising:
2	an inductor;
3	a capacitor of Claim 41;
4	wherein said inductor is connected to even ones of said n first external terminals;
5	wherein an output terminal is connected to even ones of said n first external terminals;
6	and
7	wherein a reference voltage is connected to odd ones of said n first external terminals.
1	
1	55. The filter of claim 54, wherein n=3;
2	wherein said n first external terminals are arranged in parallel and wherein said even
3	one of said n first external terminals is arranged between the odd ones of said n
4	first external terminals;
5	wherein first and third ones of said n first external terminals are coupled to the
6	reference voltage;
7	wherein one terminal of said inductor is coupled to a first end portion of a second one
8	of said n first external terminals; and
9	wherein the output terminal of said filter is provided at a second end portion of said
10	second one of said n first external terminals.
1	
1	56. The filter of claim 54, wherein n=2;
2	wherein said n first external terminals are arranged in parallel;
3	wherein first one of said n first external terminals is coupled to a reference voltage;
4	wherein one terminal of said inductor is coupled to a first end portion of a second one
5	of said n first external terminals; and
6	wherein an output terminal of said filter is provided at a second end portion of said
7	second one of said n first external terminals.

1	57. A voltage regulator comprising the filter of claim 54 further comprising a
2	multilayer printed circuit board; wherein said capacitor structure is mounted on
3	said multilayer printed circuit board;
4	wherein said inductor is connected to a first trace of said multilayer printed circuit
5	board; and
6	wherein said first trace is connected to said even ones of said n first external terminals
7	by way of a first plurality of vias;
8	wherein said output terminal is connected to a second trace on said multilayer printed
9	circuit board;
10	wherein said second trace is connected to said even ones of said n first external
11	terminals by way of a second plurality of vias;
12	wherein the reference voltage is connected to a third trace on said multilayer printed
13	circuit board; and
14	wherein said third trace is connected to said odd ones of said n first external terminals
15	by way of a third plurality of vias.
1	
1	58. The filter of claim 54, wherein s=1;
2	wherein said s second external terminal is coupled to even ones of said m electrode
3	plates; and
4	wherein said s third external terminal is coupled to even ones of said x electrode
5	plates.
1	
1	59. The capacitor structure of claim 41, wherein at least one of said s second external
2	terminals extend from said second common exterior surface to said first
3	common exterior surface of said first capacitor by wrapping around a corner of
4	said first capacitor.
i	MP0352 -36- Customer No.: 23624

1	60. A printed circuit board ("PCB") comprising:
2	a plurality of PCB contacts; and
3	a plurality of capacitor structures of Claim 41 coupled to said plurality of PCB
4	contacts to provide parallel connections of at least two capacitors.
1	61. A device comprising:
2	a first capacitor comprising;
3	m electrode plates;
4	wherein each of said m electrode plates are arranged spaced apart in
5	parallel;
6	wherein m is an integer greater than 1;
7	wherein each of said m electrodes comprises a first extension;
8	wherein w electrode plates of said m electrode plates comprise a second
9	extension, wherein w is an integer less than m;
10	n first external terminals;
11	wherein n is an integer greater than 1;
12	wherein said n first external terminals are arranged on a first common
13	exterior surface of said first capacitor;
14	wherein said first extension of even ones of said m electrode plates are
15	coupled to even ones of said n first external terminals;
16	wherein said first extension of odd ones of said m electrode plates are
17	coupled to odd ones of said n first external terminals;
18	s second external terminals;
19	wherein s is an integer greater than 1;

20	wherein said s second external terminals are arranged on a second common
21	exterior surface of the first capacitor;
22	wherein said second extension of even ones of said w electrode plates are
23	coupled to even ones of said s second external terminals;
24	wherein said second extension of odd ones of said w electrode plates are
25	coupled to odd ones of said s second external terminals;
26	a second capacitor comprising:
27	x electrode plates;
28	wherein each of said x electrode plates are arranged spaced apart in
29	parallel;
30	wherein x is an integer greater than 1;
31	wherein y electrode plates of said x electrode plates comprise a third extension
32	wherein y is an integer less than x;
33	q third external terminals;
34	wherein q is an integer greater than 1;
35	wherein said q third external terminals are arranged on a third common
36	exterior surface of said second capacitor;
37	wherein said third extension of even ones of said y electrode plates are
38	coupled to even ones of said q third external terminals;
39	wherein said third extension of odd ones of said y electrode plates are
40	coupled to odd ones of said q third external terminals;
41	wherein said second capacitor is disposed abutting and adjacent to said first
42	capacitor;
43	wherein said even ones of said q third external terminals are coupled to said
44	even ones of said s second terminals: and

15	wherein said odd ones of said q third external terminals are coupled to said odd
16	ones of said s second terminals.
1	
1	62. The device of claim 61,
2	wherein z electrode plates of said m electrode plates comprise a fourth extension;
3	wherein sum of y and z is integer less than or equal to m;
4	wherein the first capacitor further comprises f fourth external terminals;
5	wherein f is an integer greater than 1;
6	wherein said f fourth external terminals are arranged on a fourth common
7	exterior surface of said first capacitor; wherein said fourth common
8	exterior surface is opposite to said second common exterior surface;
9	wherein said fourth extension of even ones of said z electrode plates are
10	coupled to even ones of said f fourth external terminals; and
1	wherein said third extension of odd ones of said z electrode plates are
12	coupled to odd ones of said f fourth external terminals.
1	
1	
1	63. A circuit comprising:
2	a printed circuit board ("PCB") including a plurality of PCB contacts longitudinally
3	arranged in parallel; and
4	a plurality of capacitors wherein each of said capacitors is arranged abutting with each
5	other and mounted on said PCB; wherein each of said plurality of capacitors
6	comprises said capacitor of Claim 1.
1	
1	64. The capacitor of Claim 10, wherein said second common exterior surface is
2	arranged substantially orthogonal to said first common exterior surface
	MP0352 30

1	65. The capacitor of Claim 12, wherein said third and fourth common exterior
2	surfaces are arranged substantially orthogonal to said first common exterior
3	surface
1	
1	66. The capacitor of Claim 1,
2	wherein each of said m electrodes comprises a second extension;
3	wherein the capacitor comprises s second external terminals;
4	wherein s is an integer greater than 1;
5	wherein even ones of said s second external terminals are arranged on a third
6	exterior surface of the capacitor;
7	wherein odd ones of said s second external terminals are arranged on a third
8	exterior surface of the capacitor;
9	wherein said second extensions of even ones of said m electrode plates are
10	coupled to even ones of said s second external terminals; and
11	wherein said second extensions of odd ones of said m electrode plates are coupled
12	to odd ones of said s second external terminals.
1	
1	66. The capacitor of Claim 66, wherein said odd ones of said s second external
2	terminals are arranged space apart and parallel to said even ones of said s
3	second external terminals
1	67. The capacitor of claim 14, wherein said housing is formed from an ejection
2	molding process.
1	68. The capacitor of claim 1, further comprising an encapsulation that encloses at
2	least a part of said capacitor.
1	MP0352 -40- Customer No.: 23624

N:\MP0352\MP0352 Patent Application R7.doc

1	69. The capacitor of Claim 24, wherein said second common exterior surface is
2	arranged substantially orthogonal to said first common exterior surface.
1	70. The capacitor structure of claim 25, wherein said housing is formed from an
2	ejection molding process.
1	71. The capacitor structure of claim 24, further comprising an encapsulation that
2	encloses at least a part of said first and second capacitors.
1	72. The capacitor structure of Claim 24,
2	wherein each of said x electrodes plates comprises a fourth extension;
3	wherein said capacitor comprises u fourth external terminals;
4	wherein u is an integer greater than 1;
5	wherein said u fourth external terminals are arranged on said third common exterior
6	surface of said second capacitor;
7	wherein said fourth extensions of said even ones of said x electrode plates are coupled
8	to said even ones of said u fourth external terminals;
9	wherein said fourth extensions of said odd ones of said x electrode plates are coupled
10	to odd ones of said u fourth external terminals.
1	
1	73. The capacitor structure of Claim 41, wherein said second common exterior
2	surface is arranged substantially orthogonal to said first common exterior surface,
3	wherein said third common exterior surface is arranged substantially orthogonal to
4	said fourth common exterior surface

74. The device of claim 61, further comprising a housing that encloses at least a part 1 of said device. . 2 75. The device of claim 74, wherein said housing is formed from an ejection molding 1 2 process. 76. The device of claim 61, further comprising an encapsulation that encloses at least 1 a part of said device. 2 77. The device of claim 1, wherein the predefined minimal distance is less than 12 1 2 mils. 78. The device of claim 1, wherein the predefined minimal distance is less than 8 1 2 mils. 79. The capacitor structure of claim 25, wherein the housing comprises a fin to 1 dissipate heat from said first and second capacitors.. 2

MP0352