第三周练习题

2021年3月20日

1 Week3 Two-way ANOVA

1.1 背景描述

实验研究了操作温度和三种面板玻璃材料对示波器管输出光的影响。这是一个压力(因子 A)水平数 a=3,温度(因子 B)水平数 b=3 和重复次数 n=3 的双因子实验。

1.2 数据描述

变量名	变量含义	变量类型	变量取值范围
(自变量) Glass_Type (自变量) Temperature	玻璃材料类型 温度	categorical variable continuous variable	
(因变量) Light_Output	输出光	continuous variable	, , ,

1.3 问题

注: 这里使用 α =0.05 的显著性水平

- 1. 试判断玻璃类型和温度对输出光是否有显著影响.
- 2. 用适合的残差图来检验设定模型的恰当性.
- 3. 选出一种玻璃类型, 使得不论温度高低都能使示波器管的输出光较高.
- 4. 估计参数 μ 、 τ_i 、 β_j 和 $(\tau\beta)_{ij}$ (i = 1, ..., a; j = 1, ..., b)
- 5. 如何对这种示波器管的输出光进行预测?

1.4 解决方案

Q1:

```
检验行处理效应的等式假设: H_{01}: \tau_1 = \tau_2 = \cdots = \tau_a = 0 \text{ vs } H_{11}: \tau_i \neq 0, \exists i
检验列处理效应的等式假设: H_{02}: \beta_1 = \beta_2 = \cdots = \beta_b = 0 \text{ vs } H_{12}: \beta_j \neq 0, \exists j
检验行与列处理没有交互作用假设: H_{03}: (\tau\beta)_{ij} = 0, \forall i, j \text{ vs } H_{13}: (\tau\beta)_{ij} \neq 0, \exists i, j
利用 python 进行分析的具体分析结果如下:
```

```
[1]: # Import standard packages
    import numpy as np
    import pandas as pd
    import scipy.stats as stats
    import matplotlib.pyplot as plt
    import math
    # Import additional packages
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    from statsmodels.stats.multicomp import (pairwise_tukeyhsd, MultiComparison)
    alpha = 0.05
    a = 3
    b = 3
    n = 3
    x = pd.read_csv('Project3.csv')
    data = x.values
    df = pd.DataFrame(data, columns = ['Glass_Type', 'Temperature', 'Light_Output'])
    print(df.head())
    # Do the two-way ANOVA
    model = ols('Light_Output~ C(Glass_Type) + C(Temperature) + C(Glass_Type):
     anova_results = anova_lm(model)
    print('\n双因素方差分析表: \n', anova_results)
    if anova_results['PR(>F)'][2] < alpha:</pre>
```

```
print('\nFor Glass_Type:Temperature, p-value: %f < 0.05, reject H03.'%_\]
\[
\times anova_results['PR(>F)'][2])
else:
    print('\nFor material:Temperature, accept H03.')

if anova_results['PR(>F)'][0] < alpha:
    print('\nFor Glass_Type, p-value: %f < 0.05, reject H01.'%_\]
\[
\times anova_results['PR(>F)'][0])
else:
    print('\nFor Glass_Type, accept H01.')

if anova_results['PR(>F)'][1] < alpha:
    print('\nFor Temperature, p-value: %f < 0.05, reject H02.'%_\]
\[
\times anova_results['PR(>F)'][1])
else:
    print('\nFor Temperature, accept H02.')
```

	${\tt Glass_Type}$	Temperature	Light_Output
0	1	100	580
1	1	100	568
2	1	100	570
3	2	100	550
4	2	100	530

双因素方差分析表:

	df	sum_sq	mean_sq	F	\
C(Glass_Type)	2.0	1.508645e+05	75432.259259	206.370554	
C(Temperature)	2.0	1.970335e+06	985167.259259	2695.259499	
<pre>C(Glass_Type):C(Temperature)</pre>	4.0	2.905517e+05	72637.925926	198.725707	
Residual	18.0	6.579333e+03	365.518519	NaN	
		PR(>F)			
C(Glass_Type)	3.886	026e-13			
C(Temperature)	5.008957e-23				
C(Glass_Type):C(Temperature)	1.254188e-14				
Residual		NaN			

For Glass_Type:Temperature, p-value: 0.000000 < 0.05, reject H03.

For Glass_Type, p-value: 0.000000 < 0.05, reject H01.

For Temperature, p-value: 0.000000 < 0.05, reject H02.

由上面的方差分析表可知, 在 $\alpha = 0.05$ 的水平下:

对玻璃材料类型来说, p = 0.0000 < 0.05, 所以玻璃材料类型对输出光有显著影响;

对温度来说, p = 0.0000 < 0.05, 所以温度对输出光也具有显著影响;

对玻璃材料类型和温度的交互因素来说,p = 0.0000 < 0.05,所以交互因素对输出光也具有显著影响。

【多重比较】在双因子析因设计实验中,如果交互作用是显著的,一个因子(例如,因子 A)的均值 间的比较可能由于交互作用而模糊不清。解决这类问题的方法是:将另一个因子(因子 B)固定在一特定水平上,在此水平上对因子 A 的均值使用 Tukey 检验法。

由上面方差分析表可知,行均值、列均值和交互项均有显著性差异,所以下面我们进一步固定温度水平为 70 , 对 3 种材料进行多重比较,以 Tukey 的 Honestly Significant Difference(HSD) 检验法为例:

[2]: # 使用 Tukey HSD 检验法进行多重比较

```
multiComp = MultiComparison(df.loc[df['Temperature'] == 125, 'Light_Output'],□
→df.loc[df['Temperature'] == 125, 'Glass_Type'])
tukey = multiComp.tukeyhsd()
print('固定温度水平为 125: 三种玻璃材料之间的多重比较: \n', tukey)

tukey.plot_simultaneous(ylabel= 'Glass_Type', xlabel= 'Score Difference')
print('\n')
```

固定温度水平为 125: 三种玻璃材料之间的多重比较:

- 1 2 -52.3333 0.0523 -105.2908 0.6241 False
- 1 3 -32.6667 0.221 -85.6241 20.2908 False
- 2 3 19.6667 0.5285 -33.2908 72.6241 False

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/sitepackages/statsmodels/sandbox/stats/multicomp.py:775: UserWarning: FixedFormatter should only be used together with FixedLocator

ax1.set_yticklabels(np.insert(self.groupsunique.astype(str), 0, ''))

Multiple Comparisons Between All Pairs (Tukey)

结果说明:

这一分析表明, 当温度水平为 125 时, 材料类型 1 与类型 3, 材料类型 2 与类型 3 的输出光差异 不显著,但材料类型 1 与类型 2 的输出光具有显著差异。

Q2:

检验设定模型的恰当性:

残差分析 0: 计算电池寿命数据的残差

```
[3]: # 计算电池寿命数据的残差
    list_temp = [100, 125, 150]
    data_res = data.astype(float)
    for i in range(a):
```

```
for j in list_temp:
    cnt = data[(data[:,0] == i + 1) & (data[:,1] == j),2]
    data_res[(data_res[:,0] == i + 1) & (data_res[:,1] == j),2] = cnt-np.

→mean(cnt)

df = pd.DataFrame(data_res, columns = ['Glass_Type', 'Temperature',
    →'Light_Output'])
print(df)
```

	Glass_Type	Temperature	Light_Output
0	1.0	100.0	7.333333
1	1.0	100.0	-4.666667
2	1.0	100.0	-2.666667
3	2.0	100.0	-3.000000
4	2.0	100.0	-23.000000
5	2.0	100.0	26.000000
6	3.0	100.0	-27.333333
7	3.0	100.0	1.666667
8	3.0	100.0	25.666667
9	1.0	125.0	2.666667
10	1.0	125.0	-0.333333
11	1.0	125.0	-2.333333
12	2.0	125.0	35.000000
13	2.0	125.0	0.000000
14	2.0	125.0	-35.000000
15	3.0	125.0	-9.666667
16	3.0	125.0	-1.666667
17	3.0	125.0	11.333333
18	1.0	150.0	6.000000
19	1.0	150.0	-6.000000
20	1.0	150.0	0.000000
21	2.0	150.0	15.000000
22	2.0	150.0	-1.000000
23	2.0	150.0	-14.000000
24	3.0	150.0	-19.666667
25	3.0	150.0	17.333333
26	3.0	150.0	2.333333

残差分析 1: 残差的正态概率图

```
[4]: # 残差的正态概率图
res = data_res[:, 2]
osm, osr = stats.probplot(res, dist = 'norm', plot = plt)
x = osm[0][0]
y = osm[1][0]
plt.text(x, y, '%.2f' % float(y), ha='center', va= 'bottom', fontsize=9)
plt.grid()
plt.show()
```


无特别的证据说明违背数据正态性; 异常值的检测: $\frac{-35.000}{\sqrt{365.518}} = -1.83 > -2$ 不存在绝对值大于 2的残差, 判断不存在异常值。

(计算标准化残差: $d_{ij} = \frac{e_{ij}}{\sqrt{MS_E}}$ 。一般地,标准化残差约 68% 落在 ±1 之内,约 95% 落在 ±2 之内,几乎全部落在 ±3 之内。标准化残差的绝对值大于 3 的残差是一个可能的异常值。)

```
[5]: # 用 Shapiro-Wilk 检验进行正态性检验
SW, pVal = stats.shapiro(res)
```

```
print(round(SW, 2))
print(round(pVal, 2))

if pVal > alpha:
    print('\nAccept the null hypothesis.')
else:
    print('\nSince p-value > 0.05, reject the null hypothesis')
```

0.97

0.52

Accept the null hypothesis.

以上结果说明接受原假设、即残差具有正态性。

残差分析 2: 残差与预测值的关系图

```
[6]: Text(0, 0.5, 'e_ijk')
```


由上图可以看出,当输出光很小时,残差方差同样较小。但当输出光增大时,残差方差不一定随之同样增大,而是在略大于 1000 的位置达到最大值。

残差分析 3: 残差与材料的关系图

```
[7]: # 残差对材料种类的关系图
y3 = data_res[:,0]
plt.scatter(y3, res, c = 'red')
plt.title('Plot of residuals versus glass type')
plt.xlabel('Glass type')
plt.ylabel('e_ijk')
```

[7]: Text(0, 0.5, 'e_ijk')

上图显示出方差较为明显的不等性:玻璃材料为第一种时,方差远小于另外两种。另外玻璃材料二的方差略大于玻璃材料三的方差。

残差分析 4: 残差与温度的关系图

```
[8]: # 残差对温度的关系图
y4 = data_res[:,1]
plt.scatter(y4, res, c = 'red')
plt.title('Plot of residuals versus temperature')
plt.xlabel('Temperature (°F)')
plt.ylabel('e_ijk')
```

[8]: Text(0, 0.5, 'e_ijk')

上图显示出方差微弱的不等性: 温度为 125 时, 比其他情况下方差大。

在 125 的温度-玻璃材料类型 2 这一单元中,包含了两个极端残差值(-35.00 与 35.00)。这两个残差值对于后面三张图检验出的方差不等起了主要作用。在实际生产的过程中,需要重新审查这些数据,如并未显出任何明显的问题,比如记录错误等,则应把所有响应作为真实数据接收下来。本题目中认为所有数据均为真实数据。

Q3:

为了选出一种材料, 使得不论温度高低与否都能使电池有较长的寿命, 我们进行固定效应模型分析。

```
print(df.head())

type1 = data_avg[[0,9,18], 2]

type2 = data_avg[[3,12,21], 2]

type3 = data_avg[[6,15,24], 2]

c1 = pd.Series(type1, index = list_temp, name = 'type1')

c2 = pd.Series(type2, index = list_temp, name = 'type2')

c3 = pd.Series(type3, index = list_temp, name = 'type3')

df = pd.concat([c1, c2, c3], axis = 1)

plt.plot(df.iloc[:,0], color = 'red', marker = 'o', label = 'type1')

plt.plot(df.iloc[:,1], color = 'green', marker = 'o', label = 'type2')

plt.plot(df.iloc[:,2], marker = 'o', label = 'type3')

plt.title('glass type-temperature plot')

plt.xlabel('Temperature (°F)')

plt.ylabel('Average Light_Output')

plt.legend(['type1', 'type2', 'type3'])
```

```
Glass_Type Temperature Light_Output
0
         1.0
                    100.0
                            572.666667
         1.0
                    100.0
                            572.666667
1
2
         1.0
                    100.0
                            572.666667
3
         2.0
                    100.0
                            553.000000
4
         2.0
                    100.0
                            553.000000
```

[9]: <matplotlib.legend.Legend at 0x7f8861f05898>

上图绘制了每一种处理组合的平均响应图,因为线段 2 和 3 不平行,所以交互作用显著。一般来说,不管是什么玻璃材料,在低温处的输出光都较低。随着温度升高,材料 1 和 2 的输出光随之增加。但当温度增加到 150 度时,输出光反而下降。总体上来看材料 1 的输出光无论在所有的温度下的输出光都是最高的。因此如果我们希望使输出光尽量高,玻璃材料类型 1 给出了最好的结果。

Q4:

```
估计参数 \mu、\tau_i、\beta_j 和 (\tau\beta)_{ij} (i=1,...,a;j=1,...,b) \hat{\mu}=\bar{y}... \hat{\tau}_i=\bar{y}_{i..}-\bar{y}..., i=1,2,\cdots,a \hat{\beta}_j=\bar{y}_{.j.}-\bar{y}..., j=1,2,\cdots,b \hat{\tau}\hat{\beta}_{ij}=\bar{y}_{ij.}-\bar{y}_{i..}-\bar{y}_{.j.}+\bar{y}..., i=1,2,\cdots,a j=1,2,\cdots,b
```

[10]: # 参数估计

```
mu = np.mean(data[:,2])
print('总平均效应: ', round(mu, 2))

tau = []
for i in range(a):
```

```
tau.append(np.mean(data[data[:,0] == i + 1, 2]) - mu)

print('材料因子的水平效应: \n', np.round(tau, 2))

beta = []

for j in list_temp:
    beta.append(np.mean(data[data[:,1] == j, 2]) - mu)

print('温度因子的水平效应: \n', np.round(beta, 2))

tau_beta = []

k = 0

for i in range(a):
    tau_beta.append([])
    for j in range(b):
        cnt = data_avg[0 + 3 * k, 2] - tau[i] - beta[j] + mu
         tau_beta[i].append(cnt)
        k += 3

print('两因子之间的交互作用效应: \n', np.round(tau_beta, 2))
```

```
总平均效应: 940.19
材料因子的水平效应:
[ 75.15 26.81 -101.96]
温度因子的水平效应:
[-373.85 118.81 255.04]
两因子之间的交互作用效应:
[[1811.56 1318.89 1182.67]
[2374.56 1881.89 1745.67]
[2802. 2309.33 2173.11]]
```

Q5:

由于温度是定量的,而材料类型是定性的。再者,温度有3个水平。因此,我们可计算线性的和二次的温度效应,以便研究温度怎样影响电池寿命。

这里我们画出响应曲线(response curve)可以得到响应变量与定量因子——温度的关系。一般地, 线性回归方法可用于为实验数据拟合相应的模型。

 $Life = \beta_0 + \beta_1 A + \beta_2 B_1 + \beta_3 B_2 + \beta_4 A^2 + \beta_5 A B_1 + \beta_6 A B_2 + \beta_7 A^2 B_1 + \beta_8 A^2 B_2$

其中,分量 A,A^2 分别表示温度因子的一次效应、二次效应,B 表示材料类型因子的主效应。由于温度为低、中、高水平(15 ,70 ,125),对应的温度水平分别为 A=-1 0 + 1。变量 B[1] 和 B[2] 被认为是示性变量(indicator variable),其定义为:

```
\begin{array}{cccc} & 1 & 2 & 3 \\ B[1] & 1 & 0 & -1 \\ B[2] & 0 & 1 & -1 \end{array}
```

```
[11]: # 构造这 8 个变量
      list_A = [100, 125, 150]
      \#list_A = [-1, 0, 1]
      list_B1 = [1, 0, -1]
      list_B2 = [0, 1, -1]
      A = data[:,1] * 1
      B1 = B2 = data[:, 0]
      for i in range(3):
          A = [list_A[i] if j == list_temp[i] else j for j in A]
          B1 = [list_B1[i] if j == i + 1 else j for j in B1]
          B2 = [list_B2[i] if j == i + 1 else j for j in B2]
      AA = [A[k] ** 2 for k in range(len(A))]
      AB1 = [A[k] * B1[k]  for k in range(len(A))]
      AB2 = [A[k] * B2[k]  for k in range(len(A))]
      AAB1 = [AA[k] * B1[k] for k in range(len(A))]
      AAB2 = [AA[k] * B2[k] for k in range(len(A))]
      df = pd.DataFrame(A, columns = ['A'])
      df['B1'] = B1
      df['B2'] = B2
      df['AA'] = AA
      df['AB1'] = AB1
      df['AB2'] = AB2
      df['AAB1'] = AAB1
      df['AAB2'] = AAB2
      df['Life'] = data[:,2]
      print(df.head())
      # 训练模型
      model = ols('Life~ A + B1 + B2 + AA + AB1 + AB2 + AAB1 + AAB2',df).fit()
      param = model.params
      model.summary()
```

	Α	B1	B2	AA	AB1	AB2	AAB1	AAB2	Life
0	100	1	0	10000	100	0	10000	0	580
1	100	1	0	10000	100	0	10000	0	568
2	100	1	0	10000	100	0	10000	0	570
3	100	0	1	10000	0	100	0	10000	550
4	100	0	1	10000	0	100	0	10000	530

[11]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results							
Dep. Variable: Life		Life	R-sq	======== uared:	0.997		
Model:			OLS	Adj.	R-squared:		0.996
Method:		Least Sq	uares	F-st	atistic:		824.8
Date:		Fri, 19 Mar	2021	Prob	(F-statisti	c):	1.78e-21
Time:		21:	21:01	Log-	Likelihood:		-112.51
No. Observ	ations:		27	AIC:			243.0
Df Residua	ls:		18	BIC:			254.7
Df Model:			8				
Covariance	Type:	nonr	obust				
======	coe	ef std err	=====	t	P> t	[0.025	0.975]
Intercept	-4968.777	'8 191.292	-28	5.975	0.000	-5370.666	-4566.889
A	83.866	3.127	26	5.818	0.000	77.297	90.437
B1	1322.777	78 270.527	4	1.890	0.000	754.421	1891.134
B2	1553.777	78 270.527	į	5.744	0.000	985.421	2122.134
AA	-0.285	0.012	-22	2.834	0.000	-0.311	-0.259
AB1	-24.400	00 4.423	-{	5.517	0.000	-33.692	-15.108
AB2	-27.866	4.423	-6	3.301	0.000	-37.158	-18.575
AAB1	0.112	0.018	(3.362	0.000	0.075	0.149
AAB2	0.122	0.018	(3.905	0.000	0.085	0.159
Omnibus: 0.570				in-Watson:		2.273	
Prob(Omnibus): 0.752		•	ue-Bera (JB)	:	0.035		
Skew: 0.009 Prob(JB):				0.983			
Kurtosis: 3.175 Cond. No. 1.52					1.52e+06		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.52e+06. This might indicate that there are strong multicollinearity or other numerical problems.

拟合曲线 [-1, 1]:

```
Life = 1059 + 314.44 * A + 28.33 * B[1] - 24 * B[2] - 178.22 * A^2 + 92.22 * AB[1] + 65.56 * AB[2] + 70.22 * A^2B[1] + 76.22 * A^2B[2]
```

拟合曲线 [100, 150]:

 $Life = -4968.78 + 83.87 * A + 1322.78 * B[1] + 1553.78 * B[2] - 0.29 * A^2 - 24.4 * AB[1] - 27.87 * AB[2] + 0.11 * A^2B[1] + 0.12 * A^2B[2]$

```
[12]: # 拟合响应曲线
```

```
temp = np.linspace(100, 150)
#temp = np.linspace(-1, 1)
life_type1 = param[0] + param[1] * temp + param[2] * list_B1[0] + param[3] *__
\rightarrowlist B2[0] + param[4] * (temp ** 2) + param[5] * temp * list B1[0] +
→param[6] * temp * list_B2[0] + param[7] * (temp ** 2) * list_B1[0] +
→param[8] * (temp ** 2) * list_B2[0]
life_type2 = param[0] + param[1] * temp + param[2] * list_B1[1] + param[3] *__
\rightarrowlist_B2[1] + param[4] * (temp ** 2) + param[5] * temp * list_B1[1] +
→param[6] * temp * list_B2[1] + param[7] * (temp ** 2) * list_B1[1] +
→param[8] * (temp ** 2) * list_B2[1]
life_type3 = param[0] + param[1] * temp + param[2] * list_B1[2] + param[3] *_{\sqcup}
\rightarrowlist_B2[2] + param[4] * (temp ** 2) + param[5] * temp * list_B1[2] +
→param[6] * temp * list_B2[2] + param[7] * (temp ** 2) * list_B1[2] +
→param[8] * (temp ** 2) * list_B2[2]
c1 = pd.Series(life_type1, index = temp, name = 'type1')
c2 = pd.Series(life_type2, index = temp, name = 'type2')
c3 = pd.Series(life_type3, index = temp, name = 'type3')
```

```
df = pd.concat([c1, c2, c3], axis = 1)

plt.plot(df.iloc[:,0], color = 'red', label = 'type1')

plt.plot(df.iloc[:,1], color = 'green', label = 'type2')

plt.plot(df.iloc[:,2], label = 'type3')

plt.xlabel('Temperature (°F)')

plt.ylabel('Light_Output')

plt.legend(['type1', 'type2', 'type3'])
```

[12]: <matplotlib.legend.Legend at 0x7f8861f6f940>

拟合曲线 [-1, 1]:

材料类型为 1:

 $y = 1087.33 + 406.66*Temp - 108*Temp^2$

材料类型为 2:

 $y = 1035 + 380*Temp - 102.22*Temp^2$

材料类型为 3:

 $y = 1054.67 + 156.66*Temp - 324.66*Temp^2$

拟合曲线 [100, 150]:

材料类型为 1:

 $y = -3646 + 59.47*Temp - 0.18*Temp^2$

材料类型为 2:

 $y = -3415 + 56*Temp - 0.17*Temp^2$

材料类型为 3:

 $y = -7845.34 + 136.14*Temp - 0.52*Temp^2$

上图显示了这3个预测公式生成的响应曲线。