ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИЛЕТЫ

Поток Р.В. Константинова

Автор

Нечитайло Лев

Исходный код на сітнив

МФТИ 8 апреля 2023 г.

Содержание

1	Бил	іеты	7
	1	Аксиома выбора. Лемма о неподвижном множестве. Частично упорядоченные множества. Теорема Хаусдорфа о максимальности и лемма Цорна	7
	2	Вполне упорядоченные множества. Теорема Цермело и контрпример Серпинского к теореме Фубини	10
	3	Топологические пространства, база и предбаза топологии. Критерий базы и	
	4	предбазы топологии	15
	5	множества топологического пространства, связь между ними. Аксиома счетности Топологически и секвенциально непрерывные отображения топологических пространств, связь между ними. Критерий топологической непрерывности	17
		отображения	19
	6	Счетно компактные и секвенциально компактные подмножества топологического пространства, связь между ними.	22
	7	Компактные подмножества топологического пространства. Теорема Александера о предбазе.	24
	8	Хаусдорфово топологическое пространство. Топологическая замкнутость компактного подмножества хаусдорфова топологического пространства	26
	9	Декартово произведение топологических пространств. Топология Тихонова	27
	10	Топологические векторные пространства. Замкнутость локально компактного подпространства и локальная компактность конечномерного подпространства	
	11	топологического векторного пространства	29
		пространства.	37
	12	Метрические пространства и метрическая топология. Теорема Бэра о категории.	40
	13	Вполне ограниченные подмножества метрического пространства. Критерий	
		Фреше компактности подмножества метрического пространства.	43
	14	Эквивалентные нормы в линейном пространстве. Эквивалентность норм в конечномерном линейном пространстве.	46
	15	Факторпространство замкнутого подпространства линейного нормированного пространства, факторнорма. Полнота факторпространства замкнутого	40
	1.0	подпространства банахова пространства	48
	16	Гильбертово пространство. Теоремы Рисса о проекции и об ортогональном разложении в гильбертовом пространстве	50

17	Лемма Рисса о почти перпендикуляре. Теорема Рисса об отсутствии вполне ограниченности сферы в бесконечномерном линейном нормированном
	пространстве
18	Линейное нормированное пространство $C(K)$ для компактного метрического
	пространства (K, ρ) , его полнота. Критерий Арцела-Асколи вполне
1.0	ограниченности подмножества пространства $C(K)$
19	Критерий Рисса-Колмогорова вполне ограниченности подмножества
20	пространства $\mathbb{L}_p(\mathbb{R}^m)$ для $1 \leq p < +\infty$
20	Равномерная операторная топология $ au_u$ в пространстве $\mathcal{L}(X,Y)$ линейных
	ограниченных операторов, действующих в нормированных пространствах X
0.1	и Y. Теорема о полноте пространства $(\mathcal{L}(X,Y), \tau_u)$
21	Сильная операторная топология $ au_s$ в пространстве $\mathcal{L}(X,Y)$ линейных
	ограниченных операторов, действующих в нормируемых пространствах X и Y . Теорема Банаха-Штейнгауза и теорема о полноте пространства ($\mathcal{L}(X,Y), \tau_s$). 64
22	Т. Теорема Ванаха-штейнгауза и теорема о полноте пространства ($\mathcal{L}(X, T), \tau_s$). 04 Теоремы Ванаха об открытом отображении и об обратном операторе 69
23	Теорема Банаха об открытом отображении и об обратном операторе
20	непрерывности симметричного на гильбертовом пространстве линейного
	оператора
24	Компактные операторы в пространстве $\mathcal{L}(X,Y)$. Замкнутость подпространства
	компактных операторов $\mathcal{K}(X,Y)$ в пространстве $\mathcal{L}(X,Y)$ с равномерной
	операторной топологией
25	Teopema о приближении компактного оператора в пространстве $\mathcal{L}(X,H)$
	с равномерной операторной топологией конечномерным оператором для
	гильбертова пространства H
26	Теорема Хана-Банаха и ее следствия в линейном нормированном пространстве. 77
27	Теорема об отделимости в локально выпуклом топологическом векторном
	пространстве и ее следствия. Пример бесконечномерного топологического
	векторного пространства с тривиальным сопряженным
28	Слабая* топология в сопряженном пространстве к топологическому
	векторному пространству. Теорема о представлении слабо* непрерывного
2.0	линейного функционала
29	Теорема Банаха-Алаоглу о слабой* компактности поляры окрестности нуля
20	топологического векторного пространства
30	Критерий метризуемости слабой* топологии в сопряженном пространстве
	локально выпуклого топологического пространства. Неметризуемость слабой* топологии в сопряженном пространстве бесконечномерного пространства 89
31	Теорема о метризуемости слабой* топологии на шаре в сопряженном
91	пространстве к линейному нормированному
32	Слабая топология в локально выпуклом топологическом векторном
02	пространстве. Теорема Мазура. Слабое замыкание единичной сферы в
	бесконечномерном линейном нормированном пространстве
33	Неметризуемость слабой топологии в бесконечномерном локально выпуклом
- 0	топологическом векторном пространстве. Теорема о метризуемости слабой
	топологии на шаре линейного нормированного пространства
34	Теорема Эберлейна-Шмульяна о слабой секвенциальной компактности слабого
	компакта в нормированном пространстве

2	При	іложение	133
		пространстве \mathcal{H}	. 131
	46	X	. 129
	45	Теорема о спектре компактного оператора $A \in \mathcal{L}(X)$ в банаховом пространстве	
	44	элемента банаховой алгебры. Теорема о спектральном радиусе элемента банаховой алгебры. Критерий равенства спектрального радиуса норме элемента банаховой алгебры.	
	40	Открытость резольвентного множества, непустота и компактность спектра	194
	43	и непрерывной обратимости его сопряженного оператора $A^* \in \mathcal{L}(Y^*, X^*)$ для банахова пространства X и нормированного пространства Y	. 123
	42	оператора $A \in \mathcal{L}(X)$ и нетривиального числа λ в банаховом пространстве X . Альтернатива Фредгольма	. 119
	41	и компактности его сопряженного оператора $A^* \in \mathcal{L}(Y^*, X^*)$. 117
	40	числа λ в банаховом пространстве X . Критерий разрешимости уравнения $A_{\lambda}x=y$ для $y\in X$	
	39	Теорема Фредгольма о конечномерности ядра $\ker A_{\lambda}$ и замкнутости множества значений $\operatorname{Im} A_{\lambda}$ для компактного оператора $A \in \mathcal{L}(X,Y)$ и нетривиального	
	38	Эквивалентность замкнутости Im A и Im A^* для оператора $A \in \mathcal{L}(X,Y)$, где X и Y банаховы пространства. Равенство $(\operatorname{Ker} A)^{\perp} = \operatorname{Im} A^*$ при условии замкнутости Im A	. 110
		операторов A и A^* . Равенства $^{\perp}(\operatorname{Ker} A^*)$ сильному замыканию $\operatorname{Im} A$ и $(\operatorname{Ker} A)^{\perp}$ слабому* замыканию $\operatorname{Im} A^*$. 106
	36 37	Теорема Рисса-Фреше о представлении сопряженного гильбертова пространства. Рефлексивность гильбертова пространства. Оператор, сопряженный оператору $A \in \mathcal{L}(X,Y)$. Теорема о равенстве норм	. 103
	2.0	Существование проекции точки на замкнутое подпространство рефлексивного пространства	. 101
	35	Слабая компактность замкнутого шара в рефлексивном пространстве.	

В этом файле вы найдете огромное количество опечаток, орфографических, пунктуационных и стилистических ошибок. Доказательства, не относящиеся напрямую к билету, я помечаю фиолетовым цветом. За исправление ошибок и опечаток спасибо: Степан Сыроваткин, Илья Лопатин, Филипп Змушко, Максим Иванов, Александр Моложавенко, Камилла Астанова, Ксения Петрушина, Аким Каленюк, Артем Федоров, Тимур Мурадов, Иван Лукьяненко, Глеб Макаров, Екатерина Зелетова

Глава 1

Билеты

1 Аксиома выбора. Лемма о неподвижном множестве. Частично упорядоченные множества. Теорема Хаусдорфа о максимальности и лемма Цорна

Аксиома выбора. Пусть P — непустое множество, тогда $\exists \varphi_P$ — функция выбора для P: $\varphi_P: 2^P \setminus \{\varnothing\} \to P$ такая что:

$$\forall S \subset P, \ S \neq \emptyset \Rightarrow \varphi_P(S) \in S$$

Определение 1.1. Пусть X — непустое множество. Пусть в X введено отношение порядка \leq удовлетворяющее свойствам:

- $\forall x \in X \Rightarrow x \leq x$
- $\forall x, y \in X \begin{cases} x \le y \\ y \le x \end{cases} \Rightarrow x = y$
- $\bullet \ \forall x, y, z \in X \begin{cases} x \le y \\ y \le z \end{cases} \Rightarrow x \le z$

Тогда пару (X, \leq) — называют частично упорядоченным множеством (ЧУМ), а отношение порядка \leq — частичным порядком.

Определение 1.2. Пусть (X, \leq) — ЧУМ. Тогда если $\forall x, y \in X \Rightarrow (x \leq y) \lor (y \leq x)$, то (X, \leq) — называется линейно упорядоченным множеством (ЛУМ)

Лемма 1.3 (о неподвижном множестве). Пусть F — непустое семейство множеств, частично упорядоченных относительно вложения. (F, \subset) — ЧУМ. Пусть:

- $\forall C \subset F, C ЛУМ$ верно $\bigcup_{L \in C} L \in F$.
- Задана функция $f: F \to F$ такая что $\forall A \in F \Rightarrow A \subset f(A)$ и $f(A) \setminus A$ не более чем одноточечно.

Тогда $\exists A^* \in F : f(A^*) = A^*$

Доказательство. БЕЗ ДОКАЗАТЕЛЬСТВА

Теорема 1.4 (Хаусдорфа о максимальности). Пусть (X, \leq) — ЧУМ, тогда существует максимальный по включению ЛУМ $L \subset X$

Доказательство. Рассмотрим $F = \{$ все ЛУМы в $(X, \leq) \}$ — не пусто, тк $\{x\} \in F$ тогда (F, \subset) — ЧУМ. Для любого $L \in F$ определим

$$L^c := \{ x \in X \setminus L : L \cup \{x\} \in F \}$$

То есть это множество тех x которые можно добавить в L при этом не нарушив его лумовости. Пусть φ_X — функция выбора для X. Рассмотрим

$$f: F \to F: \ f(L) = \begin{cases} L, L^c = \varnothing \\ L \cup \varphi_X(L^c), L^c \neq \varnothing \end{cases}$$

По построению $\forall L \in F: f(L) \in F$ и $f(L) \setminus L$ — не более чем одноточечно. Покажем, что выполнены условии леммы онеподвижном множестве, для этого докажем, что $\bigcup_{L \in C} L \in F$, для любого лума C. Пусть $C \subset F$ — ЛУМ. Рассмотрим

$$L_c := \bigcup_{L \in C} L \subset X$$

Покажем, что $L_c \in F$, то есть, что $L_c - ЛУМ$. Имеем:

$$\forall x, y \in L_c \Rightarrow \begin{cases} x \in \bigcup_{L \in C} L \\ y \in \bigcup_{L \in C} L \end{cases} \Rightarrow \begin{cases} \exists L_x \in C : x \in L_x \\ \exists L_y \in C : y \in L_y \end{cases}$$

Но $L_x, L_y \in C$, а $C-\Pi Y M$, тогда L_x, L_y — сравнимы. Без ограничения общности считаем, что $L_x \subset L_y$, тогда $x,y \in L_y$ и x,y— сравнимы. Отсюда $L_c-\Pi Y M$, то есть $L_c \in F$.

Таким образом выполнены условия леммы о неподвижном множестве, тогда

$$\exists L_* \in F: \ f(L_*) = L_*$$

Значит L_* — ЛУМ в (X, \leq) и $L^c = \varnothing$, что эквивалентно максимальности L_* .

Лемма 1.5 (Цорна). Пусть (X, \leq) — ЧУМ такой что, \forall ЛУМ $L \subset X$, $\exists z \in X$ — мажоранта L (т.е. $\forall x \in L \Rightarrow x \leq z$). Тогда в (X, \leq) существует максимальный элемент $z_* \in X$

Утверждение 1.6. Теорема Хаусдорфа и лемма Цорна эквивалентны.

Доказательство. Пусть теорема Хаусдорфа верна. Пусть (X, \leq) — ЧУМ удовлетворяет лемме Цорна. Тогда по теореме Хаусдорфа в (X, \leq) существует максимальный ЛУМ $L_* \subset X$. Для этого лума существует мажоранта $z_* \in X$ т.ч.

$$\forall x \in L_* \Rightarrow x \le z_*$$

Покажем что z_* — максимальный элемент (X, \leq) . Пусть $x \in X$ такой, что $z_* \leq x$. Предположим, что $x \neq z_*$. Тогда рассмотрим

$$L := L_* \cup \{x\}$$

Имеем:

$$\begin{cases} \forall y \in L_* \ y \leq z_* \leq x \Rightarrow y \leq x \\ \text{Все элементы} \ L_* \ \text{сравнимы} \end{cases} \Rightarrow L = L_* \cup \{x\} - \text{ЛУМ}$$

Пришли к противоречию с максимальностью L_* . Таким образом z_* — максимальный элемент. Пусть верна лемма Цорна. Рассмотрим $F = \{$ все ЛУМы в $(X, \leq) \}$. F — не пусто, так как $\forall x \in X \ \{x\} \in F$. Тогда можно рассмотреть ЧУМ (F, \subset) . Покажем что данный чум удовлетворяет лемме Цорна, это рассуждение дословно повторяет рассуждение в доказательстве теоремы Хаусдорфа, но все равно привожу его. Пусть $C \subset F$ — ЛУМ. Рассмотрим

$$L_c := \bigcup_{L \in C} L \subset X$$

Покажем, что $L_c \in F$, то есть, что $L_c - ЛУМ$. Имеем:

$$\forall x, y \in L_c \Rightarrow \begin{cases} x \in \bigcup_{L \in C} L \\ y \in \bigcup_{L \in C} L \end{cases} \Rightarrow \begin{cases} \exists L_x \in C : x \in L_x \\ \exists L_y \in C : y \in L_y \end{cases}$$

Но $L_x, L_y \in C$, а $C-\Pi YM$, тогда L_x, L_y — сравнимы. Без ограничения общности считаем, что $L_x \subset L_y$, тогда $x,y \in L_y$ и x,y— сравнимы. Отсюда $L_c-\Pi YM$, то есть $L_c \in F$, с другой стороны, $\forall L \in C \Rightarrow L \subset L_c$ по построению.

Значит для любого ЛУМА L существует мажоранта L_c . Таким образом (F,\subset) — удовлетворяет лемме Цорна. По лемме Цорна в (F,\subset) существует максимальный элемент $L_* \in F$, так как он лежит в F, то L_* — ЛУМ. Предположив, что он не является максимальным в X моментально получаем противоречие с его максимальностью в F.

2 Вполне упорядоченные множества. Теорема Цермело и контрпример Серпинского к теореме Фубини

Определение 2.1. (X, \leq) — ЧУМ называется вполне упорядоченным, если

$$\forall S \subset X: S \neq \emptyset \ \exists z \in S: \ \forall x \in S \ z < x$$

То есть любое непустое множество содержит миноранту.

Теорема 2.2 (Цермело). Любое непустое множество X можно вполне упорядочить. То есть существует отношение порядка \leq в X, что (X, \leq) — ВУМ

Доказательство. Рассмотрим семейство F:

$$F = \{(S, \leq_S) \mid S \neq \varnothing, S \subset X, \leq_S - \text{отношение порядка в } S : (S, \leq_S) - \text{ВУМ} \}$$

F — непусто, так как

$$X \neq \emptyset \Rightarrow \exists x \in X \Rightarrow S_x = \{x\}, \leq_{\{x\}} = (x, x) \Rightarrow (\{x\}, \leq_{\{x\}}) \in F$$

Введем в F отношение порядка \prec :

$$(S_1, \leq_1) \prec (S_2, \leq_2) \stackrel{def}{\Leftrightarrow} \begin{cases} \textcircled{1} S_1 \subset S_2 \\ \textcircled{2} \forall x, y \in S_1 \ x \leq_1 y \Rightarrow x \leq_2 y \\ \textcircled{3} \forall x \in S_1, \ \forall y \in S_2 \setminus S_1 \Rightarrow x \leq_2 y \end{cases}$$

Проверка, что \prec — отношение порядка. (Здесь и далее в этом доказательстве мы будем жрать говно):

1.

$$(S, \leq_S) \in F \Rightarrow \begin{cases} \textcircled{1} & S \subset S \\ \textcircled{2} & \forall x, y \in S \\ \textcircled{3} & S \setminus S = \emptyset \end{cases}$$

2. Пусть

$$\begin{cases} (S_1, \leq_1) \prec (S_2, \leq_2) \\ (S_2, \leq_2) \prec (S_1, \leq_1) \end{cases}$$

Имеем

$$\begin{array}{l}
\textcircled{1} \begin{cases} S_1 \subset S_2 \\ S_2 \subset S_1 \end{cases} \Rightarrow S_1 = S_2 \\
\textcircled{2} \ \forall x, y \in S_1 = S_2 \Rightarrow x \leq_1 y \Rightarrow x \leq_2 y \\
\textcircled{3} \ \forall x, y \in S_2 = S_1 \ x \leq_2 y \Rightarrow x \leq_1 y
\end{array}$$

Таким образом $\leq_1 = \leq_2$ и $(S_1, \leq_1) = (S_2, \leq_2)$

3. Пусть $(S_1, \leq_1) \prec (S_2, \leq_2) \prec (S_3, \leq_3)$

$$(1) S_1 \subset S_2 \subset S_3 \Rightarrow S_1 \subset S_3$$

$$(2) \forall x, y \in S_1 \ x \leq_1 y \Rightarrow x \leq_2 y \Rightarrow x \leq_3 y$$

Пусть $(S_1, \leq_1) \prec (S_2, \leq_2) \prec (S_3, \leq_3)$ тогда $\forall x \in S \ \forall y \in S_3 \setminus S_1$ Имеет место альтернатива:

Либо
$$y \in S_2 \setminus S_1 \Rightarrow x \leq_2 y \Rightarrow x \leq_3 y$$

Либо $y \in S_3 \setminus S_2 \Rightarrow x \in S_1 \subset S_2 \Rightarrow x \in S_2 \Rightarrow x \leq_3 y$

Теперь проверим условие леммы Цорна для чума (F, \prec) . Пусть $L \subset F - ЛУМ$. Рассмотрим

$$S_L := \bigcup_{(S_i, \le_i)} S_i \subset X$$

Введем на S_L отношение порядка:

$$x, y \in S_L \Rightarrow x \leq_L y \stackrel{def}{\Leftrightarrow} \exists (S, \leq) \in L : x, y \in S \land x \leq y$$

Проверим что это действительно отношение порядка в S_L :

1.

$$\forall x \in S_L \Rightarrow \exists (S_x, \leq_x) \in L : x \in S_x \Rightarrow x \leq_x x \Rightarrow x \leq_L x$$

2. Пусть $x, y \in S_L$ и

$$\begin{cases} x \leq_L y \\ y \leq_L x \end{cases} \Rightarrow \begin{cases} \exists (S_1, \leq_1) \in L : \ x, y \in S_1 \land x \leq_1 y \\ \exists (S_2, \leq_2) \in L : \ x, y \in S_2 \land y \leq_2 x \end{cases}$$

Но $L-\Pi \mathrm{УM}$, тогда $(S_1,\leq_1),(S_2,\leq_2)$ — сравнимы. Без ограничения общности $(S_1,\leq_1)\prec(S_2,\leq_2)$ тогда

$$\begin{cases} x, y \in S_1 \land x \leq_1 y \Rightarrow x \leq_2 y \\ x, y \in S_2 \land y \leq_2 x \end{cases} \Rightarrow x = y$$

3.

$$x,y,z \in S_L$$

$$\begin{cases} x \leq_L y \\ y \leq_L z \end{cases} \Rightarrow \begin{cases} \exists (S_1,\leq_1) \in L \ x,y \in S_1 \text{ и } x \leq_1 y \\ \exists (S_2,\leq_2) \in L \ y,z \in S_2 \text{ и } y \leq_2 z \end{cases}$$

Аналогично $L - \Pi YM$ имеем:

• Если $(S_1, \leq_1) \prec (S_2, \leq_2)$

$$x \leq_2 y \land y \leq_2 z \Rightarrow \begin{cases} x \leq_2 z \\ x, z \in S_2 \end{cases} \Rightarrow x \leq_L z$$

• Если $(S_2, \leq_2) \prec (S_1, \leq_1)$

$$\begin{cases} y \leq_1 z \land x \leq_1 y \\ y, z \in S_1 \land x, y \in S_1 \end{cases} \Rightarrow \begin{cases} x \leq_1 z \\ x, z \in S_1 \end{cases} \Rightarrow x \leq_L z$$

Таким образом (S_L, \leq_L) — ЧУМ. Покажем, что на самом деле это ВУМ. $\forall M \subset S_L, M \neq \emptyset$ имеем:

$$\exists \underbrace{(S_M, \leq_M)}_{\text{BYM}} \in L \Rightarrow \underbrace{S_M \cap M}_{\text{непустое подмножество BYM}} \neq \varnothing$$

Тогда $\exists z \in S_M \cap M$ — миноранта $S_M \cap M$ в (S_M, \leq_M) . Покажем, что z — миноранта M в (S_L, \leq_L) . Для любого $x \in M$ имеем альтернативу:

• $x \in S_M$ тогда

$$\begin{cases} z, x \in S_M \\ z \leq_{S_M} x \end{cases} \Rightarrow z \leq_L x \checkmark$$

• $x \notin S_M$ тогда

$$\exists (S_x, \leq_{S_x}) \in L : x \in S_x$$

Но $L-\Pi$ УМ, тогда $(S_x,\leq_{S_x}),(S_M,\leq_{S_M})$ — сравнимы. Причем $x\notin S_M$ значит $(S_M,\leq_{S_M})\prec(S_x,\leq_{S_x}),$ тогда:

$$\begin{cases} z, x \in S_x \\ z \leq_{S_x} x \end{cases} \Rightarrow z \leq_L x \checkmark$$

Таким образом (S_L, \leq_L) — ЛУМ и $(S_L, \leq_L) \in F$ и $\forall (S, \leq) \in L \Rightarrow (S, \leq) \prec (S_L, \leq_L)$, действительно:

- $\widehat{(1)} S \subset S_L \checkmark$
- $(2) \forall x, y \in S \Rightarrow x \le y \Rightarrow x \le_L y \checkmark$

$$(3) \ \forall x \in S, \forall y \in S_L \setminus S \Rightarrow \exists (S_y, \leq_y): \ y \in S_y \Rightarrow (S, \leq) \prec (S_y, \leq_y) \Rightarrow \begin{cases} x \leq_y y \\ x, y \in S_y \end{cases} \Rightarrow x \leq_L y \checkmark$$

Таким образом (S_L, \leq_L) — мажоранта лума L. Применяем лемму Цорна: $\exists (S_*, \leq_*) \in F$ — максимальный элемент в (F, \prec) . Покажем, что $S_* = X$. Предположим, что существует элемент $x^* \in X \setminus S_*$ тогда определим $S := S_* \cup \{x_*\}$ и отношение порядка \leq :

$$\begin{cases} \forall x, y \in S_* \Rightarrow x \leq y \Leftrightarrow x \leq_* y \\ \forall x \in S_* \Rightarrow x_* \leq_* x \end{cases}$$

Тогда (S, \leq) — ВУМ, противоречие с максимальностью (S_*, \leq_*) . Таким образом (X, \leq_*) — ВУМ

Следствие. Пусть $X \neq \emptyset$, $|X| = \alpha$ — мощность X, тогда в X можно ввести отношение порядка \leq , такое что

- 1. (X, \leq) ВУМ
- 2. $\forall x \in X \Rightarrow S(x) = \{y \in X \mid y \le x \land y \ne x\} \Rightarrow |S(x)| < \alpha$

Доказательство. По теореме Цермело введем \leq т.ч (X, \leq) — ВУМ. Если $\forall x \in X |S(x)| < \alpha$ — победа. В противном случае рассмотрим

$$M = \{x \in X \mid |S(x)| = \alpha\} \neq \emptyset$$

То есть получили непустое подмножество в ВУМЕ (X, \leq) , значит существует миноранта M: $z \in M$, тогда:

$$|S(z)| = \alpha \land \forall y \in S(z) \Rightarrow |S(y)| < \alpha$$

S(z) и X равномощны, тогда существует биекция $f: X \to S(z)$. Определим новое отношение: \leq_f в X:

$$x, y \in X \Rightarrow x \leq_f y \stackrel{def}{\Leftrightarrow} f(x) \leq f(y) \text{ B } (S(z), \leq)$$

Тогда для нового отношения имеем:

$$\forall x \in X \Rightarrow \{y \in X \mid y \leq_f x \land x \neq y\} = \{y \in X \mid f(y) \leq f(x) \land f(x) \neq f(y)\} = f^{-1}(S(f(x)))$$

Но так как $f(x) \in S(z)$, то $|S(f(x))| < \alpha$ таким образом (X, \leq_f) — искомый ВУМ.

Теорема 2.3 (пример Серпинского). $\exists f : [0,1] \times [0,1] \to [0,1]$ измерима по Лебегу по каждой переменной отдельно:

$$g(x) = \int\limits_0^1 f(x,y) dy$$
 — измерима $h(y) = \int\limits_0^1 f(x,y) dx$ — измерима

При этом:

$$\int_{0}^{1} g(x)dx \neq \int_{0}^{1} h(y)dy \Leftrightarrow \int_{0}^{1} dx \int_{0}^{1} f(x,y)dy \neq \int_{0}^{1} dy \int_{0}^{1} f(x,y)dx$$

Доказательство. По доказанному следствию рассмотрим $([0,1],\leq_*)$ — ВУМ такой что $\forall z\in[0,1]\ S(z)=\{x\in[0,1]\mid x\leq_*z\wedge z\neq x\}\ |S(z)|<|[0,1]|=C.$ В предположении верности континум гипотезы имеем:

$$\forall z \in [0,1] \ |S(z)| \le |\mathbb{N}|$$

Тогда рассмотрим

$$M = \{(x, y) \in [0, 1] \times [0, 1] \mid x \leq_* y\}$$

$$M_x = \{y \in [0, 1] \mid x \leq_* y\}$$

$$M_y = \{x \in [0, 1] \mid x \leq_* y\}$$

Тогда M_x, M_y — измеримы и $\mu M_x = 1$, $\mu M_y = 0$ (M_y — счетно, M_x — дополнение счетного). Тогда рассмотрим функцию

$$f(x,y) = \chi_M(x,y)$$

Тогда:

$$\forall x: \ g(x) = \int_{0}^{1} f(x,y)dy = \int_{0}^{1} \chi_{M_x}(x,y)dy = \mu M_x = 1 \Rightarrow \int_{0}^{1} g(x)dx = 1$$

С другой стороны:

$$\forall y \in [0,1]: h(y) = \int_{0}^{1} f(x,y)dx = \int_{0}^{1} \chi_{M_y}dx = \mu M_y = 0 \Rightarrow \int_{0}^{1} h(y)dy = 0$$

3 Топологические пространства, база и предбаза топологии. Критерий базы и предбазы топологии

Определение 3.1. Пусть X — непустое множество, $\tau \subset 2^X$ — семейство его подмножеств. Тогда пара (X,τ) называется топологическим пространством, если:

- $X, \varnothing \in \tau$
- $\forall \{U_{\alpha}\}_{\alpha \in \mathbb{A}} \subset \tau \Rightarrow \bigcup_{\alpha \in \mathbb{A}} U_{\alpha} \in \tau$
- $\bullet \ \forall U,V \in \tau \Rightarrow U \cap V \in \tau$

При этом au — называется топологией в X, а элементы au — au-открытыми множествами.

Определение 3.2. Пусть $X \neq \emptyset$ и $\beta \subset 2^X$ — семейство подмножеств X. Тогда говорят, что β — база топологии в X, если

$$au = \left\{ igcup_{G \in M} G \mid M \subset eta
ight\} \, - ext{топология в } X$$

Теорема 3.3 (Критерий базы). Пусть $X \neq \emptyset$ и $\beta \subset 2^X$, тогда β — база топологии в X iff

- β покрытие X
- $\forall G_1, G_2 \in \beta \Rightarrow \forall x \in G_1 \cap G_2 \ \exists G \in \beta \Rightarrow x \in G \subset G_1 \cap G_2$

 \mathcal{A} оказательство. Пусть β — база, тогда

$$au = \left\{ igcup_{G \in M} G \mid M \subset eta
ight\} \, - ext{топология в } X$$

 $X\in au,$ тогда $X=igcup_{G\in eta}G,$ то есть eta- покрытие X. Пусть $G_1,G_2\in eta,$ тогда $G_1,G_2\in au,$ тогда

$$G_1 \cap G_2 \in \tau \Rightarrow \exists M \subset \beta \ G_1 \cap G_2 = \bigcup_{G \in M} G$$

Тогда $\forall x \in G_1 \cap G_2 \ \exists G \in M : \ x \in G \subset G_1 \cap G_2$

Обратно. Пусть выполнены условия критерия, покажем, что

$$\tau = \left\{ \bigcup_{G \in M} G \mid M \subset \beta \right\}$$

Является топологией в X.

- $X \in \tau$ так как β покрытие X.
- $\varnothing \in \tau$ как пустое объединение.

• $\{U_{\alpha}\}_{{\alpha}\in\mathbb{A}}\subset \tau$, тогда для каждого U_{α} существует $M_{\alpha}\subset \beta$:

$$\bigcup_{\alpha \in \mathbb{A}} U_{\alpha} = \bigcup_{\alpha \in \mathbb{A}} \bigcup_{G \in M_{\alpha}} G = \bigcup_{G \in M^*} G \in \tau$$

Где
$$M^* = \bigcup_{\alpha \in \mathbb{A}} M_\alpha \subset \beta$$

• $\forall U, V \in \tau$, тогда используя второе условие критерия для каждого x из пересечения имеем элемент базы из пересечения: $G_x \in \beta$. Тогда:

$$U \cap V = \bigcup_{x \in U \cap V} G_x \in \tau$$

Определение 3.4. Пусть $X \neq \emptyset$ и $\sigma \subset 2^X$. σ — называется предбазой топологии в X, если:

$$eta = \left\{ igcap_{k=1}^N V_k \mid N \in \mathbb{N}, V_k \in \sigma
ight\} \, -$$
 база топологии

Теорема 3.5 (Критерий предбазы). Пусть $X \neq \emptyset$ и $\sigma \subset 2^X$, тогда σ — предбаза топологии в X iff σ — покрытие X.

Доказательство. Если $\beta = \left\{\bigcap_{k=1}^N V_k \mid N \in \mathbb{N}, V_k \in \sigma\right\}$ — база, то σ — покрытие X, так как

$$X = \bigcup_{G \in \beta} G \subset \bigcup_{G \in \sigma} G \subset X$$

Обратно, воспользуемся критерием базы. β — покрытие так как $\sigma \subset \beta$ и σ — покрытие. Второе условие выполнено автоматически, так как:

$$\forall U, V \in \beta \Rightarrow U \cap V = \bigcap_{k=1}^{N_1} V_k \cap \bigcap_{k=1}^{N_2} U_k = \bigcap_{k=1}^{N^*} V_k \in \beta$$

Таким образом β — база.

4 Топологическое и секвенциальное определение замкнутости и замыкания множества топологического пространства, связь между ними. Аксиома счетности

Определение 4.1. (X,τ) — топологическое пространство, тогда если $S \subset X$: $X \setminus S \in \tau$, то S называется топологически замкнутым в (X,τ) .

Определение 4.2. (X,τ) — топологическое пространство, $S\subset X$. Тогда $x\in X$ называется топологической точкой прикосновения S, если

$$\forall U(x) \in \tau \Rightarrow U(x) \cap S \neq \emptyset$$

Определение 4.3. (X,τ) — топологическое пространство, $S\subset X$. Тогда множество

$$[S]_{ au}\stackrel{def}{=}\{x\in X\mid x$$
 — топологическая точка прикосновения $S\}$

Называется топологическим замыканием S

Определение 4.4. (X,τ) — топологическое пространство. $\{x_n\}_{n=1}^{\infty} \subset X, x \in X$. Говорят, что последовательность $\{x_n\}$ сходится по топологии к x. Пишут:

$$x_n \xrightarrow[n \to \infty]{\tau} x \stackrel{def}{\Leftrightarrow} \forall U(x) \in \tau \ \exists N \in \mathbb{N} : \ \forall n \ge N \Rightarrow x_n \in U(x)$$

Определение 4.5. (X,τ) — топологическое пространство, $S\subset X$. Тогда $x\in X$ называется секвенциальной точкой прикосновения S если

$$\exists \{x_n\}_{n=1}^{\infty} \subset S: \ x_n \stackrel{\tau}{\longrightarrow} x$$

Утверждение 4.6. Всякая секвенциальная точка прикосновения является топологической. Обратное неверно.

Доказательство. $x \in X$ — секвенциальная точка прикосновения S, тогда существует $\{x_n\}_{n=1}^{\infty} \subset S$:

$$\forall U(x) \in \tau \ \exists N \in \mathbb{N} \ \forall n \ge N \Rightarrow x_n \in U(x) \Rightarrow U(x) \cap S \neq \varnothing$$

Тогда x — топологическая точка прикосновения.

Рассмотрим топологию Зарисского на оси (\mathbb{R}, τ_z) , где:

$$au_z = \{G \subset \mathbb{R} \mid G
eq \varnothing, \mathbb{R} \setminus G \text{ не более чем счетно}\} \cup \{\varnothing\}$$

Пусть $x_n \xrightarrow{\tau_z} x$ Тогда

$$U(x) = \mathbb{R} \setminus \{x_n \neq x\} \in \tau \Rightarrow \exists N : \forall n \geq N : x_n \in U(x) \Rightarrow x_n = x$$

Тогда $\forall S \subset \mathbb{R}, S \neq \emptyset$ $x \in X$ — секвенциальная точка прикосновения S iff $x \in S$. То есть секвенциальными точками прикосновения множества S могут быть только точки этого множества. С другой стороны пусть $S \subset \mathbb{R}, |S| = |\mathbb{R}|$. Тогда $\forall x \in \mathbb{R} \setminus S \ \forall U(x) \ U(x) \cap S \neq \emptyset$, так как $|S| > |\mathbb{N}|$. Таким образом, x — топологическая точка прикосновения.

Определение 4.7. (X,τ) — топологическое пространство. $S\subset X$. Тогда S — называется секвенциально замкнутым, если

$$S = \{x \in X \mid x$$
 — секвенциальная точка прикосновения $S\}$

При этом множество

$$[S]_{\text{секв}} = \{$$
все секвенциальные точки прикосновения $S\}$

Называется секвенциальным замыканием S.

Замечание. Из утверждения выше следует что $[S]_{\text{секв}} \subset [S]_{\tau}$

Определение 4.8. (X, τ) — $T\Pi$. $x \in X$, тогда B(x) — некоторое подмножество окрестностей x называется локальной базой x, если:

$$\forall U(x) \in \tau \ \exists V \in B(x) : \ V \subset U(x)$$

Аксиома счетности. Если $\forall x \in X \; \exists B(x) = \{V_n\}_{n=1}^{\infty}$ — счетная локальная база x, то говорят, что (X, τ) удовлетворяет аксиоме счетности.

Замечание. При выполнении аксиомы счетности часто удобно считать, что элементы локальной базы упорядоченны по вложению. Заметим, что это всегда можно осуществить положив

$$W_n = \bigcap_{k=1}^n V_k$$

 Γ де V_k — элементы исходной локальной базы.

Теорема 4.9. Пусть в (X, τ) — топологическом пространстве выполнена аксиома счетности, $S \subset X$, тогда $[S]_{\tau} = [S]_{\text{секв}}$. То есть любая топологическая точка прикосновения является секвенциальной.

Доказательство. Имеем $B(x) = \{W_n\}_{n=1}^{\infty}$ — счетную локальную база, такую что

$$W_1 \supset W_2 \supset W_3 \supset \dots$$

Тогда

$$\forall x \in [S]_{\tau} \stackrel{def}{\Leftrightarrow} \forall U(x) \in \tau \Rightarrow U(x) \cap S \neq \varnothing$$

Тогда это выполнено и для элементов локальной базы $B(x) = \{W_n\}_{n=1}^{\infty}$:

$$\forall n \in \mathbb{N} \Rightarrow W_n \cap S \neq \varnothing \Rightarrow \exists x_n \in W_n \cap S$$

Значит существует $\{x_n\}_{n=1}^{\infty}$. Тогда:

$$\forall U(x) \exists N \in \mathbb{N} \ W_N \subset U(x)$$
 (определение локальной базы) $\Rightarrow \forall n \geq N: \ x_n \in W_n \subset W_N \subset U(x)$

Значит $x_n \stackrel{\tau}{\to} x$, то есть x — секвенциальная точка прикосновения.

5 Топологически и секвенциально непрерывные отображения топологических пространств, связь между ними. Критерий топологической непрерывности отображения.

Определение 5.1. Пусть $(X, \tau_1), (Y, \tau_2)$ — топологические пространства. $f: (X, \tau_1) \to (Y, \tau_2)$ — отображение. Тогда f называется топологически непрерывным, если

$$\forall x \in X \ \forall U(f(x)) \in \tau_2 \ \exists V(x) \in \tau_1 : \ f(V(x)) \subset U(f(x))$$

Отображение f называется **секвенциально непрерывным**, если

$$\forall x \in X : \ \forall \{x_n\}_{n=1}^{\infty} \subset X : x_n \xrightarrow{\tau_1} x \Rightarrow f(x_n) \xrightarrow{\tau_2} f(x)$$

Утверждение 5.2. Пусть $(X, \tau_1), (Y, \tau_2)$ — топологические пространства $f: (X, \tau_1) \to (Y, \tau_2)$ — отображение, тогда:

- 1. Если f— топологически непрерывна, то f секвенкциально непрерывно.
- 2. Обратное неверно
- 3. Если (X, τ_1) удовлетворяет аксиоме счетности, то из секвенциальной непрерывности следует топологическая.

Доказательство.

1. Пусть $f:(X,\tau_1)\to (Y,\tau_2), f$ — топологически непрерывна и $\{x_n\}\subset X, x_n\to x$. В силу топологической непрерывности f имеем:

$$\forall U(f(x)) \in \tau_2 \exists V(x) \in \tau_1 : f(V(x)) \subset U(f(x))$$

В силу сходимости x_n к x имеем:

$$\exists N \in \mathbb{N}: \ \forall n \geq N: x_n \in V(x)$$

Тогда:

$$\exists N \in \mathbb{N} : \forall n \geq N : f(x_n) \in U(f(x))$$

Таким образом $f(x_n) \stackrel{\tau_2}{\to} f(x)$. То есть f — секвенциально непрерывна.

2. Пусть $X=Y=\mathbb{R},\ \tau_2=\tau_o$ — обычная топология на прямой. $\tau_1=\tau_z$ — топология Зарисского.

$$\tau_z = \{ G \subset \mathbb{R} \mid |\mathbb{R} \setminus G| \le |\mathbb{N}| \} \cup \{\emptyset\}$$

Базой обычной топологии на прямой являются интервалы, то есть

$$G \in \tau_0 \Leftrightarrow \forall y \in G \ \exists (a,b) : y \in (a,b) \subset G$$

Для ОТР топологии Зарисского любая начала покажем, сходящаяся последовательность является стационарной начиная некоторого $^{\mathrm{c}}$ номера. Действительно:

$$\{x_n\} \subset \mathbb{R}: x_n \xrightarrow{\tau_z} x \Leftrightarrow \forall U(x) \in \tau_z: \exists N \in \mathbb{N}: \forall n \geq N: x_n \in U(x)$$

Рассмотрим окрестность точки x:

$$U(x) = \mathbb{R} \setminus \{x_n \mid x_n \neq x\}$$

Мы выкинули из последовательности x_n все элементы, не совпадающие с x, и взяли дополнение этого множества. Ясно, что оно не более чем счетно, тогда начиная с некоторого номера все элементы последовательности должны лежать в этой окрестности, но все элементы последовательности не совпадающие с x выкинуты из нее, таким образом:

$$\exists N: \ \forall n > N: \ x_n = x$$

Теперь рассмотрим произвольное отображение $f:(\mathbb{R},\tau_z)\to(\mathbb{R},\tau_o)$, покажем, что оно является секвенциально непрерывным. Действительно:

$$x_n \xrightarrow{\tau_z} x \Rightarrow \exists N : \forall n \ge N : x_n = x \Rightarrow f(x_n) = f(x) \Rightarrow f(x_n) \xrightarrow{\tau_o} f(x)$$

Таким образом любое отображение секвенциально непрерывно, но рассмотрим отображение:

$$f: (\mathbb{R}, \tau_z) \to (\mathbb{R}, \tau_o): f(x) = x$$

Имеем:

$$\forall x \in \mathbb{R} : \exists (a,b) \subset \mathbb{R} : f(x) = x \in (a,b)$$

Для того, чтобы отображение было топологически непрерывным, нам бы хотелось найти окрестность $x\ V(x) \in \tau_z$, чтобы ее образ попал в интервал (a,b):

$$f(V(x)) = V(x) \stackrel{?}{\subset} (a, b)$$

Поймем, что такого произойти не может, действительно, пусть такая окрестность V(x) нашлась, тогда

$$\mathbb{R} \setminus (a,b) \subset \mathbb{R} \setminus V(x)$$

Но слева стоит множество мощности континуум, а справа стоит не более чем счетное множество, так как V(x) не пусто, получаем противоречие. Значит отображение f(x) = x не является топологически непрерывным, являясь при этом секвенциально непрерывным.

3. Пусть для (X, τ_1) верна аксиома счетности и $f: (X, \tau_1) \to (Y, \tau_2)$ — секвенциально непрерывно. Предположим, что f не является топологически непрерывным. То есть

$$\exists x \in X \ \exists U(f(x)) \in \tau_2 : \ \forall V(x) : \ f(V(x)) \nsubseteq U(f(x))$$

В силу аксиомы счетности для этой точки x существует счетная локальная база. $\{W_n\}_{n=1}^{\infty} \ (W_1 \supset W_2 \supset \dots)$. Тогда из утверждения выше имеем:

$$\forall n \ge N : f(W_n) \nsubseteq U(f(x)) \Rightarrow \exists x_n \in W_n : f(x_n) \notin U(f(x))$$

Тогда построена последовательность x_n , которая в силу свойств локальной базы сходится к x по топологии τ_1 , но в силу секвенциальной непрерывности f это должно влечь: $f(x_n) \xrightarrow{\tau_2} f(x)$, но $f(x_n) \notin U(f(x))$, противоречие. Таким образом f — топологически непрерывна.

Определение 5.3. Пусть X,Y — множества и $f:X\to Y$ — отображение. $S\subset Y$, тогда прообразом S относительно f называется:

$$f^{-1}(S) := \{ x \in X \mid f(x) \in S \}$$

Теорема 5.4 (Критерий топологической непрерывности). Пусть $f:(X,\tau_1)\to (Y,\tau_2)$. Тогда следующие утверждения эквивалентны:

- 1. f топологически непрерывна.
- 2. Прообраз любого открытого множества относительно f открыт.

$$\forall G \in \tau_2: f^{-1}(G) \in \tau_1$$

3. Прообраз любого замкнутого множества относительно f замкнут.

$$\forall G - \tau_2$$
-замкнуто : $f^{-1}(G) - \tau_1$ -замкнуто

Доказательство.

 $(2)\Rightarrow(3)\ S\subset Y-\tau_2$ -замкнуто $\Leftrightarrow Y\setminus S\in \tau_2$ По условию имеем:

$$\Rightarrow f^{-1}(Y \setminus S) \in \tau_1$$

Тогда по свойствам прообраза:

$$f^{-1}(Y \setminus S) = X \setminus f^{-1}(S) \in \tau_1$$

Значит прообраз замкнут.

- $(3) \Rightarrow (2)$ Доказывается аналогично.
- (1) \Rightarrow (2) Пусть f топологически непрерывно, тогда:

$$\forall G \in \tau_2, \forall x \in f^{-1}(G)$$
 (считаем что непусто) $\Rightarrow f(x) \in G \in \tau_2$

Значит G — окрестность f(x) в (Y, τ_2) , следовательно из определения топологической неперывности f:

$$\exists U(x) \in \tau_1: f(U(x)) \subset G \Rightarrow U(x) \subset f^{-1}(G)$$

Значит

$$f^{-1}(G) = \bigcup_{x \in f^{-1}(G)} \{x\} \subset \bigcup_{x \in f^{-1}(G)} U(x) \subset f^{-1}(G)$$

Тогда так как $U(x) \in \tau_1$

$$f^{-1}(G) = \bigcup_{x \in f^{-1}(G)} U(x) \in \tau_1$$

Фактически строчки выше это доказательство того, что множество открыто если любая его точка содержится с некоторой окрестностью. Таким образом прообраз любого открытого открыт.

 $(2)\Rightarrow(1)$ Пусть для любого открытого, прообраз открыт. Докажем по определению топологическую непрерывность f.

$$\forall U(f(x)) \in \tau_2 \ \exists V(x) = f^{-1}(U(f(x))) \ni x : \ f(V(x)) \subset U(f(x))$$

6 Счетно компактные и секвенциально компактные подмножества топологического пространства, связь между ними.

Определение 6.1. K называется счетным компактом в (X, τ) , если из любого счетного открытого покрытия K можно выделить конечное подпокрытие.

Определение 6.2. K называется секвенциальным компактом в (X, τ) , если любая последовательность из K имеет сходящуюся подпоследовательность. Формально: $\forall \{x_n\}_{n=1}^{\infty} \subset K \; \exists n_1 < n_2 < \cdots < n_k < \ldots \; \text{и} \; \exists x_0 \in K : x_{n_k} \xrightarrow{\tau} x_0 \; (k \to \infty)$

Утверждение 6.3. Из секвенциальной компактности следует счетная компактность.

Доказательство. Пусть K — секвенциальный компакт, предположим, что K — не является счетным компактом, тогда найдется покрытие $P = \{V_n\}_{n=1}^{\infty} - \tau$ -покрытие K, не имеющее конечного подпокрытия, то есть:

$$\forall n \in \mathbb{N}: \ K \setminus \bigcup_{m=1}^{n} V_m \neq \emptyset$$

Тогда К НАМ В РУКИ ПЛЫВЕТ последовательность $x_n \in K \setminus \bigcup_{m=1}^n V_m$. В силу секвенциальной компактности K данная последовательность имеет сходящуюся подпоследовательность $x_{n_k} \to x_0 \in K$ $(k \to \infty)$. Но x_0 лежит в K, тогда в силу того, что V_n покрывают все K найдется номер n_0 , такой что $x_0 \in V_{n_0}$. Тогда в силу сходимости подпоследовательности к x_0 :

$$\exists k_0: \forall k \geq k_0: x_{n_k} \in V_{n_0}$$

Но тогда взяв достаточно большой номер k^* , а конкретно

$$k^* \ge \max\{n_0, k_0\} \Rightarrow n_{k^*} \ge k^* \ge n_0$$

Получим:

$$V_{n_0} \ni x_{n_{k^*}} \in K \setminus \bigcup_{m=1}^{n_{k^*}} V_m \subset K \setminus V_{n_0}$$

Получаем противоречие.

Утверждение 6.4. Пусть K — счетный компакт и выполнена аксиома счетности, тогда K — секвенциальный компакт.

Доказательство. Возьмем произвольную последовательность $\{x_n\} \subset K$, тогда покажем, что найдется такая точка $z \in K$, которая имеет в любой своей окрестности бесконечное количество элементов $\{x_n\}$.

$$\exists z \in K: \ \forall U(z) \Rightarrow \{n \in \mathbb{N} \mid x_n \in U(z)\}$$
 — бесконечно

Предположим противное, тогда

$$\forall z \in K: \exists U(z) \in \tau: \ \{n \in \mathbb{N} \mid x_n \in U(z)\}$$
 — конечно или пусто

Рассмотрим конечные или пустые подмножества натурального ряда $I\subset \mathbb{N}$ и для каждого такого I определим:

$$M_I = \{ z \in K \mid \{ n \in \mathbb{N} \mid x_n \in U(z) \} = I \}$$

Где U(z) — существующая по предположению окрестность z, которая содержит конечное или пустое множество элементов последовательности. Заметим, что количество таких I — счетно, тогда M_I — тоже счетно. Теперь определим

$$V_I = \bigcup_{z \in M_I} U(z) \in \tau$$

Получили счетное покрытие: $P = \{V_I \mid I \subset \mathbb{N} - \text{конечно или пусто}\}$ Это покрытие, так как $\forall z \in K: I(z) := \{n \mid x_n \in U(z)\}$ и $z \in U(z) \subset V_{I(z)}$. Но K — счетный компакт, тогда существуют I_1, \ldots, I_N такие что

$$K \subset \bigcup_{m=1}^{N} V_{I_m}$$

 $Ho \cup I_n$ — конечное множество индексов, тогда

$$\forall n \in \mathbb{N} \setminus \bigcup_{n=1}^{N} I_n \Rightarrow K \ni x_n \notin \bigcup_{m=1}^{N} V_{I_m} \supset K$$

Получили противоречие, таким образом:

$$\exists z \in K : \ \forall U(z) \Rightarrow \{n \in \mathbb{N} \mid x_n \in U(z)\}$$
 — бесконечно

В силу аксиомы счетности для этой точки имеется счетная локальная база:

$$\exists \{W_n(z)\}_n^{\infty} \subset \tau : \ \forall U(z) \ \exists n : U(z) \supset W_n(z)$$

Причем, как было оговорено, считаем, что W_n упорядоченны по вложению. В силу свойств точки z:

- W_1 содержит бесконечно много элементов последовательности $\{x_n\}$, значит $\exists n_1: x_{n_1} \in W_1$
- W_2 содержит бесконечно много элементов $\{x_n\}$, значит $\exists n_2 > n_1$ (так как бесконечно много) $x_{n_2} \in W_2$

Догадливый читатель уже понял, что, продолжая таким образом, мы получим подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$, которая сходится к z в силу свойств локальной базы:

$$\forall U(z) \; \exists N \in \mathbb{N} : \forall k \geq N : x_{n_k} \in W_N(z) \subset U(z)$$

Таким образом K — секвенциальный компакт.

7 Компактные подмножества топологического пространства. Теорема Александера о предбазе.

Определение 7.1. $K \subset X$ называется топологическим компактом в (X, τ) если для любого τ - покрытия множества K существует его конечное подпокрытие. Если X = K, то (X, τ) называют компактным топологическим пространством

Теорема 7.2 (Александера о предбазе). Пусть (X, τ) — топологическое пространство, σ — предбаза (3.4) и $K \subset X$ такое, что любое σ -покрытие K имеет конечное подпокрытие, тогда K — топологический компакт.

Доказательство. Предположим, что K — не является топологическим компактом. Тогда обозначим:

$$F = \{ P \subset \tau \mid P - \text{покрытие } K \text{ не имеющее конечного подпокрытия} \}$$

В силу нашего предположения $F \neq \emptyset$. Упорядочим F относительно вложения, получим ЧУМ (F, \subset) . Применим теорему Хаусдорфа о максимальности (1.4), тогда в данном чуме существует максимальный ЛУМ L. Рассмотрим (по классике):

$$P_L = \bigcup_{P \in L} P$$

Так как $\forall P \in L \Rightarrow P$ — покрытие K, то P_L — тоже τ -покрытие K. Причем P_L не имеет конечного подпокрытия. Действительно. Предположив противное рассмотрим полученное конечное подпокрытие:

$$V_1,\ldots,V_N\in P_L$$

Так как P_L — лум, то найдется $P_o \in P_L$, которое содержит все $V_1, \dots V_N$, тогда получаем противоречие с тем, что P_o не имеет конечного подпокрытия. Таким образом $P_L \in F$. Заметим что P_L обладает необычным свойством:

$$\forall V \in \tau \setminus P_L \Rightarrow P_L \cup \{V\} - \tau$$
-покрытие K имеющее конечное подпокрытие.

Так как, если $P_L \cup \{V\} \in F$, то L — не максимальный лум, действительно рассмотрим $L_V = L \cup \{P_L \cup \{V\}\}$ — это будет лум в F и он больше L, противоречие. Таким образом

$$\forall V \in \tau \setminus P_L \ \exists V_1, \dots, V_N \in P_L : \ V_1 \cup \dots \cup V_N \cup V \supset K$$

Теперь можно приступать к использованию предбазы. Рассмотрим

$$P_{\sigma} = P_L \cap \sigma$$

То есть, мы выбираем из P_L элементы предбазы. По условию любое σ -покрытие имеет конечное подпокрытие, тогда P_{σ} — не является покрытием K. Тогда в зазоре найдется точка:

$$\exists x \in K : x \notin \bigcup_{V \in P_{\sigma}} V$$

С другой стороны P_L — покрытие K, значит $\exists V \in P_L : x \in V. V$ — открытое множество, вспоминая определение предбазы имеем:

$$\exists W_1, \dots W_N \in \sigma : \ x \in \bigcap_{k=1}^N W_k \subset V$$

Заметим, что W_k не лежат в P_L :

$$W_k \in \sigma, W_k \notin P_\sigma \Rightarrow W_k \notin P_L$$

Тогда вспоминаем удивительное свойство P_L :

$$\forall k \in \overline{1,N} : P_L \cup W_k$$
 — имеет конечное подпокрытие.

То есть для каждого k найдутся множества $V_i^{(k)} \in P_L$:

$$V_1^{(k)}, \dots V_{M_k}^{(k)} : K \subset \bigcup_{i=1}^{M_k} V_i^{(k)} \cup W_k$$

Есть два гендера вида точек из K: покрывающиеся объединением V_i или покрывающиеся W_k , тогда соорудим покрытие K:

$$K \subset \left(\bigcup_{k=1}^{N}\bigcup_{i=1}^{M_k} V_i^k\right) \cup \bigcap_{k=1}^{N} W_k$$

Но $\bigcap_{k=1}^{N} W_k \subset V \in P_L$, таким образом мы только что выделили конечное подпокрытие из покрытия P_L :

$$K \subset \left(\bigcup_{k=1}^N \bigcup_{i=1}^{M_k} V_i^k\right) \cup V$$

Что противоречит тому, что $P_L \in F$ из этого следует, что предположение о непустоте F неверно и теорема доказана.

топологическое замкнутость хаусдорфова

пространство. компактного топологического

Определение 8.1. Топологическое пространство (X, τ) называется хаусдорфовым, если для любых неравных $x, y \in X$ существуют их непересекающиеся окрестности.

Утверждение 8.2. Пусть (X, τ) — хаусдорфово, $K \subset X$ — компакт, тогда K τ -замкнут.

Доказательство. Пусть $x \notin K$, тогда в силу хаусдорфовости пространства $\forall y \in K$ существуют окрестности $U(y), U_y(x) : U(y) \cap U_y(x) = \emptyset$. Тогда рассмотрим покрытие

$$\mathcal{P} = \{ U(y) \mid y \in K \}$$

В силу компактности K у него существует конечное подпокрытие, те

$$\exists y_k \in K \Rightarrow \bigcup_{k=1}^N U(y_k) \supset K$$

Тогда определим окрестность точки x:

$$V(X) = \bigcap_{k=1}^{N} U_{y_k}(x)$$

Тогда по построению $V(x) \cap K = \emptyset$, а значит x — внутренняя точка для множества $X \setminus K$, откуда следует, что K — замкнуто.

9 Декартово произведение топологических пространств. Топология Тихонова

Определение 9.1. Пусть $\mathscr{A} \neq \varnothing$ — множество индексов и $\forall \alpha \in \mathscr{A} : (X_a, \tau_a)$ — ТП. Тогда рассмотрим всевозможные функции $x(\cdot) : \mathscr{A} \to X_\alpha : \forall \alpha \ x(\alpha) \in X_\alpha$. Тогда множество всех таких функций называется декартовым произведением

$$\underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}$$
 — декартово произведение X_{α} по $\alpha \in \mathscr{A}$

Если $X_{\alpha} = X$, то

$$X^{\mathscr{A}} := \underset{\alpha \in \mathscr{A}}{\times} X$$

Теперь построим в этом множестве топологию. Для каждого α определим функцию, действующую из декартова произведения в соответствующее X_{α} :

$$\pi_{\alpha}: \underset{\beta \in \mathscr{A}}{\times} X_{\beta} \to X_{\alpha}$$

Такую что: $\forall x \in \underset{\beta \in \mathscr{A}}{\times} X_{\beta} : \pi_{\alpha}(x) = x(\alpha)$. Про нее можно мыслить как проекцию x на соответствующее X_{α} .

Определение 9.2. Для семейства топологических пространств $(X_{\alpha}, \tau_{\alpha})$ по $\alpha \in \mathscr{A} \neq \varnothing$. Топологией Тихононова τ_T в декартовом произведении $\underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}$ называется слабейшая в этом декартовом произведении топология, такая что $\forall \alpha \in \mathscr{A}$ определенные выше π_{α} — топологически непрерывны.

Определение совсем не конструктивное, поэтому сейчас мы построим эту топологию явно.

Утверждение 9.3. Тихоновская топология τ_T в декартовом произведении $\underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}$ имеет предбазу:

$$\sigma_T = \{ \pi_\alpha^{-1}(V) \mid V \in \tau_\alpha, \alpha \in \mathscr{A} \}$$

Доказательство. Во-первых:

$$\pi_{\alpha}^{-1}(X_{\alpha}) = \underset{\beta \in \mathscr{A}}{\times} X_{\beta}$$

Значит выполнен критерий предбазы (3.5), значит σ_T задает некоторую топологию, которую мы ненароком обозначим τ_T . С другой стороны если τ — некоторая топология в $\underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}$, такая что $\forall \alpha \in \mathscr{A} : \pi_{\alpha}$ — топологически непрерывно, то (прообраз открытого открыт):

$$\forall V \in \tau_{\alpha} \Rightarrow (\pi_{\alpha})^{-1}(V) = \{x \mid x(\alpha) \in V\} \in \tau$$

Тогда, так как au — топология, произвольные конечные пересечения открытых множеств принадлежат топологии:

$$\forall V_k \in \tau_{\alpha_k}, \ \forall \alpha_1, \dots, \alpha_k \in \mathscr{A} \ k \in \overline{1, N} : \bigcap_{k=1}^N \pi_{\alpha}^{-1}(V_k) \subset \tau$$

Но заметим, что $\beta_T = \left\{\bigcap_{k=1}^N \pi_\alpha^{-1}(V_k) \mid V_k \in \tau_{\alpha_k} \ \alpha_1, \dots, \alpha_k \in \mathscr{A} \ k \in \overline{1,N}, N \in \mathbb{N} \right\}$. Тогда $\tau_T \subset \tau$. То есть любая топология обеспечивающая непрерывность π_α содержит построенную τ_T , значит это слабейшая топология и таким образом τ_T — топология Тихонова.

Замечание. Если в исходных пространствах топология задана базой β_{α} — база τ_{α} , то предбазу топологии тихонова можно определить как:

$$\hat{\sigma_T} = \{ \pi_{\alpha}^{-1}(V) \mid \alpha \in \mathcal{A}, V \in \beta_{\alpha} \}$$

Теорема 9.4 (Тихонова о топологической компактности декартова произведения). Пусть $\mathscr{A} \neq \varnothing$ и $\forall \alpha \in \mathscr{A}$ имеем $(X_{\alpha}, \tau_{\alpha})$ — компактные топологическое пространства. Тогда декартово произведение этих пространств с топологией Тихонова $\begin{pmatrix} \times & X_{\alpha}, \tau_{T} \end{pmatrix}$ тоже топологический компакт.

Доказательство. Применим теорему Александера о предбазе (7.2). Предбаза Тихоновской топологии:

$$\sigma_T = \{ \pi_\alpha^{-1}(V) \mid V \in \tau_\alpha, \alpha \in \mathscr{A} \}$$

Пусть P — некоторое σ_T -покрытие $\underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}$, то есть:

$$\exists I \subset \mathscr{A}, \ \forall \alpha \in I \ \exists M_{\alpha} \subset \tau_{\alpha} : P = \{\pi_{\alpha}^{-1}(V) \mid \alpha \in I, \ V \in M_{\alpha}\} \ \text{if} \ \underset{\alpha \in \mathscr{A}}{\times} X_{\alpha} = \bigcup_{\alpha \in I} \bigcup_{V \in M_{\alpha}} \pi_{\alpha}^{-1}(V)$$

Теперь нам хочется выбрать конечное подпокрытие используя компактность исходных пространств.

Покажем, что найдется $\alpha_0 \in I$ такой что M_{α_0} — является τ_{α_0} -покрытием X_{α_0} . Предположим противное, если такого индекса не найдется, то

$$\forall \alpha \in I: M_{\alpha}$$
 — не покрытие $X_{\alpha} \Rightarrow \exists x_{\alpha} \in X_{\alpha}: x_{\alpha} \notin \bigcup_{V \in M_{\alpha}} V$

Строчкой выше мы каждому индексу из I сопоставили точку $x_{\alpha} \in X_{\alpha}$, остальным индексам сопоставим любой элемент, тогда мы определили элемент декартова произведения

$$x \in \underset{\alpha \in \mathscr{A}}{\times} X_{\alpha} : x(\alpha) = x_{\alpha}$$

По построению эта точка для каждого своего аргумента не покрывается ни одним M_{α} :

$$\forall \alpha \in I : \forall V \in M_a : \pi_{\alpha}(x) = x_{\alpha} \notin V \Leftrightarrow \forall \alpha \in I, \ \forall V \in M_a : x \notin \pi_{\alpha}^{-1}(V)$$

Таким образом, $x \in \underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}$ но не покрывается P — противоречие. Таким образом $\exists \alpha_0 \in I$ такой индекс, что M_{α_0} — покрытие X_{α_0} , так как $(X_{\alpha_0}, \tau_{\alpha_0})$ — компактное топологическое пространство, то существует конечное подпокрытие:

$$V_1, \dots, V_N \in M_{\alpha_0} : X_{\alpha_0} = \bigcup_{k=1}^N V_k$$

Тогда $\pi_{\alpha_0}(V_1), \dots, \pi_{\alpha_0}(V_N) \in P$ — конечное подпокрытие $\underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}$, значит по теореме Александера $\left(\underset{\alpha \in \mathscr{A}}{\times} X_{\alpha}, \tau_T\right)$ — топологический компакт.

10 Топологические векторные пространства. Замкнутость локально компактного подпространства и локальная компактность конечномерного подпространства топологического векторного пространства.

Определение 10.1. Пусть X — линейное пространство над \mathbb{R} (все утверждения с доказательствами сохраняются и для \mathbb{C}), топология в X называется векторной, если

- $\forall x \in X \Rightarrow X \setminus \{x\} \in \tau$. То есть выполняется аксиома T1
- ullet Сложение и умножение на скаляр в (X, au) являются au-непрерывными. То есть
 - $\forall x, y \in X \ \forall U(x+y) \in \tau \Rightarrow \exists V(x), W(y) \in \tau : \ V(x) + W(y) \subset U(x+y)$
 - $-\forall x \in X \ \forall \alpha \in \mathbb{R} : \forall U(\alpha x) \in \tau : \ \exists V(x), \ \exists \varepsilon > 0 : \forall \lambda \in \mathbb{R} : |\lambda \alpha| < \varepsilon \Rightarrow \lambda V(x) \subset U(\alpha x)$

Утверждение 10.2. Для ТВП (X, τ) верны следующие утверждения:

- $\forall G \in \tau \ \forall x \in X \Rightarrow x + G \in \tau$
- $\forall \alpha \in \mathbb{R}, \ \alpha \neq 0 : \forall G \in \tau \Rightarrow \alpha G \in \tau$

Доказательство.

• Рассмотрим отображение $y \in X, x \in X$: $f_x(y): (X,\tau) \to (X,\tau): f_x(y)=y-x$ так как топология векторная, то f_x — непрерывно, значит:

$$\forall G \in \tau : f_x^{-1}(G) = x + G \in \tau$$

• Рассмотрим отображение:

$$g_{\alpha}: (X, \tau) \to (X, \tau): \forall x \in X: g_{\alpha}(x) = \frac{x}{\alpha}$$

Умножение на фиксированный скаляр $\frac{1}{\alpha}$ — непрерывно по свойствам векторной топологии, тогда

$$\forall G \in \tau: \ g_{\alpha}^{-1}(G) = \alpha G \in \tau$$

Далее будет несколько лемм, которые говорят о том, что в векторной топологии есть окрестности по свойствам напоминающие шары в метрической топологии.

Лемма 10.3. Пусть (X, τ) — ТВП, тогда

$$\forall U(0) \in \tau \Rightarrow \exists V(0)$$
 — симметричная окрестность

То есть V(0) = -V(0) такая что:

$$U(0) \supset V(0) + V(0)$$

Доказательство. Подкованный читатель знает, что:

$$0 = 0 + 0$$

Тогда в силу топологической непрерывности сложения:

$$\forall U(0) \in \tau \Rightarrow \exists U_1(0), U_2(0) : U_1(0) + U_2(0) \subset U(0)$$

Тогда положим:

$$V(0) := U_1(0) \cap U_2(0) \cap (-U_1(0)) \cap (-U_2(0)) \in \tau$$

Тогда полученная окрестность очевидно будет симметричной и $V(0) + V(0) \subset U(0)$

Определение 10.4. Пусть X — линейное пространство, $M \subset X$, тогда M — называется уравновешенным если:

$$\forall \lambda \in \mathbb{R} : |\lambda| < 1 \Rightarrow \lambda M \subset M$$

Лемма 10.5. Пусть (X, τ) — векторное топологическое пространство, тогда

$$\forall U(0) \in \tau \; \exists V(0)$$
 — уравновешенная окрестность : $V(0) \subset U(0)$

Доказательство. Напрягая мозг в очередной раз запишем:

$$0 \cdot \bar{0} = \bar{0}$$

Где 0 — скалярный ноль, а $\bar{0} \in X$, тогда в силу непрерывности произведения:

$$\forall U(0) \in \tau \ \exists W(0) \in \tau, \ \exists \varepsilon > 0 : \forall |\lambda| < \varepsilon \Rightarrow \lambda W(0) \subset U(0)$$

Тогда взяв:

$$\tau \ni V(0) := \bigcup_{|\lambda| < \varepsilon} \lambda W(0) \subset U(0)$$

получим уравновешенную окрестность:

$$\forall \alpha \in \mathbb{R}|\alpha| < 1 \Rightarrow \alpha V(0) = \alpha \bigcup_{|\lambda| < \varepsilon} \lambda W(0) = \bigcup_{|\lambda| < \varepsilon} \alpha \lambda W(0) \subset V(0)$$

Кроме этого мы БЕСПЛАТНО получили, что V(0) — является симметричной.

Утверждение 10.6. (X,τ) — ТВП, тогда (X,τ) — удовлетворяет аксиоме отделимости Т2, то есть является Хаусдорфовым.

Доказательство. Имеем: $\forall x, y \in X : x \neq y \Rightarrow 0 \neq x - y$, тогда по аксиоме T1:

$$0 \in X \setminus \{x - y\} \in \tau$$

Тогда мы имеем окрестность нуля $U(0) = X \setminus \{x - y\}$, тогда по лемме (10.5) $\exists V(0) \in \tau$, V(0) = -V(0) и

$$V(0) + V(0) = V(0) - V(0) \subset X \setminus \{x - y\}$$

Тогда рассмотрим:

$$W(x) = (x + V(0)), W(y) = (y + V(0))$$

Предположим, что их пересечение непусто:

$$\exists z \in (x + V(0)) \cap (y + V(0))$$

Тогда z = x + u = y + v, где $u, v \in V(0)$, тогда:

$$x - y = v - u \subset V(0) - V(0) = V(0) + V(0) \subset X \setminus \{x - y\}$$

Противоречие. Таким образом найдены непересекающиеся окрестности x и y.

Теперь докажем более сильное утверждение про отделимость, это свойство называют четвертой аксиомой отделимости.

Утверждение 10.7. Пусть (X,τ) — ТВП. $K\subset X$ — топологический компакт, $S\subset X$ — τ -замкнутое множество. И $K\cap S=\varnothing$. Тогда

$$\exists V(0) \in \tau : (K + V(0)) \cap (S + V(0)) = \varnothing$$

V(0) — симметричная.

Доказательство. Воспользуемся замкнутостью $S: X \setminus S \in \tau$, и так как $K \cap S = \emptyset$, то $K \subset X \setminus S$. Тогда

$$\forall x \in K \Rightarrow X \setminus S - x = U(0)$$

Тогда по лемме (10.3), найдется симметричная окрестность. $V_x(0) \in \tau$, $V_x(0) = -V_x(0)$. И

$$V_x + V_x + V_x + V_x \subset U(0)$$

(В лемме говорится о сумме двух окрестностей, но ясно что этот процесс можно продолжать). Тогда мы получили:

$$\forall x \in K : x + V_x + V_x + V_x + V_x \subset X \setminus S$$

С другой стороны, так как $x+V_x \in \tau$, мы, очевидно, имеем открытое покрытие K:

$$P = \{x + V_x \mid x \in K\}$$

Тогда P имеет конечное подпокрытие:

$$\{x_1 + V_{x_1}, \dots, x_N + V_{x_N}\}, x_n \in K \text{ M } K \subset \bigcup_{n=1}^N (x_n + V_{x_n})$$

Построим

$$V(0) = \bigcap_{n=1}^{N} V_{x_n} \in \tau$$

Так как V_{x_n} — симметричные, то и V(0) — симметричная окрестность нуля. Предположим, что $\exists z \in (K+V(0)) \cap (S+V(0))$.

$$z \in x + V(0) \subset x_n + V_{x_n} + V(0) \subset x_n + V_{x_n} + V(x_n)$$

Так как точка x покрывается одним из множеств $x_n + V_{x_n}$ а V(0) — пересечение соответствующих окрестностей. С другой стороны $z \in S + V(0)$, тогда

$$y + V(0) \ni z \in x_n + V_{x_n} + V_{x_n}$$

Тогда:

$$S \ni y \in x_n + V_{x_n} + V_{x_n} - V_{x_n} = x_n + V_{x_n} + V_{x_n} + V_{x_n} \subset X \setminus S$$

Противоречие.

Докажем еще одну лемму:

Лемма 10.8. Пусть (X, τ) — топологическое векторное пространство, тогда

$$\forall U(0) \in \tau \Rightarrow \exists V(0) \in \tau : [V(0)]_{\tau} \subset U(0)$$

Доказательство. Рассмотрим окрестность нуля $U(0) \in \tau$ тогда, $S = X \setminus U(0) - \tau$ -замкнуто. Рассмотрев компакт $K = \{0\}$, получим, что $K \cap S = \varnothing$. Теперь по предыдущей лемме:

$$\exists V(0) \in \tau$$
 — симметричная : $(K + V(0)) \cap (S + V(0)) = \varnothing$

Но так как $K = \{0\}$, то K + V(0) = V(0). Получается, что

$$V(0) \subset X \setminus (S + V(0))$$

Ho $S+V(0)\in \tau$, так как $V(0)\in \tau$, значит $V(0)\subset X\setminus (S+V(0))$ — содержится в замкнутом множестве, тогда

$$[V(0)]_{\tau} \subset X \setminus (S + V(0)) \subset X \setminus S = U(0)$$

Определение 10.9. Пусть $(X_1, \tau_1), (X_2, \tau_2)$ — два топологических пространства. И $\psi: X_1 \to X_2$ — биекция, тогда если $\psi(X_1, \tau_1) \to (X_2, \tau_2)$ и $\psi^{-1}: (X_2, \tau_2) \to (X_1, \tau_1)$ — топологически непрерывны, то ψ — называется гомеоморфизмом. А эти пространства называются гомеоморфными.

Приведем несколько утверждений по поводу гомеоморфных пространств:

Утверждение 10.10. Если ψ — гомеоморфизм, то

- 1. $\forall G \in \tau_1 \Rightarrow \psi(G) \in \tau_2$
- 2. $M \subset X_1 \tau_1$ -замкнуто, то $\psi(M) \tau_2$ -замкнуто.
- 3. Если $M \subset X_1$, то $\psi([M]_{\tau_1}) = [\psi(M)]_{\tau_2}$
- 4. Если $K \subset X_1 \tau_1$ -компакт, то $\psi(K) \tau_2$ -компакт.

Доказательство. 1. Так как обратное отображение непрерывно, то прообраз открытого открыт:

$$\psi(G) = (\psi^{-1})^{-1}(G) = \{x_2 \in X_2 \mid \psi^{-1}(x_2) \in G\} \in \tau_2$$

- 2. рассмотрев $X \setminus M$ и применив предыдущее утверждение получаем требуемое.
- 3.

$$\psi\left(\bigcap_{\substack{S\subset X_1\\M\subset S\\X_1\backslash S\in\tau}}S\right)=(\psi^{-1})^{-1}\left(\bigcap S\right)=\bigcap(\psi^{-1})^{-1}(S)=\bigcap_{\substack{S\subset X_1\\M\subset S\\X_1\backslash S\in\tau}}\psi(S)$$

 $\psi(S)- au_2$ -замкнуто, а $M\subset S\Leftrightarrow \psi(M)\subset \psi(S)=N$ Тогда:

$$\psi\left([M]_{\tau_1}\right) = \bigcap_{\substack{N\subset X_2\\\psi(M)\subset N\\\downarrow NC^-}} N = (\text{по определению}) = [\psi(M)]_{\tau_2}$$

4. Пусть $P - \tau_2$ -покрытие $\psi(K)$, тогда:

$$\{\psi(V)\mid V\in P\}$$
 — au_1 -покрытие K

Значит найдется конечное подпокрытие: $\exists V_1, \dots, V_N \in P$, такие что $\psi^{-1}(V_1), \dots, \psi^{-1}(V_N)$ — подпокрытие K, тогда V_1, \dots, V_N — подпокрытие $\psi(K)$, значит $\psi(K)$ — компакт.

Определение 10.11. ТВП (X, τ) — называется локально компактным, если $\exists U(0) \in \tau$, такая что $[U(0)]_{\tau}$ — компакт в (X, τ)

Идея доказательства замкнуности конечномерного подпространства.

Следующее утверждение, которое мы докажем, свяжет локальную компактность и замкнутость. После мы воспользуемся следующим. Если L конечномерно, то существует изоморфизм между L и \mathbb{R}^n мы докажем, что такой изоморфизм всегда является гомеоморфизмом. \mathbb{R}^n является локально компактным пространством, кроме того ясно, что это свойство сохраняется при гомеоморфизме. Это и завершит полное доказательство.

Утверждение 10.12. Если (X,τ) — ТВП и $L\subset X$ — подпространство такое что (L,τ_L) — локально компактно $(\tau_L$ — индуцированная топология), то L — τ -замкнуто в (X,τ)

Доказательство. По условию $\exists U \in \tau, 0 \in U$, такая что $[U \cap L]_{\tau_L} = K$ — компакт в (L, τ_L) , по лемме (10.3) найдется симметричная окрестность нуля $U_1 \in \tau$, такая что

$$U_1 + U_1 \subset U$$

Кроме того по лемме (10.8) найдется окрестность нуля $U_2 \in \tau$, такая что $[U_2]_{\tau} \subset U_1$. Рассмотрев $V := U_2 \cap (-U_2)$ — симметричную окрестность с таким же свойством, получим:

$$[V]_{\tau} + [V]_{\tau} \subset U \in \tau$$

Возьмем произвольную точку $x \in X$, и рассмотрим множество:

$$S_x := L \cap (x + [V]_\tau)$$

Так как трансляция замкнутого множества не меняет замкнутости, то $x+[V]_{\tau}-\tau$ -замкнуто в (X,τ) , тогда $S_x-\tau_L$ -замкнуто в (L,τ_L) . Если $S_x\neq\varnothing$, то S_x- будет компактом в (L,τ_L) . Действительно:

$$\exists x_0 \in S_x \Rightarrow \forall y \in S_x : y - x_0 = \underbrace{(y - x)}_{\in [V]_\tau} - \underbrace{(x_0 - x)}_{\in [V]_\tau} \in [V]_\tau - [V]_\tau = [V]_\tau + [V]_\tau \subset U$$

Таким образом $y-x_0\in U$, при этом $y,x_0\in S_x\subset L$, значит $y-x_0\in L\cap U\subset K-\tau_L$ -компакт, тогда:

$$S_x \subset x_0 + K$$

Трансляция не меняет компактности, в силу непрерывности сложения. Таким образом мы погрузили замкнутое множество в компакт, значит оно является компактом. Тогда возьмем $\forall x \in [L]_{\tau}$, значит $\forall W \in \tau$ — окрестности нуля:

$$(x+W)\cap L\neq\varnothing$$

Рассмотрим

$$\beta_V = \{ W \in \tau \mid 0 \in W \subset V \}$$

 β_V — локальная база нуля в (X, τ) , так как для любой окрестности нуля U:

$$U\supset U\cap V\subset V$$
содержит ноль и открыто $\ \Rightarrow U\cap V\in\beta_V$

Теперь смотрим на множество S_W для каждого $W \in \beta_V$:

$$S_W = (x + [W]_\tau) \cap L$$

- Оно не пусто $S_W = (x + [W]_\tau) \cap L \supset (x + W) \cap L \neq \emptyset$
- Оно τ_L -замкнуто по построению
- $S_W \subset (x+[V]_{\tau}) \cap L$ компакт в (L, τ_L)

Таким образом $\forall W \in \beta_V \ S_W$ — компакт в (L, τ_L) . Теперь нам хочется доказать, что пересечение $\bigcap_{W \in \beta_V} S_W \neq \varnothing$. Докажем это в два этапа.

• Рассмотрим конечный набор $W_1, \dots, W_N \in \beta_V$, тогда покажем, что $\bigcap_{k=1}^N S_{W_k} \neq \varnothing$. Действительно:

$$\bigcap_{k=1}^{N} S_{W_k} = L \cap (x + [W_1]_{\tau}) \cap \cdots \cap (x + [W_N]_{\tau}) \supset L \cap \left(x + \bigcap_{k=1}^{N} [W_k]_{\tau}\right) \supset L \cap \left(x + \left[\bigcap_{k=1}^{N} W_k\right]_{\tau}\right) = S_{\bigcap_{k=1}^{N} W_k}$$

Но $\bigcap_{k=1}^N W_k \in \beta_V$, тогда по доказанному выше $S_{\bigcap_{k=1}^N W_k}$ не пусто.

• Теперь предположим $\bigcap_{W \in \beta_V} S_W = \emptyset$, тогда рассмотрим $S_V \in \beta_V$, так как пересечение всех S_W — пусто, то

$$S_V = S_V \setminus \bigcap_{W \in \beta_V} S_W = \bigcup_{W \in \beta_V} S_V \setminus S_W$$

Так как $S_W - \tau_L$ -замкнуто, тогда $L \setminus S_W \in \tau_L$, тогда

$$S_V = \bigcup_{W \in \beta_V} S_V \setminus S_W \subset \bigcup_{W \in \beta_V} \underbrace{L \setminus S_W}_{\in \tau_L}$$

Таким образом получили открытое покрытие компакта S_L . Радостно получаем конечное подпокрытие:

$$\exists W_1, \dots W_N \in \beta_V : \ S_V \subset \bigcup_{k=1}^N L \setminus S_{W_k} \Rightarrow S_V = \bigcup_{k=1}^N S_V \setminus S_{W_k} = S_V \setminus \bigcap_{k=1}^N S_{W_k}$$

Значит $\bigcap_{k=1}^{N} S_{W_k} = \emptyset$, противоречие с предыдущим пунктом.

Таким образом $\bigcap_{W \in \beta_V} S_W \neq \varnothing$. Значит $\exists z \in \bigcap_{W \in \beta_V} S_W \subset L$ тогда:

$$\forall W \in \beta_V : \ z \in x + [W]_\tau$$

Для любой окрестности нуля $\forall \tilde{U} \in \tau, 0 \in \tilde{U}$:

$$\exists \hat{U}: \tilde{U} \supset [\hat{U}]_{\tau} \supset [\hat{U} \cap V]_{\tau} = [W]_{\tau}$$

Таким образом:

$$\forall \tilde{U}(0) \in \tau : z - x \in \tilde{U}(0)$$

Получили, что z,x — топологически неотделимы, но в силу свойств векторной топологи такого не может быть, значит $x=z\in L$, таким образом $L-\tau$ -замкнуто. УРА

Для доказательства того, что изоморфизм будет гомеоморфизмом нам понадобится следующая лемма.

Лемма 10.13 (Критерий топологической непрерывности линейного функционала в ТВП). Пусть (X, τ) — ТВП и $f: X \to \mathbb{R}$ — линейное отображение. Тогда $f: (X, \tau) \to \mathbb{R}$ — является топологически непрерывным тогда и только тогда, когда $\ker f = \tau$ -замкнуто

Доказательство.

 \Rightarrow Если f — непрерывно, тогда $\operatorname{Ker} f = f^{-1}(\{0\})$ — замкнуто, так как $\{0\}$ замкнуто в $\mathbb R$

 \Leftarrow Пусть ядро $\operatorname{Ker} f - \tau$ -замкнуто. Тогда $X \setminus \operatorname{Ker} f \in \tau$. Если $\operatorname{Ker} f = X$, то $\forall x \in X : f(x) = 0$, константное отображение является непрерывным.

Теперь считаем, что $Kerf \neq X$. Значит

$$\exists x_0 \in X \setminus \operatorname{Ker} f \in \tau$$

Значит существует окрестность нуля

$$V := X \setminus Kerf - x_0 : 0 \in V, V \in \tau$$

По построению $(x_0 + V) \cap \text{Ker } f = \emptyset$. Так как V — окрестность нуля, то по лемме (10.5) $\exists W \in \tau, W \subset V$ — уравновешенная окрестность нуля, то есть

$$\forall \lambda \in \mathbb{R}, \ |\lambda| < 1: \ \lambda W \subset W$$

Тогда, сужаясь на эту окрестность, имеем $(x_0 + W) \cap Kerf = \emptyset$. Рассмотрим $f(W) \subset \mathbb{R}$.

Предположим, что f(W) — неограниченно в \mathbb{R} , тогда

$$\forall \alpha \in \mathbb{R} : \exists x \in W : |f(x)| > |\alpha|$$

Рассмотрим $\lambda = \frac{\alpha}{f(x)} \in \mathbb{R}$. Ясно что $|\lambda| < 1$, тогда по свойствам окрестности $W: \lambda W \subset W$, значит

$$\lambda x \in W \Rightarrow f(\lambda x) = \lambda f(x) = \alpha \in f(W)$$

В силу произвольности α получаем, что $f(W) = \mathbb{R}$. Но в таком случае рассмотрев $\alpha = -f(x_0) \in \mathbb{R}$ мы всегда сможем сварить суп найти такой x, что $x \in W$, $f(x) = -f(x_0)$. Из этого равенства моментально следует, что

$$x + x_0 \in \operatorname{Ker} f$$

С другой стороны $x \in W$, получаем противоречие с $(x_0 + W) \cap Kerf = \emptyset$ Значит f(W)— ограниченно. Эта ограниченность образа окрестности нуля сигнализирует о непрерывности функционала, покажем это строго. Имеем:

$$\exists M > 0: \ \forall x \in W \Rightarrow |f(x)| \le M$$

Значит

$$\forall \varepsilon > 0 \exists V = \frac{\varepsilon}{M} W \in \tau.$$

Тогда для произвольных $z, y \in X : z \in y + V$ имеем:

$$f(z) - f(y) \in f(\frac{\varepsilon}{M}W) = \frac{\varepsilon}{M}f(W) \Rightarrow |f(z) - f(y)| \le \frac{\varepsilon}{M} \cdot M = \varepsilon$$

Таким образом f — непрерывен.

Утверждение 10.14. Для $L\subset X, \dim L=n$ изоморфизм $\varphi:\mathbb{R}^n\to (L,\tau_L)$ является гомеоморфизмом

Доказательство. Нужно доказать, что φ и φ^{-1} — топологически непрерывны. Будем проводить индукцию по размерности пространства n.

• При n=1 $\varphi:\mathbb{R}\to L$ — изоморфизм. Пусть $\varphi(1)=e\in L$, тогда

$$\forall \alpha : \varphi(\alpha) = \alpha \varphi(1) = \alpha e$$

Так как $\alpha \mapsto \alpha e \in X$ является τ -непрерывным как умножение скаляр в векторной топологии, то $\varphi - \tau_L$ -непрерывно. Теперь рассмотрим обратное отображение φ^{-1} . Для произвольной точки $\alpha e \in L$:

$$\varphi^{-1}(\alpha e) = \alpha$$

Значит $\varphi^{-1}:L\to\mathbb{R}$ — линейный функционал. Причем так как это изоморфизм, то $\ker \varphi^{-1}=\{0\}$ — замкнутое множество. Таким образом φ^{-1} — непрерывен по предыдущей лемме. Значит L гомеоморфно \mathbb{R} .

• Пусть $n \in \mathbb{N}$ любое n-мерное подпространство гомеоморфно R^n а значит τ_L -замкнуто. Рассмотрим $\dim L = n+1$ и имеем изоморфизм $\varphi : \mathbb{R}^{n+1} \to L$ Рассмотрим стандартный базис в \mathbb{R}^{n+1} : $\{g_i\}_i^{n+1}$, тогда пусть $\alpha \in \mathbb{R}^{n+1}$, имеем:

$$\varphi(\alpha) = \varphi\left(\sum_{k=1}^{n+1} \alpha_k g_k\right) = \sum_{k=1}^{n+1} \alpha_k \varphi(g_k) = \sum_{k=1}^{n+1} \alpha_k e_k$$

Тогда это отображение является τ_L -непрерывным в силу непрерывности суммы и умножения скаляра на фиксированный вектор. Для обратного отображения имеем

$$\varphi^{-1}(x) = \varphi^{-1}\left(\sum_{k=1}^{n+1} \alpha_k(x)e_k\right) = \sum_{k=1}^{n+1} \alpha_k(x)g_k$$

Где $\alpha_k(x):(L,\tau_L)\to \mathbb{R}$ — координаты вектора x. Таким образом α_k — линейные функционалы, но

$$\operatorname{Ker} \alpha_k = \{x \in L \mid \alpha_k(x) = 0\} = \operatorname{Lin}\{e_1, \dots e_{k-1}, e_{k+1}, \dots e_{n+1}\}$$
 n -мерное подпространство в (X, τ)

По предположению индукции $\ker \alpha_k - \tau_L$ -замкнуто, тогда по критерию топологической непрерывности α_k топологически непрерывно. Тогда $\varphi^{-1}(x) = \sum_{k=1}^{n+1} \alpha_k(x) g_k$ — непрерывно, что и требовалось.

Таким образом мы доказали теорему

Теорема 10.15. Пусть $L \subset X$ — конечномерное подпространство топологического векторного пространства (X,τ) тогда $L-\tau$ -замкнуто

Доказательство. Так как L — конечномерно, существует изоморфизм $\varphi: \mathbb{R}^n \to L$ по утверждению (10.14) он является гомеоморфизмом, но \mathbb{R}^n является локально компактным пространством, это свойство сохраняется при гомеоморфизме, значит L — локально компактно в (X,τ) , тогда по утверждению (10.12) L — τ -замкнуто.

11 Факторпространство и фактортопология. Теорема о замкнутости суммы замкнутого и конечномерного подпространств топологического векторного пространства.

Пусть (X, τ) — топологическое векторное пространство, $N \subset X$ — подпространство в X, тогда можно ввести отношение:

$$x, y \in X : x \stackrel{N}{\sim} y \Leftrightarrow x - y \in N$$

Это отношение является отношением эквивалентности. $\forall x \in X$ рассмотрим классы эквивалентности

$$\pi_N(x) = \{ y \in X \mid y \stackrel{N}{\sim} x \} = x + N$$

Определение 11.1. Совокупность всех классов эквивалентности $X/\{\pi_N(x) \mid x \in X\}$ называется фактор пространством.

В этом пространстве вводятся естественные линейные операции:

$$\pi_N(x) + \pi_N(y) := \pi_N(x+y), \ \alpha \pi_N(x) = \pi_N(\alpha x)$$

Аксиомы линейного пространства выполнены. Таким образом X/N — линейное пространство. Теперь введем топологию.

Определение 11.2. $\pi_N: X \to X/N$ — называется фактор-отображением. Фактор-топологией назовем

$$\tau_{X/N} = \{W \subset X/N \mid \pi_N^{-1}(W) \in \tau\}$$

Можно проверить, что это действительно топология. Заметим, что определение фактор-топологии можно интерпретировать как слабейшую топологию обеспечивающую непрерывность фактор-отображению. Более интересным представляется вопрос, является ли эта топология векторной?

Заметим, что не только прообраз открытых множеств под действием π_N будет открыт, но и образ, действительно:

$$\forall G \in \tau \Rightarrow \pi_N^{-1}(\pi_N(G)) = G + N = \bigcup_{y \in N} (G + y) \in \tau$$

Это свойство называется открытостью отображения π_N

Утверждение 11.3. $(X/N, \tau_{X/N})$ удовлетворяет первой аксиоме отделимости если и только если $N \subset X - \tau$ -замкнуто

Доказательство. Зафиксируем $x \in X$, точкой в фактор пространстве является $\{\pi_N(x)\}$, она является замкнутым множеством тогда и только тогда, когда

$$(X/N) \setminus \{\pi_N(x)\} \in \tau_{X/N}$$

По определению векторной топологии нам нужно проверить является ли открытым прообраз этого множества в (X, τ) :

$$\pi_N^{-1}\left((X/N)\setminus\{\pi_N(x)\}\right)=X\setminus\pi_N^{-1}(\pi_N(x))=X\setminus(x+N)$$

Ясно, что $X\setminus (x+N)\in \tau\Leftrightarrow x+N-\tau$ -замкнуто, что, в силу непрерывности трансляции равносильно $N-\tau$ -замкнуто.

Утверждение 11.4. Если (X,τ) — топологическое векторное пространство, $N\subset X-\tau$ замкнуто, то $(X/N,\tau_{X/N})$ является топологическим векторным пространством.

Доказательство. • Первая аксиома отделимости выполнена в силу предыдущего утверждения.

• Проверим непрерывность сложения.

$$\forall x, y \in X \ \forall U(\pi_N(x) + \pi_N(y)) \in \tau_{X/N}$$

В силу линейности $U(\pi_N(x) + \pi_N(y)) = U(\pi_N(x+y))$. По определению окрестности в $\tau_{X/N}$:

$$V := \pi_N^{-1}(U(\pi_N(x+y))) \in \tau, \ x+y \in V$$

Тогда так как (X, τ) — векторная топология, то $\exists V_1(x), V_2(y) \in \tau$:

$$V_1(x) + V_2(y) \subset V = \pi_N^{-1}(U(\pi_N(x+y))) \Leftrightarrow \pi_N(V_1(x)) + \pi_N(V_2(y)) \subset U(\pi_N(x) + \pi_N(y))$$

в силу открытости π_N , $\pi_N(V_1(x))$, $\pi_N(V_2(y)) \in \tau_{X/N}$, но тогда и сумма открыта, таким образом сложение непрерывно.

• Проверим непрерывность умножения.

$$\forall x \in X, \forall \lambda \in \mathbb{R} \Rightarrow \lambda \pi_N(x) = \pi_N(\lambda x) \in X/N$$

Рассмотрим произвольную окрестность $U(\lambda \pi_N(x)) = U(\pi_N(\lambda x)) \in \tau_{X/N}$, тогда положим

$$V := \pi_N^{-1} U(\pi_N(\lambda x)) \ni \lambda x.$$

В силу того, что (X, τ) — топологическое векторное пространство, получаем

$$\exists \delta > 0 \ \exists W(x) \in \tau : \ \forall \alpha : \ |\lambda - \alpha| < \delta \Rightarrow \alpha W(x) \subset V$$

Тогда

$$\pi_N(\alpha W(x)) \subset U(\pi_N(\lambda x))$$

Образ открытого множество открыт, тогда мы нашли нужную окрестность $\pi_N(x)$, таким образом умножение на скаляр непрерывно.

Замечание. Отметим, что для непрерывности операций замкнутость подпространства N не потребовалась.

Теорема 11.5 (О замкнутости суммы конечномерного и замкнутого подпространства из ТВП). Пусть (X,τ) — топологическое векторное пространство, $L\subset X$ — подпространство $\dim L=m<\infty,\ N\subset X-\tau$ -замкнутое подпространство. Тогда $L+N-\tau$ -замкнуто.

Доказательство. Рассмотрим $(X/N, \tau_{X/N})$ — является ТВП в силу того, что $N-\tau$ -замкнуто. $L=Lin\{e_1,\ldots,e_m\}$ — базис в L. Тогда

$$\pi_N(L) = \operatorname{Lin}\{\pi_N(e_1), \dots, \pi_N(e_m)\}$$
 является конечномерным

Тогда в силу теоремы (10.15) $\pi_N(L) - \tau_{X/N}$ -замкнуто. Тогда в силу топологической непрерывности π_N : $\pi_N^{-1}(\pi_N(L))$ — является τ -замкнутым в (X,τ) , но

$$\pi_N^{-1}(\pi_N(L)) = L + N$$

Что и требовалось. Все!

12 Метрические пространства и метрическая топология. Теорема Бэра о категории.

Определение 12.1. (X, ρ) называется метрическим пространством, если функция $\rho \colon X \times X \to [0, \infty)$ такая, что

- $\forall x, y \in X$: $\rho(x, y) = 0 \Leftrightarrow x = y$
- $\forall x, y \in X$: $\rho(x, y) = \rho(y, x)$
- $\forall x, y, z \in X$: $\rho(x, z) \le \rho(x, y) + \rho(y, z)$

Определение 12.2. В метрическом пространстве (X, ρ) открытым шаром в точке x радиуса R называется

$$O_R(x) = \{ y \in X \mid \rho(x, y) < R \}$$

Определение 12.3. Замкнутый шаром будем обозначать $B_R(x) = [O_R(x)]$.

Определение 12.4. Пусть (X, ρ) — метрическое пространство, топология в X, порожденная базой

$$\beta_{\rho} = \{ O_R(x) \mid R > 0, \ x \in X \}$$

Называется метрической топологией (мы будем обозначать ее τ_{ρ}).

Утверждение 12.5. β_{ρ} действительно является базой некоторой топологии.

Доказательство. Проверим критерий базы (3.3). Для любого $x \in X$, $x \in O_R(x)$, поэтому первое условие выполнено. Пусть $x \in O_{R_1}(x_1) \cap O_{R_2}(x_2)$. Покажем что существует такое R > 0, что

$$O_R(x) \subset O_{R_1}(x_1) \cap O_{R_2}(x_2)$$

Возьмем $R = \min\{R_1 - \rho(x_1, x), R_2 - \rho(x_2, x)\}$, тогда

$$\forall y \in O_R(x) \Rightarrow \rho(x_1, y) < R_1$$

Значит, можем записать

$$\rho(x_1, y) \le \rho(x_1, x) + \rho(x, y) < \rho(x_1, x) + R \le R_1$$

Аналогично

$$\rho(x_2, y) \le \rho(x_2, x) + \rho(x, y) < \rho(x_2, x) + R \le R_2$$

Таким образом

$$O_R(x) \subset O_{R_1}(x_1) \cap O_{R_2}(x_2)$$

И значит, β_{ρ} — база.

Определение 12.6. Последовательность $\{x_n\} \subset X$, называется фундаментальной в метрическом пространстве (X, ρ) , если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \ \forall n, m \ge N \Rightarrow \rho(x_n, x_m) < \varepsilon$$

Определение 12.7. Метрическое пространство называется полным, если любая фундаментальная последовательность является сходящейся.

Определение 12.8. Подмножество метрического пространства $S \subset X$, называется всюду плотным в (X, ρ) , если

$$\forall x \in X, \ \forall U(x) \in \tau_{\rho}, \ \exists s \in S \Rightarrow s \in U(x)$$

Определение 12.9. Пусть (Z, ρ) — метрическое пространство. Множество $S \subset Z$ называется нигде не плотным, если

$$int[S] = \emptyset$$

Замечание. Очевидно, что это определение равносильно:

$$\forall r > 0, \ \forall z \in Z \Rightarrow B_r(z) \nsubseteq [S]$$

Я использую замкнутый шар, потому что если нельзя впихнуть открытый, то взяв радиус поменьше, не впихнется и замкнутый (это следствие аксиом отделимости для метрических пространств)

Определение 12.10.

ullet Метрическое пространство (Z, ρ) — называется первой категории по Бэру, если

$$Z = \bigcup_{n=1}^{\infty} S_n$$

Где S_n — нигде не плотные множества

• Если (Z, ρ) не является первой категории по Бэру, то оно называется второй категории по Бэру.

Теорема 12.11 (Бэр). Пусть (Z, ρ) — полное метрическое пространство (в частности (Z, ||||) — банахово), тогда (Z, ρ) — второй категории.

Доказательство. Пусть Z представлено в виде счетного объединения некоторых множеств.

$$Z = \bigcup_{n=1}^{\infty} S_n, \ S_n \subset Z$$

Предположим, что все S_n — нигде не плотные. То есть $\inf[S_n] = \varnothing$. Построим фундаментальную последовательность, сходящуюся к точке не лежащей в Z, что будет являться противоречием. Возьмем $z_0 \in Z$, тогда

$$B_1(z_0) \nsubseteq [S_1] \Rightarrow B_1(z_0) \setminus [S_1]$$
 — открыто и имеет не пустую внутренность

Тогда $\exists r_1 \leq \frac{1}{2}, \exists z_1 \in Z$:

$$B_{r_1}(z_1) \subset B_1(z_0) \setminus [S_1]$$

Тогда посмотрим на $B_{r_1}(z_1)$ в силу того, что S_2 — нигде не плотно:

$$B_{r_1}(z_1)\setminus [S_2]\neq\emptyset$$

Значит $\exists r_2 \leq \frac{1}{2^2}, \, \exists z_2 \in Z$:

$$B_{r_2}(z_2) \subset B_{r_2}(z_1) \setminus [S_2]$$

Кроме того, по построению:

$$B_{r_2}(z_2) \subset B_{r_1}(z_1) \subset B_{r_0}(z_0)$$

Продолжая процесс получим последовательность $\{z_n\}\subset Z$, она фундаментальна:

$$\forall \varepsilon > 0 : \exists N : \frac{1}{2^N} < \varepsilon : \forall n, m \ge N \ z_n, z_m \in B_{r_N}(z_N) \Rightarrow \rho(z_n, z_m) < \varepsilon$$

Так как, Z — полно, то $\exists z^* \in Z: z_n \xrightarrow{\rho} z^*$. Но по построению для любого S_N верно $\forall n \geq N+1: z_n \notin [S_n]$. Таким образом

$$z^* \notin \bigcup_{n=1}^{\infty} S_n = Z$$

Полученное противоречие доказывает теорему.

13 Вполне ограниченные подмножества метрического пространства. Критерий Фреше компактности подмножества метрического пространства.

Утверждение 13.1. Пусть (K, ρ) — метрическое пространство и K — секвенциальный компакт, тогда пространство (K, ρ) — полно

Доказательство. Рассмотрим фундаментальную последовательность $\{x\}_{n=1}^{\infty} \subset K$:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n, m > N : \rho(x_n, x_m) < \varepsilon$$

Так как K—секвенциальный компакт, то последовательность $\{x_n\}$ имеет сходящуюся подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$, по определению сходимости существует $x \in K$:

$$\forall \varepsilon > 0 \ \exists M \in \mathbb{N} \ \forall n_s > M \ \rho(x, x_s) < \varepsilon$$

Тогда покажем, что вся последовательность $\{x_n\}$ сходится к x, действительно:

$$\forall \varepsilon > 0 \exists \max N, M : \forall s \ge n > \max N, M : \rho(x, x_n) \le \rho(x, x_{n_s}) + \rho(x_{n_s}, x_n) < 2\varepsilon$$

Таким образом последовательность сходится, значит пространство полно

Определение 13.2. (X, ρ) — метрическое пространство, тогда $S \subset X$ называется вполне ограниченным, если существует конечная ε -сеть, то есть:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}, x_1, \dots x_N \in S : \bigcup_{n=1}^N O_{\varepsilon}(x_n) \supset S$$

Замечание. Ясно, что данное определение не изменится если заменить открытые шары на замкнутые, а также брать элементы сети не из множества S, а из всего пространства X.

Утверждение 13.3 (Критерий вполне ограниченности множества в метрическом пространстве). Пусть (X, ρ) — метрическое пространство, $S \subset X$, тогда S — вполне ограниченно тогда и только тогда когда любая последовательность $\{x_n\} \subset S$ содержит фундаментальную подпоследовательность.

Доказательство.

 \Leftarrow Пусть любая последовательность $\{x_n\}$ \subset S имеет фундаментальную подпоследовательность, предположим, что множество не вполне ограниченно, то есть:

$$\exists \varepsilon_0 > 0 \ \forall z_1, \dots z_N \in S : \ S \nsubseteq \bigcup_{n=1}^N O_{\varepsilon_0}(z_n)$$

Возьмем сеть состоящую из одной точки $x_1 \in S$ из условия выше получаем, что $S \nsubseteq O_{\varepsilon_0}(x_1)$, тогда $\exists x_2 \in S \setminus O_{\varepsilon_0}(x_1)$. Получили, что

$$\rho(x_1, x_2) > \varepsilon_0$$

Теперь возьмем сеть из двух точек x_1, x_2 аналогично получим точку x_3 которая удалена от каждой из двух на ε_0 , таким образом получена последовательность $\{x_n\} \subset S$ обладающая следующим свойством:

$$\forall n, m \in N \ \rho(x_n, x_m) > \varepsilon_0$$

Но тогда такая последовательность не может иметь фундаментальной подпоследовательности, противоречие с условием, значит S — вполне ограниченно.

 \Rightarrow Пусть S — вполне ограниченно, рассмотрим произвольную последовательность $\{x_n\} \subset S$. Пусть $\varepsilon_1 = 1$, тогда, воспользуемся ослабленным определением:

$$\exists z_1 \in X: \ B_1(z_1)$$
 содержит бесконечно много элементов x_n

Шар содержит бесконечное число элементов последовательности, так как всего шаров конечно, а последовательность бесконечна. Рассмотрим подпоследовательность, лежащую в этом шаре.

$$\{x_{n_{m(1)}}\}_{m=1}^{\infty} \subset B_1(z_1)$$

Теперь берем $\varepsilon_2=\left(\frac{1}{2}\right)^2$. Опять найдется ε_2 -сеть, которая покроет все множество, значит

$$\exists z_2 \in X : B_{\varepsilon_2}(z_2) \cap B_1(z_1) \neq \emptyset$$

 $(x_{n_m(1)})^\infty$ содержит бесконечное число элементов подпоследовательности $\{x_{n_m(1)}\}$ Продолжая таким образом получим счетное число последовательностей $\{\{x_{n_m(s)}\}_{m=1}^\infty\}_{s=1}^\infty$. Кантор говорил, что нужно садиться на диагональный элемент. Получим последовательность

$$x_{n_k} := x_{n_k(k)}, \{x_{n_k}\}_{k=1}^{\infty}$$

По построению она является подпоследовательностью исходной последовательности и обладает приятным свойством фундаментальности. Так как все элементы начиная с k лежат в шаре $B_{\varepsilon_k}(z_k)$, $\varepsilon_k = \left(\frac{1}{2}\right)^k$. Получили фундаментальную подпоследовательность, что и требовалось.

Следствие. S — не вполне ограниченно тогда и только тогда когда существует «дырявая» последовательность:

$$\exists \varepsilon_0 \ \exists \{x_n\} \subset S, \ \forall n \neq m: \ \rho(x_n, x_m) > \varepsilon_0$$

Теорема 13.4 (Фреше). Пусть (X, ρ) — метрическое пространство. $K \subset X$, K — полное и вполне ограниченное, тогда K — топологический компакт.

Доказательство. Предположим, что K — не является топологическим компактом, тогда $\exists P \subset \tau_{\rho}$ не имеет конечного подпокрытия. Рассмотрим $\varepsilon_{n} = \left(\frac{1}{2}\right)^{n}$, тогда

$$\forall n \in \mathbb{N} \exists \varepsilon_n$$
- сеть для $K: x_1(n), \dots x_{N_n}(n) \in K, K \subset \bigcup_{k=1}^{N_n} O_{\varepsilon_n}(x_k(n))$

При этом для K не выделяется конечного подпокрытия, значит

$$\forall n \in \mathbb{N}, \exists k_n : O_{\varepsilon_n}(x_{k_n}(n))$$
 не покрывается конечным набором из Р

Таким образом К НАМ В РУКИ ПРИПЛЫЛА последовательность $z_n = x_{k_n}(n) \in K$ такая что $O_{\varepsilon_n}(z_n)$ не покрывается конечным набором множеств из P. Но K — вполне ограниченно, тогда по утверждению (13.3) из z_n можно выбрать фундаментальную подпоследовательность. $\{z_{n_m}\} \subset K - \rho$ -фундаментальная, но (K, ρ) полно по условию, значит

$$\exists z \in K, \ z_{n_m} \xrightarrow{\rho} z \ (m \to \infty)$$

Так как P — покрытие K, то $\exists V_z \in P$, в силу открытости

$$\exists r > 0 : O_r(z) \subset V_z$$

Тогда в силу сходимости ясно, что

$$\exists M: \ \forall m \geq M: O_{\varepsilon_m}(z_{n_m}) \subset O_r(z)$$

Но z_n строилась так что $O_{\varepsilon_m}(z_{n_m})$ нельзя покрыть конечным набором из P, а мы покрыли одним V_z , противоречие. Таким образом из P можно выбрать конечное подпокрытие, значит K — топологический компакт.

Следствие (Критерий компактности в метрических пространств). $K \subset X, (X, \rho)$ метрическое пространство, тогда следующие утверждения эквивалентны

- К топологический компакт
- К счетный компакт
- К секвенциальный компакт
- К ПиВО

14 Эквивалентные нормы в линейном пространстве. Эквивалентность норм в конечномерном линейном пространстве.

Определение 14.1. Пусть Z — линейное пространство и $|||_1, |||_2$ — нормы в этом пространстве, тогда говорят, что эти нормы эквивалентны, если

$$\exists C_1, C_2 \in \mathbb{R} \ \forall x \in Z : \begin{cases} ||x||_1 \le C_2 ||x||_2 \\ ||x||_2 \le C_1 ||x||_1 \end{cases}$$

Следующая лемма, в силу ее простоты, не формулировалась на лекции, но я решил вынести ее отдельно, потому что она носит общий характер.

Лемма 14.2. В локально компактном нормированном пространстве (X, ||||) замкнутый шар $B_1(0)$ является компактом.

Доказательство. Так как X — локально компактно, то существует окрестность нуля U(0) такая, что $[U(0)]_{\parallel\parallel}$ является компактом. Так как в нормированном пространстве шары образуют базу нормированной топологии, то существует r>0 такое что

$$O_r(0) \subset U(0)$$

Но тогда его замыкание $B_r(0)$ содержится в компакте $[U(0)]_{\parallel\parallel}$, а значит, как замкнутое подмножество компакта, является компактом. Но умножение на константу в топологическом векторном пространстве является непрерывным отображением, тогда

$$\frac{1}{r}B_r(0) = B_1(0)$$

тоже является компактом, что и требовалось.

Утверждение 14.3. Пусть L — конечномерное линейное пространство, тогда любые нормы на L эквивалентны.

Доказательство. Для определенности будем считать, что L — линейное пространство над полем \mathbb{R} (можно взять \mathbb{C} , это ничего не изменит). Пусть $\dim L = n$ и $\{e_1, \ldots, e_n\}$ — базис. Тогда

$$\forall x \in L \Rightarrow \exists \alpha_1, \dots, \alpha_n \in \mathbb{R} : \ x = \sum_{k=1}^n \alpha_k e_k$$

Пусть на L введена некоторая норма, тогда

$$||x|| \le \sum_{k=1}^{n} |\alpha_k| ||e_k|| \le M \sum_{k=1}^{n} |\alpha_k|$$

где $M = \max_{k} \|e_k\|$. Введем новую норму:

$$||x||_e = \sum_{k=1}^n |\alpha_k|$$

Легко проверить, что все аксиомы нормы выполнены, тогда мы получили оценку:

$$||x|| \le M||x||_e$$

Теперь покажем, что существует C > 0 такое, что $\forall x \in L \colon ||x||_e \le C||x||$. Это будет означать, что нормы ||| и $|||_e$ эквивалентны, а значит и все.

Так как L — конечномерное линейное пространство размерности n, то оно изоморфно линейному пространству \mathbb{R}^n . Вспоминаем, что $(L, \| \|)$ — нормированное пространство, а значит топологическое векторное, тогда в силу утверждения (10.14) L гомеоморфно \mathbb{R}^n со стандартной топологией. Но \mathbb{R}^n — локально компактное пространство, значит в силу предыдущей леммы $B_1(0)$ является компактом. Теперь построим конкретный изоморфизм между L и \mathbb{R}^n . Будем смотреть на α_k как на функции от x, тогда отображение

$$\Lambda \colon L \to \mathbb{R}^n \quad \Lambda(x) = (\alpha_1(x), \dots, \alpha_n(x))^T$$

является изоморфизмом. Опять, в силу утверждения (10.14), этот изоморфизм является гомеоморфизмом, тогда $\Lambda(B_1(0))$ является компактом в \mathbb{R}^n . Компакт в \mathbb{R}^n является замкнутыми и ограниченными множеством, значит все координаты компактного множества $\Lambda(B_1(0))$ ограничены некоторой константой R>0, тогда

$$\forall x \in L \colon ||x|| \le 1 \Rightarrow |\alpha_k(x)| \le R$$

Тогда

$$||x||_e = \sum_{k=1}^n |\alpha_k| \le nR$$

Но тогда $\forall x \in L$ имеем

$$\left\| \frac{x}{\|x\|} \right\|_{c} \le nR \Rightarrow \|x\|_{e} \le nR\|x\|$$

Что завершает доказательство.

15 Факторпространство замкнутого подпространства линейного нормированного пространства, факторнорма. Полнота факторпространства замкнутого подпространства банахова пространства

Нормированное пространство является частным случаем топологического векторного, поэтому определение для топологического векторного (11.1) остается прежним, однако теперь у нас есть норма, поэтому хочется ввести норму и в фактор пространстве.

Определение 15.1. Пусть (X, ||||) — нормированное пространство, $N \subset X$ — некоторое его замкнутое подпространство. Факторнормой в факторпространстве X/N называется

$$\|\xi\| = \inf_{y \in \xi} \|y\|$$

Утверждение 15.2. Введенная норма действительно является нормой в линейном пространстве X/N.

Утверждение 15.3. Неотрицательность, положительная однородность и неравенство треугольника очевидно наследуются из пространства X. Вопрос возникает со свойством

$$\forall \xi \in X/N \Rightarrow ||\xi|| = 0 \Leftrightarrow \xi = 0.$$

Покажем его. Нулевой элемент фактор пространства это класс равный N, но N — подпространство, значит $0 \in N$, тогда $\|N\| = \inf_{y \in N} \|y\| = 0$, с другой стороны, пусть $\xi \in X/N$, $\|\xi\| = 0$, тогда по определению инфинума существует последовательность элементов ξ сходящихся к нулю, но $\xi = y + N$ для некоторого $y \in X$, сумма в топологическом векторном пространстве не портит замкнутости, значит ξ замкнуто в X, тогда $0 \in \xi$, значит $\xi = N$.

Утверждение 15.4. Пусть (X, ||||) — банахово, $N \subset X$ — замкнутое подпространство, тогда X/N с факторнормой банахово.

Доказательство. В силу определения факторнормы $\forall \xi \in X/N$ найдется элемент $x \in X$:

$$\|\xi\| \ge \frac{\|x\|}{2}$$

Пусть $\{\xi_n\} \subset X/N$ — фундаментальная последовательность в X/N, тогда можно считать (если что перейдем к подпоследовательности), что ряд

$$\sum_{n=1}^{\infty} \|\xi_n - \xi_{n-1}\|$$

сходится. Добавив к $\{\xi_n\}$ нулевой элемент $\xi_0=N$. Выберем $x_n\in \xi_{n+1}-\xi_n$ так, что

$$\|\xi_n - \xi_{n-1}\| \ge \frac{\|x_n\|}{2}$$

Тогда ряд

$$\sum_{n=0}^{\infty} \|x_n\|$$

сходится и, в силу банаховости пространства $X, \sum_{n=1}^{\infty} x_n$ сходится к некоторому элементу $x \in X$, рассмотрим $\xi = x + N$, имеем (так как $\sum_{n=0}^k x_n \in \xi_k$ при каждом k)

$$\|\xi_n - \xi\| \le \left\| x - \sum_{n=1}^k x_n \right\| \xrightarrow{k \to \infty} 0$$

Значит $\{\xi_n\}$ — сходится, что и требовалось.

16 Гильбертово пространство. Теоремы Рисса о проекции и об ортогональном разложении в гильбертовом пространстве.

Определение 16.1. Пусть X — комплексное линейное пространство. Скалярным произведением в X называется отображение

$$(\cdot,\cdot)\colon X\times X\to\mathbb{C}$$

удовлетворяющее свойствам

- 1. для любого $x \in X$ число $(x, x) \in \mathbb{R}$ и выполнено (x, x) > 0;
- 2. $(x,x) = 0 \Leftrightarrow x = 0$;
- 3. для любых $x, y \in X$ выполнено $(x, y) = \overline{(y, x)}$;
- 4. для любых $x, y, z \in X$ и $\alpha, \beta \in \mathbb{C}$ выполнено $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$.

Определение 16.2. Линейное пространство с фиксированным в нем скалярным произведением называется евклидовым.

Утверждение 16.3. Пусть X — евклидово пространство. Тогда величина

$$||x|| = \sqrt{(x,x)}$$

удовлетворяет определению нормы на X.

Определение 16.4. Евклидово пространство, полное относительно нормы, порожденной скалярным произведением, будем называть гильбертовым пространством.

Определение 16.5. Пусть $(X, \|\|)$ — линейное нормированное пространство, множество $S \subset X$, вектор $x \in X$. Вектор $y \in S$ называется метрической проекцией вектора x на множество S, если справедливо равенство

$$||x - y|| = \rho(x, S) = \inf_{z \in S} ||x - z||$$

Утверждение 16.6. В гильбертовом пространстве \mathcal{H} справедливы неравенство Коши-Буняковского и равенство параллелограммов

$$|(x,y)| \le ||x|| ||y|| \quad ||x-y||^2 + ||x+y||^2 = 2||x||^2 + 2||y||^2$$

Теорема 16.7 (Рисс, о проекции). Пусть \mathcal{H} — гильбертово пространство, $S \subset \mathcal{H}$ — выпуклое замкнутое множество. Тогда для любого $x \in \mathcal{H}$ существует единственный вектор $y \in S$, который является метрической проекцией вектора x на множество S.

Доказательство. По определению инфинума

$$\exists \{z_m\}_{m=1}^{\infty} \subset S \Rightarrow \rho(x,S) = \lim_{m \to \infty} \|x - z_m\|$$

Покажем, что $\{z_m\}$ — фундаментальна. В силу равенства параллелограммов:

$$||z_m - z_n||^2 = ||(z_m - x) - (z_n - x)||^2 = 2||z_m - x||^2 + 2||z_n - x||^2 - ||z_m + z_n - 2x||^2$$

В силу выпуклости множества S:

$$\frac{z_m + z_n}{2} \in S$$

Поэтому

$$||z_m + z_n - 2x||^2 = 4 \left\| \frac{z_n + z_m}{2} - x \right\|^2 \ge 4\rho^2(x, S)$$

Тогда получаем

$$||z_m - z_n||^2 \le 2||z_m - x||^2 + 2||z_n - x||^2 - 4\rho^2(x, S) \to 0$$
 при $n, m \to \infty$

Тогда $\{z_m\}$ — фундаментальна и в силу полноты $\exists z = \lim_{m \to \infty} z_m$. В силу замкнутости $z \in S$ при этом в силу неравенства треугольника

$$|||x-z|| - ||x-z_m||| \le ||z-z_m|| \to 0$$

То есть $||x-z|| = \rho(x,S)$. Покажем единственность. Пусть $y \neq z$ и

$$||x - y|| = ||x - z|| = \rho(x, S)$$

Тогда в силу равенства параллелограммов

$$||y - z||^2 = ||(y - x) - (z - x)||^2 = 2||y - x||^2 + 2||z - x||^2 - ||y + z - 2x||^2$$

B силу выпуклости $\frac{y+z}{2} \in S$, тогда

$$||y+z-2x|| = 4 \left| \left| \frac{y+z}{2} - x \right| \right|^2 \ge 4\rho^2(x,S)$$

Тогда

$$||y - z||^2 \le 2||y - x||^2 + 2||z - x||^2 - 4\rho^2(x, S) = 0$$

То есть y = z, что и требовалось.

Определение 16.8. Пусть \mathcal{H} — гильбертово пространство, $L \subset \mathcal{H}$ — подпространство. Ортогональным дополнением L называется

$$L^{\perp} = \{ x \in \mathcal{H} \mid (x, y) = 0 \ \forall y \in L \}$$

Теорема 16.9 (Рисс, об ортогональном дополнении). Пусть \mathcal{H} — гильбертово пространство, $L \subset \mathcal{H}$ — замкнутое подпространство. Тогда справедливо равенство

$$\mathcal{H} = L \oplus L^{\perp}$$

Доказательство. Так как L — подпространство, то оно является выпуклым, кроме того оно является замкнутым, значит в силу предыдущей теоремы $\forall x \in \mathcal{H}$ существует и единственна метрическая проекция $y \in L$ такая что

$$||x - y|| = \rho(x, L)$$

Покажем, что $z=x-y\in L^{\perp}$. Для любого вектора $a\in L$ и $t\in\mathbb{R}$ выполнено

$$||x - y|| \le ||x - y - ta||$$

так как $y + ta \in L$. Следовательно

$$||x - y||^2 \le ||x - y - ta||^2 = ||x - y||^2 + t^2 ||a||^2 - 2t \operatorname{Re}(x - y, a)$$

Тогда при t > 0:

$$\operatorname{Re}(x-y,a) \leq \frac{t}{2} \|a\|^2 \to 0$$
 при $t \to +0$

A при t < 0

$$\operatorname{Re}(x-y,a) \geq \frac{t}{2} \|a\|^2 \to 0$$
 при $t \to -0$

Таким образом Re(x - y, a) = 0. Теперь рассматривая

$$||x - y|| \le ||x - y - ita||$$

Получим ${\rm Im}(x-y,a)=0$, таким образом (x-y,a)=0 для любого $a\in L.$ То есть справедливо вложение

$$x - y = z \in L^{\perp}$$

Таким образом $\mathcal{H}=L+L^{\perp}$. Но если $x\in L\cap L^{\perp}$, то $(x,x)=0\Leftrightarrow x=0$, значит

$$\mathcal{H} = L \oplus L^{\perp}$$

Что и требовалось.

17 Лемма Рисса о почти перпендикуляре. Теорема Рисса об отсутствии вполне ограниченности сферы в бесконечномерном линейном нормированном пространстве.

Лемма 17.1 (О почти перпендикуляре). Если (X, ||||) — линейное нормированное пространство, $L \subsetneq X$ — замкнутое собственное подпространство X, тогда

$$\forall \varepsilon \in (0,1) \ \exists x_{\varepsilon} \in S : \ \rho(x_{\varepsilon},L) \ge 1 - \varepsilon$$

Где $S = \{y \in X \mid ||y|| = 1\}$ — единичная сфера.

Доказательство. По определению $\rho(x,L)=\inf_{y\in L}\|x-y\|$. L— замкнутое собственное, тогда

$$\exists x_0 \in X \setminus L : \ \rho(x_0, L) = \inf_{y \in L} ||x_0 - y|| > 0$$

Тогда $\forall \varepsilon \in (0,1)$ рассмотрим

$$\frac{\rho(x_0, L)}{1 - \varepsilon} > \rho(x_0, L)$$

Значит

$$\exists y_{\varepsilon} \in L : ||x_0 - y_{\varepsilon}|| < \frac{\rho(x_0, L)}{1 - \varepsilon}$$

Тогда положим $x_{\varepsilon}=\frac{x_0-y_{\varepsilon}}{\|x_0-y_{\varepsilon}\|}\in S.$ Тогда $\forall y\in L$:

$$||y - x_{\varepsilon}|| = \left| \left| y - \frac{x_0 - y_{\varepsilon}}{||x_0 - y_{\varepsilon}||} \right| = \frac{||\underbrace{||x_0 - y_{\varepsilon}||y + y_{\varepsilon}}_{||x_0 - y_{\varepsilon}||} - x_0||}{||x_0 - y_{\varepsilon}||} \ge \frac{\rho(x_0, L)}{||x_0 - y_{\varepsilon}||} > 1 - \varepsilon$$

То есть $\rho(x_{\varepsilon}, L) = \inf_{y \in L} \|y - x_{\varepsilon}\| \ge 1 - \varepsilon$ что и требовалось.

Теорема 17.2 (Рисс). Пусть (X, ||||) — бесконечномерное линейное нормированное пространство. Тогда сфера $S = \{x \in X \mid ||x|| = 1\}$ — не вполне ограниченна

Доказательство. $\forall x_1 \in S$ рассмотрим $L_1 = Lin\{x_1\}$ — одномерно в X. Тогда так как линейное нормированное пространство частный случай топологического векторного пространства в силу 10.15 L_1 — замкнуто. При этом так как X — бесконечномерно, то $L_1 \neq X$, значит L_1 — собственное замкнутое подпространство, тогда по лемме 17.1 для $\varepsilon = \frac{1}{2}$:

$$\exists x_2 \in S: \|x_2 - x_1\| \ge \rho(x_2, L_1) \ge 1 - \varepsilon = \frac{1}{2}$$

Далее рассматриваем $L_2 = Lin\{x_1, x_2\}$ аналогично L_2 конечномерно и замкнуто, тогда опять применяя лемму найдем x_3 :

$$||x_3 - x_{1,2}|| \ge \rho(x_3, L_2) \ge \frac{1}{2}$$

Продолжая этот процесс получим дырявую последовательность $\{x_n\} \subset S$ (мы всегда найдем новое конечномерное собственное подпространство в силу бесконечномерности X), значит по следствию теоремы 13.3 S — не вполне ограниченно.

18 Линейное нормированное пространство C(K) для компактного метрического пространства (K, ρ) , его полнота. Критерий Арцела-Асколи вполне ограниченности подмножества пространства C(K).

Определение 18.1. Пространство C(K) — множество непрерывных на компакте K функций $f: K \to \mathbb{R}$ по умолчанию имеет норму:

$$||f||_c = \sup_{x \in K} |f(x)| = \max_{x \in K} |f(x)|$$

Теорема 18.2 (Арцела-Асколи). Пусть (K, ρ) — компактное метрическое пространство. Тогда $S \subset C(K)$ — вполне ограниченно тогда и только тогда когда

- 1. S ограниченно в C(K), то есть $\exists R > 0 \forall f \in S \Rightarrow ||f||_c \leq R$
- 2. S равностепенно непрерывно:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall f \in S, \ \forall x, y \in K : \rho(x, y) \leq \delta \Rightarrow |f(x) - f(y)| \leq \varepsilon$$

 \mathcal{A} оказательство. Необходимость. S — вполне ограниченно \Rightarrow S — ограниченно. Имеем конечную ε -сеть:

$$\forall \varepsilon > 0 \exists f_1, \dots, f_M \in S : S \subset \bigcup_{m=1}^M B_{\varepsilon}(f_m)$$

Тогда по теореме кантора, функции f_m равномерно непрерывны на K:

$$\forall m \in \overline{1, M} \ \exists \delta_m(\varepsilon) > 0: \ \forall x, y \in K \ \rho(x, y) \leq \delta_m \Rightarrow |f_m(x) - f_m(y)| \leq \varepsilon$$

Тогда положив $\delta = \min_{m \in \overline{1,M}} \delta_m$ получим, что δ зависит только от ε и

$$\forall m \in \overline{1, M}, \ \forall x, y \in K : \rho(x, y) < \delta \Rightarrow |f_m(x) - f_m(y)| < \varepsilon$$

Тогда, пользуясь неравенством треугольника, получаем:

$$\forall f \in S : \exists m \in \overline{1, M} : f \in B_{\varepsilon}(f_m) \Rightarrow \forall x, y \in K, \ \rho(x, y) < \delta :$$
$$|f(x) - f(y)| \le |f(x) - f_m(x)| + |f_m(x) - f_m(y)| + |f_m(y) - f(y)| \le \varepsilon + \varepsilon + \varepsilon = 3\varepsilon$$

Таким образом необходимость доказана. Докажем достаточность. Пусть выполнено:

- 1. S ограниченно в C(K), то есть $\exists R>0 \forall f\in S\Rightarrow \|f\|_c\leq R$
- 2. S равностепенно непрерывно:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall f \in S, \ \forall x, y \in K : \rho(x, y) \le \delta \Rightarrow |f(x) - f(y)| \le \varepsilon$$

Для числа $\delta(\varepsilon)$ в компактом метрическом пространстве (K, ρ) мы имеем конечную $\delta(\varepsilon)$ -сеть:

$$x_1, \dots, x_M \in K : K = \bigcup_{m=1}^M B_{\delta(\varepsilon)}^K(x_m)$$

Тогда построим:

$$S_{\varepsilon} = \{ (f(x_1), \dots f(x_M)) \in \mathbb{R}^M \mid f \in S \}$$

Тогда в силу ограниченности S:

$$S_{\varepsilon} \subset P_R = \{(z_1, \dots, z_M) \in R^M \mid \forall n \in \overline{1, M} : |z_n| \le R\}$$

Режем данный кубик на кубики со стороной не больше ε .

Рис. 1.1:

Обозначим \square — элементарный кубик, рассмотрим: $G=\{\square:\square\cap S_\varepsilon\neq\varnothing\}$ этих кубиков конечное число и $\forall\square\in G\ \exists f_\square\in S$ такая что

$$\begin{pmatrix} f_{\square}(x_1) \\ \vdots \\ f_{\square}(x_M) \end{pmatrix} \in \square \cap S_{\varepsilon} \neq \emptyset$$

тогда рассматриваем соответствующие $C_{\varepsilon}=\{f_{\square}\in S\mid \square\in G\}$ — их тоже конечно. Тогда

$$\forall f \in S : (f(x_1), \dots, f(x_M)) \in S_{\varepsilon} \subset P_R \Rightarrow \exists f_{\square} : \forall m \in \overline{1, M} : |f(x_m) - f_{\square}(x_m)| \leq \varepsilon$$

Тогда

$$\forall x \in K \ \exists m \in \overline{1, M} : \ x \in B_{\delta(\varepsilon)}^K(x_m)$$

To есть $\rho(x, x_m) \leq \delta(\varepsilon)$ и тогда

$$|f(x) - f_{\square}(x)| \le |f(x) - f(x_m)| + |f(x_m) - f_{\square}(x_m)| + |f_{\square}(x_m) - f_{\square}(x)| \le 3\varepsilon \Rightarrow ||f - f_{\square}||_c \le 3\varepsilon$$

Таким образом S — вполне ограниченно.

19 Критерий Рисса-Колмогорова вполне ограниченности подмножества пространства $\mathbb{L}_p(\mathbb{R}^m)$ для $1 \le p < +\infty$

Утверждение 19.1. Пусть $K \subset \mathbb{R}^m$ — выпуклый компакт, C(K) — непрерывные на K функции с супремальной нормой. Пусть $S \subset C(K)$ таково, что

- 1. $\exists M > 0 : \forall f \in S : ||f||_c \leq M$
- 2. $\forall f \in S \Rightarrow f \in C^1(K)$ u $\exists L > 0 : \forall f \in S \Rightarrow \|\nabla f\|_c \leq L$

Тогда S — вполне ограниченно в C(K)

Доказательство. По условию S — ограниченно, значит в силу теоремы Арцела-Асколе 18.2 останется проверить равностепенную непрерывность. Возьмем произвольные $x, y \in K, |x-y| < \delta$ и рассмотрим f(x) - f(y). Поскольку K — выпуклое множество, то

$$z(t) = y + t(x - y) \in K, \quad \forall t \in [0, 1]$$

Тогда

$$f(x) - f(y) = f(z(1)) - f(z(0)) = \int_0^1 \frac{d}{dt} f(z(t)) dt = \int_0^1 \left(\nabla f(z(t)), \frac{d}{dt} z(t) \right) = \int_0^1 (\nabla f(z(t)), x - y) dt = \int_0^1 |\nabla f(z(t))| |x - y| dt \le L|x - y| \le L\delta \le \varepsilon$$

Где $\delta = \frac{\varepsilon}{L}$, значит S — вполне ограниченно в C(K)

Теорема 19.2 (Рисс, Колмогоров). Пусть $1 \leq p < +\infty$, $S \subset \mathbb{L}_p(\mathbb{R}^m)$. Тогда S — вполне ограниченно в $\mathbb{L}_p(\mathbb{R}^m)$ тогда и только тогда когда

- 1. S ограниченно в $\mathbb{L}_p(\mathbb{R}^m)$, то есть $\exists M > 0 : \forall f \in S \Rightarrow ||f||_p \leq M$
- 2. $\forall \varepsilon > 0 \ \exists R = R(\varepsilon) > 0$:

$$\forall f \in S : \left(\int_{\mathbb{R}^m \backslash B_{R(\varepsilon)}(0)} |f(t)|^p dt \right)^{\frac{1}{p}} \le \varepsilon$$

3. $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$:

$$\forall f \in S : \forall |z| \le \delta \Rightarrow \left(\int_{\mathbb{R}^m} |f(t+z) - f(t)|^p dt \right)^{\frac{1}{p}} \le \varepsilon$$

Замечание. При доказательстве дальнейших утверждений я иногда буду заменять ε на ε^p и наоборот, не оговаривая этого. Например в условии теоремы можно не извлекать корень из интегралов. Так как p — фиксированное число, то это ни на что не влияет. Делаю я это так как за этим зачастую запарно следить.

Для доказательство нам потребуется следующее утверждение.

Утверждение 19.3 (Достаточное условие вполне ограниченности в $\mathbb{L}_p(\mathbb{R}^m)$). Если $S \subset \mathbb{L}_p(\mathbb{R}^m)$ таково, что выполняются условия 1,2 теоремы Рисса-Колмогорова, а вместо 3 выполнено:

$$S \subset C^1(\mathbb{R}^m), \ \exists L > 0 : \forall f \in S : \|\nabla f\|_p \le L$$

Тогда для S будет выполнено условие 3.

Доказательство. Распишем разность как интеграл по формуле Ньютона-Лейбница:

$$\int\limits_{\mathbb{R}^m}|f(t+z)-f(t)|^pdx=\int\limits_{\mathbb{R}^m}\left|\int_0^1\frac{d}{dt}f(x+tz)dt\right|^pdx\leq\int\limits_{\mathbb{R}^m}\left(\int_0^1|\nabla f(x+tz)||z|dt\right)^pdx$$

Применим неравенство Гельдера ($||f \cdot g||_1 \le ||f||_p ||g||_q$) и вынесем $|z|^p$ как независимое от x и t:

$$\int_{\mathbb{R}^m} \left(\int_0^1 |\nabla f(x+tz)| |z| dt \right)^p dx \le |z|^p \int_{\mathbb{R}^m} dx \int_0^1 |\nabla f(x+tz)|^p dt$$

Теперь применим теорему Фубини и сделаем замену y = x + tz:

$$|z|^{p} \int_{\mathbb{R}^{m}} dx \int_{0}^{1} |\nabla f(x+tz)|^{p} dt = |z|^{p} \int_{0}^{1} dt \int_{\mathbb{R}^{m}} dy |\nabla f(y)|^{p} = |z|^{p} \int_{0}^{1} ||\nabla f||_{p}^{p} dt \le |z|^{p} L^{p} \xrightarrow{z \to 0} 0$$

Доказательство теоремы Рисса-Колмогорова. Докажем необходимость. Пусть $S \subset \mathbb{L}_p(\mathbb{R}^m)$ — вполне ограниченно в $\mathbb{L}_p(\mathbb{R}^m)$. Ограниченность следует из вполне ограниченности. Дожем остальные условия. $\forall \varepsilon > 0$ существует ε -сеть:

$$\exists g_1, \ldots, g_M \in S$$

Тогда по свойству интегрируемых по лебегу функций:

$$\forall k \in \overline{1, M} \ \exists R_k > 0 : \int_{\mathbb{R}^m \setminus B_{R_k}(0)} |g_k|^p \le \varepsilon^p$$

Тогда рассмотрев максимум этих чисел получим условие 2 для элементов сети. $R = \max_{k \in \overline{1,M}} (R_k)$. $\forall k \in \overline{1,M}$:

$$\int_{\mathbb{R}^m \backslash B_R(0)} |g_k|^p \le \varepsilon^p$$

Отсюда получаем что это свойство выполнено равномерно для всех элементов множества:

$$\forall f \in S \exists k \in \overline{1, M} : ||f - g_k||_p \le \varepsilon$$

Далее я обозначаю корень из интеграла как норму, потому что это и есть норма на соответствующем пространстве:

$$||f||_{\mathbb{R}^m \setminus B_R(0)} \le ||f - g_k||_{\mathbb{R}^m \setminus B_R(0)} + ||g_k||_{\mathbb{R}^m \setminus B_R(0)} \le \varepsilon + \varepsilon$$

Что и требовалось для свойства 2. Аналогично по свойству интеграла лебега условие 3 выполнено для каждого элемента сети. $\forall \varepsilon > 0 \; \exists \delta_k > 0$:

$$\forall |z| \le \delta_k \Rightarrow ||g_k(t+z) - g_k(t)||_{\mathbb{L}_p(\mathbb{R}^m)} \le \varepsilon$$

Тогда берем минимум $\delta = \min_{k \in \overline{1,M}} \delta_k$ и получаем условие 3 выполнено равномерно по всем элементам сети. Тогда

$$\forall f \in S \exists k \in \overline{1, M} : ||f - g_k||_p \le \varepsilon$$

И

$$||f(t+z) - f(t)||_{\mathbb{L}_p(\mathbb{R}^m)} \le ||f(t+z) - g_k(t+z)||_{\mathbb{L}_p(\mathbb{R}^m)} + ||g_k(t+z) - g_k(t)|| + ||g_k(t) - f(t)|| \le 3\varepsilon$$

Что и требовалось. Таким образом необходимость доказана. Пусть теперь выполнены свойства:

- 1. S ограниченно в $\mathbb{L}_p(\mathbb{R}^m)$, то есть $\exists M > 0 : \forall f \in S \Rightarrow ||f||_p \leq M$
- 2. $\forall \varepsilon > 0 \ \exists R = R(\varepsilon) > 0$:

$$\forall f \in S : \int_{\mathbb{R}^m \setminus B_{R(\varepsilon)}(0)} |f(t)|^p dt \le \varepsilon$$

3. $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$:

$$\forall f \in S : \forall |z| \le \delta \int_{\mathbb{R}^m} |f(t+z) - f(t)|^p dt \le \varepsilon$$

Зафиксируем $\varepsilon > 0$ и $R = R(\varepsilon) + \delta(\varepsilon)$, где R и δ из свойств 2 и 3 соответственно. Тогда по свойству 2:

$$\forall f \in S: \int_{\mathbb{R}^m \setminus B_{R(\varepsilon)}(0)} |f(t)|^p dt \le \varepsilon^p$$

Тогда рассмотрим замкнутый шар в \mathbb{R}^m радиуса R:

$$K_R = \{ x \in \mathbb{R}^m \mid |x| \le R \}$$

В \mathbb{R}^m это компакт. Рассмотрим $C(K_R)$. Предположим мы нашли такое множество $S_\varepsilon \subset C(K_R)$ — вполне ограниченное в $C(K_R)$ что

$$\forall f \in S : \exists \varphi \in S_{\varepsilon} : \int_{|x| \le R} |f - \varphi|^p dx \le \varepsilon^p$$

Тогда так как S_{ε} — вполне ограниченно найдется $\frac{\varepsilon}{\sqrt[p]{\mu(K_R)}}$ -сеть для S_{ε} в $C(K_R)$, тогда мы можем построить

$$f_k(x) = \begin{cases} \varphi_k(x), x \in K_R \\ 0, x \notin K_R \end{cases}$$

И это будет конечная 3ε -сеть для S в $\mathbb{L}_p(\mathbb{R}^m)$. Действительно

$$\forall f \in S : \exists \varphi \in S_{\varepsilon} : \int_{K_R} |f - \varphi|^p \le \varepsilon^p$$

А для $\varphi \in S_{\varepsilon}$ найдется такой φ_k , что:

$$\|\varphi - \varphi_k\|_{C(K_R)} \le \frac{\varepsilon}{\sqrt[p]{\mu(K_R)}}$$

Значит

$$||f - f_k||_p \le \sqrt[p]{\int_{\mathbb{R}^m \setminus B_R(0)} |f|^p dx} + \sqrt[p]{\int_{B_R(0)} \underbrace{|f - \varphi_k|^p}_{\pm \varphi} dx} \le$$

$$\varepsilon + \varepsilon + \sqrt[p]{\int\limits_{K_R} |\varphi - \varphi_k|^p dx} \le 2\varepsilon + \sqrt[p]{\frac{\varepsilon^p}{\mu(K_R)}\mu(K_R)} = 3\varepsilon$$

Значит $f_1, \ldots f_M$ — конечная 3ε -сеть для S в $\mathbb{L}_p(\mathbb{R}^m)$. Заметим, что f_k не обязаны лежать в S, но в силу замечания к определению вполне ограниченности нам это и не нужно. Остается доказать что такое S_ε найдется. Воспользуемся третьим свойством. Построим функцию:

$$w(x) = \begin{cases} \exp\left(-\frac{|x|^2}{\delta^2 - |x|^2}\right), |x| \le \delta \\ 0, |x| > \delta \end{cases}$$

Выглядит сложно, но на самом деле это просто шляпка такого вида:

Она обладает хорошими свойствами:

- $w \in C^{\infty}(\mathbb{R}^m)$
- $\operatorname{supp} w = \{|x| \le \delta\}$
- $\bullet \int_{B_{\delta}(0)} w(x) dx = 1$

Теперь рассмотрим произвольную функцию $f \in S$ и свернем ее с функцией w:

$$g_f(x) = \int_{|y| < R} f(y)w(x - y)dy$$

Тогда $g_f(x) \in C^{\infty}$ в частности:

$$\nabla g_f(x) = \int_{|y| \le R} f(y) \nabla w(x - y) dy$$

Тогда рассмотрим:

$$S_{\varepsilon} = \{ g_f \in C(K_R) \mid f \in S \}$$

Функция w — ограниченна, тогда, применяя неравенство Гельдера,

$$\forall g \in S_{\varepsilon} : |g(x)| \le \alpha \int_{B_{R}(0)} |f(x)| dx \le \alpha \int_{B_{R}(0)} |f|^{p} dx \sqrt[q]{\mu(K_{R})} \le \alpha M \sqrt[q]{\mu(K_{R})}$$

Значит S_{ε} ограниченно. Покажем равностепенную непрерывность.

$$|\nabla g| \le \int_{|y| \le R} |f(y)| |\nabla w(x - y)| dy \le \beta \int_{|y| \le R} |f(y)| dy \le \beta M \sqrt[q]{\mu(K_R)} = \gamma$$

Значит градиенты ограниченны, γ — общая для всех константа Липшица. Значит S_{ε} — равностепенно непрерывно, и по теореме Арцела-Асколе получаем, что S_{ε} — вполне ограниченно. Что и требовалось. Осталось показать, что

$$\forall f \in S : \exists \varphi \in S_{\varepsilon} : \int_{|x| \le R} |f - \varphi|^p dx \le \varepsilon^p$$

Заметим, что

$$g_f(x) = \int_{|y| \le R} f(y)w(x - y)dy = \int_{\mathbb{R}^m} f_R(y)w(x - y)dy$$

Где

$$f_R = \begin{cases} f, & x \in K_R, \\ 0, & x \notin K_R \end{cases}$$

Теперь сделаем замену x - y = z и воспользуемся финитностью w:

$$\int\limits_{\mathbb{R}^m} f_R(y)w(x-y)dy = \int\limits_{\mathbb{R}^m} f_R(x-z)w(z)dy = \int\limits_{|z|<\delta} f_R(x-z)w(z)dz$$

Тогда в силу того, что $\int\limits_{B_\delta(0)} w(x) dx = 1$ можно записать:

$$||f(t)-g_f(t)||_{\mathbb{L}_p(K_R)} = \left\| \int\limits_{|z| \le \delta} f(t)w(z)dz - \int\limits_{|z| \le \delta} g_f(t)w(z)dz \right\|_{\mathbb{L}_p(|x| \le R)} = \left\| \int\limits_{|z| \le \delta} (f(t) - f_R(t-z))w(z)dz \right\|_{\mathbb{L}_p(|x| \le R)}$$

Применяя неравенство Юнга-Минковского получаем:

$$||f(t) - g_f(t)||_{\mathbb{L}_p(K_R)} \le \int_{|z| \le \delta} ||f(t) - f_R(t - z)||_{\mathbb{L}_p(|x| \le R)} dz$$

Под интегралом:

$$\|\underbrace{f(t) - f_R(t-z)}_{\pm f(t-z)}\|_{\mathbb{L}_p(|x| \le R)} \le \|f(t) - f(t-z)\|_{\mathbb{L}_p(|x| \le R)} + \|f(t-z) - f_R(t-z)\|_{\mathbb{L}_p(|x| \le R)}$$

Рассмотрим каждое из слагаемых в первом применим условие 3, во втором условие 2:

$$||f(t) - f(t-z)||_{\mathbb{L}_p(|x| < R)} \le ||f(t) - f(t-z)||_p \le \varepsilon \ (|z| \le \delta)$$

$$||f(t-z) - f_R(t-z)||_{\mathbb{L}_p(|x| \le R)} \le ||f(t-z) - f_R(t-z)||_p = ||f - f_R||_p = \sqrt[p]{\int_{|y| > R} |f|^p dy} \le \varepsilon$$

Таким образом:

$$||f(t) - g_f(t)||_{\mathbb{L}_p(K_R)} \le 2\varepsilon \int_{|z| < \delta} w(z)dz = 2\varepsilon$$

Мы получили необходимое S_{ε} и в силу рассуждений выше теорема доказана.

Следствие. Пусть $E \subset \mathbb{R}^m$, $S \subset \mathbb{L}_p(E)$ тогда S — вполне ограниченно в $\mathbb{L}_p(E)$ тогда и только тогда когда:

- 1. $\exists M > 0, \forall f \in S \Rightarrow ||f||_{\mathbb{L}_p(E)} \leq M$
- 2. $\forall \varepsilon > 0 \ \exists R > 0 \ \forall f \in S$:

$$\int_{|x| \le R, x \in E} |f(x)|^p dx \le \varepsilon^p$$

3. $\forall \varepsilon > 0, \ \exists \delta : \forall |z| \leq \delta, \ \forall f \in S$:

$$\|\Phi f(t+z) - \Phi f(t)\|_{\mathbb{L}_p(\mathbb{R}^m)} \le \varepsilon$$

Где

$$\Phi: \mathbb{L}_p(E) \to \mathbb{L}_p(\mathbb{R}^m), \quad \Phi f = \begin{cases} f(x), & x \in E \\ 0, & x \notin E \end{cases}$$

Доказательство. Ясно что:

$$\|\Phi f\|_{\mathbb{L}_p(\mathbb{R}^m)} = \|f\|_{\mathbb{L}_p(E)}$$

Тогда Φ — изометрия. Применяя предыдущую теорему, получаем требуемое.

20 Равномерная операторная топология τ_u в пространстве $\mathcal{L}(X,Y)$ линейных ограниченных операторов, действующих в нормированных пространствах X и Y. Теорема о полноте пространства $(\mathcal{L}(X,Y),\tau_u)$.

Определение 20.1. Пусть X, Y — линейные нормированные пространства относительно поля \mathbb{C} . Тогда множество всех непрерывных линейных отображений обозначается:

$$\mathcal{L}(X,Y) = \{A: X \to Y \mid A$$
 — линеен на X, A — непрерывен на $X\}$

Утверждение 20.2. $\mathcal{L}(X,Y)$ — линейное пространство.

Доказательство. очевидно.

Утверждение 20.3. В пространстве $\mathcal{L}(X,Y)$ можно ввести норму:

$$||A||_{op} = \sup_{\|x\|_{X} \le 1} ||A(x)||_{Y} = \sup_{\|x\|_{X} = 1} ||A(x)||_{Y} = \sup_{x \ne 0} \frac{||A(x)||_{Y}}{\|x\|_{X}}$$

$$(1.1)$$

Замечание. Далее я не буду писать индексы у норм. Чтобы понять какая из норм имеется в виду в том или ином случае, необходимо посмотреть на аргумент.

Доказательство. Проверим все аксиомы нормы

- $A \in \mathcal{L}(X,Y) \Rightarrow 0 \leq ||A|| < \infty$
- Из последнего равенства формулы (1) имеем

$$||A|| = 0 \Leftrightarrow \forall x \in X : A(x) = 0 \Leftrightarrow A = 0$$

• $\lambda \in \mathbb{C}$ из первого равенства из формулы (1):

$$||\lambda A|| = |\lambda|||A||$$

• Неравенство треугольника следует из неравенства треугольника для соответствующей нормы:

$$||Ax + Tx|| \le ||Ax|| + ||Tx||$$

Переходя к супремуму по единичному шару получаем требуемое.

Утверждение 20.4. Линейный функционал $A:X\to Y$ непрерывен тогда и только тогда, когда его норма конечна

Доказательство. \Rightarrow Пусть $A \in \mathcal{L}(X,Y)$. Тогда для $\varepsilon=1$ воспользуемся непрерывностью A в нуле, тогда $\exists \delta>0$:

$$\forall ||x|| \leq \delta : ||A(x)|| \leq 1$$

Тогда $\forall x \in X : ||x|| \le 1$:

$$||A(x)|| = \frac{1}{\delta}||A(\delta x)|| \le \frac{1}{\delta}$$

Значит норма $\|A\| \leq \frac{1}{\delta}$, то есть норма конечна.

⇐ Если норма оператора конечна, то

$$\forall x \in X : ||A(x)|| < ||A|| ||x||$$

Тогда

$$||A(x_1) - A(x_2)|| \le ||A|| ||x_1 - x_2||$$

То есть оператор является липшецевым с константой ||A|| откуда сразу следует его непрерывность.

Определение 20.5. τ_U — топология в $\mathcal{L}(X,Y)$ порожденная операторной нормой. Называется равномерной операторной топологией.

Замечание. Индекс U подчеркивает, что эта топология обеспечивает равномерную сходимость операторов на единичном шаре.

Теорема 20.6. Пусть Y — банахово пространство, тогда ($\mathcal{L}(X,Y), \tau_U$) — полное.

Доказательство. Возьмем τ_U -фундаментальную последовательность $\{A_n\}\subset \mathcal{L}(X,Y)$, то есть:

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n, m \ge N(\varepsilon) : ||A_n - A_m|| \le \varepsilon$$

Значит

$$\forall x \in X : \exists N \left(\frac{\varepsilon}{\|x\| + 1} \right) : \|A_n(x) - A_m(x)\| \le \|A_n - A_m\| \|x\| \le \varepsilon$$

Значит для любого x последовательность $\{A_n(x)\}\subset Y$ — фундаментальна, тогда в силу полноты Y она сходится. Тогда положим:

$$T: X \to Y$$
 $T(x) = \lim_{n \to \infty} A_n(x) \in Y$

В силу линейности предела и операторов A_n , T — линейный оператор. Покажем, что он непрерывен. Рассмотрим произвольное $x \in X$, $||x|| \le 1$ имеем:

$$||Tx|| = \lim_{n \to \infty} ||A_n x|| \le \lim_{n \to \infty} ||A_n||$$

Кроме того по неравенству треугольника:

$$\forall n, m \ge N(\varepsilon) : |||A_n|| - ||A_m||| \le ||A_n - A_m|| \le \varepsilon$$

Тогда $\{\|A_n\|\}\subset \mathbb{R}$ — фундаментальная числовая последовательность, и в силу полноты \mathbb{R} имеет предел, значит:

$$||Tx|| \le \lim_{n \to \infty} ||A_n|| < \infty$$

Таким образом оператор T — ограничен и значит непрерывен, тогда $T \in \mathcal{L}(X,Y)$ Теперь нам надо показать сходимость к T по операторной норме. Опять пусть $x \in X$: $||x|| \le 1$, имеем:

$$\forall n, m \ge N(\varepsilon) : ||A_n(x) - A_m(x)|| \le \varepsilon$$

Переходим к пределу по m и в силу непрерывности нормы получаем:

$$\forall n \ge N(\varepsilon) : ||A_n(x) - T(x)|| \le \varepsilon$$

Теперь беря супремум по всем x из шара получаем:

$$||A_n - T|| \le \sup_{\|x\| \le 1} ||A_n(x) - T(x)|| \le \varepsilon$$

Тогда мы получили сходимость по операторной нормы и $||T|| = \lim_{n \to \infty} ||A_n||$

21 Сильная операторная топология τ_s в пространстве $\mathcal{L}(X,Y)$ линейных ограниченных операторов, действующих в нормируемых пространствах X и Y. Теорема Банаха-Штейнгауза и теорема о полноте пространства $(\mathcal{L}(X,Y),\tau_s)$.

Определение 21.1. Топологию индуцированную на пространство $\mathcal{L}(X,Y)$ с пространства с (Y^X, τ_T) , где τ_T — топология Тихонова, будем обозначать τ_s и называть сильной операторной топологией.

Пространство $(\mathcal{L}(X,Y),\tau_S)$ — топологическое векторное так как Y — линейное нормированное а значит топологическое векторное. Обобщим определение полноты на топологические векторные пространства.

Определение 21.2. Пусть (Z, τ) — топологическое векторное пространство. Говорят, что $\{z_n\}\subset Z$ — последовательность Коши если

$$\forall U(0) \in \tau \; \exists N \in \mathbb{N} : \; \forall n, m \geq N \Rightarrow z_n - z_m \in U(0)$$

Замечание. Если (Z,τ) — нормируемое пространство, то определение выше соответствует обычному определению фундаментальной последовательности.

Определение 21.3. Топологическое векторное пространство (Z, τ) называется полным, если любая последовательность Коши является сходящейся.

Утверждение 21.4. Пусть $\{A_n\} \subset \mathcal{L}(X,Y)$ такова, что

- 1. $\{\|A_n\|\}_{n=1}^{\infty}$ ограниченна в \mathbb{R}
- 2. $\forall x \in X \ \exists \lim_{n \to \infty} A_n(x) = T(x)$

Тогда $T \in \mathcal{L}(X,Y), \|T\| \leq \underline{\lim}_{n \to \infty} \|A_n\| \leq R$ и $A_n \xrightarrow{\tau_s} T$

Доказатель ство. Из пункта 2 автоматически получаем, что $A_n \xrightarrow{\tau_s} T$. Далее, рассмотрим $x \in X, \|x\| \le 1$, тогда

$$||T(x)|| = \lim_{n \to \infty} ||A_n(x)|| \le R||x||$$

Отсюда $||T|| \leq R$. С другой стороны можно выбрать подпоследовательность, сходящуюся к частичному пределу.

$$\exists n_1 < n_2 \cdots : \lim_{k \to \infty} ||A_{n_k}|| = \underline{\lim}_{n \to \infty} ||A_n||$$

Тогда можно сесть на эту подпоследовательность в оценке:

$$||T(x)|| = \lim_{k \to \infty} ||A_{n_k}|| \le \lim_{k \to \infty} ||A_{n_k}|| ||x|| = \lim_{n \to \infty} ||A_n|| ||x||$$

Значит $||T|| \le \underline{\lim}_{n \to \infty} ||A_n||$, что и требовалось.

В утверждении 20.4 мы получили, что для непрерывности предельного оператора достаточна ограниченность норм. Пусть $\{A_n\} \subset \mathcal{L}(X,Y)$ поймем, какое свойство мы хотим от X, чтобы условие ограниченности норм было выполнено.

Последовательность $\{A_n\}$ — ограниченна, если

$$\forall x \in X \Rightarrow \{A_n(x)\}$$
 — ограниченна в Y

Обобщим понятие ограниченности на топологические векторные пространства.

Определение 21.5. Пусть (Z, τ) — топологическое векторное пространство. Множество $M \subset Z$ называется τ -ограниченным, если

$$\forall U(0) \in \tau \ \exists R > 0 : \forall r \ge R \Rightarrow M \subset rU(0)$$

Утверждение 21.6. В $(\mathcal{L}(X,Y), \tau_S)$ множество $M \subset \mathcal{L}(X,Y)$ — является τ_S -ограниченным, если и только если

$$\forall x \in X \Rightarrow \{A(x) \mid A \in M\}$$
 — ограниченно в Y

 \mathcal{A} оказательство. Ограниченность последовательности в Y перепишем следующим образом

$$\forall x \in X : \exists R = R(x) : \forall A \in M \Rightarrow ||A(x)|| \le R$$

Приступим к доказательству.

 \Rightarrow Пусть $x \in X$, возьмем следующую окрестность нуля:

$$V(0, x, 1) = \{ T \in \mathcal{L}(X, Y) \mid ||T(x)|| < 1 \}$$

В силу ограниченности M:

$$\exists R > 0 \ \forall r \geq R : \forall A \in M \ \Rightarrow A \in V(0, x, 1) \\ r \Rightarrow \frac{1}{r} A \in V(0, x, 1)$$

Возьмем r = R, тогда

$$\forall A \in M : \left\| \frac{1}{R} A(x) \right\| < 1 \Rightarrow \|A(x)\| < R$$

Что и требовалось

← Пусть теперь

$$\forall x \in X : \exists R = R(x) : \forall A \in M \Rightarrow ||A(x)|| \le R$$

Тогда возьмем произвольную окрестность нуля $U(0) \in \tau_S$, эта окрестность содержит элемент базы, то есть $\exists x_1, \dots, x_N \in X$ такие что

$$U(0) \supset \bigcap_{n=1}^{N} V(0, x_n, \varepsilon)$$

Домножим это пересечение на r, будем иметь

$$T \in r \bigcap_{n=1}^{N} V(0, x_n, \varepsilon) \Leftrightarrow \forall n \in \overline{1, N} : \left\| \frac{T(x_n)}{r} \right\| < \varepsilon$$

Значит:

$$r\bigcap_{n=1}^{N} V(0, x_n, \varepsilon) = \bigcap_{n=1}^{N} V(0, x_n, r\varepsilon)$$

Мы знаем, что для каждого x есть ограниченность:

$$\forall n \in \overline{1, N} : \exists R_n : \forall A \in M \Rightarrow ||A(x_n)|| \le R_n$$

Взяв максимум $R = \max_{n \in \overline{1,N}} R_n$ моментально получаем:

$$\forall r \ge \frac{R}{\varepsilon} : \forall A \in M \Rightarrow ||A(x_n)|| < R \le \varepsilon r \Rightarrow M \subset r \bigcap_{n=1}^{N} V(0, x_n, \varepsilon) \subset rU(0)$$

Что и требовалось.

Определение 21.7. Пусть (Z, ρ) — метрическое пространство. Множество $S \subset Z$ называется нигде не плотным, если

$$int[S] = \emptyset$$

Замечание. Очевидно, что это определение равносильно:

$$\forall r > 0, \ \forall z \in Z \Rightarrow B_r(z) \nsubseteq [S]$$

Определение 21.8.

ullet Метрическое пространство (Z, ρ) — называется первой категории по Бэру, если

$$Z = \bigcup_{n=1}^{\infty} S_n$$

Где S_n — нигде не плотные множества

• Если (Z, ρ) не является первой категории по Бэру, то оно называется второй категории по Бэру.

Теорема 21.9 (Банаха - Штейнгауза). Пусть (X, ||||) — второй категории, $M \subset \mathcal{L}(X, Y)$ — τ_S -ограничено, тогда $M - \tau_U$ -ограничено.

Доказательство. Пусть $M \subset \mathcal{L}(X,Y)$ является τ_S -ограниченным, то есть

$$\forall x \in X : \exists R = R(x) : \ \forall A \in M \Rightarrow \|A(x)\| \le R$$

А нам нужна τ_U -ограниченность, то есть нам бы хотелось, чтобы

$$\exists R_0 > 0 : \forall A \in M \Rightarrow ||A|| \le R_0$$

Распишем определение операторной нормы в терминах точек из x:

$$\forall x \in B_1(0) \subset X, \ \forall A \in M: \ \|A(x)\| \le R_0$$

Это равносильно

$$\forall x \in B_1(0) \subset X : A(x) \in B_{R_0}(0) = R_0 B_1(0) \subset Y$$

Взяв полный прообраз, продолжим цепочку равносильностей:

$$\forall x \in B_1(0) \subset X, \forall A \in M : \frac{x}{R_0} \in A^{-1}(B_1(0))$$

Отмечу, что A^{-1} не обратный оператор, а формальное обозначение полного прообраза, вопрос существования обратного оператора тут не рассматривается. Тогда

$$\forall A \in M : X \supset B_{\frac{1}{R_0}}(0) \subset A^{-1}(B_1(0))$$

Утверждение выше — это наше желание, для τ_U -ограниченности. Это желание можно переписать следующим образом. Верно ли, что $\exists R_0 > 0$ что

$$B_{\frac{1}{R_0}}(0) \subset \bigcap_{A \in M} A^{-1}(B_1(0))$$
?

В силу линейности функционала и свойств прообраза, это пересечение выпукло и замкнуто в X. Кроме того, оно симметрично относительно нуля. Значит, если $\exists r > 0, x_0 \in X$:

$$B_r(x_0) \subset \bigcap_{A \in M} A^{-1}(B_1(0)) \Rightarrow \frac{1}{2} B_{r_0}(x_0) + \frac{1}{2} B_{r_0}(-x_0) = B_{r_0}(0) \subset \bigcap_{A \in M} A^{-1}(B_1(0))$$

Значит нам достаточно, чтобы в это пересечение попал какой-нибудь шар. Введем обозначение

$$K = \bigcap_{A \in M} A^{-1}(B_1(0))$$

Начнем умножать K на натуральные числа и объединять, тогда будем иметь

$$x \in \bigcup_{n=1}^{\infty} nK \Leftrightarrow \exists n : \frac{x}{n} \in K \Leftrightarrow \forall A \in M : A\left(\frac{x}{n}\right) \in B_1(0) \Leftrightarrow \forall A \in M : ||A(x)|| \le n$$

Но в силу поточечной ограниченности M:

$$\forall x \in X \Rightarrow \exists n_x = R(x) + 1 \Rightarrow ||A(x)|| \le n_x \Rightarrow x \in n_x K$$

Значит

$$X = \bigcup_{n=1}^{\infty} nK$$

Так как X — второй категории, K — замкнуто, то $\exists n_0$:

$$int \, n_0 K \neq \emptyset$$

Значит $\exists r_0 > 0, \ x_0 \in X$:

$$B_{r_0}(x_0) \subset n_0 K \Rightarrow B_{\frac{r_0}{n_0}}(x_0) \subset K$$

Что и требовалось.

21 Сильная операторная топология τ_s в пространстве $\mathcal{L}(X,Y)$ линейных ограниченных операторов, действующих в нормируемых пространствах X и Y. Теорема Банаха-Штейнгауза и теорема о полноте пространства ($\mathcal{L}(X,Y),\tau_s$). 68

Следствие 1. Если X — банахово пространство, $\{A_n\} \subset \mathcal{L}(X,Y) \ \forall x \in X \Rightarrow \{A_n(x)\}$ — ограничена в Y. Тогда $\{\|A_n\|\}$ — ограничена.

Доказательство. Автоматически из теоремы выше и теоремы Бэра о категории (12.11).

Следствие 2 (Полнота ($\mathcal{L}(X,Y), \tau_s$)). Если X,Y — банаховы пространства, $\{A_n\} \subset \mathcal{L}(X,Y)$ — τ_S -фундаментальна, то есть

$$\forall x \in X \Rightarrow \{A_n(x)\}$$
 — фундаментальна в Y

То
$$\exists T \in \mathcal{L}(X,Y)$$
 такой что $A_n \xrightarrow{\tau_S} T, \|T\| \leq \varliminf_{n \to \infty} \|A_n\| < +\infty$

 \mathcal{A} оказательство. Y — банахово, $\{A_n\}$ — au_S -фундаментальна. Значит

$$\forall x \in X \ \exists \lim_{n \to \infty} A_n(x) = T(x) \in Y$$

 $T: X \to Y$ — линейный оператор. $\{A_n\}$ — τ_S -фундаментальна, значит τ_S -ограниченна, откуда по предыдущем следствию получаем, что

$$\{\|A_n\|\}$$
 — ограниченна

Тогда в силу 21.4

$$||T|| \le \underline{\lim}_{n \to \infty} ||A_n|| < +\infty$$

To есть $T \in \mathcal{L}(X,Y)$ и $A_n \xrightarrow{\tau_S} T$

22 Теоремы Банаха об открытом отображении и об обратном операторе

Определение 22.1. Пусть X,Y — топологические пространства, $A\colon X\to Y$ называется открытым отображением, если

$$\forall G \overset{open}{\subset} X \Rightarrow A(G) \overset{open}{\subset} Y$$

Утверждение 22.2. Пусть $X, Y - \Pi H\Pi, A \in \mathcal{L}(X, Y)$ открыто тогда и только тогда, когда

$$\exists r > 0 : O_r(0) \subset A(O_1(0))$$

Для доказательства основной теоремы понадобится техническая

Лемма 22.3. Пусть $S \subset Z - ЛНП$. $t \in \mathbb{C} \setminus \{0\}$, тогда

$$[tS] = t[S], \quad int(tS) = t int S$$

Доказательство.

• Пусть $x \in [tS]$, так как в ЛНП топологическое замыкание совпадает с секвенциальным

$$\exists y_n \in S: \ x = \lim_{n \to \infty} ty_n \Leftrightarrow \frac{x}{t} = \lim_{n \to \infty} y_n$$

Таким образом $\frac{x}{t} \in [S]$, что и требовалось.

• Пусть $x \in \text{int}(tS)$. По определению

$$\exists \varepsilon > 0: \ O_{\varepsilon}(x) \subset tS \Rightarrow \frac{1}{t} O_{\varepsilon}(x) \subset S \Leftrightarrow O_{\frac{\varepsilon}{|t|}} \left(\frac{x}{t}\right) \subset S$$

Что и требовалось.

Теорема 22.4 (Банаха об открытом отображении). Пусть X, Y — банаховы пространства. $A \in \mathcal{L}(X,Y)$ такой что Im A = Y. Тогда A — открытое отображение.

Доказательство. По условию $\operatorname{Im} A = Y$, тогда можно представить Y объединением шаров

$$Y = \bigcup_{n=1}^{\infty} AO_n(0)$$

Так как Y — банахово, то по теореме Бэра (12.11) существует $n_0 \in \mathbb{N}$:

$$\operatorname{int}[AO_{n_0}(0)] \neq \emptyset$$

В силу леммы имеем

$$int[A(O_{n_0}(0))] = int(n_0[AO_1(0)]) = n_0 int[AO_1(0)] \neq \emptyset$$

Множество $\inf[AO_1(0)]$ выпукло, симметрично относительно нуля и не пусто:

$$\exists x \in \operatorname{int}[AO_1(0)] \Rightarrow -x \in \operatorname{int}[AO_1(0)]$$

Тогда, пользуясь выпуклостью,

$$\frac{x-x}{2} = 0 \in \inf[AO_1(0)]$$

Таким образом

$$\exists r > 0 : O_r(0) \subset \inf[AO_1(0)]$$

В силу леммы

$$\forall \varepsilon > 0 : O_{r\varepsilon}(0) \subset \varepsilon \inf[AO_1(0)] = \inf[AO_{\varepsilon}(0)]$$

Исследуем $[AO_1(0)]$. Рассмотрим произвольную точку $y \in [AO_1(0)]$ по определению любая окрестность y должна иметь непустое пересечение с $AO_1(0)$. Любая окрестность точки содержит шар с центром в этой точке, или, что то же самое, шар с центром в нуле, сдвинутый на эту точку, тогда

$$(y - [AO_{\frac{1}{2}}(0)]) \cap AO_1(0) \neq \emptyset$$

Тогда $\exists y_1 \in [AO_{\frac{1}{2}}(0)], \exists x_1 \in O_1(0)$:

$$y - y_1 = A(x_1)$$

Уменьшим радиус:

$$(y_1 - [AO_{\frac{1}{4}}(0)]) \cap AO_{\frac{1}{2}}(0) \neq \varnothing$$

Тогда $\exists y_2 \in [AO_{\frac{1}{4}}(0)], \exists x_2 \in O_{\frac{1}{2}}(0)$:

$$y_1 - y_2 = Ax_2$$

Продолжив таким образом получим последовательности

$$\{y_n\}_{n=1}^{\infty} \subset Y \quad \{x_n\}_{n=1}^{\infty} \subset X$$

Заметим, что

$$y - y_{n+1} = y - y_1 + y_1 - y_2 + \dots + y_n - y_{n+1} = Ax_1 + Ax_2 + \dots + Ax_n = A\left(\sum_{k=1}^n x_k\right)$$

Кроме того

$$||y_n|| \le ||A|| \frac{1}{2^n} \Rightarrow y_n \to 0, \quad ||x_n|| \le \frac{1}{2^{n-1}}$$

Для подходящего n будем иметь:

$$\left\| \sum_{k=1}^{n+m+1} x_k - \sum_{k=1}^{n+1} x_k \right\| \le \sum_{k=n+1}^{n+m+1} \|x_k\| \le \sum_{k=n+1}^{n+m} \frac{1}{2^{k-1}} \le \frac{1}{2^{n-1}} < \varepsilon$$

Значит последовательность $\{\sum_{k=1}^{n} x_k\}$ — фундаментальна в полном X, тогда

$$\exists x = \lim_{n \to \infty} \sum_{k=1}^{n} x_k \in X$$

Причем

$$||x|| \le \sum_{k=1}^{\infty} ||x_k|| \le \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} = 2 < 3$$

Таким образом $\forall y \in [AO_1(0)] \Rightarrow y = A(x), ||x|| < 3$. То есть

$$[AO_1(0)] \subset AO_3(0)$$

Но тогда $O_{\frac{r}{2}} \subset AO_1(0)$ что и требовалось.

Следствие. Если Z, X — банаховы пространства $A \in \mathcal{L}(X, Z)$ и $\operatorname{Im} A = Y$ — замкнуто в Z, тогда $A \colon X \to Y$ — открытое отображение из X на Y.

Теорема 22.5 (Банаха об обратном операторе). Пусть X, Z — банаховы пространства, $A \in \mathcal{L}(X, Z)$, тогда

$$\exists A^{-1} \in \mathcal{L}(\operatorname{Im} A, X)$$

Тогда и только тогда когда

- $Ker A = \{0\}$
- $\operatorname{Im} A$ замкнуто в Z

Доказательство. Ясно, что $A \colon X \to Z$ — инъективен если и только если $\operatorname{Ker} A = \{0\}$. Значит

$$\exists A^{-1} \colon \operatorname{Im} A \to X$$

Проверим линейность

$$y_1, y_2 \in \text{Im } A \Rightarrow \exists! x_{1,2} \in X : Ax_{1,2} = y_{1,2}$$

Значит $A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 y_1 + \alpha_2 y_2$ откуда следует линейность обратного оператора. Будем проверять второе условие.

 \Rightarrow Пусть $A^{-1} \in \mathcal{L}(\operatorname{Im} A, X)$. Пусть $y \in [\operatorname{Im} A]$, тогда $\exists y_n \in \operatorname{Im} A \colon y_n \to y$. Тогда последовательность прообразов $x_n \in A^{-1}(y_n) \in X$ фундаментальна:

$$||x_n - x_m|| = ||A^{-1}(y_n - y_m)|| \le ||A^{-1}|| ||y_n - y_m|| \xrightarrow{n,m \to \infty} 0$$

Так как X — полно, то $\exists x = \lim_{n \to \infty} x_n \in X$, но A — непрерывен, значит

$$A(x) = \lim_{n \to \infty} A(x_n) = \lim_{n \to \infty} y_n = y \in \operatorname{Im} A$$

Что и требовалось.

 \Leftarrow Если ${\rm Im}\,A$ — замкнут в полном Z, то ${\rm Im}\,A$ — полон, тогда по теореме об открытом отображении

$$A \colon X \to \operatorname{Im} A$$
 — открытое отображение

Тогда для обратного оператора:

$$\forall G \overset{open}{\subset} X \Rightarrow (A^{-1})^{-1}(G) = A(G)$$
 — открыто в $\operatorname{Im} A$

Таким образом прообраз любого открытого множества открыт, что означает непрерывность A^{-1} . Что и требовалось.

23 Теорема Банаха о замкнутом графике. Теорема Хеллингера-Теплица о непрерывности симметричного на гильбертовом пространстве линейного оператора.

Теорема 23.1 (Банаха о замкнутом графике). Пусть X, Y — банаховы пространства. И $A \colon X \to Y$ — линейный оператор с замкнутым графиком, то есть

$$\operatorname{Gr} A = \left\{ \begin{pmatrix} x \\ Ax \end{pmatrix} \in X \times Y \mid x \in X \right\}$$
 — замкнуто в $X \times Y$

Тогда $A \in \mathcal{L}(X,Y)$

Доказательство. Рассмотрим оператор $T: \operatorname{Gr} A \to X$:

$$\forall x \in X \quad T \begin{pmatrix} x \\ Ax \end{pmatrix} = x$$

Очевидно, T — линеен. Покажем, что $\ker T=\{0\}$. Пусть $\begin{pmatrix} x \\ Ax \end{pmatrix} \in \ker T$ тогда

$$T\begin{pmatrix} x \\ Ax \end{pmatrix} = x = 0 \Rightarrow Ax = A(0) = 0 \Rightarrow \begin{pmatrix} x \\ Ax \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Кроме того ясно, что $\operatorname{Im} T = X$. Проверим, что $T \in \mathcal{L}(\operatorname{Gr} A, X)$

$$\left\| T \begin{pmatrix} x \\ Ax \end{pmatrix} \right\| = \|x\| \le \|x\| + \|Ax\| = \left\| \begin{pmatrix} x \\ Ax \end{pmatrix} \right\| \Rightarrow \|T\| \le 1$$

Для попадания в условие теоремы Банаха об обратном операторе (22.5), остается проверить, что $\operatorname{Gr} A$ — банахово, но $\operatorname{Gr} A$ — замкнуто в банаховом $X \times Y$, а значит — банахово. Таким образом существует обратный оператор

$$\exists T^{-1}: X \to \operatorname{Gr} A$$
 — непрерывен

Рассмотрим

$$P \colon X \times Y \to Y \quad P\begin{pmatrix} x \\ y \end{pmatrix} = y$$

 $P \in \mathcal{L}(X \times Y, Y)$, действительно

$$\left\| P \begin{pmatrix} x \\ y \end{pmatrix} \right\| = \|y\| \le \|x\| + \|y\| = \left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\| \Rightarrow \|P\| \le 1$$

Тогда рассмотрим $P \circ T^{-1} \colon X \to Y, \, \forall x \in X$ имеем

$$PT^{-1}(x) = P\begin{pmatrix} x \\ Ax \end{pmatrix} = Ax$$

Таким образом $A = P \circ T^{-1}$, значит $A \in \mathcal{L}(X,Y)$ как композиция непрерывных.

Теорема 23.2 (Хеллингер, Теплиц). Пусть линейный оператор $A\colon H\to H$, где H — гильбертово. Причем

$$\forall x, y \in H \Rightarrow (A(x), y) = (x, A(y))$$

Тогда $A \in \mathcal{L}(H)$.

Доказательство. Пусть A симметричен и линеен на A, покажем, что график A замкнут. Пусть

$$\begin{pmatrix} x_n \\ Ax_n \end{pmatrix} \in \operatorname{Gr} A$$
 и $\begin{pmatrix} x_n \\ Ax_n \end{pmatrix} \xrightarrow{H \times H} \begin{pmatrix} x \\ y \end{pmatrix}$

Тогда в силу симметрии $\forall z \in H$:

$$(Ax_n, z) = (x_n, Az)$$

Но скалярное произведение непрерывно при фиксированном z, тогда

$$(Ax_n, z) \to (y, z) = (x, Az) = (Ax, z)$$

Значит $\forall z \in H$:

$$(y - Ax, z) = 0 \Rightarrow ||y - Ax||^2 = 0 \Rightarrow y = Ax$$

Значит $\binom{x}{y} \in \operatorname{Gr} A$. Таким образом график A замкнут, и значит по теореме о замкнутом графике $A \in \mathcal{L}(H)$.

24 Компактные операторы в пространстве $\mathcal{L}(X,Y)$. Замкнутость подпространства компактных операторов $\mathcal{K}(X,Y)$ в пространстве $\mathcal{L}(X,Y)$ с равномерной операторной топологией.

Определение 24.1. Линейный оператор $A: X \to Y$, где X, Y — линейные нормированные пространства, называется компактным, если образ любого ограниченного множества является предкомпактом (то есть его замыкание является компактом). Пространство компактных операторов обозначается $\mathcal{K}(X,Y)$.

Определение 24.2. В случае банахового Y предкомпактность равносильна вполне ограниченности.

Так как вполне ограниченное множество всегда ограниченно, то $\mathcal{K}(X,Y) \subset \mathcal{L}(X,Y)$.

Утверждение 24.3. Пусть последовательность компактных операторов

$$\{A_m\}_{m=1}^{\infty} \subset \mathcal{K}(X,Y)$$

является сходящейся к оператору A по операторной норме, т.е.

$$||A_m - A|| \xrightarrow{m \to \infty} 0$$

Тогда A является компактным оператором. Иными словами подпространство $\mathcal{K}(X,Y)$ замкнуто в $\mathcal{L}(X,Y)$.

Доказательство. В силу сходимости по операторной норме

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \colon \forall m \ge N(\varepsilon) \Rightarrow ||A_m - A|| \le \varepsilon$$

Тогда для любого $x \in B_1(0)$ получаем

$$||A_m(x) - A(x)|| \le ||A_m - A|| \le \varepsilon$$

Зафиксируем произвольное $m \geq N(\varepsilon)$. Так как множество $A_m(B_1(0))$ вполне ограниченно в Y, то существуют векторы

$$x_1,\ldots,x_N\in B_1(0)$$

Такие что множество

$$A_m(x_1), \dots, A_m(x_N) \in A_m(B_1(0))$$

является конечной ε -сетью для множества $A_m(B_1(0))$. Тогда $\forall x \in B_1(0) \; \exists x_k$:

$$||A_m(x) - A_m(x_k)|| \le \varepsilon$$

Тогда получаем

$$||A(x) - A(x_k)|| \le ||A(x) - A_m(x)|| + ||A_m(x) - A_m(x_k)|| + ||A_m(x_k) - A(x_k)|| \le 3\varepsilon$$

что и требовалось.

25 Теорема о приближении компактного оператора в пространстве $\mathcal{L}(X,H)$ с равномерной операторной топологией конечномерным оператором для гильбертова пространства H.

Определение 25.1. Оператор A называется конечномерным, если он является пределом последовательности линейных непрерывных операторов с конечномерными образами.

Очевидно, что любой линейный непрерывный оператор с конечномерным образом является компактным, тогда в силу замкнутости пространства компактных операторов, любой конечномерный оператор компактен. Оказывается для гильбертого пространства верно и обратное.

Теорема 25.2. Пусть $Y = \mathcal{H}$ — гильбертово пространство, а линейный оператор $A \in \mathcal{K}(X,Y)$, тогда A — конечномерный.

Доказательство. Так как A — компактный, то множество $AB_1(0)$ является вполне ограниченным в \mathcal{H} . Следовательно $\forall \varepsilon > 0$ существует конечная ε -сеть

$$\{y_m\}_{m=1}^M \subset A(B_1(0))$$

для множества $AB_1(0)$. Определим

$$L_{\varepsilon} = \operatorname{Lin}\{y_1, \dots, y_M\} \subset \mathcal{H}$$

Так как подпространство L_{ε} — конечномерно, то оно замкнуто в \mathcal{H} . Тогда по теореме Риса об ортогональном дополнении

$$\mathcal{H} = L_{\varepsilon} \oplus (L_{\varepsilon})^{\perp}$$

Поэтому для любого вектора $y \in \mathcal{H}$ существуют единственные векторы

$$y_{||} \in L_{\varepsilon}, \quad y_{\perp} \in (L_{\varepsilon})^{\perp}$$

Такие что $y=y_{||}+y_{\perp}$. Определим оператор проекции

$$P_{\varepsilon} \colon \mathcal{H} \to \mathcal{H}$$

по формуле

$$P_{\varepsilon}(y) = y_{||}$$

Так как

$$\|y\| = \sqrt{(y_{||} + y_{\perp}, y_{||} + y_{\perp})} = \sqrt{\|y_{||}\|^2 + \|y_{\perp}\|^2} \ge \|y_{||}\| = \|P_{\varepsilon}(y)\|$$

то $||P_{\varepsilon}|| \leq 1$ и $P_{\varepsilon} \in \mathcal{L}(\mathcal{H}, \mathcal{H})$. Определим оператор

$$A_{\varepsilon} = P_{\varepsilon}A \in \mathcal{L}(X, \mathcal{H})$$

Так как $\operatorname{Im} A_{\varepsilon} \subset L_{\varepsilon}$, то A_{ε} имеет конечномерный образ. Рассмотрим произвольный $x \in B_1(0)$. Для него существует $m \in \overline{1, M}$, такой, что

$$||A(x) - y_m|| \le \varepsilon$$

При этом по определению P_{ε} справедливо

$$P_{\varepsilon}(y_m) = y_m$$

Тогда

$$||A(x) - A_{\varepsilon}(x)|| \le ||A(x) - y_m|| + ||P_{\varepsilon}(y_m - A_x)|| \le (1 + ||P_{\varepsilon}||)||A(x) - y_m|| \le 2\varepsilon$$

В силу произвольности $x \in B_1(0)$ получаем

$$||A - A_{\varepsilon}|| \le 2\varepsilon$$

Взяв $\varepsilon_n=\frac{1}{n}$, получим $A_{\varepsilon_n}\xrightarrow{\|\|} A$ при $n\to\infty$. Где A_{ε_n} — операторы с конечномерными образами. Что и требовалось.

26 Теорема Хана-Банаха и ее следствия в линейном нормированном пространстве.

Определение 26.1. Элемент пространства $\mathcal{L}(X,\mathbb{C})$ называется линейным непрерывным функционалом, а пространство $\mathcal{L}(X,\mathbb{C})$ с операторной нормой называется сопряженным пространством к пространству X и обозначается X^*

Теорема 26.2 (Хан, Банах). Пусть выполнены следующие условия:

- 1. X вещественное линейное пространство.
- 2. $L \subset X$ подпространство.
- 3. $f: L \to \mathbb{R}$ вещественное линейное отображение.
- 4. $\exists p: X \to \mathbb{R}$ функция такая что
 - $p(x+y) \le p(x) + p(y)$ (полуаддитивность)
 - $\forall \lambda > 0$: $p(\lambda x) = \lambda p(x)$ (положительная однородность)
- 5. $\forall x \in L : f(x) \le p(x)$

Тогда существует $g: X \to \mathbb{R}$ — вещественное линейное отображение, такое что

$$g|_L = f$$
 и $\forall x \in X : g(x) \le p(x)$

Доказательство. Рассмотрим семейство

$$\Phi = \left\{ (M,h) \mid \begin{array}{c} M \subset X - \text{подпространство} \\ L \subset M, \ h \colon M \to \mathbb{R} - \text{вещественно линейный функционал,} \\ h\big|_L = f, \\ \forall x \in M \colon h(x) \leq p(x) \end{array} \right\}$$

Оно не пусто, так как $(L,f)\in \Phi.$ Введем на Φ частичный порядок

$$(M_1, h_1) \leq (M_2, h_2) \Leftrightarrow M_1 \subset M_2 \text{ if } h_1|_{M_1} = h_2|_{M_1}$$

Проверка аксиом частичного порядка очевидна. Таким образом (Φ, \leq) — ЧУМ. По теореме Хаусдорфа (1.4) в (Φ, \leq) существует максимальный по включению ЛУМ N. Рассмотрим

$$M_* = \bigcup_{(M,h)\in N} M$$

Тогда M_* — подпространство X, так как если $x,y\in M_*$, то $x\in M_x,y\in M_y$, но $M_x,M_y\in N$, значит сравнимы, не умаляя общности $M_x\subset M_y$, тогда $\alpha x+\beta y\in M_y\subset M_*$. Рассмотрим

$$h_* \colon M_* \to \mathbb{R} \quad h_* \big|_M = h \ \forall (M, h) \in N$$

Тогда $h_* \leq p$ на M_* , $h_*\big|_L = f$. Осталось доказать, что $M_* = X$. Предположим противное, то есть $\exists x_0 \in X \setminus M_*$, тогда строим

$$M_0 = M_* \oplus \operatorname{Lin}\{x_0\}$$

И строим $h_0(x+tx_0)=h_*(x)+at$, где $a=h_0(x_0)$ нам пока не известно. Тогда ясно, что

$$h_0|_{M_*} = h_*$$

Нужно определить a так, чтобы $\forall x \in M_0$: $h_0(x) \leq p(x)$. Если мы найдем такое a, то M_0 будет сравнимо со всеми элементами N и строго больше, что будет противоречить максимальности ЛУМА N.

Поймем, что мы хотим от a, чтобы было выполнено $h_0(x) \le p(x)$ Пусть t > 0, тогда

$$h_0(x+tx_0) \le p(x+tx_0) \Rightarrow a \le p\left(\frac{x}{t}+x_0\right) - h_*\left(\frac{x}{t}\right)$$

Перейдя к инфинуму получим

$$a \le \inf_{x \in M_*} [p(x + x_0) - h_*(x)]$$

Пусть теперь t < 0, тогда аналогично получим

$$-a \le p\left(\frac{x}{|t|} - x_0\right) - h_*\left(\frac{x}{|t|}\right)$$

Переходя к супремуму с учетом предыдущего получим:

$$\sup_{z \in M_*} (h_*(z) - p(z - x_0)) \le a \le \inf_{x \in M_*} [p(x + x_0) - h_*(x)]$$

Реализуется ли эта ситуация? Оказывается да, ведь $\forall z, x \in M_*$

$$h_*(z) + h_*(x) = h_*(x+z) \le p(x+z) \le p(x+x_0) + p(z-x_0)$$

Значит

$$\forall z, x \in M_* : h_*(z) - p(z - x_0) \le p(x + x_0) - h_*(x)$$

Взяв супремум по x и z получим в точности необходимое. Значит такое a существует и теорема доказана.

Утверждение 26.3. Между $f \in X^*$ и Re $f: X \to \mathbb{R}$ существует изометрия.

Доказательство. Заметим, что если $f \in X^*$, то

$$f = U + iV, U = \operatorname{Re} f, \ V = \operatorname{Im} f$$

Тогда в силу линейности легко видеть, что

$$f(x) = U(x) - iU(ix) = \operatorname{Re} f(x) - i\operatorname{Re} f(ix)$$

Причем:

$$|U(x)| \leq |f(x)| \leq \|f\| \Rightarrow \|U\| \leq \|f\|$$

С другой стороны:

$$f(x) = |f(x)|e^{i\varphi} \Rightarrow |f(x)| = f(e^{-i\varphi}x) = U(xe^{-i\varphi}) \le ||U|| ||xe^{-i\varphi}|| = ||U|| ||x||$$

Таким образом $||f|| = ||\operatorname{Re} f||$. Значит существует изометрический изоморфизм:

$$X^* \ni f \mapsto \operatorname{Re} f : X \to \mathbb{R}$$

Следствие. Пусть $X - \Pi H\Pi$, $L \subset X - подпространство. Пусть <math>g \in L^*$, тогда существует

$$f \in X^* \colon f|_L = g, \quad ||f|| = ||g||$$

Лемма 26.4. Пусть $X \neq \{0\}$, $x_0 \in X$, $x_0 \neq 0$, тогда существует линейный непрерывный функционал $f \in X^*$ такой, что

$$f(x_0) = 1$$

Доказательство. Рассмотрим

$$L_0 = \operatorname{Lin} x_0 = \{ tx_0 \mid t \in \mathbb{C} \} \subset X$$

Построим $f_0: L_0 \to \mathbb{C}$ следующим образом:

$$\forall t \in \mathbb{C}: f_0(tx_0) = t$$

Тогда

$$||f_0|| = \sup_{t \neq 0} \frac{||f_0(tx_0)||}{||tx_0||} = \sup_{t \neq 0} \frac{|t|}{|t|||x_0||} = \frac{1}{||x_0||} < +\infty$$

Значит $f_0 \in \mathcal{L}(L_0, \mathbb{C})$. В силу предыдущего утверждения имеем:

$$p(x) = \frac{\|x\|}{\|x_0\|} = \|x\| \|f_0\| \ge \operatorname{Re} f_0(x) = U_0(x)$$

Тогда по теореме Хана-Банаха: сущетсвует $U:X\to\mathbb{R}$ — продолжение U_0 на все пространство и

$$U(x) \le p(x)$$

Кроме того $||U|| \ge \frac{1}{||x_0||} = ||U_0||$. Значит $||U_0|| = ||U||$. Тогда имеем:

$$f = U(x) - iU(ix)$$

Который удовлетворяет условию леммы.

27 Теорема об отделимости В локально выпуклом топологическом векторном пространстве И Пример бесконечномерного ee следствия. топологического векторного пространства \mathbf{c} тривиальным сопряженным.

Определение 27.1. Пусть (X, τ) — топологическое векторное пространство (относительно \mathbb{C}). S_1 и S_2 — два множества из X, тогда говорят, что

• S_1 и S_2 отделимы, если $\exists f \in X^* \setminus \{0\}$ и $\exists \gamma \in \mathbb{R}$, такие что

$$\forall x \in S_1, \ \forall y \in S_2 \colon \operatorname{Re} f(x) \le \gamma \le \operatorname{Re} f(y)$$

• S_1 и S_2 строго отделимы, если $\exists f \in X^* \setminus \{0\}$ и $\exists \gamma \in \mathbb{R}$, такие что

$$\forall x \in S_1, \ \forall y \in S_2 \colon \operatorname{Re} f(x) < \gamma \le \operatorname{Re} f(y)$$

• S_1 и S_2 сильно отделимы, если $\exists f \in X^* \setminus \{0\}$ и $\exists \gamma_1, \gamma_2 \in \mathbb{R}$, такие что

$$\forall x \in S_1, \ \forall y \in S_2 \colon \operatorname{Re} f(x) \le \gamma_1 < \gamma_2 \le \operatorname{Re} f(y)$$

Теорема 27.2 (о строгой отделимости). Пусть (X, τ) — топологическое векторное пространство, S_1, S_2 — выпуклые и непустые множества. S_1 — τ -открыто и $S_1 \cap S_2 = \varnothing$. Тогда S_1 и S_2 строго отделимы.

Доказательство. Рассмотрим $x_1 \in S_1, x_2 \in S_2$. Рассмотрим

$$U = S_1 - S_2 + \underbrace{x_2 - x_1}_{y} = S_1 - S_2 + y$$

Так как S_1 — открыто, то U — открыто. Кроме того $0 \in U$. Таким образом U — окрестность нуля. Далее, так как S_1 , S_2 — выпуклы, значит U — выпукло. Рассмотрим следующую функцию, называемую функцией Минковского

$$\mu_U(x) = \inf\left\{t > 0 \colon \frac{x}{t} \in U\right\}$$

Следующие свойства функции Минковского очевидны

- 1. Положительная однородность.
- 2. $\forall x \in U \Rightarrow \mu_U(x) \leq 1$
- 3. $\forall x \notin U \Rightarrow \mu_U(x) \geq 1$

Полуаддитивность не так очевидна. Пусть $u, v \in X$. Нам бы хотелось, чтобы

$$\mu_U(u+v) \le \mu_U(u) + \mu_U(v)$$

По определению инфинума

$$\forall t > \mu_U(u), \ \exists t_1 \in (\mu_U(u), t) \Rightarrow \frac{u}{t_1} \in U.$$

Аналогично

$$\forall \tau > \mu_U(v) \ \exists \tau_1 \in (\mu_U(v), \tau) \Rightarrow \frac{v}{\tau_1} \in U.$$

На самом деле, в силу выпуклости в качестве t_1 и τ_1 подойдут сами t и τ , действительно

$$\frac{u}{t} = \frac{t_1}{t} \left(\frac{u}{t_1} \right) + \left(1 - \frac{t_1}{t} \right) \cdot 0 \in U$$

Аналогично

$$\frac{v}{\tau} = \frac{\tau_1}{\tau} \left(\frac{v}{\tau_1} \right) + \left(1 - \frac{\tau_1}{\tau} \right) \cdot 0 \in U$$

Легко видеть, что в силу выпуклости

$$\frac{u+v}{t+\tau} = \frac{t}{t+\tau} \left(\frac{u}{t}\right) + \frac{\tau}{t+\tau} \left(\frac{v}{\tau}\right) \in U$$

Так как функция Минковского это инфинум, то

$$\mu_U(u+v) \le t+\tau$$

Теперь перейдем к пределу при $t \to \mu_U(u) + 0$, $\tau \to \mu_U(v) + 0$, тогда

$$\mu_U(u+v) \le \mu_U(u) + \mu_U(v)$$

Так как $S_1 \cap S_2 = \emptyset$, то $0 \notin S_1 - S_2$. Воспоминая, что $U = S_1 - S_2 + y$, значит $y \notin U$. Значит $\mu_U(y) \geq 1$. Наконец, построим функционал который будем продолжать по Хану-Банаху. Рассмотрим

$$\varphi \colon \{\alpha y \mid \alpha \in \mathbb{R}\} \to \mathbb{R} \quad \varphi(\alpha y) = \alpha$$

 φ — вещественно линейный функционал, действующий из подпространства. Как он взаимодействует с функцией Минковского? Если $\alpha>0$, то

$$\varphi(\alpha y) = \alpha \le \alpha \mu_U(y) = \mu_U(\alpha y)$$

Если $\alpha \leq 0$, то

$$\varphi(\alpha y) = \alpha \le 0 \le \mu_U(\alpha y)$$

Таким образом на $\text{Lin}\{y\}\ \varphi \leq \mu_U$. Теперь выполнены все условия теоремы Хана-Банаха (26.2), где $p = \mu_U$, значит

$$\exists \psi \colon X \to \mathbb{R}$$

Вещественно линейный функционал такой, что

$$\psi|_{\mathrm{Lin}\{y\}} = \varphi, \quad \psi \le \mu_U$$
 на X

Построим $f(x) = \psi(x) - i\psi(ix)$: $X \to \mathbb{C}$. f — комплексно линейный функционал. Так как мы работаем в ненормируемом случае, то непрерывность бесплатно нам не досталась. Покажем ее. Для этого поймем, что на U данный функционал ограничен в силу свойств функции Минковского:

$$\forall x \in U \Rightarrow \mu_U(x) \le 1 \Rightarrow \psi(x) \le \mu_U(x) \le 1$$

Симметризуем U. Положим $V = U \cap (-U)$, тогда

$$\forall x \in V \Rightarrow \psi(\pm x) \le \mu_U(\pm x) \Rightarrow |\psi(x)| \le 1$$

В топологическом векторном пространстве ограниченность на некоторой окрестности нуля фактически является критерием непрерывности:

$$\forall \varepsilon > 0 \ \exists W_{\varepsilon} = \frac{\varepsilon}{2} U \in \tau \Rightarrow \forall x \in W_{\varepsilon} \Rightarrow |\psi(x)| \le \frac{\varepsilon}{2} < \varepsilon$$

Таким образом $\psi \colon X \to \mathbb{R}$ — непрерывен!

Теперь поймем, что данный функционал разделяет S_1 и S_2 . $\forall u \in S_1, v \in S_2$:

$$u - v + y \in U$$

Так как U — открыто, то $\forall z \in U \Rightarrow \mu_U(z) < 1$. В силу непрерывности умножения на скаляр

$$1 \cdot u \in U \Rightarrow \exists \delta > 0 \colon \forall \alpha \in \mathbb{C} : |\alpha - 1| < \delta \Rightarrow \alpha z \in U$$

Тогда

$$\left(1 + \frac{\delta}{2}\right)z \in U \Rightarrow \mu_U(z) < \frac{1}{1 + \frac{\delta}{2}} < 1$$

Значит

$$\psi(u-v+y) \le \mu_U(u-v+y) < 1$$

Но ψ — линейный фукционал и $\psi(y) = \varphi(y) = 1$:

$$\psi(u) - \psi(v) + 1 < 1 \Rightarrow \psi(u) < \psi(v)$$

Что выполнено $\forall u \in S_1, \ v \in S_2$. Это почти победа. Осталось определить γ :

$$\gamma = \inf_{u \in S_2} \psi(u)$$

Тогда $\psi(u) \leq \gamma \leq \psi(v)$. Но S_1 — открыто, значит мы сможем избавиться от нестрого неравенства. Теперь пользуемся непрерывностью сложения

$$\forall u = u + 0 \in S_1 \Rightarrow \exists W(0) \in \tau \colon \forall w \in W \Rightarrow u + w \in S_1$$

Так как W — окрестность нуля, то

$$\exists \delta > 0 \colon \forall \alpha \in \mathbb{C} : \ |\alpha| < \delta \Rightarrow \alpha y \in W$$

Теперь $u+\frac{\delta}{2}y\in S_1$. Эта добавка, которую мы получили из открытости S_1 и дает строгую отделимость:

$$\psi(u) + \psi\left(\frac{\delta}{2}y\right) = \frac{\delta}{2}\varphi(y) + \psi(u) = \psi(u) + \frac{\delta}{2} \le \gamma$$

Отметим, что δ зависит от u, поэтому сильной отделимости нет, но строгая появилась

$$\psi(u) < \gamma \le \psi(v)$$

Что и требовалось.

Определение 27.3. Топологическое векторное пространство называется локально выпуклым если существует локальная база нуля состоящая из выпуклых окрестностей нуля.

Теорема 27.4 (О сильной отделимости). Пусть (X, τ) — локально выпуклое топологическое векторное пространство. Тогда если $S_1 \subset X$ — выпуклое, замкнутое не пустое множество. S_2 — выпуклый не пустой компакт и $S_1 \cap S_2 = \emptyset$, то S_1 и S_2 — сильно отделимы.

Доказательство. Рассмотрим $X \setminus S_1$. Это множество открыто и $S_2 \subset X \setminus S_1$. Значит

$$\forall x \in S_2 \ \exists V_x \in \beta_0 \colon \ x + V_x \subset X \setminus S_1$$

Где β_0 — локальная база нуля из выпуклых окрестностей. Положим $W_x = V_x \cap (-V_x)$. Получили симметричную выпуклую окрестность нуля. Так как W_x — выпукло, то

$$x + \frac{W_x}{2} \subset x + V_x$$

Проделывая данную процедуру для каждого $x \in S_2$ получаем открытое покрытие S_2

$$P = \left\{ x + \frac{W_x}{2} \mid S_2 \right\}$$

Из него можно выбрать конечное подпокрытие

$$\exists x_1, \dots, x_N \in S_2 \colon S_2 \subset \bigcup_{k=1}^N \left(x_k + \frac{W_{x_k}}{2} \right)$$

Тогда рассмотрим

$$U = \bigcap_{k=1}^{N} \frac{W_{x_k}}{2}$$

U — выпуклая симметричная окрестность нуля. Причем

$$x \in S_2 + U \Rightarrow \exists k \in \overline{1, N} \colon x \in x_k + \frac{W_{x_k}}{2} + U \subset x_k + W_{x_k} \subset X \setminus S_1$$

Вся эта возня была для того, чтобы написать

$$(S_2 + U) \cap S_1 = \emptyset$$

Причем так как U = -U, то

$$S_2 \cap (S_1 + U) = \emptyset$$

Значит можно распушить S_1 с помощью окрестности U. $S_1 + U$ — выпуклое открытое множество. Значит по теореме о строгой отделимости

$$\exists \in X^* \setminus \{0\}; \ \psi = \operatorname{Re} f$$

Такой что

$$\exists \gamma \in \mathbb{R} : \forall y \in S_2, \ \forall x \in S_1 + U : \psi(x) < \gamma \le \psi(y)$$

В качестве второй константы возьмем $\sup_{u \in U} \psi(u)$. Заметим, что так как U — симметрично, то он неотрицательный. Кроме того так как функционал не нулевой, то супремум ненулевой, получаем, что $\sup_{u \in U} \psi(u) > 0$. Тогда

$$\psi(x) \le \gamma - \sup_{u \in U} \psi(u) = \gamma_1 < \gamma = \gamma_2 \le \psi(y)$$

Что и требовалось.

Пример 27.5. У пространства $\mathbb{L}_p([0,1])$, где 0 с метрикой

$$\rho(x,y) = \int_0^1 |x(t) - y(t)|^p dt$$

Сопряженное пространство тривиально.

Доказательство. Предположим, что U — выпуклая окрестность нуля, возьмем любую $x \in \mathbb{L}_p[0,1]$, тогда можно построить разбиение $\exists t_0 = 0 < t_1 < \dots < t_N = 1$ такое что

$$\int_{t_k}^{t_{k+1}} |x(t)|^p dt = \frac{1}{N} \int_0^1 |x(t)|^p dt$$

Тогда построим функцию $y_k(t) = \chi_{[t_k, t_{k+1}]}(t) x(t) N$ Тогда

$$\sum_{k=1}^{N} \frac{1}{N} y_k = x(t)$$

Так как $0 \in U$, то

$$\exists r > 0: \ \rho(z,0) < r \Rightarrow z \in U$$

Тогда подберем N так, что

$$\rho(y_k, 0) = N^p \int_{t_{k-1}}^{t_k} |x(t)|^p = N^{p-1} \rho(x, 0) < r$$

Но p < 1, поэтому при достаточно больших N это неравенство будет выполнено, значит $x \in U$, так как является выпуклой комбинацией y_k . Тогда $U = \mathbb{L}_p[0,1]$. Пусть $f \in \mathbb{L}_p^*[0,1]$, тогда рассмотрим прообраз круга $f^{-1}(|\lambda| < 1)$. Прообраз открытого множества открыт, прообраз выпуклого множества выпуклый, тогда $\forall \lambda \in \mathbb{C} : |\lambda| > 0 \Rightarrow f^{-1}(|\lambda| < 1) = \mathbb{L}_p[0,1]$, то есть

$$f(\mathbb{L}_p[0,1]) \subset \{|\lambda| < 1\}$$

Значит $f \equiv 0$.

28 Слабая* топология в сопряженном пространстве к топологическому векторному пространству. Теорема о представлении слабо* непрерывного линейного функционала.

По определению X^* — пространство непрерывных линейных функционалов в \mathbb{C} . Поэтому можно погрузить его в пространство всех функций $\mathbb{C}^X = \{g \colon X \to \mathbb{C}\}$. В пространстве функций можно ввести топологию Тихонова и тогда

Определение 28.1. Слабой* топологией τ_{w^*} в пространстве X^* сопряженном топологическому векторному пространству (X,τ) называется индуцированная с пространства \mathbb{C}^X топология Тихонова.

Тогда ясно, что предбаза τ_{w^*} :

$$\sigma_{w^*} = \{ V_*(f, x, \varepsilon) \mid f \in X^*, x \in X, \varepsilon > 0 \}, \quad V_*(f, x, \varepsilon) = \pi_x^{-1}(B_{\varepsilon}(f(x)) \cap X^*)$$

Множество $V_*(f,x,\varepsilon)$ можно так же представить как $V_*(f,x,\varepsilon) = \{g \in X^* \mid |g(x)-f(x)| < \varepsilon\}$. Топология τ_{w^*} векторная, доказательство этого является очень простым и при этом техническим фактом, которое мне лень полностью техать. Кроме того, ясно что τ_{w^*} имеет выпуклую локальную базу

$$\beta_{0w^*} = \left\{ \bigcap_{k=1}^N V_*(0, x_k, \varepsilon) \mid x_1, \dots, x_N \in X, \varepsilon > 0 \right\}$$

Значит пространство является локально выпуклым. Следующая теорема проясняет структуру сопряженного к этом пространству.

Теорема 28.2 (Шмульян). Пусть (X, τ) — топологическое векторное и $\Phi \in (X^*, \tau_{w^*})^*$, тогда $\exists x \in X : \forall f \in X^* \Rightarrow \Phi(f) = f(x)$.

$$\exists U_*(0) \in \tau_{w^*} \colon \forall f \in U_*(0) \Rightarrow |\Phi(f)| < 1$$

Эта окрестность содержит элемент базы

$$U_*(0) \supset \bigcap_{k=1}^N V_*(0, x_k, \varepsilon)$$

Тогда если мы рассмотрим произвольный $f \in X^*$ такой что $f(x_1) = \cdots = f(x_N) = 0$. То

$$\forall n \in \mathbb{N} \Rightarrow nf \in \bigcap_{k=1}^{N} \{V_*(0, x_k, \varepsilon)\} \subset U_*(0)$$

Но тогда

$$|\Phi(nf)| < 1 \Rightarrow |\Phi(f)| < \frac{1}{n} \forall n \in \mathbb{N}$$

Следовательно $\Phi(f) = 0$. Значит мы показали, что

$$\bigcap_{k=1}^{N} \operatorname{Ker} F_{x_k} \subset \operatorname{Ker} \Phi$$

Где F_{x_k} — функционал порожденный каноническим вложением x_k в $(X^*, \tau_{w^*})^*$ $(F_{x_k}(f) = f(x_k))$. Теперь рассмотрим

$$M = \left\{ \begin{pmatrix} f(x_1) \\ \vdots \\ f(x_N) \end{pmatrix} \mid f \in X^* \right\} \subset \mathbb{C}^N$$

M — конечномерное подпространство в \mathbb{C}^N . Заведем на нем функционал $\Lambda \colon M \to \mathbb{C}$:

$$\forall f \in X^* \quad \Lambda(f(x_1), \dots, f(x_N)) = \Phi(f)$$

Проверим что Λ определен корректно, действительно, пусть $f(x_k)=g(x_k)$, тогда $f-g\in \bigcap_{k=1}^N \operatorname{Ker} F_{x_k}\subset \operatorname{Ker} \Phi$, тогда

$$\Phi(f-g) = 0 \Leftrightarrow \Phi(f) = \Phi(g)$$

Таким образом Λ — функционал над конечномерным пространством, тогда из линейной алгебры известно, что

$$\exists a_1, \dots, a_N \in \mathbb{C} \colon \Phi(f) = \Lambda(f(x_1), \dots, f(x_N)) = \sum_{k=1}^N a_k f(x_k) = f\left(\sum_{k=1}^N a_k x_k\right)$$

Таким образом искомый $x = \sum_{k=1}^{N} a_k x_k$. Что и требовалось.

Замечание. Если исходное пространство (X, τ) является локально выпуклым, то по следствию теоремы Хана-Банаха, все точки отделяются функционалами, и x из теоремы выше будет единственным.

29 Теорема Банаха-Алаоглу о слабой* компактности поляры окрестности нуля топологического векторного пространства.

Теорема 29.1 (Банах-Алаоглу). Пусть (X, τ) — топологическое векторное пространство и $V \in \tau$ — окрестность нуля. Рассмотрим

$$\Gamma(V) = \{ f \in X^* \mid |f(x)| \le 1 \ \forall x \in V \}$$

 $\Gamma(V)$ — называется поляром окрестности. Тогда $\Gamma(V)$ — au_{w^*} -компакт.

Доказательство. Рассмотрим произвольный $x \in X$, $x \cdot 0 = 0 \in V$, тогда

$$\exists \delta_x > 0 \ \forall \lambda \in \mathbb{C} : \ |\lambda| < \delta_x \Rightarrow \lambda x \in V$$

Возьмем $t_x = \frac{\delta_x}{2}$, тогда

$$t_x \cdot x \in V \Rightarrow \forall f \in \Gamma(V) \Rightarrow |f(t_x x)| \le 1 \Rightarrow |f(x)| \le \frac{1}{t_x}$$

Обозначим $r_x = \frac{1}{t_x}$. Таким образом любой функционал на конкретном x ограничен по модулю числом r_x . Теперь рассмотрим замкнутые круги в \mathbb{C} :

$$K_r = \{\lambda \in \mathbb{C} \mid |\lambda| \le r\}$$

Для каждого x рассмотрим такой круг и построим декартово произведение

$$\underset{x \in X}{\swarrow} K_{r_x} = \{g \colon X \to \mathbb{C} \mid \forall x \in X \colon g(x) \in K_{r_x}\}$$

Тогда в силу ограничений выше получаем

$$\Gamma(V) \subset \underset{x \in X}{\times} K_{r_x}$$

Наделим это декартово произведение топологией Тихонова. Так как для каждого x, K_{r_x} является компактом, то по теореме Тихонова $\times_{x\in X} K_{r_x}$ — компакт в топологии Тихонова, но сужение топологии Тихонова на непрерывные линейные функции и есть τ_{w^*} , тогда $\times_{x\in X} K_{r_x} \cap X^*$ является τ_{w^*} -компактом, при этом $\Gamma(V)$ является его подмножеством, значит нам остается показать, что $\Gamma(V)$ — замкнуто.

Пусть $g \in [\Gamma(V)]_{\tau_T} \subset \mathbb{C}^X$. Берем

$$x_{1,2} \in X$$
, $V_T(g, x, \varepsilon) = \{ h \in \mathbb{C}^X \mid |g(x) - h(x)| < \varepsilon \}$

Тогда рассмотрим

$$U(g) = V_T(g, x_1 + x_2, \varepsilon) \cap V_T(g, x_1, \varepsilon) \cap V_T(g, x_2, \varepsilon) \in \tau_T$$

Тогда

$$\exists f \in U(g) \cap \Gamma(V)$$

Такой что

$$|f(x_1+x_2)-g(x_1+x_2)|=|f(x_1)+f(x_2)-g(x_1+x_2)|<\varepsilon, \quad |g(x_{1,2})-f(x_{1,2})|<\varepsilon$$

Тогда пользуясь умным нулем получаем

$$|g(x_1) + g(x_2) - g(x_1 + x_2)| < 3\varepsilon$$

Устремляя ε к нулю, получаем, что g — аддитивен.

Теперь пусть $x \in X, \lambda \in \mathbb{C}$, теперь возьмем окрестность

$$U(g) = V_T(g, \lambda x, \varepsilon) \cap V_T(g, x, \varepsilon)$$

Аналогично аддитивности получаем $g(\lambda x) = \lambda g(x)$.

Теперь g — линеен, осталось показать непрерывность. Но $\forall x \ g(x) \in K_{r_x}$, тогда

$$\forall x \in V \Rightarrow t_x = r_x = 1 \Rightarrow |g(x)| \le 1$$

Значит линейный функционал ограничен на окрестности нуля, что равносильно его непрерывности, значит $g \in X^*$, тогда $g \in \Gamma(V)$, то есть

$$[\Gamma(V)] = \Gamma(V)$$

Таким образом замкнутость доказана, значит $\Gamma(V)$ — компакт, что и требовалось.

Замечание. В случае нормированного пространства $\Gamma(O_1(0))$ является единичным шаром в сопряженном пространстве.

слабой* метризуемости 30 Критерий топологии В сопряженном пространстве локально выпуклого топологического пространства. Неметризуемость слабой* топологии В сопряженном пространстве бесконечномерного пространства.

Утверждение 30.1. Если X — бесконечномерное банахово пространство, то в (X, ||||) нет счетного базиса Гамеля

Доказательство. Является простым следствием теоремы Бэра 12.11 и замкнутости конечномерного подпространства 10.15 ■

Утверждение 30.2. Пусть τ_{w^*} в X^* является метризуемой. Тогда в X есть счетный базис Гамеля.

Доказательство. Предположим, что τ_{w^*} — метрическая, пусть ρ_* — метрика, тогда, существует счетная локальная база:

$$\beta = \left\{ O_{\frac{1}{n}}^{\rho_*}(0) \right\}_{n=1}^{\infty}$$

Обладая такой локальной базой, мы понимаем, что в любой такой шар ноль входит как τ_{w^*} - внутренняя точка, значит

$$\forall n \in \mathbb{N} \ \exists x_1^{(n)}, \dots, x_{N_n}^{(n)} \in X : \bigcap_{k=1}^{N_n} V_* \left(0, x_k^{(n)}, \varepsilon_n \right) \subset O_{\frac{1}{n}}^{\rho_*}(0)$$

Далее будем рассуждать как при доказательстве теоремы Шмульяна (28.2). Рассматриваем

$$M = \left\{ \left\{ x_k^{(n)} \right\}_{k=1}^{N_n} \mid n \in \mathbb{N} \right\}$$

Далее мы покажем, что Lin M=X, тогда так как M— не более чем счетно, выделяя из M максимальную систему линейно независимых векторов (Лемма Цорна (1.5) и бла-бла) получим счетный базис Гамеля.

Пусть $x \in X$. Берем окрестность нуля $U_*(0) = V_*(0,x,1)$. Эта окрестность нуля содержит элемент счетной локальной базы, который в свою очередь содержит пересечение стандартных элементов базы τ_{w^*}

$$\exists n: \ O_{\frac{1}{n}}^{\rho_*}(0) \supset \bigcap_{k=1}^{N_n} V_*\left(0, x_k^{(n)}, \varepsilon_n\right)$$

По этим векторам и разложится x. Рассмотрим каноническое отображение

$$(Fx) \in (X^*, \tau_{w^*})^* \colon (Fx)(f) = f(x)$$

Тогда если мы возьмем функционал

$$f \in \bigcap_{k=1}^{N_n} \operatorname{Ker}\left(Fx_k^{(n)}\right)$$

то f автоматически попадает в $\bigcap_{k=1}^{N_n} V_*(0, x_k^{(n)}, \varepsilon_n)$, откуда f попадает в шар $O_{\frac{1}{n}}^{\rho_*}(0)$, но пересечение ядер является подпространством, значит туда же попадет tf для любого скаляра $t \in \mathbb{C}$, значит $f \in \operatorname{Ker} Fx$. То есть

$$\bigcap_{k=1}^{N_n} \operatorname{Ker}\left(Fx_k^{(n)}\right) \subset \operatorname{Ker} Fx$$

Далее рассуждения дословно повторяют доказательство 28.2. Получаем, что x раскладывается по векторам $x_k^{(n)}$, что и требовалось.

Теорема 30.3. Слабая* топология в бесконечномерных сбанаховых пространствах не метризуема.

Доказательство. Тривиальное следствие двух предыдущих утверждений.

31 Теорема о метризуемости слабой* топологии на шаре в сопряженном пространстве к линейному нормированному.

Утверждение 31.1. Пусть (X, ||||) бесконечномерное линейное нормированное пространство, при этом сепарабельное. Пусть R > 0 рассмотрим шар в сопряженном пространстве

$$B_R^*(0) = \{ f \in X^* \mid ||f|| \le R \}$$

Рассмотрим $\tau_{w^*}(R) = \{G \cap B_R^*(0) \mid G \in \tau_{w^*}\}$, тогда $(B_R^*(0), \tau_{w^*}(R))$ — метрическое пространство.

Доказательство. В силу сепарабельности $\exists \{x_n\}_n^{\infty}$ — счетное всюду плотное множество на 1-сфере. Тогда рассмотрим метрику

$$\rho_*(f,g) = \sum_{n=1}^{\infty} \frac{|(f-g)(x_n)|}{2^n}$$

Аксиомы метрики очевидны. Рассмотрим

$$\tau_{\rho_*}(R) = \{G \cap B_R^*(0) \mid G \in \tau_{\rho_*}\}$$

Покажем, что эта топология совпадает с τ_{w^*} .

 $au_{w^*}\subset au_{
ho_*}$ Возьмем $V_*(f,x,arepsilon)$ — элемент предбазы au_{w^*} . Нужно показать, что

$$V_*(f, x, \varepsilon) \cap B_R^*(0) \in \tau_{\rho_*}$$

 $x \neq 0$, поэтому

$$g \in V_*(f, x, \varepsilon) \Leftrightarrow |g(x) - f(x)| < \varepsilon \Leftrightarrow |g(y) - f(y)| < \frac{\varepsilon}{\|x\|} = \delta \Leftrightarrow g \in V_*(f, y, \delta)$$

Поэтому будем рассматривать y из 1-сферы пространства X. $\forall \delta > 0$. Пусть

$$g \in V_*(f, y, \delta) \cap B_R^*(0)$$

Нужно вложить окрестность выше в $O_r^{\rho_*}(g) \cap B_R^*(0)$ для некоторого r. Возьмем

$$\gamma = \delta - |f(y) - g(y)| > 0$$

Пусть $h \in O_r^{\rho_*}(g) \cap B_R^*(0)$, тогда $\forall n$:

$$|(g-h)(x_n)| < r2^n$$

Тогда

$$|h(y) - g(y)| \le |h(y) - h(x_n)| + |h(x_n) - g(x_n)| + |g(x_n) - g(y)| \le 2R||y - x_n|| + r2^n$$

Так как $\{x_n\}_{n=1}^{\infty}$ всюду плотно на сфере, тогда выбирая n можем добиться, чтобы $2R\|y-x_n\|\leq \frac{\gamma}{2}$. При выбранном n, выбирая r добиваемся, чтобы $r2^n\leq \frac{\gamma}{2}$, тогда

$$|h(y) - g(y)| \le \gamma$$

Тогда $g \in O^{\rho_*}_r(g) \cap B^*_R(0)$, что и требовалось.

 $au_{w^*} \supset au_{
ho_*}$ Пусть теперь $g \in O^{
ho_*}_r(f) \cap B^*_R(0)$, тогда

$$O_{\gamma}^{\rho_*}(g) \cap B_R^*(0) \subset O_r^{\rho_*}(f) \cap B_R^*(0)$$

Где $\gamma = r - \rho_*(f,g) > 0$. Попробуем впихнуть этот шар в окрестность

$$\bigcap_{k=1}^{N} V_*(g, x_k, \varepsilon) \cap B_R^*(0)$$

Нужно выбрать N и ε . Возьмем $h \in \bigcap_{k=1}^N V_*(g, x_k, \varepsilon) \cap B_R^*(0)$, тогда

$$\begin{cases} |h(x_k) - g(x_k)| < \varepsilon \ \forall k \in \overline{1, N} \\ ||h||, ||g|| \le R \end{cases}$$

Оценим расстояние от h до g:

$$\rho_*(g,h) < \sum_{k=1}^N \frac{\varepsilon}{2^k} + \sum_{k=N+1}^\infty \frac{2R||x_k||}{2^k} = [||x_k|| = 1] = \sum_{k=1}^N \frac{\varepsilon}{2^k} + \frac{2R}{2^N} < \varepsilon + \frac{2R}{2^N}$$

Теперь выбирая ε и N так, чтобы $\varepsilon + \frac{2R}{2^N} < r$, получим, что

$$g \in \bigcap_{k=1}^{N} V_*(g, x_k, \varepsilon) \cap B_R^*(0)$$

Что и требовалось.

Следствие. В силу теоремы Банаха-Алаоглу (29.1) $B_R^*(0)$ является τ_{w^*} компактом в (X^*, τ_{w^*}) , но в силу доказанной теоремы, эта топология метрическая, тогда $B_R^*(0)$ слабый* секвенциальный компакт.

Следствие. В условиях теоремы из любой сильно ограниченной в X^* последовательности можно выбрать слабо * сходящуюся подпоследовательность.

Слабая 32 топология локально выпуклом В Теорема топологическом векторном пространстве. сферы Мазура. Слабое замыкание единичной бесконечномерном линейном нормированном пространстве.

Пусть (X,τ) — локально выпуклое ТВП, тогда в X^* мы заводим слабую* топологию τ_{w^*} . Тогда (X^*,τ_{w^*}) тоже локально выпуклое ТВП. Теперь мы рассматриваем $(X^*,\tau_{w^*})^*$. Про это пространство мы знаем теорему Шмульяна (28.2). Так как (X,τ) — локально выпукло, то существует $F:X\to (X^*,\tau_{w^*})^*$ — изоморфизм. В $(X^*,\tau_{w^*})^*$ можно рассмотреть слабую* топологию, назовем ее $\tau_{w^{**}}$. Ее предбаза

$$\sigma_{w^{**}} = \{ V_{**}(\Phi, f, \varepsilon) \mid \Phi \in (X^*, \tau_{w^*})^*, f \in X^*, \varepsilon > 0 \}$$

Тогда

Определение 32.1. Будем называть слабой топологией в X прообраз $\tau_{w^{**}}$ под действием F:

$$\tau_w = \{ F^{-1}(G) \mid G \in \tau_{w**} \}$$

По построению τ_w , F становится гомеморфизмом, тогда τ_w векторная локально выпуклая топология. Ее предбаза есть прообраз предбазы τ_{w**} :

$$V(x, f, \varepsilon) = F^{-1}(V_{**}(F(x), f, \varepsilon)) = \{ y \in X \mid |f(x) - f(y)| < \varepsilon \}$$

То есть

$$\sigma_w = \{ V(x, f, \varepsilon) \mid x \in X, f \in X^*, \varepsilon > 0 \}$$

Теорема 32.2 (Мазур). Пусть (X,τ) — локально выпуклое ТВП и $M\subset X$ — выпукло и τ -замкнуто, тогда $M-\tau_w$ -замкнуто.

Доказательство. Рассмотрим x из дополнения $X \setminus M$. По теореме об отделимости 27.4 точка это выпуклый компакт, M выпукло и замкнуто, $M \cap \{x\} = \emptyset$ тогда они строго отделимы:

$$\exists f \in X^* \setminus \{0\} \ \exists \gamma_1 < \gamma_2 \in \mathbb{R} \colon \forall y \in M \Rightarrow \operatorname{Re} f(y) \le \gamma_1 < \gamma_2 = \operatorname{Re} f(x)$$

Тогда рассмотрим окрестность x: $V(x, f, \gamma_2 - \gamma_1)$, покажем, что эта окрестность полностью лежит вне M:

$$\forall z \in V(x, f, \gamma_2 - \gamma_1) \Rightarrow |f(z) - f(x)| < \gamma_2 - \gamma_1$$

Тогда

$$\operatorname{Re} f(x) - \operatorname{Re} f(z) \le |f(z) - f(x)| < \gamma_2 - \gamma_1 \Rightarrow \operatorname{Re} f(z) > \gamma_1 + \operatorname{Re} f(x) - \gamma_2 = \gamma_1$$

Таким образом $V(x, f, \gamma_2 - \gamma_1) \subset X \setminus M$, значит $M - \tau_w$ -замкнуто.

Следствие. Если $(X,\|\|)$ — ЛНП, тогда $M\subset X$ — выпукло , то $[M]_{\|\|}$ — слабо замкнуто, значит

$$\{x_n\} \subset M \colon x_n \xrightarrow{\tau_w} y \Rightarrow y \in [M]_{\parallel \parallel}$$

Таким образом слабо сходящаяся последовательность на выпуклом множестве не может убегать далеко даже по сильной топологии.

Следствие. Если $x_n \xrightarrow{\tau_w} y$, то $\exists y_m \in \text{conv}\{x_n\} \colon y_m \xrightarrow{\parallel \parallel} y$

Следствие. Пусть $(X, \|\|)$ — линейное нормированное пространство. Рассмотрим $S = \{x \in X \mid \|x\| = 1\}$, тогда $[S]_w = B_1(0)$

Историческая справка. Станислав Мазур обладал острым юмором. Хорошо известным событием была публичная передача живого гуся молодому шведскому математику Пер Энфло в качестве награды за решение (отрицательной) проблемы существования Базиса Шаудера в каждом центральном банаховом пространстве. Подробнее см https://en.wikipedia.org/wiki/Scottish_Book

33 Неметризуемость слабой топологии в бесконечномерном локально выпуклом топологическом векторном пространстве. Теорема о метризуемости слабой топологии на шаре линейного нормированного пространства.

Теорема 33.1. Слабая топология в бесконечномерном топологическом векторном пространстве неметризуема.

Доказательство. Предположим, что τ_w на бесконечномерном X метризуема и ρ_* — метрика. Тогда рассмотрим систему вложенных шаров по данной метрике

$$\left\{O_{\frac{1}{n}}^{\rho_*}(0)\right\}_{n=1}^{\infty}$$

Это семейство является счетной локальной базой точки 0. По предположению $\tau_w=\tau_{\rho_*}$, тогда для любого n найдется элемент базы, который содержится в $O_{\frac{1}{n}}^{\rho_*}$, то есть найдутся такие $f_1^{(n)},\ldots,f_N^{(n)}\in X^*$ и $\varepsilon^{(n)}>0$, что

$$\bigcap_{k=1}^{N} V(0, f_k^{(n)}, \varepsilon) \subset O_{\frac{1}{n}^{\rho_*}}(0)$$

Для каждого n рассмотрим

$$\Phi_n = \text{Lin}\{f_1^{(n)}, \dots, f_N^{(n)}\}\$$

Покажем, что объединение этих конечномерных пространств даст все пространство X^* , что приведет нас к противоречию. Пусть $f \in X^*$, произволен, в силу непрерывности существует окрестность нуля $U(0) \in \tau_w$, на который функционал f ограничен, можно считать, что

$$\forall x \in U(0) |f(x)| < 1$$

Но так как система вложенных шаров является локальной базой нуля, найдется номер n, что выполнено вложение

$$U(0) \supset O_{\frac{1}{n}}^{\rho_*} \supset \bigcap_{k=1}^{N^{(n)}} V(0, f_k^{(n)}, \varepsilon^{(n)})$$

Рассмотрим произвольный x из пересечения ядер $\bigcap_{k=1}^{N^{(n)}} \operatorname{Ker} f_k^{(n)}$, тогда

$$\forall k \in \overline{1, N} |f_k^{(n)}(x)| = 0 < \varepsilon^{(n)}$$

что означает вложение в $\bigcap_{k=1}^{N^{(n)}} V(0, f_k^{(n)}, \varepsilon^{(n)})$ а значит и в U(0), значит

$$\bigcap_{k=1}^{N^{(n)}} \operatorname{Ker} f_k^{(n)} \subset U(0)$$

Пересечение ядер функционалов имеет конечную коразмерность, значит в силу бесконечномерности пространства X, подпространство $\bigcap_{k=1}^{N^{(n)}} \operatorname{Ker} f_k^{(n)}$ не пусто, тогда $\forall x \in \bigcap_{k=1}^{N^{(n)}} \operatorname{Ker} f_k^{(n)} \ \forall p \in \mathbb{N}, \ px \in \bigcap_{k=1}^{N^{(n)}} \operatorname{Ker} f_k^{(n)}$, значит в силу свойства окрестности U(0):

$$|f(px)| = p|f(x)| < 1 \Rightarrow |f(x)| < \frac{1}{p}$$

что верно для любого $p \in \mathbb{N}$. Таким образом f(x) = 0, то есть выполнено вложение ядер

$$\bigcap_{k=1}^{N^{(n)}} \operatorname{Ker} f_k^{(n)} \subset \operatorname{Ker} f$$

Рассмотрим конечномерное линейное пространство

$$L = \left\{ \begin{pmatrix} f_1^{(n)}(x) \\ \vdots \\ f_N^{(n)}(x) \end{pmatrix} \mid x \in X \right\} \subset \mathbb{C}^{N^{(n)}}$$

И рассмотрим линейный функционал действующий из этого пространства

$$\Lambda \colon L \to \mathbb{C} \quad \Lambda(x) = f(x)$$

Если $f_k^{(n)}(x) = f_k^{(n)}(z)$, то

$$f_k^{(n)}(x-z) = 0 \Rightarrow x-z \in \operatorname{Ker} f_k^{(n)} \subset \operatorname{Ker} f$$

Значит функционал Λ определен корректно. Но L — конечномерно, тогда из линейной алгебры

$$\forall x \in X \ \Lambda = \sum_{k=1}^{N^{(n)}} \alpha_k f_k^{(n)}(x) = f(x)$$

Значит $f \in \Phi_n$. Таким образом для произвольного функционала $f \in X^*$ найдется номер n, что f будет лежать в Φ_n . То есть

$$X^* = \bigcup_{n=1}^{\infty} \Phi_n$$

Но Φ_n — конечномерно, а значит замкнуто в бесконечномерном векторном топологическом пространстве X, тогда внутренность пуста и

$$\inf[\Phi_n]_{\tau_w}=\varnothing$$

Однако пространство X^* полно как пространство линейных непрерывных функционалов в полное пространство \mathbb{C} , противоречие с теоремой Бэра.

Теорема 33.2. Пусть X — линейное нормированное пространство и X^* — сепарабельно. Тогда топологическое пространство $(B_R(0), \tau_w(R))$, где $\tau_w(R)$ — слабая топология индуцированная на шар $B_R(0)$ — метрическое.

Доказательство. утверждение 5.4.29. в Lec-Funkan

Пусть X^* — сепарабельно, тогда рассмотрим счетное всюду плотное на 1-сфере множество $\{f_k\}_{k=1}^{\infty}$. Рассмотрим метрику

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{|f_k(x) - f_k(y)|}{2^k}$$

Можно проверить, что это действительно метрика (проверьте!). Обозначим предбазу индуциорованной топологии

$$\sigma_w(R) = \{ V(x, f, \varepsilon) \cap B_R(0) \mid x \in X, f \in X^*, \varepsilon > 0 \}$$

Покажем, что $V(x,f,\varepsilon)\cap B_R(0)\subset O_r(0)\cap B_R(0)$ для какого-то r>0. Рассмотрим произвольный ненулевой функционал $f\in X^*$, произвольный вектор $x\in X$ и число $\varepsilon>0$. Если f=0, то все тривиально, если же $f\neq 0$, то определим $g=\frac{f}{\|f\|}$ и число $\delta=\frac{\varepsilon}{\|f\|}$. Тогда получим

$$V(x, f, \varepsilon) = V(x, g, \delta)$$

Рассмотрим произвольный вектор

$$y \in V(x, g, \delta) \cap B_R(0)$$
, т.е. $|g(y - x)| < \delta$ и $||y|| \le R$

Найдется m, такой, что

$$||g - f_m|| < \frac{\delta - |g(y - x)|}{4R}$$

(выбор этого числа — чистой воды подгон под дальнейшие неравенства). Пусть число

$$r = \frac{\delta - |g(y - x)|}{2^{m+1}} > 0$$

Рассмотрим произвольный вектор $z \in B_R(0)$ вида $\rho(y,z) < r$. Тогда

$$|f_m(z-y)| < 2^m r = \frac{\delta - |g(y-x)|}{2}.$$

Следовательно, получаем

$$|g(z-x)| \le |g(z-y)| + |g(y-x)| \le$$

$$\le ||(g-f_m)(z-y)| + |f_m(z-y)| + |g(y-x)| <$$

$$< ||g-f_m||2R + \frac{\delta + |g(y-x)|}{2} < \frac{\delta - |g(y-x)|}{2} + \frac{\delta + |g(y-x)|}{2} = \delta$$

т.е. выполнено вложение

$$z \in V(x, g, \delta) \cap B_R(0) = V(x, f, \varepsilon) \cap B_R(0)$$

Следовательно, любой вектор y множества $V(x, f, \varepsilon) \cap B_R(0)$ является его ρ -внутренней точкой, то есть $V(x, f, \varepsilon) \cap B_R(0) \in \tau_\rho(R)$.

Покажем обратное вложение. Так как базой $\beta_{\rho}(R)$ метрической топологии служат шары вида

$$O_r^{\rho}(x) = \{ y \in B_R(0) \mid \rho(x, y) < r \}$$

то достаточно вложить

$$\beta_{\rho}(R) \subset \tau_w(R)$$
.

Зафиксируем вектор $x \in B_R(0)$ и число r > 0. Рассмотрим вектор

$$y \in O_r^{\rho}(x)$$

Существует N, такой, что

$$2^{-N} < \frac{r - \rho(x, y)}{4R}$$

Возьмем $\delta = \frac{r - \rho(x,y)}{2} > 0$. Рассмотрим произвольный вектор

$$z \in \left(\bigcap_{n=1}^{N} V(y, f_n, \delta)\right) \cap B_R(0) = U(u) \in \tau_w(R)$$

Тогда получаем

$$\begin{split} \rho(x,z) & \leq \rho(y,z) + \rho(x,y) \leq \\ & \leq \sum_{n=1}^{N} 2^{-n} |f_n(y-z)| + \sum_{n=N+1}^{\infty} 2^{-n} 2R + \rho(x,y) < \\ & < \delta + 2^{-N} 2R + \rho(x,y) < \frac{r - \rho(x,y)}{2} + \frac{r - \rho(x,y)}{2} + \rho(x,y) = r \end{split}$$

Таким обрзаом справделиво вложение $U(y)\subset O^{
ho}_r(x).$ Что и требовалось.

34 Теорема Эберлейна-Шмульяна о слабой секвенциальной компактности слабого компакта в нормированном пространстве.

Теорема 34.1 (Эберлейн-Шмульян). Если $(X, ||||) - \Pi H \Pi$ и $K \subset X$ — слабый компакт, тогда K— сильно ограничен и слабый секвенциальный компакт.

 \mathcal{A} оказательство. • $\forall f \in X^* \Rightarrow f(K)$ — компакт в $\mathbb C$ тогда f(K) ограниченно в $\mathbb C$, тогда рассмотрев

$$M = \{Fx \mid x \in K\} \subset X^{**}$$

Тогда $\forall f \in X^* \colon \exists R_f > 0 \Rightarrow |\Phi(f)| = |f(x)| \leq R_f$ Тогда по теореме Банаха-Штейнгауза, $\exists R > 0 \colon \forall x \in K \colon \|\Phi\| = \|Fx\| = \|x\| \leq R$, значит K — сильно ограничен.

• $\forall \{x_n\} \subset K$. Без ограничения общности $x_n \neq x_m$. Тогда рассматриваем

$$L = [\operatorname{Lin}\{x_n\}_{n=1}^{\infty}]_{\parallel\parallel}$$

 Π о теореме Мазура L — слабо замкнуто. Кроме того рассмотрим

$$M = \left\{ \sum_{k=1}^{N} \alpha_k x_k \mid \alpha_k \in \mathbb{Q}^2 \subset \mathbb{C}^2, N \in \mathbb{N} \right\}$$

Ясно, что M — счетное, всюду плотное в L множество, значит L — сепарабельное пространство. Тогда слабая* топология метризуема на $B_1^*(0) \subset L^*$. То есть $(B_1^*(0), \rho_*)$ — метрическое пространство, а значит сепарабельное. Обозначим

$$\{f_s\}_{s=1}^{\infty} \subset B_1^*(0)$$

Счетное всюду плотное в $B_1^*(0)$ множество. Заметим, что

$$|f_s(x_n)| \le ||f_s|| ||x_n|| \le R$$

То есть $\forall s \in \mathbb{N}$ последовательность $\{f_s(x_n)\}_{n=1}^{\infty}$ ограниченна в \mathbb{C} . Тогда применяя канторов диагональный процесс выделим подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$. Такую что

$$\forall s \in \mathbb{N} \Rightarrow \exists \lim_{k \to \infty} f_s(x_{n_k}) \in \mathbb{C}$$

Вспомним, что в топологическом компакте любое бесконечное множество имеет предельную точку, то есть такую точку, в любой окрестности которой лежит бесконечное число элементов множества. В частности в слабом компакте K множество $\{x_{n_k}\}_{k=1}^{\infty}$ имеет предельную точку x и

$$\forall U(x) \in \tau_w \Rightarrow \exists k \in \mathbb{N}: \ x_{n_k} \in U(x) \ \text{if} \ x_{n_k} \neq x$$

Так как в полном $\mathbb C$ для каждого $s\in\mathbb N$ существует предел $\lim_{k\to\infty}f_s(x_{n_k})$, то

$$\forall \varepsilon > 0 \ \exists N_s(\varepsilon) : \ \forall k, r \ge N_s(\varepsilon) \Rightarrow |f_s(x_{n_k} - f_s(x_{n_r}))| \le \varepsilon$$

Выберем слабую окрестность

$$U(y) = V(y, f_s, \varepsilon) \setminus \{x_{n_k}\}_{k=1}^{N_s(\varepsilon)}$$

U(y) открыта, так как одноточечные множества в векторной топологии τ_w замкнуты. Так как y — предельная точка, то

$$\exists k > N_s(\varepsilon) \Rightarrow x_{n_k} \in U(y)$$

То есть

$$|f_s(y) - f_s(x_{n_k})| \le \varepsilon$$

Тогда $\forall r > N_s(\varepsilon)$

$$|f_s(x) - f_s(x_{n_r})| \le |f_s(y) - f_s(x_{n_s})| + |f_s(x_{n_s}) - f_s(x_{n_r})| \le 2\varepsilon$$

To есть мы получили $\forall s \in \mathbb{N} \Rightarrow \exists \lim_{k \to \infty} f_s(x_{n_k}) = f_s(x)$

• Пусть теперь $g \in X^*$. Покажем, что $g(x_{n_k}) \to g(x)$. Заметим, что для $h = g|_L \colon L \to \mathbb{C}$ выполнено $h \in L^*$. Предположим, что

$$h(x_{n_k}) \nrightarrow h(x)$$

Тогда существует подпоследовательность $\{x_{n_{k_n}}\}_{p=1}^{\infty}$ и $\varepsilon_0 > 0$, что

$$\forall s \in \mathbb{N}: |h(x_{n_{k_n}}) - h(x)| \ge \varepsilon_0$$

Но $\{x_{n_{k_p}}\}_{p=1}^{\infty}$ бесконечное множество, а значит имеет предельную точку z в K, тогда, повторяя рассуждения выше, получим

$$\forall s \in \mathbb{N} \Rightarrow \exists \lim_{p \to \infty} f_s(x_{n_{k_p}}) = f_s(z)$$

Но $\lim_{p\to\infty} f_s(x_{n_{k_p}}) = f_s(x)$, значит для любого $s\in\mathbb{N}$ $f_s(z) = f_s(x)$. Вспоминаем, что $\{f_s\}_{s=1}^\infty$ — всюду плотное множество в $B_1^*(0)$, значит

$$h(y) = h(z)$$

Но z — слабая предельная точка для $\{x_{n_{k_p}}\}_{p=1}^{\infty}$. В частности для окрестности

$$U(z) = V(z, h, \varepsilon_0)$$

Тогда

$$\exists x_{n_{k_{p_0}}} \Rightarrow |h(x_{n_{k_{p_0}}}) - h(z)| = |h(x_{n_{k_{p_0}}}) - h(y)| < \varepsilon_0$$

Но

$$|h(x_{n_{k_{n_0}}}) - h(y)| \ge \varepsilon_0$$

противоречие, значит $h(x_{n_k}) \to h(x)$. Тогда $\forall g \in X^*$:

$$g(x_{n_k}) \to g(x)$$
 t.k. $h = g|_{I} \in L^*$

Окончательно, получили подпоследовательность $\{x_{n_k}\}$ слабо сходящуюся к $x \in K$, что и требовалось.

35 Слабая компактность замкнутого шара в рефлексивном пространстве. Существование проекции точки на замкнутое подпространство рефлексивного пространства.

Теорема 35.1. Пусть X — рефлексивно, тогда $B_1(0)$ является слабым компактом.

Доказательство. Запишем равенство множеств функционалов

$$(X^*, \tau_{w^*})^* = F(X) = (X^*, ||||)^* = X^{**}$$

Первое равенство обеспечено теоремой Шмульяна, второе равенство — определение рефлексивности. Теперь рассмотрим слабую* топологию в X^{**} (второе сопряженное относительно нормы)

$$V^{**}(\Phi, f, \varepsilon) = \{ \Psi \in X^{**} \mid |\Psi(f) - \Phi(f)| < \varepsilon \}$$

В силу рефлексивности все такие функционалы Φ порождаются элементом $x \in X$, то есть

$$\{\Psi \in X^{**} \mid |\Psi(f) - \Phi(f)| < \varepsilon\} = V_{**}(F(x), f, \varepsilon)$$

Таким образом слабая* топология (относительно нормируемой топологии в X^*) и $\tau_{w^{**}}$ в X^{**} совпадают, значит это одно и тоже пространство.

Но в $(X^*, \|\|)^*$ шар $B_1^{**}(0)$, являясь полярой $B_1^*(0)$, по теореме Банаха-Алаоглу (29.1) слабо* компактен. Значит он является и $\tau_{w^{**}}$ -компактом в X^{**} , тогда его прообаз под действием гомоморфизма F является τ_w -компактом, что и требовалось.

Утверждение 35.2. Пусть X — рефлексивно. Пусть множество $S \subset X$ является выпуклым и замкнутым. Тогда для любого вектора $x \in X$ в множестве S существует ближайший элемент, т.е. вектор $y = y(x) \in S$, такой, что

$$||x - y|| = \rho(x, S) = \inf_{z \in S} ||x - z||$$

Доказательство. По определению инфинума существует минимизирующая последовательность $\{z_n\} \subset S$:

$$\rho(x,S) = \lim_{n \to \infty} ||x - z_n||$$

Так как

$$||z_n|| \le ||x|| + ||x - z_n||$$

а сходящаяся числовая последовательность $\|x-z_n\|$ является ограниченной, то последовательность z_n является ограниченной в пространстве X, а значит вкладывается в шар $B_R(0)$. Так как X — рефлексивно, то $B_R(0)$ является слабым компактом. Тогда по теореме Эберлейна-Шмульяна, $B_R(0)$ является слабым секвенциальным компактом, а значит z_n содержит слабо сходящуюся подпоследовательность $\{z_{n_k}\}$ к вектору $y \in X$. По теореме Мазура выпуклое замкнутое множество является слабо замкнутым, значит $y \in S$. По следствию теоремы Хана-Банаха существует функционал $f \in X^*$ вида

$$\|f\| = 1 \ \mathrm{i} \ |f(x-y)| = \|x-y\|$$

Тогда получаем

$$\rho(x,S) \le ||x-y|| = |f(x-y)| = \lim_{k \to \infty} |f(x-z_k)| \le \lim_{k \to \infty} ||x-z_{n_k}|| = \rho(x,S)$$

Откуда моментально получаем равенство $\rho(x,S) = \|x-y\|$. Что и требовалось.

36 Теорема Рисса-Фреше о представлении сопряженного гильбертова пространства. Рефлексивность гильбертова пространства.

Утверждение 36.1. Пусть $(X, \|\|)$ — комплексно линейное нормированное пространство. Тогда линейное отображение $F \colon X \to X^{**}$ вида

$$(Fx)f = f(x) \quad \forall x \in X, \ \forall f \in X^*$$

осуществляет изометрический изоморфизм из X на подпространство ${\rm Im}\, F\subset X^{**},$ то есть взаимно однозначно и сохраняет норму.

Доказательство. Покажем, что отображение инъективно, пусть $x,y\in X$ и Fx=Fy, тогда для любого $f\in X^*$ выполнено

$$f(x) = f(y)$$

По следствию теоремы Хана-Банаха x=y. Таким образом отображение взаимно однозначно отображет X на ${\rm Im}\, F$. Далее для норм в силу следствия теоремы Хана-Банаха имеем

$$||Fx|| = \sup_{\substack{f \in X^* \\ ||f|| = 1}} |(Fx)f| = \sup_{\substack{f \in X^* \\ ||f|| = 1}} |f(x)| = ||x||$$

что и требовалось.

Определение 36.2. Комплесно линейное нормированное пространство (X, ||||) называется рефлексивным, если

$$\operatorname{Im} F = X^{**}$$

Замечание. Обратите внимание, что в общем случае равенство множеств X и X^{**} не означает рефлексивность. Важно, что образ конкретного отображения совпадает со всем X^{**} .

Теорема 36.3 (Риса, Фреше). Пусть H — гильбертово пространство, тогда

$$\forall f \in H^* \quad \exists! z = z(f) \in H$$

Причем

$$||z|| = ||f||, \quad \forall x \in H \colon f(x) = (x, z(f))$$

При этом отображение z обладает следующими свойствами

- $\forall f, g \in H^* : z(f+g) = z(f) + z(g)$
- $\forall \lambda \in \mathbb{C} : z(\lambda f) = \bar{\lambda}z(f)$

Определение 36.4. Изометрия z не является обычным изоморфизмом, так как скаляры выносятся с сопряжением. Это изометрия является сопряженно-линейной аддитивной изометрией, называется изометрией Puca- $\Phi pewe$ и обозначается $\Phi: H^* \to H$ и обладает следующим свойством

$$\forall f \in H^* \Rightarrow \forall x \in H \colon f(x) = (x, \Phi(f))$$

Определение 36.5. Пусть $A \in \mathcal{L}(H), H$ — гильбертово, эрмитово сопряженный оператор $A^+ \in L(H)$ определяется как

$$A^+ = \Phi \circ A^* \circ \Phi^{-1}$$

Замечание. Ясно что эрмитово сопряженный оператор удовлетворяет свойству:

$$(Ax, y) = (\Phi^{-1}(y))(Ax) = (A^*\Phi^{-1}y)(x) = (x, \Phi A^*\Phi^{-1}y) = (x, A^+y)$$

Определение 36.6. $A \in L(H)$ называется эрмитовым или самосопряженным по Эрмиту если $A^+ = A$

Доказательство теоремы Риса-Фреше. Рассмотрим $f \in H^*$, если $f = 0 \Rightarrow z(f) = 0$ подойдет. Если $f \neq 0$, тогда $\operatorname{Ker} f \neq H$, тогда $\operatorname{Ker} f - \operatorname{замкнутое}$ подпространстве в H. Тогда в силу теоремы Риса об ортогональном дополнении можно рассмотреть

$$\operatorname{Ker} f \oplus (\operatorname{Ker} f)^{\perp} = H$$

Рассмотрим $x_0 \in (\operatorname{Ker} f)^{\perp} \setminus \{0\}$. Так как $f(x_0) \neq 0$, то

$$\forall x \in H \Rightarrow x = \frac{f(x)}{f(x_0)} x_0 + \left(x - \frac{f(x)}{f(x_0)} x_0\right)$$

Тогда так как $f\left(x-\frac{f(x)}{f(x_0)}x_0\right)=f(x)-f(x)=0$, то $x-\frac{f(x)}{f(x_0)}x_0\in \mathrm{Ker}\, f$ а значит ортогональна x_0 , тогда

$$(x, x_0) = \frac{f(x)}{f(x_0)}(x_0, x_0) \Rightarrow \forall x \in H : f(x) = \left(x, \frac{\overline{f(x_0)}}{(x_0, x_0)}x_0\right)$$

Определим отображение $z: H^* \to H$

$$z(f) = \frac{\overline{f(x_0)}}{(x_0, x_0)} x_0$$

В силу неравенства Коши-Буняковского $||f|| \le ||z||$ с другой стороны

$$|z(f)| \le \frac{|f(x_0)|}{\|x_0\|} \le \|f\|$$

Таким образом z — изометрия. Аддитивность и сопряженная однородность вытекает из формул. Таким образом теорема доказана.

Следствие. Гильбертово пространство рефлексивно

Доказательство. Нужно доказать, что образ отображения $F\colon H\to H^{**}$

$$(Fx)(f) = f(x) \quad \forall x \in H, \ \forall f \in H^*$$

совпадает со всем H^{**} . Пусть $\Phi \in H^{**}$, пусть $z \colon H^* \to H$ изометрия Риса-Фреше, существование которой доказано в предыдущей теореме. Для каждого Φ определим функционал

$$f = \overline{\Phi \circ z^{-1}}$$

тогда для любого $x \in H$ имеем равенство

$$|f(x)| \le ||\Phi|| ||z^{-1}(x)|| = ||\Phi|| ||x||$$

то есть $\|f\| \leq \|\Phi\|$. Следовательно функционал f — непрерывен, то есть $f \in H^*$. Теперь определим вектор

$$y = z(f)$$

Тогда для любого функционала $g \in H^*$ получим

$$(Fy)(g) = g(y) = (z(f), z(g)) = \overline{f(z(g))} = \Phi(z^{-1}(z(g))) = \Phi(g)$$

То есть $Fy = \Phi$. Что и требовалось.

37 Оператор, сопряженный оператору $A \in \mathcal{L}(X,Y)$. Теорема о равенстве норм операторов A и A^* . Равенства $^{\perp}(\operatorname{Ker} A^*)$ сильному замыканию $\operatorname{Im} A$ и $(\operatorname{Ker} A)^{\perp}$ слабому* замыканию $\operatorname{Im} A^*$.

Определение 37.1. Пусть X,Y — линейные нормированные пространства. $A \in \mathcal{L}(X,Y)$. Сопряженный оператор действует $A^* \colon Y^* \to X^*$

$$\begin{array}{ccc} X & \xrightarrow{A} & Y \\ \downarrow & & \downarrow \\ X^* & \longleftarrow & Y^* \end{array}$$

По формуле

$$\forall g \in Y^*: \quad A^*g = gA$$

Замечание. Существенно, что сопряженный оператор определяется для непрерывного оператора, так как суперпозиция $g \circ A$ должна лежать в X^* , это достигается именно непрерывностью A.

 A^* очевидно линеен, найдем его норму.

$$\|A^*g\| = \sup_{\|x\| \le 1} |(A^*g)(x)| = \sup_{\|x\| \le 1} |g(Ax)| \le \sup_{\|x\| \le 1} \|g\| \|Ax\| = \|g\| \|A\| \Rightarrow \|A^*\| \le \|A\|$$

Справедливо и обратное неравенство. По следствию теоремы Хана-Банаха

$$||A(x)|| = \sup_{\substack{||g|| \le 1 \\ g \in Y^*}} |g(Ax)| = \sup_{\substack{||g|| \le 1 \\ g \in Y^*}} ||(A^*g)(x)|| \le \sup_{\substack{||g|| \le 1 \\ g \in Y^*}} ||A^*g|| ||x|| = ||A^*|| ||x|| \Rightarrow ||A|| \le ||A^*||$$

Таким образом $||A|| = ||A^*||$.

Пусть $X, Y - \Pi H \Pi$. $A \in \mathcal{L}(X, Y)$. Установим связь $\operatorname{Ker} A$, $\operatorname{Im} A$ и $\operatorname{Ker} A^*$, $\operatorname{Im} A^*$.

Определение 37.2. Пусть $S \subset X$, тогда правым аннулятором множества S называется

$$S^{\perp} = \{ f \in X^* \mid \forall x \in S : f(x) = 0 \}$$

Очевидно, что $S^\perp \subset X^*$ — подпространство.

Утверждение 37.3. $S^{\perp} - \tau_{w^*}$ -замкнуто в X^*

Доказательство. Пусть $g \in [S^{\perp}]_{\tau_{w^*}}$, тогда произвольная окрестность g пересекается с S^{\perp} по непустому множеству. Это верно и для элементов предбазы, то есть

$$\forall \varepsilon > 0 \ \forall x \in S \Rightarrow V^*(g, x, \varepsilon) \cap S^{\perp} \neq \varnothing$$

Рассмотрим $f \in V^*(g, x, \varepsilon) \cap S^{\perp}$, имеем

$$|f(x) - g(x)| = |g(x)| < \varepsilon$$

Так как это верно для любого ε , то g(x)=0, значит $g\in S^{\perp}$, что и требовалось.

Если $X - \Pi H\Pi$, то S^{\perp} замкнуто по операторной норме.

Определение 37.4. Пусть $S \subset X^*$, тогда левым аннулятором множества S называется

$$^{\perp}S = \{ x \in X \mid \forall f \in S \colon f(x) = 0 \}$$

Левый аннулятор является подпространством в X.

Утверждение 37.5. $^{\perp}S$ — замкнуто в X относительно нормы.

Доказательство. Можно поступить как с правым аннулятором, а можно записать

$$^{\perp}S = \bigcap_{f \in S} \operatorname{Ker} f$$

Ядра функционалов замкнуты как прообразы $\{0\}$, а пересечение замкнутых множеств замкнуто.

Теорема 37.6 (Фредгольм). Если $A \in \mathcal{L}(X,Y), X, Y - \Pi H\Pi$. Тогда

$$\begin{cases} \operatorname{Ker} A = {}^{\perp}(\operatorname{Im} A^{*}) \\ \operatorname{Ker} A^{*} = (\operatorname{Im} A)^{\perp} \end{cases}$$

Доказательство. • Пусть $x \in \operatorname{Ker} A$, это равносильно $Ax = 0 \in Y$, по следствию теоремы Хана-Банаха это равносильно

$$\forall g \in Y^* \Rightarrow g(Ax) = 0$$

По определению сопряженного оператора получаем

$$\forall q \in Y^* : (A^*q)(x) = 0$$

To ects $x \in {}^{\perp}(\operatorname{Im} A^*)$

• Пусть теперь $g \in \operatorname{Ker} A^*$ аналогичная цепочка равносильностей, только теперь вместо теоремы Хана-Банаха используем определение нулевого оператора

$$A^*g = 0 \in X^* \Leftrightarrow \forall x \in X \colon (A^*g)(x) = 0 \Leftrightarrow \forall x \in X \colon g(Ax) = 0$$

По определению последнее равносильно $g \in (\operatorname{Im} A)^{\perp}$

Следствие 1.

$$\begin{cases} (\operatorname{Ker} A)^{\perp} = (^{\perp}(\operatorname{Im} A^*))^{\perp} \\ ^{\perp}(\operatorname{Ker} A^*) = ^{\perp}((\operatorname{Im} A)^{\perp}) \end{cases}$$

Лемма 37.7.

- а) Пусть S всюду плотно в X, тогда $S^{\perp} = \{0\}$
- б) Пусть M всюду плотно в X^* , тогда ${}^{\perp}M = \{0\}$

Доказательство. а) Так ка

а) Так как S — всюду плотно, то

$$\forall x \in X \colon \exists x_n \in S \colon x_n \xrightarrow{\parallel \parallel} x \Rightarrow \forall f \in S^{\perp} \Rightarrow 0 = f(x_n) \to f(x) \Rightarrow f(x) = 0$$

Из произвольности x следует f = 0.

б) M — всюду плотно в X^* , тогда

$$\forall g \in X^* : \exists g_n \in M : g_n \xrightarrow{\parallel \parallel} g \Rightarrow \forall x \in {}^{\perp}M \Rightarrow 0 = g_n(x) \to g(x) \Rightarrow g(x) = 0$$

По следствию теоремы Хана-Банаха x=0

Теперь из теоремы Фредгольма можно вывести следующее следствие.

Следствие 2.

- Если $\operatorname{Im} A$ всюду плотен в Y, то $\operatorname{Ker} A^* = \{0\}$
- Если $\operatorname{Im} A^*$ всюду плотен в X^* , то $\operatorname{Ker} A = \{0\}$

Лемма 37.8. Пусть $L \subset X$ — подпространство. Тогда

$$^{\perp}(L^{\perp}) = [L]_{\parallel \parallel}$$

Доказательство. Совершенно ясно, что $L\subset {}^{\perp}(L^{\perp})$. При этом ${}^{\perp}(L^{\perp})$ — замкнуто в X относительно нормы, тогда

$$[L]_{\parallel\parallel} \subset {}^{\perp}(L^{\perp})$$

Предположим, что включение строгое, то есть

$$\exists z \in {}^{\perp}(L^{\perp}) \setminus [L]_{\parallel \parallel}$$

По следствию теоремы Хана-Банаха

$$\exists f \in X^* \colon f \big|_{[L]_{\parallel \parallel}} = 0 \quad f(z) = 1$$

В силу первого условия $f\in L^\perp$, но так как $z\in {}^\perp(L^\perp)$, то

$$f(z) = 0$$

Противоречие с f(z)=0, значит $[L]_{\parallel\parallel}={}^{\perp}(L^{\perp}).$

Тогда продолжая утверждение следствия 1 можем записать

$$[\operatorname{Im} A]_{\parallel\parallel} = {}^{\perp}(\operatorname{Ker} A^*)$$

Лемма 37.9. Пусть $M \subset X^*$ — подпространство, тогда

$$(^{\perp}M)^{\perp} = [M]_{\tau_{w^*}}$$

 \mathcal{A} оказательство. Ясно, что $M\subset (^\perp M)^\perp$. В силу 37.3 $(^\perp M)^\perp- au_{w^*}$ -замкнуто, тогда

$$[M]_{\tau_{w^*}} \subset (^{\perp}M)^{\perp}$$

Аналогично лемме 37.8 рассмотрим

$$f \in ({}^{\perp}M)^{\perp} \setminus [M]_{\tau_{w^*}}$$

По следствию теоремы Хана-Банаха (для локально выпуклых топологических векторных пространств)

$$\exists \omega \in Y : \omega \big|_{[M]_{\tau_{\dots *}}} = 0 \quad \omega(f) \neq 0$$

Где Y — множество линейных τ_{w^*} -непрерывных функционалов над X^* . В силу 28.2 такие функционалы однозначно определяются элементом из X. $\exists x \in X : \forall g \in X^* : \omega(g) = g(x)$. Тогда $x \in M$, но тогда

$$f(x) = \omega(f) = 0$$

Противоречие.

Значит мы можем продолжить следствие 1 и записать

$$(\operatorname{Ker} A)^{\perp} = [\operatorname{Im} A^*]_{\tau_{w^*}}$$

38 Эквивалентность замкнутости ${\rm Im}\,A$ и ${\rm Im}\,A^*$ для оператора $A\in \mathcal{L}(X,Y),$ где X и Y банаховы пространства. Равенство $({\rm Ker}\,A)^\perp={\rm Im}\,A^*$ при условии замкнутости ${\rm Im}\,A$.

Теорема 38.1 (в духе Фредгольма). Пусть X,Y — банаховы пространства, $A \in \mathcal{L}(X,Y)$ и $\operatorname{Im} A$ — замкнут. Тогда

$$(\operatorname{Ker} A)^{\perp} = \operatorname{Im} A^*$$

Доказательство. Пусть $f \in (\operatorname{Ker} A)^{\perp}$ то есть $\forall x \in X, Ax = 0 \Rightarrow f(x) = 0$ Хотим доказать, что $f \in \operatorname{Im} A^*$, тогда будет верно

$$[\operatorname{Im} A^*]_{\parallel\parallel} \subset (\operatorname{Ker} A)^{\perp} \subset \operatorname{Im} A^* \subset [\operatorname{Im} A^*]_{\parallel\parallel}$$

Откуда сразу $(\operatorname{Ker} A)^{\perp} = \operatorname{Im} A^*$.

Рассмотрим $h \colon \operatorname{Im} A \to \mathbb{C}$ по формуле

$$\forall x \in X : h(Ax) = f(x)$$

Если $y = Ax_1 = Ax_2 \in \operatorname{Im} A$, тогда

$$x_1 - x_2 \in \text{Ker } A \Rightarrow f(x_1 - x_2) = 0 \Rightarrow h(y) = f(x_1) = f(x_2)$$

Поэтому h определен корректно. Ясно, что h — линейный функционал. Так как $\operatorname{Im} A$ — замкнуто в банаховом пространстве Y, то $\operatorname{Im} A$ — само банахово, с другой стороны X — банахово, тогда по теореме банаха об открытом отображении (22.4) $A:X \to \operatorname{Im} A$ — открытое отображение. Значит

$$\exists r > 0 \colon O_r^Y(0) \cap \operatorname{Im} A \subset A(O_1^X(0))$$

Тогда $\forall y \in \operatorname{Im} A \setminus \{0\} \Rightarrow \frac{r}{2} \frac{y}{\|y\|} \in AO_1^X(0)$. Значит

$$\exists x \in X \colon ||x|| \le 1 \Rightarrow Ax = \frac{r}{2} \frac{y}{||y||}$$

В силу линейности А получаем

$$y = A\left(\frac{2\|y\|}{r}x\right)$$

Теперь вспоминая про h

$$h(y) = h\left(A\left(\frac{2\|y\|}{r}x\right)\right) = f\left(\frac{2\|y\|}{r}x\right)$$

Равенство выше верно для любого y, тогда

$$|h(y)| \le ||f|| \frac{2}{r} ||y|| \Rightarrow ||h|| \le \frac{2}{r} ||f||$$

Значит h — непрерывный, то есть $h \in (\operatorname{Im} A)^*$, по теореме Хана-Банаха продолжим его на весь Y:

$$\exists g \in Y^* \colon g\big|_{\operatorname{Im} A} = h \quad \|g\| = \|h\|$$

Тогда $\forall x \in X$:

$$f(x) = h(Ax) = q(Ax) = (A^*q)(x) \Rightarrow f = A^*q \in \operatorname{Im} A^*$$

Что и требовалось!

Утверждение 38.2. Если X,Y — банаховы и $A \in \mathcal{L}(X,Y)$ и $\operatorname{Im} A^*$ — замкнут в X^* , тогда $\operatorname{Im} A$ — замкнут в Y

Заметим, что в условиях этого утверждения в силу 38.1 получим, что $\operatorname{Im} A^* = (\operatorname{Ker} A)^{\perp}$ и $\operatorname{Im} A = {}^{\perp}(\operatorname{Ker} A^*)$

Доказательство. Рассмотрим

$$Z = [\operatorname{Im} A]_{\parallel \parallel} \subset Y$$

Z — замкнутое подпространство банахова пространства, значит Z — само банахово. Определим

$$T \colon X \to Z, \quad T(x) = A(x) \forall x \in X$$

Ясно, что $T \in \mathcal{L}(X, Z)$, кроме того

$$\operatorname{Im} T = \operatorname{Im} A \Rightarrow [\operatorname{Im} T]_Z = Z$$

То есть Im T— всюду плотен в Z. Рассмотрим сопряженный

$$T^*\colon Z^*\to X^*$$

Так как $\operatorname{Im} T$ — всюду плотен, то в силу теоремы Фредгольма (37.6) и следствия леммы 37.7 $\operatorname{Ker} T^* = (\operatorname{Im} T)^{\perp} = \{0\}$. Значит T^* — инъективен, значит существует обратный оператор

$$\exists (T^*)^{-1} \colon \operatorname{Im} T^* \to Z^*$$

Текущая картина

$$T^*: Z^* \to X^* \quad A^*: Y^* \to X^*$$

Причем ${\rm Im}\, A^*$ — замкнут. Нужно понять, что из себя представляет ${\rm Im}\, T^*$.

Рассмотрим произвольный $h \in Z^*$ по теореме Хана-Банаха

$$\exists g \in Y^* \colon g \big|_Z = h$$

Тогда

$$\forall x \in X \colon h(T(x)) = (T^*h)(x)$$

С другой стороны

$$h(T(x)) = h(\underbrace{A(x)}_{\text{FIm } A}) = g(Ax) = (A^*g)(x)$$

Таким образом

$$\forall x \in X \ T^*h(x) = A^*g(x) \Rightarrow T^*h = A^*g(x)$$

Таким образом $\operatorname{Im} T^* \subset \operatorname{Im} A^*$ Но можно рассуждать и в обратную сторону. Возьмем $g \in Y^*$, тогда $\forall x \in X$

$$g(Ax) = (A^*g)(x)$$

Рассматривая сужение $h = g|_{Z}$

$$g(Ax) = g(Tx) = h(Tx) = (T^*h)(x)$$

Значит $\forall x \in X : T^*g = A^*h \Rightarrow \operatorname{Im} A^* \subset \operatorname{Im} T^*$. Получили, что

$$\operatorname{Im} A^* = \operatorname{Im} T^*$$

Так как оператор T — сужение оператора A, то этот результат несколько тавтологичен. Однако теперь мы можем утверждать, что $\operatorname{Im} T^*$ —замкнут в банаховом X^* , значит по теореме Банаха об обратном операторе (22.5)

$$(T^*)^{-1} \in \mathcal{L}(\operatorname{Im} T^*, Z^*) \quad 0 < \|(T^*)^{-1}\| < \infty$$

А теперь ФОКУС. Что можно сказать про прямой оператор T, если он обладает непрерывным обратным сопряженным? Оказывается, что если $(T^*)^{-1} \in \mathcal{L}(\operatorname{Im} T^*, Z^*)$, то $T \colon X \to Z$ открытое отображение, то есть

$$\exists r > 0 \colon T(O_1^X(0)) \supset O_r^Z(0)$$

Предположив это, моментально получаем, что ${\rm Im}\, T=Z$ и

$$[\operatorname{Im} A]_{\parallel \parallel} = Z \supset \operatorname{Im} A = \operatorname{Im} T = Z$$

И получаем $\operatorname{Im} A = [\operatorname{Im} A]_{\parallel \parallel}$

Докажем, что $T: X \to Z$ — открытое отображение. Рассмотрим $[TO_1(0)]_Z$ — замкнутое и выпуклое в Z множество. Рассмотрим $z \in Z \setminus [TO_1(0)]_Z$. По следствию теоремы Хана-Банаха отделим z от выпуклого замкнутого множества $[TO_1(0)]_Z$, получим

$$\exists f \in Z^*, ||f|| > 0, \ \exists \gamma \in \mathbb{R} \colon \forall ||x|| \le 1 \operatorname{Re} f(T(x)) \le \gamma < \operatorname{Re} f(z)$$

Взяв супремум по всем x из единичного шара, получим

$$\sup_{\|x\| \le 1} |\operatorname{Re} f(T(x))| = \sup_{\|x\| \le 1} |\operatorname{Re}(T^*f)(x)| = \|\operatorname{Re}(T^*f)\| = \|T^*f\| \le \gamma < \operatorname{Re} f(z)$$

Таким образом $T^*f \in X^*$. Кроме того

$$f = (T^*)^{-1}(T^*f) \Rightarrow ||f|| \le ||(T^*)^{-1}|||T^*f||$$

Значит

$$\frac{\|f\|}{\|(T^*)^{-1}\|} \le \|T^*f\|$$

Теперь можем записать цепочку неравенств

$$0 < \frac{\|f\|}{\|(T^*)^{-1}\|} \le \gamma < \operatorname{Re} f(z) \le \|\operatorname{Re} f\|\|z\| = \|f\|\|z\| \Rightarrow \|z\| > \frac{1}{\|(T^*)^{-1}\|} = k > 0$$

Значит z не может быть очень маленьким, точнее

$$z \in Z \setminus B_k^Z(0)$$

Но $z \in Z \setminus [TO_1(0)]_Z$, значит мы получили

$$O_k^Z(0) \subset B_k^Z(0) \subset [TO_1(0)]_Z$$

Мы попали в ситуацию, аналогичную ситуации в доказательстве теоремы 22.4. Так как X — полное, то, повторяя рассуждения из того доказательства

$$[TO_1(0)]_Z \subset T(B_2^X(0)) \subset T(O_3^X(0))$$

Таким образом

$$O_{\frac{k}{3}}^Z(0) \subset TO_1^X(0)$$

То есть T— открытое отображение! Доказательство окончено.

 $\overline{39}$ Теорема Фредгольма о конечномерности ядра $\ker A_{\lambda}$ и замкнутости множества значений $\operatorname{Im} A_{\lambda}$ для компактного оператора $A \in \mathcal{L}(X,Y)$ и нетривиального числа λ в банаховом пространстве X. Критерий разрешимости уравнения $A_{\lambda}x = y$ для $y \in X$.

Теорема 39.1 (Первая теорема Фредгольма).

Пусть X — банахово $A \in \mathcal{L}(X)$ — компактный оператор. Пусть $\lambda \in \mathbb{C} \setminus \{0\}$. Рассмотрим

$$A_{\lambda} = A - \lambda I$$
, $I: X \to X$ — тождественный,

Тогда

- 1. Ker A_{λ} конечномерен.
- 2. $\operatorname{Im} A_{\lambda}$ замкнут.

Замечание. $A_{\lambda}x = y$ называется уравнением Фредгольма.

Доказательство.

1. Покажем, что из любой последовательности $\{x_n\} \subset \operatorname{Ker} A_{\lambda}, \|x_n\| \leq R$ можно выделить сходящуюся подпоследовательность $x_{n_k} \to x \in \operatorname{Ker} A_{\lambda}$. Имеем

$$\begin{cases} Ax_n = \lambda x_n \Leftrightarrow x_n = \frac{1}{\lambda} Ax_n \\ AB_R(0) - \text{вполне ограниченно} \end{cases}$$

Тогда $\exists n_1 < n_2 < \dots Ax_{n_k}$ — фундаментальна, значит x_{n_k} — фундаментальна, что и требовалось.

2. В силу предыдущего пункта $\operatorname{Ker} A_{\lambda} = \operatorname{Lin}\{e_1, \dots, e_N\}$. То есть

$$\forall x \in \operatorname{Ker} A_{\lambda} \Rightarrow x = \sum_{k=1}^{N} \alpha_k(x) e_k$$

Продолжая Хану-Банаху функционалы α_k до $f_k \in X^*$ можно рассмотреть пересечение их ядер

$$M = \bigcap_{k=1}^{N} \operatorname{Ker} f_k$$

Ясно, что

$$M \cap \operatorname{Ker} A_{\lambda} = \{0\}$$

Кроме того, любой $x \in X$ представляется как сумма из M и $\operatorname{Ker} A_{\lambda}$

$$x = \underbrace{\sum_{k=1}^{N} f_k(x)e_k}_{\in \operatorname{Ker} A_{\lambda}} + \underbrace{\left(x - \sum_{k=1}^{N} f_k(x)e_k\right)}_{\in M}$$

Значит

$$\operatorname{Ker} A_{\lambda} \oplus M = X$$

Заметим, что $A_{\lambda} \colon M \to X$ — инъективен, так как $X = \operatorname{Ker} A_{\lambda} \oplus M$, то $A_{\lambda}(M) = \operatorname{Im} A_{\lambda}$, поэтому мы можем сузиться на подпространство M и анализировать образ $\operatorname{Im} A_{\lambda}$ на нем.

Пусть $\exists C > 0$:

$$\forall x \in M : ||A_{\lambda}x|| \ge C||x||$$

Покажем в этом предположении замкнутость $\operatorname{Im} A_{\lambda}$.

$$\forall y \in [A_{\lambda}(M)]_X = [\operatorname{Im} A_{\lambda}]_X \Rightarrow \begin{cases} \exists y_n = A_{\lambda}(x_n) \to y \\ x_n \in M \end{cases}$$

Рассмотрим $\{x_n\}_{n=1}^{\infty}$

$$||x_n - x_m|| \le \frac{1}{C} ||A_\lambda(x_n - x_m)|| = ||y_n - y_m|| \to 0$$

Значит $\{x_n\}_{n=1}^{\infty}$ — фундаментальна в банаховом пространстве X, то есть

$$\exists x \in X : x_n \to x$$

Но тогда в силу непрерывности A_{λ} , $y = A_{\lambda}(x) \Rightarrow y \in \operatorname{Im} A_{\lambda}$, что и требовалось.

Теперь покажем, что действительно $\exists C > 0$:

$$\forall x \in M : ||A_{\lambda}x|| \ge C||x||$$

Предположим противное, то есть

$$\forall C > 0 \exists x_C \in M \colon ||A_{\lambda} x_C|| < C||x_C||$$

Тогда, как минимум, $x_C \neq 0$. Рассмотрим $C_n = \frac{1}{n}$ и $z_n = \frac{x_{\frac{1}{n}}}{\|x_{\frac{1}{n}}\|} \in M$, $\|z_n\| = 1$. По предположению

$$||A_{\lambda}z_n|| < \frac{1}{n}$$

Вспомним, что A — компактный оператор, так как все z_n — лежат на сфере, то образ последовательности z_n — вполне ограничен, тогда

$$\exists n_1 < n_2 < \cdots \Rightarrow \{Az_{n_k}\}_{k=1}^{\infty} -$$
 фундаметальна в X

Но тогда последовательность z_{n_k} будет фундаментальна как сумма фундаментальной и бесконечно малой последовательностей:

$$z_{n_k} = \frac{Az_{n_k} - A_{\lambda}z_{n_k}}{\lambda}$$

X — банахово, значит $\exists x \in X, \ z_{n_k} \to x$. Поймем какими свойствами обладает x. Так как $\|z_{n_k}\| = 1$, то $\|x\| = 1$. Так как M — замкнуто, то $x \in M$. Кроме того

$$\begin{cases} A_{\lambda} z_{n_k} \xrightarrow{k \to \infty} 0 \\ A_{\lambda} z_{n_k} \xrightarrow{k \to \infty} A_{\lambda} x \end{cases} \Rightarrow A_{\lambda} x = 0 \Rightarrow x \in \operatorname{Ker} A_{\lambda}$$

Получается $x \in M \cap \operatorname{Ker} A_{\lambda}$, но тогда x = 0, противоречие с ||x|| = 1. Таким образом теорема доказана.

39 Теорема Фредгольма о конечномерности ядра Кег A_{λ} и замкнутости множества значений Im A_{λ} для компактного оператора $A \in \mathcal{L}(X,Y)$ и нетривиального числа λ в банаховом пространстве X. Критерий разрешимости уравнения $A_{\lambda}x = y$ для $y \in X$.

Следствие. В условиях предыдущей теоремы. Пусть $z \in X$, уравнения $A_{\lambda}x = z$ разрешимо если и только если для любого решения союзного однородного уравнения $(A_{\lambda})^*g = 0 \in X^*$ выполнено g(z) = 0

Доказательство. В силу предыдущей теоремы ${\rm Im}\, A_{\lambda}$ — замкнут, тогда в силу 38.2 получаем, что ${\rm Im}\, A_{\lambda} = {}^{\perp}({\rm Ker}\, A_{\lambda}^*)$. Пусть ${}_{\lambda}x = z$ разрешимо, что равносильно $z \in {\rm Im}\, A = {}^{\perp}({\rm Ker}\, A_{\lambda}^*)$, что равносильно $\forall g \in {\rm Ker}\, A_{\lambda}^* \Leftrightarrow A_{\lambda})^*g = 0$ g(z) = 0. Что и требовалось.

40 Теорема Фредгольма об эквивалентности компактности оператора $A \in \mathcal{L}(X,Y)$ и компактности его сопряженного оператора $A^* \in \mathcal{L}(Y^*,X^*)$.

Теорема 40.1. (Фредгольм) Пусть $X, Y - \Pi \Pi \Pi, A \in \mathcal{L}(X, Y)$, тогда A— компактный оператор если только если A^* — компактный оператор.

Доказательство.

 \Rightarrow Пусть A — компактный оператор, то есть $AB_1^X(0)$ — вполне ограничено в Y. Y — неполон, поэтому рассмотрим пополнение. Пусть Z— банахово,

$$Z = [Y]_{\parallel \parallel}, \ \|\|_Z|_Y = \|\|_Y$$

Тогда $AB_1^X(0)$ — вполне ограничено в банаховом Z и значит $[AB_1^X(0)]_Z$ — компакт в Z. Обозначим $K=[AB_1^X(0)]_Z$. Нам нужно доказать, что образ шара из сопряженного пространства Y^* под действием A^* вполне ограничен в X^* . Мы знаем, что $A^*(B_1^{Y^*}(0))$ — вполне ограничен тогда и только тогда, когда $\forall \{g_n\}_{n=1}^\infty \subset B_1^{Y^*}(0) \; \exists n_1, n_2, \ldots \colon \{A^*(g_{n_k})\}_{k=1}^\infty$ — фундаментальна в X^* . $g_n \colon Y \to \mathbb{C}$ — липшицевы функции с константой Липшица 1. Пусть $g \in Y^*$ посмотрим на

$$g \colon AB_1^X(0) \to \mathbb{C}$$

Тогда $\forall z \in [AB_1^X(0)]_Z$ мы можем сказать, что $\exists y_n \in AB_1^X(0) \colon y_n \to z$, тогда

$$|g(y_n) - g(y_m)| \le ||g|| ||y_m - y_n|| \to 0$$

Выражение выше означает, что последовательность образов имеет предел. Будет ли предел зависеть от выбора последовательности $\{y_n\}$. Конечно, нет пусть $\tilde{y_n} \in AB_1^X(0)$, $\tilde{y_n} \to z$, тогда

$$|g(y_n) - g(\tilde{y_n})| \le ||g|| ||y_n - \tilde{y_n}||_Y \to 0$$

Таким образом предел не зависит от выбора последовательности, а зависит только от z. То есть мы построили функционал

$$h: K \to Z$$
 $h(z) = \lim_{n \to \infty} (y_n) = \lim_{n \to \infty} (\tilde{y_n})$

Причем $h\big|_{AB_1^X(0)}=g.\ g$ является непрерывным линейным функционалом на шаре, а нам он нужен на компакте, который мы получили, замкнув шар в пополнении. Теперь наш h действует из компакта. Липшицевость q дает нам липшицевость h:

$$z_{1,2} \in K \Rightarrow |h(z_1) - h(z_2)| = \lim_{n \to \infty} |g(y'_n) - g(y''_n)| \le \lim_{n \to \infty} ||g|| ||y'_n - y''_n|| = ||g|| ||z_1 - z_2||$$

Теперь для каждого g_n исходной последовательности проделаем данную процедуру продолжения. Получим $\{h_n\} \subset K$. Все h_n — липшецевы с константой 1 (так как исходные g_n живут на сфере). Таким образом h_n — непрерывные функции на компакте,

значит мы попали в пространство C(K). В пространстве C(K) норма супремальная, а не операторная. Найдем ее для h_n :

$$||h_n||_c = \max_{z \in K} |h_n(z)| = \sup_{y \in AB_1^X(0)} |g_n(y)| = \sup_{x \in B_1^X(0)} |g_n(Ax)| = \sup_{x \in B_1^X(0)} |A^*g_n(x)| = ||A^*(g_n)||$$

Получилось, что супремальная норма h_n в C(K) совпадает с операторной нормой образов g_n под действием сопряженного оператора A^* . Если мы теперь рассмотрим норму разности, то

$$||h_n - h_m||_c = ||A^*g_n - A^*g_m||$$

Таким образом вопрос о выделении фундаментальной подпоследовательности в образе $A^*B_1^{Y^*}(0)$ (это то, что нам надо) сводится к выделению фундаментальной подпоследовательности в $\{h_n\}$. А для этого нам известен хороший критерий вполне ограниченности в C(K), а именно теорема Арцела-Асколе (18.2).

$$S = \{h_n\}_{n=1}^{\infty} \subset C(K)$$

В силу теоремы Арцела-Асколе S — вполне ограниченно если и только если

$$\begin{cases} \exists R > 0 \ \forall n \in \mathbb{N} \Rightarrow \|h_n\|_c \le R \\ \forall \varepsilon > 0 \exists \delta(\varepsilon) \colon \forall n \in \mathbb{N} \forall z_{1,2} \in K \colon \|z_1 - z_2\| \le \delta \Rightarrow |h_n(z_1) - h_n(z_2)| < \varepsilon \end{cases}$$

Эти условия выполнены с очевидностью. Ограниченность:

$$||h_n||_c = ||A^*g_n|| \le ||A^*|| ||g_n|| \le ||A^*|| \Rightarrow R = ||A^*||$$

Равностепенная непрерывность:

$$\delta(\varepsilon) = \varepsilon \Rightarrow |h_n(z_1) - h_n(z_2)| \le ||h_n|| ||z_1 - z_2|| \le \delta = \varepsilon$$

Таким образом S — вполне ограниченно в C(K) и значит существует подпоследовательность $\{h_{n_k}\}_{k=1}^{\infty}$ — фундаментальная в C(K). Но тогда

$$||A^*g_{n_k} - A^*g_{n_m}|| = ||h_{n_k} - h_{n_m}|| \to 0$$

Это и означает вполне ограниченность образа шара под действием A^*

 \Rightarrow Пусть теперь $A^*\colon Y^*\to X^*$ — компактный оператор. Мы только что доказали, что это означает компактность сопряженного к A^* , то есть $A^{**}\colon X^{**}\to Y^{**}$ — компактный оператор. Воспользуемся изометрией банаха. Пусть

$$\Phi \colon X \to X^{**} \quad \Psi \colon Y \to Y^{**}$$

Изометрии Банаха, то есть $\Phi x(f) = f(x), \Psi y(g) = g(y), \|\Phi x\| = \|x\|, \|\Psi y\| = \|y\|.$ Посмотрим на картинку.

$$\begin{array}{c} X \stackrel{\Phi}{\longrightarrow} X^{**} \\ \downarrow_A & \downarrow_{A^{**}} \\ Y \stackrel{\Psi}{\longrightarrow} Y^{**} \end{array}$$

В силу коммутативности данной диаграммы следующей выкладки

$$\forall g \in Y^* : (A^{**}\Phi x)(g) = (\Phi x)(A^*g) = (A^*g)(x) = g(Ax) = (\Psi Ax)(g)$$

Имеем $A = \Phi A^{**} \Psi^{-1}$. Но Φ , Ψ — изометрии, значит, так как A^* — компактный оператор, то A — компактный оператор, что и требовалось.

41 Теорема о равенстве размерностей ядер $\operatorname{Ker} A_{\lambda}$ и $\operatorname{Ker} A_{\lambda}^*$ для компактного оператора $A \in \mathcal{L}(X)$ и нетривиального числа λ в банаховом пространстве X. Альтернатива Фредгольма.

Для доказательства основной теоремы билета потребуется несколько лемм.

Лемма 41.1. Пусть Z — линейное пространство и $L \subset Z$ — его подпространство. Тогда существует подпространство $M \subset Z$ такое что

$$Z = L \oplus M$$

то есть $L \cap M = \{0\}$ и Z = L + M.

Доказательство. Доказательство проведем с помощью теоремы Хаусдорфа. Рассмотрим

$$\Phi = \{ M \subset Z \mid M -$$
 подпространство Z и $M \cap L = \{0\}$ }

Ясно, что $\{0\} \in \Phi$, поэтому это множество не пусто. Частично упорядочим его относительно вложения и применим теорему Хаусдорфа (1.4). Пусть S — максимальный ЛУМ. в (Φ, \subset) . Рассмотрим

$$M = \bigcup_{N \in S} N$$

Покажем, что M — подпространство в Z. Действительно, если $x,y\in M$, то существуют подпространства N_x , N_y из S, что $x\in N_x$ $y\in N_y$. Но так как S ЛУМ, то они упорядоченны по вложению, значит можно считать, что $N_x\subset N_y$, тогда для любых $\alpha,\beta\in\mathbb{C}$ выполнено вложение

$$x + y \in N_y \subset M$$

что и требовалось. Далее, если существует ненулевой элемент x из пересечения $M \cap L$, то существует $N_x \in S$, а значит $N_x \cap L \neq \{0\}$, значит $M \cap L = \{0\}$. Таким образом $M \in \Phi$. Осталось показать, что

$$M + L = Z$$

Но если это не верно, то существует элемент $z_0 \in Z \setminus (M+L)$. Тогда рассмотрев $M_0 = M \oplus \text{Lin}\{z_0\}$, получим противоречие с максимальностью лума S.

Теперь можно приступить к формулировке и доказательству основного утверждения.

Теорема 41.2. Для компактного оператора $A \in \mathcal{L}(X)$ и числа $\lambda \in \mathbb{C} \setminus \{0\}$ выполнено

$$\dim \operatorname{Ker} A_{\lambda} = \dim \operatorname{Ker} A_{\lambda}^*$$

Доказательство. Так как оператор A — компактен, из 40.1 мы знаем, что оператор A^* тоже является компактным, тогда по первой теореме Фредгольма 39.1:

$$\dim \operatorname{Ker} A_{\lambda} < \infty \quad \dim \operatorname{Ker} A_{\lambda}^* < \infty$$

По первой лемме найдутся два подпространства $L_{\lambda} \subset X$ и $L_{\lambda*} \subset X^*$ такие что

$$L_{\lambda} \oplus \operatorname{Im} A_{\lambda} = X$$
 и $L_{\lambda *} \oplus \operatorname{Im} A_{\lambda}^{*} = X^{*}$

Покажем, что

$$\dim L_{\lambda} \subset \dim(\operatorname{Im} A_{\lambda})^{\perp} = \dim \operatorname{Ker} A_{\lambda}^{*}$$

для этого возьмем систему линейно независимых векторов $x_1, \ldots, x_N \in L_\lambda$. Векторы x_i не лежат в $\operatorname{Im} A_\lambda$ — замкнутом в X (по теореме 39.1) пространстве. Тогда по следствию теоремы Хана-Банаха найдется $f_1 \in X^*$:

$$f_1|_{\text{Im }A_\lambda} = 0 \text{ M } f_1(x_1) = 1$$

то есть $f_1 \in (\operatorname{Im} A_{\lambda})^{\perp}$. Далее для $j \in \overline{2,N}$ рассмотрим

$$M_i = \operatorname{Im} A_{\lambda} \oplus \operatorname{Lin} \{x_1, \dots, x_i\}$$

Пространство $\operatorname{Im} A_{\lambda}$ является замкнутым в X. Пространство $\operatorname{Lin}\{x_1,\ldots,x_j\}$ является конечномерным, тогда по теореме 11.5 пространство M_j замкнуто в X, и, снова применяя следствие теоремы Хана-Банаха, получим, что найдется $f_j \in X^*$:

$$f_j|_{M_j} = 0 \text{ M } f_j(M_j) = 1$$

откуда $f_j \in (\operatorname{Im} A_{\lambda})^{\perp}$. И значит

$$\{f_1,\ldots,f_N\}\subset (\operatorname{Im} A_{\lambda})^{\perp}=\operatorname{Ker} A^*$$

Причем $f_j(x_k) = \delta_{jk}$, значит они линейно независимы, откуда следует, что для любого $N \leq \dim L_\lambda$

$$N \leq \dim \operatorname{Ker} A_{\lambda}^*$$

Что значит $\dim L_{\lambda} \leq \dim \operatorname{Ker} A_{\lambda}^*$

Похожим образом докажем, что

$$\dim L_{\lambda*} \leq \dim^{\perp}(\operatorname{Im} A_{\lambda}^{*}) = \dim \operatorname{Ker} A_{\lambda}$$

Возьмем линейно независимые $\{f_1, \dots, f_N\} \in L_{\lambda *}$. Ясно, что

$$f_1 \notin \operatorname{Im} A_{\lambda}^*$$

В силу теоремы фредгольма и леммы 37.9 имеем

$$\operatorname{Im} A_{\lambda}^* = (\operatorname{Ker} A_{\lambda})^{\perp} = [\operatorname{Im} A_{\lambda}^*]_{\tau_{w^*}}$$

То есть $\operatorname{Im} A_{\lambda}^*$ является τ_{w^*} -замкнутым пространством в X^* , тогда по следствию теоремы Хана-Банаха для локально выпуклых топологических векторных пространств, получим

$$\exists \Phi_1 \in (X^*, \tau_{w^*})^* : \Phi_1|_{\operatorname{Im} A_{\lambda}^*} = 0, \Phi_1(f_1) = 1$$

Но по теореме Шмульяна 28.2 $(X^*, \tau_{w^*})^* = X$ и значит

$$\exists x_1 \in X : \forall f \in X^* : \Phi_1(f) = f(x_1)$$

откуда следует что $x_1 \in {}^{\perp}(\Im A^*_{\lambda}) = \operatorname{Ker} A_{\lambda}$ и $f_1(x_1) = 1$. Далее действия полностью аналогичны рассуждению для L_{λ} , заметим только, что все это законно, поскольку теорема 11.5 доказана в произвольных топологических векторных пространствах, коим является (X^*, τ_{w^*}) . Таким образом

$$\dim L_{\lambda*} \leq \dim \operatorname{Ker} A_{\lambda}$$

Если мы докажем неравенство

$$\dim \operatorname{Ker} A_{\lambda} < \dim L_{\lambda}$$

то аналогично мы сможем доказать, неравенство

$$\dim \operatorname{Ker} A_{\lambda}^* \leq \dim L_{\lambda*}$$

Беря во внимание $L_{\lambda} \oplus \operatorname{Im} A_{\lambda} = X$ и $L_{\lambda *} \oplus \operatorname{Im} A_{\lambda}^{*} = X^{*}$ получим цепочку неравенств

$$\dim \operatorname{Ker} A_{\lambda} \leq \dim L_{\lambda} \leq \dim \operatorname{Ker} A_{\lambda}^* \leq \dim L_{\lambda*} \leq \dim \operatorname{Ker} A_{\lambda}$$

откуда следует утверждение теоремы. Итак, будем доказывать, что

$$\dim \operatorname{Ker} A_{\lambda} \leq \dim L_{\lambda}$$

Предположим, что оно не выполнено, то есть

$$\infty > \dim \operatorname{Ker} A_{\lambda} > \dim L_{\lambda}$$

Тогда существует Φ : $\ker A_{\lambda} \to L_{\lambda}$ — линейная сюрьекция с нетривиальным ядром: $\ker \Phi \neq \{0\}$. Пусть $\dim \ker A_{\lambda} = N$ и $\{e_1,\ldots,e_N\} \subset \ker A_{\lambda}$ — базис. Тогда для любого $x \in \ker A_{\lambda}$

$$x = \sum_{k=1}^{N} \varphi_k(x) e_k$$

где $\varphi_k \colon X \to \mathbb{C}$ — линейные функционалы координат в нашем базисе. Так как $\ker A_\lambda$ — конечномерно, то функционалы φ_k — непрерывны на $\ker A_\lambda$ и поэтому по теореме Хана-Банаха могут быть продолжены на все X. Пусть $f_1, \ldots, f_N \in X^*$ — соответствующие продолжения. Определим оператор

$$T: X \to \operatorname{Ker} A_{\lambda}$$

по формуле $Tx=\sum_{k=1}^N f_k(x)e_k$. Тогда $T\in\mathcal{L}(X,\operatorname{Ker} A_\lambda)$ и $\operatorname{Im} T=\operatorname{Ker} A_\lambda$. Тогда

$$\dim \operatorname{Im} T = \dim \operatorname{Ker} A_{\lambda}$$

то есть T непрерывный оператор с конечномерным образом, значит T компактен. Определим другой оператор

$$S = A + \Phi \circ T$$

Он является компактным. Определим соответствующий ему

$$S_{\lambda} = A_{\lambda} + \Phi \circ T$$

Заметим, что подпространство

$$M_{\lambda} = \bigcap_{k=1}^{N} \operatorname{Ker} f_{k}$$

является замкнутым, как конечное пересечение замкнутых коконечных подпространств. Причем

$$\operatorname{Ker} A_{\lambda} \oplus M_{\lambda} = X$$

так как для любого $x \in X$ $Tx \in \operatorname{Ker} A_{\lambda}$ а значит $x - Tx \in M_{\lambda}$. При этом $T(M_{\lambda}) = 0$. Откуда получаем

$$S_{\lambda}(X) = S_{\lambda}(\operatorname{Ker} A_{\lambda} \oplus M_{\lambda}) = A_{\lambda}(M_{\lambda}) + \Phi T(\operatorname{Ker} A_{\lambda}) = \operatorname{Im} A_{\lambda} + \Phi(\operatorname{Ker} A_{\lambda}) = \operatorname{Im} A_{\lambda} + L_{\lambda} = X$$

То есть $S_{\lambda}(X) = X$. При этом S_{λ} — компактный оператор и $\lambda \neq 0$. По предположению существует ненулевой $x_0 \in \operatorname{Ker} \Phi \subset \operatorname{Ker} A_{\lambda}$, тогда

$$S_{\lambda}(x_0) = A_{\lambda}x_0 + \Phi T(x_0) = A_{\lambda}(x_0) + \Phi T(x_0) = 0 + 0 = 0$$

Значит ядро S_{λ} не пусто. Таким образом в спектре компактного оператора обнаружилось ненулевое число λ , такое что Im $S_{\lambda} = X$ и Ker $S_{\lambda} \neq 0$. Чего быть не может. Теорема доказана.

Теорема 41.3 (Альтернатива Фредгольма). Пусть T — компактный оператор действующий на банаховом пространстве X, а T^* — сопряженный ему, $\lambda \in \mathbb{C}, \ \lambda \neq 0$. Тогда верна альтернатива:

- Либо Im $T_{\lambda} = X$ и Ker $T_{\lambda} = 0$.
- Либо $\operatorname{Im} T_{\lambda}$ замкнут и не равен X и $\dim \operatorname{Ker} T_{\lambda} = \dim \operatorname{Ker} T_{\lambda}^*$

Доказательство. Простое следствие теорем Фредгольма.

42 Теорема oб эквивалентности непрерывной обратимости оператора $A \in \mathcal{L}(X,Y)$ и непрерывной обратимости сопряженного его оператора $A^* \in \mathcal{L}(Y^*, X^*)$ для банахова пространства X и нормированного пространства Y.

Утверждение 42.1.

- 1. Пусть X,Y ЛНП, X банахово и $A \in \mathcal{L}(X,Y)$ таков, что $\exists A^{-1}$. Тогда $\exists (A^*)^{-1} \in L(X^*, Y^*)$ при этом $(A^*)^{-1} = (A^{-1})^*$
- 2. Пусть X, Y ЛНП и $A^* \in \mathcal{L}(Y^*, X^*)$ таков, что $\exists (A^*)^{-1} \colon X^* \to Y^*$, тогда $\exists A^{-1} \in \mathcal{L}(\operatorname{Im} A, X)$

Доказательство.

- 1. Проверяется непосредственным вычислением операторов $(A^*)(A^{-1})^*$ и $(A^{-1})^*(A^*)$ по определению + использование банаховости X.
- 2. По теореме Фредгольма (**37.6**)

$$\operatorname{Ker} A = {}^{\perp}(\operatorname{Im} A^*) = {}^{\perp}(X^*) = \{0\}$$

И

$$[\operatorname{Im} A]_{\parallel \parallel} = {}^{\perp}(\operatorname{Ker} A^*) = {}^{\perp}\{0\} = Y$$

Значит образ всюду плотен в Y. Пусть $x \in X$ по следствию теоремы Хана-Банаха

$$||Ax|| = \sup_{g \in Y_*, ||g|| \le 1} |g(Ax)| = \sup_{g \in Y_*, ||g|| \le 1} |(A^*g)(x)|$$

Так как $(A^*)^{-1} \in \mathcal{L}(X^*,Y^*)$, то в силу критерия топологической непрерывности $A^* \colon Y^* \to X^*$ — открытое отображение. Тогда

$$A^*B_1^{Y^*}(0) \supset A^*O_1^{Y^*}(0) \supset O_r^{X^*}(0) \supset B_{\frac{r}{2}}^{X^*}(0)$$

Значит

$$\sup_{g \in Y^*, \|g\| \le 1} |(A^*g)(x)| = \sup_{f \in A^*B_1^{Y^*}(0)} |f(x)| \ge \sup_{f \in X^*, \|f\| \le \frac{r}{2}} |f(x)| < \frac{r}{2} \|x\|$$

То есть

$$\forall x \in X \Rightarrow ||Ax|| \ge \frac{r}{2}||x||$$

Но тогда

$$||A^{-1}Ax|| = ||x|| \le \frac{2}{r}||Ax|| \Rightarrow ||A^{-1}|| \le \frac{2}{r}$$

Это означает, что $A^{-1} \in \mathcal{L}(\operatorname{Im} A, X)$

Замечание. Если во втором пункте X — полное, то ${\rm Im}\,A$ — замкнут и $A^{-1} \in \mathcal{L}(Y,X)$

43 Пространство $\mathcal{L}(X)$ для банахова пространства X как банахова алгебра. Открытость резольвентного множества, непустота и компактность спектра элемента банаховой алгебры.

Определение 43.1. Пусть \mathcal{A} — векторное пространство над полем K, снабженное операцией $A \times A \to A$, называемой умножение. Тогда \mathcal{A} называется алгеброй над K, если для любых $x,y,z\in\mathcal{A},\,\lambda,\mu\in K$ выполнено

- $\bullet \ (x+y) \cdot z = x \cdot z + y \cdot z$
- $z \cdot (x+y) = z \cdot x + z \cdot y$
- $(\lambda x) \cdot (\mu y) = (\lambda \mu)(x \cdot y)$

Далее все алгебры будут рассматриваться над полем комплексных чисел.

Определение 43.2. Банахово пространство \mathcal{A} называется банаховой алгеброй, если \mathcal{A} — ассоциативная алгебра с единицей. Причем для единичного элемента по умножению выполняется $\|e\| = 1$ и $\|xy\| \le \|x\| \|y\|$.

Пример 43.3. $\mathcal{L}(X)$ — банахова алгебра относительно операции композиции.

Определение 43.4. Пусть \mathcal{A} — банахова алгебра. Говорят, что элемент $x \in \mathcal{A}$ обратим, если существует $y\mathcal{A}$, что

$$xy = yx = e$$

элемент y обозначается x^{-1} .

Определение 43.5. Обозначим множество обратимых элементов алгебры ${\cal A}$

$$G(\mathcal{A}) = \{ x \in \mathcal{A} \mid \exists x^{-1} \in \mathcal{A} \}$$

Обозначим $x_{\lambda} = x - \lambda e$.

Определение 43.6. Резольвентным множеством элемента x банаховой алгебры \mathcal{A} назовем множество

$$\rho(x) = \{ \lambda \in \mathbb{C} \mid x_{\lambda} \in G(\mathcal{A}) \}$$

Определение 43.7. Спектром элемента x банаховой алгебры \mathcal{A} назовем множество

$$\sigma(x) = \mathbb{C} \setminus \rho(x)$$

Лемма 43.8. Для любого $x \in A$ такого, что ряд

$$\sum_{n=1}^{\infty} \|x^n\|$$

сходится, элемент e-x обратим и

$$(e-x)^{-1} = \sum_{n=0}^{\infty} x^n \in \mathcal{A}$$

 \mathcal{A} оказательство. Так как \mathcal{A} — банахово, то из сходимости ряда из норм следует сходимость ряда

$$\sum_{n=0}^{\infty} x^n$$

к некоторому элементу \mathcal{A} . Рассмотрим

$$S_N = \sum_{n=0}^N x^n$$

тогда

$$(e-x)S_N = e - x^{N+1} \xrightarrow{N \to \infty} e$$

в силу $||x^{N+1}|| \xrightarrow{N\to\infty} 0$. Таким образом

$$(e-x)\sum_{n=0}^{\infty} x^n = e$$

Аналогично проверяется, что данный элемент является левым обратным. Лемма доказана.

Следствие. Для любого $x \in G(\mathcal{A})$ для $r = \frac{1}{\|x^{-1}\|}$ выполнено вложение

$$O_r(x) \subset G(\mathcal{A})$$

что означает открытость множества $G(\mathcal{A})$ в банаховом пространстве \mathcal{A} .

Теорема 43.9. Для любого элемента x банаховой алгебры $\mathcal A$ выполнено:

- 1. $\rho(x)$ открыто в \mathbb{C} .
- 2. $\sigma(x)$ замкнуто в \mathbb{C} и выполнено

$$\sigma(x) \subset \{\lambda \in \mathbb{C} \mid |\lambda| \le ||x||\}.$$

3. $\sigma(x) \neq \emptyset$.

Доказательство. Начнем со второго пункта. Пусть $|\lambda|>\|x\|$, тогда

$$x_{\lambda} = x - \lambda e = -\lambda \left(e - \frac{x}{\lambda} \right) = -\lambda (e - y)$$

где $\|y\| < 1$. По предыдущей лемме элемент e-y — обратим, а значит обратим и x_{λ} , причем

$$x_{\lambda}^{-1} = R_x(\lambda) = -\sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$$

Значит $\lambda \in \rho(x)$, откуда следует, что

$$\sigma(x) = \mathbb{C} \setminus \rho(x) \subset \{|\lambda| \le ||x||\}$$

Пусть теперь $\lambda \in \rho(x)$. Рассмотрим $\mu \in \mathbb{C}$ такое что

$$|\mu| < \frac{1}{\|R_x(\lambda)\|}$$

Тогда

$$x_{\lambda+\mu} = x_{\lambda} - e\mu = x_{\lambda}(e - \mu R_x(\lambda))$$

В силу выбора μ элемент $(e-\mu R_x(\lambda))$ — обратим. Так как x_λ — обратим, то и $x_{\lambda+\mu}$ — обратим, как композиция. Таким образом

$$\lambda + \mu \in \rho(x)$$

откуда

$$O_{\mu}(\lambda) \subset \rho(x)$$

что и означает открытость $\rho(x)$.

Покажем теперь, что спектр не пуст. Для этого заметим, что для любых $\mu, \lambda \in \rho(x)$ верно

$$R_x(\lambda) - R_x(\mu) = R_x(\mu)(\lambda - \mu)R_x(\lambda)$$

Для любого $\lambda \in \rho(x)$ и для любого $\Delta \lambda \in O_{\frac{1}{\|R_x(\lambda)\|}}(0)$ верно

$$\lambda + \Delta \lambda \in \rho(x)$$

И

$$R_x(\lambda + \Delta \lambda) = \sum_{n=0}^{\infty} (\Delta \lambda)^n (R_x(\lambda))^{n+1}$$

откуда получаем

$$R_x(\lambda + \Delta \lambda) - R_x(\lambda) = \sum_{n=1}^{\infty} (\Delta \lambda)^n (R_x(\lambda)^{n+1})$$

Оценим норму разности

$$||R_x(\lambda + \Delta \lambda) - R_x(\lambda)|| \le \sum_{n=1}^{\infty} (\Delta \lambda)^n ||R_x(\lambda)||^{n+1} = \frac{|\Delta \lambda| ||R_x(\lambda)||^2}{1 - ||\Delta \lambda| ||R_x(\lambda)||} \xrightarrow{\Delta \lambda \to 0} 0$$

Таким образом

$$R_x(\lambda + \Delta \lambda) \to R_x(\lambda)$$

Теперь, пользуясь замечанием, вычислим предел

$$\lim_{\substack{\mu \to \lambda \\ \mu \in \rho(x)}} \frac{R_x(\mu) - R_x(\lambda)}{\mu - \lambda} = \lim_{\substack{\mu \to \lambda \\ \mu \in \rho(x)}} R_x(\mu) R_x(\lambda) = (R_x(\lambda))^2$$

Тогда для произвольного $\Phi \in \mathcal{A}^*$, функция комплексного переменного

$$f(\lambda) = \Phi(R_x(\lambda))$$

является непрерывно дифференцируемой в каждой точке $\lambda \in \rho(\lambda)$ причем

$$\frac{d}{d\lambda}f(\lambda) = \lim_{\Delta\lambda \to 0} \Phi\left(\frac{R_x(\lambda + \Delta\lambda) - R_x(\lambda)}{\Delta\lambda}\right) = \Phi(R_x(\lambda)^2)$$

Далее, для $|\lambda| > ||x||$ мы знаем выражение для резольвенты

$$R_x(\lambda) = -\sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$$

тогда

$$f(\lambda) = -\sum_{n=0}^{\infty} \frac{\Phi(x^n)}{\lambda^{n+1}}$$

то есть справедлива асимптотическая оценка

$$f(\lambda) = O\left(\frac{1}{\lambda}\right), \ \lambda \to \infty$$

Предположим, что $\sigma(x)=\varnothing$, это означает, что $\rho(x)=\mathbb{C}$. Тогда для любого функционала $\Phi\in\mathcal{A}^*$, функция $f(\lambda)$ — регулярна в каждой точке комплексной плоскости, то есть целая, причем $f(\lambda)=O\left(\frac{1}{\lambda}\right),\ \lambda\to\infty$. Тогда по теореме Лиувилля $f(\lambda)=0$, тогда для любого функционала Φ

$$\Phi(R_x(\lambda)) = 0$$

По следствию теоремы Хана-Банаха $R_x(\lambda) = 0$, но нулевой оператор необратим. Противоречие, значит $\sigma(x) \neq \emptyset$.

Как водится, простые следствия из безымянных утверждений носят громкие имена.

Теорема 43.10 (Гельфанд, Мазур). Пусть в банаховой алгебре \mathcal{A} обратим любой нетривиальный элемент, тогда \mathcal{A} изометрически изоморфна \mathbb{C} .

Доказательство. Построим этот изоморфизм явно. Пусть $x \in \mathcal{A}$. По утверждению выше, его спектр не пуст, тогда существует $\lambda_x \in \mathbb{C}$ такое, что элемент $x - \lambda_x e$ необратим, но в банаховой алгебре \mathcal{A} все ненулевые элементы обратимы, а значит

$$x - \lambda_r e = 0 \Leftrightarrow x = \lambda_r e$$

Догадливый читатель уже увидел искомый изоморфизм

$$\varphi \colon \mathcal{A} \to \mathbb{C} \quad \varphi(x) = \lambda_x$$

Замечание. Вспомним, что все банаховы алебры в этом курсе рассматриваются над полем \mathbb{C} . Так, теорема выше не будет верна для банаховых алгебр над \mathbb{R} .

44 Теорема о спектральном радиусе элемента банаховой алгебры. Критерий равенства спектрального радиуса норме элемента банаховой алгебры.

Теорема 44.1. Для любого элемента x банаховой алгебры \mathcal{A} справедливо следующее выражение для спектрального радиуса

$$r(x) = \max_{\lambda \in \sigma(x)} |\lambda| = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}$$

Доказательство. Рассмотрим $\lambda \in \sigma$, покажем, что $\lambda^n \in \sigma(x^n)$. Если бы это было нет так и $\lambda^n \in \rho(x^n)$, то

$$x^n - \lambda e = x_\lambda y = y x_\lambda$$

где $y = x^{n-1} + \lambda x^{n-2} + \dots + \lambda^{n-2} x + \lambda^{n-1} e$ откуда

$$\begin{cases} x_{\lambda} y R_{x^n}(\lambda^n) = e \\ R_{x^n}(\lambda^n) y x_{\lambda} = e \end{cases} \Rightarrow \exists (x_{\lambda})^{-1}$$

и значит $\lambda \in \rho(x)$, противоречие. Итак, из того, что $\lambda \in \sigma(x)$ следует, что $\lambda^n \in \sigma(x^n)$. Тогда

$$|\lambda^n| = |\lambda|^n \le ||x^n|| \Rightarrow |\lambda| \le \sqrt[n]{||x^n||}$$

Переходя к пределу по $\lambda \in \sigma(x)$ получим

$$r(x) \leq \sqrt[n]{\|x^n\|}$$

Переходя к нижнему пределу по n получим

$$r(x) \le \liminf_{n \to \infty} \sqrt[n]{\|x^n\|}$$

Пусть теперь $|\lambda| > r(x)$. Тогда для любого $\Phi \in \mathcal{A}^*$ положим $f(\lambda) = \Phi(R_x(\lambda))$. И выражение для $f(\lambda)$:

$$f(\lambda) = -\sum_{n=0}^{\infty} \frac{\Phi(x^n)}{\lambda^{n+1}}$$

В силу сходимости ряда общий член стремится к нулю для любого Φ , что значит имеет место слабая сходимость

$$\frac{x^n}{\lambda^n} \rightharpoonup 0$$

(на одну лямбду забиваем). Из слабой сходимости следует сильная ограниченность, то есть

$$\exists R_{\lambda} > 0 \colon \left\| \frac{x^n}{\lambda^{n+1}} \right\| \le R_{\lambda}$$

Откуда

$$|\lambda| \ge \frac{\sqrt[n]{\|x^n\|}}{\sqrt[n]{R_\lambda}}$$

Но $\sqrt[n]{R_{\lambda}} \rightarrow 1$, так как это константа. Значит

$$|\lambda| \le \limsup_{n \to \infty} \sqrt[n]{\|x^n\|}$$

Переходя к пределу по $\lambda \in \rho(x)$ и используя оценку на спектральный радиус снизу, получаем искомое выражение.

45 Теорема о спектре компактного оператора $A \in \mathcal{L}(X)$ в банаховом пространстве X.

Теорема 45.1. Пусть $A \in \mathcal{K}(X)$ — компактный оператор. Тогда

- 1. $\forall \lambda \in \sigma(A) \setminus \{0\} \Rightarrow \lambda \in \sigma_p(A)$
- 2. Множество $\sigma(A)$ не более чем счетно и не имеет предельных точек кроме, быть может 0.

Доказательство. 1. Пусть $\lambda \in \sigma(A) \setminus \{0\}$. Предположим, что $\lambda \notin \sigma_p(A)$, тогда $\operatorname{Ker} A_{\lambda} = \{0\}$. Тогда в силу

$$\dim \operatorname{Ker} A_{\lambda} = \dim \operatorname{Ker} A_{\lambda}^*$$

теоремы Фредгольма и замкнутости образа ${\rm Im}\,A_\lambda$ получаем

$$\operatorname{Im} A_{\lambda} = {}^{\perp}(\operatorname{Ker} A_{\lambda}^{*}) = {}^{\perp}\{0\} = X$$

Но тогда по теореме Банаха об обратном операторе A_{λ} обратим, противоречие с тем, что $\lambda \in \sigma(A)$.

2. Для $\delta > 0$ рассмотрим множества

$$\Lambda_{\delta} = \{ \lambda \in \sigma_p(A) \mid |\lambda| \ge \delta \}$$

Покажем, что все они конечны или пусты. Предположим противное, то есть, что существует $\delta > 0$ для которого Λ_{δ} бесконечно, тогда оно содержит счетную последовательность различных собственных значений

$$\{\lambda_m\}_{m=1}^{\infty}\subset\Lambda_{\delta}$$

Каждому собственному значению соответствует собственный вектор x_m . Так как все x_m отвечают различным собственным значениям, то x_m линейно независимы. Определим

$$M_n = \operatorname{Lin}\{x_m\}_{m=1}^n$$

Тогда имеем

$$A(M_n) \subset M_n \quad A_{\lambda_{n+1}} \subset M_n$$

И

$$M_n \subset M_{n+1}, \quad M_n \neq M_{n+1}$$

Применим теорему Рисса о почти перпендикуляре для линейного нормированного пространства M_{n+1} и его подпространства M_n . Тогда получим

$$\exists z_n \in M_{n+1}: \ \|z_n\| = 1 \ \mathrm{и} \ \rho(z_n, M_n) > \frac{1}{2}$$

Тогда покажем, что последовательность $\{A(z_n)\}_{n=1}^{\infty}$ не содержит фундаментальной подпоследовательности, что будет противоречить компактности оператора A. Действительно, если m < n, то

$$A(z_m) \in A(M_{m+1}) \subset M_{m+1} \subset M_n$$

И

$$A_{\lambda_{n+1}}(z_n) \in A_{\lambda_{n+1}}(M_{n+1}) \subset M_n$$

Тогда

$$w = A(z_m) - A_{\lambda_{n+1}}(z_n) \in M_n$$

Тогда

$$||A(z_n) - A(z_m)|| = ||A(z_n) + A(z_m) - A_{\lambda_{n+1}}(z_n) - w - A(z_m)|| = ||\lambda_{n+1} z_m - w|| \le |\lambda_{n+1}| \rho(z_n, M_n) \le \frac{\delta}{2}$$

Что и требовалось.

46 Теорема о спектре самосопряженного оператора $A \in \mathcal{L}(\mathcal{H})$ в гильбертовом пространстве $\mathcal{H}.$

Определение 46.1. Линейный оператор $A \in \mathcal{L}(\mathcal{H})$ называется самосопряженным если

$$\forall x, y \in \mathcal{H} \Rightarrow (Ax, y) = (x, Ay)$$

Утверждение 46.2. Пусть $A \in \mathcal{L}(\mathcal{H})$ — самосопряженный, тогда

- 1. $(A(x), x) \in \mathbb{R}$ для любого $x \in \mathcal{H}$
- 2. $\sigma_p(A) \subset \mathbb{R}$

Доказательство. 1. В силу самосопряженности имеем

$$(Ax, x) = (x, Ax) = \overline{(Ax, x)}$$

Значит $(Ax, x) \in \mathbb{R}$

2. Пусть $\lambda \in \sigma_p(A)$, тогда $\exists x \neq 0 : Ax = \lambda x$. Тогда в силу первого утверждения

$$(Ax, x) = \lambda(x, x) = \lambda ||x||^2 \in \mathbb{R} \Rightarrow \lambda \in \mathbb{R}$$

Утверждение 46.3. Пусть $A \in \mathcal{L}(\mathcal{H})$ — самосопряженный, тогда для любого $\lambda \in \mathbb{C}$:

$$\operatorname{Ker} A_{\lambda} \oplus [\operatorname{Im} A_{\lambda}] = \mathcal{H}$$

Доказательство. Имеем

$$(A_{\lambda})^* = (A - \lambda I)^* = A^* - \overline{\lambda}I = A_{\overline{\lambda}}I$$

В силу теоремы Фредгольма $[\operatorname{Im} A_{\lambda}] = \operatorname{Ker} A_{\overline{\lambda}}^{\perp}$. Тогда по теореме Рисса о дополнении

$$\operatorname{Ker} A_{\overline{\lambda}} \oplus [\operatorname{Im} A_{\lambda}] = \mathcal{H}$$

Если $\lambda \in \mathbb{R}$ то все доказано, в противном случае $\overline{\lambda} \notin \sigma_p(A)$, тогда $\operatorname{Ker} A_{\overline{\lambda}} = \{0\}$ И тогда $[\operatorname{Im} A_{\lambda}] = \operatorname{Ker} A_{\overline{\lambda}}^{\perp} = \{0\}^{\perp} = \mathcal{H}$ и утверждение верно.

Утверждение 46.4. Пусть $A\in\mathcal{L}(\mathcal{H})$ — самосопряженный и $\lambda\in\mathbb{C}$ такое что $\mathrm{Im}\,\lambda\neq0$, тогда $\lambda\in\rho(A)$ и

$$||R_A(\lambda)|| \le \frac{1}{|\operatorname{Im} \lambda|}$$

Доказательство. Пусть $\lambda = \mu + i\nu$, тогда

$$||A_{\lambda}(x)|| = (A_{\mu}x - i\nu x, A_{\mu}x - i\nu x) = ||A_{\mu}x||^2 - i\nu(A_{\mu}x, x) + i\nu(x, A_{\mu}) + \nu^2||x||^2$$

Так как $\mu \in \mathbb{R}$ и A — самосопряженный, то $(A_{\mu}x, x) = (x, A_{\mu}x)$, тогда

$$||A_{\lambda}x||^2 = ||A_{\mu}x||^2 + \nu^2 ||x||^2 \le \nu^2 ||x||^2 \Rightarrow ||A_{\lambda}x|| \ge \nu ||x||$$

Получаем, что оператор A_{λ} — ограничен снизу, тогда он непрерывно обратим на образе, но так как $\lambda \notin \mathbb{R}$, то $\ker A_{\lambda} = \{0\}$. И образ замкнут, тогда $A_{\lambda} \in \mathcal{L}(\mathcal{H})$, значит $\lambda \in \rho(A)$, кроме того

$$||R_A(x)|| \le \frac{R_A(A_\lambda(x))}{|\nu|} = \frac{||x||}{\nu}$$

То есть

$$||R_A|| \le \frac{1}{|\nu|}$$

Что и требовалось.

Глава 2

Приложение

Утверждение 0.1. Если X — бесконечномерно, то X^* — тоже бесконечномерно

Доказательство. Рассмотрим $\forall \{x_1,\dots,x_N\}\subset X$ — систему линейно независимых векторов из X, далее мы покажем, что

$$\exists f_1, \dots, f_N \in X^*, \quad f_k(x_n) = \delta_{kn}$$

В таком случае f_i — будут линейно независимы и в таком случае в силу произвольности N, X^* будет бесконечномерно. Построение f_1, \ldots, f_N :

Рассмотрим $L_N = \text{Lin}\{x_1, \dots, x_N\}$, и положим $\forall \alpha_1, \dots, \alpha_N \in \mathbb{C}, \ \forall n \in \overline{1, N}$:

$$\varphi_n\left(\sum_{k=1}^N \alpha_k x_k\right) = \alpha_n$$

В силу утверждения выше $\varphi_1,\dots,\varphi_n\in (L_N)^*$. Тогда по теореме Хана-Банаха:

$$\exists f_1 \dots, f_n \in X^* \quad f_n|_{L_N} = \varphi_n$$

Таким образом нужные функционалы построены и утверждение доказано.

Утверждение 0.2. Пусть $X, Y - \Pi \Pi \Pi$. τ_U и τ_S — равномерная операторная топология и сильная операторная топология в $\mathcal{L}(X,Y)$. Тогда

- 1. $\tau_S \subset \tau_U$
- 2. Если X бесконечномерно и $Y \neq 0$, то $\tau_S \neq \tau_U$

Доказательство.

1. Предбаза τ_S :

$$\sigma_S = \{ V(A, x, \varepsilon) \mid A \in \mathcal{L}(X, Y), x \in X, \varepsilon > 0 \}$$

Покажем, что $\sigma_S \subset \tau_U$. Пусть $T \in V(A, x, \varepsilon)$, тогда

$$||T(x) - A(x)|| < \varepsilon$$

Пусть r > 0, рассмотрим шар $O_r(T) \subset \mathcal{L}(X,Y)$, если $T_1 \in O_r(T)$, то

$$||T_1 - T|| < r \Rightarrow ||T_1(x) - T(x)|| \le ||T_1 - T|| ||x|| \le r ||x||$$

Тогда получим:

$$||T_1(x) - A(x)|| \le r||x|| + ||A(x) - T(x)||$$

Взяв $r=arepsilon-rac{\|A(x)-T(x)\|}{\|x\|+1}$ получим

$$||T_1(x) - A(x)|| < \varepsilon$$

Что и требовалось.

2. Покажем, что если X — бесконечномерно, а $Y \neq \{0\}$, то единичный шар по топологии τ_U не попадет в τ_S

$$O_1(0) \in \tau_U \setminus \tau_S$$

Рассмотрим произвольную окрестность нуля $U(0) \in \tau_S$. Покажем, что $U(0) \nsubseteq O_1(0)$. В U(0) вложен элемент базы:

$$\exists x_1, \dots, x_N \in X, \ \exists \varepsilon > 0 : \bigcap_{k=1}^N V(0, x_k, \varepsilon) \subset U(0)$$

С помощью теоремы Хана-Банаха построим функционал, который не попадет в $O_1(0)$. Рассмотрим

$$L_N = \operatorname{Lin}\{x_1, \dots, x_N\} \subset X$$

В силу бесконечномерности $X \exists x_0 \in X \setminus L_N$. Как конечномерное подпространство топологического векторного пространства L_N — замкнуто (10.15). По следствию из теоремы Хана-Банаха (??)

$$\exists f \in X^* \quad f|_{L_N} = 0 \quad f(x_0) = 1$$

Y не нулевое, тогда существует $y_0 \in Y$, $y_0 \neq 0$. Тогда построим последовательность операторов:

$$A_n(x) = nf(x)y_0$$

Тогда

$$\forall n \in \mathbb{N}: A_n \in \bigcap_{k=1}^N V(0, x_k, \varepsilon) \subset U(0)$$

Но операторная норма A_n растет:

$$||A_n|| = n||f||||y_0|| \to \infty \ (n \to \infty)$$

Таким образом $\exists n_0: A_{n_0} \notin O_1(0)$. Что и требовалось.

Утверждение 0.3. τ_{w^*} в X^* где X — локально выпукла — хаусдорфова

Доказательство. Соответствующие окрестности $f,g\in X^*$, если $f\neq g\Rightarrow \exists x\in X: \ f(x)\neq g(x),$ тогда

$$V_*(f, x, \varepsilon) \cap V_*(g, x, \varepsilon) = \emptyset$$

где
$$arepsilon = rac{|f(x) - g(x)|}{2} > 0$$

Таким образом слабая топология тоже является хаусдорфовой.

Утверждение 0.4. τ_w — это слабейшая топология в X, относительно которой $\forall f \in X^*$ топологически непрерывен.

Доказательство. Пусть $\tilde{\tau}$ топология относительно которой все функционалы $f\in X^*$ непрерывны. Тогда

$$\forall x \in X \ \forall f \in X^* : \forall \varepsilon > 0 \Rightarrow \exists \tilde{U}(x) \in \tilde{\tau} : \forall y \in \tilde{U}(x) \Rightarrow |f(y) - f(x)| < \varepsilon$$

Тогда такой y лежит в элементе предбазы au_{w^*} порожденной x,f,arepsilon то есть

$$\tilde{U}(x) \subset V(x, f, \varepsilon)$$

Но тогда $\forall y \in V(x,f,\varepsilon) \Rightarrow V(y,f,\delta) \subset V(x,f,\varepsilon)$ где $\delta = \varepsilon - |f(x) - f(y)|$ (неравество треугольника), таким образом

$$\forall y \in V(x, f, \varepsilon) \colon \exists \tilde{U} \in \tilde{\tau} : \tilde{U} \subset V(y, f, \delta) \subset V(x, f, \varepsilon)$$

Значит $V(x,f,\varepsilon)$ является $\tilde{\tau}$ -открытым для любого x и f. Так как этим исчерпываются элементы предбазы, то

$$\tau_w \prec \tilde{\tau}$$

Что и требовалось.