

Análise Exploratória de Dados

Prof. Ricardo Sovat

sovat@ifsp.edu.br

Prof. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

É o ramo da estatística que visa **sumarizar e descrever** o conjunto de dados.

A disponibilidade de uma grande quantidade de dados e de métodos computacionais muito eficientes revigorou esta área da estatística.

Junto com visualizações (gráficos), elas formam a base para a análise exploratória de dados.

É o ramo da estatística que visa **sumarizar e descrever** o conjunto de dados.

A disponibilidade de uma grande quantidade de dados e de métodos computacionais muito eficientes revigorou esta área da estatística. Junto com visualizações (gráficos), elas formam a base para a análise exploratória de dados.

Qual a nota média dos alunos na última prova?

Qual é o preço aproximado da gasolina no estado de SP?

Como a riqueza do Brasil está distribuída?

Qual é a eficácia da vacina contra a doença X?

. . .

Tendência Central

Qual o **preço médio** da **Gasolina Comum** no estado de **São Paulo** ao longo dos anos?

ESTADO	PREÇO MÉDIO REVENDA	ANO
SAO PAULO	1.891	2004
SAO PAULO	1.888	2004
SAO PAULO	1.894	2004
SAO PAULO	1.912	2004
SAO PAULO	1.919	2004

785 registros

Qual o **preço médio** da **Gasolina Comum** no estado de **São Paulo** ao longo dos anos?

ESTADO	PREÇO MÉDIO REVENDA	ANO
SAO PAULO	1.891	2004
SAO PAULO	1.888	2004
SAO PAULO	1.894	2004
SAO PAULO	1.912	2004
SAO PAULO	1.919	2004

785 registros

Fórmula

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

x_i: iésimo valor/registro

n: número de valores/registros

Todos os registros **contribuem igualmente (mesmo peso)** no cômputo da média

Qual o **preço médio** da **Gasolina Comum** no estado de **São Paulo** ao longo dos anos?

ESTADO	PREÇO MÉDIO REVENDA	ANO
SAO PAULO	1.891	2004
SAO PAULO	1.888	2004
SAO PAULO	1.894	2004
SAO PAULO	1.912	2004
SAO PAULO	1.919	2004
***	***	

785 registros

Fórmula

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

*x*_i: iésimo valor/registro

n: número de valores/registros

Todos os registros **contribuem igualmente (mesmo peso)** no cômputo da média

$$\overline{x} = \frac{1.891 + 1.888 + 1.894 + \dots}{785} = \mathbf{R} \$ \ \mathbf{2.846}$$

Média Ponderada

Qual a **nota média final** do João?

P1: 10

P2: 8

T: 7.5

A: 8.5

$$NotaFinal = \frac{0.2*P1 + 0.2*P2 + 0.5*T + 0.1*A}{(0.2 + 0.2 + 0.5 + 0.1)}$$

Fórmula

$$\overline{X}_{w} = \frac{\sum_{i=1}^{n} w_{i} X_{i}}{\sum_{i=1}^{n} w_{i}}$$

 x_i : iésimo valor/registro w_i : peso do iésimo valor/registro n: número de valores/registros

Cada registro **contribui com um peso diferente**no cômputo da média

Média Ponderada

Qual a **nota média final** do João?

P1: 10

P2: 8

T: 7.5

A: 8.5

$$NotaFinal = \frac{0.2*P1 + 0.2*P2 + 0.5*T + 0.1*A}{(0.2 + 0.2 + 0.5 + 0.1)}$$

$$NotaFinal = \frac{0.2 * 10 + 0.2 * 8 + 0.5 * 7.5 + 0.1 * 8.5}{1.0} = 8.2$$

Fórmula

$$\overline{X}_w = \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}$$

x_i: iésimo valor/registro
w_i: peso do iésimo valor/registro
n: número de valores/registros

Cada registro **contribui com um peso diferente**no cômputo da média

Nome	Salário Mensal (R\$)
João das Neves	5000.0
Daineres da Silva	4500.0
Luke Escaiuolker	3000.0
Leia Morgana	3500.0

Nome	Salário Mensal (R\$)	
João das Neves	5000.0	
Daineres da Silva	4500.0	
Luke Escaiuolker	3000.0	
Leia Morgana	3500.0	
$\bar{x} = 4000.0$		

Nome	Salário Mensal (R\$)	
João das Neves	5000.0	
Daineres da Silva	4500.0	
Luke Escaiuolker	3000.0	
Leia Morgana	3500.0	
$\bar{x} = 4000.0$		

Nome	Salário Mensal (R\$)
João das Neves	5000.0
Daineres da Silva	4500.0
Luke Escaiuolker	3000.0
Leia Morgana	3500.0
Fausto Silva	1,000,000.0

Nome	Salário Mensal (R\$)	
João das Neves	5000.0	
Daineres da Silva	4500.0	
Luke Escaiuolker	3000.0	
Leia Morgana	3500.0	
<u> </u>	.4000 O	
$\bar{x} = 4000.0$		

Nome	Salário Mensal (R\$)	
João das Neves	5000.0	
Daineres da Silva	4500.0	
Luke Escaiuolker	3000.0	
Leia Morgana	3500.0	
$\bar{x} = 4000.0$		

Nome	Salário Mensal (R\$)	
João das Neves	5000.0	
Daineres da Silva	4500.0	
Luke Escaiuolker	3000.0	
Leia Morgana	3500.0	
$\bar{x} = 4000.0$		

Nome	Salário Mensal (R\$)	
João das Neves	5000.0	
Daineres da Silva	4500.0	
Luke Escaiuolker	3000.0	
Leia Morgana	3500.0	
$\bar{x} = 4000.0$		

Número central de uma lista de elementos ordenados (ranqueados).

Se o número de elementos é par, a mediana é igual a média dos dois valores centrais que dividem a lista ao meio.

Qual a **mediana** dos fregueses do Bar do Juca?

 $\bar{x} = 4000.0$

Nome	Salário Mensal (R\$)
João das Neves	5000.0
Daineres da Silva	4500.0
Luke Escaiuolker	3000.0
Leia Morgana	3500.0

 \bar{x} =203,2000.0

Nome	Salário Mensal (R\$)
João das Neves	5000.0
Daineres da Silva	4500.0
Luke Escaiuolker	3000.0
Leia Morgana	3500.0
Fausto Silva	1,000,000,0

outlier

Número central de uma lista de elementos ordenados (ranqueados).

Se o número de elementos é par, a mediana é igual a média dos dois valores centrais que dividem a lista ao meio.

Qual a **mediana** dos fregueses do Bar do Juca?

$$\bar{x} = 4000.0$$

Nome	Salário Mensal (R\$)
João das Neves	5000.0
Daineres da Silva	4500.0
Luke Escaiuolker	3000.0
Leia Morgana	3500.0

$$mediana = \frac{3500 + 4500}{2} = 4000.0$$

$$\bar{x}$$
=203,2000.0

Nome	Salário Mensal (R\$)
João das Neves	5000.0
Daineres da Silva	4500.0
Luke Escaiuolker	3000.0
Leia Morgana	3500.0
Fausto Silva	1,000,000,0

outlier

Fausto Silva

1,000,000.0

3000; 3500; 4500; 5000; 1,000,000

mediana = 4500.0

Número central de uma lista de elementos ordenados (ranqueados).

Se o número de elementos é par, a mediana é igual a média dos dois valores centrais que dividem a lista ao meio.

Qual a **mediana** dos fregueses do Bar do Juca?

Qual é a mediana do preço a Gasolina Comum no estado de São Paulo ao longo dos anos?

ESTADO	PREÇO MÉDIO REVENDA	ANO
SAO PAULO	1.891	2004
SAO PAULO	1.888	2004
SAO PAULO	1.894	2004
SAO PAULO	1.912	2004
SAO PAULO	1.919	2004

 $\bar{x} = R$ \$ 2.846

785 registros

mediana = R\$ 2.638

Suponha que os pacientes com uma dada doença fatal possuem a seguinte expectativa de vida:

Suponha que os pacientes com uma dada doença fatal possuem a seguinte expectativa de vida:

Uma nova droga, muito **cara** e que apresenta efeitos colaterais, foi aplicada em todos os pacientes que, agora, possuem a seguinte **expectativa de vida**:

Suponha que os pacientes com uma dada doença fatal possuem a seguinte expectativa de vida:

Uma nova droga, muito **cara** e que apresenta efeitos colaterais, foi aplicada em todos os pacientes que, agora, possuem a seguinte **expectativa de vida**:

Suponha que os pacientes com uma dada doença fatal possuem a seguinte expectativa de vida:

A droga vale a pena?

Uma nova droga, muito **cara** e que apresenta efeitos colaterais, foi aplicada em todos os pacientes que, agora, possuem a seguinte **expectativa de vida**:

Suponha que os pacientes com uma dada doença fatal possuem a seguinte expectativa de vida:

Uma nova droga, muito **cara** e que apresenta efeitos colaterais, foi aplicada em todos os pacientes que, agora, possuem a seguinte **expectativa de vida**:

A droga vale a pena?

Analisando (erroneamente) apenas a mediana, não!

Nossos "outliers" **são vidas** e devem ser **relevantes** em nossa decisão.

Pela melhora considerável de muitos pacientes, a droga vale a pena!

Suponha que os pacientes com uma dada doença fatal possuem a seguinte expectativa de vida:

Uma nova droga, muito **cara** e que apresenta efeitos colaterais, foi aplicada em todos os pacientes que, agora, possuem a seguinte **expectativa de vida**:

A droga vale a pena?

Analisando (erroneamente) apenas a mediana, não!

Nossos "outliers" **são vidas** e devem ser **relevantes** em nossa decisão.

Pela melhora considerável de muitos pacientes, a droga vale a pena!

than the one before-lies, damned lies, and statistics

Quando usar a Média e a Mediana?

Quando usar a Média e a Mediana?

Depende se os outliers distorcem o que está sendo descrito ou, em vez disso, são uma parte importante da análise (mensagem).

Não há nenhuma regra para usar apenas uma delas: análise estatísticas costumam apresentar as 2 medidas.

Quando apenas uma delas é usada:

- Pode ser por questões de brevidade/simplicidade; ou
- Alguém pode estar tentando persuadí-lo com a estatística.

Estimativas de Variabilidade

Cenário 1: Vôo internacional

$$\overline{x_1}$$
=70kg

Qual é o Peso Médio?

Cenário 2: Maratona

$$\overline{x_2}$$
=70kg

Qual é o Peso Médio?

Cenário 2: Maratona

Cenário 1: Vôo internacional

$$\overline{x_1}$$
=70kg \longrightarrow Os pesos dos dois grupos têm (aproximadamente) \longleftarrow $\overline{x_2}$ =70kg

Isso significa que tanto os **passageiros** do vôo internacional quanto os **atletas** da maratona **possuem pesos similares**, correto?

Qual é o Peso Médio?

Cenário 2: Maratona

Cenário 1: Vôo internacional

$$\overline{x_1}$$
=70kg —

Os pesos dos dois grupos têm (aproximadamente) $\overline{x_2} = 70 \text{kg}$ o mesmo centro/meio.

Isso significa que tanto os passageiros do vôo internacional quanto os atletas da maratona possuem pesos similares, correto?

Qual é o Peso Médio?

Cenário 1: Vôo internacional

Cenário 2: Maratona

$$\overline{x_1}$$
=70kg —

Os pesos dos dois grupos têm (aproximadamente) $\overline{x_2} = 70 \text{kg}$ o mesmo centro/meio.

Isso significa que tanto os passageiros do vôo internacional quanto os atletas da maratona possuem pesos similares, correto?

Os pesos dos **passageiros** são **mais** espalhados/dispersos de sua média do que os pesos dos atletas.

Há mais variabilidade nos pesos dos passageiros.

Dispersão dos Pesos

Cenário 1: Vôo internacional

Cenário 2: Maratona

Dispersão dos Pesos

Cenário 1: Vôo internacional

Cenário 2: Maratona

Precisamos de maneiras para medir essa variabilidade/dispersão

- Percentis e Quartis
- Mean absolute deviation
- Variance
- Standard Deviation

Estimativas de dispersão baseadas em dados ordenados (ranqueados).

Estimativas de dispersão baseadas em dados ordenados (ranqueados).

Percentis

O k-ésimo percentil P_k é o valor x_k em que pelo menos k% dos dados são menores que x_k :

P. ex: O valor do P_{95} (95° percentil) indica que há 95% dos dados inferiores ao seu valor.

Estimativas de dispersão baseadas em dados ordenados (ranqueados).

Percentis

O k-ésimo percentil P_k é o valor x_k em que pelo menos k% dos dados são menores que x_k :

P. ex: O valor do P₉₅ (95° percentil) indica que há 95% dos dados inferiores ao seu valor.

Quartis

Dividem a distribuição em quatro partes iguais de 25%:

- O 1º quartil Q1 (ou P₂₅) separa os 25% de dados inferiores;
- O 2º quartil Q2 (ou P₅₀) separa os 50% de dados inferiores --> mediana;
- O 3º quartil Q3 (ou P₇₅) separa os **75%** de dados inferiores

Estimativas de dispersão baseadas em dados ordenados (ranqueados).

Percentis

O k-ésimo percentil P_k é o valor x_k em que pelo menos k% dos dados são menores que x_k :

P. ex: O valor do P₉₅ (95° percentil) indica que há 95% dos dados inferiores ao seu valor.

Boxplot

Quartis

Dividem a distribuição em quatro partes iguais de 25%:

- O 1º quartil Q1 (ou P₂₅) separa os 25% de dados inferiores;
- O 2º quartil Q2 (ou P₅₀) separa os 50% de dados inferiores --> mediana;
- O 3º quartil Q3 (ou P₇₅) separa os 75% de dados inferiores

Estimativas de dispersão baseadas em dados ordenados (ranqueados).

Percentis

O k-ésimo percentil P_k é o valor x_k em que pelo menos k% dos dados são menores que x_k :

P. ex: O valor do P₉₅ (95° percentil) indica que há 95% dos dados inferiores ao seu valor.

Boxplot

Quartis

Dividem a distribuição em quatro partes iguais de 25%:

- O 1º quartil Q1 (ou P₂₅) separa os 25% de dados inferiores;
- O 2º quartil Q2 (ou P₅₀) separa os 50% de dados inferiores --> mediana;
- O 3º quartil Q3 (ou P₇₅) separa os 75% de dados inferiores

Violin Plot

Cenário 1: Vôo internacional

Dispersão dos Pesos

Cenário 2: Maratona

Cenário 1: Vôo internacional

Q1: 54.5 kg

Q2: 69 kg (mediana)

Q3: 90.5

Dispersão dos Pesos

Cenário 2: Maratona

Q1: 66.75 kg

Q2: 70 kg (mediana)

Q3: 74.5

Medidas de Dispersão

Mean Absolute Deviation (MAD)

$$MAE_{x} = \frac{\sum_{i=1}^{n} |x_{i} - \overline{x}|}{n}$$

Variance

$$\sigma_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

Standard Deviation

$$\sigma_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n} \qquad \sigma_x = \sqrt{\sigma_x^2} = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}}$$

X_i: iésimo valor/registro

 \overline{X} : peso do iésimo valor/registro n: número de valores/registros

Medidas de Dispersão

Mean Absolute Deviation (MAD)

$MAE_{x} = \frac{\sum_{i=1}^{n} |x_{i} - \overline{x}|}{n}$

Variance

$$\sigma_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

Standard Deviation

$$\sigma_x = \sqrt{\sigma_x^2} = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}}$$

Mais fáceis de interpretar por estarem na **mesma escala** dos dados originais.

x_i: iésimo valor/registro

X: peso do iésimo valor/registro n: número de valores/registros

Medidas de Dispersão

Mean Absolute Deviation (MAD)

$$MAE_{x} = \frac{\sum_{i=1}^{n} |x_{i} - \overline{x}|}{n}$$

Variance

$$\sigma_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

Mais fáceis de interpretar por estarem na **mesma escala** dos dados originais.

Standard Deviation

$$\sigma_x = \sqrt{\sigma_x^2} = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}}$$

É **preferível** do que o MAD pois, matematicamente, é muito **mais conveniente** trabalhar com **valores ao quadrado** do que **valores absolutos**, especialmente, para modelos estatísticos.

*x*_i: iésimo valor/registro

X: peso do iésimo valor/registro n: número de valores/registros

Distribuição Normal (e a Regra 68-95-99.7)

 $\mu\text{: m\'edia populacional}$

 σ : desvio padrão

Cenário 1: Vôo internacional

0 000 0000 <u>○ ∞</u> (kg) 0 00 30 120 0 90 $\overline{x_1}$ =70kg

 $MAD_{x_1} = 2\overline{3.7}$ kg

 $\sigma_{x_1}^2 = 958 \text{kg}$

 $\sigma_{x_1} = 30.95 \text{kg}$

Dispersão dos Pesos

Cenário 2: Maratona

Correlação

Como a Netflix sabe quais filmes eu gosto?

Um sistema de recomendação simples

Filmes/Séries que **eu** gostei / assisti muito

Um sistema de recomendação simples

usuário 1

PS: Obviamente, o sistema de recomendações da Netflix é muito mais complexo e robusto do que esse =)

Um sistema de recomendação simples

PS: Obviamente, o sistema de recomendações da Netflix é muito mais complexo e robusto do que esse =)

Coeficiente de Correlação

Mede a relação (associação linear) entre duas variáveis dentro de uma mesma escala métrica.

Variáveis X e Y possuem correlação positiva se os valores das variáveis movem-se juntos:

• Ao aumentar os valores de X, os valores de Y também aumentam.

Variáveis X e Y possuem correlação negativa se os valores das variáveis movem-se em direções opostas:

• Ao aumentar os valores de X, os valores de Y diminuem.

O coeficiente de correlação pode variar de -1 (associação negativa perfeita) e +1 (associação positiva perfeita).

$$r = \frac{1}{n} \sum_{i=1}^{n} \frac{(x_i - \overline{x})}{\sigma_x} \frac{(y_i - \overline{y})}{\sigma_y}$$

Coeficiente de Correlação

scatterplots

Sexo Altura Peso 0 Masculino 1.88 109.72 1 Masculino 1.75 73.62 2 Masculino 1.88 96.50 3 Masculino 1.82 99.81 4 Masculino 1.77 93.60 9995 Feminino 1.68 62.04 9996 Feminino 1.70 77.50 9997 Feminino 1.62 58.28 9998 Feminino 1.75 74.32 9999 Feminino 1.57 51.55 10000 rows × 3 columns

depois do pré-processamento

Ex: Peso x Altura

$$r = 0.92$$

Mão na Massa!

Faça uma Análise Exploratória no conjunto de dados "Gas Prices in Brazil".

https://www.kaggle.com/matheusfreitag/gas-prices-in-brazil

Análise Exploratória de Dados

Prof. Ricardo Sovat

sovat@ifsp.edu.br

Prof. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

