

# **Chapter 3: Distributed Systems: Synchronization**

Fall 2013 Jussi Kangasharju





# **Chapter Outline**

- Clocks and time
- Global state
- Mutual exclusion
- Election algorithms



### **Time and Clocks**

What we need? How to solve?

| Real time       | Universal time<br>(Network time) |
|-----------------|----------------------------------|
| Interval length | Computer clock                   |
| Order of events | Network time<br>(Universal time) |

NOTE: **Time** is **monotonous** 



# **Measuring Time**

- Traditionally time measured astronomically
  - Transit of the sun (highest point in the sky)
  - Solar day and solar second
- Problem: Earth's rotation is slowing down
  - Days get longer and longer
  - 300 million years ago there were 400 days in the year ;-)
- Modern way to measure time is atomic clock
  - Based on transitions in Cesium-133 atom
  - Still need to correct for Earth's rotation
- Result: Universal Coordinated Time (UTC)
  - UTC available via radio signal, telephone line, satellite (GPS)



#### Hardware/Software Clocks

- Physical clocks in computers are realized as crystal oscillation counters at the hardware level
  - Correspond to counter register H(t)
  - Used to generate interrupts
- Usually scaled to approximate physical time t, yielding software clock C(t),  $C(t) = \alpha H(t) + \beta$ 
  - C(t) measures time relative to some reference event, e.g., 64 bit counter for # of nanoseconds since last boot
  - Simplification: C(t) carries an approximation of real time
  - Ideally, C(t) = t (never 100% achieved)
  - Note: Values given by two consecutive clock queries will differ only if clock resolution is sufficiently smaller than processor cycle time



#### **Problems with Hardware/Software Clocks**

- Skew: Disagreement in the reading of two clocks
- Drift: Difference in the rate at which two clocks count the time
  - Due to physical differences in crystals, plus heat, humidity, voltage, etc.
  - Accumulated drift can lead to significant skew
- Clock drift rate: Difference in precision between a prefect reference clock and a physical clock,
  - Usually, 10<sup>-6</sup> sec/sec, 10<sup>-7</sup> to 10<sup>-8</sup> for high precision clocks



# Skew between computer clocks in a distributed system



Network



# **Clock Synchronization**



When each machine has its own clock, an event that occurred after another event may nevertheless be assigned an earlier time.



#### **Clock Synchronization Problem**



drift rate: 10<sup>-6</sup>

 $1 \text{ ms } \sim 17 \text{ min}$ 

 $1 \text{ s} \sim 11.6 \text{ days}$ 

UTC: coordinated universal time

accuracy:

radio 0.1 - 10 ms,

GPS 1 us

The relation between clock time and UTC when clocks tick at different rates.



# **Synchronizing Clocks**

- External synchronization
  - Synchronize process's clock with an authoritative external reference clock S(t) by limiting skew to a delay bound D > 0
    - |S(t) Ci(t)| < D for all t
  - For example, synchronization with a UTC source
- Internal synchronization
  - Synchronize the local clocks within a distributed system to disagree by not more than a delay bound D > 0, without necessarily achieving external synchronization
    - |Ci(t) Cj(t)| < D for all i, j, t
- Obviously:
  - For a system with external synchronization bound of D, the internal synchronization is bounded by 2D



#### **Clock Correctness**

- When is a clock correct?
- If drift rate falls within a bound r > 0, then for any t and t' with t' > t the following error bound in measuring t and t' holds:
  - $(1-r)(t'-t) \le H(t') H(t) \le (1+r)(t'-t)$
  - Consequence: No jumps in hardware clocks allowed
- 2. Sometimes monotonically increasing clock is enough:
  - $t' > t \Rightarrow C(t') > C(t)$
- 3. Frequently used condition:
  - Monotonically increasing
  - Drift rate bounded between synchronization points
  - Clock may jump ahead at synchronization points



# Synchronization of Clocks: Software-Based Solutions

- Techniques:
  - time stamps of real-time clocks
  - message passing
  - round-trip time (local measurement)
- Cristian's algorithm
- Berkeley algorithm
- Network time protocol (Internet)



# Christian's Algorithm

- Observations
  - Round trip times between processes are often reasonably short in practice, yet theoretically unbounded
  - Practical estimate possible if round-trip times are sufficiently short in comparison to required accuracy
- Principle
  - Use UTC-synchronized time server S
  - Process P sends requests to S
  - Measures round-trip time T<sub>round</sub>
    - In LAN, T<sub>round</sub> should be around 1-10 ms
    - During this time, a clock with a 10<sup>-6</sup> sec/sec drift rate varies by at most 10<sup>-8</sup> sec
    - Hence the estimate of T<sub>round</sub> is reasonably accurate
  - Naive estimate: Set clock to t + ½T<sub>round</sub>



Both T<sub>0</sub> and T<sub>1</sub> are measured with the same clock



Current time from a time server: UTC from radio/satellite etc Problems:

- time must never run backward
- variable delays in message passing / delivery



# Christian's Algorithm: Analysis

- Accuracy of estimate?
- Assumptions:
  - requests and replies via same net
  - min delay is either known or can be estimated conservatively
- Calculation:
  - Earliest time that S can have sent reply: t<sub>0</sub> + min
  - Latest time that S can have sent reply: t<sub>0</sub> + T<sub>round</sub> *min*
  - Total time range for answer: T<sub>round</sub> 2 \* *min*
  - Accuracy is  $\pm (\frac{1}{2}T_{round} min)$
- Discussion
  - Really only suitable for LAN environment or Intranet
  - Problem of failure of S



# **Alternative Algorithm**

- Berkeley algorithm (Gusella&Zatti '89)
  - No external synchronization, but one master server
  - Master polls slaves periodically about their clock readings
  - Estimate of local clock times using round trip estimation
  - Averages the values obtained from a group of processes
    - Cancels out individual clock's tendencies to run fast
  - Tells slave processes by which amount of time to adjust local clock
  - Master failure: Master election algorithm (see later)
- Experiment
  - 15 computers, local drift rate < 2x10<sup>-5</sup>, max round-trip 10 ms
  - Clocks were synchronized to within 20-25 ms
- Note: Neither algorithm is really suitable for Internet

Kangasharju: Distributed Systems



# The Berkeley Algorithm



- a) The **time daemon asks** all the other machines for their clock values
- b) The machines answer
- c) The time daemon tells everyone how to adjust their clock



# **Clock Synchronization: NTP**

- Goals
  - ability to externally synchronize clients via Internet to UTC
  - provide reliable service tolerating lengthy losses of connectivity
  - enable clients to resynchronize sufficiently frequently to offset typical HW drift rates





#### NTP Basic Idea

- Layered client-server architecture, based on UDP message passing
- Synchronization at clients with higher strata number less accurate due to increased latency to strata 1 time server
- Failure robustness: if a strata 1 server fails, it may become a strata 2 server that is being synchronized though another strata 1 server



#### **NTP Modes**

#### Multicast:

- One computer periodically multicasts time info to all other computers on network
- These adjust clock assuming a very small transmission delay
- Only suitable for high speed LANs; yields low but usually acceptable sync.
- Procedure-call: similar to Christian's protocol
  - Server accepts requests from clients
  - Applicable where higher accuracy is needed, or where multicast is not supported by the network's hard- and software
- Symmetric:
  - Used where high accuracy is needed

# W.

# **Procedure-Call and Symmetric Modes**

- All messages carry timing history information
  - local timestamps of send and receive of the previous NTP message
  - local timestamp of send of this message



- For each pair i of messages (m, m') exchanged between two servers the following values are being computed
  - (based on 3 values carried w/ msg and 4<sup>th</sup> value obtained via local timestamp):
    - offset o: estimate for the actual offset between two clocks
    - delay di: true total transmission time for the pair of messages



# **NTP: Delay and Offset**



- Let o the true offset of B's clock relative to A's clock, and let t and t' the true transmission times of m and m' (T<sub>i</sub>, T<sub>i-1</sub> ... are not true time)
- Delay

$$T_{i-2} = T_{i-3} + t + o$$
 (1) and  $T_i = T_{i-1} + t' - o$  (2) which leads to  $d_i = t + t' = T_{i-2} - T_{i-3} + T_i - T_{i-1}$  (clock errors zeroed out  $\rightarrow$  (almost) true d)

Offset

$$o_i = \frac{1}{2} (T_{i-2} - T_{i-3} + T_{i-1} - T_i)$$
 (only an estimate)



# **NTP Implementation**

- Statistical algorithms based on 8 most recent <o<sub>i</sub>, d<sub>i</sub>> pairs: → determine quality of estimates
- The value of o<sub>i</sub> that corresponds to the minimum d<sub>i</sub> is chosen as an estimate for o
- Time server communicates with multiple peers, eliminates peers with unreliable data, favors peers with higher strata number (e.g., for primary synchronization partner selection)
- NTP phase lock loop model: modify local clock in accordance with observed drift rate
- Experiments achieve synchronization accuracies of
   10 msecs over Internet, and 1 msec on LAN using NTP



# **Clocks and Synchronization**

#### Requirements:

- "causality": real-time order ~ timestamp order ("behavioral correctness" seen by the user)
- groups / replicates: all members see the events in the same order
- "multiple-copy-updates": order of updates, consistency conflicts?
- serializability of transactions: bases on a common understanding of transaction order

A perfect physical clock is sufficient!

A perfect physical clock is impossible to implement!

Above requirements met with much lighter solutions!

# Happened-Before Relation "a -> b"



- if a, b are events in the same process, and a occurs before b, then a -> b
- if a is the event of a *message being sent*, and b is the event of the *message being received*, then a -> b
- a || b if neither a -> b nor b -> a ( a and b are *concurrent* )

**Note**: if  $a \rightarrow b$  and  $b \rightarrow c$  then  $a \rightarrow c$ 



#### **Logical Clocks: Lamport Timestamps**



process p<sub>i</sub>, event e, clock L<sub>i</sub>, timestamp L<sub>i</sub>(e)

- at p<sub>i</sub>: before each event L<sub>i</sub> = L<sub>i</sub> + 1
- when p<sub>i</sub> sends a *message* m to p<sub>i</sub>

1. 
$$p_i$$
:  $(L_i = L_i + 1)$ ;  $t = L_i$ ; message =  $(m, t)$ ;

2. 
$$p_j$$
:  $L_j = max(L_j, t)$ ;  $L_j = L_j + 1$ ;

3.  $L_i$ (receive event) =  $L_i$ ;



# **Lamport Clocks: Problems**

- 1. Timestamps do not specify the order of events
  - e -> e' => L(e) < L(e')

#### BUT

- L(e) < L(e') does not imply that e -> e'
- Total ordering
  - problem: define order of e, e' when L(e) = L(e')
  - solution: extended timestamp  $(T_i, i)$ , where  $T_i$  is  $L_i(e)$
  - definition:  $(T_i, i) < (T_j, j)$ if and only if
    either  $T_i < T_j$ or  $T_i = T_i$  and i < j



# **Example: Totally-Ordered Multicasting (1)**



Updating a replicated database and leaving it in an inconsistent state.



# **Example: Totally-Ordered Multicasting (2)**



# **Total ordering:**

all receivers (applications) see all messages in the same order (which is not necessarily the original sending order)

Example: multicast operations, group-update operations

# •Example: Totally-Ordered Multicasting (3)

# Guaranteed delivery order

- *new* message => HBQ

- when *all predecessors* have arrived: message => DQ

- when *at the head of DQ*: message => application (application: *receive* ...)

Algorithms:

see. Defago et al ACM CS, Dec. 2004





# **Example: Totally-Ordered Multicasting (4)**



#### Multicast:

- everybody receives the message (incl. the sender!)
- messages from one sender are received in the sending order
- no messages are lost



# **Various Orderings**

- Total ordering
- Causal ordering
- FIFO (First In First Out)

(wrt an individual communication channel)

Total and causal ordering are independent:

neither induces the other;

Causal ordering induces FIFO



### **Total, FIFO and Causal Ordering of Multicast Messages**

Notice the consistent ordering of totally ordered messages T<sub>1</sub> and  $T_2$ , the FIFO-related messages  $F_1$  and  $F_2$ and the causally related messages C<sub>1</sub> and  $C_3$  and the otherwise arbitrary delivery ordering of messages.





# **Vector Timestamps**

#### Goal:

timestamps should reflect causal ordering

L(e) < L(e') => "e happened before e' "

#### **Vector clock**

each process P<sub>i</sub> maintains a vector V<sub>i</sub>:

- 1.  $V_i[i]$  is the number of events that have occurred at  $P_i$  (the current local time at  $P_i$ )
- 2. if V<sub>i</sub>[j] = k then P<sub>i</sub> knows about (the first) k events that have occurred at P<sub>j</sub> (the local time at P<sub>j</sub> was k, as P<sub>j</sub> sent the last message that P<sub>i</sub> has received from it)



# **Order of Vector Timestamps**

#### Order of timestamps

- V = V' iff V[j] = V'[j] for all j
- V ≤ V' iff  $V[j] \le V'[j]$  for all j
- V < V' iff V ≤ V' and V ≠ V'</p>

#### Order of events (causal order)

- $e \rightarrow e' = V(e) < V(e')$
- V(e) < V(e') => e -> e'
- concurrency:

e || e' if not 
$$V(e) \le V(e')$$
  
and not  $V(e') \le V(e)$ 



# **Causal Ordering of Multicasts (1)**



Event: message sent

#### Timestamp [i,j,k]:

i messages sent from P

j messages sent form Q

k messages sent from R

m\$ [211] vs. 111



### Causal Ordering of Multicasts (2)

### Use of timestamps in causal multicasting

- 1)  $P_s$  multicast:  $V_s[s] = V_s[s] + 1$
- 2) Message: include vt =  $V_s$ [\*]
- 3) Each receiving Pr : the message can be delivered when
  - $vt[s] = V_r[s] + 1$  (all previous messages from  $P_s$  have arrived)
  - for each component k (k≠s): V<sub>r</sub>[k] ≥ vt[k]
     (P<sub>r</sub> has now seen all the messages that P<sub>s</sub> had seen when the message was sent)
- 4) When the message from  $P_s$  becomes deliverable at  $P_r$  the message is inserted into the delivery queue (note: the delivery queue preserves causal ordering)
  - 5) At delivery:  $V_r[s] = V_r[s] + 1$



### Causal Ordering of a Bulletin Board (1)



Assumption: reliable, order-preserving BB-to-BB transport

### **User** ⇔ **BB** ("local events")

- read: bb <= BB<sub>i</sub> (any BB)
- write: to a BB<sub>j</sub> that contains all causal predecessors of all bb messages

BB<sub>j</sub> must contain all nonlocal predecessors of all BB<sub>i</sub> messages



### Causal Ordering of a Bulletin Board (2)

### timestamps













### Causal Ordering of a Bulletin Board (3)





### **Causal Ordering of a Bulletin Board (4)**

Updating of vector clocks

Process P

- Local vector clock V<sub>i</sub> [\*]
- Update due to a local event: V<sub>i</sub> [i] = V<sub>i</sub> [i] + 1
  What is a "local event"? (See exercises)
- Receiving a message with the timestamp vt [\*]
  - Condition for delivery (to P<sub>r</sub> from P<sub>s</sub>):

wait until for all k:  $k \neq s$ :  $V_r[k] \ge vt[k]$ 

Update at delivery:
V<sub>r</sub> [s] = vt [s]



- Needs: checkpointing, garbage collection, deadlock detection, termination, testing
  - How to observe the state
    - states of processes
    - messages in transfer

A state: application-dependent specification



**Detecting Global Properties** 



a. Garbage collection

b. Deadlock



c. Termination





### **Distributed Snapshot**

- Each node: history of important events
- Observer: at each node i
  - time: the local (logical) clock "T<sub>i</sub>"
  - state S<sub>i</sub> (history: {event, timestamp})
  - => system state { S<sub>i</sub> }
- A cut: the system state { S<sub>i</sub> } "at time T"
- Requirement:
  - {S<sub>i</sub>} might have existed ⇔ consistent with respect to some criterion
  - one possibility: consistent wrt "happened-before relation"



### **Ad-hoc State Snaphots**



(inconsistent or)
strongly consistent

state changes: money transfers A ⇔ B

invariant: A+B = 700



### **Consistent and Inconsistent Cuts**





event: a change of the local x => increase the vector clock

 ${S_i}$  system state history: all events Cut: all events before the "cut time"

A cut is consistent if, for each event, it also contains all the events that "happened-before".



### **Chandy Lamport (1)**



The snapshot algorithm of Chandy and Lamport

a) Organization of a process and channels for a distributed snapshot



### **Chandy Lamport (2)**



- b) Process Q receives a marker for the first time, records its local state, and sends marker on every outgoing channel
- c) Q records all incoming messages
- d) Q receives a marker for its incoming channel and finishes recording the state of this incoming channel

### Chandy and Lamport's 'Snapshot' Algorithm

```
Marker receiving rule for process p_i
    On p_i's receipt of a marker message over channel c:
        if (p_i) has not yet recorded its state) it
           records its process state now;
           records the state of c as the empty set;
           turns on recording of messages arriving over other incoming channels;
       else
            p_i records the state of c as the set of messages it has received over c
           since it saved its state.
       end if
Marker sending rule for process p_i
    After p_i has recorded its state, for each outgoing channel c:
        p_i sends one marker message over c
        (before it sends any other message over c).
```



### **Implementation of Snapshot**



Chandy, Lamport

point-to-point, order-preserving connections



### **Coordination and Agreement**



### Coordination of functionality

- reservation of resources (distributed mutual exclusion)
- elections (coordinator, initiator)
- multicasting
- distributed transactions



### **Decision Making**

- Centralized: one coordinator (decision maker)
  - algorithms are simple
  - no fault tolerance (if the coordinator fails)
- Distributed decision making
  - algorithms tend to become complex
  - may be extremely fault tolerant
  - behaviour, correctness ?
  - assumptions about failure behaviour of the platform!
- Centralized role, changing "population of the role"
  - easy: one decision maker at a time
  - challenge: management of the "role population"



### Mutual Exclusion: A Centralized Algorithm (1)



- a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted
- b) Process 2 then asks permission to enter the same critical region. The coordinator does not reply.
- c) When process 1 exits the critical region, it tells the coordinator, which then replies to 2



# Mutual Exclusion: A Centralized Algorithm (2)

- Examples of usage
  - a stateless server (e.g., Network File Server)
  - a separate lock server
- General requirements for mutual exclusion
  - safety: at most one process may execute in the critical section at a time
  - 2. **liveness**: requests (enter, exit) eventually succeed (no deadlock, no starvation)
  - fairness (ordering): if the request A happens before the request B then A is honored before B
- Problems: fault tolerance, performance



### A Distributed Algorithm (1)



### The problem:

- several simultaneous requests (e.g., P<sub>i</sub> and P<sub>j</sub>)
   all members have to agree (everybody: "first P<sub>i</sub> then P<sub>i</sub>")

## A Distributed Algorithm (2)

```
On initialization
    state := RELEASED;
To enter the section
    state := WANTED;
                                                 request processing deferred here
    T := \text{request's timestamp};
    Multicast request to all processes;
    Wait until (number of replies received = (N-1));
    state := HELD:
On receipt of a request \langle T_i, p_i \rangle at p_i (i \neq j)
    if (state = \text{HELD or } (state = \text{WANTED } and (T, p_i) < (T_i, p_i)))
    then
        queue request from p_i without replying;
    else
        reply immediately to p_i;
    end if;
To exit the critical section
    state := RELEASED;
    reply to all queued requests;
```

# **Multicast Synchronization** Reply Reply Reply 41 34 Decision base: Lamport timestamp



### A Token Ring Algorithm



An unordered group of processes on a network.

(a)



A logical ring constructed in software.

### Algorithm:

- token passing: straightforward
- lost token: 1) detection? 2) recovery?



### Comparison

| Algorithm   | Messages per entry/ | Delay before entry (in message times) | Problems             |
|-------------|---------------------|---------------------------------------|----------------------|
| Centralized | 3                   | 2                                     | Coordinator crash    |
| Distributed | 2 ( n – 1 )         | 2 ( n – 1 )                           | Crash of any process |
| Token ring  | 1 to ∞              | 0 to n – 1                            | Lost token, process  |

A comparison of three mutual exclusion algorithms.



### **Election Algorithms**

### Need:

- computation: a group of concurrent actors
- algorithms based on the activity of a special role (coordinator, initiator)
- election of a coordinator: initially / after some special event (e.g., the previous coordinator has disappeared)

#### Premises:

- each member of the group {Pi}
  - knows the identities of all other members
  - does not know who is up and who is down
- all electors use the same algorithm
- election rule: the member with the highest Pi
- Several algorithms exist



### The Bully Algorithm (1)

- P<sub>i</sub> notices: coordinator lost

  - P<sub>i</sub> to {all P<sub>j</sub> st P<sub>j</sub>>P<sub>i</sub>}: ELECTION!
     if no one responds => P<sub>i</sub> is the coordinator
  - 3. some  $P_i$  responds =>  $P_i$  takes over,  $P_i$ 's job is done
- P<sub>i</sub> gets an ELECTION! message:
  - 1. reply OK to the sender
  - 2. if P<sub>i</sub> does not yet participate in an ongoing election: hold an election
- The new coordinator  $P_k$  to everybody: " $P_k$  COORDINATOR"
- P<sub>i</sub>: ongoing election & no "P<sub>k</sub> COORDINATOR": hold an election
- P<sub>i</sub> recovers: hold an election



### The Bully Algorithm (2)



The bully election algorithm

- a) b) Process 4 holds an election
- Process 5 and 6 respond, telling 4 to stop
- Now 5 and 6 each hold an election





- d) Process 6 tells 5 to stop
- e) Process 6 wins and tells everyone



### A Ring Algorithm (1)



### A Ring Algorithm (2)



Election algorithm using a ring.



### **Chapter Summary**

- Synchronization
- Clocks
- Logical and vector clocks
- Coordination, elections