

Control 1

P1. Considere

$$A = \begin{pmatrix} -\alpha & 2 & 0 & 1\\ \alpha & -3 & 2 & -1\\ \alpha & -2 & -1 & 1\\ 2\alpha & -2 & -4 & \beta \end{pmatrix}, \quad b = \begin{pmatrix} 1\\ -2\\ -1\\ \alpha + \beta + 2 \end{pmatrix}.$$

- (a) (3.5 ptos.) Determine los valores de $\alpha, \beta \in \mathbb{R}$ para los cuales el sistema Ax = b, con $x \in \mathbb{R}^4$,
 - (i) Tiene solución única.
 - (ii) Tiene infinitas soluciones.
 - (iii) No tiene solución.
- (b) (2.5 ptos.) Para $\alpha = 1$ y $\beta = -1$, encuentre la inversa de la matriz A y la solución del sistema Ax = b propuesto.

P2. Sea $P = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ y Π el plano de ecuación cartesiana $x_1 - x_2 + x_3 = 1$.

- (a) (1 pto.) Encuentre una ecuación vectorial de Π .
- (b) (1 pto.) Encuentre una ecuación vectorial de la recta L que pasa por P y es ortogonal a Π . Pruebe que L pasa por el origen.
- (c) (2 ptos.) Encuentre una ecuación cartesiana para el plano que contiene a L y al eje x_3 (es decir, al eje $x_1 = x_2 = 0$).
- (d) (2 ptos.) Encuentre una ecuación cartesiana del plano equidistante de Π y P.
- **P3.** (a) Se define $\mathcal{H} = \{ H = (h_{ij}) \in \mathcal{M}_{nn}(\mathbb{R}) \mid h_{ij} = 0, \ \forall i > j+1 \}.$
 - (i) (1 pto.) Muestre que \mathcal{H} es subespacio vectorial de $\mathcal{M}_{nn}(\mathbb{R})$.
 - (ii) (2.5 ptos.) Demuestre que si $T \in \mathcal{M}_{nn}(\mathbb{R})$ es triangular superior, y $H \in \mathcal{H}$, entonces $T \cdot H \in \mathcal{H}$.
 - (b) (2.5 ptos.) Sea $u \in \mathbb{R}^n$ con ||u|| = 1. Demostrar que la matriz

$$A = I - 2uu^t$$
.

es invertible, con $A^{-1} = A$.

Solución del Control 1, Álgebra Lineal. Primavera 2007.

- 1. Se podría pivotear conjuntamente con una sola gran matriz aumentada para el sistema lineal y la inversa, pero por razones de claridad lo haremos separadamente en esta pauta (aunque signifique algunas repeticiones).
 - a) Veamos el pivoteo de la matriz aumentada $\left[\begin{array}{cc|c}A&b\end{array}\right]$ del sistema:

$$\begin{bmatrix} -\alpha & 2 & 0 & 1 & | & 1 \\ \alpha & -3 & 2 & -1 & | & -2 \\ \alpha & -2 & -1 & 1 & | & -1 \\ 2\alpha & -2 & -4 & \beta & | & \alpha+\beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} -\alpha & 2 & 0 & 1 & | & 1 \\ 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & -1 & 2 & | & 0 \\ 0 & 2 & -4 & \beta+2 & | & \alpha+\beta+4 \end{bmatrix} \rightarrow \begin{bmatrix} -\alpha & 2 & 0 & 1 & | & 1 \\ 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & -1 & 2 & | & 0 \\ 0 & 0 & 0 & \beta+2 & | & \alpha+\beta+2 \end{bmatrix}$$

$$(1 \text{ pto.})$$

En el proceso anterior llegamos a $\begin{bmatrix} \tilde{A} & | & \tilde{b} \end{bmatrix}$, con \tilde{A} la forma escalonada de A, al menos cuando $\alpha \neq 0$. Podemos aprovechar de inmediato de estudiar la cantidad de soluciones en ese caso.

Para $\beta \neq -2$ ($\Leftrightarrow \beta + 2 \neq 0$), la forma escalonada de A tiene toda la diagonal distinta de 0, por lo que A es invertible, y hay solución única. Por otra parte, si $\beta = -2$, queda una fila final de ceros en \tilde{A} , lo que dará lugar a no existencia, o a infinitas soluciones. Habrán infinitas soluciones si $\alpha + \beta + 2 = \alpha + (-2) + 2 = 0$, es decir, si $\alpha = 0$, pero esto no ocurre porque estamos justamente en el caso $\alpha \neq 0$. Luego, en esta situación solo cabe que no haya solución.

En el caso $\alpha = 0$ la matriz A no ha sido completamente escalonada aún. Sin embargo ya nos encontramos con su primera columna igual a 0, lo que significa que la variable x_1 no participa del sistema, es decir queda libre. El sistema solo podrá tener infinitas o ninguna solución en esta situación. Debemos terminar el escalonamiento para saber exactamente cuando ocurre cada caso.

$$\begin{bmatrix} 0 & 2 & 0 & 1 & | & 1 \\ 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & -1 & 2 & | & 0 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 4 & 1 & | & -1 \\ 0 & 0 & -1 & 2 & | & 0 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & -1 & 2 & | & 0 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & -1 & 2 & | & 0 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 & 2 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & \beta+2 & | & \beta+2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & | & -$$

Nótese que en el paso de la primera a la segunda matriz intercambiamos primero las filas 1 y 2 (para usar -1 como pivote), y al pasar de la segunda a la tercera matriz lo primero que hicimos fue intercambiar las filas 2 y 3 por la misma razón. Esto no es estrictamente necesario, sólo nos simplifica los cálculos numéricos.

Como \tilde{A} tiene ahora una fila de ceros, corroboramos lo dicho antes de que este caso sólo admitirá infinitas o ninguna solución. Habrán infinitas soluciones cuando $\beta = -2$, y ninguna cuando $\beta \neq -2$. Podemos proceder ahora a ordenar todo lo encontrado hasta el momento y responder las preguntas (i), (ii) y (iii):

- (i) Habrá solución única cuando $\alpha \neq 0 \land \beta \neq -2$.
- (0.5 ptos., incluye análisis)
- (ii) Habrá infinitas soluciones sólo cuando $\alpha = 0 \land \beta = -2$.
- (0.5 ptos., incluye análisis)
- (iii) No habrá solución ssi $(\alpha \neq 0 \land \beta = -2) \lor (\alpha = 0 \land \beta \neq -2)$.
- (0.5 ptos., incluye análisis)

b) El sistema lineal en el caso $\alpha=1, \beta=-1$ puede ser resuelto por sustitución en reversa directamente a partir del primer escalonamiento: $x_4=2, -x_3+2\cdot 2=0 \Leftrightarrow x_3=4, -x_2+2\cdot 4=-1 \Leftrightarrow x_2=9, -x_1+2\cdot 9+2=1 \Leftrightarrow x_1=19.$

De acá que la solución (única) al sistema es
$$x = \begin{pmatrix} 19 \\ 9 \\ 4 \\ 2 \end{pmatrix}$$
.

Alternativamente, una vez que determinemos la inversa de A (que es invertible para los valores pedidos de α y β de acuerdo al análisis de la parte (a)), bastaría con hacer $x = A^{-1} \cdot b$, para el vector b con los valores $\alpha = 1$, $\beta = -1$.

Para calcular A^{-1} pivotearemos ahora con la gran matriz aumentada $\begin{bmatrix} A & | & I \end{bmatrix}$, donde I es la matriz identidad de 4×4 .

(0.5 ptos.)

(Podríamos también haber ganado un poco de tiempo si hubiésemos realizado el primer pivoteo en (a) con $\begin{bmatrix} A & | & b & | & I \end{bmatrix}$.)

$$\begin{bmatrix} -1 & 2 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 1 & -3 & 2 & -1 & | & 0 & 1 & 0 & 0 \\ 1 & -2 & -1 & 1 & | & 0 & 0 & 1 & 0 \\ 2 & -2 & -4 & -1 & | & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 2 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & | & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 2 & | & 1 & 0 & 1 & 0 \\ 0 & 2 & -4 & 1 & | & 2 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 2 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & | & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 2 & | & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 4 & 2 & 0 & 1 \end{bmatrix}$$

Continuamos ahora "pivoteando hacia arriba", y finalmente ponderamos cada fila para convertir la parte izquierda en la identidad:

$$\rightarrow \begin{bmatrix} -1 & 2 & 0 & 0 & | & -3 & -2 & 0 & -1 \\ 0 & -1 & 2 & 0 & | & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & | & -7 & -4 & 1 & -2 \\ 0 & 0 & 0 & 1 & | & 4 & 2 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 2 & 0 & 0 & | & -3 & -2 & 0 & -1 \\ 0 & -1 & 0 & 0 & | & -13 & -7 & 2 & -4 \\ 0 & 0 & -1 & 0 & | & -7 & -4 & 1 & -2 \\ 0 & 0 & 0 & 1 & | & 4 & 2 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 29 & 16 & -4 & 9 \\ 0 & 1 & 0 & 0 & | & 29 & 16 & -4 & 9 \\ 0 & 1 & 0 & 0 & | & 13 & 7 & -2 & 4 \\ 0 & 0 & 1 & 0 & | & 7 & 4 & -1 & 2 \\ 0 & 0 & 0 & 1 & | & 4 & 2 & 0 & 1 \end{bmatrix},$$

y recuperamos la inversa de A como la segunda matriz: $A^{-1} = \begin{bmatrix} 29 & 16 & -4 & 9 \\ 13 & 7 & -2 & 4 \\ 7 & 4 & -1 & 2 \\ 4 & 2 & 0 & 1 \end{bmatrix}$.

(1 pto.)

(+1 pto. base)

2. a) De la ecuación cartesiana $x_1 - x_2 + x_3 = 1$ sacamos tres puntos no colineales P_0, P_1, P_2 en Π , y con ellos podemos obtener vectores directores como $d_1 = P_1 - P_0$ y $d_2 = P_2 - P_0$ (y como posición de Π , por ejemplo P_0). Si $x_1 = x_3 = 0$ en la ecuación, resulta $x_2 = -1$, con lo que tenemos $P_0 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \in \Pi$. De manera análoga se pueden encontrar $P_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in \Pi$ y $P_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \Pi$. Con esto $P_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ y $P_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ con claramente no nulos y no $P_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ con esto $P_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ con esto $P_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ con claramente no nulos y no $P_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

paralelos, lo que equivale a que los tres puntos P_0, P_1, P_2 no son colineales).

(0.7 ptos.)

Con todo esto, una ecuación vectorial para
$$\Pi$$
 resulta ser: $x = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix};$ $s, t \in \mathbb{R}$. (0.3 ptos.)

b) Para esto basta notar que al ser L perpendicular a Π , puede usarse como su vector director un vector normal a Π . Sabemos que podemos hallar uno por simple inspección de la ecuación cartesiana: $n = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. Como además L pasa por P, tenemos posición y vector director, y de $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

allí una ecuación vectorial:
$$x=\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}+t\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix};\quad t\in\mathbb{R}.$$

(0.7 ptos.)

(Nota: Otra manera posible, aunque más larga, para hallar una ecuación vectorial para L podría ser encontrándole primero otro punto, por ejemplo la proyección $Q = P + \frac{\langle P_0 - P, n \rangle}{\|n\|^2} n$ de P sobre Π , y luego usar como vector director Q - P.)

Haciendo t=-1 en la ecuación vectorial se obtiene que el punto $x=0\in L$, es decir, L pasa por el origen (y si se desea podría darse también $x=t\begin{pmatrix}1\\-1\\1\end{pmatrix}$; $t\in\mathbb{R}$ como ecuación vectorial de L, por ejemplo). (0.3 ptos.)

c) Como este nuevo plano Π_1 debe contener a L, sabemos que el origen $0 \in \Pi_1$, y podemos usar como uno de los directores de Π_1 al director n de L. El otro director lo podemos tomar del eje $X_3 = \left\{ \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix} \middle| x_3 \in \mathbb{R} \right\} = \left\{ x_3 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \middle| x_3 \in \mathbb{R} \right\}$. Es decir, podemos usar el vector $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$$d = \left(\begin{array}{c} 0\\0\\1\end{array}\right)$$

(1 pto.)
Con estos dos directores, podemos hallar un vector normal para Π_1 : $N = d \times n = \hat{k} \times (\hat{i} - \hat{j} + \hat{k}) = \hat{j} + \hat{i} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Entonces, una ecuación normal para Π_1 será $\langle N, x - 0 \rangle = 0$, lo que se convierte

en la ecuación cartesiana $x_1 + x_2 = 0$

(1 pto.)

d) El plano Π_2 pedido será paralelo a Π por lo tanto compartirá su vector normal n.

(0.5 ptos.)

Para determinarlo completamente necesitamos solamente encontrar uno de sus puntos. Si proyectamos a P sobre el plano Π , la condición de equidistancia nos dice que el punto medio R entre P y su proyección Q estará en Π_2 . Como ya conocemos la recta L, podemos encontrar Q como $\{Q\} = L \cap \Pi$. (Nota: Por supuesto que esta proyección también puede hallarse de otras formas,

por ejemplo como
$$P + \frac{\langle P_0 - P, n \rangle}{\|n\|^2} n$$
). Entonces $Q = t \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} t \\ -t \\ t \end{pmatrix} \in L$, y por estar en Π , $t - (-t) + t = 1$, es decir, $t = \frac{1}{3}$ y $Q = \frac{1}{3} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{3}P$.

Luego el punto buscado de Π_2 será $R = \frac{1}{2} (P + Q) = \frac{1}{2} (P + \frac{1}{3}P) = \frac{2}{3}P = \frac{2}{3} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

(0.5 ptos.)

Con todo esto, una ecuación normal para Π_2 será $\langle n, x - R \rangle = 0$, lo que equivale a $\langle n, x \rangle = \langle n, R \rangle$, es decir $x_1 - x_2 + x_3 = 2$, que es una ecuación cartesiana para Π_2 .

(0.5 ptos.)

(+1 pto. base)

3. a) (i) Primero notemos que $\mathcal{H} \neq \emptyset$, para ello basta ver que la matriz nula de $n \times n$: $0 \in \mathcal{H}$ (todas sus componentes son 0, en particular las exigidas por \mathcal{H}).

(0.2 ptos.)

Sean ahora $H = (h_{ij}), P = (p_{ij}) \in \mathcal{H}$ elementos cualquiera, y $\lambda, \mu \in \mathbb{R}$ escalares cualquiera. Se tiene entonces que $(\forall i > j + 1)$ $h_{ij} = p_{ij} = 0$. De aquí que, para i > j + 1, $[\lambda H + \mu P]_{ij} = \lambda h_{ij} + \mu p_{ij} = 0$, luego $\lambda H + \mu P \in \mathcal{H}$.

(Por supuesto, en vez de este último párrafo, también habría siso válido mostrar separadamente que $(\forall H, P \in \mathcal{H}) \ H + P \in \mathcal{H}$, y que $(\forall \lambda \in \mathbb{R}, H \in \mathcal{H}) \ \lambda H \in \mathcal{H}$.)

(0.8 ptos.)

(ii) Recordemos que $T=(t_{ij})$ es triangular superior ssi $(\forall i>j)$ $t_{ij}=0$. Para $H=(h_{ij})\in\mathcal{H}$, calculemos $[T\cdot H]_{ij}$ en el caso i>j+1:

$$[T \cdot H]_{ij} = \sum_{k=1}^{n} t_{ik} \cdot h_{kj} = \sum_{k=1}^{j+1} t_{ik} \cdot h_{kj} + \sum_{k=j+2}^{n} t_{ik} \cdot h_{kj} = \sum_{k=1}^{j+1} 0 \cdot h_{kj} + \sum_{k=j+2}^{n} t_{ik} \cdot 0 = 0,$$
(2 ptos.)

donde el $t_{ik} = 0$ en la primera sumatoria se debe a que en ella $k \leq j + 1$, y como estamos considerando i > j + 1, entonces i > k. El $h_{kj} = 0$ en la segunda sumatoria se debe a que en ella $k \geq j + 2 > j + 1$.

(0.5 ptos.)

b) Para demostrar lo pedido, basta mostrar que $A \cdot A = I$:

(0.5 ptos.)

$$A \cdot A = (I - 2uu^t) \cdot (I - 2uu^t) = I \cdot I - I \cdot (2uu^t) - 2uu^t \cdot I + 4uu^t uu^t = I - 4uu^t + 4uu^t uu^t.$$
(1 pto.)

Pero podemos asociar $uu^tuu^t = u\left(u^tu\right)u^t$, y la expresión entre paréntesis puede calcularse como $u^tu = \langle u, u \rangle = ||u||^2 = 1^2 = 1$. Luego $4uu^tuu^t = 4u\left(u^tu\right)u^t = 4u\cdot 1\cdot u^t = 4uu^t$, y entonces $A\cdot A = I$.

(1 pto.)

(+1 pto. base)