République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2023 Session Complémentaire Epreuve: MATHEMATIQUES

Séries :Sciences Naturelles & TSGE Coefficient: 6&4 Durée: 4h .

Exercice 1 (3 points)

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{n} \sqrt{u_n}$ et on définit les

deux suites : $v_* = \ln[(u_*)]$ et $w_* = v_* + 2$.

Pour chacune	des questions suivantes, une et un	t une seule des rép	onses proposée	s est correcte.
Tour chacune	des questions survantes, une e	t dire acure	Tot n	Dinames C

Nº	Question	Réponse A	Réponse B	Réponse C	-
1	La valeur de u, est égale à	1 6	$\left(\frac{1}{e}\right)^{\frac{3}{2}}$	$\left(\frac{1}{e}\right)^{1}$	0,5pt
2	La valeur de v, est égale à	-1	0	1	0,5pt
3	v,,, s'écrit sous la forme :	1v.+1	$\frac{1}{2}v_{*}-1$	$\frac{1}{2}v_{*}-1$	0,5pt
4	La suite (w,) est	géométrique	arithmétique	Constante	0,5pt
5	Le terme général de la suite (wa) est	1 2*	1 2 -1	1 2*-1	0,5pt
6	L'expression de (u,) en fonction de n est	$\frac{1}{e^2} \times e^{\left(\frac{1}{2}\right)^{n-1}}$	$e^2 \times e^{\left(\frac{1}{2}\right)^{n-1}}$	$\frac{1}{e} \times (\sqrt{e})^{e^{-1}}$	0,5pt

Recopier sur la feuille de réponse et compléter le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée.

Question no	1	2	3	4	5	6
Réponse			1			

Exercice 2 (3 points)

A l'un des carrefours de Nouakchott, un panneau de feu tricolore de circulation est doté d'un compteur : le signal est rouge pendant 45 secondes puis vert pendant 33 secondes et ensuite jaune pendant 2 secondes.

1° A 12 heure 0 mn 0 s, le feu rouge est déclenché. Une voiture arrive à ce panneau entre 12 h 0mn 0s et 12h1mn20s. Le temps d'arrivée de la voiture suit une loi uniforme sur [0;80].

Déterminer la probabilité de chacun des évènements suivants :

A : la voiture trouve le feu vert	0,75pt
B: la voiture trouve le feu rouge	0,75pt
C : la voiture trouve le feu rouge sachant que son moment d'arrivée est dans l'intervalle [20,70]	0,5pt
2º La durée de vie, en heures, de l'une des ampoules utilisées dans le feu tricolore est une	

a) Quelle est la probabilité que l'ampoule dure plus de 30000 heures ?	0,5pt
b) Quelle est la probabilité que l'ampoule dure plus de 30000 heures, sachant qu'elle a	
déjà duré 20000 heures.	0,5pt

Exercice 3 (4 points)	
Le plan complexe est muni d'un repère orthonormé (O; u, v).	1 -
1°a) Déterminer les racines carrées du nombre complexe 15+8i	0,75pt
b) Résoudre dans l'ensemble des nombres complexes, l'équation $z^2 - (2+3i)z - 5 + i = 0$	0,75pt
2° Soient A, B et C les points d'affixes respectives $z_A = 3 + 2i$, $z_B = -1 + i$ et $z_C = 2 - 2i$ et	
pour tout nombre complexe $z \neq 2-2i$, on pose $f(z) = \frac{z+1-i}{z-2+2i}$	
a) Placer les points A, B et C.	0,5pt

b) Ecrire le nombre f(zA) sous forme algébrique et déduire que le triangle ABC est	0,5pt
isocèle c)Résoudre, dans l'ensemble C, l'équation f(z) = i puis interpréter graphiquement.	0.5pt
d) Déterminer et construire l'ensemble Γ des points M d'affixe z tel que f(z) soit imaginaire pur.	0,5pt
3º Pour tout entier naturel n, on pose z, = (z,)4, et soit M, le point d'affixe z,	
a) Ecrire z, sous forme trigonométrique.	0,25pt
b) Déterminer l'ensemble des entiers n pour lesquels M, appartient à l'axe des abscisses.	0,25pt
Exercice 4 (5 points)	0,5pt
1. 1º Déterminer la solution générale de l'équation différentielle (E) : y'+y=2y'.	0,5pt
2° Déterminer la solution g de l'équation (E) qui vérific g(0) = -1 et g(1) = 0.	
II. Soit f la fonction définie sur R par $f(x)=(x-1)e^x+1$. On note Γ sa courbe	
représentative dans un repère orthonormé (O; i, j).	0.75-4
1° a) Calculer $\lim_{x \to \infty} f(x)$ et vérifier que $\lim_{x \to \infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.	0,75pt
 b) Montrer que la droite (Δ) d'équation y=1 est une asymptote horizontale à Γ et 	0,75pt
étudier leur position relative. 2° a) Montrer que ∀x ∈ R, f'(x) = xe' puis en déduire le signe de f' sur R.	0,75pt
b) Dresser le tableau de variation de f.	0,5pt
3° a) Montrer que la courbe Γ admet un point d'inflexion A et préciser ses coordonnées.	0,5pt
b) Déterminer une équation de la tangente T au point A	0,25pt
e) Construire (Δ), T et I dans le repère précédent.	0,5pt
Exercice 5: (5 points))
Soit f la fonction définie sur $]0;+\infty[parf(x)=(ln x)(-1+ln x),$ on peut également écrire	9
$f(x) = -\ln x + (\ln x)^2$. Soit (C) la courbe représentative de f dans un repère orthonormé	
$(0; \vec{i}, \vec{j})$.	1
1°a)Montrer que $\lim_{x\to 0} f(x) = +\infty$ puis interpréter graphiquement.	0,75pt
b) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$ puis calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.	0,75pt
2° a) Montrer que $f'(x) = \frac{-1+2\ln x}{x}$	0,5pt
2° a) Montrer que 1 $(x) = \frac{1}{x}$	
b) Calculer f'(√e) puis dresser le tableau de variation de f.	0,5pt
3°a) Déterminer une équation de la tangente T à (C) au point A d'abscisse 1.	0,5pt
b) Déterminer les points d'intersection de (C) avec l'axe des abscisses	0,25pt
c) Construire la courbe (C) et sa tangente T dans le repère (O; i,j).	0,5pt
d) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de	0,25pt
solutions de l'équation $(\ln x)^2 - \ln x + x = m$	0,250
4° a) Utiliser des intégrations par parties pour montrer que	
$I = \int_{1}^{c} \ln x dx = 1$ et aussi pour calculer $J = \int_{1}^{c} (\ln x)^{2} dx$	0,75pt
b) En déduire l'aire A de la partie du plan délimitée par (C), l'axe des abscisses et les	
droites d'équations x=1 et x=e.	0,25pt
Grottes a equations x = 1 ti x = e.	

Fin.