数学 1B 期末試験

以下の設問1から5に答えなさい.解答は解答用紙の所定の欄に記入すること.

- **1** 区間 $(0,\infty)$ で定義された関数 $f(x) = \operatorname{Tan}^{-1} x + \operatorname{Tan}^{-1} \frac{1}{x}$ について、次の値を求めなさい。
 - (1) $\lim_{x \to \infty} f(x)$.
- (2) f'(x). (3) f(1), f(2).
- **2** 定積分 $\int_{1}^{2} \frac{1}{r^3 + 3r^2 + 4r + 2} dx$ を求めさない.
- $oxed{3}$ (1) 累次積分 $\int_{a}^{1} \Big(\int_{a}^{\sqrt{y}} f(x,y) dx\Big) dy$ の積分順序を交換しなさい.
- (2) $0 \le x \le 2$, $0 \le y \le 1$ で定まる長方形領域から原点を中心とする半径1の円の内部を除い た領域を A とする。 重積分 $\iint_A \frac{x^3y}{-y^4+2y^2+15} dxdy$ を累次積分によって求めなさい。
- $\boxed{\textbf{4}}$ 原点を中心とする半径 r の円の内部を B(r), B(r) に円周も含めたものを $\bar{B}(r)$ と表す. $|x| \le R$, $|y| \le R$ で定まる正方形領域を D(R) と表す。集合 X から集合 Y の元を除いた集合を X-Y と表す。 $f(x,y)=(x^2+y^2)^{-\frac{3}{2}}\sin\{(x^2+y^2)^{-\frac{1}{2}}\}$ とする.
 - (1) $R > \frac{3}{\pi}$ のとき、次の不等式を示しなさい。

$$\iint_{\bar{B}(R)-B(\frac{3}{\pi})} f(x,y) dx dy < \iint_{D(R)-B(\frac{3}{\pi})} f(x,y) dx dy < \iint_{\bar{B}(\sqrt{2}R)-B(\frac{3}{\pi})} f(x,y) dx dy.$$

- (2) $\lim_{R\to\infty}\iint_{D(R)-B(\frac{3}{2})} f(x,y)dxdy$ を求めなさい。ただし求める過程も記しなさい。
- **⑤** $f(x,y,z) = \left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$ を原点以外の \mathbb{R}^3 の点で考える.
 - (1) $\boldsymbol{r}(t) = (e^t \cos t, e^t \sin t, e^t)$ が定める曲線 $\Gamma = \{ \boldsymbol{r}(t) \, | \, 0 \leq t \leq 10 \}$ を $\boldsymbol{r}(0)$ から $\boldsymbol{r}(10)$ へ進む とき、線積分 $\int_{\Gamma} f \cdot dr$ を求めなさい。
 - (2) $B \,=\, \{(x,y)\,|\, x^2 + y^2 \,\leqq\, \frac{3}{4}\}$ で定義された関数 $\varphi(x,y) \,=\, \sqrt{1-x^2-y^2}$ のグラフ $A \,=\,$ $\{(x,y,z)|z=\varphi(x,y),\ (x,y)\in B\}$ を考える. A の各点 (x,y,z) における単位法線ベクト n でその第 3 成分が 0 以上であるものを求めなさい。また面積分 $\int_{\Lambda} {m f} \cdot {m n} dS$ を求めな さい.