TABELAS DAS TRANSFORMADAS DE LAPLACE - 1

Transformada de Laplace	Função original	Transformada de Laplace	Função original
$F(p) = \int_0^{+\infty} f(t)e^{-pt}dt$	f(t), t > 0	$\frac{1}{p(p^2+a^2)}$	$\frac{1-\cos(at)}{a^2}$
$F(p)$ existe para $p > \alpha$	f de tipo exponencial $\alpha \in \mathbb{R}$	$\frac{1}{p^2(p^2+a^2)}$	$\frac{at - \sin(at)}{a^3}$
1	$\delta(t)$	$\frac{1}{(p^2+a^2)^2}$	$\frac{\sin(at) - at\cos(at)}{2a^3}$
e^{-ap}	$\delta(t-a)$	$\frac{p}{(p^2+a^2)^2}$	$rac{t\sin(at)}{2a}$
$\frac{1}{p}$	1	$\frac{b}{(p+a)^2+b^2}$	$e^{-at}\sin(bt)$
$\frac{n!}{p^{n+1}}, n \in \mathbb{N}$	t^n	$\frac{p+a}{(p+a)^2+b^2}$	$e^{-at}\cos(bt)$
$\frac{1}{p-a}$	e^{at}	$\frac{1}{p^4 - a^4}$	$\frac{\sinh(at) - \sin(at)}{2a^3}$
$\frac{(n-1)!}{(p-a)^n}, n \in \mathbb{N}$	$t^{n-1}e^{at}$	$\frac{p}{p^4 + 4a^4}$	$\frac{\sin(at)\sinh(at)}{2a^2}$
$\frac{1}{(p-a)(p-b)}$	$\frac{e^{at} - e^{bt}}{a - b}$	$\frac{1}{\sqrt{p}}$	$\frac{1}{\sqrt{\pi t}}$
$\frac{a}{p^2 + a^2}$	$\sin(at)$	$\arctan(\frac{a}{p})$	$\frac{\sin(at)}{t}$
$\frac{p}{p^2 + a^2}$	$\cos(at)$	$\frac{1 - e^{-Tp}}{p}, T > 0$	H(t) - H(t-T)
$\frac{a}{p^2 - a^2}$	$\sinh(at)$	$\frac{1}{(p^2+1)(1-e^{-\pi p})}$	$\frac{1}{2}(\sin(t) - \sin(t))$
$\frac{p}{p^2 - a^2}$	$\cosh(at)$	$\frac{a \coth(\pi p/2a)}{p^2 + a^2}$	$ \sin(at) $

Nota: para todos os a, b para os quais faz sentido a transformada.

TABELAS DAS TRANSFORMADAS DE LAPLACE - 2

Transformada de Laplace $F(p)$	Função original $f(t)$
$\frac{1}{p(1+e^{-Ap})}$	$f(t) = \begin{cases} 1 & t \in [2nA, (2n+1)A[\\ 0 & \text{outros valores} \end{cases} n = 0, 1, 2, \dots, A > 0$
$rac{ anh(Ap)}{p}$	$f(t) = (-1)^n$, para $t \in [2nA, (2n+2)A[, n = 0, 1, 2, \dots, A > 0]$
translação $F(p-a)$	$e^{at}f(t)$
$\frac{1}{\lambda}F(\frac{p}{\lambda})$	$ \begin{array}{c} \mathbf{amplia} \mathbf{\tilde{ao}} \\ f(\lambda t), \lambda > 0 \end{array} $
pF(p) - f(0)	$\frac{\mathbf{deriva}\mathbf{\tilde{ao}}}{f'(t)}$
derivação $F'(p)$	-tf(t)
$\frac{F(p)}{p}$	integração $\int_0^t f(au) d au$
integração $\int_p^\infty F(q)dq$	$rac{f(t)}{t}$
$\begin{array}{c} \textbf{produto} \\ F(p) \cdot G(p) \end{array}$	convolução $(f*g)(t) = \int_0^t f(t-y)g(y)dy$
$\frac{\int_0^T f(t)e^{-pt}dt}{1 - e^{-Tp}}$	$ \begin{aligned} \mathbf{periodicidade} \\ f(t) = f(t+T), T > 0 \end{aligned} $
$e^{-ap}F(p)$	${f translação} \ f(t-a)H(t-a)$
$F(p) \coth(\frac{Tp}{2})$	f(t) , com f(t+T) = -f(t), T > 0

Nota: para todos os a, b para os quais faz sentido a transformada.

Função Heaviside
$$H(t) = \left\{ \begin{array}{ll} 1, & t \geq 0 \\ 0, & t < 0 \end{array} \right.$$