Lecture 10: Multiple Testing

Goals

Define the multiple testing problem and related concepts

Methods for addressing multiple testing (FWER and FDR)

Correcting for multiple testing in R

Type I and II Errors

Actual Situation "Truth"

Decision	H _o True	H _o False		
Do Not Reject H _o	Correct Decision $1 - \alpha$	Incorrect Decision Type II Error β		
Rejct H _o	Incorrect Decision Type I Error	Correct Decision 1 - β		

 $\alpha = P(Type\ I\ Error)$ $\beta = P(Type\ II\ Error)$

power (HMM) = P(reject HolHo False)

Why Multiple Testing Matters

Genomics = Lots of Data = Lots of Hypothesis Tests

A typical microarray experiment might result in performing 10000 separate hypothesis tests. If we use a standard p-value cut-off of 0.05, we'd expect **500** genes to be deemed "significant" by chance.

Why Multiple Testing Matters

• In general, if we perform m hypothesis tests, what is the probability of at least 1 false positive?

P(Making an error) =
$$\alpha$$
 0.05

P(Not making an error) =
$$1 - \alpha$$
 0.95

P(Not making an error in m tests) =
$$(1 - \alpha)^m$$
 0.95

P(Making at least 1 error in m tests) = 1 -
$$(1 - \alpha)^m$$

Probability of At Least 1 False Positive

Counting Errors

Assume we are testing H^1 , H^2 , ..., H^m

 $m_0 = \#$ of true hypotheses R = # of rejected hypotheses

	Null	Alternative	
	True	True	Total
Not Called Significant	U	T	m - R
Called V Significant	V	S	R
	m_0	<i>m-m</i> ₀	m

V = # Type I errors [false positives]

What Does Correcting for Multiple Testing Mean?

- When people say "adjusting p-values for the number of hypothesis tests performed" what they mean is controlling the Type I error rate
- Very active area of statistics many different methods have been described

 Although these varied approaches have the same goal, they go about it in fundamentally different ways

Different Approaches To Control Type I Errors

• **Per comparison error rate** (PCER): the expected value of the number of Type I errors over the number of hypotheses,

$$PCER = E(V)/m$$

Per-family error rate (PFER): the expected number of Type I errors,
 PFE = E(V).

• Family-wise error rate: the probability of at least one type I error

$$FEWR = P(V \ge 1)$$

• **Positive false discovery** rate (pFDR): the rate that discoveries are false

$$pFDR = E(V/R \mid R > 0)$$

Digression: p-values

 Implicit in all multiple testing procedures is the assumption that the distribution of p-values is "correct"

 This assumption often is not valid for genomics data where p-values are obtained by asymptotic theory

 Thus, resampling methods are often used to calculate calculate p-values

Permutations

- 1. Analyze the problem: think carefully about the null and alternative hypotheses
- Choose a test statistic
- 3. Calculate the test statistic for the original labeling of the observations
- 4. Permute the labels and recalculate the test statistic
 - Do all permutations: Exact Test
 - Randomly selected subset: Monte Carlo Test
- 5. Calculate p-value by comparing where the observed test statistic value lies in the permuted distributed of test statistics

Example: What to Permute?

 Gene expression matrix of m genes measured in 4 cases and 4 controls

Gene	Case 1	Case 2	Case 3	Case 4	Control 1	Control 2	Control 3	Control 4
1	X_{11}	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆	X ₁₇	X ₁₈
2	X_{21}	X_{22}	X_{23}	X_{24}	X ₂₅	X ₂₆	X ₂₇	X ₂₈
3	X_{31}	X_{32}	X_{33}	X_{34}	X ₃₅	X ₃₆	X ₃₇	X ₃₈
4	X_{41}	X_{42}	X_{43}	X_{44}	X ₄₅	X ₄₆	X ₄₇	X ₄₈
•	•	•	•	•		•	•	•
•	•	•	•	•	:	•	:	•
m	X_{m1}	X_{m2}	X _{m3}	X_{m4}	X _{m5}	X_{m6}	X_{m7}	X _{m8}

Back To Multiple Testing: FWER

 Many procedures have been developed to control the Family Wise Error Rate (the probability of at least one type I error):

$$P(V \ge 1)$$

- Two general types of FWER corrections:
 - Single step: equivalent adjustments made to each p-value
 - 2. Sequential: adaptive adjustment made to each p-value

O Single Step Approach: Bonferroni

• Very simple method for ensuring that the overall Type I error rate of α is maintained when performing m independent hypothesis tests

• Rejects any hypothesis with p-value $\leq \alpha/m$:

$$\tilde{p}_{j} = \min[mp_{j}, 1]$$
 Bonferroni corrected p-value

• For example, if we want to have an experiment wide Type I error rate of 0.05 when we perform 10,000 hypothesis tests, we'd need a p-value of $0.05/10000 = 5 \times 10^{-6}$ to declare significance

Philosophical Objections to Bonferroni Corrections

- "Bonferroni adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical inference" Perneger (1998)
- Counter-intuitive: interpretation of finding depends on the number of other tests performed
- The general null hypothesis (that all the null hypotheses are true) is rarely of interest
- High probability of type 2 errors, i.e. of not rejecting the general null hypothesis when important effects exist
- · simple, but conservative

② FWER: Sequential Adjustments

- Simplest sequential method is Holm's Method
 - \triangleright Order the unadjusted p-values such that $p_1 \le p_2 \le ... \le p_m$
 - For control of the FWER at level α , the step-down Holm adjusted p-values are

$$\tilde{p}_j = \min[(m-j+1) \cdot p_j, 1]$$

- \triangleright The point here is that we don't multiply every p_i by the same factor m
- For example, when m = 10000:

$$\tilde{p}_1 = 10000 \bullet p_1, \, \tilde{p}_2 = 9999 \bullet p_2, ..., \, \tilde{p}_m = 1 \bullet p_m$$

Who Cares About Not Making ANY Type I Errors?

 FWER is appropriate when you want to guard against ANY false positives

• However, in many cases (particularly in genomics) we can live with a certain number of false positives

• In these cases, the more relevant quantity to control is the false discovery rate (FDR)

False Discovery Rate

	Null –	Alternative	- .
	True	True	Total
Not Called Significant	U	T	m - R
Called Significant	V	S	R
	m_0	<i>m-m</i> ₀	т

V = # Type I errors [false positives]

• False discovery rate (FDR) is designed to control the proportion of false positives **among the set of rejected hypotheses** (R)

FDR vs FPR

	Null	Alternative	
	True	True	Total
Not Called Significant	U	<i>T</i>	m - R
Called Significant	V	S	R
	m_0	<i>m-m</i> ₀	m

$$FDR = \frac{V}{R} \text{ folse positive } FPR = \frac{V}{m_0}$$

प्रीय एकेल, FDR = F[Q] = F[K] where K = 0 when K = 0.

Benjamini and Hochberg FDR

- To control FDR at level δ :
 - 1. Order the unadjusted p-values: $p_1 \le p_2 \le ... \le p_m$
 - 2. Then find the test with the highest rank, j, for which the p value, p_i , is less than or equal to $(j/m) \times \delta$
 - 3. Declare the tests of rank 1, 2, ..., j as significant

$$p(j) \le \delta \frac{j}{m}$$

B&H FDR Example

Controlling the FDR at δ = 0.05

Rank (j)	P-value	(j/m)× δ	Reject H ₀ ?
1	0.0008 <	0.005	1
2	0.009 <	0.010	1
3	0.165	0.015	0
4	0.205	0.020	0
5	0.396	0.025	0
6	0.450	0.030	0
7	0.641	0.035	0
8	0.781	0.040	0
9	0.900	0.045	0
10	0.993	0.050	0

Storey's positive FDR (pFDR)

BH:
$$FDR = E\left[\frac{V}{R} \mid R > 0\right]P(R > 0)$$

Storey:
$$pFDR = E\left[\frac{V}{R} \mid R > 0\right]$$

- Since P(R > 0) is ~ 1 in most genomics experiments FDR and pFDR are very similar
- Omitting P(R > 0) facilitated development of a measure of significance in terms of the FDR for each hypothesis

What's a q-value?

- q-value is defined as the minimum FDR that can be attained when calling that "feature" significant (i.e., expected proportion of false positives incurred when calling that feature significant)
- The estimated q-value is a function of the p-value for that test and the distribution of the entire set of p-values from the family of tests being considered (Storey and Tibshiriani 2003)

• Thus, in an array study testing for differential expression, if gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives

 Under the null hypothesis p-values are expected to be uniformly distributed between 0 and 1

• Under the alternative hypothesis p-values are skewed towards 0

 Combined distribution is a mixture of p-values from the null and alternative hypotheses

• For p-values greater than say 0.5, we can assume they mostly represent observations from the null hypothesis

Definition of π_0

• $\hat{\pi}_0$ is the proportion of truly null tests:

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda; i = 1, 2, ..., m\}}{m(1 - \lambda)}$$

• 1 - $\hat{\pi}_0$ is the proportion of truly alternative tests (very useful!)