MATH 307: Individual Homework 4

Shaochen (Henry) ZHONG, sxz517@case.edu

Due and submitted on 02/17/2021 Spring 2021, Dr. Guo

Problem 1

Textbook page 40, problem 1.

For W to be a vector space, we must have
$$(u+v) \in W$$
 for $u,v \in W$. However for $u=v=\begin{bmatrix} 2\\2\\2\\2 \end{bmatrix}$,

we have $(u+v)=\begin{bmatrix} 4\\4\\4\\4\\4 \end{bmatrix}$; which is $\not\in W$ as $|x_j|\not<3$ for $i\le j\le 4$. Thus, we may conclude that W is not a vector space.

Problem 2

Textbook page 40, problem 5.

For $W \in \mathbb{R}^3$: x + 20y - 12z - 1 = 0 for x, y, z as elements of W to be a vector space, we must have a zero vector 0 where 0 + u = u for $u \in W$. In this case the zero vector is $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ but it is $\notin W$ as $0 + 20(0) - 12(0) - 1 \neq 0$. Thus, we may conclude that W is not a vector space.

Problem 3

See HW instruction.

For matrices $M, N \in A$, we know that tr(M) = tr(N) = 0. Since the trace of a matrix is only about its diagonal elements, lets assume we have the $tr(M) = M_{11} + M_{22} + ... + M_{nn} = 0$ and $tr(N) = N_{11} + N_{22} + ... + N_{nn} = 0$ (where the subscript is the index of element). Also assume we have scalar $\lambda \in F$. Since we already know that $F^{n \times n}$ is a vector space over F, we have:

1.
$$M + N \in A$$
 as $tr(M + N) = (M_{11} + N_{11}) + (M_{22} + N_{22}) + ... + (M_{nn} + N_{nn}) = 0$.

2.
$$\lambda M \in A \text{ as } tr(\lambda M) = \lambda (M_{11} + M_{22} + ... + M_{nn}) = 0.$$

3. Zero vector
$$0 \in A$$
 as $tr(0) = 0 + 0 + ... + 0 = 0$.

Thus, we may conclude that A is a subspace of $F^{n \times n}$ over F.