Picture de interacción y perturbación dependiente del tiempo

Puédense escribir perturbaciones dependientes del tiempo

$$H = H_0 + V(t)$$

 $\operatorname{con}|n\rangle$ no dependiente del tiempo. Se estudiarán transiciones entre autoestados del H_0 (que son estacionarios). Un autoestado permanece en el tiemo como tal pero con fase oscilante

$$\begin{split} \left|\alpha,t_{0},t\right\rangle_{s} &= \mathrm{e}^{-iH/\hbar(t-t_{0})}\left|\alpha,t_{0}\right\rangle_{s} \\ &= \mathrm{e}^{-iH/\hbar(t-t_{0})}\,\mathrm{e}^{-iV(t)/\hbar(t-t_{0})}\left|\alpha,t_{0}\right\rangle \\ &= \sum_{n}\,\mathrm{e}^{-iH_{0}/\hbar\,t}\,\mathrm{e}^{-iV(t)/\hbar\,t}\left|n\right\rangle\left\langle n\left|\alpha,t_{0}\right\rangle \\ \\ &= \sum_{n}\,\mathrm{e}^{-iE_{n}^{0}/\hbar\,t}\left|n\right\rangle\,\mathrm{e}^{-iV(t)/\hbar\,t}\left\langle n\left|\alpha,t_{0}\right\rangle \\ \\ &\mathrm{e}^{iH_{0}/\hbar t}\left|\alpha,t_{0},t\right\rangle_{s} = \sum_{n}\underbrace{\mathrm{e}^{-iV(t)/\hbar\,t}\left\langle n\left|\alpha,t_{0}\right\rangle}_{C_{n}(t)}\left|n\right\rangle = \left|\alpha,t_{0},t\right\rangle_{I} \end{split}$$

es decir

$$|\alpha, t_0, t\rangle_I = e^{iH_0/\hbar t} |\alpha, t_0, t\rangle_s$$

Aquí se puede pensar que

- $C_n(t)$ evoluciona por V(t)

•
$$e^{-iE_n^0t/\hbar}$$
 evoluciona por H_0

Esto introduce la *picture* de interacción de Dirac; en la cual los estados evolucionan con V(t).

	Dirac	Schrödinger	Heinsenberg
estados	evolucionan	evolucionan	fijos
$ \alpha\rangle$	$\operatorname{con} V(t)$	$\operatorname{con} H$	
operadores	evolucionan	fijos	evolucionan
	$con H_0$		$\operatorname{con} H$
base	fijos	fijos	evolucionan
$ a'\rangle$			

$$\begin{split} i\hbar\frac{\partial}{\partial t}\left|\alpha,t_{0},t\right\rangle_{s}&=H\left|\alpha,t_{0},t\right\rangle_{s}\\ i\hbar\frac{\partial}{\partial t}\left(\left.\mathrm{e}^{-iH_{0}t/\hbar}\left|\alpha,t_{0},t\right\rangle_{I}\right)&=H\left.\mathrm{e}^{-iH_{0}t/\hbar}\left|\alpha,t_{0},t\right\rangle_{I}\\ i\hbar\left.\mathrm{e}^{-iH_{0}t/\hbar}\frac{\partial}{\partial t}\left|\alpha,t_{0},t\right\rangle_{I}&=V(t)\left.\mathrm{e}^{-iH_{0}t/\hbar}\left|\alpha,t_{0},t\right\rangle_{I}\\ i\hbar\frac{\partial}{\partial t}\left|\alpha,t_{0},t\right\rangle_{I}&=V(t)\left|\alpha,t_{0},t\right\rangle_{I}, \end{split}$$

que es la ecuación de evolución de los kets. Pediremos asimismo que

$$_{s}\left\langle A_{s}\right\rangle _{s}=_{I}\left\langle A_{I}\right\rangle _{I}$$

$$_{I}\left\langle \alpha,t_{0},t\mid A_{I}\mid \alpha,t_{0},t\right\rangle _{I}=_{s}\left\langle \alpha,t_{0},t\mid \,\mathrm{e}^{-iH_{0}t/\hbar}A_{I}\,\mathrm{e}^{iH_{0}t/\hbar}\left\mid \alpha,t_{0},t\right\rangle _{s}=_{s}\left\langle \alpha,t_{0},t\mid A_{s}\mid A_$$

Y los operadores evolucionan según

$$\begin{split} A_I &= \mathrm{e}^{iH_0t/\hbar} A_s \, \mathrm{e}^{-iH_0t/\hbar} \\ \frac{dA_I}{dt} &= \frac{1}{i\hbar} [A_I, H_0] \end{split}$$

que es igual que la ecuación de Heisenberg pero con \hat{H}_0 en lugar de H. Los kets base permanecen fijos, porque así lo hacen en Schrödinger, en realidad oscila su fase; entonces

$$\begin{split} \left|n,t_{0},t\right\rangle_{s} &= \,\mathrm{e}^{-iHt/\hbar}\left|n,t_{0}\right\rangle_{s} \\ \left|n,t_{0},t\right\rangle_{I} &= \,\mathrm{e}^{iH_{0}t/\hbar}\,\mathrm{e}^{-iHt/\hbar}\left|n,t_{0}\right\rangle_{s} = \,\mathrm{e}^{-iVt/\hbar}\left|n,t_{0}\right\rangle_{s} = \,\mathrm{e}^{iH_{0}t/\hbar}\left|n,t_{0}\right\rangle_{s} \\ &\left|n,t_{0},t\right\rangle_{I} = \,\mathrm{e}^{iE_{0}t/\hbar}\left|n,t_{0},t\right\rangle_{s} \end{split}$$

1.0.1 Evolución de los coeficientes

$$\begin{split} \left|\alpha,t_{0},t\right\rangle_{I} &= \sum_{n}\left|n\right\rangle\left\langle n\left|\,\alpha,t_{0},t\right\rangle_{I} = \sum_{n}C_{n}(t)\left|n\right\rangle \\ \\ C_{n}(t) &= \left.\mathrm{e}^{iVt/\hbar}\left\langle n\left|\,\alpha,t_{0}\right\rangle_{s} \right. \\ \\ &\left\langle n\left|\,\alpha,t_{0},t\right\rangle_{I} = C_{m}(t) \end{split}$$

 $\operatorname{con}\left|n\right\rangle,\left|m\right\rangle$ autoestados de $H_{0},$ le pego un $\left\langle n\right|$ a la ecuación de evolución de kets,

$$\begin{split} i\hbar\frac{\partial}{\partial t}\left\langle n\left|\left.\alpha,t_{0},t\right\rangle _{I}=\left\langle n\left|V_{I}(t)\right|\alpha,t_{0},t\right\rangle _{I}\\ &=\sum_{m}\left\langle n\left|V_{I}(t)\right|m\right\rangle \left\langle m\left|\alpha,t_{0},t\right\rangle _{I}\\ &i\hbar\frac{\partial}{\partial t}C_{n}(t)=\sum_{m}C_{m}(t)\left\langle n\left|V_{I}(t)\right|m\right\rangle \\ &i\hbar\frac{\partial}{\partial t}C_{n}(t)=\sum_{m}C_{m}(t)\left\langle n\left|V_{s}\right|m\right\rangle \,\mathrm{e}^{it(E_{n}-E_{m})/\hbar}\\ &i\hbar\frac{\partial}{\partial t}C_{n}(t)=\sum_{m}C_{m}(t)V_{nm}(t)\,\mathrm{e}^{i\omega_{nm}t} \end{split}$$

donde $V_{nm}(t) \equiv \langle n \, | \, V(t) \, | \, m \rangle$ y $\omega_{nm} \equiv (E_n - E_m)/\hbar$. Esta es la ecuación que cumplen los coeficientes, donde $|C_n(t)|^2$ es la probabilidad de hallar al sistema en el autoestado $|n\rangle$. Es decir

$$i\hbar \begin{pmatrix} \dot{c}_1 \\ \dot{c}_2 \\ \dots \\ \dot{c}_N \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12} \, \mathrm{e}^{i\omega_{12}} & \dots \\ V_{21} \, \mathrm{e}^{i\omega_{21}} & V_{22} & \dots \\ \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_N \end{pmatrix}$$

que puede ser de difícil solución.

1.0.2 Método perturbativo (dependiente del tiempo)

Pensaremos en una serie perturbativa

$$C_n(t) = C_n(t)^{(0)} + C_n(t)^{(1)} + C_n(t)^{(2)} + \dots$$

El evolucionador temporal en la picture de interacción cumple

$$\left|\alpha,t_{0},t\right\rangle =U_{I}(t,t_{0})\left|\alpha,t_{0}\right\rangle _{I}$$

que viene de

$$i\hbar\frac{d}{dt}U_I(t,t_0)=V_I(t)U_I(t,t_0)$$

con $U(t_0,t_0)=\mathbb{1}$ la cual resolviendo nos hace llegar a

$$U_{I}(t, t_{0}) = 1 - \frac{i}{\hbar} \int_{t_{0}}^{t} V_{I}(t') U_{I}(t', t_{0}) dt'$$

y esto lleva a la serie de Dyson:

$$\begin{split} &U_I(t,t_0) = \mathbb{1} - \frac{i}{\hbar} \int V_I(t') dt' + \left(-\frac{i}{\hbar} \right)^2 \int_{t_0}^t V_I(t') \int_{t_0}^{t'} V_I(t'') dt'' + \dots \\ &+ \left(-\frac{i}{\hbar} \right)^n \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' \int_{t_0}^{t''} dt''' \dots \int_{t_0}^{t^{n-1}} dt^n V_I(t') V_I(t'') \dots V_I(t^n) \end{split}$$

1.0.3 Transiciones entre autoestados del hamiltoniano H_0

$$\left|i,t_{0}=0,t\right\rangle _{I}=U_{I}(t,0)\left|i\right\rangle =\sum_{n}\left|n\right\rangle \left\langle n\left|\right.U_{I}(t)\left|\left.i\right\rangle \right.$$

y como se viera oportunamente

$$\left|i,t\right\rangle_{I}=\sum_{n}C_{n}(t)\left|n\right\rangle =\sum_{n}\left(\left\langle n\left|U_{I}(t)\right|i\right\rangle \right)\left|n\right\rangle$$

La amplitud de transición será

$$C_n(t) = \langle n \, | \, U_I(t) \, | \, i \rangle$$

con \ket{i},\ket{n} autoestados de $H_0.$ Sea $\tilde{C}_n(t)=\langle n\,|\,U_s(t)\,|\,i\rangle$ y busquemos una expresión

$$\begin{split} \left|\alpha,t_{0},t\right\rangle_{I} &= \left.\mathrm{e}^{iH_{0}t/\hbar}\left|\alpha,t_{0},t\right\rangle_{s} \\ &= \left.\mathrm{e}^{iH_{0}t/\hbar}U_{S}(t,t_{0})\left|\alpha,t_{0}\right\rangle_{s} \\ \\ \left|\alpha,t_{0},t\right\rangle_{I} &= \left.\mathrm{e}^{iH_{0}t/\hbar}U_{S}(t,t_{0})\left.\mathrm{e}^{-iH_{0}t_{0}/\hbar}\left|\alpha,t_{0}\right\rangle_{I} = U_{I}(t,t_{0})\left|\alpha,t_{0}\right\rangle_{I} \\ \\ &\left.\mathrm{e}^{iH_{0}t/\hbar}\hat{U}_{S}\left.\mathrm{e}^{-iH_{0}t_{0}/\hbar} = \hat{U}_{I} \right. \end{split}$$

y notemos que \hat{U} no obedece la ley de transformación de operadores.

$$C_n(t) = \langle n \mid e^{iH_0t/\hbar} U_S(t, t_0) e^{-iH_0t_0/\hbar} \mid i \rangle$$

$$\begin{split} C_n(t) = \, \mathrm{e}^{-i/\hbar[E_n^{(0)}t - E_i^{(0)}t_0]} \, \langle n \, | \, U_S(t,t_0) \, | \, i \rangle = \, \mathrm{e}^{-i/\hbar[E_n^{(0)}t - E_i^{(0)}t_0]} \tilde{C}_n(t) \\ \Rightarrow |C_n(t)|^2 = |\tilde{C}_n(t)|^2. \end{split}$$

Para transiciones entre autoestados de H_0 los coeficientes dan la misma probabilidad (evaluados con el evolucionador de Dirac que con el de Schrödinger). Vamos a las transiciones a los tres

• orden 0

$$C_n^{(0)}(t) = \langle n \mid 1 \mid i \rangle = \delta_{ni}$$

• orden 1

$$C_n^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^t \mathrm{e}^{i\omega_{ni}} V_{n\,i}(t') dt' \qquad \qquad V_{n\,i} \equiv \langle n \, | \, V\!(t) \, | \, i \rangle$$

• orden 2

$$C_n^{(2)}(t) = \sum_m \left(-\frac{i}{\hbar} \right)^2 \int_0^t dt' \int_0^t dt'' \mathrm{e}^{it'/\hbar(E_n - E_m)} V_{nm}(t') \mathrm{e}^{it''/\hbar(E_m - E_i)} V_{mi}(t'')$$

y entonces la probabilidad de ir desde $|keti \rightarrow |i\rangle$, hasta orden dos, sería

$$P_{i\to n}^{(2)} = |C_n^{(0)}(t) + C_n^{(1)}(t) + C_n^{(2)}(t)|^2$$

1.0.4 Ejemplo: potencial constante encendido abruptamente

Notemos que $V \neq V(t)$. Dependerá de cualquier otra cosa.

a

b

Es máxima la probabilidad cuando $\Delta E \to 0$. En ese caso las transiciones son a estados de la misma energía. A tiempo largo la probabilidad es no nula para aquellos estados

$$t \sim \frac{2\pi}{|\omega_{ni}|}$$

Hay probababilidad de transición $|i\rangle \rightarrow |n\rangle$ apreciable con $\Delta E \sim 0$.

Figura 0.1

1.1 Scattering: orden 1

Este último ejemplo puede aplicarse a colisiones elásticas. Prendemos y apagamos un potencial que es el masacote al cual impactamos. De entrada ha partículas libres y de salida (lejos de V) partículas libres. Entonces $E_n-E_c\sim 0$ y consideraremos lo que sucede a tiempos largos. Interesará la probabilidad total de transicionear a estados de energía similares a E_i . Por ello se considera

donde el integrando es el número de estados dentro de un intervalo de energías (E,E+dE). En tiempos muy largos la expresión [1] tiende a una delta de Dirac

Figura 1.2

y se integra fácil,

La probabilidad de transición es proporcional a *t*. Se suele definir una tasa de transición (probabilidad de transición por unidad de tiempo)

$$\frac{d}{dt}\left(\sum_{n(E_n\sim E_i)}|C_n^1|^2\right)=$$

que es la regla de oro de Fermi.

1.2 El método variacional

Se puede usar para aproximar la energía del estado fundamental (el estado de energía mínima)

y usamos

$$\frac{|}{|} \ge E_0$$

1.2.1 Scattering a orden dos y OFPT

Continuando con el orden dos de scattering por un $V \neq V(t)$ se tiene:

 ω

Para obtener los siguientes términos dentro del $|\bar{|}^2$ podemos emplear un ardid gráfico conocido como *Old Fashioned Perturbation Theory*

Figura 2.3

Fíjese que en los estados intermedios estados virtuales $|m\rangle\,,|j\rangle$ no se conserva la energía. Son propagadores.

1.2.2 Perturbación armónica

Sea un potencial armónico y hermítico

$$V(t) =$$

quiero ver probabilidad de transición a orden uno,

$$C_n(t)^1 =$$
 a
 b
 c

 ω

1) se emita
un foton
lini>
lini>

Luego será nulo sólo si

Figura 2.4

Luego,

 \lim

representa la probababilidad de emitir o absorber fotones en una interacción. Se puede asociar que V crea fotones y V^\dagger destruye fotones. Para un átomo se tiene

Figura 2.5

1.3 Despoblamiento de estados iniciales

Queremos ver con cual v se despoblan los $|i\rangle.$ Para elllo me construyo un potencial suave

lim

donde η es un parámetro regularizador.

Figura 3.6

a

b

c

y tomando el límite $\eta \to 0$

d

y llegamos a la regla de oro de Fermi,

d

1.3.1 Scattering sección eficaz

 $\left|k\right\rangle,\left|k\right\rangle'$ son autoestados de momento (partículas libres),

$$|\mathbf{k}| = |\mathbf{k}'|$$

se conserva la energía. Consideraremos la aproximación más baja (aproximación de Born).

Figura 3.7

queremos calcular la densidad de estados de energía entre (E, E+dE). Pensamos en una partícula libre en una caja 1D de longitud L.

N

pidiendo normalización unitaria $\langle k \mid k \rangle = 1$ se tiene

d

con $L\to\pm\infty$ son n_x,k_x continuas.

d

d

donde $n^2\,dn\,d\Omega$ es la densidad de estados de energía (E,E+dE) en $d\Omega$

$$n^2 dn d\Omega = \rho(E') dE'$$

Con esto sale la integral obteniéndose

$$\omega_{\mathbf{k}-\mathbf{k}'} = \frac{L^3}{(2\pi)^2} \frac{m}{\hbar^3} \left| \left\langle \mathbf{k}' \, \middle| \, V \, \middle| \, \mathbf{k} \right\rangle \right|^2 k' d\Omega$$

Esta es la probabilidad de transición entre los impulsos \mathbf{k} , \mathbf{k}' . Es el número de partículas en la unidad de tiempo por unidad de área

 ${\rm seccion~eficaz} \equiv \frac{d\sigma}{d\Omega} d\Omega = \frac{\text{\# de part en } d\Omega \text{ en la unidad de t}}{\text{\# de part incidentes en la unidad de t por unidad de área}}$

Un elemento de matriz $\langle k' | V | k \rangle$ será

$$\left\langle \mathbf{k}' \,\middle|\, V \,\middle|\, \mathbf{k} \right\rangle = \int dx' \,\left\langle \mathbf{k}' \,\middle|\, \mathbf{x}' \right\rangle \left\langle \mathbf{x}' \,\middle|\, V \,\middle|\, \mathbf{k} \right\rangle = \int d\mathbf{x}' \frac{1}{L^3} \, \mathrm{e}^{i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{x}} \, V\!(\mathbf{x}'),$$

Figura 3.8

la transformada de Fourier del potencial es, amén de constantes, la amplitud a primer orden

$$|\mathbf{k} - \mathbf{k}'| = 2k\sin(\theta/2) \qquad \text{con } k = k'$$

Entonces para cualquier potencial esféricamente simétrico se puede hacer la integral

$$\frac{d\sigma}{d\Omega} = \left| \left(\frac{2m}{4\pi\hbar} \right)^2 \int d^3x' \ V(x) e^{i(\mathbf{x} - \mathbf{x}') \cdot \mathbf{x}'} \right|^2$$

y expresamos todo en función de $q=q(\theta)$

$$\frac{d\sigma}{d\Omega} = \left| -\frac{2m}{\hbar^2} \frac{1}{q} \int_0^\infty r V\!(r) \sin(q) dr \right|^2$$

Utilizando un potencial de Yukawa primero y tomando el límite para llegar al de Coulomb tenemos la sección eficaz de Rutherford

$$\frac{d\sigma}{d\Omega} = \frac{2m^2e^4}{\hbar^4} \frac{1}{16k^4 \sin^4(\theta/2)}$$

hay que tomar el potencial de Yukawa y luego el límite porque el de Coulomb diverge de entrada