① Veröffentlichungsnummer: 0 537 463 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92114978.7

(51) Int. Cl.5: **A01N 25/00**, C07D 471/04, //(C07D471/04,239:00,221:00)

2 Anmeldetag: 02.09.92

3 Priorität: 18.09.91 DE 4131029

43 Veröffentlichungstag der Anmeldung: 21.04.93 Patentblatt 93/16

(84) Benannte Vertragsstaaten: AT BE CH DE DK FR GB IT LI NL

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

(72) Erfinder: Bratz, Matthias, Dr. Schwabsgasse 2 W-6720 Speyer(DE) Erfinder: Kober, Reiner, Dr. Im Schlittweg 20

W-6701 Fussgoenheim(DE) Erfinder: Seele, Rainer, Dr.

Sonnenbergstrasse 1 W-6701 Ellerstadt(DE)

Erfinder: Saupe, Thomas, Dr.

Kressenwiesenweg 13 W-6902 Sandhausen(DE)

Erfinder: Meyer, Norbert, Dr. Dossenheimer Weg 22

W-6802 Ladenburg(DE)

Erfinder: Walker, Nigel, Dr.

Frauenpfad 20

W-6915 Dossenheim(DE)

Erfinder: Landes, Andreas, Dr.

Untere Hart 12

W-6703 Limburgerhof(DE) Erfinder: Walter, Helmut, Dr.

I

Gruenstadter Strasse 82 W-6719 Obrigheim(DE)

- 54) Substituierte Pyrido(2,3-d)pyrimidine als Antidots.
- F Herbizide Mittel, enthaltend mindestens ein substituiertes Pyrido[2,3-d]pyrimidin I

R1. R2

Wasserstoff; ggf. subst. Alkyl; Alkoxy; Halogenalkoxy; Alkylamino; Alkenyl; Alkinyl; ggf. subst. Cycloalkyl; ggf. subst. Aryl oder Heteroaryl;

Hydroxy; ggf. subst. Amino; Halogen; Alkylthio; Alkoxycarbonyl; oder ein Rest R1;

ein Rest R¹; CN; NO₂; COOH; CSOH; SO₂-R⁶; C(=X)-R⁷; C(=Y)-R⁸, oder R⁷-C(YR⁹)-ZR¹⁰;

ein Rest R1; Hydroxy; ggf. subst. Amino; Halogen; Alkylthio; Pyrrolidin-1-yl; Piperidin-1-yl; Morpholin-1-yl; ggf. subst. Alkylcarbonyloxy; ggf. subst. Alkylsulfonyloxy;

ggf. subst. Aryloxy, Arylamino, Benzyloxy, Benzylamino, Aroyloxy oder Phenylsulfonyloxy; N(R12)-SO₂-NR13; N-(R12)-CO-R14; N(R12)-CS-R14;

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R^1 bis R^5 eine saure oder basische Gruppe bedeutet, und mindestens einen herbiziden Wirkstoff aus

A) der Gruppe der Cyclohexenon-Derivate II, oder

B) der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate III.

Die vorliegende Erfindung betrifft herbizide Mittel, enthaltend mindestens ein antagonistisch wirksames substituiertes Pyrido[2,3-d]pyrimidin der allgemeinen Formel I

5

10

in der die Variablen folgende Bedeutung haben: R^1 , R^2

Wasserstoff; C₁-C₈-Alkyl; C₁-C₈-Halogenalkyl; C₁-C₆-Alkoxy; C₁-C₆-Halogenalkoxy; C₁-C₄-Alkoxy-C₁-C₆alkyl; C_1 - C_8 -Alkylamino; C_2 - C_8 -Alkenyl; C_2 - C_8 -Alkinyl;

C₃-C₈-Cycloalkyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und C₁-C₄-Alkylthio:

Phenyl, Naphthyl, Phenyl-C₁-C₆-alkyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C1-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylthio, C_3 - C_6 -Alkenyl und C_3 - C_6 -Alkinyl;

R⁴

30

35

40

45

50

Hydroxy; Amino; Halogen; C_1-C_6 -Alkylthio; Di- $(C_1-C_8$ -alkyl)-amino; C_3-C_8 -Cycloalkylamino; C_1-C_8 -Alkoxycarbonyl; oder eine der für R¹ genannten Gruppen;

eine der für R1 genannten Gruppen;

CN; NO₂; COOH; CSOH; Di-(C₁-C₄-alkyl)-amino-C₁-C₄-alkyl;

 SO_2-R^6 ; $C(=X)-R^7$; $C(=Y)-R^8$, oder $R^7-C(YR^9)-ZR^{10}$;

 R^6 eine der für R¹ genannten Gruppen; Hydroxy; Amino; Di-(C₁-C₈-alkyl)-amino; C₃-C₈-

Cycloalkylamino; C₁-C₆-Alkylthio;

 R^7 Amino; Oxyamino (-NH-OH); C₁-C₈-Alkylamino; Di-(C₁-C₈-alkyl)-amino; C₃-C₈-Cycloalky-

lamino; C₁-C₈-Alkoxy; C₁-C₆-Alkylthio; Phenylamino;

 R^8 eine der für R¹ genannten Gruppen;

R9.R10 C₁-C₈-Alkyl; C₁-C₆-Halogenalkyl; C₁-C₄-Alkoxy-C₂-C₆-alkyl; C₂-C₈-Alkenyl; oder

 R^{9} und R^{10} gemeinsam -CH2CH2-, -CH2CH2CH2- oder -CH2CH2CH2CH2-, wobei ein oder zwei

Wasserstoffatome in diesen Gruppen durch die folgenden Reste ersetzt sein können:

= O, C_1 - C_8 -Alkyl, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Alkoxy;

Χ Sauerstoff, Schwefel oder NR11, worin

 R^{11} für eine der für R1 genannten Gruppen steht, oder die folgende Bedeutung hat:

Wasserstoff; Hydroxy; Amino; Di-(C₁-C₈-alkyl)-amino; C₃-C₈-Cycloalkylamino;

Phenoxy, Naphthyloxy, Phenylamino oder Naphthylamino, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C1-C4-Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -

Alkylthio, C₃-C₆-Alkenyl und C₃-C₆-Alkinyl;

Sauerstoff oder Schwefel;

 R^5

eine der für R¹ genannten Gruppen;

Hydroxy; Amino; Halogen; C₁-C₆-Alkylthio; Di-(C₁-C₈-alkyl)-amino; C₃-C₈-Cycloalkylamino; Pyrrolidin-1-yl; Piperidin-1-yl; Morpholin-1-yl; C₁-C₈-Alkylcarbonyloxy; C₁-C₄-Halogenalkylcarbonyloxy; C₁-C₈-Alkylsulfonyloxy; C_1 - C_8 -Halogenalkylsulfonyloxy;

Phenoxy, Naphthyloxy, Phenylamino, Naphthylamino, Benzyloxy, Benzylamino, Benzyloxy, 2-Naphthoyloxy oder Phenylsulfonyloxy, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen

können: Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy; $N(R^{12})$ - SO_2 - R^{13} ; $N(R^{12})$ -CO- R^{14} ; $N(R^{12})$ -CS- R^{14} ;

R¹² Wasserstoff; C₁-C₄-Alkyl; Phenyl, welches ein bis drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und C₁-C₄-Alkoxy;

R¹³ eine der für R¹ genannten Gruppen; Amino, Di-(C₁-Cଃ-alkyl)-amino oder C₃-Cଃ-Cycloalkylamino;

R¹⁴ eine der für R¹ genannten Gruppen;

Amino; Oxyamino (-NH-OH); Di-(C₁-C₆-alkyl)-amino; C₃-C₈-Cycloalkylamino;

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R¹ bis R⁵ eine saure oder basische Gruppe bedeutet,

o und mindestens einen herbiziden Wirkstoff aus

A) der Gruppe der Cyclohexenon-Derivate der allgemeinen Formel II,

R^c OR^b N-O-W-R^f

20

15

5

in der die Substituenten die folgende Bedeutung haben:

 R^{a}

 C_1 - C_6 -Alkyl;

25 R^b

Wasserstoff:

das Äquivalent eines landwirtschaftlich brauchbaren Kations;

 C_1 - C_8 -Alkylcarbonyl; C_1 - C_{10} -Alkylsulfonyl; C_1 - C_{10} -Alkylphosphonyl;

Benzoyl, Benzolsulfonyl oder Benzolphosphonyl, wobei die aromatischen Ringe ein bis fünf Halogenatome tragen können;

 R^c

30

40

Wasserstoff; CN; CHO;

 C_1 - C_6 -Alkyl, welches einen der folgenden Reste tragen kann: C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Phenyloxy, Phenylthio, Pyridyloxy oder Pyridylthio, wobei die aromatischen Reste ihrerseits ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyl, C_3 - C_6 -Alkinyloxy oder NR^9R^h ;

R^g Wasserstoff; C₁-C₄-Alkyl; C₃-C₆-Alkenyl; C₃-C₆-Alkinyl; C₁-C₆-Alkylcarbonyl; Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylthio;

 R^h Wasserstoff; C_1-C_4 -Alkyl; C_3-C_6 -Alkenyl; C_3-C_6 -Alkinyl;

R^c bedeutet desweiteren:

 C_3 - C_7 -Cycloalkyl oder C_5 - C_7 -Cycloalkenyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 - C_4 -Alkylsulfonyl, C_1 - C_4 -

5-gliedrige gesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: C_1-C_4 -Alkyl, C_1-C_4 -Alkyl, C_1-C_4 -Alkyl, C_1-C_4 -Alkyl, C_1-C_4 -Alkyl, C_1 -C4-Alkyl, C_1 -C4-Alkyl,

6- oder 7-gliedrige gesättigte oder ein- oder zweifach ungesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylthio;

5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_2 - C_6 -Alkinyl, C_2 - C_6 -Alkinyloxy und C_1 - C_4 -Alkoxy- C_1 - C_4

Phenyl oder Pyridyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Nitro, Formyl,

Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyloxy und NR^kR^l ;

 R^k Wasserstoff; C_1-C_4 -AlkvI; C_3-C_6 -AlkenvI; C_3-C_6 -AlkinvI;

 $R^{l} \qquad \text{Wasserstoff; } C_1-C_4-\text{AlkyI; } C_3-C_6-\text{AlkenyI; } C_3-C_6-\text{AlkinyI; } C_1-C_6-\text{AlkyIcarbonyI; }$

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy und C_1 - C_4 -Alkylthio;

 R^d

Wasserstoff; Hydroxy;

oder, sofern R^c für C₁-C₆-Alkyl steht, ebenfalls C₁-C₆-Alkyl;

n R∈

5

Wasserstoff; Cyano; Halogen; C₁-C₄-Alkoxycarbonyl;

C₁-C₄-Alkylketoxim;

W

 C_1 - C_6 -Alkylen, C_3 - C_6 -Alkenylen oder Alkinylen, wobei diese Gruppen X^1 eine Methylengruppe (= CH_2) und/oder ein bis drei der folgenden Reste tragen können: Halogen und C_1 - C_3 -Alkyl;

 C_3 - C_6 -Alkylen oder C_3 - C_6 -Alkenylen, wobei in diesen Resten jeweils eine Methylengruppe durch Sauerstoff, Schwefel, SO, SO₂ oder NRⁱ ersetzt ist, und wobei in diesen Gruppen ein bis drei Wasserstoffatome durch C_1 - C_3 -Alkylreste ersetzt sein können;

Ri Wasserstoff; C₁-C₄-Alkyl; C₃-C₆-Alkenyl; C₃-C₆-Alkinyl;

 R^f

20

25

30

Wasserstoff; CH = CH-Z1, worin

Z¹ Wasserstoff; Cyano; Carboxyl; Halogen; C₁-C₄-Alkyl; C₁-C₄-Halogenalkyl; C₁-C₄-Alkoxy; C₁-C₈-Alkoxycarbonyl; Benzyloxycarbonyl;

 C_3 - C_6 -Cycloalkyl, welches seinerseits ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy;

Phenyl, Halogenphenyl, Dihalogenphenyl, Thienyl oder Pyridyl, wobei dieser Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder C_3 - C_6 -Cycloalkyl, wobei der cyclische Rest seinerseits noch ein bis drei der folgenden Gruppen tragen kann: Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy, bedeutet;

Rf bedeutet ferner

Ethinyl, welches einen der folgenden Reste tragen kann: C_1 - C_4 -Alkyl oder C_3 - C_6 -Cyckloalkyl, wobei diese Gruppen desweiteren ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy;

Ethinyl, welches einen der folgenden Reste trägt: Phenyl, Thienyl oder Pyridyl, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und C₁-C₄-Alkylthio;

Phenyl, Halogenphenyl, Dihalogenphenyl, 5-gliedrige romatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, oder 6-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein bis vier Stickstoffatome enthalten, wobei diese aromatischen und heteroaromatischen Gruppen ein bis drei der folgenden Reste tragen können: Nitro, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, die bei Z¹ genannten oder

B) der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III

45

50

in der die Substituenten die folgende Bedeutung haben:

Phenyl, Pyridyl, Benzoxazolyl, Benzthiazolyl oder Benzpyrazinyl, wobei diese aromatischen und heteroaromatischen Ringsysteme ein oder zwei der folgenden Reste tragen können: Nitro, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und C₁-C₄-Alkylthio;

Wasserstoff oder Methyl;

 \mathbf{R}^{q}

5

10

15

35

40

Wasserstoff; C_1 - C_4 -Alkyl; C_3 - C_4 -Alkenyl; C_3 - C_4 -Alkinyl; C_1 - C_4 -Alkoxy- C_1 - C_4 -alkyl; C_3 - C_4 -Alkylideniminooxy- C_2 - C_3 -alkyl; Tetrahydrofuranylmethyl; Isoxazolidinyl;

oder das Äquivalent eines landwirtschaftlich brauchbaren Kations.

Außerdem betrifft die Erfindung Verfahren zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs auf Anbauflächen von Kulturpflanzen mit diesen herbiziden Mitteln sowie neue Pyrido[2,3-d]pyrimidine I'.

Substituierte Pyrido[2,3-d]pyrimidine vom Typ der Verbindungen I sind sind bereits aus folgenden Druckschriften bekannt:

- W.J. Irwin et al., J. Chem. Soc. (C), 1745, (1967);
- Shinsaku Minami et al., Chem. Pharm. Bull. 19, 1483 (1971) [R3 = Hydroxyl];
- Sadao Nishigaki et al., Chem. Pharm. Bull. 18, 1385 (1970);
- Rizkalla et al., J. Org. Chem. 37, 3980 (1972) [R3 = Hydroxyl];
- Evans et al., J. Org. Chem. 40, 1438 (1975);
- Söllhuber-Kretzer et al., Arch. Pharm. 316, 346 (1983);
- Nishino et al., Bull chem. Soc. Jpn. 45, 1127 (1972);
- Bredereck et al., Chem. Ber. 96, 1868 (1963);
- Bennett et al., J. Med. Chem. 24, 382 (1981);
- EP-A 329 012;
- EP-A 18 151 [6-Aryl-7-amino-pyrido[2,3-d]pyrimidine als blutdrucksenkende Mittel];

Eine antidotische oder antagonistische Wirkung der bekannten Verbindungen in Kombination mit herbiziden Wirkstoffen ist den genannten Druckschriften jedoch nicht zu entnehmen.

Aufgabe der vorliegenden Erfindung war es, herbizide Mittel bereitzustellen, die eine gute Bekämpfung unerwünschter Pflanzen gewährleisten, ohne jedoch die Nutzpflanzen nennenswert zu schädigen oder deren Ernteertrag wesentlich herabzusetzen.

Gemäß diese Aufgabe wurden die Eingangs definierten herbiziden Mittel gefunden.

Des weiteren wurden Verfahren zur Behandlung von Pflanzenkulturen mit den antagonistisch wirksamen Verbindungen I und den Herbiziden II oder den Herbiziden III gefunden, wobei es unerheblich ist, ob die Verbindungen I und II oder I und III gemeinsam oder getrennt formuliert und ausgebracht werden und in welcher Reihenfolge die Applikation bei getrennter Ausbringung erfolgt.

Die herbiziden Mittel enthalten mindestens eine antagonistisch wirksame Verbindung I und mindestens eine Herbizid II oder ein Herbizid III.

Es können jedoch noch weitere antagonistisch oder herbizid wirksame Verbindungen in den erfindungsgemäßen herbiziden Mitteln enthalten sein.

Substituierte Pyrido[2,3-d]pyrimidine der Formel I'

in der die Substituenten folgende Bedeutung haben, sind neu:

in der die Reste R^1 , R^2 und R^4 die in vorstehend gegebene Bedeutung haben und R^3 ' und R^5 ' wie folgt definiert sind:

R3'

Halogen; C₁-C₆-Alkylthio; oder eine der für R¹ genannten Gruppen;

50 R⁵

eine der für R1 genannten Gruppen;

Hydroxy; Halogen; C_1 - C_6 -Alkylthio; C_1 - C_8 -Alkylcarbonyloxy; C_1 - C_8 -Alkylsulfonyloxy; Phenoxy; Benzoyloxy; Phenylsulfonyloxy, wobei der aromatische Rest ein bis drei der folgenden Gruppen tragen kann: Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy;

mit der Maßgabe, daß R¹ und R³' nicht gleichzeitig Wasserstoff bedeuten, wenn R² für Wasserstoff oder Phenyl und R⁴ für Phenyl oder R⁵' für Phenyl, Halogenphenyl, Naphthyl oder Pyridyl steht, und mit der Maßgabe, daß die Reste R², R³', R⁴ und R⁵' nicht gleichzeitig Wasserstoff bedeuten, wenn R¹ für Wasserstoff oder Pyridyl steht,

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I', bei denen mindestens einer der Substituenten R¹, R², R³¹, R⁴ und R⁵¹ eine saure oder basische Gruppe bedeutet.

Die substituierten Pyrido[2,3-d]pyrimidine I und I' sind auf verschiedene Weise erhältlich, und zwar vorzugsweise nach einem der folgenden Verfahren:

a) Kondensation von 4-Aminopyrimidinen IV mit Methylencarbonyl-Verbindungen V

20

5

Die Umsetzung erfolgt bevorzugt in an sich bekannter Weise (vgl. Caluwe et al. J.Org. Chem. 1981, 40, 1438-1439) in einem inerten Lösungs- oder Verdünnungsmittel, beispielsweise in Wasser, in einem Alkohol wie Methanol, Ethanol, Propanol, Isopropanol und Ethoxyethanol, in flüssigem Ammoniak, in einem Ether wie Tetrahydrofuran oder Dioxan, in einem aromatischen Kohlenwasserstoff wie Benzol, Toluol, Chlorbenzol und Nitrobenzol, in einem polaren aprotischen Lösungsmittel wie Acetonitril, Dimethylformamid, Dimethylsulfoxid und N-Methylpyrrolidon oder in Gemischen der genannten Lösungsmittel.

Vorteilhaft führt man die Umsetzungen in Gegenwart einer organischen oder anorganischen Base durch, wobei z.B. die Hydroxide, Hydride, Alkoxide, Amide, Carbonate und Hydrogencarbonate der Alkali- und Erdalkalimetalle in Betracht kommen. Besonders eignen sich Alkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid und Kaliumhydroxid, Erdalkalimetallhydroxdide wie Bariumhydroxid und Calciumhydroxid, Alkalimetallhydride wie Natriumhydrid und Kaliumhydrid, Erdalkalimetallhydride wie Calciumhydrid, Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat und Kalium-tert.-butylat, Alkalimetallamide wie Natriumamid und Lithium-diisopropylamid, Alkalimetallcarbonate und -hydrogencarbonate wie Natriumbicarbonat, Natriumhydrogencarbonat, Kaliumbicarbonat und Kaliumhydrogencarbonat. Unter den organische Basen sind aliphatische Amine wie Triethylamin, Dimethylamin, Diethylamin, und Diisopropylamin, cycloaliphatische Amine wie Piperidin, Morpholin, Pyrrolidin, DBU und DABCO sowie aromatische Amine wie Pyridin, N,N-Dimethylaminopyridin und Chinolin besonders bevorzugt.

Verwendet man ein Amin als Base, so kann auch lösungsmittelfrei in einem Überschuß der Base gearbeitet werden.

Zweckmäßigerweise setzt man Edukte IV und V in etwa stöchiometrischem Verhältnis ein oder man arbeitet mit einem Überschuß an Methylenverbindung V bis ca. 100 mol-%.

Die Menge an Base ist nicht kritisch. Sie beträgt in der Regel 10-50 mol-%, kann jedoch auch im Überschuß eingesetzt werden.

Bei Verwendung einer organischen Base kann ohne Lösungsmittel in einem Überschuß an Base, bis zur etwa 10fachen molaren Menge, bezogen auf das 4-Aminopyrimidin IV, gearbeitet werden.

Im allgemeinen liegt die Reaktionstemperatur zwischen 0 und 200°C, bevorzugt zwischen 20 und 150°C, insbesondere bei etwa 20-30°C (Raumtemperatur) oder bei der Siedetemperatur des jeweiligen Lösungsmittels.

In der Regel arbeitet man unter Atmosphärendruck oder unter dem Eigendruck des Systems. Höherer oder niedrigerer Druck sind möglich, bringen im allgemeinen aber keine Vorteile.

Die verwendeten 4-Aminopyrimidine IV sind aus der Literatur bekannt oder können analog den dort beschriebenen Verfahren dargestellt werden (vgl. z.B. Benett et al., J. Med. Chem. 24, 381-389 (1981) und die dort zitierte Literatur).

55

50

b) Kondensation von 4-Aminopyrimidinen IV mit Acetonitrilen VI und gewünschtenfalls anschließende Derivatisierung der Aminogruppe

- Die Umsetzung erfolgt normalerweise nach an sich bekannten Methoden [vgl. z. B. Benett et al., J. Med. Chem. 24, 381-389 (1981)]. Eine nachfolgende Derivatisierung kann z.B. analog den in der EP-A 329 012 beschrieben Methoden erfolgen.
- c) Umsetzung von 4-Aminopyridinen IV mit Amiden VII [vgl. Söllhuber-Kretzer in Arch. Pharm. 316, 346-352 (1983)]

35

40

45

50

d) Umsetzung von 4-Aminopyrimidinen IV (R^3 , R^3 ' = OC_2H_5) mit CH-aciden Verbindungen VIIIa oder VIIIb nach Art einer Claisen-Kondensation

R⁵ bedeutet vorzugsweise Halogen, besonders bevorzugt Chlor oder C₁-C₄-Alkoxy, insbesondere Ethoxy.

Die Umsetzung erfolgt nach an sich bekannten Methoden [vgl. Bredereck et al., Chem. Ber. 96, 1868-1872 (1963)] in Gegenwart von Natrium oder einem Alkalimetallalkoholat wie Natriummethanolat, Natriumethanolat und Kalium-tert.-butylat.

Bei der Reaktionsführung in Gegenwart von Natrium arbeitet man zweckmäßigerweise ohne Lösungsmittel in einem Überschuß der CH-aciden Verbindung VIIIa oder VIIIb, bis etwa zur 10fachen molaren Menge. Bei der Reaktionsführung in Gegenwart von Alkoholaten empfiehlt es sich als Lösungsmittel den entsprechenden Alkohol zu verwenden, wobei die Edukte IV und VIIIa bzw. VIIIb bevorzugt in etwa stöchiometrischen Mengen eingesetzt werden.

Eine Übersicht über weitere Herstellungsmethoden ist einem Artikel von E. Lunt und C.G. Newton in "Comprehensive Heterocyclic Chemistry" (editors: A. Katritzky und C.W.Rees) Vol. 3, S. 215ff. zu entnehmen. Ferner sei diesbezüglich auf die folgenden Druckschriften verwiesen:

- C.J. Blankley et al., J. Med. Chem. 24, 382-389 (1990),
- M. Söllhuber-Kretzer et al., Arch. d. Pharm. 316, 346-352 (1983),
- P. Caluwe et al., J. Org. Chem. 40, 1438-1439 (1975).

Im Hinblick auf die biologische Wirksamkeit der Verbindungen I als Antidots sind solche Derivate bevorzugt, in denen die Substituenten die folgende Bedeutung haben: R^1 , R^2

Wasserstoff:

30

45

 C_1 - C_8 -Alkyl, besonders C_1 - C_6 -Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, vorzugsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl und 1-Methyl-propyl;

C₁-C₈-Halogenalkyl, besonders C₁-C₄-Halogenalkyl, insbesondere C₁-C₂-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trifluormethyl, Chlorfluormethyl, Dichlormethyl, Dichlormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2-fluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

C₁-C₆-Alkoxy wie Methyloxy, Ethyloxy, Propyloxy, 1-Methylethyloxy, Butyloxy, 1-Methyl-propyloxy, 2-Methylpropyloxy, 1,1-Dimethylethyloxy, Pentyloxy, 1-Methylbutyloxy, 2-Methylbutyloxy, 3-Methylbutyloxy, 2,2-Di-methylpropyloxy, 1-Ethylpropyloxy, Hexyloxy, 1,1-Dimethylpropyloxy, 1,2-Dimethylpropyloxy, 1-Methylpentyloxy, 2-Methylpentyloxy, 3-Methylpentyloxy, 4-Methylpentyloxy, 1,1-Dimethylbutyloxy, 1,2-Dimethylbutyloxy, 1,3-Dimethylbutyloxy, 2,2-Dimethylbutyloxy, 2,3-Dimethylbutyloxy, 3,3-Dimethylbutyloxy, 1-Ethyl-butyloxy, 2-Ethylbutyloxy, 1,1,2-Trimethylpropyloxy, 1,2,2-Trimethylpropyloxy, 1-Ethyl-1-methylpropyloxy und 1-Ethyl-2-methylpropyloxy, insbesondere Chlormethyl, Trichlormethyl und Trifluormethyl; C₁-C₆-Halogenalkoxy, besonders C₁-C₄-Halogenalkoxy, insbesondere C₁-C₂-Halogenalkoxy wie Chlormethyloxy, Dichlormethyloxy, Trichlormethyloxy, Fluormethyloxy, Difluormethyloxy, Trifluormethyloxy, Chlorfluormethyloxy, 1-Fluorethyloxy, 2-Fluorethyloxy, 2,2-Dichlor-2-fluorethyloxy, 2,2,2-Trichlorethyloxy, und Pentafluorethyloxy, insbesondere Trifluormethoxy; C₁-C₄-Alkoxy-C₁-C₆-alkyl steht für durch C₁-C₄-Alkoxy wie vorstehend genannt substituiertes C₁-C₆-Alkyl wie vorstehend genannt, insbesondere Methoxymethyl; C₁-C₈-Alkylamino, besonders C₁-C₆-Alkylamino wie Methylamino, Ethylamino, Propylamino, 1-Methylethyla-

C₁-C₈-Alkylamino, besonders C₁-C₆-Alkylamino wie Methylamino, Ethylamino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino, 3-Methylbutylamino, 2,2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino, 1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino, 2-Methylpentylamino, 3-Methylpentylamino, 4-Methylpentylamino, 1,1-Dimethylbutylamino, 1,2-Dimethylbutylamino, 1,3-Dimethylbutylamino, 2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino, 1-Ethylbutylamino, 2-Ethylbutylamino, 1,1,2-Trimethylpropylamino, 1,2,2-Trimethylpropylamino, 1-Ethyl-1-methylpropylamino und 1-Ethyl-2-methylpropylamino, insbesondere Methylamino und Ethylamino;

C₂-C₈-Alkenyl, besonders C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-3-butenyl, 3-Methyl-3-butenyl, 2-Methyl-3-butenyl, 2-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-1-pentenyl, 3-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 3-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 1-Methyl-3-butenyl, 1,2-Dimethyl-4-pentenyl, 1,2-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-1-butenyl, 1,2-Ethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-1-butenyl, 2-Ethyl-3-butenyl, 2-Ethyl-1-propenyl und 1-Ethyl-2-propenyl, insbesondere Ethenyl und 2-Propenyl;

 C_2 - C_8 -Alkinyl, besonders C_2 - C_6 -Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, insbesondere 2-Propinyl;

C₃-C₈-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, Cyclohexyl, Insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei der folgenden Reste tragen kann: Hydroxy,

- Halogen wie Fluor, Chlor, Brom und Jod, vorzugsweise Fluor und Chlor;

50

- C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, insbesondere Methyl, Ethyl und 1-Methylethyl;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl, insbesondere Trifluormethyl;
- C₁-C₄-Alkoxy wie Methoxy, Ethoxy, Propyloxy, 1-Methylethoxy, Butyloxy, 1-Methyl-propyloxy, 2-Methylpropyloxy und 1,1-Dimethylethoxy, vorzugsweise Methoxy und Ethoxy;

- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend genannt, insbesondere Difluormethoxy;
- C₁-C₄-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methyl-propylthio,
 2-Methylpropylthio und 1,1-Dimethylethylthio, vorzugsweise Methylthio und Ethylthio;
- Phenyl, Naphthyl, Phenyl-C₁-C₆-alkyl (welches für durch Phenyl substituiertes C₁-C₆-Alkyl wie vorstehend genannt steht).
 - 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können:
 - Nitro, Cyano,

15

20

25

30

35

40

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C₁-C₄-Alkyl wie vorstehend genannt, vorzugsweise Methyl, Ethyl und 1-Methylethyl;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl und Difluormethyl:
- C₁-C₄-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy, Ethoxy und 1-Methylethoxy;
- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend genannt, vorzugsweise Difluormethoxy und Trifluormethoxy;
- C₁-C₄-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methylethoxycarbonyl, Butyloxycarbonyl, 1-Methyl-propyloxycarbonyl, 2-Methyl-propyloxycarbonyl und 1,1-Dimethylethoxycarbonyl, vorzugsweise Methoxycarbonyl und Ethoxycarbonyl;
- C₁-C₄-Alkylthio wie vorstehend genannt, vorzugsweise Methylthio und Ethylthio;
- C₃-C₆-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-butenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 1,3-Dimethyl-2-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, vorzugsweise 2-Propenyl;
- C₃-C₆-Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-2-butinyl, 1-Methyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, vorzugsweise 2-Propinyl;

 \mathbb{R}^3

Hydroxy; Amino;

Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;

 C_1 - C_6 -Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio, Pentylthio, 1-Methylbutylthio, 2-Methylpropylthio, 3-Methylputylthio, 2-Dimethylpropylthio, 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-1-methylpropylthio und 1-Ethyl-2-methylpropylthio, vorzugsweise C_1 - C_4 -Alkylthio, insbesondere Methylthio und Ethylthio; Di- $(C_1$ - C_8 -alkyl)-amino, besonders Di- $(C_1$ - C_6 -alkyl)-amino, insbesondere Di- $(C_1$ - C_4 -alkyl)-amino wie N,N-Dimethylamino, N,N-Diethylamino, N,N-Diethylamino, N,N-Diethylamino, N,N-Diethylamino, N,N-Diethylamino, N,N-Diethylamino, N,N-Diethylamino, N-Methyl-N-inethylamino, N-Methyl-N-i

no, N-Ethyl-N-propylamino, N-Ethyl-N-(1-methyl- ethyl)amino, N-Butyl-N-ethylamino, N-Ethyl-N-(1-methyl-

propyl)amino, N-Ethyl-N-(2-methylpropyl)amino, N-Ethyl-N-(1,1-dimethylethyl)amino, N-(1-Methylethyl)- -Npropylamino, N-Butyl-N-propylamino, N-(1-Methylpropyl) -N-propylamino, N-(2-Methylpropyl)-N-propylamino N-(1,1-Dimethylethyl)-N-propylamino, N-Butyl-N-(1-methyl- ethyl)amino, N-(1-Methylethyl)-N-(1-amino, N-Butyl-N-(1-methyl- propyl)amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N- (1,1-dimethylethyl)amino, N-(1-Methylpropyl)-N-(2-methyl- propyl)amino, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)amino und N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;

C₃-C₈-Cycloalkylamino wie Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino, Cycloheptylamino und Cyclooctylamino, vorzugsweise Cyclopropylamino, Cyclopentylamino und Cyclohexyla-

C₁-C₈-Alkoxycarbonyl, besonders C₁-C₆-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methyl-ethoxycarbonyl, Butyloxycarbonyl, 1-Methylpropyloxycarbonyl, 2-Methylpropyloxycarbonyl, 1,1-Dimethylethoxycarbonyl, Pentyloxycarbonyl, 1-Methylbutyloxycarbonyl, 2-Methylbutyloxycarbonyl, 3-Methylbutyloxycarbonyl, 2,2-Dimethylpropyloxycarbonyl, 1-Ethylpropyloxycarbonyl, Hexyloxycarbonyl, 1,1-Dimethyl-propoxycarbonyl, 1,2-Dimethylpropyloxycarbonyl, 1-Methylpentyloxycarbonyl, 2-Methylpentyloxycarbonyl, 3-Methylpentyloxycarbonyl, 4-Methylpentyloxycarbonyl, 1,1-Dimethylbutyloxycarbonyl, 1,2-Dimethylbutyloxycarbonyl, 1,3-Dimethylbutyloxycarbonyl, 2,2-Dimethylbutyloxycarbonyl, 2,3-Dimethylbutyloxycarbonyl, 3,3-Dimethylbutyloxycarbonyl, 1-Ethylbutyloxycarbonyl, 2-Ethylbutyloxycarbonyl, 1,1,2-Trimethylpropyloxycarbonyl, 1,2,2-Trimethylpropyloxycarbonyl, 1-Ethyl-1-methylpropyloxycarbonyl und 1-Ethyl-2-methylpropyloxycarbonyl, vorzugsweise C₁-C₄-Alkoxycarbonyl;

oder eine der für R¹ genannten Gruppen;

R⁴

30

35

40

45

eine der für R1 genannten Gruppen;

CN; NO2; COOH; CSOH;

Di-(C1-C4-alkyl)-amino-C1-C4-alkyl steht für durch Di-(C1-C4-alkyl)-amino wie vorstehend genannt substituiertes C₁-C₄-Alkyl wie vorstehend genannt;

 SO_2-R^6 ; $C(=X)-R^7$; $C(=Y)-R^8$, oder $R^7-C(YR^9)-ZR^{10}$;

 R^6 eine der für R¹ genannten Gruppen;

Hydroxy; Amino;

 $Di-(C_1-C_8-alkyl)$ -amino, besonders $Di-(C_1-C_6-alkyl)$ -amino, insbesondere $Di-(C_1-C_4-alkyl)$ amino wie vorstehend genannt,

C₃-C₈-Cycloalkylamino wie vorstehend genannt, insbesondere Cyclopropylamino, Cyclopentylamino und Cyclohexylamino;

C₁-C₆-Alkylthio wie vorstehend genannt, vorzugsweise C₁-C₄-Alkylthio, insbesondere C₁-C2-Alkylthio;

 R^7 Amino: Oxvamino (-NH-OH):

> C₁-C₈-Alkylamino, besonders C₁-C₆-Alkylamino wie vorstehend genannt, vorzugsweise C_1 - C_4 -Alkylamino, insbesondere C_1 - C_2 -Alkylamino;

> Di-(C₁-C₈-alkyl)-amino, besonders Di-(C₁-C₆-alkyl)-amino, insbesondere Di-(C₁-C₄-alkyl)amino wie vorstehend genannt;

> C₃-C₈-Cycloalkylamino wie vorstehend genannt, vorzugsweise Cyclopropylamino, Cyclopentylamino und Cyclohexylamino;

> C₁-C₈-Alkoxy wie vorstehend genannt, vorzugsweise C₁-C₄-Alkoxy, insbesondere C₁-C₂-Alkoxy:

> C1-C6-Alkylthio wie vorstehend genannt, vorzugsweise C1-C4-Alkylthio, insbesondere C1-C₂-Alkylthio;

Phenylamino:

R8 eine der für R1 genannten Gruppen;

R9,R10 C₁-C₈-Alkyl wie vorstehend genannt;

C₁-C₈-Halogenalkyl wie vorstehend genannt;

C₁-C₄-Alkoxy-C₂-C₆-alkyl steht für durch C₁-C₄-Alkoxy wie vorstehend genannt substituiertes C₂-C₆-Alkyl wie vorstehend genannt, vorzugsweise durch Methoxy oder Ethoxy substituiertes Ethyl, Propyl oder 1-Methylethyl;

C₂-C₈-Alkenyl wie vorstehend genannt; oder

R9 und R10 gemeinsam -CH2CH2-, -CH2CH2CH2- oder -CH2CH2CH2CH2-, wobei ein oder zwei Wasserstoffatome in diesen Gruppen durch die folgenden Reste ersetzt sein können: = O (vicinale H-Atome),

C₁-C₈-Alkyl wie vorstehend genannt, vorzugsweise Methyl oder Ethyl;

12

50

- C₁-C₆-Halogenalkyl, besonders C₁-C₄-Halogenalkyl, insbesondere C₁-C₂-Halogenalkyl wie vorstehend genannt;
- C₁-C₆-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy oder Ethoxy;

Sauerstoff, Schwefel oder NR¹¹, worin

für eine der für R¹ genannten Gruppen steht, oder die folgende Bedeutung hat: Wasserstoff; Hydroxy; Amino;

 $Di-(C_1-C_8-alkyl)-amino$, besonders $Di-(C_1-C_6-alkyl)-amino$, insbesondere $Di-(C_1-C_4-alkyl)-amino$ wie vorstehend genannt,

 C_3 - C_8 -Cycloalkylamino wie vorstehend genannt, vorzugsweise Cyclopropylamino, Cyclopentylamino und Cyclohexylamino;

Phenoxy, Naphthyloxy, Phenylamino oder Naphthylamino, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C₁-C₄-Alkyl wie vorstehend genannt, vorzugsweise Methyl oder Ethyl;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl;
- C₁-C₄-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy;
- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend genannt, vorzugsweise Difluormethoxy;
- C₁-C₄-Alkoxycarbonyl wie vorstehend genannt, vorzugsweise C₁-C₂-Alkoxycarbonyl;
- C₁-C₄-Alkylthio wie vorstehend genannt, vorzugsweise insbesondere Methylthio;
- C₃-C₆-Alkenyl wie vorstehend genannt, vorzugsweise 2-Propenyl;
- C₃-C₆-Alkinyl wie vorstehend genannt, vorzugsweise 2-Propinyl;

Sauerstoff oder Schwefel;

R⁵

Х

5

10

15

20

25

 R^{11}

eine der für R1 genannten Gruppen;

Hydroxy; Amino;

Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;

C₁-C₆-Alkylthio wie vorstehend genannt, vorzugsweise C₁-C₄-Alkylthio, insbesondere C₁-C₂-Alkylthio; Di-(C₁-C₈-alkyl)-amino, besonders Di-(C₁-C₆-alkyl)-amino, insbesondere Di-(C₁-C₄-alkyl)-amino wie vorstehend genannt, vorzugsweise Di-(C₁-C₂-alkyl)-amino;

 C_3 - C_8 - C_9

5 Pyrrolidin-1-yl; Piperidin-1-yl; Morpholin-1-yl;

 C_1 - C_8 -Alkylcarbonyloxy, besonders C_1 - C_6 -Alkylcarbonyloxy wie Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, 1-Methylethylcarbonyloxy, Butylcarbonyloxy, 1-Methyl-propylcarbonyloxy, 2-Methylpropylcarbonyloxy, 1,1-Dimethylethylcarbonyloxy, Pentylcarbonyloxy, 1-Methylbutylcarbonyloxy, 2-Methylbutylcarbonyloxy, 2,2-Dimethylpropylcarbonyloxy, 1-Ethylpropylcarbonyloxy, Hexylcarbonyloxy, 1,1-Dimethylpropylcarbonyloxy, 1,2-Dimethylpropylcarbonyloxy, 1-Methylpentylcarbonyloxy, 2-Methylpentylcarbonyloxy, 3-Methylpentylcarbonyloxy, 4-Methylpentylcarbonyloxy, 1,1-Dimethylbutylcarbonyloxy, 1,3-Dimethylbutylcarbonyloxy, 2,2-Dimethylbutylcarbonyloxy, 2,3-Dimethylbutylcarbonyloxy, 3,3-Dimethylbutylcarbonyloxy, 1-Ethylbutylcarbonyloxy, 2-Ethylbutylcarbonyloxy, 1,1,2-Trimethylpropylcarbonyloxy, 1,2-Trimethylpropylcarbonyloxy, 1-Ethyl-1-methylpropylcarbonyloxy

und 1-Ethyl-2-methylpropylcarbonyloxy, vorzugsweise C_1 - C_4 -Alkylcarbonyloxy, insbesondere C_1 - C_2 -Alkylcarbonyloxy; C_1 - C_4 -Halogenalkylcarbonyloxy, besonders C_1 - C_2 -Halogenalkylcarbonyloxy wie Chlormethylcarbonyloxy,

Dichlormethylcarbonyloxy, Trichlormethylcarbonyloxy, Fluormethylcarbonyloxy, Difluormethylcarbonyloxy, Trifluormethylcarbonyloxy, Chlorfluormethylcarbonyloxy, Dichlorfluormethylcarbonyloxy, Chlordifluormethylcarbonyloxy, 1-Fluorethylcarbonyloxy, 2-Fluorethylcarbonyloxy, 2,2-Difluorethylcarbonyloxy, 2,2-Trifluorethylcarbonyloxy, 2-Chlor-2-fluorethylcarbonyloxy, 2-Chlor-2-fluorethylcarbonyloxy, 2-Trichlorethylcarbonyloxy, und Pentafluorethylcarbonyloxy, vorzugsweise Trifluormethylcarbonyloxy;

 C_1-C_8 -Alkylsulfonyloxy, besonders C_1-C_6 -Alkylsulfonyloxy wie Methylsulfonyloxy, Ethylsulfonyloxy, Propylsulfonyloxy, 1-Methylethylsulfonyloxy, Butylsulfonyloxy, 1-Methyl-propylsulfonyloxy, 2-Methylpropylsulfonyloxy, 3-Methylbutylsulfonyloxy, 2,2-Dimethylpropylsulfonyloxy, 1-Ethylpropylsulfonyloxy, Hexylsulfonyloxy, 1,1-Dimethylpropylsulfonyloxy, 1,2-Dimethylpropylsulfonyloxy, 1-Methylpentylsulfonyloxy, 2-Methylpentylsulfonyloxy, 2-Methylpentylsulfonyloxy, 1-Methylpentylsulfonyloxy, 2-Methylpentylsulfonyloxy, 1-Methylpentylsulfonyloxy, 2-Methylpentylsulfonyloxy, 1-Methylpentylsulfonyloxy, 2-Methylpentylsulfonyloxy, 2-Methylpen

loxy, 3-Methylpentylsulfonyloxy, 4-Methylpentylsulfonyloxy, 1,1-Dimethylbutylsulfonyloxy, 1,2-Dimethylbutylsulfonyloxy, 1,3-Dimethylbutylsulfonyloxy, 2,2-Dimethylbutylsulfonyloxy, 2,3-Dimethylbutylsulfonyloxy, 3,3-Dimethylbutylsulfonyloxy, 1-Ethylbutylsulfonyloxy, 2-Ethylbutylsulfonyloxy, 1,1,2-Trimethylpropylsulfonyloxy, 1,2,2-Trimethylpropylsulfonyloxy, 1-Ethyl-1-methylpropylsulfonyloxy und 1-Ethyl-2-methylpropylsulfonyloxy, vorzugsweise C_1 - C_4 -Alkylsulfonyloxy, insbesondere C_1 - C_2 -Alkylsulfonyloxy;

 C_1 - C_8 -Halogenalkylsulfonyloxy, besonders C_1 - C_4 -Halogenalkylsulfonyloxy, insbesondere C_1 - C_2 -Halogenalkylsulfonyloxy wie Chlormethylsulfonyloxy, Dichlormethylsulfonyloxy, Trichlormethylsulfonyloxy, Fluormethylsulfonyloxy, Difluormethylsulfonyloxy, Chlorfluormethylsulfonyloxy, Dichlorfluormethylsulfonyloxy, Dichlorfluormethylsulfonyloxy, Dichlorfluormethylsulfonyloxy, Dichlorfluormethylsulfonyloxy, Dichlorfluormethylsulfonyloxy, 1-Fluorethylsulfonyloxy, 2-Fluorethylsulfonyloxy, 2,2-Difluorethylsulfonyloxy, 2-Chlor-2-fluorethylsulfonyloxy, 2-Chlor-2,2-difluorethylsulfonyloxy, 2,2-Dichlor-2-fluorethylsulfonyloxy, 2,2-Trichlorethylsulfonyloxy und Pentafluorethylsulfonyloxy; Phenoxy, Naphthyloxy, Phenylamino, Naphthylamino, Benzyloxy, Benzylamino, Benzoyloxy, 2-Naphthoyloxy oder Phenylsulfonyloxy, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können:

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C₁-C₄-Alkyl wie vorstehend genannt, vorzugsweise Methyl;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl:
- C₁-C₄-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy;

N(R¹²)-SO₂-R¹³; N(R¹²)-CO-R¹⁴; N(R¹²)-CS-R¹⁴;

R¹² Wasserstoff;

15

25

30

35

40

C₁-C₄-Alkyl wie vorstehend genannt, vorzugsweise C₁-C₃-Alkyl;

Phenyl, welches ein bis drei der folgenden Reste tragen kann:

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C₁-C₄-Alkyl wie vorstehend genannt, vorzugsweise Methyl;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl;
- C₁-C₄-Alkoxy wie vorstehend genannt, vorzugsweise insbesondere Methoxy;

R¹³ eine der für R¹ genannten Gruppen;

Amino

 $Di-(C_1-C_8-alkyl)-amino$, besonders $Di-(C_1-C_6-alkyl)-amino$, insbesondere $Di-(C_1-C_4-alkyl)-amino$ wie vorstehend genannt;

C₃-Cycloalkylamino wie vorstehend genannt, vorzugsweise Cyclopropylamino, Cyclopentylamino oder Cyclohexylamino;

R¹⁴ eine der für R¹ genannten Gruppen;

Amino; Oxyamino (-NH-OH);

Di- $(C_1-C_8$ -alkyl)-amino, besonders Di- $(C_1-C_6$ -alkyl)-amino, insbesondere Di- $(C_1-C_4$ -alkyl)-amino wie vorstehend genannt, vorzugsweise Di- $(C_1-C_2$ -alkyl)-amino;

C₃-C₈-Cycloalkylamino wie vorstehend genannt, insbesondere Cyclopropylamino, Cyclopentylamino oder Cyclohexylamino;

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R¹ bis R⁵ eine saure oder basische Gruppe bedeutet.

Unter 5-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, sind die folgenden Gruppen zu verstehen: 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl, vorzugsweise 2-Thienyl und 3-Thienyl, wobei an die vorstehend genannten 5-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, sofern sie für einen Rest R¹ oder R² stehen.

Unter 6-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatonen ein bis drei Stickstoffatome als Heteroatome enthalten können, sind die folgenden Gruppen zu verstehen: 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 4-Pyridinyl, 5-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, vorzugsweise 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, wobei an die vorstehend genannten 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, sofern sie für einen Rest R¹ oder R² stehen.

Derivate I und I' mit sauren Endgruppen oder mit basischen Stickstoffatomen können in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen.

Als landwirtschaftlich brauchbare Salze kommen im allgemeinen die Salze von solchen Säuren oder Basen in Betracht, welche die antagonistische Wirkung von I und I' nicht beeinträchtigen.

Als Säureadditionssalze eignen sich beispielsweise die Hydrochloride und -bromide, Sulfate, Nitrate, Phosphate, Oxalate oder die Dodecylbenzolsulfonate.

Als basische Salze eignen sich beispielsweise diejenigen der Alkalimetalle, insbesondere die Natriumund Kaliumsalze, die der Erdalkalimetalle, insbesondere Calcium-, Magnesium-, und Bariumsalze und die der Übergangsmetalle, insbesondere Mangan-, Kupfer, Zink- und Eisensalze sowie die Ammoniumsalze, die ein bis drei C_1 - C_4 -Alkyl-, Hydroxy- C_1 - C_4 -alkylsubstituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen können, insbesondere Diisopropylammonium-, Tetramethylammonium-, Tetrabutylammonium-, Trimethylbenzylammonium-, und Trimethyl-(2-hydroxyethyl)-ammoniumsalze, die Phosphoniumsalze, die Sulfoniumsalze, insbesondere Tri- $(C_1$ - C_4 -)alkylsufoniumsalze und die Sulfoxoniumsalze, insbesondere Tri- $(C_1$ - C_4 -)alkylsulfoxoniumsalze. Besonders bevorzugte Verbindungen der Formel I sind in den folgenden Tabellen A und B zusammengestellt.

Tabelle A

20 \mathbb{R}^2 \mathbb{R}^2 CH₃ \mathbb{R}^3 \mathbb{R}^3 N N CH₃ 25 I.1 I.2 I.3 30 \mathbb{R}^3 CH_3 R^4 R^4 35 N N I.4 I.5 I.6 40 OCH₃ \mathbb{R}^3 \mathbb{R}^3 Н 45 N N \mathbb{R}^5 N N \mathbb{R}^5 OCH₃ I.7 I.8

55

	R ³	R ⁴	R ⁵
5	H	H	C ₆ H ₅
	H	Н	2-CH ₃ -C ₆ H ₄
	H	Н	3-CH ₃ -C ₆ H ₄
	H	Н	4-CH ₃ -C ₆ H ₄
	Н	Н	2-F-C ₆ H ₄
10	Н	H	3-F-C ₆ H ₄
	Н	H	4-F-C ₆ H ₄
	Н	H	2-C1-C ₆ H ₄
15	Н	H	3-C1-C ₆ H ₄
	H	H	4-C1-C ₆ H ₄
	Н	H	2-Br-C ₆ H ₄
	H	H	3-Br-C ₆ H ₄
20	Н	Н	4-Br-C ₆ H ₄
	Н	Н	2-OH-C ₆ H ₄
	Н	Н	3-OH-C ₆ H ₄
	Н	H	4-OH-C ₆ H ₄
25	H	Н	2-OCH ₃ -C ₆ H ₄
	Н	Н	3-OCH ₃ -C ₆ H ₄
	Н	H	4-OCH ₃ -C ₆ H ₄
30	Н	H	4-C ₆ H ₅ -C ₆ H ₄
	Н	Н	$3-C (CH_3)_3-C_6H_4$
	Н	Н	4-C (CH ₃) ₃ -C ₆ H ₄
	Н	H	2-CF ₃ -C ₆ H ₄
35	Н	Н	3-CF ₃ -C ₆ H ₄
	Н	Н	4-CF ₃ -C ₆ H ₄
	Н	Н	2-NO ₂ -C ₆ H ₄
	H	Н	3-NO ₂ -C ₆ H ₄
40	Н	Н	4-NO ₂ -C ₆ H ₄
	Н	Н	2-CN-C ₆ H ₄
	Н	Н	3-CN-C ₆ H ₄
45	H	Н	4-CN-C ₆ H ₄
70	H	Н	2-(CO ₂ C ₂ H ₅)-C ₆ H ₄
	H	Н	$3-(CO_2C_2H_5)-C_6H_4$
	H	Н	$4 - (CO_2C_2H_5) - C_6H_4$
50	Н	Н	2-Carbamoyl-C ₆ H ₄
	H	Н	3-Carbamoyl-C ₆ H ₄

	R ³	R ⁴	R ⁵
	н	H	4-Carbamoyl-C ₆ H ₄
5	Н	Н	2-NH ₂ -C ₆ H ₄
	Н	Н	3-NH ₂ -C ₆ H ₄
	Н	Н	4-NH ₂ -C ₆ H ₄
	Н	H	4-Pyrrolidino-C ₆ H ₄
10	Н	H	2-SCH3-C6H4
	Н	Н	3-SCH ₃ -C ₆ H ₄
	Н	Н	4-SCH ₃ -C ₆ H ₄
15	Н	Н	2-Sulfo-C ₆ H ₄
	Н	Н	3-Sulfo-C ₆ H ₄
	Н	Н	4-Sulfo-C ₆ H ₄
	Н	H	3-OC (CH ₃) ₃ -C ₆ H ₄
20	Н	H	4-OC (CH ₃) ₃ -C ₆ H ₄
	H	Н	2,4-(CH ₃) ₂ -C ₆ H ₃
	H	H	3,4-(CH ₃) ₂ -C ₆ H ₃
	Н	Н	2,6-(CH ₃) ₂ -C ₆ H ₃
25	Н	Н	2,4-(OCH ₃) ₂ -C ₆ H ₃
	Н	H	3,4-(OCH ₃) ₂ -C ₆ H ₃
	H	H	2,6-(OCH ₃) ₂ -C ₆ H ₃
30	Н	H	2,4-F ₂ -C ₆ H ₃
	H	H	3,4-F ₂ -C ₆ H ₃
	H	H	2,6-F ₂ -C ₆ H ₃
	H	H	2,4-Cl ₂ -C ₆ H ₃
35	Н	H	3,4-Cl ₂ -C ₆ H ₃
	H	H	2,6-Cl ₂ -C ₆ H ₃
	Н	H	2,4-(OH) ₂ -C ₆ H ₃
40	Н	H	$3, 4-(OH)_2-C_6H_3$
40	Н	H	2,6-(OH) ₂ -C ₆ H ₃
	H	Н	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	Н	Н	3-NO ₂ -4-F-C ₆ H ₃
45	H	Н	3-NO ₂ -4-C1-C ₆ H ₃
	H	H	3-NO ₂ -4-OCH ₃ -C ₆ H ₃
	H	Н	1-Naphthyl
	H	Н	2-Naphthyl
50	Н	Н	Tetralin-2-yl
	Н	H	Thien-2-yl

	R ³	R ⁴	R5
	Н	H	Thien-3-yl
	Н	H	5-CH ₃ -thien-2-yl
5	Н	Н	5-C1-thien-2-yl
	Н	Н	5-Br-thien-2-yl
	Н	Н	2,5-(CH ₃) ₂ -thien-3-yl
10	H	Н	4,5-benzothien-2-yl
	H	Н	Thiazol-2-yl
	Н	Н	Thiazol-4-yl
	H	н	Thiazol-5-yl
15	H	Н	5-CH ₃ -thiazol-2-yl
	Н	Н	5-Cl-thiazol-2-yl
	H	Н	5-Br-thiazol-2-yl
	H	Н	2,4-(CH ₃) ₂ -thiazol-5-yl
20	н	Н	4,5-benzothiazo1-2-yl
	Н	H	Furan-2-yl
	H	Н	Furan-3-yl
25	Н	Н	5-CH ₃ -furan-2-yl
	Н	H	5-Cl-furan-2-yl
	Н	Н	5-Br-furan-2-yl
	Н	Н	2,5-(CH ₃) ₂ -furan-3-yl
30	Н	H	4,5-benzofuran-2-yl
	Н	Н	Pyrrol-2-yl
	Н	H	Pyrrol-3-yl
35	Н	H	1-CH ₃ -pyrrol-2-yl
	Н	Н	1-CH ₃ -pyrrol-3-yl
	Н	Н	2,5-(CH ₃) ₂ -pyrrol-3-yl
	Н	Н	1,5-(CH ₃) ₂ -pyrrol-2-yl
40	Н	Н	1,5-(CH ₃) ₂ -pyrrol-3-yl
	Н	Н	Indol-2-yl
	Н	Н	Indol-3-yl
45	Н	Н	Oxazol-2-yl
45	Н	Н	Oxazol-4-yl
	Н	Н	5-CH ₃ -oxazol-2-yl
	Н	Н	5-Cl-oxazol-2-yl
50	н	н	5-Br-oxazol-2-yl
Î	Н	H	2,5-(CH ₃) ₂ -oxazol-4-yl

H		R ³	R ⁴	R ⁵
H		·		
H				
H	5			
H				
H				
H	10			
## ## ## ## ## ## ## ## ## ## ## ## ##				
## ## ## ## ## ## ## ## ## ## ## ## ##				
## ## Pyridin-2-yl ## ## Pyridin-3-yl ## ## Pyridin-3-yl ## ## Pyridin-4-yl ## ## 5-CH3-pyridin-2-yl ## ## 5-CL-pyridin-2-yl ## ## 5-CH3-pyridin-2-yl ## ## 5-CH3-pyridin-2-yl ## ## 5-CH3-pyridin-3-yl ## ## 5-CH3-pyridin-3-yl ## ## 5-CL-pyridin-3-yl ## ## 5-CL-pyridin-3-yl ## ## 2-CH3-pyridin-3-yl ## ## 2-CH3-pyridin-3-yl ## ## 2-CL-pyridin-3-yl ## ## 2-Br-pyridin-3-yl ## ## 2,5-(CH3)2-pyridin-3-yl ## ## 4,5-benzopyridin-2-yl ## ## 5-CH3-pyrazin-2-yl ## ## 5-CH3-pyrazin-2-yl ## ## 5-CL-pyrazin-2-yl ## ## Pyrimidin-4-yl ## ## Pyrimidin-5-yl ## ## ## Pyrimidin-5-yl ## ## ## 4,5-benzopyrimidin-2-yl ## ## ## ## ## 4,5-benzopyrimidin-2-yl ## ## ## ## ## ## ## ## ## ## ## ## ##				
# H H H Pyridin-3-yl H H H Fyridin-4-yl H H H Fyridin-2-yl H H H 5-CH3-pyridin-2-yl H H H 5-CH3-pyridin-2-yl H H H 5-CH3-pyridin-3-yl H H H 5-CH3-pyridin-3-yl H H H 5-Br-pyridin-3-yl H H H 2-CH3-pyridin-3-yl H H H 2-CH3-pyridin-3-yl H H H 2-CH3-pyridin-3-yl H H H 2-CH3-pyridin-3-yl H H H 2-Br-pyridin-3-yl H H H 2-Br-pyridin-3-yl H H H 3-5-CH3-pyridin-3-yl H H H 5-CH3-pyridin-2-yl H H H Pyrazin-2-yl H H H Pyrazin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH3	15			
H H H H Fyridin-4-yl H H H H 5-CH3-pyridin-2-yl H H H H 5-CH3-pyridin-2-yl H H H H 5-CH3-pyridin-2-yl H H H H 5-CH3-pyridin-3-yl H H H F 2-CH3-pyridin-3-yl H H H P 2-CH3-pyridin-3-yl H H H P 2-CH3-pyridin-3-yl H H H P 2-S-CH3-pyridin-3-yl H H H P Pyrazin-2-yl H H H F 5-CH3-pyrazin-2-yl H H H F 5-CH3-pyrazin-2-yl H H H F Pyrimidin-2-yl H H H Pyrimidin-2-yl H CH3 Pyrimidin-2-yl				
## ## ## ## ## ## ## ## ## ## ## ## ##				
H H H S-Cl-pyridin-2-yl H H H S-Br-pyridin-3-yl H H H S-Cl-pyridin-3-yl H H H S-Br-pyridin-3-yl H H H S-Br-pyridin-3-yl H H H S-Br-pyridin-3-yl H H H S-Cl-pyridin-3-yl H H H S-Cl-pyridin-2-yl H H H S-Cl-pyridin-2-yl H H H S-Cl-pyrazin-2-yl H H H S-Cl-pyrazin-2-yl H H H S-Cl-pyrazin-2-yl H H H S-Br-pyrazin-2-yl H H H S-Br-pyrazin-2-yl H H H S-Br-pyrazin-2-yl H H H S-Br-pyrazin-2-yl H H H Pyrimidin-3-yl H H H Pyrimidin-3-yl H H H S-Br-pyrazin-2-yl H H H S-Br-pyrazin-3-yl H H H S-Br-p		·		
## ## ## ## ## ## ## ## ## ## ## ## ##	20			
## ## ## ## ## ## ## ## ## ## ## ## ##				
### ### ##############################				-
H H H 5-Br-pyridin-3-yl H H H 2-CH ₃ -pyridin-3-yl H H H 2-Cl-pyridin-3-yl H H H 2-Br-pyridin-3-yl H H H 2,5-(CH ₃) ₂ -pyridin-3-yl H H H 4,5-benzopyridin-2-yl H H H Pyrazin-2-yl H H H 5-Cl-pyrazin-2-yl H H H F 5-Cl-pyrazin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-Cl-C ₆ H ₄	05			
H H H 2-CH3-pyridin-3-yl H H H 2-Cl-pyridin-3-yl H H H 2-Br-pyridin-3-yl H H H 2,5-(CH3)2-pyridin-3-yl H H H 4,5-benzopyridin-2-yl H H H Pyrazin-2-yl H H H 5-CH3-pyrazin-2-yl H H H F 5-Br-pyrazin-2-yl H H H Pyrimidin-2-yl H H Pyrimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-5-yl H H H CH3 C6H5 H CH3 4-CH3-C6H4 H CH3 4-F-C6H4	25			
H H H 2-Cl-pyridin-3-yl H H H 2-Br-pyridin-3-yl H H H 2,5-(CH ₃) ₂ -pyridin-3-yl H H H 4,5-benzopyridin-2-yl H H H F Pyrazin-2-yl H H H F 5-CH ₃ -pyrazin-2-yl H H H F 5-Br-pyrazin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-Cl-C ₆ H ₄				
H H H 2-Br-pyridin-3-yl H H H 2,5-(CH ₃) ₂ -pyridin-3-yl H H H 4,5-benzopyridin-2-yl H H H Fyrazin-2-yl H H H F5-CH ₃ -pyrazin-2-yl H H H F5-Cl-pyrazin-2-yl H H H F9rimidin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H H H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄				
H H 2,5-(CH ₃) ₂ -pyridin-3-yl H H H 4,5-benzopyridin-2-yl H H H Pyrazin-2-yl H H H 5-CH ₃ -pyrazin-2-yl H H H 5-Br-pyrazin-2-yl H H H Pyrimidin-2-yl H H Pyrimidin-4-yl H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-C1-C ₆ H ₄	30			
H H H Pyrazin-2-yl H H H F 5-CH ₃ -pyrazin-2-yl H H H F 5-Cl-pyrazin-2-yl H H H F 5-Br-pyrazin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-4-yl H H H Pyrimidin-5-yl H H H H Pyrimidin-5-yl H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄				
H H H 5-CH3-pyrazin-2-yl H H H 5-CH3-pyrazin-2-yl H H H 5-Br-pyrazin-2-yl H H H Pyrimidin-2-yl H H Pyrimidin-4-yl H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH3 4-CH3-C6H4 H CH3 4-F-C6H4 H CH3 4-C1-C6H4				
H H S-CH ₃ -pyrazin-2-yl H H H 5-Cl-pyrazin-2-yl H H H S-Br-pyrazin-2-yl H H H Pyrimidin-2-yl H H Pyrimidin-4-yl H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-Cl-C ₆ H ₄				
H H H 5-Cl-pyrazin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-4-yl H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH3 C6H5 H CH3 4-CH3-C6H4 H CH3 4-F-C6H4	35			
H H H 5-Br-pyrazin-2-yl H H H Pyrimidin-2-yl H H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H H CH3 C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-Cl-C ₆ H ₄		H	H	
H H Pyrimidin-2-yl H H Pyrimidin-4-yl H H Pyrimidin-5-yl H H H Pyrimidin-5-yl H CH3 C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-C1-C ₆ H ₄		Н	Н	
H H Pyrimidin-4-yl H H Pyrimidin-5-yl H H H 4,5-benzopyrimidin-2-yl H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-Cl-C ₆ H ₄			H	
H H Pyrimidin-5-yl H H H 4,5-benzopyrimidin-2-yl H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-C1-C ₆ H ₄	40	Н	Н	
H H CH3 4,5-benzopyrimidin-2-yl H CH3 C ₆ H ₅ H CH3 4-CH ₃ -C ₆ H ₄ H CH3 4-F-C ₆ H ₄ H CH3 4-Cl-C ₆ H ₄		H	H	
H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-C1-C ₆ H ₄		Н	Н	Pyrimidin-5-yl
H CH ₃ C ₆ H ₅ H CH ₃ 4-CH ₃ -C ₆ H ₄ H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-C1-C ₆ H ₄	45	Н	Н	4,5-benzopyrimidin-2-yl
H CH ₃ 4-F-C ₆ H ₄ H CH ₃ 4-C1-C ₆ H ₄	45	Н	CH ₃	C ₆ H ₅
60 H CH ₃ 4-C1-C ₆ H ₄		Н	CH ₃	4-CH ₃ -C ₆ H ₄
50		Н	CH ₃	4-F-C ₆ H ₄
H CH_3 $4-Br-C_6H_4$	50	Н	CH ₃	4-C1-C ₆ H ₄
		Н	CH ₃	4-Br-C ₆ H ₄

	R ³	R ⁴	R ⁵
	н	CH ₃	4-CH(CH ₃) ₂ -C ₆ H ₄
5	Н	CH ₃	4-OCH ₃ -C ₆ H ₄
v	Н	CH ₃	4-C (CH ₃) ₃ -C ₆ H ₄
	Н	CH ₃	4-CF ₃ -C ₆ H ₄
	Н	CH ₃	4-NO ₂ -C ₆ H ₄
10	Н	CH ₃	4-CN-C ₆ H ₄
	H	CH ₃	4-(NHCOCH ₃)-C ₆ H ₄
	н	CH ₃	3,4-(OCH ₃) ₂ -C ₆ H ₃
	н	CH ₃	2,4-Cl ₂ -C ₆ H ₃
15	н	CH ₃	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	н	CH ₃	2-Naphthyl
	Н	CH ₃	Thien-2-yl
20	H	CH ₂ CH ₃	C ₆ H ₅
20	H	CH ₂ CH ₃	4-CH ₃ -C ₆ H ₄
	H	CH ₂ CH ₃	4-F-C ₆ H ₄
	H	CH ₂ CH ₃	4-Cl-C ₆ H ₄
25	H	CH ₂ CH ₃	4-Br-C ₆ H ₄
	Н	CH ₂ CH ₃	4-CH(CH ₃) ₂ -C ₆ H ₄
	H	CH ₂ CH ₃	4-OCH ₃ -C ₆ H ₄
	Н	CH ₂ CH ₃	4-C (CH ₃) ₃ -C ₆ H ₄
30	Н	CH ₂ CH ₃	4-CF ₃ -C ₆ H ₄
	Н	CH ₂ CH ₃	4-NO ₂ -C ₆ H ₄
	Н	CH ₂ CH ₃	4-CN-C ₆ H ₄
	Н	CH ₂ CH ₃	4-(NHCOCH ₃)-C ₆ H ₄
35	H	CH ₂ CH ₃	3,4-(OCH ₃) ₂ -C ₆ H ₃
	Н	CH ₂ CH ₃	2,4-Cl ₂ -C ₆ H ₃
	H	CH ₂ CH ₃	3-NO ₂ -4-CH ₃ -C ₆ H ₃
40	H	CH ₂ CH ₃	2-Naphthyl
40	н	CH ₂ CH ₃	Thien-2-yl
	н	CH ₂ CH ₂ CH ₃	C ₆ H ₅
	Н	CH ₂ CH ₂ CH ₃	4-CH ₃ -C ₆ H ₄
45	Н	CH ₂ CH ₂ CH ₃	4-F-C ₆ H ₄
	Н	CH ₂ CH ₂ CH ₃	4-C1-C ₆ H ₄
	Н	CH ₂ CH ₂ CH ₃	4-Br-C ₆ H ₄
	Н	CH ₂ CH ₂ CH ₃	4-CH(CH ₃) ₂ -C ₆ H ₄
50	н	CH ₂ CH ₂ CH ₃	4-OCH ₃ -C ₆ H ₄

	R ³	R ⁴	R ⁵
	Н	CH ₂ CH ₂ CH ₃	4-C (CH ₃) ₃ -C ₆ H ₄
5	Н	CH ₂ CH ₂ CH ₃	4-CF ₃ -C ₆ H ₄
	Н	CH ₂ CH ₂ CH ₃	4-NO ₂ -C ₆ H ₄
	Н	CH ₂ CH ₂ CH ₃	4-CN-C ₆ H ₄
	Н	CH ₂ CH ₂ CH ₃	4-(NHCOCH ₃)-C ₆ H ₄
10	H	CH ₂ CH ₂ CH ₃	3,4-(OCH ₃) ₂ -C ₆ H ₃
	H	CH ₂ CH ₂ CH ₃	2,4-Cl ₂ -C ₆ H ₃
	H	CH ₂ CH ₂ CH ₃	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	Н	CH ₂ CH ₂ CH ₃	2-Naphthyl
15	H	CH ₂ CH ₂ CH ₃	Thien-2-yl
	Н	CH (CH ₃) ₂	C ₆ H ₅
	H	CH (CH ₃) ₂	4-CH ₃ -C ₆ H ₄
20	Н	CH (CH ₃) ₂	4-F-C ₆ H ₄
20	H	CH (CH ₃) ₂	4-C1-C ₆ H ₄
	H	CH (CH ₃) ₂	4-Br-C ₆ H ₄
	H	CH (CH ₃) ₂	4-CH (CH ₃) ₂ -C ₆ H ₄
25	H	CH (CH ₃) ₂	4-OCH ₃ -C ₆ H ₄
	Н	CH (CH ₃) ₂	4-C (CH ₃) ₃ -C ₆ H ₄
	Н	CH (CH ₃) ₂	4-CF ₃ -C ₆ H ₄
	Н	CH (CH ₃) ₂	4-NO ₂ -C ₆ H ₄
30	H	CH (CH ₃) ₂	4-CN-C ₆ H ₄
	H	CH (CH ₃) ₂	4-(NHCOCH ₃)-C ₆ H ₄
	Н	CH (CH ₃) ₂	3,4-(OCH ₃) ₂ -C ₆ H ₃
	H	CH (CH ₃) ₂	2,4-Cl ₂ -C ₆ H ₃
35	H	CH (CH ₃) ₂	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	H	CH (CH ₃) ₂	2-Naphthyl
	H	CH (CH ₃) ₂	Thien-2-yl
40	н	CH ₂ CH (CH ₃) ₂	C ₆ H ₅
40	н	CH ₂ CH (CH ₃) ₂	4-CH ₃ -C ₆ H ₄
	Н	CH ₂ CH (CH ₃) ₂	4-F-C ₆ H ₄
	Н	CH ₂ CH (CH ₃) ₂	4-C1-C ₆ H ₄
<i>4</i> 5	Н	CH ₂ CH (CH ₃) ₂	4-Br-C ₆ H ₄
	Н	CH ₂ CH (CH ₃) ₂	4-CH (CH ₃) ₂ -C ₆ H ₄
	Н	CH ₂ CH (CH ₃) ₂	4-OCH ₃ -C ₆ H ₄
	Н	CH ₂ CH (CH ₃) ₂	4-C (CH ₃) ₃ -C ₆ H ₄
50	н	CH ₂ CH (CH ₃) ₂	4-CF ₃ -C ₆ H ₄
'			

	R ³	R ⁴	R ⁵
	Н	CH ₂ CH (CH ₃) ₂	4-NO ₂ -C ₆ H ₄
5	Н	CH ₂ CH (CH ₃) ₂	4-CN-C ₆ H ₄
	H	CH ₂ CH (CH ₃) ₂	4-(NHCOCH ₃)-C ₆ H ₄
	Н	CH ₂ CH (CH ₃) ₂	3,4-(OCH ₃) ₂ -C ₆ H ₃
	H	CH ₂ CH (CH ₃) ₂	2,4-Cl ₂ -C ₆ H ₃
10	Н	CH ₂ CH (CH ₃) ₂	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	Н	CH ₂ CH (CH ₃) ₂	2-Naphthyl
	Н	CH ₂ CH (CH ₃) ₂	Thien-2-yl
	H	(CH ₂) ₃ CH ₃	C ₆ H ₅
15	н	(CH ₂) ₃ CH ₃	4-CH ₃ -C ₆ H ₄
	Н	(CH ₂) ₃ CH ₃	4-F-C ₆ H ₄
	н	(CH ₂) ₃ CH ₃	4-C1-C ₆ H ₄
20	H	(CH ₂) ₃ CH ₃	4-Br-C ₆ H ₄
20	Н	(CH ₂) ₃ CH ₃	4-CH (CH ₃) ₂ -C ₆ H ₄
	Н	(CH ₂) ₃ CH ₃	4-OCH ₃ -C ₆ H ₄
	H	(CH ₂) ₃ CH ₃	4-C (CH ₃) ₃ -C ₆ H ₄
25	Н	(CH ₂) ₃ CH ₃	4-CF ₃ -C ₆ H ₄
	H	(CH ₂) ₃ CH ₃	4-NO ₂ -C ₆ H ₄
	Н	(CH ₂) ₃ CH ₃	4-CN-C ₆ H ₄
	Н	(CH ₂) ₃ CH ₃	$4-(NHCOCH_3)-C_6H_4$
30	Н	(CH ₂) ₃ CH ₃	$3, 4-(OCH_3)_2-C_6H_3$
	Н	(CH ₂) ₃ CH ₃	2,4-Cl ₂ -C ₆ H ₃
	H	(CH ₂) ₃ CH ₃	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	H	(CH ₂) ₃ CH ₃	2-Naphthyl
35	H	(CH ₂) ₃ CH ₃	Thien-2-yl
	Н	C(CH ₃) ₃	C ₆ H ₅
	H	C(CH ₃) ₃	4-CH ₃ -C ₆ H ₄
40	H	C(CH ₃) ₃	4-F-C ₆ H ₄
40	н	C(CH ₃) ₃	4-C1-C ₆ H ₄
	H	C(CH ₃) ₃	4-Br-C ₆ H ₄
	H	C(CH ₃) ₃	4-CH (CH ₃) ₂ -C ₆ H ₄
45	Н	C(CH ₃) ₃	4-OCH ₃ -C ₆ H ₄
	H	C(CH ₃) ₃	4-C (CH ₃) ₃ -C ₆ H ₄
	Н	C(CH ₃) ₃	4-CF ₃ -C ₆ H ₄
	Н	C(CH ₃) ₃	4-NO ₂ -C ₆ H ₄
50	Н	C(CH ₃) ₃	4-CN-C ₆ H ₄

	R ³	R ⁴	R ⁵
	Н	C(CH ₃) ₃	4-(NHCOCH ₃)-C ₆ H ₄
5	Н	C (CH ₃) ₃	3,4-(OCH ₃) ₂ -C ₆ H ₃
· ·	Н	C(CH ₃) ₃	2,4-Cl ₂ -C ₆ H ₃
	Н	C (CH ₃) ₃	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	н	C (CH ₃) ₃	2-Naphthyl
10	н	C (CH ₃) ₃	Thien-2-yl
	Н	C ₆ H ₅	CH ₃
	H	C ₆ H ₅	CH ₂ CH ₃
45	H	C ₆ H ₅	CH ₂ CH ₂ CH ₃
15	Н	C ₆ H ₅	CH (CH ₃) ₂
	Н	C ₆ H ₅	CH ₂ CH ₂ CH ₂ CH ₃
	Н	C ₆ H ₅	CH ₂ CH (CH ₃) ₂
20	Н	C ₆ H ₅	C ₆ H ₅
	Н	C ₆ H ₅	CO ₂ H
	H	C ₆ H ₅	CO ₂ CH ₂ CH ₃
	Н	C ₆ H ₅	CONH ₂
25	H	C ₆ H ₅	COCH ₃
	Н	C ₆ H ₅	COCF ₃
	Н	C ₆ H ₅	COC ₆ H ₅
30	Н	C ₆ H ₅	CO- (4-CH ₃ -C ₆ H ₄)
00	Н	C ₆ H ₅	CO ₂ C ₆ H ₅
	Н	C ₆ H ₅	CO ₂ CH ₂ C ₆ H ₅
	Н -	C ₆ H ₅	F
35	Н	C ₆ H ₅	Cl
	H	C ₆ H ₅	Br
	H	C ₆ H ₅	OCH ₃
	Н	C ₆ H ₅	CF ₃
40	H	C ₆ H ₅	NO ₂
	H	C ₆ H ₅	CN
	H	C ₆ H ₅	SO ₂ CH ₃
45	H	C ₆ H ₅	SO ₂ C ₆ H ₅
	Н	C ₆ H ₅	SO ₂ -(4-CH ₃ -C ₆ H ₄)
	H	C ₆ H ₅	C ₆ H ₅
	Н	C ₆ H ₅	4-CH ₃ -C ₆ H ₄
50	Н	C ₆ H ₅	4-F-C ₆ H ₄
	Н	C ₆ H ₅	4-C1-C ₆ H ₄

	R ³	R ⁴	R ⁵
	Н	С ₆ Н ₅	4-Br-C ₆ H ₄
5	H	C ₆ H ₅	4-CH (CH ₃) ₂ -C ₆ H ₄
	Н	С ₆ Н ₅	4-OCH ₃ -C ₆ H ₄
	Н	C ₆ H ₅	4-C (CH ₃) ₃ -C ₆ H ₄
	H	C ₆ H ₅	4-CF ₃ -C ₆ H ₄
10	H	C ₆ H ₅	4-NO ₂ -C ₆ H ₄
	н	C ₆ H ₅	4-CN-C ₆ H ₄
	н	C ₆ H ₅	4-(NHCOCH ₃)-C ₆ H ₄
15	Н	C ₆ H ₅	3,4-(OCH ₃) ₂ -C ₆ H ₃
75	Н	C ₆ H ₅	2,4-Cl ₂ -C ₆ H ₃
	Н	C ₆ H ₅	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	Н	C ₆ H ₅	2-Naphthyl
20	Н	C ₆ H ₅	Thien-2-yl
	Н	CH ₂ C ₆ H ₅	С ₆ H ₅
	н	CH ₂ C ₆ H ₅	4-CH ₃ -C ₆ H ₄
	Н	CH ₂ C ₆ H ₅	4-F-C ₆ H ₄
25	Н	CH ₂ C ₆ H ₅	4-C1-C ₆ H ₄
	H	CH ₂ C ₆ H ₅	4-Br-C ₆ H ₄
	Н	CH ₂ C ₆ H ₅	4-CH (CH ₃) ₂ -C ₆ H ₄
	н	CH ₂ C ₆ H ₅	4-OCH ₃ -C ₆ H ₄
30	Н	CH ₂ C ₆ H ₅	4-C (CH ₃) ₃ -C ₆ H ₄
	н	CH ₂ C ₆ H ₅	4-CF ₃ -C ₆ H ₄
	Н	CH ₂ C ₆ H ₅	4-NO ₂ -C ₆ H ₄
05	Н	CH ₂ C ₆ H ₅	4-CN-C ₆ H ₄
35	H	CH ₂ C ₆ H ₅	4-(NHCOCH ₃)-C ₆ H ₄
	н	CH ₂ C ₆ H ₅	3,4-(OCH ₃) ₂ -C ₆ H ₃
	H	CH ₂ C ₆ H ₅	2,4-Cl ₂ -C ₆ H ₃
40	H	CH ₂ C ₆ H ₅	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	H	CH ₂ C ₆ H ₅	2-Naphthyl
	н	CH ₂ C ₆ H ₅	Thien-2-yl
	H	CO ₂ C ₂ H ₅	C ₆ H ₅
45	Н	CO ₂ C ₂ H ₅	4-CH ₃ -C ₆ H ₄
	Н	CO ₂ C ₂ H ₅	4-F-C ₆ H ₄
	Н	CO ₂ C ₂ H ₅	4-C1-C ₆ H ₄
	н	CO ₂ C ₂ H ₅	4-Br-C ₆ H ₄
50	Н	CO ₂ C ₂ H ₅	4-CH(CH ₃) ₂ -C ₆ H ₄
	· · · · · · · · · · · · · · · · · · ·		

	R ³	R ⁴	R ⁵
			<u> </u>
	Н	CO ₂ C ₂ H ₅	4-OCH ₃ -C ₆ H ₄
5	H	CO ₂ C ₂ H ₅	4-C (CH ₃) ₃ -C ₆ H ₄
	H	CO ₂ C ₂ H ₅	4-CF ₃ -C ₆ H ₄
	H	CO ₂ C ₂ H ₅	4-NO ₂ -C ₆ H ₄
	H	CO ₂ C ₂ H ₅	4-CN-C ₆ H ₄
10	H	CO ₂ C ₂ H ₅	4-(NHCOCH ₃)-C ₆ H ₄
	H	CO ₂ C ₂ H ₅	3,4-(OCH ₃) ₂ -C ₆ H ₃
	H	CO ₂ C ₂ H ₅	2,4-Cl ₂ -C ₆ H ₃
15	Н	CO ₂ C ₂ H ₅	$3-NO_2-4-CH_3-C_6H_3$
15	Н	CO ₂ C ₂ H ₅	2-Naphthyl
	H	CO ₂ C ₂ H ₅	Thien-2-yl
	H	2-CH ₃ -C ₆ H ₄	CH ₃
20	H	3-CH ₃ -C ₆ H ₄	CH ₃
20	H	4-CH ₃ -C ₆ H ₄	CH ₃
	H	2-F-C ₆ H ₄	CH ₃
	H	3-F-C ₆ H ₄	CH ₃
25	H	4-F-C ₆ H ₄	CH ₃
	Н	2-C1-C ₆ H ₄	CH ₃
	Н	3-C1-C ₆ H ₄	CH ₃
	H	4-C1-C ₆ H ₄	CH ₃
30	H	2-Br-C ₆ H ₄	CH ₃
	Н	3-Br-C ₆ H ₄	CH ₃
	H :	4-Br-C ₆ H ₄	CH ₃
	Н	2-OCH ₃ -C ₆ H ₄	CH ₃
35	H	3-OCH ₃ -C ₆ H ₄	CH ₃
	H	4-OCH ₃ -C ₆ H ₄	CH ₃
	H	3-C (CH ₃) ₃ -C ₆ H ₄	CH ₃
	H	4-C (CH ₃) ₃ -C ₆ H ₄	CH ₃
40	Н	2-CF ₃ -C ₆ H ₄	CH ₃
	Н	3-CF ₃ -C ₆ H ₄	CH ₃
	H	4-CF ₃ -C ₆ H ₄	CH ₃
45	Н	2-NO ₂ -C ₆ H ₄	CH ₃
7 ∪	Н	3-NO ₂ -C ₆ H ₄	CH ₃
	H	4-NO ₂ -C ₆ H ₄	CH ₃
	Н	2-CN-C ₆ H ₄	CH ₃
50	H	3-CN-C ₆ H ₄	CH ₃
		J 321 0 52-4	3

	-3	1-4	
	R ³	R ⁴	R ⁵
5	H	4-CN-C ₆ H ₄	CH ₃
	Н	3,4-(OCH ₃) ₂ -C ₆ H ₃	CH ₃
	H	2,4-Cl ₂ -C ₆ H ₃	CH ₃
	Н	3-NO ₂ -4-CH ₃ -C ₆ H ₃	CH ₃
	Н	2-Naphthyl	CH ₃
10	Н	Thien-2-yl	CH ₃
	H	Furan-2-yl	CH ₃
	Н	Isoxazol-2-yl	CH ₃
15	Н	CH ₃	CH ₃
15	Н	CH ₂ CH ₃	CH ₃
	Н	CH (CH ₃) ₂	CH ₃
	Н	CH ₂ CH (CH ₃) ₂	CH ₃
20	H	C (CH ₃) ₃	CH ₃
	H	Cyclopropyl	CH ₃
	H	CH ₂ CH=CH ₂	CH ₃
	Н	CH ₂ C*CH	CH ₃ *=Dreifachbindung
25	Н	CH ₂ CH=CHCH ₃	CH ₃
	Н	CH ₂ C*CCH ₃	CH ₃ *=Dreifachbindung
	H	CH ₂ Cl	CH ₃
	Н	CH ₂ CH ₂ Cl	CH ₃
30	Н	CH ₂ CH ₂ CH ₂ Cl	CH ₃
	Н	CH ₂ CH=CHCl	CH ₃
	Н	CH ₂ OH	CH ₃
	Н	CH ₂ CH ₂ OH	CH ₃
35	Н	CH ₂ CH ₂ CH ₂ OH	CH ₃
	H	CH ₂ OCH ₃	CH ₃
	H	CH ₂ CH ₂ OCH ₃	СH ₃
40	H	CH ₂ CH ₂ CH ₂ OCH ₃	CH ₃
40	H	CH ₂ CO ₂ CH ₂ CH ₃	CH ₃
	H	CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	CH ₃
	н	CH ₂ CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	CH ₃
45	Н	CH ₂ NH ₂	CH ₃
	Н	CH ₂ CH ₂ NH ₂	CH ₃
	Н	CH ₂ CH ₂ CH ₂ NH ₂	CH ₃
	Н	CH ₂ N (CH ₃) ₂	CH ₃
50	Н	CH ₂ CH ₂ N (CH ₃) ₂	CH ₃
'			

	пз	Tp4	155
	R ³	R ⁴	R ⁵
	H	CH ₂ CH ₂ CH ₂ N (CH ₃) ₂	CH ₃
5	H	CH ₂ NHCOCH ₃	CH ₃
	Н	CH ₂ CH ₂ NHCOCH ₃	CH ₃
	H	CH ₂ CH ₂ CH ₂ NHCOCH ₃	CH ₃
	Н	COCH ₃	CH ₃
10	H	COCF ₃	CH ₃
	H	COC ₆ H ₅	CH ₃
	H	$CO-(4-CH_3-C_6H_4)$	CH ₃
45	H	CO ₂ C ₆ H ₅	CH ₃
15	H	CO ₂ CH ₂ C ₆ H ₅	CH ₃
	H	F	CH ₃
	H	Cl	CH ₃
20	H	Br	CH ₃
20	H	OCH ₃	CH ₃
	H	CF ₃	CH ₃
	H	NO ₂	CH ₃
25	H	CN	CH ₃
	н	SO ₂ CH ₃	CH ₃
	H	SO ₂ C ₆ H ₅	CH ₃
	Ħ	SO ₂ -(4-CH ₃ -C ₆ H ₄)	CH ₃
30	H	CH ₂ OCH ₂ C ₆ H ₅	CH ₃
	Н	COCH ₂ CH ₂ CH ₃	CH ₃
	Н	CO ₂ H	CH ₃
	H	CO ₂ CH ₃	CH ₃
35	H	CO ₂ CH ₂ CH ₃	CH ₃
	H	CONH ₂	CH ₃
	Н	CONHCH ₃	CH ₃
40	Н	CON (CH ₃) ₂	CH ₃
40	н	CONHC ₆ H ₅	CH ₃
	Н	3-Pyridyl	CH ₃
	H	2-Pyridyl	CH ₃
<i>4</i> 5	Н	4-SCH ₃ -C ₆ H ₄	CH ₃
	Н	2-CH ₃ -C ₆ H ₄	C ₆ H ₅
	H	3-CH ₃ -C ₆ H ₄	C ₆ H ₅
	Н	4-CH ₃ -C ₆ H ₄	C ₆ H ₅
50	н	2-F-C ₆ H ₄	C ₆ H ₅

			
	R ³	R ⁴	R ⁵
	Н	3-F-C ₆ H ₄	C ₆ H ₅
5	Н	4-F-C ₆ H ₄	C ₆ H ₅
· ·	H	2-C1-C ₆ H ₄	C ₆ H ₅
	H	3-C1-C ₆ H ₄	C ₆ H ₅
	H	4-C1-C ₆ H ₄	C ₆ H ₅
10	Н	2-Br-C ₆ H ₄	C ₆ H ₅
	Н	3-Br-C ₆ H ₄	C ₆ H ₅
	Н	4-Br-C ₆ H ₄	C ₆ H ₅
	Н	2-OCH ₃ -C ₆ H ₄	C ₆ H ₅
15	Н	3-OCH ₃ -C ₆ H ₄	C ₆ H ₅
	H	4-OCH ₃ -C ₆ H ₄	C ₆ H ₅
	H	3-C (CH ₃) ₃ -C ₆ H ₄	C ₆ H ₅
	Н	4-C (CH ₃) ₃ -C ₆ H ₄	C ₆ H ₅
20	Н	2-CF ₃ -C ₆ H ₄	C ₆ H ₅
	Н	3-CF ₃ -C ₆ H ₄	C ₆ H ₅
	Н	4-CF ₃ -C ₆ H ₄	C ₆ H ₅
25	H	2-NO ₂ -C ₆ H ₄	C ₆ H ₅
	H	3-NO ₂ -C ₆ H ₄	C ₆ H ₅
	H	$4-NO_2-C_6H_4$	C ₆ H ₅
	H	2-CN-C ₆ H ₄	C ₆ H ₅
30	Н	3-CN-C ₆ H ₄	C ₆ H ₅
	H	4-CN-C ₆ H ₄	C ₆ H ₅
	Н -	$3, 4-(OCH_3)_2-C_6H_3$	C ₆ H ₅
	H	2,4-Cl ₂ -C ₆ H ₃	C ₆ H ₅
35	Н	3-NO ₂ -4-CH ₃ -C ₆ H ₃	C ₆ H ₅
	Н	2-Naphthyl	C ₆ H ₅
	Н	Thien-2-yl	C ₆ H ₅
	H	Furan-2-yl	C ₆ H ₅
40	Н	Isoxazol-2-yl	C ₆ H ₅
	Н	CH ₃	C ₆ H ₅
45	Н	CH ₂ CH ₃	C ₆ H ₅
	Н	CH (CH ₃) ₂	C ₆ H ₅
	Н	CH ₂ CH (CH ₃) ₂	С ₆ Н ₅
	Н	C (CH ₃) ₃	C ₆ H ₅
	Н	Cyclopropyl	C ₆ H ₅
50	Н	CH ₂ CH=CH ₂	C ₆ H ₅

	Н		
		CH ₂ C*CH	C ₆ H ₅ *=Dreifachbindung
5	Н	CH ₂ CH=CHCH ₃	C ₆ H ₅
	Н	CH ₂ C*CCH ₃	C ₆ H ₅ *=Dreifachbindung
	H	CH ₂ Cl	C ₆ H ₅
	H	CH ₂ CH ₂ Cl	C ₆ H ₅
10	н	CH ₂ CH ₂ CH ₂ Cl	C ₆ H ₅
	Н	CH ₂ CH=CHCl	C ₆ H ₅
	Н	CH ₂ OH	C ₆ H ₅
15	Н	CH ₂ CH ₂ OH	C ₆ H ₅
	H	CH ₂ CH ₂ CH ₂ OH	C ₆ H ₅
	H	CH ₂ OCH ₃	C ₆ H ₅
	Н	CH ₂ CH ₂ OCH ₃	C ₆ H ₅
20	H	CH ₂ CH ₂ CH ₂ OCH ₃	C ₆ H ₅
	Н	CH ₂ CO ₂ CH ₂ CH ₃	C ₆ H ₅
	H	CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	C ₆ H ₅
	H	CH ₂ CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	C ₆ H ₅
25	H	CH ₂ NH ₂	C ₆ H ₅
	H	CH ₂ CH ₂ NH ₂	C ₆ H ₅
	H	CH ₂ CH ₂ CH ₂ NH ₂	C ₆ H ₅
30	Н	CH ₂ N (CH ₃) ₂	C ₆ H ₅
00	Н	CH ₂ CH ₂ N (CH ₃) ₂	C ₆ H ₅
	H	CH ₂ CH ₂ CH ₂ N (CH ₃) ₂	C ₆ H ₅
	H	CH ₂ NHCOCH ₃	C ₆ H ₅
35	H	CH ₂ CH ₂ NHCOCH ₃	C ₆ H ₅
	H	CH ₂ CH ₂ CH ₂ NHCOCH ₃	C ₆ H ₅
	H	COCH ₃	C ₆ H ₅
	H	COCF ₃	C ₆ H ₅
40	Н	COC ₆ H ₅	C ₆ H ₅
	H	CO-(4-CH ₃ -C ₆ H ₄)	C ₆ H ₅
45	Н	CO ₂ C ₆ H ₅	C ₆ H ₅
	Н	CO ₂ CH ₂ C ₆ H ₅	C ₆ H ₅
	Н	F	C ₆ H ₅
	Н	Cl	C ₆ H ₅
	Н	Br	C ₆ H ₅
50	Н	OCH ₃	C ₆ H ₅
	Н	CF ₃	C ₆ H ₅

	R ³	R ⁴	R ⁵
5	Н	NO ₂	C ₆ H ₅
	H	CN	C ₆ H ₅
	H	SO ₂ CH ₃	C ₆ H ₅
	H	SO ₂ C ₆ H ₅	C ₆ H ₅
	н	SO ₂ -(4-CH ₃ -C ₆ H ₄)	C ₆ H ₅
10	H	CH ₂ OCH ₂ C ₆ H ₅	C ₆ H ₅
	H	COCH ₂ CH ₂ CH ₃	C ₆ H ₅
	Н	CO ₂ H	C ₆ H ₅
	Н	CO ₂ CH ₃	C ₆ H ₅
15	Н	CO ₂ CH ₂ CH ₃	C ₆ H ₅
	н	CONH ₂	C ₆ H ₅
	Н	CONHCH ₃	C ₆ H ₅
00	H	CON (CH ₃) ₂	C ₆ H ₅
20	H	CONHC ₆ H ₅	С ₆ Н ₅
	H	3-Pyridyl	C ₆ H ₅
	Н	2-Pyridyl	C ₆ H ₅
25	н	4-SCH ₃ -C ₆ H ₄	C ₆ H ₅
	Н	С ₆ Н ₅	ОН
	Н	2-CH ₃ -C ₆ H ₄	ОН
	H	3-CH ₃ -C ₆ H ₄	ОН
30	H	4-CH ₃ -C ₆ H ₄	ОН
	н	2-F-C ₆ H ₄	ОН
	Н	3-F-C ₆ H ₄	ОН
	Н	4-F-C ₆ H ₄	ОН
35	H	2-C1-C ₆ H ₄	ОН
	H	3-C1-C ₆ H ₄	ОН
	Н	4-C1-C ₆ H ₄	ОН
	Н	2-Br-C ₆ H ₄	OH
40	Н	3-Br-C ₆ H ₄	ОН
	Н	4-Br-C ₆ H ₄	ОН
45	Н	2-OCH ₃ -C ₆ H ₄	OH
	н	3-OCH ₃ -C ₆ H ₄	ОН
	н	4-OCH ₃ -C ₆ H ₄	ОН
	Н	3-C (CH ₃) ₃ -C ₆ H ₄	ОН
	Н	4-C (CH ₃) ₃ -C ₆ H ₄	ОН
50	Н	2-CF ₃ -C ₆ H ₄	ОН
		L	

	R ³	R ⁴	R ⁵
	Н	3-CF ₃ -C ₆ H ₄	ОН
5	H	4-CF ₃ -C ₆ H ₄	ОН
	н	2-NO ₂ -C ₆ H ₄	ОН
	Н	3-NO ₂ -C ₆ H ₄	ОН
	Н	4-NO ₂ -C ₆ H ₄	ОН
10	H	2-CN-C ₆ H ₄	ОН
	H	3-CN-C ₆ H ₄	OH
	Н	4-CN-C ₆ H ₄	ОН
	Н	$3, 4-(OCH_3)_2-C_6H_3$	ОН
15	Н	2,4-Cl ₂ -C ₆ H ₃	ОН
	Н	3-NO ₂ -4-CH ₃ -C ₆ H ₃	ОН
	Н	2-Naphthyl	OH
	Н	Thien-2-yl	ОН
20	Н	Furan-2-yl	OH
	Н	Isoxazol-2-yl	ОН
	н	CH ₃	ОН
25	Н	CH ₂ CH ₃	ОН
20	Н	CH (CH ₃) ₂	ОН
	Н	CH ₂ CH (CH ₃) ₂	ОН
	Н	C(CH ₃) ₃	ОН
30	Н	Cyclopropyl	ОН
	Н	CH ₂ CH=CH ₂	ОН
	Н	CH ₂ C*CH	OH *=Dreifachbindung
	Н	CH ₂ CH=CHCH ₃	ОН
35	Н	CH ₂ C*CCH ₃	OH *=Dreifachbindung
	н	CH ₂ Cl	ОН
	н	CH ₂ CH ₂ Cl	OH
	Н	CH ₂ CH ₂ CH ₂ Cl	ОН
40	н	CH ₂ CH=CHCl	ОН
	н	CH ₂ OH	ОН
	н	CH ₂ CH ₂ OH	ОН
4 5	H	CH ₂ CH ₂ CH ₂ OH	ОН
	Н	CH ₂ OCH ₃	ОН
	н	CH ₂ CH ₂ OCH ₃	ОН
	Н	CH ₂ CH ₂ CH ₂ OCH ₃	ОН
50	Н	CH ₂ CO ₂ CH ₂ CH ₃	OH
		1223	

	-3		
5	R ³	R ⁴	R ⁵
	H	CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	ОН
	H	CH ₂ CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	ОН
	H	CH ₂ NH ₂	ОН
	Н	CH ₂ CH ₂ NH ₂	ОН
	H	CH ₂ CH ₂ CH ₂ NH ₂	ОН
10	H	CH ₂ N (CH ₃) ₂	ОН
	Н	CH ₂ CH ₂ N (CH ₃) ₂	ОН
	H	CH ₂ CH ₂ CH ₂ N (CH ₃) ₂	ОН
15	H	CH ₂ NHCOCH ₃	ОН
70	Н	CH ₂ CH ₂ NHCOCH ₃	ОН
	Н	CH ₂ CH ₂ CH ₂ NHCOCH ₃	ОН
	Н	COCH ₃	ОН
20	Н	COCF ₃	ОН
	Н	COC ₆ H ₅	ОН
	Н	CO-(4-CH ₃ -C ₆ H ₄)	ОН
	Н	CO ₂ C ₆ H ₅	ОН
25	Н	CO ₂ CH ₂ C ₆ H ₅	ОН
	H	F	ОН
	H	C1	ОН
	Н	Br	ОН
30	H	OCH ₃	ОН
	Н	CF ₃	ОН
	H	NO ₂	ОН
35	H	CN	ОН
00	Н	SO ₂ CH ₃	ОН
	Н	SO ₂ C ₆ H ₅	ОН
	н	SO ₂ -(4-CH ₃ -C ₆ H ₄)	ОН
40	H	CH ₂ OCH ₂ C ₆ H ₅	ОН
	Н	COCH ₂ CH ₂ CH ₃	ОН
i	Н	CO ₂ H	ОН
45	Н	CO ₂ CH ₃	ОН
	Н	CO ₂ CH ₂ CH ₃	ОН
	H	CONH ₂	ОН
	Н	CONHCH ₃	ОН
50	Н	CON (CH ₃) ₂	ОН
	н		ОН
	<u>. </u>		

	R ³	R ⁴	R ⁵
5	н	3-Pyridyl	ОН
	н	2-Pyridyl	ОН
	Н	4-SCH ₃ -C ₆ H ₄	ОН
	H	C ₆ H ₅	NH ₂
	н	2-CH ₃ -C ₆ H ₄	NH ₂
10	H	3-CH ₃ -C ₆ H ₄	NH ₂
	H	4-CH ₃ -C ₆ H ₄	NH ₂
	Н	2-F-C ₆ H ₄	NH ₂
	Н	3-F-C ₆ H ₄	NH ₂
15	Н	4-F-C ₆ H ₄	NH ₂
	Н	2-C1-C ₆ H ₄	
	Н	3-C1-C ₆ H ₄	NH ₂
0.0	Н	4-C1-C ₆ H ₄	NH ₂
20		2-Br-C ₆ H ₄	
	H	3-Br-C ₆ H ₄	NH ₂
	H	4-Br-C ₆ H ₄	NH ₂
25	H		NH ₂
	H	2-OCH ₃ -C ₆ H ₄ 3-OCH ₃ -C ₆ H ₄	NH ₂
	H		NH ₂
	H	4-OCH ₃ -C ₆ H ₄	NH ₂
30		3-C (CH ₃) ₃ -C ₆ H ₄	NH ₂
	H	4-C (CH ₃) ₃ -C ₆ H ₄	NH ₂
	H	2-CF ₃ -C ₆ H ₄	NH ₂
	H -	3-CF ₃ -C ₆ H ₄	NH ₂
35	H	4-CF ₃ -C ₆ H ₄	NH ₂
	H	2-NO ₂ -C ₆ H ₄	NH ₂
	H 	3-NO ₂ -C ₆ H ₄	NH ₂
	H	4-NO ₂ -C ₆ H ₄	NH ₂
40	н	2-CN-C ₆ H ₄	NH ₂
	Н	3-CN-C ₆ H ₄	NH ₂
4 5	H	4-CN-C ₆ H ₄	NH ₂
	H	2,4-(OCH ₃) ₂ -C ₆ H ₃	NH ₂
	Н	2,4-Cl ₂ -C ₆ H ₃	NH ₂
	H	3-NO ₂ -4-CH ₃ -C ₆ H ₃	NH ₂
	H	2-Naphthyl	NH ₂
50	Н	Thien-2-yl	NH ₂
	Н	Furan-2-yl	NH ₂

	T-3	1-4	T
5	R ³	R ⁴	R ⁵
	H	Isoxazol-2-yl	NH ₂
	H	CH ₃	NH ₂
	H	CH ₂ CH ₃	NH ₂
	Н	CH (CH ₃) ₂	NH ₂
10	Н	CH ₂ CH (CH ₃) ₂	NH ₂
70	Н	C (CH ₃) ₃	NH ₂
	н	Cyclopropyl	NH ₂
	Н	CH ₂ CH=CH ₂	NH ₂
15	Н	CH ₂ C*CH	NH ₂ *=Dreifachbindung
	Н	CH ₂ CH=CHCH ₃	NH ₂
	Н	CH ₂ C*CCH ₃	NH ₂ *=Dreifachbindung
	Н	CH ₂ Cl	NH ₂
20	Н	CH ₂ CH ₂ Cl	NH ₂
	Н	CH ₂ CH ₂ CH ₂ Cl	NH ₂
	Н	CH ₂ CH=CHCl	NH ₂
	Н	CH ₂ OH	NH ₂
25	Н	CH ₂ CH ₂ OH	NH ₂
	Н	CH ₂ CH ₂ CH ₂ OH	NH ₂
	Н	CH ₂ OCH ₃	NH ₂
30	Н	CH ₂ CH ₂ OCH ₃	NH ₂
	H	CH ₂ CH ₂ CH ₂ OCH ₃	NH ₂
	Н	CH ₂ CO ₂ CH ₂ CH ₃	NH ₂
	H	CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	NH ₂
35	Н	CH ₂ CH ₂ CH ₂ CO ₂ CH ₂ CH ₃	NH ₂
	Н	CH ₂ NH ₂	NH ₂
	Н	CH ₂ CH ₂ NH ₂	NH ₂
40	Н	CH ₂ CH ₂ CH ₂ NH ₂	NH ₂
	Н	CH ₂ N (CH ₃) ₂	NH ₂
	Н	CH ₂ CH ₂ N (CH ₃) ₂	NH ₂
45	H	$CH_2CH_2CH_2N$ (CH_3) 2	NH ₂
	Н	CH ₂ NHCOCH ₃	NH ₂
	Н	CH ₂ CH ₂ NHCOCH ₃	NH ₂
	Н	CH ₂ CH ₂ CH ₂ NHCOCH ₃	NH ₂
	Н	COCH ₃	NH ₂
50	н	COCF ₃	NH ₂
	Н	COC ₆ H ₅	NH ₂

	R ³	R ⁴	R ⁵
	H	CO-(4-CH ₃ -C ₆ H ₄)	NH ₂
5	Н	CO ₂ C ₆ H ₅	NH ₂
J	H	CO ₂ CH ₂ C ₆ H ₅	NH ₂
	Н	F	NH ₂
	Н	Cl	NH ₂
10	Н	Br	NH ₂
.5	Н	OCH ₃	NH ₂
	н	CF ₃	NH ₂
	н	NO ₂	NH ₂
15	н	CN	NH ₂
. •	Н	SO ₂ CH ₃	NH ₂
	H	SO ₂ C ₆ H ₅	NH ₂
	H	SO ₂ -(4-CH ₃ -C ₆ H ₄)	NH ₂
20	Н	CH ₂ OCH ₂ C ₆ H ₅	NH ₂
	Н	COCH ₂ CH ₂ CH ₃	NH ₂
	Н	CO ₂ H	NH ₂
	Н	CO ₂ CH ₃	NH ₂
25	Н	CO ₂ CH ₂ CH ₃	NH ₂
	Н	CONH ₂	NH ₂
	Н	CONHCH ₃	NH ₂
	н	CON (CH ₃) ₂	NH ₂
30	Н	CONHC ₆ H ₅	NH ₂
	Н	3-Pyridyl	NH ₂
	Н	2-Pyridyl	NH ₂
	Н	4-SCH ₃ -C ₆ H ₄	NH ₂
35	н	2,6-Cl ₂ -C ₆ H ₃	NH ₂
	H	2,6-OCH ₃ -C ₆ H ₃	NH ₂
	H	2,4-CH ₃ -C ₆ H ₃	NH ₂
	н	2-CO ₂ CH ₃ -C ₆ H ₄	NH ₂
40	н	3-CF ₃ -C ₆ H ₄	NH ₂
	н	4-OH-C ₆ H ₄	NH ₂
	Н	3-C1-4-OCH ₃ -C ₆ H ₃	NH ₂
	Н	C ₆ H ₅	инсно
45	н	C ₆ H ₅	NHCOCH ₃
.5	н	C ₆ H ₅	NHCOCH ₂ CH ₃
	Н	C ₆ H ₅	NHCOCH (CH ₃) ₂

		C= 2	12 6
5	R ³	R ⁴	R ⁵
	Н	C ₆ H ₅	NHCO-Cyclopropyl
	Н	C ₆ H ₅	NHCOCH ₂ C ₆ H ₅
	Н	C ₆ H ₅	NHCOC ₆ H ₅
	Н	C ₆ H ₅	NHCO ₂ CH ₃
10	Н	C ₆ H ₅	NHCO ₂ CH ₂ CH ₃
70	Н	C ₆ H ₅	NHCO ₂ CH (CH ₃) ₂
	H	C ₆ H ₅	NHCO ₂ -Cyclopropyl
	Н	C ₆ H ₅	NHCO ₂ CH ₂ C ₆ H ₅
15	H	C ₆ H ₅	NHCO ₂ C ₆ H ₅
	Н	C ₆ H ₅	NHCONH ₂
	Н	C ₆ H ₅	NHCONHCH ₃
	Н	C ₆ H ₅	NHCON (CH ₃) ₂
20	Н	C ₆ H ₅	NHCONHCH ₂ CH ₃
	Н	C ₆ H ₅	NHCONHCH (CH ₃) ₂
	Н	C ₆ H ₅	NHCONH-Cyclopropyl
	H	C ₆ H ₅	NHCONHCH ₂ C ₆ H ₅
25	н	C ₆ H ₅	NHCONHC ₆ H ₅
	H	C ₆ H ₅	OCOCH ₃
	Н	C ₆ H ₅	OCOCH ₂ CH ₃
30	Н	C ₆ H ₅	OCOCH (CH ₃) ₂
	Н	C ₆ H ₅	OCO-Cyclopropyl
	H	C ₆ H ₅	OCOCH ₂ C ₆ H ₅
	Н	C ₆ H ₅	OCOC ₆ H ₅
35	Н	C ₆ H ₅	OCH ₂ C ₆ H ₅
	H	C ₆ H ₅	CO ₂ CH ₃
	Н	C ₆ H ₅	CO ₂ CH ₂ CH ₃
	H	C ₆ H ₅	CO ₂ CH (CH ₃) ₂
40	Н	C ₆ H ₅	CO ₂ -Cyclopropyl
	Н	C ₆ H ₅	CO ₂ CH ₂ C ₆ H ₅
_	Н	C ₆ H ₅	CO ₂ C ₆ H ₅
	Н	C ₆ H ₅	SO ₂ CH ₃
45	Н	C ₆ H ₅	SO ₂ CF ₃
	н	C ₆ H ₅	SO ₂ CH ₂ C ₆ H ₅
	Н	C ₆ H ₅	SO ₂ C ₆ H ₅
50	Н	C ₆ H ₅	NHSO ₂ CH ₃
	Н	C ₆ H ₅	NHSO ₂ CF ₃

	\mathbb{R}^3	R ⁴	R ⁵
	Н	C ₆ H ₅	NHSO ₂ CH ₂ C ₆ H ₅
5	Н	C ₆ H ₅	NHSO ₂ C ₆ H ₅
	Н	CN	NHCHO
	H	CN	NHCOCH ₃
	н	СИ	NHCOCH ₂ CH ₃
10	Н	СИ	NHCOCH (CH ₃) ₂
	Н	CN	NHCO-Cyclopropyl
	Н	CN	NHCOCH ₂ C ₆ H ₅
15	Н	CN	NHCOC ₆ H ₅
, 0	Н	CN	NHCO ₂ CH ₃
	H	CN	NHCO ₂ CH ₂ CH ₃
	Н	CN	NHCO ₂ CH (CH ₃) ₂
20	Н	CN	NHCO ₂ -Cyclopropyl
	Н	CN	NHCO ₂ CH ₂ C ₆ H ₅
	H	СИ	NHCO ₂ C ₆ H ₅
	Н	CN	NHCONH ₂
25	Н	CN	NHCONHCH ₃
	Н	CN	NHCON (CH ₃) ₂
	Н	CN	NHCONHCH ₂ CH ₃
	Н	CN	NHCONHCH (CH ₃) ₂
30	н	CN	NHCONH-Cyclopropyl
	Н	CN	NHCONHCH ₂ C ₆ H ₅
	Н	CN	NHCONHC ₆ H ₅
35	Н	CN	OCOCH ₃
	Н	СИ	OCOCH ₂ CH ₃
	Н	CN	OCOCH (CH ₃) ₂
	Н	СИ	OCO-Cyclopropyl
40	H	CN	OCOCH ₂ C ₆ H ₅
	Н	CN	OCOC ₆ H ₅
	Н	CN	OCH ₂ C ₆ H ₅
	н	CN	CO ₂ CH ₃
45	Н	CN	CO ₂ CH ₂ CH ₃
	Н	CN	CO ₂ CH (CH ₃) ₂
	Н	CN	CO ₂ -Cyclopropyl
5 0	Н	CN	CO ₂ CH ₂ C ₆ H ₅
50	Н	CN	CO ₂ C ₆ H ₅
			

	R ³	R ⁴	R ⁵
	Н	CN	SO ₂ CH ₃
	Н	CN	SO ₂ CF ₃
5	Н	CN	SO ₂ CH ₂ C ₆ H ₅
	Н	CN	SO ₂ C ₆ H ₅
	Н	CN	NHSO ₂ CH ₃
10	Н	CN	NHSO ₂ CF ₃
10	H	CN	NHSO ₂ CH ₂ C ₆ H ₅
	Н	CN	NHSO ₂ C ₆ H ₅
	Н	2,6-Cl ₂ -C ₆ H ₃	инсно
15	Н	2,6-Cl ₂ -C ₆ H ₃	NHCOCH ₃
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCOCH ₂ CH ₃
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCOCH (CH ₃) ₂
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCO-Cyclopropyl
20	Н	2,6-Cl ₂ -C ₆ H ₃	NHCOCH ₂ C ₆ H ₅
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCOC ₆ H ₅
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCO ₂ CH ₃
25	Н	2,6-Cl ₂ -C ₆ H ₃	NHCO ₂ CH ₂ CH ₃
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCO ₂ CH (CH ₃) ₂
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCO ₂ -Cyclopropyl
	H	2,6-Cl ₂ -C ₆ H ₃	NHCO ₂ CH ₂ C ₆ H ₅
30	Н	2,6-Cl ₂ -C ₆ H ₃	NHCO ₂ C ₆ H ₅
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCONH ₂
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCONHCH ₃
	Н	$2,6-Cl_2-C_6H_3$	NHCON (CH ₃) ₂
35	Н	2,6-Cl ₂ -C ₆ H ₃	NHCONHCH ₂ CH ₃
	Н	$2,6-Cl_2-C_6H_3$	NHCONHCH (CH ₃) ₂
	Н	2,6-Cl ₂ -C ₆ H ₃	NHCONH-Cyclopropyl
40	Н	2,6-Cl ₂ -C ₆ H ₃	NHCONHCH ₂ C ₆ H ₅
40	Н	2,6-Cl ₂ -C ₆ H ₃	NHCONHC ₆ H ₅
	Н	2,6-Cl ₂ -C ₆ H ₃	ососн ₃
	Н	2,6-Cl ₂ -C ₆ H ₃	OCOCH ₂ CH ₃
45	Н	2,6-Cl ₂ -C ₆ H ₃	OCOCH (CH ₃) ₂
	Н	2,6-Cl ₂ -C ₆ H ₃	OCO-Cyclopropyl
	Н	2,6-Cl ₂ -C ₆ H ₃	OCOCH ₂ C ₆ H ₅
	Н	2,6-Cl ₂ -C ₆ H ₃	OCOC ₆ H ₅
50	Н	2,6-Cl ₂ -C ₆ H ₃	CO ₂ CH ₃

R ³	R ⁴	R ⁵
Н	2,6-Cl ₂ -C ₆ H ₃	CO ₂ CH ₂ CH ₃
Н	2,6-Cl ₂ -C ₆ H ₃	CO ₂ CH (CH ₃) ₂
Н	2,6-Cl ₂ -C ₆ H ₃	CO ₂ -Cyclopropyl
Н	2,6-Cl ₂ -C ₆ H ₃	CO ₂ CH ₂ C ₆ H ₅
н	2,6-Cl ₂ -C ₆ H ₃	CO ₂ C ₆ H ₅
Н	2,6-Cl ₂ -C ₆ H ₃	SO ₂ CH ₃
Н	2,6-Cl ₂ -C ₆ H ₃	SO ₂ CF ₃
Н	2,6-Cl ₂ -C ₆ H ₃	SO ₂ CH ₂ C ₆ H ₅
н	2,6-Cl ₂ -C ₆ H ₃	SO ₂ C ₆ H ₅
Н	2,6-Cl ₂ -C ₆ H ₃	NHSO ₂ CH ₃
н	2,6-Cl ₂ -C ₆ H ₃	NHSO ₂ CF ₃
Н	2,6-Cl ₂ -C ₆ H ₃	NHSO ₂ CH ₂ C ₆ H ₅
Н	2,6-Cl ₂ -C ₆ H ₃	NHSO ₂ C ₆ H ₅

Tabelle B

R¹³-S-NH I.9

I.15

	R ³	R ⁴	R ¹³
	Н	Н	C ₆ H ₅
5	H	Н	2-CH ₃ -C ₆ H ₄
Ŭ	H	Н	3-CH ₃ -C ₆ H ₄
	Н	H	4-CH ₃ -C ₆ H ₄
	H	H	2-F-C ₆ H ₄
10	H	H	3-F-C ₆ H ₄
	H	н	4-F-C ₆ H ₄
	н	H	2-C1-C ₆ H ₄
	н	Н	3-C1-C ₆ H ₄
15	н	Н	4-C1-C ₆ H ₄
	Н	Н	2-Br-C ₆ H ₄
	H	Н	3-Br-C ₆ H ₄
	Н	Н	4-Br-C ₆ H ₄
20	Н	H	2-OH-C ₆ H ₄
	Н	Н	3-OH-C ₆ H ₄
	н	Н	4-OH-C ₆ H ₄
25	Н	Н	2-OCH ₃ -C ₆ H ₄
	н	Н	3-OCH ₃ -C ₆ H ₄
	н	Н	4-OCH ₃ -C ₆ H ₄
	Н	н	4-C ₆ H ₅ -C ₆ H ₄
30	Н	Н	3-C (CH ₃) ₃ -C ₆ H ₄
	Н	Н	4-C(CH ₃) ₃ -C ₆ H ₄
	н -	Н	2-CF ₃ -C ₆ H ₄
	н	Н	3-CF ₃ -C ₆ H ₄
35	H	H	4-CF ₃ -C ₆ H ₄
	H	Н	2-NO ₂ -C ₆ H ₄
	H	Н	3-NO ₂ -C ₆ H ₄
10	H	H	4-NO ₂ -C ₆ H ₄
40	н	Н	2-CN-C ₆ H ₄
	Н	н	3-CN-C ₆ H ₄
	Н	н	4-CN-C ₆ H ₄
<i>4</i> 5	Н	Н	$2-(CO_2C_2H_5)-C_6H_4$
	Н	Н	$3-(CO_2C_2H_5)-C_6H_4$
	Н	H	$4-(CO_2C_2H_5)-C_6H_4$
	Н	Н	2-(CO ₂ CH ₃)-C ₆ H ₄
50	н	H	3-(CO ₂ CH ₃)-C ₆ H ₄

	R ³	R ⁴	R ¹³
	Н	Н	4-(CO ₂ CH ₃)-C ₆ H ₄
5	Н	н	2-CONH ₂ -C ₆ H ₄
	Н	Н	3-CONH ₂ -C ₆ H ₄
	Н	Н	4-CONH ₂ -C ₆ H ₄
	Н	Н	2-NH ₂ -C ₆ H ₄
10	Н	н	3-NH ₂ -C ₆ H ₄
	H	H	4-NH ₂ -C ₆ H ₄
	Н	Н	2-SCH ₃ -C ₆ H ₄
15	H	Н	3-SCH ₃ -C ₆ H ₄
	H	H	4-SCH3-C6H4
	Н	H	2,4-(CH ₃) ₂ -C ₆ H ₃
	Н	H	3, 4- (CH ₃) ₂ -C ₆ H ₃
20	Н	H	2,6-(CH ₃) ₂ -C ₆ H ₃ .
	Н	Н	2,4-(OCH ₃) ₂ -C ₆ H ₃
	Н	Н	3,4-(OCH ₃) ₂ -C ₆ H ₃
	Н	Н	2,6-(OCH ₃) ₂ -C ₆ H ₃
25	Н	Н	2,4-F ₂ -C ₆ H ₃
	Н	н	3,4-F ₂ -C ₆ H ₃
	Н	н	2,6-F ₂ -C ₆ H ₃
30	Н	Н	2,4-Cl ₂ -C ₆ H ₃
30	Н	Н	3,4-Cl ₂ -C ₆ H ₃
	Н	Н	2,6-Cl ₂ -C ₆ H ₃
	Н -	Н	2,4-(OH) ₂ -C ₆ H ₃
35	Н	H	3,4-(OH) ₂ -C ₆ H ₃
	Н	H	2,6-(OH) ₂ -C ₆ H ₃
	H	Н	2-C1-6-CH ₃ -C ₆ H ₃
	Н	Н	2-CO ₂ CH ₃ -6-CH ₃ -C ₆ H ₃
40	H	н	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	Н	H	3-NO ₂ -4-F-C ₆ H ₃
	Н	н	3-NO ₂ -4-Cl-C ₆ H ₃
	Н	Н	3-NO ₂ -4-OCH ₃ -C ₆ H ₃
45	Н	H	2-Naphthyl
	Н	Н	Thien-2-yl
	Н	Н	Thien-3-yl
50	Н	н	5-CH ₃ -thien-2-yl
	Н	H	5-Cl-thien-2-yl

	R ³	R ⁴	R ¹³
	Н	Н	5-Br-thien-2-yl
5	н	H	2,5-(CH ₃) ₂ -thien-3-yl
	Н	H	Thiazol-2-yl
	H	Н	Thiazol-4-yl
	Н	н	5-CH ₃ -thiazol-2-yl
10	н	н	5-Cl-thiazol-2-yl
	Н	H	5-Br-thiazol-2-yl
	Н	Н	$2,5-(CH_3)_2-thiazol-4-yl$
15	Н	Н	Furan-2-yl
	Н	Н	Furan-3-yl
	н	Н	5-CH ₃ -furan-2-yl
	Н	Н	5-Cl-furan-2-yl
20	Н	Н	Pyrrol-2-yl
	Н	Н	Pyrrol-3-yl
	Н	Н	5-CH ₃ -pyrrol-2-yl
	Н	Н	5-Br-pyrrol-2-yl
25	н	Н	Oxazol-4-yl
	Н	Н	Imidazol-2-yl
	Н	Н	Pyridin-2-yl
00	Н	Н	Pyridin-3-yl
30	н	H	Pyridin-4-yl
	H	H	Pyrazin-3-yl
	н .	Н	Pyrazin-4-yl
35	H	Н	Pyrrol-2-yl
	H	H	Pyrimidin-2-yl
	H	Н	Pyrimidin-4-yl
	H	H	Pyrimidin-5-yl
40	H	CN	C ₆ H ₅
	H	CN	2-CH ₃ -C ₆ H ₄
	H	CN	3-CH ₃ -C ₆ H ₄
	H	CN	4-CH ₃ -C ₆ H ₄
4 5	н	CN	2-F-C ₆ H ₄
	н	CN	3-F-C ₆ H ₄
	Н	CN	4-F-C ₆ H ₄
50	Н	CN	2-C1-C ₆ H ₄
00	Н	CN	3-C1-C ₆ H ₄

H		R ³	R4	R13
B				
B	5			
H				
H				
H				
H	10			
E				
H				
H CN 4-OCH ₃ -C ₆ H ₄ H CN 4-C ₆ H ₅ -C ₆ H ₄ H CN 2-C1-6-CH ₃ -C ₆ H ₃ H CN 2-C1-6-CH ₃ -C ₆ H ₃ H CN 2-C0 ₂ CH ₃ -6-CH ₃ -C ₆ H ₃ H CN 2,5-(OCH ₃) ₂ -C ₆ H ₃ H CN 2,5-(OCH ₃) ₂ -C ₆ H ₃ H CN 2,5-C1 ₂ -C ₆ H ₃ H CN 2,4,5-C1 ₃ -C ₆ H ₂ H CN 2-C0 ₂ CH ₃ -C ₆ H ₃ H CN 2-C0 ₂ CH ₃ -C ₆ H ₃ H CN 5-C1-2-OCH ₃ -C ₆ H ₃ H CN 5-N0 ₂ -2-C1-C ₆ H ₃ H CN 3-C1-thien-2-y1 H CN 3-C1-thien-2-y1 H CN 3-C(CH ₃) ₃ -C ₆ H ₄ H CN 3-C(CH ₃) ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 3-N0 ₂ -C ₆ H ₄ H CN 3-CO ₂ -C ₆ H ₄				
H	15			
## CN				
## CN				
## CN	20	н		
## CN 2,5-Cl ₂ -C ₆ H ₃ ## CN 2,4,5-Cl ₃ -C ₆ H ₂ ## CN 2-CO ₂ CH ₃ -C ₆ H ₃ ## CN 5-Cl ₂ -C ₆ H ₃ ## CN 5-Cl ₂ -C ₆ H ₃ ## CN 5-NO ₂ -2-Cl ₂ -C ₆ H ₃ ## CN 2-Cl ₂ -C ₆ H ₃ ## CN 2-Cl ₂ -C ₂ -C ₆ H ₃ ## CN 3-Cl ₂ -C ₁ -C ₆ H ₃ ## CN 3-Cl ₂ -Cl ₂ -C ₆ H ₃ ## CN 3-Cl ₂ -Cl ₂ -C ₆ H ₃ ## CN 3-Cl ₂ -Cl ₂ -C ₆ H ₃ ## CN 3-Cl ₂ -Cl ₂ -Cl ₃ -Cl ₄ ## CN 3-Cl ₂ -Cl ₂ -Cl ₃ -Cl ₄ ## CN 4-Cl ₃ -Cl ₃ -Cl ₆ H ₄ ## CN 3-Cl ₃ -Cl ₆ H ₄ ## CN 4-Cl ₃ -Cl ₆ -Cl ₄ ## CN 4-Cl ₃ -Cl ₆ -Cl ₄ ## CN 3-NO ₂ -Cl ₆ -Cl ₄ ## CN 3-NO ₂ -Cl ₆ -Cl ₄ ## CN 3-CN-Cl ₆ -Cl ₆ -		н		
## CN		н	CN	
H CN 5-C1-2-OCH ₃ -C ₆ H ₃ H CN 5-C1-2-OCH ₃ -C ₆ H ₃ H CN 5-NO ₂ -2-C1-C ₆ H ₃ H CN 2-C1-6-cyclopentenyl-C ₆ H ₃ H CN 3-C1-thien-2-yl H CN 3-C (CH ₃) ₃ -C ₆ H ₄ H CN 4-C (CH ₃) ₃ -C ₆ H ₄ H CN 2-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄		Н	CN	2,4,5-Cl ₃ -C ₆ H ₂
H CN 5-NO ₂ -2-Cl-C ₆ H ₃ H CN 2-Cl-6-cyclopentenyl-C ₆ H ₃ H CN 3-Cl-thien-2-yl H CN 3-C (CH ₃) ₃ -C ₆ H ₄ H CN 4-C (CH ₃) ₃ -C ₆ H ₄ H CN 2-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 3-CC ₆ H ₄ H CN 4-CC ₆ H ₄ H CN 4-CC ₆ H ₄ H CN 3-CC ₆ H ₄ H CN 3-CC ₆ H ₄ H CN 4-CC ₆ CH ₃)-C ₆ H ₄	25	Н	CN	2-CO ₂ CH ₃ -C ₆ H ₃
H CN 2-Cl-6-cyclopentenyl-C ₆ H ₃ H CN 3-Cl-thien-2-yl H CN 3-C(CH ₃) ₃ -C ₆ H ₄ H CN 4-C(CH ₃) ₃ -C ₆ H ₄ H CN 2-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄		Н	CN	5-C1-2-OCH ₃ -C ₆ H ₃
H CN 3-C1-thien-2-y1 H CN 3-C (CH ₃) 3-C ₆ H ₄ H CN 4-C (CH ₃) 3-C ₆ H ₄ H CN 2-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄		н	CN	5-NO ₂ -2-C1-C ₆ H ₃
H CN 3-C1-thien-2-y1 H CN 3-C (CH ₃) 3-C ₆ H ₄ H CN 4-C (CH ₃) 3-C ₆ H ₄ H CN 2-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 4-CN-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄	20	Н	CN	2-C1-6-cyclopentenyl-C ₆ H ₃
H CN 4-C (CH ₃) ₃ -C ₆ H ₄ H CN 2-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄	30	Н	CN	3-Cl-thien-2-yl
H CN 2-CF ₃ -C ₆ H ₄ H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-(CO ₂ CH ₃) -C ₆ H ₄ H CN 3-(CO ₂ CH ₃) -C ₆ H ₄		H	CN	3-C (CH ₃) ₃ -C ₆ H ₄
H CN 3-CF ₃ -C ₆ H ₄ H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 4-CN-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄		Н -	CN	4-C (CH ₃) ₃ -C ₆ H ₄
H CN 4-CF ₃ -C ₆ H ₄ H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 4-CN-C ₆ H ₄ H CN 4-CN-C ₆ H ₄ H CN 2-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄	35	Н	CN	2-CF ₃ -C ₆ H ₄
H CN 2-NO ₂ -C ₆ H ₄ H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 4-CN-C ₆ H ₄ H CN 2-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄		Н	CN	3-CF ₃ -C ₆ H ₄
H CN 3-NO ₂ -C ₆ H ₄ H CN 4-NO ₂ -C ₆ H ₄ H CN 2-CN-C ₆ H ₄ H CN 3-CN-C ₆ H ₄ H CN 4-CN-C ₆ H ₄ H CN 2-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄		H	CN	4-CF ₃ -C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		н	CN	2-NO ₂ -C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	Н	CN	3-NO ₂ -C ₆ H ₄
H CN 3-CN-C ₆ H ₄ H CN 4-CN-C ₆ H ₄ H CN 2-(CO ₂ CH ₃)-C ₆ H ₄ H CN 3-(CO ₂ CH ₃)-C ₆ H ₄ H CN 4-(CO ₂ CH ₃)-C ₆ H ₄		н	CN	4-NO ₂ -C ₆ H ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Н	CN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	H	CN	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	Н	CN	
$_{50}$ H CN $_{4-(CO_{2}CH_{3})-C_{6}H_{4}}$		H	CN	
		H	CN	3-(CO ₂ CH ₃)-C ₆ H ₄
H CN $2-(CO_2C_2H_5)-C_6H_4$	50	Н	CN	
		Н	CN	$2-(CO_2C_2H_5)-C_6H_4$

	R ³	R ⁴	R ¹³
	Н	CN	3-(CO ₂ C ₂ H ₅)-C ₆ H ₄
5	Н	CN	4-(CO ₂ C ₂ H ₅)-C ₆ H ₄
	Н	CN	2-CONH ₂ -C ₆ H ₄
	H	CN	3-CONH ₂ -C ₆ H ₄
	Н	CN	4-CONH ₂ -C ₆ H ₄
10	Н	CN	2-NH ₂ -C ₆ H ₄
	H	CN	3-NH ₂ -C ₆ H ₄
	H	CN	4-NH ₂ -C ₆ H ₄
15	H	CN	2-SCH ₃ -C ₆ H ₄
	H	CN	3-SCH ₃ -C ₆ H ₄
	Н	CN	4-SCH ₃ -C ₆ H ₄
	Н	CN	$2, 4-(CH_3)_2-C_6H_3$
20	Н	CN	3,4-(CH ₃) ₂ -C ₆ H ₃
	H	CN	2,6-(CH ₃) ₂ -C ₆ H ₃
	H	CN	2,4-(OCH ₃) ₂ -C ₆ H ₃
	H	CN	3,4-(OCH ₃) ₂ -C ₆ H ₃
25	H	CN	2,6-(OCH ₃) ₂ -C ₆ H ₃
	н	CN	2,4-F ₂ -C ₆ H ₃
	H	CN	$3,4-F_2-C_6H_3$
30	H	CN	2,6-F ₂ -C ₆ H ₃
30	H	CN	2,4-Cl ₂ -C ₆ H ₃
	H	CN	3,4-Cl ₂ -C ₆ H ₃
	H	CN	2,6-Cl ₂ -C ₆ H ₃
35	H	CN	$2, 4-(OH)_2-C_6H_3$
	A	CN	$3, 4-(OH)_2-C_6H_3$
	H	CN	2,6-(OH) ₂ -C ₆ H ₃
	H	CN	3-NO ₂ -4-CH ₃ -C ₆ H ₃
40	H	CN	3-NO ₂ -4-F-C ₆ H ₃
	н	CN	3-NO ₂ -4-C1-C ₆ H ₃
	Н	CN	3-NO ₂ -4-OCH ₃ -C ₆ H ₃
	H	CN	2-Naphthyl
4 5	Н	CN	Thien-2-yl
	H	CN	Thien-3-yl
	Н	CN	5-CH ₃ -thien-2-yl
50	Н	CN	5-Cl-thien-2-yl
_ 3	Н	CN	5-Br-thien-2-yl
		··	

	R ³	R ⁴	R13
	H	CN	2,5-(CH ₃) ₂ -thien-3-yl
5	Н	CN	Thiazol-2-yl
	Н	CN	Thiazol-4-yl
	Н	CN	5-CH ₃ -thiazol-2-yl
	H	CN	5-Cl-thiazol-2-yl
10	Н	CN	5-Br-thiazol-2-yl
	Н	CN	2,5-(CH ₃) ₂ -thiazol-4-yl
	Н	CN	Furan-2-yl
15	Н	CN	Furan-3-yl
70	H	CN	5-CH ₃ -furan-2-yl
	H	CN	5-Cl-furan-2-yl
	H	CN	Pyrrol-2-yl
20	Н	CN	Pyrrol-3-yl
	Н	CN	5-CH ₃ -pyrrol-2-yl
	Н	CN	5-Br-pyrrol-2-yl
	Н	CN	Oxazol-4-yl
25	Н	CN	Imidazol-2-yl
	н	CN	Pyridin-2-yl
	Н	CN	Pyridin-3-yl
	Н	CN	Pyridin-4-yl
30	Н	CN	Pyrazin-3-yl
	Н	CN	Pyrazin-4-yl
	H	CN	Pyrrol-2-yl
35	H	CN	Pyrimidin-2-yl
	Н	CN	Pyrimidin-4-yl
	Н	CN	Pyrimidin-5-yl
	Н	C ₆ H ₅	C ₆ H ₅
40	H	C ₆ H ₅	2-CH ₃ -C ₆ H ₄
	H	C ₆ H ₅	3-CH ₃ -C ₆ H ₄
	H	C ₆ H ₅	4-CH ₃ -C ₆ H ₄
	H	C ₆ H ₅	2-F-C ₆ H ₄
45	H	C ₆ H ₅	3-F-C ₆ H ₄
	Н	C ₆ H ₅	4-F-C ₆ H ₄
	H	C ₆ H ₅	2-C1-C ₆ H ₄
50	Н	C ₆ H ₅	3-C1-C ₆ H ₄
50	Н	C ₆ H ₅	4-C1-C ₆ H ₄

	R ³	R ⁴	R ¹³
	H	C ₆ H ₅	2-Br-C ₆ H ₄
5	H	C ₆ H ₅	3-Br-C ₆ H ₄
	Н	C ₆ H ₅	4-Br-C ₆ H ₄
	Н	C ₆ H ₅	2-OH-C ₆ H ₄
	Н	C ₆ H ₅	3-OH-C ₆ H ₄
10	Н	C ₆ H ₅	4-OH-C ₆ H ₄
	H	C ₆ H ₅	2-OCH ₃ -C ₆ H ₄
	Н	C ₆ H ₅	3-OCH ₃ -C ₆ H ₄
	H	C ₆ H ₅	4-OCH ₃ -C ₆ H ₄
15	н	C ₆ H ₅	2-C1-6-CH ₃ -C ₆ H ₃
	Н	C ₆ H ₅	2-CO ₂ CH ₃ -6-CH ₃ -C ₆ H ₃
	H	C ₆ H ₅	4-C ₆ H ₅ -C ₆ H ₄
0.0	H	C ₆ H ₅	3-C (CH ₃) ₃ -C ₆ H ₄
20	H	C ₆ H ₅	4-C (CH ₃) ₃ -C ₆ H ₄
	H	C ₆ H ₅	2-CF ₃ -C ₆ H ₄
	H	C ₆ H ₅	3-CF ₃ -C ₆ H ₄
25	н	C ₆ H ₅	4-CF ₃ -C ₆ H ₄
	H	C ₆ H ₅	2-NO ₂ -C ₆ H ₄
	H	C ₆ H ₅	3-NO ₂ -C ₆ H ₄
	H	C ₆ H ₅	4-NO ₂ -C ₆ H ₄
30	H	C ₆ H ₅	2-CN-C ₆ H ₄
	H	C ₆ H ₅	3-CN-C ₆ H ₄
	н -	C ₆ H ₅	4-CN-C ₆ H ₄
	H	C ₆ H ₅	$2,5-(OCH_3)_2-C_6H_3$
35	H	C ₆ H ₅	2,5-Cl ₂ -C ₆ H ₃
	H	C ₆ H ₅	2,4,5-Cl ₃ -C ₆ H ₂
	H	C ₆ H ₅	2-CO ₂ CH ₃ -C ₆ H ₃
40	H	C ₆ H ₅	5-C1-2-OCH ₃ -C ₆ H ₃
40	H	C ₆ H ₅	5-NO ₂ -2-C1-C ₆ H ₃
	H	C ₆ H ₅	2-C1-6-cyclopentenyl-C ₆ H ₃
	Н	C ₆ H ₅	3-Cl-thien-2-yl
4 5	н	C ₆ H ₅	$2-(CO_2CH_3)-C_6H_4$
	H	C ₆ H ₅	$3-(CO_2CH_3)-C_6H_4$
	Н	C ₆ H ₅	4-(CO ₂ CH ₃)-C ₆ H ₄
	Н	C ₆ H ₅	$2-(CO_2C_2H_5)-C_6H_4$
50	Н	C ₆ H ₅	$3-(CO_2C_2H_5)-C_6H_4$

	R ³	R ⁴	R ¹³
	Н	C ₆ H ₅	4-(CO ₂ C ₂ H ₅)-C ₆ H ₄
_	Н	C ₆ H ₅	2-CONH ₂ -C ₆ H ₄
5	H	C ₆ H ₅	3-CONH ₂ -C ₆ H ₄
	H	C ₆ H ₅	4-CONH ₂ -C ₆ H ₄
	Н	C ₆ H ₅	2-NH ₂ -C ₆ H ₄
10	H	C ₆ H ₅	3-NH ₂ -C ₆ H ₄
	H	C ₆ H ₅	4-NH ₂ -C ₆ H ₄
	Н	C ₆ H ₅	2-SCH ₃ -C ₆ H ₄
	Н	C ₆ H ₅	3-SCH ₃ -C ₆ H ₄
15	Н	C ₆ H ₅	4-SCH ₃ -C ₆ H ₄
	Н	C ₆ H ₅	2,4-(CH ₃) ₂ -C ₆ H ₃
	Н	C ₆ H ₅	3,4-(CH ₃) ₂ -C ₆ H ₃
	Н	C ₆ H ₅	2,6-(CH ₃) ₂ -C ₆ H ₃
20	н	C ₆ H ₅	2,4-(OCH ₃) ₂ -C ₆ H ₃
	Н	C ₆ H ₅	3,4-(OCH ₃) ₂ -C ₆ H ₃
	н	С ₆ Н ₅	2,6-(OCH ₃) ₂ -C ₆ H ₃
25	н	C ₆ H ₅	2,4-F ₂ -C ₆ H ₃
20	н	C ₆ H ₅	3,4-F ₂ -C ₆ H ₃
	н	C ₆ H ₅	2,6-F ₂ -C ₆ H ₃
	Н	C ₆ H ₅	2,4-Cl ₂ -C ₆ H ₃
30	н	C ₆ H ₅	3,4-Cl ₂ -C ₆ H ₃
	Н	C ₆ H ₅	2,6-Cl ₂ -C ₆ H ₃
	H	C ₆ H ₅	2,4-(OH) ₂ -C ₆ H ₃
	н	C ₆ H ₅	3,4-(OH) ₂ -C ₆ H ₃
35	н	C ₆ H ₅	2,6-(OH) ₂ -C ₆ H ₃
	H	С ₆ Н ₅	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	H	C ₆ H ₅	3-NO ₂ -4-F-C ₆ H ₃
	H	C ₆ H ₅	3-NO ₂ -4-C1-C ₆ H ₃
40	н	C ₆ H ₅	3-NO ₂ -4-OCH ₃ -C ₆ H ₃
	Н	C ₆ H ₅	2-Naphthyl
	H	C ₆ H ₅	Thien-2-yl
45	H	C ₆ H ₅	Thien-3-yl
	H	С ₆ Н ₅	5-CH ₃ -thien-2-yl
	Н	C ₆ H ₅	5-Cl-thien-2-yl
	Н	C ₆ H ₅	5-Br-thien-2-yl
50	Н	C ₆ H ₅	2,5-(CH ₃) ₂ -thien-3-yl

	R ³	R ⁴	R ¹³
	Н	C ₆ H ₅	Thiazol-2-yl
5	H	C ₆ H ₅	Thiazol-4-yl
	H	C ₆ H ₅	5-CH ₃ -thiazol-2-yl
	н	C ₆ H ₅	5-Cl-thiazol-2-yl
	н	C ₆ H ₅	5-Br-thiazol-2-yl
10	Н	C ₆ H ₅	2,5-(CH ₃) ₂ -thiazol-4-yl
	Н	C ₆ H ₅	Furan-2-yl
	н	C ₆ H ₅	Furan-3-yl
15	н	C ₆ H ₅	5-CH ₃ -furan-2-yl
	н	C ₆ H ₅	5-Cl-furan-2-yl
	н	C ₆ H ₅	Pyrrol-2-yl
	н	C ₆ H ₅	Pyrrol-3-yl
20	н	C ₆ H ₅	5-CH ₃ -pyrrol-2-yl
	н	C ₆ H ₅	5-Br-pyrrol-2-yl
	н	C ₆ H ₅	Oxazol-4-yl
	н	C ₆ H ₅	Imidazol-2-yl
25	н	C ₆ H ₅	Pyridin-2-yl
	Н	C ₆ H ₅	Pyridin-3-yl
	H	C ₆ H ₅	Pyridin-4-yl
30	н	C ₆ H ₅	Pyrazin-3-yl
00	H	C ₆ H ₅	Pyrazin-4-yl
	H	C ₆ H ₅	Pyrrol-2-yl
	н	C ₆ H ₅	Pyrimidin-2-yl
35	H	C ₆ H ₅	Pyrimidin-4-yl
	H	C ₆ H ₅	Pyrimidin-5-yl
	H	SO ₂ CH ₃	C ₆ H ₅
	H	SO ₂ CH ₃	2-CH ₃ -C ₆ H ₄
40	H	SO ₂ CH ₃	3-CH ₃ -C ₆ H ₄
	Н	SO ₂ CH ₃	4-CH ₃ -C ₆ H ₄
	H	SO ₂ CH ₃	2-F-C ₆ H ₄
	Н	SO ₂ CH ₃	3-F-C ₆ H ₄
45	H	SO ₂ CH ₃	4-F-C ₆ H ₄
	H	SO ₂ CH ₃	2-C1-C ₆ H ₄
	H	SO ₂ CH ₃	3-C1-C ₆ H ₄
50	н	SO ₂ CH ₃	4-C1-C ₆ H ₄
	Н	SO ₂ CH ₃	2-Br-C ₆ H ₄

	R ³	R ⁴	R ¹³
	Н	SO ₂ CH ₃	3-Br-C ₆ H ₄
5	Н	SO ₂ CH ₃	4-Br-C ₆ H ₄
3	н	SO ₂ CH ₃	2-OH-C ₆ H ₄
	Н	SO ₂ CH ₃	3-OH-C ₆ H ₄
	Н	SO ₂ CH ₃	4-OH-C ₆ H ₄
10	H	SO ₂ CH ₃	2-OCH ₃ -C ₆ H ₄
	H	SO ₂ CH ₃	3-OCH ₃ -C ₆ H ₄
	н	SO ₂ CH ₃	4-OCH ₃ -C ₆ H ₄
	н	SO ₂ CH ₃	4-C ₆ H ₅ -C ₆ H ₄
15	Н	SO ₂ CH ₃	3-C (CH ₃) ₃ -C ₆ H ₄
	Н	SO ₂ CH ₃	4-C (CH ₃) ₃ -C ₆ H ₄
	Н	SO ₂ CH ₃	2-CF ₃ -C ₆ H ₄
	Н	SO ₂ CH ₃	3-CF ₃ -C ₆ H ₄
20	Н	SO ₂ CH ₃	4-CF ₃ -C ₆ H ₄
	Н	SO ₂ CH ₃	2-NO ₂ -C ₆ H ₄
	н	SO ₂ CH ₃	3-NO ₂ -C ₆ H ₄
25	H	SO ₂ CH ₃	4-NO ₂ -C ₆ H ₄
20	Н	SO ₂ CH ₃	2-CN-C ₆ H ₄
	н	SO ₂ CH ₃	3-CN-C ₆ H ₄
	Н	SO ₂ CH ₃	4-CN-C ₆ H ₄
30	Н	SO ₂ CH ₃	2-C1-6-CH ₃ -C ₆ H ₃
	Н	SO ₂ CH ₃	2-CO ₂ CH ₃ -6-CH ₃ -C ₆ H ₃
	Н	SO ₂ CH ₃	2,5-(OCH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ CH ₃	2,5-Cl ₂ -C ₆ H ₃
35	H	SO ₂ CH ₃	2,4,5-Cl ₃ -C ₆ H ₂
	H	SO ₂ CH ₃	2-CO ₂ CH ₃ -C ₆ H ₃
	H	SO ₂ CH ₃	5-C1-2-OCH ₃ -C ₆ H ₃
	H	SO ₂ CH ₃	5-NO ₂ -2-C1-C ₆ H ₃
40	Н	SO ₂ CH ₃	2-C1-6-cyclopentenyl-C ₆ H ₃
	Н	SO ₂ CH ₃	3-Cl-thien-2-yl
	H	SO ₂ CH ₃	2-(CO ₂ CH ₃)-C ₆ H ₄
45	Н	SO ₂ CH ₃	3-(CO ₂ CH ₃)-C ₆ H ₄
	Н	SO ₂ CH ₃	4-(CO ₂ CH ₃)-C ₆ H ₄
	Н	SO ₂ CH ₃	2-(CO ₂ C ₂ H ₅)-C ₆ H ₄
	Н	SO ₂ CH ₃	$3-(CO_2C_2H_5)-C_6H_4$
50	Н	SO ₂ CH ₃	4-(CO ₂ C ₂ H ₅)-C ₆ H ₄

	R ³	R ⁴	R ¹³
	н	SO ₂ CH ₃	2-CONH ₂ -C ₆ H ₄
5	H	SO ₂ CH ₃	3-CONH ₂ -C ₆ H ₄
	Н	SO ₂ CH ₃	4-CONH ₂ -C ₆ H ₄
	H	SO ₂ CH ₃	2-NH ₂ -C ₆ H ₄
10	H	SO ₂ CH ₃	3-NH ₂ -C ₆ H ₄
10	H	SO ₂ CH ₃	4-NH ₂ -C ₆ H ₄
	H	SO ₂ CH ₃	2-SCH ₃ -C ₆ H ₄
	н	SO ₂ CH ₃	3-SCH ₃ -C ₆ H ₄
15	Н	SO ₂ CH ₃	4-SCH3-C6H4
	н	SO ₂ CH ₃	2,4-(CH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ CH ₃	3,4-(CH ₃) ₂ -C ₆ H ₃
	н	SO ₂ CH ₃	2,6-(CH ₃) ₂ -C ₆ H ₃
20	н	SO ₂ CH ₃	2,4-(OCH ₃) ₂ -C ₆ H ₃
	H	SO ₂ CH ₃	3,4-(OCH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ CH ₃	2,6-(OCH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ CH ₃	2,4-F ₂ -C ₆ H ₃
25	Н	SO ₂ CH ₃	3,4-F ₂ -C ₆ H ₃
	H	SO ₂ CH ₃	2,6-F ₂ -C ₆ H ₃
	Н	SO ₂ CH ₃	2,4-Cl ₂ -C ₆ H ₃
30	Н	SO ₂ CH ₃	3,4-Cl ₂ -C ₆ H ₃
	Н	SO ₂ CH ₃	2,6-Cl ₂ -C ₆ H ₃
	Н	SO ₂ CH ₃	2,4-(OH) ₂ -C ₆ H ₃
	H	SO ₂ CH ₃	$3, 4-(OH)_2-C_6H_3$
35	H	SO ₂ CH ₃	2,6-(OH) ₂ -C ₆ H ₃
	H	SO ₂ CH ₃	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	H	SO ₂ CH ₃	3-NO ₂ -4-F-C ₆ H ₃
	H	SO ₂ CH ₃	3-NO ₂ -4-C1-C ₆ H ₃
40	Н	SO ₂ CH ₃	3-NO ₂ -4-OCH ₃ -C ₆ H ₃
	Н	SO ₂ CH ₃	2-Naphthyl
	Н	SO ₂ CH ₃	Thien-2-yl
	H	SO ₂ CH ₃	Thien-3-yl
45	Н	SO ₂ CH ₃	5-CH ₃ -thien-2-yl
	Н	SO ₂ CH ₃	5-Cl-thien-2-yl
	H	SO ₂ CH ₃	5-Br-thien-2-yl
50	Н	SO ₂ CH ₃	2,5-(CH ₃) ₂ -thien-3-yl
	Н	SO ₂ CH ₃	Thiazol-2-yl
·			

	R ³	R ⁴	R ¹³
	Н	SO ₂ CH ₃	Thiazol-4-yl
5	Н	SO ₂ CH ₃	5-CH ₃ -thiazol-2-yl
	Н	SO ₂ CH ₃	5-Cl-thiazol-2-yl
	Н	SO ₂ CH ₃	5-Br-thiazol-2-yl
	H	SO ₂ CH ₃	2,5-(CH ₃) ₂ -thiazol-4-yl
10	Н	SO ₂ CH ₃	Furan-2-yl
	H	SO ₂ CH ₃	Furan-3-yl
	Н	SO ₂ CH ₃	5-CH ₃ -furan-2-yl
15	Н	SO ₂ CH ₃	5-Cl-furan-2-yl
	Н	SO ₂ CH ₃	Pyrrol-2-yl
	Н	SO ₂ CH ₃	Pyrrol-3-yl
	Н	SO ₂ CH ₃	5-CH ₃ -pyrrol-2-yl
20	Н	SO ₂ CH ₃	5-Br-pyrrol-2-yl
	Н	SO ₂ CH ₃	Oxazol-4-yl
	Н	SO ₂ CH ₃	Imidazol-2-yl
	Н	SO ₂ CH ₃	Pyridin-2-yl
25	Н	SO ₂ CH ₃	Pyridin-3-yl
	Н	SO ₂ CH ₃	Pyridin-4-yl
	Н	SO ₂ CH ₃	Pyrazin-3-yl
20	Н	SO ₂ CH ₃	Pyrazin-4-yl
30	н	SO ₂ CH ₃	Pyrrol-2-yl
	H	SO ₂ CH ₃	Pyrimidin-2-yl
	H	SO ₂ CH ₃	Pyrimidin-4-yl
35	H	SO ₂ CH ₃	Pyrimidin-5-yl
	H	SO ₂ C ₆ H ₅	C ₆ H ₅
	H	SO ₂ C ₆ H ₅	2-CH ₃ -C ₆ H ₄
	H	SO ₂ C ₆ H ₅	3-CH ₃ -C ₆ H ₄
40	H	SO ₂ C ₆ H ₅	4-CH ₃ -C ₆ H ₄
	H	SO ₂ C ₆ H ₅	2-F-C ₆ H ₄
	H	SO ₂ C ₆ H ₅	3-F-C ₆ H ₄
	H	SO ₂ C ₆ H ₅	4-F-C ₆ H ₄
45	H	SO ₂ C ₆ H ₅	2-C1-C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	3-C1-C ₆ H ₄
	H	SO ₂ C ₆ H ₅	4-C1-C ₆ H ₄
50	H	SO ₂ C ₆ H ₅	2-Br-C ₆ H ₄
	H	SO ₂ C ₆ H ₅	3-Br-C ₆ H ₄

	R ³	R ⁴	R ¹³
	Н	SO ₂ C ₆ H ₅	4-Br-C ₆ H ₄
5	Н	SO ₂ C ₆ H ₅	2-OH-C ₆ H ₄
	H	SO ₂ C ₆ H ₅	3-0H-C ₆ H ₄
	H	SO ₂ C ₆ H ₅	4-OH-C ₆ H ₄
	H	SO ₂ C ₆ H ₅	2-OCH ₃ -C ₆ H ₄
10	н	SO ₂ C ₆ H ₅	3-OCH ₃ -C ₆ H ₄
	H	SO ₂ C ₆ H ₅	4-OCH ₃ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	4-C ₆ H ₅ -C ₆ H ₄
15	Н	SO ₂ C ₆ H ₅	3-C (CH ₃) ₃ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	4-C (CH ₃) ₃ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	2-CF ₃ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	3-CF ₃ -C ₆ H ₄
20	Н	SO ₂ C ₆ H ₅	4-CF ₃ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	2-NO ₂ -C ₆ H ₄
	H	SO ₂ C ₆ H ₅	3-NO ₂ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	4-NO ₂ -C ₆ H ₄
25	Н	SO ₂ C ₆ H ₅	2-CN-C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	3-CN-C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	4-CN-C ₆ H ₄
30	Н	SO ₂ C ₆ H ₅	2-C1-6-CH ₃ -C ₆ H ₃
30	Н	SO ₂ C ₆ H ₅	2-CO ₂ CH ₃ -6-CH ₃ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	2,5-(OCH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	2,5-Cl ₂ -C ₆ H ₃
35	H	SO ₂ C ₆ H ₅	2,4,5-Cl ₃ -C ₆ H ₂
	H	SO ₂ C ₆ H ₅	2-CO ₂ CH ₃ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	5-C1-2-OCH ₃ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	5-NO ₂ -2-C1-C ₆ H ₃
40	Н	SO ₂ C ₆ H ₅	2-C1-6-cyclopentenyl-C ₆ H ₃
	н	SO ₂ C ₆ H ₅	3-Cl-thien-2-yl
	H	SO ₂ C ₆ H ₅	$2-(CO_2C_2H_5)-C_6H_4$
	Н	SO ₂ C ₆ H ₅	$3-(CO_2C_2H_5)-C_6H_4$
45	Н	SO ₂ C ₆ H ₅	$4-(CO_2C_2H_5)-C_6H_4$
	Н	SO ₂ C ₆ H ₅	2-(CO ₂ CH ₃)-C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	3-(CO ₂ CH ₃)-C ₆ H ₄
50	Н	SO ₂ C ₆ H ₅	4-(CO ₂ CH ₃)-C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	2-CONH ₂ -C ₆ H ₄

	R ³	R ⁴	R ¹³
	Н	SO ₂ C ₆ H ₅	3-CONH ₂ -C ₆ H ₄
5	Н	SO ₂ C ₆ H ₅	4-CONH ₂ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	2-NH ₂ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	3-NH ₂ -C ₆ H ₄
	Н	SO ₂ C ₆ H ₅	4-NH ₂ -C ₆ H ₄
10	н	SO ₂ C ₆ H ₅	2-SCH ₃ -C ₆ H ₄
	н	SO ₂ C ₆ H ₅	3-SCH ₃ -C ₆ H ₄
	н	SO ₂ C ₆ H ₅	4-SCH ₃ -C ₆ H ₄
15	H	SO ₂ C ₆ H ₅	2,4-(CH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	3,4-(CH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	2,6-(CH ₃) ₂ -C ₆ H ₃
	н	SO ₂ C ₆ H ₅	2,4-(OCH ₃) ₂ -C ₆ H ₃
20	Н	SO ₂ C ₆ H ₅	3,4-(OCH ₃) ₂ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	2,6-(OCH ₃) ₂ -C ₆ H ₃
	H	SO ₂ C ₆ H ₅	2,4-F ₂ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	3,4-F ₂ -C ₆ H ₃
25	н	SO ₂ C ₆ H ₅	2,6-F ₂ -C ₆ H ₃
	н	SO ₂ C ₆ H ₅	2,4-Cl ₂ -C ₆ H ₃
	н	SO ₂ C ₆ H ₅	3,4-Cl ₂ -C ₆ H ₃
00	н	SO ₂ C ₆ H ₅	2,6-Cl ₂ -C ₆ H ₃
30	н	SO ₂ C ₆ H ₅	2,4-(OH) ₂ -C ₆ H ₃
	Н	SO ₂ C ₆ H ₅	$3,4-(OH)_2-C_6H_3$
	Н	SO ₂ C ₆ H ₅	2,6-(OH) ₂ -C ₆ H ₃
35	Н	SO ₂ C ₆ H ₅	3-NO ₂ -4-CH ₃ -C ₆ H ₃
	H	SO ₂ C ₆ H ₅	3-NO ₂ -4-F-C ₆ H ₃
	н	SO ₂ C ₆ H ₅	3-NO ₂ -4-C1-C ₆ H ₃
	H	SO ₂ C ₆ H ₅	3-NO ₂ -4-OCH ₃ -C ₆ H ₃
40	н	SO ₂ C ₆ H ₅	2-Naphthyl
	н	SO ₂ C ₆ H ₅	Thien-2-yl
	Н	SO ₂ C ₆ H ₅	Thien-3-yl
	Н	SO ₂ C ₆ H ₅	5-CH ₃ -thien-2-yl
45	н	SO ₂ C ₆ H ₅	5-Cl-thien-2-yl
	н	SO ₂ C ₆ H ₅	5-Br-thien-2-yl
	Н	SO ₂ C ₆ H ₅	2,5-(CH ₃) ₂ -thien-3-yl
50	Н	SO ₂ C ₆ H ₅	Thiazol-2-yl
	H	SO ₂ C ₆ H ₅	Thiazol-4-yl

R ³	R ⁴	R ¹³
н	SO ₂ C ₆ H ₅	5-CH ₃ -thiazol-2-yl
H	SO ₂ C ₆ H ₅	5-Cl-thiazol-2-yl
Н	SO ₂ C ₆ H ₅	5-Br-thiazol-2-yl
Н	SO ₂ C ₆ H ₅	2,5-(CH ₃) ₂ -thiazol-4-yl
Н	SO ₂ C ₆ H ₅	Furan-2-yl
Н	SO ₂ C ₆ H ₅	Furan-3-yl
H	SO ₂ C ₆ H ₅	5-CH ₃ -furan-2-yl
Н	SO ₂ C ₆ H ₅	5-Cl-furan-2-yl
Н	SO ₂ C ₆ H ₅	Pyrrol-2-yl
Н	SO ₂ C ₆ H ₅	Pyrrol-3-yl
Н	SO ₂ C ₆ H ₅	5-CH ₃ -pyrrol-2-yl
Н	SO ₂ C ₆ H ₅	5-Br-pyrrol-2-yl
H	SO ₂ C ₆ H ₅	Oxazol-4-yl
Н	SO ₂ C ₆ H ₅	Imidazol-2-yl
Н	SO ₂ C ₆ H ₅	Pyridin-2-yl
H	SO ₂ C ₆ H ₅	Pyridin-3-yl
H	SO ₂ C ₆ H ₅	Pyridin-4-yl
H	SO ₂ C ₆ H ₅	Pyrazin-3-yl
H	SO ₂ C ₆ H ₅	Pyrazin-4-yl
H	SO ₂ C ₆ H ₅	Pyrrol-2-yl
Н	SO ₂ C ₆ H ₅	Pyrimidin-2-yl
H	SO ₂ C ₆ H ₅	Pyrimidin-4-yl
H	SO ₂ C ₆ H ₅	Pyrimidin-5-yl

Die substituierten Pyido[2,3-d]pyrimidine I eignen sich als Antidots, um herbizide Wirkstoffe für Kulturpflanzen wie Kulturhirse, Reis, Mais, Getreidearten (Weizen, Roggen, Gerste, Hafer), Baumwolle, Zuckerrüben, Zuckerrohr und Soja verträglicher zu machen. Sie wirken antagonistisch auf Herbizide verschiedenster Stoffklassen wie Triazine, Phenylharnstoffderivate, Carbamate, Thiolcarbamate, Halogenacetanilide, Benzoesäurederivate sowie insbesondere Halogenphenoxyessigsäureester, substituierte Phenoxyphenoxyessigsäureester, Phenoxyphenoxypropionsäureester und Cyclohexenonderivate.

Herbizid wirksame Cyclohexenon-Derivate II sind beispielsweise aus EP-A 228 598, EP-A 230 235, EP-A 238 021, EP-A 368 227, US-A 4 432 786, 39 104 und DE-A 38 38 309 bekannt. Sie dienen vorwiegend zur Bekämpfung unerwünschter Gräser in dicotylen Kulturen und in Gräsern, die nicht zur Familie der Gramineen zählen. In Abhängigkeit der Substituenten und der Dosierung der Verbindungen des Typs II bei ihrer Anwendung können diese Cyclohexenone auch zur selektiven Bekämpfung von unerwünschten Gräsern in Gramineen-Kulturen wie Weizen und Reis eingesetzt werden.

Weitere Cyclohexenon-Derivate II lassen sich in an sich bekannter Weise nach literaturbekannten Syntheseverfahren (vgl. z.B. EP-A 169 521) darstellen, beispielsweise durch Umsetzung von Triketonen IX (bekannt z.B. aus EP-A 80 301, EP-A 125 094, EP-A 142 741, US-A 4 249 937, EP-A 137 174 und EP-A 177 913) mit Hydroxylaminen X (bekannt z.B. aus Houben-Weyl, Methoden der Organischen Chemie, Band 10/1, Seite 1181 ff):

Zweckmäßig führt man die Umsetzung in heterogener Phase in einem Lösungsmittel, bevorzugt in Gegenwart einer Base, durch, wobei das Hydroxylamin vorzugsweise als Ammoniumsalz eingesetzt wird.

Als Basen eigenen sich beispielsweise die Carbonate, Hydrogencarbonate, Acetate, Alkoholate und Oxide von Alkalimetallen und Erdalkalimetallen wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid und Calciumoxid, des weiteren organische Basen wie Pyridin und tertiäre Amine wie Triethylamin.

Triketon und Hydroxylamin werden vorzugsweise in etwa stöchiometrischen Mengen eingesetzt. Die Menge an Base ist nicht kritisch, beträgt normalerweise aber ca. 0,5 bis 2 mol-Äquivalent, bezogen auf die Menge an IX.

Im allgemeinen liegt die Reaktionstemperatur zwischen 0 und 80 ° C.

15

50

Als Lösungsmittel eignen sich beispielsweise Dimethylsulfoxid, Alkohole wie Methanol, Ethanol und Isopropanol, aromatische Kohlenwasserstoffe wie Benzol und Toluol, chlorierte Kohlenwasserstoffe wie Hexan und Cyclohexan, Ester wie Essigsäureethylester und Ether wie Diethylether, Dioxan und Tetrahydrofuran. Vorzugsweise führt man die Umsetzung in Methanol mit Natriumhydrogencarbonat als Base durch.

Die Reaktion ist nach wenigen Stunden beendet. Das Produkt II kann z.B. durch Einengen der Mischung, Verteilen des Rückstandes in Methylenchlorid/Wasser und Abdestillieren des Lösungsmittels unter vermindertem Druck isoliert werden.

Man kann für diese Umsetzung aber auch unmittelbar die freie Hydroxylaminbase, z.B. in Form einer wäßrigen Lösung, verwenden; je nach verwendetem Lösungsmittel für das Hydroxylamin X erhält man ein ein- oder zweiphasiges Reaktionsgemisch.

Geeignete Lösungsmittel für diese Variante sind beispielsweise Alkohole wie Methanol, Ethanol, Isopropanol und Cyclohexanol, aliphatische und aromatische, gegebenenfalls chlorierte Kohlenwasserstoffe wie Hexan, Cyclohexan, Methylenchlorid, Toluol und Dichlorethan, Ester wie Essigsäureethylester, Nitrile wie Acetonitril und cyclische Ether wie Dioxan und Tetrahydrofuran.

Besondere Bedingungen bezüglich des Druckes sind nicht erforderlich; normalerweise nimmt man die Umsetzung daher bei Atmosphärendruck vor.

Alkalimetallsalze der Verbindungen II können durch Behandeln der 3-Hydroxyverbindungen mit Natrium- oder Kaliumhydroxid bzw. -alkoholat in wäßriger Lösung oder in einem organischen Lösungsmittel wie Methanol, Ethanol, Aceton und Toluol erhalten werden.

Andere Metallsalze wie Mangan-, Kupfer-, Zink-, Eisen-, Calcium-, Magnesium- und Bariumsalze können aus den Natriumsalzen in üblicher Weise hergestellt werden, ebenso Ammonium- und Phosphoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sufoxoniumhydroxiden.

Die Verbindung des Typs IX können z.B. aus den entsprechenden Cyclohexan-1,3-dionen der Formel 45 XI

nach bekannten Methoden (Tetrahedron Lett., 2491 (1975)) hergestellt werden.

Es ist auch möglich, die Verbindungen der Formel IX über die Zwischenstufe der Enolester herzustellen, die bei der Umsetzung von Verbindungen der Formel XI mit Säurechloriden in Gegenwart von Basen anfallen und anschließend mit bestimmten Imidazol- oder Pyridinderivaten umgelager werden (JP-OS

79/063 052).

15

20

25

30

Zu den Hydroxylaminen der Formel X gelangt man in der Regel über eine Reihe bekannter Verfahrensschritte ausgehend von bekannten Vorprodukten:

$$L-W-R^{f} + D \longrightarrow D \longrightarrow N-O-W-R^{f} \xrightarrow{H_{2}N-CH_{2}CH_{2}-OH} X$$
XII XIII XIV

L = die Hydroxylgruppe oder eine Abgangsgruppe, z.B. Halogen wie Chlor, Brom und Jod oder CH_3SO_2 -O-.

Die zur Synthese der Hydroxylamine X benötigten Alkylierungsmittel sind literaturbekannt oder lassen sich nach bekannten Methoden darstellen.

Synthesen von Derivaten in denen W eine aliphatische oder olefinische Kette bedeutet, die gegebenenfalls durch Heteroatome unterbrochen sein kann, sind den folgenden Druckschriften zu entnehmen:

DE-A 3 437 919; Tetrahetron Lett. 28, 2639 (1979); Org. Synth. Coll. Vol. 1, 436 (1944); DB-A 2 654 646; DE-A 2 714 561; J. Org. Chem. 52, 3587 (1987); DE-A 948 871; DE-A 948 872; J. Med. Chem. 26, 1570 (1983); Synthesis 675 (1983); J. Org. Chem. 48, 4970 (1983); Org. Synth. Coll. Vol. V, 249; EP 48 911; EP 143 952; US 4 686 735.

Zur Herstellung von Verbindungen II, in denen W eine aliphatische oder olefinische Kette und R^f einen Heterocyclus bedeutet, sei auf folgende Literatur verwiesen:

J. Heterocycl. Chem. 14, 525 (1976); JP 55 051 004; JP 55 047 601; Houben Weyl: Methoden der organischen Chemie Band 4/3, S. 424 ff; DE-A-2 821 409; Chem. Ber. 114, 3667, 3674 (1981).

Herstellungsmethoden, die von geeigneten Carbinolen XII (L=OH) ausgehen, sind beispielsweise bekannt aus:

Tetrahedron 35, 329 (1979); Chem. Lett. 423, (1977); Houben/Weyl: Methoden der organischen Chemie, Band 13/9B, S. 964 ff; dto. Band 5/3, S. 862 und 899 ff; dto. Band 5/4, S. 361 ff.

Die Darstellung von Alkylierungsmitteln in denen W eine substituierte oder unsubstituierte C_3 - C_6 -Alkinylgruppe bedeutet, kann nach klassischen Methoden [vgl. J. Med Chem. 29, 1389 (1986); dto. 24, 678 (1981); EP-A 131 302; J. Chem. Ecol. 10, 1201 (1982)] oder durch Kupplung von 1-Alkinylderivaten mit Aryloder Hetarylhalogeniden in Gegenwart von Palladiumkatalysatoren [vgl. z.B. Tetrahedron Sett. 50, 4467 (1975)] erfolgen.

XII wird mit einem cyclischen Hydroxylimid XIII gekoppelt und das erhaltene geschützte Hydroxylaminderivat XIV zum freien Hydroxylamln X gespalten, bevorzugt mit 2-Aminoethanol.

Bei der Verwendung von HO-W-R^f empfiehlt sich das Arbeiten nach der Mitsunobu-Variante [vgl. Synthesis, 1 (1981) und J. Med. Chem. 33, 187 (1990)].

In den cyclischen Hydroxyimiden X steht D z.B. für C₂-C₃-Alkylen, C₂-Alkenylen oder einen mit bis zu drei Doppelbindungen und gegebenenfalls ein Stickstoffatom enthaltenden 5- oder 6-Ring, z.B. für Phenylen, Pyridinylen, Cyclopentylen, Cyclopexylen oder Cyclopexenylen. Beispielsweise kommen folgende

Substanzen in Betracht:

40

45

50

5
$$N-OH$$
 $N-OH$
 $N-OH$
 $N-OH$
 $N-OH$
 $N-OH$
 $N-OH$
 $N-OH$

Die Umsetzung der Verbindungen IX mit den Hydroxyimiden XIII wird zweckmäßigerweise in Gegenwart einer Base ausgeführt. Geeignet sind prinzipiell alle Basen, die in der Lage sind, die Hydroxyimide XIII zu deprotonieren ohne das Imidsystem anzugreifen. Dies sind insbesondere die sogenannten nicht nucleophilen Basen. Beispielsweise genannt seien Mineralbase wie Alkalimetall- und Erdalkalimetallcarbonate, Alkalimetall- und Erdalkalimetallhydrogencarbonate, organische Basen wie aliphatische, cycloaliphatische und aromatische tertiäre Amine. Es können auch Gemische dieser Basen verwendet werden.

Als Einzelverbindungen seien folgende Basen beispielhaft aufgeführt: Natriumcarbonat, Kaliumcarbonat, Magnesiumcarbonat, Calciumcarbonat, Bariumcarbonat, die Hydrogencarbonate dieser Metalle, Trimethylamin, Triethylamin, Tributylamin, Ethyldiisopropylamin, N,N-Dimethylanilin, 4-N,N-Dimethylaminopyridin, Diazabicyclooctan, Diazabicycloundecan, N-Methyl-piperidin, 1,4-Dimethylpiperazin, Pyridin, Chinolin, Bipyridin, Phenanthrolin. Bevorzugt sind die preiswerten Basen Natrium- und Kaliumcarbonat.

Die Base wird im allgemeinen in äquivalenten Mengen bis zu einem Überschuß von 5 Äquivalenten, bezogen auf das Hydroxyimid, zugegeben. Ein höherer Überschuß ist möglich, entbehrt aber zusätzliche Vorteile. Die Verwendung einer geringen Basenmenge ist ebenfalls möglich. Bevorzugt wird jedoch eine Basenmenge von 1 bis 3, insbesondere von 1 bis 2 Äquivalenten, bezogen auf das Hydroxyimid XIII eingesetzt.

Die Verwendung von nucleophilen Basen, z.B. Alkalimetall- und Erdalkalimetallhydroxiden, insbesondere Natrium- und Kaliumhydroxid, ist ebenfalls möglich. In diesem Falle ist es vorteilhaft, die Base in äquivalenten Mengen bezüglich des Hydroxyimids XIII einzusetzen, um einem nucleophile Angriff der Hydroxylionen auf die Carbonylfunktion der Imdigruppierung vorzugbeugen.

Zweckmäßigerweise setzt man die Ausgangsverbindungen XII mit den Hydroxyimiden XIII in einem Lösungsmittel um, das sich unter den Reaktionsbedingungen inert verhält. Vorteilhafte Lösungsmittel sind z.B. polare, aprotische Lösungsmittel wie Dimethylformamid, N-Methylpyrrolidon, Dimethylsulfoxid, Sulfolan und cyclische harstoffe. Die Lösungsmittelmenge ist im allgemeinen nicht kritisch.

Die Umsetzung der Ausgangsverbindungen XII mit den Hydroxyimiden XIII kann auch unter Anwendung der Phasentransfer-Katalyse ausgeführt werden. In diesem Falle werden mit Wasser zwei Phase bildende Lösungsmittel, bevorzugt Chlorkohlenwasserstoffe, eingesetzt. Als Phasentransferkatalysatoren eignen sich die üblicherweise zu solchen Zwecken vezwendeten quartären Ammonium- und Phosphoniumsalze, Polyethylenglykole, Polyethylenglykolether und Kronenether, wie sie z.B. in Dehmlow et al.; Phase Transfer

Catalysis, S. 37-45 und S. 86-93, Verlag Chemie, Weinheim 1980, beschrieben sind. Die Phasentransferkatalystoren werden zweckmäßigerweise in Mengen von 1 bis 10 Vol%, bevorzugt in Mengen von 3 bis 5 Vol%, bezogen auf das Volumen der Reaktionsmischung, eingesetzt.

Die Umsetzung der Ausgangsverbindungen XII mit den Hydroxyimiden XIII wird im allgemeinen im Temperaturbereich zwischen 0 und 140°C, bevorzugt zwischen 20 und 100°C, insbesondere zwischen 40 und 80°C, durchgeführt. Zweckmäßigerweise wird dabei so vorgegangen, daß man das Hydroxyimid XIII zusammen mit der Base im Lösungsmittel vorlegt und das Ausgangsmaterial XII zu dieser Lösung dosiert. Dabei kann es sich als günstig erweisen, wenn das Hydroxyimid bei einer tieferen Temperatur, beispielsweise bei 0 bis 50°C, zugegeben und die Reaktionsmischung erst nach dieser Zugabe auf die eigentliche Reaktionstemperatur erhitzt wird.

In der Regel arbeitet man bei Normaldruck oder unter dem Eigendruck des Lösungsmittels.

Nach beendeter Reaktion wird die abgekühlte Reaktionsmischung zwecmäßigerweise mit Wasser versetzt, wobei sich die gebildeten Hydroxylaminderivate XIV als kristalline Festkörper oder als Öle abscheiden. Die auf diese Weise erhaltenen Hydroxylaminderivate können, falls gewünscht, durch Umkristallisation oder durch Extraktion weiter gereinigt werden.

Die Hydroxylaminderivate XIV können zwischengelagert werden oder sogleich in die Hydroxylaminderivate X mit freier Aminogruppe umgewandelt werden. Diese Umwandlung kann nach an sich bekannten Verfahren durchgeführt werden, wie sie beispielsweise in DE-A 36 15 973 und den darin zitierten Schriften beschrieben sind. Bevorzugt wird das Verfahren gemäß DE-A 36 15 973 angewandt, nach dem die Hydroxylaminderivate X mittel Etanolamin freigesetzt werden. Die Feisetzung der Hydroxylaminderivate X mit Hilfe anderer Basen wie wäßrigen Mineralbasen, mit Aminen, Hydrazinen, Hydroxylaminen oder mittels wäßriger Säuren ist ebenfalls möglich.

Auf den nach diesen Verfahren erhaltenen Reaktionsgemischen können die Hydroxylaminderivate X mittels üblicher Aufarbeitungsmethoden isoliert werden, beispielsweise durch Extration oder durch Kristallisation. Zur Erhöhung der Kristallisationstendenz dieser Hydroxylaminderivate kann es oftmals förderlich sein, diese in ihre Salze mit Mineralsäuren oder organischen Säuren überzuführen. Dazu werden im allgemeinen verdünnte Lösungen dieser Säuren mit den Hydroxylaminderivaten umgesetzt, und zwar zweckmäßigerweise in äquivalenten Mengen. Die erhaltenen Hydroxylammoniumsalze könne wie die Hydroxylaminderivate mit freier Aminogruppe direkt zu den Herbiziden der Formel II weiterverarbeitet werden oder auch, falls gewünscht, gelagert werden.

Die Cyclohexenon-Derivate II können bei der Herstellung als Isomerengemische anfallen, wobei sowohl E-/Z-Isomerengemische als auch Enantiomeren- oder Diastereoisomerengemische möglich sind. Die Isomerengemische können gewünschtenfalls nach den hierfür üblichen Methoden, z.B. durch Chromatographie oder durch Kristallisation, getrennt werden.

Als herbizide Wirkstoffe (A) kommen sowohl die reinen Enantiomeren II als auch Racemate oder Diastereoisomerengemische von Cyclohexanon-Derivaten II in Betracht.

Die Cyclohexenon-Derivate II können in mehreren tautomeren Formen geschrieben werden, die alle von der Erfindung umfaßt werden.

Herstellungsbeispiele (Cyclohexenon-Derivate)

Beispiel 1

35

45

50

55

2[1-(3-(4-Bromphenyl)-prop-2-enyloximino)-propyl]-3-hydroxy-5-(3-tetrahydrothiopyranyl)-cyclohex-2-en-1-on

3,0 g (0,011 mol) 2-Propionyl-5-(3-tetrahydrothiopyranyl)-cyclohexan-1,3-dion und 3,0 g (0,013 mol) 3-(4-Bromphenyl)-prop-2-enyloxiamin wurden in 100 ml Methanol bei 20°C 16 Stunden gerührt. Das dabei

ausgefallene Reaktionsprodukt wurde bei 0°C abgetrennt und mit eiskaltem Methanol und Petrolether nachgewaschen und getrocknet. Ausbeute: 68,4 %; Fp.: 97-99°C.

Vorstufe 1.1

5

N-[3-(4-Bromphenyl)-prop-2-enyloxy]-phthalimid

In 350 ml trockenes N-Methylpyrrolidon gab man nacheinander 18,5 g (0,11 mol) N-Hydroxyphthalimid und 31,4 g (0,11 mol) 1-Brom-\$3-(4-Bromphenyl)%-prop-2-en und tropfte anschließend bei Raumtemperatur 12,1 g (0,12 mol) Triethylamin zu. Nach viertägigem Rühren bei 20°C wurde die Reaktionsmischung auf 1,5 l Einswasser gegossen, abfiltriert und mit Wasser und Isopropanol nachgewaschen. Ausbeute: 86,8 %; Fp.: 161-162°C

Vorstufe 1.2

15

3-(4-Bromphenyl)-prop-2-enyloxyamin

33,4 g (0,093 mol) N-[3-(4-Bromphenyl)-prop-2-enyloxy]-phthalimid wurden portionsweise in 50 ml Ethanolamin eingetragen; die Temperatur stieg dabei bis auf 30°C an. Nach zweistündigem Rühren bei 60°C ließ man abkühlen und versetzte die Mischung mit 200 ml Dichlormethan. Es wurde mit Eiswaser ausgeschüttelt. Die organische Phase getrocknet und eingeengt und aus Petrolether kristallisiert. Ausbeute: 95,3 %; Fp.: 35-38°C.

Beispiel 2

25

2-[1-(4-(4-Fluorphenyl)-but-3-inyloximino)-butyl]-3-hydroxy-5-tetrahydropyran-4-yl-cyclohex-2-enon

OH
$$N-O-CH_2CH_2-C \equiv C$$
 F

$$CH_2-C_2H_5$$

35

30

Zu einer Lösung von 4 g (15 mMol) 2-butyryl-3-hydroxy-5-tetrahydropyran-4-yl-cyclohex-2-enon in 60 ml trockenem Methanol wurden 2,7 g (15 mMol) 4-(4-Fluorphenyl)-but-3-inoxymin gegeben. Nach 16 h Rühren bei Raumtemperatur wurde das Methanol im Wasserstrahlvakuum entfernt. Das Rohprodukt reinigte man mittels Chromatographie an Kieselgel (Laufmittel: Methylenchlorid). Ausbeute: 81,2 %.

40

45

Vorstufe 2.1

4-(4-Fluorphenyl)-3-butinol

Eine Lösung von 100 g 4-Bromfluorbenzol in 350 ml Triethylamin wurde nacheinander mit 1 g Bis(triphenylphosphin)-palladium-(II)-chlorid, 3,8 g Kupfer-(I)-jodid und 8,7 g Triphenylphosphin versetzt. Diese
Mischung wurde auf Rückflußtemperatur erwärmt, wonach man bei dieser Temperatur (ca. 100°C) 43,4 g 3Butinol innerhalb 20 min zutropfte. Es wurde noch 5 h bei dieser Temperatur gerührt. Nach dem Abkühlen
wurde das Triethylamin abdestilliert. Der Rückstand wurde in Methyl-tert.-butylether und Wasser aufgenommen. Die wäßrige Phase wurde noch zweimal mit Methyl-tert.-butylether extrahiert, die vereinigten organischen Extrakte wurden nacheinander mit 1 N Salzsäure und mit 10 %iger Natriumbicarbonatlösung
gewaschen und über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels wurde das Rohprodukt
im Hochvakuum destilliert. Ausbeute: 86 %.

Vorstufe 2.2

N-(5-(4-Fluorphenyl)-4-pentinyloxy)phthalimid

Zu einer Lösung von 33,1 g (0,186 mol) 5-Hydroxy-1-(4-fluorphenyl)-1-pentin in 430 ml trockenem Tetrahydrofuran wurden 33,4 g (0,205 mol) N-Hydroxyphthalimid und 53,8 g (0,205 mol) Triphenylphosphin gegeben. Innerhalb von 2,5 h tropfte man dann unter Temperaturkontrolle (max. 40 °C) 35,7 g (0,205 mol) Diethylazodicarboxylat zu. Man rührte über Nacht bei Raumtemperatur, engte die Mischung im Vakuum ein und nahm mit 300 ml Dichlormethan auf. Es wurde zweimal mit Natriumcarbonatlösung und einmal mit gesättigter Kochsalzlösung gewaschen. Nach Trocknen und Einengen wurde das Rohprodukt an Kieselgel chromatographisch gereinigt. Als Eluens wurde zunächst Dichlormethan/n-Hexan benutzt, später dann reines Dichlormethan. Ausbeute: 82 %; Fp.: 85-88 °C.

250-MHz-1H-NMR (in DMSO-d₆):

 δ [ppm] = 1,9 - 2,1 (m, 2H); 2,68 (t, 2H); 4,342 (t, 2H); 7,18 (t, 2H); 7,4 - 76 (m, 2H); 7,85 (s, 4H).

Vorstufe 2.3

15

20

35

40

5-Aminooxy-1-(4-Fluorphenyl)-1-pentin

Zu einer Mischung aus 68 ml Ethanolamin und 40 ml Dichlormethan wurden portionsweise 47,7 g (0,148 mol) des oben dargestellten Phthalimidethers gegeben. Nach 2 h Rühren bei Raumtemperatur war eine klare Lösung entstanden. Diese wurde in 300 ml eiskalte, gesättigte Kochsalzlösung gegeben. Man extrahierte die Mischung dreimal mit 100 ml Dichlormethan, wusch die vereinigten organischen Phasen einmal mit Kochsalzlösung gegen, trocknete und engte ein. Ausbeute: 95 % (Öl).

250-MHz-1H-NMR (in CDCl₃):

 δ [ppm] = 1,8-2,0 (m, 2H); 2,47 (6, 2H); 3,8 (t, 2H); 5,4 (breites s, 2H); 6,9-7,1 (m, 2H); 7,3-7,45 (m, 2H).

Beispiel 3

2-[1-[[(E)-4-(2-Thienyl)-3-butenyloxy]imino]-butyl]-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-cyclohex-2-en-1-on

$$\begin{array}{c|c}
OH & N-O-CH_2CH_2-CH=CH \\
\hline
CH_2-C_2H_5
\end{array}$$

Eine Mischung aus 35 g (0,13 mol) 2-Butyryl-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on und 24 g (0,14 mol) O-[(E)-4-(2-Thienyl)-3-butenyl]hydroxylamin in 300 ml Methanol wurde 16 h gerührt. Man engte im Vakuum ein und nahm in 1000 ml 10 %iger Natronlauge auf. Man extrahierte dreimal mit je 200 ml Methylenchlorid und stellte die wäßrige Phase unter Eiskühlung mit konz. Salzsäure auf pH 1 ein. Die wäßrige Phase wurde anschließend dreimal mit je 200 ml Ether extrahiet, über Magensiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wurde chromatographisch an 100 g Kieselgel/Säule 30 x 15 cm, (Laufmittel: Essigester) gereinigt. Ausbeute: 85 %.

200 MHz-1H-NMR (in CDCl₃): δ [ppm] = 0,95 (t, 3H), 1,17-1,96 (m, 9H), 2,13 (m, 1H), 2,36 (m, 1H), 2,43-2,70 (m, 3H), 2,88 (m, 2H), 3,36 (t, 2H), 4,02 (d, 2H), 4,15 (t, 2H), 6,00 (dt, 1H), 6,60 (d, 1H), 6,80-7,20 (m, 3H) 14,75 (s, 1H).

Vorstufe 3.1

(E)-4-Brom-1-(2-thienyl)-1-buten

Bei 5 bis 10°C tropfte man innerhalb 1 h 225 g (1,46 mol) Cyclopropyl-2-thienylcarbinol zu 972 ml 48 %iger Bromwasserstoffsäure. Nach 2 h bei Raumtemperatur wurde die organische Phase abgetrennt und

die wäßrige Lösung dreimal mit je 300 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit verd. Natronlauge und Wasser neutral gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. 322 g (94 % korrigert) rohes Bromid (GC: 92 %).

250 MHz- 1 H-NMR (in CDCl₃): δ [ppm] = 2,65-2,80 (m, 2h), 3,46 (t, 2H), 5,90-6,10 (m, 1H), 6,61 (d, 1H), 6,80-7,00 (m, 2H), 7,14 (d, 1H).

Vorstufe 3.2

N-[(E)-4-(2-Thienyl)-3-butenyloxy]phthalimid

10

Bei 20 bis 25°C tropfte man innerhalb 2,5 h 190 ml (1,37 mol) Triethylamin zu einer Mischung aus 283 g, (1,30 mol) des oben hergestellten Bromids, 1300 ml N-Methyl-2-pyrrolidinon, 10 g Kaliumiodid und 212 g (1,30 mol) N-Hydroxyphthalimid. Nach 4 h bei 20 bis 25°C goß man in 4000 ml Eiswasser und ergänzte portionsweise 5000 ml 10 %ige Natronlauge. Man extrahierte darauf viermal mit je 500 ml Essigester. Die vereinigten Essigester-Phasen wurden mit verd. Natronlauge und Waser neutral gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wurde chromatographisch an 1000 g Kieselgel/Säule 30 x 15 cm, (Laufmittel: n-Hexan/Dichlormethan 7:3) gereinigt. Ausbeute: 29 %; Fp.: 69-71°C (Isopropanol).

250 MHz-¹H-NMR (in d₆-DMSO): δ [ppm] = 2,55-2,70 (m, 2H), 4,28 (t, 2H), 6,00-6,20 (m, 1H), 6,77 (d, 1H), 7,00 (m, 2H), 7,35 (m, 1H), 7,87 (s, 4H).

Vorstufe 3.3

O-[(E)-4-(2-Thienyl)-3-butenyl]hydroxylamin

25

Eine Mischung aus 90,2 g (0,30 mol) des oben hergestellten Phthalimidethers und 136 ml Ethanolamin wurden 3 h bei 60 °C gerührt. Die kalte Reaktionsmischung goß man in 200 ml Eiswasser. Man ergänzte 200 ml ges. Kochsalz-Lösung und extrahierte das Hydrolysat dreimal mit je 300 ml Dichlormethan. Die vereinigten organischen Phasen wurden darauf dreimal mit je 100 ml ges. Kochsalz-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Ausbeute: 89 %.

250 MHz-1H-NMR (in CDCl₃): δ [ppm] = 2,40-2,55 (m, 2H), 3,78 (t, 2H), 5,40 (bs, 2H), 5,95-6,20 8m, 1H), 6,57 (d, 1H), 6,80-7,15 (m, 3H).

Beispiel 4

35

2-[1-[[2-(2-fluorbenzyloxy)ethoxy]imino]butyl]-2-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on

40 OH N-C

45

Eine Mischung aus 4,0 g (10 mmol) 2-Butyryl-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on und 2,6 g (14 mmol) O-[2-(2-Fluorbenzyloxy)-ethyl]hydroxylamin in 100 ml Methanol wurde 24 h gerührt. Man engte das Reaktionsgemisch unter reduziertem Druck ein und chromtographierte das Rohprodukt an 100 g Kieselgel (Säule 30 x 4 cm; Laufmittel: Ether).

Ausbeute: 54 %

300 MHz- 1 H-NMR (in CDCl₃): δ [ppm] = 0,93 (t, 3H), 1,20-1,77 (m, 7H), 1,90 (m, 1H), 2,23 (m, 2H), 2,58 (m, 2H), 2,92 (m, 2H), 3,38 (t, 2H), 3,80 (m, 2H), 4,03 (m, 2H), 4,25 (m, 2H), 4,68 8s, 2h), 6,93-7,50 (m, 4H, 14,30 (s, 1H).

Vorstufe 4.1

N-[2-(2-Fluorbenzyloxy)ethoxy]phthalimid

Zu einer Mischung aus 165 g (0,71 mol9 1-Brom-2-(2-fluorbenzyloxy)ethan, 116 g (0,7 mol) N-Hydroxyphthalimid und 710 ml n-Methyl-2-pyrrolidinon tropfte man bei 20 bis 25°C innerhalb 1 h 108 ml Triethylamin. Nach 5 g bei 60°C goß man die kalte Reaktionsmischung in 200 ml Eiswasser, saugte den Niederschlag ab, wusch mit Wasser und lopropanol und trocknete i.V. über Phosphorpentoxid. Ausbeute: 82%.

o Fp.: 62-64°C.

5

15

25

30

35

40

250 MHz- 1 H-NMR (in d₆-DMS): δ [ppm] = 3,85 (m, 2H), 4,35 (m, 1H), 4,54 (s 2H), 7,10-7,40 (m, 4H), 7,88 (s, 4H).

Vorstufe 4.2

O-[2-(2-Fluorbenzyloxy)ethyl]hydroxylamin

184 g (0,58 mol) des oben hergestellten Phtalimidethers wurden portionsweise in 270 ml Ethanolamin eingetragen. Nach 3 h bei 60°C goß man die kalte Reaktionsmischung in 1000 ml Eiswasser. Das Hydrolysat wurde dreimal mit je 800 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit 200 ml ges. Kochsalz-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vak. eingeengt. Ausbeute: 91 %.

¹H-NMR (250 MHz, CDCl₃): δ [ppm] = 3,70 (dd, 2H9, 3,85 (dd, 2H), 4,54 (2H), 5,50 (bs, 2H), 7,00-7,50 (m, 4H).

Die gewünschte antidotisierende Wirkung der Verbindungen I tritt insbesondere bei der Anwendung mit Herbiziden aus der Gruppe der Cyclohexenon-Derivate der allgemeinen Formel II auf, wenn deren Substituenten die folgende Bedeutung haben:

Ra

 C_1 - C_6 -Alkyl wie vorstehend genannt, vorzugsweise C_1 - C_4 -Alkyl, insbesondere C_1 - C_2 -Alkyl; R^b

Wasserstoff;

das Äquivalent eines landwirtschaftlich brauchbaren Kations;

C₁-C₈-Alkylcarbonyl, besonders C₁-C₆-Alkylcarbonyl wie Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethyl-carbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl, 1,1-Dimethylethylcarbonyl, Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, Hexylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl, 3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl, 1,1,2-Trimethylpropylcarbonyl, 1,2,2-Trimethylpropylcarbonyl, 1-Ethyl-1-methylpropylcarbonyl und 1-Ethyl-2-methylpropylcarbonyl, vorzugsweise C₁-C₄-Alkylcarbonyl, insbesondere C₁-C₂-Alkylcarbonyl; C₁-C₁₀-Alkylsulfonyl, besonders C₁-C₅-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methyl-propylsulfonyl, 2-Methylpropylsulfonyl, 1,1-Dimethylethylsulfonyl, Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 2,2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, Hexylsulfonyl, 1,1-Dimethylpropylsulfonyl, 1,2-Dimethylpropylsulfonyl, 1-Methylpentylsulfonyl, 2-Methylpentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1,3-Dimethylbutylsulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutylsulfonyl, sulfonyl, 3,3-Dimethylbutylsulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl,

1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl und 1-Ethyl-2-methylpropylsulfonyl, vorzugsweise C_1 - C_4 -Alkylsulfonyl, insbesondere C_1 - C_2 -Alkylsulfonyl;

 C_1 - C_{10} -Alkylphosphonyl, besonders C_1 - C_6 -Alkylphosphonyl wie Methylphosphonyl, Ethylphosphonyl, Propylphosphonyl, 1-Methylethylphosphonyl, Butylphosphonyl, 1-Methylpropylphosphonyl, 2-Methylpropylphosphonyl, 1,1-Dimethylethylphosphonyl, Pentylphosphonyl, 1-Methylbutylphosphonyl, 2-Methylbutylphosphonyl, 3-Methylbutylphosphonyl, 2,2-Dimethylpropylphosphonyl, 1-Ethylpropylphosphonyl, Hexylphosphonyl, 1,1-Dimethylpropylphosphonyl, 1,2-Dimethylpropylphosphonyl, 1-Methylpentylphosphonyl, 2-Methylpentylphosphonyl, 3-Methylpentylphosphonyl, 4-Methylpentylphosphonyl, 1,1-Dimethylbutylphosphonyl, 1,2-Dimethylbutylphosphonyl, 1,3-Dimethylbutylphosphonyl, 2,2-Dimethylbutylphosphonyl, 2,3-Dimethylbutylphosphonyl, 3,3-Dimethylbutylphosphonyl, 1-Ethylbutylphosphonyl, 2-Ethylbutylphosphonyl, 1,1,2-Trimethylpropylphosphonyl, 1,2,2-Trimethylpropylphosphonyl, 1-Ethyl-1-methylpropylphosphonyl und 1-Ethyl-2-methylpropyl-phosphonyl, oder Benzolphosphonyl, wobei die aromatischen Ringe ein bis fünf Halogenatome wie vorstehend genannt, vorzugsweise Fluor und Chlor, tragen können;

15 R

20

25

35

40

45

50

Wasserstoff; CN; CHO;

 C_1 - C_6 -Alkyl wie vorstehend genannt, vorzugsweise C_1 - C_4 -Alkyl, insbesondere C_1 - C_2 -Alkyl, welches einen der folgenden Reste tragen kann:

- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wievorstehend im allgemeinen und im besonderen genannt;
- Phenyloxy, Phenylthio, Pyridyloxy oder Pyridylthio, wobei die aromatischen Reste ihrerseits ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,
- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- 30 C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
 - C₃-C₆-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₃-C₆-Alkenyloxy wie 2-Propenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2-propenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-2-butenyloxy, 3-Methyl-2-butenyloxy, 1-Dimethyl-2-propenyloxy, 1-Ethyl-2-propenyloxy, 3-Methyl-3-butenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-2-pentenyloxy, 4-Methyl-2-pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy, 3-Methyl-3-pentenyloxy, 4-Methyl-3-pentenyloxy, 1-Methyl-4-pentenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4-pentenyloxy, 1,1-Dimethyl-2-butenyloxy, 1,1-Di-methyl-3-butenyloxy, 1,2-Dimethyl-2-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 2,2-Dimethyl-3-butenyloxy, 2,3-Dimethyl-2-butenyloxy, 3,3-Dimethyl-2-butenyloxy, 1-Ethyl-2-butenyloxy, 1-Ethyl-2-propenyloxy, 1-Ethyl-2-propenyloxy, 1-Ethyl-2-propenyloxy, 1-Ethyl-2-propenyloxy
 - C₃-C₆-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₃-C₆-Alkinyloxy wie 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2-propinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-2-butinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 1,1-Dimethyl-2-propinyloxy, 1-Ethyl-2-propinyloxy, 2-Hexinyloxy, 3-Hexinyloxy, 4-Hexinyloxy, 5-Hexinyloxy, 1-Methyl-2-pentinyloxy, 1-Methyl-4-pentinyloxy, 2-Methyl-3-pentinyloxy, 2-Methyl-3-butinyloxy, 3-Methyl-4-pentinyloxy, 4-Methyl-2-pentinyloxy, 1,1-Dimethyl-2-butinyloxy, 1,1-Dimethyl-3-butinyloxy, 1,2-Dimethyl-3-butinyloxy, 2,2-Dimethyl-3-butinyloxy, 1-Ethyl-3-butinyloxy, 2-Ethyl-3-butinyloxy und 1-Ethyl-1-methyl-2-propinyloxy, vorzugsweise 2-Propinyloxy;
 - oder NRgRh;
- 55 R^g Wasserstoff;
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₃-C₆-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₃-C₆-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;

C₁-C₆-Alkylcarbonyl wie vorstehend genannt;

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

R^h Wasserstoff;

C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C₃-C₆-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;

R^c bedeutet desweiteren:

 C_3 - C_7 -Cycloalkyl wie vorstehend genannt oder C_5 - C_7 -Cycloalkenyl wie Cyclopent-1-enyl, Cyclopent-2-enyl, Cyclopent-3-enyl, Cyclohex-1-enyl, Cyclohex-2-enyl, Cyclohex-3-enyl, Cyclohept-1-enyl, Cyclohept-2-enyl, Cyclohept-3-enyl und Cyclohept-4-enyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

- Hydroxy,

5

10

20

25

30

45

50

55

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
 - Benzylthio,
 - C₁-C₄-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methyl-propylsulfonyl, 2-Methylpropylsulfonyl und 1,1-Dimethylethylsulfonyl, vorzugsweise C₁-C₂-Alkylsulfonyl;
 - C₁-C₄-Alkylsulfenyl wie Methylsulfenyl, Ethylsulfenyl, Propylsulfenyl, 1-Methylethylsulfenyl, Butylsulfenyl, 1-Methyl-propylsulfenyl, 2-Methylpropylsulfenyl und 1,1-Dimethylethylsulfenyl, vorzugsweise C₁-C₂-Alkylsulfenyl;
 - und C₁-C₄-Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl, Butylsulfinyl, 1-Methyl-propylsulfinyl, 2-Methylpropylsulfinyl und 1,1-Dimethylethylsulfinyl, vorzugsweise C₁-C₂-Alkylsulfinyl;

5-gliedrige gesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

6- oder 7-gliedrige gesättigte oder ein- oder zweifach ungesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein bis drei Stickstoffatome oder ein oder zwei Sauerstoff- oder Schwefelatome enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

- Hydroxy,
 - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder zwei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

- Cyano,
- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
 - C₂-C₆-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₂-C₆-Alkenyloxy wie Ethenyloxy, 1-Propenyloxy, 2-Propenyloxy, 1-Methylethenyloxy, 1-Butenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-1-propenyloxy, 2-Methyl-1-propenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2-propenyloxy, 1-Pentenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-1- butenyloxy, 2-Methyl-1-butenyloxy, 3-Methyl-1-butenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-2-butenyloxy, 3-Methyl-2-butenyloxy, 1-Methyl-3-butenyloxy, 2-Methyl-3-butenyloxy, 3-Methyl-3-butenyloxy, yloxy, 1,1-Dimethyl-2-propenyloxy, 1,2-Dimethyl-1-propenyloxy, 1,2-Dimethyl-2-propenyloxy, 1-Ethyl-1-propenyloxy, 1-Ethyl-2-propenyloxy, 1-Hexenyloxy, 2-Hexenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-1-pentenyloxy, 2-Methyl-1-pentenyloxy, 3-Methyl-1-pentenyloxy, 4-Methyl-1pentenyloxy, 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-2-pentenyloxy, 4-Methyl-2pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy, 3-Methyl-3-pentenyloxy, 4-Methyl-3pentenyloxy, 1-Methyl-4-pentenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4pentenyloxy, 1,1-Dimethyl-2-butenyloxy, 1,1-Dimethyl-3-butenyloxy, 1,2-Dimethyl-1-butenyloxy, 1,2-Dimethyl-2-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-1- butenyloxy, 1,3-Dimethyl-2-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 2,2-Dimethyl-3-butenyloxy, 2,3-Dimethyl-1-butenyloxy, 2,3-Dimethyl-2-butenyloxy, 2,3-Dimethyl-3-butenyloxy, 3,3-Dimethyl-1-butenyloxy, 3,3-Dimethyl-2-butenyloxy, 1-Ethyl-1-butenyloxy, 1-Ethyl-2-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-2-butenyloxy, 2-Ethyl-3-butenyloxy, 1,1,2-Trimethyl-2-propenyloxy, 1-Ethyl-1-methyl-2-propenyloxy, 1-Ethyl-2methyl-1-propenyloxy und 1-Ethyl-2-methyl-2-propenyloxy, vorzugsweise C₂-C₄-Alkenyloxy;
 - C₂-C₆-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₂-C₆-Alkinyloxy wie Ethinyloxy, 1-Propinyloxy, 2-Propinyloxy, 1-Butinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2-propinyloxy, 1-Pentinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-2-propinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 3-Methyl-1-butinyloxy, 1,1-Dimethyl-2-propinyloxy, 1-Ethyl-2-propinyloxy, 1-Hexinyloxy, 2-Hexinyloxy, 3-Hexinyloxy, 4-Hexinyloxy, 5-Hexinyloxy, 1-Methyl-4-pentinyloxy, 2-Methyl-3-pentinyloxy, 3-Methyl-4-pentinyloxy, 4-Methyl-1-pentinyloxy, 4-Methyl-1-pentinyloxy, 1,1-Dimethyl-2-butinyloxy, 1,1-Dimethyl-3-butinyloxy, 1,2-Dimethyl-3-butinyloxy, 2,2-Dimethyl-3-butinyloxy, 3,3-Dimethyl-1-butinyloxy, vorzugsweise C₂-C₄-Alkinyloxy;
 - und C₁-C₄-Alkoxy-C₁-C₄-alkyl steht für durch C₁-C₄-Alkoxy wie vorstehend genannt substituiertes C₁-C₄-Alkyl wie vorstehend genannt;

Phenyl oder Pyridyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Nitro, Formyl, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
- C2-C6-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₂-C₆-Alkenyloxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₃-C₆-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₃-C₆-Alkinyloxy wie vorstehend im allgemeinen und im besonderen genannt;
- und NR^kR^l;

5

10

15

20

25

30

35

40

45

50

- Rk Wasserstoff;
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₃-C₆-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₃-C₆-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
- R^I Wasserstoff;
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

- C₃-C₆-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₃-C₆-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
- C_1 - C_6 -Alkylcarbonyl wie vorstehend genannt, vorzugsweise C_1 - C_4 -Alkylcarbonyl, insbesondere C_1 - C_2 -Alkylcarbonyl;

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

 R^d

Wasserstoff; Hydroxy;

oder, sofern R^c für C₁-C₆-Alkyl wie vorstehend genannt steht, ebenfalls C₁-C₆-Alkyl;

15 R

5

10

Wasserstoff; Cyano;

Halogen wie vorstehend im allgemeinen und im besonderen genannt;

C₁-C₄-Alkoxycarbonyl wie vorstehend im allgemeinen und im besonderen genannt;

C₁-C₄-Alkylketoxim wie Methylketoxim, Ethylketoxim, Propylketoxim, 1-Methylethylketoxim, Butylketoxim, 1-Methylpropylketoxim, 2-Methylpropylketoxim und 1,1-Dimethylethylketoxim;

W

 C_1 - C_6 -Alkylen [-(CH₂)a-; a = 1, 2, 3, 4, 5 oder 6], C_3 - C_6 -Alkenylen [-(CH₂)_b-CH = CH-(CH)_c-; b = 1, 2 oder 3, c = 0, 1, 2 oder 3, wobei die Summe von b + c = 1, 2, 3 oder 4 ist], oder C_3 - C_6 -Alkinylen [-CH₂)_b-C*C-(CH)_c-, wobei b und c die vorstehend gegebene Bedeutung haben und * für eine Dreifachbindung steht], wobei diese Gruppen X¹ eine Methylengruppe (= CH₂) und/oder ein bis drei der folgenden Reste tragen können:

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- und C₁-C₃-Alkyl wie Methyl, Ethyl, Propyl und 1-Methylethyl, vorzugsweise Methyl;

 C_3 - C_6 -Alkylen oder C_3 - C_6 -Alkenylen, wie vorstehend genannt, wobei in diesen Resten jeweils eine Methylengruppe durch Sauerstoff, Schwefel, SO, SO₂ oder NRⁱ ersetzt ist [-(CH₂)_f-W'-(CH₂)_g-; f = 1, 2, 3, 4 oder 5; g = 0, 1, 2, 3 oder 4, wobei die Summe von f + g = 2, 3, 4 oder 5 ist;

 $W' = O, S, SO, SO_2 \text{ oder } NR^i, \text{ oder}$

 $-(CH_2)_h-(CH=CH)_i-(CH_2)_k-W'-(CH_2)_i-(CH=CH)_m-(CH_2)_n-mit i,$

m = 0 oder 1, wobei die Summe von i + m = 1 ist; h = 0, 1, 2 oder 3, wobei die Summe von h, i und k 1, 2, 3, 4 und 5 betragen kann; k, l, n = 0, 1, 2 oder 3, wobei die Summe von h, k, l, n = 1, 2 oder 3 ist] und wobei diese Gruppen anstelle von Wasserstoffatomen ein bis drei C_1 - C_3 -Alkyleste wie vorstehend genannt tragen können;

Ri Wasserstoff;

C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C₃-C₆-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;

C₃-C₆-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;

 R^f

40

45

50

55

Wasserstoff; CH = CH-Z1, worin

- Z¹ Wasserstoff; Cyano; Carboxyl; Halogen wie vorstehend im allgemeinen und im besonderen genannt:
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - $C_1\text{-}C_4\text{-}Alkoxy$ wie vorstehend im allgemeinen und im besonderen genannt;
 - C_1 - C_8 -Alkoxycarbonyl wie vorstehend genannt, vorzugsweise C_1 - C_4 -Alkoxycarbonyl, insbesondere C_1 - C_2 -Alkoxycarbonyl;

Benzyloxycarbonyl;

Phenyl, Thienyl oder Pyridyl, wobei dieser Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C_1 - C_4 -Halogenalkyl, besonders C_1 - C_2 -Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;

- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
- oder C₃-C₆-Cyckloalkyl, wie vorstehend genannt, wobei der cyclische Rest seinerseits noch ein bis drei der folgenden Gruppen tragen kann:
 - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;

bedeutet:

Rf bedeutet ferner

5

10

15

20

25

30

40

45

Ethinyl, welches einen der folgenden Reste tragen kann:

- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- oder C₃-C₆-Cyckloalkyl wie vorstehend genannt, wobei diese Gruppen desweiteren ein bis drei der folgenden Reste tragen können: Hydroxy,
 - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;

Ethinyl, welches einen der folgenden Reste trägt: Phenyl, Thienyl oder Pyridyl, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

Phenyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder zwei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, oder 6-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein bis vier Stickstoffatome enthalten, wobei diese aromatischen und heteroaromatischen Gruppen partiell oder vollständig halogeniert sein können und außerdem ein bis drei der folgenden Reste tragen können:

- Nitro,
- C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
- C₁-C₄-Halogenalkylthio, besonders C₁-C₂-Halogenalkylthio wie Chlormethylthio, Dichlormethylthio, Trichlormethylthio, Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlorfluormethylthio, Dichlorfluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, 2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2, 2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio, 2,2,2-Trichlorethylthio und Pentafluorethylthio, vorzugsweise Trichlormethylthio;
- die bei Z1 genannten Reste
- und NRkRl, wobei Rk und Rl die vorstehend gegebene Bedeutung haben.

In der Bedeutung R^c sind unter 5-gliedrigen gesättigten Ringen, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, die folgenden Gruppen zu verstehen: 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-3-yl.

In der Bedeutung R^c sind unter 6- oder 7-gliedrigen gesättigten oder ein- oder zweifach ungesättigten Ringen, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefel- atome oder ein Sauerstoff- und ein Schwefelatom enthalten, die folgenden Gruppen zu verstehen: Oxan-2-yl, Oxan-3-yl, Oxan-4- yl, Oxepan-2-yl, Oxepan-3-yl, Oxepan-4-yl, Oxepan-5-yl, Thioxan-2-yl, Thioxan-3-yl, Thioxan-3-yl, Thioxepan-2-yl, 1,3-Dioxan-4-yl, 1,3-Dioxepan-2-yl, 1,3-Dioxepan-4-yl, 1,3-Dioxepan-5-yl, 1,3-Thioxan-4-yl, 1,3-Thioxan-5-yl,

1,3-Thioxepan-2-yl, 1,3-Thioxepan-4-yl, 1,3-Thioxepan-5-yl, 1,3-Thioxepan-6-yl, 1,3-Thioxepan-7-yl, 1,3-Dithioxan-2-yl, 1,3-Dithioxan-2-yl, 1,3-Dithioxan-2-yl, 1,4-Dithioxepan-5-yl, 1,4-Dioxepan-6-yl, 1,4-Dithioxepan-5-yl, 1,4-Dithioxepan-2-yl, 1,4-Dithioxepan-2-yl, 1,4-Dithioxepan-2-yl, 1,4-Dithioxepan-3-yl, 1,4-Thioxan-3-yl, 1,4-Thioxan-3-yl, 1,4-Thioxan-3-yl, 1,4-Thioxan-3-yl, 1,4-Thioxepan-3-yl, 1,4-Thioxepan-6-yl, 1,4-Thioxepan-6-yl, 1,4-Thioxepan-7-yl, 0xin-2-yl, 0xin-3-yl, 0xin-4-yl, 0xepin-3-yl, 0xepin-3-yl, 0xepin-3-yl, 0xepin-5-yl, 1,3-Dioxin-2-yl, 1,3-Dioxin-2-yl, 1,3-Dioxin-2-yl, 1,3-Dioxin-4-yl, 1,3-Dioxin-4-yl, 1,3-Dioxin-4-yl, 1,3-Thioxepin-3-yl, 1,3-Thioxepin-3-yl, 1,3-Thioxepin-3-yl, 1,3-Thioxepin-6-yl, 1,3-Thioxepin-7-yl, 1,3-Dithioxin-4-yl, 1,3-Dithioxepin-5-yl, 1,3-Dithioxepin-5-yl, 1,3-Dithioxepin-5-yl, 1,4-Dioxepin-5-yl, 1,4-Dioxepin-5-yl, 1,4-Dithioxepin-2-yl, 1,4-Dithioxepin-2-yl, 1,4-Thioxin-5-yl, 1,4-Thioxin-5-yl, 1,4-Thioxin-5-yl, 1,4-Thioxin-5-yl, 1,4-Thioxepin-7-yl, 1,4-Thioxepin-7-

In der Bedeutung R^c und R^f sind unter 5-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, sind die folgenden Gruppenzu verstehen: 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxaiolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Triazol-3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl, 1,3,4-Triazol-2-yl, 1,3,4-Triazol

In der Bedeutung R[†] sind unter 6-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome als Heteroatome enthalten können, sind vorzugsweise die folgenden Gruppen zu verstehen: 2-Pyridinyl, 3-Pyridinyl, 3-Pyridinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, insbesondere 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl.

Ganz besonders bevorzugte Cyclohexenon-Derivate der Formel II, deren Kulturpflanzenverträglichkeit durch substituierte Pyrido[2,3-d]pyrimidine I und I' verbessert werden kann, sind den folgenden Tabellen II.1 bis II.8 zu entnehmen:

50	45	40	35	30	25	20	15	10	5
Tabelle II.l	e 11.1		č	_					
				C Ra	11	(R ^b , R ^d , R ^e = H)	R ^e = H)		
Š.	Ra	R _C	e E		3		R.		Literatur
A.001	n-C3H7	2-(Ethylt	2-(Ethylthio)propyl		HO-	-CH ₂ CH ₂ -	I		DE-A 2 822 304
A.002		2-(Ethylt	thio)propyl		5-	сн ₂ сн=сс1-	I		US-A 4 440 566
A.003	_	2-(Ethylt	thio)propyl		- С-	12CH=CC1-	I		US-A 4 440 566
A.004	_	Tetrahydr	othiopyran-3	3-y1	-CH	12CH 2-	I		EP-A 71 707
A.005		Tetrahydr	othiopyran-3	3-y1	ا ر	-CH ₂ CH ₂ -	I		EP-A 71 707
A.006	_	Tetrahydr	othiopyran-3	3-y1	ئ ب	CH ₂ CH=CCH ₃ -	I		EP-A 71 707
A.007	_	Tetrahydr	opyran-3-yl		-S	-CH ₂ CH ₂ -	I		EP-A 71 707
A.008	_	Tetrahydr	opyran-4-yl		宁	-120=H2 ⁷ 1	I		EP-A 142 741
A.009		Pyridin-3	3-y1		-C-	1 ₂ CH ₂ -	I		EP-A 66 195
A.010		4-CH3-phe	any l		Ę,	-CH ₂ CH ₂ -	I		DE-A 24 39 104
A.011		4-C ₂ H ₅ -ph	ıenyl		-Ç	1 ₂ СН=ССН ₃ -	I		DE-A 38 08 072
A.012		2, 4, 6-(сн	13) 3-phenyl		-Ċ	-CH ₂ CH ₂ -	I		EP-A 88 301
A.013		4-CH3-cyc	lohexyl		Ş	-CH ₂ CH=CC1-	I		EP-A 88 299
A.014		4-CH3-cyc	lohexyl		宁	CH ₂ CH=CCH ₃ -	I		EP-A 88 299
A.015		3-Isoprop	- i soxazol-	-5-y1	-C	-сн 2сн=ссн3−	I		EP-A 238 021
A.016		3-Isoprop	oyl-isoxazol-	-5-y1	-C	-CH ₂ CH=CCH ₃ −	I		EP-A 238 021
A.017)– 0≡2Н)–†	CH ₂ O) -pheny l		-C	-CH ₂ CH=CC1-	I		EP-A 137 174

5 10 15		R ^f Literatur	H EP-A 2 137 200	H EP-A 230 235	H EP-A 230 235	H EP-A 46 860	JP-A 540 191 945	H EP-A 46 860	H EP-A 88 299	H EP-A 137 174	H EP-A 46 860	H EP-A 125 094	H EP-A 125 094	H EP-A 88 299	H EP-A 228 598	Н ЕР-А 228 598	H EP-A 66 195	H EP-A 66 195	H EP-A 125 094	Н ЕР-А 230 260	H EP-A 115 808
20		3	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	-CH2CH=CC1-	-CH2CH=CC1-	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	-CH2CH=CC1-	-CH ₂ CH ₂ -	-CH2CH=CC1-	-CH2CH=CCH3-	-CH2CH=CC1-	-CH ₂ CH ₂ -	-CH2CH=CH-	-CH ₂ CH ₂ -	-CH ₂ CH ₂ -	-CH2CH=CC1-	-CH ₂ CH=CH-	-CH2CH2CH2-	-CH ₂ CH ₂ -
30 35			CH ₂ -phenyl	-tetrahydropyran-3-yl	3,4-Br ₂ -tetrahydropyran-3-yl	$2, 6, 6-(CH_3)_3-cyclohex-1-enyl$	[Å×	x-1-enyl	yclohexyl	henyl	2, 6, 6-(CH ₃) ₃ -cyclohex-1-enyl	2-CH ₃ -thiazol-4-yl	2-CH ₃ -thiazol-4-yl	2, 4, 6-(CH ₃) ₃ -cyclohexyl	3-C ₂ H ₅ S-4-0H-4-CH ₃ -cyclohexyl	3, 4-(OH) ₂ -cyclohexyl	-CH ₃ -pyrazol-3-yl	-CH ₃ -pyrrol-3-yl	2-CH ₃ -thiazol-4-yl	CH ₃ CH ₂ S) ₂ -methyl	-Oxo-tetrahydrothiopyran-3-yl
40	tsetzung)	Rc	4-C2H50	3, 4-Br2	3, 4-Br2	2, 6, 6-(Cyclohe	Cyclohe	4-CH3-C	4-CF ₃ -phenyl	7, 6, 6-(2-CH3-t	2-CH3-t	2, 4, 6-(3-C2H5S	3, 4- (он	1-CH3-p	1-CH3-p	2-CH ₃ -t	(CH ₃ CH ₂	1-0x0-t
45	Tabelle II.l (Fortsetzung)	Ra	n-C3H7	n-C3H7	n-C ₃ H ₇	n-C3H7	n-C3H7	n-C ₃ H ₇	CH ₃	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	n-C3H7	n-C ₃ H ₇	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	n-C ₃ H ₇	n-C ₃ H ₇	n-C ₃ H ₇	n-C 1H7
50	Tabelle	Nr.	A.018	A.019	A.020	A.021	A.022	A.023	A.024	A.025	A.026	A.027	A.028	A.029	A.030	A.031	A.032	A.033	A.034	A.035	A.036

5	40	35	30	25	20	15	10	5
5	iabelle II.i (rortsetzung) Nr. R ^a R ^c			3		ςς Α-	_	Literatur
n-C ₃ H ₇	1, 1-Dioxo-	Dioxo-tetrahydrothiopyran-3-yl	pyran-3-yl	CH ₂ CH ₂ -		I	4	EP-A 115 808
n-C ₃ H7	1,1-Dioxo-	,1-Dioxo-tetrahydrothiopyran-3-yl	ppyran-3-yl	-сн ₂ сн=сн-	÷	I	20010	Proceedings Brit. Crop-Protection Conference -weeds 1985 Vol.1 S. 93-98
CH ₃	4-F-pheny l	phenyl-thioethyl		-CH ₂ CH ₂ -		I	ш	EP 254 514
C ₂ H ₅	4-F-pheny l	phenyl-thioethyl		-CH ₂ CH ₂ -		I	ш.	EP 254 514
C 2H5	4-F-phenyl	-thioethyl		-CH ₂ CH=CH-	+	r	w	EP 254 514
C 2H5	4-F-phenyl-thioethyl	-thioethyl		-CH2CH=CHCH2-	HCH₂−	I		EP 254 514
C3H7	4-F-phenyl-thioethyl	-thioethyl		-CH ₂ CH=CH-	Ŧ	I	w	EP 254 514
n-C 3H7	Formyl			-CH ₂ CH ₂ -		I	ш	EP 319 835
n-C ₃ H ₇	1-CH ₃ S-cyclopropyl	lopropyl		-CH2CH2-		I	ш	EP 243 313
n-C ₃ H ₇	1-CH ₃ S-cyclopropyl	lopropyl		H C1 -CH ₂ C=C-		I	ш	EP 243 313
C2H5	1-CH ₃ S-cyc	3S-cyclopropyl		H C1 -CH ₂ C=C-		I	ш	EP 243 313
C ₂ H ₅	1-CH ₃ S-cyclopropyl	lopropyl		-CH ₂ C=C- Cl		I	ш	EP 243 313
C 2H5	l-C₂H₅S-cyclopropyl	clopropyl		H C1 -CH ₂ C=C-		I	ш	EP 243 313

5		Literatur	EP 243 313	EP-A 89 120 558	EP-A 177 913	EP-A 177 913	EP-A 177 913	EP-A 177 913	EP-A 177 913	EP-A 177 913	EP-A 177 913	DE-A 38 38 309								
10		Rf	I							5-cl-thien-2-yl	5-cl-thien-2-yl	5-Cl-thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	4-F-pheny l	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl
20		3	H C1 CH ₂ C=C-	-CH ₂ CH=CHCH ₂ -	-CH ₂ CH ₂ CH=CH-	-CH ₂ CH ₂ CH=CH-	-CH ₂ CH ₂ CH=CH-	-CH ₂ CH=CHCH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -
25																				
36 35			lopropyl	rahydrothiopyran-3-yl	rahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	rahydrothiopyran-3-yl	rahydrothiopyran-3-yl	rahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	rahydropyran-3-yl	rahydropyran-4-yl	rahydrothiopyran-3-yl	yran-3-yl	rahydropyran-4-yl	rahydropyran-3-yl	rahydropyran-3-yl	rahydrothiopyran-3-yl	rahydrothiopyran-3-yl	rahydropyran-3-yl
40	setzung)	RC	1-C ₂ H ₅ S-cyclopropyl	Tetrahydrotl	Tetrahydrotl	Tetrahydroti	Tetrahydrot	Tetrahydrotl	Tetrahydrotl	Tetrahydrotl	Tetrahydrop	Tetrahydrop	Tetrahydrot	Tetrahydropyran-3-yl	Tetrahydrop	Tetrahydrop	Tetrahydrop	Tetrahydrot	Tetrahydrot	Tetrahydrop
45	II.1 (Fortsetzung)	Ra	n-C ₃ H ₇	C 2H5	C ₂ H ₅	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	C ₂ H ₅	n-C ₃ H ₇	n-C ₃ H ₇	CH3	C ₂ H ₅	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅
50	Tabelle	Nr.	A.050	A.051	A.052	A.053	A.054	A.055	A.056	A.057	A.058	A.059	A.060	A.061	A.062	A.063	A.064	A.065	A.066	A.067

	5		Literatur	DE-A 38 38 309	DE-A 38 38 309	DE-A 38 38 309	DE-A 38 38 309	DE-A 38 38 309	DE-A 38 38 309	DE-A 38 38 309
	10		Rf	4-F-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl
	20		3	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-
;	30			yl	yl	yl	yl	yı	n-3-y1	n-3-y1
		tzung)	Rc	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl
4	45	abelle II.l (Fortsetzung)	Ra	n-C3H7	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C3H7	C ₂ H ₅	n-C ₃ H ₂
ţ	50	Tabelle	Nr.	A.068	A.069	A.070	A.071	A.072	A.073	A.074

50		40	35	25	20	15	10	5
Tabell	Tabelle II.2							
			RC OH NO-W-R F		(R ^b ,R ^d ,R ^e = H) (R ^c = Tetrahyd	R ^d ,R ^e = H) = Tetrahydrothiopyran-3-yl)	ran-3-y1)	
Bsp.	Ra	3	Rf	phys. Daten (Fp. in °C)	phys. Daten (NMR-Daten in ppm) (Fp. in °C)	(wc		
A.075	C 2H5	-CH ₂ -СH=СН-	Pheny l	103-104				
A.076	n-C ₃ H ₇	-CH ₂ -СH=СН-	Phenyl	4,7 (d,2H),	4,7 (d,2H), 6,3 (dt,1H), 6,7 (d,1H), 7,2-7,5 (2m,5H)	7 (d, 1H),	7,2-7,5 (2m,5	Ĥ
A.077	C 2H5	-CH ₂ CH=СН-	4-Cl-phenyl	106-107				
A.078	n-C ₃ H ₇	-СН 2—СН=СН-	4-Cl-phenyl	4,7 (d,2H),	6,3 (dt,1H), 6,65 (d,1H), 7,2-7,5 (m,4H)	55 (ф, 1н),	7,2-7,5 (m,4	Î
A.079	C 2H5	-CH ₂ -СH=СН-	4-F-phenyl	90- 91				
A.080	n-C ₃ H ₇	-сн 2-сн=сн-	4-F-phenyl	4,6 (d,2H),	4,6 (d,2H), 6,2 (dt,1H), 6,6 (d,1H), 7,0 (m,2H), 7,4 (m,2H)	. (ф, 1н),	7,0 (m,2H), 7	, 4 (m, 2H)
A.081	C 2H5	-сн ₂ -сн=сн-	2, 4-Cl ₂ -phenyl	123-124				
A.082	n-C ₃ H ₇	-СН2−СН=СН-	2, 4-Cl ₂ -phenyl	80- 82				
A.083	C 2H5	- (сн ₂) ₃ сн=сн-	Phenyl	80- 82				
A.084	n-C 3H7		Phenyl	4,1 (t,2H),	4,1 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,2-7,4 (m,5H)	(d, 1H),	7, 2-7, 4 (m, 5H	_
A.085	C 2H5		4-Cl-phenyl	108-110				
A.086	n-C ₃ H ₇	- (СН ₂) ₃ СН=СН-	4-Cl-phenyl	4,1 (t,2H),	4,1 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,3 (s,4H)	(d, 1H),	7,3 (s,4H)	
A.087	C 2H5	-(CH ₂) ₃ -	Phenyl	4,0 (t,2H),	4,0 (t,2H), 7,0-7,4 (m,5H)			
A.088	n-C ₃ H ₇	-(CH ₂) ₃ -	Pheny l	4,0 (t,2H),	7,0-7,4 (m,5H)			
A.089	C 2H5	-CH ₂ C-CH ₂ - CH ₂	Pheny l	3,3 (s,2H),	4,4 (s,2H), 5,1 und 5,2 (2s,2H), 7,1-7,4 (m,5H)	und 5,2 (2s, 2H), 7, 1-7	, 4 (m, 5H)
A.090	n-C3H7	-сн _{2С} -сн ₂ - Сн ₂	Pheny l	3,35 (s,2н),	3,35 (s,2H), 4,4 (s,2H), 5,0 und 5,1 (2s,2H), 7,0-7,4 (m,5H)) und 5,1	(2s, 2н), 7,0-	7,4 (m,5H)

5								4,75 (d,2H), 6,45 (dt,1H), 6,75 (d,1H), 7,4-7,8 (m,4H)	6,25 (dt,1H), 6,65 (d,1H), 6,9-7,6 (3m,9H)	6,25 (dt,1H), 6,65 (d,1H), 6,9-7,5 (3m, 9H)		2-7,6 (m,5H)										
10		•						75 (d, 1H), 7	65 (d, 1н), е	65 (d, 1H), 6		15 (t, 1H), 7,							m, 4H)	m, 4H)		
15		phys. Daten (NMR-Daten in ppm) (Fp. in °C)						,5 (dt,1H), 6,	15 (dt, 1H), 6,	15 (dt, 1H), 6,		2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H))-7, 2 (2m, 4H))-7, 2 (2m, 4H)		4,05 (t,2H), 7,05-7,4 (2m,3H)	4,05 (t,2H), 7,05 und 7,45 (2m,4H)	4,05 (t,2H), 7,05 und 7,45 (2m,4H)	1-7, 4 (m, 4H)	1-7, 4 (m, 4H)
20 25		s. Daten (NMR . in °C)	89- 91	66 - 26	103-105	06 -88	96 - 26	5 (d, 2H), 6,4	4,65 (d,2H), 6,2	4,65 (d,2H), 6,2	77- 78	5 (s, 3H), 4,7	96 - 26	87- 89	4,05 (t,2H), 6,9-7,2 (2m,4H)	4,05 (t,2H), 6,9-7,2 (2m,4H)	63- 65	5 (t,2H), 7,0	5 (t,2H), 7,0	5 (t,2н), 7,0	4,1 (t,2H), 7,05-7,4 (m,4H)	4.1 (t.2H), 7.05-7.4 (m.4H)
30		A Syde GP								_	-11	2, 15										
35		æ. ÷	4-Br-phenyl	4-Br-phenyl	4-CH ₃ -phenyl	4-CH ₃ -phenyl	4-CF ₃ -phenyl	4-CF ₃ -phenyl	4-C ₆ H ₅ O-phenyl	4-C ₆ H ₅ O-phenyl	Pheny 1	Pheny 1	2-Cl-phenyl	2-Cl-phenyl	4-F-phenyl	4-F-phenyl	2, 4-Cl ₂ -phenyl	2, 4-C1 ₂ -pheny1	4-Br-phenyl	4-Br-phenyl	2-Cl-phenyl	2-C1-phenyl
40	Tabelle II.2 (Fortsetzung)	3	−сн2сн=сн-	-сн ₂ сн=сн-	-сн2сн=сн-	-сн₂сн=сн-	-CH2CH=CH-	-сн ₂ сн=сн-	-сн2сн=сн-	-сн₂сн=сн-	−сн₂сн=с(сн₃)−	-сн₂сн=с (сн₃)-	-сн2сн=сн-	-сн₂сн=сн-	-(CH ₂) ₃ -							
45	3 II.2 (Fe	Ra	C ₂ H ₅	n-C ₃ H ₇	C 2H5 .	7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	7		n-C3H7	C ₂ H ₅	7	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	7
50	Tabelle	Bsp.	A.091	A.092	A.093	A.094	A.095	A.096	A.097	A.098	A.099	A.100		A.102		A.104			A.107	A.108	A.109	A.110

50	45	35 40	30	20 25	10	5
Tabell	Tabelle II.2 (Fort	(Fortsetzung)				
Bsp.	Ra	3	ж ф	phys. Daten (Fp. in °C)	phys. Daten (NMR-Daten in ppm) (Fp. in °C)	
A.111	C ₂ H ₅	-(CH ₂) ₃ -	4-Cl-phenyl	4,05 (t,2H),	4,05 (t,2H), 7,0-7,4 (m,4H)	
A.112	n-C ₃ H ₇		4-Cl-phenyl	4,05 (t,2H),	4,05 (t,2H), 7,0-7,4 (m,4H)	
A.113	_	-сн₂сн=сн-	3, 5-Cl ₂ -phenyl	75- 77		
A.114		-сн2сн=сн-	3, 5-Cl ₂ -phenyl	70- 73		
A.115		-CH ₂ CH ₂ CH(CH ₃)-	Phenyl	1, 25 (d, 3H),	1,25 (d,3H), 3,95 (m,2H), 7,05-7,4 (m,5H)	
A.116		-CH ₂ CH ₂ CH(CH ₃)-	Phenyl	1,25 (d,3H),	1,25 (d,3H), 3,95 (m,2H), 7,05-7,4 (m,5H)	
A.117			3, 5-Cl ₂ -phenyl	82-84		
A.118		-(CH ₂) ₃ -	3, 5-Cl ₂ -phenyl	4,05 (t,2H),	4,05 (t,2H), 7,0-7,25 (m,3H)	
A.119	C ₂ H ₅	-CH ₂ CH ₂ C(=CH ₂)-	Phenyl	4,15 (t,2H),	4,15 (t,2H), 5,15 (s,1H), 5,25 (s,1H), 7,2-7,6 (m,5H)	-7,6 (m,5H)
A.120			Pheny1	4,15 (t,2H),	4,15 (t,2H), 5,15 (s,1H), 5,25 (s,1H), 7,2-7,6 (m,5H)	-7,6 (m,5H)
A.121			2,4-Cl ₂ -phenyl	107-108		
A.122	CH3	-CH2CH=CH-	4-Cl-phenyl	104-106		
A.123		-(CH ₂) ₅ -	4-Cl-phenyl	4,05 (t,2H),	4,05 (t,2H), 7,0-7,4 (2m,4H)	
A.124	n-C ₃ H7	-(CH ₂) ₅ -	4-Cl-phenyl	99 - 79		
A.125		-сн2сн=сн-	3,4-Cl ₂ -phenyl	4,7 (d,2H),	4,7 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H)	7,6 (m,3H)
A.126		-CH2CH=CH-	3, 4-Cl ₂ -phenyl	4,7 (d,2H),	4,7 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H)	7,6 (m,3H)
A.127		-сн ₂ сн(сн ₃)сн ₂ -	Phenyl	0,95 (d,3H),	0,95 (d,3H), 3,9 (m,2H), 7,0-7,5 (m,5H)	
A.128	n-C ₃ H ₇	-сн ₂ сн(сн ₃)сн ₂ -	Phenyl	0,95 (d,3H),	0,95 (d,3H), 3,9 (m,2H), 7,0-7,5 (m,5H)	
A.129	C ₂ H ₅	-(CH ₂) ₃	3,4-Cl ₂ -phenyl	4,05 (t,2H),	4,05 (t,2H), 7,0-7,1 und 7,2-7,4 (2m,3H)	
A.130		-(CH ₂) ₃	3,4-Cl ₂ -phenyl	4,05 (t,2H),	4,05 (t,2H), 6,95-7,1 und 7,2-7,45 (2m,3H)	

5			0,95(t,3H), 4,65(d,2H), 6,3(dt,1H), 6,6(d,1H), 7,1-7,6(m,4H)		1,0(t,3H), 4,7(d,2H), 6,35(dt,1H), 6,65(d,1H), 7,2-7,5(m,4H)		0,95(t,3H), 4,65(d,2H), 6,3(dt,1H), 6,6(d,1H), 6,9-7,3(m,4H)
10			, 6,6(d,1H),		6, 65 (d, 1H),		, 6,6(d,1H),
15		in ppm)	6,3(dt,1H)		5,35(dt,1H),		6,3(dt,1H)
20		phys. Daten (NMR-Daten in ppm) (Fp. in °C)	4,65(d,2H),		4,7(d,2H), (4,65(а,2н),
25		phys. Daten (Fp. in °C)	0,95(t,3H),	98-100	1,0(t,3H),	77- 78	0, 95(t, 3н),
30			3-Br-phenyl	3-c1-phenyl	3-c1-pheny1	3-F-phenyl	3-F-phenyl
35		Rf	3-Br-	3-01-	3-c1-	3-F-	3-F-
40	tsetzung)		-сн₂сн=сн-	−сн2сн=сн-	-CH2CH=CH-	-сн ₂ сн=сн-	-сн₂сн=сн-
45	Tabelle II.2 (Fortsetzung)	₽g Æ	A.148 n-C ₃ H ₇ -(C 2H5	n-C ₃ H ₇ -(C2H5 -(n-C ₃ H ₇
50	Tabelle	Bsp.	A.148	A.149	A.150	A.151	A.152

5	1-3-y1)			7, 2-7, 5 (2m, 5H)		1, 7,2-7,5 (m,4H)		4,65 (d,2H), 6,2 (dt,1H), 6,7 (d,1H), 7,0 (m,2H), 7,4 (m,2H)		4,75 (d,2H), 6,3 (dt,1H), 7,0 (d,1H), 7,05-7,5 (2m,3H)	7, 2-7, 4 (m, 5H)	7, 1-7, 4 (m, 5H)		, 7,3 (s,4H)				3,35 (s,2H), 4,4 (s,2H), 5,0 und 5,2 (2s,2H), 7,1-7,4 (m,5H)	3,35 (s,2H), 4,4 (s,2H), 5,0 und 5,2 (2s,2H), 7,1-7,4 (m,5H)
15	(R ^b ,R ^d ,R ^e = H) (R ^C = Tetrahydropyran-3-yl)	(NMR-Daten in ppm)		4,7 (d,2H), 6,3 (dt,1H), 6,7 (d,1H), 7,2-7,5 (2m,5H)		4,7 (d,2H), 6,3 (dt,1H), 6,65 (d,1H), 7,2-7,5 (m,4H)		(dt, 1H), 6,7 (d, 1H)		(dt, 1H), 7,0 (d, 1H)	4,1 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,2-7,4 (m,5H)	4,1 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,1-7,4 (m,5H)		4,1 (t,2H), 6,2 (dt,1H), 6,35 (d,1H), 7,3 (s,4H)	7,4 (m,5H)	7,4 (m,5H)		(s,ZH), 5,0 und 5,2	(s, 2H), 5,0 und 5,2
25	(R ^k	phys. Daten (NMR-[(Fp. in ^o C)		4,7 (d,2H), 6,3 (c	106-108	4,7 (d,2H), 6,3 (c		4,65 (d,2H), 6,2	135-137	4,75 (d,2H), 6,3	4,1 (t,2H), 6,2 (c	4,1 (t,2H), 6,2 (c	92- 95	4,1 (t,2H), 6,2 (c	4,05 (t,2H), 7,1-7,4 (m,5H)	4,05 (t,2H), 7,1-7,4 (m,5H)		3, 35 (s, 2H), 4,4 (3,35 (s,2н), 4,4 (
30	OH NO-W-R ^f	Rf	Phenyl	Phenyl	4-Cl-phenyl	4-Cl-phenyl	4-F-phenyl	4-F-phenyl	2,4-Cl ₂ -phenyl	$2, 4-Cl_{2}-phenyl$	Phenyl	Phenyl	4-Cl-phenyl	4-Cl-phenyl	Phenyl	Phenyl	,	Pheny I	Pheny l
40	ي [×] ±		CH 2−CH=CH−	CH ₂ СH=СН-	:H 2−CH=CH−	3H 2-CH=CH-	;н ₂ −сн=сн−	Ή2−CH=CH−	Эн 2−Сн=Сн−	ЭН 2—СН=СН−	(CH ₂) ₃ CH=CH-	(CH ₂) ₃ CH=CH-	(CH ₂) ₃ CH=CH-	(CH ₂) ₃ CH=CH-	(CH ₂) ₃ -	-(CH ₂) ₃ -	CH ₂	CH 2C-CH 2 CH 3	ॉ :н₂с-сн₂-
45	m.	3		3H7 —(C 2H5 —C	3H7 —(, ,				Į.	3H7	C2H5 -(3H7 -	Į.	3H7 -		ر آ	3H7 –(
50	Tabelle II.3	Bsp. Rª	A.153 C ₂ H ₅	A.154 n-C		A.156 n-C		A.158 n-C ₃ H ₇			A.161 C ₂ H ₅					A.166 n-C ₃ H ₇		A.16/ C ₂ H ₅	A.168 n-C ₃ H ₂ -CH ₂ C-CH ₂ -

								Ŧ		(H6 '	?	Ŧ		(H)								
		 						4,75 (d,2H), 6,4 (dt,1H), 6,75 (d,1H), 7,4-7,8 (m,4H)		4,65 (d,2H), 6,25 (dt,1H), 6,65 (d,1H), 6,9-7,5 (3m,9H)	2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H)	2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H)		4,75 (d,2H), 6,3 (dt,1H), 7,05 (d,1H), 7,05-7,6 (m,4H)								
5		; 						4-7,8		,7-6,	2-7,6	2-7,6		05-7,								
								, 7, (ا), 6,	, 7,	, 7,), 7, (
10								(d, 1H		(d, 1)	(t, 1H	(t, 1H		(d, 1H								
		(mdc						5, 75		6, 65	5, 95	5,95		, 05	_	-		3H)				(H
15		i						1H), (, 1н),	2H),	2н),		1H),	2m, 4H	(2m, 41		(2m,	n, 4H)	1, 4H)		(2m,
		-Date						(dt,		5 (dt.	ō (d,	5 (4,		(dt,	7,2 (7, 15		5-7,5	7,4 (7, 4 (1		5-7,3
		(NMR-						6,4		6,2	4,7	4,7		6,3	-6'9	-8'9		7, 0	1,0-	7,0-		, 7, 0
20		phys. Daten (NMR-Daten in ppm) (Fp. in °C)	၁၀၄	၁့၀	Ŋ	2	ပ္	d, 2H)	_	d, 2H)	5, Эн)	s, 3н)	ത	d, 2H)	4,1 (t,2H), 6,9-7,2 (2m,4H)	4,1 (t,2H), 6,8-7,15 (2m,4H)	7	4,05 (t,2H), 7,05-7,5 (2m,3H)	4,1 (t,2H), 7,0-7,4 (m,4H)	4,1 (t,2H), 7,0-7,4 (m,4H)	.	4,05 (t,2H), 7,05-7,3 (2m,4H)
		hys. Fp. i	114-116°C	99-100°C	123-125	70- 72	104-106	, 75 (89- 91	, 65 (, 15 (, 15 (113-118	, 75 (,1 (t	, 1 (t	75- 77	.) 50,	, 1 (t	, 1 (t	62- 64	.) 90′
25		عت	1		-		_	4			2	2	1	4	4	4			4	4		4
			ny 1	ny 1	eny l	eny l	eny l	eny l	4-C ₆ H ₅ O-phenyl	4-C ₆ H ₅ O-phenyl			ny J	ny 1	y.	y l	2, 4-Cl ₂ -phenyl	2, 4-Cl ₂ -phenyl	ny l	ny 1	ny J	ny 1
30			4-Br-phenyl	4-Br-phenyl	4-CH ₃ -phenyl	4-CH3-phenyl	4-CF3-phenyl	4-CF3-phenyl	6H50-	6H ₅ 0-	Phenyl	Phenyl	2-Cl-phenyl	2-Cl-phenyl	4-F-phenyl	4-F-phenyl	-C1 ₂ -	-C1 ₂ -	2-Cl-phenyl	2-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl
		Rf	4-B	4-B	4-C	4-C	7-4	J-4	7-4	7-4	Phe	Phe	5-C	2-C	4-F	4-4	2,4	2,4	2-C	2-C	J-+	J-+
35																						
	=										H3)-	13)-	,									
40	tzung		-сн 2сн=сн-	−сн2сн=сн-	-сн 2сн=сн-	-сн 2сн=сн-	-сн 2сн=сн-	−сн ₂ сн=сн–	-сн 2сн=сн-	-сн2сн=сн-	-сн₂сн=с(сн₃)-	-сн 2снс (сн 3)	-сн 2сн=сн-	−сн 2сн=сн-	2) 3-	2) 3-	2) 3-	2) 3-	2) 3-	-(CH ₂) ₃ -	2) 3-	2) 3-
40	Tabelle II.3 (Fortsetzung)	3	-CH ₂ C	-CH ₂ C	-CH ₂ C	-CH ₂ C	-CH ₂ C	-СH ₂ (-CH20	-СH ₂ (-CH ₂ (-СH ₂ (-CH ₂ (—СH ₂ (-(CH ₂) ₃ -	−(CH ₂	H)-	-(CH ₂)	-(CH ₂			
	.3 (F		5	n-C ₃ H ₇	<u>2</u>	n-C ₃ H ₇	5	n-C ₃ H ₇	5	n-C ₃ H ₇	5	n-C ₃ H ₇	5	n-C ₃ H ₇	ا 5	n-C ₃ H ₇	1 5	n-C3H7	1 5	n-C ₃ H ₇	45	n-C ₃ H ₇
4 5	le 11	R.	C 2H5		C 2H5						, C ₂ H ₅		C2H5				3 C 2H5		5 C2H5		7 C2H5	
	Tabel	Bsp.	A.169	A.170	A.171	A.172	A.173	A.174	A.175	A.176	A.177	A.178	A.179	A.180	A.181	A.182	A.183	A.184	A.185	A.186	A.187	A.188
50																						

	4 5	40	35	30	25	20	15	10	5
Tabell	e II.3 (Tabelle II.3 (Fortsetzung)							
Bsp.	Ra	3	R		phys. Dat (Fp. in o	en (NMR-Da	phys. Daten (NMR-Daten in ppm) (Fp. in °C)		
A.189	C ₂ H ₅	-CH2CH=CH2-	m	3,5-Cl ₂ -phenyl	126-127				
A.190	n-C ₃ H ₇	-CH ₂ CH=CH ₂ -	3,	3, 5-Cl ₂ -phenyl	4,7 (d,2H), 6,3 (dt,	4,7 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,1 (m,3H)	d, 1H), 7, 1	(m, 3H)
A.191	C 2H5	-(CH ₂) ₃ -	3,	3, 5-Cl ₂ -phenyl	79- 80				
A.192	n-C ₃ H ₇	-(CH ₂) ₃ -	3,	3, 5-Cl ₂ -phenyl	4,05 (t,2	4,05 (t,2H), 7,0-7,25 (m,3H)	25 (m, 3H)		
A.193	C 2H5	-CH ₂ CH ₂ C(=CH ₂)-	Ph	Phenyl	4,15 (t,2	н), 5,15 (4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,5 (m,5H)	s, 1H), 7,2-	-7,5 (м,5н)
A.194	n-C ₃ H ₇	-CH ₂ CH ₂ C (=CH ₂)-	Ph	Phenyl	4,15 (t,2	н), 5,15 (я	4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,5 (m,5H)	s, 1н), 7,2-	-7,5 (m,5н)
A.195	СН3	-CH ₂ CH=CH ₂ -	-47	4-Br-phenyl	135-137				
A.196	C 2H5	-(CH ₂) ₅ -	-47	4-Cl-phenyl	29 -99				
A.197	n-C ₃ H ₇	-(CH ₂) ₅ -	- 77	4-Cl-phenyl	60- 62				
A.198	C 2H5	-CH ₂ C(CH ₃)-CH ₂ -	Ph	Phenyl	0,95 (d,3	н), 3,9 (т	0,95 (d,3H), 3,9 (m,2H), 7,0-7,4 (m,5H)	4 (m, 5H)	
A.199	n-C ₃ H ₇	-CH ₂ C (CH ₃)-CH ₂ -	P.	Phenyl	0,95 (d,3	н), 3,9 (т	0,95 (d,3H), 3,9 (m,2H), 7,0-7,4 (m,5H)	4 (m, 5H)	
A.200	C ₂ H ₅	-CH2CH=CH2-	3,	3, 4-Cl ₂ -phenyl	4,65 (d,2	н), 6,3 (ф	4,65 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H)	(d, 1H), 7,2	2-7,6 (m,3H)
A.201	n-C3H7	-сн ₂ сн=сн ₂	3,	3, 4-Cl ₂ -phenyl	4,65 (d,2	н), 6,3 (ф	4,65 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H)	(d, 1H), 7,2	2-7,6 (m,3H)
A.202	C ₂ H ₅	-сн ₂ с (сн ₃)-сн ₂ -	-47	4-F-pheny l	0,95 (d,3	ы), 3,9 (d	0,95 (d,3H), 3,9 (dd,2H), 6,8-7,2 (m,4H)	,2 (m,4H)	
A.203	n-C3H7	-CH ₂ C (CH ₃)-СH ₂ -	- 77	4-F-phenyl	0,95 (d,3	н), 3,9 (de	0,95 (d,3H), 3,9 (dd,2H), 6,8-7,2 (m,4H)	, 2 (m, 4н)	
A.204	C ₂ H ₅	-CH ₂ C (CH ₃)-CH ₂ -	- 47	4-Cl-phenyl	0,95 (d,3	н), 3,9 (m	0,95 (d,3H), 3,9 (m mit dd, 4H), 7,0-7,4 (2m,4H)	, 7,0-7,4 ((2m, 4H)
A.205	n-C ₃ H ₂	-CH ₂ C (CH ₃)-CH ₂ -	- 47	4-Cl-phenyl	0,95 (d,3	н), 3,9 (m	0,95 (d,3H), 3,9 (m mit dd, 4H), 7,0-7,4 (2m,4H)	, 7,0-7,4 ((2m, 4H)
A.206	C 2H5	-CH ₂ CH ₂ C (CH ₃) ₂ -	- 47	4-F-phenyl	1,3 (s,6н), 3,85 (m	1,3 (s,6H), 3,85 (m mit t, 4H), 6,9 und 7,3 (2m,4H)	6,9 und 7,	3 (2m, 4H)
A.207	n-C ₃ H ₇	-CH2CH2C (CH3) 2-	- 47	4-F-phenyl	1,3 (s,бн), 3,85 (m	1,3 (s,6H), 3,85 (m mit t, 4H), 6,9 und 7,3 (2m,4H)	6,9 und 7,	3 (2m, 4H)
A.208	C 2 H 5	-CH ₂ CH ₂ C (CH ₃) 2-	- †7	4-Cl-phenyl	1, 35 (s, 6	н), 3,9 (т	1,35 (s,6H), 3,9 (m mit t, 4H), 7,25 (s,4H)	7, 25 (s, 4H	=

5			=	(н)	n, 4H)	5(d, 1H), 7, 2-7, 6(m, 4H)	3(d,1H), 7,1-7,5(m,4H)	(d, 1H), 7, 2-7, 5(m, 4H)	1, 1H), 7, 2-7, 5(m, 4H)		1, 1H), 6,8-7,4(m,4H)
15		-Daten in ppm)	1,35(s,6H), 3,9(m mit t, 4H), 7,25(s,4H)	1,1(t,3H), 4,05(t,2H), 6,95 und 7,1(2m,4H)	0,95(t,3H), 4,05(t,2H), 6,95 und 7,1(2m,4H)	1,1(t,3H), 4,65(d,2H), 6,35(dt,1H), 6,6(d,1H), 7,2-7,6(m,4H)	1,0(t,3H), 4,65(d,2H), 6,35(dt,1H), 6,6(d,1H), 7,1-7,5(m,4H)	1,1(t,3H), 4,7(d,2H), 6,35(dt,1H), 6,6(d,1H), 7,2-7,5(m,4H)	1,0(t,3H), 4,7(d,2H), 6,3(dt,1H), 6,6(d,1H), 7,2-7,5(m,4H)		1,0(t,3H), 4,7(d,2H), 6,3(dt,1H), 6,6(d,1H), 6,8-7,4(m,4H)
25		phys. Daten (NMR-Daten in ppm) (Fp. in °C)	1,35(s,6H), 3,9(1,1(t,3H), 4,05(0,95(t,3H), 4,05	1,1(t,3H), 4,65(1,0(t,3H), 4,65(1,1(t,3H), 4,7(d	1,0(t,3H), 4,7(d	89 -99	1,0(t,3H), 4,7(d
35		75 T	4-Cl-phenyl	4-F-phenyl	4-F-phenyl	3-Br-phenyl	3-Br-phenyl	3-Cl-phenyl	3-C1-phenyl	3-F-phenyl	3-F-phenyl
40 45	Fortsetzung)	3	n-C3H7 -CH2CH2C(CH3)2-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	−сн2сн=сн-	-сн ₂ сн=сн-	−сн2сн=сн-		−сн2сн=сн-	−сн2сн=сн−
50	Tabelle II.3 (Fortsetzung)	Bsp. R ^a	A.209 n-C3H7	A.210 C ₂ H ₅	A.211 n-C3H7	A.212 C2H5	A.213 n-C ₃ H ₇	A.214 C2H5	A.215 n-C3H7	A.216 C ₂ H ₅	A.217 n-C ₃ H ₇

50		40 45	30	25	20	15	10	5
Tabe 11	Tabelle II.4							
			RC NO-W-Rf		$(R^b, R^d, R^e = H)$	(H		
			°		(R ^C = Tetra	(R ^c = Tetrahydropyran-4-yl)	-4-y1)	
Bsp.	Ra	3	Rif	phys. Daten ((Fp. in ^o C)	phys. Daten (NMR-Daten in ppm) (Fp. in °C)	(mdd		
A.218	C ₂ H ₅	-CH ₂ -CH=CH-	Pheny l	129-130				
A.219	n-C ₃ H ₇	-CH 2-CH=CH-	Pheny l	85- 87				
A.220	C 2H5	-CH 2-CH=CH-	4-Cl-phenyl	130-131				
A.221	n-C ₃ H ₇	-CH2-CH=CH-	4-Cl-phenyl	108-110				
A.222	C 2H5	CH ₂ СН=СН-	4-F-phenyl	118-120				
A.223	n-C ₃ H ₇	−сн 2−сн=сн−	4-F-phenyl	87- 89				
A.224	C 2H5	−сн 2−сн=сн−	2, 4-Cl ₂ -phenyl	95- 97				
A.225	n-C3H7		2, 4-Cl ₂ -phenyl	93- 95				
A.226	C 2H5		Pheny l	77- 78				
A.227	n-C ₃ H ₇	—(СН ₂) ₃ СН=СН—	Pheny l	67- 68				
A.228	C ₂ H ₅	-(сн ₂) ₃ сн=сн-	4-C1-phenyl	99-100				
A.229	n-C3H7	-(сн ₂) ₃ сн=сн-	4-Cl-phenyl	4,05 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,3 (s,4H)	6,2 (dt,1H),	6,4 (d,1H),	7,3 (s,4H)	
A.230	C 2H5	-(CH ₂) ₃ -	Phenyl	4,1 (t,2H), 7,0-7,4 (m,5H)	, 0-7, 4 (m, 5H)			
A.231	n-C3H7	-(CH ₂) ₃ -	Pheny l	4,1 (t,2H),	4,1 (t,2H), 7,0-7,4 (m,5H)	÷		
0.50	, ,	CH2 	Phon	7 (HC >) 7 E	1 () c & pair 0	1 2 (HC 3C)	(m 5H)
	G	CH ₂						
A.233	n-C ₃ H ₇	A.233 n-C ₃ H ₇ -CH ₂ C-CH ₂ -	Pheny l	3,35 (s,2H), 4,4 (s,2H), 5,0 und 5,1 (2s,2H), 7,1-7,4 (m,5H)	4,4 (s,2H), E	6,0 und 5,1	(2s, 2н), 7,	1-7,4 (m,5H)

5 10 15 20		phys. Daten (NMR-Daten in ppm) (Fp. in ^o C)	140-142	117-119	135-137	97 - 98	103-104	114-116	99 - 99	4,65 (d,2H), 6,2 (dt,1H), 6,65 (d,1H), 6,9-7,5 (3m,9H)	70- 72	2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H)	85- 87	90- 92	65- 67	99 - 49	4,05 (t,2H), 7,05-7,4 (2m,3H)	65- 67	111-112	4,1 (t,2H), 7,0-7,4 (m,4H)	4,1 (t,2H), 7,05-7,45 (m,4H)	66 - 26	
30		R ^f ph	4-Br-phenyl 14		,	4-CH ₃ -phenyl			yl	4-C ₆ H ₅ O-phenyl 4,	Phenyl 7	Phenyl 2,	2-cl-phenyl 8				2,4-Cl ₂ -phenyl 4,		4-Br-phenyl 11	2-C1-phenyl 4,	2-C1-phenyl 4,	4-Cl-phenyl	
35 40	ortsetzung)	3	−сн₂сн=сн	−сн 2сн=сн	−сн 2сн=сн	−сн 2сн=сн	−сн₂сн=сн	−сн 2сн=сн	−сн₂сн=сн	−сн 2сн=сн	-сн ₂ сн=с (сн ₃)-	-сн ₂ сн=с (сн ₃)-	−сн 2сн=сн−	−сн 2сн=сн−	-(CH ₂) ₃ -								
4 5	Tabelle II.4 (Fortsetzu	Ra	C2H5 -	n-C ₃ H ₇ -	C 2H5 -	n-C ₃ H ₇ -	C 2H5 -	n-C ₃ H ₇ -	C2H5 -	n-C ₃ H ₇ -	C 2H5 -	n-C ₃ H ₇ -	C ₂ H ₅ -	n-C ₃ H ₇ -	C ₂ H ₅ -	n-C3H7 -	C ₂ H ₅ -	7	C 2H5 -	C 2H5 -	n-C ₃ H ₇ -	C ₂ H ₅ -	
50	Tabelle	Bsp.	A.234	A.235	A.236	A.237	A.238	A.239	A.240	A.241	A.242	A.243	A.244	A.245	A.246	A.247	A.248	A.249	A.250	A.251	A.252	A.253	

									(ш, 5н)	(ш, 5н)						5 (m, 3H)					
5					2н)	Ê			7, 2-7, 6	7, 2-7, 6			_	_		, 7,2-7,	(2m, 3H)	(н)	(нђ,	m, 4H)	ш, 4Н)
10		(mdd			,05-7,4 (m,	,0-7,4 (m,5			5,3 (s,1н),	5,3 (s,1н),			7-7, 4 (ш, 5н	7-7, 4 (ш, 5н		5,55 (4,1н)	14 7,2-7,45	6,8-7,2 (m	6,8-7,2 (m	7, 0-7, 4 (2	7, 0-7, 4 (2)
15		phys. Daten (NMR-Daten in ppm) (Fp. in °C)			1,25 (d,3H), 4,0 (m,2H), 7,05-7,4 (m,5H)	1,25 (d,3H), 4,0 (m,2H), 7,0-7,4 (m,5H)			4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,6 (m,5H)	4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,6 (m,5H)			0,9 (d,3H), 3,9 (m,2H), 7,0-7,4 (m,5H)	3,9 (m,2H), 7,0-7,4 (m,5H)		4,65 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H)	3,95-4,1 (m,4H), 7,0-7,1 und 7,2-7,45 (2m,3H)	0,90 (d,3H), 3,85 (dd,2H), 6,8-7,2 (m,4H)	0,90 (d,3H), 3,85 (dd,2H), 6,8-7,2 (m,4H)	0,90 (d,3H), 3,85 (dd,2H), 7,0-7,4 (2m,4H)	0,90 (d,3H), 3,85 (dd,2H), 7,0-7,4 (2m,4H)
20		ys. Daten (p. in °C)	127-128	80- 81	25 (d, 3н),	25 (d, 3H),	105-107	73- 75	15 (t, 2H),	15 (t, 2H),	29 -99	61- 63	9 (d, 3H), 3	0,9 (d,3H), 3	103-105	65 (d, 2H),	95-4, 1 (m, 41	90 (ф, 3н),	90 (d, 3H),	90 (d, 3H),	90 (ф, 3н),
25		윤	12	σ.	1,	1,	10	7	4	4	9	9	o`	0	10	4	'n	0	o`	0	0
30		Rf	3, 5-Cl ₂ -phenyl	3, 5-c1 ₂ -phenyl	Pheny l	Pheny l	3, 5-Cl ₂ -phenyl	3, 5-Cl ₂ -phenyl	Phenyl	Pheny l	4-Cl-phenyl	4-Cl-phenyl	Pheny l	Pheny l	3, 4-Cl ₂ -phenyl	3, 4-Cl ₂ -phenyl	3, 4-Cl ₂ -phenyl	4-F-phenyl	4-F-phenyl	4-Cl-phenyl	4-Cl-phenyl
35																					
40	Tabelle II.4 (Fortsetzung)	3	−CH ₂ CH=CH−	-CH ₂ CH=CH-	-CH2CH2CH(CH3)-	-сн ₂ сн ₂ сн(сн ₃)-	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-CH2CH2C(=CH2)-	-CH2CH2C(=CH2)-	-(CH ₂) ₅ -	(CH ₂) ₅	-CH ₂ C(CH ₃)-CH ₂ -	-CH ₂ C(CH ₃)-CH ₂ -	−CH ₂ CH=CH−	−CH ₂ CH=CH−	$-(CH_2)_{3}-$	-CH ₂ C(CH ₃)-CH ₂ -	-CH ₂ C(CH ₃)-CH ₂ -	-CH ₂ C(CH ₃)-CH ₂ -	-сн ₂ с (сн ₃)-сн ₂ -
45	e II.4 (Rā	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
50	Tabell	Bsp.	A.255	A.256	A.257	A.258	A.259	A.260	A.261	A.262	A.263	A.264	A.265	A.266	A.267	A.268	A.269	A.270	A.271	A.272	A.273

 4 5		35 40	25	20	15	10	5
Tabell	Tabelle II.4 ((Fortsetzung)					
Bsp.	ن م	3	بر ش	phys. Daten (NMR-Daten in ppm) (Fp. in °C)	Daten in pp	(E	
A. 274	C ₂ H ₅	-CH ₂ CH ₂ C(CH ₃) ₂ -	4-F-phenyl	1,35 (s,6H), 3,85	(t, 2H), 7,	7,0 und 7,3 (2m,4H)	(2m, 4H)
A.275	n-C3H7	-CH ₂ CH ₂ C(CH ₃) ₂ -	4-F-phenyl	1,35 (s,6H), 3,85	(t, 2H), 7,	7,0 und 7,3 (2m,4H)	(2m, 4H)
A.276		-CH ₂ CH ₂ C(CH ₃) ₂ -	4-Cl-phenyl	1,35 (s,6H), 3,85 (t,2H), 7,	(t, 2H), 7,	25 (s, 4H)	
A.277	n-C ₃ H ₇	-CH ₂ CH ₂ C(CH ₃) ₂ -	4-Cl-phenyl	1,35 (s,6H), 3,85	(t, 2H), 7,	7, 25 (s, 4н)	
A.278		-(CH ₂) ₆ -	4-Cl-phenyl	1,15 (t,3H), 3,35	(t, 2H), 7,		7, 25 (d, 2н)
A.279	n-C ₃ H ₇	-(CH ₂) ₆ -	4-Cl-phenyl	0,95 (t,3H), 3,35 (t,2H),	(t, 2H), 7,	7,1 (d,2H), 7	7, 25 (d, 2н)
A.280		-(CH ₂) ₆ -	4-F-phenyl	1,1 (t,3H); 3,35 (t,2H)			
A.281		-(CH ₂) ₆ -	4-F-phenyl	0,95 (t,3H), 3,35	(t,2H)		
A.282	C 2H5	-(CH ₂) ₅ -	4-F-phenyl	1,15 (t,3H), 3,35 (t,2H),	(t,2H), 6,	6,95 und 7,1 (2m,4H)	(2m,4H)
A.283		-(CH ₂) ₅ -	4-f-phenyl	0,95 (t,3H), 3,35 (t,2H), 6,95 und 7,1 (2m,4H)	(t,2H), 6,	95 und 7, 1	(2m, 4H)
A.284	C 2H5	-CH2CH(CH3)-CH2CH2CH2-	2-CH ₃ -phenyl	2,3 (s,3H), 7,05 (m,4H)	(m, 4H)		
A.285	n-C ₃ H ₇	-CH2CH(CH3)-CH2CH2CH2-	2-CH ₃ -phenyl	2,3 (s,3H), 7,1 (m,4H)	m, 4H)		
A.286	n-C ₃ H ₇	-CH ₂ CH=CH-	3-f-phenyl	61- 62			
A.287	C 2H5	−CH ₂ CH=CH−	3-Br-phenyl	103-105			
A.288	n-C ₃ H ₇	-сн ₂ сн=сн-	3-Br-phenyl	80- 82			
A.289	C 2H5	-CH2CH=CH-	3-c1-phenyl	109-111			
A.290	n-C ₃ H ₇	−сн2сн=сн−	3-c1-phenyl	89- 91			
A.291	C ₂ H ₅	-сн₂сн=сн-	3-F-phenyl	122-123			

5						$\frac{2}{6}$, $\frac{2}{65}$ $\frac{2}{6}$, $\frac{3}{14}$, $\frac{2}{7}$, $\frac{3}{6}$									
10			in ppm)	(m, 5H)		1), 4,7 (d, 2H)									
15		(R ^b , R ^d , R ^e = H)	phys. Daten (NMR-Daten in ppm) (Fp. in °C)	4,05 (t,2H), 7,15-7,4 (m,5H)), 2,35 (s,6+ H), 7,0 (m,2+									
20		(Rb, Rd,	phys. Dat (Fp. in o	4,05 (t,2	106-107	2, 2 (s, 3H 6, 65 (d, 1	55- 57	80- 82	96 - 96	69 - 29	103-104	88- 89	75- 77	113-115	82- 83
25			- Charles and Char	nyl	2, 4-Cl ₂ -phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	2, 4-Cl ₂ -phenyl	2, 4-Cl ₂ -phenyl	2, 4-Cl ₂ -phenyl	2, 4-Cl ₂ -phenyl
30		H NO-W-R ^f -C 'Ra	ж 1	Phenyl											
35		RC H	3	-(CH ₂) ₃ -	-сн ₂ сн=сн-	−сн2сн=сн−	—сн ₂ сн=сн—	−сн2сн=сн−	СН2СН=СН-	сн 2сн=сн-	сн2сн=сн-	сн ₂ сн=сн-	−сн 2сн=сн−	−сн 2сн=сн−	−CH ₂ CH=CH−
40		æ	e a	n-C ₃ H ₇	C 2H5	C 2H5	n-C ₃ H ₇	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	n-C3H7	C 2H5	n-C ₃ H ₇	n-C ₃ H ₇	C 2H5
45	e II.5		Rc	2-Ethylthiopropyl	2,4,6-Trimethyl- phenyl	2,4,6-Trimethyl- phenyl	Phenyl	4-(Benzoylamino)- phenyl	5,6-Dihydrothio- pyran-3-yl	Cyclohexyl	3-Isopropyl- isoxazol-5-yl	5,6-Dihydrothio- pyran-3-yl	Cyclohex-3-enyl	3-Isopropyl- isoxazol-5-yl	3-Isopropyl- isothiazol-5-yl
50	Tabelle II.5		Bsp.	A. 292	A.293	A. 294	A. 295	A.296	A.297	A.298	A.299	A.300	A.301	A.302	A.303

3H)

510152025		phys. Daten (NMR-Daten in ppm) (Fp. in °C)	pheny 1 81-82	1) 98-101	yl 54- 56	ny1 124-126	ny1 68-71	ny1 85-87	ny1 126-129	phenyl 4,7(d,2H), 6,3(dt,1H), 7,0(d,1H), 7,2-7,6(m,3		ոչ 1 44– 45	nyl 104-106	nyl 68- 70	ոy1 63- 64	ոy1 132–134
<i>30</i>		₩ Rf	-CH ₂ CH=CH− 2, 4-Cl ₂ -phenyl	−CH ₂ CH=CH− 4−F-phenyl	−CH ₂ CH=CH− 4−F−phenyl	−CH ₂ CH=CH− 4-Br-phenyl	-CH2CH=CH- 4-Br-phenyl	—CH2CH=CH− 4-Br-phenyl	-CH ₂ CH=CH- 4-Br-phenyl	-CH ₂ CH=CH- 2,4-Cl ₂ -phenyl	-CH₂CH=CH- 4-Cl-phenyl	-CH ₂ CH=CH- 4-Cl-phenyl	-сн ₂ сн=сн- 4-с1-рheny	CH ₂ CH=CH- 4-C1-pheny	-CH ₂ CH=CH- 4-Cl-pheny	-CH2CH=CH- 4-Cl-phenyl
40		Ra	C 2 H 5 -	C2H5 -	n-C ₃ H ₇ -	n-C ₃ H ₇	n-C ₃ H ₇ -	n-C ₃ H ₇ -	C2H5 -	C ₂ H ₅ -	CH3	n-C ₃ H ₇ -	C ₂ H ₅ -	C2H5 -	n-C ₃ H ₇ -	n-C ₃ H ₇ -
45	Tabelle II.5 (Fortsetzung)	Rс	4-Ethylphenyl	3-Isopropyl- isothiazol-5-yl	N-Isopropyl- pyrrol-3-yl	3-Nitro-4-fluor- phenyl	Cyclohex-3-enyl	Thien-3-yl	4-(Prop-2-inoxy)- phenyl	2-Ethylthiopropyl	3-Isopropyl- isoxazol-5-yl	Ethoxycarbonyl	4-Ethylphenyl	Ç	Cyclohex-1-enyl	4-(Benzoylamino)- phenyl
50	Tabell	Bsp.	A.304	A.305	A.306	A.307	A.308	A.309	A.310	A.311	A.312	A.313	A.314	A.315	A.316	A.317

5				2н), 7,25 (d,2н)	з, 2н)	. 2н)	
10		Daten in ppm)		(t,2H), 7,1 (d,	(s, 3H), 6, 85 (s	(s,3H), 4,05 (t,	(t, 2H)
15 20		phys. Daten (NMR-Daten in ppm) (Fp. in ^o C)	122-124	0,95 (t,3H), 4,0 (t,2H), 7,1 (d,2H), 7,25 (d,2H)	1,15 (t,3H), 2,25 (s,3H), 6,85 (s,2H)	1,2 (t,3H), 2,25 (s,3H), 4,05 (t,2H)	0,95 (t,3H), 4,0 (t, 2H)
25		Rf	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-F-phenyl	4-F-phenyl
30 35		3	-сн ₂ сн=сн-	-(CH ₂) ₆ -	-(сн ₂) ₆	-(CH ₂) ₆ -	-(CH ₂) ₆ -
40	(D	. Rg	. C2H5	n-C3H7	C 2H5	C 2H5	n-C ₃ H ₇
45	Tabelle II.5 (Fortsetzung)	Rc	4-(Prop-2-inoxy)- phenyl	A.319 2-Ethylthiophenyl	A.320 2,4,6-Trimethyl-phenyl	2,4,6-Trimethyl- phenyl	A.322 2-Ethylthiopropyl
50	Tabelle	Bsp.	A.318	A.319	A.320	A.321	A.322

5 10	(н)	Fp. [°C]	4,9(s,2H); 7,2-7,6(2m,5H)	3,6(s,2H); 4,7(s,2H), 7,2-7,5(m,5H)	3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H)	3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H)	4,9(s,2H); 7,3-7,6(m,5H)	3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H)	3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H)	3,6(s,2H); 4,65(s,2H); 7,1-7,6(m,5H)	
20	(R ^b , R ^d , R ^e = H)	1H-NMR*) [ð ppm]	4,9(s,2H);	3,6(s,2н);	3, 65(s, 2н);	3, 65(s, 2н);	4,9(s,2H);	3, 65(s, 2н);	3, 65(s, 2н);	3,6(s,2н);	
25		R	Pheny l	Pheny l	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	
30	OH NO-W-R ^f	z	-CH2-C≡C-	-CH ₂ -C≡C-CH ₂ -	-CH2-C≡C-CH2-	-CH2-C≡C-CH2-	-CH ₂ -C≡C-	-CH ₂ -C≡C-CH ₂ -	-CH ₂ -C≡C-CH ₂ -	-CH ₂ -C≡C-CH ₂ - Phenyl	
35	ي ي	E E	n-C ₃ H ₇	n-C 3H7	C 2H5	n-C ₃ H ₇	n-C ₃ H ₇	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	
40			A.323 Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	A.325 Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	2-Ethylthiopropyl	2-Ethylthiopropyl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	
	11.6	Rc	Tetrahy	Tetrahy	Tetrahy						
50	Tabelle	Verb.	A.323	A.324	A.325	A.326	A.327	A.328	A.329	A.330	

55

*) ausgewählte Signale

50	<i>4</i> 5	40	35	30	20	15	10	5
pelle	Tabelle II.6 (Fortsetzung)	(Gun						
Verb. Nr.	RC		Ra	3	Re fe	1H-NMR*) [8 ppm]		Fр. [°С]
A.332	Tetrahydropyran-4-yl	1 4-4-n	C ₂ H ₅	-(CH ₂) 3-C≡C-	4-F-phenyl	4,25(t,2H);	4,25(t,2H); 6,8-7,5(2m,4H)	
A.333	Tetrahydrothiopyran-	pyran-3-yl	C ₂ H ₅	-(CH ₂) ₃ -C≡C-	4-F-phenyl	4,25(t,2H);	4,25(t,2H); 6,8-7,5(2m,4H)	
A.334	Tetrahydrothiopyran-	pyran-3-yl	n-C ₃ H ₇	-(CH ₂) ₃ -C≡C-	4-F-phenyl	4,25(t,2H);	4,25(t,2H); 6,8-7,5(2m,4H)	
A.335	Tetrahydropyran-3-y	n-3-y1	C ₂ H ₅	-(CH ₂) ₃ -C≡C-	4-F-phenyl	4,25(t,2H);	4,25(t,2H); 6,8-7,5(2m,4H)	
A.336	Tetrahydropyran-3-yl	ın-3-y l	n-C ₃ H ₇	-(CH ₂) ₃ -C≡C-	4-F-phenyl	4,25(t,2H);	4,25(t,2H); 6,8-7,5(2m,4H)	
A.337	Tetrahydrothiopyran-	pyran-3-yl	C ₂ H ₅	-CH2CH2-C≡C-	4-F-phenyl	4.25(t); 6.9	4.25(t); 6.98(dd); 7.35(dd)	06 - 7
A.338	Tetrahydrothiopyran-	pyran-3-yl	n-C3H7	-CH ₂ CH ₂ -C≡C-	4-F-phenyl	4.25(t); 6.9	4.25(t); 6.98(dd); 7.35(dd)	1
A.339	Tetrahydropyran-3-y	ın-3-y l	C ₂ H ₅	-CH2CH2-C≡C-	4-F-phenyl	4.25(t); 6.9	4.25(t); 6.98(dd); 7.35(dd)	55- 61
A.340	Tetrahydropyran-3-yl	ın-3-y l	n-C ₃ H ₇	-CH ₂ CH ₂ -C≡C-	4-F-phenyl	4.25(t); 6.9	4.25(t); 6.98(dd); 7.35(dd)	ı
A.341	Tetrahydropyran-4-yl	ın-4-y l	C ₂ H ₅	-CH ₂ CH ₂ -C≡C-	4-F-phenyl	4.25(t); 6.9	4.25(t); 6.98(dd); 7.35(dd)	83- 87
A.342	Tetrahydropyran-4-yl	In-4-y1	n-C ₃ H ₇	-CH2CH2-C≡C-	4-F-phenyl	4.25(t); 6.9	4.25(t); 6.98(dd); 7.35(dd)	98-102
aus	*) ausgewählte Signale	a)						

50	io i5	25	90	25	20	5	0	5
Tabe l le	Tabelle II.6 (Fortsetzung)	-						
Verb. Nr.	Rc	e e	3	κ f	1H-NMR*) [8 ppm]			Fp. [°C]
A.343	3-Isopropylisoxazol-5-yl	1 n-C3H7	-CH ₂ CH ₂ -C≡C-	4-F-phenyl	4.25(t); 5 7.37(dd)	4.25(t); 5.94(s); 7.0(dd); 7.37(dd)	; (pp);	ı
A.344	4-Methylphenyl	n-C3H7	-сн₂сн₂-с≡с-	4-F-phenyl	4.25(t); (7.35(dd)	4.25(t); 6.98(dd); 7.15(m); 7.35(dd)	15(m);	62-69
A.345	3,4-Dibromtetrahydro- pyran-3-yl	n-C3H7	-сн₂сн₂-с≡с-	4-F-phenyl	4.25(t);	4.25(t); 6.98(dd); 7.35(dd)	35 (dd)	I
A.346	Tetrahydrothiopyran-3-yl	1 n-C ₃ H ₇	-CH2CH2-C≡C-	4-Cl-phenyl	4.25(t);	4.25(t); 7.25(d); 7.35(d)	(P)	ı
A.347	Tetrahydrothiopyran-3-yl	1 C ₂ H ₅	-CH2CH2-C≡C-	4-Cl-phenyl	4.25(t);	4.25(t); 7.25(d); 7.35(d)	15(d)	82- 86
A.348	Tetrahydropyran-3-yl	C 2H5	-CH2CH2-C≡C-	4-Cl-phenyl	4.25(t);	4.25(t); 7.25(d); 7.35(d)	(P)	99-101
A.349	Tetrahydropyran-3-yl	n-C ₃ H ₇	-CH2CH2-C≡C-	4-Cl-phenyl	4.25(t);	4.25(t); 7.25(d); 7.35(d)	(P)	
A.350	Tetrahydropyran-4-yl	C 2H5	-CH2CH2-C≡C-	4-Cl-phenyl	4.25(t);	4.25(t); 7.25(d); 7.35(d)	(2(d)	98-101
A.351	Tetrahydropyran-4-yl	n-C ₃ H ₇	-CH2CH2-C≅C-	4-Cl-phenyl	4.25(t);	4.25(t); 7.25(d); 7.35(d)	15 (d)	115-118
*) aus	ausgewählte Signale							

		Fp. [°C]	71- 74	93- 6	1				
5									
10			4.25(t); 5.9(s); 7.25(d); 7.35(d)	4.25(t); 7.45(m); 7.28(M)	4.25(t); 7.25(d); 7.25(d)	1.15(t); 4.2(t); 7.25(d); 7.35(d)	0.98(t); 4.2(t); 7.25(d); 7.35(d)	1.15(t); 4.2(t); 7.25(d); 7.35(d)	0.95(t); 4.2(t); 7.25(d); 7.35(d)
20		f 1H-NMR*) [& ppm]	4-Cl-phenyl 4	4-Cl-phenyl 4	4-Cl-phenyl 4	4-Cl-phenyl 1	4-Cl-phenyl C	4-Cl-phenyl 1	4-c1-phenyl C
25		R	4	4	4	4	4	Ť	4
30		3	-CH2CH2-C≡C-	-CH2CH2-C≡C-	-CH2CH2-C≡C-	-(CH ₂) ₃ -C≡C-			
35		Ra	n-C ₃ H ₇	n-C ₃ H ₇	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
40	Tabelle II.6 (Fortsetzung)		3-Isopropylisoxazol-5-yl	4-Methylphenyl	3,4-Dibromtetrahydro- pyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	A.358 Tetrahydropyran-3-yl
	.11	Rc	3-1	W-7	3, 4 pyr	Tet	Tet	Tet	Tet
50	Tabelle	Verb.	A.352	A.353	A.354	A.355	A.356	A.357	A.358

*) ausgewählte Signale

		Fp. [°C]								
5										
10			1.15(t); 4.2(t); 7.25(d); 7.35(d)	0.98(t); 4.2(t); 7.25(d); 7.35(d)	1.15(t); 2.75(t); 4.25(t); 7.05(m); 7.2(m)	0.95(t); 2.75(t); 4.25(t); 7.05(m); 7.2(m)	1.15(t); 2.75(t); 4.25(t); 7.05(m); 7.2(m)	0.95(t); 2.75(t); 4.25(t); 7.05(m); 7.2(m)	1.15(t); 2.75(t); 4.25(t); 7.05(m); 7.2(m)	0.95(t); 2.75(t); 4.25(t); 7.05(m); 7.2(m)
15		1H-NMR*) [8 ppm]	1.15(t); 4. 7.35(d)	0.98(t); 4. 7.35(d)	1.15(t); 2.75(t) 7.05(m); 7.2(m)	0.95(t); 2.75(t 7.05(m); 7.2(m)	1.15(t); 2. 7.05(m); 7.	0.95(t); 2. 7.05(m); 7.	1.15(t); 2. 7.05(m); 7.	0.95(t); 2.75(t 7.05(m); 7.2(m)
20		Rf	4-cl-phenyl	4-Cl-phenyl	2-Thienyl	2-Thienyl	2-Thienyl	2-Thienyl	2-Thienyl	2-Thienyl
25 30		3	-(CH ₂)3-C≡C-	-(CH ₂) 3-C≡C-	-CH2-CH2-C≡C-	-CH2-CH2-C≡C-	-CH2-CH2-C≡C-	-CH ₂ -CH ₂ -C≡C-	-CH ₂ -CH ₂ -C≡C-	-CH ₂ -CH ₂ -C≡C-
35		Ra	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C3H7	C2H5	n-C ₃ H ₇
40	Tabelle II.6 (Fortsetzung)		Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
50	Tabelle II.	Verb. R ^C	A.359 Tet	A.360 Tet	A.361 Tet	A.362 Tet	A.363 Tet	A.364 Tet	A.365 Tet	A.366 Te

*) ausgewählte Signale

ibelle	Tabelle II.6 (Fortsetzung)					
verb. Nr.	R ^C	Ra	3	R f	1H-NMR*) [6 ppm]	
3.45	Tetrahydrothiopyran-3-yl	1 C2H5	-CH ₂ CH=C(CH ₃)-C≡C- **)	4-Cl-phenyl	1.15(t); 2.0(s); 4.8(d); 5.9(t)	
3.46	Tetrahydrothiopyran-3-yl	1 n-C ₃ H ₇	-CH ₂ CH=C(CH ₃)-C≡C- **)	4-Cl-phenyl	0.95(t); 2.0(s); 4.8(d); 5.9(t)	
3.47	Tetrahydropyran-4-yl	C2H5	-CH ₂ CH=C(CH ₃)-C≡C- **)	4-Cl-phenyl	1.15(t); 2.0(s); 4.8(d); 5.9(t)	
3.48	Tetrahydropyran-4-yl	n-C ₃ H ₇	-CH ₂ CH=C(CH ₃)-C=C- **)	4-Cl-phenyl	0.95(t); 2.0(s); 4.8(d); 5.9(t)	
3.49	2-Ethylthiopropyl	n-C ₃ H ₇	-CH₂CH=C(CH₃)-C≡C- **)	4-Cl-phenyl	0.95(t); 2.0(s); 4.8(d); 5.9(t)	
3.50	2,4,6-Trimethylphenyl	C 2H5	-CH ₂ CH=C(CH ₃)-C≡C- **)	4-Cl-phenyl	1.2(t); 2.0(s); 4.8(d); 5.95(t)	
3.51	Tetrahydrothiopropan-3-yl	yl C ₂ H ₅	-CH ₂ CH=C(CH ₃)-C≡C- **)	4-F-phenyl	1.1(t); 2.0(s); 4.8(d); 5.9(t)	
3.52	Tetrahydrothiopropan-3-yl	yl n-C₃H ₇	-CH ₂ CH=C(CH ₃)-C=C-	4-F-phenyl	0.95(t); 2.0(s); 4.8(d);	

51015		Rf 1H-NMR*) [Ø ppm]	C- 4-F-phenyl 0.95(t); 2.0(s); 4.8(d);	<pre>c- 4-F-phenyl 1.15(t); 2.0(s); 4.8(d)) 5.9(t)</pre>	c- 4-F-phenyl 0.95(t); 2.0(s); 4.8(d) 5.9(t)	
25		3	-СH ₂ -CH=С(СН ₃)-С≡С- 4-F-phenyl **)	-сн ₂ -сн=с(сн ₃)-с≡с- 4-F-phenyl **)	-CH ₂ -CH=C(CH ₃)-C=C- 4-F-phenyl **)	
30		R a	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	loppelbindung
35	Tabelle II.6 (Fortsetzung)	S c	Tetrahydropyran−4-yl	Tetrahydropyran-4-yl	2-Ethylthiopropyl	*) ausgewählte Signale**) Z-Konfiguration an der Doppelbindung
45	Tabelle	verb. R ^C	A.375	A.376	A.377	*) aus **) Z-K
50						

										2H) 6.82 7.15 (m, 1H)	2H) 6.82 7.15 (m, 1H)	6.82 (m, 1H)	6.82 (m, 1H)			2H) 7.20 8.56 (m, 1H)
5										2H} 6	2H) 6	2H }	2H) 7.13	H)	ĬĬ	
10			mdd							2H) 4.33 (t, 6.95 (m, 1H);	4.33 (t, (m, 1H),	4.33 (t, (m, 1H),	4.33 (t, (m, 1H),	6.82 (m, 7.13 (m,	6.82 (m, 7.13 (m,	2H} 4.46 (t, 7.65 (m, 1H),
			ten n in pp							2H) 4 6.93	2н) 6.93	2H) 6.93	2H) 6.93	2H);	2H},	2H} 4
15		уе = Н)	phys. Daten NMR-Daten in Fp in °C							3.92 (m, (m, 1H), 6	3.92 (m, (m, 1H),	4.00 (m, (m, 1H),	4.00 (m, (m, 1H),	4.30 (t, 6.93 (m,	4.30 (t, 6.93 (m,	3.90 (m, (m, 2H),
20		(Rb, Rd, Re		-y1	-y 1	-y1	-y1	-y1	-y1	:-y	y 1	y l	-y 1	-y J	y1	-y1
25			Rf	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Pyrid-2-yl
30		OH NO-W-R ^f	3	-(CH ₂) ₂ -												
35		# J J		yran-3-yl	yran-3-yl	yran-4-yl	yran-4-yl	Tetrahydrothiopyran-3-yl	rahydrothiopyran-3-yl	yran-3-yl	yran-3-yl	yran-4-yl	yran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	yran-3-yl
40			RC	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrot	Tetrahydrot	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrot	Tetrahydrot	Tetrahydropyran-3-yl
45	11.7		Ra	C2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C3H7	C 2H5	n-C3H7	C 2H5
50	Tabelle		n.	A.378	A.379	A.380	A.381	A.382	A.383	A.384	A.385	A.386	A.387	A.388	A.389	A.390

Rf phys. Daten NMR-Daten in ppm	(CH ₂) ₂ - Pyrid-2-yl	-(CH ₂) ₂ - Pyrid-2-yl 4.00 (m, 2H), 4.46 (t, 2H), 7.20 (m, 1H), 8.56 (m, 1H)	-(CH ₂) ₂ - Pyrid-2-yl	$-(CH_2)_2$ Pyrid-2-yl $4.46 (t, 2H)_5 7.20 (m, 2H), 7.67 (m, 1H), 8.50 (m, 1H)$	-(CH ₂) ₂ - Pyrid-2-yl	$-(CH_2)_{3}$ Furan-2-yl 3.93 (m, 2H), 4.10 (t, 2H), 6.00 (m, 1H), 6.26 (m, 1H), 7.33 (m, 1H)	-(CH ₂) ₃ - Furan-2-yl 3.93 (m, 2H) 4.10 (t, 2H) 6.00 (m, 1H), 6.26 (m, 1H), 7.33 (m, 1H)	-(CH2)3 Furan-2-yl 78 - 82	-(CH2)3 Furan-2-yl 48 - 52	-(CH2)3 Furan-2-yl 54 - 58	-(CH2)3 Furan-2-yl 4.10 (t, 2H) ₅ 6.00 (m, 1H), 6.26 (m, 1H), 7.33 (m, 1H)	-(CH2)3 Thien-2-yl 72 - 74	-(CH ₂) ₃ - Thien-2-yl 3.93 (m, 2H), 4.10 (t, 2H), 6.82 (m, 1H), 6.93 (m, 1H), 7.33 (m, 1H)	$-(CH_2)_{3}$ Thien-2-yl 86 - 90	-(CH2)3 Thien-2-yl 55 - 58	-(CH ₂) ₃ - Thien-2-yl 4.12 (t, 2H), 6.82 (m, 1H), 6.93
RC RC	Tetrahydropyran-3-yl -(C	Tetrahydropyran-4-yl -(C	Tetrahydropyran-4-yl -(C	Tetrahydrothiopyran-3-yl -(C	Tetrahydrothiopyran-3-yl - (C	Tetrahydropyran-3-yl -(C	Tetrahydropyran-3-yl -(C	Tetrahydropyran-4-yl -(C	Tetrahydropyran-4-yl -{C	Tetrahydrothiopyran-3-yl -(C	Tetrahydrothiopyran-3-yl -(C	Tetrahydropyran-3-yl -(C	Tetrahydropyran-3-yl -(C	Tetrahydropyran-4-yl - (C	Tetrahydropyran-4-yl - (C	Tetrahydrothiopyran-3-vl - (C
Ka Ka	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	3
Tabelle II.7 (Fortsetzung) Nr. R ^a R ^C	A.391	A.392	A.393	A.394	A.395	A.396	A.397	A.398	A.399	A.400	A.401	A.402	A.403	A.404	A.405	

5 10	phys. Daten NMR-Daten in ppm Fp in °C	(m, 1H), 7.13 (m, 1H), 6.93	73 - 74	4.05 (t, 2H), 6.95 (m, 2H), 7.25 (m, 1H)	105 - 107	68 - 70	57 - 59	4.05 (t, 2H), 6.95 (m, 2H), 7.25 (m, 1H)	3.90 (m, 2H), 4.12 (t, 2H), 5.90 (m, 1H), 6.06 (m, 1H), 6,53 (m, 1H)	3.90 (m, 2H) 4.12 (t, 2H) 5.90 (m, 1H), 6.06 (m, 1H), 6,53 (m, 1H)	(m, 1H), 6.06 $(m, 2H)$, 4.12 $(t, 2H)$, 5.90 $(m, 1H)$, 6.06 $(m, 1H)$, 6,53 $(m, 1H)$	(m, 1H), 6.06 $(m, 2H)$ 4.12 $(t, 2H)$ 5.90 $(m, 1H)$, 6.06 $(m, 1H)$, $6,53$ $(m, 1H)$	(m, 14), 6,53 (m, 1H), 6.06	(m, 1H), 6,53 (m, 1H), 6.06
20	۳. مار مار	Thien-2-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl
30	3	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	–(CH ₂) ₃ –
35 (6		Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl
75 05 05 05 05 05 05 05 05 05 05 05 05 05	RC				•									
abelle II.7	Nr. Ra	A.407 n-C3H7	A.408 C2H5	A.409 n-C ₃ H ₇	A.410 C ₂ H ₅	A.411 n-C3H7	A.412 C2H5	A.413 n-C ₃ H ₇	A.414 C2H5	A.415 n-C ₃ H ₇	A.416 C ₂ H ₅	A.417 n-C ₃ H7	A.418 C ₂ H ₅	A.419 n-C ₃ H ₇
50	Z	⋖	⋖	¥	A	⋖	⋖	∀	⋖	⋖	⋖	⋖	4	•

10	phys. Daten NMR-Daten in ppm Fp in °C	35	6.85-7.20 (m, 3H)	59- 61	6.70-7.20 (m, 3H)	5.70-7.20 (m, 3H)	6.70-7,20 (m, 3H)	38- 40	6.80-7.30 (m, 3H)	58 - 60	6.80-7.40 (m, 3H)	6.90 (m, 2H), 7.25 (m, 1H)	5.90 (m, 2H), 7.30 (m, 1H)	48 - 50	2.40 (s, 3н), 6.55 (s, 2н)	2.40 (s, 3H), 6.55 (s, 2H)	2.40 (s, 3н), 6.55 (s, 2н)	2.45 (s, 3H), 6.75 (s, 2H)	56 - 58
15	<u> </u>	.,	J	Ψ,	·	v	v	.,	w.	Δ,	v	•	•						_
20	R t	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	$5-CH_3-thien-2-y$
25	3	-СН2СН(СН3)-СН2-	-сн ₂ сн(сн ₃)-сн ₂ -	-сн ₂ сн(сн ₃)-сн ₂ -	-сн ₂ сн(сн ₃)-сн ₂ -	-сн 2сн (сн 3) -сн 2-	-сн ₂ сн(сн ₃)-сн ₂ -	-сн ₂ сн(сн ₃)-сн ₂ -	-сн ₂ сн(сн ₃)-сн ₂ -	-CH ₂ CH(CH ₃)-CH ₂ -	-CH ₂ CH(CH ₃)-CH ₂ -	-CH ₂ CH(СН ₃)-СH ₂ -	-CH ₂ CH(СН ₃)-СН ₂ -	-сн ₂ сн(сн ₃)-сн ₂	-сн ₂ сн(сн ₃)-сн ₂ -				
30	*	1	'	•	ı			•	'	•	•			'	'	•	'	·	
35		etrahydropyran-3-yl	etrahydropyran-3-yl	etrahydropyran-4-yl	etrahydropyran-4-yl	etrahydrothiopyran-3-yl	etrahydrothiopyran-3-yl	etrahydropyran-3-yl	etrahydropyran-3-yl	etrahydropyran-4-yl	etrahydropyran-4-yl	etrahydrothiopyran-3-yl	etrahydrothiopyran-3-yl	etrahydropyran-3-yl	etrahydropyran-3-yl	etrahydropyran-4-yl	etrahydropyran-4-yl	etrahydrothiopyran-3-yl	etrahydrothiopyran-3-yl
40 setzung)	RC	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd
Tabelle II.7 (Fortsetzung)	Ra	C 2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
Tabel 16	ŗ.	A.420	A.421	A.422	A.423	A.424	A.425	A.426	A.427	A.428	A.429	A.430	A.431	A.432	A.433	A.434	A.435	A.436	A.437

			4H),	ήH),		4H),	,(H),	4H),									1н),
5			-6.60 (m,	-6.60 (m,		-6.60 (m,	-6.60 (m,	6.10-6.60 (m, 4H),	6.00 (dt, 1H), 6.80 (m, 2H)	6.00 (dt, 1H), 6.80 (m, 2H)							-6.30 (m,
10		phys. Daten NMR-Daten in ppm Fp in °C	4.70 {d, 2H}, 6.10-6.60 (m, 4H), 7.40 {s, 1H}	$^4.70$ $\{ d, 2H \}$, $6.00-6.60$ $(m, 4H)$, 7.40 $\{ s, 1H \}$, 2H), 6.10-6.60 (m, 4H),	, 2H, 6.10-6.60 (m, 4H),	2H) 1H),	2H), 1H),	2H); 1H);							4.65 (d, 2H), 6.10-6.30 (m, 1H), 6.70-7.20 (m, 6H)
15		phys. D NMR-Dat Fp in	4.70 {d 7.40 {s	4.70 (d 7.40 (s	99-100	4:70 {d, 7:40 {s,	4.65 (d, 7.40 (s,	4:70 (d, 7:40 (s,	4.60 (d, 6.70 (d,	4.60 (d, 6.70 (d,	112-114	67-68	123-125	70-72	104-106	82-88	4.65 {d 6.70-7.
20			Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	5-Cl-thien-2-yl	5-Cl-thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl
25		Rf		.F	J.	3	3	<u> </u>	ζ	ζ	=	=	İ	=	Ξ	=	Ė
30		3	-сн ₂ сн=сн-	-сн2сн=сн-	-сн2сн-сн-	-сн ₂ сн=сн-	-сн2сн=сн-	-сн2сн-сн-	-сн ₂ сн=сн-	−сн₂сн=сн−	-CH ₂ CH=CH-	-сн ₂ сн=сн-	-сн2сн=сн-	-сн ₂ сн=сн-	-сн ₂ сн=сн-	-CH ₂ CH=CH-	−сн₂сн=сн-
35			an-3-y 1	an-3-yl	an-4-y l	an-4-y l	opyran-3-yl	opyran-3-yl	opyran-3-yl	opyran-3-yl	.an-3-y1	an-3-yl	an-4-y1	an-4-y1	opyran-3-yl	opyran-3-yl	ıylphenyl
40	tsetzung)	RС	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	2,4,6-Trimethylphenyl
45	Tabelle II.7 (Fortsetzun	R a	C2H5	n-C 3H7	C 2H5	n-C3H7	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5
50	Tabelle	N.	A.438	A.439	A.440	A.441	A.442	A.443	A.444	A.445	A.446	A.447	A.448	4.449	A.450	A.451	A.452

5	mdd		3.90(m, 2H), 4.67(d, 2H), 6.12 (dt, 1H), 6.63(d, 1H), 7.20(m, 3H)												6.70(d,1H), 6.95(s,1H), 7.05 (s,1H)				6.70(d,1H), 6.90(s,1H), 7.05 (s,1H)
10	phys. Daten NMR-Daten in ppm Fp in °C	87-90	3.90{m,2H}, (dt,1H),6.6	128-135	92-95	79-81	86-92	88-88	70-71	108-110	104-105	111-112	75-77	78-80	6.70(d,1H), (s,1H)	122-124	88-90	72-74	6.70(d,1H), (s,1H)
20	Rf	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	$5-CH_3-thien-2-yl$	$5-CH_3-thien-2-yl$	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	4-Br-thien-2-yl	4-Br-thien-2-yl	4-Br-thien-2-yl	4-Br-thien-2-yl	4-Br-thien-2-yl	4-Br-thien-2-yl
25	3	-сн ₂ сн=сн-	-сн 2сн=сн-	-сн ₂ сн=сн-	-сн 2сн=сн-	-сн ₂ сн=сн-	−сн 2сн=сн−	-сн 2сн=сн-	-сн 2сн=сн-	-сн ₂ сн=сн-	-сн ₂ сн=сн-	-сн₂сн=сн-	-сн 2сн=сн-	-CH ₂ CH=CH-	-сн 2сн=сн-	−сн 2сн=сн−	−сн 2сн=сн-	−сн₂сн=сн-	-сн ₂ сн=сн-
35		Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	3-y1	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	dropyran-4-yl	Tetrahydropyran-4-yl	drothiopyran-3-yl	Tetrahydrothiopyran-3-yl		Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	drothiopyran-3-yl
operation of the set o	R ^C	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahyo	Tetrahyo
45 45 E II.7 (F	e e	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
Tabel 1	L	A.453	A.454	A.455	A.456	A.457	A.458	A.459	A.460	A.461	A.462	A.463	A.464	A.465	A.466	A.467	A.468	A.469	A.470

5	phys. Daten NMR-Daten in ppm Fp in ^o C	146-148	8.70(dt,1H), 7.30, 7.75, 8.40-8.70(3m, 4H)	164-165	73-78	6.40(dt,1H), 7.30, 7.75, 8.40-8.70(3m,4H)	6.40(dt,1H), 7.30, 7.75, 8.40- 8.70(3m,4H)			97-98	6.65 (s,1H), 6.90-7.30 (2m,3H),	88-90	6.65 (s,1H), 6.90-7.80 (2m,3H),	6.50 (s,1H), 7.00-7.40 (m,3H)	6.50 (s,1H), 7.00-7.40 (m,3H)	88-90	6.55 (s,1H), 7.00-7.40 (m,3H),	6.55 (s,1H), 7.00-7.40 (m,3H)	6.50 (s,1H), 7.00-7.40 (m,3H),
15																			
20	Rf	Pyrid-3-yl	Pyrid-3-yl	Pyrid-3-yl	Pyrid-3-yl	Pyrid-3-yl	Pyrid-3-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl
25								CH-	Ή	문	문	분	CH-	H	Ę.	CH-	-H	CH-	CH-
30	3	-сн₂сн=сн-	-сн ₂ сн=сн-	-сн2сн=сн-	-сн ₂ сн=сн-	-сн ₂ сн=сн-	-сн 2сн=сн-	-сн ₂ с (сн ₃)=сн-	-сн ₂ с (сн ₃)=сн-	-сн ₂ с (сн ₃)=	-сн ₂ с (сн ₃)=сн-	-CH ₂ C (СН ₃)=СН-	-сн₂с (сн₃)=сн-	-сн ₂ с (сн ₃)=сн-	-CH ₂ C (СН ₃)=СН-	-сн ₂ с (сн ₃)=сн-			
35		yran-3-yl	yran-3-yl	yran-4-yl	yran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	yran-3-yl	yran-3-yl	yran-4-yl	yran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	yran-3-yl	yran-3-yl	yran-4-yl	yran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl
ob tsetzung)	κ _C	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrot	Tetrahydrot	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrot	Tetrahydrot	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrot	Tetrahydrot
Og 64 04 04 04 04 04 04 04 04 04 04 04 04 04	g X	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
Tabel 1 e	Nr.	A.471	A.472	A.473	A.474	A.475	A.476	A.477	A.478	A.479	A.480	A.481	A.482	A.483	A.484	A.485	A.486	A.487	A.488

5		mdd		6.60 (s,1H), 6.65-7.00 (m,2H)		6.60 (s,1H), 6.65-7.00 (m,2H),		6.55 (s,1H), 6.60-7.00 (m,2H),		6.90 (m, 2H)				6.65 (s,1H), 6.90 (m,2H),	3.93 (m, 2H), 4.07 (m, 2H), 5.00 (m, 1H), 6.26 (m, 1H), 7.30 (m, 1H)	3.93 (m, 2H), 4.07 (m, 2H), 6.00 (m, 1H), 6.26 (m, 1H), 7.30 (m, 1H)	3.90-4.13 (m,4H) 6.00 (m,1H), 6.26 (m,1H), 7.30 (m,1H)	3.90-4.13 (m,4H), 6.00 (m,1H), 6.26 (m,1H), 7.30 (m,1H)	6.00 (m,1H) 7.30 (m,1H)
15	phys. Daten	NMR-Daten in ppm Fp in °C	108-110	6.60 (s,1H),	111-112	6.60 (s,1н),	119-120	6.55 (s,1H),	82-85	6.70 (s,1H), 6.90 (m,2H)	124-126	97-98	103-105	6.65 (s,1H),	3.93 (m, 2H) (m, 1H), 6.26	3.93 (m, 2H) (m, 1H), 6.26	3.90-4.13 (m 6.26 (m,1H),	3.90-4.13 (m 6.26 (m,1H),	4.05 {m,2H}, 6.00 {m,1H} 6.26 {m,1H}
20	Rf		5-CH ₃ -thien-2-yl	$5-CH_3-thien-2-y1$	$5-CH_3$ -thien- $2-y1$	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-cl-thien-2-yl	5-cl-thien-2-yl	5-C1-thien-2-yl	5-C1-thien-2-y1	5-C1-thien-2-y1	5-C1-thien-2-y1	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl
25																			
30	3		-сн ₂ с(сн ₃)=сн-	-сн ₂ с(сн ₃)=сн-	-CH ₂ C(CH ₃)=CH-	-сн ₂ с(сн ₃)=сн-	-сн ₂ с(сн ₃)=сн-	-CH ₂ C(CH ₃)=CH-	-CH ₂ C(CH ₃)=CH-	-сн ₂ с(сн ₃)=сн-	-сн ₂ с(сн ₃)=сн-	-сн ₂ с(сн ₃)=сн-	-CH ₂ C(CH ₃)=CH-	-сн2с(сн3)=сн-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -
35			pyran-3-yl	pyran-3-yl	pyran-4-yl	pyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	pyran-3-yl	pyran-3-yl	pyran-4-yl	pyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	pyran-3-yl	pyran-3-yl	pyran-4-yl	pyran-4-yl	Tetrahydrothiopyran-3-yl
40	Tabelle II.7 (Fortsetzung) Nr. R ^a R ^C	4	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydro	Tetrahydro	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydro	Tetrahydro	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydro
45	e II.7 (Fo R ^a	4	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5
50	Tabelle		A.489	A.490	A.491	A.492	A.493	A.494	A.495	A.496	A.497	A.498	A.499	A.500	A.501	A.502	A.503	A.504	A.505

50	45	35 40	30	25	20	10	5
Tabel 16	Tabelle II.7 (Fortsetzung)	rtsetzung)					
ŗ.	æ	Яc	3	R		phys. Daten NMR-Daten in ppm Fp in °C	
A.506	n-C ₃ H ₇	Tetrahydrothiopyran-3-yl	-(CH ₂) ₄ -	Furan-2-yl	2-y1	4.05 (m, 2H), 6.00 (m, 1H), 6.26 (m, 1H),	(m, 1H), (m, 1H),
A.507	C ₂ H ₅	Tetrahydropyran-3-yl	-(CH ₂) ₄ -	5-CH3-	5-CH ₃ -furan-2-yl	62-64	
A.508	n-C ₃ H ₇	Tetrahydropyran-3-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-CH ₃ -furan-2-yl	3.93 (m, 2H), 4.07 (m, 2H), 5.87 (m, 2H)	(m, 2H), 5.87
A.509	C ₂ H ₅	Tetrahydropyran-4-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-CH ₃ -furan-2-yl	76–78	
A.510	n-C ₃ H ₇	Tetrahydropyran-4-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-CH ₃ -furan-2-yl	3.90-4.15 (m, 4H), 5.87 (m, 2H)	5.87 (m, 2H)
A.511	C2H5	Tetrahydrothiopyran-3-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-CH ₃ -furan-2-yl	4.07 (m, 2H), 5.87 (m, 2H)	(m, 2H)
A.512	n-C ₃ H ₇	Tetrahydrothiopyran-3-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-CH ₃ -furan-2-yl	4.07 (m, 2H), 5.87 (m, 2H)	(m, 2H)
A.513	C ₂ H ₅	Tetrahydropyran-3-yl	-(CH ₂) ₄ -	Thien-2-yl	2-y 1	$\frac{3.80^{-4.15}}{6.93}$ (m, 4H), $\frac{6.80}{7.13}$ (dd, 1H),	6.80 (dd, 1H), 3 (dd, IH)
A.514	n-C ₃ H ₇	Tetrahydropyran-3-yl	-(CH ₂)4-	Thien-2-yl	2-y1	3.80-4.15 (m, 4H), 6.80 (dd, 1H), 6.93 (dd, 1H), 7.13 (dd, 1H)	6.80 (dd, 1H), 3 (dd, 1H)
A.515	C 2H5	Tetrahydropyran-4-yl	-(CH ₂) ₄ -	Thien-2-yl	.2-y1	3.90-4.23 (m, 4H), 6.80 (dd, 1H), 6.93 (dd, 1H), 7.13 (dd, 1H)	6.80 (dd, 1H), (dd, 1H),
A.516	n-C ₃ H ₇	Tetrahydropyran-4-yl	-(CH ₂) ₄ -	Thien-2-yl	2-y1	3.90-4.23 (m, 4H), 6.80 (dd, 1H), 6.93 (dd, 1H), 7.13 (dd, 1H)	6.80 (dd, 1H), 3 (dd, IH)
A.517	C 2H5	Tetrahydrothiopyran-3-yl	-(CH ₂) ₄ -	Thien-2-yl	.2-y1	4.06 (m, 2H), 6.80 (dd, 1H) 6.93 (dd, 1H), 7.13 (dd, 1H)	(dd, 1H) (dd, 1H)
A.518	n-C ₃ H ₇	Tetrahydrothiopyran-3-yl	-(CH ₂) ₄ -	Thien-2-yl	.2-y1	4.06 (m, 2H), 6.80 (dd, 1H) 6.93 (dd, 1H), 7.13 (dd, 1H)	(dd, 1H) 3 (dd, 1H)
A.519	C ₂ H ₅	Tetrahydropyran-3-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-CH ₃ -thien-2-yl	3.85-4.13 (m,4н), 6.53 (s,2н)	6.53 (s,2H)
A.520	n-C 3H7	Tetrahydropyran-3-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-CH ₃ -thien-2-yl	3.80-4.13 (m,4H), 6.53 (s,2H)	6.53 (s,2H)
A.521	C 2H5	Tetrahydropyran-4-yl	-(CH ₂) ₄ -	5-CH ₃ -	5-сн ₃ -thien-2-yl	3.90-4.15 (m,4H), 6.50 (s,2H)	6.50 (s,2H)

5		.53 (s, 2H)	s, 2H)	s, 2н)	m, 2H), 6.53	м, 2Н), 6.53	.53 (d,1H)	.53 (d,1H)	d, 1H),	d, 1H),	.60 (s,2H)	.60 (s,2н)	.60 (s,2н)	.60 (s, 2н)	s, 2H)	s, 2H)	
10	phys. Daten NMR-Daten in ppm Fp in °C	3.94-4.15 (m,4H), 6.53 (s,2H)	4.08 (m, 2H), 6.55 (s, 2H)	4.08 (m, 2H), 6.56 (s, 2H)	3.93 (m, 2H) 4.10 (m, 2H), (d, 1H)	3.93 (m, 2H), 4.10 (m, 2H), 6.53 (d, 1H), 6.76 (d, 1H)	3.90-4.10 (m, 4H), 6.53 (d, 1H) 6.70 (d, 1H)	3.90-4.10 (m, 4H), 6.53 (d, 1H) 6.70 (d,1H)	4.10 (m, 2H), 6.53 (d, 1H), 6.70 (d, 1H),	4.10 (m, 2H), 6.53 (d, 1H), 6.70 (d, 1H),	3.80-4.09 (m,4H), 6.60 (s,2H)	3.80-4.09 (m,4H), 6.60 (s,2H)	3.93-4.09 (m,4H), 6.60 (s,2H)	3.93-4.09 (m, 4H), 6.60 (s, 2H)	4.03 (m, 2H), 6.60 (s, 2H)	4.03 (m, 2H), 6.60 (s, 2H)	99-79
15									-			_					
20	Rf	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-Cl-thien-2-yl	5-Cl-thien-2-yl	5-Cl-thien-2-yl	5-Cl-thien-2-yl	5-cl-thien-2-yl	5-Cl-thien-2-yl	5-C ₂ H5-thien-2-yl	5-C ₂ H ₅ -thien-2-yl	5-C ₂ H ₅ -thien-2-yl	$5-c_2H_5-thien-2-yl$	$5-c_2H_5$ -thien- $2-yl$	$5-c_2H_5-thien-2-yl$	1-CH ₃ -pyrrol-2-yl
25																	
30	3	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -				
35		Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	dropyran-3-yl	dropyran-4-yl	dropyran-4-yl	drothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl
40	rserzung) RC	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahyd	Tetrahyd	Tetrahyd	Tetrahydı	Tetrahydı	Tetrahydı	Tetrahydı	Tetrahydı	Tetrahydı
45	Nr. Ra RC	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5
50	Nr.	A.522	A.523	A.524	A.525	A.526	A.527	A.528	A.529	A.530	A.531	A.532	A.533	A.534	A.535	A.536	A.537

## Second	5 10		phys. Daten NMR-Daten in ppm Fp in °C	3.90 (m, 2H), 4.09 (t, 2H), 5.87 (m, 1H), 6.63 (m, 1H)	82-84	4.00 (m, 22) $4.09 (t, 2H)$ $5.87 (m, 1H)$, $6.03 (m, 1H)$, $6.53 (m, 1H)$	4.09 (t,2H), 5.87 (m,1H), 6.03 (m,1H), 6.53 (m,1H)	4.09 (t,2H), 5.87 (m,1H), 6.03 (m,1H), 6.53 (m,1H)	4.13 (t,2H), 6.00-6.42 (m,4H), 7.33 (bs,1H)	4.13 (t,2H), 5.92 (m,1H), 6.33 (d,1H), 6.55 (bs,1H), 7.40 (d,2H)	4.13 {m, 2H}, 5.92 {m, 1H}, 7.40 {d, 2H},	4.13 (t,2H), 5.92 (m,1H), 7.40 (d,2H),	4.15 (t, 2H), 6.90 (dt, 1H), 7.10 (d, 1H),	4.10 (t, 2H), 6.00 (dt, 1H), 3H) 6.50 (dt, 1H), 3H)
e II.7 (Fortsetzung) Ra Ra RC n-C ₃ H ₇ Tetrahydropyran-3-y1 -(CH ₂) ₄ - C ₂ H ₅ Tetrahydropyran-4-y1 -(CH ₂) ₄ - C ₂ H ₅ Tetrahydrothiopyran-3-y1 -(CH ₂) ₄ - C ₂ H ₅ Tetrahydrothiopyran-3-y1 -(CH ₂) ₄ - C ₂ H ₅ Tetrahydropyran-3-y1 -(CH ₂) ₄ - C ₂ H ₅ Tetrahydropyran-3-y1 -(CH ₂) ₄ - C ₂ H ₅ Tetrahydropyran-4-y1 -(CH ₂) ₄ - C ₂ H ₅ Tetrahydropyran-3-y1 -(CH ₂ CH ₂ CH=CH- C ₂ H ₅ Tetrahydropyran-3-y1 -CH ₂ CH ₂ CH=CH- C ₂ H ₅ Tetrahydropyran-3-y1 -CH ₂ CH ₂ CH=CH- C ₂ H ₅ Tetrahydropyran-3-y1 -CH ₂ CH ₂ CH=CH- C ₂ H ₅ Tetrahydropyran-3-y1 -CH ₂ CH ₂ CH=CH- C ₂ H ₅ Tetrahydropyran-3-y1 -CH ₂ CH ₂ CH=CH-			ۍ ۴	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	Furan-2-yl	Furan-3-yl	Furan-3-yl	Furan-3-yl	Thien-2-yl	Thien-2-yl
e II.7 (Fortsetzung) Ra RC n-C ₃ H ₇ Tetrahydropyran-3-y1 n-C ₃ H ₇ Tetrahydropyran-4-y1 n-C ₃ H ₇ Tetrahydrothiopyran-3-y1 c ₂ H ₅ Tetrahydrothiopyran-3-y1 c ₂ H ₅ Tetrahydrothiopyran-3-y1 c ₂ H ₅ Tetrahydropyran-4-y1 c ₂ H ₅ Tetrahydropyran-4-y1 c ₂ H ₅ Tetrahydropyran-3-y1				12)4-	12)4-	12)4-	12)4-	12)4-	2сн₂сн=сн-	2CH 2CH=CH-	сн₂сн=сн−	2СН2СН−СН−	2СН2СН−СУ	2СН2СН−С
Ra Ra n-C3H7 C2H5 n-C3H7 C2H5 c2H5 C2H5 C2H5 C2H5 C2H5	35		3											
A.546 C.2H5 A.548 n-C3H7 A.540 n-C3H7 A.542 n-C3H7 A.542 n-C3H7 A.544 C2H5 A.544 C2H5 A.545 C2H5 A.545 C2H5 A.546 C2H5 A.546 C2H5 A.548 n-C3H7	40	rtsetzung)	R ^C	Tetrahydropyran-3-	Tetrahydropyran-4-	Tetrahydropyran-4-	Tetrahydrothiopyra	Tetrahydrothiopyra	Tetrahydropyran-4-	Tetrahydropyran-3-	Tetrahydropyran-4-	Tetrahydrothiopyra	Tetrahydropyran-3-	Tetrahydropyran-3-
A.548 A.548 A.548 A.548	45	II.7 (For	Ra	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2 H 5	n-C ₃ H ₇	C ₂ H ₅	C ₂ H ₅	C2H5	C 2H5	C2H5	n-C ₃ H ₇
	50	Tabelle	Nr .	A.538	A.539	A.540	A.541	A.542	A.543	A.544	A.545	A.546	A.547	A.548

		ЗН),	1H), (m, 3H),	ЗН),	3н)	5н)							
5		6.00 (dt 1H), 6.80-7.20 (m, 3H),	dt 1H),	6.00 (dt 1H), 6.80-7.20 (m, 3H),	6.00 (dt, 1H), 6.80-7.30 (m, 3H)	dt 1H), .20 (m, 5H)	dt, 1H)	5.87 (dt, 1H) 3H)	5.87 (dt, 1H) 3H)	5.87 (dt, 1H) 3H)	5.88 (dt, 1H) 3H)	5.88 (dt, 1H) 3H)	5.93 (dt, 1H), 6.63 (d, 1H),
	mdd	6.00 (6.00 (dt 6.80-7.26		6.90 (6.80-)	6.10 dt 6.80-7.20	5.87 (dt, 3H)	5.87 (c 3H)	5.87 (c 3H)	5.87 (c 3H)	5.88 (c 3H)	5.88 (c 3H)	5.93 (6.63 (6.
10	phys. Daten NMR-Daten in ppm Fp in °C	t, 2H},	$\{t, 2H\};$	$\{t, 2H\}, \{d, 1H\},$	$\{t, 2H\};$	t, 2H); d, 1H);	4.13 (t,2H), 6.37-6.73 (m,	4.13 (t, 2H), 6.37-6.73 (m,	4.13 (t,2H), 6.37-6.73 (m,	4.13 (t,2H), 6.37-6.73 (m,	4.13 (t,2H), 6.37-6.73 (m,	4.13 (t,2H), 6.37-6.73 (m,	4.15 (t, 2H); 6 6.46 (d, 1H); 6 6.75 (d, 1H);
15	phys. NMR-Da Fp in	4.15 (t, 6.60 (d, 1)	4.15 6.60	4.15 6.60	4.15 6.60	4.20 (t, 6.60 (d,	4.13 (6.37-6	4.13 6.37-6	4.13 (6.37-6	4.13 6.37-6	4.13 6.37-6	4.13 (6.37-6	4.15 6.46 6.75
							n-2-y1	n-2-y1	n-2-y1	n-2-y l	n-2-y1	n-2-y1	-2-y1
20		Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-CH ₃ -thien-2-yl	5-C1-thien-2-y1
25	R	⊤hi	Thi	⊺ħi	ĭħï	Thi	5-0	5-0	5-0	2-0	5-0	5-0	5-0
		-сн ₂ сн ₂ -сн=сн-	-сн ₂ сн ₂ -сн=сн-	−сн2сн2-сн=сн-	-сн₂сн₂-сн=сн-	−сн2сн2−сн=сн−	-сн₂сн₂-сн=сн-	-сн ₂ сн ₂ сн=сн-	-сн ₂ сн ₂ -сн=сн-	-сн2сн2-сн=сн-	-сн₂сн₂-сн=сн-	-сн ₂ сн ₂ -сн=сн-	-сн ₂ сн ₂ -сн=сн-
30	3	-сн ₂ сн ₂	-сн2сн	−сн2сн	-сн ₂ сн ₂	-сн2сн	-сн ₂ сн ₂	-сн ₂ сн	-сн ₂ сн ₂	-сн ₂ сн	-сн2сн	-сн2сн2	-сн ₂ сн ₂
35		-	=	1-3-y 1	1-3-y1	ıyı	Ę	-	-	ر	1-3-y1	1-3-y l	Ę
		Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	2,4,6-Trimethylphenyl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl
40 (bun)		ahydrop	ahydrop	ahydrot	ahydrot	6-Trime	ahydrop	ahydrop	ahydrop	ahydrop	ahydrot	ahydrot	ahydrop
ortsetz	RC	Tetr	Tetr	Tetr	Tetr	2, 4,	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr	Tetr
59 54 Tabelle II.7 (Fortsetzung)	Ra	C2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2 H 5
os Tabelle	Nr .	A.549	A.550	A.551	A.552	A.553	A.554	A.555	A.556	A.557	A.558	A.559	A.560

							3H)	3H)	3н)	3H)	3н)	3н)
		1H),	H. (),	1H),	H),	H.),	H. (F) ,	(H, m,	1H) (m, 3H)	1H), (m, 3H)	(H, E,	Œ,
5		(at (a, '	(dt, 1H), (d, 1H),	(dt, 1H), (d, 1H),	{dt, 1H}, {d, 1H),	(dt, 1	(dt).32	(dt).32	(dt).32	(dt).32	(dt).36	(dt,
	E	5.93 (dt, 1H), 6.63 (d, 1H),	5.93	6.63	5.93	5.93 (dt, 1H), 6.63 (d, 1H),	6.07 (dt 1H), 3H)	6.07 (dt, 1H), 7.00-7.32 (m, 3H)	6.07 dt 1	6.07 dt	6.07 (dt 1H), 3H)	6.07 (dt, 1H), 7.00-7.36 (m, 3H)
	mdd u	2H 1H 1H}, 5 1H},	2H}, 5 1H}, 6	2H), 5 1H), 6	2H, 5 1H}, 6 1H), 6	2H), 5 1H), 6 1H), 6	2H}, 6 1H}, 7	2H}, 6 IH}, 7	2H}, 6	2H), 6 1H), 7	2H}, 6 1H}, 9	2H}, 6
10	phys. Daten NMR-Daten in p Fp in °C	a, t, HH HH HH					¥.;					, 2H
	s. D -Dat in º		ىمة <u>م</u> رم <u>م</u> رم	سَمْسَ جَـمِـمِ	سَمْسَ م ِمِج	سَمَّتَ جَهُمُ	055 (a,t	55 (4,	å, å,	600 A,t,	0, (t,	4.17 (t, 6.50 (d,
	ON T	4.15 6.46 6.75	4.15 6.46 6.75	4.15 6.46 6.75	4.15 6.46 6.75	4.15 6.46 6.75	4.15	4.15	4.20 6.50	4.20	4.17	6.5
15												
		5-Cl-thien-2-yl	5-c1-thien-2-yl	5-cl-thien-2-yl	5-cl-thien-2-yl	5-Cl-thien-2-yl						
20		hien	hien	hien	hien	hien	3-y l	3-y1	3-y1	3-y1	3-y1	3-y1
		cı-t	c1-t	cl-t	cl-t	cl-t	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl	Thien-3-yl
	Tα	5-	5-	-5	٦	گر	두	두	두	두	두	두
25		<u>+</u>	<u>+</u>	+	<u>+</u>	<u>+</u>	÷	<u>+</u>	<u></u>	÷	<u>+</u>	+
		: :: :: ::	÷:	;H=C;	J=C	; ; ;	:5-H:	:D=H:	÷	CH=C	CH=C	CH=C
		-CH ₂ CH ₂ -CH=CH-	-сн₂сн₂-сн=сн-	−сн2сн2−сн=сн-	-си 2си 2-си=си-	-сн2сн2-сн=сн-	-сн₂сн₂-сн=сн-	-сн 2сн 2-сн=сн-	-сн 2сн 2-сн=сн-	−СН 2СН 2−СН=СН−	-сн₂сн₂-сн=сн-	-сн ₂ сн ₂ -сн=сн-
30	3	-CH 2	-СН2	-СН2	-CH 2	-CH2	-CH ₂	-СН 2	-СН 2	-СН 2	-СН 2	-CH 2
	_											
		1	_	_	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	_	_	=	_	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl
35		Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	yrar	oyrar	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	pyrar	pyrar
		oyrar	oyrar	oyraı	thio	thio	pyraı	pyrai	pyrai	pyrai	thio	thio
40 (6		ydrol	ydrol	ydroj	ydro	ydro	ydro	ydro	ydro	ydro	ydro	ydro
tzun		trah	trah	trah	trah	trah	trah	trah	trah	trah	trah	trah
rtse	RC	Te	Te	⊒ L	Te	Te	Te	Te	Te	Te	Te	Te
45		Η,		Н,		,H,		£		,H7		,Н7
7.11	Ra	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
og o		51		63		65	99	29	89	69	70	7.1
Tabe	r.	A.561	A.562	A.563	A.564	A.565	A.566	A.567	A.568	A.569	A.570	A.571

5	phys. Daten NMR-Daten in ppm Fp in °C	4.20 (t, 2H), 6.10 (dt, 1H), 6.52 (d, 1H),	4.20 (t, 2H), 6.10 (dt, 1H), 6.52 (d, 1H),	4.20 (t, 2H), 6.13 (dt, 1H), 6.52 (d, 1H),	4.20 (t, 2H), 6.13 (dt, 1H), 6.52 (d, 1H),	4.20 (t, 2H), 6.12 (dt, 1H), 6.53 (d, 1H), 7.10 (s, 2H),	4.20 (t, 2H), 6.12 (dt, 1H), 6.53 (d, 1H), 7.10 (s, 2H),	6.33 {d, 1H}, 6.83 {s', 1H), 7.03 {s', 1H},	6.33 {d, 1H}, 6.83 (st, 1H), 7.03 (st, 1H),	4.17 {t, 2H}, 6.00 (dt, 1H), 6.33 {s, 1H), 7.03 {s, 1H},	4.17 {t, 2H}, 6.00 (dt, 1H), 6.33 {s, 1H), 7.03 {s, 1H},	4.20 {t, 2H}, 6.00 (dt, 1H), 6.33 {s, 1H), 7.03 {s, 1H},
15		2-Cl-thien-3-yl	2-c1-thien-3-yl	2-Cl-thien-3-yl	2-c1-thien-3-yl	2-c1-thien-3-yl	2-Cl-thien-3-yl	5-Cl-thien-3-yl	5-Cl-thien-3-yl	5-C1-thien-3-yl	5-c1-thien-3-yl	5-Cl-thien-3-yl
25	R											
30	3	-сн ₂ сн ₂ сн=сн-	-сн₂сн₂-сн=сн-	-сн₂сн₂-сн=сн-	-сн₂сн₂сн=сн-	-сн₂сн₂-сн=сн-	-сн ₂ сн ₂ -сн=сн-	−CH ₂ CH ₂ −CH=CH−	-CH ₂ CH ₂ CH=CH-	-СН ₂ СН ₂ -СН=СН-	-CH2CH2-CH≡CH-	-CH ₂ CH ₂ CH=CH-
35 (b		Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	trahydrothiopyran-3-yl	trahydrothiopyran-3-yl	trahydropyran-3-yl	trahydropyran-3-yl	Tetrahydropyran-4-yl	trahydropyran-4-yl:	trahydrothiopyran-3-yl
6 Fortsetzun	ВС	Tetrah		Tetrah		Tetrah	Te	Tetrah	Te	Tetrah	Te	Tetrah
Tabelle II.7 (Fortsetzung)	Ra	572 C ₂ H ₅	A.573 n-C ₃ H ₇	A.574 C ₂ H ₅	A.575 n-C ₃ H ₇	A.576 C ₂ H ₅	A.577 n-C ₃ H ₇	A.578 C ₂ H ₅	A.579 n-C ₃ H ₂	A.580 C ₂ H ₅	A.581 n-C ₃ H ₇	A.582 C ₂ H ₅
50 Ta k	N.	A	A.	Α.	Α.	A.	Ą.	A.	ď.	A.	A.	A.

			1H),	2н),	2н),			1H)	1н)	1н),	1H),	1н),		1н),	1н),		
5		E .	6.00 (dt, 1H), 6.83 (s, 1H),	6.90 (m,	6.90 (m,			7.10 (d,	7.10 (d,	6.27 (m,	6.27 (m,	6.24 (m, 1H),		6.27 (m, 1H),	6.27 (m, 1H),		
10		phys. Daten NMR-Daten in ppm Fp in ^o C	(t, 2H) (s, 1H), (s, 1H)	3.90 (m, 2H), 6 7.10 (d, 1H), 6	3.90 (m, 2H), 6 7.10 (d, 1H), 6			6.90 (m, 2H), 7	6.90 (m, 2H), 7	5.93 (m, 1H), 6 7.27 (m, 1H)	5.93 (m, 1H), 6 7.27 (m, 1H), 6	5.90 (m, 1H), 6 7.24 (m, 1H), 6	50-53	5.93 (m, 1H), 6 7.27 (m, 1H)	5.93 (m, 1H), 6 7.27 (m, 1H)	43-45	73-75
15		d N	y1 4.20 6.33 7.03	73	7.			9	9	7.	7.	7.	20	5.7	75.	. 43	73
20		Rf	5-Cl-thien-3-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-3-yl	Thien-3-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl	Thien-2-yl	Thien-2-yl
25			CH ₂ CH ₂ CH=CH-	-CH2CH2CHCH3-	-сн₂сн₂сн≃снсн₃-	-CH ₂ CH ₂ CH=CHCH ₃ -	-(CH ₂) ₅ -	−{CH ₂) ₅ −	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -						
30		3		Ť	Ť	Ť	7			Ī	Ī	ī	1			1	1
35			etrahydrothiopyran-3-yl	etrahydropyran-3-yl	etrahydropyran-3-yl	etrahydropyran-4-yl	etrahydropyran-4-yl	etrahydrothiopyran-3-yl	etrahydrothiopyran-3-yl	etrahydropyran-3-yl	etrahydropyran-3-yl	etrahydropyran-4-yl	etrahydropyran-4-yl	etrahydrothiopyran-3-yl	etrahydrothiopyran-3-yl	etrahydropyran-3-yl	etrahydropyran-3-yl
40	tsetzung)	RC	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydr	Tetrahydı	Tetrahyd	Tetrahydı	Tetrahydı
45	Tabelle II.7 (Fortsetzung)	Ra	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2 H 5	n-C ₃ H ₇	C 2 H 5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7
	Tabelle	Nr.	A.583	A.584	A.585	A.586	A.587	A.588	A.589	A.590	A.591	A.592	A.593	A.594	A.595	A.596	A.597
50																	

Ed. R. C. 245	10	phys. Daten NMR-Daten in ppm Fp in ^o C	91–93	74-75	4.07 (t,2H) 6.80 (m,1H), 6.90 (m,1H), 7.10 (m,1H)	4.07 (t,2H), 6.80 (m,1H), 6.90 (m,1H), 7.10 (m,1H)	3.90 (m, 2H), 4.12 (t, 2H), 5.90 (m, 1H), 6.53 (m, 1H)	3.90 (m, 2H), 4.12 (t, 2H), 5.90 (m, 1H), 6.06 (m, 1H), 6.53 (m, 1H)	4.00 (m, 2H), 4.12 (t, 2H), 5.90 (m, 1H), 6.53 (m, 1H)	4.00 (m, 2H), 4.12 (t, 2H), 5.90 (m, 1H), 6.06 (m, 1H), 6.53 (m, 1H)	4.12 (t,2H), 5.90 (m,1H), 6.06 (m,1H), 6.53 (m,1H)	4.12 (t,2H), 5.90 (m,1H), 6.06 (m,1H), 6.53 (m,1H)	5.90 (m, 1H), 6.27 (m, 1H), 7.27 (m, 1H),	5.90 (m, 1H), 6.27 (m, 1H), 7.27 (m, 1H),	5.93 (m,1H), 6.27 (m,1H), 7.27 (m,1H)	5.93 (m,1H), 6.27 (m,1H), 7.27 (m,1H)
E II.7 (Fortsetzung) Ra Ra RC C2H5 Tetrahydropyran-4-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-4-y1 C2H5 Tetrahydropyran-4-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 C2H5 Tetrahydropyran-3-y1 CCH2)5- C2H5 Tetrahydropyran-3-y1 CCH2)6- C2H5 Tetrahydropyran-3-y1 CCH2)6- C2H5 Tetrahydropyran-3-y1 CCH2)6- C2H5 Tetrahydropyran-3-y1 CCH2)6-	15	ā.Ži.	6	7	4.0	40							7	7	7	5
# # # # # # # # # # # # # # # # # # #	20	Rf	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	1-CH ₃ -pyrro	1-CH ₃ -pyrro	1-CH ₃ -pyrro	1-CH3-pyrro	1-CH ₃ -pyrro	1-CH ₃ -pyrro	Furan-2-yl	Furan-2-yl	Furan-2-yl	Furan-2-yl
Ra RC C2H5 Tetrahydropyran-4-yl C2H5 Tetrahydropyran-4-yl C2H5 Tetrahydropyran-3-yl C2H5 Tetrahydropyran-3-yl C2H5 Tetrahydropyran-3-yl C2H5 Tetrahydropyran-3-yl C2H5 Tetrahydropyran-4-yl C2H5 Tetrahydropyran-4-yl C2H5 Tetrahydropyran-4-yl C2H5 Tetrahydropyran-3-yl	25															
Ra C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5	30	3	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂)5-	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₆	-(CH ₂) ₆ -	-(CH ₂) ₆ -	-(CH ₂) ₆ -
Ra C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5 n-C3H7 C2H5	35		ran-4-yl	ran-4-yl	iopyran-3-yl	iopyran-3-yl	ran-3-yl	ran-3-yl	ran-4-yl	ran-4-yl	iopyran-3-yl	iopyran-3-yl	ran-3-yl	ran-3-yl	ran-4-yl	ıran-4-yl
A.598 C.2H5 A.598 C.2H5 A.600 C.2H5 A.601 n-C.3H7 A.603 n-C.3H7 A.605 n-C.3H7 A.605 n-C.3H7 A.606 C.2H5 A.607 n-C.3H7 A.609 n-C.3H7 A.609 n-C.3H7 A.609 n-C.3H7 A.609 n-C.3H7		A C	Tetrahydropy	Tetrahydropy	Tetrahydroth	Tetrahydroth	Tetrahydropy	Tetrahydropy	Tetrahydropy	Tetrahydropy	Tetrahydroth	Tetrahydroth	Tetrahydropy	Tetrahydropy	Tetrahydrop)	Tetrahydropyran-4-yl
A. 599 A. 600	45 2711	Ra	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
	50 eq.	, r	A.598	A.599	A.600	A.601	A.602	A.603	A.604	A.605	A.606	A.607	A.608	A.609	A.610	A.611

		, 	÷,	1н),	1н),		1н),	1н),	1н),	1н),	1н),	1н),	1н),	1н),	1н),
5		(т, 1н),	(m, 1	E)	E)			E)	Ĕ)	Ĕ,	Ĕ,	E)	Ĕ)	Ĕ)	Ĕ)
3	mdd	6.27	6.27 (m,1H),	6.90	6.90		6.90 (m,	6.90	6.90	90.9	90.9	90.9	90.9	90.9	90.9
	in pr	1H), (1H), (1H), (1H), (1H), (1H), (1H), (1H), (1H) (1H), (1H) (1H), (H),
10	Date aten oc	(E)	E,E	(m,	, E, E,		E,E	E,E,	m, m,	E,E,	, E, E	, m,	(a, 1)	, E, E	EÉ,
	phys. Daten NMR-Daten in Fp in °C	5.93	5.93	$\frac{6.77}{7.10}$	$\frac{6.77}{7.10}$	50-52	$\frac{6.80}{7.10}$	$6.80 \\ 7.10$	$\frac{6.80}{7.10}$	5.90	5.90	5.87	5.87	5.90	5.90
	OZL	7	72	9	9	വ	9	9	9						
15										2-y	2-y	-2-y	2-y	2-y	2-y
		-y l	-y 1	-y l	-yl	-y 1	-y1	-yl	-y1	1-CH ₃ -pyrrol-2-y1	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-y1	1-CH ₃ -pyrrol-2-yl	1-CH ₃ -pyrrol-2-y1
20		Furan-2-y	Furan-2-yl	Thien-2-y	Thien-2-y	Thien-2-yl	Thien-2-yl	Thien-2-yl	Thien-2-yl	Ж3-р	.H3−p	.H3−p	.H3−p	:Н3-р	3−р
,	Rf	Fur	Fur	Ë.	Ē	Ē	를	Ë	Ē	1-(1-(1-(1-(1–(1-(
	;														
25															
		-(сн ₂) ₆ -	-(сн ₂) ₆ -	-(СН ₂)6-	-(СН ₂) ₆ -	-(сн ₂) ₆ -	-(CH ₂) ₆ -	-(сн ₂) ₆ -	-(СН ₂)6-	– (СН ₂) ₆ [—]	–(СН ₂) ₆ –	-(CH ₂) ₆ -	-(сн ₂) ₆ -	-(CH ₂) ₆ -	-(сн ₂) ₆ -
30	3	1 0) –	D)-	D) -	D) -) <u> </u>	D) -	D) -	<u>-</u>)- (C	<u>D</u> –	<u>-(c</u>) -	D)-) –
		-y1	-y1					-y1	-y 1					-y1	-y 1
		Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	3-y1	3-y1	t-y1	۱-y	rahydrothiopyran-3-yl	rahydrothiopyran-3-yl	3-y1	3-y l	+-y1	+-y 1	rahydrothiopyran-3-yl	rahydrothiopyran-3-yl
35		iopyr	iopyr	Tetrahydropyran-3-y	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	rahydropyran-4-yl	iopyr	iopyr	rahydropyran-3-yl	rahydropyran-3-yl	rahydropyran-4-yl	rahydropyran-4-y	iopyı	iopyr
		Iroth	Iroth	Iropy	Iropy	Iropy	Iropy	Iroth	Iroth	Iropy	Iropy	Iropy	Iropy	iroth	iroth
(bun z		rahyd	rahyd	rahyd	rahyd	rahyd	rahyd	rahyd	rahyd	rahyd	rahyo	rahyo	rahyo	rahyo	rahyo
tset	A _C	Teti	Tetı	Tet	Tet	Tet	Tet	Tet	Tet	Tet	Teti	Tet	Tet	Tet	Tet
op of the contract of the cont			Н7		H 7		Н7		Н7		Н7		Н7		Н7
45 2.11	Ra	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
el le		12	13		15	16	17	18	19	20	21	22	23	24	A.625
Tabé	Z r	A.612	A.613	A.614	A.615	A.616	A.617	A.618	A.619	A.620	A.621	A.622	A.623	A.624	A.6

5101520	phys. Daten $/$ 1H-NMR [0 in ppm], Fp. $[^{0}$ C]	42- 45	3,90 (m, 2H), 4,20 (t, 2H), 4,40 (m, 2H), $6,80-7,50 (m, 3H), 7,13-7,37 (m, 2H)$	106-107	72- 73	52- 55	92	97 - 78	72- 77	121-125	103-107	82-86	81 – 85	62- 68	3, 90 (m, 2H), 4, 20 (t, 2H), 4, 40 (m, 2H) 6, 70 (m, 3H), 7, 25 (m, 1H),	103-109	73- 79
25	بى ئىن	Pheny 1	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl
30	3	-CH ₂ CH ₂ -0-	-СН ₂ СН ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH 2CH 2-0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	−CH ₂ CH ₂ −0−	-CH ₂ CH ₂ -0-	-CH 2CH 2-0-	-CH ₂ CH ₂ -0-	-CH₂CH₂-0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-
35 40 (bun	RC	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
Og can de company (Fortsetzung)		Tetrahy		Tetrahy		Tetrahy		Tetrahy	•	Tetrahy	-	Tetrahy		Tetrahy		Tetrahy	
e 11.7	Ra	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C_2H_5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇
Tabell	ŗ.	A.626	A.627	A.628	A.629	A.630	A.631	A.632	A.633	A.634	A.635	A.636	A.637	A.638	A.639	A.640	A.641

C2H5 1 n-C3H7 1 C2H5 1 n-C3H7 1 C2H5 1 C2H5 1 C2H5 1	Nr. Ra RC A.642 C ₂ H ₅ Tetrahydrothiopyran-3-yl A.644 C ₂ H ₅ Tetrahydrothiopyran-3-yl A.644 C ₂ H ₅ Tetrahydropyran-3-yl A.645 n-C ₃ H ₇ Tetrahydropyran-3-yl A.645 c ₂ H ₅ Tetrahydropyran-4-yl A.647 n-C ₃ H ₇ Tetrahydropyran-4-yl A.648 C ₂ H ₅ Tetrahydrothiopyran-3-yl A.649 n-C ₃ H ₇ Tetrahydrothiopyran-3-yl A.650 C ₂ H ₅ Tetrahydrothiopyran-3-yl	CH 2CH 2-0CH 2CH 2-0-	Rf 3-F-phenyl 4-F-phenyl 4-F-phenyl 4-F-phenyl 4-F-phenyl 4-F-phenyl 2-Cl-phenyl	phys. Daten / 7,25 (m,1H),	phys. Daten / 1H-NMR [6 in ppm], Fp. [°C] 4,20 (t,2H), 4,40 (m,2H), 6,70 (m,3H), 7,25 (m,1H), 4,40 (m,2H), 6,70 (m,3H), 100-72 101-103 107-109 105-108 82- 84 74- 80
Tetrah Tetrah Tetrah Tetrah Tetrah Tetrah	3-y1 3-y1 3-y1 3-y1	-CH ₂ CH ₂ -0- -CH ₂ CH ₂ -0-	2-Cl-phenyl 2-Cl-phenyl 2-Cl-phenyl 2-Cl-phenyl 3-Cl-phenyl 3-Cl-phenyl 3-Cl-phenyl 3-Cl-phenyl 3-Cl-phenyl 3-Cl-phenyl	4, 00 (m, 2H), 4	67-71 4,00 (m,2H), 4,27 (t,2H), 4,47 (m,2H), 7,20 (t,1H), 7,37 (d,1H), 4,47 (m,2H), 74-78 72-78

5		phys. Daten / 1H-NMR [å in ppm], Fp. [°C]	,43 (m,2H),	,43 (m,2H),																	
10		1H-NMR [8 in	20 (t,2H) 4,7,25 (m,2H)	20 (t, 2H) 4, 7, 25 (m, 2H)	116-118	104-106	14- 77	86-88													72- 77
15		hys. Daten /	3,93 (m,2H), 4,20 (t,2H), 4,43 (m,2H), 6,90 (m,2H), 7,25 (m,2H)	3,93 (m, 2H), 4,20 (t,2H), 4,43 (m,2H), 6,90 (m, 2H), 7,25 (m,2H)																	
20		Ω.	w,0,	e,0,																	
25		Rf	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	2-CF ₃ -phenyl	2-CF ₃ -phenyl	2-CF ₃ -phenyl	2-CF ₃ -pheny1	2-CF ₃ -phenyl	2-CF ₃ -phenyl	3-CF ₃ -phenyl	3-CF ₃ -phenyl	3-CF ₃ -phenyl	3-CF ₃ -phenyl	3-CF ₃ -phenyl	3-CF ₃ -phenyl	4-CF ₃ -phenyl
30		3	-CH ₂ CH ₂ 0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ 0	-CH ₂ CH ₂ -0-	-сн2сн2-0-	-CH ₂ CH ₂ -0-				
35				_	_	_	-3-y1	-3-y1	_	_	_		-3-yl	-3-y1		_	1	,	-3-y1	-3-y1	-1
40 45	Tabelle II.7 (Fortsetzung)	RC	Tetrahydropyran-3-y1	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-y	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-y	Tetrahydropyran-4-y	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-y	Tetrahydropyran-4-yl	Tetrahydropyran-4-y	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl
	11.7 (1	Ra	C2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C ₂ H ₅	A.669 'n-C ₃ H7	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5
50	Tabelle	ŗ.	A.662	A.663	A.664	A.665	A.666	A.667	A.668	A.669	A.670	A.671	A.672	A.673	A.674	A.675	A.676	A.677	A.678	A.679	A.680

50		40 45	30 35	25	20	15	10		5
Tabell	le II.7 (Tabelle II.7 (Fortsetzung)							
N.	Ra	RС	3	Rf	phys.	Daten	phys. Daten / 1H-NMR [å in ppm], Fp. [°C]	in ppm], Fp. [°C
A.681	n-C ₃ H ₇	Tetrahydropyran-3-yl	-CH ₂ CH ₂ -0-	- 4-CF3-phenyl	3, 90 (m 7, 00 (d	, 3計);	3,90 (m,2H), 4,27 (t,2H), 4,47 (m,2H)	4,47	(m, 2H)
A.682	C ₂ H ₅	Tetrahydropyran-4-yl	-CH 2CH 2-0-	- 4-CF ₃ -phenyl					
A.683	n-C ₃ H ₇	Tetrahydropyran-4-yl	-CH ₂ CH ₂ -0-				76 -06 -06		
A.684	C2H5	Tetrahydrothiopyran-3-yl	1 -CH ₂ CH ₂ -0-	- 4-CF ₃ -phenyl			73- 79		
A.685	n-C3H7	Tetrahydrothiopyran-3-yl	1 -CH ₂ CH ₂ -0-	- 4-CF ₃ -phenyl	4, 27 (t 7, 55 (d	,智,	4, 27 {t, 2H}, 4,47 (m,2H), 7,00 (d,2H) 7,55 {d,2H}	7,00	(d, 2H)
A.686	C ₂ H ₅	Tetrahydropyran-3-yl	-CH ₂ CH ₂ -0-	- 2,4-Cl ₂ -phenyl			73- 75		
A.687	n-C ₃ H ₇	Tetrahydropyran-3-yl	-CH ₂ CH ₂ -0-	- 2,4-Cl ₂ -phenyl			69- 73		
A.688	C2H5	Tetrahydropyran-4-yl	-СН2СН2-0-	- 2,4-Cl ₂ -phenyl	4,000 (m 6,87 (d	', 2H)',	{m, 2H}, 4, 25 {t, 2H}, 7, 17 {d, 1H},	4,45	4,45 (t,2H) 7,37 (d,1H)
A.689	n-C3H7	Tetrahydropyran-4-yl	-CH₂CH₂-0-	- 2,4-Cl ₂ -phenyl	4, 00 (m 6, 87 (d	(m, 2H);	4, 25 {t, 2H};		7, 45 {t, 2H}
A.690	C2H5	Tetrahydrothiopyran-3-yl	1 -CH ₂ CH ₂ -0-	- 2, 4-Cl ₂ -phenyl	4, 25 (t	$\{t, 2H\}$	4, 45 {t, 2H}'		6,87 (d,1H)
A.691	n-C ₃ H ₇	Tetrahydrothiopyran-3-yl	1 -CH ₂ CH ₂ -0-	- 2,4-Cl ₂ -phenyl	4, 25 (t	(t, 2H), 4, 45 (d, 1H), 7,37	7,37 (t,2H), 6,87 (d,1H)	6,87	(d, 1H)
A.692	C ₂ H ₅	Tetrahydropyran-3-yl	-CH ₂ CH ₂ -0-	- 2, 4, 6-Cl ₃ -phenyl			90- 93		
A.693	n-C ₃ H ₇	Tetrahydropyran-3-yl	-CH ₂ CH ₂ −0-	- 2,4,6-Cl ₃ -phenyl			83-87		
A.694	C2H5	Tetrahydropyran-4-yl	-CH ₂ CH ₂ -0-	- 2, 4, 6-Cl ₃ -phenyl			79- 82		
A.695	n-C ₃ H ₇	Tetrahydropyran-4-yl	-CH ₂ CH ₂ -0-	- 2, 4, 6-Cl ₃ -phenyl		, 2H},	4,00 (m,2H), 4,27 (t,2H), 4,45 (m,2H), 7,32 (s,2H)	4,45	(m, 2H),
A.696	C ₂ H ₅	Tetrahydrothiopyran-3-yl	1 -CH ₂ CH ₂ -0-	- 2, 4, 6-Cl ₃ -phenyl			105-108		
A.697	n-C ₃ H ₇	Tetrahydrothiopyran-3-yl	1 -CH ₂ CH ₂ -0-	- 2, 4, 6-Cl ₃ -phenyl		, 2H),	4,27 (t,2H), 4,45 (m,2H), 7,82 (s,2H)	7,82	(s, 2H)

		[00]																		
5		n ppm], Fp.	4,50 (m,2H)	4,50 (m,2H)			4,50 (m,2H), 7,00 (d,2H),	$\{m, 2H\}$, 4,50 $\{m, 2H\}$, 7,00 $\{d, 2H\}$												
10		1H-NMR [6 i	32 (m, 2H), 20 (d, 2H)	32 (m, 2H), 20 (d, 2H),	126-129	138-141	50 (m, 2H),	50 (m, 2H),												
15		phys. Daten / ¹ H-NMR [ð in ppm], Fp. [°C]	3,90 {m,2H}, 4,32 {m,2H}, 4,50 (m,2H), 7,00 {d,2H}, 8,20 {d,2H},	3,90 (m,2H), 4,32 (m,2H), 4,50 (m,2H) 7,00 (d,2H), 8,20 (d,2H)	77		4, 32 (m, 2H), 4, 8, 20 (d, 2H), 4,	2 (m, 2H), 4,												
20		ф	3,9	3,9			8,3	4, 32 8, 20												
25		Rf	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-NO ₂ -pheny1	4-NO ₂ -phenyl	Phenyl	Pheny l	Phenyl	Pheny1	Pheny l	Phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-f-phenyl	4-F-phenyl
30		3	-CH2CH2-0-	-сн2сн2-о-	-CH ₂ CH ₂ -0-	-CH ₂ CH ₂ -0-	-CH2CH2-O-	-CH ₂ CH ₂ -O-	-CH ₂ CH(CH ₃)-0-	-сн ₂ сн(сн ₃)-о-	-сн ₂ сн(сн ₃)-о-	-сн 2сн (сн 3)-о-	-сн 2сн (сн 3)-о-	-сн 2сн (сн 3)-о-	-сн ₂ сн(сн ₃)-о-	-сн ₂ сн(сн ₃)-о-	-сн ₂ сн(сн ₃)-о-	-CH ₂ CH(СН ₃)-О-	-CH ₂ CH(CH ₃)-0-	-СН2СН(СН3)-О-
35			-y 1	-y 1	y l	-y1	an-3-y1	an-3-yl	-y1	-y 1	-y1	-y1	an-3-y1	an-3-y1	-y1	-y1	-y 1	-y 1	an-3-yl	an-3-y1
40	Tabelle II.7 (Fortsetzung)	R ^C	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl
	11.7 (F	Ra	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
50	Tabelle	N.	A.698	A.699	A.700	A.701	A.702	A.703	A.704	A.705	A.706	A.707	A.708	A.709	A.710	A.711	A.712	A.713	A.714	A.715

		[°c]							, 5H)		, 5H)	, 5H)						
5									7-7,43 (m		7-7,43 (m)	7-7,43 (m			О (m, 2H),	О (т, 2н),	О (m, 2H),	О (m, 2H),
10		phys. Daten / 1H-NMR [ð in ppm], Fp.			4,05-4,30 (m,2H) 6,80-7,40 (m,4H)	4, 05-4, 30 (m, 2H) 6, 80-7, 40 (m, 4H)	4, 05-4, 25 (m, 2H) 6, 80-7, 40 (m, 4H)	4,05-4,30 (m,2H) 6,80-7,40 (m,4H)	4,23 (t,2H), 7,17-7,43 (m,5H)	65	(m, 2H), 4, 23 (t, 2H), 7,17-7,43 (m,5H)	(m, 2H), 4, 23 (t, 2H), 7,17-7,43 (m,5H)	(t,2H), 7,17-7,43 (m,5H)	7,17-7,43 (m,5H)	4,17 (t,2H), 7,00 (m,2H),	4,17 (t,2H), 7,00 (m,2H),	4,17 (t,2H), 7,00 (m,2H),	4,17 (t,2H), 7,00 (m,2H),
15		s. Daten /			(m, 3H); (m, 1H);	(m, 3H); (m, 1H);	(m, 3H); (m, 1H);	(m, 3H);	(m, 2H),		(m, 2H), 4,	(m, 2H), 4,		(t,2H),	(m, 2H) (m, 2H)	{m, 2H},	(m, 2H), (m, 2H),	(m, 2H) (m, 2H)
20		ghy			1,35	1,35	1, 35	1,35	3, 90		3,97	3,97	4, 23	4, 23	3,90	3,90	4, 00 7, 40	4, 00
25		RF	4-C1-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	Pheny l	Phenyl	Phenyl	Pheny l	Phenyl	Pheny l	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl
30		3	-сн ₂ сн(сн ₃)-о-	-сн ₂ сн(сн ₃)-о-	-сн ₂ сн(сн ₃)-о-	-CH2CH2-S-	-CH2CH2-S-	-CH2CH2-S-	-CH ₂ CH ₂ -S-	-CH2CH2-S-	-CH2CH2-S-	-CH2CH2-S-	-сн ₂ сн ₂ -s-	-CH ₂ CH ₂ -S-	-СH ₂ CH ₂ -S-			
35			y1									yl					y1	yı
40	Tabelle II.7 (Fortsetzung)	RC	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran−4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
45	II.7 (Fo	æ	C ₂ H ₅ T	n-C3H7 To	C ₂ H ₅ T	n-C ₃ H ₇ T ₀	C ₂ H ₅ T	n-C ₃ H ₇ T	C ₂ H ₅ T	n-C ₃ H ₇ T	C ₂ H ₅ T	n-C ₃ H ₇ T	C ₂ H ₅ T	n-C ₃ H ₇ T	C ₂ H ₅ T	n-C ₃ H ₇ T	C ₂ H ₅ T	n-C ₃ H ₇ T
50	Tabelle	Nr. Ra	A.716 C.	A.717 n	A.718 C	A.719 n	A.720 C	A.721 n	A.722 C	A.723 n	A.724 C	A.725 n	A.726 C	A.727 n	A.728 C	A.729 n	A.730 C	A.731 n

Tabelle II.7 (Fortsetzung) Nr. R ³		[00]	1								(н	(H)	(H4	(H)						
Ra	5	in ppm], Fp. [7,40 (m,2H),	7,40 (m,2H),			7,30 (m,4H)	7,30 (ш,4н)			7,10-7,50 (m,	7,10-7,50 (m,	7,10-7,50 (m,	7,10-7,50 (m,	(н)	(н+)	7,20 (t,1H)	7,20 (t,1H)		7,20 (t,1H)
Ra Rc W Rf	10	1 / 1H-NMR [8	7,00 (m,2H),	7,00 (m,2н),	71- 75	63- 65	4,20 (t,2H),	4,20 (t,2H),	7, 30 (ш, 4н)		4,25 (t,2H),	4,25 (t,2H),	4,25 (t,2H),	4,25 (t,2H),	7,10-7,50 (m,	7,10-7,50 (m,	4,20 (t,2H),	4,20 (t,2H),	61- 64	4,20 (t,2H),
Ra Rc W Rf	15	phys. Dater	4,17 (t,2H),	4,17 (t,2H),			4,00 (m,2H),	4,00 (m,2H),	4,20 (t,2H),	4,20 (t,2H),	3,90 (m,2H),	3,90 (m,2H),	4,00 (m,2H),	4,00 (m,2H),	4,25 (t,2H)	4,25 (t,2H)		3, 90 (m, 2H) 7, 40 (d, 2H)		4,00 (m,2H) 7,40 (d,2H)
Ra RC W W	20																ny 1	ny l	ny 1	ny 1
Ra Rc Ra Rc Ra Rc S2 C ₂ H ₅ Tetrahydrothiopyran-3-yl S4 C ₂ H ₅ Tetrahydrothiopyran-3-yl S5 n-C ₃ H ₇ Tetrahydropyran-3-yl S6 C ₂ H ₅ Tetrahydropyran-3-yl S6 C ₂ H ₅ Tetrahydropyran-4-yl S7 n-C ₃ H ₇ Tetrahydropyran-4-yl S8 C ₂ H ₅ Tetrahydropyran-3-yl S9 n-C ₃ H ₇ Tetrahydrothiopyran-3-yl C ₂ H ₅ Tetrahydropyran-3-yl C ₂ H ₅ Tetrahydropyran-4-yl C ₂ H ₅ Tetrahydropyran-4-yl C ₂ H ₅ Tetrahydropyran-3-yl C ₂ H ₅ Tetrahydropyran-4-yl Tetrahydropyran-4-yl Tetrahydropyran-4-yl Tetrahydropyran-4-yl Tetrahydropyran-4-yl Tetrahydropyran-4-yl Tetrahydropyran-4-yl Tetrahydropyran-4-yl Tetrahydropyran-3-yl	25	Rf	4-F-phenyl	4-F-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	2-Cl-phenyl	2-Cl-phenyl	2-C1-phenyl	2-Cl-phenyl	2-C1-phenyl	2-Cl-phenyl	2, 6–C1 ₂ –phei	2, 6-C1 ₂ -phei	2, 6-c1 ₂ -phe	2, 6–C1 ₂ –phei
Ra Ra Ra 12 C2H5 13 n-C3H7 14 C2H5 15 n-C3H7 16 C2H5 17 n-C3H7 18 C2H5 19 n-C3H7 10 C2H5 11 n-C3H7 14 C2H5 15 n-C3H7 16 C2H5 17 n-C3H7 18 C2H5 19 n-C3H7 19 n-C3H7 10 C2H5 11 n-C3H7 11 n-C3H7 12 C2H5 13 n-C3H7 14 C2H5 15 n-C3H7 16 C2H5 17 n-C3H7 18 C2H5 19 n-C3H7 19 n-C3H7 10 n-C3H7 11 n-C3H7 12 n-C3H7 14 n-C3H7 15 n-C3H7 16 n-C3H7 17 n-C3H7	30	*	-CH ₂ CH ₂ -S-	-сн ₂ сн ₂ -s-	-CH ₂ CH ₂ -S-	-CH2CH2-S-	-CH ₂ CH ₂ -S-	-CH2CH2-S-	-СH ₂ CH ₂ -S-	-CH ₂ CH ₂ -S-	-сн ₂ сн ₂ -s-									
Ra Ra Ra 12 C2H5 13 n-C3H7 14 C2H5 15 n-C3H7 16 C2H5 17 n-C3H7 18 C2H5 19 n-C3H7 10 C2H5 11 n-C3H7 14 C2H5 15 n-C3H7 16 C2H5 17 n-C3H7 18 C2H5 19 n-C3H7 19 n-C3H7 10 C2H5 11 n-C3H7 11 n-C3H7 12 C2H5 13 n-C3H7 14 C2H5 15 n-C3H7 16 C2H5 17 n-C3H7 18 C2H5 19 n-C3H7 19 n-C3H7 10 n-C3H7 11 n-C3H7 12 n-C3H7 14 n-C3H7 15 n-C3H7 16 n-C3H7 17 n-C3H7	35		opyran-3-yl	opyran-3-yl	an-3-y l	an-3-y 1	an-4-y l	an-4-y l	opyran-3-yl	opyran-3-yl	an-3-y1	an-3-y 1	an-4-y l	an-4-y1	opyran-3-yl	opyran-3-yl	an-3-y l	an-3-y 1	an-4-yl	an-4-y 1
Tabelle II.7 (F Nr. Ra A.732 C2H5 A.733 n-C3H7 A.734 C2H5 A.736 C2H5 A.736 C2H5 A.736 C2H5 A.737 n-C3H7 A.740 C2H5 A.741 n-C3H7 A.742 C2H5 A.744 C2H5	ortsetzung)	RC	Tetrahydrothi	Tetrahydrothi	Tetrahydropyr	Tetrahydropyr	Tetrahydropyr	Tetrahydropyr	Tetrahydrothi	Tetrahydrothi	Tetrahydropyr	Tetrahydropyr	Tetrahydropyr	Tetrahydropyr	Tetrahydrothi	Tetrahydrothi	Tetrahydropyr	Tetrahydropyr	Tetrahydropyr	Tetrahydropyr
7abellé Nr. A.732 A.733 A.734 A.735 A.736 A.736 A.736 A.740 A.742 A.742 A.744 A.744 A.745 A.745 A.745 A.745	45 L.II (Ra	C 2H5		C2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C 2H5		C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C3H7	C 2 H 5	n-C3H7	C 2 H 5			
	Og Company of the Com	Nr.	A.732	A.733	A.734	A.735	A.736	A.737	A.738	A.739	A.740	A.741	A.742	A.743	A.744	A.745	A.746	A.747	A.748	A.749

E II.7 (Fortsetzung) Ra Ra Ra Ra C2Hs Tetrahydrothiopyran-3-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-4-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-4-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-3-yl C2Hs Tetrahydropyran-4-yl C2Hs Tetrahydropyran-3-yl C2Hs	5	phys. Daten / ¹ H-NMR [ð in ppm], Fp. [°C]	4, 20 (t, 2H) 7, 20 (t, 2H), 7, 40 (d, 2H)	4, 20 (t, 2H) 7, 20 (t, 2H), 7, 40 (d, 2H) 3, 90 (m, 2H), 4, 03 (t, 2H), 4, 23 (t, 2H),	1), ', 2' (m, 2H) 1), 4, 03 (t, 2H), 4, 23 (t, 2H), 1), 7, 27 (m, 2H)	1}; 4,03 (t,2H), 4,23 (t,2H),	1}, 4,03 (t,2H), 4,23 (t,2H),	1), 4,23 (t,2H), 6,90 (m,3H),	1), 4,23 (t,2H), 6,90 (m,3H),	3,90 (m,2H), 4,10 (t,2H), 4,27 (t,2H), 6,80-7,15 (m,4H)	3,90 $(m,2H)$, 4,10 $(t,2H)$, 4,27 $(t,2H)$, 6,80-7,15 $(m,4H)$	4,00 (m,2H), 4,10 (t,2H), 4,27 (t,2H), 6,80-7,15 (m,4H)	76-80	4,10 (t,2H), $4,27$ (t,2H), $6,80-7,15$ (m,4H),	1), 4,27 (t,2H), 6,80-7,15(m,4H),	4), 4,05 (t,2H), 4,27 (t,2H), 4), 7,23 (m,1H)
E II.7 (Fortsetzung) Ra Ra Ra C2H5 Tetrahydrothiopyran-3-yl C2H5 Tetrahydropyran-3-yl C2H5 Tetrahydropyran-4-yl C2H5 Tetrahydrothiopyran-3-yl C2H5 Tetrahydrothiopyran-3-yl C2H5 Tetrahydrothiopyran-3-yl C2H5 Tetrahydrothiopyran-3-yl C2H5 Tetrahydrothiopyran-3-yl C2H2 C2H2 C2H2 C2H2 CCH2		phys. Dat	4, 20 (t, 2h					4,03 (t,2) 7,27 (m,2)	4,03 (t,2)	3,90 (m,24 6,80-7,15	3,90 (m,21 6,80-7,15	4,00 (m,21 6,80-7,15		4,10 (t,2	4,10 (t,2)	3, 90 (m, 2H), 4, 05 6, 67 (m, 3H), 7, 23
e II.7 (Fortsetzung) Ra C ₂ H ₅ Tetrahydrothiopyran-3-yl n-C ₃ H ₇ Tetrahydropyran-3-yl n-C ₃ H ₇ Tetrahydropyran-3-yl c ₂ H ₅ Tetrahydropyran-4-yl n-C ₃ H ₇ Tetrahydropyran-4-yl c ₂ H ₅ Tetrahydropyran-4-yl n-C ₃ H ₇ Tetrahydrothiopyran-3-yl c ₂ H ₅ Tetrahydrothiopyran-3-yl n-C ₃ H ₇ Tetrahydropyran-3-yl c ₂ H ₅ Tetrahydropyran-3-yl n-C ₃ H ₇ Tetrahydropyran-3-yl c ₂ H ₅ Tetrahydropyran-3-yl n-C ₃ H ₇ Tetrahydropyran-4-yl c ₃ H ₅ Tetrahydropyran-3-yl n-C ₃ H ₇ Tetrahydropyran-3-yl		Rf	2, 6-Cl ₂ -phenyl	2,6-Cl ₂ -phenyl Phenyl	Phenyl	Phenyl	Pheny 1	Pheny l	Phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	3-F-phenyl
e II.7 (FG C2H5 n-C3H7	30	3	-CH ₂ CH ₂ -S-	-CH ₂ CH ₂ -S- -(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-
e II.7 (FG C2H5 n-C3H7			opyran-3-yl	iopyran-3-yl 'an-3-yl	.an-3-y1	an-4-yl	an-4-yl	iopyran-3-yl	iopyran-3-yl	ran-3-yl	ran-3-yl	ran-4-yl	ran-4-yl	iopyran-3-yl	iopyran-3-yl	ran-3-y1
84 Ra 80 C2H5 51 n-C3H7 52 C2H5 53 n-C3H7 54 C2H5 55 n-C3H7 56 C2H5 57 n-C3H7 58 C2H5 59 n-C3H7 50 C2H5 50 C2H5 51 n-C3H7 52 C2H5 53 n-C3H7 54 C2H5 55 n-C3H7 56 C2H5		RC	Tetrahydrothi	Tetrahydrothi Tetrahydropyr		Tetrahydropyr	Tetrahydropyr	Tetrahydrothi	Tetrahydrothi	Tetrahydropyr	Tetrahydropyr	Tetrahydropy		Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-yl
55 55 56 56 56 56 56 56 56 56 56 56 56 5	3) Z.11 e	Ra	C ₂ H ₅	n-C ₃ H ₇ C ₂ H ₅		C 2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇					C 2H5
Tabe A.755 A.755 A.756 A.766 A.7	20 de 1	N.	A.750	A.751 A.752	A.753	A.754	A.755	A.756	A.757	A.758	A.759	A.760	A.761	A.762	A.763	A.764 C ₂ H ₅

5		ppm], Fp. [°C]	27 (t,2H),			57 (ш, 3н)	57 (m, 3H)	27 (t,2H),	27 (t,2H),		_	90 (m,2H),	90 (m, 2н),			
10		phys. Daten / 1H-NMR [ð in ppm], Fp.	3,90 (m,2H), 4,05 (t,2H), 4,27 (t,2H), 6,67 (m,3H), 7,23 (m,1H)	3,90-4,10 (m,4H), $4,27$ (t,2H), $6,67$ (m,3H), $7,23$ (m,1H)	3,90-4,10 (m,4H), $4,27$ (t,2H), $6,67$ (m,3H), $7,23$ (m,1H)	27 (t,2H), 6,0	$\{t, 2H\}$, 4,27 (t,2H), 6,67 (m,3H) $\{m,1H\}$	4,03 (t,2H), 4,27 (t,2H), 7,00 (m,2H)	(m, 2H), 4, 03 (t, 2H), 4, 27 (t, 2H) (m, 2H), 7,00 (m, 2H)	3,90-4,06 $(m,4H)$ 4,23 $(t,2H)$, 6,90 $(m,2H)$, 7,06 $(m,2H)$	3,90-4,06 (m,4H) $4,28$ (t,2H), $6,90$ (m,2H), $7,06$ (m,2H)	4,27 (t,2H), 6,90 (m,2H),	(t,2H), 4,27 (t,2H), 6,90 (m,2H),			
15		ıys. Daten / 1	00 (m, 2H), 4, 9, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	00-4, 10 (m, 4H)	00-4, 10 (m, 4H) 57 (m, 3H), 7,	3 (t, 2H), 4, 3	3 (t, 2H), 4,7	90 (m, 2H); 4, 6	(m, 2H);	90-4, 06 (m, 4H)	90-4, 06 (m, 4H) 90 (m, 2H), 7, (4,03 (t,2H), 4,7	3 (t, 2H), 4, 30 (m, 2H)			
20		ф	3,9	6,0 6,0	6,9	4,05	4,05	3, 90 6, 90	3,90	w,0,	m'w	7,0	4, 03 7, 00			
25		Rf	3-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	2-Cl-phenyl	2-C1-phenyl	2-Cl-phenyl
30		3	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-
35			-y1									hiopyran-3-yl	an-3-y 1	-y1	-y1	-y1
40 45	Tabelle II.7 (Fortsetzung)	RC	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyra	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl
	II.7 (F	Ra	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C 2H5
50	Tabelle	Ŗ.	A.765	A.766	A.767	A.768	A.769	A.770	A.771	A.772	A.773	A.774	A.775	A.776	A.777	A.778

5		MR [ð in ppm], Fp. [°C]				t,2H}, 4,27 {t,2H}, n,2H}, 7,17 {m,1H},	(t, 2H); 4, 27 (t, 2H);	n, 27 (t, 2H) n, 2H), 7, 17 (m, 1H)	", 27 (t, 2H), 7, 17 (m, 1H)	(t, 2H), 6,77 (m,1H), (m,1H),	(t, 2H), 6,77 (m,1H), (m,1H)	(t, 2H), 4,23 (t,2H), (m,2H)	(t, 2H), 4, 23 (t, 2H),	, 23 (t, 2H), n, 2H)	,23 (t,2H), m,2H)	t,2H), 6,80 (m,2H),
15		phys. Daten / lH-NMR [$ heta$ in ppm], Fp.				3,90 (m,2H), 4,06 (t,2H), 4,27 (t,2H), 6,77 (m,1H),	3, 90 (m, 2H), 4, 06 (1 6, 77 (m, 1H), 6, 90 (1	3,90-4,10 (m,4H) 4,27 (t,2H) 6,77 (m,1H), 6,90 (m,2H), 7,1	3,90-4,10 (m,4H) $4,27$ (t,2H) $6,77$ (m,1H)	6,96 (t,2H), 4,27 (t)	4,06 (t,2H), 4,27 (t) 6,90 (m,2H), 7,17 (t)	3,90 (m,2H), 4,03 (16,80 (m,2H), 7,20 (1	3,90 (m,2H), 4,03 (16,80 (m,2H)), 7,20 (1	3,90-4,09 (m,4H), 4,23 (t,2H), 6,80 (m,2H), 7,20 (m,2H)	3,90-4,09 (m,4H), 4,23 (t,2H), 6,80 (m,2H), 7,26 (m,2H)	4,03 (t,2H), 4,23 (t,2H), 6,80 (m,2H), 7,20 (m,2H),
25		Rf	2-Cl-phenyl	2-Cl-phenyl	2-C1-phenyl	3-Cl-phenyl	3-cl-phenyl	3-Cl-phenyl	3-Cl-phenyl	3-Cl-phenyl	3-Cl-phenyl	4~Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl
30		3	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-
35 40	ng)	RC	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl
45	Tabelle II.7 (Fortsetzung)		n-C ₃ H ₇ Tetrahyd	C ₂ H ₅ Tetrahyd	n-C ₃ H ₇ Tetrahyd	C ₂ H ₅ Tetrahyd	n-C ₃ H7 Tetrahyd	C ₂ H ₅ Tetrahyd	n-C ₃ H7 Tetrahyd	C ₂ H ₅ Tetrahyd	n-C ₃ H7 Tetrahyd	C ₂ H ₅ Tetrahyd	n-C ₃ H7 Tetrahyd	C ₂ H ₅ Tetrahyd	n-C ₃ H7 Tetrahyd	C ₂ H ₅ Tetrahyd
50	Tabelle	Nr. Ra	A.779 n-	A.780 C.	A.781 n	A.782 C.	A.783 n-	A.784 C	A.785 n	A.786 C	A.787 n	А.788 С	A.789 n	A.790 C	A.791 n	A.792 C

		[0 ₀]													
5			6,80 (m,2H),	(t,2H),	(t,2H),	(t,2H),	4,28 (t,2H),	(d, 2H),	(d,2H),	(t,2H),	(t,2H),			7,37 (d,2H), 4,27 (t,2H), 6,80 (d,2H),	4,00 (t,2H), 4,27 (t,2H), 6,80 (d,2H), 7,37 (d,2H)
		in ppm	6, 80	4, 28	4, 28	4, 28	4, 28	6, 93	6, 93	4,27	4, 27	t, 2H),	t, 2H),	, 6, 80	, 6, 80
10		phys. Daten / 1H-NMR [ð in ppm], Fp.	4,23 (t,2H),	4,20 (t,2H), 4,28 (t,2H), 8,20 (d,H)	$\{t, 2H\}, t, 28 (t, 2H), \{d, 2H\},$	$\{t, 2H\}$, 4,28 $(t, 2H)$, $\{d, 2H\}$	4, 20 (t, 2H), 8, 20 (d, 2H),	4,28 (t,2H), 6,93 (d,2H),	(t,2H), 4,28 (t,2H), 6,93 (d,2H), (d,2H)	(m, 2H), 4,00 (t, 2H), 4,27 (t,2H), (d,2H),	{m, 2H}, 4,00 {t,2H}, 4,27 (t,2H), {d,2H}, 7,37 {d,2H},	3,90-4,10 (m,4H), 4,27 (t,2H), 6,80 (d,2H), 7,37 (d,2H)	3,90-4,10 (m,4H), 4,27 (t,2H), 6,80 (d,2H), 7,37 (d,2H)	(t, 2H)	(t, 2H)
		/ 1H-	4, 23	4, 20 8, 20	4, 20 8, 20	4, 20 8, 20	4, 20 8, 20	4, 28	4, 28	4,00	4,00	m,4H),	m,4H),	, 4,27	, 4,27
15		. Daten	(t, 2H) (m, 2H)	(m, 2H); (d, 2H);	(m, 2H); (d, 2H);	(đ, 2H);	(m, 2H); (d, 2H);	$\{t, 2H\}$	(t, 2H),	(m, 2H),	(M, 2H),	(d, 2H),	4, 10 (d, 2H),	(d, 2H)	(t,2H)
		phys	4, 03 7, 20	3, 90 6, 93	3, 90 6, 93	6, 93 6, 93	4, 00 6, 93	4, 20 8, 20	4, 20 8, 20	3, 6, 80	6,9 80,80	3, 90-1 6, 80	3, 90-1 6, 80	4,00	4,00
20				_	_	_	_		_						
25		Rf	4-Cl-phenyl	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-NO ₂ -phenyl	4-Br-phenyl	4-Br-phenyl	4-Br-phenyl	4-Br-phenyl	4-Br-phenyl	4-Br-phenyl
30		3	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-	-(CH ₂) ₃ -0-
35			1-3-y1	_	_	_	_		1-3-y1	Ę	٦,	۱,	Į,	1-4-y l	
40	etzung)	R ^C	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	n-С ₃ H ₇ Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-4-yl	Tetrahydrothiopyran-4-yl
4 5	(Forts			Tetr		Tetr	Tetr	Tetr	Tetr	Tetr		Tetr		Tetı	
	Tabelle II.7 (Fortsetzung)	Ra	n-C3H7	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5		C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C3H7
50	Tabell	N.	A.793	A.794	A.795	A.796	A.797	A.798	A.799	A.800	A.801	A.802	A.803	A.804	A.805

		p. [°c]	(m, 5H)	(m, 5H)	(m, 5H)	(m, 5H)			H),	H),	H),	, (Ŧ	Ŧ	Ŧ	Ŧ	÷	Ŧ	
5		ppm], F	10-7, 40	10-7, 40	10-7, 40	10-7, 40	_	_	00 (t, 21	00 (t, 21	00 (t, 21	00 (t, 21	33 (m, 2h	33 (m, 2H	27 (s, 4H	27 (s, 4H)	27 (s, 4H)	7,27 (s,4н)	
10		phys. Daten / 1 H-NMR [$^{\delta}$ in ppm], Fp. [$^{\circ}$ C]	4,17 (t,2H), 7,10-7,40 (m,5H)	7,10-7,40 (m,5H)	7, 10-7, 40 (m, 5H)	4,17 (t,2H), 7,00 (t,2H),	4,17 (t,2H), 7,00 (t,2H),	4,17 (t,2H), 7,00 (t,2H),	4,17 (t,2H), 7,00 (t,2H)	7,00 (t,2H), 7,33 (m,2H)	7,00 (t,2H), 7,33 (m,2H)	4,17 (t,2H), 7,27 (s,4H)	4,17 (t,2H), 7,27	4,17 (t,2H), 7,27	4,17 (t,2H), 7,2	7,27 (s,4H)			
15		/s. Daten /	3,90 (m,2H), 4,	3,90 (m,2H), 4,	(m, 2H),	(т, 2н),	(t,2H),	(t,2H),	(m, 2H) (m, 2H)	(m, 2H) (m, 2H)	(m, 2H) (m, 2H)	${m, 2H \choose m, 2H}$	(t,2H),	(t,2H),	(m, 2H),	(m, 2H),		4,00 (m,2H), 4,	(t,2H),
20		phy	3, 90	3, 90	4,00	4,00	4,17	4,17	3,90	3, 90 7, 33	4, 00 7, 33	4, 00 7, 33	4, 17	4, 17	3, 90	3, 90	4, 00	4,00	4,17
25		<u>بر</u> سو	Phenyl	Pheny l	Phenyl	Pheny1	Phenyl	Phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl
30		3	-(CH ₂) ₃ -S-																
35			3-y1	3-y1	ı-y1	ı-y1	an-3-y1	an-3-y1	3-y l	3-y1	y l	-y1	an-3-y1	an-3-y1	1-y l	1-y 1	y l	y l	iopyran-3-yl
40 45	Tabelle II.7 (Fortsetzung)	RC	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-y]	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyr
70	. II.7 (Fe	Ra	C ₂ H ₅ 1	n-C ₃ H ₇]	C 2H5 1	n-C ₃ H ₇ 1	C 2H5 1	n-C ₃ H ₇ 1	C ₂ H ₅ 1	n-C ₃ H ₇ 1	C ₂ H ₅ 1	n-C ₃ H ₇ 1	C 2H5 1	n-C ₃ H ₇ 1	C ₂ H ₅ 1	n-C ₃ H ₇ T	C 2H5 1	n-C ₃ H ₇ 1	C 2H5 1
50	Tabelle	Nr.	A.806	A.807	A.808	A.809	A.810	A.811	A.812	A.813	A.814	A.815	A.816	A.817	A.818	A.819	A.820	A.821	A.822

5		opm], Fp. [°C]	7-7,40 (m,4H))7-7,40 (m,4H))7-7,40 (m,4H)	07-7,40 (m,4H)			17 (m, 3H)	17 (m, 3H)	17 (m, 3H)	17 (ш, 3Н)	30 (m, 1H)	30 (ш,1н)	7,07 (dd,1H),	07 (dd, 1H),	07 (dd, 1H),	07 (dd, 1H),
10		phys. Daten / 1H-NMR [ð in ppm], Fp. [ºC]	4,20 (t,2H), 7,07-7,40 (m,4H)	(t,2H), 7,07-7,40 (m,4H)	(t,2H), 7,07-7,40 (m,4H)	4,20 (t,2H), 7,17 (m,3H)	4,20 (t,2H), 7,17 (m,3H)	4,20 (t,2H), 7,17 (m,3H)	$\{m, 2H\}$, 4,20 (t,2H), 7,17 (m,3H)	4,20 (t,2H), 7,17 (m,3H), 7,30 (m,1H)	(t,2H), 7,17 (m,3H), 7,30 (m,1H)	(m, 2H), 7, 30 (t, 2H), 7, (d, 1H)	$\{m, 2H\}, 7, 30, \{t, 2H\}, 7, 07, \{dd, 1H\}, \{d, 1H\}, 7, 30, \{d, 1H\}, 7, 30, \{d, 1H\}, 7, 1H\}, 1H\}$	(m, 2H), 4, 20 (t, 2H), 7, 07 (dd, 1H), (d, 1H),	$\{m, 2H\}$, $7, 90$, $\{t, 2H\}$, $7, 07$, $\{d, 1H\}$, $\{d$			
15		phys. Daten /	3, 90 (т, 2н), 4	3, 90 (ш, 2н), 4	4,00 (m,2H), 4	4,00 (m,2H),4	4,20 (t,2H), 7	4,20 (t,2H), 7	3, 90 (m, 2H), 4 7, 30 (m, 1H)	3, 90 (m, 2H), 4 7, 30 (m, 1H), 4	4,00 (m,2H), ⁴ 7,30 (m,1H),	4, 00 (m, 2H), 4, 30 (m, 1H), 4	4,20 (t,2H),	4,20 (t,2H), 7	3, 90 (m, 2H), ⁴ 7, 20 (d, 1H), 7,	3, 90 (m, 2H), 7, 7, 20 (d, 1H), 7,	4, 00 (m, 2H), 7, 7, 20 (d, 1H), 7,	4, 00 (m, 2H), 7,
20															ıy 1	ly l	ıy l	ıyı
25		Rf	2-Cl-phenyl	2-Cl-phenyl	2-C1-phenyl	2-Cl-phenyl	2-Cl-phenyl	2-Cl-phenyl	3-c1-phenyl	3-Cl-phenyl	3-C1-phenyl	3-Cl-phenyl	3-C1-phenyl	3-C1-phenyl	2, 5-Cl ₂ -phenyl	2,5-Cl ₂ -phenyl	2,5-Cl ₂ -phenyl	$2, 5-cl_{2}$ -phenyl
30		3	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-								
35			an-3-y 1	an-3-y 1	an-4-y l	an-4-y l	opyran-3-yl	opyran-3-yl	an-3-y 1	an-3-y1	an-4-y 1	an-4-y l	opyran-3-yl	opyran-3-yl	an-3-y 1	an-3-y 1	an-4-y l	an-4-yl
40	Tabelle II.7 (Fortsetzung)	R ^C	Tetrahydropyran-3-y	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
45	e 11.7 (F	Ra	C2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C 3H7	C2H5	n-C3H7	C2H5	n-C3H7	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2 H 5	n-C ₃ H ₇
50	Tabelle	Nr.	A.824	A.825	A.826	A.827	A.828	A.829	A.830	A.831	A.832	A.833	A.834	A.835	A.836	A.837	A.838	A.839

		[0c]	(+		_	_	_	_			_,						
5		J, Fp.	(d, 1)	(d, 1	(t, 1H)	(t, 1H)	(t, 1H)	(t, 1H)	(d, 2H)	(d, 2H)	(s, 2н)	(s,2н)	(s,2н)	(s, 2н)	(s, 5н)	(s, 5H)	(s, 2H)
		ın ppm	7, 20	7, 20	7, 20	7, 20	7, 20	7, 20	7,40	7,40	4,58	4, 58	4,60	4,60	7, 35	7,35	4,67
10		phys. Daten / ¹H-NMR [ð in ppm], Fp. [ºC]	7,07 (dd,1H), 7,20 (d,1H)	7,07 (dd,1H), 7,20 (d,1H)	4,20 (t,2H), 7,20 (t,1H)	4,20 (t,2H), 7,20 (t,1H)	4,20 (t,2H), 7,20 (t,1H)	4,20 (t,2H), 7,20 (t,1H)	7,20 (t,1H), 7,40 (d,2H)	7,20 (t,1H), 7,40 (d,2H)	4,25 (t,2H), 4,58 (s,2H),	4,25 (t,2H), 4,58 (s,2H),	4,33 (m,2H), 4,60 (s,2H),	(m, 2H), 4, 33 (m, 2H), 4, 60 (s, 2H), (s, 5H)	4,27 (m,2H), 4,57 (s,2H), 7,35 (s,5H)	4,27 (m,2H), 4,57 (s,2H), 7,35 (s,5H)	3, 93 (m, 2H), 4, 27 (m, 2H), 4, 67 (s, 2H), 6, 93-7, 50 (m, 4H)
		/ 1H-	7,07	7,07	4, 20	4, 20	4, 20	4, 20	7, 20	7, 20	4, 25	4, 25	4, 33	4, 33	4,57	4,57	4,27 4H)
15		. Daten	7, 20 (t, 2H),	$\{t, 2H\}$	$\left\{ \begin{matrix} m, 2H \\ d, 2H \end{matrix} \right\}'$	$\left\{ \begin{matrix} m, 2H \\ d, 2H \end{matrix} \right\}'$	$\{ \frac{m}{d}, \frac{2H}{2H} \}'$	{m, 2H}, dd, 2H},	4,20 (t,2H),	4,20 (t,2H),	(m, 2H) (s, 5H)	(m, 2H), (s, 5H),	(m, 2H), (s, 5H),	(m, 2H), (s, 5H),	(m, 2H),	(m, 2H),	(m, 2H),
		phys	4, 20 7, 30	4, 20 7, 30	3,90	3,90	4, 00 7, 40	4, 00 7, 40	4,20	4,20	3, 90 7, 38	3, 90 7, 38	4,03 7,40	4,03	4,27	4,27	3, 93 6, 93-
20			-pheny1	-phenyl	-pheny l	-phenyl	-phenyl	-phenyl	-pheny l	-pheny l							lyl
25		R	2, 5-Cl ₂ -phenyl	2,5-Cl ₂ -phenyl	2,6-Cl ₂ -phenyl	2,6-Cl ₂ -phenyl	2, 6-Cl ₂ -pheny l	2, 6-Cl ₂ -phenyl	2,6-Cl ₂ -phenyl	2,6-Cl ₂ -phenyl	Phenyl	Pheny1	Pheny l	Pheny l	Pheny1	Phenyl	2-F-phenyl
30		3	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	-(CH ₂) ₃ -S-	−сн2сн2осн2−	-сн ₂ сн ₂ осн ₂ -	-сн ₂ сн ₂ осн ₂ -	-сн ₂ сн ₂ осн ₂ -	thiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	-CH ₂ CH ₂ OCH ₂ -	-СН ₂ СН ₂ ОСН ₂ -
35						_		_		n-3-y1	y l		y l	~~. >>	n-3-y1	n-3-y1	yl
40	Tabelle II.7 (Fortsetzung)	RC	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran- $3-y$ l - $(CH_2)_3-S-$	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyra	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl
45	ı) /.11 e	Ra	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C3H7	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C3H7	C 2H5	n-C ₃ H7	C2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5
50	Tabell	ŗ.	A.840	A.841	A.842	A.843	A.844	A.845	A.846	A.847	A .848	A.849	A.850	A.851	A.852	A.853	A.854

5		ո], Fp. [ºc]	/ (s, 2н),	3 (s, 2H),	3 (s, 2H),	7-7,50 (m,4H)	7-7, 50 (m, 4H)	, {s, ^{2H)} ,	, {s, 2H), 1, 1H}	, {s, 2H),) {s, 2H), 1, 1H}	1, 1н)	1, 1н)	3 (s, 2H),	3 (s, 2H),	
10		phys. Daten / $^1 ext{H-NMR}$ [ð in ppm], Fp. $^{[^0 ext{C}]}$	3,93 (m,2H), 4,27 (m,2H), 4,67 (s,2H), 6,93-7,50 (m,4H)	4,03 (m,2H), 4,27 (m,2H), 4,63 (s,2H), 6,97-7,50 (m,4H)	4,03 (m,2H), 4,27 (m,2H), 4,63 (s,2H), 6,97-7,50 (m,4H)	4,27 (m,2H), 4,67 (s,2H), 6,97-7,50 (m,4H)	4,27 (m,2H), 4,67 (s,2H), 6,97-7,50 (m,4H)	6,90-7,15 (m, $3H$), $7,23-7,40$ (m, $1H$)	3,93 (m,2H), 4,27 (m,2H), 4,57 (s,2H), 6,90-7,15 (m,3H), 7,23-7,40 (m,1H)	6,90-7,18 (m,3H), 7,26-7,40 (m,1H)	4,03 (m,2H), 4,25 (m,2H), 4,60 (s,2H), 6,90-7,18 (m,3H), 7,26-7,40 (m,1H)	$_{6,90-}^{4,27}$ $_{7,15}^{15}$ $_{15}^{14}$ $_{15}^{4,60}$ $_{15}^{15}$ $_{15}^{24}$ $_{15}^{140}$ $_{14}^{14}$	$6, \frac{27}{90}, \frac{4}{7}, \frac{24}{15}, \frac{4}{15}, \frac{60}{10}, \frac{5}{7}, \frac{24}{23}, \frac{24}{40}, \frac{11}{11}$	3 {m, 2H}, 4,53 (s,2H), (m,2H)	3 (m, 2H), 4,53 (s,2H), (m,2H)	01
15		. Daten / ¹ H-	- 1,50 (m,4,2	-7,50 (m,4H)	-7,50 (m,4H)	(m, 2H), 4,6	(m, 2H), 4,6	1,15 (m, 3H),	-7,15 (m,3H),	(m, 2H), 4, 2; (-), 18 (m, 3H),	(m, 2H), 4, 2; 7, 18 (m, 3H),	-7,15 (m,3H), 4,60	, (m, 2H), 4, 6(7, 15 (m, 3H),	3, 93 (m, 2H), 4, 23 7, 00 (m, 2H), 7, 30	(m, 2H), 4, 23 (m, 2H), 7, 30	92
20		phys	3, 93 6, 93	4, 03 6, 97	4, 03 6, 97	4,27	4,27	3, 93 6, 90	3, 93 6, 90	4, 03 6, 90	4, 03 6, 90	4, 27 6, 90	4, 27 6, 90	3, 93 7, 00	3, 93	
25		بر مو	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl
30		3	-CH 2CH 20CH 2-	−сн₂сн₂осн₂−	-сн₂сн₂осн₂-	-CH ₂ CH ₂ OCH ₂ -	-CH ₂ CH ₂ OCH ₂ -	-сн₂сн₂осн₂-	−сн2сн2осн2−	−сн2сн2осн2−	-сн₂сн₂осн₂-	.hiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	-сн ₂ сн ₂ осн ₂ -	−СН2СН2ОСН2−	−сн₂сн₂осн₂−	-сн₂сн₂осн₂-
35							n-3-yl -					ın-3-yl -	n-3-yl -			
40	Tabelle II.7 (Fortsetzung)	RC	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyra	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl
45	II.7 (FO	Ra	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H7	C ₂ H ₅]	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C2H5
50	Tabelle	N.	A.855	A.856 (A.857	A.858 (A,859	A.860	A.861	A.862	A.863	A.864	A.865	A.866	A.867	A.868

51015202530	W R ^f phys. Daten / lH-NMR [ð in ppm], Fp. [°C]	-CH ₂ CH ₂ OCH ₂ - 4-F-phenyl 4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,30 (m,2H)	н ₂ осн ₂ - 4-F-phenyl 4,27 {m,2H}, 4,53 (s,2H), 7,03 (m,2H), 7,30 {m,2H}	H ₂ OCH ₂ - 4-F-phenyl 4,27 (m,2H), 4,53 (s,2H), 7,03 (m,2H), 7,30 (m,2H),	-CH ₂ CH ₂ OCH ₂ - 2-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 2-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 2-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 2-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 2-C1-phenyl	H ₂ OCH ₂ - 2-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 3-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 3-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 3-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 3-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 3-Cl-phenyl	H_2OCH_2- 3-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ - 4-Cl-phenyl 3,93 (m,2H), 4,27 (m,2H), 4,53 (s,2H),	-CH ₂ CH ₂ OCH ₂ - 4-Cl-phenyl 3,93 (m,2H), 4,27 (m,2H), 4,53 (s,2H),	
	3	-СН ² СН	1 -сн ₂ сн	1 -сн ₂ сн	-сн ₂ сн	−CH ₂ CH	−cH ₂ cH	−сн 2сн	1 -CH ₂ CH	1 -сн ₂ сн	−CH ₂ CH	−сн 2сн	−CH ₂ CH	−сн 2сн		1 -сн ₂ сн	СН2СН	-сн 2сн	
Tabelle II.7 (Fortsetzung)	RC	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	
45 7.11	R a	n-C3H7	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C3H7	C 2H5	n-C3H7	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	
os Tabelle	Nr.	A.869 r	A.870 (A.871 r	A.872 (A.873	A.874 (A.875	A.876 (A.877	A.878	A.879	A.880	A.881	A.882	A.883	A.884	A.885	

5	m], Fp. [°C]	3 (s, 2H),	8 (ш, 4н)	8 (m, 4H)	7 (s, 2H),	7 (s, 2H),	7 (s, 2H),	7 (s, 2H),	9-7, 33 (ш, 4н)	9-7,33 (m,4H)	7 (s, 2H),	7 (s, 2H),	7 (s, 2H),	7 (s, 2H),	0-7, 32 (m, 4H) 0-7, 32 (m, 4H)
10	phys. Daten / ¹ H-NMR [ð in ppm], Fp. [°C]	4,23 (m,2H), 4,53 (s,2H)	4,27 (m,2H), 4,53 (s,2H), 7,28 (m,4H)	4,27 (m,2H), 4,53 (s,2H), 7,28 (m,4H)	3,93 (m,2H), 4,23 (m,2H), 4,57 (s,2H), 7,09-7,33 (m,4H)	3,93 (m,2H), 4,23 (m,2H), 4,57 (s,2H), 7,09-7,33 (m,4H)	4,00 (m,2H), 4,23 (m,2H), 4,57 (s,2H), 7,09-7,33 (m,4H)	4 , 6 00 (m, 2 H), 4 , 2 3 (m, 2 H), 4 , 5 7 (s, 2 H), 7 , 6 09-7, 5 33 (m, 4 H)	4,23 (m,2H), 4,57 (s,2H), 7,09-7,33 (m,4H)	4,23 (m,2H), 4,57 (s,2H), 7,09-7,33 (m,4H)	3,93 (m,2H), 4,25 (m,2H), 4,57 (s,2H), 7,00-7,32 (m,4H)	3,93 (m,2H), 4,25 (m,2H), 4,57 (s,2H), 7,00-7,32 (m,4H)	7,00-7,32 (m,4,27 (m,2H), 4,57 (s,2H), 7,00-7,32 (m,4H)	$^{4}_{7,00-7,32}$ (m, 2H), $^{4}_{1,27}$ (m, 2H), $^{4}_{1,57}$ (s, 2H), $^{7}_{7,00-7,32}$ (s, 2H),	4,27 (m,2H), 4,60 (s,2H), 7,00-7,32 (m,4H) 4,27 (m,2H), 4,60 (s,2H), 7,00-7,32 (m,4H)
15	phys. Daten /	4,00 (m,2H), 4 7,28 (m,4H)	4,27 (m,2H), 4	4,27 (m,2H), 4	3, 93 (m, 2H), 4 7, 09-7, 53 (m, 4	3, 93 (m, 2H), 4 7, 09-7, 53 (m, 4	4,00 (m,2H), 4 7,09-7,33 (m,4	4,00 (m,2H), 4 7,09-7,33 (m,4	4,23 (m,2H), 4	4,23 (m,2H), 4	3, 93 (m, 2H), 4 7, 00-7, 52 (m, 4	3, 93 (m, 2H), 4 7, 00-7, 32 (m, 4	4,00 (m,2H), 4 7,00-7,32 (m,4	4,00 (m,2H), 4 7,00-7,32 (m,4	4,27 (m,2H), 4 4,27 (m,2H), 4
20															
25	Rf	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	2-CH ₃ -phenyl	2-CH ₃ -phenyl	2-CH ₃ -phenyl	2-CH ₃ -phenyl	2-CH ₃ -phenyl	$2-CH_3-phenyl$	3-CH ₃ -pheny1	3-CH ₃ -phenyl	3-CH ₃ -phenyl	3-CH ₃ -phenyl	3-CH ₃ -phenyl 3-CH ₃ -phenyl
30	3	-сн ₂ сн ₂ осн ₂ -	-CH ₂ CH ₂ OCH ₂ -	-CH ₂ CH ₂ OCH ₂ -	−сн 2сн 20сн 2−	-сн ₂ сн ₂ осн ₂ -	-сн ₂ сн ₂ осн ₂	-сн ₂ сн ₂ осн ₂ -	-СН 2СН 20СН 2-	-CH ₂ CH ₂ OCH ₂ -	-сн ₂ сн ₂ осн ₂ -	-сн ₂ сн ₂ осн ₂ -	-СH ₂ CH ₂ OCH ₂ -	-сн ₂ сн ₂ осн ₂ -	-CH ₂ CH ₂ OCH ₂ - -CH ₂ CH ₂ OCH ₂ -
35		an-4-yl	iopyran-3-yl		an-3-y1	an-3-y1	an-4-y1	^an-4-y1	iopyran-3-yl	Tetrahydrothiopyran-3-yl	ran-3-yl	ran-3-y1	ran-4-y l	ran-4-yl	Tetrahydrothiopyran-3-yl Tetrahydrothiopyran-3-yl
Tabelle II.7 (Fortsetzung)	R ^C	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydroth	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl Tetrahydrothiopyran-3-yl
45 L. II a	Ra	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅ n-C ₃ H ₇
Tabe 116	Nr.	A.887	A.888	A.889	A.890	A.891	A.892	A.893	A.894	A.895	A.896	A.897	A.898	A.899	A.900 A.901

	[°c]					m, 4H)	ш, 4Н)		_			ш, 4н)	m, 4H)		
5	. Fp.	(s, 2н)	(s, 2н)	(s, 2H)	(s, 2H)	7, 30 (7, 30 ((s, 2H)	(s, 2H)	(s, 2H)	(s, 2H)	7, 40	7, 40	(t, 2H)	(t, 2H)
	[mdd u	4, 53	4, 53	4,57	4,57	7,07-	7,07-	4, 53	4, 53	4,53	4,53	7, 20-	7, 20-	4,17	4,17
10	-NMR [8 i) (m, 2H),) (m, 2H),	3 (m, 2H),	3 (m, 2H),	7 (s, 2H),	7 (s, 2H),	3 (м, 2Н),	3 (m, 2H),	3 (м, 2н),	3 (m, 2H),	3 (s, 2н),	3 (s, 2н),	О (м, 2Н),	О (м, 2н),
15	phys. Daten / 1H-NMR [ð in ppm], Fp. [°C]	3,93 (m,2H), 4,20 (m,2H), 4,53 (s,2H), 7,07-7,30 (m,4H)	3,93 (m,2H), 4,20 (m,2H), 4,53 (s,2H), 7,07-7,30 (m,4H)	4,00 (m,2H), 4,23 (m,2H), 4,57 (s,2H), 7,03-7,27 (m,4H)	4,00 (m,2H), 4,23 (m,2H), 4,57 (s,2H), 7,03-7,27 (m,4H)	4,23 (m,2H), 4,57 (s,2H), 7,07-7,30 (m,4H)	4,28 (m,2H), 4,57 (s,2H), 7,07-7,30 (m,4H)	3,93 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)	3,93 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)	4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)	4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)	4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)	4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)	3,73 (s,2H), 3,90 (m,2H), 4,17 (t,2H), 7,28 (s,5H)	3,73 {s,2H}, 3,90 (m,2H), 4,17 (t,2H), 7,28 {s,5H}
20		_	_	_	_	_	_	gn.	6	6	on	o	6		
25	Rf	4-CH ₃ -phenyl	4-CH ₃ -phenyl	4-CH3-phenyl	4-CH ₃ -phenyl	4-CH3-phenyl	4-CH ₃ -phenyl	4-tertC4Hg	4-tertC4H9	4-tertC₄Hg	4-tertC4H9	4-tertC4H9	4-tertC4H9	Phenyl	Phenyl
30	3	-CH ₂ CH ₂ OCH ₂ -	−сн₂сн₂осн₂−	-сн ₂ сн ₂ осн ₂ -	-сн ₂ сн ₂ осн ₂	-сн ₂ сн ₂ осн ₂ -	-CH ₂ CH ₂ OCH ₂ -	-сн ₂ сн ₂ осн ₂ -	-сн ₂ сн ₂ осн ₂ -	-СН2СН2ОСН2-	-CH ₂ CH ₂ OCH ₂ -	-CH2CH2CH2-	-CH2CH20CH2-	-CH ₂ CH ₂ SCH ₂ -	-сн ₂ сн ₂ sсн ₂ -
35		y1				In-3-y1	ın-3-y1					ın-3-y1	ın-3-y1	-y 1	-y1
Tabelle II.7 (Fortsetzung)	S C	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ -	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl
45	Ra	C2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
Tabe 11e	N.	A.902	A.903	A. 904	A.905	A.906	A.907	A.908	A.909	A.910	A.911	A.912	A.913	A.914	A.915

		[00]	! !													
5			(t, 2H),	4,13 (t,2H),	(s, 5H)	7, 28 (s, 5н)	4,13 (t,2H),	4,13 (t,2H),		4,00 (m,2H), 4,13 (t,2H), 7,30 (m,2H)	7,00 (m,2H),	7,00 (m,2H),	3,93 (m,2H), 4,13 (t,2H),	4,13 (t,2H),	(s, 2H), 4,00 (m,2H), 4,17 (t,2H), (s,4H)	<pre>{s,2H}, 4,00 (m,2H), 4,17 (t,2H), {s,4H}</pre>
		in ppm), 4,13), 7,28		<pre>{, 4,13</pre>	} , 4,13		}, 4,13), 7,00), 4,13), 4,13), 4,17), 4,17
10		I-NMR [3	4,00 (m,2H),	4,00 (m,2H),	(s,2H), 4,13 (t,2H),	3 (t,2H),	0 (m, 2H),	00 (m, 2H),	63- 65	00 (m, 2H	4,13 (t,2H),	4,13 (t,2H),	э (ш, 2н	3,93 (m,2H),)О (m, 2н)О (m, 2н
15		en / 1F	(s, 2H), 4, C	(s, 2H), 4,0	2H), 4,1	2Н), 4,13	(s, 2H), 3, 90 (m, 2H), 7, 30	(s, 2H), 3, 90 m, 2H), 7, 30		(s, 2H), 4, 9	{s, 2H}, 4,1	(s, 2H), 4, 1	(s, 2H), 3, 9	(s, 2H), 3, 9 (s, 4H)	2H}, 4,(2H), 4,(
		phys. Daten / 1H-NMR [ð in ppm], Fp.	3,77 (s, 27, 28 (s, 5)	3,77 (s, §	3,80 (s,2	3,80 (s,2H),	3,72 (s, 7,00 (m, 2)	3,72 (s, 7, 00 (m, 1)		3,73 (s, 7, 7, 00 (m, 1)	3,75 (s, 7, 30 (m, 3)	3,75 (s, 77,30 (m, 3)	3,77 (s, 77 (s, 7)	3, 77 (s, 77 (s, 7	3, 73 (s, 7	3,73 (s,7
20		d	3	73	3	9	73	73		7	73	73	ω r	73	73	73
or.			13.1	1,91	ly1	ly l	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl
25		R	Pheny l	Phenyl	Phenyl	Pheny1	4-F-	4-F-	4-F-	4-F-	4-F-	4-F-	(1-C)	(4-C)	()-4	(4-C)
30		3	-сн ₂ сн ₂ sсн ₂ -	-сн ₂ сн ₂ sсн ₂ -	-CH ₂ CH ₂ SCH ₂ -	-СH ₂ CH ₂ SCH ₂ -	-сн ₂ сн ₂ scн ₂ -	-сн 2сн 2scн 2-	-сн ₂ сн ₂ scн ₂ -	-сн ₂ сн ₂ sсн ₂ -	CH 2SCH 2-	CH ₂ SCH ₂ -	-CH ₂ CH ₂ SCH ₂ -	-сн ₂ сн ₂ scн ₂ -	-сн ₂ сн ₂ scн ₂ -	-сн ₂ сн ₂ scн ₂ -
			-CH 2(-СН ₂ (-CH ₂ (-CH ₂ (-CH ₂ (-CH 2(/1 -CH ₂ (/1 -CH ₂ (-CH ₂ (-CH ₂ (-CH 2	-CH ₂ (
35			1 k-4-n	n-4-y l	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	n-3-y1	n-3-y1	n-4-y1	n-4-y1	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ SCH ₂ -	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ SCH ₂ -	n-3-y1	n-3-y1	n-4-y1	n-4-y1
40	ing)	RC	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	drothio	drothio	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	/drothio	/drothio	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl
	ortsetzu	Œ	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrahy	Tetrah
45	Tabelle II.7 (Fortsetzung	Ra	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
50	Tabelle	N.	A.916	A.917	A.918	A.919	A.920	A.921	A.922	A.923	A.924	A.925	A.926	A.927	A.928	A.929

5		in ppm], Fp. [°C]	, 7,30 (s,4H)	, 7,30 (s,4н)	т, 3Н), 7,30 (т,2Н)	т, 3н), 7,30 (т,2н)	т, 3Н), 7,30 (т,2Н)	т, 3н), 7,30 (т,2н)	н), 6,90 (m,3н)	н), 6,90 (m,3н)	m, 4H),	ш, 4Н),		,15 (m,4H)	,15 (m,4H)	,15 (m,4H)			
10		phys. Daten / 1H-NMR [ð in ppm], Fp. [ºC]	3,73 (s,2H), 4,13 (m,2H), 7,30 (s,4H)	3,73 (s,2H), 4,13 (m,2H), 7,30 (s,4H)	3,70-4,20 (m,6H), 6,90 (m,3H), 7,30 (m,2H)	4,20 (m,6H), 6,90 (3,83-4,23 (m,6H), 6,90 (m,3H), 7,30 (m,2H)	4,23 (m,6H), 6,90 (4,00 (bs,2H), 4,13 (bs,2H), 6,90 (m,3H) 7,30 (m,2H)	4,00 (bs,2H), 4,13 (bs,2H), 6,90 (m,3H) 7,30 (m,2H)	3,93 (m,2H), 4,00-4,20 (m,4H), 6,80-7,15 (m,4H)	3,93 (m,2H), 4,00-4,20 (m,4H), 6,80-7,15 (m,4H),	68- 72	3,90-4,20 (m,6H), 6,80-7,15 (m,4H)	4,00-4,20 (m,4H), 6,80-7,15 (m,4H)	4,00-4,20 (m,4H), 6,80-7,15 (m,4H)			
20		phys.	3,73	3, 73	3, 70-	3, 70-	3, 83-	3, 83-	4,00	4,00	3, 93 6, 80-	3, 93		3, 90-	4,00-	-00'+			
25		Rf	4-Cl-phenyl	4-Cl-phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	2-F-phenyl	3-F-phenyl	3-F-phenyl	3-F-phenyl
30		3	-CH ₂ CH ₂ SCH ₂ -	-CH2CH2SCH2-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-
35			Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	ran-3-yl	ran-3-yl	ran-4-yl	ran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl -(CH ₂) ₄ -O-	ran-3-yl	ran-3-yl	ran-4-yl	ran-4-y1	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	ran-3-yl	ran-3-yl	pyran-4-yl
40	Tabelle II.7 (Fortsetzung)	R _C	Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydroth	Tetrahydroth	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropy
4 5	e II.7 (F	Ra	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5
50	Tabello	N.	A.930	A.931	A.932	A.933	A.934	A.935	A.936	A.937	A.938	A.939	A.940	A.941	A.942	A.943	A.944	A.945	A.946

		[00]									(m, 2H)	7,00 (t,1H),	(t, 1H),	d, 2H)	(d, 2H)	(d, 2H)	(d, 2H)					
5], Fp.			(H)	(m, 4H)	(m, 4H)	(m, 4H)	, 4H)	(H† ′ı	7, 20	7, 20	7, 20	7, 20	7, 20	7, 20		7,00 (t,1H)	7,30 (d,2H)	7, 30 (d, 2H)	7,30 (d,2H)	7, 30 (d, 2н)
10		Daten / 1H-NMR [å in ppm],			6,75-7,05 (m,4H)	6,75-7,05 (m	6,75-7,05 (m	6,75-7,05 (m	6,75-7,05 (m,4H)	6,75-7,05 (m,4H)	6,80 (m,2H),	-4,25 (m,4H),	-4,25 (m,4H),	7,00 (t,1H),	7,00 (t,1H),	7,00 (t,1H),						
15		phys. Daten / 1H-N			3,80-4,20 (m,6H),	3,80-4,20 (m,6H),	3,90-4,20 (m,6H),	3,90-4,20 (m,6H),	3,90-4,20 (m,4H),	3,90-4,20 (m,4H),	3,80-4,20 (m,6H),	3,80-4,20 (m,6H),	3,90-4,20 (m,6H),	3,90-4,20 (m,6H),	3,90-4,20 (m,4H),	3,90-4,20 (m,4H),	3,93 (m,2H), 4,00-4,25 (m,4H), 7,30 (d,2H)	3,93 (m,2H), 4,00-4,25 (m,4H), 7,30 (d,2H)	3,90-4,25 (m,6H), 7,00 (t,1H),	3,90-4,25 (m,6H),	4,00-4,20 (m,4H),	4,00-4,20 (m,4H),
20		<u>a</u>			m	en en	en en	e)	e,	(*)	e.)	(T)	(F)	(*)	(7)	(7)						
25		Rf	3-F-phenyl	3-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	2, 6-Cl ₂ -pheny l	2, 6-Cl ₂ -phenyl	$2, 6-c1_{2}$ -phenyl	$2, 6-cl_2-phenyl$	$2, 6-Cl_2-phenyl$	$2, 6-c1_2$ -phenyl
30		3	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-	-(CH ₂) ₄ -0-														
35			thiopyran-3-yl -		•		·													-4-y1		
40	Tabelle II.7 (Fortsetzung)	»c	Tetrahydrothiop	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-y]	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl
45	; 11.7 (Fc	Rª	C ₂ H ₅	n-C3H7	C 2H5	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C 3H7	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇
50	Tabelle	Ņ.	A. 948	A.949	A.950	A.951	A.952	A.953	A.954	A.955	A.956	A.957	A.958	A.959	A.960	A.961	A.962	A.963	A.964	A.965	A.966	A.967

		[],[]	i																	
5] .fp. [mdq r	7,25 (m,5H)	7,25 (m,5H)					4,17 (m,2H), 6,93 (m,2H),	6,93 (m,2H),			7,13 (m,2H)	7,13 (m,2H)	7,13 (m,4H)	7,13 (m,4H)				
10		1H-NMR [8 ir	4, 20 (m, 2H),	4,20 (m,2H),			7,25 (m,5н)	7,25 (m,5H)	4,17 (m,2H),	(m, 2H), 4,17 (m,2H), 6,93 (m,2H),			6,93 (m,2н),	6,93 (м,2н),	4,17 (m,2H),	4,17 (m,2H),			7,13 (m,4H)	7,13 (m,4H)
15		phys. Daten / 1H-NMR [ð in ppm], Fp.	3,90 (m,2H), 4,20 (m,2H),	3,90 (m,2H), 4,20 (m,2H), 7,25 (m,5H)			4,20 (m,2H), 7,25 (m,5H)	4,20 (m,2H), 7,25 (m,5H)	3, 90 (m, 2H), 7, 13 (m, 2H),	3, 90 (m, 2H), '			4,17 (m,2H), 6,93 (m,2H),	4,17 (m,2H), 6,93 (m,2H),	3,90 (m,2H), 4,17 (m,2H),	3,90 (m,2H), 4,17 (m,2H),			4,17 (m,2H), 7,13 (m,4H)	4,17 (m,2H), 7,13 (m,4H)
20																				
25		Rf	Pheny l	Phenyl	Pheny l	Pheny l	Phenyl	Phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-F-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-Cl-phenyl	4-C1-phenyl	4-Cl-phenyl	4-Cl-phenyl
30		3	-CH2CH20CH2CH2-	-CH ₂ CH ₂ OCH ₂ CH ₂ - Phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ -	-CH ₂ CH ₂ OCH ₂ CH ₂ - Phenyl	othiopyran-3-yl -CH ₂ CH ₂ OCH ₂ CH ₂ -	-CH ₂ CH ₂ 0CH ₂ CH ₂	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-F-phenyl	-CH ₂ CH ₂ CH ₂ - 4-F-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-F-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-F-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-F-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-F-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-Cl-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-C1-phenyl	-CH ₂ CH ₂ OCH ₂ CH ₂ - 4-Cl-phenyl	rothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ CH ₂ - 4-Cl-phenyl
35							ın-3-y1 .	n-3-y1												an-3-y1
40	Tabelle II.7 (Fortsetzung)	R ^C	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyra	Tetrahydrothiopyran-3-yl -CH ₂ CH ₂ OCH ₂ CH ₂ - Phenyl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-3-yl	Tetrahydropyran-4-yl	Tetrahydropyran-4-yl	Tetrahydrothiopyran-3-yl	Tetrahydrothiopyra
45	. 11.7 (F	Ra	C ₂ H ₅	n-C ₃ H ₇	C 2H5	n-C ₃ H ₇	C ₂ H ₅	n-C3H7	C 2H5	n-C3H7	C 2 H 5	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C ₂ H ₅	n-C ₃ H ₇	C2H5	n-C ₃ H ₇
50	Tabelle	Nr.	A.968	A.969	A.970	A.971	A.972	A.973	A.974	A.975	A.976	A.977	A.978	A.979	A.980	A.981	A.982	A.983	A.984	A.985

50	45	35	30	25	20	15	10	5
Tabelle	e II.7 (F	Tabelle II.7 (Fortsetzung)						
N.	Ra	A C	3	A T	phys.	Daten / ¹ H-	phys. Daten $/$ ¹ H-NMR [ð in ppm], Fp. $[^{ m o}{ m C}]$	n], Fp. [°C]
A. 986	C ₂ H ₅	Tetrahydropyran-3-yl	-(CH ₂) ₅ -0-	Pheny 1	3, 80-4	,17 (м,6Н),	6,90 (m,3H)	3,80-4,17 (m,6H), 6,90 (m,3H), 7,27 (m,2H)
A.987	n-C ₃ H ₇	Tetrahydropyran-3-yl	-(CH ₂) ₅ -0-	Phenyl	3,80-4	3,80-4,17 (m,6H),	6,90 (m,3H)	6,90 (m,3H), 7,27 (m,2H)
A.988	C ₂ H ₅	Tetrahydropyran-4-yl	-(CH ₂) ₅ -0-	Phenyl	3, 90-4	г, 17 (м, 6н),	6, 90 (m, 3H),	3,90-4,17 (m,6H), 6,90 (m,3H), 7,27 (m,2H)
A.989	n-C ₃ H ₇	Tetrahydropyran-4-yl	-(CH ₂) ₅ -0-	Phenyl	3, 90-4	,17 (ш,6н),	6,90 (m,3H)	3,90-4,17 (m,6H), 6,90 (m,3H), 7,27 (m,2H)
A.990	C ₂ H ₅	Tetrahydrothiopyran-3-yl	-(CH ₂) ₅ -0-	Pheny l	3,97	t, 2H), 4,07	$\{t, 2H\}$, 4,07 $(t, 2H)$, 6,90 $(m,3H)$, $\{m, 2H\}$) (m,3H),
A.991	n-C3H7	Tetrahydrothiopyran-3-yl	-(CH ₂) ₅ -0-	Phenyl	3,97	{t, 2H}, 4,07	4,07 (t,2H), 6,90 (m,3H),) (m,3H),
A.992	C 2H5	Tetrahydropyran-3-yl	-(CH ₂) ₅ -0-	4-F-phenyl	3,90	3,90 (m,4H), 4,03	(t,2H), 6,70	(t, 2H), 6,70-7,03 (m,4H)
A.993	n-C ₃ H ₇	Tetrahydropyran-3-yl	-(CH ₂) ₅ -0-	4-F-phenyl	3, 90	(m, 4H), 4,03	(t, 2H), 6,7	3,90 (m,4H), 4,03 (t,2H), 6,70-7,03 (m,4H)
A.994	C 2H5	Tetrahydropyran-4-yl	-(CH ₂) ₅ -0-	4-F-phenyl	3,83-4	,13 (ш,6н),	3,83-4,13 (m,6H), 6,70-7,03 (m,4H)	n, 4H)
A.995	n-C ₃ H ₇	Tetrahydropyran-4-yl	-(CH ₂) ₅ -0-	4-F-pheny1	3, 83-4	3,83-4,13 (m,6H),	6,70-7,03 (m,4H)	n, 4H)
966. A	C 2H5	Tetrahydrothiopyran-3-yl	-(CH ₂) ₅ -0-	4-F-pheny1	3,90	3,90 (t,2H), 4,03	(t, 2H) 6, 70	(t, 2H) 6, 70-7, 03 (m, 4H)
A.997	n-C ₃ H ₇	Tetrahydrothiopyran-3-yl	-(CH ₂) ₅ -0-	4-F-phenyl	3,90	3,90 (t,2H), 4,03	(t,2H) 6,70	(t, 2H) 6, 70-7, 03 (m, 4H)
A.998	C 2H5	Tetrahydropyran-3-yl	-(CH ₂) ₅ -0-	4-Cl-phenyl	3, 80–4	3,80-4,10 (m,6H),	6,80 (d,2H)	6,80 (d,2H), 7,20 (d,2H)
A.999	n-C3H7	Tetrahydropyran-3-yl	-(CH ₂) ₅ -0-	4-Cl-phenyl	3, 80-4	3,80-4,10 (m,6H),		6,80 (d,2H), 7,20 (d,2H)
A.1000 C2H5	C2H5	Tetrahydropyran-4-yl	-(CH ₂) ₅ -0-	4-Cl-phenyl	3,87-4	3,87-4,10 (m,6H),		6,80 (d,2H), 7,20 (d,2H)
A.1001	A.1001 n-C ₃ H ₇	Tetrahydropyran-4-yl	-(CH ₂) ₅ -0-	4-Cl-phenyl	3,87-	,10 (m,6H),	6,80 (d,2H)	3,87-4,10 (m,6H), 6,80 (d,2H), 7,20 (d,2H)
A.1002 C ₂ H ₅	. C2H5	Tetrahydrothiopyran-3-yl	-(CH ₂) ₅ -0-	4-Cl-phenyl		- 79	61	
A.1003	A.1003 n-C ₃ H ₇	Tetrahydrothiopyran-3-yl	-(CH ₂) ₅ -0-	4-Cl-phenyl	3,90	(t, 2H), 4,07	3,90 (t,2H), 4,07 (t,2H), 6,80 (d,2H) 7,20 (d,2H)	0 (d,2H)

		4-F-phenyl
R # H # 4-F-pheny] 4-F-pheny]		- 4
11 x -CH ₂ CH=CHCH ₂ CH=CHCH ₂ CH=CHCH ₂ CH=CH-	-сн ₂ сн=сн-	−сн2сн=сн-
Re COOCH ₃ H	I	I
	±	I
RC Rd Rd Rd Rd Rd Rthyl CH3 Tetrahydro- H thiopyran-3-yl thiopyran-3-yl	Tetrahydro- thiopyran-3-yl	Tetrahydro- thiopyran-3-yl
40		
45	00-0	00-0
11.8 n-C ₃ H ₇ n-C ₃ H ₇ n-C ₃ H ₇	A.1008 n-C ₃ H ₇	C ₂ H ₅
Nr. Ra A.1005 n-C3H7 A.1006 n-C3H7 A.1006 n-C3H7	A.1008	A.1009 C ₂ H ₅

Außerdem tritt die gewünschte antidotisierende Wirkung der Verbindungen I insbesondere bei der Anwendung mit Herbiziden aus der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III auf, wenn deren Substituenten die folgende Bedeutung haben:

ь.

5

10

15

Phenyl, Pyridyl, Benzoxazolyl, Benzthiazolyl oder Benzpyrazinyl, wobei diese aromatischen und heteroaromatischen Ringsysteme ein oder zwei der folgenden Reste tragen können:

- Nitro
 - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Halogenalkyl, besonders C₁-C₂-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
 - C₁-C₄-Halogenalkoxy, besonders C₁-C₂-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt:
 - C₁-C₄-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

Wasserstoff oder Methyl;

20 R^q

Wasserstoff;

C₁-C₄-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C₃-C₄-Alkenyl wie Allyl, 2-Butenyl und 3-Butenyl;

C₃-C₄-Alkinyl wie Propargyl, 2-Butinyl und 3-Butinyl;

5 C₁-C₄-Alkoxy-C₁-C₄-alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C₃-C₄-Alkylideniminooxy-C₂-C₃-alkyl steht für durch Propylideniminooxy oder Butylideniminooxy substituiertes C₂-C₃-Alkyl wie Ethyl, Propyl und 1-Methylethyl; Tetrahydrofuranylmethyl; Isoxazolidinyl; oder das Äguivalent eines landwirtschaftlich brauchbaren Kations.

Derartige Verbindungen sind aus der Literatur bekannt (vgl. z.B. DE-A 22 23 894, DE-A 24 33 067, DE-A 25 76 251, DE-A 30 04 770, DE-A 32 46 847, BE-A 868 875, BE-A 858 618, EP-A 054 715, EP-A 248 968, EP-A 323 127 und US 4,753,673).

Die 2-(4-Heteroaryloxy)- und 2-(4-Aryloxy-phenoxycarbonsäurederivate III können ein oder mehrere Asymmetriezentren enthalten. Sie wirken als Racemate, wie sie bei den meisten Herstellungsverfahren anfallen, können gewünschtenfalls aber auch nach den hierfür üblichen Methoden, als reine Isomere dargestellt oder aufgetrennt werden.

Sowohl die Racemate als auch die reinen Isomeren dienen zur Bekämpfung von unerwünschten Pflanzen aus der Familie der Gramineen. Die Verträglichkeit dieser Substanzen für Kulturpflanzen variiert jedoch zwischen kommerziell akzeptabel und unverträglich, je nach Substituenten und Aufwandmenge.

Spezielle Beispiele für herbizide 2-(4-Heteroaryloxy)- und 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III, deren Kulturpflanzenverträglichkeit durch substituierte 3-Pyrido[2,3-d]pyrimidine I verbessert werden kann, sind in der folgenden Tabelle III.1 aufgeführt:

45

50

Tabelle III.1

		R ⁰ 0-		P	111
5	Nr.	R ^o	RP	Rq	Literatur
10	B.01		CH ₃	-СН3	DE-A 22 23 894
15	B.02		CH ₃	-n-C ₄ H ₉	BE-A 868 875
	в.03	—CF 3	CH ₃	-CH ₂ CH ₂ OCH ₂ H ₅	US-A 4 753 673
20	B.04	No.C1	CH ₃	-C ₂ H ₅	BE-A 858 618
25	в.05	$\stackrel{\text{C1}}{\longrightarrow}$ $-\text{CF}_3$	CH ₃	-CH ₃	BE-A 868 875
30	в.06	F	CH ₃	-CH ₂ -C≡CH	EP-A 248 968
	в.07	C1	CH ₃	N—O	DE-A 32 46 847
35	в.08	TNT c1	CH ₃	-C ₂ H ₅	DE-A 30 04 770
40	в.09	TNT c1	CH ₃	-CH ₂ CH ₂ -ON=C(CH ₃) ₂	EP 54 715
45	B.10	TNT C1	CH ₃	-CH ₂	EP-A 323 727

Die herbiziden Wirkstoffe und die antidotisch wirkenden Verbindungen können gemeinsam oder getrennt nach dem Auflaufen auf die Blätter und Sprossen der Kulturpflanzen und unerwünschten Gräser ausgebracht werden. Bevorzugt bringt man jedoch die herbiziden und antidotischen Wirkstoffe gleichzeitig auf das Feld. Bei getrennter Ausbringung von Antidot und herbizidem Wirkstoff wird vorzugsweise das Antidot zuerst ausgebracht.

Der antidotische und der herbizide Wirkstoff können gemeinsam oder getrennt formuliert werden und dann in suspendierbarer, emulgierbarer oder löslicher Form zur Bereitung von Spritzmitteln vorliegen.

Antidotische Effekte werden auch durch Bahandlung der Kulturpflanzensamen oder der Stecklinge mit dem Antidot vor der Aussaat bzw. vor dem Auspflanzen erzielt. Der herbizide Wirkstoff wird dann allein in der üblichen Weise appliziert.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,1 bis 10 g, vorzugsweise 1 bis 2 g, je Kilogramm Saatgut benötigt.

Bei der Applikation des Antidots durch Samenquellung oder bei der Stecklingsbehandlung werden bevorzugt Lösungen eingesetzt, die den antagonistischen Wirkstoff in einer Konzentration von 1 bis 10.000 ppm, insbesondere von 100 bis 10.000 ppm, enthalten.

In den verschiedenen Pflanzenkulturen benötigt man üblicherweise unterschiedliche Mengen an antidotisch wirksamer Verbindung I und herbizider Verbindung II oder III, wobei die Mengenverhältnisse in breiten Bereichen variabel sind. Sie sind abhängig von der Struktur der Cyclohexenon-Derivate II bzw. der Heteroaryloxy- und Aryloxyphenoxyessigsäurederivate III, der substituierten Pyrido[2,3-d]pyrimidine I und der jeweiligen Pflanzenkultur, auf die die Verbindungen ausgebracht werden. Geeignete Anteilsverhältnisse von herbizidem Wirkstoff zu antidotisch wirksamen substituierten Pyrido[2,3-d]pyrimidine I liegen zwischen 1:10 und 1:0,01, vorzugsweise zwischen 1:4 und 1:0,1.

Die erfindungsgemäßen Mittel bzw. bei getrennter Ausbringung die herbiziden Wirkstoffe oder das Antidot werden beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen, Dispersionen, Emulsionen, öldisperesionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet. Die Anwendungsform richtet sich hierbei ganz nach dem jeweiligen Verwendungszweck.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten und Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin und Dieselöl, ferner Kohlenteeröle, sowie Öle und Fette pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische oder aromatische Kohlenwasserstoffe, beispielsweise Methanol, Ethanol, Isopropanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenol, Toluol, Xylole, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate oder Isophoron, sowie stark polare Lösungsmittel wie Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon und vorzugsweise Wasser, in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten, netzbaren Pulvern (Spritzpulvern) oder Öldispersionen durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können herbizider Wirkstoff und/oder Antidot als solche oder in einem Öl oder Lösungsmittel gelöst, mitteles Netz-, Haft-, Dispergier oder Emulgiermittel mit Wasser homogenisiert werden. Es können aber auch aus herbizidem Wirkstoff und/oder Antidot Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus herbizidem Wirkstoff und/oder Antidot Netz-, Haft-, Dispergier- oder Emulgiermittel und gewünschtenfalls Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Salze kommen Alkalimetall-, Erdalkalimetall-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Alkalimetall- und Erdalkalimetallsalze der Dibutylnaphthalinsulfonsäure, Laurylethersulfat, Fettalkoholsulfate, fettsaure Alkalimetall- und Erdalkalimetallsalze, Salze sulfatierter Hexadecanole, Heptadecanole, Octadecanole, Salze von sulfatierten Fettalkoholglykolethern, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctyl-phenolether, ethoxylierte Isooctylphenol, Octylphenol oder Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Lignin-Sulfitablaugen und Methylcellulose in Betracht.

Pulver, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen von herbizidem Wirkstoff und/oder Antidot mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogenisierungsgranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kreide, Talkum, Bolus, Lös, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe, und pflanzliche Produkte wie Getriedemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten 0,02 bis 95 Gew.%, vorzugsweise 0,5 bis 90 Gew.% an herbizidem Wirkstoff und Antidot. Die Aufwandmengen an herbizidem Wirkstoff betragen 0,05 bis 5 kg/ha.

Die herbiziden Mittel können neben den antagonistisch wirksamen substituierten Pyrido[2,3-d]pyrimidine I und dem Herbizid aus der Gruppe der Cyclohexenone II oder der (Heteroaryloxy)- bzw. Aryloxyphenoxycarbonsäuren III weitere herbizide oder wachstumsregulierende Wirkstoffe anderer chemi-

scher Sturktur enthalten, wobei der antagonistische Effekt der substituierten Pyrido[2,3-d]pyrimidine I erhalten bleibt.

Herstellungsbeispiele (erfindungsgemaße substituierte Pyrido[2,3-d]pyrimidine I):

5 Beispiel 1

10

15

20

25

30

7-(4-Fluorphenyl)-2-methyl-pyrido[2,3-d]pyrimidin

Eine Suspension von 30,1 g (0,22 mol) 4-Amino-5-formyl-2-methylpyrimidin und 31,7 g (0,23 mol) 4-Fluoracetophenon in 395 ml Methanol wurde bei 20-25°C langsam mit 15 ml 40 gew.-%iger wässriger Kaliumhydroxidlösung versetzt, wobei eine homogene Lösung entstand. Nach 20 Std. rühren bei ca. 20°C wurde der gebildete Feststoff abgetrennt und aus Ethanol umkristallisiert. Ausbeute: 50 %; Smp. > 200°C.

Beispiel 2

2-Methyl-7-(2-thienyl)-pyrido[2,3-d]pyrimidin

Eine Suspension von 2,0 g (14,6 mmol) 4-Amino-5-formyl-2-methylpyrimidin und 1,93 g (15,3 mmol) 2-Acetylthiophen in 25 ml Methanol wurde mit 1 ml 40 gew.-%iger wässriger Kaliumhydroxidlösung versetzt. Die Reaktionsmischung wurde anschließend 20 Std. bei 20-25°C gerührt, wonach man das Lösungsmittel entfernte. Nach Aufnehmen des Rückstandes in Dichlormethan wurde die organische Phase mit Wasser gewaschen, getrocknet und eingeengt. Ausbeute: 17 %; Smp.: 175-180°C.

Beispiel 3

7-Amino-6-(4-fluorphenyl)-2-methyl-pyrido[2,3-d]pyrimidin

Zu einer Suspension von 90 g (0,66 mol) 4-Amino-5-formyl-2-methylpyrimidin und 88,7 g (0,66 mol) p-Fluorphenylacetonitril in 900 ml Methanol wurden bei 40°C 60 ml 40 gew.-%ige wässrige Kaliumhydroxidlösung gegeben, wobei eine homogene Lösung entstand. Nach Abkühlen auf ca. 20°C trennt man den gebildeten Niederschlag ab. Die alkoholische Phase wurde mit 1 l Wasser versetzt, wodurch weiteres Produkt auskristallisierte. Ausbeute: 78 %; Smp.: 252-254°C.

55

Beispiel 4

7-Amino-6-(3-methylphenyl)-2-methyl-pyrido[2,3-d]pyrimidin

5

10

Eine Mischung von 1,52 g (11,6 mmol) m-Methylphenylacetonitril und 1,59 g (11,6 mmol) 4-Amino-5-formyl-2-methylpyridin in 15 ml Methanol wurde bei 42°C mit 1 ml 40 gew.-%iger wässriger Kaliumhydroxidlösung versetzt. Nach Abkühlen auf ca. 20°C wurde der gebildete Feststoff abgetrennt und mit Diethylether nachgewaschen. Ausbeute: 60 %; Smp.: 177-180°C.

Beispiel 5

6-Cyano-7-hydroxy-2-methyl-pyrido[2,3-d]pyrimidin

25

Eine Suspension aus 3 g (22 mmol) 4-Amino-5-formyl-3-methylpyrimin, 5 g (44 mmol) Ethylcyanoacetat und 850 mg (100 mmol) Piperidin in 20 ml Ethanol wurde 20 Std. bei 20-25 °C gerührt. Der gebildete feinkörnige Feststoff wurde abgetrennt, unter reduziertem Druck von Lösungsmittelresten befreit und zweimal mit je 20 ml Methanol aufgeschlämmt. Das Rohprodukt wurde schließlich mit Diethylether gewaschen.

Ausbeute: 50 % (feines Pulver); Smp.: > 200 ° C.

Beispiel 6

7-Hydroxy-6-(4-methylphenylsulfonyl)-2-methyl-pyrido[2,3-d]-pyrimidin

40

35

$$H_3C$$
 SO_2 N CH_3

45

Eine Suspension von 3 g (22 mmol) 4-Amino-5-formyl-3-methylpyrimidin,10,6 g (44 mmol) Ethyl-ptolylsulphonyl-acetat und 1,5 g (176 mmol) Piperidin in 30 ml Ethanol wurde 1 Std. bei Rückflußtemperatur gerührt. Anschließend goß man das Reaktionsgemisch in Diethylether, wonach der entstandene Feststoff abgetrennt und mit Diethylether gewaschen wurde.

Ausbeute: 45 %; Smp.: > 200 ° C.

55

In den folgenden Tabellen 1 bis 5 sind noch weitere Verbindungen aufgeführt, die auf die gleichen Weisen hergestellt wurden oder herstellbar sind.

Tabelle 1

 $R^{4} = H$ $R^{4} = H$

Beispiel-	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁵	Fp. [°C]	Lit.
Nr.						
1.001	Н	Н	H	C ₆ H ₅	188	a)
1.002	Н	Н	H	4-CH ₃ -C ₆ H ₄	230	
1.003	Н	Н	H	1-Naphthyl	272	a)
1.004	Н	Н	H	Thien-2-yl	194-195	
1.005	Н	н	H	Pyridin-2-yl	200	a)
1.006	Н	Н	ОН	C ₆ H ₅	294	d)
1.007	CH ₃	H	Н	C ₆ H ₅	> 200	
1.008	CH ₃	Н	H	2-CH ₃ -C ₆ H ₄	184	
1.009	CH ₃	H	H	4-CH ₃ -C ₆ H ₄	> 200	
1.010	CH ₃	Н	Н	2-F-C ₆ H ₄	200-201	
1.011	CH ₃	Н	Н	3-F-C ₆ H ₄	198-200	
1.012	CH ₃	H	H	4-F-C ₆ H ₄	> 200	
1.013	CH ₃	H	н	2-C1-C ₆ H ₄	174-178	
1.014	CH ₃	H	H	3-C1-C ₆ H ₄	156-160	
1.015	CH ₃	Н	Н	4-C1-C ₆ H ₄	> 200	
1.016	CH ₃	H	н	3-Br-C ₆ H ₄	178-181	
1.017	CH ₃	Н	Н	3-CH ₃ O-C ₆ H ₄	150-155	
1.018	CH ₃	Н	Н	4-CH ₃ O-C ₆ H ₄	> 200	
1.019	CH ₃	Н	н	4-Biphenyl	> 200	
1.020	CH ₃	H	Н	4-tButyl-C ₆ H ₄	> 200	
1.021	СН3	H	H	4-NO ₂ -C ₆ H ₄	> 200	
1.022	CH ₃	H	H	4-CN-C ₆ H ₄	> 200	
1.023	CH ₃	н	Н	3,4-Cl ₂ -C ₆ H ₃	> 200	
1.024	CH ₃	Н	Н	2,4-(OCH ₃) ₂ -C ₆ H ₃	165-167	
1.025	СН3	н	Н	3,4-(OCH ₃) ₂ -C ₆ H ₃	188-192	
1.026	СН3	H	H	$3,4-Methylendioxy-C_6H_3$		
1.027	CH ₃	н	H	3-NO ₂ -4-C1-C ₆ H ₃	> 200	
1.028	CH ₃	н	Н	3-NO ₂ -4-OCH ₃ -C ₆ H ₃	> 200	

	Beispiel-	\mathbb{R}^1	R ²	R ³	R ⁵	Fp. [°C]	Lit.
	Nr.	1	~	,	IX.	rp. (~C)	LL.
<i>-</i>	1.029	CH ₃	H	Н	2-Naphthyl	> 200	
5	1.030	CH ₃	Н	H	Thien-2-yl	175-180	
	1.031	CH ₃	Н	H	Thien-3-yl	191-193	
	1.032	CH ₃	Н	H	5-Cl-thien-2-yl	> 200	
10	1.033	СН3	H	Н	5-CH ₃ -isoxazol-3-yl	> 200	
	1.034	СН3	CH ₃	Н	Pyridin-2-yl	184	
	1.035	CH ₃	CH ₃	H	Pyridin-3-yl	191-197	
	1.036	CH ₃	CH ₃	Н	Pyridin-4-yl	190-191	
15	1.037	CH ₃	CH ₃	Н	С ₆ Н ₅	135-136	
	1.038	CH ₃	CH ₃	Н	2-CH ₃ -C ₆ H ₄	131	
	1.039	CH ₃	CH ₃	H	4-CH ₃ -C ₆ H ₄	162-165	
	1.040	CH ₃	CH ₃	H	Thien-2-yl	167-168	
20	1.041	CH ₃	CH ₃	H	Furan-2-yl	157-160	
	1.042	C ₆ H ₅	Н	H	C ₆ H ₅	190	
	1.043	C ₆ H ₅	Н	H	4-CH ₃ -C ₆ H ₄	226	
05	1.044	C ₆ H ₅	Н	H	Thien-2-yl	172-176	
25	1.045	C ₆ H ₅	Н	Н	Pyridin-2-yl	200	
	1.046	Н	C ₆ H ₅	Н	C ₆ H ₅	128-130	b)
	1.047	Н	С ₆ Н ₅	H	4-C1-C ₆ H ₄	202-204	b)
30	1.048	н	С ₆ Н ₅	H	4-F-C ₆ H ₄	153-155	b)
	1.049	C ₆ H ₅	CH ₃	H	C ₆ H ₅	210-213	
	1.050	C ₆ H ₅	CH ₃	H	4-CH ₃ -C ₆ H ₄	194-197	
	1.051	C ₆ H ₅	CH ₃	H	Thien-2-yl	188-191	
35	1.052	OCH ₃	OCH ₃	H	C ₆ H ₅	> 250	
	1.053	OCH ₃	OCH ₃	H	4-CH ₃ -C ₆ H ₄	> 250	
	1.054	OCH ₃	OCH ₃	H	Thien-2-yl	201-204	
	1.055	CH ₂ C ₆ H ₅	Н	H	C ₆ H ₅	135-137	
40	1.056	CH ₂ C ₆ H ₅	Н	H	4-CH ₃ -C ₆ H ₄	181-182	
	1.057	CH ₂ C ₆ H ₅	H	H	Thienyl	190-191	
	1.058	CH ₃	H	H	Tetralin-2-yl	223-226	
	1.059	CH ₃	H	H	2-C1-5-NO ₂ -C ₆ H ₃	209-211	
4 5	1.060	CH ₃	H	H	$2,5-(CH_3)_2$ -thien-3-yl	170	
	1.061	CH ₃	Н	H	3-CH ₃ -thien-2-yl	120	
	1.062	CH ₃	H	H	5-CH ₃ -thien-2-yl	Öl	
F-2	1.063	CH ₃	Н	Н	2,5-Cl ₂ -thien-3-yl	211-212	
50							

Beispiel-	R ¹	R ²	R ³	R ⁵	Fp. [°C]	Lit.
Nr.						
1.064	CH ₃	н	Н	Benzthien-2-yl	176-178	
1.065	CH ₃	Н	H	2,5-Cl ₂ -C ₆ H ₃	152-156	
1.066	CH ₃	Н	Н	3,5-Cl ₂ -C ₆ H ₃	166	
1.067	СН3	H	H	2,3,4-Cl ₃ -C ₆ H ₂	> 200	
1.068	СН3	H	H	2-CH ₃ O-3,5-Cl ₂ -C ₆ H ₂	196-197	
1.069	СН3	Н	Н	2-CH ₃ O-C ₆ H ₄	160-165	
1.070	CH ₃	Н	Н	4-CF ₃ -C ₆ H ₄	182	
1.071	CH ₃	Н	н	4-N (CH ₂) ₅ -C ₆ H ₄	> 200	

Tabelle 2

10

5

15

20

25

30

35

40

50

55

45

Bsp.Nr. R4 R² \mathbb{R}^5 Fp.[°C] Lit. 2.001 H H Н NHSO2-C6H5 188 2.002 CH_3 H H C_6H_5 169 a) 2.003 C_6H_5 Н н CH₃ 203 a) 2.004 C_6H_5 Н Н 157 C_6H_5 a) 2.005 $2,6-C1_2-C_6H_3$ Н H NHCOCH₃ 215-217 f) 2.006 C₆H₅ CH₃ CH3 Н 175-178 2.007 C₂H₅ CH₃ Н C_6H_5 92- 94 2.008 $n-C_3H_7$ Н CH₃ C₆H₅ 77- 81 2.009 $2,6-Cl_2-C_6H_3$ Н CH_3 NHCOH 257-259 f) 2.010 $2,6-Cl_2-C_6H_3$ CH3 NHCOCH₃ 202-203 f) 2.011 2,6-C1₂-C₆H₃ CH₃ Н NHCOC2H5 192-193 f) 2.012 2,6-Cl₂-C₆H₃ Н CH₃ NHCO2CH3 136-139 f) 2.013 CH₃ CH₃ NHSO2-(2-C1-6-CH3-> 215 e) C_6H_3 2.014 Н CH₃ CH₃ NHSO₂-(2-Carbo-171-173 $methoxy-6-CH_3-C_6H_3$) 2.015 H CH₃ CH₃ $NHSO_2-(2,6-Cl_2-C_6H_3)$ >230 e) 2.016 H CH₃ CH_3 $NHSO_2 - (2-C1-6-CH_3-$ > 215 C_6H_3) 2.017 H CH3 CH₃ $NHSO_2 - (3 - OCH_3 - C_6H_4)$ 193-194 2.018 Н CH₃ CH₃ NHSO₂- (2-C1-C₆H₄) 231-232 2.019 Н CH_3 CH₃ $NHSO_2 - (2-F-C_6H_4)$ 172-173 2.020 CH₃ CH₃ CH₃ C₆H₅ 120-123 CH₃ 2.021 C_6H_5 CH₃ CH₃ 120-123 2.022 SO₂CH₃ CH₃ CH₃ $NHSO_2 - (2-C1-C_6H_4)$ >230 e) 2.023 CH₃ SO₂CH₃ CH₃ $NHSO_2 - (2, 5 - Cl_2 - C_6H_3)$ >230 e) 2.024 NHSO₂- (2-F-C₆H₄) 107-109 SO₂CH₃ CH_3 CH₃ e) 2.025 SO_2CH_3 CH₃ CH₃ NHSO2-(2-Carbo-220-222 methoxyphenyl)

	Bsp.Nr.	R ⁴	\mathbb{R}^1	R ²	R ⁵	Fp.[°C]	Lit.
	2.026	SO ₂ CH ₃	CH ₃	CH ₃	NHSO ₂ -(2-C1-6-	> 215	e)
5					cyclopentyl-C ₆ H ₃)		
	2.027	SO ₂ CH ₃	CH ₃	CH ₃	$NHSO_2-(2,6-Cl_2-C_6H_3)$	> 230	e)
	2.028	C ₆ H ₅	OCH ₃	OCH ₃	$NHSO_2 - (2-Cl_2-C_6H_4)$	226-228	e)
	2.029	C ₆ H ₅	OCH ₃	OCH ₃	$NHSO_2 - (2-F-C_6H_4)$	198-199	e)
10	2.030	C ₆ H ₅	OCH ₃	OCH ₃	$NHSO_2-(2,6-Cl_2-C_6H_3)$	> 230	e)
	2.031	C ₆ H ₅	ОСН3	OCH ₃	NHSO ₂ -(2-Carbo- methoxyphenyl)	108-111	e)
	2.032	SO ₂ CH ₃	OCH ₃	OCH ₃	NHSO ₂ -(2-C1-C ₆ H ₄)	> 215	e)
15	2.033	SO ₂ CH ₃	осн ₃	осн3	$NHSO_2 - (2-F-C_6H_4)$	155-157	e)
	2.034	SO ₂ CH ₃	OCH ₃	ОСН3	$NHSO_2-(2,6-Cl_2-C_6H_3)$	213-214	e)
	2.035	SO ₂ CH ₃	OCH ₃	OCH ₃	$NHSO_2 - (2, 5-Cl_2-C_6H_3)$	172-175	e)
20	2.036	SO ₂ CH ₃	осн3	OCH ₃	NHSO ₂ -(2-C1-6-CH ₃ -C ₆ H ₃)	226-227	e)
	2.037	SO ₂ CH ₃	осн ₃	OCH ₃	NHSO ₂ -(2,5-(OCH ₃) ₂ - C_6H_3)	128	e)
	2.038	C ₆ H ₅	OC ₂ H ₅	OC ₂ H ₅	NHSO ₂ - (2-F-C ₆ H ₄)	198	e)
25	2.039	C ₆ H ₅	OC ₂ H ₅	OC ₂ H ₅	NHSO ₂ -(2-C1-C ₆ H ₄)	169-173	e)
	2.040	CH ₃	CH ₃	H	3-Thienyl	172-175	
	2.041	CH ₃	CH ₃	H	2-Thienyl	152-154	

Tabelle 3

 \mathbb{R}^{4} \mathbb{R}^{3} \mathbb{R}^{2} \mathbb{N} $\mathbb{R}^{5} = \mathbb{O}\mathbb{H}$

Bsp.Nr.	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	Fp. [°C]	Lit.
3.001	Н	H	H	CO ₂ C ₂ H ₅	196-199	
3.002	H	H	H	CN	> 250	
3.003	Н	H	OH	H	> 340	d)
3.004	Н	H	OH	CH ₃	> 360	d)
3.005	Н	H	ОН	C ₂ H ₅	317	d)
3.006	Н	Н	ОН	C ₆ H ₅	> 360	d)
3.007	H	H	ОН	CO ₂ C ₂ H ₅	246-248	d)
3.008	CH ₃	H	H .	CO ₂ C ₂ H ₅	> 200	c)
3.009	CH ₃	H	H	CN	> 200	
3.010	CH ₃	H	H	SO ₂ CH ₃	> 250	
3.011	CH ₃	H	H	SO ₂ -(4-CH ₃ -C ₆ H ₄)	> 200	
3.012	CH ₃	H	Н	4-F-C ₆ H ₄	> 260	
3.013	CH ₃	СН3	H	CO ₂ C ₂ H ₅	176-177	
3.014	CH ₃	CH ₃	H	CN	> 250	
3.015	C ₆ H ₅	H	H	CO ₂ C ₂ H ₅	> 250	
3.016	С ₆ Н ₅	H	H	CN	> 250	
3.017	С ₆ Н ₅	CH ₃	H	CO ₂ C ₂ H ₅	> 230	
3.018	C ₆ H ₅	CH ₃	H	CN	> 250	
3.019	OCH ₃	OCH ₃	H	CO ₂ C ₂ H ₅	240-243	
3.020	OCH ₃	OCH ₃	H	CN	> 250	
3.021	CH ₂ C ₆ H ₅	H	Н	CO ₂ C ₂ H ₅	193	
3.022	СH ₂ C ₆ H ₅	H	H	CN	180-185	
3.023	CH ₃	H	H	2-Pyridyl	> 220	

Tabelle 4

 $R^5 = NH_2$

Bsp.Nr.	\mathbb{R}^1	R ²	R ³	R ⁴	Fp. [°C]	Lit.
4.001	Н	H	OH	Н	> 340	d)
4.002	Н	Н	OH	C ₆ H ₅	> 340	d)
4.003	Н	Н	Н	C ₆ H ₅	289-290	g)
4.004	Н	H	Н	2-CH ₃ -C ₆ H ₄	253-255	f)
4.005	Н	H	Н	2-C1-C ₆ H ₄	269-270	g)
4.006	H	H	Н	2-Br-C ₆ H ₄	265-267	g)
4.007	Н	H	Н	4-Br-C ₆ H ₄	265-267	f)
4.008	Н	H	Н	2,6-Cl ₂ -C ₆ H ₃	328-330	f)
4.009	Н	Н	Н	Pyridin-3-yl	295-297	g)
4.010	CH ₃	Н	Н	C ₆ H ₅	229-230	g)
4.011	CH ₃	H	Н	2-CH ₃ -C ₆ H ₄	234-235	f)
4.012	CH ₃	H	н	3-CH ₃ -C ₆ H ₄	180-188	
4.013	CH ₃	H	Н	2-C1-C6H4	256-260	f)
4.014	CH ₃	H	н	3-C1-C ₆ H ₄	208-209	
4.015	CH ₃	Н	н	4-C1-C6H4	262-264	g)
4.016	CH ₃	Н	н	2-F-C ₆ H ₄	278-279	g)
4.017	CH ₃	Н	H	4-F-C ₆ H ₄	252-254	
4.018	CH ₃	Н	н	2-Br-C ₆ H ₄	228-230	f)
4.019	CH ₃	н	Н	3-CH ₃ O-C ₆ H ₄	175-180	
4.020	CH ₃	н	Н	4-CH ₃ O-C ₆ H ₄	> 200	
4.021	CH ₃	H	Н	4-NO ₂ -C ₆ H ₄ -	299-301	g)
4.022	CH ₃	H	Н	2,4-Cl ₂ -C ₆ H ₃	259-261	f)
4.023	CH ₃	Н	Н	2,6-Cl ₂ -C ₆ H ₃	288-290	g)
4.024	CH ₃	Н	Н	Carbamoyl	232-233	g)
4.025	CH ₃	Н	Н	Pyridin-3-yl	296-298	g)
4.026	CH ₃	CH ₃	Н	2-CH ₃ -C ₆ H ₄	234-235	g)
4.027	CH ₃	CH ₃	Н	2-F-C ₆ H ₄	222-223	
4.028	CH ₃	CH ₃	Н	3-F-C ₆ H ₄	> 230	
4.029	CH ₃	CH ₃	Н	2-CH ₃ O-C ₆ H ₄	210-212	

Bsp.Nr.	R ¹	R ²	R ³	R ⁴ .	Fp. [°C]	Lit.
4.030	CH ₃	CH ₃	Н	3-CH ₃ O-C ₆ H ₄	211-214	
4.031	CH ₃	CH ₃	Н	4-CH ₃ O-C ₆ H ₄	> 250	
4.032	CH ₃	СН3	н	2,6-Cl ₂ -C ₆ H ₃	239-240	f)
4.033	CH ₃	CH ₃	Н	CN	> 210	

 $NHSO_2 - (2-C1-C_6H_4)$

 $NHSO_2 - (2, 6-Cl_2-C_6H_3)$

 $NHSO_2 - (2, 5 - Cl_2 - C_6H_3)$

 $NHSO_2 - (2, 5 - (CH_3O)_2 - C_6H_3)$

 $NHSO_2 - (2-C1-6-CH_3-C_6H_3)$

 $NHSO_2-(2-carbomethoxy-C_6H_4)$

NHSO₂-(2-carbomethoxy-C₆H₄)

 $NHSO_2 - (2-F-C_6H_4)$

NHSO2-C6H5

 $NHSO_2 - (2 - F - C_6 H_4)$

 $NHSO_2 - (2, 6-Cl_2-C_6H_3)$

Tabelle 5

Bsp.Nr.

5.001

5.002

5.003

5.004

5.005

5.006

5.007

5.008

5.009

5.010

5.011

 \mathbb{R}^3

H

Н

H

Н

H

Н

H

H

H

H

H

 \mathbb{R}^1

CHa

CH₃

CH3

CH₃

CH₃

CH₃

CH₃

OCH₃

OCH₃

OCH₃

OCH₃

 \mathbb{R}^2

CH₃

CH₃

CH3

CH₃

CH₃

CH₃

CH₃

OCH₃

OCH₃

OCH₃

ОСН3

 \mathbb{R}^5

15

5

10

$$R^{4} = C$$

$$R^{5} \qquad N \qquad N$$

$$R^{4} = C$$

Fp.[°C]

210-212

> 230

> 230

> 230

233-235

220-225

199-201

153-156

218-220

211-215

137

Lit.

e)

20

25

30

35

40

45

50

Literatur:

- a) Evans et al., J. Org. Chem. 40, 1438 (1975)
- b) Söllhuber-Kretzer et al., Arch. Pharm. 316, 346 (1983)
- c) Nishino et al., Bull Chem. Soc. Jpn. 45, 1127 (1972)
- d) Bredereck et al., Chem. Ber. 96, 1868 (1963)
- e) EP-A 329 012 (BASF)
- f) EP-A 18 151 (Warner-Lambert)
- g) Bennett et al., J. Med. Chem. 24, 382 (1981)

Beispiele zur biologischen Wirkung

Der Einfluß verschiedener Vertreter der erfindungsgemäßen herbiziden Mittel bzw. Mittelkombinationen, bestehend aus Herbizid und antidotisch wirkender Verbindung, auf das Wachstum von erwünschten und unerwünschten Pflanzen im Vergleich zum herbiziden Wirkstoff allein wird durch die folgenden biologischen Beispiele aus Gewächshausversuchen belegt:

Bei Gewächshausversuchen dienten als Kulturpflanzen Plastikblumentöpfe mit rund 300 cm3 Inhalt und

lehmigem Sand mit etwa 3,0 Gew.-% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt, flach eingesät und befeuchtet. Danach wurden die Gefäße mit durchsichtigen Plastikhauben abgedeckt, bis die Samen gleichmäßig gekeimt und die Pflanzen angewachsen waren.

5 Liste der Testpflanzen

10

15

20

25

30

35

50

Lateinischer Name	Deutscher Name	Englischer Name
Setaria viridis	Grüne Borstenhirse	green foxtail
Triticum aestivum	Sommerweizen	spring wheat
Zea mays	Mais	corn

Für die Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 20 cm gezüchtet und dann behandelt. Die herbiziden Mittel wurden hierbei in Wasser als Verteilungsmittel suspendiert oder emulgiert und mittels fein verteilender Düsen gespritzt.

Als Beispielherbizide der Cyclohexenon-Derivate II dienten

$$C_2H_5-CH-CH_2$$
 CH_3
 $CH_2-C_2H_5$
 $CH_2-C_2H_5$

(Handelsname: Sethoxydim)

Sämtliche antidotisch wirkenden Verbindungen wurden für die Nachauflaufbehandlung in einem Gemisch, bestehend aus 80 Gew.-% Cyclohexanon als Verdünnungsmittel und 20 Gew.-% Tensid (Emulphor EL*)) mit 10 Gew.-% Wirkstoff aufbereitet.

Zum Vergleich wurde der herbizide Wirkstoff als 10 bis 20 gew.-%iger Emulsionskonzentrat formuliert und jeweils unter Zugabe von derjenigen Menge an Lösungsmittelsystem in die Spritzbrühe eingesetzt, mit welcher die antidotisch wirkende Verbindung in den Tabellen angegebenen Aufwandmengen ausgebracht wurden. Die Herstellung der Lösung erfolgte durch einmischen des Wirkstoffs in eine Lösung aus 93 Gew.-% Xylol und Gew.-% Lutensoll AP-8 **).

Nach Applikation der jeweiligen Wirkstoffmischung wurden die Testpflanzen im Gewächshaus kultiviert, und zwar wärmeliebende Arten bei etwa 18 bis 30°C, solche gemäßigterer Klimate bei ca. 10 bis 25°C.

Die Versuchsperiode erstreckte sich über 3 bis 5 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, wobei ihre Reaktionen auf die Wirkstoff-Behandlungen erfaßt wurden.

55 *) ethoxyliertes Rizinusöl (caster oil)

**) nichtionisches oberflächenaktives Mittel auf Bagis von Alkylphenolpolyethylenglykolether

Bewertet wurde die Schädigung durch die chemischen Mittel anhand einer Skala von 0 bis 100 % im Vergleich zu den unbehandelten Kontrollpflanzen. Dabei bedeutet 0 keine Schädigung und 100 eine völlige Zerstörung der Pflanzen.

Die Verbesserung der Verträglichkeit von herbiziden Cyclohexenon-Derivaten II für Kulturpflanzen aus der Familie der Gramineen (Gräser) wie Weizen und Mais durch die Pyrido[2,3-d]pyrimidine I ist den folgenden Tabellen X.1 bis X.5 zu entnehmen:

Tabelle X.1

Verbesserung der Verträglichkeit des Herbizids Nr. A.001 für Mais durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

		Aufwar	ndmenge	Testpflanzen und	d Schädigung [%]
	Antidot	[kg/ha	a.S.]	Kulturpfanze	unerwünschte Pflanze
	Nr.	Antidot	Herbizid	Mais (Sorte "Lixis")	Setaria viridis
			0,015	90	85
	2.039	0,015	0,015	15	75
	4.026	0,015	0,015	55	85
	4.013	0,015	0,015	55	80
	4.010	0,015	0,015	40	80
i	4.015	0,015	0,015	50	85
	4.019	0,015	0,015	25	85
	1.007	0,015	0,015	15	70
	1.009	0,015	0,015	40	75
	1.030	0,015	0,015	25	75
	1.012	0,015	0,015	55	75

Tabelle X.2

Verbesserung der Verträglichkeit des Herbizids Nr. A.001 für Mais und Weizen durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

	Aufwai	ndmenge	Tes	stpflanzen und	Schädigung [%]
Antidot	[kg/ha	a a.S.]	Kult	urpfanzen	unerwünschte Pflanze
Nr.	Antidot	Herbizid	Mais*)	Weizen**)	Setaria viridis
		0,06	95	75	95
2.039	0,06	0,06	65	40	95
4.033	0,06	0,06	75	40	95
4.019	0,06	0,06		45	98
1.007	0,06	0,06		0	95
1.009	0,06	0,06		20	95
1.030	0,06	0,06	60	15	90

^{*)} Sorte "Lixis" **) Sommerweizen, Sorte "Star" Tabelle 7

Tabelle X.3

Verbesserung der Verträglichkeit des Herbizids Nr. A.053 für Mais und Weizen durch Zumischen einer antidotischen Bei-spielverbindung bei Nachauflaufanwendung; Gewächshausversuch

10		Aufwar	ndmenge	Tes	stpflanzen und	Schädigung [%]
70	Antidot	[kg/ha	a a.S.]		rpfanzen	unerwünschte Pflanze
	Nr.	Antidot	Herbizid	Mais*)	Weizen**)	Setaria viridis
			0,03	90	70	98
15	1.015	0,03	0,03	50	30	98
	1.009	0,03	0,03	20	20	90
	1.030	0,03	0,03	10	20	70
20	1.021	0,03	0,03		20	90
	1.020	0,03	0,03		35	95
	1.008	0,03	0,03		30	95
	1.031	0,03	0,03		10	85
25	1.019	0,03	0,03		30	90
	1.023	0,03	0,03		10	85
	1.024	0,03	0,03		0	80
30	1.013	0,03	0,03		20	75
	1.032	0,03	0,03		20	80
	1.022	0,03	0,03		40	98

^{*)} Sorte "Lixis" **) Sommerweizen, Sorte "Star"

155

55

35

40

45

Tabelle X.4

Verbesserung der Verträglichkeit des Herbizids Nr. A.721 für Mais und Weizen durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

Antidot Nr.	Aufwandmenge [kg/ha a.S.]	nge 3.]	Tes	stpflanzen	Testpflanzen und Schädigung
	Antidot	Herbizid	Kulturpflanzen	anzen	unerwünschte Pflanzee
			Mais*	Weizen**	Setaria viridis
		0,125	35	06	100
1.001	0,125	0,125	1	20	100
1.004	0,125	0,125	ı	25	86
1.044	0,125	0,125	0	45	100
1.052	0,125	0,125	0	1	100
1.062	0,125	0,125	0	ţ	100
3.002	0,125	0,125	0	10	86
3.013	0,125	0,125	0	45	100
3.014	0,125	0,125	0	65	100
3.018	0,125	0,125	0	45	100

* Sorte "Merlin" ** Sommerweizen, Sorte "Star"

Verbesserung der Verträglichkeit des Herbizids Nr. A.721 für Mais durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch Tabelle X.5

Antidot Nr.	Aufwandmenge [kg/ha a.S.	nge S.	Testpflanzen und Schädigung	igung
	Antidot	Herbizid	Kulturpflanze Mais*	unerwünschte Pflanze Setaria viridis
	1	0,125	40	100
2.014	0,125	0,125	0	85
2.023	0,125	0,125	20	95
2.024	0,125	0,125	0	100
2.025	0,125	0,125	0	85
2.027	0,125	0,125	15	95
2.028	0,125	0,125	10	100
2.029	0,125	0,125	0	85
2.033	0,125	0,125	0	95
2.036	0,125	0,125	0	06
2.037	0,125	0,125	25	95
5.005	0,125	0,125	10	95

* Sorte "Merlin"

Patentansprüche

1. Herbizide Mittel, enthaltend mindestens ein substituiertes Pyrido[2,3-d]pyrimidin der allgemeinen Formel I

in der die Variablen folgende Bedeutung haben:

 R^1 , R^2

5

10

20

25

30

45

50

Wasserstoff; C_1 - C_8 -Alkyl; C_1 - C_8 -Halogenalkyl; C_1 - C_6 -Alkoxy; C_1 - C_6 -Halogenalkoxy; C_1 - C_4 -Alkoxy- C_1 - C_6 -alkyl; C_1 - C_8 -Alkylamino; C_2 - C_8 -Alkenyl; C_2 - C_8 -Alkinyl;

C₃-C₈-Cycloalkyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio;

Phenyl, Naphthyl, Phenyl-C₁-C₆-alkyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Alkenyl und C₃-C₆-Alkinyl;

R

Hydroxy; Amino; Halogen; C_1 - C_6 -Alkylthio; Di-(C_1 - C_8 -alkyl)-amino; C_3 - C_8 -Cycloalkylamino; C_1 - C_8 -Alkoxycarbonyl;

oder eine der für R1 genannten Gruppen;

35 R⁴

eine der für R¹ genannten Gruppen;

CN; NO₂; COOH; CSOH; Di- $(C_1-C_4-alkyl)$ -amino- $C_1-C_4-alkyl$;

40 SO_2-R^6 ; $C(=X)-R^7$; $C(=Y)-R^8$, oder $R^7-C(YR^9)-ZR^{10}$;

R⁶ eine der für R¹ genannten Gruppen;

Hydroxy; Amino; Di- $(C_1-C_8-alkyl)$ -amino; $C_3-C_8-C_9$ cloalkylamino; C_1-C_6 -Alkylthio;

R⁷ Amino; Oxyamino (-NH-OH); C₁-C₈-Alkylamino;

 $\label{eq:continuo} \mbox{Di-}(C_1-C_8-alkyl)-amino; \ C_3-C_8-Cycloalkylamino; \ C_1-C_8-Alkoxy; \ C_1-C_6-Alkylthio; \ Phe-cycloalkylamino; \ C_1-C_8-alkyl)-amino; \ C_1-C_8-alkyllhio; \ Phe-cycloalkylamino; \ Phe-cy$

nylamino;

R⁸ eine der für R¹ genannten Gruppen;

 R^9,R^{10} C_1-C_8 -Alkyl; C_1-C_6 -Halogenalkyl;

 C_1 - C_4 -Alkoxy- C_2 - C_6 -alkyl; C_2 - C_8 -Alkenyl; oder

R⁹ und R¹⁰ gemeinsam -CH₂CH₂-, -CH₂CH₂- oder -CH₂CH₂CH₂-, wobei ein oder zwei

Wasserstoffatome in diesen Gruppen durch die folgenden Reste ersetzt sein können:

= O, C_1 - C_8 -Alkyl, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Alkoxy;

Sauerstoff, Schwefel oder NR¹¹, worin

R¹¹ für eine der für R¹ genannten Gruppen steht, oder die folgende Bedeutung hat:

Wasserstoff; Hydroxy; Amino; Di-(C₁-C₈-alkyl)-amino; C₃-C₈-Cycloalkylamino;

Phenoxy, Naphthyloxy, Phenylamino oder Naphthylamino, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylthio, C₃-C₆-Alkenyl und C₃-C₆-Alkinyl;

Y Sauerstoff oder Schwefel;

 \mathbb{R}^5

eine der für R1 genannten Gruppen;

Hydroxy; Amino; Halogen; C_1-C_6 -Alkylthio; Di-(C_1-C_8 -alkyl)-amino; C_3-C_8 -Cycloalkylamino; Pyrrolidin-1-yl; Piperidin-1-yl; Morpholin-l-yl; C_1-C_8 -Alkylcarbonyloxy; C_1-C_4 -Halogenalkylcarbonyloxy; C_1-C_8 -Alkylsulfonyloxy; C_1-C_8 -Halogenalkylsulfonyloxy;

Phenoxy, Naphthyloxy, Phenylamino, Naphthylamino, Benzyloxy, Benzylamino, Benzoyloxy, 2-Naphthoyloxy oder Phenylsulfonyloxy, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und C₁-C₄-Alkoxy;

 $N(R^{12})-SO_2-R^{13}$; $N(R^{12})-CO-R^{14}$; $N(R^{12})-CS-R^{14}$;

 R^{12} Wasserstoff; C_1 - C_4 -Alkyl;

20

25

30

5

10

15

Phenyl, welches ein bis drei der folgenden Reste tragen kann: Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy;

R¹³ eine der für R¹ genannten Gruppen;

Amino, Di-(C₁-C₈-alkyl)-amino oder C₃-C₈-Cycloalkylamino;

R¹⁴ eine der für R¹ genannten Gruppen;

Amino; Oxyamino (-NH-OH); Di- $(C_1-C_6-alkyl)$ -amino; C_3-C_8 -Cycloalkylamino; sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R^1 bis R^5 eine saure oder basische Gruppe bedeutet,

und mindestens einen herbiziden Wirkstoff aus

A) der Gruppe der Cyclohexenon-Derivate der allgemeinen Formel II,

35

40

 $\begin{array}{c|c}
R^{c} & & & \\
R^{d} & & & \\
R^{e} & & & \\
\end{array}$ $\begin{array}{c}
C & & \\
R^{a} & & \\
\end{array}$ $\begin{array}{c}
C & & \\
\end{array}$

in der die Substituenten die folgende Bedeutung haben:

Ra

 C_1 - C_6 -Alkyl;

50 R^b

55

Wasserstoff;

das Äquivalent eines landwirtschaftlich brauchbaren Kations;

 C_1 - C_8 -Alkylcarbonyl; C_1 - C_{10} -Alkylsulfonyl; C_1 - C_{10} -Alkylphosphonyl;

Benzoyl, Benzolsulfonyl oder Benzolphosphonyl, wobei die aromatischen Ringe ein bis fünf Halogenatome tragen können;

 R^c

10

15

20

25

30

35

40

45

50

Wasserstoff; CN; CHO;

C₁-C₆-Alkyl, welches einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Phenyloxy, Phenylthio, Pyridyloxy oder Pyridylthio, wobei die aromatischen Reste ihrerseits ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalk- oxy, C₁-C₄-Alkylthio, C₃-C₆-Alkenyl, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyl, C₃-C₆-Alkinyloxy oder NR^gR^h;

Wasserstoff; C_1 - C_4 -Alkyl; C_3 - C_6 -Alkenyl; C_3 - C_6 -Alkinyl; C_1 - C_6 -Alkylcarbonyl;

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy und C_1 - C_4 -Alkylthio;

Rh Wasserstoff; C₁-C₄-Alkyl; C₃-C₆-Alkenyl; C₃-C₆-Alkinyl;

R^c bedeutet desweiteren:

 C_3 - C_7 -Cycloalkyl oder C_5 - C_7 -Cycloalkenyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Alkylsulfonyl,

5-gliedrige gesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylthio;

6- oder 7-gliedrige gesättigte oder ein- oder zweifach ungesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylthio;

5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyloxy und C₁-C₄-Alkoxy-C₁-C₄-alkyl;

Phenyl oder Pyridyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Nitro, Formyl, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyl, C_3 - C_6 -Alkinyloxy und NR^kR^l ;

 R^k Wasserstoff; C_1 - C_4 -Alkyl; C_3 - C_6 -Alkenyl; C_3 - C_6 -Alkinyl;

 $R^{l} \qquad \text{Wasserstoff; } C_1\text{-}C_4\text{-}\text{Alkyl; } C_3\text{-}C_6\text{-}\text{Alkenyl; } C_3\text{-}C_6\text{-}\text{Alkinyl; } C_1\text{-}C_6\text{-}\text{Alkylcarbonyl; }$

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy und C_1 - C_4 -Alkylthio;

 R^d

Wasserstoff; Hydroxy;

oder, sofern R^c für C₁-C₆-Alkyl steht, ebenfalls C₁-C₆-Alkyl;

 R^{e}

Wasserstoff; Cyano; Halogen; C₁-C₄-Alkoxycarbonyl; C₁-C₄-Alkylketoxim;

۱۸

 C_1 - C_6 -Alkylen C_3 - C_6 -Alkenylen oder C_3 - C_6 -Alkinylen, wobei diese Gruppen eine Methylengruppe (= CH_2) und/oder ein bis drei der folgenden Reste tragen können: Halogen und C_1 - C_3 -Alkyl;

C₃-C₆-Alkylen oder C₃-C₆-Alkenylen, wobei in diesen Resten jeweils eine Methylengruppe durch Sauerstoff, Schwefel, SO, SO₂ oder NRⁱ ersetzt ist, und wobei in diesen Gruppen ein bis drei Wasserstoffatome durch C₁-C₃-Alkylreste ersetzt sein können;

Rⁱ Wasserstoff; C_1 - C_4 -Alkyl; C_3 - C_6 -Alkenyl; C_3 - C_6 -Alkinyl;

 R^f

5

10

15

20

25

30

35

40

45

55

Wasserstoff; CH = CH-Z1, worin

Z¹ Wasserstoff; Cyano; Carboxyl; Halogen; C₁-C₄-Alkyl; C₁-C₄-Halogenalkyl; C₁-C₄-Alkoxy; C₁-C₈-Alkoxycarbonyl; Benzyloxycarbonyl;

 C_3 - C_5 -Cycloalkyl, welches seinerseits ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy;

Phenyl, Halogenphenyl, Dihalogenphenyl, Thienyl oder Pyridyl, wobei dieser Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio oder C_3 - C_6 -Cyckloalkyl, wobei der cyclische Rest seinerseits noch ein bis drei der folgenden Gruppen tragen kann: Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy, bedeutet;

Rf bedeutet ferner

Ethinyl, welches einen der folgenden Reste tragen kann: C_1 - C_4 -Alkyl oder C_3 - C_6 -Cyckloalkyl, wobei diese Gruppen desweiteren ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy;

Ethinyl, welches einen der folgenden Reste trägt: Phenyl, Thienyl oder Pyridyl, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl, C₁

oder

B) der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III

R°-O O-CH-C-OR9

in der die Substituenten die folgende Bedeutung haben:

Rº

Phenyl, Pyridyl, Benzoxazolyl, Benzthiazolyl oder Benzpyrazinyl, wobei diese aromatischen und heteroaromatischen Ringsysteme ein oder zwei der folgenden Reste tragen können: Nitro, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und C_1 - C_4 -Alkylthio;

 R^p

50 Wasserstoff oder Methyl;

 R^q

Wasserstoff; C_1-C_4 -Alkyl; C_3-C_4 -Alkenyl; C_3-C_4 -Alkinyl; C_1-C_4 -Alkoxy- C_1-C_4 -Alkyl; C_3-C_4 -Alkylideniminooxy- C_2-C_3 -alkyl; Tetrahydrofuranylmethyl; Isoxazolidinyl;

oder das Äguivalent eines landwirtschaftlich brauchbaren Kations.

- 2. Herbizide Mittel nach Anspruch 1, wobei R⁵ einen der für R¹ genannten Reste, Hydroxyl, -N(R¹²)-SO₂-R¹³ oder eine Gruppe -N(R¹²)-C(X)R¹⁴ bedeutet.
- 3. Herbizide Mittel nach Anspruch 1, wobei R¹ und R² die folgende Bedeutung haben:

Wasserstoff; C₁-C₆-Alkyl; C₁-C₄-Halogenalkyl; C₁-C₄-Alkoxy-C₁-C₆-alkyl; C₂-C₈-Alkenyl; C₂-C₈-Alkinyl;

 C_3 - C_8 -Cycloalkyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy und C_1 - C_4 -Alkylthio;

Phenyl, Naphthyl, Phenyl- C_1 - C_6 -alkyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxyl, C_1 - C_4 - C_4 -Alkoxyl, C_1 - C_4 -Alkoxyl, C_1 - C_4 -Alkoxyl, C_1 - C_4 - C_4 -Alkoxyl, C_1 -C

- **4.** Herbizide Mittel nach den Ansprüchen 1 bis 3, enthaltend mindestens ein substituiertes Pyrido[2,3-d]-pyrimidin I und mindestens ein Herbizid II oder ein Herbizid III im Gewichtsverhältnis 0,01:1 bis 10:1.
- 25 5. Substituierte Pyrido[2,3-d]pyrimidine der allgemeinen Formel I'

in der die Reste R¹, R² und R⁴ die in Anspruch 1 gegebene Bedeutung haben und R³' und R⁵' wie folgt definiert sind:

R3'

5

10

15

20

30

35

40

45

50

Halogen; C₁-C₆-Alkylthio; oder eine der für R¹ genannten Gruppen;

R⁵

eine der für R1 genannten Gruppen;

Hydroxy; Halogen; C₁-C₆-Alkylthio; C₁-C₈-Alkylcarbonyloxy; C₁-C₈-Alkylsulfonyloxy; Phenoxy; Benzoyloxy;

Phenylsulfonyloxy, wobei der aromatische Rest ein bis drei der folgenden Gruppen tragen kann: Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl und C_1 - C_4 -Alkoxy;

mit der Maßgabe, daß R¹ und R³¹ nicht gleichzeitig Wasserstoff bedeuten, wenn R² für Wasserstoff oder Phenyl und R⁴ für Phenyl oder R⁵¹ für Phenyl, Halogenphenyl, Naphthyl oder Pyridyl steht, und mit der Maßgabe, daß die Reste R², R³¹, R⁴ und R⁵¹ nicht gleichzeitig Wasserstoff bedeuten, wenn R¹ für Wasserstoff oder Pyridyl steht,

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I', bei denen mindestens einer der Substituenten R¹, R², R³, R⁴ und R⁵ eine saure oder basische Gruppe bedeutet.

6. Verfahren zur Herstellung der substituierten Pyrido[2,3-d]pyrimidine I' gemäß Anspruch 5, dadurch gekennzeichnet, daß man ein 4-Aminopyrimidin der Formel IV

mit einer Methylencarbonylverbindung der Formel V

$$R^4$$
 CH_2
 V
 R^5

oder mit einem Acetonitril der Formel VI

5

10

15

20

35

40

45

50

$$\begin{array}{c|c} R^4 \\ CH_2 \\ CN \end{array}$$
 VI

umsetzt und das Verfahrensprodukt gewünschtenfalls in ein anderes Derivat I überführt.

- 7. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man mindestens ein substituiertes Pyrido[2,3-d]pyrimidin I und mindestens
 - A) ein Cyclohexenon-Derivat der Formel II oder
 - B) ein 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivat der Formel III gemäß Anspruch 1 vor, bei oder nach der Aussaat der Kulturpflanzen, vor oder während des Auflaufens der Kulturpflanzen gleichzeitig oder nacheinander ausbringt.
- 8. Verfahren zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man die Blätter der Kulturpflanzen und der unerwünschten Pflanzen im Nachauflaufverfahren mit mindestens einem substituierten Pyrido[2,3-d]pyrimidin I und mindestens
 - A) einem Cyclohexenon-Derivat der Formel II oder
 - B) einem 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivatder Formel III gemäß Anspruch 1 gleichzeitig oder nacheinander behandelt.
- 9. Verfahren zur Verhinderung der Schädigung von Kulturpflanzen durch
 - A) herbizide Cyclohexenon-Derivate der Formel II oder
 - B) herbizide 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivat der Formel III gemäß Anspruch 1, dadurch gekennzeichnet, daß man das Saatgut der Kulturpflanzen mit einer antagonistisch wirksamen Menge eines substituierten Pyrido[2,3-d]pyrimidins der Formel I behandelt.
- **10.** Verfahren gemäß den Ansprüchen 7 bis 9, dadurch gekennzeichnet, daß die Kulturpflanzen Gerste, Weizen, Mais, Kultursorghum und Reis sind.