fn make_rappor

Abigail Gentle

February 28, 2024

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of make_rappor in mod.rs at commit 304ef9c2 (outdated¹). TODO: algorithm outline

1 Hoare Triple

1.1 Preconditions

- Variable f must be of type f64
- Variable m must be of type u32
- Variable constant_time must be of type bool

Pseudocode

```
def make_rappor(f: f64, constant_time: bool):
      input_domain: VectorDomain < AtomDomain < bool >> ,
      input_metric: DiscreteDistance,
      output_domain = VectorDomain < AtomDomain < bool >>
      output_measure = MaxDivergence
      if (f <= 0.0 or f > 1):
           raise Exception("probability must be in (0.0, 1]")
9
      eps = (2*m)*log((2-f)/f)
10
      def privacy_map(d_in: IntDistance):
11
           return eps
13
      def function(arg: Vec<bool>) -> Vec<bool>:
14
           for b in arg:
15
             b = b \( \frac{1}{2} \) bool.sample_bernoulli(f/2, constant_time)
16
17
           return arg
18
      return Measurement(input_domain, function, input_metric, output_measure, privacy_map)
```

Postcondition

For every setting of the input parameters (f, m, constant_time) to make_rappor such that the given preconditions hold,

¹See new changes with git diff 304ef9c2..0f9f157d rust/src/measurements/rappor/mod.rs

make_rappor raises an exception (at compile time or run time) or returns a valid measurement. A valid measurement has the following property:

1. (Privacy guarantee). For every pair of elements u, v in input_domain and for every pair (d_in,d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_measure, if u, v are d_in-close under input_metric, privacy_map(d_in) does not raise an exception, and privacy_map(d_in) \leq d_out, then function(u), function(v) are d_out-close under output_measure.

2 Proof

1. Privacy guarantee

Note 1 (Proof relies on correctness of Bernoulli sampler). The following proof makes use of the following lemma that asserts the correctness of the Bernoulli sampler function.

Lemma 2.1. If system entropy is not sufficient, sample_bernoulli raises an error. Otherwise, sample_bernoulli(f/2, constant_time), the Bernoulli sampler function used in make_randomized_response_bool, returns true with probability (prob) and returns false with probability (1 - f/2).

Theorem 2.2. [1] make_rappor satisfies ε-DP where

$$\varepsilon = 2m \log \left(\frac{2-f}{f}\right) \tag{1}$$

Lemma 2.3.

$$P[y_i = 1 \mid x_i = 1] = 1 - \frac{1}{2}f \tag{2}$$

$$P[y_i = 1 \mid x_i = 0] = \frac{1}{2}f\tag{3}$$

Proof. Let $Y = y_1, ..., y_k$ be a randomised report generated by make_rappor. Then the probability of observing any given report Y is P[Y = y | X = x]. $x = x_1, ..., x_k$ is a single Boolean vector with at most m ones. Without loss of generality assume that $x^* = \{x_1 = 1, ..., x_m = 1, x_{m+1} = 0, ..., x_k = 0\}$, then we have

$$P[Y = y \mid X = x^*] = \prod_{i=1}^{m} \left(\frac{1}{2}f\right)^{1-y_i} \left(1 - \frac{1}{2}f\right)^{y_i} \times \prod_{i=m+1}^{k} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i}$$
(4)

Then let D be the ratio of two such conditional probabilities with distinct values x_1 and x_2 , and let S

be the range of make_rappor.

$$D = \frac{P[Y \in S \mid X = x_1]}{P[Y \in S \mid X = x_2]}$$
 (5)

$$= \frac{\sum_{y \in S} P[Y = y \mid X = x_1]}{\sum_{y \in S} P[Y = y \mid X = x_2]}$$
 (6)

$$\leq \max_{y \in S} \frac{P[Y = y \mid X = x_1]}{P[Y = y \mid X = x_2]} \tag{7}$$

$$= \max_{y \in S} \frac{\prod_{i=1}^{m} \left(\frac{1}{2}f\right)^{1-y_i} \left(1 - \frac{1}{2}f\right)^{y_i} \times \prod_{i=m+1}^{k} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i}}{\prod_{i=1}^{m} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i} \times \prod_{i=m+1}^{2m} \left(\frac{1}{2}f\right)^{1-y_i} \left(1 - \frac{1}{2}f\right)^{y_i} \times \prod_{i=2m+1}^{k} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i}}$$
(8)

$$= \max_{y \in S} \frac{\prod_{i=1}^{m} \left(\frac{1}{2}f\right)^{1-y_i} \left(1 - \frac{1}{2}f\right)^{y_i} \times \prod_{i=m+1}^{2m} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i} \times \prod_{i=2m+1}^{k} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i}}{\prod_{i=1}^{m} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i} \times \prod_{i=m+1}^{k} \left(\frac{1}{2}f\right)^{1-y_i} \left(1 - \frac{1}{2}f\right)^{y_i} \times \prod_{i=2m+1}^{k} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i}}$$
(9)

$$= \max_{y \in S} \frac{\prod_{i=1}^{m} \left(\frac{1}{2}f\right)^{1-y_i} \left(1 - \frac{1}{2}f\right)^{y_i} \times \prod_{i=m+1}^{2m} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i}}{\prod_{i=1}^{m} \left(\frac{1}{2}f\right)^{y_i} \left(1 - \frac{1}{2}f\right)^{1-y_i} \times \prod_{i=m+1}^{2m} \left(\frac{1}{2}f\right)^{1-y_i} \left(1 - \frac{1}{2}f\right)^{y_i}}$$

$$(10)$$

$$= \max_{y \in S} \left[\prod_{i=1}^{m} \left(\frac{1}{2} f \right)^{2(1-y_i)} \left(1 - \frac{1}{2} f \right)^{2y_i} \times \prod_{i=m+1}^{2m} \left(\frac{1}{2} f \right)^{2y_i} \left(1 - \frac{1}{2} f \right)^{2(1-y_i)} \right]$$
(11)

11 is maximised when $y_1 = 1, ..., y_m = 1$, and $y_{m+1}, ..., y_{2m} = 0$, giving

$$D \le \left(1 - \frac{1}{2}f\right)^{2m} \times \left(\frac{1}{2}f\right)^{-2m} \tag{12}$$

$$= \left(\frac{2-f}{f}\right)^{2m} \tag{13}$$

Therefore,

$$\varepsilon = 2m \log \left(\frac{2-f}{f}\right) \tag{14}$$

2. Utility

Theorem 2.4. The expected value of debias_basic_rappor is N.

Proof. Let Y be the sum of received randomised outputs of make_rappor, where Y_i is the number of received bits at index $i \in [k]$. Let N_i be the true number of times bit i was set.

$$\mathbb{E}[Y_i] = N_i \left(1 - \frac{1}{2} f \right) + (n - N_i) \frac{f}{2}$$
$$= N_i (1 - f) + n \frac{1}{2} f$$

Therefore the estimator \hat{N}_i , given by

$$\hat{N}_i = \frac{Y_i - n\frac{f}{2}}{1 - f}$$

is unbiased as,

$$\mathbb{E}[\hat{N}_i] = N_i$$

Theorem 2.5. debias_basic_rappor has average squared error

$$l_2^2(N-\hat{N}) = kn\left(\frac{f}{2} - \frac{f^2}{4}\right)$$
 (15)

Proof. Notice that each \hat{N}_i is a sum of n Bernoullis with probability $1 - \frac{1}{2}f$ or $\frac{1}{2}f$, which both have $\sigma^2 = \frac{1}{2}f\left(1 - \frac{1}{2}f\right) = \frac{f}{2} - \frac{f^2}{4}$

$$\mathbb{E}[|\hat{N} - N|] = \mathbb{E}\left[\sum_{i=1}^{k} (\hat{N}_i - N_i)^2\right] = \sum_{i=1}^{k} \mathbb{E}\left[(\hat{N}_i - N_i)^2\right]$$

$$= \sum_{i=1}^{k} \mathbb{E}\left[(\hat{N}_i - \mathbb{E}[\hat{N}_i])^2\right] \qquad \text{by Theorem 2.4}$$

$$= \sum_{i=1}^{k} \text{Var}(\hat{N}_i)$$

$$= \sum_{i=1}^{k} n\left(\frac{f}{2} - \frac{f^2}{4}\right)$$

$$= kn\left(\frac{f}{2} - \frac{f^2}{4}\right)$$

References

[1] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable privacy-preserving ordinal response. In *Proceedings of the 21st ACM Conference on Computer and Communications Security*, Scottsdale, Arizona, 2014.