Tutorium 3

1 Häufungspunkte

Beispiel 1.1

Bestimme die Häufungspunkte von folgender Folge:

$$a_n = \frac{1}{2^n} + (-1)^n, \ n \in \mathbb{N}_0$$

Bestimme Teilfolgen a_{2n} und a_{2n+1}

$$a_{2n} = \frac{1}{2^{2n}} + (-1)^{2n} = \frac{1}{4^n} + 1 \xrightarrow{n \to \infty} 1 \Rightarrow (a_n)_{n \in \mathbb{N}_0} \text{ hat HP1} \Rightarrow \limsup$$

$$a_{2n+1} = \frac{1}{2^{2n+1}} + (-1)^{2n+1} = \frac{1}{2^{2n} \cdot 2} - 1 = \frac{1}{4^n \cdot 2} - 1 \xrightarrow{n \to \infty} -1$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_0} \text{ hat HP} - 1 \Rightarrow \liminf$$

2 Cauchyfolgen

Definition 2.1

Eine Folge $(a_n)_{n\in\mathbb{N}_0}$ heißt Cauchyfolge genau dann, wenn

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \geq n_0 : |a_n - a_m|$$

Beispiel 2.1

Ist die Folge a_n Cauchyfolge?

$$a_n = \frac{1}{n^2 + n}$$

Es seien $n,m\in\mathbb{N}$ mit $n,m\geq n_0$ und $\epsilon>0$ beliebig. O.B.d.A $n\geq m$

$$|a_{m} - a_{n}| = \left| \frac{1}{m^{2} + m} - \frac{1}{n^{2} + n} \right| = \left| \frac{n^{2} + n - m^{2} - m}{(n^{2} + n)(m^{2} + m)} \right| \le \left| \frac{n^{2} + n}{(n^{2} + n)(m^{2} + m)} \right|$$

$$\left| \frac{1}{m^{2} + m} \right| = \frac{1}{m^{2} + m} \le \frac{1}{m} < \epsilon \Leftrightarrow \frac{1}{\epsilon} < m$$

$$\Rightarrow \text{Setze } n_{0} = \left\lceil \frac{1}{\epsilon} \right\rceil + 1$$

Beispiel 2.2

Ist die Folge a_n Cauchyfolge?

$$a_n = \frac{7n^3 - 13n^2}{n^3} = 7 - \frac{13}{n}$$

Es seien $n, m \in \mathbb{N}$ mit $n, m \geq n_0$ und $\epsilon > 0$ beliebig. O.B.d.A $n \geq m$

$$|a_n - a_m| = \left| 7 - \frac{13}{n} - \left(7 - \frac{13}{m} \right) \right| = \left| \frac{13}{m} - \frac{13}{n} \right| \le \left| \frac{13}{m} + \frac{13}{n} \right|$$

$$\stackrel{\triangle\text{-Ungl.}}{\le} \left| \frac{13}{m} \right| + \left| \frac{13}{n} \right| \le \frac{13}{m} + \frac{13}{m} = \frac{26}{m} < \epsilon \Leftrightarrow \frac{26}{\epsilon} < m$$

$$\Rightarrow \text{Setze } n_0 = \left[\frac{26}{\epsilon} \right] + 1$$

3 Reihen

Definition 3.1

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Setze $s_n = \sum_{k=m}^n a_k, k \in \mathbb{N}$. Dann heißt s_n die n-te Partialsumme von $(a_n)_{n\in\mathbb{N}}$, die Folge der Partialsummen $(s_n)_{n\in\mathbb{N}}$ unendliche Reihe, bezeichnet $\sum_{n=m}^{\infty} a_n$.

3.1 Wichtige Reihen:

- Harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert
- \bullet Geometrische Reihe: $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}$ konvergiert bei|q|<1
- $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = \begin{cases} <\infty, \alpha > 1 \Rightarrow \text{konvergiert} \\ =\infty, \alpha \leq 1 \Rightarrow \text{divergiert} \end{cases}$

3.2 Konvergenzkriterien

3.2.1 Notwendiges Kriterium / Trivialkriterium

Definition 3.2

Sei $\sum_{n=m}^{\infty} a_n$ konvergent, dann gilt $a_n \xrightarrow{n \to \infty} 0$

Achtung: nur notwendig, nicht hinreichend

 \Rightarrow eignet sich nur zum Zeigen von Divergenz (dann, wenn Folge nicht gegen 0 konvergiert)

Beispiel 3.1

$$\sum_{n=1}^{\infty} \frac{n}{n+1}, \ a_n = \frac{n}{n+1} \xrightarrow{n \to \infty} 1, \text{ also nicht } 0$$

$$\Rightarrow \text{Reihe divergiert}$$

3.2.2 Leibnizkriterium

Definition 3.3

Sei $(a_n)_{n\in\mathbb{N}}$ eine reele, monoton fallende Nullfolge mit $a_n>0, \ \forall n\in\mathbb{N}$. Dann konvergiert die alternierende Reihe $\sum_{n=m}^{\infty} (-1)^n a_n$

Beispiel 3.2

$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$$

$$\Rightarrow a_k = \frac{1}{k} > \frac{1}{k+1} = a_{k+1}, \frac{1}{k} > 0 \forall k \in \mathbb{N} \frac{1}{k} \xrightarrow{k \to \infty} 0$$

$$\Rightarrow \text{Reihe konvergiert}$$

Aber: keine absolute Konvergenz, da $\sum_{k=1}^{\infty} \left| (-1)^k \frac{1}{k} \right| = \sum_{k=1}^{\infty} \frac{1}{k} = \infty$, da harmonische Reihe

3

3.2.3 Wurzelkriterium

Definition 3.4

 $\overline{\text{Sei }\sum_{n=m}^{\infty}a_n}$ eine Reihe

- i) Falls $\limsup_{n\to\infty} \sqrt[n]{|a_n|}<1,$ dann konvergiert die Reihe absolut
- ii) Falls $\limsup_{n\to\infty} \sqrt[n]{|a_n|}>1,$ dann divergiert die Reihe
- iii) Falls $\limsup_{n\to\infty} \sqrt[n]{|a_n|}=1,$ dann lässt sich keine Aussage treffen

Beispiel 3.3

3.2.4 Quotientenkriterium

Definition 3.5

Sei $\sum_{n=m}^{\infty} a_n$ eine Reihe, $a_n \neq 0, \forall n \geq m$

- i) Falls $\limsup_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1,$ dann konvergiert die Reihe absolut
- ii) Falls $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \ge 1$, dann divergiert die Reihe

Beispiel 3.4

$$\sum_{n=1}^{\infty} \frac{n^3}{2^n}$$

$$\Rightarrow \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \limsup_{n \to \infty} \left| \frac{\frac{(n+1)^3}{2^{n+1}}}{\frac{n^3}{2^n}} \right|$$

$$= \lim \sup_{n \to \infty} \left| \frac{(n+1)^3}{2^{n+1}} \cdot \frac{2^n}{n^3} \right|$$

$$= \Rightarrow \lim \sup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim \sup_{n \to \infty} \left| \frac{\frac{(n+1)^3}{2^{n+1}}}{\frac{n^3}{2^n}} \right|$$

$$= \lim \sup_{n \to \infty} \frac{(n+1)^3}{2n^3} = \lim \sup_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{2n^3} = \lim \sup_{n \to \infty} \frac{1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}}{2}$$

$$= \frac{1}{2} < 1$$

 \Rightarrow Reihe konvergiert absolut

3.2.5 Minorantenkriterium

Definition 3.6

Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ Folgen mit $0 \le a_n \le b_n$. Ist $\sum_{n=m}^{\infty} a_n$ divergent, so diverger auch $\sum_{n=m}^{\infty} b_n$.

 a_n ist dann die Minorante.

Beispiel 3.5

$$\underbrace{\sum_{n=2}^{\infty} \frac{2n+1}{n^2-1}}_{:=b_n}$$

$$\begin{array}{c} \frac{2n+1}{n^2-1} \geq \frac{2n}{n^2} = \frac{2}{n} \geq 0, \, \forall n \geq 2 \\ \Rightarrow 2 \cdot \sum_{n=2}^{\infty} \frac{1}{n} \text{ ist die harmonische Reihe und divergiert} \\ \Rightarrow \text{Reihe } b_n \text{ divergiert} \end{array}$$

3.2.6 Majorantenkriterium

Definition 3.7

Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ Folgen mit $|a_n| \leq b_n$. Ist $\sum_{n=m}^{\infty} b_n$ konvergent, so konvergiert auch $\sum_{n=m}^{\infty} a_n$ und es gilt $\sum_{n=m}^{\infty} |a_n| < \sum_{n=m}^{\infty} b_n$. b_n ist dann die Majorante.

Beispiel 3.6

$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

$$\Rightarrow a_n = \frac{\sqrt{n}}{n^2 + 1}$$

$$\left| \frac{\sqrt{n}}{n^2 + 1} \right| = \frac{\sqrt{n}}{n^2 + 1} \le \frac{\sqrt{n}}{n^2} = \frac{n^{\frac{1}{2}}}{n^2} = n^{\frac{1}{2} - 2} = n^{-\frac{3}{2}} = \frac{1}{n^{\frac{3}{2}}}$$

$$\Rightarrow \text{Mit } \alpha = \frac{3}{2} > 1 \text{ gilt nach Definition } \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} \text{ konvergiert.}$$

⇒Reihe konvergiert absolut.

3.3 Aufgaben

i)
$$\sum_{n=1}^{\infty} \frac{1}{\frac{1}{2} |\sin(n)| + \frac{1}{2} n}$$

iii)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt[k]{k}}$$

ii)
$$\sum_{k=0}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$$

iv)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k!}$$