Signale, Systeme und Sensoren

# **VERSUCH NAME**

J. Altmeyer, M. Kieser

Konstanz, 13. Januar 2016

#### **Zusammenfassung** (Abstract)

Thema: VERSUCH NAME

Autoren: J. Altmeyer jualtmey@htwg-konstanz.de

M. Kieser makieser@htwg-konstanz.de

Betreuer: Prof. Dr. Matthias O. Franz mfranz@htwg-konstanz.de

Jürgen Keppler juergen.keppler@htwg-

konstanz.de

Martin Miller martin.miller@htwg-

konstanz.de

Zusammenfassung etwa 100 Worte.

# Inhaltsverzeichnis

| Al | Abbildungsverzeichnis                   |                                                |    |  |  |
|----|-----------------------------------------|------------------------------------------------|----|--|--|
| Ta | belle                                   | nverzeichnis                                   | V  |  |  |
| Li | stingv                                  | verzeichnis                                    | VI |  |  |
| 1  | Einl                                    | eitung                                         | 1  |  |  |
| 2  | Vers                                    | such 1 - Genauigkeit der AD-Wandlung           | 2  |  |  |
|    | 2.1                                     | Fragestellung, Messprinzip, Aufbau, Messmittel | 2  |  |  |
|    | 2.2                                     | Messwerte                                      | 2  |  |  |
|    | 2.3                                     | Auswertung                                     | 2  |  |  |
|    | 2.4                                     | Interpretation                                 | 2  |  |  |
| 3  | Versuch 2 - Genauigkeit der DA-Wandlung |                                                |    |  |  |
|    | 3.1                                     | Fragestellung, Messprinzip, Aufbau, Messmittel | 4  |  |  |
|    | 3.2                                     | Messwerte                                      | 4  |  |  |
|    | 3.3                                     | Auswertung                                     | 4  |  |  |
|    | 3.4                                     | Interpretation                                 | 4  |  |  |
| 4  | Vers                                    | such 3 - Zeitverhalten der DA-Wandlung         | 5  |  |  |
|    | 4.1                                     | Fragestellung, Messprinzip, Aufbau, Messmittel | 6  |  |  |
|    | 4.2                                     | Messwerte                                      | 6  |  |  |
|    | 4.3                                     | Auswertung                                     | 7  |  |  |
|    | 4.4                                     | Interpretation                                 | 7  |  |  |
| 5  | Versuch 4 - Abtasttheorem               |                                                |    |  |  |
|    | 5.1                                     | Fragestellung, Messprinzip, Aufbau, Messmittel | 8  |  |  |
|    | 5.2                                     | Messwerte                                      | 8  |  |  |

| 5.3         | Auswertung                   | 12 |
|-------------|------------------------------|----|
| 5.4         | Interpretation               | 12 |
| Anhang      |                              | 13 |
| <b>A.</b> 1 | Quellcode für Versuche 1 - 4 | 13 |
| A.2         | Messergebnisse               | 15 |

# Abbildungsverzeichnis

| 4.1  | generierter Sinus                 | 6 |
|------|-----------------------------------|---|
| 4.2  | Sinus Ausschnitt                  | 7 |
| 5.1  | 1000Hz FFT                        | 8 |
| 5.2  | 2000Hz FFT                        | 9 |
| 5.3  | 3000Hz FFT                        | 9 |
| 5.4  | 4000Hz FFT 1                      | 0 |
| 5.5  | 5000Hz FFT                        | 0 |
| 5.6  | 6000Hz FFT                        | 1 |
| 5.7  | 7000Hz FFT                        | 1 |
| 5.8  | 8000Hz FFT                        | 2 |
| 6.9  | Genauigkeitswerte der AD Wandlung | 5 |
| 6.10 | Genauigkeitswerte der DA Wandlung | 6 |

# **Tabellenverzeichnis**

# Listingverzeichnis

| 6.1 | uellCodeV1 bis V4 | 13 |
|-----|-------------------|----|
| 0.1 |                   | 13 |

# **Einleitung**

# Versuch 1 - Genauigkeit der AD-Wandlung

#### 2.1 Fragestellung, Messprinzip, Aufbau, Messmittel

#### 2.2 Messwerte

#### 2.3 Auswertung

Bei einem Eingangsspannungsbereichs von -10 V bis 10V des 11-Bit-AD-Wandlers ergibt sich ein theoretischer Quantisierungsfehler von  $\Delta U = 0,0098V$ 

Standardabweichung: Multimeter Philips Std s=0.02862533842594704 AD Wandler Std s=0.0029325756597230355

#### 2.4 Interpretation

Multimeter Philips: Standardabweichung s= 30mV Dies bedeutet, dass eine analoge Eingangsspannung in eine um  $\pm 30mV$  abweichende Ausgangsspannung gewandelt wird. Der folgende AD Wandler kann dies wesentlich genauer.

AD Wandler: Standardabweichung s= 3mV Dies bedeutet, dass eine analoge Eingangsspannung in eine um  $\pm 3mV$  abweichende Ausgangsspannung gewandelt wird.

Der theoretischer Quantisierungsfehler = 10mV beschreibt die Genauigkeit des AD-Wandlers. So kann der AD Wandler beispielsweise eine Eingangsspannung von 1mV nicht von 9mV unterscheiden.

Quantisierungsfehler ist schuld!!!!!!

# Versuch 2 - Genauigkeit der DA-Wandlung

#### 3.1 Fragestellung, Messprinzip, Aufbau, Messmittel

#### 3.2 Messwerte

#### 3.3 Auswertung

Bei einem Ausgangspannungsbereichs von 0V bis 5V des 10-Bit-DA-Wandlers ergibt sich ein theoretischer Quantisierungsfehler von  $\Delta U = 0,0049V$ 

#### 3.4 Interpretation

Der theoretischer Quantisierungsfehler = 5mV beschreibt die Genauigkeit des DA-Wandlers. So kann der DA Wandler beispielsweise eine Eingangsspannung von 1mV nicht von 5mV unterscheiden.

DA Wandler: Standardabweichung s=28mV Dies bedeutet, dass eine digitale Eingabewert in eine um  $\pm 28\text{mV}$  abweichende Ausgangsspannung gewandelt wird.

DA Wandler ist schuld!!!!!!!!!!!!!

# Versuch 3 - Zeitverhalten der DA-Wandlung

### 4.1 Fragestellung, Messprinzip, Aufbau, Messmittel

#### 4.2 Messwerte



Abbildung 4.1: generierter Sinus



Abbildung 4.2: Sinus Ausschnitt

## 4.3 Auswertung

Durch ablesen aus der Abbildung 4.2 ergibt sich ein  $\Delta t = 10ms$ 

## 4.4 Interpretation

Somit ergibt sich ca. eine maximale Ausgabefrequenz von 100Hz

# **Versuch 4 - Abtasttheorem**

#### 5.1 Fragestellung, Messprinzip, Aufbau, Messmittel

#### 5.2 Messwerte

Abtastfrequenz= 8000Hz



Abbildung 5.1: 1000Hz FFT



Abbildung 5.2: 2000Hz FFT



Abbildung 5.3: 3000Hz FFT



Abbildung 5.4: 4000Hz FFT



Abbildung 5.5: 5000Hz FFT



Abbildung 5.6: 6000Hz FFT



Abbildung 5.7: 7000Hz FFT



Abbildung 5.8: 8000Hz FFT

### 5.3 Auswertung

Bei obiger Abtastfrequenz ergibt sich eine Nyquist-Frequenz = 4000Hz.

## 5.4 Interpretation

# Anhang

#### A.1 Quellcode für Versuche 1 - 4

```
# -*- coding: utf-8 -*-
  Created on Mon Jan 11 14:15:07 2016
  @author: edc07
  import numpy as np
  import matplotlib.pyplot as plt
#import redlab as rl
  #import time
  #from TekTDS2000 import *
16
  def versuch1():
18
    out(1)
19
     #print(str(get_input(4000, 8000)))
     print('fertig')
21
22
  def versuch2():
25
     #print(str(np.mean(get_input(4000, 8000))))
     mult_array = np.array([0.103, 0.196, 0.2, 0.2, 0.194, 0.198, 0.199, 0.199, 0.2, 0.198])
    ad_array = np.array([0.015, 0.018, 0.013, 0.015, 0.016, 0.013, 0.012, 0.012, 0.014, 0.022])
28
     print("Multimeter Philips Std s={}".format(getStd(mult_array)))
     print("AD Wandler Std s={}".format(getStd(ad_array)))
```

```
31
  def versuch3():
32
     da_{array} = np.array([0.011, 0.019, 0.027, 0.041, 0.049, 0.058, 0.072, 0.080, 0.090, 0.096])
33
     print("DA Wandler Std s={}".format(getStd(da_array)))
34
  def versuch4():
36
     for x in get_sin():
37
       out(x)
38
       time.sleep(0.01)
39
40
     save_input_oszi()
41
     print(getInputData('sinus.csv')[0])
42
43
     plotRecord(getInputData('sinus.csv'))
45
46
  def versuch5():
     np.savetxt('8000.csv', rl.cbVInScan(0, 0, 0, 4000, 8000, 1))
48
49
     plotFFT(getInputData('1000.csv'), 8000,'1000fft.png')
50
     plotFFT(getInputData('2000.csv'), 8000,'2000fft.png')
51
     plotFFT(getInputData('3000.csv'), 8000,'3000fft.png')
52
     plotFFT(getInputData('4000.csv'), 8000,'4000fft.png')
     plotFFT(getInputData('5000.csv'), 8000,'5000fft.png')
54
     plotFFT(getInputData('6000.csv'), 8000, '6000fft.png')
55
     plotFFT(getInputData('7000.csv'), 8000,'7000fft.png')
     plotFFT(getInputData('8000.csv'), 8000, '8000fft.png')
57
58
  def plotFFT(rec, sampleRate, filename=''):
60
61
     #fft
     \# n = Anzahl der Schwingungen innerhalb der gesamten Signaldauer
63
     c = np.fft.fft(rec)
     n = np.abs(c)
66
     sampleTime = 1 / sampleRate
67
     count = np.arange(0, len(n))* (1 / (len(n) * sampleTime))
69
     # Anzahl der Schwingungen innerhalb der gesamten Signaldauer dargestellt
70
     dpi=75
     fig, axN = plt.subplots(figsize=(800/dpi,600/dpi), dpi=dpi)
```

```
axN.plot(count[:],n[:], color = "blue", label=" Amplitudenspektrum ")
73
      # lässt X-Achse bei 0 beginnen
74
     axN.autoscale(enable=True, axis='x', tight=True)
75
     axN.legend(loc='upper right');
76
      axN.set_xlabel("Frequenz [Hz]")
     axN.set_ylabel("Amplitude")
78
79
     # als png abspeichern
80
      if filename is not ":
81
        fig.savefig(filename, transparent=True, dpi=dpi)
82
      return
83
84
85
   def getStd(e_array):
      return np.std(e_array)
87
88
   def plotRecord(rec):
      myDpi = 75
90
      fig, ax = plt.subplots(figsize=(800/myDpi, 600/myDpi), dpi=myDpi)
91
      ax.autoscale(enable=True, axis='x', tight=True)
92
      ax.plot(rec[400:2100,0], rec[400:2100,1])
93
     ax.set_xlabel('Time [$s$]')
94
      ax.set_ylabel('Amplitude [$V$]')
95
96
97
   def save_input_oszi():
      scope = TekTDS2000()
99
100
      x,y = scope.getData(1,1,2500)
101
      np.savetxt("sinus.csv", np.transpose([x,y]), delimiter=",")
102
103
104
   def getInputData(filename):
105
      return np.genfromtxt(filename, delimiter=',')
106
107
108
   def get_input(number, samplerate):
109
      return rl.cbVInScan(0, 0, 0, number, samplerate, 1)
110
111
   def out(voltage):
113
     rl.cbVOut(0, 0, 101, voltage)
```

```
115
116
117 def get_sin(fs=100):
      val = np.linspace(0, 2 * np.pi, fs)
118
      return np.sin(val) + 1
119
120
121
   def main():
122
      versuch1()
123
      versuch2()
124
      versuch3()
125
126
      versuch4()
      versuch5()
127
128
129 if __name__ == '__main__':
      main()
130
```

Listing 6.1: QuellCodeV1 bis V4

# A.2 Messergebnisse

| 2. Genauig Gut | der AD Wandlung                 |      |                     | 10000   |
|----------------|---------------------------------|------|---------------------|---------|
| 2. V[Volt]     | Feinmensgerät Keithley TRMS 179 | anal | mater Philips AD Wa | ndler 🛇 |
| 1              | 0,337,104                       | 1,1  | -0.103 0,982        | 0.015   |
| 2              | 2,004                           | 2,2  | -0.1961,986         | 0.018   |
| 3              | 3,000                           | 3,2  | -0.200 2,387        | 0,013   |
| 4              | 4,000                           | 4,2  | -0.200 3,985        | 0,015   |
| 5              | b,006,01                        | 5,2  | -0.1944,990         | 0,016   |
| 6              | 6,002                           | 6,2  | -0.138 5,98 9       | 0,013   |
| 7              | 7,001                           | 7,2  | -0.199 6,389        | 0,012   |
| 8              | 8,001                           | 8,2  | -0.133 7,383        | 0,012   |
| 9              | 3,000                           | 3,2  | -0.200 8,386        | 0,014   |
| 10             | 10,002                          | 10,2 | -0.138 9,380        | 0,022   |
|                |                                 |      |                     |         |
|                |                                 |      |                     |         |
|                |                                 |      |                     |         |
| e; = U;        | ref - U;                        |      |                     |         |
|                |                                 |      |                     |         |
|                |                                 |      |                     |         |
|                |                                 |      |                     |         |
|                |                                 |      | 11 1 2016           |         |
|                |                                 |      | 11. 1. 2016<br>MAL  |         |
|                |                                 |      | Moure               |         |
|                |                                 |      |                     |         |
|                |                                 |      |                     |         |

Abbildung 6.9: Genauigkeitswerte der AD Wandlung

| 3. Genavigh  | cent der DA-1 | Wandlung |  |
|--------------|---------------|----------|--|
| Digital Wort | Feinmengerät  |          |  |
| U°, ref      | //e           | e;       |  |
| 0,5          | 0,511         | -0,011   |  |
| 1,0          | 1,019         | -0,019   |  |
| 1,5          | 1,527         | -0,027   |  |
| 2,0          | 2,041         | -0,041   |  |
| 2,5          | 2,549         | -0,049   |  |
| 3,0          | 3,058         | -0,058   |  |
| 3,5          | 3,572         | -0,072   |  |
| 4,0          | 4,080         | -0,080   |  |
| 4,5          | 4,590         | -0,030   |  |
| 5,0          | 5,096         | -0,036   |  |
|              |               |          |  |
|              |               |          |  |
| e· _ 11.     | 0 - 11        |          |  |
| $c_i = u_i$  | inf - Ui      |          |  |
|              |               |          |  |
|              |               |          |  |
|              | 024/          |          |  |
| 11.1         | 2016          |          |  |
| Ma           | lik           |          |  |
|              |               |          |  |
|              |               |          |  |

Abbildung 6.10: Genauigkeitswerte der DA Wandlung