

IntroductionProblem Statement

What are the effects of **AR App Instructions** compared to **paper instructions** in regard of **time consumption** while assembling a **3D object**?

IV: Instruction Media2 Levels: AR App, Paper Instructions

DV: Time consumption

CV: 3D object

Introduction

What is our Team's Research?

- Augmented Reality (AR): Technology that blends virtual assets into the real world environment
- Motivation: The Raptor Reloaded Arm is an Open Source Prosthetic Hand Design used by people all over the world.

Airplane AR system and Hololens

Raptor Reloaded OpenSource Hand Design

Introduction

What is our Team's Research?

Raptor Reloaded OpenSource Hand Assembly

MotivationIs the **AR Assembly Manual** for Enabling Prosthetic Design Efficient?

Pre-Research Evaluation:

 There are lots of papers that talk about AR design, implementation and its influence for the future

Problem:

- There are few experimental research papers to show the contemporary real benefits compared with traditional media
- Most articles ignore the human factors (gender, background, familiarity with AR etc.) influence in AR real cases and are focused in specific fields, not suitable for public

First AR experiment research conducted by Stefan Wiedenmaier, 1998 - 2001

Hypothesis

Research focus

Hypothesis 1

H1: <u>Time using paper instructions is greater than</u> <u>time using AR instructions while assembling 3D</u> <u>objects</u>

H0: Time using paper instructions is equal to time using AR instructions while assembling 3D objects

IV: Instructions' Media Platform (paper vs AR app)

DV: <u>Time</u> Consumption to assemble a 3D object

Hypothesis 2

H1: Assembly time for participants with no experience with AR is greater than assembly time for participants with previous experience with AR

H0: Assembly time for participants with no experience with AR is equal to Assembly time for participants with previous experience with AR.

IV: Previous <u>exposure</u> to AR (Categorical)

DV: <u>Time</u> Consumption to assemble a 3D object

Preparation Tasks Before Research Test

AR

Paper

Experiment Station at UW Bothell Makerspace

Participant	Paper #1	AR #1	Paper #2	AR #2
1	NA	~	~	NA
2	•	NA	NA	V
3	NA	V	V	NA
36	•	NA	NA	V

Randomly Assigned

Participants (Convenience Sampling)

- Recruited 36 people in total from UW Seattle and UW Bothell
- One outlier (one participant didn't finish AR task2)
- Removing the outlier, 35 participants, age range 18-35, 18 males and 17 females
- 22 of the participants had previous experience with AR/VR while 13 participants did not have any previous experience with AR/VR

mean = 23 years old, SD = 5.3

Research Workflow and Protocol

User Testing

Within Subject
Record time and tasks

Survey

Google Form
Record participants' background

Data Analysis

Kruskal Wallis Test Two Way ANOVA

Method Challenges

Experience Bias

- Having two different puzzles eliminate the experience effects. (one easy, one difficult)
- Instrument Bias
 - Making paper instruction and AR instructions as similar as possible
- External Validity Threats
 - Novelty Effects: AR app is such a new tech, we gave participants some guidelines before testing
 - Researcher Bias: Record start time should be same (flip or click Step 1)

Data AnalysisFormatting Data

Formatting:

- Plot Task 1, Task 2 histogram and boxplot
- 2 statistical outliers removed in total
- Not normally distributed

Method:

- In each task, use *Kruskal–Wallis T-Test*
- To find out media influence, use Two-Way ANOVA (IV: Task 1/2, media AR/paper and their interaction)
- To find out human factor influence, use *Two-Way* ANOVA

Data Analysis

Hypothesis 1: AR vs. Paper in Each Task and Task Difficulty Influence

In General:

- AR is better than paper instructions
- For difficult task (#2), AR performance is better
- AR variance is more robust and consistent than paper

The Details:

- Task 1:
 AR mean = 44.48, sd = 13.66
 Paper mean = 54.19467, sd = 18.34, p-value = 0.12 (0.09)
- Task 2:
 AR mean = 84.90, sd = 44.32
 Paper mean = 155.96, sd = 89.39, *p-value* = 0.015 (0.011)
- General: media (paper/AR) effect p-value = 0.001

```
Kruskal-wallis rank sum test

data: time.task1 by media.task1
Kruskal-wallis chi-squared = 2.339, df = 1, p-value = 0.1262

Kruskal-wallis rank sum test

data: time.task2 by media.task2
Kruskal-wallis chi-squared = 5.8629, df = 1, p-value = 0.01546

Analysis of Variance Table

Response: time

Df Sum Sq Mean Sq F value
media 1 32605 32605 11.9427
task 1 80324 80324 29.4210
media:task 1 14704 14704 5.3857
Residuals 59 161079 2730
```


Data Analysis

Hypothesis 2: Human Factors Findings (Experience with AR/VR)

- Experience with VR/AR does not have a significant influence on the time consumption in each task (p-value = 0.59)
- Although, people who have used VR/AR (Oculus, Hololens, etc.) performed better than people who haven't had experience, the difference is still not significant

Data Analysis

Hypothesis 2: Human Factors Findings (Gender)

- There is no difference between male/female in time consumption for either task (p-value = 0.54)
- We noticed that females tended to followed the instructions step by step, while some males tried to skip steps

Discussion

Contribution and What's Interesting

- We found that AR App instructions can help us be more efficient in completing more complex tasks
 - AR shows the transition between steps and enables users to view a puzzle from different perspectives, this helps with spatial comprehension
- Modality of AR (video see-through mobile technology) is more affordable and accessible in contrast with immersive optical see through technology
- We looked at human factors influence: background, gender
- Confirmation of similar experimental research around AR efficiency (Wiedenmaier's paper 2001)

DiscussionWhat We Learned

- Beware of researcher bias: think of unplanned situations to prevent bias
- Pilot research is very important: decided to use phone stand, placing pieces in a particular order
- Stick to the scope of the experiment

Discussion Impact - Who Can Use This Work

 Anyone that is looking for efficiency in communicating complex tasks should consider adapting this technology

Example: manufacturers (IKEA), business, medical, technology, developers

- Experience improvement: Reduce frustration in dealing with complex tasks, improve user experience
- Enable Prosthetic Arm: this experiment provides empirical data to support the adoption of AR App instruction

Discussion Limitations

- Increase our sample and widen to include more diverse population - wider age range and background
- Due to time constraints chose not to introduce a third medium - i.e. video
- Experimental design: decision to put phone on a stand limits the technology, decision to place puzzle pieces in order but not call it out
- Although this technology is more affordable is still depends on the use of a visual target and does not yet recognize other generic physical objects (i.e. hands)

	QUESTIONS	RESPONSES 31
What is your level of e	ducation? (Se	elect your highest level of education) *
High school or equivalent		
Some college		
Associate's degree		
Bachelor's degree		
Master's degree		
Doctoral degree		
Other		
If you selected "Some study?	college" or a h	higher level of education, what is your field of
Art (Literate, Social Sciences	, Design, Painting Wr	riting, and similar fields)
Science (Engineering, Compu	uter Science, Mathem	natics, Biology, and similar fields)
Other		

Discussion Significance

- We thought experience with VR/AR would result in better performance but we found this wasn't significant
- We thought participants' background would have an effect but our sample turned out to be engineering/science heavy therefore we were not able to find a significant effect

Q&A