

Institut Pascal Université Clermont Auvergne

LA SIMULATION DES PROPRIÉTÉS OPTIQUES DES STRUCTURES MULTICOUCHES PAR LA MÉTHODE DES ADMITTANCES

RÉALISER PAR :

AMINE SAKKALI.

ENCADRE PAR:

DENIS LANGEVIN ET MOREAU ANTOINE.

PLAN

- Introduction
- la méthode des admittances
- Résultat des tests de stabilité numérique
- Résultat du test de vitesse
 - Conclusion

INTRODUCTION

c'est quoi PyMoosh?

c'est quoi la méthode des admittances ?

OPTICAL PHYSICS

PyMoosh: a comprehensive numerical toolkit for computing the optical properties of multilayered structures

DENIS LANGEVIN,^{1,4} PAULINE BENNET,¹ ® ABDOURAHMAN KHAIREH-WALIEH,² PETER WIECHA,² ® OLIVIER TEYTAUD,³ AND ANTOINE MOREAU^{1,*} ®

¹Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France

²LAAS, Université de Toulouse, CNRS, Toulouse, France

³Meta Al Research, Paris, France

⁴denis.langevin@uca.fr

^{*}antoine.moreau@uca.fr

LA WETHODE DES ADMITTANCES

$$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$$

$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

$$\overrightarrow{\nabla}$$
 . $\overrightarrow{D} = \rho$

$$\overrightarrow{\nabla}$$
 . $\overrightarrow{B} = 0$

$$\overrightarrow{E_0} = \overrightarrow{A_0^+} \exp(i\alpha_0 z),$$

$$\overrightarrow{H_0} = \overrightarrow{B_0^+} \exp(i\alpha_0 z),$$

$$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$$

$$\begin{cases} \overrightarrow{H} = \frac{1}{w\mu} \overrightarrow{\beta} \times \overrightarrow{E} \\ \overrightarrow{E} = \frac{1}{w\epsilon} \overrightarrow{\beta} \times \overrightarrow{H} \end{cases}$$
Le concept des admittances
$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

$$\begin{cases} \overrightarrow{B^+} = \frac{1}{w\mu} \overrightarrow{\beta^+} \times \overrightarrow{A^+} \end{cases}$$

avec
$$\overrightarrow{\beta^+} = \sigma \vec{x} + \alpha \vec{z}$$

$$\overrightarrow{\mathbf{B}_{tg}^{+}} = \widetilde{n} \ [\overrightarrow{\mathbf{z}} \times \overrightarrow{A_{tg}^{+}} \]$$

$$\tilde{n}$$
: l'indice effectif

LA MÉTHODE DES ADMITTANCES

Pour la couche j : $\overrightarrow{H_{j,tg}} = Y_j \left[\overrightarrow{z} \times \overrightarrow{E_{j,tg}} \right]$ avec Y_j : admittance complexe

Pour la couche dessus de l'interface 0 : $\overrightarrow{H_{0,tg}} = Y_0 \ [\vec{z} \times \overrightarrow{E_{0,tg}}],$

LA MÉTHODE DES ADMITTANCES

Pour déterminer Y_j , il faut passer par la matrice de transfert :

$$\begin{bmatrix} \overrightarrow{z} \times \overrightarrow{E_{j,tg}} \\ \overrightarrow{H_{j,tg}} \end{bmatrix} = \begin{bmatrix} \cos \delta_j & i \sin \delta_j / \widetilde{n}_j \\ i \widetilde{n}_j \sin \delta_j & \cos \delta_j \end{bmatrix} \begin{bmatrix} \overrightarrow{z} \times \overrightarrow{E_{j-1,tg}} \\ \overrightarrow{H_{j-1,tg}} \end{bmatrix}$$

$$\begin{bmatrix} \overrightarrow{\overrightarrow{z}} \times \overrightarrow{E_{j,tg}} \\ \overrightarrow{\overrightarrow{z}} \times \overrightarrow{E_{j-1,tg}} \\ \overrightarrow{\overrightarrow{T}} \times \overrightarrow{E_{j-1,tg}} \end{bmatrix} = \begin{bmatrix} \cos \delta_j & i \sin \delta_j / \widetilde{n}_j \\ i \widetilde{n}_j \sin \delta_j & \cos \delta_j \end{bmatrix} \begin{bmatrix} 1 \\ Y_{j-1} \end{bmatrix}$$

$$Y_{j-1} = \frac{Y_j \cos \delta_j - i \, \tilde{n}_j \sin \delta_j}{\cos \delta_j - i \, Y_j \sin \delta_j / \tilde{n}_j}$$

LA MÉTHODE DES ADMITTANCES

Pour la transmission, l'équation traditionnelle n'est plus valable t $\neq \frac{2 \widetilde{n}_0}{\widetilde{n}_0 + Y_0}$

Mais d'après la matrice de transfert, on peut écrire pour les couches j-1 et j:

Par récurrence, on a :

$$\overrightarrow{E_{j-1,tg}} = [\cos \delta_j - i \frac{Y_j}{\tilde{n}_j} \sin \delta_j] \overrightarrow{E_{j,tg}}$$

$$\overrightarrow{E_{0,\text{tg}}} = \prod_{j=1}^{p} \left[\cos \delta_j - i \sin \delta_j \quad \frac{Y_j}{\widetilde{n}_j} \right] \overrightarrow{E_{\text{p,tg}}}$$

Donc la transmission:

$$t = rac{(1+r)}{\prod_{j=1}^{p} \left[\cos \delta_{j} - i \sin \delta_{j} \frac{Y_{j}}{\widetilde{n}_{j}}\right]}$$

Coefficient de Transmission

LA WÉTHODE DES ADMITTANCES

Pour les coefficients de réflexion et de transmission en termes d'énergie :

RÉSULTAT DES TESTS DE STABILITÉ NUMÉRIQUE

Teste 1 :Miroir de Bragg avec un nombre croissant de couches => Incidence intermédiaire

RÉSULTAT DES TESTS DE STABILITÉ NUMÉRIQUE

Teste 2: Frustrated total internal reflection

Frustrated total internal reflection

RÉSULTAT DES TESTS DE STABILITÉ NUMÉRIQUE

Mais il y a des problèmes ? Malheureusement Oui.

RÉSULTAT DU TEST DE VITESSE

Temps de calcul

CONCLUSION

- ✓ La méthode des admittances a démontré son efficacité pour simuler les propriétés optiques des structures multicouches. Les tests de stabilité numérique et de vitesse confirment sa robustesse, malgré des limitations lorsqu'on utilise des métaux comme substrat.
- ✓ Cela ouvre la voie à des développements futurs pour résoudre ce problème et améliorer la précision des simulations.

MERCIPOUR TOTE ATTENTION

