King County Metro Bus On-Time Reliability

Are we using the right metrics?

2018 system performance evaluation

Route	All-Day % Late	PM % Late	Saturday % Late	Sunday % Late
8	21%	33%	24%	22%
44	11%	13%	15%	8%
48	12%	24%	16%	11%
70	19%	35%	23%	13%
241	12%	16%	12%	16%

- KCM publishes reliability metrics per route.
- https://kingcounty.gov/depts/transportation/metro/about/accountability-center/performance/route-performance.aspx

Evaluation metrics

King County Metro KPI

- < 20% late stops, all-day
- < 35% late stops, weekday PM
- (When's PM peak period?)

On-time if:

• Arrive from 1.5 min earlier to 5.5 min later than scheduled

Sound Transit KPI

• < 15% late *trips*, overall

On-time if:

- < 3 min late from start
- < 5 min late from mid-point</p>
- < 7 min late to terminus
- Never depart early

Human centred questions

What should "on-time" be?

 Does changing the evaluation method change the reported performance?

Are we using the right metrics?

Plan

 General Transit Feed Specification (GTFS) is designed for use by apps to get status of what is happening now.

 Azure Function that queried GTFS real-time trip updates regularly (≈ refresh OneBusAway every minute for delays)

For 14 days from 21 Nov 2018 to 4 Dec 2018

• Save the last reported "delay" field for each stop.

Results – KCM lateness condition

- Caveat: Very short (2 week) measurement period!
- Calculate according to KCM metrics:

Route	Weekday	Saturday	Sunday
8	32%	31%	32%
44	18%	23%	21%
48	26%	26%	20%
70	23%	25%	20%
241	23%	22%	16%

Results – no early departure allowed

- Let's redefine the on-time requirement to disallow bus leaving early, similar to Sound Transit's requirements.
- Drivers today might deliberately depart early if they know it's OK to be up to 1.5min earlier than scheduled (metrics affect behaviour)

Route	Weekday	Saturday	Sunday	(All days)
8	32% 41%	31% 38%	32% 38%	32% 40%
44	18% 30%	23% 37%	21% 38%	19% 32%
48	26% 37%	26% 38%	20% 33%	25% 37%
70	23% 36%	25% 38%	20% 32%	23% 36%
241	23% 34%	22% 33%	16% 27%	22% 33%

Future work

• Make use of the calendar from static GTFS data, to know if trips are cancelled or added.

For this project I only use the "delay" field in GTFS real-time data.

Measure real-time data over a longer period

 Try other evaluation metrics, such as calculating timeliness of trips instead of stops