实验5

简单计算机系统 系统设计C

主要内容

- 1、简单计算机系统实验任务简介
- 2、完善模块
- 3、完善数据通路
- 4、动手练习: 仿真验证功能

实验任务简介

- 实现一种简单计算机系统的设计.
- ✓ 精简的MIPS指令集
- ✓ EDA仿真
- 编写程序, 仿真验证所设计系统的功能
- ✔ 用汇编格式编写程序,并翻译成机器码.
- ✓ 将机器码程序放入ROM,通过仿真验证简单计算机系统的功能.

简单计算机系统指令集

操作夕称	操作码	汇编语言格式指令	一—————————————————————————————————————	
与	0000	AND Rd, Rs, Rt	Rd \leftarrow Rs and Rt; PC \leftarrow PC + 1	
或	0001	OR Rd, Rs, Rt	$Rd \leftarrow Rs \text{ or } Rt; PC \leftarrow PC + 1$	
不带进位加	0010	ADD Rd, Rs, Rt	$Rd \leftarrow Rs + Rt; PC \leftarrow PC + 1$	
不带借位减	0011	SUB Rd, Rs, Rt	$Rd \leftarrow Rs - Rt; PC \leftarrow PC + 1$	
无符号数比较	0100	SLT Rd,Rs,Rt	If Rs <rt, <math="" else="" pc="" rd="0;">\leftarrow PC + 1</rt,>	- K
带借位减	0101	SUBC Rd, Rs, Rt	$Rd \leftarrow Rs - Rt - (1-C); PC \leftarrow PC + 1$	
带进位加	0110	ADDC Rd, Rs, Rt	$Rd \leftarrow Rs + Rt + C; PC \leftarrow PC + 1$	J
立即数与	1000	ANDI Rt, Rs, imm	Rt \leftarrow Rs and imm; PC \leftarrow PC +1	7
立即数或	1001	ORI Rt, Rs, imm	Rt \leftarrow Rs or imm; PC \leftarrow PC +1	
立即数加	1010	ADDI Rt, Rs, imm	$Rt \leftarrow Rs + imm; PC \leftarrow PC + 1$	
读存储器	1011	LW Rt, Rs, imm	$Rt \leftarrow MEM[Rs+imm]; PC \leftarrow PC +1$	L T
写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC +1$	
相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1	- "
不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1	J
无条件跳转	0111	JMP imm	PC ← imm	}_ J

I型指令编码(3)

- ■这2条I型指令
- ✓ 3个操作数
- ✓ 操作数中2个为寄存 器,1个为立即数
- ✓均要用到alu
- ✓ alu模块的zero作为 跳转的判断依据

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	O	p		R	S	R	Lt .				Im	m			

操作名称	操作码	汇编语言格式指令	执行操作
相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1
不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1

- ■与控制器相关的信号
- ✓ alu的zero作为控制器的输入信号
- ✓ 通知alu做相应运算,送出alu的cs[2:0]: 减法
- ✓ 控制器送出跳转信号branch至pc模块

J指令编码

- ■该条指令
- ✓ 1个立即数操作数
- ✔ 不用alu

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Ор							In	nm						

操作名称	操作码	汇编语言格式指令	执行操作
无条件跳转	0111	JMP imm	PC ← imm

- ■与控制器相关的信号
- ✓送出跳转信号jump至pc模块

计算机模型

PC模块的作用

- CPU执行指令时,首先将指令从指令存储器(ROM)中取出;为此,需要有保存 计算机指令地址的模块
- <u>程序地址</u>保存在专用的寄存器中,该寄存器也称为<u>程序指针,PC</u>
- 在取出当前指令后,还需要为下一个周期的指令计算出指令地址
- 保存指令: ROM; 保存指令地址: PC, 包括计算下一个指令地址的逻辑

addrGen.v:

顺序读取ROM中内容

PC模块

■输入信号

- ✓ branch: 条件跳转控制信号,来自控制器
- ✓jump: 无条件跳转控制信号,来自控制器
- ✓rst_n: 复位信号
- ✓ imm[7..0]: 指令中的立即数
- ✓ clk: 时钟信号
- ■输出信号
- ✓ pcout[7..0]: PC地址输出,送至ROM模块

```
pc
   clk
                           pcout[7..0]
   rst_n
   branch
   jump
   imm[7..0]
```

PC模块

- 在计算下一条指令地址时:
- ✓ 非跳转指令: pc+1,得到下一条指令地址
- ✓ 跳转指令: 无条件跳转指令 JMP: 将指令中的立即数imm 传送给pc; 条件跳转BNE、BEQ: 将imm+PC+1作为下一

个PC值

```
module pc(clk,rst_n,branch,jump,imm,pcout);
input clk;
input rst_n;
input branch;
input jump;
input [7:0] imm;
output reg [7:0] pcout;
always @ (posedge clk or negedge rst_n)
 begin
  if (!rst_n)
     pcout \le 0;
                              仅供参考
  else
     begin
       if (jump)
          pcout <= imm;</pre>
       else if (branch)
          pcout \le pcout + imm + 1;
       else
          pcout <= pcout + 1;</pre>
     end
  end
endmodule
```

controller.v

实验任务5

任务5.1

- (1) 在任务4.2的基础上,增加跳转指令(jump, bne, beq)的数据通路,使所设计的计算机系统可以执行精简指令集中全部15条指令; 修改控制器模块. cpuF
 - (2) 分析仿真结果.

实验任务5

任务5.2

- (1)问题: N为正整数【N取值二选一: ①学号后5位; ②学号后4位数除以3后取整,如学号倒数第4位数不为3,则将其改为3,再除以3后取整。】,计算 $1 \sim N$ 中所有质数之和.
- (2) 根据简单计算机指令集,编写C及<u>汇编</u>程序,求解上述问题,将<u>最终结果</u>存入RAM的第X(开始的)单元,X为<u>学号后两位</u>;将上述代码段翻译成机器码,写入ROM数据文件;通过仿真获得结果. (N通过指令存到RAM中,地址、格式可自定义)
 - (3) 分析仿真结果, 必要时修改相关模块.

简单计算机系统指令集

操作名称	操作码	汇编语言格式指令	
与	0000	AND Rd, Rs, Rt	Rd \leftarrow Rs and Rt; PC \leftarrow PC + 1
或	0001	OR Rd, Rs, Rt	$Rd \leftarrow Rs \text{ or } Rt; PC \leftarrow PC + 1$
不带进位加	0010	ADD Rd, Rs, Rt	$Rd \leftarrow Rs + Rt; PC \leftarrow PC + 1$
不带借位减	0011	SUB Rd, Rs, Rt	$Rd \leftarrow Rs - Rt; PC \leftarrow PC + 1$
无符号数比较	0100	SLT Rd,Rs,Rt	If Rs <rt, +="" 1<="" else="" pc="" rd="0;" th="" ←=""></rt,>
带借位减	0101	SUBC Rd, Rs, Rt	$Rd \leftarrow Rs - Rt - (1-C); PC \leftarrow PC + 1$
带进位加	0110	ADDC Rd, Rs, Rt	$Rd \leftarrow Rs + Rt + C; PC \leftarrow PC + 1$
立即数与	1000	ANDI Rt, Rs, imm	Rt←Rs and imm; PC ← PC +1
立即数或	1001	ORI Rt, Rs, imm	Rt←Rs or imm; PC ←PC +1
立即数加	1010	ADDI Rt, Rs, imm	$Rt\leftarrow Rs+ imm; PC \leftarrow PC +1$
读存储器	1011	LW Rt, Rs, imm	$Rt \leftarrow MEM[Rs+imm]; PC \leftarrow PC +1$
写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC +1$
相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1
不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1
无条件跳转	0111	JMP imm	PC ← imm

THE END