Geometría y Álgebra lineal 2

primer semestre de 2022 Segundo parcial

25 de junio de 2022.

N° parcial	Cédula	Apellido y Nombre	Grupo de Teórico
			Presencial
			Virtual
			Openfing

VERDADERO/FALSO (Total: 10 puntos)						
1	2	3	4	5		

Llenar cada casilla con las respuestas V (verdadero) o F (falso), según corresponda. Correctas: 2 puntos. Incorrectas: -1 punto. Sin responder: 0 punto.

MÚLTIPLE OPCIÓN (Total: 32 puntos)					
1	2	3	4		

Llenar cada casilla con las respuestas A, B, C o D, según corresponda. Correctas: 8 puntos. Incorrectas: -2 puntos. Sin responder: 0 punto.

La duración del parcial es de tres horas y no se permite usar ni calculadora ni material de consulta. La comprensión de las preguntas es parte de la prueba.

SÓLO PARA USO DOCENTE					
VF	MO	Des.	Total		

Atención: Todos los espacios vectoriales considerados en este parcial son de dimensión finita.

Ejercicios: Verdadero/Falso (Total: 10 puntos)

Correctas: 2 puntos. Incorrectas: -1 punto. Sin responder: 0 punto.

El siguiente ejercicio tiene afirmaciones, las cuales se deben determinar si son verdaderas o falsas.

Afirmación 1. Sea $A \in M_{n \times n}(\mathbb{R})$ tal que $A^t = A$. Si existe $P \in M_{n \times n}(\mathbb{R})$ tal que $D = P^{-1}AP$ con D diagonal. Entonces $P^{-1} = P^t$.

Afirmación 2. Sea V un espacio vectorial con producto interno y $T:V\to V$ lineal. Si $\langle T(v),-w\rangle\rangle=\langle v,T(w)\rangle$ para todo $v,w\in V$, entonces $T^*=-T$.

Afirmación 3. Se considera \mathbb{R}^n con el producto interno usual. Sea B una base ortonormal de \mathbb{R}^n y E la base canónica de \mathbb{R}^n . Entonces $E(Id)_B$ es diagonalizable.

Afirmación 4. Sea $A \in M_{n \times n}(\mathbb{R})$ tal que $A^t = A$ y $f : \mathbb{R}^n \to \mathbb{R}$ tal que $f(X) = X^t A X$. Si det(A) > 0 entonces f es una forma cuadrática definida positiva.

Afirmación 5. Sea V un espacio vectorial con producto interno, $S \subset V$ un subespacio y $P_S: V \to V$ la proyección ortogonal sobre S. Si $P_S(v) = 0$, entonces $v \in S^{\perp}$.

Ejercicios: Múltiple opción (Total: 32 puntos)

Correctas: 8 puntos. Incorrectas: - 2 puntos. Sin responder: 0 punto.

1. En \mathbb{R}^3 se considera el producto interno

$$\langle (u_1, u_2, u_3), (v_1, v_2, v_3) \rangle = u_1 v_1 + u_2 v_2 + 2u_3 v_3 - u_1 v_3 - u_3 v_1.$$

Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ autoadjunta tal que:

- T(u) = -2u para todo $u \in S = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$
- tr(T) = -1

Entonces:

A.
$$T(2,1,1) = (1,-2,3)$$
.

B.
$$T(2,1,1) = (-2,-2,3)$$
.

C.
$$T(2,1,1) = (-2,-2,-1)$$
.

D.
$$T(2,1,1) = (1,-2,-1)$$
.

- **2.** Sea \mathbb{C}^3 con el producto interno usual y $T: \mathbb{C}^3 \to \mathbb{C}^3$ un operador lineal tal que $T(\sqrt{2},0,0) = (a,0,i), T(0,c,0) = (-1,a,i)$ y $T(0,0,-\sqrt{6}) = (a,b,-1)$, donde $a,b,c \in \mathbb{R}$ y $c \neq 0$. Entonces:
 - A. T es unitario para a = -1, b = 2 y dos valores distintos de c.
 - B. T es unitario para $b=2, c=\sqrt{3}$ y dos valores distintos de a.
 - C. T es unitario para a = 1, b = 2 y dos valores distintos de c.
 - D. T no es unitario para ningún valor de $a, b, c \in \mathbb{R}$.
- **3.** Se considera \mathbb{R}^3 con el producto interno usual, $S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y z = 0\}$ y u = (1, 1, 1). Entonces el vector $s \in S$ que minimiza ||u s|| es:
 - A. s = (-3, *, *).
 - B. s = (2, *, *).
 - C. $s = (\frac{1}{3}, *, *)$.
 - D. s = (1, *, *).
- **4.** Sea \mathbb{R}^{2022} con el producto interno usual y $T: \mathbb{R}^{2022} \to \mathbb{R}^{2022}$ el operador lineal dado por

$$T(x_1,\ldots,x_{2022})=(0,x_1,\ldots,x_{2021}).$$

Entonces:

- A. $T^*(1, 2, \dots, 2022) = (0, 1, 2, \dots, 2021).$
- B. $T^*(1, 2, \dots, 2022) = (2, 3, \dots, 2022, 0).$
- C. $T^*(1, 2, \dots, 2022) = (1, 2, \dots, 2021, 0)$.
- D. $T^*(1, 2, \dots, 2022) = (0, 2, 3, \dots, 2022)$.

Ejercicio de desarrollo (Total: 18 puntos)

- 1. (12 puntos) Sea V un espacio vectorial sobre un cuerpo \mathbb{k} , con producto interno \langle , \rangle .
 - 1. Probar que si $\langle v, w_1 \rangle = \langle v, w_2 \rangle$ para todo $v \in V$, entonces $w_1 = w_2$. (5 puntos)
 - 2. Sea $f: V \to \mathbb{k}$ funcional lineal. Probar que existe un único $w \in V$ tal que $f(v) = \langle v, w \rangle$ para todo $v \in V$. (7 puntos)
- **2.** (6 puntos) Sea \mathbb{R}^2 con el producto interno usual y $T: \mathbb{R}^2 \to \mathbb{R}^2$ operador lineal ortogonal tal que el polinomio característico de T es, $\chi_T(\lambda) = (\lambda 1)^2$. Probar que T es diagonalizable.