

Analytics for Business Lab

# Seminar: Advertising campaign optimization

01.03.2025 | Marc-Antoine Fortin

## Agenda

Part 02 A triangulation approach to advertising campaign optimization

Part 03 Marketing Mix Model demo

Part 04 Exercise: your turn to try the MMM demo

## Context of the advertising market

## The company perspective

## Firms' marketing budget represents on average 7.7% of net sales in 2024.



Source: 2024 Gartner CMO Spend Study

## Advertising has to be considered in the wider Integrated Marketing Communication (IMC) process



The American Marketing Association defines **integrated marketing communication** (IMC) as "a planning process designed to assure that all brand contacts received by a customer or prospect for a product, service, or organization are relevant to that person and consistent over time."

Source: Kotler, P., & Keller, K. L. (2015). Marketing Management (15th edition). Pearson Education Limited.

## 27.9% of marketing budget is allocated to paid media.



Year

Source: 2024 Gartner CMO Spend Study

## Ad-to-sales ratio is highly variable depending on the industry. Below example of the U.S. market



#### Top 10 ad-to-sales industries:

- LOAN BROKERS
- TRANSPORTATION SERVICES
- JEWELRY, SILVERWARE & PLATED WARE
- MORTGAGE BANKERS & LOAN CORRESPONDENTS
- OUTPATIENT FACILITIES, NEC
- OF DOCTORS OF MEDICINE
- PERFUMES, COSMETICS & OTHER TOILET PREPARATIONS
- COMMERCIAL PRINTING
- WATCHES, CLOCKS **CLOCKWORK OPERATED DEVICES/PARTS**
- STEEL PIPE & TUBES

## Example of a company with annual revenues of €50M

## Threshold between SME and large enterprise





## The market perspective

## The advertising market shows average growth rates of around 7.5% per year



Advertising spending forecast, in billion US\$

Source: Statista. (2024). Advertising: Market data & analysis (p. 309). https://www.statista.com/study/166789/advertising-market-data-and-analysis/

### Advertising market in Italy broken down by media channels.



Source: UNA Media Hub. (2024) CROSSROADS: Un mondo al bivio. Uno squardo al mercato pubblicitario '24-'25: tra certezze e riserve.

## 73% of the advertising market share in 2024 was attributed to digital ad spending



Source: Statista. (2024). Advertising: Market data & analysis (p. 309). https://www.statista.com/study/166789/advertising-market-data-and-analysis/

## Programmatic advertising represented 82.0% of the digital advertising market in 2024



Source: Statista. (2024). Advertising: Market data & analysis (p. 309). https://www.statista.com/study/166789/advertising-market-data-and-analysis/

## **Process of programmatic advertising**



## A triangulation approach to advertising campaign optimization

"Since all models are wrong the scientist must be alert to what is **importantly** wrong.

It is inappropriate to be concerned about mice when there are tigers abroad."

Box, G. E. P. (1976). Science and Statistics. Journal of the American Statistical Association, 71(356), 791-799. https://doi.org/10.1080/01621459.1976.10480949

## Triangulation in marketing measurement



## Comparison of the three approaches

|      | Multi-touch attribution                                                                                                                                                                                                                                                                                       | Marketing mix modeling                                                                                                                                                                                                                                                                                                                                                            | Incrementality testing                                                                                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data | <ul> <li>Granular consumer's touchpoint data: Browser<br/>cookies, UTM codes, tracking pixels, and similar<br/>identifiers.</li> </ul>                                                                                                                                                                        | Aggregated time-series data on marketing<br>investment, costs, revenues, and contextual<br>elements (e.g. competitors, general economy, etc.)                                                                                                                                                                                                                                     | <ul> <li>Experimental data from geo-testing, holdout tests,<br/>and controlled studies.</li> </ul>                                                                                                               |
| Goal | Measure and optimize marketing effectiveness in<br>near real-time.                                                                                                                                                                                                                                            | Analyze and optimize long-term marketing investment across multiple channels.                                                                                                                                                                                                                                                                                                     | Empirically quantify the incremental impact of marketing efforts on sales.                                                                                                                                       |
| Pros | <ul> <li>Provides granular insights for tactical campaign optimization.</li> <li>Allows quick adaptation to market dynamics and trends.</li> <li>Helps optimize budget allocation and creative performance.</li> </ul>                                                                                        | <ul> <li>Integration of digital and traditional channels.</li> <li>privacy-safe and does not use any cookie or user-level information.</li> <li>Provides a holistic and strategic view of marketing effectiveness.</li> <li>Accounts for offline and online marketing impacts.</li> <li>Answers high-level budget allocation and return-on-investment (ROI) questions.</li> </ul> | <ul> <li>Provides causal insights into marketing effectiveness.</li> <li>Yields generalizable results that can inform future strategies.</li> <li>Overcomes attribution limitations of other methods.</li> </ul> |
| Cons | <ul> <li>Only track addressable channels, which lead to an over-evaluation vs. non-addressable channels.</li> <li>Limited when used in isolation, lacks a holistic view of the full marketing funnel.</li> <li>Dependent on cookies, making it less reliable with increasing privacy restrictions.</li> </ul> | <ul> <li>Causality rests on strong assumptions</li> <li>Requires large volumes of high-quality historical data.</li> <li>Complexity increases with more variables, demanding advanced data science expertise.</li> <li>Significant pre-processing and model tuning effort needed.</li> </ul>                                                                                      | <ul> <li>Often ad-hoc and piecemeal approach.</li> <li>Requires a rigorous experimental design with large, representative samples.</li> <li>Needs sufficient test duration for reliable results.</li> </ul>      |

### Approach to triangulation between the three methods.



## Multi-touch attribution

## Attribution modeling - possible approaches

#### First touch



#### **Lead conversion**



#### Opportunity creation (or last touch)



#### **Customer close**



#### **Linear model**



Where X equals the total number of touchpoints

#### Time decay model



#### **U-shaped model**



#### W-shaped model



#### **Z-shaped model**







## The attribution model have an important impact on the results.



## Shift toward complementary approaches.

78.4% of marketers use lastclick attribution.

63.5% of marketers don't think last-click is aligned with how people actually shop

69.9% of marketers believe last-click has gaps in tracking on most platforms

74.5% are planning to move away from last-click measurement.



Source: eMarketer. (2024). The Last Days of Last-Click? How expanding attribution away from last-click will unlock growth.

## Incrementality testing

## Overview of incrementality testing

Incrementality testing helps determine whether a marketing action (e.g., ads, promotions) actually drives results or if conversions would have happened anyway. It isolates true causal impact by comparing exposed vs. unexposed groups.

#### Why It Matters

- Measures real impact Aims to distinguish correlation from causation.
- Optimizes budget allocation Avoids overspending on ineffective tactics.
- Improves decision-making Helps marketers invest in what truly works.
- Filters out noise Accounts for external factors like seasonality and organic sales.

#### **How It Works**

- Randomized control groups Compare users exposed to an ad versus those who weren't.
- Holdout tests Keep a portion of the audience unexposed to see the baseline.
- Geo-testing & Ghost Ads More advanced methods for measuring lift in digital ads.

In this lecture, we will focus on A/B/n testing, a powerful method for controlled experiments in marketing.

## The anatomy of the advertising budget decision: a balance between heuristics and analytics

Four components of advertising budget decision:

#### Heuristics (rules of thumb)

- Advertising-to-sales ratio
- Competitive parity

#### Analytics (data-driven models)

- Baseline spending
- Adaptive experimentation

Dual control theory Optimal profit-maximizing allocation

Balancing the objectives:

Experimentation

Empirical evidence that brands from categories with high uncertainty in advertising effectiveness can benefit from double-digit revenue lifts by placing higher emphasis on adaptive experimentation.



## A/B testing

21

2

C3

C4

## A/B testing



C1

2

C3

C4

## (Sequential) A/B testing



#### Several definitions of reward

#### **Profit maximisation**

- Demand is to estimate (for every price we have a truncated Gaussian distribution), then multiplied by marginal profit
- Conversion rate is to estimate (for every price we have a binomial distribution), then multiplied by marginal profit
- (Less frequently) Marginal cost is to estimate (for every price we have a truncated Gaussian distribution)

#### Several definitions of reward

#### **Profit maximisation**

- Demand is to estimate (for every price we have a truncated Gaussian distribution), then multiplied by marginal profit
- Conversion rate is to estimate (for every price we have a binomial distribution), then multiplied by marginal profit
- (Less frequently) Marginal cost is to estimate (for every price we have a truncated Gaussian distribution)

#### Volumes maximisation (market invasion)

- Demand is to estimate (for every price we have a truncated Gaussian distribution)
- Conversion rate is to estimate (for every price we have a binomial distribution)

### Data collection results in a certain confidence interval.



### We can have more accurate confidence intervals as we collect more data.



### ... more and more accurate.



#### ... evermore accurate!



#### ... until we reach the point in which confidence intervals do not overlap.



#### In this case, we can conclude that C2 is better than C1.



### (Sequential) A/B testing with C2 and C3



#### A/B/n testing



#### A/B/n testing during time



#### A/B/n testing during time



#### A/B/n testing during time - Exploration phase



#### A/B/n testing during time - Exploitation phase



# Constant low reward during the exploration phase that we expect would increase in the exploitation phase.



The opportunity cost is directly dependent on the duration of the exploration phase.



# Derive the length of the exploration phase by balancing confidence and reward.



#### A/B/n weaknesses

- Assumption of stationary process
- Long time to identify the optimal candidate
- Discarding a potentially optimal candidate

#### **Example: sequential A/B testing**



#### Example: A/B/n testing (length issue)



#### Example: A/B/n testing (low confidence issue)



## From A/B/n testing to Bandit algorithms

#### From A/B/n testing to bandit algorithms



#### From A/B/n testing to bandit algorithms



#### From A/B/n testing to bandit algorithms



#### **Bandit algorithms**



### Performance comparison



### Performance comparison



### Performance comparison



#### Scenarios: pricing for ecommerce



### Scientific goal: regret minimization



#### Scientific goal: regret minimization



#### Offline vs. online learning

#### A/B/n testing (class of offline learning techniques)

• Collect a huge amount of data and then decide which candidate to play

#### Bandit (class of online learning techniques)

• At every given observed data decide the candidate to play

#### Some bandit algorithms



#### Some bandit algorithms

 All these algorithms are guaranteed to minimize the regret.



#### Some bandit algorithms

- All these algorithms are guaranteed to minimize the regret.
- These algorithms differ for empirical performance.



## Why bandit?



#### A/B/n testing vs. bandit algorithms



#### A/B/n testing vs. bandit algorithms



## Marketing mix modeling

... and food for thoughts on multichannel complementarity and cross effects

#### Complementarity and cross-effects in multichannel campaign: a new study

Source: Bell, J. J., Thomaz, F., & Stephen, A. T. (2024). EXPRESS: Beyond the Pair: Media Archetypes and Complex Channel Synergies in Advertising. Journal of Marketing. https://doi.org/10.1177/00222429241302808

Based on a large dataset from Kantar:

- 1083 advertising campaigns from 2008 to 2019
- From 557 global brands across 23 industries in 51 countries
- 11 media channels analized: TV, Outdoor, Online Display, Facebook, YouTube, Radio, Cinema, Magazines, Newspapers, Online Video, and Point of Sale.
- Average media-only spend of the U.S. campaigns in the dataset: US\$ 12M
- Outcomes measured:
  - Motivation (purchase intent)
  - Association
  - Aided and Unaided Awareness

Beyond the Pair: Media Archetypes and Complex Channel Synergies in Advertising Prior research on advertising media mixes has mostly focused on single channels (e.g., television), pairwise cross-elasticities, or budget optimization within single campaigns. This is starkly detached from advertising practice where (i) there is an increasingly large number of media channels available to marketers, (ii) media plans employ complex combinations of channels, and (iii) marketers manage complementarities among many (i.e., more than pairs) channels. This research empirically learns complex channel complementaries using Latent Class analysis. Latent classes have three useful properties: (i) they account for non-random selection of channels into campaigns, (ii) they capture pairwise and higher-order interactions between channels and (iii) they allow for meaningful interpretation. We empirically describe the most common media channel archetypes and estimate their relationship to the effectiveness of a set advertising campaigns on a set of common brand-related performance metrics. We use a dataset of 1,083 advertising campaigns from around the world run between 2008 and 2019. We find that there is not a systematically "best" media mix that correlates to dominant performance across all metrics, but clear patterns emerge given specific metrics. We find that traditional channels (TV, outdoor) are commonly paired with digital channels (Facebook, YouTube) in high-performing campaigns. We also find that current marketing practice appears far from optimal, and simple strategies have the potential to increase brand mindset metric lifts by 50% or more. advertising, media planning, media complementarity, budget allocation, leading indicators Journal of Marketing

# Campaigns are most often optimized on reach instead of other mindset metrics (purchase intent, association, recall)



#### Archetypes of campaigns















# Google Meridian Demo



### Trending in marketing-land: open-source marketing mix models













How did the marketing channels drive my revenue?

What was my marketing ROI?

How do I optimize my marketing budget allocation for the future?

### Meridian model's key features

- Based on Bayesian causal inference.
- Hierarchical geo-level modeling giving you more information compared to national-level data.
- Integration of **prior knowledge** about media performance using ROI priors. Can be derived from past experiments, past MMM results, domain knowledge (expertise), or industry benchmark.
  - You can control the degree to which priors influence the posterior distribution.
- Accounting for media saturation and lagged effects, which are hard to capture with linear regression.
  - Saturation is modelled using a Hill function, which captures diminishing marginal returns.
  - Lagged effects are modelled using an Adstock function with geometric decay.
- Optional use of **reach and frequency** to better predict how each media channel might perform with a change in spending.
- Modeling lower funnel channels such as paid search using Google Query Volume as a control variable.
- Optional inclusion of non-media treatment variables such as changes to price and promotions to estimate the
  effectiveness of non-media marketing actions.

#### Rule-of-thumb data requirements

At least 50 geo-level subdivisions

2-3 years of weekly data

Multiple channels

### Meridian's Bayesian Regression Model

Bayesian modeling is not necessary for causal inference. It is applied in Meridian for the following reasons:

- Bayesian priors provide a structured way to guide parameter estimation based on prior knowledge and the chosen level
  of regularization. Regularization is essential in MMM due to the high number of variables, strong correlations, and the
  complexity of media effects like adstock and diminishing returns.
- Meridian allows regression models to be reparameterized in terms of ROI, enabling the use of custom ROI priors. Any
  available insights, such as experimental data, can inform priors, ensuring results align with known expectations at a
  chosen confidence level.
- Since **media transformations are nonlinear** (e.g., adstock, diminishing returns) and cannot be estimated with linear mixed models, Meridian leverages advanced MCMC sampling to accurately estimate these effects.

### Bayesian Modeling & MCMC

- Bayes' Theorem: Combines prior knowledge with data-driven insights to estimate media effects and quantify uncertainty.
  - Prior What we believe before seeing the data.
  - Likelihood How well the data supports different beliefs.
  - Posterior Our updated belief after seeing the data.
- Priors and likelihood: The model uses hierarchical regression likelihoods and customizable priors to reflect beliefs about marketing channel effects.
- Markov Chain Monte Carlo (MCMC) convergence: Uses No U-Turn Sampler (NUTS) to generate posterior distributions;
   convergence is assessed via R-hat values.

#### Input data



#### Model specifications

You can change some aspects of the model specification:

- Media saturation and lagging
- Reach and frequency
- Paid search (with control variable SQV)
- ROI and default priors

Documentation: https://developers.google .com/meridian/docs/basic s/model-spec

$$\begin{aligned} y_{g,t} &= \underbrace{\mu_t} + \tau_g + \sum_{i=1}^{N_C} \gamma_{g,i}^{[C]} z_{g,t,i} \\ &+ \sum_{i=1}^{N_N} \gamma_{g,i}^{[N]} x_{g,t,i}^{[N]} \\ &+ \sum_{i=1}^{N_M} \beta_{g,i}^{[M]} \underbrace{Hill() \text{ and } \text{Adstock}() \text{ functions for media saturation and lagging.}}_{\text{media saturation and lagging.}} \\ &+ \sum_{i=1}^{N_{OM}} \beta_{g,i}^{[M]} \underbrace{Hill Adstock} \left( \left\{ x_{g,t-s,i}^{[M]} \right\}_{s=0}^{L} \; ; \; \alpha_i^{[M]}, e c_i^{[M]}, \; slope_i^{[M]} \right) \\ &+ \sum_{i=1}^{N_{OM}} \beta_{g,i}^{[OM]} \underbrace{Hill Adstock} \left( \left\{ x_{g,t-s,i}^{[OM]} \right\}_{s=0}^{L} \; ; \; \alpha_i^{[OM]}, e c_i^{[OM]}, \; slope_i^{[OM]} \right) \\ &+ \sum_{i=1}^{N_{RF}} \beta_{g,i}^{[RF]} \underbrace{Adstock} \left( \left\{ r_{g,t-s,i}^{[RF]} \cdot Hill \left( f_{g,t-s,i}^{[RF]}; \; e c_i^{[RF]}, \; slope_i^{[RF]} \right) \right\}_{s=0}^{L} \; ; \; \alpha_i^{[ORF]} \right) \\ &+ \sum_{i=1}^{N_{ORF}} \beta_{g,i}^{[ORF]} \underbrace{Adstock} \left( \left\{ r_{g,t-s,i}^{[ORF]} \cdot Hill \left( f_{g,t-s,i}^{[ORF]}; \; e c_i^{[ORF]}, \; slope_i^{[ORF]} \right) \right\}_{s=0}^{L} \; ; \; \alpha_i^{[ORF]} \right) \\ &+ \epsilon_{g,t} \end{aligned}$$

#### Main steps

- 0. Install
- 1. Load the data
- 2. Configure the model
- 13. Run model diagnostics
- 4. Generate model results
- 5. Run budget optimization
- 6. Save the model object

Demo: <a href="https://developers.google.com/meridian/notebook/meridian-getting-started">https://developers.google.com/meridian/notebook/meridian-getting-started</a> (select Run in Google Colab)

#### 0. Install

- Make sure you are using one of the available GPU Colab runtimes which is required to run Meridian. You can change your notebook's runtime in Runtime > Change runtime type in the menu.
- All users can use the T4 GPU runtime which is sufficient to run the demo colab, free of charge. Users who have purchased one of Colab's paid plans have access to premium GPUs (such as V100, A100 or L4 Nvidia GPU).
- Prerequisites and system recommendations:
  - Python 3.11 or 3.12 is required to use Meridian.
  - Using a minimum of 1 GPU (recommended).

```
# Install meridian: from PyPI @ latest release
pip install --upgrade google-meridian[colab,and-cuda]

# Install meridian: from PyPI @ specific version
# !pip install google-meridian[colab,and-cuda]==1.0.3

# Install meridian: from GitHub @HEAD
# !pip install --upgrade "google-meridian[colab,and-cuda] @
git+https://github.com/google/meridian.git"
```

#### 0. Install

- Install the latest version of Meridian, and verify that GPU is available.
- Uses the TensorFlow Probability experimental MCMC package.

```
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_probability as tfp
import arviz as az
import IPython
from meridian import constants
from meridian.data import load
from meridian.data import test_utils
from meridian.model import model
from meridian.model import spec
from meridian.model import prior_distribution
from meridian.analysis import optimizer
from meridian.analysis import analyzer
from meridian.analysis import visualizer
from meridian.analysis import summarizer
from meridian.analysis import formatter
from psutil import virtual_memory
ram_gb = virtual_memory().total / 1e9
print('Your runtime has {:.1f} gigabytes of available RAM\n'.format(ram_qb))
print("Num GPUs Available: ",
len(tf.config.experimental.list_physical_devices('GPU')))
print("Num CPUs Available: ",
len(tf.config.experimental.list_physical_devices('CPU')))
```

# Load the data Supported data types and formats

Geo-level data without reach and frequency

Geo-level data with reach and frequency

Geo-level data
with organic
media and nonmedia treatments

National data

#### 1. Load the data

## Differences between the types of input variables

| Input variable | Cost | Adstock/Hill | Intervenable | Effect (%<br>Contribution) |
|----------------|------|--------------|--------------|----------------------------|
| Media          | X    | X            | X            | X                          |
| Non-media      |      |              | X            | X                          |
| Organic media  |      | X            | X            | X                          |
| Controls       |      |              |              |                            |

#### 1. Load the data

### Collect and organize your data - example of geo-level without reach or frequency

| Data type         | Description                                                                                                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Media data        | Contains the exposure metric by channel, geo, and time period. This can be impressions, clicks, or any other unit similar unit. Media values must not contain negative values.                                                                                     |
| Media spend       | Containing the media spending per channel, geo and time period. The media data and media spend must have the same dimensions.                                                                                                                                      |
| Control variables | Contains the confounders that have a causal effect on both the target KPI and the media metric (such as Google query volume (GQV)). The selection of control variables is important for estimating the causal effect from an MMM.                                  |
| KPI               | The target KPI for the model to predict. For example, revenue amount or number of application installations. This is also the response variable of the MMM.                                                                                                        |
| Revenue per KPI   | Only required if your KPI is not revenue. Contains the average revenue for a KPI unit. In the absence of accurate revenue per KPI, it is recommended to approximate a rational value. If such information is unavailable, see <u>Value of the KPI is unknown</u> . |
| Geo population    | Contains the population for each geo. Geo population (such as Nielsen DMA TV household population) is used to scale the media metric to put all geos on a comparable scale, see Input data for more details about media scaling.                                   |

# 2. Configure the model Initialize the Meridian class

- Meridian uses Bayesian framework and Markov Chain Monte Carlo (MCMC) algorithms to sample from the posterior distribution.
- Initialize the Meridian class by passing the loaded data and the customized model specification. One advantage of Meridian lies in its capacity to calibrate the model directly through ROI priors
  - In this particular example, the ROI priors for all media channels are identical, with each being represented as Lognormal (0.2, 0.9).

```
roi_mu = 0.2  # Mu for ROI prior for each media channel.
roi_sigma = 0.9  # Sigma for ROI prior for each media channel.
prior = prior_distribution.PriorDistribution(
    roi_m=tfp.distributions.LogNormal(roi_mu, roi_sigma, name=constants.ROI_M))
model_spec = spec.ModelSpec(prior=prior)
mmm = model.Meridian(input_data=data, model_spec=model_spec)
```

#### 1. Load the data

#### A look at the demo dataset

|              |                          | Media data |             |             |                  |             | Media spend |               |           |                      | control variables |                        | KPI Revenue per KPI        |                    | Geo population            |            |                        |                                 |
|--------------|--------------------------|------------|-------------|-------------|------------------|-------------|-------------|---------------|-----------|----------------------|-------------------|------------------------|----------------------------|--------------------|---------------------------|------------|------------------------|---------------------------------|
| geo          | time                     | Channel0_0 | Channel1_ C | hannel2_C   | Channel3_(       | Channel4_   | Channel0_0  | Channel1_     | Channel2_ | Channel3_            | Channel4_         | Competitor_Sales G     | QV                         | conversion         | revenue_per_conversion    | population | Organic_cl             | Promo                           |
| Geo0         | 25/01/2021               | 280668     | 0           | 0           | 470611           | 108010      | 2058.061    | 0             | 0         | 3667.397             | 841.6044          | -1.3387649             | 0.11558147                 | 1954577            | 0.020054754               | 136670.94  | 97320                  | 0                               |
| Geo0         | 01/02/2021               | 366206     | 182108      | 19825       | 527702           | 252506      | 2685.287    | 1755.745      | 147.3181  | 4112.297             | 1967.504          | 0.8936449              | 0.9442244                  | 2064250            | 0.02010317                | 136670.94  | 201441                 | 0                               |
| Geo0         | 08/02/2021               | 197565     | 230170      | 0           | 393618           | 184061      | 1448.69     | 2219.122      | 0         | 3067.402             | 1434.187          | -0.28454947            | -1.290579                  | 2086383            | 0.019928792               | 136670.94  | 0                      | 0.683819                        |
| Geo0         | 15/02/2021               | 140990     | 66643       | 0           | 326034           | 201729      | 1033.841    | 642.5206      | 0         | 2540.731             | 1571.855          | -1.0347397             | -1.0845139                 | 2826432            | 0.019987345               | 136670.94  | 0                      | 1.289055                        |
| Geo0         | 22/02/2021               | 399116     | 164991      | 0           | 381982           | 153973      | 2926.607    | 1590.716      | 0         | 2976.725             | 1199.744          | -0.3192759             | -0.017502785               | 3551929            | 0.02000035                | 136670.94  | 0                      | 0.227739                        |
| Geo0         | 01/03/2021               | 219462     | 149254      | 0           | 417941           | 41573       | 1609.254    | 1438.992      | 0         | 3256.948             | 323.9332          | -0.65269506            | -0.30211386                | 2241229            | 0.02014213                | 136670.94  | 0                      | 0                               |
| Geo0         | 08/03/2021               | 39715      | 52062       | 273250      | 662155           | 381411      | 291.2191    | 501.9418      | 2030.5    | 5160.068             | 2971.921          | 1.4276155              | -0.23733935                | 2553928            | 0.020031057               | 136670.94  | 0                      | 0                               |
| Geo0         | 15/03/2021               | 114458     | 230897      | 122797      | 423700           | 229769      | 839.2888    | 2226.132      | 912.4952  | 3301.826             | 1790.34           | 0.45791247             | 0.8655758                  | 2218997            | 0.020035092               | 136670.94  | 88088                  | 0                               |
| Geo0         | 22/03/2021               | 235989     | 256233      | 0           | 413992           | 359812      | 1730.442    | 2470.402      | 0         | 3226.174             | 2803.623          | 0.89351004             | -0.80686784                | 2322240            | 0.020043833               | 136670.94  | 334506                 | 1.465963                        |
| Geo0         | 29/03/2021               | 428627     | 0           | 280553      | 501091           | 341979      | 3143.003    | 0             | 2084.768  | 3904.922             | 2664.67           | 0.520105               | -0.24917367                | 2363708            | 0.019865984               | 136670.94  | 0                      | 0.973131                        |
| Geo0         | 05/04/2021               | 221340     | 143848      | 0           | 397356           | 33530       | 1623.025    | 1386.872      | 0         | 3096.532             | 261.2628          | -0.8563197             | 0.050081678                | 2229579            | 0.019946404               | 136670.94  | 46898                  | 0                               |
| Geo0         | 12/04/2021               | 391678     | 50750       | 0           | 722273           | 171367      | 2872.066    | 489.2925      | 0         | 5628.559             | 1335.277          | -1.4528581             | 1.5585525                  | 3524765            | 0.019867629               | 136670.94  | 228913                 | 1.627971                        |
| Geo0         | 19/04/2021               | 244001     | 0           | 0           | 329811           | 207582      | 1789.192    | 0             | 0         | 2570.165             | 1617.461          | -1.9642203             | -0.59979314                | 3347290            | 0.019929865               | 136670.94  | 140779                 | 0.66907                         |
| Geo0         | 26/04/2021               | 205575     | 38204       | 0           | 397778           | 0           | 1507.425    | 368.3336      | 0         | 3099.821             | 0                 | -0.6964144             | -1.240535                  | 2779414            | 0.019973803               | 136670.94  | 0                      | 0.55688                         |
| Geo0         | 03/05/2021               | 90953      | 0           | 0           | 78105            | 447455      | 666.9332    | 0             | 0         | 608.6598             | 3486.53           | -1.5696856             | -2.3092334                 |                    | 0.020143956               | 136670.94  | 0                      | 1.265783                        |
| Geo0         | 10/05/2021               | 155015     | 289612      | 0           | 475510           | 254598      | 1136.682    | 2792.216      | 0         | 3705.574             | 1983.805          | 1.1948755              | -1.364184                  | 2429740            | 0.02005313                | 136670.94  | 0                      | 0                               |
| Geo0         | 17/05/2021               | 139836     | 184700      | 0           | 277029           | 74744       | 1025.379    | 1780.736      | 0         | 2158.843             | 582.3986          | -0.12523502            | -0.71586806                | 4339777            | 0.020103911               |            | 10126                  | 0                               |
| Geo0         | 24/05/2021               | 388037     | 147001      | 0           | 92359            | 121726      | 2845.368    | 1417.271      | 0         | 719.739              | 948.4783          | -0.4660951             | -0.9799271                 | 3068357            | 0.019971617               | 136670.94  | 0                      | 0                               |
| Geo0         | 31/05/2021               | . 0        | 491676      | 160928      | 801735           | 331396      | 0           | 4740.362      | 1195.844  | 6247.793             | 2582.208          | 0.1384334              | 1.8121941                  | 2179793            | 0.019968163               | 136670.94  | 117413                 | 0                               |
| Geo0         | 07/06/2021               | 221746     | 58085       | 0           | 628365           | 134211      | 1626.002    | 560.0109      | 0         | 4896.748             | 1045.76           | 0.36252737             | 0.016913712                | 1972933            | 0.020036265               | 136670.94  | 172884                 | 0.234715                        |
| Geo0         | 14/06/2021               | 522698     | 53047       | 10339       | 800459           | 393926      | 3832.8      | 511.4384      | 76.82833  | 6237.85              | 3069.437          | 1.5063099              | 1.1276338                  | 1048367            | 0.019912552               |            | 330830                 | 0                               |
| Geo0         | 21/06/2021               | 31481      | 111302      | 0           | 0                | 20292       | 230.8415    | 1073.088      | 0         | 0                    | 158.1135          | -1.636292              | -0.27724043                | 3893564            | 0.019935414               | 136670.94  | 0                      | 0                               |
| Geo0         | 28/06/2021               | 124951     | 98741       | 0           | 426485           | 344246      | 916.2311    | 951.9848      | 0         | 3323.53              | 2682.335          | 1.9607203              | -1.8176672                 | 1130191            | 0.020028308               | 136670.94  | 113464                 | 0.158661                        |
| Geo0         | 05/07/2021               | . 0        | 28473       | 0           | 416725           | 356255      | 0           | 274.5148      | 0         | 3247.471             | 2775.908          | 0.76883364             | -1.5893306                 | 1630339            | 0.020078905               | 136670.94  | 172538                 | 0.843826                        |
| Geo0         | 12/07/2021               | 202855     | 208509      | 0           | 343028           | 111658      | 1487.48     | 2010.283      | 0         | 2673.163             | 870.0292          | -0.20756881            | 0.14665473                 | 1636970            | 0.019916069               | 136670.94  | 0                      | 0                               |
| Geo0         | 19/07/2021               | . 0        | 0           | 0           | 194185           | 0           | 0           | 0             | 0         | 1513.253             | 0                 | -2.278555              | -0.76092386                | 2052384            | 0.02014443                | 136670.94  | 0                      | 0.229254                        |
| Geo0         | 26/07/2021               | . 0        | 188866      | 188847      | 551956           | 457125      | 0           | 1820.901      | 1403.308  | 4301.305             | 3561.877          | 1.6827729              | -0.33497372                | 1971319            | 0.019972587               | 136670.94  | 476514                 | 0                               |
| Geo0         | 02/08/2021               | 82595      | 246895      | 111412      | 144402           | 239598      | 605.6462    | 2380.372      | 827.8941  | 1125.302             | 1866.926          | -0.6259522             | -0.23797643                | 2183971            | 0.019968498               | 136670.94  | 34179                  | 1.41145                         |
| Geo0<br>Geo0 | 19/07/2021<br>26/07/2021 | . 0<br>0   | 0<br>188866 | 0<br>188847 | 194185<br>551956 | 0<br>457125 | 0<br>0      | 0<br>1820.901 | 1403.308  | 1513.253<br>4301.305 | 0<br>3561.877     | -2.278555<br>1.6827729 | -0.76092386<br>-0.33497372 | 2052384<br>1971319 | 0.02014443<br>0.019972587 |            | 136670.94<br>136670.94 | 136670.94 0<br>136670.94 476514 |

#### 1. Load the data

#### Mapping the column names with the corresponding variable types

- For example, the column names 'GQV' and 'Competitor\_Sales' are mapped to controls.
- The required variable types are 'time', 'controls',
   'population', 'kpi', 'revenue\_per\_kpi', 'media' and 'spend'.
- If your data includes organic media or non-media treatments, you can add them using 'organic\_media' and 'non\_media\_treatments' arguments.

```
coord_to_columns = load.CoordToColumns(
    time='time',
    geo='geo',
    controls=['GQV', 'Competitor_Sales'],
    population='population',
    kpi='conversions',
   revenue_per_kpi='revenue_per_conversion',
   media=[
        'Channel0_impression',
        'Channel1_impression',
        'Channel2_impression',
        'Channel3_impression',
        'Channel4_impression',
   media spend=[
        'Channel0_spend',
        'Channell_spend',
        'Channel2_spend',
        'Channel3_spend',
        'Channel4_spend',
   organic_media=['Organic_channel0_impression'],
   non_media_treatments=['Promo'],
```

# Load the data Mapping the channel names

- Map the media variables and the media spends to the designated channel names intended for display in the two-page HTML output.
  - In the following example, 'Channel0\_impression' and 'Channel0\_spend' are connected to the same channel, 'Channel0'.

```
correct_media_to_channel = {
    'Channel0_impression': 'Channel_0',
    'Channel1_impression': 'Channel_1',
    'Channel2_impression': 'Channel_2',
    'Channel3_impression': 'Channel_3',
    'Channel4_impression': 'Channel_4',
}
correct_media_spend_to_channel = {
    'Channel0_spend': 'Channel_0',
    'Channel1_spend': 'Channel_1',
    'Channel2_spend': 'Channel_2',
    'Channel3_spend': 'Channel_3',
    'Channel4_spend': 'Channel_4',
}
```

#### 1. Load the data Load the CSV file

- Load the CSV data using CsvDataLoader. Note that csv\_path is the path to the data file location.
  - In this case, the file used is geo\_all\_channels.csv
- Note that the simulated data here does not contain reach and frequency. It is recommended to include reach and frequency data whenever they are available.

```
loader = load.CsvDataLoader(
    csv_path="https://raw.githubusercontent.com/google/meridian/refs/heads/main/m
    eridian/data/simulated_data/csv/geo_all_channels.csv",
        kpi_type='non_revenue',
        coord_to_columns=coord_to_columns,
        media_to_channel=correct_media_to_channel,
        media_spend_to_channel=correct_media_spend_to_channel,
)
data = loader.load()
```

# 2. Configure the model Initialize the Meridian class

- Use the sample\_prior() and sample\_posterior() methods to obtain samples from the prior and posterior distributions of model parameters.
  - If you are using the T4 GPU runtime this step may take about 10 minutes for the provided data set.
- The Meridian model uses a holistic MCMC samplic approach called No U Turn Sampler (NUTS).
  - Mathematical details and derivations can be found in Hoffman & Gelman, 2011 and Betancourt, 2018.

```
- \( \time\)

%*time

mmm.sample_prior(500)

mmm.sample_posterior(n_chains=7, n_adapt=500, n_burnin=500, n_keep=1000)
```

# Step 3: Run model diagnostics Assess convergence

- You assess the model convergence to help ensure the integrity of your model.
- Run the following code to generate r-hat statistics. R-hat close to 1.0 indicate convergence. R-hat < 1.2 indicates approximate convergence and is a reasonable threshold for many problems.
  - Refer to Gelman & Rubin, 1992 for more details.



#### R-hat Convergence Diagnostic



# Step 3: Run model diagnostics Assess the model's fit

• Assess the model's fit by comparing the expected sales against the actual sales.



#### Expected revenue vs. actual revenue

Revenue

10M

8M

6M

4M

2M

2021 Apr 2021 Oct 2022 Apr 2022 Oct 2023 Apr 2023 Oct Time paried

#### 4. Generate model results

#### Summary file has four components

- Model fit
- Channel contribution
- Return on investment
- Response curves



```
mmm_summarizer = summarizer.Summarizer(mmm)
from google.colab import drive
drive.mount('/content/drive')
filepath = '/content/drive/MyDrive'
start_date = '2021-01-25'
end_date = '2024-01-15'
mmm_summarizer.output_model_results_summary('summary_output.html', filepath,
start_date, end_date)
IPython.display.HTML(filename='/content/drive/MyDrive/summary_output.html')
```

## Adstock decay curves



#### Hill saturation curves



#### 5. Run budget optimization

You can choose what scenario to run for the budget allocation. In default scenario, you find the optimal allocation across channels for a given budget to maximize the return on investment (ROI).

Instantiate the BudgetOptimizer class and run the optimize() method without any customization, to run the default library's Fixed Budget Scenario to maximize ROI.

Optimization file has three elements:

- Optimization scenario
- Recommended budget allocation
- Response curves with optimized spend



IPython.display.HTML(filename='/content/drive/MyDrive/optimization\_output.html
')

# **Optimal frequency**

#### Return on investment by weekly average frequency



#### 6. Save the model object

- We recommend that you save the model object for future use. This helps you to avoid repetitive model runs and saves time and computational resources. After the model object is saved, you can load it at a later stage to continue the analysis or visualizations without having to re-run the model.
- Run the first snippet to save the model object.
- Run the second snippet to load the saved model.



# Exercise: your turn to try the MMM demo

### Compare different open-source MMM

- In groups of 4-5
- Retrieve the dataset used in the demo and start with some basic Exploratory Data Analysis (EDA).
- Run the Meridian demo in Google Colab
  - Try also the version with reach and frequency
- Read the documentation, in particular these sections:
  - Rationale-for-causal-inference-and-bayesian-modeling
  - ROI and mROI parameterization
  - Media saturation and lagging
  - Holdout observations
  - Causal estimands and estimation
- Identify the assumptions that must be met for causality
- Try alternative open-source models

#### References

- analytic partners. (2023, December 11). Data Doesn't Lie, but Your ROI Metrics May Mislead. Analytic Partners. https://analyticpartners.com/blog/data-doesnt-lie-but-your-roi-metrics-may-mislead/
- Bell, J. J., Thomaz, F., & Stephen, A. T. (2024). EXPRESS: Beyond the Pair: Media Archetypes and Complex Channel Synergies in Advertising. *Journal of Marketing*. https://doi.org/10.1177/00222429241302808
- Betancourt, M. (2018). A Conceptual Introduction to Hamiltonian Monte Carlo (No. arXiv:1701.02434). arXiv. https://doi.org/10.48550/arXiv.1701.02434
- Chaffey, D., & Ellis-Chadwick, F. (2022). *Digital Marketing: Strategy, Implementation and Practice* (8th Edition). <a href="https://www.pearson.com/content/one-dot-com/se/en/Nordics-Higher-Education/subject-catalogue/marketing/Chaffey-Digital-Marketing-8e.html">https://www.pearson.com/content/one-dot-com/se/en/Nordics-Higher-Education/subject-catalogue/marketing/Chaffey-Digital-Marketing-8e.html</a>
- eMarketer. (2024). The Last Days of Last-Click? How expanding attribution away from last-click will unlock growth (p. 14). https://www.emarketer.com/uploads/pdf/EMARKETER\_SNAP\_The\_Last\_Days\_of\_Last-Click.pdf?utm\_source=newsletter&utm\_medium=editorial&utm\_campaign=SnapCustom
- Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 7(4), 457–472.
- Homan, M. D., & Gelman, A. (2014). The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1), 1593–1623.
- Kolsarici, C., Vakratsas, D., & Naik, P. A. (2020). The Anatomy of the Advertising Budget Decision: How Analytics and Heuristics Drive Sales Performance. *Journal of Marketing Research*, *57*(3), 468–488. <a href="https://doi.org/10.1177/0022243720907578">https://doi.org/10.1177/0022243720907578</a>

