Continuous-Time Fourier Series

Presented by Yasaman Sabahi

If:
$$x(t) = a_1 \phi_1(t) + a_2 \phi_2(t) + ...$$

$$\phi_k(t) \longrightarrow \psi_k(t)$$

$$and system is linear$$
Then: $y(t) = a_1 \psi_1(t) + a_2 \psi_2(t) + ...$

Identical for discrete-time

TRANSPARENCY7.1 The principle of superposition for linear systems.

If:
$$x = a_1 \phi_1 + a_2 \phi_2 + ...$$

Then:
$$y = a_1 \psi_1 + a_2 \psi_2 + ...$$

Choose $\phi_{\mathbf{k}}(\mathbf{t})$ or $\phi_{\mathbf{k}}[\mathbf{n}]$ so that:

- a broad class of signals can be constructed as a linear combination of $\phi_{\bf k}$'s
- response to $\phi_{\mathbf{k}}$'s easy to compute

TRANSPARENCY 7.2 Criteria for choosing a set of basic signals in terms of which to decompose the input to a linear system.

TRANSPARENCY

7.3

Choice for the basic signals that led to the convolution integral and convolution sum.

LTI SYSTEMS:

• C-T:
$$\phi_{\mathbf{k}}(\mathbf{t}) = \delta(\mathbf{t} - \mathbf{k}\Delta)$$

 $\psi_{\mathbf{k}}(\mathbf{t}) = \mathbf{h}(\mathbf{t} - \mathbf{k}\Delta)$
=> Convolution Integral

•D-T:
$$\phi_{\mathbf{k}}[\mathbf{n}] = \delta[\mathbf{n} - \mathbf{k}]$$

 $\psi_{\mathbf{k}}[\mathbf{n}] = \mathbf{h}[\mathbf{n} - \mathbf{k}]$
=> Convolution Sum

TRANSPARENCY 7.4

Complex exponentials as a set of basic signals.

$$\phi_{k}(t) = e^{s_{k}t}$$
 s_{k} complex $\phi_{k}[n] = z_{k}^{n}$ z_{k} complex

Fourier Analysis:

•C-T:
$$s_k = j\omega_k$$

$$\phi_{\mathbf{k}}(\mathbf{t}) = \mathbf{e}^{\mathbf{j}\omega_{\mathbf{k}}\mathbf{t}}$$
 $\phi_{\mathbf{k}}[\mathbf{n}] = \mathbf{e}^{\mathbf{j}\Omega_{\mathbf{k}}\mathbf{n}}$

•D-T:
$$|z_k| = 1$$

$$s_{L}$$
 complex => Laplace transforms

$$z_k$$
 complex => z-transforms

Periodic Signels
-Fourier Series

$$e^{j\omega_0t}$$
 $T_0 = \frac{2T}{2T}$

period:

Complex Exponential Form

$$X(t) = \sum_{k=0}^{\infty} \alpha_k e^{jk\omega_k t}$$

$$\int_{0}^{\infty} e^{jn\omega_k t} dt = \begin{cases} T_0 & m = 0 \\ 0 & m \neq 0 \end{cases}$$

$$= \int_{0}^{\infty} cosm \omega_k t dt + j \int_{0}^{\infty} sin m \omega_k t dt$$

$$= \int_{0}^{\infty} x(t) e^{-jn\omega_k t} dt = \int_{0}^{\infty} \alpha_k e^{jk\omega_k t} dt$$

$$= \int_{0}^{\infty} \alpha_k \int_{0}^{\infty} e^{j(k-n)t} dt$$

$$= \int_{0}^{\infty} \alpha_k \int_{0}^{\infty} e^{j(k-n)t} dt$$

$$= \int_{0}^{\infty} \alpha_k \int_{0}^{\infty} e^{j(k-n)t} dt$$

Synthesis
$$X(t) = \sum_{k=-\infty}^{\infty} Q_k e^{jkw_k t}$$

ANTISYMMETRIC PERIODIC SQUARE WAVE

TRANSPARENCY 7.5

Determination of the Fourier series coefficients for an antisymmetric periodic square wave.

$$a_{k} = \frac{1}{T_{o}} \int_{-T_{o}/2}^{0} (-1) e^{-jk\omega_{o}t} dt + \frac{1}{T_{o}} \int_{0}^{T_{o}/2} (+1) e^{-jk\omega_{o}t} dt$$

$$= \frac{1}{j\pi k} \left\{ 1 - (-1)^{k} \right\} \quad k \neq 0$$

$$a_{o} = \frac{1}{T_{o}} \int_{T_{o}}^{0} x(t) e^{-jk\omega_{o}t} dt = \frac{1}{T_{o}} \int_{T_{o}}^{0} x(t) dt = 0$$

ANTISYMMETRIC PERIODIC SQUARE WAVE

TRANSPARENCY 7.6

The Fourier series coefficients for an antisymmetric periodic square wave.

$$a_0 = 0$$
; $a_k = \frac{1}{j\pi k} \left\{ 1 - (-1)^k \right\}$ $k \neq 0$

$$ullet$$
 $\mathbf{a_k}$ imaginary

$$\bullet a_k = -a_{-k}$$
 (antisymmetric)

$$= a_0 + \sum_{k=1}^{\infty} 2j a_k \sin k \omega_0 t$$

SYMMETRIC PERIODIC SQUARE WAVE

Example 4.5:

$$a_{k} = \begin{cases} \frac{1}{2} & k = 0\\ \frac{\sin(\pi k/2)}{\pi k} & k \neq 0 \end{cases}$$

- odd harmonic
- a_k real

$$\bullet a_k = a_{-k}$$
 (symmetric)

$$> \begin{cases} cosine series \\ x(t) = a_0 + \sum_{k=1}^{\infty} 2a_k cosk \omega_0 \end{cases}$$

TRANSPARENCY 7.8

Illustration of the superposition of terms in the Fourier series representation for a symmetric periodic square wave.
[Example 4.5 from the text.]

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \qquad \omega_0 = \frac{2\pi}{T_0}$$

$$x_N(t) \stackrel{\Delta}{=} \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$$

Symmetric square wave: $a_k = a_{-k}$

$$x_{N}(t) = \frac{1}{2} + \sum_{k=1}^{N} 2a_{k} \cos k\omega_{0} t$$

TRANSPARENCY 7.7 Fourier series coefficients for a symmetric periodic square wave.

Matlab simulation!

شرایط دیریکله (دیریشله - Dirichlet)

قضيه فوريه

فرض کنید تابع f(t) دارای شرایط زیر موسوم به شرایط دیریشله باشد: 1. تابع f(t) متناوب با دوره تناوب 2p باشد.

با تابع f(t) در هر دوره تناوب ، تعریف شده باشد. f(t) تابع

۳. تعداد نقاط اکستریمم تابع f(t) در هر دوره تناوب محدود باشد.

۴. تعداد نقاط ناپیوستگی تابع f(t) در هر دوره تناوب محدود باشد.

TRANSPARENCY

7.9 Partial sum incorporating (2N+1) terms in the Fourier series. [The analysis equation should read $a_k = 1/T \int_{T_a} x(t) e^{-jk\omega_0 t} dt$.]

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T_o} \int_{T_o} x(t) e^{-jk\omega_o t}$$

synthesis

analysis

$$x_N(t) \stackrel{\Delta}{=} \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$$

$$e_{N}(t) \stackrel{\Delta}{=} x(t) - x_{N}(t)$$

Does e_N (t) decrease as N increases?

CONVERGENCE OF FOURIER SERIES

TRANSPARENCY
7.10
Conditions for convergence of the

Fourier series.

•x(t) square integrable:

if
$$\int_{T_0} |x(t)|^2 dt < \infty$$

then $\int_{T_0} |e_N(t)|^2 dt \rightarrow 0$ as $N \rightarrow \infty$

Dirichlet conditions.

if
$$\int\limits_{T_0} |x(t)| \; dt < \infty \; \text{and} \; x(t) \; \text{``well behaved''}$$

then
$$e_N(t) \rightarrow 0$$
 as $N \rightarrow \infty$

except at discontinuities

FOURIER REPRESENTATION OF APERIODIC SIGNALS

$$\widetilde{\mathbf{x}}(\mathbf{t}) = \mathbf{x}(\mathbf{t})$$
 $|\mathbf{t}| < \frac{\mathsf{T}_{o}}{2}$

As
$$T_0 \rightarrow \infty$$
 $\widetilde{x}(t) \rightarrow x(t)$

- use Fourier series to represent $\widetilde{x}(t)$
- let T_o→∞ to represent x(t)

TRANSPARENCY 7.11

An aperiodic signal to be represented as a linear combination of complex exponentials.

FOURIER REPRESENTATION OF APERIODIC SIGNALS

$$\widetilde{x}(t) = x(t)$$
 $|t| < \frac{T_o}{2}$

As
$$T_0 \to \infty$$
 $\widetilde{x}(t) \to x(t)$

use Fourier series to represent x̃(t)
 let T_o→∞ to represent x(t)

TRANSPARENCY 7.12

Representation of an aperiodic signal as the limiting form of a periodic signal with the period increasing to infinity.

خواص سری فوریه پیوسته زمان متناوب

خطی بودن

$$x(t) \xrightarrow{f_s} a_k$$
; $x(t) = x(t + T_0)$
 $y(t) \xrightarrow{f_s} b_k$; $y(t) = y(t + T_0)$

$$z(t) = Ax(t) + By(t) \xrightarrow{f_s} z(t) = Aa_k + Bb_k$$
; $z(t) = z(t + T_0)$

$$x(t)$$
 $\xrightarrow{r_s} a_k$; $x(t) = x(t+T_0)$ انتقال زمانی

$$y(t) = x(t - t_0) \xrightarrow{f_s} b_k = a_k e^{-jk(\frac{2\pi}{T_0})t_0} ; \quad y(t) = y(t + T_0)$$

$$x(t) = \sum_{k=0}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})t} \Rightarrow x(t - t_0) = \sum_{k=0}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})(t - t_0)} = \sum_{k=0}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})t} e^{-jk(\frac{2\pi}{T_0})t_0}$$

$$x(t) \xrightarrow{f_s} a_k$$
 ; $x(t) = x(t+T_0)$

$$y(t) = x(-t) \xrightarrow{f_s} b_k = a_{-k} \quad ; \quad y(t) = y(t + T_0)$$

$$x(t) = \sum_{k=-1}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})t} \Rightarrow x(-t) = \sum_{k=-1}^{\infty} a_k e^{-jk(\frac{2\pi}{T_0})t} = \sum_{k=-1}^{\infty} a_{-k} e^{jk(\frac{2\pi}{T_0})t}$$

$$X(t) = X(-t) \Rightarrow a_k = a_{-k}$$
 (iii)

$$x(t) = -x(-t) \Rightarrow a_k = -a_{-k}$$
 (ب

خواص سری فوریه پیوسته زمان متناوب

تغيير مقياس زماني

$$x(t) \xrightarrow{f_s} a_k$$
; $x(t) = x(t + T_0)$

$$y(t) = x(at) \xrightarrow{f_s} a_k$$
; $y(t) = y(t + \frac{T_0}{a})$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})t} \Rightarrow x(at) = \sum_{k=-\infty}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})at} = \sum_{k=-\infty}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})t} = \sum_{k=-\infty}^{\infty} a_k e^{jka\omega_0 t}$$

مزدوج گیری

$$x(t) \xrightarrow{f_s} a_k$$
 $x^*(t) \xrightarrow{f_s} a_{-k}^*$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(\frac{2\pi}{T_0})t} \Rightarrow x^*(t) = \sum_{k=-\infty}^{\infty} a_k^* e^{-jk(\frac{2\pi}{T_0})at} = \sum_{k=-\infty}^{\infty} a_{-k}^* e^{+jk(\frac{2\pi}{T_0})at}$$
اثبات

خواص سری فوریه پیوسته زمان متناوب

- $a_k=a_{-k}^*$ پس $\mathbf{x}(\mathbf{t})=x^*(t)$ اگر سیگنال حقیق باشد چون (1
- اگر سیگنال حقیق و زوج باشد $a_k=a_{-k}^*$ و $a_k=a_{-k}^*$ آن گاه ضرایب سری فوریه مطلقا حقیقی و زوج $a_k=a_{-k}$
- اگر سیگنال حقیق و فرد باشد $a_k = a_{-k} = a_{-k}$ و $a_k = a_{-k} = a_{-k}$ آن گاه ضرایب سری فوریه مطلقا موهومی و فرد $a_k = a_{-k} = a_{-k}$

رابطه پارسوال

$$\frac{1}{T_0}\int_{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

ام است $|a_k|^2$ نشان دهنده قدرت سیگنال در هارمونی ام است

$$< x(t), x(t) > = \frac{1}{T_0} \int_{T_0} x(t) \cdot x^*(t) dt$$