Metodi algebrici per l'informatica

UniShare

Davide Cozzi @dlcgold

Gabriele De Rosa @derogab

Federica Di Lauro @f_dila

Indice

1	Intr	oduzione	4
2	Rip 2.1 2.2	sso Principio del Buon Ordinamento	
3	Alg	ritmo della Divisione	8
4		ritmo di Euclide Divisibilità	
5	Nui	eri in base b 5.0.1 Conversione da base b a base 10	
6	Rel. 6.1 6.2 6.3 6.4 6.5 6.6	zioni Relazioni su un insieme	23 25 25 25 27
7	Ear	zioni Diofantee	20

NDICE	INDICE
NDICE	

8		1	4
	8.1		34
	8.2	1	35
	8.3	Notazione O-grande	86
9	Con	gruenze 3	8
	9.1	Congruenza modulo n	8
	9.2	Congruenze lineari	13
	9.3	Teorema Cinese del Resto	18
10	Stru	itture algebriche 5	3
	10.1	Struttura algebrica	53
		10.1.1 Operazione Binaria	53
		-	53
			64
	10.2		64
			64
		* *	64
	10.3		66
			8
	10.4		60
11	Fun	zione di Eulero	4
			64
			64
12	Teo	remi di Fermat ed Eulero 6	9
	12.1	Teorema di Fermat	69
		12.1.1 Ultimo Teorema di Fermat 6	69
		12.1.2 Piccolo Teorema di Fermat 6	69
	12.2		2
		12.2.1 Formula del Binomio di Newton	2
		12.2.2 Teorema di Eulero	
13	Pote	enze modulo n 7	6
			6
14	Crit	tografia 7	8
		8	8
			78
		* *	31
			36

NDICE	INDICE
NDICE	

15	Nun	neri Primi	87
		15.0.1 Teorema della fattorizzazione unica	89
		15.0.2 Teorema di Euclide	91
		15.0.3 Teorema di Euclide	91
	15.1	Test di Primalità	92
		15.1.1 Pseudoprimi di Fermat	92
		15.1.2 Test di Primalità	96
		15.1.3 Numeri di Carmichael	97
16	Ane	lli e Campi	101
	16.1	Anelli	101
		16.1.1 Anello	101
	16.2	Campi	102
		16.2.1 Campo	102
17	Poli	nomi su un campo 1	L 03
	17.1	Operazioni in $K[x]$	103
		17.1.1 Somma in $K[x]$	
		17.1.2 Prodotto in $K[x]$	
		17.1.3 Osservazioni su $K[x]$	
	17.2	Coefficiente Direttore	104
	17.3	Grado di un polinomio	104
	17.4	Algoritmo della divisione	105
		17.4.1 Divisibilità	107
	17.5	Massimo Comune Divisore	107
		17.5.1 Esistenza di un Massimo Comune Divisore	108
18	Rad	ici di un Polinomio	113
19	Cost	truzione di Campi	L 14
20	Peri	mutazioni 1	115
21	Teo	ria dei Codici 1	116
22	Cod	ici Lineari	117

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio!

Ripasso

Indichiamo con \mathbb{Z} l'insieme dei numeri interi e con \mathbb{N} l'insieme dei numeri naturali (con la convenzione che $0 \in \mathbb{N}$).

Una proprietà fondamentale dell'insieme \mathbb{Z} è il cosiddetto Principio del Buon Ordinamento.

2.1 Principio del Buon Ordinamento

Principio 1. Sia
$$n_o \in \mathbb{Z}$$
, $\mathbb{Z}_{n_o} = \{n \in \mathbb{Z} | n \geq n_0\}$

Ogni sottoinsieme non vuoto di \mathbb{Z}_{n_0} ammette minimo.

$$\forall X \subseteq \mathbb{Z}_{n_0} \ con \ X \neq \emptyset \qquad \exists x_0 \in X \ tale \ che \ x_0 \leq x \quad \forall x \in X$$

Il principio del buon ordinamento è equivalente al principio di induzione.

2.2 Principio di Induzione

Principio 2. Siano $n_0 \in \mathbb{Z}$ e P = P(n) un enunciato valido per $\forall n \geq n_0$ Se

- 1. $P(n_0)$ è vero
- 2. I) $\forall n > n_0 \ P(n-1) \ vero \ implica \ P(n) \ vero$
 - II) $\forall n > n_0 \ P(k) \ vero \ \forall n_0 \le k \le n \ implies \ P(n) \ vero$

Allora P(n) è vero $\forall n \geq n_0$

Esempio 1. Somma dei primi n numeri interi:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{2.1}$$

Dimostrazione. Si ha che:

$$P(1): \sum_{i=1}^{1} i = \frac{1 \cdot 2}{2} = 1$$

Ipotesi:

$$P(n-1): \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$$

Tesi:

$$P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Per il Principio di Induzione:

$$\sum_{i=1}^{n} i = (\sum_{i=1}^{n-1} i) + n = \frac{(n-1)n}{2} + n = \frac{(n-1)n + 2n}{2} = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}$$

 $\implies P(n)$ è vera $\forall n \implies$ la tesi è verificata

Nota 1. Nomenclature:

X = insieme

|X|=cardinalità dell'insieme <math display="inline">X=numero degli elementi di X $P(X)=insieme delle parti di <math display="inline">X=\{Y|Y\subseteq X\}$

Esempio 2. Se un insieme ha cardinalità n allora il suo insieme delle parti ha cardinalità 2^n .

$$|X| = n \implies |P(X)| = 2^n \tag{2.2}$$

Dimostrazione. Si ha, per il Principio di Induzione che:

- P(0): se un insieme X ha cardinalità 0 (ovvero $X = \emptyset$), allora il suo insieme delle parti P(X) ha cardinalità $2^0 = 1$, infatti $P(X) = \{\emptyset\}$
- P(n-1) vera $\implies P(n)$ vera.

Sia X un insieme di cardinalità n e sia $x_0 \in X$ (che certamente esiste perchè n > 0);

$$P(X) = A \cup B$$

con

$$A = \{Y | Y \subseteq X \cap x_0 \in Y\}$$

$$B = \{ Z | Z \subseteq X \cap x_0 \notin Z \}$$

Noto che $A \cup B = \emptyset$ e che |P(X)| = |A| + |B|

Considero $\overline{X} = X \setminus \{x_0\}$ l'insieme dei sottoinsiemi che non contengono x_0 e ne derivo che la cardinalità $|\overline{X}| = n - 1$. Risulta che $B = P(\overline{X})$

 $\exists f: A \to B \text{ (biunivoca e) invertibile tale che}$

$$Y \to Y \setminus \{x_0\}$$

$$Z \cup \{x_0\} \to Z$$

da cui derivo che $|A| = |B| = 2^{n-1}$

Ottengo quindi che

$$|P(X)| = |A| + |B| = 2^{n-1} + 2^{n-1} = 2^n$$

Dato che $|\overline{X}| = n - 1 \implies |P(\overline{X})| = 2^{n-1}$ è vera, allora anche $|X| = n \implies |P(X)| = 2^n$ è vera.

Algoritmo della Divisione

Algoritmo 1. Dati n, m interi con n > m > 0, l'usuale algoritmo della divisione permette di determinare due interi q e r (il quoziente e il resto della divisione) tali che mq è il multiplo di di m che più si avvicina a n per difetto e r = n - mq misura lo scarto.

Possiamo generalizzare con il seguente teorema:

Teorema 1. Siano $n, m \in \mathbb{Z}$ con $m \neq 0$. Allora esistono e sono unici due interi q e r tali che:

- n = mq + r
- $0 \le r < |m|$

Definizione 1. Gli interi q e r del teorema precedente si dicono quoziente e resto della divisione di n per m.

Dimostrazione. Esistenza di q e r.

1. Supponiamo $n \geq 0$.

Fissato arbitrariamente m procediamo per induzione su n.

- (a) n=0: le condizioni sono verificate con q=r=0 perchè $0=m\cdot 0+0$.
- (b) $n \ge 0$:
 - i. n < |m|: le condizioni sono verificate con q = 0 e r = n.
 - ii. $n \ge |m|$ $n > n - |m| \ge 0$

Per induzione $\exists q_1 \in r_1$ tali che

$$n - |m| = mq_1 + r_1$$

con
$$0 \le r_1 < |m|$$
. Quindi

$$n = |m| + mq_1 - r_1$$

con $0 \le r_1 < |m|$.

da cui se

• m > 0:

$$n = m + mq_1 + r_1 = m(q_1 + 1) + r_1$$

Il teorema è vero con

$$q = q_1 + 1$$

$$r = r_1$$

• m < 0:

$$n = -m + mq_1 + r_1 = m(q_1 - 1) + r_1$$

Il teorema è vero con

$$q = q_1 - 1$$

$$r = r_1$$

2. Supponiamo n < 0. Allora -n > 0 e per il punto $(1) \exists q_1, r_1$ tali che

$$-n = mq_1 + r_1$$

con $0 \le r_1 < |m|$. Pertanto

$$n = -mq_1 - r_1$$

Aggiungo e sottraggo |m| ottenendo

$$n = -mq_1 - |m| + |m| - r_1$$

da cui se

• m > 0:

$$n = -mq_1 - m + (m - r_1)$$

Il teorema è vero con

$$q = -q_1 - 1$$

$$r = m - r_1$$

Nota 2. $0 \le r_1 < m \ quindi - m \le -r_1 < 0 \ e \ 0 \le r = m - r_1 < m$ • m < 0:

$$n = -mq_1 + m - m - r_1 = m(-q_1 + 1) - m - r_1$$

Il teorema è vero con

$$q = -q_1 + 1$$
$$r = -m - r_1$$

Unicità di q e r.

Siano

$$n = mq + r$$

con $0 \le r < |m|$ e

$$n = mq_1 + r_1$$

con $0 \le r_1 < |m|$.

Mostriamo che $q = q_1$ e $r = r_1$.

Supponiamo PER ASSURDO che $r \neq r_1$; possiamo assumere $r_1 > r$. Quindi

$$mq + r = mq_1 + r_1$$

$$m(q - q_1) = r_1 - r$$

Pertanto

$$|m||q - q_1| = |r_1 - r| = r_1 - r < |m|$$
 $|m||q - q_1| < m$
 $|q - q_1| < 1$
 $|q - q_1| = 0 \implies q = q_1$

Dato che

$$n = mq + r = mq_1 + r_1 \implies r = r_1$$

che è ASSURDO poiché abbiamo assunto $r \neq r_1$.

Osservazione 1. Dati $n, m \in \mathbb{Z}$ con $m \neq 0$ esistono infinite coppie di interi x e y che soddisfano la condizione (1) del teorema precedente, cioè n = mx + y. Infatti, scelto comunque un intero x, basta porre y = n - mx. È invece unica la coppia q, r che soddisfa entrambe le condizioni (1) e (2).

Algoritmo di Euclide

4.1 Divisibilità

Definizione 2. Siano $a, b \in \mathbb{Z}$.

Se esiste $c \in \mathbb{Z}$ con a = bc diciamo che b divide a.

Nota 3. b divide a è indicato con b|a.

Osservazione 2. Se b|a (quindi anche -b|a) diciamo che a è un multiplo di b, ovvero b è un fattore (o divisore) di a.

Ovviamente ± 1 e $\pm a$ sono fattori di ogni intero a. Se b|a e $b \neq \pm 1, \pm a$ diciamo che b è un **divisore proprio** di a.

Osservazione 3. Siano $a, b \in \mathbb{Z}$ con $a \neq 0, b \neq 0$ Se a|b e b|a allora $b = \pm a$.

Dimostrazione. Poiché

1.
$$a|b \implies \exists c_0 \in \mathbb{Z} \text{ con } b = ac_0$$

2.
$$b|a \implies \exists c_1 \in \mathbb{Z} \text{ con } a = bc_1$$

Sostituisco la (1.) nella (2.) e trovo

$$a = bc_1$$

$$a = ac_0c_1$$

$$a - ac_0c_1 = 0$$

$$a(1 - c_0c_1) = 0$$

Da cui per il principio di annullamento del prodotto ottengo a=0 e

$$c_0c_1=1$$

Quindi

$$c_0 = c_1 = 1 \implies b = a$$

$$c_0 = c_1 = -1 \implies b = -a$$

Ho dimostrato che

$$a|b \in b|a \iff b = \pm a$$

Esempio 3. Dimostro che se c|a e c|b allora c|a + b.

Dimostrazione.

$$c|a \implies \exists d_0 \in \mathbb{Z}|a = d_0c$$

$$c|b \implies \exists d_1 \in \mathbb{Z}|b = d_1c$$

Derivo che

$$a + b = d_0c + d_1c = c(d_0 + d_1)$$

Essendo $d_0 + d_1 \in \mathbb{Z}$ la tesi è dimostrata.

Esempio 4. Dimostro che se c|a e c|b allora c|a - b.

Dimostrazione.

$$c|a \implies \exists d_0 \in \mathbb{Z}|a = d_0c$$

$$c|b \implies \exists d_1 \in \mathbb{Z}|b = d_1c$$

Derivo che

$$a - b = d_0c - d_1c = c(d_0 - d_1)$$

Essendo $d_0 - d_1 \in \mathbb{Z}$ la tesi è dimostrata.

Esemplo 5. Dimostro che se c|a e c|b allora c|ax + by, $\forall x, y \in \mathbb{Z}$.

Dimostrazione.

$$c|a \implies \exists d_0 \in \mathbb{Z}|a = d_0c$$

$$c|b \implies \exists d_1 \in \mathbb{Z}|b = d_1c$$

Derivo che

$$ax + by = d_0cx + d_1cy = c(d_0x + d_1y)$$

Essendo $d_0x + d_1y \in \mathbb{Z}$ la tesi è dimostrata.

Esempio 6. Dimostro che se c|a allora c|a + b \implies c|b

Dimostrazione.

$$a = k_0 c \operatorname{con} k_0 \in \mathbb{Z}$$

$$a+b=k_1c \text{ con } k_1 \in \mathbb{Z}$$

Sostituendo ottengo che

$$a + b = k_0c + b = k_1c$$

da cui

$$b = k_1 c - k_0 c = c(k_1 - k_0)$$

Essendo $k_1 - k_0 \in \mathbb{Z}$ la tesi è dimostrata.

4.2 Massimo Comune Divisore

Definizione 3. Siano $a, b \in \mathbb{Z}$ con $a \neq 0$, $b \neq 0$. Si dice che d è un **massimo comune divisore** tra a e b se

- 1. d|a e d|b
- 2. $se \ c \in \mathbb{Z} \ con \ c|a \ e \ c|b \ allora \ c|d$

4.2.1 Algoritmo di Euclide

Teorema 2. Esistenza di un Massimo Comune Divisore

Siano $a, b \in \mathbb{Z}$ con a > 0, b > 0.

Allora esiste un massimo comune divisore d tra a e b.

Inoltre $\exists s, t \in \mathbb{Z} \ tali \ che$

$$d = as + bt$$
 Identità di Bezout

Dimostrazione. Suppongo $a \ge b$ ed eseguo l'Algoritmo della Divisione..

$$a = bq_1 + r_1 \text{ con } 0 < r_1 < b$$

Poi ricorsivamente

$$r_1 \neq 0, b = r_1 q_2 + r_2 \text{ con } 0 \leq r_2 < r_1$$

$$r_2 \neq 0, r_1 = r_2 q_3 + r_3 \text{ con } 0 \leq r_3 < r_2$$

:

Fino a quando $r_k = 0$.

Nota 4. La successione dei resti è una successione strettamente decrescente di interi non negativi

$$b > r_1 > r_2 > r_3 > r_4 > \dots > r_k = 0$$

Dopo un numero finito di passi troverò resto $r_k = 0$.

Proseguendo, se

• k = 1: allora

$$a = bq_1$$

ed il massimo comune divisore è

$$d = b$$

- k > 1: allora
 - (1) $a = bq_1 + r_1$
 - (2) $b = r_1q_2 + r_2$
 - (3) $r_1 = r_2 q_3 + r_3$
 - $(4) r_2 = r_3 q_4 + r_4$:
 - (k-1) $r_{k-3} = r_{k-2}q_{k-1} + r_{k-1}$
 - (k) $r_{k-2} = r_{k-1}q_k + r_k$

Considerando $r_k = 0$ quindi il massimo comune divisore è dato dall'ultimo resto non nullo che trovo applicando il procedimento dell'Algoritmo di Euclide (delle divisioni successive), ovvero

$$d = r_{k-1}$$

Devo quindi mostrare che r_{k-1} soddisfa entrambe le condizioni per essere un massimo comune divisore.

1. $d|a \in d|b$

Considerando i passi dell'Algoritmo di Euclide dal basso verso l'alto e sostituendo man mano...

(k)
$$r_{k-2} = r_{k-1}q_k + r_k \implies r_{k-1}|r_{k-2}$$

(k-1)
$$r_{k-3} = r_{k-2}q_{k-1} + r_{k-1}$$

sostituisco (k) in $(k-1)$
 $r_{k-3} = (r_{k-1}q_k)q_{k-1} + r_{k-1}$
 $r_{k-3} = r_{k-1}(q_kq_{k-1} + 1) \implies r_{k-1}|r_{k-3}$
 \vdots

$$(2) \cdots \implies r_{k-1}|b$$

$$(1) \cdots \implies r_{k-1}|a$$

:

fino ad arrivare a dimostrare la prima condizione con (2) e (1).

2. se $c \in \mathbb{Z}$ con $c|a \in c|b$ allora c|d

 $\exists c \in \mathbb{Z} \text{ con } c | a \in c | b \text{ } (c \text{ } divisore \text{ } comune \text{ } tra \text{ } a \text{ } e \text{ } b)$ quindi

$$a = c\overline{a}$$

$$b = c\overline{b}$$

 $\operatorname{con}\, \overline{a}, \overline{b} \in \mathbb{Z}.$

Considerando i passi dell'Algoritmo di Euclide dall'alto verso il basso e sostituendo man mano...

(1)
$$a = bq_1 + r_1$$

 $r_1 = a - bq_1$
 $r_1 = c\overline{a} - c\overline{b}q_1$
 $r_1 = c(\overline{a} - \overline{b}q_1)$
Essendo $\overline{a} - \overline{b}q_1 \in \mathbb{Z} \implies c|r_1$

Scrivo
$$r_1 = c\overline{r_1}$$

(2)
$$b = r_1q_2 + r_2$$

 $r_2 = b - r_1q_2$
 $r_2 = c\overline{b} - c\overline{r_1}q_2$
 $r_2 = c(\overline{b} - \overline{r_1}q_2)$
Essendo $\overline{b} - \overline{r_1}q_2 \in \mathbb{Z} \implies c|r_2$

Scrivo
$$r_2 = c\overline{r_2}$$

 \vdots
 $(3) \cdots \implies c|r_{k-1}$
 \vdots

fino ad arrivare a dimostrare la seconda condizione con (k).

Dimostro l'Identità di Bezout

Considerando i passi dell'Algoritmo di Euclide dall'alto verso il basso e sostituendo man mano...

(1)
$$a = bq_1 + r_1$$

 $r_1 = a - bq_1$
 $r_1 = a \cdot 1 + b(-q_1)$

(2)
$$b = r_1q_2 + r_2$$

 $r_2 = b - r_1q_2$
 $r_2 = b - (a - bq_1)q_2$
 $r_2 = b(1 + q_1q_2) + a(-q_2)$

:

$$(k-1)$$
 $r_{k-1} = as + bt$

fino a quando, continuando in questo modo, determino $s, t \in \mathbb{Z}$ con $r_{k-1} = as + bt$, ovvero l'identità di Bezout.

Esempio 7. Trovare il massimo comune divisore tra a=520, b=412 utilizzando l'algoritmo di Euclide.

$$520 = 412 \cdot 1 + 108 \longrightarrow q_1 = 1, r_1 = 108$$

$$412 = 108 \cdot 3 + 88 \longrightarrow q_2 = 3, r_2 = 88$$

$$108 = 88 \cdot 1 + 20 \longrightarrow q_3 = 1, r_3 = 20$$

$$88 = 20 \cdot 4 + 20 \longrightarrow q_4 = 4, r_4 = 8$$

$$20 = 8 \cdot 2 + 4 \longrightarrow q_5 = 2, r_5 = 4$$

$$8 = 4 \cdot 2 \longrightarrow q_6 = 2, r_6 = 0$$

Dato che r_6 è nullo, $r_5 = (520, 412) = 4$ è il massimo comune divisore.

Trovare anche l'Identità di Bezout:

$$r_1 = 108 = 520 - 412 = a - b$$

$$r_2 = 88 = b - 108 \cdot 3 = b - (a - b)3 = 4b - 3a$$

$$r_3 = 20 = 108 - 88 \cdot 1 = (a - b) - (4b - 3a) = 4a - 5b$$

$$r_4 = 8 = 88 - 20 \cdot 4 = (4b - 3a) - (4a - 5b)4 = 24b - 19a$$

$$r_5 = 4 = 20 - 8 \cdot 2 = (4a - 5b) - (24b - 19a)2 = 42a - 53b$$
quindi

$$s = 42$$

$$t = -53$$

e l'identità di Bezout è

$$4 = 42 \cdot 520 - 53 \cdot 412$$

Esempio 8. Trovare il massimo comune divisore tra a=589, b=437 utilizzando l'algoritmo di Euclide.

$$589 = 437 \cdot 1 + 152 \longrightarrow q_1 = 1, r_1 = 152$$

 $437 = 152 \cdot 2 + 133 \longrightarrow q_2 = 2, r_2 = 133$
 $152 = 133 \cdot 1 + 19 \longrightarrow q_3 = 1, r_3 = 19$

$$133 = 19 \cdot 7 + 0 \longrightarrow q_4 = 7, r_4 = 0$$

Dato che r_4 è nullo, $r_3 = (589, 437) = 19$ è il massimo comune divisore.

Trovare anche l'Identità di Bezout:

$$r_1 = 152 = 589 - 437 = a - b$$

 $r_2 = 133 = 437 - 152 \cdot 2 = b - 152 \cdot 2 = b - 2(a - b) = 3b - 2a$
 $r_3 = 19 = 152 - 133 = r_1 - r_2 = (a - b) - (3b - 2a) = 3a - 4b$
quindi

$$s = 3$$

$$t = -4$$

e l'identità di Bezout è

$$19 = 3 \cdot 589 - 4 \cdot 437$$

Teorema 3. Se d è un massimo comune divisore tra a e b, l'unico altro massimo comune divisore è -d.

Dimostrazione. È chiaro che se d è massimo comune divisore tra a e b, anche -d lo è.

Supponiamo che \overline{d} è un altro massimo comune divisore tra $a \in b$.

- 1. $d|a \in d|b$
- 2. $\forall c \in \mathbb{Z}$, con $c|a \in c|b$ si ha c|d
- 1' $\overline{d}|a \in \overline{d}|b$
- 2' $\forall c \in \mathbb{Z}$, con $c|a \in c|b$ si ha $c|\overline{d}$

Applico la (2.) con $c = \overline{d}$ e trovo $\overline{D}|d$. Applico la (2') con c = d e trovo $d|\overline{D}$.

Quindi
$$d = \pm \overline{d}$$
.

Nota 5. Per convenzione si dice massimo comune divisore tra a e b l'unico massimo comune divisore positivo tra a e b e si indica con (a,b)

Osservazione 4. Siano
$$a, b \in \mathbb{Z}$$
 con $a \neq 0, b \neq 0$.
Si può provare che $(a, b) = (-a, b) = (a, -b) = (-a, -b)$.

4.2.2 Numeri Primi

Definizione 4. Due numeri interi a, b si dicono **primi** (o coprimi) tra loro se (a, b) = 1.

Osservazione 5. Siano $a, b \in \mathbb{Z}$ e sia d = (a, b). Quindi $a = d\overline{a}$ e $b = d\overline{b}$ con $\overline{a}, \overline{b} \in \mathbb{Z}$. Allora $(\overline{a}, \overline{b}) = 1$.

Dimostrazione. Sia $t = (\overline{a}, \overline{b})$.

Da cui

$$t|\overline{a} \in t|\overline{b}$$

 $td|a \in td|b$

quindi td è un divisore comune di a e b, perciò deve dividere il loro massimo comune divisore d

td|d

Concludo che t=1.

Osservazione 6. Siano $a, b \in \mathbb{Z}$.

Nota 6. Se a|bc non è sempre vero che a|b o a|c. Ad esempio a=4, b=2, c=6

Se $a|bc \ e \ (a,b) = 1 \ allora \ a|c.$

Dimostrazione. Da ipotesi ho a|bc allora

$$bc = ak$$

con $k \in \mathbb{Z}$.

Inoltre, sempre da ipotesi, ho (a, b) = 1 allora, per l'identità di Bezout,

$$\exists x, y \in \mathbb{Z} \text{ tale che } 1 = ax + by$$

Moltiplico per c:

$$c = acx + bcy$$

ma bc = ak, quindi

$$c = acx + aky$$

$$c = a(cx + ky)$$

Essendo $cx + ky \in \mathbb{Z} \implies a|c$

Numeri in base b

Teorema 4. $Sia\ b = \mathbb{Z}\ con\ b \geq 2$.

Ogni numero intero può essere scritto in un unico e solo modo nella forma

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_1 b^1 + d_0$$

 $con \ 0 \le d_i < b \quad \forall i = 0 \dots k \ e \ d_k \ne 0 \ per \ k > 0.$

Dimostrazione. Per induzione su n.

$$n = 0$$
: $n = 0 = 0 \cdot b^0$ vero

n > 0: supponiamo il teorema vero per ogni $0 \le m < n$.

Dividiamo con resto n per b e troviamo

$$n = bq + r \text{ con } 0 < r < b$$

Dato che q < n, per l'ipotesi induttiva q può essere riscritto come

$$q = c_{k-1}b^{k-1} + c_{k-2}b^{k-2} + \dots + c_1b^1 + c_0$$

con $0 \le c_i < b \text{ per } i = 0 \dots (k-1).$

Da cui

$$n = bq + r$$

$$n = b(c_{k-1}b^{k-1} + c_{k-2}b^{k-2} + \dots + c_1b^1 + c_0) + r$$

$$n = c_{k-1}b^k + c_{k-2}b^{k-1} + \dots + c_1b^2 + c_0b + r$$

Presi
$$d_k = c_{k-1}, d_{k-1} = c_{k-2}, \dots, d_1 = c_0, d_0 = r$$
 ottengo

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b + d_0$$

 $con 0 \le d_i < b \text{ per } i = 0 \dots k.$

Quindi il teorema è dimostrato.

Nota 7. L'unicità di questa espressione segue dall'unicità di q ed r.

Definizione 5. Fissato $b \in \mathbb{Z}$, $b \ge 2$. Sia $n \ge 0$

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b + d_0$$

 $con 0 \le d_i < b \ per \ i = 0 \dots k.$

Gli interi d_i con $i = 0 \dots k$ si dicono le cifre di n in base b

$$n = (d_k d_{k-1} \dots d_1 d_0)_b$$

5.0.1 Conversione da base b a base 10

Teorema 5. Sia $n \ge 0$ che in base b è rappresentato dalla sequenza di cifre $(d_k d_{k-1} \dots d_1 d_0)_b$.

 \grave{E} conveniente impostare la conversione in base 10 in questo modo

$$n = (\dots((d_k b + d_{k-1})b + d_{k-2})b + \dots + d_1)b + d_0$$

 $Questo\ metodo\ comporta\ solo\ k\ moltiplicazioni\ per\ b\ e\ k\ addizioni.$

Esempio 9.

$$n = (61405)_7$$
$$((((6 \cdot 7 + 1)7 + 4)7 + 0)7 + 5) = 14950_{10}$$

5.0.2 Conversione da base 10 a base b

Teorema 6. Osserviamo che d_0, d_1, \ldots, d_k sono i resti delle divisioni

$$n = bq_0 + d_0 \ con \ 0 \le d_0 < b$$

$$q_0 = bq_1 + d_1 \ con \ 0 \le d_1 < b$$

$$q_1 = bq_2 + d_2 \ con \ 0 \le d_2 < b$$

:

Esempio 10.

$$n = 14950_{10}$$
$$b = 7$$

$$14950 = 7 \cdot 2135 + 5$$
$$2135 = 7 \cdot 305 + 0$$
$$305 = 7 \cdot 43 + 4$$
$$43 = 7 \cdot 6 + 1$$
$$6 = 7 \cdot 0 + 6$$

$$n = 61405_7$$

Osservazione 7. Il numero di cifre in base b di un intero non negativo

$$n = d_k b^k + d_{k-1} b^{k-1} + \dots + d_2 b^2 + d_1 b + d_0$$

 \grave{e}

$$k+1 = \lfloor \log_b n \rfloor + 1 = \lfloor \frac{\log n}{\log b} + 1 \rfloor$$

siccome

$$b^{k} \le n < b^{k+1}$$
$$k \le \log_{b} n < k+1$$
$$k = \lfloor \log_{b} n \rfloor$$

Relazioni

6.1 Relazioni su un insieme

Definizione 6. Sia A un insieme non vuoto. Una relazione R su A è un sottoinsieme di $A \times A$.

Nota 8. Se R è una relazione su A, $(a,b) \in R$ si scrive anche aRb.

6.2 Proprietà delle relazioni

Definizione 7. Una relazione R su un insieme A si dice:

- riflessiva se $\forall a \in A, (a, a) \in R$
- $\underline{simmetrica}$ se $\forall a, b \in A, (a, b) \in R \implies (b, a) \in R$
- <u>antisimmetrica</u> se $\forall a, b \in A, (a, b) \in R$ e $(b, a) \in R \implies a = b$
- $\bullet \ \underline{transitiva} \ se \ \forall a,b,c \in A, \ (a,b) \in R \ e \ (b,c) \in R \implies (a,c) \in R$

```
Esempio 11. Dato A = \{a, b, c, d\}.
Sia R = \{(a, a), (b, b), (c, c), (d, d), (a, d), (d, c), (a, c), (c, a), (d, a), (c, d)\}.
```

 $R \ \dot{e} \ simmetrica, \ riflessiva, \ transitiva.$

Esempio 12. Dato
$$A = \{1, 2, 3\}$$
.
Sia $R = \{(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)\}$.

 $R \ \dot{e}$

- NON è riflessiva
- NON è simmetrica
- NON è antisimmetrica perchè $(1,2) \in R, (2,1 \in R)$ ma $1 \neq 2$.
- NON è transitiva perchè $(1,2) \in R, (2,3) \in R$ ma $(1,3) \notin R$

Esempio 13. Sia A un insieme qualsiasi e sia R la relazione di uguaglianza tra elementi di A, cioè

$$(a,b) \in R \iff a=b$$

R è riflessiva, simmetrica, antisimmetrica, transitiva.

Esempio 14. Sia X un insieme qualsiasi e sia P(X) l'insieme delle parti di X. Sia quindi R la relazione di inclusione su P(X), cioè

$$(Y,Z) \in R \iff Y \subseteq Z$$

 $con Y, Z \in P(X)$.

 $R \ \dot{e}$

• riflessiva perchè

$$\forall Y \in P(X)$$
$$Y \subseteq Y$$
$$(Y,Y) \in R$$

• antisimmetrica perchè

$$\forall Y,Z \in P(X)$$

$$(Y,Z) \in R \ e \ (Z,Y) \in R \implies Y \subseteq Z \ e \ Z \subseteq Y \implies Y = Z$$

• transitiva perchè

$$\forall Y, Z, K \in P(X)$$

$$Y \subseteq Z \ e \ Z \subseteq K \implies Y \subseteq K$$

$$(Y, Z) \in R \ e \ (Z, K) \in R \implies (Y, K) \in R$$

6.2.1 Relazione di Equivalenza

Definizione 8. Sia R una relazione su un insieme A. Si dice che R è una relazione di equivalenza se R è

- riflessiva
- simmetrica
- transitiva

6.2.2 Relazione d'Ordine

Definizione 9. Sia R una relazione su un insieme A. Si dice che R è una **relazione d'ordine** parziale se R è

- riflessiva
- antisimmetrica
- transitiva

6.3 Classi di Equivalenza

Definizione 10. Sia A un insieme non vuoto e sia R una relazione di equivalenza su A. Per $a \in A$, si definisce **classe di equivalenza** di a l'insieme

$$[a]_R = \{b \in A | (a,b) \in R\}$$

Nota 9. $[a]_R$ è un sottoinsieme di A.

Nota 10. $[a]_R \neq \emptyset$ perchè R è riflessiva dunque $(a, a) \in R$ e pertanto $a \in [a]_R$.

Nota 11. Data $[a]_R$, a si definisce **rappresentante** della classe di equivalenza.

Esempio 15.
$$Sia\ A = \{a, b, c, d\}$$

 $e\ sia\ R = \{(a, a), (b, b), (c, c), (d, d), (a, d), (d, c), (a, c), (c, a), (d, a), (c, d)\}.$

$$[a]_R = [c]_R = [d]_R = \{a, c, d\}$$

 $[b]_R = \{b\}$

Nota 12. Se

$$[a]_R = \{a, c, d\}$$

allora

$$[a]_R = [c]_R = [d]_R$$

Teorema 7. Sia A un insieme non vuoto e sia R una relazione di equivalenza.

$$\forall a, b \in A, [a]_R = [b]_R \text{ oppure } [a]_R \cap [b]_R = \emptyset$$

Due classi di equivalenza o coincidono o non hanno elementi in comune.

Dimostrazione. È necessario dimostrare che se $[a]_R \cap [b]_R \neq \emptyset \implies [a]_R = [b]_R$

 $\exists c \in A \text{ con } c \in [a]_R \cap [b]_R.$ Quindi $(c, a) \in R$ e $(c, b) \in R.$ Ma R è simmetrica $\implies (a, c) \in R$ e $(b, c) \in R.$ Ma R è transitiva $\implies (a, b) \in R.$

Dimostro che $[a]_R = [a]_R$.

• $[a]_R \subseteq [b]_R$

Sia $x \in [a]_R$ allora $(a, x) \in R$ Io già conosco che $(b, a) \in R$. Per transitività anche $(b, x) \in R$. Quindi $x \in [b]_R$

... dal quale $[a]_R \subseteq [b]_R$.

• $[b]_R \subseteq [a]_R$

Sia $y \in [b]_R$ allora $(b,y) \in R$ Per riflessività anche $(y,b) \in R$. Io già conosco che $(b,a) \in R$. Per transitività anche $(y,a) \in R$. Per riflessività anche $(a,y) \in R$. Quindi $y \in [a]_R$

... dal quale $[b]_R \subseteq [a]_R$.

6.4 Insieme Quoziente

Definizione 11. Sia A un insieme non vuoto

e sia R una relazione di equivalenza su A. L'**insieme quoziente** A/R è definito come

$$A/R = \{ [a]_R \mid a \in R \}$$

Esempio 16. Vedi precedente teorema (7).

$$A/R = \{[a]_R, [b]_R\}$$

Osservazione 8. Le relazioni di equivalenza si indicano anche con il simbolo \sim . Pertanto:

- R si indica anche con \sim
- $(a,b) \in R$, aRb si indica anche con $a \sim b$
- A/R si indica anche con A/\sim

6.5 Partizioni su un Insieme

Definizione 12. Sia A un insieme.

Una partizione \mathcal{F} di A è una collezione di sottoinsiemi di A tale che

- 1. $\forall X \in \mathcal{F}, X \neq \emptyset$
- $2. \bigcup_{x \in \mathcal{F}} X = A$
- 3. $\forall X, Y \in \mathcal{F} \ o \ X = Y \ oppure \ X \cap Y = \emptyset$

Teorema 8. Ogni relazione di equivalenza R su un insieme A determina una partizione di A (non vuoto), i cui elementi sono le classi di equivalenza. Viceversa, ogni partizione \mathcal{F} di A determina una relazione di equivalenza su A, le cui classi sono gli elementi di \mathcal{F} .

Dimostrazione. Sia R una relazione di equivalenza su A.

Ogni $a \in A$ appartiene a una e una sola classe di equivalenza rispetto a R. Infatti se $a \in [a]_R$ e $b \in [b]_R$, allora $[a]_R = [b]_R$.

Quindi le classi di equivalenza sono gli elementi di una partizione di A

$$\mathcal{F} = \{ [a]_R \mid a \in A \}$$

tale che
$$\bigcup_{a \in A} [a]_R = A$$
.

Viceversa, sia \mathcal{F}' una partizione di A ed R' una relazione di equivalenza su A tale che

$$\forall a, b \in A, (a, b) \in R' \iff \exists X \in \mathcal{F} \mid a, b \in X$$

ovvero a è in relazione con b secondo R' se e solo se esiste un elemento Xdella partizione \mathcal{F} che contiene sia a che b.

E immediato verificare che R' è una relazione di equivalenza su A, le cui classi di equivalenza sono gli elementi di \mathcal{F} .

Infine dimostro che R' è una relazione di equivalenza poiché è è riflessiva, simmetrica, transitiva.

Nota 13. Gli elementi A/R (insieme quoziente) sono gli elementi della partizione determinata da R su A.

Passare al quoziente significa identificare tra loro elementi equivalenti in R.

6.6 Proiezione Canonica

Definizione 13. Siano

- A un insieme (non vuoto)
- R una relazione di equivalenza su A
- $A/R = \{[a]_r | a \in A\}$ l'insieme quoziente

la proiezione canonica di A su A/R è

$$\pi: A \longrightarrow A/R$$

$$a \longrightarrow [a]_R$$

cioè la funzione che associa ad ogni $a \in A$ la sua classe di equivalenza $[a]_R$.

Nota 14. La proiezione canonica π è una funzione suriettiva, ma non iniettiva.

Equazioni Diofantee

Definizione 14. Una equazione diofantea è una equazione della forma

$$ax + by = c$$

con

- $a, b, c \in \mathbb{Z}$
- \bullet x, y sono incognite
- $a \neq 0, b \neq 0$

Vogliamo determinare, se esistono, delle soluzioni <u>intere</u> dell'equazione, cioè coppie

$$(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$$

 $tali\ che$

$$ax_0 + by_0 = c$$

Esempio 17. 4x + 6y = 9 ha soluzioni?

No. 4x + 6y = 9 non ha soluzioni Perchè se esistesse $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ con $4x_0 + 6y_0 = 9$ avrei che $2(2x_0 + 3y_0) = 9$ ovvero 2|9. Ma non è vero che 2|9, essendo 9 un numero dispari.

Esempio 18. 6x + 5y = 3 ha soluzioni? 6x + 5y = 3 ha come soluzione, per esempio, (3, -3) e (8, -9).

Teorema 9. Sia ax + by = c una equazione diofantea con $a, b, c \in \mathbb{Z}$ e $a \neq 0, b \neq 0$.

Condizione necessaria e sufficiente affinché l'equazione abbia soluzioni è che

Dimostrazione. Supponiamo che l'equazione diofante
aax+by=cammetta soluzioni. Quindi

$$\exists (x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$$

tale che

$$ax_0 + by_0 = c$$

Posto

$$d = (a, b)$$

so che

$$d|a \in d|b$$

quindi d divide ogni combinazione lineare a coefficienti interi di a e b, compresa $ax_0 + by_0$:

$$d|ax_0 + by_0$$

Essendo $ax_0 + by_0 = c$ otteniamo

come volevamo.

Viceversa sia

d|c

Quindi

$$c = d\overline{c}$$

con $\bar{c} \in \mathbb{Z}$. Per l'identità di Bezout $\exists s, t$ tali che

$$d = as + bt$$

Moltiplicando per \bar{c} ottengo

$$c = d\overline{c} = (as + bt)\overline{c}$$

$$c = as\overline{c} + bt\overline{c}$$

$$c = a(s\overline{c}) + b(t\overline{c})$$

Pertanto

$$(x_0 = s\overline{c}, y_0 = t\overline{c})$$

è una soluzione dell'equazione diofante
a $ax+by=c. \label{eq:constraint}$

Esempio 19. Determiniamo, se esiste, una soluzione dell'equazione diofantea 74x + 22y = 10.

Calcolo il Massimo Comune Divisore (74, 22)

$$74 = 22 \cdot 3 + 8$$

$$22 = 8 \cdot 2 + 6$$

$$8 = 6 \cdot 1 + 2$$

$$6 = 2 \cdot 3$$

Quindi

$$(74, 22) = 2$$

Poiché 2|10 l'equazione ammette soluzioni.

Ricavo l'Identità di Bezout a = 74, b = 22

$$8 = a - 3b$$

$$6 = b - 2 \cdot 8 = b - 2(a - 3b) = 7b - 2a$$

$$2 = 8 - 6 = a - 3b - (7b - 2a) = 3a - 10b$$

Quindi

$$(74, 22) = 2 = 3a - 10b$$

Dato che $10 = 2 \cdot 5$, moltiplico l'identità di Bezout per 5

$$10 = 15a - 50b$$

Di conseguenza, una soluzione di 74x + 22y = 10 è (15, -50).

Come si determinano, se esistono, tutte le soluzioni dell'equazione diofantea ax + by = c?

Teorema 10. Data l'equazione diofantea ax + by = c con $a, b, c \in \mathbb{Z}$ e $a \neq 0, b \neq 0$.

Supponiamo che se d = (a, b) allora d|c.

 $Sia(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ una soluzione di ax + by = c.

Allora tutte e sole le soluzioni di ax + by = c sono date dalle coppie (x_k, y_k) , al variare di $k \in \mathbb{Z}$, dove

$$x_k = x_0 + \frac{b}{d}k$$

$$y_k = y_0 - \frac{a}{d}k$$

Nota 15.

$$\overline{b} = \frac{b}{d} \in \mathbb{Z}, \ \overline{a} = \frac{a}{d} \in \mathbb{Z}$$

Dimostrazione. Dobbiamo provare che $\forall k \in \mathbb{Z}, (x_k, y_k)$ è soluzione dell'equazione diofantea ax + by = c. Si ha

$$ax_k + by_k = ax_0 + \frac{ab}{d}k + by_0 - \frac{ab}{d}k = ax_0 + by_0$$

Per ipotesi (x_0, y_0) è soluzione, quindi $ax_0 + by_0 = c$.

Viceversa, devo mostrare che ogni soluzione dell'equazione diofantea è di tipo (x_k, y_k) per un certo $k \in \mathbb{Z}$.

Sia $\overline{x}, \overline{y} \in \mathbb{Z} \times \mathbb{Z}$ una soluzione di ax + by = c. Quindi

$$a\overline{x} + b\overline{y} = ax_0 + by_0$$

Da cui

$$a(\overline{x} - x_0) = b(y_0 - \overline{y})$$

Dato d = (a, b) e considerando $a = \overline{a}d, b = \overline{b}d$

$$\overline{a}d(\overline{x} - x_0) = \overline{b}d(y_0 - \overline{y})$$

Divido per d entrambi i membri

$$\overline{a}(\overline{x} - x_0) = \overline{b}(y_0 - \overline{y})$$

Noto che

$$\overline{b} \mid \overline{a}(\overline{x} - x_0)$$

e sapendo che $(\overline{a}, \overline{b}) = 1$, allora

$$\overline{b} \mid \overline{x} - x_0$$

ovvero $\overline{x} - x_0 = \overline{b}h$, per $h \in \mathbb{Z}$

Sostituendo trovo

$$\overline{a}(\overline{x} - x_0) = \overline{b}(y_0 - \overline{y})$$
$$\overline{a}\overline{b}h = \overline{b}(y_0 - \overline{y})$$
$$y_0 - \overline{y} = \overline{a}h$$

In tutto ho trovato

$$\overline{x} = x_0 + \overline{b}h = x_0 + \frac{b}{d}h$$

$$\overline{y} = y_0 - \overline{a}h = y_0 - \frac{a}{d}h$$

Ho ricavato \overline{y} direttamente, mentre \overline{x} sostituendo in $\overline{a}(\overline{x} - x_0) = \overline{b}(y_0 - \overline{y})$. Quindi una generica soluzione dell'equazione diofantea è nella forma voluta.

Esempio 20. Determinare tutte le soluzioni di 74x + 22y = 10.

Dall'esempio 19 precedente, conosciamo che (74,22)=2 e che (15,-50) è una soluzione particolare dell'equazione diofantea.

Tutte le soluzioni sono date dalle coppie (x_k, y_k) con $k \in \mathbb{Z}$, dove

$$x_k = x_0 + \frac{b}{d}k = 15 + \frac{22}{2}k = 15 + 11k$$

$$y_k = y_0 - \frac{a}{d}k = -50 - \frac{74}{2}k = -50 - 37k$$

Stime Temporali

8.1 Somma

Esempio 21. Suppongo di voler sommare due numeri n e m scritti in base 2

$$n = (1111000)_2$$
$$m = (11110)_2$$

Aggiungo i 0 a sinistra di m affinché abbia lo stesso numero k di bit di n. Procedo con la somma:

1111000 0011110 10010110

Generalizziamo l'esempio.

Supponiamo di voler sommare n con k bit ed m con l bit; con $l \leq k$.

Possiamo assumere che n ed m abbiano entrambi k bit, ovvero l = k. Se così non fosse, cioè l < k, basta aggiungere degli 0 a sinistra nella scrittura di m.

Scriviamo n sopra m in colonna ed applichiamo la seguente procedura:

Algoritmo 2. Fissiamo una singola colonna.

- 1. Guardiamo il bit della prima riga e il bit della seconda riga che appartengono alla colonna fissata e guardiamo eventuali riporti sopra il primo bit.
- 2. Se entrambi i bit della colonna sono 0 e non c'è alcun riporto, scriviamo 0 nella riga del risultato e procediamo oltre, ovvero consideriamo la colonna immediatamente a sinistra di quella fissata.

- 3. Se accade una e una sola delle seguenti eventualità
 - (a) entrambi i bit della colonna fissata sono 0 e c'è riporto
 - (b) i bit della colonna fissata sono uno 0, l'altro 1 e non c'è riporto

Scriviamo 1 nella riga del risultato e procediamo oltre, ovvero consideriamo la colonna immediatamente a sinistra di quella fissata.

- 4. Se accade una e una sola delle seguenti eventualità
 - (a) entrambi i bit considerati sono 1 e non c'è riporto
 - (b) uno dei bit considerati è 0 e l'altro è 1 e c'è riporto

Scriviamo 0 nella riga del risultato, segniamo 1 riporto e procediamo oltre, ovvero consideriamo la colonna immediatamente a sinistra di quella fissata.

5. Se entrambi i bit considerati sono 1 e c'è riporto scriviamo 1 nella riga del risultato, segniamo 1 riporto e procediamo oltre, ovvero consideriamo la colonna immediatamente a sinistra di quella fissata.

Eseguire questa procedura una volta si dice una operazione bit.

Nota 16. Il tempo impiegato da un computer per effettuare un calcolo è proporzionale al numero di operazioni bit necessarie. La costante di proporzionalità dipende dal computer usato e non tiene conto del tempo necessario per operazioni di tipo amministrativo.

Quindi sommare due numeri di k bit significa eseguire k operazioni.

8.2 Moltiplicazione

Esempio 22. Suppongo di voler moltiplicare un numero n di k bit e un numero m di l bit scritti in base 2 con l < k.

$$n = (10011)_2$$

$$m = (1011)_2$$

procedo con la moltiplicazione

Generalizziamo l'esempio.

Moltiplicando n per m ottengo $l' \leq l$ righe, una per ogni bit pari a 1 nella scrittura di m.

Ciascuna riga corrisponde ad una copia di n traslata a sinistra di una certa distanza.

Dobbiamo eseguire l'-1 somme.

Ogni somma parziale ha un numero di bit maggiore di k, perciò ciascuna somma comporta solo k operazioni bit non banali (alcuni dei bit vanno solo, di passo in passo, ricopiati).

Le operazioni bit necessarie per la moltiplicazione sono

$$(l'-1)k \le (l-1)k < lk$$

8.3 Notazione O-grande

Definizione 15. Siano $f, g: \mathbb{N}^+ \to \mathbb{R}^+$

Si dice che $f \in O(g)$ se esistono due costanti B > 0, C > 0 tali che

$$\forall n > B, \ f(n) < Cg(n)$$

Osservazione 9. Se $f \in O(g)$ e $g \in O(h)$ allora $f \in O(h)$

Quindi se $f \in O(g)$ posso rimpiazzare g con una funzione che cresce più velocemente di g. Nella pratica però vogliamo scegliere g in modo che la stima sia la migliore possibile per limitare f, preferendo funzioni g che siano semplici da descrivere.

Osservazione 10. Se esiste finito

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

allora $f \in O(g)$.

Osservazione 11. Se f(n) è un polinomio di grado d con coefficiente diretto positivo, cioè se

$$f(n) = a_d n^d + a_{d-1} n^{d-1} + \dots + a_1 n + a_0$$

con $a_d > 0$, allora $f \in O(n^d)$.

Osservazione 12. Se f(n) è la funzione che restituisce il numero di bit di n, per quanto visto in precedenza, si ha $f(n) \in O(\log n)$. La stessa stima vale per qualunque altra base b.

La notazione di *O-grande* può essere estesa a più variabili.

Definizione 16. Siano $f, g : \mathbb{N}^+ \times \mathbb{N}^+ \times \cdots \times \mathbb{N}^+ \to \mathbb{R}^+$ Si dice che $f \in O(g)$ se esistono due costanti B > 0, C > 0 tali che se

$$n_j > B \quad \forall j = 1, \dots, r$$

si ha

$$f(n_1, n_2, \dots, n_r) < Cg(n_1, n_2, \dots, n_r)$$

Esempio 23. Riguardo i paragrafi di somma (7.1) e moltiplicazioni (7.2) di numeri interi positivi in base 2. Abbiamo

• il tempo necessario a sommare due numeri di k bit

$$Tempo((k \ bit) + (k \ bit)) \in O(k)$$

• il tempo necessario a moltiplicare k bit per l bit

$$Tempo((k \ bit) \cdot (l \ bit)) \in O(kl)$$

Se vogliamo esprimere il tempo intermini di n ed m anziché delle loro cifre binarie k e l abbiamo

$$Tempo(n+m) \in O(max\{\log n, \log m\})$$

$$Tempo(n \cdot m) \in O(\log n \cdot \log m)$$

Nota 17. Queste stime temporali valgono per una qualunque altra base b.

Nota 18. Per la moltiplicazione esistono algoritmi più efficienti di quello descritto.

Capitolo 9

Congruenze

9.1 Congruenza modulo n

Definizione 17. Sia $n \in \mathbb{Z}$, $n \ge 1$.

Si dice che $a, b \in \mathbb{Z}$ sono **congrui modulo** n, e scriviamo

$$a \equiv b \bmod n$$

se

$$n|(a-b)$$

 $cio\grave{e}$ se $\exists k \in \mathbb{Z}$ tale che

$$a - b = nk$$

Osservazione 13. La definizione si può estendere ai casi:

n = 0: si ha quindi che

$$a \equiv b \bmod 0$$

$$0|(a-b)$$

cioè se e solo se

$$a - b = 0 \cdot k$$

 $per k \in \mathbb{Z}$ ovvero solamente quando

$$a = b$$

La congruenza modulo 0 coincide con la relazione di uguaglianza in \mathbb{Z} .

n < 0: si ha quindi che

$$a \equiv b \bmod n$$

$$n|(a-b)$$

cioè se e solo se

$$a - b = nk$$

per $k \in \mathbb{Z}$. Ma allora è anche vero che

$$a - b = (-n)(-k)$$

da cui

$$a \equiv b \bmod -n$$

Teorema 11. Per ogni intero $n \ge 1$ la relazione di congruenza modulo n definisce una **relazione** di equivalenza su \mathbb{Z} .

Dimostrazione. La congruenza modulo n definisce su $\mathbb Z$ la relazione R così definita

$$\forall a, b \in \mathbb{Z}, \ aRb \iff a \equiv b \bmod n$$

che gode della proprietà

• Riflessiva

$$\forall a \in \mathbb{Z}, \ a \equiv a \bmod n$$

Infatti $a - a = 0 = 0 \cdot n$.

• Simmetrica

$$\forall a, b \in \mathbb{Z}, \text{ se } a \equiv b \mod n \text{ allora } b \equiv a \mod n$$

Infatti

$$a \equiv b \bmod n$$

$$a - b = nk$$

implica

$$b - a = -nk = n(-k)$$

per un $k \in \mathbb{Z}$.

• Transitiva

 $\forall a, b, c \in \mathbb{Z} \text{ se } a \equiv b \bmod n \text{ e } b \equiv c \bmod n \implies a \equiv c \bmod n$

Infatti da

I)
$$a \equiv b \mod n$$

 $a - b = nk, \ k \in \mathbb{Z}$

II)
$$b \equiv c \mod n$$

 $b - c = nt, \ t \in \mathbb{Z}$

Dalla (II) ricavo che

$$b = c + nt$$

Sostituendo alla (I) ottengo

$$a - (c + nt) = nk$$

$$\vdots$$

$$a - c = n(s + t)$$

Essendo $s + t \in \mathbb{Z}$ ho dimostrato che $a \equiv c \mod n$.

Perciò, essendo R una relazione riflessiva, simmetrica e transitiva allora R, per definizione, è una **relazione di equivalenza**.

Esempio 24. Sia n = 2.

Allora $a \equiv b \mod 2$ se, per definizione, 2|(a-b).

Ad esempio, se a = 5:

$$5 \equiv b \mod 2$$

Noto che b deve essere dispari affinché sia congruo a 5 mod 2

Invece, se a = 6:

$$6 \equiv b \mod 2$$

Noto che b deve essere pari affinché sia congruo a 6 mod 2

Esempio 25. Sia n = 3.

Allora esempi di a, b congrui mod3 sono

$$9 \equiv 6 \mod 3$$

$$9 \equiv 9 \mod 3$$

Esempio 26. Sia n = 5.

$$a = 0 \mod 5 \longrightarrow a = 5, 10, 15, 20, \dots$$

 $a = 1 \mod 5 \longrightarrow a = 6, 11, 16, 21, \dots$
 $a = 2 \mod 5 \longrightarrow a = 7, 12, 17, 22, \dots$
 $a = 3 \mod 5 \longrightarrow a = 8, 13, 18, 23, \dots$
 $a = 4 \mod 5 \longrightarrow a = 9, 14, 19, 24, \dots$

Definizione 18. Le classi di equivalenza della congruenza modulo n si dicono classi di resto modulo n.

Dimostrazione. Per $a \in \mathbb{Z}$, la classe di equivalenza di a su R

$$[a]_R = \{b \in \mathbb{Z}, (a, b) \in R\}$$

nel caso in cui R sia la congruenza modulo n, la classe di resto di a su n è

$$[a]_n = \{b \in \mathbb{Z}, a \equiv b \bmod n\}$$

ovvero

$$[a]_n = \{b \in \mathbb{Z}, n|a-b\}$$

da cui $n|a-b \longrightarrow a-b = nk \longrightarrow b = a+n(-k)$ allora

$$[a]_n = \{ b \in \mathbb{Z}, a + nk \mid k \in \mathbb{Z} \}$$

Nota 19. Rispetto all'esempio 26 precedente, noto che non può esistere un numero che non sia congruente a nessuno tra $0 \mod 5, 1 \mod 5, 2 \mod 5, 3 \mod 1, 4 \mod 5!$

Osservazione 14. Ogni intero è congruo modulo n solamente ad uno degli interi $0, 1, \ldots, n-1$.

Dimostrazione. Sia $a \in \mathbb{Z}$. La divisione con resto fornisce

$$a = nq + r$$

con $0 \le r < n$. Dal quale trovo

$$a - r = qr$$

ovvero proprio

$$a \equiv r \bmod n$$

cioè

$$[a]_n = [r]_n$$

Questo dimostra che ogni $a \in \mathbb{Z}$ è congruo modulo n a uno degli interi $0, 1, \ldots, n-1$, ovvero tutti e i soli possibili resti.

Viceversa i possibili resti non possono essere congrui modulo n tra loro. Se $i, j \in \mathbb{Z}$, con

$$0 \le i < n$$

$$0 \le j < n$$

assumendo $i \geq j$ ho che

$$0 \le i - j \le n - 1$$

e quindi

$$i - j = kn$$

se e solo se k=0, cioè

$$i = j$$

Definizione 19. L'insieme quoziente di \mathbb{Z} rispetto alla relazione di congruenza modulo n si indica con \mathbb{Z}_n e rappresenta l'insieme delle classi dei resti modulo n:

$$\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$$

Esempio 27. Sia n = 5.

$$\mathbb{Z}_5 = \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\}$$

dove

$$[0]_5 = \{0 + 5k \mid k \in \mathbb{Z}\}$$

$$[1]_5 = \{1 + 5k \mid k \in \mathbb{Z}\}$$

$$[2]_5 = \{2 + 5k \mid k \in \mathbb{Z}\}$$

$$[3]_5 = \{3 + 5k \mid k \in \mathbb{Z}\}$$

$$[4]_5 = \{4 + 5k \mid k \in \mathbb{Z}\}$$

42

Nota 20. \mathbb{Z}_n è una partizione di \mathbb{Z} .

Esempio 28. Sia n = 2.

$$\mathbb{Z}_2 = \{[0]_2, [1]_2\}$$

Noto che

- [0]₂ è la classe di equivalenza dei numeri pari
- [1]₂ è la classe di equivalenza dei numeri dispari

Osservazione 15. Casi particolari:

n = 0: la congruenza modulo 0 è l'uguaglianza.

Sia $a \in \mathbb{Z}$, allora $[a]_0 = \{a\}$. Quindi le classi di equivalenza sono tante quanti gli elementi di \mathbb{Z} , ovvero infinite.

n = 1: la congruenza modulo 1 è sempre verificata.

Dati $a, b \in \mathbb{Z}$, 1|(a - b) sempre. Sia $a \in \mathbb{Z}$, allora $[a]_1 = \mathbb{Z}$. Quindi ho una sola classe di equivalenza.

9.2 Congruenze lineari

Definizione 20. Una congruenza lineare è una congruenza della forma

$$ax \equiv b \bmod n$$

dove

- $a, b \in \mathbb{Z}$
- $n \ge 1 \in \mathbb{Z}$
- x è incognita

Si dice soluzione di $ax \equiv b \mod n$ ogni $c \in \mathbb{Z}$ che soddisfa

$$ac \equiv b \bmod n$$

Esempio 29. La congruenza lineare

$$2x \equiv 3 \mod 7$$

 $ha\ soluzione\ c=5\ perché$

$$2 \cdot 5 = 10 \equiv 3 \bmod 7$$

In generale ogni

$$c_k = 5 + 7k \in \mathbb{Z}$$

 $con k \in \mathbb{Z} \ \dot{e} \ soluzione.$

Esempio 30. La congruenza lineare

$$2x \equiv 3 \mod 4$$

non ha soluzioni. Se esistesse $c \in \mathbb{Z}$ con

$$2c - 3 = 4k$$

 $con k \in \mathbb{Z}, avremmo$

$$3 = 2c - 4k$$

ovvero 2|3 che è assurdo.

Teorema 12. Data la congruenza lineare

$$ax \equiv b \bmod n$$

Sia d = (a, n) con $a = \overline{a}d$, $n = \overline{n}d$.

- 1. La congruenza lineare $ax \equiv b \mod n$ ammette soluzioni se e solo se d|b.
- 2. Se c è una soluzione di $ax \equiv b \mod n$ allora tutte e sole le soluzioni di $ax \equiv b \mod n$ sono interi della forma

$$c + k\overline{n}$$

al variare di $k \in \mathbb{Z}$, dove $\overline{n} = \frac{n}{d}$.

In particolare $ax \equiv b \mod n$ ha esattamente d soluzioni non congrue fra loro, modulo n.

Dimostrazione. La congruenza lineare

$$ax \equiv b \bmod n$$

ammette soluzione se e solo se $\exists c \in \mathbb{Z}$:

$$ac \equiv b \bmod n$$

quindi se e solo se $\exists c, k_0 \in \mathbb{Z}$ tale che

$$ac = b + k_0 n$$

da cui

$$ac + n(-k_0) = b$$

In tutto la congruenza lineare $ax \equiv b \bmod n$ ammette soluzioni se e solo se l'equazione diofantea

$$ax + ny = b$$

ammette soluzioni.

Ma, dalla teoria delle equazioni diofantee (vedi Teorema 9.), $ax \equiv b \mod n$ ammette soluzioni se e solo se

cioè

Il punto 1. è così dimostrato.

Inoltre se $(c, -k_0)$ è soluzione di ax + ny = b allora tutte e sole le soluzioni di ax + ny = b sono le coppie (x_k, y_k) con

$$x_k = c + \frac{n}{d}k = c + \overline{n}k$$

$$y_k = -k_0 - \frac{a}{d}k = -k_0 - \overline{a}k$$

Quindi tutte e sole le soluzioni di $ax + b \mod n$ sono gli interi $c + k\overline{n}, k \in \mathbb{Z}$.

Infine, devo provare che prendendo $0 \leq k \leq d-1,$ ottengo d soluzioni nella forma $c+k\overline{n}$

$$c, c + \overline{n}, c + 2\overline{n}, \ldots, c + (d-1)\overline{n}$$

fra loro non congrue modulo n.

Per assurdo, prendo $i \neq j$ con $0 \leq i, j \leq d-1$ e ipotizzo che siano congrue modulo n

$$c + i\overline{n} \equiv c + j\overline{n} \bmod n$$

Ottengo che

$$n|(c+i\overline{n}-(c+j\overline{n}))$$

 $n|(i-j)\overline{n}$

cioè

$$(i-j)\overline{n} = n \cdot s, \ s \in \mathbb{Z}$$

da cui, dato che $n = d\overline{n}$,

$$(i-j)\overline{n} = d \cdot \overline{n} \cdot s$$

 $(i-j) = d \cdot s$

Risulta che (i-j) è multiplo di d, ma questo non può essere poiché $0 < i-j \le d-1$ e l'unico multiplo di d minore di d-1 è 0: assurdo (poiché ho assunto $i \ne j$)!

Quindi le soluzioni $c+k\overline{n}$ con $0 \le k \in \mathbb{Z} \le d-1$ non sono congrue modulo n tra loro.

Invece, se $c + k\overline{n}$ con $k \in \mathbb{Z} > d - 1$, la divisione con resto porge

$$k = dq + r$$

con $0 \le r \le d - 1$. Da cui

$$c + k\overline{n}$$

$$c + (dq + r)\overline{n}$$

$$c + dq\overline{n} + r\overline{n}$$

ma $n = d\overline{n}$

$$c + qn + r\overline{n}$$

Dato che $0 \le r \le d-1$, si conclude che $c+k\overline{n}$ è congrua modulo n ad una delle soluzioni sopra elencate

$$c + k\overline{n} \equiv c + r\overline{n} \bmod n$$

Anche il punto 2. è così dimostrato.

Esempio 31. Trovo, se esistono, le soluzioni della congruenza lineare

$$35x \equiv 23 \mod 16$$

Riduco i coefficienti. Poiché

$$35 \equiv 3 \mod 16$$
 e $23 \equiv 7 \mod 16$

allora la congruenza lineare di partenza equivale a

$$3x \equiv 7 \mod 16$$

Calcolo il massimo comune divisore:

$$16 = 3 \cdot 5 + 1$$

$$3 = 1 \cdot 3 + 0$$

$$\implies d = (16, 3) = 1$$

L'equazione diofantea associata è 3x + 16y = 7 $\longrightarrow d|b = 1|7$ quindi la congruenza lineare ha soluzioni.

Ricavo l'identità di Bezout:

$$1 = 16 \cdot 1 + 3 \cdot (-5)$$

Moltiplicando per 7 ottengo

$$7 = 16 \cdot 7 + 3 \cdot (-35)$$

$$3 \cdot (-35) = 7 - 16 \cdot 7$$

Dunque una soluzione di

$$3x \equiv 7 \mod 16$$

è

$$x_0 = -35$$

mentre tutte le soluzioni sono nella forma

$$x_k = -35 + 16k$$

 $con k \in \mathbb{Z}$.

Esempio 32. Trovo, se esistono, le soluzioni della congruenza lineare

$$15x \equiv 6 \mod 18$$

L'equazione diofantea associata è 15x + 18y = 6. Calcolo il massimo comune divisore:

$$18 = 15 \cdot 1 + 3$$

$$15 = 3 \cdot 5$$

$$\implies d = (18, 15) = 3.$$

 $\longrightarrow d|b=3|6$ quindi la congruenza lineare ha soluzioni.

Ricavo l'identità di Bezout:

$$3 = 18 \cdot 1 + 15 \cdot (-1)$$

Moltiplicando per 2:

$$6 = 18 \cdot 2 + 15 \cdot (-2)$$

Una soluzione alla congruenza lineare $15x \equiv 6 \mod 18$ è

$$x_0 = -2$$

Tutte le soluzioni sono della forma

$$x_k = -2 + \frac{18}{3}k = -2 + 6k$$

 $con k \in \mathbb{Z}$.

Solo 3 tra queste soluzioni sono non congrue tra loro modulo 18, ovvero quelle con k = 0, 1, 2:

$$x_0 = -2 + 6 \cdot 0$$
 $x_1 = -2 + 6 \cdot 1$ $x_2 = -2 + 6 \cdot 2$

$$x_0 = -2 x_1 = 4 x_2 = 10$$

9.3 Teorema Cinese del Resto

Il Teorema Cinese del Resto è utile per risolvere sistemi di congruenza.

Teorema 13 (Teorema Cinese del Resto). Siano

$$n_1, n_2, \ldots, n_r \in \mathbb{Z}^+$$

a due a due coprimi (cioè $(n_i, n_j) = 1$ per $i \neq j$). E siano

$$b_1, b_2, \ldots, b_r \in \mathbb{Z}$$

 $Il\ sistema$

$$\begin{cases} x \equiv b_1 \bmod n_1 \\ x \equiv b_2 \bmod n_2 \\ \vdots \\ x \equiv b_r \bmod n_r \end{cases}$$

è risolubile.

Inoltre se c e c' sono due soluzioni del sistema, allora

$$c \equiv c' \mod N$$

dove

$$N = n_1 \cdot n_2 \cdot \dots \cdot n_r = \prod_{i=1}^r n_i$$

Dimostrazione. Definiamo

$$N_i = \frac{N}{n_i} = \prod_{j \neq i} n_j \ \forall i = 1, \dots, n$$

Poiché $(n_i,n_j)=1$ per $i\neq j$ si ha che $(N_i,n_i)=1.$

La congruenza lineare

$$N_i y \equiv 1 \bmod n_i$$

per $i = 1, \ldots, r$, ammette soluzioni.

Pongo

$$c = \sum_{i=1}^{r} N_i y_i b_i = N_1 y_1 b_1 + \dots + N_r y_r b_r$$

allora c è una soluzione del sistema di congruenze, cioè

$$\forall j = 1 \dots r, \ c \equiv b_i \bmod n_i$$

Infatti, fissato $j \neq i$:

$$c \equiv N_j y_j b_j \bmod n_j$$

ma $N_j y_j \equiv 1 \bmod n_j$ quindi

$$c \equiv b_j \bmod n_j$$

Ho dimostrato che c è soluzione del sistema.

Sia c' un'altra soluzione del sistema, allora

$$\forall j = 1 \dots r, \ c' \equiv b_j \bmod n_j$$

ma so già che $c \equiv b_j \mod n_j$ quindi

$$\forall j = 1 \dots r, \ c \equiv c' \bmod n_j$$

ovvero $\forall j = 1 \dots r$

$$n_j|c - c'$$

$$c - c' = kn_j, \quad k \in \mathbb{Z}$$

Per j = 1

$$c - c' = k_0 n_1, \quad k_0 \in \mathbb{Z}$$

ma per j=2

$$c - c' = k_1 n_2, \quad k_1 \in \mathbb{Z}$$

Dato che n_1 ed n_2 sono coprimi tra loro, allora

$$c - c' = k_2 n_1 n_2, \quad k_2 \in \mathbb{Z}$$

ma per n_3

$$c - c' = k_3 n_3, \quad k_3 \in \mathbb{Z}$$

ed essendo n_3 coprimo con tutti gli altri

$$c - c' = k_4 n_1 n_2 n_3, \quad k_4 \in \mathbb{Z}$$

:

Proseguendo in questo modo ottengo che

$$c - c' = kn_1n_2n_3 \dots n_r, \quad k \in \mathbb{Z}$$

 $c - c' = kN \dots n_r, \quad k \in \mathbb{Z}$

Cioè

$$N|c-c'$$

ovvero

$$c \equiv c' \bmod N$$

Definizione 21 (Numero Primo). Un intero p > 1 si dice numero primo se $\forall a, b \in \mathbb{Z}$ se p|ab allora p|a o p|b.

Chiamiamo $d = (N_i, n_i)$

$$p|d \implies p|n_i \in p|N_i$$
$$p|d \implies p|n_i \in p|\prod_{j \neq i} n_j$$

p è primo, quindi se $p|N_i$ allora divide uno qualsiasi dei suoi fattori: $p|n_{j_0}$

$$p|d \implies p|n_i \in p|n_{j_0}, j_0 \neq i$$

Ma d deve essere uguale a 1 poiché i moduli sono, per ipotesi, a due a due coprimi. Invece ho trovato un fattore di n_i e di n_{j_0} che è assurdo!

Esempio 33. Risolvere il sistema

$$\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \\ x \equiv 2 \mod 7 \end{cases}$$

Calcolo

$$N = n_1 n_2 n_3 = 3 \cdot 5 \cdot 7 = 105$$

e poi

$$N_1 = \frac{N}{n_1} = n_2 n_3 = 5 \cdot 7 = 35$$

$$N_2 = \frac{N}{n_2} = n_1 n_3 = 3 \cdot 7 = 21$$

$$N_3 = \frac{N}{n_2} = n_1 n_2 = 3 \cdot 5 = 15$$

Risolvo le seguenti congruenze lineari

$$N_1y \equiv 1 \mod n_1 \to 35y \equiv 1 \mod 3 \to 2y_1 \equiv 1 \mod 3 \longrightarrow y_1 = 2$$

 $N_2y \equiv 1 \mod n_2 \to 21y \equiv 1 \mod 5 \to y_2 \equiv 1 \mod 5 \longrightarrow y_2 = 1$
 $N_3y \equiv 1 \mod n_3 \to 15y \equiv 1 \mod 7 \to y_3 \equiv 1 \mod 7 \longrightarrow y_3 = 1$

Una soluzione del sistema è

$$c = \sum_{i=1}^{3} N_i y_i b_i = N_1 y_1 b_1 + N_2 y_2 b_2 + N_3 y_3 b_3 = 35 \cdot 2 \cdot 2 + 21 \cdot 1 \cdot 3 + 15 \cdot 1 \cdot 2 = 233$$

Ogni altra soluzione c' è congrua a 233 mod 105. Tutte e sole le soluzioni in $\mathbb Z$ sono

$$233 + 105k, \quad k \in \mathbb{Z}$$

La minima soluzione positiva è $23 = 233 - 2 \cdot 105$

Capitolo 10

Strutture algebriche

10.1 Struttura algebrica

10.1.1 Operazione Binaria

Definizione 22. Sia A un insieme non vuoto. Una operazione binaria su A è una funzione

$$*: A \times A \longrightarrow A$$

$$(a,b) \longrightarrow a * b$$

In altre parole, è una regola per associare ad ogni coppia ordinata (a,b) di elementi di A, uno e un solo elemento di A.

10.1.2 Proprietà di una operazione binaria

Una funzione

$$*: A \times A \longrightarrow A$$

si dice

• associativa, se

$$\forall a, b, c \in A \qquad (a * b) * c = a * (b * c)$$

• commutativa, se

$$\forall a, b \in A \qquad (a * b) = (b * a)$$

• dotata di <u>elemento neutro</u>, se

$$\exists e \in A: \quad \forall a \in A \qquad a*e = a = e*a$$

10.1.3 Definizione di Struttura Algebrica

Definizione 23. Una struttura algebrica è un insieme non vuoto A con una o più operazioni (binarie) su A.

10.2 Gruppi

10.2.1 Definizione di Gruppo

Definizione 24. Una struttura algebrica (G, *) dove

- G è un insieme non vuoto
- ullet * \dot{e} un'operazione binaria su G

si dice **gruppo** se:

1. l'operazione * è associativa, cioè

$$\forall g, h, k \in G, \qquad (g * h) * k = g * (h * k)$$

2. esiste un elemento neutro in G rispetto all'operazione *, cioè

$$\exists e \in G \quad | \quad \forall g \in G \qquad g*e = e = e*g$$

3. ogni elemento di G ha un inverso rispetto all'operazione *, cioè

$$\forall g \in G \quad \exists g^{-1} \in G: \qquad g * g^{-1} = e = g^{-1} * g$$

Gruppo abeliano

Definizione 25. Se * è commutativo, il gruppo si dice **abeliano** o commutativo.

10.2.2 Esempi di Gruppo

Esempio 34. $(\mathbb{Z}, +)$ è un gruppo.

$$+: \quad \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

$$(a,b) \to a+b$$

In particolare è un gruppo abeliano con elemento neutro 0 ed -a inverso di a rispetto a + .

Esempio 35. (\mathbb{Z},\cdot) <u>non</u> è un gruppo.

Dato che non tutti gli elementi di \mathbb{Z} hanno inverso in \mathbb{Z} .

Esempio 36. (\mathbb{R},\cdot) <u>non</u> è un gruppo.

$$\begin{array}{ccc}
\cdot : & \mathbb{R} \times \mathbb{R} \to \mathbb{R} \\
(a,b) \to a \cdot b
\end{array}$$

Dato che 0 non ha inverso in \mathbb{R} .

Esempio 37. $(\mathbb{R}^* = \mathbb{R} - \{0\}, \cdot)$ è un gruppo.

$$\begin{array}{ccc}
\cdot : & \mathbb{R} \times \mathbb{R} \to \mathbb{R} \\
(a,b) \to a \cdot b
\end{array}$$

In particolare è un gruppo abeliano con elemento neutro 1.

Esempio 38. (\mathbb{Q}^*, \cdot) , come nel precedente, è un gruppo abeliano con elemento neutro 1.

Esempio 39. $(Mat(4 \times 4, \mathbb{Z}), \times)$ <u>non</u> è un gruppo.

$$\times: Mat(4 \times 4, \mathbb{Z}) \times Mat(4 \times 4, \mathbb{Z}) \to Mat(4 \times 4, \mathbb{Z})$$

$$(A, B) \to A \times B$$

Dato che \times è associativa, esiste l'elemento neutro (matrice identità), ma <u>non</u> oqni elemento ammette inverso.

Esempio 40. Sia

$$GL(n,\mathbb{Z}) = \{ A \in Mat(n,\mathbb{Z}) \mid det(A) \neq 0 \}$$

l'insieme delle matrici $n \times n$ a coefficienti interi con determinante diverso da $0, \underline{non}$ è un gruppo

$$GL(n,\mathbb{Z}) \times GL(n,\mathbb{Z}) \to GL(n,\mathbb{Z})$$

dato che è associativa, ma l'inverso $\notin GL(n,\mathbb{Z})$

Esempio 41. Sia

$$GL(n,\mathbb{R}) = \{A \in Mat(n,\mathbb{R}) \mid det(A) \neq 0\}$$

l'insieme delle matrici $n \times n$ a coefficienti reali con determinante diverso da 0, è un gruppo (non abeliano) rispetto al prodotto tra matrici.

$$GL(n,\mathbb{R}) \times GL(n,\mathbb{R}) \to GL(n,\mathbb{R})$$

dato che è associativa e l'inverso $\in GL(n, \mathbb{R})$

Nota 21. Il gruppo $GL(n,\mathbb{R})$ si dice gruppo generale lineare.

Esempio 42. Sia $\mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}$ uno spazio vettoriale.

Somma

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x_1, y_1), (x_2, y_2) \to (x_1 + x_2, y_1 + y_2)$

Prodotto Scalare

Ha le seguenti proprietà:

1. esistenza del <u>vettore nullo</u>

$$\exists 0_v \in \mathbb{R}^2 \quad | \quad \forall v \in V \qquad v + 0_v = v = 0_v + v$$

2. commutatività

$$\forall v_1, v_2 \in V$$
 $v_1 + v_2 = v_2 + v_1$

3. associatività

$$\forall v_1, v_2, v_3 \in V$$
 $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$

4. esistenza dell'<u>elemento inverso</u>

$$\forall v \in V \quad \exists (-v) \in V \qquad v + (-v) = 0_v$$

 $Perciò \mathbb{R}^2 \ \dot{e} \ un \ gruppo.$

Esempio 43. $(\mathbb{Z}_n, +)$ è un gruppo abeliano con elemento neutro $[0]_n$ e inverso di $[a]_n$ la classe $[n-a]_n$

10.3 Somma e Prodotto in \mathbb{Z}_n

Definiamo le operazioni di somma e prodotto (di classi di resto) in \mathbb{Z}_n come segue.

Definizione 26. $Dati [a]_n, [b]_n \in \mathbb{Z}_n.$

Somma

$$[a]_n + [b]_n = [a+b]_n$$

Prodotto

$$[a]_n \cdot [b]_n = [a \cdot b]_n$$

Esempio 44. In \mathbb{Z}_5

$$[1]_5 + [3]_5 = [1+3]_5 = [4]_5$$

 $[2]_5 \cdot [3]_5 = [2 \cdot 3]_5 = [6]_5$

Nota 22.

$$[1]_5 + [3]_5 = [4]_5$$

 $ma [1]_5 = [6]_5, quindi$

$$[6]_5 + [3]_5 = [9]_5$$

che è corretto dato che $[9]_5 = [4]_5$.

Attenzione! Devo verificare che la definizione sia **ben posta**, cioè che non dipenda dal rappresentante scelto per le classi di resto.

Teorema 14. Fissato $n \in \mathbb{Z}$ con $n \geq 1$.

Siano $a, b, c, d \in \mathbb{Z}$, con

$$[a]_n = [b]_n$$
$$[c]_n = [d]_n$$

Allora

$$[a]_n + [c]_n = [b]_n + [d]_n$$

 $[a]_n \cdot [c]_n = [b]_n \cdot [d]_n$

Nota 23. Le seguenti sono affermazioni equivalenti:

$$a \equiv b \mod n$$
 $n|a-b$ $[a]_n = [b]_n$

Dimostrazione. Siano

$$[a]_n = [b]_n \qquad [c]_n = [d]_n$$

$$a \equiv b \mod n \qquad c \equiv d \mod n$$

$$n|a-b \qquad n|c-d$$

$$a = b + nk, \quad k \in \mathbb{Z} \qquad c = d + nh, \quad h \in \mathbb{Z}$$

Devo dimostrare che $[a]_n + [c]_n = [b]_n + [d]_n$. Quindi

$$[a]_n + [c]_n = [a+c]_n$$

ma a = b + nk e c = d + nh

$$[a]_n + [c]_n = [b + nk + d + nh]_n$$

$$[a]_n + [c]_n = [b+d+n(k+h)]_n$$

ma $[b+d+n(k+h)]_n = [b+d]_n$

$$[a]_n + [c]_n = [b+d]_n$$

$$[a]_n + [c]_n = [b]_n + [d]_n$$

Devo dimostrare che $[a]_n \cdot [c]_n = [b]_n \cdot [d]_n$. Quindi

$$[a]_n \cdot [c]_n = [ac]_n$$

ma a = b + nk e c = d + nh

$$[a]_n \cdot [c]_n = [(b+nk)(d+nh)]_n$$

$$[a]_n \cdot [c]_n = [bd + nkd + nhb + n^2kh]_n$$

$$[a]_n \cdot [c]_n = [bd + n(kd + hb + nkh)]_n$$

ma $[bd + n(kd + hb + nkh)]_n = [bd]_n$

$$[a]_n \cdot [c]_n = [bd]_n$$

$$[a]_n \cdot [c]_n = [b]_n \cdot [d]_n$$

10.3.1 Proprietà di somma e prodotto in \mathbb{Z}_n

Proprietà della somma in \mathbb{Z}_n

associativa

$$\forall [a]_n, [b]_n, [c]_n \in \mathbb{Z}_n \qquad ([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$$

Dimostrazione.

$$([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$$
$$[(a+b) + c]_n = [a + (b+c)]_n$$

È dimostrato per le proprietà della somma in \mathbb{Z} .

• commutativa

$$\forall [a]_n, [b]_n \in \mathbb{Z}_n \qquad [a]_n + [b]_n = [b]_n + [a]_n$$

Dimostrazione.

$$[a]_n + [b]_n = [b]_n + [a]_n$$

 $[a+b]_n = [b+a]_n$

È dimostrato per le proprietà della somma in Z.

• esistenza dell'elemento neutro

$$\forall [a]_n \in \mathbb{Z} \qquad \exists [b]_n \in \mathbb{Z} \quad | \quad [a]_n + [b]_n = [a]_n = [b]_n + [a]_n$$
 Nota 24. $[b]_n = [0]_n$

• esistenza dell'<u>elemento inverso</u>

$$\forall [a]_n \in \mathbb{Z}$$
 $\exists [b]_n \in \mathbb{Z}$ | $[a]_n + [b]_n = [0]_n = [b]_n + [a]_n$
Nota 25. $[b]_n = [n-a]_n$

Nota 26. \mathbb{Z}_n è un gruppo abeliano!

Proprietà del prodotto in \mathbb{Z}_n

• associativa

$$\forall [a]_n, [b]_n, [c]_n \in \mathbb{Z}_n \qquad ([a]_n \cdot [b]_n) \cdot [c]_n = [a]_n \cdot ([b]_n \cdot [c]_n)$$

Dimostrazione.

$$([a]_n \cdot [b]_n) \cdot [c]_n = [a]_n \cdot ([b]_n \cdot [c]_n)$$
$$[(a \cdot b) \cdot c]_n = [a \cdot (b \cdot c)]_n$$

È dimostrato per le proprietà del prodotto in \mathbb{Z} .

• commutativa

$$\forall [a]_n, [b]_n \in \mathbb{Z}_n \qquad [a]_n \cdot [b]_n = [b]_n \cdot [a]_n$$

Dimostrazione.

$$[a]_n \cdot [b]_n = [b]_n \cdot [a]_n$$
$$[ab]_n = [ba]_n$$

È dimostrato per le proprietà del prodotto in \mathbb{Z} .

• esistenza dell'elemento neutro

$$\forall [a]_n\in\mathbb{Z} \qquad \exists [b]_n\in\mathbb{Z} \quad | \quad [a]_n\cdot [b]_n=[a]_n=[b]_n\cdot [a]_n$$
 Nota 27. $[b]_n=[1]_n$

Proprietà distributive in \mathbb{Z}_n

- $\forall [a]_n, [b]_n, [c]_n \in \mathbb{Z}_n$ $[a]_n \cdot ([b]_n + [c]_n) = [a]_n \cdot [b]_n + [a]_n \cdot [c]_n$
- $\forall [a]_n, [b]_n, [c]_n \in \mathbb{Z}_n$ $([a]_n + [b]_n) \cdot [c]_n = [a]_n \cdot [c]_n + [b]_n \cdot [c]_n$

10.4 Invertibili in \mathbb{Z}_n

Data $[a]_n \in \mathbb{Z}_n$, esiste $[b]_n \in \mathbb{Z}_n$ con $[a]_n[b]_n = [1]_n$?

Esempio 45. Sia n = 7.

$$[a]_7 = [3]_7$$
 $[b]_7 = [5]_7$

$$[a]_7[b]_7 = [3]_7[5]_7 = [15]_7 = [1]_7$$

Esempio 46. $Sia\ n = 6\ e\ sia\ [a]_6 = [2]_6.$

$$\mathbb{Z}_6 = \{[0]_6, [1]_6, [2]_6, [3]_6, [4]_6, [5]_6\}$$

Testo tutti gli elementi:

$$[2]_6[0]_6 = [0]_7$$
 $[2]_6[3]_6 = [0]_7$

$$[2]_6[1]_6 = [2]_7$$
 $[2]_6[4]_6 = [2]_7$

$$[2]_6[2]_6 = [4]_7$$
 $[2]_6[5]_6 = [4]_7$

Concludo che $[2]_6$ non è invertibile in \mathbb{Z}_6 .

Definizione 27 (Invertibilità). Un elemento $[a]_n \in \mathbb{Z}_n$ si dice **invertibile** (rispetto al prodotto) se esiste $[b]_n \in \mathbb{Z}_n$ tale che

$$[a]_n[b]_n = [1]_n = [b]_n[a]_n$$

Osservazione 16. $Sia [a]_n = [0]_n$.

Cerchiamo $[b]_n \in \mathbb{Z}_n$ con

$$[0]_n[b]_n = [1]_n$$

 $Ma [0]_n[b]_n = [0]_n$

$$[0]_n = [1]_n$$

Ovvero

$$n|1 - 0$$

n|1

che è valida solo per n = 1.

Concludo quindi che se $n \geq 2$ allora $[0]_n$ non è invertibile!

Esiste un criterio per stabilire se una classe di \mathbb{Z}_n è invertibile:

Teorema 15. Fissati $a, n \in \mathbb{Z}$ con n > 1.

La classe $[a]_n \in \mathbb{Z}_n$ è **invertibile** se e solo se

$$(a,n) = 1$$

Dimostrazione. Suppongo che $[a]_n \in \mathbb{Z}_n$ sia invertibile.

Quindi $\exists [b]_n \in \mathbb{Z}_n$ con

$$[a]_n[b]_n = [1]_n$$

Quindi

$$[ab]_n = [1]_n$$

$$ab \equiv 1 \bmod n$$

$$n|ab-1$$

$$ab = 1 + nk \qquad k \in \mathbb{Z}$$

$$ab + n(-k) = 1$$

Posto d = (a, n) allora

$$d|a$$
 $d|n$

da cui

$$d|ab$$
 $d|n(-k)$

Di conseguenza

$$\frac{d|ab + n(-k)}{d|1}$$

Segue che d=1.

Viceversa se (a, n) = 1 per l'identità di Bezout

$$\exists s, 1 \in \mathbb{Z}$$
 $1 = as + nt$

Ma allora

$$as = 1 - nt$$

$$as \equiv 1 \mod n$$

$$[as]_n = 1$$

$$[a]_n[s]_n = 1$$

Osservazione 17. Se $[a]_n$ è invertibile allora il suo inverso è unico e si indica con $[a]_n^{-1}$

Esempio 47. In \mathbb{Z}_{51} , $[13]_{51}$ è invertibile, dato che (13,51) = 1.

Esempio 48. Gli elementi invertibili in

$$\mathbb{Z}_8 = \{[0]_8, [1]_8, [2]_8, [3]_8, [4]_8, [5]_8, [6]_8, [7]_8\}$$

sono

$$[1]_8$$
 $[3]_8$ $[5]_8$ $[7]_8$

I rispettivi inversi sono

$$[1]_8$$
 $[3]_8$ $[5]_8$ $[7]_8$

Esempio 49. Gli elementi invertibili in

$$\mathbb{Z}_7 = \{[0]_7, [1]_7, [2]_7, [3]_7, [4]_7, [5]_7, [6]_7\}$$

sono

$$[1]_7$$
 $[2]_7$ $[3]_7$ $[4]_7$ $[5]_7$ $[6]_7$

 $I\ rispettivi\ inversi\ sono$

$$[1]_7$$
 $[4]_7$ $[5]_7$ $[2]_7$ $[3]_7$ $[6]_7$

Nota 28. $Sia p \in \mathbb{Z}$ un numero primo.

$$\mathbb{Z}_p = \{[0]_p, [1]_p, \dots, [p-1]_p\}$$

Gli invertibili in \mathbb{Z}_p sono tutte le classi tranne $[0]_p$, ovvero

$$\mathbb{Z}_p^* = \mathbb{Z}_p - \{[0]_p\} = \{[1]_p, \dots, [p-1]_p\}$$

Nota 29. Gli insiemi delle classi

$$\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$$

scritti in rappresentazione standard possono essere egualmente scritti anche con la seguente rappresentazione bilanciata

$$\mathbb{Z}_n = \{ \left[-\frac{n}{2} \right]_n, \dots, [-1]_n, [0]_n, [1]_n, \dots, \left[\frac{n}{2} \right]_n \}$$

Esempio 50. L'insieme delle classi

$$\mathbb{Z}_7 = \{[0]_7, [1]_7, [2]_7, [3]_7, [4]_7, [5]_7, [6]_7\}$$

può essere egualmente rappresentato in modo bilanciato nel modo seguente

$$\mathbb{Z}_7 = \{[-3]_7, [-2]_7, [-1]_7, [0]_7, [1]_7, [2]_7, [3]_7\}$$

Capitolo 11

Funzione di Eulero

11.1 Definizione della funzione di Eulero

Definizione 28. La funzione di Eulero

$$\varphi: \mathbb{N}^* \to \mathbb{N}^*$$

è definita da

$$\varphi(1)=1$$

$$\varphi(n)=|\{k\in\mathbb{Z}:1\leq k\leq n-1\ e\ (k,n)=1\}|,\ per\ n\geq 2$$

Esempio 51. Calcolo $\varphi(8)$:

Dato che

$$\{k \in \mathbb{Z} : 1 \le k \le 7 \ e(k, 8) = 1\} = \{1, 3, 5, 7\}$$

trovo che

$$\varphi(8) = |\{k \in \mathbb{Z} : 1 \le k \le 7 \ e(k, 8) = 1\}| = 4$$

11.2 Proprietà della funzione di Eulero

Proprietà della funzione di Eulero:

1. Se p è un numero primo,

$$\varphi(p) = |\{k \in \mathbb{Z} : 1 \le k \le p - 1 \in (k, p) = 1\}| = p - 1$$

Dimostrazione. Immediata dalla definizione di numero primo.

2. Se p è un numero primo ed $m \ge 1$ numero naturale,

$$\varphi(p^m) = p^{m-1}(p-1)$$

Dimostrazione. Dalla definizione

$$\varphi(p^m) = |\{k \in \mathbb{Z} : 1 < k < p^m - 1 \in (k, p^m) = 1\}|$$

Riscrivo

$$\{k \in \mathbb{Z} : 1 \le k \le p^m - 1 \in (k, p^m) = 1\} = *$$

come differenza di

$$* = \{1, 2, \dots, p^m\} - \{k \in \mathbb{Z} : 1 \le k \le p^m \in (k, p^m) \ne 1\}$$

So che

$$|\{1,2,\ldots,p^m\}|=p^m$$
 (elementi)

e che

$$|\{k\in\mathbb{Z}:1\leq k\leq p^m$$
e $(k,p^m)\neq 1\}|=p^{m-1}$ (elementi)

Quindi ho dimostrato che

$$\varphi(p^m) = |\{k \in \mathbb{Z} : 1 \le k \le p-1 \text{ e } (k,p) = 1\}| = p^m - p^{m-1} = p^m(p-1)$$

3. φ è moltiplicativa, cioè

$$\forall a, b \in \mathbb{N}^* \text{ con } (a, b) = 1 \qquad \varphi(ab) = \varphi(a)\varphi(b)$$

Dimostrazione. Dalle definizione..

$$\varphi(a) = |\{r \in \mathbb{Z} | 1 \le r \le a - 1 \text{ e } (r, a) = 1\}|$$

$$\varphi(b) = |\{s \in \mathbb{Z} | 1 \le r \le b - 1 \text{ e } (s, b) = 1\}|$$

$$\varphi(ab) = |\{c \in \mathbb{Z} | 1 \le r \le ab - 1 \text{ e } (c, ab) = 1\}|$$

Siano $r, s \in \mathbb{Z}$ con

$$1 \le r \le a - 1$$
 $1 \le s \le b - 1$ $(s, b) = 1$

Per il teorema Cinese del resto, il sistema di congruenze

$$\begin{cases} x \equiv r \bmod a \\ y \equiv s \bmod b \end{cases}$$

ammette soluzioni, tra le quali una e una sola soluzione c compresa tra 1 e ab-1.

Affermo che (c, ab) = 1.

Perché se così non fosse, esisterebbe un numero p primo tale che

$$p|(c,ab)$$
 $p|c$ e $p|ab$
 $p|c$ e $p|a \circ p|b$

Suppongo che p|a (e p|c). Allora

$$c \equiv r \bmod a$$

$$c = r + ah, \qquad h \in \mathbb{Z}$$

da cui

$$p|r$$

$$p|c - ah$$

ma è assurdo che p divida sia r che a dal fatto che so che r e a sono primi, (r, a) = 1.

Concludo che (c, ab) = 1.

Poiché ogni coppia di interi r e s dà luogo a un intero c con $1 \le t \le ab-1$ e (c,ab)=1 abbiamo che $\varphi(a)\varphi(b) \le \varphi(ab)$.

Viceversa, sia $c \in \mathbb{Z}$ con $1 \le c \le ab - 1$ e (c, ab) = 1. Divido c per a e trovo

$$c = aq + r \qquad \text{con } 0 \le r < a$$

Non può essere r=0 perché altrimenti avremmo $c=aq\to a|c,$ da cui a|ab contro il fatto che (c,ab)=1.

Quindi

$$c = aq + r$$
 con $1 \le r < a$

Devo mostrare che r e a sono coprimi. Affermiamo che (r, a) = 1. Posto d = (r, a), si ha che d|a e d|r. Da cui

ma (c, (a, b)) = 1.

Concludo che

$$\varphi(ab) = \varphi(a)\varphi(b)$$
 quando $(a,b) = 1$

Le proprietà della funzione di Eulero permettono di calcolarla facilmente. Sia $n \geq 2$. Scrivo la sua fattorizzazione

$$n = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$

con

- p_i primo per $i = 1 \dots r$
- $p_i \neq p_j \text{ per } i \neq j$
- $e_i \ge 1 \text{ per } i = 1 \dots r$

Osservo che $(p_1^{e_1},(p_2^{e_2},\dots,p_r^{e_r}))=1$; posso utilizzare la proprietà 3 con

$$a = p_1^{e_1} \qquad b = p_2^{e_2} \dots p_r^{e_r}$$

quindi

$$\varphi(n) = \varphi(p_1^{e_1})\varphi(p_2^{e_2}\dots p_r^{e_r})$$

Nuovamente osservo che $(p_2^{e_2}, p_3^{e_3}, \dots, p_r^{e_r}) = 1$; posso utilizzare la proprietà 3 con

$$a = p_2^{e_2}$$
 $b = p_3^{e_3} \dots p_r^{e_r}$

quindi

$$\varphi(n) = \varphi(p_1^{e_1})\varphi(p_2^{e_2})\varphi(p_3^{e_3}\dots p_r^{e_r})$$
:

Procedo in questo modo fino a trovare che

$$\varphi(n) = \varphi(p_1^{e_1})\varphi(p_2^{e_2})\varphi(p_3^{e_3})\dots\varphi(p_r^{e_r})$$

Esempio 52. $Sia\ n = 12 = 2^2 \cdot 3$.

$$\varphi(12) = \varphi(2^2)\varphi(3)$$

Dato che

- $\varphi(3) = 2$ per la proprietà 1
- $\varphi(2^2) = 2^1(2-1) = 2$ per la proprietà 2

Allora

$$\varphi(12) = \varphi(2^2)\varphi(3) = 2^1(2-1) \cdot 2 = 4$$

Osservazione 18. φ è iniettiva?

Definizione 29 (Funzione Iniettiva). Una funzione $f: \mathbb{N}^* \to \mathbb{N}$ è iniettiva se

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

oppure

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Noto che

$$\varphi(8) = |\{[1]_8, [3]_8, [5]_8, [7]_8\}| = 4$$

$$\varphi(12) = |\{[1]_8, [5]_8, [7]_8, [11]_8\}| = 4$$

 $\implies \varphi \; \underline{non} \; \grave{e} \; \underline{iniettiva}.$

Osservazione 19. Siano invertibili in $\mathbb{Z}_{n>1}$: $[a]_n$ con (a,n)=1. Il numero di <u>invertibili</u> in \mathbb{Z}_n è $\varphi(n)$.

Capitolo 12

Teoremi di Fermat ed Eulero

12.1 Teorema di Fermat

12.1.1 Ultimo Teorema di Fermat

Teorema 16 (Ultimo Teorema di Fermat). $Sia \ n > 2, n \in \mathbb{N}$. Allora

$$x^n + y^n = z^n$$

non ha soluzioni banali.

12.1.2 Piccolo Teorema di Fermat

Teorema 17 (Piccolo Teorema di Fermat). Siano

- p un numero primo
- $a \in \mathbb{Z}$

Allora

$$a^p \equiv a \bmod p$$

Inoltre se p \not a allora

$$a^{p-1} \equiv 1 \bmod p$$

Dimostrazione. Supponiamo che $p \nmid a$.

Considero le classi di resto

$$[0]_p, [a]_p, [2a]_p, \dots, [(p-1)a]_p$$

Affermo che sono tra loro tutte distinte

$$[ra]_n = [sa]_n \iff r = s$$

 $con 0 \le r_1 s \le p - 1.$ Infatti

$$[ra]_p = [sa]_p$$

$$ra \equiv sa \bmod p$$

$$p|(r-s)a$$

$$p|r-s \qquad \text{con } 0 \le |r-s| \le p-1$$

ma l'unica possibilità è

$$r - s = 0$$

cioè r = s.

Abbiamo quindi che l'insieme

$$\{[0]_p, [a]_p, [2a]_p, \dots, [(p-1)a]_p\}$$

coincide con

$$\{[0]_p, [1]_p, [2]_p, \dots, [(p-1)]_p\}$$

dato che entrambi hanno p classi di resto modulo p.

Eliminando la classe $[0]_p$ che compare in entrambi, l'insieme

$$\{[a]_p, [2a]_p, \dots, [(p-1)a]_p\}$$

coincide con

$$\{[1]_p, [2]_p, \dots, [(p-1)]_p\}$$

Calcolo il prodotto degli elementi in entrambi gli insiemi

$$[a]_p \cdot [2a]_p \cdot \dots \cdot [(p-1)a]_p = [(p-1)!]_p$$
$$[1]_p \cdot [2]_p \cdot \dots \cdot [(p-1)]_p = [(p-1)!a^{p-1}]_p$$

Dato che gli insiemi coincidono, i prodotti dei loro elementi coincidono

$$[(p-1)!]_p = [(p-1)!a^{p-1}]_p$$

da cui

$$(p-1)! \equiv (p-1)!a^{p-1} \mod p$$

 $p|(p-1)!(a^{p-1}-1)$

ma naturalmente $p \not| (p-1)!$ quindi

$$p|(a^{p-1}-1)$$

ovvero

$$a^{p-1} \equiv 1 \bmod p$$

$$\longrightarrow [a]_p^{p-1} = [a^{p-1}]_p = [1]_p.$$

Abbiamo dimostrato che se $p \not| a$ allora $a^{p-1} \equiv 1 \mod p$.

Dimostriamo che se $a \in \mathbb{Z}$ allora

$$a^p \equiv a \bmod p$$

Infatti se

• p|a (a è multiplo di p) allora

$$a \equiv 0 \bmod p$$

$$a^p \equiv 0 \bmod p$$

$$\implies a^p \equiv a \bmod p$$

 $\bullet \ p \not| a \ (a \ {\rm non} \ {\rm \grave{e}} \ {\rm multiplo} \ {\rm di} \ p)$ allora, per quanto già detto,

$$a^{p-1} \equiv 1 \bmod p$$

e, per la definizione di congruenza,

$$a \equiv a \mod p$$
 riflessività

Utilizzando la proprietà seguente

Nota 30. $\forall a, b, c, d \in \mathbb{Z}$. Se

$$a \equiv b \bmod n$$
 $c \equiv d \bmod n$

Allora

$$a + c \equiv b + d \mod n$$
 $ac \equiv bd \mod n$

posso concludere che

$$a^p \equiv a \bmod p$$

12.2 Teorema di Eulero

Una generalizzazione del Teorema di Fermat è dovuta a Eulero.

12.2.1 Formula del Binomio di Newton

Definizione 30 (Formula del binomio di Newton).

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

 $dove \binom{n}{k} = \frac{n!}{k!(n-k)!}$, numero di sottoinsiemi di cardinalità k in un insieme di cardinalità n.

Nota 31. Noto che

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Nota 32. Noto che

$$\binom{n}{k} = \binom{n}{n-k} \qquad \qquad \binom{n}{0} = \binom{n}{n} = 1$$

Nota 33. Se p è un numero primo, i binomiali

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

sono multipli di p.

Dimostrazione. Il numeratore p! è multiplo di p.

Il denominatore k!(p-k)! non è multiplo di p se $1 \le k \le p-1$.

Perciò il multiplo di p a numeratore non viene eliminato dal denominatore $\implies \binom{p}{k}$ è multiplo di p quando $1 \le k \le p-1$.

12.2.2 Teorema di Eulero

Teorema 18 (Teorema di Eulero). Siano

- $n \ge 1, n \in \mathbb{Z}$
- $a \in \mathbb{Z}$

$$con(a, n) = 1.$$
 $Allora$

$$a^{\varphi(n)} \equiv 1 \bmod n$$

Osservazione 20. Il teorema di Eulero per n = p primo diventa

$$a^{p-1} \equiv 1 \bmod p$$

$$con(a,p) = 1 \rightarrow p \not | a$$

Dimostrazione. Divisa in due casi:

1. n potenza di un numero primo:

$$n = p^{\alpha}$$

con $\alpha \geq 1 \in \mathbb{Z}$, p numero primo.

Per induzione su α :

- I) $\alpha = 1$: $n = p \rightarrow \text{vero perché è il teorema di Fermat}$
- II) $\alpha \geq 2$: assumiamo il teorema vero per $\alpha-1$ e lo proviamo per α . Suppongo vero

$$a^{\varphi(p^{\alpha-1})} \equiv 1 \bmod p^{\alpha-1}$$

con
$$(a, p^{\alpha - 1}) = 1$$
.

Devo dimostrare che

$$a^{\varphi(p^{\alpha})} \equiv 1 \bmod p^{\alpha}$$

$$con (a, p^{\alpha}) = 1.$$

Considero $a \in \mathbb{Z}$ con $(a, p^{\alpha}) = 1$.

Allora logicamente $(a, p^{\alpha-1}) = 1$.

Per ipotesi induttiva

$$a^{\varphi(p^{\alpha-1})} \equiv 1 \bmod p^{\alpha-1}$$

quindi

$$p^{\alpha-1}|a^{\varphi(p^{\alpha-1})} - 1$$

$$a^{\varphi(p^{\alpha-1})} = 1 + b \cdot p^{\alpha-1} \quad \text{con } b \in \mathbb{Z}$$

ma
$$\varphi(p^{\alpha-1})=p^{\alpha-2}(p-1)$$

$$a^{p^{\alpha-2}(p-1)}=1+bp^{\alpha-1}$$

Elevo alla p e trovo

$$\left(a^{p^{\alpha-2}(p-1)}\right)^{p} = \left(1 + bp^{\alpha-1}\right)^{p}$$
$$a^{p^{\alpha-1}(p-1)} = \left(1 + bp^{\alpha-1}\right)^{p}$$

Applico il binomio di Newton $\left[(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}\right]$ e diventa

$$a^{p^{\alpha-1}(p-1)} = \sum_{k=0}^{p} {p \choose k} (1^k b p^{\alpha-1})^k$$

ma $\binom{p}{k}$ è multiplo di p (vedi Nota 33.)

$$a^{p^{\alpha-1}(p-1)} = 1 + \sum_{k=1}^{p-1} \binom{p}{k} (bp^{\alpha-1})^k + (bp^{\alpha-1})^p$$

So che

- $(bp^{\alpha-1})^p$ è multiplo di p^{α}
- $(bp^{\alpha-1})^k$ è multiplo di p^{α}

Quindi

$$a^{p^{\alpha-1}(p-1)} = 1 + p^{\alpha}h, \qquad h \in \mathbb{Z}$$

Ho dimostrato il caso 1:

$$a^{\varphi(p^{\alpha})} \equiv 1 \bmod p^a$$

2. n qualsiasi.

Scrivo n in fattori primi

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$$

con $p_i \neq p_j$ per $i \neq j$ per definizione.

Sia $a \in \mathbb{Z}$ con (a, n) = 1. Allora

$$(a, p_i^{\alpha_i}) \qquad i = 1 \dots r$$

Dato che $p_i^{\alpha_i}$ è potenza di un numero primo, applico il punto 1 e ottengo

$$a^{\varphi(p_i^{\alpha_i})} \equiv 1 \bmod p_i^{a_i}$$

Conosco che

$$\varphi(n) = \varphi(p_1^{\alpha_1})\varphi(p_2^{\alpha_2})\dots\varphi(p_r^{\alpha_r})$$

è multiplo di $\varphi(p_i^{\alpha_i})$.

Quindi

$$a^{\varphi(n)} \equiv 1 \bmod p_i^{\alpha_i} \qquad \text{per } i = 1 \dots r$$

Allora

$$p_i^{\alpha_i}|a^{\varphi(n)}-1 \qquad \forall i$$

Nota 34. Se a|c e b|c con (a,b) = 1, allora ab|c.

Dunque

$$n|a^{\varphi(n)} - 1$$
$$p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r} |a^{\varphi(n)} - 1$$

Capitolo 13

Potenze modulo n

13.1 Metodo dei quadrati ripetuti

Algoritmo efficiente per calcolare

 $a^n \mod m$

Scriviamo l'esponente n in base 2 ottenendo

$$n = (d_{k-1}d_{k-2}\dots d_1d_0)$$

cioè

$$n = \sum_{i=0}^{k-1} = d_i 2^i$$

Costruiamo la seguente tabella

$$(n)_{2} c_{0} = 1$$

$$d_{k-1} c_{1} \equiv c_{0}^{2} \cdot a^{d_{k-1}} \mod m$$

$$d_{k-2} c_{2} \equiv c_{1}^{2} \cdot a^{d_{k-2}} \mod m$$

$$\vdots$$

$$d_{1} c_{k-1} \equiv c_{k-2}^{2} \cdot a^{d_{1}} \mod m$$

$$d_{0} c_{k} \equiv c_{k-1}^{2} \cdot a^{d_{0}} \mod m$$

Risulta $a^n \mod m = c_k$

Esempio 53. Calcoliamo con il metodo dei quadrati ripetuti

 $3^{90} \mod 91$

Scriviamo 90 in base 2:

$$(90)_{10} = (1011010)_2$$

Quindi

$$(n)_{2} c_{0} = 1$$

$$1 \longrightarrow c_{1} \equiv c_{0}^{2} \cdot 3^{1} = 3 \mod 91$$

$$0 \longrightarrow c_{2} \equiv c_{1}^{2} \cdot 3^{0} = 9 \mod 91$$

$$1 \longrightarrow c_{3} \equiv c_{2}^{2} \cdot 3^{1} = 9^{2} \cdot 3 \equiv 61 \equiv -30 \mod 91$$

$$1 \longrightarrow c_{4} \equiv c_{3}^{2} \cdot 3^{1} = (-30)^{2} \cdot 3 \equiv -30 \mod 91$$

$$0 \longrightarrow c_{5} \equiv c_{4}^{2} \cdot 3^{0} = (-30)^{2} \equiv -10 \mod 91$$

$$1 \longrightarrow c_{6} \equiv c_{5}^{2} \cdot 3^{1} = (-10)^{2} \cdot 3 \equiv 27 \mod 91$$

$$0 \longrightarrow c_{7} \equiv c_{6}^{2} \cdot 3^{0} = 27^{2} \equiv 1 \mod 91$$

Risulta

$$3^{90} \equiv 1 \bmod 91$$

Capitolo 14

Crittografia

14.1 Sistemi Crittografici

Un sistema crittografico si può rappresentare come

$$\mathcal{P} \stackrel{f}{\longrightarrow} \mathcal{C} \stackrel{f^{-1}}{\longrightarrow} \mathcal{P}$$

dove

- $\mathcal{P}=$ insieme dei messaggi in chiaro, per esempio l'insieme delle lettere dell'alfabeto, tradotti in forma numerica. Possono darsi i casi: una lettera alla volta, blocchi di lettere in una volta (coppie, terne, k-ple di lettere). Il modo in cui si associano le lettere ai numeri può non essere segreto.
- C = insieme dei messaggi cifrati.
- f = funzione di cifratura.
- f^{-1} = funzione di decifratura = inversa di f.

14.2 Mappe lineari affini

Le mappe lineari affini sono dei sistemi crittografici a chiave simmetrica.

Esempio 54. Esempio di Mappa lineare affine:

- $\mathcal{P} = \mathbb{Z}_N$, ad esempio con N = 26 (lettere dell'alfabeto inglese)
- $\mathcal{C} = \mathbb{Z}_N$

•
$$f: \mathcal{P} \to \mathcal{C}$$

 $f(p) = p + b$ $b \in \mathbb{Z}_N$ fissato

•
$$f^{-1}: \mathcal{C} \to \mathcal{P}$$

 $f^{-1}(c) = c - b$

Nota 35. $Se \ b = 3$, il sistema crittografico è conosciuto con il nome di cifrario di Cesare.

Esempio 55. Esempio di Mappa lineare affine:

- $\mathcal{P} = \mathbb{Z}_N$, ad esempio con N = 26 (lettere dell'alfabeto inglese)
- $\mathcal{C} = \mathbb{Z}_N$
- $f: \mathcal{P} \to \mathcal{C}$ $f: \mathbb{Z}_N \to \mathbb{Z}_N$ f(p) = ap + b $a, b \in \mathbb{Z}_N$ fissati

Nota 36. a deve essere invertibile $\implies a \neq 0 \implies \exists a^{-1}$.

•
$$f^{-1}: \mathcal{C} \to \mathcal{P}$$

 $f^{-1}(c) = a^{-1}(b-c)$

Esempio 56 (Esempio Numerico). N = 26, a = 3, b = 3.

- $\bullet \mathcal{P} = \mathbb{Z}_{26}$
- $\mathcal{C} = \mathbb{Z}_{26}$
- $f: \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ f(p) = ap + b f(p) = 3p + 3
- $f^{-1}: \mathbb{Z}_{26} \to \mathbb{Z}_{26}$ $f^{-1} = a^{-1}(c-b)$

Devo ricavare la funzione inversa $f^{-1} = a^{-1}(c - b)$. Calcolo (3, 26):

$$26 = 3 \cdot 8 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$\rightarrow$$
 (3, 26) = 1 \Longrightarrow 3 è invertibile.

Identità di Bezout:

$$2 = 26 - 8 \cdot 3 = b - 8a$$
$$1 = 3 - 1 \cdot 2 = a - 1 \cdot (b - 8a) = 9a - b$$

$$1 = 9 \cdot 3 - 1 \cdot 26$$

Trovo che $a^{-1} = 9$

$$9 \cdot 3 = 27 = 1$$

Quindi
$$f^{-1}(c) = 9(c-3) = 9c - 9 \cdot 3 = 9c - 27$$

Voglio crittare e decrittare $p_1 = 3$, $p_2 = 9$, $p_3 = 1$ e $p_4 = 15$:

1. $p_1 = 3$:

$$f(p_1) = f(3) = 3 \cdot 3 + 3 = 12 = c_1$$

 $f^{-1}(c_1) = f(12) = 9 \cdot 12 - 27 = 108 - 27 = 81 = 3 = p_1$

2. $p_2 = 9$:

$$f(p_2) = f(9) = 3 \cdot 9 + 3 = 30 = 4 = c_2$$

 $f^{-1}(c_2) = f(4) = 9 \cdot 4 - 27 = 36 - 27 = 9 = p_2$

3. $p_3 = 1$:

$$f(p_3) = f(1) = 3 \cdot 1 + 3 = 6 = c_3$$

 $f^{-1}(c_3) = f(6) = 9 \cdot 6 - 27 = 54 - 27 = 27 = 1 = p_3$

4. $p_4 = 15$:

$$f(p_4) = f(15) = 3 \cdot 15 + 3 = 48 = 22 = c_4$$

 $f^{-1}(c_4) = f(22) = 9 \cdot 22 - 27 = 198 - 27 = 171 = 15 = p_4$

Nota 37. Si sotto-intendono le classi di resto! Si scrive 30 = 4 solo perché $[30]_{26} = [4]_{26}$.

14.3 RSA

L'RSA è un sistema crittografico a chiave asimmetrica.

Alice

Sceglie due numeri primi p e q distinti e dispari.

Calcola $N = p \cdot q$.

Calcola $\varphi(N) = (p-1)(q-1)$.

Sceglie $r \in \mathbb{Z}$ con $(r, \varphi(N)) = 1$.

Calcola, con l'algoritmo di Euclide, $s,t\in\mathbb{Z}$ con

$$1 = rs + \varphi(N)t$$

Pubblica la coppia (r, N).

Bob

Vuole mandare ad Alice il messaggio b, dove $b \in \mathbb{Z}$, 0 < b < N.

Calcola

 $a = b^r \bmod N$

Spedisce a ad Alice.

Riceve il messaggio a crittato da Bob.

Calcola

$$b = a^s \bmod N$$

e ritrova il messaggio originale b.

Dimostrazione. Perchè Alice calcolando $a^s \mod N$ ritrova b? Il motivo è il teorema di Eulero.

1. supponiamo che (b, N) = 1

Bob critta b calcolando $b^r \mod N = a$ Alice decritta a calcolando $b = a^s \mod N$

Alice sa che

$$1 = rs + \varphi(N)t$$

Quindi

$$b = b^1 \mod N = b^{rs + \varphi(N)t} \mod N = b^{rs}b^{\varphi(N)t} \mod N$$

So che b ed N sono coprimi, per il teorema di Eulero

$$b^{\varphi(N)} \equiv 1 \bmod N$$

Deriva che

$$b^{\varphi(N)t} \equiv 1 \mod N$$

Allora $b^{rs}b^{\varphi(N)t} \mod N = b^{rs} \mod N$:

$$b = b^1 \mod N = b^{rs+\varphi(N)t} \mod N = b^{rs}b^{\varphi(N)t} \mod N =$$

$$= b^{rs} \mod N = (b^r)^s \mod N = a^s \mod N$$

2. supponiamo che $(b, N) \neq 1$

So che $N = p \cdot q$. Quindi, data la supposizione,

$$o(b,p) \neq 1 \qquad o(b,q) \neq 1$$

Supponiamo $(b, p) \neq 1$. Allora p|b,

$$b = k \cdot p$$
 per un certo $k \in \mathbb{Z} < q$

Le condizioni suddette non sono vere entrambe, perciò (b,q)=1, ovvero $q \not| b$. Applico il teorema di Eulero a b e q (di Fermat poiché sono coprimi) e

$$b^{\varphi(q)} \equiv 1 \bmod q$$

$$b^{q-1} \equiv 1 \bmod q$$

A maggior ragione si ha

$$b^{\varphi(N)} \equiv 1 \bmod q$$

$$b^{(p-1)(q-1)} \equiv 1 \bmod q$$

da cui

$$b^{-t\varphi(q)} \equiv 1 \bmod q$$

Quindi trovo che

$$b^{-t \cdot \varphi(N)} = 1 + q \cdot n \qquad n \in \mathbb{Z}$$

Moltiplico questa ultima uguaglianza per b

$$b^{1-t\cdot\varphi(N)} = b + b\cdot q\cdot n \qquad n\in\mathbb{Z}$$

Dalla solita identità di Bezout $1 = rs + \varphi(N)t$ ho che

$$1 - \varphi(N)t = rs$$

quindi

$$b^{1-t\varphi(N)} = b + bqn \qquad n \in \mathbb{Z}$$

$$b^{rs} = b + bqn$$

$$b^{rs} = b + kpqn \qquad \text{perchè } b = kp$$

$$b^{rs} = b + nkN$$

che è congruo modulo N...

$$b^{rs} \equiv b \bmod N$$

Supponiamo che una terza persona, Carl, intercetti il messaggio a crittato che Bob ha mandato ad Alice.

Alice Carl Bob

Intercetta il messaggio a crittato che Bob ha spedito ad Alice.

Conosce la coppia (N, r) scelta da Alice poiché è pubblica.

Per tentare di decrittare il messaggio, Carl deve calcolare, come fa Alice,

 $b = a^s \bmod N$

Ma Carl non conosce s.

Carl dovrebbe calcolare s attraverso l'algoritmo delle divisioni successive da $\varphi(N)$.

Carl dovrebbe calcolare $\varphi(N) = (p-1)(q-1)$

Carl conosce N=pq, ma se p e q sono numeri primi abbastanza grandi, da questa informazioni non può ricostruire p e q.

Carl non riesce a decrittare il messaggio.

Osservazione 21. L'RSA si basa sul fatto che fattorizzare numeri primi impiega un tempo computazionale enorme se i numeri scelti sono abbastanza grandi.

14.3.1 RSA per la firma digitale

Alice

Svolge tutti i calcoli del normale RSA ricavando così

- chiave pubblica (N_a, r_a)
- $\bullet\,$ chiave pubblica s_a

 1° caso: $N_a < N_b$

Alice calcola

$$F_a = F^{s_a} \mod N_a$$

e poi

$$F_{a,b} = F_a^{r_b} \bmod N_b$$

Alice spedisce $F_{a,b}$ a Bob

 2° caso: $N_b < N_a$

Alice calcola

$$F_b = F^{r_b} \bmod N_b$$

e poi

$$F_{a,b} = F_b^{s_a} \bmod N_a$$

Alice spedisce $F_{a,b}$ a Bob

Bob

Svolge tutti i calcoli del normale RSA ricavando così

- chiave pubblica (N_b, r_b)
- \bullet chiave pubblica s_b

Bob calcola

$$F_a = F_{a,b}^{s_b} \bmod N_b$$

e poi

$$F = F_a^{r_a} \bmod N_a$$

E ricava la firma F di Alice

Bob calcola

$$F_b = F_{a,b}^{r_a} \bmod N_a$$

e poi

$$F = F_b^{s_b} \bmod N_b$$

E ricava la firma F di Alice

Capitolo 15

Numeri Primi

Definizione 31 (Numero Primo). Un intero $p \in \mathbb{Z}, p > 1$ si dice **primo** se

$$p|ab \implies p|a \quad o \quad p|b \qquad \qquad a,b \in \mathbb{Z}$$

Definizione 32 (Numero Irriducibile). Un intero $p \in \mathbb{Z}, p > 1$ si dice irriducibile se

$$a|p \implies a = \pm 1 \quad o \quad a = \pm p \qquad \qquad a \in \mathbb{Z}$$

Teorema 19. $Sia p \in \mathbb{Z} con p > 1$.

Allora p è primo se e solo se p è irriducibile.

Dimostrazione. Nei due versi:

• $p \text{ primo} \rightarrow p \text{ irriducibile}$

Sia
$$a \in \mathbb{Z}$$
 con

a|p

quindi

p = ab per un certo $b \in \mathbb{Z}$

Ma

p|p

p|ab

quindi

$$p|a$$
 o $p|b$

-p|a: dato che p|a e $a|p \implies a = \pm p$

-p|b: quindi

$$b = pc$$
 per un certo $c \in \mathbb{Z}$

Da cui derivo

$$p = ab = apc$$

Essendo p = p posso dedurre che

$$ac = 1$$

$$a = \pm 1$$

• p irriducibile $\rightarrow p$ primo

Supponiamo che p|ab con $a, b \in \mathbb{Z}$, dunque

$$ab = pq$$
 per un certo $q \in \mathbb{Z}$

Sia d = (a, p). Deriva d|p. Poiché p è irriducibile

o
$$d=1$$
 o $d=p$

Nel caso

- -d = p allora p|a
- -d=1 allora $\exists s,t\in\mathbb{Z}$ tale che

$$1 = as + pt$$

Moltiplicando per b trovo

$$b = abs + pbt$$

da cui

Lemma 1. Sia p un numero primo.

Se p divide un prodotto di $m \geq 2$ numeri interi, allora p divide almeno uno dei fattori.

Dimostrazione. Per induzione su n. Per

• m=2: l'enunciato è vero(segue dalla definizione di numero primo).

• m > 2: assumo m > 2 e il risultato vero per m - 1. Supponiamo che

$$p|a_1a_2\ldots a_m$$

Da cui

$$p|(a_1a_2...a_{m-1})a_m$$

Allora

o
$$p|a_1a_2\ldots a_{m-1}$$
 o $p|a_m$

Se

- $-p|a_m$ ho dimostrato la tesi.
- $-p|a_1a_2...a_{m-1}$ devo procedere per induzione: $p|a_i$ $1 \le i \le m-1$

15.0.1 Teorema della fattorizzazione unica

Il teorema della fattorizzazione unica è chiamato anche teorema fondamentale dell'Aritmetica.

Teorema 20 (Teorema della fattorizzazione unica). Ogni numero intero $n \geq 2$ si può scrivere come prodotto di numeri primi (non necessariamente distinti). Tale fattorizzazione è essenzialmente unica, cioè se

$$n = p_1 p_2 \dots p_s = q_1 q_2 \dots q_t$$

allora s = t e (a meno di cambiare l'ordine dei fattori) $p_i = q_i \quad \forall 1 \leq i \leq s$.

Dimostrazione. Esistenza della fattorizzazione Per induzione su n.

- n=2 vero perchè 2 è primo.
- n > 2, allora
 - se n = p numero primo, vero
 - se n non è un numero primo, allora

$$n = ab$$
 con $1 < a, b < n$

Per ipotesi induttiva

$$a = p_1 p_2 \dots p_s \qquad b = q_1 q_2 \dots q_t$$

con

Capitolo 15. Numeri Primi

*
$$p_i$$
 primo $1 \le i \le s$
* q_j primo $1 \le j \le t$

Quindi

$$n = ab = p_1 p_2 \dots p_s q_1 q_2 \dots q_t$$

Unicità della fattorizzazione

Supponiamo che

$$n = p_1 p_2 \dots p_s$$
 p_i primo $\forall i$
 $n = q_1 q_2 \dots q_t$ q_j primo $\forall j$

Quindi

$$p_1p_2\dots p_s=q_1q_2\dots q_t$$

Poiché

$$p_1|p_1p_2\dots p_s$$

segue che

$$p_1|q_1q_2\dots q_t$$

e quindi

$$p_1|q_j$$
 per almeno un j con $1 \le j \le t$

A meno di riordinare i fattori $q_1q_2\dots q_t,$ suppongo che

$$p_1|q_1$$

e pertanto

$$p_1 = q_1$$

Segue che

$$p_1 p_2 \dots p_s = p_1 q_2 \dots q_t$$
$$p_2 \dots p_s = q_2 \dots q_t$$
$$\vdots$$

Procedo nuovamente per induzione ricorsivamente ottenendo che

$$s = t$$
 e $p_i = q_i$ per $i = 1 \dots s$

15.0.2 Teorema di Euclide

Teorema 21 (Teorema di Euclide). Esistono infiniti numeri primi.

Dimostrazione. <u>Per assurdo</u>, supponiamo che i numeri primi siano finiti e siano

$$p_1, p_2, p_3, \ldots, p_n$$

Consideriamo il numero intero

$$M = p_1 p_2 p_3 \dots p_n + 1$$

Ho che $M \geq 2$ e $M \in \mathbb{Z}$. Per il teorema fondamentale dell'Aritmetica, M si scompone in prodotto di fattori primi, ovvero $\exists p \text{ con } p | M$. Ma i numeri primi sono tutti e soli $p_1, p_2, p_3, \ldots, p_n$, quindi p deve essere uno di questi. Perciò

$$p = p_i$$
 per un certo $1 \le i \le n$

Quindi

$$p_i|M$$

$$p_i|(p_1p_2\dots p_n+1)$$

Nella divisione di M per p_i il quoziente è $p_1p_2 \dots p_{i-1}p_{i+1} \dots p_n$ e il resto è 1. Assurdo!

Definizione 33. $\pi(n)$ conta i numeri primi da 1 ad n.

$$\pi(n) = |\{p \mid p \ primo \ e \ p \leq n\}|$$

Nota 38. Noto che

- $se \ \pi(n) = \pi(n-1) \implies n \ \underline{non} \ \dot{e} \ primo.$
- $se \ \pi(n) = \pi(n-1) + 1 \implies n \ \dot{e} \ primo.$

15.0.3 Teorema di Euclide

Teorema 22 (Teorema dei numeri primi). La densità media dei numeri primi tra 1 e n è asintoticamente uquale a

$$\frac{1}{\ln n}$$

ovvero

$$\lim_{n \to +\infty} \frac{\pi(n)}{\frac{n}{\ln n}} = 1$$

15.1 Test di Primalità

Si tratta di un test in grado di dirci quando un numero intero positivo è primo.

Per determinare un numero primo di data grandezza scegliamo random un numero n intero della grandezza voluta;

- se n è pari, considero n+1.
- se n è dispari applico il test a n, n + 2, n + 4, ...

fin quando non trovo un numero primo, che sarà il più piccolo numero primo $\geq n.$

Osservazione 22. Una conseguenza del teorema dei numeri primi è che dopo circa $\ln n$ trovo un numero primo.

Definizione 34 (Test deterministico). Considero $3...\lfloor \sqrt{n} \rfloor$ e verifico se dividono o no n. Se n non è primo, allora

$$n = ab$$
 $1 < a, b < n$

Nota 39. Se $n = ab \ con \ a > \sqrt{n} \ e \ b > \sqrt{n} \ allora \ ab > n$, assurdo.

Definizione 35 (Test probabilistico). Test che risponde con certezza quando n non è un numero primo.

Invece mostra che n è primo \underline{non} con certezza, ma solo con una certa probabilità.

15.1.1 Pseudoprimi di Fermat

Definizione 36. Sia

- n > 1 un intero dispari
- $b \in \mathbb{Z} \ con \ (b, n) = 1$

Se $b^{n-1} \equiv 1 \mod n$ Allora $n \in \mathbf{pseudoprimo}$ (di Fermat) rispetto alla base b.

Osservazione 23. La definizione di pseudoprimo è giustificata dal <u>Piccolo teorema di Fermat</u>. Infatti se p è primo e $b \in \mathbb{Z}$ con (b,p)=1 (cioè con $p \nmid b$), il Piccolo teorema di Fermat assicura che

$$b^{p-1} \equiv 1 \bmod p$$

Osservazione 24. Se p è primo, allora p è pseudoprimo rispetto ad ogni $b \in \mathbb{Z}$ con (b, p) = 1.

Osservazione 25. Ogni intero dispari n > 1 è pseudoprimo rispetto alle basi (banali) $b = \pm 1$ (questo perché è n - 1 è pari).

Nota 40. Dato n > 1 intero dispari, $b \in \mathbb{Z}$ con (b, n) = 1

- $se\ b^{n-1} \not\equiv 1 \bmod n$, allora $n\ \underline{non}\ \grave{e}\ primo$.
- $se\ b^{n-1} \equiv 1 \mod n$, allora $n \ \grave{e}$ primo.

Esempio 57. *Sia* n = 91.

 $n \ \dot{e} \ pseudoprimo \ rispetto \ alla \ base \ b = 3.$ $n \ \underline{non} \ \dot{e} \ pseudoprimo \ rispetto \ alla \ base \ b = 2.$

Verifico che

$$3^{90} \equiv 1 \mod 91$$

$$90_{10} = (1011010)_2$$
, quindi

$$1 \to c_1 = 1^2 \cdot 3^1 = 3 \mod 91$$

$$0 \rightarrow c_2 = 3^2 \cdot 3^0 = 9 \mod 91$$

$$1 \rightarrow c_3 = 9^2 \cdot 3^1 = 81 \cdot 3 = -30 \mod 91$$

$$1 \rightarrow c_4 = (-30)^2 \cdot 3^1 = 900 \cdot 3 = -30 \mod 91$$

$$0 \rightarrow c_5 = (-30)^2 \cdot 3^0 = 900 = -10 \mod 91$$

$$1 \rightarrow c_6 = (-10)^2 \cdot 3^1 = 300 = 27 \mod 91$$

$$1 \to c_7 = (27)^2 \cdot 3^0 = 1 \mod 91$$

Verifico che

$$2^{90} \not\equiv 1 \mod 91$$

Quindi

$$1 \to c_1 = 1^2 \cdot 2^1 = 2 \mod 91$$

$$0 \rightarrow c_2 = 2^2 \cdot 2^0 = 4 \mod 91$$

$$1 \to c_3 = 4^2 \cdot 2^1 = 16 \cdot 2 = 32 \mod 91$$

$$1 \rightarrow c_4 = 32^2 \cdot 2^1 = 1024 \cdot 2 = 46 \mod 91$$

$$0 \rightarrow c_5 = 46^2 \cdot 2^0 = 2114 = 23 \mod 91$$

$$1 \rightarrow c_6 = 23^2 \cdot 2^1 = 529 \cdot 2 = 1058 = 57 = -34 \mod 91$$

$$1 \to c_7 = (-34)^2 \cdot 2^0 = 1156 = 246 = 64 \mod 91 \not\equiv 1 \mod 91$$

Proprietà degli Pseudoprimi di Fermat

Osservazione 26. Sia

$$b^{n-1} = 1 \mod n$$
 $(b, n) = 1 \quad 0 < b < n$

 \implies ho $\varphi(n)$ possibili basi.

Teorema 23. Per ogni numero intero b > 1 esistono infiniti numeri composti che sono pseudoprimi rispetto alla base b.

Dimostrazione. Sia p un numero primo dispari con $p \not| b$ e $p \not| b^2 - 1$. Osserviamo che esistono infiniti numeri primi con queste proprietà. Sia

$$n = \frac{b^{2p} - 1}{b^2 - 1} = \frac{(b^p)^2 - 1}{b^2 - 1} = \frac{b^p - 1}{b - 1} \cdot \frac{b^p + 1}{b + 1}$$

Ora

$$\frac{b^{p}-1}{b-1} = \underbrace{b^{p-1} + b^{p-2} + \dots + b + 1}_{\in \mathbb{Z}} > 1$$

е

$$\frac{b^{p}+1}{b+1} = b^{p-1} - b^{p-2} + b^{p-3} - b^{p-4} + \dots + b^{2} - b + 1$$
$$= \underbrace{b^{p-2}(b-1) + \dots + b(b-1) + 1}_{\in \mathbb{Z}} > 1$$

quindi n è un numero composto.

Inoltre

$$n = \frac{b^{2p} - 1}{b^2 - 1} = \frac{(b^2)^p - 1}{b^2 - 1} = (b^2)^{p-1} + (b^2)^{p-2} + \dots + b^2 + 1$$

da cui

$$n-1 = (b^2)^{p-1} + (b^2)^{p-2} + \dots + b^2$$

Segue che n-1 è somma di p-1 termini, con p-1 pari, che sono tutti pari se b è pari oppure tutti dispari se b è dispari. In tutto n-1 è pari cioè 2|n-1 (e n è dispari).

Poi

$$(n-1)(b^2-1) = n(b^2-1) - (b^2-1) = b^{2p} - 1 - b^2 + 1 = b^{2p} - b^2 = b^2(b^{2p-2}-1)$$

Per il teorema di Fermat $b^{p-1} \equiv 1 \mod p$ e pertanto

$$b^{2p-2} = (b^{p-1})^2 \equiv 1^2 \equiv 1 \mod p$$

cioè

$$p|b^{2p-2}-1$$

Quindi $p|(n-1)(b^2-1) \in p / b^2 - 1$ per ipotesi.

Segue che p|n-1.

Abbiamo allora $n-1=2pk, k \in \mathbb{Z}$ (notare che p è dispari).

Mostriamo che n è pseudoprimo rispetto alla base b.

Innanzitutto

$$n = \underbrace{(b^{2})^{p-1} + (b^{2})^{p-2} + \dots + b^{2}}_{\text{multiplo di } b} + 1$$

dunque (b, n) = 1.

Poi $n(b^2-1)=b^{2p}-1$ cioè $n|b^{2p}-1$ ovvero $b^{2p}\equiv 1 \bmod n$.

Allora

$$b^{n-1} = b^{2pk} = (b^{2p})^k \equiv 1^k = 1 \mod n$$

La tesi segue dal fatto che abbiamo infinite scelte per p numero primo dispari con $p \not|b = p \not|b^2 - 1$.

Teorema 24. Sia n > 1 un intero composto dispari. Se n <u>non</u> è pseudoprimo rispetto ad almeno una base \bar{b} , allora n <u>non</u> è pseudoprimo per almeno la metà delle basi possibili.

Dimostrazione.

Nota 41. Considero sempre le basi in $\mod n$.

1. Se n è pseudoprimo rispetto alle basi a e b, allora n è pseudoprimo rispetto alle basi ab e ab^{-1} (dove b^{-1} è l'inverso di b mod n).

Infatti

$$(a,b)^{-1} = a^{n-1}b^{n-1} \equiv 1 \cdot 1 = 1 \bmod n$$
$$(a,b^{-1}) = a^{n-1}(b^{-1})^{n-1} = a^{n-1}(b^{n-1}) \equiv 1 \cdot (1)^{-1} = 1 \cdot 1 = 1 \bmod n$$

2. Sia $\{b_1, b_2, \ldots, b_s\}$ l'insieme di tutte le basi rispetto alle quali n è pseudoprimo.

$$\{b \qquad 0 < b < n \quad (b,n) = 1\} \qquad \qquad \varphi(n)$$

Considero l'insieme

$$\{\overline{b}b_1,\overline{b}b_2,\ldots,\overline{b}b_s\}$$

Affermo che $(\bar{b}b_i, n) = 1$ per $i = 1 \dots s$. Infatti

$$(\overline{b}b, n) = 1 \iff (\overline{b}, n) = 1 \text{ e } (b_i, n) = 1 \quad \forall i$$

Affermo che n <u>non</u> è pseudoprimo rispetto alla base $\bar{b}b_i$ $\forall i$ perchè se n fosse pseudoprimo rispetto a $\bar{b}b_i$, per l'osservazione 1, allora n sarebbe pseudoprimo anche rispetto alla base

$$(\bar{b}b_i)b^{-1} = \bar{b}$$
 ASSURDO

(dato che $(\bar{b}b_i = a)$).

3. Affermo che

$$\bar{b}b_i = \bar{b}b_j \implies b_i = b_j$$

Infatti

$$\overline{b}b_i = \overline{b}b_j$$

$$\overline{b}^{-1}(\overline{b}b_i) = \overline{b}^{-1}(\overline{b}b_j)$$

$$b_i = b_j$$

quindi

$$i = j$$

Concludendo ho trovato che le basi rispetto alle quali n è pseudoprimo sono s, allora ne esistono (almeno) s rispetto alle quali n è pseudoprimo.

15.1.2 Test di Primalità

Sia n > 1 un intero dispari.

- 1. Scegliamo random un intero b con 0 < b < n
- 2. Calcoliamo, con l'algoritmo di Euclide, d = (b, n)
 - se d > 1 allora $n \underline{\text{non}}$ è primo.
 - \bullet se d=1 allora b è una base, calcoliamo b^{n-1} mod n
- 3. se $b^{n-1} \not\equiv 1 \mod n$ allora $n \bmod p$ è primo.
 - se $b^{n-1} \equiv 1 \mod n$ allora n è pseudoprimo rispetto alla base b e forse n è primo.

Scegliamo quindi un altro valore per b come al punto 1 e ripeto la procedura.

Supponiamo di aver applicato la procedura k volte con gli interi $b_1, b_2, \dots b_k$ e supponiamo che n sia pseudoprimo rispetto alle basi $b_1, b_2, \dots b_k$ (cioè $b_i^{n-1} \equiv 1 \mod n$ per $i \dots k$).

Qual è la probabilità che n sia composto (e che ci "ha fregato" k volte)? Se n è composto e $b_1^{n-1} \equiv 1 \mod n$ vuol dire che b_1 è una base rispetto alla quale n è pseudoprimo. Per il teorema precedente, tali basi sono al più la metà di quelle possibili, ovvero la probabilità che

$$b_1^{n-1} \equiv 1 \mod n$$
 e n è composto

 $\grave{e} \leq \frac{1}{2}.$

Considerando quindi ognuna delle k scelte di b come un evento indipendente, le probabilità che n è composto ma supera il test k volte è $\leq \frac{1}{2}k$.

15.1.3 Numeri di Carmichael

Esistono dei numeri interi composti che sono pseudoprimi rispetto ad ogni base possibile.

Definizione 37 (Numeri di Carmichael). Sia n > 1 un intero dispari composto. Si dice che n è un numero intero di Carmichael se

$$b^{n-1} \equiv 1 \mod n$$

per ogni $b \in \mathbb{Z}$ con (b, n) = 1.

Nota 42. I numeri di Carmichael minori di 1000 sono: 561, 1105, 1729, 2465, 2821, 6601, 8911.

Caratterizzazione dei numeri di Carmichael

Un numero composto n > 1 è di Carmichael se e solo se

- n è libero da quadrati (= la fattorizzazione contiene solamente esponenti uguali a 1)
- p-1|n-1 per ogni divisore primo p di n.

Dimostrazione. Scrivo

$$n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$$

dove $p_1 \dots p_r$ sono numeri primi distinti.

Per definizione n è un numero di Carmichael se e solo se

$$n$$
è dispari e $b^{n-1} \equiv 1 \mod n \quad \forall b$

con $0 < b < n \in (b, n) = 1$.

Pongo

$$P = m.c.m(\varphi(p_1^{a_1}), \varphi(p_2^{a_2}), \dots, \varphi(p_r^{a_r}))$$

$$P = m.c.m(p_1^{a_1-1}(p_1-1), p_2^{a_2-1}(p_2-1), \dots, p_r^{a_r-1}(p_r-1))$$

Sia poi b con 0 < b < ne (b,n) = 1

- $(b, p_i^{a_i})$ per $i = 1 \dots r$
- per il teorema di Eulero

$$b^{\varphi(p_i^{a_i})} \equiv 1 \bmod p_i^{a_i} \qquad i = 1 \dots r$$

• a maggior ragione

$$b^l \equiv 1 \bmod p_i^{a_i} \qquad i = 1 \dots r$$

 $b^l \equiv 1 \bmod p_i^{a_i}$

perchè

$$\begin{array}{c|c} p_1^{a_1}|b^{l-1} & & \\ p_2^{a_2}|b^{l-1} & & \\ & \cdots & \\ p_r^{a_r}|b^{l-1} & & \\ \end{array}$$

 $b^t \equiv 1 \bmod n \iff l|t$

In particolare abbiamo che

$$b^{n-1} \equiv 1 \bmod n \iff l|n-1$$

nè un numero di Carmichael $\iff l|n-1$

con
$$l = m.c.m(p_1^{a_1-1}(p_1-1), p_2^{a_2-1}(p_2-1), \dots, p_r^{a_r-1}(p_r-1)).$$

nè un numero di Carmichael $\iff p_r^{a_r-1}(p_r-1)|n-1 \quad \text{ per } i \dots r$

Ora $p_i|n$ pertanto $p_i \not|n-1 \to \begin{cases} a_1 = 1 & \forall i \\ p_i - 1 & \forall i \end{cases}$

Corollario 1. Un numero di Carmichael è prodotto di almeno 3 numeri primi distinti.

Dimostrazione. Sia n un numero di Carmichael con $n=p\cdot q$ (pe qprimi, p< q).

Allora

$$n-1 = pq-1 = (p-1)(q-1) + (p-1) + (q-1)$$

Per la caratterizzazione dei numeri di Carmichael sappiamo che p-1|n-1 e q-1|n-1.

Ottengo che

$$p-1|n-1 = (p-1)(q-1) + (p-1) + (q-1) \implies p-1|q-1$$

Analogamente

$$q-1|n-1 \implies q-1|p-1$$

Ma allora

$$p-1=q-1 \implies p=q$$

che è ASSURDO!

Esempio 58. Dato n = 561, verificare se è un numero di Carmichael.

$$561 = 3 \cdot 11 \cdot 17$$

1. $n = 3 \cdot 11 \cdot 17$ è libero da quadrati.

2. devo controllare che p-1|n-1 $\forall p$ divisore primo di n:

$$3 - 1|561 - 1$$
 $11 - 1|561 - 1$ $17 - 1|561 - 1$ $2|560$ \checkmark \checkmark \checkmark

 $\implies n = 561$ è un numero di Carmichael.

Capitolo 16

Anelli e Campi

16.1 Anelli

16.1.1 Anello

Definizione 38 (Anello). Un anello è una struttura algebrica $(A, +, \cdot)$ tale che

- 1. (A, +) è un gruppo abeliano
- 2. è associativo, cioè $\forall a, b, c \in A$ (ab)c = a(bc)
- 3. valgono le **leggi distributive**, cioè $\forall a, b, c \in A$
 - $\bullet \ a(b+c) = ab + ac$
 - (a+b)c = ac + bc
- 4. $\exists 1_A \in A \text{ tale che } \forall a \in A$ $1_A \cdot a = a = a \cdot 1_A$

Esempio 59. Esempi pratici:

- 1. $(\mathbb{Z}, +, \cdot)$ + un anello <u>commutativo</u>
- 2. $Mat(n \times n, \mathbb{Z})$ rispetto alla somma e al prodotto tra matrici è un anello non commutativo
- 3. \mathbb{Z}_n rispetto alla somma e al prodotto di classi di resto è un anello commutativo

Anello Commutativo

Definizione 39. Un anello A si dice <u>commutativo</u> se

$$\forall a, b \in A \qquad ab = ba$$

Esempio 60. \mathbb{R} , \mathbb{Q} , \mathbb{C} sono anelli commutativi

16.2 Campi

16.2.1 Campo

Definizione 40 (Campo). Un campo k è un anello commutativo in cui ogni elemento (tranne O_k) ammette inverso.

Ovvero un campo k è un anello in cui

- 1. $\forall a, b \in k$ ab = ba
- 2. $\forall a \in k \quad con \quad a \neq O_k \qquad \exists a^{-1} \in k \quad tale \ che \quad a \cdot a^{-1} = 1_k = a^{-1} \cdot a$

Esempio 61. Esempi pratici:

- \mathbb{Q} è un campo.
- \mathbb{R} è un campo.
- \mathbb{C} è un campo.
- \mathbb{Z} non è un campo.
- \mathbb{Z}_p con p primo \grave{e} un campo.

Capitolo 17

Polinomi su un campo

Sia K un campo, indichiamo con K[X] l'anello dei polinomi a coefficienti in K, nell'indeterminata x.

Ovvero K[x] è l'insieme di tutti i polinomi

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

con

- $n \in \mathbb{Z}$
- $a_i \in K \quad \forall i = 0 \dots n$

17.1 Operazioni in K[x]

Dati

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^{n} a_i x_i$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0 = \sum_{k=0}^m a_j x_j$$

definiamo...

17.1.1 Somma in K[x]

$$p(x) + q(x) = \sum_{k=0}^{\max(n,m)} (a_k + b_k) x^k$$

$$= a_0 + b_0 + (a_1 + b_1)x + \dots + (a_m + b_m)x^m + (a_{m+1} + b_{m+1})x^{m+1} + \dots + (a_n + b_n)x^n$$

Nota 43. L'elemento neutro della somma è: $0_{K[x]} = 0_K = 0$

17.1.2 Prodotto in K[x]

$$p(x)q(x) = \sum_{k=0}^{n+m} c_k x^k$$

$$con c_k = \sum_{k=i+j} a_i b_j$$

Nota 44. L'elemento neutro del prodotto è: $1_{K[x]} = 1_K = 1$

17.1.3 Osservazioni su K[x]

Nota 45. Quindi K[x] è un anello commutativo con $0_{K[x]}$ e $1_{K[x]}$ che coincidono con 0_K e 1_K .

Nota 46. Per l'anello K[x] si può sviluppare una teoria parallela a quella sviluppata per \mathbb{Z} .

17.2 Coefficiente Direttore

Definizione 41. Dato $p(x) \in K[x]$ polinomio non nullo con

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

il coefficiente $a_n \neq 0$ si dice **coefficiente direttore** di p(x).

Nota 47. Se $a_n = 1$ allora p(x) è monico.

17.3 Grado di un polinomio

Definizione 42. Dato $p(x) \in K[x]$ polinomio non nullo con

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

e

$$a_n \neq 0$$

l'intero non negativo n si dice **grado di** p(x) e lo si indica con $\partial p(x) = n$.

Nota 48. Per convenzione, il polinomio nullo ha grado $\partial p(x) = -1$

17.4 Algoritmo della divisione

Teorema 25 (Algoritmo della divisione). Siano

$$a(x), b(x) \in K[x]$$
 con $b(x) \neq 0$

Esistono e sono unici due polinomi $q(x), r(x) \in K[x]$ tali che

1.
$$a(x) = b(x)q(x) + r(x)$$

2.
$$\partial r(x) < \partial b(x)$$

Dimostrazione. Dimostro esistenza e unicità:

Esistenza di q(x) e r(x)

Per induzione su $n = \partial a(x)$

n = -1: a(x) = 0 e il teorema è vero con q(x) = 0 = r(x)

 $n \ge 0$: allora poniamo $m = \partial b(x)$;

- se n < m il teorema è vero con q(x) = 0 e r(x) = a(x)
- se $n \ge m$ allora scriviamo

$$a(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$b(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + a_1 x + a_0$$

con $b(x) \neq 0$ (quindi $b_n \neq 0, \exists b_m^{-1} \in K$).

Considero il polinomio

$$a'(x) = a_n(x) - a_n b_m^{-1} b(x) x^{n-m}$$

Risulta

$$a'(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 - a_n b_m^{-1} x^{n-m} (b_m x^m + \dots + b_1 x + b_0)$$

dunque $\partial a'(x) \le n - 1$.

Per induzione esistono due polinomi $q'(x), r'(x) \in K[x]$ tali che

$$a'(x) = b(x)q'(x) + r'(x)$$

$$\operatorname{con} \partial r'(x) < \partial b(x).$$

Poiché
$$a(x) = a'(x) + a_n b_m^{-1} x^{n-m} b(x)$$
 abbiamo
$$a(x) = a'(x) + a_n b_m^{-1} x^{n-m} b(x)$$
$$= q'(x)b(x) + r'(x) + a_n b_m^{-1} x^{n-m} b(x)$$
$$= (q'(x) + a_n b_m^{-1} x^{n-m})b(x) + r'(x)$$

Posto quindi

$$q(x) = q'(x) + a_n b_m^{-1} x^{n-m}$$
$$r(x) = r'(x)$$

17.4. Algoritmo della divisione

sono verificate le condizioni 1 e 2.

Unicità di q(x) e r(x)

Supponiamo che

$$a(x) = b(x)q(x) + r(x),$$
 $\partial r(x) < \partial b(x)$
 $a(x) = b(x)q_1(x) + r_1(x),$ $\partial r_1(x) < \partial b(x)$

Quindi deve essere

$$b(x)(q(x) - q_1(x)) = r_1(x) - r(x)$$

Se fosse $q(x) \neq q_1(x)$ sarebbe

$$\partial(b(x)(q(x) - q_1(x))) \ge \partial b(x)$$

e, d'altra parte, $\partial(r_1(x) - r(x)) < \partial b(x)$, assurdo.

Ne segue che
$$q(x) = q_1(x)$$
 e quindi $r(x) = r_1(x)$.

Definizione 43 (Quoziente e Resto). I polinomi q(x) e r(x) si dicono rispettivamente quoziente e resto della divisione di a(x) per b(x).

Esemplo 62. Divido $a(x) = x^3 - 2x^2 + x - 1$ per $b(x) = 2x^2 - 5$:

Ottengo

$$q(x) = \frac{1}{2}x - 1$$
$$r(x) = \frac{7}{2}x - 6$$

17.4.1 Divisibilità

Definizione 44 (Divisibilità). Se r(x) = 0 si dice che b(x) divide a(x), ovvero che a(x) è divisibile per b(x), e si scrive

Nota 49.

$$b(x)|a(x) \iff \exists c(x) \in K[x]: \quad a(x) = b(x)c(x)$$

17.5 Massimo Comune Divisore

Definizione 45 (Massimo Comune Divisore). Sia

- \bullet K[x] l'anello dei polinomi a coefficienti in K
- $a(x), b(x) \in K[x]$ due polinomi non nulli

Si dice massimo comune divisore tra a(x) e b(x), ogni polinomio $d(x) \in K[x]$ tale che

- 1. d(x)|a(x)|e|d(x)|b(x)
- 2. $se\ c(x) \in K[x]\ con\ c(x)|a(x)\ e\ c(x)|b(x)\ allora\ c(x)|d(x)$

17.5.1 Esistenza di un Massimo Comune Divisore

Teorema 26. Per ogni $a(x), b(x) \in K[x]$ con $a(x) \neq 0, a(x) \neq 0$, esiste un massimo comune divisore d(x) fra a(x) e b(x).

Esistono inoltre i polinomi $s(x), t(x) \in K[x]$ tali che sia

$$d(x) = a(x)s(x) + b(x)t(x)$$

Dimostrazione. Analoga a quella in \mathbb{Z} . Applico l'algoritmo delle divisioni successive:

$$(1) \ a(x) = b(x)q_1(x) + r_1(x) \qquad \partial r_1(x) < \partial b(x)$$

(2)
$$b(x) = r_1(x)q_2(x) + r_2(x)$$
 $\partial r_2(x) < \partial r_1(x)$

(3)
$$r_1(x) = r_2(x)q_3(x) + r_3(x)$$
 $\partial r_3(x) < \partial r_2(x)$

: :

(k-1)
$$r_{k-3}(x) = r_{k-2}(x)q_{k-1}(x) + r_{k-1}(x)$$
 $\partial r_{k-1}(x) < \partial r_{k-2}(x)$

(k)
$$r_{k-2}(x) = r_{k-1}(x)q_k(x)$$

L'ultimo resto non nullo è un massimo comune divisore tra a(x) e b(x).

Nota 50. Per determinare s(x) e t(x) si procede come in \mathbb{Z} .

Il Massimo Comune Divisore tra polinomi è unico a meno di una costante moltiplicativa non nulla.

Teorema 27. Sia d(x) un massimo comune divisore tra a(x) e b(x). Allora d'(x) è un massimo comune divisore tra a(x) e b(x) se e solo se

$$d'(x) = kd(x)$$

 $con k \in K^*$.

Dimostrazione. Da dimostrare.

Osservazione 27. Dato quanto detto, esiste uno e un solo polinomio **monico** d(x) che sia massimo comune divisore tra a(x) e b(x). Tale polinomio è indicato con il simbolo

ed è chiamato **massimo comune divisore tra** a(x) **e** b(x). In particolare, se il grado del massimo comune divisore è zero, allora tale massimo comune divisore è 1. In questo caso a(x) e b(x) si dicono **coprimi**.

Esempio 63.

Determinare il massimo comun divisore in $\mathbb{Z}_5[x]$ tra $a(x) = x^5 + x^2 + x + 1$ e $b(x) = 3x^2 + 2x + 2$.

Risulta

Un massimo comun divisore tra a(x) e b(x) è 4x + 3, mentre (a(x), b(x))) = x + 2. Infine

$$4x + 3 = a(x) - b(x)(2x + 4)$$
$$= a(x) \cdot 1 + b(x)(3x + 1)$$

e

$$x + 2 = a(x) \cdot 4 + b(x)(2x + 4)$$

Esempio 64.

Determinare il massimo comun divisore in $\mathbb{Q}[x]$ tra $a(x) = x^3 + 1$ e $b(x) = x^2 + 1$. Risulta

$$\begin{array}{c|ccccc}
x^2 & & +1 & -x+1 \\
x^2 & -x & & -x-1 \\
\hline
& x & +1 \\
& x & -1 \\
\hline
& 2 & & \\
\end{array}$$

$$b(x) = (-x+1)(-x-1) + 2$$

Un massimo comun divisore tra a(x) e b(x) è 2, pertanto (a(x),b(x))=1, ovvero a(x) e b(x) sono coprimi. Inoltre

$$-x + 1 = a(x) \cdot 1 + b(x)(-x)$$

$$2 = b(x) - (-x+1)(-x-1)$$

$$= b(x) - [a(x) + b(x)(-x)](-x-1)$$

$$= b(x) + [a(x) - b(x)x](x+1)$$

$$= a(x)(x+1) + b(x)(1-x^2-x)$$

ovvero

$$1 = a(x)\left(\frac{x}{2} + \frac{1}{2}\right) + b(x)\left(-\frac{x^2}{2} - \frac{x}{2} + \frac{1}{2}\right)$$

Definizione 46. Sia $a(x) \in K[x]$ un polinomio di grado n > 0. Si dice che a(x) è un **polinomio primo** in K[x] se ogni volta che a(x)|b(x)c(x), con $b(x), c(x) \in K[x]$, si ha a(x)|b(x) oppure a(x)|c(x).

Osservazione 28. Se un polinomio primo a(x) divide il prodotto $n \geq 2$ polinomi, segue dalla definizione (per induzione su n) che a(x) divida almeno uno dei fattori.

Definizione 47. Sia $a(x) \in K[x]$ un polinomio di grado n > 0. Si dice che a(x) è un polinomio irriducibile (in K[x]) se a(x) è divisibile solo per i

polinomi di grado 0 e per i polinomi della forma $h \cdot a(x)$ con $h \in K^*$. In caso contrario, si dice che a(x) riducibile.

Detto diversamente: il polinomio a(x) è irriducibile se e solo se è fattorizzabile soltanto come

$$a(x) = h^{-1}(ha(x)) \qquad con \ h \in K^*$$

Teorema 28. Un polinomio $a(x) \in K[x]$ è irriducibile se e solo se è primo.

Dimostrazione. Analoga a quella vista in \mathbb{Z} .

Osservazione 29. La nozione di irriducibilità di un polinomio $a(x) \in K[x]$ dipende dal campo K cui appartengono i coefficienti del polinomio. Se K è un sottocampo di un campo F, si può riguardare a(x) come polinomio in F[x]. Può accadere che a(x) sia irriducibile in K[x] ma riducibile in F[x].

Esempio 65. Il polinomio $a(x) = x^2 - 2$ è irriducibile in $\mathbb{Q}[x]$, ma è riducibile in $\mathbb{R}[x]$ perchè

$$x^{2} - 2 = (x - \sqrt{2})(x + \sqrt{2})$$
 in $\mathbb{R}[x]$

Esempio 66. Il polinomio $a(x) = x^2 + 1$ è irriducibile in $\mathbb{Q}[x]$ e in $\mathbb{R}[x]$, ma è riducibile in $\mathbb{C}[x]$ perchè

$$x^2 + 1 = (x - i)(x + i)$$
 in $\mathbb{C}[x]$

Teorema 29 (Teorema della fattorizzazione unica). Ogni polinomio $a(x) \in K[x]$ di grado n > 0 può essere scritto come prodotto di $s \ge 1$ polinomi irriducibili (non necessariamente distinti).

Tale fattorizzazione è essenzialmente unica, nel senso che se

$$a(x) = p_1(x) \dots p_s(x) = q_1(x) \dots q_t(x)$$

dove i polinomi

$$p_i(x), q_i(x)$$
 $(1 \le i \le s)$

sono irriducibili, si possono ordinare i fattori in modo che

$$s = t$$

e

$$p_1(x) = h_1 q_1(x), \dots, p_s(x) = h_s q_s(x)$$

$$con h_i \in K^* \qquad (q \le i \le s)$$

Dimostrazione. Da dimostrare.

Corollario 2. Ogni polinomio $a(x) \in K[x]$ di grado n > 0 si può scrivere come

$$a(x) = ka_1(x) \dots a_s(x)$$

dove $k \in K^*$ è il coefficiente direttore di a(x) e i polinomi $a_1(x), \ldots, a_s(x)$ sono monici e irriducibili. Tale scrittura è unica a meno dell'ordine.

Capitolo 18 Radici di un Polinomio

Capitolo 19 Costruzione di Campi

Capitolo 20

Permutazioni

Capitolo 21
Teoria dei Codici

Capitolo 22 Codici Lineari