Olympiades Panafricaines Mathématiques 2023 Quelques solutions

KouakouSchool

14 juin 2023

Table des matières

Ta	able des matières	1
1	Enoncés	2
	1.1 Jour 1	4
	1.2 Jour 2	4
2	Solutions	•
	2.1 Jour 1	•
	2.2 Jour 2	-

Résumé

Ce document présente des solutions aux différents problèmes rencontrés lors des Olympiades Panafricaines de Mathématiques (OPAM) 2023.

1 Enoncés

1.1 Jour 1

Problème 1

Dans un triangle ABC tel que AB < AC, D est un point du segment [AC] tel que BD = CD. Une droite parallèle à (BD) coupe le segment [BC] en E et coupe la droite (AB) en F. G est le point d'intersection des droites (AE) et (BD) par G.

Montrer que
$$\widehat{BCG} = \widehat{BCF}$$
. (1)

Problème 2

Trouver tous les nombres entiers naturels non nuls m et n qui n'ont pas de diviseur commun plus grand que 1 tels que :

$$m^3 + n^3$$
 divise $m^2 + 20mn + n^2$. (2)

Problème 3

On considère la suite de nombres réels définie par :

$$\begin{cases} x_1 = c \\ x_{n+1} = cx_n + \sqrt{c^2 - 1}\sqrt{x_n^2 - 1} & \text{pour tout} \quad n \ge 1. \end{cases}$$
 (3)

Montrer que si c est un nombre entier naturel non nul, alors x_n est un entier pour tout $n \ge 1$.

1.2 Jour 2

Problème 4

Manzi possède n timbres et un album avec 10 pages. Il distribue les n timbres dans l'album de sorte que chaque page contienne un nombre distinct de timbres. Il trouve que, peu importe comment il fait cela, il y a toujours un ensemble de 4 pages tels que le nombre total de timbres dans ces 4 pages soit au moins $\frac{n}{2}$.

Déterminer la valeur maximale possible de
$$n$$
. (4)

Problème 5

Soient a et b des nombres réels avec $a \neq 0$. Soit :

$$P(x) = ax^4 - 4ax^3 + (5a+b)x^2 - 4bx + b$$
(5)

Montrer que toutes les racines de P(x) sont réelles et strictement positives si et seulement si a = b.

Problème 6

Soit ABC un triangle dont tous les angles sont aigus avec AB < AC. Soient D, E et F les pieds des perpendiculaires issues de A, B et C aux côtés opposés, respectivement. Soit P le pied de la perpendiculaire issue de F sur la droite (DE). La droite (FP) et le cercle circonscrit au triangle BDF se rencontrent encore en Q.

Montrer que
$$\widehat{PBQ} = \widehat{PAD}$$
. (6)

2 Solutions

2.1 Jour 1

Problème 1 : (taux de réussite : 22/178)

Solution 1 - Utilisation d'un repère orthonormal

Ci-dessous se trouvent la construction géométrique de la figure résultant du problème posé. Nous avons rajouté le milieu du segment [BC] qu'on appellera O, le point D' tel que la distance OC égale à la distance OD' et D' appartient à [OD) et le point H, le point de (FC) tel que (GH) est perpendiculaire à (BC).

Montrons que
$$\widehat{BCG} = \widehat{BCF}$$
 c'est-à-dire que $\widehat{\alpha} = \widehat{\beta}$. (7)

Pour cela, nous allons considérer le repère orthonormal formé par les points O, C et D'. Il s'agit bien d'un repère orthonormal car la droite (OD) est perpendiculaire à la droite (OC) puisque (OD) est la médiatrice du segment [BC] (O est milieu de [BC] et BD = CD et la distance OD' est égale à la distance OC.

Les coordonnées des différents points A,B,C,D,E et O sont les suivants.

$$O = (0,0) \tag{8}$$

$$C = (1,0) \tag{9}$$

$$D = (0, d),$$
 où d est une variable. (10)

$$B = \left(-1, 0\right) \tag{11}$$

$$A = (-\alpha, \beta)$$
, où $0 < \alpha < 1$ et $\beta > 1$ sont des variables. (12)

$$E = (\gamma, 0), \quad \text{où} \quad -1 < \gamma < 1 \quad \text{où} \quad \gamma \quad \text{est une variable.}$$
 (13)

La variable γ est indépendante des autres variables d'après l'énoncé car le point E est un point quelconque du segment [BC]. La relation entre β , α et d peut être déterminée d'après la position de D par rapport aux points A, B et C.

Déterminons la relation entre β , α et d:

La droite (CD) a pour équation du type : ax + by + c = 0. En remplaçant les coordonnées de C et D dans cette équation, l'on obtient :

$$(DC): \quad x + \frac{1}{d}y - 1 = 0 \tag{14}$$

Le point A appartient à la droite (DC), donc : $-\alpha + \frac{1}{d}\beta - 1 = 0$. Cela implique que :

$$\beta = d(1+\alpha) \tag{15}$$

Déterminons les valeurs des coordonnées de F et G

Concernant le point F, F(e, f) appartient à la droite (AB) et (FE) est perpendiculaire à la normale \vec{u} à la droite (BD).

$$(BD): \quad x - \frac{1}{d}y + 1 = 0 \tag{16}$$

$$\vec{u}\left(1, -\frac{1}{d}\right) \tag{17}$$

$$(AB): \quad x - \frac{1 - \alpha}{d(1 + \alpha)}y + 1 = 0 \tag{18}$$

donc:

$$\overrightarrow{FE}.\overrightarrow{u} = 0 \quad et \quad F \in (AB)$$

$$\begin{cases} e - \frac{1-\alpha}{d(1+\alpha)}f + 1 = 0\\ (\gamma - e).1 + \frac{1}{d}.f = 0 \end{cases}$$

ainsi:

$$\begin{cases} e = \frac{\alpha\gamma - \gamma - \alpha - 1}{2\alpha} \\ f = -\frac{d(\gamma + 1)(\alpha + 1)}{2\alpha} \end{cases}$$

$$F\left(\frac{\alpha\gamma - \gamma - \alpha - 1}{2\alpha}, -\frac{d(\gamma + 1)(\alpha + 1)}{2\alpha}\right) \tag{19}$$

Concernant le point G, on a :

$$G(g,h) \in (BD) \cap (AE)$$

$$(AE): \quad x + \frac{\alpha + \gamma}{d(1+\alpha)}y - \gamma = 0 \tag{20}$$

L'équation de la droite (BD) est donnée par la relation (16). Donc :

$$\begin{cases} g - \frac{1}{d}h + 1 = 0\\ g + \frac{\alpha + \gamma}{d(1 + \alpha)}h - \gamma = 0 \end{cases}$$

ainsi:

$$\begin{cases}
g = \frac{\alpha(\gamma - 1)}{1 + 2\alpha + \gamma} \\
h = \frac{d(1 + \gamma)(1 + \alpha)}{1 + 2\alpha + \gamma}
\end{cases}$$

$$G\left(\frac{\alpha(\gamma - 1)}{1 + 2\alpha + \gamma}, \frac{d(1 + \gamma)(1 + \alpha)}{1 + 2\alpha + \gamma}\right)$$
(21)

Pour le point H, on a $H \in (FC)$ tel que $(GH) \perp (BC)$. L'abscisse de H est égal à g c'est-à-dire l'abscisse de G car $(GH) \perp (BC)$ et (BC) est l'axe des abscisses, on note donc H(g,i).

$$(FC): \quad x + \frac{1 - e}{f}y - 1 = 0 \tag{22}$$

Donc:

$$g + \frac{1-e}{f}i - 1 = 0$$

 $1-e \neq 0$, sinon g=1. Il s'agit d'un cas limite impossible car $G \in [BC]$. De ce fait, nous pouvons écrire que :

$$i = \frac{1 - g}{1 - e} f$$

D'où, d'après (19) et par la suite (21), on a :

$$i = -\frac{d(\gamma + 1)(\alpha + 1)}{1 + 2\alpha + \gamma} = -h$$

Donc
$$G(g,h)$$
 et $H(g,-h)$, ainsi $CG=CH$ et $(HG)\perp (CB)$. D'où :

$$\widehat{BCG} = \widehat{OCG} = \widehat{HCO} = \widehat{HCB} = \widehat{FCB}$$

Par conséquent, nous avons montré que :

$$\widehat{BCG} = \widehat{BCF}$$
 c'est-à-dire que $\hat{\alpha} = \hat{\beta}$

Problème 2 : (taux de réussite : 20/178)

Problème 3 : (taux de réussite : 13/178)

2.2 Jour 2

Problème 4 : (taux de réussite : 4/178)

Problème 5 : (taux de réussite : 17/178)

Problème 6 : (taux de réussite : 3/178)