Алгебра Лі I курс магістратура, 2 семестр

13 лютого 2024 р.

0.1 Означення

Definition 0.1.1 Алгеброю Лі назвемо векторний простір L над полем F разом з білінійною формою $[\cdot,\cdot]$: $L\times L\to L$, що задовольняє таким умовам:

 $\begin{array}{ll} 1) & \forall x \in L: [x,x] = 0 \\ 2) & \forall x,y,z \in L: [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \end{array}$

Остання рівність схожа на тотожність Якобі із аналітичної геометрії.

Proposition 0.1.2 $\forall x \in L: [x,x]=0 \iff \forall x,y \in L: [y,x]=-[x,y].$ За умовою, що $\mathrm{char}(F) \neq 2.$ Вправа: довести.

Proof.

 \Rightarrow Дано: [x,x]=0 для всіх $x\in L$. Оберемо довільні $x,y\in L$, тоді звідси [x+y,x+y]=0 за умовою. Зокрема за властивістю білінійної форми, [x,x]+[x,y]+[y,x]+[y,y]=0. Таким чином, [y,x]=-[x,y].

 \sqsubseteq Дано: [y,x]=-[x,y] для всіх $x,y\in L$. Зокрема якщо y=x, то звідси [x,x]=-[x,x]. Таким чином, 2[x,x]=0, але оскільки $\mathrm{char}(F)\neq 2$, то ми отримаємо [x,x]=0.

Example 0.1.3 Розглянемо векторний простір \mathbb{R}^3 . Тоді векторний добуток, що задається як $[\vec{x}, \vec{y}] = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$, встановлює алгебру Лі. Інколи векторний добуток позначають $\vec{x} \wedge \vec{y}$, алгебру Лі позначають тут \mathbb{R}^3_{\wedge} .

Зрозуміло, що в цьому випадку $[\vec{x}, \vec{x}] = \vec{0}$, за наишм означенням.

Із курса аналітичної геометрії, ми доводили так звану формулу "бац мінус цаб". Завдяки неї, там же ми отримали тотожність Якобі, тобто $[\vec{x}, [\vec{y}, \vec{z}]] = [\vec{y}, [\vec{z}, \vec{x}]] + [\vec{z}, [\vec{x}, \vec{y}]] = \vec{0}$.

Example 0.1.4 Розглянемо множину $\mathfrak{gl}_n(F)$ – векторний простір всіх матриць $n \times n$, елементи яких над полем F, де білінійна форма визначається таким чином: [A, B] = AB - BA.

Тоді це утворює алгебру Лі. Вона має особливу назву — **загальна лінійна алгебра Лі**. [A,A]=O — пе зрозуміло.

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = [A, BC - CB] + [B, CA - AC] + [C, AB - BA] =$$

$$= (A(BC - CB) - (BC - CB)A) + (B(CA - AC) - (CA - AC)B) + (C(AB - BA) - (AB - BA)C) =$$

$$= ABC - ACB - BCA + CBA + BCA - BAC - CAB + ACB + CAB - CBA - ABC + BAC = O.$$

Example 0.1.5 Розглянемо множину $\mathfrak{gl}(V)$ – векторний простір всіх лінійних відображень $V \to V$, де V – векторний простір над полем F. Білінійну форму визначимо аналогічно: [U,W] = UW - WU. Тоді це утворює алгебру Лі (аналогічним чином, що з матрицею). Це теж називають **загальною** лінійною алгеброю Лі.