data.head()

Colab: https://colab.research.google.com/drive/10rclVlfhdW2b2liWKk2atg_c-8e7rri_?
usp=sharing

!wget https://d2beiqkhq929f0.cloudfront.net/public assets/assets/000/021/299/origin

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales
0	2061	1942	NES	1985.0	Shooter	Capcom	4.569217	3.033887
1	9137	¡Shin Chan Flipa en colores!	DS	2007.0	Platform	505 Games	2.076955	1.493442
2	14279	.hack: Sekai no Mukou ni + Versus	PS3	2012.0	Action	Namco Bandai Games	1.145709	1.762339
		L L- 1/O L L			D-I-	Namco		

```
top3_pub = data['Publisher'].value_counts().index[:3]
top3_gen = data['Genre'].value_counts().index[:3]
top3_plat = data['Platform'].value_counts().index[:3]
top3_data = data.loc[(data["Publisher"].isin(top3_pub)) & (data["Platform"].isin(to top3_data)
```

	Rank	Name	Platform	Year	Genre	
2	14279	.hack: Sekai no Mukou ni + Versus	PS3	2012.0	Action	
13	2742	[Prototype 2]	PS3	2012.0	Action	
16	1604	[Prototype]	PS3	2009.0	Action	
19	1741	007: Quantum of Solace	PS3	2008.0	Action	
21	4501	007: Quantum of Solace	PS2	2008.0	Action	

Multivariate - 3 variables

sns.scatterplot(x="NA_Sales", y="EU_Sales", hue="Genre", data=top3_data)

CCN

Global Sales for each publisher but seperated for different genres?

sns.boxplot(x="Publisher", y="Global_Sales", hue="Genre", data=top3_data)

[#] NNC

[#] CCN

[#] NNN

[#] CCC

<matplotlib.axes._subplots.AxesSubplot at 0x7f9dacf322e0>

sns.barplot(x="Publisher", y="Global_Sales", hue="Genre", data=top3_data, estimator

<matplotlib.axes._subplots.AxesSubplot at 0x7f9dac914f40>

NNN
NA, EU, Rank (Size of dot)

sns.scatterplot(x="NA_Sales", y="JP_Sales", size="Rank", data=top3_data, sizes=(10,

<matplotlib.axes._subplots.AxesSubplot at 0x7f9dac68b250>

CCC - No generic plot

Subplots

fig, ax = plt.subplots(2, 2, figsize=(15, 10))
ax[0,0].scatter(top3_data['NA_Sales'], top3_data['EU_Sales'])

```
ax[0,1].scatter(top3_data['NA_Sales'], top3_data['JP_Sales'])
ax[1,0].scatter(top3_data['NA_Sales'], top3_data['Other_Sales'])
ax[1,1].scatter(top3_data['NA_Sales'], top3_data['Global_Sales'])
fig.suptitle("Relation of NA Sales with other region")
```

Text(0.5, 0.98, 'Relation of NA Sales with other region')

Relation of NA Sales with other region


```
fig = plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
sns.scatterplot(x='NA_Sales', y='EU_Sales', data=top3_data)

plt.subplot(2, 2, 2)
sns.scatterplot(x='NA_Sales', y='JP_Sales', data=top3_data)
plt.title("Poonam's query")

plt.subplot(2, 2, 3)
sns.scatterplot(x='NA_Sales', y='Other_Sales', data=top3_data)
plt.subplot(2, 2, 4)
```

```
sns.scatterplot(x='NA_Sales', y='Global_Sales', data=top3_data)
fig.suptitle("NA Sales vs regions")
plt.show()
```

NA Sales vs regions

fig = plt.figure(figsize=(20,12))

Using a 2x3 subplot
plt.subplot(2, 3, 1)
sns.scatterplot(x='NA_Sales', y='EU_Sales', data=top3_data)
plt.title('NA vs EU Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('EU', fontsize=12)

plt.subplot(2, 3, 3)
sns.scatterplot(x='NA_Sales', y='JP_Sales', data=top3_data, color='red')

```
plt.title('NA vs JP Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('JP', fontsize=12)
plt.subplot(2, 3, 4)
sns.scatterplot(x='NA Sales', y='Other Sales', data=top3 data, color='green')
plt.title('NA vs Other Region Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('Other', fontsize=12)
plt.subplot(2, 3, 6)
sns.scatterplot(x='NA Sales', y='Global Sales', data=top3 data, color='orange')
plt.title('NA vs Global Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('Global', fontsize=12)
# Countplot of publishers
plt.subplot(1,3,2)
sns.countplot(x='Publisher', data=top3_data)
plt.title('Count of games by each Publisher', fontsize=12)
plt.xlabel('Publisher', fontsize=12)
plt.ylabel('Count of games', fontsize=12)
fig.suptitle("NA Sales vs regions", fontsize=20)
plt.show()
```

NA Sales vs regio

sns.jointplot(x="NA_Sales", y="EU_Sales", data=top3_data, kind="reg")

 $\verb|sns.jointplot(x="NA_Sales", y="EU_Sales", data=top3_data, hue="Genre")| \\$

<seaborn.axisgrid.JointGrid at 0x7f9da812cf70>

sns.pairplot(data=top3_data, hue="Genre")

sns.heatmap(top3_data.corr(), annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f9da1086730>

sns.heatmap(top3_data.corr(), annot=True, cmap="Blues")

<matplotlib.axes._subplots.AxesSubplot at 0x7f9da0d53430>

Colab paid products - Cancel contracts here

✓ 0s completed at 22:43

×