RESTRICTED 内部文件

香港考試周 HONG XONG EXAMINATIONS AUTHORITY

一九八〇年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1980

SUBJECT

Additional Mathematics I

MARKING SCHEME

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

O 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1980

WES I KICIED MAIN	人打	
Solution	Marks	Notes
1. $2x^{2} + x + 5 = k(x+1)^{2}$		
$(2-k)\chi^{2} + (1-2k)\chi + (5-k) = 0$	1.4 -	> (ov. 245 = 0
It has no real norts if (1-2k)-4(2-k)(5-k)	Q 2M+1A	-> for setting
1.4. $k < \frac{39}{24}$ (or $\frac{13}{8}$) accept.	1A- 5	> deduct if "="
2. $\lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{2x+3+2\Delta x}{x+4+\Delta x} - \frac{2x+3}{x+4} \right]$		-1 if omit "lim" common deno: sx> aci any line Alternatively,
$\lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{(2x+3+2\Delta x)(x+4)-(2x+3)(x+4+\Delta x)}{(x+4+\Delta x)(x+4)} \right]$	-2-M	Alternatively, $\lim_{0 \to \infty} \left[\frac{1}{2} + \frac{1}{2} \right] = \frac{1}{2} \left[\frac{2x+3}{x+\mu} \right] = \frac{1}{2}$
= $\lim_{\Delta x \to 70} \frac{1}{\Delta x} \left[\frac{2\Delta x(x+2) - \Delta x(2x+3)}{(x+4+\Delta x)(x+4)} \right] (1A)$	1.4	$=\frac{2(x+4)-(2x+3)}{(x+4)^2}$
= $\lim_{\Delta x \to 0} \frac{5\Delta x}{(x+4+\Delta x)(x+4)}$ A for conselling ax	'A	$=\frac{5}{(x+4)^2}$
$= \frac{5}{(x+4)^2}$	2A 5	
3. Slope of $L_3 = -\frac{5}{3}$.		Alternaturely.
System of lines thro' intersection of L, and L2	i	Solving L, Le 1M
is $6x+y+3+k(x+2y+1)=0$ (combining (1))	1,10	X+24+1 - (12x+24+6)=0
or $(6+k)x + (1+2k)y + (3+k) = 0$	equa	$x = -\frac{5}{1}$, A Resolution $y = -\frac{3}{1}$, A
It is the altitude iff $-\frac{6+k}{1+2k} = \frac{3}{5}$	7 6 1M+1A	Stope of altitude = 3 14
$\therefore \mathbf{\ell} = -3 (A)$		Altitude is for pti-slope form $y + \frac{3}{11} = \frac{3}{5} (x + \frac{5}{11}) i \frac{3}{11}$
Eqn. of altitude is (6-3)x+(1-6)y+(3-3)=0		y+7=3(x+5)1A
accept if no constant on the	6	3 x -5y=0 1A
on the		

1dd Maths I, 50 RESTRICTED 内部	文件	(2)
	Marks	lutes
Solution $\int \frac{2}{\cot \frac{x}{2} + \tan \frac{x}{2}} dx = \int \frac{2}{\cot \frac{x}{2} + \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}} dx$	4.4	
= \(2 \sin \frac{\chi}{2} \con \frac{\chi}{2} \dx	2 A	
= \int \sin \frac{1}{2}	2.4 14+114 6	19 For Constant
- sin2 = 3+ 6 cm2 A		
$\sin^2 A = \frac{q}{25}$ (or cos $^2 A = \frac{16}{25}$, etc)	, 2A	
$3 \text{ in } A = \pm \frac{3}{5}$		
$CnA = \pm \sqrt{1 - \sin^2 A}$		
$= \pm \frac{4}{5}$ If $90^{\circ} < A < 150^{\circ}$, $\sin A = \frac{3}{5}(1A)$ $\cos A = -\frac{4}{5}(1A)$	/ A	
$\frac{3 \text{ in } A}{1+2 \text{ cw } A} = \frac{\frac{3}{5}}{1-\frac{8}{5}}$	IM	for sub.
= -1	6	-
6. (i) For $x \le 0$, accept if while $x < 0$ $x^2 - x - x < 0$	/ M	x2-2< x1
$\Rightarrow x^2 + x - x < 0$	I A	764-2x3+ x2< x2
(ii) For x > 0 , which is target sind	, M	x2 (x-2)x < 0 (x-2)x < 0
$\chi^2 - 1 \times 1 - \times < 0$		00222
=	14	Thomastelle
=> (x-2)<0 => 0 < x < 2	iet 1+1	1 amard Swark
(i) and (ii) => 0 < x < 2 (1) if complete 3 or 1	$\not\supset$ $\not\vdash$ $\not\vdash$	ucadein between
	为或文	

RESTRICTED 内部文件

Add Math I, 80 RESTRICTED 内部文件

Solution	4, 1	0. +
	Uranks	notes
1. tan 70+ cut 20=0		
$\frac{\sin 70}{\cos 70} + \frac{\cos 20}{\sin 20} = 0$		
C15 70 34,20		
3 in 20 s in 70 + cm 20 cm 710 =0		
Con 70 Sin 20	14	
$\frac{Cvs50}{}=0$		For ics 50
Tf 5: 20	/A=	-
If sin 20, con 70 +0, i.e. 0 + n T, I+nT, 44+1 +, 4)	47	2.
$\mathcal{H}=0,\pm 1,\pm 2,\ldots$		page colution for cosine.
then $co50 = o(1A)$	/A	pagen extra disa
$50 = 24\pi \pm \frac{\pi}{2} \qquad (or \frac{\pi}{2} + n\pi)$	114+13	V
$\dot{\partial} = \frac{4n\pm 1}{10} \pi^{(A)}, \eta = 0, \pm 1, \pm 2, \dots$	1 A	
or $\frac{2h+1}{\pi}$	6	
Alternaturely. accept if in it hot defi	، امرو ،	
Alternaturely,		
tan 70 + cut 20=0		7 -0)
	10	to tan (= -10)
$tan 70 + tan(\frac{1}{2}-20) = 0$	I /A	bour 4 sign.
$tan70 = tan(20-\frac{1}{2}) \qquad \left[ar tan(20+\frac{1}{2}) \right]$) 24	transfer farmer
$tan70 + tan(\frac{1}{2}-20) = 0$ $tan70 = tan(20-\frac{1}{2})$ (or $tan(20+\frac{1}{2})$ $70 = 20-\frac{1}{2} + n\pi$, $n=0$, ± 1 , ± 2 , (or 20	+ Rua 16+14	7
,, -, (7	·
50= カボー型 (or サーカカ	-7	parentif in terms of deg
$\therefore \beta = \frac{1}{2n+1}\pi + 2\pi + 1 + 2\pi$		in wixture
:	1A	There are
	1	(1) if www dagmae "o". written
		, ,

RESTRICTED 内部女性

Solution	marks	notes
8. (a) Area of curred surface = 77 re((14))	IA	rean skip
$= \pi \gamma \ell(1A)$ $\pi = \pi \gamma^2 + \pi \gamma \ell(1A)$ $1 - \gamma^2$	IM+IA	
$\mathcal{L} = \frac{1 - \gamma^2}{\gamma} \left(\Lambda \right)$		
Height of come = $\int \ell^2 r^2 \left(A \right)$	/A	For formula of vol.
· volume = (3/17 x)/2- x2	1M	For formula of vol.
$V^{2} = \frac{1}{9} \pi^{2} \gamma^{4} (\ell^{2} - \gamma^{2})$		•
$= \frac{1}{4} \pi^2 r^2 (1-2r^2) \left(2\pi\right)$	2 A	
$\frac{d(\tilde{V}^2)}{dr} = \frac{\tilde{\eta}^2}{4} (2\tilde{r} - 8r^3)$	8 11M+1A	-
$\frac{\partial(V^2)}{\partial r} = 0 (1M)$	1/4	
$\gamma = 0 \pm \frac{1}{2}$	Y= 1 1A	Accept r=0,2; m r=1
Test for max. (IM) -> either minition (12 more)	IM	
$V^2 is max when r = \frac{1}{2}$	IA IA	r .
Max. value of $V = \frac{1}{3} \pi v \sqrt{1-2v^2} = \frac{\sqrt{2}}{\sqrt{1}}$	1M+/A	can have units.
(c) V _h	1A 98	for late (En x, 11 ives)
		for 1 max (
an both a ty	res	for o origin
shape is reco	anotic lines	full on 71-avis
$\begin{array}{c c} \hline 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \sqrt{2} &$	34	-1 if ontside range (o≤r≤±)
lo	- 13- 13-	

RESTRICTED 內部文件

Add Maths I, 80 RESTRICTED 内部文件

Solution	Markes	Notes
9.(a) tan 30 = tan(20+0)		
= tan 20 + tand must have this line	2A	
$= \frac{2 \tan \theta}{1 - \tan^2 \theta} + \tan \theta$ $= \frac{2 \tan \theta}{1 - \tan^2 \theta} \cdot \tan \theta$	1 A	
$= \frac{\tan^{3}0 - 3\tan \theta}{3\tan^{2}\theta - 1}$ (b) (i) Putting $x = 1^{(M)}, m + n + 2 = 0$ (i) Putting $x = 2^{(M)}, 4m + n + 11 = 0$ (2)	1A 4 1M+1A 1M+1A	
()) and (2) => $2n = -3$, $n = 1$	5	Awarded mly if (1), (2) conect.
(ii) $f(x) = 0$ iff $3x^3 - 3x^2 - 9x + 1 = 0$ for in, it so	Hirl A	
Putting X = tand, Su(st. (IM)		
$3\tan^3\theta - 3\tan^2\theta - 9\tan\theta + 1 = 0$	IM	
3 (tan30-3+an0)-(3+an20-1)=0		Alternatuely,
3 tan30 (3 tan20-1) - (3 tan20-1) = 0 by(4) (3 tan30-1) (3 tan20-1) = 0 coctorizations 3 tan30-1 = 0 (1M)	14	$\frac{\tan^3 0 - 3 \tan 0}{3 \tan^2 0 - 1} = \frac{1}{3}, 414$
() Tan 30-1) () Tan 0-1) = 0 200 (1) 5 2	+/A	$\therefore \tan 3\theta = \frac{1}{3} \text{im}$
3+22-1+ a Sou the religit of identity	1 / 1/4	
[3 tanto-1 + 0 for the validity of identity]	h's live	-1 Soil, 1 Soi 2 . 2 for 3.
$7an 30 = \frac{1}{3}$ => $30 = 18.43^{\circ}$, 198.43° , 378.43° accept for generally	(2 1)	of for me word
nillow tool. (or 18°26', 198°26', 378°26')		·
or of or 18°26', 198°26', 378°26') or of or 18°26', 198°26', 378°26') or of or of or 18°26', 198°26', 378°26') (or 6°9', 126°9')	¥	for 2 or more correct
Solutions are x=tano (IM),	IM	I mak each (to 2 d.p.)
only here > = 5708; 2:262, -1.369	34	I mak each (to 2 d.p.)
enly here = 0.11, 2.262, -1.347 (ost 3 marks = 0.11, 2.26, -1.37 (com. to 2 d.p.)	#	*
RESTRICTED 内部		<u>-</u>

•	AND MANY TO KESIKICIED W	 	
	Solution	Manks	lutes
<i>(</i> 6)	z-(3+4i) = 4		
	(x-3)+(y-4)i =4	11-	rnad.
	$(x-3)^2 + (y-4)^2 = 16$	21-	eother 3 rd or Athline
	$x^{2} + y^{2} - 6x - 5y + 9 = 0$ (i)	3	
(3)	$\frac{\overline{z}-1}{z+1} = \frac{(x-1)+yi}{(x+1)+yi}(1A)$	11	
	$- = \frac{\int (x-1) + yi \int ((x+1) - yi)}{(x+1)^2 + y^2} (1M)$	IM	kn, conjugate
	$= \frac{1}{(x+1)^2+y^2} \left[(x^2+y^2-1) + 2yi \right] (1A)$	14-	entercal : c.
	If its amp = $\frac{\pi}{2}$, $x^2 + y^2 = 0 - (ii)$	1M+1A	leal part = 0
(c))	(solution g) to go to pry
	(ii) - (i) => $x = \frac{5-44}{3}$ (iii) - (iii) => (iii) = (iii) - (iii) => (iii) - (iii) => (iii) == (iii) - (iii) => (iii) == $($	X) 2 M+1A	of for right x or right y.
	Sub. in (ii), $\left(\frac{5-4y}{3}\right)^2 + y^2 - 1 = 0$ $\left(x + \left(\frac{5-3x}{4}\right)^2\right)^2$		7 sulst. X of y
			find Quadin x (ory),
	y = \frac{4}{5} 1A	/ /A	
	X=351A ニューネ+生シ1A	/A	
	If = (p+q1)2,		
	= + # 1 = (p+gi) 1) IM	14	
	= (p= g2)+2pg1	1 A	"kn. ef l
	$\therefore \uparrow, g = \frac{2}{5}$	1M+1A	
		1 1	

Solution	Marks	notes
(a) Let C = (x,,y,), D = (x, y).		y B(5,10)
Then $X_1 = \frac{5}{1+r}$	1A	C
$y_1 = \frac{10}{1+\gamma}$	IA	A (10,4)
$\chi_2 = \frac{10r}{1+r}$	IA	0 2
$y_2 = \frac{4r}{1+r}$	1A	
(4) Area of $\triangle ODC = \frac{1}{2} (X_2 Y_1 - X_1 Y_2)$	1M_	for area formula.
$=\frac{1}{2}\left(\frac{10\gamma}{1+\gamma}\cdot\frac{10}{1+\gamma}-\frac{5}{1+\gamma}\cdot\frac{4\gamma}{1+\gamma}\right)$		э
$= \frac{40\gamma}{(1+\gamma)^2} 2A$	2.A 3) ler
(c) Area of DOAB = \frac{1}{2} (10x10-4x5)		for area formula.
= 40(A)	IM+IA	
Since WODC = RXDOAB, 40r (1+r)2 = 40k	[M)	TA COUL
$kr^{2}+(2k-1)r+k=0$	1A-	> Correct Ruad rate equi.
$\gamma = \frac{(1-2k) \pm \sqrt{(2k-1)^2 - 4k^2}}{2k}$	14	> correct r.
$= \frac{(1-2k) \pm \sqrt{1-4k}}{2k} $ (mus.)		
ris real => 1-4k >0	2M	For D 20
: L = 4	1 A	10 wollon
(d) Area of DODC is max if & is max.	214	- suray were Hilferentiation
: max. area of DODC = 4x40		
= 10 finits	2A 4	-

RESTRICTED 内部文件

Add Math I, Sto RESTRICTED 内部文件

Solution	Marks	Notes
(2. (a) $AX = \int k^{2}s^{2} + s^{2}$ $= S \int 1 + k^{2} \frac{(can)}{cim(H)} \times \frac{1}{c}$	IMHIA	Pythagorus Thm.
(1) XY = & 5 Ein 45° ks / E	2 /A-	> Bit giad that.
$= \frac{\frac{R}{K}s}{\sqrt{z}}$ B s A	1A	
\therefore Sind = $\frac{XY}{AX}$		
$=\frac{\frac{k_s}{\sqrt{2}}}{S\sqrt{1+k_1^2}}$	11/4-	>subst. XY, AX.
$=\frac{\cancel{k}}{\sqrt{2(1+\cancel{k}^2)}}$	1 <i>à</i>	
(c) If $0 \le 30^{\circ}$, then $\frac{2}{\sqrt{2(1+2)}} \le 5in30^{\circ}$	3M)	-1 for giving " <
$=\frac{1}{2(1+k^2)}$ $=\frac{1}{2(1+k^2)}$ $\leq \frac{1}{4}$	1.4	It = " given, award
$2(1+k^2) \qquad 4$ Caube omitted $k^2 \leq 1.1A$	IA.	followed by explanation.
1.e. XBSS,	IA .	
Similarly, if the inclination of XD to the honzontal is not to exceed 30, [XCSS]		
Under this condition, $XB = BC - XC$	2A.	•
= \(\overline{x} s - \chi C \) \(\overline{1A} \) \(\overline{2} s + s \) \(\overline{2} A \)	1A	
Combining XBSS, XB ≥ √25-5, we have		the Zand schotled s.
J23-5 € & S ≤ S		
√2-1 ≤ &≤1	2A - 14	not an Israe only

RESTRICTED 内部文件