Lab3

Objectives

- Single point energy calculations
- Geometry optimization
- Frequencies and normal mode calculations
- Basis set effect

H2O single point energy

- Calculate single point energy of H₂O dimer at HF/6-31* for several distances between two molecules. Generate plots for
 - a. Total energy

as functions of the distance. Use HF method. Write down your observations.

Geometry optimization

Gaussian logfile:

-	Item	Value	Threshold	Converged?
Maximum	Force	0.000006	0.000450	YES
RMS	Force	0.000002	0.000300	YES
Maximum	Displacement	0.000111	0.001800	YES
RMS	Displacement	0.000052	0.001200	YES

H2O geometry optimization

- Optimize the geometry of the H₂O molecule while varying basis sets, including 3-21, 6-31, 6-31*, 6-311, 6-311*, cc-pVDZ, and cc-pVTZ.
 Generate plots for
 - a. Total energy
 - b. r(HO) distance
 - c. $\theta(HOH)$ angle
 - d. Dipole moment

as functions of the basis sets. Use HF method. Write down your observations.

Experimental values:

$$r(OH) = 0.9578 \text{ Å}; \quad \theta(HOH) = 104.48^{\circ}, \mu = 1.85D$$

H2O dimer frequency calculation

- 1. Optimize the geometry of the $\rm H_2O$ dimer at HF/6-31* and do frequency calculation. Report,
 - a. Binding energy
 - b. Interaction energy
 - c. r(H - -O) distance
 - d. $\theta(H - O H)$ angle
 - e. Total number of frequencies reported in Gaussian log file
 - f. Zero-point energy

Basis set superposition error (BSSE)

Gaussian input file for water dimer:

```
%chk=water.chk
%nprocshared=2
# hf/3-21g counterpoise=2
```

Title Card Required

```
0 1 0 1 0 1
O(Fragment=1) -1.97619047
                              -1.11904760
                                            0.00000000
H(Fragment=1) -1.01619047
                              -1.11904760
                                            0.00000000
                              -0.21411177
H(Fragment=1)
             -2.29664505
                                            0.00000000
O(Fragment=2)
                  0.80952381
                              -0.38095238
                                            0.00000000
H(Fragment=2)
                  1.76952381
                              -0.38095238
                                            0.00000000
H(Fragment=2)
                  0.48906922
                               0.52398346
                                            0.00000000
```

Basis set superposition error (BSSE)

\$ grep A.U. water.log

```
SCF Done: E(RHF) = -151.183376551 A.U. after 10 cycles SCF Done: E(RHF) = -75.5871648459 A.U. after 9 cycles SCF Done: E(RHF) = -75.5908152208 A.U. after 9 cycles SCF Done: E(RHF) = -75.5858099772 A.U. after 10 cycles SCF Done: E(RHF) = -75.5858099773 A.U. after 10 cycles
```

Hands-on

- 1. Compute the BSSE for the water dimer
- Determine the BSSE for the water dimer for several distances between the water molecules
- 3. Determine BSSE for the water dimer as a function of basis set size? (Use HF method in all cases)

References

- 1. https://avogadro.cc/
- 2. https://gaussian.com/gaussian16/

3.