Supporting Information

Catalytic Intramolecular Formal [3 + 2] Cycloaddition for the Synthesis of Benzobicyclo[4.3.0] Compounds.

Xun Han, † Long-Wu Ye, † Xiu-Li Sun, Yong Tang *

[*]X. Han, Dr. L.-W. Ye, Dr. X.-L. Sun, Prof. Dr. Y. Tang

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China,

Fax: 86-21-54925078

E-mail: tangy@mail.sioc.ac.cn

Contents

General Information	S2
The ¹ H NMR and ¹³ C NMR spectra data of staring materials and products	.S3
Copies of ¹ H NMR and ¹³ C NMR of staring materials	S 10
Copies of ¹ H NMR and ¹³ C NMR of products	S26

[†] Han and Ye have equal contribution to this paper.

General Information. All reaction flasks were dried by flame. And all reactions were carried out under N_2 unless otherwise noted. All solvents were purified according to standard methods unless otherwise noted.

¹H NMR and ¹³C NMR spectra were recorded in chloroform-d₃. ¹H NMR Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration). ¹³C NMR Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard.

General procedure for synthesis of the substrates 3a-3h (substrate 3a as example):

To an ice-cooled suspension of NaH (1.20 g, 30.0 mmol) in DMF (10 mL) was added a solution of 5-chloro-2-hydroxy-benzaldehyde (3.91 g, 25.0 mmol) in dry DMF (10 mL). The resulting mixture was stired at room temperature for 3 h, and treated with 4-bromo-but-2-enoic acid methyl ester (8.95 g, 50.0 mmol) in DMF (10 mL) at 0 °C. After being stirred for another 3 h at room temperature, the resulting mixture was poured into brine (15 mL) and extracted with ether (3 x 100 mL). The combined organic extracts were washed with 1 M NaOH (10 mL), brine (2 x 10 mL), and dried (Na₂SO₄). The solution was concentrated under reduced pressure and the residue was subjected to column chromatography (EtOAc: Hexane = 1:12) to provide **4a** (3.57 g, 56 %) as white solid. HNMR (300 MHz, CDCl₃, TMS): δ 10.5 (s, 1H), 7.81 (d, J = 2.7 Hz, 1H), 7.49 (dd, J = 2.7 and 9.0 Hz, 1H), 7.10 (dt, J = 4.2 and 15.6 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.20 (dt, J = 1.8 and 15.9 Hz, 1H), 4.84 (dd, J = 2.1 and 3.9 Hz, 2H), 3.78 (s, 3H).

In a flame-dried 25 mL round bottom flask, **4a** (2.55 g, 10.0 mmol) was dissolved in methyl acrylate (2.58 g, 30.0 mmol), 1,4-diazabicyclo [2.2.2] octane (DABCO) (1.12 g, 10.0 mmol) was added to the solution directly and the solution was then allowed to stir at ambient temperature for 15 h. The solution was concentrated in vacuo and the residue was subjected to column chromatography (EtOAc: Hexane = 1:8) to provide **5a** (1.77 g, 52 %) as colourless oil. MNR (300 MHz, CDCl₃, TMS): δ 7.42 (d, J = 2.4 Hz, 1H), 7.18 (dd, J = 2.7 and 9.0 Hz, 1H), 7.03 (dt, J = 4.5 and 15.9 Hz, 1H), 6.73 (d, J = 9.0 Hz, 1H), 6.31 (s, 1H), 6.09 (dt, J = 1.8 and 15.6 Hz, 1H), 5.94 (d, J = 5.4 Hz, 1H), 5.70 (s, 1H), 4.67 (dd, J = 2.1

and 3.9 Hz, 2H), 3.75 (s, 3H), 3.73 (s, 3H), 3.70 (d, J = 5.4 Hz, 1H); 13 C NMR (75 MHz, CDCl₃): δ 166.6, 166.2, 153.1, 142.0, 141.0, 131.6, 128.3, 127.5, 126.2, 126.1, 121.3, 112.6, 66.6, 66.3, 51.9, 51.5.

In a strirred solution of DMAP (0.015 g) and $\mathbf{5a}$ (1.33 g, 3.9 mmol) in dry CH_2Cl_2 (10 mL), $(Boc)_2O$ (1.13 g, 5.2 mmol) in CH_2Cl_2 (8 mL) was added dropwise. After stirring for 3 h at RT, the mixture was diluted with CH_2Cl_2 (15 mL). The combined organic extracts were washed with brine (10 mL) and water (10 mL), dried (Na_2SO_4). The solution was concentrated in vacuo and the residue was subjected to column chromatography (EtOAc : Hexane = 1:10) to give $\mathbf{3a}$ (0.91 g, 62%) as white solid.³

3a: white solid, m.p. 70-71 °C; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.30-7.21 (m, 2H), 7.04 (dt, J = 15.6 and 3.6 Hz, 1H), 6.92 (s, 1H), 6.77 (d, J = 9.0 Hz, 1H), 6.49 (s, 1H), 6.19 (d, J = 15.9 Hz, 1H), 5.78 (s, 1H), 4.71 (t, J = 2.4 Hz, 2H), 3.76 (s, 3H), 3.74 (s, 3H), 1.48 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 165.8, 164.8, 153.3, 151.9, 141.5, 137.9, 129.0, 127.6, 127.3, 127.2, 125.7, 120.9, 112.8, 82.3, 69.3, 66.4, 51.7, 51.1, 27.2. IR v/cm^{-1} 2954 (m), 1751 (s), 1729 (s), 1666 (s), 1489 (m), 1277 (m), 855 (m); MS (ESI, positive mode, m/z) 399 (M-HOtBu+MeOH+H⁺). Anal. calcd for C₂₁H₂₅O₈Cl: C, 57.21; H, 5.72. Found: C, 57.14; H, 5.73.

3b: pale yellow oil; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.29-7.21 (m, 2H), 7.04 (dt, J = 15.6 and 3.6 Hz, 1H), 6.93 (s, 1H), 6.77 (d, J = 8.7 Hz, 1H), 6.48 (s, 1H), 6.18 (d, J = 15.6 Hz, 1H), 5.75 (s, 1H), 4.71 (d, J = 1.5 Hz, 2H), 4.25-4.17 (m, 4H), 1.49 (s, 9H), 1.31-1.23 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 165.9, 164.7, 153.6, 152.2, 141.4, 138.3, 129.2, 128.0, 127.8, 127.3, 126.1, 121.8, 112.9, 82.7, 69.7, 66.8, 61.0, 60.4, 27.6, 14.1, 14.0. IR ν/cm^{-1} 2981 (m), 1748 (s), 1723 (s), 1665 (s), 1488 (m), 1277 (m), 851 (m); MS (EI, m/z, rel. intensity) 468 (M⁺, 5.17), 57 (100). HRMS (EI) calcd for C₂₃H₂₉O₈Cl (M⁺): 468.1551; Found: 468.1542.

3c: white solid, m.p. 89-90 °C; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.41-7.31 (m, 2H), 7.04 (dt, J = 15.6 and 3.6 Hz, 1H), 6.91 (s, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.48 (s, 1H), 6.18 (dt, J = 15.6 and 2.1 Hz, 1H), 5.78 (s, 1H), 4.71 (dd, J = 2.4 Hz and 3.6 Hz, 2H), 3.76 (s, 3H), 3.74 (s, 3H), 1.48 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 166.2, 165.1, 154.1, 152.1, 141.6, 138.1, 132.2, 130.5, 128.3, 127.6, 121.4, 113.4 (1), 113.3 (9), 82.7, 69.5, 66.6, 52.0, 51.5, 27.5. IR ν /cm⁻¹ 2953 (m), 1749 (s), 1728 (s), 1667 (s), 1488 (m),

1278 (m), 851 (m); MS (EI, m/z, rel. intensity) 484 (M⁺), 486 (M⁺). HRMS (EI) calcd for $C_{21}H_{25}O_8BrNa$ (M+Na⁺): 507.0625; Found: 507.0606.

3d: pale yellow oil; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.32-7.25 (m, 2H), 7.07 (dt, J = 15.6 and 3.6 Hz, 1H), 7.00-6.95 (m, 2H), 6.83 (d, J = 8.4 Hz, 1H), 6.46 (s, 1H), 6.22 (dt, J = 15.6 and 1.8 Hz, 1H), 5.74 (s, 1H), 4.74 (dd, J = 2.1 Hz and 3.3 Hz, 2H), 3.75 (s, 6H), 1.47 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 166.4, 165.4, 155.0, 152.3, 142.3, 138.6, 129.6, 127.6, 127.3, 125.9, 121.1, 121.0, 111.5, 82.3, 70.2, 66.3, 51.9, 51.4, 27.5. IR ν /cm⁻¹ 2953 (m), 1749 (s), 1728 (s), 1666 (s), 1493 (m), 1279 (m), 885 (m), 756 (m); MS (EI, m/z, rel. intensity) 406 (M⁺, 3.63), 57 (100). HRMS (EI) calcd for C₂₁H₂₆O₈ (M⁺): 406.1628; Found: 406.1626.

3e: white solid, m.p. 73-74 °C; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.15-7.04 (m, 2H), 6.92-6.85 (m, 3H), 6.44 (s, 1H), 6.26 (dt, J = 15.6 and 1.8 Hz, 1H), 5.72 (s, 1H), 4.76 (dd, J = 1.8 Hz and 3.9 Hz, 2H), 3.84 (s, 3H), 3.75 (s, 3H), 3.72 (s, 3H), 1.46 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 166.6, 165.2, 152.3, 152.1, 144.9, 143.6, 138.7, 131.1, 127.0, 124.2, 120.5, 119.3, 112.4, 82.2, 70.8, 70.3, 55.5, 51.8, 51.3, 27.5. IR ν /cm⁻¹ 2953 (m), 1747 (s), 1728 (s), 1667 (s), 1588 (s), 1481 (m), 1283 (m), 1159 (m), 964 (m), 855 (m); MS (EI, m/z, rel. intensity) 436 (M⁺, 13.2), 57 (100). HRMS (EI) calcd for C₂₂H₂₈O₉ (M⁺): 436.1733; Found: 436.1747.

3f: white solid, 119-120 °C; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.37-7.30 (m, 2H), 7.03 (dt, J = 15.6 and 3.6 Hz, 1H), 6.95 (s, 1H), 6.71 (d, J = 9.0 Hz, 1H), 6.32 (s, 1H), 6.19 (dt, J = 15.6 and 2.1 Hz, 1H), 6.00 (d, J = 1.2 Hz, 1H), 4.71 (dd, J = 3.6 and 2.1 Hz, 2H), 3.74 (s, 3H), 2.38 (s, 3H), 1.48 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 196.9, 166.3, 154.1, 152.1, 146.1, 141.7, 132.1, 130.4, 128.6, 127.0, 121.4, 113.5, 113.4, 82.7, 69.0, 66.7, 51.5, 27.5, 26.0. IR v/cm^{-1} 2979 (m), 1746 (s), 1727 (s), 1682 (s), 1487 (m), 1278 (m), 1160 (m), 1083 (m), 970 (m); MS (ESI, positive mode, m/z) 491 (M+Na⁺), 493 (M+Na⁺). HRMS (EI) calcd for C₂₁H₂₅O₇Br (M⁺): 468.0784; Found: 468.0782.

3g: pale yellow oil; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.35-7.17 (m, 4H), 7.04 (dt, J = 15.6 and 6.6 Hz, 1H), 6.75 (s, 1H), 6.45 (s, 1H), 5.88 (d, J = 15.6 Hz, 1H), 5.73 (s, 1H), 3.73 (s, 6H), 2.97-2.79 (m, 2H), 2.59-2.51 (m, 2H), 1.47 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 166.8, 165.3, 152.3, 148.2, 139.2, 139.0, 134.8, 129.5, 128.6, 127.6, 127.0, 126.5, 121.4, 82.5, 72.1, 51.9, 51.2, 33.1, 30.9, 27.6. IR ν /cm⁻¹ 2953 (m), 1748 (s), 1727 (s), 1657 (s), 1438 (m), 1278 (m), 1156 (m), 1082 (m), 981 (m), 760 (m); MS (ESI, positive mode, m/z) 427 (M+Na⁺). HRMS (MALDI/DHB) calcd for C₂₂H₂₈O₇Na (M+Na⁺): 427.1733; Found: 427.1727.

3h: pale yellow oil; ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.29 (d, J = 2.1 Hz, 1H), 7.23 (dd, J = 9.0 and 2.7 Hz, 1H), 6.88-6.84 (m, 2H), 6.77 (d, J = 8.7 Hz, 1H), 6.46 (s, 1H), 5.73 (s, 1H), 4.72 (d, J = 5.4 Hz, 2H), 4.25-4.17 (m, 4H), 1.91 (d, J = 0.6 Hz, 3H), 1.48 (s, 9H), 1.33-1.23 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 167.0, 164.8, 154.0, 152.2, 138.5, 135.7, 130.0, 129.2, 128.2, 127.8, 127.4, 126.0, 112.9, 82.6, 69.9, 65.5, 60.9, 60.8, 27.6, 14.1, 14.0, 13.0. IR ν/cm^{-1} 2982 (m), 1749 (s), 1717 (s), 1655 (s), 1489 (m), 1277 (m), 852 (m); MS (EI, m/z, rel. intensity) 482 (M⁺, 1.1), 59 (100). HRMS (EI) calcd for C₂₄H₃₁O₈Cl (M⁺): 482.1707; Found: 482.1724.

Representative Procedure for the Tributylphosphine-Catalyzed Synthesis of Benzobicyclo[4.3.0] Compounds

2. Preparation of 8-chloro-3,3a,4,9b-tetrahydro-cyclopenta[c]chromene-1,3-dicarboxylic acid dimethyl ester 2a.

To a solution of substrate 3a (110 mg, 0.25 mmol) in CH₃Ph (2.5 mL) was added Ti(OⁱPr)₄ (14.2 mg, 0.050 mmol) and tributylphosphine (5.1 mg, 0.025 mmol) at room temperature. The resulting mixture was further stirred for 1 h. After the reaction was complete, the mixture was filtered rapidly through a funnel with a thin layer of silica gel and eluted with ethyl acetate (50 mL). 20% Aqueous H₂O₂ (0.3 mL) solution was added and the resultant mixture was stirred for another 2 h at room temperature, then saturated Na₂SO₃ (0.5 mL) was added. After the resulting mixture was stirred for 1 h, the residue was dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel to afford the desired products 2a.

2a: 99% yield (white solid, m.p. 82-83 °C, 1 h). ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.56 (d, J = 2.1 Hz, 1H), 7.05 (dd, J = 8.7 and 2.4 Hz, 1H), 6.80-6.77 (m, 2H), 4.40-4.31 (m, 2H), 4.05-3.97 (m, 2H), 3.81

(s, 3H), 3.78 (s, 3H), 3.23-3.16 (m, 1H); 13 C NMR (75 MHz, CDCl₃): δ 172.3, 164.8, 153.6, 141.2, 139.8, 129.7, 127.7, 126.4, 125.3, 119.1, 66.2, 52.4, 52.0, 50.6, 43.4, 42.2. IR v/cm⁻¹ 2982 (m), 2935 (m), 1734 (s), 1628 (m), 1485 (m), 1242 (m), 821 (m), 735 (m), 639 (m); MS (ESI, positive mode, m/z) 377 (M+MeOH+Na⁺), 345 (M+Na⁺). HRMS (EI) calcd for $C_{16}H_{15}O_5Cl$ (M⁺): 322.0608; Found: 322.0607.

8-Chloro-3,3a,4,9b-tetrahydro-cyclopenta[c]chromene-1,3-dicarboxylic acid diethyl ester (**2b**): 99% yield (oil, 1.5 h). 1 H NMR (300 MHz, CDCl₃, TMS): δ 7.58 (d, J = 2.4 Hz, 1H), 7.04 (dd, J = 8.4 and 2.1 Hz, 1H), 6.80-6.77 (m, 2H), 4.40-4.19 (m, 6H), 4.05-3.95 (m, 2H), 3.23-3.15 (m, 1H), 1.38-1.29 (m, 6H); 13 C NMR (75 MHz, CDCl₃): δ 171.8, 164.4, 153.5, 141.1, 140.0, 129.7, 127.6, 126.3, 125.4, 119.0, 66.2, 61.3, 61.0, 50.7, 43.3, 42.1, 14.2. IR v/cm⁻¹ 2982 (m), 1734 (s), 1713 (s), 1628 (m), 1484 (m), 1242 (m), 1028 (m), 821 (m), 639 (m); MS (ESI, positive mode, m/z) 405 (M+MeOH+Na⁺), 373 (M+Na⁺). HRMS (EI) calcd for C₁₈H₁₉O₅Cl (M⁺): 350.0921; Found: 350.0922.

$$\mathsf{Br} \overset{\mathsf{MeO_2C}}{\overset{\mathsf{H}}{\overset{\mathsf{CO_2Me}}{\overset{\mathsf{Me}}{\overset{\mathsf{CO_2Me}}{\overset{\mathsf{CO}_2Me}{\overset{\mathsf{CO}_2Me}}{\overset{\mathsf{CO}_2Me}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C$$

8-Bromo-3,3a,4,9b-tetrahydro-cyclopenta[c]chromene-1,3-dicarboxylic acid dimethyl ester (2c): 99% yield (white solid, m.p. 79-80 °C, 1 h). ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.70 (d, J = 1.5 Hz, 1H), 7.19 (dd, J = 8.7 and 2.4 Hz, 1H), 6.79-6.72 (m, 2H), 4.40-4.31 (m, 2H), 4.04-3.97 (m, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 3.23-3.16 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 172.2, 164.7, 154.1, 141.2, 139.8, 132.6, 130.6, 125.8, 119.5, 113.8, 66.1, 52.4, 52.0, 50.6, 43.3, 42.1. IR v/cm^{-1} 2952 (m), 2925 (m), 1739 (s), 1717 (s), 1628 (m), 1482 (m), 819 (m), 614 (m); MS (EI, m/z, rel. intensity) 368 (M⁺, 51.5), 366 (M⁺, 50.1), 168 (100). Anal. calcd for C₁₆H₁₅O₅Br: C, 52.34; H, 4.12. Found: C, 52.26; H, 4.37.

3,3a,4,9b-Tetrahydro-cyclopenta[c]chromene-1,3-dicarboxylic acid dimethyl ester (2d): 94% yield (white solid, m.p. 109-110 °C, 2 h). ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.54 (d, J = 7.8 Hz, 1H), 7.12-7.08 (m, 1H), 6.91-6.84 (m, 2H), 6.76 (d, J = 0.9 Hz, 1H), 4.44 (d, J = 8.1 Hz, 1H), 4.34 (dd, J = 12.0 and 2.1 Hz, 1H), 4.09-4.02 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 3.24-3.18 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 172.5, 165.0, 154.9, 140.8, 140.3, 130.0, 127.6, 123.8, 121.8, 117.8, 66.0, 52.3, 51.8, 50.7, 43.8, 42.2. IR v/cm⁻¹ 2955 (m), 2925 (m), 1738 (s), 1716 (s), 1628 (m), 1488 (m), 1246 (m), 759

(m); MS (EI, m/z, rel. intensity) 288 (M⁺, 7.58), 44 (100). HRMS (EI) calcd for $C_{16}H_{16}O_5$ (M⁺): 288.0998; Found: 288.1003.

6-Methoxy-3,3a,4,9b-tetrahydro-cyclopenta[*c*]chromene-1,3-dicarboxylic acid dimethyl ester (2e): 75% yield (white solid, m.p. 123-124 °C, 2.5 h). ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.15 (d, J = 7.8 Hz, 1H), 6.87-6.71 (m, 3H), 4.51-4.44 (m, 2H), 4.11-4.05 (m, 2H), 3.86 (s, 3H), 3.79 (s, 3H), 3.76 (s, 3H), 3.25-3.19 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 172.5, 165.0, 148.7, 144.2, 140.9, 140.2, 124.6, 121.5, 121.3, 109.4, 66.4, 55.8, 52.3, 51.8, 50.5, 43.8, 42.1. IR ν /cm⁻¹ 2919 (m), 1737 (s), 1720 (s), 1630 (m), 1584 (m), 1485 (m), 1263 (m), 1096 (m), 753 (m), 736 (m); MS (EI, m/z, rel. intensity) 318 (M⁺, 5.09), 57 (100). Anal. calcd for C₁₇H₁₈O₆: C, 64.14; H, 5.70. Found: C, 64.27; H, 6.09.

1-Acetyl-8-bromo-3,3a,4,9b-tetrahydro-cyclopenta[c]chromene-3-carboxylic acid methyl ester (2f): 95% yield (pale yellow solid, m.p. 95-96 °C, 2 h). ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.59 (s, 1H), 7.17 (d, J = 8.7 Hz, 1H), 6.76-6.71 (m, 2H), 4.47-4.35 (m, 2H), 4.11-4.00 (m, 2H), 3.80 (s, 3H), 3.12 (t, J = 9.3 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 196.1, 172.1, 153.9, 148.4, 141.9, 133.1, 130.5, 126.0, 119.4, 113.9, 65.9, 52.5, 50.7, 43.5, 41.2, 27.0. IR v/cm^{-1} 2925 (m), 2853 (m), 1734 (s), 1671 (m), 1481 (m), 1223 (m), 810 (m); MS (EI, m/z, rel. intensity) 349 (M⁺, 12.6), 351 (M⁺, 17.8), 168 (100). HRMS (EI) calcd for C₁₆H₁₅O₄Br (M⁺): 350.0154; Found: 350.0164.

3a,4,5,9b-Tetrahydro-3H-cyclopenta[*a*]naphthalene-1,3-dicarboxylic acid dimethyl ester (2g): 93% yield (oil, 1.5 h). ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.51-7.48 (m, 1H), 7.16-7.08 (m, 3H), 6.72 (t, J = 1.2 Hz, 1H), 4.39 (d, J = 9.0 Hz, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 3.63 (dt, J = 8.4 and 2.1 Hz, 1H), 3.26-3.19 (m, 1H), 2.78-2.62 (m, 2H), 2.00-1.88 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 173.3, 165.4, 141.4, 140.2, 137.5, 136.0, 129.5, 128.6, 126.2, 126.1, 53.8, 52.2, 51.7, 46.3, 41.7, 26.2, 26.1. IR ν /cm⁻¹ 2951 (m), 1735 (s), 1719 (s), 1630 (m), 1492 (m), 1435 (m), 1251 (m), 1101 (m), 756 (m); MS (EI, m/z, rel. intensity) 286 (M⁺, 1.42), 167 (100). HRMS (EI) calcd for C₁₇H₁₈O₄ (M⁺): 286.1205; Found: 286.1211.

2a': white solid, m.p. 83-84 °C. ¹H NMR (300 MHz, CDCl₃, TMS): δ 7.29 (d, J = 2.7 Hz, 1H), 7.09 (dd, J = 8.4 and 2.4 Hz, 1H), 6.84-6.81 (m, 2H), 4.41 (dd, J = 10.8 and 4.5 Hz, 1H), 3.92 (t, J = 8.1 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.74-3.64 (m, 2H), 3.49-3.43 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 172.1, 164.0, 153.5, 141.7, 137.3, 129.4, 127.8, 126.2, 125.9, 118.6, 66.7, 58.5, 52.7, 51.9, 42.6, 39.3. IR v/cm^{-1} 2953 (m), 2926 (m), 1736 (s), 1720 (s), 1632 (m), 1485 (m), 1436 (m), 1248 (m), 819 (m), 748 (m), 640 (m); MS (ESI, positive mode, m/z) 377 (M+MeOH+Na⁺), 345 (M+Na⁺). HRMS (EI) calcd for C₁₆H₁₅O₅Cl (M⁺): 322.0608; Found: 322.0606.

Appendix:

Table 1. Effects of phosphines on the formal [3 + 2] Cycloaddition^a

Reference:

- (a) Aurrecoechea, J. M.; López, B.; Fernández, A.; Arrieta, A.; Cossío, F. P. J. Org. Chem. 1997, 62, 1125.
 (b) Mori, K.; Tanaka, T. I.; Honda, H.; Yamamoto, I. Tetrahedron 1983, 39, 2303.
- 2. Roush, W. R.; Brown1, B. B. J. Org. Chem. 1993, 58, 2151.
- 3. Erent, D.; Keinan, E. J. Am. Chem. Soc. 1988, 110, 4356.
- 4. **2h** is the known compound, details please see: Ye, L.-W.; Han, X.; Sun, X.-L.; Tang, Y. *Tetrahedron* **2008**, *64*, 1487.

 $[^]a$ Reagents and conditions: PR $_3$ (20 mol %), **3a** (110 mg, 0.25 mmol) in CH $_3$ Ph (0.10 M), rt-80 o C, 2-32 h. b Determined by 300 MHz 1 H NMR. c Isolated yield. d Prolonging the reaction time. e 10 mol % of PBu $_3$.

Compound 2c

