Intermediate Microeconomics Lecture 12

General Equilibrium II: Production Economies

Instructor: Xin Wang

Institute of New Structural Economics, Peking University

Fall 2023

One-consumer, One-producer Economy

- We extend our pure exchange economy to incorporating production.
- To start with, we first consider the simplest possible setting.
- There is one price-taking consumer and one price-taking firm.
- ► There are two goods:
 - labor (or leisure) of the consumer
 - a consumption good produced by the firm
- ▶ The consumer has a utility function u(c, I) where c stands for consumption good and I for leisure.
- ▶ He is endowed with \bar{L} units of leisure initially

One-consumer, One-producer Economy (cont.)

- ► The firm can hire the consumer and produce the consumption good.
 - ▶ the production function is f(L)
- Firms in any economy must be owned by someone.
- ► Thus in our economy, the single consumer is the sole owner of the firm and receives all the profits earned by the firm.
- ▶ This economy is sometimes referred to as Robinson Crusoe economy (鲁滨逊.克鲁索经济).

Profit Maximization

Given price p for the consumption good and wage w for labor, the firm seeks to maximize its profits by choosing how much labor to hire:

$$\max_{L\geq 0} pf(L) - wL$$

Let $\pi(p, w)$ be the corresponding profits. We have

$$\pi(p, w) = pf(L) - wL$$

or

$$f(L) = \frac{\pi}{p} + \frac{wL}{p}$$

Profit Maximization (cont.)

▶ The firm's problem can be illustrated as:

Utility Maximization

- ► The consumer decides how much leisure to enjoy and how much consumption good to buy to maximize his utility.
- If the consumer enjoys I units of leisure, then he supplies $\bar{L}-I$ units of labor and earns a total wage $w(\bar{L}-I)$
- ▶ Because the consumer also owns the profits made by the firm, his total income is $w(\bar{L} I) + \pi(p, w)$
- ► Thus the consumer's problem is:

$$\max_{(c,l)} u(c,l)$$

s.t $pc \le w(\bar{L}-l) + \pi(p,w)$

Utility Maximization (cont.)

▶ The consumer's problem can be illustrated as:

Competitive Equilibrium

- A competitive equilibrium of this economy consists of prices (p^*, w^*) and allocations (c^*, l^*, L^*) such that
 - Given (p^*, w^*) , L^* solves firm's profit maximization:

$$\max_{L\geq 0} p^* f(L) - w^* L$$

• Given (p^*, w^*) , (c^*, l^*) solves consumer's utility maximization:

$$\max_{(c,l)} u(c,l)$$

s.t $pc \le w(\bar{L}-l) + \pi(p,w)$

Market clears:

$$c^* = f(L^*)$$

$$I^* = \overline{L} - L^*$$

► The equilibrium can be illustrated as:

- ▶ In this particular graph, we have assumed nice properties of the preference and production function.
 - preference: continuous, monotone and convex
 - production function: increasing and concave
 - if preferences are continuous, monotone and convex and if the production set if convex, then a competitive equilibrium always exists.

- Moreover, a particular consumption-leisure bundle can be a competitive equilibrium if and only if it maximizes the consumer's utility subject to the economy's technological and endowment constraints
 - the first welfare theorems
 - the second welfare theorems

Production with Several Inputs and One Output

- We want to extend our baseline model to more general settings where firms use several inputs to produce several outputs.
- This extension will allow us to learn how firms optimally choose their productions among the different combinations of inputs and outputs.
- ► To facilitate the understanding, we take a detour and analyze firm's behavior alone first.

Production with Several Inputs and One Output (cont.)

- Let us start with a firm who uses inputs x_1, \dots, x_n to produce a single output y_1
- ► The set

$$\{(y_1, x_1, \dots, x_n)|y_1 \leq f_1(x_1, \dots, x_n)\}$$

is called the production (possibilities) set, where $f_1(x_1, \dots, x_n)$ is the production function

Production with Several Inputs and One Output (cont.)

Let us define a function

$$F(y_1,x_1,\cdot\cdot\cdot,x_n)\equiv y_1-f_1(x_1,\cdot\cdot\cdot,x_n)$$

▶ Then the production possibilities set can be characterized as

$$\{(y_1, x_1, \dots, x_n) | F(y_1, x_1, \dots, x_n) \leq 0\}$$

- ▶ The function $F(y_1, x_1, \dots, x_n) = 0$ describes the production possibilities frontier (生产可能性边界)
- ▶ The function *F* is called a production transformation function.

Production with Several Inputs and Outputs

- Now suppose the firm can use the same set of inputs to produce another output, y₂
- Now the production transformation function $F: \mathbb{R}^2 \times \mathbb{R}^n \to \mathbb{R}$
- Production possibilities set:

$$\{(y_1, y_2, x_1, \dots, x_n) | F(y_1, y_2, x_1, \dots, x_n) \leq 0\}$$

The boundary of this set

$$\{(y_1, y_2, x_1, \dots, x_n) | F(y_1, y_2, x_1, \dots, x_n) = 0\}$$

is the production transformation frontier (or production possibilities frontier)

Production with Several Inputs and Outputs (cont.)

- The slope of PPF measures the number of y_2 that one unit of y_1 can be "transformed" into , holding inputs fixed
 - if we lower the output of y_1 by one unit, how many additional units of y_2 can be produced?
 - ▶ if we raise the output of y₁ by one unit, how many units of y₂ must be sacrificed?
 - ▶ this is the marginal rate of transformation (MRT 边际转换率) between y₁ and y₂

Production with Several Inputs and Outputs (cont.)

- ightharpoonup Consider two inputs x_1 and x_2
- ▶ Holding x_1 and x_2 fixed, $F(y_1, y_2, x_1, x_2) = 0$ implies

$$\frac{\partial F}{\partial y_1}dy_1 + \frac{\partial F}{\partial y_2}dy_2 = 0$$

or equivalently,

$$\frac{dy_2}{dy_1} = -\frac{\partial F}{\partial y_1} / \frac{\partial F}{\partial y_2}$$

▶ So if the inputs are fixed: one unit of y_1 can be transformed into $\frac{\partial F}{\partial y_1} / \frac{\partial F}{\partial y_2}$ units of y_2 , and vice versa

Profit Maximization

- Several inputs and outputs with $F(y_1, y_2, x_1, x_2)$ and prices (p_1, p_2, w_1, w_2)
- Profit maximization of a competitive firm:

$$\max_{y_1, y_2, x_1, x_2 \ge 0} p_1 y_1 + p_2 y_2 - w_1 x_1 - w_2 x_2$$

s.t $F(y_1, y_2, x_1, x_2) = 0$

Optimality:

$$-\frac{\partial F}{\partial x_i} / \frac{\partial F}{\partial y_j} = \frac{w_i}{p_j} \qquad \text{for } i, j \in \{1, 2\}$$
$$\frac{\partial F}{\partial y_1} / \frac{\partial F}{\partial y_2} = \frac{p_1}{p_2} \qquad \frac{\partial F}{\partial x_1} / \frac{\partial F}{\partial x_2} = \frac{w_1}{w_2}$$

MRT equals price ratio

Profit Maximization (cont.)

Two-input, Two-output Economy

- Now we are ready to extend our model to an economy with several inputs and outputs.
- ▶ There are two consumers, A and B.
- ▶ Consumer $i \in \{A, B\}$ is endowed with \bar{L}_i units of labor.
- ▶ There are two consumption goods, *x* and *y*.
- ► Consumer *i*'s utility function is $u_i(x_i, y_i)$

- ▶ There is only one firm as before.
- ► The firm can hire *A* or *B* or both to produce consumption goods *x* and *y*
- ▶ Let *F* be the production transformation function.
- ▶ This firm must be owned by consumers, again. Let δ_A and δ_B denote A and B's share of this firm respectively. Of course $\delta_A + \delta_B = 1$.

- ▶ In the market, we have four prices: $p \equiv (p_x, p_y, w_A, w_B)$
- The firm maximizes its profits given the prices:

$$\max_{x,y,l_A,l_B \ge 0} p_x x + p_y y - w_A l_A - w_B l_B$$

s.t $F(x, y, l_A, l_B) = 0$

Consumers i (i = A, B) maximize their utilities given the prices:

$$\max_{(x_i, y_i)} u_i(x_i, y_i)$$

s.t $p_x x_i + p_y y_i \le w_i \bar{L}_i + \delta_i \pi(p)$

- A competitive equilibrium of this economy consists of $((p_x^*, p_y^*, w_A^*, w_B^*), (x_A^*, y_A^*), (x_B^*, y_B^*), (x^*, y^*, l_A^*, l_B^*))$ such that
 - consumers maximize their utilities
 - ▶ the firm maximize its profits
 - four markets clear

▶ Because consumers maximize their utilities, at the equilibrium allocation, we know

$$MRS_A = MRS_B = \frac{p_x^*}{p_y^*}$$

► From previous analysis, we know the firm's marginal rate of transformation between x and y must equal the price ratio too.

$$MRT = \frac{\partial F}{\partial x} / \frac{\partial F}{\partial y} = \frac{p_x^*}{p_y^*}$$

In sum, we have

$$MRT = MRS_A = MRS_B = \frac{p_x^*}{p_v^*}$$

