

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

$^{\circ}$
201
CKE
0
graficzny

WPISUJE ZDAJĄC Y		Miejsce na naklejkę
KOD	PESEL z kodem	
		dysleksja

EGZAMIN MATURALNY **Z MATEMATYKI**

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj **I** pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26-34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

SIERPIEŃ 2012

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 1P-124

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Długość boku kwadratu k_2 jest o 10% większa od długości boku kwadratu k_1 . Wówczas pole kwadratu k_2 jest większe od pola kwadratu k_1

Zadanie 2. (1 pkt)

Iloczyn 9⁻⁵ ⋅ 3⁸ jest równy

A.
$$3^{-4}$$

B.
$$3^{-9}$$

C.
$$9^{-1}$$

D.
$$9^{-9}$$

Zadanie 3. (1 pkt)

Liczba $\log_3 27 - \log_3 1$ jest równa

Zadanie 4. (1 pkt)

Liczba $(2-3\sqrt{2})^2$ jest równa

C.
$$-14-12\sqrt{2}$$

D.
$$22-12\sqrt{2}$$

Zadanie 5. (1 pkt)

Liczba (-2) jest miejscem zerowym funkcji liniowej f(x) = mx + 2. Wtedy

A.
$$m = 3$$

B.
$$m = 1$$

C.
$$m = -2$$

D.
$$m = -4$$

Zadanie 6. (1 pkt)

Wskaż rysunek, na którym jest przedstawiony zbiór rozwiązań nierówności $|x+4| \le 7$.

Zadanie 7. *(1 pkt)*

Dana jest parabola o równaniu $y = x^2 + 8x - 14$. Pierwsza współrzędna wierzchołka tej paraboli jest równa

A.
$$x = -8$$

B.
$$x = -4$$

C.
$$x = 4$$

D.
$$x = 8$$

Zadanie 8. (1 pkt)

Wskaż fragment wykresu funkcji kwadratowej, której zbiorem wartości jest $\langle -2, +\infty \rangle$.

C.

Zadanie 9. (1 pkt)

Zbiorem rozwiązań nierówności x(x+6) < 0 jest

A.
$$(-6,0)$$

B.
$$(0,6)$$

C.
$$(-\infty, -6) \cup (0, +\infty)$$

D.
$$(-\infty,0)\cup(6,+\infty)$$

Zadanie 10. *(1 pkt)*

Wielomian $W(x) = x^6 + x^3 - 2$ jest równy iloczynowi

A.
$$(x^3+1)(x^2-2)$$
 B. $(x^3-1)(x^3+2)$ **C.** $(x^2+2)(x^4-1)$ **D.** $(x^4-2)(x+1)$

B.
$$(x^3-1)(x^3+2)$$

C.
$$(x^2+2)(x^4-1)$$

D.
$$(x^4-2)(x+1)$$

Zadanie 11. *(1 pkt)*

Równanie $\frac{(x+3)(x-2)}{(x-3)(x+2)} = 0$ ma

- A. dokładnie jedno rozwiązanie
- **B.** dokładnie dwa rozwiązania
- C. dokładnie trzy rozwiązania
- dokładnie cztery rozwiazania

Zadanie 12. *(1 pkt)*

Dany jest ciąg (a_n) określony wzorem $a_n = \frac{n}{(-2)^n}$ dla $n \ge 1$. Wówczas

A.
$$a_3 = \frac{1}{2}$$

B.
$$a_3 = -\frac{1}{2}$$

C.
$$a_3 = \frac{3}{8}$$

B.
$$a_3 = -\frac{1}{2}$$
 C. $a_3 = \frac{3}{8}$ **D.** $a_3 = -\frac{3}{8}$

Zadanie 13. *(1 pkt)*

W ciągu geometrycznym (a_n) dane są: $a_1 = 36$, $a_2 = 18$. Wtedy

A.
$$a_4 = -18$$

B.
$$a_4 = 0$$

C.
$$a_4 = 4,5$$

D.
$$a_4 = 144$$

Zadanie 14. (1 pkt)

Kąt α jest ostry i $\sin \alpha = \frac{7}{13}$. Wtedy $\operatorname{tg} \alpha$ jest równy

A.
$$\frac{7}{6}$$

B.
$$\frac{7 \cdot 13}{120}$$

B.
$$\frac{7.13}{120}$$
 C. $\frac{7}{\sqrt{120}}$

D.
$$\frac{7}{13\sqrt{120}}$$

Zadanie 15. (1 pkt)

W trójkącie prostokątnym dane są długości boków (zobacz rysunek). Wtedy

$$\mathbf{A.} \quad \cos \alpha = \frac{9}{11}$$

B.
$$\sin \alpha = \frac{9}{11}$$

$$\mathbf{C.} \quad \sin \alpha = \frac{11}{2\sqrt{10}}$$

C.
$$\sin \alpha = \frac{11}{2\sqrt{10}}$$
 D. $\cos \alpha = \frac{2\sqrt{10}}{11}$

Zadanie 16. (1 pkt)

Przekątna AC prostokąta ABCD ma długość 14. Bok AB tego prostokąta ma długość 6. Długość boku BC jest równa

B.
$$4\sqrt{10}$$

C.
$$2\sqrt{58}$$

Zadanie 17. (1 pkt)

Punkty A, B i C leżą na okręgu o środku S (zobacz rysunek). Miara zaznaczonego kata wpisanego ACB jest równa

Zadanie 18. *(1 pkt)*

Długość boku trójkata równobocznego jest równa $24\sqrt{3}$. Promień okregu wpisanego w ten trójkat jest równy

A. 36

B. 18

C. 12

D. 6

Zadanie 19. *(1 pkt)*

Wskaż równanie prostej przechodzącej przez początek układu współrzędnych i prostopadłej do prostej o równaniu $y = -\frac{1}{2}x + 2$.

A. y = 3x

B. v = -3x

C. y = 3x + 2 **D.** $y = \frac{1}{2}x + 2$

Zadanie 20. (1 pkt)

Punkty B = (-2,4) i C = (5,1) są dwoma sąsiednimi wierzchołkami kwadratu ABCD. Pole tego kwadratu jest równe

A. 74

B. 58

C. 40

D. 29

Zadanie 21. *(1 pkt)*

Dany jest okrąg o równaniu $(x+4)^2 + (y-6)^2 = 100$. Środek tego okręgu ma współrzędne

A. (-4, -6)

B. (4, 6)

C. (4, -6) **D.** (-4, 6)

Zadanie 22. (1 pkt)

Objętość sześcianu jest równa 64. Pole powierzchni całkowitej tego sześcianu jest równe

A. 512

B. 384

C. 96

D. 16

Zadanie 23. (1 pkt)

Przekrój osiowy stożka jest trójkątem równobocznym o boku a. Objętość tego stożka wyraża

A. $\frac{\sqrt{3}}{6}\pi a^3$

B. $\frac{\sqrt{3}}{8}\pi a^3$ **C.** $\frac{\sqrt{3}}{12}\pi a^3$ **D.** $\frac{\sqrt{3}}{24}\pi a^3$

Zadanie 24. *(1 pkt)*

Pewna firma zatrudnia 6 osób. Dyrektor zarabia 8000 zł, a pensje pozostałych pracowników są równe: 2000 zł, 2800 zł, 3400 zł, 3600 zł, 4200 zł. Mediana zarobków tych 6 osób jest równa

A. 3400 zł

B. 3500 zł

C. 6000 zł

D. 7000 zł

Zadanie 25. (1 pkt)

Ze zbioru {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} wybieramy losowo jedną liczbę. Niech p oznacza prawdopodobieństwo otrzymania liczby podzielnej przez 4. Wówczas

A. $p < \frac{1}{5}$

B. $p = \frac{1}{5}$ **C.** $p = \frac{1}{4}$ **D.** $p > \frac{1}{4}$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Rozwiąż nierówność $x^2 - 8x + 7 \ge 0$.

Odpowiedź:

Zadanie 27. (2 pkt)

Rozwiąż równanie $x^3 - 6x^2 - 9x + 54 = 0$.

Odpowiedź:

Zadanie 28. (2 pkt)

Pierwszy wyraz ciągu arytmetycznego jest równy 3, czwarty wyraz tego ciągu jest równy 15. Oblicz sumę sześciu początkowych wyrazów tego ciągu.

Odpowiedź:

Zadanie 29. (2 pkt)

W trójkącie równoramiennym ABC dane są |AC| = |BC| = 6 i $| <\!\!< ACB | = 30^\circ$ (zobacz rysunek). Oblicz wysokość AD trójkąta opuszczoną z wierzchołka A na bok BC.

Odpowiedź:

Zadanie 30. *(2 pkt)*

Dany jest równoległobok ABCD. Na przedłużeniu przekątnej AC wybrano punkt E tak, że $\left|CE\right|=\frac{1}{2}\left|AC\right|$ (zobacz rysunek). Uzasadnij, że pole równoległoboku ABCD jest cztery razy większe od pola trójkąta DCE.

Zadanie 31. *(2 pkt)*

Wykaż, że jeżeli c < 0, to trójmian kwadratowy $y = x^2 + bx + c$ ma dwa różne miejsca zerowe.

Zadanie 32. (4 pkt)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC| oraz A = (2,1) i C = (1,9). Podstawa AB tego trójkąta jest zawarta w prostej $y = \frac{1}{2}x$. Oblicz współrzędne wierzchołka B.

Odpowiedź:

Zadanie 33. *(4 pkt)*

W ostrosłupie prawidłowym czworokątnym *ABCDS* o podstawie *ABCD* i wierzchołku *S* trójkąt *ACS* jest równoboczny i ma bok długości 8. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa (zobacz rysunek).

Odpowiedź:

Zadanie 34. *(5 pkt)*

Kolarz pokonał trasę 114 km. Gdyby jechał ze średnią prędkością mniejszą o 9,5 km/h, to pokonałby tę trasę w czasie o 2 godziny dłuższym. Oblicz, z jaką średnią prędkością jechał ten kolarz.

Odpowiedź: