Disponible a un clic de distancia y sin publicidad

Sí este material te es útil, ayúdanos a mantenerlo online

Suscribete

Comparte

Comenta

Este material está en línea porque creo que a alguien le puede ayudar. Lo desarrollo y sostengo con recursos propios. Ayúdame a continuar en mi locura de compartir el conocimiento.

- Resolver los siguientes problemas de transporte con los métodos de esquina noroccidental, Vogel, y MODI, compare sus respuestas con la solución por el método de programación lineal entera (para resolverlo puede usar Excel):
- 1.1. Una empresa manufacturera, elabora su producción en tres fábricas, y las distribuye a cinco centros de consumo. La gama de producción son productos semejantes, que se diferencian por color, presentación y modificaciones en el diseño, cuyas tasas de consumo son aproximadamente iguales. La demanda agregada de los productos en kilogramos por semana en cada centro de consumo, la tasa de producción agregada en kilogramos elaborados por semana en cada centro de producción y los costos unitarios de transporte se muestran en la tabla I, se requiere el plan optimo de distribución.

Tabla I		CENTRO \$/	Capacidad de Producción			
	CC1	CC2	CC3	CC4	CC5	Kg/Semana
PP1	65	70	68	63	62	26500
PP2	63	68	61	71	60	28700
PP3	60	63	69	64	69	24800
DEMANDA	15300	16900	18300	14400	14600	Kg/semana

1.2. Una empresa que posee su propio sistema de distribución, planea llevar contenedores con sus productos de 4 plantas de producción a cuatro centros de consumo, los costos de transporte en millones de pesos se muestran en la tabla, se requiere la planificación del sistema de distribución mensual.

Tabla 2		Cen	tros d	e consi	Capacidad de Producción	
		CC 1	CC 2	CC 3	CC 4	Contenedores/Mes
	PP 1	3	1	4	5	25
Plantas de	PP 2	7	3	8	6	25
Producción	PP 3	2	3	9	2	22
"M'F.	PP 4	5	7	10	3	15
Demanda		20	27	30	10	Contenedores/Mes

- 2. Resolver los siguientes problemas de asignación por medio de método de programación lineal entera (para resolverlo puede usar Excel), y compare sus resultados al resolverlo como un problema de transporte y a través del método húngaro.
- 2.1. Una planta de producción de elementos plásticos posee tres maquinas las cuales fabrican de manera independiente los productos, sin embargo las relaciones de estas se realizan con algunas áreas como el almacén de materia prima, un taller de terminados y un almacén de ensamble para algunos productos. Por esta razón se ha decidido establecer el flujo métrico por día de materiales de estas maquinas con las

zonas referidas para instalar las tres maquinas en tres posibles áreas. Este flujo métrico por día se muestra en la siguiente tabla, se requiere, asignar una maquina a cada área como seria esta asignación?

(ton*m)/día	Área 1	Área 2	Área 3
Maquina 1	109.1	128.6	150.4
Maquina 2	123.4	150.8	214.4
Maquina 3	204.0	244.2	322.4

2.2. Una estación de trabajo en una planta de producción tiene tres maquinas, las cuales son de diversas tecnologías que varían desde lo manual hasta un control numérico, para su manejo en la actualidad existen cuatro candidatos, los cuales han realizado una prueba piloto de manejo de estas para tratar de seleccionar los mejores, ya que esta etapa de proceso es el cuello de botella de la fabricación de dicha maquina. Los tiempos promedio de fabricación de 10 piezas realizadas por cada uno en cada máquina se muestran a continuación. Se requiere determinar la selección de los candidatos y su asignación dentro de la estación de proceso.

Minutos/Pieza	Candidato 1	Candidato 2	Candidato 3	Candidato 4
Maquina 1	25	32	41	27
Maquina 2	29	27	32	28
Maguina 3	27	35	26	30

3. Realizar el análisis de estructura, tiempo y costo para el siguiente proyecto:

Actividades	Dependencia	Duración	(días).	Costo (miles	de pesos).
Actividades	Dependencia	T. Normal Tn _{ij}	T. Limite Tl _{ij}	C. Normal Cn _{ij}	C. Limite Cl _{ij}
Α	-	6	3	196	220
В	-	6	3	309	315
С	-	3	2	47	48
D	-	4	2	128	150
E	M,B,N	8	4	174	230
F	M,B,N	2	1	120	125
G	D	4	3	34	36
Н	A	6	4	106	110
I	H,C	3	1	60	68
J	G,F	3	1	62	72
K	F,E	2	1	86	87
L	E,I	4	2	306	346
M	D	6	3	208	238
N	Α	2	1	21	26

4. Realizar el análisis de estructura, tiempo y costo para el siguiente proyecto, determinar la probabilidad de ejecución del proyecto en 22 unidades de tiempo.

Actividad	dependencia		Duración (días).	Costo (miles	de pesos).	
		T. Optimista	T. más Probable	T. Pesimista	C. Normal Cn _{ij}	C. Limite Cl _{ij}
Α	-	3	6	9	700	730
В	Α	1	4	7	955	960
С	Α	1	2	6	812	822
D	Α	1	2	3	400	440
Е	B,C	3	5	7	74	84
F	B,C	5	5	5	80	100
G	D	3	6	9	90	138
Н	E	1	4	4	55	71
I	F,G	1	2	6	115	163

- El trabajo se presentara en grupos de 3 personas el día programado.
- La presentación debe hacerse en orden.

www.klasesdematematicasymas.com

1.1			Cent	os de Co	REJUMO.		
	_	CCI	CCZ	CC3	CC4	CC5	
	PPI	65~	70	68	63	6 Z	26500
	PP2	63	68	61	7/	60	28700
	PP3	60	63	69	64	69	24800
	Deman do	15300	16900	18300	14400	14600	

a) Método de esquina Norveste

Oferta = 26500 # 28700 + 24800 = 80000 Demanda = 15300 + 16900 + 18300 + 14400 + 14600 = 79500

La oferta es mayor on la demanda, Adicionamics un centre de consumo ficticio CCF

	COI	CCZ	CC3	CCY	CCS	CCF	
PPI	65	70	68	63	<i>6</i> 2	0	26500
PP2	63	68	71	71	60	O	28700
PP3	60	63	69	64	69	0	24800
Davouds	15300	16900	18300	14400	14600	500	

	v,	ν_{2}	$\nu_{\mathfrak{z}}$	$\mathcal{O}_{\mathbf{q}}$	2	v_6	
u,	15300	11200	68	63	62	0	26500
u_2	63	5700	18200	4700	60	10	28700
Из	60	63	67	9700	14600	500	24800
	15300	16900	18300	14400	14600	500	

U, +J, = 65	$u_i = 0$	J.= 65
U1+ V2 = 70	Mar- 5	U2 = 70
$U_2 + U_2 = 68$	7	$u_2 = -2$
U3 + V2 = 63		$u_3 = -7$
U2+ V3 = 71		$V_3 = 73$
u2+ V4 = 71		V4 = 73
$u_{3}^{2} + v_{4} = 64$		43 = -9
Wa + 15= 5 69		U5 = 78
$u_3 + u_5 = 69$ $u_3 + u_6 = 0$		U6 = 7
43706 - 0		6 - 7

26500 El maximo valor para. D = 4700

G= 12100

	V=60	02=63	J=68	Uy=63	U5=57	J6 = 0	
4,20	-5	- }	15100	14400	-5	Γο	
U2 2 3	7400-0	1-2	6200	[-5	14600	0 3	0=500
4=0	7400+6	16900	-1	1-1	1-12	800-G	
		.	_			35.	

	0,=60	G =63	03 = 68	V4 = 63	O5=57	<i>v</i> ₆ = −3
U, = 0	1-5	1-7	12100	14400	(F)	-3
Uz = 3	7400	1-2	6200	-5	14600	500
43=0	7900	16900	1-1	[- 30	[-12	[-3]

El tablero es óptimo.

Asignación Final.								
(CCI	CCZ	CC 3	CCY	ccs-	CC F		
PPI			12100	14400				
PPZ	7400	NA	6200		14600	500		
PP3	7900	16900						

Costo = 7400 *63 + 7900 *60 + 76900 * 63 + 12100 * 68 + 6200 *71 + 14400 + 63+ 14600 + 60 + 500 + 0 = 5'051,100=

y Vojel es el tablen inicial.

c) Nétodo MODI

El Método modi se aplició método de la esquisa Noroeste. eu et desemblo del

WWW.Hasesq

La Esquina Norveste y Voget encuentrans tableros iniciales factibles para que no son sóptimos. MODI trabaja en las iteraciones para encontror el factible óptimo.

12

Produceion = 25+25+22+15=87

Damanda = 20+27+30+10=87

Producción = Demando.

Mélodo Esquina Novoeste

Solución inicial (Costo = 20+3+5+1+22,3+3x8+22x9+5x10 +10x3

Método de Voguer.

	£ = -1	5221	J=6	θy=-1	
4120	1-4	25-0	0-	-6	гſ
u ₂ = 2	T-6	3 2+0	23- 8	-5	s 1_
U ₃ =3	20 2	[1	2 9	o	55
U4=4	<u> -2</u>	1-2	5 lic	10	15-
	20	27	30	10	

Costo = 25 * 4 + 25 * 3 + 20 * 2 + 2 * 3 + 5 * 10 + 10 * 3

Costo = 301

2.1	ton. m/dia	Areal	Aresi Z	Area 3.
	Maguina 1	109.1	128.6	150.4
	Maquina Z	123.4	150.8	214.4
	Maquina 3.	204.0	244.2	322.4.

Método	Hungars 109.1 123.4 204.0	244-5 128-6 158-6	150.4 214.4 322.4	Minimo renglos. 109., 123.4 204.0
Al restar	resulto			COLL
	0	19.5 27.4 40. 2	41.3 91 118.4	asymas.
	٥	19.5	41.3	Minimo columna

Al restor resulta

2.2	MI MZ M3		CZ 32 27 35	C3 41 32 26	C4. 27 28 30	Minimo 25 27 26.	renglon
Al restar	se hi	eue					
Minimo (lebune s	0 2 1 ⇒ 0	7 0 0	16 5 0 0	2 4		
Al veibar	se he	je					
5 - /				'	35.01		
Se prede	Asigno	r (g. Co	ndidento undidento undidento	1 -3 2 -3 3 -3	Maguino Máguin Maguin	. 1 . 2 . 3.	
Aunque si		yen e	1 Candis Laguina			estar eu	la
	na						