School: CSE			Program:B.Tech		Semest er:IV		
Course Title:			Soft Computing Lab				
Course Code:			CSP DC-202				
Course Coordinator:			Prof. Manoj Kumar Gupta				
L-T-P:			0-0-2				
Evaluation Scheme (Total Marks 100)							
Lab Exam (40 Marks)		:	Lab Record	Viva-Vo ice	Total		
Writ ten	Lab-P erfor mance		30 Marks	30 Marks	100 M	arks	
WEEKS I		DETAILS OF EXPERIMENTS TO BE PERFORMED					
in C Lan		in and simulate the behaviour of AND, OR, XOR and NAND Gate guage. Make menu driven program which continue to execute ser choose so.					
Netwo		Network	ement the different activation functions to train Neural k. function				
			Signum Function				
			C. Binary sigmoidal function D. Bipolar sigmoidal function				
E. Re		E. ReLu	ı function				

Week 2 3. Design and simulate the behaviour of AND, OR using McCulloch-Pitts Neuron in C Language 4. Design and simulate the behaviour of XOR using McCulloch-Pitts Neuron in C Language. Draw the final network with weights. Week 3 5. Design and simulate the behaviour of Hebb Network by implementing AND and OR gate using A. bipolar inputs and targets B. Binary inputs and targets Draw the final network with weights. Week 4 6. Design and simulate the behaviour of AND Gate using Perceptron Network A. for binary inputs and targets B. for binary inputs and bipolar targets C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B. for binary inputs and targets C. for bipolar inputs and targets Draw the final network with weights. Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws associated with Classical sets.				
implementing AND and OR gate using A. bipolar inputs and targets B. Binary inputs and targets Draw the final network with weights. Week 4 6. Design and simulate the behaviour of AND Gate using Perceptron Network A. for binary inputs and targets B. for binary inputs and bipolar targets C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and targets C.for bipolar inputs and targets C.for bipolar inputs and targets. Draw the final network with weights. Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Ucek 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.	Week 2	Neuron in C Language 4. Design and simulate the behaviour of XOR using McCulloch-Pitts		
B. Binary inputs and targets Draw the final network with weights. Week 4 6. Design and simulate the behaviour of AND Gate using Perceptron Network A. for binary inputs and targets B. for binary inputs and bipolar targets C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws	Week 3			
Draw the final network with weights. 6. Design and simulate the behaviour of AND Gate using Perceptron Network A. for binary inputs and targets B. for binary inputs and bipolar targets C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.		A. bipolar inputs and targets		
Week 4 6. Design and simulate the behaviour of AND Gate using Perceptron Network A. for binary inputs and targets B. for binary inputs and bipolar targets C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.		B. Binary inputs and targets		
Network A. for binary inputs and targets B. for binary inputs and bipolar targets C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.		Draw the final network with weights.		
B. for binary inputs and bipolar targets C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.	Week 4	1		
C. for bipolar inputs and targets. 7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.		A. for binary inputs and targets		
7. Design and simulate the behaviour of OR Gate using Perceptron Network A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.		B. for binary inputs and bipolar targets		
A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.		C. for bipolar inputs and targets.		
A. for binary inputs and targets B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.				
B.for binary inputs and bipolar targets C.for bipolar inputs and targets. Draw the final network with weights. 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets.		· _ · _ · _ · _ · _ · _ · _ · _ · _		
C.for bipolar inputs and targets. Draw the final network with weights. 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws		A. for binary inputs and targets		
Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws		B.for binary inputs and bipolar targets		
Week 5 8. Design and simulate the behaviour of OR Gate using Adaline Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws		C.for bipolar inputs and targets.		
Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean square error). Week 6 9. Design and simulate the behaviour XOR Gate using Madaline network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws		Draw the final network with weights.		
network in C language for bipolar inputs and targets. Week 7 10. Design and simulate the behaviour of XOR gate using Back Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws	Week 5	Network in C for bipolar inputs and targets. Draw the final network with weights. Plot the graph number of epochs vs error (root mean		
Propagation Network in c for Bipolar inputs and Binary targets. Week 8 11. Write a program in C to Implement the various primitive operations of classical sets. Week 9 12. Write a program in C to implement and verify various Laws	Week 6			
of classical sets. $W_{eek} 9 \hspace{1cm} \hbox{12. Write a program in C to implement and verify various Laws}$	Week 7			
Week?	Week 8	1		
	Week 9	· - · · · · · · · · · · · · · · · · · ·		

Week10	13. Write a program in C to perform various primitive operations on Fuzzy Sets with Dynamic Components.
Week 11	14. Write a program in C to verify various Laws associated with Fuzzy Sets.
Week12	15. Write a program in C to perform Cartesian product over two given Fuzzy Sets.
Week13	16. Write a program in C to perform Max-Min Composition of Two Matrices obtained from Cartesian Product.
Week 14	17. Write a program in C to perform Max-Product Composition of Two Matrices obtained from Cartesian Product.
Week 15	18. Write a program in C to maximize $F(X) = X$ using Genetic Algorithm where $0 < X < 31$
Week 16	Lab Exam

Course Outcomes:

CO1: Comprehend the implementation of the various types of neural networks

CO2: Develop the understanding of implementation of fuzzy sets and operations

CO3 Design and Implement of some applications using genetic algorithm

Signature of Course Coordinator: