Chapter 10 & 11 - In-Class Worksheet MAT344 - Spring 2019

Definitions!

For a list of definitions from Chapters 9-12, please go to:

Quercus \Rightarrow Week 10 Guide \Rightarrow Graph Theory Definitions

A tree T (a connected graph with no cycles) can be made into a rooted tree by:

- Selecting a single vertex, **r**, called the **root vertex**.
- And *(optionally)* directing the edges away from the root towards the leaves (degree 1 vertices in T).

Define the **height** of a vertex \mathbf{v} in a (rooted) tree to be the distance from it to \mathbf{r} . And let the **height of** T be the height of the leaf of maximum height (i.e. the length of the longest path starting at \mathbf{r} .)

- 1.2 Suppose T is a complete k-ary tree (all non-leaves have k children) with height h.
 - (a) Draw such a tree of height at least 3, with $k \ge 2$
 - (b) Use your drawing to conjecture the number of leaves in T.
 - (c) Prove your answer is correct via induction.

Justify why *any* vertex in a (plain) tree can be chosen as the *root vertex* to create a rooted tree.

A vertex is a **centre vertex** in a simple, connected graph if the distance from it to any other vertex is minimal among all vertices in the graph.

The maximum length of a path from a given vertex \mathbf{x} in a graph is called its **eccentricity**, written $ecc(\mathbf{x})$. Thus, a vertex is a centre vertex if it has (*smallest/largest/?*) eccentricity of all vertices in the graph.

Claim: every tree T has exactly 1 or 2 centre vertices.

- 2.2 Produce a tree whose centre vertex is a leaf (repeat for 2 centre vertices). Describe all such trees (justify your answer).
- Given a tree T, define T' to be the tree obtained by deleting all of the **leaves** of T (unless T' would be empty).
 - Prove that if a vertex x is in T', then it has eccentricity one less in T' than when considered in T.
- 2.4 What does the previous result imply about the centre vertex/vertices of T'?
- 2.5 **Prove by induction on the number of vertices in** T that every tree has exactly 1 or 2 centre vertices.

Find a tree with 1 centre vertex, and a tree with 2 centre vertices, each with at least 8 vertices. Label the eccentricities of each of the vertices.

We say that a graph G is k-colourable if there is an assignment of the elements of [k] to the vertices of G. (*Note:* G being k-colourable doesn't rule out G being j-colourable for some j < k.)

We say that the **chromatic number** of G, written $\chi(G)$, is k if G is k-colourable, but not k-1-colourable.

- 3.1 What is $\chi(K_n)$?
 - 3.2 What is $\chi(C_n)$? (Here, C_n is the graph consisting of a cycle with n vertices, and no other edges.)
 - 3.3 What is the chromatic number of the following graph?

(You need to find (for some k) a k-colouring and **prove** that there is no k-1-colouring.)

For a (simple) graph G, we let $p_X(n, G)$ be the number of ways to n-colour G.

This quantity is a polynomial function of n (see Exercise 5 in Chapter 11), and so is called the **chromatic polynomial of** G.

- 4 4.1 Determine the chromatic polynomial of
 - (a) a single vertex,
 - (b) a single edge,
 - (c) a 3-vertex path $\mathbf{a} \mathbf{b} \mathbf{c}$,
 - (d) K_n ,
 - (e) C_n.

4.2 Try to determine $p_{\chi}(3,G)$ by hand for the following graph:

There are many 3-colourings... but if we knew $p_{\chi}(n,G)$, we could just plug in n=3 to get the exact number. ... so we will find this now.

To find the chromatic polynomial we will count the number of n-colourings by considering **two disjoint cases** (and *add* the results.)

4.3 **Case 1:** colourings where \mathbf{u} and \mathbf{v} are assigned different colours ("Type 1"). Let G_1 be the result of adding edge $\mathbf{u}\mathbf{v}$ to G:

- (a) What is the relationship between a colouring of G of Type 1 and a colouring of G_1 ?
- (b) What is $p_{\chi}(n, G_1)$?
- 4.4 **Case 2:** colourings where **u** and **v** are assigned the same colour ("Type 2"). Let G₂ be the result of **contracting** the vertices **u** and **v** together into a single vertex (maintaining the adjacencies from both vertices):

- (a) What is the relationship between a colouring of G of Type 2 and a colouring of G_2 ?
- (b) What is $p_{\chi}(n, G_2)$?
- 4.5 So now, what is $p_{\chi}(n,G)$? (And in particular, what is $p_{\chi}(3,G)$?)
- * Let G be a simple graph and k a positive integer. Prove that (n-k) is a factor of $p_X(n,G)$ if and only if $k < \chi(G)$.