1 Problem Set for In-class Problem Solving

Answer with sufficient details with insightful discussions (not just factual answers) and submit by 11am. (details discussed in the last two lecture sessions)

1. Consider a linearly separable data

$$(-1,+1),(0,-1),(+1,-1)$$

- (a) Write the primal problem. Geometrically show the feasible region in a w, b 2D plane. Show the optimal w as -2 and b as -1. Geometrically validate the solution.
- (b) Write the dual objective $J(\alpha_1, \alpha_2, \alpha_3)$. And the constraint $\sum_i \alpha_i y_i = 0$. Show that the solution is $\alpha_1 = \alpha_2 = 2$ and $\alpha_3 = 0$. Which are the support vectors then?
- (c) Show that the dual solution also leads to the same w and b.
- 2. Consider a linearly in-separable 1D data

$$(-1,+1),(0,-1),(+1,+1)$$

Demonstrate how the problem can be solved with a quadratic kernel $(p^Tq+1)^2$

- (a) Write the dual objective with the constraint $\sum_{i} \alpha_{i} y_{i} = 0$
- (b) Substitute for α_2 from the constraint in the objective. (i.e., eliminate α_2)
- (c) Differentiate wrt α_1 and α_3 and equate to zero. Solve to obtain $\alpha_1 = \alpha_3 = 1$ and $\alpha_2 = 2$
- (d) For a new sample the decision is

$$sign(\sum_i \alpha_i y_i \kappa(x_i, x) + b)$$

Simplify and get this expression as $2x^2 - 1$. (Assume b = -1. Indeed, you can find b yourself.)

3. Consider the ExOR Problem:

$$\begin{vmatrix} x_1 & x_2 & y \\ -1 & -1 & -1 \\ -1 & +1 & +1 \\ +1 & -1 & +1 \\ +1 & +1 & -1 \end{vmatrix}$$

- (a) Consider a kernel $(p^Tq+1)^2$ and construct the Kernel matrix
- (b) Write the dual objective in terms of α_1 , α_2 , α_3 and α_4 .
- (c) Differentiate wrt α_1 , α_2 , α_3 and α_4 and equate to zero. You get four equations.
- (d) Solve (guess) the values for α_1 , α_2 , α_3 and α_4 . Same?
- (e) We know $\phi() = [1, x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^T$. Find w as $\sum_i \alpha_i y_i \phi(x_i)$]. Does it solve the exor? why?
- 4. VC dimension of a function class is the largest set that can be shattered by a member of the function class.
 - (a) Interval $[\alpha_1, \alpha_2]$ on real line. (i.e., +ve is inside $[\alpha_1, \alpha_2]$ else negative)
 - (b) Axis parallel rectangles in 2D. (i.e., positive inside and negative outside)
 - (c) Convex Polygons in 2D (inside positive and outside negative)
 - (d) Union of intervals in 1D.
- 5. Starting from the Lagrangian

$$L(\mathbf{w}, b, \alpha, \xi) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{C}{2} \sum_{i=1}^{N} \xi_i^2 - \sum_{i=1}^{N} \alpha_i [y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i]$$

Derive the dual function for L2 SVM