Dynamics methods overview Theoretical mechanics

Oleg Bulichev

February 18, 2024

Table 1: Methods overview

Method	Research object	Amount of equations (for one research object)	Equation	The best applications	Additional comments
2-nd Newtons law for inertial systems	Particle	1–3	$m\vec{a} = \sum \vec{F}$, where m — mass, \vec{a} — acceleration, \vec{F} — forces	For everything, if you can represent your system or body as a particle	
2-nd Newtons law for non-inertial systems	Particle	1–3	$m\vec{a}_r = \sum \vec{F} + \vec{\Phi}_{cor} + \vec{\Phi}_{trans},$ where Φ is inertia force	For everything, if you can represent your system or body as a particle	 Inertial force is not real force, it is needed for compensating non-inertial nature of a system. Not obligatory that the particle should be on a body, like turning bus and a man. It can be Earth and satellite on Jupiter.
Theorem on: 1. Motion of the centre of mass of a system 2. Change of linear momentum of a system	System	1–3	1. $m\vec{a}_c = \sum \vec{F}$; $\vec{x}_c = \frac{\sum m_i \vec{x}_i}{\sum m_i}$ 2. $\frac{d\vec{Q}_c}{dt} = \sum \vec{F}$; $Q_c = \sum m\vec{v}_i$	We are interested in linear motion. 1. Easy to find a displacement for a body of a system, motion equation for system, external forces. 2. Easy to find a velocities for bodies.	
Theorem on change of angular momentum of a system	System	1	$rac{\mathrm{d} ec{L}_c}{\mathrm{d} t} = \sum ec{M}_c$ c — point of calculation $ec{L}_c = \sum ec{L}_i, \ ec{L}_i = Jec{\omega} = ec{Q} imes R$	We are interested in angular motion. Easy to find a angular velocities for bodies.	The choice of a point depends of the motion. If rotation – more convenient to put it in the center of rotation, if planar – in the center of mass.
d'Alembert principle (kinetostatics)	Body, system	1–6	$\begin{cases} \sum \vec{F} + \vec{\Phi} = 0\\ \sum \vec{M} + \vec{M}_{\Phi} = 0 \end{cases}$	To find reaction forces, if you know the motion equations of the system.	 You can use it, when it is applicable to imagine in each time that the system is static. In contrast of the Coriolis or Transport forces of inertia, the d'Alambert force of inertia has not a special physical meaning. It's a math trick.

Continued on next page

Table 1 – Continued from previous page

Method	Research object	Amount of equations (for one research object)	Equation	The best applications	Additional comments
Theorem on the change of kinetic energy of a system	Body, System	1	$dT = \delta A, \text{ or } T_2 - T_1 = A_{12}$ $T_{lin} = \frac{mv^2}{2}; \ T_{rot} = \frac{J\omega^2}{2}$ $A_{12} = \int_1^2 \delta A; \ A_{12} = \sum A_i$ $\delta A = \vec{F} \cdot \delta \vec{r} = \vec{F} \delta \vec{r} cos(\vec{F} \hat{\delta} \vec{r}) = \vec{M} \delta \vec{\phi}$ $\delta A = \Pi_1 - \Pi_2 = F \Delta h \text{ potential force}$	To find a correlation between displacement and velocity. Helpful if you need to find <i>one</i> force.	 Work of internal forces may be not equal to zero! δr can be changed on dr because it is usually independent of time (scleronomic). This is done in order to be able to integrate by coordinates rather than by time.
Principle of virtual: 1. Displacements (work) 2. Velocities	System	1	1. $\sum \delta A = 0$, where A is a virtual work 2. $\sum W = 0$; $W = \vec{F} \cdot \vec{v} = \vec{F} \vec{v} cos(\vec{F} \cdot \vec{v})$, where W is power, v – virtual velocity	To find <i>one</i> force or reaction force.	 Virtual work has infinitesimal displacements. System must be in static each time.
Lagrange-d'Alambert principle (General Equation of Dynamics)	System	1 in cartesian, n in generalized coordinates	 Σ δA + Σ δA^Φ = 0, where A is a virtual work Σ W + Σ W^Φ = 0, where W is a power 	To find accelerations, motion equations	
Newton-Euler equations	System	$6k + \sum_{0}^{k} (6 - m_i), k$ - amount of bodies, m_i - particular joint d.o.f	$\begin{cases} f_i = F_i + f_{i+1} \\ m_i = M_i + m_{i+1} + \vec{p}_{c_i} \times F_i + \vec{p}_{i+1} \times f_{i+1} \\ \tau_i = \begin{cases} m_i \cdot Z_i, \text{ if revolute} \\ f_i \cdot Z_i, \text{ if prismatic} \end{cases} \\ \text{Where} \\ F_i = m\vec{v}_{C_i} \\ M_i = I_{C_i}\dot{\omega}_i + \omega_i \times I_{C_i}\omega_i \end{cases}$	To find accelerations, forces, motion equations.	We divide a system into separate bodies, write equations for rotations and translations, plus constraints. At the end we have a dozens of equations, which should be solved numerically.
Euler-Lagrange equations	Body, System	$s, s - ext{d.o.f of system}$	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i \text{ or,}$ $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i^D$ $L = T - \Pi$	To find accelerations, forces, motion equations.	 It is the most classical and flexible method for multi-body systems, concluding only holonomic constraints. q - generalized coordinates. Q - all generalized forces. Q^D - non-potential general forces.