Floating-point (FP) numbers

- Computers need to deal with real numbers
 - Fractional numbers (e.g., 3.1416)
 - Very small numbers (e.g., 0.000001)
 - Very larger numbers (e.g., 2.7596×10⁹)
- Components in a binary FP number
 - (-1)^{sign}×significand</sup> (a.k.a. mantissa)×2^{exponent}
 - More bits in significand gives higher accuracy
 - More bits in exponent gives wider range
- A case for FP representation standard
 - Portability issues
 - · Improved implementations
 - ⇒ IEEE-754

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

12

Representing "floats" with binary

- We can add a "point" in binary notation:
 - 101.1010b
 - · integral part is simply 5d
 - fractional part is $1 \times 2^{-1} + 1 \times 2^{-3} = 0.5 + 0.125 = 0.625$
 - thus, 101.1010b is 5.625d
- Normal form: shift "point" so there's only a leading 1
 - $101.1010b = 1.011010 \times 2^2$, shift to the left by 2 positions
 - $0.0001101 = 1.101 \times 2^{-4}$, shift to the right by 4 positions
 - typically, we use the normal form (much like scientific notation)
- Just like integers, we have a choice of representation
 - IEEE 754 is our focus (there are other choices, though)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Format choice issues

- Example floating-point numbers (base-10)
 - 1.4×10⁻²
 - $-20.0 = -2.00 \times 10^{1}$
- What components do we have?
 - (-1)^{sign} × significand (a.k.a. mantissa) × 2^{exponent}
 - Sign
 - Significand
 - Exponent
- Representing sign is easy (0=positive, 1=negative)
- Significand is unsigned (sign-magnitude)
- Exponent is a signed integer. What method do we use?

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

14

IEEE 754

- · A standard for representing FP numbers in computers
 - · Single precision (32 bits): 8-bit exponent, 23-bit significand
 - Double precision (64 bits): 11-bit exponent, 52-bit significand

Leading "1" in significand is implicit (why?)

- Exponent is a signed number in biased format
 - "Biased" format for easier sorting of FP numbers
 - All 0's is the smallest, all 1's is the largest
 - · Bias of 127 for SP and 1023 for DP
- Hence, to obtain the actual value of a representation
 - (-1)^{sign}×(1#"."#significand</sup>)×2^{exponent}: here "#" is concatenation
 - exponent is a biased number (see next slide)
 - · exponent effectively shifts the "decimal point" in represented value

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Biased representation

- Yet another binary number representation
 - · Signed number allowed
- 000...000 is the smallest number, 111 ... 111 is largest number!
- To get the real value, subtract a pre-determined "bias" from the unsigned evaluation of the bit pattern
- In other words, representation = value + bias
- Bias for the "exponent" field in IEEE 754
 - 127 (SP), 1023 (DP)
- E.g., suppose exponent field = 011111101b = 125d
 - b/c we added the bias, we must subtract it to get decimal value
 - thus, exponent in decimal is really: 125d 127d = -2d
 - what's the decimal value for 10000111b=135d? (135d 127d = 8d)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

16

IEEE 754 example

- -0.75_{ten}
 - Same as $-3/4 = -3/2^2$
 - In binary, -11_{two}/2²_{ten} or -0.11_{two}
 - In a normalized form, it's -1.1_{two}×2⁻¹
- In IEEE 754
 - Sign bit is 1 number is negative!
 - Significand is 0.1 the leading 1 is implicit!
 - Exponent is -1; (-1 + 127 = 126 in biased representation)
 - ▶ 126 is in exponent field, so "decimal exponent" value is 126 127 = -1

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

IEEE 754 example #2

- Let's try 15.625
 - integral part is 15d=1111b
 - · fractional part is:
 - $0.625 \times 2 = 1.25$, generate the leading "1", carry down ".25"
 - $0.25 \times 2 = 0.5$, generate the leading "0", carry down ".5"
 - $0.5 \times 2 = 1.0$, generate the leading "1", nothing remains ".0"
 - answer is 0.101b
 - now, we have 1111.101b
 - normalize the result by shifting right by 3 positions
 - 1.111101 \times 2³, thus, significand = 0.111101, exponent is 3
 - get the exponent bias: 3 + 127 = 130d = 10000010b

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

I R

IEEE 754 summary

	Single Precision		Double Precision		Represented Object
, -	Exponent	Fraction	Exponent	Fraction	
į,	0	0	0	0	0
H	0	non-zero	0	non-zero	
- -	1~254	anything	1~20 <u>4</u> 6	anything	+/- floating-point numbers
ŀ	255	0	2047	Q	±/- infinity
<u>'</u>	255	non-zero	2047	non-zero	NaN (Not a Number)

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Denormal number

- Smallest normal (leading 1 is implicit): 1.0×2^{Emin}
- Below, use "denormal" (no leading 1): 0.f×2^{Emin}
- $e = E_{min}-1$, f != 0

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

20

NaN

- Not a Number
- Result of illegal computation
 - 0/0, infinity/infinity, infinity infinity, ...
 - · Any computation involving a NaN
- $e = E_{max} + 1$, f != 0
- Many NaN's

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Values represented with IEEE 754

Туре	Sign	Exponent	Significand	Value		
Zero	0	0000 0000	000 0000 0000 0000 0000 0000	0.0		
One	0	0111 1111	000 0000 0000 0000 0000 0000	1.0		
Minus One	1	0111 1111	000 0000 0000 0000 0000 0000	-1.0		
Smallest denormalized number	*	0000 0000	000 0000 0000 0000 0000 0001	$\pm 2^{-23} \times 2^{-126} = \pm 2^{-149} \approx \pm 1.4 \times 10^{-45}$		
"Middle" denormalized number	*	0000 0000	100 0000 0000 0000 0000 0000	$\pm 2^{-1} \times 2^{-126} = \pm 2^{-127} \approx \pm 5.88 \times 10^{-39}$		
Largest denormalized number	*	0000 0000	111 1111 1111 1111 1111 1111	$\pm (1-2^{-23}) \times 2^{-126} \approx \pm 1.18 \times 10^{-38}$		
Smallest normalized number	*	0000 0001	000 0000 0000 0000 0000 0000	±2 ⁻¹²⁶ ≈ 1.18 × 10 ⁻³⁸		
Largest normalized number	*	1111 1110	111 1111 1111 1111 1111 1111	$\pm (1-2^{-24}) \times 2^{128} \approx \pm 3.4 \times 10^{38}$		
Positive infinity	0	1111 1111	000 0000 0000 0000 0000 0000	+∞		
Negative infinity	1	1111 1111	000 0000 0000 0000 0000 0000	$-\infty$		
Not a number	*	1111 1111	non zero	NaN		
* Sign bit can be either 0 or 1 .						

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

22

FP arithmetic operations

- We want to support four arithmetic functions $(+, -, \times, /)$
- (+, -): Must equalize exponents first. Why?
- (×,/): Multiply/divide significand, add/subtract exponents.
- Use "rounding" when result is not accurate
- Exception conditions
 - E.g., Overflow, underflow (what is underflow?)
- Error conditions
 - · E.g., divide-by-zero

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

Overflow and underflow

- Overflow
 - · The exponent is too large to fit in the exponent field
- Underflow
 - · The exponent is too small to fit in the exponent field

CS/CoE0447: Computer Organization and Assembly Language

University of Pittsburgh

