Zestaw 1.

Zadanie 1.

W sekretariacie pracują dwie jednakowo wykwalifikowane maszynistki. Dyrektor przyniósł trzy 5-stronicowe pisma do przepisania. Ułóż optymalny harmonogram pracy minimalizujący C_{\max} dla przypadku podzielnego i niepodzielnego. Opisz problemy w notacji 3-polowej. Oblicz ΣC_j oraz F dla uzyskanych rozwiązań.

Zadanie 2.

Ostatniego dnia sesji 10 profesorów z wydziału ETI organizuje dopyt z 10 różnych przedmiotów dla pewnej grupy studentów, którzy nie zaliczyli więcej niż trzech egzaminów. Egzaminy ustne odbywają się indywidualnie od godziny 8 rano, każdy trwa 15 minut. Pragniemy zaplanować zaliczenia tak, by całe przedsięwzięcie zakończyło się możliwie jak najwcześniej. Sformułuj to zagadnienie w terminach szeregowania zadań i opisz za pomocą notacji 3-polowej.

Zadanie 3.

Uzasadnij, że problemy minimalizacji poniższych kryteriów dają się do siebie sprowadzać tak, jak przedstawiono na poniższym diagramie.

Zadanie 4.

Uszereguj operacje spełniające poniższe warunki kolejnościowe w celu minimalizacji C_{\max} . Policz "luzy czasowe" poszczególnych operacji. Czy ΣC_j również zostało zoptymalizowane?

Zadanie 5.

Rozważamy problem minimalizacji C_{\max} dla n zadań niezależnych i niepodzielnych o $p_j=1$, na m=2 maszynach, przy czym zadania wykorzystują zasoby dodatkowe $R=\{R_1,...,R_k\}$. Możemy założyć, że dana jest macierz $R_{ij}\in\{0,1\}$, przy czym $R_{ij}=1$ wtedy i tylko wtedy, gdy zadanie T_j musi skorzystać z zasobu R_i . Żaden zasób nie może obsłużyć więcej niż jednego zadania na raz. Udowodnij, że jest to problem wielomianowy poprzez sprowadzenie go do wyszukiwania skojarzeń w grafach.

Zadanie 6.

Pokaż, że problem z poprzedniego zadania stanie się NP-trudny, gdy liczba maszyn $m \ge n$.