A Shiver down the Spine-l

Elementary Problem 6 - 10 points

Deadline: September 7^{th} at 8:30 PM IST

- 1. Let A and B be two divalent cations and C be a trivalent cation and 0 < d < 1. $A_{1-d}B_dO.C_2O_3$ forms a normal spinel structure. For each unit, there is one tetrahedral site and two octahedral sites. Consider v molecules of this compound. Let there be two parameters x and y which define the distribution of A^{2+} and B^{2+} ions in tetrahedral sites, such that there are xv A^{2+} ions in tetrahedral sites and yv B^{2+} ions in tetrahedral sites. Write the distribution of each cation in both tetrahedral and octahedral sites and find the number of ways such a distribution $(A_{1-d}B_dO.C_2O_3)$ can be achieved (denote that with w).
- 2. Consider a compound $A_{1-x}B_x(A_xB_{2-x})O_4$ where x is the fraction of tetrahedral sites occupied by B^{2+} ions. Initially, the compound exists as a normal spinel. Consider the inversion of the structure:

$$A + (B) \rightleftharpoons (A) + B$$

- a. Write the equilibrium constant (K) in terms of x.
- b. From the plots deduce the entropy due to non-configuration changes (ΔS°). (T denotes the absolute temperature)

- c. Derive the expression for configurational entropy $(-R \ln w)$ for this compound and plot its variation with x. (Hint: try using the same method as in Part 1)
- 3. Which structure will Co_3O_4 adopt and why?