APPARENT BOUNDARIES

OF

PROJECTIVE VARIETIES

Joint with

Anand Patel

Eduard Duryer

A GUESSING GAME

dim

1 | 2 5 | 4 42 | 132 | 429 | Catalan

2 | 1 | 2 6 | 22 | 92 | 422 | Aooli81

3 | ? ? ?

4 | ? ? ?

APPARENT BOUNDARY

Smooth projective X < IP of dim r General linear 1 < IP of dim n-r-1

Project

Finite 2

 $R(\Lambda) := Ram. div. of T_{\Lambda}$.

3 "Apparent boundary"

APPARENT BOUNDARY

PROJECTION-RAMIFICATION MAP

XCP

 $R(\Delta)$

Gr (n-r, n+1) | Kx+ (r+1)H|

Gr ---> PN

QUESTIONS		•
Is p injective / surjective	7	
Local Version: Def, -> Def _{R(A)}		
For a general 1 is Prinjective / surjective on	Def	\frac{1}{3}
Equivalently is p		5

Equivalently is p
generically finite / dominant {

'maximal variation"

of R(A)

HISTORY

We observed Map (IP, IP, d) ---> Map (IP, IP, d') that turned out to be p for scrolls

Flenner, Manaresi, Ciliberto, Zak Studied maximal Variation to Understand the Stückrad-Vogel cycle.

DIMENSION COUNT

$$Gr(n-r,n+i) = -- > |K_{x}t(r+i)H|$$
 $Gim = (n-r)(r+i)$

PROPOSITION:

$$(n-r)(r+1) \leq dim | K_{x}t(r+1)H|$$

With equality if and only if

 $deg X = M-r+1$

(X is of minimal degree)

EXPECTATION G~---7 Should be generically finite always & also dominant if X deg (Almost, but not exactly.)

DOMAIN OF DEFINITION P.A. R(A) NO PROBLEM IF $\Lambda \cap X = \emptyset$ OR EVEN IF TTA: X---> P 15 DOMINANT. DEFINITION: X CIP

X C TP" INCOMPRESSIBLE

=> p:Gr --> Pregular

 $\Rightarrow \rho$ finite.

Examples

1 Curves

2) Hypersurfaces

Rare

DUAL

 $X \subset \mathbb{P} = \mathbb{P} V$ $X^* \subset \mathbb{P} V^*$ $X \subset \mathbb{P} = \mathbb{P} V$ $X \subset \mathbb{P} = \mathbb{P} V$

THEOREM

If X* c IPV* is a hypersurface, then P is generically finite for X.

"Non-degenerate dual

NON- DEGENERATE DUAL

Obiquitous

For a general H such that XnH is singular, it is singular at finitely many points.

Mon Example: 733

X=PxP=1 (Segre)

More generally $X = IPE \hookrightarrow P^n$

P FOR VARIETIES OF MIN DEG Generically finite (Dominant

- 1 Rational normal curves
- 3 Quadric hypersurfaces
 3 Veronese IP _ IP
- (4) SCrolls Subtle

P FOR SCROLLS

EXAMPLE OF FAILURE

$$X = \mathbb{P}\left(\mathcal{O}(1) \oplus \mathcal{O}(2)\right) \qquad Y > 4$$

Aut X
Aut X

No gen Stab
YES gen Stab

(Pos. dim.)

=> P can't be generically finite.

P FOR SCROLLS

THEOREM: Fix Y.

Let E be the generic vector bundle on IP' of rank r and degree

 $d \geq (r-1)(2r-1)+1.$

Then p is dominant for

X = PPE.

Generic scrolls of high degree

SKETCH OF PROOF

Degenerate

SKETCH OF PROOF

Gr(n-r, H°(x,O(1)) Gr(n-r, H°(X₀,O(1))

Gr (n-r, H°(E)) Gr(n-r, H°(E₀))

Gr(1,H°(E⊗detE⊗W_P1)) Gr(1,--)

Never dominant R(1) contains fiber over node

SKETCH OF PROOF

Rescue Limit linear series

Previously: Gr(T, E)

New G(TINE)

Constructed by

Eisenbud-Harris (rank 1) Teixidor-i-Bigas & Ossermann

IDEA OF LIMIT LINEAR SERIES

A limit linear series of rank K is a collection of rank K subspaces of $H^{\circ}(Enl_{\circ})$ for all $n \in \mathbb{Z}$ Satisfying certain conditions.

ENUMERATIVE PROBLEMS

For every XCMP of Minimal degree, find the degree of P.

ENUMERATIVE PROBLEMS

DXCIP rational normal curve.

 $Gr(n-2,n) \xrightarrow{\rho} \mathbb{R}^{2n-2}$

Regular & $\rho^* O(1) = O(1)$

So deg $\rho = c_1(o(1))$

= (2n-2)!

 $u \mid (u-i) \mid$

ENUMERATIVE PROBLEMS

2) X CP quadric hypersurface

P = PV

Then $G_{V}(1,V) \longrightarrow \mathbb{P}_{V} \times \mathbb{P}_{V}$ $\mathbb{P}_{V} \longrightarrow \mathbb{P}_{V}$

Isomorphism induced by X

ENUMERATIVE PROBLEMS PZ {Net of } { Conics } > { cubic }

Has degree 3

	CHUMERATIVE				LIVE	PR	OBLE	MS		
	5	C	7 5	عاا		7				
deg										
1		2	5	14	42	132	429	Cor	talan	
2				2	6	22	92	422.	A00118	
3			?		? ?					
4			7		7					
		• • •								
				Y			. .	eneric		

. .