

Activity (Fast Learner) – With Solution

Context

Given an unnormalized table:

Student_Course(Student_ID, Student_Name, Course_ID, Course_Name, Instructor, Instructor_Office)

Task 1

Quickly normalize the table from its current form to BCNF, clearly specifying minimal intermediate steps and all functional/transitive dependencies succinctly.

Solution

Initial Dependencies:

- Student ID → Student Name
- Course ID → Course Name, Instructor, Instructor_Office
- Instructor → Instructor_Office (transitive dependency)

Normalization Steps (Concise):

- 1NF: No repeating groups (already satisfied).
- 2NF: Separate partial dependencies:
- Students(Student_ID, Student_Name)
- Courses(Course_ID, Course_Name, Instructor, Instructor_Office)
- Enrollment(Student_ID, Course_ID)
- 3NF: Remove transitive dependencies:
 - Courses(Course_ID, Course_Name, Instructor)
 - Instructors(Instructor, Instructor_Office)
- BCNF Verification:
 - All tables have determinants as candidate keys.

Final Schema (BCNF):

- Students(Student ID, Student Name)
- Courses (Course ID, Course Name, Instructor)
- Enrollment(Student_ID, Course_ID)
- Instructors(Instructor, Instructor_Office)

Quick Check for Anomalies:

- No insertion, deletion, or update anomalies remain.

Task 2: Identifying Normal Form of Relations

Task 6: Given the relation below and the set of dependencies, identify the highest normal form (1NF, 2NF, 3NF, BCNF) that this relation currently satisfies. Justify your answer.

Relation:

R(A, B, C, D, E)

Functional Dependencies:

- A \rightarrow B, C
- $-B \rightarrow D$
- $-D \rightarrow E$

Solution for Task 2

Step-by-step Analysis:

Step 1: Check 1NF

- 1NF requires atomic attributes. All attributes (A, B, C, D, E) are atomic.
- Thus, relation R is in 1NF.

Step 2: Check 2NF

- 2NF requires no partial dependency. All non-key attributes must depend on the entire candidate key.
- Assuming A is a candidate key, dependencies are:
- $A \rightarrow B$, C (Fully dependent on key A)
- $B \rightarrow D$ (B is partially dependent on A if AB were a composite key, but here A alone is sufficient)
- $D \rightarrow E$ (D dependent on B, which is dependent on A)
- No partial dependencies, thus the relation is in 2NF.

Step 3: Check 3NF

- 3NF requires no transitive dependencies (non-key attributes shouldn't depend transitively on a candidate key).
- A \rightarrow B, B \rightarrow D creates a transitive dependency (A \rightarrow B \rightarrow D).
- B \rightarrow D \rightarrow E creates further transitivity.
- Due to transitive dependencies, relation R is NOT in 3NF.

Thus, the highest normal form currently satisfied by relation R is 2NF.

Task 3: Minimal Cover

Ouestion:

Given the following set of functional dependencies on relation R(A, B, C, D):

- $A \rightarrow BC$
- $B \rightarrow C$
- $A \rightarrow B$
- AB → C
 Find the minimal cover for this set.

Answer:

- 1. Decompose RHS to single attributes:
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ B \rightarrow C
 - \circ AB \rightarrow C
- 2. Remove redundant dependencies:
 - o Since $A \to B$ and $A \to C$ are present, $AB \to C$ is redundant (because A alone determines C).
- 3. Minimal cover:
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ B \rightarrow C

Task 4: Attribute Closure and Candidate Keys

Question:

Given relation R(A,B,C,D,E) and functional dependencies:

- $A \rightarrow BC$
- $CD \rightarrow E$
- $B \rightarrow D$

Find the closure of {A} and identify candidate keys.

Answer:

- Compute {A}⁺: Start with {A}
 - \circ A \rightarrow BC, add B and C \rightarrow {A,B,C}
 - \circ B \rightarrow D, add D \rightarrow {A,B,C,D}
 - \circ CD \rightarrow E, since C and D are in closure, add E \rightarrow {A, B, C, D, E}
- $\{A\}^+ = \{A,B,C,D,E\} = \text{all attributes} \rightarrow A \text{ is a candidate key.}$

Task 5: Dependency Preservation Check

Question:

Relation R(A,B,C) is decomposed into:

- R1(A,B) with FD: $A \rightarrow B$
- R2(B,C) with FD: B → C
 Is this decomposition dependency preserving?

Answer:

- The original FDs are: $A \rightarrow B, B \rightarrow C$
- Check if all FDs are preserved in the decomposition:
 - \circ A \rightarrow B is in R1
 - \circ B \rightarrow C is in R2
- Both FDs preserved → Decomposition is dependency preserving.