Пример

Оглавление

ВВЕДЕНИЕ	3
1. ИСХОДНЫЕ ДАННЫЕ	5
2. УСТАНОВЛЕНИЕ ХАРАКТЕРА РАСПРЕДЕЛЕНИЯ ИНВЕСТИІ ПРИ ВОЗВЕДЕНИИ ЗДАНИЙ И СООРУЖЕНИЙ	ДИЙ 8
3. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ ПРОДОЛЖИТЕЛЬНОСТИ ВОЗВЕДЕНИЯ ЗДАНИЙ И СООРУЖЕНИЙ	12
4. УСТАНОВЛЕНИЕ РАЦИОНАЛЬНЫХ ГРАНИЦ ПО ЭФФЕКТИВНОМУ ИСПОЛЬЗОВАНИЮ ИНВЕСТИЦИЙ ПРИ ВОЗВЕДЕНИИ ОБЪЕКТА	31
5. РАСЧЕТ ЭФФЕКТА ПО ОСНОВНЫМ УЧАСТНИКАМ ИНВЕСТИЦИОННОГО ПРОЦЕССА	34
5.1. РАСЧЕТ ЭФФЕКТА ГЕНЕРАЛЬНОГО ПОДРЯДЧИКА 5.2. РАСЧЕТ ЭФФЕКТА ЗАКАЗЧИКА НА ЭТАПЕ СТРОИТЕЛЬСТВА	35
6.ОПРЕДЕЛЕНИЕ БАЗОВОГО ВАРИАНТА КОНТРАКТА	41
7. РАСЧЕТ ДИСКОНТИРОВАННЫХ ПОКАЗАТЕЛЕЙ ЭФФЕКТИВНОСТИ ИНВЕСТИЦИЙ	43
7.1. РАСЧЕТ ЧИСТОГО ДИСКОНТИРОВАННОГО ДОХОДА 7.2. РАСЧЕТ ИНДЕКСА РЕНТАБЕЛЬНОСТИ	45
7.3. РАСЧЕТ ВНУТРЕННЕЙ НОРМЫ ДОХОДНОСТИ ЗАКЛЮЧЕНИЕ	
СПИСОК ЛИТЕРАТУРЫ	
Прилоления	56

ВВЕДЕНИЕ

Инвестиции играют ключевую роль в современной экономике, так как являются основным фактором экономического роста.

Экономическая эффективность капитальных вложений, инвестиций в строительство МНОГОМ определяется уровнем развития BO Необходимость технического прогресса. всемирной квалификации строительного производства на основе ускорения научно-технического структурной перестройки всей экономики, использования эффективных форм управления, организации и стимулирования труда. Научнотехнический прогресс ускоряется в условиях рыночной экономики. В этих новых для себя условиях, чтобы экономика стала восприимчивой к новшествам, необходим новый экономический механизм, активизирующий развитие научнотехнического прогресса.

Использование новой техники и технологий, различных методов, повышающих эффективность капитальных вложений, остаются главными источниками изменений в обществе. Наши ведущие промышленные и строительные компании обязаны своим происхождением и существованием успешному применению технических, технологически организационных и экономических решений при выпуске новых продуктов и внедрению более совершенных производственных процессов. При этом необходимо учитывать вероятностный и мобильный характер их обеспечения в реальных условиях строительного производства с учётом взаимоувязки трёх блоков между собой («Характеристика строительной продукции», «Характеристика потенциала строительной системы», «Характеристика региональных условий возведения объекта строительной системой»).

Рациональное решение этих вопросов обеспечивается путём моделирования различных организационно-технологических и экономических ситуаций деятельности всех участков возведения объекта строительства, что связано с необходимостью проработки вопросов определения рациональных параметров строительного производства в условиях рыночной экономики на основе эффективного использования имеющихся капитальных вложений и достижений научно-технического прогресса.

Цель выполнения работы - моделирование и анализ различных организационно-технических и экономических ситуаций, в которых осуществляется возведение объекта и происходит взаимоувязка интересов всех участников его строительства.

В процессе выполнения работы необходимо решить следующие задачи:

• определить цель и актуальность выбранной проблемы для рассмотрения в рамках курсовой работы;

- сформировать исходные данные для моделирования организационнотехнических и экономических ситуаций по эффективному использованию капитальных вложений в проектированный объект;
- установить характер распределения капитальных вложений при возведении зданий и сооружений и нормальный срок их строительства в условиях рыночной экономики с учётом уровня развития НТП;
- определить расчётные параметры строительства объекта на основе решения оптимизационной задачи и с учётом распределения капитальных вложений по различным вариантам;
- установить границы рациональной зоны значений параметров строительства объекта, характеризующие организационно-технологические и экономические ситуации;
- выбрать наиболее рациональный вариант по эффективному использованию капитальных вложений и различных нововведений при возведении объекта с учётом различных критериев оценки.

1. ИСХОДНЫЕ ДАННЫЕ

Для выполнения работы используют генеральный план строительства объекта. В исходных данных по объекту должны быть отражены функционально-производственные параметры проектируемого объекта:

- назначение здания, его объёмно-планировочное и конструктивное решение: размеры в плане, этажность; количество пролётов; высота подземной и надземной частей; конструкции и материалы фундаментов, стен, корпуса здания, кровли; виды полов, внутренней и наружной отделки и т.д.;
- характеристика строительной площадки с описанием рельефа местности, грунтовых условий;
- характеристика различных организационных, технологических, технических решений, которые описывают уровень развития НТО и позволяют сокращать период строительства объекта (комплектно-блочный, вахтовый, экспедиционно-вахтовый методы, вытрамбовка фундаментов и т.д.);
- расположение источников получения строительных материалов, конструкций, строительных машин и механизмов.

Кроме того, исходные данные содержат и основные технико-экономические показатели объекта. Анализ исходных данных позволяет точно выбрать необходимые организационно-технологические, технические и экономические решения, внедрение которых позволит максимально сократить период непосредственного строительства объекта, тем самым обеспечить оптимальный нормативный срок возведения данного здания или сооружения в условиях рыночной экономики.

Таблица 1 Исходные данные по объекту – вариант №16

Объект	9-ти эт. 180 кв. кирпичный жилой дом
Объем капитальных вложений	236,80 млн. руб.
Трудоемкость	21330 чел. дн.
Продолжительность	20 мес.

Смоделированные ситуации должны соответствовать следующим значениям срока окупаемости инвестиций и следующим видам распределения ресурсов (таблица 1.2):

Ток баз = 6,25 лет;

Ток 1 = 2 года;

Ток 2 = 3 года;

Tок 3 = 4 Γ ода.

Ток 4 = 5 лет.

 Таблица 2

 Характер распределения капитальных затрат во времени

№	Характер распределения инвестиций	α_p
1.	Равномерный	0,5
2.	Равномерно-возрастающий	0,333
3.	Неравномерно-возрастающий по закону квадратной параболы	0,25
4.	Неравномерно-возрастающий по закону кубической параболы	0,2
5.	Равномерно-убывающий	0,667
6.	Неравномерно-убывающий по закону выпуклой квадратной параболы	0,625
7.	Неравномерно-убывающий по закону вогнутой квадратной параболы	0,75
8.	Неравномерно-убывающий по закону вогнутой кубической параболы	0,8

 Таблица 3

 Исходные данные для расчета затрат по эксплуатации машин и

механизмов

№ п/п	Наименование изделия	Единица измерения	V_{M}	3 _м , тыс.руб./смен.	P, м ³ /смен.
		Кир	пичный		
1	Экскаватор ЭО 41-11Б	м ³	12000	1,2	300
2	Башенный кран БК-180	шт.	630	2,0	35
3	Бульдозер ДЗ-40	M ³	3600	1,5	500

 Исходные данные для расчета затрат в смежной отрасли

		Единица	Удельные	Объём	
№	Наименование объекта	измерения	капиталовложения	материала,	
110			К _{уд,} млн.руб./т	изделия,	
				конструкций;	
1.	Цементный завод сухого	млн. руб/т.	0,0000606	2300000	
	способа производства	млн. руб/1.	0,000000	2300000	
2	Завод глиняного кирпича и	млн.			
	керамических стеновых	руб/1000шт	0,000285	75000000	
	материалов	руб/1000ш1			
3	Предприятие по				
	производству	млн. руб/т.	0,000243	80000	
	канализационных труб и		0,000243	80000	
	фасонных частей к ним.				
4	Цех по производству				
	оборудования	млн. руб/т.	0,001574	30000	
	энергетического		0,001374 30000		
	машиностроения				

2. УСТАНОВЛЕНИЕ ХАРАКТЕРА РАСПРЕДЕЛЕНИЯ ИНВЕСТИЦИЙ ПРИ ВОЗВЕДЕНИИ ЗДАНИЙ И СООРУЖЕНИЙ

Наиболее полный народнохозяйственный эффект при возведении зданий и сооружений достигается путем установления рационального распределения капитальных вложений во времени и в пространстве, а также за счет определения оптимальной длительности полного строительного процесса в условиях рыночной экономики.

При возведении зданий и сооружений применяются следующие основные методы монтажа строительных конструкций, инженерных сетей и технологического оборудования (рис. 1):

- 1. Закрытый. Монтаж сетей производится после завершения строительства каркаса здания по всему объекту или по его отдельным участкам.
- 2. Открытый. Монтаж оборудования и инженерных сетей осуществляется на открытой строительной площадке.
- 3. <u>Смешанный</u>. Параллельное выполнение работы по возведению каркаса объекта и монтажа оборудования.
- 4. <u>Комбинированный</u>. Предусматривает комбинированный вариант закрытой, открытой и смешанной форм.

Из рис. 1 видно, что производство работ может осуществляться:

- последовательно;
- параллельно;
- параллельно-последовательно.

При этом строительные процессы по возведению объектов могут иметь горизонтальное, вертикальное и диагональное развитие.

Все эти условия значительно влияют на изменение величины продолжительности строительства.

Для установления рациональной продолжительности строительства и длительности процесса возведения зданий и сооружений необходимо построить циклограммы (сетевые, линейные методы) развития строительных процессов по комплексу или объектам с учетом возможных методов возведения, производства работ, направлений развития процессов на основе использования достижений научно-технического процесса в области новых организационнотехнологических, технических, экономических и управленческих нововведний.

0. 6.		МЕТОДЫ ВОЗВЕ	ДЕНИЯ ЗДАНИЯ	
Выпол нение работ	Закрытый	Открытый	Смешанный	Комбинированный
Последова				
Параллельное				
Параллельно-последовательное				

Условные обозначения к рис.1:

1-монтаж конструкций здания; 2-монтаж конструкций для оборудования; 3-монтаж инженерных сетей и технологического оборудования; «Р.Э.»-условия рыночной экономики и сложившиеся организационно-технологические ситуации в строительной фирме.

Рис. 1. Основные способы и методы возведения объекта

Для каждого из рассматриваемых вариантов определяются расчетный t_p и нормативный t_{H} сроки строительства здания и сооружения, исходя из условий рыночной экономики и сложившейся организационно-технологической и экономической ситуации строительной фирме. После установления дальнейшего объекта оптимального значения срока возведения ДЛЯ рассмотрения принимаются только те варианты, которые отвечают условиям:

$$t_p^{opm} \le t_p$$

Оптимальная длительность процесса возведения объекта зависит от характера распределения капитальных вложений, изменения затрат в сфере строительства во времени и использования различных научно-технических нововведений.

При возведении зданий и сооружений в течение всего периода строительства вкладываются средства в виде затрат на строительные материалы, конструкции, использование оборудования и производство строительномонтажных работ. Характер распределения капитальных вложений определяется в период разработки проекта организации строительства (ПОС), методов поточного выполнения строительно-монтажных работ (СМР) и возведения объектов на основе различных нормативных данных, показателей, основными из которых являются: срок строительства, ведомость объемов работ, номенклатура работ, принятая технология и организация строительных процессов и т.д.

Нормативный срок t_n продолжительности строительства объекта в условиях рыночной экономики и сложившейся организационно-технической ситуации в строительной фирме определяется из времени подготовительного периода t_n , периода развертывания сложного процесса по объекту t_{pn} и периода выпуска продукции t_{np} , то есть непосредственного возведения и сдачи объекта:

$$t_{\scriptscriptstyle H} = t_{\scriptscriptstyle n} + t_{\scriptscriptstyle pn} + t_{\scriptscriptstyle np},$$

где $t_{\text{пр}}$ – период выпуска готовой продукции, $t_{\text{пр}} = 18$ месяцев;

 $t_{\pi}-$ время подготовительного периода;

$$t_{\rm II} = 25-30\%$$
 ot $t_{\rm IIp}$

$$t_{\pi p} = 20*0,3 = 6$$
 месяцев

 $t_{\mbox{\scriptsize p}\mbox{\scriptsize \Pi}}$ – период развертывания процесса строительства;

$$t_{pn} = 10-15\%$$
 от t_{np}

$$t_{\text{рп}} = 20*0,15 = 3$$
 месяца

Значения этих величин определяются путем построения циклограмм возведения объекта на основе вертикального, горизонтального и диагонального развития строительного процесса в пространстве и во времени. по полученным вариантам рассчитывается интенсивность потребления денежных средств капитальных вложений по формуле

$$J_i = \frac{K_i}{t_i},$$

где K_i — сумма средств при выполнении i-го вида строительно-

монтажной работы (специализированный процесс), руб.; t_i — продолжительность выполнения i-й работы, дн.

Построение графиков интенсивности затрат позволяет получить характер распределения капитальных вложений в объект во времени, основные из которых приведены на рис. 2.

K - капитальные вложения; t - время распределения K при строительстве объекта

Рис. 2. Характер распределения капитальных вложений при строительстве зданий и сооружений

Величина t_n определяется расчетным путем на основе использования различных научно-технических нововведений по выбранному варианту организации возведения объекта, дн. Величины t_n и t_{pn} применяются соответственно в пределах 25-30 и 10-15 % от величины t_{np} .

Определим нормативный срок строительства объекта (по формуле 1), зная, что продолжительность строительного процесса $t_{np} = 18$ мес.

$$t_{_{\rm H}} = 6 + 3 + 20 = 29$$
 месяцев

При сокращении продолжительности строительства здания или сооружения характер распределения капитальных вложений не изменится (см. рис.2). Характер распределения капитальных вложений значительно влияет на размер незавершённого производства, на потери народного хозяйства от не использования объекта, находящегося в стадии строительства и т.д.

3. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ ПРОДОЛЖИТЕЛЬНОСТИ ВОЗВЕДЕНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

Тенденции современного строительства к сокращению длительности производственного цикла и уменьшению продолжительности возведения здания или сооружения в условиях рыночной экономики требуют решения сложной технико-экономической задачи, сопоставления результатов сокращения сроков строительства с теми затратами, которые несет строительная фирма и взаимосвязанные с ней производства для достижения выигрыша во времени. Для решения данной задачи в курсовой работе за основу принимается методический подход доктора технических наук, профессора кафедры организации строительства Московского государственного строительного университета Прыкина Б.В.

Для определения оптимальной продолжительности возведения объекта следует рассмотреть характер изменения всех затрат, связанных со строительством. При этом все они могут быть объединены в 2 группы:

- снижающие для сокращения длительности процесса возведения здания или сооружения (S_1, S_2, S_3)
- \bullet возрастающие для достижения сокращения длительности строительства объекта (S_4 , S_5 , S_6 , S_7 , S_8 , S_9 , S_{10}).

Рассчитаем снижающиеся и возрастающие затраты для базового периода окупаемости 6,25 лет, tp=1 и соответственно при норме доходности 0,16 (B-1 – B-8).

Снижающиеся затраты

1. К снижающим затратам для сокращения длительности процесса можно отнести накладные расходы S_1 зависящие от длительности процесса и изменяющиеся под влиянием переменной величины (периода развертывания процесса строительства) при нормативном сроке строительств $t_{\rm H}$ по формуле

$$S_1 = \frac{HP_1 t_p}{t_{_H}} = \frac{\alpha_1 \alpha_2 \alpha_3 \alpha_{_H} K t_p}{t_{_H}}$$

- где HP₁ сумма накладных расходов, зависящих от длительности строительного процесса при его нормативной величине, руб.
 - α_1 коэффициент, показывающий долю сметной стоимости строительномонтажных работ в общих капитальных вложениях на объект (для объектов производственного сельскохозяйственного назначения α_1 =

- 0,8-0,85; промышленности $\alpha_1 = 0,2-0,4$; объектов жилищного назначения $\alpha_1 = 0,85-0,95$); принимаем равным 0,95.
- α_2 коэффициент, показывающий долю накладных расходов в сметной стоимости объекта (0,12-0,22); принимаем равным 0,22.
- α_3 коэффициент, отражающий долю анализируемой части накладных расходов (0,45-0,5); принимаем равным 0,5.
- К объем капитальных вложений в строительство объекта, руб.; 236,80 млн. руб.
- $\alpha_{\text{н}}$ коэффициент, учитывающий инфляционные процессы в строительстве; принимаем равным 1,2.
- t_p расчетное время строительства объекта; изменяем это значение в интервале $1\div 25$ с шагом 1 месяц.

Рассчитаем накладные расходы S_1 при нормативном сроке строительства $t_{\rm H}$ = 37 месяцев:

$$S_1 = \frac{0.95 \cdot 0.22 \cdot 0.5 \cdot 1.2 \cdot 236,80 \cdot 1}{29} = 1,023955862$$
 млн. ру

Таблица 5

$\alpha_1\alpha_2\alpha_3\alpha_{\scriptscriptstyle \rm H}K$	t _p , мес.	S ₁ , тыс.руб.
t _H		
	1	1,023955862
	2	2,047911724
	3	3,071867586
	4	4,095823448
	5	5,11977931
	6	6,143735172
	7	7,167691034
	8	8,191646897
	9	9,215602759
	10	10,23955862
	11	11,26351448
	12	12,28747034
	13	13,31142621
	14	14,33538207
1,023955862	15	15,35933793
	16	16,38329379
	17	17,40724966
	18	18,43120552
	19	19,45516138
	20	20,47911724
	21	21,5030731
	22	22,52702897
	23	23,55098483
	24	24,57494069
	25	25,59889655
	26	26,62285241
	27	27,64680828
	28	28,67076414
	29	29,69472

2. Размер затрат в незавершенное производство S_2 связан с видом распределения капитальных вложений во времени по периодам строительства, характеризующимся коэффициентом a_2 :

$$S_2 = \frac{\alpha_p E_{H1} K t_p \alpha_u}{F_{\partial}}$$

где $E_{\text{H}1}$ - нормативный коэффициент эффективности капитальных вложений, равный 0,16;

 $F_{\text{д}}$ - число рабочих дней в году;

- α_p коэффициент, характеризующий вид распределения капитальных вложений К.
- Т.к. $t_{\rm p}$ мы рассчитываем в месяцах, поэтому для расчета целесообразно $F_{\it o}$ принять в месяцах, т.е. 12 мес.
- α_p коэффициент, характеризующий вид распределения капитальных вложений K.

В зависимости от вида распределения α_p (1-8) рассчитаем затраты для t_p =1, затем с шагом 1 месяц вычислим затраты S_2 для других t_p .

$$\alpha_{\rm p} = 0.5$$

$$\frac{E_{H1}K\alpha_{u}\alpha_{p}}{F_{o}} = const = \frac{0.16 \cdot 236.80 \cdot 1.2 \cdot 0.5}{12} = 1.8944$$
 млн.руб

$\frac{E_{n1}K\alpha_{u}\alpha_{p}}{F_{o}}$	t _p	S_2 , тыс.руб.
	1	1,8944
	2	3,7888
	3	5,6832
	4	7,5776
	5	9,472
	6	11,3664
	7	13,2608
	8	15,1552
	9	17,0496
	10	18,944
	11	20,8384
	12	22,7328
	13	24,6272
	14	26,5216
1,8944	15	28,416
	16	30,3104
	17	32,2048
	18	34,0992
	19	35,9936
	20	37,888
	21	39,7824
	22	41,6768
	23	43,5712
	24	45,4656
	25	47,36
	26	49,2544
	27	51,1488
	28	53,0432
	29	54,9376

Расчеты затрат для остальных коэффициентов распределения инвестиций α_p представлены в приложении.

3. Величина потерь народного хозяйства от неиспользования объектов, находящихся в стадии строительства, с учетом длительности возведения зданий и сооружений S3, рассчитывается по формуле

$$S_3=rac{lpha_p E_{_{H2}} K t_p lpha_u}{F_o}$$
 $S_3=rac{0.5\cdot 0.25\cdot 236.80\cdot 1.2}{12}=2.99588$ млн. руб

где $E_{\rm H2}$ - нормативный коэффициент эффективности капитальных вложений для отрасли, эксплуатирующей здание или сооружение, равный 0,25.

Расчеты затрат для остальных коэффициентов распределения инвестиций α_p представлены в приложении.

Таблица 7

$rac{E_{{\scriptscriptstyle H}^1} K lpha_{{\scriptscriptstyle H}} lpha_{{\scriptscriptstyle P}}}{F_o}$	$t_{\rm p}$	S3, тыс.руб.
	1	2,96
	2	5,92
	3	8,88
	4	11,84
	5	14,8
	6	17,76
	7	20,72
	8	23,68
	9	26,64
	10	29,6
	11	32,56
	12	35,52
	13	38,48
	14	41,44
2,96	15	44,4
	16	47,36
	17	50,32
	18	53,28
	19	56,24
	20	59,2
	21	62,16
	22	65,12
	23	68,08
	24	71,04
	25	74
	26	76,96
	27	79,92
	28	82,88
	29	85,84

Возрастающие затраты

4. К возрастающим при сокращении длительности функционирования процесса относятся следующие затраты.

Накладные расходы S_4 , зависящие от численности рабочих, изменяются в связи с необходимостью дополнительного привлечения трудовых ресурсов:

$$S_4 = \frac{HP_2t_{_H}}{K_{_{c1}}t_{_p}} = \frac{\alpha_1\alpha_2\alpha_u\alpha_pKt_{_H}}{K_{_{c1}}t_{_p}}$$

где HP_2 — сумма накладных расходов, зависящих от численности рабочих, руб.;

 α_p - коэффициент, отражающий долю анализируемой части накладных расходов (0,3-0,35), принимаемый равным 0,35;

 $K_{\Gamma 1}$ - коэффициент надежности процесса с зачетом трудовых ресурсов ($K_{\Gamma 1} = 0.08-0.88$), принимаемый равным 0.8.

$$S_4 = \frac{0,95 \cdot 0,22 \cdot 1,2 \cdot 0,35 \cdot 236,80 \cdot 26}{0,8} = 753,50352$$
 млн. руб

Таблица 8

$\frac{K\alpha_{u}\alpha_{p}'\alpha_{1}\alpha_{2}t_{u}}{K_{z1}}$	t _p , мес.	S ₄ , тыс.руб.
	1	753,50352
	2	376,75176
	3	251,16784
	4	188,37588
	5	150,700704
	6	125,58392
	7	107,64336
	8	94,18794
	9	83,72261333
	10	75,350352
	11	68,50032
	12	62,79196
	13	57,96180923
	14	53,82168
753,50352	15	50,233568
	16	47,09397
	17	44,32373647
	18	41,86130667
	19	39,65808
	20	37,675176
	21	35,88112
	22	34,25016
	23	32,76102261
	24	31,39598
	25	30,1401408
	26	28,98090462
	27	27,90753778
	28	26,91084
	29	25,98288

5. Заработная плата рабочих S_5 с учетом применения премиальных систем, зависящих от трудоемкости строительно-монтажных работ Q_i , также характеризуется определенным законом изменения при различиях в значениях t_p и t_H :

$$S_5 = \frac{\alpha_5 \alpha_4 Q_i F_o \alpha_u C_1}{t_p}$$

где α_4 - коэффициент доплат к заработной плате при сокращении продолжительности строительства (0,005-0,01), принимаемый равным

0,01, что соответствует реальной обстановке в строительной отрасли. α_5 - коэффициент, учитывающий часть рабочих, находящихся на премиальной оплате труда, принимаемый равным 1,00; C_1 - дневная тарифная ставка среднего разряда рабочих, руб. В настоящее время в среднем по отрасли рабочий-строитель зарабатывает в день 1000 рубль. Это значение и примем за дневную тарифную ставку. Q_i - трудоемкость возведения зданий и сооружений, 21330 чел.-дн.

$$S_5 = \frac{1 \cdot 0,01 \cdot 21330 \cdot 12 \cdot 1,2 \cdot 1000}{1} = 3,07152$$
 млн. руб

$\alpha_5 \alpha_4 Q_i F_0 \alpha_u C_1$	t _p , mec.	S _{5,} тыс. руб.
	1	3,07152
	2	1,53576
	3	1,02384
	4	0,76788
	5	0,614304
	6	0,51192
	7	0,438788571
	8	0,38394
	9	0,34128
	10	0,307152
	11	0,279229091
	12	0,25596
	13	0,236270769
	14	0,219394286
3,07152	15	0,204768
	16	0,19197
	17	0,180677647
	18	0,17064
	19	0,161658947
	20	0,153576
	21	0,146262857
	22	0,139614545
	23	0,133544348
	24	0,12798
	25	0,1228608
	26	0,118135385
	27	0,11376
	28	0,109697143
	29	0,105914483

6. Расходы по эксплуатации машин и механизмов S_6 изменяются за счет единовременных затрат на их доставку и монтаж на объекте и зависят от количества средств механизации, привлекаемых для ускорения строительства:

$$S_6 = \sum_{i=1}^{m} \frac{V_{M} \alpha_n \beta_{M}}{P_i n \alpha_6 K_{22} \beta_1 t_p}$$

где $3_{\scriptscriptstyle M}$ - затраты на строительные механизированные работы, руб./см; V_M — объем строительных механизированных работ в физических единицах, M^3 , T;

- P_i производительность і-й машины (дневная), м³;
- п число смен работы і-й машины;
- α_6 интегральный коэффициент использования і-й машины во времени и по производительности (α_6 для строительных машин в пределах 0,4-0,6, принимаемый равным 0,8);
 - т число видов механизированных работ;
- K_{r2} коэффициент надежности работы строительных машин (K_{r2} = 0,90-0,91, принимаем 0,9);
- β_1 коэффициент, учитывающий увеличение единовременных затрат на транспортные средства при более интенсивном потреблении материалов и изделий (β_1 =0,97).

 $[P_i, V_M, 3_M]$ см. Исходные данные — Таблица3] Рассчитаем S_6 при t_p = 1 месяц:

$$S_{6} = \sum_{i=1}^{m} \frac{V_{M}\alpha_{u}3_{M}}{P_{i}n\alpha_{6}K_{c2}\beta_{1}t_{p}} = \frac{12000 \cdot 1,2 \cdot 120}{300 \cdot 1 \cdot 0,4 \cdot 0,9 \cdot 0,97} + \frac{540 \cdot 1,2 \cdot 200}{20 \cdot 1 \cdot 0,4 \cdot 0,9 \cdot 0,97} + \frac{3600 \cdot 1,2 \cdot 150}{500 \cdot 1 \cdot 0,4 \cdot 0,9 \cdot 0,97} = 32.577$$

Аналогично рассчитанные S_6 для t_p в интервале $1\div 29$ мес. представлены ниже в таблице 10:

$S_6 = \sum_{i=1}^{m} \frac{V_{M} \alpha_{n} 3_{M}}{P_{i} n \alpha_{6} K_{22} \beta_{1} t_{p}}$	t _p , мес.	S_6
	1	32,57731959
	2	16,28865979
	3	10,85910653
	4	8,144329897
	5	6,515463918
	6	5,429553265
	7	4,653902798
	8	4,072164948
	9	3,619702176
	10	3,257731959
	11	2,961574508
	12	2,714776632
	13	2,505947661
	14	2,326951399
32,57731959	15	2,171821306
	16	2,036082474
	17	1,916312917
	18	1,809851088
	19	1,714595768
	20	1,628865979
	21	1,551300933
	22	1,480787254
	23	1,416405199
	24	1,357388316
	25	1,303092784
	26	1,25297383
	27	1,206567392
	28	1,1634757
	29	1,123355848

7. Затраты на строительство временных зданий и сооружений S_7 для обслуживания дополнительного числа рабочих:

$$S_7 = \frac{3_2 Q_i \alpha_n}{\alpha_7 n t_p}$$

где 3_2 - затраты на материалы к сборно-разборным зданиям, тыс.руб./чел., принимаемые равными 0,025 тыс.руб./чел.;

 α_7 - коэффициент, учитывающий неоднородность работ и различную загрузку рабочих по сменам ($\alpha_7 = 1,15$ -1,2), принимаемый равным 1,2;

n - число смен работы на объекте, принимаемое равным 2.

$$S_7 = \frac{0,025 \cdot 21330 \cdot 1,2}{1,2 \cdot 2 \cdot 1} = 0,266625$$
млн. руб

Таблица 11

$\frac{3_2 Q_i \alpha_n}{\alpha_7 n}$	t _p , мес.	S _{7,} тыс. руб.
	1	0,266625
	2	0,1333125
	3	0,088875
	4	0,06665625
	5	0,053325
	6	0,0444375
	7	0,038089286
	8	0,033328125
	9	0,029625
	10	0,0266625
	11	0,024238636
	12	0,02221875
	13	0,020509615
	14	0,019044643
0,266625	15	0,017775
	16	0,016664063
	17	0,015683824
	18	0,0148125
	19	0,014032895
	20	0,01333125
	21	0,012696429
	22	0,012119318
	23	0,011592391
	24	0,011109375
	25	0,010665
	26	0,010254808
	27	0,009875
	28	0,009522321
	29	0,009193966

Величина капитальных вложений в смежные отрасли (S_8 , S_9 , S_{10}) зависит от интенсивности потребления ресурсов, связанной с количеством этих ресурсов на 1 млн.руб. строительно-монтажных работ и размером удельных капитальных вложений в производство данных материалов, конструкций, машин и др.

Капитальные вложения в смежные отрасли:

8. в промышленность строительных материалов:

$$S_8 = \frac{KF_{\partial}\alpha_n}{t_p 10^3 K_{e3}\alpha_8} \sum_{i=1}^n K'_{y\partial i} V'_i E'_{Hi}$$

- где $K_{yдi}$ коэффициент, учитывающий надежность материально-технического снабжения, равный 0.75;
 - α_8 коэффициент, учитывающий равномерность использования ресурсов (распределение капитальных вложений во времени): равномерное α_8 = 1; равномерно-возрастающее α_8 = 0,7-0,8; неравномерно-возрастающее по закону квадратной параболы α_8 = 0,5;
 - V_{i}' объем і-го вида, материала, изделия конструкции, тыс. м³, т, м, на 1000 тыс.руб. строительно-монтажных работ по отрасли;
 - $K_{yдi}$ ' удельные капитальные вложения на производство единицы i-го вида продуктов, тыс. руб./м³ (тыс. руб./т);

[Значения $K_{yдi}$ ', V_i см. Исходные данные — Таблица 4]

$$S_8 = \frac{12 \cdot 236,800 \cdot 1,2}{1000 \cdot 0,75 \cdot 0,5} \cdot ((60,6 \cdot 23 \cdot 10^5 \cdot 0,16) + (285 \cdot 10^{-6} \cdot 75 \cdot 10^3 \cdot 0,16)$$

= 231,0670909 млн. руб

$\frac{\mathit{KF}_{\scriptscriptstyle{\partial}}\alpha_{\scriptscriptstyle{u}}}{10^{3}\mathit{K}_{\scriptscriptstyle{\varepsilon3}}\alpha_{\scriptscriptstyle{8}}}$	$\sum_{i=1}^n K_{y\partial i}^{\prime} V_i^{\prime} E_{Hi}^{\prime}$	tp	S_8
		1	231,0670909
		2	115,5335455
		3	77,02236365
		4	57,76677274
		5	46,21341819
		6	38,51118182
		7	33,00958442
		8	28,88338637
		9	25,67412122
		10	23,10670909
		11	21,00609918
		12	19,25559091
		13	17,77439161
		14	16,50479221
9,09312	25,4112	15	15,40447273
		16	14,44169318
		17	13,59218182
		18	12,83706061
		19	12,16142584
		20	11,55335455
		21	11,00319481
		22	10,50304959
		23	10,04639526
		24	9,627795456
		25	9,242683638
		26	8,887195806
		27	8,558040405
		28	8,252396105
		29	7.967830722

9. в производство металлоконструкций:

$$S_9 = \frac{KF_{\partial}\alpha_n}{t_p 10^3 K_{23}\alpha_8} \sum_{i=1}^n K''_{y \partial i} V_i'' E''_{Hi}$$

$$S_9 = \frac{12 \cdot 236,800 \cdot 1,2}{1000 \cdot 0,75 \cdot 0,5} \cdot (243 \cdot 10^{-6} \cdot 8 \cdot 10^4 \cdot 0,16) = 28,28324045$$
 млн. руб

$\frac{\mathit{KF_o}\alpha_u}{10^3\mathit{K_{e3}}\alpha_8}$	$\sum K_{y,z_i}^{} V_i^{} E_{Hi}^{} $	tp	S9
		1	28,28324045
		2	14,14162022
		3	9,427746816
		4	7,070810112
		5	5,65664809
		6	4,713873408
		7	4,040462921
		8	3,535405056
		9	3,142582272
		10	2,828324045
		11	2,571203677
		12	2,356936704
		13	2,175633881
		14	2,020231461
9,09312	3,1104	15	1,885549363
		16	1,767702528
		17	1,663720026
		18	1,571291136
		19	1,488591603
		20	1,414162022
		21	1,346820974
		22	1,285601839
		23	1,229706106
		24	1,178468352
		25	1,131329618
		26	1,08781694
		27	1,047527424
		28	1,01011573
		29	0,975284153

10. в машиностроение:

$$S_{10} = \frac{KF_{\partial}\alpha_{n}}{t_{p}10^{3}K_{c3}\alpha_{8}} \sum_{i=1}^{n} K_{y\partial i}^{///} V_{i}^{///} E_{Hi}^{///}$$

$$S_9 = \frac{12 \cdot 236,800 \cdot 1,2}{1000 \cdot 0,75 \cdot 0,5} \cdot (1574 \cdot 10^{-6} \cdot 3 \cdot 10^4 \cdot 0,16) = 68,70034022$$
 млн. руб

$\frac{\mathit{KF}_{\scriptscriptstyle{\partial}}\alpha_{\scriptscriptstyle{u}}}{10^{3}\mathit{K}_{\scriptscriptstyle{\mathcal{E}3}}\alpha_{\scriptscriptstyle{8}}}$	$\sum K_{y,z_i}^{} V_i^{} E_{Hi}^{}$	tp	S10
23-8		1	68,70034022
		2	34,35017011
		3	22,90011341
		4	17,17508506
		5	13,74006804
		6	11,4500567
		7	9,814334318
		8	8,587542528
		9	7,633371136
		10	6,870034022
		11	6,245485475
		12	5,725028352
	7,5552	13	5,284641556
		14	4,907167159
9,09312		15	4,580022682
		16	4,293771264
		17	4,041196484
		18	3,816685568
		19	3,61580738
		20	3,435017011
		21	3,271444773
		22	3,122742737
		23	2,986971314
		24	2,862514176
		25	2,748013609
		26	2,642320778
		27	2,544457045
		28	2,453583579
		29	2,368977249

Примечание: E'_{Hi} , E''_{Hi} , E'''_{Hi} - коэффициенты экономической эффективности отрасли, выпускающей і-ю продукцию.

Анализируя совместно все изменяющие затраты и величину эффекта от сокращения длительности процесса, можно определить для каждого значения (tp \neq tH) суммарное значение сельскохозяйственных затрат Sобщі, минимальная величина которых соответствует оптимальной (рациональной) для данных условий длительности функционирования процесса.

$$\boldsymbol{S}_{\mathrm{odim}_{i}} = \sum_{i=1}^{10} \boldsymbol{S}_{i} \; .$$

Расчеты всех затрат заносим в таблицу:

B-1: $T_{ok} = 6,25$ лет, $\alpha_p = 0,5$

Таблица 15

Затраты/Месяцы	S ₁	S ₂	S ₃	S ₄	S 5	S ₆	S 7	S ₈	S 9	S ₁₀	Sобщ
1	1,023955862	1,8944	2,96	753,50352	3,07152	32,57731959	0,266625	231,0670909	28,28324045	68,7003402	1123,348012
2	2,047911724	3,7888	5,92	376,75176	1,53576	16,28865979	0,1333125	115,5335455	14,14162022	34,3501701	570,4915398
3	3,071867586	5,6832	8,88	251,16784	1,02384	10,85910653	0,088875	77,02236365	9,427746816	22,9001134	390,124953
4	4,095823448	7,5776	11,84	188,37588	0,76788	8,144329897	0,06665625	57,76677274	7,070810112	17,1750851	302,8808375
5	5,11977931	9,472	14,8	150,700704	0,614304	6,515463918	0,053325	46,21341819	5,65664809	13,740068	252,8857106
6	6,143735172	11,3664	17,76	125,58392	0,51192	5,429553265	0,0444375	38,51118182	4,713873408	11,4500567	221,5150779
7	7,167691034	13,2608	20,72	107,64336	0,438788571	4,653902798	0,038089286	33,00958442	4,040462921	9,81433432	200,7870133
8	8,191646897	15,1552	23,68	94,18794	0,38394	4,072164948	0,033328125	28,88338637	3,535405056	8,58754253	186,7105539
9	9,215602759	17,0496	26,64	83,72261333	0,34128	3,619702176	0,029625	25,67412122	3,142582272	7,63337114	177,0684979
10	10,23955862	18,944	29,6	75,350352	0,307152	3,257731959	0,0266625	23,10670909	2,828324045	6,87003402	170,5305242
11	11,26351448	20,8384	32,56	68,50032	0,279229091	2,961574508	0,024238636	21,00609918	2,571203677	6,24548547	166,250065
12	12,28747034	22,7328	35,52	62,79196	0,25596	2,714776632	0,02221875	19,25559091	2,356936704	5,72502835	163,6627417
13	13,31142621	24,6272	38,48	57,96180923	0,236270769	2,505947661	0,020509615	17,77439161	2,175633881	5,28464156	162,3778305
14	14,33538207	26,5216	41,44	53,82168	0,219394286	2,326951399	0,019044643	16,50479221	2,020231461	4,90716716	162,1162432
15	15,35933793	28,416	44,4	50,233568	0,204768	2,171821306	0,017775	15,40447273	1,885549363	4,58002268	162,673315
16	16,38329379	30,3104	47,36	47,09397	0,19197	2,036082474	0,016664063	14,44169318	1,767702528	4,29377126	163,8955473
17	17,40724966	32,2048	50,32	44,32373647	0,180677647	1,916312917	0,015683824	13,59218182	1,663720026	4,04119648	165,6655588
18	18,43120552	34,0992	53,28	41,86130667	0,17064	1,809851088	0,0148125	12,83706061	1,571291136	3,81668557	167,8920531
19	19,45516138	35,9936	56,24	39,65808	0,161658947	1,714595768	0,014032895	12,16142584	1,488591603	3,61580738	170,5029538
20	20,47911724	37,888	59,2	37,675176	0,153576	1,628865979	0,01333125	11,55335455	1,414162022	3,43501701	173,4406001
21	21,5030731	39,7824	62,16	35,88112	0,146262857	1,551300933	0,012696429	11,00319481	1,346820974	3,27144477	176,6583139
22	22,52702897	41,6768	65,12	34,25016	0,139614545	1,480787254	0,012119318	10,50304959	1,285601839	3,12274274	180,1179042
23	23,55098483	43,5712	68,08	32,76102261	0,133544348	1,416405199	0,011592391	10,04639526	1,229706106	2,98697131	183,7878221
24	24,57494069	45,4656	71,04	31,39598	0,12798	1,357388316	0,011109375	9,627795456	1,178468352	2,86251418	187,6417764
25	25,59889655	47,36	74	30,1401408	0,1228608	1,303092784	0,010665	9,242683638	1,131329618	2,74801361	191,6576828
26	26,62285241	49,2544	76,96	28,98090462	0,118135385	1,25297383	0,010254808	8,887195806	1,08781694	2,64232078	195,8168546
27	27,64680828	51,1488	79,92	27,90753778	0,11376	1,206567392	0,009875	8,558040405	1,047527424	2,54445705	200,1033733
28	28,67076414	53,0432	82,88	26,91084	0,109697143	1,1634757	0,009522321	8,252396105	1,01011573	2,45358358	204,5035947
29	29,69472	54,9376	85,84	25,98288	0,105914483	1,123355848	0,009193966	7,967830722	0,975284153	2,36897725	209,0057564

Выделенная строка содержит информацию об оптимальном варианте инвестирования при данном распределении капитальных вложений и при определенной норме доходности. В варианте 1 ($T_{ok}=6,25$ лет, $\alpha_p=0,5$) минимальные затраты на строительство -132,5513 млн. руб. обеспечиваются при сроке строительства 13 месяцев. Это и есть оптимальный срок строительства для B-1.

На примере данных таблицы 15 построим график, изображающие изменение затрат во времени, построим кривую общих затрат и графически определим рациональный вариант возведения объекта и использования инвестиций.

-1: $T_{o\kappa} = 6,25$ лет, $\alpha_p = 0,5$

Рис. 3. Определение рационального варианта возведения объекта и использование капитальных вложений

Таким образом при расчете всех видов затрат при всех сроках окупаемости $(6,25,\ 2,\ 3,\ 4,\ 5\ \text{лет})$ и при всех α_P мы получаем 40 различных вариантов (см. приложение).

4. УСТАНОВЛЕНИЕ РАЦИОНАЛЬНЫХ ГРАНИЦ ПО ЭФФЕКТИВНОМУ ИСПОЛЬЗОВАНИЮ ИНВЕСТИЦИЙ ПРИ ВОЗВЕДЕНИИ ОБЪЕКТА

Последовательно подставляя в расчетные формулы всех видов затрат значения коэффициента, характеризующего распределение капитальных вложений во времени - α_p (см. рис. 2), можно получить семейство кривых суммарных затрат - $S_{\text{общ}i}$, каждая из которых определяет вариант использования капитальных вложений в объект (рис. 4, варианты 1-40). Обводя точки (которые характеризуют минимальные суммарные затраты в объект и оптимальный срок возведения объекта для i-го варианта распределения капитальных вложений) между собой, можно получить «зону рациональных значений», в которых наиболее эффективно будут использоваться капитальные вложения во времени и наиболее полно будут учитываться интересы всех участников возведения объекта (график 2).

Для обеспечения этой зоны, в реальных условиях рыночной экономики и организационно-технологической ситуации, в строительной фирме необходимо разработать систему различных научно-технических нововведений. Это позволит использовать те варианты эффективного использования капитальных вложений в объект во времени, которые обеспечивают условие $t_p \le t_H$.

Полученный дополнительный выигрыш во времени позволит получить большую величину прибыли для строительной фирмы за счет применения новых технологий, технических систем, форм организации и управления в условиях рыночной экономики.

Рис. 4. Определение зоны «рациональных значений»

На данном рисунке видно, что максимальная сумма затрат при нормативном сроке строительства равна 727,512 млн.руб. Эту сумму следует заложить в контракт.

По графику определим границы зон рациональных значений. Затраты могут изменяться в диапазоне от 115,1627млн. руб. до 325,9422млн. руб. Срок строительства может меняться в диапазоне от 7 до 19 месяцев.

5. РАСЧЕТ ЭФФЕКТА ПО ОСНОВНЫМ УЧАСТНИКАМ ИНВЕСТИЦИОННОГО ПРОЦЕССА

В сводной таблице представлены сравнения оптимальных вариантов инвестирования с базовым. На основе анализа полученных данных определяем наилучший вариант для генерального подрядчика (таблица 16)

Таблица 16

Nº	Ток	αρ	tп	Sп	tбаз	Ѕбаз	Δt	ΔS	Примечание
41	6,25	0,8	29	727,5122	29	727,51215	0	0	
1	6,25	0,5	14	162,1162	29	727,51215	13	565,396	
2	6,25	0,333	16	137,9536	29	727,51215	11	589,559	
3	6,25	0,25	18	124,2024	29	727,51215	11	603,31	
4	6,25	0,2	19	115,1627	29	727,51215	11	612,349	Опт для заказчика
5	6,25	0,667	12	183,1191	29	727,51215	11	544,393	
6	6,25	0,625	13	178,1546	29	727,51215	11	549,358	
7	6,25	0,75	12	192,7891	29	727,51215	11	534,723	
8	6,25	0,8	11	198,2891	29	727,51215	15	529,223	
9	5	0,5	13	173,1386	29	727,51215	15	554,374	
10	5	0,333	15	146,6193	29	727,51215	11	580,893	
11	5	0,25	17	131,4547	29	727,51215	11	596,057	
12	5	0,2	18	121,4108	29	727,51215	11	606,101	
13	5	0,667	11	193,2336	29	727,51215	15	534,279	
14	5	0,625	12	190,6579	29	727,51215	11	536,854	
15	5	0,75	11	206,6356	29	727,51215	19	520,877	
16	5	0,8	11	212,8656	29	727,51215	15	514,647	
17	4	0,5	12	190,6579	29	727,51215	11	536,854	
18	4	0,333	14	160,3766	29	727,51215	11	567,136	
19	4	0,25	16	143,0571	29	727,51215	11	584,455	
20	4	0,2	17	131,4547	29	727,51215	11	596,057	
21	4	0,667	10	216,7645	29	727,51215	16	510,748	
22	4	0,625	11	210,5316	29	727,51215	16	516,981	
23	4	0,75	10	228,5465	29	727,51215	17	498,966	
24	4	0,8	10	235,6465	29	727,51215	17	491,866	
25	3	0,5	10	216,7063	29	727,51215	16	510,806	
26	3	0,333	12	181,1059	29	727,51215	11	546,406	
27	3	0,25	14	160,4586	29	727,51215	11	567,054	
28	3	0,2	15	156,7053	29	727,51215	11	570,807	
29	3	0,667	9	247,1028	29	727,51215	17	480,409	
30	3	0,625	9	239,9388	29	727,51215	17	487,573	
31	3	0,75	9	261,2508	29	727,51215	18	466,261	
32	3	0,8	8	269,1093	29	727,51215	18	458,403	
33	2	0,5	9	261,2508	29	727,51215	18	466,261	
34	2	0,333	10	216,6245	29	727,51215	16	510,888	
35	2	0,25	12	190,6579	29	727,51215	11	536,854	
36	2	0,2	13	173,1386	29	727,51215	11	554,374	
37	2	0,667	7	299,4722	29	727,51215	19	428,04	
38	2	0,625	8	289,9553	29	727,51215	19	437,557	Опт для подрядчика
39	2	0,75	7	315,9902	29	727,51215	19	411,522	
40	2	0,8	7	325,9422	29	727,51215	19	401,57	

Для того, чтобы определить вариант, который наиболее выгоден подрядчику, рассчитаем эффект по каждому варианту инвестирования.

5.1. РАСЧЕТ ЭФФЕКТА ГЕНЕРАЛЬНОГО ПОДРЯДЧИКА

B-4

Эффект от сокращения сроков строительства

Рассчитаем условно-постоянную часть расходов в составе сметной стоимости строительства:

$$C_{y\pi} = C_{\scriptscriptstyle H} + C_{\scriptscriptstyle 3} + C_{\scriptscriptstyle 3} + C_{\scriptscriptstyle 3\pi}$$

С_н – расходы, идущие на административно-хозяйственные нужды

$$\mathbf{C}_{\text{H}} = (\ \mathbf{C}_{\text{cm}} \cdot \mathbf{K}_{\text{H}} \cdot \mathbf{K}_{\text{y}}\)/\ ((1+\mathbf{K}_{\text{H}}) \cdot (1+\mathbf{K}_{\text{\Pi}})) =$$
727,512 x 0,22 x 0,5 / $(1+0,22)\mathbf{x}(1+0,08) =$ **60,736млн.руб.**

К_н – коэффициент накладных расходов, принимаем равным 0,22;

 K_{π} – коэффициент плановых накоплений, принимаем равным 0,08.

С_э – расходы на эксплуатацию машин и механизмов

$$\mathbf{C}_{\scriptscriptstyle 3} = (\mathbf{C}_{\scriptscriptstyle \mathsf{CM}} \cdot \mathbf{K}_{\scriptscriptstyle 3} \cdot \mathbf{K}_{\scriptscriptstyle 3}")/\ (1 + \mathbf{K}_{\scriptscriptstyle \Pi}) =$$
 (727,512 · 0,07 · 0,3) / 1,08 = **14,146** млн.руб.

 K_9 — удельный вес затрат по эксплуатации машин и механизмов, принимаем равным 0,07;

 K_9 " — доля условно-постоянных расходов на эксплуатацию машин и механизмов, принимаем равной 0,3.

 C_3 – условно-постоянные заготовительно-складские расходы

$$\mathbf{C}_3 = \mathbf{C}_{\scriptscriptstyle{\mathsf{CM}}} \cdot \mathbf{K}_{\scriptscriptstyle{\mathsf{M}}} \cdot \mathbf{K}_3 \cdot \mathbf{K}_3$$
"/ (1+ $\mathbf{K}_{\scriptscriptstyle{\Pi}}$) = 727,512 · 0,5 · 0,021 · 0,55 / 1,08= **3,8901**млн.руб.

К_м – удельный вес затрат на материалы в стоимости СМР, принимаем равным 0,5;

 K_3 — средний размер заготовительно-складских расходов в затратах на материалы, принимаем равным $0{,}021;$

 K_3 " — доля условно-постоянных расходов в заготовительно-складских затратах, принимаем равным 0.55.

 $C_{\mbox{\tiny 3H}}$ — условно-постоянные расходы по заработной плате, которая зависит от продолжительности строительства

$$C_{3\pi} = (C_{cm} \cdot 3 \cdot K_{3\pi}) / (1 + K_{\pi}) =$$
 (727,512 · 0,2 · 0,35) / 1,08 = **47,1535** млн.руб.

3 – удельный вес заработной платы в сметной стоимости, принимаем равным 0,2; Кзп – коэффициент заработной платы (доля условно-постоянных расходов в составе заработной платы), принимаем равным 0,35.

$$C_{\text{VII}} = 60,736 + 14,146 + 3,8901 + 47,1535 = 125,9256$$
 млн. руб.

РАСЧЕТ ЭФФЕКТА ГЕНЕРАЛЬНОГО ПОДРЯДЧИКА НА ЭТАПЕ СТРОИТЕЛЬСТВА

Эффекты для подрядчика на этапе строительства рассчитаем на примере В- 4. Для этого варианта срок строительства составляет 19 месяцев.

Эффект от сокращения условно-постоянной части расходов:

$$\Theta_{H} = C_{VII} \cdot (1 - t_{p}/t_{H}) = 125,9256 \cdot (1 - 19/29) = 43,42262$$
 млн. руб.

Этот эффект равномерно распределяется в течение года независимо от времени выполнения работ.

Сокращение сроков строительства объекта дает возможность высвободить основные и оборотные средства.

Эффект от высвобождения ОФ:

$$\Theta_{oc} = \Phi_{oc} / \text{Ток} \cdot (1 - \text{tp/th}) = 1 / 6,25 \cdot (1 - 19/29) = 0,0551$$
млн.руб.

 Φ_{oc} – величина основных производственных фондов (1 млн.руб.)

Эффект от высвобождения оборотных средств:

$$\mathbf{G}_{\mathbf{06}} = \Phi_{\mathbf{06}} / \mathbf{T}_{\mathbf{0K}} \cdot (1 - \mathbf{t}_{\mathbf{p}}/\mathbf{t}_{\mathbf{H}}) = 0,5 / 6,25 \cdot (1 - 19/29) = \mathbf{0,02758}$$
 млн.руб.

Фоб – величина оборотных средств (0,5 млн.руб.)

Эффекты от роста производительности труда: Эффект по фонду заработной платы:

$$\mathbf{G_c} = \mathbf{C}_{\text{см}} \cdot \mathbf{3} \cdot (1 - (100 + \Pi_3)/(100 + \Pi_{\text{п}})) = 727,512 \cdot 0,2 \cdot (1 - (100 + 3)/(100 + 10)) = 9,25924$$
 млн.руб.

- 3 удельный вес заработной платы в сметной стоимости, принимаем равным 0,2;
- $\Pi_{\rm 3}$ прирост заработной платы за счет совершенствования организации управления производством на основе НОТ, $\Pi_{\rm 3}=3\%$;

 $\Pi_{\rm II}$ – прирост производительности труда, $\Pi_{\rm II} = 10\%$.

Сокращение фонда заработной платы, которая учитывается в прямых затратах, влечет за собой уменьшение переменной части накладных расходов — это затраты на стимулирование, временный инвентарь и пр. — в размере 115% от уменьшенных затрат на основную заработную плату.

Эффект от уменьшения переменной части накладных расходов за счет сокращения фонда заработной платы:

$$\Theta_3 = \Theta_c \cdot 0.15 = 9.25924 \cdot 0.15 = 1.3888$$
 млн.руб.

Сокращение трудоемкости работ за счет использования результатов НИОКР дает возможность сэкономить переменную часть накладных расходов в размере 0,06 тыс.руб. на 1 чел-день.

Эффект от уменьшения переменной части накладных расходов за счет внедрения НИОКР:

$$\mathbf{G}_{\mathbf{Q}} = 0.06 \cdot \mathbf{Q} = 0.06 \cdot 21330 = \mathbf{1279.8}$$
 млн.руб.

Таким образом, общий экономический эффект для данной строительной системы (подрядчик на этапе строительства) от уменьшения отрицательных влияний организационно-экономических, технологических факторов из-за уменьшения сроков строительства жилого дома составляет величину:

$$\mathbf{\mathfrak{Z}}=\mathbf{\mathfrak{Z}}_{\text{H}}+\mathbf{\mathfrak{Z}}_{\text{oc}}+\mathbf{\mathfrak{Z}}_{\text{of}}+\mathbf{\mathfrak{Z}}_{\text{c}}+\mathbf{\mathfrak{Z}}_{\text{3}}+\mathbf{\mathfrak{Z}}_{\text{Q}}$$
 $\mathbf{\mathfrak{Z}}=43,42262+0,0551+0,02758+9,25924+1,3888+1279,8=\mathbf{1333,954}$ млн.руб.

Общий эффект подрядчика включает также $\Delta S = 612, 349\,$ млн. руб. Т.о. общий эффект составляет величину:

$$\Theta_{\text{общ г.п.}} = 1333,954 + 612,349 = 1946,303$$
 млн.руб.

Расчет эффектов для генерального подрядчика											
Nº	Эн	Эос	Эоб	Эс	Эз	Эq	Э	Эобщ	Суп		
41	0	0	0	9,259246	1,388887	1279,8	1290,448	1290,448	125,9256		
1	65,13393	0,082759	0,041379	9,259246	1,388887	1279,8	1355,706	1921,102	125,9256		
2	56,44941	0,071724	0,035862	9,259246	1,388887	1279,8	1347,005	1936,564	125,9256		
3	47,76488	0,06069	0,030345	9,259246	1,388887	1279,8	1338,304	1941,614	125,9256		
4	43,42262	0,055172	0,027586	9,259246	1,388887	1279,8	1333,954	1946,303	125,9256		
5	73,81846	0,093793	0,046897	9,259246	1,388887	1279,8	1364,407	1908,8	125,9256		
6	69,47619	0,088276	0,044138	9,259246	1,388887	1279,8	1360,057	1909,414	125,9256		
7	73,81846	0,093793	0,046897	9,259246	1,388887	1279,8	1364,407	1899,13	125,9256		
8	78,16072	0,09931	0,049655	9,259246	1,388887	1279,8	1368,758	1897,981	125,9256		
9	69,47619	0,110345	0,055172	9,259246	1,388887	1279,8	1360,09	1914,463	125,9256		
10	60,79167	0,096552	0,048276	9,259246	1,388887	1279,8	1351,385	1932,277	125,9256		
11	52,10714	0,082759	0,041379	9,259246	1,388887	1279,8	1342,679	1938,737	125,9256		
12	47,76488	0,075862	0,037931	9,259246	1,388887	1279,8	1338,327	1944,428	125,9256		
13	78,16072	0,124138	0,062069	9,259246	1,388887	1279,8	1368,795	1903,074	125,9256		
14	73,81846	0,117241	0,058621	9,259246	1,388887	1279,8	1364,442	1901,297	125,9256		
15	78,16072	0,124138	0,062069	9,259246	1,388887	1279,8	1368,795	1889,672	125,9256		
16	78,16072	0,124138	0,062069	9,259246	1,388887	1279,8	1368,795	1883,442	125,9256		
17	73,81846	0,146552	0,073276	9,259246	1,388887	1279,8	1364,486	1901,341	125,9256		
18	65,13393	0,12931	0,064655	9,259246	1,388887	1279,8	1355,776	1922,912	125,9256		
19	56,44941	0,112069	0,056034	9,259246	1,388887	1279,8	1347,066	1931,521	125,9256		
20	52,10714	0,103448	0,051724	9,259246	1,388887	1279,8	1342,71	1938,768	125,9256		
21	82,50298	0,163793	0,081897	9,259246	1,388887	1279,8	1373,197	1883,944	125,9256		
22	78,16072	0,155172	0,077586	9,259246	1,388887	1279,8	1368,842	1885,822	125,9256		
23	82,50298	0,163793	0,081897	9,259246	1,388887	1279,8	1373,197	1872,162	125,9256		
24	82,50298	0,163793	0,081897	9,259246	1,388887	1279,8	1373,197	1865,062	125,9256		
25	82,50298	0,218391	0,109195	9,259246	1,388887	1279,8	1373,279	1884,085	125,9256		
26	73,81846	0,195402	0,097701	9,259246	1,388887	1279,8	1364,56	1910,966	125,9256		
27	65,13393	0,172414	0,086207	9,259246	1,388887	1279,8	1355,841	1922,894	125,9256		
28	60,79167	0,16092	0,08046	9,259246	1,388887	1279,8	1351,481	1922,288	125,9256		
29	86,84524	0,229885	0,114943	9,259246	1,388887	1279,8	1377,638	1858,048	125,9256		
30	86,84524	0,229885	0,114943	9,259246	1,388887	1279,8	1377,638	1865,212	125,9256		
31	86,84524	0,229885	0,114943	9,259246	1,388887	1279,8	1377,638	1843,9	125,9256		
32	91,1875	0,241379	0,12069	9,259246	1,388887	1279,8	1381,998	1840,401	125,9256		
33	86,84524	0,344828	0,172414	9,259246	1,388887	1279,8	1377,811	1844,072	125,9256		
34	82,50298	0,327586	0,163793	9,259246	1,388887	1279,8	1373,442	1884,33	125,9256		
35	73,81846	0,293103	0,146552	9,259246	1,388887	1279,8	1364,706	1901,56	125,9256		
36	69,47619	0,275862	0,137931	9,259246	1,388887	1279,8	1360,338	1914,712	125,9256		
37	95,52977	0,37931	0,189655	9,259246	1,388887	1279,8	1386,547	1814,587	125,9256		
38	91,1875	0,362069	0,181034	9,259246	1,388887	1279,8	1382,179	1819,736	125,9256		
39	95,52977	0,37931	0,189655	9,259246	1,388887	1279,8	1386,547	1798,069	125,9256		
40	95,52977	0,37931	0,189655	9,259246	1,388887	1279,8	1386,547	1788,117	125,9256		

5.2. РАСЧЕТ ЭФФЕКТА ЗАКАЗЧИКА НА ЭТАПЕ СТРОИТЕЛЬСТВА

B-38

Выбор оптимального варианта строительства для заказчика производится на основе графика, где прямыми линиями показаны соответствующие варианты инвестирования объекта строительства (см. рис.5)

По графику видно, что оптимальным для заказчика является вариант с меньшим сроком окупаемости, т.е. вариант 38.

Рассчитаем эффект заказчика для данного варианта.

1. Эффект от сокращения условно-постоянной части расходов:

$$\mathbf{G}_{\mathbf{H}} = \mathbf{C}_{\mathbf{y}\Pi} \mathbf{x} (1 - \mathbf{t}_{\mathbf{p}}/\mathbf{t}_{\mathbf{H}}) = 125,9256 \cdot (1 - 8/29) = \mathbf{91,1875}$$
млн.руб.

2. Эффект от высвобождения ОФ:

$$\Theta_{oc} = \Phi_{oc} / T_{ok} \cdot (1 - t_p/t_H) = 1 / 2 \cdot (1 - 8/29) = 0,3620$$
 млн.руб.

3. Эффект от высвобождения оборотных средств:

$$\mathbf{G}_{ob} = \Phi_{ob} / \mathbf{T}_{ok} \cdot (1 - \mathbf{t}_p/\mathbf{t}_H) = 0.5 / 2 \cdot (1 - 8/29) = \mathbf{0.1810}$$
 млн.руб.

Эффект по фонду заработной платы, эффект от уменьшения переменной части накладных расходов за счет сокращения фонда заработной платы, эффект от уменьшения переменной части накладных расходов за счет внедрения НИОКР остаются постоянными и составляют в сумме 236,80 млн.руб.

$$\mathbf{G} = \mathbf{G}_{\mathrm{H}} + \mathbf{G}_{\mathrm{oc}} + \mathbf{G}_{\mathrm{of}} + \mathbf{G}_{\mathrm{c}} + \mathbf{G}_{\mathrm{3}} + \mathbf{G}_{\mathrm{Q}} = 91,1875 + 0,3620 + 0,1810 + 9,2524 + 1,388 + 1279,8$$
 млн.руб

Общий эффект подрядчика включает также $\Delta S = 437,557$ млн. руб.

Т.о. общий эффект составляет величину:

Эобщ г.п. =
$$1382,179 + 437,557 = 1819,736$$
 млн. руб.

Заказчик будет настаивать, чтобы строительство проводилось по варианту 38. Но эффект подрядчика в этом случае составит 1819,736 млн.руб., что меньше эффекта при варианте 4 на 126,567 млн. руб. Эту сумму подрядчик вправе требовать в качестве компенсации.

Рис. 5. Варианты рационльного инвестирования на этапе окупаемости для заказчик

6.ОПРЕДЕЛЕНИЕ БАЗОВОГО ВАРИАНТА КОНТРАКТА

Контракт, заключенный между подрядчиком и заказчиком, должен максимально учитывать интересы обеих сторон. Понятно, что подрядчику выгодно заложить в контракт максимальный срок строительства 29 месяца и максимальные затраты 727,512 млн. руб., обеспечив при этом окупаемость объекта через 6,25 лет. Очевидно и то, что заказчик захочет сократить срок строительства, чтобы окупаемость объекта произошла как можно быстрее, а также сократить затраты на строительство объекта.

Поэтому подрядчик должен предложить заказчику следующий условия контракта:

Срок строительства – 29 месяцев;

Объем инвестиций – 727,512 млн. руб.;

Период окупаемости -6,25 года;

Распределение капитальных вложений – равномерно-убывающие.

При этом подрядчик обеспечивает себе равномерное потребление ресурсов (α p=0,2), имеет запас времени 10 месяца (19-29), что принесет подрядчику эффект от сокращения сроков строительства в размере млн. руб. и доход в размере Δ S =612,349 млн. руб. Таким образом, общий экономический эффект подрядчика составит 1946,303 млн. руб.

при данном варианте инвестирования увеличиваются риски подрядчика, т.е. возможность возникновения неблагоприятных ситуаций в ходе реализации планов: риск возникновения непредвиденных расходов, ресурсный риск, организационный риск и др. Риски нужно учитывать и страховать.

Договор страхования от всех видов рисков учитывает определенные потребности подрядчика, гарантирует страхование имущества от всех рисков материальных потерь. Он охватывает все стадии незавершенного строительства, основное, вспомогательное и транспортное оборудование, а также результаты труда. В таком страховании заинтересованы не только подрядчики, но и в первую очередь заказчики. Это дает им уменьшение риска потерь, вызванных нарушением графиков строительно-монтажных работ. Заказчик в свою очередь также имеет риски: риск нежизнеспособности проекта, налоговый риск, риск незавершения строительства и др.

На страхование рисков необходимо выделить 50% себестоимости строительства с учетом затрат на контракт, т.е. 363,756 млн. руб.

Таким образом, в договоре подряда объем инвестиций должен учитывать затраты на обеспечение контрактной системы и страхование рисков, он составит 1 321,564 млн. руб., т.е. 727,512 +200,296 +363,756. Договором подряда также должны быть

оговорены все случаи нарушения договора и предусмотрены соответствующие санкции.

7. РАСЧЕТ ДИСКОНТИРОВАННЫХ ПОКАЗАТЕЛЕЙ ЭФФЕКТИВНОСТИ ИНВЕСТИЦИЙ

Экономический результат от инвестиционного проекта определяется дополнительными изменениями или приращениями денежных потоков, возникающими на стадии его реализации, в которой условно можно выделить следующие фазы:

- начальную или инвестиционную (приобретение и ввод в эксплуатацию основных фондов, формирование необходимого оборотного капитала, обучение персонала и т.п.);
- ❖ эксплуатационную (с момента начала выпуска продукции и услуг);
- завершающую или ликвидационную.

В соответствии с фазами реализации инвестиционного проекта можно выделить три основных элемента его денежного потока:

- чистый объем первоначальных затрат;
- чистый денежный поток от предлагаемой деятельности;
- чистый денежный поток, возникающий в результате завершения проекта.

Для определения операционного денежного потока предполагается, что объект будет сдаваться в аренду, а арендные платежи в год составят фиксированную величину пропорциональную стоимости строительства объекта.

Арендные платежи в год составят 30% от стоимости объекта. Заказчик планирует, что начало проекта придётся на 01.01.2021 года, а арендные платежи начнут поступать 01. 04. 2021 года. Ставку дисконтирования принимаем равной 10%, период расчёта показателей – 5 лет.

Начальный денежный поток равен сумме закладываемой в контракт с учётом расходов на заключение контрактов и страхование рисков.

Он составит сумму 1 321,564 млн. руб.

Расчет денежного потока

Если ЧДД проекта положителен, проект является эффективным (при данной норме дисконта) и может рассматриваться вопрос о его принятии. Чем больше ЧДД, тем эффективнее проект. Если проект будет осуществлен при отрицательном ЧДД, то инвестор понесет убытки, значит проект неэффективен. Результаты расчета ЧДД заносим в таблицу.

При ставке дисконтирования 0,10

№				периоды				
п/ п	Наименование	1	2	3	4	5		
1.	Начальные капитальные вложения (COF)	1 321,564						
2.	Операционный денежный поток (аренда) (CIF)	297,352	396,469	396,469	396,469	396,469		
3.	Поток от завершения проекта							
4.	Чистый денежный поток (ЧДП)	-1024,212	396,469	396,469	396,469	396,469		
5.	Ставка дисконтирован ия (r)	0,10	0,10	0,10	0,10	0,10		
6.	Фактор дисконтирован ия	0,909	0,826	0,751	0,683	0,621		
7.	ЧДД (NPV)	-931,009	327,48	297,75	270,78	246,207		
8.	ЧДД проекта	211,208						

Чистый денежный поток составит 35136,779 млн.руб.

Аренда(1) = $1321,564 \cdot 0,3 \cdot 0,75 = 297,352$ млн. руб.

Аренда $(2-5) = 1 321,564 \cdot 0,3 = 396,469$ млн. руб.

7.1. РАСЧЕТ ЧИСТОГО ДИСКОНТИРОВАННОГО ДОХОДА

Метод определения чистого дисконтированного дохода основан на определении разницы между суммой денежных поступлений (денежных потоков и оттоков), порождаемых реализацией инвестиционного проекта и дисконтированных к текущей стоимости, и суммы дисконтированных текущих стоимостей затрат (денежных потоков, оттоков), необходимых для реализации этого проекта.

$$NPV \equiv \Sigma^{n}_{i=1} \; CF_t \, / \, (1+k)^t$$
 - $\Sigma^{n}_{i=1} \; I_t \, / \, (1+k)^t$,

где I_t – инвестиционные затраты в t –й период.

CF_t – поступления денежных средств (денежный поток) в конце t –го периода;

К – (норма дисконта) – желаемая норма прибыли (рентабельности).

Если текущий дисконтированный доход проекта NPV положителен, то проект может считаться приемлемым.

В данном случае ЧДД составит 211,208 млн.руб. ЧДД >0, следовательно проект считается приемлемым.

7.2. РАСЧЕТ ИНДЕКСА РЕНТАБЕЛЬНОСТИ

Для определения величины критерия используются те же потоки платежей, что и для критерия чистого дисконтированного дохода. Критерий представляет собой не разницу доходов и затрат от реализации проекта, а их соотношение — доходы, деленные на затраты. Этот показатель позволяет определить, в какой мере возрастает богатство инвестора в расчете на один рубль инвестиций.

$$PI = [\sum_{i=1}^{n} CF_t / (1+k)^t] / [\sum_{i=1}^{n} I_t / (1+k)^t],$$

Где PI – рентабельность инвестиций,

 CF_t – денежные поступления в t –ом году, которые будут получены благодаря этим инвестициям;

 I_t – инвесиции в t –ом году.

$$PI = \frac{297,352 \cdot 0,909 + 396,469 \cdot 0,826 + 396,469 \cdot 0,751 + 396,469 \cdot 0,683 + 396,469 \cdot 0,621}{1321,564 \cdot 0,909}$$

В случае данного проекта он составит PI = 1,1758

7.3. РАСЧЕТ ВНУТРЕННЕЙ НОРМЫ ДОХОДНОСТИ

Под внутренней нормой доходности (прибыли) понимают ту расчетную ставку процентов, при которой капитализации регулярно получаемого дохода дает сумму равную инвестициями и, следовательно, капиталовложения являются окупаемой операцией.

год					
	1	2	3	4	5
ставка дисконт					
	0,25	0,25	0,25	0,25	0,25
фактор дисконт					
	0,8	0,64	0,512	0,4096	0,3277
Чдд					
	-1024	396,47	396,47	396,47	396,47
Чдд nvp					
	-819,4	253,74	202,99	162,39	129,91
Чдд всего		-70),328647	68	

Показатель IRR представляет собой проверочный дисконт, при котором отдача от инвестиционного проекта равна первоначальным инвестициям в проект.

Процедура определения IRR заключения в решении относительно k уравнения:

$$\Sigma^{n}_{i=0} CF_{t} / (1+k)^{t}] - I_{0} = 0.$$

Решая это уравнение с помощью электронных таблиц MS Excel посредством последовательной подстановки различных значений ставки дисконтирования для достижения 4 ДД = 0, получим, что 1 IRR = 20,01%.

Таблица 20

год					
	1	2	3	4	5
ставка дисконт					
	0,2001	0,2001	0,2001	0,2001	0,2001
фактор дисконт	га				
	0,8333	0,6943	0,5786	0,4821	0,4017
Чдд					
	-1024	396,47	396,47	396,47	396,47
Чдд nvp					
	-853,4	275,28	229,38	191,13	159,27
Чдд всего		1	,6219679	97	

Таким образом, по результатам расчетов получаем, что

- ЧДД = 211,208 млн.руб. > 0;
- PI = 1,1758 > 0;
- IRR = 20,01% > 15.

Следовательно, проект может быть принят.

ЗАКЛЮЧЕНИЕ

Результатом данного курсового проекта стал выбор наиболее рационального варианта инвестирования возведения объекта, который должен оптимально удовлетворять требованиям заказчика, так и требованиям подрядчика, хотя их интересы расходятся.

Заказчик заинтересован в сооружении объекта и вводе его в эксплуатацию при минимальных затратах на строительство и в наиболее короткие сроки, получении максимального дохода в кратчайшие сроки. Подрядчик же стремится увеличить срок строительного процесса и сумму будущих затрат.

При выборе контракта договора подряда были рассмотрены различные виды распределения капитальных вложений, был рассчитан нормативный срок строительства жилого дома в условиях рыночной экономики и сложившейся организационно-технической ситуации t_н = 29 месяцев. А также оптимальный срок строительства для каждого вида распределения инвестиций и для каждого из заданных сроков окупаемости объекта. Для этого были определены снижающиеся и возрастающие затраты на строительство по методу Прыкина Б.В. и подсчитаны общие затраты. Оптимальным признавался тот вариант, при котором Ѕобщ→min, расчетное время t, соответствующее этим затратам и является оптимальной продолжительностью возведения здания.

Экономический эффект для подрядной организации:

- срок строительства 19 месяцев;
- период окупаемости 6,25 года;
- характер использования капитальных вложений равномерно-убывающий; α = 0,2
- общий экономический эффект 1 321,564 млн. руб.

Оптимальный вариант определятся вложения инвестиций для заказчика (В-38). Для этого рассчитали Δt - разность между точкой окупаемости базового варианта и точками окупаемости для каждого из 40 вариантов инвестирования. Максимальное значение Δt достигается при осуществлении строительства в соответствии с В-38. Эффект заказчика в этом случае составит 1819,736 млн.руб.

В контракт подряда закладывается сумма, учитывающая также дополнительные инвестиции на обеспечение эффективного функционирования контрактной системы и на страхование рисков.

Подрядчик должен предложить заказчику следующие условия контракта:

- срок строительства 29 месяцев;
- объем инвестиций 727,51215 млн. руб.;
- период окупаемости -6,25 года;
- характер использования капитальных вложений равномерно-убывающий;

Экономический результат от инвестированного проекта определяется дополнительными изменениями или приращениями денежных потоков, возникающими на стадии его реализации. Экономический результат выражается путем расчета дисконтированных показателей эффективности проекта.

По результатам расчетов получаем, что:

- ЧДД = 211,208 млн.руб. > 0;
- PI = 1.1758 > 0;
- IRR = 20.01% > 15.

Следовательно, проект может быть принят.

Одной из серьезных проблем для предприятий строительного комплекса области является нехватка инвестиций, необходимых для обеспечения зоны рациональных значений при возведении объекта недвижимости в условиях различных ситуаций и динамичного развития и решения многих задач социально-экономического и производственного характера, что определяет возникновение рисков вложения инвестиций и обуславливает негативные процессы, а именно: рост ветхого жилья; резкие колебания темпов ввода жилья; снижение спроса на жилье вследствие снижения платежеспособности населения, увеличение предложения на вторичном рынке.

Одним из направлений стратегического развития экономики области является развитие строительного комплекса с целью обеспечения доступным и комфортным жильем и коммунальными услугами граждан региона, воспроизводства основных фондов народного хозяйства.

Территориальная специфика предполагает, что развитие может осуществляться

в двух основных зонах – зонах эффекта, когда мощности предприятий строительного комплекса превышают потребности в жилье, и в зонах убытка, где, наоборот, мощности отстают от потребности в жилье.

Строительством заняты крупные и средние организации, а также субъекты малого предпринимательства. Перед ними стоит ряд сложных задач: привлечение инвестиций, обеспечение финансовой стабильности и конкурентоспособности в условиях постоянного удорожания сырья, топлива, энергии, роста материальных затрат.

На основе проведенного стратегического анализа были выявлены сильные и слабые стороны, возможности и угрозы развития строительного комплекса области.

Среди сильных сторон можно выделить следующие: наличие спроса населения на дешевое и комфортное жилье, выгодное географическое положение, развитая транспортная инфраструктура, наличие собственной минерально-сырьевой базы для развития стройиндустрии, низкие инвестиционные риски. Пензенская область относится к группе регионов «Пониженный потенциал-умеренный риск», наличие в регионе системы комплексной непрерывной системы подготовки кадров для нужд строительного комплекса.

К слабым сторонам относятся: низкий уровень покупательской способности населения региона, вследствие чего снижается спрос на комфортное жилье в пользу жилья малой площади, отсутствие единого органа управления строительным комплексом, разделение функций управления строительным комплексом Пензенской области на различные министерства и ведомства, что приводит к бюрократизации процессов управления, увеличению сроков согласования проектов и программ, низкий уровень экономической эффективности части имеющихся инвестиционных проектов, тенденция к разделению крупных строительных предприятий на группы малых предприятий, что в итоге приводит к их банкротству, высокая степень износа производящих основных фондов предприятий, строительные материалы, неравномерное распределение природных и трудовых ресурсов на территории региона, что приводит к дефициту ресурсов в отдельных районах области.

Среди наиболее сильных угроз, стоящих перед строительным комплексом региона, стоят: отсутствие вертикальной структуры контрольных и надзорных

органов в строительстве, планируемая отмена лицензирования строительной деятельности, сокращение спроса на жилищное строительство и темпов его роста вследствие низкой платежеспособности населения, сокращение спроса на промышленное строительство вследствие снижения темпов роста экономики региона, сокращение объемов инвестиций в строительный комплекс Пензенской области вследствие падения его инвестиционного потенциала и увеличение инвестиционных рисков, риск потери конкурентоспособности и банкротства предприятий строительного комплекса, угроза выбытия существующих основных фондов по причине их полного износа, угроза оттока квалифицированных кадров в регионы с более высоким уровнем оплаты труда и потенциалом развития, удорожание ресурсов строительного производства, в т.ч. энергоносителей, газа, воды

Более детальный анализ ситуаций и накопленный опыт развития регионов России позволил выделить следующие основные стратегические приоритеты развития:

Стратегический приоритет 1. Обеспечение доступности и комфортности жилища, формирование качественной жилой среды.

Стратегический приоритет 2. Развитие промышленности строительных материалов и минерально-сырьевой базы строительного комплекса региона для повышения его конкурентоспособности.

Стратегический приоритет 3. Развитие транспортной инфраструктуры региона.

Стратегический приоритет 4. Развитие коммунальной инфраструктуры региона.

Стратегический приоритет 5. Инновационное развитие и модернизация строительного комплекса, обеспечение энергоэффективности строительной продукции.

В условиях Пензенской области возможны следующие пути достижения этих приоритетов.

Первое направление — это развитие предприятий строительного комплекса с привязкой их к потребителю конечной продукции с целью снижения затрат, связанных с трудовыми, финансовыми, информационными ресурсами, но с одновременным повышением затрат по привлечению материальных ресурсов, транспортными издержками, ростом затрат на обеспечение строительства

земельными участками и т.д.

Второе направление — это формирование стратегии строительного комплекса на основе зон деятельности предприятий с привязкой их к материальным ресурсам с целью снижения затрат, связанных с их использованием, но с одновременным повышением затрат по привлечению всех остальных ресурсов.

Третье направление учитывает два предыдущих направления в рациональном сочетании их между собой. Данный подход ориентирован на минимизацию расстояний перемещения и концентрации ресурсов при создании конечной продукции на основе зон деятельности предприятий строительного комплекса.

В Пензенской области существует возможность развития регионального строительного комплекса на основе создания промышленных кластеров стройиндустрии по основным направлениям использования минерально-сырьевых ресурсов (песок, известь, диатомит и т.д.), которые могут быть использованы не только в рамках строительного комплекса, но и во всех других смежных отраслях как в пределах одного региона, так и других регионов. Использование собственных строительных материалов позволит снизить себестоимость готовой строительной продукции, повысить ее качество на основе создания полной цепочки добавленной стоимости в пределах региона, создать новые рабочие места, обеспечить спрос на подготовку кадров в сфере строительства и инновационные разработки, привлечь финансовые ресурсы в крупные инвестиционные проекты.

Все эти направления имеют свои рациональные области использования в конкретном регионе и его территориях, что позволяет в комплексе решать многие стратегические задачи и выбирать соответствующие развития строительного комплекса.

Реализация стратегии развития строительного комплекса Пензенской области позволит увеличить ввод жилья в области, снизить себестоимость квадратного метра жилья, улучшить социальную обстановку в области за счет повышения комфортности и безопасности проживания населения и увеличения количества занятых в строительном комплексе.

В то же время, у нас есть следующие замечания и предложения, которые направлены на реализацию стратегии развития отдельных отраслей Пензенской

области и увязку основных их направлений развития между собой для обеспечения зоны рациональных значений вариантов возведения объекта в условиях различных ситуаций:

- 1. Строительная отрасль тесно связана с промышленностью, транспортом, жилищно-коммунальным хозяйством, которые не находятся в единой системе; каждая из отраслей работает автономно друг от друга, решает свои глобальные и локальные задачи в отрыве от других участников, о чем свидетельствуют их стратегические ориентиры, не связанные между собой ни логикой, ни возможностью их выполнения и реализации. Также в них возникают разные риски и потери, что влияет на общий результат.
- 2. Необходимо создать для реализации стратегии развития Пензенской области надежную И эффективную структуру управления предприятиями регионального строительного комплекса как строительной системы на всех этапах (TЭO, проектирование, стройиндустрия, жизненного цикла его развития строительство, ЖКХ). Для этого необходимо в рамках единого Министерства строительства обеспечить функционирование всех остальных ведомств: архитектура, стройиндустрия, строительство и ЖКХ, – что даст возможность увязки всех задач и снижения потерь в их работе, что, в принципе, имело место раньше.
- 3. Необходимо вернуть предприятия стройиндустрии в строительную отрасль, чтобы увязать их производственные мощности и перспективы развития с задачами строительного комплекса.
- 4. Необходимо предусмотреть возможность реализации различных программ по использованию и вовлечению минерально-сырьевых ресурсов в деятельность предприятий строительного комплекса.
- 5. В рамках общей стратегии необходимо создать условия по подготовке и переподготовке высококвалифицированных кадров на базе ПГУАС по разным формам обучения по направлениям «Строительство», «ЖКХ», «Экономика» и т.д.
- 6. В рамках общей стратегии необходимо вернуть службу ЖКХ в структуру Министерства строительства. Это даст возможность увязки их общих их задач и оказания комплекса услуг для потребителей на рынке жилья.
 - 7. Необходимо создать условия для формирования отраслевых и

межотраслевых кластеров для развития как одной отрасли, так и всех других смежных отраслей, рассмотренных и представленных в данной стратегии развития Пензенской области на долгосрочную перспективу.

8. В рамках стратегии необходимо разработать механизмы по повышению качества оказания жилищно-коммунальных услуг на основе выверенного научного подхода к модернизации и обеспечению энергетической эффективности объектов жилищно-коммунального хозяйства, создания местных технологических карт и регионального нормирования всей деятельности ЖКХ, разработки и утверждения регламентов и непрерывного обучения персонала в профильных образовательных центрах.

Таким образом, моделирование различных экономических ситуаций и их анализ позволил определить рациональные параметры строительного производства, сформировать приемлемый обеими сторонами инвестиционного проекта вариант инвестирования, просчитать эффекты подрядчика на этапе строительства и эффекты заказчика на этапе окупаемости и предложить наиболее рациональный вариант эффективного вложения инвестиций в строительство жилого дома. Определен вариант контракта договора подряда. В ходе переговоров между подрядчиком и заказчиком будет осуществляться его дополнительная корректировка, с учетом интересов обеих сторон.

СПИСОК ЛИТЕРАТУРЫ

- 1. Малыгин А. А., Ларушина Н. М, Витин А. Г. Нормативы капитальнее вложений: Справочное пособие. М. Экономика, 1990. 315 с.
- 2. Хрусталёв Б. Б., Горбунов В.Н. Экономическая оценка инвестиций. Методические указания к курсовому проекту.. Пенза, ПГУАС, 2007.
- 3. Хрусталёв Б.Б., П. Г. Грабовый, С. Н. Петрова, С. И. Полтавцев, К. Г.Романова. Риски в современном бизнесе/ М.: Аланс,1994. 200 с.
- 4. Хрусталёв Б. Б., М. Н. Филюнин, В. Б. Клячман, Н. А. Лежикова Экономическая оценка инвестиций /Учебник: под ред. д.э.н., проф. Б.Б. Хрусталёв Пенза: ПГУАС, 2005. 450 с.
- 5. Хрусталёв Б. Б., М. Н. Филюнин, В. Б. Клячман, Н. А. Лежикова. Экономическая оценка инвестиций в условиях развития инвестиционно-отраслевых комплексов России: учебник для студентов экономических специальностей вузов. Пенза: ПГАСА, 2002.
- 6. Хрусталёв Б. Б, Щербакова Л. А., Мебадури З. А., Данилин Г. В. Экономическая оценка инвестиций в строительстве / учебное пособие.- Пенза, ПГУАС, 2001.

приложения

Затраты/Месяцы	S ₁	S ₂	Sз	S ₄	S 5	S 6	S 7	S ₈	S 9	S ₁₀	Sобщ
1	1,023955862	1,8944	2,96	753,50352	3,07152	32,57731959	0,266625	231,0670909	28,28324045	68,7003402	1123,348012
2	2,047911724	3,7888	5,92	376,75176	1,53576	16,28865979	0,1333125	115,5335455	14,14162022	34,3501701	570,4915398
3	3,071867586	5,6832	8,88	251,16784	1,02384	10,85910653	0,088875	77,02236365	9,427746816	22,9001134	390,124953
4	4,095823448	7,5776	11,84	188,37588	0,76788	8,144329897	0,06665625	57,76677274	7,070810112	17,1750851	302,8808375
5	5,11977931	9,472	14,8	150,700704	0,614304	6,515463918	0,053325	46,21341819	5,65664809	13,740068	252,8857106
6	6,143735172	11,3664	17,76	125,58392	0,51192	5,429553265	0,0444375	38,51118182	4,713873408	11,4500567	221,5150779
7	7,167691034	13,2608	20,72	107,64336	0,438788571	4,653902798	0,038089286	33,00958442	4,040462921	9,81433432	200,7870133
8	8,191646897	15,1552	23,68	94,18794	0,38394	4,072164948	0,033328125	28,88338637	3,535405056	8,58754253	186,7105539
9	9,215602759	17,0496	26,64	83,72261333	0,34128	3,619702176	0,029625	25,67412122	3,142582272	7,63337114	177,0684979
10	10,23955862	18,944	29,6	75,350352	0,307152	3,257731959	0,0266625	23,10670909	2,828324045	6,87003402	170,5305242
11	11,26351448	20,8384	32,56	68,50032	0,279229091	2,961574508	0,024238636	21,00609918	2,571203677	6,24548547	166,250065
12	12,28747034	22,7328	35,52	62,79196	0,25596	2,714776632	0,02221875	19,25559091	2,356936704	5,72502835	163,6627417
13	13,31142621	24,6272	38,48	57,96180923	0,236270769	2,505947661	0,020509615	17,77439161	2,175633881	5,28464156	162,3778305
14	14,33538207	26,5216	41,44	53,82168	0,219394286	2,326951399	0,019044643	16,50479221	2,020231461	4,90716716	162,1162432
15	15,35933793	28,416	44,4	50,233568	0,204768	2,171821306	0,017775	15,40447273	1,885549363	4,58002268	162,673315
16	16,38329379	30,3104	47,36	47,09397	0,19197	2,036082474	0,016664063	14,44169318	1,767702528	4,29377126	163,8955473
17	17,40724966	32,2048	50,32	44,32373647	0,180677647	1,916312917	0,015683824	13,59218182	1,663720026	4,04119648	165,6655588
18	18,43120552	34,0992	53,28	41,86130667	0,17064	1,809851088	0,0148125	12,83706061	1,571291136	3,81668557	167,8920531
19	19,45516138	35,9936	56,24	39,65808	0,161658947	1,714595768	0,014032895	12,16142584	1,488591603	3,61580738	170,5029538
20	20,47911724	37,888	59,2	37,675176	0,153576	1,628865979	0,01333125	11,55335455	1,414162022	3,43501701	173,4406001
21	21,5030731	39,7824	62,16	35,88112	0,146262857	1,551300933	0,012696429	11,00319481	1,346820974	3,27144477	176,6583139
22	22,52702897	41,6768	65,12	34,25016	0,139614545	1,480787254	0,012119318	10,50304959	1,285601839	3,12274274	180,1179042
23	23,55098483	43,5712	68,08	32,76102261	0,133544348	1,416405199	0,011592391	10,04639526	1,229706106	2,98697131	183,7878221
24	24,57494069	45,4656	71,04	31,39598	0,12798	1,357388316	0,011109375	9,627795456	1,178468352	2,86251418	187,6417764
25	25,59889655	47,36	74	30,1401408	0,1228608	1,303092784	0,010665	9,242683638	1,131329618	2,74801361	191,6576828
26	26,62285241	49,2544	76,96	28,98090462	0,118135385	1,25297383	0,010254808	8,887195806	1,08781694	2,64232078	195,8168546
27	27,64680828	51,1488	79,92	27,90753778	0,11376	1,206567392	0,009875	8,558040405	1,047527424	2,54445705	200,1033733
28	28,67076414	53,0432	82,88	26,91084	0,109697143	1,1634757	0,009522321	8,252396105	1,01011573	2,45358358	204,5035947
29	29,69472	54,9376	85,84	25,98288	0,105914483	1,123355848	0,009193966	7,967830722	0,975284153	2,36897725	209,0057564

Вариант 1. Ток - 6,25 лет. αρ = 0,5.

Затраты/Месяцы	S ₁	S ₂	S ₃	S ₄	S 5	S ₆	S 7	S ₈	S 9	S ₁₀	Sобщ
1	1,023955862	1,2616704	1,97136	753,50352	3,07152	32,57731959	0,266625	231,0670909	28,28324045	68,7003402	1121,726642
2	2,047911724	2,5233408	3,94272	376,75176	1,53576	16,28865979	0,1333125	115,5335455	14,14162022	34,3501701	567,2488006
3	3,071867586	3,7850112	5,91408	251,16784	1,02384	10,85910653	0,088875	77,02236365	9,427746816	22,9001134	385,2608442
4	4,095823448	5,0466816	7,88544	188,37588	0,76788	8,144329897	0,06665625	57,76677274	7,070810112	17,1750851	296,3953591
5	5,11977931	6,308352	9,8568	150,700704	0,614304	6,515463918	0,053325	46,21341819	5,65664809	13,740068	244,7788626
6	6,143735172	7,5700224	11,82816	125,58392	0,51192	5,429553265	0,0444375	38,51118182	4,713873408	11,4500567	211,7868603
7	7,167691034	8,8316928	13,79952	107,64336	0,438788571	4,653902798	0,038089286	33,00958442	4,040462921	9,81433432	189,4374261
8	8,191646897	10,0933632	15,77088	94,18794	0,38394	4,072164948	0,033328125	28,88338637	3,535405056	8,58754253	173,7395971
9	9,215602759	11,3550336	17,74224	83,72261333	0,34128	3,619702176	0,029625	25,67412122	3,142582272	7,63337114	162,4761715
10	10,23955862	12,616704	19,7136	75,350352	0,307152	3,257731959	0,0266625	23,10670909	2,828324045	6,87003402	154,3168282
11	11,26351448	13,8783744	21,68496	68,50032	0,279229091	2,961574508	0,024238636	21,00609918	2,571203677	6,24548547	148,4149994
12	12,28747034	15,1400448	23,65632	62,79196	0,25596	2,714776632	0,02221875	19,25559091	2,356936704	5,72502835	144,2063065
13	13,31142621	16,4017152	25,62768	57,96180923	0,236270769	2,505947661	0,020509615	17,77439161	2,175633881	5,28464156	141,3000257
14	14,33538207	17,6633856	27,59904	53,82168	0,219394286	2,326951399	0,019044643	16,50479221	2,020231461	4,90716716	139,4170688
15	15,35933793	18,925056	29,5704	50,233568	0,204768	2,171821306	0,017775	15,40447273	1,885549363	4,58002268	138,352771
16	16,38329379	20,1867264	31,54176	47,09397	0,19197	2,036082474	0,016664063	14,44169318	1,767702528	4,29377126	137,9536337
17	17,40724966	21,4483968	33,51312	44,32373647	0,180677647	1,916312917	0,015683824	13,59218182	1,663720026	4,04119648	138,1022756
18	18,43120552	22,7100672	35,48448	41,86130667	0,17064	1,809851088	0,0148125	12,83706061	1,571291136	3,81668557	138,7074003
19	19,45516138	23,9717376	37,45584	39,65808	0,161658947	1,714595768	0,014032895	12,16142584	1,488591603	3,61580738	139,6969314
20	20,47911724	25,233408	39,4272	37,675176	0,153576	1,628865979	0,01333125	11,55335455	1,414162022	3,43501701	141,0132081
21	21,5030731	26,4950784	41,39856	35,88112	0,146262857	1,551300933	0,012696429	11,00319481	1,346820974	3,27144477	142,6095523
22	22,52702897	27,7567488	43,36992	34,25016	0,139614545	1,480787254	0,012119318	10,50304959	1,285601839	3,12274274	144,447773
23	23,55098483	29,0184192	45,34128	32,76102261	0,133544348	1,416405199	0,011592391	10,04639526	1,229706106	2,98697131	146,4963213
24	24,57494069	30,2800896	47,31264	31,39598	0,12798	1,357388316	0,011109375	9,627795456	1,178468352	2,86251418	148,728906
25	25,59889655	31,54176	49,284	30,1401408	0,1228608	1,303092784	0,010665	9,242683638	1,131329618	2,74801361	151,1234428
26	26,62285241	32,8034304	51,25536	28,98090462	0,118135385	1,25297383	0,010254808	8,887195806	1,08781694	2,64232078	153,661245
27	27,64680828	34,0651008	53,22672	27,90753778	0,11376	1,206567392	0,009875	8,558040405	1,047527424	2,54445705	156,3263941
28	28,67076414	35,3267712	55,19808	26,91084	0,109697143	1,1634757	0,009522321	8,252396105	1,01011573	2,45358358	159,1052459
29	29,69472	36,5884416	57,16944	25,98288	0,105914483	1,123355848	0,009193966	7,967830722	0,975284153	2,36897725	161,986038
Вариант 1. Ток - 6,25 лет. αρ = 0,333.											