Francesca Cuomo

Lo strato Fisico Parte 4 Modulazione numerica

Canali passa-banda

- \blacksquare I canali passa-banda sono passanti per un intervallo di frequenze centrate intorno ad una frequenza centrale f_c
 - Canali radio channels, modem telefonici e xDSL
- I modulatori numerici (Modem) utilizzano forme d'onda che hanno frequenze che sono passanti per un canale passa-banda
- Un segnale sinusoidale di frequenza f_c è centrato nella banda del canale
 - Un modulatore inserisce l'informazione in una sinusoide [$cos(2\pi f_ct)$]

Modulazione di Ampiezza

Amplitude Shift Keying (ASK)

- Un modulatore ASK mappa ogni bit informativo nell'ampiezza di una sinusoide a frequenza f_c
 - "1" trasmissione del segnale sinusoidale
 - "0" nessun segnale
- Il demodulatore individua i periodi in cui è presente il segnale e i periodi in cui il segnale è assente

Modulazione di Frequenza

Frequency Shift Keying (FSK)

- Un modulatore FSK mappa ogni bit informativo nella frequenza di un segnale sinusoidale
 - "1" trasmissione di un segnale di frequenza fς+δ
 - $\,\blacksquare\,$ "O" trasmissione di un segnale di frequenza $f_c\text{-}\delta$
- Un demodulatore individua la potenza intorno alle frequenze $f_c + \delta$ o $f_c \delta$

Phase Shift Keying (PSK) -1 0 1 1 0 1

- Un modulatore PSK mappa ogni bit informativo nella fase di un segnale sinusoidale
 - "1" trasmissione del segnale A $cos(2\pi ft)$ \rightarrow fase 0
 - "0" trasmissione del segnale A cos $(2\pi ft+\pi)$ \rightarrow fase π
- E' equivalente a moltiplicare un segnale $cos(2\pi ft)$ per +A or -A
 - "1" trasmissione del segnale A $cos(2\pi ft) \rightarrow multiplazione per A$
 - "0" trasmissione del segnale A $cos(2\pi ft+\pi)$ = A $cos(2\pi ft)$ \rightarrow multiplazione per -A

Modulazione e Demodulazione PSK

Un segnale $cos(2\pi f_c t)$ viene modulato moltiplicandolo per A_k per T secondi (durata di un simbolo)

 $A_k \longrightarrow X \longrightarrow Y_i(t) = A_k \cos(2\pi f_c t)$ Segnale trasmesso nell k-mo intervallo $\cos(2\pi f_c t)$

Il segnale ricevuto viene demodulato moltiplicandolo per $2\cos(2\pi f_c t)$ per T secondi e successivamente filtrandolo con un flitro passa-basso

 $Y_{i}(t) = A_{k}\cos(2\pi f_{c}t)$ Segnale ricevuto durante il k-mo intervallo $2\cos(2\pi f_{c}t)$ $2A_{k}\cos^{2}(2\pi f_{c}t) = A_{k}\{1+\cos(2\pi 2f_{c}t)\}$

Banda in trasmissione

Se il segnale in banda base x(t) ha banda Wc/2 Hz

 il segnale modulato x(t)cos(2πf_ct) ha banda uguale a Wc Hz

- Se il canale di comunicazione ha banda W_c Hz
 - \blacksquare Il canale in banda base ha una larghezza di banda disponibile uguale a $W_{\rm c}/2$ Hz
 - Un sistema di modulazione supporta (W_c/2) x 2 = W_c impulsi/secondo
 - Quindi W_c impulsi/secondo per W_c Hz = 1 impulso/Hz
 - si ricorda che la trasmissione in banda base supporta 2 impulsi/Hz

Quadrature Amplitude Modulation (QAM)

- QAM usa una trasmissione a due dimensioni
 - A_k modula il segnale in fase $cos(2\pi f_c t)$ per T secondi
 - B_k modula il segnale in quadratura $\cos(2\pi f_c t + \pi/2) = \sin(2\pi f_c t)$ per T secondi
 - Si trasmette la somma delle componenti in fase ed in quadratura

 $A_{k} \longrightarrow \bigvee_{i} Y_{i}(t) = A_{k} \cos(2\pi f_{c}t)$ $\cos(2\pi f_{c}t) \longrightarrow Y(t)$ $B_{k} \longrightarrow \bigvee_{j} Y_{q}(t) = B_{k} \sin(2\pi f_{c}t)$ $\sin(2\pi f_{c}t)$ Segnale trasmesso

- I segnali Y_i(†) and Y_q(†) occupano entrambi la banda passante del canale
 - la modulazione QAM supporta 2 impulsi/Hz

ᄃ

Costellazione di segnali

- Ogni coppia (A_k, B_k) definisce un punto nel piano
- La costellazione di un segnale è l'insieme dei punti che può assumere un segnale
- Caso υ=1: 4-QAM (4-PSK, QPSK)

4 possibili punti in T sec (2 bit/impulso)

Altre Costellazioni di segnale

Punti scelti in ampiezza e fase

 $A_k \cos(2\pi f_c t) + B_k \sin(2\pi f_c t) = \sqrt{A_k^2 + B_k^2} \cos(2\pi f_c t + \tan^{-1}(B_k/A_k))$

4 possibili punti in T sec

16 possibili punti in T sec

Altre Costellazioni di segnale

- √ Modulazione numerica con signal set a 8 punti disposti su una circonferenza di raggio 1, equidistanziati.
- ✓ Il nome 8-PSK (analogamente al 4-PSK) deriva dal fatto che le posizioni dei punti, in coordinate polari (r, ϕ) sono differenziate soltanto in base alla fase ϕ (r = 1 = cost).

16

