Section 3, p34 1-7odd, 17, 21, 25

\sim					
C_0	m	ni	ıta:	†1 <i>c</i>	nc

1.	What three things must be check to determine whether a function $\phi: S \mapsto S'$ is an isomorphism of a binary structure $\langle S, * \rangle$ with $\langle S', *' \rangle$?
	answer
	xercises 2 through 10, determine whether the given map ϕ is an isomorphism of the first binary structure the second. If it is not an isomorphism, why not?
3.	$\langle \mathbb{Z}, + \rangle$ with $\langle \mathbb{Z}, + \rangle$ where $\phi(n) = 2n$ for $n \in \mathbb{Z}$
	answer
5.	$\langle \mathbb{Q}, + \rangle$ with $\langle \mathbb{Q}, + \rangle$ where $\phi(x) = x/2$ for $x \in \mathbb{Q}$
	answer
7.	$\langle \mathbb{R}, \cdot \rangle$ with $\langle \mathbb{R}, \cdot \rangle$ where $\phi(x) = x^3$ for $x \in \mathbb{R}$
	answer
17.	The map $\phi: \mathbb{Z} \mapsto \mathbb{Z}$ defined by $\phi(n) = n + 1$ for $n \in \mathbb{Z}$ is one to one and onto \mathbb{Z} .
	Give the definition of a binary operation $*$ on $\mathbb Z$ such that ϕ is an isomorphism mapping a. $\langle \mathbb Z, \cdot \rangle$ onto $\langle \mathbb Z, * \rangle$
	answer
	b. $\langle \mathbb{Z}, * \rangle$ onto $\langle \mathbb{Z}, \cdot \rangle$
	answer
	xercises 21 and 22, correct the definition of the italicized term without reference to the text, if correction eded, so that it is in a form acceptable for publication.
21.	A function $\phi: S \mapsto S'$ is an isomorphism if and only if $\phi(a*b) = \phi(a)*'\phi(b)$.
	answer
25.	Continuing the ideas of Exercise 24 can a binary structure have the left identity element e_L and a right identity element e_R where $e_L \neq e_R$? If so, given an example, using an operation on a finite set S . If not, prove that it is impossible.
	answer