STRUCTURE FROM MOTION – VISIÓN ESTÉREO

ANDRÉS DANIEL GODOY ORTIZ

VISIÓN COMPUTACIONAL

IMÁGENES DE PROF. ANDREAS GEIGER, UNIVERSITY OF TÜBINGEN

STRUCTURE FROM MOTION

Recuperar la estructura 3D de una escena y la posición de la cámara a partir de múltiples imágenes tomadas desde diferentes ángulos.

¿QUÉ PASOS DEBO REALIZAR PARA UNA RECONSTRUCCIÓN 3D?

SFM: UNA SOLA CÁMARA EN MOVIMIENTO O VARIAS CÁMARAS SIN ALINEACIÓN FIJA (DRONES)

PRIMERO HAY QUE CALIBRAR LA CÁMARA

LUEGO HAY QUE EXTRAER CARACTERÍSTICAS

SCALE INVARIANT FEATURE TRANSFORM (SIFT)

GEOMETRÍA EPIPOLAR

Sabes que una cámara se modela con la ecuación de proyección:

$$\mathbf{x} = K[R|t]\mathbf{X}$$

donde:

- $\mathbf{X} = (X, Y, Z, 1)^T$ es un punto 3D en coordenadas homogéneas.
- $\mathbf{x} = (x, y, 1)^T$ es la proyección en la imagen (coordenadas homogéneas).
- K es la matriz de calibración de la cámara.
- R y t representan la orientación (rotación R) y la posición (traslación t) de la cámara en el espacio.

Expandiéndolo, tenemos:

$$\mathbf{x} \sim KR\mathbf{X} + Kt$$

y en coordenadas cartesianas:

$$egin{bmatrix} x \ y \end{bmatrix} = rac{1}{Z} egin{bmatrix} fX + cxZ \ fY + cyZ \end{bmatrix}$$

donde f es la distancia focal y (cx,cy) son los parámetros de desplazamiento óptico.

Dado un punto X en el espacio tridimensional, su proyección en dos imágenes tomadas por dos cámaras es:

$$x_1 = K_1[R_1|t_1]X$$

$$x_2 = K_2[R_2|t_2]X$$

Para simplificar, trabajamos con **cámaras calibradas** y tomamos la primera cámara en el sistema de referencia mundial, es decir, $R_1=I$ y $t_1=0$. Esto nos da:

$$x_1 = KX$$

Para la segunda cámara, la matriz de rotación y traslación entre las cámaras está dada por R y t:

$$x_2 = K[R|t]X$$

Sea K la **matriz de calibración de la cámara**, y definimos la **dirección del rayo en coordenadas no calibradas** como:

$$\tilde{\mathbf{x}} = K^{-1}\mathbf{x}$$

Así mismo, se cumplirá:

$$\tilde{\mathbf{x}}_2 = R\tilde{\mathbf{x}}_1 + t$$

Tomamos el **producto cruzado** en ambos lados con t

$$[t]_ imes ilde{\mathbf{x}}_2 = [t]_ imes R ilde{\mathbf{x}}_1$$

Finalmente, si multiplicamos por $ilde{\mathbf{x}}_2^T$, obtenemos:

$$ilde{\mathbf{x}}_2^T[t]_ imes R ilde{\mathbf{x}}_1=0$$

Restricción Epipolar, con matriz Esencial E:

$$\tilde{\mathbf{x}}_2^{\mathsf{T}}\tilde{\mathbf{E}}\,\tilde{\mathbf{x}}_1 = 0$$

La matriz esencial se estima usando el **método de los ocho puntos** (Eight-Point Algorithm).

$$\tilde{\mathbf{l}}_2 = \tilde{\mathbf{E}} \, \tilde{\mathbf{x}}_1$$

Triangulación

Dado un punto observado en dos imágenes con matrices de proyección P_1 y P_2 :

$$P_1 = K[R_1|t_1], \quad P_2 = K[R_2|t_2]$$

y las coordenadas homogéneas x_1 y x_2 :

$$x_1=P_1X,\quad x_2=P_2X$$

Expandiendo:

$$egin{bmatrix} x_1 \ y_1 \ 1 \end{bmatrix} \propto P_1 X, \quad egin{bmatrix} x_2 \ y_2 \ 1 \end{bmatrix} \propto P_2 X$$

Se resuelve como un **problema lineal** de la forma AX=0, usando **SVD** para obtener X.

En la realidad, las imágenes contienen ruido, distorsión, errores de correspondencia. La triangulación sin optimización acumula errores y sesgos.

Optimización (Bundle Adjustment)

$$\sum_{i,j} \left\| x_{ij} - \pi(P_j, X_i)
ight\|^2$$

donde:

- x_{ij} es la proyección observada.
- $\pi(P_j, X_i)$ es la proyección del punto X_i en la cámara j.

Se resuelve con **Levenberg-Marquardt** para refinar:

- Posiciones de cámara (R_i, t_i) .
- Puntos 3D X_i .

LA INCERTIDUMBRE DE LA CÁMARA AUMENTA CUANDO....

PASOS PARA RECONSTRUCCIÓN 3D

- •Detección de características → Identificar puntos clave en múltiples imágenes.
- •Emparejamiento de características → Asociar los mismos puntos en diferentes imágenes.
- •Estimación de movimiento → Calcular la posición relativa de la cámara.
- •Triangulación → Obtener la estructura 3D de la escena.
- •Optimización (BA Bundle Adjustment) → Refinar la estructura y la posición de la cámara.

VISIÓN ESTÉREO

RECUPERAR PROFUNDIDAD A PARTIR DE DOS IMÁGENES OBTENIDAS SIMULTÁNEAMENTE POR CÁMARAS CALIBRADAS.

RECUERDA ERES MEJOR QUE LEELA

PERO TAMPOCO EL/LA MÁS PRO...

DISPARIDAD

DISPARIDAD

DISPARIDAD

LAS IMÁGENES DEBEN ESTAR SOBRE LA MISMA LÍNEA HORIZONTAL

Esto no nos sirve...

TOCA: IMAGE RECTIFICATION

CORRESPONDENCIA DE CARACTERÍSTICAS

Opciones:

- •Block Matching (BM) → Compara ventanas de píxeles en ambas imágenes.
- •Semi-Global Matching (SGM) → Más preciso pero más costoso computacionalmente.
- •Métodos basados en Deep Learning → Como Redes Siameses, PSMNet, pero requieren entrenamiento.

- •Calibración de cámaras → Obtener matrices intrínsecas y distorsión.
- •Rectificación estéreo → Alinear imágenes para que los puntos correspondan en la misma línea horizontal.
- •Correspondencia de puntos → Comparar píxeles en la imagen izquierda y derecha.
- Calcular disparidad
- Recuperar profundidad