Университет ИТМО Факультет программной инженерии и компьютерной техники

Вычислительная математика

Лабораторная работа №3 Вариант — вг2

Выполнила: Екатерина Машина

Группа Р3210

Преподаватель: Ольга Вячеславовна Перл

Санкт-Петербург 2020 г.

Цель работы

Реализовать метод касательных (метод Ньютона) и метод простой итераций для решения нелинейных уравнений и реализовать решение систем линейных уравнений методом простой итерации.

Описание использованного метода

Метод касательных:

Суть метода заключается в том, что функция y=f(x) на отрезке [a,b] заменяется касательной, а в качестве приближенного значения корня $x^*=x_n$ принимается точка пересечения касательной с осью абсцисс (как показано на Рисунок 1).

$$x_1 = x_0 - h_0$$

$$h_0 = \frac{f(x_0)}{\tan \alpha} = \frac{f(x_0)}{f'(x_0)x_1} = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Рабочая формула метода:

$$x_i = x_i - 1 - \frac{f(x_i - 1)}{f'(x_i - 1)}$$

Критерий окончания итерационного процесса: $|x_n-x_{n-1}|\leq \varepsilon$ или $\left|\frac{f(x_n)}{f'(x_n)}\right|\leq \varepsilon$ или $|f(x_n)|\leq \varepsilon$

Рисунок 1

Метод имеет следующее достаточное условие сходимости:

Метод Ньютона применяется в том случае, если выполняются условия:

- функция y = f(x) определена и непрерывна на отрезке [a; b];
- $f(a) \cdot f(b) < 0$ (на концах отрезка [a; b]функция имеет разные знаки);
- производные f'(x) и f''(x) сохраняют знак на отрезке [a;b];
- производная $f'(x) \neq 0$

Метод простой итерации:

Суть метода заключается в том, что уравнение f(x)=0 с помощью некоторых преобразований необходимо переписать в виде x=arphi(x) (как показано на *Рисунок 2*).

Уравнение f(x)=0 эквивалентно уравнению $x=x+\lambda(x)f(x)$ для любой функции $\lambda(x)\neq 0$. Возьмем $\varphi(x)=x-\lambda(x)f(x)$ и выберем функцию (или переменную) $\lambda(x)\neq 0$ так, чтобы функция $\varphi(x)$ удовлетворяла необходимым условиям.

Для нахождения корня уравнения $x=\varphi(x)$ выберем некоторое начальное значение x_0 , которое должно находиться как можно ближе к корню уравнения. Дальше с помощью итерационной формулы $x_n+1=\varphi(x_n)$ будем находить каждое следующее приближение корня уравнения.

Рисунок 2

Рабочая формула метода:

$$x_{i+1} = \varphi(x_i)$$

Условия сходимости метода простой итерации определяются теоремой:

Если в некоторой σ - окрестности корня x^* уравнения f(x)=0 функция $x=\varphi(x)$ дифференцируема и удовлетворяет неравенству $|\varphi'(x)|< q$, где $0 \le q < 1$ постоянная, то независимо от выбора начального приближения x_0 из указанной σ окрестности итерационная последовательность x_n не выходит из этой окрестности, метод сходится со скоростью геометрической прогрессии.

Достаточное условие сходимости метода:

$$|\varphi'(x)| \le q < 1$$
, где q – некоторая константа

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$

Метод простой итерации для решения систем нелинейных уравнений:

Суть метода заключается в том, чтобы привести первоначальную систему уравнений к следующему виду:

$$\left\{egin{aligned} x_1 &= arphi_1(x_1,\ldots,x_n),\ x_2 &= arphi_1(x_2,\ldots,x_n),\ dots\ x_n &= arphi_n(x_1,\ldots,x_n), \end{aligned}
ight.$$

Для этого нам необходимо задать начальное приближение $x^{(0)}=(x_{10},\,x_{20},...,x_{n0})^T$ и малое положительное число ε (точность).

Затем вычислить $x^{(k+1)}$ по формуле $x^{(k+1)} = \varphi_1\left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\right)$, так продолжать увеличивая k на единицу пока не будет достигнут критерий окончания итерационного процесса.

Критерий завершения итерационного процесса:

$$\left|x_i^{(k+1)} - x_i^{(k)}\right| \le arepsilon$$
, значит процесс завершен, $x^* = \mathbf{x}^{(k+1)}$.

Выводы

В результате выполнения я изучила 5 методов решения нелинейных уравнений и пришла к следующим выводам относительно их преимуществ и недостатков:

1. Метод касательных:

Достоинства: Метод обладает квадратичной сходимостью.

Недостатки: Необходимость вычисления производной на каждой итерации.

2. Метод простой итерации:

Достоинства: Простота реализации

Недостатки: Сходимость метода в малой окрестности корня и вытекающая отсюда необходимость выбора начального приближения к корню из этой малой окрестности. В противном случае итерационный процесс расходится или сходится к другому корню этого уравнения. Также при $|\varphi'(x)| \approx 1$, то сходимость может быть очень медленной.

3. Метод секущих:

Достоинства: Меньший объем вычислений по сравнению с методом Ньютона, т.к. не требуется вычислять производную.

Недостатки: Порядок сходимости метода секущих ниже, чем у метода касательных и равен золотому сечению ≈1,618 (сверхлинейная).

4. Метод половинного деления:

Достоинства: Обладает абсолютной сходимостью (близость получаемого численного решения задачи к истинному решению.) Устойчив к ошибкам округления.

Недостатки: если интервал содержит несколько корней, то неизвестно к какому относится вычислительный процесс. Медленный метод: имеет линейную сходимость.

Имеет смысл применять в случаях когда требуется высокая надежность счета, а скорость несущественна.

5. Метод хорд:

Достоинства: Простота реализации

Недостатки: Скорость сходимости – линейная. Порядок сходимости метода хорд выше, чем у метода половинного деления.

Что касается Методов решения систем нелинейных уравнений, то мною были изучены два метода решения и сделаны следующие выводы:

Метод Ньютона для решения СНАУ представляет собой обобщение метода Ньютона для решения НУ его сутью является попытка свести решение системы нелинейных уравнений к решению системы линейных уравнений. Основная сложность метода Ньютона заключается в обращении матрицы Якоби. Вводя обозначение $\Delta x^{(k)} = x^{(k+1)} - x^{(k)} \Delta x^{(k)} = x^{(k+1)} - x^{(k)}$ получаем СЛАУ для вычисления $\Delta x^{(k)}$. Решение этого СЛАУ создает основную вычислительную нагрузку алгоритма.

Метод простой итерации же в свою очередь позволяет грубо говоря подобрать вектор решений системы уравнений путем выражения значения одной неизвестной через все остальные и постепенной подстановки значений неизвестных, вычисляемых на каждом шаге.

Блок-схема

Метод касательных

Метод простой итерации (НУ)

Метод простой итерации (СНАУ)

Листинг численного метода

Метод касательных

```
1
       public static double countXByNewton() {
         int n = 0;
          x = countStartX(MIN RANGE, MAX RANGE, x);
          double counter = 0;
 5
           counter = Math.abs(df(x));
          while (counter > EPS) {
 7
              x = x - (f(x) / df(x));
              n ++;
 9
               counter--;
10
           }
11
          return x;
12
      }
1
       public static double countStartX(double minRange, double maxRange, double x) {
           if (f(minRange) *df(maxRange) < 0) {</pre>
3
              return minRange;
4
5
           else
6
7
             return maxRange;
           }
9
       }
1 0
Метод простой итерации (НУ)
      public static double countXByIterations() {
          x = countStartX(MIN RANGE, MAX RANGE, x);
 3
          lambda = getLambda(x);
 4
          double x0;
          double fx;
 6
         int count = 0;
 7
         do {
              x0 = x;
 8
 9
              x = x - lambda * (f(x));
10
              fx = f(x0);
11
              count++;
12
          while (Math.abs(x - x0) >= EPS || count <= MAX_NUMBER_OF_ITERATIONS);</pre>
13
          return x0;
     }
1.4
1 public static double countStartX(double minRange, double maxRange, double x) {
         double a = f(minRange);
3
         double b = f(maxRange);
         double c = df(x);
4
         if (a >= b && a >= c) return minRange;
         if (b >= a && b >= c) return maxRange;
7
         return x;
8
1
     public static double getLambda(double x) {
        return 1.0 / df(x);
2
3
```

Метод простой итерации (СНАУ)

```
1 public static double countX(Function f1, Function f2) {
     double d1, d2, x, y;
3
        int counter;
 4
         do
 5
        {
 6
            x = f1.signifyX(y0);
 7
            y = f2.getValue(x0);
            d1 = f1.equateToZero(x, y);
8
            d2 = f2.equateToZero(x, y);
9
10
            x0 = x;
11
            y0 = y;
12
            counter ++;
13 } while (Math.abs(d1) > EPS && Math.abs(d2) > EPS || counter <=
14 MAX_NUMBER_OF_ITERATIONS);
15 x0 = 0;
16
17
18 }
        y0 = 0;
        return x;
```

Примеры

Решение нелинейных уравнений:

Решение систем нелинейных уравнений:

