Aide mémoire 2021

Léo Bernard

June 28, 2021

Contents

1	Analyse						
	1.1	Notion	ns de bases	5			
		1.1.1	Fonction réelle	5			
		1.1.2	Représentation graphique	5			
		1.1.3	Parité d'une fonction	6			
		1.1.4	Périodicité d'une fonction	6			
		1.1.5	Croissance et décroissance d'une fonction	6			
		1.1.6	Maximum et minimum d'une fonction	7			
		1.1.7	Opérations sur les fonctions	8			
		1.1.8	Injection, surjection, bijection	9			
		1.1.9	Fonction réciproque	9			
	1.2	Limite	es	10			
		1.2.1	Limite: définition	10			
		1.2.2	Limite à droite, limite à gauche	10			
		1.2.3	Propriétés des limites	10			
		1.2.4	Théorème des deux gendarmes	11			
		1.2.5	Continuité	11			
		1.2.6	Limites de fonctions composées	11			
		1.2.7	Propriétés des fonctions continues	12			
		1.2.8	Limites infinies	13			
		1.2.9	Propriétés des limites infinies	13			
		1.2.10	Limites à l'infini	13			
		1.2.11	Asymptotes	14			
	1.3	Dérivé	es	15			
		1.3.1	Tangeante (dérivée) en x_0	15			
		1.3.2	Nombre dérivé à gauche, à droite	15			
		1.3.3	Point anguleux, à tangeante verticale, de rebroussement	15			
		1.3.4	fonction dérivée	16			
		1.3.5	Dérivée d'ordre supérieur	18			
		136	Propriétés utiles	18			

4 CONTENTS

	1.3.7	Règles de dérivation		19
	1.3.8	Primitives d'une fonction	. 4	20
	1.3.9	Primitives des fonctions élémentaires	. 4	20
	1.3.10	Propriétés élémentaires	. 4	21
1.4	Applic	cations des dérivées	. 4	22

Chapitre 1

Analyse

1.1 Notions de bases

1.1.1 Fonction réelle

Soit A et B deux sous ensembles de \mathbb{R} . On appelle fonction réelle une relation qui lie un élément x de A à un élément y (f(x), la valeur de f en x) dans B.

Remarque. On appelle A l'ensemble de départ et B l'ensemble d'arrivée.

Remarque. x est aussi appelé la préimage de y par f.

Remarque. L'ensemble des valeurs de f est noté Im(f).

Remarque. Deux fonctions f(x) et g(x) sont dites égales si elles ont les mêmes ensembles d'arrivée et de départ, et si $f(x) = g(x) \ \forall x \in A$. On note alors f = g.

1.1.2 Représentation graphique

On représente une fonction en dessinant l'ensemble des points de coordonnées (a; f(a)). Ce dessin est appelé **graphe** de f.

Remarque. On appelle le nombre a zéro de f si f(a) = 0. son ensemble correspond à l'ensemble des points ou le graphe de f intersecte O_x

1.1.3 Parité d'une fonction

Si f(-x) = f(x) pour tout x de l'ensemble de définiton de f, on dit que f est une **fonction paire**.

Si f(-x) = -f(x) pour tout x de l'ensemble de définiton de f, on dit que f est une **fonction impaire**.

Remarque. Le graphe d'une fontion paire est symétrique à l'axe O_y , et Le graphe d'une fontion impaire est symétrique à l'origine.

1.1.4 Périodicité d'une fonction

Une fonction est dite de **période p** si il existe un nombre p > 0 tel que $f(x + kp) = f(x) \ \forall k \in \mathbb{Z}$

Remarque. Le graphe d'une fonction périodique est un motif qui se répète indéfiniment par translation horizontale (d'amplitude p).

1.1.5 Croissance et décroissance d'une fonction

Pour tout $x_1, x_2 \in I$ on dit que :

• Une fonction f est **croissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

ullet Une fonction f est **strictement croissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

• Une fonction f est **décroissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

• Une fonction f est **strictement décroissante** sur un intervalle I si :

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

7

1.1.6 Maximum et minimum d'une fonction

Soit $f:A\to\mathbb{R}$ une fonction réelle

• f(a) est un maximum local de f si il existe un intervalle ouvert I contenant a tel que :

$$\forall x \in I \cap A : f(x) \le f(a)$$

On dit aussi que f admet un maximum en a.

• f(a) est un **minimum local** de f si il existe un intervalle ouvert I contenant b tel que :

$$\forall x \in I \cap A : f(x) \ge f(b)$$

On dit aussi que f admet un minimum en b.

• f(a) est un **maximum absolu** de f si :

$$\forall x \in A : f(x) \le f(a)$$

• f(a) est un **minimum absolu** de f si :

$$\forall x \in A : f(x) \ge f(a)$$

Remarque. Le nom extremum peut être aussi utilisé à la place de maximum ou minimum.

1.1.7 Opérations sur les fonctions

Soit $f: A \to \mathbb{R}$ et $f: B \to \mathbb{R}$ deux fonctions réelles

• La **somme** des fonctions f et g est une nouvelle fonction notée f+g : $A\cap B\to \mathbb{R}$ définie par :

$$(f+g)(x) = f(x) + g(x)$$

• La **différence** des fonctions f et g est une nouvelle fonction notée $f-g:A\cap B\to \mathbb{R}$ définie par :

$$(f-g)(x) = f(x) - g(x)$$

• Le **produit** de la fonction f par un nombre réel c est une nouvelle fonction notée $c*f:A\to\mathbb{R}$ définie par :

$$(c * f)(x) = fc * (x)$$

• Le **produit** des fonctions f et g est une nouvelle fonction notée f*g : $A\cap B\to \mathbb{R}$ définie par :

$$(f * q)(x) = f(x) * q(x)$$

• Le **quotient** des fonctions f et g est une nouvelle fonction notée $\frac{f}{g}$: $A \cap B \cap x | g(x) \neq 0 \to \mathbb{R}$ définie par :

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

• La **composée** des fonctions f et g est une nouvelle fonction notée $g \circ f : x | x \in A$ et $f(x) \in B \to \mathbb{R}$ définie par :

$$(g \circ f)(x) = g(f(x))$$

9

1.1.8 Injection, surjection, bijection

Soit une fonction $f A \to B$.

- f est dite **surjective** si tout élément y de B est l'image par f d'au minimum un élément x de A (au minimum une précédence pour chaque objet de B).
- f est dite **injective** si tout élément y de B est l'image par f d'au maximum un élément x de A (au maximum une précédence pour chaque objet de B).
- f est dite **bijective** si elle est à la fois injective et surjective. Ainsi, chaque élément y de B est l'image par f d'un unique élément x de A.

1.1.9 Fonction réciproque

Soit une fonction $f A \to B$ bijective.

On appelle **réciproque** de f notée rf ou f^{-1} la fonction $f^{-1}:B\to A$ définie par :

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Chaque fonction f bijective peut donc avoir une fonction réciproque f^{-1} tel que :

$$(f^{-1} \circ f)(x) = x \ \forall x \in A$$
$$(f \circ f^{-1})(y) = y \ \forall y \in B$$

1.2 Limites

1.2.1 Limite: définition

Soit f une fonction définie sur un intervalle ouvert contenant a sauf eventuellement en a.

Le nombre L est **limite de** f **en** a **si** f(x) est arbitrairement proche de L dès que x tend vers a, avec $x \neq a$. On note :

$$\lim_{x \to a} f(x) = L$$

On dit que f(x) tend vers L quand x tend vers a.

1.2.2 Limite à droite, limite à gauche

Soit f une fonction définie sur un intervalle de la forme a; d. Le nombre L est **limite à droite de f en a** si $\lim_{x\to a_+} f(x) = L$ Soit f une fonction définie sur un intervalle de la forme a; a. Le nombre L est **limite à gauche de f en a** si $\lim_{x\to a_-} f(x) = L$

1.2.3 Propriétés des limites

Soit f et g deux fonctions admettant une limitent en a et soit $\lambda \in \mathbb{R}$

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [\lambda f(x)] = \lambda \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) * g(x)] = \lim_{x \to a} f(x) * \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to a} \frac{f(x)}{\lim_{x \to a} g(x)} \text{ si } \lim_{x \to a} g(x) \neq 0$$

1.2. LIMITES 11

1.2.4 Théorème des deux gendarmes

Soit f, g et h trois fonctions définies sur un intervalle ouvert I contenant a,

sauf éventuellement en a.

Si
$$f(x) \le h(x) \le g(x) \forall x \in I /\{a\}$$
 et si $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = L$

alors
$$\lim_{x\to a} h(x) = L$$

1.2.5 Continuité

Une fonction f est **continue** en a si elle est définie sur une intervalle ouvert contenant a et si $\lim_{x\to a} f(x) = f(a)$

Une fonction f est **continue** en a si elle est continue en tout point de l'intervalle I.

Une fonction f est **continue sur un intervalle fermé** [a;b] si elle est continue en tout point de l'intervalle et si

$$\lim_{x\to a_+} f(x) = f(a)$$
 et $\lim_{x\to b_-} f(x) = f(b)$.

1.2.6 Limites de fonctions composées

Soit f et g deux fonctions.

Si $\lim_{x\to a} f(x) = L$ et si de plus g est continue en L, alors

$$\lim_{x\to a} g(f(x)) = g(\lim_{x\to a} f(x)) = g(L)$$

Si $\lim_{x\to a} f(x) = L$ et si de plus $f(x) \neq L$ sur un intervalle ouvert

contenant a, sauf éventuellement a, alors :

$$\lim_{x\to a} g(f(x)) = \lim_{t\to L} g(t)$$

1.2.7 Propriétés des fonctions continues

Continuité de la réciproque

Soit I un intervalle et $f:I\to J$ une fonction b bijective et continue.

Alors la réciproque rf est continue sur l'intervalle J.

Théorème de Bolzanno

Si f est continue sur l'intervalle [a;b] et si f(a) et f(b) sont de signes différents, alors la fonction f admet au moins un zéro dans

[a;b]

Théorème de la valeur intermédiaire

Si f est continue sur l'intervalle [a;b], alors pour tout nombre γ compris entre f(a) et f(b), il existe $c \in [a;b] \text{ tel que } f(c) = \gamma$

Théorème de Bolzanno-Weierstrass

L'image d'un intervalle fermé borné par une fonction continue est

un intervalle fermé borné

Corollaire

Une fonction continue sur un intervalle fermé [a;b] admet un maximum absolu et un minimum absolu sur cet intervalle.

1.2. LIMITES 13

1.2.8 Limites infinies

Soit f une fonction définie sur un intervalle ouvert contenant a, sauf éventuellement en a.

on écrit $\lim_{x\to a} f(x) = +\infty$ si f(x) est arbitrairement grand quand x tend vers a, avec $x \neq a$. on écrit $\lim_{x\to a} f(x) = -\infty$ si $\lim_{x\to a} (-f(x)) = +\infty$

1.2.9 Propriétés des limites infinies

$$\lim_{x\to a} f(x) = L \text{ et } \lim_{x\to a} g(x) = +\infty \Rightarrow \lim_{x\to a} [f(x) + g(x)] = +\infty$$

$$\lim_{x\to a} f(x) = L < 0 \text{ et } \lim_{x\to a} g(x) = +\infty \Rightarrow \lim_{x\to a} [f(x) * g(x)] = -\infty$$

$$\lim_{x\to a} f(x) = L \neq 0 \text{ et } \lim_{x\to a} g(x) = 0 \Rightarrow \lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = +\infty$$

$$\lim_{x\to a} f(x) = L \neq 0 \text{ et } \lim_{x\to a} g(x) = \pm\infty \Rightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = 0$$

Remarque. $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0 * \infty$ et $\infty - \infty$ sont des formes dites indéterminées.

1.2.10 Limites à l'infini

Soit f une fonction définie sur un intervalle de la forme $[a; +\infty[$. On écrit $\lim_{x\to\infty} f(x) = L$ si f(x) est arbitrairement proche de L quand x est suffisamment grand ou de manière équivalente, si $\lim_{t\to 0_+} f(\frac{1}{t}) = L$. Soit f une fonction définie sur un intervalle de la forme $]-\infty;a]$. On écrit $\lim_{x\to -\infty} f(x) = L$ si $\lim_{x\to +\infty} f(-x) = L$

1.2.11 Asymptotes

Définition. La droite d'équation x = a est une **asymptote verticale** de la fonction f si

$$\lim_{x\to a_+} |f(x)| = +\infty$$
 ou si $\lim_{x\to a_-} |f(x)| = +\infty$

Définition. La droite d'équation $y = h_1$ est une **asymptote horizontale** de la fonction f vers $+\infty$ si $\lim_{x\to+\infty} f(x) = h_1$

Définition. La droite d'équation $y = h_2$ est une **asymptote horizontale** de la fonction f vers $-\infty$ si $\lim_{x\to -\infty} f(x) = h_2$

Définition. La droite d'équation $y = h_1$ est une **asymptote horizontale** de la fonction f vers $+\infty$ si $\lim_{x\to+\infty} f(x) = h_1$

Définition. La droite d'équation y = mx + h est une **asymptote oblique** de la fonction f vers $+\infty$ si $f(x) = mx + h + \delta(x)$ avec $\lim_{x \to +\infty} \delta(x) = 0$

Définition. La droite d'équation y = mx + h est une **asymptote oblique** de la fonction f vers $-\infty$ si $f(x) = mx + h + \delta(x)$ avec $\lim_{x \to -\infty} \delta(x) = 0$

1.3. DÉRIVÉES 15

1.3 Dérivées

1.3.1 Tangeante (dérivée) en x_0

Soit deux points M et M_0 , définis par : $M_0(x_0; f(x_0))$ et M(x; f(x)). Quand x tend vers x_0 , alors M s'approche de M_0 et la droite (M_0M) tend vers une droite limite que l'on appelle **tangeante** à f(x) en M_0 . Cette tangeante en x_0 est nommée dérivée de f au point x_0 , et sa pente est donnée par la limite :

$$f'(x_0) := m = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

1.3.2 Nombre dérivé à gauche, à droite

La notion de limite a gauche (resp. à droite) permet de définir le nombre dérivé à gauche (resp. droite) d'une fonction en un point. Ceci nous permet de déterminer si la fonction est **dérivable en ce point** si les limites à gauche et à droite sont les mêmes.

Ainsi:

$$f'(x_0)$$
 existe si: $=\lim_{x\to x_{0-}} \frac{f(x)-f(x_0)}{x-x_0} = \lim_{x\to x_{0+}} \frac{f(x)-f(x_0)}{x-x_0}$

(notons ici que x_{0-} et x_{0+} représentent un nombre légèrement plus petit que x, et resp. un nombre légèrement plus grand que x.)

1.3.3 Point anguleux, à tangeante verticale, de rebroussement

• Le graphe d'une fonction f admet un **point anguleux en a** si f est continue en a et si :

$$\lim_{x \to a_{-}} f'(x) \neq \lim_{x \to a_{+}} f'(x)$$

(si la fonction f est continue en a mais non dérivable en a alors f admet un point anguleux en a.)

• Le graphe d'une fonction f admet une **tangeante verticale en a** si f est continue en a et si :

$$\lim_{x \to a_{-}} |f'(x)| = +\infty$$

ce point est un **point de rebroussement** si de plus la limite $\lim_{x\to a_-} f'(x)$ n'existe pas.

1.3.4 fonction dérivée

Définition. Une fonction f est **dérivable** sur une partie de A sur \mathbb{R} si elle est dérivable en tout points de A. On définit la fonction dérivée par :

$$f': A \to \mathbb{R}$$

 $x \to f'(x)$

1.3. DÉRIVÉES

17

Dérivées de fonction élémentaires

f(x)		f'(x)	
c		0	
x		1	
x^n	$n\in\mathbb{N}^*$	$n * x^{n-1}$	
$\frac{1}{x}$		$-\frac{1}{x^2}$	$x \neq 0$
\sqrt{x}		$\frac{1}{2\sqrt{x}}$	x > 0
cos(x)		-sin(x)	
x		sgn(x)	$x \neq 0$

Dérivées de fonction particulières

f(x)		f'(x)
x^q	$q\in\mathbb{Q}$	qx^{q-1}
tan(x)		$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
cot(x)		$\frac{-1}{\sin^2(x)} = -1 - \cot^2(x)$
arcsin(x)		$\frac{1}{\sqrt{1-x^2}}$
arccos(x)		$\frac{-1}{\sqrt{1-x^2}}$
arctan(x)		$\frac{1}{1+x^2}$

1.3.5 Dérivée d'ordre supérieur

Définition. La **dérivée d'ordre n** de f est la fonction n fois dérivée $f^{(n)}$ définie par $f^{(n)}(x) = (f^{(n-1)})'(x)$

1.3.6 Propriétés utiles

Toute fonction dérivable en a est continue en a

Si la fonction f est dérivable en a et admet un extremum en a, alors f'(a) = 0

Théorème de Rolle

Si f est une fonction continue sur l'intervalle [a;b], et dérivable sur

l'intervalle a; b et si f(a) = f(b) alors il existe au moins

un nombre c dans a; b t.q. f'(c) = 0

 $(Il\ existe\ entre\ les\ points\ A\ et\ B\ de\ "même\ hauteur"\ un\ point\ ayant\ une\ tangeante\ horizontale.)$

Théorème des accroisements finis (TAF)

Si f est une fonction continue sur l'intervalle [a;b], et dérivable

sur l'intervalle a; b[alors il existe au moins un nombre c

dans]a; b[t.q.
$$f'(c) = \frac{f(b)-f(a)}{b-a}$$

(Il existe entre les points A et B un point ayant une tangeante parrallèle à la droite AB.)

1.3. DÉRIVÉES 19

1.3.7 Règles de dérivation

Soit f et g deux fonction dérivables en a. Soit $c \in \mathbb{R}$

$$(f+g)'(a) = f'(a) + g'(a)$$

$$(f-g)'(a) = f'(a) - g'(a)$$

$$(c*f)'(a) = c*f'(a)$$

$$(f*g)'(a) = f'(a)*g(a) + f(a)*g'(a)$$

$$(\frac{f}{g})'(a) = \frac{f'(a)*g(a) - f(a)g'(a)}{g^2(a)}$$

Si f est une fonction dérivable en a et g une fonction dérivable en f(a), alors $g \circ f$ est dérivable en a et :

$$(g \circ f)'(a) = g'(f(a)) * f'(a)$$

Exemple. On "dérive en boîtes":

$$\rightarrow sin^2(2x)' =$$

- ① Dériver le carré : 2sin(2x)
- (2) Dériver le sinus : cos(2x)
- \bigcirc Dériver 2x:2
- 4 Multiplier chaque partie entre elles $:2\sin(2x)*\cos(2x)*2 = 4\sin(2x)\cos(2x)$

1.3.8 Primitives d'une fonction

Définition. Soit f une fonction définie sur un intervalle I (une partie de \mathbb{R}). Une fonction dérivable F est une **primitive** de f sur I si $F'(x) = f(x) \forall x \in I$.

On désigne généralement par $\int f(x)dx$ l'ensemble des primitives de f sur I. On l'appelle **intégrale indéfinie** de f.

Intégrer une fonction f sur un intervalle I c'est chercher toutes les primiteives de f sur I.

Si F est primitive de f sur I, alors toute primitive de f est de la forme $\mathbf{F}(\mathbf{x}) + \mathbf{c}$, avec $c \in \mathbb{R}$. On convient d'écrire :

$$\int f(x)dx = F(x) + c, \quad c \in \mathbb{R}$$

1.3.9 Primitives des fonctions élémentaires

f(x)	$\int f(x)dx$
1	$x + c c \in \mathbb{R}$
$x^q q \in \mathbb{Q} \setminus \{-1\}$	$\frac{x^{q+1}}{q+1} + c c \in \mathbb{R}$
cos(x)	$sin(x) + c c \in \mathbb{R}$
sin(x)	$-cos(x) + c c \in \mathbb{R}$

1.3. DÉRIVÉES 21

1.3.10 Propriétés élémentaires

Soit f et g deux fonctions admettant une primitive sur un intervalle I

$$\int \lambda f(x) dx = \lambda \int f(x) dx \quad \lambda \in \mathbb{R}$$

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

$$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

$$\int g(f(x)) * f'(x) dx = G(f(x)) + c \quad c \in \mathbb{R}$$
 Où G est une primitive de g .

1.4 Applications des dérivées