Хромов Н. А., Голяндина Н. Э.

High-order MSSA для выделения сигнала

1. Введение. SSA (Singular Spectrum Analysis) [1] является распространённым методом анализа и прогноза временных рядов. Этот метод используется, в частности, для выделения сигнала, тренда и периодических компонент из временного ряда. Хотя в последнее время получили распространение методы машинного обучения (например, в [2] рассматривается задача прогноза с предобработкой временного ряда методом SSA перед применением нейронных сетей для прогноза), задача анализа недлинных временных рядов не теряет своей актуальности. Ряд методов рассматривает при этом конкретные модели для сигнала/тренда (например, в [3] рассматривается полиномиальная регрессия). Метод SSA не требует задания параметрической модели, поэтому он более универсальный. Однако, при этом метод SSA хорошо работает и с моделью сигнала в виде суммы комплексных экспонент или в виде суммы экспоненциальномодулированных гармоник в вещественном случае, что позволяет оценивать параметры в этих моделях.

Метод SSA основан на сингулярном разложении особой матрицы, построенной по временному ряду; она называется траекторной. Обобщение метода SSA на случай многомерных сигналов называется MSSA [4]. Для оценки параметров временного ряда в параметрической модели методов SSA и MSSA используется метод ESPRIT [5], который также основан на сингулярном разложении траекторной матрицы и относится к классу методов, основанных на подпространстве сигнала.

В работе [6] предлагается модификация метода ESPRIT, основанная тензорном сингулярном разложении траекторного тензора, и демонстрируется преимущество такой модификации при оценке параметров, в частности, частот. При этом для случая многомерного

 $Хромов \ Никита \ Андреевич$ — студент, Санкт-Петербургский государственный университет; e-mail: hromovn@mail.ru, тел.: +7(981)509-25-94

Голяндина Нина Эдуардовна – доцент, Санкт-Петербургский государственный университет; e-mail: n.golyandina@spbu.ru, тел.: +7(911)957-20-08

Работа выполнена при финансовой поддержке РНФ, проект № 23-21-00222

временного ряда особой структуры преимущество наиболее очевидно. В данной работе мы рассматриваем аналогичную тензорную модификацию метода MSSA (HO-MSSA, где HO — сокращение от high order) для выделения сигналов из временных рядов. Целью работы является сравнение метода MSSA с его тензорной модификацией на временных рядах, аналогичных тем, что были рассмотрены в [6].

В разделе 2 описана модель рассматриваемых сигналов. В разделе 3 определены траекторная матрица и траекторный тензор, а также дано определение ранга сигнала. В этом разделе приведено утверждение о соотношении между матричным и тензорным рангами сигнала. В разделе 4 коротко описан метод MSSA и его тензорная модификация HO-MSSA для задачи выделения сигнала. Описание во всех разделах дано в более общей комплексной форме, хотя применять метод мы будем в вещественном случае. В разделе 5 описаны результаты численных сравнений.

2. Модель сигнала. Опишем рассматриваемые многомерные комплексные сигналы. Пусть дан одномерный временной ряд, состоящий из N комплексных значений $s_n,\,n=0,1,\ldots,N-1,$ и пусть этот ряд представим в виде конечной суммы R экспоненциальномодулированных комплексных гармоник

$$s_n = \sum_{j=1}^R a_j e^{-\alpha_j n} e^{i(2\pi\omega_j n + \varphi_j)}.$$
 (1)

Параметрами модели являются амплитуды $a_j \in \mathbb{R} \setminus \{0\}$, фазы $\varphi_j \in [0,2\pi)$, частоты $\omega_j \in [0,1/2]$ и степени затухания $\alpha_j \in \mathbb{R}$.

Модель многомерного сигнала имеет вид набора P одномерных сигналов вида (1), то есть

$$s_n^{(p)} = \sum_{j=1}^{R(p)} a_j^{(p)} e^{-\alpha_j^{(p)} n} e^{i\left(2\pi\omega_j^{(p)} n + \varphi_j^{(p)}\right)}, \tag{2}$$

где $n=0,1,\dots,N-1$, а p $(1\leqslant p\leqslant P)$ отвечает за номер одномерного временного ряда. Далее мы будем рассматривать частный случай такой модели, при котором параметры $R(p),\,\omega_j^{(p)}$ и $\alpha_j^{(p)}$ не зависят от номера ряда p:

$$s_n^{(p)} = \sum_{j=1}^R a_j^{(p)} e^{-\alpha_j n} e^{i\left(2\pi\omega_j n + \varphi_j^{(p)}\right)}.$$
 (3)

Это обосновано тем, что такая модель применяется в спектроскопии ядерного магнитного резонанса [7]. Кроме того, в работе [6] используется именно этот частный случай модели.

Замечание. В общем случае можно рассматривать модели временных рядов вида (1), в которых амплитуды являются ненулевыми многочленами, однако этот случай выходит за рамки этой работы.

- **3.** Ряды конечного ранга и тензорные ранги. Одними из ключевых объектов в теории SSA являются *ряды конечного ранга*. В данном разделе мы изложим теорию, касающуюся рядов конечного ранга, а затем рассмотрим теорию тензорных рангов, и приведём утверждения, связывающие ранги рядов с рангами определенных тензоров.
- **3.1. Ряды конечного ранга.** Введём несколько вспомогательных определений.

Определение 1. Оператором вложения с длиной окна L будем называть отображение, преобразующее временной ряд (возможно, комплексный) $(x_0, x_1, \ldots, x_{N-1})$ в ганкелеву матрицу размерности $L \times K$ (K = N - L + 1) следующим образом:

$$\mathbb{H}_{L}((x_{0}, x_{1}, \dots, x_{N-1})) = \begin{pmatrix} x_{0} & x_{1} & x_{2} & \dots & x_{K-1} \\ x_{1} & x_{2} & \ddots & \dots & \vdots \\ x_{2} & \ddots & \ddots & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & x_{N-2} \\ x_{L-1} & \dots & \dots & x_{N-2} & x_{N-1} \end{pmatrix}. \tag{4}$$

Определение 2. Траекторной матрицей одномерного временного ряда $(x_0, x_1, \ldots, x_{N-1})$ с длиной окна L называется матрица \mathbf{H} , полученная применением оператора вложения с длиной окна L к данному временному ряду.

Определение 3. Ряд $(x_0, x_1, \ldots, x_{N-1})$ называется рядом конечного ранга d (d < N/2), если для любой длины окна L < N такой, что $\min(L, K) \geqslant d$, траекторная матрица этого ряда, построенная по данной длине окна, имеет ранг d.

Пример 1. Временной ряд вида (1) имеет ранг, равный количеству уникальных пар (α_j, ω_j) по всем j [8].

Определение 4. Рассмотрим многомерный временной ряд

$$\left(s_0^{(p)}, s_1^{(p)}, \dots, s_{N-1}^{(p)}\right), \quad p = 1, 2, \dots, P.$$

Построим для каждого одномерного ряда $\left(s_n^{(p)}\right)_{n=0}^{N-1}$ траекторную матрицу с длиной окна L:

$$\mathbf{H}_p = \mathbb{H}_L\left(s_0^{(p)}, s_1^{(p)}, \dots, s_{N-1}^{(p)}\right).$$

Тогда траекторной матрицей данного многомерного ряда с длиной окна L называется матрица H, полученная приписыванием матриц \mathbf{H}_{p} друг за другом по столбцам:

$$\mathbf{H} = [\mathbf{H}_1 : \mathbf{H}_2 : \dots : \mathbf{H}_P]. \tag{5}$$

Замечание. Ранг многомерного ряда определяется аналогично рангу одномерного ряда с заменой траекторной матрицы одномерного ряда на траекторную матрицу многомерного ряда.

Пример 2. Многомерный временной ряд вида (2) имеет ранг, равный количеству уникальных пар $(\alpha_j^{(p)}, \omega_j^{(p)})$ по всем j и p [8]. Пример 3. Так как $\cos(2\pi\omega n + \varphi_n) = \left(e^{2\pi \mathrm{i}\omega n + \varphi_n} + e^{-2\pi \mathrm{i}\omega n - \varphi_n}\right)/2,$

то ранг ряда

$$s_n = Ae^{\alpha n}\cos(2\pi\omega n + \varphi) \tag{6}$$

с $A \neq 0$ равен 2, если $\omega \in (0,1/2)$ и равен 1, если $\omega \in \{0,1/2\}$.

Пример 4. Пусть ряд представляется в виде суммы M экспоненциальномодулированных гармоник

$$s_n = \sum_{j=1}^{M} A_j e^{\alpha_j n} \cos(2\pi\omega_j n + \varphi_j), \tag{7}$$

где $A_j \neq 0$. Обозначим

$$r(\omega) = egin{cases} 1, & \omega \in \{0, 1/2\}, \ 2, & ext{иначе}, \end{cases}$$

тогда ранг ряда (7) равен сумме $\sum_{(\omega,\alpha)\in\Omega}r(\omega),$ где Ω – множество уникальных пар (ω_j, α_j) по всем j.

3.2. Тензорные ранги.

Определение 5. Векторами тензора $\mathcal{A} \in \mathbb{C}^{I_1 \times I_2 \times ... \times I_M}$ по измерению n называются векторы вида $\left(\left(a_{i_1i_2...i_{n-1}ki_{n+1}...i_M}\right)_{k=1}^{I_n}\right)^{\mathrm{T}}$, где индексы i_j фиксированы.

Определение 6. n-Pангом тензора \mathcal{A} называют размерность линейной оболочки, построенной по векторам этого тензора по измерению n. Обозначение: $\operatorname{rank}_n(\mathcal{A})$.

Определение 7. Траекторным тензором многомерного временного ряда

$$(x_0^{(p)}, x_1^{(p)}, \dots, x_{N-1}^{(P)}), \quad p = 1, 2, \dots, P,$$

c длиной окна L называется тензор $\mathcal{H} \in \mathbb{C}^{L \times K \times P}$ (K = N - L + 1), элемент h_{lkp} которого равен $x_{l+k-2}^{(p)}$. То есть слой траекторного тензора с номером p по третьему измерению получается как траекторная матрица, построенная по ряду с номером p с длиной окна L:

$$\mathcal{H}_{\cdot \cdot p} = \mathbb{H}_L \left(\left(x_0^{(p)}, x_1^{(p)}, \dots x_{N-1}^{(p)} \right) \right). \tag{8}$$

Основываясь на виде траекторного тензора многомерного ряда, можно доказать следующее утверждение, связывающее понятие многомерного ряда конечного ранга и понятие n-рангов траекторного тензора этого ряда.

Утверждение 1. (Об *п-рангах траекторного тензора много*мерного ряда конечного ранга) Пусть временной ряд

$$(x_0^{(p)}, x_1^{(p)}, \dots, x_{N-1}^{(p)}), \quad p = 1, 2, \dots, P,$$

имеет ранг d в терминах MSSA, тогда для траекторного тензора \mathcal{H} , построенного по любой длине окна L < N такой, что $\min(L,K) \geqslant d$, выполняется $\mathrm{rank}_1(\mathcal{H}) = \mathrm{rank}_2(\mathcal{H}) = d$, а 3-ранг этого тензора равен рангу матрицы, в строках которой записаны заданные одномерные ряды.

- 4. Методы для оценки сигнала. Пусть дан некоторый многомерный сигнал вида (3). В работе [6] рассматривается задача оценки параметров ω_j и α_j такого ряда, мы же будем рассматривать задачу оценки значения самого сигнала по наблюдаемому зашумлённому сигналу. В качестве шума можно рассматривать нерегулярные колебания вокруг нуля. Мы будем рассматривать реализации независимого гауссовского шума с нулевым математическим ожиданием и одинаковой дисперсией для разных рядов.
- **4.1. MSSA.** Приведём алгоритм MSSA для решения задачи оценки многомерного сигнала по зашумлённому ряду.

На первом шаге выбирается длина окна L и по ней строится траекторная матрица \mathbf{H} (5) данного многомерного ряда. Эту матрицу можно представить в виде её сингулярного разложения (SVD)

$$\mathbf{H} = \sum_{j=1}^{d} \sigma_j U_j V_j^{\mathrm{H}},\tag{9}$$

где $d=\operatorname{rank}(\mathbf{H})\geqslant \min(L,K),\ \sigma_j$ — сингулярные числа матрицы $\mathbf{H},$ верхний индекс \mathbf{H} обозначает эрмитово сопряжение, а матрицы $\mathbf{U}=[U_1:U_2:\ldots:U_d]\in\mathbb{C}^{L\times d}$ и $\mathbf{V}=[V_1:V_2:\ldots:V_d]\in\mathbb{C}^{K\times d}$ унитарные.

Если на данный сигнал воздействует шум, то траекторная матрица будет матрицей полного ранга и тогда рассматривается наилучшее приближение траекторной матрицы матрицей заданного ранга r < d:

$$\widehat{\mathbf{H}} = \sum_{j=1}^{r} \sigma_j U_j V_j^{\mathrm{H}}.$$
 (10)

Последний шаг алгоритма – восстановление, заключается в усреднении каждой матрицы $\hat{\mathbf{H}}_p$ по побочным диагоналям, то есть

$$\widetilde{s}_n^{(p)} = \frac{1}{|M_n|} \sum_{i,j \in M_n} \widehat{h}_{ij}^{(p)}, \quad n = 0, 1, \dots, N - 1, \tag{11}$$

где $M_n = \{(i,j): i+j-2=n, 1 \leqslant i \leqslant L, 1 \leqslant j \leqslant K\}$, а $\widehat{h}_{ij}^{(p)}$ – элементы матрицы $\widehat{\mathbf{H}}_p$. Результат такого усреднения $\widetilde{s}_n^{(p)}$ считается оценкой сигнала $s_n^{(p)}$.

4.2. High-Order MSSA. В работе [6] была предложена тензорная модификация алгоритма ESPRIT для оценки параметров многомерных сигналов. В этом разделе мы приведём расширение этого алгоритма для решения задачи выделения сигнала из многомерных рядов.

Рассматриваем многомерный временной ряд с сигналом вида (3). На первом шаге выбирается длина окна 1 < L < N и по данному ряду строится траекторный тензор многомерного ряда \mathcal{H} (8). Затем траекторный тензор представляется в виде своего HO-SVD [9]

$$\mathcal{H} = \sum_{l=1}^{d_1} \sum_{k=1}^{d_2} \sum_{p=1}^{d_3} c_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}. \tag{12}$$

Из примера 2 и утверждения 1 следует, что при некоторых условиях на N и L 1- и 2-ранги траекторного тензора будут равны количеству уникальных пар $(\alpha_j^{(p)}, \omega_j^{(p)})$ по всем j и p, а 3-ранг будет равен рангу матрицы, в строках которой записаны заданные одномерные ряды. Если во временном ряде присутствует шум, то у траекторного тензора будут максимальные n-ранги, и тогда выбираются параметры r и r_3 и строится приближение траекторного тензора с 1- и 2-рангами, равными r, и 3-рангом, равным r_3 :

$$\widehat{\mathcal{H}} = \sum_{l=1}^{r} \sum_{k=1}^{r} \sum_{p=1}^{r_3} \sigma_{lkp} U_l^{(1)} \circ U_k^{(2)} \circ U_p^{(3)}.$$
(13)

Последний шаг алгоритма аналогичен по смыслу шагу восстановления в алгоритме MSSA и заключается в усреднении матрицслоёв $\widehat{\mathcal{H}}_{\cdot\cdot p}$ полученного приближения вдоль побочных диагоналей $l+k=\mathrm{const.}$

- **5. Численные сравнения.** В данном разделе приведем результаты численных сравнений метода MSSA с его тензорным аналогом HO-MSSA. Точность выделения сигнала сравнивалась с помощью RMSE оценки сигнала по 1000 реализациям шума. Сравнение проводилось на одних и тех же реализациях шума, все различия значимы при уровне значимости 0.05.
- **5.1. Сигнал с одинаковыми фазами.** Пусть временной ряд имеет вид

$$x_n^{(p)} = c_1^{(p)} e^{-0.01n} \cos(2\pi 0.2n) + c_2^{(p)} e^{-0.02n} \cos(2\pi 0.22n) + \varepsilon_n^{(p)},$$
 (14)

где $n=0,1,\dots,24,\,p=1,2,\dots,12,\,\varepsilon_n^{(p)}$ – последовательность независимых нормальных случайных величин со стандартным отклонением $\sigma=0.02.$

Будем сравнивать точность выделения сигнала при выборе оптимальных для каждого метода длин окна (для MSSA L=22, для HO-MSSA L=20). Ранг сигнала в обоих случаях равен 4, а 3-ранг траекторного тензора равен 2. Соответственно, число компонент для оценки сигнала в MSSA будем выбирать равным 4, число компонент по первым двум измерениям в HO-MSSA тоже равным 4, а по третьему измерению -2. В таблице 1 в первой строке приведены значения RMSE оценок многомерного сигнала (14) методами MSSA и HO-MSSA. Видно, что метод HO-MSSA отделил сигнал с бо́льшей

точностью, чем метод MSSA, что аналогично результатам, полученным в работе [6] для точности оценок параметров сигнала.

5.2. Сигнал с линейно меняющимися фазами. Пусть временной ряд имеет вид

$$x_n^{(p)} = c_1^{(p)} e^{-0.01n} \cos(2\pi 0.2n + p\pi/6) + c_2^{(p)} e^{-0.02n} \cos(2\pi 0.22n + p\pi/9) + \varepsilon_n^{(p)},$$
(15)

где $n=0,1,\dots,24,\,p=1,2,\dots,12,\,\varepsilon_n^{(p)}$ – последовательность независимых нормальных случайных величин со стандартным отклонением $\sigma=0.02.$

Будем сравнивать точность выделения сигнала при выборе оптимальных для каждого метода длин окна (для обоих методов оптимальное L=21). Ранг сигнала в обоих случаях равен 4, а 3-ранг траекторного тензора равен 4. Соответственно, число компонент для оценки сигнала в MSSA будем выбирать равным 4 и число компонент по всем измерениям в HO-MSSA тоже равным 4.

Таблица 1. RMSE оценки многомерного сигнала

	MSSA	HO-MSSA
сигнал (14)	0.0107	0.0079
сигнал (15)	0.00924	0.00918

Во второй строке таблицы 1 приведены значения RMSE оценок многомерного сигнала (15) методами MSSA и HO-MSSA. Видно, что метод HO-MSSA отделил сигнал с бо́льшей точностью, чем метод MSSA, однако это преимущество уменьшилось по сравнению со случаем равных фаз.

6. Заключение. В работе было показано, что тензорный вариант HO-MSSA для выделения многомерного сигнала дал точность выше, чем обычный MSSA. Соответственно, в следующих исследованиях имеет смысл развивать теорию метода HO-MSSA для увеличения точности оценивания сигнала и его компонент.

Литература

1. Golyandina N., Nekrutkin V., Zhigljavsky A. A. Analysis of Time Series Structure - SSA and Related Techniques. Chapman and Hall/CRC, 2001. 320 p.

- 2. Ежов Ф. В. Исследование гибридных моделей нейронных сетей с применением SSA на примере реальных данных // Процессы управления и устойчивость. 2022. Т. 9, № 1. С. 223–231.
- Головкина А. Г., Козынченко В. А., Клименко И. С. Метод последовательных приближений для построения модели динамической полиномиальной регрессии // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 18, Вып. 4. С. 487–500.
- 4. Golyandina N., Zhigljavsky A. Singular Spectrum Analysis for Time Series. Springer Berlin, Heidelberg, 2020. 146 p.
- 5. Roy R., Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989. Vol. 37(7). P. 984–995.
- Papy J. M., De Lathauwer L., Van Huffel S. Exponential data fitting using multilinear algebra: the single-channel and multi-channel case // Numerical Linear Algebra with Applications. 2005. Vol. 12(8). P. 809–826.
- 7. Van Huffel S., Chen H., Decanniere C., Van Hecke P. Algorithm for Time-Domain NMR Data Fitting Based on Total Least Squares // Journal of Magnetic Resonance. 1994. Vol. 110(2). P. 228–237.
- 8. Степанов Д. В., Голяндина Н. Э. Варианты метода «Гусеница»-SSA для прогноза многомерных временных рядов // Труды IV Международной конференции «Идентификация систем и задачи управления» SICPRO'05. 2005. С. 1831–1848.
- De Lathauwer L., De Moor B., Vandewalle J. A Multilinear Singular Value Decomposition // SIAM Journal on Matrix Analysis and Applications. 2000. Vol. 21(4). P. 1253-1278.