Definiciones

Juan Rodríguez

Contents

Métrica o Distancia
Continuidad
Función continua en espacios métricos
Caracterización topológica de continuidad
Espacios topológicos
Topología
Base de una topología
Topología heredada
Topología inducida por una distancia
Topología del orden
Topología producto
Conceptos básicos
Conjunto abierto
Conjunto cerrado
Punto fronterizo y frontera
Interior
Clausura
Puntos de acumulación
Puntos aislados
Densidad
Conjunto denso
Conjunto no denso en ninguna parte
Conjunto no denso en minguna parte
Axiomas de Separación T
Propiedad de Fréchet (T1)
Propiedad de Hausdorff (T2)
Axiomas de Numerabilidad
Primer Axioma de Numerabilidad (1AN)
Segundo Axioma de Numerabilidad (2AN)
begundo Italonia de Ivanierabilidad (2/111)
Homeomorfismo

Métrica o Distancia

Sea X un conjunto. Se dice que $d: X \times X \to \mathbb{R}$ define una **distancia** (o **métrica**) en X si se cumplen las siguientes propiedades:

- 1. d(x,y) = 0 si y solo si x = y (Reflexiva)
- 2. d(x,y) = d(y,x) (Simetría)
- 3. $d(x,y) \le d(x,z) + d(z,y)$ para todo $x,y,z \in X$ (Designal triangular)

En estas condiciones, el par (X, d) se denomina **espacio métrico**.

Continuidad

Función continua en espacios métricos

Sean (X_1, d_1) y (X_2, d_2) espacios métricos. La función $f: X_1 \to X_2$ se dice **continua** en un punto $x \in X_1$ si y solo si:

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{tal que } f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x)).$$

La función f se llama **continua** si lo es en todos los puntos de su dominio.

Caracterización topológica de continuidad

Sea $f: X_1 \to X_2$ una función entre espacios topológicos. La función f es **continua** si y solo si la preimagen de todo conjunto abierto de X_2 es abierta en X_1 ; es decir,

$$\forall A \subseteq X_2 \text{ abierto}, \quad f^{-1}(A) \text{ es abierto en } X_1.$$

Espacios topológicos

Topología

Dado un conjunto X, se dice que una colección de subconjuntos \mathcal{T} de X es una **topología** si se cumplen las siguientes propiedades:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. La intersección de un número finito de elementos de \mathcal{T} también pertenece a \mathcal{T} :

$$\bigcap_{i=1}^{k} T_i \in \mathcal{T}$$

3. La unión de cualquier número (posiblemente infinito) de elementos de $\mathcal T$ también pertenece a $\mathcal T$:

$$\bigcup_{i\in I} T_i \in \mathcal{T}$$

La pareja (X, \mathcal{T}) se llama **espacio topológico**, y los elementos de \mathcal{T} se denominan abiertos.

Base de una topología

Una colección de subconjuntos B_i de X se llama **base** si:

$$\forall x \in X, \exists B_i \in \mathcal{B} : x \in B_i$$

Además, si un punto está en la intersección de dos elementos, hay un elemento de la base en la intersección que contiene este punto

$$\forall x \in B_1 \cap B_2, \ \exists B_3 \in \mathcal{B} : x \in B_3 \subseteq B_1 \cap B_2.$$

Topología heredada

Si tenemos un espacio topológico (X, \mathcal{T}) y un subconjunto $A \subseteq X$, podemos definir una topología en A dada por:

$$\mathcal{T}_A = \{ A \cap T : T \in \mathcal{T} \}.$$

La pareja (A, \mathcal{T}_A) se llama **topología heredada** de X.

Topología inducida por una distancia

Cualquier función de distancia d en un conjunto X permite definir **bolas abiertas** como los conjuntos de puntos que están a una distancia menor que una dada respecto de un centro:

$$B_r(x) = \{ y \in X : d(x, y) < r \}.$$

Si tomamos estas bolas abiertas como base de nuestra topología, la topología resultante se llama **topología inducida por una distancia**.

Topología del orden

Dado un conjunto ordenado X, la **topología del orden** es la generada por la base de intervalos abiertos de la forma $(a,b) = \{x \in X : a < x < b\}$, añadiendo además los conjuntos $[\min(X), b)$ y $(a, \max(X)]$ si estos extremos existen en X.

Topología producto

Si (X, \mathcal{T}_1) y (Y, \mathcal{T}_2) son espacios topológicos, se llama **topología producto** en $X \times Y$ a la topología cuya base está formada por todos los productos cartesianos de conjuntos abiertos de los espacios originales:

$$\mathcal{B} = \{ U \times V : U \in \mathcal{T}_1, \ V \in \mathcal{T}_2 \}.$$

Conceptos básicos

Conjunto abierto

Un conjunto $A \subseteq X$ se llama **abierto** si para cada punto $x \in A$ existe un entorno abierto U tal que $x \in U \subseteq A$.

Conjunto cerrado

Un conjunto $A \subseteq X$ se llama **cerrado** si contiene a todos sus puntos frontera, o equivalentemente, si su complementario $X \setminus A$ es abierto.

Punto fronterizo y frontera

Un punto $x \in X$ se llama **fronterizo** de un conjunto A si todo entorno de x contiene puntos de A y de su complementario $X \setminus A$. El conjunto de todos los puntos fronterizos de A se llama la **frontera** de A, denotada Fr(A).

Interior

El **interior** de un conjunto A, denotado Int(A), es el mayor conjunto abierto contenido en A. Equivalentemente, es la unión de todos los abiertos contenidos en A.

Clausura

La **clausura** de un conjunto A, denotada \overline{A} , es el menor conjunto cerrado que contiene a A. Se puede expresar como $\overline{A} = A \cup Fr(A)$.

Puntos de acumulación

Un punto $x \in X$ se llama **punto de acumulación** (o límite) de un conjunto A si todo entorno de x contiene algún punto de A distinto de x. El conjunto de todos los puntos de acumulación de A se denota por A'.

Puntos aislados

Los **puntos aislados** de un conjunto A son aquellos que pertenecen a \overline{A} pero no son puntos de acumulación, es decir, los elementos de $\overline{A} \setminus A'$.

Densidad

Conjunto denso

Un subconjunto $H \subseteq X$ se llama **denso** en X si su clausura es todo el espacio, es decir:

$$\overline{H} = X$$
.

Equivalentemente, H es denso si su intersección con cualquier abierto no vacío de X es no vacía. Intuitivamente, los puntos de H se aproximan arbitrariamente a cualquier punto de X.

Conjunto no denso en ninguna parte

Un subconjunto $A \subseteq X$ se llama **no denso en ninguna parte** si el interior de su clausura es vacío:

$$\operatorname{Int}(\overline{A})=\varnothing.$$

Esto significa que A sólo puede ser frontera.

Axiomas de Separación T

Propiedad de Fréchet (T₁)

Un espacio topológico X es $\mathbf{T_1}$ si para cada par de puntos distintos $x_1, x_2 \in X$, existen entornos abiertos $U_1, U_2 \subseteq X$ tales que:

$$x_1 \in U_1, \quad x_2 \notin U_1, \quad \mathbf{y} \quad x_2 \in U_2, \quad x_1 \notin U_2.$$

Equivalente a decir que todos los puntos de X son conjuntos cerrados.

Propiedad de Hausdorff (T₂)

Un espacio topológico X es **Hausdorff** o $\mathbf{T_2}$ si para cada par de puntos distintos $x_1, x_2 \in X$, existen entornos abiertos disjuntos $U_1, U_2 \subseteq X$ tales que:

$$x_1 \in U_1$$
, $x_2 \in U_2$, $y \quad U_1 \cap U_2 = \varnothing$.

Intuitivamente, los puntos de un espacio Hausdorff "viven en casas separadas".

Axiomas de Numerabilidad

Primer Axioma de Numerabilidad (1AN)

Un espacio topológico X satisface el **primer axioma de numerabilidad** si para cada punto $x \in X$ existe una colección numerable de entornos $\{A_i(x)\}_{i\in\mathbb{N}}$ tal que todo entorno abierto B(x) de x contiene al menos uno de los $A_i(x)$.

Todo espacio metrizable cumple el primer axioma de numerabilidad.

Segundo Axioma de Numerabilidad (2AN)

Un espacio topológico X satisface el **segundo axioma de numerabilidad** si la topología de X tiene una base numerable, es decir, existe una familia numerable de abiertos $\{B_i\}_{i\in\mathbb{N}}$ tal que todo abierto de X puede expresarse como unión de algunos de los B_i .

Homeomorfismo

Sea $f: X \to Y$ una biyección entre espacios topológicos. Se dice que f es un **homeomorfismo** si f es continua y abierta (es decir, si la imagen de cualquier conjunto abierto de X es abierta en Y).

Equivalentemente, f es homeomorfismo si f y su inversa f^{-1} son continuas.

En tal caso, los espacios X y Y se dicen **homeomorfos**, lo que significa que son topológicamente equivalentes.