

мотіvатіом: HTC, CERN & energy consumption: Higgs boson and the future

TOOLS: Measuring energy consumption

SOLUTION 1: ARM IN HTC

solution 2: Task scheduling algorithm in dynamic pricing markets

MOTIVATION: HTC, CERN & ENERGY CONSUMPTION

MOTIVATION: HTC, CERN & ENERGY CONSUMPTION

Lots of data

(1 Petabyte/s \rightarrow 200 MB/s)

MOTIVATION: HTC, CERN & ENERGY CONSUMPTION

In 2012, the Worldwide LHC computing grid equivalent capacity of

80,000 to **100,000** x86-64 cores

result: Higgs Boson tracked down

4 future

MOTIVATION: HTC, CERN & ENERGY CONSUMPTION

Future

data will increase **2** - **3** orders of magnitude processing power in proportion

Expectable to happen throughout all HTC industry

MOTIVATION: HTC, CERN & ENERGY CONSUMPTION

How to decrease electricity bill?

6 first: measure

TOOLS: MEASURING ENERGY EFFICIENCY

Techniques and **tools** for measuring power consumption are important ...

7 complexity

TOOLS: MEASURING ENERGY EFFICIENCY

... and systems are **complex**

several layers and granularities

TOOLS: MEASURING ENERGY EFFICIENCY

External measurements

Power consumed without breaking down the system into components

TOOLS: MEASURING ENERGY EFFICIENCY

On-chip measurements

Power consumed by different components of the CPU

MOTIVATION: HTC, CERN & ENERGY CONSUMPTION

back to our main problem:

How to decrease electricity bill?

SOLUTION 1: ARM IN HTC?

Are smartphones' CPUs

the future of High Throughput Processing?

SOLUTION 1: ARM IN HTC?

Experiments

ARCHITECTURES: ARM machine vs INTEL machine

WORKLOAD: **events** (ratio nr. events/per core variable)

ENERGY PERF METRIC: events/second/watts (e/s/W) → the higher the better

MEASUREMENTS: external and internal

SOLUTION 1: ARM IN HTC?

SOLUTION 1: ARM IN HTC?

energy efficiency

VS

speed

MOTIVATION: HTC, CERN & ENERGY CONSUMPTION

back to our main problem:

How to decrease electricity bill?

SOLUTION 2: DYNAMIC PRICING AND TASK SCHEDULING

Algorithm to schedule tasks across different computing architectures in a dynamic pricing energy market

SOLUTION 2: DYNAMIC PRICING AND TASK SCHEDULING

Use expensive machines when energy is cheaper

SOLUTION 2: DYNAMIC PRICING AND TASK SCHEDULING

Dynamic electricity price

Machines with different energy profiles

ARM more energy efficient, slower

INTEL less energy efficient, faster

19 idea

SOLUTION 2: DYNAMIC PRICING AND TASK SCHEDULING

Idea (simplified)

Schedule tasks to **INTEL** when electricity is cheaper

Schedule tasks to **ARM** when electricity is more expensive

20 how

SOLUTION 2: DYNAMIC PRICING AND TASK SCHEDULING

How

Algorithm that computes which machines should compute data based on:

- **deadline** (how many tasks in how much time)
- energy pricing dynamics
- energy profiling of the machines

21

CONCLUSIONS

SOLUTION 2:

PROBLEM: Energy consumption is bottleneck in HTC

SOLUTION 1: ARM shows potential for HTC (but tradeoffs)

Scheduling tasks based on energy pricing

How to measure energy consumption in complex systems?

backup

IgProf

application profiler developed at CERN by the CMS software team

general purpose. open source. not experiment specific measures performance (time spent in functions) and memory usage at *runtime*

allows developer to understand:

bottlenecks where code needs to be optimised

cross platform: recently ported to 64-bit ARM, also supports 32-bit ARM, Intel x86 and x86-64

IgProf & energy profiling

Uses RAPL and PAPI to measure energy consumed.

Map functions and low level operations with **energy consumption**

more info (strategies, results, examples)
paper and http://igprof.org/

Running Average Power Limiting (RAPL) by Intel

Provides a platform for power monitoring and power limiting of SoC.

Different sampling domains

package (PKG), DRAM, core

Low level measurements package, cores, dram

Resolution according to Intel, sampling frequency up to ~1 kHz

Power capping is also supported by RAPL

Accuracy high (according to *Intel*)

Example of RAPL

package
DRAM
cores

System with 4 sockets

Sockets #0 and #1 working

Sockets #2 and #3 idle

Possible to understand how packages, cores & dram consume energy

Comparison ARM vs Intel

Comparison ARMv7 vs Intel XEON

32bit ARMv7 is used on smartphones. comparison with Intel XEON

measurements	Internal
	RAPL for Intel
	cross platform chip monitor integrated (TI INA 231) for ARMv7
	External
	D. F. HOMO

Workload ParFullCMS

Multithreaded

Geant4 benchmark application

Uses the CMS geometry

ARMv7 Exynos5 Octa Cortex™

4x A15 @ 1.6Ghz and/or A7 cores (big.LITTLE technology)

2 GB RAM

ARMv7/32bit

development board

Intel 32x Intel™ Xeon™ CPU E5-2650 @ 2.00GHz 252 GB RAM

system on a rack

Dynamic Pricing algorithm

Dynamic Pricing (considering power in ev/s/W conversion)

```
ARM
                  0.063 \text{ ev/s/W} * 7.5 \text{ W} = 0.4725 \text{ ev/s} (40 824 \text{ ev/day})
workload
price
                  0.0003 euros per hour per machine (0.0072 euros/day)
                  (0.0072 \text{ euros/day}) / (40 824 \text{ ev/day}) = 1.7*10^-7 \text{ euros/ev}
INTEL
workload
                  0.023 \text{ ev/s/W} * 368 \text{ W} = 8.464 \text{ ev/s} (731 289 \text{ ev/day})
price
                  0.01472 euros per hour per machine (0.35328 euros/day)
                  (0.35328 \text{ euros/day}) / (731 289 \text{ ev/day}) = 4.8*10^-7 \text{ euros/ev}
```

Using algorithm

Data needed:

	Price per event	Total events per day	
bucket 1 (ARM low)	8.8 *10^-8 €	40 824/2	
bucket 2 (ARM high)	2.6 *10^-7 €	40 824/2	
bucket 3 (Intel low)	2.4 *10^-6 €	731 289/2	
bucket 4 (Intel high)	7.2 *10^-6 €	731 289/2	

Output:

Final price

			Events processed					
			1 day	2 days	10 days	30 days	75 days	100 days
	ADM	bucket_1 (20€/Mwh)	not possible	40824	204120	612360	1200000	1200000
	ARM	bucket_2 (60€/Mwh)	not possible	40824	204120	587640	0	0
	INTEL	bucket_3 (20€/Mwh)	not possible	731288	791760	0	0	0
		bucket_4 (60€/Mwh)	not possible	387064	0	0	0	0
wo r	Total Price machines. 120 000 eve		- ents. variab	4.55€ ole deadline	1.97€	0.206€	0.106€	0.106€

Scheduling Algorithm

```
days = 10
nr events = 1200000
bucket 1 = {
    'price ev': 8.8*10**-8,
    'nr ev day': 40824/2,
    'name': 'ARM LOW'
bucket 2 = {
    'price ev': 2.6*10**-7,
    'nr ev day': 40824/2,
    'name': 'ARM HIGH'
bucket 3 = {
    'price ev': 2.4*10**-6,
    'nr ev day': 731289/2,
    'name': 'INTEL LOW'
bucket 4 = {
    'price ev': 7.2*10**-6,
    'nr ev day': 731289/2,
    'name': 'INTEL HIGH'
result = scheduler([bucket_1, bucket_2, bucket_3, bucket_4], days, nr_events)
print result
```

Scheduling Algorithm

```
def scheduler(buckets, days, nr_events):
        nr events left = nr events
        final prices = []
        sorted(buckets) #sorts according to price per event, from lowest to highest
        for bucket in buckets:
            nr possible ev process = bucket['nr ev day'] * days
            nr_ev_process = nr_events_left if nr_possible_ev_process > nr_events left \
                else nr possible ev process
12
            price = bucket['price ev'] * nr ev process
            final prices.append(price)
            print bucket['name']+' processed '+ str(nr ev process)
            nr events left -= nr ev process
            if (nr_events left = 0):
                return sum(final prices)
        return 'ERR: not enough machine processing power to process events before the deadline'
```

Scheduling Algorithm (comparison/ inspiration)

Jobshop algorithm

- → limited set of tasks
- → limited set of resources
- → tries to schedule the tasks to the machines so that all tasks are completed the least amount of time possible

Differences:

- \rightarrow limited set of time
- → machines are not equal (different energy profile)
- → **Not online algorithm**: (online: each job is presented and algorithm has to make decision before next job)

 In our algorithm, all the information the algorithm needs to schedule the tasks is given upfront (for a defined chunk of time);

Others

ARMv8 in HTC

```
Under the circumstances of the experiment, the overall results show that APM X-Gene is 2.73 slower than Intel Xeon Phi. From the energy consumption performance (events per second per watt), the Intel Xeon E-2650 is the most efficient, with APM X-Gene presenting similar performance despite the absence of platform specific optimizations. Therefore, \cite{ACAT14ARMDAVID} concludes by stating that the APM X-Gene 1 Server-On-Chip ARMv8 64-bit solution is relevant and potentially interesting platform for heterogeneous high-density computing.
```

source: Abdurachmanov, D., Bockelman, B., Elmer, P., Eulisse, G., Knight, R., and Muzaffar, S. *Heterogeneous high throughput scientific computing with APM x-gene and intel xeon phi*. CoRR abs/1410.3441 (2014).