- 12.3 Determine the phase sequence of a balanced threephase circuit in which $V_{bn} = 440/130^{\circ}$ V and $V_{cn} = 440/10^{\circ}$ V. Obtain V_{an} .
- 12.7 Obtain the line currents in the three-phase circuit of Fig. 12.42 on the next page.

Figure 12.42 For Prob. 12.7.

12.11 In the Y- Δ system shown in Fig. 12.44, the source is a positive sequence with $\mathbf{V}_{an} = 240 / 0^{\circ} \, \mathrm{V}$ and phase impedance $\mathbf{Z}_p = 2 - j3 \, \Omega$. Calculate the line voltage \mathbf{V}_L and the line current \mathbf{I}_L .

Figure 12.44

For Prob. 12.11.

12.22 Find the line currents I_a , I_b , and I_c in the three-phase network of Fig. 12.53 below. Take $Z_{\Delta} = 12 - j15 \Omega$, $Z_Y = 4 + j6 \Omega$, and $Z_l = 2 \Omega$.

Figure 12.53 For Prob. 12.22.

- 12.31 A balanced delta-connected load is supplied by a 60-Hz three-phase source with a line voltage of 240 V. Each load phase draws 6 kW at a lagging power factor of 0.8. Find:
 - (a) the load impedance per phase
 - (b) the line current
 - (c) the value of capacitance needed to be connected in parallel with each load phase to minimize the current from the source
- 12.33 A three-phase source delivers 4.8 kVA to a wyeconnected load with a phase voltage of 208 V and a power factor of 0.9 lagging. Calculate the source line current and the source line voltage.
 - 12.55 A three-phase supply, with the line voltage 240 V rms positively phased, has an unbalanced delta-connected load as shown in Fig. 12.62. Find the phase currents and the total complex power.

Figure **12.62** For Prob. 12.55.

- 12.66 A three-phase, four-wire system operating with a 208-V line voltage is shown in Fig. 12.71. The source voltages are balanced. The power absorbed by the resistive wye-connected load is measured by the three-wattmeter method. Calculate:
 - (a) the voltage to neutral
 - (b) the currents I_1 , I_2 , I_3 , and I_n
 - (c) the readings of the wattmeters
 - (d) the total power absorbed by the load

Figure 12.71 For Prob. 12.66.