Convergence

Since there are some problems about mathjax, I also upload the pdf version \(\subseteq Large \) Sample \(\subseteq 7 \) Convergence.

Basic Notation

- $M_n(\theta) = \frac{1}{n} \sum_{i=1}^n l_\theta(X_i) = P_n l_\theta$
- $M(\theta) = \mathbb{P}l_{\theta}$
- $\bullet \ \ \Delta_n(\theta) = \left\{ M_n(\theta) M(\theta) \right\} \left\{ M_n\left(\theta_0\right) M\left(\theta_0\right) \right\} = \left(P_n \mathbb{P}\right) \left(l_\theta l_{\theta_0}\right)$
- \mathcal{D} : A metric space.

Basic Definition

- Modulus of Continuity:
 - $ullet \ f:T o \mathbb{R}, w_f(\delta)=\sup_{
 ho(s,t)<\delta}\mid f(s)-f(t)$
 - $ullet \ \mathbb{W}_n(\delta) = \sup_{d(heta, heta_0) \leq \delta} |\Delta_n(heta)|$
- Weak Convergence $X_n \stackrel{d}{\to} X \colon \mathbb{E} \{ f(X_n) \} \to \mathbb{E} \{ f(X) \}$ for all bounded and (Lipschitz) continuous function f;
- **Tightness**: $X:\Omega\to\mathcal{D}$ is tight if $\forall\epsilon>0$, $\exists K\subset\mathcal{D}$ compact s.t. $\mathbb{P}(X\in K)>1-\epsilon$;
- Asymptotically Tight: $\{X_n\}: \Omega \to \mathcal{D}$ is asymptotically tight if $\forall \epsilon > 0, \exists K \subset \mathcal{D}$, s.t. $\limsup_{n \to \infty} \mathbb{P}\left(X_n \notin K^{\delta}\right) < \epsilon$ where $K^{\delta} = K + \delta B(0,1)$.
- $L^{\infty}(T) = \{f : ||f||_{\infty} < \infty\}$ where T is compact;
- $\bullet \ \ UC(T,\rho)=\{f:T\to \mathbb{R} \ \text{is uniformly continuous}\};$
- Equicontinuous: $\mathcal{F} = \{f\}$ is equicontinuous if $\lim_{\delta\downarrow 0} \sup_{f\in\mathcal{F}} w_f(\delta) = 0$;
- Asymptotically Equicontinuous: $\{X_n\}$ is asymptotically equicontinuous if $\forall \epsilon, \eta > 0, \exists$ finite partition of $T, \{T_1, \cdots, T_k\}$ s.t. $\limsup_{n \to \infty} \mathbb{P}\left(\max_{1 \le i \le k} \sup_{s,t \in T_i} |X_{n,s} X_{n,t}| \ge \epsilon\right) \le \eta$

Theorems

Prohorov Theorem

- If $X_n \stackrel{d}{\to} X$, X is tight $\Leftrightarrow X_n$ is asymptotically tight;
- If X_n is asymptotically, then $\exists \{X_{n_k}\} \& X$ tight s.t. $X_{n_k} \stackrel{d}{\to} X$.

Arzela-Ascoli Theorem

For compact metric space (T, ρ)

- $\mathcal{F} \subseteq UC(T, \rho)$ is relatively compact w.r.t supremum norm \Leftrightarrow
- ullet is uniformly equicontinuous and $\exists t_0 \in T \; ext{s.t. sup} \; _{f \in \mathcal{F}} \left| f \left(t_0
 ight)
 ight| < \infty$

Weak Convergence in $L^{\infty}(T)$

For $X_n \in L^\infty(T)$, for $X \in UC(T, \rho)$ is tight we have $X_n \stackrel{d}{ o} X \Leftrightarrow$

ullet Finite Dimensional Convergence: $orall k < \infty, t_1, \ldots, t_k \in T$

$$(X_{n,t_1},\ldots,X_{n,t_k})\stackrel{d}{
ightarrow}(X_{t_1},\ldots,X_{t_k})$$

ullet X_n is asymptotically equicontinuous.

Donsker Class

 $\mathcal{F}\subset L^\infty(\mathcal{F})\,$ is called $\mathbb P$ -Donsker if

$$\left(\sqrt{n}\left(P_{n}-\mathbb{P}
ight)f_{1},\cdots,\sqrt{n}\left(P_{n}-\mathbb{P}
ight)f_{k}
ight)
ightarrow\left(G_{f_{1}},\ldots,G_{f_{k}}
ight)$$

where G is a gaussian process and $\mathrm{cov}ig(G_{f_i},G_{f_k}ig)=\mathrm{cov}\{f_i(X),f_j(X)\}, ext{ where } X\sim \mathbb{P}.$

Some sufficient Conditions

ullet Let $\mathcal{F}=\{f:\mathcal{X} o\mathbb{R}\}$ with an envelop function F that $\mathbb{P}F^2<\infty$ and

$$\int_0^\infty \sup_Q \sqrt{\log N\left(\|F\|_{L_2(Q)}\epsilon, \mathcal{F}, L_2(Q)
ight)} \mathrm{d}\epsilon < \infty$$

Then \mathcal{F} is a \mathbb{P} -Donsker.

• When $\mathcal F$ is a VC-subgraph-class of functions with envelop function F that $\mathbb PF^2<\infty$, then $\mathcal F$ is a $\mathbb P$ -Donsker.

Example (Kolmogorov-Smirnoff test)

Suppose $X_1,\ldots,X_n\stackrel{\mathrm{i.i.d}}{\sim} F$ (continuous) and aim to test $\mathcal{H}_0: F=F_0$ with test statistics $KS_n=\sqrt{n}\sup_{t\in\mathbb{R}}|F_n(t)-F_0(t)|$. Under \mathcal{H}_0 , $KS_n=\sqrt{n}\sup_{t\in\mathbb{R}}|F_n(t)-F(t)|=\sup_{f\in\mathcal{F}}|\sqrt{n}\left(P_n-\mathbb{P}\right)f|$ where $\mathcal{F}=\{\mathbf{1}[\cdot\leq t],t\in\mathbb{R}\}$. Then, \mathcal{F} is a Donsker class and then we can use gaussian process to conduct hypothesis test.

Reference

• Convergence Rate and Convergence in Law