

长1176mm, 宽583mm, 高390 (593) mm

调试口 网口(与RCU通信); USB口(预留接口); HDMI口(预留接口); 当工控机放置在底盘内是可 将内部USB和HDMI线接入 工控机; 注意: 前方两个盖子应从下往上掀开

保险盒检修口

1.2 内部空间

- •拥有足够的内部空间,计算单元,导航单元等都可以内置。
- •灵活方便的内部零件安装支架。

1.3 转向方式

- 同时支持阿克曼转向和四轮差速转向。
- 使用阿克曼转向方式时, 轮胎磨损小, 电机负荷小, 省电续航高。

底盘介绍

• 使用四轮差速转向方式时, 转向灵活, 可以原地转向。

最小转弯半径1.2m

最小转弯半径0m

1.4 性能参数

型号	Heisenberg	最大爬坡角度	15°
尺寸 (不计算Lidar支架)	1176×583×588mm	最小离地间隙	50mm
轴距	510mm	驱动方式	四轮驱动
轮距	485mm	驻车功能	线驱动自锁驻车
最高时速	7.2Km/h(空载)	上位机通信接口	Ethernet TCP/IP
最大载重	100Kg	电池参数	48V 22Ah
最大续航	20Km	充电时间	5h
遥控器最大距离	100m	电机尺寸	8寸 直径203mm
最小离地间隙	50mm	电机参数	350W x 4
转向方式	前轮阿克曼/四轮差速传向	防护等级	IP22
最大转向角	30°	重量	≤80Kg
最小转弯半径	0m @四轮差速转向 1.2m @阿克曼转向	外部接口	USB 3.0 x 1 Ethernet RJ45 x 1 HDMI 2.0 x 1

遥控器操作

2.1 遥控器简介

手刹推杆

Handbrake Off: 释放手刹

Handbrake On:拉起手刹

控制模式推杆

Remote: 遥控器控制 Self-Driving: ROS控制

遥控器开关旋钮

OFF: 关 ON: 开

键盘锁 按下之后屏幕显示上锁, 再按其他按钮无响应再 次按下恢复

急停按钮 按下急停旋转松开急停

2.1 遥控器简介

速度挡位调节

D:1.0m/s

N:1.5m/s

R:2.0m/s

转向方式切换

Four-wheel: 差速转向

Front-wheel: 阿克曼转向

转向推杆 转向半径与推杆幅度成正比

速度推杆 速度大小与推杆幅度成正比

3.1 传感器简介

CGI-410

BFS-PGE-16S2C-CS

3.2 传感器供电

底盘介绍

RS-Helios-5515

线束	32
帧率	10Hz/20 Hz
转速	600/1200rpm
测距能力	0.2m-150m
水平视场角	360°
垂直视场角	70° (-55°~+15°)
水平角分辨率	0.2°/0.4°
垂直角分辨率	最小0.33°
输出接口	百兆以太网
出点数	576000 pts/s
工作电压	9V - 32V DC
产品功率	12W
工作温度	-30°C ~ +60°C
防护等级	IP67

底盘介绍

3.3 传感器参数

航插接口

Pin	Color	Function	Operating Voltage Range	Working Current	Other
1	Red	PWR	9~32V	1 94	
2	Black	PWR	9 321	1. 2A	
3	Gray	GND	,	1 04	
4	Blue	GND	/	1. 2A	,
5	Brown	GPS_PPS	3~15V		/
6	White	GPS_GPRMC	-15V~+15V		
7	Purple	SYNC_OUT1		,	
8	Green	SYNC_OUT2	0~3.3V	/	
9	Orange	TRD_N	0 3.31		Twisted Pair
10	Yellow	TRD_P			Iwisted Pair

航插接口引脚序号

Interface BOX 具有电源指示灯及各类的接口,可接驳电源输入、RJ45 网口及 GPS 输入线

电源输入、网络接口、GPS 授时

电源正常工作时,红色和绿色电源输出指示灯亮起。当电源指示灯暗灭时,InterfaceBOX可能工作不正常。请检查电源输入是否正常,如电源输入正常,即Interface BOX可能已经损坏。

PIN1-PIN6顺序为从左往右 PIN1连接GPS的秒脉冲信号 PIN4连接GPS的GPRMC输出口 PIN5连接GPS的触发地

Pin No.	Function
1	GPS_PPS
2	+5V
3	GND
4	GPS_GPRMC
5	GND
6	SYNC_OUT1

CGI-410

姿态精度	0.1° (基线长度≥2m)
定位精度 (RMS)	RTK 1cm+1ppm
数据更新率	100Hz
初始化时间	1min
陀螺类型	MEMS
陀螺量程	±400°/s
陀螺零偏稳定性	6°/h
加速度计量程	±8g
加速度计零偏稳定性	0.02mg
输入电压	9 ~ 32V DC
功耗	< 5W

GNSS1: TNC 母头接口, 定位天线

GNSS2: TNC 母头接口, 定向天线

4G: TNC 母头接口, 外接 4G 天线

COM: 航空接插件,外接电源以及数据线(母头)

19 PIN 航空接插线主要包括 3 个 RS232 接口, 1 个 RJ45 网口, 1 个 CAN 接口, 1 个SMA接口以及1个电源口。

航空PIN序	DB9 PIN序	定义	端口
G	5	GND	
T	3	RXD	A_RS232 (NMEA 数据)
С	2	TXD	CHARLES SAME
M	8	DDC	CMA (FISI)
G	壳/屏蔽	PPS	SMA(母头)

A_RS232: 可通过网页配置,输出 NMEA 数据。

可给激光雷达提供GPRMC 数据

G	5	GND	C_RS232
E	3	RXD	(组合导航数据 GPCHC)_
P	2	TXD	<u> </u>

C_RS232:可通过网页配置选择输出组合导航融合数据(包括 GPCHC、GPGGA、GPRMC),最高输出频率 100HZ,默认波特率 230400

\$GPCHC,GPSWeek,GPSTime,Heading,Pitch,Roll,gyro x,gyro y,gyro z,acc x,acc y, accz,Latitude,Longitude,Altitude,Ve,Vn,Vu,V,NS1,NS2,Status,Age,Warming,Cs<CR><LF>

字段	名称	说明	格式	举例
1	Header	GPCHC 协议头	\$GPCHC	\$GPCHC
2	GPSWeek	自 1980-1-6 至当前的 星期数(格林尼治时 间)	wwww	1980
3	GPSTime	自本周日 0:00:00 至当 前的秒数(格林尼治 时间)	SSSSSS.SS	16897.68

C_RS232:可通过网页配置选择输出组合导航融合数据(包括 GPCHC、GPGGA、GPRMC),最高输出频率 100HZ,默认波特率 230400

4	Heading	北方向为0°,順时 针增加 单位:°	hhh.hh	289.19
5	Pitch	俯仰角 (-90 至 90) 前高后低为正 单位: °	+/ - pp.pp	-0.42
6	Roll	横滚角 (-180至 180) 左高右低为正 单位: °	+/ - nr.rr	0.21
7	gyro x	陀螺 X 轴 单位:°/s	+/-ggg.gg	-0.23
8	gyro y	陀螺 Y 轴 单位:°/s	+/ - ggg.gg	0.07
9	gyro z	陀螺 Z 轴 单位:°/s	+/-ggg.gg	-0.06
10	ace x	加表 X 轴 单位: g (g=9.806)	+/-a.aaaa	0.0009
11	acc y	加表 Y 轴 单位: g (g=9.806)	+/-a.aaaa	0.0048
12	acc z	加表 Z 轴 单位: g (g=9.806)	+/-a.aaaa	-1.0037
13	Latitude	纬度(-90至90) 单位:°	+/- .	38.8594969
14	Longitude	经度 (-180 至 180) 単位: °	+/-11,1111111	121.515007 3
15	Altitude	高度,单位(米)	+/-aaaaa.aa	121.51
16	Ve	东向速度,单位(米/ 秒)	+/-eee.eee	-0.023
17	Vn	北向速度,单位(米/ 秒)	+/-nnn.nnn	0.011
18	Vu	天向速度,单位(米/ 秒)	+/-иии. иии	0.000
19	V	车辆速度,单位(米/	+/-uuu.uuu	1.500

		秒)		
20	NSV1	主天线1卫星数	nn	14
21	NSV2	副天线2卫星数	nn	6
22	Status	系统状态 (低半字 节): 0 初始化 1 卫导模式 2 组合导射模式 3 纯惯专高。 工星状态 (1): (0: 不定位不定向; 1: 单点定位分定位定向; 2: 伪距组发; 4: RIK 稳定解定位定点; 6: 全位不定向; 7: 伪距差分定位不定向; 8: RIK 稳定解定位不定向; 7: 伪距差分定位不定向; 8: RIK 稳定解定位不定向; 9-RIK 程度解定位不定向; 9-RIK 稳定解定位不定向; 9-RIK 稳定解定位不定向;	SS	24
23	Age	差分延时 单位: s	aa	0
24	Warming	空置,无实际意义	ww	2
25	Cs	校验	* hh	*47
26	<cr><lf< td=""><td>固定包尾</td><td></td><td><cr><lf></lf></cr></td></lf<></cr>	固定包尾		<cr><lf></lf></cr>

CGI-410

将19PIN接插件的红色凸起处与设备的红色凹陷处对齐,顺时针旋转锁紧。

底盘介绍

3.3 传感器参数

卫星灯: 蓝色,每隔5s 闪烁1 次表示正在搜星;搜到卫星之后每隔5s 闪烁N 次,表示搜到N 颗卫星

将sim卡缺口朝里,芯片在下,插入卡槽内

底盘介绍

3.3 传感器参数

分辨率	1440 × 1080
帧率	78FPS
百万像素	1.6
电源要求	8 - 24 V DC
工作温度	0° - 50°C
功耗	< 3W

BFS-PGE-16S2C-CS

供电接口以及相机控制接口

图像数据传输口

Diagram	Color	7 in	Function	Description
	Green	1	V _{EXT}	+12 V DC Camera Power
	Black	2	10	Opto-isolated input (GPIO 0)
	Red	3	NC / +3.3 V	+3.3 V output. Current 120 mA (nominal). Firmware enabled
	White	4	01	Opto-isolated output (GPIO 1)
4	Blue	5	OPTO_ GND	Ground for opto-isolated I/O, not connected to camera ground
	Brown	6	GND	DC camera power ground
	0.0000000000000000000000000000000000000	tput se	::::::::::::::::::::::::::::::::::::::	, consult the General Purpose ir camera's Technical Reference

PIN1: 相机供电正极 (5-16V, 通常12V)

PIN2: 触发正极;

PIN3: +3.3V;

PIN4: I/O;

PIN5: 触发地;

PIN6: 供电地;

机器人操作系统(Robot Operating System, ROS),是一个应用于机器 人上的操作系统,操作简单,功能强 大,适用于多节点任务的复杂场景。

ROS主要组件包括ROS Master、ROS Node和ROS Service 三种。

简单的嵌入式系统并不能满足无人驾驶系统的上述需求, 我们需要一个成熟、稳定、高性能的操作系统去管理各个 模块。

ROS的设计目标: 为了尽可能地避免或减少重复造车轮的现象出现。共享大量可复用的程序及源代码, 便于更多的相关领域人才参与到机器人、人工智能、自动驾驶等领域的学习和研究中。

ROS的应用领域:除了无人驾驶和智能网联汽车领域外,还包括传感数据采集领域、物流仓储领域、工业生产领域和交通管理领域等。

- ROS的特点:
- 1) 点对点设计。ROS在处理进程之间的通信时,采用了耦合度相对较低的点对点设计。
- 2) 分布式设计。ROS是一个分布式设计的框架,不仅可以实现ROS工程之间的集成和发布,还能够移植到其它机器人软件平台上使用。
- 3)支持多种语言。ROS可支持多种编程语言,如C++、Java、Python等。
- 4) 丰富的功能软件包。目前ROS已经可以支持使用的第三方软件包数量达到数千个,从而大大提高了开发与测试的工作效率。
- 5) 免费且开源性。ROS是一款免费且开源的操作系统。 ROS中的所有源代码都是公开发布的,因此有利于人们 对ROS进一步的学习、研究与完善。

- ROS的特点:
- 1) 点对点设计。ROS在处理进程之间的通信时,采用了耦合度相对较低的点对点设计。
- 2) 分布式设计。ROS是一个分布式设计的框架,不仅可以实现ROS工程之间的集成和发布,还能够移植到其它机器人软件平台上使用。
- **3)支持多种语言。**ROS可支持多种编程语言,如C++、 Java、Python等。
- 4) 丰富的功能软件包。目前ROS已经可以支持使用的第三方软件包数量达到数千个,从而大大提高了开发与测试的工作效率。
- 5) 免费且开源性。ROS是一款免费且开源的操作系统。 ROS中的所有源代码都是公开发布的,因此有利于人们 对ROS进一步的学习、研究与完善。

3.3 软件系统-整体结构

• 节点 (Node)

• 一个节点即为一个<mark>可执行文件</mark>,它通过ROS与其它节点进行通信。激光雷达、摄像头、GNSS等传感器

设备都分别定义成为独立的节点。

每一种传感器使用单独的节点

Lidar_node

Camera node

GNSS_node

底盘介绍

3.3 软件系统-整体结构

- 节点管理器 (Master)
- 节点管理器的作用主要有4个方面: 为ROS节点提供命名和注册服务; 方便ROS节点之间进行相互的查找; 有助于ROS节点之间建立相互的通信连接; 提供参数服务器, 帮助ROS管理全局参数。

管理传感器驱动节点与标定节点

3.3 软件系统-整体结构

• 话题 (Topic)

• 各节点之间信息的交互(Message),通过话题实现。各传感器数据的话题均不相同,且都是使用的 ROS提供的标准信息类型。

• 相机 /camera/image

sensor_msgs/lmage.msg

• 激光雷达 /velodyne_points

sensor_msgs/PointCloud2.msg

• 组合导航 /fix

sensor_msgs/NavSatFix.msg

3.3 软件系统-整体结构

- 消息记录包 (Bag)
- 消息记录包是一种文件格式,主要用于在ROS中对消息数据、话题数据、服务数据以及其他信息数据进行保存。通过记录包可实现情景再现功能,可用于测试环节。

指令	功能
rosbag record -a	录制所有话题,并且保存至以当前时间戳命名的文件中
rosbag record /topic1 /topic2 -o out.bag	录制指定话题
rosbag play <your bagfile="" name=""></your>	播放指定文件
rosbag play <your bagfile="" name=""> -d <delay time=""></delay></your>	等待一定时间之后播放文件中的内容
rosbag play -r 3 <your bagfile="" name=""></your>	按一定频率播放话题,如以3倍原始速率发布
rosbag play <your bagfile="" name="">topics <topics></topics></your>	播放指定文件中的指定话题

• 常见指令

指令 作用 启动ROS的核心服务 roscore rosnode list 查看节点列表 roslaunch package_name launch_file.launch 启动ROS的节点和程序包 查看话题列表 rostopic list rostopic echo /topic_name 订阅并输出指定话题的消息 发布指定话题的消息 rostopic pub /topic_name message_type message_data 查看节点列表 rosnode list rosmsg show message_type 显示指定消息类型的定义 显示消息类型列表 rosmsg list 发布指定话题的消息 rosmsg pub /topic_name message_type message_data rosbag record -a 记录ROS消息数据 回放ROS消息数据 rosbag play bag_file.bag 运行指定节点 rosrun package_name node_name 快速切换到指定程序包的目录 roscd package_name

3.4 数据采集与标定-GNSS

给接收机上电开机, 当接收机启动后, 使用WiFi 来访问、配置和监视接收机。

GNSS-XXXXXXX 的无线网络(其中XXXXXXX 代表你的接收器的SN号)

192.168.200.1 账号: admin, 密码: password

3.4 数据采集与标定-GNSS

在进行CORS登录前,请确保设备内装有Nano sim卡,且卡内有充足的数据流量用于网络数据传输;设备4G天线与设备正确连接,且放于网络环境较好的位置;

拥有差分数据账号,例如自建站,千寻,华测账号等,包含IP地址,端口,挂载点,用户名,密码等信息设备处于室外空旷环境中,周围无密集遮挡(如高楼边,密集树木下等)。

确保以上信息后,点击"RTK客户端"(如果显示正在连接或者正在登录,先断开连接,再点击)。

3.4 数据采集与标定-GNSS

参数设置完成,设备开始进行跑车标定,标定只需要一次,大约5到10分钟,之后每次设备启动初始化时间为1分钟左右,以网页里面INS状态为准,INS模式"初始化"代表正在初始化中,"组合模式"代表初始化完成。

3.4 数据采集与标定-Lidar

设置IP

设置 -> 网络 -> 设置 -> IPv4 -> 手动

将有线网络默认IP修改为: 192.168.1.102

默认子网掩码修改为: 255.255.255.0

点击应用 -> 重启有线连接

3.4 数据采集与标定-Lidar

连接示意图

设备按照要求连接及正确配置完成后,使用连接雷达的工控机浏览器访问设备IP 地址(默认Device IP"192.168.1.200") 进入雷达Web 首页,首页默认为"Device"栏。

3.4 数据采集与标定-Lidar

在ROS下运行激光雷达驱动,使用Rviz进行点云数据可视化 使用rosbag record指令存储激光雷达点云数据

3.4 数据采集与标定-相机

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.11 image:=/my_camera/image camera:=/camera

3.5 联合标定

修改联合标定算法配置文件 修改准确后,进行摄像头与激光雷达空间外参标定, 需要得到:x、y、z、yaw、pitch、roll两个传感器的相 对位置

```
src > cam_lidar_calibration > cfg > ! params.yaml
       camera_topic: "/camera/image_mono"
       camera_info: "/camera/camera_info"
       lidar_topic: "/velodyne_points"
       # Dynamic rqt_reconfigure default bounds
       feature_extraction:
        x min: -10.0
        x max: 10.0
        y_min: -8.0
        y_max: 8.0
        z_min: -5.0
 11
 12
        z_max: 5.0
 13
 14
       # Properties of chessboard calibration target
 15
       chessboard:
        pattern_size:
        height: 7
 18
         width: 4
 19
        square_length: 50
        board_dimension:
 21
         width: 340
 22
        height: 485
        translation_error:
 24
         x: 0
 25
        y: 0
```

3.5 联合标定

- 1.在参数面板中,通过滑动条或者 直接输入参数,屏蔽多余的点云, 只留下标定板区域的点云。
- 2.标定过程中,标定板要始终在相 机的视野内,并且标定板上至少要 出现7条激光雷达线束。

标定板与相机、激光雷达之间保持 在一米到三米的距离之内。

3.6 同步采集

采用硬件触发的形式实现多传感数据同步采集

Lidar 10Hz

Camera 20Hz

GNSS 100Hz

如需更改同步触发频率, 须重新烧录固件

不使用触发模式时,用户通过修改配置文件,可以指定频率进行数据采集。

```
<!-- 修改触发-->
<param name="enable_trigger" value="Off" />
<param name="trigger_source" value="Line0" />
<param name="trigger_overlap_mode" value="Off" />
<param name="trigger_activation_mode" value="RisingEdge" />
<!-- <param name="line_mode" value="Output" /> -->
<!-- <param name="trigger_selector" value="ExposureActive" />
<param name="exposure_mode" value="TriggerWidth" /> -->
```


3.6 同步采集

数据采集后,通过rosbag info xxx.bag 查看数据集的信息,数据记录是否正常

```
gjx@gjx-virtual-machine:~/rosbag$ rosbag info 30-s.bag
path:
             30-s.bag
version:
             2.0
duration:
             1:00s (60s)
start:
             Apr 13 2023 17:20:40.00 (1681377640.00)
             Apr 13 2023 17:21:40.99 (1681377700.99)
end:
size:
             1.3 GB
             111069
messages:
compression: none [1252/1252 chunks]
             geometry msgs/Vector3
                                            [4a842b65f413084dc2b10fb484ea7f17]
types:
             gps driver/GPCHC
                                            [4af699536da618cd13eb527ce6fe4ee8]
             rosgraph msgs/Log
                                            [acffd30cd6b6de30f120938c17c593fb]
             rslidar msg/RslidarPacket
                                            [4b1cc155a9097c0cb935a7abf46d6eef]
             sensor msgs/CameraInfo
                                            [c9a58c1b0b154e0e6da7578cb991d214]
             sensor msgs/CompressedImage
                                            [8f7a12909da2c9d3332d540a0977563f]
             sensor_msgs/Image
                                            [060021388200f6f0f447d0fcd9c64743]
             sensor msgs/Imu
                                            [6a62c6daae103f4ff57a132d6f95cec2]
                                            [2f3b0b43eed0c9501de0fa3ff89a45aa]
             sensor msgs/MagneticField
             sensor_msgs/NavSatFix
                                            [2d3a8cd499b9b4a0249fb98fd05cfa48]
             sensor msgs/PointCloud2
                                            [1158d486dd51d683ce2f1be655c3c181]
             tf2 msgs/TFMessage
                                            [94810edda583a504dfda3829e70d7eec]
             theora image transport/Packet [33ac4e14a7cff32e7e0d65f18bb410f3]
topics:
             /GPS/gps chc
                                                                   : sensor msgs/NavSatFix
                                                     3050 msqs
             /GPS/imu data
                                                                  : sensor msqs/Imu
                                                     3050 msqs
                                                                  : geometry_msgs/Vector3
             /angular_vel_deg
                                                     6099 msqs
             /huace/gpchc
                                                                  : qps driver/GPCHC
                                                     3050 msqs
             /image view node0/output
                                                                   : sensor msgs/Image
                                                     1830 msqs
             /imu/data
                                                                   : sensor msgs/Imu
                                                     6099 msqs
             /imu/filter/data
                                                                   : sensor msqs/Imu
                                                     6099 msqs
             /imu/mag
                                                     6099 msgs
                                                                   : sensor msgs/MagneticField
                                                                  : rosgraph msgs/Log
             /rosout
                                                     4879 msgs
             /rosout agg
                                                     4878 msgs
                                                                   : rosgraph msgs/Log
             /rpy deg
                                                     6099 msgs
                                                                  : geometry msgs/Vector3
                                                                  : tf2 msgs/TFMessage
             /tf
                                                     6099 msgs
             /usb cam node0/camera info
                                                                  : sensor msgs/CameraInfo
                                                     1830 msgs
             /usb cam node0/image raw
                                                                   : sensor msgs/Image
                                                     1830 msgs
             /usb cam node0/image raw/compressed
                                                     1830 msgs
                                                                  : sensor msgs/CompressedImage
             /usb cam node0/image raw/theora
                                                                  : theora image transport/Packet
                                                     1830 msgs
             /velodyne packets
                                                                  : rslidar msg/RslidarPacket
                                                    45808 msgs
             /velodyne points
                                                                  : sensor msqs/PointCloud2
                                                      610 msqs
```