

Профессиональная автохимия и все для автомойки
Профессиональные моющие средства для предприятий пищевой промышленности и АПК
Профессиональные моющие средства для клининга

ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ ЩЕЛОЧНОГО БЕСПЕННОГО ДЕЗИНФИЦИРУЮЩЕГО МОЮЩЕГО СРЕДСТВА ДЛЯ ВОДЫ ЛЮБОЙ ЖЕСТКОСТИ «BIOTEC SUPER» TM «VORTEX»

ДЛЯ ПРЕДПРИЯТИЙ ПИЩЕВОЙ И ПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ, В ТОМ ЧИСЛЕ (МОЛОЧНОЙ, МЯСО-, ПТИЦЕ-, РЫБО-, ФРУКТО-, ОВОЩЕПЕРЕРАБАТЫВАЮЩЕЙ, КОНСЕРВНОЙ, МАСЛОЖИРОВОЙ, КОНДИТЕРСКОЙ, ХЛЕБОПЕКАРНОЙ, ПИВОБЕЗАЛКОГОЛЬНОЙ, ВИНОДЕЛЬЧЕСКОЙ И ДР.), СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОМЫШЛЕННОСТИ (ЖИВОТНО-, РАСТЕНИЕВОДЧЕСКИЕ И ДР.), А ТАКЖЕ НА ДРУГИХ ПРЕДПРИЯТИЯХ И УЧРЕЖДЕНИЯХ РАЗЛИЧНОГО ПРОФИЛЯ.

СОСТАВИЛ Руководитель инновационной лаборатории:

УТВЕРДИЛ

Генеральный директор:

Рыжков Д.Ф.

М.В. Телеусова

Дата создания инструкции: Дата последней ревизии: 15.09.2015 21.11.2019

г. Ижевск 2017 Всего листов: 5

ИНСТРУКЦИЯ

по применению для предприятий пищевой и перерабатывающей промышленности, общественного питания, административных, общеобразовательных и других общественных учреждений

Щелочного беспенного дезинфицирующего моющего средства для воды любой жесткости «Biotec Super» TM «Vortex»

1. Наименование продукции и производитель

Наименование: Щелочное беспенное дезинфицирующее моющее средство для воды любой жесткости «Biotec Super» TM «Vortex»;

ТУ 2381-002-68251848-2011;

№ свидетельства о Гос. Регистрации: № RU.23.KK.08.015.E.000073.03.11 от 11.03.11 г.

Производитель: ООО ПК «Вортекс», 426039, УР, г. Ижевск, ул.

Новосмирновская, 14.; Тел./факс: (3412) 26-00-27

2. Назначение

Моющее средство предназначено для ручного и механизированного способа мойки и одновременно дезинфекции внутренних и внешних поверхностей технологического оборудования, емкостей, тележек, ванн, цистерн, сушильных башен, трубопроводов, а так же поверхностей транспортных лент, инвентаря, тары, полов и стен производственных и подсобных помещений на предприятиях пищевой, рыбной, мясоперерабатывающей промышленности и АПК. Активно в отношении бактерий группы кишечной палочки, стафилококков, стрептококков, синегнойной палочки, сальмонелл и плесневых грибков.

3. Области применения

Предприятия пищевой и перерабатывающей промышленности, в том числе молокоперерабатывающей, мясоперерабатывающей, птицеперерабатывающей, рыбоперерабатывающей и пивобезалкогольной и др, а так же на предприятия общественного питания, административные, общеобразовательные и научные учреждения, торговые и деловые центры, производственные предприятия, медицинские учреждения, предприятия коммунального хозяйства и применение в быту, а также на других предприятиях различного профиля.

г. Ижевск 2017 Всего листов: 5

4. Инструкция по применению

Применимо для любых видов оборудования, изготовленного из щелочестойких материалов. Идеально подходит для циркуляционных систем(CIP).

Рекомендуемая концентрация растворов 0,3-0,5% в зависимости от жёсткости воды, типа и состояния оборудования. Температура использования от $40-60^{\circ}$ С. Используется в комбинации с моющим средством Ksilan Super. Использовать средство в воде любой жёсткости.

Таблица 1. Приготовление рабочих растворов средства «Biotec Super» (массовая доля активного хлора в средстве 8%)

Концентрация рабочего раствора, %		Количества средства и воды в расчёте на 100 л	
по активному хлору	по препарату (объёмная)	Количество средства, мл	Количество воды, л
0,029	0,3	300	99,7
0,038	0,4	400	99,6
0,047	0,5	500	99,5
0,056	0,6	600	99,4
0,067	0,7	700	99,3
0,076	0,8	800	99,2
0,085	0,9	900	99,1
0,094	1,0	1000	98,0

5. Безопасность

По степени воздействия на организм человека средство относится к 3-му классу опасности (вещества умеренно опасные) по ГОСТ 12.1.007-75. Во время работы использовать средства индивидуальной защиты (очки, перчатки). При попадании на кожу или слизистые оболочки немедленно промыть большим количеством проточной воды. При необходимости обратиться к врачу.

6. Хранение

Хранить при температуре от +5°C до +25°C в оригинальной упаковке от производителя. Допускается заморозка во время транспортировки на срок не более 5 суток. В случае заморозки довести средство до комнатной температуры и тщательно перемешать. Допускается глубокая заморозка в течение 7 суток. После размораживания и тщательного перемешивания полностью восстанавливает свойства. Срок годности — один год от даты изготовления, при условии соблюдения правил хранения.

7. Физико-химические свойства

- Прозрачная жидкость светло-желтого оттенка с характерным запахом хлора.
- pH (1%) не менее 12,0;
- Плотность при 20⁰С не менее 1,22-1,24 г/см³;
- Общая щелочность в пересчета на NaOH 6,5 8,0%;
- Массовая доля активного хлора 7,0 8,0%

8. График удельной электропроводности

9. МЕТОДЫ ИСПЫТАНИЙ

9.1 Определение внешнего вида и запаха

9.1.1 Внешний вид средства определяют визуально. Для этого в химический стакан из бесцветного прозрачного стекла с внутренним диаметром около 35 мм наливают средство до половины объема стакана и просматривают в проходящем свете.

9.1.2 Запах оценивают органолептически.

9.2 Определение плотности при 20°C

Плотность средства при 20°C измеряют с помощью ареометра в соответствии с

г. Ижевск 2017 Всего листов: 5

ГОСТ 18995.1-73 « Продукты химические жидкие. Методы определения плотности».

9.3. Определение показателя активности водородных ионов (рН) раствора средства с массовой долей 1 %

Показатель активности водородных ионов (рН) раствора средства с массовой долей 1% измеряют потенциометрическим методом в соответствии с ГОСТ Р 50550-93. Для приготовления 1% водного раствора используют дистиллированную воду по ГОСТ 6709-72.

9.4. Определение общей щелочности в пересчете на NaOH

9.4.1 Оборудование, реактивы и растворы

Весы лабораторные общего назначения 2 класса по ГОСТ 24104-88 с наибольшим пределом взвешивания 200 г.

Бюретка вместимостью 25 cm^3 .

Колбы конические вместимостью 250 cm^3 .

Стандарт-титр соляная кислота 0,1 Н; 0,1 Н раствор.

Фенолфталеин, индикатор чда; 1 % спиртовой раствор; готовят по ГОСТ 4919.1-77.

Спирт этиловый ректифицированный технический.

Вода дистиллированная по ГОСТ 6709-72.

9.4.2 Проведение испытания

К навеске средства массой от 0,3 до 0,5 г, взятой в конической колбе вместимостью 250 см 3 с точностью до четвертого десятичного знака, прибавляют 50 см 3 дистиллированной воды и 3-4 капли индикатора

фенолфталеина. Содержимое колбы титруют раствором соляной кислоты до перехода красно-фиолетовой окраски раствора в желтоватую. При стоянии оттитрованный раствор вскоре обесцвечивается.

9.4.3 Обработка результатов

Общую щелочность в пересчете на NaOH (X) в процентах вычисляют по формуле:

$$X = \frac{V \times 0,004 \times 100}{m}$$

где V — объем точно 0,1 H раствора соляной кислоты, израсходованный на титрование, cm^3 .

0,004 — масса гидроксида натрия, соответствующая 1 см³ точно 0,1 H раствора соляной кислоты, г/см³.

т – масса навески, г.

За результат анализа принимают среднее арифметическое 3-х определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,30%.

Допускаемая относительная суммарная погрешность результата анализа + 3,5% при доверительной вероятности P = 0,95.

9.5 Определение массовой доли активного хлора

9.5.1 Оборудование, реактивы, растворы

Весы лабораторные общего назначения 2 класса по ГОСТ 24104-88 с наибольшим пределом взвешивания 200 г.

Бюретка вместимостью 25 см³;

г. Ижевск 2017 Всего листов: 5

Цилиндры мерные вместимостью 10 см³;

Пипетка вместимостью 2 см³;

Колбы конические вместимостью 250 см³;

Калий йодистый, чда, хч раствор с массовой долей 10%;

Кислота серная чда, хч; раствор с массовой долей 10%;

Крахмал растворимый ч; раствор с массовой долей 0,5 %; готовят по ГОСТ 4919.1-77.

Стандарт-титр натрий серноватистокислый 0,1 H; 0,1 H раствор.

Вода дистиллированная по ГОСТ 6709-72.

9.5.2 Проведение испытания

К навеске средства массой от 1,0 г до 1,3 г, взятой в конической колбе вместимостью 250 см 3 с точностью до четвертого десятичного знака, прибавляют последовательно 70 см 3 дистиллированной воды, 10 см 3 раствора йодистого калия, 10 см 3

раствора серной кислоты, перемешивая после прибавления каждого реактива, закрывают колбу пробкой и выдерживают в темном месте 5 минут.

Выделившийся йод титруют раствором серноватистокислого натрия до светло-желтой окраски, прибавляют 1,5 см 3 раствора крахмала и продолжают титровать, до исчезновения синей окраски раствора.

9.5.3 Обработка результатов

Массовую долю активного хлора (X_1) в процентах вычисляют по формуле:

$$X = \frac{V \times 0.003546 \times 100}{m}$$

где V — объем точно $0.1~\mathrm{H}$ раствора серноватистокислого натрия, израсходованный на титрование, см 3 ;

0,003546 — масса активного хлора, соответствующая 1 см^3 точно 0,1 серноватистокислого натрия, $r/\text{см}^3$;

т – масса навески, г.

За результат анализа принимают среднее арифметическое 3-х определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,15%. Допускаемая относительная суммарная погрешность результата анализа \pm 4% при доверительной вероятности P = 0,95.

9.6 Определение массовой доли (концентрации) рабочих растворов щелочного беспенного моющего средства "Biotec Super".

- 9.6.1. Оборудование и реактивы:
- бюретка 1-3-2-25-0,1 по ГОСТ 29251-91;
- пипетка по ГОСТ 20292 вместимостью 10 см³;
- колба К_н-250-34ТХС по ГОСТ 25336;
- стаканчик CB-14/18 по ГОСТ 25336;
- воронка В-56-110ТХС по ГОСТ 25336;
- кислота соляная по ГОСТ 2263, "х.ч." или "ч.д.а." водный раствор молярной концентрации C(HCI) = 0.1 моль/дм³ (0.1 н);
- вода дистиллированная по ГОСТ 6709 или вода эквивалентной чистоты, свежепрокипяченная и охлажденная.
 - 9.6.2. Взять 10 мл рабочего раствора средства, внести 3-4 капли индикатора фенолфталеина и титровать раствором соляной кислоты до получения прозрачного раствора.

г. Ижевск 2017 Всего листов: 5

9.6.3. Расчет массовой доли (концентрации) рабочих растворов щелочного беспенного моющего средства "Biotec Super" проводят по следующей формуле:

$$%C = A \cdot 0.417$$
, где

%C — массовая доля (концентрация) щелочного моющего средства, %; A — объем соляной кислоты, пошедшего на титрование, мл; 0.417 — эмпирический коэффициент пересчета.

10. Состав

Гидроксид натрия, гипохлорит натрия, комплексообразователи, поверхностно-активные вещества, деионизированная вода.

11. Данные по экологии

Средство полностью биоразлагаемо.

г. Ижевск 2017 Всего листов: 5

12. Форма поставки

- 5 кг.
- 25 кг.
- 250 кг.
- 1100 кг.