MARKED UP AMENDED CLAIMS 12 AND 13

12. (TWICE AMENDED) A static mixer structure comprising two saddle elements, each said saddle element comprising:

a generally ring-shaped support structure having a central axis, concentric inner and outer, radially spaced, circumferentially extending surfaces, and first and second axially spaced, generally parallel edge surfaces, said inner surface defining a fluid flow path which extends along said axis,

said edge surfaces being located in respective generally parallel transverse planes which are essentially perpendicular relative to said axis; and

a plurality of mixer components located in said flow path, said components having a first end which is closer to the transverse plane of said first edge than to the transverse plane of the second edge and a second end which is closer to the transverse plane of said second edge than to the transverse plane of the first edge,

said mixer components being arranged in at least two separate intersecting oblique planes, each of which intersecting oblique planes is disposed at an angle relative to said axis, there being a plurality of said components in each said plane, which components of each plane are spaced apart to provide openings for fluid flow,

said saddle elements being arranged with the second edge surfaces thereof disposed in mated, contacting relationship.

13. (TWICE AMENDED) A static mixer structure comprising first, second, third and fourth saddle elements, each said saddle element comprising:

a generally ring-shaped support structure having a central axis, concentric inner and outer, radially spaced, circumferentially extending surfaces, and first and second axially spaced, generally parallel edge surfaces, said inner surface defining a fluid flow path which extends along said axis,

said edge surfaces being located in respective generally parallel transverse planes which are essentially perpendicular relative to said axis; and

a plurality of mixer components located in said flow path, said components having a first end which is closer to the transverse plane of said first edge than to the transverse plane of the second edge and a second end which is closer to the transverse plane of said second edge than to the transverse plane of the first edge,

said mixer components being arranged in at least two separate intersecting oblique planes, each of which intersecting oblique planes is disposed at an angle relative to said axis, there being a plurality of said components in each said plane, which components of each plane are spaced apart to provide openings for fluid flow,

said saddle elements being arranged with the second edge surfaces of said first and second elements disposed in mated, contacting relationship, with the second edge surfaces of said third and fourth elements disposed in mated, contacting relationship, and with the first edge surfaces of said second and third elements disposed in mated, contacting relationship.