On modal expansions of left-continuous t-norm logics

Amanda Vidal

Joint work with Félix Bou, Francesc Esteva and Lluís Godo

3/15

Institute of Computer Science, Czech Academy of Sciences

Summary of contents

- 1. Introduction
- 2. Strong standard completeness MTL with rational constants and Δ Modally well-behaved axiomatizations
- 3. Modal expansions
- 4. Open problems

Summary of contents

- 1. Introduction
- 2. Strong standard completeness MTL with rational constants and Δ Modally well-behaved axiomatizations
- 3. Modal expansions
- 4. Open problems

Figure: Hierarchy of t-norm based logics and extensions

Figure: Hierarchy of t-norm based logics and extensions

▶ Reasoning over qualification of sentences (necessity, possibility...)

Figure: Hierarchy of t-norm based logics and extensions

- ▶ Reasoning over qualification of sentences (necessity, possibility...)
- ▶ Usual modalities: □, ⋄. Kripke semantics.

Definition

```
A \in MTL-algebra. An A-Kripke model (*-Kripke model) M = \langle W, R, e \rangle s.t. [W \neq \emptyset] [R : W \times W \to A] [e : W \times Var \to A]: e(w, \Box \varphi) \coloneqq \inf\{Rwv \Rightarrow e(v, \varphi) : v \in W\}e(w, \Diamond \varphi) \coloneqq \sup\{Rwv \odot e(v, \varphi) : v \in W\}
```

Definition

```
A \in MTL-algebra. An A-Kripke model (*-Kripke model) M = \langle W, R, e \rangle s.t. [W \neq \emptyset] [R : W \times W \to A] [e : W \times Var \to A]: e(w, \Box \varphi) := \inf\{Rwv \Rightarrow e(v, \varphi) : v \in W\}
```

$$e(w, \neg \varphi) := \min\{Rwv \Rightarrow e(v, \varphi) : v \in W\}$$
$$e(w, \Diamond \varphi) := \sup\{Rwv \odot e(v, \varphi) : v \in W\}$$

crisp: $R \subseteq W \times W$.

Definition

```
A \in MTL-algebra. An A-Kripke model (*-Kripke model) M = \langle W, R, e \rangle s.t. [W \neq \emptyset] [R: W \times W \to A] [e: W \times Var \to A]: e(w, \Box \varphi) \coloneqq \inf\{Rwv \Rightarrow e(v, \varphi) : v \in W\} e(w, \Diamond \varphi) \coloneqq \sup\{Rwv \odot e(v, \varphi) : v \in W\} crisp: R \subseteq W \times W.
```

▶ Łukasiewicz [Hansoul-Teheux] : crisp Kripke models over [0,1]Ł. linfinitary rule (propositional strong completeness).

Definition

```
A \in MTL-algebra. An A-Kripke model (*-Kripke model) M = \langle W, R, e \rangle s.t. [W \neq \emptyset] [R: W \times W \to A] [e: W \times Var \to A]: e(w, \Box \varphi) \coloneqq \inf\{Rwv \Rightarrow e(v, \varphi) : v \in W\} e(w, \Diamond \varphi) \coloneqq \sup\{Rwv \odot e(v, \varphi) : v \in W\} crisp: R \subseteq W \times W.
```

- ▶ **Łukasiewicz** [Hansoul-Teheux] : crisp Kripke models over [0,1]_Ł. linfinitary rule (propositional strong completeness).
- ▶ Finite residuated lattices [Bou et. al]: Kripke models over finite residuated lattices, only □ operator. One constant in the language for each element in the algebra.

Definition

```
A \in MTL-algebra. An A-Kripke model (*-Kripke model) M = \langle W, R, e \rangle s.t. [W \neq \emptyset] [R: W \times W \to A] [e: W \times Var \to A]: e(w, \Box \varphi) \coloneqq \inf\{Rwv \Rightarrow e(v, \varphi) : v \in W\} e(w, \Diamond \varphi) \coloneqq \sup\{Rwv \odot e(v, \varphi) : v \in W\} crisp: R \subseteq W \times W.
```

- ▶ Łukasiewicz [Hansoul-Teheux] : crisp Kripke models over [0,1]Ł. linfinitary rule (propositional strong completeness).
- ▶ Finite residuated lattices [Bou et. al]: Kripke models over finite residuated lattices, only □ operator. One constant in the language for each element in the algebra.
- ▶ **Gödel** [Caicedo-Rodríguez]: Kripke models over $[0,1]_G$, both \square and \diamondsuit . Strong standard completeness of Gödel logic and of characteristics of $[0,1]_G$ -endomorphisms. **Finite model property**[+ Metcalfe-Rogger]

Summary of contents

- 1. Introduction
- 2. Strong standard completeness MTL with rational constants and Δ Modally well-behaved axiomatizations
- 3. Modal expansions
- 4. Open problems

objective: for a left-continuous t-norm * » an (strong) axiomatization of $[0,1]_*^{\mathbb{Q}_*}$: standard algebra of * with Δ and canonical (rational) constants.

objective: for a left-continuous t-norm * » an **(strong) axiomatization** of $[0,1]^{\mathbb{Q}_*}_*$: standard algebra of * with Δ and canonical (rational) constants.

Proposition [Cintula]

Let A be an expansion of an standard MTL-algebra with a non-continuous operation, and L_A a finitary axiomatic system for A. Then no finitary rational expansion of L_A enjoys the Pavelka-style completeness.

▶
$$\sqcap \operatorname{logic} + \Delta \operatorname{op} \qquad \frac{\{p \to \overline{c}\}_{c \in (0,1)_{\mathbb{Q}}}}{\neg p}, \qquad \frac{\{\overline{c} \to p\}_{c \in (0,1)_{\mathbb{Q}}}}{\Delta p}$$

objective: for a left-continuous t-norm * » an **(strong) axiomatization** of $[0,1]^{\mathbb{Q}_*}_*$: standard algebra of * with Δ and canonical (rational) constants.

Proposition [Cintula]

Let A be an expansion of an standard MTL-algebra with a non-continuous operation, and L_A a finitary axiomatic system for A. Then no finitary rational expansion of L_A enjoys the Pavelka-style completeness.

$$\qquad \qquad \blacksquare \ \, \text{logic} + \Delta \ \text{op} \qquad \frac{\{p \to \overline{c}\}_{c \in (0,1)_{\mathbb{Q}}}}{\neg p}, \qquad \frac{\{\overline{c} \to p\}_{c \in (0,1)_{\mathbb{Q}}}}{\Delta p}$$

▶ General: an axiomatic system of $[0,1]_*$ validates a certain infinitary rule for each discontinuity point of the operations & is seminilinear \implies it is Pavelka complete.

objective: for a left-continuous t-norm * » an **(strong) axiomatization** of $[0,1]^{\mathbb{Q}_*}_*$: standard algebra of * with Δ and canonical (rational) constants.

Proposition [Cintula]

Let A be an expansion of an standard MTL-algebra with a non-continuous operation, and L_A a finitary axiomatic system for A. Then no finitary rational expansion of L_A enjoys the Pavelka-style completeness.

$$\qquad \qquad \blacksquare \ \, \text{logic} + \Delta \ \text{op} \qquad \frac{\{p \to \overline{c}\}_{c \in (0,1)_{\mathbb{Q}}}}{\neg p}, \qquad \frac{\{\overline{c} \to p\}_{c \in (0,1)_{\mathbb{Q}}}}{\Delta p}$$

- ▶ General: an axiomatic system of [0,1]* validates a certain infinitary rule for each discontinuity point of the operations & is seminilinear ⇒ it is Pavelka complete.
 - * many cases: uncountable infinitary rules
 * how to know when a logic with infinitary rules is semilinear?

Δ , constants and semilinearity

Semilinearity Lemma

Let L be an implicative logic expanding MTL_{Δ} such that

- ► There is a countable amount of (infinitary) inference rules (with a finite number of variables each)
- ► The derivations of *L* are closed under ∨

Then *L* is semilinear.

Δ , constants and semilinearity

Semilinearity Lemma

Let L be an implicative logic expanding MTL_{Δ} such that

- ► There is a countable amount of (infinitary) inference rules (with a finite number of variables each)
- ightharpoonup The derivations of L are closed under \lor

Then L is semilinear.

Proof based on a prime-theory construction.

Δ , constants and semilinearity

Semilinearity Lemma

Let L be an implicative logic expanding MTL_{Δ} such that

- ► There is a countable amount of (infinitary) inference rules (with a finite number of variables each)
- ► The derivations of *L* are closed under ∨

Then L is semilinear.

Proof based on a prime-theory construction.

goal: finding a countable amount of infinitary rules for treating all the discontinuity points

Takeuti and Titani's density rule can be adapted

$$D^{\infty}: \ \frac{\{(p \to \overline{c}) \lor (\overline{c} \to q)\}_{c \in \mathbb{Q}_*}}{(p \to q)}$$

Takeuti and Titani's density rule can be adapted

$$D^{\infty}: \ \frac{\{(p \to \overline{c}) \lor (\overline{c} \to q)\}_{c \in \mathbb{Q}_*}}{(p \to q)}$$

Definition

 $L^\infty_*\coloneqq$ extension of MTL_Δ by the book-keeping axioms for \mathbb{Q}_* and $D^\infty.$

Takeuti and Titani's density rule can be adapted

$$D^{\infty}: \ \frac{\{(p \to \overline{c}) \lor (\overline{c} \to q)\}_{c \in \mathbb{Q}_*}}{(p \to q)}$$

Definition

 $L^\infty_* \coloneqq \text{extension of } MTL_\Delta \text{ by the book-keeping axioms for } \mathbb{Q}_* \text{ and } D^\infty.$

▶ Deductions on L_*^{∞} are closed under \vee » L_*^{∞} is semilinear.

Takeuti and Titani's density rule can be adapted

$$D^{\infty}: \ \frac{\{(p o \overline{c}) \lor (\overline{c} o q)\}_{c \in \mathbb{Q}_*}}{(p o q)}$$

Definition

 $L^\infty_* \coloneqq \text{extension of } \mathit{MTL}_\Delta \text{ by the book-keeping axioms for } \mathbb{Q}_* \text{ and } D^\infty.$

- ▶ Deductions on L_*^∞ are closed under \vee » L_*^∞ is semilinear.
- ▶ Constants are dense on linearly ordered L^{∞}_* -algebras.

Takeuti and Titani's density rule can be adapted

$$D^{\infty}: \ rac{\{(p
ightarrow\overline{c})ee(\overline{c}
ightarrow q)\}_{c\in\mathbb{Q}_*}}{(p
ightarrow q)}$$

Definition

 $L^\infty_*\coloneqq \text{extension of } MTL_\Delta \text{ by the book-keeping axioms for } \mathbb{Q}_* \text{ and } D^\infty.$

- ▶ Deductions on L_*^{∞} are closed under \vee » L_*^{∞} is semilinear.
- ▶ Constants are dense on linearly ordered L_*^{∞} -algebras.

Strong Standard Completeness

$$\Gamma dash_{L^\infty_*} arphi$$
 iff $\Gamma Dash_{[0,1]^{\mathbb{Q}_*}_{*}} arphi$

Conjunctive rules

The density rule is not well-behaved when the logic is expanded with modalities: not clear how to prove that it is closed under \Box .

Conjunctive rules

The density rule is not well-behaved when the logic is expanded with modalities: not clear how to prove that it is closed under \Box .

Definition

Conjunctive rules: for $x \in [0, 1]$

$$R_x^{\infty}: \frac{\{(p \to \overline{c}) \wedge (\overline{d} \to q)\}_{d \in [0,x)_{\mathbb{Q}_*}, c \in (x,1]_{\mathbb{Q}_*}}}{p \to q}$$

Conjunctive rules

The density rule is not well-behaved when the logic is expanded with modalities: not clear how to prove that it is closed under \Box .

Definition

Conjunctive rules: for $x \in [0, 1]$

$$R_x^{\infty}: \frac{\{(p \to \overline{c}) \wedge (\overline{d} \to q)\}_{d \in [0,x)_{\mathbb{Q}_*}, c \in (x,1]_{\mathbb{Q}_*}}}{p \to q}$$

Lemma

Let A be a $MTL_*^{\mathbb{Q}_*}$ -chain. Then the following are equivalent:

- 1. A validates D^{∞} ,
- 2. A validates R_x^{∞} for all $x \in [0, 1]$,
- 3. for all $a < b \in A$, there is $c \in \mathbb{Q}_*$ such that $a < \overline{c}^A < b$.

Definition

- ▶ *L* is strongly complete with respect to $[0,1]_*^{\mathbb{Q}_*}$,
- ▶ L extends $MTL_*^{\mathbb{Q}_*}$,
- ▶ The only inference rules added to $MTL^{\mathbb{Q}_*}_*$ are conjunctive.

Definition

- ▶ *L* is strongly complete with respect to $[0,1]^{\mathbb{Q}_*}_*$,
- ▶ L extends $MTL_*^{\mathbb{Q}_*}$,
- ▶ The only inference rules added to $MTL^{\mathbb{Q}_*}_*$ are conjunctive.
- X Gödel t-norm does not accept a conjunctive axiomatization: there is a Gödel algebra that validates all R_x^∞ but not D^∞ .

Definition

- ▶ *L* is strongly complete with respect to $[0,1]_*^{\mathbb{Q}_*}$,
- ▶ L extends $MTL^{\mathbb{Q}_*}_*$,
- ▶ The only inference rules added to $MTL^{\mathbb{Q}_*}_*$ are conjunctive.
- X Gödel t-norm does not accept a conjunctive axiomatization: there is a Gödel algebra that validates all R_x^∞ but not D^∞ .
- √ Ordinal sums of Lukasiewicz and Product t-norms.

Definition

- ▶ *L* is strongly complete with respect to $[0,1]^{\mathbb{Q}_*}_*$,
- ▶ L extends $MTL_*^{\mathbb{Q}_*}$,
- ▶ The only inference rules added to $MTL^{\mathbb{Q}_*}_*$ are conjunctive.
- X Gödel t-norm does not accept a conjunctive axiomatization: there is a Gödel algebra that validates all R_x^{∞} but not D^{∞} .
- √ Ordinal sums of Lukasiewicz and Product t-norms.
- $\sqrt{}$ Left-continuous t-norms with a countable number of discontinuity points on the diagonal of its residuum.

Summary of contents

- 1. Introduction
- 2. Strong standard completeness MTL with rational constants and Δ Modally well-behaved axiomatizations
- 3. Modal expansions
- 4. Open problems

Kripke Semantics

In what follows, \ast is a left-continuous t-norm accepting a conjunctive axiomatization.

Kripke Semantics

In what follows, \ast is a left-continuous t-norm accepting a conjunctive axiomatization.

- ▶ SM_* : class of all **crisp** $[0,1]_*^{\mathbb{Q}_*}$ -Kripke models.
- ▶ \mathbb{KM}_* : class of all **safe crisp** *A*-Kripke models for *A* a L_*^{∞} -algebra.

Kripke Semantics

In what follows, \ast is a left-continuous t-norm accepting a conjunctive axiomatization.

- ▶ \mathbb{SM}_* : class of all **crisp** $[0,1]^{\mathbb{Q}_*}_*$ -Kripke models.
- ▶ \mathbb{KM}_* : class of all **safe crisp** *A*-Kripke models for *A* a L_*^{∞} -algebra.

Local modal logic: $\Gamma \Vdash_{\mathbb{M}} \varphi$ iff for any $M \in \mathbb{M}$,

for any
$$w \in W$$
, if $e(w, \Gamma) = \{1\}$ then $e(w, \varphi) = 1$.

Global modal logic: $\Gamma \Vdash_{\mathbb{M}}^{g} \varphi$ iff for any $M \in \mathbb{M}$,

if for any $w \in W$ $e(w, \Gamma) = \{1\}$ then for any $w \in W$ $e(w, \varphi) = 1$.

Axiomatic systems: K_* and K_*^g

▶ Local modal logic: K_* is the expansion of L_*^{∞} with

$$K: \Box(p \to q) \to (\Box p \to \Box q)$$

$$\Box 1: \ \Box (\overline{c} o p) \leftrightarrow (\overline{c} o \Box p)$$

$$\square 2: \Delta \square p \rightarrow \square \Delta p$$

$$\lozenge 1: \ \Box (p \to \overline{c}) \leftrightarrow (\lozenge p \to \overline{c})$$

$$\textit{FS1}:\ (\lozenge p \to \Box q) \to \Box (p \to q)$$

$$N_{\square}$$
: From $\emptyset \vdash \varphi$ infer $\emptyset \vdash \square \varphi$.

Axiomatic systems: K_* and K_*^g

▶ Local modal logic: K_* is the expansion of L_*^{∞} with

$$\begin{array}{ll} \mathcal{K}: & \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \\ \Box 1: & \Box(\overline{c} \rightarrow p) \leftrightarrow (\overline{c} \rightarrow \Box p) \\ \Box 2: & \Delta \Box p \rightarrow \Box \Delta p \\ \Diamond 1: & \Box(p \rightarrow \overline{c}) \leftrightarrow (\Diamond p \rightarrow \overline{c}) \\ FS1: & (\Diamond p \rightarrow \Box q) \rightarrow \Box(p \rightarrow q) \\ \mathcal{N}_{\Box}: & \text{From } \emptyset \vdash \varphi \text{ infer } \emptyset \vdash \Box \varphi. \end{array}$$

▶ Global modal logic: K_*^g coincides with K_* except for the N_\square rule, turned to N_\square^g : $\varphi \vdash \square \varphi$

Axiomatic systems: K_* and K_*^g

▶ Local modal logic: K_* is the expansion of L_*^{∞} with

$$\begin{array}{c} \mathcal{K}: \ \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \\ \Box 1: \ \Box(\overline{c} \rightarrow p) \leftrightarrow (\overline{c} \rightarrow \Box p) \\ \Box 2: \ \Delta\Box p \rightarrow \Box \Delta p \\ \diamondsuit 1: \ \Box(p \rightarrow \overline{c}) \leftrightarrow (\diamondsuit p \rightarrow \overline{c}) \\ FS1: \ (\diamondsuit p \rightarrow \Box q) \rightarrow \Box(p \rightarrow q) \\ \mathcal{N}_{\Box}: \ \text{From} \ \emptyset \vdash \varphi \ \text{infer} \ \emptyset \vdash \Box \varphi. \end{array}$$

▶ Global modal logic: K_*^g coincides with K_* except for the N_\square rule, turned to N_\square^g : $\varphi \vdash \square \varphi$

Some important properties of K_*

1. $\Gamma \vdash_{K_*} \varphi$ if and only if $(\Gamma \cup Th(K_*))^\# \vdash_{L_*^\infty} \varphi^\#$ # translates formulas $\Box \varphi, \Diamond \varphi$ to new propositional variables $\varphi_\Box, \varphi_\diamondsuit$.

Axiomatic systems: K_* and K_*^g

▶ Local modal logic: K_* is the expansion of L_*^{∞} with

$$\begin{array}{c} \mathcal{K}: \ \Box(p \to q) \to (\Box p \to \Box q) \\ \Box 1: \ \Box(\overline{c} \to p) \leftrightarrow (\overline{c} \to \Box p) \\ \Box 2: \ \Delta\Box p \to \Box \Delta p \\ \diamondsuit 1: \ \Box(p \to \overline{c}) \leftrightarrow (\diamondsuit p \to \overline{c}) \\ FS1: \ (\diamondsuit p \to \Box q) \to \Box(p \to q) \\ \mathcal{N}_\Box: \ \text{From} \ \emptyset \vdash \varphi \ \text{infer} \ \emptyset \vdash \Box \varphi. \end{array}$$

▶ Global modal logic: K_*^g coincides with K_* except for the N_\square rule, turned to N_\square^g : $\varphi \vdash \square \varphi$

Some important properties of K_*

- 1. $\Gamma \vdash_{\mathcal{K}_*} \varphi$ if and only if $(\Gamma \cup Th(\mathcal{K}_*))^{\#} \vdash_{L^{\infty}_*} \varphi^{\#}$ # translates formulas $\Box \varphi, \Diamond \varphi$ to new propositional variables $\varphi_{\Box}, \varphi_{\Diamond}$.
- 2. $\Gamma \vdash_{\mathcal{K}_*} \varphi$ implies that $\Box \Gamma \vdash_{\mathcal{K}_*} \Box \varphi$.

Canonical model for the local logic

The canonical model of K_* is the $[0,1]_*^{\mathbb{Q}_*}$ -Kripke model $M_c^* = \langle W_c^*, R_c^*, e_c^* \rangle$ with:

- $W_c^* = \{h \in Hom(Fm^\#, [0,1]^{\mathbb{Q}_*}) : h(Th(K_*)^\#) = \{1\}\}$
- ▶ $R_c^* vw$ when for any φ such that $v(\varphi_{\square}) = 1$ then $w(\varphi^{\#}) = 1$.
- $e_c^*(v,p) = v(p)$ for the propositional variables.

Canonical model for the local logic

The canonical model of K_* is the $[0,1]_*^{\mathbb{Q}_*}$ -Kripke model $M_c^* = \langle W_c^*, R_c^*, e_c^* \rangle$ with:

- $W_c^* = \{h \in Hom(Fm^\#, [0, 1]^{\mathbb{Q}_*}_*) : h(Th(K_*)^\#) = \{1\}\}$
- ▶ $R_c^* vw$ when for any φ such that $v(\varphi_{\square}) = 1$ then $w(\varphi^{\#}) = 1$.
- $e_c^*(v,p) = v(p)$ for the propositional variables.

Some important properties of M_c^*

1. $R_c^* vw$ iff for all φ both $v(\varphi_{\square}) \leq w(\varphi^{\#})$ and $v(\varphi_{\diamondsuit}) \geq w(\varphi^{\#})$.

Canonical model for the local logic

The canonical model of K_* is the $[0,1]_*^{\mathbb{Q}_*}$ -Kripke model $M_c^* = \langle W_c^*, R_c^*, e_c^* \rangle$ with:

- $W_c^* = \{h \in Hom(Fm^\#, [0,1]^{\mathbb{Q}_*}_*) : h(Th(K_*)^\#) = \{1\}\}$
- ▶ $R_c^* vw$ when for any φ such that $v(\varphi_{\square}) = 1$ then $w(\varphi^{\#}) = 1$.
- $e_c^*(v,p) = v(p)$ for the propositional variables.

Some important properties of M_c^*

- 1. $R_c^* vw$ iff for all φ both $v(\varphi_{\square}) \leq w(\varphi^{\#})$ and $v(\varphi_{\diamondsuit}) \geq w(\varphi^{\#})$.
- 2. Let $v \in W_c^*$ and φ be such that $w(\varphi^\#) = 1$ for all $w \in W_c^*$ with $R_c v w$. Then $v(\varphi_\square) = 1$.

Completeness of the local modal logic

Truth Lemma

For any formula φ and any $v \in W_c^*$

$$e_c^*(v,\varphi)=v(\varphi^\#).$$

Completeness of the local modal logic

Truth Lemma

For any formula φ and any $v \in W_c^*$

$$e_c^*(v,\varphi)=v(\varphi^\#).$$

Strong standard completeness of K_*

For any $\Gamma \cup \{\varphi\} \subseteq \mathit{Fm}$, the following are equivalent

- 1. $\Gamma \vdash_{\mathcal{K}_*} \varphi$,
- 2. $\Gamma \Vdash_{\mathbb{SM}_*} \varphi$,
- 3. $\Gamma \Vdash_{\mathbb{KM}_*} \varphi$.
- ▶ soundness is easy to check (wrt 3.)
- ▶ If $\Gamma \not\vdash_{K_*} \varphi$ then $(\Gamma \cup Th(K_*))^\# \not\vdash_{L_*^\infty} \varphi^\#$. Non-modal \mathcal{SSC} provides a world w from the canonical model where $e_c^*(w,\Gamma) = w(\Gamma^\#) = \{1\}$ and $e_c^*(w,\varphi) = w(\varphi^\#) < 1$.

The global modal logic

Instead of a unique canonical model, one model for each set of formulas.

For Γ a set of formulas, the Γ -canonical model of K_*^g is the $[0,1]_{\mathbb{Q}^*}^{\mathbb{Q}_*}$ -Kripke model $M_c^*[\Gamma] = \langle W_c^*[\Gamma], R_c^*[\Gamma], e_c^*[\Gamma] \rangle$ with:

- ▶ $W_c^*[\Gamma] = \{h \in Hom(Fm^\#, [0, 1]^{\mathbb{Q}_*}_*) : h(Con_{K_*^g}(\Gamma)^\#) = \{1\}\}$
- ▶ $R_c[\Gamma]vw$ if and only if for any formula φ such that $v(\varphi_{\square}) = 1$ it holds that $w(\varphi^{\#}) = 1$.
- $e_c^*(v,p)[\Gamma] = v(p)$ for the propositional variables.

The global modal logic

Instead of a unique canonical model, one model for each set of formulas.

For Γ a set of formulas, the Γ -canonical model of $K_*^{\mathcal{E}}$ is the $[0,1]_{*}^{\mathbb{Q}_*}$ -Kripke model $M_c^*[\Gamma] = \langle W_c^*[\Gamma], R_c^*[\Gamma], e_c^*[\Gamma] \rangle$ with:

- ▶ $W_c^*[\Gamma] = \{h \in Hom(Fm^\#, [0, 1]^{\mathbb{Q}_*}_*) : h(Con_{K_*^g}(\Gamma)^\#) = \{1\}\}$
- ▶ $R_c[\Gamma]vw$ if and only if for any formula φ such that $v(\varphi_{\square}) = 1$ it holds that $w(\varphi^{\#}) = 1$.
- $e_c^*(v,p)[\Gamma] = v(p)$ for the propositional variables.

Strong standard completeness of K_*^g

For any $\Gamma \cup \{\varphi\} \subseteq \mathit{Fm}$, the following are equivalent

- 1. $\Gamma \vdash_{K_*^g} \varphi$,
- 2. $\Gamma \Vdash^{\mathbf{g}}_{\mathbb{SM}_*} \varphi$,
- 3. $\Gamma \Vdash_{\mathbb{KM}_*}^{\mathbf{g}} \varphi$.

Summary of contents

- 1. Introduction
- 2. Strong standard completeness MTL with rational constants and Δ Modally well-behaved axiomatizations
- 3. Modal expansions
- 4. Open problems

Open problems

- Axiomatic system for logics arising from an arbitrary left-continuous t-norm.
- ▶ Modal expansion of *MTL*-logics without rational constants.
- Axiomatic system of the finitary modal logics -evaluated over infinite-valued algebras-.
- ▶ Logics arising from Kripke models evaluated over *MTL*-algebras whose accessibility relation is no longer crisp.
- Decidability and complexity problems.

...

Thank you!