Листочек по вариационному исчислению, 2 курс МКН, «Математика» Дедлайн: 30.04.2021, 23:59

1. [2] Найдите геодезическую, соединяющую точки $A=(a,y_a)$ и $B=(b,y_b)$ верхней полуплоскости в геометрии Лобачевского. Напомним, что расстояние вдоль кривой $\gamma \subset \mathbb{R} \times \mathbb{R}_+$, задающейся графиком функции y=y(x), считается по формуле:

$$\rho_{Lob}(A, B) = \int_{\gamma} \frac{ds}{y} = \int_{a}^{b} \frac{\sqrt{1 + y'(x)^2}}{y(x)} dy =: J[y].$$

Покажите, что стационарные точки функционала длины (они были найдены на практических занятиях) дают глобальные минимумы.

Замечание: возможно как элементарное решение, так и решение, использующее вторую вариацию. Если будете использовать вторую вариацию, сформулируйте точное утверждение, которое собираетесь применять.

2. **[1]** Функция $g \in C[a,b]$ такова, что $\int_a^b g(x)h^{(k)}(x)\,dx = 0$ при всех $h \in C^k[a,b]$ таких, что

$$h(a) = h'(a) = \dots = h^{(k-1)}(a) = h(b) = h'(b) = \dots = h^{(k-1)}(b) = 0.$$

Докажите, что g — полином степени не выше k-1.

3. [1] В гильбертовом пространстве l_2 со скалярным произведением $(\vec{x}, \vec{y}) = \sum_{k=1}^{\infty} x_k \bar{y}_k$ на множестве финитных последовательностей задан линейный оператор A

$$(A\vec{x})_k = kx_k$$
, Dom $A = \{\vec{x} \in l_2 : \#\{k \in \mathbb{N} : x_k \neq 0\} < \infty\}.$

- \mathbf{A}) Докажите, что оператор A симметричный
- B) Найдите сопряженный оператор A^* (как действует и какова область определения).
- 4. [2] Неравенство Виртингера (одномерное неравенство Пуанкаре).

Докажите вариационными методами, что для $y \in C^1[0,1]$ и некоторой константы C выполняется неравенство:

$$\int_{0}^{1} (y(x))^{2} dx \le C \left(\int_{0}^{1} (y'(x))^{2} dx + \left(\int_{0}^{1} y(x) dx \right)^{2} \right). \tag{1}$$

Найдите значение оптимальной константы C_{opt} в этом неравенстве.

Замечание: часто неравенством Пуанкаре называется следующая формулировка, которая незамедлительно следует из (1): Пусть $y \in C^1[0,1]$ с нулевым средним, т.е. $\int_0^1 y(x) \, dx = 0$. Тогда выполнено неравенство

$$\int_{0}^{l} (y(x))^{2} dx \leqslant C \int_{0}^{l} (y'(x))^{2} dx.$$

5. **[2]** Предполагая функцию F достаточно гладкой, найдите общий вид функционала $J[y], y \in C^1[0, l]$,

$$J[y] = \int_{0}^{l} F(x, y, y') dx,$$

множество экстремалей которого совпадает с множеством прямых $\{y=kx+b:\, k,b\in\mathbb{R}\}.$

6. [1] Найдите форму однородного тела вращения вокруг оси OZ, имеющее данный объем V и наименьший момент инерции относительно оси OY.

7. [2] Найдите геодезические на параболоиде вращения $2z = x^2 + y^2$.

Указание: Полезно записать функционал расстояния в подходящих координатах. В задаче требуется лишь найти критические точки этого функционала. Доказывать, что получившиеся кривые дают минимальное расстояние, не нужно.

8. **[2]** Дана выпуклая область $\Omega \subset \mathbb{R}^2$ и точки $A, B \in \text{Int}(\Omega)$. Определим следующую функцию пар точек ("кратчайшее расстояние с заходом на границу"):

$$\operatorname{dist}_{\Omega}(A, B) := \inf_{S \in \partial \Omega} (|AS| + |SB|),$$

где |AS| — длина отрезка, соединяющего точки A и S. Пусть нижняя грань достигается в точке $S \in \partial \Omega$. Найдите, какому геометрическому условию должна удовлетворять точка $S \in \partial \Omega$? Может ли нижняя грань достигаться в нескольких точках?

9. [2] Используя первую вариацию функционала J[z]

$$J[z] = \int |\nabla z|^2 \, dx \, dy,$$

запишите оператор Лапласа $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ в координатах

$$\begin{cases} u = u(x, y), \\ v = v(x, y), \end{cases} (ds)^2 = a \cdot (du)^2 + 2b \cdot du \, dv + c \cdot (dv)^2$$

где ds — элемент длины в координатах (x,y), т.е. $(ds)^2=(dx)^2+(dy)^2$; а a=a(u,v), b=b(u,v), c=c(u,v) — некоторые функции¹.

Организационные моменты:

- Листочек подразумевает индивидуальное решение.
- Решение задач нужно оформлять письменно с подробным объяснением всех переходов.
- Решение задач присылается один раз на почту yu.pe.petrova@yandex.ru.
- Важно: все решения нужно присылать **единым файлом PDF**. Для удобства стандартизируем название файла: var-N-Surname.pdf, где N номер группы (1, 2, 3, 4 или 5), Surname Ваша фамилия. Например, var-2-Osipov.pdf.
- Дедлайн: 30 апреля 2021, 23:59.

¹Эти функции могут быть легко выражены через функции, задающие обратное отображение $(u,v)\mapsto (x,y)$, но в задаче требуется лишь записать лапласиан, используя a,b и c.