TD 1: Conditional Expectation

Exercise 1. Let X and Y be two independent random variables with Poisson distribution of parameters λ and μ respectively.

- 1. What is the distribution of X + Y?
- 2. Compute $\mathbb{E}(X|X+Y)$.

Exercise 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\{A_1, \ldots, A_n\}$ be a finite partition of Ω . We define $\mathcal{G} = \sigma(A_1, \ldots, A_n)$ the σ -algebra generated by this partition.

- 1. Describe the σ -field \mathcal{G} .
- 2. Let X be an integrable random variable. Show that

$$\mathbb{E}(X|\mathcal{G})(\omega) = \sum_{j: \mathbb{P}(A_j) > 0} \frac{\mathbb{E}(X1_{A_j})}{\mathbb{P}(A_j)} 1_{A_j}(\omega).$$

Exercise 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Let X and Y be two square integrable random variables. Show that

$$\mathbb{E}(X\mathbb{E}(Y|\mathcal{G})) = \mathbb{E}(Y\mathbb{E}(X|\mathcal{G})).$$

Exercise 4. Let X_1, \ldots, X_n be i.i.d. integrable random variables. Determine the following conditional expectations:

- 1. $\mathbb{E}[X_1 + X_2 + \cdots + X_n \mid X_1],$
- 2. $\mathbb{E}[X_1 \mid X_1 + X_2 + \dots + X_n].$

Exercise 5.

- 1. Let X, Y be two i.i.d. random variables uniformly distributed on [0, 1]. Compute $\mathbb{E}(X|XY)$.
- 2. Let $X \sim \mathcal{N}(0,1)$. Compute $\mathbb{E}(X^2|X)$, $\mathbb{E}(X|X^2)$ and $\mathbb{E}(X^3|X^2)$.
- 3. Let X and Y be i.i.d. random variables uniformly distributed on $[-\pi/2, \pi/2]$. Compute

$$\mathbb{E}(\sin X | \cos X), \quad \mathbb{E}(X | e^X),$$

 $\mathbb{E}(\cos X | \sin Y), \quad \mathbb{E}(\sin X | \cos(X + 2Y)).$

Exercise 6. Let (X,Y) be a random vector with density

$$p_{X,Y}(x,y) = \frac{\alpha\beta}{y} \exp\left\{-\frac{\alpha x}{y} - \beta y\right\} \mathbf{1}_{x>0} \mathbf{1}_{y>0},$$

where $\alpha > 0$ and $\beta > 0$ are parameters. Determine $\mathbb{E}(X|Y)$ and deduce $\mathbb{E}(X)$.

Exercise 7. Let Z be a random variable exponentially distributed with parameter 1 and let t > 0. We set $X = \min(Z, t)$ and $Y = \max(Z, t)$. Compute $\mathbb{E}[Z \mid X]$ and $\mathbb{E}[Z \mid Y]$.

Exercise 8. Let X be a square integrable random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{G} a sub- σ -algebra of \mathcal{F} . We set

$$\operatorname{var}(X \mid \mathcal{G}) = \mathbb{E}[X^2 \mid \mathcal{G}] - \mathbb{E}[X \mid \mathcal{G}]^2.$$

Show that

$$\operatorname{var}(X) = \mathbb{E}\left[\operatorname{var}(X \mid \mathcal{G})\right] + \operatorname{var}\left(\mathbb{E}[X \mid \mathcal{G}]\right).$$

Exercise 9. Let (X_0, X_1, \ldots, X_n) be a Gaussian random vector with mean zero and nondegenerate covariance matrix Γ . Show that there exist real numbers $\lambda_1, \ldots, \lambda_n$ such that

$$\mathbb{E}[X_0 \mid X_1, \dots, X_n] = \sum_{i=1}^n \lambda_i X_i$$

and determine the weights λ_i as a function of Γ .

Hint: The coordinates of a Gaussian vector are independent if and only if their covariance is zero.