Optimization

Part 1: Steepest Descent : Conjugate Gradients

Rower CG Itertion (Symmetric Positive Definite A) x.=0, G=b, p.=1. for nz1,2,3, ...

d= ([] [] / (] A p ...) Xn = Xn-1 + anpa-1

Γn = Γn-1 - α Apn-1

 $B_{n} = (r_{n}^{T}r_{n})/(r_{n}^{T}r_{n})$

Pa = Pa+ Bapa-1

Step Size appros. soh. residual tuenevergei search direction

Residuals 5,5, ..., rans form ONB for Ka (A, b)

Directions po, po, para form A-ONB for Kn (A, b)

Xn minimizes 11en11/2 = V(x-xn) A(x-xn) over Kn(A,b)

Distinct from GMRES (in part) become

a) builds ONBs using short recurences (of A) b) minimizes Ilently instead of Ilently (SPD)

CG and Polynomial Approximation

Like Arnoldi, GMRES, Luncros: CG convergence closely linked to polynomial approximation.

en = p. (A)e. for degree n poly with p. (v)=1.

(#) Ilpa(A)es Ila = minimum over all pa & Pa

Thm1 If A is SPP and ranto, then (*) has a unique soln pa & IPa, and

Sketch [F] SPD A has A= V.LV with V*V=I.

Play in eigendecomposition to (4) and Simplify

Rate of Conveyance

Since A(A) c [1, 1] c {xelR:x>), we can develop explicit bounds on the rate of convergence ||e_a||_A/Ne_s||_A.

Idea: bok for polynomial qu(x) that is small on [h, h] and has qu(o)=1.

=> IICalla & inf max |p(x)| & max |q(x)|

IIE. IIA PEIPA DELLA) DE[x,x,]

Thm 2 Let SPB A have 2-norm condition number $K = \frac{\lambda_1}{\lambda_m}$. Then CG A-norm error after n iterations satisfy

$$\frac{||e_{n}||_{A}}{||e_{n}||_{A}} \leq \frac{2}{\left[\left(\frac{\sqrt{|K|+1}}{\sqrt{|K|+1}}\right)^{n}\right]} \leq 2\left(\frac{\sqrt{|K|+1}}{\sqrt{|K|+1}}\right)^{n}$$

Shetch PF Shift and scale Chebysher polynomik

Note: for moderately : 11-conditioned mutrices

* iterations = O(JKloz Emach)

to reach Ileally/Ileally & Emerly.

CG : Optin: zutien

CG Iterations can also be undershood as an improved first-order (gradent based) optimization routine. CG minimizes

 $||e_{n}||_{A}^{2} = (x-x_{n})^{*}A(x-x_{n})$ $= x_{n}^{*}Ax_{n} - 2x_{n}^{*}Ax + x^{*}Ax$ $= x_{n}^{*}Ax_{n} - 2x_{n}^{*}b + x^{*}b$ $\varphi(x_{n})$

CG minimizes $Q(X) = \frac{1}{2}X^{*}AX - X^{*}b$ over $K_{n}(A,b)$, by taking "steps" in the search clirection p_{n-1} , of length d_{n} .

Steepest Descent (Gradient Descent)

Task: minimize smooth function 4:1Rd->1R.

Iden: starting from point x, welk "downhill" along the steepest slope

The direction of skepest slope at point $x \in \mathbb{R}^d$ is given by $-VOI_{X=X_d}$

$$E.y. \qquad \varphi(x) = \frac{1}{2}x^{4}Ax - x^{4}b$$

$$\nabla \varphi(x) = \frac{1}{2} A_{x}^{2} + \frac{1}{2} A_{x} - b$$

$$= A_{x} - b$$

$$= c$$

To minimize Q(x) along line $x - \alpha r$

need
$$\alpha = \frac{r^7 \Gamma}{r^7 A \Gamma}$$
.

Sleepest Descent for O(x)

- 1. Compate Γ_n = b A x_n = Γ_{n-1} α_{n-1} A Γ_{n-1}
 - Gondont
- 2. da = \(\int_{\alpha}\)/\(\alpha_{\alpha}\)/\(\alpha_{\alpha}\)

Step Length

3. Xnu= Xn +dn Cn

update