Matemática Discreta

Ano Lectivo 2014/2015

Folha de exercícios nº2

(Conjuntos, relações binárias, funções e cardinalidade)

1. Seja $\mathcal{U} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ o conjunto universal. Dados os conjuntos $A = \{1, 3, 5, 7\}, B = \{2, 3, 4, 5, 6\} \in C = \{0, 2, 4, 6, 8\},$ defina em extensão os conjuntos

$$A \cap B$$
, $B \cup C$, $B \cup C^c$, $A \cap (B \cup C)$, $(A \cap B) \cup (A \cap C)$, $(A \cap B) \cup C$, $A \cup \emptyset$, $B \cap \emptyset$, $A \cap C$, \mathcal{U}^c .

2. (a) Mostre que quaisquer que sejam os conjuntos A, B e C se verifica

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

(b) Será que para quaisquer conjuntos $A, B \in C$ também se verifica

$$A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$$
?

Justifique.

- 3. Sejam A, B e C conjuntos definidos num dado universo \mathcal{U} .
 - (a) Mostre que $A\Delta B = (A\backslash B) \cup (B\backslash A) = (A\cup B)\backslash (A\cap B)$.
 - (b) Represente num diagrama de Venn a diferença simétrica de dois conjuntos $A \in B$ quaisquer.
 - (c) Se a diferença simétrica entre dois conjuntos A e B for igual ao conjunto A que poderá dizer-se a respeito de A e B?
 - (d) Verifique se as igualdades seguintes são verdadeiras ou falsas:
 - i. $A\Delta A = A$;
 - ii. $A\Delta(A\Delta A) = A$.
 - (e) Dados os conjuntos $A, B \in C$, mostre que
 - i. $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.
 - ii. $(A\Delta B)\Delta C = A\Delta (B\Delta C)$.

que

$$\chi^{X \cap Y} = \chi^X \chi^Y,$$

$$\chi^{X \Delta Y} = \chi^X + \chi^Y \pmod{2}.$$
(1)

$$\chi^{X\Delta Y} = \chi^X + \chi^Y \pmod{2}. \tag{2}$$

(f) Sabendo que $A\Delta B = A\Delta C$, pode concluir que B = C?

- 4. Dados três conjuntos A, B e C, verifique se as proposições a seguir indicadas são verdadeiras ou falsas, justificando devidamente.
 - (a) $A \backslash B = B^c \backslash A^c$.
 - (b) $(A \cap B = A \cap C) \Leftrightarrow B = C$.
 - (c) Existem conjuntos A e B tais que $(A \cap B) \cup (A \setminus B) \neq A \cup B$.
 - (d) Existem conjuntos $A \in B$ tais que $(A \cap B) \cup (A \setminus B) = A \cup B$.
 - (e) $(A \cup B) \cap C = A \cup (B \cap C)$.
- 5. Determine o conjunto das partes de cada um dos seguintes conjuntos:
 - (i) $A = \{\emptyset\}$; (ii) $B = \{1\}$; (iii) $C = \{1, 2\}$; (iv) $D = \{1, 2, 3\}$.
- 6. Seja A = {1,2,3}. Para cada uma das relações binárias R a seguir indicadas, determine os elementos de R, o seu domínio e contradomínio e, finalmente, verifique se satisfazem as propriedades de reflexividade, simetria, anti-simetria e transitividade.
 - (a) \mathcal{R} é a relação < em A.
 - (b) \mathcal{R} é a relação \geq em A.
 - (c) \mathcal{R} é a relação \subset em $\mathcal{P}(A)$.
- 7. Considere a relação binária $\mathcal{R} \subseteq \mathbb{Z}^2$, tal que $\forall a, b \in \mathbb{Z}$,

 $a \mathcal{R} b$ se (a-b) é um número inteiro não negativo par.

- (a) Verifique que \mathcal{R} define uma relação de ordem parcial em \mathbb{Z} e justifique.
- (b) Será que \mathcal{R} é uma relação de ordem total em \mathbb{Z} ? Justifique a sua resposta.
- 8. Considere a relação binária $\mathcal{R} \subseteq \mathbb{Z}^2$, tal que $\forall a, b \in \mathbb{Z}$

$$a \mathcal{R} b$$
 se $(a-b)$ é divisível por 2.

- (a) Verifique que $\mathcal R$ define uma relação de equivalência em $\mathbb Z$ e justifique.
- (b) Determine o conjunto quociente \mathbb{Z}/\mathcal{R} .
- 9. Mostre que a relação | definida no conjunto dos números naturais por $x \mid y$ se e só se x divide y, é uma relação de ordem parcial em \mathbb{N} .

- 10. Considere o conjunto $S = \{a, b, c, d, e\}$.
 - (a) Dada a relação de equivalência

$$\mathcal{R} = \{(a, a), (b, b), (c, c), (d, d), (e, e), (a, c), (c, a)\} \subseteq S^2,$$

determine a classe de equivalência [a] e diga se existem outros representantes para esta mesma classe.

- (b) Indique os pares ordenados da relação de equivalência induzida em S pela partição $\{\{a,b,c\},\{d,e\}\}.$
- 11. Em cada uma das alíneas a seguir indicadas diga se a relação binária \mathcal{R} definida no conjunto A é reflexiva, simétrica, anti-simétrica e transitiva e, nos casos em que define uma relação de equivalência, determine o conjunto quociente A/\mathcal{R} .
 - (a) $\mathcal{R} = \{(a, a), (a, b), (b, b)\}; A = \{a, b\}.$
 - (b) $\mathcal{R} = \emptyset$; $A \neq \emptyset$.
 - (c) $x\mathcal{R}y$ se e só se x-y=1; $A=\mathbb{R}$.
 - (d) $x\mathcal{R}y$ se e só se $x \cdot y \geqslant 0$; $A = \mathbb{Q}$.
 - (e) $x\mathcal{R}y$ se e só se $\frac{x}{y} \in \mathbb{Q}$; $A = \mathbb{R} \setminus \{0\}$.
 - (f) $(a,b)\mathcal{R}(c,d)$ se e só se ad=bc; $A=\mathbb{Z}\times(\mathbb{Z}\setminus\{0\})$.
 - (g) $(a,b)\mathcal{R}(c,d)$ se e só se $a^2 + b^2 = c^2 + d^2$; $A = \mathbb{R} \times \mathbb{R}$.
- 12. Das relações binárias definidas no exercício anterior diga quais são:
 - (a) funções de A em A;
 - (b) relações de equivalência e para essas determine o conjunto A/\mathcal{R} das classes de equivalência;
 - (c) relações de ordem parcial;
 - (d) relações de ordem total.
- 13. Sejam R_1 e R_2 relações binárias definidas num conjunto não vazio E. Chamamos interseção de R_1 com R_2 e denota-se por $R_1 \cap R_2$ à relação binária definida em E do modo seguinte:

$$x(R_1 \cap R_2)y$$
 sse xR_1y e xR_2y , para todos $x, y \in E$.

Chamamos recíproca de R_1 e representa-se por R_1^{-1} à relação binária definida em E por:

$$xR_1^{-1}y$$
 sse yR_1x , para todos $x, y \in E$.

Chamamos relação identidade em Ee denota-se por I à relação definida por:

$$xIy$$
 sse $x = y$, para todos $x, y \in E$.

Mostre que R_1 é anti-simétrica se e só se $R_1 \cap R_1^{-1} \subseteq I$.

14. Seja $A=\{1,2,3,4,5\}\times\{1,2,3,4,5\},$ e seja $\mathcal R$ uma relação binária definida em A por

$$(x_1, y_1) \mathcal{R} (x_2, y_2) \Leftrightarrow x_1 + y_1 = x_2 + y_2$$
.

- (a) Verifique que \mathcal{R} é uma relação de equivalência em A.
- (b) Determine as classes de equivalência [(1,3)], [(2,4)] e [(1,1)].
- (c) Determine a partição de A induzida por \mathcal{R} .
- 15. Em cada caso, diga se \mathcal{R} é ou não uma relação de equivalência e, em caso afirmativo, explicite as classes de equivalência determinadas por \mathcal{R} . No que se segue D denota o conjunto das palavras do Dicionário Português.
 - (a) i. $\mathcal{R} = \{(x,y) \in D \times D : \text{as palavras } x \in y \text{ começam pela mesma letra} \}$
 - ii. $\mathcal{R} = \{(x,y) \in D \times D : \text{as palavras } x \in y \text{ têm pelo menos uma letra em comum}\}$
 - iii. $\mathcal{R} = \{(x,y) \in D \times D : \text{a palavra } x \text{ aparece antes da palavra } y \text{ em D}, \text{por ordem alfabética} \}$
 - (b) $\mathcal{R} = \{(x,y) \in \mathbb{R} \times \mathbb{R} : |x| \le |y|\}$, onde \mathbb{R} denota o conjunto dos números reais.
- 16. (a) Exiba todas as relações binárias distintas que se podem definir no conjunto $\{0,1\}$, explicitando cada uma delas numa tabela adequada, e, em cada caso, diga se é reflexiva, simétrica, anti-simétrica e transitiva.
 - (b) Uma relação binária, \mathcal{R} , definida num conjunto A diz-se anti-reflexiva se para todo $x \in A$, $(x, x) \notin \mathcal{R}$.

A relação complementar de uma relação \mathcal{R} , denota-se por $\overline{\mathcal{R}}$, e $\overline{\mathcal{R}} = \{(x,y) \in A \times A : (x,y) \notin \mathcal{R}\}.$

Mostre que uma relação \mathcal{R} num conjunto A é reflexiva se e só se a relação complementar $\overline{\mathcal{R}}$ é anti-reflexiva.

17. Seja $\mathcal{A} = \{A_r \mid r \in \mathbb{R}\}$ onde

$$A_r = \{(x, y) \in \mathbb{R}^2 \mid y = 2x + r\},\$$

uma família de subconjuntos de \mathbb{R}^2 . Prove que \mathcal{A} é uma partição de \mathbb{R}^2 e descreva-a geometricamente. Indique também a relação de equivalência correspondente.

18. Sendo A um conjunto, existe alguma relação binária definida em A que seja reflexiva e uma função? Existe mais do que uma?

19. Seja $A = \{1, 2, 3, 4, 5, 6\}$ e $f: A \rightarrow A$ a função definida por

$$f(x) = \begin{cases} x+1 & \text{se } x \neq 6 \\ 1 & \text{se } x = 6 \end{cases}$$

- (a) Determine $f(3), f(6), (f \circ f)(3)$ e f(f(2)).
- (b) Mostre que f é injectiva.
- 20. Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$ é injectiva e sobrejectiva enquanto que a função $g: \mathbb{R} \to \mathbb{R}$ dada por $g(x) = x^2 1$ não é injectiva nem sobrejectiva.
- 21. Determine a cardinalidade de cada um dos seguintes conjuntos

$$\{1,2,\emptyset\},\quad \{1,\{1,\emptyset\}\},\quad \{\emptyset\},\quad \{1\},\quad \{\{1\}\}\ .$$

22. Determine a cardinalidade do conjunto

$$S = \left\{ \frac{p}{q} : p, q \in \mathbb{N} \land p, q \le 10 \right\} .$$

- 23. Demonstre que os pares de conjuntos a seguir indicados são equipotentes:
 - (a) $\{1, \{1, 2\}\}\$ e $\{1, 2\}$;
 - (b) \mathbb{N} e $2\mathbb{N}$, onde $2\mathbb{N}$ denota o conjunto de números naturais pares;
 - (c) $\mathbb{N} \in \mathbb{Q}$.
- 24. Sejam A e B conjuntos infinitos numeráveis, ou seja, tais que existem funções bijectivas $f: \mathbb{N} \to A$ e $g: \mathbb{N} \to B$. Caso exista determine uma função bijectiva entre A e B. No caso afirmativo, defina explicitamente a sua inversa. Podemos concluir que |A| = |B|?
- 25. Seja A um conjunto finito e $\mathcal{P}(A)$ o conjunto das partes de A, mostre que $|\mathcal{P}(A)| = 2^{|A|}$.
- 26. Mostre que]0,1[não é numerável. Conclua que $\mathbb R$ não é numerável.