CS 207M Discrete Structures: Quiz-I Solutions

1. [4 marks] Let $f: X \to Y$ be a function from a set X to a set Y. For $A \subseteq X$ and $B \subseteq Y$, we define

$$f(A) = \{f(a)|a \in A\} \text{ and } f^{-1}(B) = \{x \in X | f(x) \in B\}$$

For each of the following four statements, decide if it is true of false. You must justify your answer. In other words, either provide a small proof or provide a counter-example.

Answer:

Suppose $X = \{1, 2\}, Y = \{a, b\}$ and $f : X \to Y$ with f(1) = f(2) = a. This will be used as a counter-example to the first three statements which are false.

- (a) $A = f^{-1}(f(A))$. The statement is false. With $A = \{1\}$, $f(A) = \{a\}$ and $f^{-1}(f(A)) = \{1, 2\}$. Therefore, $A \neq f^{-1}(f(A))$. We always have $A \subseteq f^{-1}(f(A))$.
- (b) $B = f(f^{-1}(B))$. The statement is false. With $B = \{a, b\}$, $f^{-1}(B) = \{1, 2\}$ and $f(f^{-1}(B)) = \{a\}$. Therefore, $B \neq f(f^{-1}(B))$. We always have $B \supseteq f(f^{-1}(B))$.
- (c) f(A) = B iff $f^{-1}(B) = A$. The statement is false. With $A = \{1\}$ and $B = \{a\}$, f(A) = B but $\{1,2\} = f^{-1}(B) \neq A$. We always have f(A) = B implies $A \subseteq f^{-1}(B)$ and $f^{-1}(B) = A$ implies $f(A) \subseteq B$.
- (d) $f(A) \cap B \neq \emptyset$ iff $A \cap f^{-1}(B) \neq \emptyset$. This statement is true and can be proved as follows. Suppose $f(A) \cap B \neq \emptyset$. Then there exists $b \in B$ and $a \in A$ such that f(a) = b. Clearly, $a \in f^{-1}(B)$ and hence $A \cap f^{-1}(B) \neq \emptyset$. Conversely, suppose $A \cap f^{-1}(B) \neq \emptyset$. Then there exists $a \in A$ such that $f(a) \in B$. Clearly, $f(a) \in f(A)$. As f(a) also belongs to B, $f(A) \cap B \neq \emptyset$.

Marking Scheme: Correct answer with correct justification is awarded 1 mark. A correct true/false answer with no/incorrect justification will NOT be awarded any mark.

2. [2 marks] Let R be a relation on a set A. Show that R is transitive iff $R^2 \subseteq R$. Note that the relation R^2 is $R \circ R$, that is, composition of R with itself.

Answer:

- (⇒) Suppose R is transitive. Let $(a,b) \in R^2$. By definition of R^2 , there exists $c \in A$ such that $(a,c),(c,b) \in R$. As R is transitive, $(a,b) \in R$. This shows that $R^2 \subseteq R$.
- (\Leftarrow) Now suppose $R^2 \subseteq R$. Let $a,b,c \in A$ be such that $(a,b),(b,c) \in R$. By definition of R^2 , $(a,c) \in R^2$. As $R^2 \subseteq R$, $(a,c) \in R$. This shows that R is transitive.

Marking Scheme: A complete and correct proof of each (left-to-right and right-to-left implication) direction is awarded 1 mark.

3. [4 marks] Prove or disprove: The sets $(2^N)^N$ and $2^{(2^N)}$ have the same cardinality.

Answer:

There is a natural and canonical bijection between $(X^Y)^Z$ and $X^{Y\times Z}$. Given $f\in (X^Y)^Z$, that is $f:Z\to X^Y$, we define $g:Y\times Z\to X$ as: g((y,z))=(f(z))(y). Note that f(z) is itself a function from Y to X. It is easily checked that $f\mapsto g$ is a bijection between $(X^Y)^Z$ and $X^{Y\times Z}$ by explicitly writing down its inverse.

Let $A = (2^N)^N$ and $B = 2^{(2^N)}$ be the two sets under consideration. By the above argument, we have a canonical bijection between A and $2^{N \times N}$. We have a bijection from $N \times N$ to N (done in the class). This leads to a direct and natural bijection between $2^{N \times N}$ and 2^N (tutorial problem: a bijection between X and Y gives a bijection between 2^X and 2^Y). Altogether, there is a bijection between A and A0.

By Cantor's diagonalization theorem (done in the class), there does not exist a bijection between 2^N and $2^{(2^N)} = B$. As a result, there does not exist a bijection between A and B and they do not have the same cardinality.

Marking Scheme: Three marks for the proof that $(2^N)^N$ has same cardinality as 2^N . Any correct argument which does that is fine. Application of Cantor's theorem, to conclude that the two sets under consideration have different cardinalities, will be awarded 1 mark.