Esercitazione 9 gennaio 2023

Esercizio 1:

Gualà e Clementi vanno a vedere la (maggggica) Roma

Problema (Gualà e Clementi vanno a vedere la (maggggica) Roma)

Una città è modellata come un grafo diretto e pesato G = (V, E, w), dove ad ogni arco $e \in E$ è associato un peso $w(e) \geq 0$ che rappresenta il costo, in termini di benzina consumata, per attraversare l'arco (strada) e. In questa città, i vostri docenti del corso di algoritmi, Gualà e Clementi, vogliono andare a vedere la partita della Roma allo stadio, che si trova nel nodo t. Loro sono rispettivamente nei nodi s_1 e s_2 , e possiedono una macchina ciascuno. Volendo, possono incontrarsi in un nodo del grafo, parcheggiare una delle due macchine, e proseguire insieme. Ma di solito in questa città, parcheggiare costa. Per ogni nodo v, dunque, conoscono il costo c(v) del parcheggio presente in v (si può assumere per semplicità che $c(s_1) = c(s_2) = c(t) = 0$). Progettate un algoritmo che in tempo $O(m + n \log n)$ calcoli la soluzione che Gualà e Clementi devono adottare per spendere complessivamente il meno possibile in termini di corso della benzina più costo del parcheggio.

costo=11+10+0=21

costo=5+4+2+7=18

costo=2+1+3+10=16

idea: "indovinare" il nodo x dove Gualà e Clementi si incontrano per lasciare una macchina

$$cost(x):= d(s_1,x)+d(s_2,x)+c(x)+d(x,t)$$

costo totale se
cost(x): Gualà e Clementi
parcheggiano una
macchina in x

osservazione: cost(x) è diponibile in tempo cosante se ho tutte le distanze a singola sorgente da s_1,s_2 , e verso t

$$cost(x):= d(s_1,x)+d(s_2,x)+c(x)+d(x,t)$$

corretto?
sì: provo tutti gli x
complessità?

Algoritmo

- calcola distanze/SPT con sorgenti s₁,s₂
- calcola distanze/SPT verso t (calcolando distanze/SPT con sorgete t nel grafo con archi girati al contrario)
- $z=arg min_{x \in V} cost(x)$
- restituisci cost(z)

Esercizio 2:

(Ex 3, PS 2020).

Input: -grafo orientato G=(V,E,w) con pesi non negativi

-B⊆E sottoinsieme di archi blu

-k intero, $s,t \in V$

Output: un cammino di costo minimo da s a t che usa al più k archi blu

G SEGNATO E' GRAFO SENZA ARCHI BLU

 \overline{G} = (V,E\B) per ogni k-tupla F di archi in B:

- calcola il cammino minimo da s a t nel grafo $\overline{G}+F$ restituisci il miglior cammino trovato

 \overline{G} = (V,E\B) per ogni k-tupla F di archi in B:

- calcola il cammino minimo da s a t nel grafo $\overline{G}+F$ restituisci il miglior cammino trovato

 \overline{G} = (V,E\B) per ogni k-tupla F di archi in B:

- calcola il cammino minimo da s a t nel grafo $\overline{G}+F$ restituisci il miglior cammino trovato

 \overline{G} = (V,E\B) per ogni k-tupla F di archi in B:

- calcola il cammino minimo da s a t nel grafo $\overline{G}+F$ restituisci il miglior cammino trovato

 \overline{G} = (V,E\B) per ogni k-tupla F di archi in B:

- calcola il cammino minimo da s a t nel grafo $\overline{G}+F$ restituisci il miglior cammino trovato

 \overline{G} = (V,E\B) per ogni k-tupla F di archi in B:

- calcola il cammino minimo da s a t nel grafo $\overline{G}+F$ restituisci il miglior cammino trovato

correttezza?

-ogni cammino calcolato è un cammino ammissibile; -quando guardo la k-tupla usata dalla soluzione (o un sovrainsieme) il cammino calcolato è quello ottimo cercato

complessità?

 $O(|B|^k(m+n \log n))$

idea 2: ridurre il problema al calcolo di un cammino minimo su un opportuno grafo ausiliario G'

- -G' fatto "a livelli"
- -ogni volta che uso un arco blu sono costretto a cambiare livello
- -#livelli dipende da k

cerco il cammino minimo da s_0 a \bar{t} in G'

nodi:

- -per ogni $v \in V$ ho k+1 nodi $v_0, v_1, \dots v_k$
- -un nodo T

archi:

- -per ogni arco (u,v) non blu in G ho gli archi (u_i,v_i), i=0,1,...k di peso w(u,v)
- -per ogni arco (u,v) blu in G ho gli archi (u_i,v_{i+1}), i=0,1,...k-1 di peso w(u,v)
- -ho archi (t_i, \overline{t}) , i=0,1,...k, di peso 0

soluzione cercata: cammino minimo in G' da s_0 a \overline{t}

correttezza:

Proprietà:

Esiste un cammino in G sa s a t che usa al più k archi blu di costo W se e soltanto se esiste un cammino in G' da s_0 a \overline{t} di costo W.

complessità: dimensione di G':

 $n' = n(k+1) + 1 = \Theta(nk)$

 $m' \le (k+1)m+k = \Theta(mk)$

-costruzione di G':

$$O(m'+n')=O(k(m+n))$$

-calcolo cammino minimo in G':

$$O(m'+n'\log n')=O(k(m+n\log n))$$

O(k(m+n log n))