Lecture 9: Two-sample problem I

Pratheepa Jeganathan

04/22/2019

- One sample sign test, Wilcoxon signed rank test, large-sample approximation, median, Hodges-Lehman estimator, distribution-free confidence interval.
- ▶ Jackknife for bias and standard error of an estimator.
- ► Bootstrap samples, bootstrap replicates.
- Bootstrap standard error of an estimator.
 Bootstrap percentile confidence interval.
- Bootstrap percentile confidence interval.
 Hypothesis testing with the bootstrap (one-sample problem.)
- Assessing the error in bootstrap estimates.
 Example: inference on ratio of heart attack rates in the
- aspirin-intake group to the placebo group.

 The exhaustive bootstrap distribution
- Discrete data problems (one-sample, two-sample proportion tests, test of homogeneity, test of independence)

Two-sample location problem

- ▶ Data: two samples from two populations. $X_1, \dots X_m$ from population 1 and corresponding to distribution function F(.) and $Y_1, \dots Y_n$ and corresponding to distribution function G(.).
- Assumptions:
 - X and Y are mutually independent.
 - F(.) and G(.) are continuous.
 - Populations differ only by a location shift.
- Hypothesis
 - ▶ $H_0: F(t) = G(t)$ for each t versus $H_A: \Delta \neq 0$, where $G(t) = F(t \Delta)$.
 - ▶ Other alternatives H_A : $\Delta > 0$, H_A : $\Delta < 0$ (stochastic ordering of alternatives).
 - ightharpoonup For example, Δ can be expected treatment effect compared to control.

Two-sample location problem

- Wilcoxon two-sample rank sum test
 - ▶ Combined sample of N = m + n.
 - ▶ Let S_n denote the rank of Y_n in this joint ordering.
 - Wilcoxon two-sample rank sum statistic $W = \sum_{i=1}^{n} S_{i}$.
- R command: wilcox.test(x, y, paired = FALSE, alternative = "two.sided").
- ▶ Under H₀, all $\binom{N}{n}$ possible assignments for the *Y*-ranks are equally likely, each having probability $\frac{1}{\binom{N}{1}}$.

Two-sample location problem

- Mann–Whitney statistic
 - $U = \sum_{i=1}^{m} \sum_{j=1}^{n} \phi(X_i, Y_j)$, where $\phi(X_i, Y_j) = 1$ if $X_i < Y_j$.
- ▶ Tests based on \hat{W} and U are equivalent.
 - $V = U + \frac{n(n+1)}{2}.$

Two-sample location problem (large-sample approximation)

- ► Test statistic: the standarized version of W. ► $Z = \frac{W \{m(m+n+1)/2\}}{\{mn(m+n+1)/12\}^{1/2}}$.

 - ► $Z \sim N(0, 1)$.
- If there are ties
 - Use the average of the ranks.
 - not an exact test.

Example (Two-sample location problem)

- ▶ **HWC** Example 4.1
- Whether there is a difference in the transfer of tritiated water (water containing tritium, a radioactive isotope of hydrogen) across the tissue layers in the term human chorioamnion (a placental membrane) and in the human chorioamnion between 3- and 6-months' gestational age.
- Data: measurd the permeability constant Pd of the human chorioamnion to water.
 - collected data after 5 min of delivery from the placentas of healthy subjects, between 12 and 26 weeks following termination of pregnancy and
 - from term, uncomplicated vaginal deliveries.
- ▶ H_0 : $\Delta = 0$ versus H_A : $\Delta \neq 0$.

Example (Two-sample location problem)

95 percent confidence interval:

0.305

-0.08 Inf

##

sample estimates:
difference in location

```
at.term = c(.80, .83, 1.89, 1.04, 1.45,
  1.38, 1.91, 1.64, .73, 1.46)
gest.age = c(1.15, .88, .90, .74, 1.21)
wilcox.test(at.term, gest.age,
  alternative="greater", conf.int=T)
##
##
   Wilcoxon rank sum test
##
## data: at.term and gest.age
## W = 35, p-value = 0.1272
```

alternative hypothesis: true location shift is greater

Two-sample location problem (Hodges–Lehmann estimator)

- ► Compute mn differences $Y_j X_i$; $i = 1, \dots, m, j = 1, \dots, n$. $\hat{\Delta} = \text{median}\{Y_i - X_i; i = 1, \dots, m, j = 1, \dots, n\}$.
- wilcox.test gives a point estimator: difference in location
- In our example $\hat{\Delta} = .305$.
- ▶ There is no need to perform the large-sample approximation because we have the result for the exact test.

Comments on Wilcoxon rank sum test

- The confidence interval for Δ is found directly from the R command wilcox.test.
- ► The significance level of the rank sum test is not preserved if the two populations differ in dispersion or shape.
- ▶ If $H_0: \Delta = \Delta_0$, form a pseudo-sample $Y_1' = Y_1 \Delta_0, \dots, Y_n' = Y_n \Delta_0$.
- ▶ Run Wilcoxon rank sum test on $X_1, \dots, X_m, Y_1', \dots, Y_n'$
- In a two-sample problem, we sometimes wish to estimate $\delta = P(X < Y)$. Read **HWC** page 138 141, comment 18.
 - ► For example in quantifying stress-strength reliability.
 - ▶ X stress (random) applied to a system.
 - Y strength of the system.

References for this lecture

HWC Chapter 4.1-4.3