☐ xmarek71 / Digital-electronics1

Digital-electronics1 / Labs / 04-segment / README.md

Cvičenie 4

Truth table for common anode 7-segment display

Hex	Inputs	Α	В	С	D	E	F	G
0	0000	0	0	0	0	0	0	1
1	0001	1	0	0	1	1	1	1
2	0010	0	0	1	0	0	1	0
3	0011	0	0	0	0	1	1	0
4	0100	1	0	0	1	1	0	0
5	0101	0	1	0	0	1	0	0
6	0110	0	1	0	0	0	0	0
7	0111	0	0	0	1	1	1	1
8	1000	0	0	0	0	0	0	0

Hex	Inputs	Α	В	С	D	E	F	G
9	1001	0	0	0	0	1	0	0
Α	1010	0	0	0	1	0	0	0
b	1011	1	1	0	0	0	0	0
С	1100	0	0	0	0	1	1	1
d	1101	1	0	0	0	0	1	0
Е	1110	0	1	1	0	0	0	0
F	1111	0	1	1	1	0	0	0

Name	Port	Function
T10	CA	А
R10	СВ	В
K16	CC	С
K13	CD	D
P15	CE	Е
T11	CF	F
L18	CG	G
J17	AN[0]	KAT 1
J18	AN[1]	KAT 2
Т9	AN[2]	KAT 3
J14	AN[3]	KAT 4
P14	AN[4]	KAT 5
T14	AN[5]	KAT 6
K2	AN[6]	KAT 7
U13	AN[7]	KAT 8

Seven-segment display decoder

VHDL architecture from source file hex_7seg.vhd

```
architecture behavioral of hex_7seg is
begin
   p_7seg_decoder : process(hex_i)
   begin
       case hex_i is
           when "0000" =>
              seg_o <= "0000001"; -- 0
           when "0001" =>
               seg_o <= "1001111"; -- 1
           when "0010" =>
              seg_o <= "0010010"; -- 2
           when "0011" =>
               seg o <= "0000110"; -- 3
           when "0100" =>
               seg_o <= "1001100"; -- 4
           when "0101" =>
              seg_o <= "0100100"; -- 5
           when "0110" =>
              seg_o <= "0100000"; -- 6
           when "0111" =>
               seg_o <= "0001111"; -- 7
           when "1000" =>
               seg o <= "0000000"; -- 8
           when "1001" =>
              seg_o <= "0000100";
                                    -- 9
           when "1010" =>
               seg_o <= "0001000"; -- A
           when "1011" =>
              seg_o <= "1100000"; -- B
           when "1100" =>
               seg_o <= "0110001"; -- C
           when "1101" =>
              seg o <= "1000010"; -- D
           when "1110" =>
              seg_o <= "0110000"; -- E
           when others =>
              seg_o <= "0111000"; -- F
       end case;
   end process p_7seg_decoder;
end architecture behavioral;
```

VHDL stimulus process from testbench file tb_hex_7seg.vhd

```
p_stimulus : process
    begin
```

```
report "Stimulus process started" severity note;
s_hex <= "0000"; wait for 100 ns;</pre>
s_hex <= "0001"; wait for 100 ns;</pre>
s_hex <= "0010"; wait for 100 ns;</pre>
s_hex <= "0011"; wait for 100 ns;</pre>
s_hex <= "0100"; wait for 100 ns;</pre>
s_hex <= "0101"; wait for 100 ns;</pre>
s hex <= "0110"; wait for 100 ns;
s_hex <= "0111"; wait for 100 ns;</pre>
s_hex <= "1000"; wait for 100 ns;</pre>
s_hex <= "1001"; wait for 100 ns;</pre>
s_hex <= "1010"; wait for 100 ns;</pre>
s hex <= "1011"; wait for 100 ns;
s_hex <= "1100"; wait for 100 ns;</pre>
s_hex <= "1101"; wait for 100 ns;</pre>
s_hex <= "1110"; wait for 100 ns;</pre>
s_hex <= "1111"; wait for 100 ns;</pre>
report "Stimulus process finished" severity note;
wait;
end process p_stimulus;
```

Simulated time waveforms

VHDL code from source file top.vhd

```
architecture Behavioral of top1 is
begin
hex2seg : entity work.hex_7seg
                      port map(
                                              hex_i =>
                                                                                                                    SW,
                                              seg_o(6) \Rightarrow
                                                                                                                                           CA,
                                              seg_o(5) \Rightarrow
                                                                                                                                            CB,
                                              seg_o(4) \Rightarrow
                                                                                                                                           CC,
                                              seg_o(3) \Rightarrow
                                                                                                                                           CD,
                                              seg_o(2) \Rightarrow
                                                                                                                                           CE,
                                              seg_o(1) \Rightarrow
                                                                                                                                          CF,
                                              seg_o(0) \Rightarrow
                                                                                                                                           CG
                      );
                      AN <= "11110111";
                       LED(3 downto 0) <= SW;
                       LED(4) \leftarrow '1' \text{ when } (SW = "0000") \text{ else '0'};
                       LED(5) <= '1' when (SW > "1001") else '0';
                       LED(6) <= '1' \text{ when } (SW = "0001" \text{ or } SW = "0011" \text{ or } SW = "0101" \text{ or } SW = "0111" \text{ or }
                       LED(7) <= '1' \text{ when } (SW = "0001" \text{ or } SW = "0010" \text{ or } SW = "0100" \text{ or } SW = "1000") e
end Behavioral;
```

VHDL stimulus process from testbench file tb_top.vhd

```
p_stimulus : process
begin
    report "Stimulus process started" severity note;
```

```
s hex <= "0000";
        wait for 100 ns;
        s_hex <= "0001";
        wait for 100 ns;
        s hex <= "0010";
        wait for 100 ns;
        s_hex <= "0011";
        wait for 100 ns;
        s_hex <= "0100";
        wait for 100 ns;
        s_hex <= "0101";
        wait for 100 ns;
        s_hex <= "0110";
        wait for 100 ns;
        s_hex <= "0111";
        wait for 100 ns;
        s_hex <= "1000";
        wait for 100 ns;
        s_hex <= "1001";
        wait for 100 ns;
        s_hex <= "1010";
        wait for 100 ns;
        s hex <= "1011";
        wait for 100 ns;
        s hex <= "1100";
        wait for 100 ns;
        s_hex <= "1101";
        wait for 100 ns;
        s_hex <= "1110";
        wait for 100 ns;
        s_hex <= "1111";
        wait for 100 ns;
        report "Stimulus process finished" severity note;
        wait;
    end process p_stimulus;
end architecture Behavoral;
```

LED(7:4) indicators

Truth table

Hex	Inputs	LED4	LED5	LED6	LED7
0	0000	1	0	0	0

Hex	Inputs	LED4	LED5	LED6	LED7
1	0001	0	0	1	0
2	0010	0	0	0	1
3	0011	0	0	1	0
4	0100	0	0	0	1
5	0101	0	0	1	0
6	0110	0	0	0	1
7	0111	0	0	1	0
8	1000	0	0	0	1
9	1001	0	0	1	0
А	1010	0	1	0	0
b	1011	0	1	0	0
С	1100	0	1	0	0
d	1101	0	1	0	0
E	1110	0	1	0	0
F	1111	0	1	0	0

Code for LEDs(7:4)

```
LED(4) <= '1' when (SW = "0000") else '0';
LED(5) <= '1' when (SW > "1001") else '0';
LED(6) <= '1' when (SW = "0001" or SW = "0011" or SW = "0101" or SW = "0111" or
LED(7) <= '1' when (SW = "0001" or SW = "0010" or SW = "0100" or SW = "1000") e</pre>
```

Simulated time waveforms for tb_top

Schematic

