MUSSEL ABM - Cluster Output Summary

Serra Örey

Last compiled on 15 March, 2023

Contents

1.	Housekeeping	1
2.	Data Loading	5
3.	Data Wrangling	6
	3.cluster	6
	3.explain	6
4.	Plots	16
	4.cluster	16
	4.explanatory	24
Oı	n 15 March, 2023 I worked on(and if you are at the html possibly knitted) this script.	
	ere is a R Markdown script(or the output) for: commany document for Orey et.al. outputs to use in Mussel ABM	
Pl	ease follow the table of content (outline) for keeping track of the steps. It must be on the left side.	
St	atistical tests for the explanatory variables.	

1. Housekeeping

Check the needed packages:

```
#check Rversion:
R.version.string
```

[1] "R version 4.0.2 (2020-06-22)"

```
#important for rmarkdown
knitr::opts_chunk$set(echo = T, eval = T, fig.keep="all",cache = T) #DEFAULT:echo = T, eval = T, #eval=
knitr::opts_knit$set(root.dir = "M:/01_Projects/")
#getwd()
```

```
#housekeeping
##packages####
options(rlib_downstream_check = FALSE) #dont check package downstream
library(scales) #for show_col
library(patchwork)
library(tidyverse)
## -- Attaching packages ----v ggplot2 3.4.0
## v tibble 3.1.6 v dplyr 1.0.10
## v tidyr 1.2.0
                    v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.2
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## -- Conflicts ----- tidyverse_conflicts() --
## x readr::col_factor() masks scales::col_factor()
## x purrr::discard() masks scales::discard()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(cowplot)
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:patchwork':
##
##
      align_plots
#library(tidyr, lib.loc = "/usr/lib/R/site-library")
#require(parallel)
#require(doParallel)
#require(foreach)
#require(sp)
#require(sf)
#require(rnaturalearth)
library(MetBrewer)
```

Warning: package 'MetBrewer' was built under R version 4.0.5

```
library(knitr)
#library(factoextra)
library(RColorBrewer)
#library(cluster)
#require(cluster)
#require(chron)
require("factoextra") #visualization with clustering and pca
## Loading required package: factoextra
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
#require(maps)
library(ggcorrplot)
library(jmv) #for frequency table
## Warning: package 'jmv' was built under R version 4.0.5
library(nnet)
library(ggstatsplot)
## You can cite this package as:
##
        Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
##
        Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
library(Rcpp)
## Warning: package 'Rcpp' was built under R version 4.0.5
sessionInfo() #for reporting on package versions
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
```

```
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                               datasets methods
                                                                    base
## other attached packages:
## [1] Rcpp_1.0.8.3
                           ggstatsplot_0.10.0 nnet_7.3-18
                                                                  jmv_2.3.4
## [5] ggcorrplot_0.1.4
                           factoextra 1.0.7
                                              RColorBrewer 1.1-2 knitr 1.30
## [9] MetBrewer_0.2.0
                           cowplot 1.1.0
                                               forcats 0.5.2
                                                                  stringr_1.4.0
## [13] dplyr_1.0.10
                           purrr_0.3.4
                                               readr_2.1.2
                                                                  tidyr_1.2.0
## [17] tibble_3.1.6
                           ggplot2_3.4.0
                                               tidyverse_1.3.2
                                                                  patchwork_1.0.1
## [21] scales_1.2.1
## loaded via a namespace (and not attached):
## [1] httr_1.4.2
                               jsonlite_1.7.2
                                                       modelr_0.1.8
## [4] paletteer_1.5.0
                               datawizard_0.6.5
                                                       assertthat_0.2.1
## [7] googlesheets4_1.0.1
                               cellranger_1.1.0
                                                       yaml_2.2.1
## [10] bayestestR_0.13.0
                               ggrepel_0.8.2
                                                       pillar_1.8.1
## [13] backports_1.1.10
                               glue_1.6.2
                                                       digest_0.6.27
## [16] rvest_1.0.3
                               colorspace_1.4-1
                                                       htmltools_0.5.0
                               broom_1.0.1
## [19] pkgconfig_2.0.3
                                                      haven_2.5.0
## [22] jmvcore_2.3.19
                               tzdb 0.3.0
                                                       googledrive_2.0.0
## [25] generics_0.0.2
                               ellipsis_0.3.2
                                                       withr_2.5.0
## [28] cli_3.4.1
                               magrittr_2.0.1
                                                       crayon_1.5.2
## [31] readxl_1.3.1
                               evaluate_0.14
                                                       fs_1.5.0
## [34] fansi 0.4.2
                               xml2 1.3.3
                                                       tools_4.0.2
## [37] hms 1.1.2
                               gargle_1.2.1
                                                       lifecycle_1.0.3
## [40] munsell_0.5.0
                               reprex_2.0.2
                                                       statsExpressions_1.3.5
## [43] compiler_4.0.2
                               rlang_1.0.6
                                                       grid_4.0.2
## [46] parameters_0.20.0
                                                       rmarkdown_2.5.3
                               rstudioapi_0.13
## [49] gtable_0.3.0
                               DBI_1.1.0
                                                       rematch2_2.1.2
## [52] correlation_0.8.3
                               R6_2.5.0
                                                       lubridate_1.8.0
## [55] performance_0.10.2
                               utf8_1.2.1
                                                       zeallot_0.1.0
## [58] insight_0.19.0
                               stringi_1.5.3
                                                       vctrs_0.5.1
## [61] dbplyr_2.2.1
                               tidyselect_1.2.0
                                                       xfun_0.22
```

Paths, parameters...

```
my_project<-"221122-1stmanu_stat_trial"

#paths###
#data_main<- "~/shared_umsdata/"; #update for local laptop

data_in<- paste0("M:/01_Projects/",my_project,"/data_in/")
data_out<-paste0("M:/01_Projects/",my_project,"/data_out/")

#parameters###
#prj<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" #map projection
#prj<-"+proj=utm +zone=32 +ellps=GRS80 +towgs84=0,0,0,0,0,0 +units=m +no_defs +type=crs" #map project
#prj2<-sf::st_crs("EPSG:25832")
#proj4string = CRS(prj)

t_today=format(Sys.time(), '%y%m%d')</pre>
#latlon to zoom
```

```
#zolon = c(5, 9)
#zolat = c(53.2, 55)

#latlon to super zoom
#zozolon = c(7, 9)
#zozolat = c(53.5, 54.3)

#my_lon = c(2.5, 9.3)
#my_lat = c(51, 57)
```

Fancy color picking chunk.

2. Data Loading

Loading part:

I am loading R files from previous step.

I calculated the aggregated values already in project: 220525-repating_HR_calculations.

They are per year per vessel level. And I copied that file to data_in of my new project "221022-clustering_pca".

It is already merged on 221124 and 221125.

These data files aggregated individual vessel information and also mean values are used for interannual aggregation of 13 years of the study period (2009-2013). Details of the previous aggregation can be found in:

```
file:///R:/R/01\_Projects/221022-clustering\_pca/code/3-1-plot-final\_graphs
```

parameter name explains the aggregation for parameters used in clustering:

perves_f_trait_df <- perves_f_trait_df %>% rename(mean.core_area_index=mean.mean_hr50, sd.core_area_index=sd.mean_hr50, mean.area_flexibility=mean.mean_hrchange_rel, sd.area_flexibility=sd.mean_hrchange_rel, sd.area_flexibility=sd.area_flexibil

 $mean.total_fishinghours = mean.sum_fishinghours, sd.total_fishinghours = sd.sum_fishinghours, mean.triplength = mean.mean.sum_fishinghours = sd.sum_fishinghours = sd.$

```
df_to_explain<-readRDS(file = paste0(data_in, "perves-merged_explanatory-", "221124", ".rds"))
#f_trait_df-perves-ves_clusters-221125
df_to_cluster<-readRDS(file = paste0(data_in, "f_trait_df-perves-ves_clusters-", "221125", ".rds"))</pre>
```

ports <- read.csv(paste(data_in, "UN_LOCODE-230302.csv", sep="")) #UNlist of harbours #(ISO3_Country_Code,

3. Data Wrangling

3.cluster

3.explain

```
colnames(df_to_explain)
## [1] "VE REF"
                              "sub_grp"
                                                   "LE KG CSH"
  [4] "pp_tot_kgs"
                              "eff_hrs"
                                                   "LPUE"
##
## [7] "other_catch"
                              "perc_csh"
                                                   "Other Gear"
## [10] "TBB_CRU_16-31_0_0" "per_metcra"
                                                   "VE_LEN"
## [13] "VE_KW"
                              "VE_TON"
                                                   "fav_dep"
## [16] "fav_lan"
                              "VE_HOME"
#all
my_parameters<-c("VE_REF","sub_grp",</pre>
                  "LE_KG_CSH", "pp_tot_kgs", "eff_hrs", "LPUE", "other_catch", "perc_csh",
                  "Other Gear", "TBB_CRU_16-31_0_0", "per_metcra",
                  "VE_LEN", "VE_KW", "VE_TON", "fav_dep", "fav_lan", "VE_HOME")
#only continuous without harbors
my_parameters<-c("VE_REF","sub_grp",</pre>
                  "LE_KG_CSH", "pp_tot_kgs", "eff_hrs", "LPUE", "other_catch", "perc_csh",
                  "Other Gear", "TBB_CRU_16-31_0_0", "per_metcra",
                  "VE LEN", "VE KW", "VE TON")
df_merged_sub <- df_to_explain %>% dplyr::select(all_of(my_parameters))
```

Check correlation.

```
perves_f_trait_df<-df_merged_sub

#str(perves_f_trait_df)
summary(perves_f_trait_df)</pre>
```

```
## VE_REF sub_grp LE_KG_CSH pp_tot_kgs
## Length:211 4: 12 Min. : 385.2 Min. : 385.2
## Class:character 3:119 1st Qu.: 38158.2 1st Qu.: 42566.9
```

```
Median: 60788.4 Median: 64374.5
   Mode :character
                     2: 17
##
                     1: 63
                            Mean : 62183.3 Mean : 71923.5
                            3rd Qu.: 82508.8
                                              3rd Qu.: 86809.9
##
##
                            Max. :151993.0 Max. :359796.8
##
      eff hrs
                        LPUE
                                      other_catch
                                                          perc_csh
##
   Min. : 48.63
                    Min. : 0.9254
                                                0.0
                                                       Min. :0.01918
                                     Min. :
   1st Qu.: 878.76
                    1st Qu.: 37.7449
                                     1st Qu.:
                                                 0.0
                                                       1st Qu.:0.99864
   Median :1351.27
                    Median: 46.7274
                                     Median :
                                                 4.2
                                                       Median: 0.99993
##
##
   Mean :1401.46
                    Mean : 48.3771
                                     Mean : 9740.3
                                                       Mean :0.95024
##
   3rd Qu.:1814.53
                    3rd Qu.: 57.8626
                                     3rd Qu.:
                                                88.9
                                                       3rd Qu.:1.00000
  Max.
         :3685.15
                    Max.
                         :111.5714 Max.
                                           :357240.7
                                                       Max. :1.00000
                    TBB_CRU_16-31_0_0 per_metcra
##
     Other Gear
                                                          VE_LEN
             0.00 Min. : 145.9 Min.
## Min.
         :
                                            :0.02774
                                                      Min.
                                                            :12.35
              0.00
                   1st Qu.: 7783.8
## 1st Qu.:
                                     1st Qu.:0.99386
                                                      1st Qu.:15.95
## Median :
              7.67 Median :14462.3
                                     Median :0.99940
                                                      Median :17.24
## Mean : 1233.04 Mean :14784.6
                                     Mean :0.94863
                                                      Mean :18.09
##
   3rd Qu.: 109.12
                     3rd Qu.:21952.0
                                     3rd Qu.:1.00000
                                                      3rd Qu.:19.36
         :44714.63
##
   Max.
                   Max. :41026.4
                                     Max. :1.00000
                                                      Max. :25.27
                      VE TON
##
       VE KW
## Min.
         :110.0
                 Min. : 10.00
##
  1st Qu.:184.5
                 1st Qu.: 28.00
## Median :216.9
                Median : 38.00
## Mean :203.3
                  Mean : 49.03
##
   3rd Qu.:221.0
                  3rd Qu.: 59.00
## Max.
         :304.8
                       :167.25
                  Max.
#correlation matrix
my corr <- cor(perves f trait df[,3:ncol(perves f trait df)], method = "pearson")
ggcorrplot(my_corr, hc.order = TRUE, type = "lower",
lab = TRUE)
```



```
# Compute a matrix of correlation p-values
p.mat <- cor_pmat(perves_f_trait_df[,3:ncol(perves_f_trait_df)])
ggcorrplot(my_corr, hc.order = TRUE, type = "lower",
    lab = TRUE, p.mat = p.mat)</pre>
```


deciding what parameters to put in cluster

```
perves_f_trait_df<-df_merged_sub</pre>
#str(perves_f_trait_df)
summary(perves_f_trait_df)
                                                  LPUE
##
      VE REF
                     sub_grp LE_KG_CSH
## Length:211
                     4: 12 Min. : 385.2 Min. : 0.9254
## Class:character 3:119
                           1st Qu.: 38158.2 1st Qu.: 37.7449
## Mode :character 2: 17
                            Median: 60788.4 Median: 46.7274
                            Mean : 62183.3 Mean : 48.3771
##
                     1: 63
##
                            3rd Qu.: 82508.8
                                              3rd Qu.: 57.8626
                            Max. :151993.0
                                             Max. :111.5714
##
##
   other_catch
                         VE_LEN
                                       VE_KW
## Min. :
               0.0
                    Min.
                           :12.35
                                   Min.
                                          :110.0
## 1st Qu.:
               0.0
                    1st Qu.:15.95
                                   1st Qu.:184.5
## Median :
               4.2
                   Median :17.24
                                   Median :216.9
## Mean : 9740.3
                    Mean :18.09
                                         :203.3
                                   Mean
   3rd Qu.:
             88.9
                     3rd Qu.:19.36
                                    3rd Qu.:221.0
## Max. :357240.7
                    Max.
                           :25.27
                                   Max. :304.8
#correlation matrix
my_corr <- cor(perves_f_trait_df[,3:ncol(perves_f_trait_df)],method = "pearson")</pre>
ggcorrplot(my_corr, hc.order = TRUE, type = "lower",
```

lab = TRUE)


```
# Compute a matrix of correlation p-values
p.mat <- cor_pmat(perves_f_trait_df[,3:ncol(perves_f_trait_df)])
ggcorrplot(my_corr, hc.order = TRUE, type = "lower",
    lab = TRUE, p.mat = p.mat)</pre>
```


I am omitting harbor for the first try choosing only:LE_KG_CSH,LPUE, other_catch, VE_LEN, VE_KW It would be nice to have vessel built year. but I do not have it at the moment.

```
df_stat<-df_to_explain %>% dplyr::select(c(sub_grp,LE_KG_CSH,LPUE, other_catch, VE_LEN, VE_KW))
#order levels to plot 1234
df_stat$sub_grp <- factor(df_stat$sub_grp, levels = 1:4)</pre>
```

##3.harbors harbor aggragation is recorded. number of vessels per cluster are calculated.

```
df_merged<-df_to_explain
df_merged$fav_lan<-as.factor(df_merged$fav_lan)
levels(df_merged$fav_lan)

## [1] "DEACC" "DEBEN" "DEBRV" "DEBUM" "DECUX" "DEDAG" "DEDIT" "DEDRM" "DEEIK"
## [10] "DEFES" "DEGRE" "DEHHF" "DEHOO" "DEHSX" "DEHUS" "DENOS" "DENOR"
## [19] "DEPEL" "DESCY" "DESKW" "DETOE" "DEVAR" "DEWRY" "DEWYK" "DKHNB" "DKRNN"
## [28] "NLDHR" "NLHAR" "NLLAN"

#str(df_merged)

#order levels to plot 1234
df_merged$sub_grp <- factor(df_merged$sub_grp, levels = 1:4)
ggplot()+</pre>
```

```
geom_bar(data=df_merged,aes(x=forcats::fct_infreq(fav_lan),fill=sub_grp))+
scale_fill_manual(values = serra) +
scale_y_continuous(breaks = seq(0, 50, by = 5))+
theme_minimal()+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5))
```



```
#get an output table for number of vessels per port
temp_df<-df_merged %>%
  group_by(sub_grp,fav_lan) %>%
  summarise(n_vessels = n())
```

'summarise()' has grouped output by 'sub_grp'. You can override using the
'.groups' argument.

```
temp_df <- temp_df %>% left_join(ports,by=c("fav_lan"="FAO_code"))
#it is good enough to print as such with our wrapping the column names
knitr::kable(colnames(temp_df))
```

```
x
sub_grp
fav_lan
n vessels
```

X
ISO3_Country_Code
full_name
Coordinates
Latitude
Longitude
EU_Fish_Port
Port
Region

knitr::kable(temp_df)

sub_{-}	_grfavlann_	_vess	elsX ISO3_	_Countfwll_Godne	Coordin	atkatitudkongitudkU_	_Fish_PBr	rtRegion
1	DEACC	2	1283 DEU	Accumersie	l5368N 00849E	53.6798 7 .485630Y	Y	Niedersachsen
1	DEBUM	24	1359 DEU	Buesum	5413N 00885E	54.1333 8 .850000 Y	Y	Schleswig- Holstein- Nordsee
1	DECUX	6	1371 DEU	Cuxhaven	5387N 00870E	53.8666 8 .700000 Y	Y	Niedersachsen
1	DEDAG	1	1372 DEU	Dagebuell	5473N 00869E	54.7316 8 .69166 7 Y	Y	Schleswig- Holstein- Nordsee
1	DEDIT	6	1381 DEU	Ditzum	5331N 00728E	53.3083 3 .275000Y	Y	Niedersachsen
1	DEEIK	2	1402 DEU	Eidersperrv	v 5427 N 00885E	54.2666 \$.850000 Y	Y	Schleswig- Holstein- Nordsee
1	DEFES	2	1411 DEU	Fedderward	l ēi36el N 00836E	53.6000 8 .35833 3 Y	Y	Niedersachsen
1	DEGRE	10	1439 DEU	Greetsiel	5350N 00710E	53.5000 \(\vec{q}\) .100000 Y	Y	Niedersachsen
1	DEHUS	2	1485 DEU	Husum	5448N 00904E	54.4750 9 .045000Y	Y	Schleswig- Holstein- Nordsee
1	DENHS	1	1595 DEU	Neuharling	e 5370 N 00770E	53.7000 0 .703333Y	Y	Niedersachsen
1	DENOE	3	1600 DEU	Norddeich	5362N 00716E	53.6250 0 .158333Y	Y	Niedersachsen
1	DENOR	1	1601 DEU	Nordstrand	5450N 00881E	54.4983 8 .808333Y	Y	Schleswig- Holstein- Nordsee
1	DEWRY	1	1745 DEU	Wremen	5365N 00850E	53.6500 8 .500000Y	Y	Niedersachsen
1	DKHNB	1	1947 DNK	Havneby	5509N 00855E	55.0873 8 .554500Y	Y	Daenemark- Nordsee
1	NLLAN	1	$7550\mathrm{NLD}$	Lauwersoog	5342N 00620E	53.4166 6 .200000Y	Y	Niederlande
2	DEBUM	7	1359 DEU	Buesum	5413N 00885E	54.1333 8 .850000 Y	Y	Schleswig- Holstein- Nordsee

$\operatorname{sub}_{_}$	_grfav_lann_	_vess	el š X ISO3_	_Count fw l <u>l_Godon</u> e	Coordina	atkatitudŁongitud£U_	_Fish_PBr	rtRegion
2	DECUX	8	1371 DEU	Cuxhaven	5387N 00870E	53.8666 \% .700000 Y	Y	Niedersachsen
2	NLDHR	1	$7522\mathrm{NLD}$	Den Helder	5297N 00477E	52.9666 4 .76666 7 Y	Y	Niederlande
2	NLLAN	1	$7550\mathrm{NLD}$	Lauwersoog		53.4166 6 .200000Y	Y	Niederlande
3	DEACC	6	1283 DEU	Accumersie	15368N 00849E	53.6798 7 .485630Y	Y	Niedersachsen
3	DEBEN	4	1313 DEU	Bensersiel	5368N 00758E	53.6750 0 .575000Y	Y	Niedersachsen
3	DEBRV	1	1354 DEU	Bremerhave	e 5 354N 00857E	53.5366 8 .57333 3 Y	Y	Niedersachsen
3	DEBUM	19	1359 DEU	Buesum	5413N 00885E	54.1333 8 .850000Y	Y	Schleswig- Holstein- Nordsee
3	DECUX	11	1371 DEU	Cuxhaven	5387N 00870E	53.8666 8 .700000 Y	Y	Niedersachsen
3	DEDAG	3	1372 DEU	Dagebuell	5473N 00869E	54.7316 8 .69166 7 Y	Y	Schleswig- Holstein- Nordsee
3	DEDRM	3	1388 DEU	Dorum	5374N 00853E	53.7383 8 .533333 Y	Y	Niedersachsen
3	DEEIK	5	1402 DEU	Eidersperry	v 5427 N 00885E	54.2666 \$.850000 Y	Y	Schleswig- Holstein- Nordsee
3	DEFES	3	1411 DEU	Fedderward	l ā36el N 00836E	53.6000 8 .35833 3 Y	Y	Niedersachsen
3	DEGRE	13	1439 DEU	Greetsiel	5350N 00710E	53.5000 0 .100000 Y	Y	Niedersachsen
3	DEHOO	3	1474 DEU	Hooksiel	5364N 00808E	53.6416 7 .083333 Y	Y	Niedersachsen
3	DEHSX	1	1483 DEU	Harlesiel	5371N 00781E	53.7066 7 .80833 3 Y	Y	Niedersachsen
3	DEHUS	6	1485 DEU	Husum	5448N 00904E	54.4750 9 .045000Y	Y	Schleswig- Holstein- Nordsee
3	DENHS	5	1595 DEU	Neuharling	e 5370 N 00770E	53.7000 0 .703333Y	Y	Niedersachsen
3	DENOE	9	1600 DEU	Norddeich	5362N 00716E	53.6250 0 .15833 3 Y	Y	Niedersachsen
3	DENOR	2	1601 DEU	Nordstrand	5450N 00881E	54.4983 8 .80833 3 Y	Y	Schleswig- Holstein- Nordsee
3	DEPEL	5	1625 DEU	Pellworm	5452N 00869E	54.5216 8 .68833 3 Y	Y	Schleswig- Holstein- Nordsee
3	DESCY	5	1664 DEU	Schluettsiel	5468N 00875E	54.6816 7 .75333 3 Y	Y	Schleswig- Holstein- Nordsee
3	DESKW	3	1674 DEU	Spieka- neufeld	5379N 00855E	53.7900 8 .54833 3 Y	Y	Niedersachsen

$\operatorname{sub}_{_}$	_grfav_lann_	vess	selsX	ISO3_	_Count fy l <u>l_C</u> odne	Coordina	atkatitudkongitudkU_	_Fish_PBrt	rtRegion
3	DETOE	1	1698	DEU	Toenning	5432N 00895E	54.3166 % .950000 Y	Y	Schleswig- Holstein- Nordsee
3	DEVAR	1	1714	DEU	Varel	5341N 00818E	53.4100 8 .18333 3 Y	Y	Niedersachsen
3	DEWRY	5	1745	DEU	Wremen	5365N 00850E	53.6500 8 .500000Y	Y	Niedersachsen
3	DEWYK	1	1755	DEU	Wyk auf Foehr	5469N 00858E	54.6933 8 .575000 Y	Y	Schleswig- Holstein- Nordsee
3	DKHNB	3	1947	DNK	Havneby	5509N 00855E	55.0873 8 .554500Y	Y	Daenemark- Nordsee
3	NLLAN	1	7550	NLD	Lauwersoog	5342N 00620E	53.4166 6 .200000 Y	Y	Niederlande
4	DECUX	1	1371	DEU	Cuxhaven	5387N 00870E	53.8666 % .700000 Y	Y	Niedersachsen
4	DEHHF	1	1464	DEU	Heiligenhaf	e5a437N 01098E	54.3733 8 0.9833 38	Y	Schleswig- Holstein- Ostsee
4	DKHNB	1	1947	DNK	Havneby	5509N 00855E	55.0873 8 .554500Y	Y	Daenemark- Nordsee
4	DKRNN	1	2147	DNK	Ronne	5510N 01470E	55.0993 0 4.69760 V	Y	Daenemark- Ostsee
4	NLDHR	2	7522	NLD	Den Helder	5297N 00477E	52.9666 4 .76666 7 Y	Y	Niederlande
4	NLHAR	1	7536	NLD	Harlingen	5318N 00542E	53.1833 5 .416667Y	Y	Niederlande
4	NLLAN	5	7550	NLD	Lauwersoog		53.4166 6 .200000Y	Y	Niederlande

write_csv(temp_df,file = paste0(data_out,"musselabm-","harbor_vessel",".csv"))

4. Plots

detailed example

4.cluster

is data normally dist?

df_to_cluster

```
## # A tibble: 211 x 7
##
                   core_area_index area_flexibility total~1 tripl~2 dista~3 sub_grp
      VE_REF
##
      <chr>
                             <dbl>
                                              <dbl>
                                                      <dbl>
                                                              <dbl>
                                                                     <dbl> <fct>
                              919.
                                              3.18
                                                      1252.
                                                              26.0
##
   1 BEL011101959
                                                                     82443. 1
  2 DEU000070400
                              515.
                                              3.41
                                                       690.
                                                              40.6 102810. 2
                                              3.06
                                                       716.
                                                              9.61 23696. 3
## 3 DEU000070500
                              164.
```

```
## 4 DEU000160300
                                              2.99
                                                      587.
                                                             6.60 19190. 3
                             109.
                                                      912. 28.9 166331. 4
## 5 DEU000200500
                             338.
                                              3.45
## 6 DEU000210300
                             108.
                                              2.92
                                                      331.
                                                            6.87 20154. 3
## 7 DEU000270300
                                              3.31
                                                     1607.
                                                             41.8 110384. 2
                             878.
## 8 DEU000290300
                            2644.
                                              3.53
                                                     3515.
                                                            69.0 153246. 2
## 9 DEU000340500
                            1388.
                                              3.30
                                                      937.
                                                           40.0 112494. 2
## 10 DEU000350300
                             165.
                                              2.98
                                                      730.
                                                             8.65 29170. 3
## # ... with 201 more rows, and abbreviated variable names 1: total_fishinghours,
      2: triplength, 3: distance_to_port
shapiro.test(df_to_cluster$core_area_index)
##
## Shapiro-Wilk normality test
##
## data: df_to_cluster$core_area_index
## W = 0.55363, p-value < 2.2e-16
shapiro.test(df_to_cluster$area_flexibility)
##
   Shapiro-Wilk normality test
## data: df_to_cluster$area_flexibility
## W = 0.97738, p-value = 0.001784
shapiro.test(df_to_cluster$total_fishinghours)
##
##
  Shapiro-Wilk normality test
## data: df_to_cluster$total_fishinghours
## W = 0.97756, p-value = 0.001892
shapiro.test(df_to_cluster$triplength)
##
## Shapiro-Wilk normality test
##
## data: df_to_cluster$triplength
## W = 0.92417, p-value = 5.836e-09
shapiro.test(df_to_cluster$distance_to_port)
##
## Shapiro-Wilk normality test
##
## data: df_to_cluster$distance_to_port
## W = 0.72211, p-value < 2.2e-16
Choose NON-PARAMETRIC TEST.
```

```
summary(df_to_cluster)
```

```
##
      VE_REF
                      core_area_index
                                       area_flexibility total_fishinghours
##
  Length:211
                      Min. : 25.77
                                       Min.
                                              :2.759
                                                        Min. : 48.63
                      1st Qu.: 149.98
   Class : character
                                       1st Qu.:3.143
                                                        1st Qu.: 878.76
## Mode :character
                      Median : 315.38
                                                        Median :1351.27
                                       Median :3.281
##
                      Mean
                           : 632.43
                                       Mean
                                              :3.283
                                                        Mean
                                                               :1401.46
##
                      3rd Qu.: 727.29
                                       3rd Qu.:3.396
                                                        3rd Qu.:1814.53
##
                            :7110.31
                                              :4.032
                                                               :3685.15
                      Max.
                                       Max.
                                                        Max.
##
                    distance_to_port sub_grp
     triplength
         : 3.956
                    Min. : 11809
## Min.
                                   1: 63
                    1st Qu.: 35448
  1st Qu.:14.466
                                   2: 17
## Median :24.207
                    Median : 46652
                                   3:119
## Mean
         :26.352
                    Mean : 67452
                                   4: 12
## 3rd Qu.:35.462
                    3rd Qu.: 78863
## Max. :82.349
                    Max. :305945
#df_to_cluster %>%
# group_by(sub_grp) %>%
 summarise(across(2:6,
#
                   list(median = median, mean = mean, sd = sd, min=min, max=max),
#
                   .names = "{.col}-{.fn}"))
ggbetweenstats(
 data = df_to_cluster,
 x = sub\_grp,
 y = core_area_index,
 type = "nonparametric"
)+
 scale_colour_manual(
 values = serra,
)
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
```



```
temp_df <- df_to_cluster %>%
  group_by(sub_grp) %>%
  summarise_at(c("core_area_index"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

sub_grp	median	mean	sd	min	max
1	671.8138	683.3898	230.6545	154.82579	1208.2514
2	1486.2515	1486.9644	578.8590	515.18585	2643.7759
3	154.7685	184.9535	109.5209	25.77415	583.7084
4	3615.7793	3591.7230	2061.9764	336.71010	7110.3125

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","core_area_index",".csv"))

#
ggbetweenstats(
   data = df_to_cluster,
   x = sub_grp,
   y = area_flexibility,
   type = "nonparametric"
)+
   scale_colour_manual(
   values = serra,
   )
```

```
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
```

- ## Scale for colour is already present.
- ## Adding another scale for colour, which will replace the existing scale.


```
temp_df <- df_to_cluster %>%
  group_by(sub_grp) %>%
  summarise_at(c("area_flexibility"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

sub_grp	median	mean	sd	min	max
1	3.304568	3.308126	0.1502837	2.955536	3.816552
2	3.346852	3.385128	0.1295437	3.209747	3.633262
3	3.217691	3.238134	0.2246333	2.758949	4.031913
4	3.411284	3.449094	0.1655735	3.261499	3.791583

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","area_flexibility",".csv"))
#
ggbetweenstats(
  data = df_to_cluster,
  x = sub_grp,
```

```
y = total_fishinghours,
type = "nonparametric"
)+
scale_colour_manual(
values = serra,
)
```

```
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
```

Scale for colour is already present.


```
temp_df <- df_to_cluster %>%
  group_by(sub_grp) %>%
  summarise_at(c("total_fishinghours"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

sub_grp	median	mean	sd	min	max
1	1695.418	1695.687	482.9011	48.63333	3189.592
2	2212.949	2208.319	740.1988	689.68974	3515.372
3	1012.106	1051.525	471.8420	260.28333	2450.369
4	2150.825	2183.944	737.6611	911.71000	3685.154

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","total_fishinghours",".csv"))

#
ggbetweenstats(
   data = df_to_cluster,
   x = sub_grp,
   y = triplength,
   type = "nonparametric"
)+
   scale_colour_manual(
   values = serra,
   )
```

```
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
## Scale for colour is already present.
```



```
temp_df <- df_to_cluster %>%
  group_by(sub_grp) %>%
  summarise_at(c("triplength"), list(median = median, mean = mean, sd = sd, min=min, max=max))
knitr::kable(temp_df)
```

sub_grp	median	mean	sd	min	max
1	32.33045	32.36189	7.186190	15.892593	46.42073
2	44.73920	47.61776	8.259382	36.997584	68.95257
3	15.88431	16.63042	7.771796	3.955714	40.05543
4	64.72111	61.07376	18.352791	26.908756	82.34921

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","triplength",".csv"))

#
ggbetweenstats(
   data = df_to_cluster,
   x = sub_grp,
   y = distance_to_port,
   type = "nonparametric"
)+
   scale_colour_manual(
   values = serra,
   )
```

```
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
```

Scale for colour is already present.


```
temp_df <- df_to_cluster %>%
  group_by(sub_grp) %>%
  summarise_at(c("distance_to_port"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

sub_grp	median	mean	sd	min	max
1	75252.67	75177.00	12195.914	48947.98	100426.79
2	128148.22	130562.80	19536.906	102810.47	161044.84
3	36982.05	35852.34	9810.115	11808.97	54369.99
4	250235.58	250854.21	36025.651	166330.75	305944.86

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","distance_to_port",".csv"))
```

4.explanatory

is data normally dist?

```
summary(df_stat)
```

```
sub_grp LE_KG_CSH
                                 LPUE
                                              other_catch
          Min. : 385.2 Min. : 0.9254
                                              Min. :
                                                          0.0
## 1: 63
   2: 17
          1st Qu.: 38158.2
                            1st Qu.: 37.7449
                                              1st Qu.:
                                                          0.0
## 3:119
          Median: 60788.4
                            Median: 46.7274 Median:
                                                          4.2
## 4: 12
          Mean : 62183.3
                            Mean : 48.3771
                                              Mean : 9740.3
           3rd Qu.: 82508.8
##
                            3rd Qu.: 57.8626
                                              3rd Qu.:
                                                         88.9
          Max. :151993.0
##
                            Max. :111.5714
                                              Max. :357240.7
##
       VE_LEN
                      VE_KW
## Min.
         :12.35 Min.
                        :110.0
##
  1st Qu.:15.95
                1st Qu.:184.5
## Median :17.24 Median :216.9
## Mean
         :18.09
                Mean
                        :203.3
## 3rd Qu.:19.36
                  3rd Qu.:221.0
          :25.27
## Max.
                  Max.
                        :304.8
shapiro.test(df_stat$LE_KG_CSH)
##
##
   Shapiro-Wilk normality test
##
## data: df_stat$LE_KG_CSH
## W = 0.98396, p-value = 0.01697
```

```
shapiro.test(df_stat$LPUE)
```

```
##
## Shapiro-Wilk normality test
##
## data: df_stat$LPUE
## W = 0.9701, p-value = 0.000187
```

```
shapiro.test(df_stat$other_catch)
##
##
   Shapiro-Wilk normality test
## data: df_stat$other_catch
## W = 0.21393, p-value < 2.2e-16
shapiro.test(df_stat$VE_LEN)
##
##
  Shapiro-Wilk normality test
##
## data: df_stat$VE_LEN
## W = 0.89524, p-value = 5.594e-11
shapiro.test(df_stat$VE_KW)
##
## Shapiro-Wilk normality test
## data: df_stat$VE_KW
## W = 0.81532, p-value = 4.312e-15
Choose NON-PARAMETRIC TEST.
colnames(df_stat)
## [1] "sub_grp"
                     "LE_KG_CSH"
                                   "LPUE"
                                                 "other_catch" "VE_LEN"
## [6] "VE_KW"
ggbetweenstats(
 data = df_stat,
 x = sub_grp,
y = LE_KG_CSH,
 type = "nonparametric"
 scale_colour_manual(
 values = serra,
)
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
```



```
temp_df <- df_stat %>%
  group_by(sub_grp) %>%
  summarise_at(c("LE_KG_CSH"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

sub_grp

(n = 63)

$\overline{\mathrm{sub_grp}}$	median	mean	sd	min	max
1	75663.41	72918.38	25395.82	385.2318	135555.4
2	104207.80	98262.09	41902.33	22066.5758	151993.0
3	52540.50	55214.27	26379.00	9734.0182	116709.8
4	10090.34	23821.43	26042.62	2556.0547	82392.4

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","LE_KG_CSH",".csv"))
ggbetweenstats(
 data = df_stat,
  x = sub\_grp,
 y = LPUE,
 type = "nonparametric"
  scale_colour_manual(
values = serra,
```

Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
"identity", : Ignoring unknown parameters: 'segment.linetype'

Scale for colour is already present.

sub_grp	median	mean	sd	min	max
1	41.335974	44.29354	12.59282	11.4565721	96.83555
2	44.896110	44.93154	10.28313	27.1406127	63.39054
3	52.369771	54.51565	15.09858	27.9123237	111.57142
4	3.845739	13.82290	18.23795	0.9253936	60.43421

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","LPUE",".csv"))
```

```
ggbetweenstats(
  data = df_stat,
  x = sub_grp,
  y = other_catch,
  type = "nonparametric"
)+
  scale_colour_manual(
  values = serra,
  )
```

```
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
```

Scale for colour is already present.


```
temp_df <- df_stat %>%
  group_by(sub_grp) %>%
  summarise_at(c("other_catch"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

$\overline{\mathrm{sub_grp}}$	median	mean	sd	min	max
1	9.714286e+00	441.01037	1301.7533	0	7685.1947
2	1.216664e + 03	8958.99278	24327.3201	0	100528.7291
3	1.153846e+00	32.69259	92.1262	0	645.9944
4	$1.230500e{+05}$	155935.26802	127749.5169	0	357240.7333

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","other_catch",".csv"))

ggbetweenstats(
   data = df_stat,
   x = sub_grp,
   y = VE_LEN,
   type = "nonparametric"
)+
   scale_colour_manual(
   values = serra,
   )
```

```
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
```

- ## Scale for colour is already present.
- ## Adding another scale for colour, which will replace the existing scale.


```
temp_df <- df_stat %>%
  group_by(sub_grp) %>%
  summarise_at(c("VE_LEN"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

sub_grp	median	mean	sd	min	max
1	18.700	18.86219	2.257809	14.98	25.2700
2	22.820	22.33722	1.804621	19.71	24.6500
3	16.150	16.49427	1.377352	12.35	20.5700
4	23.935	23.82021	1.029144	20.79	25.0825

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","VE_LEN",".csv"))

ggbetweenstats(
    data = df_stat,
    x = sub_grp,
    y = VE_KW,
    type = "nonparametric"
)+
    scale_colour_manual(
    values = serra,
    )
```

```
## Warning in (function (mapping = NULL, data = NULL, stat = "identity", position =
## "identity", : Ignoring unknown parameters: 'segment.linetype'
```

- ## Scale for colour is already present.
- ## Adding another scale for colour, which will replace the existing scale.


```
temp_df <- df_stat %>%
  group_by(sub_grp) %>%
  summarise_at(c("VE_KW"), list(median = median, mean = mean, sd = sd, min=min,max=max))
knitr::kable(temp_df)
```

sub_grp	median	mean	sd	min	max
1	221.0000	214.4229	11.4967368	180	221.00
2	221.0000	220.9412	0.2425356	220	221.00
3	191.2308	191.4593	27.8762502	110	221.00
4	220.8846	238.0663	32.2645524	220	304.75

```
write_csv(temp_df,file = paste0(data_out,"musselabm-","VE_KW",".csv"))
```

End of the document. - Serra Örey