Medical Image Processing for Diagnostic Applications

Bilateral Filtering

Online Course – Unit 63 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Edge Preserving Filtering

Motivation

Low-Pass Domain Filter

Low-Pass Range Filter

The Combination to the Bilateral Filter

Examples

Summary

Take Home Messages
Further Readings

Motivation

Problem: How can we prevent averaging across edges while still averaging within a smooth region?

Definition

Bilateral filtering is a method for edge preserving noise reduction. Instead of simply averaging image values in dependence on their geometric closeness, also the photometric similarity of nearby pixels is considered.

Low-Pass Domain Filter

Let us consider spatial domain filtering of continuous 2-D image functions defined as follows:

$$h_{\text{domain}}(x,y) = k_d^{-1}(x,y) \int_{-\infty-\infty}^{+\infty+\infty} f(\mu,\nu) c(x,y,\mu,\nu) d\mu d\nu,$$

where

- the filtering kernel is usually restricted to a local neighborhood,
- f(x, y) denotes the observed image,
- $c(x, y, \mu, v)$ measures the *geometric closeness* between the image point (x, y) and the point (μ, v) , and
- the normalization function k_d is defined by

$$k_d(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} c(x,y,\mu,v) d\mu dv.$$

Low-Pass Domain Filter

We can make use of a standard definition from system theory:

Definition

The filter is called *shift-invariant* if $c(x, y, \mu, v)$ is bivariate in (μ, v) and $k_d(x, y)$ is constant.

Low-Pass Range Filter

Now we apply a similar idea to the intensity values:

$$h_{\text{range}}(x,y) = k_r^{-1}(x,y) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\mu,\nu) s(f(x,y),f(\mu,\nu)) d\mu d\nu,$$

where

- again the filtering kernel is usually restricted to a local neighborhood,
- f(x, y) denotes the observed image,
- $s(f(x,y),f(\mu,v))$ measures the *photometric similarity* between the intensity value at (x,y) and a neighboring position (μ,v) , and
- the normalization function k_r is defined by

$$k_r(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} s(f(x,y),f(\mu,\nu)) d\mu d\nu.$$

Low-Pass Range Filter

Definition

The similarity function $s(f(x,y),f(\mu,v))$ is **unbiased** if it depends only on the difference $f(x,y)-f(\mu,v)$.

Bilateral Filter

Now we combine domain and range filtering in a proper manner:

$$h_{\text{bilateral}}(x,y) = k^{-1}(x,y) \int_{-\infty-\infty}^{+\infty+\infty} f(\mu,v) c(x,y,\mu,v) s(f(x,y),f(\mu,v)) d\mu dv$$

where

- f(x, y) denotes the observed image,
- $c(x, y, \mu, v)$ measures the *geometric closeness* between the image point (x, y) and the point (μ, v) ,
- $s(f(x,y),f(\mu,v))$ measures the *photometric similarity* between the intensity value at (x,y) and a neighboring position (μ,v) , and
- the normalization function k is defined by

$$k(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} c(x,y,\mu,\nu) s(f(x,y),f(\mu,\nu)) d\mu d\nu.$$

Geometric Closeness and Photometric Similarity: Examples

Example

Closeness function

$$c(x, y, \mu, v) = \exp\left(-\frac{1}{2} \frac{\left\| \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \mu \\ v \end{pmatrix} \right\|^2}{\sigma_d^2}\right)$$

Example

Similarity function

$$s(f_1, f_2) = \exp\left(-\frac{1}{2} \frac{\|f_1 - f_2\|^2}{\sigma_r^2}\right)$$

Topics

Edge Preserving Filtering

Motivation

Low-Pass Domain Filter

Low-Pass Range Filter

The Combination to the Bilateral Filter

Examples

Summary

Take Home Messages

Further Readings

Edge Preserving Smoothing

Figure 1: A 100-gray level step perturbed by Gaussian noise with $\sigma = 10$ gray levels (left). Combined similarity weights $c(x, y, \mu, v)s(f(x, y), f(\mu, v))$ for a 23 × 23 neighborhood centered two pixels to the right of the step (middle). Result of bilateral filtering with $\sigma_r = 50$ gray levels and $\sigma_d = 5$ pixels (right) (Carlo Tomasi)

Image Example: CT Slice

Figure 2: (Anja Borsdorf, Pattern Recognition Lab, FAU)

Example: Limited Angle Reconstruction (180 Degrees Only)

Figure 3: Shepp-Logan phantom (left), FBP with Parker weights (right)

Example: Limited Angle Reconstruction (Line Profiles)

Figure 4: Shepp-Logan phantom (left), FBP with Parker weights (right)

Idea: Apply Multiplicative Weighting for Compensation

Figure 5: FBP with Parker weights (left), FBP with compensation (right)

Multiplicative Weighting (Line Profiles)

Figure 6: FBP with Parker weights (left), FBP with compensation (right)

Comparison: Regularized Iterative Reconstruction

Figure 7: Iterative reconstruction with TV (left), FBP with compensation (right)

TV vs. Multiplicative Weighting (Line Profiles)

Figure 8: Iterative reconstruction with TV (left), FBP with compensation (right)

Image Space Iterative Reconstruction?

Figure 9: Iterative reconstruction with TV - 1000 iterations (left), FBP with compensation + BF, 1 iteration (right)

Line Plot Comparison

Figure 10: Iterative reconstruction with TV (left), FBP with compensation + BF (right)

TV or not TV? That is the question...

Figure 11: Iterative reconstruction with TV (left), FBP with Parker weights + BF (right)

Topics

Edge Preserving Filtering

Motivation

Low-Pass Domain Filter

Low-Pass Range Filter

The Combination to the Bilateral Filter

Examples

Summary

Take Home Messages Further Readings

Take Home Messages

- Simple ideas are often the best ones!
- Bilateral filtering is computationally expensive and requires acceleration.
- Bilateral filtering is used in medical products and can be applied to any image (independent of the modality) where edge preserving smoothing is an issue.
- Edge preserving filtering can compensate for many disadvantages of expensive iterative reconstruction methods.

Further Readings

Read the original paper of the year 1998:

Carlo Tomasi and Roberto Manduchi. "Bilateral Filtering for Gray and Color Images". In: Sixth International Conference on Computer Vision, 1998. IEEE, Jan. 1998, pp. 839-846. DOI: 10.1109/ICCV.1998.710815

A very nice paper on ways to improve bilateral filtering can be found in:

Michael Elad. "On the Origin of the Bilateral Filter and Ways to Improve It". In: IEEE Transactions on Image *Processing* 11.10 (Oct. 2002), pp. 1141–1151. DOI: 10.1109/TIP.2002.801126

Developments of fast bilateral filtering are subject of the following webpage:

http://people.csail.mit.edu/sparis/bf/