Data Science Engineering Project with R

CarPrice_Assignment.csv

Manuel Weihmann & Daniel Stepanovic

2025-10-19

Table of contents

1	Macht die Marke einen Unterschied beim Preis? 1.1 1) Setup	1 1 1
2	Make a simple "brand" from the first word of CarName	2
3	2) Quick look at price	2
4	3) Do brands look different?	3
5	4) One-line check: brand effect	4
	Macht die Marke einen Unterschied beim Preis?	
li	brary(tidyverse)	

1.2 2) Load and clean the data

```
cars <- readr::read_csv("data/CarPrice_Assignment.csv")</pre>
```

2 Make a simple "brand" from the first word of CarName

```
cars <- cars |>
  mutate(brand = tolower(sub(" .*", "", CarName)))
```

3 2) Quick look at price

```
# Basic summary
summary(cars$price)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5118 7788 10295 13277 16503 45400

# Price histogram (shape of prices)
ggplot(cars, aes(price)) +
  geom_histogram(bins = 30) +
  labs(title = "Price distribution", x = "Price", y = "Count")
```

Price distribution

Range: from 5,118 to $45,400 \rightarrow \text{very wide spread}$.

Middle (median): $10,295 \rightarrow \text{half the cars cost} \quad 10,295 \text{ and half} \quad 10,295.$

Average (mean): 13,277, which is higher than the median \rightarrow suggests a right-skewed distribution (some expensive cars pull the average up).

Middle 50% (IQR): Q3 - Q1 = 16,503 - 7,788 = 8,715 \rightarrow typical prices in the middle half span about 8.7k.

Possible high outliers: A common cutoff is $Q3 + 1.5 \times IQR$ 29,576. Since the max is 45,400, there are likely high-price outliers.

What we can conclude

Prices are skewed to the right with some very expensive cars.

The median (10,295) is a better "typical price" than the mean here.

For plots/models, using log(price) will often give clearer patterns.

4 3) Do brands look different?

```
# Keep the 8 most common brands (everything else = "other") so the plot is clean
top_brands <- cars |>
    count(brand, sort = TRUE) |>
    slice_head(n = 8) |>
    pull(brand)

cars_small <- cars |>
    mutate(brand_simple = if_else(brand %in% top_brands, brand, "other"))

# Boxplot: prices by brand
ggplot(cars_small, aes(x = reorder(brand_simple, price, FUN = median), y = price)) +
    geom_boxplot() +
    coord_flip() +
    labs(title = "Prices by brand (Top 8 + other)", x = "Brand", y = "Price")
```

Prices by brand (Top 8 + other)

5 4) One-line check: brand effect

```
# Super simple test: price ~ brand (no other variables)
fit <- lm(price ~ brand_simple, data = cars_small)
summary(fit)</pre>
```

Call:

lm(formula = price ~ brand_simple, data = cars_small)

Residuals:

Min 1Q Median 3Q Max -11710.1 -3423.2 -938.2 1852.4 28538.9

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	8184.7	2006.0	4.080	6.55e-05	***
brand_simplemazda	3135.9	2740.7	1.144	0.25393	
brand_simplemitsubishi	1055.1	2836.9	0.372	0.71036	
brand_simplenissan	2231.0	2632.5	0.847	0.39777	

```
brand_simpleother
                          8676.4
                                     2161.0
                                              4.015 8.46e-05 ***
brand_simplepeugeot
                          7304.4
                                     2963.0
                                              2.465 0.01455 *
brand_simplesubaru
                          356.6
                                     2895.4
                                              0.123
                                                     0.90212
brand_simpletoyota
                                     2389.9
                                              0.633
                                                     0.52770
                          1512.0
brand simplevolvo
                          9878.5
                                     2963.0
                                              3.334 0.00102 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7233 on 196 degrees of freedom Multiple R-squared: 0.2125, Adjusted R-squared: 0.1804 F-statistic: 6.611 on 8 and 196 DF, p-value: 1.22e-07

Abschlussfazit

Ja, Marke spielt eine Rolle: Einfache ANOVA/Regression mit price \sim brand ist gesamt signifikant.

Größe des Effekts: Marke erklärt ca. 20 % der Preisunterschiede ($R^2-0.21$) – also relevant, aber nicht alles.

Wer teurer wirkt (vs. Referenz Honda): Volvo, Peugeot und die Gruppe "other" liegen deutlich höher; die übrigen Top-Marken sind im einfachen Modell nicht klar verschieden.

Aber: Die Unterschiede spiegeln auch Ausstattung wider (Motor, PS, Gewicht). Ohne Kontrolle überschätzen wir "reine" Markeneffekte.

"Brand matters for price (significant), explaining ~20% of variation; Volvo/Peugeot/'other' are pricier than the baseline, but much of the price is still driven by specs—so brand premiums shrink or shift once we control for engine size, horsepower, etc."