Systèmes dynamiques

Feuille d'exercices 6

Exercice 1. Moyennes de Birkhoff pour les permutations

Soit σ une permutation de $X = \{1, \dots, p\}$. Montrer que pour toute fonction $\varphi : X \to \mathbf{C}$ et tout $x \in X$ on a

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(\sigma^k(x)\right) = \frac{1}{|\mathcal{O}(x)|} \sum_{y \in \mathcal{O}(x)} \varphi(y),$$

où $\mathcal{O}(x) = \{\sigma^k(x), k \in \mathbf{N}\}\$ est l'orbite de x.

Exercice 2. Théorème de Von Neumann un peu généralisé

Soit $\mathcal H$ un espace de Hilbert et $U:\mathcal H\to\mathcal H$ une contraction linéaire, i.e qui vérifie l'inégalité suivante:

$$\forall h \in \mathcal{H}, \|U(h)\| \le \|h\|.$$

On note \mathcal{H}^U le sous-espace fermé $\{h \in \mathcal{H} \mid U(h) = h\}$ et p^U la projection orthogonale sur \mathcal{H}^U . On veut montrer que

$$\forall h \in \mathcal{H}, \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} U^k(h) = p^U(h).$$

- 1. Montrer la propriété pour $h \in \mathcal{H}^U$ et pour $h = U(h_0) h_0$ avec $h_0 \in \mathcal{H}$.
- 2. Montrer que l'orthogonal de la fermeture de $(U-Id)(\mathcal{H})$ est l'espace des vecteurs invariants \mathcal{H}^U .
- 3. Conclure.

Exercice 3. Théorème ergodique sur les espaces métriques compacts

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation mesurable préservant une mesure borélienne de probabilité μ que l'on suppose ergodique pour f. Montrer qu'il existe un ensemble mesurable $G \subset X$ de mesure totale tel que pour tout fonction continue φ et tout $x \in G$,

$$\frac{1}{n} \sum_{k=0}^{n-1} (\varphi \circ f^k) (x) \underset{n \to +\infty}{\longrightarrow} \int_X \varphi \, d\mu.$$

Exercice 4. Théorème de récurrence de Khintchine

Soit (X, \mathcal{X}, ν, T) un système dynamique pmp. Soit $A \in \mathcal{X}$ et fixons $\varepsilon > 0$. L'objectif de cet exercice est de démontrer que l'ensemble d'entiers suivant

$${n \in \mathbf{N} : \nu(A \cap T^{-n}(A)) > \nu(A)^2 - \varepsilon}$$

est syndétique.

1. Montrer pour $M \in \mathbb{N}$ l'inégalité

$$\lim_{N-M \to \infty} \frac{1}{N-M} \sum_{n=M}^{N-1} \nu(A \cap T^{-n}(A)) \ge \nu(A)^2.$$

2. En déduire le théorème de Khintchine.

Exercice 5. Explosion des sommes de Birkhoff et positivité de la moyenne

Soit (X, \mathcal{A}, f, μ) un système dynamique pmp ergodique. Soit $\varphi \in L^1(\mu)$. On suppose que pour μ presque tout x,

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \varphi\left(f^{k}(x)\right) = +\infty.$$

On cherche à montrer que $\int_X \varphi \ \mathrm{d}\mu > 0.$

On note $T_n \varphi = \sum_{k=0}^{n-1} \varphi \circ f^k$ et pour tout $\varepsilon > 0$,

$$A_{\varepsilon} = \bigcap_{n \ge 1} \Big\{ T_n \varphi \ge \varepsilon \Big\}, \quad B_{\varepsilon} = \bigcup_{k \ge 0} f^{-k}(A_{\varepsilon}).$$

- 1. Montrer que $\int_X \varphi \ d\mu \ge 0$.
- 2. Soit $x \in A_{\varepsilon}$. Montrer que pour tout $n \geq 1$,

$$T_n \varphi(x) \ge \varepsilon \sum_{k=0}^{n-1} \chi_{A_{\varepsilon}} \left(f^k(x) \right).$$

- 3. Montrer que si $\int_X \varphi \ \mathrm{d}\mu = 0$ alors $\mu(B_\varepsilon) = 0$.
- 4. Conclure.