Context-Free Languages

COMPSCI 3331

Outline

- Motivation for Context-Free Languages.
- Definition of Context-Free Languages.
- Examples.
- Derivations and Ambiguity.

Non-Regular Languages

- ▶ Not every language is regular: $L = \{a^n b^n : n \ge 0\}$.
- Use grammars to define some languages which are not regular.
- ► Context-free grammars: define words through **rewriting**.

Grammars

- Grammars use rewriting rules to define words and languages.
- These rules work on symbols (non-terminals) that can be written with expressions.
- Rewriting rules (or productions) act as a recursive definition for showing how words are produced.

$$S \rightarrow aSb$$

 $S \rightarrow \varepsilon$

$$\mathcal{S} \ o \ arepsilon$$

"To rewrite S, we can either replace it with aSb or replace it with ε ."

Productions in a Grammar

Productions are interpreted as the ways we generate words in a language.

Python language specification

```
(docs.python.org/3/reference/grammar.html)
```

```
if_stmt -> 'if' named_expression ':' block
if_stmt -> 'if' named_expression ':' block elif_stmt
if_stmt -> 'if' named_expression ':' block else_block
elif_stmt -> 'elif' named_expression ':' block
elif_stmt -> 'elif' named_expression ':' block elif_stmt
elif_stmt -> 'elif' named_expression ':' block else_block
else_block -> 'else' ':' block
```

CFGs: Formal Definitions

A CFG G is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is a finite set of non-terminals;
- Σ is the finite alphabet;
- ▶ *P* is the set of productions of the form $A \rightarrow \alpha$ where $A \in V$ and $\alpha \in (V \cup \Sigma)^*$.
- $ightharpoonup S \in V$ is the start non-terminal.

Derivations

Given a CFG $G = (V, \Sigma, P, S)$, how do we derive a word?

- Start with the start symbol S.
- Apply rules from P to rewrite non-terminals (from V).
- Keep going until no non-terminals remain, and only have letters from Σ*.
- Any word in Σ^* we get in this way is generated by the grammar G.

Derviations

- Formally, define \Rightarrow_G as a relation between words in $(V \cup \Sigma)^*$
- $\triangleright \alpha \Rightarrow_G \beta$ if we can write

$$\alpha = \alpha_1 A \alpha_2$$
 $\beta = \alpha_1 \gamma \alpha_2$

and $A \rightarrow \gamma$ is a production in P.

Derviations

- $ightharpoonup
 ightharpoonup _G$ means that α can be rewritten to β using one production from P.
- $ightharpoonup \Rightarrow_G^*$ means that α can be rewritten to β by using some number of productions.
 - ▶ The "transitive closure" of \Rightarrow_G .
- ▶ If *G* is understood, we leave it out: \Rightarrow , \Rightarrow *.

Language Generated by a CFG

- ▶ A word $w \in \Sigma^*$ is **generated** by a CFG $G = (V, \Sigma, P, S)$ if $S \Rightarrow^* w$.
- ► The language generated by a CFG is the set of all words generated by G:

$$L(G) = \{ w \in \Sigma^* : S \Rightarrow^* w \}.$$

- If L is a language such that L = L(G) for some CFG G, then we say that L is a context-free language (CFL).
- ▶ If $S \Rightarrow^* \alpha$ for some $\alpha \in (V \cup \Sigma)^*$, then we say that α is a sentential form.

Language Generated by a CFG

Example: $G = (\{S\}, \{a,b\}, P, S)$ with P given by:

$$S \rightarrow aSa \mid bSb$$

 $S \rightarrow a \mid b \mid \varepsilon$

What can we derive using G?

What are some sentential forms in *G*?

Proofs involving CFGs

To show that L = L(G) for some language L and some grammar G, we need to:

- (a) Show that $L \subseteq L(G)$. This is usually proved by induction on the length of words in L.
- (b) Show that $L(G) \subseteq L$. This can be done by using structural induction.

Example: $G = (\{S\}, \{a, b\}, P, S)$ with P given by:

$$S \rightarrow aSa \mid bSb$$

 $S \rightarrow a \mid b \mid \varepsilon$

Prove that $L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$

Representing Derivations

We can represent derivations using a **parse tree**.

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$.

Restricted Derivations

- Say that a derivation step is a **leftmost** derivation step if the leftmost nonterminal in the sentential form is rewritten.
- We denote a leftmost derivation step by \Rightarrow_{lm} .
- A leftmost derivation is a derivation in which every step is leftmost.

Example: if $A \rightarrow aa$, $C \rightarrow c$ are rules, and bACb is a sentential form, then $bACb \Rightarrow_{lm} baaCb$, but not $bACb \Rightarrow_{lm} bAcb$.

Ambiguity

- A CFG G = (V,Σ,P,S) is ambiguous if there exists w ∈ L(G) such that w has two distinct leftmost derivations in G.
- ► Easier: If *G* is ambiguous, *w* will have two different parse trees.
- Example: set of all arithmetic expressions.

Inherent Ambiguity

- ▶ If every CFG, G with L(G) = L is ambiguous, the CFL L is said to be **inherently ambiguous**.
- Note that ambiguity is a property of grammars, inherent ambiguity is a property of languages.
- There are inherently ambiguous languages:

$$L = \{a^n b^n c^m d^m : n, m \ge 1\} \cup \{a^n b^m c^m d^n : n, m \ge 1\}.$$

- L is a CFL (exercise). Proving it is inherently ambiguous is difficult.
- ► The difficult part: we can't assume anything about a grammar generating L.