COMMON ENTRANCE TEST - 2005

DATE	SUBJECT	TIME
04 - 05 - 2005	CHEMISTRY	02.30 PM to 03.50 PM
	·	

60	80 MINUTES	70 MINUTES
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING

MENTION CET NUM	VERSION CO	BOOKLET DETAILS DE SERIAL NUMBER
	A - 1	015953

IMPORTANT INSTRUCTIONS TO CANDIDATES

(Candidates are advised to read the following instructions carefully, before answering on the OMR answer sheet.)

- 1. Ensure that you have entered your Name and CET Number on the top portion of the OMR answer sheet.
- 2. ENSURE THAT THE TIMING MARKS ON THE OMR ANSWER SHEET ARE NOT DAMAGED / MUTILATED / SPOILED.
- 3. This Question Booklet is issued to you by the invigilator after the 2nd Bell. i.e., after 02.35 p.m.
- 4. Carefully enter the Version Code and Serial Number of this question booklet on the top portion of the OMR answer sheet.
- 5. As answer sheets are designed to suit the Optical Mark Reader (OMR) system, please take special care while filling the entries pertaining to CET Number and Version Code.
- 6. Until the 3rd Bell is rung at 02.40 p.m.:
 - Do not remove the staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.
- 7. After the 3rd Bell is rung at 02.40 p.m., remove the staple present on the right hand side of this question booklet and start answering on the bottom portion of the OMR answer sheet.
- 8. This question booklet contains 60 questions and each question will have four different options / choices.
- 9. During the subsequent 70 minutes:
 - Read each question carefully.
 - Determine the correct answer from out of the four available options / choices given under each question.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN
 against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS AS SHOWN BELOW:

 $\bigcirc{1}\bigcirc{2}\bigcirc{4}$

10. Please note that:

For each correct answer

ONE mark will be awarded.

For each wrong answer

QUARTER (1/4) mark will be deducted.

• If more than one circle is shaded

ONE mark will be deducted.

- Even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind.
- 11. Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- 12. After the last bell is rung at 03.50 p.m., stop writing on the OMR answer sheet.
- Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 14. After separating and retaining the top sheet (CET Cell Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 15. Preserve the replica of the OMR answer sheet for a minimum period of One year.

CHEMISTRY

ignited t	o convert the carbon monoxide to	carbon	I one mole of oxygen, in a clo dioxide. If ΔH is the enthalpy	sed vessel is v change and
1)	$\Delta H > \Delta E$			
,	$\Delta H < \Delta E$			
3)	$\Delta H = \Delta E$			
4)	the relationship depends on the	e capaci	ty of the vessel	
The cool	ing in refrigerator is due to	· · · · · · ·		
1)	Reaction of the refrigerator gas	3		
2)	Expansion of ice			•
3)	The expansion of the gas in the	refrige	erator	
4)	The work of the compressor			• • •
For a sy	stem in equilibrium, ΔG = 0, uno	der con	ditions of constant	
1)	·			
3)	- •	4)	energy and volume	•
				· .
1)	375°C	2)	375 K	
3)	273 K	4)	$102^{0}{ m C}$	
The ten	perature of the system decrease	s in an		
1)	adiabatic compression	2)	isothermal compression	
3)	isothermal expansion	4)	adiabatic expansion	
	ignited t ΔE is th 1) 2) 3) 4) The cool 1) 2) 3) 4) For a sy 1) 3) Molar h 16 J mo 1) 3) The tem 1)	ignited to convert the carbon monoxide to ΔE is the change in internal energy, the 1) $\Delta H > \Delta E$ 2) $\Delta H < \Delta E$ 3) $\Delta H = \Delta E$ 4) the relationship depends on the The cooling in refrigerator is due to	ignited to convert the carbon monoxide to carbon ΔE is the change in internal energy, then, 1) $\Delta H > \Delta E$ 2) $\Delta H < \Delta E$ 3) $\Delta H = \Delta E$ 4) the relationship depends on the capacidary of the refrigerator is due to	1) $\Delta H > \Delta E$ 2) $\Delta H < \Delta E$ 3) $\Delta H = \Delta E$ 4) the relationship depends on the capacity of the vessel The cooling in refrigerator is due to

the form	nation of HI is	I HI is found	o be 10 m	oles. The equilib	orium constai	nt for
1)	50	2) 15		•	
3)	100				·	
			$\operatorname{tof} N_2 O_4$	which dissociates	s, then the nu	mber
1)	1	2	3	•		
3)	(1+x)	4	$(1+x)^2$	3		
Which o	f these does not influence	e the rate of r	eaction?	·	F _ g _	
1)	Nature of the reactants	s 2	Concent	tration of the rea	actants	
3)	Temperature of the rea					
rate by 4	times, and doubling the	s found that o	oubling th 1 of <i>B</i> doub	e concentration oles the reaction	of A increase rate. What i	s the s the
1)	4	2)	$\frac{3}{2}$	· · · · · · · · · · · · · · · · · · ·	,	
3)	3	4)	1			
The rate	at which a substance re	acts depends	on its	•••••		
1)	atomic weight	2)	atomic n	number		
3)	molecular weight	4)	•	•		
	1) 3) If, in the of molecc 1) 3) Which of 1) 3) For the rate by 4 overall of 1) 3) The rate 1)	1) 50 3) 100 If, in the reaction $N_2O_4 \leftrightarrow 2NO_2$ of molecules at equilibrium will 1) 1 3) $(1+x)$ Which of these does not influence 1) Nature of the reactants 3) Temperature of the reaction $A+B \rightarrow C$, it is rate by 4 times, and doubling the overall order of the reaction? 1) 4 3) 3 The rate at which a substance re 1) atomic weight	1) 50 $2C$ 3) 100 $4C$ If, in the reaction $N_2O_4 \leftrightarrow 2NO_2$, x is that part of molecules at equilibrium will be 1) 1 $2C$ 3) $(1+x)$ 4) Which of these does not influence the rate of reconstruction (1) Nature of the reactants (2) 3) Temperature of the reaction (1) Por the reaction (1) A $(1+x)$	1) 50 2) 15 3) 100 4) 25 If, in the reaction $N_2O_4 \leftrightarrow 2NO_2$, x is that part of N_2O_4 of molecules at equilibrium will be 1) 1 2) 3 3) $(1+x)$ 4) $(1+x)^2$ Which of these does not influence the rate of reaction? 1) Nature of the reactants 2) Concents 3) Temperature of the reaction 4) Molecul For the reaction $A + B \rightarrow C$, it is found that doubling the rate by 4 times, and doubling the concentration of B double overall order of the reaction? 1) 4 2) $\frac{3}{2}$ 3) 3 4) 1 The rate at which a substance reacts depends on its	1) 50 2) 15 3) 100 4) 25 If, in the reaction $N_2O_4\leftrightarrow 2NO_2$, x is that part of N_2O_4 which dissociates of molecules at equilibrium will be 1) 1 2) 3 3) $(1+x)$ 4) $(1+x)^2$ Which of these does not influence the rate of reaction? 1) Nature of the reactants 2) Concentration of the reaction 3) Temperature of the reaction 4) Molecularity of the reaction rate by 4 times, and doubling the concentration of B doubles the reaction overall order of the reaction? 1) 4 2) $\frac{3}{2}$ 3) 3 4) 1 The rate at which a substance reacts depends on its	1) 50 2) 15 3) 100 4) 25 If, in the reaction $N_2O_4\leftrightarrow 2NO_2$, x is that part of N_2O_4 which dissociates, then the nu of molecules at equilibrium will be 1) 1 2) 3 3) $(1+x)$ 4) $(1+x)^2$ Which of these does not influence the rate of reaction? 1) Nature of the reactants 2) Concentration of the reactants 3) Temperature of the reaction 4) Molecularity of the reaction For the reaction $A+B\to C$, it is found that doubling the concentration of A increase rate by 4 times, and doubling the concentration of B doubles the reaction rate. What i overall order of the reaction? 1) 4 2) $\frac{3}{2}$ 3) 3 4) 1 The rate at which a substance reacts depends on its

11.	For the reaction $N_{2(g)} + O_{2(g)} \Longrightarrow 2NO_{(g)}$, the value of K_c at 800°C is 0.1. When the						
	equilibrium concentrations of both the same temperature?	the reactants is 0.5 mol, what is the value of K_p at the					
	1) 0.5	2) 0.1					
•	3) 0.01	4) 0.025					
12.	The extent of adsorption of a gas on a	solid depends on					
	1) nature of the gas	2) pressure of the gas					
•	3) temperature of the gas	4) all are correct					
13.	An emulsifier is a substance which	··············					
	1) stabilises the emulsion	2) homogenises the emulsion					
٠	3) coagulates the emulsion	4) accelerates the dispersion of liquid in liquid					
14.	Which of the following types of metals	s form the most efficient catalysts?					
	1) alkali metals	2) alkaline earth metals					
,	3) transition metals	4) all the above					
15.	The species among the following, whi	ich can act as an acid and a base is					
	1) <i>HSO</i> [⊖] ₄	2) SO_4^{2-}					
	3) H O⊕	4) <i>C</i> I [⊖]					

16.	A buffer solution has equal volumes of 0.2M NH_4OH and 0.02 M NH_4Cl . The p^{kb} of th base is 5. The pH is	ie
	1) 10 2) 9 3) 4 4) 7	
17.	The hydrogen electrode is dipped in a solution of pH 3 at 25°C. The potential would be (th value of 2.303 RT/F is 0.059 V)	e
	1) 0.177 V 2) 0.087 V 3) 0.059 V 4) -0.177 V	*11
18.	20 ml of 0.5 N HCl and 35 ml of 0.1N NaOH are mixed. The resulting solution will	
	1) be neutral 2) be basic	
	3) turn phenolphthalein solution pink 4) turn methyl orange red	
19.	Corrosion of iron is essentially an electrochemical phenomenon where the cell reaction are	n
r	1) Fe is oxidised to Fe^{2+} and dissolved oxygen in water is reduced to $\overset{\ominus}{O}H$	
•	2) Fe is oxidised to Fe^{3+} and H_2O is reduced to O_2^{2-}	
	3) Fe is oxidised to F_e^{2+} and H_2O is reduced to O_2^-	
	4) Fe is oxidised to Fe^{2+} and H_2O is reduced to O_2	
20.	The standard electrode potential is measured by	
•	1) Electrometer 2) Voltmeter	
	3) Pyrometer 4) Galvanometer	
	(Space for Rough Work)	

- A precipitate of AgCl is formed when equal volumes of the following are mixed. $\left[K_S \text{ for } AgCl = 10^{-10}\right]$

 - 1) $10^{-4}~M~AgNO_3$ and $10^{-7}~M~HCl$ 2) $10^{-5}~M~AgNO_3$ and $10^{-6}~M~HCl$
 - 3) $10^{-5} M AgNO_3$ and $10^{-4} M HCl$
- 4) $10^{-6} M AgNO_3$ and $10^{-6} M HCl$
- Which one of the following defects in the crystals lowers its density? 22.
 - 1) Frenkel defect.

2) Schottky defect

F-centres 3)

- 4) Interstitial defect
- A radioactive isotope has a half life of 10 days. If today 125 mg is left over, what was its original weight 40 days earlier?
 - 1) 2 g

2) 600 mg

3) 1 g

- 4) 1.5 g
- Which of the particles cannot be accelerated?
 - 1) α particle

2) β -particle

3) Protons

- Neutrons
- In which of the following nuclear reactions neutron is emitted? 25.
 - 1) $\frac{27}{13}Al + \frac{4}{2}He \rightarrow \frac{30}{15}P$ 2) $\frac{12}{6}C + \frac{1}{1}H \rightarrow \frac{13}{7}N$

- 3) $\frac{30}{15}P \rightarrow \frac{30}{14}Si$
- 4) $\frac{241}{96}Am + \frac{4}{2}He \rightarrow \frac{245}{97}Bk$

		sed on its property
. 1)	of being electropositive	
, 2)	of being less reactive	
3)	to form complexes which are water soluble	
4)	to form salts which are water soluble	
In blast	furnace, iron oxide is reduced by	
1)	Hot blast of air 2) Car	rbon monoxide
3)	Carbon 4) Sili	ica
Which o	f the following pairs of elements cannot forn	n an alloy?
1)	Zn, Cu 2) Fe,	Hg
3)	Fe, C 4) Hg,	, Na
Which co	ompound is zero valent metal complex?	
1)	$\left[Cu\left(NH_{3}\right)_{4}\right]SO_{4} \qquad \qquad 2) \left[Pt\right]$	$(NH_3)_2 Cl_2$
3)	$[Ni (CO)_4] 4) K_3$	$[Fe\ (CN)_6]$
Alum is	a water purifier because it	
1)	coagulates the impurities.	
2)	softens hard water	
3)	gives taste	
4)	destroys the pathogenic bacteria	
	2) 3) 4) In blast 1) 3) Which of 1) 3) Alum is 1) 2) 3)	3) to form complexes which are water soluble 4) to form salts which are water soluble In blast furnace, iron oxide is reduced by

31.	oxidation	n, gives a monocarbox	r formula (ylic acid <i>B</i> .	$C_{2}Cl_{3} \ A \ { m ca}$	OH. It reduces Fehling's solution be obtained by the action of ch	n and on lorine on
1		cohol. A is	· · · · · · · · · · · · · · · · · · ·	۵)	ahlanal	•
	1)	chloroform		2)	chloral	•
	3)	methyl chloride		4)	monochloro acetic acid	
32.	Which o	f the following haloalk	anes is mos	t read	ctive ?	
	1)	1-chloropropane	, " · · ·	2)	1-bromopropane	
	3)	2-chloropropane		4)	2-bromopropane	
33.	The read	ction in which phenol o	liffers from	alcoh	nol is	
	1)	it undergoes esterific	ation with	carbo	xylic acid	
	2)	it reacts with ammor	nia			
	3)	it forms yellow cryst	als of iodofo	rm		
	4)	it liberates H_2 with N	Va metal			
34.	78°C. O	n boiling A with conc	$H_2 SO_4$	a colo	O has a pleasant cdour with boiling ourless gas is produced which deconic liquid A is	
	1)	$C_2 H_5 C l$	·.	2)	$C_2H_5COOCH_3$	
	3)	C_2H_5OH		4)	C_2H_6	
35.	Which o	of the following is an a	mphoteric a	cid?		,,
	1)	Glycinc		2)	Salicylic acid	•
	3)	Benzoic acid		4)	Citric acid	
		·	(C C 1		W 1)	

36.	Benzyl a benzalde	lcohol and sodium benze hyde. This reaction is kn	oate is obtain own as	ed by the action of	sodium hydroxide on
	1)	Perkin's reaction	2)	Cannizzaro's react	ion
	3)	Sandmeyer's reaction	4)	Claisen condensati	
37.	Ethyl chl	oride on heating with Ago	CN, forms a co	mpound X . The fun	ectional isomer of ' X ' is-
	. 1)	$C_2 H_5 NC$	2)	$C_2 H_5 NH_2$	
-	3)	$C_2\ H_5\ CN$	4)	None of the above	
38.	A compos On compos compoun	and, containing only carb lete oxidation it is convert d is	on, hydrogen ed into a com	and oxygen, has a n pound of molecular v	nolecular weight of 44. weight 60. The original
· .	1) 3)	an aldehyde an alcohol	2) 4)	an acid an ether	
39.	Grignard	reagent adds to) One
	1)	C = 0	2)	$-C \equiv N$	•
	3)	C = S	4)	all of the above	, 245 <u>,</u> 5
40.	Which of	the following biomolecule	es contain a no	on-transition metal	ion ?
		Vitamin B_{12} Haemoglobin	2)	Chlorophyll Insulin	6
	· · · · · · · · · · · · · · · · · · ·	(Sne	ce for Rough	Work)	· · · · · · · · · · · · · · · · · · ·

11

A -1

41.	Three di	mensional molecu	ıles with cross	links at	re formed in the case of	a	
	1)	Thermoplastic		2)	Thermosetting plastic		
	3)	Both		4)	None		
42.	Sucrose	molecule is made	up of		•		
•	- ³⁰² 1)	a gluco pyranose	e and a fructo p	oyranos	e		
	2)	a gluco pyranose	e and a fructo f	uranose)		
•	3)	a gluco furanose					
	4)	a gluco furanose	and a fructo f	uranose			
43.	Water in	soluble componer	nt of starch is .	•			• •
	1)	amylopectin	•	2)	amylose		
	3)	cellulose		4)	none of the above	· ·	
44.	An exam	ple for a saturate	ed fatty acid, p	resent i	n nature is		
	1)	Oleic acid		2)	Linoleic acid	yê A	
	3)	Linolenic acid		4)	Palmitic acid		
45.	A Nanop	peptide contains	peptide	linkage	es.		
	1)	10 Bask of the	and the contract of	(1,2)	,8 °	and the second second	ie _{le}
	3)	9	Francisco II	4)	18	, , , ,	
			(Space for	Rough	Work)	· ;	

46.	6. An example of a sulphur containing amino acid is	
	1) Lysine 2) S	erine
	3) Cysteine 4) T	yrosine
47.	. Which of the following is not present in a nucleotic	de?
	1) cytosinę 2) g	uanine
	3) adenine 4) ty	yrosine
48.	Antiseptic chloroxylenol is	
	1) 4 - chloro - 3, 5 - dimethyl phenol 2) 3	- chloro - 4, 5 - dimethyl phenol
	3) 4 - chloro - 2, 5 - dimethyl phenol 4) 5	- chloro - 3, 4 - dimethyl phenol
49.	• An atom of an element <i>A</i> has three electrons in it electrons in its outermost orbit. The formula of be	
	1) $A_3 B_6$ 2) $A_4 A_5 A_6$	A_2B_3
	1) $A_3 B_6$ 2) $A_4 B_2$ 4) $A_4 B_2$	A_2B
50.	. Among Na^+ , Na , Mg and Mg^{2+} , the largest parti	cle is
•	1) Mg^{2+} 2) M	<i>Ig</i>
	3) Na 4) N	<i>Ta</i> ⁺
	(Space for Rough W	ork)

51.	Molarity of $0.2 N H_2 SO_4$ is								
	1)	0.2			2)	0.4	•		
	3)	0.6	·		4)	0.1		:	
52.	In the equation of state of an ideal gas $PV = nRT$, the value of the universal gas constant								
	would depend only on								
	1) the nature of the gas				2)	the pressure of	the gas		
	3) the units of the measurement			4)	None of the above				
53.	A commercial sample of hydrogen peroxide is labelled as 10 volume. Its percentage strength								
٠	is nearly	7	•	,		•		1	
	1)	1%			2)	3%			•
	. 3)	10%		,	4)	90%	. •	•	, ,
54.	Activated charcoal is used to remove colouring matter from pure substances. It works								
	by							•	
	1)	oxidation			2)	reduction	4.		
•	3)	bleaching			4)	adsorption		,	
55.	When plants and animals decay, the organic nitrogen is converted into inorganic nitrogen								
	The inorganic nitrogen is in the form of								
•	1)	Ammonia			· (2)	Elements of nit	rogen		
	3)	Nitrates	•		4)	Nitrides			· · · · · · · · · · · · · · · · · · ·
		•	(8,	ogo for De	ah	Worls	· · · · · · · · · · · · · · · · · · ·		

- **56.** A gas decolourised by $KMnO_4$ solution but gives no precipitate with ammonical cuprous chloride is
 - 1) Ethane

2) Methane

3) Ethene

- 4) Acetylene
- 57. $H_3C C = CH CH CH_3$ is $\begin{array}{c|c} Cl & CH_3 \end{array}$
 - 1) 2-chloro-4-methyl-2-pentene
- 2) 4-chloro-2-methyl-3-pentene
- 3) 4-methyl-2-chloro-2-pentene
- 4) 2-chloro-4,4-dimethyl-2-butene
- 58. Amongst the following, the compound that can most readily get sulphonated is?
 - 1) Benzene

2) Toluene

3) Nitrobenzene

- 4) Chlorobenzene
- **59.** Household gaseous fuel (LPG) mainly contains
 - 1) CH₄

 C_2H_2

3) C_2H_4

- 4) C_4H_{10}
- **60.** Use of chlorofluoro carbons is not encouraged because
 - 1) they are harmful to the eyes of people that use it.
 - 2) they damage the refrigerators and air conditioners.
 - 3) they eat away the ozone in the atmosphere.
 - 4) they destroy the oxygen layer.

15 A -1

