

Motivação Seres humanos como processadores de informação Veja também: Stuart, Moran and Newell; The Psychology of Human Computer Interaction, Lawrence Elbaum Associates, 1983. → The Model Human Processor

Três grandes categorias

- I. Sentidos
- A. Visão B. Audição C. Tato D. Olfato?
- II. Processamento de Informação
- A. Perceptual
- B. Cognitivo 1. Memória

 - a. Curto prazo b. Médio prazo c. Longo prazo

 - 2. Processos
 - Processos
 a. Atenção Seletiva
 b. Aprendizado
 c. Solução de Problemas
 d. Linguagem

Entendendo pessoas

- Seres humanos evoluem mais devagar do que a tecnologia
- Habilidades humanas são limitadas
- Aspectos de Psicologia Cognitiva!
 - Podemos respeitar as limitações humanas
 - Podemos tirar vantagem do que as pessoas acham fácil
 - Devemos entender como as pessoas:
 - · Percebem o mundo ao seu redor
 - Armazenam e processam informações
 - Resolvem problemas

Curso se HCI: é necessário restringir o estudo

- Modelo simplificado do que realmente ocorre...
- Card, Moran, Newell, 1983
 - The Model Human Processor, uma visão simplificada do processamento efetuado por uma pessoa interagindo com um computador
 - 3 sub-sistemas:
 - Sistema perceptual: manipula estímulos sensoriais vindos do mundo externo
 - · Sistema motor: controla ações
 - Sistema cognitivo: processamento para conectar os outros dois
 - Cada sub-sistema
 - tem seu próprio processador

 - tem sua própria memória
 tem complexidade depende das tarefas envolvidas
 - Modelo inclui princípios de operação: determinam o comportamento do sistema sob certas condições

Processamento de Informação

- Três principais sistemas humanos de processamento de informação:
 - Perceptual (ler-escanear)
 - Cognitivo (pensar)
 - Sistema Motor (responder)

www.evl.uic.edu/aej/422/week04.html

Modelo do Usuário

Analogia com sistema computacional: informação entra, é processada e sai...

Tratamos como 3 componentes distintos: entrada- e-saída, memória e processamento Ainda mais simplificação...

o ser humano é um sistema de processamento 'inteligente' ... processamento envolve resolver problemas, aprender, errar, ...

Por enquanto: ignora-se fatores externos (sociais, organizacionais, ...)

Pessoas como máquinas de E/S

Sensores

- → visão
- → audição → tato
- olfato
- paladar

Atuadores

- → braços
- → dedos
- sistema vocal

Alimentam a memória sensorial

Interação pessoa-computador: saída do usuário é entrada para o computador, e vice-versa...

Canais de comunicação podem atuar para entrada e saída de informação

ex. visão: dê exemplos de entrada e saída

Implicações para o Design

Visão

ex: precisão e cor, ilusões óticas

Audição

ex: freqüência de resposta, filtragem

Tato/movimentos motores

ex: Lei de Fitts

Processamento de Informação

Percepção: Visão

- O olho humano
 - Principal fonte de informação para a maioria das pessoas
- Percepção Visual
 - Reconhecer cenas coerentes, 'desambiguar' distâncias relativas, diferenciar cores
 - 2 etapas:
 - Receber o estímulo (sinal)
 - Processar e Interpretar

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Visão

- Fotoreceptores
 - Bastonetes: sensíveis à intensidade luminosa, visão noturna
 - Cones: sensíveis a cor, visão diurna
- Retina também tem células nervosas (células ganglionares)
 - Células-X: detecção precoce de padrões
 - Células-Y: detecção precoce de movimento

Visão: Percepção de tamanho e profundidade

- Y Imagine você de pé no alto de um morro...
- pg. 16-18 (Dix et al)
 - Ângulo visual fig 1.2

 - Medido em graus, ou arcos de minuto
 Afetado pelo tamanho do objeto e sua distância ao olho: afeta percepção de tamanho
 - Acuidade visual: habilidade de perceber pequenos detalhes
 - Objetos muito pequenos não são percebidos Lei da constância do tamanho
 - Percepção de tamanho afetada por outros fatores além do ângulo visual
 - Dicas (cues) permitem determinar posições relativas e distâncias dos objetos que vemos

 objetos se sobrepõem, tamanho e altura, familiaridade

■ Leitura: um caso especial 🕮 pg 22

 O rato roeu a roupa roxa do do rei de Roma enquanto o Rei roncava em sua rica e real cama redonda rodeado de rosas ...

Leitura

Doersdem

De aorcdo com uma pqsieusa de uma uinrvesriddae ignlsea, não ipomtra em qaul odrem as Irteas de uma plravaa etãso, a úncia csioa iprotmatne é que a piremria e útmlia Irteas etejasm no Igaur crteo. O rseto pdoe ser uma ttaol bçguana que vcoê pdoe anida ler sem pobrlmea. Itso é poqrue nós não Imeos cdaa Irtea isladoa, mas a plravaa cmoo um tdoo. Vdaerde!

Leia

35T3 P3QU3NO T3XTO 53RV3 4P3N45 P4R4 M05TR4R COMO N0554 C4B3Ç4 CONS3GU3 F4Z3R C01545 1MPR35510N4ANT35! R3P4R3 N1550! NO COM3ÇO 35T4V4 M310 COMPL1C4DO, M45 N3ST4 L1NH4 SU4 M3NT3 V41 D3C1FR4NDO O CÓD1GO QU453 4UTOM4T1C4M3NT3, S3M PR3C1S4R P3N54R MU1TO, C3RTO? POD3 F1C4R B3M ORGULHO5O D1550! SU4 C4P4C1D4D3 M3R3C3! P4R4BÉN5!

Encontre a letra Q

Está tudo alinhado?

Visão: Percepção de brilho

- Brilho: reação subjetiva aos níveis de iluminação
- Luminância: quantidade de luz emitida por um objeto (característica física)
- Contraste: luminância do objeto em relação à luminância do fundo
 - Apesar da natureza subjetiva, o brilho pode ser descrito em termos da luminância necessária para provocar uma diferença percebida no objeto (*Just Noticeable Difference*)
- Sistema visual compensa diferenças de brilho
 - Pouca iluminação: bastonetes, visão periférica
 - Condições normais: cones, visão central
- Acuidade visual aumenta com luminância

Cor

 Resposta sensorial à radiação no espectro eletromagnético com comprimentos de onda entre 0.4 - 0.7 micrômetros

qamma ultraviolet visible microwave tv

Percepção de Cor

Cones

Visão diurna

Bastonetes

Sensíveis a cor -64% Vermelha

Insensíveis a cor Sensíveis à intensidade

- 32% Verde

luminosa

- 4% Azul

Centro e periferia do olho

Visão noturna Periferia do olho

Visão Colorida

- 380nm (azul) ~ 770nm (vermelho)
- Problemas com cones ou células ganglionares causam problemas na percepção de cores
- (não exatamente "color blindness")
 - 8% homens, 0.5% mulheres

Implicações para o design(??)

- Evitar cores saturadas
- Codificação por cores deve ser redundante quando possível

Habilidades Visuais

- luminância: 10⁻⁶~10⁷ mL 10⁻⁴ mL -> papel branco à luz de estrelas 10⁹ mL -> superfície do sol ao meio-dia
- Acuidade

 - detecção, alinhamento reconhecimento (ângulo visual)
 Posição retinal: fóvea tem melhor acuidade
- Movimento
 - Rastreamento, leitura, eye saccades Leitura: não é serial, caracter a caracter
- Nota: Visão piora com a idade
- Implicações (??)
 - Tamanho & posição da fonte depende da tarefa
 Muito é feito pelo contexto e agrupamento

Uso de cores - 10 mandamentos

- Use um máximo de 5 +- 2 cores
- Use cores centrais e periféricas de forma adequada
- Use cores que exibam um mínimo de variação cor/tamanho
- Não use simultaneamente cores nos extremos do espectro
- Use "color coding" familiar e consistente
- Use a mesma cor para agrupamentos relacionados
- Use a mesma cor para treino, teste, aplicação e publicação
- Use cores com alta saturação e brilho para chamar a atenção
- Utilizar redundância cor/forma quando possível
- 10. Use cor para destacar informação que pode ser exibida em preto e branco

