* A family is known to have three children. Make the appropriate assumptions for the probability space.

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B := The family has children of both sexes = $\{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B := The family has children of both sexes = $\{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B :=The family has children of both sexes $= \{bbg, bgb, bgg, gbb, gbg, ggb\}; <math>B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B :=The family has children of both sexes $= \{bbg, bgb, bgg, gbb, gbg, ggb\}; <math>B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B :=The family has children of both sexes $= \{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B := The family has children of both sexes = $\{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B := The family has children of both sexes = $\{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

#outcomes with no girls + #outcomes with one girl $\mathbf{P}(\mathbf{A}) = \frac{1+3}{8} = \frac{1}{2}$

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

$$\mathbf{P}(\mathsf{A}\cap\mathsf{B})=\frac{3}{8}$$

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B := The family has children of both sexes = $\{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

$$P(A \cap B) = \frac{3}{8} = \frac{1}{2} \cdot \frac{3}{4} = P(A) P(B)$$

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B := The family has children of both sexes = $\{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

#outcomes with no girls + #outcomes with one girl $\mathbf{P}(\mathbf{A}) = \frac{1+3}{8} = \frac{1}{2}$

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

$$P(A \cap B) = \frac{3}{8} = \frac{1}{2} \cdot \frac{3}{4} = P(A) P(B)$$

A and B are independent.

- * A family is known to have three children. Make the appropriate assumptions for the probability space.
 - * Sample space: $\Omega = \{bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg\}$.
 - * Events:
 - * A :=The family has at most one girl = {bbb, bbg, bgb, gbb}.
 - * B := The family has children of both sexes = $\{bbg, bgb, bgg, gbb, gbg, ggb\}; B^c = \{bbb, ggg\}.$
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/8 to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

$$P(A \cap B) = \frac{3}{8} = \frac{1}{2} \cdot \frac{3}{4} = P(A) P(B)$$

A and B are independent.

* What if the family has n children?

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

$$P(A \cap B) = \frac{3}{8} = \frac{1}{2} \cdot \frac{3}{4} = P(A) P(B)$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{8} = \frac{1}{4}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

$$P(A \cap B) = \frac{3}{8} = \frac{1}{2} \cdot \frac{3}{4} = P(A) P(B)$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{4} = \frac{3}{4}$

$$P(A \cap B) = \frac{3}{8} = \frac{1}{2} \cdot \frac{3}{4} = P(A) P(B)$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{2^{n-1}}$

$$P(A \cap B) = \frac{3}{8} = \frac{1}{2} \cdot \frac{3}{4} = P(A) P(B)$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A := The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{2^{n-1}}$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{\mathbf{n}}{2^{\mathbf{n}}}$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{2^{n-1}}$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{\mathbf{n}}{2^{\mathbf{n}}}$$

$$\frac{n}{2^n} \stackrel{?}{=} \frac{1+n}{2^n} \left(1 - \frac{1}{2^{n-1}} \right)$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * $B := The family has children of both sexes; <math>B^c := the$ family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

#outcomes with no girls + #outcomes with one girl $\mathbf{P}(A) = \frac{1+n}{2^n}$

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{2^{n-1}}$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{\mathbf{n}}{2^{\mathbf{n}}}$$

$$\frac{n}{2^{n}} \stackrel{?}{=} \frac{1+n}{2^{n}} \left(1 - \frac{1}{2^{n-1}} \right)$$

$$n \stackrel{?}{=} 1 + n - \frac{1+n}{2^{n-1}}$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{2^{n-1}}$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{\mathbf{n}}{2^{\mathbf{n}}}$$

$$\frac{n}{2^{n}} \stackrel{?}{=} \frac{1+n}{2^{n}} \left(1 - \frac{1}{2^{n-1}} \right)$$

$$n \stackrel{?}{=} 1 + n - \frac{1+n}{2^{n-1}}$$

$$2^{n-1} \stackrel{?}{=} 1 + n$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{2^{n-1}}$

$$\mathbf{P}(\mathsf{A}\cap\mathsf{B})=\frac{\mathsf{n}}{2^{\mathsf{n}}}$$

n	1 + n	2 ⁿ⁻¹
2	3	2
3	4	4
4	5	8
5	6	16
6	7	32

$$\frac{n}{2^{n}} \stackrel{?}{=} \frac{1+n}{2^{n}} \left(1 - \frac{1}{2^{n-1}} \right)$$

$$n \stackrel{?}{=} 1 + n - \frac{1+n}{2^{n-1}}$$

$$2^{n-1} \stackrel{?}{=} 1 + n$$

- * A family is known to have n children. Make the appropriate assumptions for the probability space.
 - * Sample space Ω : all n-tuples of b's and g's.
 - * Events:
 - * A :=The family has at most one girl.
 - * B :=The family has children of both sexes; $B^c :=$ the family has only boys or only girls.
 - * *Probability measure*: Combinatorial setting with mass function assigning equal probability 1/2ⁿ to each atom.
- * Are A and B independent events?

A and B are independent if, and only if, n = 3.

$$P(B^c) = \frac{2}{2^n} = \frac{1}{2^{n-1}}$$
 $P(B) = 1 - P(B^c) = 1 - \frac{1}{2^{n-1}}$

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{\mathbf{n}}{2^{\mathbf{n}}}$$

n	1 + n	2 ⁿ⁻¹
2	3	2
3	4	4
4	5	8
5	6	16
6	7	32

$$\frac{n}{2^{n}} \stackrel{?}{=} \frac{1+n}{2^{n}} \left(1 - \frac{1}{2^{n-1}} \right)$$

$$n \stackrel{?}{=} 1 + n - \frac{1+n}{2^{n-1}}$$

$$2^{n-1} \stackrel{?}{=} 1 + n$$