title

Preben Hast Sørli

May 10, 2023

ii Preben Hast Sørli: Math

Theorem 0.0.1 ([HTT]). Let X be locally compact and Hausdorff and $\mathbb C$ an ∞ -category with small limits and colimits and left exact filtered colimits. Let $\mathfrak F: \mathrm N(\mathfrak U(X) \cup \mathfrak K(X))^{op} \to \mathbb C$. The following conditions are equivalent:

- 1. The presheaf $\mathfrak{F}_{\mathfrak{K}} := \mathfrak{F}|\mathbf{N}(\mathfrak{K}(X))^{op}$ is a \mathfrak{K} -sheaf, and \mathfrak{F} is a right Kan extension of $\mathfrak{F}_{\mathfrak{K}}$.
- 2. The presheaf $\mathfrak{F}_{\mathfrak{U}}:=\mathfrak{F}|\mathrm{N}(\mathfrak{U}(X))^{op}$ is a sheaf, and \mathfrak{F} is a left Kan extension of $\mathfrak{F}_{\mathfrak{U}}$.

We will split the theorem into a few lemmas for readability.

Lemma 0.0.2. Let \mathcal{F} be as in the theorem statement. If $\mathcal{F}_{\mathcal{K}} := \mathcal{F}|N(\mathcal{K}(X))^{op}$ is a \mathcal{K} -sheaf, then F is a left Kan extension of $\mathcal{F}_{\mathcal{U}} := \mathcal{F}|N(\mathcal{U}(X))^{op}$.

Proof. By definition we want to show that

$$\mathrm{N}(\mathrm{U}(X)^{op}_{/K})^{\triangleright} \hookrightarrow \mathrm{N}((\mathrm{U}(X) \cup \mathrm{\mathcal{K}}(X))^{op}_{/K})^{\triangleright} \xrightarrow{c} \mathrm{N}(\mathrm{U}(X) \cup \mathrm{\mathcal{K}}(X))^{op} \xrightarrow{\mathcal{F}} \mathrm{C}$$

is a colimit diagram in \mathcal{C} . The assumption that $\mathcal{F}_{\mathcal{K}}$ is a \mathcal{K} -sheaf means that for each $K \in \mathcal{K}(X)$, $\mathcal{F}_{\mathcal{K}}(K)$ is a colimit of $\mathcal{F}|\mathbf{N}(\mathcal{K}_{K \in \mathcal{K}}(X))^{op}$. We will "transfer" this colimit to the colimit we want by cofinal maps

$$\mathbf{N}((\mathfrak{U}(X)^{op})_{/K}) \xrightarrow{p} \mathbf{N}((\mathfrak{U}(X) \cup \mathfrak{K}(X))^{op}_{/K}) \xleftarrow{p'} \mathbf{N}(\mathfrak{K}_{K \in}(X))^{op}.$$

Recall that by \mathfrak{R} checking cofinality reduces to checking weak contractibility of certain simplicial sets. For p we must check $\mathrm{N}((\mathfrak{U}(X))^{op}_{/K}) \times_{\mathrm{N}((\mathfrak{U}(X) \cup \mathfrak{K}(X))^{op}_{/K})} \mathrm{N}((\mathfrak{U}(X) \cup \mathfrak{K}(X))^{op}_{/K})_{K'/}$ is weakly contractible for every $K' \in \mathrm{N}((\mathfrak{U}(X) \cup \mathfrak{K}(X))^{op}_{/K})$. This is the simplicial set obtained by taking the nerve of the partially ordered set $\{U \in \mathfrak{U}(X) | K \subseteq U \subseteq K'\}$. By $[\mathbf{HTT}]$ filtered ∞ -categories are weakly contractible, and our partially ordered set is filtered as it is nonempty, stable under finite union, and taking nerves preserve the property of being filtered.

TODO: Make this a result in cofinality chapter instead.

The simplicial set $N(\{K'' \in \mathcal{K}(X) | K \in K'' \subseteq K'\})^1$ is weakly contractible by exactly the same argument, and hence p and p' are cofinal maps. By cofinality of p and p', the diagram

$$N((\mathcal{U}(X))^{op}_{/K})^{\triangleright} \hookrightarrow N((\mathcal{U}(X) \cup \mathcal{K}(X))^{op}_{/K})^{\triangleright} \xrightarrow{c} N(\mathcal{U}(X) \cup \mathcal{K}(X))^{op} \xrightarrow{\mathcal{F}} \mathcal{C}$$

is a colimit diagram if and only if

$$N((\mathcal{K}(X)_{\in K})^{op})^{\triangleright} \hookrightarrow N((\mathcal{U}(X) \cup \mathcal{K}(X))^{op})^{\triangleright} \xrightarrow{c} N(\mathcal{U}(X) \cup \mathcal{K}(X))^{op} \xrightarrow{\mathcal{F}} C$$

is a colimit diagram, which it is by the assumption that $F_{\mathcal{K}}$ is a \mathcal{K} -sheaf.

TODO: This should probably be strict inclusion. Double check that.

Lemma 0.0.3. If $\mathcal{F}_{\mathcal{K}} := \mathcal{F}|N(\mathcal{K}(X))^{op}$ is a \mathcal{K} -sheaf, and \mathcal{F} is a right Kan extension of $\mathcal{F}_{\mathcal{K}}$, then $\mathcal{F}_{\mathcal{U}}$ is a sheaf.

Proof. By definition ?? we must show that for every $U \in \mathcal{U}(X)$ and every covering sieve \mathcal{W} covering U,

$$N(\mathcal{W})^{\triangleright} \hookrightarrow N(\mathcal{U}(X)_{/U})^{\triangleright} \to N(\mathcal{U}(X)) \xrightarrow{\mathfrak{F}} \mathfrak{C}^{op}$$

is a colimit diagram, or equivalently that

$$N(\mathcal{W})^{op,\triangleleft} \hookrightarrow N(\mathcal{U}(X)_{/U})^{op,\triangleleft} \to N(\mathcal{U}(X))^{op} \xrightarrow{\mathfrak{F}} \mathfrak{C}$$

is a limit diagram. We will once again use cofinality by observing that ?? implies cofinality of the inclusion

$$N(W) \subseteq N(W \cup \mathcal{K}_W(X))$$

where $\mathcal{K}_{\mathcal{W}}(X)$ is the set $\{K \in \mathcal{K}(X) | (\exists W \in \mathcal{W})[K \subseteq W] \}$, so it is enough to show the limit starting from $N(\mathcal{W} \cup \mathcal{K}_{\mathcal{W}}(X))^{op}$.

TODO: Write out the details of why this is contractible and the inclusion is cofinal.

Recall that this is equivalent to showing that $\mathcal{F}|_{N(\mathcal{W} \cup \mathcal{K}_{\mathcal{W}}(X))^{op}, \triangleleft}$ is right Kan extended from $\mathcal{F}|_{N(\mathcal{W} \cup \mathcal{K}_{\mathcal{W}}(X))^{op}}$.

TODO: Write out the result in the Kan chapter.

By the assumption that ${\mathcal F}$ is a right Kan extension of ${\mathcal F}_{\mathcal K}$ and the observation that

$$\mathfrak{F}(U) = \lim_{K \in \mathfrak{K}(X)_{U/}^{op}} \mathfrak{F}(K) = \lim_{K \in \mathfrak{K}_{\mathcal{W}}(X)_{U/}^{op}} \mathfrak{F}(K)$$

we see that $\mathcal{F}|_{(\mathcal{W}\cup\mathcal{K}_{\mathcal{W}})^{op}}$ is a right Kan extension of $\mathcal{F}|_{(K_{\mathcal{W}}(X))^{op}}$. Hence, it suffices to prove that $\mathcal{F}|_{(\mathcal{W}\cup\mathcal{K}_{\mathcal{W}}(X)\cup\{U\})^{op}}$ is right Kan extended from $\mathcal{K}_{\mathcal{W}}(X)^{op}$. Outside of U this is clear from the fact that $F|_{(\mathcal{W}\cup\mathcal{K}_{\mathcal{W}}^{op})}$ is right Kan extended from $\mathcal{K}_{\mathcal{W}}(X)^{op}$. This means we only need to prove $\mathcal{F}|_{(\mathcal{K}_{\mathcal{W}}(X)\cup\{U\})^{op}}$ is a right Kan extension of $\mathcal{F}|_{\mathcal{K}_{\mathcal{W}}(X)^{op}}$. Observe that by assumption

$$\mathcal{F}(U) = \lim_{K \in \mathcal{K}(X)_{/U}^{op}} \mathcal{F}(K) = \lim_{K \in (\mathcal{K}(X)/U \cup \{U\})^{op}} \mathcal{F}(K)$$

so $\mathcal{F}|_{(\mathcal{K}(X)_{/U}\cup\{U\})^{op}}$ is right Kan extended from $\mathcal{K}(X)_{/U}^{op}$. Lemma ?? tells us that $\mathcal{F}|_{(\mathcal{K}(X)_{/U})^{op}}$ is a right Kan extension of $\mathcal{F}|_{\mathcal{K}_{W}(X)^{op}}$. We have $N(\mathcal{K}_{W}(X))^{op}\subseteq N(\mathcal{K}(X)_{/U})^{op}\subseteq N(\mathcal{K}(X)_{/U}\cup\{U\})^{op}$, with Kan extensions as in proposition ??, so we get that $\mathcal{F}|_{N(\mathcal{K}(X)_{/U}\cup\{U\})^{op}}$ is right Kan extended from $N(\mathcal{K}_{W}(X))^{op}$. To summarize, we have the following square of inclusions

$$\mathcal{K}_{\mathcal{W}}(X)^{op} \stackrel{i}{\longleftarrow} (\mathcal{K}_{\mathcal{W}}(X) \cup \{U\})^{op}$$

$$\downarrow a \qquad \qquad \qquad \downarrow b$$

$$\mathcal{K}(X)^{op}_{/U} \stackrel{j}{\longleftarrow} (\mathcal{K}(X)_{/U} \cup \{U\})^{op}$$

iv Preben Hast Sørli: Math

where $\mathcal{F}|_{(\mathcal{K}(X)/U \cup \{U\})^{op}} \simeq b_*(\mathcal{F}|_{(\mathcal{K}_W \cup \{U\})^{op}})$ and $\mathcal{F}|_{(\mathcal{K}(X)/U \cup \{U\})^{op}} \simeq (j \circ a)_*(\mathcal{F}|_{\mathcal{K}_W(X)^{op}})$. We want to show $\mathcal{F}|_{(\mathcal{K}_W(X) \cup \{U\})^{op}} \simeq i_*(\mathcal{F}|_{\mathcal{K}_W(X)^{op}})$. Since b is fully faithful (it is the inclusion of a full subcategory), we know $b^*b_* \simeq \mathrm{id}$, so we get

$$\mathcal{F}|_{(\mathcal{K}_{\mathcal{W}}(X)\cup\{U\})^{op}} \simeq b^*b_*(\mathcal{F}|_{(\mathcal{K}_{\mathcal{W}}(X)\cup\{U\})^{op}}) \tag{1}$$

$$\simeq b^*(j \circ a)_*(\mathcal{F}|_{\mathcal{K}_{\mathcal{W}}(X)^{op}}) \tag{2}$$

$$\simeq b^*(b \circ i)_*(\mathcal{F}|_{\mathcal{K}_{\mathcal{W}}(X)^{op}}) \tag{3}$$

$$\simeq b^* b_* i_* (\mathcal{F}|_{\mathcal{K}_{\mathcal{M}}(X)^{op}}) \tag{4}$$

$$\simeq i_*(\mathcal{F}|_{\mathcal{K}_{\mathcal{W}}(X)^{op}})$$
 (5)

Lemma 0.0.4. If $\mathfrak{F}_{\mathfrak{U}}:=\mathfrak{F}|\mathrm{N}(\mathfrak{U}(X))^{op}$ is a sheaf, and \mathfrak{F} is a left Kan extension of $\mathfrak{F}_{\mathfrak{U}}$, then $\mathfrak{F}_{\mathfrak{K}}$ is a \mathfrak{K} -sheaf.

Proof. By definition we need to show three things: Firstly, observe that $\mathcal{F}_{\mathcal{K}}(\emptyset) = \mathcal{F}_{U}(\emptyset)$ and since \mathcal{F}_{U} is a sheaf $\mathcal{F}_{\mathcal{K}}(\emptyset)$ is terminal. Secondly, we need the following diagram to be a pullback in \mathcal{C} for any $K, K' \in \mathcal{K}(X)$.

$$\begin{array}{cccc}
\mathfrak{F}(K \cup K') & \longrightarrow & \mathfrak{F}(K) \\
\downarrow & & \downarrow \\
\mathfrak{F}(K') & \longrightarrow & \mathfrak{F}(K \cap K')
\end{array}$$
(6)

We will do this by using that \mathcal{F}_U is a sheaf. Let $P = \{(U, U') | K \subseteq U, K' \subseteq U'\}$ and $\sigma : \Delta^1 \times \Delta^1 \to \mathfrak{C}$ denote diagram ??. Now \mathcal{F} induces a map $\sigma_P : \mathsf{N}(P^{op})^{\triangleright} \to \mathfrak{C}^{\Delta^1 \times \Delta^1}$ taking each (U, U') to

and the cone point is sent to σ . This is a pullback by the fact that \mathcal{F}_U is a sheaf. Evaluating σ_P in each of the four vertices of $\Delta^1 \times \Delta^1$ we get four maps $\mathrm{N}(P^{op})^{\triangleright} \to \mathcal{C}$. We now check that evaluating in the final vertex yields a colimit diagram. By assumption \mathcal{F} is a left Kan extension of \mathcal{F}_U which by definition means that the following is a colimit diagram:

$$\mathrm{N}((\mathrm{U}(X)_{/(K\cap K')})^{op})^{\triangleright}\hookrightarrow \mathrm{N}((\mathrm{U}(X)\cup \mathrm{\mathcal{K}}(X))_{/(K\cap K')}^{op})^{\triangleright}\xrightarrow{c}\mathrm{N}(\mathrm{U}(X)\cup \mathrm{\mathcal{K}}(X))^{op}\xrightarrow{\mathcal{F}}\mathrm{C}$$

Observe that for every $U'' \in \mathcal{U}(X)_{/(K \cap K')}$, the set $P_{U''} = \{(U, U') \in P | U \cap U' \subseteq U''\}$ is nonempty and stable under finite intersections, which implies it is filtered and hence its nerve is contractible.

TODO: Reference this result.

By ?? this implies $N(P^{op}) \to N((\mathcal{U}(X)_{/(K \cap K')})^{op})$ is cofinal and we get a colimit diagram

$$N(P^{op})^{\triangleright} \to N((\mathcal{U}(X)_{/(K\cap K')})^{op})^{\triangleright} \hookrightarrow N((\mathcal{U}(X) \cup \mathcal{K}(X))^{op}_{/(K\cap K')})^{\triangleright} \xrightarrow{c} N(\mathcal{U}(X) \cup \mathcal{K}(X))^{op} \xrightarrow{\mathcal{F}} \mathcal{C}.$$

We can show that evaluating the three other vertices also yields colimit diagrams by similar arguments. Since σ_P yields a colimit diagram when evaluated in each of the four vertices of $\Delta^1 \times \Delta^1$, we conclude that σ_P is itself a colimit diagram by [HTT]. Observe now that σ_P is a filtered colimit in $\mathcal C$ and hence it is left exact. This concludes the argument that $\mathbf R$ is a pullback. Finally, we need to show that for each $K \in \mathcal K(X)$, $\mathcal F_{\mathcal K}$ is a colimit of $\mathcal F_{\mathcal K}|_{\mathbf N(\mathcal K_K \in (X))^{op}}$. We do this by showing

$$N(\mathfrak{X}_{K\in}(X)^{op})^{\triangleright} \to N(\mathfrak{X}(X) \cup \mathfrak{U}(X))^{op} \xrightarrow{\mathfrak{F}} \mathfrak{C}$$

is a colimit diagram. We use Proposition $\ref{eq:proposition}$ to show that $\mathcal{F}|_{N(\mathfrak{U}(X)\cup\mathcal{K}_{K\Subset}(X))^{op}}$ and $\mathcal{F}|_{N(\mathfrak{U}(X)\cup\mathcal{K}_{K\Subset}(X))^{op}\cup\{K\}}$ are left Kan extensions of $\mathcal{F}|_{N(\mathfrak{U}(X))^{op}}$ which again implies $\mathcal{F}|_{N(\mathfrak{U}(X)\cup\mathcal{K}_{K\Subset}(X))^{op}\cup\{K\}}$ is a left Kan extension of $\mathcal{F}|_{N(\mathfrak{U}(X)\cup\mathcal{K}_{K\Subset}(X))^{op}}$. Now observe that

$$\mathrm{N}(\mathcal{K}(X) \cup \mathcal{U}(X))^{op,\triangleright}_{/K} = \mathrm{N}(\mathcal{K}_{K \Subset}(X) \cup \mathcal{U}(X)_{/K})^{op,\triangleright},$$

so in particular

$$\mathrm{N}(\mathfrak{K}(X) \cup \mathfrak{U}(X))^{op,\triangleright}_{/K} \to \mathrm{N}(\mathfrak{K}(X) \cup \mathfrak{U}(X))^{op} \xrightarrow{\mathfrak{F}} \mathfrak{C}$$

is a colimit diagram, and the statement is reduced to showing that $\mathrm{N}(\mathcal{K}_{K \in}(X)) \subseteq \mathrm{N}(\mathcal{K}(X) \cup \mathcal{U}(X))^{op}_{/K}$ is cofinal. Let $Y \in \mathrm{N}(\mathcal{K}(X) \cup \mathcal{U}(X))_{/K}$ and let R be the partially ordered set $\{K' \in \mathcal{K}(X) | K \in K' \subseteq Y\}$. Since R is nonempty and stable under intersections, R^{op} is filtered and hence $\mathrm{N}(R)$ is weakly contractible. By Lemma $\ref{eq:statement}$ the inclusion is cofinal and we have shown that $\mathcal{F}_{\mathcal{K}}$ is a \mathcal{K} -sheaf. \square

Lemma 0.0.5. If \mathcal{F}_{U} is a sheaf, then \mathcal{F} is a right Kan extension of \mathcal{F}_{K} .

Proof. We will show \mathcal{F} is a right Kan extension of $\mathcal{F}_{\mathcal{K}}$ in a similar manner to how we showed \mathcal{F} is a left Kan extension of $\mathcal{F}_{\mathcal{U}}$ in the start of the proof, but we will consider the partial order on $\mathcal{U}(X)$ given by writing $V \in \mathcal{U}$ whenever $V \in \mathcal{U}(X)$ and its closure \overline{V} is compact and contained in U. Writing $\mathcal{U}(X)_{U/}$ for the set $\{V \in \mathcal{U}(X) | V \in U\}$, we need to show that

$$\mathrm{N}(\mathcal{K}(X)_{U/}^{op})^{\lhd} \hookrightarrow \mathrm{N}(\mathcal{U}(X) \cup \mathcal{K}(X))_{U/}^{op} \xrightarrow{c} \mathrm{N}(\mathcal{U}(X) \cup \mathcal{K}(X))^{op} \xrightarrow{\mathcal{F}} \mathfrak{C}$$

is a colimit diagram. As earlier we do this by finding cofinal inclusions

$$\mathrm{N}(\mathfrak{K}(X)_{U/}^{op}) \xrightarrow{f} \mathrm{N}(\mathfrak{U}(X) \cup \mathfrak{K}(X))_{U/}^{op} \xleftarrow{f'} \mathrm{N}(\mathfrak{K}(X)_{/U})^{op}.$$

By Lemma $\ref{Mathematics} f$ and f' are cofinal inclusions if for any $Y \in (\mathcal{U}(X) \cup \mathcal{K}(X))_{U/}$ the partially ordered sets

$$\{V \in \mathcal{U}(X)|Y \subset V \subseteq U\}$$

vi Preben Hast Sørli: Math

and

$$\{K\in \mathfrak{K}(X)|Y\subseteq K\subseteq U\}$$

have weakly contractible nerves, which they have by the usual argument; they are nonempty and stable under unions, hence filtered.

TODO: Give this argument a name and discuss it in an earlier section.

Since $\mathcal{U}(X)_{U/}$ is a sieve covering U and $\mathcal{F}_{\mathcal{U}}$ is a sheaf,

$$N(\mathcal{U}(X)_{U/})^{op} \to N(\mathcal{U}(X)_{U/})^{op, \triangleleft} \to \mathfrak{C}$$

is a colimit diagram and this completes the proof that $\mathcal F$ is a right Kan extension of $\mathcal F_{\mathcal K}$.