Subjects for Laboratory Test

Information Theory 2017-2018

Lab 2

- 1. Write a C program to compute the entropy of a file.
 - The program shall receive the name of the file as a command-line argument: entropy.exe myfile.txt
 - The program should follow the following steps:
 - Open the file for reading (in binary format)
 - Count the number of apparitions of every byte value:
 - * hold an array of 256 counters, one for every possibly byte value
 - * repeatedly read one byte from the file
 - * increment the counter corresponding to the byte read
 - * also store and increment a counter for the total number of bytes
 - Compute the probability of every byte value: divide each byte counter to the global counter
 - Compute the entropy, based on the probabilities
 - Show the result

Lab 8

1. Write a C program that computes and appends the parity bit for every byte in a data file. The program shall be called as follows:

Parity.exe input.dat output.dat

- The arguments are:
 - input.dat: the input file
 - output.dat: the output file produced by the program (will be 12.5% larger than the input)
- The program should consist of the following steps:
 - declare two large vectors of unsigned char, for input and output bits
 - open the input file and read everything into the input vector
 - for every group of 8 bits from the input vector:

- * copy them to the output vector
- * compute the parity bit
- * append it to the output vector
- write the output vector to the output data file

Lab 9

1. Write a C program that performs encoding of a data file with the Hamming (8,4) SECDED code.

The program shall be called as follows:

HammingEncode.exe original.dat encoded.dat

- The arguments are:
 - original.dat: the original input file
 - encoded.dat: the encoded output file
- The program should consist of the following steps:
 - declare two large vectors of unsigned char, for input and output bits
 - open the input file and read everything into the input vector
 - for every group of 4 bits from the input vector:
 - * compute the control bits c_0, c_1, c_2, c_4
 - * write all the 8 bits in the correct order in the output vector
 - * advance by 4 and repeat
 - write the output vector to the output data file

Hamming (8,4) SECDED encoding procedure operates on a block of 4 information bits (denoted as i_3, i_5, i_6, i_7) and produces a block of 8 output bits:

$$\mathbf{c} = c_0 c_1 c_2 i_3 c_4 i_5 i_6 i_7$$

The bits denoted with c are parity bits (or *control* bits), and are computed as follows:

$$\begin{cases} c_0 = i_3 \oplus i_5 \oplus i_6 = c_1 \oplus c_2 \oplus i_3 \oplus c_4 \oplus i_5 \oplus i_6 \oplus i_7 \\ c_1 = i_3 \oplus i_5 \oplus i_7 \\ c_2 = i_3 \oplus i_6 \oplus i_7 \\ c_4 = i_5 \oplus i_6 \oplus i_7 \end{cases}$$

Lab 11

1. Write a C program that performs CRC-16 computation and checking.

The program shall be called in two possible ways:

a. with two arguments. In this case the program takes the first as input and produces the encoded file as output.

CRC16.exe original.dat encoded.dat

b. with one argument. In this case the program takes the encoded file as input and checks if the CRC is OK or not.

CRC16.exe encoded.dat

- The arguments are:
 - original.dat: the input file (original / encoded)
 - encoded.dat [optional]: the encoded file, with the CRC value appended
- The program should consist of the following steps:
 - define an array g with the values 10100000000000011
 - declare one large vector of unsigned char for input bits
 - open the input file and read everything into the input vector
 - for every bit in the input vector
 - * if the bit is 1, do XOR starting from this bit with the 17 bits in g
 - there will be 16 bits remaining at the end of the original input vector (the CRC-16 value)
 - then:
 - a. If the program is called with two arguments:
 - $\ast\,$ write the vector to the output data file, including the CRC-16 value at the end
 - b. If the program is called with one argument:
 - * if the CRC-16 value is 0, display "File OK\n", otherwise display "Data corrupted\n"