Kurvendiskussion II

- 1. Grenzverhalten
- 2. Nebenbedingungen
- 3. Gauß-Algorithmus
- 4. Steckbriefaufgaben
- 5. Trassierung
- 6. Scharfunktionen

1. Grenzverhalten:

Synonyme:

• Verhalten im Unendlichen

Anwendung:

 Untersuchung des Verhaltens einer Funktion im positiven/negativen unendlichen

Herleitung:

 Da man in eine Funktion nicht ±∞ einsetzen kann, schaut man sich das Verhalten näherungsweise mit Limes (lat. Grenze) an

Berechnung:

$$\lim_{x \to \infty} (f(x)) = f(\infty)$$

$$\lim_{x \to +/-\infty} (x^2) = f(\infty)$$

X-	-1000000	-10000	-100	0	100	10000	1000000
Wert							
y-	+∞	100000000	10000	0	10000	100000000	$+\infty$
Wert							

$$\Rightarrow \lim_{x \to +/-\infty} (x^2) = +\infty$$

2. Nebenbedingungen:

Synonyme:

• Extremwertaufgaben

Anwendung:

 Anwenden von mathematischen Werkzeugen im Sachkontext

<u>Herleitung:</u>		
Berechnung:		

3. Gauß-Algorithmus

Synonyme:

• Gauß-Verfahren, LGS lösen

Anwendung:

• Lineare Gleichungen lösen

Herleitung:

Berechnung:

1. Zuerst schreibt man die einzelnen Variablen in Matrixform:

$$\begin{aligned} 1x + 2y + 3z &= 2 \\ 1x + 1y + 1z &= 2 \rightarrow \\ 3x + 3y + 1z &= 0 \end{aligned} \begin{vmatrix} 1 & 2 & 3 & 2 \\ 1 & 1 & 1 & 2 \\ 3 & 3 & 1 & 0 \end{vmatrix}$$

- 2. Dann muss man die Matrix in eine "Stufenform" bringen. Man darf dafür:
 - a. Komplette Zeilen mit Konstanten multiplizieren
 - b. Zeilen untereinander subtrahieren/addieren
 - c. Zeilenreihenfolge tauschen

$$\begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 1 & 1 & 2 \\ 3 & 3 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 6 & 9 & 6 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & -2 & -6 \end{bmatrix}$$

- 3. Daraus ergibt sich dann x_3 , welches man dann in die 2. Zeile einsetzt, um x_2 auszurechnen. Und so bekommt man dann auch x_1 heraus.
- 4. Eine Matrix hat genau eine, keine oder unendlich viele Lösungen

4. Steckbriefaufgaben:

Synonyme:

Anwendung:

• Aus Eigenschaften auf eine Funktion schließen

Herleitung:

Berechnung:

Punktsymmetrisch zum Ursprung	Nur ungerade Exponenten
Achsensymmetrisch zur y- Achse	Nur gerade Exponenten
Funktion durch Punkt $P(x_1 x_2)$	$f(x_1) = x_2$
Funktion hat Nullstelle bei x = -4	f(-4)=0
Funktion hat Tiefpunkt bei x = -4	f'(-4) = 0; f''(-4) = positiv
Funktion hat Wendepunkt bei x = -4	f''(-4) = 0
Funktion hat Steigung 1 bei x = 0	f'(0) = 1

5. Trassierung:

Synonyme:

• Knickfreier Übergang

Anwendung:

• 2 Funktionen "flüssig" und knickfrei miteinander verbinden

Herleitung:

Berechnung:

$$f_1(x) = -x^2 + 4$$
$$f_2(x) = 1$$

1. Endpunkte in gesuchte Funktion einsetzen

$$f_3(1) = -3 \text{ und } f_3(3) = 1$$

2. Steigung der Endpunkte in gesuchte Funktion einsetzen f'(1) = f'(1) and f'(2) = f'(2)

$$f_3'(1) = f_1'(1)$$
 und $f_3'(3) = f_2'(3)$

3. Bedingungen aufstellen und LGS lösen

$$f_3(1) = 3 \longrightarrow 3 = d*1^3 + c*1^2 + b*1 + a \longrightarrow 3 = 1d + 1c + 1b + a$$

$$f_3(3) = 1 \longrightarrow 1 = d*3^3 + c*3^2 + b*3 + a \longrightarrow 1 = 27d + 9c + 3b + a$$

$$f'_3(1) = -2 \longrightarrow -2 = 3d*1^2 + 2c*1 + b \longrightarrow -2 = 3d + 2c + 1b$$

$$f'_3(3) = 0 \longrightarrow 0 = 3d*3^2 + 2c*3 + b \longrightarrow 0 = 27d + 6c + 1b$$

6. Scharfunktionen:

Synonyme:

• Parameterfunktionen

Anwendung:

• Normale Analyse von Funktionen mit einem unbekannten/unbestimmten Parameter

Herleitung:

• Wird dazu verwendet, um mehrere Funktionen mit ähnlichen Eigenschaften darzustellen.

Berechnung:

$f_a(x)$	$f'_a(x)$	$f_a(x)$	$F_a(x)$
2a	0	a	ax
a^2	0	a^2	a^2x
ax	a	ax	$\frac{a}{2}x^2$
a^2x	a^2	a^2x	$\frac{a^2}{2}x^2$
(a-1)x	a-1	ax^2	$\frac{a}{3}x^3$
ax^2	2ax	$a^2x^4 - ax + a^3$	$\frac{a^2}{5}x^5 - \frac{a}{2}x^2 + a^3x$
$3a^{2}x^{3}$	$9a^{2}x^{2}$	$a(x^3-a)$	$a(\frac{1}{4}x^4 - ax)$
$ax^4-4ax+a^3$	$4ax^3-4a$	oder $ax^3 - a^2$	$\frac{a}{4}x^4 - a^2x$