DELHI TECHNOLOGICAL UNIVERSITY

PROBABILITY AND STATISTICS (MC-205)

PRACTICAL FILE

SUBMITTED TO:

PROF. JAMKHONGAM TOUTHANG

SUBMITTED BY:

NITYA MITTAL

(2K19/MC/089)

<u>INDEX</u>

S. No.	Name of Experiment	Page	Date	Signatur e
1	IMPORTING DATA INTO SPSS FROM TEXT AND MICROSOFT EXCEL FILES			
2	(a) MERGING OF FILES (b) SPLITTING OF FILES			
3	PICTORIAL REPRESENTATION OF DATA			
4	DISTRIBUTION OF CURVES			
5	DESCRIPTIVE STATISTICS FOR DATA IN SPSS			
6	CORRELATION AND REGRESSION			
7	HYPOTHESIS TESTING			
8	t-TEST			
9	CHI-SQUARE TEST			
10	ANOVA			

EXPERIMENT 4

Distribution of Curves for Data

SOURCE CODE:

```
avghours<- data.frame(sports=c("Basketball","Badminton","Table Tennis","Lawn Tennis","Football"), avg_hours= c(2,3,2,1.5,3.5))

numofstudents<-data.frame(num_of_students= c(10,23,65,35,16))

sports<- cbind(avghours,numofstudents)

new<- cbind(sports=c("Cricket"), avg_hours=c(4),
num_of_students=c(34))

total<-rbind(sports,new)
```

1. Histogram with Line Density Plot

```
x<-as.numeric(total$avg_hours)
hist(x,col='pink', xlab='Average Hours Sport Played', main = 'Histogram with Normal Curve' )
xfit<-seq(min(x),max(x), length =4)
yfit<- dnorm(xfit, mean=mean(x), sd=sd(x))
lines(xfit, yfit, col='blue', lwd=3)</pre>
```

2. Kernel Density Plot

```
d<- density(as.numeric(total$avg_hours))
plot(d, main="Kernel Density Plot of Avg Hours")
polygon(d, col="blue", border="yellow")</pre>
```

OUTPUT:

1. Histogram with Line Density Plot

2. Kernel Density Plot

