

Functions Ex 2.5 Q19

Given: $f: R \to R$ is a function defined by f(x) = cos(x+2)

Injectivity: let $x, y \in R$ such that

$$f(x) = f(y)$$

$$\Rightarrow$$
 $\cos(x+2) = \cos(y+2)$

$$\Rightarrow \qquad x + 2 = 2n\pi \pm y + 2$$

$$\Rightarrow \qquad x = 2n\pi \pm y$$

$$\Rightarrow x \neq y$$

⇒ fisnotone-one

Hence, f is not bijective

 \Rightarrow f is not invertible

Functions Ex 2.5 Q20

We have, $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c, d\}$

We know that a function from A to B is said to be bijection if it is one-one and onto. This means different elements of A has different image in B. Also each element of B has preimage in A.

Let $f_1, \bar{f_2}, \bar{f_3}$ and $\bar{f_4}$ are the functions from A to B.

$$f_1 = \{(1, a), (2, b), (3, c), (4, d)\}$$

$$f_2 = \{(1, b), (2, c), (3, d), (4, a)\}$$

$$f_3 = \{(1,c), (2,d), (3,a), (4,b)\}$$

$$f_4 = \{(1, d), (2, a), (3, b), (4, c)\}$$

we can verify that f_1, f_2, f_3 and f_4 are bijective from A to B. Now

$$f_1^{-1} = \{(a, 1), (b, 2), (c, 3), (d, 4)\}$$

$$f_2^{-1} = \{(b, 1), (c, 2), (d, 3), (a, 4)\}$$

$$f_3^{-1} = \{(c, 1), (d, 2), (a, 3), (b, 4)\}$$

$$f_4^{-1} = \{(d, 1), (a, 2), (b, 3), (c, 4)\}$$

Functions Ex 2.5 Q21

Given: A and B are two sets with finite elements.

 $f: A \rightarrow B$ and $g: B \rightarrow A$ are injective map.

To prove: f in bijective

Proof: $Since, f: A \rightarrow B$ in injective we need to show f in surjective only.

 $g: B \rightarrow A$ in injective

each element of B has image in A.

Functions Ex 2.5 Q22

 $f:Q\rightarrow Q$ and $g:Q\rightarrow Q$ are two function defined by

$$f(x) = 2x \text{ and } g(x) = x + 2$$

Now, $f: Q \rightarrow Q$ defined by f(x) = 2x

Injectivity: let $x, y \in Q$ such that

$$f(x) = f(y) \Rightarrow 2x = 2y \Rightarrow x = y$$

 \Rightarrow f in one-one

Surjectivity: let $y \in Q$ such that

$$f(x) = y$$
 \Rightarrow $2x = y$ $\Rightarrow x = \frac{y}{2} \in Q$

:. For each $y \in Q$ (co-domain) there exist $x = \frac{y}{2} = Q$ (domain) such that f(x) = y

- f in bijective

Again for $g: Q \rightarrow Q$ defined by

$$g(x) = x + 2$$

Injectivity: let $x, y \in Q$ such that

$$g(y) = g(x) \Rightarrow y + 2 = x + 2 \Rightarrow y = x$$

$$y+2=x+2 \Rightarrow y=$$

g is one-one

Surjectivity: let $y \in Q$ be arbitrary such that

$$g(x) = y \Rightarrow x + 2 = y \Rightarrow x = y - 2 \in Q$$

Thus, for each $y \in Q$ (co-domain), there exist $x = y - 2 \in Q$ such that g(x) = y∴ g in onto

Hence, g is bijective.

$$g \circ f(x) = g(f(x)) = g(2x) = 2x + 2$$

 $\Rightarrow gof(x) = 2x + 2$
 $f \text{ and } g \text{ are bijective } \Rightarrow g \circ f \text{ is bijective}$
 $\Rightarrow (g \circ f)^{-1} \text{ exist}$

Now,
$$(g \circ f)(x) = 2x + 2$$

$$\Rightarrow (g \circ f)^{-1}(2x + 2) = x$$

$$\Rightarrow (g \circ f)^{-1}(2x) = x - 2$$

$$(g \circ f)^{-1}(x) = \frac{1}{2}(x - 2) \qquad \dots A$$

Again,

f is bijective $\Rightarrow f^{-1}$ exist $f^{-1}: Q \rightarrow Q$ defined by

$$f^{-1}\left(X\right) = \frac{X}{2}$$

Also, g is bijective $\Rightarrow g^{-1}$ exist.

$$g^{-1}: Q \to Q \text{ defined by}$$
$$g^{-1}(x) = x - 2$$

$$f^{-1} \circ g^{-1}(x) = f^{-1}(g^{-1}(x))$$

$$= f^{-1}(x - 2)$$

$$(f^{-1} \circ g^{-1})(x) = \frac{1}{2}(x - 2) \dots (B)$$

From (A) & (B)
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$