TOPOLOGY & GEOMETRY SEMINAR WS24-25

Lecture 9: Fillability for Confoliations

Michael Robert Jimenez

26th of November, 2024

0. Symplectic Overview

The notion of fillability inherently involves manifolds with a certain structure, namely a *symplectic* structure. To that end, we will define what this means.

0.1 DEFINITION [G, 1.4.2]

A symplectic form on a manifold W of (necessarily) even dimension 2n is a differential 2-form ω that is closed (d $\omega = 0$) and non-degenerate, i.e. the 2n-form $\omega^{\wedge n}$ does not vanish (i.e. it is a volume form). Therewith, a symplectic manifold is the pair (W, ω) .

0.2 Remark

As with contact manifolds, there is a symplectic Darboux's theorem [CdS, theorem 8.1] which states that locally all symplectic forms are the same, symplectomorphic to the standard form

$$d x_1 \wedge d y_1 + \cdots + d x_n \wedge d y_n$$
.

Compare this to the corresponding result [G, 2.5.1] for contact structures,

$$dz + x_1 dy_1 + \cdots + x_{n-1} dy_{n-1}$$
.

An accompanying object in the bridge between symplectic and contact structures is the following special vector field.

0.3 DEFINITION [G, 1.4.5]

A Liouville vector field on a symplectic manifold (W, ω) is a vector field Y on W satisfying $\mathcal{L}_Y \omega = \omega$.

0.4 REMARK

In this case, ω is necessarily exact by Cartan's magic formula and the closedness of ω ,

$$\omega = \mathcal{L}_Y \, \omega = \iota_Y \, \mathrm{d} \, \omega + \mathrm{d} \, \iota_Y \, \omega = \mathrm{d} \, \iota_Y \, \omega \quad ,$$

and the 1-form $\alpha := \iota_Y \omega$ is a contact form on any hypersurface M transverse to Y, following from the previous statement

$$\alpha \wedge (\operatorname{d} \alpha)^{\wedge (n-1)} = (\iota_Y \omega) \wedge \omega^{\wedge (n-1)} = \frac{1}{n} \iota_Y \omega^{\wedge n}$$

is non-zero when restricted to any hypersurface transverse to Y, using the fact that $\omega^{\wedge n}$ is a volume form.

An rudimentary example of the symplectic manifold is the following.

0.5 Example [G, 1.4.8]

The disk D⁴ with the symplectic form

$$\omega = d x_1 \wedge d y_1 + d x_2 \wedge d y_2$$

induces a contact structure on S³ with the contact form

$$\alpha = \iota_Y \omega = \frac{1}{2} (x_1 d y_1 - y_1 d x_1 + x_2 d y_2 - y_2 d x_2) ,$$

wherein the Liouville vector field is

$$Y = \frac{1}{2}r \,\partial_r = \frac{1}{2}(x_1 \,\partial_{x_1} + y_1 \,\partial_{y_1} + x_2 \,\partial_{x_2} + y_2 \,\partial_{y_2}) \quad .$$

1. FILLABILITY FOR n=2

Across the literature, the notion of a *filling* is defined slightly differently: this is also the case for [G] and [E-T]. In [G, 1.7.4 & 5.1.1] for example, the notions of *weak* and *strong* symplectic fillings are defined. However, for this talk, we will be following [E-T]. To that end, we first need to define what a *confoliation* is, as the title of [E-T] suggests: this is an amalgamated class of objects of both *contact* structures and *foliations*.

1.1 DEFINITION [E-T, §3.2]

A (positive, resp. negative) confoliation is a pair (M, ξ) , where $\xi = \ker \alpha$ for some 1-form α on M such that

$$\alpha \wedge d \alpha \ge 0$$
 resp. $\alpha \wedge d \alpha \le 0$.

Therewith, we can now define what a filling is in the [E-T] context.

1.2 DEFINITION [E-T, §3.2]

Let (M, ξ) be a confoliation, and let ω be a closed 2-form on M. Then, ω is said to dominate ξ iff $\omega|_{\xi} \neq 0$. A compact symplectic 4-manifold (W, ω) is called a *symplectic filling* of positive confoliation (M, ξ) iff $\omega|_M$ dominates ξ and $\partial W = M$ as oriented manifolds. In this case, (M, ξ) is said to be *symplectically fillable*. A slightly weaker notion is that of a *symplectic semi-filling*, or correspondingly that (M, ξ) is *symplectically semi-fillable*, which is when M is only a connected component of a (disconnected) symplectically-fillable confoliated 3-manifold — that it is "symplectically cobordant" to another symplectically semi-fillable, but possibly disconnected, 3-manifold.

With that, we obtain examples of symplectically semi-fillable manifolds from the following proposition.

1.3 Proposition [E-T, 3.2.2]

Taut foliations are symplectically semi-fillable.

PROOF From previous lectures, a (coöriented) foliation (M, ξ) is taut when there is a map $\check{\varphi}: S^1 \longrightarrow M$ such that at each point of its image is transverse to ξ while intersecting all leaves of the foliation. Following [C, §4.4], we will first show that this implies (this is actually an equivalence [C, 4.29]) that there is a vector field transverse to ξ whose flow preserves a canonical volume form on (M, ξ) relative to its leaves. To get to the proof from [E-T], we will then show that is equivalent to the existence of a 2-form dominating ξ .

Following [C], the map $\check{\varphi}$ can be extended to a "tubular neighborhood" immersion $\varphi: \mathbf{D}^2 \times \mathbf{S}^1 \longrightarrow M$, such that, for each $p \in \mathbf{D}^2$, $\varphi(p,-)$ is transverse to ξ . In this way, because φ intersects each leaf transversely, we can think of homotopies of φ bringing any $x \in M$ into its image, namely that there is a loop that goes through x and each leaf transversely. Moreover, it is possible (akin to the Whitney embedding theorem) to perturb φ to a smooth embedding keeping these properties because of the aforementioned transversality.

Now, since M is compact, we can find a finite cover of M by such open tubular neighborhoods $\varphi(\mathbf{D}2 \times \mathbf{S}^1)$ given by the homotopies of φ ; call the smooth embeddings that give rise to this cover $\varphi_j : \mathbf{D}^2 \times \mathbf{S}^1 \longrightarrow M$, wherein the disks on each leaf corresponding to $t \in \mathbf{S}^1$ are, of course, $\{\varphi_j(-,t)\}$.

FIGURE 1 The "tubular neighborhood" $\varphi_j(D^2 \times S^1)$ of $\varphi_j(S^1)$ intersecting leaves of the foliation given by ξ on M.

Next, to start constructing the "canonical" volume form of (M, ξ) : look first at $\overline{\mathbf{D}^2}$, and let $\check{\omega}$ be a 2-form which is a bump function, being positive on $\mathring{\mathbf{D}}^2$ and vanishing on $\partial \mathbf{D}^2$. Pulling this back by the projection $\mathrm{pr}_1: \mathbf{D}^2 \times \mathbf{S}^1 \longrightarrow \mathbf{D}^2$, obtains a 2-form $\omega := \mathrm{pr}_1^* \check{\omega}$, which is closed because it is a top

form on \mathbf{D}^2 and pullback commutes with the differential. Therewith, we can obtain a closed 2-form on $\varphi_i(\mathbf{D}^2 \times \mathbf{S}^1) \subset M$

$$M \stackrel{\varphi_{j}}{\longleftarrow} \mathbf{D}^{2} \times \mathbf{S}^{2} \xrightarrow{\mathbf{pr}_{1}} \mathbf{D}^{2}$$

$$(\varphi_{j}^{-1})^{*} \circ \mathbf{pr}_{1}^{*} \check{\omega} : \mathbf{T} \left(\varphi_{j} \left(\mathbf{D}^{2} \times \mathbf{S}^{1} \right) \right) \times \mathbf{T} \left(\varphi_{j} \left(\mathbf{D}^{2} \times \mathbf{S}^{1} \right) \right) \longrightarrow \mathbf{T} \left(\mathbf{D}^{2} \times \mathbf{S}^{1} \right) \times \mathbf{T} \left(\mathbf{D}^{2} \times \mathbf{S}^{1} \right) \longrightarrow \mathbf{T} \mathbf{D}^{2} \times \mathbf{T} \mathbf{D}^{2} \longrightarrow \mathbf{R} \quad ,$$

$$\uparrow M \times TM$$

which collectively across j gives in turn a (smooth) closed 2-form on M

$$\omega \coloneqq \sum_{i} (\varphi_{j}^{-1})^* \circ \operatorname{pr}_{1}^* \check{\omega} .$$

Note that ω is, by construction, then smooth and strictly positive on ξ , since ξ is coöriented. It is also easy to see that ker ω is a 1-dimensional distribution on M, because dim M=3 and ω is a 2-form, and it is transverse to ξ by construction.

Let α by a 1-form on M such that $\xi = \ker \alpha$, and pick a (smooth) vector field X such that $\iota_X \alpha \equiv 1$, simply a "normal" to ξ normalized to α . Thusly,

$$\Omega = \omega \wedge \alpha$$

becomes a volume form, canonical in its form relative to the leaves of (M, ξ) , and

$$\mathcal{L}_{X} \Omega = \mathcal{L}_{X} \omega \wedge \alpha + \omega \wedge \mathcal{L}_{X} \alpha$$

$$: X \in \ker \omega$$

$$= \iota_{x} \mathcal{L} \omega + d \iota_{X} \omega + \omega \wedge \mathcal{L}_{X} \alpha$$

$$: \operatorname{closed} \qquad : \iota_{X} \alpha \equiv 1$$

$$= 0 \quad ,$$

so the flow of X preserves the volume form Ω on M. Therefore, tautness in the sense of the existence of the appropriate $\check{\varphi}: S^1 \longrightarrow M$ implies that there is a vector field X on M that is transverse to ξ and preserves a volume form $\Omega := \omega \wedge \alpha$ on M.

Moving on to [E-T], the existence of such an X is equivalent to the existence of a dominating 2-form ω . For the sufficient direction of the equivalence: if there is such an X, then it follows from the logic above that $\omega := \iota_X \Omega$ dominates ξ because Ω is a non-degenerate top form, making ω closed

$$0 = \mathcal{L}_X \Omega = \mathrm{d} \iota_X \Omega = \mathrm{d} \omega \quad ,$$

and $X \cap \xi$. For the necessary direction: if ω dominates $\xi = \ker \alpha$, then following the argumentation above it is possible to pick a vector field X transverse to ξ such that $\iota_X \omega \equiv 0$ and $\iota_X \alpha \equiv 1$, which makes $\mathcal{L}_X(\omega \wedge \alpha) = 0$, so X preserves the volume form $\omega \wedge \alpha$.

Finally, moving on to the proof of the main statement: let (M, ξ) be a taut foliation with $\xi = \ker \alpha$, and let ω be the corresponding dominating 2-form. Consider the cylinder $M \times [0,1]$ over M and the 2-form $\tilde{\omega} = \operatorname{pr}_1^* \omega + \varepsilon \operatorname{d}(t\alpha)$ on it, where $\operatorname{pr}_1 : M \times [0,1] \longrightarrow M$, $t \in [0,1]$, and $\varepsilon > 0$ small enough. The claim is that $\tilde{\omega}$ dominates ξ on $M \times \{0\}$ and $M \times \{1\}$:

- it is non-degenerate for each $t \in [0,1]$ because of the non-degeneracy of ω

$$\tilde{\omega} \wedge \tilde{\omega} = \operatorname{pr}_{1}^{*} \omega \wedge \operatorname{pr}_{1}^{*} \omega + 2\varepsilon \operatorname{pr}_{1}^{*} \omega \wedge \operatorname{d}(t\alpha) + \varepsilon^{2} \operatorname{d}(t\alpha) \wedge \operatorname{d}(t\alpha) = \varepsilon \operatorname{pr}_{1}^{*} \omega \wedge \operatorname{d}t \wedge \alpha ,$$

since $\omega \wedge \alpha$ is a volume form on M and $\alpha \wedge d \alpha = 0$

- it is closed for each $t \in [0, 1]$

$$d\tilde{\omega} = d \operatorname{pr}_{1}^{*} \omega + \varepsilon d^{2}(t\alpha) = \operatorname{pr}_{1}^{*} d\omega = 0$$

because ω is closed and $d^2 = 0$

– it does not vanish on ξ on the boundary of the cylinder over M

at
$$t = 0$$
 $\tilde{\omega}|_{\xi} = (\mathrm{pr}_1^* \omega)|_{\xi} = \omega|_{\xi} \neq 0$
at $t = 1$ $\tilde{\omega}|_{\xi} = (\mathrm{pr}_1^* \omega)|_{\xi} + \varepsilon (\mathrm{d} \alpha)|_{\xi} \neq 0$

for small enough $\varepsilon > 0$ because ω already dominates ξ and the smoothness of α , since ker $\alpha = \xi$.

Hence, the taut foliation (M, ξ) is symplectically semi-fillable, with its symplectic semi-filling being the cylinder over itself with the symplectic form $\tilde{\omega}$ and with $M \subset \partial (M \times [0, 1])$ agreeing with the orientation of $M \times \{1\}$.

We can also say something about fillability for contact structures. First, recall [G, §4.5] (cf. [E-T, §3.1]) from the previous lecture that an *overtwisted* contact structure (M, ξ) is one for which it is possible to embed a disk into M such that its interior is transverse to ξ while its boundary is tangent to it; going along with this, was the complementary notion of being tight, which is not overtwisted. With that, we can state the following result.

1.6 THEOREM [E-T, 3.2.4]

Symplectically semi-fillable contact structures are necessarily tight.

To finish off, a remark looping Liouville vector fields into the discussion of fillability, an example from before, and an example in a canonical symplectic manifold.

1.7 Remark

As discussed in remark ¶0.4, a Liouville vector field Y of (W, ω) affords contact structures to its hypersurfaces that are transverse to Y. This sounds similar to the existence of a transverse vector field X, as above, which preserves a volume form. However, the existence of a Liouville vector field is a stronger condition: of course, if such a Y exists, then (M, ξ) such that $M \subset \partial W$ and $\xi := \ker \iota_Y \omega|_{TM}$ satisfies $\omega|_{\xi} \neq 0$ since $\xi \subset Y^{\perp \omega}$ by definition and ω is non-degenerate.

In this way, [G, 1.7.4 & 5.1.1] defines a weak and a strong fillability.

1.8 Example

Actually example ¶0.5 is an example of a (strong à la [G, 1.7.4]) symplectic filling: (\mathbf{D}^4 , ω) is a symplectic filling of (\mathbf{S}^3 , ker $\iota_Y \omega$).

1.9 Example

Using example ¶0.5 again, we will construct other examples of symplectic fillings from the canonical example [CdS, §§2.2-3] [G, 1.2.3 & §1.4] of symplectic manifold from the cotangent bundle T^*Q of any (smooth) manifold Q.

$$\begin{array}{cccc} T^*Q & \stackrel{}{\longleftarrow} TT^*Q & T^*T^*Q \\ \downarrow \operatorname{pr}_1 & & \downarrow \operatorname{Tpr}_1 & & \downarrow \operatorname{T^*pr}_1 \\ Q & \stackrel{}{\longleftarrow} & TQ & T^*Q \end{array}$$

Consider following *tautological* 1-form in $T^*_{(q,p)}T^*Q$, where *q*-coördinates are on *Q* and *p*-coördinates are for the fibre T^*_qQ

$$\alpha_{(q,p)} \coloneqq \left(\mathsf{T}_{(q,p)} \, \mathsf{pr}_1 \right)^* p \quad .$$

Expanding this further in coördinates

$$\alpha_{(q,p)} = \sum_{j} p_j \, \mathrm{d} \, q_j \quad ,$$

wherein with a conflation of notation d $q_j \circ T_{(q,p)} \operatorname{pr}_1 \leadsto \operatorname{d} q_j$, lifting d $q_j \in \operatorname{T}^*_q Q$ naturally into $\operatorname{T}^*_{(q,p)} \operatorname{T}^* Q$. Setting $\omega \coloneqq -\operatorname{d} \alpha = \sum_j \operatorname{d} q_j \wedge \operatorname{d} p_j$ obtains the so-called *canonical* symplectic structure on $\operatorname{T}^* Q$: it is closed d $\omega = -\operatorname{d}^2 \alpha = 0$ and non-degenerate $\omega^{\wedge n} = \bigwedge_j \operatorname{d} q_j \wedge \operatorname{d} p_j \neq 0$.

Bringing this back to our context (n = 2), for a surface Σ , $(T^*\Sigma, \omega)$ is a symplectic manifold:

$$\omega := d q_1 \wedge d p_1 + d q_2 \wedge d p_2$$

is a symplectic form, as discussed, and

$$Y = p_1 \partial_{p_1} + p_2 \partial_{p_2}$$

is a Liouville vector field in the fibres above $\boldsymbol{\Sigma}$

$$\iota_Y \omega = -p_1 d q_1 - p_2 d q_2 = -\alpha \implies \mathcal{L}_Y \omega = d \iota_Y \omega = -d \alpha = \omega$$
.

Thus, if we consider a disk bundle $DT^*\Sigma$ (the fibres above Σ are unit disks), then the corresponding sphere bundle $ST^*\Sigma$ (the boundaries spheres of those disks) is symplectically fillable by $DT^*\Sigma$. Moreover, any hypersurface (in the fibres above Σ) transverse to Y (a radial vector field) is a contact manifold that is symplectically filled by its interior.

REFERENCES

- [C] Danny Calegari. *Foliations and the geometry of 3-manifolds*. Oxford Math. Monogr. Oxford: Oxford University Press, 2007.
- [CdS] Ana Cannas da Silva. Lectures on symplectic geometry, volume 1764 of Lect. Notes Math. Berlin: Springer, 2001.
- [E-T] Yakov M. Eliashberg and William P. Thurston. *Confoliations*, volume 13 of *Univ. Lect. Ser.* Providence, RI: American Mathematical Society, 1998.
- [G] Hansjörg Geiges. *An introduction to contact topology*, volume 109 of *Camb. Stud. Adv. Math.* Cambridge: Cambridge University Press, 2008.