AMSC 660 Assignment 5

Jiaqi Leng

October 3, 2019

1 Problem 1

(a) Suppose we have an upper triangular matrix $U = (u_{ij})$ for $1 \le i, j \le n$, and $b = (b_1, ..., b_n)^T$. We want to solve Ux = b by backward substitution. The algorithm is: for k = n, n - 1, ..., 1,

$$x_k = \frac{b_k - \sum_{i=k+1}^n u_{ki} x_i}{u_{kk}}, \ (u_{n,n+1} = x_{n+1} = 0).$$

At the k-th step, there are (n-k) multiplications, (n-k) subtractions, and 1 division, i.e., 2(n-k)+1 flops, so the total number of flops is

$$\sum_{k=1}^{n} 2(n-k) + 1 = 2n^2 + n - 2(1+2+...+n) = n^2.$$

The asymptotic number of flops is $O(n^2)$.

- (b) There are two ways to perform the matrix product x^Tyz^T :
- (i) $(x^Ty)z^T$: $x^Ty = \sum_{k=1}^n x_iy_i =: c$. There are n multiplications, and (n-1) additions, in total (2n-1) flops. Then $cz^T = (cz_i)_{1 \le i \le n}$, i.e., there are n more flops. In total, the number of flops is 2n-1+n=3n-1.
- (ii) $x^T(yz^T)$: $yz^T = (y_iz_j)_{1 \le i,j \le n}$. There are n^2 multiplications. Then, $x^T(yz^T) = (\sum_{i=1}^n x_i(y_iz_j))_{1 \le j \le n}$, there are n^2 multiplications, n(n-1) additions. In total, the number of flops is $n^2 + n^2 + n(n-1) = 3n^2 n$.

It is clear that the method (i) is more efficient to perform the matrix multiplication x^Tyz^T .

(c) In class, the formula for L is $(1 \le i, j \le n)$

$$L = \begin{cases} 1 & (i = j) \\ m_{ij} & (i > j) \\ 0 & (\text{otherwise}). \end{cases}$$

Recall that L is defined to be the inverse of $M_{n-1}M_{k-2}...M_1$, so it suffices to check $LM_{n-1}M_{k-2}...M_1 = I$.

Since M_k is

$$M_k = \begin{cases} 1 & (i = j) \\ -m_{ik} & (i > k) \\ 0 & (\text{otherwise}), \end{cases}$$

we can evaluate the product

$$LM_{n-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ m_{21} & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ m_{n1} & m_{n2} & \dots & m_{n,n-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -m_{n,n-1} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ m_{21} & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ m_{n-1,1} & \dots & \dots & 1 & 0 \\ m_{n1} & m_{n2} & \dots & 0 & 1 \end{pmatrix}.$$

The (n-1)-th column is transformed to (0,...,1,0), only having a unit entry on its diagonal. And inductively, $LM_{n-1}...M_k$ returns a matrix with the last n-k+1 columns being the last n-k+1 standard basis in \mathbb{R}^n . It follows that $LM_{n-1}M_{k-2}...M_1 = I$.

2 Problem 2

(a) To reduce AB = I to be $UB = L^{-1}$, it is equivalent to perform a LU factorization. The algorithm is:

For i = 1 : n - 1:

For j = i + 1 : n:

 $l_{ji} = -a_{ji}/a_{ii}$, for k = i : n, $u_{jk} = a_{jk} + l_{ji}a_{ik}$. This algorithm returns

 $L^{-1} = (l_{ij}), U = (u_{ij}),$ and the total number of flops is the same as the LU decomposition:

$$W(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (1 + \sum_{k=i}^{n} 2) \approx \frac{2}{3}n^{3}.$$

- (b) We want to use the backward substitution to solve $UB = L^{-1} = (c_1, ..., c_n)$, with c_k the k-th column of L^{-1} . It is equivalent to find the k-th column b_k of B such that $Ub_k = c_k$. In problem 1(a), we found the flops of backward substitution is n^2 , and here we actually do n times substitution, so the total cost is n^3 .
- (c) To compute A^{-1} , we need to perform the LU decomposition in part (a) and the backward substitution in part (b), the total cost is $\frac{2}{3}n^3 + n^3 = \frac{5}{3}n^3$.

On the other hand, if we solve Au = b by LU factorization, the algorithm is: (i) A = LU; (ii) solve Ly = b by forward substitution; (iii) solve Uu = b by backward substitution. The cost for forward substitution can be in a similar way as what we did in problem 1(a), so the costs of (ii) and (iii) are both n^2 . The total cost of this algorithm is $\frac{2}{3}n^3 + 2n^2 \approx \frac{2}{3}n^3$ when n is large.

both n^2 . The total cost of this algorithm is $\frac{2}{3}n^3 + 2n^2 \approx \frac{2}{3}n^3$ when n is large. Now, it is clear that the cost of computing A^{-1} is $\frac{5}{3}n^3$, more than twice as expensive as $\frac{2}{3}n^3$, the cost of solving Au = b.