(1) Let (a_n) be a sequence with the property that its subsequences	(a_{2n}) ,	$\left(a_{2n-1}\right) ,$
and (a_{3n}) are all convergent. Prove that (a_n) is convergent.		

Let
$$\lim_{n \to \infty} a_{n} = A$$
, $\lim_{n \to \infty} a_{2n-1} = B$, $\lim_{n \to \infty} a_{3n} = C$.

$$A = \lim_{n \to \infty} \alpha_{2n} = \lim_{n \to \infty} \alpha_{6n} = \lim_{n \to \infty} \alpha_{3n} = C$$

• Similarly,
$$(a_{6n-3})$$
 is a subseq. of both (a_{6n-1}) and (a_{3n}) , hence $B=C$.

· Therefore, we have
$$A = B$$
.

Define
$$N = \max\{2N_1, 2N_2-1\} > 0$$
. Then we have $|a_n-A| < \epsilon \quad \forall n > N$.

(2) Let (a_n) be a bounded sequence. Prove that

$$\liminf_{n \to \infty} a_n = -\limsup_{n \to \infty} (-a_n).$$

$$\lim \sup_{n \to \infty} (-a_n) = \lim_{N \to \infty} \left(\sup_{n \to \infty} \frac{x_n}{n_n} - \frac{x_n}{n_n} \right) + \lim_{N \to \infty} \left(-\inf_{n \to \infty} \left\{ a_n : n_n \right\} \right)$$

$$= -\lim_{N \to \infty} \left(\inf_{n \to \infty} \left\{ a_n : n_n \right\} \right)$$

(3) Prove that $\limsup a_n = 0$ if and only if $\lim a_n = 0$)	•
limsup an =0. (>) lim (sup {lad: n>N})=	= 0.	D (•
↔ YEro, JNro sit. fan	< 5	¥	n>N.
(4) Let (a_n) be a sequence of nonzero real numbers. Assume that $\limsup \left \frac{a_{n+1}}{a_n}\right = L$ is	D) (•
finite. You'll prove $\limsup a_n ^{1/n} \le \limsup \left \frac{a_{n+1}}{a_n}\right $ in this problem. Using similar argument, you can show that	Þ	Þ	•
$\liminf_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right \le \liminf_{n\to\infty} (a_n ^{1/n}) \le \limsup_{n\to\infty} (a_n ^{1/n}) \le \limsup_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right ,$ which will be important for us later on in the course.	•	•	•
 (a) Let L' be any number bigger than L. Prove that there exists N > 0 such that \(\left \frac{a_{n+1}}{a_n} \right < L' \) for any n > N. (b) Prove that for any n > N, we have \(a_n < (L')^{n-N} a_N \). (c) Prove that \(\lim \sup(a_n ^{1/n}) \leq L' \). 	a .) (• •
(d) Finally, prove that $\limsup (a_n ^{1/n}) \leq L$.	. \	D	• •
a) $L = \lim_{n \to \infty} \left \frac{a_{nk1}}{a_n} \right = \lim_{n \to \infty} \left \frac{a_{nk1}}{a_n} \right : n > N$	S	Þ (•
Hence YL'>L, JN>0 sit. sup{[ant]; n>	N}	< _	7
ant ant < b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	D I	B (• •
b) InyN, we have. an = an an-1 ane lan	<		N ·lan
C) $\forall n > N$, $ a_n ^n < L' \cdot ((L')^N a_N)^n$ To dependent of n . This sup $ a_n ^n \leq L' \cdot x_n ^n = L'$.)		
Tim sup lant & L' - lymsup ((L')-N. [aNI) = L'.	D I	в (• •
d) Since limsup and se l' for any 1/21.	•		• •
d) Since $\lim a_n ^k \leq L'$ for any $L' > L$. We have $\lim a_n ^k \leq L$. (HW1#5).	, ,	D	• •

- (5) Let (a_n) and (b_n) be bounded sequences.
 - (a) Prove that $(a_n + b_n)$ is bounded.
 - (b) Prove that

$$(\liminf_{n\to\infty} a_n) + (\liminf_{n\to\infty} b_n) \le \liminf_{n\to\infty} (a_n + b_n) \text{ and } (\limsup_{n\to\infty} a_n) + (\limsup_{n\to\infty} b_n) \ge \limsup_{n\to\infty} (a_n + b_n).$$

(c) Find an example of (a_n) and (b_n) such that

$$(\liminf_{n\to\infty} a_n) + (\liminf_{n\to\infty} b_n) < \liminf_{n\to\infty} (a_n + b_n).$$

- (a) Follows from triangle ineq.
- (6) We prove " liminf an + liminf bn \le liminf (an+bn)".

 the proof of the other statement is strilar.
 - · For any Noo, we have

$$\inf \{a_n: n>N\} + \inf \{b_n: n>N\} \leq a_n+b_n \quad \forall n>N.$$

- Hence Inf {an: n>N} + inf {bn: n>N} = inf {an+ln: n>N}.
- · Therefore:

(c)
$$(a_n) = (0,1,0,1,0,1,...)$$

 $(b_n) = (1,0,1,0,1,0,...)$

- (6) (a) Let (a_n) be a sequence such that $|a_{n+1} a_n| < C^n$ for all n for some constant 0 < C < 1. Prove that (a_n) is a Cauchy sequence, therefore is convergent.
 - (b) Let (a_n) be a sequence such that $|a_{n+1} a_n| < \frac{1}{n}$ for all n. Is it true that such (a_n) is always convergent?

$$\begin{aligned} \left| \left(a_{n} - a_{m} \right) \right| &\leq \left| \left(a_{n} - a_{n+1} \right) + \dots + \left| \left(a_{m-1} - a_{m} \right) \right| \\ &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| \\ &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) + \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) + \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) + \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) + \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) + \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} \right) \right| &\leq \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} + \dots + c^{m-1} \right) + \left| \left(c^{h} + c^{h+1} + \dots + c^{m-1} + \dots + c^{m-1} \right) + \left| \left(c^{h}$$

Then
$$\forall n, m > N$$
, $|a_n - a_m| < \frac{C^{\min\{n,m\}}}{1-C} < \frac{C^N}{1-C} < \epsilon$.