

What is evolution?

Niko Beerenwinkel

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Evolution

What evolution is

- In a population of individuals of different types, evolution is the change in the frequency of types from one generation to the next.
- Biological evolution is the change in allele frequencies within a gene pool.
- Only populations can evolve.
- Evolution generates inheritable traits.
- Evolution is driven by replication, mutation, and selection.

Reproduction

Evolution requires a population of reproducing individuals.

Exponential growth ("Malthusian law")

- Consider dividing cells in discrete generations t and let x_t be the number of cells in generation t.
- The difference equation $x_{t+1} = 2x_t$ has the solution $x_t = x_0 2^t$, where x_0 is the initial number of cells.
- Now, consider continuous time t and let x(t) be the continuous number (fraction) of cells at time t.
- Assume that the generation time T is exponentially distributed with average 1/r, i.e., $Prob(T \le \tau) = 1 e^{-r\tau}$.
- The differential equation x' = dx/dt = rx has the solution $x(t) = x_0 e^{rt}$, where r is the rate of cell division.

Cell death

- Suppose that cells have an average life span of 1/d.
- The differential equation becomes x' = (r d) x.
- The quantity R₀ = r/d is called the basic reproductive ratio. It denotes the expected number of offspring from a single individual.
- If R₀ > 1, then the population expands indefinitely.
- If R₀ < 1, then the population goes extinct.</p>
- If $R_0 = 1$, then the population size remains constant, but the equilibrium $x^* = x_0$ is not stable.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Logistic growth

- Suppose that the population has a carrying capacity, K.
- The logistic equation x' = rx(1 x/K) has the solution

$$x(t) = \frac{Kx_0e^{rt}}{K + x_0(e^{rt} - 1)}$$

• We have $x^* = \lim_{t \to \infty} x(t) = K$

The logistic difference equation

- Most famous example of a "simple mathematical model with very complicated dynamics" (Robert M. May, *Nature* 261, 1976).
- After rescaling, assume K = 1. Then $x_{t+1} = ax_t(1 x_t)$ is the logistic difference equation.
- The growth rate, a, corresponds to r in the logistic differential equation.
- The limit behavior of the system as $t \to \infty$ depends on the parameter a.
- For a = 4, the equation produces a deterministic chaos.

Bifurcation diagram of the logistic map

Selection

 Selection is the result of different growth rates associated with different types of individuals.

Two independent exponentially growing types

- Consider two types of individuals,
 - type A with growth rate a and abundance x(t),
 - type B with growth rate b and abundance y(t), growing according to x' = ax and y' = by.
- Neither type can go extinct, if the fitness values a, b > 0.
- For their ratio, $\rho(t) = x(t)/y(t)$, we have $\rho' = (x'y xy')/y^2 = (a b)\rho$ and thus $\rho(t) = \rho_0 e^{(a b)t}$.
- If a > b, then $\rho \to \infty$. Selection favors A over B.
- If a < b, then $\rho \rightarrow 0$. Selection favors B over A.
- If a = b, then $\rho(t) = \rho_0$.

Two competing types

- Let x and y be relative abundances (fractions, frequencies),
 and x(t) + y(t) = 1 for all t ≥ 0.
- This constraint arises, for example, if the population has a carrying capacity. Thus, a relationship between type A and type B individuals is introduced.
- The dynamics are described by the equations

$$x' = x(a - \phi),$$

$$y' = y(b - \phi),$$

where ϕ = ax + by is the average fitness of the population.

- The terms involving ϕ ensure that x + y = 1.
- The system is equivalent to x' = x(1 x)(a b).

Selection dynamics: survival of the fitter

The equation x' = x(1 - x)(a - b) has two equilibria.

Probability simplex

$$S_n = \left\{ (x_1, \dots, x_n) \mid x_i \ge 0, \sum_{i=1}^n x_i = 1 \right\}$$

 S_2

Each point in S_n is a discrete probability distribution, or a population.

Survival of the fittest

- Consider n types with fitness values f_i, frequencies x_i(t), and x₁(t) + ... + x_n(t) = 1. The type frequencies are points in the (n − 1)-dimensional probability simplex S_n.
- The average fitness of the population is $\phi = x_1f_1 + ... + x_nf_n$.
- The selection dynamics are

$$x_i' = x_i(f_i - \phi) \qquad i = 1, \dots, n$$

 This ODE system has a single stable equilibrium: starting from any interior point of the probability simplex, the fittest type will eventually outcompete all other types.

Subexponential and superexponential growth

- Consider two types with x + y = 1 and dynamics $x' = ax^c \phi x$ and $y' = by^c \phi y$, where $\phi = ax^c + by^c$.
- If c = 0, growth is linear (immigration).
- If c = 1, growth is exponential.
- If c < 1, growth is subexponential.</p>
- If c > 1, growth is superexponential.
- The system is equivalent to x' = x(1 x)f(x), where $f(x) = ax^{c-1} b(1 x)^{c-1}$.
- It has fixed points at x = 0, x = 1, and for $c \ne 1$, there is exactly one additional fixed point $x^* = 1 / (1 + (a/b)^{1/(c-1)})$ between 0 and 1.

c < 1: survival of all

- If c < 1, then x* is globally stable.</p>
- Even if a > b, B can invade A (i.e., an infinitesimal small amount of type B individuals can grow in a population of almost all type A individuals).

all-A is unstable

the mixed equilibrium of A and B is stable

all-B is unstable

c > 1: survival of the first

- If c > 1, then x* is unstable.
 - If $x > x^*$, then A will outcompete B.
 - If x < x*, then B will outcompete A.</p>
- Even if a > b, a B population cannot be invaded by an A mutant.

all-A is stable

the mixed equilibrium of A and B is unstable

all-B is stable

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mutation

Mutation during reproduction:

Mutation without reproduction:

Basic mutation dynamics

- Consider two types of equal fitness a = b = 1 with mutation rates u₁ = Prob(A → B) and u₂ = Prob(B → A) during reproduction.
- We have $x' = x(1 u_1) + yu_2 \phi x$ $y' = xu_1 + y(1 - u_2) - \phi y$.
- Because $\phi = 1$ and x + y = 1, this system is equivalent to $x' = u_2 x(u_1 + u_2)$ with stable equilibrium $x^* = u_2/(u_1 + u_2)$.
- Mutation leads to coexistence, $x^*/y^* = u_2/u_1$.
- If u₁ ≫ u₂, we may assume u₂ = 0. Then x' = -xu₁ and A will go extinct. Thus, even without fitness differences, mutation alone can affect survival.

Mutation dynamics of n types

- Let $q_{ij} = Prob(type i \rightarrow type j)$, i,j = 1, ..., n.
- For all i, we have $q_{i1} + ... + q_{in} = 1$.
- Thus, $Q = (q_{ii})$ is a stochastic matrix.
- The n-dimensional mutation dynamics are

$$x'_{i} = \sum_{j=1}^{n} x_{j}q_{ji} - \phi x_{i}$$
 $i = 1, ..., n$

or $x' = xQ - \phi x$ in matrix notation.

 The equilibrium is the left hand eigenvector of Q associated with the largest eigenvalue, 1.

Genetic variation in populations

- Can genetic variation be maintained in the course of evolution?
- Darwin was confronted with the paradox that variation in continuous traits should disappear under blending inheritance.
- However, biological inheritance is discrete (Mendel; unknown to Darwin)
- Hardy showed mathematically that particulate inheritance preserves genetic variation in a diploid population under random mating.

Charles Darwin

Gregor Mendel

Hardy-Weinberg principle

- Consider an infinite population of diploid individuals.
- There are two alleles, namely "a" and "A", with frequencies p and q, respectively.
- Hence there are three different genotypes, namely aa, aA, AA, with relative frequencies x, y, z, respectively.
- We have x + y + z = p + q = 1.
- The allele frequencies are:

$$p = x + y/2$$

$$q = z + y/2$$

Hardy-Weinberg principle

After one round of random mating,

$$x = p^2, \quad y = 2pq, \quad z = q^2$$

and the new allele frequencies p* and q* are

$$p^* = x + y/2 = p^2 + pq = p$$

 $q^* = z + y/2 = q^2 + pq = q$

 Thus, after the first mating, the allele frequencies and the genotype frequencies are constant.

Hardy-Weinberg curve

 The set of Hardy-Weinberg equilibria is the intersection of the probability simplex with the algebraic curve

$$4xz - y^2 = 0$$

Godfrey Harold Hardy

Summary

- Evolution requires populations of reproducing individuals.
- Simple models of population growth in discrete time can give rise to very complicated dynamics.
- The fitness of an individual is its relative growth rate. In general, fitter individuals outcompete less fit ones.
- Subexponential growth: survival of all
- Superexponential growth: survival of the first
- Mutation promotes coexistence.
- Asymmetric mutation can result in selection even without growth differences.