0.1 Lecture 4

0.1.1 Topics

- (1) Sequences
- (2) Infinite subset of a countable set is countable.

0.1.2 Sequences

Definition (Sequence). We call a **sequence**, we mean a function f on the set \mathbb{N} .

- We can let $x_n = f(n)$. Then it is customary to denote the sequence f by $(x_n)_{n\geq 1}$ or x_1, x_2, \ldots
- Note that x_1, x_2, \ldots need not be distinct.
- If for all $n \in \mathbb{N}$, $x_n \in A$, then we say $(x_n)_{n \ge 1}$ is a sequence in A.
- Sometimes it is convenient to replace \mathbb{N} in the definition above with $\{0,1,2,\ldots\}$ or $\{-1,0,1,2,\ldots\}$.

0.1.3 Infinite subset of a countable set is countable

Theorem. Every infinite subset of a countable set is countable.

Proof. Let A be a countable set. Let $E \subseteq A$ and E is infinite. Our goal is to show that E is countable. Since A is countable, there exists a bijective function $g: \mathbb{N} \to A$, so

$$A = \{g(n) : n \in \mathbb{N}\} = \{x_n : n \in \mathbb{N}\}\$$

with $x_n = g(n)$ for all $n \in \mathbb{N}$. Now, let us construct the sequence n_1, n_2, \ldots as follows:

- (1) Let n_1 be the smallest positive integer such that $x_{n_1} \in E$.
- (2) Let n_2 be the smallest positive integer greater than n_1 such that $x_{n_2} \in E$.

:

(k) Let n_k be the smallest integer greater than n_{k-1} such that $x_{n_k} \in E$.

Observe that the set

$$\{m \in \mathbb{N} : m > n_{k-1} \land x_m \in E\}$$

is both nonempty (since E is infinite) and bounded below (by the well ordering property of natural numbers). Thus, we know that

$$n_k = \min\{m \in \mathbb{N} : m > n_{k-1} \land x_m \in E\}.$$

Now, define the function $f: \mathbb{N} \to E$ as follows:

$$f(k) = x_{n_k}$$
.

We claim that this is a bijective map. If we can prove this fact, then surely E is countable. We need to prove a two things:

- (1) f is injective and
- (2) f is surjective.

Starting with (1), suppose $k_1 \neq k_2$. Then we have $n_{k_1} \neq n_{k_2}$ and thus, $x_{n_{k_1}} \neq x_{n_{k_2}}$. Hence, we see that $f(k_1) \neq f(k_2)$. Therefore, f is injective which proves (1).

With (2), let $b \in E$. Since $E \subseteq A$, we must have $b \in A$ and thus there exists an $m \in \mathbb{N}$ such that $b = x_m$. Hence, there exists $1 \le k \le m$ such that $x_{n_k} = x_m = b$. Thus, f(k) = b which shows that f is surjective and so (2) is satisfied.

Therefore, f must be a bijective map and we can now conclude that E is countable.

Remark. Consider the contrapositive of the theorem above:

Let $E \subseteq A$. If E is not countable, then A is not countable.

When we say that a set is NOT countable, we do not necessarily mean the set is uncountable. However, in the case in that E is an infinite set, we can say that E being not countable is equivalent to saying that E is uncountable. So, only in the case in which E is infinite then the contrapositive is

Let $E \subseteq A$ be infinite. If E is uncountable, then A is uncountable. By the theorem we just proved, we see that $f(A) \subseteq S$ and S being countable implies that f(A) must be at most countable. Thus, A must be at most countable.

Corollary. Let A be any set and let S be a countable set. If there exists an injective mapping $f: A \to S$, then A is at most countable.

Proof. Let A be any set and let S be a countable set. Suppose there exists an injective mapping $f: A \to S$. We can restrict the codomain S of f to its range f(A). Because f is injective, the mapping $f: A \to f(A)$ will be bijective. Thus, we have that $A \sim f(A)$.

Example 0.1.1 ($\mathbb{N} \times \mathbb{N}$ is countable). (1) The function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

$$f(x,y) = 2^x 3^y$$

is injective. By the corollary we have just proved, we see taht $\mathbb{N} \times \mathbb{N}$ is at most countable.

- (2) Notice that $g: \mathbb{N} \to \{1\} \times \mathbb{N}$ is a bijection g(a) = (1, a). Hence, $\{1\} \times \mathbb{N}$ is countable. Now, we have that
 - (i) $\{1\} \times \mathbb{N} \subseteq \mathbb{N} \times \mathbb{N}$
 - (ii) $\{1\} \times \mathbb{N}$ is countable implies that $\{1\} \times \mathbb{N}$ is infinite.

Thus, (i) and (ii) imply that $\mathbb{N} \times \mathbb{N}$ is countable.

Proving that a set A is countable can be done by finding a subset B that is countable which forces A to be countable.

Example 0.1.2 (\mathbb{Q} is countable). (1) The function $f: \mathbb{Q} \to \mathbb{N}$ defined by

$$f(x) = \begin{cases} 2(2^p 3^q) & \text{if } x = \frac{p}{q} \ p \in \mathbb{N}, q \in \mathbb{N}, (p, q) = 1\\ 2(2^p 3^q) + 1 & \text{if } x = \frac{-p}{q} \ p \in \mathbb{N}, q \in \mathbb{N}, (p, q) = 1\\ 1 & \text{if } x = 0 \end{cases}$$

is an injective mapping. So, $\mathbb Q$ is at most countable.

(2) Observe that $\mathbb{N} \subseteq \mathbb{Q}$ and \mathbb{N} being a countable (and thus \mathbb{N} is infinite) set implies that \mathbb{Q} is infinite. Thus, \mathbb{Q} is is countable.

0.1.4 Countable union of at most countable sets is at most countable

Theorem. Countable union of at most countable sets is at most countable.

Proof. Let $\{A_n : n \in \mathbb{N}\}$ be a countable family of at most countable sets; that is, for each $n \in \mathbb{N}$, A_n is at most countable. Our goal is to show that

$$K = \bigcup_{n \in \mathbb{N}} A_n$$
 is at most countable.

To this end, it suffices to show that there exists an injective map $f: K \to \mathbb{N} \times \mathbb{N}$. Let

$$B_1 = A_1$$

$$B_2 = A_2 \setminus A_1$$

$$B_3 = A_3 \setminus (A_1 \cup A_2)$$

$$\vdots$$

$$B_{n+1} = A_{n+1} \setminus \left(\bigcup_{k=1}^n A_k\right).$$

We leave as an exercise to show that

$$\bigcup_{n\in\mathbb{N}}B_n=\bigcup_{n\in\mathbb{N}}A_n \text{ are pairwise disjoint.}$$

Note that for all $n \in \mathbb{N}$, we have $B_n \subseteq A_n$ and A_n is at most countable. Then for each $n \in \mathbb{N}$. B_n must be at most countable. So, for each $n \in \mathbb{N}$, there exists an injective mapping $f_n : B_n \to \mathbb{N}$. Our goal is to show that

$$\bigcup_{n=1}^{\infty} B_n \text{ is at most countable.}$$

To this end, we define the function

$$f: \bigcup_{n=1}^{\infty} B_n \to \mathbb{N} \times \mathbb{N}$$

as follows:

For each $x \in \bigcup_{n=1}^{\infty} B_n$, there is exactly one $n \in \mathbb{N}$ such that $x \in B_n$; let us denote this n by n_x .

Thus, we define

$$f(x) = (n_x, f_{n_x}(x)).$$

This function is injective because

$$\begin{split} f(x) &= f(y) \Longrightarrow (n_x, f_{n_x}(x)) = (n_y, f_{n_y}(y)) \\ &\Longrightarrow n_x = n_y \ \land \ f_{n_x}(x) = f_{n_y}(y) \\ &\Longrightarrow f_{n_k}(x) \land f_{n_x}(y) \\ &\Longrightarrow x = y \end{split} \tag{Since } f_{n_x} \text{ is injective)}$$

By the corollary, we see that the set

$$\bigcup_{n=1}^{\infty} B_n$$

is at most countable.

Corollary. A countable union of countable sets is countable.

Proof. Let $\{A_n : n \in \mathbb{N}\}$ be a countable collection of countable sets. By the previous Theorem, we see that $\bigcup_{n \in \mathbb{N}} A_n$ is at most countable. Note that $A_1 \subseteq \bigcup_{n \in \mathbb{N}} A_n$ and that A_1 is countable. Thus, A_1 must be infinite and so

$$\bigcup_{n\in\mathbb{N}} A_n \text{ is infinite.}$$

Thus, we see that

$$\bigcup_{n\in\mathbb{N}}A_n$$

must be countable.

Corollary. If A and B are at most countable, then $A \cup B$ at most countable.

Proof. Let $A_1 = A$ and $A_2 = B$ where $A_2 = A_3 = \cdots = A_n = \emptyset$. Then $A \cup B$ is at most countable by the previous Theorem.

Theorem. If A is countable, then $A \times A$ is countable.

Proof. (1) Note that $A \times A = \bigcup_{b \in A} \{b\} \times A$ for each $b \in A$.

(2) The function $f:A\to\{b\}\times A$ defined by f(x)=(b,x) is bijective. So, $A\sim\{b\}\times A$. Hence, $\{b\}\times A$ is countable.

Since a countable union of countable sets is countable, we see that $A \times A$ must be countable by (1) and (2).

0.2 Lecture 5

0.2.1 Topics

- Summary of last lecture
- Collection of all binary sequences is uncountable.
- Preliminary Remarks
- Inequalities

0.2.2 Summary of Last Lecture

- 1. How to prove A is at most countable:
 - Show that $A \subseteq S$ where S is countable.
 - Find an injective function $f: A \to S$ where S is countable.
- 2. How to prove A is infinite:
 - Prove that A has a countable subset.
 - Find an injective function $f: \mathbb{N} \to A$.
 - Find an injective function $f: A \to A$ that is not onto.
 - Find a proper subset $B \subseteq A$ such that $A \sim B$.
- 3. Find a proper subset $B \subseteq A$ such that $A \sim B$.
 - find a bijective function $f: A \to B$.
 - (Shroder-Bernstein)
 - Find an injective function $g:A\to B$
 - Find an injective function $h: B \to A$.
- 4. A countable union of countable sets is countable AND
- 5. A finite product of countable sets is countable.

Theorem (D). Let A be the set of all sequences whose terms are the digits 0 and 1 (that is A is the collection of all binary sequences). This set A is uncountable.

Proof. First, notice that A is infinite. Let $h: \mathbb{N} \to A$ be the function defined by

for all h(n) = The binary sequence whose nth term is the digit 1 and all other terms are zero.

Clearly, h is an injective map. Hence, $h: \mathbb{N} \to h(\mathbb{N})$ is bijective. We have $\mathbb{N} \sim h(\mathbb{N})$, and so $h(\mathbb{N})$ is infinite. Note that $h(\mathbb{N}) \subseteq A$. Thus, A is infinite

Suppose for sake of contradiction that A is NOT uncountable. Since A is infinite and not uncountable, this assumption tells us that A must be countable. Thus, there exists a bijective map $f: \mathbb{N} \to A$. So, we can write

$$A = \{ f(n) : n \in \mathbb{N} \}.$$

This means that for each $n \in \mathbb{N}$, f(n) is a binary sequence. Let

$$f(1) = (a_1^1, a_2^1, \dots)$$

$$f(2) = (a_1^2, a_2^2, \dots)$$

$$f(3) = (a_1^3, a_2^3, \dots)$$

$$\vdots$$

$$f(n) = (a_1^n, a_2^n, \dots)$$

$$\vdots$$

The goal is to construct a binary sequence $(b_1, b_2, ...)$ that is not in this list! This will contradict the fact that A contains all the binary sequences.

Define

$$b_1 = \begin{cases} 0 & \text{if } a_1^1 = 1\\ 1 & \text{if } a_1^1 = 0 \end{cases}$$

Similarly, for the second term, we see that

$$b_2 = \begin{cases} 0 & \text{if } a_2^2 = 1\\ 1 & \text{if } a_2^2 = 0 \end{cases}$$

and so on. More generally,

$$\text{for all } i \in \mathbb{N} \ b_i = \begin{cases} 0 & \text{if } a_i^i = 1 \\ 1 & \text{if } a_i^i = 0 \end{cases}.$$

Clearly, this sequence (b_n) is not the same as any of the sequences of the list above; that is, for all $i \in \mathbb{N}$, $b_i \neq f(i)$.

0.2.3 Preliminary Remarks

- \bullet $\,\mathbb{R}$ is NOT just an ordered field, it has more extra structures.
- In \mathbb{R} , there is a standard notion of length (size, norm) and a corresponding notion of distance.
- Given $a \in \mathbb{R}$, the size of a is defined to be |a|. But note that the absolute value of a is defined as follows:

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a \le 0. \end{cases}$$

• Given two numbers a and b in \mathbb{R} , the standard distance between a and b is

$$dist (a, b) = |a - b|.$$

- The notion of distance plays an essential role in the development of calculus.
- When there is a notion of distance, then it will be possible to make sense of statements such as as h gets close to zero....
- Note that size, length, or norm are all equivalent in describing the size of the difference between two numbers/elements.

Theorem (Basic Properties of Standard Size in \mathbb{R}). Let $a \in \mathbb{R}$. Then

- (i) $|a| \ge 0$
- (ii) |a| = 0 if and only if a = 0.
- (iii) $|\alpha a| = |\alpha||a|$ for all $\alpha \in \mathbb{R}$ and $a \in \mathbb{R}$.
- (iv) $|a+b| \leq |a| + |b|$ for all $a, b \in \mathbb{R}$.

Remark. Note that (iv) is equivalent to saying that

$$-(|a| + |b|) \le a + b \le |a| + |b|.$$

This is an immediate consequence of the following inequalities:

(i) Every $a \in \mathbb{R}$, we have $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$.

Is it possible to generalize the notion of "size"? YES!

Definition. Let V be a (real) vector space. A function from $\|\cdot\|:V\to\mathbb{R}$ is called a **norm** on V if it satisfies the following properties:

- (i) For all $x \in V$, $||x|| \ge 0$
- (ii) For all $x \in V$, ||x|| = 0 if and only if x = 0.
- (iii) For all $\alpha \in \mathbb{R}$ and $x \in V$, $\|\alpha x\| = |\alpha| \|x\|$.
- (iv) For all $x, y \in V$, we have

$$||x+y|| \le ||x|| + ||y||$$
 (triangle inequality)

A vector space V equipped with notion of norm is called a normed space. (Sometimes, we write $(V, \|\cdot\|)$ is a normed space). So, call $d(x, y) = \|x - y\|$.

Theorem (Basic Properties of Standard Distance in \mathbb{R}). For all $a, b \in \mathbb{R}$.

- (i) $dist(a, b) \ge 0$
- (ii) dist(a, b) = 0 if and only if a = b.
- (iii) dist(a, b) = dist(b, a).
- (iv) For all $a, b, c \in \mathbb{R}$, we have $\operatorname{dist}(a, c) \leq \operatorname{dist}(a, b) + \operatorname{dist}(b, c)$.

0.2.4 Metric Spaces

Definition (Metric Spaces). Let $X \neq \emptyset$. A function $d: X \times X \to \mathbb{R}$ is said to be a **distance function** or a **metric** if it satisfies the following properties:

- (i) For all $x, y \in X$, $d(x, y) \ge 0$.
- (ii) For all $x, y \in X$, d(x, y) = 0 if and only if x = y.
- (iii) For all $x, y \in X$, d(x, y) = d(y, x).
- (iv) For all $x, y, z \in X$, $d(x, y) \le d(x, z) + d(z, y)$.

A set X equipped with a metric d is called a **metric space**. (Sometimes we write (X, d) is a metric space)

Remark. X does **NOT** need to be a vector space. Furthermore, d is a more general notion of size

than $\|\cdot\|$.

Example 0.2.1. (\mathbb{R},d) where $d:\mathbb{R}\times\mathbb{R}\to[0,\infty)$ is defined by

$$d(x,y) = |x - y|.$$

(or $d(x,y) = \alpha |x-y|$ where $\alpha > 0$ is a fixed real number)