Topologische Flächen und Fundamentalgruppen Zusammenfassung

November 4, 2024

Contents

1	Topologische Flächen			
	1.1	Einführung	2	
	1.2	Klassifikation der Kurve	2	
2	Kla	ssifizierung der kompakten Flächen	3	
	2.1	Triangulierung	3	
	2.2	Zellkomplexe	5	

1 Topologische Flächen

1.1 <u>Einführung</u>

Definition 1.1 (Mannigfaltigkeit). Sei $n \in \mathbb{N}$. Eine n-Mannigfaltigkeit ist ein topologischer Raum X sodass

- 1. X ist Hausdorff'sch
- 2. die Topologie besitzt eine abzählbare Basis
- 3. jeder Punkt $x \in X$ besitzt eine Umgebung $x \in U \subseteq X$, die homöomorph zu einer offenen Teilmenge $V \subseteq \mathbb{R}^n$ ist. Ein Homöomorphismus

$$\varphi: U \tilde{\to} V \subseteq \mathbb{R}^n$$

heißt Karte.

4. X ist zusammenhängend

Für n = 1 heißt X eine Kurve, für n = 2 eine Fläche.

1.2 Klassifikation der Kurve

Satz 1.2. Jede Kurve ist homöomorph zu genau einer der folgenden Kurven

- 1. \mathbb{R}
- 2. S^1

Beispiel 1.3. Sei $X = \{(x,y) \in \mathbb{C}^2 : y^2 = x^3 - x\}$. Das wichtigste Hilfsmittel, um die Topologie von X zu verstehen, ist die Projektion

$$\pi:X\to\mathbb{C}$$

mit

$$\pi(x,y) = x$$

Für $a \in 0, \pm 1$ hat a genau ein Urbild, ansonsten 2.

Definition 1.4. Eine stetige Abbildung $\pi: Y \to X$ heißt Überlagerung, wenn jeder Punkt $x \in X$ eine offene Umgebung $U \subseteq X$ besitzt, sodass

$$\pi^{-1}(U) = \bigcup_{i \in I} V_i$$

$$\pi|_{V_i}:V_i\tilde{\to}U$$

ein Homöomorphismus $\forall i$.

Definition 1.5. Sei K ein Körper, $n \in \mathbb{N}$. Sei

$$\mathbb{P}^{n}(K) = K^{n+1} \setminus \{(0, 0, ..., 0)\} / \sim$$

 $_{
m mit}$

$$(z_0,...,z_n) \sim (z'_0,...,z'_n)$$

genau dann, wenn

$$\exists t \in K^*: \ z_i' = tz_i$$

Beispiel 1.6. $\mathbb{P}^1(\mathbb{C}) = \{[z_0 : z_1] \in \mathbb{C}^2 \setminus \{(0,0)\}\} \tilde{=} \mathbb{C} \cup \{\infty\} \text{ durch die Bijektion }$

$$[z:1] \leftarrow z$$

$$[1:0] \leftarrow \infty$$

2 Klassifizierung der kompakten Flächen

g	orientierbar	nicht orientierbar
0	S^2	$\mathbb{P}^2(\mathbb{R})$
1	Torus	Klein'sche Flasche
2	Doppeltorus	÷
3	Tripeltorus	÷

2.1 Triangulierung

Definition 2.1. Sei A ein reeller Vektorraum.

- 1. $v_0,...,v_n \in \mathbb{A}$ heißt affin unabhängig, wenn $v_1-v_0,...,v_n-v_0$ linear unabhängig sind
- 2. Für $v_0, ..., v_n \in \mathbb{A}$ affin unabhängig heißt

$$\sigma = [v_0..., v_n] = \{t_0v_0 + ... t_nv_n \mid t_i \ge 0, \ t_0 + ... t_n = 1\}$$

der von den v_i aufgespannte Simplex der Dimension $\dim(\sigma) = n$

- 3. ist $\{v_{i_0},...,v_{i,k}\}\subseteq \{v_0,...,v_n\}$ eine Teilmenge mit k+1 Elementen, dann heißt das davon erzeugte k-Simplex eine k-Seite von σ
- 4. $\partial \sigma = \bigcup_{\delta \subseteq \sigma} \delta$ heißt Rand von σ und $\overset{\circ}{\sigma} = \sigma \setminus \partial \sigma$ ist das Innere

Definition 2.2. Ein <u>abstrakter Simplicialkomplex</u> ist ein Paar K = (V, S), wobei $V \neq \emptyset$ und S eine Menge von endlichen Teilmengen von V. Anschaulich ist K ein Graph mit V der Menge der Ecken von K und S die Menge der Simplizes von K. S muss folgende Bedingungen erfüllen:

- 1. jede Ecke $v \in V$ liegt in mindestens einem und höchstens endlich vielen Simplizes
- 2. $s \in S$ und $s' \subseteq s$, dann ist $s' \in S$

Sei K = (V, S) ein Simplicialkomplex. Sei

$$\mathbb{A} = \mathbb{R}^{|V|} = \{(t_v)_{v \in V} \in \mathbb{R}^{|V|} \mid t_v = 0 \text{ für alle bis auf endliche viele } v \in V\}$$

und

$$|K| = \{(t_v)_{v \in V} \in \mathbb{A} \mid t_v \ge 0 \land \sum_{v \in V} t_v = 1 \land s = \{v \in V \mid t_v > 0\} \in S\}$$

Definition 2.3. |K| heißt die geometrische Realisierung von K. Für $s \in S$ heißt $\sigma = |s| = \{(t_v)_{v \in V} \mid t_v = 0 \ \forall v \notin s\} = [v_0, ..., v_n]$ die geometrische Realisierung von s.

Definition 2.4. Basis der Topologie sind Mengen $U \subseteq |K|$ der Form

- $U \cap |s| \subseteq |s|$ offen für alle $s \in S$
- $U \cap |s| \neq \emptyset$ für alle s bis auf endlich viele

Lemma 2.5. Die Topologie hat folgende Eigenschaften

- 1. Für $v \in V$ heißt $st(v) = \bigcup_{s \in S, v \in s} |s|$ der Stern von v. Das ist eine offene Umgebung von v mit Abschluss $\overline{st(v)} = \bigcup_{s \in S, v \in S} |s|$
- 2. $(st(v))_{v \in V}$ bilden eine offene Überdeckung von |K|
- 3. $\overline{st(v)}$ ist kompakt, wegzusammenhängend
- 4. |K| ist lokal kompakt, lokal wegzusammenhängend und Hausdorffsch
- 5. |K| ist zusammenhängend $\Leftrightarrow |K|$ ist wegzusammenhängend $\Leftrightarrow K$ zusammenhängend $\Rightarrow V$ ist abzählbar und |K| ist second countable.

Definition 2.6. Für $v \in V$ definiert $L_K(v) = (V_v, S_v)$ einen <u>Link</u> von v mit

$$S_v = \{ s \setminus v \mid s \in S : v \in s \}$$

Satz 2.7. Sei K ein zusammenhängender Simlicialkomplex, $n \geq 1$. Dann ist |K| eine n-Mannigfaltigkeit genau dann, wenn

- 1. alle maximalen Simplizes haben Dimension n (K ist von reiner Dimension n)
- 2. jeder(n-1)-Simplex ist eine Seite von genau zwei n-Simplizes
- 3. $|L_K(v)| \cong S^{n-1}$

Definition 2.8. Sei X ein topologischer Raum. Eine <u>Triangulierung</u> von X ist ein Homöomorphismus $|K| \cong X$ wobei K ein Simplicialkomplex ist.

Satz 2.9. Jede Fläche ist triangulierbar.

Bemerkung 2.10. Die Aussage ist noch wahr für n=3 aber falsch ab n=4.

2.2 Zellkomplexe

Definition 2.11. Sei A eine Menge.

1. Die Menge der orientierten Elemente von A ist

$$\tilde{A} = A \sqcup A^{-1}$$

wobei
$$A^{-1} = \{a^{-1} \mid a \in A\}$$

2. Die Menge der orientierten Zyklen in A ist

$$A^* = \{[a_1, ..., a_n] \mid n \ge 0, \ a_i \in \tilde{A}\}$$

wobei die Äquivalenzklassen definiert sind durch

$$(a_1, ..., a_n) \sim (a'_1, ..., a'_n) \Leftrightarrow \exists k \ge 0 : a'_i = \begin{cases} a_{i+k}, & i+k \le n \\ a_{i+k-n}, & k > n \end{cases}$$

Definition 2.12. Ein Zellenkomplex ist ein Tripel $K=(F,E,\delta)$, wobei F (Menge der Flächen) nicht leer und endlich, E (Menge der Kanten) endlich und $\delta: \tilde{F} \to E^*$ die Randabbildung sodass

- 1. $\delta(A^{-1}) = \delta(A)^{-1} \ \forall A \in F$
- 2. $A_1, A_2 \in F, A_1 \neq A_2, \operatorname{dann} \partial(A_1) \neq \partial(A_2)$
- 3. jedes $a \in \tilde{E}$ kommt in genau einem oder genau zwei Rändern $\partial(A)$, $A \in \tilde{F}$ vor.
- 4. K ist zusammenhängend.

Definition 2.13. Sei $K = (F, E, \delta)$ ein Zellenkomplex. Wir definieren die geometrische Realisierung von K als den Quotientenraum

$$|K| = (\bigcup_{A \in F} |A|) / \sim$$

wobei $|A| = \cong D = \{x \in \mathbb{R}^2 \mid ||x|| \leq 1\}$ und \sim wie folgt definiert ist.

Ein Punkt $x \in |A|$ ist nur zu sich selbst äquivalent. Für $x \in \partial(|A|) \cong S^1$: Wir unterteilen $\partial(|A|) = S^1$ in \underline{n} Segmente/Intervalle (wobei $\partial A = [a_1, ..., a_{\underline{n}}]$), markieren das i-te Segment mit a_i und identifizieren Punkte auf dem Segment mit a_i markierten Segment mit Punkten auf jeden mit a_i oder a_i^{-1} markierten Segment von Rand von $|A_j|$ gemäß der Orientierung.

Satz 2.14. Für jeden Zellenkomplex K ist |K| eine kompakte Fläche <u>mit Rand</u>.

Definition 2.15. Sei $K = (F, E, \delta)$ ein Zellenkomplex und $a \in \tilde{E}$.

- 1. Ein Nachfolger von a ist ein $b \in \tilde{E}$, sodass ab in einem Rand $\partial(A)$, $A \in \tilde{F}$ vorkommt.
- 2. a heißt innere Kante, falls a in genau zwei Rändern vorkommt.
- 3. a heißt <u>äußere Kante</u>, falls a in genau einem Rand vorkommt.