

Exercise 4D

Since AB \parallel CD and AD is a transversal.

In ∠ECD, we have,

$$\angle E + \angle C + \angle D = 180^{\circ}$$

$$\Rightarrow$$
 x° + 45° + 60° = 180°

$$\Rightarrow$$
 x^o + 105^o = 180^o

$$\Rightarrow$$
 x^o = 180^o - 105^o = 75^o
∴ x = 75

(v)

Exterior \angle BED = \angle EAF + \angle EFA \Rightarrow 100° = 40° + \angle EFA \Rightarrow \angle EFA = 100° - 40° = 60° Also, \angle CFD = \angle EFA [Vertically Opposite angles] \Rightarrow \angle CFD = 60° Now in \triangle FCD,

Exterior \angle BCF = \angle CFD + \angle CDF

 $\Rightarrow 90^{\circ} = 60^{\circ} + x^{\circ}$

 \Rightarrow x° = 90° - 60° = 30°

∴ x = 30 (vi)

In ΔAEF,

In \triangle ABE, we have, \angle A + \angle B + \angle E = 180° \Rightarrow 75° + 65° + \angle E = 180° \Rightarrow 140° + \angle E = 180° \Rightarrow \angle E = 180° - 140° = 40° Now, \angle CED = \angle AEB [Vertically opposite angles] \Rightarrow \angle CED = 40° Now, in \triangle CED, we have, ∠C + ∠E + ∠D = 180° ⇒ 110° + 40° + x° = 180° ⇒ 150° + x° = 180° ⇒ x° = 180° - 150° = 30° ∴ x = 30

****** END ******