Verification of Combinational and Sequential Circuits in LEAN3

Zahir Bingen| Informatica

Index

- 1. Introduction
- 2. Methodology
- 3. Demo
 - Logic Gates
 - Multiplexer
 - Full-Adder
 - Shifter
 - Memory
 - Counter
 - Case Study: Sequence Recognizer
- 4. Conclusion
- 5. Challenges and Future Work

Introduction

- Motivation
- Simulation vs Formal Verification
- LEAN3
- Specifications and Implementations
- Combinational and Sequential Circuits
 - Logic Gates (Combinational)
 - Multiplexer (Combinational)
 - ...
 - Flip Flops (Sequential)
 - •

Methodology

- 1. Specification creation
- 2. Specification functionality proof
 - Choose the orientation of input/output
 - Check for existence of output
 - Check whether the output is precisely defined (unique)
- 3. Implementation of specification
- 4. Compliance proof
 - Check whether the implementation complies with the specification

Logic Gates

a_1	a_2	О
0	0	0
0	1	0
1	0	0
1	1	1

Table 4: Truth table of a 2-input AND-gate

a_1	a_2	О
0	0	0
0	1	1
1	0	1
1	1	1

Table 3: Truth table of a 2-input OR-gate

a	О
0	1
1	0

Table 2: Truth table of a NOT-gate

a_1	a_2	a_3	О
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Table 4: Truth table of a 3-input XOR-gate

2_1 Multiplexer 1-bit

2_1 Multiplexer n-bit

Full-Adder 1-bit

Α	В	CIN	SUM	COUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$SUM = (A + B + CIN) \% 2$$

 $COUT = ((A + B + CIN) >= 2)$

Full-Adder n-bit

Shifter

- Right shift: shift all bits to the right, left-most bit is o
- Left shift: shift all bits to the left, right-most bit is o

```
def lsh_spec {n : \mathbb{N}} (A OUT : array n bool) : Prop := OUT = \langle \lambda \text{ i, if h} : i.val + 1 < n \text{ then A.read } \langle i.val + 1, h \rangle \text{ else ff} \rangle def rsh_spec {n : \mathbb{N}} (A OUT : array n bool) : Prop := OUT = \langle \lambda \text{ i, if h} : i.val > 0 \land i.val - 1 < n \text{ then A.read } \langle i.val - 1, h.right \rangle  else ff\rangle
```

Shifter

Memory

- Signals (functions of $\mathbb{N} \to \alpha$)
- Underspecified (initial value?)
- Uniqueness of output?

```
def stream (\alpha : Type) := \mathbb{N} \to \alpha def signal := \mathbb{N} \to \text{bool} def sig_n (n : \mathbb{N}) := \mathbb{N} \to \text{array n bool}
```


$$\forall$$
 t : \mathbb{N} ,
(S t = tt \rightarrow M (t+1) = D t) \land
(S t = ff \rightarrow M (t+1) = M t)

Program Counter

- Memory component attached with an adder
- Hard to implement in LEAN3
- Create a single component like the memory implementation
- If reset signal is true at time t, then at t+1 counter is reset
- If reset signal is false at time t, then at t+1 counter is incremented by 1

Case Study: Sequence Recognizer

- Verification of Binary Sequence Detector design by Alberto I. Leibovich and Pablo E. Leibovich
- Recognizes the sequence binary sequence "101"
- Changes to state diagram

Actual State	Next	Output	
State	X = 0	X = 1	
S ₀	S ₀	S ₁	0
S ₁	S ₂	S ₁	0
S ₂	S ₀	S ₃	0
S ₃	S ₀	S ₃	1

Table 1. Transition Table

Figure 1. State Diagram

Case Study: Sequence Recognizer

Case Study: Sequence Recognizer

Q1	Q0	x	D0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Q1	Q0	x	D1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Q1	Q0	Z
0	0	0
0	1	0
1	0	0
1	1	1

Table 4. Z Truth Table

Table 2. D0 Truth Table

Table 3. D1 Truth Table

Conclusion

- Simulation of simple circuits might be preferred over formal verification
- Formal verification
 - Highly time consuming
 - Error prone
 - Can provide guarantees for correctness
- LEAN3 is a useful proof assistance but not perfect
 - No easy forward recursion (termination must be guaranteed)
 - High memory usage
 - Handling arrays in proofs too complex
 - Limitations in automation
 - Great library of existing tactics

Challenges and Future Work

- Challenges
 - Learning how to use LEAN3 in a short time (steep learning curve)
 - Translating specifications into implementations
- Future Work:
 - Proof optimization (lower memory footprint)
 - Improving Automation
 - Specific library for Circuit Verification

Questions?

