KNN: 최근접 이웃을 사용한 분류

숙명여자대학교 경영학부 오중산

머신러닝 소개

- 머신러닝(machine learning: ML)이란?
 - ◆ 전통적인 통계분석 방법에 기반한 데이터마이닝
 - ◆ ML의 4대 목표는 예측/분류/군집화/연관성 파악
 - ◆ 전통적인 통계분석방법과의 차이는 1)데이터 크기 증가 2)훈련(모형개발)과 검증/ 시험(모형평가)의 두 단계로 나누어 진행
 - 데이터가 커지면서 AI를 이용하게 됨에 따라 ML이라고 부르게 됨

KNN 소개

- KNN(K-Nearest Neighbors) 분석이란?
 - ◆ 인접한 K개 기존 사례와의 유사성을 기준으로 새로운 사례를 분류하는 분석방법
 - 기존 사례는 계량형 척도로 측정된 IV를 기준으로 여러 집단(class) 중 하나에 속해 있음
 - ❖ 여러 집단은 비계량형 척도로 측정된 DV(혹은 class 변수) 결과값
 - ❖ 예: 직원 이탈(종속변수: 이탈/미이탈)과 관련된 IV(만족도, 근무시간, 고과평가 등)
 - 새로운 사례와 기존 사례와의 유사성은 Euclidean distance를 기준으로 측정
 - ❖ 새로운 사례는 Euclidean distance를 기준으로 가까운 사례가 많이 속해 있는 집단으로 분류됨

KNN 소개

- KNN의 장·단점
 - ◆ KNN의 장점
 - 단순하고 효율적이며, 훈련단계가 빠름
 - 데이터의 분포에 대한 가정이 필요 없음
 - ◆ KNN의 단점
 - 추상화(별도 모델 수립)가 없어서 집단과 변수 간의 인과관계 파악이 어려움
 - K를 적절히 선택하지 않으면 결과가 제대로 나오지 않거나 왜곡됨

KNN과 머신러닝

- KNN과 머신러닝의 관계
 - ◆ KNN은 분류를 목적으로 하는 ML 지도학습의 한 유형

KNN 개요

- K를 얼마로 해야 하는가?
 - ◆ K값에 따라 분류 정확성에 편차가 발생함
 - 그림에서 K=3, K=4, K=5인 경우 빨간 동그라 미는 어느 집단으로 분류 되는가?
 - K가 작아지면 이상치에 영향을 받고, K가 커 지면 큰 집단으로 분류되는 편향이 발생함

- 데이터 소개
 - ♦ Wisconsin university에서 기증한 데이터이며, n = 569
 - 보다 자세한 정보는 http://archive.ics.uci.edu/ml 참고
 - ◆ 32개 변수로 구성됨
 - id: 환자를 식별하기 위한 변수
 - diagnosis: class 변수로서 양성(benign, B) 혹은 악성(malignant, M) 두 가지 결과
 - IV 혹은 feature: 세포핵의 10개 특성에 대한 평균, 표준오차, 최대값

- STEP1: 데이터 프레임 준비 및 전처리
 - ◆ cancer.csv 파일을 불러와서 데이터프레임(cancer) 구성
 - ◆ str과 summary를 활용한 데이터 검토
 - ◆ class 변수의 척도를 범주형으로 변경
 - 측정값이 수치이고 계량형 척도로 되어 있으면 KNN이 아니라 logit이 실행될 수 있음
 - ◆ 불필요한 변수인 id 제거
 - ◆ IV에 대한 표준화 및 새로운 데이터 프레임(cancer_z) 구성

- STEP2: train 데이터셋과 test 데이터셋 구성
 - ◆ cancer_z를 7:3의 비율로 두 개 데이터 프레임으로 구분
 - 전자(70% 비율)는 train 데이터 프레임(cancer_train)으로 구성
 - 후자(30% 비율)는 test 데이터 프레임(cancer_test)으로 구성
 - ◆ sample 함수 사용한 객체 형성 및 객체를 활용한 데이터셋 구분
 - sample 함수를 쓸 때 결과가 달라지지 않도록 set.seed() 함수를 먼저 사용해야 함
 - 기본 형식: ind <- sample(추출 대상, 추출 개수, replace = F/T, prob = $c(p_1, p_2, p_3,...)$)
 - ❖ 추출대상으로부터 추출 개수만큼 반복(비반복)해서 추출하되 p_i의 비율로 추출
 - ◆ diagnosis 측정값 비율 비교
 - 세 가지 데이터셋(cancer_z, cancer_train, cancer_test)에서 악성(M) 측정값 비율이 비슷해야 함

- STEP3: train 데이터 프레임을 이용한 훈련
 - ◆ expand.grid 함수를 통한 k값 범위(3~10) 설정
 - ◆ caret패키지에 있는 trainControl 함수로 학습방법 채택
 - repeated K-fold cross validation 시행(대개 K = 10)
 - ◆ caret 패키지에 있는 train 함수를 이용한 최적의 K값 선정
 - set.seed() 함수로 고정시킨 후 실행
 - 기본 형식: train(변수설정, 데이터, ML방법, 학습방법, k범위)
 - Accuracy(0~1)와 Kappa(-1~1) 평균값이 제일 클 때 최적의 K값
 - ◆ varImp() 함수를 이용하여 IV의 중요도 확인

● 성능 측정 지표

• Accuracy (=
$$\frac{TP + TN}{(TP + FP + TN + FN)}$$
)

- 실제 분류 결과와 예측 분류 결과의 정확도(일치도)
- 1에 가까울수록 우수함

♦	Kappa	(_	$Accuracy - p_0$	p_e	2 , p_{e} : 기대	フリロ川	저하다/
		(—	$1-p_e$				

이축
Positive(+) Negative(-)
Positive(+) TP FN
Negative(-) FP TN

■ 기대 정확도: P로 예측했는데 실제 P인 확률 혹은 N으로 예측했는데 실제 N인 확률

실 제

$$p_e = \frac{TP + FP}{total} \times \frac{TP + FN}{total} + \frac{FN + TN}{total} \times \frac{FP + TN}{total}$$

- Kappa는 Accuracy와 상관관계가 없고, -1에서 1의 값을 갖는데 1에 가까울수록 우수함
 - ♦ 0.6 < Kappa \le 0.8 \rightarrow Good
 - ♦ 0.8 < Kappa ≤ 1 → Very Good

- Kappa의 중요성
 - ◆ Case 1 vs. Case 2: accuracy는 같지만 kappa는 큰 차이
 - Case 2처럼 Pr(P)가 높은 경우, 모든 예측을 P로 하면 accuracy를 높일 수 있음
 - 이러한 극단적 예측방법보다 실제 모형이 우수한지 판단하려면 kappa값을 함께 평가해야 함
 - ◆ Case 2 vs. Case 3: accuracy는 비슷하지만 kappa가 증가함
 - Case 2와 Case 3은 Pr(P)가 동일하게 높음
 - 이럴 경우 빈도가 낮은(N) 결과를 정확히 예측하는 것(kappa값 개선)이 중요함

실 제

		Positive(+)	Negative(-)
	Positive(+)	TP	FN
	Negative(-)	FP	TN

예측

• 기타 성능 측정 지표

- ◆ Precision(정밀도 = $\frac{TP}{(TP+FP)}$): Positive로 예측했는데, 실제 Positive인 비율
 - caret 패키지에서 Pos Pred Value
 - 암진단에서 오진을 막기 위한 중요한 지표
- lacktriangle Sensitivity(민감도 = $\frac{TP}{(TP+FN)}$): 실제 Positive 중에서 Positive로 예측된 비율
 - Recall(재현율)이라고도 하며, 전염병(코로나19) 검사에서 확진자 선별을 위해 중요한 지표
- ♦ Specificity(특이도 = $\frac{TN}{(FP+TN)}$): 실제 Negative 중에서 Negative로 예측된 비율

- Precision and Sensitivity
 - ◆ Precision과 Sensitivity는 한계가 있으므로 반드시 Accuracy나 Kappa를 함께 고려해야 함
 - ◆ 이상적으로는 네 가지 지표가 모두 높은 모형이 적합하나 특성을 고려해야 함

	실제					실제		
		Positive(+)	Negative(-)			Positive(+)	Negative(-)	
예측	Positive(+)	10	0	예측	Positive(+)	10	80	
	Negative(-)	80	10	에득	Negative(-)	0	10	

Precision = 1 그러나 Accuracy = 0.2

Sensitivity = 1 그러나 Accuracy = 0.2

- STEP4: test 데이터 프레임을 이용한 성능 평가
 - ◆ 내장함수인 predict() 함수 사용하여 KNN 모델을 test 데이터 프레임에 적용
 - ◆ confusionMatrix() 함수를 사용하여 Accuracy & Kappa 도출
 - STEP3와 STEP4의 Accuracy & Kappa 비교
 - ❖ train 데이터 기반 Accuracy와 Kappa가 크면, 과대적합(overfitting) 문제를 의심할 수 있음
 - ❖ 과대적합 문제가 발생하면 STEP5에서 성능을 개선해야 함

출처: https://towardsdatascience.com/

- 편향(bias)과 편차(variance)
 - ◆ 편향: train 데이터에서 모델 오류(=1-accuracy)
 - 모형이 단순해서 편향이 크면 과소적합 문제 발생
 - ◆ 편차: train 데이터와 test 데이터 간의 모델 오 류 차이(혹은 정확도 차이)
 - 모형이 복잡하면 편향은 줄지만, 편차가 커져서 과 대적합 문제 발생

출처: https://stickie.tistory.com/47

- STEP5: 성능 개선
 - ◆ kknn 패키지의 train.kknn() 함수 사용
 - 가까운 사례에 더 많은 가중치를 적용한 KNN 방법
 - kmax를 지정하면 최적의 k 선정
 - 거리: 1(Manhattan distance) & 2(Euclidean distance)
 - kernel = c(가중치를 부여하는 다양한 방법 지정)
 - ◆ Accuracy와 Kappa 개선 확인
- STEP6: 예측
 - ◆ 양성/악성에 대한 판단이 없는 새로운 열 개 사례 진단 예측

[다양한 성능개선 방법]

	방법	효과	비용	난이도
ľ	데이터 추가 - 행	2	2	1
	데이터 추가 - 변수 수집	3	3	3
	데이터 추가 - 파생 변수 만들기	2	1	1
	하이퍼파라미터 변경	1	1	1
•	클래스 균형 맞추기	1	1	1
	방법론 변경	3	1	2