STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 4: Drawing Conclusions

Parameter Interpretation

- meaning of parameter estimates:
- e.g., $E(Y|X) = 15 + 3X_1 + 4X_2 2X_3$
- coefficient for X_1 is 3, meaning: an increase of 1 unit in X_1 will be associated with an increase of 3 units in Y, when other are held constant
- will a change in X_1 affect other X's in this model?
- association concluded from an observational study
 causation (possible from a randomized experiment)
- it is possible that the sign of a parameter estimate can change if a new variable is added

Parameter Interpretation - con't

■ Berkeley Guidance Study Data, consider n = 70 girls Y: soma - body type, 1 to 7 (thin to fat)

```
WT2 = weight at age 2

WT9 = weight at age 9

WT18 = weight at age 18

DW9 = WT9 - WT2

DW18 = WT18 - WT9
```

 sometimes we use meaningful linear contrasts instead of the original predictors to enhance interpretability

Parameter Interpretation - con't

FIG. 4.1 Scatterplot matrix for the girls in the Berkeley Guidance Study.

Parameter Interpretation - con't

Term	Model 1	Model 2	Model 3
(intercept)	1.5921	1.5921	1.5921
WT2	-0.2256	-0.0111	-0.1156
WT9	0.0562		0.0562
WT18	0.0483		0.0483
DW9		0.1046	NA
DW18		0.0483	NA

- same model, different parameterization $\Rightarrow R^2$, $\hat{\sigma}^2$ are identical, but estimates and t-values are not
- WT2: significant in Model 1 (is -0.2256 surprising?) but not in Model 2 (which makes more sense?)
- ullet why is 0.0483 for WT18 and DT18 identical? why NA in Model 3?

More on \mathbb{R}^2

- Fig 4.2(a): R^2 =0.24 Fig 4.2(b): R^2 =0.37 Fig 4.2(c): R^2 =0.027
- lacktriangle random sampling is important for R^2 to make sense

FIG. 4.2 Three views of the heights data.

More on \mathbb{R}^2 - con't

 $lackbox{ }R^2$ can be meaningless for some situations

FIG. 4.3 Six summary graphs. R^2 is an appropriate measure for a-c, but inappropriate for d-f.

Sampling from Normal Population

- data: $(x_1, y_1), \dots, (x_n, y_n)$
- ullet what is the conditional distribution of y_i given x_i ?
- $y_i|x_i \sim N\left(\mu_y + \rho_{xy}\frac{\sigma_y}{\sigma_x}(x_i \mu_x), \sigma_y^2(1 \rho_{xy}^2)\right)$
- define $\beta_0=\mu_y-\beta_1\mu_x$, $\beta_1=\rho_{xy}\frac{\sigma_y}{\sigma_x}$, $\sigma^2=\sigma_y^2(1-\rho_{xy}^2)$
- $y_i|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$
- $\hat{\mu}_x = \bar{x}, \, \hat{\mu}_y = \bar{y}, \, \hat{\sigma}_x^2 = \frac{SXX}{n-1}, \, \hat{\sigma}_y^2 = \frac{SYY}{n-1}, \, \hat{\rho}_{xy} = \frac{SXY}{\sqrt{SXX \cdot SYY}}$
- plug-in to get $\hat{\beta}_0$, $\hat{\beta}_1 \Longrightarrow \mathsf{OLS}$ estimates

How to Handle Missing Data?

- first we need to understand why some data are missing
- "missing at random" (MAR) is the easiest to handle
- MAR: probability of missing does not depend on its value
- two simple strategies: deleting and guessing
- more advanced method: imputation need statistical modeling

Computationally Intensive Methods

- suppose $X_1, \cdots, X_n \sim N(\mu, \sigma^2)$
- what is $Var(\bar{X})$?
- what is $Var(\tilde{X})$, where \tilde{X} is the median of X_1, \dots, X_n ?
- what is $Var(\bar{X} + \tilde{X}^2)$?
- we can use computers instead of calculus
- suppose y_1, \dots, y_n from the distribution G
- want to construct a 95% C.I. for the median
- two cases: G is known and G is unknown

Case (i): G is known

- four steps:
 - 1. obtain a sample y_1^*, \dots, y_n^* from G
 - 2. compute the median and store its value
 - 3. repeat Steps 1 and 2 many times
 - 4. suppose we repeat 1000 times, so we have 1000 medians. Then a 95% C.I. for the median of G is $(25^{\rm th} \ {\rm smallest}, \ 25^{\rm th} \ {\rm largest})$
- it can be extremely difficult to generate from G. have you heard about Monte Carlo?
- ullet but typically unrealistic to assume G is known

Case (ii): G is unknown

- only one change
- replace Step 1 by: obtain a sample y_1^*, \dots, y_n^* by drawing n data points from y_1, \dots, y_n with replacement
- yes, some of the entries will be repeated
- this method is called <u>bootstrap</u> (sounds familiar? Pirates of Caribbean!)