GIẢI TÍCH I BÀI 7

CHƯƠNG II. PHÉP TÍNH TÍCH PHÂN §1. TÍCH PHÂN BẤT ĐỊNH

- Đặt vấn đề
- I. Định nghĩa.
- 1. Định nghĩa.

f(x) trên (a;b), F(x) là nguyên hàm của $f(x) \Leftrightarrow F'(x) = f(x)$, $\forall x \in (a;b)$

Ví du

a)
$$f(x) = 2010$$

b)
$$f(x) = 0$$

c)
$$f(x) = x^{\alpha}, \ \alpha \in \mathbb{R}$$

d)
$$f(x) = \sin x$$

e)
$$f(x) = \ln x$$

f)
$$y = x^2 e^x$$

g)
$$f(x) = x^2 \ln x$$

e)
$$f(x) = \ln x$$

h) $f(x) = x \cos x$

i)
$$f(x) = x^3 \sin x$$

Định lí. F'(x) = f(x), $x \in (a; b)$, khi đó tập tất cả các nguyên hàm của f(x) là F(x) + C

Định nghĩa.
$$\int f(x) dx = F(x) + C$$

- 2. Tính chất
- a) f(x) liên tục trên $(a; b) \Rightarrow \exists \int f(x) dx$
- **b)** Tuyến tính. $\exists \int f(x) dx$, $\exists \int g(x) dx$

$$\Rightarrow \int [\alpha f(x) + \beta g(x)] dx = \alpha \int f(x) dx + \beta \int g(x) dx, \, \alpha, \, \beta \in \mathbb{R}$$

Toán tử có khả nghịch trái, không có khả nghịch phải

c)
$$\frac{d}{dx} \int f(x) dx = f(x)$$

d)
$$\int \left(\frac{d}{dx}f(x)\right)dx = f(x) + C$$

3. Bảng một số tích phân thông dụng

$$\int x^{\alpha} dx = \begin{cases} \frac{x^{\alpha+1}}{\alpha+1} + C, & \alpha \neq -1\\ \ln|x| + C, & \alpha = -1 \end{cases}$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \frac{dx}{\cos^2 x} = \tan x + C$$

$$\int \frac{1}{\sin^2 x} \, dx = -\cot x + C$$

$$\int \frac{dx}{\cos^2 x} = \tan x + C$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

- II. Các phương pháp tính
- 1. Đổi biến số

Mệnh đề 1. Nếu
$$\int g(t) dt = G(t) + C \Rightarrow \int g(w(x))w'(x) dx = G(w(x)) + C$$

Mệnh đề 2. Nếu $\int g(\varphi(x))\varphi'(x)dx = G(x) + C \Rightarrow \int g(t) dt = G(\varphi^{-1}(t)) + C$, ở đó t $= \varphi(x)$ có hàm ngược là $x = \varphi^{-1}(t)$

Ví du 1

a)
$$\int x(x+4)^{12} dx$$

$$\mathbf{b)} \int \frac{x^3 dx}{\sqrt{1 - x^2}}$$

c)
$$\int \frac{dx}{\sqrt{e^x - 1}}$$

$$\mathbf{d)} \int \frac{\sin^3 x}{\sqrt{\cos x}} \, dx$$

e)
$$\int \frac{\ln 2x}{x \ln 4x} dx$$

f)
$$\int \frac{dx}{x\sqrt{1+x^2}}$$

g)
$$\int \frac{dx}{x^2 \sqrt{4-x^2}}$$

h)
$$\int \sqrt{a^2 + x^2} dx$$

i)
$$\int \frac{x^2 dx}{\sqrt{1-x^2}}$$

k)
$$\int \frac{\tan x}{1 + \cos^2 x} dx$$

k)
$$\int \frac{\tan x}{1 + \cos^2 x} dx$$
 $\left(-\frac{1}{2} \ln \frac{\cos^2 x}{1 + \cos^2 x} + C\right)$

m)
$$\int \frac{\cot x}{1+\sin^2 x} dx$$

m)
$$\int \frac{\cot x}{1 + \sin^2 x} dx$$
 $(\frac{1}{2} \ln \frac{\sin^2 x}{1 + \sin^2 x} + C)$

2. Tích phân từng phần. Các hàm u, v khả vi, có $\int u dv = uv - \int v du$

Ví du 2

a)
$$\int \ln^2 x dx$$

b)
$$\int (5x + 6) \cos 3x dx$$

c)
$$\int \sin(\ln x) dx$$

d)
$$\int (\arcsin x)^2 dx$$
 e) $\int \frac{x}{\cos^2 x} dx$

e)
$$\int \frac{x}{\cos^2 x} dx$$

f)
$$\int \frac{x \cos x}{\sin^3 x} dx$$

g)
$$\int x \ln \frac{1-x}{1+x} dx$$

h)
$$\int \frac{\arcsin x}{\sqrt{1+x}} dx$$

i)
$$\int \sqrt{a^2 - x^2} dx$$

$$k) \int \frac{x \ln(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx$$

Ví du 3.

a)
$$\int \frac{xdx}{e^x(x-1)^2} \left(-\frac{e^{-x}}{x-1}+C\right)$$
 b) $\int \frac{(1+x)dx}{x^2e^x} \left(-\frac{e^{-x}}{x}+C\right)$

b)
$$\int \frac{(1+x) dx}{x^2 e^x}$$
 $(-\frac{e^{-x}}{x} + C)$

c)
$$\int \operatorname{arccot} \sqrt{2x-1} \, dx$$

c)
$$\int \operatorname{arccot} \sqrt{2x-1} \, dx$$
 $\left(\frac{1}{2} \left[2x \operatorname{arccot} \sqrt{2x-1} + \sqrt{2x-1} \right] + C \right)$

d)
$$\int \arctan \sqrt{2x+1} \, dx$$

d)
$$\int \arctan \sqrt{2x+1} \, dx$$
 $(\frac{1}{2} [2(x+1) \arctan \sqrt{2x+1} - \sqrt{2x+1}] + C)$

3. Sử dụng các lớp hàm có tính chất đặc biệt Ví du

a)
$$\int x^8 e^x dx$$

b)
$$\int x^9 \cos x dx$$
 c) $\int x^{10} \sin x dx$

c)
$$\int x^{10} \sin x dx$$

d)
$$\int x^n e^x dx$$

e)
$$\int x^n \cos x dx$$

e)
$$\int x^n \cos x dx$$
 f) $\int x^n \sin x dx$

4. Tích phân của một vài lớp hàm khác

PGS. TS. Nguyễn Xuân Thảo (thaonx-fami@mail.hut.edu.vn)

a) Hàm hữu tỉ $R(x) = \frac{P_m(x)}{Q_n(x)}$, $P_m(x)$, $Q_n(x)$ là các đa thức bậc m, n của x.

 $\begin{array}{l} \text{\bf Dinh li. N\'eu} \ Q_n(x) = a_n(x-a)^\alpha (x-b)^\beta \dots (x^2+px+q)^\mu \dots (x^2+lx+s)^\gamma, \, \mathring{o} \, \, \text{d\'o} \, \, \alpha, \, \beta, \, \dots, \\ \mu \in \mathbb{N} \, ; \, a, \, b \in \mathbb{R} \, , \, p^2-4q < 0, \, \mathring{f}-4s < 0, \, \alpha+\beta+\dots+2(\mu+\dots+\gamma) = n. \, \, \text{Khi d\'o} \\ R(x) = \frac{A}{(x-a)^\alpha} + \frac{A_1}{(x-a)^{\alpha-1}} + \dots + \frac{A_{\alpha-1}}{x-a} + \frac{B}{(x-b)^\beta} + \frac{B_1}{(x-b)^{\beta-1}} + \dots \\ + \frac{B_{\beta-1}}{x-b} + \frac{Mx+N}{(x^2+px+q)^\mu} + \frac{M_1x+N_1}{(x^2+px+q)^{\mu-1}} + \dots + \frac{M_{\mu-1}x+N_{\mu-1}}{x^2+px+q} \\ + \dots + \frac{Px+Q}{(x^2+lx+s)^\gamma} + \frac{P_1x+Q_1}{(x^2+lx+s)^{\gamma-1}} + \dots + \frac{P_{\gamma-1}x+Q_{\gamma-1}}{x^2+lx+s} \, , \end{array}$

các hệ số nêu trên được tính theo phương pháp hệ số bất định.

Từ đó, để tính $\int R(x) dx$ ta sẽ dẫn đến tính các tích phân sau

1°)
$$\int \frac{A}{(x-a)^k} dx$$
; 2°) $\int \frac{Mx+N}{x^2+px+q} dx$; 3°) $\int \frac{Mx+N}{(x^2+px+q)^m} dx$;

ở đó $p^2 - 4q < 0$. Ví du.

a)
$$\int \frac{dx}{(x-2)^5}$$

b) $\int \frac{2x+1}{x^2+3x+4} dx$
c) $\int \frac{3x+2}{(x^2+2x+2)^2} dx$
d) $\int \frac{x^2+1}{(x+3)(x-1)^3}$

c)
$$\int \frac{3x+2}{(x^2+2x+2)^2} dx$$

e) $\int \frac{x^2+1}{(x+3)(x-1)^3} dx$
f) $\int \frac{dx}{x^8+x^6}$

g)
$$\int \frac{dx}{x(x^5+1)^2}$$