Institut Supérieur Des Arts Multimédias

Université De La Manouba

Examen Session principale

A.U.: juillet 2020

Section: 1 Mastère de recherche IMD Documents: non autorisés Calculatrice: autorisée Epreuve: Optimisation Enseignant: Mme Damergi Durée: 01h30 heure

Exercice 1. :

On considère le problème d'optimisation suivant

- 1- Vérifier que la contrainte est qualifiée. Ecrire le Lagrangien associé à ce problème
- 2- Appliquer les conditions nécessaires d'ordre 1 (conditions de Lagrange) pour déterminer les points stationnaires du Lagrangien
- 3- Peut- on exploiter les conditions suffisantes du second ordre pour déterminer la nature de ces points?

Exercice 2. :

Soit le problème de minimisation

(1)
$$\min_{x \in \mathbb{R}^3} J(x) = \frac{1}{2} (Ax, x) - (b, x)$$

où $A \in M_3(\mathbb{R})$ est une matrice symétrique et $b \in \mathbb{R}^3$ sont définies comme suit

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} et \quad b = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$$

- 1) a) Montrer que A est définie positive.
 - b) Etudier la convexité de J
 - c) Montrer que le problème (1) admet une solution unique \overline{x} , vérifier que \overline{x} est aussi solution de système Ax = b.
- 2) Soit $(x^{(k)})_{k\in\mathbb{N}}$ la suite générée par l'algorithme du gradient à pas fixe $t\in\mathbb{R}_+^*$ pour approcher le minimum \overline{x} de J dans \mathbb{R}^3 .
 - a) Déterminer le spectre de A (l'ensemble des valeurs propres λ_i).
 - b) En déduire la valeur du rayon spectral $\rho(A) = \max_i |\lambda_i|$
 - c) Sachant que la méthode de gradient à pas fixe converge si et seulement si $t \in]0, \frac{2}{\rho(A)}[$, déterminer pour quelles valeurs de t on a la convergence
 - d) Pour $x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ et le pas $t = \frac{1}{2}$, calculer $x^{(1)}$ puis $x^{(2)}$