数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

Home work (P266)

- ▼ 1、本周六、周日有实验。地点: 电气实验楼509房间
- 2、下次收作业时间:第9周的周二
 - 73、作业:
- **5.2.4**
- **5.2.5**
- **5.3.1**
- **5.5.1**
- **5.5.5**

第5章 锁存器和触发器

Latches and Flip-Flops

第五章 锁存器和触发器

- 5.1 双稳态电路
- 5.2 SR锁存器
- 5.3 D锁存器
- 5.4 触发器的电路结构和工作原理
- 5.5 触发器的逻辑功能
- 5.6 用Verilog HDL描述锁存器和触发器

概述

1、时序逻辑电路与锁存器、触发器:

时序逻辑电路:

工作特征:时序逻辑电路的工作特点是任意时刻的输出 状态不仅与该电路当前的输入信号有关,而且与电路此前的状态有关。

结构特征:由组合逻辑电路和存储电路组成,电路中存在反馈。

锁存器和触发器是构成时序逻辑电路的基本逻辑单元。

2、锁存器与触发器

共同点:具有0和1两个稳定状态,一旦状态被确定,就能自行保持。一个锁存器或触发器能存储一位二进制码。

不同点:

锁存器---对脉冲电平敏感的存储 电路,在特定输入脉冲电平作用下 改变状态。

Latches (领存器)

2、锁存器与触发器

不同点:

触发器---对脉冲边沿敏感的存储电路,在时钟脉冲的上升沿或下降沿的变化瞬间改变状态。

Flip-Flops (F/F,触发器)

5.1 双稳态电路

5.1.1 双稳态的概念

5.1.2 最基本的双稳态电路

5.1 双稳态电路

5.1.1 双稳态的概念

5.1.2 最基本的双稳态电路

1. 电路结构

稳定状态1: Q=0

稳定状态2: Q=1

5.1 双稳态电路

5.1.1 双稳态的概念

2、电路输出分析

——电路具有记忆1位二进制数据的功能。

如 Q=1 电路能记忆1

如 Q = 0 电路能记忆0

5.2 SR锁存器

5.2.1 基本SR 锁存器

5.2.2 门控SR锁存器

现态和次态是指同一个引脚的不同时刻的输出。

5.2.1基本SR 锁存器

1. 工作原理

现态: R、S信号作用前Q端的

状态,现态用Q "表示。

次态: R、S信号作用后Q端的 状态, 次态用Q n+1表示。

引脚的命名:能使输出Q=1的输入引脚命名为:

Set。能使输出Q=0的输入引脚命名为: Reset。

根据电路结构, 填写完成右图所 示的真值表。

输入			输	出
R	S	Qn	Q ⁿ⁺¹	$\overline{\mathbb{Q}^{n+1}}$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

1. 工作原理

R=0、S=0 状态不变

输入			输	出
R	S	Qn	Q ⁿ⁺¹	Q^{n+1}
0	0	0		
0	0	1		

若现态 $Q^{n}=1$

若现态 $Q^{n}=0$

R=0、S=1 置1

无论现态*Q* "为0或1,锁存器的次态为1态。信号消失后新的状态将被记忆下来。

输入			输	田
R	S	Qn	Q ⁿ⁺¹	Q^{n+1}
0	1	0		
0	1	1		

Q的输出波形如下

若现态 $Q^{n}=1$

若现态 $Q^{n}=0$ 在信号R=0, S=1作用下,次态 $Q^{n+1}=1$

į	输	入	输	臣
R	S	Qn	Q ⁿ⁺¹	Q^{n+1}
1	0	0		
1	0	1		

R=1、S=0 置0

无论现态*Q* "为0或1,锁存器的次态为0态。信号消失后新的状态将被记忆下来。

若现态 $Q^{n}=1$

若现态
$$Q^{n}=0$$

输入			输	田
R	S	Qn	Q ⁿ⁺¹	$\overline{Q^{n+1}}$
1	1	0		

无论现态Q "为0或1,触发器的次态 Q "、 \overline{Q} 都为0 。

触发器的输出 $Q^n = \overline{Q}^n$

当*S、R*同时从11回到00时,由于两个或非门的延迟时间无法确定,使得触发器最终稳定状态也不能确定。如下图所示:

约束条件: SR = 0

输入		输	出	备注	
R	S	Qn	Q ⁿ⁺¹	\overline{Q}^{n+1}	ı
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

 $Q^{n+1}=S+\overline{R}Q^n$

由卡诺图可得Qn+1对应的表达式

3、用与非门构成的基本SR锁存器

要求了解

约束条件: $\overline{S}+\overline{R}=1$

引脚的命名:能使输出Q=1的输入引脚命名为Set。能使输出Q=0的输入引脚命名为Reset。

3. 用与非门(非或门)构成的基本SR锁存器

a.电路图

c.国标逻辑符号

\overline{R}	\overline{S}	Q	\overline{Q}
1	1	不变	不变
1	0	1	0
0	1	0	1
0	0	禁止	禁止

$$\overline{S}$$
 — \circ S — Q
 \overline{R} — \circ R \circ — \overline{Q}

约束条件:

$$\overline{S} + \overline{R} = 1$$

触点抖动现象如下图:

利用基本SR锁存器消除机械开关触点抖动

R和**S**中总有一个信号是稳定的,通过稳定的那个将抖动的那个信号进行屏蔽掉。

E=0: 状态不变

 $E=1: Q_3 = S Q_4 = R$

状态发生变化。

S=0, R=0: $Q^{n+1}=Q^n$

S=1, R=0: $Q^{n+1}=1$

S=0, R=1: $Q^{n+1}=0$

S=1, R=1: $Q^{n+1}=\Phi$

电路如下图,输入信号R、 E和S的波形已知,输出 Q的波形,正确的是:

提交

5.3 D锁存器

5.3.1 D锁存器的电路结构

- 5.3.2 典型的D 锁存器集成电路
- 5.3.3 D 锁存器的动态特性

CMOS传输门(双向模拟开关)

1. 传输门的结构及工作原理

 v_{I}

传输门逻辑符号

当C=1且C=0时,传输门导通

等效电路

传输门就相当于电子开关,是受C信号控制的电子开关

 $v_{\rm o}$

5.3.1 D锁存器的电路结构

1. 传输门控D锁存器

(1) 逻辑电路图

(a) E=1时

TG₁导通, TG₂断开

Q = D

(b) E=0时

TG₂导通, TG₁断开

D锁存器的功能表

E	D	Q	$ar{ar{\varrho}}$	功能
0	×	不变	不变	保持
1	0	0	1	置0
1	1	1	0	置1

E=0,

Q 不变

E=1,

 $Q = \Gamma$

传输门控D锁存器的E、D的波形如下图虚线上边所示,

锁存器的原始状态为Q=0,请画出Q和 \bar{Q} 的波形图。

2. 逻辑门控D锁存器

逻辑电路图

<i>E</i> =0	Q不变

$$E=1$$
 $D=0$

$$S=1$$
 $R=0$

R=1

S = 0

D锁存器的功能表

E	D	Q	$\bar{\varrho}$	功能
0	×	不变	不变	保持
1	0	0	1	置0
1	1	1	0	置1

$$Q = 0$$

$$Q = 1$$

$$Q = D$$

数字逻辑电路

1D

 D_7

当LE= 0时,输入隔离,输入不能 输入隔离,输入不能 进行锁存器。 当LE= 1时, 输入进入锁存器。

当 $\overline{OE} = 1$ 时,Q0...Q7为高阻态。 当 $\overline{OE} = 0$ 时,Q0...Q7为正常输出。

输出三态门

5.4 触发器的电路结构和工作原理

- 5.4.1 主从D触发器的电路结构和工作原理
- 5.4.2 典型主从D触发器集成电路
- 5.4.3 主从D触发器的动态特性
- 5.4.4 其他电路结构的触发器

5.4 触发器的电路结构和工作原理

1. 锁存器与触发器

锁存器在E的高(低)电平期间 对信号敏感 E E

触发器在*CP*的上升沿(下降 沿)对信号敏感

在VerilogHDL中对锁存器与 触发器的描述语句是不同的

5.4 触发器的电路结构和工作原理

5.4.1 主从D触发器的电路结构和工作原理

1. 电路结构

主锁存器与从锁存器结构相同

 TG_1 和 TG_4 的工作状态相同,即两个传输门的控制信号相同。

 TG_2 和 TG_3 的工作状态相同,即两个传输门的控制信号相同。

CMOS传输门(双向模拟开关)

1. 传输门的结构及工作原理

 v_{I}

传输门逻辑符号

当C=1且C=0时,传输门导通

等效电路

传输门就相当于电子开关,是受C信号控制的电子开关

 $v_{\rm o}$

计算机学院

数字逻辑电路

2. 工作原理

(1) CP=0时:

$$\overline{C} = 1$$
, $C = 0$,

TG₁导通,TG₂断开——输入信号D 送入主锁存器。

Q'跟随D端的状态变化,使Q'=D。

 TG_3 断开, TG_4 导通——从锁存器维持在原来的状态不变。

2. 工作原理

(2) CP由0跳变到1:

$$\overline{C} = 0$$
, $C=1$,

TG₁断开, TG₂导通——输入信号D 不能送入主锁存器。 主锁存器维持原态不变。

 TG_3 导通, TG_4 断开——主锁存器中Q'的信号送Q端。

触发器的状态仅仅取决于CP信号上升沿到达前瞬间的D信号

上升沿触发

(2) CP由0跳变到1: [P]

前端锁存器截止,后段锁存器导通。 信号D通过后端锁存器,传输到Q端。

(3) CP=1, 并维持高电平:

由于前端锁存器截止,信号D不能通过前端锁存器,所以与后段锁存器相连的Q端信号保持不变。

结论: 在CP脉冲的上升沿到来瞬间使触发器的状态变化

5.4.2 典型主从D触发器集成电路

74HC/HCT74中D触发器的逻辑图

其中: SD是置1、RD是置0

当SD=0时,置1。

R_D =0时,置0

74HC/HCT74的逻辑符号和功能表

74HC/HCT74的功能表

输入				输 出	
\overline{S}_{D}	\overline{R}_{D}	CP	D	Q	\overline{Q}
L	Н	×	×	H	L
Н	L	×	×	L	H
L	L	×	×	Н	H
$\overline{\overline{S}}_{\mathrm{D}}$	$\overline{R}_{\mathrm{D}}$	CP	D	Q^{n+1}	\overline{Q}^{n+1}
Н	Н	↑	L	L	Н
Н	Н	↑	H	Н	L

具有直接置1、直接置0,正边沿触发的D功能触发器

5.4.4 其他电路结构的触发器

1. 维持阻塞D触发器结构

由3个基本SR锁存器组成

结论: 在CP脉冲的上升沿到来瞬间使触发器的状态变化

2、工作原理

$$CP = 0$$

$$Q_4 = \overline{\mathbf{D}} \quad Q_1 = D$$

$$Q^{n+1}=Q^n$$

D信号存于 Q_4

D信号存于 Q_1

D 信号进入触发器(主锁存器),为状态刷新作好准备

在CP脉冲的上升沿,触法器按此前的D信号刷新

$$Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n$$

如
$$Q^{n+l}=0$$
,
则 $S=1$
 $R=0$;
如 $Q^{n+l}=1$,
则 $S=0$
 $R=1$

当CP = 1时,D信号不影响 \overline{S} 、 \overline{R} 的状态,Q的状态不变

在CP脉冲的上升沿到来瞬间使触发器的状态Q变化

数字逻辑电路

当CP = 1时,D信号不影响 \overline{S} 、 \overline{R} 的状态,Q的状态不变

在CP脉冲的上升沿到来瞬间使触发器的状态Q变化

维持阻塞D触发器

结论: 在CP脉冲的上升沿到来瞬间使触发器的状态变化

触发器的次态与CP脉冲的上升沿到来前一瞬间D的状态相同

己知维持阻塞D触发器的输入CP和D的波形,请画出Q的输出波形。

工作波形

维持阻塞D触发器逻辑符号 其中S是置1引脚,R是置0引脚。

逻辑功能表

D	Q ⁿ	Q^{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

当S=0, R=1时,

 $Q^{n+l}=1$ 置1

当S=1, R=0时,

 $Q^{n+1}=0$ 置0

当S=1, R=1时, 在时钟的上升沿处,

逻辑功能变化如左表

维持阻塞D触发器状态变化产生在时钟脉冲的上升沿,其次态决定于该时刻前瞬间输入信号D。