10.5磁场对运动电荷的作用

[q > 0, F方向与v B一致]
q < 0, F方向与v B相反
f [e] V表明F只改v方向

$$F = ma$$
, 方程: $qv \cdot B = ma$

$$(1)$$
 v_0 $\perp B$ • 受力 $f=qv_0B(=mv_0^2/R)$

,轨迹 圆 $R=mv_O/qB$

$$f$$
周期 $T=2pR/v_0$ $=2pm/qB$

(2) \mathbf{v}_{0} 与 \mathbf{B} 成 \mathbf{q} 角 $\mathbf{v}_{0} = \mathbf{v}_{0}\mathbf{cos}\theta$ $\mathbf{v}_{0} = \mathbf{v}_{0}\mathbf{sin}\theta$

$$R = \frac{mv_{\perp}}{qB} = \frac{mv_0 \sin \theta}{qB}$$

$$T = \frac{2\pi R}{v_{\perp}} = \frac{2\pi m}{qB}$$

$$T = \frac{2\pi R}{v_{\perp}} = \frac{2\pi m}{qB}$$

塚距**h** = $\mathbf{v}_{//}\mathbf{T} = \frac{2\pi m v_0 \cos \theta}{qB}$

 \bar{v}_{0n}

10.5.3 带电粒子在非均匀磁场中运动

粒子受到一个与运动方向相反的力 F_x ,此力阻止粒子向磁场增强方向运动.

(1)磁约束装置

(2) 范艾仑(J. A. Van Allen) 辐射带

(3)极光

在地磁两极附近 由于磁感线与地面垂直 外层空间入射的带电粒子可直接射入高空大气层内 它们和空气分子的碰撞产生的辐射就形成了极光

10.5.4 带电粒子在电场和磁场中运动的应用

动力学方程:

$$m\frac{\overrightarrow{dv}}{dt} = q\overrightarrow{E} + q\overrightarrow{v} \times \overrightarrow{B}$$

[思考题]电子质量、电量分别为m、e,填写下表

$$a_n = 0$$
 ; $a_t = Ee/m$

$$F_n = 0$$
 $F_t = F_e = Ee$

10.5.5技术应用 A 回旋加速器

THE STREET

回旋加速器是用来获得高能带电粒子的设备。

基本性能:

- 1. 使带电粒子在磁场的作用下作回旋运动。
- 2. 使带电粒子在电场的作用下得到加速。

回旋加速器

轨道半径
$$R = \frac{v}{(q/m)B}$$

粒子引出速度
$$v = \frac{q}{R}BR$$

$$v = \frac{q}{m}BR$$

加速器

粒子的动能

$E_k = \frac{1}{2}mv^2 = \frac{q^2}{2m}B^2R^2$

10.5.5技术应用B (E.C. Hall) 霍耳效应

Edwin H. Hall [1855–1938].

霍耳

1879年霍耳(A. H. Hall)发现:在匀强磁场中通电金属导体板的上下表面出现横向电势差.该现象称为霍耳效应

霍耳效应的经典解释

$$F_L = evB$$

$$F_e = eE_H = \frac{eU_H}{a}$$

平衡时: $F_L = F_e$

$$P: evB = \frac{eU_H}{a}$$

得:
$$U_H = vBa$$

$$\mathcal{R}QI = nevab \triangleright v = \frac{I}{neab}$$

$$U_H = \frac{1}{ne} \frac{IB}{b} \triangleright R_H = \frac{1}{ne}$$

实验指出:
$$U_H \propto \frac{IB}{a}$$

$$\Rightarrow U_H = R_H \frac{IB}{a}$$

R_H—霍耳系数,它是和材料的性质有关的常数

经典电子论对霍耳效应的解释得金属导体: $R_H = -\frac{1}{ne}$

对于17型半导体载流子为电子,而17型半导体体载流子为带正电的空穴。根据121的符号可确定半导体类型,根据121大小的测定,可确定载流子浓度。

电子数密度

利用质谱仪可以测出元素中同位素的含量

通过速度选择器 后粒子的速度

$$V = \frac{E}{B'} \quad (1)$$

$$\frac{q}{m} = \frac{v}{RB}$$
 (2)

$$R \propto \frac{mE}{qB'B}$$
 $\triangleright R \propto m$

10-6 磁场对电流的作用

运动电荷受磁场的作用力-- 洛仑兹力 电流元、载流导线受力?

讨论:
$$dF = Idl ' B_{\text{sh}}$$
 $dF = dq \times E_{\text{sh}}$ $f = qu' B_{\text{sh}}$

有限长载流直导线在外 磁场中受力

$$dF = Idl B$$

$$F = \mathbf{\hat{0}}Idl \cdot B$$

$$F_x = \partial dF_x$$
, $F_y = \partial dF_y$ $\triangleright F = F_x i + F_y i$

例6. 无限长平行载流直导线间的相互作用力

$$dF_{21} = I_2 dl_2 \cdot B_{12}$$
 $dF_{21} = I_2 dl_2 \cdot B_{12}$
 $dF_{21} = I_2 dl_2 B_{12} \sin q$
 $= I_2 dl_2 \frac{m_0 I_1}{2p \ d}$
取长度为 l 的一段

$$F_{21} = \grave{0} dF_{21} = \grave{0}_0^l \frac{m_0 I_1 I_2}{2p \ d} dl_2 = \frac{m_0 I_1 I_2}{2p \ d} l \ \text{向左}$$
同理:
$$F_{12} = \grave{0} dF_{12} = \grave{0}_0^l \frac{m_0 I_2}{2p \ d} I_1 dl_1 = \frac{m_0 I_1 I_2}{2p \ d} l \ \text{向右}$$

$$F_{21} = -F_{12} \quad \text{电流同向相吸,反向相斥}.$$

例7.任意通电导线在外磁场中的受力

方向垂直AC向上

相当于AC直导线

在均匀的磁场中闭合线圈所受的合力为0

例题8:圆柱形磁铁 N 极上方水平放置一个载流导线环,求其受力。

已知在导线所在处磁场B的方向与竖直方向成a角

由图可知:圆环受的总磁力的方向在铅直方向,

$$F = F_z = \int dF \sin a$$

$$= \int_{o}^{2pR} IB \sin a \cdot dl$$

$$= 2pRIB \sin a$$

10.6.2 磁场对载流线图作用的磁力矩

$$F_1 = Il_1 B \sin a$$

$$F_1' = Il_1 B \sin(p - a)$$
$$= Il_1 B \sin a = F_1$$

$$F_2 = Il_2B = F_2$$
 $\dot{a}F = 0$

$$\dot{\mathbf{a}}^{\mathbf{f}} = \mathbf{0}$$

力矩
$$M = F_2 \frac{l_1}{2} \cos a + F_2 \frac{l_1}{2} \cos a = IBl_2 l_1 \cos a$$

$$Qa+q=\frac{p}{2} \quad \text{\setminus cosa=sinq$ } \mathcal{R}S=l_1l_2$$

则
$$M = ISBsinq = P_mBsinq$$

$$\mathbf{M} = \mathbf{P}_{m} \cdot \mathbf{B} \quad (\mathbf{M}_{e} = \mathbf{P}_{e} \cdot \mathbf{E})$$

$$M = P_{m}Bsinq$$

讨论:
$$M = P_m B sinq$$
 $M = P_m B sinq$

1) n方向与B 相同2) 方向相反 3) 方向垂直

稳定平衡

不稳定平衡

力矩最大

思考: 半径R, 电流I, M=?

$$M = P_m B \sin j = I \frac{p R^2}{2} B$$

方向沿纸面向下

例9.半径R,电流I,如图放置

求:abc和cda受力及线圈 运动情况

abc:dF = IdlB sin q

$$F = \partial dF = \partial^{p} IBRsinqdq = 2IBR \bigcirc c$$

$$(dl = Rdq)$$

$$cda: F = \mathbf{\hat{Q}}^{o}IBRsinqdq = -2IBR \quad \ddot{A}$$

$$\dot{\mathbf{a}}F=0$$

$$\mathbf{M} = \mathbf{P}_{m} \cdot \mathbf{B} \quad \mathbf{M} = \mathbf{P}_{m} \mathbf{B} \sin j = \mathbf{I} p \mathbf{R}^{2} \times \mathbf{B}^{-1}$$

$$dM = x \times dF = R \sin q \times IBR \sin qdq$$

$$M = \partial dM = \partial^{2p} IBR^2 \sin^2 qdq = IBp R^2 = P_m B$$

若磁场垂直纸面向里,再求上题

$$abc: dF = IdlB \sin q$$

$$(\sin q = 1)$$

$$dF_x = dF \sin a$$

$$dF_{y} = dF \cos a$$

$$\mathbf{Q}$$
 对称性 $F_{v} = \mathbf{0}$

$$F = F_x = \hat{\mathbf{0}}dFsina = \hat{\mathbf{0}}^p IBsina \times Rda = 2IBR$$
 向右

$$cda$$
 $F = 2IBR$ 向左

$$\dot{a}F = 0$$
 $M = P_m B \sin j = 0$

10-7 磁力的功

10.7.1 载流导体在磁场中运动时磁力做的功

闭合回路abcda

I不变,ab可滑动

ab受力 F = IBl

$$A = F \times aa$$
 $= IBlaa$

ab移到abç磁通量变化

$$DF = F - F_0 = BDS = B l \overline{aa}$$

$$A = I(F - F_0) = IDF$$

10.7.2载流线圈在磁场中转动时磁力做的功

在磁力矩作用下转过dq

$$dA = -Mdq = -BIS sinq dq$$

$$= BISd(cosq) = Id(BScosq)$$

$$dA = IdF$$

$$F_{2}$$
 A
 A
 A
 B

$$q_1$$
 ® q_2 总动 $A = \hat{\mathbf{Q}}_{F_1}^{F_2} IdF = I(F_2 - F_1) = IDF$

$$|A_{ab} = q_0(U_a - U_b)|$$

思考: 如图通电线圈放入外磁场

$$A = I(F_2 - F_1) = O$$

2.闭合圆电流线圈转90°

$$A = I(F_2 - F_1) = I(o - Bp R^2)$$
$$= -IBp R^2$$

3.转180°

$$A = I(-Bp R^2 - Bp R^2)$$
$$= -2IBp R^2$$

例10. 求AB导线对P点的磁力矩

例11. 如图所示勾 \overrightarrow{B} 中圆盘R, 带正电S=kr, k为常数. 盘以w旋转, 求圆盘所受磁力矩

解: (1) 求旋转圆盘的等效磁矩

$$dI = ndq = n(\sigma 2\pi r dr)$$
$$= n(kr 2\pi r dr)$$

$$dp_m = s\overline{dI}$$

$$= \pi r^2 [n(kr2\pi rdr)]$$

$$\Rightarrow p_m = \int_0^{p_m} dp_m = \int_0^R 2kn\pi^2 r^4 dr$$
$$= \frac{2}{5}kn\pi^2 R^5$$

(2) 求磁力矩