1. STATISTIQUE DESCRIPTIVE

EXERCICE 1.1

On a demandé à chacun des 28 étudiants d'un groupe de Polytech Nancy quel était son sport préféré. Les réponses sont les suivantes :

Tennis	Football	Ping-pong	Football	Football	Basket	Football
Football	Tennis	VTT	Aucun	VTT	VTT	Tennis
Natation	Tennis	Ski	Tennis	Ping-pong	Natation	Football
VTT	Basket	VTT	Football	Aucun	Ping-pong	VTT

Après avoir précisé le caractère (nom et nature), l'individu, l'échantillon et la population, procéder à la mise en ordre des données. Faire deux représentations graphiques. Interpréter les résultats de cette enquête.

EXERCICE 1.2

Dans un atelier, en vue de contrôler le fonctionnement d'un tour automatique produisant des axes, on a convenu de prélever toutes les heures, à la sortie du tour, 50 pièces, de les passer au calibre et d'y dénombrer le nombre de pièces défectueuses. On désire étudier ce nombre de pièces défectueuses.

Au cours d'une semaine pendant laquelle le tour a fonctionné 50 heures, on a prélevé 50 groupes de pièces et leur examen a donné les résultats suivants :

LUNDI	N° du groupe	1	2	3	4	5	6	7	8	9
	Nbre pièces défectueuses	2	3	3	0	2	1	1	0	5
MARDI	N° du groupe Nbre pièces défectueuses	10	11	12	13	14	15	16	17	18
MEDCDEDI	-	2	3	3	2	1 22	2	4 27	0	3
MERCREDI	N° du groupe Nbre pièces défectueuses	19 1	20 2	21 2	22 4	23 0	24 1	25 3	26 2	27 3
JEUDI	N° du groupe Nbre pièces défectueuses	28 2	29 1	30 2	31 3	32 2	33 2	34 4	35 6	36 0
VENDREDI	N° du groupe Nbre pièces défectueuses	37 1	38 1	39 1	40 2	41 2	42 0	43 1	44 1	45 5
SAMEDI	N° du groupe Nbre pièces défectueuses	46 3	47 4	48 1	49 0	50 2				

- 1. Pour cette étude, préciser le caractère, l'individu, l'échantillon et la population.
- 2. Procéder à une mise en ordre des résultats et faire les représentations graphiques.
- 3. Calculer les principaux caractères descriptifs (moyenne, étendue, mode, variance, écart type, médiane). Quelle distribution théorique pourrait-on ajuster sur ces données ?

EXERCICE 1.3

Une fromagerie produit des camemberts. On s'intéresse à la masse de ces fromages. En effet, pour des raisons commerciales évidentes, le fromage ne peut être mis en vente si sa masse est inférieure à une certaine limite P_0 .

On a donc pesé un échantillon de 100 fromages et on a obtenu la distribution suivante (masse exprimée en grammes).

168	175	167	171	174	178	163	180	174	170
179	175	181	178	166	177	174	180	158	175
161	159	176	187	182	179	193	179	184	170
179	181	194	169	171	191	169	163	191	175
164	170	160	174	176	171	192	180	175	165
196	174	175	176	182	144	175	184	201	169
176	181	196	172	176	188	174	176	168	173
182	149	172	167	160	165	179	190	156	185
168	177	159	181	166	177	163	173	189	173
172	188	187	166	189	171	175	183	167	169

- 1. Préciser le caractère, l'individu, l'échantillon et la population.
- 2. Justifier la mise en ordre des données utilisant la classification suivante :

x¡ (g) centres de classes	nį
145	1
150	1
155	1
160	6
165	12
170	17
175	26
180	17
185	6
190	8
195	4
200	1

- 3. Déterminer, <u>après mise en classes</u>, les principaux paramètres descriptifs (moyenne, étendue, classe modale, variance, écart type, médiane, écart inter quartile, écart inter décile).
- 4. Faire les représentations graphiques (histogramme et diagramme des fréquences cumulées) associées à cette mise en classes. Retrouver graphiquement les valeurs de la médiane, de l'écart inter quartile et de l'écart inter décile.
- 5. Quelle distribution théorique pourrait-on ajuster sur ces données ?

- 6. Déterminer, <u>à partir des données brutes</u> (c'est-à-dire avant mise en classes), les principaux paramètres descriptifs. Comparer les résultats obtenus avant et après mise en classes.
- 7. Construire et interpréter le diagramme en boîte.

RÉGRESSION ET CORRÉLATION

EXERCICE 1.4

Le tableau suivant donne les résultats obtenus à partir de 10 essais de laboratoire concernant la charge de rupture d'un acier en fonction de sa teneur en carbone.

Numéro de l'essai	1	2	3	4	5	6	7	8	9	10
X : Teneur en carbone (pour 10 000)	72	60	68	66	64	62	64	70	62	74
Y : Charge de rupture (kg)	90	70	80	80	75	75	80	85	70	100

- 1. Représenter graphiquement les données du tableau. Conclure.
- 2. Calculer les moyennes et les variances de X et Y ainsi que la covariance de X et Y.
- 3. Est-il possible d'envisager une liaison linéaire entre X et Y ? Justifier cette réponse à l'aide d'un calcul.
- 4. Déterminer l'équation de la droite de régression linéaire de Y en X.
- 5. Déterminer l'équation de la droite de régression linéaire de X en Y.
- 6. Quelle pourrait être la charge de rupture d'un acier ayant une teneur en carbone de 65 pour 10 000 ?

EXERCICE 1.5

Le tableau ci-dessous représente des valeurs expérimentales de la pression P d'un gaz donné, correspondant à diverses valeurs du volume V.

D'après les lois de la thermodynamique, une relation de la forme $P.V^{\gamma} = C$ où γ et C sont des constantes, devrait exister entre les variables.

Évaluer γ et C. Écrire l'équation qui lie P et V et calculer P pour V = 100,0 m³.

Volume V (m ³)	54,3	61,8	72,4	88,7	118,6	194,0
Pression P (Pa)	61,2	49,5	37,6	28,4	19,2	10,1