

Chapter 02 관계 데이터 모델

목치

01 관계 데이터 모델의 개념

02 무결성 제약조건

03 관계대수

학습목표

- ❖ 관계 데이터 모델의 개념을 이해한다.
- ❖ 관계 데이터 모델의 제약조건을 알아본다.
- ❖ 관계 데이터 모델의 연산인 관계대수의 종류와 작성법을 알아본다.

Chapter 02 관계 데이터 모델

01 관계 데이터 모델의 개념

- 1. 릴레이션의 개념
- 2. 릴레이션 스키마와 인스턴스
- 3. 릴레이션의 특징
- 4. 관계 데이터 모델

1. 관계 데이터 모델의 개념

❖ 릴레이션의 개념

• 행과 열로 구성된 테이블을 말함

표 2-1 relation과 관련된 한글 용어

용어	한글용어
relation	릴레이션, 테이블('관계'라고 하지 않음)
relational data model	관계 데이터 모델
relational database	관계 데이터베이스
relational algebra	관계대수
relationship	관계

1. 관계 데이터 모델의 개념

• 예) 5권의 도서 데이터를 저장하는 가장 쉬운 방법

도서 1, 축구의 역사, 굿스포츠, 7000	도서번호	도서이름	출판사	가격
도서 2, 축구 아는 여자, 나무수, 13000	1	축구의 역사	굿스포츠	7000
도서 3, 축구의 이해, 대한미디어, 22000	2	축구 아는 여자	나무수	13000
포지 3, 독구의 이에, 대인미디어, 22000	3	축구의 이해	대한미디어	22000
도서 4, 골프 바이블, 대한미디어, 35000	4	골프 바이블	대한미디어	35000
도서 5, 피겨 교본, 굿스포츠, 8000	5	피겨 교본	굿스포츠	8000

그림 2-1 데이터와 테이블(릴레이션)

- [그림 2-1]의 도서 릴레이션의 경우 각 도서는 네 개의 집합인 도서번호, 도서이름, 출판사, 가격의 원소값 으로 구성되어 있음
- 각 집합을 구성하는 원소

도서번호 = {1, 2, 3, 4, 5} 도서이름 = {축구의 역사, 축구 아는 여자, 축구의 이해, 골프 바이블, 피겨 교본} 출판사 = {굿스포츠, 나무수, 대한미디어} 가격 = {7000, 13000, 22000, 35000, 8000}

1. 관계 데이터 모델의 개념

❖ 관계(relationship)

- 릴레이션(테이블) 내의 관계와 릴레이션(테이블) 간의 관계가 있음
- 릴레이션 내의 관계 : 릴레이션 안에 있는 데이터들의 집합으로 표현
- 릴레이션 간의 관계 : 릴레이션을 식별 가능한 값을 이용해 표현
- 예) 도서 릴레이션의 '도서번호'와 고객 릴레이션의 '고객번호'를 주문 릴레이션에 저장하여 관계를 표현

그림 2-2 릴레이션 간의 관계

2. 릴레이션 스키마와 인스턴스

❖ 릴레이션

- 스키마와 인스턴스로 이루어짐
- [그림 2-3]의 도서 릴레이션을 보면 도서번호, 도서이름, 출판사, 가격은 릴레이션의 데이터 구조를 구성

그림 2-3 도서 릴레이션

2. 릴레이션 스키마와 인스턴스

❖ 릴레이션 스키마

- 속성(attribute) : 릴레이션 스키마의 열
- 도메인(domain) : 속성이 가질 수 있는 값의 집합
- 차수(degree) : 속성의 개수

❖ 릴레이션 스키마의 표기

- 릴레이션 이름(속성 1, 속성 2, 속성 3, ...)
- 릴레이션 이름(속성 1: 도메인 1, 속성 2: 도메인 2, 속성 3: 도메인 3, ...)

도서(도서번호, 도서이름, 출판사, 가격) 혹은

도서(도서번호: integer, 도서이름: char(40), 출판사: char(40), 가격: integer))

2. 릴레이션 스키마와 인스턴스

❖ 릴레이션 인스턴스

- 릴레이션 스키마에 실제로 저장된 데이터의 집합
- 투플(tuple) : 릴레이션의 행
- 카디날리티(cardinality) : 투플의 수

❖ 릴레이션 구조와 관련된 용어 정리

표 2-2 릴레이션 구조와 관련된 용어

릴레이션 용어	같은 의미로 통용되는 용어	파일 시스템 용어
릴레이션(relation)	테이블(table)	파일(file)
스키마(schema)	내포(intension)	헤더(header)
인스턴스(instance)	외연(extension)	데이터(data)
투플(tuple)	행(row)	레코드(record)
속성(attribute)	열(column)	필드(field)

3. 릴레이션의 특징

- 속성은 단일 값을 가짐
- ❷ 속성은 서로 다른 이름을 가짐
- ❸ 한 속성의 값은 모두 같은 도메인 값을 가짐
- 4 속성의 순서는 상관없음
- **⑤** 릴레이션 내의 중복된 투플은 허용하지 않음
- **6** 투플의 순서는 상관없음

❖ 투플의 특징이 위배된 예

릴레이션에서 행을 투플이라고 부름

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000
5	피겨 교본	굿스포츠	8000
6	피겨 교본, 피겨 기초	굿스포츠	8000

- 동일한 투플이 중복되면 안 됨

속성의 값은 단일 값이어야함

4. 관계 데이터 모델

- 데이터를 2차원 테이블 형태인 릴레이션으로 표현
- 릴레이션에 대한 제약조건과 관계 연산을 위한 관계대수를 정의

❖ 관계 데이터베이스 시스템

- 관계 데이터 모델을 컴퓨터 시스템에 구현한 것
- 관계 데이터 모델에 기초하여 SQL을 기반으로 구현

그림 2-5 관계 데이터베이스 시스템

연습문제 (Q2.1)

- 01 관계 데이터 모델의 릴레이션에 대한 설명 중 옳지 않은 것은?
 - ① 릴레이션은 릴레이션 스키마와 릴레이션 인스턴스로 구성된다.
 - ② 릴레이션 스키마를 외연(extension)이라고 한다.
 - ③ 릴레이션 스키마는 정적인 성질을 가진다.
 - ④ 릴레이션 인스턴스는 동적인 성질을 가진다.
- 02 릴레이션의 특징으로 알맞은 것은?
 - ① 중복된 투플이 존재한다.
 - ② 투플 간의 순서가 정의된다.
 - ③ 속성 간의 순서가 정의된다.
 - ④ 모든 속성값은 원자값이다.
- 03 하나의 속성이 가질 수 있는 값을 총칭하여 무엇이라 하는가?

① 투플

② 릴레이션

③ 도메인

④ 엔티티

Chapter 02 관계 데이터 모델

02 무결성 제약조건

- 1. 키
- 2. 무결성 제약조건
- 3. 무결성 제약조건의 수행

❖ 키(Key)

 한 대의 자동차는 반드시 한 개의 자동차 문을 열 수 있는 것처럼 무엇인가를 유일 하게 식별한다는 의미

- 관계 데이터베이스에서 키는 릴레이션에서 특정 투플을 식별할 때 사용하는 속성 혹은 속성의 집합
- 키가 되는 속성(혹은 속성의 집합)은 반드시 값이 달라서 투플들을 서로 구별할 수 있어야 함

- 예) 마당서점 데이터의 일부. 이 테이블들을 중심으로 키의 개념과 제약조건 알아보기
 - 고객이 4명, 도서가 5권, 주문이 7건 있다고 가정

고객

고객번호	이름	주민번호	주소	핸드폰
1	박지성	810101-1111111	영국 맨체스터	000-5000-0001
2	김연아	900101-2222222	대한민국 서울	000-6000-0001
3	김연경	880101-2333333	대한민국 경기도	000-7000-0001
4	추신수	820101-1444444	미국 클리블랜드	000-8000-0001

도서

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

주문

고객번호	도서번호	판매가격	주문일자
1	1	7000	2024-07-01
1	2	13000	2024-07-03
2	5	8000	2024-07-03
3	2	13000	2024-07-04
4	4	35000	2024-07-05
1	3	22000	2024-07-07
4	3	22000	2024-07-07

❖ 슈퍼키(super key)

- 투플을 유일하게 식별할 수 있는 하나의 속성 혹은 속성의 집합
- 예) [그림 2-7]의 고객 릴레이션에서 속성별로 투플 식별이 가능한지 살펴보기
 - 고객번호 : 고객별로 유일한 값이 부여되어 있으므로 투플을 식별 가능
 - 이름 : 동명이인이 있으면 투플을 유일하게 식별 불가능
 - 주민번호 : 개인별로 유일한 값이 부여되어 있으므로 투플을 식별 가능
 - 주소 : 가족끼리는 같은 정보를 사용하므로 투플을 식별 불가능
 - 핸드폰 : 한 사람이 여러 개의 핸드폰을 사용할 수 있고, 반대로 핸드폰을 사용하지 않는 사람이 있을 수 있으므로 투플을 식별 불가능
- 고객 릴레이션의 슈퍼키를 나열하면 다음과 같음

(주민번호), (주민번호, 이름), (주민번호, 이름, 주소), (주민번호, 이름, 핸드폰), (고객번호), (고객번호, 이름, 주소), (고객번호, 이름, 주신), (고객번호, 이름, 주신), 한드폰), ***

❖ 후보키(candidate key)

- 투플을 유일하게 식별할 수 있는 속성의 최소 집합
- [그림 2-7]에서 고객 릴레이션의 경우 슈퍼키는 많지만, 후보키는 '주민번호', '고객번호'만 될 수 있음
- 예) [그림 2-7]의 주문 릴레이션
 - 주문 릴레이션은 고객이 도서를 구입했을 때 생성되는데, 1명의 고객이 여러 권의 도서를 구입할 수 있고 여러명의 고객이 1권의 도서를 구입할 수도 있음. 단, 1명의 고객이 같은 도서를 다시 구입할 수 없다고 가정
 - 고객번호: 1명의 고객이 여러 권의 도서를 구입할 수 있으므로 후보키가 될 수 없음
 - 도서번호 : 도서번호가 2인 '축구 아는 여자'의 경우 두 번의 주문 기록이 있으므로 투플을 유일하게 식별할 수 없음
 - 하지만 고객번호와 도서번호를 합해 키 값으로 하면,
 (고객번호, 도서번호): (고객번호, 도서번호)가 동일한 주문 기록이 없으므로 모든 투플을 유일하게 식별 가능
- 두 개 이상의 속성으로 이루어진 키를 복합키라고 함

❖ 기본키(primary key, PK)

- 여러 후보키 중 하나를 선정하여 대표로 삼는 키
- 기본키 선정 시 고려사항
 - 릴레이션 내 투플을 식별할 수 있는 고유한 값을 가져야 함
 - NULL 값은 허용하지 않음
 - 키 값의 변동이 일어나지 않아야 함
 - 최대한 적은 수의 속성을 가진 것이라야 함
 - 향후 키를 사용하는 데 있어서 문제 발생 소지가 없어야 함
- 릴레이션 스키마를 표현할 때 기본키는 다음과 같이 밑줄을 그어 표시

릴레이션 이름(속성 1, 속성 2, ···, 속성 N)

고객(고객번호, 이름, 주민번호, 주소, 핸드폰) 도서(도서번호, 도서이름, 출판사, 가격)

❖ 대리키(surrogate key, artificial key)

- 기본키가 보안을 필요로 하거나, 여러 개의 속성으로 구성되어 복잡하거나, 마땅한 기본키가 없을 때는 일련번호 같은 가상의 속성을 만들어 기본키로 삼는 경우
- DBMS나 관련 소프트웨어에서 임의로 생성하는 값
- 예) 주문 릴레이션을 통해 살펴보기

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	1	1	7000	2024-07-01
2	1	2	13000	2024-07-03
3	2	5	8000	2024-07-03
4	3	2	13000	2024-07-04
5	4	4	35000	2024-07-05
6	1	3	22000	2024-07-07
7	4	3	22000	2024-07-07

그림 2-8 대리키를 사용하도록 변경된 주문 릴레이션

❖ 대체키(alternate key)

- 기본키로 선정되지 않은 후보키
- 고객 릴레이션의 경우 고객번호와 주민번호 중 고객번호를 기본키로 정하면 주민번호가 대체키가 됨

❖ 외래키(foreign key, FK)

- 다른 릴레이션의 기본키를 참조하는 속성
- 참조하고(refer, 외래키), 참조되는(referred, 기본키) 양쪽 릴레이션의 도메인이 서로 같 아야 함
- 참조하는 외래키 값이 참조되는 기본키 값에 연동되어 항상 데이터의 일관성이 유지됨
- 외래키 사용 시 참조하는 릴레이션과 참조되는 릴레이션이 꼭 다른 릴레이션일 필요는 없음(자기 자신의 기본키를 참조할 수도 있음)

■ 릴레이션 간의 참조 관계

고객								러			
고객번호	이름	주민번호	주소		핸드폰			도서번호	도서이름	출판사	가격
1	박지성	810101-1111111	영국 맨체스	터 00	00-5000-0	001	I	1	축구의 역사	굿스포츠	7000
2	김연아	900101-2222222	대한민국 사	1울 00	00-6000-0	001	l	2	축구 아는 여자	나무수	13000
3	김연경	880101-2333333	대한민국 경	경기도 00	00-7000-00	001		3	축구의 이해	대한미디어	22000
4	추신수	820101-1444444	미국 클리블	<u> </u>	00-8000-0	001		4	골프 바이블	대한미디어	35000
기본키			A.S.	5 ¹			İ	5	피겨 교본	굿스포츠	8000
		Ī	주문 주문번호	고객번호	도서번호	판미	·조 		주문일자		
				그게버는	L NH=	πln	1171	71	조묘이되		
			1	1	1				024-07-01		
			2	1	2	-			024-07-03		
			3	2	5				024-07-03		
			4	3	2	1	30	000 2	024-07-04		
			5	4	4	3	350	000 2	024-07-05		
			6	1	3	2	220	000 2	024-07-07		
			7	4	3	2	220	000 2	024-07-07		
			기본키								

그림 2-9 릴레이션 간의 참조 관계

• 예) [그림 2-10]의 멘토 릴레이션

그림 2-10 멘토 릴레이션

■ 외래키의 특징

- 관계 데이터 모델에서 릴레이션 간의 관계를 표현함
- 다른 릴레이션의 기본키를 참조하는 속성임
- 참조하고(외래키) 참조되는(기본키) 양쪽 릴레이션의 도메인은 서로 같아야 함
- 참조되는(기본키) 값이 변경되면 참조하는(외래키) 값도 변경됨
- NULL 값과 중복값 등이 허용됨
- 자기 자신의 기본키를 참조하는 외래키도 가능함
- 외래키는 기본키의 일부가 될 수 있음

• 각 키의 포함 관계 및 정의 요약

그림 2-11 키의 포함 관계

2. 무결성 제약조건

❖ 데이터 무결성(data integrity)

- 데이터베이스에 저장된 데이터의 일관성과 정확성을 지키는 것
- 일관성과 정확성을 바탕으로 구축된 데이터베이스가 계속해서 무결성을 유지하려면 투플의 삽입·삭제·수정 시 데이터의 제약조건 준수 여부를 확인해야 함

❖ 무결성 제약조건(integrity constraints)

- 도메인 무결성 제약조건(domain integrity constraint)
 - 도메인 제약 : 릴레이션 내의 투플들이 각 속성의 도메인에 지정된 값만 가져야 한다는 조건
- 개체 무결성 제약조건(primary key constraint)
 - 기본키 제약 : 릴레이션은 기본키를 지정하고 그에 따른 무결성 원칙(기본키는 NULL 값을 가져서는 안 되며 릴레이션 내에 오직 하나의 값만 존재해야 한다)을 지켜야 한다는 조건
- 참조 무결성 제약조건(referential integrity constraint)
 - 외래키 제약 : 릴레이션 간의 참조 관계를 선언하는 제약조건 자식 릴레이션의 외래키는 부모 릴레이션의 기본 키와 도메인이 같아야 하며, 자식 릴레이션의 값이 변경될 때 부모 릴레이션의 제약을 받는다

2. 무결성 제약조건

■ 무결성 제약조건 정리

표 2-3 제약조건의 정리

7日	도메인	7			
구분	도메인 무결성 제약조건	개체 무결성 제약조건	참조 무결성 제약조건		
제약 대상	속성	투플	속성과 투플		
같은 용어	도메인 제약 (domain constraint)	기본키 제약 (primary key constraint)	외래키 제약 (foreign key constraint)		
해당되는 키	_	기본키	외래키		
NULL 값	허용	불가	허용		
릴레이션 내 제약조건의 개수	속성의 개수와 동일	1개	0~여러 개		
기타	•투플 삽입/수정 시 제약사항 우선 확인	• 투플 삽입/수정 시 제약사항 우선 확인	 투플 삽입/수정 시 제약사항 우선 확인 부모 릴레이션의 투플 수정/삭 제 시 제약사항 우선 확인 		

❖ 개체 무결성 제약조건 수행

- 삽입
 - 다음은 학번을 기본키로 하여 개체 무결성 제약조건을 지키고 있는 학생 릴레이션에 새로 입학한 학생 투플 (501, 남을 찬, 1001)이 삽입되는 과정을 나타낸 것
- 수정
 - 수정 연산 역시 삽입 연산과 동일한 제약 에 따라 처리
- 삭제
 - 특별한 확인이 필요하지 않으며 즉시 수 행

학생

학번	이름	학과코드
501	박지성	1001
401	김연아	2001
402	김연경	2001
502	추신수	1001

(501, 남슬찬, 1001)

삽입거부

(NULL, 남슬찬, 1001)

삽입거부

학번	이름	학과코드
501	박지성	1001
401	김연아	2001
402	김연경	2001
502	추신수	1001

학번	이름	학과코드	
501	박지성	1001	
401	김연아	2001	
402	김연경	2001	
502	추신수	1001	

그림 2-12 개체 무결성 제약조건의 수행 예(기본키 충돌 및 NULL 값 삽입)

❖ 참조 무결성 제약조건 수행

그림 2-13 참조 무결성 제약조건의 수행 예를 위한 학생관리 데이터베이스

• 삽입(자식 릴레이션에서)

- DBMS는 먼저 도메인 무결성 제약조건을 확인한 후 개체 무결성 제약조건에 위배되는 값이 없는지 확인함
- 이후 학과코드 값 3001이 학과 릴레이션의 기본키에 존재하는지 확인함
- 학생 릴레이션 생성 시 외래키인 학과코드 속성에 NULL 값을 허용하였다면 학과코드 값이 없어도 삽입 가능

• 삭제(부모 릴레이션에서)

- 자식 릴레이션에서 투플이 삭제되는 경우 부모 릴레이션에는 아무런 영향을 주지 않으므로 바로 삭제 가능
- 부모 릴레이션에서 투플이 삭제되는 경우에는 문제가 발생할 수 있음

• 부모 릴레이션에서 투플을 삭제할 때 참조 무결성 제약조건을 수행하기 위한 옵션

표 2-4 참조 무결성 제약조건의 옵션(부모 릴레이션에서 투플을 삭제할 경우)

명령어	의미	예
RESTRICTED	자식 릴레이션에서 참조하고 있으면 부모 릴레 이션의 삭제 작업을 거부함	학과 릴레이션의 투플 삭제 거부
CASCADE	자식 릴레이션의 관련 투플을 같이 삭제함	학생 릴레이션의 관련 투플 삭제
DEFAULT	자식 릴레이션의 관련 투플을 미리 설정해 둔 값으로 변경함	학생 릴레이션의 학과를 다른 학과로 자동 배정
NULL	자식 릴레이션의 관련 투플을 NULL 값으로 설정함(NULL 값을 허가한 경우)	학생 릴레이션의 학과를 NULL 값으로 변경

- 수정(부모 릴레이션에서)
 - 삭제와 삽입 명령이 연속해서 수행된다고 보면 됨
 - 부모 릴레이션의 수정이 일어날 때 삭제 옵션에 따라 처리된 후 문제가 없으면 다시 삽입 제약조건에 따라 처리됨

연습문제 (Q2.2)

- **04** 외래키(foreign key, FK)에 대한 설명으로 옳은 것은?
 - ① 릴레이션 R1에 속한 속성 집합 FK가 다른 릴레이션 R2의 기본키인 것을 말한다.
 - ② 외래키와 기본키가 정의된 도메인은 다를 수도 있다.
 - ③ 외래키는 NULL 값을 가질 수 없다.
 - ④ 둘 이상의 후보키 중에서 하나를 선정하여 대표로 삼은 키를 말한다.
- 05 한 릴레이션의 기본키를 구성하는 어떠한 속성값도 NULL 값이나 중복값을 가질 수 없다는 것을 의미하는 제약조건은?
 - ① 개체 무결성 제약조건

② 참조 무결성 제약조건

③ 보안 무결성 제약조건

- ④ 정보 무결성 제약조건
- 12 다음 릴레이션에서 더 이상 삽입되는 데이터가 없다고 가정하고 다음 물음에 답하시오.
 - (1) 릴레이션 R과 S의 후보키를 모두 나타내시오.
 - (2) 릴레이션 R과 S의 기본키로 어떤 것이 좋을지 선택하시오.

Α	В	С
a1	b1	c1
a2	b1	c1
a3	b1	c2
a4	b2	C3

С	D	Е
c1	d2	e1
c1	d1	e2
c2	d3	e3
C3	d3	e3

S

Chapter 02 관계 데이터 모델

03 관계대수

- 1. 관계대수
- 2. 셀렉션과 프로젝션
- 3. 집합연산
- 4. 조인
- 5. 디비전
- 6. 관계대수 사용 예제

❖ 관계대수(relational algebra)의 개념

- 릴레이션에서 원하는 결과를 얻기 위해 대수학의 대수와 같은 연산을 이용하여 질의하는 방법을 기술하는 언어
- 절차적 언어로, 하나 이상의 릴레이션에 연산을 수행하여 결과 릴레이션이 나오기
 까지의 절차를 확인하는 방법을 제공

❖ 릴레이션의 수학적 의미

- 예) 두 개의 집합 A={2, 4}, B={1, 3, 5}
 - 두 집합의 카티션 프로덕트 A×B={(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5)}
 - 릴레이션 R은 카티션 프로덕트의 부분집합으로 정의 R1={(2, 1), (4, 1)}도 하나의 릴레이션 R2={(2, 1), (2, 3), (2, 5)}도 릴레이션 R3={(2, 3), (2, 5), (4, 3), (4, 5)}도 릴레이션
 - 원소 개수가 n인 집합 S의 부분집합의 개수는 2ⁿ
 - 카티션 프로덕트 A×B의 부분집합의 개수는 2IAI×IBI
- 예) 세 개의 집합 A={2, 4}, B={1, 3, 5}, C={6, 7}
 - 카티션 프로덕트 A×B×C={(2, 1, 6), (2, 1, 7), (2, 3, 6), (2, 3, 7), ... (4, 5, 7)}
 - 원소의 개수는 12개
 - 카티션 프로덕트 A×B×C에서 만들어질 수 있는 부분집합(릴레이션)의 개수는 212
 - 도메인 : 카티션 프로덕트의 기초 집합 A, B, C 각각이 가질 수 있는 값의 범위
 - 집합 A의 도메인은 {2, 4}

- 릴레이션 R1={(2, 1), (4, 1)}도 집합이고, R2={(2, 1), (2, 3), (2, 5)}도 집합
- 집합에서 가능한 연산은 합집합(U), 교집합(∩), 카티션 프로덕트(x) 등

```
R1 \cup R2 = {(2, 1), (4, 1), (2, 3), (2, 5)}
R1 \cap R2 = {(2, 1)}
```

- 데이터베이스에서 릴레이션은 수학의 릴레이션 개념을 현실 세계에 적용한 것
- 예) 학번={2, 4}, 과목={데이터베이스, 자료구조, 프로그래밍}의 두 집합
 - 두 집합의 카티션 프로덕트 학번x과목은 학번 원소와 과목 원소의 순서쌍 집합
 - 학번×과목={(2, 데이터베이스), (2, 자료구조), (2, 프로그래밍), (4, 데이터베이스), (4, 자료구조), (4, 프로그래밍)
 - 학번×과목의 각 원소는 학생이 과목을 수강할 수 있는 모든 경우를 나열한 것
 - 수강={(2, 데이터베이스), (2, 자료구조), (4, 프로그래밍)}은 카티션 프로덕트 학번×과목의 부분집합으로, 하나의 릴레이션 인스턴스
 - 이 릴레이션을 테이블로 그리면 [그림 2-15]

수강

학번	과목	
2	데이터베이스	
2	자료구조	
4	프로그래밍	

❖ 관계대수 연산자 (

는 5개의 기본 연산자)

표 2-5 관계대수 연산자

연산자 타입	대상	연산자 이름		기호	설명	
기본	단항	셀렉션			σ	• 릴레이션에서 조건에 만족하는 투플을 선택함
기본	단항	프로젝션			π	• 릴레이션의 속성을 선택함
추가	단항	개명			ρ	• 릴레이션이나 속성의 이름을 변경함
유도	이항	디비전			÷	• 부모 릴레이션에 포함된 투플의 값을 모두 가진 투플을 분자 릴레이션에서 추출함
기본	이항	합집합			U	• 두 릴레이션의 합집합
기본	이항	차집합			-	• 두 릴레이션의 차집합
유도	이항	교집합		_	Λ	• 두 릴레이션의 교집합
기본	이항	카티션 프로	2덕트		×	• 두 릴레이션에 속한 모든 투플의 집합
유도	이항	조인	세타		⊠θ	• 두 릴레이션 간의 비교 조건에 만족하는 집합
			동등		\bowtie	• 두 릴레이션 간의 같은 값을 가진 집합
			자연		⊠n	• 동등조인에서 중복 속성을 제거함
		*	세미	left	\bowtie	• 자연조인 후 오른쪽 속성을 제거함
		외부	r	right	\bowtie	• 자연조인 후 왼쪽 속성을 제거함
			외부	left	M	• 자연조인 후 각각 왼쪽(left), 오른쪽(right), 양쪽(full)의
				right	M	모든 값을 결과로 추출함 • 조인이 실패(또는 값이 없을 때) 값을 NULL로 채움
			full	M	그는 이 근데(그는 BVI B)로 테/ BE NOLL도 제곱	

1. 관계대수

❖ 관계대수식

- 관계대수 연산을 수행하기 위한 식
 - 관계대수는 릴레이션 간 연산을 통해 결과 릴레이션을 찾는 절차를 기술한 언어
 - 단항 연산자 : 연산자 <조건 > 릴레이션
 - 이항 연산자 : 릴레이션 1 연산자_{<조건>} 릴레이션 2

R1

- 적용 순서 : 괄호(()) 안의 식이 우선하며 왼쪽에서 오른쪽으로 진행됨
- 관계대수식을 이해하기 위한 예)
 - 릴레이션 R1과 릴레이션 R2로 구성

А	В	С
a1	b1	c1
a2	b3	сЗ
а3	b4	c2

_)	•

А	В	С
a1	b1	с1
a2	b3	сЗ
аЗ	b3	c1

그림 2-16 관계대수식을 이해하기 위한 예제 데이터

1. 관계대수

• 관계대수식의 결과

표 2-6 관계대수식의 사용 예

	1 1 10 -11								
연산자	설명								
셀렉션(O)	기능	R1에서 조건에 맞는 투플을 추출한다.							
	사용 예	σ _{A=a1 or A=a2} (R1)	А	В	С				
			a1	b1	c1				
			a2	b3	сЗ				
프로젝션(π)	기능	R2에서 조건에 맞는	속성만 추	출한다.	500				
	사용 예	π_{AB} (R2)	А	В					
			a1	b1					
			a2	b3					
			аЗ	b3					
합집합(∪)	기능	R1과 R2의 합집합을	을 구한다.						
	사용 예 R1 U R2	R1 U R2	А	В	С				
			a1	b1	c1				
			a2	b3	сЗ				
			аЗ	b4	c2				
		8	a3	b3	c1				
차집합(-)	기능	R1과 R2의 차집합을	을 구한다.						
	사용 예	R1 - R2	А	В	С				
			аЗ	b4	c2				
조인()	기능	R1과 R2의 카티션 프로덕트를 구하여 조건에 맞는 투플을 추출한다.							
	사용 예	R1 ⋈ _{R1,C=R2,C} R2	R1,A	R1.B	R1.C	R2,A	R2,B	R2.C	
			a1	b1	c1	a1	b1	c1	
			a1	b1	c1	a3	b3	c1	
			a2	b3	сЗ	a2	b3	сЗ	

그림 2-16 관계대수식을 이해하기 위한 예제 데이터

2. 셀렉션과 프로젝션

❖ 셀렉션(selection)

■ 릴레이션의 투플을 추출하기 위한 연산

$$O_{(32)}$$
 (R)

질의 2-1

마당서점에서 판매하는 도서 중 8,000원 이하인 도서를 검색하시오.

• O_{가격 < = 8000} (도서)

도서

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
5	피겨 교본	굿스포츠	8000

그림 2-17 셀렉션의 예

2. 셀렉션과 프로젝션

❖ 프로젝션(projection)

■ 릴레이션의 속성을 추출하기 위한 단항 연산자

$$\pi_{\text{(adde)}}$$
 (R)

질의 2-2

신간 도서 안내를 위해 (이름, 주소, 핸드폰)의 카탈로그 주소록을 만드시오.

• T_{이름, 주소, 핸드폰} (고객)

고객

고객번호	이름	주민번호	주소	핸드폰
1	박지성	810101-1111111	영국 맨체스터	000-5000-0001
2	김연아	900101-2222222	대한민국 서울	000-6000-0001
3	김연경	880101-2333333	대한민국 경기도	000-7000-0001
4	추신수	820101-1444444	미국 클리블랜드	000-8000-0001

이름	주소	핸드폰
박지성	영국 맨체스터	000-5000-0001
김연아	대한민국 서울	000-6000-0001
김연경	대한민국 경기도	000-7000-0001
추신수	미국 클리블랜드	000-8000-0001

그림 2-18 프로젝션의 예

❖ 합집합(union) R U S

• 수학의 합집합과 동일한 개념, 두 개의 릴레이션을 합하여 하나의 릴레이션을 반환

질의 2-3

마당서점에는 지점 A와 지점 B가 있다. 두 지점의 도서는 각 지점에서 관리하며 릴레이션 이 름은 각각 도서A, 도서B다. 마당서점의 도서를 하나의 릴레이션으로 나타내시오.

• 도서A U 도서B

도서A

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

U

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

그림 2-19 합집합의 예

❖ 교집합(intersection)

 $R \cap S$

 합병 가능한 두 릴레이션을 대상으로 하며, 두 릴레이션이 공통으로 가지고 있는 투 플을 반환

질의 2-4

마당서점의 두 지점에서 동일하게 보유하고 있는 도서 목록을 나타내시오.

도서A ∩ 도서B

도서A

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

도서B

1

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000

그림 2-20 교집합의 예

❖ 차집합(difference)

R - S

• 첫 번째 릴레이션에는 속하고 두 번째 릴레이션에는 속하지 않는 투플을 반환

질의 2-5

마당서점의 두 지점 중 지점 A에서만 보유하고 있는 도서 목록을 나타내시오.

• 도서A - 도서B

도서A

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

도서B

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격	
2	축구 아는 여자	나무수	13000	
3	축구의 이해	대한미디어	22000	

그림 2-21 처집합의 예

❖ 카티션 프로덕트(cartesian product)

• 수평적 연산으로, 카티션 프로덕트는 두 릴레이션을 연결시켜 하나로 합칠 때 사용

R×S

질의 2-6

고객 릴레이션과 주문 릴레이션의 카티션 프로덕트를 구하시오(결과 개수가 많으므로 투플을 일부 삭제한 릴레이션을 사용한다).

• 고객 x 주문

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스터	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	김연경	대한민국 경기도	000-7000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2024-07-01
2	1	2	13000	2024-07-03
3	2	5	8000	2024-07-03
4	1	2	13000	2024-07-04

X

고객번호	이름	주소	핸드폰	주문번호	고객번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스터	000-5000-0001	1	2	1	7000	2024-07-01
1	박지성	영국 맨체스터	000-5000-0001	2	1	2	13000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	3	2	5	8000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	4	1	2	13000	2024-07-04
2	김연아	대한민국 서울	000-6000-0001	1	2	1	7000	2024-07-01
2	김연아	대한민국 서울	000-6000-0001	2	1	2	13000	2024-07-03
2	김연아	대한민국 서울	000-6000-0001	3	2	5	8000	2024-07-03
2	김연아	대한민국 서울	000-6000-0001	4	1	2	13000	2024-07-04
3	김연경	대한민국 경기도	000-7000-0001	1	2	1	7000	2024-07-01
3	김연경	대한민국 경기도	000-7000-0001	2	1	2	13000	2024-07-03
3	김연경	대한민국 경기도	000-7000-0001	3	2	5	8000	2024-07-03
3	김연경	대한민국 경기도	000-7000-0001	4	1	2	13000	2024-07-04

- 두 릴레이션의 공통 속성을 기준으로 속성값이 같은 투플을 수평으로 결합하는 연산
- 조인 연산자(▷<)는 기본 연산자의 조합으로 구현할 수 있는 유도된 연산자

$$R \bowtie_c S = \bigcirc_c (R \times S)$$

■ 조인 연산은 크게 기본 조인 연산과 확장된 조인 연산으로 구분

❖ 기본 조인 연산

- 세타조인(⋈_θ)
 - 두 릴레이션 간의 속성값을 비교(=, ≠, ≤, ≥, <, >)하여 조건에 맞는 투플을 반환함
- 자연조인(⋈_N)
 - 속성값이 같은 투플만 반환하는 동등조인(▷◁), 속성 이름이 같은 투플만 대상으로 하되 중복 속성을 제거하고 반환함

❖ 세타조인과 동등조인

- 세타조인(theta join, θ)
 - 조인에 참여하는 두 릴레이션의 속성값을 비교하여 조건을 만족하는 투플만 반환함

- 동등조인(equi join)
 - 세타조인에서 = 연산자를 사용한 조인을 말함
 - 보통 조인 연산이라고 하면 동등조인을 지칭

$$R\bowtie_{(r=s)} S$$

질의 2-7

고객과 고객의 주문 사항을 모두 나타내시오.

• 고객 고객,고객번호=주문,고객번호 주문

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스터	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	김연경	대한민국 경기도	000-7000-0001
4	추신수	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2024-07-01
2	1	2	13000	2024-07-03
3	2	5	8000	2024-07-03
4	1	2	13000	2024-07-04
5	4	4	35000	2024-07-05
6	5	3	22000	2024-07-07
7	4	3	22000	2024-07-07

48

1

고객 ⋈고객교객번호=주문고객번호 주문

1

고객번호	이름	주소	핸드폰	주문번호	고객번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스터	000-5000-0001	2	1	2	13000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	4	1	2	13000	2024-07-04
2	김연아	대한민국 서울	000-6000-0001	1	2	1	7000	2024-07-01
2	김연아	대한민국 서울	000-6000-0001	3	2	5	8000	2024-07-03
4	추신수	미국 클리블랜드	000-8000-0001	5	4	4	35000	2024-07-05
4	추신수	미국 클리블랜드	000-8000-0001	7	4	3	22000	2024-07-07

그림 2-23 동등조인의 예

❖ 자연조인(natural join)

 $R\bowtie_{N(r, s)} S$

질의 2-8

고객과 고객의 주문 사항을 모두 보여주되 같은 속성은 한 번만 표시하시오.

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스터	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	김연경	대한민국 경기도	000-7000-0001
4	추신수	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2024-07-01
2	1	2	13000	2024-07-03
3	2	5	8000	2024-07-03
4	1	2	13000	2024-07-04
5	4	4	35000	2024-07-05
6	5	3	22000	2024-07-07
7	4	3	22000	2024-07-07

T

고객 ⋈_{N (고객고객번호 주문고객번호)} 주문

고객번호	이름	주소	핸드폰	주문번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스터	000-5000-0001	2	2	13000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	4	2	13000	2024-07-04
2	김연아	대한민국 서울	000-6000-0001	1	1	7000	2024-07-01
2	김연아	대한민국 서울	000-6000-0001	3	5	8000	2024-07-03
4	추신수	미국 클리블랜드	000-8000-0001	5	4	35000	2024-07-05
4	추신수	미국 클리블랜드	000-8000-0001	7	3	22000	2024-07-07

❖ 외부조인(outer join)과 세미조인(semi join)

- 외부조인
 - 자연조인 시 조인에 실패한 투플을 모두 보여주되 값이 없는 대응 속성에는 NULL 값을 채워서 반환함
 - 모든 속성을 보여주는 기준 릴레이션 위치에 따라 왼쪽 외부조인, 오른쪽 외부조인, 완전 외부조인으로 나뉨
 - 외부조인의 작성 형식

• 왼쪽^{left} 외부조인: R ▷

• 오른쪽^{right} 외부조인: R ◯(r, s) S

그림 2-25 왼쪽 외부조인의 예

질의 2-9

마당서점의 고객과 고객의 주문 내역을 나타내시오.

- ① 고객 기준으로 주문 내역이 없는 고객도 모두 나타내시오.
- ② 주문 내역이 없는 고객과 고객 릴레이션에 고객번호가 없는 주문을 모두 나타내시오.
- ③ 주문 내역 기준으로 고객 릴레이션에 고객번호가 없는 주문도 모두 나타내시오.
- ① 고객 → (고객.고객번호, 주문.고객번호)
- ② 고객[▶](고객.고객번호, 주문.고객번호)
- ③ 고객⋉_(고객.고객번호, 주문.고객번호) 주문

			고객	1			주문	!								
			고	객반	호 이튿	+	주	문번호	고	백번호	판매	가격				
				1	박지	성		1		2	70	000				
				2	김연	PF		2		1	130	000				
				3	김연	경		3		2	80	000				
				4	추신	수		4		1	130	000				
					20	54		5		4	350	000				
								6		5	220	000				
								7		4	220	000				
	,	T						Ţ							L	
고객	◯	개번호, 주문,고객번호)	주문		고객	\bowtie	- -(고객고	객번호, 주문고	고객번호)	주문			고	객 🄀 (교객교객		주문
	,	Ļ						+							Ļ	
고객번호	이름	주문번호	판매가격		고객번호	0	름	주문	선호	판매기	l ^격	0 -	름	주문번호	고객번호	판매가격
1	박지성	2	13000		1	박기	지성	2		130	00	김인	10 <u>F</u>	1	2	7000
1	박지성	4	13000		1	박기	지성	4	4	130	00	박지	성	2	1	13000
2	김연아	1	7000		2	김영	연아	1		70	00	김인	101	3	2	8000
2	김연아	3	8000		2	김임	연아	3		80	00	박지	성	4	1	13000
3	김연경	NULL	NULL		3	김임	연경	NULL		NULL		추신	수	5	4	35000
4	추신수	5	35000		4	추신	신수	5		350	00	NUL	L	6	5	22000
4	추신수	7	22000		4	추신	신수	7	2	220	00	추신	<u>-</u> 수	7	4	22000
					5	NUL	L	6	8	220	00			•		
	① 왼쪽	외부조인				(2) 완전	외부조	인					③ 오른쪽	즉 외부조인	

그림 2-26 외부조인의 예

52

- 세미조인(semi join)
 - 자연조인을 한 후 두 릴레이션 중 한쪽 릴레이션의 결과만 반환함

 $R \bowtie_{(r, s)} S$

질의 2-10

마당서점의 고객 중 주문 내역이 있는 고객의 고객 정보를 나타내시오.

• 고객🄀 (고객.고객번호, 주문.고객번호) 주문

고객

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스터	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
3	김연경	대한민국 경기도	000-7000-0001
4	추신수	미국 클리블랜드	000-8000-0001

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2024-07-01
2	1	2	13000	2024-07-03
3	2	5	8000	2024-07-03
4	1	2	13000	2024-07-04
5	4	4	35000	2024-07-03
6	5	3	22000	2024-07-03
7	4	3	22000	2024-07-04

고객 🔀 (고객 고객번호, 주문고객번호) 주문

고객번호	이름	주소	핸드폰
1	박지성	영국 맨체스터	000-5000-0001
2	김연아	대한민국 서울	000-6000-0001
4	추신수	미국 클리블랜드	000-8000-0001

5. 디비전(division)

- 다른 연산과 달리 릴레이션 속성값의 집합으로 연산을 수행함
- 예) 릴레이션 R과 S에 대한 세 가지 디비전 연산

R ÷ S

그림 2-28 디비전 연산의 예

질의 2-11

마당서점의 도서 중 가격이 8,000원 이하인 도서이름과 출판사를 나타내시오.

■ 마당서점의 지점이 하나인 경우

도서

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
5	피겨 교본	굿스포츠	8000

兀_{도세이름, 출판사}

도서이름	출판사
축구의 역사	굿스포츠
피겨 교본	굿스포츠

그림 2-29 단일 릴레이션에서 셀렉션, 프로젝션 연산의 복합 사용

■ 마당서점의 지점이 둘(A, B)인 경우 π_{도서이름, 출판사} ((Ο_{가격<= 8000} 도서A) ∪ (Ο_{가격<= 8000} 도서B))

도서A

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
2	축구 아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000

도서B

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
4	골프 바이블	대한미디어	35000
 5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격
1	축구의 역사	굿스포츠	7000
5	피겨 교본	굿스포츠	8000

도서번호	도서이름	출판사	가격	
1	축구의 역사	굿스포츠	7000	
5	피겨 교본	굿스포츠	8000	

도서이름	출판사
축구의 역사	굿스포츠
피겨 교본	굿스포츠

질의 2-12

마당서점의 박지성 고객의 거래 내역 중 주문번호, 이름, 가격을 나타내시오.

■ 카티션 프로덕트를 사용한 연산(방법 1)

 $\pi_{\text{주문.주문번호, 고객.이름, 주문.판매가격}}(O_{\text{고객.고객번호=주문.고객번호 AND 고객.이름='박지성'}}$ (고객×주문))

고객

고객번호	이름	주소	핸드폰	
1 박지성 영		영국 맨체스터	000-5000-0001	
2	김연아	대한민국 서울	000-6000-0001	
3	김연경	대한민국 경기도	000-7000-0001	
4	추신수	미국 클리블랜드	000-8000-0001	

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2024-07-01
2	1	2	13000	2024-07-03
3	2	5	8000	2024-07-03
4	1	2	13000	2024-07-04
5	4	4	35000	2024-07-03
6	5	3	22000	2024-07-03
7	4	3	22000	2024-07-04

고객×주문

고객번호	이름	주소	핸드폰	주문번호	고객번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스터	000-5000-0001	1	2	1	7000	2024-07-01
1	박지성	영국 맨체스터	000-5000-0001	2	1	2	13000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	3	2	5	8000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	4	1	2	13000	2024-07-04
1	박지성	영국 맨체스터	000-5000-0001	5	4	4	35000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	6	5	3	22000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	7	4	3	22000	2024-07-04
2	김연아	대한민국 서울	000-6000-0001	1	2	1	7000	2024-07-01
			2	5략				
4	추신수	미국 클리블랜드	000-8000-0001	4	1	2	13000	2024-07-04
4	추신수	미국 클리블랜드	000-8000-0001	5	4	4	35000	2024-07-03
4	추신수	미국 클리블랜드	000-8000-0001	6	5	3	22000	2024-07-03
4	추신수	미국 클리블랜드	000-8000-0001	7	4	3	22000	2024-07-04

고객번호	이름	주소	핸드폰	주문번호	고객번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스터	000-5000-0001	2	1	2	13000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	4	1	2	13000	2024-07-04

元 不足 주足性意、 고객 の層、 주足판매가격

주문번호	이름	판매가격		
2	박지성	13000		
4	박지성	13000		

■ 조인을 사용한 연산(방법 2)

고객

고객번호	이름	주소	핸드폰		
1	박지성	영국 맨체스터	000-5000-0001		
2	김연아	대한민국 서울	000-6000-0001		
3	김연경	대한민국 경기도	000-7000-0001		
4	추신수	미국클리블랜드	000-8000-0001		

주문

주문번호	고객번호	도서번호	판매가격	주문일자
1	2	1	7000	2024-07-01
2	1	2	13000	2024-07-03
3	2	5	8000	2024-07-03
4	1	2	13000	2024-07-04
5	4	4	35000	2024-07-03
6	5	3	22000	2024-07-03
7	4	3	22000	2024-07-04

고객 🖂 고객교객변호 주문교객변호 주문

고객번호	이름	주소	핸드폰	주문번호	고객번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스터	000-5000-0001	2	1	2	13000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	4	1	2	13000	2024-07-04
2	김연아	대한민국 서울	000-6000-0001	1	2	1	7000	2024-07-01
2	김연아	대한민국 서울	000-6000-0001	3	2	5	8000	2024-07-03
4	추신수	미국 클리블랜드	000-8000-0001	5	4	4	35000	2024-07-03
4	추신수	미국 클리블랜드	000-8000-0001	7	4	3	22000	2024-07-04

■ 조인을 사용한 연산(방법 2 ... 계속)

T 주문번호, 이름, 판매가격(O이름='박지성'(고객) 고객,고객번호=주문,고객번호 주문))

고객번호	이름	주소	핸드폰	주문번호	고객번호	도서번호	판매가격	주문일자
1	박지성	영국 맨체스터	000-5000-0001	2	1	2	13000	2024-07-03
1	박지성	영국 맨체스터	000-5000-0001	4	1	2	13000	2024-07-04

주문번호	이름	판매가격
2	박지성	13000
4	박지성	13000

그림 2-32 조인을 사용한 연산

연습문제 (Q2.3)

- 06 릴레이션에서 특정 속성에 해당하는 열을 선택하는 데 사용하며, 릴레이션의 수직적 부분집합을 반환하는 관계대수 연산자는?
 - 1 projection
 - 2 join
 - ③ division
 - 4 selection
- 07 릴레이션 C가 릴레이션 A(X, Y)와 B(Y, Z)를 자연조인한 결과일 때 다음 중 옳은 설명은?
 - ① C의 카디날리티는 A의 카디날리티보다 많다.
 - ② C의 카디날리티는 A의 카디날리티보다 적다.
 - ③ C의 차수는 A의 차수보다 많다.
 - ④ C의 차수는 A의 차수보다 적다.
 - ⑤ 모두 틀리다.

연습문제 (Q2.4)

13 다음 릴레이션 R, S에 대한 관계대수식의 결과를 작성하시오.

R

Α	В	С
a1	b1	c1
a2	b1	c1
a3	b1	c2
a4	b2	c4

S

С	D	Е
c1	d2	e1
c1	d1	e2
c2	d3	e3
c5	d3	e3

16 다음 수강신청 관련 릴레이션에 대한 질의문을 관계대수식으로 표현하시오. 밑줄 친 속성은 기 본키이고, 이름이 같은 속성은 외래키다.

학생(<u>학번</u>, 이름, 전공, 학년)

수강(과목코드, 학번, 수강학기, 성적)

과목(과목코드, 과목이름, 강의실, 요일, 담당교수)

- (1) 과목코드가 1234이고 성적이 A인 모든 학생의 학번을 나타내시오.
- (2) 과목코드가 1234인 과목을 등록한 학생의 이름과 전공을 나타내시오.
- (3) 과목코드가 1234인 과목에 등록하지 않은 학생의 이름을 나타내시오. 단, 모든 학생이 수강 신청에 참여했다고 가정한다.
- (4) 모든 과목에 등록한 학생의 이름을 나타내시오. (디비전 연산자 사용함 난이도가 있음)

- (1) $O_{A=a2}$ (R)
- (2) $\pi_{A, B}$ (R)
- (3) π_{A_-B} ($\sigma_{A=a2}$ (R))
- $(4) R \times S$
- (5) R $\bowtie_{R,c=S,c} S$
- (6) R $\bowtie_{R, c=S, c} S$
- (7) $R \bowtie_{R,c=S,c} S$
- (8) R ≥ R_{, C=S, C} S
- (9) $\pi_{\rm C}$ (R) \cup $\pi_{\rm C}$ (S)
- (10) $\pi_{\rm C}(R) \cap \pi_{\rm C}(S)$

연습문제 (Q2.5)

18 [판매원 데이터베이스] 다음 릴레이션을 보고 물음에 답하시오. Salesperson은 판매원, Order 는 주문, Customer는 고객을 나타낸다. 밑줄 친 속성은 기본키이고 custname과 salesperson은 각각 Customer, name과 Salesperson, name을 참조하는 외래키다.

```
Salesperson(name, age, salary)
Order(number, custname, salesperson, amount)
Customer(name, city, industrytype)
```

- (1) 모든 판매원(Salesperson)의 이름을 나타내시오.
- (2) 고객 '홍길동'의 주문을 수주한 판매원의 이름을 나타내시오.
- (3) 주문이 있는 판매원의 이름을 나타내시오.
- (4) 주문이 없는 판매원의 이름을 나타내시오.
- (5) 고객 '홍길동'의 주문을 수주한 판매원의 나이를 나타내시오.
- (6) 나이가 25세인 판매원에게 주문한 고객의 city 값을 나타내시오.
- (7) 판매원의 이름과 그 판매원에게 주문한 고객의 이름을 나타내시오. 단, 주문이 없는 판매원 도 포함하여 구한다.

요약

- 1. 릴레이션
- 2. 릴레이션 스키마
- 3. 릴레이션 인스턴스
- 4. 관계 데이터베이스 시스템
- 5. *키*
- 6. 무결성 제약조건
- 7. 참조 무결성 제약조건의 옵션
- 8. 관계대수
- 9. 디비전