Natural Language Processing with Deep Learning

Lecture 7 — Recurrent neural networks

Prof. Dr. Ivan Habernal

December 5, 2024

www.trusthlt.org

Trustworthy Human Language Technologies Group (TrustHLT)
Ruhr University Bochum & Research Center Trustworthy Data Science and Security

Motivation

Language data – working with sequences (of tokens, characters, etc.)

MLP – fixed input vector size

How we dealt with it

- Vector concatenation
- Vector addition/averaging (CBOW)
- Limiting context (e.g., Markov property)

What we want to really work with: Sequence of inputs, fixed-size output(s)

Our goal would be to build something like this

Example for 4 input tokens

Recurrent Neural Networks (RNN) abstraction

- 1 Recurrent Neural Networks (RNN) abstraction
- 2 RNN architectures
- 3 Encoder-decoder architectures

RNN abstraction

We have a sequence of n **input** vectors $x_{1:n} = x_1, \ldots, x_n$

Each input vector has the same dimension $d_{in}: x_i \in \mathbb{R}^{d_{in}}$

What might x_i contain?

 \blacksquare Typically a word embedding of token i, but could be any arbitrary input, e.g., one-hot encoding of token i

We have a single **output** d_{out} -dimensional vector $\mathbf{u}_n \in \mathbb{R}^{d_{out}}$

RNN is a function from input to output

$$y_n = \text{RNN}(x_{1:n})$$

RNN in fact returns a sequence of outputs

RNN definition: $y_n = RNN(x_{1:n})$

Let's have n=3, so our input sequence is x_1, x_2, x_3 :

$$oldsymbol{y_2} = ext{RNN}(oldsymbol{x_1}, oldsymbol{x_2}, oldsymbol{x_3})$$

But our input sequence also contains x_1, x_2 , so:

$$y_2 = \text{RNN}(x_1, x_2)$$

 $y_{1:n} = \text{RNN}^*(x_{1:n})$

Which makes RNN outputting a vector $u_i \in \mathbb{R}^{d_{out}}$ at each position $i \in (1, \ldots, n)$

Let's call this sequence-outputting function RNN*:

Neural LMs and learning word embeddings

Adding outputs to our sketch

Recap

For a sequence of input vectors $x_{1:i}$

$$oldsymbol{y_i} = ext{RNN}(oldsymbol{x_{1:i}}) \qquad oldsymbol{y_{1:n}} = ext{RNN}^*(oldsymbol{x_{1:n}})$$

Without knowing what RNN actually is, what are the advantages?

Each output u_i takes into account the entire history $x_{i,i}$ without Markov property

What to do with y_n or $y_{1:n}$?

■ Use for further prediction, e.g., plug into softmax, MLP, etc.

Underlying mechanism of RNNs — states

For "passing information" from one position to the next, i.e. from

$$y_i = \text{RNN}(x_{1:i})$$

to

$$y_{i+1} = \text{RNN}(x_{1:i+1})$$

we use a "state" vector

$$oldsymbol{s_i} \in \mathbb{R}^{d_{state}}$$

Adding state vectors

Define RNN recursively — Computing current state

At each step $i \in (1, ..., n)$ we have

- \blacksquare Current input vector x_i
- Vector of the previous state s_{i-1}^1

and compute

Current state s_i

$$s_i = R(s_{i-1}, x_i)$$
 (we will specify R later)

Initial state vector s_0 — often omitted, assumed to be zero-filled

Define RNN recursively — Computing current output

At each step $i \in (1, ..., n)$ we have

- \blacksquare Current input vector x_i
- Vector of the previous state s_{i-1}

and compute

- lacksquare Current state $s_i = R(s_{i-1}, x_i)$
- lacksquare Current output y_i

$$y_i = O(s_i)$$
 (we will specify O later)

Adding R and O

Summary

At each step $i \in (1, ..., n)$ we have

lacksquare Current input x_i and previous state s_{i-1}

and compute

$$lacksquare s_i = R(oldsymbol{s_{i-1}}, oldsymbol{x_i})$$
 and $oldsymbol{y_i} = O(oldsymbol{s_i})$

The functions R and O are the same for each position i

RNN

$$y_{1:n} = \text{RNN}^*(x_{1:n}, s_0)$$
 $s_i = R(s_{i-1}, x_i)$ $y_i = O(s_i)$

Graphical visualization of abstract RNN (unrolled)

Note that θ (parameters) are "shared" (the same) for all positions

Graphical visualization of abstract RNN (recursive)

Recurrent Neural Networks (RNN) abstraction

RNN as 'acceptor' or 'encoder'

Supervision on the last output

The loss is computed on the final output (e.g., directly on y_n or by putting y_n through MLP)

Recurrent Neural Networks (RNN) abstraction

RNN as 'transducer'

Supervision on each output

For sequence tagging — loss on each position, overall network's loss simply as a sum of losses

Bi-directional RNNs

Simple idea: Run one RNN from left-to-right (forward, f) and another RNN from right-to-left (backward, b), and concatenate

$$\text{biRNN}(\boldsymbol{x_{1:i}}, i) = \boldsymbol{y_i} = [\underset{f}{\text{RNN}}(\boldsymbol{x_{1:i}}); \underset{b}{\text{RNN}}(\boldsymbol{x_{n:i}})]$$

Both for encoder (concatenate the last outputs) and transducer (concatenate each step's output)

TrustHLT — Prof. Dr. Ivan Habernal

But what is happening 'inside' R and O?

RNN architectures

- 1 Recurrent Neural Networks (RNN) abstraction
- 2 RNN architectures
- 3 Encoder-decoder architectures

RNN architectures

Simple RNN

Elman Network or Simple-RNN (S-RNN)

$$s_i = R(x_i, s_{i-1}) = g(s_{i-1} W^s + x_i W^x + b)$$

 $y_i = O(s_i) = s_i$

$$oldsymbol{s_i}, oldsymbol{y_i} \in \mathbb{R}^d_s \quad oldsymbol{x_i} \in \mathbb{R}^d_{in} \quad oldsymbol{W^x} \in \mathbb{R}^{d_{in} imes d_s} \quad oldsymbol{W^s} \in \mathbb{R}^{d_s imes d_s} \quad oldsymbol{b} \in \mathbb{R}^{d_s}$$

q — commonly tanh or ReLU

Elman Network and vanishing gradient

Gradients might vanish $(\rightarrow 0)$ as they propagate back through the computation graph

- Severe in deeper nets, especially in recurrent networks
- Hard for the S-RNN to capture long-range dependencies

RNN architectures

Gated architectures

RNN as a general purpose computing device

State s_i represents a finite memory

Recall: Simple RNN

$$s_i = R(x_i, s_{i-1}) = g(s_{i-1} W^s + x_i W^x + b)$$

Each application of function R

- Reads the current memory s_{i-1}
- Reads the current input x_i
- Operates on them in some way
- Writes the result to the memory s_i

Memory access not controlled: At each step, entire memory state is read, and entire memory state is written TrustHLT — Prof. Dr. Ivan Habernal

How to provide more controlled memory access?

Memory vector $\boldsymbol{s} \in \mathbb{R}^d$ and input vector $\boldsymbol{x} \in \mathbb{R}^d$

Let's have a binary vector ("gate") $\mathbf{g} \in \{0, 1\}^d$

Hadamard-product $z = u \odot v$

Fancy name for element-wise multiplication $z_{[i]} = u_{[i]} \cdot v_{[i]}$

$$s' \leftarrow g \odot x + (1+g) \odot s$$

- Reads the entries in x corresponding to ones in the gate, writes them to the memory
- Remaining locations are copied from the memory
- Note that the operation + here is modulo 2

Gate example

Updating memory position 2

$$egin{pmatrix} 8 \ 11 \ 3 \end{pmatrix} \leftarrow egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \odot & egin{pmatrix} 10 \ 11 \ 12 \end{pmatrix} + & egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} \odot & egin{pmatrix} 8 \ 9 \ 3 \end{pmatrix} \ s' \leftarrow & oldsymbol{g} \odot & oldsymbol{x} + & (\mathbf{1} + oldsymbol{g}) \odot & oldsymbol{s} \end{bmatrix}$$

Could be used for gates in RNNs! But:

- Our gates are not learnable
- Our hard-gates are not differentiable

Solution: Replace with 'soft' gates

RNN architectures

LSTM

Long Short-Term Memory (LSTM)

Designed to solve the vanishing gradients problem, first to introduce the gating mechanism

LSTM splits the state vector s_i exactly in two halves

- One half is treated as 'memory cells'
- The other half is 'working memory'

Memory cells

- Designed to preserve the memory, and also the error aradients, across time
- Controlled through differentiable gating components smooth functions that simulate logical gates

Long Short-Term Memory (LSTM)

The state at time i is composed of two vectors:

- c_i the memory component
- h_i the hidden state component

At each input state i, a gate decides how much of the new input should be written to the memory cell, and how much of the memory cell should be forgotten

There are three gates

- *i* input gate
- **f** − forget gate
- o output gate

LSTM architecture

z — update candidate

LSTM parameters and dimensions

$$x_j \in \mathbb{R}^{d_{in}}$$
 $c_j, h_j, y_j, i, f, o, z \in \mathbb{R}^{d_h}$ $W^{x\star} \in \mathbb{R}^{d_{in} \times d_h}$ $W^{h\star} \in \mathbb{R}^{d_h \times d_h}$ d_h — dimensionality of LSTM ('hidden' layer) $y_j = h_j$
$$c_{j-1} \longrightarrow c_j = f \odot c_{j-1} + i \odot z \longrightarrow c_j \longrightarrow h_j = o \odot \tanh(c_j) \longrightarrow h_j$$

$$o = \sigma(x_j W^{xo} + h_{j-1} W^{ho})$$

$$i = \sigma(x_j W^{xi} + h_{j-1} W^{hi})$$

$$z = \tanh(x_j W^{xz} + h_{j-1} W^{hz})$$

LSTM as a 'layer'

We also ignored bias terms for each gate

Recap

- 1 Recurrent Neural Networks (RNN) abstraction
- 2 RNN architectures
- 3 Encoder-decoder architectures

Encoder-decoder architectures

- 1 Recurrent Neural Networks (RNN) abstraction
- 2 RNN architectures
- 3 Encoder-decoder architectures

The problem of variable output sequence length

We have a sequence of n **input** vectors $x_{1:n} = x_1, \ldots, x_n$

Each input vector has the same dimension $d_{in}: x_i \in \mathbb{R}^{d_{in}}$

We also have a **sequence** of d_{out} -dimensional vector $y_{1:\hat{n}} \in \mathbb{R}^{\hat{n} imes d_{out}}$ outputs

RNNs produce a sequence of outputs

$$y_{1:n} = \text{RNN}(x_{1:n})$$

What are we missing?

The input and output sequence: rarely of same length

Generating a variable length sequence

Translate to German: I like attending deep learning lectures

Output: Ich besuche gerne Deep-Legrning-Vorlesungen

Current approach:

- 1 Tokenize input sequence
- 2 Obtain a word embedding (e.g. word2vec) for each token
- 3 Use a RNN (e.g. LSTM) to encode sequence of tokens
- 4 Generate token sequence in target language
 - Multi-class classification over target vocabulary

Generating a variable length sequence

How to solve the issue of varying input/output lenaths?

- We don't have to stop generating after the last input
- We can only consider outputs up to a special "end token"

Neither ideal

Sequence-to-sequence models

Two networks

- **Encoder** (reader) RNN
- **Decoder** (writer) **RNN**

Note:

Encoder and decoder have separate params

The encoder-decoder architecture specifics

- How to **initialize** decoder hidden **state**?
 - $h_0^{dec} = h_n^{enc}$: simply copy the last encoder state
 - $h_{\theta}^{dec} = NN_{\theta}(h_{\eta}^{enc})$: transform the last encoder state
- 2 When do we **stop generating** with the decoder?
 - We use a **special token** (<EOS>, \n) to indicate the end-of-sequence
 - When the **maximum generation length** is exceeded
- 3 What are the **inputs** of the decoder?
 - The **previous output** of the decoder
 - \blacksquare Teacher forcing (with probability p): use the **correct** output
 - What is the **initial input** x_0^{dec} ?
 - A beginning-of-sequence **special token** (<BOS>)

The encoder-decoder architecture

Decoder inputs

- $x_0^{dec} = < BOS >$
- $x_i^{dec} = y_i^{dec}$ if no teacher forcing
- $\mathbf{x}_i^{dec} = \hat{y}_i$ if we use teacher forcing

Take aways

- RNNs for arbitrary long input
- Encoding the entire sequence and/or each step
- Modeling freedom with bi-directional RNNs
- Vanishing gradients in deep nets gating mechanism. memory cells
- LSTM a particularly powerful RNN
- Encoder-decoder RNNs for text-to-text tasks

License and credits

Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Credits

Ivan Habernal, Martin Tutek

Content from ACL Anthology papers licensed under CC-BY https://www.aclweb.org/anthology