National University of Computer & Emerging Sciences

Priority Queues AKA Heaps

Motivation

- Queues are a standard mechanism for ordering tasks on a first-come, first-served basis
- However, some tasks may be more important or timely than others (higher priority)
- Priority queues
 - Store tasks using a partial ordering based on priority
 - Ensure highest priority task at head of queue
- Heaps are the underlying data structure of priority queues

Applications of the Priority Queue

- Hold jobs for a printer in order of length
- Store packets on network routers in order of urgency
- Ordering CPU jobs
- Emergency room admission processing
- Anything greedy

Priority Queues: Specification

- Main operations
 - insert (i.e., enqueue)
 - Dynamic insert
 - specification of a priority level (0-high, 1,2.. Low)
 - deleteMin (i.e., dequeue)
 - Finds the current minimum element (read: "highest priority") in the queue, deletes it from the queue, and returns it
- Performance goal is for operations to be "fast"

Using priority queues

Simple Implementations

- Unordered linked list
 - Insert in one step
 - deleteMin in n steps
- Ordered linked list
 - Insert in n steps
 - deleteMin in one step
- Balanced BT

Can we build a data structure better suited to store and retrieve priorities?

Heaps

Binary Heap

A priority queue data structure

Binary Heap

- A binary heap is a binary tree with two properties
 - Structure property
 - Heap-order property

Structure Property

- A binary heap is a <u>complete</u> binary tree
 - Each level (except possibly the bottom most level) is completely filled
 - The bottom most level may be partially filled (from left to right)

Binary Heap Example

Structure property

Array representation:

Heap-order Property

- Heap-order property (for a "MinHeap")
 - For every node X, $key(parent(X)) \le key(X)$
 - Except root node, which has no parent
- Thus, minimum key always at root
 - Alternatively, for a "MaxHeap", always keep the maximum key at the root
- Insert and deleteMin must maintain heap-order property

Heap Order Property

Implementing Complete Binary Trees as Arrays

- Given element at position i in the array
 - Left child(i) = at position 2i
 - Right child(i) = at position 2i + 1
 - Parent(i) = at position

$$\ddot{\theta}$$
 / $2\hat{u}$

Heap Insert

- Insert new element into the heap at the next available slot ("hole")
 - According to maintaining a complete binary tree
- Then, "percolate" the element up the heap while heaporder property not satisfied

Percolating Up

Insert 14:

Percolating Up

Percolating Up

Percolating Up

Heap DeleteMin

- Minimum element is always at the root
- Heap decreases by one in size
- Move last element into hole at root
- Percolate down while heap-order property not satisfied

Percolating down...

Percolating down...

Percolating down...

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

Percolating down...

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

Is 31 > min(65,26)?
•Yes - swap 31 with min(65,26)

Percolating down...

Percolating down...

Percolating down...

Improving Heap Insert Time

- What if all N elements are all available upfront?
- To build a heap with N elements:
 - Default method takes more time
 - We will now see a new method

Building a Heap

- Construct heap from initial set of N items
- Solution 1
 - Perform N inserts
- Solution 2
 - Randomly populate initial heap with structure property
 - Perform a percolate-down from each internal node
 - To take care of heap order property

<u>Input:</u> { 150, 80, 40, 30, 10, 70, 110, 100, 20, 90, 60, 50, 120, 140, 130 }

Leaves are all valid heaps (implicitly)

- Arbitrarily assign elements to heap nodes
- Structure property satisfied
- Heap order property violated
- Leaves are all valid heaps (implicit)

So, let us look at each internal node, from bottom to top, and fix if necessary

- Randomly initialized heap
- Structure property satisfied
- Heap order property violated
- Leaves are all valid heaps (implicit)

Dotted lines show path of percolating down

Heaps

Dotted lines show path of percolating down

Final Heap

Dotted lines show path of percolating down

"He who asks a question is a fool for five minutes; he who does not ask a question remains a fool forever"

Chinese Proverb

"The wise man doesn't give the right answers, he poses the right questions."

Claude Levi-Strauss

"A wise man can learn more from a foolish question than a fool can learn from a wise answer."

Bruce Lee

