Lecture 17: Convergence Proof of Perceptron Algo, Kernel perceptron, Logistic Regression (Begin) Instructor: Prof. Ganesh Ramakrishnan

Recap: Perceptron Update Rule

• Perceptron works for two classes $(y = \pm 1)$. A point is misclassified if $y \mathbf{w}^T(\phi(\mathbf{x})) < 0$ (error is on those \mathbf{x} for which the "unsigned distance" turns out Perceptron Algorithm: INITIALIZE: w=ones()
 REPEAT: for each < x, y > 1
 If yw^TΦ(x) < 0
 then, w = w + ηφ(x).y
 endif
 Intuition:

Some max # iterations Intuition: $\underline{y(\mathbf{w}^{(k+1)})^T\phi(\mathbf{x})} = y(\mathbf{w}^k + \eta y \phi^T(\mathbf{x}))\phi(\mathbf{x})$

$$\frac{y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x})}{\mathbf{w}^{(k+1)}} = y(\mathbf{w}^k + \eta y \phi^T(\mathbf{x})) \phi(\mathbf{x})$$

$$\frac{y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x})}{\mathbf{w}^{(k+1)}} = y(\mathbf{w}^k)^T \phi(\mathbf{x}) + \eta y^2 \|\phi(\mathbf{w})\|^2$$

$$\frac{y(\mathbf{w}^k)^T \phi(\mathbf{x})}{\mathbf{w}^{(k+1)}} = y(\mathbf{w}^k)^T \phi(\mathbf{x})$$
Since $y(\mathbf{w}^k)^T \phi(\mathbf{x}) = y(\mathbf{w}^k)^T \phi(\mathbf{x})$

Since $y(\mathbf{w}^k)^T \phi(\mathbf{x}) \leq 0$, we have $y(\mathbf{w}^{(k+1)})^T \phi(\mathbf{x}) > y(\mathbf{w}^k)^T \phi(\mathbf{x}) \Rightarrow$ more hope that this point is classified correctly now.

▶ ₽ 99€

▶ 2 99€

€ + 1 90C

€ + 1 90C

Convergence of Perceptron Algorithm

Formally,:- In an optimal separating hyperplane with parameters w* such that,

$$\forall (\mathbf{x}, y), \ y\phi^T(\mathbf{x})\mathbf{w}^* \geq 0$$

then the perceptron algorithm converges.

Proof:- We want to show that
$$2$$
 (independent of k) reduction such as 2 (independent of k) as 2 (independent of k) as 2 (independent of k).

(If this happens for some constant ρ , we are fine.)

In our discussion, let
$$\eta = 1$$

Note: (2.9) is such that $y(w^{(n)})^T \phi(x) < 0 \rightarrow 2$

• Formally,:- If \exists an optimal separating hyperplane with parameters \mathbf{w}^* such that,

$$\forall (\mathbf{x}, y), y \phi^T(\mathbf{x}) \mathbf{w}^* \geq 0$$

then the perceptron algorithm converges.

Proof:- We want to show that

$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(If this happens for some constant ρ , we are fine.)
$$\|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 + \|y\phi(\mathbf{x})\|^2 + 2y(\mathbf{w}^k - \rho\mathbf{w}^*)^T\phi(\mathbf{x})$$
(2)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 + \|y\phi(\mathbf{x})\|^2 + 2y(\mathbf{w}^k - \rho\mathbf{w}^*)^T\phi(\mathbf{x})$$

$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(1)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(2)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(1)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(1)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(2)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(3)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(4)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(5)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(6)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(7)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(8)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(9)
$$\lim_{k\to\infty} \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 = 0$$
(1)

• Formally,:- If \exists an optimal separating hyperplane with parameters \mathbf{w}^* such that,

$$\forall (\mathbf{x}, y), \ y\phi^T(\mathbf{x})\mathbf{w}^* \geq 0$$

then the perceptron algorithm converges.

Proof:- We want to show that

$$\lim_{k \to \infty} \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 = 0 \tag{1}$$

(If this happens for some constant ρ , we are fine.)

$$\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 = \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 + \|y\phi(\mathbf{x})\|^2 + 2y(\mathbf{w}^k - \rho \mathbf{w}^*)^T \phi(\mathbf{x})$$
 (2)

• For convergence of perceptron, we need L.H.S. to be less than R.H.S. at every step, although by some small but non-zero value (with $\theta \neq 0$)

$$\|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 \le \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 - \theta^2$$
 (3)

• Need that
$$\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2$$
 reduces by at least θ^2 at every iteration. The probability of the probability of

• Need that $\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2$ reduces by atleast θ^2 at every iteration.

$$\|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 \le \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 - \theta^2$$
 (4)

• Based on (2) and (4), we **need** to find θ such that,

$$\|\phi(\mathbf{x})\|^2 + 2y(\mathbf{w}^k - \rho\mathbf{w}^*)^T\phi(\mathbf{x}) \le -\theta^2$$

$$(\|y\phi(\mathbf{x})\|^2 = \|\phi(\mathbf{x})\|^2 \text{ since } y = \pm 1)$$

- The number of iterations would be: $O\left(\frac{\|\mathbf{w}^{(0)} \rho \mathbf{w}^*\|^2}{\theta^2}\right)$
- Tutorial 6, Problem 4 has more concerning the number of iterations. But first we will discuss how convergence holds in the first place!

- Observations:-
- $\delta = -\min_{\mathbf{x} \in \mathcal{D}} 2y \mathbf{w}^{*T} \phi(\mathbf{x}) \quad \text{(if } \sigma = \text{unsigned dist of closest})$ Then $\delta = -2\sigma$ Then $\delta = -2\sigma$
- Here, negative margin $\delta = -2y \mathbf{w}^{*T} \phi(\hat{\mathbf{x}})$ is the negative of unsigned distance of closest point $\hat{\mathbf{x}}$ from separating hyperplane :

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmax}} - 2y \mathbf{w}^{*T} \phi(\mathbf{x}) = \underset{\mathbf{x} \in \mathcal{D}}{\operatorname{arg min}} y \mathbf{w}^{*T} \phi(\mathbf{x})$$

• Since the data is linearly separable,

- Observations:-
- $7-\theta^{2} \ge 2y(\omega^{k}-y\omega^{k})^{2}\phi(x)$ • $y(\mathbf{w}^k)^T \phi(\mathbf{x}) < 0$ (: \mathbf{x} was misclassified)
 • $\Gamma^2 = \max_{\mathbf{x} \in \mathcal{D}} \|\phi(\mathbf{x})\|^2$ • $\delta = -\min_{\mathbf{x} \in \mathcal{D}} 2y \mathbf{w}^{*T} \phi(\mathbf{x}) > -2y \mathbf{w}^{*T} \phi(\mathbf{x})$
- need I st this is of unsigned in negative • Here, negative margin $\delta = -2\nu \mathbf{w}^{*T} \phi(\hat{\mathbf{x}})$ is the negative of unsigned distance of closest point $\hat{\mathbf{x}}$ from separating hyperplane :
 - $\hat{\mathbf{x}} = \operatorname{argmax} -2y\mathbf{w}^{*T}\phi(\mathbf{x}) = \operatorname{arg\,min} y\mathbf{w}^{*T}\phi(x)$
- Since the data is linearly separable, $\widehat{y}\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}}) \geq 0$, so, $\delta \leq 0$. Consequently, we **need** from ρ that:

from
$$\rho$$
 that:

$$2y(ω^{k}-yω^{k})φ(x)+||φ(x)||^{2}<-23yω^{k}φ(x)+||φ(x)||^{2}$$

$$<88+[^{2}<0]$$

$$=23yω^{k}φ(x)+||φ(x)||^{2}$$

- Observations:-
 - **1** $y(\mathbf{w}^k)^T \phi(\mathbf{x}) < 0 \ (\because \mathbf{x} \text{ was misclassified})$
 - $\Gamma^2 = \max_{\mathbf{x} \in \mathcal{D}} \|\phi(\mathbf{x})\|^2$
 - $\delta = -\min_{\mathbf{x} \in \mathcal{D}} 2y \mathbf{w}^{*T} \phi(\mathbf{x})$
- Here, negative margin $\delta = -2y\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}})$ is the negative of unsigned distance of closest point $\widehat{\mathbf{x}}$ from separating hyperplane :

$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmax}} - 2y \mathbf{w}^{*T} \phi(\mathbf{x}) = \underset{\mathbf{x} \in \mathcal{D}}{\operatorname{arg min}} y \mathbf{w}^{*T} \phi(x)$$

• Since the data is linearly separable, $\widehat{y}\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}}) \geq 0$, so, $\delta \leq 0$. Consequently, we need from ρ that:

$$0 \le \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 + \Gamma^2 + \rho\delta$$

• Since, $\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}}) \geq 0$, so, $\delta \leq 0$. Consequently, restating what we need from ρ is:

$$0 \le \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 + \underline{\Gamma^2 + \rho \delta}$$

to look like

$$0 \le \|\mathbf{w}^{(k+1)} - \rho\mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho\mathbf{w}^*\|^2 \le \theta^2$$

• Taking, $\rho =$

$$S_{1}^{2} = 0 = 0$$
 $S_{1}^{2} = 0$ $S_{2}^{2} = 0$ $S_{3}^{2} = 0$ S_{3}^{2

• Since, $\mathbf{w}^{*T}\phi(\widehat{\mathbf{x}}) \geq 0$, so, $\delta \leq 0$. Consequently, restating what we need from ρ is:

to look like
$$0 \leq \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 + \Gamma^2 + \rho\delta$$

$$0 \leq \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 < \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 + \theta^2$$
• Taking,
$$\rho = \frac{2\Gamma^2}{-\delta}, 0 \leq \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 \leq \|\mathbf{w}^k - \rho \mathbf{w}^*\|^2 - \Gamma^2$$
• Thus, we get,
$$\Gamma^2 = \theta^2, \text{ that we were looking for in eq.(3).}$$

$$\therefore \|\mathbf{w}^{(k+1)} - \rho \mathbf{w}^*\|^2 \text{ decreases by at least } \Gamma^2 \text{ at every iteration.}$$
• Summarily:
$$\mathbf{w}^k \text{ converges to } \rho \mathbf{w}^* \text{ by making a minimum } \theta^2 \text{ decrement at each step.}$$

- step.
- Thus, for $k \to \infty$, $\|\mathbf{w}^k \rho \mathbf{w}^*\| \to 0$. This proves convergence.

Number of iterations: (Tutorial 6, Problem 4)

• A statement on number of iterations for convergence: If $||\mathbf{w}^*|| = 1$ and if there exists $\delta > 0$ such that for all $i = 1, \ldots, n$, $y_i(\mathbf{w}^*)^T \phi(\mathbf{x}_i) \geq \delta$ and $||\phi(\mathbf{x}_i)||^2 \leq \Gamma^2$ then the perceptron algorithm will make atmost $\frac{\Gamma^2}{\delta^2}$ errors (that is take atmost $\frac{\Gamma^2}{\delta^2}$ iterations to converge)