### Symmetries in the sandpile model and the shuffle conjecture

#### Mark Dukes

School of Mathematics and Statistics, University College Dublin, Ireland

EinarFest @ NORCOM 2025









Toppling Rule:  
vertex 
$$v_i$$
 unstable  $\Rightarrow$ 

$$\begin{cases}
x_i \to x_i - d_i \\
x_j \to x_j + e_{ij}
\end{cases} \quad \forall j \neq i$$





recurrent configuration









recurrent configuration



non-recurrent configuration



Toppling Rule: vertex  $v_i$  unstable  $\Rightarrow$   $\begin{cases} x_i \rightarrow x_i - d_i \\ x_j \rightarrow x_j + e_{ij} \end{cases} \quad \forall j \neq i$ 





recurrent configuration



non-recurrent configuration

 $rec(K_{m,n}) :=$  set of all (weakly-decreasing) recurrent configurations







### Theorem (D and Le Borgne 2013)

 $c \in rec(K_{m,n})$  iff f(c) is a  $m \times n$  parallelogram polyomino.



### Theorem (D and Le Borgne 2013)

 $c \in \operatorname{rec}(K_{m,n})$  iff f(c) is a  $m \times n$  parallelogram polyomino.

### Corollary

If 
$$c \in rec(K_{m,n})$$
 then  $\sum c_i = area(f(c)) + (m+n-3)$ .

Fix a canonical toppling on recurrent configurations. Initially add 1 to all vertices ( $\equiv$  toppling the sink)

- 1. Topple all unstable right vertices.
- 2. Topple all unstable left vertices.
- 3. If any vertices are unstable then go to 1.

Fix a canonical toppling on recurrent configurations. Initially add 1 to all vertices ( $\equiv$  toppling the sink)

- 1. Topple all unstable right vertices.
- 2. Topple all unstable left vertices.
- 3. If any vertices are unstable then go to 1.

This canonical toppling can be identified within the corresponding parallelogram polyomino:

Fix a canonical toppling on recurrent configurations. Initially add 1 to all vertices ( $\equiv$  toppling the sink)

- 1. Topple all unstable right vertices.
- 2. Topple all unstable left vertices.
- 3. If any vertices are unstable then go to 1.

This canonical toppling can be identified within the corresponding parallelogram polyomino:



parabounce(
$$P$$
) =1 + 1 + 1 + 1 + 1 + 2 + 2 + 2 = 10 area( $P$ ) =8.

Fix a canonical toppling on recurrent configurations. Initially add 1 to all vertices ( $\equiv$  toppling the sink)

- 1. Topple all unstable right vertices.
- 2. Topple all unstable left vertices.
- 3. If any vertices are unstable then go to 1.

This canonical toppling can be identified within the corresponding parallelogram polyomino:



Define

$$\operatorname{Nara}_{m,n}(q,t) := \sum_{P \subset \operatorname{Para}} q^{\operatorname{area}(P)} t^{\operatorname{parabounce}(P)}.$$

 $\operatorname{Nara}_{m,n}(1,1)$  gives the Narayana numbers hence our naming 'q, t-Narayana polynomials'.

# 4. Unexpected symmetries

For example,  $Nara_{2,2}(q,t) = (qt)^4(1+q+t)$ ,

### 4. Unexpected symmetries

For example,  $\operatorname{Nara}_{2,2}(q,t)=(qt)^4(1+q+t)$ , and

Nara<sub>3,3</sub>
$$(q, t) = (qt)^6 (1 + t + 2t^2 + t^3 + t^4 + q + 2qt + 2qt^2 + qt^3 + 2q^2 + 2q^2t + q^2t^2 + q^3t + q^4$$

### 4. Unexpected symmetries

For example,  $Nara_{2,2}(q,t) = (qt)^4(1+q+t)$ , and

Nara<sub>3,3</sub>
$$(q,t) = (qt)^6 \left( 1 + t + 2t^2 + t^3 + t^4 + q + 2qt + 2qt^2 + qt^3 + 2q^2 + 2q^2t + q^2t^2 + q^3 + q^3t + q^4 \right)$$

### Conjecture (D and Le Borgne 2013)

 $\operatorname{Nara}_{m,n}(q,t)$  is symmetric in both m,n and q,t:

$$Nara_{m,n}(q,t) = Nara_{m,n}(t,q)$$
  
 $Nara_{m,n}(q,t) = Nara_{n,m}(q,t).$ 

A sequence  $(t_1, \ldots, t_n)$  of non-negative integers is an *n*-parking function if there exists a permutation  $\pi$  such that  $t_{\pi(i)} \leq i$  for all  $1 \leq i \leq n$ .





$$\begin{aligned} & \operatorname{area}(t) = 2 \\ & \operatorname{dinv}(t) = 4 \\ & \operatorname{word}(t) = (4, 5, 3, 1, 2) \\ & F_{5, ides(t)} = \sum_{i_1 \le i_2 < i_3 < i_4 \le i_5} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} \\ & = z_1^2 z_2 z_3^2 + z_1^2 z_2 z_3 z_4 + z_1^2 z_2 z_3 z_5 + \dots \end{aligned}$$

A sequence  $(t_1, \ldots, t_n)$  of non-negative integers is an *n*-parking function if there exists a permutation  $\pi$  such that  $t_{\pi(i)} \leq i$  for all  $1 \leq i \leq n$ .





$$\begin{aligned} & \mathsf{area}(t) = 2 \\ & \mathsf{dinv}(t) = 4 \\ & \mathsf{word}(t) = (4, 5, 3, 1, 2) \\ & F_{5, ides(t)} = \sum_{i_1 \le i_2 < i_3 < i_4 \le i_5} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} \\ & = z_1^2 z_2 z_3^2 + z_1^2 z_2 z_3 z_4 + z_1^2 z_2 z_3 z_5 + \dots \end{aligned}$$

A sequence  $(t_1, \ldots, t_n)$  of non-negative integers is an *n*-parking function if there exists a permutation  $\pi$  such that  $t_{\pi(i)} \leq i$  for all  $1 \leq i \leq n$ .



$$t = (3, 1, 4, 4, 1)$$



$$\begin{aligned} & \operatorname{area}(t) = 2 \\ & \operatorname{dinv}(t) = 4 \\ & \operatorname{word}(t) = (4, 5, 3, 1, 2) \\ & F_{5, ides(t)} = \sum_{i_1 \le i_2 < i_3 < i_4 \le i_5} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} \\ & = z_1^2 z_2 z_3^2 + z_1^2 z_2 z_3 z_4 + z_1^2 z_2 z_3 z_5 + \dots \end{aligned}$$

A sequence  $(t_1, \ldots, t_n)$  of non-negative integers is an *n*-parking function if there exists a permutation  $\pi$  such that  $t_{\pi(i)} \leq i$  for all  $1 \leq i \leq n$ .



$$t = (3, 1, 4, 4, 1)$$



$$\begin{aligned} & \operatorname{area}(t) = 2 \\ & \operatorname{dinv}(t) = 4 \\ & \operatorname{word}(t) = (4, 5, 3, 1, 2) \\ & F_{5, ides(t)} = \sum_{i_1 \le i_2 < i_3 < i_4 \le i_5} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} \\ & = z_1^2 z_2 z_3^2 + z_1^2 z_2 z_3 z_4 + z_1^2 z_2 z_3 z_5 + \dots \end{aligned}$$

A sequence  $(t_1, \ldots, t_n)$  of non-negative integers is an *n*-parking function if there exists a permutation  $\pi$  such that  $t_{\pi(i)} \leq i$  for all  $1 \leq i \leq n$ .



$$t = (3, 1, 4, 4, 1)$$



$$\begin{aligned} & \operatorname{area}(t) = 2 \\ & \operatorname{dinv}(t) = 4 \\ & \operatorname{word}(t) = (4, 5, 3, 1, 2) \\ & F_{5, ides(t)} = \sum_{i_1 \le i_2 < i_3 < i_4 \le i_5} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} \\ & = z_1^2 z_2 z_3^2 + z_1^2 z_2 z_3 z_4 + z_1^2 z_2 z_3 z_5 + \dots \end{aligned}$$

A sequence  $(t_1, \ldots, t_n)$  of non-negative integers is an *n*-parking function if there exists a permutation  $\pi$  such that  $t_{\pi(i)} \leq i$  for all  $1 \leq i \leq n$ .



$$t = (3, 1, 4, 4, 1)$$



$$\begin{aligned} & \operatorname{area}(t) = 2 \\ & \operatorname{dinv}(t) = 4 \\ & \operatorname{word}(t) = (4, 5, 3, 1, 2) \\ & F_{5, ides(t)} = \sum_{i_1 \le i_2 < i_3 < i_4 \le i_5} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} \\ & = z_1^2 z_2 z_3^2 + z_1^2 z_2 z_3 z_4 + z_1^2 z_2 z_3 z_5 + \dots \end{aligned}$$

A sequence  $(t_1, \ldots, t_n)$  of non-negative integers is an *n*-parking function if there exists a permutation  $\pi$  such that  $t_{\pi(i)} \leq i$  for all  $1 \leq i \leq n$ .



$$\begin{array}{c} 1 \ 2 \ 3 \ 4 \ 5 \\ t = (3,1,4,4,1) \\ \text{is a 5-parking function} \end{array}$$



$$\begin{aligned} & \operatorname{area}(t) = 2 \\ & \operatorname{dinv}(t) = 4 \\ & \operatorname{word}(t) = (4, 5, 3, 1, 2) \\ & F_{5, ides(t)} = \sum_{i_1 \le i_2 < i_3 < i_4 \le i_5} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} \\ & = z_1^2 z_2 z_3^2 + z_1^2 z_2 z_3 z_4 + z_1^2 z_2 z_3 z_5 + \dots \end{aligned}$$

Diagonal harmonic polynomials are the solutions to a system of PDEs:

$$DH_n := \left\{ f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] : \sum_{i=1}^n \partial_{x_i}^a \partial_{y_i}^b f = 0 \text{ for all } a + b > 0 \right\}.$$

Diagonal harmonic polynomials are the solutions to a system of PDEs:

$$DH_n:=\left\{f\in\mathbb{C}[x_1,\ldots,x_n,y_1,\ldots,y_n]\ :\ \sum_{i=1}^n\partial_{x_i}^a\partial_{y_i}^bf=0\ \text{for all}\ a+b>0\right\}.$$

E.g.

$$DH_2 = \{c_1 \cdot 1 + c_2 \cdot (x_1 - x_2) + c_3 \cdot (y_1 - y_2) : c_i \in \mathbb{C}\}.$$

Diagonal harmonic polynomials are the solutions to a system of PDEs:

$$DH_n := \left\{ f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] : \sum_{i=1}^n \partial_{x_i}^a \partial_{y_i}^b f = 0 \text{ for all } a + b > 0 \right\}.$$

E.g.

$$DH_2 = \{c_1 \cdot 1 + c_2 \cdot (x_1 - x_2) + c_3 \cdot (y_1 - y_2) : c_i \in \mathbb{C}\}.$$

Set  $DH_n^{c,d}$  to be those  $f \in DH_n$  whose total x degree is c and whose total y degree is d.

Diagonal harmonic polynomials are the solutions to a system of PDEs:

$$DH_n := \left\{ f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] : \sum_{i=1}^n \partial_{x_i}^a \partial_{y_i}^b f = 0 \text{ for all } a + b > 0 \right\}.$$

E.g.

$$DH_2 = \{c_1 \cdot 1 + c_2 \cdot (x_1 - x_2) + c_3 \cdot (y_1 - y_2) : c_i \in \mathbb{C}\}.$$

Set  $DH_n^{c,d}$  to be those  $f \in DH_n$  whose total x degree is c and whose total y degree is d. The bigraded Frobenius characteristic of  $DH_n$  is the power series in q, t and  $Z = \{z_1, z_2, \ldots\}$ :

$$DH_n(Z;q,t) = \sum_{c,d \geq 0} t^c q^d \sum_{\lambda \vdash n} s_\lambda \mathrm{mult}(\chi^\lambda, \mathrm{char} DH_n^{c,d}) \ = \ \nabla e_n,$$

where  $s_{\lambda}$  is a Schur function in variables Z,  $\chi^{\lambda}$  is the character of  $DH_n^{c,d}$ .

Diagonal harmonic polynomials are the solutions to a system of PDEs:

$$DH_n := \left\{ f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] : \sum_{i=1}^n \partial_{x_i}^a \partial_{y_i}^b f = 0 \text{ for all } a + b > 0 \right\}.$$

E.g.

$$DH_2 = \{c_1 \cdot 1 + c_2 \cdot (x_1 - x_2) + c_3 \cdot (y_1 - y_2) : c_i \in \mathbb{C}\}.$$

Set  $DH_n^{c,d}$  to be those  $f \in DH_n$  whose total x degree is c and whose total y degree is d. The bigraded Frobenius characteristic of  $DH_n$  is the power series in q, t and  $Z = \{z_1, z_2, \ldots\}$ :

$$DH_n(Z;q,t) = \sum_{c,d \geq 0} t^c q^d \sum_{\lambda \vdash n} s_\lambda \mathrm{mult}(\chi^\lambda, \mathrm{char} DH_n^{c,d}) \ = \ \nabla e_n,$$

where  $s_{\lambda}$  is a Schur function in variables Z,  $\chi^{\lambda}$  is the character of  $DH_n^{c,d}$ .

E.g.

$$\begin{aligned} DH_2(Z,q,t) &= \nabla e_2 = s_2 + (q+t)s_{11} \\ DH_3(Z,q,t) &= \nabla e_3 = s_3 + (q^2 + qt + t^2 + q + t)s_{21} \\ &+ (q^3 + q^2t + qt^2 + t^3 + qt)s_{111}. \end{aligned}$$

### 7. The shuffle conjecture: statement + special cases

The shuffle conjecture (and now theorem!) is a combinatorial interpretation for this power series:

Theorem (Haglund et al. 2003 (publ. 2005))

$$abla \mathsf{e}_{\mathsf{n}} = \sum_{\pi \in \mathsf{PF}_{\mathsf{n}}} \mathsf{t}^{\mathsf{area}(\pi)} q^{\mathrm{dinv}(\pi)} \mathsf{F}_{\mathsf{n}, \mathsf{ides}(\pi)},$$

where  $PF_n$  is the set of parking functions of order n, and  $\operatorname{area}(\pi)$  and  $\operatorname{dinv}(\pi)$  are two statistics on parking functions.  $F_{n,ides(\pi)}$  is a fundamental quasi-symmetric function, and each such expression can be written in terms of Schur functions.

# 7. The shuffle conjecture: statement + special cases

The shuffle conjecture (and now theorem!) is a combinatorial interpretation for this power series:

Theorem (Haglund et al. 2003 (publ. 2005))

$$abla \mathsf{e}_n = \sum_{\pi \in \mathit{PF}_n} t^{\mathsf{area}(\pi)} q^{\mathrm{dinv}(\pi)} F_{n,ides(\pi)},$$

where  $PF_n$  is the set of parking functions of order n, and  $\operatorname{area}(\pi)$  and  $\operatorname{dinv}(\pi)$  are two statistics on parking functions.  $F_{n,ides(\pi)}$  is a fundamental quasi-symmetric function, and each such expression can be written in terms of Schur functions.

#### Theorem (Haglund 2005)

$$\langle \nabla e_{m+n-2}, h_{m-1}h_{n-1} \rangle = \sum_{\pi \in \operatorname{Park}_{m-1,n-1}} t^{\operatorname{area}(\pi)} q^{\operatorname{dinv}(\pi)} =: \operatorname{Park}_{m-1,n-1}(q,t),$$

where  $\operatorname{Park}_{m-1,n-1}$  is the set of all parking functions  $\pi$  of order m+n-2 whose reading word  $\sigma(\pi)$  is a shuffle of the sequences  $(1,\ldots,m-1)$  and  $(m,\ldots,m+n-2)$ .

By conditioning on the first 'bounce' in a parallelogram polyomino, we find the following recursion holds for  $\operatorname{Nara}_{m,n}(q,t)$ :

$$\operatorname{Nara}_{m,n}^{(r,s)}(q,t) = t^{m+n-1}q^r \sum_{h=1}^{n-r} \sum_{k=0}^{m-s-1} q^s \binom{s+r-1}{s}_q \binom{s+h-1}{h}_q \operatorname{Nara}_{n-r,m-s}^{(h,k)}(q,t).$$

By conditioning on the first 'bounce' in a parallelogram polyomino, we find the following recursion holds for  ${\rm Nara}_{m,n}(q,t)$ :

$$\operatorname{Nara}_{m,n}^{(r,s)}(q,t) = t^{m+n-1}q^r \sum_{h=1}^{n-r} \sum_{k=0}^{m-s-1} q^s {s+r-1 \choose s}_q {s+h-1 \choose h}_q \operatorname{Nara}_{n-r,m-s}^{(h,k)}(q,t).$$

The same recursion holds for the function

$$(qt)^{m+n-1} \operatorname{Park}_{n-1,m-1}^{(r,s-1)}$$

By conditioning on the first 'bounce' in a parallelogram polyomino, we find the following recursion holds for  ${\rm Nara}_{m,n}(q,t)$ :

$$\operatorname{Nara}_{m,n}^{(r,s)}(q,t) = t^{m+n-1}q^r \sum_{h=1}^{n-r} \sum_{k=0}^{m-s-1} q^s {s+r-1 \choose s}_q {s+h-1 \choose h}_q \operatorname{Nara}_{n-r,m-s}^{(h,k)}(q,t).$$

The same recursion holds for the function

$$(qt)^{m+n-1} \operatorname{Park}_{n-1,m-1}^{(r,s-1)}$$

and this provides the following connection

Theorem (Aval, D'adderio, D, Hicks, Le Borgne 2014)

$$\operatorname{Nara}_{m,n}(q,t) = (qt)^{m+n-1} \langle \nabla e_{m+n-2}, h_{m-1}h_{n-1} \rangle.$$

By conditioning on the first 'bounce' in a parallelogram polyomino, we find the following recursion holds for  ${\rm Nara}_{m,n}(q,t)$ :

$$\operatorname{Nara}_{m,n}^{(r,s)}(q,t) = t^{m+n-1}q^r \sum_{h=1}^{n-r} \sum_{k=0}^{m-s-1} q^s {s+r-1 \choose s}_q {s+h-1 \choose h}_q \operatorname{Nara}_{n-r,m-s}^{(h,k)}(q,t).$$

The same recursion holds for the function

$$(qt)^{m+n-1} \operatorname{Park}_{n-1,m-1}^{(r,s-1)}$$

and this provides the following connection

Theorem (Aval, D'adderio, D, Hicks, Le Borgne 2014)

$$Nara_{m,n}(q,t) = (qt)^{m+n-1} \langle \nabla e_{m+n-2}, h_{m-1}h_{n-1} \rangle.$$

Symmetry in q and t of the above expression is a property of the  $\nabla$  operator.

By conditioning on the first 'bounce' in a parallelogram polyomino, we find the following recursion holds for  ${\rm Nara}_{m,n}(q,t)$ :

$$\operatorname{Nara}_{m,n}^{(r,s)}(q,t) = t^{m+n-1}q^r \sum_{h=1}^{n-r} \sum_{k=0}^{m-s-1} q^s {s+r-1 \choose s}_q {s+h-1 \choose h}_q \operatorname{Nara}_{n-r,m-s}^{(h,k)}(q,t).$$

The same recursion holds for the function

$$(qt)^{m+n-1} \operatorname{Park}_{n-1,m-1}^{(r,s-1)}$$

and this provides the following connection

Theorem (Aval, D'adderio, D, Hicks, Le Borgne 2014)

$$\operatorname{Nara}_{m,n}(q,t) = (qt)^{m+n-1} \langle \nabla e_{m+n-2}, h_{m-1}h_{n-1} \rangle.$$

Symmetry in q and t of the above expression is a property of the  $\nabla$  operator. Symmetry in m and n is easily seen to hold due to the form of the RHS in the theorem.

By conditioning on the first 'bounce' in a parallelogram polyomino, we find the following recursion holds for  ${\rm Nara}_{m,n}(q,t)$ :

$$\operatorname{Nara}_{m,n}^{(r,s)}(q,t) = t^{m+n-1}q^r \sum_{h=1}^{n-r} \sum_{k=0}^{m-s-1} q^s {s+r-1 \choose s}_q {s+h-1 \choose h}_q \operatorname{Nara}_{n-r,m-s}^{(h,k)}(q,t).$$

The same recursion holds for the function

$$(qt)^{m+n-1} \operatorname{Park}_{n-1,m-1}^{(r,s-1)}$$

and this provides the following connection

Theorem (Aval, D'adderio, D, Hicks, Le Borgne 2014)

$$\operatorname{Nara}_{m,n}(q,t) = (qt)^{m+n-1} \langle \nabla e_{m+n-2}, h_{m-1}h_{n-1} \rangle.$$

Symmetry in q and t of the above expression is a property of the  $\nabla$  operator. Symmetry in m and n is easily seen to hold due to the form of the RHS in the theorem.

#### Corollary

$$\operatorname{Nara}_{m,n}(q,t) = \operatorname{Nara}_{m,n}(t,q)$$
 and  $\operatorname{Nara}_{m,n}(q,t) = \operatorname{Nara}_{n,m}(q,t)$ .

# 9. Chip-firing on the complete split graph



A representation of the recurrent states  $rec(S_{m,n})$  comes in the form of a new type of polyomino that we call *sawtooth polyominos*.

# 9. Chip-firing on the complete split graph



A representation of the recurrent states  $rec(S_{m,n})$  comes in the form of a new type of polyomino that we call *sawtooth polyominos*.

Theorem (Derycke, D, and Le Borgne 2024)

 $c \in \operatorname{rec}(S_{m,n})$  iff  $g(c) \in \operatorname{Sawtooth}_{m,n}$ .

# 10. Another surprise



$$\operatorname{area}(P) = 12$$
 
$$\operatorname{parabounce}(P) = 1 \cdot (2+1) + 2 \cdot (2+1) + 3 \cdot (0+1) + 4 \cdot (1+1) = 20.$$

Let

$$F_{n,d}^{ITC}(q,t) := \sum_{P \in \operatorname{Sawtooth}_{m,n}} q^{\operatorname{area}(P)} t^{\operatorname{itcbounce}(P)}.$$

### 10. Another surprise



$$\mathsf{area}(P) = 12$$
 
$$\mathsf{parabounce}(P) = 1 \cdot (2+1) + 2 \cdot (2+1) \\ + 3 \cdot (0+1) + 4 \cdot (1+1) \\ = 20.$$

Let

$$F_{n,d}^{ITC}(q,t) := \sum_{P \in \operatorname{Sawtooth}_{m,n}} q^{\operatorname{area}(P)} t^{\operatorname{itcbounce}(P)}.$$

# Theorem (Derycke, D, and Le Borgne 2024)

$$\begin{split} F_{n,d}^{ITC}(q,t) &= \sum_{k=1}^{n} \sum_{\substack{(b_1, \dots, b_{k+1}) \vDash_k^* d \\ (a_1, \dots, a_k) \vDash_k n}} \prod_{i=1}^{k+1} q^{\binom{a_i}{2}} \binom{a_i + b_i}{b_i}_q \binom{a_i + b_i + a_{i-1} - 1}{a_{i-1} - 1}_q t^{(i-1)(a_i + b_i)} \\ &= \langle \nabla e_{n+d}, e_n h_d \rangle. \end{split}$$

Symmetry in q and t follows.

Let  $\lambda=(\lambda_1,\lambda_2,\ldots)$  and  $\mu=(\mu_1,\mu_2,\ldots)$  be a pair of integer compositions with  $n=|\lambda|+|\mu|$ .

Let  $\lambda=(\lambda_1,\lambda_2,\ldots)$  and  $\mu=(\mu_1,\mu_2,\ldots)$  be a pair of integer compositions with  $n=|\lambda|+|\mu|$ .

Let  $G_{\lambda,\mu}$  be the graph that consists of cliques  $K_{\lambda_1}, K_{\lambda_2}, \ldots$ , and independent sets  $I_{\mu_1}, I_{\mu_2}, \ldots$ : every pair of vertices that are members of different sets (be they cliques/independent sets) are connected by an edge.

Let  $\lambda=(\lambda_1,\lambda_2,\ldots)$  and  $\mu=(\mu_1,\mu_2,\ldots)$  be a pair of integer compositions with  $n=|\lambda|+|\mu|$ .

Let  $G_{\lambda,\mu}$  be the graph that consists of cliques  $K_{\lambda_1}, K_{\lambda_2}, \ldots$ , and independent sets  $I_{\mu_1}, I_{\mu_2}, \ldots$ : every pair of vertices that are members of different sets (be they cliques/independent sets) are connected by an edge.

Theorem (D'Adderio, D, Iraci, Lazar, Le Borgne, Vanden Wyngaerd 2024)

For every pair of compositions  $\lambda, \mu$  such that  $n = |\lambda| + |\mu|$ ,

$$\langle \nabla e_n, e_\lambda h_\mu \rangle = \sum_{c \in \operatorname{rec}(G_{\lambda, \mu})} q^{\operatorname{level}(c)} t^{\operatorname{delaybounce}(c)}.$$

Symmetry in q and t follows from this form. (Each of the coefficients of  $\nabla e_n$  when written as a linear combination of Schur functions is a symmetric function.)

Let  $\lambda=(\lambda_1,\lambda_2,\ldots)$  and  $\mu=(\mu_1,\mu_2,\ldots)$  be a pair of integer compositions with  $n=|\lambda|+|\mu|$ .

Let  $G_{\lambda,\mu}$  be the graph that consists of cliques  $K_{\lambda_1}, K_{\lambda_2}, \ldots$ , and independent sets  $I_{\mu_1}, I_{\mu_2}, \ldots$ : every pair of vertices that are members of different sets (be they cliques/independent sets) are connected by an edge.

Theorem (D'Adderio, D, Iraci, Lazar, Le Borgne, Vanden Wyngaerd 2024)

For every pair of compositions  $\lambda, \mu$  such that  $n = |\lambda| + |\mu|$ ,

$$\langle \nabla e_n, e_\lambda h_\mu \rangle = \sum_{c \in \operatorname{rec}(G_{\lambda, \mu})} q^{\operatorname{level}(c)} t^{\operatorname{delaybounce}(c)}.$$

Symmetry in q and t follows from this form. (Each of the coefficients of  $\nabla e_n$  when written as a linear combination of Schur functions is a symmetric function.)

Special cases of the above theorem include the results for the complete bipartite graph and the complete split graph.

▶ These instances of symmetry, that are related to the shuffle conjecture, suggest something more general is afoot. An interesting question to consider if whether there is a parameterized graph whose bivariate q, t-polynomial (in the sense of what we have discussed) corresponds to other instances of the inner product of  $\nabla e_n$  with some other symmetric functions.

- These instances of symmetry, that are related to the shuffle conjecture, suggest something more general is afoot. An interesting question to consider if whether there is a parameterized graph whose bivariate q, t-polynomial (in the sense of what we have discussed) corresponds to other instances of the inner product of  $\nabla e_n$  with some other symmetric functions.
- Somewhat absent from our discussion is the choice of toppling regimes, and how bivariate polynomials related to them seem to be equal such as  $F_{n,k}^{ITC}(q,t) = F_n^{CTI}(q,t)$ . This is another instance of unexplained symmetry.

- These instances of symmetry, that are related to the shuffle conjecture, suggest something more general is afoot. An interesting question to consider if whether there is a parameterized graph whose bivariate q, t-polynomial (in the sense of what we have discussed) corresponds to other instances of the inner product of  $\nabla e_n$  with some other symmetric functions.
- Somewhat absent from our discussion is the choice of toppling regimes, and how bivariate polynomials related to them seem to be equal such as  $F_{n,k}^{TC}(q,t) = F_n^{CTI}(q,t)$ . This is another instance of unexplained symmetry.
- Symmetries that we are able to explain are thanks to known results related to the theory of symmetric functions. Absent from this is a combinatorial proof of the symmetries.

- These instances of symmetry, that are related to the shuffle conjecture, suggest something more general is afoot. An interesting question to consider if whether there is a parameterized graph whose bivariate q, t-polynomial (in the sense of what we have discussed) corresponds to other instances of the inner product of  $\nabla e_n$  with some other symmetric functions.
- Somewhat absent from our discussion is the choice of toppling regimes, and how bivariate polynomials related to them seem to be equal such as  $F_{n,k}^{TC}(q,t) = F_n^{CTI}(q,t)$ . This is another instance of unexplained symmetry.
- Symmetries that we are able to explain are thanks to known results related to the theory of symmetric functions. Absent from this is a combinatorial proof of the symmetries.

Thanks for your attention!