

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра Общей информатики

ОТЧЕТ ПО ЛАБОРАТОРНО-ПРАКТИЧЕСКИМ РАБОТАМ №5 по дисциплине «ИНФОРМАТИКА»

Тема: «Построение комбинационных схем, реализующих СДНФ и СКНФ заданной логической функции от 4-х переменных»

Выполнил студент группы ИНБО-15-20			Нгуен Минь Хиеу	
Принял ассистент			Шагалин Я.В	
Практическая работа выполнена	« <u> </u> »	2020 г.		
«Зачтено»	« »	2020 г.		

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра Общей информатики

ОТЧЕТ ПО ЛАБОРАТОРНО-ПРАКТИЧЕСКИМ РАБОТАМ №5 по дисциплине «ИНФОРМАТИКА»

Тема: «Построение комбинационных схем, реализующих СДНФ и СКНФ заданной логической функции от 4-х переменных»

Выполнил студент группы ИНБО	D-15-20		Ло Ван Хуні
Принял ассистент			Шагалин Я.В
Практическая работа выполнена	« <u> </u> »	2020 г.	
«Зачтено»	« <u></u> »_	2020 г.	

Содержание

1.	Постановка задачи и персональный вариант	3
	Восстановленная таблица истинности	
3.	Формулы СДНФ и СКНФ	5
4.	Схемы, реализующие СДНФ и СКНФ в общем логическом базисе	6
5.	Вывод	7
6.	Список информационных источников	8

1. Постановка задачи и персональный вариант

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. Записать формулы СДНФ и СКНФ. Построить комбинационные схемы СДНФ и СКНФ в лабораторном комплексе, используя общий логический базис. Протестировать работу схем и убедиться в их правильности. Подготовить отчет о проделанной работе и защитить ее. Персональный вариант: IE8IC

2. Восстановленная таблица истинности

 $F(a,b,c,d) = D56E_{16}$

Преобразуем ее в двоичную запись: $1101\ 0101\ 0110\ 1110_2$ — получили столбец значений логической функции, который необходим для восстановления полной таблицы истинности (см. табл.1).

Таблица 1

a	b	c	d	F	
0	0	0	0	1	
0	0	0	1	1	D
0	0	1	0	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	1	5
0	1	1	0	0	5
0	1	1	1	1	
1	0	0	0	0	
1	0	0	1	1	6
1	0	1	0	1	6
1	0	1	1	0	
1	1	0	0	1	
1	1	0	1	1	E
1	1	1	0	1	E
1	1	1	1	0	

3. Формулы СДНФ и СКНФ

Запишем формулу СДНФ, для чего рассмотрим наборы значений переменных, на которых функция равна единице. Для каждого набора отвечаем на вопрос: каким образом при помощи конъюнкции переменных, принимающих значения из данного набора, можно получить единичное значения функции? Очевидно, что переменные, равные нулю, надо взять с отрицанием, а переменные, равные единице, без отрицания. В результате мы получим множество совершенных конъюнкций, объединив которые через дизъюнкцию образуем формулу СДНФ

$$\begin{split} F_{\text{СДН}\Phi} = & \left(\bar{a} * \bar{b} * \bar{c} * \bar{d} \right) + \left(\bar{a} * \bar{b} * \bar{c} * d \right) + \left(\bar{a} * \bar{b} * c * d \right) + \left(\bar{a} * b * \bar{c} * d \right) \\ & + \left(\bar{a} * b * c * d \right) + \left(a * \bar{b} * \bar{c} * d \right) + \left(a * \bar{b} * c * \bar{d} \right) \\ & + \left(a * b * \bar{c} * \bar{d} \right) + \left(a * b * \bar{c} * d \right) + \left(a * b * c * \bar{d} \right) \end{split}$$

Запишем формулу СКНФ, для чего рассмотрим наборы значений переменных, на которых функция равна нулю. Для каждого набора отвечаем на вопрос: каким образом при помощи дизъюнкции переменных, принимающих значения из данного набора, можно получить нулевое значения функции? Очевидно, что переменные, равные единице, надо взять с отрицанием, а переменные, равные нулю, без отрицания. В результате мы получим множество совершенных дизъюнкций, объединив которые через конъюнкцию образуем формулу СКНФ

$$\begin{aligned} \mathbf{F}_{\mathsf{CKH}\Phi} &= (a+b+\bar{c}+d)*\left(a+\bar{b}+c+d\right)*\left(a+\bar{b}+\bar{c}+d\right)*\left(\bar{a}+b+c+d\right)\\ & d)*\left(\bar{a}+b+\bar{c}+\bar{d}\right)*\left(\bar{a}+\bar{b}+\bar{c}+\bar{d}\right) \end{aligned}$$

4. Схемы, реализующие СДНФ и СКНФ в общем логическом базисе

Построим в лабораторном комплексе комбинационные схемы, реализующие СДНФ и СКНФ рассматриваемой функции в общем логическом базисе, протестируем их работу и убедимся в их правильности (рис. 1,2).

Рис. 1 Тестирование схемы СДНФ

Рис. 2 Тестирование схемы СКНФ

Вывод

Тестирование работы схем показало правильность их работы. В ходе проведения работы с лабораторным комплексом я научился строить комбинационные схемы, реализующие СДНФ и СКНФ заданной логической функции от 4-х переменных.

5. Список информационных источников

- 1. Смирнов С.С. Информатика: Методические указания по выполнению практических и лабораторных работ.
- 2. Справочная система программы Logisim. http://www.cburch.com/logisim/ru/docs.html.
- 3. Описание библиотеки элементов Logisim. http://www.cburch.com/logisim/ru/docs.html.