Université Grenoble Alpes mat 101

durée : 2h00

Examen 5 janvier 2022

Exercice nº 1. Question de cours.

Démontrer, en utilisant l'écriture algébrique de z_1 et z_2 que pour tous nombres complexes z_1 et z_2 , $\overline{z_1 z_2} = \overline{z_1} \times \overline{z_2}$.

Solution de l'exercice 1

Cf. poly de cours.

Exercice nº 2.

1. Montrer que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} 2^{k} 5^{n-k} = \frac{1}{3} (5^{n+1} - 2^{n+1}) .$$

2. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\prod_{k=1}^{n} \frac{k^2}{n+1-k} = n! \; .$$

3. Soit $(u_n)_{n>0}$ la suite définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + n \end{cases}$$

Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n = 2^{n+1} - n - 1$.

Solution de l'exercice 2

1. On utilise la formule du cours qui affirme que pour tous a et b complexes et tout n entier naturel, $a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^{n-k} b^k$. Donc (avec a = 5 et b = 2):

$$\sum_{k=0}^{n} 2^{k} 5^{n-k} = \frac{1}{5-2} (5^{n+1} - 2^{n+1}) = \frac{1}{3} (5^{n+1} - 2^{n+1}).$$

2. On peut écrire :

$$\prod_{k=1}^{n} \frac{k^{2}}{n+1-k} = \frac{(\prod_{k=1}^{n} k)^{2}}{\prod_{k=1}^{n} (n+1-k)}$$

$$= \frac{(n!)^{2}}{(n+1-1)(n+1-2)\dots(n+1-n)}$$

$$= \frac{(n!)^{2}}{n!}$$

$$= n!$$

- 3. Pour $n \in \mathbb{N}$, on note P(n) l'assertion " $u_n = 2^{n+1} n 1$ ".
 - Initialisation. P(0) est l'assertion " $u_0 = 2^1 0 1$ ". Or $u_0 = 1$, et $2^0 0 1 = 2 1 = 1$. Donc P(0) est vraie.
 - Hérédité. Soit $n \in \mathbb{N}$. On veut montrer que $P(n) \Rightarrow P(n+1)$. Supposons que P(n) est vraie. Alors,

$$u_{n+1} = 2u_n + n$$

$$= 2(2^{n+1} - n - 1) + n$$

$$= 2^{n+2} - 2n - 2 + n$$

$$= 2^{n+1+1} - (n+1) - 1$$

Or P(n+1) est justement l'assertions " $u_{n+1} = 2^{n+1+1} - (n+1) - 1$ ". Donc P(n+1) est vraie. On a montré que $P(n) \Rightarrow P(n+1)$.

— Conclusion. On a montré que P(0) est vraie et que $(P(n))_{n\geq 0}$ est héréditaire, donc par récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$.

Exercice no 3.

- 1. Déterminer le module et l'argument du nombre complexe $-3\sqrt{3} + 3i$.
- 2. Déterminer sous forme algébrique les racines carrées complexes de 1+4i.
- 3. Déduire de la question précédente les racines du polynôme $P(z)=z^2+(2-i)z+\frac{1}{2}-2i$.

Solution de l'exercice 3

1. Soit
$$z=-3\sqrt{3}+3i$$
. On calcule $|z|=|3|.|-\sqrt{3}+i|=3\sqrt{3+1}=6$. Puis $\frac{Re(z)}{|z|}=-\frac{\sqrt{3}}{2}$ et $\frac{Im(z)}{|z|}=\frac{1}{2}$. Donc :

$$\frac{Re(z)}{|z|} = \cos\frac{5\pi}{6} \text{ et } \frac{Im(z)}{|z|} = \sin\frac{5\pi}{6} ,$$

ce qui montre que z admet $\frac{5\pi}{6}$ pour argument.

2. Soit δ appartenant à \mathbb{C} . On note $\delta=x+iy$ avec x et y réels. On remarque que $|1+4i|=\sqrt{17}$. On a :

$$\delta^{2} = 1 + 4i \iff \begin{cases} (x + iy)^{2} = 1 + 4i \\ |\delta^{2}| = |1 + 4i| \end{cases}$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = 1 \\ 2xy = 4 \\ x^{2} + y^{2} = \sqrt{17} \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x^{2} = 1 + \sqrt{17} \\ xy = 2 \\ 2y^{2} = \sqrt{17} - 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} |x| = \sqrt{\frac{1 + \sqrt{17}}{2}} \\ xy = 2 \\ |y| = \sqrt{\frac{\sqrt{17} - 1}{2}} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \sqrt{\frac{\sqrt{17} + 1}{2}} \text{ et } y = \sqrt{\frac{\sqrt{17} - 1}{2}} \\ \text{ou} \\ x = -\sqrt{\frac{\sqrt{17} + 1}{2}} \text{ et } y = -\sqrt{\frac{\sqrt{17} - 1}{2}} \end{cases}$$

Donc les racines carrées de 1+4i sont $\delta:=\sqrt{\frac{\sqrt{17}+1}{2}}+i\sqrt{\frac{\sqrt{17}-1}{2}}$ et $-\delta=-\sqrt{\frac{\sqrt{17}+1}{2}}-i\sqrt{\frac{\sqrt{17}-1}{2}}$.

3. On calcule le discriminant Δ du polynôme P. On trouve $\Delta=1+4i$. Avec les notations de la question précédente, on a trouvé δ tel que $\delta^2=\Delta$, et les racines de P sont alors $\frac{-b+\delta}{2a}$ et $\frac{-b-\delta}{2a}$ avec a=1 et b=(2-i). On obtient deux racines z_1 et z_2 :

$$z_1 = \frac{-2 + i + \sqrt{\frac{\sqrt{17} + 1}{2}} + i\sqrt{\frac{\sqrt{17} - 1}{2}}}{2} \text{ et } z_2 = \frac{-2 + i - \sqrt{\frac{\sqrt{17} + 1}{2}} - i\sqrt{\frac{\sqrt{17} - 1}{2}}}{2}$$

Exercice nº 4.

Soient E, F et G trois ensembles, f une application de E dans F et g une application de F dans G. On rappelle que "f est injective" signifie que l'assertion suivante est vérifiée :

$$\forall x \in E, \forall y \in E, \ f(x) = f(y) \Rightarrow x = y.$$

- 1. Énoncer la négation de l'assertion précédente.
- 2. Montrer que $g \circ f$ injective $\Rightarrow f$ injective.

3. Énoncer la réciproque de l'assertion précédente, puis montrer qu'elle est fausse (donner un contre-exemple).

Solution de l'exercice 4

1.

$$\exists x \in E, \exists y \in E, \ f(x) = f(y) \text{ et } x \neq y.$$

- 2. Montrons l'assertion contraposée, c'est à dire f non injective $\Rightarrow g \circ f$ non injective. Supposons que f n'est pas injective. Il existe alors x et y dans E tels que $x \neq y$ et f(x) = f(y). Par conséquent g(f(x)) = g(f(y)). Donc $g \circ f(x) = g \circ f(y)$ et $x \neq y$, donc $g \circ f$ n'est pas injective.
- 3. La réciproque est : "f injective $\Rightarrow g \circ f$ injective". Cette affirmation est fausse. En effet, on peut prendre $E = F = \{1, 2\}$, $G = \{1\}$, f qui associe 1 à 1 et 2 à 2 (donc f est injective), g qui associe 1 à 1 et 2. Alors, $g \circ f$ n'est pas injective, puisque $g \circ f(1) = g \circ f(2)$, mais f est injective.

Exercice nº 5.

Si $u = (u_n)_{n \ge 0}$ est une suite de nombres réels, on note M(u) l'assertion "u est majorée". Autrement dit, M(u) est l'assertion suivante :

$$\exists A \in \mathbb{R}, \ \forall n \in \mathbb{N}, u_n \leq A$$
.

On note Q(u) l'assertion "u admet $+\infty$ pour limite en $+\infty$ ", autrement dit Q(u) est l'assertion suivante :

$$\forall A \in \mathbb{R}, \ \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \ n > N \Rightarrow u_n > A$$
.

- 1. Écrire la négation de M(u).
- 2. Montrer que $Q(u) \Rightarrow \text{ non } M(u)$.
- 3. La réciproque de l'assertion précédente est-elle vraie?

Solution de l'exercice 5

1.

$$\forall A \in \mathbb{R}, \ \exists n \in \mathbb{N}, u_n > A \ .$$

2. Supposons que Q(u) est vraie. Soit $A \in \mathbb{R}$. Il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N, u_n > A$. Donc en particulier $u_N > A$. On a montré :

$$\forall A \in \mathbb{R}, \ \exists N \in \mathbb{N}, u_N > A$$

ce qui est précisément non M(u).

3. La réciproque est fausse, nous allons donner un exemple de suite u telle que non M(u) soit vraie et Q(u) soit fausse. C'est à dire un exemple de suite non majorée mais qui ne tend pas vers $+\infty$. Posons, pour tout $n \in \mathbb{N}$,

$$u_n = 0$$
 si n est pair $u_n = n$ si n est impair.

Alors, (u_n) ne tend pas vers $+\infty$: pour tout N entier, il existe un entier (pair) supérieur à N tel que $u_n \leq 0$. Mais u n'est pas majorée. En effet, pour tout $A \in \mathbb{R}$, $u_{2\lceil |A|+2\rceil} = 2\lceil |A|+2>A$.

Exercice nº 6.

Soit f la fonction définie par :

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \left\{ \begin{array}{ccc} 2x & \text{si} & x \in]-\infty, 0 \\ x^2-1 & \text{si} & x \in]0, +\infty [\end{array} \right. \right.$$

- 1. Dessiner le graphe de la fonction f.
- 2. Montrer que $\mathbb{R} \subset f(\mathbb{R})$.
- 3. Montrer que si $x \leq 0$, alors

$$x \in f^{-1}([-1,1]) \Leftrightarrow x \in \left[-\frac{1}{2},0\right].$$

4. Montrer que si x > 0, alors

$$x \in f^{-1}([-1,1]) \Leftrightarrow x \in]0,\sqrt{2}]$$
.

5. En déduire que $f^{-1}([-1,1]) = [-\frac{1}{2},\sqrt{2}].$

Solution de l'exercice 6

- 1. Figure.
- 2. Soit $y \in \mathbb{R}$. Si y > 0, alors $\sqrt{y+1} \ge 0$ et $f(\sqrt{y+1}) = y+1-1 = y$, donc $y \in f(\mathbb{R})$. Si $y \le 0$, alors $y/2 \le 0$, donc $f(y/2) = 2 \times y/2 = y$, donc $y \in f(\mathbb{R})$. On a bien montré que $\mathbb{R} \subset f(\mathbb{R})$.
- 3. Si $x \le 0$,

$$x \in f^{-1}([-1,1]) \Leftrightarrow f(x) \in [-1,1]$$
$$\Leftrightarrow 2x \in [-1,1]$$
$$\Leftrightarrow x \in [-\frac{1}{2},\frac{1}{2}]$$
$$\Leftrightarrow x \in [-\frac{1}{2},0]$$

puisque $x \leq 0$.

4. Si x > 0,

$$x \in f^{-1}([-1,1]) \Leftrightarrow f(x) \in [-1,1]$$
$$\Leftrightarrow x^2 - 1 \in [-1,1]$$
$$\Leftrightarrow x^2 \in [0,2]$$
$$\Leftrightarrow x \in]0,\sqrt{2}]$$

puisque x > 0.

5.
$$f^{-1}([-1,1]) = (f^{-1}([-1,1]) \cap \mathbb{R}_{-}) \cup (f^{-1}([-1,1]) \cap \mathbb{R}_{+}) = [-\frac{1}{2},0] \cup [0,\sqrt{2}] = [-\frac{1}{2},\sqrt{2}].$$