Informatics Interest Group Meeting

2018-05-02 Tom Kono

A Reference Genome

- String of nucleotides from a "representative" individual from a species or population
- Once a reference is assembled, questions become focused on variation

Limitations of A Single Reference

 Variation is widespread and most of it precludes discovery by comparison to a single genome

ARTICLE

OPEN doi:10.1038/nature15394

An integrated map of structural variation in 2,504 human genomes

The Plant Cell, Vol. 26: 121-135, January 2014, www.plantcell.org © 2014 American Society of Plant Biologists. All rights reserved.

LARGE-SCALE BIOLOGY ARTICLE

Insights into the Maize Pan-Genome and Pan-Transcriptome

GigaScience, 7, 2018, 1–12

doi: 10.1093/gigascience/gix134 Advance Access Publication Date: 30 December 2018 Research

RESEARCH

Construction of the third-generation Zea mays haplotype map

ARTICLE

doi:10.1038/nature10414

Multiple reference genomes and transcriptomes for *Arabidopsis thaliana*

A Roadmap for Functional Structural Variants in the Soybean Genome

Justin E. Anderson,* Michael B. Kantar,*,† Thomas Y. Kono,* Fengli Fu,* Adrian O. Stec,* Qijian Song,† Perry B. Cregan,† James E. Specht,§ Brian W. Diers,** Steven B. Cannon,†† Leah K. McHale,‡† and Robert M. Stupar*.1

Potential Solution: de Bruijn Graphs

Borrow from sequence assembly techniques to represent diversity

Dilthey et al. 2014, Nat Genet doi:10.1038/ng.3257

Enter: Variation Graphs

- Represent genomes as a graph, rather than a string or series of strings
 - Invariant sites are single connections through graph
 - Variants are "bubbles" alternate paths through graph
 - Individuals (or chromosomes) are then represented as a path through the graph

Natural Limits to the Problem

- Potential problem: the number of possible haplotypes
- But! The number of observed haplotypes is far fewer than the number that are possible. Linkage disequilibrium*.
- Haplotypes in a genome graph: restricted paths through multiple variants

BWT Variant: gPBWT

- Generalization of the Burrows-Wheeler Transform to contain positional information
 - Embeds the "threads" (linkages among variant sites) into the graph

Genome Graph Tools

- Erik Garrison (of vcflib and FreeBayes fame) is involved with the 'vg' project (variation graphs)
 - https://github.com/vgteam/vg

vg Capabilities

- vg is pretty complete now:
 - Build graph (from FASTA and VCF)
 - View/visualize graph (via graphviz)
 - Align reads to a graph (or map lots of reads)
 - Call variants

- Building takes ~2.7 Gb on MacOS, including dependencies
- Build graphs with vg construct

```
vg construct \
   -r test/small/x.fa \
   -v test/small/x.vcf.gz \
   > x.vg
```

 Convert between formats with vg view. The .dot file is suitable for input into graphviz visualization software

```
vg view x.vg > x.gfa #default fmt is GFA1
vg view -d x.vg > x.dot
dot -Tpdf x.dot -o x.pdf
```


 Can align and map reads to a graph: GAM (Graph Alignment/Map), looks like compressed JSON

```
vg index -x x.xg -g x.gcsa -k 16 x.vg
vg sim -n 1000 -l 150 -x x.xg > reads
vg map -x x.xg -g x.gcsa -T reads > aln.gam
vg view -a aln.gam | less
```

Put it back into the linear world using vg surject

```
vg surject -x x.xg -b aln.gam | less -S
```

Augment the source graph with variation identified in the mapped reads

```
vg filter aln.gam \
    -r 0.9 -fu -s 2 -o 0 -D 999 -x x.xg \
    > flt.gam
vg augment x.vg flt.gam \
    -q 10 -S aug_graph.support \
    -Z aug_graph.trans -A aug_alignment.gam \
    > aug_graph.vg
```

 Call variants based on support for various paths through the graph

```
vg paths -v aug_graph.vg -L # Gives path names
vg call \
   -b x.vg -s aug_graph.support \
   -x aug_graph.trans -r x > calls.vcf
```

```
##FORMAT=<ID=XDP, Number=2, Type=Integer, Description="Expected Local and Global Depth">
##FORMAT=<ID=XDP, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=AD, Number=1, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=XDP, Number=1, Type=Float, Description="Likelihood of allelic depths for called alleles">
##FORMAT=<ID=XDP, Number=1, Type=Float, Description="Likelihood of allelic depths for ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Alt allele read count.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles in the order listed">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Alt allele read count.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt alleles.">
##FORMAT=<ID=XDP, Number=1, Type=Integer, Description="Hallelic likelihoods for the ref and alt a
```

Or, call them with FreeBayes-like algorithm

```
##ALF=ZID=NOM_REF, Description="Represents any possible alternative allele at this location">
##INFO=ZID=Number=1, Type=Integer, Description="Ultrabubble Bases">
##INFO=ZID=XSBB, Number=1, Type=Integer, Description="Ultrabubble Nodes">
##INFO=ZID=XSBB, Number=1, Type=Integer, Description="Ultrabubble Nodes">
##FORMAT=ZID=DP, Number=1, Type=Float, Description="Genotype Quality">
##FORMAT=ZID=GD, Number=1, Type=Float, Description="Genotype">
##FORMAT=ZID=GD, Number=1, Type=Float, Description="Genotype">
##FORMAT=ZID=GD, Number=1, Type=Float, Description="Genotype">
##FORMAT=ZID=AD, Number=1, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=4, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=DP, Number=6, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=6, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=6, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=6, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=6, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=6, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=6, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=1, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=1, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=1, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=1, Type=Float, Description="Forward and reverse support for ref and alt alleles.">
##FORMAT=ZID=AD, Number=1, Type=Float, Description="Forward and reverse support for r
```

Additional vg Links

- gPBWT: <u>https://github.com/vgteam/vg/wiki/Building-a-Graph-Positional-Burrows-Wheeler-Transform-(gPBWT)</u>
- vg on CentOS6 and 7: <u>https://github.com/vgteam/vg/wiki/Building-VG-on-Cent-OS-6.6-or-7--and-using-it</u>
- vg with long reads: <u>https://github.com/vgteam/vg/wiki/Long-read-assemblies-using-vg-msga</u>
- file format ref: https://github.com/vgteam/vg/wiki/File-Formats

Graphtyper

- Tool to call variants from reads mapped to a variation graph
- Not compatible with vg, but looks like it does similar things

TECHNICAL REPORTS

Graphtyper enables population-scale genotyping using pangenome graphs

Seven Bridges Genomics

- Proprietary data formats and variant caller (\$\$\$)
- Human specific?
- https://www.sevenbridges.com/graph/

HOME

Search

New Results

Fast and Accurate Genomic Analyses using Genome Graphs

Goran Rakocevic, Vladimir Semenyuk, James Spencer, John Browning, Ivan Johnson, Vladan Arsenijevic, Jelena Nadj, Kaushik Ghose, Maria C. Suciu, Sun-Gou Ji, Gulfem Demir, Lizao Li, Berke C. Toptas, Alexey Dolgoborodov, Bjoern Pollex, Iosif Spulber, Irina Glotova, Peter Komar, Andrew Stachyra, Yilong Li, Milos Popovic, Wan-Ping Lee, Morten Kallberg, Amit Jain, Deniz Kural

doi: https://doi.org/10.1101/194530