抗菌薬-1 (抗生剤)

https://l-hospitalier.github.io

2**017. 6**

①細胞壁合成阻害*1 βラクタム剤、ホスホマイシン、グリコペプチド (バンコマイシン) ②蛋白合成阻害 アミノグリコシド、マクロライド、etc*2 ③ 核酸合成阻害 ST合剤、ピリドカルボン酸 (キノロン) ④細胞膜機能阻害 リポペプチド (ダプトマイシン)、ポリペプチド (コリスチン)。 細菌は休眠状態になれるので蛋白合成阻害剤は静菌的、細胞壁合成阻害剤は殺菌的に作用。 例外はアミノグリコシドで殺菌的。低濃度でmRNAによるコドン(塩基配列) 誤読を起こしペプチド鎖に不適切なアミノ酸を挿入して細胞を破壊 (Davis model*3)、βラク

タム剤の併用で細胞壁透過性を増してシナジー (相乗) 効果を発揮。誤読の少ないストマイは静菌的 (ハリソン 5 版 p958) 。 アミノグリコシドはポーリンを通過するが細胞膜通過に O_2 が必要で<u>嫌気的環境では</u>失活。陽性極性分子で<math>6-アミノペニシラン酸*4や7-アミノセファロス

H₂N S CH₃ CH₃

ポラン酸は陰性荷電なので複合体を形成し合剤不可。 酸性で効果減弱のため膿瘍には不適。 まずアミノグリコシド単独の出番はない。 Katzung 9 版, p914 に殺菌・静菌抗生剤併用例として細菌性髄膜炎のペニシリンとテトラサイクリン併用時の死亡率 79%、ペニシリン単剤で 21% の報告がある。ニューキノロンは DNA ジャイレース酵素 (DNA 読み取り時に DNA 鎖を一時的に切断して二重螺旋をほどく) とトポイソメラーゼIVの両方を阻害し低濃度で静菌的、高濃度で重合の壊れた DNA の固定化で殺菌的に作用 (Golan, p692) 。 リファンピシンは RNA ポリメラーゼ阻害剤で殺菌的に作用、併用で

殺菌的に作用 に作用、併用で C_{max}/MIC

INH の効果を増強 (ただし β ラクタム剤 と併用で<mark>拮抗作用</mark>)。 結核では必ず 4 剤以上併用。 【投与法】 アミノグリコシドやニューキノロンは PAE (Post Antibiotic Effect) が長く続くのでピーク

血中濃度 AUC 時間

濃度(Cmax)が重要、1日1回投与。 β ラクタム系は Time Above MIC *5 (TAM)が重要で頻回投与が有利。グリコペプチド(バンコマイシン)の効果は AUC(Area Under MIC Curve)に依存する(AUC はキノロンでも重要)。 rミノグリコシドは第 8 脳神経や腎障害、神経筋遮断作用、ショックもあり短時間投与は危険(1時間以上)。 rミノグリコシドやニューキノロンは細胞壁を持たないマイコプラズマやミコール酸のWAX で被覆されたマイコバクテリウム(結核菌)にも有効だが、結核診断前のニューキノロン使用は結核による死亡率を倍増。 診断後は非結核性抗酸菌や結核の治療にも可。 緑膿菌は耐性出現が多く、CMDT(p1555)や Katzung(9ed. p817)ではシュードモナス・ペニシリン(PIPC)+ rミノグリコシド(e.g. イセパシン)が第 1 選択。*r3ラクタム環は細胞壁の d-Ala・d-Ala に替わり取り込まれる。 FOM はペプチドグリカン単量体合成の初期段階を阻害、ポリペプチド(VCM)はペプチドグリカンの重合体合成阻害。r2ストレプトグラミン、オキサグリジノンも。

*³ Bernard Davis、Golan 臨床薬理学 p694。*⁴右の図が 6-aminopenicillanic acid の構造式、四角の部分が β ラクタ ム環。 図右上の S を C に置き換えたのがカルバペネム。*⁵Minimum Inhibitory Concentration 最小発育阻止濃度。