Under the multivariate regression setup, following the same routine of univariate case,

the total sum of squares
$$\mathbf{T} = (\mathbf{Y} - \bar{\mathbf{Y}})'(\mathbf{Y} - \bar{\mathbf{Y}});$$

the error sum of squares $\mathbf{E} = (\mathbf{Y} - \hat{\mathbf{Y}})'(\mathbf{Y} - \hat{\mathbf{Y}});$
the regression sum of squares $\mathbf{H} = (\hat{\mathbf{Y}} - \bar{\mathbf{Y}})'(\hat{\mathbf{Y}} - \bar{\mathbf{Y}}).$

Denote $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ as the projection matrix of the space spanned by \mathbf{X} , \mathbf{P}_1 as the projection matrix of the space spanned by $\mathbf{1}$, the *n*-dimensional intercept column with all elements 1's. That is, \mathbf{P}_1 is indeed a special \mathbf{P} where our \mathbf{X} degenerates to $\mathbf{1}$. Furthermore, \mathbf{I} is the $n \times n$ identity matrix, and \mathbf{J} is the $n \times n$ matrix with all elements 1's.

- 1. Write out the explicit form with all elements of the matrix $\bar{\mathbf{Y}}$.
- 2. Show the following statements:
 - (a) \mathbf{P} (and hence \mathbf{P}_1) and $\mathbf{I} \mathbf{P}$ are idempotent, i.e., they are symmetric and their squares equal to themselves.
 - (b) $\hat{\mathbf{Y}} = \mathbf{PY}$; $\bar{\mathbf{Y}} = \mathbf{P_1Y}$. (That means, as we stated before, $\bar{\mathbf{Y}}$ can be viewed as the fitted value of \mathbf{Y} when regressing only the intercept.)
 - (c) $\mathbf{Y}'\hat{\mathbf{Y}} = \hat{\mathbf{Y}}'\hat{\mathbf{Y}}; \ \mathbf{Y}'\bar{\mathbf{Y}} = \bar{\mathbf{Y}}'\bar{\mathbf{Y}}; \ \hat{\mathbf{Y}}'\bar{\mathbf{Y}} = \bar{\mathbf{Y}}'\bar{\mathbf{Y}}.$
 - (d) $\mathbf{E} = \mathbf{Y}'\mathbf{Y} \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} = \mathbf{E} = \mathbf{Y}'\mathbf{Y} \hat{\mathbf{Y}}'\hat{\mathbf{Y}} = \mathbf{T} = \mathbf{Y}'(\mathbf{I} \mathbf{P})\mathbf{Y}.$
 - (e) $\mathbf{T} = \mathbf{Y}'\mathbf{Y} n\bar{\mathbf{y}}\bar{\mathbf{y}}' = \mathbf{T} = \mathbf{Y}'\mathbf{Y} \bar{\mathbf{Y}}'\bar{\mathbf{Y}} = \mathbf{T} = \mathbf{Y}'(\mathbf{I} \mathbf{P}_1)\mathbf{Y} = \mathbf{Y}'(\mathbf{I} \mathbf{J}/n)\mathbf{Y}.$
 - (f) $\mathbf{H} = \hat{\mathbf{B}}'\mathbf{X}'\mathbf{Y} n\bar{\mathbf{y}}\bar{\mathbf{y}}' = \mathbf{H} = \hat{\mathbf{Y}}'\hat{\mathbf{Y}} \bar{\mathbf{Y}}'\bar{\mathbf{Y}}.$