

SSCC social science computing cooperative

Research Computing

University of Wisconsin – Madison

Post-estimation Parameter Recentering and Rescaling

Doug Hemken

SSCC social science computing cooperative

Recentered polynomial regression (change of basis)

Recentered polynomial regression (change of basis)

. estimates table Original Centered, se

Variable	·	Original	Centered
displacement	•	13.292618	8.2613721
		2.1114091	.49321693
	١		
c.displacement#	‡ [
c.displacement	١	01275042	01275042
	١	.00461032	.00461032
	ı		
_cons	١	999.27223	3125.5442
	١	211.52293	54.591876

legend: b/se

Math – Linear Algebra of Recentering and Rescaling

- Building Blocks Simple regression models
 - Recentering
 - Rescaling
- Adding Interactions Factorial regression models
 - Full factorial
 - Partial
- Adding Categorical terms
 - Untransformed
 - Recentering via contrasts
- Group like terms Polynomial models

Simple regression recentering

Given a model

$$y = \beta_0 + \beta_1 x$$

And a recentering constant

$$\circ \Delta x = x - \mu$$

Then the recentered model

•
$$y = \beta_0^{\Delta} + \beta_1^{\Delta} \Delta x$$

Has parameters given by

$$B^{\Delta} = \begin{bmatrix} 1 & \mu \\ 0 & 1 \end{bmatrix} B$$
, or

Precision matrices

• Let the parameter transformation be given by

$$\circ C = \begin{bmatrix} 1 & \mu \\ 0 & 1 \end{bmatrix}$$

• Given the precision matrix for the original model, V, then the precision matrix of the recentered model is

$$V_{\Lambda} = CVC'$$

Recentering y

Given

$$y = \beta_0 + \beta_1 x$$

$$\Delta x = x - \mu_x$$

$$\Delta y = y - \mu_{v}$$

Then

• s

$$B^{\Delta y} = \begin{bmatrix} 1 & \mu_x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 + \mu_y \\ \beta_1 \end{bmatrix}$$

Simple regression rescaling

Given a model

$$y = \beta_0 + \beta_1 x$$

And a rescaling constant

$$\circ z = x/\sigma$$

Then the rescaled model

$$y = \beta_0^z + \beta_1^z z$$

Has parameters given by

$$B^z = \begin{bmatrix} 1 & 0 \\ 0 & \sigma \end{bmatrix} B$$

Rescaling y

From

$$y = \beta_0 + \beta_1 x$$

$$\circ z = x/\sigma_x$$

•
$$y_S = y/\sigma_y$$

To

$$y_S = \beta_0^{zy} + \beta_1^z z$$

• Is

$$B^{zy} = \frac{1}{\sigma_y} \begin{bmatrix} 1 & 0 \\ 0 & \sigma \end{bmatrix} B$$

Standardizing x

Combine the two simpler transformations

$$B^{std} = \begin{bmatrix} \dot{1} & 0 \\ 0 & \boldsymbol{\sigma} \end{bmatrix} \begin{bmatrix} 1 & \boldsymbol{\mu} \\ 0 & 1 \end{bmatrix} B$$

Factorial model recentering

Given

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

•
$$\Delta x_1 = x_1 - \mu_1$$
 and $\Delta x_2 = x_2 - \mu_2$

Then

$$y = \beta_0^{\Delta} + \beta_1^{\Delta} \Delta x_1 + \beta_2^{\Delta} \Delta x_2 + \beta_{12}^{\Delta} \Delta x_1 \Delta x_2$$

(variable-wise centered, not term-wise centered)

Is given by

$$B^{\Delta} = \begin{bmatrix} 1 & \boldsymbol{\mu_2} \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \boldsymbol{\mu_1} \\ 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_1 \mu_2 \\ 0 & 1 & 0 & \mu_2 \\ 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{12} \end{bmatrix}$$

Kronecker ("direct") products

Let

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \text{ and } B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$$

Then

$$A \otimes B = \begin{bmatrix} a_1 B & a_2 B \\ a_3 B & a_4 B \end{bmatrix}$$

$$=\begin{bmatrix} a_1b_1 & a_1b_2 & a_2b_1 & a_2b_2 \\ a_1b_3 & a_1b_4 & a_2b_3 & a_2b_4 \\ a_3b_1 & a_3b_2 & a_4b_1 & a_4b_2 \\ a_3b_3 & a_3b_4 & a_4b_3 & a_4b_4 \end{bmatrix}$$

Factorial model rescaling

Given

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

•
$$z_1 = x_1/\sigma_1$$
 and $z_2 = x_2/\sigma_2$

Then

$$y = \beta_0^{z} + \beta_1^{z} z_1 + \beta_2^{z} z_2 + \beta_{12}^{z} z_1 z_2$$

Is given by

$$B^{z} = \begin{bmatrix} 1 & 0 \\ 0 & \sigma_{2} \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & \sigma_{1} \end{bmatrix} B$$

$$B^{z} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \sigma_{1} & 0 & 0 \\ 0 & 0 & \sigma_{2} & 0 \\ 0 & 0 & 0 & \sigma_{1}\sigma_{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{12} \end{bmatrix}$$

Three-way recentering

Given

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_3 x_3 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3$$

$$\Delta x_1 = x_1 - \mu_1, \Delta x_2 = x_2 - \mu_2, \Delta x_3 = x_3 - \mu_3$$

Then

$$B^{\Delta} = \begin{bmatrix} 1 & \mu_3 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \mu_2 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \mu_1 \\ 0 & 1 \end{bmatrix} B$$

$$=\begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_1\mu_2 & \mu_3 & \mu_1\mu_3 & \mu_2\mu_3 & \mu_1\mu_2\mu_3 \\ 0 & 1 & 0 & \mu_2 & 0 & \mu_3 & 0 & \mu_2\mu_3 \\ 0 & 0 & 1 & \mu_1 & 0 & 0 & \mu_3 & \mu_1\mu_3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & \mu_3 \\ 0 & 0 & 0 & 0 & 1 & \mu_1 & \mu_2 & \mu_1\mu_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & \mu_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 & \mu_2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Partial Factorial

- Suppose a model has only 2nd order interaction terms
- This is $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_3 x_3 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3$ with $\beta_{123} = 0$. In our centered model, likewise, we have $\beta_{123}^{\Delta} = 0$
- Then we can simplify our notation:

$$\begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_1\mu_2 & \mu_3 & \mu_1\mu_3 & \mu_2\mu_3 & \mu_1\mu_2\mu_3 \\ 0 & 1 & 0 & \mu_2 & 0 & \mu_3 & 0 & \mu_2\mu_3 \\ 0 & 0 & 1 & \mu_1 & 0 & 0 & \mu_3 & \mu_1\mu_3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & \mu_3 \\ 0 & 0 & 0 & 0 & 1 & \mu_1 & \mu_2 & \mu_1\mu_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & \mu_2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{12} \\ \beta_3 \\ \beta_{13} \\ \beta_{23} \\ \beta_{123} \end{bmatrix}$$

$$\rightarrow simplifies \ as \begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_1\mu_2 & \mu_3 & \mu_1\mu_3 & \mu_2\mu_3 \\ 0 & 1 & 0 & \mu_2 & 0 & \mu_3 & 0 \\ 0 & 0 & 1 & \mu_1 & 0 & 0 & \mu_3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \mu_1 & \mu_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{12} \\ \beta_3 \\ \beta_{13} \\ \beta_{23} \end{bmatrix}$$

Additive models again

- Suppose a model has only Ist order terms, like
 - $y = \beta_0 + \beta_1 x_1 + \beta_3 x_3$
- This is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_3 x_3 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3, \text{ with } \underline{many zeros.}$$

Then we can vastly simplify our notation:

$$\begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_1\mu_2 & \mu_3 & \mu_1\mu_3 & \mu_2\mu_3 & \mu_1\mu_2\mu_3 \\ 0 & 1 & 0 & \mu_2 & 0 & \mu_3 & 0 & \mu_2\mu_3 \\ 0 & 0 & 1 & \mu_1 & 0 & 0 & \mu_3 & \mu_1\mu_3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & \mu_3 \\ 0 & 0 & 0 & 0 & 1 & \mu_1 & \mu_2 & \mu_1\mu_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & \mu_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 & \mu_2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \mu_1 \\ \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_{13} \\ \beta_{23} \\ \beta_{123} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

Factor variables

• Suppose g is a factor with three categories, and x_1 and x_2 are as before

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{g_1} g_1 + \beta_{1g_1} g_1 x_1 + \beta_{2g_1} g_1 x_2 + \beta_{12g_1} g_1 x_1 x_2 + \beta_{g_2} g_2 + \beta_{1g_2} g_2 x_1 + \beta_{2g_2} g_2 x_2 + \beta_{12g_2} g_2 x_1 x_2$$

- o .regress y i.g##c.x1##c.x2
- With reference coding (this is also a direct sum),

$$B^{\Delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \mu_2 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \mu_1 \\ 0 & 1 \end{bmatrix} B$$

Block diagonal, or direct sum

1	μ_1	_	μ_2	$\mu_1\mu_2$		0	0	0	0		0	0	0	0	1
0	1		0	μ_2		0	0	0	0		0	0	0	0	
0	0		1	μ_1		0	0	0	0		0	0	0	0	
0	0		0	1		0	0	0	0		0	0	0	0	
	0	0	0	0	1	μ_1	L	μ_2	$\mu_1\mu_2$		0	0	0	0	
	0	0	0	0	0	1		0	μ_2		0	0	0	0	
	0	0	0	0	0	0		1	μ_1		0	0	0	0	
	0	0	0	0	0	0		0	1		0	0	0	0	
	0	0	0	0		0	0	0	0	1	μ_1		μ_2	$\mu_1\mu_2$	
	0	0	0	0		0	0	0	0	0	1		0	μ_2	
	0	0	0	0		0	0	0	0	0	0		1	μ_1	
_	0	0	0	0		0	0	0	0	0	0		0	1 -	

Factor Grand Mean Centering

- To transform from reference coding to grand mean centered coding, the transformation matrix depends on the number of categories:
- Two categories are centered by

$$\begin{bmatrix} 1 & 1/2 \\ 0 & -1/2 \end{bmatrix}$$

Three categories

$$\begin{bmatrix} 1 & 1/3 & 1/3 \\ 0 & 2/3 & -1/3 \\ 0 & -1/3 & 2/3 \end{bmatrix}$$

Four categories

$$\begin{bmatrix} 1 & 1/4 & 1/4 & 1/4 \\ 0 & 3/4 & -1/4 & -1/4 \\ 0 & -1/4 & 3/4 & -1/4 \\ 0 & -1/4 & -1/4 & 3/4 \end{bmatrix}$$

Grand Mean transformation

• For *n* categories:

egories.
$$\begin{bmatrix} 1 & 1/n & \cdots & 1/n \\ 0 & \frac{n-1}{n} & -1/n & -1/n \\ \vdots & -1/n & \ddots & \vdots \\ 0 & -1/n & \cdots & \frac{n-1}{n} \end{bmatrix}$$

Polynomial terms

Now consider a model of the form

$$y = \beta_0 + \beta_1 x + \beta_{12} x^2$$

Which we will rewrite as

$$y = \beta_0 + \beta_1 x + \beta_{12} x x$$

- In Stata we could specify such a model as
 - regress y c.x##c.x

Polynomial Terms

Here we'll need to collect terms

If
$$A = \begin{bmatrix} 1 & \mu_1 \\ 0 & 1 \end{bmatrix}$$
 then

$$A \otimes A = \begin{bmatrix} 1 & \mu_1 & \mu_1 & \mu_1 \mu_1 \\ 0 & 1 & 0 & \mu_1 \\ 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• However, this is a matrix that starts with two β_1 and returns two β_1^{Δ} .

$$\begin{bmatrix} \beta_0^{\Delta} \\ \beta_1^{\Delta} \\ \beta_1^{\Delta} \\ \beta_{12}^{\Delta} \end{bmatrix} = \begin{bmatrix} 1 & \mu_1 & \mu_1 & \mu_1 \mu_1 \\ 0 & 1 & 0 & \mu_1 \\ 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_1 \\ \beta_{12} \end{bmatrix}$$

Polynomial Terms

• Letting one $\beta_1 = 0$, we simplify our matrix to

$$\begin{bmatrix} \beta_0^{\Delta} \\ \beta_1^{\Delta} \\ \beta_1^{\Delta} \\ \beta_1^{\Delta} \end{bmatrix} = \begin{bmatrix} 1 & \mu_1 & \mu_1 \mu_1 \\ 0 & 1 & \mu_1 \\ 0 & 0 & \mu_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_{12} \end{bmatrix}$$

• But from here, we need to collect our eta_1^Δ terms

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \mu_1 & \mu_1 \mu_1 \\ 0 & 1 & \mu_1 \\ 0 & 0 & \mu_1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \mu_1 & \mu_1^2 \\ 0 & 1 & 2\mu_1 \\ 0 & 0 & 1 \end{bmatrix}$$

So

$$B^{\Delta} = \begin{bmatrix} 1 & \mu_1 & \mu_1^2 \\ \mathbf{0} & \mathbf{1} & \mathbf{2}\mu_1 \\ 0 & 0 & 1 \end{bmatrix} B$$

Math Summary

- We have building blocks for:
 - Continuous variables
 - Categorical variables
 - Polynomial terms
- We can combine them as:
 - Factorial models
 - Subsets of terms from factorial models
 - (As long as no higher-order terms appear without their related lower-order terms)

Programming – Stata

- Given a model in Stata, we want to
 - Identify variables, variable types, variables' polynomial degree (macro list functions and ms parse parts)
 - Collect recentering and rescaling constants (tabstat)
 - Form factorial transformation matrices for continuous/polynomial terms (Kronecker matrix operator, #)
 - Build complete model transformation matrices by filling constants into the appropriate slots (matrix extraction and substitution)
 - Use the results (estimates store and estimates table)

Kronecker product terms

 In the matrix language, Kronecker products make it easy to track terms

Kronecker product terms

 Column/row names are returned with the form equation(B):name(A)

```
. matrix list C
C[4,4]
                                       displacem~t:
                                                       displacem~t:
                             weight
                                                            weight
                          3019.4595
                                          197.2973
                                                         595731.19
r1:r1
r1:r2
                                                          197,2973
r2:r1
                                                         3019.4595
                                   0
r2:r2
                                   0
                                                  0
                                                                  1
```

Note the name stripe is used, but the equation stripe is lost.

r2:r2

Combine term parts

 To use this further, we move all the variable names into the name stripe

```
. local cn : colfullnames C
. local cn :subinstr local cn ":" "#", all
. local cn :subinstr local cn "# " "", all
. matrix coleq C = ""
. matrix colnames C = cn'
. matrix list C
C[4,4]
                                                     c.displace~t#
                             weight
                                      displacement
                                                         c.weight
                          3019.4595
r1:r1
                                          197.2973
                                                        595731.19
r1:r2
                                                       197.2973
r2:r1
                                                        3019.4595
```

Note matrix understands these are interaction terms!

0

1

Kronecker product terms

And we can keep building ...

```
. matrix C = D\#C
```

. matrix list C

C[8,8]

C.mpg#								
c.displace~t#	c.mpg#	c.mpg#		c.displace~t#				
c.weight	c.displace~t	c.weight	mpg	c.weight	displacement	weight	_	
12687464	4201.8992	64306.326	21.297297	595731.19	197.2973	3019.4595	1	r1:r1
4201.8992	0	21.297297	0	197.2973	0	1	0	r1:r2
64306.326	21.297297	0	0	3019.4595	1	0	0	r1:r1
21.297297	0	0	0	1	0	0	0	r1:r2
595731.19	197.2973	3019.4595	1	0	0	0	0	r2:r1
197.2973	0	1	0	0	0	0	0	r2:r2
3019.4595	1	0	0	0	0	0	0	r2:r1
1	0	0	0	0	0	0	0	r2:r2

Parse covariates from factors

Use _ms_parse_parts with terms from e(b)

```
. quietly regress price foreign##c.weight
. matrix list e(b)
e(b)[1,6]
           0b.
                                    0b.foreign# 1.foreign#
      foreign foreign weight co.weight c.weight
                                                               cons
           0 -2171.5968 2.9948135
                                                2.3672266
                                                           -3861.719
y1
. ms parse parts weight
. return list // "variable"
scalars:
              r(omit) = 0
macros:
              r(name) : "weight"
              r(type) : "variable"
```


Parse factors from covariates

Factors

Parse interactions

Interactions

```
. _ms_parse_parts 1.foreign#c.weight
. return list // "interaction"
scalars:
              r(base1) = 0
             r(level1) = 1
            r(k names) = 2
               r(omit) = 0
macros:
              r(name2) : "weight"
                r(op2) : "c"
              r(name1) : "foreign"
                r(op1) : "1"
               r(type) : "interaction"
```


Parse polynomials

Polynomial terms require some extra parsing

```
. _ms_parse_parts whatever#c.whatever
. return list // polynomial as interaction
scalars:
            r(k names) = 2
               r(omit) = 0
macros:
              r(name2) : "whatever"
                r(op2) : "c"
              r(name1) : "whatever"
                r(op1) : "c"
               r(type) : "interaction"
```


Matrix extraction/substitution

Recognizes factor notation equivalences!

```
. quietly regress price c.weight##c.disp
. matrix A = e(b)
. matrix B= A[1,1..2] // by numerical index
. matrix B= A[1, "weight"] // by column/row names
. matrix B= A[1, "c.weight#c.displacement"]
. matrix list B
        c.weight#
    c.displace~t
        .0143162
y1
. matrix B= A[1,"c.displacement#c.weight"]
. matrix list B
        c.weight#
    c.displace~t
        .0143162
y1
```


stdParm syntax

- stdParm [, nodepvar store replace estimates table options]
- Produces centered and standardized parameters
- Optionally exclude the response variable
- Results can be stored
- Results can be reported with any estimates table options

stdParm use

. quietly regress price c.weight##c.mpg

. stdParm

Variable	Original	Centered	Standardized
weight	5.0670077	. 98475137	.25948245
mpg	396.78438	-181.98425	35696623
1			
c.weight#			
c.mpg	19167955	19167955	29221218
1			
_cons	-5944.8806	-686.28559	23267895

stdParm additional statistics

. stdParm, stats(N r2) star

Variable	Original	Centered	Standardized
•			
weight	5.0670077***	.98475137	.25948245
mpg	396.78438*	-181.98425	35696623
1			
c.weight#			
c.mpg	19167955**	19167955**	29221218**
1			
_cons	-5944.8806	-686.28559	23267895
+-			
N	74	74	74
•			
r2	. 35969597	. 35969597	.35969597

legend: * p<0.05; ** p<0.01; *** p<0.001

stdParm after logit

. quietly logit foreign c.price##c.weight

. stdParm

Variable	Original	Centered	Standardized
price	.00331766	.00113549	3.3491337
weight	00141654	00587217	-4.5638148
1			
c.price#			
c.weight	-7.227e-07	-7.227e-07	-1.6566669
1			
_cons	-4.5154515	-1.7920268	-1.7920268

stdParm, eform

. quietly logit foreign c.price##c.weight

. stdParm, eform

Variable	Original	Centered	Standardized
price	1.0033232	1.0011361	28.478052
weight	.99858446	.99414503	.01042222
1			
c.price#			
c.weight	.99999928	.99999928	.19077378
1			
_cons	.01093867	.16662211	.16662211

Download/ install

- net from www.ssc.wisc.edu/~hemken/Stataworkshops
- Tinker with the source code, suggest improvements: https://github.com/Hemken/stdParm