Advanced Transformation

Transformations for Hierarchical Objects

Solar System

- An example of hierarchical objects
 - How can we design transformations for hierarhical objects

(video, youtube)

Sun – Earth – Moon

- Sun
- Earth
 - rotating itself
 - orbiting around the sun
- Moon
 - rotating itself
 - orbiting around the earth

- Moon
 - Modeling the moon

- Moon
 - Modeling the moon
 - Rotating itself

- Earth Moon
 - The moon is orbiting around the earth

$$\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}} (d_{\text{e-m}} \cos \theta, d_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}$$

- Sun Earth
 - The earth is orbiting around the sun

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{x}_{\text{earth}}$$

Sun – Earth – Moon

- Sun Earth Moon
 - \mathbf{x}_{sun} = \mathbf{T}_{earth} (\mathbf{d}_{s-e} cosφ, \mathbf{d}_{s-e} sinφ) \mathbf{R}_{earth} \mathbf{x}_{earth}
 - $-\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}$

Transformation of the Earth w.r.t. the frame of the Sun

$$\mathbf{x}_{sun} = \mathbf{T}_{earth} (d_{s-e} \cos \phi, d_{s-e} \sin \phi) \mathbf{R}_{earth} \mathbf{x}_{earth}$$

Transformation of the Moon w.r.t. the frame of the Sun

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}$$

- Moon
 - Modeling the moon


```
void draw_moon()
{
   glEnableClientState(GL_VERTEX_ARRAY);
   glEnableClientState(GL_COLOR_ARRAY);
   glVertexPointer(...);
   glColorPointer(...);
   glDrawElements(...);
   glDiableClientState(GL_VERTEX_ARRAY);
   glDiableClientState(GL_COLOR_ARRAY);
}
```

- Moon
 - Modeling the moon
 - Rotating itself


```
void draw_earth_system()
{
    // ...
    glRotatef(...);    // rotating the Moon
    draw_moon();
}
void draw_moon() { // ... glDrawElements(); ... }
```

- Earth Moon
 - The moon is orbiting around the earth

```
\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}
```

```
void draw_earth_system()
{
   draw_earth();

   glTranslatef(...); // orbiting around the Earth
   glRotatef(...); // rotating the Moon
   draw_moon();
}

void draw_moon() { // ... glDrawElements(); ... }
void draw_earth() { // ... glDrawElements(); ... }
```


- Sun Earth
 - The earth is orbiting around the sun

```
\mathbf{x}_{sun} = \mathbf{T}_{earth} (d_{s-e} \cos \phi, d_{s-e} \sin \phi) \mathbf{R}_{earth} \mathbf{x}_{earth}
```

```
d_{s-e}
R_{earth}
T_{earth}(d_{s-e}\cos\phi, d_{s-e}\sin\phi)
```

```
void draw_sun_system()
{
   draw_sun();

   glTranslatef(...); // orbiting around the Sun
   glRotatef(...); // rotating the Earth system
   draw_earth_system();
}

void draw_moon() { // ... glDrawElements(); ... }
void draw_earth() { // ... glDrawElements(); ... }
void draw_sun() { // ... glDrawElements(); ... }
```

Sun – Earth – Moon

$$\mathbf{x}_{\text{earth}} = \mathbf{T}_{\text{moon}} (\mathbf{d}_{\text{e-m}} \cos \theta, \mathbf{d}_{\text{e-m}} \sin \theta) \mathbf{R}_{\text{moon}} \mathbf{x}_{\text{moon}}$$

$$\mathbf{x}_{\text{sun}} = \mathbf{T}_{\text{earth}} (\mathbf{d}_{\text{s-e}} \cos \phi, \mathbf{d}_{\text{s-e}} \sin \phi) \mathbf{R}_{\text{earth}} \mathbf{x}_{\text{earth}}$$


```
void draw_sun_system()
{
   draw_sun();

   glTranslatef(...); // orbiting around the Sun
   glRotatef(...); // rotating the Earth system
   draw_earth_system();
}

void draw_earth_system()
{
   draw_earth();

   glTranslatef(...); // orbiting around the Earth
   glRotatef(...); // rotating the Moon
   draw_moon();
}

void draw_moon() { // ... glDrawElements(); ... }

void draw_earth() { // ... glDrawElements(); ... }

void draw_sun() { // ... glDrawElements(); ... }
```

View Transformations

Coordinate System (Frame)

- A Coordinate system (or frame) consists of a set of basis vectors and an origin
 - A set of basis vectors: \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n
 - An origin: o
- How to representing a vector **u** and a point **p** w.r.t. a given coordinate system?

Coordinate System (Frame)

- Consider a set of basis vectors and an origin
 - $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$
 - c
- A vector u is written
 - $\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n + 0 \cdot \mathbf{o}$
 - The list of scalars, $\{\alpha_1, \alpha_2, \dots, \alpha_n, 0\}$ is the representation of **u** w.r.t. the given coordinate system
- A point **p** is written
 - $\mathbf{p} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + ... + \beta_n \mathbf{v}_n + 1 \cdot \mathbf{o}$
 - The list of scalars, $\{\beta_1, \beta_2, ..., \beta_n, 1\}$ is the representation of **p** w.r.t . the given coordinate system

$$\boldsymbol{u} = [\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

$$m{p} = [eta_1 \quad eta_2 \quad \cdots \quad eta_n]^T = egin{bmatrix} eta_1 \ eta_2 \ dots \ eta_n \end{bmatrix}$$

Coordinate System (Frame)

- In OpenGL ES, we just care about *orthonormal* frames
 - Ortho means that the basis vectors are orthogonal to each other
 - x-axis \perp y-axis \perp z-axis
 - normal means that the length of each basis vector is 1
 - The unit length of each axis is equal to 1

- Initially, OpenGL ES camera coordinate is as follows
 - Center of projection (COP) is placed in the origin
 - Right direction is the positive direction of x-axis
 - Up direction is the positive direction of y-axis
 - Viewing direction is the negative direction of z-axis

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

- When we apply gluLookAt()
 - Rotate the camera frame on the world frame: R_c
 - Translate the camera frame on the world frame: T_c
 - Therefore, $V = T_c R_c$ and gluLookAt() generates $V^{-1} = R_c^{-1} T_c^{-1}$

