# Lecture 5, Inference 1 - Belief Propagation DS-GA 1005 Inference and Representation, Fall 2023

Yoav Wald

10/04/2023

## Outline

- So far we've seen ways to represent distributions in factorized forms
- Factorizations convey statistical independence properties on underlyig distribution
- But, how do we use them and what for?

## Reminder: Gibbs distributions

#### Definition (Gibbs distribution)

Let  $\{\Psi_C\}_{C\in\mathcal{C}}$  be a set of non-negative local factors, where  $C\subseteq V$  for any  $C\in\mathcal{C}$ . P is a Gibbs distribution parameterized by the set if

$$P(x_1,\ldots,x_d) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \Psi_C(\mathbf{x}_C),$$

where 
$$Z = \int \prod_{C \in \mathcal{C}} \Psi_C(\mathbf{x}_C) d\mathbf{x}$$

Corresponds to undirected models, today we will work with these distributions

 Recall that distributions over Bayesian networks are also Gibbs distributions

## Examples: Inference in graphical models

#### Speech recognition with HMMs



- We are given models  $P(W_t \mid W_{t-1})$  (next word predictor), and  $P(X_t \mid W_t)$  (sound waveform given word)
- At test time, we observe a recorded signal  $\mathbf{X} = X_1, \dots, X_T$ , and wish to recognize the words being uttered
- Reasonable goal: solve  $\arg \max_{\mathbf{W}} P(\mathbf{W} \mid \mathbf{X})$

## Examples: Inference in graphical models

Image denoising with MRFs



- Variable for each noisy pixel  $X_i$  and corresponding clean pixel  $Y_i$ ; potential  $\Psi_i(X_i, Y_i)$  controls pixels' tendency to be similar
- Potentials  $\Psi_{ij}(Y_i, Y_j)$  for grid-shape graph, modelling the tendency of nearby pixels to be similar
- As in HMM, wish to infer denoised image  $\arg \max_{\mathbf{Y}} P(\mathbf{Y} \mid \mathbf{X})$

# Types of Inference Problems

- Marginal inference: calculate  $P(x_i)$  for some  $i \in V$ , or  $P(\mathbf{x}_C)$  for some  $C \subseteq V$
- Maximium A-Posteriori (MAP) inference: find  $\arg \max_{\mathbf{x}} P(x_1, \dots, x_d)$
- Tools for marginal inference will also let us handle conditioning since we can divide marginals  $P(A \mid B) = \frac{P(A,B)}{P(B)}$

### Inference is Hard

• What is the computational complexity of inference (as a function of number of variables d)?

$$P(x_i) = \sum_{x_1} \sum_{x_2} \dots \sum_{x_{i-1}} \sum_{x_{i+1}} \dots \sum_{x_d} P(x_1, \dots, x_d)$$

- Computing marginal is #P-hard, MAP inference is NP-hard
- Are there structures where inference is efficient?

## Inference on Pairwise distributions

Gibbs distribution

$$P(x_1,\ldots,x_d) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \Psi_C(\mathbf{x}_C),$$

 $\bullet$  For simplicity, let us start with  $C=V\cup E$  for an undirected graph G=(V,E)

$$P(x_1, ..., x_d) = \frac{1}{Z} \prod_{i \in V} \Psi_i(x_i) \prod_{(i,j) \in E} \Psi_{ij}(x_i, x_j)$$

 Inference is still hard, let us start with (arguably) the simplest connectivity structure



X: noisy pixels Y: "true" pixels

Let us start with the a simple chain graph, and assume variables are binary  $\mathbf{x}_i \in \{0,1\} \quad \forall i \in [d].$ 

$$P(x_k) = \sum_{\tilde{\mathbf{x}} \in \{0,1\}^d: \tilde{x}_k = x_k} P(\tilde{\mathbf{x}})$$

$$= \frac{1}{Z} \sum_{\tilde{\mathbf{x}} \in \{0,1\}^d: \tilde{x}_k = x_k} \prod_{i \in V} \Psi_i(\tilde{x}_i) \prod_{(i,j) \in E} \Psi_{ij}(\tilde{x}_i, \tilde{x}_j)$$

$$\propto \sum_{\tilde{\mathbf{x}} \in \{0,1\}^d: \tilde{x}_k = x_k} \Psi_1(\tilde{x}_1) \prod_{j=2}^d \Psi_j(\tilde{x}_j) \Psi_{j-1,j}(\tilde{x}_{j-1}, \tilde{x}_j)$$

$$\underbrace{(x_1) - (x_2) - (x_3) - (x_4) - (x_5) - (x_6) - (x_7) - (x_8) - (x_9)}_{(x_9)}$$

$$P(x_{k}) \propto \sum_{\tilde{\mathbf{x}} \in \{0,1\}^{d}: \tilde{x}_{k} = x_{k}} \Psi_{1}(\tilde{x}_{1}) \prod_{j=2}^{d} \Psi_{j}(\tilde{x}_{j}) \Psi_{j-1,j}(\tilde{x}_{j-1}, \tilde{x}_{j})$$

$$= \sum_{\tilde{x}_{1}, \dots, \tilde{x}_{d-1}: \tilde{x}_{k} = x_{k}} \left( \Psi_{1}(\tilde{x}_{1}) \prod_{j=2}^{d-1} \Psi_{j}(\tilde{x}_{j}) \Psi_{j-1,j}(\tilde{x}_{j-1}, \tilde{x}_{j}) \cdot \sum_{\tilde{x}_{d}} \Psi_{d}(\tilde{x}_{d}) \Psi_{d-1,d}(\tilde{x}_{d-1}, \tilde{x}_{d}) \right)$$

$$M_{d,d-1}(\tilde{x}_{d-1})$$

$$(x_{1}) - (x_{2}) - (x_{3}) - (x_{4}) - (x_{5}) - (x_{6}) - (x_{7}) - (x_{8}) - (x_{9})$$

$$P(x_k) \propto \sum_{\tilde{x}_1, \dots, \tilde{x}_{d-1}: \tilde{x}_k = x_k} \Psi_1(\tilde{x}_1) \prod_{j=2}^{d-1} \Psi_j(\tilde{x}_j) \Psi_{j-1, j}(\tilde{x}_{j-1}, \tilde{x}_j) M_{d, d-1}(\tilde{x}_{d-1})$$

- Computational complexity to calculate  $M_{d,d-1}(\tilde{x}_{d-1})$  is O(1)!
- Define  $M_{d-1,d-2}(\tilde{x}_{d-2}) = \kappa \sum_{\tilde{x}_{d-1}} \left\{ \Psi_{d-1}(\tilde{x}_{d-1}) \Psi_{d-2,d-1}(\tilde{x}_{d-2},\tilde{x}_{d-1}) M_{d,d-1}(\tilde{x}_{d-1}) \right\}$ 
  - $\bullet$   $\kappa$  normalization constant
- Continue pushing summations inside until we get  $M_{i+1,i}(x_i)$ ...



$$P(x_{k}) \propto \sum_{\tilde{x}_{1},...,\tilde{x}_{d-1}:\tilde{x}_{k}=x_{k}} \Psi_{1}(\tilde{x}_{1}) \prod_{j=2}^{d-1} \Psi_{j}(\tilde{x}_{j}) \Psi_{j-1,j}(\tilde{x}_{j-1},\tilde{x}_{j}) M_{d,d-1}(\tilde{x}_{d-1})$$

$$= \sum_{\tilde{x}_{1},...,\tilde{x}_{k-1}} \Psi_{1}(\tilde{x}_{1}) \prod_{j=2}^{k} \Psi_{j}(\tilde{x}_{j}) \Psi_{j-1,j}(\tilde{x}_{j-1},\tilde{x}_{j}) M_{k+1,k}(\tilde{x}_{k})$$

- So far computational complexity scales as d-k
- Now we can do the same from the other side of the chain
- ullet Push summation on  $x_1$  inside and define

$$M_{1,2}(\tilde{x}_2) = \sum_{\tilde{x}_1} \Psi_1(\tilde{x}_1) \Psi_{1,2}(\tilde{x}_1, \tilde{x}_2)$$

$$(x_1) - (x_2) - (x_3) - (x_4) - (x_5) - (x_6) - (x_7) - (x_8) - (x_9)$$

$$P(x_{k}) \propto \sum_{\tilde{x}_{1},...,\tilde{x}_{k-1}} \Psi_{1}(\tilde{x}_{1}) \prod_{j=2}^{k} \Psi_{j}(\tilde{x}_{j}) \Psi_{j-1,j}(\tilde{x}_{j-1},\tilde{x}_{j}) M_{k+1,k}(x_{k})$$

$$= \sum_{\tilde{x}_{2},...,\tilde{x}_{k-1}} M_{1,2}(\tilde{x}_{2}) \Psi_{2}(\tilde{x}_{1}) \prod_{j=3}^{k} \Psi_{j}(\tilde{x}_{j}) \Psi_{j-1,j}(\tilde{x}_{j-1},\tilde{x}_{j}) M_{k+1,k}(x_{k})$$

$$\dots = M_{k-1,k}(x_{k}) \Psi_{k}(x_{k}) M_{k+1,k}(x_{k})$$

- We conclude that  $P(x_k) = \kappa M_{k-1,k}(x_k) \Psi_k(x_k) M_{k+1,k}(x_k)$
- Computational complexity is O(d)!

## Marginal Inference on Trees

#### Let us generalize the algorithm

- Observation 1: Trivial to generalize beyond binary variables, simply sum/integrate over all  $Val(X_i)$  instead of  $\{0,1\}$
- Observation 2: Switching order of sums and products will work as long as there is no cycle in the graph

## Marginal Inference on Trees

Switching order of sums and products works as long as G is a tree

- If G is a tree and we want  $P(x_s)$ , set s as the root
- For each  $i \in V$  that is leaf in this tree calculate

$$M_{i,pa(i)}(x_{pa(i)}) = \sum_{\tilde{x}_i} \Psi_i(\tilde{x}_i) \Psi_{i,pa(i)}(\tilde{x}_i, x_{pa(i)})$$

• Next, let v be a leaf's parent, then send a messages to its own parent s and continue until we're done . . .

$$M_{v,s}(x_s) = \sum_{\tilde{x}_v} \Psi_v(\tilde{x}_v) \Psi_{v,s}(\tilde{x}_v, x_s) \prod_{i \in N(v) \setminus s} M_{i,v}(\tilde{x}_v)$$



## Marginal Inference on Trees

Switching order of sums and products works as long as G is a tree

General form of calculating messages:

$$M_{v,s}(x_s) = \sum_{\tilde{x}_v} \Psi_v(\tilde{x}_v) \Psi_{v,s}(\tilde{x}_v, x_s) \prod_{i \in N(v) \setminus s} M_{i,v}(\tilde{x}_v)$$

- As with the chain, we aggregate messages from v's children, who are exactly  $N(v) \setminus s$
- Eventually  $P(X_s) \propto \Psi_s(x_s) \prod_{i \in N(s)} M_{i,s}(x_s)$



## Belief Propagation on Trees

- Belief Propagation (BP) is an instance of dynamic programming: using solutions of subproblems to solve the entire task
  - Large task Calculate messages  $M_{ij}(x_i)$  for all  $(i,j) \in E$ , where G = (V, E) is a tree
  - Subtasks Let  $r \in V$  be an arbitrary root, calculate messages  $M_{ij}(x_i)$  in  $G_c = (V_c, E_c)$  for subtree where  $c \in N(r)$
- What happens if just update the messages iteratively with no particular order?

# Sum-Product Belief Propagation

#### **Sum-Product Belief Propagation**

**Input**: Potentials  $\{\Psi_i\}_{i\in V}$  and  $\{\Psi_{ij}\}_{ij\in E}$ 

**Output:** Estimates  $b_i(x_i)$  of  $P(x_i)$  for all  $X_i \in V$ 

while not converged do

Update for all  $(i, j) \in E$ ,

$$M_{ji}^{(t)}(x_i) \leftarrow \kappa \sum_{\tilde{x}_j} \left\{ \Psi_{ij}(x_i, \tilde{x}_j) \psi_j(\tilde{x}_j) \prod_{k \in N(j) \setminus i} M_{k,j}(\tilde{x}_j) \right\},\,$$

and similarly for  $M_{ij}^{(t)}(x_j)$ .

end

return 
$$b_i(x_i) \propto \Psi_i(x_i) \prod_{i \in N(i)} M_{j,i}(x_i)$$
 for all  $X_i \in V$ 

## Convergence of BP on Trees

**Define**: diameter of a graph is  $diam(G) = \max_{i,j \in V} dist(i,j)$ . Here, dist(i,j) is the length if the shortest path between the nodes

### Theorem (BP is Exact on Trees)

Consider a Gibbs distribution P that factorizes over a tree G with  $\operatorname{diam}(G) = t^*$ , then

① The BP updates converge to a fixed point after at most  $t^*$  iterations, irrespective of initial messages. That is, for any  $t>t^*$ 

$$M_{ij}^t(x_j) = M_{ij}^{t^*}(x_j)$$

for all  $(i,j) \in E$  (and also for  $M_{ji}(x_i)$ )

2 The beliefs  $b_i(x_i)$  returned by BP are the marginals of P

**Proof Idea:** induction on diameter of subtrees

## Belief Propagation: Important Facts

- How about MAP inference? to calculate  $\max_{\mathbf{x}} P(\mathbf{x})$  we can use a similar algorithm, where  $\sum$  is replaced by  $\max$ 
  - Note that  $\max$  and  $\prod$  commute, same as  $\sum$  and  $\prod$  do (i.e.  $\max$  can be "pushed inside")
  - The resulting algorithm is called Max-Product Belief Propagation

## Belief Propagation: Important Facts

- How about MAP inference? to calculate  $\max_{\mathbf{x}} P(\mathbf{x})$  we can use a similar algorithm, where  $\sum$  is replaced by  $\max$
- What marginals can be calculated after messages converged? Notice that once we have  $M_{ij}(x_i), M_{ji}(x_j)$  for all  $(i, j) \in E$ , we can calculate the marginals  $P(x_k)$  for all  $X_k \in V$ .
- Straightforward generalization to factor graph handles non-pairwise factors (runtime exponential in size of largest factor)

# Loopy Belief Propagation

What about non-tree graphs? Easy to observe that we can run this algorithm on non-tree graphs

#### **Sum-Product Belief Propagation**

**Input**: Potentials  $\{\Psi_i\}_{i\in V}$  and  $\{\Psi_{ij}\}_{ij\in E}$ 

**Output:** Estimates  $b_i(x_i)$  of  $P(x_i)$  for all  $X_i \in V$ 

while not converged do

Update for all  $(i,j) \in E$ ,

$$M_{ji}^{(t)}(x_i) \leftarrow \kappa \sum_{\tilde{x}_j} \left\{ \Psi_{ij}(x_i, \tilde{x}_j) \psi_j(\tilde{x}_j) \prod_{k \in N(j) \setminus i} M_{k,j}(\tilde{x}_j) \right\},\,$$

and similarly for  $M_{ij}^{(t)}(x_j)$ .

end

return 
$$b_i(x_i) \propto \Psi_i(x_i) \prod_{j \in N(i)} M_{j,i}(x_i)$$
 for all  $X_i \in V$ 

# **Loopy Belief Propagation**

What about non-tree graphs? Easy to observe that we can run this algorithm on non-tree graphs

- Is it guaranteed to retrieve a correct solution? No
- Is it guaranteed to converge? No
- But, it works surprisingly well in practice and used in many applications in the past and also today
- Next: understanding BP from a different point-of-view

## Inference as Optimization

Consider another approach to finding the marginals of P ldea: if it difficult to do inference on P, use a surrogate distribution

- Define a family  $\mathcal P$  of distributions, where marginals for each  $Q\in\mathcal P$  can be calculated efficiently
- Given the distribution P for which we would like to do inference, approximate it with the marginals of the "closest" candidate  $Q \in \mathcal{P}$
- This type of approximation scheme is called Variational Inference

## Boltzmann Distributions

Our treatment of inference as optimization makes a mild assumption that  $P(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$  for some "energy function"  $E: \mathcal{X} \to \mathbb{R}$ 

- Distributions of this form are called Boltzmann distributions
- When P is factorizes over an undirected graph G, we have  $E(\mathbf{x}) = -\sum_{ij \in E} \log \Psi_{ij}(x_i, x_j) \sum_{i \in V} \log \Psi_i(x_i)$
- Where have we seen this form of distribution before?

## Inference as Optimization

- Idea: doing inference on P is difficult? Use a surrogate distribution!
  - Define a family  $\mathcal P$  of distributions, where marginals for each  $Q\in\mathcal P$  can be calculated efficiently
  - Given the distribution P for which we would like to do inference, approximate it with the marginals of the "closest" candidate  $Q \in \mathcal{P}$

## Naïve Mean Field Variational Inference

- Idea: doing inference on P is difficult? Use a surrogate distribution!
  - Define a family  $\mathcal P$  of distributions, where marginals for each  $Q \in \mathcal P$  can be calculated efficiently

Simplest option: fully factorized distribution

• Given the distribution P for which we would like to do inference, approximate it with the marginals of the "closest" candidate  $Q \in \mathcal{P}$ 

Measure of distance: KL-divergence  $D_{KL}(Q||P) = \mathbb{E}_Q \left[ \log \frac{P}{Q} \right]$ 

## Kullback-Leibler Divergence

#### Definition

For a Gibbs distribution  $P(\mathbf{x})$  and a positive distribution Q the Kullback-Leibler divergence (also relative entropy) is

$$D_{KL}(Q||P) = \sum_{\mathbf{x}} Q(\mathbf{x}) \log \frac{P(\mathbf{x})}{Q(\mathbf{x})} \xrightarrow{\frac{1}{2} - \exp\{-E(\mathbf{x})\}}$$

Identities:

- entities:  $D_{KL}(Q\|P) = -\mathbb{E}_Q\log\frac{Q}{P} \geq -\log\mathbb{E}_Q\frac{Q}{P} \geq 0, \text{ equal iff } P = Q$
- The KL-divergence when P is a Boltzmann distribution is

$$D_{KL}(Q||P) = \underbrace{\sum_{\mathbf{x}} Q(\mathbf{x}) E(\mathbf{x})}_{\mathbf{x}} + \underbrace{\sum_{\mathbf{x}} Q(\mathbf{x}) \log Q(\mathbf{x})}_{\mathbf{Neg. Entropy: } -H(Q)} + \log Z$$
"Internal energy":  $U(Q; \Psi)$  Neg. Entropy:  $-H(Q)$ 

## Naïve Mean Field

Let us write down the optimization problem for Naïve Mean Field

$$\min_{Q \in \mathcal{P}} D_{KL}(Q||P) = U(Q; \Psi) - H(Q) + \log Z$$

Note:  $\log Z$  does not depend on Q, we can minimize  $U(Q;\Psi)-H(Q)$ 

## Naïve Mean Field

Let us write down the optimization problem for Naïve Mean Field

$$\min_{Q \in \mathcal{P}} U(Q; \Psi) - H(Q)$$

With fully factorized distributions,

$$\mathcal{P} = \{ \prod_{i} Q_{i}(x_{i}) : Q_{i}(x_{i}) > 0, \sum_{i} Q_{i}(x_{i}) = 1 \}$$

• Write down  $U(Q; \Psi)$  and H(Q)

$$U(Q; \Psi) = -\sum_{ij} \sum_{x_i, x_j} Q_i(x_i) Q_j(x_j) \log \Psi_{ij}(x_i, x_j)$$
$$-\sum_{i} \sum_{x_i} Q_i(x_i) \log \Psi_i(x_i)$$
$$H(Q) = -\sum_{i} \sum_{x_i} Q_i(x_i) \log Q_i(x_i) = \sum_{i} H(Q_i)$$

## Naïve Mean Field

#### To summarize so far:

ullet Our idea is to find the closest distribution to P out of a set  ${\mathcal P}$ 



- For  $\mathcal{P} = \{\prod_i Q_i(x_i)\}$ , optimization is often tractable. Generally, solution is  $not \prod_i P(X_i)$
- Can we go beyond factorized distributions? Tree structures?
   Connection to BP?

#### Proposition

For a Gibbs distribution  $Q(\mathbf{x})$  that factorizes over a tree G=(V,E) it holds that

$$Q(\mathbf{x}) = \prod_{ij \in E} Q(x_i, x_j) \prod_{i \in V} Q(x_i)^{1 - d(i)},$$

where d(i) is the degree of i in G.

#### Proof.

By induction on size of the tree. We choose some  $x_k$  for which d(k) = 1, and denote l = N(k). Writing  $\mathbf{x}_{-k}$  as the random vector with all variables but  $x_k$ , we write

$$P(\mathbf{x}) = P(\mathbf{x}_{-k})P(x_k \mid \mathbf{x}_{-k}) = P(\mathbf{x}_{-k})P(x_k \mid x_l).$$

. . .

#### Proof.

. . .

$$P(\mathbf{x}) = P(\mathbf{x}_{-k})P(x_k \mid \mathbf{x}_{-k}) = P(\mathbf{x}_{-k})P(x_k \mid x_l).$$

The first equality is due the Bayes rule. The second holds because l separates k from other nodes in G, and as we learned last class, for Markov networks this means  $x_k \perp \!\!\! \perp x_{-k} \setminus x_l \mid x_l$ . Now rewrite  $P(x_k \mid x_l) = P(x_k, x_l)/P(x_l)$ , and also use the inductive hypothesis since  $P(\mathbf{x}_{-k})$  factorizes on the tree  $(V \setminus \{k\}, E \setminus (k, l))$ . The degree of  $x_l$  in this subgraph is d(l) - 1, hence

$$P(\mathbf{x}) = \underbrace{\prod_{(i,j) \in E \setminus (k,l)} P(x_i, x_j) \prod_{i \neq k,l} P(x_i)^{1-d(i)} \cdot P(x_l)^{2-d(l)}}_{P(\mathbf{x}_{-k})} \cdot P(x_k, x_l) P(x_l)^{-1} \underbrace{P(x_k)^{1-d(k)}}_{=1, \text{ as } d(k)=0} \dots$$

#### Proof.

. . .

$$P(\mathbf{x}) = \underbrace{\prod_{(i,j)\in E\setminus(k,l)} P(x_i,x_j) \prod_{i\neq k,l} P(x_i)^{1-d(i)} \cdot P(x_l)^{2-d(l)}}_{P(\mathbf{x}_{-k})} \cdot P(x_k,x_l) P(x_l)^{-1} \underbrace{P(x_k)^{1-d(k)}}_{=1, \text{ as } d(k)=0}$$

Putting this together we get the desired result

$$P(\mathbf{x}) = \prod_{(i,j)\in E} P(x_i, x_j) \prod_i P(x_i)^{1-d(i)}$$

#### Proposition

For a Gibbs distribution  $Q(\mathbf{x})$  that factorizes over a tree G=(V,E) it holds that

$$Q(\mathbf{x}) = \prod_{ij \in E} Q(x_i, x_j) \prod_{i \in V} Q(x_i)^{1 - d(i)},$$

where d(i) is the degree of i in G.

ullet This means that the entropy H(Q) is

$$H(Q) = \sum_{ij \in E} H(Q(x_i, x_j)) + \sum_{i \in V} (1 - d_i) \cdot H(Q(x_i))$$

 We will consider this type of decomposition for a non-tree graph

## The Bethe Approximation

Consider a **cyclic** G. The variational principle we study for tree-approximations has the following components

• pseudo-marginals  $\{b_i(x_i)\}_{i\in V}$  and  $\{b_{ij}(x_i,x_j)\}_{ij\in E}$  where

$$\mathbb{L}_{G} = \left\{ b \ge 0 : \sum_{x_{i}} b_{ij}(x_{i}, x_{j}) = 1 & \forall i \in V, \\ b \ge 0 : \sum_{x_{i}} b_{ij}(x_{i}, x_{j}) = b_{j}(x_{j}), & \forall ij \in E \right\}$$

• The "entropy" corresponding to these pseudo-marginals:

$$H_{\mathsf{Bethe}}(b) = \sum_{ij \in E} H(b_{ij}(x_i, x_j)) + \sum_{i \in V} (1 - d_i) \cdot H(b_i(x_i))$$

# The Bethe Approximation

Pseudo-marginals b and  $H_{Bethe}(b)$  must be interpreted with care

•  $H_{Bethe}(b)$  is an entropy-like expression of a function

$$\tilde{Q}(\mathbf{x}) = \prod_{ij \in E} b_{ij}(x_i, x_j) \prod_{i \in V} b_i(x_i)^{1 - d(i)}$$

- But since G has cycles,  $\tilde{Q}$  is not a distribution and  $H_{\text{Bethe}}$  is not an entropy. It's called the Bethe entropy approximation.
- For  $b \in \mathbb{L}_G$ , there might not even exist a distribution P whose marginals are  $\{b_i\}_{i \in V}$  and  $\{b_{i,j}\}_{ij \in E}$ !

# The Bethe Variational Principle

Finally, we consider the variational principle analogously to the mean-field case

$$\min_{Q \in \mathcal{P}} U(Q; \Psi) - H(Q) \leftrightarrow \min_{b \in \mathbb{L}_G} U(b; \Psi) - H_{\mathsf{Bethe}}(b)$$

• The internal energy  $U(b; \Psi)$  takes a similar form as before,

$$U(b; \Psi) = -\sum_{ij} \sum_{x_i, x_j} b_{ij}(x_i, x_j) \log \Psi_{ij}(x_i, x_j)$$
$$-\sum_{i} \sum_{x_i} b_i(x_i) \log \Psi_i(x_i)$$

• What can we say about this principle? It does not even directly correspond to  $D_{KL}(\cdot||P)$  minimization!

## The Bethe Variational Principle

The Bethe variational principle is

$$\min_{b \in \mathbb{L}_G} U(b; \Psi) - H_{\mathsf{Bethe}}(b).$$

We can write down the Lagrangian for the problem,

$$\mathcal{L}(b^*, \lambda^*; \Psi) = U(b; \Psi) - H_{\mathsf{Bethe}}(b) + \sum_{i \in V} \lambda_i C_i(b)$$

$$+ \sum_{ij \in E} \left[ \sum_{x_i} \lambda_{ji}(x_i) C_{ji}(x_i; b) + \sum_{x_j} \lambda_{ij}(x_j) C_{ij}(x_j; b) \right].$$

Here we used a shortened notation for the constraints in  $\mathcal{L}_G$ ,

$$C_i(b) := 1 - \sum_{x_i} b_i(x_i) = 0, \ C_{ij}(x_j; b) := \sum_{x_i} b_{ij}(x_i, x_j) - b_j(x_j) = 0$$

# The Bethe Variational Principle and Belief Propagation

#### Theorem

For any graph G and  $P(\mathbf{x})$  a Boltzmann distribution that factorizes over G, it holds that

**1** Any fixed point of Sum-Product BP specifies a pair  $(b^*, \lambda^*)$  such that

$$\nabla_b \mathcal{L}(b^*, \lambda^*; \Psi) = 0, \text{ and } \nabla_\lambda \mathcal{L}(b^*, \lambda^*; \Psi) = 0$$
 (1)

② When G is a tree there is only one pair  $(b^*, \lambda^*)$  that satisfies equation 1 and  $b^*$  corresponds to the marginals of P

## Conclusion

- Inference is (provably) hard!
- Belief Propagation is a practical and useful approach, works best on "tree-like" graphs
- The variational inference view of BP provides some insight and also motivated development of different algorithms
- Next week: more variational inference, this time with *learning* hidden variable models