Homework 1

李娜

15320170155232

2019/3/16

Hoeffding inequality

Introduction

Inequalities are useful for bounding quantities that might be hard to compute. Among these, Hoeffding inequality is a powerful technique and perhaps the most important inequality in learn theory.¹ In this report, what I mainly want to do is to repeat the proof of this inequality. Finally, I will talk about some applications of the inequality.

What's Hoeffding inequality

Hoeffding inequality was proposed and proved by Hoeffding(1963). The general format is as follows: Let X_1 , ..., X_n be independent bounded random variables such that X_i falls in the interval $[a_i, b_i]$ with probability one. Denote their sum by $S_n = \sum_{i=1}^n X_i$. Then for any $\epsilon > 0$, we have

$$\mathbf{P}\{S_n - ES_n \ge \varepsilon\} \le exp(\frac{-2\varepsilon^2}{\sum_{i=1}^n (b_i - a_i)^2})$$

and $P\{S_n - ES_n \le -\varepsilon\} \le exp(\frac{-2\varepsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}).$

Proof

To prove this inequality, we need to use Hoeffding Lemma, which is let X be a random variable with EX=0, $a \le X \le b$. Then for s >0, $E\{e^{sX}\} \le e^{s^2(b-a)^2/8}$. So firstly, we will prove this Lemma.

step 1

 $f(t)=\exp(t)$ is a convex function. According to **Jensen's inequality**, if $f:R\to R$ is a convex function, then $f(E[x])\leq E[f(x)]$.

so for $a \le x \le b$, we have,

$$e^{sx} \le \frac{x-a}{b-a}e^{sb} + \frac{b-x}{b-a}e^{sa}$$

Applying EX=0,we get $Ee^{sx} \leq \frac{b}{b-a}e^{sa} - \frac{a}{b-a}e^{sb}$, define v = -a/(b-a),we can easily know 1-v = b/(b-a), a = -v(b-a) and b = (1-v)(b-a).

¹ John Duchi, CSS229 Supplement Lecture notes Hoeffding's inequality.

So,
$$Ee^{sx} \le (1-v)e^{-sv(b-a)} + ve^{(1-v)s(b-a)}$$

= $(1-v+ve^{s(b-a)})e^{-sv(b-a)}$
= $e^{\log(1-v+ve^{s(b-a)})-sv(b-a)}$

Define
$$u=s(b-a)$$
 and $\Phi(u)=\log(1-v+ve^u)-uv$, we can get
$$\Phi(0)=0 \ and \ Ee^{sx}\leq e^{\Phi(u)}.$$

Then take the derivative of Φ , the result is:

$$\Phi'(u) = -v + \frac{ve^u}{1 - v + ve^u} , \text{ therefore } \Phi'(0) = 0$$

And moreover,
$$\Phi''(u) = \frac{(1-v)e^u}{(1-v+ve^u)^2} \le \frac{1}{4}$$
 for $u > 0$

Thus, by Taylor series expansion, for some $\theta \in [0, u]$,

$$\Phi(u) = \Phi(0) + u\Phi'(0) + \frac{u^2}{2}\Phi''(u) \le \frac{u^2}{8} = \frac{s^2(b-a)^2}{8}$$

So,
$$E\{e^{sX}\} \le e^{s^2(b-a)^2/8}$$

Next, we are going to prove Hoeffding inequality.

• Step 2

Suppose s is an arbitrary positive number, for any random variable x, by **Markov's inequality**, we can get, $P(X > \varepsilon) = P(e^{sX} > e^{s\varepsilon}) \le \frac{Ee^{sX}}{e^{s\varepsilon}}$. This is the basic of **Chernoff bounds**.

Using Chernoff Bounds, we can find a $\,\mathrm{s}>0\,$ that minimizes the upper bound or makes upper bound small. So we have

$$\begin{split} \mathbb{P}\{S_n - ES_n \geq \varepsilon\} &= P\{e^{s(S_n - ES_n)} \geq e^{s\varepsilon}\} \\ &\leq e^{-s\varepsilon} E\{e^{s\sum_{i=1}^n (X_i - EX_i)}) \\ &= e^{-s\varepsilon} \prod_{i=1}^n E\{e^{s(X_i - EX_i)}\} \qquad \text{(because X$_i$ is independent)} \\ &= e^{-s\varepsilon} \prod_{i=1}^n e^{s^2(b_i - a_i)^2/8} \qquad \text{(by Hoeffding Lemma)} \\ &= e^{-s\varepsilon} e^{s^2 \sum_{i=1}^n (b_i - a_i)^2/8} \\ &= e^{\frac{-2\varepsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}} \qquad \text{(} s = \frac{4\varepsilon}{\sum_{i=1}^n (b_i - a_i)^2} \text{)} \end{split}$$

The final step comes from

min
$$-s\epsilon + s^2 \sum_{i=1}^n (b_i - a_i)^2/8$$
, take the derivative w.r.t s, we can get
$$-\epsilon + s \sum_{i=1}^n \frac{(b_i - a_i)^2}{4} = 0 \ \to s = 4\epsilon/\sum_{i=1}^n (b_i - a_i)^2$$

The second inequality is proved analogously.

Combining the two inequalities, we can get,

$$P\{|S_n - ES_n| \ge \varepsilon\} \le 2\exp(\frac{-2\varepsilon^2}{\sum_{i=1}^n (b_i - a_i)^2})$$

Application

Hoeffding inequality is very important for error estimation methods. It can be applied to the learning problem, allowing us to make a prediction outside of Data set. Based on the inequality, a sample data set can be used to assess whether or not hypothesis(h) is close to the target function(f).

Reference

- [1] John Duchi, CSS229 Supplement Lecture notes Hoeffding's inequality.
- [2] Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference, chapter 4.
- [3] Luc Devroye, László Györfi and Gábor Lugosi, A Probabilistic Theory of pattern Recognition, chaper8.