<u>Área personal</u> / Mis cursos / <u>SIS_BAS_MIC</u> / <u>CONVOCATORIA ORDINARIA ENERO 2022</u> / <u>Test Bloque 2</u>

Comenzado el viernes, 14 de enero de 2022, 18:08

Estado Finalizado

Finalizado en viernes, 14 de enero de 2022, 18:30

Tiempo 22 minutos 40 segundos

empleado

```
Pregunta 1
Finalizado
```

Puntúa como 0.83

Se tiene una aplicación desarrollada con CMSIS-RTOS2, configurado por defecto. La aplicación tiene dos threads, tal y como se muestra en el siguiente fragmento de código, y se han definido dos flags de thread. Antes de comenzar a ejecutarse los threads, el pin 7 del puerto C se ha puesto a uno:

```
#define FLAG A
#define FLAG B 8
void Thread 1 (void *argument) {
  while (1) {
    osThreadFlagsWait(FLAG_A, osFlagsWaitAll, osWaitForever);
    HAL GPIO TogglePin (GPIOC, GPIO PIN 7);
    osThreadFlagsWait(0x000C, osFlagsWaitAll, osWaitForever);
    osDelay(100);
    HAL_GPIO_TogglePin(GPIOC,GPIO_PIN_7);
    osThreadYield();
  }
}
void Thread_2 (void *argument) {
  while (1) {
    osDelay(300);
    osThreadFlagsSet(tid_Thread_l, FLAG_A);
    osDelay(200);
    osThreadFlagsSet(tid_Thread_l, FLAG_B);
    osThreadYield();
  }
}
```

Indique la opción que representa la evolución temporal del pin 7 del puerto C (considere que cada división de la cuadrícula equivale a 100 ms).

Pin 7 Puerto C:

Pin 7 Puerto C:

Pin 7 Puerto C:

Finalizado

Puntúa como 0.83

Indique qué patrón aparecerá en el LCD, si se ejecutan las siguientes instrucciones, suponiendo que se han realizado correctamente todas las funciones de inicialización del SPI y del LCD, como se ha realizado en el desarrollo de las prácticas de laboratorio:

```
for (i=0; i<512; i++) {
    if (i & 0x01) buffer[i]=0xFF;
    else buffer[i]=0x00;
}
LCD_Update();</pre>
```


Finalizado

Puntúa como 0.83

Con la configuración del fichero RTX_Config.h del entorno de Keil mostrada en la figura, puede afirmarse que:

- El tick del sistema operativo es de 500 ms
- El tick del sistema operativo es de 1 ms.
- El tiempo de conmutación entre tareas del sistema operativo es de 20 ms.
- El tiempo de conmutación entre tareas del sistema operativo es de 2 ms.

Pregunta **4**

Finalizado

Puntúa como 0.83

Indique cuál de las siguientes afirmaciones sobre CMSIS-Driver **ES FALSA**:

- Permite inicializar y gestionar el uso del interface I2C del microcontrolador
- Permite inicializar y gestionar el uso del Timer 0 del microcontrolador
- La función Initialize permite configurar los pines de E/S asociados al interface del periférico utilizado
- Puede utilizarse al mismo tiempo junto a funciones de la capa de bajo nivel (LL) y junto a funciones de la capa de alto nivel (HAL) de STMicroelectronics

Finalizado

Puntúa como 0.83

Para poder añadir y gestionar un display LCD adicional igual al ya incluido en la tarjeta de aplicaciones de mbed:

- Puede añadirse, compartiendo algunas de las líneas del SPI ya conectado, utilizando en este caso la salida ChipSelect del interface SPI del microcontrolador conectada directamente a la línea ChipSelect de cada LCD
- No es posible realizar el conexionado para un nuevo LCD
- Puede utilizarse compartiendo algunas de las líneas del SPI utilizado, y gestionando con pines de E/S la señal ChipSelect de cada uno de los LCD
- Es necesario e imprescindible utilizar un nuevo interface SPI

Pregunta 6

Finalizado

Puntúa como 0.83

Con la configuración del fichero RTX_Config.h del entorno de Keil mostrada en la figura, puede afirmarse que:

- Todas las otras afirmaciones son correctas
- El número máximo de threads que podrán crearse en el sistema será 10
- La memoria dinámica global reservada para el sistema operativo es de 32 Kbytes
- Todos los threads del sistema tendrán un tamaño de stack de 3 Kbytes

/1/22 18:31 Test I	Bioque 2: Revision dei intento
Pregunta 7	
Finalizado	
Puntúa como 0.83	
Tras la ejecución de la instrucción SPIDrv->Receive es necesario o comportamiento sea el esperado:	realizar una de las siguientes funciones, para que su
Espera a que el interface SPI haya terminado la transmisión	
Espera a que la función Callback asociada al driver señalice o	que ha recibido el evento ARM_SPI_EVENT_TRANSFER_COMPLETE
Retardo de 1 microsegundo	
Retardo de 10 microsegundos	
Pregunta 8 Finalizado	
Puntúa como 0.83	
Para la API CMSIS RTOSv2, utilizada con el dispositivo STM32F42	9ZI, indique qué afirmación es correcta:
 La ejecución de los threads se va asignando en función de la basado en Round-Robin 	a prioridad de los mismos y de un mecanismo de conmutación
En cada instante sólo puede haber un thread en el estado R	unning
Los estados en los que puede encontrarse un thread del sist	ema operativo son Running, Ready, Waiting e Inactive
Todas las otras afirmaciones son correctas	
Pregunta 9	
Finalizado	
Puntúa como 0.83	
Para la base de tiempos utilizada por CMSIS RTOSv2, utilizada co	n el dispositivo STM32F429ZI, indique qué afirmación es correcta:
Ninguna de las otras afirmaciones es correcta	
Para la generación del tick del sistema operativo se utiliza el	SysTick timer
Para la generación del tick del sistema operativo se pueden	utilizar únicamente los timers básicos del dispositivo
Para la generación del tick del sistema operativo se puede u	tilizar cualquiera de los timers del dispositivo

Finalizado

Puntúa como 0.83

¿Qué información podría gestionarse en el display tras realizar la siguiente transferencia de información?

A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	1	0	0	1	1

- El contenido de las páginas 0 y 1 del LCD
- El contenido de la página 3 del LCD
- El contenido de la página 1 del LCD
- El contenido de las páginas 2 y 3 del LCD

Finalizado

Puntúa como 0.83

Se tiene una aplicación desarrollada con CMSIS-RTOS2, configurado por defecto. La aplicación está compuesta, entre otros elementos, por una rutina de atención a las interrupciones de una línea GPIO (configurada para generar interrupciones por flanco de subida) y un thread sincronizado mediante flags con dicha rutina, tal y como se muestra en el siguiente fragmento de código. Antes de comenzar a ejecutarse el código mostrado, el pin 3 del puerto B se ha puesto a cero:

```
void EXTI15_10_IRQHandler(void)
{
   HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
}

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
   HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
   osThreadFlagsSet(tid_Thread_A, 0x01);
}

void Thread_A (void *argument) {
   while (1) {
     osThreadFlagsWait(0x01, osFlagsWaitAny, 200);
     osDelay (100);
     HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_3);
     osThreadYield();
   }
}
```

Si la forma de onda de la señal externa conectada a la línea de interrupción es la siguiente, indique qué opción representa la evolución temporal del pin 3 del puerto B (considere que cada división de la cuadrícula equivale a 100 ms).

Pin 3 Puerto B:

Pin3 Puerto B:

Pin 3 Puerto B:

Finalizado

Puntúa como 0.83

El controlador SPI que incorpora el LCD de la tarjeta de aplicaciones:

- Tras producirse el pulso de reset, en la señal correspondiente, es necesario e imprescindible realizar una espera de un microsegundo
- Necesita un pulso de reset, en la señal correspondiente, de al menos 1 nanosegundo
- O Puede trabajar con una señal de reloj cuya frecuencia máxima es 20 MHz
- O Puede trabajar con una señal de reloj cuyo periodo mínimo es 1 nanosegundo

■ Test Bloque 1

Ir a...

Ex. Practico B1-1 ►