SPECTROSCOPIA RADIAȚIILOR BETA

Scopul lucrării:

Determinarea energiei maxime a radiațiilor beta.

Principiul lucrării:

Radiațiile beta sunt fascicule de electroni (β) sau pozitroni (β) provenite din nucleele atomilor radioactivi în urma proceselor de dezintegrare (dezintegrare beta).

Radiația β apare în interiorul nucleului ca urmare a unui proces de dezintegrare din nucleu, în urma căruia un neutron se transforma intr-un proton (p) cu emisie de antineutrino (\bar{v}) și un electron (e^-) care este expulzat:

$$n \to p + \overline{v} + e^- \tag{1}$$

În mod similar, în urma dezintegrării β^+ , un proton se transformă într-un neutron, un neutrino și un pozitron care, deasemenea, este expulzat:

$$p \to n + v + e^+ \tag{2}$$

Spectrul energetic al radiațiilor beta este unul continuu, energia obținută în urma procesului de dezintegrare fiind împărțită între electron si antineutrino (sau pozitron și neutrino).

Energia maximă a radiației beta (E_{max}) este de trei ori mai mare decat energia cea mai probabilă (E_h) care se poate determina experimental din dependența numărului de impulsuri înregistrate în funcție de energia cinetică a particulei beta (electron sau pozitron): N = f(E) (Fig. 1).

$$E_{\text{max}} = 3E_h$$

Dispersia σ_n se calculeaza cu ajutorul formulei $\sigma_n = \sqrt{\frac{n}{t} + \frac{f}{t_f}}$ unde t este timpul necesar unei măsurători cu sursa de radiații (t = 60 s) iar t_f este timpul de măsurare pentru fondul de radiații ($t_f = 600$ s)

Nr. crt.	I (A)	B(mT)	E(keV)	N	n	n	σ
1	0	4.4	5.47459	184	3,06	2.86	0.219848
2	0.1	15.4	21.56079	279	4,65	4.45	0.273557
3	0.2	24.5	47.34219	463	7,71	7.51	0.35473
4	0.3	34.7	81.55464	710	11,83	11.63	0.441022
5	0.4	45.7	122.8344	908	15,1	14.9	0.498999
6	0.5	56.1	169.8972	1082	18,03	17.83	0.545741
7	0.6	65.8	221.6295	1243	20,71	20.51	0.585235
8	0.7	78	277.1123	1184	19,73	19.53	0.57111
9	0.8	87	335.6085	1171	19,51	19.31	0.567891
10	0.9	97.4	396.5357	1122	18,70	18.50	0.555878
11	1	107.4	459.436	1010	16,83	16.63	0.527099
12	1.1	120.2	523.9498	872	14,53	14.33	0.489387
13	1.2	128.5	589.7934	719	11,98	11.78	0.443847
14	1.3	140	656.7418	554	9,23	9.03	0.388802
15	1.4	149	724.6156	490	8,16	7.96	0.365148
16	1.5	159.3	793.2703	351	5,85	5.65	0.30795
17	1.6	168.1	862.5887	299	4,98	4.78	0.283431
18	1.7	174.7	932.4753	235	3,91	3.71	0.25

$$tn = 60s tf = 300s$$

F = 62

f = 0,2

Emax = 267

Eh = 800.538

```
% Find the coefficients.
 coeffs = polyfit(X, Y, 7)
 plot(X, Y, 'ro', 'MarkerSize', 10);
 % Make a finer sampling so we can see what it
 % does in between the training points.
 interpolatedX = linspace(min(X), max(X), 50000);
 interpolatedY = polyval(coeffs, interpolatedX);
 % Plot the interpolated points.
 hold on;
 plot(interpolatedX, interpolatedY, 'b-', 'LineWidth', 3);
 grid on;
 title('Interpolating Polynomial', 'FontSize', fontSize);
 xlabel('X', 'FontSize', fontSize);
ylabel('Y', 'FontSize', fontSize);
 % Enlarge figure to full screen.
 %set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
syms x
f = -(7525279643068115*x^7)/259614842926741
fplot(f, [0,1000])
f2 = diff(f,x) == 0;
extreme points = solve(f2,x);
extreme values = subs(f, x, extreme points);
```

[maxX, maxidx] = max(extreme_values);
best_location = extreme_points(maxidx);
best_value = simplify(maxX, 'steps', 50);

