Automatic Atrium Segmentation with Machine Learning

Conrad Niewienda* and Marcos Sanson†

100546768@alumnos.uc3m.es*, 100546181@alumnos.uc3m.es†

Background

- **Objective:** Develop a machine learning model and pipeline for automatic 3D segmentation of the left atrium in patients with atrial fibrillation.
- Clinical Motivation:
 - Atrial fibrillation is a prevalent cardiac condition.
 - Accurate segmentation of atrial regions in 3D imaging improves diagnosis and treatment.
- Manual segmentation is time-consuming and subject to variability.
- Automatic methods using machine learning and 3D meshes could offer better efficiency and accuracy.

Related Work

• Graph U-Nets

- Objective: Improving graph neural network performance on node and graph classification tasks.
- **Methodology:** U-Net like graph pooling (**gPool**) and unpooling (**gUnpool**) operations to improve performance on node and graph classification tasks.
- **Results:** High accuracy on across multiple node and graph classification benchmarks (e.g. Cora dataset).

• Dynamic Graph CNN for Learning on Point Clouds

- Objective: Improving point classification and segmentation without using handcrafted features.
- Methodology: Generate embeddings for each edge and feed these into existing deep learning models (e.g. PointNet).
- **Results:** The model achieved state-of-the-art performance on benchmark datasets, such as an overall accuracy of **92.9%** on ModelNet40.

• <u>Dense graph convolutional neural networks on 3D meshes for</u> 3D object segmentation and classification

- Objective: Building a more efficient design for 3D object segmentation.
- Methodology: Usage of a MDC-GCN for 3D segmentation consisting of 2 DC blocks and 3 GCN layers.
- Results: The proposed model was able to keep up with the state-of-the-art in
 3D segmentation and has fewer parameters than the known approaches.

MeshCNN: A Network with an Edge

- Objective: To design a convolutional neural network (CNN) specifically for analyzing 3D shapes represented as polygonal meshes.
- Methodology: MeshCNN uses specialized convolution and pooling layers that operate on mesh edges, utilizing their intrinsic geodesic connections.
- Results: MeshCNN demonstrates effective performance on various learning tasks applied to 3D meshes, outperforming traditional methods by focusing on important features and discarding redundant ones.

Figure 1: Structure of a <u>Graph U-Net</u>

Methodology

- Experimental Setup:
 - o Data Sources: Electroanatomical mapping data from local hospitals.
 - Tools and Frameworks:
 - Python, PyTorch, PyTorch Geometric, and VTK for visualization.

Data Preprocessing:

- Input data: 3D meshes with vertices, faces, and segmentation groups
 generated from electroanatomical mapping (and potentially MRI and CT scans).
- Normalization: Standardized coordinates of vertices.
- Edges: Compute edge index to emphasize relationships between vertices.

Pipeline and Methods Proposed:

- Pipeline Overview:
 - Load 3D meshes and preprocess data.
 - Input normalized data into a neural network for segmentation.
 - Compare predicted segmentations with manually annotated regions.

Neural Network:

- Implemented a graph-based neural network using <u>PyTorch Geometric</u>, which is based on <u>Graph U-Nets</u>.
- Input features: Vertex coordinates, graph edges.
- Output: Class labels for each vertex (e.g., left atrium, pulmonary vein, or background).
- **Architecture:** A Graph U-Net model with layers for feature extraction, pooling, and upsampling.

Optimization Criterion:

■ **Cross-Entropy Loss:** difference between the predicted probability distribution and the actual distribution (or true labels), used to evaluate the performance of classification for the vertices.

Figure 2: Initial visualization of manual atrium segmentation

Figure 3: Visualization of preprocessed data with labels

Figure 4: Training Loss
Over Epochs
The model shows steady
convergence, with training
loss decreasing from 2.5
to 1.14 over 10 epochs,
using a learning rate of
0.01 and only 1% of the
data to train the model.

Results

- **Developed a functional preprocessing pipeline** to normalize and data and generate graph edges.
- Trained initial machine learning model with promising results on preprocessed meshes.
- Generated 3D visualizations of segmented atrium region for evaluation.

Limitations and Unfinished Goals

- Model performance still requires improvement for generalization across diverse datasets.
- Training data from was limited, making cross-modality validation inconclusive.
- Computational limitations, as we only ran the training locally.
- No deployment pipeline yet for real-time or clinical usage.

Figure 5: Two angles of sample visualization. Original atrium segmentation (left) and our predicted atrium segmentation (right)

Future Work

- Prevent overfitting (e.g. by training the model on a subset of features).
- Use resampling and check if parts of the data are corrupted to avoid processing errors.
- Use different evaluation metrics e.g., Dice Similarity Coefficient or Hausdorff
 Distance to properly evaluate the model.
- Apart from Graph U-Nets, other implementations such as Graph CNNs show promising results for 3D graph segmentation (see Related Work).

Conclusion

 Automated 3D atrium segmentation with machine learning can significantly reduce the workload for clinicians and improve the speed of diagnosis and treatment planning.

