Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_mate-info* Barem de evaluare și de notare

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_4 = b_1 q^3 \Rightarrow q^3 = 27$	3р
	q=3	3р 2р
2.	$x_V = 3$	2 p
	$y_V = -1$	3 p
3.	$3^{x+2} = 3^{2(1-x)} \Rightarrow x + 2 = 2 - 2x$	3 p
	x = 0	2 p
4.	Numerele de două cifre, pătrate perfecte, sunt 16, 25, 36, 49, 64 și 81 ⇒ 6 cazuri favorabile	2p
	Numărul de numere naturale de două cifre este 90⇒90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{15}$	
	nr. cazuri posibile 15	2 p
5.	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 6\overrightarrow{i} - 8\overrightarrow{j}$	3р
	$AC = \sqrt{6^2 + (-8)^2} = 10$	-
	<u> </u>	2 p
6.	$\frac{AB}{} = \frac{BC}{}$	2p
	$\sin C = \sin A$	
	$\sin A = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ $\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	
	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{vmatrix} = $	2p
L)	=-1	3 p
b)	$A(m) \cdot A(-m) = \begin{pmatrix} 1 - 2m & 1 & 1 - m \\ m & m & m \\ m - m^2 & m & m - m^2 \end{pmatrix}$	3p
	$\begin{pmatrix} 1-2m & 1 & 1-m \\ m & m & m \\ m-m^2 & m & m-m^2 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow m=1$	2p
c)	$A(1) + A(2) + \dots + A(101) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix} + \dots + \begin{pmatrix} 1 & 1 & 1 \\ 101 & 0 & 0 \\ 101 & 0 & 101 \end{pmatrix} = \begin{pmatrix} 101 & 101 & 101 \\ 101 \cdot 51 & 0 & 0 \\ 101 \cdot 51 & 0 & 101 \cdot 51 \end{pmatrix}$	3p
	$\det(A(1) + A(2) + \dots + A(101)) = \begin{vmatrix} 101 & 101 & 101 \\ 101 \cdot 51 & 0 & 0 \\ 101 \cdot 51 & 0 & 101 \cdot 51 \end{vmatrix} = -51^2 \cdot 101^3$	2p

2.a)	$3 \circ 4 = 3 \cdot 4 - 4 \cdot 3 - 4 \cdot 4 + 20 =$	3 p
	= 4	2p
b)	$x \circ y = x(y-4)-4(y-4)+4=$	3 p
	= $(x-4)(y-4)+4$, pentru orice numere reale x şi y	2p
c)	$x \circ x = \left(x - 4\right)^2 + 4$	1p
	$\underbrace{x \circ x \circ \circ x}_{x \text{ de } 2013 \text{ ori}} = (x-4)^{2013} + 4$	2p
	$(x-4)^{2013} + 4 = 5 \Rightarrow x = 5$	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{e^x (x + e^x) - e^x (1 + e^x)}{(x + e^x)^2} =$	3p
	$= \frac{(x-1)e^x}{(x+e^x)^2}, \text{ pentru orice } x \in (0,+\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x}{x + e^x} = 1$	3p
	Ecuația asimptotei spre $+\infty$ la graficul funcției f este $y=1$	2 p
c)	$f'(1) = 0$; $f'(x) \le 0$, pentru $x \in (0,1]$ și $f'(x) \ge 0$, pentru $x \in [1,+\infty)$	3p
	$f(x) \ge f(1) \Rightarrow f(x) \ge \frac{e}{e+1}$, pentru orice $x \in (0, +\infty)$	2p
2.a)	$I_0 = \int_0^1 x dx = \frac{x^2}{2} \Big _0^1 =$	3р
	$=\frac{1}{2}$	2p
b)	$I_{n+1} - I_n = \int_0^1 x e^{-nx^2} \left(e^{-x^2} - 1 \right) dx$	2p
	Pentru orice $n \in \mathbb{N}$ și $x \in [0,1]$ avem $e^{-nx^2} > 0$ și $e^{-x^2} - 1 \le 0 \Rightarrow I_{n+1} \le I_n$	3p
c)	Pentru orice $n \in \mathbb{N}^*$ avem $I_n = \int_0^1 x e^{-nx^2} dx = -\frac{1}{2n} \int_0^1 (e^{-nx^2})' dx =$	3p
	$= -\frac{1}{2n}e^{-nx^2} \left \frac{1}{0} = \frac{1}{2n} \left(1 - \frac{1}{e^n} \right) \right $	2p