Biochemistry

1.1 - Chemistry in Living Systems

- Isotopes: same number of protons, different # neutrons
 - Radioisotopes: unstable, nuclei randomly break. Half-life is constant, used in radiometric dating
- Further from nucleus, more potential energy
- Intramolecular forces hold atoms together. Inter is in between molecules
- Nonpolar 0.5 polar 1.7 ionic
- Miscible liquids dissolve in each other
- Immiscible liquids don't

—он -s-HHydroxyl Carbonyl Carboxyl Sulfhydryl Phosphate **Amino** C = OСООН NH_2 SH PO_{4} OH *polar* *polar* *polar* *~polar* *polar, *polar* charged* Proteins, Carbs, Proteins, proteins Carbs, nucleic acid nucleic acids Nucleic acids lipids proteins, nucleic acids, lipids

1.2 - Biologically Important Molecules

- Carbon can form long chains and rings
- Macromolecules are usually made of monomers (polymer)

Carbohydrates

- C, H and O in 1:2:1 ratio
- Often polar
- Monosaccharides
 - Simple sugars, made of one monomer
 - $C_6 H_{12} O_6$
 - Glucose, fructose (fruit), galactose (milk)
- Disaccharides
 - 2 monos joined with glycosidic linkage (-O-)
 - Sucrose (glucose + fructose)
 - Lactose (glucose + galactose)
 - Forms through condensation/dehydration
 - 2 OH groups \rightarrow leaves -O-, takes out H₂O
- Polysaccharides
 - Glycogen: glucose stored in animals. Easily broken down
 - Starch: glucose in plants. Fewer branching chains than glycogen → harder to break down
 - Cellulose: structural support in plants. Humans lack cellulose-breaking enzymes

Lipids

- C, H, and less oxygen
 - Hydrophobic cause it's mainly C-H bonds
- Long term energy for when carbs are used up
 - Energy stored in C-H bonds (lil harder to access)
- Insulation (less heat loss)
- Protects organs (cushion)
- Cell membrane
- Water-repellent coat
- Fatty acids: long hydrocarbon chain w/ carboxyl group (COOH)
 - Saturated: no double bonds \rightarrow linear \rightarrow solid at room temp. Heart disease.

alpha glucose

beta glucose

- Unsaturated: double bond(s) \rightarrow bent \rightarrow liquid at room temp. Reduce heart disease.
- Triglyceride: 3 fatty acids + glycerol
 - 3-C chain w/ OH group bonds with the OH (in COOH) from the fatty acids
 - Dehydration synthesis (produce H₂O)
 - Ester linkage (-O-)
 - Most fats me eat, and also how we store fat
- Phospholipids: glycerol + 2 fatty acids + phosphate (-R)
- Wax: long fatty acids + alcohol (R-OH) / C rings
 - Solid at room temp
 - Produced by plants and animals
- Steroids: 4 hydrocarbon rings w/ functional groups
 - Cholesterol (makes membrane more rigid when hot)
 - Hormones (testosterone, estrogen, adrenaline)
 - Inflammation treatment
 - Vitamin D

Proteins

- Chain of amino acids (polypeptides)
 - Joined by peptide bonds (OH from COOH + H from NH₂)
- **AMINO ACID**S: C in the middle + amino group (NH₂), carboxyl (COOH), -R, H
 - R group gives unique properties
- Categorized based on function:
 - Catalyst
 - Structural support
 - Transportation
 - Enabling movement
 - Regulate cell processes
 - Defend from disease (antibodies)

Levels of Organization

- Primary
 - Linear
- Secondary
 - Hydrogen bonding makes alpha helix / beta pleated (bent) sheet
- Tertiary
 - Structures fold together based on hydrophobic/philic interactions (polypeptide)

- Quaternary
 - Polypeptides join to make more than one chain (protein?)
- **DENATURATION**: extreme heat/cold or exposure to some chemicals → protein unfolds
 - Bonding between R groups are disturbed (intermolecular bonds break)
 - Once protein loses its normal 3D shape, it can't perform its normal function

Nucleic Acids

- **DNA**: deoxyribonucleic acid (generic info of cell)
- **RNA**: ribonucleic acid. Assists in decoding DNA info → amino acid sequence → protein
- Nucleotide monomers:
 - Phosphate 5-C sugar nitrogenous base

	Carboh	nydrates	
Туре	Structure	Examples	Some Functions
Monosaccharide	Contains a single three- to seven-carbon atom-based structure	Glucose, fructose, galactose	Glucose is used as a primary energy source
Disaccharide	Contains two monosaccharides joined by a glycosidic linkage	Sucrose, lactose, maltose	Sucrose and lactose are dietary sugars that are used for energy
Polysaccharide	Contains many monosaccharides joined by glycosidic linkages	Starch, glycogen, cellulose	Glycogen is a form of storing glucose in animals Cellulose provides structural support in plants
	Lip	oids	
Type	Structure	Examples	Some Functions
Triglyceride	Contains three fatty acids joined to glycerol by ester linkages	Lard, butter, vegetable oils	Provides long-term energy storage Acts to cushion organs and insulate from heat loss
Phospholipid	 Contains two fatty acids and a phosphate group joined to glycerol 	Phosphatidylcholine	• Forms the main structure of cell membranes
Steroid	Contains four carbon-based rings attached to one another	Cholesterol, testosterone, estrogen	Cholesterol is part of cell membranes Testosterone and estrogen are sex hormones
Wax	Contains long carbon-based chains	Earwax, beeswax, spermaceti	A variety of functions, including protection
	Pro	otein	
Туре	Structure	Examples	Some Functions
Catalyst	Contains amino acid	Amylase, sucrase	Speeds up chemical reactions
Transport	monomers joined by peptide bonds	Hemoglobin, ion channel proteins	Transports specific substances
Structural	All have primary, secondary, tertiary structure	Collagen, keratin	• Provides structure
Movement	,	Myosin, actin	• Enables movement
Regulatory		Hormones, neurotransmitters	Carries cellular messages
Defence		Antibodies	Fights infection
	Nuclei	ic Acids	
Туре	Structure	Some Functions	
DNA	 Contains deoxyribonucleotide monomers (A, G, T, C) 	Stores genetic information of an organism	
RNA	• Contains ribonucleotide monomers (A, U, G, C)	Participates in protein synthesis	

1.3 - Reactions

Neutralization

- Acid makes H⁺ in water
- Bases produce OH⁻ in water
 - accepts/react with H⁺
- Normal pH range is 7.35 7.45
- Alkalosis: blood is basic (over 7.5)
 - Symptoms:
 - Dizzy
 - Agitated
 - Causes:
 - Breath too quick at high altitudes
 - Too many antacids
- Acidosis: blood is acidic
 - Causes:
 - Kidney disease or severe vomiting
- **BUFFER**: minimize changes in/maintains pH
 - Donates H⁺ when solution is basic, accepts when acidic

Redox (Oxidation-Reduction)

- **OXIDATION**: loss of electrons
- **REDUCTION**: gain of electrons
- Examples: cellular respiration and combustion
 - Propane is oxidized → releases energy
 - Sugar is oxidized

 $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O + ATP$

Condensation and Hydrolysis

- This reaction is involved in synthesis of: carbs, lipids, proteins and nucleic acids (all)
- **CONDENSATION**: molecule + molecule, bonded by removing H from first and OH from other. Produces water + one larger molecule
- **HYDROLYSIS**: add water to break bonds (reverse condensation, restoring original molecule)

Catalyzation of Reactions

- **ACTIVATION ENERGY**: energy needed to initiate reaction
 - Large activation energy = slower reaction (need more time to reach)
- **CATALYSTS**: speed up reactions but aren't used up
 - Enzymes are proteins that act as catalysts
 - Most reactions in living things need enzymes

Enzymes

- Long amino acid chains folded into 3D structure
- Have pockets or indentations that *substrates* fit into
 - Pockets are called **ACTIVE SITES**
 - reaction/change in substrate happens here
 - **SUBSTRATES**: reactant that enzyme works on. It binds to enzyme's active site
 - To make this happen, the active site has to change a bit to accommodate the substrate (induced fit)
 - Once they bind, an enzyme-substrate complex is made
 - H bonds form between enzyme and substrate
- Enzyme speeds up reaction by changing the substrate and/or its environment
- Catalytic cycle:
 - Enzyme takes substrate, catalyzes (create/break bonds, etc), releases, repeat
- Sometimes, other molecules (vitamins/ions) are needed for the catalyzation
 - Called **COENZYMES**
 - **COFACTORS** are metal ions that are coenzymes

Things that Affect Enzyme Activity

- Change in condition alters its 3D shape
 - Usually b/c of change in temp. or pH
- Enzyme-substrate complex will take longer to form if there's less substrate (low conc.)
- Regulators:
 - **INHIBITORS**: interacts w/ enzyme to reduce its activity
 - interferes with it's interaction w/ substrate
 - Competitive inhibitor: competes with substrate for active site
 - Noncompetitive inhibitor: binds to allosteric site → changes shape of enzyme, reducing its ability to interact with substrates at active site
 - **ACTIVATORS**: bind to *allosteric site* to increase enzyme activity
 - **ALLOSTERIC SITE**: pocket regulators can bond to (not active site)

Feedback Inhibition

- Product of last reaction in pathway is a noncompetitive inhibitor of the enzyme that catalyzes one of the first reactions in pathway. This is to prevent overproduction.

2.1 - Structures and Functions of Eukaryotic Cells

- Components of Euk cells
 - Nucleus with a membrane, containing DNA
 - Cell membrane made of phospholipid bilayer
 - Proteins and lumen b/w layers
 - Cytoplasm, containing organelles, cytosol, molecules

Nucleus

- Contains DNA which stores and replicated genetic info
 - Chromosomes only visible during replication. Otherwise, condensed chromatin
- **Nucleoplasm:** thick fluid that fills nucleus
- **Nuclear matrix**: network of protein fibres that provide internal structure + support
- **Nucleolus**: contains RNA, protein, chromatin
- **Nuclear envelope**: double membrane w/ 2 phospholipid layers
- **Lumen**: space b/w any 2 phospho bilayers
- **Nuclear pore complexes**: proteins that form openings in nuclear envelope. Small particles pass freely while macros are regulated

The Endoplasmic Reticulum

- Connects to the nucleus
- **ROUGH ER**: ribosomes assemble proteins here (intended for membrane formation or export out of cell)
 - **RIBOSOME**: RNA and proteins responsible for synthesis of polypeptides
- **SMOOTH ER**: synthesizes and metabolizes lipid-based molecules

Peroxisomes

- Budding off ER: manufactures cholesterol and bile acids
- From ER: contains oxidase (catalyzes redox reactions)

^{**} find plant and animal cell diagrams and memorize (pg. 59)**

^{**}nucleus diagram pg. 60**

Endomembrane System

- Composed of:
 - Nuclear envelope, ER, Golgi apparatus, vesicles
- Transports and processes products
 - Proteins synthesized and modified
- Golgi apparatus:
 - Sorts, packages, distributes lipids
 - Manufactures macros (ex. carbs)
 - Produces lysosomes in animals cells and pectin in plant cells
 - Lysosomes: vesicles bound to membrane containing enzymes
 - Cis face: where vesicles merge with G.B
 - Trans face: vesicles leave
- **VESICLES**: transport and store
- **VACUOLES**: large central vesicle in plant cells
 - store water, ions, sugars, amino acids, macro
 - Control turgor pressure (determined by amount of water) → want rigidity

Chloroplasts

- Through redox reactions: absorb light to convert CO_2 + water \rightarrow energy-rich molecules
- Filled with grana, which is surrounded by a thick liquid called stroma
 - Granum: a stack of thylakoids
 - Thylakoids: system of flattened disks that have chlorophyll in membrane
- Has its own DNA that codes for specific proteins

Mitochondria

- Break down energy-rich molecules and converts the energy stored into usable energy
- Has its own DNA that codes for specific proteins
- Cristae: folds in inner membrane
- Matrix: fluid-filled space inside

Cell wall and Cytoskeleton

- Provides protection and support
- Made of polysaccharides
- **CYTOSKELETON**: network of protein fibres extending throughout cytosol
 - Vesicles + organelles move along fibres

microtubules	thick	hollow	Cell shape, division, movement
Intermediate filaments	medium	Coiled cables	Cell shape, anchor
microfilaments	thin	2 strands wound together	Cell shape, division, muscle contraction

Cilia and Flagella

- Appendages that develop outside eukaryotes
- Made of microtubules

Cell Membrane

- Made of lipids, proteins, and carbs
- Separates cell from environment
- Fluid mosaic model:
 - Semi-fluid bilayer with proteins in/on bilayer
 - 2 layers slide across each other, and phospholipids exchange places frequently
- Factors affecting fluidity
 - Temperature (fluid and porous), double bonds in fatty acid tails (tightly packed), length of fatty acid tail (longer = stronger inter forces), cholesterol (controls fluidity, makes less permeable)
- Peripheral and integral proteins:
 - Transport, catalyst, cell recognition, send and receive signals

Transport across membrane

- Passive transport/diffusion down concentration gradient
 - Rate affected by: size, charge, polarity, temp, pressure
- **ISOTONIC**: 2 solutions have equal concentration
- **HYPERTONIC**: solution with higher concentration (less water)
- **HYPOTONIC**: solution with lower concentration

Facilitated Diffusion

- Channel proteins:
 - Highly specific, hollow cylinders
 - Shape and size determines what can pass through

- Carrier proteins:
 - Bind to specific molecules and carry across
 - Can transfer larger molecules
 - Slower rate of diffusion

Active Transport

- Against concentration gradient
 - Requires ATP
 - Direct use is primary AT (sodium-potassium pump)
 - indirect is secondary (electrochemical gradient made from pumped ions)

Membrane-Assisted Transport

- Transports large macros through vesicles
- **Endocytosis**: moving material into cell
 - Phagocytosis: cell engulfs large particle and liquid around it
 - Pinocytosis: engulfs liquid and small particles dissolved in it
 - Receptor-mediated: receptor (proteins) on membrane binds to molecules outside cell. Then membrane folds inward, making vesicle.
- **Exocytosis**: moving materials out of cell

Some vOcAb

- **Cytology:** study of cellular functions

Metabolic Processes

Chapter 3: Energy and Cellular Respiration

3.1 - Metabolism and Energy

- **Metabolism**: sum of all anabolic and catabolic processes
- **Metabolic pathways:** product of one reaction is reactant of the next. Enzyme involved.
- Catabolic: breakdown of complex substances, releasing energy
- **Anabolic:** build up complex substances, using energy
- **Bond energy**: energy required to form/break bond
 - free/unbonded atoms have more energy (released when bonding)

Thermodynamics

- Study of energy changes
- First law: energy cannot be created or destroyed, only converted
- Second law: entropy (randomness in universe) increases with any change
 - Only applies to closed systems. Bio is open systems, using energy to reduce entropy (transfer to surroundings)
- Free energy is enthalpy minus temperature x entropy
 - G = H TS (constant temp. pressure and volume)
- **Exergonic:** releases energy
- **Endergonic**: requires energy

Adenosine Triphosphate

- Primary source of free energy
- When energy is needed, enzyme breaks down ATP, removing inorganic phosphate, producing ADP and energy (54 kJ/mol)
- **Phosphorylation**: attaching a phosphate group
- Recycling ATP:
 - Exergonic reaction \rightarrow released energy synthesizes ATP (ADP + P_i) \rightarrow endergonic uses energy from the breakdown of ATP back to ADP etc.

Electron Carriers

- Compounds that pick up electrons from energy-rich compounds and donate them to low-energy ones
 - NAD+ reduces to NADH
 - FAD reduces to FADH₂
 - Reduced (OIL RIG, reduce is gain) has more energy b/c electrons carry energy

double check the "things you should know" section on cellular resp Day 2

3.2 - Aerobic Respiration

- 4 pathways:
 - 1) glycolysis, 10 steps in cytoplasm
 - 2) Pyruvate Oxidation, 1 step in mitochondria
 - 3) Krebs cycle, 8 steps in mitochondria
 - 4) ETC, in mitochondria cristae (inner membrane)
- cellular respiration includes catabolic pathways
 - Turning energy-rich compounds into ATP
- **Substrate level phosphorylation:** when a compound that contains phosphate transfers the phosphate to ADP, making ATP
- Glycolysis
 - Glucose (6-C) \rightarrow 2 x 3-C \rightarrow pyruvate molecule (also 3-C)
 - 2 pyruvates produced per glucose
 - In the process: 2 NAD $^+$ \rightarrow 2 NADH, net productions of 2 ATP
- Pyruvate oxidation
 - When oxygen is available, pyruvate enters mitochondria
 - CO₂ released
 - Oxidation paired with reduction of NADH
 - Product is a 2-C molecule, acetyl-CoA
- Krebs Cycle
 - Acetyl is separated from CoA
 - Acetyl bonds with oxaloacetate $(4 \text{ C}) \rightarrow \text{citrate } (6 \text{ C})$
 - 2 CO₂, 2 NADH, 1 ATP, 1 FADH₂, and then one more NADH produced
- Oxidative phosphorylation (loss of electrons and addition of phosphate group)
 - NADH and FADH₂ let go of Hs and gives e⁻s to ETC

- e- provide energy to pump H+ into intermembrane
- O_2 waits at final protein to accept electrons, then attracts H+ \rightarrow H₂O
- H+ concentration b/w membranes powers ATP synthase, jamming ADP + P_i

Glycolysis

- Starts with glucose
- + 1 ATP to make it unstable
- + another ATP to make it even more unstable
- breaks into 2 three-carbon molecules (DHAP and G3P)
- converted to G3P (isomer)
 - From this point on, everything is DOUBLED cause 2 G3Ps
- G3P is oxidized
 - Electrons lost reduce NAD+ to NADH (redox), which releases energy
 - Energy used to add phosphate group
- G3Ps transfer phosphate groups to 2 ADPs, making them ATP (substrate level phosphorylation)

Glucose +
$$2P_i$$
 + 2 NAD⁺ + 2 ADP \rightarrow 2 NADH + 2 ATP + 2 pyruvate

Pyruvate oxidation *remember, oxid. Means losing electrons*

- Pyruvates enter mitochondria (2 per glucose)
- carboxyl group removed as CO2 (now its a 2 C molecule)
- pyruvate loses 2 electrons, making NAD+ into NAD-
 - Negative charge attracts an H+ from environment, making NADH
- pyruvate has now become acetyl
- CoA is added

2 (pyruvate + CoA)
$$\rightarrow$$
 2 (CO₂ + NADH + acetyl-CoA)

Krebs Cycle

- Cyclic pathway, with oxaloacetate as the receiver of acetyl-CoA
- CoA gets ripped off from acetyl, which proceeds to react with oxaloacetate to produce citrate
- COO- is ripped off, leaves as CO2
- Coupled reaction is oxidation, resulting in reduction of NAD+ to NADH
- Production of CO₂ and NADH happens again
- Add CoA back
- Phosphate group replaces CoA on the compound
- The compound transfers the phosphate group to a GDP, making it a GTP
- GTP retransfers the phosphate group to an ADP, making ATP

- Another oxidation, this time reducing FAD to FADH₂
- Oxidize one last time, reducing NADH and returning the compound to oxaloacetate

2 (acetyl-CoA + oxaloacetate) \rightarrow 2 (2CO₂ + 2 NADH + ATP + FADH₂ + NADH + oxaloacetate)

Recap of Yield

- 4 ATP (glycolysis 2, krebs 2)
- 10 NADH (glycolysis 2, pyruvate oxid 2, krebs 6)
- 2 FADH₂ (krebs)
- Exception: 2 NADH from glycolysis can't pass thru mitochondrial membrane. Transfer electrons to FAD, which makes less ATP (that's why prokaryotes yield 2 more than euks)

Oxidative phosphorylation (ETC and Chemiosmosis)

- Generally: oxidation of NADH and FADH, by ETC, e⁻ energy used to synthesize ATP
- **Electron transport chain:** series of electron carriers and proteins in inner membrane
- Oxidation means loss of electrons, which are taken off carriers and put into proteins
- At the NADH dehydrogenase (1st protein), carrier is oxidized and become NAD+ again, giving 2 e- to enter the transport chain
- Electron goes thru bc₁ complex and cytochrome oxidase complex, pumping out H+ each time
 - Active transport b/c moving H+ against concentration gradient
 - Energy comes from the e-
- At the end of the chain, oxygen if the final acceptor cause it's more electronegative (attracts e-) than other things in chain
 - This makes oxygen negative, so H+ is attracted, producing H₂O
- FADH₂ is the same thing but misses first protein \rightarrow only pumps 2 H+
- When a certain pH is reached (amount of H+), ATP synthase is activated
- Energy from the concentration gradient is used to jam phosphate group and ADP \rightarrow ATP

Experimental Yield

- Lower b/c:
 - Some H+ leak through membrane into matrix without passing thru ATP synthase
 - Some energy from H+ gradient is used to transport pyruvate into mitochondria
 - Some energy is used to transport ATP out of mitochondria

Interconnections of Metabolic Pathways

- Carbs: can be broken down and converted to glucose
- Proteins: when amino group is removed, the remainder is usually an intermediate
- Fats:
 - glycerol can be converted into G3P
 - fatty acids are taken into mitochondria, and cut up into 2-C → acetyl-CoA

Feedback Control

- In glycolysis, phosphofructokinase is main control point
 - Has allosteric binding site for ATP. Excess ATP will bind to and prevent G3P prod.

3.3 - Anaerobic Respiration

- **Anaerobic respiration:** inorganic molecule (that's not oxygen) is final acceptor

Fermentation

- Transfers electrons from NADH to an acceptor (reoxidize)
- Only produces the amount of ATP made in glycolysis

Lactate Fermentation

- NADH transfers H to pyruvate, forming lactate
- Can be reoxidized back to pyruvate when strenuous exercise stops
- Occurs in animal cells

Ethanol Fermentation

- CO₂ is removed from pyruvate, forming acetaldehyde
- NADH passes H to acetaldehyde, forming ethanol
- Carried out by yeast, breads, wine, beer, liquor, etc.