Classifying Non-Rational 2-String Tangles

Zachary Bryhtan*, Nicholas Connolly, Isabel Darcy, and Ethan Rooke

zachary-bryhtan@uiowa.edu

Planar Diagram Notation

$$\begin{aligned} [[8,2,7,1],[3,9,2,8],\\ [11,6,12,7],[5,10,6,11],\\ [9,4,10,5]] \end{aligned}$$

$$[a,b,c,d]=\frac{1}{1}$$

<u>Vertical tangles</u> are denoted by $\frac{1}{n}$.

When they are combined to create a new vertical tangle, the new fraction is $\frac{1}{n+m}$

Horizontal (integer) tangles are denoted by $\frac{n}{1}$. When they are combined to create a new integer tangle, the new fraction is $\frac{n+m}{1}$

Tangle obtained from Planar Diagram Notation

$$\frac{1}{2}+\frac{1}{3}$$

$$\frac{1}{2} = 0 + \frac{1}{2}$$

$$[2 \ 0]$$

$$\frac{1}{3} = 0 + \frac{1}{3}$$

$$[3 \ 0]$$

Translated to Conway Notation

$$[2\ 0; 3\ 0] = [2; 3]$$

<u>Conway Notation</u> <u>(Rational Tangles)</u>

$$[a_1 \cdots a_{k-1} a_k]$$

Continued Fraction

$$\frac{p}{q} = a_k + \frac{1}{a_{k-1} + \dots + \frac{1}{a_1}}$$

Alternating right and bottom twists (rational tangle when *k* is even)

$$\left(\left(\left(\frac{1}{a_1} + \frac{a_2}{1}\right) * \cdots \right) * \frac{1}{a_{k-1}}\right) + \frac{a_k}{1}$$

Additional Symbols (Non- rational)

Integer & Vertical Rational Montesinos

G. Montesinos Algebraic Non-Algebraic

To View Tangle Database Visit:

http://www.nickconnolly.com/tangles/ tangles.php