Dataset

- Features
- Observations

Dimension

Dimensions represent the total no. of features

X X X X 1-D

Х	X	Х	Х	X
х	X	X	X	X
х	X	X	X	X
х	X	X	X	X
X X X X	X	X	X	X

3-D

2-D

Curse of Dimensionality

More dimensions don't always mean more information - sometimes they just mean more complexity.

Resulting in computational complexity and deteriorating predicting power

Solution:

Dimensionality Reduction

- the task of reducing the number of input features in a dataset,

Two methods are available:

Feature Selection

- find a subset of the input features

Feature selection e.g. LASSO

Feature Projection

- find the projection of the original data into some low-dimensional space

Feature projection e.g. PCA

Principal Component Analysis

To reduce the dimensionality, Principal Component Analysis (*PCA*) uses the projection of the

original data into the *principal components*.

The principal components describe the maximum amount of *variation* captured

N principal components (where N < M, M is the number of

dimensional space to the N-dimensional space, where new features are combinations of the existing features.

Let's consider a two dimensional dataset containing the height and weight of individual persons

Person	Height (cm)	Weight (kg)
Α	150	52
В	170	55
С	155	58
D	162	62
E	191	68

Step 1: Standardize the Data

1.1 Compute the Mean and Standard Deviation for Each Feature

Height (cm):

Mean of Height (X₁):

$$ar{X_1} = rac{150 + 170 + 155 + 162 + 191}{5} = rac{828}{5} = 165.6$$

Standard deviation of Height (X₁):

$$\sigma_{
m height} = \sqrt{rac{(150-165.6)^2 + (170-165.6)^2 + (155-165.6)^2 + (162-165.6)^2 + (191-165.6)^2}{5}} \ \sigma_{
m height} = \sqrt{rac{(-15.6)^2 + (4.4)^2 + (-10.6)^2 + (-3.6)^2 + (25.4)^2}{5}}$$

$$\sigma_{
m height} = \sqrt{rac{243.36 + 19.36 + 112.36 + 12.96 + 645.16}{5}} = \sqrt{rac{1033.2}{5}} = \sqrt{206.64} pprox 14.4$$

Weight (kg):

• Mean of Weight (X₂):

$$ar{X_2} = rac{52 + 55 + 58 + 62 + 68}{5} = rac{295}{5} = 59$$

Standard deviation of Weight (X₂):

$$\sigma_{
m weight} = \sqrt{rac{(52-59)^2+(55-59)^2+(58-59)^2+(62-59)^2+(68-59)^2}{5}}$$

$$\sigma_{
m weight} = \sqrt{rac{(-7)^2 + (-4)^2 + (-1)^2 + (3)^2 + (9)^2}{5}} = \sqrt{rac{49 + 16 + 1 + 9 + 81}{5}} = \sqrt{rac{156}{5}} = \sqrt{31.2} pprox 5.59$$

$${\rm Standardized\ Height} = \frac{{\rm Height} - \bar{X_1}}{\sigma_{\rm height}}$$

$$ext{Standardized Weight} = rac{ ext{Weight} - ar{X_2}}{\sigma_{ ext{weight}}}$$

For Person A:

- Standardized Height: $\frac{150-165.6}{14.4} = \frac{-15.6}{14.4} \approx -1.08$
- Standardized Weight: $\frac{52-59}{5.59} = \frac{-7}{5.59} pprox -1.25$

For Person B:

- Standardized Height: $\frac{170-165.6}{14.4} = \frac{4.4}{14.4} \approx 0.31$
- Standardized Weight: $\frac{55-59}{5.59} = \frac{-4}{5.59} pprox -0.72$

For Person C:

- Standardized Height: $\frac{155-165.6}{14.4} = \frac{-10.6}{14.4} \approx -0.74$
- Standardized Weight: $\frac{58-59}{5.59} = \frac{-1}{5.59} \approx -0.18$

For Person D:

- Standardized Height: $\frac{162-165.6}{14.4} = \frac{-3.6}{14.4} \approx -0.25$
- Standardized Weight: $\frac{62-59}{5.59} = \frac{3}{5.59} pprox 0.54$

For Person E:

- Standardized Height: $\frac{191-165.6}{14.4}=\frac{25.4}{14.4}pprox 1.76$
- Standardized Weight: $\frac{68-59}{5.59} = \frac{9}{5.59} ? \downarrow .61$

Standardized Dataset:			
Person	Standardized Height (X ₁)	Standardized Weight (X ₂)	
Α	-1.08	-1.25	
В	0.31	-0.72	
С	-0.74	-0.18	
D	-0.25	0.54	
E	1.76	1.61	

Original Dataset:		Standardized Dataset:			
Person	Height (cm)	Weight (kg)	Person	Standardized Height (X ₁)	Standardized Weight (X ₂)
Α	150	52	А	-1.08	-1.25
В	170	55	В	0.31	-0.72
С	155	58	С	-0.74	-0.18
D	162	62	D	-0.25	0.54
E	191	68	E	1.76	1.61

Step 2: Calculate the Covariance Matrix

Covariance Matrix:

$$\operatorname{Cov}(X) = egin{bmatrix} \operatorname{cov}(X_1, X_1) & \operatorname{cov}(X_1, X_2) \ \operatorname{cov}(X_2, X_1) & \operatorname{cov}(X_2, X_2) \end{bmatrix}$$

A covariance matrix is a square matrix that describes the covariance between pairs of variables in a dataset. It provides a comprehensive view of how different variables change together.

Covariance

Indicates how variables change in relation to each other

$$Cov(X,Y) = rac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{n}$$

Calculates the average of the product of deviations from means

X_i: Represents the i-th value of variable X.

Y_i: Represents the i-th value of variable Y.

n: Represents the total number of data points.

Standardized Height (X ₁)	Standardized Weight (X ₂)
-1.08	-1.25
0.31	-0.72
-0.74	-0.18
-0.25	0.54
1.76	1.61

	x1	x2
x1	cov(x1,x1)	cov(x1,x2)
x2	cov(x2,x1)	cov(x2,x2)

2.1 Calculate Covariance of Height with Height (Var(X1))

$$egin{split} ext{cov}(X_1,X_1) &= rac{1}{5} \left[(-1.08)^2 + (0.31)^2 + (-0.74)^2 + (-0.25)^2 + (1.76)^2
ight] \ ext{cov}(X_1,X_1) &= rac{1}{5} \left[1.1664 + 0.0961 + 0.5476 + 0.0625 + 3.0976
ight] = rac{4.9702}{5} = 0.9940 \end{split}$$

2.2 Calculate Covariance of Height with Weight (Cov(X₁, X₂))

$$egin{split} ext{cov}(X_1,X_2) &= rac{1}{5} \left[(-1.08)(-1.25) + (0.31)(-0.72) + (-0.74)(-0.18) + (-0.25)(0.54) + (1.76)(1.61)
ight] \ ext{cov}(X_1,X_2) &= rac{1}{5} \left[1.35 + (-0.2232) + 0.1332 + (-0.135) + 2.8336
ight] = rac{4.9586}{5} = 0.9917 \end{split}$$

2.3 Calculate Covariance of Weight with Weight (Var(X2))

$$egin{aligned} ext{cov}(X_2,X_2) &= rac{1}{5} \left[(-1.25)^2 + (-0.72)^2 + (-0.18)^2 + (0.54)^2 + (1.61)^2
ight] \ & ext{cov}(X_2,X_2) &= rac{1}{5} \left[1.5625 + 0.5184 + 0.0324 + 0.2916 + 2.5921
ight] = rac{5.9970}{5} = 1.1994 \end{aligned}$$

Covariance Matrix:

$$\operatorname{Cov}(X) = egin{bmatrix} \operatorname{cov}(X_1, X_1) & \operatorname{cov}(X_1, X_2) \ \operatorname{cov}(X_2, X_1) & \operatorname{cov}(X_2, X_2) \end{bmatrix}$$

$$\mathrm{Cov}(X) = egin{bmatrix} 0.9940 & 0.9917 \ 0.9917 & 1.1994 \end{bmatrix}$$

Step 3: Perform Eigen Decomposition

calculate the **eigenvalues** and **eigenvectors** of the covariance matrix to determine the principal components.

Step 3.2: Eigenvalue and Eigenvector Calculation

The eigenvalues and eigenvectors are calculated from the **characteristic equation**. The characteristic equation is:

$$\det(\operatorname{Cov}(X) - \lambda I) = 0$$

Where:

- λ represents the eigenvalue.
- I is the identity matrix.

So, the characteristic equation for our covariance matrix Cov(X) becomes:

$$\det \left(egin{bmatrix} 0.9940 & 0.9917 \ 0.9917 & 1.1994 \end{bmatrix} - \lambda egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}
ight) = 0$$

Which simplifies to:

$$\det egin{bmatrix} 0.9940-\lambda & 0.9917 \ 0.9917 & 1.1994-\lambda \end{bmatrix} = 0$$

$$\detegin{bmatrix} a & b \ c & d \end{bmatrix} = ad - bc$$

In our case, we have:

$$\det egin{bmatrix} 0.9940 - \lambda & 0.9917 \ 0.9917 & 1.1994 - \lambda \end{bmatrix} = (0.9940 - \lambda)(1.1994 - \lambda) - (0.9917)(0.9917)$$

We need to expand the product $(0.9940-\lambda)(1.1994-\lambda)$

$$(a-b)(c-d) = ac - ad - bc + bd$$

So, applying this to our case:

$$(0.9940 - \lambda)(1.1994 - \lambda) = 0.9940 \times 1.1994 - 0.9940 \times \lambda - \lambda \times 1.1994 + \lambda^2$$

Now, we can simplify:

$$1.1910 - 2.1934\lambda + \lambda^2$$

Substitute in what we've found so far:

$$1.1910 - 2.1934\lambda + \lambda^2 - 0.9835 = 0$$

So, the equation becomes:

$$\lambda^2 - 2.1934\lambda + 0.2075 = 0$$

This is now a **quadratic equation** of the form:

$$\lambda^2 + b\lambda + c = 0$$

Where:

- b = -2.1934
- c = 0.2075

The **quadratic formula** is a well-known method for solving quadratic equations of the form $ax^2+bx+c=0$. The quadratic formula is:

$$oldsymbol{x} = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In our equation $\lambda^2-2.1934\lambda+0.2075=0$, we have:

- a=1 (the coefficient of λ^2)
- b = -2.1934
- c = 0.2075

Now, substitute these values into the quadratic formula:

$$\lambda = rac{-(-2.1934) \pm \sqrt{(-2.1934)^2 - 4(1)(0.2075)}}{2(1)}
onumber \ \lambda = rac{2.1934 \pm \sqrt{4.8099 - 0.83}}{2}$$

Simplify the expression inside the square root:

$$\lambda=\frac{2.1934\pm\sqrt{3.9799}}{2}$$

Take the square root of **3.9799**:

$$\sqrt{3.9799}\approx 1.9949$$

So, we now have:

$$\lambda = \frac{2.1934 \pm 1.9949}{2}$$

This gives two possible solutions for λ :

ullet For the **plus** case: $\lambda_1 = rac{2.1934 + 1.9949}{2} = rac{4.1883}{2} pprox 2.09415$

ullet For the **minus** case: $\lambda_2 = rac{2.1934 - 1.9949}{2} = rac{0.1985}{2} pprox 0.09925$

Thus, the eigenvalues are:

$$\lambda_1 \approx 2.09415 \quad \text{and} \quad \lambda_2 \approx 0.09925$$

Step 3: Eigenvector Calculation for $\lambda_1=2.09415$

We start with the equation:

$$(\operatorname{Cov}(X) - \lambda_1 I)v = 0$$

Substitute $\lambda_1 = 2.09415$ and the identity matrix I:

$$\mathrm{Cov}(X) - \lambda_1 I = egin{bmatrix} 0.9940 & 0.9917 \ 0.9917 & 1.1994 \end{bmatrix} - 2.09415 imes egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

Performing the matrix subtraction:

$$\begin{bmatrix} 0.9940 & 0.9917 \\ 0.9917 & 1.1994 \end{bmatrix} - \begin{bmatrix} 2.09415 & 0 \\ 0 & 2.09415 \end{bmatrix} = \begin{bmatrix} 0.9940 - 2.09415 & 0.9917 \\ 0.9917 & 1.1994 - 2.09415 \end{bmatrix}$$

$$= \begin{bmatrix} -1.10015 & 0.9917 \\ 0.9917 & -0.89475 \end{bmatrix}$$

Now, the equation becomes:

$$egin{bmatrix} -1.10015 & 0.9917 \ 0.9917 & -0.89475 \end{bmatrix} egin{bmatrix} v_1 \ v_2 \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix}$$

This gives us a system of two linear equations:

1.
$$-1.10015v_1 + 0.9917v_2 = 0$$

2.
$$0.9917v_1 - 0.89475v_2 = 0$$

We will solve this system for v_1 and v_2 .

Step 4: Solve the System of Equations

From equation (1):

$$-1.10015v_1 + 0.9917v_2 = 0$$

Solve for v_1 :

$$v_1 = rac{0.9917}{1.10015} v_2 pprox 0.9015 v_2$$

Now substitute this into equation (2):

$$0.9917v_1 - 0.89475v_2 = 0$$

Substitute $v_1 = 0.9015v_2$ into the equation:

$$0.9917 \times 0.9015v_2 - 0.89475v_2 = 0$$

Factor out v_2 :

$$v_2(0.9917 \times 0.9015 - 0.89475) = 0$$

Simplifying the terms inside the parentheses:

$$0.9917 \times 0.9015 = 0.89475$$

So the equation becomes:

$$v_2(0.89475 - 0.89475) = 0$$

$$v_2 \times 0 = 0$$

$$v_2 \times 0 = 0$$

This equation is trivially true for any v_2 , so we conclude that $v_1=0.9015v_2$. Thus, the eigenvector corresponding to $\lambda_1=2.09415$ is:

$$v_1 = egin{bmatrix} 0.9015 \ 1 \end{bmatrix}$$

To normalize the eigenvector (so that it has unit length), we divide by the magnitude of the vector. The magnitude of $m{v_1}$ is:

$$\|v_1\| = \sqrt{0.9015^2 + 1^2} = \sqrt{0.8137 + 1} = \sqrt{1.8137} \approx 1.347$$

So the normalized eigenvector is:

$$v_1 = egin{bmatrix} rac{0.9015}{1.347} \ rac{1}{1.347} \end{bmatrix} pprox egin{bmatrix} 0.6692 \ 0.7421 \end{bmatrix}$$

Thus, the normalized eigenvector corresponding to $\lambda_1=2.09415$ is:

$$v_1pproxegin{bmatrix} 0.6692\ 0.7421 \end{bmatrix}$$

Step 5: Eigenvector Calculation for $\lambda_2=0.09925$

We now repeat the same process for the second eigenvalue $\lambda_2=0.09925$.

Start with:

$$(\operatorname{Cov}(X) - \lambda_2 I)v = 0$$

Substitute $\lambda_2=0.09925$:

$$egin{aligned} \operatorname{Cov}(X) - \lambda_2 I &= egin{bmatrix} 0.9940 & 0.9917 \ 0.9917 & 1.1994 \end{bmatrix} - 0.09925 imes egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \ &= egin{bmatrix} 0.9940 - 0.09925 & 0.9917 \ 0.9917 & 1.1994 - 0.09925 \end{bmatrix} = egin{bmatrix} 0.89475 & 0.9917 \ 0.9917 & 1.10015 \end{bmatrix} \end{aligned}$$

Now, the equation becomes:

$$\begin{bmatrix} 0.89475 & 0.9917 \\ 0.9917 & 1.10015 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is another system of equations:

1.
$$0.89475v_1 + 0.9917v_2 = 0$$

2.
$$0.9917v_1 + 1.10015v_2 = 0$$

By solving this system in the same way as we did for λ_1 , we obtain the second eigenvector:

$$v_2=egin{bmatrix} -0.7421\ 0.6692 \end{bmatrix}$$

For $\lambda_1 = 0.09925$:

$$egin{aligned} \operatorname{Cov}(X) - \lambda_1 I &= egin{bmatrix} 0.9940 & 0.9917 \ 0.9917 & 1.1994 \end{bmatrix} - 0.09925 imes egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \ &= egin{bmatrix} 0.9940 - 0.09925 & 0.9917 \ 0.9917 & 1.1994 - 0.09925 \end{bmatrix} = egin{bmatrix} 0.89475 & 0.9917 \ 0.9917 & 1.10015 \end{bmatrix} \end{aligned}$$

Now, we will solve the system of equations:

$$\begin{bmatrix} 0.89475 & 0.9917 \\ 0.9917 & 1.10015 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This gives us the following system of equations:

1.
$$0.89475v_1 + 0.9917v_2 = 0$$

2.
$$0.9917v_1 + 1.10015v_2 = 0$$

We can solve this system for v_1 and v_2 . To simplify, let's first solve equation 1 for v_1 :

$$v_1 = -rac{0.9917}{0.89475}v_2 = -1.1072v_2$$

Substitute this into equation 2:

$$egin{aligned} 0.9917(-1.1072v_2) + 1.10015v_2 &= 0 \ -1.0964v_2 + 1.10015v_2 &= 0 \ \ 0.00375v_2 &= 0 \end{aligned}$$

$$0.00375v_2 = 0$$

So, we conclude that v_2 can be any non-zero value, and v_1 is proportional to v_2 .

Eigenvector for λ_1 :

Choosing $v_2 = 1$, we get:

$$v_1 = -1.1072$$

Thus, the eigenvector corresponding to $\lambda_1=0.09925$ is approximately:

$$v_1pproxegin{bmatrix} -1.1072\ 1 \end{bmatrix}$$

This vector can be normalized to ensure it has unit length. The magnitude is:

$$\|v_1\| = \sqrt{(-1.1072)^2 + (1)^2} = \sqrt{1.2268 + 1} = \sqrt{2.2268} \approx 1.4945$$

So, the normalized eigenvector is:

$$v_1 = rac{1}{1.4945} egin{bmatrix} -1.1072 \ 1 \end{bmatrix} pprox egin{bmatrix} -0.7403 \ 0.6692 \end{bmatrix}$$

4. Projection onto Principal Component 1 (PC1):

Now, we can use the standardized data and project it onto the first principal component.

Recall that the first principal component (PC1) eigenvector is:

$$\mathbf{v_1} = [0.6692, 0.7421]$$

Projection onto PC1 for each person:

The formula for the projection is:

Projection on PC1 = (Standardized Height) \times 0.6692 + (Standardized Weight) \times 0.7421

For Person A:

Projection on PC1 = $(-1.09 \times 0.6692) + (-1.25 \times 0.7421) = -0.7296 - 0.9276 = -1.6572$

For Person B:

Projection on PC1 = $(0.31 \times 0.6692) + (-0.72 \times 0.7421) = 0.2074 - 0.5341 = -0.3267$

For Person C:

Projection on PC1 = $(-0.74 \times 0.6692) + (-0.18 \times 0.7421) = -0.4954 - 0.1336 = -0.6290$

For Person D:

Projection on PC1 = $(-0.25 \times 0.6692) + (0.54 \times 0.7421) = -0.1673 + 0.4005 = 0.2332$

For Person E:

Projection on PC1 = $(1.77 \times 0.6692) + (1.61 \times 0.7421) = 1.1833 + 1.1947 = 2.3780$

5. Final Transformed Data (1D Projection onto PC1):

Person	Projection on PC1
Α	-1.6572
В	-0.3267
С	-0.6290
D	0.2332
E	2.3780

Original Dataset:			Transformed:	
Person	Height (cm)	Weight (kg)	Person	Principal Compone
	(CIII)	(116)		nt
Α	150	52	Α	-1.6572
В	170	55	В	-0.3267
С	155	58	С	-0.6290
D	162	62	D	0.2332
Е	191	68	Е	2.3780

Original vs Projected

