ELIJAH R. JENSEN Department of Physics University of Louisville

Email: ejensen141@gmail.com

Website: ejensen141.github.io

Education

2015	UNIVERISTY OF LOUSIVILLE Masters of Science in Physics (Cum Laude)
2013	Univeristy of Vermont Electrical Engineering Masters Program Study
2012	AUSTIN PEAY STATE UNIVERISTY Bachelor of Science in Physics (Magna Cum Laude)

Academic Positions

2013-2015	Graduate Teaching Assistant, University of Louisville (Physics)
2012-2013	Graduate Teaching Assistant, University of Vermont (ECE)

2009-2012 Tutor, Austin Peay Accademic Support Center

Research Interests

- Optics
- Electromagnetic Theory, Electronics/Microelectronics
- Mechanical Engineering (Device Construction)
- Computational Science (Modeling of Electrical Properties)
- Materials Science (Thin Films and Graphene)

Research Projects:

Current:

- High Dynamic Range Seismic Sensing using custom designed 32bit DAQ.
- Design of custom IR imaging devices.

2015

High Dynamic Range Instrument Design.

- Optical Detection of Surface Waves.
- High Dynamic Range Seismic Sensing using custom designed 32bit DAQ.

2014

- Design of 24 bit Analog to Digital Capture device.
- "Visualizing" Seismic Waves via Audio Conversion.

2013

- Computational modeling of micro and nano-scale antenna designs (THz and IR sensing applications).
- Computational modeling of EM waves.

2012

- Building better electronic systems for Regenerative braking in electric vehicles.
- Design of effcient, safe, and reliable Transformer-less Power supplies.
- Electric Motor controller design (MOSFET switching).
- PCB manufacturing with desktop CNC milling machines. (new computer code and processes)

2011

- Dynamo design for Regenerative braking in electric vehicles.
- Electric Car Research with FSAE team. (team leader)
- Expanding previous reproach in solar power regulation technology Fall 2011
- Solar Panel Power Regulation circuits. This uses some of the same ideas from the Regenerative systems. These systems use a complex circuit to ensure that the batteries accept charging even under low power conditions.
- Developed firmware for ATMEL microcontroller projects.
- Used microcontroller to drive Robotics hardware with video processing input.

2010

- Computational modeling of Zinc Nano-wire
- Used nwchem and Guassian to model a Zinc nano-wire for possible use in nano photovoltaics

Talks

2012	Lithography, Double Patterning (how to make a nano trace) (UVM)
2012	Design of 80v, 19 HP motor controller for EV (TAAPT)
2012	Design of Safe and Reliable Transformerless Power Supply (TAAPT)
2012	PCB production in small fabrication lab (TAAPT)
2011	Computational Analysis of Complex AC Circuits.
2011	Computational Analysis of dynamo generator.
2011	Solar Power Power Regulator using Switching Technology

Honors and Awards

2015	Recipient of Iyad Khair Award for Excellence in Physics
2013	Dean's List of Distinguished Students (UVM)
2011	Inducted into Pi Mu Epsilon Math Society
2010	Inducted into Phi Kappa Phi, Honorary Society
2008	Dean's List of Distinguished Students, all semesters.
2010	Recipient of three Space Grants
2011	NSF MaPs Scholarship
2010	NSF MaPs Scholarship
Skills	

Languages: C, C++, FORTRAN, JavaScript, Python, PHP, HTML, BASIC

Programs: MATLAB, Mathematica, Minitab, Igor Pro, National Instruments Lab-View, Pro-tools, Logic, Reason, Arduino IDE, Microsoft Office, Unix/Linux, Latex, NwChem, Gaussian, Octave, Spice, Mac-Spice, xmgrace, HTML/CSS, Qt GUI Programming, AVR Microcontroller C programming. Final Cut Pro, Motion, Avid, Apple Software/Hardware, Eagle CAD, OrCAD, Autodesk Inventor, AutoCAD, Google SketchUp, Pro Engineer, Roland MODELA, G code, M code, RML code. GEDA suite, AppleWorks, iWork, Gimp, MAYA, Adobe Photoshop, Blender, gEDA Suite.

Equipment: Agilent Oscilloscopes, Function Generators, Power Supplies, Multimeters. HP Oscilloscopes, Function Generators, Power Supplies, Multimeters. Breadboarding, SMD soldering, PCB production, CO2 Laser Equipment, Laser Diodes, AVR microcontrollers, Physics Labortory Equipment, LABVIEW, Vernier, Lathe (Manual and CNC), 3D printer, Milling (CNC and Manual), Ultrahigh vacuum systems, Repair of any equipment listed above.

Service

- Tutored Physics, Math, Biology, and Chemistry from 2009 2012
- I play Violin, Piano, and Guitar, and have performed for many concerts and charity events.
- I have also taught music both privately and for the Creative School for the Arts at Austin Peay. (The Creative School for the Arts is a Federally funded after school program for young people to experience and learn music)
- Performed with New England Conservatory youth orchestra in Boston from 1998- 2005.

Affiliations

IEEE

American Physical Society

Sigma Pi Sigma