NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

Module: MA1508E Linear Algebra for Engineering

Year/Semester: 2018-2019 (Semester 2)

Tutorial: 5

- 1. Let $\mathbf{u_1} = (1, 2, -1)$, $\mathbf{u_2} = (6, 4, 2)$, $\mathbf{u_3} = (9, 2, 7)$, $\mathbf{u_4} = (4, -1, 8)$, $\mathbf{u_5} = (1, 2, 3)$.
 - (a) Is u_3 a linear combination of u_1 and u_2 ? Is span $\{u_1, u_2\}$ = span $\{u_1, u_2, u_3\}$? Is either span $\{u_1, u_2\}$ or span $\{u_1, u_2, u_3\}$ equals to \mathbb{R}^3 ?
 - (b) Is u_4 a linear combination of u_1, u_2 and u_3 ? Is span $\{u_1, u_2, u_3\} = \text{span}\{u_1, u_2, u_3, u_4\}$? Is span $\{u_1, u_2, u_3, u_4\} = \mathbb{R}^3$?
 - (c) Is u_5 a linear combination of u_1, u_2, u_3 and u_4 ? Is span $\{u_1, u_2, u_3, u_4\} = \text{span}\{u_1, u_2, u_3, u_4, u_5\}$? Is span $\{u_1, u_2, u_3, u_4, u_5\} = \mathbb{R}^3$?
- 2. For each of the following matrices A, express the solution space of Ax = 0 as a linear span. Give a geometrical interpretation of the solution space (in other words, describe the geometrical object represented by the linear span).

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{pmatrix}$$
 (b) $\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ -2 & 4 & 6 \end{pmatrix}$

(c)
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 \\ -3 & -3 & 1 \\ 4 & 1 & 2 \end{pmatrix}$$
 (d) $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- 3. Let $V = \{(x, y, z) \mid 2x y + 3z = 0\}$ be a subset of \mathbb{R}^3 .
 - (a) Is V a subspace of \mathbb{R}^3 ? If so, describe the subspace geometrically.
 - (b) Let $S = \{(1, -1, -1), (1, 2, 0)\}$. Show that span(S) = V.
 - (c) Let $\mathbf{u} = (0, 3, a)$, where a is a real number. Suppose $T = S \cup \{\mathbf{u}\}$. Find all values of a such that
 - (i) $\operatorname{span}(T) = \mathbb{R}^3$.
 - (ii) $\operatorname{span}(T) = V$.
- 4. Let $\boldsymbol{u_1}=(2,0,2,-4),\ \boldsymbol{u_2}=(1,0,2,5),\ \boldsymbol{u_3}=(0,3,6,9),\ \boldsymbol{u_4}=(1,1,2,-1),\ \boldsymbol{v_1}=(-1,2,1,0),\ \boldsymbol{v_2}=(3,1,4,0),\ \boldsymbol{v_3}=(0,1,1,3),\ \boldsymbol{v_4}=(-4,3,-1,6).$ Determine if the following are true.

1

- (a) $\operatorname{span}\{u_1, u_2, u_3, u_4\} \subseteq \operatorname{span}\{v_1, v_2, v_3, v_4\}.$
- (b) $\operatorname{span}\{v_1, v_2, v_3, v_4\} \subseteq \operatorname{span}\{u_1, u_2, u_3, u_4\}.$

- (c) span $\{u_1, u_2, u_3, u_4\} = \mathbb{R}^4$.
- (d) span $\{v_1, v_2, v_3, v_4\} = \mathbb{R}^4$.
- 5. For each of the following subsets S of \mathbb{R}^3 (or \mathbb{R}^4), determine if S is a subspace of \mathbb{R}^3 (or \mathbb{R}^4) and for those which are, write S as a linear span.
 - (a) $S = \{(a, b, c) \mid abc = 0\}.$
 - (b) $S = \{(x, y, z) \mid 4y = z\}.$
 - (c) $S = \{(a, b, c) \mid a \le b \le c\}$
 - (d) $S = \{(w, x, y, z) \mid 2x + 3y z = 0 \text{ and } x + 2y z = 0\}.$
 - (e) $S = \{ \mathbf{A}\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^3 \}$ where $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$ (here \mathbf{u} is written as a column vector).
 - (f) $S = \{ \boldsymbol{u} \in \mathbb{R}^4 \mid \boldsymbol{A}\boldsymbol{u} = \boldsymbol{u} \}$ where $\begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (here \boldsymbol{u} is written as a column vector).
- 6. Determine which of the following statements are true. Justify your answer.
 - (a) If \mathbf{u} is a nonzero vector in \mathbb{R}^1 , then span $\{\mathbf{u}\} = \mathbb{R}^1$.
 - (b) If u, v are nonzero vectors in \mathbb{R}^2 such that $u \neq v$, then span $\{u, v\} = \mathbb{R}^2$.
 - (c) If S_1 and S_2 are finite subsets of \mathbb{R}^n , then $\operatorname{span}(S_1 \cap S_2) = \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.
 - (d) If S_1 and S_2 are finite subsets of \mathbb{R}^n , then $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) \cup \operatorname{span}(S_2)$.