Final

Please explain all of your answers carefully and clearly. You must submit your solutions electronically by 6pm, December 9, 2011.

- (20 pts) **1.** Consider building a network in the following way. Given n machines, insert an edge between any pair of machines with probability p = c/n for some $c \le n$. For what value of c is the expected number of edges (n-1)? For this c, give the best upperbound you can on the probability that there are at least 2(n-1) edges in the network.
- (15 pts) 2. Consider a graph G = (V, E) with the following properties: there exists a partitioning of the vertex set V into subsets V_1 and V_2 of sizes r and s (respectively); for all $x \in V_1$ and $y \in V_2$ there is an edge between x and y; there are no edges between vertices in V_1 , and no edges between vertices in V_2 . Such a graph is denoted $K_{r,s}$ and is called a *complete bipartite graph* (with vertex partitioning into sets of size r and s.) Clearly the number of edges in $K_{r,s}$ is rs.

Prove that there is a two-coloring of edges of $K_{r,s}$ with at most

$$\left(\begin{array}{c} r \\ a \end{array}\right) \left(\begin{array}{c} s \\ b \end{array}\right) 2^{1-ab}$$

monochromatic $K_{a,b}$ as subgraphs.

(20 pts) **3** Let X_1, X_2, \ldots, X_m be independent and identically distributed indicator random variables, and let $\mu = \mathbf{E}[X_i]$ for all i. If we want

$$\Pr\left(\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right| \geq \epsilon\mu\right) \leq \delta$$

for some $\epsilon > 0$ and $0 \le \delta \le 1$, how many indicators m do we require? (Hint: think Chernoff, and derive a bound on m that is a function of ϵ, δ, μ .)

- (10 pts) 4. Mitzenmacher and Upfal, exercise 2.18 (page 41).
- (35 pts) **5.** Consider throwing m balls uniformly and independently into bins labeled $0, 1, \ldots, n-1$. We say there is a k-gap starting at bin i if bins $i, i+1, \ldots, i+k-1$ are empty.
 - (a) Determine the expected number (μ) of k-gaps.
 - (b) Consider the case n=10 and k=3. What is the probability that a 3-gap starts at bin 2, given that a 3-gap starts at bin 1? What is the probability that a 3-gap starts at bin 5, given that a 3-gap starts at bin 1?
 - (c) Use Chernoff bounds to give an upperbound on the number of k-gaps. If it helps, assume that k divides n. (Hint, use what you learned in part (b).)