ZILFIMIAN

KNN2/KNN (Q9L10)

42% (8/19)

- X 1. KNN is
 - (A) data-driven method
 - B model-driven method
 - (c) I do not know
- ✓ 2. The dependent variable of the classification is
 - A categorical
 - (B) numeric
 - C I do not know
- ✓ 3. KNN can be used for regression
 - A Yes
 - B) No
 - (c) I do not know
- 4. In the case of KNN classification we use
 - (A) average of outcomes
 - B majority voting scheme
 - (c) I do not know
- ★ 5. Which of these errors will increase constantly by increasing k?
 - (A) train error
 - B test error
 - (c) both
 - D I do not know
- ✓ 6. This function can be used to perform KNN classificationin R
 - A knn()
 - B k_nn()
 - (c) knnreg()
 - D knearneib()
 - (E) I do not know

	B	False
	(c)	I do not know
,		
	9.	KNN
	A	is a supervised learning algorithm.
	(B)	is an unsupervised learning algorithm.
	(C)	I do not know
×	10.	In the case of small k we have
	A	overfitting
	В	underfitting
	(c)	it depends on the situation
	D	I do not know
	11.	Why do we need scaling in KNN?
	\bigcirc A	to avoid overfitting
	(B)	to avoid underfitting
		to have "equal" weights for variables
	D	I do not know
X	12.	Let k = n, (n- number of observations), K-NN is same as
	(A)	random guessing
	B	everything will be classified as the most probable class (in total)
	\sim	
		everything will be classified as the least probable class (in total)
	D	I do not know
	Tigra	n, Karamyab

 \times 7. With the increase of k, the decision boundary will be

8. KNN algorithm is sensitive to outliers

(A) simplified

(D) unchanged

A True

B more complex

I do not know

Page 2 of 4

X	13.	This function can be used to perform K-NN regression in R		
	A	knn.reg		
	B	knnforreg		
	(c)	regknn		
		knnforregression		
	E	I do not know		
X	14.	Do you need to worry about scaling with one explanatory variable?		
	A	No		
	В			
	(c)	I do not know		
X	15.	n - the number of observation,		
	m - the number of explanatory variables			
	When n=k, m=1, the decision boundary for regression is			
	(A)	a line		
	B	a stepwise constant function		
	C	a stepwise quadratic function		
	D	I do not know		
X	16.	Which of these algorithms can be used to fill the missing values		
	(A)	KNN for regression		
	В	KNN for classification		
	(c)	both		
		I do not know		
×	17. ?	Which one is better: KNN regression or Linear regression		
	A	KNN outperform LR if the parametric form that has been selected is close to the true form of f		
	(B)	LR outperform KNN if the parametric form that has been selected is close to the true form of f		
	(c)	KNN will always outperform the LR		
		I do not know		

Tigran, Karamyab Page 3 of 4

/	18.	Which one is the Disadvantage of KNN?
	A	required assumptions
	\bigcirc B	cannot be applied for regression
	C	difficult to perform
	D	the problem of high dimensional data
	E	I do not know
×	19. (A)	The best k for train set equals to
	В	2
	C	0
	D	I do not know
0	20.	What is the Parzen window

idk

Tigran, Karamyab Page 4 of 4