CLAIM AMENDMENTS
Claim 1 (currently amended) A process for recharging batteries which comprises:
(a) coupling a dynamo to the intermediate hub of a stationary bicycle, which bicycle also
has a front axle to which is mounted a front wheel, a front derailleur, and an interconnected crank
and set of pedals attached in conventional fashion, said front derailleur being operatively
connected to said intermediate hub;
said dynamo comprising a housing having a fixed wheel containing a series of spaced
periphery mounted magnets, and a rotatable wheel also having a similar series of periphery
mounted magnets in close proximity, wherein said coupling being to of said dynamo is between
the rotatable wheel and said intermediate hub,
whereby pedaling of the stationary bicycle causes the intermediate hub to rotate, and
simultaneously said dynamo's rotatable wheel to rotate due its connection to the front derailleur,
and to produce a current,
(b) conducting said current generated between the fixed and rotatable rear wheel, to a
battery charger having one or more batteries therein,
(c) charging the one or more batteries in with said charger.
Claim 2 (original) The process of claim 1 further including preventing a back flow of current
from the batteries to the dynamo.
Claim 3 (original) The process of claim 1 also including the step of preventing the overcharge
of said batteries.
Claim 4 (currently amended) A bicycle pedal powered battery charging system for use during
times when electrical power is not being delivered which system comprises:
(a) a stationary bicycle comprising a seat for a rider, a front derailleur interconnected to
a crank and pedal set, said stationary bicycle also having a rear derailleur mounted on an

- intermediate hub and having a front wheel,

 (b) a dynamo comprising a housing having a fixed wheel, said fixed wheel having a series
 of peripherally mounted spaced magnets; and said dynamo also having a rotatable wheel having
 a similar set of periphery mounted spaced magnets, the two wheels being in close proximity and
 - (c) means for operatively interconnecting said rear hub to said intermediate hub,

the respective magnets facing each other, said rotatable wheel being mounted on a rear hub,

- (d) a battery charge charger electrically connected to said dynamo <u>for charging an external</u> <u>battery</u>.
- Claim 5 (original) The battery charging system of claim 4 wherein the means for operatively

- 1 interconnecting said rear hub to said intermediate hub is a chain.
- 2 Claim 6 (original) The battery charging system of claim 4 wherein the means for operatively
- 3 interconnecting said rear hub to said intermediate hub is a continuous belt.
- Claim 7 (original) The battery charging system of claim 4 further including a coaster clutch 4
- 5 incorporated into the intermediate hub.
- Claim 8 (original) The battery charging system of claim 7, further including an overcharge б
- 7 protection circuit.

13

- 8 Claim 9 (original) The battery charging system of claim 7 further including a one-way gate
- 9 switch to prevent power from returning from the batteries to the generator.
- 10 Claim 10 (currently amended) A bicycle pedal powered battery charging system for use during
- 11 times when electrical power is not being delivered which system comprises:
- 12 (a) a stationary bicycle comprising a seat for a rider, a front derailleur interconnected to a crank and pedal set, said stationary bicycle also having a rear derailleur mounted on an
- 14 intermediate hub and having a front wheel,
- 15 (b) a dynamo comprising a housing having a fixed wheel, said fixed wheel having a scries
- 16 of peripherally mounted spaced magnets; and said dynamo also having a rotatable wheel having
- 17 a similar set of periphery mounted spaced magnets, the two wheels being in close proximity and
- 18 the respective magnets facing each other, said rotatable wheel being mounted on a rear hub,
- 19 (c) means for operatively interconnecting said rear hub to said intermediate hub.
- 20 (d) a battery charger electrically connected to said dynamo for charging batteries not
- 21 connected to said dynamo, wherein the means for operatively interconnecting said rear hub to
- 22 said intermediate hub is selected from the group consisting of a chain and a belt, and
- 23 (e) a coaster clutch incorporated into the intermediate hub.
- 24 Claim 11 (original) The battery charging system of claim 10, further including both an
- 25 overcharge protection circuit and a one-way gate switch to prevent power from returning from
- 26 the batteries to the generator.
- 27 Claim 12 (original) The charging system of claim 10 wherein the rear hub is disposed in a
- 28 bearing mounted in the housing.
- 29 Claim 13 (original) The charging system of claim 4 including means for supporting said front
- 30 wheel off the ground in a fixed position.
- 31 Claim 14 (original) The charging system of claim 4 further comprising a support having a pair
- 32 of spaced alignment members one on each side of the front wheel.
- 33 Claim 15 (original) The charging system of claim 14, including an L-shaped plate to retain the