Практика 29.09

- 1. Пусть $\mathcal{F}:C\to D$ строгий функтор (faithful), $\mathcal{F}(f)$ мономорфизм. Докажите, что f тоже мономорфизм.
- 2. Придумайте пример такого строгого функтора $\mathcal{F}: A \to B$, что существуют два различных морфизма f_1, f_2 , для которых $\mathcal{F}(f_1) = \mathcal{F}(f_2)$.
- 3. (a) Покажите, что вложение $\mathbb{Z} \hookrightarrow \mathbb{Q}$ это мономорфизм и эпиморфизм в категории колец с 1 **Ring** (таким образом, морфизм, который одновременно моно и эпи, не обязан быть изоморфизмом).
 - (b) Покажите, что морфизм, который одновременно мономорфизм и расщепляющийся эпиморфизм, является изоморфизмом.
 - (c) Пусть $\mathbf{Top_2}$ категория хаусдорфовых пространств с непрерырвными отображениями. По-кажите, что любой морфизм $\varphi: S \to R$, где $\varphi(S)$ плотно в R, в этой категории эпиморфизм.
- 4. Определим категорию **Pno** следующим образом. Объекты **Pno** тройки (A, α, a) , где A множество, $\alpha: A \to A$ отображение, $a \in A$ элемент A, а морфизмы из (A, α, a) в (B, β, b) это отображения $f: A \to B$, такие, что $f \circ \alpha = \beta \circ f$, f(a) = b. Докажите, что $(\mathbb{N} \cup \{0\}, succ, 0)$, где succ(n) = n + 1, является инициальным объектом категории **Pno**. А какой объект в этой категории является терминальным (финальным)?
- 5. Для множества X обозначим за Sym(X) множество всех биекций $X \to X$, а за Ord(X) множество всех полных порядков на X. Пусть $\mathcal C$ категория конечных множеств с биекциями.
 - (a) Канонически доопределите Sym и Ord до функторов $Sym : \mathcal{C} \to Set$ и $Ord : \mathcal{C} \to Set$ (то есть определите на морфизмах в C, не делая никаких произвольных выборов).
 - (b) Докажите, что не существует естественного преобразования $\mathbf{Sym} \to \mathbf{Ord}$ (рассмотрите какой-нибудь маленький пример и тождественную перестановку).
 - (c) Если |X| = n, каковы мощности Sym(X) и Ord(X)?

Мораль этой задачи: на любом конечном множестве полных порядков ровно столько же, сколько перестановок, но не существует никакого естественного способа задать между ними биекцию.

- 6. Элементы любой группы G можно отождествить с гомоморфизмами $\mathbb{Z} \to G$ (для каждого элемента $g \in G$ существует единственный гомоморфизм, переводящий $1 \in \mathbb{Z}$ в g). С другой стороны, если рассматривать \mathbb{Z} и G как категории с одним объектом, гомоморфизмы $\mathbb{Z} \to G$ это функторы между соответствующими категориями. Естественные преобразования между ними задают отошение эквивалентности на множестве гомоморфизмов $\mathbb{Z} \to G$, а значит и на самой группе G. Что это за отношение эквивалентности, в чисто теоретико-групповых терминах?
- 7. Найдите инициальный и финальный объект в категории векторных пространств с двумя отмеченными точками (морфизмы отображают отмеченные точки с отмеченные точки, сохраняя порядок).
- 8. (а) Докажите (вспомните), что сопоставление группе G её центра Z(G) не задает функтор из категории групп в себя.
 - (b) Докажите (вспомните), что сопоставление группе G её фактора по коммутанту G/[G,G] задёт функтор из категории групп в категорию абелевых групп.
 - (c) Докажите, что сопоставление группе G её группы автоморфизмов Aut(G) не задаёт функтор из категории групп в себя.

- 9. Категория называется скелетной, если в ней любые два изоморфных объекта совпадают. Скелетом категории C называется её скелетная подскатегория S, для которой функтор вложения $S \hookrightarrow C$ эквивалентность категорий. Докажите, что у каждой категории есть скелет (используя аксиому выбора). Докажите, что любые два скелета одной категории изоморфны.
- 10. Пусть C (малая) категория. Докажите, что естественные преобразования из Id_C в Id_C образуют коммутативный моноид относительно композиции (какой?). Вычислите этот моноид в случае, когда C категория абелевых групп.