Exam #1

Thursday, August 15, 2019

- This exam has 12 questions, with 100 points total.
- You have two hours.
- You should submit your answers to the corresponding places in the exam on the NYU Classes system.
- In total, you should upload 3 '.cpp' files:
 - One '.cpp' file for questions 1-10.
 Write your answer as one long comment (/* ... */).
 Name this file 'YourNetID q1to10.cpp'.
 - One '.cpp' file for question 11, containing your code.
 Name this file 'YourNetID_q11.cpp'.
 - One '.cpp' file for question 12, containing your code.
 Name this file 'YourNetID_q12.cpp'.
- Write your name, and netID at the head of each file.
- This is a closed-book exam. However, you are allowed to use CLion or Visual-Studio. You should create a new project, and work ONLY in it. You may also use two sheets of scratch paper.
 Besides that, no additional resources (of any form) are allowed.
- Calculators are not allowed.
- Read every question completely before answering it.
 Note that there are 2 programming problems at the end.
 Be sure to allow enough time for these questions

Table 1.5.1: Laws of propositional logic.

Idempotent laws:	$p \lor p \equiv p$	$p \wedge p \equiv p$
Associative laws:	$(p \lor q) \lor r = p \lor (q \lor r)$	$(p \wedge q) \wedge r = p \wedge (q \wedge r)$
Commutative laws:	$p \vee q = q \vee p$	$p \wedge q = q \wedge p$
Distributive laws:	$p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$	$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$
Identity laws:	p v F = p	$p \wedge T \equiv p$
Domination laws:	p ^ F = F	p∨T≡T
Double negation law:	$\neg \neg p \equiv p$	
Complement laws:	p ^ ¬p = F ¬T = F	p v ¬p = T ¬F = T
De Morgan's laws:	$\neg (p \lor q) \equiv \neg p \land \neg q$	$\neg(p \land q) \equiv \neg p \lor \neg q$
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$
Conditional identities:	$p \rightarrow q = \neg p \lor q$	$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$

Table 1.12.1: Rules of inference known to be valid arguments.

Rule of inference	Name
$\frac{p}{p \to q} \over \therefore q$	Modus ponens
$\frac{\neg q}{p \to q}$ $\therefore \neg p$	Modus tollens
$\frac{p}{\therefore p \vee q}$	Addition
$\frac{p \wedge q}{\therefore p}$	Simplification

Rule of inference	Name
$\frac{p}{q} \\ \vdots p \wedge q$	Conjunction
$ \begin{array}{c} p \to q \\ q \to r \\ \hline \vdots p \to r \end{array} $	Hypothetical syllogism
$\frac{p \vee q}{\stackrel{\neg p}{\cdot \cdot q}}$	Disjunctive syllogism
$\begin{array}{c} p \lor q \\ \neg p \lor r \\ \hline \therefore q \lor r \end{array}$	Resolution

Table 1.13.1: Rules of inference for quantified statemer

Rule of Inference	Name
c is an element (arbitrary or particular) <u>\textit{\forall} X P(x)</u> .: P(c)	Universal instantiation
c is an arbitrary element P(c) ∴ ∀x P(x)	Universal generalization
$\exists x \ P(x)$ ∴ (c is a particular element) ∧ P(c)	Existential instantiation*
c is an element (arbitrary or particular) P(c) .: 3x P(x)	Existential generalization

Table 3.6.1: Set identities.

Name	Identities	
Idempotent laws	A u A = A	$A \cap A = A$
Associative laws	(A ∪ B) ∪ C = A ∪ (B ∪ C)	(A n B) n C = A n (B n C)
Commutative laws	A u B = B u A	A n B = B n A
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws	A u Ø = A	$A \cap U = A$
Domination laws	A n Ø = Ø	A u <i>U</i> = <i>U</i>
Double Complement law	$\overline{\overline{A}} = A$	
Complement laws	$ \begin{array}{c} A \cap \overline{A} = \emptyset \\ \overline{U} = \emptyset \end{array} $	$A \cup \overline{A} = U$ $\overline{\varnothing} = U$
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorption laws	A ∪ (A ∩ B) = A	A n (A u B) = A

Part I – Theoretical:

- You don't need to justify your answers to the questions in this part.
- For all questions in this part of the exam (questions 1-10), you should submit a single '.cpp' file. Write your answers as one long comment (/* ... */).
 Name this file 'YourNetID_q1to10.cpp'.

Question 1 (5 points)

- a. Convert the decimal number (168)₁₀ to its base-2 representation.
- b. Convert the 8-bits two's complement number (10101000)_{8-bit two's complement} to its decimal representation.

Question 2 (5 points)

Select the statement that is equivalent to:

"It is not true that the patient has high blood pressure or influenza."

- a. The patient has high blood pressure or has influenza.
- b. The patient does not have high blood pressure and does not have influenza.
- c. The patient does not have high blood pressure or does not have influenza.
- d. The patient has high blood pressure and has influenza.

Question 3 (5 points)

The domain for variable x is the set {Ann, Ben, Cam, Dave}.

The table below gives the values of predicates P and Q for every element in the domain.

	P(x)	Q(x)
Ann	F	F
Ben	Т	F
Cam	T	Т
Dave	Т	Т

Select the statement that is **true**.

- a. $\forall x (Q(x) \rightarrow P(x))$
- b. $\forall x (P(x) \rightarrow Q(x))$
- c. $\forall x (P(x) \land Q(x))$
- d. $\forall x (P(x) \lor Q(x))$

Question 4 (5 points)

The domain of discourse for x and y is the set of employees at a company. *Miguel* is one of the employees at the company.

Define the predicates:

V(x): x is a manager

M(x, y): x earns more than y

Select the logical expression that is equivalent to:

"Everyone who earns more than Miguel is a manager."

- a. $\forall x (M(x, Miguel) \rightarrow \neg V(x))$
- b. $\forall x (M(x, Miguel) \land \neg V(x))$
- c. $\neg \exists x (M(V(x), Miguel))$
- d. $\neg \exists x (M(x, Miguel) \land \neg V(x))$

Question 5 (5 points)

The domain for variable x is the set of all integers.

Select the correct rules to replace (?) in lines 3 and 4 of the proof segment below:

1.	$\forall x (P(x) \land Q(x))$	Hypothesis
2.	3 is an integer	Hypothesis
3.	$P(3) \wedge Q(3)$	(?)
4.	P(3)	(?)

- a. Universal generalization; Simplification
- b. Universal generalization; Conjunction
- c. Universal instantiation; Simplification
- d. Universal instantiation; Conjunction

Question 6 (5 points)

Theorem: There is no smallest positive rational number.

A proof by contradiction of the theorem starts by assuming which fact?

- a. Let r be an arbitrary positive rational number.
- b. Let r be the smallest rational number.
- c. Let r be the smallest positive real number.
- d. Let r be the smallest positive rational number.

Question 7 (5 points)

Select the set that is equivalent to $A - (A \cup B)$.

- a. *A*
- b. *B*
- c. Ø
- d. A B

Question 8 (10 points)

 $A = \{1, 2, \{3, 4\}, \{\}\}.$

For each of the following statements, state if they are **true or false** (no need to explain your choice).

- a. $1 \in A$
- b. $1 \subseteq A$
- c. $\{3\} \in A$
- d. $\{3\} \subseteq A$
- e. $\{1, 2\} \in A$
- f. $\{1, 2\} \subseteq A$
- g. $\{3, 4\} \subseteq A$
- h. $\{\{3,4\}\}\subseteq A$
- i. $\emptyset \in A$
- j. $\emptyset \subseteq A$

Question 9 (5 points)

Consider the following function:

 $f:\{0,1\}^3 \to \{0,1\}^5$. f(x) is obtained from x by adding 0 to its start and 1 to its end.

For example, f(101) = 01011.

Select the correct description of the function f.

- a. One-to-one and onto
- b. One-to-one but not onto
- c. Onto but not one-to-one
- d. Neither one-to-one nor onto

Question 10 (5 points)

Let A={1, 2, 3}.

The function $f: A \times A \to Z$ is defined as: for every $(x, y) \in A \times A$, $f((x, y)) = x^2 - y$. For example, f((2,3)) = 1 (Since: $2^2 - 3$ is 1),

Find the range of f

Part II - Coding:

- For **each** question in this part (questions 11-12), you should submit a '.cpp' file, containing your code.
- Pay special attention to the style of your code. Indent your code correctly, choose meaningful names for your variables, define constants where needed, choose most suitable control statements, etc.
- In all questions, you may assume that the user enters inputs as they are asked.
 For example, if the program expects a positive integer, you may assume that user will enter positive integers.
- No need to document your code. However, you may add comments if you think they are needed for clarity.

Question 11 (20 points)

Write a program that reads an integer greater or equal to 2, n, and prints a shape of a n-line hollow inverted pyramid of stars.

Your program should interact with the user **exactly** as it shows in the following two executions:

Execution example 1:

Execution example 2:

```
Please enter an integer, greater or equal to 2:

*****

* *

*****
```

Question 12 (25 points)

Consider the following definition:

A positive integer *num* is called a *factorion* if it equals to the sum of the factorials of its digits.

For example, 145 is a factorion because 1! + 4! + 5! = 1 + 24 + 120 = 145.

Write a program that asks the user to enter a positive integer and reports if that number is a factorion or not.

<u>Reminder</u>: the factorial of a positive integer n, denoted by n!, is the product of all positive integers less than or equal to n: $n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$.

For example, $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Also, the value of 0! is defined as 1

Your program should interact with the user **exactly** as demonstrated in the following two executions:

Execution example 1:

```
Please enter a positive integer: 145
145 is a factorion
```

Execution example 2:

```
Please enter a positive integer: 87
87 is not a factorion
```