A surprising connection between Khovanov's Heisenberg category and the asymptotic representation theory of symmetric groups.

Henry Kvinge, UC Davis
(Joint with Anthony Licata and Stuart Mitchell)

Fall Central AMS Sectional 2016: Combinatorial representation theory

Outline of the story

Khovanov's Heisenberg category \mathcal{H}'

Asymptotic rep. theory of symmetric groups

Shifted symmetric functions Λ^*

Khovanov's Heisenberg category \mathcal{H}'

Khovanov's Heisenberg category

Khovanov proposed a monoidal \mathbb{C} -linear category \mathcal{H}' , called *Khovanov's Heisenberg category* to categorify the Heisenberg algebra H.

The idea

Classical: Heisenberg algebra H acts on direct sum of Grothendieck group of symmetric groups by linear operators from induction/restriction functors.

$$H \xrightarrow{\text{representation}} \bigoplus_{n \geq 0} K_0(\mathbb{C}[S_n]\text{-mod})$$

The idea

Classical: Heisenberg algebra H acts on direct sum of Grothendieck group of symmetric groups by linear operators from induction/restriction functors.

New: Khovanov's *Heisenberg category* \mathcal{H}' acts on representation category of symmetric groups by induction/restriction functors <u>themselves</u>.

Describing \mathcal{H}'

The category \mathcal{H}' :

Objects - Sequences of Q_+ and Q_- .

Morphisms - Oriented compact 1-manifolds immersed in the plane strip $\mathbb{R} \times [0,1].$

You should think:

- Q_+ is 'like' $\operatorname{Ind}_{S_n}^{S_{n+1}}$,
- Q_- is 'like' $\operatorname{Res}_{S_{n-1}}^{S_n}$,
- Morphisms are 'like' natural transformations between compositions of these functors

$$\frac{Q_{+}\,Q_{-}\,Q_{-}\,Q_{+}\,Q_{-}}{Q_{+}\,Q_{-}}\quad\text{ is 'like'}\quad \frac{\mathsf{Ind}_{S_{n-2}}^{S_{n-1}}\mathsf{Res}_{S_{n-2}}^{S_{n}}\mathsf{Res}_{S_{n-1}}^{S_{n}}\mathsf{Ind}_{S_{n-1}}^{S_{n}}\mathsf{Res}_{S_{n-1}}^{S_{n}}}{}_{}$$

Example:

Local relations

Dots

For simplification we write:

(As natural transformations correspond to multiplication by Jucys-Murphy element J_n).

Center of \mathcal{H}'

By definition the <u>center</u> of \mathcal{H}' is $\operatorname{End}_{\mathcal{H}'}(\mathbb{1})$ or the commutative algebra of all closed diagrams.

 \mathcal{H}' is **rich** in representation-theoretic data (contains all symmetric groups, affine degenerate Hecke algebras).

 $\operatorname{End}_{\mathcal{H}'}(1)$ should be of combinatorial interest.

Center of \mathcal{H}'

Theorem (Khovanov)

$$\mathsf{End}_{\mathcal{H}'}(\mathbb{1}) \cong \mathbb{C}[c_0, c_1, \dots] \cong \mathbb{C}[\tilde{c}_2, \tilde{c}_3, \dots]$$

where

Center of \mathcal{H}'

Theorem (Khovanov)

$$\mathsf{End}_{\mathcal{H}'}(\mathbb{1}) \cong \mathbb{C}[c_0, c_1, \dots] \cong \mathbb{C}[\tilde{c}_2, \tilde{c}_3, \dots]$$

where

Reminder:

Theorem (K., Licata, Mitchell)

End $_{\mathcal{H}'}(\mathbb{1})$ is isomorphic as a \mathbb{C} -algebra to a deformation of the symmetric functions called the shifted symmetric functions Λ^* ,

$$\mathsf{End}_{\mathcal{H}'}(\mathbb{1}) \cong \Lambda^*.$$

The shifted symmetric functions Λ^*

Shifted symmetric functions

Call $f \in \mathbb{C}[x_1, \dots, x_n]$ shifted symmetric if it is symmetric in the new variables

$$x_i' = x_i - i$$
.

The algebra of shifted symmetric functions Λ^* has similar construction to classical symmetric functions Λ .

Λ	۸*
elements symmetric graded by polynomial degree	elements shifted symmetric

Shifted symmetric functions

Call $f \in \mathbb{C}[x_1, \dots, x_n]$ shifted symmetric if it is symmetric in the new variables

$$x_i' = x_i - i$$
.

The algebra of shifted symmetric functions Λ^* has similar construction to classical symmetric functions Λ .

٨	۸*
elements symmetric	elements shifted symmetric
graded by polynomial degree	filtered by polynomial degree

Proposition (Okounkov-Olshanski)

$$gr(\Lambda^*) \cong \Lambda$$
.

Shifted symmetric functions

 Λ^* has many generators/bases analogous to Λ :

$$oldsymbol{
ho}_{\lambda}^{\#}=p_{\lambda}+ ext{l.o.t.},$$

shifted power sums

•
$$s_{\lambda}^* = s_{\lambda} + \text{l.o.t.},$$

shifted Schur functions

•
$$e_k^* = e_k + \text{l.o.t.},$$

elementary shifted functions

•
$$h_k^* = h_k + \text{l.o.t.},$$

homogeneous shifted functions

Λ^* as functions on \mathbb{Y}

 Λ^* can also be realized as a subalgebra of functions on \mathbb{Y} , such that if $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ and $f \in \Lambda^*$ then,

$$f(\lambda) := f(\lambda_1, \lambda_2, \dots, \lambda_r, 0, 0, \dots).$$

Dictionary between Λ^* and $End_{\mathcal{H}'}(\mathbb{1})$

If $\sigma \in S_n$ of conjugacy class λ , then

Example:

If E_{λ} is the Young idempotent of $\mathbb{C}[S_n]$ associated to λ then

Note $s_{(n)}^* = h_n^*$, $s_{(1^n)}^* = e_n^*$.

Remaining question:

For this we (surprisingly) need to turn to asymptotic representation theory.

Moments of Kerov's transition measure \widehat{m}_k

Young's Lattice

Motivation for transition measure

If start are partition $\lambda = (4,2,1)$ and move down one arrow, what is probability we land on partition $\mu = (4,2,2)$?

One choice is transition probability: $\frac{\dim(L^{(4,2,2)})}{|\mu|\dim(L^{\lambda})}$

Motivation for co-transition measure

Dually, if start are partition $\lambda = (4,2,1)$ and move **up** one arrow, what is probability we land on partition $\mu = (4,1,1)$?

Co-transition probability: $\frac{\dim(L^{(4,1,1)})}{\dim(L^{\lambda})}$

Moments of the transition/co-transition measure

To study these ideas, for each λ Kerov constructed probability measures on \mathbb{R} :

$$\widehat{\omega}_{\lambda} = ext{ transition measure for } \lambda$$

$$\widehat{\omega}_{\lambda} =$$
 co-transition measure for λ

\widehat{m}_k , \widecheck{m}_k , and Λ^*

Set:

- kth moment of $\widehat{\omega}_{\lambda} = \widehat{m}_{k}(\lambda)$,
- kth moment of $\check{\omega}_{\lambda} = \check{m}_k(\lambda)$.

Can view \widehat{m}_k and \widecheck{m}_k as functions on \mathbb{Y} by

$$\lambda \xrightarrow{\widehat{m}_k} \widehat{m}_k(\lambda), \qquad \lambda \xrightarrow{\widecheck{m}_k} \widecheck{m}_k(\lambda).$$

Then \widehat{m}_k and \widecheck{m}_k belong to Λ^* .

Then

 $(\hat{b}_k \text{ is a } Boolean \text{ cumulant for } \widehat{m}_k)$ and

$W_{1+\infty}$ and Λ^*

Another construction: The *trace* Tr (or zeroth Hochschild homology) of a Heisenberg category is noncommutative algebra of diagrams on an annulus.

Cautis-Lauda-Licata-Sussan showed $Tr(\mathcal{H}') \cong W_{1+\infty}$ the vertex algebra from conformal field theory.

$W_{1+\infty}$ and Λ^*

Another construction: The *trace* Tr (or zeroth Hochschild homology) of a Heisenberg category is noncommutative algebra of diagrams on an annulus.

Cautis-Lauda-Licata-Sussan showed $Tr(\mathcal{H}') \cong W_{1+\infty}$ the vertex algebra from conformal field theory.

$W_{1+\infty}$ and Λ^*

There is a natural action of $Tr(\mathcal{H}')$ on $End_{\mathcal{H}'}(\mathbb{1})$ by placing a closed diagram from $End_{\mathcal{H}'}(\mathbb{1})$ inside an annulus diagram from $Tr(\mathcal{H}')$.

This gives purely planar realization of an action of $W_{1+\infty}$ on Λ^* which was first considered by Lascoux-Thibon.

Thank you.