Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Prüfung zu Grundbegriffe der Topologie

Sommerersemester 2015, Roland Steinbauer 2. Termin, 30.9.2015

- 1. (Sub-)Basen topologischer Räume. topologischer Raum.
 - (a) Definiere den Begriff Basis und Subbasis einer Topologie. (2 Punkte)
 - (b) Gib explizit eine Basis für die natürliche Topologie auf \mathbb{R}^3 , sowie den diskreten topologischen Raum an. (2 Punkte)
 - (c) Zeige folgende Charakterisierung von Basen für \mathcal{O} : (2 Punkte)

$$\mathcal{B}$$
 ist Basis für $\mathcal{O} \Leftrightarrow \forall O \in \mathcal{O} \ \forall x \in O \ \exists B_x \in \mathcal{B}: \ x \in B_x \subseteq O$

- (d) Sei $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ eine Abbildung. Zeige, dass f genau dann stetig ist, wenn für alle Mengen S aus einer(!) Subbasis S von \mathcal{O}_Y gilt, dass $f^{-1}(S)$ offen in X ist. (4 Punkte)
- 2. Zusammenhang.
 - (a) Definiere die Begriffe Disjunktion und zsammenhängender topologischer Raum. (2 Punkte)
 - (b) In zusammenhängenden topologischen Räumen kann in typischer Weise von lokalen Eigenschaften auf globale Eigenschaften geschlossen werden. Formuliere und Beweise das entsprechende "Theorem" aus der Vorlesung. (5 Punkte)
 - (c) Diskutiere den Zwischenwertsatz der Analysis im Kontext zusammenhängender topologischer Räume. (3 Punkte)

Bitte umblättern!

3. Verschiedenes

- (a) Spurtopologie als initiale Topologie. Wie ist die Spurtopologie auf einer Teilmenge Y eines topologischen Raumes (X, \mathcal{O}) definiert? Die Spurtopologie kann auch als initiale Topologie aufgefasst werden. Wie? (4 Punkte)
- (b) Homöomorphismen. Was versteht man unter einem Homöomorphismus zwischen topologischen Räumen? Worin liegt die große Bedeutung von Homöomorphismen? (3 Punkte)
- (c) Kompaktheit. Zeige, dass kompakte Teilmengen eines Hausdorffraums abgeschlossen sind. (3 Punkte)

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib ein (möglichst explizites und einfaches) Gegenbeispiel an oder argumentiere für oder gegen die Richtigkeit der Aussage. (je 2 Punkte)

- (a) Sind alle Singletons (d.h. die einpunktigen Mengen) $\{x\}$ im topologischen Raum (X, \mathcal{O}) abgeschlossen, dann ist \mathcal{O} die diskrete Topologie.
- (b) Stetige Urbilder kompakter Mengen sind kompakt.
- (c) Umgebungen sind immer offen.
- (d) Jeder AA2-Raum ist auch schon separabel.
- (e) Vollständigkeit ist eine topologische Eigenschaft (d.h. eine Eigenschaft, die unter Homöomorphismen topologischer Räume erhalten bleibt).

1 ROFUNGS 4 DIARBEITUM 4

Z. TERNIN

M (0) Eine Bosis eine Top Disten Teilsysten B = 0, sodoss
jedes O e O e & Vereinipuj un B- Plenje perchieben
Woden Konn

Cinc Schhoss ein Top & ish en Talsysten 5 & J. souloss die Fomilie der endl. Dosch schnibt von 5- Nege (15; Sie 5, ne H) Posis non Dist.

- (b) Eine Bosis für die und Top ouf R3 sind etro die offener 1-Bille & Br(x):= {xeR3/11x-x.11cr3, 100, x.eR3} Eine Bois für Odes ist die Formitie & {x}/xeX?
- (c) (d) 0=UB: (BicB), xe0

 => 7:0: xeB; =Bx = UB: =0

 => 0=UBx = 6 0= 0=03:
 ies
- (d) fslelig, Se I [-) Soog] -) f'(S) EX und umpelelel: So. Ocoy -> O= U ASig lier Sige I =) f'(0) = U A'(Sig) offen no 2 (02), (03) Ex ll. Voions

- [2] (0) Eine Disjuntation when +2 (X,0) ist e: Poor midstensor, disjuntation, offens TA Go, G2 mil X=GooG2.

 (X,0) heint paramentiongen (, follo X beine Disjonthion besith.
 - (b) THO: Sei (E) are Eigenschaft die Phile x im tR (Xeo) hober lünner oder wilt cent es pelte
 (1) Fxe X mit (e).
 - (2) Hot x (E), down oud jeder y in and alongely wax.
 - (3) -4- mill -4 has -4

Foll X +sh =) tx eX: x hol (E)

Bevas: Sie Gie Gie (xex/xhol @)], Gie [xex/xhol @)andi]

(2),(3) => Gi, Gi & O, Gi, Gi disjunte per def. und

X=GioGz; Xzsh => J Disjuntation, Gin + of (vege (1))

(c) De Jus epihl sid ous dem folgader Soti: = 12=\$ 13 Slelige Bilder ish Roune sind ish.

Dooble (min (2-phlips) 7sh Talmage vo- Re (mit Da)
Interolle sind logs

f: (XiO) -> R slelig, X rih -) +X1,x20 X Un (alle t mil. f(X1) c/c f(x2)] XoX: fcx1=t

Follo (X,0) ei. Interollin R, don- epith sich oler 745 der Anolysis 1. 13)(0) (X,0) 1.2, 9 ⊆ X. Dio Spulop Oy of 9
is) definite do Oy:= { 4,0 | 0 ∈ 8}

Sci f: y-> (X, 8) gepalen. Die initiale Top of y ist alehiniet ale Of:= ff. (G)/Ge8?

byl. f

Soi who yex, (X,0) f. 2 und i y cos X

y 1-3 y

die leonomische Einbetty von Jin X. Donn 11) die

Spulop Dy genom olie ihrhish Top Di ouf y by l. i:

HAEX: i-1(A) = Any, Jenn xe i-1(A) =) Xe y und

Und oloher

Und oloher

Oy = {400 |000} = {i-100 |000} = Di

(b) Eine sletige Abb f. (XeO) -> (4,0) heint flower.

Nolls f by ehhir and f. slowp sind.

[Slehigland va f ist with onlowed sol pepel]

Domit pilt: OGO => f(O) & O (and debte for obj.)

und debte sind how omerphe t. R vom Slondphil de Top

" ples a ". Jo mo- definiet are Eigenchef oh a topologish i

folls sic ante Homos enhaller bleibt. Homonophie

depiniet are Aquiroler velolin out alle t. P.

- [3] (c) 98. X Tz, A EX 6p => A obj Taye Acistoffer. SugeAc => fx xy & A = JUx, Vy offer: XEUx, ye Vy, UxnVy = of A = Uux = A = Uux = : U => yeV:= NVx, und Vist ofene Unply on y Schlieblis. yeV= NVx, E NUx, = (OUx,) E A=) A Ely 17
- (4) (0) Nan: [x] obj #x # U[x] = A obj [Awsuden crare six / jeck Tr- Roum dishet]
 - (6) New. Si f. R->R en Constonte Abb [d.h formed tx] =) f (sc3) = R will by
 - (c) Neiz: BECKS = [YER2/Uy-xues] ist hould offen and Ungely us X & RZ da X & BE(X) = BE(X).
 - (d) Ja: Sci B=13,32, 3 obs. Rosis, doanest {X4 / X4 & Ba beliebig } obs & dilt.
 - (e) Nein: Famuest ist Vollstöndig leat mes fir TIR obfinice L U-d doct with only Homs s inveriat: Copenhap f: [0,00) -> [0,1), X+) X/1+X