

 primary goal: track orientation of head or other device

 orientation is the rotation of device w.r.t. world/earth or inertial frame

 rotations are represented by Euler angles (yaw, pitch, roll) or quaternions

- orientation tracked with IMU models relative rotation of sensor/body frame in world/ inertial coordinates
- example: person on the left looks up → pitch=90° or rotation around x-axis by 90°
- similarly, the world rotates around the sensor frame by -90° (inverse rotation)

What do Inertial Sensors Measure?

• gyroscope measures angular velocity $\stackrel{\sim}{m{\omega}}$ in degrees/sec

• accelerometer measures linear acceleration a in m/s²

magnetometer measures magnetic field strength *m* in uT (micro Tesla) or Gauss → 1 Gauss = 100 uT

What do Inertial Sensors Measure?

- gyroscope measures angular velocity \widetilde{w} in SENSORI accelerometer measures angular velocity \widetilde{w} in \widetilde{a} in m/s^2 Accelerometer measures magnetic field strength \widetilde{m} in uT (micro Tesla) or Gauss \rightarrow 1 Gauss = 100 uT

• gyro model: $\widetilde{\omega} = \omega + b + \eta$

• gyro model: $\widetilde{\omega} = \omega + b + \eta$ $\eta \sim N \left(0, \sigma_{gyro}^2 \right)$ true angular velocity additive, zero-mean Gaussian noise bias

• gyro model: $\overset{\sim}{\omega} = \omega + b + \eta$ $\eta \sim N \Big(0, \sigma_{gyro}^2 \Big)$ true angular velocity additive, zero-mean Gaussian noise bias

no crosstalk

3 DOF = 3-axis gyros that measures 3 orthogonal axes, assume

- bias is temperature-dependent and may change over time; can approximate as a constant
- additive measurement noise

• from gyro measurements to orientation – use Taylor expansion

$$\theta(t + \Delta t) \approx \theta(t) + \frac{\partial}{\partial t} \theta(t) \Delta t + \varepsilon, \quad \varepsilon \sim O(\Delta t^2)$$

have: angle at have: last time step time step

$$\frac{\text{have}}{\text{last time step}} = \frac{\text{have}}{\text{last time step}}$$

last time step time step
$$\theta(t + \Delta t) \approx \theta(t) + \frac{\partial}{\partial t} \theta(t) \Delta t + \varepsilon, \quad \varepsilon \sim O(\Delta t^2)$$

 $=\omega$

approximation error!

want: angle at current time step

(angular velocity)

have: gyro measurement

Gyro Integration: linear motion, no noise, no bias

Gyro Integration: linear motion, noise, no bias

Gyro Integration: linear motion, no noise, bias

Gyro Integration: nonlinear motion, no noise, no bias

Gyro Integration: nonlinear motion, noise, bias

Gyro Integration aka Dead Reckoning

• works well for linear motion, no noise, no bias = unrealistic

even if bias is know and noise is zero → <u>drift</u> (from integration)

 bias & noise variance can be estimated, other sensor measurements used to correct for drift (sensor fusion)

accurate in short term, but not reliable in long term due to drift

Gyro Advice

Always be aware of what units you are working with, degrees per second v radians per second!

Accelerometers

Acceleration
$$\tilde{a} = a^{(g)} + a^{(l)} + n$$

with motion: combined gravity vector and external forces $a^{(l)}$

measure linear acceleration $\tilde{a} = a^{(g)} + a^{(l)} + \eta$, $\eta \sim N(0, \sigma_{acc}^2)$

- without motion: read noisy gravity vector with magnitude 9.81 m/s² = 1α

Accelerometers

- advantages:
 - points up on average with magnitude of 1g
 - accurate in long term because no drift and the earth's center of gravity (usually) doesn't move
- problem:
 - noisy measurements
 - unreliable in short run due to motion (and noise)

complementary to gyro measurements!

Accelerometers

fusing gyro and accelerometer data = 6 DOF sensor fusion

can correct tilt (i.e., pitch & roll) only – no information about yaw

• problem: track angle heta in 2D space

• sensors: 1 gyro, 2-axis accelerometer

goal: understand 6-DOF sensor fusion

gyro integration via Taylor series as

$$\boldsymbol{ heta}_{gyro}^{(t)} = \boldsymbol{ heta}_{gyro}^{(t-1)} + \tilde{\boldsymbol{\omega}} \Delta t$$

- get Δt from microcontroller
- set $\theta_{gyro}^{(0)} = 0$

biggest problem: drift!

angle from accelerometer

$$\theta_{acc} = \tan^{-1} \left(\frac{\tilde{a}_x}{\tilde{a}_y} \right)$$

angle from accelerometer

• angle from accelerometer
$$\theta_{acc} = \tan^{-1} \left(\frac{\tilde{a}_x}{\tilde{a}_y}\right) = \tan 2 \left(\tilde{a}_x, \tilde{a}_y\right)$$

$$\frac{\tilde{a}_y}{\tilde{a}_y} = \tan 2 \left(\tilde{a}_x, \tilde{a}_y\right)$$

$$\frac{\tilde{a}_y}{\tilde{a}_y$$

angle from accelerometer

$$\theta_{acc} = \tan^{-1} \left(\frac{\tilde{a}_x}{\tilde{a}_y} \right) = \operatorname{atan2} \left(\tilde{a}_x, \tilde{a}_y \right)$$

$$\tilde{a}_{y^{(body)}}$$

$$\tilde{a}_{y^{(body)}}$$

$$\tilde{a}_{y^{(body)}}$$

$$\tilde{a}_{y^{(body)}}$$

biggest problem: noise

sensor fusion: combine gyro and accelerometer measurements

• intuition:

 remove drift from gyro via high-pass filter

 remove noise from accelerometer via low-pass filter

 sensor fusion with complementary filter, i.e. linear interpolation

filter, i.e. linear interpolation
$$\theta^{(t)} = \alpha \left(\theta^{(t-1)} + \tilde{\omega} \Delta t \right) + (1-\alpha) \operatorname{atan2} \left(\tilde{a}_x, \tilde{a}_y \right)$$

no drift, no noise!

Magnetometers

• measure earth's magnetic field in Gauss or uT

• 3 orthogonal axes = vector pointing along the magnetic field

actual direction depends on latitude and longitude!

 distortions due to metal / electronics objects in the room or in HMD

Magnetometers

- advantages:
 - complementary to accelerometer gives yaw (heading)

- problems:
 - affected by metal, distortions of magnetic field
 - need to know location, even when calibrated (e.g. GPS)

• together with gyro + accelerometer = 9 DOF sensor fusion