

Betriebswirtschaftslehre II Vorlesung 3: Betriebliche Anwendungssysteme

Wintersemester 2018/19
Prof. Dr. Martin Schultz
martin.schultz@haw-hamburg.de

Agenda

Grundlagen und Begriffe Arten von betrieblichen Anwendungssystemen Integrierte Informationsverarbeitung

Inhalte der Vorlesung und Übung

	Termin	Vorlesung	Übung
1	28.09.2018	Einführung und Grundlagen	-
2	05.10.2018	Geschäftsprozessmodellierung	Übung 1 – Gruppe 3/4
3	12.10.2018	Anwendungssysteme in Unternehmen	Übung 1 – Gruppe 1/2
4	19.10.2018	ERP-Systeme	Übung 2 – Gruppe 3/4
5	26.10.2018	ERP-Systeme: ReWe und Einführungsprojekte	Übung 2 – Gruppe 1/2
6	02.11.2018	Business Intelligence - OLAP	Übung 3 – Gruppe 3/4
7	09.11.2018	Business Intelligence - ETL	Übung 3 – Gruppe 1/2
8	16.11.2018	Business Intelligence – Dashboards/ Data Mining	Übung 4 – Gruppe 3/4
9	23.11.2018	Informationsmanagement	Übung 4 – Gruppe 1/2
10	30.11.2018	IT-Service-/ Enterprise Architecture-Management	Übung 5 – Gruppe 3/4
11	07.12.2018	IT-Governance/ IT-Compliance	Übung 5 – Gruppe 1/2
12	14.12.2018	Klausurvorbereitung	Übung 6 – Gruppe 3/4
	21.12.2018		Übung 6 – Gruppe 1/2
	11.01.2019		Übung 7 – Gruppe 1/2/3/4

Lernziele

Was sollen Sie mitnehmen...

- Sie können relevante Begriffe zu betrieblichen Anwendungssystemen erläutern
- Sie können wesentliche Eigenschaften verschiedener Arten betrieblicher Anwendungssysteme beschreiben und einordnen

Betriebliche Informationssysteme

Betriebliches Informationssystem (IS)

Ein betriebliches Informationssystem ist ein Informationssystem, dessen Funktion es ist, den **betrieblichen Aufgaben** und **Aufgabenträgern** Daten und Informationen **effektiv** und **effizient** zur Verfügung zu stellen

Anwendungssoftware - Definition

Eine **Anwendungssoftware** ist Bestandteil eines Softwaresystems zur Durchführung von Aufgaben in unterschiedlichen Anwendungsbereichen. Es dient somit der Lösung eines Anwendungsproblems

Morphologischer Kasten für Anwendungssoftware

Eigenschaft	Ausprägungen					
Erstellung	Standardsoftware			Individualsoftware		
Ort der Bereitstellung	Intern		Extern			
Mgmt Ebene	Strategische Anwendungen		Operative Anwendungen			
Funktion	Administration Disposition Plan		Plar	nung	Kontrolle	Analyse
Anwendungsbereiche	Fertigung	Vertriebe	Einkauf		Personal	

Standardsoftware vs. Individualsoftware

Eigenschaft	Ausprägungen					
Erstellung	Standardsoftware			Individualsoftware		
Ort der Bereitstellung	Intern			Extern		
Mgmt Ebene	Strategische	e Anwendunge	n	Operative Anwendungen		
Funktion	Administration Disposition Plan		ung	Kontrolle	Analyse	
Anwendungsbereiche	sbereiche Fertigung Vertriebe Eink		kauf	Personal		

Standardsoftware

- ein Softwaresystem, das zu einem Anwendungsgebiet von einem Hersteller für den anonymen Markt erstellt wird
- ein Softwaresystem, dessen Urheber eine effiziente Lösung für Datenverarbeitungsprobleme in einem klar abgegrenzten Anwendungsbereich für potenziell alle Unternehmen anbietet
- Auch als commercial of-the-shelf (COTS) bezeichnet: seriengefertigte Produkte die in großer Stückzahl völlig gleichartig gebaut und verkauft werden

Individualsoftware

- ein Softwaresystem, das maßgeschneidert für einen bestimmten Verwendungszweck entwickelt wird
- wesentliches Ziel: technische und fachliche Eigenschaften des jeweiligen Kunden im Entwicklungsprozess der Software zu berücksichtigen

Eine scharfe Abgrenzung ist nicht immer zu ziehen: auch Standardsoftware muss an die Bedürfnisse der Kunden angepasst (→ Customizing) oder erweitert werden → modifiable of-the-shelf (MOTS)

Betriebswirtschaftliche Standardsoftware

- Fremderstellte Anwendungssoftware, mit dem Zweck, betriebswirtschaftliche Funktionen im Unternehmen zu unterstützen
- Kann sowohl intern als auch extern bereitgestellt werden

(Gadatsch 2012)

Eigenschaften betriebswirtschaftlicher Standardsoftware

Betriebswirtschaftliche Standardsoftware hat (idealtypisch) folgende Eigenschaften:

- Sie ist prozessorientiert in dem Sinn, dass sie ganze Geschäftsprozesse unterstützt und nicht nur einzelne Funktionen
- Sie unterstützt alle Geschäftsprozesse des betriebswirtschaftlichen Bereichs eines Unternehmens einschließlich der Produktionsplanung (Integrationsaspekt)
- Sie ist für die Strukturen und Geschäftsprozesse vieler Unternehmen geeignet

Inzwischen sind diese Produkte auch auf die Abwicklung zwischen- und überbetrieblicher Geschäftsprozesse vorbereitet, z.B. durch die entsprechenden Schnittstellen, und darauf, mit entsprechender Software, zum Beispiel zum Supply Chain Management oder zum Customer Relationship Management zu kooperieren.

Eigenschaften betriebswirtschaftlicher Standardsoftware: prozessorientiert

- Der Geschäftsprozessbegriff ist von zentraler Bedeutung für betriebswirtschaftliche Standardsoftware
- Betriebswirtschaftliche Standardsoftware basiert auf folgender Grundannahme: "Es ist möglich, für die Anforderungen heutiger Unternehmen eine gemeinsame, integrierte und prozessorientierte Software zu erstellen." Dies beruht auf zwei Eigenschaften heutiger Geschäftsprozesse:
 - 1. Die meisten Geschäftsprozesse sind **standardisiert**, d.h. sie laufen bei Wiederholung gleich ab → *Prozessmodellierung*
 - 2. Es gibt so viele **Gemeinsamkeiten zwischen den Geschäftsprozessen** verschiedener Unternehmen, dass es möglich ist, eine gemeinsame "Software von der Stange" zu schreiben.

Anwendungssoftware – Make or Buy

 Für die Beschaffung von Software ergeben sich für die Unternehmen 4 grundsätzliche Optionen

Eigenschaft	Ausprägungen					
Erstellung	Standardsoftware		Individualsoftware			
Ort der Bereitstellung	Intern		Extern			
Mgmt Ebene	Strategisch	Strategische Anwendungen		Operative Anwendungen		
Funktion	Administration Disposition Plan		nung	Kontrolle	Analyse	
Anwendungsbereiche	Fertigung	Vertriebe	Ein	kauf	Personal	

Interne Lösung

Externe Lösung **Make** (Individualsoftware)

•Eigenentwicklung Software Softwareentwicklung wird von eigenen Mitarbeitern, ggf. unterstützt durch Berater, durchgeführt

•Fremdentwicklung Software Externes Softwarehaus führt im Auftrag die Entwicklung einer Individualsoftware, ggf. unterstützt durch eigene Mitarbeiter, durch Buy (Standardsoftware)

Kauf Standardsoftware

Standardsoftware wird gekauft und von eigenen Mitarbeitern mit Unterstützung externer Berater implementiert

Miete Standardsoftware

Standardsoftware wird durch ext. Unternehmen (Provider) beschafft und betrieben.

Bedarfsabhängige Nutzung (Miete) der Software als Mandant.

Standardsoftware vs. Individualsoftware

Individualsoftware

Maßgeschneiderte Lösung Keine Anpassung der Organisation erforderlich Unabhängigkeit von Softwarelieferanten Gqf. Strategische Vorteile Hohe Entwicklungskosten Wartung teuer, oft gar nicht mehr möglich Teilweise unzureichende Dokumentation Abhängigkeit von Entwicklern

Know-how-Transfer durch den Hersteller permanente Weiterentwick-lung an Marktstandards hohe Funktionalität Branchenneutralität und Individualität durch Customizing

Strategischer Nutzen

Teures Spezialpersonal Geringer Einfluss auf Weiterentwicklung der Funktionalität Hoher Einführungsaufwand (Schulung, Beratung) Anpassung aufwendig oder nicht möglich

Standardsoftware

Gadatsch (2012)

Standardsoftware vs. Individualsoftware - Zeitvorteil

Standardsoftware ist in ihrer grundlegenden Form sofort verfügbar

Vorgehen bei Individualentwicklung

(Gronau 2001, S. 19)

Fachliche Anforderungsprofile für den Softwareeinsatz in Unternehmen

 Je nach organisatorischer Managementebene unterscheiden sich die Informationsbedarfe und der Grad der Standardisierung und Strukturierung der zu bearbeitenden Entscheidungsprobleme

Informations- merkmale	Operatives Management	Taktisches Management	Strategisches Management
Gegenstand			
Spektrum	eng	\Leftrightarrow	sehr weit
Bereich	funktionsspezifisch	\Leftrightarrow	übergreifend
Ausrichtung	weitgehend intern	\Leftrightarrow	intern und extern
Variabilität	stabil	\Leftrightarrow	flexibel
Zeithorizont	gegenwärtig, histor.	\Leftrightarrow	zukünftig
Art			
Beschaffenheit	quantitativ	\Leftrightarrow	qualitativ
Aggregationsstufe	detailliert	\Leftrightarrow	aggregiert
Aktualität	zeitnah	\Leftrightarrow	mäßig aktuell
Genauigkeit	präzise	\Leftrightarrow	annähernd
Aufbereitung	gering	\Leftrightarrow	aufwendig
Präsentation	formatierte Daten	\Leftrightarrow	Tabellen, Grafik, Text
Einsatz			
Verwendung	periodisch	\Leftrightarrow	unregelmäßig
Gebrauch	häufig	\Leftrightarrow	sporadisch

nach (Hansen, Neumann 2009)

Technische Anforderungsprofile für den Softwareeinsatz in Unternehmen

- Aus den unterschiedlichen Informationsbedarfen und Entscheidungsproblemen leiten sich unterschiedliche technische Anforderungen ab
- Diese technischen Anforderungen sind häufig Grund für die Trennung der Systeme für die operativen Prozesse (OLTP) und den Managementprozessen (OLAP)

	OLTP	OLAP	
Fokus	Lesen, Schreiben, Modifi-	Lesen, periodisches Hinzu-	
	zieren, Löschen	fügen	
Transaktionsdauer	kurze Lese-/Schreib-	lange Lesetransaktionen	
und -typ	transaktionen		
Anfragestruktur	einfach strukturiert	komplex	
Datenvolumen einer	wenige Datensätze	viele Datensätze	
Anfrage			
Datenmodell	anfrageflexibel	analysebezogen	
Datenquellen	meist eine	mehrere	
Eigenschaften	nicht abgeleitet, zeitak-	abgeleitet/konsolidiert, his-	
	tuell, autonom, dyna-	torisiert, integriert, stabil	
	misch		
Datenvolumen	MByte GByte	GByte TByte PByte	
Zugriffe	Einzeltupelzugriff	Tabellenzugriff (spaltenwei-	
		se)	
Anwendertyp	Ein-/Ausgabe durch An-	Manager, Controller, Ana-	
	gestellte oder Applikati-	lyst	
	onssoftware		
Anwenderzahl	sehr viele	wenige (bis einige Hundert)	
Antwortzeit	msecssecs	secsmin	

(Köppen 2014)

Trennung der Systeme - OLTP vs. OLAP

In der heutigen Unternehmenspraxis werden die Anwendungssysteme zur Unterstützung des (strategischen) Managements getrennt betrieben von den operativen Systeme für die Kern-/ Unterstützungsprozessen

- Online-Transaction-Processing (OLTP): Online-Transaktionsverarbeitung, auch Echtzeit-Transaktionsverarbeitung
- Online Analytical Processing (OLAP): Analytische Informationsverarbeitung

(Köppen 2014)

Klassifikation von Anwendungssystemen

- Anwendungssysteme k\u00f6nnen nach der organisatorischen Ebene, die sie unterst\u00fctzen, unterteilt werden:
 - Systeme auf der operativen Ebene
 - Systeme auf der taktischen Managementebene
 - Systeme auf der strategischen Managementebene

Klassifikation von Anwendungssystemen: Organisatorische Ebene

- Operative Systeme: Anwendungssysteme, welche die grundlegenden Aktivitäten und Transaktionen des Unternehmens ausführen und überwachen → Transaction Processing Systems
- Anwendungssysteme auf Managementebene: Systeme, die das mittlere Management in den Bereichen Kontrolle, Steuerung, Entscheidungsfindung und Administration unterstützen
 - Managementinformationssystem (MIS)
 - Entscheidungsunterstützungssysteme oder Decision Support System (DSS)
- Strategische Anwendungssysteme: Anwendungssysteme, die die langfristige Planung des oberen Managements unterstützen.
 - Führungsinformationssysteme (FIS) oder Executive Support System (ESS)

Organisations-	Austurnarigs	Leitungsebene				
Zweck		operativ	taktisch	strategisch		
Transaktion	Transaktions- systeme (TPS)	Transaktions- systeme (TPS)				
Information		Management- informations- systeme (MIS)	Management- informations- systeme (MIS)	Führungs- informations- systeme (EIS)		
Entscheidung			Entscheidungs- unterstützungs- systeme (DSS)			

(Laudon 2016, S. 408)

(Alpar 2014, S. 27)

Transaktionsorientierte/ Operative Systeme

- Anwendungssysteme, die die täglichen, für den Geschäftsbetrieb notwendigen
 Routinetransaktionen unterstützen/ ausführen und aufzeichnen
- Transaktion: Geschäftsvorfall, der zusammenhängende Funktionen im U. auslösen kann und i.d.R. in Form standardisierter Prozesse bearbeitet wird (z.B. Materialbeschaffung)
- Transaktionssysteme: Anwendungssysteme zur Bearbeitung wiederkehrender/ standardisierter Geschäftsvorfälle

(Laudon 2016, S. 409)

Operative Systeme: Beispiele

	Vertriebs-/ Marketingsysteme	Systeme für Beschaffung und Produktion	Finanz-/ Buchhaltungs- systeme	Personal- entwicklungs- systeme	Sonstige Anwendungssysteme (z.B. in Universitäten)
Hauptfunktionen des Systems	Kundenservice Vertriebsleitung Überwachung von Werbemaßnahmen Preisänderungen Kommunikation mit den Händlern	Terminplanung Einkauf Versand/ Warenannahme Logistik	Kontierung und Hauptbuch Rechnungsstellung Kostenrechnung	Personalakten Sozialleistungen Vergütung Arbeitgeber-Arbeitnehmer-Beziehungen Schulung	Zulassung zu Prüfungen Prüfungsleistungen Kursbelegungen Semesterbeitrags- verwaltung
Haupt- anwendungs- systeme	System für die Bestellannahme System für die Berechnung der Umsatzprovisionen System für die Ver- triebsunterstützung	Maschinensteue- rungssysteme Materialbedarfs- planungssysteme Systeme für die Qualitätskontrolle	Kontierung Lohnbuchhaltung Debitoren-/Kredi- torenbuchhaltung Vermögensver- waltungssysteme	Personalakten Sozialleistungen Mitarbeiter- beurteilungen	Systeme für die Einschreibung von Studenten Systeme für die Zeugnisausstellung für Studenten Kurskontrollsystem System zur Verwaltung von Semesterbeiträgen

(Laudon 2016, S. 409)

Managementinformationssysteme (MIS)

 Systeme auf der operativen und taktischen Managementebene eines Unternehmens, die durch die Bereitstellung von Standardübersichtsberichten sowie Berichten über Abweichungen der Planung, Kontrolle und Entscheidungsfindung dienen.

Entscheidungsunterstützungssysteme (EUS bzw. DSS)

- Systeme auf der mittleren Managementebene von Unternehmen, die Daten mit analytischen Modellen und Methoden oder Datenanalysewerkzeugen kombinieren, um schwach strukturierte oder unstrukturierte Entscheidungsfindungsprozesse zu unterstützen.
- Ziel: formallogisches Abbildung des Verhaltens von Fach- und Führungskräften bei der Lösung von Fachproblemen
- Lösungsmethoden: Optimierungsmethoden, Heuristiken, Statistik

(Laudon 2016, S. 411)

Entscheidungsunterstützungssysteme: Beispiel Mieten vs. Kaufen

- Relevante Einflussgrößen für die Entscheidungssituation werden identifiziert (down payment (Anzahlung); Mortgage interest rate (Hypothekenzins); Appreciation rate (Wertsteigerungsrate); Rate of inflation (Inflationsrate))
- Für die Abbildung der zukünftigen Entwicklung der Einflussgrößen werden
 Wahrscheinlichkeitsverteilungen definiert, verschiedene Szenarien können verglichen werden
- Auf Basis der konkreten Werten des aktuellen Entscheidungsproblems wird eine Lösung ermittelt

Führungsinformationssysteme

- Systeme auf der strategischen Ebene des Unternehmens, die die unstrukturierte Entscheidungsfindung insbesondere durch erweiterte Grafik- und Kommunikationsfunktionen unterstützen sollen.
- Komplexitätsreduzierende Funktionen, z.B. Exception Reporting (Hinweis für Nutzer bei Überschreitung vorgegebener Schranken (Information by Exception) für Key Performance Indicators (KPI)
- Intensive Nutzung graphischer Elementen zur schnellen Auffassung von Informationen (Dashboards)

(Laudon 2016, S. 412)

Weitere Begriffe für Software für das höhere Management

Informationssysteme für das höhere Management werden häufig unter dem Begriff Management Support Systeme (MSS) zusammengefasst

- Managementunterstützungssystem (MSS): ist ein rechnergestütztes Informationssystem das für Führungskräfte eine adäquate Informationsversorgung und Entscheidungsunterstützung bietet.
- Ein weiterer gängiger Begriff ist: Analytische Informationssysteme als sprachliche Abgrenzung zu den operativen Systemen
- Aktuell hat sich für die Konzeption und Erstellung solcher Systeme der Oberbegriff Business Intelligence etabliert
- Business Intelligence beschreibt einen integriertes, unternehmensspezifisch zu entwickelndes Gesamtkonzept zur IT-Unterstützung des Managements. Dies umfasst die Erfassung, Integration, Transformation, Speicherung, Analyse und Interpretation geschäftsrelevanter Informationen

Business Intelligence-Systeme

Business Intelligence-Systeme sind **Softwarewerkzeugkästen** zur Integration und Auswertung großer Datenbestände, aus denen analytische Anwendungen für verschiedene Aufgabenstellungen zusammengestellt werden

(Hansen 2009)

Merkmale der Anwendungssysteme

- Die verschiedenen Arten von Anwendungssystemen unterscheiden sich insbesondere bzgl. des Detaillierungsgrads der gespeicherten Daten sowie die Art und Weise der Informationsbereitstellung
- Diese Unterschiede resultieren aus der unterschiedlichen Anforderungen der Nutzer

Systemtyp	Informationseingabe	Aufbereitung	Informationsausgabe	Benutzer
ESS	Aggregierte Daten aus exter- nen und internen Quellen	Grafiken, Simulationen, interaktive Bearbeitung	Vorhersagen, Antworten auf Abfragen	Topmanagement
DSS	Geringe Datenmengen oder umfangreiche, für die Daten- analyse optimierte Daten- banken, analytische Modelle und Datenanalysewerkzeuge	Interaktive Bearbeitung, Simulationen, Analyse	Spezialberichte, Entscheidungsanalysen, Antworten auf Abfragen	Fachexperten, Personalleiter
MIS	Zusammenfassende Trans- aktionsdaten, einfache Modelle	Standardberichte, ein- fache Modelle, einfache Analysen	Zusammenfassungen und Berichte über Ausnahme- fälle	Mittleres Management
Operative Systeme	Transaktionen, Ereignisse	Sortieren, Listen erstel- len, Zusammenführen, Aktualisieren	Detaillierte Berichte, Listen, Übersichten	Mitarbeiter der operativen Ebene, Gruppenleiter

(Laudon 2016, S. 408)

Gesamtüberblick

Prozessorientierte, auf standardisierte Transaktionsverarbeitung (einzelne Geschäftsvorfälle) ausgelegte und hoch integrierte (decken alle Geschäftsprozesse und Funktionsbereiche ab) Anwendungssoftware (z.B. ERP-Systeme) → sehr gut durch Standardsoftware abbildbar

Software-Baukästen zur Erstellung **unternehmensspezifischer** Anwendungen zur Abdeckung der Informationsbedarfe des Managements

Integration betrieblicher Anwendungssysteme: Motivation

- dedizierte Anwendungssysteme für jede Organisationseinheit (Abteilung)
- Lose verbundene nicht integrierte Systeme (Insellösungen)

Dimensionen der integrierten Informationsverarbeitung

Integration = Verknüpfung einzelner Elemente zu einem Gesamtsystem

 Integration bezeichnet in der Wirtschaftsinformatik die Verknüpfung von Menschen, Aufgaben und Technik zu einem einheitlichen Ganzen, um den Folgen

der durch Arbeitsteilung und Spezialisierung entstandenen **Funktions-, Prozess- und**

Abteilungsgrenzen entgegenzuwirken.

Informationsverarbeitung Integrations-Integrations-Integrations-Automations-Integrationsgegenstand richtung reichweite zeitpunkt grad Bereichs-Voll-Horizontal Daten Stapel umfassend automation Funktions-Teil-Funktionen Vertikal **Echtzeit** bereich- u. automation prozessübergreifend Objekte Innerbetrieblich Prozesse Zwischenbetrieblich Methoden Programme

Integration der

Ausprägungen der Integrierten Informationsverarbeitung

Die **Datenintegration** führt Daten logisch zusammen

In der einfachsten Form übergeben Teilsysteme Daten (in Form von Nachrichten) automatisch an andere Teilsysteme, mindestens zwei Programme müssen so aufeinander abgestimmt sein, dass das empfangende Programm die Daten des liefernden Teilsystems interpretieren kann

Nachrichtenaustausch

In ausgeprägter Formen werden die Daten für alle Programme in einer gemeinsamen Datenbank gehalten. Daten werden durch mehrere Programme gemeinsam genutzt, ohne dass ein Wechsel des Mediums erforderlich ist.

Beispiel: Das Fakturierungsprogramm legt die Informationen zu allen Rechnungen in einer Datenbank ab. Bei Bedarf können andere Programme, wie z. B. die Vertriebserfolgsrechnung, die Debitorenbuchhaltung oder die Gutschriftenerteilung, darauf zugreifen

Gemeinsame Datenhaltung

(Mertens 2013)

Ausprägungen der Integrierten Informationsverarbeitung

Integration von Funktionen umfasst ...

- die Bündelung der Ausführung gleichartiger Aufgaben bei einem Aufgabenträger
- die informationstechnische Verknüpfung voneinander abhängiger Funktionsfolgen über einen abgestimmten Datenfluss
- Beispiel: Integration von Bedarfsmeldung und Bestellung

Daten- und Funktionsintegration

zwei Module, doppelte Datenhaltung

zwei Module, einfache Datenhaltung

ein Modul, einfache Datenhaltung

(Mertens 2013)

Ausprägungen der Integrierten Informationsverarbeitung

Die **Programmintegration** stellt auf die Abstimmung einzelner Softwarebausteine im Rahmen eines integrierten Gesamtsystems ab.

 Während die Funktionsintegration das fachlich-inhaltliche Geschehen im Unternehmen abbilden, ist das Ziel der Programmintegration die IT-technische Realisierung der verschiedenen Komponenten des Systems

Dies umfasst z.B. einheitliche Programmierstandards und eine einheitliche

Benutzerschnittstelle

→ Entwicklung von **Standardsoftware** für betriebliche Aufgaben

(Mertens 2013)

Integrationsrichtung

Integrationsrichtung beschreibt die Orientierung der Integration innerhalb und zwischen den verschiedenen Hierarchieebenen eins Unternehmens

- Horizontale Integration: Teilinformationssysteme der betrieblichen Wertschöpfungskette werden integriert, dies umfasst sowohl prozessinterne (zwischen den Aktivitäten eines Prozesses) als auch prozessübergreifende (zwischen Prozessen) Verknüpfung
- Vertikale Integration: Versorgung der Analytischen Systeme mit Daten aus den operativen Systemen für die oberen Managementhierarchien

Vertikale Integration – Beispiel Einkauf

Vertikale Integration: Bereitstellung von (aggregierten) Führungs-/ Steuerungsinformationen aus den Kernprozessen für die Unterstützungsund Managementprozesse

(Gadatsch 2012, S. 264)

Vorteile der integrierten Informationsverarbeitung

- Abbau der künstlichen Grenzen zwischen Abteilungen, Funktionsbereichen entlang der Geschäftsprozesse
- Informationsfluss als Abbild der tatsächlichen Geschäftsprozesse im Unternehmen
- Minimierung des personellen Aufwands für die Datenerfassung (Daten werden am Ort ihrer Entstehung und nur einmal erfasst)
- Erhöhung der Datenqualität (Erfassungsfehler)
- Realisierung moderner betriebswirtschaftlicher Konzeptionen wird überhaupt erst möglich (z.B. Controlling)
- Erhöhung der Prozess-Sicherheit (Abbildung der Geschäftsprozesse durch Programme oder Workflow)
- Verringerung von Speicher- und Dokumentationsaufwand (Datenredundanz)

(Laudon 2016, S. 438)

Herausforderungen der integrierten Informationsverarbeitung

- Kettenreaktion bei Fehlern
- ungenügende Wirksamkeit der Automation bei Sonder- und Ausnahmefällen
- Komplexität bewirkt hohen Test- und Pflegeaufwand
- mangelhafte Verfügbarkeit qualifizierter Systemplaner
- mangelhafte Integrationsfähigkeit standardisierter Lösungen und zugekaufter Softwareprodukte
- lange Realisierungs- und Investitionslaufzeiten
- Einmaligkeit bzw. Seltenheit der Integrationsentscheidung
- Anpassung standardisierter unternehmensweiter Anwendungssysteme an den Betrieb oft sehr aufwendig
- Hohe Komplexität durch gegenseitige Abhängigkeit der Komponenten erfordert hohen Einarbeitungsaufwand
- Betrieb muss seine Prozesse häufig der Software anpassen

(Laudon 2016, S. 438)

Optimaler Integrationsgrad

- K₀ und K₀' sind mögliche Kostenfunktionen
- Annahme: K₀: Aufwand für Integration steigt durch zunehmende Komplexität der Integrationsaufgabe
- Annahme K₀': hohe Initiale Kosten für eine integrierte Gesamtlösung, aber geringerer/ linearer Mehraufwand bei Erhöhung der Integrationsgrads

(Laudon 2016, S. 439)