T0-Modell: Granulation, Limits und fundamentale Asymmetrie

Johann Pascher

11. September 2025

Zusammenfassung

Das T0-Modell beschreibt eine fundamentale Granulation der Raumzeit bei der Sub-Planck-Skala $L_0 = \xi \times L_{\rm P}$ mit $\xi \approx 1.333 \times 10^{-4}$. Diese Arbeit untersucht die Konsequenzen fuer Skalenhierarchien, Zeit-Kontinuitaet und die mathematische Vollstaendigkeit verschiedener Gravitationstheorien. Die Zeit-Masse-Dualitaet $T(x,t) \cdot m(x,t) = 1$ erfordert, dass beide Felder gekoppelt variabel sind, waehrend die fundamentale ξ -Asymmetrie alle Entwicklungsprozesse ermoeglicht.

Inhaltsverzeichnis

1	Gra	nulation als Grundprinzip der Realitaet	3
	1.1	Minimale Laengenskala L_0	3
	1.2	Die extreme Skalenhierarchie	3
	1.3	Casimir-Skala als Nachweis der Granulation	
2	Lim	nit-Systeme und Skalenhierarchien	3
	2.1	Drei-Skalen-Hierarchie	3
	2.2	Relationales Zahlensystem	4
	2.3	CP-Verletzung aus universeller Asymmetrie	4
3	Fun	ndamentale Asymmetrie als Bewegungsprinzip	4
	3.1	Die universelle ξ -Konstante	4
	3.2	Ewiges Universum ohne Urknall	4
	3.3	Zeit existiert erst nach Feld-Asymmetrie-Anregung	5
4	Hie	rarchische Struktur: Universum > Feld > Raum	5
	4.1	Die fundamentale Ordnungshierarchie	5
	4.2	Kausale Abwaertskopplung	5
5	Kor	ntinuierliche Zeit ab bestimmten Skalen	6
	5.1	Die entscheidende Skalenhierarchie der Zeit	6
		5.1.1 Granulierte Zone (unterhalb L_0)	6
		5.1.2 Uebergangszone (um L_0)	6
		5.1.3 Kontinuierliche Zone (oberhalb L_0)	
	5.2	Quantitative Skalierung der Zeit-Kontinuitaet	
	5.3	Thermodynamischer Zeitpfeil	

6	Praktische vs. Fundamentale Physik		
	6.1 Zeit wird praktisch konstant erfahren	7	
	6.2 Lichtgeschwindigkeit als eindeutige Obergrenze	7	
	6.3 Aufloesung des scheinbaren Widerspruchs	7	
7	Gravitation: Masse-Variation vs. Raumkruemmung		
	7.1 Zwei aequivalente Interpretationen	8	
	7.2 Wichtige Erkenntnis: Wir wissen es nicht!	8	
	7.3 Experimentelle Ununterscheidbarkeit	8	
8	Mathematische Vollstaendigkeit: Beide Felder gekoppelt variabel	9	
	8.1 Die korrekte mathematische Formulierung	9	
	8.2 Verifikation der mathematischen Konsistenz	9	
	8.3 Warum beide Felder variabel sein muessen	9	
	8.4 Einsteins willkuerliche Konstant-Setzung	9	
	8.5 Parameter-Eleganz	10	
9	Pragmatische Praeferenz: Variable Masse bei konstanter Zeit	10	
	9.1 Die pragmatische Alternative fuer unseren Erfahrungsraum	10	
	9.2 Praktische Vorteile der konstanten Zeit	10	
	9.3 Variable Masse als anschauliches Konzept	10	
	9.4 Wissenschaftliche Legitimitaet der Praeferenz	11	
10	Die ewige philosophische Grenze	11	
	10.1 Was das T0-Modell erklaert	11	
	10.2 Was das T0-Modell NICHT erklaeren kann	11	
	10.3 Wissenschaftliche Demut	11	
11	Experimentelle Vorhersagen und Tests	12	
	11.1 Casimir-Effekt-Modifikationen	12	
	11.2 Atominterferometrie	12	
	11.3 Gravitationswellen-Detektion	12	
12	Fazit: Asymmetrie als Motor der Realitaet	12	

1 Granulation als Grundprinzip der Realitaet

1.1 Minimale Laengenskala L_0

Das T0-Modell fuehrt eine fundamentale Laengenskala ein, die tiefer als die Planck-Laenge liegt:

$$L_0 = \xi \times L_P \approx \frac{4}{3} \times 10^{-4} \times 1.616 \times 10^{-35} \text{ m} \approx 2.155 \times 10^{-39} \text{ m}$$
 (1)

Bedeutung von L_0 :

- Absolute physikalische Untergrenze fuer raeumliche Strukturen
- Granulierte Raumzeit-Struktur nicht kontinuierlich
- Sub-Planck-Physik mit neuen fundamentalen Gesetzen
- Universelle Skala fuer alle physikalischen Phaenomene

1.2 Die extreme Skalenhierarchie

Von L_0 bis zu kosmologischen Skalen erstreckt sich eine Hierarchie von ueber 60 Groessenordnungen:

$$L_0 \approx 10^{-39} \text{ m} \quad \text{(Sub-Planck Minimum)}$$
 (2)

$$L_{\rm P} \approx 10^{-35} \,\mathrm{m}$$
 (Planck-Laenge) (3)

$$L_{\text{Casimir}} \approx 100 \text{ Mikrometer (Casimir-Skala)}$$
 (4)

$$L_{\text{Atom}} \approx 10^{-10} \text{ m} \quad \text{(Atomare Skala)}$$
 (5)

$$L_{\text{Makro}} \approx 1 \text{ m} \quad \text{(Menschliche Skala)}$$
 (6)

$$L_{\rm Kosmo} \approx 10^{26} \,\mathrm{m}$$
 (Kosmologische Skala) (7)

1.3 Casimir-Skala als Nachweis der Granulation

Bei der Casimir-charakteristischen Skala zeigen sich erste messbare Effekte:

$$L_{\xi} \approx \frac{1}{\sqrt{\xi \times L_{\rm P}}} \approx 100 \text{ Mikrometer}$$
 (8)

Experimentelle Evidenz:

- Abweichungen vom $1/d^4$ -Gesetz bei Abstaenden ≈ 10 nm
- ξ -Korrekturen in Casimir-Kraft-Messungen
- Grenzen der Kontinuumsphysik werden sichtbar

2 Limit-Systeme und Skalenhierarchien

2.1 Drei-Skalen-Hierarchie

Das T0-Modell organisiert alle physikalischen Skalen in drei fundamentalen Bereichen:

1. L_0 -Bereich: Granulierte Physik, universelle Gesetze

- 2. Planck-Bereich: Quantengravitation, Uebergangsdynamik
- 3. Makro-Bereich: Klassische Physik mit ξ -Korrekturen

2.2 Relationales Zahlensystem

Primzahl-Verhaeltnisse organisieren Teilchen in natuerliche Generationen:

- **3-limit**: u-, d-Quarks (1. Generation)
- 5-limit: c-, s-Quarks (2. Generation)
- 7-limit: t-, b-Quarks (3. Generation)

Die naechste Primzahl (11) fuehrt zu ξ^{11} -Korrekturen $\approx 10^{-44}$, die unterhalb der Planck-Skala liegen.

2.3 CP-Verletzung aus universeller Asymmetrie

Die ξ -Asymmetrie erklaert:

- CP-Verletzung in schwachen Wechselwirkungen
- Materie-Antimaterie-Asymmetrie im Universum
- Chirale Symmetriebrechung in der Natur

3 Fundamentale Asymmetrie als Bewegungsprinzip

3.1 Die universelle ξ -Konstante

$$\xi = \frac{4}{3} \times 10^{-4} \approx 1.333 \times 10^{-4} \tag{9}$$

Ursprung: Geometrische 4/3-Konstante aus optimaler 3D-Raumpackung **Wirkung**: Universelle Asymmetrie, die alle Entwicklung ermoeglicht

3.2 Ewiges Universum ohne Urknall

Das T0-Modell beschreibt ein ewiges, unendliches, nicht-expandierendes Universum:

- Kein Anfang, kein Ende zeitlos existierend
- Heisenbergs Unschaerferelation verbietet Urknall: $\Delta E \times \Delta t \geq \hbar/2$
- Strukturierte Entwicklung statt chaotische Explosion
- Kontinuierliche ξ -Feld-Dynamik statt Big Bang

3.3 Zeit existiert erst nach Feld-Asymmetrie-Anregung

Hierarchie der Zeit-Entstehung:

- 1. **Zeitloses Universum**: Perfekte Symmetrie, keine Zeit
- 2. ξ -Asymmetrie entsteht: Symmetriebrechung aktiviert Zeit-Feld
- 3. **Zeit-Energie-Dualitaet**: $T(x,t) \cdot E(x,t) = 1$ wird aktiv
- 4. Manifestierte Zeit: Lokale Zeit entsteht durch Felddynamik
- 5. Gerichtete Zeit: Thermodynamischer Zeitpfeil stabilisiert sich

Zeit ist nicht fundamental, sondern emergent aus Feld-Asymmetrie.

4 Hierarchische Struktur: Universum > Feld > Raum

4.1 Die fundamentale Ordnungshierarchie

Universum (hoechste Ordnungsebene):

- Uebergeordnete Struktur mit ewigen, unendlichen Eigenschaften
- Globale Organisationsprinzipien bestimmen alles darunter
- ξ -Asymmetrie als universelle Leitstruktur
- Thermodynamische Gesamtbilanz aller Prozesse

Feld (mittlere Organisationsebene):

- Universelles ξ -Feld als Vermittler zwischen Universum und Raum
- Lokale Dynamik innerhalb globaler Constraints
- Zeit-Energie-Dualitaet als Feldprinzip
- Strukturbildende Prozesse durch Asymmetrie

Raum (Manifestationsebene):

- 3D-Geometrie als Buehne fuer Feldmanifestationen
- Granulation bei L_0 -Skala
- Lokale Wechselwirkungen zwischen Feldanregungen

4.2 Kausale Abwaertskopplung

$$UNIVERSUM \to FELD \to RAUM \to TEILCHEN \tag{10}$$

Das Universum ist nicht nur die Summe seiner Raumteile. Uebergeordnete Eigenschaften entstehen erst auf hoechster Ebene. Die ξ -Konstante ist eine universelle, nicht eine Raum-Eigenschaft.

5 Kontinuierliche Zeit ab bestimmten Skalen

5.1 Die entscheidende Skalenhierarchie der Zeit

Im T0-Modell existieren verschiedene Bereiche der Zeit mit fundamental unterschiedlichen Eigenschaften. Je weiter wir uns von L_0 entfernen, desto kontinuierlicher und konstanter wird die Zeit.

5.1.1 Granulierte Zone (unterhalb L_0)

$$L_0 = \xi \times L_P \approx 2.155 \times 10^{-39} \text{ m}$$
 (11)

- Zeit ist diskret granuliert, nicht kontinuierlich
- Chaotische Quantenfluktuationen dominieren
- Physik verliert klassische Bedeutung
- Alle fundamentalen Kraefte gleichstark

5.1.2 Uebergangszone (um L_0)

- Zeit-Masse-Dualitaet $T \cdot m = 1$ wird voll aktiv
- Intensive Wechselwirkung aller Felder
- Uebergang von granuliert zu kontinuierlich

5.1.3 Kontinuierliche Zone (oberhalb L_0)

Zentrale Erkenntnis

Abstand zu $L_0 \uparrow \Rightarrow \text{Zeit-Kontinuitaet} \uparrow \Rightarrow \text{Konstante Richtung} \uparrow$ (12)

- Ab einem bestimmten Punkt wird die Zeit kontinuierlich
- Konstante gerichtete Fliessrichtung entsteht
- Je groesser der Abstand zu L_0 , desto stabiler die Zeitrichtung
- Emergente klassische Physik mit ξ -Korrekturen

5.2 Quantitative Skalierung der Zeit-Kontinuitaet

Zeit-Kontinuitaet als Funktion der Distanz zu L_0 :

Zeit-Kontinuitaet
$$\propto \log\left(\frac{L}{L_0}\right)$$
 fuer $L \gg L_0$ (13)

Praktische Skalen:

$$L = 10^{-35} \text{ m (Planck)}$$
: Noch granuliert (14)

$$L = 10^{-15} \text{ m (Kern)}$$
: Uebergang zur Kontinuitaet (15)

$$L = 10^{-10} \text{ m (Atom)}$$
: Praktisch kontinuierlich (16)

$$L = 10^{-3} \text{ m (mm)}$$
: Vollstaendig kontinuierlich, konstante Richtung (17)

L = 1 m (Meter): Perfekt lineare, gerichtete Zeit (18)

5.3 Thermodynamischer Zeitpfeil

Skalenabhaengige Entropie:

- Granulierte Ebene (L_0) : Maximale Entropie, perfekte Symmetrie
- Uebergangsebene: Entropiegradienten entstehen
- Kontinuierliche Ebene: Zweiter Hauptsatz wird aktiv
- Makroskopische Ebene: Irreversible Zeitrichtung

6 Praktische vs. Fundamentale Physik

6.1 Zeit wird praktisch konstant erfahren

De facto fuer uns: Zeit fliesst konstant in unserem Erfahrungsbereich

- Lokale Skalen (m bis km): Zeit ist praktisch perfekt linear und konstant
- Messbare Variationen: Nur bei extremen Bedingungen (GPS-Satelliten, Teilchenbeschleuniger)
- Alltaegliche Physik: Zeit-Konstanz ist gute Naeherung

6.2 Lichtgeschwindigkeit als eindeutige Obergrenze

Beobachtete Realitaet:

- c = 299.792.458 m/s ist messbare Obergrenze fuer Informationsuebertragung
- Kausalitaet: Keine Signale schneller als c beobachtet
- Relativistische Effekte: Bei $v \to c$ eindeutig messbar
- **Teilchenbeschleuniger**: Bestaetigen c-Grenze taeglich

6.3 Aufloesung des scheinbaren Widerspruchs

Makroskopische Ebene (unsere Welt):

$$L = 1 \text{ m bis } 10^6 \text{ m (km-Bereich)}$$
 (19)

- Zeit fliesst konstant: $dt/dt_0 \approx 1 + 10^{-16}$ (unmessbar)
- c ist praktisch konstant: $\Delta c/c \approx 10^{-16}$ (unmessbar)
- Einstein-Physik funktioniert perfekt

Fundamentale Ebene (T0-Modell):

$$L_0 = 10^{-39} \text{ m bis } L_P = 10^{-35} \text{ m}$$
 (20)

- Zeit-Masse-Dualitaet: $T \cdot m = 1$ ist fundamental
- c ist Verhaeltnis: c = L/T (muss variabel sein)
- Mathematische Konsistenz erfordert gekoppelte Variation

Diese Variationen sind 10^6 mal kleiner als unsere beste Messpraezision!

7 Gravitation: Masse-Variation vs. Raumkruemmung

7.1 Zwei aequivalente Interpretationen

Einstein-Interpretation:

- m = konstant (feste Masse)
- $g_{\mu\nu}$ = variabel (gekruemmte Raumzeit)
- Masse verursacht Raumkruemmung

T0-Interpretation:

- m(x,t) = variabel (dynamische Masse)
- $g_{\mu\nu} = \text{fix (flacher euklidischer Raum)}$
- Masse variiert lokal durch ξ -Feld

7.2 Wichtige Erkenntnis: Wir wissen es nicht!

Achtung - Fundamentaler Punkt

Wir WISSEN NICHT, ob Masse Raumkruemmung verursacht oder ob Masse selbst variiert!

Das ist eine Annahme, keine bewiesene Tatsache!

Beide Interpretationen sind gleich gueltig:

Einstein-Annahme:

$$Masse/Energie \rightarrow Raumkruemmung \rightarrow Gravitation$$
 (21)

$$G_{\mu\nu} = 8\pi T_{\mu\nu} \tag{22}$$

T0-Alternative:

$$\xi$$
-Feld \to Masse-Variation \to Gravitations-Effekte (23)

$$m(x,t) = m_0 \cdot (1 + \xi \cdot \Phi(x,t)) \tag{24}$$

7.3 Experimentelle Ununterscheidbarkeit

Alle Messungen sind frequenzbasiert:

- Uhren: Hyperfein-Uebergangsfrequenzen
- Waagen: Federschwingungen/Resonanzfrequenzen
- Spektrometer: Lichtfrequenzen und Uebergaenge
- **Interferometer**: Phasen = Frequenzintegrale

Identische Frequenzverschiebungen:

Einstein:
$$\nu' = \nu_0 \sqrt{1 + 2\Phi/c^2} \approx \nu_0 (1 + \Phi/c^2)$$
 (25)

T0:
$$\nu' = \nu_0 \cdot \frac{m(x,t)}{T(x,t)} \approx \nu_0 (1 + \Phi/c^2)$$
 (26)

Nur Frequenzverhaeltnisse sind messbar - absolute Frequenzen sind prinzipiell unzugaenglich!

8 Mathematische Vollstaendigkeit: Beide Felder gekoppelt variabel

8.1 Die korrekte mathematische Formulierung

Mathematisch korrekt im T0-Modell:

$$T(x,t) = \text{variabel}$$
 (Zeit als dynamisches Feld) (27)

$$m(x,t) = \text{variabel}$$
 (Masse als dynamisches Feld) (28)

Gekoppelt durch fundamentale Dualitaet:

$$T(x,t) \cdot m(x,t) = 1 \tag{29}$$

Beide Felder variieren ZUSAMMEN:

$$T(x,t) = T_0 \cdot (1 + \xi \cdot \Phi(x,t)) \tag{30}$$

$$m(x,t) = m_0 \cdot (1 - \xi \cdot \Phi(x,t)) \tag{31}$$

8.2 Verifikation der mathematischen Konsistenz

Dualitaets-Check:

$$T(x,t) \cdot m(x,t) = T_0 m_0 \cdot (1 + \xi \Phi)(1 - \xi \Phi) \tag{32}$$

$$= T_0 m_0 \cdot (1 - \xi^2 \Phi^2) \tag{33}$$

$$\approx T_0 m_0 = 1 \quad \text{(fuer } \xi \Phi \ll 1\text{)}$$
 (34)

Mathematische Konsistenz bestaetigt!

8.3 Warum beide Felder variabel sein muessen

Lagrange-Formalismus erfordert:

$$\delta S = \int \delta \mathcal{L} \, d^4 x = 0 \tag{35}$$

Vollstaendige Variation:

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial T} \delta T + \frac{\partial \mathcal{L}}{\partial m} \delta m + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} T} \delta \partial_{\mu} T + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} m} \delta \partial_{\mu} m$$
 (36)

Fuer mathematische Vollstaendigkeit:

- $\delta T \neq 0$ (Zeit muss variabel sein)
- $\delta m \neq 0$ (Masse muss variabel sein)
- Beide gekoppelt durch $T \cdot m = 1$

8.4 Einsteins willkuerliche Konstant-Setzung

Einstein setzt willkuerlich:

$$m_0 = \text{konstant} \quad \Rightarrow \quad \delta m = 0$$
 (37)

Mathematisches Problem:

- Unvollstaendige Variation des Lagrangians
- Verletzt Variationsprinzip der Feldtheorie
- Willkuerliche Symmetriebrechung ohne Begruendung

8.5 Parameter-Eleganz

Einstein:
$$m_0, c, G, \hbar, \Lambda, \alpha_{\text{EM}}, \dots$$
 ($\gg 10$ freie Parameter) (38)

T0:
$$\xi$$
 (1 universeller Parameter) (39)

9 Pragmatische Praeferenz: Variable Masse bei konstanter Zeit

9.1 Die pragmatische Alternative fuer unseren Erfahrungsraum

Als Pragmatiker kann man durchaus bevorzugen:

Zeit:
$$t = \text{konstant}$$
 (praktische Erfahrung) (40)

Masse:
$$m(x,t) = \text{variabel}$$
 (dynamische Anpassung) (41)

Warum das pragmatisch sinnvoll ist:

- Zeit-Konstanz entspricht unserer direkten Erfahrung
- Masse-Variation ist konzeptionell einfacher vorstellbar
- Praktische Rechnungen werden oft einfacher
- Intuitive Verstaendlichkeit fuer Anwendungen

9.2 Praktische Vorteile der konstanten Zeit

In unserem erfahrbaren Raum (m bis km):

- Zeit fliesst linear und konstant unsere direkte Erfahrung
- Uhren ticken gleichmaessig praktische Zeitmessung
- Kausale Abfolgen sind klar definiert
- Technische Anwendungen (GPS, Navigation) funktionieren

Sprachkonvention:

- Die Zeit vergeht konstant
- Masse passt sich den Feldern an
- Materie wird schwerer/leichter je nach Ort

9.3 Variable Masse als anschauliches Konzept

Pragmatische Interpretation:

$$m(x) = m_0 \cdot (1 + \xi \cdot \text{Gravitationsfeld}(x))$$
 (42)

Anschauliche Vorstellung:

- Masse erhoeht sich in starken Gravitationsfeldern
- Masse verringert sich in schwaecheren Feldern
- Materie fuehlt das lokale ξ -Feld
- Dynamische Anpassung an Umgebung

9.4 Wissenschaftliche Legitimitaet der Praeferenz

Wichtige Erkenntnis

Pragmatische Praeferenzen sind wissenschaftlich berechtigt, wenn beide Ansaetze experimentell aequivalent sind!

Berechtigung:

- Wissenschaftlich gleichwertig mit Einstein-Ansatz
- Praktisch oft vorteilhafter fuer Anwendungen
- Didaktisch einfacher zu vermitteln
- Technisch effizienter zu implementieren

Die Wahl zwischen konstanter Zeit + variabler Masse vs. Einstein ist Geschmackssache - beide sind wissenschaftlich gleich berechtigt!

10 Die ewige philosophische Grenze

10.1 Was das T0-Modell erklaert

- WIE die ξ -Asymmetrie wirkt
- WAS die Konsequenzen sind
- WELCHE Gesetze daraus folgen
- WANN Zeit und Entwicklung entstehen

10.2 Was das T0-Modell NICHT erklaeren kann

Die fundamentalen Fragen bleiben bestehen:

- WARUM existiert die ξ -Asymmetrie?
- WOHER kommt die Ursprungsenergie?
- WER/WAS gab den ersten Impuls?
- WESHALB existiert ueberhaupt etwas statt nichts?

10.3 Wissenschaftliche Demut

Die ewige Grenze: Jede Erklaerung braucht unerklaerte Axiome. Der letzte Grund bleibt immer mysterioes. Das Dass der Existenz ist gegeben, das Warum bleibt offen.

Die elegante Verschiebung: Das T0-Modell verschiebt das Mysterium auf eine tiefere, elegantere Ebene - aber aufloesen kann es das Grundraetsel der Existenz nicht.

Und das ist auch gut so. Denn ein Universum ohne Mysterium waere ein langweiliges Universum.

11 Experimentelle Vorhersagen und Tests

11.1 Casimir-Effekt-Modifikationen

- Abweichungen vom $1/d^4$ -Gesetz bei $d \approx 10 \text{ nm}$
- ξ -Korrekturen in Praezisionsmessungen
- Frequenzabhaengige Casimir-Kraefte

11.2 Atominterferometrie

- ξ -Resonanzen in Quanteninterferometern
- Masse-Variationen in Gravitationsfeldern
- Zeit-Masse-Dualitaet in Praezisionsexperimenten

11.3 Gravitationswellen-Detektion

- ξ -Korrekturen in LIGO/Virgo-Daten
- Modifikationen der Wellen-Dispersion
- Sub-Planck-Strukturen in Gravitationswellen

12 Fazit: Asymmetrie als Motor der Realitaet

Das T0-Modell zeigt, dass Granulation, Limits und fundamentale Asymmetrie untrennbar mit der skalenabhaengigen Natur der Zeit verbunden sind:

- 1. Granulation bei L_0 definiert die Basis-Skala aller Physik
- 2. Limit-Systeme organisieren Teilchen in natuerliche Generationen
- 3. Fundamentale Asymmetrie erzeugt Zeit, Entwicklung und Strukturbildung
- 4. Hierarchische Organisation von Universum ueber Feld zu Raum
- 5. Kontinuierliche Zeit entsteht ab bestimmten Skalen durch Distanz zu L_0
- 6. Mathematische Vollstaendigkeit erfordert T0-Formulierung ueber Einstein
- 7. Experimentelle Ununterscheidbarkeit verschiedener Interpretationen
- 8. Pragmatische Praeferenzen sind wissenschaftlich berechtigt
- 9. Philosophische Grenzen bleiben bestehen und bewahren das Mysterium

Die ξ -Asymmetrie ist der Motor der Realitaet - ohne sie wuerde das Universum in perfekter, zeitloser Symmetrie verharren. Mit ihr entsteht die ganze Vielfalt und Dynamik unserer beobachtbaren Welt.

Das T0-Modell bietet damit eine einheitliche Erklaerung fuer fundamentale Raetsel der Physik - von der Granulation der Raumzeit bis zur Emergenz der Zeit selbst.

Literatur

- [1] J. Pascher, T0-Modell: Granulation, Limits und fundamentale Asymmetrie, 2025.
- [2] J. Pascher, T0-Modell: Dimensional Konsistente Referenz Feldtheoretische Ableitung des β-Parameters, 2025.
- [3] J. Pascher, Von Zeitdilatation zu Massenvariation: Mathematische Kernformulierungen der Zeit-Masse-Dualitaets-Theorie, 2025.
- [4] A. Einstein, *Die Feldgleichungen der Gravitation*, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 844–847, 1915.
- [5] M. Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237–245, 1900.
- [6] H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 51, 793–795, 1948.