Task A.

1. Prior-probebilities:

---liklihood-probebilities:

2. posterior probebilities via Bayes rule:

$$\underbrace{p(\theta|D)}_{\text{posterior}} = \underbrace{p(D|\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{rior}} / \underbrace{p(D)}_{\text{evidence}}$$

$$p(D) = \sum_{\theta^*} p(D|\theta^*) p(\theta^*)$$

$$p(\theta = \ddot{\sim} | T = +) = \frac{p(T = + | \theta = \ddot{\sim}) p(\theta = \ddot{\sim})}{\sum_{\theta} p(T = + | \theta) p(\theta)}$$

results:

p('+')	p('-')	p(':) +')	p(':) -')	p(':(+')	p(':(-')
0.05094	0.94906	0.9805	0.9999	0.01943	1.0537e-05

3. take posterior probebilities as prior and run again:

results: 0: test is negative, 1:test is positive

$$T =$$

0 1 0 0 0

healthy =

$$0.0000$$
 0.2818 0.0000 0.0000 0.0000

desease =

Task B.

Bernoulli_ Distibution:

$$p(\gamma|\theta) = \theta^{\gamma} (1 - \theta)^{(1 - \gamma)}$$
(6.1)

results: Θ =0.5, Θ =0.25 γ =0, γ =1

likelihood function for set of input $0<\theta<1$

likelihood function for Θ =0.5 for N [10, 1000, 10000] : number of coin flip

gama =

0 1

N =

10 1000 10000

10

likelihood: 9.765625e-04 **N**

log-ikelihood:-6.931472e+00

1000

9.332636e-302

-6.931472e+02

10000

0

plot likelihood,log likelihood $\,$ function for $\,$ 0<0<1 $\,$ for γ [1], [1,1] [1,1,0,1] $\,$

plot posterior distribution.

