Uniqueness Spectra of Graphs

Yunus Biday

Virginia Commonwealth University bidavye@vcu.edu

November 20, 2024

Joint Work With

• Dr. Neal Bushaw

Brief Background

- Graph coloring is something that is widely studied.
- There's many famous results such as the Four Color Theorem, Brooks' Theorem, Vizing's Theorem, Ramsey Theory, and many others.
- This is a very active field of research both in applied and pure mathematics.

Basic definitions

Definition

A graph G = (V, E) is an ordered pair where V is a set containing elements called vertices and E is a set of paired vertices which are called edges. For edge $e = \{v_1, v_2\}$ we call v_1 and v_2 the endpoints.

Definition

Two edges are incident if they share an endpoint.

Definition

For a given graph G we denote the number of vertices as |G| and the number of edges as |G|.

Graph

• We can draw a graph by representing the vertices as circles and the edges as lines which connect them.

Graph

• We can draw a graph by representing the vertices as circles and the edges as lines which connect them.

Coloring Definitions

Definition

A k-edge-coloring of a graph G = (V, E) is a function $c : E \to [k]$. We call c **proper** if no pair of incident edges is colored the same. The **chromatic index of** G, written $\chi'(G)$, is the minimum $k \in \mathbb{N}$ for which a proper k-edge-coloring of G exists.

- We can think of edge coloring as assigning a color to an edge.
- We call this coloring proper if whenever two edges share an endpoint they are colored differently.
- We can then think of the chromatic index as the minimum number of colors you need to properly edge color a graph.

K-Uniqueness

Definition

Given a proper k-edge-coloring c of a graph G, we say that c is k-unique if there are exactly k edges of G whose colors are not repeated elsewhere in the coloring c.

ullet A coloring is k-unique when exactly k edges have colors which appear nowhere else.

This is 0-unique

This is 1-unique

$$Spec = \{0, 1\}$$

$$Spec = \{0, 1, 3\}$$

$$Spec = \{0, 1, 3, 5\}$$

$$Spec = \{0, 1, 2, 3, 5\}$$

Important observations

Observation

If we recolor an edge from a color used exactly twice into a new color, our uniqueness goes up by two.

Observation

If we recolor an edge from a color used three (or more) times into a new color, our uniqueness goes up by one.

Uniqueness Spectrum

Definition (Bushaw-Bednar 2022)

The **uniqueness spectrum** of a graph G is the set of natural numbers k for which a k-unique coloring of G exists. We denote this set by $\operatorname{Spec}(G)$.

Definition

We say that a graph G is **full spectrum** whenever $Spec(G) = \{0, 1, ..., \|G\| - 2, \|G\|\}.$

- Why is ||G|| 1 missing?
- What kinds of graphs are full spectrum? What kinds are not?

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

For any graph G, there always exists a ||G||-unique coloring

• Just color every edge something different!

Graphs Which Aren't Full Spectrum

Lemma

If G is a graph with $2\chi'(G) > ||G||$, then G is not full spectrum. Specifically, G no 0-unique coloring.

Graphs Which Aren't Full Spectrum

Graphs Which Aren't Full Spectrum

Not enough edges!

Chain Theorem

Theorem (Chain Theorem)

Given graph G with a k-unique coloring, if $k \leq ||G|| - 4$, then G also has a (k+2)-unique coloring

- There's an important observation.
- If a graph G has a 0-unique and 1-unique coloring it must have $2, 3, 4, \ldots, ||G|| 3, ||G|| 2$ in the spectrum.
- But we know that ||G|| 1 is never in the spectrum and that ||G|| is always in the spectrum!

Corollary

If graph G is 0-unique and 1-unique, then it is full spectrum.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then it is 0-unique.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then it is 0-unique.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then it is 1-unique.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then it is 0-unique.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then it is 1-unique.

Corollary

If G is a graph such that $2\chi'(G) < ||G||$, then it is full spectrum.

• We have that a graph is full spectrum if $2\chi'(G) < ||G||$.

- We have that a graph is full spectrum if $2\chi'(G) < ||G||$.
- We have that a graph is not full spectrum if $2\chi'(G) > ||G||$.

- We have that a graph is full spectrum if $2\chi'(G) < ||G||$.
- We have that a graph is not full spectrum if $2\chi'(G) > ||G||$.
- What about if $2\chi'(G) = ||G||$?

Definition

A matching is a set of disjoint edges.

• Just like a color!

Definition

The matching number of a graph G, denoted as $\alpha'(G)$, is the size of the largest matching in G.

Lemma

If G has $2\chi'(G) = ||G||$ and $\alpha'(G) \geq 3$ and G is not N₆, then G is full spectrum.

The Net Graph — N_6

The Net Graph — N_6

Final Result

Theorem

A graph G is full spectrum if and only if we have $2\chi'(G) \leq ||G||$, $\alpha'(G) \geq 3$, and G is not N_6 .

Common Graphs which are full spectrum

Question

What kinds of graphs have full spectrum?

- Paths with 5 or more edges.
- Cycles with 6 or more edges.
- Any that satisfies the final result!

Looking Forward

• Hypergraphs!

Conclusion

Thank you everyone for listening! Any questions?