Elastic Net

Emrys

Outline

Introduction
Use
Least Squares
Tradeoff

Regularization
Lasso & Ridge
Elastic Net
Implementation

What is Elastic Net?

- A regularized regression method that simultaneously performs variable selection and regularization
- Applicable to regression and classification tasks

What makes Elastic Net useful?

- Increases interpretability of model by removing noise variables
- Provides greater accuracy for unseen data by preventing overfitting (higher generalizability)
- Appropriate for data problems with p>n (greater number of predictors than observations)

Problem Statement/Example

• Consider a standard regression problem where the response y is modeled by p predictors $x_1, x_2, ..., x_p$ with corresponding coefficient vector $\hat{\beta} = (\widehat{\beta_1}, \widehat{\beta_2}, ..., \widehat{\beta_p})$

$$\hat{y} = \beta_0 + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_p} x_p$$

- e.g., Modeling DVT (a complication related to blood clots) rates post surgery for patients undergoing a knee replacement operation
- Predictors: Underlying health factors and prescribed treatment drugs

Loss Function: Ordinary Least Squares

- No feature selection in the presence of too many variables
- Low prediction accuracy
- Not robust to outliers
- Low bias/High variance

$$L_{OLS} = \sum_{i=1}^{n} (y_i - x_i \hat{\beta})^2$$

Bias Variance Tradeoff

Bias: Difference between the true population parameter and the expected estimator **Variance**: The spread, or uncertainty, in the estimates

$$Bias(\hat{\beta}) = E(\hat{\beta}) - \beta$$
$$Var(\hat{\beta}) = E[\hat{\beta}^2] - \left(E[\hat{\beta}]\right)^2.$$

Regularization

Reducing the variance at the cost of introducing a tolerable level of bias

$$L_{Ridge} = \sum_{i=1}^{n} (y_i - x_i \hat{\beta})^2 + \lambda \sum_{j=1}^{m} \hat{\beta}_j^2$$

- Minimize subject to a bound on L2 norm of coefficients
- Continuous shrinkage/no variable selection

$$L_{Lasso} = \sum_{i=1}^{n} (y_i - x_i \hat{\beta})^2 + \lambda \sum_{j=1}^{m} |\hat{\beta}_j|$$

- Minimize subject to a bound on L1 norm of coefficients
- Sparsity inducing/removes variables

$$L_{elnet} = \frac{\sum_{i=1}^{n} (y_i - x_i \hat{\beta}_i)^2}{2n} + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j|\right)$$

- Combination of Ridge and Lasso
- Involves a mixing parameter alpha

Elastic Net Advantages

Compared to Ridge:

Performs feature selection

Compared to Lasso:

- Feature-group selection
- In the p > n case, the lasso selects at most n variables before it saturates

Downsides of Elastic Net

- Not a lot of downsides, which is good
- Computation cost
 - We have more parameters that must be tuned
- Flexibility of the estimator
 - Disadvantage? (maybe)
 - It can be hard to find the right ratio for the purpose you have
 - i.e. you might not be able to do what you're trying to do

Variables in DVT example: Risk factors and Drugs

sex	Anesthesia	Peptic_Ulcer	dvt_hx
age	AIDS	PVD	pe_hx
race	Malignancy	CKD	pe
ethnicity	Cerebrovascular	Rheumatic	dvt
ht	COPD	htn	dvt_leg
wt	CHF	depression	dvt_leg_proximal
bmi	Dementia	obesity	dvt_leg_distal
financial_class	Diabetes_cc	alcohol	aspirin
cpt	Diabetes_no_cc	drug	coumadin
provider	 Hemiplegia	tobacco	xarelto
	Metastatic	ulcerative_colitis	eliquis
length_of_stay	Mild_Liver	lupus	heparin
disch_disp	Moderate_Liver	factor_v	lovenox
length_of_surgery	MI	sickle cell	pradaxa
tourniquet_flag	IVII	Sickle_cell	prauaxa

Model DVT in Total Knee Arthroplasty

- Using a grid search with library(caret)
- glmnet is the elastic net model
- Alpha: mixing parameter
- Lambda: shrinkage parameter

CV Accuracy Plot

Extract the best model

Best values of the tuning parameters

Coefficients of the variables against L1 norm

Graph Non-Zero Variables

 Only a single variable dvt_hx was included in the final model out of the 56 we started with

References

- Zou, H., & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, 67(2), 301–320. http://www.jstor.org/stable/3647580
- https://www.datacamp.com/community/tutorials/tutorial-ridge-lasso-elastic-net
- https://towardsdatascience.com/bias-variance-and-regularization-in-linear-regression-lasso-ridge-and-elastic-net-8bf81991d0c5
- https://stats.stackexchange.com/questions/184029/what-is-elastic-net-regularization-and-how-does-it-solve-the-drawbacks-of-ridge
- https://corporatefinanceinstitute.com/resources/knowledge/other/elasticnet/
- https://en.wikipedia.org/wiki/Elastic_net_regularization

Questions/Comments