Theoretical Hadron Physics - physics616

\overline{Course}	Theoretical Hadron Physics
Course No.	physics616

		Teachi	Teaching		
Category	\mathbf{Type}	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 3+2	7	WT	

${\bf Requirements:}$

Preparation:

Advanced quantum theory (physics606)

Quantum field theory (physics755)

Group theory (physics751)

Form of Testing and Examination: Requirements for the examination (written): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Introduction to the theory of strong interaction, hadron structure and dynam-

ics

Contents of the Course:

Meson and Baryon Spectra: Group theoretical Classification, Simple Quark Models

Basics of Quantum Chromodynamics: Results in Perturbation Theory

Effective Field Theory Bethe-Salpeter Equation

Recommended Literature:

- F. E. Close, An Introduction to Quarks and Partons (Academic Press 1980)
- F. Donoghue, E. Golowich, B.R. Holstein; Dynamics of the Standard Model (Cambridge University Press 1994)
- C. Itzykson, J.-B. Zuber; Quantum Field Theory (Dover Publications 2005)
- S. Weinberg; The Quantum Theory of Fields (Cambridge University Press 1995)

PDF version of this page.