Chapter 6 Fonctions circulaires

6.1 Fonctions trigonométriques

Exercice 6.1 (*)

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = \cos(x^2 + 4)$$
.

3.
$$f(x) = \tan 3x$$
.

2.
$$f(x) = \sin \frac{1}{x(x-1)}$$
.

6.2 Formulaire de Trigonométrie

Exercice 6.4 (***)

Montrer

$$\forall n \in \mathbb{N}^*, \cos\left(\frac{\pi}{2^{n+1}}\right) = \frac{1}{2} \underbrace{\sqrt{2 + \sqrt{\dots + \sqrt{2}}}}_{n \text{ radicaux}}.$$

Exercice 6.5 (*)

Calculer $\sin \alpha$ et $\cos \alpha$ sachant que $\tan \alpha = \frac{4}{5}$ et que α un angle du troisième quadrant.

Exercice 6.6 (**)

Vérifiez les identités suivantes.

1.
$$\sin a \sin(b-c) + \sin b \sin(c-a) + \sin c \sin(a-b) = 0$$
.

2.
$$\sin(a+b)\sin(a-b) = \sin^2 a - \sin^2 b$$
.

3.
$$(\sin a + \cos a + 1)(\sin a + \cos a - 1) = \sin 2a$$
.

Exercice 6.7 (*)

Soit α un angle du premier quadrant.

Calculer $\sin(2\alpha)$, $\cos(2\alpha)$ et $\tan(2\alpha)$ sachant que $\cos\alpha = \frac{12}{13}$.

Exercice 6.8 (**)

Soit α un angle du troisième quadrant tel que $\sin \alpha = -\frac{4}{5}$ et β un angle du premier quadrant tel que $\cos \beta = \frac{15}{17}$.

54

Calculer de trois manières différentes $tan(2\alpha + \beta)$.

Exercice 6.9 (*)

Simplifiez les fractions suivantes.

1.
$$\frac{\cos a - \cos 3a}{\sin 3a - \sin a}$$
.

2.
$$\frac{\cos 2a - \cos 4a}{\sin 4a - \sin 2a}$$
.

Exercice 6.12 (**)

Simplifier, suivant la valeur de $x \in [-\pi, \pi]$, l'expression $\sqrt{1 + \cos x} + \left| \sin \frac{x}{2} \right|$.

6.3 Équations trigonométriques

Exercice 6.14 (*)

Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1.
$$\sin x = 0$$
,

4.
$$\cos x = 1$$
,
5. $\cos x = -1$,
6. $\cos x = 0$,

7.
$$\tan x = 0$$
,

2.
$$\sin x = 1$$
,

5.
$$\cos x = -1$$
.

3.
$$\sin x = -1$$
,

6.
$$\cos x = 0$$

8.
$$\tan x = 1$$
.

Exercice 6.15 (*)

Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1.
$$\sin x = \frac{1}{2}$$
,

3.
$$\tan x = -1$$

5.
$$\cos x = \frac{\sqrt{3}}{2}$$
,
6. $\cos x = -\frac{1}{\sqrt{2}}$.

2.
$$\sin x = -\frac{1}{\sqrt{2}}$$

3.
$$\tan x = -1$$
,
4. $\tan x = \frac{1}{\sqrt{3}}$,

6.
$$\cos x = -\frac{1}{\sqrt{2}}$$

Exercice 6.16 (**)

Résoudre l'équation

$$\sin 2x = \cos \frac{x}{2} \tag{1}$$

et représenter sur le cercle trigonométrique les images des solutions.

Exercice 6.17 (**)

Résoudre dans ℝ:

$$2\sin^4 x - 5\sin^2 x + 2 = 0. (1)$$

Exercice 6.18 (**)

Résoudre dans ℝ:

$$\sin x + \sqrt{3}\cos x = \sqrt{2}.$$

Exercice 6.19 (***)

Résoudre dans ℝ:

 $\cos 2x < \sin x$.

Exercice 6.20 (***)

Résoudre l'inéquation

$$\frac{1 - 2\sin^2 x}{1 + 2\cos x} \ge 0. \tag{1}$$

d'inconnue $x \in [0, 2\pi]$.

Exercice 6.24 (***)

Résoudre l'équation suivante d'inconnue angulaire α

$$\sin \alpha + \sin 2\alpha + \sin 3\alpha + \sin 4\alpha = 0. \tag{E}$$

Exercice 6.26 (**)

Soit les deux équations

$$\cos x + \sqrt{3}\sin x = m\sqrt{2}$$

et

 $\cos a \cos x + \sin a \sin x = m \cos b$.

- 1. Déterminer a et b pour qu'elles soient équivalentes.
- 2. En déduire pour quelles valeurs de $m \in \mathbb{R}$ la première de ces équations possède des solutions.
- **3.** La résoudre pour m = 1.

Exercice 6.27 (***)

Résoudre le système suivant, d'inconnue $(x, y) \in \mathbb{R}^2$.

$$\begin{cases} \cos 2x + \cos 2y = 1\\ \cos(x+y) = 1 \end{cases} \tag{1}$$

Exercice 6.35 (***)

Résoudre dans \mathbb{R}^2 les systèmes suivants.

1.
$$\begin{cases} \sin x + \sin y = \sin a \\ \cos x + \cos y = 1 + \cos a. \end{cases}$$
 2.
$$\begin{cases} \cos x \cos y = a + b \\ \sin x \sin y = a - b. \end{cases}$$

Exercice 6.39 (**)

Soient $\omega, t \in \mathbb{R}$. Mettre l'expression $y = 2\cos^2\left(\omega t + \frac{\pi}{3}\right) + \sin^2\left(\omega t\right)$ sous la forme $y = A\cos(2\omega t + \varphi) + B$, A, B et φ étant des constantes réelles.

Exercice 6.40 (***)

Rechercher les valeurs de $x \in [0, 2\pi]$ telles que

$$\sin(3x) - \sin(2x) + \sin(x) > 0.$$

Étude des fonctions trigonométriques

6.5 Fonctions réciproques des fonctions circulaires

Exercice 6.41 (**)

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = \arctan(1 - 2x)$$
.

3.
$$f(x) = \arccos \sqrt{x(4-x)}$$
.

2.
$$f(x) = \arcsin \frac{1}{x}$$
.

Exercice 6.42 (*)

Donner une expression simple des réels

$$A = \arcsin\left(\sin\frac{2\pi}{3}\right); \qquad B = \tan\left(\arctan\frac{1}{\sqrt{3}}\right);$$

$$C = \arcsin\left(\sin\frac{3\pi}{4}\right); \qquad D = \arccos\left(\cos\frac{89\pi}{3}\right).$$

Exercice 6.44 (***)

Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{3}$. Exercice 6.45 (***)

Calculer 2 arcsin $\frac{3}{5}$ + arcsin $\frac{7}{25}$. Exercice 6.46 (***)

Démontrer

$$\forall x \in [-1, 1], 2|\arcsin x| = \arccos\left(1 - 2x^2\right).$$

Exercice 6.48 (***)

Le but de cet exercice est de tracer la courbe représentative de la fonction f définie par

$$f(x) = \arcsin(\sin x)$$
.

- **1.** Justifier que f est définie sur \mathbb{R} .
- 2. Montrer que f est 2π -périodique et impaire. Justifier que l'on peut alors restreindre l'étude de f à $[0, \pi]$.
- 3. Soit $x \in [0, \pi/2]$, que vaut f(x)?
- **4.** Soit $x \in [\pi/2, \pi]$, que vaut f(x)?
- **5.** Tracer la courbe représentative de la fonction f.
- **6.** $\stackrel{\text{\tiny{iii}}}{\simeq}$ Résoudre les équations f(x) = 0, $f(x) = \frac{\pi}{3}$ et $f(x) = \pi$.
- 7. $\stackrel{\text{\tiny III}}{ \ \, }$ Pour $k \in \mathbb{Z}$, on pose $I_k = \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right]$. Simplifier l'expression de f(x) lorsque $x \in I_k$.

Exercice 6.49 (***)

Tracer la courbe représentative de la fonction f définie par

$$f(x) = \arccos(\cos x)$$
.

S'inspirer de l'exercice 6.48.

Exercice 6.50 (*)

Tracer la courbe représentative de la fonction f définie par

$$f(x) = \arctan(\tan x)$$
.

S'inspirer de l'exercice 6.48.

Exercice 6.51 (**)

Montrer

$$\forall x \in [-1, 1], \arcsin(x) + \arccos(x) = \frac{\pi}{2}.$$

- 1. En calculant le sinus d'un angle bien choisi.
- 2. En étudiant la fonction définie par le premier membre.

Exercice 6.52 (**)

Montrer

$$\forall x \in \mathbb{R}^{+}, \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

Exercice 6.53 (***) Mines-Ponts PSI 2023

Soient
$$x \in (0, 4)$$
 et $\omega = \arcsin\left(\frac{x}{2} - 1\right) + \frac{\pi}{2}$.

- 1. Montrer que $\cos(\omega) = 1 \frac{x}{2}$.
- **2.** Montrer que $\cos\left(\frac{\omega}{2}\right)$ et $\sin\left(\frac{\omega}{2}\right)$ sont positifs.
- 3. Montrer que

$$\cos\left(\frac{\omega}{2}\right) = \frac{\sqrt{4-x}}{2}$$
 et $\sin\left(\frac{\omega}{2}\right) = \frac{\sqrt{x}}{2}$.

4. Montrer que

$$\arcsin\left(\frac{x}{2} - 1\right) + \frac{\pi}{2} = 2\arctan\left(\sqrt{\frac{x}{4 - x}}\right).$$

Exercice 6.54 (***)

On considère la fonction

$$f: x \mapsto \arcsin\left(\frac{x}{\sqrt{x^2+1}}\right).$$

- 1. (a) Déterminer l'ensemble de définition \mathcal{D} de la fonction f.
 - (b) Montrer que f est dérivable sur \mathcal{D} et calculer sa dérivée.
 - (c) En déduire une expression simple de f.
- 2. Pour $\varphi \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on pose $x = \tan \varphi$, on a donc $\varphi = \arctan x$. Calculer $f(x) = f(\tan \varphi)$ et retrouver le résultat de la question 1.c.
- 3. Construire le graphe de f.

Exercice 6.55 (****)

On se propose d'étudier f, la fonction d'une variable réelle définie par

$$f(x) = \arcsin\left(3x - 4x^3\right).$$

Dans tout cet exercice, on pourra poser $\varphi(x) = 3x - 4x^3$.

- **1.** Justifier que le domaine de définition de f est E = [-1, 1].
- **2.** Dans cette question, on cherche a donner une expression simple de $\arcsin(\sin u)$.
 - (a) Montrer que si $u \in \left[-\frac{3}{2}\pi, -\frac{\pi}{2}\right]$, alors $\arcsin(\sin(u)) = -\pi u$.
 - (b) Calculer $\arcsin(\sin(u))$ pour $u \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 - (c) Calculer $\arcsin(\sin(u))$ pour $u \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- **3.** Montrer que pour $\theta \in \mathbb{R}$, on a $\sin(3\theta) = 3\sin\theta 4\sin^3(\theta)$.
- **4.** Soit $x \in E$. On pose $\theta = \arcsin x$. En dégageant les cas pertinents pour x, exprimer $f(x) = f(\sin \theta)$ en fonction de $\arcsin(x)$.
- **5.** Tracer le graphe de f.
- **6.** Déterminer sur quel ensemble f est dérivable. Calculer sa dérivée et confronter votre résultat à celui de la question **4.**.

Exercice 6.58 (***) Formule de Machin

- 1. Préciser les parties de \mathbb{R} sur lesquelles :
 - (a) $\arctan(\tan(x)) = x$;
 - (b) tan(arctan(x)) = x.
- 2. Calculer successivement,

$$\tan\left(2\arctan\left(\frac{1}{5}\right)\right)$$
, $\tan\left(4\arctan\left(\frac{1}{5}\right)\right)$, et $\tan\left(4\arctan\left(\frac{1}{5}\right)-\frac{\pi}{4}\right)$.

58

On obtiendra des nombres rationnels que l'on simplifiera.

3. En déduire la formule de Machin

$$\frac{\pi}{4} = 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right).$$

Sachant que $\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, cette formule permit à John Machin (1680-1752) de déterminer en 1706 les 100 premières décimales de π .

Exercice 6.61 (****)

ıe

On définit la fonction f par $f(x) = \arctan\left(\tan\frac{x}{2}\right) - \arctan\left(\tan\left(x - \frac{\pi}{2}\right)\right)$.

- 1. Quel est son ensemble de définition ?
- 2. A-t-elle une parité, une périodicité ?
- **3.** Simplifier son expression si $x \in]0, \pi[$.
- **4.** La représenter graphiquement entre -2π et 2π .

Exercice 6.63 (**)

Établir

$$\arctan\left(\frac{1}{2025}\right) + \arctan\left(\frac{2024}{2026}\right) = \frac{\pi}{4}.$$

Exercice 6.66 (****)

Résoudre pour $x \in \mathbb{R}$, l'équation

$$\arctan x - \arctan \frac{x}{3} = \arccos \frac{x}{2}.$$
 (1)

Exercice 6.67 (***)

S'inspirer de l'exercice ?? pour étudier les fonctions données par

1.
$$x \mapsto \arccos(1 - 2x^2)$$
.

2.
$$x \mapsto \arcsin\left(\sqrt{1-x^2}\right)$$
.

3.
$$x \mapsto \arcsin\left(2x\sqrt{1-x^2}\right)$$
.

4.
$$x \mapsto \arccos \frac{1-x^2}{1+x^2}$$
.
5. $x \mapsto \arcsin \frac{2x}{1+x^2}$.

$$5. x \mapsto \arcsin \frac{2x}{1+x^2}.$$

Exercice 6.68 (***)

Établir les formules suivantes

1.
$$2 \arctan \frac{1}{2} = \arctan \frac{4}{3}$$
.

2.
$$2 \arccos \frac{3}{4} = \arccos \frac{1}{8}$$
.

3.
$$\arccos \frac{5}{13} = 2 \arctan \frac{2}{3}$$
.

4.
$$\arcsin \frac{5}{13} + \arcsin \frac{3}{5} = \arcsin \frac{56}{65}$$

Exercice 6.69 (***)

Résoudre les équations suivantes d'inconnue $x \in \mathbb{R}$.

1.
$$\arctan x = 4 \arctan(\frac{1}{3}) - \frac{\pi}{4}$$
.

2.
$$\arcsin x = \arccos \frac{1}{3} + \arccos \frac{1}{4}$$
.

3.
$$\arcsin x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$$
.

4.
$$\arccos \frac{2x}{1+x^2} = \arctan x$$
.
5. $\arccos x = \arcsin 2x$.

5.
$$\arccos x = \arcsin 2x$$

6.
$$\arctan x + \arctan 2x = \frac{\pi}{4}$$
.

Exercice 6.70 (**)

Deviner une expression de

 $\arctan 1 + \arctan 2 + \arctan 3$

à l'aide du dessin suivant puis démontrer cette conjecture.

Exercice 6.72 (**)

Étudier complètement la fonction définie par

$$f(x) = \arctan \frac{x}{x+1}.$$

Déterminer son domaine de définition, étudier sa continuité, rechercher ses asymptotes, calculer sa dérivée première, dresser le tableau de ses variations et esquisser son graphe.

Exercice 6.73 (*****)

Soit $\theta \in]0, \pi[$. On étudie la fonction f de la variable réelle x déterminée par

$$f(x) = \arcsin\left(\frac{2\sin\theta(x - \cos\theta)}{x^2 - 2x\cos\theta + 1}\right).$$

- **1.** Justifier que f est définie et continue sur \mathbb{R} .
- 2. Vérifier que f est dérivable en tout point de $\mathbb R$ excepté en deux points x_1 et x_2 que l'on précisera. Simplifier l'expression de f'(x) pour $x \notin \{x_1, x_2\}$.
- 3. Justifier que la représentation de f présente un centre de symétrie.
- **4.** En admettant que les pentes des demi-tangentes à la courbe représentative ed f en x_1 et x_2 sont déterminées par les limites de f' à droite et à gauche de ces points, donner l'allure de la courbe représentative de f.