8.15 1) Clairement $D_f = \mathbb{R}$.

2) (a)
$$f(\frac{\pi}{6}) = \sin(\frac{\pi}{6}) + \sqrt{3}\cos(\frac{\pi}{6}) = \frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{1}{2} + \frac{3}{2} = 2$$

 $f(\frac{-\pi}{6}) = \sin(-\frac{\pi}{6}) + \sqrt{3}\cos(-\frac{\pi}{6}) = -\frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} = -\frac{1}{2} + \frac{3}{2} = 1$
Comme $f(-\frac{\pi}{6}) \neq f(\frac{\pi}{6})$, la fonction f n'est pas paire.
Vu que $f(-\frac{\pi}{6}) \neq -f(\frac{\pi}{6})$, la fonction f n'est pas impaire.

- (b) $f(x+2\pi) = \sin(x+2\pi) + \sqrt{3}\cos(x+2\pi) = \sin(x) + \sqrt{3}\cos(x) = f(x)$ Par conséquent, la fonction f admet pour période 2π .
- 3) Posons $a = \cos(x)$ et $b = \sin(x)$. Vu la relation fondamentale $\cos^2(x) + \sin^2(x) = 1$, résoudre f(x) = 0revient à résoudre le système $\begin{cases} b + \sqrt{3} a = 0 \\ a^2 + b^2 = 1 \end{cases}$.

La première équation donne $b=-\sqrt{3}\,a$ que l'on remplace dans la seconde : $a^2+(-\sqrt{3}\,a)^2=a^2+3\,a^2=4\,a^2=1$.

(a)
$$a_1 = \frac{1}{2}$$
 et $b_1 = -\frac{\sqrt{3}}{2}$ donnent $x = \frac{5\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$

(b)
$$a_2 = -\frac{1}{2}$$
 et $b_2 = \frac{\sqrt{3}}{2}$ impliquent $x = \frac{2\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$

$$\begin{bmatrix} 0 & + \frac{2\pi}{3} & - \frac{5\pi}{3} & + 2\pi \\ + & \phi & - & \phi & + \end{bmatrix} f$$

4) Comme $D_f = \mathbb{R}$, il n'y a pas d'asymptote verticale.

Vu la périodicité de la fonction, il n'y a ni asymptote horizontale ni asymptote oblique.

5)
$$f'(x) = (\sin(x) + \sqrt{3}\cos(x))' = \cos(x) - \sqrt{3}\sin(x)$$

Pour résoudre f'(x) = 0, on pose $a = \cos(x)$ et $b = \sin(x)$.

$$\begin{cases} a - \sqrt{3} b = 0 \\ a^2 + b^2 = 1 \end{cases}$$

La première équation délivre $a=\sqrt{3}\,b$ que l'on remplace dans la seconde : $(\sqrt{3}\,b)^2+b^2=3\,b^2+b^2=4\,b^2=1$.

(a)
$$b_1 = \frac{1}{2}$$
 et $a_1 = \frac{\sqrt{3}}{2}$ entraînent $x = \frac{\pi}{6} + 2k\pi$ où $k \in \mathbb{Z}$

(b)
$$b_2 = -\frac{1}{2}$$
 et $a_2 = -\frac{\sqrt{3}}{2}$ impliquent $x = \frac{7\pi}{6} + 2k\pi$ où $k \in \mathbb{Z}$

$$\begin{array}{c|cccc}
0 & \frac{\pi}{6} & \frac{7\pi}{6} & 2\pi \\
f' & + 0 & -0 & + \\
f & \nearrow \text{max} & \nearrow \text{min}
\end{array}$$

$$f(\frac{\pi}{6}) = \sin(\frac{\pi}{6}) + \sqrt{3}\cos(\frac{\pi}{6}) = \frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{1}{2} + \frac{3}{2} = 2$$

Le point $(\frac{\pi}{6}; 2)$ est un maximum.

$$f(\frac{7\pi}{6}) = \sin(\frac{7\pi}{6}) + \sqrt{3} \cos(\frac{7\pi}{6}) = -\frac{1}{2} + \sqrt{3} \cdot (-\frac{\sqrt{3}}{2}) = -\frac{1}{2} - \frac{3}{2} = -2$$
 Le point $(\frac{7\pi}{6}; -2)$ est un minimum.

6)
$$f''(x) = (\cos(x) - \sqrt{3}\sin(x))' = -\sin(x) - \sqrt{3}\cos(x)$$

= $-(\sin(x) + \sqrt{3}\cos(x)) = -f(x)$

$$\begin{array}{c|cccc}
0 & \frac{2\pi}{3} & \frac{5\pi}{3} & 2\pi \\
f'' & - 0 + 0 - \\
f & & & & \\
f & & & & \\
\end{array}$$

Les zéros $(\frac{2\pi}{3};0)$ et $(\frac{5\pi}{3};0)$ sont aussi des points d'inflexion.

8)
$$f(\frac{\pi}{6} + x) = \sin(\frac{\pi}{6} + x) + \sqrt{3} \cos(\frac{\pi}{6} + x)$$
$$= \sin(\frac{\pi}{6}) \cos(x) + \cos(\frac{\pi}{6}) \sin(x) + \sqrt{3} \left(\cos(\frac{\pi}{6}) \cos(x) - \sin(\frac{\pi}{6}) \sin(x)\right)$$
$$= \frac{1}{2} \cos(x) + \frac{\sqrt{3}}{2} \sin(x) + \sqrt{3} \left(\frac{\sqrt{3}}{2} \cos(x) - \frac{1}{2} \sin(x)\right)$$
$$= \frac{1}{2} \cos(x) + \frac{\sqrt{3}}{2} \sin(x) + \frac{3}{2} \cos(x) - \frac{\sqrt{3}}{2} \sin(x)$$
$$= 2 \cos(x)$$

$$f(\frac{\pi}{6} - x) = \sin(\frac{\pi}{6} - x) + \sqrt{3} \cos(\frac{\pi}{6} - x)$$

$$= \sin(\frac{\pi}{6}) \cos(x) - \cos(\frac{\pi}{6}) \sin(x) + \sqrt{3} \left(\cos(\frac{\pi}{6}) \cos(x) + \sin(\frac{\pi}{6}) \sin(x)\right)$$

$$= \frac{1}{2} \cos(x) - \frac{\sqrt{3}}{2} \sin(x) + \sqrt{3} \left(\frac{\sqrt{3}}{2} \cos(x) + \frac{1}{2} \sin(x)\right)$$

$$= \frac{1}{2} \cos(x) - \frac{\sqrt{3}}{2} \sin(x) + \frac{3}{2} \cos(x) + \frac{\sqrt{3}}{2} \sin(x)$$

$$= 2 \cos(x)$$

Puisque $f(\frac{\pi}{6}+x)=f(\frac{\pi}{6}-x)$, le graphe de f admet $x=\frac{\pi}{6}+2\,k\,\pi\quad (k\in\mathbb{Z})$ pour axes de symétrie.

$$f(\frac{7\pi}{6} + x) = \sin(\frac{7\pi}{6} + x) + \sqrt{3}\cos(\frac{7\pi}{6} + x)$$

$$= \sin(\frac{7\pi}{6})\cos(x) + \cos(\frac{7\pi}{6})\sin(x) + \sqrt{3}\left(\cos(\frac{7\pi}{6})\cos(x) - \sin(\frac{7\pi}{6})\sin(x)\right)$$

$$= -\frac{1}{2}\cos(x) - \frac{\sqrt{3}}{2}\sin(x) + \sqrt{3}\left(-\frac{\sqrt{3}}{2}\cos(x) - (-\frac{1}{2})\sin(x)\right)$$

$$= -\frac{1}{2}\cos(x) - \frac{\sqrt{3}}{2}\sin(x) - \frac{3}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

$$= -2\cos(x)$$

$$f(\frac{7\pi}{6} - x) = \sin(\frac{7\pi}{6} - x) + \sqrt{3}\cos(\frac{7\pi}{6} - x)$$

$$= \sin(\frac{7\pi}{6})\cos(x) - \cos(\frac{7\pi}{6})\sin(x) + \sqrt{3}\left(\cos(\frac{7\pi}{6})\cos(x) + \sin(\frac{7\pi}{6})\sin(x)\right)$$

$$= -\frac{1}{2}\cos(x) - \left(-\frac{\sqrt{3}}{2}\right)\sin(x) + \sqrt{3}\left(-\frac{\sqrt{3}}{2}\cos(x) + \left(-\frac{1}{2}\right)\sin(x)\right)$$

$$= -\frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x) - \frac{3}{2}\cos(x) - \frac{\sqrt{3}}{2}\sin(x)$$

$$= -2\cos(x)$$

Attendu que $f(\frac{7\pi}{6}+x)=f(\frac{7\pi}{6}-x)$, le graphe de f admet $x=\frac{7\pi}{6}+2\,k\,\pi$ $(k\in\mathbb{Z})$ pour axes de symétrie.