Complexity of Linear Operators

Vladimir V. Podolskii¹

joint work with Alexander Kulikov, Ivan Mikhailin, Andrey Mokhov

Steklov Mathematical Institute, Moscow Higher School of Economics, Moscow

October, 2019

Setting

Consider a Boolean matrix $A \in \{0,1\}^{n \times n}$ Consider variables $x = (x_1, \dots, x_n)$ over $\{0,1\}$

We want to compute a Boolean linear operator Ax

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad Ax = \begin{pmatrix} x_1 \lor x_3 \\ x_1 \lor x_2 \\ x_2 \lor x_3 \lor x_4 \\ x_1 \lor x_2 \lor x_3 \lor x_4 \end{pmatrix}$$

The Model

- ▶ The computation is a Boolean circuit consisting of OR gates
- We start with variables x_1, \ldots, x_n
- ► In one step we can compute OR of two previously computed expressions
- Want to compute all the outputs and minimize the number of steps

Example

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$x_1 \lor x_3$$

$$x_1 \lor x_2$$

$$x_2 \lor x_3 \lor x_4$$

$$x_1 \lor x_2 \lor x_3 \lor x_4$$

Computation:

$$x_1 \lor x_3$$
 — output
 $x_1 \lor x_2$ — output
 $x_3 \lor x_4$
 $x_2 \lor (x_3 \lor x_4)$ — output
 $x_1 \lor (x_2 \lor x_3 \lor x_4)$ — output

Basic facts

- One of the simplest Boolean circuit complexity models, studied since 50's
- ▶ Trivial upper bound: $O(n^2)$
- ► Counting lower bound: $\Omega(n^2/\log n)$
- Non-trivial upper bound: $O(n^2/\log n)$ (Lupanov '56)
- ► The best explicit lower bound: $\Omega(n^{2-o(1)})$ (Nechiporuk '70)

General setting

Consider a Boolean matrix $A \in \{0,1\}^{n \times n}$ Consider variables $x = (x_1, \dots, x_n)$ over some semigroup (S, \circ) .

We want to compute a linear operator Ax.

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad Ax = \begin{pmatrix} x_1 \circ x_3 \\ x_1 \circ x_2 \\ x_2 \circ x_3 \circ x_4 \\ x_1 \circ x_2 \circ x_3 \circ x_4 \end{pmatrix}$$

Some semigroups

- ▶ Boolean semigroup: $(\{0,1\}, \lor)$
- ▶ Integers with addition: $(\mathbb{Z}, +)$
- ▶ $\{0,1\}$ with addition: $(\{0,1\},\oplus)$
- ▶ Tropical semigroup: (\mathbb{Z}, min)

The Problem

Problem: Suppose $A \in \{0,1\}^{n \times n}$ is very dense, that is A has O(n) zeros. How hard is it to compute Ax?

The Problem

Problem: Suppose $A \in \{0,1\}^{n \times n}$ is very dense, that is A has O(n) zeros. How hard is it to compute Ax?

Simple observations:

If instead we consider A containing O(n) ones, the complexity is trivially O(n)

The Problem

Problem: Suppose $A \in \{0,1\}^{n \times n}$ is very dense, that is A has O(n) zeros. How hard is it to compute Ax?

Simple observations:

- If instead we consider A containing O(n) ones, the complexity is trivially O(n)
- ▶ If (S, \circ) has an inverse operation (is a group), the complexity is trivially O(n)

► Want to understand the structure of semigroups that are not groups

- ► Want to understand the structure of semigroups that are not groups
- ► Important examples: Boolean semigroup and tropical semigroup

- Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?

- Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?
- Non-trivial upper bound over integers: $O(n^{2.373})$ (V. Williams '12)

- Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?
- Non-trivial upper bound over integers: $O(n^{2.373})$ (V. Williams '12)
- ▶ Best known upper bound over tropical semiring is $O(n^3/e^{\sqrt{\log n}})$ (R. Williams '14)

- Want to understand the structure of semigroups that are not groups
- Important examples: Boolean semigroup and tropical semigroup
- ► Famous problem of similar flavor: matrix multiplication Given two matrices A, B, how many operations are needed to compute A · B?
- Non-trivial upper bound over integers: $O(n^{2.373})$ (V. Williams '12)
- ▶ Best known upper bound over tropical semiring is $O(n^3/e^{\sqrt{\log n}})$ (R. Williams '14)
- Other motivation: connection to range minimum query problem (will see later)

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

More generally,

Theorem

If (S, \circ) is a commutative semigroup, and A has z zeros, then Ax can be computed in O(z) operations

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

More generally,

Theorem

If (S, \circ) is a commutative semigroup, and A has z zeros, then Ax can be computed in O(z) operations

Theorem

If (S, \circ) is strongly non-commutative semigroup, then the maximal complexity of Ax is $\Theta(n\alpha(n))$ operations for dense A

Here $\alpha(n)$ is the inverse Ackermann function

Theorem

If (S, \circ) is a commutative semigroup, then Ax can be computed in O(n) operations for dense A

More generally,

Theorem

If (S, \circ) is a commutative semigroup, and A has z zeros, then Ax can be computed in O(z) operations

Theorem

If (S, \circ) is strongly non-commutative semigroup, then the maximal complexity of Ax is $\Theta(n\alpha(n))$ operations for dense A

Here $\alpha(n)$ is the inverse Ackermann function

 $\alpha(n)$ growth is extremely slow

For all practical needs we can assume $\alpha(n) \leqslant 4$

Plan

- ► Upper bound + connection to RMQ
- ► A bit on lower bounds (+ connection to RMQ)

Upper bound

Theorem (restated)

If (S, \circ) is a commutative semiring, then Ax can be computed is $\Theta(n)$ for dense A

- Let's concentrate on Boolean case: $(\{0,1\}, \vee)$
- ► The general case is the same
- So, $A \in \{0,1\}^{n \times n}$ has O(n) zeros, we want to compute Ax using O(n) operations

Consider

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

How would we compute Ax?

Consider

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

How would we compute Ax?

Compute:

```
all prefixes x_1

x_1 \lor x_2

x_1 \lor x_2 \lor x_3

x_1 \lor x_2 \lor x_3 \lor x_4

x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5
```

Consider

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

How would we compute Ax?

Compute:

$x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6$
$x_3 \lor x_4 \lor x_5 \lor x_6$
$x_4 \lor x_5 \lor x_6$
$x_5 \lor x_6$
<i>x</i> ₆
all suffixes

Consider

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

How would we compute Ax?

Compute:

	match	
all prefixes		$x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6$
<i>x</i> ₁	\leftrightarrow	$x_3 \lor x_4 \lor x_5 \lor x_6$
$x_1 \vee x_2$	\leftrightarrow	$x_4 \lor x_5 \lor x_6$
$x_1 \lor x_2 \lor x_3$	\leftrightarrow	$x_5 \vee x_6$
$x_1 \lor x_2 \lor x_3 \lor x_4$	\leftrightarrow	<i>x</i> ₆
$x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5$		all suffixes

Suppose $A \in \{0,1\}^{n \times n}$ has 2 zeros in each row. How would we compute Ax?

Suppose $A \in \{0,1\}^{n \times n}$ has 2 zeros in each row. How would we compute Ax?

Permute columns of A randomly and cut in two halves.

Suppose $A \in \{0,1\}^{n \times n}$ has 2 zeros in each row. How would we compute Ax?

Permute columns of A randomly and cut in two halves.

Γ	0			0	٦
0					0
		0	0		
			0	0	
				0	0
0	0				

With good probability in at least half of the rows the zeros will be splitted.

Compute them by the previous algorithm, compute the rest recursively.

Suppose $A \in \{0,1\}^{n \times n}$ has 2 zeros in each row. How would we compute Ax?

Permute columns of A randomly and cut in two halves.

Γ	0			0	1
0					0
		0	0		
			0	0	
				0	0
[0	0				J

We get the recurrence

$$T(n) = Cn + T(n/2),$$

where T(n) is the complexity for matrices with n rows

Towards the General Case

How would we solve the general case?

First idea: Connection to Range Minimum Query problem (RMQ)

This is a standard setting in theory of algorithms

We are given an array of numbers x_1, \ldots, x_n . We want a data structure to answer queries of the form

$$\min\{x_i \mid I \leqslant i \leqslant r\} = ?$$

for integer l and r.

Reduction to RMQ

Consider

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Split each row into intervals

There are O(n) intervals in total, so we reduced our problem to the offline version of RMQ (intervals are given in advance)

Complexity of RMQ

Unfortunately, best constructions for RMQ give only $O(n\alpha(n))$ complexity in our model, where $\alpha(n)$ is an inverse Ackermann function

Complexity of RMQ

Unfortunately, best constructions for RMQ give only $O(n\alpha(n))$ complexity in our model, where $\alpha(n)$ is an inverse Ackermann function

Moreover, the following is true

Theorem (Chazelle, Rozenberg '91)

There are range matrices $A \in \{0,1\}^{n \times n}$ with the complexity $\Omega(n\alpha(n))$

So, the reduction to RMQ is not enough

Idea

There is a simple construction with complexity $O(n \log n)$

ldea

There is a simple construction with complexity $O(n \log n)$

Compute all prefixes and suffixes

ldea

There is a simple construction with complexity $O(n \log n)$

- Compute all prefixes and suffixes
- Split the matrix in two halves vertically

Idea

There is a simple construction with complexity $O(n \log n)$

- Compute all prefixes and suffixes
- Split the matrix in two halves vertically
- Repeat in both halves recursively

ldea

There is a simple construction with complexity $O(n \log n)$

- Compute all prefixes and suffixes
- Split the matrix in two halves vertically
- Repeat in both halves recursively
- Now we can compute any range in just one operation, just pick the first vertical line that crosses it

Next Idea

Lemma

Suppose $A \in \{0,1\}^{n \times n}$ has O(n) zeros and each range is of length at least $\log n$. Then we can compute Ax in O(n) operations

- Split into blocks of size log n
- Each range intersects block boundary!
- Compute prefixes and suffixes in each block in O(n) operations
- Apply the previous idea on top of blocks
- Now for each range we can compute its 'complete' part in one operation and add 'incomplete' prefix and suffix in two more operations

Yet Another Next Idea

Lemma

Suppose $A \in \{0,1\}^{n \times n}$ has O(n) zeros and at most log n zeros in each row. Then we can compute it in O(n) operations

- Permute blocks randomly
- With high probability most zeros will be far from each other
- Thus most ranges are long
- Compute them by the previous idea
- Compute all short ranges by brute force (there are few of them)

Final Idea

Theorem

Suppose $A \in \{0,1\}^{n \times n}$ has complexity s. Then A^T also has complexity s

Final Idea

Theorem

Suppose $A \in \{0,1\}^{n \times n}$ has complexity s. Then A^T also has complexity s

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^T = egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{bmatrix}$$

So, What Do We Have?

- ightharpoonup Can compute Ax in $O(n \log n)$ operations
- If each row has at most $\log n$ zeros, can compute Ax in O(n) operations
- ightharpoonup Ax and A^Ty have the same complexity

Suppose we have A with O(n) zeros

► Split rows in two parts: with more than log *n* zeros and with at most log *n* zeros

- Split rows in two parts: with more than log n zeros and with at most log n zeros
- We know how to compute the second part

- Split rows in two parts: with more than log n zeros and with at most log n zeros
- We know how to compute the second part
- ▶ The first part has at most $n/\log n$ rows

- Split rows in two parts: with more than log n zeros and with at most log n zeros
- We know how to compute the second part
- ▶ The first part has at most $n/\log n$ rows
- Transpose the first part

- Split rows in two parts: with more than log n zeros and with at most log n zeros
- We know how to compute the second part
- ▶ The first part has at most $n/\log n$ rows
- Transpose the first part
- ▶ The transposition is computable in O(n) operations

Non-commutative Case

Recall, that we heavily used commutativity even for the case when A has two zeros in each row: permutation of columns

Non-commutative Case

Recall, that we heavily used commutativity even for the case when A has two zeros in each row: permutation of columns

We next show that this is unavoidable:

Theorem

If (S, \circ) is strongly non-commutative semiring, then there is A with at most 2 zeros in each row such that the complexity of Ax is $\Omega(n\alpha(n))$

▶ Recall Boolean case. There are equivalences on variables:

$$x_1 \lor x_1 = x_1, \quad x_1 \lor x_2 = x_2 \lor x_1$$

▶ Recall Boolean case. There are equivalences on variables:

$$x_1 \lor x_1 = x_1, \quad x_1 \lor x_2 = x_2 \lor x_1$$

▶ The first is idempotency, the second is commutativity

▶ Recall Boolean case. There are equivalences on variables:

$$x_1 \lor x_1 = x_1, \quad x_1 \lor x_2 = x_2 \lor x_1$$

- The first is idempotency, the second is commutativity
- ► The first example for us is free semigroup: no equivalences on variables

▶ Recall Boolean case. There are equivalences on variables:

$$x_1 \lor x_1 = x_1, \quad x_1 \lor x_2 = x_2 \lor x_1$$

- The first is idempotency, the second is commutativity
- ► The first example for us is free semigroup: no equivalences on variables
- ► The second example is free idempotent semigroup; the only equivalences are

$$x \circ x = x$$

Idempotent Case

We prove the following problem equivalences

Non-idempotent Case

- Suppose we have a small circuit
- Just factorize the whole computation by idempotency relations
- Now we have a small circuit for idempotent case
- This is a contradiction
- Basically, non-idempotent case is harder

Open problem

be (over Boolean semigroup)?

```
Problem (Jukna '19)

Consider A \in \{0,1\}^{n \times n}, denote by \overline{A} the bit-wise negation of A. How large can \frac{Complexity(\overline{A}x)}{Complexity(Ax)}
```

28 / 28

Open problem

Problem (Jukna '19)

Consider $A \in \{0,1\}^{n \times n}$, denote by \overline{A} the bit-wise negation of A. How large can

$$\frac{Complexity(\overline{A}x)}{Complexity(Ax)}$$

be (over Boolean semigroup)?

Our result rules out the possibility to achieve gap with sparse matrix

Open problem

Problem (Jukna '19)

Consider $A \in \{0,1\}^{n \times n}$, denote by \overline{A} the bit-wise negation of A. How large can

$$\frac{Complexity(\overline{A}x)}{Complexity(Ax)}$$

be (over Boolean semigroup)?

Our result rules out the possibility to achieve gap with sparse matrix

Thank you for attention!