Aula 10

Sucessões em C

$$\{z_n\}: \mathbb{N} \to \mathbb{C}$$
 $z_n = x_n + iy_n$

Definição: Diz-se que $L \in \mathbb{C}$ é o **limite da sucessão** $\{z_n\}$, ou que $\{z_n\}$ **converge para** $L \in \mathbb{C}$, e representa-se $\lim z_n = L$ ou $z_n \to L$, se qualquer que seja a bola centrada em L, $B_{\delta}(L)$ existe uma ordem $N \in \mathbb{N}$ tal que, para todo n > N os correspondentes termos da sucessão estão todos nessa bola, $z_n \in B_{\delta}(L)$. Ou seja,

$$\forall_{\delta>0} \ \exists_{N\in\mathbb{N}} : n>N \Rightarrow |z_n-L|<\delta,$$

ou ainda, no sentido de ${\mathbb R}$

$$d(z_n, L) = |z_n - L| \to 0.$$

Chama-se **sucessão convergente** a uma sucessão que tem limite complexo e sucessão **sucessão divergente** no caso contrário.

Proposição: Seja $\{z_n\}_{n\in\mathbb{N}}$ uma sucessão de números complexos, $z_n=x_n+i\,y_n$ e $L=a+i\,b\in\mathbb{C}$. Então

 $z_n \to L \text{ em } \mathbb{C} \Leftrightarrow x_n \to a \text{ e } y_n \to b \text{ em } \mathbb{R}.$

Proposição: Toda a sucessão convergente é limitada e o limite é único.

Proposição: Sejam $\{z_n\}$ e $\{w_n\}$ sucessões complexas convergentes tais que $z_n \to z$ e $w_n \to w$. Então

- $z_n \pm w_n \rightarrow z \pm w$.
- \bullet $z_n w_n \to zw$.
- $\frac{z_n}{w_n} \to \frac{z}{w}$ $(w_n, w \neq 0)$.

Sucessões e Topologia

Proposição: Dado um conjunto $\Omega \subset \mathbb{C}$ um ponto z é aderente a Ω , ou seja, $z \in \overline{\Omega}$ se e só se existe uma sucessão $\{z_n\}$ de pontos em Ω , $z_n \in \Omega$, tal que $z_n \to z$.

Proposição: Um conjunto $F \subset \mathbb{C}$ é fechado se e só se qualquer sucessão convergente $\{z_n\}$ de pontos em F, $z_n \in F$, satisfaz $\lim z_n \in F$.

Limites infinitos

$$\lim z_n = \infty???$$

<u>Definição</u>: Diz-se que uma sucessão complexa $\{z_n\}$ tende para infinito, $\lim z_n = \infty$, se satisfaz

$$\forall_{R>0} \ \exists_{N\in\mathbb{N}} : n>N \Rightarrow |z_n|>R.$$

Nesse sentido

$$z + \infty = \infty$$

$$z \cdot \infty = \infty \qquad (z \neq 0)$$

$$\infty + \infty = \infty$$

$$\infty \cdot \infty = \infty$$

$$\frac{z}{\infty} = 0$$

$$\frac{z}{0} = \infty \qquad (z \neq 0)$$

mas

$$0 \cdot \infty$$

$$\infty - \infty$$

$$\frac{\infty}{\infty} \quad \frac{0}{0}$$

são indeterminações.

Completude

<u>Definição</u>: Diz-se que uma sucessão $\{z_n\}$ num espaço métrico é uma **sucessão de Cauchy** se satisfaz

$$\forall_{\delta>0} \exists_{N\in\mathbb{N}} : n.m > N \Rightarrow d(z_n, z_m) < \delta.$$

Diz-se que um espaço métrico é **completo** se todas as sucessões de Cauchy são convergentes.

Teorema (Bolzano-Weiertsrass): Toda a sucessão complexa $\{z_n\}_{n\in\mathbb{N}}, z_n\in\mathbb{C}$, limitada, isto é, tal que existe um M>0 para o qual $|z_n|\leq M$, tem pelo menos uma subsucessão convergente.

<u>Teorema</u>: O conjunto $\mathbb C$ dos números complexos com a distância dada por d(z,w)=|z-w| é um espaço métrico completo, ou seja, uma sucessão é convergente se e só se é de Cauchy.