EXAMEN FINAL

Apellidos y Nombre				
D.N.I	Grupo	FIRMA _		
]

- **1.** Sea $A = \{n + m\sqrt{2} : n, m \in \mathbb{Z}\}.$
 - (a) Demostrar que A con la suma y el producto usuales de \mathbb{R} es un **anillo**.
 - (b) Se define en A la siguiente relación binaria \mathcal{R} :

$$\forall a, b \in A, \ a\mathcal{R}b \Leftrightarrow \exists r \in \mathbb{Q} \setminus \{0\} \ni a = br.$$

Demostrar que \mathcal{R} es relación de equivalencia.

- (c) Determinar para cada $a \in A$, la clase de equivalencia de a y calcular su cardinal.
- (d) Encontrar una aplicación inyectiva $f: \mathbb{Q} \to A/\mathcal{R}$ y utilizarla para calcular el cardinal del conjunto cociente A/\mathcal{R} .
- 2. Se considera el polinomio $P(X) = X^5 + 32$. Se pide
 - (a) Encontrar todas las raíces complejas de P, calculando el módulo y el argumento de cada una de ellas.
 - (b) Descomponer P en factores irreducibles en los anillos $\mathbb{C}[X]$ y $\mathbb{R}[X]$.
- **3.** Sean $f,g:\mathbb{R}\to\mathbb{R}$ dos aplicaciones biyectivas. Definimos $h:\mathbb{R}^2\to\mathbb{R}$ mediante h(x,y)=f(x)g(y). Decidir para cada una de las siguientes afirmaciones si es verdadera o falsa, probándola en el primer supuesto o dando un contraejemplo en el segundo.
 - (a) h es **inyectiva**.
 - (b) h es sobreyectiva.
- **4.** (a) Demostrar que $3n^7 + 11n$ es divisible por 7 para todo $n \in \mathbb{N}$.
 - (b) Demostrar que $7n^3 + 11n$ es divisible por 3 para todo $n \in \mathbb{N}$.
 - (c) Deducir de los apartados anteriores que $\frac{1}{7}n^7 + \frac{1}{3}n^3 + \frac{11}{21}n \in \mathbb{N}, \forall n \in \mathbb{N}.$