

- Type of usability test: Guerrilla
- Objective
 - Identify common problems on WhatApp web
- Testing parameters
 - What is tested: Just two common tasks
 - Participants: 3 users, 2 never used it previously
 - Test procedure: Observation + interview

- Development (perform testing)
 - Give the instructions to the users
 - Users are observed with performing actions
 - Asked about the experience on certain subtasks

Use case. WhatsApp web app Recommendation: A clear separation between Chats and Contacts is needed Can be done by giving a filter option in Contact list, or a single list can be sorted based on Recent Chats or Contact names.

VIRVIG WWW

- Recommendation: The area of Message info pane and Message pane needs to differentiate clearly
 - Since this is desktop version and Message area is still visible when Info pane is opened, the link between message and its info could be made more prominent

- Analyse problems. Attaching photos:
 - Close icon with Preview title is confusing.
 - The user clicked it just to close the preview of selected photos, but it discards all the selected photos.
 - Adding more files option is not clear.
 - The Attach icon still displays on top, but it is not functional. The user clicked on that icon first.
 - It is difficult to navigate large number of selected files.

Recommendation:

- Rename preview area to Attachments to avoid any confusion for the user.
- Scrolling in thumbnails area
- User should be able to add more files by clicking an Add icon with caption

More Observations

- Using a scrollbar requires high accuracy to hold the bar and scroll it
 - Cursor is changed to resize when user tries to scroll Message pane
 - No keyboard scroll allowed in Contacts & Contact/Group Info
- Little visibility of actions' visual feedback (bottom left)
 - Were skipped multiple times
- Status cannot be updated on desktop version
 - Users cannot see others' status

Outline

- Concepts
- Usability testing
- Formal usability tests
- Simplified usability tests
- Use cases
- Exercises

Professors IDI

IDI – Usability Testing

- Goal:
 - Evaluate performance of shading technique in VR environments
- Context:
 - Perception of complex, volume datasets is difficult in VR
 - Shading techniques may enhance shape and depth perception

- Purpose of the test:
 - Analyze whether shading techniques influence the perception of shapes and depth in VR
- Methodology:
 - Provide images under different shading conditions
 - Ask the users to classify two points of the scene placed at different depths
 - Analyze the results obtained

- Test preparation:
 - Select shading models (4)
 - Select models (likely unknown to users)
 - Determine number of participants, iterations
 - Low level perception problem -> should be > 10
 - Latin squares balance results -> 16 per experiment
 - Two tasks

- Images selection:
 - Select models likely unknown
 - Avoid previous knowledge
 - Random shading sorting
 - Avoid learning (shading)
 - Random model sorting
 - Avoid learning (model)
 - Latin squares
 - Avoid fatigue and learning (within users)

Use case. Depth perception in VR

 Task: Select the closer point. 2-alternative forced choice (2AFC)

Measures (what we measure in the test):

- Time to answer
- Correctness

- Variables to include in the analysis (to discard confounding or correlating variables)
 - Shading technique
 - Depth values
 - May analyze if absolute difference correlates with correctness
 - Previous VR background
 - Information of images for left and right eye
 - Luminance of the points' environment
 - Correlation between depth and shading maps

- Experiment setup:
 - 3DTV
 - Users placed at fixed distance
 - Chair to reduce movements
 - Avoid parallax as confounding variable
 - Dark room
 - External light (for virtual light source consistency analysis)

Use case. Depth perception in VR

Experiment setup:

- Experiment setup:
 - Modified keyboard to facilitate entry
 - Will compute timings

- Experiment setup:
 - Initial questionnaire (background, VR exposition...)
 - Initial training
 - Tasks
 - May rest between tasks
 - Post questionnaires

- Statistical analysis:
 - ANOVA test: One-way analysis of variance to reject the null hypothesis that all correctness means are equal between shading techniques.
 - For a significance level of α = 0.05, a Bonferroni post-hoc test with the same acceptance level to reveal differences between the individual shading techniques
 - **Result:** reject the null hypothesis when p < 0.05

- Statistical analysis.
 - Chi-square test of association for the categorical variables relative depth and users' answers from tasks 1 and 2

Variables	χ^2	p value	Correct answers for each depth category
T1: relative depth vs. users' answers	5.991	<0.0001	<0.05: 66 % 0.05-0.1: 88 % >0.1: 86 %
T2; relative depth vs. users' answers	5.991	<0.0001	<0.05: 63 % 0.05 0.1: 86 % >0.1: 87 %

Use case. Depth perception in VR

Statistical analysis:

- The ANOVA analysis (α = 0.05, p < 0.0001) of the NMI values shows that there is a significant difference between the images shaded with DOS with respect to the images shaded using HA or PH. A further Bonferroni's test revealed that DOS provides a significantly higher NMI (average NMI = 3.327) than HA (average NMI = 1.84) and PH (average NMI = 1.88).
 - Instead, there is no significant difference between the NMI means of HA and PH.

20

Guidelines and recommendations

- Using advanced volumetric shading improves depth perception
 - Among the tested shading models the simulation of soft shadows by using directional occlusion shading for desktop-based VR seem to yield better results

Use case. Depth perception in VR

- Guidelines and recommendations
 - Real illumination does not affect depth perception when using advanced volume illumination techniques
 - External lighting may be carefully controlled to provide a pleasant environment
 - Specular highlights on the screen, reflections, or overilluminated areas will certainly affect the correct perception of the data

22

- Guidelines and recommendations
 - When trying to judge depth in volume models, the X/Y relative position of the markers or the luminance of the points to classify seems to have no importance

Usability. Test Planning: Measures

- For problem discovery:
 - Focus on prioritizing problems
 - Include frequency of occurrence
 - Likelihood of occurrence in normal usage
 - Magnitude of impact on the participants
 - Pre-planned number of iterations
 - Number of participants small, but multiple iterations,...

94

Usability. Test Planning: Measures

- For measurement tests:
 - Categories
 - Goal achievement indicators (success rate and accuracy)
 - Work rate indicators (speed and efficiency)
 - Operability indicators (error rate and function usage)
 - Knowledge acquisition indicators (learnability and learning rate)

Usability. Test Planning: Measures

- For measurement tests:
 - Fundamental global Measures
 - Successful task completion rates
 - Mean task completion times
 - Mean participant satisfaction ratings (on a task-by-task basis)
 - There are standardized questionnaires for this
 - Other measurements could be:
 - Number of tasks completed within a specified time limit, number of wrong menu choices, number of user errors, number of repeated errors (same user)

Usability. Test Planning

- After measurements choice, <u>usability</u> <u>objective</u> can be determined
 - It's usually better to set goals that make reference to an average (mean) than to a percentile
 - Sample means drawn from a continuous distribution are less variable than sample medians
 - Unless there is missing data due to participants failing to complete tasks
 - Percentile goals require large sample sizes
 - You can't measure accurately at the 95 percentile unless there are at least twenty measurements

