Inria TAU Seminar

Learning-based Control on Dynamical Systems

R. Hosseinkhan Boucher¹, S. Douka¹, O. Semeraro¹, L. Mathelin¹

Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS

Doctoral School: Sciences et technologies de l'information et de la communication (STIC)

Granted by the Agence Nationale de la Recherche (ANR) under projet ANR-21-CE46-0008 Reinforcement Learning as Optimal control for Shear Flows (REASON)

Dynamical Systems Control:

Challenges

Challenges in Dynamical Systems Control

Optimal Control Problem

Dynamics: $\partial_t x(z,t) = P\left[x,u\right](z,t)$

Objective: $\min_{u} J(u) = \int_{0}^{T} c(x(t), u(t)) dt$

Example

P is the Navier-Stokes operator

Energy criterion: $c(x, u) = ||x||^2 + ||u||^2$

Cylinder flow drag reduction. Partial observation through sensors.

Challenges¹

- Partial observability (PO) and delays
- Controllability
- Sampling complexity
- Robustness
- ullet High dimensional hidden state space ${\mathcal X}$
- Extremely large degrees of freedom (sensor placement, actuators, amplitude, optimization problem). No benchmark

Rigorously

 Control problem with continuous time and infinite state space (Relaxed Stochastic Control)

Controlled Kuramoto-Sivashinksy (KS)^{1,2}

Controlled KS:
$$\partial_t x(z,t) + x(z,t) \partial_x x(z,t) = -\partial_x^2 x(z,t) - \partial_x^4 x(z,t) + \langle \phi, \mathbf{u} \rangle (z,t)$$

 $\times (z+L,t) = \times (z,t) \text{ and } (z,t) \in [0,L] \times [0,T]$

Control term:
$$\langle \phi, \mathbf{u} \rangle = \sum_{i=1}^{r} \mathbf{u}_{i} f_{\mathcal{N}(\mu_{i}, \sigma^{2})}$$

 ϕ define a given gaussian mixture, ${\it \it u}$ is unknown

Properties

- Spatio-temporal chaos, 4th order non-linear
- Equilibria, relative equilibria, symmetries
- 4 equilibria $x_e^0(z) = 0$, $x_e^1(z)$, $x_e^2(z)$, $x_e^3(z)$

Evolution of the Kuramoto-Sivashinsky equation with L=100

¹Y. Kuramoto. "Diffusion-Induuced Chaos in Reaction Systems", *Progress of Theoretical Physics Supplement* (1978)

²G.I. Sivashinsky. "Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations", Acta Astronautica (1977)

Controlled Lorenz¹

Controlled Lorenz:
$$\begin{cases} \partial_t x_1 = \sigma(x_2 - x_1) + \mathbf{u_1} \\ \partial_t x_2 = x_1(\rho - x_3) - x_2 + \mathbf{u_2} \\ \partial_t x_3 = x_1 x_2 - \beta x_3 + \mathbf{u_3} \end{cases}$$

Control Term: $u = (u_1, u_2, u_3)$

Properties

- Chaos, instabilities, symmetries
- Equilibria x_e^0 , x_e^1 , x_e^2

¹T. I. Vincent, J. Yu. "Control of a chaotic system". Dynamics and Control (1991)

Partially Observable Markov Decision Process (POMDP)

Dynamics

$$\partial_t x(z,t) = P\left[x,u\right](z,t), \qquad x\left(\cdot,t\right) \in \mathbb{L}^2\left(\mathcal{X}\right) \text{ and } u\left(\cdot,t\right) \in \mathbb{L}^2\left(\mathcal{U}\right) \text{ for any } t \in [0,T]$$

Spatial Discretisation

$$\mathbb{L}^{2}\left(\mathcal{X}
ight)\simeq\mathcal{X}^{d_{\mathcal{X}}}\qquad\mathbb{L}^{2}\left(\mathcal{U}
ight)\simeq\mathcal{U}^{d_{\mathcal{U}}}$$

Temporal Discretisation

$$[0,T]\simeq (k\delta)_{0\leq k\leq n}$$

Continuous operator \longrightarrow Discrete¹ operator: $x_{k+1} = P(x_k, u_k), x_k \in \mathcal{X}^{d_{\mathcal{X}}}, u_k \in \mathcal{U}^{d_{\mathcal{U}}}$

¹The same notations (operator, time horizon etc.) as the continuous time framework will be used for the discrete time framework.

Partially Observable Markov Decision Process (POMDP)

Dynamics

$$\partial_t x(z,t) = P[x,u](z,t), \qquad x(\cdot,t) \in \mathbb{L}^2(\mathcal{X}) \text{ and } u(\cdot,t) \in \mathbb{L}^2(\mathcal{U}) \text{ for any } t \in [0,T]$$

Spatial Discretisation

$$\mathbb{L}^2(\mathcal{X}) \simeq \mathcal{X}^{d_{\mathcal{X}}} \qquad \mathbb{L}^2(\mathcal{U}) \simeq \mathcal{U}^{d_{\mathcal{U}}}$$

Temporal Discretisation

$$[0, T] \simeq (k\delta)_{0 \le k \le n}$$

Continuous operator
$$\longrightarrow$$
 Discrete¹ operator: $x_{k+1} = P(x_k, u_k)$, $x_k \in \mathcal{X}^{d_{\mathcal{X}}}$, $u_k \in \mathcal{U}^{d_{\mathcal{U}}}$

Generalisation: Partially Observable Markov Decision Process (POMDP)

$$X_{k+1} = P(X_k, U_k, \eta_k) \qquad \eta_k \sim \mathcal{N}(0, \sigma_{\eta}^2 I_d)$$

$$Y_{k+1} = Q(X_k) + \epsilon_k \qquad \epsilon_k \sim \mathcal{N}(0, \sigma_{\epsilon}^2 I_d)$$

$$\epsilon_k \sim \mathcal{N}(0, \sigma_\epsilon^2 I_d)$$

with $X_0 \sim \mathcal{N}(x_e, \sigma_o^2 I_d)$.

(1)

¹The same notations (operator, time horizon etc.) as the continuous time framework will be used for the discrete time framework

Modeling as a Markov Decision Process (MDP)

State space \mathcal{X} , control space \mathcal{U} , observation space \mathcal{Y}

Random Dynamics

$$\mathcal{P}\left(dx_{k+1}\mid\left(x_{k},u_{k}
ight)
ight)
ightarrow ext{probability on }\mathcal{X} ext{ given }\left(x_{k},u_{k}
ight)\in\mathcal{X} imes\mathcal{U}$$

Random Observation

 $\mathcal{Q}\left(dy_{k}\mid x_{k}
ight)
ightarrow$ probability on \mathcal{Y} given $x_{k}\in\mathcal{X}$

Random Control

 $\pi(\mathit{du}_k \mid y_k) o \mathsf{probability}$ on \mathcal{U} given $y_k \in \mathcal{Y}$

Transition Kernel ${\mathcal P}$

Modeling as a Markov Decision Process (MDP)

State space \mathcal{X} , control space \mathcal{U} , observation space \mathcal{Y}

Random Dynamics

$$\mathcal{P}\left(d\mathsf{x}_{k+1}\mid\left(\mathsf{x}_{k},u_{k}
ight)
ight)
ightarrow\mathsf{probability}$$
 on \mathcal{X} given $\left(\mathsf{x}_{k},u_{k}
ight)\in\mathcal{X} imes\mathcal{U}$

Random Observation

$$\mathcal{Q}(dy_k \mid x_k) \rightarrow \text{probability on } \mathcal{Y} \text{ given } x_k \in \mathcal{X}$$

Random Control

 $\pi(du_k \mid y_k) o \text{probability on } \mathcal{U} \text{ given } y_k \in \mathcal{Y}$

Policy gradient iterations to solve $\arg\min_{\pi} \mathbb{E}^{\pi} [\sum_{k=0}^{T} c(X_k, U_k)]$

Controlled Hidden Markov Chain

$$P^{\pi}(dx_{0}du_{0}dy_{0}dx_{1}du_{1}...dx_{T}) = P_{X_{0}}(dx_{0}) Q(dy_{0} | x_{0}) \pi(du_{0} | y_{0}) P(dx_{1} | x_{0}, u_{0})$$

$$Q(dy_{1} | x_{1}) \pi(du_{1} | y_{1}) \cdots \pi(du_{T-1} | y_{T-1}) P(dx_{T} | x_{T-1}, u_{T-1})$$

Maximum Entropy:

Noise Robustness

Robustness: Maximum Entropy and Flat Minima

Maximum Entropy in Reinforcement Learning

$$\arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \gamma^{k} ||X_{k}||^{2} - \alpha \mathcal{H}(\pi(du \mid X_{k})) \right], \quad \alpha > 0, \quad \mathcal{H} : \text{entropy}$$

Observations

- Better exploration
- Robustness
- Flat minima and optimisation regularity (recent work: Ahmed et al. ICLR (2019)¹)

 $^{^{1}\}mathrm{A.}$ Ahmed et al. "Understanding Flat Minima in Neural Networks", ICLR (2019)

Robustness: Maximum Entropy and Flat Minima

Maximum Entropy in Reinforcement Learning

$$\arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \gamma^{k} \|X_{k}\|^{2} - \alpha \mathcal{H}(\pi(du \mid X_{k})) \right], \quad \alpha > 0, \quad \mathcal{H} : \text{entropy}$$

Observations

- Better exploration
- Robustness
- Flat minima and optimisation regularity (recent work: Ahmed et al. ICLR (2019)¹)

Questions:

Why does entropy improve robustness? Why does entropy regularise the optimisation landscape?

Objective

Understanding robustness-entropy-regularity synergy

Hypothesis

 $\textbf{Entropy} \longrightarrow \textbf{Policy Complexity}$

 $^{^{1}}$ A. Ahmed et al. "Understanding Flat Minima in Neural Networks", ICLR (2019)

Excess Risk Under Noise

Partial Observability

$$X_{k+1} = P(X_k, U_k, \eta_k)$$

$$Y_{k+1} = Q(X_k) + \epsilon_k \qquad \epsilon_k \sim \mathcal{N}(0, \sigma_\epsilon^2 I_d)$$
(2)

Notation

When $\epsilon \equiv 0 \longrightarrow P^{\pi}$ When $\epsilon \not\equiv 0 \longrightarrow P^{\pi,\epsilon}$

7

Excess Risk Under Noise

Partial Observability

$$X_{k+1} = P(X_k, U_k, \eta_k)$$

$$Y_{k+1} = Q(X_k) + \epsilon_k \qquad \epsilon_k \sim \mathcal{N}(0, \sigma_\epsilon^2 I_d)$$
(2)

Notation

When $\epsilon \equiv 0 \longrightarrow P^{\pi}$ When $\epsilon \not\equiv 0 \longrightarrow P^{\pi,\epsilon}$

Rate of Excess Risk Under Noise

$$\mathring{\mathcal{R}}^{\pi} = \frac{J^{\pi, \epsilon} - J^{\pi}}{J^{\pi}}$$

with $J^{\pi,\epsilon} = \mathbb{E}^{\pi,\epsilon} \left[\sum_{k=0}^{T} \gamma^k \|X_k\|^2 \right]$

7

(3)

Training with different temperature levels α

Objective

$$\pi_{\alpha}^* = \arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \gamma^k ||X_k||^2 - \alpha \mathcal{H}(\pi(du \mid X_k)) \right], \quad \alpha > 0$$

Initial condition
$$X_0 \sim \mathcal{N}(\mathbf{x}_e^2, \sigma^2)$$
 and $\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}_{d_{\mathcal{U}}}(\mu_{\theta}(X_k), \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}})$

Goal control
$$x_k \longrightarrow x_e^0 = 0$$

Training with different temperature levels α

Objective

$$\pi_{\alpha}^* = \arg\min_{\pi} \mathbb{E}^{\pi} \left[\sum_{k=0}^{T} \gamma^k ||X_k||^2 - \alpha \mathcal{H}(\pi(du \mid X_k)) \right], \quad \alpha > 0$$

Initial condition
$$X_0 \sim \mathcal{N}(\mathbf{x}_e^2, \sigma^2)$$
 and $\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}_{d_{\mathcal{U}}}(\mu_{\theta}(X_k), \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}})$
Goal control $x_k \longrightarrow \mathbf{x}_e^0 = \mathbf{0}$

Hypothesis

With $\alpha>0$ the policies π_{α}^{*} are more robust than $\pi_{\alpha=0}^{*}$

Experimental Plan

- Fix 5 entropy levels α
- ullet 10 trainings for each lpha for 2m of iterations with the system
- ullet lpha decreases linearly
- Study of the regularity of π_{α}^{*} and its robustness

Evaluation of the policy with noisy observation

Hypothesis

$$\stackrel{\epsilon}{\sim} \longrightarrow J^{\pi^*,\epsilon} \nearrow$$
 (noise impacts perf) $\alpha > 0 \longrightarrow \mathring{\mathcal{R}}^{\pi,\alpha} \searrow$ (robustness)

Experimental Plan

- Test π_{α}^* with different noise levels ϵ on Y
- Compare $J^{\pi^*,\epsilon}$ according to J^{π^*} i.e. $\mathring{\mathcal{R}}^{\pi} = \frac{J^{\pi^*,\epsilon} J^{\pi^*}}{J^{\pi^*}}$ with $J^{\pi^*} = \mathbb{E}^{\pi^*} \left[\sum_{k=0}^T \gamma^k \|X_k\|^2 \right]$

with
$$J^{\pi^*} = \mathbb{E}^{\pi^*} \left[\sum_{k=0}^T \gamma^k \|X_k\|^2 \right]$$
 and $J^{\pi^*,\epsilon}$ same quantity evaluated with noisy observables

:

Observation noise robustness by Maximum Entropy

Experiment

- ullet Evaluate 10 models $heta_{lpha}^*$ for each value of lpha
- **Total** : 50 models $\theta_{\alpha_i}^*$
- $\forall \theta^*_{\alpha_i}$ evaluate 200 trajectories until T

Results

- Noise ϵ increases globally the cost J^{π^*}
- KS and Lorenz: $\alpha = 0$ noise sensitive
- KS: α_{max} noise sensitive

Variation $\frac{\int_{\pi}^{\pi} \frac{\delta}{\sqrt{\pi}} - \int_{\pi}^{\pi}}{\int_{\pi}^{\pi}}$. Each **bar block**: noise intensity ϵ . Colors: $\alpha = 0$ (black), $\alpha > 0$ (blue), α_{\max} (red)

10

Complexity measures¹

Complexity Measure

 $\mathcal{M} \colon \pi \in \Pi \to \mathbb{R}_+$

 $\mathcal{M}(\pi)$ measures the **complexity** of the model π

Robustness Measure

 $\mathring{\mathcal{R}}^{\pi} \leq f(\mathcal{M}(\pi))$

where f is an increasing function

Objective

Identify proper complexity measures for robustness

 $^{^{1}\}mathrm{B.}$ Neyshabur et al. "Exploring Generalization in Deep Learning" NIPS (2017)

Complexity Measure: Lipschitz Upper Bound

Lipshitz Bound

$$\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}_{d_{\mathcal{U}}}(\mu_{\theta}(X_k), \, \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}})$$
If $\mu_{\theta}(x) = (\sigma_l \circ \sigma_{l-1} \circ \ldots \circ \sigma_1)(x)$,

$$Lips(\mu_{\theta}) \leq \prod_{i=1}^{I} Lips(\sigma_{i}) = \prod_{i=1}^{I} \|\theta_{i}\|,$$

where θ_i weight matrix i.

Complexity Measure: Lipschitz Upper Bound

Lipshitz Bound

$$\pi_{\theta}(\cdot|X_k) \sim \mathcal{N}_{d_{\mathcal{U}}}\left(\mu_{\theta}(X_k), \, \theta_{\sigma_{\pi}}I_{d_{\mathcal{U}}}\right)$$
If $\mu_{\theta}(x) = (\sigma_l \circ \sigma_{l-1} \circ \ldots \circ \sigma_1)(x)$,

$$Lips(\mu_{\theta}) \leq \prod_{i=1}^{I} Lips(\sigma_{i}) = \prod_{i=1}^{I} \|\theta_{i}\|,$$

where θ_i weight matrix i.

Lipshitz Complexity Measure

•
$$\mathcal{M}(\pi_{\theta}) = \prod_{i=1}^{I} \|\theta_i\|$$

Result

Low $\mathcal{M}(\pi^{\alpha}_{\theta})$ corresponds to low $\mathring{\mathcal{R}}^{\pi}$

Colors: $\alpha = 0$, $\alpha > 0$, α_{max} Top: Lorenz, Bottom: KS

Complexity Measure: Conditional Fisher Information Trace

Hessian and Fisher Information

 $\alpha > 0 \longrightarrow \mathsf{Flat} \; \mathsf{Minima} \; (\mathsf{already} \; \mathsf{observed})^1$

$$\nabla_{\theta}^{2} J^{\pi_{\theta}} = \mathbb{E}^{\pi_{\theta}} \left[\sum_{h,i,j=0}^{T} c\left(X_{h}, U_{h}\right) \left(\nabla_{\theta} \log \pi_{\theta} \left(U_{i} \mid X_{j}\right) \nabla_{\theta} \log \pi_{\theta} \left(U_{j} \mid X_{j}\right)^{T} + \nabla_{\theta}^{2} \left[\log \pi_{\theta} \left(U_{i} \mid X_{j}\right) \right] \right) \right]$$

Fisher Information:
$$\mathcal{I}(\theta) = -\mathbb{E}^{X \sim \rho, U \sim \pi_{\theta}(\cdot|X)} \left[\nabla_{\theta}^2 \log \pi_{\theta} \left(U|X \right) \right]$$

Complexity Measure: Conditional Fisher Information Trace

Hessian and Fisher Information

 $\alpha > 0 \longrightarrow \mathsf{Flat} \; \mathsf{Minima} \; (\mathsf{already} \; \mathsf{observed})^1$

$$\nabla_{\theta}^{2} J^{\pi_{\theta}} = \mathbb{E}^{\pi_{\theta}} \left[\sum_{h,i,j=0}^{T} c\left(X_{h}, U_{h}\right) \left(\nabla_{\theta} \log \pi_{\theta} \left(U_{i} \mid X_{j}\right) \nabla_{\theta} \log \pi_{\theta} \left(U_{j} \mid X_{j}\right)^{T} + \nabla_{\theta}^{2} \left[\log \pi_{\theta} \left(U_{i} \mid X_{j}\right) \right] \right) \right]$$

Fisher Information: $\mathcal{I}(\theta) = -\mathbb{E}^{X \sim \rho, U \sim \pi_{\theta}(\cdot|X)} \left[\nabla_{\theta}^{2} \log \pi_{\theta} \left(U|X \right) \right]$

Fisher Information Complexity Measure

•
$$\mathcal{M}(\pi_{\theta}) = -Tr\left(\mathbb{E}^{X \sim \rho^{\pi_{\theta}}, U \sim \pi_{\theta}(\cdot|X)}\left[\nabla^{2}_{\theta_{\mu}}\log \pi_{\theta}\left(U|X\right)\right]\right)$$

Complexity Measure: Conditional Fisher Information Trace

Hessian and Fisher Information

 $\alpha > 0 \longrightarrow \mathsf{Flat} \; \mathsf{Minima} \; (\mathsf{already observed})^1$

$$\nabla_{\theta}^{2} J^{\pi_{\theta}} = \mathbb{E}^{\pi_{\theta}} \left[\sum_{h,i,j=0}^{T} c\left(X_{h}, U_{h}\right) \left(\nabla_{\theta} \log \pi_{\theta} \left(U_{i} \mid X_{j}\right) \nabla_{\theta} \log \pi_{\theta} \left(U_{j} \mid X_{j}\right)^{T} + \nabla_{\theta}^{2} \left[\log \pi_{\theta} \left(U_{i} \mid X_{j}\right)\right] \right) \right]$$

Fisher Information: $\mathcal{I}(\theta) = -\mathbb{E}^{X \sim \rho, U \sim \pi_{\theta}(\cdot|X)} \left[\nabla_{\theta}^2 \log \pi_{\theta} \left(U|X \right) \right]$

Fisher Information Complexity Measure

•
$$\mathcal{M}(\pi_{\theta}) = -Tr\left(\mathbb{E}^{X \sim \rho^{\pi_{\theta}}, U \sim \pi_{\theta}(\cdot|X)}\left[\nabla^{2}_{\theta_{\mu}}\log \pi_{\theta}\left(U|X\right)\right]\right)$$

Result

Low $\mathcal{M}(\pi^{\alpha}_{\theta})$ corresponds to low $\mathring{\mathcal{R}}^{\pi}$

Limits and perspectives

Hypothesis

Entropy → Flat Minimum Already observed in (Ahmed et al. 2019)

Flat Minimum \longleftrightarrow Robustness \longleftrightarrow Fisher Information of θ_{π}

Robustness of the results

- For α_{max} we lose robustness because we no longer solve the same objective
- Lorenz (fully observable) does not discriminate policies (because deterministic solution?)

Perspectives

Optimization scheme based on flat minima or Fisher Information

Learning Based Control:

Sampling Strategies

Gaussian Process Modeling

Controlled Hidden Markov Chain

$$P^{\pi}(dx_{0}du_{0}dx_{1}du_{1}...dx_{T}) = P_{X_{0}}(dx_{0}) \mathcal{Q}(dy_{0} \mid x_{0}) \pi(x_{0}, du_{0}) \mathcal{P}(dx_{1} \mid x_{0}, u_{0})$$

$$\mathcal{Q}(dy_{1} \mid x_{1}) \pi(x_{1}, du_{1}) \cdots \pi(x_{T-1}, du_{T-1}) \mathcal{P}(dx_{T} \mid x_{T-1}, u_{T-1})$$

Learning Dynamics with Gaussian Process

$$\hat{\mathcal{P}}_{\mathcal{D}}(\cdot, (x, u)) \sim \mathcal{N}\left(\mu_{(x, u)}, k_{(x, u), (x, u)} \mid \mathcal{D}\right) \tag{4}$$

Transition Kernel ${\mathcal P}$

¹C. E. Rasmussen et al. "Gaussian Processes in Reinforcement Learning" *NIPS* (2003)

Dynamics Approximation with Model Predictive Control

Model Predictive Control

$$\pi^{\mathsf{MPC}}(x) = u_0^* \tag{5}$$

$$s.t. \quad (u_0^*, \ldots, u_{T^{\mathsf{MPC}}}^*) = \underset{(u_0, \ldots, u_{T^{\mathsf{MPC}}})}{\mathsf{arg} \, \mathsf{min}} \, \mathbb{E}^{(u_0, \ldots, u_{T^{\mathsf{MPC}}})} \left[\sum_{k=0}^{T^{\mathsf{MPC}}} c\left(X_k, u_k\right) \mid X_0 = x \right]$$

New Problem

- Sampling budget $\longrightarrow n$
- Collect \mathcal{D}_n such that $\hat{\mathcal{P}}_{\mathcal{D}} \simeq \mathcal{P}$
- Data $\mathcal{D}_n = \{(x_0, u_0), \dots, (x_n, u_n,)\}$ is collected online along an observed dynamics
- How to sample next data point?

¹R. Y. Rubinstein et al. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning Springer (2004)

Entropy Map

How to quantify the uncertainty on $P_{X_{k+1}}$? Infinitesimal volume element of $\mathcal{X} \longrightarrow dx$

Uncertainty on dx

$$I(dx) = \log(\frac{1}{P_{X_{k+1}}(dx)})$$

Entropy Map

How to quantify the uncertainty on $P_{X_{k+1}}$? Infinitesimal volume element of $\mathcal{X} \longrightarrow dx$

Uncertainty on dx

$$I(dx) = \log(\frac{1}{P_{X_{k+1}}(dx)})$$

Entropy (average uncertainty)

$$\mathcal{H}(P_{X_{k+1}}) = \int_{\mathbb{R}} \log \frac{1}{P_{X_{k+1}}(dx)} P_{X_{k+1}}(dx)$$

Entropy Map

How to quantify the uncertainty on $P_{X_{k+1}}$? Infinitesimal volume element of $\mathcal{X} \longrightarrow dx$

Uncertainty on *dx*

$$I(dx) = \log(\frac{1}{P_{X_{k+1}}(dx)})$$

Entropy (average uncertainty)

$$\mathcal{H}(P_{X_{k+1}}) = \int_{\mathbb{R}} \log \frac{1}{P_{X_{k+1}}(dx)} P_{X_{k+1}}(dx)$$

Gaussian Entropy

$$\begin{split} &P_{X_{k+1}}(dx) = f_{\mathcal{N}\left(\mu_{(x,\,u)},k_{(x,\,u),\,(x,\,u)}\right)}(x)dx\\ &\mathcal{H}(P_{X_{k+1}}) = \frac{1}{2}\log\left(2\pi e\,k_{(x,\,u),\,(x,\,u)}\right)\\ &\text{In the Gaussian case, the variance k characterise the entropy} \end{split}$$

Expected Information Gain

Process trajectory $\longrightarrow H_T = (X_0, U_0, \dots, U_T, X_T)$ Optimal trajectory under $\hat{\mathcal{P}}_{\mathcal{D}} \longrightarrow H_T^*$

Expected Information Gain

$$\mathsf{EIG}_n(x,u) = \mathcal{H}\left[\hat{H}_T^* \mid \mathcal{D}_n\right] - \mathbb{E}_{P_{X_{n+1}\mid \mathcal{D}_n, X_n = x, U_n = u}}\left[\mathcal{H}\left[\hat{H}_T^* \mid \mathcal{D}_n, X_n = x, U_n = u, X_{n+1}\right]\right] \tag{7}$$

EIG \longrightarrow conditional mutual information between \hat{H}_T^* and X_{n+1} given \mathcal{D}_n

 $^{^{1}}$ V. Mehta et al. "An Experimental Design Perspective on Model-Based Reinforcement Learning" ICLR (2022)

Expected Information Gain

Process trajectory $\longrightarrow H_T = (X_0, U_0, \dots, U_T, X_T)$ Optimal trajectory under $\hat{\mathcal{P}}_{\mathcal{D}} \longrightarrow H_T^*$

Expected Information Gain

$$\mathsf{EIG}_{n}(x,u) = \mathcal{H}\left[\hat{H}_{T}^{*} \mid \mathcal{D}_{n}\right] - \mathbb{E}_{P_{X_{n+1}\mid \mathcal{D}_{n}, X_{n}=x, U_{n}=u}}\left[\mathcal{H}\left[\hat{H}_{T}^{*} \mid \mathcal{D}_{n}, X_{n}=x, U_{n}=u, X_{n+1}\right]\right] \tag{7}$$

EIG \longrightarrow conditional mutual information between \hat{H}_T^* and X_{n+1} given \mathcal{D}_n

By symmetry of cond. MI

$$\mathsf{EIG}_{n}(x,u) = \mathcal{H}\left[X_{n+1} \mid \mathcal{D}_{n}, X_{n} = x, U_{n} = u\right] - \mathbb{E}_{P_{\hat{H}_{T}^{*} \mid \mathcal{D}_{n}}}\left[\mathcal{H}\left[X_{n+1} \mid \mathcal{D}_{n}, X_{n} = x, U_{n} = u, \hat{H}_{T}^{*}\right]\right] \tag{8}$$

¹V. Mehta et al. "An Experimental Design Perspective on Model-Based Reinforcement Learning" *ICLR* (2022)

Randomized Decision Epochs: Temporal Abstraction with options¹

New Problem

- Data $\mathcal{D}_n = \{(x_0, u_0), \dots, (x_n, u_n,)\}$ is collected online along an observed dynamics
- When to sample next data point?

¹R. S. Sutton et al. "Between MDPs and semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning", NIPS (1999)

Randomized Decision Epochs: Temporal Abstraction with options¹

New Problem

- Data $\mathcal{D}_n = \{(x_0, u_0), \dots, (x_n, u_n,)\}$ is collected online along an observed dynamics
- When to sample next data point?

Hypothesis

Wait for auto-decorrelation of (X_{n+1}, U_{n+1}) from \mathcal{D}_n

 $^{^{1}}$ R. S. Sutton et al. "Between MDPs and semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning", NIPS (1999)

Randomized Decision Epochs: Temporal Abstraction with options¹

New Problem

- Data $\mathcal{D}_n = \{(x_0, u_0), \dots, (x_n, u_n,)\}$ is collected online along an observed dynamics
- When to sample next data point?

Hypothesis

Wait for auto-decorrelation of (X_{n+1}, U_{n+1}) from \mathcal{D}_n

Random decision epochs $\longrightarrow (\kappa_j)_{j\in\mathbb{N}}$ Semi-Markov Decision Process $\longrightarrow (X_{\kappa_j})_{j\in\mathbb{N}}$ $\mathcal{P}^{\text{SMDP}}(dx'\mid (x,(u,t))) = P(X_{k+t}\mid X_k=x,\ U_{k:k+t-1}=u)$ Time-delay $\longrightarrow t\in\mathcal{T}$ Constant control between κ_j and κ_{j+1}

New action space $\longrightarrow \mathcal{U} \times \mathcal{T}$

 $(Cov(X_0, X_k))_{k \in \mathbb{N}}$ for the controlled Lorenz system x_3 component under multiple control intensities.

¹R. S. Sutton et al. "Between MDPs and semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning", NIPS (1999)

Semi-Markovian Expected Information Gain

New Information Gain

$$\mathsf{EIG}_n^{\mathsf{SM-TIP}}(x,(u,t)) =$$

$$\mathcal{H}\left[X_{\kappa_{n}+t+1}\mid \mathcal{D}_{n}, X_{\kappa_{n}+t}=x, U_{\kappa_{n}+t}=u, \kappa_{n}\right] - \mathbb{E}_{P_{\hat{H}_{T}^{*}\mid \mathcal{D}_{n}}}\left[\mathcal{H}\left[X_{\kappa_{n}+t+1}\mid \mathcal{D}_{n}, X_{\kappa_{n}+t}=x, U_{\kappa_{n}+t}=u, \hat{H}_{T}^{*}, \kappa_{n}\right]\right]$$
(9)

Objective Function and Inter-Decision Time

Limits and perspectives

Hypothesis

Temporal Abstraction \longrightarrow Information (fixed sampling budget n) \checkmark

Robustness of the results

- Evaluation fairness when one model can explore the dynamics further than the other
- How to characterise the δ_t treshold where temporal abstraction is beneficial?

Perspectives

Correct bootstrapping error in the SMDP