1 Graph Model of Set Theory

- Directed graphs: $G = \langle V, A \rangle$
- A graph is well-founded if it has no looping paths and no infinite descending paths
- A graph is **extensional** if for any v_0, v_1 such that v_0 has the same incoming arrows as $v_1, v_0 = v_1$
- Two graphs are isomorphic if there is a function (isomorphism) σ between them such that:
 - $-\sigma$ is a bijection (surjection + injection)
 - $-vA_0u \leftrightarrow \sigma(v)A_1\sigma(u)$
- An automorphism is an isomorphism between some graph and itself (the identity is a trivial one)
- G is a subgraph of G' if $V \subseteq V'$ and $v_0 A v_1 \leftrightarrow v_0 A' v_1$ for all $v_0, v_1 \in V$
- G is maximal in some property Φ if G possesses Φ and there exists no graph G' such that:
 - -G' possesses Φ ; and
 - -G is a proper subgraph of G'
- \bullet Let G be a maximal well-founded graph with no non-trivial automorphisms
- Equivalently, G is a maximal well-founded graph which is extensional
- G is then an *intended model* of Set Theory

2 First Order Logic

- Logical symbols: \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \exists , \forall , (,)
- Non-logical symbols: constant symbols (a, b, c), relation symbols (P, Q, R), function symbols (f, q, h)
- Language: $\mathcal{L} = \{a, b, c, \dots, P, Q, R, \dots, f, g, h, \dots\}$
- Individual variables will be denoted v_1, v_2, \ldots
- Metavariables / arbitrary variables will be denoted x, y, z, \dots
- The set of terms, *Term* is defined recursively:
 - If t is a constant symbol or individual variable, t is a term
 - If t_1, \ldots, t_n are terms and f is a function symbol with arity $n, f(t_1, \ldots, t_n)$ is a term
 - Nothing else is a term
- A string φ is an atom if $\varphi = Rt_1, \ldots, t_n$ where t_1, \ldots, t_n are terms and R is a relation with arity n
- If t is a term with no variables occurring in it, t is a closed term
- The set of Well Formed Formulae WFF is defined recursively, with atoms as the base case
 - If φ consists of a combination of logical operators over well formed formulae, $\varphi \in WFF$
- x is free in $\varphi \in WFF$ if:
 - If $\varphi = Rt_1, \ldots, t_n$ and $x = t_i$ for some i
 - If φ consists of logical operators over well formed formula, where x is free in at least one
 - If φ is a quantification over a formula where x is free, and x is not the bound variable
- If φ has no free variables, φ is a sentence, $\varphi \in Sent$

3 Model Theory

- A model \mathcal{M} requires:
 - A language \mathcal{L}
 - A domain M of objects
 - An interpretation:
 - * Constant symbols c are interpreted by some object from the domain: $c^{\mathcal{M}} \in M$
 - * Relation symbols R (with arity n) are interpreted by a set of tuples of objects within the domain; so $R^{\mathcal{M}} \subseteq \{\langle m_1, \dots, m_n \rangle \mid m_1, \dots, m_n \in M\}$
 - * Function symbols f with arity n are interpreted by functions taking some $m_1, \ldots, m_n \in M$, and returning some $m \in M$
- A model of $\mathcal{L} = \{a, b, c, \dots, P, Q, R, \dots, f, g, h, \dots\}$ would then be:

$$\mathcal{M} = \langle M, a^{\mathcal{M}}, b^{\mathcal{M}}, c^{\mathcal{M}}, \dots, P^{\mathcal{M}}, Q^{\mathcal{M}}, R^{\mathcal{M}}, \dots, f^{\mathcal{M}}, g^{\mathcal{M}}, h^{\mathcal{M}}, \dots \rangle$$

- If t is a closed term of \mathcal{L} and \mathcal{M} is a model of \mathcal{L} , then the denotation $t^{\mathcal{M}}$ is:
 - If t is a constant symbol c, $t^{\mathcal{M}} = c^{\mathcal{M}}$
 - If $t = f(t_1, \ldots, t_n)$, $t^{\mathcal{M}} = f^{\mathcal{M}}(t_1^{\mathcal{M}}, \ldots, t_n^{\mathcal{M}})$
- A sentence φ in some language \mathcal{L} may then be true in \mathcal{M} ($\mathcal{M} \models \varphi$)
- φ is satisfiable if there exists some model \mathcal{M} in the language \mathcal{L} of φ such that $\mathcal{M} \models \varphi$
- φ is valid ($\models \varphi$) if for every model \mathcal{M} in the language \mathcal{L} of φ , $\mathcal{M} \models \varphi$
- Given $\Gamma \subseteq Sent_{\mathcal{L}}$ and $\varphi \in Sent_{\mathcal{L}}$, we say φ is a consequence of Γ ($\Gamma \models \varphi$) if for every model \mathcal{M} of \mathcal{L} , if $\mathcal{M} \models \gamma$ for all $\gamma \in \Gamma$, then $\mathcal{M} \models \varphi$
- φ is derivable from Γ ($\Gamma \vdash \varphi$) if:
 - $(Ax) \varphi$ is an axiom of first order logic
 - (Ass) $\varphi \in \Gamma$
 - (MP) $\Gamma \vdash \psi \rightarrow \varphi$ and $\Gamma \vdash \psi$
 - (UG) If $\Gamma \vdash \varphi$, then $\Gamma \vdash \forall y \varphi(y \mapsto x)$ when:
 - * x is not free in any formula in Γ ;
 - * y = x; or
 - * y is not free in φ
- A model can describe a structure externally (as in the graph model), or internally using sentences true in the intended model
- A theory Γ is a set of sentences closed under consequence (i.e. $\Gamma \vdash \varphi \rightarrow \varphi \in \Gamma$)
 - It is *consistent* if there is no sentence φ such that $\Gamma \vdash \varphi \land \neg \varphi$
 - It is *complete* if for all φ we have either $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$
 - It is *categorical* if there is exactly one model \mathcal{M} such that $\mathcal{M} \models \Gamma$
- A theory is algebraic if it has multiple intended models, and non-algebraic if it has one unique intended model

4 The Axioms

4.1 Terms & Definitions

- A term is well-defined in Set Theory if it exists and is unique
- Term: x is a subset of y ($x \subseteq y$) if $\forall z (z \in x \rightarrow z \in y)$

4.2 Extensionality

$$\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \to x = y)$$

• If sets x and y have exactly the same members, then they are the same set

4.3 Foundation

$$\forall x (\exists y \in x \to \exists z (z \in x \land \forall w (w \in x \to w \notin z)))$$

• If x is non-empty, then it has an \in -minimal member (there is some $z \in x$ such that every member of x is not a member of z)

4.4 Separation

$$\forall x_0 \dots \forall x_n \forall w \exists y \forall z (z \in y \leftrightarrow z \in w \land \varphi(z, x_0 \dots, x_n))$$

- Given any set w, there is a set y consisting of exactly the elements z from w such that $\varphi(z)$. The φ s are separated out from w to get y
- Why do we need a w? We would like to do naïve comprehension: $\exists y \forall x (x \in y \leftrightarrow \varphi(x))$
 - (Russell) Any theory including naïve comprehension is inconsistent
 - This also means there is no universal set, i.e. a set x such that $\forall y (y \in x \leftrightarrow y = y)$

4.5 Pairing

$$\forall x \forall y \exists z (x \in z \land y \in z)$$

4.6 Union

$$\forall x \exists z \forall y \forall w (y \in w \land w \in x \rightarrow y \in z)$$

4.7 Powerset

$$\forall x \exists y \forall z (z \subseteq x \to z \in y)$$

•

4.8 Replacement

aa

4.9 Infinity

 $\exists x (\exists yy \in x \land \forall z (z \in x \to \{z\} \in x))$

•

4.10 Choice

aa

•

- 5 Models, Structures & Sequences
- 6 The Ordinals
- 7 Transfinite Induction and Recursion
- 8 The Cardinals
- 9 Infinite Cardinals & The Axiom of Choice