CSE-331 Homework 4 Report

	HomeWork Lecture
	@Jan 20, 2021
■ Number	
Property	Baran Hasan Bozduman

I have the project module by module but mips circuit does not work because I spend too much time to learn verilog and trying to solve errors on quartus. I made the design but I have not time to combine all modules.

- Instruction Memory
- Registers
- Alu Control
- Mux2s_1bit
- Shift left2
- Alu 1bit
- Mux4s_1bit

Alu 1bit

I used xor gate instead of less.

- Data Memory
- Control Unit
- Zero extender
- Mux2s_32bit
- Sign Extender
- Alu 32bit

Alu 1bit Test

```
sim:/testb_alulbit/result
VSIM 5> step -current
# (000And-0010r-010Add-110subs-111Xor) AluOp:000 a i:0 b i:0 result:0 c o:0 c i:0
# (000And-001Or-010Add-110subs-111Xor) AluOp:000 a_i:0 b_i:1 result:0 c_o:0 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:000 a_i:1 b_i:0 result:0 c_o:0 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:000 a_i:1 b_i:1 result:1 c_o:1 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:001 a_i:0 b_i:0 result:0 c_o:0 c_i:0 
# (000And-0010r-010Add-110subs-111Xor) AluOp:001 a_i:0 b_i:1 result:1 c_o:0 c_i:0 
# (000And-0010r-010Add-110subs-111Xor) AluOp:001 a_i:1 b_i:0 result:1 c_o:0 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:001 a i:1 b i:1 result:1 c o:1 c i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:111 a i:0 b i:0 result:0 c o:0 c i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:111 a_i:0 b_i:1 result:1 c_o:0 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:111 a_i:1 b_i:0 result:1 c_o:1 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:111 a_i:1 b_i:1 result:0 c_o:0 c_i:0 # (000And-0010r-010Add-110subs-111Xor) AluOp:010 a_i:0 b_i:0 result:0 c_o:0 c_i:0 # (000And-0010r-010Add-110subs-111Xor) AluOp:010 a_i:0 b_i:1 result:1 c_o:0 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:010 a_i:1 b_i:0 result:1 c_o:0 c_i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:010 a i:1 b i:1 result:0 c o:1 c i:0
# (000And-0010r-010Add-110subs-111Xor) AluOp:110 a_i:0 b_i:0 result:0 c_o:1 c_i:1
# (000And-0010r-010Add-110subs-111Xor) AluOp:110 a_i:0 b_i:1 result:1 c_o:0 c_i:1
# (000And-0010r-010Add-110subs-111Xor) AluOp:110 a_i:1 b_i:0 result:1 c_o:1 c_i:1 # (000And-0010r-010Add-110subs-111Xor) AluOp:110 a_i:1 b_i:1 result:0 c_o:1 c_i:1
VSIM 6>
```

Alu 32bit Test

Alu Control

```
..., -----_---_----,------
VSIM 5> step -current
# FunctionField:000000 AluOp:00 AluSrc:010
# FunctionField:000000 AluOp:01 AluSrc:110
                       AluOp:10 AluSrc:010
# FunctionField:100000
                       AluOp:10 AluSrc:110
# FunctionField:100010
                       AluOp:10 AluSrc:111
# FunctionField:100110
                       AluOp:10 AluSrc:000
# FunctionField:100100
                       AluOp:10 AluSrc:001
# FunctionField:100101
# FunctionField:000000
                       AluOp:11 AluSrc:001
```

000	-> And		10010	0	
001	->01		10010	1	
010	-> Ade	1	100000	2	
110	9 457		10001	2	
	10x 6-		100	2	
Ins hor	ALUAP	Open on	- uncliantide	Dasired Ala	
Lw	100		1	add	1010
sw	000		A drage	add in	
beg	001		V	subs	10
boca	obil		V	subs	1110
oden	010		1	add	1010
subn	010		/	sub	1110
חזמצ	010	1.0	J	XD(100
andn	110	1,000		and	1000
010	010	100		01	1001
orl	della			10	001

$$A2 = (ABO + (AP1& +1)) + (AP1&AP0)$$

 $A1 = (AP1 + 12 + 1) + (AP1&AP0)$
 $A0 = (AP1& (3+10)) + (f1& f2) + (AP1&AP0)$

Control Unit

X

0

X

0

0

0

CamScanner

SIM 5> step	-current											
Opcode:10	00011 AluS	rc:1, MemR	ead:1, Mem	Write:0,	MemtoReg:1,	beq:0, bne	0, j:0,	jal:0,	lui:0,	ori:0	AluOp:00,	RegWrite:0
					MemtoReg:0,					ori:0	AluOp:00,	RegWrite:0
					MemtoReg:0,							RegWrite:
					MemtoReg:0,							RegWrite:
					MemtoReg:0,							RegWrite:
-					MemtoReg:0,			-				RegWrite:
-					MemtoReg:0,			-				RegWrite:
-					MemtoReg:0,			-				RegWrite:
opcode:00	JUUIT AIUS	rc:o, memm	ead:0, Men	write:0,	MemtoReg:0,	beq:0, bne	0, 1:0,	Jar:1,	Iulio,	011:0	Aluopioo,	RegWrite:(
1											001000	1
Ι ω (sw	beq	bne	l ori	ابا	Liver	I J		1 701	1	001000	1
	sw lololi	be 4 000100	bne oootol	00110	1 001111	t-14pe	J	00010	Ja 1	, 11	000000	
	-	To Table 1		00110	1 001111	Hype 000000	J	00010	1	, 11	11	ALUSIC
100011	-	000100	000101	1	1 2001111	Marian Caraminate Principal	The second second	00010	× ×)	× 000000	ALUSIC
1 00	1 00	000100	0	1	1 **	0	XX	00010	× ××)	×× ×× ×× ××	ALUOP
100011	101011	0	000101	1	1	0	X	00010	× ×)	×× ×× ×× ××	and the same of the same of

0

00

0

0

0

0

0

X

1

0

X

0

0

0

0

0

0

X

0

0

0

0

Memwrite

Memto Reg

branchequal

Iumpard link

Tump

lu:

branch notegual

Alu src: to determine i type or r type instruction

Alu Op: to determine which type alu operation will be

0

0

0

0

0

0

X

0

1

0

0

0

Reg Write: Writing register msb bit for the register2 other one for the register1

MemRead: to enable memory read

MemWrite: writing data memory

MemtoReg: determining memory or alu result

Mux2s 1bit

```
# m:0 i1:0 i2:1 out:0
# m:1 i1:0 i2:1 out:1
# m:0 i1:1 i2:0 out:1
# m:1 i1:1 i2:0 out:0
```

mux4s 1bit

```
VSIM 6> step -current

# input: 0001 mux: 00 output: 1

# input: 0010 mux: 01 output: 1

# input: 0100 mux: 10 output: 1

# input: 1000 mux: 11 output: 1
```

mux2s 32bit

Shift left2

sign Extended

Zero Extend

Register Read

Register not write

Register write

You can check my register.v file i also check the zero and less situation to make my job easy so i write to register according to that signals

Register Write

Instruction Memory

Read Data Memory

Write Data memory

General Design

