Domain Adversarial Neural Nets

Presenter: Shafiq Joty

School of Computer Science and Engineering Nanyang Technological University

May 8, 2018

Outline

- Adversarial Neural Nets
- 2 Domain Adaptation
 - DANN Framework
 - DANN Design Choices

- DANN [Ganin et al., 2016]
- ADDA [Tzeng et al., 2017]
- Feature Augmented DANN [Volpi et al., 2017]
- Results

Adversarial Neural Nets

Adversarial nets have been used in **two ways**:

- **4 Generative modeling**: GANs [Goodfellow et al., 2014].
 - Generate real-like image samples from random vectors
 - One neural net is pit against another:
 - (i) Generator, (ii) Discriminator
 - Other Examples: image-to-image translation, Unsup. NMT

Adversarial Neural Nets

Adversarial nets have been used in **two ways**:

- Generative modeling: GANs [Goodfellow et al., 2014].
 - Generate real-like image samples from random vectors
 - One neural net is pit against another:
 - (i) Generator, (ii) Discriminator
 - Other Examples: image-to-image translation, Unsup. NMT
- Transfer learning/domain adaptation: DANNs [Ganin et al., 2016]
 - Map samples from two domains into a common feature space
 - Generally a **three-player** game:
 - (i) Encoder, (ii) Classifier (iii) Discriminator
 - Examples: MNIST \Rightarrow USPS, X-lingual NER

Unsupervised Domain Adaptation

Training Data:

$$\mathcal{D}_s = \{(\mathbf{x}_i, y_i)\}_{i=1}^N \tag{1}$$

$$\mathcal{D}_t = \{\mathbf{x}_i\}_{i=1}^M \tag{2}$$

- \mathcal{D}_s denotes source (labeled) dataset.
- \mathcal{D}_t denotes target (unlabeled) dataset.
- ullet Distribution (domain) shift from \mathcal{D}_s to \mathcal{D}_t

Examples

NLP Sentiment analysis (Movie \Rightarrow Book), NER (Eng \Rightarrow Ger)

CV Image classification: MNIST \Rightarrow USPS

DANN Approach: Learn a common feature space for \mathcal{D}_s and \mathcal{D}_t

Adversarial Neural Nets Domain Adaptation DANN Framework
DANN Design Choices
DANN [Ganin et al., 2016]
ADDA [Tzeng et al., 2017]
Feature Augmented DANN [Volpi et al., 2017]
Results

DANN Framework

Three players

(i) Encoder; (ii) Classifier; (iii) Discriminator

DANN Framework

DANN Framework

Three players

(i) Encoder; (ii) Classifier; (iii) Discriminator

DANN Design Choices

Three players

(i) Encoder; (ii) Classifier; (iii) Discriminator

Encoder

- Shared [Ganin et al., 2016] vs. Separate [Tzeng et al., 2017]
- Train Encoders concurrently or in steps.
- Generative [Volpi et al., 2017] vs. Discriminative [Tzeng et al., 2017]

Adversary Loss

- Flip gradient [Ganin et al., 2016]
- GAN loss [Tzeng et al., 2017]

DANN Design Choices

DANN Design Choices

Choices:

- Shared **encoder**. Train source/target concurrently.
- **Discriminatively** trained source.

DANN Adversary

Discriminator:

$$-\mathbb{E}_{x_{s}\sim X_{s}}\log D\left(E(x_{s})\right)-\mathbb{E}_{x_{t}\sim X_{t}}\log \left(1-D\left(E(x_{t})\right)\right).$$

DANN Adversary

• Discriminator:

$$-\mathbb{E}_{x_s \sim X_s} \log D\left(E(x_s)\right) - \mathbb{E}_{x_t \sim X_t} \log \left(1 - D\left(E(x_t)\right)\right).$$

- Flip Gradient Adversary (to Encoder):
 - \Rightarrow Encoder (for source): $\nabla_{\theta_e} \mathbb{E}_{x_s \sim X_s} \log D(E(x_s))$
 - \Rightarrow Encoder (for target): $\nabla_{\theta_e} \mathbb{E}_{x_t \sim X_t} \log (1 D(E(x_t)))$

ADDA [Tzeng et al., 2017]

Step 1: Pre-training on Source

ADDA [Tzeng et al., 2017]

Step 2: Adapt Target towards (fixed) Source

ADDA [Tzeng et al., 2017]

Step 3: Testing

ADDA Design Choices

ADDA Design Choices:

- Separate encoder for source and target.
- Train source/target separately.
- Discriminatively trained source.
- GAN loss for adversary.

ADDA Adversary

Discriminator:

$$-\mathbb{E}_{x_{s}\sim X_{s}}\log D\left(E(x_{s})\right)-\mathbb{E}_{x_{t}\sim X_{t}}\log \left(1-D\left(E(x_{t})\right)\right).$$

GAN Adversary:

$$\Rightarrow$$
 Encoder (for target): $-\nabla_{\theta_e} \mathbb{E}_{x_t \sim X_t} \log (D(E(x_t)))$

ADDA Adversary

- Discriminator:
 - $-\mathbb{E}_{x_{s}\sim X_{s}}\log D\left(E(x_{s})\right)-\mathbb{E}_{x_{t}\sim X_{t}}\log \left(1-D\left(E(x_{t})\right)\right).$
- GAN Adversary:
 - \Rightarrow Encoder (for target): $-\nabla_{\theta_e} \mathbb{E}_{x_t \sim X_t} \log (D(E(x_t)))$
- Recall Adversary for Flip Gradient [Ganin et al., 2016]
 - \Rightarrow Encoder (for source): $\nabla_{\theta_e} \mathbb{E}_{x_s \sim X_s} \log D(E(x_s))$
 - \Rightarrow Encoder (for target): $\nabla_{\theta_e} \mathbb{E}_{x_t \sim X_t} \log (1 D(E(x_t)))$

Feature Augmented DANN [Volpi et al., 2017]

Step 0: Pre-training on Source

Step 0: training E_s , C

Feature Augmented DANN [Volpi et al., 2017]

Step 1: Feature Generation with CGAN

Step 1: training S, D_1

Feature Augmented DANN [Volpi et al., 2017]

Step 2: Feature Adaptation

Step 2: training E_I , D_2

Feature Augmented DANN [Volpi et al., 2017]

Step 3: Testing

FA-DANN Design Choices

FA-DANN Design Choices:

- Same shared encoder for source and target.
- Train source/target separately.
- **Discriminatively** trained source + **Generative** features.
- GAN loss for adversary.

Results

• ADDA [Tzeng et al., 2017]

Method	$\begin{array}{c} \text{MNIST} \rightarrow \text{USPS} \\ \text{773} \rightarrow \text{105} \end{array}$	$\begin{array}{c} \text{USPS} \rightarrow \text{MNIST} \\ \textbf{) 05} \rightarrow \textbf{/73} \end{array}$	$\begin{array}{c} \text{SVHN} \rightarrow \text{MNIST} \\ \hline \begin{array}{c} \text{13} & \text{5} \end{array} \rightarrow \begin{array}{c} \text{7} & \text{3} \end{array}$
Source only	0.752 ± 0.016	0.571 ± 0.017	0.601 ± 0.011
Gradient reversal	0.771 ± 0.018	0.730 ± 0.020	0.739[19]
Domain confusion	0.791 ± 0.005	0.665 ± 0.033	0.681 ± 0.003
CoGAN	0.912 ± 0.008	0.891 ± 0.008	did not converge
ADDA (Ours)	0.894 ± 0.002	0.901 ± 0.008	0.760 ± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

Results

• FA-DANN [Volpi et al., 2017]

	$SVHN{\rightarrow}MNIST$	$MNIST \rightarrow USPS_{P1}$	$MNIST \rightarrow USPS_{P2}$	$USPS{\rightarrow}MNIST$	$SYN \rightarrow SVHN$	NYUD
Source	0.682	0.723	0.797	0.627	0.885	0.139
DANN [9, 10]	0.739	0.771 ± 0.018 [35]	-	0.730 ± 0.020 [35]	0.911	-
DDC [35]	0.681 ± 0.003	0.791 ± 0.005	-	0.665 ± 0.033		-
DSN [3]	0.827	-	-	-	0.912	-
ADDA [35]	0.760 ± 0.018	0.894 ± 0.002	-	0.901 ± 0.008		0.211
Tri [29]	0.862	-	-	-	0.931	-
DTN [33]	0.844*	-	-	-	-	-
PixelDA** [2]	-	-	0.959	-	-	-
UNIT [18]	0.905*	-	0.960	-	-	-
CoGANs [19]	no conv. [35]	0.912 ± 0.008	0.957 [18]	0.891 ± 0.008	-	-
LS-ADDA	0.743 ± 0.028	0.914 ± 0.000	0.912 ± 0.003	0.910 ± 0.004	0.908 ± 0.004	no conv.
Ours (DI)	0.851 ± 0.026	0.914 ± 0.000	0.954 ± 0.002	0.879 ± 0.005	0.925 ± 0.002	0.287 ± 0.002
Ours (DIFA)	0.897 ± 0.020	$\textbf{0.923} \pm \textbf{0.001}$	0.962 ± 0.002	0.897 ± 0.005	0.930 ± 0.002	0.313 ± 0.002
Target	0.992	0.999	0.999	0.975	0.913	0.468 [35]

References I

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).

Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680.

References II

- Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. (2017). Adversarial discriminative domain adaptation. In *Computer Vision and Pattern Recognition (CVPR)*.
- Volpi, R., Morerio, P., Savarese, S., and Murino, V. (2017). Adversarial feature augmentation for unsupervised domain adaptation.

CoRR, abs/1711.08561.