Data Analytics and Visualization for Manufacturing Systems

Xinran Shi¹, Pengfei Chen¹, Yuchen Wen¹, Xiaowei Yue¹, and Yuqi Cao²

¹School of Industrial and Systems Engineering, Georgia Tech ²School of Music, Georgia Tech

Introduction

Big data analytics and visualization hold enormous potential for enabling smart manufacturing.

The objective of this research is to develop a Big Data analytics and visualization framework for complex manufacturing systems through systematic and deep integration of data analytics, visualization and manufacturing domain knowledge.

Fig. 1 Manufacturing Systems \Rightarrow Data Analytics \Rightarrow Data Visualization

Data from Bosch

Bosch records data at every step along its assembly lines, they have the potential to apply advanced big data analytics/visualization to improve these manufacturing processes. However, the intricacies of the data and complexities of the production line pose big challenges.

(more than 1 million parts samples, 4 production lines, 52 sections, more than a thousand features)

Data File	Description	Size
train_date.csv	Training set data features	2.7 GB
train_numeric.csv	Training set numeric features	2.0 GB
train_categorical.csv	Training set categorical features	2.5 GB

Approaches

Data cleaning for path identification

- OpenRefine failed to clean the dataset
- We used R to extract path (shown in Fig. 2)

Correlation Analysis

- Within-section correlation
- Between-section correlation
- Lay a foundation for causality assessment

Fig. 2 Flowchart for path identification

Modeling

- Ward hierarchical clustering for failures
- Random forest
- Logistic regression

Visualization

 D3 user interface Fig. 3 (a) whole cluster correlation map (b) local correlation map

Experiments and Results

The proposed Big Data analytics and visualization methodology consists of following experimental results.

- Identify the global and local correlation map (shown in Fig. 3)
- Identify the key sections (40, 43, 49, 50) that result in large failure rate (shown in Fig. 4)
- Develop an interactive interface for visualization (shown in Fig. 5)

Fig. 5 Interactive interface via D3

Summary and Deliverables

- A systematic framework for big data analytics and visualization has been developed for smart manufacturing systems
- The global/local correlation map, hierarchical clustering, and modeling are explored
- We provide an interactive D3 interface for manufacturing engineers

Future Work: Cloud-Based Smart Manufacturing

A cloud-based data analytics and visualization architecture will be utilized for smart manufacturing

Fig. 6 Cloud-based Smart Manufacturing Architecture

References

- 1) Kaggle, "Bosch Production Line Performance," 2016. [Online]. Available: https://www.kaggle.com/c/boschproduction-line-performance.
- 2) Maclean, M., 2018. D3 Tips and Tricks v3.x. Interactive Data Visualization in a Web Browser.
- Murray, S., 2017. Interactive Data Visualization for the Web: An Introduction to Designing with D3.
- 4) Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.