

COLTON FRUHLING

+1 402 238 8628

colton.fruhling@huskers.unl.edu LinkedIn: Colton Fruhling Extreme Light Laboratory

RESEARCH INTEREST

During my graduate training, I worked on extreme nonlinear interactions between light and matter with an emphasis on nonlinear Thomson scattering. My research has involved a mix of ideas and techniques from many research fields, for example, correlation 'ghost' imaging of relativistic electron beams with Thomson scattering, or imparting orbital angular momentum to x-rays generated from relativistic light-matter interactions for space communication. Going forward in my career, I am interested in all aspects of nonlinear optical phenomena, not only at those extreme intensities. I have always made it a point to attend any university seminar or international conference session where nonlinear optical topics are discussed.

EDUCATION

University of Nebraska Lincoln

PhD, Physics and Astronomy

Dissertation title: Fundamental Studies of Nonlinear Thomson Scattering Advisor: Dr. Donald Umstadter - Director of the Extreme Light Laboratory

University of Nebraska-Lincoln

MS, Physics and Astronomy

Colorado State University

BS, Physics and Astronomy Graduated with Honors

Thesis title: Aparatus for the study of magnetic material in the

presence of out-of-plane field with optical access

Advisor: Dr. Kristen Buchanan

DOCTORAL PROJECTS

Listed below are some of the major projects I worked on during my doctoral research.

Highly Nonlinear Thomson Scattering

- Developed novel technique to overlap terawatt micron sized laser fields with femtosecond temporal resolution using sub-micron imaging and spectral interferometry
- Measured x-rays produced by multiphoton scattering from single electron in relativistic laser field
- Wrote first nonlinear Thomson code including coherency effects to study possibility of information transfer between electrons and photons during interaction

Optical Injection for Laser Wakefield Accelerator

- · Achieved micron-femtosecond spatiotemporal overlap inside an underdense plasma
- Demonstrated the first evidence for optically injected electron beams via ponderomotive scattering

Nonlinear Thomson Scattering from Elliptically Polarized Light

• Studied with experiment the effect of laser polarization on polarizatio of emitted harmonics in nonlinear Thomson Scattering

Expected: May 2021 Lincoln, NE

> May 2019 Lincoln, NE

May 2014 Fort Collins, CO · Designed an experimental setup utilizing single photon counting for high precision measurements

Petawatt Laser System Management

- Worked closely with a highly skilled team to keep complex laser system in peak performance. Flexibility of daily goals and
 perseverance are required for troubleshooting the many subsystems
- Alignment of Kerr lens mode-locking oscillator and multipass amplifiers, Alignment and modeling of Offner strecther, and intimate knowledge of ultrafast optical systems and chirp pulse amplification laser systems
- Collaborative designing and fabrication of piezoelectric driven automatic alignment system to improve laser system stability

RESEARCH

Research Assistant 2014-Present

University of Nebraska-Lincoln: Extreme Light Laboratory: Doctoral research on the nonlinear interaction of light and matter

Research Assistant 2013 - 2014

Colorado State University: Designed apparatus for applying magnetic field to material with optical access and modeled spin waves with Matlab

Research Intern 2012

US Strategic Command: Part of a diverse research team providing recommendations on best practices for collaborating with sensitive material

COLLABORATIONS

Working with a large laser system as a research assistant allowed for many opportunities to collaborate with scientists across the US.

Polarization-Resolved Measurements of Nonlinear Thomson Scattering

2020

Brigham Young University: Justin Peatross and Michael Ware

- Measured intensity scalings for polarization resolved Thomson scattering showing that matching between spot size and pulse duration is critical for most efficient interaction
- Coordinated multiple experiments simultaneously to successful publications

Radio frequency electromagnetic pulses from ultrashort pulse electron beam interactions

2020

Air Force Research Laboratory: Jennifer Elle

- Created and constructed experimental setup for successful laser wakefield electron beam generation in one week's time
- Operated and optimized laser wakefield driven electron beams

Relativistic intensity diagnostics for strong-field QED experiments

2019

Stanford University: David Reiss and Philip Bucksbaum

 Proposed suggestions for measurements of relativistic electrons generated by relativistic ponderomotive scattering and assisted in experimental setup

Laser wakefield betatron enhancment with tailored density profile

2019

University of Nebraska-Lincoln: Matthias Fuchs

• Aligned and characterized entire terawatt laser system for experimental use

HONORS AND AWARDS

GAANN Fellowship 2015-2017

Awarded to graduate students with excelent records pursuing highest degree in areas of national need

Best poster presentation 2017

High power Laser workshop: Stanford Linear Accelerator Center

TEACHING EXPERI	FN	CF
-----------------	----	----

Tutoring Physics 212: Introductory Electricity and Magnetism	2019 - 2020
Recitation Teaching Assistant	2015 - 2016
Physics 212: Introductory Electricity and Magnetism	
Lab Teaching Assistant Physics 211: Classical Mechanics	Fall 2014
SCIENTIFIC OUTREACH	
Physicist proposes way to record shutter speeds of molecule-glimpsing 'cameras' University of Nebraska-Lincoln news	2020
Sunday with the Scientists	2017
Shared high powered laser physics with community of Lincoln	
Saturday Science Led elementary aged students in hands on experiments	2015
COMPUTER SKILLS	
Programming: Matlab, Python (NumPy, SciPy, Matplotlib), Fortran Software: Monte Carlo (CAIN), Particle-in-cell (EPOCH), Finite Element (OpenFOAM), Ray Tracing (BEAM4) Document Creation: Microsoft Office Suite, LaTex, Illustrator	
Conference Posters and Presentations	
Fruhling, C. (2020). Measuring Attosecond Electron Pulses with Coherent Nonlinear Thomson Scattering. <i>Bulletin of the American Physical Society</i> .	2020
Fruhling C. , Golovin G., Banerjee S. & Umstader D.(2019), Probing wake structure of nonlinear wakes via optical phase-space excitation, <i>Anomalous Absorption Conference</i>	2019
Fruhling C. , Golovin G & Umstadter D.(2018), Experimental demonstration of optical injection of electrons into a laser wakefield, 6 th <i>High-Power Laser Workshop</i>	2018
Fruhling C. , Yan W & Umstadter D.(2017), Highly Nonlinear Thomson Scattering X-ray Source and Its Applications, 5 th <i>High-Power Laser Workshop</i>	2017
Fruhling, C. , Yan W., & Umstadter D.(2016), Highly Nonlinear Inverse Compton Scattering, <i>International Committee of Ultra-High Intensity Lasers</i>	2016
Publications	
Fruhling, C. , Schulzke C., Romero M., Wang J., Ware M., Peatross J., & Umstadter D. (2021), Polarization-Resolved Nonlinear Thomson Scattering of Elliptically Polarized Light, <i>Physical review X</i>	2021

Fruhling, C. , Golovin, G., & Umstadter, D. (2020). Attosecond electron bunch measurement with coherent nonlinear Thomson scattering. <i>Physical Review Accelerators and Beams</i> , 23(7), 072802.	2020
Golovin, G., Horný, V., Yan, W., Fruhling, C. , Haden, D., Wang, J., & Umstadter, D. (2020). Generation of ultrafast electron bunch trains via trapping into multiple periods of plasma wakefields. <i>Physics of Plasmas</i> , 27(3), 033105.	2020
Haden, D., Golovin, G., Yan, W., Fruhling, C. , Zhang, P., Zhao, B., & Umstadter, D. (2020). High energy X-ray Compton spectroscopy via iterative reconstruction. <i>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 951, 163032.	2020
Golovin, G., Yan, W., Luo, J., Fruhling, C. , Haden, D., Zhao, B., & Umstadter, D. (2018). Electron Trapping from Interactions between Laser-Driven Relativistic Plasma Waves. <i>Physical review letters</i> , 121(10), 104801.	2018
Zhao, B., Banerjee, S., Yan, W., Zhang, P., Zhang, J., Golovin, G., Fruhling C. , & Umstadter, D. (2018). Control over high peak-power laser light and laser-driven X-rays. <i>Optics Communications</i> , 412, 141-145.	2018
Yan, W., Fruhling, C. , Golovin, G., Haden, D., Luo, J., Zhang, P., & Umstadter, D. (2017). High-order multiphoton Thomson scattering. <i>Nature Photonics</i> , 11(8), 514-520.	2017
Zhao B., Yan B., Zhang P., Banerjee S., Golovin G., Fruhling C. , & Umstadter D. (2016), A System to Control the Energy of a High-power Laser System with Application to X-ray Generation at Ultra-high Intensity, <i>Front. Opt.</i> (pp. JW4A-97)	2016

REFERENCES

Dr. Donald Umstadter	Dr. Sudeep Banerjee	Dr. Justin Peatross
University of Nebraska-Lincoln	Arizona State University	Bringham Young University
donald.umstadter@unl.edu	sudeep.banerjee@asu.edu	peat@byu.edu
1 402-472-8115	1 480-815-6323	1 801-422-5043