Approach_Zindi_UmojaHack India Income Prediction Challenge

Create a machine learning model to predict whether an individual earns above 50,000 in a specific currency or not.

- Basic exploratory data analysis using pandas, matplotlib, seaborn packages.
- Data pre-processing
 - Replace the numerical column's unknown values.
 - Clean the categorical column's unknown values.
 - Missing value mode imputation for the categorical columns,
 - o class
 - occupation_code_main
 - o is_hispanic
 - o country_of_birth_own
 - country_of_birth_father
 - country_of_birth_mother
 - migration_code_change_in_msa
 - migration_prev_sunbelt
 - o migration_code_move_within_reg
 - migration_code_change_in_reg

columns,
o age
wage_per_hour
o gains
o losses
stocks_status
importance_of_record
 Feature Engineering
Age check
 Group by numerical summary
 Missing value indicator
The final features for the model
o 1_age
2_gender
3_education
o 4_class
5_marital_status
o 6_race
7_is_hispanic
 8_employment_commitment
9_employment_stat
10_wage_per_hour
11_working_week_per_year

o Missing value mean imputation for the numerical

- 12_industry_code
- 13_industry_code_main
- 14_occupation_code
- 15_occupation_code_main
- 16_total_employed
- 17_household_stat
- 18_household_summary
- 19_vet_benefit
- o 20_tax_status
- o 21_gains
- o 22_losses
- 23_stocks_status
- o 24_citizenship
- 25_mig_year
- o 26_country_of_birth_own
- 27_country_of_birth_father
- 28_country_of_birth_mother
- 29_migration_code_change_in_msa
- 30_migration_prev_sunbelt
- 31_migration_code_move_within_reg
- 32_migration_code_change_in_reg
- 33_residence_1_year_ago
- o 34_importance_of_record
- 35_income_above_limit
- o 36_data

- 37_age_less_18
- o 38_age_isnull
- o 39_class_isnull
- 40_wage_per_hour_isnull
- 41_occupation_code_main_isnull
- o 42_gains_isnull
- 43_losses_isnull
- 44_stocks_status_isnull
- 45_migration_code_change_in_msa_isnull
- 46_migration_prev_sunbelt_isnull
- 47_migration_code_move_within_reg_isnull
- 48_migration_code_change_in_reg_isnull
- 49_residence_1_year_ago_isnull
- 50_income_above_limit_isnull
- 51_gender_count
- 52_education_count
- o 53_class_count
- o 54 marital status count
- o 55_race_count
- o 56_is_hispanic_count
- 57_employment_commitment_count
- o 58_industry_code_main_count
- o 59_occupation_code_main_count
- 60_household_stat_count
- o 61_household_summary_count

- 62_tax_status_count
- o 63_citizenship_count
- 64_country_of_birth_own_count
- 65_country_of_birth_father_count
- 66_country_of_birth_mother_count
- 67_migration_code_change_in_msa_count
- 68_migration_prev_sunbelt_count
- 69_migration_code_move_within_reg_count
- o 70_migration_code_change_in_reg_count
- 71_residence_1_year_ago_count
- 72_employment_stat_count
- 73_working_week_per_year_count
- 74_industry_code_count
- 75_occupation_code_count
- 76_total_employed_count
- 77_vet_benefit_count
- 78_mig_year_count
- o 79 income cat count
- o 80_age_mean
- o 81_age_median
- o 82_age_min
- o 83_age_max
- 84_wage_per_hour_mean
- 85_wage_per_hour_median
- o 86_wage_per_hour_min

- 87_wage_per_hour_max
- o 88_gains_mean
- o 89_gains_median
- o 90_gains_min
- 91_gains_max
- o 92_losses_mean
- o 93_losses_median
- o 94_losses_min
- 95_losses_max
- 96_stocks_status_mean
- o 97_stocks_status_median
- 98_stocks_status_min
- 99_stocks_status_max
- 100_importance_of_record_mean
- 101_importance_of_record_median
- 102_importance_of_record_min
- 103_importance_of_record_max
- Train the catboost classifier model and evaluated with f1 metric.
- Tune the probability threshold based on the validation data.

• The optimal threshold is: 0.3862

• Confusion matrix for train data

• Classification report for train data

	precision	recall	f1-score	support
Below limit	0.98	0.99	0.98	157201
Above limit	0.77	0.64	0.70	10398
accuracy			0.97	167599
macro avg	0.87	0.82	0.84	167599
eighted avg	0.96	0.97	0.96	167599

• Confusion matrix for validation data

• Classification report for validation data

	precision	recall	f1-score	support	
Below limit	0.97	0.98	0.98	39300	
Above limit	0.69	0.57	0.63	2600	
accuracy			0.96	41900	
macro avg	0.83	0.78	0.80	41900	
weighted avg	0.95	0.96	0.96	41900	

- Catboost model interpretation with SHAP
- Catboost SHAP feature importances

• Catboost – SHAP top feature impact

• SHAP Feature impact for single observation(class 0)

• SHAP Feature impact for single observation(class 1)

• Final score is 0.613205338