

Eric Han

eric_han@nus.edu.sg https://eric-han.com

Computer Science

T01 - Week 2

Introduction and Asymptotic Analysis

CS3230 TG19

Introduction and Asymptotic Analysis

Your Tutor Dr Eric Han

- > [Pioneer JC 2009-2010] Took 'A' levels and fell in love with Computing
 - >> H2 Computing, Interested in research and in Al.
- > [B.Com. NUS 2013-2018] Not so long ago I was in your seat
 - >> A*STAR Scholarship, Turing Programme
 - >> [University of Southern California, 2016] Student Exchange
- > [PhD. NUS 2018-2023] PhD in AI/ML
- >> My research is in AI/Machine Learning regarding optimization, scaling and robustness.
- > [Lecturer] Applied for jobs and got 2 Industry and another in NUS SoC
 - >> If you are interested to do a FYP, feel free to chat with me!
 - >> You are welcome to check my profile & research: https://eric-han.com
 - >> Some of the courses I taught: CS2109S(3), CS3244(1), CS1010(1), CS3217(1). CS3243(2), CS3203(5), CS2030(1)
 - >> Teaching this semester: CS3230(1), CS2103/T(1)

About CS3230: <insert personal exp. here>; Goal: Learn algorithms, do well.

Expectations / Commitment

Expectations of you

- Fill seats from the front.
- Good students are always prepared:
 - a. Attempt your Tutorial
 - b. Review lecture content
 - c. Be on time
- Refrain from taking pictures of the slides.
 - a. Learn to take good notes.
 - b. Slides/notes will be distributed; Created the main deck, with customizations...

Commitment from me

- Be available for your learning as much as possible.
- Strive to make the lessons interesting and fun.Pass on a good foundation in Algorithms (not just the A+).
- Any comments or suggestions for the lessons welcome!

CS3230 S2 24/25 Admin

- > **Grading** (20 marks, 5% of final grade):
 - >> Attendance (12 marks): 1 mark per session (12 total).
 - >> Participation (10 marks): 5 marks for each of two presentations. Identified by [P1/2/3].
- > Tutorial Discussion: Learning is social and I hope that we are able to build friendships in this class. Identified by [G].
- > Policies: Tutorials & Assignment Policy: Plagiarism (no Al tools).
- **Assignments**: Graded by me.
- > Consultations: Wed 10-11 AM.
- > Telegram Group: Join for updates.
- > Welcome Survey: Get to know you better.
- > Questions?: Use ChatGPT, Telegram Group / PM @Eric Vader.

Figure 1: Telegram Group

Figure 2: Welcome Survey

Figure 3: PPT Schedule

Asymptotic Analysis Ω, Θ, O

We say	if $\exists c, c_1, c_2, n_0 > 0$ s.t. $\forall n \geq n_0$	In other words
$f(n) \in O(g(n))$	$0 \le f(n) \le c \cdot g(n)$	g is an $oldsymbol{upper}$ bound on f
$f(n) \in \Omega(g(n))$	$0 \le c \cdot g(n) \le f(n)$	g is a lower bound on f
$f(n) \in \Theta(g(n))$	$0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$	g is a tight bound on f

Asymptotic Analysis o, ω

We say	if $\forall c>0$, $\exists n_0>0$ s.t. $\forall n\geq n_0$	In other words
$f(n) \in o(g(n))$	$0 \le f(n) < c \cdot g(n)$	g is a strict upper bound on f
$f(n)\in\omega(g(n))$	$0 \le c \cdot g(n) < f(n)$	g is a strict lower bound on f

Assume f(n), g(n) > 0, show:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\Rightarrow f(n)\in o(g(n)) \text{ — this has already been shown in lec01b}.$$

$$\lim_{n\to\infty} \lim_{q(n)} <\infty \Rightarrow f(n) \in O(g(n)) \text{ [P1]}$$

a
$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) \in \Theta(g(n))$$

d
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0 \Rightarrow f(n) \in \Omega(g(n))$$

a.
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) \in \omega(g(n))$$

Recap

Definition of Limit for functions

Assume f(n), q(n) > 0, show:

$$\lim_{n \to \infty} rac{f(n)}{g(n)} = 0 \Rightarrow f(n) \in o(g(n))$$
 — this has already been shown in lec01b.

b.
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) \in O(g(n))$$
 [P1]

c.
$$0<\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty\Rightarrow f(n)\in\Theta(g(n))$$
 d. $\lim_{n\to\infty}\frac{f(n)}{g(n)}>0\Rightarrow f(n)\in\Omega(g(n))$

$$= \lim_{n \to \infty} \frac{f(n)}{f(n)} - \infty \Rightarrow f(n) \in \mathcal{O}(a(n))$$

e.
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) \in \omega(g(n))$$

Recap

$$\lim f(n) = L \iff (\forall \epsilon > 0)(\exists n_0 > 0) (n > n_0 \implies |f(n) - L| < \epsilon).$$

➤ How to proof?

Answer 1b
$$\operatorname{Proof\ lim}_{n\to\infty} \tfrac{f(n)}{g(n)} < \infty \Rightarrow f(n) \in O(g(n)).$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = z \implies$$

$$\Rightarrow$$

$$\implies z$$

$$\implies \frac{f(n)}{g(n)} \le c$$

$$\Rightarrow$$
 (

$$\Rightarrow (\forall \epsilon > 0)(\exists n_0 > 0) f(n) \le \Rightarrow (\exists n_0 > 0) f(n) \le c \cdot g(n)$$

 $\lim_{n\to\infty}\frac{f(n)}{g(n)}=z\implies \quad (\forall \epsilon>0)(\exists n_0>0)\; \left|\frac{f(n)}{g(n)}-z\right|<\epsilon,$ $\implies -\epsilon < \frac{f(n)}{g(n)} - z < \epsilon$

 $\implies f(n) \in O(q(n)).$

$$\implies z - \epsilon < \frac{f(n)}{g(n)} < z + \epsilon$$

(Let
$$c = z + \epsilon + \cdots$$
)
$$(g(n) > 0)$$

(By definition of O notation)

(By definition)

$$egin{aligned} ig(g(n)>0ig) \ ig(\epsilon>0 \ ext{arbitrary} \end{aligned}$$

$$\implies (\forall \epsilon > 0)(\exists n_0 > 0) f(n) \le c \cdot g(n)$$

$$\implies (\exists n_1 > 0) f(n) \le c \cdot g(n)$$

8/25

Answer 1c

 $\text{Proof } 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \implies f(n) \in \Theta(g(n)).$

$$0<\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty\implies f(n)\in\Theta(g(n)).$$
 (Upper bound)
$$\text{and}\quad f(n)\in\Omega(g(n)).$$
 (Lower bound)
$$\implies f(n)\in\Theta(g(n)).$$
 (By definition of Θ notation)

Answer 1d

 $\operatorname{Proof\ lim}_{n\to\infty} \tfrac{f(n)}{g(n)} > 0 \implies f(n) \in \Omega(g(n)).$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=z\implies \lim_{n\to\infty}\frac{g(n)}{f(n)}=\frac{1}{z}, \qquad \qquad \text{(Flip }f(n)\text{ and }g(n)\text{)}$$

$$\Longrightarrow \quad g(n)\in O(f(n)), \qquad \text{(By the explanation above)}$$

$$\Longrightarrow \quad f(n)\in \Omega(g(n)). \quad \text{(By complementarity property)}$$

Answer 1e

 $\operatorname{Proof} \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \implies f(n) \in \omega(g(n)).$

$$\begin{split} \lim_{n\to\infty}\frac{f(n)}{g(n)} = \infty &\implies &\lim_{n\to\infty}\frac{g(n)}{f(n)} = 0, & \text{(Flip } f(n) \text{ and } g(n)\text{)} \\ &\Longrightarrow &g(n) \in o(f(n)), & \text{(By the definition of } o \text{ notation)} \\ &\Longrightarrow &f(n) \in \omega(g(n)). & \text{(By complementarity property)} \end{split}$$

Moral of the story

Be lazy, proof a single case and use properties.

Assume f(n), g(n) > 0, show:

- Reflexivity
 - $f(n) \in O(f(n))$
 - $f(n) \in \Omega(f(n))$
 - $f(n) \in \Theta(f(n))$
- ь. Transitivity [P2]
 - $f(n) \in O(q(n))$ and $q(n) \in O(h(n))$ implies $f(n) \in O(h(n))$
 - \rightarrow Do the same for Ω , Θ . o. ω
- c. Symmetry
- $f(n) \in \Theta(q(n))$ iff $q(n) \in \Theta(f(n))$
- d. Complementarity
 - $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$
 - $f(n) \in o(q(n))$ iff $q(n) \in \omega(f(n))$

Answer 2a

Reflexivity

- $f(n) \in O(f(n))$
 - \rightarrow Taking c=1 (any constant ≥ 1), $n_0=1$, we have $\forall n\geq n_0$,
 - $f(n) < (1 \cdot f(n) = c \cdot f(n)).$
 - $f(n) \in \Omega(f(n))$
 - \Rightarrow Taking c=1 (any positive constant ≤ 1), $n_0=1$, we have $\forall n\geq n_0$, $(c \cdot f(n) = 1 \cdot f(n)) < f(n).$
 - $f(n) \in \Theta(f(n))$
 - \rightarrow Taking $c_1 = 1$ (any positive constant < 1), $c_2 = 1$, $n_0 = 1$, we have $\forall n \geq n_0$,
 - $(c_1 \cdot f(n)) = 1 \cdot f(n) < f(n) < (1 \cdot f(n)) = c_2 \cdot f(n)$.

Answer 2h

Proof $f(n) \in O(g(n)), g(n) \in O(h(n)) \implies f(n) \in O(h(n))$ $f(n) \in O(g(n)) \implies (\exists c_{fg} > 0, n_{0fg} > 0) (\forall n \ge n_{0fg}),$

$$\begin{split} f(n) & \leq c_{fg} \cdot g(n). \\ g(n) & \in O(h(n)) \implies \quad (\exists c_{gh} > 0, n_{0gh} > 0) (\forall n \geq n_{0gh}), \end{split}$$

 $g(n) \leq c_{ah} \cdot h(n)$. From $(1), (2) \implies (\forall n \ge \max(n_{0fq}, n_{0qh})),$

$$f(n) \le c_{fg} \cdot g(n) \le c_{fg} \cdot c_{gh} \cdot h(n)$$

$$\Rightarrow f(n) \le c_{fg} \cdot g(n) \le c \cdot h(n)$$

$$\implies \quad f(n) \leq c_{fg} \cdot g(n) \leq c \cdot h(n) \\ \implies \quad (\forall n > n_0)$$

$$\implies (\forall n \ge n_0)$$
$$f(n) < c_{f_0} \cdot q($$

$$f(n) \le c_{fg} \cdot g(n)$$

$$f(n) \le c_{fg} \cdot g(r)$$

$$\implies f(n) \le c \cdot h(n)$$

$$f(n) \le c_{fg} \cdot g(n) \le c \cdot h(n)$$

 $\implies f(n) \in O(h(n)).$

$$n) \le c \cdot h(n)$$

(Let
$$n_0 =$$

(Let
$$n_0 = \max(n_{0fg}, n_{0gh})$$
)

(Let
$$c = c_{fg} \cdot c_{gh}$$
)

(1)

(2)

13/25

Do the same for Ω , Θ , o, ω

▶ Same, just change \leq to \geq , =, <, >, respectively. Here, = for Θ denotes that we need to do both \geq and \leq bounds.

Answer 2c

Prove $f(n) \in \Theta(q(n)) \iff q(n) \in \Theta(f(n))$ $f(n) \in \Theta(q(n)) \implies (\exists c_1, c_2 > 0, n_0 > 0) (\forall n \ge n_0),$

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n).$$
 From $f(n) \leq c_2 \cdot g(n) \implies \frac{1}{c_2} \cdot f(n) \leq g(n)$

$$\implies c_2 \\ \Longrightarrow c_1' \cdot f(n) \le g(n)$$

$$\implies \quad c_1 \cdot f(n) \leq g(n)$$
 From $c_1 \cdot g(n) \leq f(n) \implies \quad g(n) \leq \frac{1}{c_1} \cdot f(n).$

$$\begin{aligned} &\operatorname{From} \, c_1 \cdot g(n) \leq f(n) \implies & g(n) \leq \frac{1}{c_1} \cdot f(n). \\ \\ &\Longrightarrow & g(n) \leq c_2' \cdot f(n) \end{aligned}$$

$$\Rightarrow g(n) \leq c_1 \qquad f(n)$$

$$\Rightarrow g(n) \leq c_2' \cdot f(n)$$

$$c_1 \\ \Longrightarrow g(n) \le c_2' \cdot f(n)$$

$$\implies \quad g(n) \leq c_2' \cdot f(n)$$
 From $(1), (2) \implies \quad c_1' \cdot f(n) \leq g(n) \leq c_2' \cdot f(n)$

 $\implies q(n) \in \Theta(f(n)).$

(Let $c_2' = \frac{1}{c_1}$), (2)

(Divide by c_1)

(Divide by c_2)

(Let $c_1' = \frac{1}{c_2}$), (1)

Proof $f(n) \in O(q(n)) \iff q(n) \in \Omega(f(n))$

Answer 2d

Forward Direction: Suppose $f(n) \in O(g(n))$

$$\begin{split} f(n) \in O(g(n)) \implies & (\exists c > 0, n_0 > 0) (\forall n \geq n_0), \\ f(n) \leq c \cdot g(n) \end{split}$$

$$\implies \quad \frac{1}{c} \cdot f(n) \le g(n)$$

$$\Rightarrow$$

Reverse Direction: Suppose
$$g(n) \in \Omega(f(n))$$

$$g(n) \in \Omega(f(n)) \implies (\exists c' > 0, n_0 > 0)(\forall n \ge n_0),$$

$$c' \cdot f(n) \le g(n)$$

$$f(n)) \implies$$

$$\text{pose } g(n) \in \Omega(f(n))$$

 $c' \cdot f(n) < q(n)$

 $f(n) < c \cdot q(n)$

 $\implies f(n) \le c \cdot g(n) \implies f(n) \in O(g(n)). \quad (\text{Let } c = \frac{1}{c'})$

$$\implies c' \cdot f(n) \le g(n) \implies g(n) \in \Omega(f(n)). \quad (\text{Let } c' = \frac{1}{c})$$

(Divide by
$$c$$
)

Divide by
$$c$$
)

$$r = \frac{1}{2}$$

> Same as above, just change \leq to <.

Which of the following statement(s) is/are True?

- a. $3^{n+1} \in O(3^n)$
- **b.** $4^n \in O(2^n)$
- $2^{\lfloor \log n \rfloor} \in \Theta(n)$ (we assume \log is in base 2)
- **II.** For constants i, a > 0, we have $(n+a)^i \in O(n^i)$

Recap

How to go about showing True/False?

Answer 3a

 $3^{n+1} \in O(3^n)$: True.

- ightharpoonup Taking $c=3, n_0=1$, we have $\forall n\geq n_0$,
- $3^{n+1} \le 3 \cdot 3^n = c \cdot 3^n.$
- $> 3^{n+1} \in O(3^n).$

Answer 3b

 $4^n \in O(2^n)$: False.

- For all $c \ge 1, n_0 = c$, we have $\forall n \ge n_0$,
- $(4^n=(2^2)^n=(2^n)^2=2^n\cdot 2^n)\geq c\cdot 2^n$, i.e., we cannot upper bound 4^n with constant times 2^n .

Answer 3c

 $2^{\lfloor \log n \rfloor} \in \Theta(n)$ (we assume \log is in base 2): True.

- \blacktriangleright Taking $c_1=\frac{1}{2}, c_2=1, n_0=1$ (log 0 is undefined), we have $\forall n\geq n_0$,
- $(c_1 \cdot n = \frac{1}{2} \cdot n) \le 2^{\lfloor \log n \rfloor} \le (1 \cdot n = c_2 \cdot n).$
- $\geq 2^{\lfloor \log n \rfloor} \in \Theta(n).$

Answer 3d

For constants i, a > 0, we have $(n + a)^i \in O(n^i)$: True.

- ightharpoonup Taking $c=2^i, n_0=a$, we have $\forall n\geq n_0$,
- $(n+a)^i \le (n+n)^i = (2n)^i = 2^i \cdot n^i = c \cdot n^i.$
- $(n+a)^i \in O(n^i).$

- $2^{\log_2 n} \in$
 - a. O(n)
 - b. $\Omega(n)$
 - c. $\Theta(\sqrt{n})$
 - d. $\omega(n)$

Recap

> Inverse Property of Logarithms

Question 4

Which of the following statement(s) is/are True?

- $2^{\log_2 n} \in$
 - a. O(n)
 - b. $\Omega(n)$
 - c. $\Theta(\sqrt{n})$
 - d. $\omega(n)$

Recap

Inverse Property of Logarithms

- $2^{\log_2 n} \in$
 - a. O(n)
 - b. $\Omega(n)$ c. $\Theta(\sqrt{n})$
 - d. $\omega(n)$

Recap

Inverse Property of Logarithms

 $2^{\log_2 n}=n\in O(n)$, and also $n\in \Omega(n)$, but $n\notin \omega(n)$ (why? - if you can answer, you understand ω,Ω).

 $a^{\log_a b} = b$

Question 4 Variant [G]

How about $2^{\log_4 n} \in ?$

How about $2^{\log_4 n} \in ?$

Answer

First, rewrite the logarithm from one base to another base:

$$\log_4 n = \frac{\log_2 n}{\log_4 4} = \frac{\log_2 n}{2}$$
,

- O(n) True.
 - $2^{\log_4 n} = \sqrt{n} \in O(n)$, taking $c = 1, n_0 = 1$.
- $\Omega(n)$ False.
- $\Theta(\sqrt{n})$ True. $2^{\log_4 n} = \sqrt{n} \in \Theta(\sqrt{n})$, taking $c_1 = 1$ (or smaller), $c_2 = 1$ (or larger), $n_0 = 1$.
- **d.** $\omega(n)$ False.

Rank the following functions by their order of growth. (But if any two (or more) functions have the same order of growth, group them together).

- $f_1(n) = \log n$
- $f_2(n) = n!$
- $f_3(n) = 2^n + n$ $f_4(n) = n^{2.3} + 16n + f_1(n)$
- $f_5(n) = \log(n^2)$
- $f_{\epsilon}(n) = \ln(n^{2n})$

Answer

- - $f_1(n) = \log n$
 - $f_2(n) = n!$
 - $f_3(n) = 2^n + n$ $f_2(n) \in \Theta(2^n)$
- $f_4(n) = n^{2.3} + 16n + f_1(n)$ $f_4(n) \in \Theta(n^{2.3}).$
- $f_5(n) = \log(n^2)$
- $f_5(n) = \log(n^2) = 2\log n$, hence the same order of growth as $f_1(n)$.

Answer

 $f_1(n) = \log n$

 $f_2(n) = n!$

 $f_3(n) = 2^n + n$ $f_2(n) \in \Theta(2^n)$

 $f_4(n) = n^{2.3} + 16n + f_1(n)$ $f_4(n) \in \Theta(n^{2.3}).$

 $f_{\rm E}(n) = \log(n^2)$

 $f_{\rm E}(n) = \log(n^2) = 2\log n$, hence the same order of growth as $f_1(n)$.

 $f_6(n) = \ln(n^{2n})$ $f_{\epsilon}(n) = 2n \ln(n) \in \Theta(n \ln n).$

Ordering f_2 , f_3 :

 $f_2(n) = n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1.$ ightharpoonup simplified $f_2(n) = 2^n = 2 \cdot 2 \cdot 2 \cdot \dots \cdot 2$.

• can show by induction that for $n \ge 4$, $n! \ge \frac{n}{4} \cdot 2^n$.

Therefore, with respect to order of growth, we have:

$$(f_1(n) = f_5(n)) < f_6(n) < f_4(n) < f_2(n) < f_2(n)$$

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

- Visualize the growth of various functions in Q5 and

Figure 4: Functions compared - visualization to aid understanding/not proof.