Question Number	Markscheme	Marks
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(a)	600 kg $m \text{ kg}$ (600+ m) kg CLM: $600 \times 4 - m \times 2 = (600 + m) \times 0.5$	M1 A1 ↓
	$\Rightarrow m = 840 \text{kg}$	M1 A1 (4)
(b)	I = 600 (4 - 0.5)	$M1 \rightarrow M1$
	$= \underline{2100 \text{ Ns}}$	A1 (3)
2 (a)	0.8 0 0.2	
	M(C): $P \times 1.8 + 100 \times 0.8 = 2200 \times 0.2$	M1 A2, 1, 0
42	$\Rightarrow P = \underline{200 \text{ N}}$	A1 (4)
(b)	$ \begin{array}{c c} 120 \\ \hline 100 \end{array} $	
	M(C): $120(2-x)+100(1-x)=2200 x$	M1 A2, 1, 0 ↓
	$\Rightarrow 340 = 2420x \Rightarrow x \approx 14 \text{ cm} \qquad \text{(Solve x)}$	M1 A1 (5)

Question Number	Markscheme	Marks	
3 (a)	a mg		
	$\mathbf{R}(): R = mg \cos 30$		В1
	$R($): $ma = mg \sin 30 - F$	M1	A1
	F = 0.4 R used	\downarrow	B1
	Eliminate R $ma = mg \sin 30 - 0.4$. $mg \cos 30$	M1 ↓	
	Solve: $a = 4.9 - 0.4 \times 9.8 \times \sqrt{3} / 2$	M1	
	$\approx 1.5 \text{ or } 1.51 \text{ m s}^{-2}$		A1 (7)
(b)	$v^2 = 2 \times 1.51 \times 3 \Rightarrow v = 3 \text{ or } 3.01 \text{ m s}^{-1}$	M1	A1 (2)
(c)	$1.5/1.51\mathrm{ms}^{-2}$ (same as (a))	₽∕Î	(1)
4 (a)	μR $2mg$ T $3mg$		
	$\mathbf{R} \uparrow \text{ for } C : 2T \sin \theta = 3 mg$	M1	A1
	$\sin\theta = \frac{3}{5} \implies T = \frac{5}{2} mg (*)$		A1 (3)
(b)	$R \uparrow \text{ for } A \text{ or } B$: $R = 2mg + T \sin \theta$	M1 ↓	
	$=2mg+\frac{5}{2}mg.\frac{3}{5} = \frac{7}{2}mg$	V M1	A1
	$R \rightarrow \text{for } A \text{ or } B : T \cos \theta = \mu R$	M1 ↓ ↓	-
	Solve to get μ as number: $\frac{5}{2} mg.\frac{4}{5} = \mu.\frac{7}{2} mg \Rightarrow \mu = \frac{4}{7}$ (Accept 0.57 awrt)	↓ ↓ M1	A1 (7)

Question Number	Markscheme	Marks
5 (a)	$A: T - 4g \sin 30 = 4a$	M1 A1
	$R \qquad T \qquad T \qquad a \qquad B: 3g - T = 3a$	M1 A1
	$\Rightarrow T = \frac{18g}{7} = 25.2 \text{ N}$	M1 A1 (6)
(b)	$R = 2T\cos 30$	M1 A1
	$R \not L$ $\approx 44 \text{ or } 43.6 \text{ N}$	A1
		(3)
(c)	(i) String has no weight/mass	B1
	(ii) Tension in string constant, i.e. same at A and B	B1 (2)
6 (a)	After 10 s, speed = $1.2 \times 10 = 12 \text{ m s}^{-1}$	B1
	After next 24 s, $v = "u + at" = 12 + 0.75 \times 24 = 30 \text{ m s}^{-1}$	M1 A1 (3)
(b)	$v \uparrow$ Shape $0 \le t \le 34$	B1
	Shape $t \ge 34$	B1
	Figures	B1
	$\begin{array}{ c c c c c }\hline 10 & 34 & & t \\\hline \end{array}$	
(c)	Distance = $\frac{1}{2} \times 10 \times 12$, $+\frac{1}{2} (30+12) 24$	B1, M1 A1
	= 60 + 504 = 564 m	A1
(d)	Distance travelled decelerating = $\frac{1}{2} \times 30 \times 10$	(4) B1
	$564 + 30T + \frac{1}{2} \times 30 \times 10 = 3000$	M1 A1√
	$\Rightarrow T = \underline{76.2 \text{ s}}$	A1 (4)

Question Number	Markscheme	Marks
7 (a)	$\tan \theta = \frac{3}{5} \Rightarrow \theta = 031^{\circ}$	M1 A1
(b)	$\mathbf{a} = 9t \; \mathbf{j}$	(2) B1
	$\mathbf{b} = (-10 + 3t)\mathbf{i} + 5t \mathbf{j}$	M1 A1
(c)	B south of A \Rightarrow $-10 + 3t = 0$	(3) M1
	$t = 3\frac{1}{3} \Rightarrow \underline{1520 \text{ hours}}$	A1 (2)
(d)	$\mathbf{AB} = \mathbf{b} - \mathbf{a} = (3t - 10)\mathbf{i} + 5t \mathbf{j}$	M1 A1 ↓
	$d^{2} = \left \mathbf{b} - \mathbf{a} \right ^{2} = (3t - 10)^{2} + 16t^{2}$	M1
	$=25t^2-60t+100 (*)$	A1
(e)	$d = 10 \implies d^2 = 100 \implies 25t^2 - 60 t = 0$	(4) M1
	$\Rightarrow t = (0 \text{ or}) 2.4$	A1
	\Rightarrow time 1424 hours	A1
		(3)