

FCC TEST REPORT

Product Name: Mobile Phone

Trade Mark: BLU

Model No.: VIVO ONE PLUS 2019

Report Number: 180814012RFC-3

Test Standards: FCC 47 CFR Part 15 Subpart C

FCC ID: YHLBLUVOONEPS19

Test Result: PASS

Date of Issue: October 15, 2018

Prepared for:

BLU Products, Inc. 10814 NW 33rd St#100 Doral, FL33172

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:

Approved by:

Henry Lu

Project Engineer

// /

Billy Li

Technical Director

Reviewed by:

Kevin Liang

Assistant Manager

Date:

October 15_2018

Unionirust

Version

Version No.	Date	Description
V1.0	October 15, 2018	Original

CONTENTS

1.	GENE	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	
	1.2	EUT Information	
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	7
	1.8	DEVIATION FROM STANDARDS	7
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
		OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	1.11	MEASUREMENT UNCERTAINTY	8
2.	TEST	SUMMARY	(
2. 3.		PMENT LIST	
		CONFIGURATION	
т.	/-		
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	
	4.4	PRE-SCAN	
	4.5	TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
	4.0	4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	18
	5.1	REFERENCE DOCUMENTS FOR TESTING	15
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER.	
	5.4	6 DB BANDWIDTH	
	5.5	Power Spectral Density	
	5.6	CONDUCTED OUT OF BAND EMISSION	
	5.7	RADIATED SPURIOUS EMISSIONS.	
	5.8	BAND EDGE MEASUREMENTS (RADIATED)	
	5.9	CONDUCTED EMISSION	
۱۵ ۲		X 1 PHOTOS OF TEST SETUP	
API		X 1 PHOTOS OF TEST SETUP	

Page 4 of 54 Report No.: 180814012RFC-3

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant: BLU Products, Inc.	
Address of Applicant: 10814 NW 33rd St#100 Doral, FL33172	
Manufacturer:	BLU Products, Inc.
Address of Manufacturer:	10814 NW 33rd St#100 Doral, FL33172

1.2 EUT INFORMATION

1.2.1 General Description of EUT

.z.i General Descripti	OII OI LOI				
Product Name:	Mobile Phone	Mobile Phone			
Model No.:	VIVO ONE PLUS 20	VIVO ONE PLUS 2019			
Add. Model No.:	N/A				
Trade Mark:	BLU				
DUT Stage:	Identical Prototype				
	GSM Bands:	GSM850/1900			
	UTRA Bands:	: Band II/ Band IV/ Band V			
EUT Supports Function:	E-UTRA Bands:	RA Bands: FDD Band 2/ Band 4/ Band 5/ Band 7/ Band 12/ Band 17			
EUT Supports Function.	O A OUT IOM Dand	IEEE 802.11b/g/n			
	2.4 GHz ISM Band:	Bluetooth V4.0			
	RNSS Bands:	1559 MHz to 1610 MHz	GPS		
IMEI Code:	351812051133976, 35181051133977; 351812051133984, 35181051133985				
Sample Received Date:	August 15, 2018				
Sample Tested Date:	August 15, 2018 to August 18, 2018				

Page 5 of 54 Report No.: 180814012RFC-3

1.2.2 Description of Accessories

Adapter			
Trade Mark:	BLU		
Model No.:	US-ZC-1500		
Input:	100-240 V~50/60 Hz 0.3 A		
Output:	5.0 V == 1.5 A		
AC Cable:	N/A		
DC Cable:	N/A		

Battery			
Trade Mark:	BLU		
Model No.: C876444300L			
Battery Type:	Lithium-ion Rechargeable Battery		
Rated Voltage:	3.8 Vdc		
Rated Capacity:	3000 mAh		

Cable					
Description:	USB Micro-B Plug Cable				
Cable Type:	Shielded without ferrite				
Length:	1 Meter				

Earphone				
Description:	3.5 mm AUX			
Cable Type:	Unshielded without ferrite			
Length:	1.2 Meter			

Page 6 of 54 Report No.: 180814012RFC-3

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band	2400 MHz to 2483.5 MHz	
Frequency Range:	2412 MHz to 2462 MHz	
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40	
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM(64-QAM, 16-QAM, QPSK, BPSK) IEEE 802.11n-HT20: OFDM(64-QAM, 16-QAM, QPSK, BPSK) IEEE 802.11n-HT40: OFDM(64-QAM, 16-QAM, QPSK, BPSK)	
Data Rate: IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n-HT20: Up to MCS7 IEEE 802.11n-HT40: Up to MCS7		
Number of Channels:	IEEE 802.11b: 11 IEEE 802.11g: 11 IEEE 802.11n-HT20: 11 IEEE 802.11n-HT40: 7	
Channel Separation: 5 MHz		
Antenna Type:	FPCB Antenna	
Antenna Gain:	1.67 dBi	
Maximum Peak Power: IEEE 802.11b: 17.69 dBm IEEE 802.11g: 19.27 dBm IEEE 802.11n-HT20: 18.15 dBm IEEE 802.11n-HT40: 18.95 dBm		
Normal Test Voltage:	120V~50 Hz/ 240V~60 Hz/ 3.8 V Battery	

1.4 OTHER INFORMATION

I TOTTIER IN OR	W/ 11011			
Operation Frequency Each of Channel				
IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20	f = 2407 + 5k MHz, k = 1,,11			
IEEE 802.11n-HT40	f = 2407 + 5k MHz, k = 3,,9			
Note:				
	pperating frequency (MHz);			
k is the o	pperating channel.			

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
		-		

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

Page 7 of 54 Report No.: 180814012RFC-3

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

Page 8 of 54

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at

Report No.: 180814012RFC-3

approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases					
Test Item	Test Requirement	Test Method	Result		
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS		
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Clause 6.2	PASS		
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013 Clause 11.9.1.3	PASS		
6dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013 Clause 11.8.1	PASS		
Power Spectral Density	FCC 47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013 Clause 11.10.2	PASS		
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Clause 11.11	PASS		
Radiated Spurious Emissions	ed Spurious FCC 47 CFR Part 15 Subpart C Section ANSI C63.10-2013		PASS		
Band Edge Measurements (Radiated)	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Clause 11.13	PASS		

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018		
>	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018		
>	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 22, 2017	Dec. 22, 2018		
>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 17, 2017	Dec. 17, 2018		
>	Preamplifier	HP	8447F	2805A02960	Dec. 10, 2017	Dec. 10, 2018		
>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019		
>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Dec. 17, 2017	Dec. 17, 2018		
>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A		
>	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	June 06, 2018	June 06, 2019		
>	Test Software	Audix	e3	Software Version: 9.160323				

	Conducted Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)	
>	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 10, 2017	Dec. 10, 2018	
>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 10, 2017	Dec. 10, 2018	
>	LISN	R&S	ESH2-Z5	860014/024	Dec. 10, 2017	Dec. 10, 2018	
	LISN	ETS-Lindgren	3816/2SH	00201088	Dec. 10, 2017	Dec. 10, 2018	
>	Test Software	Audix	e3	Software Version: 9.160323			

	Conducted RF test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec.10, 2017	Dec. 10, 2018		
>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 10, 2017	Dec. 10, 2018		
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 10, 2017	Dec. 10, 2018		

Page 11 of 54 Report No.: 180814012RFC-3

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests				
Toot Condition	Ambient				
Test Condition	Temperature (°C)	Voltage	Relative Humidity (%)		
NT/NV	+15 to +35				
Remark: 1) NV: Normal Voltage; NT: Normal Temperature					

4.2 TEST CHANNELS

Mode	Ty/Dy Eroquonov	Test RF Channel Lists			
iviode	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)	
IEEE 802.11b	2412 MHz to 2462 MHz	Channel 1	Channel 7	Channel 11	
IEEE 002.110	2412 WITZ 10 2402 WITZ	2412 MHz to 2462 MHz 2412 MHz	2437 MHz	2462 MHz	
IEEE 802.11g	2412 MHz to 2462 MHz	Channel 1	Channel 7	Channel 11	
		2412 MHz	2437 MHz	2462 MHz	
IEEE 802.11n-HT20	2412 MHz to 2462 MHz	Channel 1	Channel 7	Channel 11	
IEEE 002.1111-H120	2412 MHZ to 2462 MHZ	2412 MHz	2437 MHz	2462 MHz	
JEEE 902 445 HT40	40 0400 1 1 0450 1 1	Channel 3	Channel 7	Channel 9	
IEEE 802.11n-HT40	2422 MHz to 2452 MHz	2422 MHz	2437 MHz	2452 MHz	

4.3 EUT TEST STATUS

Mode	Tx Function	Description		
IEEE 802.11b IEEE 802.11g IEEE 802.11n-HT20 IEEE 802.11n-HT40	1Tx	Keep the EUT in continuously transmitting with modulation test single.		

Power Setting						
	Channel 1 -11					
IEEE 802.11b	19					
IEEE 802.11g	13					
IEEE 802.11n-HT20	12					
IEEE 802.11n-HT40	12.5					

	Test Software		
Test software name: Engineering Mode;			

4.4 PRE-SCAN

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and data rates. Following rate(s) was (were) selected for the final test as listed below.

Mode	Worst-case data rates
IEEE 802.11b	1 Mbps
IEEE 802.11g	6 Mbps
IEEE 802.11n-HT20	MCS0
IEEE 802.11n-HT40	MCS0

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	ncy Mode Antenna Port		Worst-case axis positioning
Above 1GHz	1TX	Chain 0	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Page 15 of 54 Report No.: 180814012RFC-3

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11b	1	1	1	1.00	100.00	0.00	0.01	0.00
IEEE 802.11g	6	1	1	1.00	100.00	0.00	0.01	0.00
IEEE 802.11n-HT20	MCS0	1	1	1.00	100.00	0.00	0.01	0.00
IEEE 802.11n-HT40	MCS0	1	1	1.00	100.00	0.00	0.01	0.00

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plots as follows

Page 18 of 54 Report No.: 180814012RFC-3

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title		
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations		
2	FCC 47 CFR Part 15	Radio Frequency Devices		
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices		
4	KDB 558074 D01 15.247 Meas Guidance v05	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules		

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 1.67 dBi.

Page 19 of 54 Report No.: 180814012RFC-3

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(3)

Test Method: ANSI C63.10-2013 Clause 11.9.1.3

Limit: For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt.

Test Procedure:1. Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the power meter.

2. Measure out each test modes' peak or average output power, record the power

level.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results:

Mode	Channel/ Frequency (MHz)	Maximum Conducted Peak Power (dBm)	Limit (dBm)	Pass / Fail
	1(2412)	17.69	30	Pass
IEEE 802.11b	6(2437)	13.46	30	Pass
	11(2462)	16.26	30	Pass
	1(2412)	18.25	30	Pass
IEEE 802.11g	6(2437)	15.71	30	Pass
	11(2462)	19.27	30	Pass
IEEE 802.11n-HT20	1(2412)	17.83	30	Pass
	6(2437)	14.48	30	Pass
	11(2462)	18.15	30	Pass
IEEE 802.11n-HT40	3(2422)	18.46	30	Pass
	6(2437)	17.73	30	Pass
	9(2452)	18.95	30	Pass

Note: The antenna gain of 1.67 dBi less than 6dBi maximum permission antenna gain value based on 1 watt (30dBm) peak output power limit.

Page 20 of 54 Report No.: 180814012RFC-3

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)

Test Method: ANSI C63.10-2013 Clause 11.8.1

Limit: For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \geq 3 x RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental

emission.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results:

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
	1(2412)	7.253	11.295	> 500 kHz	Pass
IEEE 802.11b	6(2437)	9.666	13.478	> 500 kHz	Pass
	11(2462)	9.676	13.876	> 500 kHz	Pass
IEEE 802.11g	1(2412)	10.97	16.182	> 500 kHz	Pass
	6(2437)	16.54	16.871	> 500 kHz	Pass
	11(2462)	16.55	17.004	> 500 kHz	Pass
IEEE 802.11n-HT20	1(2412)	11.49	17.329	> 500 kHz	Pass
	6(2437)	17.75	17.971	> 500 kHz	Pass
	11(2462)	17.78	17.936	> 500 kHz	Pass
IEEE 802.11n-HT40	3(2422)	11.42	35.556	> 500 kHz	Pass
	6(2437)	36.00	36.325	> 500 kHz	Pass
	9(2452)	11.90	35.535	> 500 kHz	Pass

The test plots as follows: **IEEE 802.11b IEEE 802.11g Lowest Channel** Y Axis Unit Ref Offset 10.5 dB Ref 30.50 dBm Ref LvI Offse 10.50 dE Ref Lvl Offse enter 2.412 GHz Res BW 100 kHz Span 40 MH: Sweep 3.867 ms enter 2.412 GHz Res BW 100 kHz Span 40 MH eep 3.867 m 22 7 dBm Occupied Bandwidth Occupied Bandwidth 11.295 MHz 16.182 MHz 617.08 kHz 120.29 kHz Transmit Freg Error **OBW Power** 99.00 % Transmit Freg Error **OBW Power** 99.00 % 10.97 MHz 7.253 MHz -6.00 dB x dB Bandwidth -6.00 dB x dB Bandwidth x dB x dB **Middle Channel** Ref Offset 10.5 dB Ref 30.50 dBm Ref Offset 10.5 dB Ref 30.50 dBm Center Fre Center Freq CF Step 4.000000 M CF Step 18.6 dBm Total Power 11.0 dBm 13.478 MHz 16.871 MHz Freq Offset 278.60 kHz OBW Power 99.00 % 166.91 kHz **OBW Power** 99.00 % Transmit Freq Error Transmit Freq Error -6.00 dB **Highest Channel** Ref Offset 10.5 dB Ref 30.50 dBm Center Fre CF Step 4.0000000 M 2.462 GH enter 2.462 GHz #VBW 300 kHz #VBW 300 kHz 16.6 dBm 22.1 dBm Occupied Bandwidtl 13.876 MHz 17.004 MHz 99.00 % -413.54 kHz -225.65 kHz OBW Pov 99.00 % x dB x dB 9.676 MHz -6.00 dB y dB Bandwidth 16.55 MHz -6.00 dB

Page 23 of 54 Report No.: 180814012RFC-3

5.5 POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (e)

Test Method: ANSI C63.10-2013 Clause 11.10.2

Limit: For digitally modulated systems, the power spectral density conducted from the

intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band

during any time interval of continuous transmission.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results:

Mode	Channel/ Frequency (MHz)	PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)	Pass / Fail
IEEE 802.11b	1(2412)	-11.585	8	Pass
	6(2437)	-17.915	8	Pass
	11(2462)	-13.738	8	Pass
IEEE 802.11g	1(2412)	-15.221	8	Pass
	6(2437)	-19.106	8	Pass
	11(2462)	-14.947	8	Pass
IEEE 802.11n-HT20	1(2412)	-16.234	8	Pass
	6(2437)	-17.885	8	Pass
	11(2462)	-14.091	8	Pass
IEEE 802.11n-HT40	3(2422)	-15.761	8	Pass
	6(2437)	-16.486	8	Pass
	9(2452)	-15.582	8	Pass

