9

1

2

1

2

3

1

2

3

1

2

3

1 2

3

1

2

3

4

ATTORNEY DOCKET NO. K35A0770

WHAT IS CLAIMED IS:

connection path.

1	1. A computer-implemented method of simplifying a network topology
2	display having multiple connections between network nodes, comprising:
3	displaying a node representing a component in a network, said node having
4	two connections to two other nodes in the network; and
5	displaying first and second connection paths, each representing one of the two
6	connections with the two other nodes, wherein the first connection path includes first and
7	second orthogonal segments and a curved segment joining the first and second segments in a
8	continuous manner, and wherein the first segment overlaps with a portion of the second

- 2. The computer-implemented method of claim 1, wherein the first segment is a horizontal segment and wherein the second segment is a vertical segment.
- 3. The computer-implemented method of claim 2, wherein the horizontal segment of the first connection path overlaps with a portion of a horizontal segment of the second connection path.
- 4. The computer-implemented method of claim 2, wherein the vertical segment of the first connection path overlaps with a portion of a vertical segment of the second connection path.
- 5. The computer-implemented method of claim 1, wherein the first segment is connected to the displayed node, and wherein the first segment overlaps with a portion of a segment of the second connection path.
- 6. The computer-implemented method of claim 5, further comprising displaying a second node representing a second component in the network, wherein the second segment is connected to the second displayed node.
- 7. The computer-implemented method of claim 5, wherein the first connection path further includes a third segment orthogonal to the second segment, and a second curved segment joining the second segment to the third segment in a continuous manner.

2

3

user indication.

ATTORNEY DOCKET NO. K35A0770

1	8. The computer-implemented method of claim 7, further comprising			
2	displaying a second node representing a second component in the network, wherein the third			
3	segment is connected to the second displayed node.			
1	9. The computer-implemented method of claim 1, further comprising			
2	highlighting the first connection path in response to a user selection of the first connection			
3	path.			
1	10. The computer-implemented method of claim 9, wherein the step of			
2	highlighting includes increasing the thickness of the first connection path.			
1	The computer-implemented method of claim 9, wherein the step of			
2	highlighting includes changing the color of the first connection path.			
1	12. The computer-implemented method of claim 9, wherein the user			
2	selection is performed by the user using a computer mouse.			
1	13. The computer-implemented method of claim 9, wherein the user			
2	selection is performed by the user selecting a first connection associated with the first			
3	connection path from a list of network connections.			
1	14. The computer-implemented method of claim 1, wherein the displayed			
2	node represents one of a switch group and a host group.			
1	15. The computer-implemented method of claim 1, further comprising			

1 16. The computer-implemented method of claim 15, wherein the step of

highlighting the connection paths for all connections to the displayed node in response to a

- 2 highlighting includes increasing the thickness of the highlighted connection paths.
- 1 The computer-implemented method of claim 15, wherein the step of 2 highlighting includes changing the colors of the highlighted connection paths.
- 1 18. The computer-implemented method of claim 15, wherein the user 2 indication is input by the user using a computer mouse.

ATTORNEY DOCKET NO. K35A0770

1	19	9.	The computer-implemented method of claim 15, wherein the user
2	indication includ	les a s	selection by the user from a menu of one or more options.
1	20	0.	The computer-implemented method of claim 1, wherein the network is
2	a storage area ne	etwork	x (SAN).
1	21	1.	A computer-implemented method of simplifying a network topology
2	display having m	nultip	le connections between network nodes, comprising:
3	di	isplay	ing a node representing a component in a network, said node having
4	two connections	to tw	o other nodes in the network;
5	di	isplay	ing first and second connection paths, each representing one of the two
6	connections with	the t	wo other nodes, wherein portions of the first and second connection
7	paths overlap; an	nd	
8	hi	ighlig	hting the first connection path in response to a user selection of the first
9	connection path.		
1	22	2.	The computer-implemented method of claim 21, wherein highlighting
2	includes increasi	ing the	e thickness of the first connection path.
1	23	3.	The computer-implemented method of claim 21, wherein highlighting
2	includes changin	ng the	color of the first connection path.
1	24	4.	The computer-implemented method of claim 21, wherein the user
2			by the user using a computer mouse.
1	25	5	The computer-implemented method of claim 21, wherein the user
2			by the user selecting a first connection associated with the first
3	connection path from a list of network connections.		
_	comocnon pain	110111	a list of notwork commentation.
1	26	6.	A computer-implemented method of simplifying a network topology
2	display having m	nultip	le connections between network nodes, comprising:
3	di	isplay	ing a node representing a component in a network, said node having
4	two or more com	nectio	ons to two or more other nodes in the network;

5	displaying two or more connection paths, each representing one of the				
6	connections with the other nodes, wherein portions of a first displayed connection path				
7	overlaps with a portion of a second displayed connection path; and				
8	highlighting the displayed connection paths for all connections to the				
9	displayed node in response to a user indication.				
1	27. The computer-implemented method of claim 26, wherein highlighting				
2	includes increasing the thickness of the highlighted connection paths.				
1	28. The computer-implemented method of claim 26, wherein highlighting				
2	includes changing the color of the highlighted connection paths.				
1	29. The computer-implemented method of claim 26, wherein the user				
2	indication is performed by the user using a computer mouse.				
1	30. The computer-implemented method of claim 26, wherein the user				
2	indication includes a selection by the user from a menu of one or more options.				
1	31. A computer-implemented method of simplifying a network topology				
2	display having multiple connections between network nodes, comprising:				
3	displaying a node representing a component in a network, said node having				
4	two connections to two other nodes in the network; and				
5	displaying first and second connection paths, each representing one of the two				
6	connections with the two other nodes, wherein the first connection path includes first and				
7	second orthogonal segments and a distinguishing segment joining the first and second				
8	segments in a continuous manner, and wherein the first segment overlaps with a portion of				
9	the second connection path.				
1	32. The computer-implemented method of claim 31, wherein the				

distinguishing segment includes two or more polygonal portions.