ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ

3η ομάδα ασκήσεων

Έτος : 2020 - 2021 6° εξάμηνο

Ονοματεπώνυμο : Νίκος Μπέλλος ΑΜ : el18183

Προσομοίωση συστήματος Μ/Μ/1/10

M/M/1/10 : <u>Αφίξεις Poisson</u> (Markov, Memoryless), ανεξάρτητοι χρόνοι εξυπηρέτησης εκθετικοί (Markov), <u>1</u> εξυπηρετητής, χωρητικότητα συστήματος 10 πελάτες

Παράμετροι:

Ρυθμός αφίξεων : λ πελάτες/min

Ρυθμός εξυπηρετήσεων : μ=5 πελάτες/min

(1) Παρακάτω παρατίθενται τα αποτελέσματα του trace των μεταβάσεων κατάστασης στο σύστημα (30 μεταβάσεις)

Template:

- State No
- Type of transition (Arrival / Departure)
- Total number of arrivals

1.	State No: 1 Type of next transition: Departure Total arrivals: 1	11.	State No: 3 Type of next transition: Arrival Total arrivals: 1	21.	State No: 0 Type of next transition: Departure Total arrivals: 1
2.	State No: 2 Type of next transition: Arrival Total arrivals: 0	12.	State No: 1 Type of next transition: Departure Total arrivals: 2	22.	State No: 2 Type of next transition: Arrival Total arrivals: 0
3.	State No: 0 Type of next transition: Departure Total arrivals: 1	13.	State No: 3 Type of next transition: Departure Total arrivals: 1	23.	State No: 0 Type of next transition: Departure Total arrivals: 1
4.	State No: 2 Type of next transition: Arrival Total arrivals: 0	14.	State No: 2 Type of next transition: Arrival Total arrivals: 0	24.	State No: 2 Type of next transition: Arrival Total arrivals: 0
5.	State No: 0 Type of next transition: Departure Total arrivals: 1	15.	State No: 0 Type of next transition: Arrival Total arrivals: 1	25.	State No: 0 Type of next transition: Arrival Total arrivals: 1

6.	State No: 2 Type of next transition: Arrival Total arrivals: 0	16.	State No: 1 Type of next transition: Arrival Total arrivals: 2	26.	State No: 1 Type of next transition: Arrival Total arrivals: 2
7.	State No: 0 Type of next transition: Arrival Total arrivals: 1	17.	State No: 3 Type of next transition: Departure Total arrivals: 3	27.	State No: 2 Type of next transition: Departure Total arrivals: 3
8.	State No: 2 Type of next transition: Departure Total arrivals: 2	18.	State No: 4 Type of next transition: Departure Total arrivals: 2	28.	State No: 4 Type of next transition: Departure Total arrivals: 2
9.	State No: 3 Type of next transition: Arrival Total arrivals: 1	19.	State No: 3 Type of next transition: Departure Total arrivals: 1	29.	State No: 3 Type of next transition: Departure Total arrivals: 1
10.	State No: 1 Type of next transition: Departure Total arrivals: 2	20.	State No: 2 Type of next transition: Arrival Total arrivals: 0	30	State No: 2 Type of next transition: Arrival Total arrivals: 0

(2) Γραφικές παραστάσεις για παράμετρο λ = { 1, 5, 10 }

(a) Εργοδικές πιθανότητες καταστάσεων

(b) Μέσος αριθμός πελατών στο σύστημα

- (3) Παρατηρούμε ότι η ταχύτητα σύγκλισης εξαρτάται άμεσα από τη παράμετρο λ. Στη πρώτη (λ=1) και τη τρίτη (λ=10) περίπτωση όπου οι παράμετροι λ και μ έχουν μεγαλύτερη απόκλιση μεταξύ τους παρατηρούμε ότι ο απαιτούμενος αριθμός μεταβάσεων ώστε να ικανοποιηθεί το κριτήριο σύγκλισης είναι μικρότερος. Παράλληλα στη δεύτερη περίπτωση (λ=5) όπου λ-μ=0, ο χρόνος σύγκλισης είναι διπλάσιος. Αντίστοιχα, η ταχύτητα σύγκλισης επηρεάζει και τις αρχικές μεταβάσεις τις οποίες μπορούμε να αγνοήσουμε με ασφάλεια. Για μικρά και μεγάλα λ (δηλαδή για μεγαλύτερη απόκλιση του λ από το μ) έχουμε την ευχέρεια να αγνοήσουμε λιγότερες αρχικές μεταβάσεις σε σχέση με ένα λ κοντά στο μ (πχ λ=5) όπου μπορούμε να αγνοήσουμε έως και διπλάσιες αρχικές μεταβάσεις.
- (4) Στη περίπτωση που ο ρυθμός εξυπηρέτησης ακολουθεί εκθετική κατανομή με μεταβλητή παράμετρο μ εξαρτώμενη από τη κατάσταση του συστήματος , όπου $\mu_i = \mu * (i+1)$ αυτό που θα άλλαζε θα ήταν το threshold της απόφασης για το αν ένα συμβάν είναι άφιξη ή αναχώρηση. Στη γενική περίπτωση όπου κάθε συμβάν εκφράζεται από μία τυχαία μεταβλητή μεταξύ [0, 1] το threshold καθορίζεται από τη τιμή threshold = λ / (λ + μ). Επομένως, αν η τυχαία αυτή μεταβλητή έχει τιμή μικρότερη του threshold θεωρούμε ότι το συμβάν είναι άφιξη, διαφορετικά το θεωρούμε ως αναχώρηση. Αν το μ λοιπόν είναι μεταβλητό θα πρέπει σε κάθε κατάσταση να επαναπροσδιορίζουμε τη τιμή του threshold.

*Οι κώδικες για τα 2 πρώτα μέρη βρίσκονται στα αρχεία lab3_1.m και lab3_2.m αντίστοιχα. Έχω παραλείψει να τα προσθέσω στο pdf της αναφοράς για λόγους οπτικού αποτελέσματος.