Cours: Équations différentielles

Table des matières

1	Éqυ	ations différentielles linéaires du premier ordre	1
	1.1	Équation différentielle homogène	1
	1.2	Équation différentielle avec second membre	1
	1.3	Problème de Cauchy	2
	1.4	Équation différentielle non résolue	3
2	Égu	ations différentielles linéaires du second ordre	3
	2.1	Équation différentielle homogène	3
	2.2	Équation différentielle avec second membre	4
	2.3	Problème de Cauchy	5

1 Équations différentielles linéaires du premier ordre

Définition 1. Soit I un intervalle et a, b, c trois fonctions définies sur I. On appelle solution sur I de l'équation différentielle a(t)y'(t) + b(t)y(t) = c(t) toute fonction $y: I \to \mathbb{R}$ (ou \mathbb{C}), dérivable sur I, telle que :

$$\forall t \in I \quad a(t) y'(t) + b(t) y(t) = c(t)$$

On dit que l'équation est résolue lorsque a ne s'annule pas et qu'elle est homogène lorsque la fonction c est nulle.

Remarques:

- \Rightarrow Lorsque l'équation est homogène, la fonction nulle est solution de l'équation différentielle. De plus, si y_1 et y_2 sont solutions de l'équation différentielle et $\lambda, \mu \in \mathbb{R}$ (ou \mathbb{C}), alors $\lambda y_1 + \mu y_2$ est solution de l'équation différentielle.
- \Rightarrow Lorsque l'équation est résolue, on peut l'écrire sous la forme

$$\forall t \in I \quad y'(t) = F(y(t), t)$$

où F est une fonction de $\mathbb{R} \times I$ dans \mathbb{R} (ou $\mathbb{C} \times I$ dans \mathbb{C}).

1.1 Équation différentielle homogène

${\bf Exemples:}$

 \Rightarrow Soit $\lambda \in \mathbb{R}$. Résoudre l'équation différentielle $y'(t) + \lambda y(t) = 0$ sur \mathbb{R} .

Proposition 1. Soit I un intervalle et a une fonction continue définie sur I. Si A est une primitive de a sur I, les solutions de l'équation différentielle :

$$\forall t \in I \quad y'(t) + a(t) y(t) = 0$$

sont les fonctions :

$$y_c: I \longrightarrow \mathbb{R} (ou \mathbb{C})$$

 $où c \in \mathbb{R} \ (ou \ \mathbb{C}).$

Remarques:

 \Rightarrow Si y est une solution non nulle de l'équation différentielle y'(t) + a(t)y(t) = 0, elle ne s'annule pas.

Exemples:

- Résoudre l'équation différentielle $(1+t^2)y'(t)+ty(t)=0$ sur \mathbb{R} .
- \Rightarrow Déterminer les fonctions dérivables $f: \mathbb{R} \to \mathbb{C}$ telles que

$$\forall x, y \in \mathbb{R} \quad f(x+y) = f(x)f(y)$$

Déterminer l'ensemble des solutions impaires de l'équation différentielle :

$$\forall t \in \mathbb{R} \quad y'(t) + e^{-t^2} y(t) = 0$$

1.2 Équation différentielle avec second membre

Exemples:

 \Rightarrow Résoudre l'équation différentielle $(t^2 \ln t)y'(t) - ty(t) = -(1 + \ln t)$ sur]0,1[.

Proposition 2. Soit I un intervalle et a, b deux fonctions continues définies sur I. Si y_p est une solution particulière de l'équation différentielle :

$$\forall t \in I \quad y'(t) + a(t)y(t) = b(t)$$

alors les solutions de cette équation différentielle sont les fonctions $y_p + y$ où y parcourt l'ensemble des solutions de l'équation différentielle homogène associée :

$$\forall t \in I \quad y'(t) + a(t)y(t) = 0$$

Proposition 3. Soit a et b deux fonctions de I dans \mathbb{R} .

— Si d_1, d_2 sont deux fonctions de I dans \mathbb{R} , $\lambda, \mu \in \mathbb{R}$ et y_{p_1}, y_{p_2} sont des solutions particulières des équations différentielles respectives $a(t)y'(t) + by(t) = d_1(t)$ et $a(t)y'(t) + b(t)y(t) = d_2(t)$, alors $\lambda y_{p_1} + \mu y_{p_2}$ est une solution de l'équation différentielle :

$$\forall t \in I \quad a(t)y'(t) + b(t)y(t) = \lambda d_1(t) + \mu d_2(t)$$

— Si d est une fonction de I dans \mathbb{C} et y_p est une solution particulière de l'équation différentielle a(t)y'(t) + b(t)y(t) = d(t), alors $\operatorname{Re}(y_p)$ est une solution de l'équation différentielle :

$$\forall t \in I \quad a(t)y'(t) + b(t)y(t) = \operatorname{Re}(d(t))$$

On a bien sur une proposition similaire avec la partie imaginaire.

Proposition 4. Soit $a, b \in \mathbb{R}$ avec $a \neq 0$. Si P est un polynôme de degré n et $\alpha \in \mathbb{C}$, alors l'équation différentielle

$$\forall t \in \mathbb{R} \quad ay'(t) + by(t) = P(t) e^{\alpha t}$$

admet comme solution une (unique) fonction du type $t\mapsto t^mQ(t)\,e^{\alpha t}$ où Q est un polynôme de degré $n,\ m=0$ si $a\alpha+b\neq 0$ et m=1 si $a\alpha+b=0$.

Exemples:

 \Rightarrow Résoudre sur \mathbb{R} l'équation différentielle

$$\forall x \in \mathbb{R} \quad y'(x) - y(x) = 1 + x + 2e^{-x}$$

Méthode de la variation de la constante : Soit a et b deux fonctions continues sur I. On souhaite résoudre l'équation différentielle

$$\forall t \in I \quad y'(t) + a(t)y(t) = b(t)$$

Supposons que y_0 est une solution non nulle de l'équation différentielle $y'(t) + a(t) \cdot y(t) = 0$. Alors y_0 ne s'annule pas. Si c est une fonction dérivable, la fonction d'expression $y(t) = c(t)y_0(t)$ est dérivable sur I et

$$\forall t \in I \quad y'(t) = c'(t)y_0(t) + c(t)y'_0(t)$$

On en déduit que y est solution de l'équation différentielle $y'(t) + a(t) \cdot y(t) = b(t)$ si et seulement si

$$\forall t \in I \quad c'(t) = \frac{b(t)}{y_0(t)}$$

En particulier, si c est une primitive de b/y_0 , la fonction d'expression $y(t) = c(t)y_0(t)$ est une solution particulière de l'équation différentielle y'(t) + a(t)y(t) = b(t).

La méthode précédente, appelée « méthode de la variation de la constante », se généralise à toute équation différentielle linéaire. Si y_0 est une solution de l'équation différentielle

homogène associée qui ne s'annule pas, le changement de fonction $y(t) = c(t)y_0(t)$ permet de ramener la résolution de l'équation différentielle initiale à la résolution d'une équation différentielle linéaire en c' d'ordre strictement inférieur.

Exemples:

⇒ Résoudre l'équation différentielle

$$\forall t > 0 \quad y'(t) - \frac{1}{t} \cdot y(t) = te^t$$

1.3 Problème de Cauchy

Définition 2. Soit I un intervalle, a,b,c trois fonctions définies sur I, $t_0 \in I$ et $y_0 \in \mathbb{R}$ (ou \mathbb{C}). On appelle problème de Cauchy la recherche des solutions y de l'équation différentielle

$$\forall t \in I \quad a(t) y'(t) + b(t) y(t) = c(t)$$

telles que $y(t_0) = y_0$.

Théorème 1. Soit I un intervalle, a,b deux fonctions continues définies sur I, $t_0 \in I$ et $y_0 \in \mathbb{R}$ (ou \mathbb{C}). Alors il existe une et une seule solution de l'équation différentielle résolue

$$\forall t \in I \quad y'(t) + a(t)y(t) = b(t)$$

telle que $y(t_0) = y_0$.

Remarques:

- \Rightarrow Ce théorème signifie que la connaissance à l'instant t_0 du système régi par l'équation différentielle permet de connaître complétement son passé et son futur.
- \Rightarrow Graphiquement, cette proposition signifie que par tout point $(t_0, y_0) \in I \times \mathbb{R}$ passe un et un seul graphe (appelé courbe intégrale) de solution de l'équation différentielle

y'(t) + a(t)y(t) = b(t). En particulier, les courbes intégrales ne se croisent pas.

Quelques solution de y'(t) - ty(t) = 1.

Exemples:

⇒ Montrer que les solutions de l'équation différentielle

$$\forall t \in \mathbb{R} \quad y'(t) + t \operatorname{Arctan}(t^4 + 1)y(t) = \operatorname{sh} t$$

sont toutes paires.

1.4 Équation différentielle non résolue

$\mathbf{Exemples}:$

 \Rightarrow Résoudre l'équation différentielle $(t^2 \ln t)y'(t) - ty(t) = -(1 + \ln t)$ sur \mathbb{R}_+^* .

Remarques:

⇒ Pour les équation différentielles non résolues du premier ordre, contrairement à ce qui se passe pour les équations résolues, il est possible qu'un problème de Cauchy admette plusieurs solutions ou aucune.

2 Équations différentielles linéaires du second ordre

2.1 Équation différentielle homogène

Proposition 5. Soit $a, b, c \in \mathbb{C}$ avec $a \neq 0$ et (E) l'équation différentielle :

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = 0$$

On résout sur \mathbb{C} l'équation caractéristique $az^2 + bz + c = 0$.

— Si cette équation possède deux racines distinctes r_1 et r_2 ($\Delta \neq 0$), alors les solutions complexes de (E) sont les fonctions :

$$y_{c_1,c_2}: \mathbb{R} \longrightarrow \mathbb{C}$$

$$t \longmapsto c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

 $où c_1, c_2 \in \mathbb{C}$.

— Si cette équation admet une racine double r ($\Delta=0$), alors les solutions complexes de (E) sont les fonctions :

$$y_{c_1,c_2}: \mathbb{R} \longrightarrow \mathbb{C}$$

$$t \longmapsto (c_1t + c_2) e^{rt}$$

 $où c_1, c_2 \in \mathbb{C}$.

Remarques:

 \Rightarrow La fonction nulle est solution de cette équation différentielle. De plus, si y_1 et y_2 sont deux solutions de cette équation différentielle, et $\lambda, \mu \in \mathbb{R}$ (ou \mathbb{C}), alors $\lambda y_1 + \mu y_2$ est solution de l'équation différentielle.

Exemples:

 \Rightarrow Soit $\omega_0 \in \mathbb{R}$. Résoudre l'équation différentielle $y'' + \omega_0^2 y = 0$ sur \mathbb{R} .

Proposition 6. Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$ et (E) l'équation différentielle :

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = 0$$

On résout sur \mathbb{C} l'équation caractéristique $az^2 + bz + c = 0$.

— Si cette équation possède deux racines réelles distinctes r_1 et r_2 ($\Delta > 0$), alors les solutions réelles de (E) sont les fonctions :

$$y_{c_1,c_2}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

 $où c_1, c_2 \in \mathbb{R}$.

— Si cette équation admet une racine double r ($\Delta = 0$), alors les solutions réelles de (E) sont les fonctions :

$$y_{c_1,c_2}: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto (c_1t + c_2) e^{rt}$$

 $où c_1, c_2 \in \mathbb{R}$.

— Si cette équation admet deux racines complexes conjuguées $r+i\omega$ et $r-i\omega$ ($\Delta<0$), alors les solutions réelles de (E) sont les fonctions :

$$y_{c_1,c_2}: \mathbb{R} \longrightarrow \mathbb{R}$$

 $t \longmapsto [c_1 \cos(\omega t) + c_2 \sin(\omega t)] e^{rt}$

 $o\dot{u} \ c_1, c_2 \in \mathbb{R}$.

${\bf Remarques:}$

- Arr L'ensemble des solutions réelles de cette équation différentielle est un \mathbb{R} -espace vectoriel de dimension 2.
- \Rightarrow Dans le cas où l'équation caractéristique admet deux racines complexes conjuguées, les solutions de (E) peuvent s'écrire sous la forme

$$y_{c,\varphi}: \mathbb{R} \longrightarrow \mathbb{R}$$
 $t \longmapsto c\cos(\omega t - \varphi) e^{rt}$

où $c, \varphi \in \mathbb{R}$.

 \Rightarrow Étant donnés $t_0 \in \mathbb{R}$ et $y_0, y_1 \in \mathbb{R}$, on appelle problème de Cauchy la recherche des solutions y de l'équation différentielle ay''(t) + by'(t) + cy(t) = 0 telles que $y(t_0) = y_0$ et $y'(t_0) = y_1$. On peut montrer que tout problème de Cauchy admet une et une seule solution.

Exemples:

- \Rightarrow Résoudre l'équation différentielle y'' + 2y' + 2y = 0 sur \mathbb{R} .
- \Rightarrow En effectuant le changement de fonction inconnue $z(t)=t^2y(t)$, résoudre l'équation différentielle

$$\forall t \in \mathbb{R}_+^* \quad t^2 y''(t) + 4ty'(t) + (2 - t^2)y(t) = 0$$

 \Rightarrow En effectuant le changement de variable $t = \sqrt{u}$, résoudre l'équation différentielle

$$\forall t \in \mathbb{R}_+^* \quad ty''(t) - y'(t) + 4t^3y(t) = 0$$

2.2 Équation différentielle avec second membre

Proposition 7. Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$ et d une fonction de \mathbb{R} dans \mathbb{R} (ou \mathbb{C}). Si y_p est une solution particulière de l'équation différentielle :

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = d(t)$$

alors les solutions de cette équation différentielle sont les fonctions $y_p + y$ où y parcourt l'ensemble des solutions de l'équation différentielle homogène associée :

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = 0$$

Proposition 8. Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$.

— Si d_1, d_2 sont deux fonctions de \mathbb{R} dans \mathbb{R} , $\lambda, \mu \in \mathbb{R}$ et y_{p_1}, y_{p_2} sont des solutions particulières des équations différentielles respectives $ay''(t) + by'(t) + cy(t) = d_1(t)$ et $ay''(t) + by'(t) + cy(t) = d_2(t)$, alors $\lambda y_{p_1} + \mu y_{p_2}$ est une solution de l'équation différentielle :

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = \lambda d_1(t) + \mu d_2(t)$$

— Si d est une fonction de \mathbb{R} dans \mathbb{C} et y_p est une solution particulière de l'équation différentielle ay''(t) + by'(t) + cy(t) = d(t), alors $\operatorname{Re}(y_p)$ est une solution de l'équation différentielle :

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = \operatorname{Re}(d(t))$$

On a bien sur une proposition similaire avec la partie imaginaire.

Proposition 9. Soit $a, b, c \in \mathbb{R}$ avec $a \neq 0$. Si P est un polynôme de degré n et $\alpha \in \mathbb{C}$, alors l'équation différentielle

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = P(t) e^{\alpha t}$$

admet comme solution une (unique) fonction du type $t\mapsto t^mQ(t)\,e^{\alpha t}$ où Q est un polynôme de degré n et m est l'ordre de α comme racine de l'équation caractéristique (avec par convention m=0 si α n'est pas racine de cette équation).

Exemples:

- \Rightarrow Déterminer les solutions de l'équation différentielle $y''(t) + y'(t) + y(t) = t^2$.
- \Rightarrow Déterminer les solutions de l'équation différentielle $y''(t) + y(t) = t \cos t$.

2.3 Problème de Cauchy

Définition 3. Soit I un intervalle, $a,b,c \in \mathbb{R}$ (ou \mathbb{C}) avec $a \neq 0$, et d une fonction de I dans \mathbb{R} (ou \mathbb{C}), $t_0 \in I$ et $y_0, y_1 \in \mathbb{R}$ (ou \mathbb{C}). On appelle problème de Cauchy la recherche des solutions de l'équation différentielle

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = d(t)$$

telles que $y(t_0) = y_0$ et $y'(t_0) = y_1$.

Théorème 2. Soit I un intervalle, $a, b, c \in \mathbb{R}$ (ou \mathbb{C}) avec $a \neq 0$, et d une fonction continue de I dans \mathbb{R} (ou \mathbb{C}), $t_0 \in I$ et $y_0, y_1 \in \mathbb{R}$ (ou \mathbb{C}). Alors, il existe une unique fonction y, dérivable deux fois sur I telle que

$$\forall t \in \mathbb{R} \quad ay''(t) + by'(t) + cy(t) = d(t)$$

et $y(t_0) = y_0$ et $y'(t_0) = y_1$. Autrement dit, le problème de Cauchy admet une unique solution.

Remarques:

⇒ Ceci signifie que si l'on fixe une position et une vitesse initiale, il y a une et une seule solution. Par contre, deux solutions différentes peuvent être au même point au même instant

mais les vitesses seront alors différentes.

Quelques solution de $y''(t) + y(t) = t^2 + t + 1$ et y(0) = 0.

Exemples:

⇒ Résoudre le problème de Cauchy

$$\forall t \in \mathbb{R} \quad y''(t) + y(t) = t^2 + t + 1$$

avec
$$y(0) = 0$$
 et $y'(0) = 1$.