Note Π Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) Unterschrift der Kandidatin/des Kandidaten 5 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Studienbegleitende Fachprüfung, Wiederholung Mathematik für Physik 2 (Analysis 1) Prof. Dr. S. Warzel 6. April 2009, 9:00 - 10:30 Uhr 10 Hörsaal: Reihe: Platz: 11 Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: ${f 11}$ Aufgaben Bearbeitungszeit: 90 min Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter Bei Multiple-Choice-Aufgaben sind ${\bf genau}$ die zutreffenden Aussagen anzukreuzen. Erstkorrektur Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt. II Zweitkorrektur Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis Vorzeitig abgegeben um

Musterlösung

(mit Bewertung)

Besondere Bemerkungen:

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage:

$$\sum_{k=1}^{n-1} k!k = n! - 1$$

LÖSUNG:

Induktionsbeginn (n = 1): $\sum_{k=1}^{n-1} k!k = 0 = 1! - 1$ (leere Summe)

Induktionsschritt $(n \rightarrow n+1)$:

$$\sum_{k=1}^{n} k!k \stackrel{\text{[2]}}{=} \sum_{k=1}^{n-1} k!k + n!n$$

$$\stackrel{\text{I.V.[2]}}{=} n! - 1 + n!n$$

$$\stackrel{\text{[1]}}{=} (n+1)n! - 1$$

$$\stackrel{\text{[1]}}{=} (n+1)! - 1$$

Erklärung:

[2 Punkte] für den Induktionsbeginn,

[2 Punkte] für das Zerlegen,

[2 Punkte] für das Einsetzen der Induktionsvoraussetzung,

[2 Punkte] für das Zusammenfassen.

2. Komplexe Zahlen

[6 Punkte]

(a) Geben Sie
$$z = \frac{1}{2}i + \frac{2-i}{(1+i)^2}$$
 in Polardarstellung, $re^{i\phi}$, $r \in \mathbb{R}^+$, $\phi \in (-\pi, \pi]$, an. [3]

$$z = \frac{1}{\sqrt{2}} e^{-i\frac{3}{4}\pi}$$

(b) Geben Sie Real- und Imaginärteil von
$$\sqrt[3]{i}$$
 an.

[3]

(a)
$$z = 3i + \frac{(2-i)^2}{1+i} = 3i + \frac{4-4i-1}{1+i} = 3i + \frac{(3-4i)(1-i)}{2} = 3i + \frac{3-4-7i}{2} = -\frac{1}{2} - \frac{1}{2}i = \frac{1}{2\sqrt{2}}e^{-i\frac{3}{4}\pi}$$

(b)
$$\sqrt[3]{i} = (e^{i\frac{\pi}{2}})^{1/3} = e^{i\frac{\pi}{6}} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + i\frac{1}{2}.$$

· · · · · · · · · · · · · · · · · · ·	
3. Konvergenz von Folgen und Reihen [7 Punkte]	
(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\sqrt{n^2+n}-n\right)$ [2]	
$\square = -\infty$ $\square = 0$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$ \square existient nicht	
(b) $\lim_{n \to \infty} \sin\left(\frac{n^2+1}{n+5}\right) \log\left(\frac{n^2+5}{n^2+3}\right)$ [3]	
$\square = -\infty$ $\square = -1$ $\square = 0$ $\square = 1$ $\square = \infty$ \square existient nicht	
(c) Welchen Wert besitzt die Reihe $\sum_{n=0}^{\infty} \frac{2^n - 1}{3^n}$? [2]	
$\Box - \frac{3}{2} \Box - 1 \Box \ 0 \Box \ 1 \boxtimes \ \frac{3}{2} \Box \ 3 \Box \ \infty \Box \ \text{undefiniert}$	
LÖSUNG:	
(a) $\lim_{n \to \infty} \left(\sqrt{n^2 + n} - n \right) = \lim_{n \to \infty} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\left(\sqrt{1 + \frac{1}{n}} + 1 \right)} = \frac{1}{2}.$	

- (b) Die Folge $\log\left(\frac{n^2+5}{n^2+3}\right)$ konvergiert gegen 0, da das Argument des log gegen 1 konvergiert und log dort stetig ist. Der Faktor $\sin\left(\frac{n^2+1}{n+5}\right)$ ist vom Betrag durch 1 beschränkt und ändert nichts an der Konvergenz gegen 0.
- (c) Die Terme der Reihe bilden keine Nullfolge, also nicht konvergent.

4. Potenzreihen [6 Punkte]

Gegeben ist die Potenzreihe $P(z) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right)^{-n^2} z^n$. Bestimmen Sie ihren Konvergenzradius.

Lösung:

LOSUNG:
$$\limsup_{n\to\infty} \sqrt[n]{\left(1+\frac{1}{n^2}\right)^{-n^2}} = \lim_{n\to\infty} \left(1+\frac{1}{n^2}\right)^n = \lim_{n\to\infty} e^{n\log(1+\frac{1}{n^2})} = 1, \text{ da } \lim_{x\to 0} \frac{\log(1+x^2)}{x} = \lim_{x\to 0} \frac{1}{1+x^2} \cdot 2x = 0.$$
 Für $x=\frac{1}{n}$ erhält man wegen der Stetigkeit der Exponentialfunktion als Limes $e^0=1$. Der Konvergenzradius ist also $R=1$.

5	Grenzwerte	von	Funktionen.	station	Fortsetz	zharl	zoit	-

[4 Punkte]

(a) Welchen Wert hat $\lim_{x\to\infty} x^2 \log \left(1 + \frac{1}{x^2}\right)$?

[2]

 $\square - \infty$ $\square - 1$ $\square - \frac{1}{2}$ $\square 0$ $\square \frac{1}{2}$ $\square 1$

 \square 2

 $\square \propto$

 \Box existiert nicht

(b) Durch welchen Wert ist die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = x \cos \frac{1}{x}$ bei x = 0 stetig fortsetzbar?

 \square -1 \square $-\frac{1}{2}$ \square 0 \square $\frac{1}{2}$ \square 1 \square 2 \square nicht stetig fortsetzbar

LÖSUNG:

(a)
$$\lim_{x \to \infty} x^2 \log(1 + \frac{1}{x^2}) = \lim_{x \to \infty} \frac{\log(1 + \frac{1}{x^2})}{\frac{1}{x^2}} \stackrel{\text{l'H}}{=} \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{1}{x^2}} \frac{-2}{x^3}}{\frac{-2}{x^3}} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x^2}} = 1.$$

(b) $\lim_{x\to 0} x\cos\frac{1}{x} = 0$, da $|x\cos\frac{1}{x}| \le |x| \to 0$ für $x\to 0$.

6. Stetige und differenzierbare Funktionen

[6 Punkte]

Sei $f:[0,1]\to\mathbb{R}$ stetig, $F(x)=\int\limits_0^x f(t)dt,\,F(\frac{1}{2})=1.$ Beweisen Sie: es gibt ein $t\in[0,\frac{1}{2}]$ mit f(t)=2.LÖSUNG:

$$F$$
 ist als Stammfunktion von f differenzierbar auf $[0,1]$. [1]

gibt es ein
$$\xi \in (0, \frac{1}{2})$$
 mit $F'(\xi) = \frac{F(\frac{1}{2}) - F(0)}{\frac{1}{2} - 0} = 2$ [2]
Somit ist $f(\xi) = F'(\xi) = 2$ und $\xi \in [0, \frac{1}{2}]$. [2]

Somit ist
$$f(\xi) = F'(\xi) = 2$$
 und $\xi \in [0, \frac{1}{2}]$. [2]

7. Maximale Fläche [10 Punkte]

Unter den Rechtecken in der xy-Ebene, für welche

- ullet eine Seite auf der x-Achse liegt, und
- zwei Ecken in der oberen Halbebene auf dem Graph der Funktion $f(x) = 9 x^2$ liegen,

soll dasjenige bestimmt werden, welches den größten Flächeninhalt hat.

- (a) Welche Beziehung besteht zwischen der Höhe h und der Breite b des Rechtecks?
- (b) Bestimmen Sie, mit Begründung, die Breite b desjenige Rechtecks mit dem größten Flächeninhalt. Lösung:

(a)
$$h = 9 - (\frac{b}{2})^2 = 9 - \frac{1}{4}b^2$$
. [2]

(b) Die Fläche des Rechtecks in Abhängigkeit von der Breite ist $F(b) = bh = 9b - \frac{1}{4}b^3$. [2] b liegt im Intervall [0,6], damit h nichtnegativ ist. An den Rändern ist f(0) = f(6) = 0. [1] Ableiten der Fläche nach b ergibt $F'(b) = 9 - \frac{3}{4}b^2$. Durch Nullsetzen der Ableitung erhält man $b^2 = 12$, bzw., wegen $b \ge 0$, $b = 2\sqrt{3} < 6$. [3]

Dies ist absolute Maximalstelle, da f stetig und konkav ist, $f''(b) = -\frac{3}{2}b \le 0$. [2]

8. Integration [6 Punkte]

(a) Bestimmen Sie

$$\int \frac{1}{x \log x} \, dx = -\log(\log x)$$

(b) Das Integral $\int_{0}^{1} \frac{e^{-x} \cos x}{\sqrt{x}} dx$ ist [2]

 \boxtimes konvergent, \boxtimes absolut konvergent, \square undefiniert.

(c) Das Integral
$$\int_{1}^{\infty} \frac{e^{-x} \cos x}{\sqrt{x}} dx$$
 ist [2]

 \boxtimes konvergent, \boxtimes absolut konvergent, \square undefiniert.

- (a) $\int \frac{1}{x \log x} dx = \int \frac{\log'(x)}{\log(x)} dx = \log(\log x)$.
- (b) Das Integral über $\frac{1}{\sqrt{x}}$ ist absolut konvergent über (0,1]. Nach dem Majorantenkriterium also auch dieses Integral, da $|\frac{e^{-x}\cos x}{\sqrt{x}}| \leq \frac{1}{\sqrt{x}}$ für x > 0.
- (c) Das Integral über e^{-x} ist absolut konvergent über $[1,\infty)$. Nach dem Majorantenkriterium also auch dieses Integral, da $|\frac{e^{-x}\cos x}{\sqrt{x}}| \le e^{-x}$ für x>1.

9. Integration [7 Punkte]

Für welche Werte von $a, b \in \mathbb{R}$ konvergiert das Integral $\int_{-\infty}^{\infty} \frac{1}{(x-a)^2+b^2} dx$?

Bestimmen Sie im Konvergenzfall seinen Wert.

LÖSUNG:

Der Integrand konvergiert unabhängig von $a \in \mathbb{R}$ für $b \neq 0$ wie unten gezeigt wird. Für b = 0 ist das verhalten bei x = a von der Ordnung $\mathcal{O}(|x - a|^{-2})$, also nicht konvergent. [2]

Der Ausdruck ist unabhängig vom Vorzeichen von b. Für b>0 erhält man

$$\int_{-\infty}^{\infty} \frac{1}{(x-a)^2 + b^2} dx \stackrel{y=x-a,[1]}{=} \frac{1}{b^2} \int_{-\infty}^{\infty} \frac{1}{(\frac{y}{b})^2 + 1} dy \stackrel{x=\frac{y}{b},[1]}{=} \frac{1}{b} \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx$$
$$\stackrel{[2]}{=} \frac{1}{b} \left[\arctan x \right]_{-\infty}^{\infty} \stackrel{[1]}{=} \frac{1}{b} \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) = \frac{\pi}{b}.$$

Für b < 0 dreht sich das Vorzeichen um. Insgesamt also

$$\int_{-\infty}^{\infty} \frac{1}{(x-a)^2 + b^2} dx = \frac{\pi}{|b|}.$$

[1]

10. Taylorentwicklung

[8 Punkte]

Wir betrachten die Funktion $f: \mathbb{R} \to \mathbb{R}, f(x) = \int_{0}^{x} e^{-\frac{1}{2}t^{2}} dt$.

(a) Bestimmen Sie das Taylorpolynom fünfter Ordnung, $T_{f,5}(x)$, von f(x) um den Entwicklungspunkt 0. [5]

 $T_{f,5}(x) = x - \frac{1}{6}x^3 + \frac{1}{40}x^5$

(b) Welchen Konvergenzradius hat die Taylorreihe von f um den Entwicklungspunkt 0? [3]

 $\square \quad 0 \quad \ \, \square \quad \frac{1}{e} \quad \ \, \square \quad \frac{1}{2} \quad \ \, \square \quad 1 \qquad \quad 2 \quad \ \, \square \quad e \quad \ \, \boxtimes \quad \infty \quad \ \, \square \quad \text{existiert nicht}$

- (a) Mit der Exponentialreihe erhält man $e^{-\frac{1}{2}t^2}=1-\frac{1}{2}t^2+\frac{1}{2}\frac{t^4}{4}\pm\cdots$. Gliedweises integrieren ergibt die Lösung
 - [1] für die 1-te Ordnung.
 - [2] für die 2,3-te Ordnung.
 - [2] für die 4,5-te Ordnung.
- (b) Die Exponentialreihe besitzt unendlichen Konvergenzradius. Somit konvergiert die Potenzreihe $\sum_{n=0}^{\infty} \frac{1}{n!} (-\frac{1}{2}t^2)^n$ für alle $t \in \mathbb{R}$ gegen $e^{-\frac{1}{2}t^2}$, besitzt also auch unendlichen Konvergenzradius. Aufintegrieren verändert den Konvergenzradius nicht.

11. Matrixexponential

[7 Punkte]

Gegeben ist die Matrix $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

(a) Berechnen Sie
$$A^n$$
, $n \in \mathbb{N}$.

[2]

$$A^n = A$$

(b) Berechnen Sie
$$\exp(tA)$$
, $t \in \mathbb{R}$.

[3]

$$\exp(tA) = \begin{pmatrix} \frac{e^t}{2} + \frac{1}{2} & \frac{e^t}{2} - \frac{1}{2} \\ \frac{e^t}{2} - \frac{1}{2} & \frac{e^t}{2} + \frac{1}{2} \end{pmatrix}$$

(c) Berechnen Sie die Lösung
$$x(t)$$
 des Anfangswertproblems $\dot{x} = Ax$, $x(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. [2]

$$x(t) = x(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

(a)
$$A^2 = A$$
, $A^{n+1} = AA^n = A^2 = A$.

(b)
$$e^{tA} = \sum_{n=0}^{\infty} \frac{1}{n!} (tA)^n = \mathbb{1} + \sum_{n=1}^{\infty} \frac{t^n}{n!} A = \mathbb{1} + (e^t - 1)A = \mathbb{1} - A + e^t A = \begin{pmatrix} \frac{e^t}{2} + \frac{1}{2} \frac{e^t}{2} - \frac{1}{2} \\ \frac{e^t}{2} - \frac{1}{2} \frac{e^t}{2} + \frac{1}{2} \end{pmatrix}$$