Aufgabe 2

Betrachten Sie die folgende Grammatik $G = (\{S,A\},\{0,1,2\},P,S)$ mit $P = \{$

$$S \rightarrow 0S0 \mid 1S1 \mid 2A2 \mid 0 \mid 1 \mid \epsilon$$

$$A \rightarrow A2$$

flaci.com/Gf6scqja9

Konstruieren Sie für die Grammatik *G* schrittweise eine äquivalente Grammatik in Chomsky-Normalform. Geben Sie für jeden einzelnen Schritt des Verfahrens das vollständige Zwischenergebnis an und erklären Sie kurz, was in dem Schritt getan wurde.

(a) Elimination der ϵ -Regeln

— Alle Regeln der Form $A \to \epsilon$ werden eliminiert. Die Ersetzung von A wird durch ϵ in allen anderen Regeln vorweggenommen.

falls $S \to \varepsilon \in P$ neuen Startzustand S' einführen

$$P = \{ \\ S \to 0S0 \, | \, 1S1 \, | \, 2A2 \, | \, 0 \, | \, 1 \, | \, 00 \, | \, 11 \\ S_1 \to \epsilon \, | \, SA \\ \to A2$$

}

}

(b) Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren. —

☑ Nichts zu tun

(c) Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_σ ersetzt und die Menge der Produktionen durch die Regel $S_\sigma \to \sigma$ ergänzt.

N = Null E = Eins Z = Zwei
$$P = \{$$

$$S \rightarrow NSN \mid ESE \mid ZAZ \mid 0 \mid 1 \mid NN \mid EE$$

$$S_1 \rightarrow \epsilon \mid S$$

$$A \rightarrow AZ$$

$$N \rightarrow 0$$

$$E \rightarrow 1$$

$$Z \rightarrow 2$$

}

$(d) \ \ \textbf{Elimination von mehrelementigen Nonterminalketten}$

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n$, $A_{n-1} \to A_{n-2}B_{n-1}, \dots$, $A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht.

$$P = \{$$

$$S \to NS_N \,|\, ES_E \,|\, ZA \,|\, 0 \,|\, 1 \,|\, NN \,|\, EE$$

$$S_N \to SN$$

$$S_E \to SE$$

 $A \to AZ$

 $N \to 0$

 $E \rightarrow 1$

 $Z \rightarrow 2$

}