

Group 1:

Jacob Andreesen Miao Xu Jeff Chen Yiyi Wang 01 Vision OZ Technical Approach

03 Supporting Software

Responsibilities F Timeline

01 Vision

The Problem

Transshipments provide an effective mechanism for correcting **discrepancies** between a locations' **observed demand** and their available **inventory**.

Planned and systematic transshipments can be used to reduce costs and improve customer service and decrease infrastructure requirements.

Our Mission

Goal: Find the transshipment and replenishment **quantities** that **minimize** the expected long-run average **cost**. The cost is the sum of the replenishment, transshipment, holding costs.

System Configuration

1 Supplier

4

Non-identical Retailers

Demands

Network Flow with Four Retailers

B= beginning of the day

M=start selling inventory

E=end of the day

S=order-up-to quantities (beginning of the S=end of the S, after replenishment)

R=replenishment

OZ Technical Approach

Random Demand Generation

-Demand discretized around the mean demand value using SD

E	<u>Retailer</u>	Normal Demand	Demand SD	
	1	100	20	
	2	200	50	1
	3	150	30	
	4	170	50	

Decision Variables

First-Stage Variables

Si: order-up-to quantities (i = 1, 2, ..., N)

Di: random normally distributed demands (i = 1, 2, ..., N)

Second-Stage Variables

ei: ending inventory held at retailer i.

fi: stock at retailer i used to satisfy demand at retailer i.

qi: inventory at retailer i increased through replenishment.

ri: amount of shortage met after replenishment at retailer i.

tij: stock at retailer i transshipped to meet demand at retailer j.

hi: unit cost of holding inventory at retailer i.

cij: unit cost of transshipment from retailer i to j.

pi: penalty cost for shortage at retailer i.

Goals

Finding the optimal order-up-to quantities S(i) (Decision variable)

Given Si and Di,
Minimize the expected
long-run average cost
over 5^4 scenarios

Optimization Setup

First Stage Objective:

$$\min_{S\geq 0} E[h(S,\tilde{D})],$$

Second Stage Objective:

$$h(S,D) = \min \sum_{i} h_i e_i + \sum_{i \neq j} c_{ij} t_{ij} + \sum_{i} p_i r_i.$$

Constraints:

$$f_i + \sum_{j \neq i} t_{ij} + e_i = s_i, \quad \forall i$$

$$f_i + \sum_{j \neq i} t_{ji} + r_i = d_i, \quad \forall i$$

$$\sum_{i} r_i + \sum_{i} q_i = \sum_{i} d_i$$

$$e_i + q_i = s_i, \forall i$$

$$e_i, f_i, q_i, r_i, s_i, t_{ij} \geq 0, \quad \forall i, j.$$

Algorithm

```
SGD
```

Min
$$E[h(S, \widetilde{D})]$$

 $S \ge 0$
 $h(S, D) = \min_{i} \sum_{i \ne j} h_{i}e_{i} + \sum_{i \ne j} C_{ij}t_{ij} + \sum_{i} p_{i}r_{i}$
min $d_{s}^{T}y$
 $St Dy = \sum_{s} C_{s}x \pi (ducl muttiplier)$

Given S.D., Put V=-C, or all s and solve LP:

- (1) Calculate $C_s X$ (2) update $Y_s = E_s C_s X$
- 3 Solve min dsTy, with y=0. Dy=rs (Sample size)
- 1 get duel mutiplier The
- 5 update V= V- ≥P, TNTCN

After N scenarios have been solved.

updated Vis the subgradient of f(x) at X $X_{+} \leftarrow b^{\alpha} (x - 9^{k})$

Stop outter m iterations

Benders

Min E[h(S,D)]

h(s.D) = min \ hiei + \ Cijtij + \ piri. (2)

min M (1)

- O Solve LP O to get Si and lowerbounds li.
- @ Given Si, solve LP @ for all 54 scenarios to get upperbounds ui and 2i, Bi. Ui = 2i + Bisi
- 3 Add Uz 2i+Bis as the constraint of LP 1

iterate steps 1 to 3 until U; -li & E stop after m iterations

Comparison

S6D

- SGD randomly pick one data point or sample a small number of data points at each iteration to reduce the computation enormously.
- Sample of 30 -> 50

 Subproblems are solved to determine the Benders cuts for the master problem. Cuts are then added to the master problem, which is then re-solved until no cuts can be generated.

Compare SGD and Benders Decomposition by the number of iterations and CPU time.

O3 Supporting Software

Supporting Libraries

Pandas

RYSR

(Potentially Matlab)

Responsibilities

A Timeline Works Well

Problem Definition

SGD & BD Design

Implementation

Comparison & Review

Thanks Fight on!