Теория автоматов и формальные грамматики

Регулярные грамматики и конечные автоматы

Приведем некоторые базовые определения теории грамматик.

- **Алфавит (V)** конечное непустое множество элементов, называемых *символами* (*буквами*).
- ▶ Цепочкой (или словом) в алфавите V называется любая конечная последовательность символов этого алфавита.

Пусть задан алфавит V = {a,b,c}. Тогда α = baaa является словом в алфавите V.

 Цепочка, которая не содержит ни одного символа, называется пустой цепочкой и обозначается е.

- ▶ Длиной цепочки **W** называется число составляющих ее символов (обозначается |w|), причём каждый символ считается столько раз, сколько раз он встречается в w. Например, |baaa| = 4 и |e| = 0.
- Обозначим через V* множество, содержащее все цепочки в алфавите V, включая пустую цепочку е.
- ▶ Обозначим через V+ множество, содержащее все цепочки в алфавите V, исключая пустую цепочку е.

```
Например, пусть V = \{1,0\}, тогда: V^* = \{e,0,00,01,10,11,000,...\}, V^* = \{0,1,00,01,10,11,000,...\}.
```

 Формальный язык - это множество слов (строк, цепочек) над конечным алфавитом V.

Например, множество $\{a, abb\}$ является языком над алфавитом $\{a,b\}$, множество $\{a^kba^l\mid k\leq l\}$ является языком над алфавитом $\{a,b\}$.

Необходимо различать *пустой язык* $L=\emptyset$ и язык, содержащий только пустую цепочку: $L=\{e\}$.

Поскольку каждый язык является множеством, можно рассматривать операции объединения, пересечения и разности языков, заданных надодним и тем же алфавитом (обозначения L1 \cup L2, L1 \cap L2, L1 - L2).

▶ Грамматика - система правил, предназначенная для задания множества цепочек и символов данного алфавита.

G - грамматика; L(G) - язык этой грамматики.

Классификация по Хомскому

- ▶ Грамматики типа 2. К этому типу относятся контекстносвободные грамматики (КС-грамматики, бесконтекстные грамматики). Грамматика G = (VT, VN, P, S) называется контекстносвободной грамматикой (КС-грамматикой), если ее правила вывода имеют вид: $A \rightarrow B$, где $A \in V_N$; $B \in V + для$ неукорачивающих KC-грамматик, $B \in V + для$ укорачивающих.
- То есть грамматика допускает появление в левой части правила только нетерминального символа. КС-грамматики широко применяются для описания синтаксиса компьютерных языков (программирования).

Иерархия: Грамматики - Языки - Автоматы

КС-грамматики и МП-автоматы

КС-грамматики

- ► Контекстно-свободной грамматикой (КС-грамматикой) называется система G = (V_T, V_N, S, P), где V_T и V_N – непересекающиеся конечные множества терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно;
- ▶ $S \in V_N$ начальный символ, называемый аксиомой грамматики, P конечное множество правил. Каждое правило в KC-грамматике имеет вид A → a , где $A \in V_N$ и $a \in (V_N \cup V_T)$ *

КС-грамматики

- **Пример:** G_1 = ({r,t}, {S}, S, P) (КС-грамматика), P состоит из правил вида S → rStS| tSrS| ε.
- > Грамматика порождает множество всех слов в алфавите {r,t}, содержащих одинаковое число букв r и t.
- ► Слово a = trttrr. Процесс его вывода из аксиомы S :
- $S \Rightarrow tSrS \Rightarrow trStSrS \Rightarrow trtSrS \Rightarrow trtSr \Rightarrow trttSrSr \Rightarrow trttrr \in L$

 Автомат с магазинной памятью (МП-автомат)- это НКА, имеющий дополнительную потенциально неограниченную ленту памяти (магазин). В начальный момент времени магазин содержит начальный символ Z₀.

МП-автоматом называется система $S = (Q, X, M, \delta, q0, Z0, F)$,

- Q конечное множество состояний,
- Х конечный входной алфавит,
- М конечный алфавит магазинных символов,
- δ: Q x (M \cup {ε}) x X \to 2^{QxX*} функция переходов,
- $q0 \in Q$ начальное состояние,
- Z_0 начальный магазинный символ, так называемый маркер дна,
- $\mathsf{F} \subseteq \mathsf{Q}$ множество заключительных состояний.

Конфигурация МП-автомата S` – это тройка $(q,w,a) \in \{Q \times X^* \times M^*\}$,

q - текущее состояние,

w - оставшаяся часть входного слова, при w= ε - слово прочитано,

а - содержимое магазина, при а= є магазин пуст.

Начальная конфигурация - конфигурация вида (q0, w, Z0), $w \in X*$.

Заключительная конфигурация вида (q, ϵ , a), где q \in F и a \in M*.

- ▶ Отношение называется тактом работы МП-автомата.
- Определяется такт следующим образом:

 $(q, rw, Za) \models (q', w, ya),$ если множество δ (q, r, Z) содержит (q', y), где $q, q' \in Q$, $r \in X \cup \{\epsilon\}$, $w \in X^*, Z \in M$ и $a,y \in M^*$.

Если магазин пуст, то следующий такт невозможен.

- ► С °С' означает, что конфигурация С=С',
- $C_0 | {}^k C_k$, k>=1 означает, что существуют такие конфигурации C_1 , ..., C_{k-1} , что $C_i | C_{i+1}$, для всех 0 <= i <= k.
- Отношение

 —* рефлексивное транзитивное замыкание отношения
 — (С
 —*C'), означающее С
 —кС', для k>=0.
- Отношение
 —⁺ транзитивное замыкание отношения
 (С
 —⁺С'), означающее С
 —кС', для k>=1.

- ► МП-автомат допускает слово w, если (q0, w, Z0) —* (q, ϵ, a) для некоторых $q \in F$, $a \in X^*$.
- ▶ Язык L(S) допускаемый МП-автоматом S множество всех входных цепочек, допускаемых автоматом.
 - $L(S) = \{w \mid w \in X^*, (q0, w, Z0) \mid -- (q, \epsilon, a), q \in F, a \in M^*\}.$

- ▶ По КС-грамматике G возможно построить МП-автомат S_G такой, что $L_{\epsilon}(S_G) = L(G)$.
- ▶ Для КС-грамматики $G=(V_T, V_N, P, S)$ строится МП-автомат $S_G=(\{q\}, V_T, V_T \cup V_N, \delta, q, S`, \varnothing)$ который допускает язык с опустошением всего магазина.
- Функция переходов δ будет определяться следующим образом:
- $\delta(q, \epsilon, M) = \{(q, a) \mid M \to a \in P\}$ для всех $M \in V_N$; $\delta(q, r, r) = \{(q, \epsilon)\}$ для всех $a \in V_T$.

- ▶ Пример: Необходимо построить МП-автомат, допускающий язык $L=\{r^nt^n|n>=1\}$.
- ► Автомат задается формальной системой $S=(\{q_0,q_1,q_2,q_3\},\{r,t\},\{Z_0,0\},\delta,q_0,\{q_3\}).$

Функция переходов МП-автомата

Q	Χ ∪ {ε}	M	δ
q_0	r	Z_0	$(q_1, 0Z_0)$
q_1	r	0	(q ₁ , 00)
q1	t	0	(q ₂ , ε)
q_2	t	0	(q_2, ϵ)
q_2	ε	Z_0	(q_3, Z_0)

- Входное слово rrtt. Последовательность конфигураций автомата S следующая:
- ightharpoonup (q₀, rrtt, Z₀)
- \triangleright (q₁, rtt, OZ_0)
- $ightharpoonup (q_1, tt, 00Z_0)$
- $(q_2, t, 0Z_0)$
- \triangleright (q₂, ϵ , Z₀) \vdash
- \triangleright (q₃, ϵ , Z₀)

Пример 2

- ► G=({r, +, *, (,)}, {E, T, F}, P, E),
- ▶ правила вывода (P) имеют вид: $E \rightarrow E+T$, $E \rightarrow T$, $T \rightarrow T*F$, $T \rightarrow F$, $F \rightarrow (E)$, $F \rightarrow r$.
- ightharpoonup Необходимо построить автомат S_G .

$$S_G = (\{q\}, X, M, \delta, q, E, \emptyset), где X = \{r, +, *, (,)\}.$$

- ▶ При входе r*(r+r) для S_G возможна последовательность конфигураций
- ightharpoonup (q, r*(r+r), E) \vdash (q, r*(r+r), T) \vdash
- ightharpoonup (q, r*(r+r), T*F) (q, r*(r+r), F*F) -

- ightharpoonup (q, r+r), E+T)) \vdash (q, r+r), T+T)) \vdash
- $ightharpoonup (q, +r), +T)) \vdash (q, r), T)) \vdash$
- ightharpoonup (q, r), F)) \vdash (q, r), r)) \vdash
- \triangleright (q,),)) \vdash (q, ϵ , ϵ).

Функция переходов МП-автомата S_G

Q	X ∪ {ε}	M	δ
q	3	E	{(q, E+T), (q, T)}
q	ε	Т	{(q, T*F), (q, F)}
q	ε	F	{(q, E), (q, r)}
q	r	r	(q, ε)
q	+	+	(q, ε)
q	*	*	(q, ε)
q	(((q, ε)
q))	(q, ε)

▶ Приведенная последовательность соответствует левому выводу слова r*(r+r) в КС-грамматике

G.
$$E \Rightarrow T \Rightarrow T *F \Rightarrow F *F \Rightarrow r*(E) \Rightarrow r*(E + T)$$

 $\Rightarrow r*(T + T) \Rightarrow \Rightarrow r*(F + T) \Rightarrow r*(r + T) \Rightarrow r*(r + F)$
 $\Rightarrow r*(r + r) \in L(G)$.