Sherlock and MiniMax

Watson gives Sherlock an array of integers. Given the endpoints of an integer range, for all M in that inclusive range, determine the minimum(abs(arr[i]-M) for all $1 \le i \le |arr|$)). Once that has been determined for all integers in the range, return the M which generated the maximum of those values. If there are multiple M's that result in that value, return the lowest one.

For example, your array arr=[3,5,7,9] and your range is from p=6 to q=8 inclusive.

```
M |arr[1]-M| |arr[2]-M| |arr[3]-M| |arr[4]-M| Min
6 3 1 1 3 1
7 4 2 0 2 0
8 5 3 1 1 1
```

We look at the $\underline{\text{Min}}$ column and see the maximum of those three values is 1. Two M's result in that answer so we choose the lower value, 6.

Function Description

Complete the sherlockAndMinimax function in the editor below. It should return an integer as described.

sherlockAndMinimax has the following parameters:

- arr: an array of integers
- p: an integer that represents the lowest value of the range for $m{M}$
- q: an integer that represents the highest value of the range for $m{M}$

Input Format

The first line contains an integer n, the number of elements in arr.

The next line contains n space-separated integers arr[i].

The third line contains two space-separated integers p and q, the inclusive endpoints for the range of M.

Constraints

$$1 \le n \le 10^2$$
 $1 \le arr[i] \le 10^9$
 $1 \le p \le q \le 10^9$

Output Format

Print the value of M on a line.

Sample Input

```
3
5 8 14
4 9
```

Sample Output

```
4
```

Explanation

$$arr = [5, 8, 14], range = [4 - 9]$$

```
M |arr[1]-M| |arr[2]-M| |arr[3]-M| Min
4 1 4 10 1
```

5	0	3	9	0
6	1	2	8	1
7	2	1	7	1
8	3	0	6	0
9	4	1	5	1

For M=4,6,7, or 9, the result is 1. Since we have to output the smallest of the multiple solutions, we print 4.