

ISEL-INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA MODELAÇÃO E SIMULAÇÃO DE SISTEMAS NATURAIS PO2

ANDRÉ FONSECA 39758 FEVEREIRO 2017

SINOPSE

Uma ferramenta de simulação de um sistema biológico pode ajudar a perceber os efeitos prejudiciais de agentes nocivos como vírus e bactérias. A maior distinção entre ambos é a de que os antibióticos servem para matar bactérias, mas não são eficazes contra vírus.

Os vírus são significativamente mais pequenos do que as bactérias e requerem um hospedeiro vivo como pessoas, plantas ou animais para se multiplicarem. Caso contrário não conseguem sobreviver. Quando um vírus entra no corpo humano, este invade algumas células e altera o seu mecanismo para que estas auxiliem na sua replicação.

ÍNDICE

SINOPSE	1
INTRODUÇÃO	3
MODELAÇÃO APLICACIONAL	4
PARÂMETROS INICIAIS	5
REPLICAÇÃO	Ę
COMPORTAMENTOS	8
CONCLUSÃO	g
REFERÊNCIAS	g

INTRODUÇÃO

Pretende-se para este projecto o desenvolvimento de um simulador de um sistema biológico que é afectado por uma estirpe de um vírus nunca estudado. Este vírus apresenta um comportamento diferente de todos os outros, actuando de uma forma organizada.

A sua principal função é assegurar a sobrevivência dentro do hospedeiro. Para tal, o seu mecanismo de replicação é activado, multiplicando-se e alastrando-se pelo sistema o mais rapidamente possível. De forma a aumentar significativamente a sua presença dentro do sistema, o vírus altera o funcionamento dos glóbulos vermelhos que estão presentes no sangue para que estes auxiliem a replicação de mais agentes nocivos.

Os glóbulos vermelhos, também designados por hemácias ou eritrócitos, são células presentes no sangue de cor avermelhada, cuja principal função é o transporte de oxigênio por todo o corpo. Quando esta função se encontra comprometida todas as funções e mecanismos do corpo humano entram em mau funcionamento, dando origem ao desequilíbrio de outros micro-sistemas, tal como a produção de glóbulos brancos.

Os leucócitos, conhecidos por glóbulos brancos, são um grupo de células oriundas da medula óssea e presentes no sangue. Estes fazem parte do sistema imunitário do organismo e têm como função o combate e a eliminação de microorganismos alheios.

A estirpe de vírus introduzida no simulador tem algumas características particulares. Ao longo do tempo, o vírus evoluiu e foi alvo de varias mutações, tornando-se mais resistente ao combate de glóbulos brancos. Uma dessas alterações foi o desenvolvimento de comportamentos individuais dos agentes que lhes permite fugir e evitar os glóbulos brancos e outros microrganismos que não contribuem ou que abrandem o alastramento.

A representação dos agentes e das células será em forma de um objeto denominado de boid. Trata-se de um modelo computacional, desenvolvido por Craig Reynolds em 1986, que gera e coordena movimentos associados a animais em grupo, como bandos de pássaros ou peixes.

MODELAÇÃO APLICACIONAL

O simulador é dividido em 3 partes. O environment é a classe principal do ambiente que armazena e gere todos os dados dos microorganismos. É responsável por actualizar os dados através do método update() e propagar pelo objectos associados.

A classe system - unicamente responsável por calcular o tempo entre frames para ser utilizado posteriormente a nível global.

Classe metrics escreve dados analíticos sobre o estado actual do ambiente e a quantidade de agentes.

Classe debug tem o intuito de servir de apoio ao desenvolvimento e visualização pormenorizados de parâmetros dos agentes e do ambiente.

Os agentes microbiológicos são compostos pelas classes RBC¹, WBC², CHO³ e Vírus. Estas classes contém a view⁴ a ser utilizada por cada uma e os métodos de ativação de comportamentos, atualização e geração de réplicas.

¹ Red Blood Cell

² White Blood Cell

³ Cholesterol

⁴ Modelo de imagem do objecto

Os agentes são constituídos por objectos mover e boid. A classe mover é responsável por gerir o posicionamento de um objeto no ambiente e de aplicar forças ao objecto.

A classe boid contém parâmetros e características de animais como a sua energia, a intensidade de ataque e um conjunto de comportamentos. Os comportamentos são derivados da interacção entre outros boids, como o avoid que calcula as forças necessárias para evitar o contacto com outro boid.

Dado o elevado número de objectos presentes optou-se por não se construir uma grelha de posições por todo o ambiente devido à exigência de recursos e ao processamento necessária. Em alternativa, optou-se por calcular individualmente as coordenadas de cada objecto consoante a sua posição e um espaçamento para cada quadrícula. Desta forma, evita-se o processamento de milhares de quadrículas em cada cada frame.

PARÂMETROS INICIAIS

Os parâmetros iniciais de funcionamento do simulador podem ser configurados no ficheiro main.js. Estes passam por desenhar uma grelha no ambiente e nos detalhes de registo de coordenadas, parâmetros e visão dos objectos CHO, RBC, WBC, Vírus e mouse.

REPLICAÇÃO

Os dois microrganismos que têm o mecanismo de replicação, Vírus e WBC são compostos por uma equação para determinar o seu sucesso respectivamente.

No caso da replicação do Vírus estabeleceram-se probabilidades consoante a sua energia e foi traçada uma reta polinomial de terceiro grau que se aproxima dos valores estabelecidos.

Quanto à replicação de WBC fazia sentido associar uma equação exponencial que se aproximasse do modelo estabelecido. O seu intuito recai sobre o conceito do sistema imunitário produzir glóbulos brancos consoante a quantidade de objectos estranhos presentes, mas com um tempo de retardamento inicial.

Foi também implementada uma ligeira produção de WBC pelo sistema imunitário. Neste caso o environment; que produz um WBC sempre que o rácio entre Vírus e WBC é superior a 4, valor intermédio estabelecido no modelo.

Energy	Virus replication rate model	Polynomial rate of Virus replication	WBC replication rate model	Exponencial rate of WBC replication	Ratio Virus/WBC	WBC ratio rate model
60	0.05	0.050	0.020	0.021	0.0	0.000
90		0.056	0.025	0.028	1.3	0.001
120	0.06	0.060	0.030	0.036	2.5	0.002
150		0.064	0.035	0.048	3.8	0.003
180	0.07	0.070	0.040	0.063	5.0	0.040
210		0.081	0.045	0.083	6.3	0.050
240	0.1	0.100	0.050	0.110	7.5	1.000

Modelo de replicação de vírus e equação polinomial

Modelo de replicação de WBC e equação exponencial

Equação polinomial de replicação de Vírus e equação exponencial de replicação de WBC

COMPORTAMENTOS

A gestão dos comportamentos implementados pelo objecto boid é feita através do array behaviours e pelo objecto priority, em que o último actua sobreposto a quaisquer outros comportamentos presentes no array de comportamento.

A sua implementação é realizada no método de actualização update(). Caso não exista nenhum comportamento prioritário é chamado o método de actualização de cada comportamento individualmente. Caso algum comportamento retorne o valor booleano de true, então o comportamento é removido do array. Este retorno dá-se quando um comportamento está concluído e já não precisa de estar activo.

CONCLUSÃO

Os conceitos dados na disciplina são de extrema importância no desenvolvimento de agentes que podem desempenhar comportamentos individuais e em grupo, sem fazer recurso a um sistema central de gestão e processamento. Estes podem ser aplicados em diversas áreas e escalas, como demonstrado neste projecto.

O desenvolvimento deste simulador serve também para introduzir a ideia de que estes comportamentos e conceitos podem ser aplicados à microbiologia e nanotecnologia. Visto que a programação de células humanas pode futuramente vir a ser possível e praticada de maneira semelhante aos sistemas computacionais.

REFERÊNCIAS

- B. Recording analog memories in human cells Engineers program human cells to store complex histories in their DNA.
 http://news.mit.edu/2016/recording-analog-memories-human-cells-081
 8
- C. A programming language for living cells New language lets researchers design novel biological circuits. http://news.mit.edu/2016/programming-language-living-cells-bacteria-0331
- D. What are red blood cells?
 https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTy
 peID=160&ContentID=34