Congratulations! You passed!

Grade received 100% To pass 66% or higher

Go to next item

1.	Which one is TRUE about the kNN algorithm?	1/1 point
	NN is a classification algorithm that takes a bunch of unlabelled points and uses them to learn how to label other points.	
	kNN algorithm can be used to estimate values for a continuous target.	
	NN calculates similarity by measuring how close the two data points' response values are.	
	O The most similar point in kNN is the one with the smallest distance averaged across all normalized features.	
	Correct Correct! kNN can be used for both classification and regression prediction tasks. In the case of a continuous target, the prediction is taken as the average or median of the nearest neighbours.	
2.	If the information gain of the tree by using attribute A is 0.3, what can we infer?	1/1 point
	O By making this split, we increase the randomness in each child node by 0.3.	
	O Entropy in the decision tree increases by 0.3 if we make this split.	
	The entropy of a tree before split minus weighted entropy after split by attribute A is 0.3.	
	O Compared to attribute B with 0.65 information gain, attribute A should be selected first for splitting.	
	 Correct Correct This describes how information gain is calculated, measuring how much certainty has increased by making a split. 	
3.	When we have a value of K for KNN that's too small, what will the model most likely look like?	1/1 point
	The model will be overly simple and does not capture enough noise.	
	The model will be highly complex and captures too much noise.	
	The model will have high out-of-sample accuracy.	
	The model will have high accuracy on the test set.	
	 Correct Correct By looking at too few neighbours, we can capture an anomaly in the data, which means that prediction isn't generalized enough. 	