CS550 HOMEWORK 2

USING OVERFITTING TO EVALUATE LINEAR REGRESSION AND NON-LINEAR REGRESSION MODELS

Real data set 1 50% of the collected data		Model 1: Linear Regression	Model 2: Non-linear Regression
Х	у	ŷ=a1 + b1 * x	ŷ=a2 + b2 * x ²
1	1.8		
2	2.4		
3.3	2.3		
4.3	3.8		
5.3	5.3		
1.4	1.5		
2.5	2.2		
2.8	3.8		
4.1	4.0		

Calculating the slope and intercept(a,b) to complete the table

or Linear regression:

slope(b)	$= (N\Sigma XY)$	´ - (ΣΧ)(ΣΥ))) / (NΣX²	- (ΣX)²)

ntercept(a) = $(\Sigma Y - b(\Sigma X)) / N$

X	Y	X*Y	X*X
1	1.8	1.8	1
2	2.4	4.8	4
3.3	2.3	7.59	10.89
4.3	3.8	16.34	18.49
5.3	5.3	28.09	28.09
1.4	1.5	2.1	1.96
2.5	2.2	5.5	6.25
2.8	3.8	10.64	7.84

Finding the values \$\simex\$, \$\simex\, \$\simex

```
N = 10(total number of values)
\Sigma X = 31.8
\Sigma Y = 32.5
\Sigma XY = 120.8
\Sigma X^2 = 121.34
Applying the formula.
Slope(b1) = (N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2) = 10 * (120.8) - (31.8)*(32.5)/10 * (121.34) - (31.8)^2
            = 0.86
Intercept(a) = (\Sigma Y - b(\Sigma X)) / N = (32.5) - 0.86(31.8)/10 = 0.51
For Nonlinear regression:
Slope(b) = (N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P^2 - (\Sigma P)^2)
Intercept(a) = (\Sigma Y - b(\Sigma P)) / N
P = X * X
```

Finding the values

finding the values				
Y	P = X*X	PY	P*P	
1.8	1	1.8	1	
2.4	4	9.6	16	
2.3	10.89	25.04	118.59	
3.8	18.49	70.26	341.88	
5.3	28.09	148.87	789.04	
1.5	1.96	2.94	3.84	
2.2	6.25	13.75	39.06	
3.8	7.84	29.79	61.46	
4.0	16.81	67.24	282.57	
5.4	26.01	140.45	676.52	
	Y 1.8 2.4 2.3 3.8 5.3 1.5 2.2 3.8 4.0	Y P = X*X 1.8 1 2.4 4 2.3 10.89 3.8 18.49 5.3 28.09 1.5 1.96 2.2 6.25 3.8 7.84 4.0 16.81	Y P = X*X PY 1.8 1 1.8 2.4 4 9.6 2.3 10.89 25.04 3.8 18.49 70.26 5.3 28.09 148.87 1.5 1.96 2.94 2.2 6.25 13.75 3.8 7.84 29.79 4.0 16.81 67.24	

Finding the sum of the values:

N = 10(total number of values) $\Sigma P = 121.34$

 $\Sigma Y = 32.5$

 $\Sigma PY = 509.76$ $\Sigma P^2 = 2329.98$

Applying the formula.

Slope(b2) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P^2 - (\Sigma P)^2) = 10 *(509.76) - (121.34)*(32.5)/10 *(2329.98) - (121.94)^2$

= 0.13

Intercept(a2) = $(\Sigma Y - b(\Sigma P1)) / N = (32.5) - 0.13(121.94)/10 = 1.66$

The next step is substituting the values in the Regression equation formula for the training phase.

Regression equation is y = a + bx

Training Set Result

X	У	ŷ=a1 + b1 * x	ŷ=a2 + b2 * x
1	1.8	1.37	1.79
2	2.4	2.23	2.18
3.3	2.3	3.34	3.07
4.3	3.8	4.20	4.06
5.3	5.3	5.06	5.31
1.4	1.5	1.71	1.91
2.5	2.2	2.66	2.47
2.8	3.8	2.94	2.67
4.1	4.0	4.03	3.79
5.1	5.4	4.89	5.04

Validation Set Phase

х	у	ŷ=a1 + b1 * x	ŷ=a2 + b2 * x²
1.5	1.7	1.80	1.95
2.9	2.7	3.0	2.75
3.7	2.5	3.69	3.43
4.7	2.8	4.55	4.53
5.1	5.5	4.89	5.04
X	X	X	X
X	X	X	X
X	X	X	Х
X	X	Х	Х
X	X	Х	Х

X	y	-	$\hat{y}=a2+b2$	X	y	$\hat{y}=a1+b1*$	$ \hat{y}=a2+b2* $	X	$\hat{y}=a1+b1*x$
		* x	* x ²			X	x ²		$ \begin{array}{c} \text{or} \\ \hat{y}=a2+b2 * \\ x^2 \end{array} $
1	1.8	1.37	1.79	1.5	1.7	1.80	1.95	1.4	
2	2.4	2.23	2.18	2.9	2.7	3.0	2.75	2.5	
3.3	2.3	3.34	3.07	3.7	2.5	3.69	3.43	3.6	
4.3	3.8	4.20	4.06	4.7	2.8	4.55	4.53	4.5	
5.3	5.3	5.06	5.31	5.1	5.5	4.89	5.04	5.4	
1.4	1.5	1.71	1.91	X	X	X	X	X	X
2.5	2.2	2.66	2.47	X	X	X	X	X	X
2.8	3.8	2.94	2.67	X	X	X	X	X	X
4.1	4.0	4.03	3.79	X	X	X	X	X	X
5.1	5.4	4.89	5.04	X	X	X	X	X	X

Choosing the best model based on the mean square error method. Training set

```
Model 1 

MSE =((1.37-1.80)^2 + (2.23-2.4)^2 + (3.34-2.3)^2 + (4.20-3.8)^2 + (5.06-5.30)^2 + (1.71-1.5)^2 + (2.66-2.2)^2 + (2.94-3.8)^2 + (4.03-4.00)^2 + (4.89-5.4)^2 / 10
=(0.18 + 0.02 + 1.08 + 0.16 + 0.05 + 0.04 + 0.21 + 0.73 + 0.0009 + 0.26 / 10
= 0.27
```

```
Model 2 

MSE = ((1.79-1.8)^2 + (2.18-2.4)^2 + (3.07-2.3)^2 + (4.06-3.8)^2 + (5.31-5.3)^2) + (1.91-1.5)^2 + (2.47-2.2)^2 + (2.67-3.8)^2 + (3.79-4.0)^2 + (5.04-5.4)^2)/10

= (0.0001+0.04+0.59+0.06+0.0001+0.16+0.07+1.27+0.04+0.12)/10

= 0.23
```

Validation set

```
Model 1

MSE = ((1.7-1.80)^2 + (2.7-3.0)^2 + (2.50-3.69)^2 + (2.8-4.55)^2 + (5.5-4.89)^2)/5

= (0.01+0.09+1.41+3.06+0.37)/5

= 0.98
```

```
Model 2

MSE = ((1.7 - 1.95)^2 + (2.7 - 2.75)^2 + (2.50 - 3.43)^2 + (2.8 - 4.53)^2 + (5.5 - 5.04)^2

= (0.0625 + 0.0025 + 0.86 + 2.99 + 0.21)/5

= 0.86
```

Comparing model 1 and model 2

Model
$$1 = 0.98/0.27$$

= 3.62

Model
$$2 = 0.86/0.23$$

= 3.73

In conclusion Model 1 is better it has a lower training set

Test Phase

x	ŷ=a1 + b1 * x
1.4	1.71
2.5	2.66
3.6	3.60
4.5	4.38
5.4	5.15