Maschinenelemente: Schweißverbindungen

Allgemein

9	
Zulässige Nor-	$\sigma_{\text{zul}} = \frac{R_e}{S_M} = \frac{R_e}{1,1}$
malspannung	
Zulässige	$\tau_{\text{zul}} = \frac{R_e}{\sqrt{3} \cdot S_M} = \frac{R_e}{\sqrt{3} \cdot 1, 1}$
Schubspan-	V S Z IVI
nung	

Zugstäbe

Schlankheit	$\frac{b}{t} \le \left(\frac{b}{t}\right)_{\text{Grenz}}$
Zugspannung	$\sigma_z = \frac{F_N}{A} \le \sigma_{\mathrm{zul}}$
Biegemoment	M_b = $F \cdot (e+0,5t)$
Biegespannung	$\sigma_b = \frac{M_b}{W} = \frac{M_b \cdot e}{I}$

Druckstäbe

Druckspannung	$\sigma_d = \frac{F_N}{A} \le \sigma_{\text{zul}}$
Grobe Vorbe-	
messung	$A_{\text{erf}} \approx \frac{F}{12} \frac{F}{10}$
	·
	$I_{\text{erf}} \approx 0, 12 \cdot F \cdot l_k^2$
	mit F in kN, l_k in m, A_{erf} in
	${ m cm}^2$ und $I_{ m erf}$ in ${ m cm}^4$

Schlankheits-	
grad	$\lambda_{kx} = \frac{l_k}{\sqrt{\frac{I_x}{A}}}$

<u> </u>	
Ideale Knick- last	$\lambda_a = \pi \sqrt{\frac{E}{R_e}}$
bezogener Schlankheits- grad	$ \overline{\lambda_{kx}} = \frac{\lambda_{kx}}{\lambda_a} $ $ \overline{\lambda_{ky}} = \frac{\lambda_{ky}}{\lambda_a} $
Druckkraft in vollplastischen Zustand	$F_{pl} = \frac{A \cdot R_e}{S_M}$
Bemessungswert der Stab-	$\frac{F}{\kappa \cdot F_{pl}} \le 1$

Druckkraft

Maschinenelemente: Schweißverbindungen

Knotenbleche

Normal-
spannung

$$\sigma = \frac{F}{b \cdot t_K} \le \sigma_{\text{zul}}$$

Einfache Biegeträger

Normal- spannung	$\sigma = \frac{F_N}{A} + \frac{M_x}{W_x} \le \sigma_{\text{zul}}$
Schubspannung	$\tau_m = \frac{F_q}{A_s} \le \tau_{\text{zul}}$
Vergleichs- spannung	$\sigma_v = \sqrt{\sigma^2 + 3\tau_m^2} \le \sigma_{\text{zul}}$

Schweißnähte im Stahlbau

Stumpfnähte	
	a = $t_{ m min}$
Kehlnähte	
	$2 \mathrm{mm} \le a \le 0,7 t_{\mathrm{min}}$
	$a \le \sqrt{t_{\text{max}}} - 0.5 \text{mm}$

Festigkeitsnachweis

Vergleichsspannung

$$\sigma_{\rm wv} = \sqrt{\sigma_{\perp}^2 + \tau_{\parallel}^2 + \tau_{\perp}^2} \leq \sigma_{\rm w \ zul}$$

Beanspruchung auf Zug, Druck oder Schub

$$\left. \begin{array}{l} \sigma_{\perp} \\ \tau_{\perp} \\ \tau_{\parallel} \end{array} \right\} = \frac{F}{A_{\mathrm{w}}} = \frac{F}{\Sigma(a \cdot l)} \leq$$

$$\sigma_{
m w\ zul}$$
 = $au_{
m w\ zul}$

Auf Biegung und Querkraft beanspruchter Kehlnahtanschluss

$$\begin{split} \sigma_{\perp} &= \frac{M}{I_{\rm w}} \cdot y \leq \sigma_{\rm w \ zul} \\ \tau_{\parallel} &= \frac{F_{\rm q}}{A_{\rm wS}} \leq \tau_{\rm w \ zul} \\ &= \sigma_{\rm w \ zul} \end{split}$$

 $(A_{\rm wS})$ ist die Querschnittsfläche die parallel zur Querkraft verläuft, z.B. $A_{\rm w3}$)

Flächenträgheitsmoment der Schweißnaht

$$I_{\mathrm wi} = \frac{b \cdot h^3}{12}$$

 $Maschinenelemente: \ Schweißverbindungen$

Gesamtes Flächen- trägheits- moment	$I_{\rm w} = \Sigma I_{{\rm w}i} + \Sigma y_i^2 \cdot A_{{\rm w}i}$
Bei Anschlüssen mit doppeltsymmetrischen I-Profilen	$\sigma_{\perp} = \sigma_{\perp \text{zd}} + \sigma_{\perp \text{b}}$ $= \frac{\frac{F_N}{2} + \frac{M}{h_F}}{A_{\text{wF}}} \le \sigma_{\text{w zul}}$

Legende

nogonae	
Formel-	Bedeutung
zeichen	
a	Schweißnahthöhe
$A_{ m w}$	Querschnittsfläche der
	Schweißnaht
b	Breite
F_N	Normalkraft
F_q	Querkraft
t	Dicke
t_K	Dicke des Knotenblechs
M_b	Biegemoment
I	Flächenträgheitsmoment
$I_{ m w}$	Flächenträgheitsmoment der
	Schweißnaht
R_e	Streckgrenze
S_M	Sicherheitsfaktor $(S_M = 1, 1)$