Paper Id: 199362

			S	ub (Cod	e:K(OE0	38
Roll No:				_				

B. TECH (SEM-III) THEORY EXAMINATION 2019-20 ELECTRONICS ENGINEERING

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Q no.	Question	Marks	co
a.	What will happen on number of free electrons in a semiconductor on increasing the temperature?	2	COI
b.	Differentiate between zener breakdown and avalanche breakdown.	2	COI
с.	A Zener diode regulator circuit has an input voltage that may vary from 22V to 30 V if the regulated output voltage is 12 V and the load resistance varies from 140 ohms to 10 KOhms. Determine the maximum allowable series resistance.	2	CO2
d.	What is the average current, rms current and efficiency for half wave and full wave rectifier?	2	CO2
e.	Derive the relationship between ICEO and ICBO in BJT.	2	CO3
f.	Describe how an FET can be used as a voltage controlled resistor.	2	CO3
g.	What is unity gain amplifier(buffer)?	2	CO4
h.	What is SLEW RATE explain briefly?	2	CO4
i.	Compare analog and digital instruments.	2	COS
j.	Write the applications of CRO.	2	CO5
			N. 82

SECTION B

2. Attempt any three of the following:

 $3^{\circ}x 10 = 30$

Q no.	Question	Marks	CO
a.	 (i) Draw and explain the characteristics of transition and diffusion capacitance v/s applied voltage. (ii) What do you mean by diode resistances? A Ge diode at temperature 300K conducts 5mA at voltage 0.35V, predict the diode current if voltage is 0.4V. 	10	COI
b.	With a neat circuit diagram and waveforms explain the working of full wave bridge rectifier and show that its ripple factor is 0.48.	10	CO2
c.	Distinguish between enhancement type and depletion type MOSFETs. Draw the cross-section of N-channel enhancement MOSFET. Explain and draw the transfer characteristics.	10	CO3
d.	Draw the equivalent circuit of an ideal and practical opamp, also explain its applications as summing amplifier.		CO4
е.	What is the basic principle of a DVM? Explain Ramp technique of measurement.	10	CO5

SECTION C

3. Attempt any one part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Draw the V-I characteristics of an ideal & practical diode and explain. Also write the diode equation in support of your answer.	10	COI
b.	How reverse saturation current of a diode changes with the temperature? Show the effect of temperature on V-I characteristics curve.	10	COI

Paper Id:

Sub Code: KOE038

4. Attempt any *one* part of the following:

199362

•	_	10	_	10
	x		_	

Q no.	Question	Marks	co
a	 (i) In a full wave rectifier, the input is from 30-0-30V transformer. The loadand diode forward resistances are 100Ω and 10Ω respectively. Calculatethe average voltage, dc output power, ac input power, rectificationefficiency and percentage regulation. (ii) Sketch the output Voltage waveform for given circuit 	10 ;	CO2
	Vi 16 -10 Ω		
b.	Draw and Explain the working of tunnel diode & varactor diode with proper diagram and characteristics.	10	CO2
5	Attempt one and nort of the followings	1 v 10 =	. 10

Roll No:

Attempt any one part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Calculate the value of V _{CEQ} , and I _{CQ} for the given circuit.	10	CO3
	18 V $3.3 \text{ k}\Omega$ $R_1 R_2 C V_0$ $ 10 \mu\text{F} 10 \mu\text{F}$ $V_1 \circ P $		
	510 Ω \$ 50 μF		
ь.	The device parameters for an n-Channel JFET are Maximum current IDSS = 10mA, Pinch off voltage, Vp = -4V Calculate the drain current for (a) VGS = 0 (b) VGS = -1.0v (c) VGS = -4V.	10	CO3
	Attempt one one part of the following:	1 - 10 -	10

6. Attempt any one part of the following:

 $1 \times 10 = 10$

Printe	I Page 3 of 3	Code: P	COEU38
Paper	Id: 199362 Roll No:		
Ъ.	Define following terms for an Opamp:	10	CO4
	(i) Slew rate	,	1
	(ii) Virtual ground		
	(iii) CMRR		

7. Attempt any one part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO
а.	 (i) Explain how we measure voltage, frequency and phase with CRO. (ii) A lissajous pattern on an oscilloscope is stationary. It has 5 vertical tangent values and 6 horizontal tangent values. The frequency of horizontal input is 1800Hz. Determine the frequency of vertical input. 	10	CO5
b.	Draw and explain the block diagram of Digital Storage Oscilloscope(DSO) also compare it with analog oscilloscope.	10	CO5

https://www.aktuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-

अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay सं

3 | Page