

i-Trop cluster Slurm Initiation

www.southgreen.fr

https://southgreenplatform.github.io/trainings

i-Trop presentation

Ndomassi TANDO, Ingénieur systèmes Animateur plateau, RMQ

Christine TRANCHANT-DUBREUIL, Bioinformaticienne

Aurore COMTE, Bioinformaticienne

Julie ORJUELA-BOUNIOL, Bioinformaticienne

Valérie NOEL, Bioinformaticienne

Bruno GRANOUILLAC, Systèmes d'information

outh Green i-Trop Presentation

EURO-QUALITY SYSTEM ISO 9001

Provisioning of softwares and HPC ressources

Analysis software and IS development

Plateau bioinformatique

Help and support to IRD teams

Training to north and South

Requests/incidents/Howtos

Request forms:

https://bioinfo.ird.fr/index.php/en/cluster-2/

- Accounts
- Softwares
- Projects
- Incidents: contact <u>bioinfo@ird.fr</u>
- Howtos:

https://bioinfo.ird.fr/index.php/en/tutorials-howtos-i-t
rop-cluster/

Slurm Tutorials:

https://bioinfo.ird.fr/index.php/en/tutorials-slurm/

Analyses steps of the cluster

Practice

Step 1: Connection, sinfo

Go to the Practice1 and 2 of github

Partitions	Use	RAM on nodes	Core on nodes
short	Short Jobs < 1 day (higher priority, interactive jobs)	48 to 64 GB	12 cores
normal	Short Jobs max 7 days	64 Go to 96 GB	12 to 24 cores
r900	Short Jobs max 7 days	32GB	16 cores /scratch 117GB
long	45 days >long jobs > 3 days	48 GB	12 to 24 cores
highmem	Jobs with more memory needs	144 GB	12 to 24 cores
supermem	Jobs with much more memory needs	1TB	40 cores
gpu	Need for analyses on GPU cores	192GB	24 cpus and 8 GPUs cores

Particular case: gpu partition

- Partition to work on GPUs processors : basecalling, MiniOn etc...
- Restricted access to gpu_account group
- Request access with arguments to do here:

https://itrop-glpi.ird.fr/plugins/formcreator/front/formlist.php

outh Green How do I choose the partition?

How do I choose the partition?

outh Green How do I choose the partition?

outh Green How do I choose the partition?

uth Green How do I choose the partition?

outh Green How do I choose the queue?

uth Green How do I choose the queue?

South Green Which partition to choose?

Rules	Partition	Tools example	comments
basecalling, demultiplexing,			
correction	gpu	medaka, guppy, machine learning tools	Restricted access
			Target genome > 400 Mb (rice genome
assembling >100G RAM	supermem	miniasm, flye, raven, smartdenovo	doesn't need 100 GB)
			Target genome for more than 400 Mb (>10
genomicsbd (gatk) > 100G RAM	supermem	GATK genomicsDB	samples)
assembling => 35G et < 120G RAM	highmemplus	miniasm, flye, raven, smartdenovo	Target genome between 100 and 400 Mb
assembling => 35G et < 100G RAM	highmem	miniasm, flye, raven, smartdenovo	Target genome between 100 and 400 Mb
Pops structure	long		
simulations	long		
metagenomic	normal	quiime2, frogs	
			Need a lot of cores not too many RAM
mapping	normal	bwa, minimap2, hisat2	Tool number of cores = number of cores to reserve
			Need a lot of cores not too many RAM
		GATK haplotypecaller, samtools	Tool number of cores = number of cores
genotypage	normal	mpileup, bcftools	to reserve
stats	normal	R	
Scripts tests	short	bash, python, R	

cluster i-Trop disk partitions

bioinfo-nas.ird.fr

bioinfo-nas2.ird.fr

bioinfo-nas3.ird.fr

Illustration legend:

Local Hard drives in full cylinders

Virtual links to physical hard drives (empty cylinders)

Data transfer on i-Trop cluster

Practice

Step 3 and 4: scp to nodes

Go to the Practice4 of the github

Module Environment

- > Allow to choose the version of software you want to use
- 2 types of softwares: bioinfo: includes all the bioinformatics softwares (example BEAST) system: includes all the system softwares(example JAVA)
- Overcome the environment variables

Module Environment

- 5 types of commands :
- See the available modules :

module avail

Obtain infos on a particular module:

module whatis + module name

Load a module :

module load + modulename

• List the loaded module :

module list

Unload a module :

module unload + modulename

Unload all the modules :

module purge

Practice

Step 5: module environment

Go to the Practice5 of the github

Launch a command from the prompt

- Load the software version to launch
- Launch the data analysis

\$~ command <options> <arguments>

With command: the command to launch

Practice

Step6: launch the analysis

Go to the Practice6 of the github

Practice

Step 7: Retrieve the results

Go to the Practice7 of the github

Delete results from scratchs

- Scratch= temporary spaces
- Verify that the copy is OK before
- Use rm command

```
cd /scratch
rm -rf nom_rep
```

Practice

Step8: Data deletion

Go to the Practice8 of the github

Scripts to visualize/delete données temporary data

- Scripts location: /opt/scripts/scratch-scripts
- Visualize data on scratchs: scratch_use.sh

sh /opt/scripts/scratch-scripts/scratch_use.sh

• Delete data on scratchs: clean scratch.sh

sh /opt/scripts/scratch-scripts/clean_scratch.sh

South Green Main Slurm commands Main Slurm commands

Commande	Description	Exemple
sruntime=0X:00pty bash -i	Interactive way to connect to a node for X minutes	sruntime=02:00:00pty bash -i Connection for 2h
sbatch	Launch a analyses in background via a script	sbatch script.sh
sinfo	Informations on partitions	sinfo
scancel	Job deletion	scancel 1029
squeue	Infos on all jobs	squeue -u tando
scontrol show job <job_id></job_id>	Infos on the active job <job_id></job_id>	scontrol show job 1029
sacct -j <job_id></job_id>	Infos on the finished job <job_id></job_id>	sacct -j 1029

More infos here: https://southgreenplatform.github.io/tutorials//cluster-itrop/Slurm/#part-2

South Green Options of sbatch, srun, salloc commands

Options	Description	Exemple
job-name= <name></name>	Name the job	sbatchjob-name=tando_blast
-p <partition></partition>	Choose a partition	sbatch -p highmem
nodelist= <nodex></nodex>	Choose a particular node	sbatch -p normalnodelist=node14
-n <nb_tasks></nb_tasks>	Launch several instance of a command	srun -n 4
-c <nb_cpu_per_task></nb_cpu_per_task>	Allocate the number of cpus per task	srun -n 4 -c 2 hostname
mail-user= <emailaddress></emailaddress>	Send a email	sbatch mail-user=ndomassi.tando@ird.fr
mail-type= <event></event>	Send a email when: END: end of the job FAIL: abortion BEGIN: beginning of job ALL: all events	sbatchmail-type=BEGIN

LAUNCH A JOB

Advantages

- Scheduler choose resources automatically
- Use up to 24 cores at the same time
- Possibility to configure this choice
- Jobs launch in background
 - → possibility to turn off your PC/MAC
 - → automatic results retrieving

Launch a batch job

- Execute a script via Slurm
- Use:

\$~ sbatch script.sh

with script.sh: the name of the script

South Green Options of sbatch, srun, salloc commands

Options	Description	Exemple
job-name= <name></name>	Name the job	sbatchjob-name=tando_blast
-p <partition></partition>	Choose a partition	sbatch -p highmem
nodelist= <nodex></nodex>	Choose a particular node	sbatch -p normalnodelist=node14
-n <nb_tasks></nb_tasks>	Launch several instance of a command	srun -n 4
-c <nb_cpu_per_task></nb_cpu_per_task>	Allocate the number of cpus per task	srun -n 4 -c 2 hostname
mail-user= <emailaddress></emailaddress>	Send a email	sbatch mail-user=ndomassi.tando@ird.fr
mail-type= <event></event>	Send a email when: END: end of the job FAIL: abortion BEGIN: beginning of job ALL: all events	Sbatchmail-type=BEGIN

#!/bin/bash

Bash scripts syntax

First part of the script (in green): sge execution options with the key word #SBATCH

Bash scripts syntax

In the 2nd part of the script: the command to execute

nom variable1="valeur variable1" nom variable2="valeur variable2" sleep 30 hostname

Practice

Launch a script with sbatch

Go to the Practice9 of the github

Satisfaction survey

Thank you to fill up the form at this URL:

https://itrop-survey.ird.fr/index.php/562934?lang=fr

Citations

If you use i-Trop Bioinformatics resources.

Thank you for citing with:

"The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD montpellier

for providing HPC resources that have contributed to the research results reported within this paper.

URL: https://bioinfo.ird.fr/- http://www.southgreen.fr"

Projects

 Include a budget for bioinformatics resources in your answer to projects funding

- A need in hard drives, renewal machinesetc...
- Available quotations

 Contact <u>bioinfo@ird.fr</u>: help, needs definition, quotations...

Thank you for your attention!

Le matériel pédagogique utilisé pour ces enseignements est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions (BY-NC-SA) 4.0 International:

http://creativecommons.org/licenses/by-nc-sa/4.0/