

Configuration of Neural Networks

Contents

- Regression
- Binary-Class Classification
- Multi-Class Classification
- Nominal Input

Regression: Stock Index Prediction

(2500, 2550, 2530, 2540, 2550) -> 2600

(2400, 2410, 2420, 2430, 2440) -> 2450

(2470, 2460, 2450, 2470, 2480) -> 2470

Following Neural Network is OK for regression?

- Maybe NO!! Why?
- The activation functions produces a value between [0,1]

- Solution
 - Use a linear output node

What layers do

- Summary
 - 1 Linear Activation Function at output node

2 MSE Loss Function

$$E = \sum_{n=1}^{N} (t_n - y_n)^2$$

- Binary-Class Classification:
 - Choosing one from two classes

- Binary-Class Classification:
 - Choosing one from two classes

● Categorical Value -> 1 or 0 로 변환

Activation Function of output nodes

Sigmoid is OK, but it means probability

Activation Function of output nodes

The output is regarded as "Probability of Dog"

- Loss Function
 - The output means probability

Cross Entropy

$$E = -\sum_{n=1}^{N} (t_n \log(y_n) + (1 - t_n) \log(1 - y_n))$$

where $t_n \in \{0,1\}$ and $y_n \in [0,1]$

- Summary
 - 1 Preprocessing

2 Sigmoid at output node

③ Cross Entropy

$$E = -\sum_{n=1}^{N} (t_n \log(y_n) + (1 - t_n) \log(1 - y_n))$$

where $t_n \in \{0,1\}$ and $y_n \in [0,1]$

We have 4 classes

How to Conver Categorical Values

Categorical Value Conversion

Not Good… why?

Categorical Value Conversion: One-hot-encoding

Structure of Neural Network

Activation Function of Output nodes

$$f = Softmax$$

Loss Function: Cross Entropy

$$E = \sum_{n=1}^{Data \ Class} -t_{nk} \log(y_{nk})$$

3 Choose the softmax instead of max

$$(y_1, y_2, y_3) = \text{softmax}(x_1, x_2, x_3)$$

$$y_k = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}}$$

y_1	y_2	y_3	x_1	x_2	x_3
0.301	0.332	0.367	1	1.1	1.2
0.090	0.245	0.665	1	2	3
0.042	0.114	0.844	1	2	4
0.017	0.047	0.936	1	2	5
0.000	0.000	1.000	1	2	10
0.000	0.000	1.000	1	2	20

- Summary
 - ① One-hot-encoding

2 Use softmax

3 Use cross entropy

$$E = \sum_{n=1}^{Data\ Class} \sum_{k=1}^{Data\ Class} -t_{nk} \log(y_{nk})$$

Cross Entropy for Multi-Class

$$(x_{11}, x_{12}, Red)$$

 (x_{21}, x_{22}, Red)
 $(x_{31}, x_{32}, Black)$
 (x_{41}, x_{42}, Red)
 $(x_{51}, x_{52}, Black)$

$$\begin{array}{lll} (x_{11},x_{12},1) & (x_{11},x_{12},1,0) \\ (x_{21},x_{22},1) & (x_{21},x_{22},1,0) \\ (x_{31},x_{32},0) & (x_{31},x_{32},0,1) \\ (x_{41},x_{42},1) & (x_{41},x_{42},1,0) \\ (x_{51},x_{52},0) & (x_{51},x_{52},0,1) \end{array}$$

$$-(t_n\log(y_n) + (1-t_n)\log(1-y_n)) - (t_{n1}\log(y_{n1}) + t_{n2}\log(y_{n2})) = -\sum_{k=1}^{ctass} t_{nk}\log(y_{nk})$$

Nominal Inputs

- What if you have categorical inputs
 - Two inputs and one output

$$x_1 \in R$$

 $x_2 \in \{Red, Yellow, Blue\}$
 $y \in \{0,1\}$

Create a new input variable for each categorical value

$$x_{2} = \begin{cases} 1 & \text{if original } x_{2} \text{ is Yellow} \\ 0 & \text{Otherwise} \end{cases}$$

$$x_{3} = \begin{cases} 1 & \text{if original } x_{2} \text{ is Red} \\ 0 & \text{Otherwise} \end{cases}$$

$$x_{4} = \begin{cases} 1 & \text{if original } x_{2} \text{ is Blue} \\ 0 & \text{Otherwise} \end{cases}$$

$$(0.1, Red, 0)$$

$$(0.2, Blue, 1)$$

$$(0.3, Yellow, 0)$$

$$(0.4, Red, 1)$$

$$(0.4, 1,0,0, 1)$$

Summary

Droblom	Activation	l occ function		
Problem	Hidden Layer	Output Layer	Loss function	
Regression	ReLU	Linear	MSE	
2-class Classification	ReLU	Sigmoid	CE	
Multi-class Classification	ReLU	Softmax	CE	