California State University, Dominguez Hills Department of Computer Science CSC 595

Professor: Dr. Benyamin Ahmadnia bahmadniayebosari@csudh.edu

Spring 2025

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Table of Contents

- Cost Function
- Gradient Descent
- Classification with Logistic Regression
- Cost Function for Logistic Regression
- Gradient Descent for Logistic Regression

Gradient Descent for Logistic Regression

Training logistic regression

Find \vec{w} , b

Given new
$$\vec{x}$$
, output $f_{\vec{w},b}(\vec{x}) = \frac{1}{1+e^{-(\vec{w}\cdot\vec{x}+b)}}$

$$P(y=1|\vec{x};\vec{w},b)$$

```
COST

J(\vec{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log \left( f_{\vec{w}, b}(\vec{x}^{(i)}) \right) + \left( 1 - y^{(i)} \right) \log \left( 1 - f_{\vec{w}, b}(\vec{x}^{(i)}) \right) \right]

  repeat {
             w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)
```

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$
}

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$j = 1 \dots N \\ w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w},b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$
}
$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
} simultaneous updates

Gradient descent for logistic regression

repeat { looks like linear regression}
$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} \right]$$

$$b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) \right]$$
 } simultaneous updates

Gradient descent for logistic regression

repeat { | looks like linear regression |
$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$
 | $b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) \right]$ | } simultaneous updates

Linear regression
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Logistic regression
$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$$

Gradient descent for logistic regression

} simultaneous updates

Linear regression
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Logistic regression
$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-(\vec{w} \cdot \vec{x} + b)}}$$

- (learning curve)
- Vectorized implementation
- Feature scaling

underfit

 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

Regression example

underfit

 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

Fits the training set extremely well

high variance

Regression example

underfit

 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

 Fits the training set extremely well

high variance

$$z = w(x_1) + w_2(x_2) + b$$
$$f_{\overrightarrow{W},b}(\overrightarrow{x}) = g(z)$$

g is the sigmoid function

underfit high bias

just right

$$z = w_1 x_1 + w_2 x_2 + w_3 x_1^2 x_2 + w_4 x_1^2 x_2^2 + w_6 x_1^3 x_2 + \cdots + b$$

Evaluate Yourself!

Our goal when creating a model is to be able to use the model to predict outcomes correctly for new examples . A model which does this is said to generalize well.
When a model fits the training data well but does not work well with new examples that are not in the training set, this is an example of:
O Underfitting (high bias)
O None of the above
Overfitting (high variance)
A model that generalizes well (neither high variance nor high bias)

Select features to include/exclude

size	bedrooms	floors	age	avg	•••	distance to	price
	(X ₂)	X ₃	(14)	income X5	-	coffee shop	Y

all features

insufficient data

selected features

size
bedrooms
age
just right
feature selection

course 2

disadvantage

useful features could be lost

Regularized logistic regression

Regularized logistic regression

Cost function

$$J(\overrightarrow{\mathbf{w}}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(\mathbf{f}_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - \mathbf{f}_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]$$

Regularized logistic regression

$$x_1$$
 Cost function

$$J(\overrightarrow{\mathbf{w}},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2 \, \text{m}} \sum_{j=1}^{m} \mathbf{w}_{j}^{2}$$

Regularized logistic regression

Cost function

$$J(\vec{\mathbf{w}},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(\mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) + \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - \mathbf{f}_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2 m} \sum_{j=1}^{m} \mathbf{w}_{j}^{2}$$

Regularized logistic regression

$$J(\vec{\mathbf{w}}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

```
repeat {
w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)
j = 1...n
b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)
}
```

Regularized logistic regression

$$J(\vec{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w}, b}(\vec{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{w}, b}(\vec{x}^{(i)}) \right) \right] \\ + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

Regularized logistic regression

$$J(\vec{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w}, b}(\vec{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{w}, b}(\vec{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$
}

Regularized logistic regression

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1-y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

$$\underset{\overrightarrow{w}_j,b}{\text{min}}$$
Gradient descent
$$\underset{\text{repeat } \{ \\ w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w},b) \right] = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} w_j^2$$

$$\underset{j=1...n}{\longrightarrow} b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} w_j^2$$

$$\underset{j=1...n}{\longrightarrow} \log \operatorname{istic regression} \left(\operatorname{supple points} \left(\operatorname{supple$$