

Multivariate vector sampling expansions in shift invariant subspaces[☆]

Qingyue Zhang

Department of Mathematics and LPMC, Nankai University, Tianjin 300071, China

Abstract

In this paper, we study multivariate vector sampling expansions on general finitely generated shift-invariant subspaces. Necessary and sufficient conditions for a multivariate vector sampling theorem to hold are given.

Keywords:

shift-invariant subspaces, super Hilbert spaces, frames

2000 MSC: 42C15, 42C40, 41A58.

1. Introduction and Main Results

If H is a Hilbert space, we define $H^{(q)} = H \times H \times \cdots \times H$ (q term). Given $f = (f_1, f_2, \dots, f_q)^T, g = (g_1, g_2, \dots, g_q)^T \in H^{(q)}$, the inner product f and g is defined by

$$\langle f, g \rangle_{H^{(q)}} = \sum_{p=1}^q \langle f_p, g_p \rangle_H.$$

Let $\varphi_j = (\varphi_{j,1}, \varphi_{j,2}, \dots, \varphi_{j,r})^T \in L^2(\mathbb{R}^d)^{(r)}$, $1 \leq j \leq N$ be a stable generator for the shift-invariant subspace

$$V_\varphi^2 := \left\{ \sum_{j=1}^N \sum_{\alpha \in \mathbb{Z}^d} a_{j,\alpha} \varphi_j(\cdot - \alpha) : \left\{ a_{j,\alpha} : 1 \leq j \leq N, \alpha \in \mathbb{Z}^d \right\} \in \ell^2(\mathbb{Z}^d)^{(N)} \right\}.$$

i.e., the sequence $\{\varphi_j(\cdot - \alpha) : 1 \leq j \leq N, \alpha \in \mathbb{Z}^d\}$ is a Riesz basis for V_φ^2 . Recall that $\{\varphi_j(\cdot - \alpha) : 1 \leq j \leq N, \alpha \in \mathbb{Z}^d\}$ is a Riesz basis for V_φ^2 , if there

[☆]This work was supported partially by the National Natural Science Foundation of China (10971105 and 10990012) and the Natural Science Foundation of Tianjin (09JCY-BJC01000).

Email address: jczzhangqingyue@mail.nankai.edu.cn (Qingyue Zhang)

exist two constants $A, B > 0$ such that for any $\{c_{j,\alpha} : 1 \leq j \leq N, \alpha \in \mathbb{Z}^d\} \in \ell^2(\mathbb{Z}^d)^{(N)}$ one has

$$A \sum_{j=1}^N \sum_{\alpha \in \mathbb{Z}^d} |c_{j,\alpha}|^2 \leq \left\| \sum_{j=1}^N \sum_{\alpha \in \mathbb{Z}^d} c_{j,\alpha} \varphi_j(\cdot - \alpha) \right\|_{L^2(\mathbb{R}^d)^{(r)}}^2 \leq B \sum_{j=1}^N \sum_{\alpha \in \mathbb{Z}^d} |c_{j,\alpha}|^2.$$

We assume throughout the paper that the vector functions in the shift-invariant subspace V_φ^2 are continuous on \mathbb{R}^d . Equivalently (see [1] or [2]), that the generator $\varphi_j, 1 \leq j \leq N$ is continuous on \mathbb{R}^d and

$$\sup_{x \in \mathbb{R}^d} \sum_{j=1}^N \sum_{p=1}^r \sum_{\alpha \in \mathbb{Z}^d} |\varphi_{j,p}(x - \alpha)|^2 < \infty.$$

If $V_{\varphi_j}^2 (1 \leq j \leq N)$ is defined by

$$V_{\varphi_j}^2 := \left\{ \sum_{\alpha \in \mathbb{Z}^d} a_\alpha \varphi_j(\cdot - \alpha) : \{a_\alpha : \alpha \in \mathbb{Z}^d\} \in \ell^2(\mathbb{Z}^d) \right\}.$$

Then we have

$$V_\varphi^2 = \sum_{j=1}^N V_{\varphi_j}^2.$$

Define $T_{\varphi_j} : L^2([(j-1)/N, j/N]^d) \rightarrow V_{\varphi_j}^2$, by

$$T_{\varphi_j} F = \sum_{\alpha \in \mathbb{Z}^d} c_{F,j,\alpha} \varphi_j(\cdot - \alpha),$$

where $c_{F,j,\alpha} = N^{d/2} \int_{[(j-1)/N, j/N]^d} F(x) e^{2\pi N i \alpha^T \cdot x} dx$.

For convenience, in this paper we make $\chi_p(x) = \chi_{[(p-1)/N, p/N]^d}(x)$ and $e_\alpha(x) = N^{d/2} e^{-2\pi N i \alpha^T \cdot x}$.

Lemma 1.1. $T_\varphi = \sum_{j=1}^N T_{\varphi_j}$ is an isomorphism between $L^2[0, 1]^d$ and V_φ^2 .

Proof. Since the sequence $\{\varphi_j(\cdot - \alpha) : 1 \leq j \leq N, \alpha \in \mathbb{Z}^d\}$ is a Riesz basis for V_φ^2 , Therefore, for any $F \in L^2[0, 1]^d$, we have

$$\begin{aligned} \|T_\varphi F\|_{L^2(\mathbb{R}^d)^{(r)}}^2 &\leq B \sum_{j=1}^N \sum_{\alpha \in \mathbb{Z}^d} |c_{F,j,\alpha}|^2 = B \sum_{j=1}^N \left\| F \chi_{[(j-1)/N, j/N]^d} \right\|_{L^2[0,1]^d}^2 \\ &= B \|F\|_{L^2[0,1]^d}^2. \end{aligned}$$

Similarly, we also have

$$\|\mathbf{T}_\varphi F\|_{L^2(\mathbb{R}^d)^{(r)}}^2 \geq A \|F\|_{L^2[0,1]^d}^2.$$

□

Given a nonsingular matrix M with integer entries. Let $\gamma_k + M^T \mathbb{Z}^d, 1 \leq k \leq m = |\det(M)|$ be the m distinct elements of the coset space $\mathbb{Z}^d/M^T \mathbb{Z}^d$ with $\gamma_1 = 0$. Define $Q_k = M^{-T} \gamma_k/N + M^{-T}[0, 1)^d/N, 1 \leq k \leq m$, we have (see [6, P.110])

$$Q_k \cap Q_{k'} = \emptyset \text{ and } \text{Vol} \left(\bigcup_{k=1}^m Q_k \right) = \frac{1}{N}.$$

Thus, for any function F integrable in $[0, 1/N]^d$ and \mathbb{Z}^d/N -periodic, we have $\int_{[0,1/N]^d} F(x) dx = \sum_{k=1}^m \int_{Q_k} F(x) dx$.

Let $g_j \in L^2[0, 1)^d, 1 \leq j \leq s$, define

$$G_p(x) := \begin{bmatrix} g_1(x)\chi_p(x) & \cdots & g_1(x)\chi_p(x + M^{-T}\gamma_m/N) \\ g_2(x)\chi_p(x) & \cdots & g_2(x)\chi_p(x + M^{-T}\gamma_m/N) \\ \vdots & \vdots & \vdots \\ g_s(x)\chi_p(x) & \cdots & g_s(x)\chi_p(x + M^{-T}\gamma_m/N) \end{bmatrix}, 1 \leq p \leq N. \quad (1.1)$$

and its related constants

$$\begin{aligned} A_G &:= \min_{1 \leq p \leq N} \underset{x \in [0, 1/N]^d}{\text{ess inf}} \lambda_{\min} [G_p^*(x) G_p(x)], \\ B_G &:= \max_{1 \leq p \leq N} \underset{x \in [0, 1/N]^d}{\text{ess sup}} \lambda_{\max} [G_p^*(x) G_p(x)]. \end{aligned}$$

Lemma 1.2. Suppose that $g_j \in L^2[0, 1)^d, 1 \leq j \leq s$ and $G_p(x), 1 \leq p \leq N$ is its associated matrix as in (1.1). Then

- (a) The sequence $\{\overline{g_j(x)}\chi_p(x)e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ is a complete system for $L^2[0, 1)^d$ if and only if for any $1 \leq p \leq N$ the rank of the matrix $G_p(x)$ is m a.e. in $[0, 1/N]^d$.
- (b) The sequence $\{\overline{g_j(x)}\chi_p(x)e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ is a bessel sequence for $L^2[0, 1)^d$ if and only if $B_G < \infty$. In this case, the optimal Bessel bound is B_G/m .
- (c) The sequence $\{\overline{g_j(x)}\chi_p(x)e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ is a frame for $L^2[0, 1)^d$ if and only if $0 < A_G \leq B_G < \infty$. In this case, the optimal frame bounds is A_G/m and B_G/m .

(d) The sequence $\left\{\overline{g_j(x)}\chi_p(x)e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\right\}$ is a Riesz basis for $L^2[0, 1]^d$ if and only if it is a frame and $s = m$.

Proof. For any $F \in L^2[0, 1]^d$, we have

$$\begin{aligned}
& \left\langle F(x), \overline{g_j(x)}\chi_p(x)e_\alpha(M^T x) \right\rangle_{L^2[0,1]^d} \\
&= \int_{[0,1]^d} F(x)g_j(x)\overline{\chi_p(x)}e_\alpha(M^T x)dx \\
&= \int_{[0,1]^d} F(x)g_j(x)\chi_p(x)e^{2\pi Ni\alpha^T \cdot M^T x}dx \\
&= \int_{[0,1]^d} F(x)\chi_p(x)g_j(x)\chi_p(x)e^{2\pi Ni\alpha^T \cdot M^T x}dx \\
&= \int_{[0,1/N]^d} F(x)\chi_p(x)g_j(x)\chi_p(x)e^{2\pi Ni\alpha^T \cdot M^T x}dx \\
&= \sum_{k=1}^m \int_{Q_k} F(x)\chi_p(x)g_j(x)\chi_p(x)e^{2\pi Ni\alpha^T \cdot M^T x}dx \\
&= \int_{M^{-T}[0,1/N]^d} \sum_{k=1}^m (F\chi_p)(x + M^{-T}\gamma_k/N) \times \\
&\quad (g_j\chi_p)(x + M^{-T}\gamma_k/N)N^{d/2}e^{2\pi Ni\alpha^T \cdot M^T x}dx. \tag{1.2}
\end{aligned}$$

where we have considered the \mathbb{Z}^d/N -periodic extension of F . Then

$$\begin{aligned}
& \sum_{j=1}^s \sum_{\alpha \in \mathbb{Z}^d} \left| \left\langle F(x), \overline{g_j(x)}\chi_p(x)e_\alpha(M^T x) \right\rangle_{L^2[0,1]^d} \right|^2 \\
&= \frac{1}{m} \sum_{j=1}^s \left\| \sum_{k=1}^m (F\chi_p)(x + M^{-T}\gamma_k/N) \times \right. \\
&\quad \left. (g_j\chi_p)(x + M^{-T}\gamma_k/N) \right\|_{L^2(M^{-T}[0,1/N]^d)}^2.
\end{aligned}$$

Denoting $\mathbb{F}_p(x) := ((F\chi_p)(x), \dots, (F\chi_p)(x + M^{-T}\gamma_m/N))^T$, the above reads

$$\begin{aligned}
& \sum_{j=1}^s \sum_{\alpha \in \mathbb{Z}^d} \left| \left\langle F(x), \overline{g_j(x)}\chi_p(x)e_\alpha(M^T x) \right\rangle_{L^2[0,1]^d} \right|^2 \\
&= \frac{1}{m} \|G_p(x)\mathbb{F}_p(x)\|_{L^2(M^{-T}[0,1/N]^d)^{(s)}}^2. \tag{1.3}
\end{aligned}$$

Since $\gamma_1, \gamma_2, \dots, \gamma_m$ are representatives of distinct cosets of $\mathbb{Z}^d/M^T\mathbb{Z}^d$, therefore for any $1 \leq k \leq m$ the matrix $G(x + M^{-T}\gamma_k/N)$ has the same columns of $G(x)$. Hence, for any $1 \leq p \leq N$ $\text{rank } G_p(x) = m$ a.e. in $[0, 1/N]^d$ if and only if $\text{rank } G_p(x) = m$ a.e. in $M^{-T}[0, 1/N]^d$. Moreover, we have

$$\text{ess inf}_{x \in [0, 1/N]^d} \lambda_{\min} [G_p^*(x) G_p(x)] = \text{ess inf}_{x \in M^{-T}[0, 1/N]^d} \lambda_{\min} [G_p^*(x) G_p(x)]$$

and

$$\text{ess sup}_{x \in [0, 1/N]^d} \lambda_{\min} [G_p^*(x) G_p(x)] = \text{ess sup}_{x \in M^{-T}[0, 1/N]^d} \lambda_{\min} [G_p^*(x) G_p(x)]$$

To prove (a), assume that there exists set $\Omega \subseteq M^{-T}[0, 1/N]^d$ with positive measure and $1 \leq p_0 \leq N$ such that $\text{rank } G_{p_0}(x) < m$, $x \in \Omega$. Then, there exists a measurable function $v(x)$, such that $G_{p_0}(x)v(x) = 0$ and $|v(x)| = 1$ in Ω . Define $F \in L^2[0, 1]^d$ such that $\mathbb{F}_{p_0}(x) = v(x)$ if $x \in \Omega$, $\mathbb{F}_{p_0}(x) = 0$ if $x \in M^{-T}[0, 1/N]^d \setminus \Omega$ and $\mathbb{F}_p(x) = 0$ if $p \neq p_0$. Hence, from (1.3) we obtain the system is not complete. conversely, if the system is not complete, by using (1.3) we obtain a $\mathbb{F}_{\bar{p}}(x)$ different from 0 in a set with positive measure such that $G_{\bar{p}}(x)\mathbb{F}_{\bar{p}}(x) = 0$. Thus $\text{rank } G_{\bar{p}}(x) < m$ on a set with positive measure.

If $B_G < \infty$ then, for each $F \in L^2[0, 1]^d$, we have

$$\begin{aligned} & \sum_{p=1}^N \sum_{j=1}^s \sum_{\alpha \in \mathbb{Z}^d} \left| \left\langle F(x), \overline{g_j(x)} \chi_p(x) e_\alpha(M^T x) \right\rangle_{L^2[0, 1]^d} \right|^2 \\ &= \sum_{p=1}^N \frac{1}{m} \|G_p(x)\mathbb{F}_p(x)\|_{L^2(M^{-T}[0, 1/N]^d)}^2 \\ &\leq B_G \frac{1}{m} \sum_{p=1}^N \|\mathbb{F}_p(x)\|_{L^2(M^{-T}[0, 1/N]^d)}^2 \\ &= B_G \frac{1}{m} \sum_{p=1}^N \int_{M^{-T}[0, 1/N]^d} \sum_{k=1}^m |(F\chi_p)(x + M^{-T}\gamma_k/N)|^2 dx \\ &= B_G \frac{1}{m} \sum_{p=1}^N \sum_{k=1}^m \int_{Q_k} |(F\chi_p)(x)|^2 dx \\ &= B_G \frac{1}{m} \sum_{p=1}^N \int_{[0, 1/N]^d} |(F\chi_p)(x)|^2 dx \end{aligned}$$

$$= B_G \frac{1}{m} \sum_{p=1}^N \int_{[(p-1)/N, p/N)^d} |F(x)|^2 dx = \frac{B_G}{m} \|F\|_{L^2[0,1]^d}^2$$

Hence $\left\{ \overline{g_j(x)} \chi_p(x) e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d \right\}$ is a bessel sequence for $L^2[0,1]^d$ and the optimal Bessel bound is less than or equal to $\frac{B_G}{m}$.

Let $K < B_G$. Then, there a set $\Omega_K \subset M^{-T}[0,1/N]^d$ with positive measure and $1 \leq \tilde{p} \leq N$ such that $\lambda_{max} [G_{\tilde{p}}^*(x) G_{\tilde{p}}(x)] \geq K$ for $x \in \Omega_K$. Let $F \in L^2[0,1]^d$ such that its associated vector function $\mathbb{F}_{\tilde{p}}(x)$ is 0 if $x \in M^{-T}[0,1/N]^d \setminus \Omega_K$, $\mathbb{F}_{\tilde{p}}(x)$ is an eigenvector of norm 1 associated with the largest eigenvalue of $G_{\tilde{p}}^*(x) G_{\tilde{p}}(x)$ if $x \in \Omega_K$ and $\mathbb{F}_p(x) = 0$ if $p \neq \tilde{p}$. Using (1.3), we obtain

$$\begin{aligned} & \sum_{j=1}^s \sum_{\alpha \in \mathbb{Z}^d} \left| \left\langle F(x), \overline{g_j(x)} \chi_{\tilde{p}}(x) e_\alpha(M^T x) \right\rangle_{L^2[0,1]^d} \right|^2 \\ & \geq \frac{1}{m} \int_{M^{-T}[0,1/N]^d} K |\mathbb{F}_{\tilde{p}}(x)|^2 dx = \frac{K}{m} \|F\|_{L^2[0,1]^d}^2. \end{aligned}$$

Therefore if $B_G = \infty$ then $\left\{ \overline{g_j(x)} \chi_p(x) e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d \right\}$ is not a bessel sequence for $L^2[0,1]^d$, and if $B_G < \infty$ then the optimal Bessel bound is B_G/m . This completes the proof of (b). The proofs of (c) are completely analogous.

To prove (d), we assume that $m = s$ and that the sequence is a frame. We see that it is a Riesz basis by proving that the analysis operator

$$\Lambda : L^2[0,1]^d \rightarrow \ell^2(\mathbb{Z}^d)^{(N \times s)},$$

i.e.

$$\begin{aligned} \Lambda(F) := & \left\{ \left\langle F(x), \overline{g_j(x)} \chi_p(x) e_\alpha(M^T x) \right\rangle_{L^2[0,1]^d} : \right. \\ & \left. 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d \right\}. \end{aligned}$$

is surjective (see [7, Theorem 6.5.1]). To this end, notice that when $m = s$ for any $1 \leq p \leq N$ the matrix $G_p, 1 \leq p \leq N$ is a square matrix and hence, the condition $A_G > 0$ implies that for any $1 \leq p \leq N$ the inverse matrix

$G_p^{-1}(x)$ exists and its entries are essentially bounded. For $1 \leq p \leq N$, let $\{c_{j,\alpha}^p : 1 \leq j \leq s, \alpha \in \mathbb{Z}^d\}$ be an element of $\ell^2(\mathbb{Z}^d)^{(s)}$. For $1 \leq p \leq N, 1 \leq j \leq s$ we define the function

$$\xi_j^p(x) := m \sum_{\alpha \in \mathbb{Z}^d} c_{j,\alpha}^p e_\alpha(M^T x),$$

and let F be the function such that

$$\mathbb{F}_p(x) = G_p^{-1}(x) (\xi_1^p(x), \xi_2^p(x), \dots, \xi_s^p(x))^T, x \in M^{-T}[0, 1/N]^d.$$

This function belongs to $L^2[0, 1]^d$ because the entries of $G_p^{-1}(x)$ are essentially bounded. We have that $G_p(x)\mathbb{F}_p(x) = (\xi_1^p(x), \xi_2^p(x), \dots, \xi_s^p(x))^T$, and using (1.2) we obtain that

$$\begin{aligned} & \left\langle F(x), \overline{g_j(x)} \chi_p(x) e_\alpha(M^T x) \right\rangle_{L^2[0,1]^d} \\ &= \int_{M^{-T}[0,1/N]^d} \xi_j^p(x) N^{d/2} e^{2\pi N i \alpha^T \cdot M^T x} dx = c_{j,\alpha}^p. \end{aligned}$$

and consequently $\Lambda(F) = \{c_{j,\alpha}^p : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$.

Conversely, if $\{\overline{g_j(x)} \chi_p(x) e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ is a Riesz basis. Let $\{f_{j,p,\alpha} : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ be its dual Riesz basis. Then, by using(1.2) we obtain for $1 \leq p \leq N$

$$\begin{aligned} m \delta_{\alpha,0} \delta_{j,j'} &= \int_{M^{-T}[0,1/N]^d} \sum_{k=1}^m (f_{j',p,0} \chi_p)(x + M^{-T} \gamma_k / N) \times \\ &\quad (g_j \chi_p)(x + M^{-T} \gamma_k / N) N^{d/2} e^{2\pi N i \alpha^T \cdot M^T x} dx \end{aligned}$$

Therefore, for $1 \leq j, j' \leq s$, we have

$$\sum_{k=1}^m (f_{j',p,0} \chi_p)(x + M^{-T} \gamma_k / N) (g_j \chi_p)(x + M^{-T} \gamma_k / N) = m \delta_{j,j'}, a.e.$$

Thus the matrix $G(x)$ has a right inverse; in particular, $s \leq m$. As a consequence (a) we have $s \geq m$ and, finally, $s = m$. \square

We consider s linear-invariant systems $\mathcal{L}_j, 1 \leq j \leq s$ in $L^2(\mathbb{R}^d)^{(r)}$ such that for any $f = (f_1, f_2, \dots, f_r)^T \in L^2(\mathbb{R}^d)^{(r)}$,

$$(\mathcal{L}_j f)(t) = [f * P](t) = \sum_{q=1}^r \int_{\mathbb{R}^d} f_q(x) p_{j,q}(t - x) dx,$$

where $P(x)$ is an $s \times r$ matrix with entries $p_{j,q} \in L^1(\mathbb{R}^d)$, $1 \leq j \leq s$, $1 \leq q \leq r$. Let $h_j(t) = \left(\overline{p_{j,1}(-t)}, \overline{p_{j,2}(-t)}, \dots, \overline{p_{j,r}(-t)} \right)^T$, we have

$$(\mathcal{L}_j f)(t) = \langle f(\cdot), h_j(\cdot - t) \rangle_{L^2(\mathbb{R}^d)^{(r)}}.$$

The set of systems $\{\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_s\}$ is an M -stable filtering sampler for V_φ^2 if there exist two positive constants C_1 and C_2 such that [5] for any $f = f^{(1)} + f^{(2)} + \dots + f^{(N)} \in V_\varphi^2$ where $f^{(p)} \in V_{\varphi_p}^2$, we have

$$C_1 \|f\|_{L^2(\mathbb{R}^d)^{(r)}}^2 \leq \sum_{p=1}^N \sum_{j=1}^s \sum_{\alpha \in \mathbb{Z}^d} \left| \mathcal{L}_j f^{(p)}(M\alpha) \right|^2 \leq C_2 \|f\|_{L^2(\mathbb{R}^d)^{(r)}}^2.$$

For $1 \leq j \leq s$ and $1 \leq p \leq N$, we define $g_{j,p}(x)$ by

$$g_{j,p}(x) := \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j \varphi_p)(\alpha) e^{-2\pi Ni\alpha^T x}. \quad (1.4)$$

Lemma 1.3. *Let f be a function in V_φ^2 such that $f = f^{(1)} + f^{(2)} + \dots + f^{(N)}$ where $f^{(p)} \in V_{\varphi_p}^2$ and $f^{(p)} = T_{\varphi_p} F_p$, $F_p \in L^2([(p-1)/N, p/N]^d)$. For every $1 \leq j \leq s$, we have*

$$(\mathcal{L}_j f^{(p)})(M\beta) = \left\langle F_p(\cdot), \overline{g_{j,p}(\cdot)} e_\beta(M^T \cdot) \right\rangle_{L^2[0,1]^d}, \quad \beta \in \mathbb{Z}^d. \quad (1.5)$$

Proof. For each $\beta \in \mathbb{Z}^d$ we have

$$\begin{aligned} (\mathcal{L}_j f^{(p)})(M\beta) &= \langle f^{(p)}(\cdot), h_j(\cdot - M\beta) \rangle_{L^2(\mathbb{R}^d)^{(r)}} \\ &= \left\langle \sum_{\alpha \in \mathbb{Z}^d} c_{F_p, \alpha} \varphi_p(\cdot - \alpha), h_j(\cdot - M\beta) \right\rangle_{L^2(\mathbb{R}^d)^{(r)}} \\ &= \sum_{\alpha \in \mathbb{Z}^d} c_{F_p, \alpha} \langle \varphi_p(\cdot - \alpha), h_j(\cdot - M\beta) \rangle_{L^2(\mathbb{R}^d)^{(r)}} \\ &= \sum_{\alpha \in \mathbb{Z}^d} c_{F_p, \alpha} (\mathcal{L}_j \varphi_p)(M\beta - \alpha) \\ &= \sum_{\alpha \in \mathbb{Z}^d} \langle F_p(\cdot), e_\alpha(\cdot) \rangle_{L^2([(p-1)/N, p/N]^d)} (\mathcal{L}_j \varphi_p)(M\beta - \alpha) \\ &= \left\langle F_p(\cdot), \sum_{\alpha \in \mathbb{Z}^d} \overline{(\mathcal{L}_j \varphi_p)}(M\beta - \alpha) e_\alpha(\cdot) \right\rangle_{L^2([(p-1)/N, p/N]^d)} \\ &= \left\langle F_p(\cdot), \overline{g_{j,p}(\cdot)} e_\beta(M^T \cdot) \right\rangle_{L^2([(p-1)/N, p/N]^d)}. \end{aligned}$$

□

Theorem 1.4. Assume that the function $g_{j,p}(x)$ given in (1.4) belong to $L^\infty([(p-1)/N, p/N]^d)$ for each $1 \leq j \leq s$ and $1 \leq p \leq N$. Let $G_p(x)$ be the associated matrix define in $[(p-1)/N, p/N]^d$ as in (1.1). The following statements are equivalents:

- (a) $A_G > 0$;
- (b) The set of systems $\{\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_s\}$ is an M -stable filtering sampler for V_φ^2 ;
- (c) For $1 \leq p \leq N$, there exist vectors $(d_1^p(x), d_2^p(x), \dots, d_s^p(x))$ with entries $d_j^p \in L^\infty([(p-1)/N, p/N]^d)$ satisfying

$$(d_1^p(x), d_2^p(x), \dots, d_s^p(x))G_p(x) = (1, 0, \dots, 0) \\ \text{a.e.in } [(p-1)/N, p/N]^d; \quad (1.6)$$

- (d) There exists a frame for V_φ^2 having the form $\{S_j^p(t - M\alpha) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ such that for any $f \in V_\varphi^2$

$$f = m \sum_{j=1}^s \sum_{p=1}^N \sum_{\alpha \in \mathbb{Z}^d} \mathcal{L}_j f^{(p)}(M\alpha) S_j^p(t - M\alpha) \quad \text{in } L^2(\mathbb{R}^d)^{(r)}. \quad (1.7)$$

Proof. Part (c) in Lemma 1.2 proves that conditions (a) and (b) are equivalent.

If $A_G > 0$ then for any $1 \leq p \leq N$, $\text{ess inf}_{x \in [0, 1/N]^d} \det [G_p^*(x) G_p(x)] > 0$ and consequently, there exists the pseudo-inverse matrix

$$G_p^\dagger(x) = [G_p^*(x) G_p(x)]^{-1} G_p^*(x).$$

Moreover, its entries are essentially bounded and its first row satisfies (1.6). Therefore, (a) implies (c).

Next, we will prove that the condition (c) implies (d). Since we have assumed that $g_{j,p}(x) \in L^\infty([(p-1)/N, p/N]^d)$ for any $1 \leq j \leq s$ and $1 \leq p \leq N$, Lemma 1.2(b) proves that

$$\left\{ \overline{g_{j,p}(x)} e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d \right\}$$

is a Bessel sequence in $L^2[0, 1]^d$. The same argument proves that

$$\left\{ m d_j^p(x) e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d \right\}$$

is also a Bessel sequence in $L^2[0, 1]^d$. By (1.4) and (1.6), these two Bessel sequences satisfy

$$F(x) = m \sum_{j=1}^s \sum_{p=1}^N \sum_{\alpha \in \mathbb{Z}^d} \left\langle F(\cdot), \overline{g_{j,p}(\cdot)} e_\alpha(M^T \cdot) \right\rangle d_j^p(x) e_\alpha(M^T x), F \in L^2[0, 1]^d.$$

Hence, they form a pair of dual frames for $L^2[0, 1]^d$ (see [7, Lemma 5.6.2]). Since $S_j^p(t - M\alpha) = T_\varphi[d_j^p(\cdot)e_\alpha(M^T \cdot)](t)$ and T_φ is an isomorphism, the sequence $\{S_j^p(t - M\alpha) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ is a frame for V_φ^2 .

Last, we prove that the condition (d) implies (b). Notice that since we have assumed that $\{\overline{g_{j,p}(x)} e_\alpha(M^T x) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ is a Bessel sequence with bound B_G/m and

$$(L_j f^{(p)})(M\beta) = \left\langle F(\cdot), \overline{g_{j,p}(\cdot)} e_\beta(M^T \cdot) \right\rangle_{L^2([(p-1)/N, p/N)^d]}.$$

For each $f \in V_\varphi^2$, we have

$$\sum_{p=1}^N \sum_{j=1}^s \sum_{\alpha \in \mathbb{Z}^d} \left| \mathcal{L}_j f^{(p)}(M\alpha) \right|^2 \leq \frac{B_G}{m} \|F\|_{L^2[0,1]^d}^2 \leq \frac{B_G \|T_\varphi^{-1}\|_{oper}}{m} \|f\|_{L^2(\mathbb{R}^d)^{(r)}}^2.$$

If $\{S_j^p(t - M\alpha) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$ is a frame for V_φ^2 , then the formula (1.7) gives

$$\begin{aligned} \|f\|_{L^2(\mathbb{R}^d)^{(r)}}^2 &= m^2 \left\| \sum_{j=1}^s \sum_{p=1}^N \sum_{\alpha \in \mathbb{Z}^d} \mathcal{L}_j f^{(p)}(M\alpha) S_j^p(t - M\alpha) \right\|_{L^2(\mathbb{R}^d)^{(r)}}^2 \\ &\leq m^2 C \sum_{p=1}^N \sum_{j=1}^s \sum_{\alpha \in \mathbb{Z}^d} \left| \mathcal{L}_j f^{(p)}(M\alpha) \right|^2, \end{aligned}$$

where C is a Bessel bound for $\{S_j^p(t - M\alpha) : 1 \leq j \leq s, 1 \leq p \leq N, \alpha \in \mathbb{Z}^d\}$. Hence, the set $\{\mathcal{L}_1, \mathcal{L}_2, \dots, \mathcal{L}_s\}$ is an M -stable filtering sampler for V_φ^2 . \square

References

- [1] X. Zhou and W. Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl. **5** (1999), 347–354.

- [2] Z. Shang and W. Sun and X. Zhou, Vector sampling expansions in shift invariant subspaces, *J. Math. Anal. Appl.* **325** (2007), 898–919.
- [3] A.G. García and G. Pérez-Villalón, Multivariate generalized sampling in shift-invariant spaces and its approximation properties, *J. Math. Anal. Appl.* **355** (2009), 397–413.
- [4] A.G. García and G. Pérez-Villalón, Dual frames in $L_2(0, 1)$ connected with generalized sampling in shift-invariant spaces, *Appl. Comput. Harmon. Anal.* **20** (2006), 422–433.
- [5] A. Aldroubi, Q. Sun, W.-S. Tang, Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces, *J. Fourier Anal. Appl.* **11** (2005), 215–244.
- [6] P. Wojtaszczyk, “A Mathematical Introduction to Wavelets,” Cambridge University Press, Cambridge, 1997.
- [7] O. Christensen, “A Introduction to Frames and Riesz Bases,” Birkhäuser, Boston, 2003.