Chapter 1 Introduction

Hakbae Lee

The Department of Statistics and Data Science, Yonsei University

Introduction

Let's consider a linear model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where

where
$$\underbrace{ \begin{array}{c} \mathbf{Y} \\ \mathbf{Y}_{n \times 1} \end{array}}_{n \times 1} = \left(\begin{array}{c} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{array} \right) \qquad \underbrace{ \begin{array}{c} \boldsymbol{\beta} \\ (p+1) \times 1 \end{array}}_{(p+1) \times 1} = \left(\begin{array}{c} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{array} \right) \qquad \underbrace{ \begin{array}{c} \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{array}}_{n \times 1} = \left(\begin{array}{c} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{array} \right)$$

Introduction

Simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Multiple linear regression

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{i1} + \epsilon_i$$

One-Way Analysis of Variance

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

Two-Way Analysis of Variance with interaction

$$y_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ij}$$

Random Vectors and Matrices

- Let $\mathbf{Y} = (y_1, \dots, y_n)^T$ be a random vector with $\mathbf{E}(y_i) = \mu_i$, $\mathrm{Var}(y_i) = \sigma_{ii} (=\sigma_i^2)$, $\mathrm{Cov}(y_i, y_j) = \sigma_{ij}$.
- Define the expected value of Y elementwise as

$$\mathsf{E}(\mathbf{Y}) = (\mathsf{E}(y_1), \dots, \mathsf{E}(y_n))^T = (\mu_1, \dots, \mu_n)^T = \mu$$

and the covariance matrix of Y as

$$Cov(\mathbf{Y}) = E[(\mathbf{Y} - \mu)(\mathbf{Y} - \mu)^T] = (\sigma_{ij})$$

Note:

$$E(A\mathbf{Y} + b) = A\mu + b$$

$$Cov(A\mathbf{Y} + b) = ACov(\mathbf{Y})A^{T}$$

 (Exercise 1.3) Prove or disprove that Cov(Y) is nonnegative definite.

Random Vectors and Matrices

• Covariance of $\underbrace{\mathbf{W}}_{r \times 1}$ and $\underbrace{\mathbf{Y}}_{s \times 1}$ with $\mathsf{E}(\mathbf{W}) = \gamma$ and $\mathsf{E}(\mathbf{Y}) = \mu$

$$Cov(\mathbf{W}, \mathbf{Y}) = E[(\mathbf{W} - \gamma)(\mathbf{Y} - \mu)^T]: r \times s$$

and

$$Cov(A\mathbf{W} + a, B\mathbf{Y} + b) = ACov(\mathbf{W}, \mathbf{Y})B^{T}$$

Theorem 1.1.1.

$$Cov(A\mathbf{W} + B\mathbf{Y}) = ACov(\mathbf{W})A^{T} + BCov(\mathbf{Y})B^{T} + ACov(\mathbf{W}, \mathbf{Y})B^{T} + BCov(\mathbf{Y}, \mathbf{W})A^{T}$$

Multivariate Normal Distributions

• Let $\mathbf{Z} = (z_1, \dots, z_n)^T \sim N_n(0, I_n)$ where z_1, \dots, z_n are i.i.d N(0, 1). Note that $E(\mathbf{Z}) = 0$ and $Cov(\mathbf{Z}) = I_n$

Definition 1.2.1. Let A be $r \times n$ and $b \in \mathbf{R}^r$. Then \mathbf{Y} has an r-dimensional multivariate normal distribution :

$$\mathbf{Y} = A\mathbf{Z} + b \sim N_r(b, AA^T).$$

Theorem 1.2.2. Let $\mathbf{Y} \sim N(\mu, V)$ and $\mathbf{W} \sim N(\mu, V)$. Then \mathbf{Y} and \mathbf{W} have the same distribution (Proof: p.5)

Multivariate Normal Distributions

• The density of nonsingular $\mathbf{Y} \sim N(\mu, V)$ is given by

$$f(y) = (2\pi)^{-n/2} [\det(V)]^{-1/2} \exp[-(y-\mu)^T V^{-1} (y-\mu)/2]$$

Theorem 1.2.3. Let
$$\mathbf{Y} \sim \mathcal{N}(\mu, V)$$
 and $\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{pmatrix}$. Then

$$\mbox{Cov}(\boldsymbol{Y}_1,\boldsymbol{Y}_2) = 0 \quad \mbox{if and only if} \quad \boldsymbol{Y}_1 \perp \!\!\! \perp \boldsymbol{Y}_2$$

Corollary 1.2.4. Let $\mathbf{Y} \sim N(\mu, \sigma^2 I)$ and $AB^T = 0$. Then

Definition 1.3.1. Quadratic Form of **Y**: for $n \times n$, A

$$\mathbf{Y}^T A \mathbf{Y} = \sum_{ij} a_{ij} y_i y_j$$

Theorem 1.3.2. Let $E(Y) = \mu$ and Cov(Y) = V. Then

$$\mathsf{E}(\mathbf{Y}^{\mathsf{T}}\mathbf{A}\mathbf{Y}) = \mathrm{tr}(\mathbf{A}\mathbf{V}) + \mu^{\mathsf{T}}\mathbf{A}\mu$$

proof; p.8

Note: Let's consider **Z** $\sim N_n(\mu, I_n)$. Then

$$\mathbf{Z}^T\mathbf{Z} \sim \chi^2(n, \mu^T \mu/2)$$

where $\mu^T \mu/2$ = non-centrality parameter

Theorem 1.3.3. Let $\mathbf{Y} \sim N(\mu, I)$ and M be any orthogonal projection matrix. Then

$$\mathbf{Y}^T M \mathbf{Y} \sim \chi^2(r(M), \mu^T M \mu/2)$$

Note: Let $\mathbf{Y} \sim N(\mu, \sigma^2 I)$. Then

$$\mathbf{Y}^T M \mathbf{Y} \sim \chi^2(r(M), \mu^T M \mu / 2\sigma^2)$$

Lemma 1.3.4. Let $\mathbf{Y} \sim N(\mu, M)$ with $\mu \in \mathcal{C}(M)$ and M be an orthogonal projection matrix. Then

$$\mathbf{Y}^T\mathbf{Y} \sim \chi^2(r(M), \mu^T\mu/2)$$

Lemma 1.3.5. Let $E(\mathbf{Y}) = \mu$ and $Cov(\mathbf{Y}) = V$. Then

$$\Pr[(\mathbf{Y} - \mu) \in \mathcal{C}(V)] = 1$$

Exercise 1.6. Let \mathbf{Y} be a vector with $E(\mathbf{Y})=0$ and $Cov(\mathbf{Y})=0$. Then $Pr(\mathbf{Y}=0)=1$

Theorem 1.3.6. Let $\mathbf{Y} \sim N(\mu, V)$. Then

$$\mathbf{Y}^T A \mathbf{Y} \sim \chi^2(\text{tr}(AV), \mu^T A \mu/2)$$

provided that (1) VAVAV = VAV, (2) $\mu^T AVA\mu = \mu^T A\mu$, and (3) $VAVA\mu = VA\mu$.(proof; p.10)

Exercise 1.7. (a) Show that if V is nonsingular, then the three conditions in Theorem 1.3.6 reduce to AVA = A. (b) Show that $\mathbf{Y}^TV^-\mathbf{Y}$ has a chi-squared distribution with r(V) degrees of freedom when $\mu \in \mathcal{C}(V)$.

Theorem 1.3.7. Let $\mathbf{Y} \sim N(\mu, \sigma^2 I)$ and BA = 0. Then, for $A = A^T$

(1)
$$\mathbf{Y}^T A \mathbf{Y} \perp B \mathbf{Y}$$
 and (2) $\mathbf{Y}^T A \mathbf{Y} \perp \mathbf{Y}^T B \mathbf{Y}$ for $B = B^T$

Theorem 1.3.8. Let $\mathbf{Y} \sim N(\mu, V)$, $A \ge 0$, $B \ge 0$ and VAVBV = 0. Then

$$\mathbf{Y}^T A \mathbf{Y} \perp \mathbf{Y}^T B \mathbf{Y}$$

Theorem 1.3.9. If $\mathbf{Y} \sim N(\mu, V)$, and (1) VAVBV = 0, (2) $VAVB\mu = 0$, (3) $VBVA\mu = 0$, (4) $\mu^TAVB\mu = 0$, and conditions (1), (2), and (3) from Theorem 1.3.6 hold for both $\mathbf{Y}^TA\mathbf{Y}$ and $\mathbf{Y}^TB\mathbf{Y}$, then $\mathbf{Y}^TA\mathbf{Y} \perp \mathbf{Y}^TB\mathbf{Y}$.