Deep Learning for Developers

Julien Simon <@julsimon>
Principal Evangelist, AI/ML, EMEA

Amazon AI for every developer

The Nvidia V100 GPU is now available on AWS Launched October 25th

Model	NVIDIA Tesla V100 GPUs	GPU Memory	NVIDIA NVLink	vCPUs	Main Memory	Network Bandwidth	EBS Bandwidth
p3.2xlarge	1	16 GiB	n/a	8	61 GiB	Up to 10 Gbps	1.5 Gbps
p3.8xlarge	4	64 GiB	200 GBps	32	244 GiB	10 Gbps	7 Gbps
p3.16xlarge	8	128 GiB	300 GBps	64	488 GiB	25 Gbps	14 Gbps

NVIDIA-SMI 384.81						Driver Version: 384.81				
	Temp	Perf	Pwr:Usag	ge/Cap		Bus-Id Disp.A Memory-Usage		GPU-Util	Compute M.	
0 N/A		V100-		0n	i	00000000:00:1B.0 Off	i	0%	0	
1 N/A	Tesla 40C					00000000:00:1C.0 Off 0MiB / 16152MiB		0%	0 Default	
2 N/A			-SXM2 38W /			000000000:00:1D.0 Off 0MiB / 16152MiB		0%	0 Default	
3 N/A	Tesla 43C		-SXM2 39W /			00000000:00:1E.0 Off 0MiB / 16152MiB		0%	0 Default	

INFO:root:Epoch[7] Validation-accuracy=0.991587 INFO: root: Epoch[8] Train-accuracy=0.997513 MNIST on 1 GPU: INFO:root:Epoch[8] Time cost=2.519 2x speedup vs p2 INFO:root:Epoch[8] Validation-accuracy=0.991687 INFO:root:Epoch[9] Train-accuracy=0.998114 INFO:root:Epoch[9] Time cos INFO:root:Epoch[7] Train-accuracy=0.996628 INFO:root:Epoch[9] Validati INFO:root:Epoch[7] Time cost=1.270 INFO:root:Epoch[7] Validation-accuracy=0.992488 INFO:root:Saved checkpoint ('accuracy', 0.991386217948 INFO:root:Epoch[8] Train-accuracy-0.997246 INFO:root:Epoch[8] Time cost=1.273 INFO:root:Epoch[8] Validation-accuracy=0.992488 INFO:root:Epoch[9] Train-accuracy=0.997680 INFO:root:Epoch[9] Time cost=1.271 INFO:root:Epoch[9] Validation-accuracy=0.992388 INFO:root:Saved checkpoint to "lenet-0010.params" ('accuracy', 0.9923878205128205)

https://aws.amazon.com/blogs/aws/new-amazon-ec2-instances-with-up-to-8-nvidia-tesla-v100-gpus-p3/https://devblogs.nvidia.com/parallelforall/inside-volta/

Apache MXNet: Open Source library for Deep Learning

Programmabl

e Simple syntax, multiple languages

Portabl

Hi**G**hly efficient models for mobile and IoT

High

Performance Near linear scaling across hundreds of GPUs

Most Open

Accepted into the Apache Incubator

Best On AWS

Optimized for Deep Learning on AWS

https://mxnet.io

https://www.oreilly.com/ideas/self-driving-trucks-enter-the-fast-lane-using-deep-learning

CPU or GPU: your choice

```
mod = mx.mod.Module(lenet)

mod = mx.mod.Module(lenet, context=mx.gpu(0))

mod = mx.mod.Module(lenet, context=mx.gpu(0))

context=(mx.gpu(7), mx.gpu(8), mx.gpu(9)))
```


Multi-GPU Scaling With MXNet

AWS Deep Learning AMI

- Deep Learning Frameworks Popular Deep Learning Frameworks (MXNet, Caffe, Tensorflow, Theano, Torch, etc.) all prebuilt and pre-installed
- GPU components Nvidia drivers, cuDNN, CUDA 8
 & 9
- AWS Integration Packages and configurations that provide tight integration with Amazon Web Services
- Amazon Linux & Ubuntu

Apache MXNet demos

- 1. Image classification: using pre-trained models Imagenet, multiple CNNs, MXNet
- 2. Image classification: fine-tuning a pre-trained model CIFAR-10, ResNet-50, Keras + MXNet
- 3. Image classification: learning from scratch MNIST, MLP & LeNet, MXNet
- 4. Machine Translation: translating German to English News, LSTM, Sockeye + MXNet

Demo #1 – Image classification: using a pre-trained model

```
VGG16
[(0.46811387, 'n04296562 stage'), (0.24333163,
'n03272010 electric quitar'), (0.045918692, 'n02231487
walking stick, walkingstick, stick insect'),
(0.03316205, 'n04286575 spotlight, spot'),
(0.021694135, 'n03691459 loudspeaker, speaker, speaker
unit, loudspeaker system, speaker system')]
[(0.8726753, 'n04296562 stage'), (0.046159592,
'n03272010 electric quitar'), (0.041658506, 'n03759954
microphone, mike'), (0.018624334, 'n04286575 spotlight,
spot'), (0.0058045341, 'n02676566 acoustic guitar')]
*** Inception v3
[(0.44991142, 'n04296562 stage'), (0.43065304,
'n03272010 electric quitar'), (0.067580454, 'n04456115
torch'), (0.012423956, 'n02676566 acoustic guitar'),
```

(0.0093934005, 'n03250847 drumstick')]

Demo #2 – Image classification: fine-tuning a model

- CIFAR-10 data set
 - 60,000 images in 10 classes
 - 32x32 color images
- Initial training
 - Resnet-50 CNN
 - 200 epochs
 - 82.12% validation
- Cars vs. horses
 - 88.8% validation accuracy

Demo #2 – Image classification: fine-tuning a model

- Freezing all layers but the last one
- Fine-tuning on « cars vs. horses » for 10 epochs
- 2 minutes on 1 GPU
- 98.8% validation accuracy

Demo #3 – Image classification: learning from scratch data set

- 70,000 hand-written digits
- 28x28 grayscale images

Multi-Layer Perceptron vs. Handmade-Digits-From-Hell™

784/128/64/10, Relu, AdaGrad, 100 epochs \rightarrow 97.51% validation accuracy

LeNet CNN vs. Handmade-Digits-From-Hell™

ReLu instead of tanh, 10 epochs, AdaGrad \rightarrow 99.20% validation accuracy

Demo #4 – Machine Translation: German to English

- AWS Open Source project https://github.com/awslabs/sockeye
- Sequence-to-sequence models with Apache MXNet
- 5.8M sentences (news headlines), 5 hours of training on 8 GPUs (p2)

```
./translate.sh "Chopin zählt zu den bedeutendsten Persönlichkeiten der Musikgeschichte Polens ."

Chopin is one of the most important personalities of Poland's history

./translate.sh "Hotelbetreiber müssen künftig nur den Rundfunkbeitrag bezahlen, wenn ihre Zimmer auch eine Empfangsmöglichkeit bieten ."

in the future , hotel operators must pay only the broadcasting fee if their rooms also offer a reception facility .
```


Speeding up inference on CPU

- Intel MKL https://software.intel.com/en-us/mkl
- NNPACK https://github.com/Maratyszcza/NNPACK

Shrinking models

- Complex neural networks are too large for resource-constrained environments
- MXNet supports Mixed Precision Training
 - Use float16 instead of float32
 - Almost 2x reduction in memory consumption, no loss of accuracy
 - https://devblogs.nvidia.com/parallelforall/mixed-precision-training-deep-neural-networks/
 - http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#mxnet
- BMXNet: Binary Neural Network Implementation
 - Use binary values
 - 20x to 30x reduction in model size, with limited loss

Model	Baseline	Mixed Precision
AlexNet	56.77%	56.93%
VGG-D	65.40%	65.43%
GoogleNet	68.33%	68.43%
Inception v1	70.03%	70.02%
Resnet50	73.61%	73.75%

m/hpi-xnor/BMXNet

	Architecture	Test Accuracy (Binary/Full Precision)	Model Size (Binary/Full Precision)
MNIST	Lenet	0.97/0.99	206kB/4.6MB
CIFAR-10	ResNet-18	0.86/0.90	1.5MB/44.7MB

Gluon: Deep Learning gets even easier https://github.com/gluon-api/

- Announced October 11th
- Available now in MXNet, soon in Microsoft Cognitive Toolkit

- Developer-friendly high-level API
- No compromise on performance
- Networks can be modified during training
- Extensive model zoo

Anything you dream is fiction, and anything you accomplish is science, the whole history of mankind is nothing but science fiction.

Ray Bradbury

Resources

https://aws.amazon.com/ai/

https://aws.amazon.com/blogs/ai/

https://mxnet.io

https://github.com/gluon-api/

https://github.com/awslabs/sockeye

https://reinvent.awsevents.com/ watch this space ;)

https://medium.com/@julsimon/

Thank you!

https://aws.amazon.com/evangelists/julien-simon@julsimon

