

6333

402 898

402 898

CATN 0070 by ASTIA

File No. —

TM(L)-1124 000 00

Satellite Computer Program Description

Milestone 4

Compute Shadow Times

(SHADOW)

TECHNICAL MEMORANDUM

(TM Series)

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA.

This document was produced by SDC in performance of contract AF 19(628)-1648, Space Systems Division Program, for Space Systems Division, AFSC.

Satellite Computer Program Description	SYSTEM
Milestone 4	DEVELOPMENT
Compute Shadow Times (SHADOW)	CORPORATION
by	2500 COLORADO AVE.
C. M. Seacat	SANTA MONICA
22 March 1963	
Approved	CALIFORNIA
J. D. Marioni	

The views, conclusions or recommendations expressed in this document do not necessarily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should be obtained in advance from the System Development Corporation.

Although this document contains no classified information it has not been cleared for open publication by the Department of Defense. Open publication, wholly or in part, is prohibited without the prior approval of the System Development Corporation.

22 March 1963

-1-

TM-(L)-1124/000/00

INTRODUCTION

SHADOW is a 1604 COP-controlled program designed to compute the times at which a satellite enters and leaves the shadow of the earth.

1.0 IDENTIFICATION

Compute shadow times (SHADOW)

2.0 FUNCTION

The inputs to this program are a reset tape containing orbital conditions and a function card specifying a time range and a time increment. The latter is the time between computations and is equivalent to accuracy desired. The output is an on-line printout of shadow periods (see Section 6.0).

3.0 MATHEMATICAL FORMULATION

The following assumptions are made:

- a. The shadow of the earth is cylindrical and non-fuzzy.
- b. The positions of the satellite and the sun are known for a given time, t , in inertial coordinates.

The coordinates of the sun at time, t , are (x, y, z) . The axis of the cylinder formed by the shadow of the earth passes through the point $(-x, -y, -z)$.

The coordinates of the satellite at time, t , are (ξ, η, ϕ) .

The equation $\rho^2 = \xi^2 + \eta^2 + \phi^2$ defines an earth-centered sphere of radius, ρ , with the satellite on the surface.

22 March 1963

-2-

TM-(L)-1124/000/00

The axis of the cylindrical shadow pierces this sphere at x' , y' , z' , where

$$\begin{aligned}x' &= -\rho/R \ x \\y' &= -\rho/R \ y \\z' &= -\rho/R \ z \\R &= \sqrt{x^2 + y^2 + z^2}\end{aligned}$$

Graphically, the situation can be represented as follows:

22 March 1963

-3-

TM-(L)-1124/000/00

The distance, d , from (x', y', z') to the circular intersection of the cylinder and the sphere is given by:

$$d^2 = 2\rho(\rho - \sqrt{\rho^2 - r^2}) \quad \text{where } r = \text{earth radius}$$

The distance, D , from (x', y', z') to the satellite is given by

$$D^2 = (x' - \xi)^2 + (y - \eta)^2 + (z' - \zeta)^2$$

If $D^2 > d^2$, the satellite is in sunlight.

If $D^2 \leq d^2$, the satellite is in shadow.

Please note that the analysis above does not assume a circular or near-circular orbit. A new ρ is computed for each t .

4.0 CALLING SEQUENCE

This program is normally called by a function card with the format:

* SHADOW A B C D E F.F G H I J K.K L.L

A	Vehicle number	
B	Month	
C	Day	
D	Hour	Start Time
E	Minute	
F.F	Second	
G	Month	
H	Day	
I	Hour	Stop Time
J	Minute	
K.K	Second	
L.L	Computation interval in seconds	

An option exists to specify start and stop times by rev number. The function card has a format:

*** SHADOW A B. C. D.D**

- A Vehicle Number
- B Starting Rev (decimal point mandatory)
- C Ending Rev (decimal point mandatory)
- D.D Computation interval in seconds

A fractional rev number may be input without harming the program, but the fractional part will be ignored. For consistency between the function card and printed output, it is recommended that zero, or blank, follow the decimal point in the rev number.

Computation is carried out up to, but not including, the terminal rev.

The last field on the card, computation interval, controls the accuracy of the printout and the time consumed by the program. For example, if the computation interval were 60, the printout would be accurate to within one minute. If the computation interval were 1, the printout accuracy would be one second and the program would take roughly sixty times longer. Crude timing estimates indicate that for a computation interval of sixty seconds, the program requires between one and two seconds per rev.

5.0 DETAILED PROCESSES

The program computes the inertial coordinates of the satellite at time, t, by successive branches to the subroutines TTE and PTR. The coordinates of the sun, obtained by table look-up, are taken from the American Ephemeris and Nautical Almanac and contain one value of x, y, and z for each day of the year in the following format.

Location	Contents
L	x
L+1	y December 31, preceding year
L+2	z

22 March 1963

-5-

TM-(L)-1124/000/00

Location	Contents
L+3	x
L+4	y January 1, current year
L+5	z
.	.
.	.
L+1095	x
L+1096	y December 31, current year
L+1097	z
L+1098	x
L+1099	y January 1, next year
L+1100	z

To get the sun coordinates at a given time, t, the program performs a linear interpolation between successive triads of tabular (x, y, z).

The entries in the table can be transcribed directly from the almanac. Assuming the first address of the table to be tagged SUNCOORD, the first few instruction cards for the 1963 version of the table would be:

Columns	1	2	4
SUNCOORD	123456789012	012345678	1 (Comments field)
DEC	+.1509848		x, Dec 31
DEC	-.8914589		y, Dec 31
DEC	-.3865841		z, Dec 31
DEC	+.1682445		x, Jan 1
DEC	-.8888335		y, Jan 1
DEC	-.3954462		z, Jan 1
	.		.
	.		(etc.)

6.0 OUTPUTS

Every time the satellite leaves the shadow of the earth, the program prints on line the date, time, rev number, latitude (geodetic), and longitude at which it entered and left. When the stop time is reached, the program prints out the percentage of time in shadow (i.e., the sum of all the shaded periods divided by the time range on the function card). A sample printout is shown in Appendix A.

7.0 INTERFACES AND RESTRICTIONS

The program uses the following subroutines.

<u>Code name</u>
RESET
PTR
LTT
TTE
SETUP
SUBERR
RADDEC
OUTPUT
FLOAT
FIX
RALONG
UTMAC
MACGUT
SQRT
ATAN1
TAN

Once a year the table of sun coordinates (see Section 5.0) must be updated, and the program reassembled.

Reset tapes containing orbital conditions must be mounted on tape drives 2, 9, and 10.

22 March 1963

7

TM-(L)-1124/000/00

To start from scratch, the following function sequence is recommended:

*IRT ...

*WNRT ...

*INJFUN... (Each card completed appropriately)

*SHADOW ...

8.0 FLOW CHART

22 March 1963

TM-(L)-1124/000/00

(Last Page) 9

APPENDIX A

VEN 1136 RUN NO. SAMPLE 99
SHADOW INTERVALS TABULATED BELOW

TOTAL SHADOW TIME 35400. SECONDS FOR 41. PERCENT

22 March 1963

TM-(L)-1124/000/00

External Distribution List

Space Systems Division
(Contracting Agency)

Major C. R. Bond (SSOCD)
Major N. D. LaVally (SSOX)

6594th Aerospace Test Wing
(Contracting Agency)

Lt. Col. A. W. Dill (TWRD)
Lt. Col. M. S. McDowell (TWRU)
TWACS (20)

PIR-E1 (Lockheed)

J. A. Boysen
N. N. Epstein
W. E. Moorman
G. F. Taylor
R. L. Vader
P. E. Williams

PIR-E2 (Philco)

J. A. Bean
J. A. Isaacs
R. Morrison
S. M. Stanley

PIR-E3 (LFE)

D. F. Criley
K. B. Williams

PIR-E4 (GE-Santa Clara)

D. Alexander

PIR-E4 (GE-Sunnyvale)

J. Farrentine
N. Kirby

PIR-E4 (GE-Box 8555)

J. S. Brainard
R. J. Katucki
J. D. Selby

22 March 1963

TM-(L)-1124/000/00

External Distribution List (CONTINUED)

PIR-E4 (GE-3198 Chestnut)

J. F. Butler
C. A. Cummings
H. D. Gilman

PIR-E4 (GE-Bethesda)

W. L. Massey

PIR-E4 (GE-Box 8661)

F. T. Clark
J. D. Rogers
W. R. Weinrich

PIR-E5 (Aerospace)

F. M. Adair
A. Bakst
J. W. Bengston
R. V. Bigelow
R. O. Brandsberg
L. H. Garcia
G. J. Hansen
L. J. Kreisberg
M. L. Luther
T. R. Parkin
E. E. Retzlaff
H. M. Reynolds
D. Saadeh
R. G. Stephenson
D. D. Stevenson
V. White

(3)

PIR-E7 (STL)

A. J. Carlson

PIR-E8 (Mellonics)

F. Druding

22 March 1963

TM-(L)-1124/000/00

DISTRIBUTION LIST
(CONTINUED) INTERNAL

M. Winsor	22156
J. Winter	24117
R. Wise	22085
J. Wong	Sunnyvale
C. Zubris	24075
AFCPL	14059
	(5)

22 March 1963
INTERNAL
DISTRIBUTION LIST

TM-(L)-1124/000/00

D. Allfree	24083	J. Kneemeyer	22088
J. Aldana	22131	R. Knight	22119
L. Alexander	22134	L. Kolbo	22155
N. Alperin	22153	J. Laughlin	24073
E. Armstrong	24123	J. LaVine	24093
C. Becerra	24082	H. Lewis	23010
D. Biggar	24118	J. Little	24088
R. Bilek	23007	F. Long	22156
L. Brenton	24103	J. Lytton	24077
B. Burke	24086	G. Madrid	22081
R. Burke	22158	G. Mahon	24089
R. Busch	22088	J. Marioni	24076
C. Bustya	22134	R. Marshall	22160
M. Champaign	22152	W. Martin	24127
C. Chioldini	24091	J. McKeown	23013
B. Ciaccia	24082	J. Milanese	22155
R. Clements	22109	J. Munson	22087
B. Cline	24127	G. Myers	22095
J. Cooley	22156	P. Nelson	24075
L. Conger	24088	L. Ngou	24127
P. Cooley	24086	M. Olson	22161
D. Crum	24105	L. Padgett	24110
L. DeCuir	24053	E. Patin	Sunnyvale
W. Derango	24082	D. Persico	24083
G. Dexter	25016	T. Polk	24113
R. Disse	23014	D. Reilly	24121
G. Dobos	22115	A. Robinson	24132
W. Dobrusky	24065	M. Rockwell	24086
R. Dugas	22125	J. Schroeder	24124
R. Ellis	22131	R. Scott	24110
R. Erickson	22113	C. Seacat	Sunnyvale
H. Feldstein	24128	H. Seiden	22126
C. Francis	25013	R. Shapiro	24110
M. Franks	24122	S. Shoel	23007
L. Friedman	22122	R. Skelton	22152
S. Gardner	25026	N. Speer	24086
V. Gergen	25014	E. Stone	24058
I. Greenwald	22094	M. Sweeney	25026
J. Haake	22153	W. Taber	22101
D. Henley	22094	T. Tennant	27029
C. Hill	22101	J. Thompson	24088
J. Hillhouse	22078	C. Toche	24121
H. Holzman	24065	R. Totschek	24120
G. Hudson	24126	A. Tucker	22109
R. Johnson	22125	A. Vorhaus	24076
P. Kastama	22076	M. Weinstock	22131
M. Katz	25014	S. Weems	22109
F. Kayser	24109	G. West	Sunnyvale
J. Keddy	24105	G. P. West	22116
D. Key	23013	H. Williams	22110
R. Keyes	24073	G. Wilson	24124

UNCLASSIFIED

System Development Corporation,
Santa Monica, California
SATELLITE CONTROL PROGRAM DESCRIPTION
MILESTONE 4 COMPUTE SHADOW TIMES (SHADOW)
Scientific rept., TM(L)-1124/000/00, by
C. Seacat. 22 March 1963, 9p.
(Contract AF 19(628)-1648, Space
Systems Division Program, for Space
Systems Division, AFSC)

Unclassified report

DESCRIPTORS: Satellite Networks.
Programming (Computers).

States that SHADOW is a 1604 COP-controlled program designed to compute

UNCLASSIFIED

the times at which a satellite enters
and leaves the shadow of the earth.
Also states that the inputs to this
program are a reset tape containing
orbital conditions and a function card
specifying a time range and a time
increment.

UNCLASSIFIED

UNCLASSIFIED