

rr www.wuolah.com/student/rr

Practica 10 Solucionada.pdf

Practicas

- 1º Lógica
- **Grado en Ingeniería Informática**
- Escuela Politécnica Superior
 UC3M Universidad Carlos III de Madrid

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Practica 10

NOMBRE / NIE: NOMBRE / NIE: NOMBRE / NIE:

1. Comprobar que la siguiente deducción no es correcta utilizando el método de Resolución.

 $\forall x \exists y P(x,y) \Rightarrow \exists y \forall x P(x,y)$

- (1) $\forall x \exists y P(x,y) \land \sim \exists y \forall x P(x,y)$
- (2) $\forall x \exists y P(x,y) \land \forall y \exists x \sim P(x,y)$
- (3) $\forall x(\exists y P(x,y) \land \forall y \exists u \sim P(u,y))$
- (4) $\forall x \exists y (P(x,y) \land \forall v \exists u \sim P(u,v))$
- (5) $\forall x \exists y \forall v (P(x,y) \land \exists u \sim P(u,v))$
- (6) $\forall x \exists y \forall v \exists u (P(x,y) \land \sim P(u,v))$ (Prenex)
- (7) $\forall x \forall v \exists u (P(x,f(x)) \land \sim P(u,v))$
- (8) $\forall x \forall v (P(x,f(x)) \land \sim P(g(x,v),v))$ (Skolem)

Cláusula 1: P(x,f(x))Cláusula 2: $\sim P(g(x, v),v))$

No se puede hacer ninguna sustitución que unifique las dos cláusulas anteriores. Es importante ver que hay que sustituir una variable cada vez que aparece en una cláusula: es decir, en P(x,f(x)) la sustitución debe hacerse igual en los dos sitios donde aparece x. En las dos cláusulas sí que se puede reemplazar la x por variables distintas si se desea.

2. Comprobar, mediante el método de Resolución, si la siguiente deducción es correcta (*):

```
\exists x \forall y (A(x,y) \rightarrow B(y,x) \lor C(y))
\forall x \forall y (D(x,y) \rightarrow \sim C(x))
D(a, b) \land \forall x \forall y A(x,y)
= \exists x B(a,x)
```

Premisa 1:

- $(1) \ \exists x \forall y (A(x, y) \rightarrow B(y, x) \lor C(y)) \qquad \Longleftrightarrow Interdef.$
- (2) $\exists x \forall y (\sim A(x, y) \lor B(y, x) \lor C(y))$

Premisa 2:

- (1) $\forall x \forall y (D(x, y) \rightarrow \sim C(x)) \longleftrightarrow Interdef.$
- (2) $\forall x \forall y (\sim D(x, y) \lor \sim C(x))$

Premisa 3: No requiere más transformación.

Conclusión:

- $(1) \sim \exists x B(a, x) \leftrightarrow Interdef$
- (2) $\forall x \sim B(a, x)$

Pasamos a forma PRENEX la fórmula P1 \wedge P2 \wedge P3 \wedge ~ Q, que comprobaremos si es insatisfacible:

- (1) $\exists x \forall y (\sim A(x,y) \lor B(y,x) \lor C(y)) \land \forall x \forall y (\sim D(x,y) \lor \sim C(x)) \land D(a,b) \land \forall x \forall y A(x,y) \land \forall x \sim B(a,x)$
- (2) $\exists x \forall y (\sim A(x,y) \lor B(y,x) \lor C(y)) \land \forall u \forall v (\sim D(u,v) \lor \sim C(u)) \land D(a,b) \land \forall r \forall s A(r,s) \land \forall t \sim B(a,t)$
- (3) $\exists x \forall y \forall u \forall v \forall r \forall s \forall t ((\sim A(x,y) \lor B(y,x) \lor C(y)) \land (\sim D(u,v) \lor \sim C(u)) \land D(a,b) \land A(r,s) \land \sim B(a,t))$

Transformamos a forma de Skolem y extraemos las cláusulas. No hay que hacer cierre existencial porque no hay variables libres. Luego sustituir los existenciales que están en cabeza por constantes:

- (1) $\exists x \forall y \forall u \forall v \forall r \forall s \forall t ((\sim A(x,y) \lor B(y,x) \lor C(y)) \land (\sim D(u,v) \lor \sim C(u)) \land D(a,b) \land A(r,s) \land \sim B(a,t))$
- (2) \forall y \forall u \forall v \forall r \forall s \forall t((\sim A(c,y) \vee B(y,c) \vee C(y)) \wedge (\sim D(u,v) \vee \sim C(u)) \wedge D(a,b) \wedge A(r, s) \wedge \sim B(a,t))

Cláusula 1: $\sim A(c,y) \vee B(y,c) \vee C(y)$

Cláusula 2: $\sim D(u,v) \lor \sim C(u)$

Cláusula 3: D(a,b) Cláusula 4: A(r,s) Cláusula 5: ~B(a,t)

Resolventes:

Cláusula 6: B(s, c) V C(s)

Cláusula 7: C(a)

Cláusula 7: C(a)

Cláusula 8: ~D(a,v)

Cláusula vacía:

Cambios y/s r/c

en 1 y 4

Cambios s/a t/c en 6 y 5

Cambios u/a en 2 y 7

Cambios v/b en 3 y 8

La deducción es correcta porque la fórmula que comprobamos es insatisfacible.

3. Comprobar, mediante el método de Resolución, si la siguiente deducción es correcta (*):

- a) Obtenemos la forma Prenex correspondiente a la premisa, y la ponemos en forma conjuntiva de cara a la transformación en Skolem.
 - 1. $\forall x \exists y ([(\sim P(x,a) \lor P(y,x)) \rightarrow (Q(y) \land \sim P(y,x))] \land [Q(y) \rightarrow R(x)])$
 - 2. $\forall x \exists y ([\sim (\sim P(x,a) \lor P(y,x)) \lor (Q(y) \land \sim P(y,x))] \land [\sim Q(y) \lor R(x)])$
 - 3. $\forall x \exists y ([(P(x,a) \land \sim P(y,x)) \lor (Q(y) \land \sim P(y,x))] \land [\sim Q(y) \lor R(x)])$
 - 4. $\forall x \exists y ([(P(x,a) \lor Q(y)) \land \sim P(y,x)] \land [\sim Q(y) \lor R(x)])$ (Distributiva A $\land (B \lor C)$)
 - 5. $\forall x \exists y ([P(x,a) \lor Q(y)] \land \sim P(y,x) \land [\sim Q(y) \lor R(x)])$ (Asociativa)
- b) Obtenemos la forma Prenex correspondiente a la conclusión negada:
 - 1. $\sim \exists x \sim (R(x) \rightarrow P(x,a))$
 - 2. $\forall x(R(x) \rightarrow P(x,a))$
 - 3. $\forall x (\sim R(x) \vee P(x,a))$
- c) Pasamos a skolem P Λ ~Q
- 1. $\forall x \exists y ([P(x,a) \lor Q(y)] \land \sim P(y,x) \land [\sim Q(y) \lor R(x)]) \land \forall x [\sim R(x) \lor P(x,a)]$
- 2. $\forall x(\exists y([P(x,a) \lor Q(y)] \land \sim P(y,x) \land [\sim Q(y) \lor R(x)]) \land \forall z[\sim R(z) \lor P(z,a)])$
- 3. $\forall x \exists y ([P(x, a) \lor Q(y)] \land \sim P(y,x) \land [\sim Q(y) \lor R(x)] \land \forall z [\sim R(z) \lor P(z,a)])$
- 4. $\forall x \exists y \forall z ([P(x,a) \lor Q(y)] \land \sim P(y,x) \land [\sim Q(y) \lor R(x)] \land [\sim R(z) \lor P(z,a)])$
- 5. $\forall x \exists y \forall z ([P(x,a) \lor Q(y)] \land \sim P(y,x) \land [\sim Q(y) \lor R(x)] \land [\sim R(z) \lor P(z,a)])$ (Prenex)
- 6. $\forall x \forall z ([P(x,a) \lor Q(f(x))] \land \sim P(f(x),x) \land [\sim Q(f(x)) \lor R(x)] \land [\sim R(z) \lor P(z,a)])$ ("y" cambia a la función "f(x)")

Cláusulas de la forma de Skolem

$$P(x, a) \vee Q(f(x)), \sim P(f(x), x), \sim Q(f(x)) \vee R(x), \sim R(z) \vee P(z, a)$$

d) Resolución

Cláusula 1
Cláusula 2
Cláusula 3
Cláusula 4
Resolución 1,3

(0) P(X, a) Resolution (2/X) 4	(6) P (x, a	1)	Resolución ((z/x)	4,5
--------------------------------	-------------	----	--------------	-------	-----

En la línea 7 se usa una sustitución diferente para la "x" en la cláusula 2 (x2) y en la cláusula 6 (x6). Como es posible obtener la cláusula vacía, la deducción original es correcta.

4. Comprobar, mediante el método de Resolución, si la siguiente deducción es correcta:

$$\forall x \exists y (E(x) \rightarrow E(y) \land M(y,x))$$

 $\forall x (\sim \exists y M(y, x) \rightarrow \sim E(x))$

(1)
$$\forall x \exists y (E(x) \rightarrow E(y) \land M(y,x)) \land \sim \forall x (\sim \exists y M(y,x) \rightarrow \sim E(x))$$

(2)
$$\forall x \exists y (E(x) \rightarrow E(y) \land M(y,x)) \land \exists x \sim (\sim \exists y M(y,x) \rightarrow \sim E(x))$$

(3)
$$\forall x \exists y (E(x) \rightarrow E(y) \land M(y,x)) \land \exists x (\sim \exists y M(y,x) \land E(x))$$

(4)
$$\forall x \exists y (\sim E(x) \lor (E(y) \land M(y,x))) \land \exists x (\sim \exists y M(y,x) \land E(x))$$

(5)
$$\forall x \exists y ((\sim E(x) \lor E(y)) \land (\sim E(x) \lor M(y,x))) \land \exists x (\forall y \sim M(y,x) \land E(x))$$

(6)
$$\exists u(\forall x \exists y((\sim E(x) \lor E(y)) \land (\sim E(x) \lor M(y,x))) \land \forall y \sim M(y,u) \land E(u))$$

$$(7) \qquad \exists u \forall x (\exists y ((\sim E(x) \lor E(y)) \land (\sim E(x) \lor M(y,x))) \land \forall y \sim M(y,u) \land E(u))$$

(8)
$$\exists u \forall x \exists y ((\sim E(x) \lor E(y)) \land (\sim E(x) \lor M(y,x)) \land \forall v \sim M(v,u) \land E(u))$$

(9)
$$\exists u \forall x \exists y \forall v ((\sim E(x) \lor E(y)) \land (\sim E(x) \lor M(y,x)) \land \sim M(v,u) \land E(u))$$
 (Prenex)

(10)
$$\forall x \exists y \forall v ((\sim E(x) \lor E(y)) \land (\sim E(x) \lor M(y,x)) \land \sim M(v,a) \land E(a))$$

(11)
$$\forall x \forall v ((\sim E(x) \lor E(f(x))) \land (\sim E(x) \lor M(f(x),x)) \land \sim M(v,a) \land E(a))$$
 (Skolem)

Resolución:

$(1) \sim E(x) \vee E(f(x))$	Cláusula	1	
$(2) \sim E(x) \vee M(f(x),x)$	Cláusula	2	
(3) ∼M(v,a)	Cláusula	3	
(4) E(a)	Cláusula		4
(5) M(f(a),a)	Resolución (x/a)		2,4
(6) Cláusula vacía	Resolución (v/f(a)) 3,5		

