KISA DEVRE AKIM HESABI

İşletmenin herhangi bir noktasında oluşacak kısa devrede, bu kısa devre noktasından geçecek olan akımın bilinmesi hatta kullanılacak olan kablolar ve kopmak şalterler gibi elemanların seçimi için önemlidir.

Bir kopmak şalter siparişi verilirken şu değerler belirtilir;

Anma akımı, Kutup sayısı, Anma işletme gerilimi, ve Kısa devre kesme kapasitesi.

Kısa devre anında oluşan yüksek ısı ve dinamik kuvvetler kablo ve kopmak şalterimiz üzerinde zararlı bir etki yapacaktır.

Eğer şalterimiz üzerinden, etiket değerlerinden daha büyük değerlerde kısa devre akımları geçecek olursa şalterimiz zarar görecek beklide çalışmaz duruma gelecektir. Bu durumda aklımıza alabileceğimiz en yüksek kısa devre kesme kapasitesine sahip kopmak şalteri alalım şeklinde bir düşünce gelebilir bu durumda ise maliyet hesapları üzerinde düşünülmesi gereken bir nokta olarak karşımıza çıkmaktadır.

Örneğin yandaki veriler bir şirkete ait 1600 A kopmak şalterin 2009 yılı fiyat	Kesme Kapasitesi (KA)	Fiyatı (TL)
listesinden alınmıştır.	50	7.865
Eğer şalterimiz 50 KA den daha düşük bir kısa devre akımına maruz	70	8.283
kalacaksa neden 100 KA lik şalter alalım?	100	10.280

Bu nedenle kısa devre akımı hesaplanması gereken bir değerdir.

Kısa devre anında kısa devre akımı geçici bir rejim olarak yükselir ve daha sonra akım değeri daimi kısa devre akım değerine oturur. Bu geçici rejim 500 msn den daha az bir sürede gerçekleşir.

Kısa devre noktasının şebekeye (veya jenaratör) yakın olması – uzak olması durumunda kısa devre akım grafiği değişse de bir fikir vermesi açısından yukarıdaki grafik yeterlidir. Burada:

I_K: Daimi kısa devre akımı.

Is: Maksimum kısa devre akımı

 I_{κ}^{\parallel} :Başlangıç kısa devre akımıdır.

İsletmemizde 4 tip kısa devre olabilir.

Bunlar;

Üç faz arası kısa devre, iki faz arası kısa devre, faz nötr arası kısa devre ve faz toprak arası kısa devre. Bu kısa devreler sırasında oluşacak kısa devre akımları ise;

 $\begin{array}{ll} I_K & : \text{Kısa devre akımı - Genel ifade} \\ I_{KLLL} & : \text{Kısa devre akımı - Üç faz arası} \\ I_{KLL} & : \text{Kısa devre akımı - İki faz arası} \\ I_{KLN} & : \text{Kısa devre akımı - Faz nötr arası} \\ I_{KLPE} & : \text{Kısa devre akımı - Faz toprak} \\ U_R & : \text{Hat gerilimi - Fazlar arası} \\ Z_L & : \text{Faz hattı empedansı} \end{array}$

Z_N: Nötr hattı empedansı Z_{PE}: Toprak hattı empedansı

$$Z_L = \sqrt{R_L^2 + X_L^2}$$

Üç faz arası kısa devre

$$I_{KLLL} = \frac{U_R}{\sqrt{3}.Z_L}$$

$$I_{KLL} = \frac{U_R}{2.Z_L}$$

$$I_{\mathit{KLL}} = 0.87 I_{\mathit{KLLL}}$$

$$I_{KLN} = \frac{U_R}{\sqrt{3}.(Z_L + Z_N)}$$

Eğer nötr hattı empedansının faz hattı empedansına eşit olduğu kabul edilirse $(Z_N = Z_L)$

$$I_{KLN} = \frac{U_R}{\sqrt{3}.2.Z_L}$$

$$I_{KLN} = 0.5I_{KLLL}$$

Eğer nötr hattı empedansının faz hattı empedansının iki misli olduğu kabul edilirse $(Z_N = 2.Z_L)$

$$I_{KLN} = \frac{U_R}{\sqrt{3}.3.Z_L}$$

$$I_{KLN} = 0.33I_{KLLL}$$

Eğer nötr hattı empedansının sıfır olduğu kabul edilirse ($Z_N = 0$)

$$I_{KLN} = \frac{U_R}{\sqrt{3}.Z_I}$$

$$I_{\mathit{KLN}} = I_{\mathit{KLLL}}$$

Faz toprak arası kısa devre

$$I_{KLPE} = \frac{U_R}{\sqrt{3}.(Z_L + Z_{PE})}$$

Eğer toprak hattı empedansının faz hattı empedansına eşit olduğu kabul edilirse $(Z_{PE} = Z_L)$

$$I_{KLPE} = \frac{U_R}{\sqrt{3}.2.Z_L}$$

$$I_{KLPE} = 0.5I_{KLLL}$$

Eğer toprak hattı empedansının faz hattı empedansının iki misli olduğu kabul edilirse $(Z_{PE} = 2.Z_{L})$

$$I_{KLPE} = \frac{U_R}{\sqrt{3}.3.Z_L}$$

$$I_{KLPE} = 0.33I_{KLLL}$$

Eğer toprak hattı empedansının sıfır olduğu kabul edilirse ($Z_{PE} = 0$)

$$I_{\mathit{KLPE}} = \frac{U_\mathit{R}}{\sqrt{3}.Z_\mathit{L}} \qquad \qquad I_{\mathit{KLPE}} = I_{\mathit{KLLL}}$$

Yukarıdaki hesaplamalardan da görüleceği üzere en büyük kısa devre akımı üç faz arasındaki kısa devrelerde oluşmaktadır. Bu nedenle kısa devre akım hesabında üç faz kısa devre göz önüne alınacaktır.

Kısa devre akım hesaplamasında iki tür yaklaşım mevcuttur;

Bunlardan biri sistemi besleyen bütün elemanların kısa devre güçleri hesaplanır ve değeri küçük olan hat empedansı göz önüne alınmayarak olası en kötü kısa devre akımı, bulunan kısa devre gücü ile hesaplanır.

Bir diğer yaklaşımda ise hattın başından sonuna kadar hat empedansı hesaplanarak bulunan kısa devre akım değeridir.

KISA DEVRE GÜCÜNDEN KISA DEVRE AKIMININ HESAPLANMASI:

$$I_K = \frac{S_K}{\sqrt{3}U_R}$$

: Kısa devre akımı (kA)

: Kısa devre noktasındaki hat gerilimi – Fazlar arası (V)

: Kısa devre noktasını besleyen elemanların kısa devre gücü (kA)

Eğer kısa devre noktası birden fazla eleman tarafından paralel besleniyorsa kısa devre noktasındaki kısa devre gücü: $S_{\kappa} = \sum S$

Eğer kısa devre noktası birden fazla eleman tarafından seri besleniyorsa kısa devre noktasındaki kısa devre gücü:

$$S_K = \frac{1}{\frac{1}{\sum S}}$$

formülleri ile bulunur devrede ki elemanların durumuna göre seri paralel kombinasyon hesaplamaları yine bu formüller kullanılarak yapılır.

Kısa devre noktasını besleyen elemanlar:

- Şebeke (Elektrik işletmesi tarafı)
- Jeneratör
- Trafo
- Asenkron motor. Asenkron motorlar her ne kadar sistemde alıcı olsalar da enerji kesildiğinde dönmeye devam eden asenkron motor 5-6 periyotta olsa sistemi ters yönde besler.

Kısa devre akımını sınırlayan elemanlar:

- Kablo, trafo veya seri bobin empedansları.

Hesaplamalarımız en kötü olasılığa yönelik olacağı için sınırlandırıcı bu elemanları göz önüne almayabiliriz.

Şebeke (Elektrik işletmesi tarafı) : Bu değer elektrik işlemesi verisidir. Fakat hat gerilimine göre yan tablodaki kabuller alınabilir.

Hat Gerilimi U _R [kV]	Kısa devre gücü S _{knet} [MVA]
20 kV a kadar	500
20 - 32 kV	750
32 - 63 kV	1000

Tablo: 1

Jeneratör: Bu değer Jeneratöre ait katalog verisidir. Fakat jeneratör anma güçlerine göre aşağıdaki tablodaki kabuller alınabilir.

Tablo: 2

Jeneratör gücü [kVA]	50	63 1	125	160	200	250	320	400	500	630	800	1000	1250	1600	2000	2500	3200	4000
Kısa devre gücü S _{kjen} [MVA]	0.40).5	1.0	1.3	1.6	2.0	2.6	3.2	4.0	5.0	6.4	8.0	10.0	12.8	16.0	20.0	25.6	32.0

Trafo:

$$S_{ktrafo} : S_{ktrafo} : S_{rtrafo} : Trafo anma gücü % uk : Trafo % kısa devre gerilimi Bu değer için asağıdaki tablodaki$$

Bu değer için aşağıdaki tablodaki kabuller alınabilir.

Tablo: 3

								· un		,								
S _{rtrafo} [kVA]	50	63	125	160	200	250	320	400	500	630	800	1000	1250	1600	2000	2500	3200	4000
% u _k	4	4	4	4	4	4	4	4	4	4	5	5	5	6	6	6	6	6
S _{ktrafo} [MVA]	1.3	1.6	3.1	4	5	6.3	8	10	12.5	15.8	16	20	25	26.7	33.3			

Asenkron motor:

 $S_{kmot} = 5-7 S_{rmot}$

S_{rmot}: Motor anma gücü

Küçük güçlü motorlarda 5, büyük güçlü motorlarda 7 alınabilir. Aslında bu oran motorun kalkınma akımının, anma akımına oranıdır. I_{motkalk} / I_{motanma}

Kablo:

$$S_{\textit{kkablo}} = \frac{{U_{\textit{R}}}^2}{Z_{\textit{K}}}$$

 Z_K : Kablo empedansı

Bu değer için yan tablodaki kabuller alınabilir.
Tabloda verilen değerler 10m içindir sistemdeki kabloların tamamı için yukarıdaki değerler "kablo uzunluğu / 10 " ile çarpılmalıdır.
Eğer birden fazla paralel kablo varsa buluna değer paralel kol sayısına bölünmelidir.

S [mm²] 230 [V] 400 [V] 440 [V] 500 [V] 690 [V] 0.44 1.60 2.07 3.94 1.5 1.32 2.5 0.73 2.20 2.66 6.55 3.44 3.52 5.50 10.47 4 1.16 4.26 5.29 8.26 6 1.75 6.40 15.74 10 2.9 8.8 10.6 26.2 13.8 16 4.6 14.0 16.9 21.8 41.5 25 7.2 21.9 26.5 34.2 65.2 35 10.0 30.2 36.6 47.3 90.0 40.6 63.4 50 13.4 49.1 120.8 70 19.1 57.6 69.8 90.1 171.5

77.2

94.2

109.6

128.5

148.4

164.0

Tablo: 4

S_{kkablo} [MVA] - Frekans: 50 Hz

93.4

114.0

132.6

155.5 179.5

198.4

120.6

147.3

171.2

200.8

231.8

256.2

229.7

280.4

326.0

382.3

441.5

488.0

95

120

150 185

240

300

25.5

31.2

36.2

42.5

49.1

54.2

Bir kopmak şalterin kısa devre akımı hesaplanırken olası en kötü durum göz önüne alınmalıdır. Örneğin yandaki sistemde Q1 şalteri için en büyük kısa devre akımı şalterin girişinde gerçekleşmektedir. Üstteki resimde şalter çıkışında oluşacak bir kısa devrede geçecek kısa devre akımı sadece kendisine ait trafo tarafından sağlanırken şalter girişinde oluşacak kısa devrede kısa devre akımı diğer iki trafo tarafından sağlanacaktır. (Trafolar özdeştir.)

Yandaki verilen şebekede Q1,2,3 kompak şalterlerinin kısa devre akımlarını bulunuz.

Şebeke: 31,5 KV

Trafo:

 S_{rtrafo} : 1600 kVA

% u_k:%6

U_R:31500 / 400 V

Motor: P_{mot}:220 kW I_{motkalk} / I_{motanma}: 6,6 n: 0,917 $\cos \phi : 0.9$

B barasındaki diğer genel yükler:

I_{LR}: 1143,4 A cos φ: 0.9

Bara ve hat empedansları iptal edilmiştir.

Kısa devre güçlerinin hesaplanması

Şebeke kısa devre gücü:

S_{knet} = 500 MVA (Tablo 1) (A barası kısa devre gücü)

Trafo kısa devre gücü:

$$S_{ktrafo} = \frac{100}{6}.1600 = 26,7 \, MVA$$

Motor kısa devre gücü:

$$S_{rmot} = \frac{P_{rmot}}{\eta.\cos\varphi} = \frac{220}{0.917.0.9} = 267kVA$$

 $S_{kmot} = 6.6 S_{mot} = 6.6 . 267 = 1.76 MVA$ (Yaklaşık 100 ms lik süre içerisinde)

Q1 şalteri için kısa devre akımı:

Q1 şalteri için en yüksek kısa devre akımı şalter çıkışındaki kısa devre durumunda oluşur. Bu nokta şebeke ve trafo tarafından seri beslenmektedir. (B barası kısa devre gücü ve akımı)

$$S_{KQ1} = \frac{1}{\frac{1}{S_{\text{knet}}} + \frac{1}{S_{\text{ktrafo}}}} = \frac{1}{\frac{1}{500} + \frac{1}{26,7}} = 25,35 MVA$$

$$I_{KQ1} = \frac{S_{KQ1}}{\sqrt{3}U_R} = \frac{25350}{\sqrt{3}.400} = 36.6kA$$

Q2 salteri için kısa devre akımı:

Q2 şalteri için en yüksek kısa devre akımı şalter çıkışındaki kısa devre durumunda oluşur. Bu nokta şebeke ve trafo tarafından seri beslenmektedir. Bu durum Q1 şalteri ile aynı akım değeri olduğu için Q2 şalteri içinde I_{KQ2} = 36,6 kA dir. Q3 şalteri için kısa devre akımı:

Q3 şalteri için en yüksek kısa devre akımı şalter çıkışındaki kısa devre durumunda oluşur. Bu nokta şebeke ve trafo tarafından seri ve motor tarafından paralel beslenmektedir.

$$S_{KQ3} = S_{kmot} + \frac{1}{\frac{1}{S_{knet}} + \frac{1}{S_{ktrafo}}} = 1,76 + \frac{1}{\frac{1}{500} + \frac{1}{26,7}} = 27,11MVA$$

$$I_{KQ3} = \frac{S_{KQ3}}{\sqrt{3}U_R} = \frac{27110}{\sqrt{3}.400} = 39,13kA$$

$$I_{KQ3} = \frac{S_{KQ3}}{\sqrt{3}U_{P}} = \frac{27110}{\sqrt{3}.400} = 39,13kA$$

Yandaki verilen şebekede Q1,2,3,4,5 kompak şalterlerinin kısa devre akımlarını bulunuz.

Şebeke : 20 KV Trafo1 ve Trafo1 : S_{rtrafo} : 1600 kVA

% u_k :%6

U_R :20000 / 400 V B barasındaki yükler:

 S_{L1} : 1500 kVA $\cos \phi_1$: 0,9 S_{L2} : 1000 kVA $\cos \phi_2$: 0,9 S_{L3} : 50 kVA $\cos \phi_3$: 0,9

Bara ve hat empedansları iptal edilmiştir. Kısa devre güçlerinin hesaplanması

Şebeke kısa devre gücü:

S_{knet} = 500 MVA (Tablo 1) (A barası kısa devre gücü)

Trafo kısa devre gücü:

$$S_{ktrafo} = \frac{100}{6}.1600 = 26,7 \, MVA$$

B barası kısa devre gücü

B barası Trafo1 ve Trafo 2 paralelliği ve buna seri şebeke tarafından beslenmektedir

Q1 ve Q2 kompak şalterleri eşit olarak B bara kısa devre akımını paylaşacakları için

 $I_{kQ1} = I_{kQ1} = I_{kB}/2 = 34,78 \text{ kA}$

Q3 veya Q4 veya Q5 kompak şalterleri için en yüksek kısa devre akımı şalter çıkışındaki kısa devre durumunda oluşur. Bu nokta B barası kısa devre akımına eşittir.

$$I_{kQ3} = I_{kQ2} = I_{kQ3} = I_{kB} = 69,56 \text{ kA}$$

*Q1 ve Q2 şalterlerinin gözden geçirilmesi:

Q1 şalteri kısa devre akımı; trafo2 nin kısa devre gücü trafo1 in kısa gücünden büyük olması durumunda şalter girişine göre.

Q1 ve Q2 şalterlerinde kısa devre akımı; trafo1 ve trafo2 kısa devre güçleri aynı fakat B barasında jeneratör veya büyük güçlü motor olması durumunda şalter girişine göre.

Q1 ve Q2 şalterlerinde kısa devre akımı; şu anki mevcut duruma göre şalter girişinde veya çıkışında da olsa şebeke ve trafo (özdeş) seriliğinden bulunabilir. Bu değer 36,6 kA olmaktadır. $I_{kQ1} = I_{kQ1} = 36,6$ kA seçilmesi uygundur.

Yukarıdaki hesaplamalar tesisin yüksek akım kapasitesine sahip üst bara kısa devre akımlarını bulmaya yönelikti. Daha düşük akımlı ve daha alt tesislerde bulunan şalterlerin kısa devre akım değerlerini bulmak için Tablo 5 den yararlanıyoruz.

Tablo 5 : 400 V – Bakır İletken – Paralel kablo varsa bulunan değer paralel kol sayısı ile çarpılmalıdır.

	iio J	. +	00 \	/ — L	Jaki	ı IIC	INCI	<u> </u>	aic	liCi i	labi	o vai	3 a D	ululi	an de	-ycı	para	וכו אנ	л за	yısıı	ie ça	трин	ianu	II .	
Kablo Kesiti [mm ²]												K	ablo L	Jzunlu	ığu [m]										
1,5																0,9	1,1	1,4	1,8	2,5	3,5	5,3	7	9,4	14
2,5													0,9	1	1,2	1,5	1,8	2,3	2,9	4,1	5,9	8,8	12	16	24
4											0,9	1,2	1,4	1,6	1,9	2,3	2,8	3,7	4,7	6,6	9,4	14	19	25	38
6									0,8	1,1	1,4	1,8	2,1	2,5	2,8	3,5	4,2	5,6	7	10	14	21	28	38	56
10							0,9	1,2	1,4	1,9	2,3	2,9	3,5	4,1	4,7	5,8	7	9,4	12	16	23	35	47	63	94
16					0,9	1,1	1,5	1,9	2,2	3	3,7	4,7	5,6	6,5	7,5	9,3	11	15	19	26	37	56	75	100	150
25			0,9	1,2	1,4	1,7	2,3	2,9	3,5	4,6	5,8	7,2	8,7	10	12	14	17	23	29	41	58	87	116	155	233
35			1,2	1,6	2	2,4	3,2	4	4,8	6,4	8	10	12	14	16	20	24	32	40	56	80	121	161	216	324
50		1,1	1,7	2,3	2,8	3,4	4,5	5,7	6,8	9	11	14	17	20	23	28	34	45	57	79	113	170	226	303	455
70	8,0	1,5	2,3	3,1	3,8	4,6	6,2	7,7	9,2	12	15	19	23	27	31	38	46	62	77	108	154	231	308	413	
95	1	2	3	4	5	6	8	10	12	16	20	25	30	35	40	50	60	80	100	140	200	300	400		
120	1,2	2,4	3,6	4,8	6	7,2	10	12	14	19	24	30	36	42	48	60	72	96	120	168	240	360	481		
150	1,4	2,8	4,2	5,6	7	8,4	11	14	17	23	28	35	42	49	56	70	84	113	141	197	281	422			
185	1,6	3,2	4,8	6,4	8	10	13	16	19	26	32	40	48	56	64	80	96	128	160	224	320	480			
240	1,8	3,7	5,5	7,3	9,1	11	15	18	22	29	37	46	55	64	73	91	110	146	183	256	366	549			
300	2	4	6	8	10	12	16	20	24	32	40	50	60	70	80	100	120	160	200	280	400				
2x120	2,4	4,8	7,2	10	12	14	19	24	29	38	48	60	72	84	96	120	144	192	240	336	481				
2x150	2,8	5,6	8,4	11	14	17	23	28	34	45	56	70	84	98	113	141	169	225	281	394	563				
2x185	3,2	6,4	10	13	16	19	26	32	38	51	64	80	96	112	128	160	192	256	320	448					
3x120	3,6	7,2	11	14	18	22	29	36	43	58	72	90	108	126	144	180	216	288	360	505					
3x150	4,2	8,4	13	17	21	25	34	42	51	68	84	105	127	148	169	211	253	338	422						
3x185	4,8	10	14	19	24	29	38	48	58	77	96	120	144	168	192	240	288	384	480						
Bara Kısa												/abla	V.o.o.l	Da	A leuma i	ΓΙ. Λ 1									
Devre Akımı [kA]												\abio	NISa	Devie	Akımı	[KA]									
100	96	92	89	85	82	78	71	65	60	50	43	36	31	27	24	20	17	13	11	7,8	5,6	3,7	2,7	2,0	1,3
90	86	83	81	78	76	72	67	61	57	48	42	35	31	27	24	20	17	13	11	7,8	5,6	3,7	2,7	2,0	1,3
80	77	75	73	71	69	66	62	57	53	46	40	34	30	27	24	20	17	13	10	7,7	5,5	3,7	2,7	2,0	1,3
70	68	66	65	63	62	60	56	53	49	43	38	33	29	26	23	19	16	13	10	7,6	5,5	3,7	2,7	2,0	1,3
60	58	57	56	55	54	53	50	47	45	40	36	31	28	25	23	19	16	12	10	7,5	5,4	3,7	2,7	2,0	1,3
50	49	48	47	46	45	44	43	41	39	35	32	29	26	23	21	18	15	12	10	7,3	5,3	3,6	2,6	2,0	1,3
40	39	39	38	38	37	37	35	34	33	31	28	26	24	22	20	17	15	12	10	7,1	5,2	3,6	2,6	2,0	1,3
35	34	34	34	33	33	32	32	31	30	28	26	24	22	20	19	16	14	11	10	7,1	5,1	3,5	2,6	2,0	1,3
30	30	29	29	29	28	28	28	27	26	25	23	22	20	19	18	16	14	11	9,3	07	5,0	3,5	2,6	1,9	1,3
25	25	24	24	24	24	24	23	23	22	21	21	19	18	17	16	14	13	11	09	6,8	5,0	3,4	2,6	1,9	1,3
20	20	20	20	19	19	19	19	18	18	18	17	16	15	15	14	13	12	10	8,4	6,5	4,8	3,3	2,5	1,9	1,3
15	15	15	15	15	15	14	14	14	14	14	13	13	12	12	12	11	10	8,7	7,6	6,1	4,6	3,2	2,5	1,9	1,3
12	12	12	12	12	12	12	12	11	11	11	11	11	10	10	10	9,3	8,8	7,8	7,0	5,7	4,4	3,1	2,4	1,9	1,3
10	10	10	10	10	10	10	10	9,5	9,4	9,2	9,0	8,8	8,5	8,3	8,1	7,7	7,3	6,5	5,9	5,0	3,9	2,9	2,3	1,8	1,2
8,0	8,0	7,9	7,9	7,9	7,8	7,8	7,7	7,7	7,6	7,5	7,4	7,2	7,1	6,9	6,8	6,5	6,2	5,7	5,2	4,5	3,7	2,8	2,2	1,7	1,2
6,0	6,0	5,9	5,9	5,9	5,9	5,8	5,8	5,8	5,7	5,6	5,5	5,4	5,3	5,2	5,1	4,9	4,8	4,4	4,1	3,6	3,1	2,4	2,0	1,6	1,1
3,0	3,0	3,0	3,0	3,0	3,0	3,0	2,9	2,9	2,9	2,9	2,9	2,8	2,8	2,8	2,7	2,7	2,6	2,5	2,4	2,2	2,0	1,7	1,4	1,2	0,9

Yüksek akım kapasitesine sahip üst bara kısa devre akımlarını hesaplarken göz önüne almadığımız kablo empedansları daha düşük akım kapasitesine sahip hatlarda akım sınırlayıcı bir etki olarak göz önüne alınır.

Tablo 5'in kullanılması; Tablonun üst sol tarafından "Kablo Kesiti [mm²]" sütunundan kablo kesiti seçilir. Sağ taraf satırından ilerlenerek kablo uzunluğu bulunur. Eğer kablo uzunluğumuz tabloda verilen değerlerin arasında bir noktada ise küçük kablo uzunluğu seçilmelidir. (Kablo uzunluğu küçüldükçe kısa devre akım değeri artar bu ise bizim hattımız için olası en kötü durumu göstereceği için tercih edilir.) Tablonun alt sol tarafından kablomuzun bağlı olduğu baranın kısa devre gücü seçilir. (Burada da bizim kısa devre gücümüz tabloda verilen kısa devre güçleri arasında bir değerde ise büyük kısa devre gücü en kötü olasılık olarak seçilmelidir.) Seçilen bara kısa devre akım değerinden sağ taraf satırda ilerlenerek az önce seçmiş olduğumuz kablo uzunluğu sütunu ile kesişme noktası bizim için kablo çıkışında görülecek olan kısa devre gücüdür.

Aşağıda verilen şebekede Q1,2,3 kompak şalterlerinin kısa devre akımlarını bulunuz.

Şebeke: 400 V

A Barası kısa devre akımı: 32 kA

lletken uzunluğu : 29 m lletken kesiti : 120 mm²

Q1 şalterinin kısa devre akımı A barası kısa devre akımı ile aynıdır.

 $I_{kQ1} = 32 \text{ kA}$

B barası kısa devre akım değerinin tablo 5 den bulunması;

Sol üst mm² 120 seçilir. Sağ satır kablo uzunluğu 24 m (29 m bir küçük uzunluk) seçilir. Sol alt bara kısa devre akımı 35 kA (32 kA büyük akım değeri seçilir) seçilir. Sağ satırın 24 m sütunu ile kesiştiği noktadaki değer 26 kA dir. Bu değer B barası kısa devre akım değeridir.

Q2 ,3 şalterlerinin kısa devre akımı B barası kısa devre akımı ile aynıdır.

 $I_{kQ2} = I_{kQ3} = 26 \text{ kA}$

DEVRE EMPEDANSINDAN KISA DEVRE AKIMININ HESAPLANMASI:

Kısa devre anında, kısa devre akımının geçici bir rejim olarak yükseldiğini görmüştük. Başlangıç anındaki kısa Kıdevre akımını bulabilmek için hesaplama sunucunda elde 2.0 ettiğimiz kısa devre akımını;

 $I_S = K.\sqrt{2}.I_K$

çarpımına tabi tutmamız gerekmektedir. Bulunan kısa devre akımı efektif değer olup maksimum tepe noktasını 1.6 bulabilmek için $\sqrt{2}$ değeri ile çarpılmıştır. Ayrıca akımdaki ilk yükselme devrenin zaman sabitine bağlı olup aşağıdaki grafikten bulunacak K sabiti ile çarpılmalıdır.

 $e^{-\frac{R}{L}t}$

Grafik 1:

Şebeke (Elektrik işletmesi tarafı) empedansının hesaplanması:

$$Z_{net} = \frac{U_{net}^{2}}{S_{v_{net}}}$$

 $Z_{net} = \frac{{U_{net}}^2}{S_{Knet}} \hspace{1cm} \begin{array}{l} Z_{\text{net}} : \text{ Sebeke empedansi (} \Omega \text{)} \\ U_{\text{net}} : \text{ Sebeke gerilimi - Fazlar arasi (V)} \\ S_{\text{Knet}} : \text{ Sebeke kisa down area.} \end{array}$

Şebeke gerilimine göre endüktif ve omik direnç değerleri.

	X _{net}	R _{net}
6 kV	0,95 Z _{net}	0,3 Z _{net}
20 kV	0,98 Z _{net}	0,2 Z _{net}
150 kV	0,99 Z _{net}	0,1 Z _{net}

Trafo empedansının hesaplanması:

$$Z_{trafo} = \% u_k . \frac{U_{2trafo}}{S_{trafo}}^2 \quad Z_{trafo} : \text{Trafo empedansi (} \Omega \text{)} \\ W_{2trafo} : \text{Trafo sekonder gerilimi - Fazlar arasi (V)} \\ W_{1} : \text{Trafo } \% \text{ kisa devre gerilimi } \\ S_{rtrafo} : \text{Trafo anma gücü (W)}$$

 $X_{trafo} = Z_{trafo}$ $R_{trafo} = 0.2.Z_{trafo}$

Kablo empedansının hesaplanması:

Yüksek gerilim şebeke tarafı;

Endüktif direnç değerleri;

OG gerilimde = $0.3 (\Omega/km)$ YG gerilimde = $0.4 (\Omega/km)$

*** Kablo endüktif dirençleri kesitten bağımsızdır

Omik direnç değerleri;

Bakır iletken = 0,018 (Ω mm²/m) Alüminyum iletken = 0,029 (m Ω /m)

Trafo sonrası dahili hat; Endüktif direnç değerleri;

Tablo 6:

	Bara	3 fazlı kablo	3 ayrı kablo demet	3 ayrı kablo yan yana temaslı	3 ayrı kablo yan yana temassız	3 ayrı kablo yan yana temassız
				000	$\odot \odot \odot$	
X_{kablo} (m Ω /m)	0,15	0,08	0,085	0,095	0,15	0,145 (d=2r) 0,19 (d=4r)

^{***} Kablo endüktif dirençleri kesitten bağımsızdır

Omik direnç değerleri;

Bakır iletken = $0.0225 \, (\Omega \text{mm}^2/\text{m})$ Alüminyum iletken = $0.036 (\Omega \text{mm}^2/\text{m})$

Kopmak şalter empedansının hesaplanması:

 X_{kompak} : 0,15 ($m\Omega$) Omik direnç ihmal

Trafo yüksek gerilim tarafındaki empedansın düşük gerilim tarafına dönüştürülmesi:

$$Z_{LV} = Z_{HV} \left(\frac{U_{LV}}{U_{HV}}\right)^2$$

Şebeke

 U_{net} : 20 kV = 20 10³ V S_{Knet}: 500 MVA = 500 10⁶ VA

Kablo 1 50mm² – 2 km

Jenaratör

 $S_{jenarator}$: 1 MVA = 1 10⁶ VA

%X = %15

Trafo 1 ve 2 özdeş S_{trafo} : 1 MVA = 1 10^6 VA

 $\% u_k = \%5 = 0.05$ U_{2trafo} : 410 V

B barası

3 paralel bara - 3x400 mm² - 10 m - Bakır

Kablo 2

3 tek damarlı paralel kablo – 3x400mm2 – 80m Alüminyum

Kablo 3

3 damarlı kablo – 35mm2 – 30m Bakır

Motor

Pmotor = 50 Kw

 $\eta = 0.9$

 $\cos \varphi = 0.8$

İhmaller

A ve B barası endüktif dirençleri Trafo1 ve 2 bağlantı kabloları endüktif dirençleri

Hesaplanacaklar:

A, B, C bara kısa devre akımları D noktası kısa devre akımı

Şebeke (Elektrik işletmesi tarafı) empedansının hesaplanması :

$$Z_{net} = \frac{U_{net}^{2}}{S_{Knet}^{2}} = \frac{(20.10^{3})^{2}}{500.10^{6}} = 0.8\Omega$$

$$X_{net} = 0.98Z_{net} = 0.98.0,8 = 0.78\Omega$$

$$R_{net} = 0.2Z_{net} = 0.2.0,8 = 0.16\Omega$$

Kablo 1 empedansının hesaplanması:

$$X_{kablo1} = 0.4. L_{km} = 0.4.2 = 0.8\Omega$$

 $R_{kablo1} = 0.018 \frac{L_m}{S_{-2}} = 0.018 \frac{2000}{50} = 0.72\Omega$

Trafo empedansının hesaplanması:

$$Z_{trafo} = \% u_k . \frac{U_{2trafo}^2}{S_{trafo}} = 0.05. \frac{410^2}{10^6} = 0.0084\Omega$$

2 adet eşdeğer trafo paralel bağlı olduğu için eşdeğer empedans:

$$Z_{trafoes\, deg\, er} = \frac{0,0084}{2} = 0,0042\Omega$$

$$X_{trafoes\, deg\, er} = Z_{trafoes\, deg\, er} = 0,0042\Omega$$

$$R_{trafoes\, deg\, er} = 0,2.Z_{trafoes\, deg\, er} = 0,00084\Omega$$

B barası empedansının hesaplanması:

$$\begin{split} X_{Bbara} &= 0,\!15.10^{-3}.\,L_{Bbara} = 0,\!15.10^{-3}.10 = 0,\!0015\Omega \text{ - Tablo 6} \\ R_{Bbara} &= 0,\!0225.\frac{L_{m}}{S_{mm^{2}}} = 0,\!0225.\frac{10}{3.400} = 0,\!00018\Omega \approx 0\Omega \end{split}$$

Kablo 2 empedansının hesaplanması:

$$X_{kablo2} = 0.15.10^{-3}. \ L_{kablo2} = 0.15.10^{-3}.80 = 0.012\Omega \ \ \text{- Tablo 6: 3 ayrı kablo yan yana temassız}$$

$$R_{kablo2} = 0.036 \frac{L_m}{S_{-3}} = 0.036 \frac{80}{3.400} = 0.0024\Omega$$

Kablo 3 empedansının hesaplanması:

$$X_{kablo3} = 0.08.10^{-3}$$
. $L_{kablo3} = 0.08.10^{-3}$. $30 = 0.0024\Omega$
 $R_{kablo3} = 0.0225 \frac{L_m}{S_{mm^2}} = 0.0225 \frac{30}{35} = 0.0192\Omega$

A barası kısa devre akımı :

$$R_{A} = R_{net} + R_{kablo1} = 0.78 + 0.8 = 0.88\Omega$$

$$X_{A} = X_{net} + X_{kablo1} = 0.78 + 0.8 = 1.58\Omega$$

$$Z_{A} = \sqrt{R_{A}^{2} + X_{A}^{2}} = \sqrt{0.88^{2} + 1.58^{2}} = 1.8\Omega$$

$$I_{A} = \frac{U_{net}}{\sqrt{3}.Z_{A}} = \frac{20000}{\sqrt{3}.1.8} = 6422A$$

$$\frac{R_{A}}{X_{A}} = \frac{0.88}{1.58} = 0.55 > Grafik 1' den > K = 1.2$$

$$I_{AS} = K.\sqrt{2}.I_{K} = 1.2.\sqrt{2}.6422 = 10898A \approx 11kA$$

B barası kısa devre akımı:

Trafonun yüksek gerilim tarafı endüktif ve omik direncinin düşük gerilim tarafına dönüştürülmesi.

$$X_A^{l} = X_A \cdot \left(\frac{U_{LV}}{U_{HV}}\right)^2 = 1,58 \cdot \left(\frac{410}{20000}\right)^2 = 0,00066$$

$$\begin{split} R_A^{\ \ l} &= R_A. \left(\frac{U_{LV}}{U_{HV}}\right)^2 = 0.88. \left(\frac{410}{20000}\right)^2 = 0.00037 \\ R_B &= R_A^{\ \ l} + R_{trafoes deger} = 0.00037 + 0.00084 = 0.0012\Omega \\ X_B &= X_A^{\ \ l} + X_{trafoes deger} + X_{kompak} + X_{Bbara} = 0.00066 + 0.0042 + 0.00015 + 0.0015 = 0.0065\Omega \\ Z_B &= \sqrt{R_B^2 + X_B^2} = \sqrt{0.0012^2 + 0.0065^2} = 0.0066\Omega \\ I_B &= \frac{U_R}{\sqrt{3}.Z_B} = \frac{410}{\sqrt{3}.0.0066} = 35908\,A \\ \frac{R_B}{X_B} &= \frac{0.0012}{0.0065} = 0.18 > Grafik1' den > K = 1.58 \end{split}$$

$$\frac{R_B}{X_B} = \frac{0,0012}{0,0065} = 0,18 > Grafik \, 1' den > K = 1,58$$

$$I_{BS} = K.\sqrt{2}.I_K = 1,58.\sqrt{2}.35908 = 80234A \approx 80kA$$

C barası kısa devre akımı:

$$\begin{split} R_C &= R_B + R_{kablo2} = 0,0012 + 0,0024 = 0,0036\Omega \\ X_C &= X_B + X_{kompak} + X_{kablo2} = 0,0065 + 0,00015 + 0,012 = 0,0186\Omega \\ Z_C &= \sqrt{R_C^2 + X_C^2} = \sqrt{0,0036^2 + 0,0186^2} = 0,0189\Omega \\ I_C &= \frac{U_R}{\sqrt{3}.Z_C} = \frac{410}{\sqrt{3}.0,0189} = 12539\,A \\ \frac{R_C}{X_C} &= \frac{0,0036}{0,0186} = 0,19 > Grafik1'\,den > K = 1,55 \\ I_{CS} &= K.\sqrt{2}.I_K = 1,55.\sqrt{2}.12539 = 27485\,A \approx 28kA \end{split}$$

D noktası kısa devre akımı:

$$\begin{split} R_D &= R_C + R_{kablo3} = 0,0036 + 0,0192 = 0,0228\Omega \\ X_D &= X_C + X_{kompak} + X_{kablo3} = 0,0186 + 0,00015 + 0,0024 = 0,02115\Omega \\ Z_D &= \sqrt{R_D^2 + X_D^2} = \sqrt{0,0228^2 + 0,02115^2} = 0,031\Omega \\ I_D &= \frac{U_R}{\sqrt{3}.Z_D} = \frac{410}{\sqrt{3}.0,031} = 7636A \\ \frac{R_D}{X_D} &= \frac{0,0228}{0,02115} = 1,07 > Grafik1'den > K = 1,05 \\ I_{DS} &= K.\sqrt{2}.I_K = 1,05.\sqrt{2}.7636 = 11338A \approx 12kA \end{split}$$

EKLER

Kablonun dayanabileceği minimum kısa devre akımı:

$$I_{K \min} = \frac{0.8.U_r.k_{\text{sec}}.k_{par}}{1.5.\rho.\frac{2L}{S}}$$

I_{Kmin} = Minimum kısa devre akımı (A)

U_r: Şebeke gerilimi (V)

 ρ : Öz direnç (Ω mm²/m) - Bakır için = 0.018 - Alüminyum için = 0.027

L : Kablo uzunluğu (m) S : Kablo kesiti (mm²)

k_{sec}: 95 mm² den büyük kablolar için düzeltme katsayısı

k_{par} : Paralel bağlı iletkenler için düzeltme katsayısı

Paralel ilt. Say. 2 3 4 5 k_{par} 2 2,7 3 3,2

Örnek

Gerilimi : 400 V Akımı : 134 A

Kablo uzunluğu: 150 m

Kesit: 50 mm²

Kopmak şalter akımı : 160 A Manyetik kesme kapasitesi 10.ln

160 . 10 = 1600 A

Kesit 50 mm² < 95 mm² => k_{sec} = 1

Paralel kol yok \Rightarrow $k_{par} = 1$

$$I_{K \min} = \frac{0,8.400.1.1}{1,5.0,018. \frac{2.150}{50}} \approx 1980 A = 1,98 kA$$

1600 < 1980 olduğu için kablo kopmak şalter tarafından korunacaktır.

Tabloda 1600 A lik kesme akımı ve 50 mm² kesit için iletken uzunluğu 154 m bulunmaktadır. 1600 A de 154 m sorunsuzca döşenebilmektedir. 150 m bu uzunluğun altında olduğu için kablo kopmak şalter tarafından korunacaktır. Bu değer sınıra çok yakın gibi gözükse de 50 mm² kesitin bir üst değeri olan 70 mm² maliyeti arttıracağı için 50 mm² kesit gerilim düşümü açısından uygun olduğu müddetçe kısa devre açısından kullanılabilir.

Şalter								Kesit	mm ²								
Kesme	4.5	٥.			40	40	0.5			70	0.5	400	450	405	040	200	
Akımı [A] 20	1,5 370	2.5 617	4	6	10	16	25	35	50	70	95	120	150	185	240	300	
30	246	412	658														
40	185	309	494	741													
50	148	247	395	593													
60	123	206	329	494													
70	105	176	282	423	705												
80	92	154	246	370	617												
90	82	137	219	329	549												
100	74	123	197	296	494	790											
120	61	102	164	246	412	658											
140	52	88	141	211	353	564											
150	49	82	131	197	329	527											
160	46	77	123	185	309	494	772										
180	41	68	109	164	274	439	686										
200 220	37 33	61 56	98 89	148 134	247 224	395 359	617 561	786									
250	29	49	79	118	198	316	494	691									
280	26	44	70	105	176	282	441	617									
300	24	41	65	98	165	263	412	576									
320	23	38	61	92	154	247	386	540	772								
350	21	35	56	84	141	226	353	494	705								
380	19	32	52	78	130	208	325	455	650								
400	18	30	49	74	123	198	309	432	617								
420	17	29	47	70	118	188	294	412	588								
450	16	27	43	65	110	176	274	384	549	768							
480	15	25	41	61	103	165	257	360	514	720							(
500	14	24	39	59	99	158	247	346	494	691							Ш
520	14	23	38	57	95	152	237	332	475	665							k (
550	13	22	35	53.	90	144	224	314	449	629	000						Uzunluk
580 600	12 12	21 20	34 32	51 49	85 82	136 132	213 206	298 288	426 412	596 576	809 782						un
620	11	19	31	49	80	127	199	279	398	558	757						Uz
650	11	19	30	45	76	122	190	266	380	532	722						_
680	10	18	29	43	73	116	182	254	363	508	690						
700	10	17	28	42	71	113	176	247	353	494	670	847					
750		16	26	39	66	105	165	230	329	461	626	790	840				
800		15	24	37	62	99	154	216	309	432	586	667	787				
850		14	23	34	58	93	145	203	290	407	552	627	741				
900		13	21	32	55	88	137	192	274	384	521	593	700				
950		13	20	31	52	83	130	182	260	364	494	561	663				
1000		12	19	29	49	79	123	173	247	346	469	533	630	731			
1250			15	23	40	63	99	138	198	277	375	427	504	585	711		
1500			13	19	33	53	82	115	165	230	313	356	420	487	593	667	
1600			12	18	31	49	77 62	108	154	216	293	333	394	457	556	667	
2000 2500				14 11	25 20	40 32	62 49	86 69	123 99	173 138	235 188	267 213	315 252	365 292	444 356	533 427	
3000				11	16	26	49	58	82	115	156	178	210	292	296	356	
3200					15	25	39	54	77	108	147	167	197	228	278	333	
4000					12	20	31	43	62	86	117	133	157	183	222	267	
5000					10	16	25	35	49	69	94	107	126	146	178	213	
6300						13	20	27	39	55	74	85	100	116	141	169	
8000						10	15	22	31	43	59	67	79	91	111	133	
9600							13	18	26	36	49	56	66	76	93	111	
10000							12	17	25	35	47	53	63	73	89	107	
12000							10	14	21	29	39	44	52	61	74	89	
15000								12	16	23	31	36	42	49	59	71	
20000									12	17	23	27	31	37	44	53	
24000									10	14	20	22	26	30	37	44	
30000										12	16	20	25	30	40	49	

Kablolarda oluşacak ısı (Joule) kayıpları:

Üç fazlı hatlarda:

$$P_{J} = \frac{3.r.i^{2}.L}{1000}$$

Bir fazlı hatlarda:

$$P_J = \frac{2.r.i^2.L}{1000}$$

 $P_{\rm J}$: Kabloda oluşan kayıp (W) i : Kablodan geçen akım (A)

L : Kablo uzunluğu (m)

r : Kablo omik direnci – 80° de (Ω/km) * Tablodan

S	Tek dam	arlı kablo	Çok dam	arlı kablo
[mm2]	Cu	Al	Cu	ΑI
1.5	14.8	24.384	15.1	24.878
2.5	8.91	14.680	9.08	14.960
4	5.57	9.177	5.68	9.358
6	3.71	6.112	3.78	6.228
10	2.24	3.691	2.27	3.740
16	1.41	2.323	1.43	2.356
25	0.889	1.465	0.907	1.494
35	0.641	1.056	0.654	1.077
50	0.473	0.779	0.483	0.796
70	0.328	0.540	0.334	0.550
95	0.236	0.389	0.241	0.397
120	0.188	0.310	0.191	0.315
150	0.153	0.252	0.157	0.259
185	0.123	0.203	0.125	0.206
240	0.0943	0.155	0.0966	0.159
300	0.0761	0.125	0.078	0.129