Technicien Supérieur

en Mécanique et Automatisme Industriel

Cours

de

Consolidation

en

Mathématiques

« La rigueur vient toujours à bout de l'obstacle »

Léonard de Vinci

Conception des documents : Etienne Poulin

Etape 1. Trigonométrie

L'essentiel *1.1.*

ACTIVITE 1: Rappeler l'aire d'un disque et la circonférence d'un cercle de rayon r

ACTIVITE 2

- Tracer un cercle. Repérer les angles 90°, 180°, 360°.
- Si le rayon de ce cercle est de 1 Unité, sa circonférence mesure 2π .

On invente une nouvelle mesure des angles à partir de cette observation : le radian.

- 360° est égale à 2π radian.
- On peut ainsi compléter le tableau suivant :

Mesure en radian	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	2π
Mesure en degré	0_{\circ}	30°	45°	60°	90°	180°	360°

ACTIVITE 3

La Mesure principale d'un angle est comprise entre $-\pi;\pi$

Déterminer la mesure principale des angles suivants : $\alpha = \frac{34}{3}\pi$; $\beta = \frac{25.5}{2}\pi$; $\delta = -\frac{387\pi}{6}$

Définitions

Définition: On appelle cercle trigonométrique dans le plan muni d'un repère orthonormal (O, \vec{i}, \vec{j}) le cercle de centre O de rayon 1 pour lequel on choisit comme sens direct le sens inverse des aiguilles d'une montre.

<u>Définition</u>: M étant le point du cercle trigonométrique tel que $(\vec{OA}, \vec{OM}) = \alpha$:

- L'abscisse du point M est le cosinus du nombre α noté $\cos \alpha$.
- L'ordonnée du point M est le sinus du nombre α noté sin α .

$$\cos \alpha = O\overline{H}$$
 et $\sin \alpha = \overline{OK}$

Mesure algébrique « longueur orientée »

Propriété: Quel que soit le nombre réel x :

 $-1 \le \sin x \le 1$ $\cos^2 x + \sin^2 x = 1$ $-1 \le \cos x \le 1$

ACTIVITE 4

Placer un point M $(\cos \alpha; \sin \alpha)$ sur le cercle trigonométrique tel que :

 $\cos \alpha > 0$ $\sin \alpha < 0$

 $\cos \alpha < 0$

 $\cos \alpha < 0$ $\sin \alpha > 0$

ACTIVITE 5

Résoudre les équations suivantes et représenter les solutions par des points du cercle

trigonométrique:

a)
$$x = \frac{\pi}{4} + k \times 2\pi$$
 b) $2y = \pi + 2k\pi$

$$b) \ 2y = \pi + 2k\pi$$

$$c) 4t = \frac{2\pi}{3} + 2k\pi$$

Tableau de valeurs usuelles

Voici quelques valeurs remarquables

+ orer querques + wrears remainiques res						
Mesure en radian	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	
Mesure en degré	0°	30°	45°	60°	90°	
sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
tangente	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Pas d'image	

ACTIVITE 6

A l'aide d'un cercle trigonométrique, déterminons quelques propriétés :

• Réels opposés : a et -a.

$$\circ$$
 $\cos(-a) = \cos(a)$

$$\circ \sin(-a) = -\sin(a)$$

• Réels dont la somme est π . $\pi - a$ et a

$$\circ \cos(\pi - a) = -\cos(a)$$

$$\circ \sin(\pi - a) = \sin(a)$$

• Réels dont la différence est π : a et $\pi + a$

$$\circ$$
 $\cos(\pi + a) = -\cos(a)$

$$\circ \sin(\pi + a) = -\sin(a)$$

• Réels dont la somme est $\frac{\pi}{2}$

$$\circ \quad \cos\left(\frac{\pi}{2} - a\right) = \sin(a)$$

$$\circ \sin\left(\frac{\pi}{2} - a\right) = \cos(a)$$

Résolution des équations sinx=a et cosx=a

- Si $a \notin [-1;1]$, l'équation $\sin x = a$ n'a pas de solution
- Si $a \in [-1;1]$, il existe $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, unique, tel que $\sin \alpha = a$

L'équation $\sin x = \sin \alpha$ admet deux types de solution :

- (1) $x = \alpha + 2k\pi$
- (2) $x = \pi \alpha + 2k\pi$ avec k entier relatif quelconque

EN TOUT ETAT DE CAUSE, NE JAMAIS HESITER A DESSINER UN CERCLE TRIGONOMETRIQUE

- Si $a \notin [-1;1]$, l'équation $\cos x = a$ n'a pas de solution
- Si $a \in [-1;1]$, il existe $\alpha \in [0;\pi]$, unique, tel que $\cos \alpha = a$

L'équation $\cos x = \cos \alpha$ admet deux types de solution :

- (3) $x = \alpha + 2k\pi$
- (4) $x = -\alpha + 2k\pi$ avec k entier relatif quelconque

1.2. Exercices de l'étape 1

Exercice 1:

Déterminer la mesure principale $(-\pi,\pi)$ des angle suivants Et placer les sur un cercle trigonométrique

$$\alpha = \frac{43\pi}{6}$$
 mesure principale : $\beta = 27.5\pi$

$$\lambda = \frac{-5\pi}{3}$$

$$\delta = \frac{-21\pi}{4} \tag{3}$$

Résoudre les équations suivantes et représenter les solutions par des points du cercle trigonométrique

a)
$$4t = \frac{4\pi}{3} + k \cdot 2\pi \quad (k \in \mathbb{Z})$$

b)
$$2t = \frac{\pi}{2} - t + k \cdot 2\pi \quad (k \in \mathbb{Z})$$

Exercice 3:

a) Déterminer l'angle α tel que $\begin{cases} \cos \alpha = \frac{\sqrt{2}}{2} \\ \sin \alpha = \frac{-\sqrt{2}}{2} \end{cases}$. Le placer sur un cercle trigonométrique.

b) Déterminer l'angle β tel que $\begin{cases} \cos \beta = -\frac{1}{2} \\ \sin \beta = \frac{-\sqrt{3}}{2} \end{cases}$. Le placer sur un cercle trigonométrique.

c) Déterminer l'angle δ tel que $\begin{cases} \cos \delta = -\frac{\sqrt{3}}{\sqrt{12}} \\ \sin \delta = \frac{3}{\sqrt{12}} \end{cases}$. Le placer sur un cercle trigonométrique.

d) Déterminer l'angle φ tel que $\begin{cases} \cos \varphi = 0 \\ \sin \varphi = -1 \end{cases}$. Le placer sur un cercle trigonométrique.

e) Déterminer l'angle μ tel que $\begin{cases} \cos \mu = -\frac{4}{\sqrt{32}} \\ \sin \mu = \frac{3}{\sqrt{10}} \end{cases}$. Le placer sur un cercle trigonométrique.

Exercice 4 : Résoudre les équations suivantes

a)
$$\sin(3x) = \sin(2x + \frac{\pi}{6})$$
 b) $\cos t = \frac{\sqrt{3}}{2}$ c) $\sin(4t) = \frac{-\sqrt{2}}{2}$ d) $\cos(3x) = 0.5$

b)
$$\cos t = \frac{\sqrt{3}}{2}$$

$$c) \sin(4t) = \frac{-\sqrt{2}}{2}$$

$$d) \cos(3x) = 0.5$$

Etape 2. Nombre complexes z = 2+3i

sont des complexes

2.1. A Retenir

- L'ensemble des nombres complexes est noté \mathbb{C} . i est le nombre tel que $i^2 = -1$
- Un nombre complexe z s'écrit z = a + ib où a et b sont des nombres réels, a est appelé partie réelle, b partie imaginaire et
- Forme algébrique : z = a + ib

où a et b sont des nombres réels.

- **Module :** $|z| = \sqrt{a^2 + b^2}$
- **Argument:** $Arg(z) = \theta$ l'angle tel que $\cos \theta = \frac{a}{r}$ et $\sin \theta = \frac{b}{r}$

$$\overrightarrow{OM} = a\vec{u} + b\vec{v}$$

$$\overrightarrow{OM} = a\overrightarrow{u} + b\overrightarrow{v}$$
 $OM = r = |z| = \sqrt{a^2 + b^2}$

Abscisse de M: $a = \text{Re}(z) = r \cos \theta$ Ordonnée de $M: b = \text{Im}(z) = r \sin \theta$

- Forme trigonométrique : $z = r(\cos \theta + i \sin \theta)$ où r = |z| et $\theta = Arg(z)$
- **Forme exponentielle :** $z = re^{i\theta}$ où r = |z| et $\theta = Arg(z)$
- Module, Argument et conjugué, produit et quotient :

$$\overline{z+z'} = \overline{z} + \overline{z'} \qquad \overline{zz'} = \overline{z} \cdot \overline{z'} \qquad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

$$\left|\frac{1}{z}\right| = \frac{1}{|z|} \qquad |z \times z'| = |z| \times |z'| \qquad \left|\frac{z}{|z'|} = \frac{|z|}{|z'|}$$

$$\arg \frac{1}{z} = -\arg z + 2k\pi \qquad \arg(z \times z') = \arg(z) + \arg(z') + k2\pi$$

$$\arg \frac{z}{z'} = \arg z - \arg z' + 2k\pi \qquad \text{où } k \text{ est un entier relatif}$$

- **Formule de Moivre :** $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
- Formule d'Euler: $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$ et $\sin \theta = \frac{1}{2i} \left(e^{i\theta} e^{-i\theta} \right)$

• Equations du second degré à coefficients réels

L'équation $az^2 + bz + c = 0$ (avec a, b, c réels et $a \ne 0$) de discriminant $\Delta = b^2 - 4ac$ admet :

- Si $\Delta > 0$, deux solutions réelles $z_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$
- Si $\Delta = 0$ une solution réelle double : $z_1 = z_2 = \frac{-b}{2a}$
- Si $\Delta < 0$ deux solutions complexes conjuguées : $z_1 = \frac{-b i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$ Dans tous les cas, $az^2 + bz + c = a(z - z_1)(z - z_2)$.

• Rappelons les valeurs remarquables de sin et cos

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

2.2. Exercices de l'étape 2

Exercice 1:

- 1) Dans le plan complexe $(O; \vec{u}, \vec{v})$, placer les points A,B,C,D,E d'affixes respectives 1+i; -2; -2i; 5-4i; $-3-\frac{1}{2}i$.
- 2) Donner les coordonnées cartésiennes de A,B,C,D,E.
- 3) Déterminer l'affixe du point F(-3,7).

Exercice 2:

Mettre chacun des nombres complexes sous forme algébrique

a)
$$5i - (3 + 2i)$$

b)
$$2(5-i)+3(i-4)$$

b)
$$2(5-i)+3(i-4)$$
 c) $(-4+2i)^2$

d)
$$(5-11i)(2-i)$$

e)
$$(3+i)(3-i)$$

f)
$$(1+2i)^3$$

g)
$$\sqrt{2} + i - (\sqrt{2} + 3i)^{2}$$

h)
$$\overline{2-3i}$$

k)
$$(4+3i)(2-i)$$

1)
$$\frac{1}{2i-3}$$

m)
$$\frac{1}{2+3i}$$

n)
$$\frac{1-4i}{2+3i}$$

e)
$$(3+i)(3-i)$$
 f) $(1+2i)^3$ g) $\sqrt{2}+i-(\sqrt{2}+3i)^2$ h) $\overline{2-3i}$ k) $\overline{(4+3i)(2-i)}$ l) $\overline{2i-3}$ m) $\frac{1}{2+3i}$ n) $\frac{1-4i}{2+3i}$ o) $\frac{i(1-7i)}{(2+3i)^2}$

Exercice 3:

Résoudre les équations suivantes

a)
$$(2+i)z + 4 = 0$$

b)
$$\frac{z+i}{z-i} = 3$$

c)
$$5\overline{z} = 4 - i$$

a)
$$(2+i)z + 4 = 0$$
 b) $\frac{z+i}{z-i} = 5$ c) $5\overline{z} = 4-i$ d)
$$\begin{cases} 2z_1 - z_2 = 54\\ iz_1 + 3z_2 = 7i \end{cases}$$

Exercice 4:

Calculer le module et un argument des nombres complexes suivants, puis les écrire sous forme trigonométrique

a)
$$z_1 = -\sqrt{3} + z_1$$

b)
$$z_2 = -17$$

c)
$$z_3 = 5$$

a)
$$z_1 = -\sqrt{3} + i$$
 b) $z_2 = -17$ c) $z_3 = 5i$ d) $z_4 = -12i\sqrt{3} + 12$ e) $z_5 = -6\sqrt{3} + 6i$

e)
$$z_5 = -6\sqrt{3} + 6a$$

Exercice 5:

Soit
$$z_1 = \sqrt{3} + i$$

$$z_2 = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$

$$z_3 = -2 + 2i$$

- 1) Ecrire z_2 sous forme algébrique
- 2) Calculer: \overline{z}_3 , $z_1 + z_2$, $z_1 + z_3$, $z_1 \times z_2$, $z_1 \times z_3$, $\frac{z_1}{z_2}$, $\frac{z_1}{z_2}$.
- 3) Calculer: $|z_1|$, $|z_2|$, $|z_3|$, $|\bar{z}_3|$, $|z_1|$
- 4) Calculer $Arg(z_1)$, $Arg(z_2)$, $Arg(z_3)$, $Arg(\overline{z_3})$, $Arg(\overline{z_3})$
- 5) Ecrire sous forme trigonométrique : z_1 , z_3 .
- 6) Ecrire sous forme exponentielle : z_1 , z_2 , z_3 .

Déterminer les racines carrées dans C de : 25 ; 3 ; -2 ; -17 ; -36 ; 0.

Résoudre dans C chacune des équations suivantes :

a)
$$z^2 - 3z + 18 = 0$$

b)
$$z^2 + 9z - 4 = 0$$

a)
$$z^2 - 3z + 18 = 0$$
 b) $z^2 + 9z - 4 = 0$ c) $z^2 - (1 + \sqrt{3}z) + \sqrt{3} = 0$ d) $z^2 + 2z + 8 = 0$

d)
$$z^2 + 2z + 8 = 0$$

Etape 3. Dérivation

3.1. <u>L'essentiel</u>

- Le nombre dérivé f au point d'abscisse a est le coefficient directeur de la tangente à la courbe au point d'abscisse a. Il est noté f'(a).
- Equation d'une tangente au point d'abscisse a: y = f'(a)(x-a) + f(a)
- Approximation affine de f en a: $f(a+h) = f(a) + f'(a)h + h\varphi(h)$ avec $\lim_{h\to 0} \varphi(h) = 0$
- Dérivées de fonctions usuelles

Dérivées usuelles

f(x)	f'(x)	Intervalle I
k; k réel	0	IR
x	1	IR
mx+p	m	IR
x^2	2x	IR
x ⁿ , n entier naturel	nx^{n-1}	IR
1	1]-∞;0[ou]0;+∞[
$\frac{\overline{x}}{x}$	$-\frac{1}{x^2}$	3 2 3 2
1	n]-∞;0[ou]0;+∞[
\overline{x}^n	$-\frac{n}{x^{n+1}}$	3 2 3 2
\sqrt{x}	1]0;+∞[
	$\overline{2\sqrt{x}}$	
sin x	cos x	IR
cos x	- sin x	IR
$\cos(\omega t + \varphi)$	$-\omega\sin(\omega t+\varphi)$	IR
$\sin(\omega t + \varphi)$	$\omega\cos(\omega t + \varphi)$	IR
tan x	1 2 1	IR
	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	

Opération sur les fonctions dérivables

Fonction	Dérivée	Fonction composée
ku (k réel)	ku'	Si $g(t) = f(at+b)$ et si f est dérivable en $at+b$
		alors $g'(t) = af'(at + b)$
u+v	<i>u</i> '+ <i>v</i> '	
uv	u'v+uv'	
1	$-\frac{v'}{v^2}$	
$\frac{-}{v}$	$-\frac{1}{v^2}$	
и	u'v - uv'	
$\frac{}{v}$	${v^2}$	
u^n	$nu'u^{n-1}$	
$g \circ u$	$u'\times(g'\circ u)$	

3.2. Exercices de l'étape 3

Exercice 1 : Dériver les fonctions suivantes

a)
$$f(x) = 4x + 1$$

$$D_f = IR$$

b)
$$f(x) = 5x^2 - 3x + 2$$

$$D_f = IR$$

c)
$$f(x) = \frac{x^2}{3} + \frac{x}{4} - \frac{1}{8}$$

$$D_f = IR$$

d)
$$f(x) = \frac{1}{2}x^3 - \frac{1}{2}x^2 + 6x - 4$$

R d)
$$f'(x) = x^2 - x +$$

d)
$$f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 6x - 4$$

$$D_f = IR$$

e)
$$f(x) = 3x^4 + 5x^3 - 2x^2 - x + 1$$

f) $f(x) = (3x + 2)(-4x + 1)$

$$D_f = IR$$

g)
$$f(x) = (-3x + 2)^2$$

$$h) \quad f(x) = \frac{5}{x}$$

$$D_f =]0; +\infty[$$

i)
$$f(x) = x + \frac{1}{x}$$

$$D_f =]-\infty;0[$$

$$j) \quad f(x) = -\frac{3}{2}$$

$$D_f = [0; +\infty[$$

$$k) \quad f(x) = \frac{4}{x+1}$$

$$D_f =]-1;+\infty[$$

1)
$$f(x) = x^2 + 1 + \frac{4}{x+1}$$
 $D_f =]-1;+\infty[$

$$D_f =]-1;+\infty[$$

m)
$$f(x) = \frac{2x-5}{-x+3}$$

$$D_f = 3; +\infty$$

n)
$$f(x) = \frac{2x}{x^2 + 1}$$

$$D_f = IR$$

o)
$$g(t) = \sin 2t$$

$$D_f = IR$$

$$p) \quad g(t) = \sin\left(3t + \frac{\pi}{2}\right)$$

$$D_f = IR$$

q)
$$g(t) = \cos 3t$$

$$D_f = IR$$

$$r) \quad g(t) = \cos(-3t + \pi)$$

$$D_f = IR$$

s)
$$h(z) = (3z - 1)\sqrt{z}$$

$$D_f = [0; +\infty]$$

t)
$$h(t) = \left(\frac{3x-4}{x-1}\right)^3$$

$$D_f = 1; +\infty$$

u)
$$f(x) = \sqrt{x^2 + 5x + 7}$$

$$D_f = IR$$

v)
$$f(x) = \cos\left(\frac{\pi}{x}\right)$$

$$D_f =]0;+\infty[$$

Exercice 2:

Ecrire pour chaque fonction l'équation de la tangente au point d'abscisse

a)
$$f(x) = x^3 - 2x^2 + x + 1$$
, $a = -2$

b)
$$f(x) = \frac{2x-3}{x+4}$$
, $a=0.5$

Exercice 1:

a)
$$f'(x) = 4$$

b)
$$f'(x) = 10x - 3$$

c)
$$f'(x) = \frac{2x}{3} + \frac{1}{4}$$

d)
$$f'(x) = x^2 - x + 6$$

e)
$$f'(x) = 12x^3 + 15x^2 - 4x - 1$$

Réponses

f)
$$f'(x) = -24x - 5$$

g)
$$f'(x) = 18x - 12$$

h)
$$f'(x) = -\frac{5}{x^2}$$

i)
$$f'(x) = 1 - \frac{1}{x^2}$$

$$j) f'(x) = \frac{6}{x^3}$$

k)
$$f'(x) = -\frac{4}{(x+1)^2}$$

k)
$$f'(x) = 2x - \frac{4}{(x+1)^2}$$

m)
$$f'(x) = \frac{1}{(-x+3)^2}$$

n)
$$f'(x) = \frac{-2x^2 + 2}{(x^2 + 1)^2}$$

o)
$$g'(t) = 2\cos 2t$$

p)
$$g'(t) = 3\cos(3t + \frac{\pi}{2})$$

q)
$$g'(t) = -3\sin(3t)$$

r)
$$g'(t) = 3\sin(-3t + \pi)$$

s)
$$h'(z) = \frac{9z - 1}{2\sqrt{z}}$$

t)
$$h'(t) = 3\left(\frac{1}{(x-1)^2}\right)\left(\frac{3x-4}{x-1}\right)^2 = \frac{3(3x-4)^2}{(x-1)^3}$$

u)
$$f'(x) = \frac{2x+5}{2\sqrt{x^2+5x+7}}$$

v)
$$f'(x) = \frac{\pi}{x^2} \sin\left(\frac{\pi}{x}\right)$$

Exercice 2:

a) T a pour équation
$$y = 21x + 25$$

b) T a pour équation
$$y = \frac{44}{81}x - \frac{58}{81}$$

Etape 4. Limites de fonctions

4.1. L'essentiel

Notation et vocabulaire

 $\lim f(x) = L$ signifie: la limite de f(x) quand x tend vers a est L.

Limites à l'infini

•
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ $\lim_{x \to +\infty} \frac{1}{x^3} = 0$ $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$

$$\lim_{x \to +\infty} \frac{1}{r^2} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^3} = 0$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

Exemple:
$$\lim_{x \to +\infty} \left(2 + \frac{1}{x} \right) = 2$$
. $\lim_{x \to +\infty} \left(\frac{1}{x - a} \right) = 0$ $\lim_{x \to +\infty} \frac{1}{(x - a)^2} = \lim_{x \to -\infty} \frac{1}{(x - a)^2} = 0$

$$\lim_{x \to +\infty} \frac{1}{(x-a)^2} = \lim_{x \to -\infty} \frac{1}{(x-a)^2} = 0$$

$$\bullet \quad \lim_{x \to +\infty} x = +\infty$$

$$\prod_{x \to +\infty} x = -\frac{1}{2}$$

$$\lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\lim_{x \to -\infty} x = -\infty$$

$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to -\infty} x^3 = -\infty$$

•
$$\lim_{x \to +\infty} x = +\infty$$
 $\lim_{x \to +\infty} x^2 = +\infty$ $\lim_{x \to +\infty} x^3 = +\infty$
 $\lim_{x \to -\infty} x = -\infty$ $\lim_{x \to -\infty} x^2 = +\infty$ $\lim_{x \to -\infty} x^3 = -\infty$
Exemples: $\lim_{x \to +\infty} \sqrt{x} = +\infty$. $\lim_{x \to +\infty} (-3x^3) = -\infty$ $\lim_{x \to -\infty} (-3x^3) = +\infty$

$$\lim_{x \to +\infty} \left(-3x^3 \right) = -\infty$$

$$\lim_{x \to -\infty} \left(-3x^3 \right) = +\infty$$

• Limites en une valeur définie

Soit a un réel.

•
$$\lim_{\substack{x \to a \\ x < a}} \frac{1}{x - a} = -\infty$$
; $\lim_{\substack{x \to a \\ x > a}} \frac{1}{x - a} = +\infty$; $\lim_{\substack{x \to a \\ x > a}} \frac{1}{(x - a)^2} = +\infty$; $\lim_{\substack{x \to a \\ x > a}} \frac{1}{\sqrt{x - a}} = +\infty$

Opérations sur les limites

Les fonctions f et g ont le même ensemble de définition. a désigne un réel ou $+\infty$ ou $-\infty$ et l, l' sont des réels.

f a pour limite en a	l	l	l	+∞	+∞	-∞
g a pour limite en a	l'	+∞	-∞	+∞	- 8	-∞
f+g a pour limite en a	<i>l</i> + <i>l</i> '	+∞	-∞	+∞	FI	- ∞

f a pour limite en a	l	<i>l>0</i>	<i>l>0</i>	<i>l</i> <0	<i>l</i> <0	+∞	+∞	-∞	0
g a pour limite en a	l'	+∞	-∞	+∞	- 8	+∞	- 8	-∞	$+ \infty ou - \infty$
$f \times g$ a pour limite	ll'	+∞	- ∞	- ∞	+∞	+∞	- 8	+∞	FI
en a									

Exemples: Attention, aux formes indéterminées:

•
$$f(x) = \frac{1}{x^2}$$
; $g(x) = x^2$;

$$\lim_{x \to +\infty} f(x) = 0 \; ; \; \lim_{x \to +\infty} g(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) \times g(x) = 1$$

•
$$f(x) = \frac{1}{x^2}$$
; $g(x) = x^2$; $\lim_{x \to +\infty} f(x) = 0$; $\lim_{x \to +\infty} g(x) = +\infty$ $\lim_{x \to +\infty} f(x) \times g(x) = 1$
• $f(x) = \frac{1}{x}$; $g(x) = x^2$; $\lim_{x \to +\infty} f(x) = 0$; $\lim_{x \to +\infty} g(x) = +\infty$ $\lim_{x \to +\infty} f(x) \times g(x) = +\infty$

$$\lim_{x \to +\infty} f(x) = 0 \; ; \; \lim_{x \to +\infty} g(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) \times g(x) = +\infty$$

$$\bullet \quad f(x) = \frac{\cos x}{x} \; ; \; g(x) = x$$

•
$$f(x) = \frac{\cos x}{x}$$
; $g(x) = x$; $\lim_{x \to +\infty} f(x) = 0$; $\lim_{x \to +\infty} g(x) = +\infty$ $f \times g$ n'a pas de limite

$$f \times g$$
 n'a pas de limite

f a pour limite en a	l	l	+ 8	+∞	- 8	- 8	$+ \infty ou - \infty$
g a pour limite en a	l'≠0	$+\infty ou-\infty$	l'>0	l'<0	<i>l</i> '>0	l'<0	$+ \infty ou - \infty$
$\frac{f}{g}$ a pour limite en a	$\frac{l}{l'}$	0	+ 8	- &	- 8	+ 8	FI

f a pour limite en a	<i>l>0 ou +∞</i>	<i>l</i> <0 ou −∞	<i>l>0 ou +∞</i>	<i>l</i> <0 ou −∞	0
g a pour limite en a	0 en restant	0 en restant	0 en restant	0 en restant	0
	positif	positif	négatif	négatif	
$\frac{f}{g}$ a pour limite en a	+∞	- 8	-∞	+ &	FI

Méthodes:

• Etude d'une limite d'un polynôme

Pour étudier la limite en $+\infty$ ou $-\infty$ d'un polynôme, on met en facteur le terme de plus haut degré.

Exemple : étude de la limite en $+\infty$ de $f(x) = x^3 - 3x^2 + 2x + 1$

On sait que $\lim_{x \to +\infty} x^3 = +\infty$; $\lim_{x \to +\infty} -3x^2 = -\infty$; $\lim_{x \to +\infty} 2x = +\infty$ donc *FI*. On ne peut pas conclure

directement.

On réécrit
$$f: f(x) = x^3 \left(1 - \frac{3}{x} + \frac{2}{x^2} + \frac{1}{x^3}\right)$$
.

Or
$$\lim_{x \to +\infty} \frac{-3}{x} = 0$$
; $\lim_{x \to +\infty} \frac{2}{x^2} = 0$; $\lim_{x \to +\infty} \frac{1}{x^3} = 0$. Donc $\lim_{x \to +\infty} \left(1 - \frac{3}{x} + \frac{2}{x^2} + \frac{1}{x^3}\right) = 1$

D'autre part, $\lim_{x \to +\infty} x^3 = +\infty$ donc $\lim_{x \to +\infty} f(x) = +\infty$

• Etude d'une limite d'une fonction rationnelle

Pour étudier la limite en $+\infty$ ou $-\infty$ d'une fraction rationnelle, on factorise le numérateur et le dénominateur par leur terme de plus haut degré.

Exemple : étude de la limite en $+\infty$ et en 3 de $f(x) = \frac{x^2 + 2x}{x - 3}$ définie sur $[3; +\infty[$.

• En $+\infty$, $\lim_{x\to +\infty} x^2 + 2x = +\infty$ et $\lim_{x\to +\infty} x - 3 = +\infty$ donc **FI**. On ne peut pas conclure directement.

On réécrit
$$f(x) = \frac{x^2 \left(1 + \frac{2}{x}\right)}{x \left(1 - \frac{3}{x}\right)} = \frac{x \left(1 + \frac{2}{x}\right)}{\left(1 - \frac{3}{x}\right)}.$$

Or
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x}\right) = 1$$
; $\lim_{x \to +\infty} \left(1 - \frac{3}{x}\right) = 1$; $\lim_{x \to +\infty} x = +\infty$. Donc $\lim_{x \to +\infty} f(x) = +\infty$

• En 3, avec x>3

$$\lim_{x \to 3} x^2 + 2x = 15 \text{ et } \lim_{x \to 3} x - 3 = 0,$$

Or
$$x-3>0$$
 sur l'intervalle, donc $\lim_{\substack{x\to 3\\x>3}} x-3=0^+$. Donc $\lim_{\substack{x\to +\infty\\x>3}} f(x)=+\infty$

• Limite de la composée de deux fonctions

Soient a, b, c des réels ou $+\infty$ ou $-\infty$, et f et g deux fonctions.

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} g(x) = c$, alors $\lim_{x \to a} (g \circ f)(x) = c$

Exemple : étude de la limite en $+\infty$ de $h(x) = \cos\left(\frac{1}{x}\right)$.

On pose
$$f(x) = \frac{1}{x}$$
. $g(X) = \cos X$. $h(x) = (g \circ f)(x)$

Or
$$\lim_{x \to +\infty} f(x) = 0$$
; $\lim_{X \to 0} g(X) = 1$ donc $\lim_{x \to +\infty} (g \circ f)(x) = 1$

• Conséquences graphiques : Les asymptotes

$$\lim_{x \to X_0} f(x) = +\infty \text{ ou } -\infty$$

La droite d'équation $x=x_0$ est la **droite asymptote à la courbe**.

Le signe de la limite infinie détermine la position de la courbe

$$\lim_{\substack{x \to +\infty \\ ou - \infty}} f(x) = l \text{ avec } l \in IR$$

La droite d'équation y=l est la

droite asymptote à la courbe.

Le signe de f(x)-l détermine la position de la courbe

$$\lim_{\substack{x \to +\infty \\ ou - \infty}} [f(x) - (ax + b)] = 0$$

La droite d'équation y=ax+b est la

droite asymptote à la courbe.

Le signe de f(x)-(ax+b) détermine la position de la courbe

4.2. <u>Exercices de l'étape 4</u>

Exercice 1:

Déterminer les limites de f aux bornes de l'intervalle d'étude I.

1)
$$f(x) = 4x^3 + 5x^2 - 1$$
 $I = \mathbb{R}$

2)
$$f(x) = -x^4 + 3x + 1$$
 $I = \mathbb{R}$

3)
$$f(x) = \frac{2}{x-1}$$
 $I =]-\infty;1[\cup]1;+\infty[$

4)
$$f(x) = \frac{-x+1}{x+3}$$
 $I =]-\infty;-3[$

5)
$$f(x) = \frac{-3x^2 + x + 2}{x^2 - x - 2}$$
 $I =]2; +\infty[$

6)
$$f(x) = \frac{2x^2 - 3x + 1}{x - 1}$$
 $I =]-\infty; 1[\cup]1; +\infty[$

7)
$$f(x) = 2x - 3 + \frac{4}{2 - x}$$
 $I =]-\infty; -2[$

8)
$$f(x) = -2x^2 + x - \frac{1}{x}$$
 $I =]0; +\infty[$

Exercice 2:

Soit f définie par $f(x) = \frac{4x^3 - 3x}{(2x - 1)^2}$ sur $D = \left] \frac{1}{2}; +\infty \right[$ et \mathscr{C} sa courbe représentative dans le plan muni du repère orthonormal $(O; \vec{i}; \vec{j})$.

- 1) Vérifier que pour tout x de D, $f(x) = x+1-\frac{1}{(2x-1)^2}$
- 2) Déterminer $\lim_{x \to \frac{1}{2}} f(x)$ et $\lim_{x \to +\infty} f(x)$.

Que déduit-on graphiquement de la première limite ?

3) Déduire de 1) l'équation de l'asymptote oblique \mathcal{D} à la courbe \mathcal{C} , puis étudier la position relative de la courbe par rapport à cette asymptote.

Exercice 3:

Soit f une fonction définie par $f(t) = \frac{t^3 - 4t^2 + 8t - 4}{(t-1)^2}$. On appelle \mathscr{C} sa courbe représentative

dans un repère orthonormal

- 1) Déterminer l'ensemble de définition de f.
- 2) Etudier la limite de f en 2. En déduire l'existence d'une asymptote $\mathscr V$ dont on donnera une équation.
- 3) Déterminer les limites de f en $+\infty$ et en $-\infty$.

Déterminer a, b, c, et d pour que $f(t) = at + b + \frac{ct + d}{(t-1)^2}$. En déduire l'existence d'une

asymptote oblique Adont on précisera l'équation et sa position par rapport à la courbe.

Etape 5. Etude d'une fonction

5.1. L'essentiel

Sens de variation

Si pour tout réel x de I	Alors
f'(x)=0	f est constante sur I
f'(x)>0	f est strictement croissante sur I
f'(x) < 0	f est strictement décroissante sur I

• Extremum

Si f est dérivable sur l'intervalle I et admet un maximum local (ou un minimum local) en un point a distinct des extrémités de I, alors f'(a)=0.

Etude et Représentation graphique d'une fonction

Pour Etudier une fonction et construire sa représentation graphique, on procède généralement de la manière suivante:

Etude des variations :

- Des points ou des droites particuliers
- Quelques points obtenus à l'aide d'une calculatrice

Exemple : Etudier et représenter sur [-5;5] $f(x) = \frac{2x^3}{3} + x^2 - 12x + 1$

Théorème des valeurs intermédiaires :

Si f est une fonction continue sur sur [a, b], alors pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k.

Théorème « de bijection » Si f est une fonction dérivable et strictement monotone sur [a, b], alors pour tout élément λ compris entre f(a) et f(b), l'équation $f(x) = \lambda$ admet une solution unique dans [a, b].

5.2. Exercices de l'étape 5

Exercice 1:

f est la fonction définie sur IR par : $f(x) = x^4 - 6x^2 - 8x$

- a) Etudier la limite de f en $-\infty$ et $+\infty$
- b) Déterminer la donction dérivée de f et démontrer que $f'(x) = 4(x-2)(x+1)^2$
- c) Etudier le signe de f'(x). En déduire dans un tableau les variations de f.

Exercice 2:

Etudier la fonction f définie sur IR par $f(x) = x^3 + 2x^2 - 3$

Exercice 3:

Etudier la fonction f définie sur IR par $f(x) = \frac{2x}{x^2 + 3}$

Exercice 4:

Etudier la fonction f définie sur]0;+ ∞ [par $f(x) = \frac{x}{\sqrt{3}} + \frac{\sqrt{3}}{x}$

Exercice 5:

F est la fonction définie sur IR – {1} par : $f(x) = \frac{ax^2 + bx}{2(x-1)^2}$.

Déterminer les réels a et b pour que la fonction f admette un extremum égal à 2 en x=2.

Exercice 6:

1) Etudier la fonction f définie sur \mathbb{R} par $f(x) = x^3 + x + 1$

Démontrer que l'équation f(x) = 0 admet une unique solution dans l'intervalle]-1,0[. Donner un encadrement d'amplitude 10^{-3} de cette solution.

Exercice 6:

Soit f une fonction définie par $f(t) = \frac{t^3 - 4t^2 + 8t - 4}{(t-1)^2}$. On appelle \mathscr{C} sa courbe représentative

dans un repère orthonormal d'unité 1 cm. On étudiera f sur I=[-3;6], mais on s'intéressera aussi au comportement de f en $+\infty$ et en $-\infty$.

- 1) Sur I, Déterminer l'ensemble de définition de f.
- 2) Etudier la limite de f en 2. En déduire l'existence d'une asymptote $\mathcal V$ dont on donnera une équation.
- 3) Déterminer les limites de f en $+\infty$ et en $-\infty$.

Déterminer a, b, c, et d pour que $f(t) = at + b + \frac{ct + d}{(t-1)^2}$. En déduire l'existence d'une

asymptote oblique \mathcal{A} dont on précisera l'équation et sa position par rapport à la courbe.

- 4) Calculer f'(t). On démontrera que $f'(t) = \frac{t^2(t-3)}{(t-1)^3}$.
- 5) Etudier le signe de f'. En déduire les variations de f sur I.
- 6) Déterminer le point d'intersection J de \mathscr{C} et \mathscr{A} . O, admettra que les coordonnées de J sont : $\left(\frac{1}{3}; \frac{-47}{12}\right)$ Déterminer l'équation de la tangente à \mathscr{C} en ce point.

Tracer A, Vet Esur I.

Etape 6. La fonction exponentielle

6.1. <u>L'essentiel</u>

• Notation:
$$\exp(x) = e^x$$

• Pour tout nombre réel x, $e^x > 0$

$$\bullet \quad e^0 = 1 \qquad \qquad e^1 = e$$

•
$$e^{a+b} = e^a \times e^b$$
 $e^{-a} = \frac{1}{e^a}$ $e^{a-b} = \frac{e^a}{e^b}$ $(e^a)^n = e^{na}$

• Dérivée:
$$(e^x)' = e^x$$
 $(e^{u(x)})' = u'(x) \times e^{u(x)}$ $[(e^u)' = u' \times e^u]$

• Limites:
$$\lim_{x \to -\infty} e^x = 0$$
 $\lim_{x \to +\infty} e^x = +\infty$

• Variations et courbe représentative

х	-∞	+∞
$\left(e^{x}\right)'=e^{x}$	+	
e^x	0	* 8

• Théorèmes admis :
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \qquad \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \qquad n > 0$$
$$\lim_{x \to -\infty} xe^x = 0 \qquad \lim_{x \to -\infty} x^n e^x = 0$$

$$\lim_{x \to +\infty} e^{-x} = 0 \qquad \left(e^{-x}\right)' = -e^{-x}$$

Exercices de l'étape 6 *6.2.*

Exercice 1:

•
$$\lim_{x \to -\infty} -1 + e^x$$
 $\lim_{x \to +\infty} -1 + e^x$

•
$$\lim_{x \to -\infty} 3 + e^{-t}$$
 $\lim_{x \to +\infty} 3 + e^{-t}$

•
$$\lim_{x \to -\infty} e^{-2t}$$
 $\lim_{x \to +\infty} e^{-2t}$

•
$$\lim_{x \to +\infty} x^2 + 2 - e^x$$
 $\lim_{x \to +\infty} \frac{2e^x - x}{x^2}$ $\lim_{x \to +\infty} \frac{e^x}{\sqrt{x}}$

$$\bullet \quad \lim_{x \to -\infty} xe^{3x-4} \qquad \lim_{x \to -\infty} xe^{3x-4}$$

Exercice 2:

Déterminer les dérivées de la fonction f sur l'ensemble donné où elle est définie dérivable.

a)
$$f(x) = x + e^x$$
 $D_f = \mathbb{R}$

$$D_f = \mathbb{R}$$

b)
$$f(t) = e^{0.2t}$$

$$D_f = \mathbb{R}$$

b)
$$f(x) = 2x - e^{-3x}$$
 $D_f = \mathbb{R}$

d)
$$f(x) = e^{3x+5}$$

$$\mathbf{D}_{f} = \mathbf{R}$$

e)
$$f(x) = x^2 e^x$$

$$\mathbf{D}_f = \mathbf{R}$$

e)
$$f(x) = x^2 e^x$$
 $D_f = \mathbb{R}$ f) $f(x) = \frac{x}{e^x}$ $D_f = \mathbb{R}$

$$\mathbf{D}_f = \mathbf{R}$$

g)
$$f(x) = 2$$

$$D_c - \mathbb{R}$$

h)
$$f(x) = (3x - 2)e^x$$

g)
$$f(x) = 2^{x}$$
 $D_{f} = \mathbb{R}$ h) $f(x) = (3x - 2)e^{x}$ $D_{f} = \mathbb{R}$ i) $f(x) = \frac{2e^{x}}{e^{x} - 1}$ $D_{f} = \mathbb{R}$ j) $f(x) = e^{\frac{1}{x}}$ $D_{f} = \mathbb{R}^{*}$

$$\mathbf{D}_f = \mathbf{R}$$

$$j) f(x) = e^{\frac{1}{x}}$$

$$\mathbf{D}_f = \mathbf{R}^*$$

$$k) f(x) = e^{\sqrt{x}}$$

$$D_f =]0;+\infty|$$

k)
$$f(x) = e^{\sqrt{x}}$$
 $D_f =]0; +\infty[$ l) $f(x) = e^{\frac{3x+1}{x-1}}$ $D_f =]1; +\infty[$

$$D_f = 1;+\infty$$

Exercice 3:

Etudier la fonction f sur \mathbb{R} définie par $f(x) = x + e^x$

Exercice 4:

Etudier la fonction f sur \mathbb{R} définie par $f(x) = 3000e^{-\frac{\pi}{200}}$

Exercice 5:

Etudier la fonction f sur \mathbb{R} définie par $f(x) = e^{-x^2}$

Exercice 6:

Etudier la fonction f sur \mathbb{R} définie par $f(x) = e^{x^2 + x}$

Exercice 7:

Etudier la fonction f sur \mathbb{R} définie par $f(x) = x - \frac{1}{2} + e^{-x}$

Etape 7. La Fonction logarithme

7.1. L'essentiel.

- La fonction <u>logarithme népérien</u> $f(x) = \ln x$ est la primitive de $x \mapsto \frac{1}{x}$ sur $]0;+\infty[$ qui prend la valeur 0 pour x=1.
- Dérivée : $(\ln x)' = \frac{1}{x}$ $(\ln u(x))' = \frac{u'(x)}{u(x)}$ $\left[(\ln u)' = \frac{u'}{u} \right]$
- $\ln 1 = 0$ $\ln e = 1$ $\ln e^n = 1$
- Pour tout x de $]1;+\infty[$, $\ln x > 0$ Pour tout x de]0;1[, $\ln x < 0$
- Relations fonctionnelles $\ln ab = \ln a + \ln b \qquad \qquad \ln \frac{1}{a} = -\ln a$ $\ln \frac{a}{b} = \ln a \ln b \qquad \qquad \ln \sqrt{a} = \frac{1}{2} \ln a$
- Equivalences

 $\ln a = \ln b \text{ ssi } a = b.$ $\ln a \le \ln b \text{ ssi } a \le b$ $\ln a \ge \ln b \text{ ssi } a \ge b$

• Limites

$$\lim_{x \to 0} \ln x = -\infty \qquad \qquad \lim_{x \to +\infty} \ln x = +\infty \qquad \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

• Variation – Courbe représentative.

X	0 +∞
$\ln'(x) = \frac{1}{x}$	+
$\ln x$	+∞

- logarithme népérien & exponentielle : Fonctions réciproques
- Pour tout nombre réel x, $\ln e^x = x$
- Pour tout nombre réel de $]0;+\infty[$, $e^{\ln x} = x$
- la fonction exponentielle est la fonction qui à tout nombre réel x associe le nombre strictement positif unique y tel que $x = \ln y$.
- Pour tout nombre réel x et tout nombre réel strictement positif y, $y = e^x$ ssi $x = \ln y$

Les courbes représentatives des fonctions exp et ln se déduisent l'une de l'autre par la symétrie orthogonale d'axe la droite d'équation y = x.

X	-3	-2	-1
f(x)			
$\boldsymbol{\mathcal{X}}$	0	1	2
f(x)			

Remarque :

La courbe exponentielle admet pour asymptote l'axe des abscisses, ce qui est l'interprétation de $\lim_{x \to -\infty} e^x = 0.$

7.2. Exercices de l'étape 7

Exercice 1 : Simplifier

a)
$$\ln e^{-1}$$

b)
$$\ln e^2$$

c)
$$\ln \sqrt{e}$$

a)
$$\ln e^{-1}$$
 b) $\ln e^{2}$ c) $\ln \sqrt{e}$ d) $\ln \frac{1}{\sqrt{e}}$ e) e^{0} f) $e^{\ln 2}$ g) $e^{-\ln 3}$ h) $e^{2\ln 2}$ i) $\ln e^{2t}$ j) $e^{1+\ln 2}$

e)
$$e^0$$

f)
$$e^{\ln 2}$$

g)
$$e^{-\ln 3}$$

h)
$$e^{2 \ln 2}$$

i)
$$\ln e^{2t}$$

$$i)e^{1+\ln 2}$$

Exercice 2 : Résoudre après avoir déterminé leur ensemble de définition les équations et inéquations suivantes :

a)
$$\ln x = \ln 3$$

b)
$$\ln x = 2 \ln x$$

c)
$$\ln x = 0$$

e)
$$\ln x = 4$$

f)
$$\ln x \le \ln 2$$

g)
$$\ln x \le 0$$

h)
$$\ln x \le 2 \ln 3$$

i)
$$\ln x \le 2$$

i)
$$\ln(x+3) + \ln(x+5) = \ln x$$

k)
$$\ln x - \ln(x - 5) = \ln 3$$

a)
$$\ln x = \ln 3$$
 b) $\ln x = 2 \ln 3$ c) $\ln x = 0$ d) $\ln x = 1$ e) $\ln x = 4$ f) $\ln x \le \ln 2$ g) $\ln x \le 0$ h) $\ln x \le 2 \ln 3$ i) $\ln x \le 2$ j) $\ln(x+3) + \ln(x+5) = \ln 15$. k) $\ln x - \ln(x-5) = \ln 3$ l) $\frac{1}{2} \ln(x+1) = \ln 5$

m)
$$\ln(x+3) < 0$$

m)
$$\ln(x+3) < 0$$
 n) $\ln(2x) > \ln(x+1)$ o) $e^x = 4$ p) $e^x + 2 = 0$ q) $(1,2)^x = 2$

o)
$$e^{x} = 4$$

p)
$$e^x + 2 = 0$$

q)
$$(1,2)^x = 2$$

r)
$$(1,06)^t = 2$$
 s) $e^x \ge 3$ t) $e^t \ge -1$ u) $e^{2x} \ge 5$ v) $e^{-3x} \ge 1$

s)
$$e^x \ge 3$$

t)
$$e^t \ge -1$$

$$u) e^{2x} \ge 3$$

$$v)e^{-3x} \ge$$

Exercice 3

Calculer la dérivée première de chaque fonction suivante, après avoir précisé l'ensemble de définition.

1)
$$f(x) = 3 \ln x + x$$

$$D_f =]0; +\infty[$$

2)
$$f(x) = (2x-1)\ln(x+2)$$
 $D_f =$

$$\mathbf{D}_{f} =$$

$$3) f(x) = \ln\left(\frac{3x+2}{x+1}\right)$$

$$\mathbf{D}_{f} =$$

$$4) f(x) = \ln(x^3)$$

$$\mathbf{D}_f =$$

5)
$$f(x) = \ln(\sqrt{1-2x})$$

$$\mathbf{D}_f =$$

$$6) f(x) = \ln(\ln(x))$$

$$\mathbf{D}_{f} =$$

Exercice 4

Déterminer les limites suivantes :

$$1) \lim_{x \to 0^+} x \ln x^2$$

$$2) \lim_{x \to 0^+} \frac{\ln x}{x^2}$$

3)
$$\lim_{x \to +\infty} \left(3x^2 - \ln x\right)$$

4)
$$\lim_{x \to +\infty} (2 \ln x - x)$$

1)
$$\lim_{x \to 0^{+}} x \ln x^{2}$$
 2) $\lim_{x \to 0^{+}} \frac{\ln x}{x^{2}}$
4) $\lim_{x \to +\infty} (2 \ln x - x)$ 5) $\lim_{x \to +\infty} (2x^{2} \ln x - 5x^{2})$

6)
$$\lim_{x \to 0^+} (2x^2 \ln x - 5x^2)$$

7)
$$\lim_{x \to +\infty} \ln(x^2 + x + 1)$$
 8) $\lim_{x \to -\infty} \ln(x^2 + x + 1)$

8)
$$\lim_{x \to \infty} \ln(x^2 + x + 1)$$

9)
$$\lim_{x \to +\infty} \ln \left(1 + \frac{1}{x} \right)$$

Exercice 5:

Etudier la fonction f sur $[0;+\infty[$ définie par $f(x) = (\ln x)^2 - \ln x$

Exercice 6:

Etudier la fonction f sur $]0;+\infty[$ définie par $f(x)=x-1+\frac{1}{2}\ln x$

Exercice 7:

Etudier la fonction f sur]-3;3[définie par $f(x) = \ln \frac{3+x}{3-x}$

Etape 8. Croissance comparée des fonctions

• Fonction exponentielle de base *a* (fonctions puissances)

Pour tout nombre *a*>0

$$a^x = e^{x \ln a}$$

Pour tous nombres strictement positifs a et a', pour tous nombres réels b, c: $a^b > 0$

$$a^{b+c} = a^b \times a^c$$

$$a^{-b} = \frac{1}{a^b}$$

$$a^{b-c} = \frac{a^b}{a^c}$$

$$\left(a^{b}\right)^{c} = a^{bc}$$

$$(aa')^b = a^b \times a'^b$$

$$\left(\frac{1}{a}\right)^b = \frac{1}{a^b}$$

$$\left(\frac{a}{a'}\right)^b = \frac{a^b}{a'^b}$$

$$\ln a^b = b \ln a$$

• Sens de variation – courbe représentative de $f(x) = a^x$

Soit a un nombre réel strictement positif, fixé.

a > 1

 $y = e^{\alpha x}$ $y = a^{x}$ \vec{i}

Remarque: En posant $\ln a = \alpha$, les deux conditions deviennent

$$\alpha < 0$$

$$\alpha > 0$$

On observe alors graphiquement le comportement de $e^{\alpha x}$ en $+\infty$ et en $-\infty$:

Si
$$\alpha > 0$$
, alors $\lim_{x \to -\infty} e^{\alpha x} = 0$ et $\lim_{x \to +\infty} e^{\alpha x} = +\infty$

et
$$\lim_{x \to +\infty} e^{\alpha x} = +\infty$$

Si
$$\alpha < 0$$
, alors $\lim_{x \to -\infty} e^{\alpha x} = +\infty$ et $\lim_{x \to +\infty} e^{\alpha x} = 0$

$$\lim_{x \to +\infty} e^{\alpha x} = 0$$

Fonctions. $x \mapsto \sqrt[n]{x}$ avec *n* entier naturel non nul.

Définition :

• Soit *n* un nombre entier naturel non nul.

La fonction racine $n^{\text{ième}}$ est la fonction qui à tout nombre x de $[0;+\infty[$ associe le nombre unique y de $[0;+\infty[$ tel que $y^n = x$.

La fonction est définie par : $f: x \mapsto = \sqrt[n]{x}$

• Pour tout nombre entier naturel non nul n, pour tous nombres x et y de $[0;+\infty[$, $\sqrt[n]{x}=x^{\frac{1}{n}}$ $y = x^{\frac{1}{n}} = \sqrt[n]{x}$ si et seulement si $y^n = x$

<u>Croissance comparée des fonctions</u> $x \mapsto \exp x$, $x \mapsto x^n$ <u>et</u> $x \mapsto \ln x$ <u>en</u> $+\infty$

Etape 9. Primitives

9.1. <u>L'essentiel</u>

- Une fonction F définie sur I est **une primitive** de *f* sur I lorsqu'elle est dérivable sur I et que F' = *f*.
- Toute fonction dérivable sur un intervalle I admet des primitives sur I.
- Les primitives de f sont les fonctions définies sur I par $x \mapsto F(x) + C$ où C est une constante réelle.

• Primitives des fonctions usuelles

f(x)	F(x)	Intervalle de validité
а	ax+C	IR
x	$\frac{1}{2}x^2 + C$	IR
x^n n nombre entier positif ou négatif différent de -1 .	$\frac{1}{n+1}x^{n+1} + C$	IR si $n>0$ $]-\infty;0[\text{ ou }]0;+\infty[\text{ si }n \le 0$ et $n \ne -1$
$\frac{1}{x^2}$	$-\frac{1}{x}+C$]-∞;0[ou]0;+∞[
$\frac{1}{x}$	$\ln x + C$]0;+∞[
e^x	$e^x + C$	IR
$\frac{1}{\sqrt{x}}$	$\frac{e^x + C}{2\sqrt{x} + C}$]0;+∞[
sin x	$-\cos x + C$	IR
$\cos x$	$\sin x + C$	IR
$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\tan x + C$	IR

• Primitives d'une fonction composée

f(x)	F(x)	Intervalle de validité
$f(x) = u(x)^{n} \cdot u'(x)$ $avec \ n \neq -1$	$F(x) = \frac{\left[u(x)\right]^{n+1}}{n+1} + C$	I
$f(x) = \frac{u'(x)}{u(x)^n}$ $avec \ n \neq 1$	$F(x) = -\frac{1}{n-1} \times \frac{1}{[u(x)]^{n-1}} + C$	$I (u(x) \neq 0 \text{ sur I})$
$f = \frac{u'}{u^2}$	$F = -\frac{1}{u} + C$	$I (u(x) \neq 0 \text{ sur I})$
$f = \frac{u'}{\sqrt{u}}$	$F = 2\sqrt{u} + C$	I (u(x) > 0 sur I)
$f = \frac{u'}{u}$	$F = \ln u + C$ $F = \ln u + C$	$I \longrightarrow Si \ u(x) > 0 \ sur \ I$
$f = u'e^u$	$F = e^u + C$	I (u(x) > 0 sur I)
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+C$	I
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+C$	I

9.2. <u>Exercices associés à l'étape 9</u>

Exercice 1 : déterminer les primitives des fonctions suivantes

a)
$$f(x) = -4x^3 + 2x^2 - 6x - 5$$

$$D=\mathbb{R}$$

b)
$$f(x) = -\frac{5}{x^3}$$

c)
$$f(x) = \frac{5}{\sqrt{x}}$$

d)
$$f(x) = 2x^2(x^3 + 1)$$

e)
$$f(x) = \frac{6x}{(3x^2 - 1)^2}$$

$$D = \left] \frac{\sqrt{3}}{3}; +\infty \right[$$

f)
$$f(x) = \frac{4x-5}{\sqrt{2x^2-5x}}$$

$$D = \left] \frac{5}{2}; +\infty \right[$$

g)
$$f(x) = 2\sin x - \cos x$$

$$f(x) = -3\sin\left(2x + \frac{\pi}{5}\right)$$

$$i) f(x) = \frac{2}{x}$$

j)
$$f(x) = 2x - 1 - \frac{2}{x}$$

$$k) f(x) = \frac{3}{x+2}$$

$$1) \ f(x) = \frac{1}{2x+2}$$

$$D=\left]-1;+\infty\right[$$

$$m) f(x) = \frac{1}{x} \ln x$$

n)
$$f(x) = x + e^x$$

$$D=\mathbb{R}$$

o)
$$f(t) = 3e^{3t+1}$$

$$D=\mathbb{R}$$

p)
$$f(x) = 2x^3 - e^{-3x}$$

$$D=\mathbb{R}$$

q)
$$f(t) = e^{3t+5}$$

Etape 10. Calcul intégral

10.1. L'essentiel.

• Soient f une fonction continue sur un intervalle I, F une primitive de f sur I, a et b deux éléments de I.

On appelle <u>intégrale</u> de $a \grave{a} b de f$ le nombre réel : $\int_a^b f(t)dt = [F(x)]_a^b = F(b) - F(a)$

- Si $g(x) = \int_a^x f(t)dt$, alors g'(x) = f(x)
- Interprétation graphique de l'intégrale dans le cas d'une fonction de signe constant
 - O Soit f une fonction <u>continue et positive sur un intervalle</u> [a, b]. L'aire \mathscr{A} de la partie du plan constituée de l'ensemble des points M de coordonnées x et y telles que $a \le x \le b$ et $0 \le y \le f(x)$ est : $\mathscr{A} = \int_a^b f(x) dx$

Remarque

L'aire $\mathscr A$ considérée dans ce théorème est exprimée en *unités d'aire*. Dans un repère orthonormal $\left(O,\vec{i}\,,\vec{j}\right)$ l'unité

d'aire est l'aire du carré défini par les vecteurs unitaires OI et OJ du repère. Si sur l'axe des abscisses et sur l'axe des ordonnées l'unité choisie est 1 cm, alors l'unité d'aire est 1 cm², si l'unité choisie sur chaque axe de coordonnée est 2 cm, alors l'unité d'aire est 4 cm².

- O Soit f une fonction <u>continue et négative sur un intervalle</u> [a, b]. L'aire \mathcal{A} de la partie du plan constituée de l'ensemble des points M de coordonnées x et y telles que $a \le x \le b$ et $f(x) \le y \le 0$ est : $\mathcal{A} = -\int_a^b f(x)dx$
- <u>Premières propriétés :</u> $\int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt \qquad \int_{a}^{a} f(t)dt = 0$
- Relation de Chasles: $\int_{a}^{c} f(t)dt = \int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt$
- <u>Linéarité</u>: $\int_a^b (f(t) + g(t))dt = \int_a^b f(t)dt + \int_a^b g(t)dt$ $\int_a^b (\alpha f(t))dt = \alpha \int_a^b f(t)dt$
- <u>Valeur moyenne de f sur [a;b]:</u> $\frac{1}{(b-a)} \int_a^b f(t)$

• Techniques de calcul- exemples

Utilisation du tableau de primitive

Calculer

$$F = \int_0^2 (2t^2 - t + 4) dt$$

Linéarisation de polynômes trigonométriques

Soit f la fonction définie sur \mathbb{R} par : $f(t) = \cos t \cos 2t$

- 1) Linéariser à l'aide des formules d'Euler
- 2) Calculer la valeur exacte, puis une valeur approchée à 10^{-3} près, de l'intégrale : $I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} f(t) dt$

Réécriture d'une fonction

On se propose de calculer l'intégrale $J = \int_0^1 \frac{2x^2 + x + 1}{x + 3} dx$

1) Déterminer trois constantes réelles a, b, c telles que , pour tout x de [0;1],

$$\frac{2x^2 + x + 1}{x + 3} = ax + b + \frac{c}{x + 3}$$

2) Après avoir justifié que la fonction $x \mapsto \frac{2x^2 + x + 1}{x + 3}$ est continue sur [0;1], calculer la valeur exacte de l'intégrale J.

Cas particuliers

• Sif paire
$$\int_{-a}^{a} f(t)dt = 2 \int_{0}^{a} f(t)dt$$

• Sifimpaire
$$\int_{-a}^{a} f(t)dt = 0$$

• Si f périodique de période T
$$\int_{a}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt$$

Exercices associés à l'étape 10 *10.2.*

Exercice 1 : Calculer les intégrales suivantes

a)
$$f(x) = -4x^3 + 2x^2 - 6x - 5$$

$$D=\mathbb{R}$$

$$I = \int_{-2}^{3} f(x) dx$$

b)
$$f(x) = -\frac{5}{x^3}$$

$$I = \int_{0}^{3} f(x)dx$$

c)
$$f(x) = \frac{5}{\sqrt{x}}$$

$$I = \int_{2}^{5} f(x) dx$$

d)
$$f(x) = 2x^2(x^3 + 1)$$

$$I = \int_{1}^{2.5} f(x) dx$$

e)
$$f(x) = \frac{6x}{(3x^2 - 1)^2}$$

$$D = \left] \frac{\sqrt{3}}{3}; +\infty \right[$$

$$D = \int \frac{\sqrt{3}}{3}; +\infty \left[I = \int_{0,75}^{2} f(x) dx \right]$$

f)
$$f(x) = \frac{4x-5}{\sqrt{2x^2-5x}}$$

$$D= \left] \frac{5}{2}; +\infty \right[$$

$$I = \int_{3}^{5} f(x) dx$$

g)
$$f(x) = 2\sin x - \cos x$$

$$I = \int_{-\frac{\pi}{5}}^{\frac{\pi}{3}} f(x) dx$$

$$f(x) = -3\sin\left(2x + \frac{\pi}{5}\right)$$

$$I = \int_{-\frac{\pi}{5}}^{\frac{\pi}{3}} f(x)dx$$
$$I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{5}} f(x)dx$$

Exercice 2:

On considère la fonction définie sur \mathbb{R} par $f(x) = (x^2 + 2x + 2)e^{-x}$ dans un repère $(0; \vec{i}, \vec{j})$ d'unité 2 cm. On note C la courbe représentative de f.

- 1) Etudier la fonction f.
- 2) Déterminer les réels a, b, c tels que la fonction F définie par $F(x) = (ax^2 + bx + c)e^{-x}$ soit une primitive de la fonction f sur \mathbb{R} .
- 3) α est un réel positif. Calculer en cm² l'aire notée $A(\alpha)$ du domaine délimité par l'axe des abscisses, la courbe C et les droites d'équation respectives x = 0 et $x = \alpha$.