

Test report No. : 12729321M-A-R1
Page : 1 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

RADIO TEST REPORT

Test Report No.: 12729321M-A-R1

Applicant : MIWA LOCK CO., LTD.

Type of Equipment : BLE board

Model No. : V2HT

FCC ID : VBU-V2HT

Test regulation : FCC Part 15 Subpart C: 2019

Test Result : Complied (Refer to SECTION 3.2)

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Kashima EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.
- 10. This report is a revised version of 12729321M-A. 12729321M-A is replaced with this report.

Date of test:	February 19 - March 12, 2019	_	
Representative test operator:	K. ando		
Approved by :	Kazuhiro Ando Engineer Consumer Technology Division Tomoyuki Yamashita Leader Consumer Technology Division	Iac-MRA	JAB Testing RTL02610
	which "Non-accreditation" is displayed is outsid ting item of "Non-accreditation"	e the accreditation scopes	in UL Japan.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 2 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

REVISION HISTORY

Original Test Report No.: 12729321M-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12729321M-A	April 3, 2019	-	-
1	12729321M-A-R1	June 17, 2019	P.1, 5	Updated FCC version
1	12729321M-A-R1	June 17, 2019	P.10	Addition of explanatory note for tilt
1	12729321M-A-R1	June 17, 2019	P.11	Correction of test volume (1 GHz - 10 GHz) from 3.0 m to 2.0 m
1	12729321M-A-R1	June 17, 2019	P.19, 30	Correction of calculating formula
1	12729321M-A-R1	June 17, 2019	P.21-26	Correction of test place from No.6 to No.10
1	12729321M-A-R1	June 17, 2019	P.31	Correction of test equipment's last calibration date and calibration due date (LIMS ID:143456)

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No.
Page
Issued date
FCC ID

: 12729321M-A-R1 : 3 of 35 : June 17, 2019 : VBU-V2HT

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5:** Conducted Emission......9 **SECTION 6: SECTION 7:** APPENDIX 1: Test data ________13 Conducted Emission 13 6 dB Bandwidth and 99 % Occupied Bandwidth......16 Maximum Peak Output Power 18 Power Density 30 **APPENDIX 2: APPENDIX 3:** Radiated Spurious Emission 33

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

 Test report No.
 : 12729321M-A-R1

 Page
 : 4 of 35

 Issued date
 : June 17, 2019

 FCC ID
 : VBU-V2HT

SECTION 1: Customer information

Company Name : MIWA LOCK CO., LTD.

Address : 3-1-12 Shiba, Minato-ku, Tokyo, 105-8510 JAPAN

Telephone Number : +81-3-4330-3069 Facsimile Number : +81-3-3455-2437 Contact Person : Keiji Iwata

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No., FCC ID on the cover and other relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (E.U.T.)
- SECTION 4: Operation of E.U.T. during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : BLE board Model No. : V2HT

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 3.15 - 3.6 V Receipt Date of Sample : February 22, 2019

(Information from test lab.)

Country of Mass-production : JAPAN

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: V2HT (referred to as the EUT in this report) is a BLE board.

Radio Specification

[Bluetooth Low Energy]

Equipment Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Type of Modulation : GFSK
Antenna Type : PCB Antenna
Antenna Gain : 2.25 dBi
Clock frequency (Maximum) : 64 MHz

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 5 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on June 4, 2019 and effective July 5, 2019 except

15.258

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	QP 37.6 dB, 0.47206 MHz, L (BT LE 2402 MHz)	Complied	-
	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	AV 30.5 dB, 0.40958 MHz, N (BT LE 2480 MHz)	a)	
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)		Complied b)	Conducted
	IC: -	IC: RSS-247 5.2(a)		0)	
Maximum Peak	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)	See data.		Conducted
Output Power	IC: RSS-Gen 6.12	IC: RSS-247 5.4(d)		(c)	
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied	Conducted
,	IC: -	IC: RSS-247 5.2(b)		d)	
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	-4.3 dB		Conducted
	IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	7206.00 MHz, AV, Hori. (BT LE 2402 MHz)	Complied# e), f)	(below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Conducted Emission)
- b) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)
- c) Refer to APPENDIX 1 (data of Maximum Peak Output Power)
- d) Refer to APPENDIX 1 (data of Power Density)
- e) Refer to APPENDIX 1 (data of Conducted Spurious Emission)
- f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203/212.

UL Japan, Inc.

Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*} The revision on June 4, 2019, does not affect the test specification applied to the EUT.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 12729321M-A-R1
Page : 6 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks		
99% Occupied	RSS-Gen 6.7	IC: -	N/A	-	Conducted		
Bandwidth				a)			
Note: UL Japan, Inc	Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.						
a) Refer to APPEND	IX 1 (data of 6 dB Bandwidth and	99 % Occupied Bandwidt	ih)				
Symbols:							
Complied The data of this test item has enough margin, more than the measurement uncertainty.							
Complied#	The data of this test item meets				ideration.		

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Conducted emission

Frequency range	Required Uncertainty (+/-)	Uncertainty (+/-)
0.15 MHz to 30 MHz	3.4 dB	3.2dB

Radiated emission

Measurement distance	Frequency range	Required Uncertainty (+/-)	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	Not Defined	3.0 dB
	30 MHz to 200 MHz	6.3 dB	5.2 dB
	200 MHz to 1000 MHz	0.5 dB	6.2 dB
	1 GHz to 6 GHz	5.2 dB	4.7 dB
	6 GHz to 18 GHz	5.5 dB	5.1 dB
	18 GHz to 40 GHz	Not Defined	5.4 dB
1 m	1 GHz to 18 GHz	Not Defined	5.2 dB
	18 GHz to 40 GHz	THOU Defined	5.5 dB

Antenna Terminal test

Test Item	Required Uncertainty (+/-)	Uncertainty (+/-)
6 dB Bandwidth / 99 % Occupied Bandwidth	Not Defined	1.6 %
Maximum Peak Output Power	0.75 dB	0.74 dB
Average Output Power	0.73 dB	0.74 dB
Burst Rate	Not Defined	0.012 %
Power Density	4 dB	2.2 dB
Conducted Spurious Emission (9 kHz to 30 MHz)	4 dB	2.2 dB

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 7 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

3.5 Test Location

UL Japan, Inc. Kashima EMC Lab.

1614 Mushihata, Katori-shi, Chiba-ken, 289-0341 JAPAN Telephone: +81 478 88 6500, Facsimile: +81 478 82 3373

JAB Accreditation No.:RTL02610 / FCC Test Firm Registration Number: 910230

Test site	ISED Assigned Code	Width x Depth x Height (m)	Size of reference ground plane (m) /	Maximum measurement distance
No.1 Open site	4659A-1	6.0 x 5.5 x 2.5	20 x 40	10 m
No.5 Open site	4659A-5	8.6 x 7.1 x 2.4	18 x 23	10 m
No.1 Shielded room	4659A-1	5.4 x 4.5 x 2.3	-	-
No.3 Shielded room	-	5.4 x 3.6 x 2.3	-	-
No.4 Shielded Room	-	6.1 x 6.1 x 3.1	-	-
No.5 Shielded Room	4659A-5	4.2 x 3.1 x 2.5	-	-
No.3 Fully Anechoic Chamber	-	7.0 x 3.5 x 3.5	-	-
No.6 Semi-anechoic Chamber	4659A-6	8.5 x 5.5 x 5.2	-	3 m
No.10 Semi-anechoic Chamber	4659A-10	18.4 x 9.9 x 7.7	-	10 m
No.11 Semi-anechoic Chamber	4659A-7	9.0 x 6.5 x 5.2	-	3 m
No.1 Measurement room	-	5.0 x 3.7 x 2.6	-	-
No.2 Measurement room	-	4.3 x 4.4 x 2.7	-	-
No.3 Measurement room	-	4.5 x 5.3 x 2.7	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 8 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

Mode	Frequency	Remarks*
Bluetooth Low Energy (BT LE)	2402 MHz, 2440 MHz, 2480 MHz	PRBS9

*Power of the EUT was set by the software as follows;

- Power Setting: Fixed

- Software: DTM Tool for BTS04 (DLE) ver.:0.0.8.1

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Test Item	Operating Mode	Tested frequency
Spurious Emission	Tx BT LE	2402 MHz
6dB Bandwidth		2440 MHz
Maximum Peak Output Power		2480 MHz
Power Density		
99% Occupied Bandwidth		

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

Deser	escription of Le 1 and Support equipment							
No.	Item	Model number	Serial number	Manufacturer	Remarks			
A	BLE board	V2HT	F02 *1) HT4 *2)	MIWA LOCK CO.,LTD.	EUT			
В	Control board	-	-	MIWA LOCK CO.,LTD.	-			
С	DC Power Supply	GSV3000	60646742	DIAMOND ANTENNA	_			

^{*1)} Used for Antenna Terminal conducted test

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.16	Unshielded	Unshielded	-
2	DC Cable	0.6 + 1.2	Unshielded	Unshielded	
3	AC Cable	1.7	Unshielded	Unshielded	

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*2)} Used for Conducted Emission test and Radiated Emission test

Test report No. : 12729321M-A-R1
Page : 9 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a wooden table of nominal size, 1.0 m by 2.0 m, raised 0.8 m above the conducting ground plane. The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX
Test result : Pass

Figure 1: Test Setup

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 10 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 1 GHz	Above 1 GHz
Antenna Type	Hybrid	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

estricted band of I			(10).	
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

^{*1)} Average Power Measurement was performed based on ANSI C63.10-2013.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

: 12729321M-A-R1 Test report No. Page : 11 of 35 **Issued date** : June 17, 2019 FCC ID : VBU-V2HT

Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz - 10 GHz

r = 0.02 m

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz - 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Distance Factor: $20 \times \log (3.98 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 3.98 m

(Test Volume has been calibrated based on CISPR 16-1-4.)

*Test Distance: 1 m

Test Volume: 2.0 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise. The test results and limit are rounded off to one decimal place, so some differences might be observed.

: 30 MHz - 26.5 GHz Measurement range

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 12 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 160 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	10 kHz	30 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

Test report No. : 12729321M-A-R1
Page : 13 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

APPENDIX 1: Test data

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Kashima EMC Lab. No.1 Shielded Room Date: 2019/03/12

Mode : Tx BLE 2402MHz Order No. : 12729321M Power : DC 3.3V Temp./Humi. : 21deg.C. / 41%RH

Remarks : -

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV

Tested by : Kazuhiro Ando

		Doo	ding		Res	ulto	Lin	a it	Mar	rain l		İ
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Pha se	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15679	16.0	10.3	10.2	26.2	20.5	65.6	55.6	39.4	35.1	N	
2	0.23207	10.4	6.5	10.2	20.6	16.7	62.4	52.4	41.8	35.7	N	
3	0.37785	8.6	6.6	10.2	18.8	16.8	58.3	48.3	39.5	31.5	N	
4	0.48551	6.8	2.1	10.3	17.1	12.4	56.2	46.2	39.1	33.8	N	
5	0.62982	4.1	1.0	10.3	14.4	11.3	56.0	46.0	41.6	34.7	N	
6	1.76351	5.4	2.0	10.4	15.8	12.4	56.0	46.0	40.2	33.6	N	
7	0.15670	16.2	10.5	10.2	26.4	20.7	65.6	55.6	39.2	34.9	L	
8	0.23472	10.3	6.3	10.2	20.5	16.5	62.3	52.3	41.8	35.8	L	
9	0.37811	7.6	6.2	10.2	17.8	16.4	58.3	48.3	40.5	31.9	L	
10	0.47206	8.6	3.0	10.3	18.9	13.3	56.5	46.5	37.6	33.2	L	
11	0.62979	4.0	1.0	10.3	14.3	11.3	56.0	46.0	41.7	34.7	L	
12	1.73457	5.8	1.7	10.4	16.2	12.1	56.0	46.0	39.8	33.9	L	
1 1												
\Box												

 $\label{eq:calculation:Result [dBuV] = Reading [dBuV] + C.Fac (LISN+Cable) [dB] \\ LISN:CLS-03$

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

: 12729321M-A-R1 Test report No. : 14 of 35 Page **Issued date** : June 17, 2019 FCC ID : VBU-V2HT

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Kashima EMC Lab. No.1 Shielded Room Date: 2019/03/12

: Tx BLE 2440MHz : 12729321M : DC 3.3V : 21deg.C. / 41%RH Mode Order No. Power Temp./Humi.

Remarks

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV

Tested by : Kazuhiro Ando

- 1	i	Doo	ding	i	Doc	ults	Lin	nit I	Mar	rain 1		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Pha se	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15706	15.6	9.6	10.2	25.8	19.8	65.6	55.6	39.8	35.8	N	
2	0.23351	11.2	7.3	10.2	21.4	17.5	62.3	52.3	40.9	34.8	N	
3	0.37799	7.3	6.0	10.2	17.5	16.2	58.3	48.3	40.8	32.1	N	
4	0.47274	7.5	2.9	10.3	17.8	13.2	56.5	46.5	38.7	33.3	N	
5	0.63002	4.3	1.1	10.3	14.6	11.4	56.0	46.0	41.4	34.6		
6	1.76242	5.4	1.8	10.4	15.8	12.2	56.0	46.0	40.2	33.8	N	
7	0.15556	15.4	9.3	10.2	25.6	19.5	65.7	55.7	40.1	36.2		
8	0.23332	11.2	7.2	10.2	21.4	17.4	62.3	52.3	40.9	34.9		
9	0.37811	7.4	6.0	10.2	17.6	16.2	58.3	48.3	40.7	32.1	L	
10	0.47266	7.7	2.6	10.3	18.0	12.9	56.5	46.5	38.5	33.6		
11	0.63005	4.3	1.1	10.3	14.6	11.4	56.0	46.0	41.4	34.6		
12	1.73457	5.8	1.7	10.4	16.2	12.1	56.0	46.0	39.8	33.9	L	
	-											
	-											
-												
	ł											
	ł											
1	ŀ											
1	ł						-	-				
1												
1	1	-										
	1											
1	1	-					-					

 ${\tt Calculation: Result [dBuV] = Reading [dBuV] + C.Fac (LISN + Cable) \ [dB] } \\ {\tt LISN: CLS-03}$

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

: 12729321M-A-R1 Test report No. : 15 of 35 Page **Issued date** : June 17, 2019 FCC ID : VBU-V2HT

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Kashima EMC Lab. No.1 Shielded Room Date: 2019/03/12

: Tx BLE 2480MHz : 12729321M : DC 3.3V : 21deg.C. / 41%RH Mode Order No. Power Temp./Humi.

Remarks

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV

Tested by : Kazuhiro Ando

	-	Rea	ding	0.5	Res	ults	Lir	nit	Mar	gin		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Pha se	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15595	16.0	10.1	10.2	26.2	20.3	65.7	55.7	39.5	35.4	N	
2	0.23321	10.8	6.9	10.2	21.0	17.1	62.3	52.3	41.3	35.2	N	
3	0.37802	7.6	6.1	10.2	17.8	16.3	58.3	48.3	40.5	32.0	N	
4	0.40958	8.8	6.9	10.3	19.1	17.2	57.7	47.7	38.6	30.5	N	
5	0.63003	4.1	0.7	10.3	14.4	11.0	56.0	46.0	41.6	35.0		
6	1.76415	7.0	3.4	10.4	17.4	13.8	56.0	46.0	38.6	32.2	N	
7	0.15642	15.8	10.0	10.2	26.0	20.2	65.7	55.7	39.7	35.5	L	
8	0.23311	10.8	7.0	10.2	21.0	17.2	62.3	52.3	41.3	35.1	L	
9	0.31495	4.0	1.2	10.2	14.2	11.4	59.8	49.8	45.6	38.4	L	
10	0.40975	8.9	6.8	10.3	19.2	17.1	57.7	47.7	38.5	30.6	L	
11	0.63006	4.0	0.8	10.3	14.3	11.1	56.0	46.0	41.7	34.9	L	
12	1.76419	6.8	3.3	10.4	17.2	13.7	56.0	46.0	38.8	32.3	L	

 ${\tt Calculation: Result [dBuV] = Reading [dBuV] + C.Fac (LISN + Cable) \ [dB] } \\ {\tt LISN: CLS-03}$

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 16 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

6 dB Bandwidth and 99 % Occupied Bandwidth

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date February 19, 2019
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Kazuhiro Ando
Mode Tx BT LE

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
BT LE	2402	1052.3	0.714	> 0.5000
	2440	1053.8	0.713	> 0.5000
	2480	1057.6	0.723	> 0.5000

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 17 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

6 dB Bandwidth and 99 % Occupied Bandwidth

6 dB Bandwidth

99 % Occupied Bandwidth

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1 : 18 of 35 Page **Issued date** : June 17, 2019 FCC ID : VBU-V2HT

Maximum Peak Output Power

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

February 19, 2019 Date Temperature / Humidity 22 deg. C / 40 % RH Engineer Kazuhiro Ando Tx BT LE Mode

					Con	ducted Po	ower		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Re	sult	Li	mit	Margin	Antenna	Res	sult	Liı	mit	Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2402	-10.90	1.66	10.04	0.80	1.20	30.00	1000	29.20	2.25	3.05	2.02	36.02	4000	32.97	
2440	-12.02	1.67	10.05	-0.30	0.93	30.00	1000	30.30	2.25	1.95	1.57	36.02	4000	34.07	
2480	-13.29	1.68	10.05	-1.56	0.70	30.00	1000	31.56	2.25	0.69	1.17	36.02	4000	35.33	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 19 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

Average Output Power (Reference data for RF Exposure)

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date February 19, 2019
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Kazuhiro Ando
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst pov	ver average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	<u> </u>		[dBm]	[mW]
2402	-13.40	1.66	10.04	-1.70	0.68	1.96	0.26	1.06
2440	-14.66	1.67	10.05	-2.94	0.51	1.96	-0.98	0.80
2480	-16.10	1.68	10.05	-4.37 0.37		1.96	-2.41	0.57

Sample Calculation:

 $Result \ (Time \ average) = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Attenuator \ Loss \ Result \ (Burst \ power \ average) = Time \ average + Duty \ factor$

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

 Test report No.
 : 12729321M-A-R1

 Page
 : 20 of 35

 Issued date
 : June 17, 2019

 FCC ID
 : VBU-V2HT

Burst rate confirmation

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date February 19, 2019
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Kazuhiro Ando
Mode Tx BT LE

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 21 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

Radiated Spurious Emission

Report No. 12729321M-A-R1 Test place Kashima EMC Lab.

Semi Anechoic Chamber No.6

 Date
 March 12, 2019
 March 9, 2019
 March 11, 2019

 Temperature / Humidity
 21 deg. C / 44 % RH
 20 deg. C / 45 % RH
 22 deg. C / 40 % RH

 Engineer
 Kazuhiro Ando
 Hiromitsu Tanabe
 Kazuhiro Ando

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx BT LE 2402 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	32.000	QP	22.10	12.70	3.90	32.50	0.00	6.20	40.00	33.8	100	0	
Hori.	64.000	QP	22.40	12.70	4.30	32.50	0.00	6.90	40.00	33.1	100	0	
Hori.	96.000	QP	22.20	8.40	4.70	32.50	0.00	2.80	43.50	40.7	100	0	
Hori.	2390.000	PK	50.00	27.60	13.90	44.50	2.50	49.50	73.90	24.4	175	0	
Hori.	4804.000	PK	58.60	32.70	6.00	46.10	2.50	53.70	73.90	20.2	131	334	
Hori.	7206.000	PK	52.80	37.20	7.30	44.70	2.50	55.10	73.90	18.8	128	294	
Hori.	9608.000	PK	45.80	38.10	8.30	42.60	2.50	52.10	73.90	21.8	150	0	Floor noise
Vert.	32.000	QP	22.10	12.70	3.90	32.50	0.00	6.20	40.00	33.8	100	0	
Vert.	64.000	QP	27.80	12.70	4.30	32.50	0.00	12.30	40.00	27.7	100	0	
Vert.	96.000	QP	22.20	8.40	4.70	32.50	0.00	2.80	43.50	40.7	100	0	
Vert.	2390.000	PK	50.50	27.60	13.90	44.50	2.50	50.00	73.90	23.9	150	350	
Vert.	4804.000	PK	56.30	32.70	6.00	46.10	2.50	51.40	73.90	22.5	257	285	
Vert.	7206.000	PK	53.30	37.20	7.30	44.70	2.50	55.60	73.90	18.3	146	171	
Vert.	9608.000	PK	46.60	38.10	8.30	42.60	2.50	52.90	73.90	21.0	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : $1 \text{ GHz} - 10 \text{ GHz} : 20 \log (3.98 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$ $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	AV	40.00	27.60	13.90	44.50	1.96	2.50	41.46	53.90	12.4	*1)
Hori.	4804.000	AV	49.60	32.70	6.00	46.10	1.96	2.50	46.66	53.90	7.2	
Hori.	7206.000	AV	45.30	37.20	7.30	44.70	1.96	2.50	49.56	53.90	4.3	
Hori.	9608.000	AV	36.70	38.10	8.30	42.60	1.96	2.50	44.96	53.90	8.9	Floor noise
Vert.	2390.000	AV	39.00	27.60	13.90	44.50	1.96	2.50	40.46	53.90	13.4	*1)
Vert.	4804.000	AV	49.10	32.70	6.00	46.10	1.96	2.50	46.16	53.90	7.7	
Vert.	7206.000	AV	43.50	37.20	7.30	44.70	1.96	2.50	47.76	53.90	6.1	
Vert.	9608.000	AV	35.30	38.10	8.30	42.60	1.96	2.50	43.56	53.90	10.3	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 10 GHz : $20log\left(3.98~m\,/\,3.0~m\right)\!=\,2.5~dB$

 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

20 dBc Data Sheet (RBW 100 kHz, VBW 300 kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.000	PK	99.90	27.60	14.00	44.50	2.50	99.50	-	-	Carrier
Hori.	2400.000	PK	52.00	27.60	14.00	44.50	2.50	51.60	79.50	27.9	
Vert.	2402.000	PK	99.90	27.60	14.00	44.50	2.50	99.50	-	-	Carrier
Vert.	2400.000	PK	50.70	27.60	14.00	44.50	2.50	50.30	79.50	29.2	

 $Result = Reading + Ant. Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18 \ GHz)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) + Distance \ factor \ (Cable + (Attenuator \ or \ Filter)) - Gain (Amprifier) - Gain (Amp$

Distance factor : 1 GHz - 10 GHz : 20log(3.98 m/3.0 m) = 2.5 dB10 GHz - 40 GHz : <math>20log(1.0 m/3.0 m) = -9.5 dB

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 22 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12729321M-A-R1 Test place Kashima EMC Lab.

Semi Anechoic Chamber No.6

Date March 9, 2019
Temperature / Humidity 20 deg. C / 45 % RH
Engineer Hiromitsu Tanabe

 $\begin{array}{cc} \text{(1 GHz - 10 GHz)} \\ \text{Mode} & \text{Tx BT LE 2402 MHz} \end{array}$

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 23 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

Radiated Spurious Emission

Report No. 12729321M-A-R1 Test place Kashima EMC Lab.

Semi Anechoic Chamber No.6

 Date
 March 12, 2019
 March 9, 2019
 March 11, 2019

 Temperature / Humidity
 21 deg. C / 44 % RH
 20 deg. C / 45 % RH
 22 deg. C / 40 % RH

 Engineer
 Kazuhiro Ando
 Hiromitsu Tanabe
 Kazuhiro Ando

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx BT LE 2440 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

		(1 11. 1 cuit,		Zi . Quasi-i cak	,								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	32.000	QP	22.10	12.70	3.90	32.50	0.00	6.20	40.00	33.8	100	0	
Hori.	64.000	QP	22.40	12.70	4.30	32.50	0.00	6.90	40.00	33.1	100	0	
Hori.	96.000	QP	22.10	8.40	4.70	32.50	0.00	2.70	43.50	40.8	100	0	
Hori.	4880.000	PK	55.00	32.70	6.00	46.10	2.50	50.10	73.90	23.8	123	329	
Hori.	7320.000	PK	51.30	37.40	7.30	44.50	2.50	54.00	73.90	19.9	161	55	
Hori.	9760.000	PK	47.00	38.10	8.30	42.50	2.50	53.40	73.90	20.5	150	0	Floor noise
Vert.	32.000	QP	22.10	12.70	3.90	32.50	0.00	6.20	40.00	33.8	100	0	
Vert.	64.000	QP	27.90	12.70	4.30	32.50	0.00	12.40	40.00	27.6	100	0	
Vert.	96.000	QP	22.30	8.40	4.70	32.50	0.00	2.90	43.50	40.6	100	0	
Vert.	4880.000	PK	54.70	32.70	6.00	46.10	2.50	49.80	73.90	24.1	148	300	
Vert.	7320.000	PK	52.20	37.40	7.30	44.50	2.50	54.90	73.90	19.0	124	144	
Vert.	9760.000	PK	46.80	38.10	8.30	42.50	2.50	53.20	73.90	20.7	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : 20log (3.98 m / 3.0 m) = 2.5 dB10 GHz - 40 GHz : <math>20log (1.0 m / 3.0 m) = -9.5 dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4880.000	AV	44.30	32.70	6.00	46.10	1.96	2.50	41.36	53.90	12.5	
Hori.	7320.000	AV	41.70	37.40	7.30	44.50	1.96	2.50	46.36	53.90	7.5	
Hori.	9760.000	AV	35.30	38.10	8.30	42.50	1.96	2.50	43.66	53.90	10.2	Floor noise
Vert.	4880.000	AV	44.30	32.70	6.00	46.10	1.96	2.50	41.36	53.90	12.5	
Vert.	7320.000	AV	37.50	37.40	7.30	44.50	1.96	2.50	42.16	53.90	11.7	
Vert.	9760.000	AV	35.10	38.10	8.30	42.50	1.96	2.50	43.46	53.90	10.4	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor: 1 GHz - 10 GHz: 20log (3.98 m / 3.0 m) = 2.5 dB

 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 24 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

Radiated Spurious Emission

Report No. 12729321M-A-R1 Test place Kashima EMC Lab.

Semi Anechoic Chamber No.6

 Date
 March 12, 2019
 March 9, 2019
 March 11, 2019

 Temperature / Humidity
 21 deg. C / 44 % RH
 20 deg. C / 45 % RH
 22 deg. C / 40 % RH

 Engineer
 Kazuhiro Ando
 Hiromitsu Tanabe
 Kazuhiro Ando

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx BT LE 2480 MHz

(* PK: Peak, AV: Average, QP: Quasi-Peak)

			0 / 4	(1 . Quasi r can	<u></u>								
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Distance	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	Factor [dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	32.000	QP	22.00	12.70	3.90	32.50	0.00	6.10	40.00	33.9	100	0	
Hori.	64.000	QP	22.40	12.70	4.30	32.50	0.00	6.90	40.00	33.1	100	0	
Hori.	96.000	QP	22.00	8.40	4.70	32.50	0.00	2.60	43.50	40.9	100	0	
Hori.	2483.500	PK	60.00	27.90	14.00	44.50	2.50	59.90	73.90	14.0	178	7	
Hori.	4960.000	PK	52.70	32.70	6.10	46.20	2.50	47.80	73.90	26.1	119	200	
Hori.	7440.000	PK	51.50	37.50	7.40	44.30	2.50	54.60	73.90	19.3	185	3	
Hori.	9920.000	PK	46.10	38.30	8.40	42.50	2.50	52.80	73.90	21.1	150	0	Floor noise
Vert.	32.000	QP	22.30	12.70	3.90	32.50	0.00	6.40	40.00	33.6	100	0	
Vert.	64.000	QP	27.80	12.70	4.30	32.50	0.00	12.30	40.00	27.7	100	0	
Vert.	96.000	QP	22.20	8.40	4.70	32.50	0.00	2.80	43.50	40.7	100	0	
Vert.	2483.500	PK	61.40	27.90	14.00	44.50	2.50	61.30	73.90	12.6	210	10	
Vert.	4960.000	PK	53.20	32.70	6.10	46.20	2.50	48.30	73.90	25.6	170	297	
Vert.	7440.000	PK	51.00	37.50	7.40	44.30	2.50	54.10	73.90	19.8	162	56	
Vert.	9920.000	PK	45.70	38.30	8.40	42.50	2.50	52.40	73.90	21.5	150	0	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Distance factor

Distance factor : 1 GHz - 10 GHz : $20\log (3.98 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$ $10 \text{ GHz} - 40 \text{ GHz} : <math>20\log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Distance	Result	Limit	Margin	Remark
							Factor	Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	AV	42.00	27.90	14.00	44.50	1.96	2.50	43.86	53.90	10.0	*1)
Hori.	4960.000	AV	42.00	32.70	6.10	46.20	1.96	2.50	39.06	53.90	14.8	
Hori.	7440.000	AV	40.90	37.50	7.40	44.30	1.96	2.50	45.96	53.90	7.9	
Hori.	9920.000	AV	35.00	38.30	8.40	42.50	1.96	2.50	43.66	53.90	10.2	Floor noise
Vert.	2483.500	AV	42.40	27.90	14.00	44.50	1.96	2.50	44.26	53.90	9.6	*1)
Vert.	4960.000	AV	42.50	32.70	6.10	46.20	1.96	2.50	39.56	53.90	14.3	
Vert.	7440.000	AV	40.50	37.50	7.40	44.30	1.96	2.50	45.56	53.90	8.3	
Vert.	9920.000	AV	35.30	38.30	8.40	42.50	1.96	2.50	43.96	53.90	9.9	Floor noise

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18 GHz)) - Gain(Amprifier) + Duty factor + Distance factor

Distance factor : 1 GHz - 10 GHz : $20log\left(3.98~m\,/\,3.0~m\right) = ~2.5~dB$

 $10 \text{ GHz} - 40 \text{ GHz} : 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Duty factor refer to "Duty factor Calculation chart" sheet.

*1) Not out of band emission (Leakage Power)

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 25 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No. 12729321M-A-R1 Test place Kashima EMC Lab.

Semi Anechoic Chamber No.6

Date March 9, 2019

Temperature / Humidity
Engineer

20 deg. C / 45 % RH
Hiromitsu Tanabe
(1 GHz - 10 GHz)

Mode Tx BT LE 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

 Test report No.
 : 12729321M-A-R1

 Page
 : 26 of 35

 Issued date
 : June 17, 2019

 FCC ID
 : VBU-V2HT

Radiated Spurious Emission (Plot data, Worst case)

Report No. 12729321M-A-R1 Test place Kashima EMC Lab.

Semi Anechoic Chamber No.6

 Date
 March 12, 2019
 March 9, 2019
 March 11, 2019

 Temperature / Humidity
 21 deg. C / 44 % RH
 20 deg. C / 45 % RH
 22 deg. C / 40 % RH

 Engineer
 Kazuhiro Ando
 Hiromitsu Tanabe
 Kazuhiro Ando

 (30 MHz - 1000 MHz)
 (1 GHz - 10 GHz)
 (10 GHz - 26.5 GHz)

Mode Tx BT LE 2402 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

 Test report No.
 : 12729321M-A-R1

 Page
 : 27 of 35

 Issued date
 : June 17, 2019

 FCC ID
 : VBU-V2HT

Conducted Spurious Emission

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date February 19, 2019
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Kazuhiro Ando
Mode Tx BT LE 2402 MHz

Frequen	cy Readin	g Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11	12 -76.	0.01	9.9	2.25	1	-64.7	300	6.0	-3.4	46.6	50.0	
300	00 -80.	0.02	9.9	2.25	1	-67.8	300	6.0	-6.5	18.0	24.5	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 28 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

Conducted Spurious Emission

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date February 19, 2019
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Kazuhiro Ando
Mode Tx BT LE 2440 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.12	-76.8	0.01	9.9	2.25	1	-64.6	300	6.0	-3.4	46.6	50.0	
150.00	-79.7	0.01	9.9	2.25	1	-67.5	300	6.0	-6.2	24.0	30.2	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 29 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

Conducted Spurious Emission

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date February 19, 2019
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Kazuhiro Ando
Mode Tx BT LE 2480 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.12	-77.0	0.01	9.9	2.25	1	-64.8	300	6.0	-3.6	46.6	50.2	
150.00	-78.2	0.01	9.9	2.25	1	-66.0	300	6.0	-4.7	24.0	28.7	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

N: Number of output

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 30 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

Power Density

Report No. 12729321M-A-R1

Test place Kashima EMC Lab. No.2 Measurement Room

Date February 19, 2019
Temperature / Humidity 22 deg. C / 40 % RH
Engineer Kazuhiro Ando
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-26.59	1.66	10.04	-14.89	8.00	22.89
2440.00	-28.01	1.67	10.05	-16.29	8.00	24.29
2480.00	-29.37	1.68	10.05	-17.64	8.00	25.64

Sample Calculation:

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenuator\ Loss$

*The equipment and cables were not used for factor 0 dB of the data sheets.

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan

Test report No. : 12729321M-A-R1
Page : 31 of 35
Issued date : June 17, 2019
FCC ID : VBU-V2HT

APPENDIX 2: Test instruments

Test Instruments

	LIMS ID	Description	Manufacturer	Model	Serial	Calibration Date		
CE	144195	Test Receiver	Rohde & Schwarz	ESCI	100053	2018/09/28	2019/09/30	12
CE	143155	Coaxial Cable	Fujikura,Fujikura,Fujiku ra,Fujikura	5D-2W,5D-2W,5D-2W ,5D-2W	-	2018/07/25	2019/07/31	12
CE	143499	A.M.N.	Rohde & Schwarz	ESH3-Z5	829567/010	2018/07/10	2019/07/31	12
RE	143107	Coaxial Cable	Fujikura,Suhner,Suhner, Agilent,Suhner,-,Suhner		MY41110308,2550 A11724(Step Att)	2018/12/19	2019/12/31	12
RE	143122	LOGBICON	Schwarzbeck	VULB 9168	508	2018/04/05	2019/04/30	12
RE	143053	3dB Fixed Atten.	TAMAGAWA	UFA-01	none	2018/04/11	2019/04/30	12
RE	142929	Pre-Amplifier	SONOMA INSTRUMENT	310N	240505	2018/11/21	2019/11/29	12
RE	144193	Test Receiver	Rohde & Schwarz	ESU40	100426	2018/04/10	2019/04/30	12
RE(GHz)	142990	Micro Wave Cable	Shuner	SUCOFLEX104A	MY1477/4A	2018/05/25	2019/05/31	12
RE(GHz)	143643	Spectrum Analyzer	AGILENT	E4448A	MY52490024	2018/05/23	2019/05/31	12
RE(GHz)	143642	Spectrum Analyzer	AGILENT	N9030A	MY53310670 Version A.13.12	2018/05/25	2019/05/31	12
RE(GHz)	142939	Pre-Amplifier	Micro Wave Factory	MPR-1G26.5-35	161398	2018/05/18	2019/05/31	12
RE(GHz)	143111	Micro Wave Cable	Junkosha	MWX221	MRA-12-14-148	2018/05/25	2019/05/31	12
RE(GHz)	143016	10dB Fixed Atten.	WEINSCHEL	54A-10	56246	2018/05/21	2019/05/31	12
RE(GHz)	143459	HPF	MICRO-TRONICS	HPM50111-02	008	2018/05/22	2019/05/31	12
RE(GHz)	143456	Double Ridged Wave Guide	ETS-Lindgren	3115	00204573	2019/02/04	2020/02/29	12
RE(GHz)	143438	Double Ridged Horn	ETS-Lindgren	3160-09	00166043	2018/06/26	2019/06/30	12
RE(GHz)	142937	Pre-Amplifier	TOYO	HAP18-26W	00000035	2018/06/26	2019/06/30	12
RE(GHz)	143113	Micro Wave Cable	Suhner	SUCOFLEX104	MY588/4	2018/07/10	2019/07/31	12
EMI	144209	Digital Multimeter	Fluke Corporation	FLK-83-V	17610192	2018/10/01	2019/10/31	12
EMI	143129	Barometer	Sunoh	SBR-151	000017	2018/11/26	2021/11/30	36
EMI	143538	Temperature & Humidity Indicator	HIOKI	3641/9680-50	070727010/0707992 96	2018/05/24	2019/05/31	12
EMI	143667	Ruler	TAJIMA	L25-55	-	-	-	-
EMI	142901	EMI Software	TSJ	TEPTO-DV(RE,CE ,MF,PE)	Ver.3.3	-	-	-
AT	143537	Temperature & Humidity Indicator	A&D	AD-5681	6975761	2018/07/18	2019/07/31	12
AT	144220	Digital Multimeter	Fluke Corporation	87-3	85220051	2018/10/01	2019/10/31	12
AT	143606	Power Sensor	AGILENT	N1923A	MY54070024	2018/06/20	2019/06/30	12
AT	143588	Peak Power Analyzer	AGILENT	8990B	MY51000276	2018/06/20	2019/06/30	12
AT	143110	Micro Wave Cable	Suhner	SUCOFLEX102	MY3773/2	2018/05/25	2019/05/31	12
AT	143023	10dB Fixed Atten.	WEINSCHEL	54A-10	56251	2018/05/21	2019/05/31	12
AT	143643	Spectrum Analyzer	AGILENT	E4448A	MY52490024	2018/05/23	2019/05/31	12

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc. Kashima EMC Lab.

1614, Mushihata, Katori-shi, Chiba-ken, 289-0341 Japan