

RESERVATIONS AND TIMETABLING

Service scheduling characteristics

\square Operations \rightarrow activities

 e.g, meetings to be attended by certain people, game to be played by two teams.

☐Data:

- Processing time → duration
- Release time → earliest possible start time
- Due date → latest possible end time
- Weight → priority

João Miguel da Costa Sousa

381

Service scheduling characteristics

■Resources:

- Classroom, hotel, rental car, stadium, operating room, plane, ship, airport gate, dock, railroad track, person (nurse/pilot)
- Synchronization of resources may be important
 - Need a plane and a pilot
 - · Classroom, AV equipment, professor, students
- ☐ Each resource may have its own characteristics
 - Classroom: capacity, equipment, cost, accessibility
 - Truck: capacity, refrigeration, speed
 - Person: specialist (surgeon, nurse) with skills (languages)

João Miguel da Costa Sousa

382

Service scheduling characteristics

- ☐ Activities may have
 - Time windows
 - · Capacity requirements/constraints
- **Resources** may have
 - Setup/transition time runways at airports
 - Operator/tooling requirements
 - Workforce scheduling constraints
 - ➤ Shift patterns, break requirements
 - ➤Union and safety rules

João Miguel da Costa Sousa

38

Differences from manufacturing

- ☐Impossible to "store" goods
 - If a hotel room is not filled it is not possible to "get back" the lost time
- Resource availability often varies
 - May even be part of the objective function
- ☐ Saying "no" to a customer is common
 - "No available seats on that flight" (even if there are some!)
 - Try to book a restaurant for 8 PM

João Miguel da Costa Sousa

384

Reservation systems and timetabling

- ☐ Hotel rooms, car rentals, airline tickets (and classroom scheduling)
- Utilization of a resource for a given period of time
 - With slack: $p_i \le d_i r_i$
 - Without slack $p_j = d_j r_j$
- ☐ May not be able to schedule all requests

João Miguel da Costa Sousa

Reservation systems and timetabling

- 1. Reservation Systems without Slack (timing of job fixed)
 - *m* parallel machines (resources), *n* jobs (activities) fixed in time; interval scheduling
- 2. Reservation Systems with Slack
 - m parallel machines, n jobs (more flexible in time)
- 3. Timetabling with Workforce Constraints
 - W identical resources in parallel, n jobs using one resource
- 4. Timetabling with Operator or Tooling Constraints
 - Can require more than one resource that are *not* identical.

Ioño Miguel da Coeta Souca

Example: car rental

- ☐ Four types of cars: subcompact, midsize, full size, and sport utility
- ☐ Fixed number of each
- \square Resource = type of car
- ☐ Activity = customer requesting a car
- May have resource subsets
 - Rent a subcompact or midsize car
 - Some substitutability of resources

João Miguel da Costa Sousa

38

Example: car rental

- \square Reservation is for p_i days.
- \square Profit for car type *i* is π_i . (π_{ii} if it depends on costumer)
- \square Weight w_i

João Miguel da Costa Sousa

- \square Time is divided into H (integer) slots.
- $\square x_{ij}$: binary variable that is 1 if activity *j* is assigned to resource *i*
- \Box J_t : set of activities that need a resource in slot t [t–1, t]

João Miguel da Costa Sousa

390

Feasibility problem

- ☐ Can we process every activity?
- \square Can we assign activities to resources such that activity j is assigned to a set M_j of resources?
- > Relatively easy to solve

João Miguel da Costa Sousa

Problem formulation

☐ Integer Programming problem

$$\max \sum_{i=1}^m \sum_{i=1}^n w_{ij} x_{ij}$$

$$\sum_{i=1}^{m} x_{ij} \le 1, \quad j = 1, \dots, n$$

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} x_{ij}$$

$$\sum_{i=1}^{m} x_{ij} \le 1, \quad j = 1, ..., n$$

$$\sum_{j \in J_i} x_{ij} \le 1, \quad i = 1, ..., n, \quad t = 1, ..., H$$
Each resource has only one activity per time slot

João Miguel da Costa Sousa

IP formulation

- \square In general the problem is NP-hard (when both p_i and w_{ii} are free)
- > Two special cases with exact algorithms
 - each of these algorithms sorts the activities to increasing r_i
- **Case 1:** processing times $p_i = 1$
 - decompose into separate time units
 - assign at each time unit most valuable activities first
 - it is an independent problem for each time slot!

João Miguel da Costa Sousa

2: Identical weights and machines

- Assume $w_i = 1$ and $M_i = \{1,...,m\}$ (all resources identical)
- □ Objective: maximize number of activities assigned
- No time decomposition, but still an exact, simple algorithm cab be applied:
 - Order activities in increasing order of release dates:

$$r_1 \leq r_2 \leq \ldots \leq r_n$$

Let J be the set of already scheduled activities

João Miguel da Costa Sousa

Algorithm: max. activities assigned

Step 1:

 \square Set $J = \emptyset$ and j = 1

Step 2

- \square If a resource is available at time r_i , assign it to activity j, add activity j to J, and go to Step 4.
- □Otherwise go to Step 3.

Step 3

 \square Let j^* be such that (maximum completion time):

$$C_{j^*} = \max_{k \in J} (C_k) = \max_{k \in J} (r_k + p_k)$$

João Miguel da Costa Sousa

Algorithm: max. activities assigned

- ☐ If $C_j = r_j + p_j > C_{j*}$, do not include activity j in J and go to Step 4.
- \square Else, delete activity j^* from J, assign activity j to the resource freed and include activity j in J

- \square If j = n STOP,
- \square Else, set j = j + 1 and return to Step 2

João Miguel da Costa Sousa

Unlimited # of resources

- No slack, arbitrary processing times, equal weights, identical resources
- ☐ Infinitely many resources in parallel
- ➤ Minimize the number of resources used
- ☐ Easily solved
- Order jobs as before

João Miguel da Costa Sousa

Algorithm

- ☐ Assign activity 1 to resource 1
- \square Suppose first j-1 activities have been processed
- \square Try to assign j^{th} activity to a resource in use
- ☐ If not possible assign to a new resource
- ➤ Special case of the node coloring problem in graph theory.

João Miguel da Costa Sousa

Node coloring problem

- \square Consider a graph with n nodes
- \square If an arc (j, k) connects nodes j and k they cannot be colored with the same color
- ☐ How many colors do we need to color the graph?

Number of colors needed = Number of resources needed

João Miguel da Costa Sousa

Reservation systems with slack

- Now allow slack $p_i \le d_i r_i$ (time slots)
- ➤ Trivial case
 - all processing times p_j = 1, identical weights, identical machines
 - · Schedule constructed progressively in time
- \triangleright Non-identical processing times, weights w_i
 - NP-hard →
 - No efficient algorithm →
 - Heuristic needed!

João Miguel da Costa Sousa

Composite dispatching rule

- ☐ Preprocessing: determine flexibility of activities and resources
- ☐ Dispatch least flexible activity first on the least flexible resource, etc.
- v_{it} is the number of activities that may be assigned to resource i during interval [t-1, t].
- $|M_i|$ is the number of resources in set M_i (suitable for activity j).

João Miguel da Costa Sousa

Priority indices

☐ Priority index for activities

$$I_j = f(w_j / p_j, |M_j|)$$

- The higher w_i/p_i and the smaller $|M_i|$, the lower the index.
- Activities can be ordered in decreasing order: $I_1 \le I_2 \le ... \le I_n$
- \square Priority indexes for **resources** (examples for $[t, t+p_i]$)

$$g(V_{i,t+1}, V_{i,t+2}, ..., V_{i,t+p_j}) = \sum_{l=1}^{n} V_{i,t+l} / p_j$$
 or

 $g(v_{i,t+1}, v_{i,t+2}, ..., v_{i,t+p_j}) = \max(v_{i,t+1}, v_{i,t+2}, ..., v_{i,t+p_j})$

$$g(v_{i,t+1}, v_{i,t+2}, ..., v_{i,t+p_j}) = \sum_{l=1}^{p_j} v_{i,t+l} / p_j$$
 or

João Miguel da Costa Sousa

Algorithm

Step 0

- ☐ Calculate both priority indices
- \square Order activities according to activity priority index I_i
- Step 1
- \square Set j = 1.

Step 2

- \square For activity j select the resource and time slot with lowest resource index $g(v_{i,t+1}, v_{i,t+2}, ..., v_{i,t+p_i})$
- ☐ Discard activity *j* if it cannot be assigned to any resource Step 3

If j = n STOP; otherwise set j = j+1 and return to Step 2

João Miguel da Costa Sousa

Example 9.3.2

□Consider seven activities and three resources:

Activities	1	2	3	4	5	6	7
p_j	3	10	9	4	6	5	3
w_j	2	3	3	2	1	2	3
r_j	5	0	2	3	2	4	5
d_{j}	12	10	20	15	18	19	14
M_j	{1,3}	{1,2}	{1,2,3}	{2,3}	{1}	{1}	{1,2}

João Miguel da Costa Sousa 40

Example 9.3.2 (cont.)

☐ Consider:

$$I_{j} = f\left(w_{j} / p_{j}, \left| M_{j} \right|\right) = \frac{\left| M_{j} \right|}{w_{j} / p_{j}}$$

☐ The indices for the activities are the following:

Activities	1	2	3	4	5	6	7
I_j	3	6.67	9	4	6	2.5	2

João Miguel da Costa Sousa

405

Example 9.3.2 (cont.)

 \square Factors v_{it} are:

slot t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
v_{1t}	1	1	3	3	4	6	6	6	6	6	5	5	4	4	3	3	3	3	2	1
v_{2t}	1	1	2	3	3	4	4	4	4	4	3	3	3	3	2	1	1	1	1	1
V_{3t}	1	0	1	2	2	3	3	3	3	3	3	3	2	2	2	1	1	1	1	1

Applying

$$g(v_{i,t+1}, v_{i,t+2}, ..., v_{i,t+p_j}) = \sum_{l=1}^{p_j} v_{i,t+l} / p_j$$

João Miguel da Costa Sousa

Example 9.3.2 (cont.)

Yields the scheduling:

Activity Resource Period

7 2 11-14

6 1 14-19

1 3 5-8

Machine 2 7 4 3 11-15

5 1 2-8

2 2 0-10

João Miguel da Costa Sousa

407

Example 9.3.2: discussion

- ☐ Activity 3 does not fit into the schedule.
- ☐ Optimal schedule:
 - activity 7 starts with resource 1 at time 10
 - activity 3 starts with resource 2 at time 11
- ☐ Heuristic yields a suboptimal solution.
- ☐ Other functions for the priority indices for activities yield different schedules (see Pinedo's book).

João Miguel da Costa Sousa

408

Timetabling with Workforce Constraints

- ☐ Infinite identical resources in parallel
- $\square n$ activities and all have to be done
 - Processing time of activity j is p_i
 - No preemption
- \square Total number of identical operators is W
- \square Each activity requires W_i operators
- □ Clearly, if $W_j + W_k > W$ then activity j and activity k cannot be processed at the same time.

João Miguel da Costa Sousa

Timetabling with Workforce Constraints

- > Find a schedule that minimizes makespan
- ☐ Special case of Project Scheduling with Workforce Constraints with one resource, $p_i \ge 1$, no precedence
- Applications
 - scheduling a construction project (W is the crew size)
 - exam scheduling (W is the number of seats)

João Miguel da Costa Sousa

410

Example 9.4.2: Exam scheduling

- ☐ All exams have the same duration
- \square One exam room with capacity W
- \square Course *j* has W_i students
- \square All students in course j must take the exam at the same time
- \Box Find a timetable for all n exams in the minimum amount of time

João Miguel da Costa Sousa

411

Bin packing problem

- \square Assume equal processing times $p_i = 1$
- ☐ Unlimited number of machines
- ☐ Minimize makespan
- \square Equivalent to bin packing problem
 - each bin has capacity W and is one time slot
 - activity is an item of size W_i
 - items packed in one bin are activities done in time slot
 - pack into the minimum number of bins

João Miguel da Costa Sousa

414

Solving the bin packing problem

- ☐ Known to be NP-hard
- Many heuristics developed

☐ First Fit (FF) heuristic

- Order activities (items) in an arbitrary order
- · Always put an item in the first bin it fits into
- Known that

$$C_{\text{max}}(FF) \le \frac{17}{10} C_{\text{max}}(OPT) + 2$$

João Miguel da Costa Sousa

Example 9.4.3

 \square Assume 18 activities and W = 2100.

activities	1,,6	7,,12	13,,18		
W_{j}	301	701	1051		

☐FF heuristic:

- Assign the first 6 activities to one interval (301×6=1806)
- Then assign two activities of 7,...,12 at a time to the next 3 intervals (701×2=1402)
- Finally, assign one activity of 13,...,18 to each interval.

João Miguel da Costa Sousa

416

Example 9.4.3

- Makespan of FF: $C_{\text{max}} = 10$.
- Poor performance when jobs are assigned in arbitrary order!
- □ **Optimal solution**: assigns to each slot of time three activities: one of 301, one of 701 and one of 1051 $(C_{\text{max}} = 6)$.

João Miguel da Costa Sousa

417

First Fit Decreasing (FFD)

- ☐ An improvement of FF.
- \square Order activities in decreasing order of W_i .
- \square Known that C_{max} (FFD) $\leq \frac{11}{9} C_{\text{max}}$ (OPT) + 4
- ❖ Find solution of Example 9.4.3 using FFD.
- ☐FF and FFD can be extended to activities with different release dates.

João Miguel da Costa Sousa

418

Example 9.4.4

 \square 30 activities and W = 1000.

activities	1,,6	7,,12	13,,18	19,,30
W_{i}	501	252	251	248

□ Optimal schedule:

- assign to each of the first 6 slots 3 activities: one of 501, one of 251 and one of 248.
- To the remaining 3 slots it assigns 4 activities: two of 252 and two of $248 \rightarrow C_{\text{max}} = 9$.

João Miguel da Costa Sousa

419

Example 9.4.4

☐FFD rule:

- assign to each of the first 6 slots 2 activities: one of 501 and one of 252.
- To the next 2 slots it assigns three activities of 252.
- To the remaining 3 slots it assigns four activities of 248 \rightarrow $C_{\text{max}} = 11$.

João Miguel da Costa Sousa

420

Timetabling with Operator Constraints

- \Box Up to now, the W operators are equivalent
 - Any set of W_i operators could do activity j
- ☐ This is not true in many applications
 - e.g., medical or language specialties

➤ Operator or Tool Constraints

- an operator need specific skills to do an activity
- a specific tool is needed
- ☐ If two activities require the same operator or tool, they cannot be done at the same time.

João Miguel da Costa Sousa

Timetabling with Operator Constraints

- \square All *n* activities must be processed
- ☐ Minimizing makespan
- ☐ Timetabling is a special case of the *project scheduling* with workforce constraints problem:
 - no precedence constraints
 - One operator per skill (or one tool) $W_i = 1$.
- ■NP-hard
- ☐ Assume all activities durations = 1
- ☐ Equivalent to the **node** (**graph**) **coloring problem**

João Miguel da Costa Sousa

422

Node Coloring Problem

- Nodes are activities
- ☐ Arcs mean the activities require the same operator
- □ Colors are time slots
 - Minimizing the number of colors is minimizing makespan

João Miguel da Costa Sousa

424

Node Coloring Problem

Recall

- Activity = node
- Activities need same tool = arc between nodes

□ Feasibility problem:

• Can the graph be colored with *m* (or less) colors?

□ Optimality problem:

• What is the lowest number of colors needed?

João Miguel da Costa Sousa

425

Heuristics for Node Coloring

□Terminology

- degree of node = number of arcs connected to node
- saturation level = number of colored nodes connected to node (in a partially colored graph)
- ➤ Many heuristics exist for graph coloring

☐Intuition

- · Color high degree nodes first
- Color high saturation level nodes first

João Miguel da Costa Sousa

426

Algorithm for Node Coloring

- ☐ Step 1: Order nodes in decreasing order of their degree.
- □ Step 2: Color node of maximal degree with Color 1.
- □ Step 3: Choose an uncolored node with maximum saturation level, breaking ties according to degree.
- □ Step 4: Color selected node using the color with the lowest possible number.
- □ Step 5: If all nodes are colored, STOP. Otherwise go to Step 3.

João Miguel da Costa Sousa

Relation to reservation models

- ☐ Closely related to reservation problem with zero slack and arbitrary processing times
- ☐ Special case of timetabling problem
 - tools in common = overlapping time slots
 - tools in common \Rightarrow nodes connected
 - colors = resources
 - minimizing colors = minimizing resources
 - adjacent time slots vs. tools need not be adjacent

João Miguel da Costa Sousa

■Example of reservation system:

activities	1	2	3
p_j	2	3	1
r_j	0	2	3
d_{j}	2	5	4

João Miguel da Costa Sousa

Equivalent timetabling problem

activities 1 2 3 Job 1 must Tool 1 1 0 0 be processed in time [0,2] \ Tool 2 1 0 0 Tool 3 0 1 0 Job 2 must be processed in time [2,5] Tool 4 0 1 Tool 5 0 0

João Miguel da Costa Sousa

Example: classroom timetabling

- 30,000 students, 80 depts
- 4000 classes, 250 rooms
- 3 schedulers and 1 supervisor

- Estimated enrollment
- Requested meeting time
- Special requirements (e.g., A/V equipment)

João Miguel da Costa Sousa

Development of an objective

Some obvious components:

- ☐ One class at a time in a given room, for a given prof, for a given number of students
- ☐ Usually minimize the number of students who cannot take the courses they want
- ☐Room should be big enough
- ☐ Special equipment should be present

João Miguel da Costa Sousa

440

Development of an objective

Some non-obvious components:

- ☐ Profs want rooms close to their offices
- ☐ Students want consecutive classes to be close together
- ☐ Profs get one day with no classes
- ☐(Departments want classes in rooms they "own")
- ☐(Everyone wants no classes on Friday)

João Miguel da Costa Sousa

...

Development of an objective

- ☐ How do you balance the components?
- Is a room within 100 m of a prof's office worth not being able to accommodate all students?
- "You can have a Friday afternoon class with A/V equipment or a Friday morning class without."

João Miguel da Costa Sousa

442

Berkeley guidelines

- ■Standard "calendar"
 - 9-hour day, starting at 8 AM
 - 9 1-hour blocks overlap with 6 1.5-hour blocks
- ☐ "Prime time" blocks
 - One department can only request 60% of its classes during prime time.

João Miguel da Costa Sousa

443

Berkeley solution

- ☐ Large Integer Programming problem
 - 0.5M variables, 30K constraints
 - Very high penalty for not scheduling a class at all
 - Other objective components: distance, over-utilized facilities, empty seats

□ Solved heuristically!

• See Alg. 9.6.1, p 222

João Miguel da Costa Sousa

444

Room assignment heuristic

- $\square J$ is the set of all classes
- $\Box t$ is a timeslot
- $\square J_t$ is the set of all classes assigned to t
- $\square M$ is the set of all classrooms
- $\square M_j$ is the set of classrooms that can contain class j

João Miguel da Costa Sousa

Room assignment heuristic

Step 1 (Select Time Slot)

□ Select, among time slots not yet considered, slot *t* with the smallest supply/demand ratio.

Step 2 (Greedy Algorithm)

- \square Rank all classes j in J_t in decreasing order of class size.
- \square Assign class *j* to the (vacant) room M_i with lowest cost

Step 3 (Improvement Phase)

 \square Rank all classes j in J_t in decreasing order of current cost.

João Miguel da Costa Sousa

446

Room assignment heuristic

- □ If class *j* is not assigned, find all interchanges with a class *k* in an occupied room, moving *k* to a vacant room. Make interchange with maximum cost reduction.
- ☐ If class *j* is assigned, find interchanges that reduce total cost. Apply interchange with maximum cost reduction.

Step 4 (Stopping Criterion)

- ☐ If Step 3 reduced the total cost, return to Step 3; otherwise update unscheduled list.
- ☐ If all time slots were selected, STOP; else go to Step 1.

João Miguel da Costa Sousa

Discussion

- ☐ This chapter considered four types of scheduling and timetabling problems.
- ☐ Real world problems have all the features discussed: release dates and due dates (with or without slack), workforce and tool constraints.
- ☐ In practice:
 - Dynamic rather than static reservation systems
 - Price considerations, which depend on current occupancy and forecast demand.

João Miguel da Costa Sousa