DZ_CRS

- Build ID: 8
- TFS Change Set: 8318

Utilities for the management and manipulation of Oracle Spatial and Graph transformations and grids.

Summary

Functions	
dz_crs_main. geodetic_XY_diminfo	Function to quickly return a "default" geodetic dimensional info array.
dz_crs_main. geodetic_XYZ_diminfo	Function to quickly return a "default" 3D geodetic dimensional info array.
dz_crs_main. geodetic_XYM_diminfo	Function to quickly return a "default" LRS geodetic dimensional info array.
dz_crs_main. geodetic_XYZM_diminfo	Function to quickly return a "default" 3D LRS geodetic dimensional infarray.
dz_crs_main. generic_common_mbr	Function to return a minumum bounding rectangle geometry surrounding a given named region.
dz_crs_main. query_generic_common_mbr	Function to return the region keyword (if any) associated with a given geometry.
dz_crs_main.nadcon_grid	Function to determine the appropriate NAD27 transformation method for a given geometry location.
dz_crs_main. nadcon_4267_to_8265	Utility to automate the transformation of NAD27 geometry to NAD83.
dz_crs_main.determine_srid	Somewhat specific utility intended to interpret and convert to an Oracle Spatial srid a variety of coordinate system naming inputs.
dz_crs_main.parse_ogc_urn	Simple utility to quickly parse an OGC urn into component parts.
dz_crs_main.epsg2srid	Simply utility to convert epsg style srids to old Oracle equivalents
dz_crs_main.srs2srid	Utility to convert SRS coordinate system identifiers into Oracle Spatials srids.
dz_crs_main.srid2srs	Simplistic utility to return srs values for a very limited number of Oracle Spatial srids.
dz_crs_main.smart_transform	Somewhat obnoxiously named wrapper to avoid running transformations on srid equivalents and also will force spherical math transformations when srid 3785 is utilized.
dz_crs_main. grid_clob_to_header	Utility to extract from a NADCOD grid the header information.
dz_crs_main.grid_to_mbr	Utility to extract from a NADCON grid the MBR surrounding it.
dz_crs_main.unwrap_etype3	Utility to extract from a Oracle Spatial optimized rectangle (MBR) the min and max point.
dz_crs_main.wrap_etype3	Utility to build an optimized rectangle (MBR) from two input points.
dz_crs_main.	Utility to allow the direct transformation of an optimized rectangle into
transform_etype3	a another coordinate reference system.

FUNCTIONS

dz_crs_main.geodetic_XY_diminfo

Function to quickly return a "default" geodetic dimensional info array.

Parameters

None

Returns

MDSYS.SDO_DIM_ARRAY collection

Notes

• Assumes 5 centimeter tolerance for all geodetic spatial information.

dz_crs_main.geodetic_XYZ_diminfo

Function to quickly return a "default" 3D geodetic dimensional info array.

Parameters

p_z_lower_bound	optional override for lower Z bound (default -15000)
p_z_upper_bound	optional override for upper Z bound (default 15000)
p_z_tolerance	optional override for Z tolerance (default 0.001 units)

Returns

MDSYS.SDO_DIM_ARRAY collection

Notes

• Assumes 5 centimeter tolerance for all geodetic spatial information.

dz_crs_main.geodetic_XYM_diminfo

Function to quickly return a "default" LRS geodetic dimensional info array.

Parameters

p_m_lower_bound	optional override for lower M bound (default 0)
p_m_upper_bound	optional override for upper M bound (default 100)
p m tolerance	optional override for M tolerance (default 0.00001 units)

Returns

MDSYS.SDO_DIM_ARRAY collection

Notes

- Assumes 5 centimeter tolerance for all geodetic spatial information.
- M defaults represent common reach measure system used in the US National hydrology dataset.

dz_crs_main.geodetic_XYZM_diminfo

Function to quickly return a "default" 3D LRS geodetic dimensional info array.

Parameters

p_z_lower_bound	optional override for lower Z bound (default -15000)
p_z_upper_bound	optional override for upper Z bound (default 15000)
p_z_tolerance	optional override for Z tolerance (default 0.001 units)
p_m_lower_bound	optional override for lower M bound (default 0)
p_m_upper_bound	optional override for upper M bound (default 100)
p_m_tolerance	optional override for M tolerance (default 0.00001 units)

Returns

MDSYS.SDO_DIM_ARRAY collection

Notes

- Assumes 5 centimeter tolerance for all geodetic spatial information.
- M defaults represent common reach measure system used in the US National hydrology dataset.

dz_crs_main.generic_common_mbr

Function to return a minumum bounding rectangle geometry surrounding a given named region.

Parameters

p_input region keyword

p_srid optional SRID override, default is 8265

Returns

MDSYS.SDO_GEOMETRY MBR surrounding desired region.

Notes

- Current regions include CONUS, ALASKA, HAWAII, PR/VI and PACTERR. Note the Alaska and Pacific Trust Territory MBRs are split into two polygons and thus do not cross the 180. In theory Oracle spatial should have no problems with a polygon crossing the 180 but at the end of the day its always safer to break on the 180.
- The srid override does not test if a user provided srid is in fact geodetic. Make sure you always use a geodetic srid.

dz_crs_main.query_generic_common_mbr

Function to return the region keyword (if any) associated with a given geometry.

Parameters

p_input input geomety to examine

p_tolerance optional tolerance override, default is 0.05

p_check_earth optional test to verify that input geometry is in fact geodetic. Useful in cases

where raw input may be of dubious quality.

Returns

VARCHAR2 string text region keyword or NULL if no regions.

Notes

- Current regions include CONUS, ALASKA, HAWAII, PR/VI and PACTERR.
- For geometries other than points, the first set of vertices in the geometry are used for the test.
- Any geometry input srid may be utilized as test mbrs are transformed to the input geometry srid if they do not match (default is 8265).

dz_crs_main.nadcon_grid

Function to determine the appropriate NAD27 transformation method for a given geometry location.

Parameters

p_input input geomety to examine

p tolerance optional tolerance override, default is 0.05

Returns

NUMBER of NADCON grid covering the location in question or -2 to indicate no grid coverage.

Notes

• An answer of -2 would indicate to use a Molodensky transformation for NAD27 conversions.

dz_crs_main.nadcon_4267_to_8265

Utility to automate the transformation of NAD27 geometry to NAD83. Utility will utilize NADCON grids where possible or Molodensky where not.

Parameters

p_input input NAD27 geomety to transform

p_identifier optional NADCON grid keyword to avoid the overhead of testing the input for the

correct grid. Force NULL to use Molodensky.

p_tolerance optional tolerance override, default is 0.05

Returns

MDSYS.SDO_GEOMETRY in NAD83

Notes

• NADCON grid keywords include CONUS, HAWAII, PR/VI, ALASKA, ST. LAWRENCE ISLAND, ST. PAUL ISLAND and ST. GEORGE ISLAND

dz_crs_main.determine_srid

Somewhat specific utility intended to interpret and convert to an Oracle Spatial srid a variety of coordinate system naming inputs.

Parameters

p_input input coordinate reference system

Returns

NUMBER of best matching SDO_SRID

Notes

- SRID=1234 will return 1234
- SRSNAME=SDO:1234 or SDO:1234 will return 1234
- SRSNAME=EPSG:1234 or EPSG:1234 will return 1234
- A limited number of SRSNAME urns are supported such as urn:ogc:def:crs:OGC:*:crs84 returns 8307 urn:ogc:def:crs:OGC:*:crs83 returns 8265 urn:ogc:def:crs:EPSG:*:1234 returns 1234
- All derived SRIDs are then tested against the local Oracle Spatial installation for validity.
- For more detailed feedback on any problems encountered utilize the procedure version which provides an error code and detailed status message.

dz_crs_main.parse_ogc_urn

Simple utility to quickly parse an OGC urn into component parts.

Parameters

p_input input urn to decompose

Returns

p_urn	first component
p_ogc	second component
p_def	third component
p_objectType	fourth component
p_authority	fifth component
p_version	sixth component
p_code	seventh component

dz_crs_main.epsg2srid

Simply utility to convert epsg style srids to old Oracle equivalents

Parameters

p_input input epsg srid

Returns

NUMBER of old Oracle Spatial srid

Notes

- Used to quickly swap 4269 for 8265 and 4326 to 8307.
- Any unknown srids are just returned in the output.

dz_crs_main.srs2srid

Utility to convert SRS coordinate system identifiers into Oracle Spatials srids.

Parameters

p_input input SRS identifier

Returns

NUMBER of old Oracle Spatial srid

Notes

• As SRS identifiers may provide critical information as to the order of the axes in a given spatial dataset, utilize the procedure version which returns an additional p_axes_latlong parameter of TRUE/FALSE indicating the whether the axes are reversed with latitude first.

dz_crs_main.srid2srs

Simplistic utility to return srs values for a very limited number of Oracle Spatial srids.

Parameters

p_input input srid

Returns

VARCHAR2 SRS value

dz_crs_main.smart_transform

Somewhat obnoxiously named wrapper to avoid running transformations on srid equivalents and also will force spherical math transformations when srid 3785 is utilized.

Parameters

p_input input geometry to transformp_srid srid to use for transformation

Returns

MDSYS.SDO_GEOMETRY

dz_crs_main.grid_clob_to_header

Utility to extract from a NADCOD grid the header information.

Parameters

p_clob NADCON grid

Returns

p_col_count grid column count
p_row_count grid row count
p_z_count grid z count

p_min_long grid minimum longitude p_long_cell -grid longitude cell value

p_min_lat grid minimum latitude p_lat_cell grid latitude cell value

dz_crs_main.grid_to_mbr

Utility to extract from a NADCON grid the MBR surrounding it.

Parameters

p_coord_op_param coordinate op number of a given grid

Returns

MDSYS.SDO_GEOMETRY

dz_crs_main.unwrap_etype3

Utility to extract from a Oracle Spatial optimized rectangle (MBR) the min and max point. Includes option to remove third and fourth dimensions.

Parameters

p_input optimized rectangle geometry to decompose

p_2d_flag optional TRUE/FALSE flag to remove any third or fourth dimensions

Returns

p_min_point minimum (lower left) MBR vertice p_max_point maximum (upper right) MBR vertice

dz_crs_main.wrap_etype3

Utility to build an optimized rectangle (MBR) from two input points. Includes option to remove third and fourth dimensions.

Parameters

p_min_point minimum (lower left) MBR vertice
p_max_point maximum (upper right) MBR vertice

 p_2d_flag optional TRUE/FALSE flag to remove any third or fourth dimensions

Returns

p_output optimized rectangle geometry

dz_crs_main.transform_etype3

Utility to allow the direct transformation of an optimized rectangle into a another coordinate reference system. When using SDO_TRANSFORM directly upon a geodetic optimized rectangle, the rectangle will be converted to a densified polygon which may not be desired. This utility decomposes the rectangle into components points, transforms those points, and then puts the rectangle back together.

Parameters

p_input optimized rectangle geometry to transform

p_output_srid srid to use in transformation

p_2d_flag optional TRUE/FALSE flag to remove any third or fourth dimensions

Returns

MDSYS.SDO_GEOMETRY