

WE CLAIM:

5

15

1. A substituted amine of formula (XV)

where R₁ is:

(I) C1-C6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_NC_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, $-B_1$, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, $-CF_3$, $-CF_3$ 10 $NR_{1\text{--a}}R_{1\text{--b}} \text{ where } R_{1\text{--a}} \text{ and } R_{1\text{--b}} \text{ are -H or } C_1\text{--}C_6\text{alkyl, and -OC=O} \ NR_{1\text{--a}}R_{1\text{--b}} \text{ where } R_{1\text{--a}} \text{ and } R_{1\text{--b}} \text{ or } C_1\text{--}C_6\text{alkyl, and -OC=O} \ NR_{1\text{--a}}R_{1\text{--b}} \text{ where } R_{1\text{--a}} \text{ and } R_{1\text{--b}} \text{ or } C_1\text{--}C_6\text{alkyl, and -OC=O} \ NR_{1\text{--a}}R_{1\text{--b}} \text{ where } R_{1\text{--a}} \text{ and } R_{1\text{--b}} \text{ or } C_1\text{--}C_6\text{alkyl, and -OC=O} \ NR_{1\text{--a}}R_{1\text{--b}} \text{ or } C_1\text{---c} \text{ or } C_1\text{---c}$ R_{1-b} are as defined above,

(II)
$$-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$$
,

(III)
$$-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$$

(IV) C2-C6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, $-C \equiv N$, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl,

(V) C2-C6 alkynyl with one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -

C=N, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are $\downarrow H$ or C_1-C_6 alkyl, 20.

(VI) -(CH₂)_{n1}-(R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C₁-C₆ alkyl optionally substituted with one, two or three

substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -B_r, -I, -OH, -SH, 25 -C \equiv N, -CF₃, and C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(B) C2-C6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group constaining of JF, -Cl, -OH, -SH, -C=N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-a} are H or C₁-

30 C₆ alkyl,

(C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

5 \backslash (D) -F, Cl, -Br or -I,

(F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

- F,

(G) $\sqrt{NR_{N-2}R_{N-3}}$ where R_{N-2} and R_{N-3} are as defined below,

(H) -OH,

(I) -C≡N\

(J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(K) –CO-(C₁- \hat{C}_4 alkyl),

() == (5) 54

(L) $-SO_2-NR_{1-a}R_1$ where R_{1-a} and R_{1-b} are as defined above,

(M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or

 $(N) -SO_2-(C_1-C_4 \text{ alkyl}),$

(VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n₁ is as defined above and where R₁₋

heteroaryl is selected from the group consisting of:\

20

25

30

10

15

pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienyl,

indolyl,

indolinyl,

pryidazinyl,

pyrazinyl,

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

imidazolyl.

isoxazolyl,

	pyrazolyl,
	oxazolyl,
	thiazolyl,
	indolizinyl,
5	indazolyl,
	benzothiazolyl,
	benzimidazolyl,
	benzofuranyl,
	furanyl,
10	thienyl,
	pyrrolyl,
	oxadiazolyl,
	thiadiazoly1,
	triazolyl, \
15	tetrazolyl,
	oxazolopyridiąyl,
	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
20	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
	isochromanyl,
	chromanyl,
25	tetrahydroisoquinolinyl,
	isoindolinyl,
	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
	isobenzothienyl,
30	benzoxazolył,
	pyridopyridinyl,
	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
	purinyl,

benzodioxolyl, triazinyl, phenoxazinyl, phenothiazinyl, 5 pteridinyl, benzothiazolyl, imidazopyridinyl, imidazothiazolyl, dihydrobenzisoxazinyl, 10 benzisoxazinyl, benzoxażinyl, dihydrobenzisothiazinyl, benzopyranyl, benzothiopyranyl, 15 coumarinyl, isocoumarinyl, chromonyl, chromanonyl, pyridinyl-N-oxide, 20 tetrahydroquinolinyl dihydroquinolinyl dihydroquinolinonyl dihydroisoquinolinonyl dihydrocoumarinyl 25 dihydroisocoumarinyl isoindolinonyl benzodioxanyl benzoxazolinonyl pyrrolyl N-oxide, 30 pyrimidinyl N-oxide, pyridazinyl N-oxide, pyrazinyl N-oxide, quinolinyl N-oxide,

indolyl N-oxide,

indolinyl N-oxide, isoquinolyl N-oxide, quinazolinyl N-oxide, quinoxalinyl N-oxide. phthalazinyl N-oxide. imidazolyl N-oxide, isoxazolyl N-oxide, oxazolyl N-oxide, thiażolyl N-oxide, indolizinyl N-oxide, indazoly\ N-oxide, benzothiazolyl N-oxide. benzimidazolyl N-oxide. pyrrolyl N-oxide, oxadiazolyl N-oxide, thiadiazolyl N-oxide, triazolyl N-oxide. tetrazolyl N-oxide, benzothiopyranyl S-oxide, and benzothiopyranyl S,S-dioxide,

20

15

5

10

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

25

30

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl -F, -Cl, -Br, -I, -OH, -SH, -C=N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

Cl, -OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_3$ alkoxy, and -NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R $_{1\text{-}a}$ and R $_{1\text{-}b}$ are -H or C $_1$ -C $_6$ alkyl,

- (4) -F, Cl, -Br or -I,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or

5 three of -F,

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) –OH,
- (9) -C≡N,
- (10) C₃-C₇ cycloalkyl, optionally substituted with one, two
- or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (11) –CO-(C₁-C₄ alkyl),
 - (12) –SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

15

(13) CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above, or

(14) - O_2 -(C_1 - C_4 alkyl), with the proviso that when n_1 is

zero $R_{1\text{-heteroaryl}}$ is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle}

20 is selected from the group consisting of:

morpholinyl,

thiomorpholinyl,

thiomorpholinyl Stoxide,

thiomorpholinyl S,\$-dioxide,

25

30

piperazinyl,

homopiperazinyl,

pyrrolidinyl,

pyrrolinyl,

tetrahydropyranyl,

piperidinyl,

tetrahydrofuranyl,

tetrahydrothienyl,

homopiperidinyl,

10

20

25

30

homomorpholinyl,
homothiomorpholinyl S,S-dioxide,
oxazolidinonyl,
dihydropyrazolyl,
dihydropyrazinyl,
dihydropyridinyl,
dihydropyrimidinyl,
dihydropyrimidinyl,
tetrahydrothienyl S-oxide,
tetrahydrothiomorpholinyl S-oxide,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-}}$ heterocycle group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_1 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(2) C_2 - C_6 alkenyl with one of two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(4) -F, Cl, -Br or -I,

(5) C_1 - C_6 alkoxy,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three -F,

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) -OH,
- (9) -C≡N,
- (10) C₃-C₇ cycloalkyl, optionally substituted with one, two
- 5 or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C=N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

10 (13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

 $(14) -SO_2 - (C_1 - C_4 \text{ alkyl}), \text{ or }$

(15) =0, with the proviso that when n_1 is zero $R_{1-heterocycle}$ is

not bonded to the carbon chain by nitrogen;

15

where R₂ is:

(I)-H,

- (II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl \(-F, -Cl, -Br, -I, -OH, \)
- -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, 20 (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and R_{1-aryl}

heteroaryl are as defined above;

- (IV) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -
- SH, $-C \equiv N$, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl, 25
 - (V) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -
 - C=N, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl, or
 - (VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or
- 30 three substituents selected from the group consisting of -F, -C1, -OH, -SH, -C≡N, -CF3, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C\-C₆ alkyl;

where R₃ is:

10

15

20

25

30

`(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, $-\dot{F}$, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R₁. heteroaryl are as defined above

(IV) C₂-C₆ alkenyl with one or two double bonds,

(V) C₂-C₆ alkynyl with one or two triple bonds; or

(VI) -(CH₂)₀\(\text{L}-\text{C}_3\cdot\)-C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C\(\ext{N}\), -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

and where R₂ and R₃ are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2}-, where R_{N-2} is selected from the group consisting of:

(a) - H

(b) -C₁-C₆ alkyl optionally substituted with one

substitutent selected from the group consisting of:

OH, and

(ii) $-NH_2$,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

(d) -C₃-C₇ cycloalkyl,

(e) $-(C_1-C_2 \text{ alk} y \text{l})-(C_3-C_7 \text{ cycloalkyl})$,

(f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,

(g) -C₂-C₆ alkenyl with one or two double bonds,

(h) $-C_2$ - C_6 alkyny with one or two triple bonds,

(i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

(j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and

(k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above;

where R_N is:

13615.40USV

DOBOSBYL CEPOL

20

25

- (I) R_{N-1} - X_N where X_N is selected from the group consisting of:
 - (A) –CO-,

YOU1

- $(B) SO_2$ -,
- (C) -(CR'R")1-6 where R' and R" are the same or different and are
- 5 -H and C₁-C₄ alkyl,
- (D) -CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group

consisting of -O-, -S- and -NR'- and where R' and R" are as defined above, and

(E) à single bond;

where R_{N-1} is selected from the group consisting of:

(A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl, 2-naphthyl, tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) $C_1 \setminus C_6$ alkyl, optionally substituted with one, two or

- three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (2) –OH,
 - $(3) -NO_2$,
 - (4) –F, -Cl, -Br, -I,
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) –(CH₂)_{0.4}-CO- $N_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the

same or different and are selected from the group consisting of:

(a)

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one

substitutent selected from the group consisting of:

- (i) -OH, and
- (ii) -NH₂
- 30 (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

(d) -C₃-C₇ cycloalkyl,

(e) -(C_1 - C_2 alkyl)-(C_3 - C_7 cycloalkyl),

- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

5 triple bond,

- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) –(CH₂)₀₋₄-CO-<math>(C₁-C₁₂ alkyl),
- (9) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three
- double bonds),

(10) -(CH₂)_{0.4}-CO-(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

- (1)) – $(CH_2)_{0.4}$ -CO- $(C_3$ - C_7 cycloalkyl),
- $(12) \leftarrow (CH_2)_{0-4}$ -CO- R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

15

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as

defined above,

- (15) –(CH₂)₀₋₄CO-R_{N-4} where R_{N-4} is selected from the
- group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperadinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,
 - (16) –(CH₂)₀₋₄-CO-O- R_{N-5} where R_{N-5} is selected from the
- 25 group consisting of:
- (a) C_1 - C_6 alkyl,
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined

above,

(c) C₂-C₆ alkenyl containing one or two double

30 bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

(e) C₃.C₇ cycloalkyl, and

(f) -(CH₂)₀₋₂-($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as

defined above,

(17) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

5

- (18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),
- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be

the same or different and is as defined above,

10

(22) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can

be the same or different and is as defined above,

(23) – $(CH_2)_{0-4}$ -N-CS-N $(R_{N-5})_2$, where R_{N-5} can be the same or different and is as defined above,

(24) $(CH_2)_{0-4}$ -N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2}

can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above.

(26) $-(CH_2)_0 + R_{N-4}$ where R_{N-4} is as defined above,

(27) –(CH₂)₀₋₄–<math>(CO-(C₁-C₆ alkyl),

20

(28) –(CH₂)₀₋₄-O-R(O)-(OR_{N-aryl-1})₂ where R_{N-aryl-1} is –H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO- $N(R_{N-5})_2$ where R_{N-5} is as defined

above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

25 above,

(31) $-(CH_2)_{0-4}$ -O- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) –(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as defined above,

30 (34)

(34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl ontionally substituted with

one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C₂-C₆ alkynyl with one or two triple bonds optionally substituted with C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)_{0.4}–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as described above, or

(39) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,

(B) ${}^{1}_{7}R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is selected from the group

consisting of:

10

15.

20

\pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienyl,

indolyl,

indolinyl,

pryidazinyl,

pyrazinyl,

isoindolyl,

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

P..........

imidazolyl,

isoxazolyl,

pyrazolyl,

oxazolyl,

thiazolyl,

indolizinyl,

indazolyl,

benzothiazolyl,

benzimidazolyl,

128

30

25

benzofuranyl, furanyl, thienyl, pyrrolyl, 5 oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, oxazolopyridinyl, 10 imidazopyridinyl, isothazolyl, naphth xridinyl, cinnoliny, carbazolyl, 15 beta-carbolinyl, isochromanyl, chromanyl, tetrahydroisoquinolinyl, isoindolinyl, 20. isobenzotetrahydrofuranyl, isobenzotetrahydrothiehyl, isobenzothienyl, benzoxazolyl, pyridopyridinyl, 25 benzotetrahydrofuranyl, benzotetrahydrothienyl, purinyl, benzodioxolyl, triazinyl, 30 phenoxazinyl, phenothiazinyl, pteridinyl, benzothiazolyl, imidazopyridinyl,

129

10

15

20

25

30

imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl, benzoxazinyl, dihydrobenzisothiazinyl, benzopyranyl, benzothiopyranyl, coumarinyl, isocoumarinyl, chromonyl, chromanonyl, pyridinyl-N-oxide, tetrahydroquinolinyl, dihydroquinolinyl, dihydroquinolinonyl, dihydroisoquinolinonyl, dihydrocoumarihyl, dihydroisocoumatinyl, isoindolinonyl, benzodioxanyl, benzoxazolinonyl, pyrrolyl N-oxide, pyrimidinyl N-oxide, pyridazinyl N-oxide, pyrazinyl N-oxide, quinolinyl N-oxide, indolyl N-oxide, indolinyl N-oxide, isoquinolyl N-oxide, quinazolinyl N-oxide, quinoxalinyl N-oxide, phthalazinyl N-oxide,

imidazolyl N-oxide, isoxazolyl N-oxide,

10

25.

oxazolyl N-oxide,
thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,
oxadiazolyl N-oxide,
thiadiazolyl N-oxide,
triazolyl N-oxide,
tetrazolyl N-oxide,
benzothiopyranyl S-oxide, and
benzothiopyranyl S,S-dioxide

where the $R_{N_{\text{-}}\text{heteroaryl}}$ group is bonded by any atom of the parent $R_{N_{\text{-}}}$

heteroaryl group substituted by hydrogen such that the new bond to the R_{N-heteroaryl} group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

(1) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, --F, -Cl, -Br, -I,
 20 -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

- (2) -OH,
- $(3) NO_2$,
- (4) –F, -Cl, -Br, or I,
- (5) -CO-OH,
- (6) -C≡N,

(7) –(CH₂)₀₋₄-CO-NR_N 1 ₂R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:

- (a) -H,
- 30 (b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH₂,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

10

5

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above,
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- $(8) (C_1 C_{12} \text{ alkyl}),$
- (9) – $(C^{h}_{2})_{0.4}$ -CO- $(C_2$ - C_{12} alkenyl with one, two or three

double bonds),

15

(10) –(CH₂)_{0.4}-CO-<math>(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

- $(11) (CH_2)_{0-4} CO (C_3 C_7 \text{ cycloalkyl}),$
- (12) $-(CH_2)_{0-4}$ -CO- R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CQ-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

20 above,

(14) – $(CH₂)₀₋₄-CO-<math>\mathbf{R}_{1\text{-heterocycle}}$ where $\mathbf{R}_{1\text{-heterocycle}}$ is as

defined above,

(15) –(CH₂)_{0.4}-CO- R_{N-4} where R_{N-4} is selected from the

group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl,

- homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,
 - (16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the

group consisting of:

30

- (a) C_1 - C_6 alkyl,
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined

above,

(c) C₂-C₆ alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

- (e) C₃₋C₇ cycloalkyl, and
- (f) -(CH₂)₀₋₂-(R_{1-heteroaryl}) where R_{1-heteroaryl} is as

5 defined above,

10

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2} R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

(18) –(CH₂)₀₋₄-SO-(C₁-C₈ alkyl),

$$(19)$$
 – $(CH_2)_{0-4}$ -SO₂- $(C_1$ - C_{12} alkyl),

(20) (CH₂)_{0.4}-SO₂-(C₃-C₇ cycloalkyl),

(21) – $(CH_2)_{0.4}$ -N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be

the same or different and is as defined above,

(22) –(CH₂)_{0.4}-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can

be the same or different and is as defined above,

15 (23) $-(CH_2)_0$ -N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-3} R_{N-3} where R_{N-2} and R_{N-3} can be the

20. same or different and are as defined above,

(26) –(CH₂)₀₋₄-R_{N-4} where R_{N-4} is as defined above,

 $(27) - (CH_2)_{0.4} - O - CO - (C_1 C_6 \text{ alkyl}),$

(28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5}) where R_{N-5} is as defined

above,

25

30

(30) –(CH₂)_{0.4}-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

(31) –(CH₂)₀₋₄-O-(R_{N-5})₂ where R_N is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) –(CH₂)_{0.4}-S-(R_{N-5})₂ where R_{N-5} is as defined above,

(34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with

one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38)-(CH₂)_{0.4}-N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or

(39) -(\dot{C}_{H_2})₀₋₄- C_3 - C_7 cycloalkyl,

(C) $R_{N\text{-aryl}}$ -W- R_N where $R_{N\text{-aryl}}$ can be the same or different,

(D) R_{N-aryl}-W-R_{N-heteroaryl},

(E) R_{N-aryl} -W- R_{N-1} -heterocycle, wherein R_{N-1} -heterocycle is the same as R_{1} -

heterocycle, and R₁-heterocycle is as defined above

15

10

5

- (F) R_{N-heteroaryl}-W-R_{N-aryl},
- (G) R_{N-heteroaryl}-W-R_{N-heteroaryl},
- (H) R_{N-heteroaryl}-W-R_{N-1-heterocycle},
- (I) $R_{N-heterocycle}$ -W- R_{N-aryl} , wherein $R_{N-heterocycle}$ is the same as R_1 .

heterocycle, and R_{1-heterocycle} is as defined above, and R_{N-aryl} is as defined above,

20

- (J) R_{N-heterocycle}-W-R_{N-heteroaryl}, and
- (K) R_{N-heterocycle}-W-R_{N-1-heterocycle}

where W is

- (1) –(CH₂)₀₋₄-,
- (2) 0-,

25

- (-) (--2)0-4
- (3) $-S(O)_{0-2}$, (4) $-N(R_{N-5})$ - where R_{N-5} is as defined above, or
- (5) CO -;

(II) -CO-(C₁-C₁₀ alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:

30

- (A) -OH,
- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or -phenyl,

- (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above.
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- 5 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above, \setminus
 - (I) $-NH-CO-(C_1-C_6 \text{ alkyl})$,
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) $-NR_{N-2}^{1}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and
- 10 are as defined above,
- (L) -R_{N-4} where R_{N-4} is as defined above,
- (M) $-O-CO-(C_1-C_6 \text{ alkyl})$,
- (N) -O-CO- $N_{N-8}R_{N-8}$ where R_{N-8} are the same or different and are

as defined above,

- 15 (O) -O-(C₁-C₅ alkyl)-COOH,
 - (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

-F, -CI, -Br, or -I),

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- (R) -F, or -Cl,
- (III) -CO-(C₁-C₆ alkyl)-O-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
- 25 (D) $-CO-O-R_N \circ \text{ where } R_N \circ \text{ is } +H$
 - (D) –CO-O-R_{N-8} where R_{N-8} is hgraph H, C_1 - C_6 alkyl or -phenyl,
 - (E) –CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2$ -(C₁-C₈ alkyl),
- 30 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,

- (K) -NR $_{N\text{--}2}R_{N\text{--}3}$ where $R_{N\text{--}2}$ and $R_{N\text{--}3}$ are the same or different and are as defined above.
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
- - (O) $-O^{\frac{1}{2}}(C_1-C_5 \text{ alkyl})$ -COOH,
 - (P) -O- (C_1-C_6) alkyl optionally substitued with one, two, or three of

-F, -CI, -Br, or -I),

10

- (Q) -NH-S \lozenge 2-(C₁-C₆ alkyl), and
- (R) -F, or -Cl)

(IV) $-CO-(C_1-C_6 \text{ alkyl})-S-(C_1-C_6 \text{ alkyl})$ where alkyl is optionally

substituted with one, two, or three of substitutents selected from the group consisting of:

(A) -OH,

15

- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkox
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
- (E) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) -SO₂-NR_{N-2}R_{N-3} where R_N and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),

25

20

- (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-2} are the same or different and are as defined above.
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),

30

- (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are
- as defined above,
- (O) -O-(C₁-C₅ alkyl)-COOH,

10

20

(P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of -F, -Cl, -Br, or -I),

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and (R) -F, or -Cl,

(V) –CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:

- (A)\–H,
- (B) \dot{C}_1 - C_6 alkyl,
- (C) C₃-C₇ cycloalkyl,
- (D) C_2 - C_6 alkenyl with one double bond,
- (E) C₂-C₆ àlkynyl with one triple bond,
- (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
- (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above, or

(VI) -CO-(C3-C8 cycloalkyl) where alkyl is optionally substituted with one

15 or two substitutents selected from the group consisting of:

- (A) $-(CH_2)_{0-4}$ -OH,
- (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
- (C) $-(CH_2)_{0-4}-C_1-C_6$ thioalkoxy,
- (D) -(CH₂)₀₋₄-CO-O-R_{N-8} where R_{N-8} is –H, C_1 - C_6 alkyl or phenyl,
- (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) - $(CH_2)_{0-4}$ -SO₂- $(C_1$ - C_8 alkyl),
 - (H) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or
- 25. different and are as defined above.
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and \R_{N-3} are the same or

different and are as defined above.

30 (L) - $(CH_2)_{0-4}$ - R_{N-4} where R_{N-4} is as defined above.

(M) -O-CO- $(C_1$ - C_6 alkyl),

(N) -O-CO-NR $_{\text{N-8}}$ R $_{\text{N-8}}$ where R $_{\text{N-8}}$ are the same or different and are as defined above,

- (O) -O-(C_1 - C_5 alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

5 -F, -Cl, -Br, or -I),

- (Q) $\sqrt{NH-SO_2-(C_1-C_6 \text{ alkyl})}$, and
- (R) -F,\or -Cl;

where R_A is:

(I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC \equiv O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(\equiv O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C \equiv O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -

15 C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkCyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-O+C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} where R_{A-x} and R_{A-y} are

- (A)-H,
- (B) C₁-C₄ alkyl optionally substituted with one or two –OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

25 F,

20

- (D) $-(CH_2)_{0-4}$ -C₃-C₇ cycloalkyl,
- (E) C_2 - C_6 alkeryl containing one or two double bonds,
- (F) C₂-C₆ alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{A-x} and R_{A-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2}- and R_{A-aryl} is the same as R_{N-aryl},

10

15

20

25

(IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-x} and R_{A-y} are as defined above,

(V) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-aryl} where R_{A-aryl}, R_{A-x} and R_{A-y} are as defined above,

(VI)-(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-heteroaryl} where R_{A-aryl} , $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,

(VII) -($(R_{A-x}R_{A-y})_{0-4}$ - $(R_{A-heteroaryl}$ - R_{A-aryl} where $R_{A-heteroaryl}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above.

(VIII) -(CR)_{4-x}R_{A-y})₀₋₄-R_{A-heteroaryl}-R_{A-heteroaryl} where R_{A-heteroaryl}, R_{A-x} and R_{A-y} are as defined above,

(IX) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heterocycle}$ where $R_{A-heterocycle}$ is defined as $R_{1-heterocycle}$, and where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

(X) -($CR_{A-x}R_{A-y}$)₀- $R_{A-heteroaryl}$ - $R_{A-heterocycle}$ where $R_{A-heteroaryl}$, $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,

(XI) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} where R_{A-aryl} , R_{A-aryl} , R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

(XII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heteroaryl}$ where $R_{A-heterocycle}$, $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,

(XIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,

(XIV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,

(XV) -[C(R_{A-1})(R_{A-2})]₁₋₃-CO-N-(R_{A-1})₂ where R_{A-1} and R_{A-2}, are the same or different and are selected from the group consisting of:

(A) -H,

(B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

30 (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(E) $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,

(F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

10

15

20

25.

5

- (G) $(C_1-C_4 \text{ alkyl})-R_{A'-\text{aryl}}$ where $R_{A'-\text{aryl}}$ is as defined for $R_{1-\text{aryl}}$,
- (H) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (I) -(C₁-\(\cup_4\) alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (J) -R_{A-hetergaryl} where R_{A-heteroaryl} is as defined above,
- (K) $-R_{A-heterocycle}$ where $R_{A-heterocycle}$ is as defined above,

(M) -(CH₂)₁₋₄- $R_{A'}$ -(CH₂)₀₋₄- $R_{A'}$ -aryl where R_{A-4} is -O-, -S- or

-NR_{A-5}- where R_{A-5} is C₁-C₆ alkyl, and where R_{A'-aryl} is defined above,

(N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and R_{A-heteroaryl} are as defined above, and

(O) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,

and where R_{A-3} is the same or different and is:

(A) - H,

(B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

30 (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

10

15

20

25

30

- (F) -R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (G) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (H) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (J) -(C_1 - C_4 alkyl)- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is as defined above,
- $(K)_{A-1}$ (C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined

above, or

(XVI) -CH(R_{A-aryl})₂ where R_{A-aryl} are the same or different and are as defined above,

(XVII) -CH $(R_{A-heteroaryl})_2$ where $R_{A-heteroaryl}$ are the same or different and are as defined above.

(XVIII) –CH(R_{A-aryl})($R_{A-heteroaryl}$) where R_{A-aryl} and $R_{A-heteroaryl}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{A\text{-aryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heterocycle}}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=O)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two - C_1 - C_3 alkyl, -F, -OH, -SH, -C=N, -CF₃, C_1 - C_6 alkoxy, =O, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-aryl} where R_{A-aryl} is as defined above and R_{A-6} is -(CH₂)₀₋₆-OH,

	(XXII) –(CH ₂) ₀₋₁ -CHR _{A-6} -(CH ₂) ₀₋₁ -R _{A-heteroaryl} where $R_{A-heteroaryl}$ and R_{A-6} is
	as defined above,
	(XXIII) –CH(- R_{A-aryl} or $R_{A-heteroaryl}$)-CO-O(C_1 - C_4 alkyl) where R_{A-aryl} and
	R _{A-heteroaryl} are as defined above,
5	(XXIV) –CH(-CH ₂ -OH)-CH(-OH)-micro-NO ₂ ,
	(XXV) $(C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})-OH,$
	(XXVII) CH ₂ -NH-CH ₂ -CH(-O-CH ₂ -CH ₃) ₂ ,
	(XXVIII) H,
	(XXIX) -(CH ₂) ₀₋₆ -C(=NR _{1-a})(NR _{1-a} R _{1-b}) where R _{1-a} and R _{1-b} are as defined
10	above; or
	(XXX)
	-C=OC($(HR_6)NHR_7$, where R_6 and R_7 are as defined below,
	-C=OR ₇ , where R ₇ is as defined below,
	-C=OOR ₇ , where R ₇ is as defined below, or
15	- SOOR ₇ where R ₇ is as defined below,
	wherein R ₆ is:
	hydrogen,\
	C_1 - C_3 alkyl,
	phenyl,
20	thioalkoxyalkyl,\
	alkyl substituted aryl,
	cycloalkyl,
	cycloalkylalkyl,
	hydroxyalkyl,
25	alkoxyalkyl,
	aryloxyalkyl,
	haloalkyl,
	carboxyalkyl,
	alkoxycarbonylalkyl,
30	aminoalkyl,
	· ·

((N-protected)(alkyl)amino)alkyl, dialkylaminoalkyl,

142

(N-protected)aminoalkyl,

oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and

tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

5 wherein R7 is: C_1 - C_3 alkyl, phenyl, thioalkoxyalkyl, (aryl)alkyl, 10 cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, 15 haloalkyl, carboxyalkyi, alkoxycarbonylalkyl, aminoalky (N-protected)aminocalkyl, 20 alkylaminoalkyl, ((N-protected)(alkyl)amino)alkyl, dialkylaminoalkyl guanidinoalkyl, lower alkenyl, 25 heterocyclic, (heterocyclic)alkyl), arylthioalkyl, arylsulfonyalkyl, (heterocyclic)thioalkyl,

30

arylthioalkoxyalkyl, arylalkylsulfonylalkyl,

arylalkoxyalkyl,

(heterocyclic)sulfonylalkyl,

(heterocyclic)oxyalkyl,

10

15

20

25

30

(heterocyclic))alkoxyalkyl, (heterocyclic)thioalkoxyalkyl, (heterocyclic)alkylsulfonylalkyl, cycloalkyloxyalkyl, cycloalkylthioalkyl, cycloalkylsulfonylalkyl, cycloalkylalkoxyalkyl, cycloalkylthioalkoxyalkyl, cycloalkylalkylsulfonylalkyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, aroylalkyl, (heterocyclic)carbonylalkyl, polyhydroxyalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aryloxya\kyl, or alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

where X is -N, or -O, with the proviso that when X is O, R_B is absent; and when X is N,

R_B is:

(I)- C_1 - C_{10} alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, - β r, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC \equiv O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(\equiv O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, - NR_{1-a}C \equiv O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C \equiv O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(\equiv O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH_2)₀₋₃-(C_3 - C_8) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, -CO-OH, -CO-O-(C_1 - C_4 alkyl), and -NR_{1-a}R₁, where R_{1-a} and R_{1-b} are as defined above,

(III) -($CR_{B-x}R_{B-y}^{\lambda}$)₀₋₄- R_{B-aryl} where R_{B-x} and R_{B-y} are

(A)-H,

- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

15

20

5

10

- (D) -(CH₂)₀₋₄-C₃ C_7 cycloalkyl,
- (E) C2-C6 alkenyl containing one or two double bonds,
- (F) C₂-C₆ alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{B-x} and R_{B-x} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the

is the same as R_{N-aryl} and is defined above

(IV) - $(CR_{B-x}R_{B-y})_{0.4}$ - $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$ is the same as $R_{N-heteroaryl}$,

25 R_{B-x} , and R_{B-y} are as defined above,

(V) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} - R_{B-aryl} where R_{B-aryl} , R_{B-x} , and R_{B-y} are as defined above,

group consisting of -O-, -S-, -SO₂-, and -NR_{N-2} where R_{N-2} is as defined above, and R_{B-aryl}

(VI) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} - $R_{B-heteroaryl}$ where R_{B-aryl} , $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,

(VII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - R_{B-aryl} where $R_{B-heteroaryl}$, R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,

(VIII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,

10

15

(IX) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} - $R_{B-heterocycle}$ where $R_{B-heterocycle}$ is defined as $R_{1-heterocycle}$, and where R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,

(X) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl}-R_{B-heterocycle} where R_{B-heteroaryl}, R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,

 $(XII) - (CR_{B-x}R_{B-y})_{0-4} - R_{B-heterocycle} - R_{B-heteroaryl} \ where \ R_{B-heterocycle}, \ R_{B-heteroaryl}, \\ R_{B-x} \ and \ R_{B-y} \ are \ as \ defined \ above,$

(XIII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ - $R_{B-heterocycle}$ where $R_{B-heterocycle}$, R_{B-x} and R_{B-y} are as defined above,

(XIV) -($CR_{B-x}R_{B-x}$)₀₋₄- $R_{B-heterocycle}$ where $R_{B-heterocycle}$, R_{B-x} and R_{B-y} are as defined above,

(XV) -[$C(R_{B-1})(R_{B-2})$], 3-CO-N-(R_{B-3})₂ where R_{B-1} and R_{B-2} are the same or different and are selected from the group consisting of:

(A) -H,

- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (D) C₂-C₆ alkynyl with one or two triple bonds, optionally

 25 substituted with one, two or three substituents selected from the group consisting of C₁-C₃

 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, O-phenyl, and -NR_{1-a}R_{1-b}

 where R_{1-a} and R_{1-b} are as defined above,

(E)
$$-(CH_2)_{1-2}$$
- $S(O)_{0-2}$ - $(C_1$ - C_6 alkyl),

(F) –(CH₂)₀₋₄-C₃-C₇ cycloalkyl, optionally\substituted with one,

two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(G) -(C₁-C₄ alkyl)-R_{B'-aryl} where R_{B'-aryl} is as defined above for R₁-

aryl,

5

- (H) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (J) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (\dot{K}) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (M)\-(CH₂)₁₋₄- R_{B-4} -(CH₂)₀₋₄- $R_{B'-aryl}$ where R_{B-4} is -O-, -S- or

 $-NR_{B-5}$ - where R_{B-5} is C_1 - C_0 alkyl, and where $R_{B'-aryl}$ is defined above,

(N) -(CH_2)₁₋₄- R_{B-4} -(CH_2)₀₋₄- $R_{B-heteroaryl}$ where R_{B-4} and $R_{B-heteroaryl}$

10 are as defined above, and

(O) $-R_{B'-ary}$ where $R_{B'-ary}$ is as defined above,

and where R_{B-3} is the same or different and is:

(A) - H,

(B) -C₁-C₆ alkyl optionally substituted with one, two or three

substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(C) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃
20 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$

where R_{1-a} and R_{1-b} are as defined above,

(E) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_1$, where R_{1-a} and R_{1-b} are as defined above,

30

- (F) -R_{B'-aryl} where R_{B'-aryl} is as defined above,
- (G) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (H) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{B'-aryl} where R_{B'-aryl} is as defined above,

25

30

(J) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,

(K) -(C₁-C₄ alkyl)-R_{B-heterocycle} where R_{B-heterocycle} is as defined

above, or

 $(X\dot{V}I)$ –CH $(R_{B-aryl})_2$ where R_{B-aryl} are the same or different and are as

5 defined above,

(XVII) CH $(R_{B-heteroaryl})_2$ where $R_{B-heteroaryl}$ are the same or different and are as defined above.

(XVIII) $-\dot{CH}(R_{B-aryl})(R_{B-heteroaryl})$ where R_{B-aryl} and $R_{B-heteroaryl}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to R_{B-aryl} or R_{B-heteroaryl} or R_{B-heteroaryl} or R_{B-heterocycle} are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5}, O, or S(=O)₀₋₂, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two -C₁-C₃ alkyl, -F, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, =O, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) -(CH₂)₀₋₁-CHR_{C-6}-(CH₂)₀₋₁-RB_{B-aryl} where R_{B-aryl} is as defined above and R_{C-6} is -(CH₂)₀₋₆-OH,

(XXII) –(CH₂)₀₋₁-CHR_{B-6}-(CH₂)₀₋₁-R_{B-heteroaryl} where R_{B-heteroaryl} and R_{C-6} is as defined above,

 $(XXIII) - CH(-R_{B\text{-}aryl} \text{ or } R_{B\text{-}heteroaryl}) - CO - O(C_1 - C_4 \text{ alkyl}) \text{ where } R_{B\text{-}aryl} \text{ and } R_{B\text{-}heteroaryl} \text{ are as defined above,}$

(XXIV) -CH(-CH₂-OH)-CH(-OH)-micro-NO₂, (XXV) (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH, (XXVII) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂, (XXVIII) -H, or

30

```
(XXIX) -(CH<sub>2</sub>)<sub>0-6</sub>-C(=NR<sub>1-a</sub>)(NR<sub>1-a</sub>R<sub>1-b</sub>) where R<sub>1-a</sub> and R<sub>1-b</sub> are as defined above;
```

or a pharmaceutically acceptable salt thereof.

2. A substituted amine according to claim 1

where R₁ is:

$$-(CH_2)_{0-1}-(R_{1-arvl})$$
, or

- $(CH_2)_{n1}$ - $(R_{1-heteroaryl});$

where R_N is:

10 $R_N - X_N$, where X_N is selected from the group consisting of:

-CO-, and

↓\$O₂-,

where R_{N-1} is selected from the group consisting of:

-R_{N-ary} and

-R_{N-heteroalyl}, or

 $-\text{CO-CH}(-(\text{CH}_2)_{0-2}\text{-}\text{O-R}_{N-10})-(\text{CH}_2)_{0-2}-\text{R}_{N-\text{aryl}}/\text{R}_{N-\text{heteroaryl}});$

where RA is:

 $-C_1-C_8$ alkyl,

 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

20 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl},

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to RA-aryl or RA-heteroaryl or RA-

heterocycle

where X is -N or -O, with the proviso that when X is O, R_B is absent;

and when X is N,

R_B is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl}

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{A\text{-aryl}}$ or $R_{A\text{-heteroaryl}}$ or $R_{A\text{-}}$

heterocycle.

13615.40USU

where R₁ is:

-(CH₂)-(R_{1-aryl}), or

OU1

-(CH₂)-($R_{1-heteroaryl}$);

where R₂ is -H;

where R₃ is -H;

where R_N is:

 $R_N \setminus X_N$ - where X_N is:

10

5

–CO-,

where R_{N-1} is selected from the group consisting of:

 $-R_{N-aryl}$, and

-Rhheteroaryi;

where R_A is:

15

-C₁-C₈ alkyl,

 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A}\sum_{r\neq i}$

-($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-he} roaryl,

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heter}cycle,

20

-cyclopentyl or -cyclohexyl ring fused to $R_{A\text{-aryl}}$ or $R_{A\text{-heteroaryl}}$ or $R_{A\text{-}}$

heterocycle;

where X is -N or -O, with the proviso that when X is O, R_B is absent;

and when X is N,

R_B is:

25

-C₁-C₈ alkyl,

- $(CH_2)_{0-3}$ - $(C_3$ - $C_7)$ cycloalkyl,

-($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} ,

-($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$,

-($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$,

30

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{B-aryl}}$ or $R_{\text{B-heteroaryl}}$ or $R_{\text{B-}}$

heterocycle.

4. A substituted amine according to claim 3, where R_A is:

151

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl},$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl,} or

-cyclopentyl or -cyclohexyl ring fused to a $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

where R_B is:

heterocycle; and

 $-(CR_{B-x}R_{B-y})_{0.4}-R_{B-aryl}$

 $-(CR_{B-x}R_{B-y})_{0-4}-R_{B-heteroaryl}$, or

-cyclopentyl or -cyclohexyl ring fused to R_{B-aryl} or R_{B-heteroaryl} or R_{B-}

heterocycle.

10

- 5. A substituted amine according to claim 1 where R₁ is -(CH₂)-(R_{1-aryl}) where R_{1-aryl} is phenyl.
- 6. A substituted amine according to claim 1 where R₁ is
 -(CH₂)-(R_{1-aryl}) where R_{1-aryl} is phenyl substituted with two -F.

7. A substituted amine according to claim 6 where the -F substitution is 3,5-difluorobenzyl.

8. A substituted amine according to claim 1 where R₂ is -H.

9. A substituted amine according to claim 1 where R₃ is -H.

10. A substituted amine according to claim \(\mathbb{Y} \) where R_N is

 R_{N-1} - X_N -, where X_N is -CO-, where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl substituted with one -CO-NR_{N-2}R_{N-3} where the substitution on phenyl is 1,3-.

11. A substituted amine according to claim 10 where R_{N-2} and R_{N-3} are the same and are C_3 alkyl.

12. A substituted amine according to claim 1 where R_N is

 R_{N-1} - X_N - where X_N is—CO-, and where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl substituted with one C_1 alkyl and with one -CO- $NR_{N-2}R_{N-3}$ where the substitution on the phenyl is 1,3,5-.

25

y L (13)³

15

25

14. A substituted amine according to claim 1 where R_N is 5

 $R_{N-1}X_{N}$, where X_N is -CO-, and where R_{N-1} is $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is substituted with one -CO-NR_{N-2}R_{N-3}.

- 15. A substituted arrive according to claim 14 where R_{N-2} and R_{N-3} are the same and are -C₃ alkyl.
- 16. A substituted amine according to claim Y where R_A is:

-(CR_{A-x}R_{A-x})₀₋₄-R_{A-aryl} where R_{A-aryl} is phenyl,

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl},

- -cyclopentyl or -cyclonexyl ring fused to a R_{A-aryl} or R_{A-heteroaryl} or R_{A-heterocycle}.
- 17. A substituted amine according to claim 16 where R_A is:

- $(CR_{A-x}R_{A-y})_{0-4}$ - R_{A-aryl} where R_{A-aryl} is phenyl.

- 18. A substituted amine according to claim 17 where phenyl is substituted in the 3-20 position or 3,5-positions.
 - 19. A substituted amine according to claim 16 where RA is -(CH₂)-R_{A-heteroaryl}.

20. A substituted arrive according to claim 16 where RA is:

-(CH₂)-R

21. A substituted amine according to claim-16 where RA is:

30 -cyclohexyl ring fused to a phenyl ring.

22. A substituted amine according to claim 1 where R_B is:

-(CR_{B-x}R_{B-y})0₄-R_{B-aryl} where R_{B-aryl} is phenyl, -(CR_{B-x}R_{B-y})0₄-R_{B-heteroaryl},

-cyclopentyl or -cyclohexyl ring fused to a $R_{\text{B-aryl}}$ or $R_{\text{B-heterocycle-heterocycle-}}$

- 23. A substituted amine according to claim 22 where R_B is:
 - -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl} where R_{B-aryl} is phenyl.

5

- 24. A substituted amine according to claim 23 where phenyl is substituted in the 3position or 3,5-positions.
- substituted amine according to claim 22 where R_B is:

10

 $\mathrm{CH_2}$)- $\mathrm{R_{B-heteroaryl}}$.

- 26. A substituted amine according to claim 22 where R_B is:
- 27. A substituted amine according to claim 22 where R_B is: 15 -cyclohexyl ring fused to a phenyl ring.
 - 28. A substituted amine according to claim 1, where R_B is absent.

20

30

29. A substituted amine according to claim 1 chosen from the group consisting of: N-[1-(3,5-Difluoro-benzyl)-2-hydroxy-3-(N'-methyl-N'-phenyl-hydrazino)propyl]-5-methyl-N\N'-dipropyl-isophthalamide,

N-{1-(3,5-Difluoro-benzyl)-2-hydroxy-3-[N'-methyl-N'-(4-methyl-pentanoyl)hydrazino]-propyl}-5-methyl-N',N'-dipropyl-isophthalamide, and

- 25 N-[1-(3,5-Difluoro-benzxl)-2-hydroxy-3-phenoxyamino-propyl]-5-methyl-N',N'dipropyl-isophthalamide.
 - 30. A substituted amine according to claim where the pharmaceutically acceptable salt is selected from the group consisting of salts of the following acids acetic, aspartic, benzenesulfonic, benzoic, bicarbonic, bisulfuric, bitartaric, butyric, calcium edetate, camsylic, carbonic, chlorobenzoic, citric, edetic, edisylic, estolic, esyl, esylic, formic,

fumaric, gluceptic, gluconic, glutamic, glycollylarsanilic, hexamic, hexylresorcinoic, hydrobromic, hydrochloric, hydroiodic, hydroxymaphthoic, isethionic, lactic,

lactobionic, maleic, malic, malonic, mandelic, methanesulfonic, methylnitric,

methylsulfuric, muche, muconic, napsylic, nitric, oxalic, p-nitromethanesulfonic, pamoic, pantothenic, phosphoric, monohydrogen phosphoric, dihydrogen phosphoric, phthalic, polygalactouronic, propionic, salicylic, stearic, succinic, sulfamic, sulfamilic, sulfonic, sulfuric, tannic, tartaric, teoclic and toluenesulfonic.

5

31. A protected compound of the formula (II)

PROTECTING GROUP
$$\begin{pmatrix} R_1 & R_2 & R_3 & R_B \\ N & N & N & R_A & II \end{pmatrix}$$

10

15

20

25

where R₁ is:

(I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, -NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R $_{1\text{-}a}$ and R $_{1\text{-}b}$ are -H or C_1 - C_6 alkyl, and -OC \equiv O NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R $_{1\text{-}a}$ and R $_{1\text{-}b}$ are as defined above,

- (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
- (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
- (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (VI) - $(CH_2)_{n1}$ - (R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:
 - (A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, and C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- 30 (B) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

C1, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(D) -F, Cl, -Br or -I,

(F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

- F,

5

10

15

20

30

(G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(H) -OH,

(I) -C≡N,

(J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(K) $-CO-(C_1-C_4 \text{ alkyl})$,

(L) –SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(M) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or

(N) -SO₂- $(C_1$ - C_4 alkyl),

(VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_{1-heteroaryl} is selected from the group consisting of:

pyridinyl,

pyrimidinyl,

quinolinyl,

25 benzothienyl,

indolyl,

indolinyl,

pryidazinyl,

pyrazinyl,

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

imidazolyl, isoxazolyl, pyrazolyl, oxazolyl, 5 thiazolyl, indolizinyl, indazolyl, benzothiazolyl, benzimidazolyl, 10 benzofuranyl, furanyl, thienyl, pyrrolyl, oxadiazolyl, 15 thiadiazolyl, triazolyl, tetrazolyl, oxazolopyridinyl, imidazopyridinyl, 20 isothiazolyl, naphthyridinyl, cinnolinyl, carbazolyl, beta-carbolinyl, 25 isochromanyl, chromanyl, tetrahydroisoquinolinyl, isoindolinyl, isobenzotetrahydrofuranyl, 30 isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl, pyridopyridinyl, benzotetrahydrofuranyl,

	benzotetrahydrothienyl,
	purinyl,
	benzodioxolyl,
	triazinyl,
5	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,
	benzothiazolyl,
	imidazopyridinyl,
10	imidazothiazolyl,
	dihydrobenzisoxazinyl,
	benzisoxazinyl,
	benzoxazinyl,
	dihydrobenzisothiazinyl,
15	benzopyranyl,
*	benzothiopyranyl,
	coumarinyl,
	isocoumarinyl,
	chromonyl,
20	chromanonyl,
	pyridinyl-N-oxide,
	tetrahydroquinolinyl
	dihydroquinolinyl
	dihydroquinolinonyl
25	dihydroisoquinolinonyl
	dihydrocoumarinyl
	dihydroisocoumarinyl
	isoindolinonyl
	benzodioxanyl
30	benzoxazolinonyl
	pyrrolyl N-oxide,
	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
	pyrazinyl N-oxide,

10

15

20

25

quinolinyl N-oxide,
indolyl N-oxide,
indolinyl N-oxide,
isoquinolyl N-oxide,
quinazolinyl N-oxide,
quinoxalinyl N-oxide,
phthalazinyl N-oxide,
imidazolyl N-oxide,
isoxazolyl N-oxide,
oxazolyl N-oxide,
thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,
oxadiazolyl N-oxide,
thiadiazolyl N-oxide,
triazolyl N-oxide,
tetrazolyl N-oxide,
benzothiopyranyl S-oxide, and
benzothiopyranyl S,S-dioxide,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

30 (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

5

(4) -F, Cl, -Br or -I,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three of -F,

(7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(8) –OH,

10

(9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO- $(C_1$ - C_4 alkyl),

15

(12) –SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(13) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above, or

(14) $-SO_2$ -(C₁-C₄ alkyl), with the proviso that when n_1 is

20 zero R_{1-heteroaryl} is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

morpholinyl,

thiomorpholinyl,

25

thiomorpholinyl S-oxide,

thiomorpholinyl S,S-dioxide,

piperazinyl,

homopiperazinyl,

pyrrolidinyl,

30

pyrrolinyl,

tetrahydropyranyl,

piperidinyl,

tetrahydrofuranyl,

10

15

20

tetrahydrothienyl,
homopiperidinyl,
homomorpholinyl,
homothiomorpholinyl,
homothiomorpholinyl S,S-dioxide,
oxazolidinonyl,
dihydropyrazolyl,

dihydropyrrolyl,

dihydropyrazinyl,

dihydropyridinyl,

dihydropyrimidinyl,

dihydrofuryl,

dihydropyranyl,

tetrahydrothienyl S-oxide,

tetrahydrothienyl S,S-dioxide, and

homothiomorpholinyl S-oxide,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-}}$ heterocycle group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

- (1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C_1 - C_1 - C_2 - C_3 - C_4 - C_5 - C_5 - C_6 - C_6
- (3) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(4) -F, Cl, -Br or -I.

(5) C_1 - C_6 alkoxy,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three -F,

5

15

20

25

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) –OH,
- (9) -C \equiv N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO- $(C_1$ - C_4 alkyl),

10 (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

(13) –CO-NR_{1-a} R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(14) –SO₂-(C₁-C₄ alkyl), or

(15) =O, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen;

where R₂ is:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, - SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -

C=N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, or $(VI) - (CH_2)_{0-4} - C_3 - C_7 \text{ cycloalkyl, optionally substituted with one, two or}$ three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C=N, -CF₃,

 C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl;

13615.40USU

where R₃ is:

(I)-H,

- (II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
 - -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above
 - (IV) C₂-C₆ alkenyl with one or two double bonds,
- 10 (V) C₂-C₆ alkynyl with one or two triple bonds; or
 - (VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
- and where R₂ and R₃ are taken together with the carbon to which they are

 attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally
 where one carbon atom is replaced by a heteroatom selected from the group consisting of

 -O-, -S-, -SO₂-, and -NR_{N-2}-, where R_{N-2} is selected from the group consisting of:
 - (a) -H,
 - (b) -C₁-C₆ alkyl optionally substituted with one
- 20 substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH2,
 - (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

25

30

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) $-C_2-C_6$ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

- (j) -R_{1-arvl} where R_{1-arvl} is as defined above, and
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above;

where R_N is:

(I) R_{N-1} - X_N - where X_N is selected from the group consisting of:

5

10

15

 $(B) - SO_2-$

(C) -(CR'R")₁₋₆ where R' and R" are the same or different and are -H and C_1 - C_4 alkyl,

(D) –CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group consisting of –O-, -S- and –NR'- and where R' and R" are as defined above, and

(E) a single bond;

where R_{N-1} is selected from the group consisting of:

(A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl, 2-naphthyl, tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

20

(2) –OH,

 $(3) -NO_2$,

(4) -F, -Cl, -Br, -I,

(5) -CO-OH,

(6) -C≡N,

25.

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:

30

(i) -OH, and

(ii) -NH₂,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

5

10

15

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, and
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- $(8) (CH_2)_{0-4} CO (C_1 C_{12} \text{ alkyl}),$
- (9) -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three

double bonds),

(10) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

(11) –(CH₂)_{0.4}-CO-<math>(C₃-C₇ cycloalkyl),

- (12) $(CH_2)_{0.4}$ -CO- R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

(14) – $(CH_2)_{0.4}$ -CO- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as

20 defined above,

(15) –(CH₂)_{0.4}-CO-R_{N.4} where R_{N.4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperadinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,

(16) –(CH₂)_{0.4}-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:

- (a) C₁-C₆ alkyl,
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined

30 above,

25

(c) C₂-C₆ alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

- (e) C3-C7 cycloalkyl, and
- (f) -(CH₂)₀₋₂-(R_{1-heteroaryl}) where $R_{1\text{-heteroaryl}}$ is as

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

5 defined above.

- (18) - $(CH_2)_{0-4}$ -SO- $(C_1$ - C_8 alkyl),
- (19) $-(CH_2)_{0-4}$ -SO₂-(C₁-C₁₂ alkyl),
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)_{0.4}-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be
- 10 the same or different and is as defined above,

(22) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above.

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

15 $(24) - (CH_2)_{0.4} - N(-H \text{ or } R_{N-5}) - CO - R_{N-2} \text{ where } R_{N-5} \text{ and } R_{N-2}$ can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

- (26) –(CH₂)_{0.4}- R_{N-4} where R_{N-4} is as defined above,
- (27) –(CH₂)₀₋₄–O-CO-<math>(C₁-C₆ alkyl),
 - (28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where R_{N-aryl-1} is –H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above,

20

25 (30) $-(CH_2)_{0.4}$ -O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

(31) –(CH₂)₀₋₄-O-(R_{N-5})₂ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

30

(33) –(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as defined above,

(34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with one, two, three, four, or five of –F).

(35) C₃-C₇ cycloalkyl,

25

30

(36) C2-C6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C2-C6 alkynyl with one or two triple bonds optionally 5 substituted with C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or $R_{\text{N-5}}$)-SO₂-R_{N-2} where $R_{\text{N-5}}$ and $R_{\text{N-2}}$ can be the same of different and are as described above, or

(39) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl,

10 (B) $-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is selected from the group consisting of:

> pyridinyl, pyrimidinyl, quinolinyl,

15 benzothienyl, indolyl,

indolinyl, pryidazinyl,

pyrazinyl,

isoindolyl, isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

imidazolyl,

isoxazolyl,

pyrazolyl, oxazolyl,

thiazolyl,

indolizinyl,

indazolyl,

benzothiazolyl,

benzimidazolyl,

167

	benzofuranyl,
	furanyl,
	thienyl,
	pyrrolyl,
5	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
	tetrazolyl,
	oxazolopyridinyl,
10	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
	cinnolinyl,
	carbazolyl,
15	beta-carbolinyl,
	isochromanyl,
	chromanyl,
	tetrahydroisoquinolinyl,
	isoindolinyl,
20	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
• 30	isobenzothienyl,
	benzoxazolyl,
	pyridopyridinyl,
25	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
	purinyl,
	benzodioxolyl,
	triazinyl,
30	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,
	benzothiazolyl,
	imidazopyridinyl,

		imidazothiazolyl,
		dihydrobenzisoxazinyl,
		benzisoxazinyl,
		benzoxazinyl,
5		dihydrobenzisothiazinyl,
		benzopyranyl,
		benzothiopyranyl,
		coumarinyl,
		isocoumarinyl,
10		chromonyl,
		chromanonyl,
		pyridinyl-N-oxide,
		tetrahydroquinolinyl,
		dihydroquinolinyl,
15		dihydroquinolinonyl,
		dihydroisoquinolinonyl,
		dihydrocoumarinyl,
		dihydroisocoumarinyl,
		isoindolinonyl,
20		benzodioxanyl,
		benzoxazolinonyl,
		pyrrolyl N-oxide,
		pyrimidinyl N-oxide,
		pyridazinyl N-oxide,
25		pyrazinyl N-oxide,
		quinolinyl N-oxide,
		indolyl N-oxide,
		indolinyl N-oxide,
		isoquinolyl N-oxide,
30		quinazolinyl N-oxide,
	•	quinoxalinyl N-oxide,
		phthalazinyl N-oxide,
		imidazolyl N-oxide,
	·	isoxazolyl N-oxide,

10

20

oxazolyl N-oxide,

thiazolyl N-oxide,

indolizinyl N-oxide,

indazolyl N-oxide,

benzothiazolyl N-oxide,

benzimidazolyl N-oxide,

pyrrolyl N-oxide,

oxadiazolyl N-oxide,

thiadiazolyl N-oxide,

triazolyl N-oxide,

tetrazolyl N-oxide,

benzothiopyranyl S-oxide, and

benzothiopyranyl S,S-dioxide

where the R_{N-heteroaryl} group is bonded by any atom of the parent R_{N-}

heteroaryl group substituted by hydrogen such that the new bond to the R_{N-heteroaryl} group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

- (2) OH,
- $(3) -NO_2$,
- (4) -F, -Cl, -Br, or -I,
- 25 (5) -CO-OH,
 - (6) -C≡N,

 $(7) - (CH_2)_{0.4} - CO-NR_{N-2}R_{N-3} \ where \ R_{N-2} \ and \ R_{N-3} \ are \ the$ same or different and are selected from the group consisting of:

- (a) -H,
- 30 (b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) $-NH_2$,

bonds,

(c) -C₁-C₆ alkyl optionally substituted with one, two, or three -F, -Cl, -Br, -I, (d) -C₃-C₇ cycloalkyl, (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$, 5 (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, (g) $-C_2$ - C_6 alkenyl with one or two double bonds, (h) $-C_2$ - C_6 alkynyl with one or two triple bonds, (i) -C₁-C₆ alkyl chain with one double bond and one triple bond, 10 (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above, (8) –(CH₂)₀₋₄-CO-<math>(C₁-C₁₂ alkyl), (9) -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three double bonds), 15 (10) –(CH₂)₀₋₄-CO-<math>(C₂-C₁₂ alkynyl with one, two or three triple bonds), (11) – $(CH_2)_{0.4}$ -CO- $(C_3$ - C_7 cycloalkyl), (12) –(CH₂)₀₋₄-CO-R_{1-aryl} where R_{1-aryl} is as defined above,(13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined 20 above, (14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as defined above, (15) –(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, 25 homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl, (16) –(CH₂)_{0.4}-CO-O-R_{N-5} where R_{N-5} is selected from thegroup consisting of: 30 (a) C_1 - C_6 alkyl, (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above, (c) C₂-C₆ alkenyl containing one or two double

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

- (e) C₃-C₇ cycloalkyl, and
- (f) -(CH₂)₀₋₂-($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as

5 defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

- (18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),
- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),
- 10 (20) –(CH₂)_{0.4}-SO₂-<math>(C₃-C₇ cycloalkyl),

(21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be the same or different and is as defined above,

 $(22) - (CH_2)_{0\text{-}4} - N(H \text{ or } R_{N\text{-}5} \text{)-CO-N}(R_{N\text{-}5})_2, \text{ where } R_{N\text{-}5} \text{ can}$ be the same or different and is as defined above,

15 (23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

- (26) (CII) P 1 P 1
 - (26) –(CH₂)₀₋₄-R_{N-4} where R_{N-4} is as defined above,
 - (27) –(CH₂)₀₋₄–O-CO-<math>(C₁-C₆ alkyl),
 - (28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

C₁-C₄ alkyl,

- 25 (29) $-(CH_2)_{0-4}$ -O-CO-N(R_{N-5})₂ where R_{N-5} is as defined
 - (30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

above,

- (31) $-(CH_2)_{0-4}$ -O- $(R_{N-5})_2$ where R_{N-5} is as defined above,
- 30 (32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined above,
 - (33) –(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as defined above,
 - (34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with one, two, three, four, or five of –F),

25

5

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or

10 (39) - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,

- (C) $R_{N\text{-}\text{aryl}}\text{-}W\text{-}R_{N\text{-}\text{aryl}},$ where $R_{N\text{-}\text{aryl}}$ can be the same or different,
- (D) R_{N-aryl}-W-R_{N-heteroaryl},
- (E) $R_{N\text{-aryl}}$ -W- $R_{N\text{-1-heterocycle}}$, wherein $R_{N\text{-1-heterocycle}}$ is the same as $R_{1\text{-heterocycle}}$, and $R_{1\text{-heterocycle}}$ is as defined above

(F) R_{N-heteroaryl}-W-R_{N-aryl},

- (G) $R_{N\text{-heteroaryl}}\text{-}W\text{-}R_{N\text{-heteroaryl}}$,
- (H) R_{N-heteroaryl}-W-R_{N-1-heterocycle},
- $\label{eq:condition} \mbox{(I)} \ R_{\mbox{N-heterocycle}}\mbox{-W-R}_{\mbox{N-aryl}}\mbox{, wherein}\ R_{\mbox{N-heterocycle}}\ \mbox{is the same as}\ R_{\mbox{1-heterocycle}}\mbox{,}$ $\mbox{heterocycle}\ \mbox{is as defined above, and}\ R_{\mbox{N-aryl}}\mbox{ is as defined above,}$

(J) R_{N-heterocycle}-W-R_{N-heteroaryl}, and

(K) $R_{N-heterocycle}$ -W- $R_{N-1-heterocycle}$,

where W is

- (5) –(CH₂)₀₋₄-,
- (6) 0 -

 $(7) - S(O)_{0-2}$

- (8) $-N(R_{N-5})$ where R_{N-5} is as defined above, or
- (5) –CO-;

(II) -CO-(C₁-C₁₀ alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:

30 (A) -OH,

- (B) -C₁-C₆ alkoxy,
- (C) -C₁-C₆ thioalkoxy,
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or -phenyl,

- (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- 5 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO- $(C_1$ - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and
- 10 are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are

as defined above,

-F, -CI, -Br, or -I),

15 (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,

(P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- (R) -F, or -Cl,
- 20 (III) $-\text{CO-}(C_1-C_6 \text{ alkyl})-\text{O-}(C_1-C_6 \text{ alkyl})$ where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
- 25 (D) $-\text{CO-O-R}_{N-8}$ where R_{N-8} is -H, C_1 - C_6 alkyl or -phenyl,
 - (E) $-\text{CO-NR}_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- 30 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,

- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
- 5 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
 - (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

-F, -CI, -Br, or -I),

10

15

25

- (Q) -NH-SO₂-(C₁-C₆ alkyl), and
- (R) -F, or -Cl,

(IV) -CO-(C₁-C₆ alkyl)-S-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three of substitutents selected from the group consisting of:

- (A) -OH,
- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) -CO-O-R_{N-8} where R_{N-8} is as defined above,
- (E) $-\text{CO-NR}_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
- 20 (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
- 30 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O-(C₁-C₅ alkyl)-COOH,

- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of -F, -Cl, -Br, or -I),
 - (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
 - (R) -F, or -Cl,
- (V) –CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:
 - (A) H,
 - (B) C₁-C₆ alkyl,
 - (C) C₃-C₇ cycloalkyl,
- 10 (D) C₂-C₆ a
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C₂-C₆ alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
 - (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above, or
 - (VI) -CO-(C₃-C₈ cycloalkyl) where alkyl is optionally substituted with one
- or two substitutents selected from the group consisting of:
 - $(A) (CH_2)_{0-4} OH,$
 - (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
 - (C) $-(CH_2)_{0-4}$ -C₁-C₆ thioalkoxy,
 - (D) -(CH₂)₀₋₄-CO-O- R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or phenyl,
- 20 (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) - $(CH_2)_{0-4}$ -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-(CH_2)_{0-4}$ -SO₂-(C₁-C₈ alkyl),
 - (H) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or
- 25 different and are as defined above,
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or

different and are as defined above,

- 30 (L) -(CH₂)₀₋₄- R_{N-4} where R_{N-4} is as defined above,
 - (M) $-O-CO-(C_1-C_6 \text{ alkyl})$.

(N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,

- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

5 -F, -Cl, -Br, or -I),

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- (R) -F, or -Cl;

where R_A is:

a and R_{1-b} are as defined above,

10 (I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_6$ alkoxy, -O-phenyl, -NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R $_{1\text{-}a}$ and R $_{1\text{-}b}$ are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, - $NR_{1-a}C=O\ NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} 15

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C1-C3 alkCyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1-C_6 alkoxy, -O-phenyl, -CO-OH, -CO-OH

O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, 20

(III) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} where R_{A-x} and R_{A-y} are

- (A) H
- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

25 F,

- (D) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,
- (E) C₂-C₆ alkenyl containing one or two double bonds,
- (F) C₂-C₆ alkynyl contianing one or two triple bonds, or
- (G) phenyl,
- 30 and where R_{A-x} and R_{A-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of –O-, -S-, -SO₂-, and -NR_{N-2}- and R_{A-aryl} is the same as R_{N-aryl} ,

- (IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-x} and R_{A-y} are as defined above,
- (V) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-aryl} where R_{A-aryl}, R_{A-x} and R_{A-y} are as defined above,
- $(VI) (CR_{A-x}R_{A-y})_{0-4} R_{A-aryl} R_{A-heteroaryl} \ where \ R_{A-aryl} \ , \ R_{A-heteroaryl} \ , R_{A-heteroaryl} \ , R_{A-x} \ and \ R_{A-y} \ are \ as \ defined \ above,$
 - (VII) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl}-R_{A-aryl} where R_{A-heteroaryl}, R_{A-aryl}, R_{A-x} and R_{A-v} are as defined above,
- $(VIII) (CR_{A-x}R_{A-y})_{0-4} R_{A-heteroaryl} R_{A-heteroaryl} \ where \ R_{A-heteroaryl}, \ R_{A-x} \ and \ R_{A-1}$ and R_{A-1} are as defined above,

 - $(X) \text{ -(}CR_{A\text{-}x}R_{A\text{-}y})_{0\text{-}4}\text{-}R_{A\text{-heteroaryl}}\text{-}R_{A\text{-heterocycle}}\text{ where }R_{A\text{-heteroaryl}}\text{, }R_{A\text{-heterocycle,}}$ $R_{A\text{-}x}\text{ and }R_{A\text{-}y}\text{ are as defined above,}$
- 15 (XI) - $(CR_{A-x}R_{A-y})_{0-4}$ - $R_{A-heterocycle}$ - R_{A-aryl} where $R_{A-heterocycle}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
 - $(XII) \text{ -}(CR_{A-x}R_{A-y})_{0\text{-}4}\text{-}R_{A\text{-heterocycle}}\text{-}R_{A\text{-heteroaryl}} \text{ where } R_{A\text{-heterocycle}}, R_{A\text{-heteroaryl}}, \\ R_{A-x} \text{ and } R_{A-y} \text{ are as defined above,}$
- $(XIII) \text{-}(CR_{A-x}R_{A-y})_{0\text{-}4}\text{-}R_{A\text{-heterocycle}}\text{-}R_{A\text{-heterocycle}}\text{where }R_{A\text{-heterocycle}}, R_{A-x} \text{ and }$ $20 \qquad R_{A-y} \text{ are as defined above,}$
 - (XIV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
 - (XV) -[C(R_{A-1})(R_{A-2})]₁₋₃-CO-N-(R_{A-3})₂ where R_{A-1} and R_{A-2} are the same or different and are selected from the group consisting of:
- 25 (A) -H,
 - (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- 30 (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

5

(E)
$$-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$$

(F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

10

20

25

- (G) -(C₁-C₄ alkyl)- $R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined for R_{1-aryl} ,
- (H) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (J) $-R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is as defined above,
- (K) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,

15

(M) - $(CH_2)_{1-4}$ - R_{A-4} - $(CH_2)_{0-4}$ - $R_{A'-aryl}$ where R_{A-4} is -O-, -S- or

-NR_{A-5}- where R_{A-5} is C₁-C₆ alkyl, and where R_{A'-aryl} is defined above,

(N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and R_{A-heteroaryl} are as defined above, and

(O) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above, and where R_{A-3} is the same or different and is:

(A) -H,

(B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

30

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(E) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

5

10

15

20

25

30

- (F) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,
- (G) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (H) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (J) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (K) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined

above, or

(XVI) $-CH(R_{A\text{-aryl}})_2$ where $R_{A\text{-aryl}}$ are the same or different and are as defined above,

(XVII) -CH $(R_{A-heteroaryl})_2$ where $R_{A-heteroaryl}$ are the same or different and are as defined above,

(XVIII) –CH(R_{A-aryl})($R_{A-heteroaryl}$) where R_{A-aryl} and $R_{A-heteroaryl}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{A\text{-aryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heterocycle}}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5}, O, or S(=O)₀₋₂, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two -C₁-C₃ alkyl, -F, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, =O, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XXI) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-aryl} where R_{A-aryl} is as defined above and R_{A-6} is -(CH₂)₀₋₆-OH,


```
(XXII) -(CH_2)_{0-1}-CHR<sub>A-6</sub>-(CH_2)_{0-1}-R<sub>A-heteroaryl</sub> where R<sub>A-heteroaryl</sub> and R<sub>A-6</sub> is
        as defined above,
                           (XXIII) –CH(-R_{A-aryl} or R_{A-heteroaryl})-CO-O(C_1-C_4 alkyl) where R_{A-aryl} and
        R<sub>A-heteroaryl</sub> are as defined above,
  5
                           (XXIV) -CH(-CH<sub>2</sub>-OH)-CH(-OH)-micro-NO<sub>2</sub>,
                           (XXV) (C<sub>1</sub>-C<sub>6</sub> alkyl)-O-(C<sub>1</sub>-C<sub>6</sub> alkyl)-OH,
                           (XXVII) –CH_2-NH-CH_2-CH(-O-CH_2-CH_3)_2
                           (XXVIII)-H,
                           (XXIX) -(CH<sub>2</sub>)<sub>0-6</sub>-C(=NR<sub>1-a</sub>)(NR<sub>1-a</sub>R<sub>1-b</sub>) where R_{1-a} and R_{1-b} are as defined
10
                 above; or
                           (XXX)
                                    -C=OC(HR<sub>6</sub>)NHR<sub>7</sub>, where R_6 and R_7 are as defined below,
                                     -C=OR_7, where R_7 is as defined below,
                                     -C=OOR<sub>7</sub>, where R<sub>7</sub> is as defined below, or
15
                                    - SOOR<sub>7</sub> where R<sub>7</sub> is as defined below,
                                              wherein R<sub>6</sub> is:
                                                  hydrogen,
                                                  C_1 - C_3 alkyl,
                                                  phenyl,
20
                                                  thioalkoxyalkyl,
                                                  alkyl substituted aryl,
                                                  cycloalkyl,
                                                  cycloalkylalkyl,
                                                  hydroxyalkyl,
25
                                                  alkoxyalkyl,
                                                  aryloxyalkyl,
                                                  haloalkyl,
                                                  carboxyalkyl,
                                                  alkoxycarbonylalkyl,
30
                                                  aminoalkyl,
                                                  (N-protected)aminoalkyl,
                                                  alkylaminoalkyl,
                                                  ((N-protected)(alkyl)amino)alkyl,
                                                  dialkylaminoalkyl,
```

guanidinoalkyl, lower alkenyl, heterocyclic, (heterocyclic)alkyl), 5 arylthioalkyl, arylsulfonyalkyl, (heterocyclic)thioalkyl, (heterocyclic)sulfonylalkyl, (heterocyclic)oxyalkyl, 10 arylalkoxyalkyl, arylthioalkoxyalkyl, arylalkylsulfonylalkyl, (heterocyclic))alkoxyalkyl, (heterocyclic)thioalkoxyalkyl, 15 (heterocyclic)alkylsulfonylalkyl, cycloalkyloxyalkyl, cycloalkylthioalkyl, cycloalkylsulfonylalkyl, cycloalkylalkoxyalkyl, 20. cycloalkylthioalkoxyalkyl, cycloalkylalkylsulfonylalkyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, 25 aroylalkyl, (heterocyclic)carbonylalkyl, polyhydroxyalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, 30 dialkylaminocarbonylalkyl, aryloxyalkyl, or alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and

tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

	coon, -so ₃ n, lower alkenyl or lower alkyl;	
5	wherein R ₇ is:	
	C ₁ - C ₃ alkyl,	
	phenyl,	
	thioalkoxyalkyl,	
	(aryl)alkyl,	
10	cycloalkyl,	
	cycloalkylalkyl,	
	hydroxyalkyl,	
	alkoxyalkyl,	
	aryloxyalkyl,	
15	haloalkyl,	
	carboxyalkyl,	
	alkoxycarbonylalkyl,	
	aminoalkyl,	
	(N-protected)aminocalkyl,	
20	alkylaminoalkyl,	
	((N-protected)(alkyl)amino)alkyl,	
	dialkylaminoalkyl,	
	guanidinoalkyl,	
	lower alkenyl,	
25	heterocyclic,	
	(heterocyclic)alkyl),	
	arylthioalkyl,	
	arylsulfonyalkyl,	
	(heterocyclic)thioalkyl,	
30	(heterocyclic)sulfonylalkyl,	
	(heterocyclic)oxyalkyl,	
	arylalkoxyalkyl,	
	arylthioalkoxyalkyl,	
	arylalkylsulfonylalkyl,	

10

15

20

25

(heterocyclic))alkoxyalkyl, (heterocyclic)thioalkoxyalkyl, (heterocyclic)alkylsulfonylalkyl. cycloalkyloxyalkyl, cycloalkylthioalkyl, cycloalkylsulfonylalkyl, cycloalkylalkoxyalkyl, cycloalkylthioalkoxyalkyl, cycloalkylalkylsulfonylalkyl, aminocarbonyl, alkylaminocarbonyl. dialkylaminocarbonyl, aroylalkyl, (heterocyclic)carbonylalkyl, polyhydroxyalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aryloxyalkyl, or alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

where R_B is:

(I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -

C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-OH, -CO-O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl} where $R_{\text{B-x}}$ and $R_{\text{B-y}}$ are

- (A)-H
- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

5

10

15

20

- (D) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,
- (E) C2-C6 alkenyl containing one or two double bonds,
- (F) C2-C6 alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{B-x} and R_{B-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ where R_{N-2} is as defined above, and R_{B-aryl} is the same as R_{N-aryl} and is defined above

(IV) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$ is the same as $R_{N-heteroaryl}$, R_{B-x} , and R_{B-y} are as defined above,

(V) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl}-R_{B-aryl} where R_{B-aryl}, R_{B-x}, and R_{B-y} are as defined above,

(VI) -($(CR_{B-x}R_{B-y})_{0-4}$ - R_{B-aryl} - $R_{B-heteroaryl}$ where R_{B-aryl} , $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,

(VII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - R_{B-aryl} where $R_{B-heteroaryl}$, R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,

(VIII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,

(IX) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} - $R_{B-heterocycle}$ where $R_{B-heterocycle}$ is defined as $R_{1-heterocycle}$, and where R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,

25.

30

агуІ

- (X) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl}-R_{B-heterocycle} where R_{B-heteroaryl}, R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,
- (XI) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ - R_{B-aryl} where $R_{B-heterocycle}$, R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,
- $(XII) (CR_{B-x}R_{B-y})_{0-4} R_{B-heterocycle} R_{B-heteroaryl} \ where \ R_{B-heterocycle}, \ R_{B-heteroaryl}, \\ R_{B-x} \ and \ R_{B-y} \ are \ as \ defined \ above,$
 - (XIII) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle}-R_{B-heterocycle} where R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,
- (XIV) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ where $R_{B-heterocycle}$, R_{B-x} and R_{B-y} are as defined above,
 - $(XV) \hbox{-}[C(R_{B\text{--}1})(R_{B\text{--}2})]_{1\text{--}3}\hbox{--}CO\text{--}N\text{--}(R_{B\text{--}3})_2 \text{ where } R_{B\text{--}1} \text{ and } R_{B\text{--}2} \text{ are the same or different and are selected from the group consisting of:}$
 - (A) H,
- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three
 substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
 -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{1-2}$ -S(O)₀₋₂-(C₁-C₆ alkyl),
 - (F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (G) -(C_1 - C_4 alkyl)- R_{B' -aryl</sub> where R_{B' -aryl</sub> is as defined above for R_1 .
 - (H) -(C_1 - C_4 alkyl)- $R_{B\text{-heteroaryl}}$ where $R_{B\text{-heteroaryl}}$ is as defined above,

- (I) -(C₁-C₄ alkyl)-R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (J) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (K) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (M) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B'-aryl} where R_{B-4} is –O-, -S- or
- 5 -NR_{B-5}- where R_{B-5} is C₁-C₆ alkyl, and where R_{B'-aryl} is defined above,
 - (N) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B-heteroaryl} where R_{B-4} and R_{B-heteroaryl} are as defined above, and
 - (O) $-R_{B'-aryl}$ where $R_{B'-aryl}$ is as defined above, and where R_{B-3} is the same or different and is:

10 (A) -H,

- (B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (D) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -Br, -Cl, -Br, -B
- I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (F) -R_{B'-aryl} where R_{B'-aryl} is as defined above,
 - (G) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
 - (H) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
 - (I) -(C₁-C₄ alkyl)-R_{B'-aryl} where R_{B'-aryl} is as defined above,
 - (J) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
 - (K) -(C1-C4 alkyl)-R_{B-heterocycle} where $R_{\text{B-heterocycle}}$ is as defined

above, or

30

(XVI) –CH($R_{B\text{-aryl}}$)₂ where $R_{B\text{-aryl}}$ are the same or different and are as defined above,

(XVII) –CH($R_{B\text{-heteroaryl}}$)₂ where $R_{B\text{-heteroaryl}}$ are the same or different and are as defined above,

5 $(XVIII) - CH(R_{B\text{-aryl}})(R_{B\text{-heteroaryl}}) \text{ where } R_{B\text{-aryl}} \text{ and } R_{B\text{-heteroaryl}} \text{ are as defined above,}$

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{B\text{-aryl}}$ or $R_{B\text{-heteroaryl}}$ or earlier as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH,

NR_{N-5}, O, or S(=O)₀₋₂, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two -C₁-C₃ alkyl, -F, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, =O, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XX) C₂-C₁₀ alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above.

 $(XXI) - (CH_2)_{0\text{--}1} - CHR_{C\text{--}6} - (CH_2)_{0\text{--}1} - RB_{B\text{-aryl}} \ \text{where} \ R_{B\text{-aryl}} \ \text{is as defined above}$ and $R_{C\text{--}6} \ \text{is} - (CH_2)_{0\text{--}6} - OH,$

(XXII) –(CH₂)₀₋₁-CHR_{B-6}-(CH₂)₀₋₁-R_{B-heteroaryl} where R_{B-heteroaryl} and R_{C-6} is as defined above,

25 (XXIII) –CH(- R_{B-aryl} or $R_{B-heteroaryl}$)-CO-O(C_1 - C_4 alkyl) where R_{B-aryl} and $R_{B-heteroaryl}$ are as defined above,

(XXIV) -CH(-CH₂-OH)-CH(-OH)-micro-NO₂, (XXV) (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH,

(XXVII) – CH_2 -NH- CH_2 -CH(-O-CH $_2$ -CH $_3)_{2,}$

30 (XXVIII) –H, or $(XXIX) - (CH_2)_{0-6} - C(=NR_{1-a})(NR_{1-a}R_{1-b}) \text{ where } R_{1-a} \text{ and } R_{1-b} \text{ are as }$ defined above; and

10

15

where PROTECTING GROUP is selected from the group consisting of tbutoxycarbonyl, benzyloxycarbonyl, formyl, trityl, acetyl, trichloroacetyl, dichloroacetyl, chloroacetyl, trifluoroacetyl, difluoroacetyl, fluoroacetyl, 4-phenylbenzyloxycarbonyl, 2methylbenzyloxycarbonyl, 4-ethoxybenzyloxycarbonyl, 4-fluorobenzyloxycarbonyl, 4chlorobenzyloxycarbonyl, 3-chlorobenzyloxycarbonyl, 2-chlorobenzyloxycarbonyl, 2,4dichlorobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 3-bromobenzyloxycarbonyl, 4nitrobenzyloxycarbonyl, 4-cyanobenzyloxycarbonyl, 2-(4-xenyl)isopropoxycarbonyl, 1,1diphenyleth-1-yloxycarbonyl, 1,1-diphenylprop-1-yloxycarbonyl, 2-phenylprop-2yloxycarbonyl, 2-(p-toluyl)prop-2-yloxycarbonyl, cyclopentanyloxycarbonyl, 1methylcyclopentanyloxycarbonyl, cyclohexanyloxycarbonyl, 1methylcyclohexanyloxycabonyl, 2-methylcyclohexanyloxycarbonyl, 2-(4toluylsulfonyl)ethoxycarbonyl, 2-(methylsulfonyl)ethoxycarbonyl, 2-(triphenylphosphino)ethoxycarbonyl, fluorenylmethoxycarbonyl, 2-(trimethylsilyl)ethoxycarbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl)prop-1enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 4-acetoxybenzyloxycarbonyl, 2,2,2trichloroethoxycarbonyl, 2-ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, 4-

(decyloxyl)benzyloxycarbonyl, isobornyloxycarbonyl and 1-piperidyloxycarbonyl, 9-

20 32. A protected compound according to claim-31

where R_A is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

```
where R_1 is: -(CH_2)_{0-1}-(R_{1-aryl}), \text{ or }
-(CH_2)_{n1}-(R_{1-heteroaryl});
where R_N is: R_{N-1}-X_N-, \text{ where } X_N \text{ is selected from the group consisting of: }
-CO-, \text{ and }
-SO_2-,
where R_{N-1} is selected from the group consisting of: -R_{N-aryl}, \text{ and }
-R_{N-heteroaryl}, \text{ or }
```

fluorenylmethyl carbonate, -CH-CH=CH₂ and phenyl-C(=N-)-H.

 $-\text{CO-CH}(-(\text{CH}_2)_{0\text{-}2}-\text{O-R}_{N\text{-}10})-(\text{CH}_2)_{0\text{-}2}-\text{R}_{N\text{-aryl}}/\text{R}_{N\text{-heteroaryl}});$

(

- -(CR_{A-x}R_{A-v})₀₋₄-R_{A-arvl},
- -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl,}
- -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},
- -cyclopentyl or -cyclohexyl ring fused to R_{A-aryl} or $R_{A-heteroaryl}$ or R_{A-}
- 5 heterocycle;

where R_B is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-heteroaryl},$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

heterocycle.

15. 33. A protected compound according to claim 34

where R₁ is:

-(CH₂)-(
$$R_{1-aryl}$$
), or

-(CH₂)-($R_{1-heteroaryl}$);

where R₂ is -H;

where R_3 is -H;

where R_N is:

 R_{N-1} - X_N - where X_N is:

-CO-,

where R_{N-1} is selected from the group consisting of:

 $-R_{N-aryl}$, and

-R_{N-heteroaryl};

where R_A is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl},$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl},

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle}, or

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

heterocycle;

where R_B is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

-(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl}, or

-(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl.}

-(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to R_{B-aryl} or $R_{B-heteroaryl}$ or R_{B-}

heterocycle-

5

15

25

- 34. A protected compound according to claim 3½ where PROTECTING GROUP is t-butoxycarbonyl.
 - 35. A protected compound according to claim 31 where PROTECTING GROUP is benzyloxycarbonyl.

36. A protected compound of the formula (III)

PROTECTING GROUP
$$R_1 \stackrel{R_2}{\stackrel{R_2}{\stackrel{R_3}{\stackrel{R_B}{\stackrel{R_4}{\stackrel{R_5}}{\stackrel{R_5}{\stackrel{R_5}{\stackrel{R_5}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}{\stackrel{R_5}}{\stackrel{R_5}{\stackrel{R_5}}{\stackrel{R_5}{\stackrel{R_5}}{\stackrel{R_5}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}}\stackrel{R_5}{\stackrel{R_5}}{\stackrel{R_5}}{\stackrel{R_5}}}\stackrel{R_5}}{\stackrel{R_5}}}\stackrel{R_5}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R_5}}\stackrel{R$$

where R_1 is:

- (I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and $-OC\equiv O$ $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
 - (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
- (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of $\,$ -F, -Cl, -OH, -
- SH, $-C \equiv N$, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - C = N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) -(CH₂)_{n1}-(R_{1-aryl}) where n₁ is zero or one and where R_{1-aryl} is phenyl,
 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, and C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(D) -F, Cl, -Br or -I,

(F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

20 - F,

30

10

(G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(H) -OH,

(I) -C≡N,

(J) C₃-C₇ cycloalkyl, optionally substituted with one, two or three

substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(K) -CO- $(C_1$ - C_4 alkyl),

(L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(M) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or

(N) –SO₂- $(C_1$ - C_4 alkyl),

(VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_{1-heteroaryl} is selected from the group consisting of:

pyridinyl.

	pyrimidinyl,
	quinolinyl,
	benzothienyl,
	indolyl,
5	indolinyl,
	pryidazinyl,
	pyrazinyl,
	isoquinolyl,
	quinazolinyl,
10	quinoxalinyl,
	phthalazinyl,
	imidazolyl,
	isoxazolyl,
	pyrazolyl,
15	oxazolyl,
	thiazolyl,
	indolizinyl,
	indazolyl,
	benzothiazolyl,
20	benzimidazolyl,
	benzofuranyl,
	furanyl,
	thienyl,
	pyrrolyl,
25	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
	tetrazolyl,
	oxazolopyridinyl,
30	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
	cinnolinyl,

carbazolyl,

beta-carbolinyl, isochromanyl, chromanyl, tetrahydroisoquinolinyl, 5 isoindolinyl, isobenzotetrahydrofuranyl, isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl, 10 pyridopyridinyl, benzotetrahydrofuranyl, benzotetrahydrothienyl, purinyl, benzodioxolyl, 15 triazinyl, phenoxazinyl, phenothiazinyl, pteridinyl, benzothiazolyl, 20 imidazopyridinyl, imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl, benzoxazinyl, 25 dihydrobenzisothiazinyl, benzopyranyl, benzothiopyranyl, coumarinyl, isocoumarinyl, 30 chromonyl, chromanonyl, pyridinyl-N-oxide, tetrahydroquinolinyl dihydroquinolinyl

	dihydroquinolinonyl
	dihydroisoquinolinonyl
	dihydrocoumarinyl
	dihydroisocoumarinyl
5	isoindolinonyl
	benzodioxanyl
	benzoxazolinonyl
	pyrrolyl N-oxide,
	pyrimidinyl N-oxide,
10	pyridazinyl N-oxide,
	pyrazinyl N-oxide,
	quinolinyl N-oxide,
	indolyl N-oxide,
	indolinyl N-oxide,
15	isoquinolyl N-oxide,
``	quinazolinyl N-oxide,
`	quinoxalinyl N-oxide,
	phthalazinyl N-oxide,
	imidazolyl N-oxide,
20	isoxazolyl N-oxide,
	oxazolyl N-oxide,
	thiazolyl N-oxide,
	indolizinyl N-oxide,
	indazolyl N-oxide,
25	benzothiazolyl N-oxide,
	benzimidazolyl N-oxide,
	pyrrolyl N-oxide,
	oxadiazolyl N-oxide,
	thiadiazolyl N-oxide,
30	triazolyl N-oxide,
	tetrazolyl N-oxide,
	benzothiopyranyl S-oxide, and
	benzothiopyranyl S,S-dioxide,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, - $C \equiv N$, - CF_3 , C_1 - C_3 alkoxy, and - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 -OH, -SH, - C_2 N, - C_3 R, C_1 - C_3 alkoxy, and - C_1 R, where C_1 -and C_1 -are -H or C_1 - C_2 alkyl,

(4) -F, Cl, -Br or -I,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three of -F,

10

15

20

25

30

(7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(8) –OH,

(9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO- $(C_1$ - C_4 alkyl),

(12) –SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(13) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above, or

(14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero $R_{1\text{-heteroaryl}}$ is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

morpholinyl, thiomorpholinyl, thiomorpholinyl S-oxide, thiomorpholinyl S,S-dioxide, 5 piperazinyl, homopiperazinyl, pyrrolidinyl, pyrrolinyl, tetrahydropyranyl, 10 piperidinyl, tetrahydrofuranyl, tetrahydrothienyl, homopiperidinyl, homomorpholinyl, 15 homothiomorpholinyl, homothiomorpholinyl S,S-dioxide, oxazolidinonyl, dihydropyrazolyl, dihydropyrrolyl, 20 dihydropyrazinyl, dihydropyridinyl, dihydropyrimidinyl, dihydrofuryl, dihydropyranyl, 25 tetrahydrothienyl S-oxide, tetrahydrothienyl S,S-dioxide, and homothiomorpholinyl S-oxide,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent R_1 .

heterocycle group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) C₂-C₆ alkenyl with one or two double bonds, optionally

substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

10 Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (4) -F, Cl, -Br or -I,
- (5) C_1 - C_6 alkoxy,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or

15 three -F.

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) OH,
- (9) -C \equiv N,
- (10) C₃-C₇ cycloalkyl, optionally substituted with one, two

or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (11) -CO- $(C_1$ - C_4 alkyl),
- (12) $-SO_2$ -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

- (14) -SO₂- $(C_1$ - C_4 alkyl), or
- (15) =0, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen;

30

25

where R2 is:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R₁.

5 heteroaryl are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, or (VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl;

15

30

where R₃ is:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

20 -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above

(IV) C2-C6 alkenyl with one or two double bonds,

(V) C₂-C₆ alkynyl with one or two triple bonds; or

(VI) -(CH₂)_{0.4}- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

and where R_2 and R_3 are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ -, where R_{N-2} is selected from the group consisting of:

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:

- (i) -OH, and
- (ii) -NH₂,

5 (c) -C₁-C₆ alkyl optionally substituted with one, two, or three -F, -Cl, -Br, or -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) -(C_1 - C_6 alkyl)-O-(C_1 - C_3 alkyl),

(g) -C₂-C₆ alkenyl with one or two double bonds,

- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

10

15

20

25

30

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, and
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above;

where R_N is:

(I) R_{N-1} - X_N - where X_N is selected from the group consisting of:

(A) -CO-,

(B) – SO_2 -,

(C) -(CR'R") $_{1-6}$ where R' and R" are the same or different and are -H and C_1 - C_4 alkyl,

(D) -CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group consisting of -O-, -S- and -NR'- and where R' and R" are as defined above, and (E) a single bond;

where R_{N-1} is selected from the group consisting of:

(A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl, 2-naphthyl, tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I,

-OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_3$ alkoxy, and -NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R $_{1\text{-}a}$ and R $_{1\text{-}b}$ are as defined above,

- (2) OH,
- $(3) NO_2$
- (4) -F, -Cl, -Br, -I,
 - (5) -CO-OH,
 - (6) -C≡N,
- $(7)-(CH_2)_{0\text{-}4}-CO-NR_{N\text{-}2}R_{N\text{-}3} \text{ where } R_{N\text{-}2} \text{ and } R_{N\text{-}3} \text{ are the same or different and are selected from the group consisting of:}$
- 10

5

- (a) -H,
- $\label{eq:constituted} \mbox{(b) -C_1-C_6 alkyl optionally substituted with one substitutent selected from the group consisting of:}$
 - (i) -OH, and
 - (ii) $-NH_2$,

- 15
- (c) -C_J-C₆ alkyl optionally substituted with one,
- two, or three -F, -Cl, -Br, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e) -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl),
- (f) -(C_1 - C_6 alkyl)-O-(C_1 - C_3 alkyl),
- (1) (0) 00 mmys) 0 (0) 03 mmys),
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

20

- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) –(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl),
- (9) $-(CH_2)_{0.4}$ -CO- $(C_2$ - C_{12} alkenyl with one, two or three
- double bonds),
- (10) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl with one, two or three
- 30 triple bonds),
- (11) -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl),
- (12) –(CH₂)₀₋₄-CO-R_{1-aryl} where R_{1-aryl} is as defined above,

(13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where $R_{1\text{-heteroaryl}}$ is as defined

above,

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as

defined above,

- (15) –(CH₂)_{0.4}-CO-R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,
- 10 (16) $-(CH_2)_{0-4}$ -CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:
 - (a) C_1 - C_6 alkyl,
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined

above,

15

(c) C₂-C₆ alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

(e) C₃-C₇ cycloalkyl, and

20

(f) -(CH₂)₀₋₂-($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as

defined above.

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

(18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),

25

- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be

the same or different and is as defined above,

(22) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can

30 be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above.

(24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

(26) $-(CH_2)_{0-4}$ - R_{N-4} where R_{N-4} is as defined above,

(27) -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl),

(28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

10 above,

5

(31) –(CH₂)₀₋₄-O-(R_{N-5})₂ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) $-(CH_2)_{0.4}$ -S- $(R_{N-5})_2$ where R_{N-5} is as defined above,

15 (34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with one, two, three, four, or five of –F),

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -

NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2}

25 can be the same of different and are as described above, or

(B) $-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is selected from the group

consisting of:

pyridinyl,

30 pyrimidinyl,

quinolinyl,

benzothienyl,

indolyl,

	indolinyl,
	pryidazinyl,
	pyrazinyl,
	isoindolyl,
5	isoquinolyl,
	quinazolinyl,
	quinoxalinyl,
	phthalazinyl,
	imidazolyl,
10	isoxazolyl,
	pyrazolyl,
	oxazolyl,
	thiazolyl,
	indolizinyl,
15	indazolyl,
	benzothiazolyl,
	benzimidazolyl,
	benzofuranyl,
:	furanyl,
20 .	thienyl,
	pyrrolyl,
	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
25	tetrazolyl,
	oxazolopyridinyl,
	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
30	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
	isochromanyl,

chromanyl,

	tetrahydroisoquinolinyl,
	isoindolinyl,
	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
5	isobenzothienyl,
	benzoxazolyl,
	pyridopyridinyl,
	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
10	purinyl,
	benzodioxolyl,
	triazinyl,
	phenoxazinyl,
	phenothiazinyl,
15	pteridinyl,
	benzothiazolyl,
	imidazopyridinyl,
	imidazothiazolyl,
	dihydrobenzisoxazinyl,
20	benzisoxazinyl,
	benzoxazinyl,
•	dihydrobenzisothiazinyl,
	benzopyranyl,
	benzothiopyranyl,
25	coumarinyl,
	isocoumarinyl,
	chromonyl,
	chromanonyl,
20	pyridinyl-N-oxide,
30	tetrahydroquinolinyl,
	dihydroquinolinyl,
•	dihydroquinolinonyl,
	dihydroisoquinolinonyl,
	dihydrocoumarinyl,

10

15.

20

25

30

•
dihydroisocoumarinyl,
isoindolinonyl,
benzodioxanyl,
benzoxazolinonyl,
pyrrolyl N-oxide,
pyrimidinyl N-oxide,
pyridazinyl N-oxide,
pyrazinyl N-oxide,
quinolinyl N-oxide,
indolyl N-oxide,
indolinyl N-oxide,
isoquinolyl N-oxide,
quinazolinyl N-oxide,
quinoxalinyl N-oxide,
phthalazinyl N-oxide,
imidazolyl N-oxide,
isoxazolyl N-oxide,
oxazolyl N-oxide,
thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,
oxadiazolyl N-oxide,
thiadiazolyl N-oxide,
triazolyl N-oxide,
tetrazolyl N-oxide,
benzothiopyranyl S-oxide, and

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-}heteroaryl}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-}heteroaryl}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

benzothiopyranyl S,S-dioxide

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

5

- (2) OH,
- $(3) NO_2$
- (4) -F, -Cl, -Br, or -I,
- (5) -CO-OH,
- (6) -C \equiv N,

10

 $(7) - (CH_2)_{0\text{--}4} - CO\text{--}NR_{N\text{--}2}R_{N\text{--}3} \text{ where } R_{N\text{--}2} \text{ and } R_{N\text{--}3} \text{ are the same or different and are selected from the group consisting of:}$

- (a) -H,
- (b) -C₁-C₆ alkyl optionally substituted with one

substitutent selected from the group consisting of:

15

- (i) -OH, and
- (ii) -NH₂,
- (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, -I,

20

- (d) -C3-C7 cycloalkyl,
- (e) -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl),
- (f) -(C_1 - C_6 alkyl)-O-(C_1 - C_3 alkyl),
- (g) -C2-C6 alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

25 triple bond,

- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above,
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) -(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl),
- (9) – $(CH_2)_{0.4}$ -CO- $(C_2$ - C_{12} alkenyl with one, two or three

30 double bonds),

(10) –(CH₂)₀₋₄-CO-<math>(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

(11) -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl),

(12) –(CH₂)₀₋₄-CO-R_{1-aryl} where R_{1-aryl} is as defined above,

(13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where $R_{1\text{-heterocycle}}$ is as

5 defined above,

(15) – $(CH_2)_{0.4}$ -CO- R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C_1 - C_6 alkyl,

(16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:

(a) C_1 - C_6 alkyl,

(b) -(CH₂)₀₋₂-(R_{1-aryl}) where $R_{\text{1-aryl}}$ is as defined

15 above,

10

(c) C2-C6 alkenyl containing one or two double

bonds,

(d) C2-C6 alkynyl containing one or two triple

bonds,

20.

(e) C₃.C₇ cycloalkyl, and

(f) -(CH2)0-2-(R1-heteroaryl) where $R_{\text{1-heteroaryl}}\, is$ as

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

25

(18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),

(19) $-(CH_2)_{0-4}$ -SO₂-(C₁-C₁₂ alkyl),

(20) –(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl),

(21) –(CH₂)₀₋₄-N(H or $R_{\text{N-5}}$)-CO-O-R_{N-5} where $R_{\text{N-5}}$ can be

the same or different and is as defined above,

30

(22) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can

be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

5

- (26) $-(CH_2)_{0-4}$ - R_{N-4} where R_{N-4} is as defined above,
- (27) –(CH₂)₀₋₄–O-CO-<math>(C₁-C₆ alkyl),
- (28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

10 above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where $R_{\text{N-5}}$ is as defined

above,

- (31) -(CH₂)₀₋₄-O-(R_{N-5})₂ where R_{N-5} is as defined above,
- (32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

15 above,

30

- (33) $-(CH_2)_{0.4}$ -S- $(R_{N-5})_2$ where R_{N-5} is as defined above,
- (34) – $(CH_2)_{0.4}$ –O- $(C_1$ - C_6 alkyl optionally substituted with

one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

20 (36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-CF_3$, $-CF_4$, $-CF_5$, $-CF_6$, $-CF_6$, $-CF_7$,

NR_{1-a} R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or

(C) $R_{N\text{-aryl}}\text{-}W\text{-}R_{N\text{-aryl}}$, where $R_{N\text{-aryl}}$ can be the same or different,

(D) R_{N-aryl}-W-R_{N-heteroaryl},

(E) $R_{N\text{-aryl}}$ -W- $R_{N\text{-}1\text{-}heterocycle}$, wherein $R_{N\text{-}1\text{-}heterocycle}$ is the same as $R_{1\text{-}heterocycle}$, and $R_{1\text{-}heterocycle}$ is as defined above

(F) R_{N-heteroaryl}-W-R_{N-aryl},

- (G) R_{N-heteroaryl}-W-R_{N-heteroaryl},
- (H) R_{N-heteroaryl}-W-R_{N-1-heterocycle},
- (I) $R_{N\text{-heterocycle}}$ -W- $R_{N\text{-aryl}}$, wherein $R_{N\text{-heterocycle}}$ is the same as $R_{1\text{-}}$

 $_{\text{heterocycle}},$ and $R_{\text{1-heterocycle}}$ is as defined above, and $R_{\text{N-aryl}}$ is as defined above,

5

- (J) $R_{N-heterocycle}$ -W- $R_{N-heteroaryl}$, and
- (K) R_{N-heterocycle}-W-R_{N-1-heterocycle},

where W is

$$(9)$$
 – $(CH2)0-4-,$

- (10) -O-,
- (11) $-S(O)_{0-2}$
- (12) $-N(R_{N-5})$ where R_{N-5} is as defined above, or
- (5) –CO-;

(II) -CO-(C_1 - C_{10} alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:

15

10

- (A) -OH,
- (B) $-C_1-C_6$ alkoxy,
- (C) -C₁-C₆ thioalkoxy,
- (D) -CO-O-R_{N-8} where R_{N-8} is -H, C₁-C₆ alkyl or -phenyl,
- (E) –CO-NR $_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different
- and are as defined above,
 - (F) -CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,

25

- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- (K) -NR $_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,

- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR $_{\text{N-8}}$ R where $R_{\text{N-8}}$ are the same or different and are as defined above,
 - (O) -O-(C_1 - C_5 alkyl)-COOH,

- (P) -O- $(C_1$ - C_6 alkyl optionally substitued with one, two, or three of -F, -CI, -Br, or -I),
 - (Q) -NH-SO₂-(C₁-C₆ alkyl), and
 - (R) -F, or -Cl,
- 5 (III) -CO-(C₁-C₆ alkyl)-O-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) -C₁-C₆ alkoxy,
 - (C) -C₁-C₆ thioalkoxy,
- 10 (D) -CO-O- R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or -phenyl,
 - (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and
- are as defined above,
- (L) - R_{N4} where R_{N4} is as defined above,
- (M) -O-CO-(C_1 - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where $R_{\text{N-8}}$ are the same or different and are as defined above,
- 25 (O) -O-(C_1 - C_5 alkyl)-COOH,
 - (P) $-O-(C_1-C_6)$ alkyl optionally substitued with one, two, or three of -F, -CI, -Br, or -I),
 - (Q) -NH-SO $_2$ -(C $_1$ -C $_6$ alkyl), and
 - (R) -F, or -Cl,
- 30 (IV) -CO-(C₁-C₆ alkyl)-S-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three of substitutents selected from the group consisting of:

 (A) -OH,

- (B) -C₁-C₆ alkoxy,
- (C) -C₁-C₆ thioalkoxy,
- (D) -CO-O-R_{N-8} where R_{N-8} is as defined above,
- (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different
- 5 and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- 10

- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- 15 (M) -O-CO-(C_1 - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where $R_{\text{N-8}}$ are the same or different and are

as defined above,

- (O) -O-(C₁-C₅ alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of
- 20 -F, -Cl, -Br, or -I),
- (Q) -NH-SO $_2$ -(C $_1$ -C $_6$ alkyl), and
- (R) -F, or -Cl,
- $(V) CO-CH(-(CH_2)_{0-2}-O-R_{N-10})-(CH_2)_{0-2}-R_{N-aryl}/R_{N-heteroaryl}) \ where \ R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:
- 25

- (A) H
- (B) C₁-C₆ alkyl,
- (C) C₃-C₇ cycloalkyl,
- (D) C2-C6 alkenyl with one double bond,
- (E) C2-C6 alkynyl with one triple bond,

- (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
- (G) $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above, or
- (VI) -CO-(C₃-C₈ cycloalkyl) where alkyl is optionally substituted with one or two substitutents selected from the group consisting of:

- (A) $-(CH_2)_{0-4}$ -OH,
- (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
- (C) $-(CH_2)_{0-4}-C_1-C_6$ thioalkoxy,
- (D) -(CH₂)₀₋₄-CO-O-R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or phenyl,
- (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) $-(CH_2)_{0-4}-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or
- 10 different and are as defined above,
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or defined above

different and are as defined above,

- 15 (L) -(CH₂)₀₋₄- R_{N-4} where R_{N-4} is as defined above,
 - (M) -O-CO-(C_1 - C_6 alkyl),
 - (N) -O-CO-NR $_{\text{N-8}}R_{\text{N-8}}$ where $R_{\text{N-8}}$ are the same or different and are as defined above,
 - (O) -O-(C₁-C₅ alkyl)-COOH,
- 20 (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of -F, -Cl, -Br, or -I),
 - (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
 - (R) -F, or -Cl;
- where R_A is:
 - (I)- C_1 - C_{10} alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,
 - -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where
- 30 R_{1-a} is as defined above, $NR_{1-a}C=O$ $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, C=O $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, and - $S(=O)_2$ $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkCyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-O+(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

5

10

20

(III) -(CRA-xRA-y)0-4-RA-aryl where $R_{\mbox{\scriptsize A-x}}$ and $R_{\mbox{\scriptsize A-y}}$ are

- (A) H,
- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

(D) - $(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl,

- (E) C2-C6 alkenyl containing one or two double bonds,
- (F) C2-C6 alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{A-x} and R_{A-y} are taken together with the carbon to which they

are attached to form a carbocycle of three, four, five, six or seven carbon atoms,

optionally where one carbon atom is replaced by a heteroatom selected from the group

consisting of -O-, -S-, -SO₂-, and -NR_{N-2}- and R_{A-aryl} is the same as R_{N-aryl},

(IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-y} are as defined above,

(V) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - R_{A-aryl} where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

(VI) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-heteroaryl} where $R_{\text{A-aryl}}$, $R_{\text{A-heteroaryl}}$, $R_{\text{A-max}}$ and $R_{\text{A-y}}$ are as defined above,

(VII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - R_{A-aryl} where $R_{A-heteroaryl}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

(VIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,

(IX) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-heterocycle} where R_{A-heterocycle} is defined as R₁. heterocycle, and where R_{A-aryl}, , R_{A-x} and R_{A-y} are as defined above,

30 (X) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heterocycle}$ where $R_{A-heteroaryl}$, $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,

 $(XI) \text{ -}(CR_{A-x}R_{A-y})_{0\text{-}4}\text{-}R_{A\text{-heterocycle}}\text{-}R_{A\text{-aryl}} \text{ where } R_{A\text{-heterocycle}}, R_{A\text{-aryl}}, R_{A-x} \text{ and } R_{A\text{-}y} \text{ are as defined above,}$

 $(XII) \text{-}(CR_{A-x}R_{A-y})_{0\text{-}4}\text{-}R_{A\text{-heterocycle}}\text{-}R_{A\text{-heteroaryl}} \text{ where } R_{A\text{-heterocycle}}, R_{A\text{-heteroaryl}}, R_{A-x} \text{ and } R_{A-y} \text{ are as defined above,}$

(XIII) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle}-R_{A-heterocycle} where R_{A-heterocycle}, R_{A-x} and R_{A-v} are as defined above,

- 5 (XIV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
 - $(XV) [C(R_{A-1})(R_{A-2})]_{1-3} CO-N (R_{A-3})_2 \text{ where } R_{A-1} \text{ and } R_{A-2} \text{ are the same or different and are selected from the group consisting of:}$
 - (A) H,
- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (D) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃
 20 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
 - $(F)-(CH_2)_{0\text{-}4}-C_3-C_7 \ cycloalkyl, \ optionally \ substituted \ with \ one,$ two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -
- I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (G) -(C₁-C₄ alkyl)- $R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined for R_{1-aryl} ,
 - (H) -(C_1 - C_4 alkyl)- $R_{A\text{-heteroaryl}}$ where $R_{A\text{-heteroaryl}}$ is as defined above,
 - (I) -(C_1 - C_4 alkyl)- R_{A -heterocycle</sub> where R_{A -heterocycle} is as defined above,
 - (J) $-R_{A\text{-heteroaryl}}$ where $R_{A\text{-heteroaryl}}$ is as defined above,
 - (K) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
 - (M) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A'-aryl} where R_{A-4} is -O-, -S- or
 - -NR_{A-5}- where R_{A-5} is C_1 - C_6 alkyl, and where $R_{A'\text{-aryl}}$ is defined above,

(N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and R_{A-heteroaryl} are as defined above, and

(O) $-R_{A'\text{-aryl}}$ where $R_{A'\text{-aryl}}$ is as defined above, and where $R_{A\text{-}3}$ is the same or different and is:

(A) -H,

(B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(E) -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

- (F) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,
- (G) $-R_{A\text{-heteroaryl}}$ where $R_{A\text{-heteroaryl}}$ is as defined above,
- (H) $-R_{A\text{-heterocycle}}$ where $R_{A\text{-heterocycle}}$ is as defined above,
- (I) -(C_1 - C_4 alkyl)- $R_{A'}$ -aryl where $R_{A'}$ -aryl is as defined above,
- (J) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (K) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined

above, or

25

(XVI) $-CH(R_{A-aryl})_2$ where R_{A-aryl} are the same or different and are as defined above,

(XVII) – $CH(R_{A-heteroaryl})_2$ where $R_{A-heteroaryl}$ are the same or different and are as defined above,

25

(XVIII) –CH(R_{A-aryl})($R_{A-heteroaryl}$) where R_{A-aryl} and $R_{A-heteroaryl}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{A\text{-}aryl}$, $R_{A\text{-}heteroaryl}$, $R_{A\text{-}heterocycle}$ where $R_{A\text{-}aryl}$ or $R_{A\text{-}heterocycle}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5}, O, or S(=O)₀₋₂, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two -C₁-C₃ alkyl, -F, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, =O, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C₂-C₁₀ alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

 $(XXI)-(CH_2)_{0\text{-}1}-CHR_{A\text{-}6}-(CH_2)_{0\text{-}1}-R_{A\text{-}aryl} \text{ where } R_{A\text{-}aryl} \text{ is as defined above and } R_{A\text{-}6} \text{ is -}(CH_2)_{0\text{-}6}-OH,$

 $(XXII) - (CH_2)_{0\text{--}1} - CHR_{A\text{--}6} - (CH_2)_{0\text{--}1} - R_{A\text{--heteroaryl}} \text{ where } R_{A\text{--heteroaryl}} \text{ and } R_{A\text{--}6} \text{ is as defined above,}$

(XXIII) –CH(- R_{A-aryl} or $R_{A-heteroaryl}$)-CO-O(C_1 - C_4 alkyl) where R_{A-aryl} and $R_{A-heteroaryl}$ are as defined above,

(XXIV) -CH(-CH2-OH)-CH(-OH)-micro-NO2,

(XXV) (C_1 - C_6 alkyl)-O-(C_1 - C_6 alkyl)-OH,

(XXVII) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃ $)_{2,}$

(XXVIII) -H,

(XXIX) -(CH₂)₀₋₆-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as defined above; or

(XXX)

30

-C=OC(HR₆)NHR₇, where R₆ and R₇ are as defined below,

-C=OR₇, where R₇ is as defined below,

-C=OOR₇, where R₇ is as defined below, or

- SOOR7 where R7 is as defined below,

	wherein R ₆ is:
	hydrogen,
	C ₁ - C ₃ alkyl,
	phenyl,
5	thioalkoxyalkyl,
	alkyl substituted aryl,
	cycloalkyl,
	cycloalkylalkyl,
	hydroxyalkyl,
10	alkoxyalkyl,
	aryloxyalkyl,
	haloalkyl,
	carboxyalkyl,
	alkoxycarbonylalkyl,
15	aminoalkyl,
	(N-protected)aminoalkyl,
•	alkylaminoalkyl,
	((N-protected)(alkyl)amino)alkyl,
	dialkylaminoalkyl,
20	guanidinoalkyl,
	lower alkenyl,
•	heterocyclic,
	(heterocyclic)alkyl),
25	arylthioalkyl,
25	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
30	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	(heterocyclic))alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl,
	/1 / 11 > 40

(heterocyclic)alkylsulfonylalkyl,

cycloalkyloxyalkyl, cycloalkylthioalkyl, cycloalkylsulfonylalkyl, cycloalkylalkoxyalkyl, 5 cycloalkylthioalkoxyalkyl, cycloalkylalkylsulfonylalkyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, 10 aroylalkyl, (heterocyclic)carbonylalkyl, polyhydroxyalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, 15 dialkylaminocarbonylalkyl, aryloxyalkyl, or alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

wherein R₇ is:

 $C_{1} - C_{3} \text{ alkyl}, \\ \text{phenyl}, \\ \text{thioalkoxyalkyl}, \\ \text{(aryl)alkyl}, \\ \text{cycloalkyl}, \\ \text{cycloalkylalkyl}, \\ \text{hydroxyalkyl}, \\ \text{alkoxyalkyl}, \\ \text{aryloxyalkyl}, \\ \text{haloalkyl}, \\ \text{haloalkyl},$

13615.40U2 WOU1

	carboxyalkyl,
	alkoxycarbonylalkyl,
	aminoalkyl,
	(N-protected)aminocalkyl,
5	alkylaminoalkyl,
	((N-protected)(alkyl)amino)alkyl,
	dialkylaminoalkyl,
	guanidinoalkyl,
	lower alkenyl,
10	heterocyclic,
	(heterocyclic)alkyl),
	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
15	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
20	arylalkylsulfonylalkyl,
20	(heterocyclic))alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl,
	(heterocyclic)alkylsulfonylalkyl,
	cycloalkyloxyalkyl,
25	cycloalkylthioalkyl,
25	cycloalkylsulfonylalkyl,
	cycloalkylalkoxyalkyl,
	cycloalkylthioalkoxyalkyl,
	cycloalkylalkylsulfonylalkyl,
20	aminocarbonyl,
30	alkylaminocarbonyl,
	dialkylaminocarbonyl,
	aroylalkyl,
	(heterocyclic)carbonylalkyl,
	polyhydroxyalkyl,

aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aryloxyalkyl, or alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and

tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl:

where R_B is:

(I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR₁-aR₁-b where R₁-a and R₁-b are as defined above, -OC=O NR₁-aR₁-b where R₁-a and R₁-b are as defined above, -S(=O)₀-₂ R₁-a where R₁-a is as defined above, - NR₁-aC=O NR₁-aR₁-b where R₁-a and R₁-b are as defined above, -C=O NR₁-aR₁-b where R₁-a and R₁-b are as defined above, and -S(=O)₂ NR₁-aR₁-b where R₁-a and R₁-b are as defined above, and -S(=O)₂ NR₁-aR₁-b where R₁-a and R₁-b are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, -CO-OH, -CO-O-(C_1 - C_4 alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

25 (III) -($CR_{B-x}R_{B-y}$)_{0.4}- R_{B-aryl} where R_{B-x} and R_{B-y} are

(A) -H,

- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

30

(D) $-(CH_2)_{0.4}-C_3-C_7$ cycloalkyl,

- (E) C₂-C₆ alkenyl containing one or two double bonds,
- (F) C2-C6 alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{B-x} and R_{B-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ where R_{N-2} is as defined above, and R_{B-aryl} is the same as R_{N-aryl} and is defined above

- (IV) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$ is the same as $R_{N-heteroaryl}$, R_{B-x} , and R_{B-y} are as defined above,
- (V) -($(CR_{B-x}R_{B-y})_{0-4}$ - R_{B-aryl} - R_{B-aryl} where R_{B-aryl} , R_{B-x} , and R_{B-y} are as defined above,
- (VI) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} - $R_{B-heteroaryl}$ where R_{B-aryl} , $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,
 - (VII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - R_{B-aryl} where $R_{B-heteroaryl}$, R_{B-aryl} , R_{B-x} and R_{B-v} are as defined above,
- (VIII) -($(CR_{B-x}R_{B-y})_{0-4}$ - $R_{B-heteroaryl}$ - $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,
 - $(IX) \text{ -}(CR_{B\text{-}x}R_{B\text{-}y})_{0\text{-}4}\text{-}R_{B\text{-}aryl}\text{-}R_{B\text{-}heterocycle} \text{ where } R_{B\text{-}heterocycle} \text{is defined as } R_{1\text{-}heterocycle}, \text{ and where } R_{B\text{-}aryl}, R_{B\text{-}x} \text{ and } R_{B\text{-}y} \text{ are as defined above,}$
 - (X) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - $R_{B-heterocycle}$ where $R_{B-heteroaryl}$, $R_{B-heterocycle}$, $R_{B-heterocycle}$, $R_{B-heterocycle}$, and R_{B-y} are as defined above,
- 20 (XI) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ - R_{B-aryl} where $R_{B-heterocycle}$, R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,
 - $(XII) \text{ -}(CR_{B\text{-}x}R_{B\text{-}y})_{0\text{-}4}\text{-}R_{B\text{-}heterocycle}\text{-}R_{B\text{-}heteroaryl} \text{ where } R_{B\text{-}heterocycle}, R_{B\text{-}heteroaryl}, \\ R_{B\text{-}x} \text{ and } R_{B\text{-}v} \text{ are as defined above,}$
- (XIII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ - $R_{B-heterocycle}$ where $R_{B-heterocycle}$, R_{B-x} and R_{B-y} are as defined above,
 - (XIV) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle} where R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,
 - $(XV) [C(R_{B-1})(R_{B-2})]_{1-3} CO N (R_{B-3})_2 \text{ where } R_{B-1} \text{ and } R_{B-2} \text{ are the same or different and are selected from the group consisting of:}$
- 30 (A) -H,
 - (B) - C_1 - C_6 alkyl, optionally substituted with one, two or three-substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

10

15

20

aryl,

-SH, -C \equiv N, -CF $_3$, C $_1$ -C $_6$ alkoxy, -O-phenyl, and -NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R $_{1\text{-}a}$ and R $_{1\text{-}b}$ are as defined above,

- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above.
- (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
- (F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (G) -(C₁-C₄ alkyl)- $R_{B'-aryl}$ where $R_{B'-aryl}$ is as defined above for R_1 .
 - (H) -(C_1 - C_4 alkyl)- $R_{B\text{-heteroaryl}}$ where $R_{B\text{-heteroaryl}}$ is as defined above,
 - (I) -(C_1 - C_4 alkyl)- $R_{B\text{-heterocycle}}$ where $R_{B\text{-heterocycle}}$ is as defined above,
 - (J) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
 - (K) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
 - (M) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B'-aryl} where R_{B-4} is –O-, -S- or

-NR_{B-5}- where R_{B-5} is C_1 - C_6 alkyl, and where $R_{B'\text{-aryl}}$ is defined above,

- (N) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B-heteroaryl} where R_{B-4} and R_{B-heteroaryl}
- 25 are as defined above, and
 - (O) $-R_{B'\text{-aryl}}$ where $R_{B'\text{-aryl}}$ is as defined above, and where $R_{B\text{-}3}$ is the same or different and is:
 - (A) H,
- (B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

- (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (E) -(CH₂)₀₋₄-C₃-C₇ cycloalkyl, optionally substituted with one,
 two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (F) $-R_{B'-aryl}$ where $R_{B'-aryl}$ is as defined above,
 - (G) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
 - (H) $-R_{B\text{-heterocycle}}$ where $R_{B\text{-heterocycle}}$ is as defined above,
 - (I) -(C_1 - C_4 alkyl)- $R_{B'\text{-aryl}}$ where $R_{B'\text{-aryl}}$ is as defined above,
 - (J) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
 - (K) -(C₁-C₄ alkyl)- $R_{B\text{-heterocycle}}$ where $R_{B\text{-heterocycle}}$ is as defined

above, or

15

30

20 (XVI) -CH($R_{B\text{-aryl}}$)₂ where $R_{B\text{-aryl}}$ are the same or different and are as defined above,

(XVII) –CH($R_{B\text{-heteroaryl}}$)2 where $R_{B\text{-heteroaryl}}$ are the same or different and are as defined above,

 $(XVIII) - CH(R_{B\text{-}aryl})(R_{B\text{-}heteroaryl}) \ where \ R_{B\text{-}aryl} \ and \ R_{B\text{-}heteroaryl} \ are \ as$ 25 defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{B\text{-}aryl}$ or $R_{B\text{-}heteroaryl}$ or $R_{B\text{-}heteroacycle}$ where $R_{B\text{-}aryl}$ or $R_{B\text{-}heteroacycle}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=O)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two - C_1 - C_3 alkyl, -F, -OH, -SH, -C=N, - CF_3 , C_1 - C_6 alkoxy, =O, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3

15

alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_6$ alkoxy, -O-phenyl, and -NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R_{1-a} and R_{1-b} are as defined above,

(XXI) C2-C10 alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_6$ alkoxy, -O-phenyl, and -NR $_{1\text{-}a}$ R $_{1\text{-}b}$ where R_{1-a} and R_{1-b} are as defined above,

(XXI) –(CH₂)₀₋₁-CHR_{C-6}-(CH₂)₀₋₁-RB_{B-aryl} where R_{B-aryl} is as defined above and R_{C-6} is -(CH₂)₀₋₆-OH,

(XXII) –(CH₂)₀₋₁-CHR_{B-6}-(CH₂)₀₋₁-R_{B-heteroaryl} where R_{B-heteroaryl} and R_{C-6} is 10 as defined above,

(XXIII) –CH(- R_{B-aryl} or $R_{B-heteroaryl}$)-CO-O(C_1 - C_4 alkyl) where R_{B-aryl} and R_{B-heteroaryl} are as defined above,

(XXIV) -CH(-CH₂-OH)-CH(-OH)-micro-NO₂, (XXV) $(C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})-OH$, (XXVII) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂. (XXVIII) -H, or (XXIX) -(CH₂)₀₋₆-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as

defined above; and

20 where PROTECTING GROUP is selected from the group consisting of tbutoxycarbonyl, benzyloxycarbonyl, formyl, trityl, acetyl, trichloroacetyl, dichloroacetyl, chloroacetyl, trifluoroacetyl, difluoroacetyl, fluoroacetyl, 4-phenylbenzyloxycarbonyl, 2methylbenzyloxycarbonyl, 4-ethoxybenzyloxycarbonyl, 4-fluorobenzyloxycarbonyl, 4chlorobenzyloxycarbonyl, 3-chlorobenzyloxycarbonyl, 2-chlorobenzyloxycarbonyl, 2,4dichlorobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 3-bromobenzyloxycarbonyl, 4-25 nitrobenzyloxycarbonyl, 4-cyanobenzyloxycarbonyl, 2-(4-xenyl)isopropoxycarbonyl, 1,1diphenyleth-1-yloxycarbonyl, 1,1-diphenylprop-1-yloxycarbonyl, 2-phenylprop-2yloxycarbonyl, 2-(p-toluyl)prop-2-yloxycarbonyl, cyclopentanyloxycarbonyl, 1-

methylcyclopentanyloxycarbonyl, cyclohexanyloxycarbonyl, 1methylcyclohexanyloxycabonyl, 2-methylcyclohexanyloxycarbonyl, 2-(4-30 toluylsulfonyl)ethoxycarbonyl, 2-(methylsulfonyl)ethoxycarbonyl, 2-(triphenylphosphino)ethoxycarbonyl, fluorenylmethoxycarbonyl, 2-(trimethylsilyl)ethoxycarbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl)prop-1enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 4-acetoxybenzyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl, 2-ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, 4-(decyloxyl)benzyloxycarbonyl, isobornyloxycarbonyl and 1-piperidyloxycarbonyl, 9-fluorenylmethyl carbonate, -CH-CH=CH₂ and phenyl-C(=N-)-H.

5

37. A protected compound according to claim 36

where R₁ is:

$$-(CH_2)_{0-1}-(R_{1-aryl})$$
, or

10 where R_N is:

 $R_{N-1}-X_N$, where X_N is selected from the group consisting of:

-CO-, and

-SO₂-,

where R_{N-1} is selected from the group consisting of:

15 -R_{N-aryl}, and

-R_{N-heteroaryl}, or

 $-\text{CO-CH}(-(\text{CH}_2)_{0-2}-\text{O-R}_{N-10})-(\text{CH}_2)_{0-2}-\text{R}_{N-\text{aryl}}/\text{R}_{N-\text{heteroaryl}});$

where R_A is:

 $-C_1-C_8$ alkyl,

 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl}

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

25 heterocycle; and

30

where R_B is:

 $-C_1-C_8$ alkyl,

 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl},

-(CRA-xRA-y)0-4-RA-heterocycle,

-cyclopentyl or -cyclohexyl ring fused to R_{A-aryl} or R_{A-heterocycle}.

38. A protected compound according to claim 37

```
where R<sub>1</sub> is:
                                        -(CH<sub>2</sub>)-(R_{1-aryl}), or
                                        -(CH<sub>2</sub>)-(R<sub>1-heteroaryl</sub>);
                          where R<sub>2</sub> is -H;
   5
                          where R<sub>3</sub> is -H;
                          where R<sub>N</sub> is:
                                        R_{N-1}-X_N- where X_N is:
                                                      -CO-,
                                                      where R_{N-1} is selected from the group consisting of:
10
                                                      -R<sub>N-aryl</sub>, and
                                                      -R<sub>N-heteroaryl</sub>;
                          where R<sub>A</sub> is:
                                        -C<sub>1</sub>-C<sub>8</sub> alkyl,
                                        -(CH<sub>2</sub>)<sub>0-3</sub>-(C<sub>3</sub>-C<sub>7</sub>) cycloalkyl,
15
                                        -(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}
                                        -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heteroaryl,</sub>
                                        -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heterocycle</sub>,
                                        -cyclopentyl or -cyclohexyl ring fused to RA-aryl or RA-heteroaryl or RA-
           heterocycle
20
                         where R<sub>B</sub> is:
                                       -C_1-C_8 alkyl,
                                        -(CH<sub>2</sub>)<sub>0-3</sub>-(C<sub>3</sub>-C<sub>7</sub>) cycloalkyl,
                                       -(CR_{B-x}R_{B-y})_{0-4}-R_{B-ary!},
                                       -(CR<sub>B-x</sub>R<sub>B-y</sub>)<sub>0-4</sub>-R<sub>B-heteroaryl</sub>
25
                                       -(CR<sub>B-x</sub>R<sub>B-y</sub>)<sub>0-4</sub>-R<sub>B-heterocycle</sub>,
```

- heterocycle.
- 39. A protected compound according to claim 36 where PROTECTING GROUP is *t*30 butoxycarbonyl.
 - 40. A protected compound according to claim 36 where PROTECTING GROUP is benzyloxycarbonyl.

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{B-aryl}}$ or $R_{\text{B-heteroaryl}}$ or $R_{\text{B-}}$

41. A protected compound of the formula (IV)

$$R_1$$
 R_2 R_3 R_4 R_4 R_5 R_8 R_8

where R₁ is:

5

10

15

25

- (I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and $-OC\equiv ONR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
 - (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
- (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (VI) -(CH₂)_{n1}-(R_{1-aryl}) where n₁ is zero or one and where R_{1-aryl} is phenyl,
 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:
 - (A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C=N, -CF₃, and C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁- C₆ alkyl,
- (C) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

- (D) -F, Cl, -Br or -I,
- (F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

5 - F,

15

20

25

30

- (G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (H) -OH,
- (I) -C≡N,
- (J) C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ 10

alkoxy, and -NR $_{\text{1-a}}R_{\text{1-b}}$ where $R_{\text{1-a}}$ and $R_{\text{1-b}}$ are -H or $C_{\text{1}}\text{-}C_{\text{6}}$ alkyl,

- (K) -CO- $(C_1$ - C_4 alkyl),
- (L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (M) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
- (N) – SO_2 - $(C_1$ - C_4 alkyl),

(VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n₁ is as defined above and where R₁heteroaryl is selected from the group consisting of:

pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienyl,

indolyl,

indolinyl,

pryidazinyl,

pyrazinyl,

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

imidazolyl,

isoxazolyl,

pyrazolyl,

oxazolyl,

	_
	•

	thiazolyl,
	indolizinyl,
	indazolyl,
	benzothiazolyl,
5	benzimidazolyl,
	benzofuranyl,
	furanyl,
	thienyl,
	pyrrolyl,
10	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
	tetrazolyl,
	oxazolopyridinyl,
15	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
	cinnolinyl,
	carbazolyl,
20	beta-carbolinyl,
	isochromanyl,
	chromanyl,
	tetrahydroisoquinolinyl,
	isoindolinyl,
25.	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
	isobenzothienyl,
	benzoxazolyl,
	pyridopyridinyl,
30	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
	purinyl,
	benzodioxolyl,

triazinyl,

	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,
	benzothiazolyl,
5	imidazopyridinyl,
	imidazothiazolyl,
	dihydrobenzisoxazinyl,
	benzisoxazinyl,
	benzoxazinyl,
10	dihydrobenzisothiazinyl,
	benzopyranyl,
	benzothiopyranyl,
	coumarinyl,
	isocoumarinyl,
15	chromonyl,
	chromanonyl,
	pyridinyl-N-oxide,
	tetrahydroquinolinyl
	dihydroquinolinyl
20	dihydroquinolinonyl
	dihydroisoquinolinonyl
	dihydrocoumarinyl
	dihydroisocoumarinyl
	isoindolinonyl
25	benzodioxanyl
	benzoxazolinonyl
	pyrrolyl N-oxide,
	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
30	pyrazinyl N-oxide,
	quinolinyl N-oxide,
	indolyl N-oxide,
	indolinyl N-oxide,
	isoquinolyl N-oxide,

10

15

25

quinazolinyl N-oxide, quinoxalinyl N-oxide, phthalazinyl N-oxide, imidazolyl N-oxide, isoxazolyl N-oxide, oxazolyl N-oxide, thiazolyl N-oxide, indolizinyl N-oxide, indazolyl N-oxide, benzothiazolyl N-oxide, benzimidazolyl N-oxide. pyrrolyl N-oxide, oxadiazolyl N-oxide, thiadiazolyl N-oxide, triazolyl N-oxide, tetrazolyl N-oxide, benzothiopyranyl S-oxide, and benzothiopyranyl S,S-dioxide,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C=N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, - $C \equiv N$, - CF_3 , C_1 - C_3 alkoxy, and - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

30 (3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C=N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

- (4) -F, Cl, -Br or -I,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three of -F,

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) -OH,
- (9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

10

5

- (11) $-CO-(C_1-C_4 \text{ alkyl}),$
- (12) –SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above, or

15

(14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero $R_{1\text{-heteroaryl}}$ is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

morpholinyl,

20

thiomorpholinyl,

thiomorpholinyl S-oxide,

thiomorpholinyl S,S-dioxide,

piperazinyl,

homopiperazinyl,

25

pyrrolidinyl,

pyrrolinyl,

tetrahydropyranyl,

piperidinyl,

tetrahydrofuranyl,

30

tetrahydrothienyl,

homopiperidinyl,

homomorpholinyl,

homothiomorpholinyl,

10

homothiomorpholinyl S,S-dioxide,

oxazolidinonyl,

dihydropyrazolyl,

dihydropyrrolyl,

dihydropyrazinyl,

dihydropyridinyl,

dihydropyrimidinyl,

dihydrofuryl,

dihydropyranyl,

tetrahydrothienyl S-oxide,

tetrahydrothienyl S,S-dioxide, and

homothiomorpholinyl S-oxide,

where the R_{1-heterocycle} group is bonded by any atom of the parent R₁₋

heterocycle group substituted by hydrogen such that the new bond to the R_{1-heterocycle} group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C=N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

- 20 (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C_1 -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- (3) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (4) -F, Cl, -Br or -I,
 - (5) C_1 - C_6 alkoxy,
- 30 (6) $-C_1$ - C_6 alkoxy optionally substituted with one, two, or three -F,
 - (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

5

$$(11)$$
 –CO- $(C_1$ - C_4 alkyl),

(12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

(13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

10 (14) $-SO_2$ -(C_1 - C_4 alkyl), or

(15) =O, with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R2 is:

15

20

25

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF $_3$, C1-C3 alkoxy, and -NR1-aR1-b where R1-a and R1-b are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, or

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl;

30

where R₃ is:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R₁₋

5 heteroaryl are as defined above

(IV) C2-C6 alkenyl with one or two double bonds,

(V) C2-C6 alkynyl with one or two triple bonds; or

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

and where R_2 and R_3 are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ -, where R_{N-2} is selected from the group consisting of:

15

10

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:

(i) -OH, and

(ii) -NH₂,

20.

(c) $-C_1-C_6$ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

(d) -C₃-C₇ cycloalkyl,

(e) $-(C_1-C_2 alkyl)-(C_3-C_7 cycloalkyl)$,

(f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,

25

(g) -C2-C6 alkenyl with one or two double bonds,

(h) -C₂-C₆ alkynyl with one or two triple bonds,

(i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

(j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and

30

(k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above;

where R_N is:

(I) R_{N-1} - X_N - where X_N is selected from the group consisting of:

- (A) –CO-,
- (B) $-SO_2$ -,
- (C) -(CR'R") $_{1-6}$ where R' and R" are the same or different and are -H and C_1 - C_4 alkyl,
- 5 (D) -CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group consisting of -O-, -S- and -NR'- and where R' and R" are as defined above, and (E) a single bond;

where R_{N-1} is selected from the group consisting of:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl, 2-naphthyl,
- tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I,

-OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

- (2) -OH,
- $(3) NO_2$,
- (4) -F, -Cl, -Br, -I,
- (5) -CO-OH,
- (6) -C≡N,

 $(7)-(CH_2)_{0\text{-}4}-CO\text{-}NR_{N\text{-}2}R_{N\text{-}3} \text{ where } R_{N\text{-}2} \text{ and } R_{N\text{-}3} \text{ are the same or different and are selected from the group consisting of:}$

- (a) -H,
- 25 (b) $-C_1-C_6$ alkyl optionally substituted with one substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH₂,
 - (c) -C₁-C₆ alkyl optionally substituted with one,
- 30 two, or three -F, -Cl, -Br, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e) -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl),
- (f) - $(C_1$ - C_6 alkyl)-O- $(C_1$ - C_3 alkyl),

		(g) -C ₂ -C ₆ alkenyl with one or two double bonds,
		(h) -C ₂ -C ₆ alkynyl with one or two triple bonds,
		(i) -C ₁ -C ₆ alkyl chain with one double bond and one
	triple bond,	
5		(j) -R _{1-aryl} where R _{1-aryl} is as defined above, and
		(k) -R _{1-heteroaryl} where R _{1-heteroaryl} is as defined above,
	(8) -	$-(CH_2)_{0.4}$ - $-(C_{12} \text{ alkyl}),$
		-(CH ₂) ₀₋₄ -CO-(C ₂ -C ₁₂ alkenyl with one, two or three
	double bonds),	Control of the contro
10		-(CH ₂) ₀₋₄ -CO-(C ₂ -C ₁₂ alkynyl with one, two or three
	triple bonds),	(* 2)04 0 0 (02 012 unitylly) with one, two of timee
	(11)	-(CH ₂) ₀₋₄ -CO-(C ₃ -C ₇ cycloalkyl),
		-(CH ₂) ₀₋₄ -CO-R _{1-aryl} where R_{1-aryl} is as defined above,
		-(CH ₂) ₀₋₄ -CO-R _{1-heteroaryl} where R _{1-heteroaryl} is as defined
15	above,	(32704 3 of 141-neteroary) Where 141-neteroary is as defined
	(14)	-(CH ₂) ₀₋₄ -CO-R _{1-heterocycle} where R _{1-heterocycle} is as
	defined above,	(0122/04 00 It]-neterocycle WHOIC It]-heterocycle 18 as
	•	-(CH ₂) ₀₋₄ -CO-R _{N-4} where R _{N-4} is selected from the
		hiomorpholinyl, piperazinyl, piperidinyl,
20		holinyl, homothiomorpholinyl S-oxide,
		pyrrolinyl and pyrrolidinyl where each group is
	optionally substituted with one, two	-
	group consisting of:	$-(CH_2)_{0.4}$ -CO-O- R_{N-5} where R_{N-5} is selected from the
25	5 1	(a) C_1 - C_6 alkyl,
	above,	(b) -(CH ₂) ₀₋₂ -(R_{1-aryl}) where R_{1-aryl} is as defined
	,	(c) C. C. alleanyl containing and
	bonds,	(c) C ₂ -C ₆ alkenyl containing one or two double
30	50N 45 ,	(d) C. C. allamata and i
	bonds,	(d) C ₂ -C ₆ alkynyl containing one or two triple
	oonus,	(a) C. Clea II. 1
		(e) C ₃ .C ₇ cycloalkyl, and
	defined above,	(f) -(CH ₂) ₀₋₂ -($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as
	aomica above,	

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are as

defined above,

5

15

20

30

$$(18)$$
 – $(CH2)0-4-SO- $(C1-C8$ alkyl),$

(19) –(
$$CH_2$$
)₀₋₄- SO_2 -(C_1 - C_{12} alkyl),

(20) –(
$$CH_2$$
)₀₋₄- SO_2 -(C_3 - C_7 cycloalkyl),

(21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be the same or different and is as defined above,

 $(22)-(CH_2)_{0\text{-}4}\text{-N(H or }R_{N\text{-}5}\text{)-CO-N}(R_{N\text{-}5})_2\text{, where }R_{N\text{-}5}\text{ can}$ be the same or different and is as defined above,

10 (23) $-(CH_2)_{0-4}$ -N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above.

(26) –(CH₂)₀₋₄- R_{N-4} where R_{N-4} is as defined above,

$$(27)$$
 - $(CH_2)_{0-4}$ -O-CO- $(C_1$ - C_6 alkyl),

(28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where
$$R_{N-aryl-1}$$
 is –H or

C1-C4 alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where $R_{\text{N-5}}$ is as defined

above,

(31) –(CH₂)₀₋₄-O-(R_{N-5})₂ where R_{N-5} is as defined above,

25 (32) –(CH₂)_{0.4}-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) $-(CH_2)_{0.4}$ -S- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(34) $-(CH_2)_{0-4}$ -O $-(C_1$ $-C_6$ alkyl optionally substituted with

one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or $R_{N\text{--}5}$)-SO₂-R_{N-2} where $R_{N\text{--}5}$ and $R_{N\text{--}2}$

5 can be the same of different and are as described above, or

(39) - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,

(B) $-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is selected from the group

consisting of:

pyridinyl,
pyrimidinyl,
quinolinyl,
benzothienyl,
indolyl,

indolinyl,
prvidaziny

5 pryidazinyl, pyrazinyl,

isoindolyl,

isoquinolyl,

quinazolinyl, quinoxalinyl,

phthalazinyl,

imidazolyl,

isoxazolyl,

pyrazolyl,

oxazolyl,

thiazolyl,

indolizinyl,

indazolyl,

benzothiazolyl,

benzimidazolyl,

benzofuranyl,

furanyl,

thienyl,

30

20

25

pyrrolyl, oxadiazolyl, thiadiazolyl, triazolyl, 5 tetrazolyl, oxazolopyridinyl, imidazopyridinyl, isothiazolyl, naphthyridinyl, 10 cinnolinyl, carbazolyl, beta-carbolinyl, isochromanyl, chromanyl, 15 tetrahydroisoquinolinyl, isoindolinyl, isobenzotetrahydrofuranyl, isobenzotetrahydrothienyl, isobenzothienyl, 20 benzoxazolyl, pyridopyridinyl, benzotetrahydrofuranyl, benzotetrahydrothienyl, purinyl, 25 benzodioxolyl, triazinyl, phenoxazinyl, phenothiazinyl, pteridinyl, 30 benzothiazolyl, imidazopyridinyl, imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl,

	benzoxazinyl,
	dihydrobenzisothiazinyl,
	benzopyranyl,
	benzothiopyranyl,
5	coumarinyl,
	isocoumarinyl,
	chromonyl,
	chromanonyl,
	pyridinyl-N-oxide,
10	tetrahydroquinolinyl,
	dihydroquinolinyl,
	dihydroquinolinonyl,
	dihydroisoquinolinonyl,
	dihydrocoumarinyl,
15	dihydroisocoumarinyl,
	isoindolinonyl,
	benzodioxanyl,
	benzoxazolinonyl,
	pyrrolyl N-oxide,
20	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
<u>.</u> .	pyrazinyl N-oxide,
	quinolinyl N-oxide,
	indolyl N-oxide,
25	indolinyl N-oxide,
	isoquinolyl N-oxide,
	quinazolinyl N-oxide,
	quinoxalinyl N-oxide,
	phthalazinyl N-oxide,
30	imidazolyl N-oxide,
	isoxazolyl N-oxide,
	oxazolyl N-oxide,
	thiazolyl N-oxide,
	indolizinyl N-oxide,

10

20.

30

indazolyl N-oxide,

benzothiazolyl N-oxide,

benzimidazolyl N-oxide,

pyrrolyl N-oxide,

oxadiazolyl N-oxide,

thiadiazolyl N-oxide,

triazolyl N-oxide,

tetrazolyl N-oxide,

benzothiopyranyl S-oxide, and

benzothiopyranyl S,S-dioxide

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

(1) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) - OH,

 $(3) -NO_{2}$

(4) -F, -Cl, -Br, or -I,

(5) -CO-OH,

(6) -C≡N,

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where $R_{\text{N-2}}$ and $\,R_{\text{N-3}}$ are the

25 same or different and are selected from the group consisting of:

(a) -H,

(b) $-C_1-C_6$ alkyl optionally substituted with one substitutent selected from the group consisting of:

(i) -OH, and

(ii) -NH₂,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, -I,

(d) -C₃-C₇ cycloalkyl.

243

- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) -(C_1 - C_6 alkyl)-O-(C_1 - C_3 alkyl),
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

5

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above,
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) – $(CH₂)₀₋₄-CO-<math>(C_1-C_{12} \text{ alkyl})$,
- 10 (9) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three double bonds),
 - (10) –(CH₂)_{0.4}-CO-(C₂-C₁₂ alkynyl with one, two or three triple bonds),
 - (11) –(CH_2)₀₋₄-CO-(C_3 - C_7 cycloalkyl),
 - (12) –(CH₂)₀₋₄-CO-R_{1-aryl} where R_{1-aryl} is as defined above,
 - (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

15

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as

defined above,

- 20 (15) –(CH₂)_{0.4}-CO-R_{N.4} where R_{N.4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,
- 25 (16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:
 - (a) C_1 - C_6 alkyl,
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined

above,

bonds,

- 30 (c) C₂-C₆ alkenyl containing one or two double bonds,
 - (d) C₂-C₆ alkynyl containing one or two triple
 - (e) C₃.C₇ cycloalkyl, and

(f) - $(CH_2)_{0-2}$ - $(R_{1-heteroaryl})$ where $R_{1-heteroaryl}$ is as

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

5

(18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),

$$(19)$$
 – $(CH2)0-4-SO2- $(C1-C12$ alkyl),$

$$(20)$$
 – $(CH2)0-4-SO2- $(C3-C7$ cycloalkyl),$

(21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be

the same or different and is as defined above,

0 (22) $-(CH_2)_{0.4}$ -N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)_{0.4}–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2}

can be the same or different and are as defined above,

 $(25)-(CH_2)_{0\text{-}4}\text{-}NR_{N\text{-}2}R_{N\text{-}3}\text{ where }R_{N\text{-}2}\text{ and }R_{N\text{-}3}\text{ can be the same or different and are as defined above,}$

(26) –(CH₂)_{0.4}-R_{N-4} where R_{N-4} is as defined above,

$$(27)$$
 – $(CH2)0-4–O-CO-(C1-C6 alkyl),$

20

(28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where R_{N-aryl-1} is –H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

25 above,

(31) $-(CH_2)_{0-4}$ -O- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) –(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as defined above,

30 (34) –(CH₂)_{0.4}–O-(C₁-C₆ alkyl optionally substituted with one, two, three, four, or five of –F),

(35) C₃-C₇ cycloalkyl,

20

25

30

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C₂-C₆ alkynyl with one or two triple bonds optionally substituted with C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or

10 (C) R_{N-aryl} -W- R_{N-aryl} , where R_{N-aryl} can be the same or different,

(D) R_{N-aryl}-W-R_{N-heteroaryl},

(E) R_{N-aryl} -W- $R_{N-1-heterocycle}$, wherein $R_{N-1-heterocycle}$ is the same as R_1 -

heterocycle, and R_{1-heterocycle} is as defined above

(F) R_{N-heteroaryl}-W-R_{N-aryl},

(G) R_{N-heteroaryl}-W-R_{N-heteroaryl},

(H) $R_{N-heteroaryl}$ -W- $R_{N-1-heterocycle}$,

(I) $R_{N\text{-heterocycle}}$ -W- $R_{N\text{-aryl}}$, wherein $R_{N\text{-heterocycle}}$ is the same as $R_{1\text{-}}$

 $_{\text{heterocycle}}$, and $R_{\text{1-heterocycle}}$ is as defined above, and $R_{\text{N-aryl}}$ is as defined above,

(J) $R_{N\text{-heterocycle}}$ -W- $R_{N\text{-heteroaryl}}$, and

(K) $R_{N-heterocycle}$ -W- $R_{N-1-heterocycle}$,

where W is

(13) $-(CH_2)_{0-4}$ -,

(14) –O-,

(15) $-S(O)_{0-2}$

(16) $-N(R_{N-5})$ - where R_{N-5} is as defined above, or

(5) –CO-;

(II) -CO-(C₁-C₁₀ alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:

(A) -OH,

(B) $-C_1-C_6$ alkoxy,

(C) $-C_1-C_6$ thioalkoxy,

(D) -CO-O-R_{N-8} where R_{N-8} is -H, C₁-C₆ alkyl or -phenyl,

- (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (F) -CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
- 5 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and
- 10 are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO-(C_1 - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are

as defined above,

-F, -CI, -Br, or -I),

- (O) -O- $(C_1$ - C_5 alkyl)-COOH,
- (P) -O- $(C_1$ - C_6 alkyl optionally substitued with one, two, or three of
- (Q) $-NH-SO_2-(C_1-C_6 \text{ alkyl})$, and
- (R) -F, or -Cl,
- 20 (III) -CO-(C₁-C₆ alkyl)-O-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
- 25 (D) $-\text{CO-O-R}_{N-8}$ where R_{N-8} is -H, C_1 - C_6 alkyl or -phenyl,
 - (E) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
- 30 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,

- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO-(C_1 - C_6 alkyl),
- 5 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O-(C_1 - C_5 alkyl)-COOH,
 - (P) -O-(C_1 - C_6 alkyl optionally substitued with one, two, or three of -F, -CI, -Br, or -I),
- 10 (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
 - (R) -F, or -Cl,
 - (IV) -CO-(C₁-C₆ alkyl)-S-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three of substitutents selected from the group consisting of:
 - (A) -OH,
- 15 (B) $-C_1-C_6$ alkoxy,
 - (C) -C₁-C₆ thioalkoxy,
 - (D) -CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (E) –CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- 20 (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2$ -(C₁-C₈ alkyl),
 - (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
- 25 (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO-(C_1 - C_6 alkyl),
- 30 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O-(C₁-C₅ alkyl)-COOH,

- (P) -O- $(C_1$ - C_6 alkyl optionally substitued with one, two, or three of -F, -Cl, -Br, or -I),
 - (Q) -NH-SO₂-(C₁-C₆ alkyl), and
 - (R) -F, or -Cl,
- 5 (V) -CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:
 - (A) H,
 - (B) C₁-C₆ alkyl,
 - (C) C₃-C₇ cycloalkyl,

30

- (D) C₂-C₆ alkenyl with one double bond,
- (E) C₂-C₆ alkynyl with one triple bond,
- (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
- (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above, or
- (VI) -CO-(C₃-C₈ cycloalkyl) where alkyl is optionally substituted with one
- or two substitutents selected from the group consisting of:
 - (A) $-(CH_2)_{0-4}$ -OH,
 - (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
 - (C) - $(CH_2)_{0-4}$ - C_1 - C_6 thioalkoxy,
 - (D) -(CH₂)₀₋₄-CO-O-R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or phenyl,
- 20 (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) - $(CH_2)_{0-4}$ -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) - $(CH_2)_{0-4}$ -SO₂- $(C_1$ - C_8 alkyl),
 - (H) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or
- 25 different and are as defined above,
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or
- different and are as defined above,
 - (L) -(CH₂)₀₋₄- R_{N-4} where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),

(N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,

- (O) -O- $(C_1$ - C_5 alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

-F, -Cl, -Br, or -I), 5

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- (R) -F, or -Cl;

where R_A is:

10 (I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, - $NR_{1-a}C=O\ NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} 15

a and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkCyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-OH, -CO-

O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, 20

> (III) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} where R_{A-x} and R_{A-y} are (A) - H

- (B) C₁-C₄ alkyl optionally substituted with one or two –OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

25 F,

- (D) $-(CH_2)_{0-4}$ -C₃-C₇ cycloalkyl,
- (E) C2-C6 alkenyl containing one or two double bonds,
- (F) C₂-C₆ alkynyl contianing one or two triple bonds, or
- (G) phenyl,

30 and where R_{A-x} and R_{A-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2}- and R_{A-aryl} is the same as R_{N-aryl} ,

- (IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-x} and R_{A-y} are as defined above,
- (V) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-aryl} where R_{A-aryl}, R_{A-x} and R_{A-y} are as defined above,
- 5 (VI) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heteroaryl}$ where R_{A-aryl} , $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,
 - (VII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - R_{A-aryl} where $R_{A-heteroaryl}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
- (VIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$, R_{A-x} and R_{A-1} are as defined above,
 - (IX) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heterocycle}$ where $R_{A-heterocycle}$ is defined as $R_{1-heterocycle}$, and where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
 - (X) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heterocycle}$ where $R_{A-heteroaryl}$, $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
- 15 (XI) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle}-R_{A-aryl} where R_{A-heterocycle}, R_{A-aryl}, R_{A-x} and R_{A-y} are as defined above,
 - (XII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heteroaryl}$ where $R_{A-heterocycle}$, $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,
 - (XIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
 - (XIV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
 - (XV) -[$C(R_{A-1})(R_{A-2})$]₁₋₃-CO-N-(R_{A-3})₂ where R_{A-1} and R_{A-2} are the same or different and are selected from the group consisting of:
- 25 (A) -H,
 - (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- 30 (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C \equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

5

(E)
$$-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$$

(F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

10

- (G) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined for R_{1-aryl},
- (H) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (I) -(C_1 - C_4 alkyl)- R_{A -heterocycle} where R_{A -heterocycle} is as defined above,
- (J) $-R_{A\text{-heteroaryl}}$ where $R_{A\text{-heteroaryl}}$ is as defined above,
- (K) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,

15

(M) -(CH₂)₁₋₄-
$$R_{A-4}$$
-(CH₂)₀₋₄- $R_{A'-aryl}$ where R_{A-4} is -O-, -S- or

-NR_{A-5}- where R_{A-5} is C₁-C₆ alkyl, and where R_{A'-aryl} is defined above,

(N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and R_{A-heteroaryl} are as defined above, and

(O) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,

and where R_{A-3} is the same or different and is:

(A) - H,

(B) - C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, - $C\equiv N$, - CF_3 , C_1 - C_6 alkoxy, -O-phenyl, - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

30

25

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(E) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

5

10

15

20

25

30

- (F) -R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (G) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (H) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (I) -(C_1 - C_4 alkyl)- R_{A' -aryl</sub> where R_{A' -aryl</sub> is as defined above,
- (J) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (K) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined

above, or

(XVI) -CH $(R_{A-aryl})_2$ where R_{A-aryl} are the same or different and are as defined above,

(XVII) -CH $(R_{A-heteroaryl})_2$ where $R_{A-heteroaryl}$ are the same or different and are as defined above,

(XVIII) –CH(R_{A-aryl})($R_{A-heteroaryl}$) where R_{A-aryl} and $R_{A-heteroaryl}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{A\text{-aryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heterocycle}}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=O)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two - C_1 - C_3 alkyl, -F, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_6 alkoxy, =O, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-aryl} where R_{A-aryl} is as defined above and R_{A-6} is -(CH₂)₀₋₆-OH,

```
(XXII) –(CH<sub>2</sub>)<sub>0-1</sub>-CHR<sub>A-6</sub>-(CH<sub>2</sub>)<sub>0-1</sub>-R<sub>A-heteroaryl</sub> where R<sub>A-heteroaryl</sub> and R<sub>A-6</sub> is
         as defined above,
                             (XXIII) -CH(-R<sub>A-aryl</sub> or R<sub>A-heteroaryl</sub>)-CO-O(C<sub>1</sub>-C<sub>4</sub> alkyl) where R<sub>A-aryl</sub> and
         R<sub>A-heteroaryl</sub> are as defined above,
  5
                             (XXIV) -CH(-CH<sub>2</sub>-OH)-CH(-OH)-micro-NO<sub>2</sub>,
                             (XXV) (C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})-OH,
                             (XXVII) -CH<sub>2</sub>-NH-CH<sub>2</sub>-CH(-O-CH<sub>2</sub>-CH<sub>3</sub>)<sub>2</sub>.
                             (XXVIII)-H,
                             (XXIX) -(CH_2)_{0-6}-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as defined
10
                   above; or
                             (XXX)
                                       -C=OC(HR<sub>6</sub>)NHR<sub>7</sub>, where R<sub>6</sub> and R<sub>7</sub> are as defined below,
                                       -C=OR_7, where R_7 is as defined below,
                                       -C=OOR<sub>7</sub>, where R<sub>7</sub> is as defined below, or
15
                                       - SOOR<sub>7</sub> where R<sub>7</sub> is as defined below,
                                                 wherein R<sub>6</sub> is:
                                                      hydrogen,
                                                      C1 - C3 alkyl,
                                                      phenyl,
20
                                                      thioalkoxyalkyl,
                                                      alkyl substituted aryl,
                                                      cycloalkyl,
                                                      cycloalkylalkyl,
                                                      hydroxyalkyl,
25
                                                      alkoxyalkyl,
                                                      aryloxyalkyl,
                                                      haloalkyl,
                                                      carboxyalkyl,
                                                      alkoxycarbonylalkyl,
30
                                                      aminoalkyl,
                                                      (N-protected)aminoalkyl,
                                                      alkylaminoalkyl,
                                                      ((N-protected)(alkyl)amino)alkyl,
                                                      dialkylaminoalkyl,
```

	guanidinoalkyl,
	lower alkenyl,
	heterocyclic,
	(heterocyclic)alkyl),
5	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
10	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	(heterocyclic))alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl,
15	(heterocyclic)alkylsulfonylalkyl,
	cycloalkyloxyalkyl,
	cycloalkylthioalkyl,
	cycloalkylsulfonylalkyl,
	cycloalkylalkoxyalkyl,
20	cycloalkylthioalkoxyalkyl,
	cycloalkylalkylsulfonylalkyl,
	aminocarbonyl,
	alkylaminocarbonyl,
	dialkylaminocarbonyl,
25	aroylalkyl,
	(heterocyclic)carbonylalkyl,
	polyhydroxyalkyl,
	aminocarbonylalkyl,
	alkylaminocarbonylalkyl,
30	dialkylaminocarbonylalkyl,
	aryloxyalkyl, or
	alkylsulfonylalkyl,
	wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl,
	oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and

tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

5	wherein R ₇ is:
_	$C_1 - C_3$ alkyl,
	phenyl,
	thioalkoxyalkyl,
	(aryl)alkyl,
10	, • · · · · · · · · · · · · · · · · · ·
10	cycloalkyl,
	cycloalkylalkyl,
	hydroxyalkyl,
	alkoxyalkyl,
	aryloxyalkyl,
15	haloalkyl,
	carboxyalkyl,
	alkoxycarbonylalkyl,
	aminoalkyl,
	(N-protected)aminocalkyl,
20	alkylaminoalkyl,
	((N-protected)(alkyl)amino)alkyl,
	dialkylaminoalkyl,
	guanidinoalkyl,
	lower alkenyl,
25	heterocyclic,
	(heterocyclic)alkyl),
	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
30	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	J

(heterocyclic))alkoxyalkyl, (heterocyclic)thioalkoxyalkyl, (heterocyclic)alkylsulfonylalkyl, cycloalkyloxyalkyl, 5 cycloalkylthioalkyl, cycloalkylsulfonylalkyl, cycloalkylalkoxyalkyl, cycloalkylthioalkoxyalkyl, cycloalkylalkylsulfonylalkyl, 10 aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, aroylalkyl, (heterocyclic)carbonylalkyl, 15 polyhydroxyalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aryloxyalkyl, or 20 alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

where R_B is:

(I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -

20

C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, -CO-OH, -CO-O-(C_1 - C_4 alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) - $(CR_{B-x}R_{B-y})_{0-4}$ - R_{B-aryl} where R_{B-x} and R_{B-y} are

- (A) H,
- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- 10 (C) C_1 - C_4 alkoxy optionally substituted with one, two, or three of F,
 - (D) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,
 - (E) C2-C6 alkenyl containing one or two double bonds,
 - (F) C2-C6 alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{B-x} and R_{B-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ where R_{N-2} is as defined above, and R_{B-aryl} is the same as R_{N-aryl} and is defined above

- (IV) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$ is the same as $R_{N-heteroaryl}$, R_{B-x} , and R_{B-y} are as defined above,
- (V) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl}-R_{B-aryl} where R_{B-aryl}, R_{B-x}, and R_{B-y} are as defined above,
- $(VI) (CR_{B-x}R_{B-y})_{0-4} R_{B-aryl} R_{B-heteroaryl} \ where \ R_{B-aryl} \ , \ R_{B-heteroaryl} \ , R_{B-x} \ and \\ R_{B-y} \ are \ as \ defined \ above,$
 - $(VII) \text{ -}(CR_{B\text{-}x}R_{B\text{-}y})_{0\text{-}4}\text{-}R_{B\text{-}heteroaryl}\text{-}R_{B\text{-}aryl}\text{ where }R_{B\text{-}heteroaryl}\text{, }R_{B\text{-}aryl}\text{, }R_{B\text{-}x}\text{ and }R_{B\text{-}y}\text{ are as defined above,}$
- (VIII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,
 - (IX) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} - $R_{B-heterocycle}$ where $R_{B-heterocycle}$ is defined as R_1 heterocycle, and where R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,

- (X) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ - $R_{B-heterocycle}$ where $R_{B-heteroaryl}$, $R_{B-heterocycle}$, R_{B-x} and R_{B-y} are as defined above,
- (XI) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ - R_{B-aryl} where $R_{B-heterocycle}$, R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,
- $(XII) (CR_{B-x}R_{B-y})_{0-4} R_{B-heterocycle} R_{B-heteroaryl} \ where \ R_{B-heterocycle}, \ R_{B-heteroaryl}, \\ R_{B-x} \ and \ R_{B-y} \ are \ as \ defined \ above,$
 - (XIII) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle}-R_{B-heterocycle} where R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,
- (XIV) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ where $R_{B-heterocycle}$, R_{B-x} and R_{B-y} are as defined above,
 - $(XV) \hbox{-}[C(R_{B\text{-}1})(R_{B\text{-}2})]_{1\text{-}3}\hbox{-}CO\text{-}N\text{-}(R_{B\text{-}3})_2 \text{ where } R_{B\text{-}1} \text{ and } R_{B\text{-}2} \text{ are the same or different and are selected from the group consisting of:}$
 - (A) H,
- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃
 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
 - $(F)-(CH_2)_{0\text{-}4}-C_3-C_7 \text{ cycloalkyl, optionally substituted with one,}\\$ two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1\text{-}a}R_{1\text{-}b}$ where $R_{1\text{-}a}$ and $R_{1\text{-}b}$ are as defined above,
 - (G) -(C_1 - C_4 alkyl)- $R_{B'-aryl}$ where $R_{B'-aryl}$ is as defined above for R_{1-}

aryl

25

30

(H) -(C_1 - C_4 alkyl)- $R_{B\text{-heteroaryl}}$ where $R_{B\text{-heteroaryl}}$ is as defined above,

- (I) -(C₁-C₄ alkyl)-R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (J) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (K) $-R_{B\text{-heterocycle}}$ where $R_{B\text{-heterocycle}}$ is as defined above,
- (M) -(CH₂)₁₋₄- R_{B-4} -(CH₂)₀₋₄- $R_{B'-aryl}$ where R_{B-4} is -O-, -S- or
- 5 $-NR_{B-5}$ where R_{B-5} is C_1 - C_6 alkyl, and where $R_{B'-aryl}$ is defined above,
 - (N) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B-heteroaryl} where R_{B-4} and R_{B-heteroaryl} are as defined above, and
 - (O) $-R_{B'\text{-aryl}}$ where $R_{B'\text{-aryl}}$ is as defined above, and where $R_{B\text{-}3}$ is the same or different and is:

10 (A) -H,

- (B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,
 - (E) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -B
- I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (F) $-R_{B'-aryl}$ where $R_{B'-aryl}$ is as defined above,
 - (G) $-R_{B\text{-}heteroaryl}$ where $R_{B\text{-}heteroaryl}$ is as defined above,
 - (H) $-R_{B\text{-}heterocycle}$ where $R_{B\text{-}heterocycle}$ is as defined above,
 - (I) -(C_1 - C_4 alkyl)- $R_{B'\text{-aryl}}$ where $R_{B'\text{-aryl}}$ is as defined above,
 - (J) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
 - (K) -(C1-C4 alkyl)- $R_{B\text{-}heterocycle}$ where $R_{B\text{-}heterocycle}$ is as defined

above, or

30

20

(XVI) –CH($R_{\text{B-aryl}}$)₂ where $R_{\text{B-aryl}}$ are the same or different and are as defined above,

(XVII) $-CH(R_{B\text{-heteroaryl}})_2$ where $R_{B\text{-heteroaryl}}$ are the same or different and are as defined above,

5 $(XVIII) - CH(R_{B\text{-aryl}})(R_{B\text{-heteroaryl}}) \text{ where } R_{B\text{-aryl}} \text{ and } R_{B\text{-heteroaryl}} \text{ are as defined above,}$

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{B\text{-aryl}}$ or $R_{B\text{-heteroaryl}}$ or earlier as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH,

NR_{N-5}, O, or S(=O)₀₋₂, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two -C₁-C₃ alkyl, -F, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, =O, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

(XXI) –(CH₂)₀₋₁-CHR_{C-6}-(CH₂)₀₋₁-RB_{B-aryl} where R_{B-aryl} is as defined above and R_{C-6} is -(CH₂)₀₋₆-OH,

(XXII) –(CH₂)₀₋₁-CHR_{B-6}-(CH₂)₀₋₁-R_{B-heteroaryl} where $R_{B-heteroaryl}$ and R_{C-6} is as defined above,

25 (XXIII) –CH(- R_{B-aryl} or $R_{B-heteroaryl}$)-CO-O(C_1 - C_4 alkyl) where R_{B-aryl} and $R_{B-heteroaryl}$ are as defined above,

(XXIV) –CH(-CH₂-OH)-CH(-OH)-micro-NO₂, (XXV) (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH, (XXVII) –CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂

30 (XXVIII) –H, or

(XXIX) -(CH₂)₀₋₆-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as defined above; and

where PROTECTING GROUP is selected from the group consisting of tbutoxycarbonyl, benzyloxycarbonyl, formyl, trityl, acetyl, trichloroacetyl, dichloroacetyl, chloroacetyl, trifluoroacetyl, difluoroacetyl, fluoroacetyl, 4-phenylbenzyloxycarbonyl, 2methylbenzyloxycarbonyl, 4-ethoxybenzyloxycarbonyl, 4-fluorobenzyloxycarbonyl, 4chlorobenzyloxycarbonyl, 3-chlorobenzyloxycarbonyl, 2-chlorobenzyloxycarbonyl, 2,4-5 dichlorobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 3-bromobenzyloxycarbonyl, 4nitrobenzyloxycarbonyl, 4-cyanobenzyloxycarbonyl, 2-(4-xenyl)isopropoxycarbonyl, 1,1diphenyleth-1-yloxycarbonyl, 1,1-diphenylprop-1-yloxycarbonyl, 2-phenylprop-2yloxycarbonyl, 2-(p-toluyl)prop-2-yloxycarbonyl, cyclopentanyloxycarbonyl, 1-10 methylcyclopentanyloxycarbonyl, cyclohexanyloxycarbonyl, 1methylcyclohexanyloxycabonyl, 2-methylcyclohexanyloxycarbonyl, 2-(4toluylsulfonyl)ethoxycarbonyl, 2-(methylsulfonyl)ethoxycarbonyl, 2-(triphenylphosphino)ethoxycarbonyl, fluorenylmethoxycarbonyl, 2-(trimethylsilyl)ethoxycarbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl)prop-1enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 4-acetoxybenzyloxycarbonyl, 2,2,2-15 trichloroethoxycarbonyl, 2-ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, 4-(decyloxyl)benzyloxycarbonyl, isobornyloxycarbonyl and 1-piperidyloxycarbonyl, 9-

20 42. A protected compound according to claim 41 where R₁ is:

fluorenylmethyl carbonate, -CH-CH=CH₂ and phenyl-C(=N-)-H.

```
-(CH_2)_{0-1}-(R_{1-arv!}), or
                                         -(CH<sub>2</sub>)<sub>n1</sub>-(R<sub>1-heteroaryl</sub>);
                           where RA is:
                                        -C<sub>1</sub>-C<sub>8</sub> alkyl,
25
                                        -(CH_2)_{0-3}-(C_3-C_7) cycloalkyl,
                                        -(CR_{A-x}R_{A-y})<sub>0-4</sub>-R_{A-aryl},
                                        -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heteroaryl,</sub>
                                        -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heterocycle</sub>,
                                       -cyclopentyl or -cyclohexyl ring fused to R_{A\text{-aryl}} or R_{A\text{-heteroaryl}} or R_{A\text{-}}
30
           heterocycle; and
```

where R_B is:

-
$$C_1$$
- C_8 alkyl,
- $(CH_2)_{0-3}$ - $(C_3$ - $C_7)$ cycloalkyl,
- $(CR_{A-x}R_{A-y})_{0-4}$ - R_{A-aryl} ,

-cyclopentyl or -cyclohexyl ring fused to $R_{A\text{-aryl}}$ or $R_{A\text{-heterocycle}}$.

5 43. A protected compound according to claim 42,

where R₁ is:

-(
$$CH_2$$
)-(R_{1-aryl}), or

where R₂ is -H;

where R_3 is -H;

where R_N is:

 R_{N-1} - X_N - where X_N is:

-CO-,

where R_{N-1} is selected from the group consisting of:

15 -R_{N-aryl}, and

-R_{N-heteroaryl};

where RA is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0.4}-R_{A-aryl},$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl,}

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

heterocycle;

where R_B is:

-C₁-C₈ alkyl,

 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

 $-(CR_{B-x}R_{B-y})_{0-4}-R_{B-aryl}$

-(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl,}

-(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{B\text{-aryl}}$ or $R_{B\text{-heteroaryl}}$ or $R_{B\text{-}}$

heterocycle.

- 44. A protected compound according to claim 41 where PROTECTING GROUP is *t*-butoxycarbonyl.
- 45. A protected compound according to claim #1 where PROTECTING GROUP is benzyloxycarbonyl.
 - 46. A protected compound of the formula (XI)

30

where R₁ is:

- (I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, -
- NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, and -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
 - (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
- (IV) C₂-C₆ alkenyl with one or two double bonds, optionally substituted
 with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
- 25 (VI) -(CH₂)_{n1}-(R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:
 - (A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, and C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (B) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

5 Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

- F,

10

15

20

25.

(G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(H) -OH,

(I) -C≡N,

(J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

$$(K)$$
 – CO - $(C_1$ - C_4 alkyl),

(L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or

(N) –SO₂- $(C_1$ - C_4 alkyl),

(VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_{1-heteroaryl} is selected from the group consisting of:

pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienyl,

indolyl,

indolinyl,

pryidazinyl,

pyrazinyl,

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

30

20

25

30

13615.40USU

oxazolyl, thiazolyl, indolizinyl, indazolyl,

benzothiazolyl, benzimidazolyl,

0 benzofuranyl,

furanyl, thienyl, pyrrolyl, oxadiazolyl,

thiadiazolyl, triazolyl,

tetrazolyl,

oxazolopyridinyl, imidazopyridinyl,

isothiazolyl, naphthyridinyl,

cinnolinyl, carbazolyl,

beta-carbolinyl, isochromanyl,

chromanyl,

tetrahydroisoquinolinyl,

isoindolinyl,

isobenzotetrahydrofuranyl,

isobenzotetrahydrothienyl,

isobenzothienyl, benzoxazolyl,

pyridopyridinyl,

benzotetrahydrofuranyl,

<u>_</u>

benzotetrahydrothienyl,
purinyl,
benzodioxolyl,
triazinyl,
phenoxazinyl,
phenothiazinyl,
pteridinyl,
benzothiazolyl,
imidazopyridinyl,
imidazothiazolyl,
dihydrobenzisoxazinyl,
benzisoxazinyl,
benzoxazinyl,
dihydrobenzisothiazinyl,
benzopyranyl,
benzothiopyranyl,
coumarinyl,
isocoumarinyl,
chromonyl,
chromanonyl,
pyridinyl-N-oxide,
tetrahydroquinolinyl
dihydroquinolinyl
dihydroquinolinonyl
dihydroisoquinolinonyl
dihydrocoumarinyl
dihydroisocoumarinyl
isoindolinonyl
benzodioxanyl
benzoxazolinonyl
pyrrolyl N-oxide,
pyrimidinyl N-oxide,
pyridazinyl N-oxide,

ругаzinyl N-oxide,

	quinolinyl N-oxide,
	indolyl N-oxide,
	indolinyl N-oxide,
	isoquinolyl N-oxide,
5	quinazolinyl N-oxide,
	quinoxalinyl N-oxide,
	phthalazinyl N-oxide,
	imidazolyl N-oxide,
	isoxazolyl N-oxide,
10	oxazolyl N-oxide,
	thiazolyl N-oxide,
	indolizinyl N-oxide,
	indazolyl N-oxide,
	benzothiazolyl N-oxide,
15	benzimidazolyl N-oxide,
	pyrrolyl N-oxide,
	oxadiazolyl N-oxide,
	thiadiazolyl N-oxide,
	triazolyl N-oxide,
20	tetrazolyl N-oxide,
	benzothiopyranyl S-oxide, and
•	benzothiopyranyl S,S-dioxide,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

30 (2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are -H or C_1 - C_6 alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

5

- (4) -F, Cl, -Br or -I,
- (6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three of -F,

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) OH,

10

- (9) -C≡N,
- (10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),

1.5

(12) –SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above, or

(14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is

zero $R_{1\text{-heteroaryl}}$ is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

morpholinyl,

thiomorpholinyl,

25

thiomorpholinyl S-oxide,

thiomorpholinyl S,S-dioxide,

piperazinyl,

homopiperazinyl,

pyrrolidinyl,

30

pyrrolinyl,

tetrahydropyranyl,

piperidinyl,

tetrahydrofuranyl,

10

20

30

tetrahydrothienyl,
homopiperidinyl,
homomorpholinyl,
homothiomorpholinyl S,S-dioxide,
oxazolidinonyl,
dihydropyrazolyl,
dihydropyrazinyl,
dihydropyridinyl,
dihydropyrimidinyl,
dihydropyranyl,
tetrahydrothienyl S-oxide,

tetrahydrothienyl S-oxide,

tetrahydrothienyl S,S-dioxide, and
homothiomorpholinyl S-oxide,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent R_1 .

heterocycle group substituted by hydrogen such that the new bond to the $R_{1\text{-heterocycle}}$ group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

- (1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (2) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (4) -F, Cl, -Br or –I, (5) C₁-C₆ alkoxy,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three -F,

5

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) -OH,

(9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO- $(C_1$ - C_4 alkyl),

10 (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

(13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

(14) –SO₂-(C₁-C₄ alkyl), or

15 (15) =0, with the proviso that when n_1 is zero $R_{1-\text{heterocycle}}$ is not bonded to the carbon chain by nitrogen;

where R2 is:

(I)-H,

20 (II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -

C=N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, or $(VI) - (CH_2)_{0.4} - C_3 - C_7 \text{ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C=N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl;$

where R₃ is:

(I)-H,

- (II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
 - -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above
 - (IV) C₂-C₆ alkenyl with one or two double bonds,
- 10 (V) C₂-C₆ alkynyl with one or two triple bonds; or
 - (VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
- and where R₂ and R₃ are taken together with the carbon to which they are

 attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally
 where one carbon atom is replaced by a heteroatom selected from the group consisting of

 -O-, -S-, -SO₂-, and -NR_{N-2}-, where R_{N-2} is selected from the group consisting of:
 - (a) -H,
 - (b) -C₁-C₆ alkyl optionally substituted with one
- 20 substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH₂,
 - (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

25

30

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) $-C_2-C_6$ alkeryl with one or two double bonds,
- (h) $-C_2-C_6$ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, and
 - (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above;

where R_N is:

(I) R_{N-1} - X_N - where X_N is selected from the group consisting of:

(A) -CO-,

5

10

15

(B) $-SO_2$ -,

(C) -(CR'R") $_{1-6}$ where R' and R" are the same or different and are -H and C_1 - C_4 alkyl,

(D) –CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group consisting of –O-, -S- and –NR'- and where R' and R" are as defined above, and

(E) a single bond;

where R_{N-1} is selected from the group consisting of:

(A) $R_{N\text{-}aryl}$ where $R_{N\text{-}aryl}$ is phenyl, 1-naphthyl, 2-naphthyl, tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

20

(2) - OH,

 $(3) -NO_2,$

(4) -F, -Cl, -Br, -I,

(5) -CO-OH,

(6) -C≡N,

25

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:

30

(i) -OH, and

(ii) -NH₂,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C2-C6 alkenyl with one or two double bonds,
- (h) $-C_2-C_6$ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

5

15

25

- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,

10 (8) $-(CH_2)_{0-4}$ -CO- $(C_1$ - C_{12} alkyl),

(9) -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three

double bonds),

(10) –(CH₂)_{0.4}-CO-<math>(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

(11) –(CH₂)₀₋₄-CO-<math>(C₃-C₇ cycloalkyl),

(12) –(CH₂)₀₋₄-CO-R_{1-aryl} where R_{1-aryl} is as defined above,

(13) –(CH₂)₀₋₄-CO-R_{1-heteroarvl} where R_{1-heteroarvl} is as defined

above,

DOMOSEY4.OSEGO

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as

20 defined above,

(15) –(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,

(16) –(CH₂)_{0.4}-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:

- (a) C₁-C₆ alkyl,
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined

30 above,

(c) C₂-C₆ alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

- (e) C₃₋C₇ cycloalkyl, and
- (f) - $(CH_2)_{0-2}$ - $(R_{1-heteroaryl})$ where $R_{1-heteroaryl}$ is as

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

5 defined above,

- (18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),
- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be
- 10 the same or different and is as defined above,

(22) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

15 (24) –(C \dot{H}_2)_{0.4}–N(-H or R_{N-5})-CO-R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

(26) $-(CH_2)_{0-4}$ - R_{N-4} where R_{N-4} is as defined above,

(27) –(CH₂)₀₋₄–O-CO-<math>(C₁-C₆ alkyl),

(28) $-(CH_2)_{0.4}$ -O-P(O)- $(OR_{N-aryl-1})_2$ where $R_{N-aryl-1}$ is -H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above,

20

25

30

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

- (31) –(CH₂)₀₋₄-O-(R_{N-5})₂ where R_{N-5} is as defined above,
- (32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) – $(CH_2)_{0.4}$ -S- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with one, two, three, four, or five of –F),

(35) C₃-C₇ cycloalkyl,

20

25

30

(36) C₂-C₆ alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

(37) C2-C6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -5 $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as described above, or

(39) - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,

10 (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is selected from the group consisting of:

> pyridinyl, pyrimidinyl, quinolinyl,

benzothienyl,

indolyl, indolinyl,

pryidazinyl,

pyrazinyl,

isoindolyl,

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

imidazolyl,

isoxazolyl,

pyrazolyl,

oxazolyl,

thiazolyl,

indolizinyl,

indazolyl,

benzothiazolyl,

benzimidazolyl,

	benzofuranyl,
	furanyl,
	thienyl,
	pyrrolyl,
5	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
	tetrazolyl,
	oxazolopyridinyl,
10	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
	cinnolinyl,
	carbazolyl,
· 15	beta-carbolinyl,
	isochromanyl,
	chromanyl,
	tetrahydroisoquinolinyl,
	isoindolinyl,
20	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
. *	isobenzothienyl,
	benzoxazolyl,
	pyridopyridinyl,
25	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
	purinyl,
	benzodioxolyl,
	triazinyl,
30	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,
	benzothiazolyl,
	imidazopyridinyl,

	imidazothiazolyl,
	dihydrobenzisoxazinyl,
	benzisoxazinyl,
	benzoxazinyl,
5	dihydrobenzisothiazinyl,
	benzopyranyl,
	benzothiopyranyl,
	coumarinyl,
	isocoumarinyl,
10	chromonyl,
	chromanonyl,
	pyridinyl-N-oxide,
	tetrahydroquinolinyl,
	dihydroquinolinyl,
15	dihydroquinolinonyl,
	dihydroisoquinolinonyl,
	dihydrocoumarinyl,
	dihydroisocoumarinyl,
	isoindolinonyl,
20	benzodioxanyl,
	benzoxazolinonyl,
	pyrrolyl N-oxide,
	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
25.	pyrazinyl N-oxide,
	quinolinyl N-oxide,
	indolyl N-oxide,
	indolinyl N-oxide,
	isoquinolyl N-oxide,
30	quinazolinyl N-oxide,
	quinoxalinyl N-oxide,
	phthalazinyl N-oxide,
	imidazolyl N-oxide,
	isoxazolyl N-oxide,

oxazolyl N-oxide,
thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,
oxadiazolyl N-oxide,
thiadiazolyl N-oxide,
triazolyl N-oxide,
tetrazolyl N-oxide,
benzothiopyranyl S-oxide, and

benzothiopyranyl S,S-dioxide

10

5

where the R_{N-heteroaryl} group is bonded by any atom of the parent R_{N-}

heteroaryl group substituted by hydrogen such that the new bond to the R_{N-heteroaryl} group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

(1) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I,
 20 -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) -OH,

 $(3) -NO_2,$

(4) –F, -Cl, -Br, or -I,

25

(5) -CO-OH,

(6) -C≡N,

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:

(a) -H,

30

(b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:

(i) -OH, and

(ii) -NH₂,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

10

5

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above,
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- $(8) (CH_2)_{0.4} CO (C_1 C_{12} \text{ alkyl}),$
- (9) -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three

double bonds),

15

(10) -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

- (11) –(CH₂)₀₋₄-CO-<math>(C₃-C₇ cycloalkyl),
- (12) – $(CH_2)_{0-4}$ -CO- R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

20 above,

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where $R_{1\text{-heterocycle}}$ is as

defined above,

(15) –(CH₂)_{0.4}-CO- $R_{N.4}$ where $R_{N.4}$ is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl,

- 25 homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,
 - (16) –(CH₂)_{0.4}-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:

30

- (a) C₁-C₆ alkyl,
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined

above,

(c) C₂-C₆ alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

- (e) C₃.C₇ cycloalkyl, and
- (f) -(CH₂)₀₋₂-(R_{1-heteroaryl}) where R_{1-heteroaryl} is as

5 defined above;

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

- $(18) (CH_2)_{0-4} SO (C_1 C_8 \text{ alkyl}),$
- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),

10 (20) –(CH₂)_{0.4}-SO₂-(C₃-C₇ cycloalkyl),

(21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be the same or different and is as defined above,

(22) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

15 (23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

- (26) $-(CH_2)_{0-4}$ - R_{N-4} where R_{N-4} is as defined above,
- (27) –(CH₂)₀₋₄–O-CO-(C₁-C₆ alkyl),
- (28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

 C_1 - C_4 alkyl,

25 (29) $-(CH_2)_{0.4}$ -O-CO- $N(R_{N-5})_2$ where R_{N-5} is as defined above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where $R_{\text{N-5}}$ is as defined

above,

(31) $-(CH_2)_{0.4}$ -O- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

30

- (33) –(CH₂)_{0.4}-S-(R_{N-5})₂ where R_{N-5} is as defined above,
- (34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with one, two, three, four, or five of –F),

20

25

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

5 (37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or

10 (39) - $(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl,

- (C) $R_{N\text{-aryl}}\text{-}W\text{-}R_{N\text{-aryl}}$, where $R_{N\text{-aryl}}$ can be the same or different,
- (D) R_{N-aryl} -W- $R_{N-heteroaryl}$,
- (E) $R_{N\text{-aryl}}$ -W- $R_{N\text{-1-heterocycle}}$, wherein $R_{N\text{-1-heterocycle}}$ is the same as $R_{1\text{-heterocycle}}$, and $R_{1\text{-heterocycle}}$ is as defined above

(F) R_{N-heteroaryl}-W-R_{N-aryl},

- (G) R_{N-heteroaryl}-W-R_{N-heteroaryl},
- (H) $R_{N-heteroaryl}$ -W- $R_{N-1-heterocycle}$,
- $\label{eq:constraints} \mbox{(I)} \ R_{\mbox{N-heterocycle}}\mbox{-W-R}_{\mbox{N-aryl}}, \mbox{ wherein } R_{\mbox{N-heterocycle}} \mbox{ is the same as } R_{\mbox{1-heterocycle}} \mbox{ is as defined above,}$ $\mbox{heterocycle}, \mbox{ and } R_{\mbox{1-heterocycle}} \mbox{ is as defined above,}$

(J) R_{N-heterocycle}-W-R_{N-heteroaryl}, and

(K) R_{N-heterocycle}-W-R_{N-1-heterocycle},

where W is

(17)
$$-(CH_2)_{0-4}$$

(18) –O-,

(19) $-S(O)_{0-2}$ -,

(20) $-N(R_{N-5})$ - where R_{N-5} is as defined above, or

(5) -CO-;

(II) -CO-(C₁-C₁₀ alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:

30 (A) -OH,

- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) -CO-O-R_{N-8} where R_{N-8} is -H, C₁-C₆ alkyl or -phenyl,

- (E) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above.
 - (F) -CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2$ -(C₁-C₈ alkyl),
- 5 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and
- 10 are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are

as defined above,

-F, -CI, -Br, or -I),

15

- (O) -O-(C_1 - C_5 alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of
 - (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
 - (R) -F, or -Cl,
- 20 (III) -CO-(C₁-C₆ alkyl)-O-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
- 25 (D) $-\text{CO-O-R}_{\text{N-8}}$ where $\text{R}_{\text{N-8}}$ is -H, C_1 - C_6 alkyl or -phenyl,
 - (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
- 30 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,

20.

25

- (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
- 5 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O-(C₁-C₅ alkyl)-COOH,
 - (P) -O- $(C_1$ - C_6 alkyl optionally substitued with one, two, or three of -F, -CI, -Br, or -I),
- 10 (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
 - (R) -F, or -Cl,

(IV) $-\text{CO-}(C_1-C_6 \text{ alkyl})-\text{S-}(C_1-C_6 \text{ alkyl})$ where alkyl is optionally substituted with one, two, or three of substitutents selected from the group consisting of:

- (A) -OH,
- 15 (B) $-C_1-C_6$ alkoxy,
 - (C) -C₁-C₆ thioalkoxy,
 - (D) $-\text{CO-O-R}_{N-8}$ where R_{N-8} is as defined above,
 - (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) $-O-CO-(C_1-C_6 \text{ alkyl})$,
- 30 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O- $(C_1$ - C_5 alkyl)-COOH,

- (P) -O- $(C_1$ - C_6 alkyl optionally substitued with one, two, or three of -F, -Cl, -Br, or -I),
 - (Q) -NH-SO₂-(C₁-C₆ alkyl), and
 - (R) -F, or -Cl,
- 5 (V) -CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:
 - (A)-H
 - (B) C₁-C₆ alkyl,
 - (C) C₃-C₇ cycloalkyl,
- 10 (D) C_2 - C_6
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C2-C6 alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
 - (G) $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above, or
- (VI) –CO-(C₃-C₈ cycloalkyl) where alkyl is optionally substituted with one or two substitutents selected from the group consisting of:
 - (A) -(CH₂)₀₋₄-OH,
 - (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
 - (C) $-(CH_2)_{0-4}-C_1-C_6$ thioalkoxy,
 - (D) -(CH₂)₀₋₄-CO-O-R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or phenyl,
- 20 (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) $-(CH_2)_{0-4}-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) -(CH₂)₀₋₄-SO₂-NR_{N-2} R_{N-3} where R_{N-2} and R_{N-3} are the same or
- 25 different and are as defined above,
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or

different and are as defined above,

30

- (L) -(CH₂)₀₋₄-R_{N-4} where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),

(N) -O-CO-NR_{N-8}R_{N-8} where $R_{\text{N-8}}$ are the same or different and are as defined above,

- (O) -O-(C_1 - C_5 alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

5 -F, -Cl, -Br, or -I),

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- (R) -F, or -Cl;

where RA is:

(I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
-SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR₁-aR₁-b where R₁-a and R₁-b are as defined above, -OC=O NR₁-aR₁-b where R₁-a and R₁-b are as defined above, -S(=O)₀-₂ R₁-a where R₁-a is as defined above, -NR₁-aC=O NR₁-aR₁-b where R₁-a and R₁-b are as defined above,
15 C=O NR₁-aR₁-b where R₁-a and R₁-b are as defined above, and -S(=O)₂ NR₁-aR₁-b where R₁-a and R₁-b are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkCyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, -CO-O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} where R_{A-x} and R_{A-y} are (A) –H,

- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

25 F,

20

- (D) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,
- (E) C2-C6 alkenyl containing one or two double bonds,
- (F) C₂-C₆ alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{A-x} and R_{A-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2}- and R_{A-aryl} is the same as R_{N-aryl},

(IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-x} and R_{A-y} are as defined above,

(V) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-aryl} where R_{A-aryl}, R_{A-x} and R_{A-y} are as defined above,

5 (VI) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heteroaryl}$ where R_{A-aryl} , $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,

(VII) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl}-R_{A-aryl} where R_{A-heteroaryl}, R_{A-aryl}, R_{A-x} and R_{A-y} are as defined above,

(VIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$, R_{A-x} and R_{A-1} are as defined above,

 $(IX) \text{ -(}CR_{A\text{-}x}R_{A\text{-}y})_{0\text{-}4}\text{-}R_{A\text{-}aryl}\text{-}R_{A\text{-}heterocycle}\text{ where }R_{A\text{-}heterocycle}\text{is defined as }R_{1\text{-}heterocycle}\text{,}$ and where $R_{A\text{-}aryl}$, $R_{A\text{-}x}$ and $R_{A\text{-}y}$ are as defined above,

 $(X) \text{ -(CR}_{A\text{-x}}R_{A\text{-y}})_{0\text{-4}}\text{-}R_{A\text{-heteroaryl}}\text{-}R_{A\text{-heterocycle}} \text{ where } R_{A\text{-heteroaryl}}, R_{A\text{-heterocycle}}, R_{A\text{-x}} \text{ and } R_{A\text{-y}} \text{ are as defined above,}$

15 (XI) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - R_{A-aryl} where $R_{A-heterocycle}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

 $(XII) \text{ -}(CR_{A-x}R_{A-y})_{0\text{-}4}\text{-}R_{A\text{-heterocycle}}\text{-}R_{A\text{-heteroaryl}} \text{ where } R_{A\text{-heterocycle}}, R_{A\text{-heteroaryl}}, R_{A-x} \text{ and } R_{A-y} \text{ are as defined above,}$

(XIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,

(XIV) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle} where R_{A-heterocycle}, R_{A-x} and R_{A-y} are as defined above,

(XV) -[C(R_{A-1})(R_{A-2})]₁₋₃-CO-N-(R_{A-3})₂ where R_{A-1} and R_{A-2} are the same or different and are selected from the group consisting of:

25 (A) -H,

(B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

30 (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(D) C2-C6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above.

5

(E)
$$-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$$

(F) –(CH₂)₀₋₄-C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above.

10

- (G) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined for R_{1-aryl},
- (H) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (J) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (K) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,

15

20

25

30

-NR_{A-5}- where R_{A-5} is C₁-C₆ alkyl, and where R_{A'-aryl} is defined above,

(N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and $R_{A-heteroaryl}$ are as defined above, and

(O) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,

and where R_{A-3} is the same or different and is:

- (A) H,
- (B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, –F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(D) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above.

(E) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

5

10

15

20

30

- (F) -R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (G) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (H) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (J) -(C_1 - C_4 alkyl)- $R_{A\text{-heteroaryl}}$ where $R_{A\text{-heteroaryl}}$ is as defined above,
- (K) -(C_1 - C_4 alkyl)- $R_{A\text{-heterocycle}}$ where $R_{A\text{-heterocycle}}$ is as defined

above, or

(XVI) –CH($R_{\text{A-aryl}}$)2 where $R_{\text{A-aryl}}$ are the same or different and are as defined above,

(XVII) – $CH(R_{A-heteroaryl})_2$ where $R_{A-heteroaryl}$ are the same or different and are as defined above,

(XVIII) –CH(R_{A-aryl})(R_{A-heteroaryl}) where $R_{\text{A-aryl}}$ and $R_{\text{A-heteroaryl}}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{A\text{-aryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroacycle}}$ where $R_{A\text{-aryl}}$ or $R_{A\text{-heteroacycle}}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=O)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two - C_1 - C_3 alkyl, -F, -OH, -SH, -C=N, -CF₃, C_1 - C_6 alkoxy, =O, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XXI) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-aryl} where R_{A-aryl} is as defined above and R_{A-6} is -(CH₂)₀₋₆-OH,


```
(XXII) –(CH<sub>2</sub>)<sub>0-1</sub>-CHR<sub>A-6</sub>-(CH<sub>2</sub>)<sub>0-1</sub>-R<sub>A-heteroaryl</sub> where R_{A-heteroaryl} and R_{A-6} is
          as defined above,
                              (XXIII) -CH(-R<sub>A-aryl</sub> or R<sub>A-heteroaryl</sub>)-CO-O(C<sub>1</sub>-C<sub>4</sub> alkyl) where R<sub>A-aryl</sub> and
          R<sub>A-heteroaryl</sub> are as defined above,
   5
                              (XXIV) -CH(-CH<sub>2</sub>-OH)-CH(-OH)-micro-NO<sub>2</sub>,
                              (XXV) (C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})-OH,
                              (XXVII) –CH_2-NH-CH_2-CH(-O-CH_2-CH_3)_2
                              (XXVIII) -H,
                              (XXIX) -(CH<sub>2</sub>)<sub>0-6</sub>-C(=NR<sub>1-a</sub>)(NR<sub>1-a</sub>R<sub>1-b</sub>) where R<sub>1-a</sub> and R<sub>1-b</sub> are as defined
 10
                    above; or
                              (XXX)
                                        -C=OC(HR<sub>6</sub>)NHR<sub>7</sub>, where R<sub>6</sub> and R<sub>7</sub> are as defined below,
                                        -C=OR_7, where R_7 is as defined below.
                                        -C=OOR<sub>7</sub>, where R<sub>7</sub> is as defined below, or
15
                                        - SOOR<sub>7</sub> where R<sub>7</sub> is as defined below,
                                                  wherein R<sub>6</sub> is:
                                                       hydrogen,
                                                       C<sub>1</sub> - C<sub>3</sub> alkyl,
                                                       phenyl,
20
                                                       thioalkoxyalkyl,
                                                       alkyl substituted aryl,
                                                       cycloalkyl,
                                                       cycloalkylalkyl,
                                                       hydroxyalkyl,
25
                                                      alkoxyalkyl,
                                                      aryloxyalkyl,
                                                      haloalkyl,
                                                      carboxyalkyl,
                                                      alkoxycarbonylalkyl,
30
                                                      aminoalkyl,
                                                      (N-protected)aminoalkyl,
                                                      alkylaminoalkyl,
                                                      ((N-protected)(alkyl)amino)alkyl,
                                                      dialkylaminoalkyl,
```


	guanidinoalkyl,
5 .	lower alkenyl,
	heterocyclic,
	(heterocyclic)alkyl),
	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
10	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
·	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	(heterocyclic))alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl,
15	(heterocyclic)alkylsulfonylalkyl
	cycloalkyloxyalkyl,
	cycloalkylthioalkyl,
	cycloalkylsulfonylalkyl,
	cycloalkylalkoxyalkyl,
20	cycloalkylthioalkoxyalkyl,
	cycloalkylalkylsulfonylalkyl,
	aminocarbonyl,
	alkylaminocarbonyl,
	dialkylaminocarbonyl,
25	aroylalkyl,
	(heterocyclic)carbonylalkyl,
	polyhydroxyalkyl,
	aminocarbonylalkyl,
30	alkylaminocarbonylalkyl,
	dialkylaminocarbonylalkyl,
	aryloxyalkyl, or
	alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and

tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

	octi, -50311, lower alkerryl or lower alkyl;
5	wherein R ₇ is:
	C ₁ - C ₃ alkyl,
	phenyl,
	thioalkoxyalkyl,
	(aryl)alkyl,
10	cycloalkyl,
	cycloalkylalkyl,
	hydroxyalkyl,
	alkoxyalkyl,
	aryloxyalkyl,
15	haloalkyl,
	carboxyalkyl,
	alkoxycarbonylalkyl,
	aminoalkyl,
	(N-protected)aminocalkyl,
20	alkylaminoalkyl,
	((N-protected)(alkyl)amino)alkyl,
-	dialkylaminoalkyl,
	guanidinoalkyl,
	lower alkenyl,
25	heterocyclic,
	(heterocyclic)alkyl),
	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
30	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,

10

15

20

25

30

(heterocyclic))alkoxyalkyl, (heterocyclic)thioalkoxyalkyl, (heterocyclic)alkylsulfonylalkyl, cycloalkyloxyalkyl, cycloalkylthioalkyl, cycloalkylsulfonylalkyl, cycloalkylalkoxyalkyl, cycloalkylthioalkoxyalkyl, cycloalkylalkylsulfonylalkyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, aroylalkyl, (heterocyclic)carbonylalkyl, polyhydroxyalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aryloxyalkyl, or

alkylsulfonylalkyl,
wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl,
oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and
tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with
one to three substituents independently selected from hydroxy, halo, amino, alkylamino,
dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl,
COOH, -SO₃H, lower alkenyl or lower alkyl; and

where PROTECTING GROUP is selected from the group consisting of *t*-butoxycarbonyl, benzyloxycarbonyl, formyl, trityl, acetyl, trichloroacetyl, dichloroacetyl, chloroacetyl, trifluoroacetyl, difluoroacetyl, fluoroacetyl, 4-phenylbenzyloxycarbonyl, 2-methylbenzyloxycarbonyl, 4-ethoxybenzyloxycarbonyl, 4-fluorobenzyloxycarbonyl, 4-chlorobenzyloxycarbonyl, 2-chlorobenzyloxycarbonyl, 2,4-dichlorobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 3-bromobenzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4-cyanobenzyloxycarbonyl, 2-(4-xenyl)isopropoxycarbonyl, 1,1-diphenyleth-1-yloxycarbonyl, 1,1-diphenylprop-1-yloxycarbonyl, 2-phenylprop-2-

yloxycarbonyl, 2-(p-toluyl)prop-2-yloxycarbonyl, cyclopentanyloxycarbonyl, 1-methylcyclopentanyloxycarbonyl, cyclohexanyloxycarbonyl, 1-methylcyclohexanyloxycabonyl, 2-methylcyclohexanyloxycarbonyl, 2-(4-toluylsulfonyl)ethoxycarbonyl, 2-(methylsulfonyl)ethoxycarbonyl, 2-

- (triphenylphosphino)ethoxycarbonyl, fluorenylmethoxycarbonyl, 2-(trimethylsilyl)ethoxycarbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl)prop-1enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 4-acetoxybenzyloxycarbonyl, 2,2,2trichloroethoxycarbonyl, 2-ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, 4-(decyloxyl)benzyloxycarbonyl, isobornyloxycarbonyl and 1-piperidyloxycarbonyl, 9-
- 10 fluorenylmethyl carbonate, -CH-CH=CH₂ and phenyl-C(=N-)-H.
 - 47. A protected compound according to claim 46,

$$-(CH_2)_{0-1}-(R_{1-aryl})$$
, or

$$-(CH_2)_{n1}-(R_{1-heteroaryl});$$

where R_A is:

15

$$-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$$

$$-(CR_{A-x}R_{A-y})_{0-4}-R_{A-heteroaryl},$$

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

heterocycle.

25 48. A protected compound according to claim/47

-(CH₂)-(
$$R_{1-aryl}$$
), or

where R_2 is -H;

30 where R_3 is -H:

where RA is:

$$-(CH2)0-3-(C3-C7)$$
 cycloalkyl,

-
$$(CR_{A-x}R_{A-y})_{0-4}$$
- R_{A-aryl} ,

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl,}

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

heterocycle.

5

- 49. A protected compound according to claim 46 where PROTECTING GROUP is *t*-butoxycarbonyl.
- 50. A protected compound according to claim 46 where PROTECTING GROUP is benzyloxycarbonyl.
 - 51. A compound of the formula (XII)

15

where R₁ is:

- (I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, $-C_3$ alkoxy, $-C_5$
- NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl, and -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
 - (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
- (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) -(CH₂)_{n1}-(R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C=N, -CF₃, and C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

15

10

5

(F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

- F,

(G) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,

(H) -OH,

20

(J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are -H or C_1 - C_6 alkyl,

$$(K)$$
 –CO- $(C_1$ - C_4 alkyl),

25

(L)
$$-SO_2-NR_{1-a}R_{1-b}$$
 where R_{1-a} and R_{1-b} are as defined above,

(M) –CO-NR $_{\text{1-a}}R_{\text{1-b}}$ where $R_{\text{1-a}}$ and $R_{\text{1-b}}$ are as defined above, or

(N) -SO₂- $(C_1$ - C_4 alkyl),

(VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R₁.

heteroaryl is selected from the group consisting of:

30

pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienvl.

	indolyl,
	indolinyl,
	pryidazinyl,
	pyrazinyl,
5	isoquinolyl,
	quinazolinyl,
	quinoxalinyl,
	phthalazinyl,
	imidazolyl,
10	isoxazolyl,
	pyrazolyl,
	oxazolyl,
	thiazolyl,
	indolizinyl,
15	indazolyl,
	benzothiazolyl,
	benzimidazolyl,
	benzofuranyl,
	furanyl,
20	thienyl,
	pyrrolyl,
	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
25	tetrazolyl,
	oxazolopyridinyl,
	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
30	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
	isochromanyl,
	chromanyl,

	tetrahydroisoquinolinyl,
	isoindolinyl,
	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
5	isobenzothienyl,
	benzoxazolyl,
	pyridopyridinyl,
	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
10	purinyl,
	benzodioxolyl,
	triazinyl,
	phenoxazinyl,
	phenothiazinyl,
15	pteridinyl,
	benzothiazolyl,
	imidazopyridinyl,
	imidazothiazolyl,
	dihydrobenzisoxazinyl,
20	benzisoxazinyl,
	benzoxazinyl,
	dihydrobenzisothiazinyl,
	benzopyranyl,
	benzothiopyranyl,
25	coumarinyl,
	isocoumarinyl,
	chromonyl,
	chromanonyl,
x	pyridinyl-N-oxide,
30	tetrahydroquinolinyl
	dihydroquinolinyl
	dihydroquinolinonyl
	dihydroisoquinolinonyl

dihydrocoumarinyl

	dihydroisocoumarinyl
	isoindolinonyl
	benzodioxanyl
	benzoxazolinonyl
5	pyrrolyl N-oxide,
	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
	pyrazinyl N-oxide,
	quinolinyl N-oxide,
10	indolyl N-oxide,
	indolinyl N-oxide,
	isoquinolyl N-oxide,
	quinazolinyl N-oxide,
	quinoxalinyl N-oxide,
15	phthalazinyl N-oxide,
	imidazolyl N-oxide,
	isoxazolyl N-oxide,
	oxazolyl N-oxide,
	thiazolyl N-oxide,
20	indolizinyl N-oxide,
	indazolyl N-oxide,
	benzothiazolyl N-oxide,
	benzimidazolyl N-oxide,
	pyrrolyl N-oxide,
25	oxadiazolyl N-oxide,
	thiadiazolyl N-oxide,
	triazolyl N-oxide,
	tetrazolyl N-oxide,
	benzothiopyranyl S-oxide, and
30	benzothiopyranyl S,S-dioxide,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

 $\mbox{(3) C_2-C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -$

10 Cl, -OH, -SH, -C \equiv N, -CF $_3$, C $_1$ -C $_3$ alkoxy, and -NR $_{1\text{-a}}$ R $_{1\text{-b}}$ where R $_{1\text{-a}}$ and R $_{1\text{-b}}$ are -H or C $_1$ -C $_6$ alkyl,

(4) -F, Cl, -Br or -I,

(6) $-C_1$ - C_6 alkoxy optionally substituted with one, two, or

three of -F,

15

(7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(8) -OH,

(9) -C \equiv N,

(10) C₃-C₇ cycloalkyl, optionally substituted with one, two

or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃,

20 C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO- $(C_1$ - C_4 alkyl),

(12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

(13) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above, or

30

(14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is

zero R_{1-heteroaryl} is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle}

is selected from the group consisting of:

morpholinyl,

thiomorpholinyl.

thiomorpholinyl S-oxide,

thiomorpholinyl S,S-dioxide,

	piperazinyl,
	homopiperazinyl,
	pyrrolidinyl,
	pyrrolinyl,
5	tetrahydropyranyl,
	piperidinyl,
	tetrahydrofuranyl,
	tetrahydrothienyl,
	homopiperidinyl,
10	homomorpholinyl,
	homothiomorpholinyl,
	homothiomorpholinyl S,S-dioxide,
	oxazolidinonyl,
	dihydropyrazolyl,
15	dihydropyrrolyl,
	dihydropyrazinyl,
	dihydropyridinyl,
	dihydropyrimidinyl,
	dihydrofuryl,
20.	dihydropyranyl,
	tetrahydrothienyl S-oxide,
	tetrahydrothienyl S,S-dioxide, and
	homothiomorpholinyl S-oxide,
	where the R _{1-heterocycle} group is bonded by any ator

where the $R_{1-heterocycle}$ group is bonded by any atom of the parent $R_{1-heterocycle}$

25 heterocycle group substituted by hydrogen such that the new bond to the R_{1-heterocycle} group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

=

C1, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

- 5 Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (4) -F, Cl, -Br or -I,
 - (5) C₁-C₆ alkoxy,
 - (6) -C₁-C₆ alkoxy optionally substituted with one, two, or

10 three -F,

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) -OH,
- (9) -C≡N,
- (10) C₃-C₇ cycloalkyl, optionally substituted with one, two
- or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

...

20

(13) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

- (14) –SO₂-(C₁-C₄ alkyl), or
- (15) =O, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen;

25

where R₂ is:

- (I)-H,
- (II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
- 30 -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R₁. heteroaryl are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(V) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with

one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, or

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl;

10

20

25

30

5

where R₃ is:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

15 -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above

(IV) C₂-C₆ alkenyl with one or two double bonds,

(V) C₂-C₆ alkynyl with one or two triple bonds; or

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

and where R₂ and R₃ are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2}-, where R_{N-2} is selected from the group consisting of:

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one

substitutent selected from the group consisting of:

(i) -OH, and

(ii) -NH₂,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, and
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above;

10

5

where R_N is:

- (I) R_{N-1} - X_N where X_N is selected from the group consisting of:
 - (A) -CO-,
 - (B) $-SO_{2}$ -,

15

- (C) -(CR'R") $_{1\text{-}6}$ where R' and R" are the same or different and are -H and $C_1\text{-}C_4$ alkyl,
- (D) –CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group consisting of –O-, -S- and –NR'- and where R' and R" are as defined above, and (E) a single bond;

20

where R_{N-1} is selected from the group consisting of:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl, 2-naphthyl, tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:
- (1) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (2) -OH,

30

- $(3) -NO_2$,
- (4) -F, -Cl, -Br, -I,
- (5) -CO-OH,
- (6) -C≡N,

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:

- (a) -H,
- (b) -C₁-C₆ alkyl optionally substituted with one
- 5 substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH₂,
 - (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

10

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,

(i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, and
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- $(8) (CH_2)_{0-4} CO (C_1 C_{12} \text{ alkyl}),$

20

15

(9) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three

double bonds),

(10) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

(11) –(CH₂)₀₋₄-CO-<math>(C₃-C₇ cycloalkyl),

25

- (12) $-(CH_2)_{0-4}$ -CO-R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

(14) –(CH₂)₀₋₄-CO-R_{i-heterocycle} where R_{i-heterocycle} is as

defined above,

30

(15) –(CH₂)_{0.4}-CO-R_{N.4} where R_{N.4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperadinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C_1 - C_6 alkyl,

(16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:

- (a) C₁-C₆ alkyl,
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined

5 above,

(c) C2-C6 alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

(e) C₃.C₇ cycloalkyl, and

(f) -(CH₂)₀₋₂-($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as

defined above.

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

15

10

- (18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),
- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)_{0.4}-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be the same or different and is as defined above.

20 (22) –(CH₂)₂ (21)

(22) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

- (24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2}
- can be the same or different and are as defined above,
 - $(25) (CH_2)_{0\text{-}4}\text{-}NR_{N\text{-}2}R_{N\text{-}3} \text{ where } R_{N\text{-}2} \text{ and } R_{N\text{-}3} \text{ can be the}$ same or different and are as defined above,
 - (26) $-(CH_2)_{0.4}$ - $R_{N.4}$ where $R_{N.4}$ is as defined above,
 - (27) –(CH₂)₀₋₄–O-CO-<math>(C₁-C₆ alkyl),

30 (28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

 C_1 - C_4 alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined above,

10

15

 $(30) - (CH_2)_{0.4} - O - CS - N(R_{N-5})_2 \text{ where } R_{N-5} \text{ is as defined}$ above, $(31) - (CH_2)_{0.4} - O - (R_{N-5})_2 \text{ where } R_{N-5} \text{ is as defined above,}$ $(32) - (CH_2)_{0.4} - O - (R_{N-5})_2 - COOH \text{ where } R_{N-5} \text{ is as defined}$ above, $(32) - (CH_2)_{0.4} - O - (R_{N-5})_2 - COOH \text{ where } R_{N-5} \text{ is as defined}$

(33) –(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as defined above, (34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with one, two, three, four, or five of –F),

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as described above, or

(39) -
$$(CH_2)_{0-4}$$
- C_3 - C_7 cycloalkyl,

(B) - $R_{N\text{-heteroaryl}}$ where $R_{N\text{-heteroaryl}}$ is selected from the group

consisting of:

pyridinyl, pyrimidinyl, quinolinyl, benzothienyl,

indolyl,
indolinyl,
pryidazinyl,
pyrazinyl,
isoindolyl,
isoquinolyl,

quinazolinyl, quinoxalinyl,

phthalazinyl,

	imidazolyl,
	isoxazolyl,
	pyrazolyl,
	oxazolyl,
5	thiazolyl,
	indolizinyl,
	indazolyl,
	benzothiazolyl,
	benzimidazolyl,
10	benzofuranyl,
	furanyl,
	thienyl,
	pyrrolyl,
	oxadiazolyl,
15	thiadiazolyl,
	triazolyl,
	tetrazolyl,
	oxazolopyridinyl,
	imidazopyridinyl,
20	isothiazolyl,
	naphthyridinyl,
	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
25	isochromanyl,
	chromanyl,
	tetrahydroisoquinolinyl,
	isoindolinyl,
	isobenzotetrahydrofuranyl,
30	isobenzotetrahydrothienyl,
	isobenzothienyl,
	benzoxazolyl,
	pyridopyridinyl,
	benzotetrahydrofuranyl,

	benzotetrahydrothienyl,
	purinyl,
	benzodioxolyl,
	triazinyl,
5	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,
	benzothiazolyl,
	imidazopyridinyl,
10	imidazothiazolyl,
	dihydrobenzisoxazinyl,
	benzisoxazinyl,
	benzoxazinyl,
	dihydrobenzisothiazinyl,
15	benzopyranyl,
	benzothiopyranyl,
	coumarinyl,
	isocoumarinyl,
	chromonyl,
20	chromanonyl,
	pyridinyl-N-oxide,
•	tetrahydroquinolinyl,
	dihydroquinolinyl,
	dihydroquinolinonyl,
25	dihydroisoquinolinonyl,
	dihydrocoumarinyl,
	dihydroisocoumarinyl,
	isoindolinonyl,
	benzodioxanyl,
30	benzoxazolinonyl,
	pyrrolyl N-oxide,
	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
	pyrazinyl N-oxide,

10

15

20

25

30

quinolinyl N-oxide, indolyl N-oxide, indolinyl N-oxide, isoquinolyl N-oxide, quinazolinyl N-oxide, quinoxalinyl N-oxide, phthalazinyl N-oxide, imidazolyl N-oxide, isoxazolyl N-oxide, oxazolyl N-oxide, thiazolyl N-oxide, indolizinyl N-oxide, indazolyl N-oxide, benzothiazolyl N-oxide, benzimidazolyl N-oxide, pyrrolyl N-oxide, oxadiazolyl N-oxide, thiadiazolyl N-oxide, triazolyl N-oxide, tetrazolyl N-oxide, benzothiopyranyl S-oxide, and

where the $R_{N-heteroaryl}$ group is bonded by any atom of the parent $R_{N-heteroaryl}$ group substituted by hydrogen such that the new bond to the $R_{N-heteroaryl}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

benzothiopyranyl S,S-dioxide

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

- (2) OH,
- $(3) -NO_{2}$
- (4) -F, -Cl, -Br, or -I,

- (5) -CO-OH,
- (6) -C≡N,
- (7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:
- 5

- (a) -H,
- (b) $-C_1-C_6$ alkyl optionally substituted with one substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH₂,
- two, or three –F, -Cl, -Br, -I,
- .
- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,

- (g) -C2-C6 alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,

(c) -C₁-C₆ alkyl optionally substituted with one,

(i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

(j) -R_{1-aryl} where R_{1-aryl} is as defined above,

20

- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) –(CH₂)₀₋₄-CO-<math>(C₁-C₁₂ alkyl),
- (9) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl with one, two or three

double bonds),

- (10) –(CH_2)₀₋₄-CO-(C_2 - C_{12} alkynyl with one, two or three
- 25 triple bonds),
- (11) –(CH₂)₀₋₄-CO-<math>(C₃-C₇ cycloalkyl),
- (12) $-(CH_2)_{0-4}$ -CO- R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

30

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as

defined above,

- (15) –(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is selected from the
- group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl,

homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,

(16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the

5 group consisting of:

- (a) C_1 - C_6 alkyl,
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined

above,

(c) C₂-C₆ alkenyl containing one or two double

10 bonds,

20

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

- (e) C₃.C₇ cycloalkyl, and
- (f) -(CH₂)₀₋₂-($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as

- 15 defined above,
- (17) – $(CH_2)_{0-4}$ -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

- (18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),
- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be the same or different and is as defined above,

 $(22) - (CH_2)_{0.4} - N(H \text{ or } R_{N-5} \text{)-CO-N}(R_{N-5})_2, \text{ where } R_{N-5} \text{ can}$ be the same or different and is as defined above,

- 25 (23) $-(CH_2)_{0.4}$ -N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,
 - (24) –(CH₂)_{0.4}–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,
- (25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
 - (26) –(CH₂)_{0.4}-R_{N.4} where R_{N.4} is as defined above,
 - (27) – $(CH_2)_{0-4}$ –O-CO- $(C_1$ - C_6 alkyl),
 - (28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

C₁-C₄ alkyl,

(29) $-(CH_2)_{0-4}$ -O-CO- $N(R_{N-5})_2$ where R_{N-5} is as defined

above,

(30) $-(CH_2)_{0-4}$ -O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

5

20

25

30

(31) $-(CH_2)_{0-4}$ -O- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(32) -(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) -(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as defined above,

(34) $-(CH_2)_{0-4}$ -O- $(C_1$ - C_6 alkyl optionally substituted with

one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

(36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

15 (37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

 $(38) \mbox{-(CH$_2$)$_{0.4}$-N(-H or R_{N-5})-SO$_2-R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or$

(39) -(CH₂)_{0.4}- C₃-C₇ cycloalkyl,

(C) R_{N-aryl}-W-R_{N-aryl}, where R_{N-aryl} can be the same or different,

(D) R_{N-aryl}-W-R_{N-heteroaryl},

 $\label{eq:condition} \mbox{(E)} \; R_{N\mbox{-aryl}\mbox{-}W\mbox{-}R_{N\mbox{-}1\mbox{-}heterocycle}, \mbox{wherein} \; R_{N\mbox{-}1\mbox{-}heterocycle} \; \mbox{is the same as} \; R_{1\mbox{-}heterocycle}, \mbox{and} \; R_{1\mbox{-}heterocycle} \; \mbox{is as defined above}$

(F) R_{N-heteroaryl}-W-R_{N-aryl},

(G) R_{N-heteroaryl}-W-R_{N-heteroaryl},

(H) R_{N-heteroaryl}-W-R_{N-1-heterocycle},

(I) $R_{N-heterocycle}$ -W- R_{N-aryl} , wherein $R_{N-heterocycle}$ is the same as R_{1-}

heterocycle, and R_{1-heterocycle} is as defined above, and R_{N-aryl} is as defined above,

(J) R_{N-heterocycle}-W-R_{N-heteroaryl}, and

(K) R_{N-heterocycle}-W-R_{N-1-heterocycle},

where W is

(21) $-(CH_2)_{0-4}$

- (22) –O-,
- (23) $-S(O)_{0-2}$ -,
- (24) $-N(R_{N-5})$ where R_{N-5} is as defined above, or
- (5) CO -;
- 5 (II) -CO-(C₁-C₁₀ alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) -C₁-C₆ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or -phenyl,
 - (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
- 15 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and
- are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR $_{\text{N-8}}$ R $_{\text{N-8}}$ where $R_{\text{N-8}}$ are the same or different and are as defined above,
- 25. (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
 - (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of -F, -CI, -Br, or -I),
 - (Q) -NH-SO₂- $(C_1$ - C_6 alkyl), and
 - (R) -F, or -Cl,
- 30 (III) -CO-(C₁-C₆ alkyl)-O-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:

(A) -OH,

- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) -CO-O-R_{N-8} where R_{N-8} is -H, C₁-C₆ alkyl or -phenyl,
- (E) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different
- 5 and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- 10 (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{\text{N--}2}R_{\text{N--}3}$ where $R_{\text{N--}2}$ and $R_{\text{N--}3}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO-(C_1 - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
 - (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of
- 20 -F, -CI, -Br, or -I),
- (Q) -NH-SO₂- $(C_1$ - C_6 alkyl), and
- (R) -F, or -Cl,

(IV) -CO-(C₁-C₆ alkyl)-S-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three of substitutents selected from the group consisting of:

- 25 (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) -CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (E) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different
- 30 and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),

PATENT

20

(H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,

- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- 5 (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are
- 10 as defined above,

-F, -Cl, -Br, or -I),

- (O) -O-(C₁-C₅ alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of
 - (Q) -NH-SO₂-(C₁-C₆ alkyl), and
- 15 (R) -F, or -Cl,

 $(V) - CO-CH(-(CH_2)_{0-2}-O-R_{N-10})-(CH_2)_{0-2}-R_{N-aryl}/R_{N-heteroaryl}) \ where \ R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:

- (A) H
- (B) C_1 - C_6 alkyl,
- (C) C₃-C₇ cycloalkyl,
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C₂-C₆ alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
 - (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above, or

25 (VI) --CO-(C₃-C₈ cycloalkyl) where alkyl is optionally substituted with one or two substitutents selected from the group consisting of:

- (A) $-(CH_2)_{0-4}$ -OH,
- (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
- (C) $-(CH_2)_{0-4}-C_1-C_6$ thioalkoxy,

30 (D) - $(CH_2)_{0-4}$ -CO-O- R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or phenyl,

- (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) - $(CH_2)_{0-4}$ -CO- R_{N-4} where R_{N-4} is as defined above,

- (G) (CH₂)₀₋₄ SO₂ (C₁ C₈ alkyl),
- (H) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),
- 5 (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) -(CH₂)₀₋₄- R_{N-4} where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
- 10 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O- $(C_1$ - C_5 alkyl)-COOH,
 - (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

-F, -Cl, -Br, or -I),

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- (R) -F, or -Cl;

where R_A is:

- (I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkCyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- 30 (III) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} where R_{A-x} and R_{A-y} are (A) -H,
 - (B) C_1 - C_4 alkyl optionally substituted with one or two –OH,

(C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

5

10

20

- (D) $-(CH_2)_{0-4}$ -C₃-C₇ cycloalkyl,
- (E) C₂-C₆ alkenyl containing one or two double bonds,
- (F) C2-C6 alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{A-x} and R_{A-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ - and R_{A-aryl} is the same as R_{N-aryl} ,

(IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-x} and R_{A-y} are as defined above,

(V) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - R_{A-aryl} where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

(VI) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heteroaryl}$ where R_{A-aryl} , $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,

(VII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - R_{A-aryl} where $R_{A-heteroaryl}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

(VIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,

(IX) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heterocycle}$ where $R_{A-heterocycle}$ is defined as $R_{1-heterocycle}$, and where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

 $(X) \text{ -(CR}_{A-x}R_{A-y})_{0-4}\text{--}R_{A-\text{heteroaryl}}\text{--}R_{A-\text{heterocycle}} \text{ where } R_{A-\text{heteroaryl}}, R_{A-\text{heterocycle}}, \\ R_{A-x} \text{ and } R_{A-y} \text{ are as defined above,}$

25 (XI) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - R_{A-aryl} where $R_{A-heterocycle}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,

(XII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heteroaryl}$ where $R_{A-heterocycle}$, $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,

(XIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,

(XIV) -(CRA-xRA-y)0-4-RA-heterocycle where RA-heterocycle, RA-x and RA-y are as defined above,

(XV) -[$C(R_{A-1})(R_{A-2})$]₁₋₃-CO-N-(R_{A-3})₂ where R_{A-1} and R_{A-2} are the same or different and are selected from the group consisting of:

5

- (A) -H,
- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- 10 (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
- (F) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (G) -(C_1 - C_4 alkyl)- $R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined for R_{1-aryl} ,
 - (H) -(C_1 - C_4 alkyl)- R_{A -heteroaryl where R_{A -heteroaryl is as defined above,
 - (I) -(C_1 - C_4 alkyl)- $R_{A\text{-heterocycle}}$ where $R_{A\text{-heterocycle}}$ is as defined above,
 - (J) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
 - (K) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
 - (M) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A'-aryl} where R_{A-4} is -O-, -S- or
- 25 $-NR_{A-5}$ where R_{A-5} is C_1 - C_6 alkyl, and where $R_{A'-aryl}$ is defined above,
 - (N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and R_{A-heteroaryl} are as defined above, and
 - (O) $-R_{A'\text{-aryl}}$ where $R_{A'\text{-aryl}}$ is as defined above, and where $R_{A\text{-}3}$ is the same or different and is:
- 30 (A) -H,
 - (B) $-C_1-C_6$ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1-C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(D) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(E) –(CH₂)₀₋₄-C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -B₁, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

15

25

30

10

5

- $(F) R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,
- (G) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (H) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (I) -(C_1 - C_4 alkyl)- $R_{A'-arvl}$ where $R_{A'-arvl}$ is as defined above,
- (J) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,

20

(K) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined above, or

(XVI) -CH(R_{A-aryl})₂ where R_{A-aryl} are the same or different and are as defined above,

(XVII) -CH(R_{A-heteroaryl})₂ where R_{A-heteroaryl} are the same or different and are as defined above,

(XVIII) -CH(R_{A-aryl})(R_{A-heteroaryl}) where R_{A-aryl} and R_{A-heteroaryl} are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to R_{A-aryl}, R_{A-} heteroaryl, RA-heterocycle where RA-aryl or RA-heteroaryl or RA-heterocycle are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=O)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two -C₁-C₃ alkyl, -F, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, =O, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

 $(XXI) - (CH_2)_{0-1} - CHR_{A-6} - (CH_2)_{0-1} - R_{A-aryl} \text{ where } R_{A-aryl} \text{ is as defined above}$ and R_{A-6} is -(CH₂)₀₋₆-OH,

(XXII) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-heteroaryl} where $R_{A-heteroaryl}$ and R_{A-6} is as defined above,

 $(XXIII) - CH(-R_{A-aryl} \ or \ R_{A-heteroaryl}) - CO-O(C_1-C_4 \ alkyl) \ where \ R_{A-aryl} \ and \\ R_{A-heteroaryl} \ are \ as \ defined \ above,$

15 (XXIV) -CH(-CH₂-OH)-CH(-OH)-micro-NO₂, (XXV) (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH,

(XXVII) $-CH_2$ -NH-CH₂-CH(-O-CH₂-CH₃)₂,

(XXVIII)-H,

(XXIX) -(CH₂)₀₋₆-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as defined

above; or

(XXX)

-C=OC(HR₆)NHR₇, where R₆ and R₇ are as defined below,

-C= OR_7 , where R_7 is as defined below,

-C=OOR₇, where R₇ is as defined below, or

- SOOR₇ where R₇ is as defined below,

wherein R₆ is:

hydrogen,

C₁ - C₃ alkyl,

phenyl,

thioalkoxyalkyl,

alkyl substituted aryl,

cycloalkyl,

cycloalkylalkyl,

30

25

DOBOESY LOSEOL

	hydroxyalkyl,
	alkoxyalkyl,
	aryloxyalkyl,
	haloalkyl,
5	carboxyalkyl,
	alkoxycarbonylalkyl,
	aminoalkyl,
	(N-protected)aminoalkyl,
	alkylaminoalkyl,
10	((N-protected)(alkyl)amino)alkyl
	dialkylaminoalkyl,
	guanidinoalkyl,
	lower alkenyl,
	heterocyclic,
15	(heterocyclic)alkyl),
	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
	(heterocyclic)sulfonylalkyl,
20	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	(heterocyclic))alkoxyalkyl,
25	(heterocyclic)thioalkoxyalkyl,
	(heterocyclic)alkylsulfonylalkyl,
	cycloalkyloxyalkyl,
	cycloalkylthioalkyl,
	cycloalkylsulfonylalkyl,
30	cycloalkylalkoxyalkyl,
	cycloalkylthioalkoxyalkyl,
	cycloalkylalkylsulfonylalkyl,
	aminocarbonyl,
	alkylaminocarbonyl,

dialkylaminocarbonyl, aroylalkyl, (heterocyclic)carbonylalkyl, polyhydroxyalkyl, 5 aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aryloxyalkyl, or alkylsulfonylalkyl, 10 wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, 15 COOH, -SO₃H, lower alkenyl or lower alkyl; wherein R₇ is: C₁ - C₃ alkyl, phenyl, thioalkoxyalkyl, 20 (aryl)alkyl, cycloalkyl, cycloalkylalkyl, hydroxyalkyl, alkoxyalkyl, 25 aryloxyalkyl, haloalkyl, carboxyalkyl, alkoxycarbonylalkyl, aminoalkyl, 30 (N-protected)aminocalkyl, alkylaminoalkyl, ((N-protected)(alkyl)amino)alkyl, dialkylaminoalkyl, guanidinoalkyl,

	lower alkenyl,
	heterocyclic,
	(heterocyclic)alkyl),
	arylthioalkyl,
5	arylsulfonyalkyl,
	. (heterocyclic)thioalkyl,
	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
10	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	(heterocyclic))alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl,
	(heterocyclic)alkylsulfonylalkyl,
15	cycloalkyloxyalkyl,
	cycloalkylthioalkyl,
	cycloalkylsulfonylalkyl,
	cycloalkylalkoxyalkyl,
	cycloalkylthioalkoxyalkyl,
20	cycloalkylalkylsulfonylalkyl,
	aminocarbonyl,
	alkylaminocarbonyl,
	dialkylaminocarbonyl,
	aroylalkyl,
25	(heterocyclic)carbonylalkyl,
	polyhydroxyalkyl,
	aminocarbonylalkyl,
	alkylaminocarbonylalkyl,
	dialkylaminocarbonylalkyl,
30	aryloxyalkyl, or
	alkylsulfonylalkyl,
	wikanain katanaayalia ia mumidul. thiana

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with

one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl.

5 52 A compound according to claim 51 where R₁ is:

$$-(CH_2)_{0-1}-(R_{1-aryl}), \text{ or }$$

$$-(CH_2)_{n1}-(R_{1-heteroaryl});$$

$$\text{where } R_A \text{ is:}$$

$$-C_1-C_8 \text{ alkyl},$$

$$-(CH_2)_{0-3}-(C_3-C_7) \text{ cycloalkyl},$$

$$-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl},$$

$$-(CR_{A-x}R_{A-y})_{0-4}-R_{A-heteroaryl},$$

$$-(CR_{A-x}R_{A-y})_{0-4}-R_{A-heteroaryl},$$

$$-(CR_{A-x}R_{A-y})_{0-4}-R_{A-heterocycle},$$

$$-cyclopentyl \text{ or } -cyclohexyl \text{ ring fused to } R_{A-aryl} \text{ or } R_{A-heteroaryl} \text{ or } R_{A-heteroaryl}$$

15 heterocycle.

20

25

53. A protected compound according to claim 51

where R₁ is:

where R₂ is -H;

where R₃ is -H;

where R_A is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl},$

-(CR_{A-x}R_{A-v})₀₋₄-R_{A-heteroarvl}

-(CR_{A-x}R_{A-v})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to R_{A-aryl} or R_{A-heteroaryl} or R_A-

- 30 heterocycle.
 - 54. A method of treating a patient who has, or in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild

cognitive impairment (MCI) and preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment which comprises administration of a therapeutically effective amount of a compound selected from the group consisting of a substituted amine of formula (XV)

where R₁ is:

5

10

30

(I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and $-OC\equiv ONR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

20 (II) $-CH_2-S(O)_{0.2}-(C_1-C_6 \text{ alkyl})$,

(III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(VI) - $(CH_2)_{n1}$ - (R_{1-aryl}) where n_1 is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C=N, -CF₃, and C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁- C_6 alkyl,

(C) C₂-C₆ alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl -OH -SH -C=N -CE₂ Cl-C₂ alkovy and NP₂ P₃ where P₄ and P₄ are Hard

C1, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(D) -F, Cl, -Br or -I,

(F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

- F,

15

20

25

30

5

(G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(H) -OH,

(I) -C≡N,

(J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(K) -CO- $(C_1$ - C_4 alkyl),

(L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(M) –CO-NR $_{\text{1-a}}R_{\text{1-b}}$ where $R_{\text{1-a}}$ and $R_{\text{1-b}}$ are as defined above, or

(N) –SO₂- $(C_1$ - C_4 alkyl),

(VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R₁.

heteroaryl is selected from the group consisting of:

pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienyl,

indolyl,

indolinyl,

pryidazinyl,

327

	pyrazinyl,
	isoquinolyl,
	quinazolinyl,
	quinoxalinyl,
5	phthalazinyl,
	imidazolyl,
	isoxazolyl,
	pyrazolyl,
	oxazolyl,
10	thiazolyl,
	indolizinyl,
	indazolyl,
	benzothiazolyl,
	benzimidazolyl,
15	benzofuranyl,
	furanyl,
	thienyl,
,	pyrrolyl,
	oxadiazolyl,
20	thiadiazolyl,
	triazolyl,
	tetrazolyl,
	oxazolopyridinyl,
	imidazopyridinyl,
25	isothiazolyl,
	naphthyridinyl,
	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
30	isochromanyl,
	chromanyl,
	tetrahydroisoquinolinyl,
	isoindolinyl,

isobenzotetrahydrofuranyl,

isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl, pyridopyridinyl, 5 benzotetrahydrofuranyl, benzotetrahydrothienyl, purinyl, benzodioxolyl, triazinyl, 10 phenoxazinyl, phenothiazinyl, pteridinyl, benzothiazolyl, imidazopyridinyl, 15 imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl, benzoxazinyl, dihydrobenzisothiazinyl, 20 benzopyranyl, benzothiopyranyl, coumarinyl, isocoumarinyl, chromonyl, 25 chromanonyl, pyridinyl-N-oxide, tetrahydroquinolinyl dihydroquinolinyl dihydroquinolinonyl 30 dihydroisoquinolinonyl dihydrocoumarinyl dihydroisocoumarinyl isoindolinonyl benzodioxanyl

•
benzoxazolinonyl
pyrrolyl N-oxide,
pyrimidinyl N-oxide,
pyridazinyl N-oxide,
pyrazinyl N-oxide,
quinolinyl N-oxide,
indolyl N-oxide,
indolinyl N-oxide,
isoquinolyl N-oxide,
quinazolinyl N-oxide,
quinoxalinyl N-oxide,
phthalazinyl N-oxide,
imidazolyl N-oxide,
isoxazolyl N-oxide,
oxazolyl N-oxide,
thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,
oxadiazolyl N-oxide,
thiadiazolyl N-oxide,
triazolyl N-oxide,
tetrazolyl N-oxide,
benzothiopyranyl S-oxide, and

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

benzothiopyranyl S,S-dioxide,

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(2) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - Cl, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

 $(3) \ C_2\text{-}C_6 \ alkynyl \ with \ one \ or \ two \ triple \ bonds, \ optionally$ substituted with one, two or three substituents selected from the group consisting of -F, -

10 Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(4) -F, Cl, -Br or -I,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three of -F,

15

(7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(8) –OH,

(9) -C≡N,

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃,

20 C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) –CO- $(C_1$ - C_4 alkyl),

(12) -SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(13) $-\text{CO-NR}_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

25 above, or

(14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero $R_{1\text{-heteroaryl}}$ is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle} is selected from the group consisting of:

30 morpholinyl,

thiomorpholinyl,

thiomorpholinyl S-oxide,

thiomorpholinyl S,S-dioxide,

piperazinyl, homopiperazinyl, pyrrolidinyl, pyrrolinyl, 5 tetrahydropyranyl, piperidinyl, tetrahydrofuranyl, tetrahydrothienyl, homopiperidinyl, 10 homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S,S-dioxide, oxazolidinonyl, dihydropyrazolyl, 15 dihydropyrrolyl, dihydropyrazinyl, dihydropyridinyl, dihydropyrimidinyl, dihydrofuryl, 20. dihydropyranyl, tetrahydrothienyl S-oxide, tetrahydrothienyl S,S-dioxide, and homothiomorpholinyl S-oxide,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-}}$

25 heterocycle group substituted by hydrogen such that the new bond to the R_{1-heterocycle} group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

13615.40USU1

Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

- 5 Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (4) -F, Cl, -Br or -I,
 - (5) C₁-C₆ alkoxy,
 - (6) -C₁-C₆ alkoxy optionally substituted with one, two, or

10 three -F,

- (7) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined below,
- (8) -OH,
- (9) -C≡N,
- (10) C₃-C₇ cycloalkyl, optionally substituted with one, two
- or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

20

(13) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

- (14) –SO₂-(C₁-C₄ alkyl), or
- (15) =O, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen;

25

where R₂ is:

- (I)-H,
- (II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,
- 30 -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above;

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, or

(VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl;

10

5

where R₃ is:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

15 -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above

(IV) C₂-C₆ alkenyl with one or two double bonds,

(V) C2-C6 alkynyl with one or two triple bonds; or

(VI) -(CH₂)_{0.4}- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

and where R_2 and R_3 are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ -, where R_{N-2} is selected from the group consisting of:

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one substitutent selected from the group consisting of:

30

25

(i) -OH, and

(ii) -NH₂,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl),
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, and
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above;

10

5

where R_N is:

- (I) R_{N-1} - X_N where X_N is selected from the group consisting of:
 - (A) -CO-,
 - $(B) SO_2$ -,

15

- (C) -(CR'R") $_{l\text{-}6}$ where R' and R" are the same or different and are –H and $C_1\text{-}C_4$ alkyl,
- (D) –CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group consisting of –O-, -S- and –NR'- and where R' and R" are as defined above, and (E) a single bond;

20

where R_{N-1} is selected from the group consisting of:

- (A) $R_{N\text{-aryl}}$ where $R_{N\text{-aryl}}$ is phenyl, 1-naphthyl, 2-naphthyl, tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:
- (1) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (2) -OH,

- $(3) -NO_2$,
- (4) -F, -Cl, -Br, -I,
- (5) -CO-OH,
- (6) -C≡N,

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:

- (a) -H,
- (b) -C₁-C₆ alkyl optionally substituted with one
- 5 substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH₂,
 - (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

10

15

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,

(i) -C₁-C₆ alkyl chain with one double bond and one

- 4 1 1 1 1
 - triple bond,

- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) –(CH₂)₀₋₄-CO-<math>(C₁-C₁₂ alkyl),

20

(9) –(CH₂)_{0.4}-CO-<math>(C₂-C₁₂ alkenyl with one, two or three

double bonds),

(10) – $(CH_2)_{0-4}$ -CO- $(C_2$ - C_{12} alkynyl with one, two or three

triple bonds),

(11) – $(CH_2)_{0-4}$ -CO- $(C_3$ - C_7 cycloalkyl),

25

- (12) –(CH₂)₀₋₄-CO-R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as

defined above,

30

(15) –(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperadinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,

(16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the

group consisting of:

- (a) C₁-C₆ alkyl,
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined

5 above,

(c) C2-C6 alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

10

15

(e) C₃.C₇ cycloalkyl, and

(f) -(CH₂)₀₋₂-($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

(18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),

(19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),

(20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),

(21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be

the same or different and is as defined above,

20 (22) $-(CH_2)_{0.4}$ -N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)₀₋₄–N(-H or $R_{N\text{--}5}$)-CO- $R_{N\text{--}2}$ where $R_{N\text{--}5}$ and $R_{N\text{--}2}$

25 can be the same or different and are as defined above,

(25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

(26) $-(CH_2)_{0.4}$ - R_{N-4} where R_{N-4} is as defined above,

(27) $-(CH_2)_{0-4}$ –O-CO- $(C_1$ - C_6 alkyl),

(28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where $R_{N-aryl-1}$ is –H or

C₁-C₄ alkyl,

(29) –(CH₂)_{0.4}-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

(31) –(CH₂)₀₋₄-O-(R_{N-5})₂ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

5 above,

(33) –(CH₂)_{0.4}-S-(R_{N-5})₂ where R_{N-5} is as defined above,

(34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with

one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

10 (36) C_2 - C_6 alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -

 $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C₂-C₆ alkynyl with one or two triple bonds optionally

substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -

NR_{1-a} R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄-N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2}

can be the same of different and are as described above, or

(39) - $(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl,

(B) -R_{N-heteroaryl} where R_{N-heteroaryl} is selected from the group

20 consisting of:

pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienyl,

25.

indolyl,

indolinyl,

pryidazinyl,

pyrazinyl,

isoindolyl,

30

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

	imidazolyl,
	isoxazolyl,
	pyrazolyl,
	oxazolyl,
5	thiazolyl,
	indolizinyl,
	indazolyl,
	benzothiazolyl,
	benzimidazolyl,
10	benzofuranyl,
	furanyl,
	thienyl,
	pyrrolyl,
	oxadiazolyl,
15	thiadiazolyl,
	triazolyl,
	tetrazolyl,
	oxazolopyridinyl,
	imidazopyridinyl,
20	isothiazolyl,
	naphthyridinyl,
	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
25	isochromanyl,
	chromanyl,
	tetrahydroisoquinolinyl,
	isoindolinyl,
	isobenzotetrahydrofuranyl,
30	isobenzotetrahydrothienyl,
	isobenzothienyl,
	benzoxazolyl,
	pyridopyridinyl,
	benzotetrahydrofuranyl,

	benzotetrahydrothienyl,
	purinyl,
	benzodioxolyl,
	triazinyl,
5	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,
	benzothiazolyl,
	imidazopyridinyl,
10	imidazothiazolyl,
	dihydrobenzisoxazinyl,
	benzisoxazinyl,
	benzoxazinyl,
	dihydrobenzisothiazinyl,
15	benzopyranyl,
	benzothiopyranyl,
	coumarinyl,
	isocoumarinyl,
	chromonyl,
20	chromanonyl,
	pyridinyl-N-oxide,
	tetrahydroquinolinyl,
	dihydroquinolinyl,
	dihydroquinolinonyl,
25	dihydroisoquinolinonyl,
	dihydrocoumarinyl,
	dihydroisocoumarinyl,
	isoindolinonyl,
	benzodioxanyl,
30	benzoxazolinonyl,
	pyrrolyl N-oxide,
	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
	pyrazinyl N-oxide,

10

15

20

30

quinolinyl N-oxide,
indolyl N-oxide,
indolinyl N-oxide,
isoquinolyl N-oxide,
quinazolinyl N-oxide,
quinoxalinyl N-oxide,
phthalazinyl N-oxide,
imidazolyl N-oxide,
isoxazolyl N-oxide,
oxazolyl N-oxide,
thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,
oxadiazolyl N-oxide,
thiadiazolyl N-oxide,
triazolyl N-oxide,
tetrazolyl N-oxide,
benzothiopyranyl S-oxide, and

where the R_{N-heteroaryl} group is bonded by any atom of the parent R_{N-heteroaryl} group substituted by hydrogen such that the new bond to the R_{N-heteroaryl} group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

benzothiopyranyl S,S-dioxide

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

- (2) OH,
- $(3) NO_2$,
- (4) -F, -Cl, -Br, or -I,

- (5) -CO-OH,
- (6) -C≡N,
- $(7) (CH_2)_{0\text{--}4} CO\text{--}NR_{N\text{--}2}R_{N\text{--}3} \text{ where } R_{N\text{--}2} \text{ and } R_{N\text{--}3} \text{ are the same or different and are selected from the group consisting of:}$

- (a) -H
- $\label{eq:consisting} \mbox{(b) -C_1-C_6 alkyl optionally substituted with one substitutent selected from the group consisting of:}$
 - (i) -OH, and
 - (ii) -NH₂,

10

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, -I,

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) -(C₁-C₆ alkyl)-O-(C₁-C₃ alkyl),

15

- (g) -C2-C6 alkenyl with one or two double bonds,
- (h) -C2-C6 alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

(j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above,

20

- (k) - $R_{1\text{-heteroaryl}}$ where $R_{1\text{-heteroaryl}}$ is as defined above,
- (8) –(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl),
- (9) –(CH_2)₀₋₄-CO-(C_2 - C_{12} alkenyl with one, two or three

double bonds),

(10) –($\mathrm{CH_2}$)₀₋₄- CO -($\mathrm{C_2}$ - $\mathrm{C_{12}}$ alkynyl with one, two or three

25 triple bonds),

- (11) $-(CH_2)_{0-4}$ -CO- $(C_3$ - C_7 cycloalkyl),
- (12) -(CH₂)_{0.4}-CO-R_{1-aryl} where R_{1-aryl} is as defined above,
- (13) –(CH₂)₀₋₄-CO- $R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined

above,

30

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where $R_{1\text{-heterocycle}}$ is as

defined above,

(15) –(CH₂)_{0.4}-CO-R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl,

homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C_1 - C_6 alkyl,

(16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the

- 5 group consisting of:
- (a) C₁-C₆ alkyl,
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined

above,

(c) C₂-C₆ alkenyl containing one or two double

10 bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

- (e) C₃₋C₇ cycloalkyl, and
- (f) -(CH₂)₀₋₂-($R_{1-heteroaryl}$) where $R_{1-heteroaryl}$ is as

- 15 defined above,
- (17) – $(CH_2)_{0-4}$ -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

- (18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),
- (19) –(CH₂)₀₋₄-SO₂-<math>(C₁-C₁₂ alkyl),
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be

the same or different and is as defined above,

- (22) $-(CH_2)_{0.4}$ -N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above.
- 25 (23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,
 - (24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,
- (25) –(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
 - (26) $-(CH_2)_{0-4}$ - R_{N-4} where R_{N-4} is as defined above,
 - (27) –(CH₂)₀₋₄–O-CO-(C₁-C₆ alkyl),
 - (28) –(CH₂)₀₋₄-O-P(O)-(OR_{N-aryl-1})₂ where R_{N-aryl-1} is –H or

C₁-C₄ alkyl,

(29) $-(CH_2)_{0.4}$ -O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above.

(30) $-(CH_2)_{0.4}$ -O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

5

(31) $-(CH_2)_{0.4}$ -O- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) –(CH₂)₀₋₄-S-(R_{N-5})₂ where R_{N-5} is as defined above,

(34) -(CH₂)₀₋₄-O-(C₁-C₆ alkyl optionally substituted with

10 one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl.

(36) C2-C6 alkenyl with one or two double bonds optionally

substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C \equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-CF_3$, $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

15 (37) C2-C6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or $-CF_3$, $-CF_3$, - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄-N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or

20 (39) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,

(C) $R_{\mbox{\scriptsize N-aryl}}\mbox{-}W\mbox{-}R_{\mbox{\scriptsize N-aryl}},$ where $R_{\mbox{\scriptsize N-aryl}}\mbox{can}$ be the same or different,

(D) R_{N-aryl}-W-R_{N-heteroaryl},

(E) R_{N-aryl} -W- $R_{N-1-heterocycle}$, wherein $R_{N-1-heterocycle}$ is the same as R_1 .

heterocycle, and R_{1-heterocycle} is as defined above

(F) R_{N-heteroaryl}-W-R_{N-aryl},

(G) R_{N-heteroaryl}-W-R_{N-heteroaryl},

(H) R_{N-heteroaryl}-W-R_{N-1-heterocycle},

(I) R_{N-heterocycle}-W-R_{N-aryl}, wherein R_{N-heterocycle} is the same as R₁-

 $_{\text{heterocycle}},$ and $R_{\text{1-heterocycle}}$ is as defined above, and $R_{\text{N-aryl}}$ is as defined above,

30 (J) R_{N-heterocycle}-W-R_{N-heteroaryl}, and

(K) R_{N-heterocycle}-W-R_{N-1-heterocycle},

where W is

(25) $-(CH_2)_{0-4}$

- (26) –O-,
- (27) $-S(O)_{0-2}$,
- (28) $-N(R_{N-5})$ where R_{N-5} is as defined above, or
- (5) CO -;
- 5 (II) -CO-(C₁-C₁₀ alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) -C₁-C₆ thioalkoxy,
- 10 (D) -CO-O- R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or -phenyl,
 - (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2$ -(C₁-C₈ alkyl),
- 15 (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and
- are as defined above,
- (L) -R_{N-4} where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR $_{\text{N-8}}$ R $_{\text{N-8}}$ where $R_{\text{N-8}}$ are the same or different and are as defined above,
- 25 (O) -O-(C_1 - C_5 alkyl)-COOH,
 - (P) -O-(C_1 - C_6 alkyl optionally substitued with one, two, or three of -F, -CI, -Br, or -I),
 - (Q) -NH-SO₂-(C₁-C₆ alkyl), and
 - (R) -F, or -Cl,
- 30 (III) -CO-(C₁-C₆ alkyl)-O-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:
 - (A) -OH,

- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) –CO-O- R_{N-8} where R_{N-8} is –H, C_1 - C_6 alkyl or -phenyl,
- (E) –CO-NR $_{\text{N-2}}$ R $_{\text{N-3}}$ where R $_{\text{N-2}}$ and R $_{\text{N-3}}$ are the same or different
- 5 and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- 10

- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- 15 (M) -O-CO-(C_1 - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are
 - (O) -O- $(C_1$ - C_5 alkyl)-COOH,
 - (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of
- 20 -F, -CI, -Br, or -I),

as defined above,

- (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- (R) -F, or -Cl,
- (IV) -CO-(C₁-C₆ alkyl)-S-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three of substitutents selected from the group consisting of:
- 25

- (A) -OH,
- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) -CO-O-R_{N-8} where R_{N-8} is as defined above,
- (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different
- and are as defined above,
 - (F) -CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2$ -(C₁-C₈ alkyl),

- (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
- 5 (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are
- 10 as defined above,

-F, -Cl, -Br, or -I),

- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of
 - (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
- 15 (R) -F, or -Cl,
 - $(V) CO-CH(-(CH_2)_{0-2}-O-R_{N-10})-(CH_2)_{0-2}-R_{N-aryl}/R_{N-heteroaryl}) \ where \ R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:
 - (A) H,
 - (B) C_1 - C_6 alkyl,
 - (C) C₃-C₇ cycloalkyl,
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C_2 - C_6 alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
 - (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above, or
- 25 (VI) -CO-(C₃-C₈ cycloalkyl) where alkyl is optionally substituted with one or two substitutents selected from the group consisting of:
 - (A) (CH₂)₀₋₄ OH,
 - (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
 - (C) - $(CH_2)_{0-4}$ - C_1 - C_6 thioalkoxy,
- 30 (D) -(CH₂)₀₋₄-CO-O- R_{N-8} where R_{N-8} is –H, C_1 - C_6 alkyl or phenyl,
 - (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -(CH₂)₀₋₄-CO-R_{N-4} where R_{N-4} is as defined above,

15

30

- (G) - $(CH_2)_{0-4}$ -SO₂- $(C_1$ - C_8 alkyl),
- (H) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),

(J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,

(K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,

- (L) -(CH₂)₀₋₄-R_{N-4} where R_{N-4} is as defined above,
- (M) -O-CO-(C_1 - C_6 alkyl),
- 10 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O-(C₁-C₅ alkyl)-COOH,
 - (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

-F, -Cl, -Br, or -I),

(Q) -NH-SO₂- $(C_1$ - C_6 alkyl), and

(R) -F, or -Cl;

where RA is:

(I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkCyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-O+C₁-C₄ alkyl), and -NR₁₋₃R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -
$$(CR_{A-x}R_{A-y})_{0-4}$$
- R_{A-aryl} where R_{A-x} and R_{A-y} are
(A) -H,

(B) C₁-C₄ alkyl optionally substituted with one or two -OH,

(C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

5

10

- (D) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,
- (E) C₂-C₆ alkenyl containing one or two double bonds,
- (F) C₂-C₆ alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{A-x} and R_{A-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2-$, and $-NR_{N-2}-$ and R_{A-aryl} is the same as R_{N-aryl} ,

- (IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-x} and R_{A-y} are as defined above,
- (V) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - R_{A-aryl} where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
- (VI) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heteroaryl}$ where R_{A-aryl} , $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,
 - (VII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - R_{A-aryl} where $R_{A-heteroaryl}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
- (VIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,
 - (IX) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heterocycle}$ where $R_{A-heterocycle}$ is defined as $R_{1-heterocycle}$, and where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
 - (X) - $(CR_{A-x}R_{A-y})_{0-4}$ - $R_{A-heteroaryl}$ - $R_{A-heterocycle}$ where $R_{A-heteroaryl}$, $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
- 25 (XI) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - R_{A-aryl} where $R_{A-heterocycle}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
 - (XII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heteroaryl}$ where $R_{A-heterocycle}$, $R_{A-heteroaryl}$, R_{A-x} and R_{A-y} are as defined above,
- (XIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
 - (XIV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
 - (XV) -[C(R_{A-1})(R_{A-2})]₁₋₃-CO-N-(R_{A-3})₂ where R_{A-1} and R_{A-2} are the same or different and are selected from the group consisting of:

- (A) H,
- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$,
- (F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (G) -(C_1 - C_4 alkyl)- R_{A' -aryl where R_{A' -aryl is as defined for R_{1 -aryl,
 - (H) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
 - (I) -(C_1 - C_4 alkyl)- $R_{A\text{-heterocycle}}$ where $R_{A\text{-heterocycle}}$ is as defined above,
 - (J) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
 - (K) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
 - (M) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A'-aryl} where R_{A-4} is –O-, -S- or
- 25 $-NR_{A-5}$ where R_{A-5} is C_1 - C_6 alkyl, and where $R_{A'-aryl}$ is defined above,
 - (N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and R_{A-heteroaryl} are as defined above, and
 - (O) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above, and where R_{A-3} is the same or different and is:
- 30 (A) -H,
 - (B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(E) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

15

25

30

10

5

- (F) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,
- (G) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (H) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (J) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,

20

(K) -(C_1 - C_4 alkyl)- $R_{A\text{-heterocycle}}$ where $R_{A\text{-heterocycle}}$ is as defined above, or

 $(XVI)-CH(R_{A\text{-aryl}})_2 \ where \ R_{A\text{-aryl}} \ are \ the \ same \ or \ different \ and \ are \ as \ defined \ above,$

(XVII) $-CH(R_{A-heteroaryl})_2$ where $R_{A-heteroaryl}$ are the same or different and are as defined above,

(XVIII) – $CH(R_{A-aryl})(R_{A-heteroaryl})$ where R_{A-aryl} and $R_{A-heteroaryl}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{A\text{-aryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$, $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heteroaryl}}$ or $R_{A\text{-heterocycle}}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=O)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two - C_1 - C_3 alkyl, -F, -OH, -SH, -C=N, - CF_3 , C_1 - C_6 alkoxy, =O, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

5 (XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

(XXI) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-aryl} where R_{A-aryl} is as defined above and R_{A-6} is -(CH₂)₀₋₆-OH,

(XXII) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-heteroaryl} where $R_{A-heteroaryl}$ and R_{A-6} is as defined above,

 $(XXIII) - CH(-R_{A\text{-aryl}} \ or \ R_{A\text{-heteroaryl}}) - CO - O(C_1 - C_4 \ alkyl) \ where \ R_{A\text{-aryl}} \ and$ $R_{A\text{-heteroaryl}}$ are as defined above,

15 (XXIV) –CH(-CH₂-OH)-CH(-OH)-micro-NO₂, (XXV) (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH, (XXVII) –CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂, (XXVIII) –H,

(XXIX) -(CH₂)₀₋₆-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as defined

above; or

(XXX)

-C=OC(HR₆)NHR₇, where R₆ and R₇ are as defined below,

-C= OR_7 , where R_7 is as defined below,

-C=OOR₇, where R₇ is as defined below, or

- SOOR₇ where R₇ is as defined below,

wherein R₆ is:

hydrogen,

 C_1 - C_3 alkyl,

phenyl,

thioalkoxyalkyl,

alkyl substituted aryl,

cycloalkyl,

cycloalkylalkyl,

30

ĺ

30

5			
10			
15			
20			
25			

13615.40USU1

• • •
aryloxyalkyl,
haloalkyl,
carboxyalkyl,
alkoxycarbonylalkyl,
aminoalkyl,
(N-protected)aminoalkyl,
alkylaminoalkyl,
((N-protected)(alkyl)amino)alkyl,
dialkylaminoalkyl,
guanidinoalkyl,
lower alkenyl,
heterocyclic,
(heterocyclic)alkyl),
arylthioalkyl,
arylsulfonyalkyl,
(heterocyclic)thioalkyl,
(heterocyclic)sulfonylalkyl,
(heterocyclic)oxyalkyl,
arylalkoxyalkyl,
arylthioalkoxyalkyl,
arylalkylsulfonylalkyl,
(heterocyclic))alkoxyalkyl,
(heterocyclic)thioalkoxyalkyl,
(heterocyclic)alkylsulfonylalkyl,
cycloalkyloxyalkyl,
cycloalkylthioalkyl,
cycloalkylsulfonylalkyl,
cycloalkylalkoxyalkyl,
cycloalkylthioalkoxyalkyl,
cycloalkylalkylsulfonylalkyl,
aminocarbonyl,
alkylaminocarbonyl,
353

hydroxyalkyl, alkoxyalkyl,

	dialkylaminocarbonyl,
	aroylalkyl,
	(heterocyclic)carbonylalkyl,
	polyhydroxyalkyl,
5	aminocarbonylalkyl,
	alkylaminocarbonylalkyl,
	dialkylaminocarbonylalkyl,
	aryloxyalkyl, or
	alkylsulfonylalkyl,
10	wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl,
	oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and
	tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with
	one to three substituents independently selected from hydroxy, halo, amino, alkylamino,
	dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl,
15	COOH, -SO ₃ H, lower alkenyl or lower alkyl;
	wherein R ₇ is:
	C_1 - C_3 alkyl,
	phenyl,
	thioalkoxyalkyl,
20	(aryl)alkyl,
	cycloalkyl,
	cycloalkylalkyl,
	hydroxyalkyl,
	alkoxyalkyl,
25	aryloxyalkyl,
	haloalkyl,
	carboxyalkyl,
	alkoxycarbonylalkyl,
	aminoalkyl,
30	(N-protected)aminocalkyl,
	alkylaminoalkyl,
	((N-protected)(alkyl)amino)alkyl,
	dialkylaminoalkyl,
	guanidinoalkyl,

	lower alkenyl,
	heterocyclic,
	(heterocyclic)alkyl),
	arylthioalkyl,
5	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
10	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	(heterocyclic))alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl,
	(heterocyclic)alkylsulfonylalkyl,
15	cycloalkyloxyalkyl,
	cycloalkylthioalkyl,
	cycloalkylsulfonylalkyl,
	cycloalkylalkoxyalkyl,
	cycloalkylthioalkoxyalkyl,
20	cycloalkylalkylsulfonylalkyl,
	aminocarbonyl,
	alkylaminocarbonyl,
	dialkylaminocarbonyl,
	aroylalkyl,
25	(heterocyclic)carbonylalkyl,
	polyhydroxyalkyl,
	aminocarbonylalkyl,
	alkylaminocarbonylalkyl,
	dialkylaminocarbonylalkyl,
30	aryloxyalkyl, or
	alkylsulfonylalkyl,
	wherein heterocyclic is pyridyl, thiazol

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with

one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

where X is -N, or -O, with the proviso that when X is O, R_B is absent; and when X is N,

R_B is:

(I)- C_1 - C_{10} alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(\equiv O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(\equiv O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -Ć \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-OH, -CO-O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} where R_{B-x} and R_{B-y} are

20

(A) - H,

- (B) C₁-C₄ alkyl optionally substituted with one or two –OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

(D) $-(CH_2)_{0-4}$ -C₃-C₇ cycloalkyl,

25

30

- (E) C₂-C₆ alkenyl containing one or two double bonds,
- (F) C₂-C₆ alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{B-x} and R_{B-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, $-SO_2$ -, and $-NR_{N-2}$ where R_{N-2} is as defined above, and R_{B-aryl} is the same as R_{N-aryl} and is defined above

- (IV) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$ is the same as $R_{N-heteroaryl}$, R_{B-x} , and R_{B-y} are as defined above,
- (V) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl}-R_{B-aryl} where R_{B-aryl}, R_{B-x}, and R_{B-y} are as defined above,
- (VI) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} - $R_{B-heteroaryl}$ where R_{B-aryl} , $R_{B-heteroaryl}$, R_{B-x} and R_{B-y} are as defined above,
 - (VII) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl}-R_{B-aryl} where R_{B-heteroaryl}, R_{B-aryl}, R_{B-x} and R_{B-y} are as defined above,
- $(VIII) (CR_{B-x}R_{B-y})_{0-4} R_{B-heteroaryl} R_{B-heteroaryl} \ where \ R_{B-heteroaryl}, \ R_{B-x} \ and \ R_{B-y}$ are as defined above,
 - $(IX) \text{ -}(CR_{B\text{-}x}R_{B\text{-}y})_{0\text{-}4}\text{-}R_{B\text{-}aryl}\text{-}R_{B\text{-}heterocycle} \text{ where } R_{B\text{-}heterocycle} \text{is defined as } R_{1\text{-}heterocycle}, \text{ and where } R_{B\text{-}aryl}, R_{B\text{-}x} \text{ and } R_{B\text{-}y} \text{ are as defined above,}$
 - $(X) (CR_{B-x}R_{B-y})_{0-4} R_{B-heteroaryl} R_{B-heterocycle} \ where \ R_{B-heteroaryl}, \ R_{B-heterocycle}, \ R_{B-x} \ and \ R_{B-y} \ are as defined above,$
- (XI) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ - R_{B-aryl} where $R_{B-heterocycle}$, R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,
 - $(XII) \text{ -}(CR_{B-x}R_{B-y})_{0\text{-}4}\text{-}R_{B\text{-}heterocycle}\text{-}R_{B\text{-}heteroaryl} \text{ where } R_{B\text{-}heterocycle}, R_{B\text{-}heteroaryl}, \\ R_{B-x} \text{ and } R_{B-y} \text{ are as defined above},$
- $(XIII) (CR_{B-x}R_{B-y})_{0.4} R_{B-heterocycle} R_{B-heterocycle} \ where \ R_{B-heterocycle}, \ R_{B-x} \ and \\ 20 \qquad R_{B-y} \ are \ as \ defined \ above,$
 - (XIV) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle} where R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,
 - (XV) -[$C(R_{B-1})(R_{B-2})$]₁₋₃-CO-N-(R_{B-3})₂ where R_{B-1} and R_{B-2} are the same or different and are selected from the group consisting of:
- 25 (A)-H,
 - (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- 30 (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

5

(E)
$$-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$$

(F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

10

(G) -(C₁-C₄ alkyl)- $R_{B'\text{-aryl}}$ where $R_{B'\text{-aryl}}$ is as defined above for R_1 -

aryl

- (H) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (J) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,

15

- (K) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (M) - $(CH_2)_{1-4}$ - R_{B-4} - $(CH_2)_{0-4}$ - $R_{B'-aryl}$ where R_{B-4} is -O-, -S- or

-NR_{B-5}- where R_{B-5} is C₁-C₆ alkyl, and where R_{B'-aryl} is defined above,

(N) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B-heteroaryl} where R_{B-4} and R_{B-heteroaryl} are as defined above, and

20

25

30

- (O) $-R_{B'-aryl}$ where $R_{B'-aryl}$ is as defined above, and where R_{B-3} is the same or different and is:
 - (A) -H,
- (B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as

defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3

alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(E) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

- (F) -R_{B'-aryl} where R_{B'-aryl} is as defined above,
- (G) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (H) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{B'-aryl} where R_{B'-aryl} is as defined above,
- (J) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (K) -(C₁-C₄ alkyl)-R_{B-heterocycle} where R_{B-heterocycle} is as defined

above, or

5

10

15

20

25

30

(XVI) -CH $(R_{B-aryl})_2$ where R_{B-aryl} are the same or different and are as defined above,

(XVII) -CH $(R_{B-heteroaryl})_2$ where $R_{B-heteroaryl}$ are the same or different and are as defined above,

(XVIII) -CH(R_{B-aryl})(R_{B-heteroaryl}) where R_{B-aryl} and R_{B-heteroaryl} are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{B\text{-}aryl}$ or $R_{B\text{-}heteroaryl}$ are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, $NR_{N\text{-}5}$, O, or $S(=O)_{0\text{-}2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two - C_1 - C_3 alkyl, -F, -OH, -SH, -C=N, -CF₃, C_1 - C_6 alkoxy, =O, or - $NR_{1\text{-}a}R_{1\text{-}b}$ where $R_{1\text{-}a}$ and $R_{1\text{-}b}$ are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

20

25

(XXI) –(CH₂)₀₋₁-CHR_{C-6}-(CH₂)₀₋₁-RB_{B-aryl} where R_{B-aryl} is as defined above and R_{C-6} is -(CH₂)₀₋₆-OH,

(XXII) –(CH₂)₀₋₁-CHR_{B-6}-(CH₂)₀₋₁-R_{B-heteroaryl} where $R_{B-heteroaryl}$ and R_{C-6} is as defined above,

(XXIII) –CH(- R_{B-aryl} or $R_{B-heteroaryl}$)-CO-O(C_1 - C_4 alkyl) where R_{B-aryl} and $R_{B-heteroaryl}$ are as defined above,

(XXIV) -CH(-CH2-OH)-CH(-OH)-micro-NO2,

(XXV) (C_1 - C_6 alkyl)-O-(C_1 - C_6 alkyl)-OH,

(XXVII) -CH2-NH-CH2-CH(-O-CH2-CH3)2,

10 (XXVIII) –H, or

(XXIX) -(CH₂)₀₋₆-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as defined above;

or a pharmaceutically acceptable salt thereof.

- 15 55. A method of treatment according to claim 54 where the disease is Alzheimer's disease.
 - 56. A method of treatment according to claim 54 where the method is helping prevent or delay the onset of Alzheimer's disease.
 - 57. A method of treatment according to claim 54 where the disease is mild cognitive impairment.
 - 58. A method of treatment according to claim 54 where the disease is Down's syndrome.
 - 59. A method of treatment according to claim 54 where the disease is Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type.
- 60. A method of treatment according to claim 54 where the disease is cerebral amyloid angiopathy.
 - 61. A method of treatment according to claim 54 where the disease is degenerative dementias.

- 62. A method of treatment according to claim 54 where the disease is diffuse Lewy body type of Alzheimer's disease.
- 63. A method of treatment according to claim 54 where the method is treating an existing 5 disease.
 - 64. A method of treatment according to claim 54 where the method is preventing a disease from developing.
- 10 65. A method of treatment according to claim 54-where the therapeutically effective amount for oral administration is from about 0.1 mg/day to about 1,000 mg/day; for parenteral, sublingual, intranasal, intrathecal administration is from about 0.5 to about 100 mg/day; for depo administration and implants is from about 0.5 mg/day to about 50 mg/day; for topical administration is from about 0.5 mg/day to about 200 mg/day; for rectal administration is from about 0.5 mg to about 500 mg.
 - 66. A method of treatment according to claim 65 where the therapeutically effective amount is for oral administration is from about 1 mg/day to about 100 mg/day and for parenteral administration is from about 5 to about 50 mg daily.
- 67. A method of treatment according to claim 66-where the therapeutically effective amount for oral administration is from about 5 mg/day to about 50 mg/day.
 - 68. A method of treatment according to claim 54:

where R_1 is:

where R_N is:

 $R_{N-1}-X_N$, where X_N is selected from the group consisting of:

30 –CO-, and –SO₂-,

where R_{N-1} is selected from the group consisting of:

-R_{N-aryl}, and

-R_{N-heteroaryl}, or


```
-\text{CO-CH}(\text{-}(\text{CH}_2)_{0\text{-}2}\text{-}\text{O-R}_{N\text{-}10})\text{-}(\text{CH}_2)_{0\text{-}2}\text{-}R_{N\text{-}\text{aryl}}/R_{N\text{-}\text{heteroaryl}}); \text{ and }
                          where R<sub>A</sub> and R<sub>B</sub> are each independently:
                                       -C<sub>1</sub>-C<sub>8</sub> alkyl,
                                       -(CH_2)_{0-3}-(C_3-C_7) cycloalkyl,
    5
                                       -(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}
                                       -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heteroaryl,</sub>
                                       -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heterocycle</sub>,
                                       -cyclopentyl or -cyclohexyl ring fused to RA-aryl or RA-heteroaryl or RA-
             heterocycle; and
  10
                         where X is:
                                      -N, or
                                       -O, with the proviso that if X is O, R<sub>B</sub> is absent.
            69. A method of treatment according to claim-68:
 15
                         where R<sub>1</sub> is:
                                      -(CH_2)-(R_{1-aryl}), or
                                      -(CH<sub>2</sub>)-(R<sub>1-heteroarvl</sub>);
                         where R<sub>2</sub> is -H;
                         where R<sub>3</sub> is -H;
 20
                         where R<sub>N</sub> is:
                                     R_{N-1}-X_N- where X_N is:
                                                  -CO-,
                                                  where R<sub>N-1</sub> is selected from the group consisting of:
                                                  -R<sub>N-aryl</sub>, and
25
                                                  -R<sub>N-heteroaryl</sub>;
                        where R<sub>A</sub> and R<sub>B</sub> are each independently:
                                    -(CH<sub>2</sub>)<sub>0-3</sub>-(C<sub>3</sub>-C<sub>7</sub>) cycloalkyl,
                                    -(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}
                                    -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heteroaryl,</sub>
30
                                    -(CR<sub>A-x</sub>R<sub>A-y</sub>)<sub>0-4</sub>-R<sub>A-heterocycle</sub>, or
                                    -cyclopentyl or -cyclohexyl ring fused to a R_{\text{A-aryl}} or R_{\text{A-heteroaryl}} or R_{\text{A-}}
```

heterocycle; and

where X is:

-N, or

-O with the proviso that if X is O, R_B is absent.

70. A method of treatment according to claim 69 where R_A and R_B are each independently:

5

$$-(CR_{C-x}R_{C-y})_{0-4}-R_{C-aryl},$$

-cyclopentyl or -cyclohexyl ring fused to a $R_{\text{C-aryl}}$ or $R_{\text{C-heteroaryl}}$ or $R_{\text{C-}}$

heterocycle.

71. A method of treatment according to claim 54 where R₁ is:

10
$$-(CH_2)-(R_{1-aryl})$$
 where R_{1-aryl} is phenyl.

- 72. A method of treatment according to claim 71 where R_1 is: -(CH₂)-(R_{1-aryl}) where R_{1-aryl} is phenyl substituted with two -F.
- 73. A method of treatment according to claim 72 where the -F substitution is 3,5-difluorobenzyl.
 - 74. A method of treatment according to claim 54 where R_2 is -H.
- 20 75. A method of treatment according to claim 54 where R_3 is -H.
 - 76. A method of treatment according to claim 54 where R_N is $R_{N-1}-X_N$ where X_N is -CO-, where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl substituted with one -CO-NR_{N-2}R_{N-3} where the substitution on phenyl is 1,3-.

77. A method of treatment according to claim 76 where R_{N-2} and R_{N-3} are the same and are C_3 alkyl.

78. A method of treatment according to claim 54 where R_{N} is

 R_{N-1} - X_N - where X_N is-CO-, where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl substituted with one C_1 alkyl and with one -CO- $NR_{N-2}R_{N-3}$ where the substitution on the phenyl is 1,3,5-.

- 79. A method of treatment according to claim 78 where R_{N-2} and R_{N-3} are the same and are C_3 alkyl.
- 80. A method of treatment according to claim 54 where R_N is
- $R_{N-1}-X_N \text{- where } X_N \text{ is -CO-, where } R_{N-1} \text{ is } R_{N-\text{heteroaryl}} \text{ where } R_{N-\text{heteroaryl}} \text{ is substituted with one -CO-NR}_{N-2}R_{N-3}.$
 - 81. A method of treatment according to claim 80 where R_{N-2} and R_{N-3} are the same and are $-C_3$ alkyl.
- 10
- 82. A method of treatment according to claim 54, where R_A is:

- -cyclopentyl or -cyclohexyl ring fused to a $R_{\text{A-aryl}}$ or $R_{\text{A-heterocycle}}$
- 15
- 83. A method of treatment according to claim 82, where RA is:

-
$$(CR_{A-x}R_{A-y})_{0-4}$$
- R_{A-aryl} where R_{A-aryl} is phenyl.

- 84. A method of treatment according to claim 83, where phenyl is substituted in the 3-position or 3,5-positions.
 - 85. A method of treatment according to claim 82, where R_A is -(CH₂)- $R_{A\text{-heteroaryl}}$.
- 25 86. A method of treatment according to claim 82, where R_A is: -(CH₂)-R_{A-heterocycle}.
 - 87. A method of treatment according to claim 86, where R_A is:
 -cyclohexyl ring fused to a phenyl ring.
- 30
- 88. A method of treatment according to claim 54, where R_B is:

-(
$$(CR_{B-x}R_{B-y})_{0-4}$$
- R_{B-aryl} where R_{B-aryl} is phenyl,

-(
$$CR_{B-x}R_{B-y}$$
)₀₋₄- $R_{B-heteroaryl}$,

-cyclopentyl or -cyclohexyl ring fused to a $R_{B\text{-aryl}}$ or $R_{B\text{-heterocycle}}$ or $R_{B\text{-heterocycle}}$

- 89. A method of treatment according to claim 88; where R_B is: $-(CR_{B-x}R_{B-y})_{0-4}-R_{B-aryl} \text{ where } R_{B-aryl} \text{ is phenyl.}$
- 5 90. A method of treatment according to claim 89 where phenyl is substituted in the 3-position or 3,5-positions.
 - 91. A method of treatment according to claim 88 where R_B is: -(CH₂)- $R_{B\text{-heteroaryl}}$.
 - 92. A method of treatment according to claim 88 where R_B is: -(CH₂)-R_{B-heterocycle}.
 - 93. A method of treatment according to claim 88 where R_B is:
 -cyclohexyl ring fused to a phenyl ring.
- 94. A method of treatment according to claim 54 where the pharmaceutically acceptable salt is selected from the group consisting of salts of the following acids acetic, aspartic, benzenesulfonic, benzoic, bicarbonic, bisulfuric, bitartaric, butyric, calcium edetate,
 20 camsylic, carbonic, chlorobenzoic, citric, edetic, edisylic, estolic, esyl, esylic, formic, fumaric, gluceptic, gluconic, glutamic, glycollylarsanilic, hexamic, hexylresorcinoic, hydrabamic, hydrobromic, hydrochloric, hydroiodic, hydroxynaphthoic, isethionic, lactic, lactobionic, maleic, malic, malonic, mandelic, methanesulfonic, methylnitric, methylsulfuric, mucic, muconic, napsylic, nitric, oxalic, p-nitromethanesulfonic, pamoic,
 25 pantothenic, phosphoric, monohydrogen phosphoric, dihydrogen phosphoric, phthalic, polygalactouronic, propionic, salicylic, stearic, succinic, succinic, sulfamic, sulfamilic, sulfonic, sulfuric, tannic, tartaric, teoclic and toluenesulfonic.
- 95. A method for inhibiting beta-secretase activity, comprising exposing said beta-30 secretase to an effective inhibitory amount of a compound of the formula XV

where R₁ is:

5

- (I) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, C_1 - C_7 alkyl (optionally substituted with C_1 - C_3 alkyl and C_1 - C_3 alkoxy), -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl, and $-OC\equiv ONR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (II) $-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
 - (III) $-CH_2-CH_2-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
- (IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -
- 15 $C\equiv N$, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl,
 - (VI) - $(CH_2)_{n1}$ - (R_{1-aryl}) where n_l is zero or one and where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl and indanyl, indenyl, dihydronaphthalyl, or tetralinyl optionally substituted with one, two, three or four of the following substituents on the aryl ring:
- (A) C₁-C₆ alkyl optionally substituted with one, two or three
 substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, and C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
 - (B) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,
 - (C) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(F) -C₁-C₆ alkoxy optionally substituted with one, two or three of

- F,

- (G) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (H) -OH,

5

- (I) -C≡N,
- (J) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,
 - (K) $-CO-(C_1-C_4 \text{ alkyl}),$

10

20

25

- (L) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (M) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, or
- (N) –SO₂- $(C_1$ - C_4 alkyl),
- (VII) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is as defined above and where R_{1-heteroaryl} is selected from the group consisting of:

15 pyridinyl,

pyrimidinyl,

quinolinyl,

benzothienyl,

indolyl,

indolinyl,

pryidazinyl,

pyrazinyl,

isoquinolyl,

quinazolinyl,

quinoxalinyl,

phthalazinyl,

imidazolyl,

isoxazolyl,

pyrazolyl,

oxazolyl,

thiazolyl,

indolizinyl,

indazolyl,

	benzothiazolyl,
	benzimidazolyl,
	benzofuranyl,
	furanyl,
5	thienyl,
	pyrrolyl,
	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
10	tetrazolyl,
	oxazolopyridinyl,
	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
15	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
	isochromanyl,
	chromanyl,
20	tetrahydroisoquinolinyl,
	isoindolinyl,
	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
	isobenzothienyl,
25	benzoxazolyl,
	pyridopyridinyl,
	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
	purinyl,
30	benzodioxolyl,
	triazinyl,
	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,

•
benzothiazolyl,
imidazopyridinyl,
imidazothiazolyl,
dihydrobenzisoxazinyl,
benzisoxazinyl,
benzoxazinyl,
dihydrobenzisothiazinyl,
benzopyranyl,
benzothiopyranyl,
coumarinyl,
isocoumarinyl,
chromonyl,
chromanonyl,
pyridinyl-N-oxide,
tetrahydroquinolinyl
dihydroquinolinyl
dihydroquinolinonyl
dihydroisoquinolinonyl
dihydrocoumarinyl
dihydroisocoumarinyl
isoindolinonyl
benzodioxanyl
benzoxazolinonyl
pyrrolyl N-oxide,
pyrimidinyl N-oxide,
pyridazinyl N-oxide,
pyrazinyl N-oxide,
quinolinyl N-oxide,
indolyl N-oxide,
indolinyl N-oxide,
isoquinolyl N-oxide,
quinazolinyl N-oxide,
quinoxalinyl N-oxide,

phthalazinyl N-oxide,

13615.40US

OU1

imidazolyl N-oxide,
isoxazolyl N-oxide,
oxazolyl N-oxide,
thiazolyl N-oxide,
indolizinyl N-oxide,
indazolyl N-oxide,
benzothiazolyl N-oxide,
benzimidazolyl N-oxide,
pyrrolyl N-oxide,

10

oxadiazolyl N-oxide, thiadiazolyl N-oxide, triazolyl N-oxide, tetrazolyl N-oxide,

benzothiopyranyl S-oxide, and

15

benzothiopyranyl S,S-dioxide,

13

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{n1}$ - by any ring atom of the parent $R_{1\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three or four of:

20

30

nosossy. Osson

(1) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(2) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -

C1, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, - C_1 , -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are -H or C_1 - C_6 alkyl,

(4) -F, Cl, -Br or -I,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three of -F.

30

- (7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,
- (8) OH,
- (9) -C≡N,
- (10) C₃-C₇ cycloalkyl, optionally substituted with one, two
- or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C≡N, -CF₃, 5 $C_{1}\text{-}C_{3}$ alkoxy, and -NR $_{1\text{-}a}R_{1\text{-}b}$ where $R_{1\text{-}a}$ and $R_{1\text{-}b}$ are -H or $C_{1}\text{-}C_{6}$ alkyl,
 - (11) –CO- $(C_1$ - C_4 alkyl),
 - (12) –SO₂-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

10

(13) –CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above, or

(14) $-SO_2$ -(C_1 - C_4 alkyl), with the proviso that when n_1 is zero $R_{1\text{-heteroaryl}}$ is not bonded to the carbon chain by nitrogen; or

(VIII) -(CH₂)_{n1}-(R_{1-heterocycle}) where n_1 is as defined above and R_{1-heterocycle}

15. is selected from the group consisting of:

morpholinyl,

thiomorpholinyl,

thiomorpholinyl S-oxide,

thiomorpholinyl S,S-dioxide,

piperazinyl,

homopiperazinyl,

pyrrolidinyl,

pyrrolinyl,

tetrahydropyranyl,

25. piperidinyl,

tetrahydrofuranyl,

tetrahydrothienyl,

homopiperidinyl,

homomorpholinyl,

homothiomorpholinyl,

homothiomorpholinyl S,S-dioxide,

oxazolidinonyl,

dihydropyrazolyl,

10

15

20

13615.40USU1212U1

dihydropyrrolyl, dihydropyrazinyl, dihydropyridinyl, dihydropyrimidinyl, dihydrofuryl, dihydropyranyl, tetrahydrothienyl S-oxide, tetrahydrothienyl S,S-dioxide, and homothiomorpholinyl S-oxide,

where the $R_{1-heterocycle}$ group is bonded by any atom of the parent R_{1} . heterocycle group substituted by hydrogen such that the new bond to the R_{1-heterocycle} group replaces the hydrogen atom and its bond, where heterocycle is optionally substituted with one, two, three or four:

(1) C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C \equiv N$, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(2) C₂-C₆ alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(3) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

(4) -F, Cl, -Br or -I,

(5) C_1 - C_6 alkoxy,

(6) -C₁-C₆ alkoxy optionally substituted with one, two, or

three -F,

(7) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined below,

(8) - OH,

(9) -C≡N,

30

(10) C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(11) -CO- $(C_1$ - C_4 alkyl),

5

(12) $-SO_2-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined

above,

(13) -CO-NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined

above,

(14) –SO₂-(C₁-C₄ alkyl), or

10

(15) =0, with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen:

where R2 is:

(I)-H,

15

(II) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above;

20

(IV) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C_1 - C_6 alkyl,

(V) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -

25 $C \equiv N$, $-CF_3$, C_1-C_3 alkoxy, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are -H or C_1-C_6 alkyl, or

(VI) -(CH₂)_{0.4}- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl;

30

where R₃ is:

(I)-H,

(II) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above

- (IV) C2-C6 alkenyl with one or two double bonds,
- (V) C2-C6 alkynyl with one or two triple bonds; or
- (VI) -(CH₂)₀₋₄- C₃-C₇ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of -F, -Cl, -OH, -SH, -C \equiv N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are -H or C₁-C₆ alkyl,

and where R₂ and R₃ are taken together with the carbon to which they are

attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally
where one carbon atom is replaced by a heteroatom selected from the group consisting of

-O-, -S-, -SO₂-, and -NR_{N-2}-, where R_{N-2} is selected from the group consisting of:

- (a) -H,
- (b) -C₁-C₆ alkyl optionally substituted with one
- 15 substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) -NH₂,
 - (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

20

25

5

- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C2-C6 alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above;
- 30 where R_N is:
 - (I) R_{N-1} - X_N where X_N is selected from the group consisting of:
 - (A) -CO-,
 - (B) $-SO_2$ -,

(C) -(CR'R") $_{1\text{-}6}$ where R' and R" are the same or different and are –H and $C_1\text{-}C_4$ alkyl,

(D) –CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is selected from the group consisting of –O-, -S- and –NR'- and where R' and R" are as defined above, and

(E) a single bond;

where R_{N-1} is selected from the group consisting of:

(A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl, 2-naphthyl, tetralinyl, indanyl, 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl, or dihydronaphthyl optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

15

10

5

- (2) OH,
- $(3) -NO_2$,
- (4) -F, -Cl, -Br, -I,
- (5) -CO-OH,
- (6) -C≡N,

20

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:

- (a) -H,
- (b) $-C_1-C_6$ alkyl optionally substituted with one substitutent selected from the group consisting of:

25

- (i) -OH, and
- (ii) -NH₂,
- (c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, or -I,

(d) -C₃-C₇ cycloalkyl,

- (e) -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl),
- (f) -(C_1 - C_6 alkyl)-O-(C_1 - C_3 alkyl),
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,

- (i) $-C_1$ - C_6 alkyl chain with one double bond and one triple bond,
 - (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, and
 - (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) (CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl),
 - (9) – $(CH_2)_{0-4}$ -CO- $(C_2$ - C_{12} alkenyl with one, two or three

double bonds),

5

10

20

(10) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl with one, two or three

triple bonds),

(11) –(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl),

(12) $-(CH_2)_{0-4}$ -CO- R_{1-aryl} where R_{1-aryl} is as defined above,

(13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined

above,

(14) –(CH₂)₀₋₄-CO- $R_{1-heterocycle}$ where $R_{1-heterocycle}$ is as

15 defined above,

(15) –(CH₂)_{0.4}-CO-R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperadinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C_1 - C_6 alkyl,

(16) –(CH₂)_{0.4}-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:

- (a) C_1 - C_6 alkyl,
- (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined

25 above,

(c) C₂-C₆ alkenyl containing one or two double

bonds,

(d) C₂-C₆ alkynyl containing one or two triple

bonds,

30

(e) C_3 - C_7 cycloalkyl, and

(f) -(CH₂)₀₋₂-(R_{1-heteroaryl}) where R_{1-heteroaryl} is as

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are as

defined above,

- (18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),
- $(19) (CH_2)_{0.4} SO_2 (C_1 C_{12} \text{ alkyl}),$
- (20) –(CH₂)₀₋₄-SO₂-<math>(C₃-C₇ cycloalkyl),
- (21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be
- 5 the same or different and is as defined above,

 $(22) - (CH_2)_{0\text{--}4} - N(H \text{ or } R_{N\text{--}5}) - CO - N(R_{N\text{--}5})_2, \text{ where } R_{N\text{--}5} \text{ can}$ be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

10 (24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2} can be the same or different and are as defined above,

(25) $-(CH_2)_{0-4}-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,

- (26) –(CH₂)₀₋₄-R_{N-4} where R_{N-4} is as defined above,
- 15 (27) –(CH₂)₀₋₄–O-CO-<math>(C₁-C₆ alkyl),
 - (28) $-(CH_2)_{0-4}$ -O-P(O)- $(OR_{N-aryl-1})_2$ where $R_{N-aryl-1}$ is -H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined

above,

20 (30) $-(CH_2)_{0.4}$ -O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

above,

- (31) –(CH₂)₀₋₄-O-(R_{N-5})₂ where R_{N-5} is as defined above,
- (32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

25

(33) – $(CH₂)_{0.4}-S-<math>(R_{N-5})_2$ where R_{N-5} is as defined above,

(34) –(CH₂)₀₋₄–O-(C₁-C₆ alkyl optionally substituted with

one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

(36) C₂-C₆ alkenyl with one or two double bonds optionally

substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(37) C_2 - C_6 alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄–N(-H or $R_{N\text{--}5}$)-SO₂- $R_{N\text{--}2}$ where $R_{N\text{--}5}$ and $R_{N\text{--}2}$

5 can be the same of different and are as described above, or

(39) - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,

(B) $-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is selected from the group

consisting of:

pyridinyl,
pyrimidinyl,
quinolinyl,
benzothienyl,
indolyl,

indolinyl,

pryidazinyl, pyrazinyl,

isoindolyl,

isoquinolyl,

quinazolinyl, quinoxalinyl,

phthalazinyl,

imidazolyl,

isoxazolyl,

pyrazolyl,

oxazolyl,

thiazolyl,

indolizinyl,

indazolyl,

benzothiazolyl,

benzimidazolyl,

benzofuranyl,

furanyl,

thienyl,

30

20

	pyrrolyl,
	oxadiazolyl,
	thiadiazolyl,
	triazolyl,
5	tetrazolyl,
	oxazolopyridinyl,
	imidazopyridinyl,
	isothiazolyl,
	naphthyridinyl,
10	cinnolinyl,
	carbazolyl,
	beta-carbolinyl,
	isochromanyl,
	chromanyl,
15	tetrahydroisoquinolinyl,
	isoindolinyl,
	isobenzotetrahydrofuranyl,
	isobenzotetrahydrothienyl,
	isobenzothienyl,
20	benzoxazolyl,
	pyridopyridinyl,
	benzotetrahydrofuranyl,
	benzotetrahydrothienyl,
	purinyl,
25	benzodioxolyl,
	triazinyl,
	phenoxazinyl,
	phenothiazinyl,
	pteridinyl,
30	benzothiazolyl,
	imidazopyridinyl,
	imidazothiazolyl,
	dihydrobenzisoxazinyl,
	benzisoxazinyl,

	benzoxazinyl,
	dihydrobenzisothiazinyl,
	benzopyranyl,
	benzothiopyranyl,
5	coumarinyl,
	isocoumarinyl,
	chromonyl,
	chromanonyl,
	pyridinyl-N-oxide,
10	tetrahydroquinolinyl,
	dihydroquinolinyl,
	dihydroquinolinonyl,
	dihydroisoquinolinonyl,
	dihydrocoumarinyl,
15	dihydroisocoumarinyl,
	isoindolinonyl,
	benzodioxanyl,
	benzoxazolinonyl,
	pyrrolyl N-oxide,
20	pyrimidinyl N-oxide,
	pyridazinyl N-oxide,
	pyrazinyl N-oxide,
	quinolinyl N-oxide,
	indolyl N-oxide,
25	indolinyl N-oxide,
	isoquinolyl N-oxide,
	quinazolinyl N-oxide,
	quinoxalinyl N-oxide,
	phthalazinyl N-oxide,
30	imidazolyl N-oxide,
	isoxazolyl N-oxide,
	oxazolyl N-oxide,
	thiazolyl N-oxide,
	indolizinyl N-oxide,

10

20

30

indazolyl N-oxide,

benzothiazolyl N-oxide,

benzimidazolyl N-oxide,

pyrrolyl N-oxide,

oxadiazolyl N-oxide,

thiadiazolyl N-oxide,

triazolyl N-oxide,

tetrazolyl N-oxide,

benzothiopyranyl S-oxide, and

benzothiopyranyl S,S-dioxide

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is optionally substituted with one, two, three, or four of:

(1) C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(2) -OH,

 $(3) -NO_2$,

(4) -F, -Cl, -Br, or -I,

(5) -CO-OH,

(6) -C≡N,

(7) –(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the

same or different and are selected from the group consisting of:

(a) -H,

(b) -C₁-C₆ alkyl optionally substituted with one

substitutent selected from the group consisting of:

(i) -OH, and

(ii) -NH₂,

(11) -14112,

(c) -C₁-C₆ alkyl optionally substituted with one,

two, or three -F, -Cl, -Br, -I,

(d) -C₃-C₇ cycloalkyl,

- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₂-C₆ alkenyl with one or two double bonds,
- (h) -C₂-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one

triple bond,

5

- (j) -R_{1-aryl} where R_{1-aryl} is as defined above,
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- $(8) (CH_2)_{0-4} CO (C_1 C_{12} \text{ alkyl}),$
- 10 (9) –(CH₂)_{0.4}-CO-(C₂-C₁₂ alkenyl with one, two or three double bonds),
 - (10) –(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl with one, two or three triple bonds),
 - (11) – $(CH_2)_{0-4}$ -CO- $(C_3$ - C_7 cycloalkyl),
- 15 (12) $-(CH_2)_{0-4}$ -CO- R_{1-aryl} where R_{1-aryl} is as defined above,
 - (13) –(CH₂)₀₋₄-CO-R_{1-heteroaryl} where $R_{1-heteroaryl}$ is as defined

above,

(14) –(CH₂)₀₋₄-CO-R_{1-heterocycle} where R_{1-heterocycle} is as

defined above,

- 20 (15) –(CH₂)_{0.4}-CO-R_{N-4} where R_{N-4} is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperadinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C₁-C₆ alkyl,
- 25 (16) –(CH₂)₀₋₄-CO-O-R_{N-5} where R_{N-5} is selected from the group consisting of:
 - (a) C_1 - C_6 alkyl,
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined

above,

- 30 (c) C₂-C₆ alkenyl containing one or two double bonds,
 - (d) C₂-C₆ alkynyl containing one or two triple

bonds,

(e) C₃-C₇ cycloalkyl, and

(f) -(CH₂)₀₋₂-(R_{1-heteroaryl}) where $R_{1-heteroaryl}$ is as

defined above,

(17) –(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as

defined above,

5

(18) –(CH₂)₀₋₄-SO-<math>(C₁-C₈ alkyl),

$$(19) - (CH_2)_{0.4} - SO_2 - (C_1 - C_{12} \text{ alkyl}),$$

$$(20)$$
 – $(CH2)0-4-SO2- $(C3-C7$ cycloalkyl),$

(21) –(CH₂)₀₋₄-N(H or R_{N-5})-CO-O- R_{N-5} where R_{N-5} can be the same or different and is as defined above,

10 (22) $-(CH_2)_{0-4}$ -N(H or R_{N-5})-CO-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(23) –(CH₂)₀₋₄-N-CS-N(R_{N-5})₂, where R_{N-5} can be the same or different and is as defined above,

(24) –(CH₂)₀₋₄–N(-H or R_{N-5})-CO- R_{N-2} where R_{N-5} and R_{N-2}

can be the same or different and are as defined above,

 $(25)-(CH_2)_{0\text{--}4}-NR_{N\text{--}2}R_{N\text{--}3} \text{ where } R_{N\text{--}2} \text{ and } R_{N\text{--}3} \text{ can be the same or different and are as defined above,}$

(26) $-(CH_2)_{0-4}$ - R_{N-4} where R_{N-4} is as defined above,

$$(27)$$
 – $(CH_2)_{0-4}$ –O-CO- $(C_1$ - C_6 alkyl),

20 (28) $-(CH_2)_{0-4}$ -O-P(O)- $(OR_{N-aryl-1})_2$ where $R_{N-aryl-1}$ is -H or

C₁-C₄ alkyl,

(29) –(CH₂)₀₋₄-O-CO-N(R_{N-5})₂ where R_{N-5} is as defined above,

(30) –(CH₂)₀₋₄-O-CS-N(R_{N-5})₂ where R_{N-5} is as defined

25 above,

(31) $-(CH_2)_{0.4}$ -O- $(R_{N-5})_2$ where R_{N-5} is as defined above,

(32) –(CH₂)₀₋₄-O-(R_{N-5})₂-COOH where R_{N-5} is as defined

above,

(33) $-(CH_2)_{0.4}$ -S- $(R_{N-5})_2$ where R_{N-5} is as defined above,

30 (34) $-(CH_2)_{0.4}$ -O- $(C_1$ -C₆ alkyl optionally substituted with one, two, three, four, or five of -F),

(35) C₃-C₇ cycloalkyl,

15

20

25

(36) C₂-C₆ alkenyl with one or two double bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_3 alkoxy, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(37) C₂-C₆ alkynyl with one or two triple bonds optionally substituted with C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_3 alkoxy, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(38) -(CH₂)₀₋₄-N(-H or R_{N-5})-SO₂- R_{N-2} where R_{N-5} and R_{N-2} can be the same of different and are as defined above, or

(39) -
$$(CH_2)_{0-4}$$
- C_3 - C_7 cycloalkyl,

10 (C) R_{N-aryl}-W-R_{N-aryl}, where R_{N-aryl} can be the same or different,

(D) R_{N-arvi}-W-R_{N-heteroarvi},

(E) R_{N-aryl}-W-R_{N-1-heterocycle}, wherein R_{N-1-heterocycle} is the same as R₁. heterocycle, and R_{1-heterocycle} is as defined above

(F) R_{N-heteroarvl}-W-R_{N-arvl},

(G) R_{N-heteroaryl}-W-R_{N-heteroaryl},

(H) R_{N-heteroaryl}-W-R_{N-1-heterocycle},

(I) $R_{N-heterocycle}$ -W- R_{N-aryl} , wherein $R_{N-heterocycle}$ is the same as R_{1-} heterocycle, and R_{1-heterocycle} is as defined above, and R_{N-aryl} is as defined above,

(J) R_{N-heterocycle}-W-R_{N-heteroaryl}, and

(K) R_{N-heterocycle}-W-R_{N-1-heterocycle},

where W is

(29) $-(CH_2)_{0-4}$ -,

(30)-O-,

 $-S(O)_{0-2}$ -, (31)

(32) $-N(R_{N-5})$ - where R_{N-5} is as defined above, or

(5) –CO-;

(II) -CO-(C₁-C₁₀ alkyl) where alkyl is optionally substituted with one three substitutents selected from the group consisting of:

(A) -OH,

(B) $-C_1-C_6$ alkoxy,

(C) $-C_1-C_6$ thioalkoxy,

(D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or -phenyl,

30

- (E) –CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- - (I) -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and
- 10 are as defined above,
- (L) -R_{N-4} where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are

as defined above,

-F, -CI, -Br, or -I),

15

- (O) -O-(C_1 - C_5 alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of
- (Q) -NH-SO₂-(C₁-C₆ alkyl), and
- (R) -F, or -Cl,

20

- (III) $-CO-(C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})$ where alkyl is optionally substituted with one, two, or three substitutents selected from the group consisting of:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) -C₁-C₆ thioalkoxy,

25

- (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or -phenyl,
- (E) –CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above.
 - (G) -SO₂- $(C_1$ - C_8 alkyl),

- (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above.
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,

- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- 5 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
 - (P) -O-(C_1 - C_6 alkyl optionally substitued with one, two, or three of -F, -CI, -Br, or -I),
- 10 (Q) -NH-SO₂-(C_1 - C_6 alkyl), and
 - (R) -F, or -Cl,

(IV) -CO-(C₁-C₆ alkyl)-S-(C₁-C₆ alkyl) where alkyl is optionally substituted with one, two, or three of substitutents selected from the group consisting of:

(A) -OH,

15 (B) $-C_1-C_6$ alkoxy,

- (C) $-C_1-C_6$ thioalkoxy,
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is as defined above,
- (E) –CO-NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,

20 (F) -CO- R_{N-4} where R_{N-4} is as defined above,

- (G) $-SO_2$ -(C₁-C₈ alkyl),
- (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
- 25 (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
- 30 (N) -O-CO-NR_{N-8}R_{N-8} where R_{N-8} are the same or different and are as defined above,
 - (O) -O- $(C_1$ - C_5 alkyl)-COOH,

- (P) -O- $(C_1$ - C_6 alkyl optionally substitued with one, two, or three of -F, -Cl, -Br, or -I),
 - (Q) -NH-SO₂-(C₁-C₆ alkyl), and
 - (R) -F, or -Cl,
- 5 (V) -CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is selected from the group consisting of:
 - (A) -H,
 - (B) C₁-C₆ alkyl,
 - (C) C₃-C₇ cycloalkyl,
- 10 (D) C₂-C₆ alkenyl with one double bond,
 - (E) C₂-C₆ alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, and
 - (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above, or
 - (VI) -CO-(C₃-C₈ cycloalkyl) where alkyl is optionally substituted with one
- or two substitutents selected from the group consisting of:
 - (A) $-(CH_2)_{0-4}$ -OH,
 - (B) $-(CH_2)_{0-4}-C_1-C_6$ alkoxy,
 - (C) - $(CH_2)_{0-4}$ - C_1 - C_6 thioalkoxy,
 - (D) -(CH₂)₀₋₄-CO-O- R_{N-8} where R_{N-8} is -H, C_1 - C_6 alkyl or phenyl,
- 20 (E) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -(CH₂)₀₋₄-CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) (CH₂)₀₋₄ SO₂ (C₁ C₈ alkyl),
 - (H) -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or
- 25 different and are as defined above,
 - (I) $-(CH_2)_{0-4}$ -NH-CO-(C₁-C₆ alkyl),
 - (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
 - (K) -(CH₂)₀₋₄-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or

different and are as defined above,

- 30 (L) -(CH₂)₀₋₄- R_{N-4} where R_{N-4} is as defined above,
 - (M) $-O-CO-(C_1-C_6 \text{ alkyl})$,

(N) -O-CO-NR $_{\text{N-8}}$ R $_{\text{N-8}}$ where R $_{\text{N-8}}$ are the same or different and are as defined above,

- (O) -O-(C₁-C₅ alkyl)-COOH,
- (P) -O-(C₁-C₆ alkyl optionally substitued with one, two, or three of

5 -F, -Cl, -Br, or -I),

- (Q) -NH-SO₂-(C₁-C₆ alkyl), and
- (R) -F, or -Cl;

where R_A is:

(I)-C₁-C₁₀ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, −F, -Cl, -Br, -I, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(=O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, -NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkCyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-OH, -CO-O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(III) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} where R_{A-x} and R_{A-y} are

- (A) –H,
- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C_1 - C_4 alkoxy optionally substituted with one, two, or three of -

25 F,

20

- (D) - $(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl,
- (E) C2-C6 alkenyl containing one or two double bonds,
- (F) C2-C6 alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{A-x} and R_{A-y} are taken together with the carbon to which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2}- and R_{A-aryl} is the same as R_{N-aryl},

- (IV) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is the same as $R_{N-heteroaryl}$ and R_{A-x} and R_{A-y} are as defined above,
- (V) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-aryl}-R_{A-aryl} where R_{A-aryl}, R_{A-x} and R_{A-y} are as defined above,
- $(VI) (CR_{A-x}R_{A-y})_{0-4} R_{A-aryl} R_{A-heteroaryl} \text{ where } R_{A-aryl} \text{ , } R_{A-heteroaryl}, R_{A-x} \text{ and } R_{A-y} \text{ are as defined above,}$
 - $(VII) (CR_{A-x}R_{A-y})_{0-4} R_{A-heteroaryl} R_{A-aryl} \ where \ R_{A-heteroaryl}, \ R_{A-aryl}, \ R_{A-x} \ and \\ R_{A-y} \ are \ as \ defined \ above,$
- (VIII) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heteroaryl}$ where $R_{A-heteroaryl}$, R_{A-x} and R_{A-1} 10 vare as defined above,
 - (IX) -($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} - $R_{A-heterocycle}$ where $R_{A-heterocycle}$ is defined as R_1 heterocycle, and where R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
 - (X) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heteroaryl}$ - $R_{A-heterocycle}$ where $R_{A-heteroaryl}$, $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
- 15 (XI) -($CR_{A-x}R_{A-y}$)₀₋₄- $R_{A-heterocycle}$ - R_{A-aryl} where $R_{A-heterocycle}$, R_{A-aryl} , R_{A-x} and R_{A-y} are as defined above,
 - $(XII) (CR_{A-x}R_{A-y})_{0-4} R_{A-heterocycle} R_{A-heteroaryl} \ where \ R_{A-heterocycle}, \ R_{A-heteroaryl},$ $R_{A-x} \ and \ R_{A-y} \ are \ as \ defined \ above,$
- (XIII) - $(CR_{A-x}R_{A-y})_{0-4}$ - $R_{A-heterocycle}$ - $R_{A-heterocycle}$ where $R_{A-heterocycle}$, R_{A-x} and R_{A-y} are as defined above,
 - (XIV) -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle} where R_{A-heterocycle}, R_{A-x} and R_{A-y} are as defined above,
 - (XV) -[$C(R_{A-1})(R_{A-2})$]₁₋₃-CO-N-(R_{A-3})₂ where R_{A-1} and R_{A-2} are the same or different and are selected from the group consisting of:
- 25 (A)-H,

- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

5 (E)

(E)
$$-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$$

(F) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

10

20

25

- (G) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined for R_{1-aryl},
- (H) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (J) $-R_{A-heteroaryl}$ where $R_{A-heteroaryl}$ is as defined above,
- (K) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,

15

(M) -(CH₂)₁₋₄- R_{A-4} -(CH₂)₀₋₄- $R_{A'-aryl}$ where R_{A-4} is -O-, -S- or

-NR_{A-5}- where R_{A-5} is C₁-C₆ alkyl, and where R_{A'-aryl} is defined above,

(N) -(CH₂)₁₋₄-R_{A-4}-(CH₂)₀₋₄-R_{A-heteroaryl} where R_{A-4} and R_{A-heteroaryl} are as defined above, and

(O) $-R_{A'-aryl}$ where $R_{A'-aryl}$ is as defined above,

and where R_{A-3} is the same or different and is:

(A) -H,

(B) -C₁-C₆ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

30

(D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(E) $-(CH_2)_{0.4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

5

10

15

20

25

30

- (F) -R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (G) -R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (H) -R_{A-heterocycle} where R_{A-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{A'-aryl} where R_{A'-aryl} is as defined above,
- (J) -(C₁-C₄ alkyl)-R_{A-heteroaryl} where R_{A-heteroaryl} is as defined above,
- (K) -(C₁-C₄ alkyl)-R_{A-heterocycle} where R_{A-heterocycle} is as defined

above, or

(XVI) $-CH(R_{A-aryl})_2$ where R_{A-aryl} are the same or different and are as defined above,

(XVII) -CH $(R_{A-heteroaryl})_2$ where $R_{A-heteroaryl}$ are the same or different and are as defined above,

 $(XVIII) - CH(R_{A \text{-}aryl})(R_{A \text{-}heteroaryl}) \text{ where } R_{A \text{-}aryl} \text{ and } R_{A \text{-}heteroaryl} \text{ are as defined above,}$

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to $R_{A\text{-}aryl}$, $R_{A\text{-}heteroaryl}$, $R_{A\text{-}heteroaryl}$, $R_{A\text{-}heteroaryl}$ or $R_{A\text{-}heteroaryl}$ or $R_{A\text{-}heteroaryl}$ or $R_{A\text{-}heteroaryl}$ or $R_{A\text{-}heteroaryl}$ or earbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=O)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two - C_1 - C_3 alkyl, -F, -OH, -SH, - $C\equiv N$, -CF₃, C_1 - C_6 alkoxy, =O, or - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.

(XXI) –(CH₂)₀₋₁-CHR_{A-6}-(CH₂)₀₋₁-R_{A-aryl} where R_{A-aryl} is as defined above and R_{A-6} is -(CH₂)₀₋₆-OH,


```
(XXII) –(CH<sub>2</sub>)<sub>0-1</sub>-CHR<sub>A-6</sub>-(CH<sub>2</sub>)<sub>0-1</sub>-R<sub>A-heteroaryl</sub> where R<sub>A-heteroaryl</sub> and R<sub>A-6</sub> is
        as defined above,
                             (XXIII) –CH(-R<sub>A-aryl</sub> or R<sub>A-heteroaryl</sub>)-CO-O(C<sub>1</sub>-C<sub>4</sub> alkyl) where R_{\text{A-aryl}} and
        R<sub>A-heteroaryl</sub> are as defined above,
 5
                             (XXIV) -CH(-CH<sub>2</sub>-OH)-CH(-OH)-micro-NO<sub>2</sub>,
                             (XXV) (C_1-C_6 \text{ alkyl})-O-(C_1-C_6 \text{ alkyl})-OH,
                             (XXVII) –CH_2-NH-CH_2-CH(-O-CH_2-CH_3)_2
                             (XXVIII)-H,
                             (XXIX) -(CH<sub>2</sub>)<sub>0-6</sub>-C(=NR<sub>1-a</sub>)(NR<sub>1-a</sub>R<sub>1-b</sub>) where R_{1-a} and R_{1-b} are as defined
10
                  above; or
                             (XXX)
                                       -C=OC(HR<sub>6</sub>)NHR<sub>7</sub>, where R<sub>6</sub> and R<sub>7</sub> are as defined below,
                                       -C=OR<sub>7</sub>, where R<sub>7</sub> is as defined below,
                                       -C=OOR<sub>7</sub>, where R<sub>7</sub> is as defined below, or
15
                                       - SOOR<sub>7</sub> where R<sub>7</sub> is as defined below,
                                $
                                                 wherein R<sub>6</sub> is:
                                                      hydrogen,
                                                      C_1 - C_3 alkyl,
                                                       phenyl,
20
                                                      thioalkoxyalkyl,
                                                       alkyl substituted aryl,
                                                      cycloalkyl,
                                                      cycloalkylalkyl,
                                                      hydroxyalkyl,
25
                                                       alkoxyalkyl,
                                                       aryloxyalkyl,
                                                      haloalkyl,
                                                      carboxyalkyl,
                                                       alkoxycarbonylalkyl,
30
                                                      aminoalkyl,
                                                       (N-protected)aminoalkyl,
                                                      alkylaminoalkyl,
                                                      ((N-protected)(alkyl)amino)alkyl,
                                                      dialkylaminoalkyl,
```


	guanidinoalkyl,
	lower alkenyl,
	heterocyclic,
	(heterocyclic)alkyl),
5	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
10	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,
	(heterocyclic))alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl,
15	(heterocyclic)alkylsulfonylalkyl,
	cycloalkyloxyalkyl,
	cycloalkylthioalkyl,
	cycloalkylsulfonylalkyl,
	cycloalkylalkoxyalkyl,
20	cycloalkylthioalkoxyalkyl,
	cycloalkylalkylsulfonylalkyl,
	aminocarbonyl,
	alkylaminocarbonyl,
	dialkylaminocarbonyl,
25	aroylalkyl,
	(heterocyclic)carbonylalkyl,
	polyhydroxyalkyl,
	aminocarbonylalkyl,
	alkylaminocarbonylalkyl,
30	dialkylaminocarbonylalkyl,
	aryloxyalkyl, or
	alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and

tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

	oon, bosh, lower alkenyl or lower alkyl;
5	wherein R ₇ is:
	C_1 - C_3 alkyl,
	phenyl,
	thioalkoxyalkyl,
10	(aryl)alkyl,
	cycloalkyl,
	cycloalkylalkyl,
	hydroxyalkyl,
	alkoxyalkyl,
15	aryloxyalkyl,
	haloalkyl,
	carboxyalkyl,
	alkoxycarbonylalkyl,
	aminoalkyl,
20	(N-protected)aminocalkyl,
	alkylaminoalkyl,
	((N-protected)(alkyl)amino)alkyl,
	dialkylaminoalkyl,
	guanidinoalkyl,
	lower alkenyl,
30	heterocyclic,
	(heterocyclic)alkyl),
	arylthioalkyl,
	arylsulfonyalkyl,
	(heterocyclic)thioalkyl,
	(heterocyclic)sulfonylalkyl,
	(heterocyclic)oxyalkyl,
	arylalkoxyalkyl,
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl,

10

15

20

25.

(heterocyclic))alkoxyalkyl, (heterocyclic)thioalkoxyalkyl, (heterocyclic)alkylsulfonylalkyl, cycloalkyloxyalkyl, cycloalkylthioalkyl, cycloalkylsulfonylalkyl, cycloalkylalkoxyalkyl, cycloalkylthioalkoxyalkyl, cycloalkylalkylsulfonylalkyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, aroylalkyl, (heterocyclic)carbonylalkyl, polyhydroxyalkyl, aminocarbonylalkyl, alkylaminocarbonylalkyl, dialkylaminocarbonylalkyl, aryloxyalkyl, or alkylsulfonylalkyl,

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, -SO₃H, lower alkenyl or lower alkyl;

where X is -N, or -O, with the proviso that when X is O, R_B is absent; and when X is N,

 $R_{\rm B}$ is:

(I)- C_1 - C_{10} alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -S(\equiv O)₀₋₂ R_{1-a} where R_{1-a} is as defined above, - NR_{1-a}C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and -S(\equiv O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) -(CH₂)₀₋₃-(C₃-C₈) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, -CO-OH, -CO-O-(C₁-C₄ alkyl), and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

10 (III) -($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} where R_{B-x} and R_{B-y} are

(A) - H

- (B) C₁-C₄ alkyl optionally substituted with one or two -OH,
- (C) C₁-C₄ alkoxy optionally substituted with one, two, or three of -

F,

15

5

- (D) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,
- (E) C2-C6 alkenyl containing one or two double bonds,
- (F) C2-C6 alkynyl contianing one or two triple bonds, or
- (G) phenyl,

and where R_{B-x} and R_{B-y} are taken together with the carbon to

which they are attached to form a carbocycle of three, four, five, six or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group consisting of -O-, -S-, -SO₂-, and -NR_{N-2} where R_{N-2} is as defined above, and R_{B-aryl} is the same as R_{N-aryl} and is defined above

(IV) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heteroaryl}$ where $R_{B-heteroaryl}$ is the same as $R_{N-heteroaryl}$, 25 R_{B-x} , and R_{B-v} are as defined above,

(V) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl}-R_{B-aryl} where R_{B-aryl}, R_{B-x}, and R_{B-y} are as defined above,

(VI) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl}-R_{B-heteroaryl} where R_{B-aryl}, R_{B-heteroaryl}, R_{B-x} and R_{B-y} are as defined above,

 $(VII) - (CR_{B-x}R_{B-y})_{0-4} - R_{B-heteroaryl} - R_{B-aryl} \ where \ R_{B-heteroaryl}, \ R_{B-aryl}, \ R_{B-x} \ and \\ R_{B-y} \ are \ as \ defined \ above,$

(VIII) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl}-R_{B-heteroaryl} where R_{B-heteroaryl}, R_{B-x} and R_{B-y} are as defined above,

- (IX) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-aryl}-R_{B-heterocycle} where R_{B-heterocycle} is defined as R_{1-heterocycle}, and where R_{B-aryl}, R_{B-x} and R_{B-y} are as defined above,
- (X) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl}-R_{B-heterocycle} where R_{B-heteroaryl}, R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,
- 5 (XI) - $(CR_{B-x}R_{B-y})_{0-4}$ - $R_{B-heterocycle}$ - R_{B-aryl} where $R_{B-heterocycle}$, R_{B-aryl} , R_{B-x} and R_{B-y} are as defined above,
 - $(XII) \text{ -}(CR_{B\text{-}x}R_{B\text{-}y})_{0\text{-}4}\text{-}R_{B\text{-}heterocycle}\text{-}R_{B\text{-}heteroaryl} \text{ where } R_{B\text{-}heterocycle}, R_{B\text{-}heteroaryl}, \\ R_{B\text{-}x} \text{ and } R_{B\text{-}y} \text{ are as defined above,}$
- (XIII) -($CR_{B-x}R_{B-y}$)₀₋₄- $R_{B-heterocycle}$ - $R_{B-heterocycle}$ where $R_{B-heterocycle}$, R_{B-x} and R_{B-y} are as defined above,
 - (XIV) -(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle} where R_{B-heterocycle}, R_{B-x} and R_{B-y} are as defined above,
 - $(XV) \hbox{-}[C(R_{B\text{--}1})(R_{B\text{--}2})]_{1\text{--}3}\hbox{--}CO\text{-}N\text{--}(R_{B\text{--}3})_2 \text{ where } R_{B\text{--}1} \text{ and } R_{B\text{--}2} \text{ are the same or different and are selected from the group consisting of:}$

15 (A) -H,

- (B) -C₁-C₆ alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C₁-C₆ alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,
- (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
- (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (E) $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl}),$
 - (F) $-(CH_2)_{0-4}$ - C_3 - C_7 cycloalkyl, optionally substituted with one,
- two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(G) -(C₁-C₄ alkyl)- $R_{B'-aryl}$ where $R_{B'-aryl}$ is as defined above for R_{1-}

aryl,

5

- (H) -(C_1 - C_4 alkyl)- $R_{B\text{-heteroaryl}}$ where $R_{B\text{-heteroaryl}}$ is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (J) -R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,
- (K) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (M) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B'-aryl} where R_{B-4} is –O-, -S- or

-NR_{B-5}- where R_{B-5} is C₁-C₆ alkyl, and where R_{B'-aryl} is defined above,

- (N) -(CH₂)₁₋₄-R_{B-4}-(CH₂)₀₋₄-R_{B-heteroaryl} where R_{B-4} and R_{B-heteroaryl}
- 10 are as defined above, and
 - (O) -R_{B'-aryl} where R_{B'-aryl} is as defined above,

and where R_{B-3} is the same or different and is:

- (A) H,
- (B) -C₁-C₆ alkyl optionally substituted with one, two or three
- substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, - $C\equiv N$, - CF_3 , C_1 - C_6 alkoxy, -O-phenyl, and - $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (C) C_2 - C_6 alkenyl with one or two double bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,
 - (D) C_2 - C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above.
 - (E) $-(CH_2)_{0-4}$ $-C_3$ $-C_7$ cycloalkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, $-C\equiv N$, $-CF_3$, C_1 - C_6 alkoxy, -O-phenyl, and $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

30

20

- (F) -R_{B'-aryl} where R_{B'-aryl} is as defined above,
- (G) $-R_{B\text{-}heteroaryl}$ where $R_{B\text{-}heteroaryl}$ is as defined above,
- (H) -R_{B-heterocycle} where R_{B-heterocycle} is as defined above,
- (I) -(C₁-C₄ alkyl)-R_{B'-aryl} where R_{B'-aryl} is as defined above,

(J) -(C₁-C₄ alkyl)-R_{B-heteroaryl} where R_{B-heteroaryl} is as defined above,

(K) -(C1-C4 alkyl)- $R_{B\text{-}heterocycle}$ where $R_{B\text{-}heterocycle}$ is as defined

above, or

5

(XVI) $-CH(R_{B\text{-aryl}})_2$ where $R_{B\text{-aryl}}$ are the same or different and are as defined above.

(XVII) -CH($R_{B\text{-heteroaryl}}$)₂ where $R_{B\text{-heteroaryl}}$ are the same or different and are as defined above,

(XVIII) –CH($R_{B\text{-aryl}}$)($R_{B\text{-heteroaryl}}$) where $R_{B\text{-aryl}}$ and $R_{B\text{-heteroaryl}}$ are as defined above,

(XIX) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to R_{B-aryl} or R_{B-heteroaryl} or R_{B-heteroaryl} or R_{B-heteroaryl} or R_{B-heteroaryl} or R_{B-heterocycle} are as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5}, O, or S(=O)₀₋₂, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two -C₁-C₃ alkyl, -F, -OH, -SH, -C≡N, -CF₃, C₁-C₆ alkoxy, =O, or -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XX) C_2 - C_{10} alkenyl containing one or two double bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, and -NR $_{1-a}$ R $_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

20 (XXI) C_2 - C_{10} alkynyl containing one or two triple bonds optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF₃, C_1 - C_6 alkoxy, -O-phenyl, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(XXI) –(CH₂)₀₋₁-CHR_{C-6}-(CH₂)₀₋₁-RB_{B-aryl} where R_{B-aryl} is as defined above and R_{C-6} is -(CH₂)₀₋₆-OH,

(XXII) –(CH₂)₀₋₁-CHR_{B-6}-(CH₂)₀₋₁-R_{B-heteroaryl} where $R_{B-heteroaryl}$ and R_{C-6} is as defined above,

(XXIII) –CH(- $R_{B\text{-aryl}}$ or $R_{B\text{-heteroaryl}}$)-CO-O(C_1 - C_4 alkyl) where $R_{B\text{-aryl}}$ and $R_{B\text{-heteroaryl}}$ are as defined above,

30 (XXIV) -CH(-CH₂-OH)-CH(-OH)-micro-NO₂, (XXV) (C₁-C₆ alkyl)-O-(C₁-C₆ alkyl)-OH, (XXVII) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂, (XXVIII) -H, or

(XXIX) -(CH₂)₀₋₆-C(=NR_{1-a})(NR_{1-a}R_{1-b}) where R_{1-a} and R_{1-b} are as defined above.

```
96. A method of treatment according to claim 95,
```

5 where R_1 is:

$$-(CH_2)_{0-1}-(R_{1-aryl})$$
, or

$$-(CH_2)_{n1}-(R_{1-heteroarvl});$$

where R_N is:

 R_{N-1} - X_N -, where X_N is selected from the group consisting of:

10 –CO-, and

-SO₂-,

where R_{N-1} is selected from the group consisting of:

-R_{N-aryl}, and

-R_{N-heteroaryl}, or

15 $-\text{CO-CH}(-(\text{CH}_2)_{0-2}-\text{O-R}_{N-10})-(\text{CH}_2)_{0-2}-\text{R}_{N-\text{aryl}}/\text{R}_{N-\text{heteroaryl}});$

where R_A is:

-C₁-C₈ alkyl,

 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

-($CR_{A-x}R_{A-y}$)₀₋₄- R_{A-aryl} ,

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl,}

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

heterocycle;

where X is -N or -O, with the proviso that when X is O, R_B is absent;

and when X is N,

R_B is:

-C₁-C₈ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl},$

30 -(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl,}

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{A\text{-aryl}}$ or $R_{A\text{-heteroaryl}}$ or $R_{A\text{-}}$

heterocycle.


```
97. A method of treatment according to claim 96,
```

where R₁ is:

-(CH₂)-(
$$R_{1-aryl}$$
), or

5 where R_2 is -H;

where R₃ is -H;

where R_N is:

 R_{N-1} - X_N - where X_N is:

-CO-,

where R_{N-1} is selected from the group consisting of:

-R_{N-arvl}, and

-R_{N-heteroaryl};

where R_A is:

-C₁-C₈ alkyl,

15 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl,}

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$ or $R_{\text{A-heteroaryl}}$ or $R_{\text{A-}}$

20 heterocycle;

where X is -N or -O, with the proviso that when X is O, R_B is absent;

and when X is N,

R_B is:

-C₁-C₈ alkyl,

25 -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

-($CR_{B-x}R_{B-y}$)₀₋₄- R_{B-aryl} ,

-(CR_{B-x}R_{B-y})₀₋₄-R_{B-heteroaryl,}

-(CR_{B-x}R_{B-y})₀₋₄-R_{B-heterocycle},

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{B-aryl}}$ or $R_{\text{B-heteroaryl}}$ or $R_{\text{B-}}$

30 heterocycle-

98. A method of treatment according to claim-97/

where RA is:

$$-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$$

-(
$$CR_{A-x}R_{A-y}$$
)₀₋₄- $R_{A-heteroaryl}$, or

-cyclopentyl or -cyclohexyl ring fused to a RA-aryl or RA-heteroaryl or RA.

heterocycle; and

where R_B is:

5

$$-(CR_{B-x}R_{B-y})_{0-4}-R_{B-aryl}$$

-cyclopentyl or -cyclohexyl ring fused to R_{B-aryl} or R_{B-heteroaryl} or R_B.

heterocycle.

- 99. A method of treatment according to claim 95 where R_1 is -(CH₂)-(R_{1-aryl}) where R_{1-aryl} is phenyl.
 - 100. A method of treatment according to claim 95, where R_1 is $-(CH_2)-(R_{1-aryl})$ where R_{1-aryl} is phenyl substituted with two -F.

15

- 101. A method of treatment according to claim 100 where the -F substitutions are at the 3- and 5- positions.
- 102. A method of treatment according to claim 95 where R₂ is -H.

20

- 103. A method of treatment according to claim 95 where R₃ is -H.
- 104. A method of treatment according to claim 95 where R_N is

 $R_{N\text{--}1}\text{-}X_N\text{--},$ where X_N is –CO-, where $R_{N\text{--}1}$ is $R_{N\text{--}aryl}$ where $R_{N\text{--}aryl}$ is phenyl

- substituted with one -CO-NR_{N-2} R_{N-3} where the substitution on phenyl is 1,3-.
 - 105. A method of treatment according to claim 104 where R_{N-2} and R_{N-3} are the same and are C_3 alkyl.
- 30 106. A method of treatment according to claim 95 where R_N is

 R_{N-1} - X_N - where X_N is—CO-, and where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl substituted with one C_1 alkyl and with one -CO- $NR_{N-2}R_{N-3}$ where the substitution on the phenyl is 1,3,5-.

30

- 108. A method of treatment according to claim 95 where R_N is
- 5 R_{N-1} - X_N -, where X_N is -CO-, and where R_{N-1} is $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is substituted with one -CO- $NR_{N-2}R_{N-3}$.
 - 109. A method of treatment according to claim 108 where R_{N-2} and R_{N-3} are the same and are -C₃ alkyl.
- 110. A method of treatment according to claim 95 where R_A and R_B are each independently:

- $(CR_{A-x}R_{A-y})_{0-4}$ - R_{A-aryl} where R_{A-aryl} is phenyl,

-(CR_{A-x}R_{A-y})₀₋₄-R_{A-heteroaryl},

- -cyclopentyl or -cyclohexyl ring fused to a R_{A-aryl} or R_{A-heteroaryl} or R_{A-heterocycle}.
 - 111. The method of claim 95, wherein said beta-secretase is exposed to said compound in vitro.
- 20 112. The method of claim 95, wherein said beta-secretase is exposed to said compound in a cell.
 - 113. The method of claim 95, wherein said cell is in an animal.
- 25 114. The method of claim 113, wherein said animal is a human.
 - 115. A method for inhibiting cleavage of amyloid precursor protein (APP), in a reaction mixture, at a site between Met596 and Asp597, numbered for the APP-695 amino acid isotype; or at a corresponding site of an isotype or mutant thereof, comprising exposing said reaction mixture to an effective inhibitory amount of a compound of formula XV

$$\begin{array}{c|c}
R_{N} & OH \\
 & \downarrow \\$$

where $R_1,\,R_2,\,R_3,\,R_N,\,R_A,\,R_B,$ and X are as defined in class 1.

- 116. The method of claim 1½5, wherein said cleavage site is between Met652 and
 Asp653, numbered for the APP-751 isotype; between Met 671 and Asp 672, numbered for the APP-770 isotype; between Leu596 and Asp597 of the APP-695 Swedish Mutation; between Leu652 and Asp653 of the APP-751 Swedish Mutation; or between Leu671 and Asp672 of the APP-770 Swedish Mutation.
- 10 117. The method of claim 115, wherein said reaction mixture is exposed in vitro.
 - 118. The method of claim 1,15, wherein said reaction mixture is exposed in a cell.
 - 119. The method of claim 118, wherein said cell is an animal cell.
 - 120. The method of claim 119, wherein said cell is a human cell.
- 121. A method for inhibiting production of amyloid beta peptide (A beta) in a cell, comprising administering to said cell an effective inhibitory amount of a compound of the
 20 formula XV

where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1.

- 122. The method of claim 121, wherein said administering is to an animal.
- 123. The method of claim 122, wherein said administering is to a human.

15

124. A method for inhibiting the production of beta-amyloid plaque in an animal, comprising administering to said animal an effective inhibitory amount of a compound of the formula XV

- 5 where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1/
 - 125. The method of claim 124, wherein said animal is a human.
- 126. A method for treating or preventing a disease characterized by beta-amyloid
 deposits in the brain comprising administering to a patient an effective therapeutic amount of a hydroxyethylene compound of the formula XV

where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim X.

- 15 127. The method of claim 126, wherein said therapeutic amount is in the range of from about 0.1 to about 1000 mg/day.
 - 128. The method of claim 126, wherein said therapeutic amount is in the range of from about 15 to about 1500 mg/day.
 - 129. The method of claim 128, wherein said therapeutic amount is in the range of from about 1 to about 100 mg/day.
- 130. The method of claim 129, wherein said therapeutic amount is in the range of from about 5 to about 50 mg/day.

- 131. The method of claim 126, wherein said disease is Alzheimer's disease.
- 132. The method of claim 126, wherein said disease is Mild Cognitive Impairment, Down's Syndrome, or Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch 5 Type.
 - 133. A composition comprising beta-secretase complexed with a compound of the formula XV

- where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1. 10
 - 134. A method for producing a beta-secretase complex comprising: exposing betasecretase to a compound of the formula XV

- where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim-1, or a pharmaceutically 15 acceptable salt thereof in a reaction mixture under conditions suitable for the production of said complex.
 - 135. The method of claim 134, where said exposing is in vitro.
 - 136. The method of claim 133, wherein said reaction mixture is a cell.
 - 137. A kit comprising component parts capable of being assembled, wherein at least one component part comprises a compound of formula XV

where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1, enclosed in a container.

- 138. The kit of claim 137, wherein said compound is lyophilized and at least one further
 component part comprises a diluent.
 - 139. A kit comprising a plurality of containers, each container comprising one or more unit dose of a compound of formula XV

- where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1.
 - 140. The kit of claim 13% wherein each container is adapted for oral delivery and comprises a tablet, gel, or capsule.
- 15 141. The kit of claim 140, wherein each container is adapted for parenternal delivery and comprises a depot product, syringe, ampoule, or vial.
 - 142. The kit of claim 141, wherein each container is adapted for topical delivery and comprises a patch, medipad, ointment, or cream.
 - 143. A kit comprising a compound of formula XV

ì

where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1';

put ar

10

15

20

and one or more therapeutic agent selected from the group consisting of an antioxidant, an anti-inflamatory, a gamma secretase inhibitor, a neurotrophic agent, an acetylcholinesterase inhibitor, a statin, an A beta peptide, and an anti-A beta antibody.

144. A composition comprising

a compound of formula XV

where R_1 , R_2 , R_3 , R_N , R_A , R_B , and X are as defined in claim 1; \angle and an inert diluent or edible carrier.

145. The composition of claim 144, wherein said carrier is an oil.

146. A composition comprising

a compound of formula XV

where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1; and and a binder, excipient, disintegrating agent, lubricant, or gildant.

147. A composition comprising

a compound of formula XV

where R₁, R₂, R₃, R_N, R_A, R_B, and X are as defined in claim 1, disposed in a cream, ointment, or patch.

adva9/