UNSUPERVISED ACADEMIC CURRICULA EVALUATION THROUGH TOPIC MODELING

Jean Michel Rouly April 16, 2015

George Mason University

· Overview

- · Overview
- · Background

- · Overview
- · Background
- · Data

- · Overview
- · Background
- · Data
- · Trajectory

Evaluating a department on its conceptual coverage involves...

Evaluating a department on its conceptual coverage involves...

Relative Standing comparing against other, similar departments

Evaluating a department on its conceptual coverage involves...

Relative Standing comparing against other, similar departments

Absolute Performance benchmark against standardized

expectations (published by the ACM)

Evaluating a department on its conceptual coverage involves...

Relative Standing comparing against other, similar departments

Absolute Performance benchmark against standardized

expectations (published by the ACM)

Both of these require data about the topics covered in a course.

What we've got:

What we've got:

1. Widely available university course description data.

What we've got:

- 1. Widely available university course description data.
- 2. Descriptions detail what concepts are taught in a course.

What we've got:

- 1. Widely available university course description data.
- 2. Descriptions detail what concepts are taught in a course.
- 3. Human-readable descriptions require manual inspection.

What we've got:

- 1. Widely available university course description data.
- 2. Descriptions detail what concepts are taught in a course.
- 3. **Human-readable** descriptions require manual inspection.

So what to do?

Through the application of probabilistic machine learning methods, specifically LDA topic modeling, a corpus of unstructured course descriptions can be digested and mined for topics. In this scenario, each topic represents a core concept covered by the courses.

A research framework will be constructed to read data from the Internet, digest into a common internal format, pipeline into an LDA topic model, and ultimately visualize in an interactive manner.

Ultimately the automatically discovered topics can be used in end-user university evaluation processes.

In other words

Build a tool that automatically...

In other words

Build a tool that automatically...

· infers topics from a collection of course descriptions

In other words

Build a tool that automatically...

- · infers topics from a collection of course descriptions
- · computes comparisons between departments

In other words

Build a tool that automatically...

- · infers topics from a collection of course descriptions
- · computes comparisons between departments
- · evaluates departments on their concepts

BACKGROUND

TOPIC MODELING

Attempts to discover the abstract topics of a dataset.

Topics

A topic is a frequency distribution over terms, roughly representing a concept taught in a course.

LATENT DIRICHLET ALLOCATION

Overview

Latent Dirichlet Allocation (LDA) is a form of Latent Variable Modeling that can infer topics from within a document.

LDA takes a generative approach to latent variable modeling, assuming the topics occur in some proportion within each document.

DATA

UNIVERSITY DATASET

University	Course Count	Web
American University	32	american.edu
George Mason University	145	gmu.edu
Kansas State University	83	ksu.edu
Louisiana State University	59	lsu.edu
Portland State University	190	pdx.edu
Rensselaer Polytechnic Institute	61	rpi.edu
University of South Carolina	64	sc.edu
Stanford University	69	stanford.edu
University of Utah	142	utah.edu
University of Tennessee, Knoxville	29	utk.edu
ACM Exemplar Courses	68	_

Table 1: University course descriptions

SAMPLE COURSE DESCRIPTIONS

Raw Course Description

Capstone course focusing on design and successful implementation of major software project, encompassing broad spectrum of knowledge and skills, developed by team of students. Requires final exhibition to faculty-industry panel.

Cleaned course description

capston focus design success implement major softwar project encompass broad spectrum knowledg skill develop team student requir final exhibit faculti industri panel

TRAJECTORY

Trajectory is a tool that automatically ingests course description data from the Internet and presents an accessible interface for departmental evaluation.

Lines of Python	3193
Lines of Java	631
Lines of HTML/CSS/JS	1828
Lines of JSON	3219
Lines of Bash	165
Size on disk	6.7M

Table 2: Code statistics

TRAJECTORY

Four primary modules:

Scrape web-scrape online university catalogs

Import/Export pass structured data between Learn and Scrape

Learn estimate LDA topic model on data

Web visualization tool

Underneath the entire system is a structured relational database layer.

TRAJECTORY / WEB

Browse collected data by university or department
Understand courses through inferred topics
Analyze conceptual overlap in prerequisite chains
Compare departments based on conceptual composition
Evaluate departments against ACM benchmarks

LIVE DEMO WISH ME LUCK!

Try out **Trajectory** online at

trajectory.staging.rouly.net

Get the source of this presentation and the **Trajectory** project at

github.com/jrouly/trajectory

Trajectory is licensed under the Apache version 2.0 license.

FUTURE GOALS

- · Learning Outcomes meta-analysis
- · Alternative methods
- · Topic summarization

CREDITS

Co-authors:

- · Huzefa Rangwala
- · Aditya Johri

Presentation theme:

github.com/matze/mtheme

