SHA-256

PYNQ-Z2

Livoroi Arsal-Hanif

SHA-256

• Input: Messaggio di lunghezza qualsiasi

• Output: HASH da 256 bit

Fasi principali

• Padding: In: Msg | Out: N chunk da 16 uchar

• Espansione: In: 16 uchar | Out: 64 uint

• Compressione: In: 64 uint | Out: HASH

Direttiva Dataflow

- **HLS** Direttiva Unroll
 - Direttiva Pipeline

- Stream
- Shift register
- Segnale di Sync

Sympy

- Libreria python
- Manipolazione simbolica
- Utilizzato per la fase di compressione
- Risultato simile alla direttiva Unroll

DATAFLOW VIEW

- Strumento fondamentale
- Visualizza i canali
- Analizza eventuali congestioni
- Permette di dimensionare gli stream

Processi e Canali sintetizzati

Analisi dei Task (Simulazione)

- Messaggio da 600 caratteri
- Primo chunk impiega più tempo (1229 ns)
- I chunk restanti impiegano mono tempo (709 ns)

PYNQ Caratteristiche Overlay

PS

- 1. Attivo Overlay tramite GP0
- 2. Caricamento file da microSD su memoria locale (lettura a blocchi)
- 3. Per ogni blocco
 - 1. Trasferimento da memoria locale a memoria contigua condivisa con DMA
 - 2. Trasmissione tramite HPO alla DMA
 - 3. Attesa fine trasmissione
- Dopo l'ultimo blocco invio un ultimo blocco contenette solo uno 0 segnalando la fine del file
- 5. Attesa output dalla porta HP2

PL

- Per ogni blocco
 - 1. DMA reindirizza il blocco verso SHA256
 - 2. SHA256 aggiorna lo stato del hash e attende il blocco successivo
- 2. SHA256 Attende lo 0 di fine messaggio
- SHA256 invia l'hash al DMA che lo reindirizza verso la memoria condivisa tramite HP2

Driver Python - Prestazioni

File: 99 MB

Nome	Time [s]	Hash
Hashlib	2.8261	00A36691822E1309F95DF1283C4C26E351661943BC4F7E83323E53248776E9F6
mySha256 class	2.4248	00A36691822E1309F95DF1283C4C26E351661943BC4F7E83323E53248776E9F6
mySha256 fun	2.4081	00A36691822E1309F95DF1283C4C26E351661943BC4F7E83323E53248776E9F6
mySha256 2buf	1.7823	00A36691822E1309F95DF1283C4C26E351661943BC4F7E83323E53248776E9F6

File: 511 MB

function	Time [s]	Hash
Hashlib	24.7823	21BE956416A1669FA79B498827FB4D3F24F3CA4DA611523459C5166518459B4F
mySha256 class	25.5942	21BE956416A1669FA79B498827FB4D3F24F3CA4DA611523459C5166518459B4F
mySha256 fun	25.0967	21BE956416A1669FA79B498827FB4D3F24F3CA4DA611523459C5166518459B4F
mySha256 2buf	23.1919	21BE956416A1669FA79B498827FB4D3F24F3CA4DA611523459C5166518459B4F

Versione C - Produttore/Consumatore

Separazione dei compiti del PL

• Produttore: Lettura file da microSD

Consumatore: Invio dati alla DMA

- Utilizzo di un Ring Buffer per ridurre ulteriormente la latenza tra i due
- Evito il passaggio per la memoria locale

Nome	T Produttore [s]	T Consumatore [s]
SHA256 - C++		6.873

Attività progettuale

SHA256 per il mining

SHA256 Double

Ottimizzazione nota

Scomposizione in Sub-Task

Scomposizione in Sub-Task

Versione ad area minore

