Multiplexing and Modulation

Arkaitz Bitorika

arkaitz.bitorika@cs.tcd.ie

Oriel House 4.15

Multiplexing

- Goal: multiple use of a shared and limited medium, with maximum utilisation and minimum interference
- Multiplexing in four dimensions:
 - Space, time, frequency and code

 Space Division Multiplexing (SDM)

- Channels separated in physical space
- Guard spaces needed between channels

Frequency Division Multiplexing (FDM)

Separation of available spectrum intro smaller frequency bands

Each channel uses a certain band for the whole

Advantages
No dynamic coordination needed
Works for analog signals

- Disadvantages
 - Waste of bandwidth for short transmissions
 - Fixed maximum number of senders

Time Division Multiplexing (TDM)

- A channel gets spectrum for a time slot
- Guard spaces: time gaps between periods of medium use
- More flexible for typical mobile communications
- When two transmissions overlap: co-channel interference
 Advantages

 Flexibility, variable slots per sender
 Can support many users
- Disadvantages: synchronisation
 - Very precise clock
 - Distribution of synchronisation signal to all senders

Time and Frequency Multiplexing

- Combination of TDM and FDM
- A channel gets a freq. band for a certain amount of time
- Advantages
 - Robust against freq.
 selective interference
 - Some protection against tapping
- Disadvantages
 - Precise coordination required

Code Division Multiplexing (CDM)

 All channels use the same freq. at the same time, each channel has its own code

Codes have to be orthogonal, separated, this is their guard space

- Advantages
 - Built-in security
 - Bandwidth efficient
 - No coordination and synchronisation necessary
- Disadvantages
 - Complexity on receiver
- Implemented using spread spectrum

Modulation

- Motivation: to go from digital data to an electromagnetic signal
- Two steps
 - Digital modulation: digital data translated into analog baseband signal (1 Mbps -> 1 MHz)
 - Analog modulation: shift centre frequency of baseband signal to the radio carrier frequency
- Reasons for analog modulation
 - Antenna sizes: higher freqs -> smaller antennas
 - FDM: needs ability to use different carrier freqs.
 - Medium characteristics: different freqs. more suited to different environments or applications

Digital modulation

- Amplitude Shift Keying (ASK)
 - 0 and 1 represented by two different amplitudes
 - Simple, low bandwidth usage
 - Very susceptible to interference due to propagation effects
- Frequency Shift Keying (FSK)
 - Uses larger bandwidth than ASK
 - Less susceptible to errors
- Phase Shift Keying (PSK)
 - Higher complexity
 - Robust against interference

Advanced Frequency Shift Keying

- Minimum Shift Keying (MSK)
 - Binary FSK without abrupt phase changes
 - Uses two frequencies, f_1 and f_2 ($f_2 = 2 f_1$)
 - Separate signal into even and odd bit signals, with doubled bit duration
 - Signal generation rule, compare even/odd signals and:
 - Use f₂ if bits are equal, f₁ if different
 - Invert signal (180°) if odd bit is 0
- Gaussian MSK: MSK with Gaussian lowpass filter
 - Reduces spectrum required
 - Used in GSM and other mobile standards

MSK example

Advanced Phase Shift Keying

- Binary PSK
 - Signal sine wave if bit = 0,inverted if bit = 1
 - Low spectral efficiency, robust
- Quadrature PSK
 - Two bits coded into one phase shift
 - Complex, requires frequent synchronisation
- Quadrature Amplitude Modulation (QAM)
 - Combination of PSK and ASK
 - Three amplitudes and 12 phases to code 4 bits per amplitude/phase change
- The more "points" the more difficult to recover from noise or ISI

