No	Method	Standard	Biological	Advantage
		Parameter	Inspiration	
1	GA	Population size	Inspired by the	Vast
		Selection	theory of natural	application
		Crossover	evolution	
		Mutation,		
2	PSO	No. of	Social behaviour	Simple
		population	of bird flocking or	algorithm
		Learning rate	fish schooling	Value Orderen auf sacre
		Inertia weight		
3	FA	Light intensity	Process of	Efficient
		variation	bioluminescence	determine
		Attractiveness	of firefly	local maxima
		of firefly	********** *	
4	ABC	No. of	Natural foraging of	Less control
		population	bee honey	parameters
		Employed and	7	
		unemployed		
		foraging bees		
		Food sources		
5	TLBO	Population size	Model from	Fast
J	LLDO	No of	teaching &	convergence
		generations	learning principal	convergence
		generations	in classroom	
6	SSO	No. of	Inspired from	Simple
O	550	population	shark hunt of the	
		Gradient		aigoriumi
			injured prey in the	
		coefficient	ocean	
		Momentum rate		
		Velocity limiter		

The SSO has many significant benefits like; good convergence acceleration, fitting for wide search space, powerful neighborhood search characteristic, higher feasibility and efficiency in producing global optima.

- (1) Shark Smell Optimization, SSO is a new swarm intelligence optimization algorithm proposed by Abedinia O in 2016. Compared to conventional optimization algorithms such as particle swarm, based on the shark's spiral hunting mechanism, the shark smell algorithm is characterized by few parameters, so it has a strong local search capability.
- (II) For the conventional multi-objective unification target method such as linear weighting, there is a problem that subjective parameters are selected blindly in the calculation. Because the target demand vector can be selected objectively according to the actual situation, the angle cosine of solution vector and target demand vector as evaluating index is more objective and reasonable.
- (III) Train running process optimization is an extremely complicate optimization decision problem, in the late iteration, it is easy to fall into local convergence. Therefore, in the later period of the optimization iteration, it is necessary to filter the individuals who are close to the extremum but not are sufficiently optimized to prevent these individuals from confining the population to a local area. However, using Euclidean distance or Mahalanobis distance as the distance measure cannot accurately reflect the actual distance. In this paper, a method of local convergence inhibition is proposed by using the fusion distance based on Mahalanobis distance and Euclidean distance as the distance measure indicator in the later stage of the iterative optimization process to enhance the global convergence performance of the optimization algorithm.