Verwendung von Jupyter Notebooks im Unterricht

Workshop am Fachschaftstag Mathematik

Johannes Lieberherr 03.12.2024

Agenda

- Was sind Jupyter Notebooks?
- Zwei Beispiele aus dem Unterricht
- Tipps zur Installation und Verwendung
- Diskussion / Fragen

Beispiel 1 Einstieg in Wahrscheinlichkeitsrechnung (GYM3/4)

- 1. Leitfrage: «Wie gross ist die Wahrscheinlichkeit, mit 4 Würfeln mindestens eine 6 zu werfen?»
- 2. Vorschläge?
- 3. Zu zweit: je 20x 4 Würfel werfen. Resultate zusammentragen und auswerten.
- 4. Neue Vorschläge?
- 5. Simulation des Zufallsversuchs in Jupyter Notebook

Beispiel 2 Primzahlen (GYM1)

- 1. Einstieg: Anzahl Teiler der Zahlen 1 bis 36 ermitteln
- 2. Definition von Primzahlen
- 3. Mit Sieb des Eratosthenes Primzahlen ≤ 100 finden
- 4. Primzahlfunktion $\pi(x)$ für $x \le 100$ zeichnen
- 5. Jupyter Notebook: weitere Entwicklung von $\pi(x)$?
- Satz von Euklid

8. Formel für Anzahl Teiler herleiten $(k_1 + 1) \cdot (k_2 + 1) \cdot ... \cdot (k_n + 1)$

Beispiel 2 Primzahlen (GYM1)

- 8. Verschlüsselung mit Primzahlen:
 - Idee der asymmetrischen Verschlüsselung: öffentlich zugängliches Schnappschloss, welches nur mit dem (privaten) Schlüssel geöffnet werden kann
 - Der Schlüssel sind zwei grosse Primzahlen p resp. q
 - Deren Produkt $N \coloneqq p \cdot q$ ist das Schnappschloss
 - Zwei grosse Primzahlen p resp. q zu finden und deren Produkt N zu berechnen, ist schnell möglich
 - Die Umkehrung nicht: aus N schnell auf p resp. q zu schliessen, ist heute in vernünftiger Zeit nicht möglich (wenn p resp. q gross sind)
 - Simulation dieses Grundprinzips in einem Jupyter Notebook
- 9. Später: Film« Die Code-Knacker» schauen (https://www.youtube.com/watch?v=CaFoSTxkIvY)

Tipps zur Installation und Anwendung

- Siehe https://github.com/jlieberherr/jupyter-ws-fs-tag-20241203
- Mögliche weitere Beispiele (z.B. mit Hilfe von ChatGPT):
 - Monty-Hall-Problem
 - Geburtstagsparadoxon

Divers

- Weit entwickelte Bibliotheken aus der Webentwicklungs-Welt:
 - JSX-Graph
 - mathjs
 - MathJax
 - Damit lassen sich relativ schnell für den Unterricht interessante Webseiten erstellen, z.B. <u>funktion-und-graph.ch</u>
- Kennt jemand ein für den Unterricht wirklich geeignetes Werkzeug zur interaktiven Demonstration von 3D-Sachverhalten?

Diskussion / Fragen