

DEIS - Departamento de Engenharia Informática e Sistemas ISEC - Instituto Superior de Engenharia de Coimbra Conhecimento e Raciocínio 2020/2021

Lab 11 - Redes Bayesianas (GENIE)

1. Objectivo e Estrutura

Este trabalho consiste na implementação de algumas Redes Bayesianas (*Belief-Nets*) destinadas a exemplificar inferências do tipo causal e do tipo diagnóstico.

Para a sua implementação recorre-se ao GENIE, uma aplicação freeware no domínio académico proveniente da Universidade de Pittsburg. A aplicação dispõe de um Help que, para os objectivos pretendidos, disponibiliza eficazmente toda a informação necessária.

2. Trabalho a Realizar

2.1. Diagnóstico Médico

Suponha que num dado país:

- 1. 1% da população tem tuberculose
- 2. Uma radiografia é positiva (indica a presença da doença) em 95% dos casos em que a doença foi efectivamente contraída
- 3. Uma radiografia é interpretada como positiva em 0.5% dos casos que afinal se verificou não serem efectivamente de tuberculose

Construa uma Rede Bayesiana destinada a inferir a probabilidade de presença ou ausência de tuberculose dado um resultado positivo ou negativo da radiografia.

- 1. Para indicar que uma radiografia é positiva ou negativa, use a opção Set Evidence no nó que construir para as radiografias.
- 2. Para calcular a probabilidade de tuberculose ausente ou presente, use a opção Network Update
- 3. Para verificar as probabilidades resultantes no nó Tuberculose, use a opção Set Evidence nesse nó, apenas para consulta.

Deve obter os seguintes resultados:

	RadPositiva	RadNegativa
Tuberculose presente	0.6574	0.0005
Tuberculose ausente	0.3426	0.9995

2.2 Inferência de Diagnóstico

Um sistema de elevadores tem 3 causas habituais de falhas: Unidade de controlo, sensores de piso e motor. Estas 3 falhas originam 3 tipos de evidências cuja frequência de ocorrência, consultados os técnicos, é a seguinte:

	Motor OK	Motor OK	Motor Avariado	Motor Avariado
	Controlo OK	Controlo Avariado	Controlo OK	Controlo Avariado
Cheiro a queimado presente	Quase nunca	Por vezes	Frequentemente	Quase sempre

	Sensores OK	Sensores OK	Sensores Avariados	Sensores Avariados
	Controlo OK	Controlo Avariado	Controlo OK	Controlo Avariado
Paragem num Piso Errado	Quase nunca	Frequentemente	Pouco Frequentemente	Quase sempre 0.95
Liiddo			Litedaeuremeure	0.95

	Sensores OK	Sensores OK	Sensores Avariados	Sensores Avariados
	Controlo OK	Controlo Avariado	Controlo OK	Controlo Avariado
Desnível à Chegada	Quase Nunca	Por Vezes	Muito	Quase sempre
			Frequentemente	

Os termos linguísticos foram traduzidos pelas seguintes probabilidades (condicionadas):

Quase nunca	0.05
Por vezes	0.30
Pouco frequentemente	0.60
Frequentemente	0.70
Muito frequentemente	0.80
Quase sempre	0.95

A empresa possui o seguinte resumo extraído do histórico de falhas:

Causa	Nº de ocorrências
Unidade de controlo	300
Sensores	200
Motor	500

Construa uma Rede Bayesiana que considere adequada ao diagnóstico das falhas acima descritas. Teste-a, ativando evidências nos nós de observações (cheiro a queimado, paragem num piso errado, desnível à chegada) e observando as probabilidades resultantes, em cada caso, para cada possível avaria (motor, sensores ou controlo).

2.3 Inferência Causal

A figura seguinte representa uma rede Bayesiana destinada à avaliação do risco num processo de concessão de crédito.

Uma rede deste tipo destina-se à realização de inferências causais, isto é, dos nós sem pais (que funcionam como evidências) para o nó ou nós objectivo (neste caso, o nó Risco Justificado)

Implemente esta rede tendo em atenção as seguintes condições:

- 1. Atribua a cada nó valores de probabilidade razoáveis, adaptados à semântica da rede.
- 2. Aos nós sem pais (Fortuna Pessoal, Rendimento, etc) associe distribuições de probabilidade uniformes, ou seja, atribua a mesma probabilidade a cada um dos termos linguísticos ou intervalo de valores que considerar.
- 3. Marque o nó Risco Justificado (saída da rede) como único nó objectivo.

Realize testes com este modelo e verifique a razoabilidade dos resultados obtidos. Se necessário, altere as definições que realizou para cada nó.

2.4 Inferência Mista

A seguinteRede Bayesiana, cuja implementação é fornecida com o enunciado deste trabalho, foi implementada com base em dados reais respeitantes ao diagnóstico da gripe H1N1. Observe a implementação da rede, compreenda a sua implementação, identifique causas e efeitos. Realize alguns testes.

