13.12.017

ISSN 0021-3470

И З В Е С Т И Я ВЫСШИХУЧЕБНЫХ З А В Е Д Е Н И Й

РАДИОЭЛЕКТРОНИКА

том 44

11-12 ноябрь-декабрь

И З Д А Н И Е НАЦИОНАЛЬНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА У К Р А И Н Ы «КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ И Н С Т И Т У Т »

2001

415

ТРИФОНОВ А. П., ПАРФЕНОВ В. И.

ОЦЕНКА ДЛИТЕЛЬНОСТИ СЛУЧАЙНОГО РАДИОСИГНАЛА С НЕИЗВЕСТНОЙ ЦЕНТРАЛЬНОЙ ЧАСТОТОЙ ПРИ НАЛИЧИИ ПОМЕХИ С НЕИЗВЕСТНОЙ ИНТЕНСИВНОСТЬЮ*

Выполнен синтез и анализ алгоритма оценки длительности гауссовского радиосигнала, наблюдаемого на фоне внутренней и внешней помех. Приведены результаты статистического моделирования синтезированного алгоритма

В [1] рассмотрена оценка длительности случайного радиоимпульса с априори известной центральной частотой и неизвестной интенсивностью, наблюдаемого на фоне собственного шума приемного устройства и внешней широкополосной (по сравнению с сигналом) помехи с неизвестными интенсивностями. Однако при практической реализации алгоритмов обработки случайных радиосигналов в радиоэлектронных системах центральная частота спектра мощности сигнала часто бывает известна неточно. Поэтому рассмотрим возможность оценки длительности случайного радиосигнала с априори неизвестной центральной частотой.

Аналогично [1] полагаем, что на интервале времени [0, T] наблюдается реализация случайного процесса

$$x(t) = s(t, \tau_0) + n(t) + v(t), \tag{1}$$

где полезный сигнал $s(t, \tau_0) = \xi(t) I[(t - \tau_0/2)/\tau_0]$ — отрезок длительности τ_0 узкополосного центрированного гауссовского процесса $\xi(t)$ со спектром мощности [2]

$$G_{\xi}(\omega) = \gamma_0 \left\{ I \left[(\theta_{s0} - \omega) / \Omega_s \right] + I \left[(\theta_{s0} + \omega) / \Omega_s \right] \right\} / 2, \tag{2}$$

I(x)=1 при $|x|\le 1/2$ и I(x)=0 при |x|>1/2; θ_{s0} и Ω_s — центральная частота и ширина полосы частот процесса ξ (t). В (1) n(t) — гауссовский белый шум с односторонней спектральной плотностью N_0 , а v(t) — внешняя помеха, кото-

Приведенные результаты получены при частичной поддержке Российского фонда фундаментальных исследований.

рую аппроксимируем стационарным центрированным гауссовским случайным процессом со спектром мощности [2, 3]

$$G_N(\omega) = \Gamma_0 \left\{ I \left[(\theta_N - \omega) / \Omega_N \right] + I \left[(\theta_N + \omega) / \Omega_N \right] \right\} / 2. \tag{3}$$

Интенсивности сигнала γ_0 и помехи Γ_0 в общем случае неизвестны. Неизвестная центральная частота θ_s спектра мощности сигнала принимает значения из априорного интервала $[\Gamma_1, \Gamma_2]$, а неизвестная длительность τ — из априорного интервала $[T_1, T_2]$. При этом предполагается, что спектр мощности внешней помехи (3) полностью перекрывает спектр мощности сигнала (2), τ . е. выполняются условия $\Gamma_2 + \Omega_s/2 \le \theta_N + \Omega_N/2$, $\Gamma_1 - \Omega_s/2 \ge \theta_N - \Omega_N/2$. Кроме того, предполагается, что случайный импульс s (t, τ_0) всегда находится внутри интервала наблюдения, так что $0 < T_1 < T_2 \le T$. Случайные процессы s (t, τ_0), n (t) и v (t) статистически независимы. Также как в [1], полагаем, что наименьшее возможное значение длительности сигнала t1 существенно превосходит время корреляции процесса ξ (t), τ . е.

$$\mu_{\min} = \Omega_s T_1 / 2 \pi >> 1. \tag{4}$$

Рассмотрим, как влияет априорное незнание центральной частоты сигнала θ_{s0} на точность оценки длительности, синтезированной в [1]

$$\tau_q = \arg\sup_{\tau} M(\tau, \theta_s^*), \tau \in [T_1, T_2], \tag{5}$$

где

$$M(\tau, \theta_s^*) = \frac{\tau \Omega_s}{2 \pi} \ln \frac{A(\tau, \theta_s^*) - 1}{k T / \tau - 1} - \frac{T \Omega_N}{2 \pi} \ln \frac{1 - 1 / A(\tau, \theta_s^*)}{1 - \tau / k T}, \tag{6}$$

$$A(\tau, \theta_s^*) = Y_N / Y_s(\tau, \theta_s^*), k = \Omega_N / \Omega_s, Y_N = \int_0^T y_N^2(t) dt,$$
 (7)

 $Y_s(\tau, \theta_s^*) = \int_0^\tau y_s^2(t, \theta_s^*) dt; y_N(t)$ и $y_s(t, \theta_s^*)$ — отклики фильтров с передаточными

функциями $H_N(\omega)$ и $H_s(\omega, \theta_s^*)$ соответственно на реализацию наблюдаемых данных (1). При этом

$$|H_N(\omega)|^2 = I[(\theta_N - \omega)/\Omega_N] + I[(\theta_N + \omega)/\Omega_N],$$

$$|H_s\left(\omega,\theta_s^*\right)|^2 = I\left[\left(\theta_s^*-\omega\right)/\Omega_s\right] + I\left[\left(\theta_s^*+\omega\right)/\Omega_s\right].$$

В (5) θ_s^* — ожидаемое (прогнозируемое) значение центральной частоты случайного сигнала. Если центральная частота сигнала априори известна и $\theta_s^* = \widetilde{\theta}_{s0}$, то $\tau_q = \tau_m$, где τ_m — оценка максимального правдоподобия (ОМП) [1]. Поскольку в общем случае $\theta_s^* \neq \theta_{s0}$, выражение (5), в отличие от [1], определяет квазиправдоподобную оценку (КПО) длительности сигнала. Отметим, что структура алгоритма оценки (5) инвариантна к значениям интенсивностей сигнала γ_0 и помехи Γ_0 , а также к значению спектральной плотности белого шума N_0 .

Для определения характеристик КПО (5) исследуем поведение функционала $M(\tau, \theta_s^*)$ (6) при выполнении (4). С этой целью представим числитель и знаменатель функции $A(\tau, \theta_s^*)$ (7) в виде сумм сигнальных и шумовых функций [4]. Затем, аналогично [1], разложим (6) в ряд по малому параметру $1/\mu_{\min}$ и ограничимся первым ненулевым членом разложения, зависящим от реализации наблюдаемых данных (1). В результате функционал (6) может быть представлен в виде суммы $M(\tau, \theta_s^*) = S(\tau, \theta_s^*) + N(\tau, \theta_s^*)$ сигнальной $S(\tau, \theta_s^*) = \langle M(\tau, \theta_s^*) \rangle$ и шумовой $N(\tau, \theta_s^*) = M(\tau, \theta_s^*) - \langle M(\tau, \theta_s^*) \rangle$ функций. Угловые скобки означают усреднение по реализациям наблюдаемых данных [4] и

$$S(\tau, \theta_{s}^{*}) = \frac{\tau \Omega_{s}}{2 \pi} \ln \left(\frac{\tau \Omega_{s}}{T \Omega_{N} - \tau \Omega_{s}} \cdot \frac{\langle Y_{N} \rangle - \langle Y_{s}(\tau, \theta_{s}^{*}) \rangle}{\langle Y_{s}(\tau, \theta_{s}^{*}) \rangle} \right) - \frac{T \Omega_{N}}{2 \pi} \ln \left(\frac{T \Omega_{N}}{T \Omega_{N} - \tau \Omega_{s}} \cdot \frac{\langle Y_{N} \rangle - \langle Y_{s}(\tau, \theta_{s}^{*}) \rangle}{\langle Y_{N} \rangle} \right), \tag{8}$$

$$N(\tau, \theta_s^*) = \frac{1}{2\pi} \left\{ \frac{\tau \Omega_s}{\langle Y_s(\tau, \theta_s^*) \rangle} - \frac{T\Omega_n}{\langle Y_N \rangle} \right\} \frac{Y_N \langle Y_s(\tau, \theta_s^*) \rangle - \langle Y_N \rangle Y_s(\tau, \theta_s^*)}{\langle Y_N \rangle - \langle Y_s(\tau, \theta_s^*) \rangle}. (9)$$

Согласно (9) при $\mu_{min} \to \infty$ распределение функционала (6) сходится к гауссовскому [2].

В условиях высокой апостериорной точности характеристики оценки (5) определяются поведением функционала (6) в малой окрестности точки τ_0 . Соответственно при $|\tau - \tau_0|/\tau_0 \rightarrow 0$ для сигнальной функции (8) и корреля-

ционной функции шумовой функции (9) справедливы асимптотические представления

$$S(\tau, \theta_{s}^{*}) = S_{0}(\delta \theta^{*}) + [a_{1}(\delta \theta^{*}) + a_{2}(\delta \theta^{*})] \min(\tau, \tau_{0}) - a_{2}(\delta \theta^{*}) \tau, \quad (10)$$

$$K_{N}(\tau_{1}, \tau_{2}, \theta_{s}^{*}) = \langle N(\tau_{1}, \theta_{s}^{*}) N(\tau_{2}, \theta_{s}^{*}) \rangle = K_{0}(\delta \theta^{*}) + k_{1}(\delta \theta^{*}) \min(\tau_{1}, \tau_{2}, \tau_{0}) + K_{0}(\delta \theta^{*}) \max(\tau_{1}, \tau_{2}, \tau_{0}) + k_{2}(\delta \theta^{*}) \max(\tau_{1}, \tau_{2}, \tau_{0}) + k_{2}(\delta \theta^{*}) \max(\tau_{1}, \tau_{2}, \tau_{0})] + K_{0}(\delta \theta^{*}) [\min(\tau_{1}, \tau_{2}, \tau_{0})],$$

где

$$S_{0}(\delta \theta^{*}) = \mu_{0} \left\{ \frac{d - \varepsilon c}{d - c} - \varepsilon \ln \frac{\varepsilon (d - c)}{d (\varepsilon - 1)} \right\},$$

$$a_{1}(\delta \theta^{*}) = \frac{\Omega_{s}}{2\pi} \left\{ \ln \frac{d - c}{c (\varepsilon - 1)} - \frac{d - \varepsilon c}{d - c} \right\},$$

$$a_{2}(\delta \theta^{*}) = \frac{\Omega_{s}}{2\pi} \left\{ \frac{(1 + Q_{0}) (d + \varepsilon c)}{c (d - c)} - \ln \frac{d - c}{c (\varepsilon - 1)} \right\},$$

$$K_{0}(\delta \theta^{*}) = \mu_{0} \frac{(d - \varepsilon c)^{2} (a c^{2} - 2 b c d + b d^{2})}{c^{2} d^{2} (d - c)^{2}} - \tau_{0} \left[k_{1} (\delta \theta^{*}) + k_{3} (\delta \theta^{*}) \right],$$

$$k_{1}(\delta \theta^{*}) = \frac{\Omega_{s}}{2\pi} \frac{(d - \varepsilon c)^{2} (a | c^{2} - 2 b c d + b d^{2})}{d d^{2} (d - c)^{3}},$$

$$k_{2}(\delta \theta^{*}) = k_{1}(\delta \theta^{*}) - d_{1}(\delta \theta^{*}), d_{1}(\delta \theta^{*}) = \frac{\Omega_{s}}{2\pi} \cdot \frac{b (d - \varepsilon c)^{2}}{c^{2} (d - c)^{2}},$$

$$k_{4}(\delta \theta^{*}) = \frac{\Omega_{s}}{2\pi} \cdot \frac{d - \varepsilon c}{d^{2} c^{3} (d - c)^{3}} \left\{ (a c^{2} - 2 b c d + b d^{2}) \left[q_{0} c (d - c) - (1 + Q_{0}) (d - \varepsilon c) (d - 2 c) \right] + c (d - c) (d - \varepsilon c) (1 + Q_{0}) \times \left[a c - b d + d (d - c) (1 + Q_{0}) \right] \right\},$$

$$k_{3}(\delta \theta_{*}) = k_{4}(\delta \theta^{*}) - d_{2}(\delta \theta^{*}), d_{2}(\delta \theta^{*}) = \frac{\Omega_{s}}{2\pi} \cdot \frac{(1 + Q_{0})^{2} (d - \varepsilon c)^{2}}{c^{2} (d - c)^{2}},$$

$$(11)$$

 $a = (1 + q_0 + Q_0)^2 + (\varepsilon - 1)(1 + Q_0)^2$, $c = 1 + q_0 + Q_0 - q_0 | \delta \theta^* |$

$$b = (1 + q_0 + Q_0)^2 - |\delta\theta^*| [q_0^2 + 2 q_0 (1 + Q_0)], d = q_0 + \varepsilon (1 + Q_0),$$

$$\mu_0 = \Omega_s \tau_0 / 2 \pi, \varepsilon = T \Omega_N / \tau_0 \Omega_s, q_0 = \gamma_0 / N_0, Q_0 = \Gamma_0 / N_0, \delta\theta^* = (\theta_s^* - \theta_{s0}) / \Omega_s.$$

Из (10) следует, что сигнальная функция $S(\tau, \theta_s^*)$ достигает наибольшего максимума при $\tau = \tau_0$, если выполняется условие

$$a_2\left(\delta\,\theta^*\right) > 0. \tag{12}$$

В свою очередь, последнее условие выполняется, если $|\delta \theta^*| < 0.833$. Введем в рассмотрение выходное отношение сигнал/шум (ОСШ) [4]

$$z^{2} = \mu_{0} \left\{ \ln \frac{d-c}{c(\varepsilon-1)} - \frac{d-\varepsilon c}{d-c} \right\}^{2} \frac{c^{2} d^{2} (d-c)^{2}}{(d-\varepsilon c)^{2} (a c^{2} - 2 b c d + b d^{2})}.$$
 (13)

Если $z^2 >> 1$ и выполняются условия (4), (12), которые обеспечивают высокую апостериорную точность КПО (5), положение наибольшего максимума функционала $M(\tau, \theta_s^*)$ (6) лежит в малой окрестности точки τ_0 . При этом КПО τ_q еходится к τ_0 в среднеквадратическом, если $z \to \infty$. В соответствии с теоремой Дуба [5] случайный процесс $M(\tau, \theta_s^*)$ в малой окрестности точки τ_0 является гауссовским марковским процессом диффузионного типа с коэффициентами сноса K_1 и диффузии K_2

$$K_{1} = \begin{cases} a_{1} (\delta \theta^{*}), \tau < \tau_{0}, \\ -a_{2} (\delta \theta^{*}), \tau > \tau_{0}, \end{cases} \quad K_{2} = \begin{cases} d_{1} (\delta \theta^{*}), \tau < \tau_{0}, \\ d_{2} (\delta \theta^{*}), \tau > \tau_{0}. \end{cases}$$
(14)

Характеристики оценки длительности можно найти, используя метод локально-марковской аппроксимации [6]. Решая уравнение Фоккера-ПланкаКолмогорова [2] с коэффициентами (14) и соответствующими начальными и граничными условиями, аналогично [6], находим выражения для смещения (систематической ошибки) и рассеяния (среднего квадрата ошибки) оценки т_q:

$$\widetilde{d}(\tau_q) = \langle \tau_q - \tau_0 \rangle \approx \frac{z_1^2 (1 + 2R) - z_2^2 R (2 + R)}{2 z_1^2 z_2^2 (1 + R)^2},$$

$$\widetilde{V}(\tau_q) = \langle (\tau_q - \tau_0)^2 \rangle \approx \frac{z_1^4 (2 + 6R + 5R^2) + z_2^4 R (5 + 6R + 2R^2)}{2 z_1^4 z_2^4 (1 + R)^3},$$
(15)

$$z_1^2 = a_1^2 (\delta \theta^*) / d_1 (\delta \theta_*), z_2^2 = a_2^2 (\delta \theta^*) / d_2 (\delta \theta^*),$$

$$R = a_2 (\delta \theta^*) d_1 (\delta \theta^*) [a_1 (\delta \theta^*) d^2 (\delta \theta^*)]^{-1}.$$

Полагая в (15) $\theta_s^* = \theta_{s0}$ ($\delta \theta^* = 0$), получаем, как частный случай, выражения для смещения и рассеяния ОМП длительности случайного радиосигнала при априори известной центральной частоте спектра мощности θ_{s0} [1].

При конечном интервале возможных значений параметра $\tau \in [T_1, T_2]$ рассеяние оценки длительности должно быть ограничено сверху. В то же время асимптотическое значение рассеяния (15) с уменьшением q_0 неограниченно возрастает. Уточним поведение $V(\tau_q)$ в области малых q_0 . С этой целью разложим функционал $M(\tau, \theta_s^*)$ (6) в двумерный ряд Маклорена по малым параметрам $1/\mu_0$ и q_0 . Удерживая члены второго порядка малости и затем устремляя $q_0 \to 0$, получаем $M(\tau, \theta_s^*) \simeq v^2(\tau)/2$, где $v(\tau)$ — асимптотически гауссовский случайный процесс с математическим ожиданием $< v(\tau) > = 1/2$ и корреляционной функцией

 $<[\nu(\tau_{1}) - <\nu(\tau_{1})>][\nu(\tau_{2}) - <\nu(\tau_{2})>]> = \min(\tau_{1}, \tau_{2})[k T - \max(\tau_{1}, \tau_{2})] \times \\ \times \{2 \max(\tau_{1}, \tau_{2})[k T - \min(\tau_{1}, \tau_{2})]\}^{-1}.$

Сделаем замену переменной $\widetilde{t}=\ln\left[\tau/(kT+\tau)\right]$. Тогда процесс $M(\widetilde{t})$ при $\widetilde{t}\in [\xi_1,\xi_2], \xi_i=\ln\left[T_i/(kT-T_i)\right],\ i=1,2,$ является стационарным процессом с корреляционной функцией $K_M(\widetilde{t_1},\widetilde{t_2})=\exp\left(-\left|\widetilde{t_1}-\widetilde{t_2}\right|\right)/2$ и плотностью вероятности $W(M)=\exp\left(-M\right)/\sqrt{\pi}M, M>0$. Из стационарности процесса $M(\widetilde{t})$ следует, что плотность распределения вероятности положения его наибольшего максимума $\widetilde{\tau}_q=\arg\sup_t M(\widetilde{t}),\ \widetilde{t}\in [\xi_1,\xi_2]$ постоянна в интервале $[\xi_1,\xi_2]$ [2].

 $W(\widetilde{\tau}_q) = \begin{cases} (\xi_2 - \xi_1)^{-1}, & \xi_1 \le \widetilde{\tau}_q \le \xi_2, \\ 0, & \widetilde{\tau}_a < \xi_1, & \widetilde{\tau}_a > \xi_2, \end{cases}$ (16)

Возвращаясь в (16) от $\widetilde{\tau}_q$ к переменной τ_q , находим плотность вероятности положения наибольшего максимума функционала $M(\tau, \theta_s^*)$:

Следовательно,

$$W(\tau_q) = k T \left| \tau_q (k T - \tau_q) \ln \frac{T_2 (k T - T_1)}{T_1 (k T - T_2)} \right|^{-1}, T_1 \le \tau_q \le T_2.$$

Следовательно, рассеяние оценки длительности (5) с учетом априорных ограничений можно записать как

$$V(\tau_q) = \min \left\{ \widetilde{V}(\tau_q), V_0 \right\}, \tag{17}$$

где

$$V_{0} = \int_{T_{1}}^{T_{2}} (\tau - \tau_{0})^{2} W(\tau) d\tau = k T \left\{ T_{1} - T_{2} + \tau_{0}^{2} \ln \left(T_{2} / T_{1} \right) / k T + \frac{(k T - \tau_{0})^{2}}{k T} \ln \frac{k T - T_{1}}{k T - T_{2}} \right\} \ln^{-1} \frac{T_{2} (k T - T_{1})}{T_{1} (k T - T_{2})}.$$
(18)

Рассмотрим влияние отклонения величины θ_s^* от θ_{s0} на точность КПО (5). На рис.1 нанесены зависимости отношения $\chi = V(\tau_q) / V(\tau_m)$ от величины $\delta \theta^*$, построенные по формулам (15), (17), (18) при

$$k = 3$$
, $T_1 / T_2 = 0.25$, $T / T_2 = 1$, $\tau_0 / T_2 = 1 / 2$.

Здесь $V(\tau_m) = V(\tau_q)|_{\delta \, \theta^* = 0}$ — рассеяние ОМП длительности радиосигнала с априори точно известной центральной частотой [1]. Кривая I рассчитана для $q_0 = 1, \, Q_0 = 0, 5, \, 2 - q_0 = 1, \, Q_0 = 0, \, 3 - q_0 = 3, \, Q_0 = 0, \, 5$. Из рис.1 следует, что с ростом величины $|\delta \, \theta^*|$ точность КПО τ_q может существенно ухудшаться, причем с увеличением q_0 и уменьшением Q_0 точность КПО оказывается более критичной к выбору значений θ_s^* .

Повысить точность оценки длительности случайного импульса с неизвестной центральной частотой спектра мощности можно, используя устройство, реализующее адаптацию по неизвестной частоте сигнала. Для этого надо в (5) заменить ожидаемое значение частоты θ_s^* на ОМП неизвестной частоты, что равносильно максимизации функционала (6) по значениям неизвестной частоты радиосигнала θ_s [4]. Тогда совместная ОМП длительности запишется как

$$\hat{\tau} = \arg \sup_{\tau} \left[\sup_{\theta_s} M(\tau, \theta_s) \right], \tau \in [T_1, T_2], \theta_s \in [\Gamma_1, \Gamma_2].$$
 (19)

Отметим, что для аппаратурной реализации этого алгоритма требуется приемник, многоканальный по неизвестному параметру θ_s . В каждом из каналов этого приемника, аналогично [1], формируется функционал (6) для соответствующего значения параметра $\theta_s \in [\Gamma_1, \Gamma_2]$.

Определим характеристики совместной ОМП длительности (19). Представим функционал $M(\tau, \theta_s)$ в виде суммы

$$M(\tau, \theta_s) = S(\tau, \theta_s) + N(\tau, \theta_s)$$
 (20)

сигнальной

$$S(\tau, \theta_s) = \langle M(\tau, \theta_s) \rangle$$

и шумовой

$$N(\tau, \theta_s) = M(\tau, \theta_s) - \langle M(\tau, \theta_d) \rangle$$

функций. Обозначим $\delta = \max\left\{\mid \tau - \tau_0\mid / \tau_{0^{\rm h}}\mid \theta_s - \theta_{s0}\mid / \Omega_s\right\}$. Как и ранее, учтем, что в условиях высокой апостериорной точности характеристики оценки (19) определяются поведением функционала $M\left(\tau,\theta_s\right)$ в малой окрестности точки (τ_0,θ_{s0}) . Полагая $\delta \to 0$, для сигнальной и корреляционной функций шумовой функции в (20) находим асимптотические выражения

$$S(\tau, \theta_s) \approx S_t(\tau) + S_f(\theta_s),$$
 (21)

$$K_{N}(\tau_{1},\tau_{2},\theta_{s1},\theta_{s2}) = \langle N(\tau_{1},\theta_{s1}) N(\tau_{2},^{l}\theta_{s2}) \rangle \simeq K_{t}(\tau_{1},\tau_{2}) + K_{f}(\theta_{s1},\theta_{s2}), \ (22)$$

где обозначено

$$S_t(\tau) = S(\tau, \theta_s^* = \theta_{s0}), \tag{23}$$

$$K_{t}(\tau_{1}, \tau_{2}) = K_{N}(\tau_{1}, \tau_{2}, \theta_{s}^{*} = \theta_{s0}).$$

Здесь функции $S(\tau, \theta_s^*)$ и $K_N(\tau_1, \tau_2, \theta_s^*)$ определяются из (10), (11), а

$$S_{f}(\theta_{s}) = -\mu_{0} b_{1} | \theta_{s} - \theta_{s0} | / \Omega_{s},$$

$$K_{f}(\theta_{s1}, \theta_{s2}) = \mu_{0} \frac{q_{0}^{2} \varepsilon (\varepsilon - 1)}{[q_{0} + \varepsilon (1 + Q_{0})]^{2}} +$$

$$+ b_{2} \{ | \theta_{s1} - \theta_{s2} | + 2 [\min (\theta_{s1}, \theta_{s2}, \theta_{s0}) - \max (\theta_{s1}, \theta_{s2}, \theta_{s0})] \},$$

$$b_{1} = \frac{q_{0}^{2}}{(1 + Q_{0}) (1 + q_{0} + Q_{0})},$$

$$b_{2} = \frac{\tau_{0} \varepsilon q_{0}^{2}}{2 \pi [q_{0} + \varepsilon (1 + Q_{0})]^{2}} \left\{ \varepsilon + \frac{(1 + q_{0} + Q_{0})^{2} + (\varepsilon - 1) (1 + Q_{0})^{2}}{(1 + Q_{0}) (1 + q_{0} + Q_{0})} \right\}.$$

$$(24)$$

Согласно (9) при $\mu_{min} \to \infty$ распределение функционала (20) сходится к гауссовскому [2]. Учитывая (21), (22), представим этот функционал в виде

$$M(\tau, \theta_s) = M_t(\tau) + M_f(\theta_s). \tag{25}$$

Здесь $M_f(\tau)$ и $M_f(\theta_s)$ — статистически независимые гауссовские процессы с математическими ожиданиями $S_f(\tau)$ (23) и $S_f(\theta_s)$ (24) и корреляционными функциями $K_f(\tau_1, \tau_2)$ и $K_f(\theta_{s1}, \theta_{s2})$ соответственно. Подставляя (25) в (19), для совместной ОМП длительности находим

$$\hat{\tau} = \arg \sup \left\{ \sup_{\theta_s} \left[M_t(\tau) + M_f(\theta_s) \right] \right\} =$$

$$= \arg \sup_{\tau} \left[M_t(\tau) + \sup_{\theta_s} M_f(\theta_s) \right] = \arg \sup_{\tau} M_t(\tau)$$

Сопоставляя (23) и (10), нетрудно заметить, что статистические характеристики процессов M_t (τ) и $M(\tau, \theta_s^* = \theta_{s0})$ совпадают. Следовательно, характеристики совместной ОМП $\hat{\tau}$ в условиях высокой апостериорной точности оценки асимптотически совпадают с характеристиками ОМП, найденными в [1]. С учетом этого, выражения для смещения и рассеяния совместной ОМП длительности случайного радиосигнала можно получить из соответствующих выражений (15) для характеристик КПО длительности, положив в них

 $\delta \theta^* = 0$. Таким образом, $\widetilde{d}(\widehat{\tau}) = \widetilde{d}(\tau_q)|_{\delta \theta^* = 0}$, $\widetilde{V}(\widehat{\tau}) = \widetilde{V}(\tau_q)|_{\delta \theta^* = 0}$, где $\widetilde{d}(\tau_q)$ и $\widetilde{V}(\tau_q)$ определены в (15). Учитывая, как и ранее, ограниченность интервала изменения неизвестной длительности, получаем окончательное выражение для рассеяния ОМП $\widehat{\tau}(19)$ в виде

$$V(\hat{\tau}) = \min \{ \widetilde{V}(\hat{\tau}), V_0 \},$$
 (26)

где V_0 определено в (18).

Таким образом, величина χ , зависимость которой от δ θ^* показана на рис. 1, является также отношением рассеяния КПО (5) к рассеянию совместной ОМП (19). Следовательно, зависимость χ (δ θ^*) характеризует также выигрыш в точности совместной ОМП (19) по сравнению с КПО (5) при неизвестной центральной частоте спектра мощности. Как следует из рис. 1, этот выигрыш возрастает с увеличением $|\delta$ θ^* , $|q_0$ и уменьшением Q_0 .

Формулы (15), (18), (26) для рассеяния совместной ОМП (19) являются лишь асимптотически точными с ростом μ_0 и z. С целью определения границ применимости найденных формул для характеристик оценки и с целью проверки работоспособности алгоритма оценки (19) было выполнено статистическое моделирование алгоритма (19) на ЭВМ. В процессе моделирования формировались отсчеты случайного поля $\widetilde{M}(\widetilde{\tau},\widetilde{\theta}_s)=M(\widetilde{\tau}\,T_2,\widetilde{\theta}_s\,\Omega_s)$, где $\widehat{\tau}=\tau/T_2$ и $\widetilde{\theta}_s=\theta_s/\Omega_s$. Априорные интервалы возможных значений параметров $\widetilde{\tau}$ и $\widetilde{\theta}_s$ при моделировании определялись условиями

$$\widetilde{\tau} \in [0,25;1], \widetilde{\theta}_s \in [k_s - 1; k_s + 1], k_s = \theta_{s0} / \Omega_s = 50,$$

что соответствует значениям $T_1/T_2=0.25$, $T/T_2=1$, $\mu_{\min}=25$. Кроме того, полагалось $\tilde{\tau}_0=\tau_0/T_2=1/2$, $k=\Omega_N/\Omega_s=3$, $\mu_0=50$. В процессе моделирования при формировании отсчетов процессов $\tilde{y}_N(\tilde{t})=y_N(\tilde{t}\,T_2)$ и $\tilde{y}_s(\tilde{t},\tilde{\theta}_s)=y_s(\tilde{t}\,T_2,\tilde{\theta}_s\,\Omega_s)$, где $\tilde{t}=t/T_2$, соответствующие интегралы представлялись в дискретной форме через отсчеты входного процесса (1). При этом отсчеты процессов $\tilde{y}_N(\tilde{t})$ и $\tilde{y}_s(\tilde{t},\tilde{\theta}_s)$ формировались с шагом $\Delta \tilde{t}=5\cdot 10^{-4}$, что обеспечивало относительную среднеквадратическую ошибку аппроксимации этих процессов ступенчатыми функциями не более 15%. Шаг дискретизации по нормированной центральной частоте $\tilde{\theta}_s$ и шаг по нормированной длительности $\tilde{\tau}$ выбирались равными $\Delta \tilde{\theta}_s=0.04$ и $\Delta \tilde{\tau}=0.01$ соответственно, что обеспечивало относительную среднеквадратическую ошибку аппроксимации

функционала $\widetilde{M}(\widetilde{\tau},\widetilde{\theta}_s)$ ступенчатыми функциями не более 20%. Выбор шага дискретизации по частоте $\widetilde{\Delta}\widetilde{\theta}_s=0.04$ приводит к использованию 50 параллельных каналов по частоте при многоканальной реализации алгоритма совместной оценки (19). Оценка $\widetilde{\tau}_i$ нормированной длительности $\widetilde{\tau}$ находилась как положение наибольшего максимума i-й реализации статистики $\widetilde{M}(\widetilde{\tau},\widetilde{\theta}_s)$. Далее по N=500 реализациям статистики $\widetilde{M}(\widetilde{\tau},\widetilde{\theta}_s)$ определялось выборочное нормиро-

ванное рассеяние оценки
$$\sum_{i=1}^N (\hat{\tau}_i - \widetilde{\tau}_0)^2 / N$$
 для каждого значения q_0 и Q_0 .

Вместе с алгоритмом совместной оценки длительности (19) моделировалься также алгоритм оценки длительности при априори известной центральной частоте $\tau_m = \arg\sup_{\tau} M(\tau, \theta_s^* = \theta_{s0}), \tau \in [T_1, T_2]$, синтезированный в [1]. На рис.2 представлены некоторые результаты моделирования этого алгоритма. Сплошными линиями на этом рисунке изображены зависимости нормированного рассеяния оценки длительности $V(\tau_m)/T_2^2$ от параметра q_0 , найденные в [1]. Кривая I построена для $Q_0 = 0, 2 - Q_0 = 0,5, 3 - Q_0 = 1, 4 - Q_0 = 5$. Экспериментальные значения рассеяния оценки длительности изображены на этом рисунке «треугольниками» для $Q_0 = 0$, «кружками» — для $Q_0 = 0,5$, «плюсами» — для $Q_0 = 1$ и «квадратами» — для $Q_0 = 5$. Как следует из рис.2, найденные в [1] выражения для рассеяния ОМП длительности удовлетворительно аппроксимируют экспериментальные зависимости при $\mu_0 \ge 50$.

Результаты моделирования алгоритма совместной оценки длительности (19) приведены на рис.3. Здесь сплошными линиями нанесены зависимости нормированного рассеяния совместной оценки длительности $V(\hat{\tau})/T_2^2$ от q_0 , рассчитанные по формулам (15), (18), (26). Обозначения рис. 3 совпадают с обозначениями рис. 2. Сопоставление рис. 2 и рис. 3 подтверждает сделанный ранее вывод об асимптотическом равенстве рассеяний совместной ОМП $\hat{\tau}$ (19) сигнала с неизвестной центральной частотой и ОМП τ_m [1] сигнала с априори известной центральной частотой в условиях высокой апостериорной точности, т. е., когда $V(\hat{\tau})/T_2^2 << 1$ и $V(\tau_m)/T_2^2 << 1$. Однако, если оценки длительности не обладают высокой апостериорной точностью, что имеет место при $q_0 \to 0$, то экспериментальные значения рассеяния совместной ОМП (19) могут быть в 1,1...2 раза больше,чем рассеяние ОМП длительности при априори известной центральной частоте.

Таким образом, определены асимптотически точные характеристики квазиправдоподобной и совместной оценок длительности случайного радиосигнала. Показано, что, по крайней мере, для $\mu_0 \ge 50$ найденные теоретические зависимости удовлетворительно аппроксимируют кспериментальные. В результате полученные выражения позволяют сделать обоснованный выбор между оценками (5) и (19) в зависимости от имеющейся априорной информации о центральной частоте случайного радиосигнала, а также в зависимости от требований, предъявляемых к точности оценок и степени простоты их аппаратурной реализации.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Трифонов А. П., Парфенов В. И. Оценка длительности случайного радиосигнала при наличии помехи с неизвестной интенсивностью // Радиоэлектроника. — 1999. — Т. 42. — № 6. — С. 28—38. (Изв. высш. учеб. заведений).

2. Тихонов В. И. Статистическая радиотехника. — М.: Радио и связь, 1982. — 624 с.

3. Палий А. И. Радиоэлектронная борьба. — М.: Воениздат, 1981. — 320 с.

4. *Куликов Е. И., Трифонов А. П.* Оценка параметров сигналов на фоне помех. — М.: Сов. радио, 1978. — 296 с.

5. Kailath T. Some Integral Equations with Nonrational Kernels // IEEE Trans. on Inf.The-

ory. -- 1966. -- Vol. IT-12. -- No. 4. -- P. 442-447.

6. Трифонов А. П., Шинаков Ю. С. Совместное различение сигналов и оценка их параметров на фоне помех.— М.: Радио и связь, 1986.— 264 с.

Воронежский госуниверситет.

Поступила в редакцию 20.07.2000.