# Provably Powerful Graph Networks

Authors: Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman

Presenters: Lucas Tecot, Difan Zou, Weitong Zhang

### Main Idea

We want to create networks that are as expressive as k-WL tests.

$$F=h\circ m\circ L_d\circ\sigma\circ\cdots\circ\sigma\circ L_1$$
 Permutation Group Equivariance  $\longrightarrow L_i(g\cdot \mathbf{X})=g\cdot L_i(\mathbf{X}), \quad orall g\in S_n$  Invariance  $h(g\cdot \mathbf{X})=h(\mathbf{X}), \quad orall g\in S_n$   $F(g\cdot \mathbf{X})=m(\cdots(L_1(g\cdot \mathbf{X}))\cdots)=m(\cdots(g\cdot L_1(\mathbf{X}))\cdots)=\cdots=m(h(g\cdot L_d(\cdots)))=F(\mathbf{X}).$ 

If we construct our network with equivariant / invariant layers that follow the k-WL test, then we can distinguish graphs that are different according to k-WL while producing the same output for all isomorphic graphs.

## The Weisfeiler-Lehman Graph Isomorphism Test



### k-WL and k-FWL

Instead of looking at individual vertices, let's look at **k-tuples of vertices.** 

$$N_j(i) = \left\{ (i_1, \dots, i_{j-1}, i', i_{j+1}, \dots, i_k) \mid i' \in [n] \right\}$$
 $N_j^F(i) = \left( (j, i_2, \dots, i_k), (i_1, j, \dots, i_k), \dots, (i_1, \dots, i_{k-1}, j) \right)$ 

WL: 
$$\mathbf{C}_{\boldsymbol{i}}^{l} = \operatorname{enc}\left(\mathbf{C}_{\boldsymbol{i}}^{l-1}, \left(\left.\left\{\mathbf{C}_{\boldsymbol{j}}^{l-1} \mid \boldsymbol{j} \in N_{j}(\boldsymbol{i})\right\}\right| j \in [k]\right)\right)$$
  
FWL:  $\mathbf{C}_{\boldsymbol{i}}^{l} = \operatorname{enc}\left(\mathbf{C}_{\boldsymbol{i}}^{l-1}, \left\{\left.\left(\mathbf{C}_{\boldsymbol{j}}^{l-1} \mid \boldsymbol{j} \in N_{j}^{F}(\boldsymbol{i})\right)\right| j \in [n]\right\}\right)$ 

## k-WL Example for **k=2**

$$N_j(oldsymbol{i}) = \left\{ (i_1, \dots, i_{j-1}, i', i_{j+1}, \dots, i_k) \ \middle| \ oldsymbol{i}' \in [n] 
ight\}$$
  $oldsymbol{\mathsf{C}}_{oldsymbol{i}}^l = \mathrm{enc} \Big( oldsymbol{\mathsf{C}}_{oldsymbol{i}}^{l-1}, \Big( \left\{ oldsymbol{\mathsf{C}}_{oldsymbol{j}}^{l-1} \ \middle| \ oldsymbol{j} \in N_j(oldsymbol{i}) 
ight\} \ \middle| \ j \in [k] \ \Big)$ 



## k-FWL Example for **k=2**

$$N_j^F(oldsymbol{i}) = \left((j,i_2,\ldots,i_k),(i_1,j,\ldots,i_k),\ldots,(i_1,\ldots,i_{k-1},j)
ight)$$
  $egin{aligned} \mathbf{C}_{oldsymbol{i}}^l = \mathrm{enc}\Big(\mathbf{C}_{oldsymbol{i}}^{l-1},\Big\{\!\!\left\{\left(\mathbf{C}_{oldsymbol{j}}^{l-1}\mid oldsymbol{j}\in N_j^F(oldsymbol{i})
ight)\mid j\in[n]\Big\}\!\!
ight\} \Big)$ 



## Initialization

Based on the isomorphism type of the k-tuple.

## $\mathbf{C}_{i} = \mathbf{C}_{i'}$ if for all $q, r \in [k]$ :

- 1.  $v_{i_q} = v_{i_r} \iff v_{i'_q} = v_{i'_r}$ 2.  $d(v_{i_q}) = d(v_{i'_q}) \qquad \text{Input vertex color-assigning function}$ 3.  $(v_{i_r}, v_{i_q}) \in E \iff (v_{i'_r}, v_{i'_q}) \in E$

### The K-Ladder

- 1. 1-WL and 2-WL have equivalent discrimination power.
- 2. k-FWL is equivalent to (k+1)-WL for  $k \geq 2$ .
- 3. For each  $k \geq 2$  there is a pair of non-isomorphic graphs distinguishable by (k+1)-WL but not by k-WL.

## Power-sum Multi-symmetric Polynomials

Colors are represented as vectors of length "a", and encoding can be done by concatenation. We need to find a way to represent multisets of these colors. (While staying equivariant.)

$$oldsymbol{lpha} = (\alpha_1, \dots, \alpha_a) \in [n]^a$$
 $y^{oldsymbol{lpha}} = y_1^{lpha_1} \cdot y_2^{lpha_2} \cdots y_a^{lpha_a}$ 
 $p_{oldsymbol{lpha}}(oldsymbol{X}) = \sum_{i=1}^n x_i^{oldsymbol{lpha}}, \quad oldsymbol{X} \in \mathbb{R}^{n \times a}$ 

## **Proposition 1**

**Proposition 1.** For arbitrary  $X, X' \in \mathbb{R}^{n \times a}$ :  $\exists g \in S_n \text{ so that } X' = g \cdot X \text{ if and only if } u(X) = u(X')$ .

$$u(X) := (p_{\alpha}(X) \mid |\alpha| \le n)$$

$$|\alpha| = \sum_{j=1}^{a} \alpha_{j}$$

PMP generates the "ring" of MP. For an arbitrary Multi-symmetric Polynomial **q**, there exists a polynomial **r** such that:

$$q(\boldsymbol{X}) = r\left(u(\boldsymbol{X})\right)$$

## Prop 1 Proof

$$X' = g \cdot X \longrightarrow u(X) = u(X')$$

True by inspection. (Changing order of summation does nothing)

$$u(oldsymbol{X}')$$
  $oldsymbol{\longrightarrow} oldsymbol{X}' = g \cdot oldsymbol{X}$  Proof by contradiction

 $u(\mathbf{X}) = u(\mathbf{X}')$   $g \cdot \mathbf{X} \neq \mathbf{X}'$ 

Let 
$$K \subset \mathbb{R}^{n \times a}$$
 be a compact set containing  $[X], [X']$ 

$$g \cdot X \neq X'$$
 $\downarrow$ 
 $[\mathbf{Y}] \cap [\mathbf{Y}'] = \emptyset$ 

 $[\boldsymbol{X}] = \{g \cdot \boldsymbol{X} \mid g \in S_n\}$ 

 $p_{\alpha}(\boldsymbol{X}) = \sum x_i^{\alpha}$  $u(\boldsymbol{X}) := (p_{\boldsymbol{\alpha}}(\boldsymbol{X}) \mid |\boldsymbol{\alpha}| \le n)$ 

"Orbit" of X under permutation group

We can construct a continuous function that separates inputs from X and X'. Via the Stone–Weierstrass Theorem applied to real continuous functions on K, we can approximate this function with a polynomial **f**.

## Prop 1 Proof Cont.

$$q(\boldsymbol{X}) = \frac{1}{n!} \sum_{g \in S_n} f(g \cdot \boldsymbol{X}) - f|_{[\boldsymbol{X}]} \geq 1 \text{ and } f|_{[\boldsymbol{X}']} \leq 0$$
 
$$q(g \cdot \boldsymbol{X}) = q(\boldsymbol{X}), \text{ for all } g \in S_n - \text{multi-symmetric polynomial}$$
 
$$q(\boldsymbol{X}) = r(u(\boldsymbol{X})) - \text{Assumption from beginning of proof by contradiction}$$
 
$$1 \leq q(\boldsymbol{X}) = r(u(\boldsymbol{X})) = r(u(\boldsymbol{X}')) = q(\boldsymbol{X}') \leq 0$$

**Theorem 1.** Given two graphs G = (V, E, d), G' = (V', E', d') that can be distinguished by the k-WL graph isomorphism test, there exists a k-order network F so that  $F(G) \neq F(G')$ . On the other direction for every two isomorphic graphs  $G \cong G'$  and k-order network F, F(G) = F(G').

Showing that K-order Graph Networks are as powerful as k-WL

Construction of the input tensor X (for consistency we will use the notation B).

First, an input graph G = (V, E, d) is represented using a tensor of the form  $\mathbf{B} \in \mathbb{R}^{n^2 \times (e+1)}$ , as follows. The last channel of  $\mathbf{B}$ , namely  $\mathbf{B}_{:,:,e+1}$  (':' stands for all possible values [n]) encodes the adjacency matrix of G according to E. The first e channels  $\mathbf{B}_{:,:,1:e}$  are zero outside the diagonal, and  $\mathbf{B}_{i,i,1:e} = d(v_i) \in \mathbb{R}^e$  is the color of vertex  $v_i \in V$ .

First e channels: representing the initial color of all vertex Last channel: representing the adjacency matrix of the graph

Properties of the input tensor X (i.e., Tensor B constructed above)

For any two isomorphic graphs G and G', we have X = g(X') for some permutation function g

Proof of the argument: if G = G', then F(G)=F(G')

Recall the property of k-order graph networks

$$F(g \cdot \mathbf{X}) = m(\cdots (L_1(g \cdot \mathbf{X})) \cdots) = m(\cdots (g \cdot L_1(\mathbf{X})) \cdots) = \cdots = m(h(g \cdot L_d(\cdots))) = F(\mathbf{X})$$

Note that G=G' implies X=g(X'), then F(G)=F(X)=F(g(X'))=F(X')=F(G')

Proof of the argument: if G and G' can be distinguished by the k-WL test, there exists a k-order network F so that F(G) = F(G')

#### Initialization/First layer

Recall the input tensor X has dimension  $n^2 * (e+1)$ , then the **linear equivariant** operator in the first layer is defined by

$$L(\mathbf{X})_{i,r,s,w} = \mathbf{X}_{i_r,i_s,w}, \quad w \in [e+1]$$

$$L(\mathbf{X})_{i,r,s,e+2} = \begin{cases} 1 & i_r = i_s \\ 0 & \text{otherwise} \end{cases}$$

subtensors of X defined by the k-tuple of vertices equality pattern of the k-tuple i

$$L: \mathbb{R}^{n^2 \times (e+1)} \to \mathbb{R}^{n^k \times k^2 \times (e+2)}$$

#### Initialization/First layer

$$\begin{split} L(\mathbf{X})_{i,r,s,w} &= \mathbf{X}_{i_r,i_s,w}, \quad w \in [e+1] \\ L(\mathbf{X})_{i,r,s,e+2} &= \begin{cases} 1 & i_r = i_s \\ 0 & \text{otherwise} \end{cases} \qquad L: \mathbb{R}^{n^2 \times (e+1)} \rightarrow \mathbb{R}^{n^k \times k^2 \times (e+2)} \end{split}$$

#### Verifying its equivariant property

L is equivariant with respect to the permutation action. Indeed, for  $w \in [e+1]$ ,

$$(g \cdot L(\mathbf{X}))_{i,r,s,w} = L(\mathbf{X})_{g^{-1}(i),r,s,w} = \mathbf{X}_{g^{-1}(i_r),g^{-1}(i_s),w} = (g \cdot \mathbf{X})_{i_r,i_s,w} = L(g \cdot \mathbf{X})_{i,r,s,w}.$$

For w = e + 2 we have

$$(g \cdot L(\mathbf{X}))_{\boldsymbol{i},r,s,w} = L(\mathbf{X})_{g^{-1}(\boldsymbol{i}),r,s,w} = \begin{cases} 1 & g^{-1}(i_r) = g^{-1}(i_s) \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & i_r = i_s \\ 0 & \text{otherwise} \end{cases} = L(g \cdot \mathbf{X})_{\boldsymbol{i},r,s,w}.$$

#### k-WL update step

Recall the definitions of neighborhoods and coloring representation update rules of k-WL

$$N_j(i) = \{(i_1, \dots, i_{j-1}, i', i_{j+1}, \dots, i_k) \mid i' \in [n]\}$$

For any j we have n neighborhood tuples

WL: 
$$\mathbf{C}_{i}^{l} = \operatorname{enc}\left(\mathbf{C}_{i}^{l-1}, \left( \left\{ \mathbf{C}_{j}^{l-1} \mid j \in N_{j}(i) \right\} \mid j \in [k] \right) \right)$$

Neighborhood aggregation

#### k-WL update step

Let B be the input tensor with dimension n^k \* a

The dimension of color representations increases hugely ( $b > n^a$ ) (although in practice one can set b=a).

First, apply the polynomial function  $\tau: \mathbb{R}^a \to \mathbb{R}^b$ ,  $b = \binom{n+a}{a}$  entrywise to  $\mathbf{B}$ , where  $\tau$  is defined by  $\tau(x) = (x^{\alpha})_{|\alpha| \le n}$  (note that b is the number of multi-indices  $\alpha$  such that  $|\alpha| \le n$ ). This gives  $\mathbf{Y} \in \mathbb{R}^{n^k \times b}$  where  $\mathbf{Y}_{i,:} = \tau(\mathbf{B}_{i,:}) \in \mathbb{R}^b$ .

Second, apply the linear operator

$$\mathbf{C}_{i,r}^{j} := L_{j}(\mathbf{Y})_{i,r} = \sum_{i'=1}^{n} \mathbf{Y}_{i_{1},\dots,i_{j-1},i',i_{j+1},\dots,i_{k},r}, \quad i \in [n]^{k}, r \in [b].$$

Calculate the power-sum symmetric polynomials for the neighborhood set  $N_j(i)$ 

#### Verifying the equivariant property

 $L_j$  is equivariant with respect to the permutation action. Indeed,  $L_j(g \cdot \mathbf{Y})_{i,r} =$ 

$$\sum_{i'=1}^{n} (g \cdot \mathbf{Y})_{i_1, \dots, i_{j-1}, i', i_{j+1}, \dots, r} = \sum_{i'=1}^{n} \mathbf{Y}_{g^{-1}(i_1) \dots, g^{-1}(i_{j-1}), i', g^{-1}(i_{j+1}), \dots, r} = L_j(\mathbf{Y})_{g^{-1}(\mathbf{i}), r} = (g \cdot L_j(\mathbf{Y}))_{\mathbf{i}, r}.$$

#### Verifying the bijective property

Now, note that

$$\mathbf{C}_{i,:}^{j} = L_{j}(\mathbf{Y})_{i,:} = \sum_{i'=1}^{n} \tau(\mathbf{B}_{i_{1},\dots,i_{j-1},i',i_{j+1},\dots,i_{k},:}) = \sum_{j \in N_{j}(i)} \tau(\mathbf{B}_{j,:}) = u(X),$$

where  $X = \mathbf{B}_{i_1,...,i_{j-1},:,i_{j+1},...,i_k,:}$  as desired.

#### Concatenation

Third, the k-WL update step is the concatenation:  $(\mathbf{B}, \mathbf{C}^1, \dots, \mathbf{C}^k)$  Dimension: kb+a

#### **Histogram Computation**

- The output coloring tensor  $H(\mathbf{B}) \in \mathbb{R}^{n^k \times a}$  Here **a** denotes the dimension of the output color representation vector (extremely large).
- The set of initial colors and graphs are finite (assumption).
- Let b denote the size of the set of all possible colors. Use one-hot encoding (denoted by m) to each color in H(B), the obtained tensor, denoted by Y, has dimension n^k \* b.
- Using summing invariance operator **h** defined as follows to generate the desired histogram.

$$h(\mathbf{Y})_j = \sum_{i \in [n]^k} \mathbf{Y}_{i,j}, j \in [b]$$

Finally, the k-order invariant network is defined by

$$F = h \circ m \circ L_d \circ \sigma \circ \cdots \circ \sigma \circ L_1$$

## Pros and Cons of K-order Graph Networks

#### **Pros**

• The k-order graph network is at least as powerful as k-WL test, thus has higher expressive power than message passing graph networks.

#### Cons

 The k-order graph network is computationally inefficient since it involves the calculation of high-order tensors.

**Block structure** 

$$F = m \circ h \circ B_d \circ B_{d-1} \cdots \circ B_1$$

 $m_3: \mathbb{R}^a \to \mathbb{R}^{b'}$ 

$$B_1, \ldots, B_d$$
 are blocks

Input tensor

$$\mathbf{X} \in \mathbb{R}^{n \times n \times a}$$



 $m_1, m_2: \mathbb{R}^a \to \mathbb{R}^b$ 

Figure 2: Block structure.

Matrix product

$$\mathbf{W}_{:,:,j} := m_1(\mathbf{X})_{:,:,j} \cdot m_2(\mathbf{X})_{:,:,j}, j \in [b]$$

**Lemma 1.** The model F described above is invariant, i.e.,  $F(g \cdot \mathbf{B}) = F(\mathbf{B})$ , for all  $g \in S_n$ , and  $\mathbf{B}$ .

*Proof.* Note that matrix multiplication is equivariant: for two matrices  $A, B \in \mathbb{R}^{n \times n}$  and  $g \in S_n$  one has  $(g \cdot A) \cdot (g \cdot B) = g \cdot (A \cdot B)$ . This makes the basic building block  $B_i$  equivariant, and consequently the model F invariant, i.e.,  $F(g \cdot \mathbf{B}) = F(\mathbf{B})$ .

Permutation on the graph does not affect matrix production

**Theorem 2.** Given two graphs G = (V, E, d), G' = (V', E', d') that can be distinguished by the 3-WL graph isomorphism test, there exists a network F (equation G) so that  $F(G) \neq F(G')$ . On the other direction for every two isomorphic graphs  $G \cong G'$  and F (Equation G), F(G) = F(G').

Showing that the constructed Graph Networks are as powerful as 3-WL

Main idea: proving that the network can be as powerful as 2-FWL

Construction of the input tensor X (for consistency we will use the notation B).

**Input.** We assume our input tensors have the form  $\mathbf{B} \in \mathbb{R}^{n^2 \times (e+2)}$ . The first e+1 channels are as before, namely encode vertex colors (features) and adjacency information. The e+2 channel is simply taken to be the identity matrix, that is  $\mathbf{B}_{:::,e+2} = I_d$ .

Properties of the input tensor X (i.e., Tensor B constructed above)

For any two isomorphic graphs G and G', we have X = g(X') for any g

Then it is easy to see that if G = G', we have F(G)=F(G')

#### Initialization/First layer

$$oldsymbol{A} := oldsymbol{\mathsf{B}}_{:::e+1}$$
 Adjacency matrix  $oldsymbol{\mathsf{Y}} := oldsymbol{\mathsf{B}}_{:::1:e}$  Input color tensor

The output of the first layer  $\mathbf{C} \in \mathbb{R}^{n^2 \times (4e+1)}$  is the concatenation of the following matrices

$$A \cdot \mathbf{Y}_{:,:,j}, \quad (\mathbf{1}\mathbf{1}^T - A) \cdot \mathbf{Y}_{:,:,j}, \quad \mathbf{Y}_{:,:,j} \cdot A, \quad \mathbf{Y}_{:,:,j} \cdot (\mathbf{1}\mathbf{1}^T - A), \quad j \in [e],$$

#### 2-FWL update

Recall the definitions of neighborhoods and coloring update rules of k-WL

$$N_j^F(\mathbf{i}) = ((j, i_2, \dots, i_k), (i_1, j, \dots, i_k), \dots, (i_1, \dots, i_{k-1}, j))$$

FWL: 
$$\mathbf{C}_{i}^{l} = \operatorname{enc}\left(\mathbf{C}_{i}^{l-1}, \left\{\left(\mathbf{C}_{j}^{l-1} \mid j \in N_{j}^{F}(i)\right) \mid j \in [n]\right\}\right)$$

#### 2-FWL update

when k = 2, we have

$$\mathbf{C}_{i} = \operatorname{enc}\left(\mathbf{B}_{i}, \left\{\left(\mathbf{B}_{j,i_{2}}, \mathbf{B}_{i_{1},j}\right) \mid j \in [n]\right\}\right)$$

To implement this we will need to compute a tensor  $\mathbf{Y}$ , where the coloring  $\mathbf{Y}_i$  encodes the multiset  $\left\{ \left( \mathbf{B}_{j,i_2,:}, \mathbf{B}_{i_1,j,:} \right) \mid j \in [n] \right\}$ .

Let X be the concatenation of the neighborhoods of the multiset i = (i\_1, i\_2)

$$X_{j,:} = (\mathbf{B}_{j,i_2,:}, \mathbf{B}_{i_1,j,:}), \quad j \in [n].$$

Our goal is to compute an output tensor  $\mathbf{W} \in \mathbb{R}^{n^2 \times b}$ , where  $\mathbf{W}_{i_1,i_2,:} = u(\mathbf{X})$ 

#### Calculation of W

Consider the multi-index set  $\{\alpha \mid \alpha \in [n]^{2a}, |\alpha| \leq n\}$  of cardinality  $b = \binom{n+2a}{2a}$ , and write it in the form  $\{(\beta_l, \gamma_l) \mid \beta, \gamma \in [n]^a, |\beta_l| + |\gamma_l| \leq n, l \in b\}$ . Now define polynomial maps  $\tau_1, \tau_2 : \mathbb{R}^a \to \mathbb{R}^b$  by  $\tau_1(x) = (x^{\beta_l} \mid l \in [b])$ , and  $\tau_2(x) = (x^{\gamma_l} \mid l \in [b])$ . We apply  $\tau_1$  to the features of **B**, namely  $\mathbf{Y}_{i_1,i_2,l} := \tau_1(\mathbf{B})_{i_1,i_2,l} = (\mathbf{B}_{i_1,i_2,:})^{\beta_l}$ ; similarly,  $\mathbf{Z}_{i_1,i_2,l} := \tau_2(\mathbf{B})_{i_1,i_2,l} = (\mathbf{B}_{i_1,i_2,:})^{\gamma_l}$ . Now,

$$\begin{split} \mathbf{W}_{i_1,i_2,l} &:= (\mathbf{Z}_{:,:,l} \cdot \mathbf{Y}_{:,:,l})_{i_1,i_2} = \sum_{j=1}^n \mathbf{Z}_{i_1,j,l} \mathbf{Y}_{j,i_2,l} = \sum_{j=1}^n \tau_1(\mathbf{B})_{j,i_2,l} \; \tau_2(\mathbf{B})_{i_1,j,l} \\ &= \sum_{j=1}^n \mathbf{B}^{\boldsymbol{\beta}_l}_{j,i_2,:} \mathbf{B}^{\boldsymbol{\gamma}_l}_{i_1,j,:} = \sum_{j=1}^n (\mathbf{B}_{j,i_2,:}, \mathbf{B}_{i_1,j,:})^{(\boldsymbol{\beta}_l,\boldsymbol{\gamma}_l)}, \end{split}$$

hence  $\mathbf{W}_{i_1,i_2,:} = u(\mathbf{X})$ 



Figure 2: Block structure.

Let m1 and m2 be corresponding to polynomials tau\_1 and tau\_2, and m3 be the identity mapping, we can get the desired output via concatenating (B, m1(B), m2(B))

Why using 2-FWL to construct the network rather than using 3-WL (used in Morris et al., 2018)?

2-FWL only needs to deal with n^2 multisets while 3-WL needs to deal with n^3 multisets. Thus the 2-FWL based graph networks have lower space and time complexities

## Experiments

- GNN models are implemented as block struct
- Classification tasks
  - Social network, Bioinformatics
  - Parameter search: 10-fold cross validation
    - hyper parameters: learning rate, decay...
    - structure (a, b, etc.) for the block structure
  - Results: best averaged accuracy across the 10-folds



Figure 2: Block structure.

Table 1: Graph Classification Results on the datasets from Yanardag and Vishwanathan (2015)

|                                       | MUTAG             | PTC               | PROTEINS          | NCI1             | NCI109           | COLLAB            | IMDB-B                            | IMDB-M           |  |  |  |
|---------------------------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|-----------------------------------|------------------|--|--|--|
| size                                  | 188               | 344               | 1113              | 4110             | 4127             | 5000              | 1000                              | 1500             |  |  |  |
| classes                               | 2                 | 2                 | 2                 | 2                | 2                | 3                 | 2                                 | 3                |  |  |  |
| avg node #                            | 17.9              | 25.5              | 39.1              | 29.8             | 29.6             | 74.4              | 19.7                              | 13               |  |  |  |
| Results                               |                   |                   |                   |                  |                  |                   |                                   |                  |  |  |  |
| GK (Shervashidze et al., 2009)        | 81.39±1.7         | 55.65±0.5         | 71.39±0.3         | 62.49±0.3        | 62.35±0.3        | NA                | NA                                | NA               |  |  |  |
| RW (Vishwanathan et al., 2010)        | $79.17 \pm 2.1$   | $55.91 \pm 0.3$   | $59.57 \pm 0.1$   | > 3 days         | NA               | NA                | NA                                | NA               |  |  |  |
| PK (Neumann et al., 2016)             | $76 \pm 2.7$      | $59.5 \pm 2.4$    | $73.68 \pm 0.7$   | $82.54 \pm 0.5$  | NA               | NA                | NA                                | NA               |  |  |  |
| WL (Shervashidze et al., 2011)        | $84.11 \pm 1.9$   | $57.97 \pm 2.5$   | $74.68 \pm 0.5$   | $84.46 \pm 0.5$  | $85.12 \pm 0.3$  | NA                | NA                                | NA               |  |  |  |
| FGSD (Verma and Zhang, 2017)          | 92.12             | 62.80             | 73.42             | 79.80            | 78.84            | 80.02             | 73.62                             | 52.41            |  |  |  |
| AWE-DD (Ivanov and Burnaev, 2018)     | NA                | NA                | NA                | NA               | NA               | $73.93 \pm 1.9$   | $\textbf{74.45} \pm \textbf{5.8}$ | $51.54 \pm 3.6$  |  |  |  |
| AWE-FB (Ivanov and Burnaev, 2018)     | 87.87±9.7         | NA                | NA                | NA               | NA               | $70.99 \pm 1.4$   | $73.13 \pm 3.2$                   | $51.58 \pm 4.6$  |  |  |  |
| DGCNN (Zhang et al., 2018)            | $85.83 \pm 1.7$   | 58.59±2.5         | $75.54 \pm 0.9$   | $74.44 \pm 0.5$  | NA               | $73.76 \pm 0.5$   | $70.03 \pm 0.9$                   | $47.83 \pm 0.9$  |  |  |  |
| PSCN (Niepert et al., 2016)(k=10)     | $88.95 \pm 4.4$   | $62.29 \pm 5.7$   | $75 \pm 2.5$      | $76.34 \pm 1.7$  | NA               | $72.6 \pm 2.2$    | $71 \pm 2.3$                      | $45.23 \pm 2.8$  |  |  |  |
| DCNN (Atwood and Towsley, 2016)       | NA                | NA                | $61.29 \pm 1.6$   | $56.61 \pm 1.0$  | NA               | $52.11 \pm 0.7$   | $49.06 \pm 1.4$                   | $33.49 \pm 1.4$  |  |  |  |
| ECC (Simonovsky and Komodakis, 2017)  | 76.11             | NA                | NA                | 76.82            | 75.03            | NA                | NA                                | NA               |  |  |  |
| DGK (Yanardag and Vishwanathan, 2015) | $87.44 \pm 2.7$   | $60.08 \pm 2.6$   | $75.68 \pm 0.5$   | $80.31 \pm 0.5$  | $80.32 \pm 0.3$  | $73.09 \pm 0.3$   | $66.96 \pm 0.6$                   | $44.55 \pm 0.5$  |  |  |  |
| DiffPool (Ying et al., 2018)          | NA                | NA                | 78.1              | NA               | NA               | 75.5              | NA                                | NA               |  |  |  |
| CCN (Kondor et al., 2018)             | $91.64 \pm 7.2$   | $70.62 \pm 7.0$   | NA                | $76.27 \pm 4.1$  | $75.54 \pm 3.4$  | NA                | NA                                | NA               |  |  |  |
|                                       | $3.89 \pm 12.95$  | $58.53 \pm 6.86$  | $76.58 \pm 5.49$  | $74.33 \pm 2.71$ | $72.82 \pm 1.45$ | $78.36 \pm 2.47$  | $72.0 \pm 5.54$                   | $48.73 \pm 3.41$ |  |  |  |
| GIN (Xu et al., 2019)                 | $89.4 \pm 5.6$    | $64.6 \pm 7.0$    | $76.2 \pm 2.8$    | $82.7 \pm 1.7$   | NA               | $80.2 \pm 1.9$    | $75.1 \pm 5.1$                    | $52.3 \pm 2.8$   |  |  |  |
| 1-2-3 GNN (Morris et al., 2018)       | $86.1 \pm$        | $60.9 \pm$        | $75.5 \pm$        | $76.2 \pm$       | NA               | NA                | $74.2 \pm$                        | $49.5\pm$        |  |  |  |
| Ours 1                                | $90.55 \pm 8.7$   | $66.17 \pm 6.54$  | $77.2 \pm 4.73$   | $83.19 \pm 1.11$ | $81.84 \pm 1.85$ | $80.16 \pm 1.11$  | $72.6 \pm 4.9$                    | $50 \pm 3.15$    |  |  |  |
| Ours 2                                | $88.88 \pm 7.4$   | $64.7 \pm 7.46$   | $76.39 \pm 5.03$  | $81.21 \pm 2.14$ | $81.77 \pm 1.26$ | $81.38 \pm 1.42$  | $72.2 \pm 4.26$                   | $44.73 \pm 7.89$ |  |  |  |
| Ours 3                                | $89.44 \pm 8.05$  | $62.94 \pm 6.96$  | $76.66 \pm 5.59$  | $80.97 \pm 1.91$ | $82.23 \pm 1.42$ | $80.68 \pm 1.71$  | $73 \pm 5.77$                     | $50.46 \pm 3.59$ |  |  |  |
| Rank                                  | $3^{\mathrm{rd}}$ | $2^{\mathrm{nd}}$ | $2^{\mathrm{nd}}$ | 2 <sup>nd</sup>  | 2 <sup>nd</sup>  | $\mathbf{1^{st}}$ | $6^{ m th}$                       | $5^{ m th}$      |  |  |  |

## Experiments

- Regression task
  - QM9, physical quantities prediction
  - 80% 10% 10% train-val-test split
  - predict 12 quantities using one network v.s. using 12 networks seperately

Table 2: Regression, the QM9 dataset.

| Table 2. Regression, the QIVI) dataset. |         |         |         |         |          |  |  |  |  |
|-----------------------------------------|---------|---------|---------|---------|----------|--|--|--|--|
| arget                                   | DTNN    | MPNN    | 123-gnn | Ours 1  | Ours 2   |  |  |  |  |
|                                         | 0.244   | 0.358   | 0.476   | 0.231   | 0.0934   |  |  |  |  |
|                                         | 0.95    | 0.89    | 0.27    | 0.382   | 0.318    |  |  |  |  |
| iomo                                    | 0.00388 | 0.00541 | 0.00337 | 0.00276 | 0.00174  |  |  |  |  |
| umo                                     | 0.00512 | 0.00623 | 0.00351 | 0.00287 | 0.0021   |  |  |  |  |
| $\epsilon$                              | 0.0112  | 0.0066  | 0.0048  | 0.00406 | 0.0029   |  |  |  |  |
| $\langle R^2 \rangle$                   | 17      | 28.5    | 22.9    | 16.07   | 3.78     |  |  |  |  |
| PVE                                     | 0.00172 | 0.00216 | 0.00019 | 0.00064 | 0.000399 |  |  |  |  |
| 0                                       | -       | -       | 0.0427  | 0.234   | 0.022    |  |  |  |  |
|                                         | -       | -       | 0.111   | 0.234   | 0.0504   |  |  |  |  |
|                                         | -       | 1.7     | 0.0419  | 0.229   | 0.0294   |  |  |  |  |
|                                         | -       | -       | 0.0469  | 0.238   | 0.024    |  |  |  |  |
| v                                       | 0.27    | 0.42    | 0.0944  | 0.184   | 0.144    |  |  |  |  |
| ₹.                                      |         |         |         |         |          |  |  |  |  |

## Equivariant layer evaluation

- Comparing with other models
  - Proposed model (MP, this work)
  - Matrix product + full linear basis from (Maron et al., 2019a)
  - only full linear basis (LIN)
  - MLP applied to feature dimension (without graph knowledge)
- Results:
  - All can achieve 0 train error excl. MLP
  - MP, MP + LIN has better generalization performance
  - MP is more efficient than MP + LIN





## Experiment code

- Our verification code available at Google Colab <u>https://colab.research.google.com/drive/1V4DRDXj9UtfULdrGhDQbuX4S-KE</u> <u>FOJk\_?usp=sharing</u>
- Original GitHub code available at <a href="https://github.com/hadarser/ProvablyPowerfulGraphNetworks">hadarser/ProvablyPowerfulGraphNetworks</a>)

## Thank you!