# 重庆邮电大学 2014-15 学年第一学期

《线性代数》试卷 (期末) (A卷) (闭卷)

| 题 号 | _ | = | Ξ | 四 | 五 | 六 | 七 | 八 | 总分 |
|-----|---|---|---|---|---|---|---|---|----|
| 得 分 |   |   |   |   |   |   | ¥ |   |    |
| 评卷人 |   |   | • |   |   |   |   |   |    |

| 一、 | 填空题 | (本大题共5小题, | 每小题3分,         | 共15分)    |
|----|-----|-----------|----------------|----------|
| •  |     |           | -F 1 M3 - /1 / | / \ /4 / |

1. 行列式 
$$D = \begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{vmatrix}$$
 的值为\_\_\_\_\_\_。

| 2. 矩阵乘积 | $\binom{1}{2}$ (1 | 1)的计算结果为 |       |
|---------|-------------------|----------|-------|
|         | 2)                | ,        | <br>* |

| 3.5 阶单位矩阵的秩为 | 8 | • |
|--------------|---|---|
|--------------|---|---|

4. 两向量 
$$\alpha = (a_1, a_2), \beta = (b_1, b_2)$$
 线性相关的充要条件是\_\_\_\_\_\_。

(此处E为3阶单位矩阵, B\*为B的伴随矩阵)

# 二、选择题(本大题共 5 小题,每小题 3 分,共 15 分)

A. 
$$A-A^T$$

$$A^{T}$$

$$C. (AB^T)C$$

A. 
$$A-A^T$$
 B.  $A^TA$  C.  $(AB^T)C$  D.  $C^TAC,C$  为 n 阶方阵

$$A.$$
 当 $|A|=a$ 时, $|B|=a$ 

A. 当
$$|A| = a$$
时,  $|B| = a$  B. 当 $|A| = a$ 时,  $|B| = -a$ 

《线性代数》试卷 A 卷第 1 页(共 5 页)

C. 当
$$|A| \neq 0$$
时,  $|B| = 0$  D. 当 $|A| = 0$ 时,  $|B| = 0$ 

4. 设向量组  $\alpha_1,\alpha_2,\alpha_3$  线性无关,向量  $\alpha$  可由  $\alpha_1,\alpha_2,\alpha_3$  线性表示,而向量  $\beta$  不能由  $\alpha_1, \alpha_2, \alpha_3$ 线性表示,则对于任意常数k,下列说法正确的是(

A. 
$$\alpha_1, \alpha_2, \alpha_3, k\alpha + \beta$$
 线性无关 B.  $\alpha_1, \alpha_2, \alpha_3, k\alpha + \beta$  线性相关

B. 
$$\alpha_1, \alpha_2, \alpha_3, k\alpha + \beta$$
 线性相关

C. 
$$\alpha_1, \alpha_2, \alpha_3, \alpha + k\beta$$
 线性无关 D.  $\alpha_1, \alpha_2, \alpha_3, \alpha + k\beta$  线性相关

D. 
$$\alpha_1, \alpha_2, \alpha_3, \alpha + k\beta$$
 线性相关

D. 
$$R(A) = n$$

三、解答题(共7大题,总分60分)

$$2$$
、问 $\lambda$ ,  $\mu$  取何值时,齐次线性方程组 
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \mu x_2 + x_3 = 0 \end{cases}$$
 有非零解? (8 分) 
$$x_1 + 2\mu x_2 + x_3 = 0$$

3、设  $4 \times 4$  矩阵  $A = (\alpha, \gamma_2, \gamma_3, \gamma_4), B = (\beta, \gamma_2, \gamma_3, \gamma_4),$ 其中  $\alpha, \beta, \gamma_2,$   $\gamma_3, \gamma_4$  均为 4 维列向量,且已知行列式 |A| = 4, |B| = 1,求行列式 |A + B|。(6 分)

4、设
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
,求 $A^{-1}$ 。 (8分)

5、 (12 分) 当 
$$\lambda$$
 取何值时,线性方程组 
$$\begin{cases} x_1 + x_2 + \lambda x_3 = 4 \\ -x_1 + \lambda x_2 + x_3 = \lambda^2 \\ x_1 - x_2 + 2x_3 = -4 \end{cases}$$

(1) 无解; (2) 有唯一解; (3) 无穷多解? 并在有解时求出所有解。

- 6、 (10 分) 已知  $\alpha_1 = (1,0,2,3), \alpha_2 = (1,1,3,5), \alpha_3 = (1,-1,a+2,1),$   $\alpha_4 = (1,2,4,a+8) \ \ \mathcal{E} \ \beta = (1,1,b+3,5) \ .$ 
  - (1) a,b 为何值时, $\beta$  不能表示成 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  的线性组合?
  - (2) a,b 为何值时, $\beta$  有  $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  的唯一线性表示,并求出该表示式。

- 7、(10 分)设 A 为 3 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$  是线性无关的三维列向量,且满足  $A\alpha_1=\alpha_1+\alpha_2+\alpha_3, A\alpha_2=2\alpha_2+\alpha_3, A\alpha_3=2\alpha_2+3\alpha_3$ 。
  - (1) 求矩阵 B,使得  $A(\alpha_1,\alpha_2,\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)B$ ;
  - (2) 求矩阵 A 的特征值;
  - (3) 求可逆矩阵P,使得 $P^{-1}AP$ 为对角阵。

四、证明题(10分)

1、(5分)设A, B都是正交阵,证明AB也是正交阵。

2、(5分)设n阶矩阵A满足 $A^2 = A$ ,E为n阶单位矩阵,证明 R(A) + R(A - E) = n。

# 重庆邮电大学 2013-2014 学年一学期

# 线性代数试卷 (期末) (A卷) (闭卷)

|     | = | Ξ | 四 | 五 | 六 | 七 | 八 | 总 分 |
|-----|---|---|---|---|---|---|---|-----|
| 相等  |   |   |   | 5 |   |   |   |     |
| 评卷人 |   |   |   |   |   |   |   |     |

| <b>海</b> 分 1                                                                                                                                                         |              |                  |                      |         |                              |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|----------------------|---------|------------------------------|---------------------|
| 评卷人                                                                                                                                                                  | •            |                  | ,                    |         |                              |                     |
| 一、选择题(本大题共 5 小题,每小题 3 分                                                                                                                                              | ,共 15        | 分)               |                      |         |                              | 9                   |
| 1. 设 n 阶方阵 A,B 等价,则()                                                                                                                                                |              |                  |                      |         |                              |                     |
| (A) $ A  =  B $ (B) $ A  \neq  B $ (C)                                                                                                                               | A ≠ 0 则 ;    | 必有 B             | ≠0 (                 | D)  A   | = - B                        |                     |
| 2. 对矩阵 $A_{4\times5}$ ,以下结论正确的是(                                                                                                                                     | )            |                  |                      |         |                              |                     |
| <ul> <li>(A) A 的秩至少是 4</li> <li>(C) A 的列向量组线性无关</li> <li>(D) A</li> <li>3. A 是 m×n矩阵, R(A) = m⟨n, 则下列正(A) A 的任意 m 个列向量线性无关</li> <li>(B) A 的任意一个 m 阶子式必不为零</li> </ul> | 中存在4         | 阶非零              |                      |         |                              |                     |
| (C) A 经过初等行变换必可化为 $(E_m,0)$                                                                                                                                          | 的形式          |                  |                      |         |                              |                     |
| (D) 齐次线性方程组 AX=0 有无穷解                                                                                                                                                |              |                  |                      |         |                              |                     |
| 4. 设二次型 $f(x_1, x_2, x_3) = 4x_1^2 + 4x_2^2 + 4x_3^2$                                                                                                                | $+2x_1x_2 +$ | $2x_1x_3 +$      | $2x_2x_3$ ,          | 则(      | )                            |                     |
| (A) f 的秩为 1 (B) f 的秩为 2 (C) f 为正定二次型 (D) f 为负定                                                                                                                       |              |                  |                      |         |                              |                     |
| 5. 若三阶方阵 A 的三个特征值为 1, 2,                                                                                                                                             | -3, 属于       | 特征值              | 1 的特                 | 征向量     | 为 <b>β</b> <sub>1</sub> = (1 | l,1,1) <sup>T</sup> |
| 属于特征值 2 的特征向量为 $\beta_2 = (1,-1,0)^3$                                                                                                                                | 「,则向量        | <u></u> β = -    | $\beta_1 - \beta_2$  | = (-2,0 | ,-1) <sup>T</sup> (          | )                   |
| (A) 是 A 的属于特征值 1 的特征向量<br>(C) 是 A 的属于特征值-3 的特征向量                                                                                                                     |              |                  |                      |         | 寺征向量                         |                     |
| 二、填空题(本大题共 5 小题,每小题 3 分<br>6. 在五阶行列式中 $a_{12}a_{53}a_{41}a_{24}a_{35}$ 的符号分                                                                                          |              |                  |                      |         | 120                          |                     |
| 7. 设A是3×3矩阵,  A =-2, 把A按                                                                                                                                             | 列分块为         | $A = [\alpha_1]$ | $\alpha_2, \alpha_3$ | ],其中    | 1                            |                     |

 $\alpha_{i}$  (j = 1,2,3) 是 A 的第 j 列,则  $|\alpha_{3} - 2\alpha_{1}, 3\alpha_{2}, \alpha_{1}| = ____6$ \_\_\_\_。

- 8. X 和 Y 是 R" 中的任意两个非零向量,记  $A = XY^T$ ,则矩阵 A 的秩是\_\_\_\_\_.
- 9. 若 n 元线性方程组有唯一解,且其系数矩阵的秩为 r,则 r 与 n 的关系必为\_\_\_\_.
- 10. 设向量空间 $W = \{(x_1, 2x_2, 3x_1)^T | x_1, x_2 \in R\}$ ,则W的维数等于\_\_\_\_\_。
- 三、计算题(本大题共2小题,每小题6分,共12分)

11. 设 
$$A = \begin{pmatrix} 2 & -2 \\ -1 & 2 \\ 1 & -1 \end{pmatrix}$$
,  $B = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ , 求  $|AB|$  及  $|BA|$  的值。

12. 设
$$D = \begin{vmatrix} 3 & -5 & 2 & 1 \\ 1 & 1 & 0 & -5 \\ -1 & 3 & 1 & 3 \\ 2 & -4 & -1 & -3 \end{vmatrix}$$
,  $D$ 的 $(i, j)$ 元的余子式为 $M_{ij}$ , 计算 $\sum_{i=1}^{4} M_{i1}$ 的值。

四、计算题(本大题共2小题,每小题8分,共16分)

13. 设 
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$
,  $B$  是三阶矩阵,且  $A^2 + E = AB - 2A + B$ ,求  $B$  。

14. 设 
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & 1 \\ 2 & 4 & -3 \end{pmatrix}$$
, 求  $A^{-1}$ .

# 五、(本大题共2小题,每小题8分,共16分)

- 15. 已知向量组 $\beta_1 = (1,1,0)^T$ ,  $\beta_2 = (0,1,1)^T$ ,  $\beta_3 = (1,3,0)^T$ ,  $\beta_4 = (1,1,1)^T$ , 求:
  - ① 此向量组的秩和一个极大线性无关组。
  - ② 将其余向量由该极大线性无关组线性表出。

16. n 阶矩阵 
$$A = \begin{pmatrix} a & a & \cdots & a \\ a & a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & \cdots & a \end{pmatrix}$$
, 其中  $a \neq 0$  是常数。试求 A 的特征值并判断 A 是否可对 角化。

#### 六、解答题(本大题共2小题,每小题8分,共16分)

- 17. 对向量组  $X_1 = (1,1,1)^T$ ,  $X_2 = (3,-1,4)^T$ , 设计第三个向量  $X_3$ , 使得  $(X_1,X_2,X_3)$  能构成  $R^3$  的一个基需要满足的条件是什么?试写出一个这样的  $X_3$ 。
- 18. 求解下列方程组,分析实数a取何值时,方程组解无解、有唯一解或无穷解。并在有解时求出其解。

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1 \\ x_1 - 2x_2 - x_3 + x_4 = -1 \\ x_1 - 2x_2 + 5x_3 + x_4 = a \end{cases}$$

# 七、证明题(本大题共2小题,每小题5分,共10分)

19. 已知向量组 $(X_1, X_2, \dots, X_n)$ 线性无关,A 是一个 n 阶非奇异矩阵。证明: 向量组 $(AX_1, AX_2, \dots, AX_n)$ 线性无关。

# 线性代数课程试卷 (期末) (A卷) 参考答案与评分

# 一、选择题

C, B, D, C, D,

# 二、填空题

<u>6</u> <u>1</u> <u>r=n</u> 2

# 三、计算题

11. **AE**: 
$$|AB| = \begin{vmatrix} 2 & 2 & -4 \\ 0 & 1 & 5 \\ 1 & 1 & -2 \end{vmatrix} = 0$$
 (3  $\%$ )  $|BA| = \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} = -5$  (3  $\%$ )

12、解: 
$$M_{11} + M_{21} + M_{31} + M_{41} = A_{11} - A_{21} + A_{31} - A_{41}$$
 (2分)

$$\begin{vmatrix} 1 & -5 & 2 & 1 \\ -1 & 1 & 0 & -5 \\ 1 & 3 & 1 & 3 \\ -1 & -4 & -1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -5 & 2 & 1 \\ -1 & 1 & 0 & -5 \\ 1 & 3 & 1 & 3 \\ 0 & -1 & 0 & 0 \end{vmatrix} = (-1) \begin{vmatrix} 1 & 2 & 1 \\ -1 & 0 & -5 \\ 1 & 1 & 3 \end{vmatrix}$$

$$= (-1)\begin{vmatrix} -1 & 0 & -5 \\ -1 & 0 & -5 \\ 1 & 1 & 3 \end{vmatrix} = 0 \qquad (4 \%)$$

# 四、计算题

13、解: 
$$A^2 + 2A + E = AB + B$$
 (4分)

$$\therefore (A+E)^2 = (A+E)B, \quad \text{且因为} |A+E| \neq 0, (A+E)^{-1} 存在 \qquad (2 分)$$

∴ 
$$B = A + E = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$
 (2 分)

14. 
$$Matherapsites: (A,E) = 
\begin{pmatrix}
1 & 2 & -2 & 1 & 0 & 0 \\
2 & -1 & 1 & 0 & 1 & 0 \\
2 & 4 & -3 & 0 & 0 & 1
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 2 & -2 & 1 & 0 & 0 \\
0 & -5 & 5 & -2 & 1 & 0 \\
0 & 5 & -4 & 0 & -1 & 1
\end{pmatrix}$$

$$\sim \begin{pmatrix}
 1 & 2 & -2 & 1 & 0 & 0 \\
 0 & 1 & -1 & \frac{2}{5} & -\frac{1}{5} & 0 \\
 0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix} \sim \begin{pmatrix}
 1 & 0 & 0 & \frac{1}{5} & \frac{2}{5} & 0 \\
 0 & 1 & 0 & -\frac{8}{5} & -\frac{1}{5} & 1 \\
 0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 & 0 \\ -8 & -1 & 5 \\ -10 & 0 & 5 \end{pmatrix}$$

# 五、计算题

**15、解:** 
$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & \frac{3}{2} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -\frac{1}{2} \end{pmatrix} (4 \%)$$

所以:  $R(\beta_1, \beta_2, \beta_3, \beta_4) = 3$ ,  $\beta_1, \beta_2, \beta_3$ 是其一个极大线性无关组。(2分)

$$\beta_4 = \frac{3}{2}\beta_1 + \beta_2 - \frac{1}{2}\beta_3 \tag{2 分}$$

16. **M**: 
$$|A-\lambda E| = \begin{vmatrix} a-\lambda & a & \cdots & a \\ a & a-\lambda & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & \cdots & a-\lambda \end{vmatrix} = \begin{vmatrix} na-\lambda & a & \cdots & a \\ na-\lambda & a-\lambda & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ na-\lambda & a & \cdots & a-\lambda \end{vmatrix}$$

$$= (na - \lambda)\begin{vmatrix} 1 & a & \cdots & a \\ 0 & -\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & -\lambda \end{vmatrix} = (na - \lambda)(-\lambda)^{n-1} \qquad \lambda_1 = \lambda_2 = \cdots \lambda_{n-1} = 0, \ \lambda_n = na$$

$$(3 \frac{1}{2})$$

(1) 当 
$$\lambda_1 = \lambda_2 = \cdots \lambda_{n-1} = 0$$
 时,  $AX = 0 \rightarrow A = \begin{pmatrix} a & a & \cdots & a \\ a & a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & \cdots & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$ 

$$(2) \stackrel{\text{def}}{=} \lambda_n = na, (A - naE)X = 0 \rightarrow \begin{pmatrix} -(n-1)a & a & \cdots & a \\ a & -(n-1)a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & \cdots & -(n-1)a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

曲于
$$\begin{pmatrix} -(n-1)a & a & \cdots & a \\ a & -(n-1)a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & \cdots & -(n-1)a \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & \cdots & 0 \\ a & -(n-1)a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & \cdots & -(n-1)a \end{pmatrix} \sim$$

$$\sim \begin{pmatrix}
a & a & \cdots & \cdots & -(n-1)a \\
0 & -na & \cdots & \cdots & -(n-2)a \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & -a \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
R(A - naE) = n - 1.$$

即特征值 $\lambda_n = na$ 有1个线性无关的特征向量。(2分)

矩阵 A 共有 n 个线性无关的特征向量, 所以矩阵 A 可以对角化。(1分)

# 六、解答题。

如单位向量 $e_1$ 。 (2分)

若写成" $(X_1,X_2,X_3)$ 线性无关",可酌情给分。另,也可通过初等行变换得到。

18、解: 
$$\begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 1 & -2 & -1 & 1 & -1 \\ 1 & -2 & 5 & 1 & a \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 4 & 0 & a-1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & a-5 \end{pmatrix} \quad (4 分)$$

(1) 当 
$$a = 5$$
 时,方程组有无穷解为:  $X = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$  (2分)

# 七、证明题

**19.** 证明: 令线性组合:  $k_1AX_1 + k_2AX_2 + \dots + k_nAX_n = 0$  (1分)

由于 A 是一个 n 阶非奇异矩阵,所以  $A^{-1}$  存在。 (1分)

用 $A^{-1}$ 左乘上式,得:

$$k_1 X_1 + k_2 X_2 + \dots + k_n X_n = 0$$
 (2 \(\frac{1}{2}\))

再由于 $(X_1, X_2, \dots, X_n)$ 线性无关,所以:  $k_1 = k_2 = \dots = k_n = 0$ 。

综上所述, $(AX_1, AX_2, \dots, AX_n)$ 线性无关。 (1分)

20. 设A是一n阶方阵,证明:存在一个n阶非零矩阵B,使AB=0的充要条件是|A|=0。

证明: (1) 若 AB = 0, 将 B 列分块, 得:  $A(B_1, B_2, \dots, B_n) = 0$ , (1分)

此即:  $AB_1 = 0$ ,  $AB_2 = 0$ ,  $\cdots AB_n = 0$ , 由于 B 非零矩阵,

说明齐次方程组 AX=0 有非零解,所以|A|=0。 (2分)

或: AB = 0, 得出:  $R(A) + R(B) \le n$ , (1分)

而 B 非零矩阵, R(B) ≥ 1

所以 $R(A) \le n-1$ , 所以|A| = 0。 (2分)

(2) 若|A|=0,则齐次方程组 AX=0 有无穷多解, (1分)

选取 n 个非零解  $X_1, X_2, \dots, X_n$ 

则  $A(X_1, X_2, \dots, X_n) = 0$ , 令  $B = (X_1, X_2, \dots, X_n)$  即可达到要求。(1分)

莊 级

妵

试题编号: P290

# 重庆邮电大学 12-13 学年一学期

线性代数试卷 (期末) (A卷) (闭卷)

| 题  | 믁  | _ | = | Ξ | 四 | 五 | 六 | 七 | 八 | 总分 |
|----|----|---|---|---|---|---|---|---|---|----|
| 得  | 分  |   |   |   |   |   |   |   |   |    |
| 评者 | 告人 |   |   |   |   |   |   |   |   |    |

计算下列各题(本大题共5小题,每小题7分,共35分)

1、设矩阵 
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, 计算  $AB - BA$ .

2、已知行列式  $\begin{vmatrix} -1 & 5 & 6 & 8 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & -8 & 6 \end{vmatrix}$ , 计算:  $A_{41} + A_{42} + A_{43} + A_{44}$ 、其中 $A_{ij}$ 是元素 $a_{ij}$ 的

代数余子式。

4、设A为n级方阵,且 $|A|=\frac{1}{2}$ ,计算 $|(2A)^{-1}+3A^{\bullet}|$ .

5. 设有向量组  $\alpha_1=(a,1,1),\alpha_2=(1,2,-1),\alpha_3=(1,2,0)$ ,当 a 取何值时,(1)  $\alpha_1,\alpha_2,\alpha_3$  线性无关。(2)  $\alpha_1,\alpha_2,\alpha_3$  线性相关。

### 二、(本大题共4小题,每小题9分,共36分)

6、求解矩阵方程 
$$AX - A = X$$
,其中  $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 3 \\ 0 & 1 & 0 \end{pmatrix}$ 。

#### 7、求向量组

$$\alpha_1 = (1,0,2,1), \alpha_2 = (1,2,0,1,), \alpha_3 = (2,1,3,0), \alpha_4 = (2,5,-1,4), \alpha_5 = (1,-1,3,-1)$$
的秩和一个极大线性无关组,并将其余向量由该极大线性无关组线性表示。

$$\begin{cases} x_1 + \lambda x_2 + x_3 = 0, \\ x_1 - x_2 + x_3 = 0, \end{cases}$$
,有非零解?并求出方程组的 
$$\lambda x_1 + x_2 + 2x_3 = 0$$

所有非零解。

9、化二次型  $f(x_1,x_2,x_3)=2x_1^2+x_2^2-4x_1x_2-4x_2x_3$  为规范形,并求出所用的变换矩阵。

线性代数试卷第4页(共6页)

10、求正交矩阵 
$$P$$
,使得  $P^TAP$  成对角形,其中  $A = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5 \end{pmatrix}$ .

## 四、(本大题共1小题,共8分)

11、试求  $\lambda$  的值,使二次型  $f(x_1,x_2,x_3)=\lambda(x_1^2+x_2^2+x_3^2)+2x_1x_2+2x_1x_3+2x_2x_3$  是正定的.

五、证明题(本大题共2小题,每小题5分,共10分)

12、证明: 如果向量组  $\alpha_1,\alpha_2,\cdots,\alpha_r$  线性无关,而  $\alpha_1,\alpha_2,\cdots,\alpha_r$  线性相关,则向量  $\beta$  可以由  $\alpha_1,\alpha_2,\cdots,\alpha_r$  线性表出,且表法唯一。

13、设方阵 A 满足  $A^2 + A = 4E$ , 证明: A - E 可逆, 并求其逆。

#### 2012-2013(1)《线性代数》期末试题

### 参考答案及评分标准

(2012-2013 学年第 1 学期)(A卷)

#### 一、(本大题共5小题,每小题7分,共35分)

1、解

2、 解 因  $a_{21} = a_{22} = a_{23} = a_{24} = 1$ 

所以 
$$A_{41} + A_{42} + A_{43} + A_{44} = a_{21}A_{41} + a_{22}A_{42} + a_{23}A_{43} + a_{24}A_{44} = 0 \cdots 7$$
 分

3 (7分)、解:

$$D = \begin{vmatrix} n-1 & 1 & 1 & \cdots & 1 & 1 \\ n-1 & 0 & 1 & \cdots & 1 & 1 \\ n-1 & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & 1 & 1 & \cdots & 0 & 1 \\ n-1 & 1 & 1 & \cdots & 1 & 0 \end{vmatrix} = (n-1) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{vmatrix}$$
$$= (-1)^{n-1}(n-1) \circ$$

4、解 因
$$A^{\bullet} = |A|A^{-1} = \frac{1}{2}A^{-1}$$
,所以 2分

]

#### 二、(本大题共4小题,每小题9分,共36分)

6、解 由 
$$AX - A = X$$
,有  $(A - E)X = A$ ,  $A - E = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix}$ 

$$(A-E)^{-1} = \begin{pmatrix} -3 & 2 & 6 \\ 2 & -1 & -3 \\ 2 & -1 & -4 \end{pmatrix}, \qquad \dots 6$$

另解 由 
$$AX - A = X$$
,有  $(A - E)X = A$ ,  $A - E = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix}$ , ………… 3分

$$(A - E, A) = \begin{pmatrix} 1 & 2 & 0 & 2 & 2 & 0 \\ 2 & 0 & 3 & 2 & 1 & 3 \\ 0 & 1 & -1 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 2 & 2 & 0 \\ 0 & -4 & 3 & -2 & -3 & 3 \\ 0 & 1 & -1 & 0 & 1 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 1 & 3 \\ 0 & 1 & -1 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -2 & 2 & 6 \\ 0 & 0 & -1 & -2 & 1 & 3 \\ 0 & 1 & 0 & 2 & 0 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -2 & 2 & 6 \\ 0 & 1 & 0 & 2 & 0 & -3 \\ 0 & 0 & 1 & 2 & -1 & -3 \end{pmatrix}$$

7、解

所以向量组的秩为 3,  $\alpha_1, \alpha_2, \alpha_3$  是一个极大线性无关组,

..... 7分

$$\alpha_4 = \alpha_1 + 3\alpha_2 - \alpha_3, \alpha_5 = -\alpha_2 + \alpha_3 \qquad \cdots \qquad 9 \ \%$$

$$\begin{cases} x_1 + 2x_2 + x_3 = 0, \\ x_1 - x_2 + x_3 = 0, \\ 2x_1 + x_2 + 2x_3 = 0 \end{cases}$$

当 $\lambda = -1$ 时,方程组为

$$\begin{cases} x_1 - x_2 + x_3 = 0, \\ x_1 - x_2 + x_3 = 0, \\ -x_1 + x_2 + 2x_3 = 0 \end{cases}$$

9. 
$$f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3 = 2(x_1 - x_2)^2 - (x_2 + 2x_3)^2 + 4x_3^2$$

$$\begin{cases} y_1 = \sqrt{2}x_1 - \sqrt{2}x_2 \\ y_2 = x_2 + 2x_3 \\ y_3 = 2x_3 \end{cases}, \quad \mathbb{R} \qquad \begin{cases} x_1 = \frac{1}{\sqrt{2}}y_1 + y_2 - y_3 \\ x_2 = y_2 - y_3 \\ x_3 = \frac{1}{2}y_3 \end{cases}, \qquad \cdots \qquad 6 \, \text{ for } \qquad \qquad 6 \, \text{$$

三、(本大题共1小题,共11分)

10 
$$\Re$$
  $|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 0 & 2 \\ 0 & \lambda - 4 & 0 \\ 2 & 0 & \lambda - 5 \end{vmatrix} = (\lambda - 4)(\lambda - 1)(\lambda - 6)$ 

求得特征值 $\lambda_1 = 1, \lambda_2 = 4, \lambda_3 = 6$ ,

------4分

对于  $\lambda = 1$  ,解方程组 (1E - A)X = 0 , 得特征向量  $\alpha_1 = (2,0,1)$  , 单位化得  $p_1 = \frac{1}{\sqrt{5}}(2,0,1)$  ;

对于 $\lambda_1 = 4$ ,解方程组(4E - A)X = 0,得特征向量 $\alpha_2 = (0,1,0)$ ,单位化得 $p_2 = (0,1,0)$ ;

对于  $\lambda_3=6$  ,解方程组 (6E-A)X=0 ,得特征向量  $\alpha_2=(1,0,-2)$  ,单位化得  $p_3=\frac{1}{\sqrt{5}}(1,0,-2)$  .

故所求正交矩阵为

$$P = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 0 & 1\\ 0 & \sqrt{5} & 0\\ 1 & 0 & -2 \end{pmatrix}, \quad \text{If } P^T A P = \begin{pmatrix} 1 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 6 \end{pmatrix}.$$

四、(本大题共1小题,共8分)

11、解 二次型的矩阵为

$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix} \qquad \dots 2 \ \%$$

二次型正定当且仅当
$$\lambda > 0$$
,  $\begin{vmatrix} \lambda & 1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 - 1 > 0$ ,  $\begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2) > 0$ ,

解得 $\lambda > 1$ . 即当 $\lambda > 1$ 时,二次型正定.

..... 8 🕁

五、证明题(本大题共2小题,每小题5分,共10分)

12、证明: 如果向量组  $\alpha_1,\alpha_2,\cdots,\alpha_r$  线性无关,而  $\alpha_1,\alpha_2,\cdots,\alpha_r,\beta$  线性相关,则向量  $\beta$  可以由  $\alpha_1,\alpha_2,\cdots,\alpha_r$  线性表出,且表法唯一。

证 因 $\alpha_1,\alpha_2,\cdots,\alpha_r,\beta$ 线性相关,则存在不全为零的数 $k_1,k_2,\cdots,k_r,k_{r+1}$ 使

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r + k_{r+1}\beta = 0 \qquad \dots \qquad 1 \text{ }$$

其中必有  $k_{r+1}\neq 0$  ,否则,若  $k_{r+1}=0$  ,而  $k_1,k_2,\cdots,k_r$  不全为零有

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r = 0$$

这与 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关的假设矛盾,所以 $k_{r+1} \neq 0$ ,于是

$$\beta = -\frac{k_1}{k_{k+1}} \alpha_1 - \frac{k_2}{k_{k+1}} \alpha_2 - \dots - \frac{k_r}{k_{k+1}} \alpha_r \qquad \dots \qquad 3 \, \text{ }$$

又若  $\beta = l_1\alpha_1 + l_2\alpha_2 + \cdots + l_r\alpha_r$  ,  $\beta = m_1\alpha_1 + m_2\alpha_2 + \cdots + m_r\alpha_r$  , 则

$$(l_1 - m_1)\alpha_1 + (l_2 - m_2)\alpha_2 + \dots + (l_r - m_r)\alpha_r = 0$$

13、设方阵 A满足  $A^2 + A = 4E$ , 证明: A - E可逆, 并求其逆。

证 由
$$A^2 + A = 4E$$
,  $(A - E)(A + 2E) = 2E$ , $(A - E)\frac{(A + 2E)}{2} = E$ , …… 3分  
所以 $A - E$ 可逆,且 $(A - E)^{-1} = \frac{(A + 2E)}{2}$ . 5分



# 试题编号:

# 重庆邮电大学 2011-2012 学年第 1 学期

《线性代数》试卷(期末) (闭卷)

| 题  | 号  | _ | = | Ξ | 四 | 五 | 六 | 七 | 八 | 总分 |
|----|----|---|---|---|---|---|---|---|---|----|
| 得  | 分  |   |   |   |   |   |   |   |   |    |
| 评名 | 卷人 |   |   |   |   |   |   | - |   |    |

一、(本大题共2小题,每小题8分,共16分)

1. 计算行列式 
$$D = \begin{vmatrix} -2 & 1 & 4 & 1 \\ 3 & -1 & 2 & 1 \\ 1 & 2 & 3 & -2 \\ 5 & 0 & 6 & 2 \end{vmatrix}$$
 的值.

2. 设 A 为 3 级矩阵, A 为 A 的伴随矩阵,  $|A| = \frac{1}{2}$  , 求  $|(2A)^{-1} - 5A^{\bullet}|$  .

二、(本大题共2小题,每小题8分,共16分)

3. 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$$
,  $A^*$  为  $A$  的伴随矩阵, 求 $(A^*)^{-1}$ .

4. 设
$$A = \begin{pmatrix} -1 & 3 & 1 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix}$$
,  $B$  是三阶矩阵,且 $AB + E = A^2 - B$ , 求  $B$ .

- 三、(本大题共2小题,每小题8分,共16分)
- 5. 用配方法将二次型  $f(x_1,x_2,x_3)=x_1^2+2x_2^2+5x_3^2+2x_1x_2+2x_1x_3+6x_2x_3$ 化为标准形,并求所用的变换矩阵.

6. 写出二次型  $f(x_1,x_2,x_3)=x_1^2+2x_2^2+x_3^2+2x_1x_2+4x_2x_3$  的矩阵,并判断其是否正定.

点、(本大题共1小题,共8分)

7. 用矩阵的初等变换求矩阵 
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 3 & 4 \end{pmatrix}$$
 的逆矩阵

## 五、(本大题共1小题,共10分)

8. 求下列向量组的秩和一个最大线性无关组,并将其余向量用最大线性无关组线性表示:  $\alpha_1 = (2,1,1)^T, \alpha_2 = (4,2,2)^T, \alpha_3 = (5,2,1)^T, \alpha_4 = (1,0,1)^T$ .

### 六、(本大题共1小题,共10分)

9. 当 a 取何值时, 齐次线性方程组

$$\begin{cases} 2x_1 - x_2 + 3x_3 = 0 \\ x_1 - 3x_2 + 4x_3 = 0 \\ -x_1 + 2x_2 + ax_3 = 0 \end{cases}$$

有非零解? 在有非零解的情形, 求基础解系与通解.

七、(本大题共1小题,共10分)

10. 设 $A = \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}$ , 问A能否相似于对角矩阵,并说明理由.若能,求出可逆矩

阵 P, 使  $P^{-1}AP$  为对角矩阵.

八、(本大题共2小题,每小题7分,共14分)

11. 设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关,

$$\beta_1 = \alpha_1, \ \beta_2 = \alpha_1 + \alpha_2, \ \cdots, \ \beta_r = \alpha_1 + \alpha_2 + \cdots + \alpha_r$$

证明: 向量组 $\beta_1,\beta_2,\cdots,\beta_r$ 线性无关.

12. 设 A, B 是两个 n 阶方阵,试求使等式  $A^2 - B^2 = (A + B)(A - B)$  成立的充分必要条件.

# 2011-2012冷菜:

### 一、(本大题共2小题,每小题8分,共16分)

1. 解

$$D = \begin{vmatrix} 0 & 5 & 10 & -3 \\ 0 & -7 & -7 & 7 \\ 1 & 2 & 3 & -2 \\ 0 & -10 & -9 & 12 \end{vmatrix} = (-7) \begin{vmatrix} 5 & 10 & -3 \\ 1 & 1 & -1 \\ -10 & -9 & 12 \end{vmatrix} = (-7) \begin{vmatrix} 0 & 5 & 2 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{vmatrix} = 56.$$

所以  $|(2A)^{-1}-5A^{\bullet}|=-16$ .

-----8分

二、(本大题共2小题,每小题8分,共16分)

3. 解 因
$$(A^*)^{-1} = \frac{1}{|A|}A$$
,而 $|A| = 10$ ,所以 4 分

$$(A^*)^{-1} = \frac{1}{10} A = \frac{1}{10} \begin{pmatrix} -4 & -2 & -1 \\ -5 & -3 & -2 \\ -3 & -2 & -1 \end{pmatrix}.$$

4. 解 由  $AB + E = A^2 - B$ , 可得

$$(A+E)B = (A+E)(A-E), \qquad \dots \qquad 3 \, \%$$

愐

$$\mid A+E \mid = \begin{vmatrix} 0 & 3 & 1 \\ 1 & 2 & 0 \\ 2 & 3 & 2 \end{vmatrix} = -7 \neq 0 ,$$

所以A+E可逆,于是

### 三、(本大题共2小题,每小题8分,共16分)

$$\begin{cases} y_1 = x_1 + x_2 + x_3 \\ y_2 = x_2 + 2x_3 \\ y_3 = x_3 \end{cases} \quad \text{if } \begin{cases} x_1 = y_1 - y_2 + y_3 \\ x_2 = y_2 + -2y_3 \\ x_3 = y_3 \end{cases} \quad \dots \qquad 5 \text{ fill}$$

原二次型化为标准形  $f = y_1^2 + y_2^2$ , 所用变换矩阵为

#### 6. 解 二次型的矩阵为

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 1 \end{pmatrix}, \qquad 3 \,$$

因 
$$|A| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 1 \end{vmatrix} = -3 < 0$$
,故 $f(x_1, x_2, x_3)$ 不正定. 8分

#### 四、(本大题共1小题,共8分)

#### 7. 解

$$(A,E) = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 1 & 3 & 4 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{fresh}} \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -4 & -2 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{\text{fresh}} \begin{pmatrix} 1 & 0 & 0 & -2 & 1 & 1 \\ 0 & 1 & 0 & -6 & 1 & 4 \\ 0 & 0 & 1 & 5 & -1 & -3 \end{pmatrix}$$

### 五、(本大题共1小题,共10分)

8. 解因

$$(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = \begin{pmatrix} 2 & 4 & 5 & 1 \\ 1 & 2 & 2 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 \end{pmatrix}, \qquad \dots \qquad 4 \ \%$$

故  $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  的秩为 3,  $\alpha_1,\alpha_3,\alpha_4$  是向量组的一个最大无关组,且  $\alpha_2=2\alpha_1$  . …… 10 分

六、(本大题共1小题,共10分)

9. 解 系数行列式

$$\begin{vmatrix} 2 & -1 & 3 \\ 1 & -3 & 4 \\ -1 & 2 & a \end{vmatrix} = -5(a+3)$$
 ...... 3  $\frac{1}{2}$ 

所以当时a = -3时,方程组有非零解.

..... 5分

此时,方程组的系数矩阵

$$\begin{pmatrix} 2 & -1 & 3 \\ 1 & -3 & 4 \\ -1 & 2 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 5 & -5 \\ 1 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

七、(本大题共1小题,共10分)

10. 解 特征多项式

故  $A^2 - B^2 = (A+B)(A-B)$  的充要条件是-AB+AB=0, 即 AB=BA.

#### 试题编号:

# 重庆邮电大学第2学期

## 线性代数试卷(期末)(B卷)(闭卷)

| <del>_</del> . | 埴空颞 | (每空2分, | 共16分) |
|----------------|-----|--------|-------|

1、向量
$$\alpha = [1,4,0,2]^T$$
,  $\beta = [2,-2,1,3]^T$ 的距离为\_\_\_\_\_; 内积为\_\_\_\_\_。

$$2$$
、当常数 $a=$ \_\_\_\_\_时,方程组  $\left\{ egin{array}{ll} &lpha x_1=0 \ &lpha x_2+5x_3=0 \end{array}
ight.$  有非零解。  $\left\{ x_2-x_3=0 \right. \right.$ 

3、 向量组 
$$\alpha_1 = [1,1,0,0]^T$$
 ,  $\alpha_2 = [0,1,1,0]^T$  ,  $\alpha_3 = [0,0,1,1]^T$  ,  $\alpha_4 = [1,0,0,1]^T$  的秩为\_\_\_\_\_

$$4 \cdot \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & 0 \\ 4 & 0 & 0 \end{bmatrix}^{T} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \underline{\hspace{1cm}}$$

5、三阶可逆矩阵 A 的特征值为 2, 3, 4, 则 
$$A^{-1}$$
 的三个特征值分别为\_\_\_\_\_\_

$$6$$
、若 $\alpha_1$ = $[1,1,1]^T$ , $\alpha_2$ = $[1,2,3]^T$ ,则与 $\alpha_1$ 和 $\alpha_2$ 都正交的单位向量为\_\_\_\_\_

### 二、单项选择题(每题3分,共15分)

1、设A、B为n阶可逆阵,则
$$(A^{-1}B^{-1})^T = _____$$

(A) 
$$(A^{-1})^T (B^{-1})^T$$
 (B)  $(A^T)^{-1} (B^T)^{-1}$  (C)  $(B^T A^T)^{-1}$  (D)  $(A^T B^T)^{-1}$ 

2、设 A 为n阶可逆阵,tr(A)为 A 的对角元之和,r(A)表示 A 的秩, $\alpha$  为非零实数,则\_\_\_\_。

(A) 
$$|aA| = a|A|$$
 (B)  $r(aA) = ar(A)$  (C)  $tr(aA) = atr(A)$  (D)  $(aA)^{-1} = aA^{-1}$ 

3、设A、B为n阶方阵, 日AB=0, 则\_\_\_\_\_

(A) 
$$|A| = 0$$
  $\vec{x}|B| = 0$  (B)  $A = 0$   $\vec{x}B = 0$ 

(C) 
$$A + B = 0$$
 (D)  $|A| + |B| = 0$ 

# 4. 设 A 为 n 阶方阵,且 | A = a ≠ 0,则其伴随矩阵 | A | = \_\_\_\_\_

(B) 
$$\frac{1}{a}$$

(A) 
$$a$$
 (B)  $\frac{1}{a}$  (C)  $a^{n-1}$  (D)  $a^n$ 

5、设A、B为n阶可逆阵,则\_\_\_

(A) 
$$|A+B| = |A| + |B|$$
 (B)  $AB = BA$  (C)  $|AB| = |BA|$  (D)  $(A+B)^{-1} = A^{-1} + B^{-1}$ 

四. (本题 12 分) 求矩阵 
$$A = \begin{bmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{bmatrix}$$
 的特征值和特征向量。

五. (本题 12 分) 设 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

1、求
$$A^{-1}$$
: 2、出知 $AX = B$ , 求 X

六、(本题 12 分) 已知方程组 
$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 2 \end{cases}$$
 有解。
$$3x_1 + x_2 + 2x_3 = k$$

试求: 1、k的值; 2、方程组的通解

#### 七、(本题12分)

求一个正交变换 X=PY, 把二次型  $f=4x_1^2+2x_2x_3+3x_2^2+3x_3^2$  化为标准型。

#### 八、证明题(此题9分)

设 A 为二阶实对称矩阵,且满足矩阵方程  $A^2 - 3A + 2E = 0$  试证:  $1 \cdot A + 2E$  可逆。  $2 \cdot A$  为正定矩阵。

一、填空题

1. 
$$\sqrt{39}$$
, 0 2. 0  $\vec{\otimes}$ -5 3. 3 4.  $\begin{bmatrix} 5 & 3 & 2 \\ 1 & 4 & 3 \\ 0 & 1 & 1 \end{bmatrix}$  5.  $\frac{1}{2}$ ,  $\frac{1}{3}$ ,  $\frac{1}{4}$ 

6, 
$$\pm [1, -2, 1]^T / \sqrt{6}$$

二、选择题

$$\boxed{\square} \cdot \left| \lambda E - A \right| = (\lambda - 2) \begin{vmatrix} \lambda + 2 & -1 \\ 4 & \lambda - 3 \end{vmatrix} = (\lambda - 2)^2 (\lambda + 1)$$

特征根为:  $\lambda_1 = \lambda_2 = 2$ ,  $\lambda_3 = -1$ 

对于 
$$\lambda_1 = \lambda_2 = 2$$
,  $\begin{bmatrix} 2E - A \end{bmatrix} = \begin{bmatrix} 4 & -1 & -1 \\ 0 & 0 & 0 \\ 4 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 

$$\begin{cases} x_1 = \frac{1}{4}x_2 + \frac{1}{4}x_3 \\ x_2 = x_2 \\ x_3 = x \end{cases} \quad \text{ if } k_1 = \frac{1}{4}x_2, k_2 = \frac{1}{4}x_3, \text{ if } k_2 = k_1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = k_1 \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

对于 
$$\lambda_1 = 1, [-E - A] = \begin{bmatrix} 1 & -1 & -1 \\ 0 & -3 & 0 \\ 4 & -1 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,故等价于 
$$\begin{cases} x_1 = x_3 \\ x_2 = 0 \\ x_3 = x_3 \end{cases}$$

取 
$$x_3 = k \neq 0$$
,得特征向量为: 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = k \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\Xi \cdot 1 \cdot A^{-1} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \quad 2 \cdot X = A^{-1}B = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \mathbf{1} \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

(1) k=8

(2) 
$$\Leftrightarrow$$
 k=8,  $\#$ : 
$$\begin{cases} x_1 = -x_3 + 2 \\ x_2 = x_3 + 2 \end{cases}$$
,  $\Leftrightarrow$   $x_3 = c$ ,  $\#$   $\#$   $\#$ : 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = c \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

七、 
$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$
, 特征根为  $\lambda_1 = 2, \lambda_2 = \lambda_3 = 4$ ,

对应的标准正交特征向量分别为:

$$p_1 = [0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}]^T, p_2 = [1, 0, 0]^T, p_3 = [0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]^T, P = [p_1, p_2, p_3]$$

$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \text{ if } f(X) = f(PY) = 2y_1^2 + 4y_2^2 + 4y_3^2$$

八、1、
$$(A+2E)(A-5E) = -12E$$
,故: $(A+2E)(\frac{5}{12}E-\frac{1}{12}A) = E$ ,结论1成立

2、设 $\lambda$ 是A的特征值,p是 A属于 $\lambda$ 的特征向量。

设 
$$f(\lambda) = \lambda^2 - 3\lambda + 2$$
, 则:  $f(A) = A^2 - 3A + 2E$ , 由  $f(A) = 0$ , 得:  $f(\lambda) = 0$ 

特征根为:  $\lambda_1 = 1, \lambda_2 = 2$  都大于零,且 A 为实对称矩阵, 故 A 为正定矩阵。

# 电冷堂 重庆邮电大学 2010-2011 学年 1 学期

生性化数试卷 (期末) (A卷) (闭卷)

| 题  | 号 | _ | 1  | = | 四 | 五 | 六 | 七 | 八 | 总分 |
|----|---|---|----|---|---|---|---|---|---|----|
| 得  | 分 |   | -, |   |   |   |   |   |   |    |
| 评礼 | 人 |   |    |   |   |   |   |   |   |    |

一、计算题(太大颗共7小额,每小额8分,共56分)

2. 设
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
,求 $A^4$ .

3. 举例说明下列命题是错误的: 若  $A^2 = O$  ,则 A = O ,这里 O 为零矩阵.

4. 设 $\alpha_1 = (1,2,3)^T$ ,求非零向量 $\alpha_2$ , $\alpha_3$ ,使向量组 $\alpha_1$ , $\alpha_2$ , $\alpha_3$ 为正交向量组.

5. 用初等变换求矩阵  $\begin{pmatrix} 2 & -1 & 1 & -1 & 3 \\ 4 & -2 & -2 & 3 & 2 \\ 2 & -1 & 5 & -6 & 1 \end{pmatrix}$ 的秩.

6. 已知二次型  $f = 5x_1^2 + 5x_2^2 + ax_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为 2,求常数 a 的值.

7. 设 
$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
, 求  $A^{-1}$ .

二、(本题满分 12 分) 求线性方程组 
$$\begin{cases} x_1 + x_2 = 5 \\ 2x_1 + x_2 + x_3 + 2x_4 = 1 \end{cases}$$
 的通解. 
$$5x_1 + 3x_2 + 2x_3 + 2x_4 = 3$$

线性代数试卷第3页(共5页)

三、(本題满分 12 分) 求矩阵 
$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
 的特征值与特征向量.

四、(本題満分 10 分) 设矩阵 
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,  $B = (kE + A)^2$ , 其中  $k$  为实数,  $E$ 

#### 为单位矩**阵**。

- (1) 求对角矩阵 D, 使 B 与 D 相似;
- (2) 求 k 为何值时, B 为正定矩阵。

五、(本题共2题,每小题5分,共10分)

1. 设 $\eta$ 为非齐次线性方程组Ax = b的一个解, $\xi_1, \xi_2, \cdots, \xi_{n-r}$ 是对应的齐次线性方程组的一个基础解系,试证: $\eta, \xi_1, \xi_2, \cdots, \xi_{n-r}$ 线性无关。

2. 证明: 
$$\begin{vmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x+a_1 \end{vmatrix} = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n.$$

## 2010-2011 学年 1 学期 线性代数试卷参考答案

#### 一、计算题(本大题共7小题,每小题8分,共56分)

1. 解 原式=
$$\begin{vmatrix} 10 & 10 & 10 & 10 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{vmatrix} = 10\begin{vmatrix} 1 & 1 & 1 & 1 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{vmatrix} = 10\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -3 & -2 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & 1 & 2 & -1 \end{vmatrix} = -160.$$

2. 解 
$$A^4 = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}^4 = 3^3 \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 27 & 27 \\ 54 & 54 \end{pmatrix}$$
. (直接计算也可)

3. 解 如取
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
,则 $A^2 = O$ ,但 $A \neq O$ . (其他例子也可)

4. 解 设
$$x = (x_1, x_2, x_3)^T$$
与 $\alpha_1$ 正交,则 $x_1 + 2x_2 + 3x_3 = 0$ 。 ......3 分

解得基础解系为
$$\xi_1 = (-2,1,0)^T$$
,  $\xi_2 = (-3,0,1)^T$ 。 ......5 分

故取 
$$\alpha_2 = \xi_1$$
,  $\alpha_3 = \xi_2 - \frac{[\xi_1, \xi_2]}{[\xi_1, \xi_1]} \xi_1 = \frac{1}{5} (-3, -6, 5)^T$ . ......8 分

5. 
$$\Re$$
  $\begin{pmatrix} 2 & -1 & 1 & -1 & 3 \\ 4 & -2 & -2 & 3 & 2 \\ 2 & -1 & 5 & -6 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & -1 & 1 & -1 & 3 \\ 0 & 0 & -4 & 5 & -4 \\ 0 & 0 & 4 & -5 & -2 \end{pmatrix}$ 

6. 解 
$$f$$
 对应的  $A = \begin{pmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & a \end{pmatrix}$ , ......4 分

由
$$r(A) = 2$$
得 $|A| = 0$ , ......6 分

7. 解 
$$A^{-1} = \begin{pmatrix} 1/5 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -2 & 3 \end{pmatrix}$$
. (用定义、初等变换、分块矩阵等法均可)

二、(本题满分12分)

解 
$$(A:b) = \begin{pmatrix} 1 & 1 & 0 & 0 & 5 \\ 2 & 1 & 1 & 2 & 1 \\ 5 & 3 & 2 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & -8 \\ 0 & 1 & -1 & 0 & 13 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} \dots 6 分$$

基础解系
$$\xi = \begin{pmatrix} -1\\1\\1\\0 \end{pmatrix}$$
, ......8 分 特解 $\eta = \begin{pmatrix} -8\\13\\0\\2 \end{pmatrix}$  ......10 分 (可有其他形式)

通解为
$$\begin{pmatrix} x_1 \\ x_3 \\ x_3 \\ x_4 \end{pmatrix} = k\xi + \eta, \dots 11$$
分 
$$k \in \mathbb{R}. \dots 12$$
分

三、(本題満分 12 分) 解 
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 3 & -3 \\ -3 & \lambda + 5 & -3 \\ -6 & 6 & \lambda - 4 \end{vmatrix} = (\lambda + 2)^2 (\lambda - 4)$$
, ...5 分

故 A 的特征值为  $\lambda_1 = \lambda_2 = -2$  ,  $\lambda_1 = 4$  ......6 分

对于 
$$\lambda_1 = \lambda_2 = -2$$
,特征向量为  $\xi = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ ,  $k_1^2 + k_2^2 \neq 0$ , ......9 分

对于 
$$\lambda_3 = 4$$
,特征向量为  $\eta = k_3 \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ ,  $k_3 \neq 0$ . ......12 分

四、(本题满分10分)

解 (1) (6分) 
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2)^2.$$

A 的特征值为  $\lambda_1 = \lambda_2 = 2$  ,  $\lambda_3 = 0$  . ......3 分

线性代数参考答案第2页(共3页)

从而存在正交矩阵Q,使得  $Q^{-1}AQ = diag(2,2,0)$ . ......5 分

于是
$$Q^{-1}(kE+A)^2Q = \begin{pmatrix} (k+2)^2 & & \\ & (k+2)^2 & \\ & & k^2 \end{pmatrix} = D \qquad \dots 6$$
分

(2)(4分)由(1)知,当k≠0且k≠2时,B=(kE+A)²为正定矩阵......10分 五、(本題共2題,每小題5分,共10分)

1. 证 设有数  $k_0, k_1, k_2, \cdots, k_{n-r}$  ,使得  $k_0 \eta + k_1 \xi_1 + \cdots + k_{n-r} \xi_{n-r} = 0$  , ……2 分

两边同左乘以A得  $k_0b \Rightarrow k_0 = 0$ ,代回得 $k_1\xi_1 + \cdots + k_{n-r}\xi_{n-r} = 0$ ......4分

由  $\xi_1,\xi_2,\cdots,\xi_{n-r}$  线性无关知  $k_1=k_2=\cdots=k_{n-r}=0$ ,所以  $\eta,\xi_1,\xi_2,\cdots,\xi_{n-r}$  线性无关.

.....5 分

$$D_{n} = xD_{n-1} + (-1)^{n+1}a_{n} \begin{vmatrix} -1 & 0 & \cdots & 0 & 0 \\ x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & \cdots & x & -1 \end{vmatrix} = xD_{n-1} + a_{n} \qquad \dots \dots 3 \ \text{A}$$

而
$$D_2 = \begin{vmatrix} x & -1 \\ a_2 & x+a_1 \end{vmatrix} = x^2 + a_1 x + a_2$$
, ......4 分

由递推关系知结果成立. .....5 分 (其他方法也可证明) 试题编号:

## 重庆邮电大学 09-10 学年第二学期

《线性代数》试卷(期末)(A卷)(闭卷)

| 题号  | _ | _ | Ξ | 四四 | 五 | 六六 | 七 | 八 | 总分 |
|-----|---|---|---|----|---|----|---|---|----|
| 得 分 |   |   |   |    |   |    |   |   |    |
| 评卷人 |   |   |   |    |   |    |   |   |    |

#### 一、(本大题共2小题,共10分)

1、(5分) 设矩阵 
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, 求 (A^T B)^T.$$

2、(5 分) 已知当 
$$A = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
时, $A^6 = E$  (E 为单位矩阵),求 $A^{11}$ .

#### 二、(本大题共2小题,共14分)

3、(7分) 设 1, -1, 2 是 3 阶矩阵 A 的特征值,  $\bar{x} | (\frac{1}{2}A)^{-1} - 3A^{-1} |$ .

4、(7分) 计算行列式 
$$D = \begin{vmatrix} x_1 - a & x_2 & \cdots & x_n \\ x_1 & x_2 - a & \cdots & x_n \\ \cdots & \cdots & \cdots & \cdots \\ x_1 & x_2 & \cdots & x_n - a \end{vmatrix}$$
.

#### 三、(本大题共2小题,共14分)

5、(7分) 设矩阵 
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$
, 且  $AX = 2X + A$ , 求  $X$ .

《线性代数》试卷第2页(共6页)

6、(7分) 设 $A = \begin{pmatrix} 3 & 2 \\ 0 & -1 \end{pmatrix}$ ,求可逆矩阵P,使 $P^{-1}AP$ 为对角阵.

#### 四、(本大题共2小题,每小题7分,共14分)

7、(7 分) 写出实二次型  $f(x_1,x_2,x_3)=x_1^2+3x_2^2+5x_3^2+2x_1x_2-4x_1x_3$  的矩阵,并将二次型化为规范形。

8、(7分) 在向量空间  $R^4$  中求一个单位向量  $\eta$ ,使它同时与向量  $\alpha=(1,1,-1,1)^T$ ,  $\beta=(1,-1,1,-1)^T,\ \gamma=(2,1,1,3)^T$  正交.

《线性代数》试卷第3页(共6页)

五、(本大题共2小题,共16分)

9、(8 分) 设向量组  $\alpha_1 = (2,1,4,3)^T$ ,  $\alpha_2 = (-1,1,-6,6)^T$ ,  $\alpha_3 = (-1,-2,2,-9)^T$ ,  $\alpha_4 = (1,1,-2,7)^T$ ,  $\alpha_5 = (2,4,4,9)^T$ , 求该向量组的秩和一个最大线性无关组,并将其余向量由该最大线性无关组线性表示.

10、(8 分) 设向量空间  $R^3$  的两个基为  $\alpha_1 = (1,1,1)^T$ , $\alpha_2 = (1,0,-1)^T$ , $\alpha_3 = (1,0,1)^T$  及  $\beta_1 = (1,2,1)^T$ , $\beta_2 = (2,3,4)^T$ , $\beta_3 = (3,4,3)^T$ ,求由基  $\alpha_1,\alpha_2,\alpha_3$  到基  $\beta_1,\beta_2,\beta_3$  的过渡矩阵 P.

《线性代数》试卷第4页(共6页)

#### 六、(本大题共2小题,共20分)

11、(12分) 当λ为何值时,方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

有唯一解?无解?有无穷多解?并在有无穷多解时求其通解.

12、(8分)已知三阶矩阵 B ≠ O,且 B 的每一个列向量都是以下方程组的解

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 0 \\ 2x_1 - x_2 + \lambda x_3 = 0 \\ 3x_1 + x_2 - x_3 = 0 \end{cases}$$

- 1) 求 λ 的值;
- 2) 证明|B|=0.

七、(本大题共2小题,共12分)

13、(6分)设A,B均为n阶矩阵,且A=B+C,  $B^T=B$ ,  $C^T=-C$ , 证明:  $AA^T=A^TA$ 的充分必要条件是BC=CB.

 $14、(6分 ) 设向量组 \beta_{\rm i} = \alpha_{\rm i}, \beta_{\rm i} = \alpha_{\rm i} + \alpha_{\rm i}, \cdots, \beta_{\rm r} = \alpha_{\rm i} + \alpha_{\rm i} + \cdots + \alpha_{\rm r}, \ \ {\rm II} 向量组$   $\alpha_{\rm i}, \alpha_{\rm i}, \cdots, \alpha_{\rm r}$  线性无关,证明向量组  $\beta_{\rm i}, \beta_{\rm i}, \cdots, \beta_{\rm r}$  线性无关。

《线性代数》试卷第6页(共6页)

## 重庆邮电大学 09 级《线性代数》期末试题参考答案及评分标准

#### (2009-2010 学年第 2 学期)(A卷)

#### 一、(本大题共2小题,共10分)

1、(5分)

解 
$$(A^T B)^T = B^T A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 4 \\ 11 & 1 & 10 \end{pmatrix}$$
. ....................... 5 分

2、(5分)

解 因 $A^6 = E$ ,所以 $A^5 = A^{-1}$ ,

于是 
$$A^{11} = A^5 = A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
. 5分

#### 二、(本大题共2小题,共14分)

3、(7分)

4、(7分)

解

$$D = \begin{vmatrix} x_1 - a & x_2 & \cdots & x_n \\ x_1 & x_2 - a & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n - a \end{vmatrix} = \begin{vmatrix} \sum_{i=1}^{n} x_i - a & x_2 & \cdots & x_n \\ \sum_{i=1}^{n} x_i - a & x_2 - a & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_i - a & x_2 & \cdots & x_n - a \end{vmatrix}$$

$$\begin{vmatrix} 1 & x_2 & \cdots & x_n \end{vmatrix}$$

$$= (\sum_{i=1}^{n} x_{i} - a) \begin{vmatrix} 1 & x_{2} & \cdots & x_{n} \\ 0 & -a & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & -a \end{vmatrix} = (-a)^{n-1} (\sum_{i=1}^{n} x_{i} - a)$$
 \tag{7.7}

#### 三、(本大题共2小题,共14分)

5、(7分)

解 由 AX = 2X + A, 知 (A - 2E)X = A

另解 由 
$$AX = 2X + A$$
,知  $(A - 2E)X = A$  ....... 2 分

$$(A-2E,A) = \begin{pmatrix} -1 & -1 & 0 & 1 & -1 & 0 \\ 0 & -1 & -2 & 0 & 1 & -2 \\ -1 & 0 & -1 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{if.}\mathfrak{BA}} \begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} & \frac{2}{3} & -\frac{4}{3} \\ 0 & 1 & 0 & -\frac{4}{3} & \frac{1}{3} & \frac{4}{3} \\ 0 & 0 & 1 & \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

6、(7分)

解 特征多项式 
$$|A-\lambda E|=\begin{vmatrix} 3-\lambda & 2\\ 0 & -1-\lambda \end{vmatrix}=(\lambda+1)(\lambda-3)$$
,

A 的特征值为 $\lambda = -1, \lambda = 3$ ,

...... 3分

四、(本大题共2小题,共14分)

7、(7分)

$$f(x_1, x_2, x_3) = x_1^2 + 3x_2^2 + 5x_3^2 + 2x_1x_2 - 4x_1x_3 = (x_1 + x_2 - 2x_3)^2 + 2(x_2 + x_3)^2 - x_3^2$$

8、(7分)

解 设  $\xi = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$ ,则  $\xi$  应满足齐次线性方程组

单位化,得 
$$\eta = (0, -\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}})^T$$

..... 7分

五、(本大题共2小题,共16分)

9、(8分)

所以向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 的秩为 3, $\alpha_1,\alpha_2,\alpha_4$ 是一个最大无关组,且

$$\alpha_3 = -\alpha_1 - \alpha_2, \alpha_5 = 4\alpha_1 + 3\alpha_2 - 3\alpha_4. \qquad \qquad 8 \,$$

10、(8分)

解 设 $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)P$ ,令 $A = (\alpha_1, \alpha_2, \alpha_3), B = (\beta_1, \beta_2, \beta_3)$ ,则B = AP,于是 $P = A^{-1}B$ .

$$(A,B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 3 \\ 1 & 0 & 0 & 2 & 3 & 4 \\ 1 & -1 & 1 & 1 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & -1 \end{pmatrix}, \qquad \cdots \qquad 7 \, \mathcal{D}$$

另解 设 $(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)P$ ,令 $A=(\alpha_1,\alpha_2,\alpha_3),B=(\beta_1,\beta_2,\beta_3)$ ,则B=AP,于是

$$P = A^{-1}B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}. \dots 8$$

六、(本大题共2小题,共20分)

11、(12分)

当 $\lambda$ ≠ -2 且 $\lambda$ ≠1时,|A|≠0,方程组有唯一解;

..... 6 4

当 
$$\lambda = -2$$
 时,增广矩阵  $B = (A,b) = \begin{pmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & -2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ 

知 R(A) = 2, R(B) = 3, 故方程组无解;

------8分

当 $\lambda=1$ 时,方程组为 $x_1+x_2+x_3=1$ ,方程组有无穷多解,通解为

12、(8分)

解 1) 由题设知方程组有非零解,所以系数行列式|A|=0,即

$$|A| = \begin{vmatrix} 1 & 2 & -2 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{vmatrix} = 5(\lambda - 1) = 0 \qquad \dots 3 \,$$

得 $\lambda = 1$ ;

••••• 5分

13、(6分)

证 因 
$$A = B + C$$
,  $A^{T} = B^{T} + C^{T} = B - C$ ,

.....1分

$$AA^{T} = (B+C)(B-C) = B^{2} - BC + CB + C^{2}$$
,

14、(6分)

证 由已知条件得矩阵等式

因矩阵 
$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 可逆,故  $\beta_1, \beta_2, \cdots, \beta_r$  线性无关. ..................... 6 分

另证 设 $x_1\beta_1 + x_2\beta_2 + \dots + x_r\beta_r = o$ ,即 $x_1\alpha_1 + x_2(\alpha_1 + \alpha_2) + \dots + x_r(\alpha_1 + \alpha_2 + \dots + \alpha_r) = o$ , $有(x_1 + x_2 + \dots + x_r)\alpha_1 + (x_2 + \dots + x_r)\alpha_2 + \dots + x_r\alpha_r = o$ ,因 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,所以有

$$\begin{cases} x_1 + x_2 + \dots + x_r = 0 \\ x_2 + \dots + x_r = 0 \\ \dots \\ x_r = 0 \end{cases}$$