PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-307783

(43) Date of publication of application : 17.11.1998

(51) Int. C1.

G06F 13/00 G06F 12/00 G06F 15/16 G06F 15/16

(21) Application number : (22) Date of filing:

09-116705

07. 05. 1997

(71) Applicant: N T T DATA:KK

(72) Inventor :

FUJIMOTO HIROSHI

YAMADA TATSUJI MIYAMOTO KUNIO KANZAKI HIROSHI

(54) SITE ACCESS CONTROL SYSTEM AND RECORDING MEDIUM

PROBLEM TO BE SOLVED: To reduce the deviation of loads by distributing loads to plural service sites, and in the case of executing information providing service in response to a user's access request, efficiently distributing the loads so that service can be provided from a service site always optimum to a user. SOLUTION: A main server 2a in a service site 2 and a mirror server 3a in a service site 3 respectively collect site load information and transmit the collected information to a dispatch server 4. The server 4 stores site load information occasionally measured by respective servers 2a, 3a, and when an access request is outputted from a user site 1, selects the server having smaller site load out of the servers 2a, 3a based on the site load information and informs the user site 1 of the Internet protocol(IP) address of the selected server.

LEGAL STATUS

[Date of request for examination]

08. 06. 2000

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-307783

(43)公開日 平成10年(1998)11月17日

(51) Int.Cl.° G 0 6 F 13/00 12/00 15/16	5 4 5	FI G06F 13/00 357Z 12/00 545Z 15/16 370N 380D
		審査請求 未請求 請求項の数12 OL (全 13 頁)
(21)出願番号	特願平9-116705	(71)出願人 000102728
(22)出顧日	平成9年(1997)5月7日	株式会社エヌ・ティ・ディ・データ 東京都江東区豊洲三丁目3番3号 (72)発明者 藤本 浩 東京都江東区豊洲三丁目3番3号 エヌ・ ティ・ティ・データ通信株式会社内 (72)発明者 山田 達司 東京都江東区豊洲三丁目3番3号 エヌ・ ティ・ティ・データ通信株式会社内 (72)発明者 宮本 久仁男 東京都江東区豊洲三丁目3番3号 エヌ・
		ティ・ティ・データ通信株式会社内 (74)代理人 弁理士 木村 満 最終頁に続く

(54) 【発明の名称】 サイトアクセス制御システム及び記録媒体

(57)【要約】

【課題】 複数のサービスサイトに負荷を分散してユーザのアクセス要求に応え、情報提供サービスを行う際に、効率よく負荷を分散させ、常にユーザに最適なサービスサイトからサービスを行うことができ、負荷の偏りを軽減する。

【解決手段】 サービスサイト2のメインサーバ2a及びサービスサイト3のミラーサーバ3aはサイト負荷情報を収集してディスパッチサーバ4に送信する。ディスパッチサーバ4は、メインサーバ2a及びミラーサーバ3aで随時計測されるサイト負荷情報を蓄積し、ユーザサイト1からアクセス要求があると、該サイト負荷情報に基づいて、メインサーバ2a及びミラーサーバ3aのうちのサイト負荷の軽いほうのサーバを選定して、当該サーバの1Pアドレスをユーザサイト1に通知する。

【特許請求の範囲】

【請求項1】通信ネットワークを介してのアクセスに応 答して情報サービスを提供する主サービスサイトと、 前記通信ネットワークを介して前記主サービスサイトと 同等の情報サービスを提供する副サービスサイトと、 前記主サービスサイト及び副サービスサイトに接続さ れ、これらのサイト負荷情報を保持し、且つ前記通信系 を介してユーザサイトからのこれら主サービスサイト及 び副サービスサイトの少なくとも一方へのアクセス要求 を受けて、前記サイト負荷情報に基づいて情報サービス の提供に適するサービスサイトを選択するとともに、選 択したサービスサイトに前記アクセス要求を発したユー ザサイトをアクセスさせるべく、該選択したサービスサ イトのアドレス情報を当該ユーザサイトに提供するディ スパッチ手段と、を具備することを特徴とするサイトア クセス制御システム。

【請求項2】前記ディスパッチ手段は、前記主サービス サイト及び副サービスサイトの複数種のサービス負荷の 統計的情報を含む情報テーブルを保持する情報テーブル 格納手段を備え、該情報テーブルに基づいて、サービス サイトを選択することを特徴とする請求項1に記載のサ イトアクセス制御システム。

【請求項3】前記主サービスサイト及び副サービスサイ トは、

各サイトにおけるサービス負荷情報を計測する手段と、 該手段における計測結果を前記ディスパッチ手段に供給 する計測結果供給手段と、を含み、

前記ディスパッチ手段は、前記計測結果供給手段から供 給された計測結果に基づいて、サービスサイトを選択す ることを特徴とする請求項1又は2に記載のサイトアク セス制御システム。

【請求項4】前記主サービスサイト及び副サービスサイ トの前記計測結果供給手段は、それぞれ、所定時間毎に 前記サービス負荷情報を計測し、計測結果を前記ディス パッチ手段へ供給する手段を含むことを特徴とする請求 項3に記載のサイトアクセス制御システム。

【請求項 5 】前記ディスパッチ手段は、前記主サービス サイト及び副サービスサイトにサービス負荷情報を計測 させる手段を含むことを特徴とする請求項3に記載のサ イトアクセス制御システム。

【請求項 6 】前記ディスパッチ手段は、前記主サービス サイト及び副サービスサイトとは独立したサーバから構 成される、ことを特徴とする請求項1乃至5のいずれか 1 項に記載のサイトアクセス制御システム。

【請求項7】通信ネットワークを介してのアクセスに応 答して情報サービスを提供するとともに、与えられたア ドレス情報に該当するアドレスにレスポンスタイム測定 用データを送受してサイト負荷情報としてのレスポンス タイムを測定する主サービスサイトと、

同等の情報サービスを提供するとともに、与えられたア ドレス情報に該当するアドレスにレスポンスタイム測定 用データを送受してサイト負荷情報としてのレスポンス タイムを測定する1以上の副サービスサイトと、

前記主サービスサイト及び副サービスサイトに結合さ れ、且つ前記通信系を介してユーザサイトからのこれら 主サービスサイト及び副サービスサイトの少なくとも一 方へのアクセス要求を受けて、当該ユーザサイトのアド レス情報を前記主サービスサイト及び副サービスサイト 10 に与え、該主サービスサイト及び副サービスサイトで計 測されるレスポンスタイム情報を含むサイト負荷情報に 基づいて情報サービスの提供に適するサービスサイトを 選択するとともに、選択したサービスサイトに前記アク セス要求を発したユーザサイトをアクセスさせるべぐ、 該選択したサービスサイトのアドレス情報を当該ユーザ サイトに提供するディスパッチ手段と、を具備すること を特徴とするサイトアクセス制御システム。

【請求項8】前記主サービスサイト及び副サービスサイ トは、レスポンスタイムの測定結果が得られると、直ち に、該レスポンスタイムの測定情報を前記ディスパッチ 20 手段に送信する手段を含むことを特徴とする請求項6又 は7に記載のサイトアクセス制御システム。

【請求項9】通信ネットワークを介してのアクセスに応 答して情報サービスを提供するとともに、与えられたア ドレス情報のアドレスへのファイル転送のスループット をサイト負荷情報として測定する主サービスサイトと、 前記通信ネットワークを介して前記主サービスサイトと 同等の情報サービスを提供するとともに、与えられたア ドレス情報のアドレスへのファイル転送のスループット をサイト負荷情報として測定する副サービスサイトと、

前記主サービスサイト及び副サービスサイトに結合さ れ、且つ前記通信系を介してのユーザサイトからのこれ ら主サービスサイト及び副サービスサイトの少なくとも 一方へのアクセス要求に応答して、当該ユーザサイトの アドレス情報を前記主サービスサイト及び副サービスサ イトに与え、前記主サービスサイト及び副サービスサイ トからそれぞれ転送されるファイルを含む最初のタイト ルページをユーザサイトに提供して、該主サービスサイ ト及び副サービスサイトで計測されるスループット情報 40 を含むサイト負荷情報に基づいて情報サービスの提供に 適するサービスサイトを選択するとともに、選択したサ ーピスサイトに前記アクセス要求を発したユーザサイト をアクセスさせるべく、該選択したサービスサイトのア ドレス情報を当該ユーザサイトに提供するディスパッチ 手段と、を具備することを特徴とするサイトアクセス制 御システム。

【請求項10】前記副サービスサイトは、前記主サービ スサイトと同一のサービス情報を保持する前記主サービ 前記通信ネットワークを介して前記主サービスサイトと 50 項1乃至9のいずれか1項に記載のサイトアクセス制御 スサイトのミラーサイトを含む、ことを特徴とする請求

システム。

【請求項11】アクセス要求に応答して情報サービスを 提供する第1と第2のサービスサイトと、

前記第1及び第2のサービスサイトの負荷情報を保持する負荷情報保持手段と.

前記第1サービスサイト及び第2サービスサイトの少なくとも一方へのアクセス要求を受けて、前記負荷情報に基づいて、情報サービスの提供に適するサービスサイトを選択するとともに、選択したサービスサイトに前記アクセス要求を発したユーザサイトをアクセスさせるディスパッチ手段と、を具備することを特徴とするサイトアクセス制御システム。

【請求項12】コンピュータを、

前記通信系を介してユーザサイトからのこれら主サービスサイト及び副サービスサイトの少なくとも一方へのアクセス要求を受け付ける受け付け手段と、

前記アクセス要求に対する情報サービスの提供に適する サービスサイトを選択する選択手段と、

前記選択手段により選択されたサービスサイトに前記アクセス要求を発したユーザサイトをアクセスさせるべく、該選択したサービスサイトのアドレス情報を当該ユーザサイトに提供する手段と、

して機能させるプログラムを記録した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、ネットワーク上での情報提供サービスを、複数の共通の情報内容のサービスサイトにより行うことにより、負荷を分散させて大量のアクセスに対処するシステムに係り、特に負荷分散の効率を向上させるためのサイトアクセス制御システムに関する。

[0002]

【従来の技術】近年、インターネットの急激な発展に伴い、インターネット上におけるWWW(World Wide Web)又はFTP(File Transfer Protocol)による情報提供サービスが盛んに行われている。すなわち、この種の情報提供サービスは、WWWサーバを有するWWWサイト又はFTPサーバを有するFTPサイトをサービス提供サイトすなわちサービスサイトとして提供情報をサービスする。

【0003】このような、WWWサイト及びFTPサイト等における情報提供は、これらのサービスサイトがユーザからのアクセス要求を受けて、当該サイト又はそれと連携する他のサイトから、アクセスしたユーザにサービス情報を転送することにより行われる。

【0004】ところで、ネットワーク上の多数のユーザが、同一のサービスサイトに同時にアクセス要求したときには、該当するサービスサイトのWWWサーバ又はFTPサーバにアクセス要求が集中する。このように、アクセス要求が集中し過大な負荷となったときには、サー

バはアクセス要求に対応しきれなくなり、アクセスを拒否したり、ユーザサイトへの情報データの転送速度が著しく低下したり、情報データの転送が転送途中で中断されあるいは停止したりして、サービスが低下する。

【0005】このような、アクセスの集中によるサービスの低下を回避するため、同一の提供情報を、複数のサイトに配置して、負荷を分散させることが行われている。典型的な手法としては、主となるメインサイトと全く同一の提供情報(提供対象の情報)を全く同様に配置したミラーサイトを設置し、メインサイト及びミラーサイトのいずれかをアクセスすることにより、共通の情報提供を受けることができるようにする手法が知られてる。

【0006】従来、このようなミラーサイトが存在するサイトを、アクセスする際に、実際に情報サービスを受けるサイトの選択は、次のようにして行っていた。すなわち、メインサイト及びミラーサイトのそれぞれに対するアドレス情報、インターネット上では通常の場合URL(Uniform Resource Locator)が予めユーザに提示され、ユーザが主観によって所望のURLを選択してアクセスする。又は、メインサイト及びミラーサイトのいずれかにユーザがアクセス要求を与えると、サービスサイトからランダムに選定して割り当てたサイトのアドレス情報、例えばIP(Internet Protocol)アドレスやURLをユーザに返し、ユーザは割り当てられたIPアドレスやURLを用いてアクセスする。

[0007]

【発明が解決しようとする課題】このように、従来は、ユーザが主観に基づいてサイトを選択したり、ランダム に割り当てられたサイトを強制的に選択させられたりしていた。このような方法でのサイトの選択には、以下のような問題があった。

【0008】(1) サイトの選択にサイトの負荷の状態が勘案されていない。このため、アクセスが1サイトに集中したり、ユーザアクセス以外の外因によりサーバ負荷が上昇したりした場合、各サービスサイト間の負荷のバランスが崩れ、結果的にユーザへのサービスのレスポンスが遅れる。

【0009】(2) ユーザの接続条件及び各サービスサイ 40 トの負荷条件が勘案されていないため、ユーザにとって 最適なサイトへ接続されるとは限らない。

【0010】(3) サービスサイトの割当てはランダムであるため、複数のサービスサイトのうち1つのサイトのサービスが停止した場合にも、停止したサイトへアクセスが割り当てられるおそれがあり、そのような場合にはサービスを提供することができなかった。

【0011】この発明は、上述した事情に鑑みてなされたもので、最適なサービスサイトからサービスを行うことができるサイトアクセス制御システムを提供すること 50 を目的とする。また、この発明は、負荷の偏りを軽減し

て快適なサービスを達成し得るサイトアクセス制御シス テムを提供することを他の目的とする。

5

[0012]

【課題を解決するための手段】上記目的を達成するた め、この発明の第1の観点によるサイトアクセス制御シ ステムは、通信ネットワークを介してのアクセスに応答 して情報サービスを提供する主サービスサイトと、前記 通信ネットワークを介して前記主サービスサイトと同等 の情報サービスを提供する1以上の副サービスサイト と、前記主サービスサイト及び副サービスサイトに結合 されてこれらのサイト負荷情報を保持し、且つ前記通信 系を介してユーザサイトからのこれら主サービスサイト 及び副サービスサイトの少なくとも一方へのアクセス要 求を受けて、前記サイト負荷情報に基づいて情報サービ スの提供に適するサービスサイトを選択するとともに、 選択したサービスサイトに前記アクセス要求を発したユ ーザサイトをアクセスさせるべく、該選択したサービス サイトのアドレス情報を当該ユーザサイトに提供するデ ィスパッチ手段と、を具備する。

【0013】前記副サービスサイトは、前記主サービスサイトと同一のサービス情報を保持する前記主サービスサイトのミラーサイトを含んでいてもよい。

【0014】前記ディスパッチ手段は、前記主サービスサイト及び副サービスサイトの複数種のサービス負荷の統計的情報を含む情報テーブルを保持する情報テーブル格納手段を有し、この情報テーブルに基づいてサービスサイトを選択するようにしてもよい。

【0015】前記主サービスサイト及び副サービスサイトは、各サイトにおけるサービス負荷情報を計測する手段と、該手段における計測結果を前記ディスパッチ手段 30 に供給する手段と、を含み、前記ディスパッチ手段は、前記計測結果供給手段から供給された計測結果に基づいて、サービスサイトを選択してもよい。

【0016】前記主サービスサイト及び副サービスサイトにおけるサービス負荷情報を計測する手段及び計測結果を前記ディスパッチ手段に供給する手段は、それぞれ、所定時間毎に前記サービス負荷情報の計測及び計測結果の前記ディスパッチ手段への供給を行う手段を含んでいてもよい。前記ディスパッチ手段は、前記主サービスサイト及び副サービスサイトにサービス負荷情報を計測させる手段を含んでいてもよい。

【0017】前記ディスパッチ手段は、例えば、前記主サービスサイト及び副サービスサイトとは独立したサーバから構成される。

【0018】この発明の第2の観点によるサイトアクセス制御システムは、通信ネットワークを介してのアクセスに応答して情報サービスを提供するとともに、与えられたアドレス情報に該当するアドレスにレスポンスタイムを測定用データを送受してサイト負荷情報としてのレスポンスタイムを測定する主サービスサイトと、前記通信

ネットワークを介して前記主サービスサイトと同等の情 報サービスを提供するとともに、与えられたアドレス情 報に該当するアドレスにレスポンスタイム測定用データ を送受してサイト負荷情報としてのレスポンスタイムを 測定する 1 以上の副サービスサイトと、前記主サービス サイト及び副サービスサイトに結合され、且つ前記通信 系を介してユーザサイトからのこれら主サービスサイト 及び副サービスサイトの少なくとも一方へのアクセス要 求を受けて、当該ユーザサイトのアドレス情報を前記主 10 サービスサイト及び副サービスサイトに与え、該主サー ピスサイト及び副サーピスサイトで計測されるレスポン スタイム情報を含むサイト負荷情報に基づいて情報サー ビスの提供に適するサービスサイトを選択するととも に、選択したサービスサイトに前記アクセス要求を発し たユーザサイトをアクセスさせるべく、該選択したサー ビスサイトのアドレス情報を当該ユーザサイトに提供す るディスパッチ手段と、を具備する。

6

【0019】前記副サービスサイトは、前記主サービスサイトと同一のサービス情報を保持する前記主サービス サイトのミラーサイトを含んでいてもよい。前記主サービスサイト及び副サービスサイトは、レスポンスタイムの測定結果が得られると、直ちに、該レスポンスタイムの測定情報を前記ディスパッチ手段に送信する手段を含んでいてもよい。

【0020】この発明の第3の観点によるサイトアクセ ス制御システムは、通信ネットワークを介してのアクセ スに応答して情報サービスを提供するとともに、与えち れたアドレス情報のアドレスへのファイル転送のスルー プットをサイト負荷情報として測定する主サービスサイ トと、前記通信ネットワークを介して前記主サービスサ イトと同等の情報サービスを提供するとともに、与えら れたアドレス情報のアドレスへのファイル転送のスルー プットをサイト負荷情報として測定する1以上の副サー ピスサイトと、前記主サービスサイト及び副サービスサ イトに結合され、且つ前記通信系を介してのユーザサイ トからのこれら主サービスサイト及び副サービスサイト の少なくとも一方へのアクセス要求に応答して、当該ユ ーザサイトのアドレス情報を前記主サービスサイト及び 副サービスサイトに与え、前記主サービスサイト及び副 40 サービスサイトからそれぞれ転送されるファイルを含む 最初のタイトルページを提供して、該主サービスサイト 及び副サービスサイトで計測されるスループット情報を 含むサイト負荷情報に基づいて情報サービスの提供に適 するサービスサイトを選択するとともに、選択したサー ピスサイトに前記アクセス要求を発したユーザサイトを アクセスさせるべく、該選択したサービスサイトのアド レス情報を当該ユーザサイトに提供するディスパッチ手 段と、を具備する。

【0021】第1乃至第3の観点によるサイトアクセス 50 制御システムにおいて、前記副サービスサイトは、前記 7

主サービスサイトと同一のサービス情報を保持する前記 主サービスサイトのミラーサイトを含んでいてもよい。 【0022】この発明に係るサイトアクセス制御システ ムは、ディスパッチ手段が、主サービスサイト及び副サ ーピスサイトの少なくとも一方へのアクセス要求を受け て、サイト負荷情報に基づいて情報サービスの提供に適 するサービスサイトを選択する。また、選択したサービ スサイトに前記アクセス要求を発したユーザサイトをア クセスさせるべく、該選択したサービスサイトのアドレ ス情報を当該ユーザサイトに提供する。従って、各サー ビスサイトの負荷のバランスを保つことが可能となり、 サイト資源を効率よく利用することができ、負荷の集中 が回避できる。また、停止したサービスサイトへはアク セスが割り当てられないため、いずれかのサービスサイ トが停止したとしても、1つのサービスサイトの停止に よりユーザへのサービスが停止することはない。従っ て、ユーザは自動的に最も良好なサービスを受けること のできるサイトにアクセスすることができることにな る。

【0023】また、この発明の第4の観点によるサイトアクセス制御システムは、アクセス要求に応答して情報サービスを提供する第1と第2のサービスサイトと、前記第1及び第2のサービスサイトの負荷情報を保持する負荷情報保持手段と、前記第1サービスサイト及び第2サービスサイトの少なくとも一方へのアクセス要求を受けて、前記負荷情報に基づいて、情報サービスの提供に適するサービスサイトを選択するとともに、選択したサービスサイトに前記アクセス要求を発したユーザサイトをアクセスさせるディスパッチ手段と、を具備することを特徴とする。

【0024】このサイトアクセス制御システムでは、ディスパッチ手段が、サイトの負荷情報に基づいて情報ヤービスの提供に適するサービスサイトを選択し、アクセスさせる。従って、各サービスサイトの負荷のバランスを保つことが可能となり、サイト資源を効率よく利用することができ、負荷の集中が回避できる。また、いずれかのサービスサイトが停止したとしても、停止したサービスサイトへはアクセスが割り当てられないたり、1つのサービスサイトの停止によりユーザへのサービスがらいたがあります。従って、ユーザは自動的に最も良好なサービスを受けることのできるサイトにアクセスすることができる。

【0025】また、この発明の第4の観点に係る記録媒体には、コンピュータを、前記通信系を介してユーザサイトからのこれら主サービスサイト及び副サービスサイトの少なくとも一方へのアクセス要求を受け付ける受け付け手段と、前記アクセス要求に対する情報サービスの提供に適するサービスサイトを選択する選択手段と、前記選択手段により選択されたサービスサイトに前記アクセス要求を発したユーザサイトをアクセスさせるべく、

該選択したサービスサイトのアドレス情報を当該ユーザ サイトに提供する手段と、として機能させるプログラム が記録されている。

[0026]

【発明の実施の形態】以下、この発明の実施の形態を図面を参照して説明する。図1~図5を参照して、この発明の第1の実施の形態に係るサイトアクセス制御システムを説明する。

【0027】図1は、この発明の第1の実施の形態に係 10 るサイトアクセス制御システムが組み込まれた情報提供 サービスシステムの構成を示している。

【0028】図1に示す情報提供サービスシステムは、インターネットINにそれぞれ結合されるユーザサイト 1、第1のサービスサイト2、第2のサービスサイト3 及びディスパッチサーバ4を備えている。

【0029】ユーザサイト1は、クライアント(クライアントシステム)1aを備える。クライアント1aは、例えばルータ及び回線等の接続設備C1を介してインターネットINに接続されており、オペレータの操作に応じて、第1又は第2のサービスサイト2又は3へのアクセス要求を、ディスパッチサーバ4に送る。また、クライアント1aは、ディスパッチサーバ4から与えられるIPアドレスにより選択されたサーバをアクセスして、サービスの提供を受ける。なお、図1では、ユーザサイト1を1個だけ示しているが、インターネット1N上には、ユーザサイト1と同様の多数のユーザサイトが結合されている。

【0030】第1のサービスサイト2は、メインサイトであり、メインサーバ2aを有する。メインサーバ2a
30 は、接続設備C2(ルータ及び回線等)を介してインターネットINに接続されている。メインサーバ2aは、サーバCPU(中央処理装置)負荷、回線使用率、ディスク入出力負荷、コネクション数、転送要求数及びコネクション確立時間等のサイト負荷情報を所定時間毎に測定又は取得する機能を有している。メインサーバ2aは、例えば一定時間毎に得たサーバCPU負荷、回線使用率、ディスク入出力負荷、コネクション数、転送要求数及びコネクション確立時間等のサイト負荷情報をディスパッチサーバ4に供給する。

40 【0031】第2のサービスサイト3は、メインサイトと同様の情報を提供し得るミラーサイトであり、ミラーサーバ3aを有する。ミラーサーバ3aは、メインサーバと共通の情報内容を有しており、接続設備C3を介してインターネット1Nに接続されている。ミラーサーバ3aも、メインサーバ2aと同様に、サーバCPU負荷、回線使用率、ディスク入出力負荷、コネクション確立時間毎に得たサーる。ミラーサーバ3aも、例えば一定時間毎に得たサー50 バCPU負荷、回線使用率、ディスク入出力負荷、コネ

20

る。

クション数、転送要求数及びコネクション確立時間等の サイト負荷情報をディスパッチサーバ4に供給する。

【0032】ディスパッチサーバ4は、ユーザサイト1 から、メインサイト2及びミラーサイト3へのアクセス を管理及び制御する。ディスパッチサーバ4は、接続設 備C4を介してインターネットINに接続されている。 なお、ディスパッチサーバ4は、インターネットINに 単独で接続され、独立した構成として示したが、第1の サービスサイト2又は第2のサービスサイト3内に設け るようにしてもよい。

【0033】ディスパッチサーバ4は、メインサーバ2 a 及びミラーサーバ3 a から与えられるサイト負荷情報 を内部に統計的に蓄積する。ディスパッチサーバ4は、 ユーザサイト1からアクセス要求があると、内部に蓄積 した統計的なサイト負荷情報に基づいて、メインサーバ 2 a 及びミラーサーバ 3 a のうちのサイト負荷の軽いほ うのサーバを選定して、当該サーバのJPアドレスをユ ーザサイト1に通知する。

【0034】図1の情報提供サービスシステムの機能に 基づくシステム構成を図2に示す。図2に示すように、 このシステムは、実質的に、クライアント1a、メイン サーバ 2 a 、ミラーサーバ 3 a 及びディスパッチサーバ 4から構成されている。メインサーバ2aは、サーバC PU負荷測定部21、回線使用率取得部22、ディスク 入出力負荷取得部23、コネクション数取得部24、転 送要求数取得部25及びコネクション確立時間取得部2 6を有している。ミラーサーバ3aは、メインサーバ2 aと実質的に同一に構成されている。

【0035】ディスパッチサーバ4は、サイト情報蓄積 部41、サイト情報テーブル格納部42及び振り分け管 理部43を有している。

【0036】メインサーバ2aのサーバCPU負荷測定 部21は、メインサーバ2a(又はミラーサーバ3a) のCPU負荷(CPUの負荷)を一定時間間隔で取得す る。サーバCPU負荷測定部21は、取得した情報を、 逐次、ディスパッチサーバ4のサイト情報蓄積部41に 供給する。

【0037】回線使用率取得部22は、メインサーバ2 a(又はミラーサーバ3a)の属するサービスサイト2 (又は3) とインターネットINとを接続している回線 の使用率を一定時間間隔で取得する。回線使用率取得部 22は、取得した情報を、逐次、ディスパッチサーバ4 のサイト情報蓄積部41に供給する。

【0038】ディスク入出力負荷取得部23は、当該メ インサーバ 2 a (又はミラーサーバ 3 a)のディスク入 出力負荷を一定時間間隔で取得し、取得した情報を、デ ィスパッチサーバ4のサイト情報蓄積部41に供給す

【0039】コネクション数取得部24は、当該メイン

a 等の端末との間のセッション数すなわちコネクション 数を一定時間間隔で取得する。コネクション数取得部 2 4は、取得した情報を、逐次、ディスパッチサーバ4の サイト情報蓄積部41に供給する。

【0040】転送要求数取得部25は、サービスしてい るプロトコルにおけるコネクション確立時間を取得し、 取得した情報を、逐次、ディスパッチサーバ4のサイト 情報蓄積部41に供給する。例えば、コネクション確立 時間取得部26は、ユーザサイト1のクライアント1a 10 等の端末からのHTTP(HyperText Transfer Protoco 1) による接続要求があってから、HTTP接続が完了 するまでの平均時間を一定時間間隔で取得し、取得した 情報を、逐次、ディスパッチサーバ4のサイト情報蓄積 部41に供給する。

【0041】コネクション確立時間取得部26は、ユー ザサイト1のクライアント1a等の端末からのHTTP (HyperText Transfer Protocol) による接続要求があ ってから、HTTP接続が完了するまでの平均時間を一 定時間間隔で取得する。コネクション確立時間取得部 2 6は、取得した情報を、逐次、ディスパッチサーバ4の サイト情報蓄積部41に供給する。

【0042】負荷情報としては、サーバCPU負荷、回 線使用率、ディスク入出力負荷、コネクション数、転送 要求数及びコネクション確立時間の他に、平均スループ ット等を用いることもできる。

【0043】ディスパッチサーバ4のサイト情報蓄積部 41は、メインサーバ2a及びミラーサーバ3aのサー バCPU負荷測定部21、回線使用率取得部22、ディ スク入出力負荷取得部23、コネクション数取得部2 4、転送要求数取得部 2 5 及びコネクション確立時間取 得部26等から供給されるサーバCPU負荷、回線使用 率、ディスク入出力負荷、コネクション数、転送要求数 及びコネクション確立時間の各情報を収集し、サイト情 報テーブル格納部42のサイト情報テーブルに蓄積す

【0044】サイト情報蓄積部41は、サイト情報テー ブル格納部42にサーバCPU負荷、回線使用率、ディ スク入出力負荷、コネクション数、転送要求数及びコネ クション確立時間の各情報を収集し蓄積する際に、統計 40 処理を施す。サイト情報テーブル格納部42は、図3に 示すように、サイト毎の、サーバCPU負荷、回線使用 率、ディスク入出力負荷、コネクション数、転送要求数 及びコネクション確立時間の各情報からなるサイト情報 テーブルを格納する。

【0045】振り分け管理部43は、サイト情報テープ ル格納部42に格納されたサービスサイト毎のサイト負 荷情報、すなわちサーバCPU負荷、回線使用率、ディ スク入出力負荷、コネクション数、転送要求数及びコネ クション確立時間の各情報に基づき所定の選択アルゴリ サーバ2a(又はミラーサーバ3a)とクライアント1 *50 ズム*に従って、サイト負荷情報を比較し、ユーザに対し

てサービスの品質が高いと思われるサービスサイトを選択する。この振り分け管理部43におけるサイト負荷情報の比較結果に基づく選択アルゴリズムは、サーバCPU負荷、回線使用率、ディスク入出力負荷、コネクション数、転送要求数、コネクション確立時間及びインターネットINと接続されている回線の使用率等は小さい又は低いほうがユーザに対するサービスの品質が高いと判定し、平均スループットは高いほうがユーザに対するサービスの品質が高いと判定するようなアルゴリズムとする。

【0046】次に、図1及び図2に示した情報提供サービスシステムの動作について、図4〜図6に示すフローチャートを参照して説明する。

【0047】まず、デイスパッチサーバ4は、サービスサイト2及び3の各サイトの負荷に関する情報を収集している。ディスパッチサーバ4のサイト情報蓄積部41は、サイト負荷情報が与えられるとその都度、図4に示す処理を起動して、まず受信した負荷情報の種類(サービスサイト2の負荷情報かサービスサイト3の負荷情報かサービスサイト3の負荷情報がサービスサイト3の負荷情報がサービスサイトの設度用率、ディスク入出力負荷、コネクション数、転送要求数及びコネクション確立時間のうちのどれか)を判別する(ステップS11)。そして、判別した負荷情報の種類に従ってサイト情報テーブル格納部42に格納されるサイト情報テーブル格納部42に格納されるサイト情報テーブルの該当するサービスサイトの該当する項目に対応する個所に書き込む(ステップS12)。

【0048】ユーザサイト1からディスパッチサーバ4に対してアクセスがあった場合、デイスパッチサーバ4の振り分け管理部43は、サイト情報テーブル格納部42に格納されている各サイトからの負荷情報を比較し、最も負荷が小さいか又は最も高速な転送が期待されるなど、ユーザに対してサービスの品質が高いと思われるサービスサイトのサーバを選択する。振り分け管理部43は、選択したサーバをユーザサイト1に通知する。

【0049】この振り分け処理を、図5を参照して詳細に説明する。振り分け管理部43は、ユーザサイト1からアクセスがあると図5に示す処理を起動する。振り分け管理部43は、まず、サイト情報テーブル格納部42からサイト負荷情報を取り出し(ステップS21)、サービスサイト2と3との間でサイト負荷情報を比較する(ステップS22)。ステップS23におけるサイト負荷情報の比較により、ユーザに対してサービスの品質が高いと思われるサービスサイトが選択され決定される

(ステップS23)。 サービスサイトが選択されると、 当該サービスサイトのサーバのIPアドレスが、ユーザ サイト1のクライアント1aに通知される(ステップS 24)。

【0050】その結果、ユーザサイト1のクライアント 1は、通知されたサービスサイトのサーバへアクセスす る。なお、サイト負荷情報の比較にあたり、サーバCP U負荷、回線使用率、ディスク入出力負荷、コネクション数、転送要求数及びコネクション確立時間は小さい又は低いほうがユーザに対するサービスの品質が高いと判定される。

12

【0051】したがって、システム全体としての動作の 流れは、図6に示すフローチャートのようになる。

(1) サービスサイト2及び3は、各サービスサイト内で 常時統計データの収集を行っており、デイスパッチサー バ4に対してサイト負荷情報を随時転送している。

10 【0052】(2) ディスパッチサーバ4は、サイト負荷情報を受け取り、転送元のサービスサイトと転送された情報の種類を認識して、サイト情報テーブル上の該当位置に書き込む。以上の処理(1)及び(2)は、ユーザサイト1からのアクセスとは非同期に実行されている。

【0053】(3) ユーザサイト1のクライアント1aからデイスパッチサーバ4に対してアクセスがあった場合(図6、ステップS31)、ディスパッチサーバ4はサイト情報テーブルより、サービスサイト2及び3の負荷情報を取得し、選択アルゴリズムに基づいてサイト負荷を比較して(ステップS32)、適切なサービスサイトを一意に選択決定する(ステップS33)。この際、停止中のサーバ等は当然選択しない。

【0054】(4) 決定したサービスサイトのサーバの I Pアドレスをユーザサイト1のクライアント1 a に返す (ステップS34)。

(5) ユーザサイト1は、与えられたIPアドレスを用いて、選択されたサービスサイトのサーバにアクセスする (ステップS35)。

【0055】このようにして、各サービスサイトのアクセス負荷のバランスを保つため、サイト資源が効率良使用でき、さらには局所への負荷集中が回避できる。のことは、サービスサイトにおけるシステムダウンしたとしても、ダウンしているサービスサービスが悪影響を被ることはない。このため、中でスが悪影響を被ることはない。このため、管理場合にも、そのサービスサイトを停止してメインテナンス等でサービスサイトを停止してメインテナンス等でサービスサイトを停止してメナイトが新たにアクセスされることができる。その結果、ユーザは自動に最も高速にサービスを受けることのできるサービスサイトにアクセスすることが可能となる。

【0056】(第2の実施の形態)図7は、この発明の第2の実施の形態に係るサイトアクセス制御システムが組み込まれた情報提供サービスシステムの構成を示している。

【0057】図7に示す情報提供サービスシステムは、インターネットINにそれぞれ結合されるユーザサイト1、第1のサービスサイト20、第2のサービスサイト30及びディスパッチサーバ40を備えている。ユーザ

サイト1は、図1の場合と全く同様であり、クライアン ト1aを有し、該クライアント1aは、例えばルータ及 び回線等の接続設備C1を介してインターネットINに 接続されている。

【0058】第1のサービスサイト20は、メインサイ トであり、メインサーバ20aを有する。メインサーバ 20aは、接続設備C2 (ルータ及び回線等)を介して インターネットINに接続されている。メインサーバ2 Oaは、ディスパッチサーバ40からユーザサイト1の クライアント1aのIPアドレスを受信すると、そのI Pアドレスに対してレスポンスタイムを測定する機能を 有する。すなわち、メインサーバ20aは、ディスパッ チサーバ40から受信したIPアドレスのクライアント 1 a \sim 1 C M P (Internet Control Message Protoco 1) パケットやUDP (User Datagram Protocol) パケ ットを送信し、応答パケットを受信して、クライアント 1 a のレスポンスタイムを測定する。メインサーバ20 aは、測定したレスポンスタイムをディスパッチサーバ 40へ送信する。

【0059】第2のサービスサイト30は、メインサイ トと同様の情報を提供し得るミラーサイトであり、ミラ ーサーバ30aを有する。ミラーサーバ30aは、メイ ンサーバと共通の情報内容を有しており、接続設備C3 を介してインターネットINに接続されている。ミラー サーバ30aも、メインサーバ20aと同様に、ディス パッチサーバ40からユーザサイト1のクライアント1 aのIPアドレスを受信すると、そのIPアドレスに対 してレスポンスタイムを測定する機能を有する。すなわ ち、ミラーサーバ30aは、ディスパッチサーバ40か ら受信したIPアドレスのクライアント1aへICMP パケットを送信し、応答パケットを受信して、クライア ント1aのレスポンスタイムを測定する。ミラーサーバ 30aは、測定したレスポンスタイムをディスパッチサ ーバ40へ送信する。

【0060】ディスパッチサーバ40は、ユーザサイト 1から、上述したメインサイト及びミラーサイト、すな わち第1及び第2のサービスサイト20及び30へのア クセスを管理制御する。該ディスパッチサーバ40は、 接続設備C4を介してインターネットINに接続されて いる。この場合も、ディスパッチサーバ40は、インタ ーネットINに対して単独で接続して独立に設けるよう にしたが、他のサイト、例えば第1のサービスサイト2 0又は第2のサービスサイト30内に設けるようにして もよい。

【0061】ディスパッチサーバ40は、ユーザサイト 1 からアクセス要求を受けると、クライアント1 a の l Pアドレスをメインサーバ20a及びミラーサーバ30 aに与える。このIPアドレスに基づいてメインサーバ 20a及びミラーサーバ30aで計測され、これらから

ッチサーバ40は、このレスポンスタイム情報に基づい て、メインサーバ20a及びミラーサーバ30aのうち のレスポンスタイムの短いほうのサーバを選定して、当 該サーバのIPアドレスをユーザサイト1に通知する。 ユーザサイト1は、提供された I Pアドレスにアクセス する.

【0062】このようなシステムの動作を図8のフロー チャートを参照して説明する。ユーザサイト1からのア クセスがディスパッチサーバに到達すると(ステップS 10 41)、各サービスサイト20、30のメインサーバ2 O a 及びミラーサーバ 3 O a に対してユーザサイト1の クライアント1aのIPアドレスを通知する (ステップ S42).

【0063】各サービスサイト20、30では、サーバ 20a、30a、又はサイト内のいずれかの機器がIP アドレスを受け取る。次に、受け取ったIPアドレスに 対してICMPパケットを送信し、応答パケットを受信 して、このときクライアント1aのレスポンスタイムの 測定を行なう(ステップS43)。メインサーバ20a 20 及びミラーサーバ30aは、レスポンスタイムをデイス パッチサーバ40へ通知する(ステップS44)。

【0064】ディスパッチサーバ40では、各サイト2 0、30からのレスポンスタイム情報を比較し(ステッ プS45)、最もレスポンスタイムの短いサイトを選択 し(ステップS46)、そのIPアドレスをユーザサイ ト1へつたえる (ステップS47)。 ユーザサイト1 は、通知されたIPアドレスを用い、選択されたサービ スサイトをアクセスする(ステップS48)。

【0065】このような構成によっても、複数のサイト 30 のうちの最適なサイトにアクセスすることができる。

【0066】(第3の実施の形態)図9は、この発明の 第3の実施の形態に係るサイトアクセス制御システムが 組み込まれた情報提供サービスシステムの構成を示して いる。図9に示す情報提供サービスシステムは、インタ ーネットINにそれぞれ結合されるユーザサイト1、第 1のサービスサイト200、第2のサービスサイト30 0及びディスパッチサーバ400を備えている。ユーザ サイト1は、図1及び図7の場合と全く同様である。

【0067】ディスパッチサーバ400は、ユーザサイ 40 ト1から、メインサイト及びミラーサイト、すなわち第 1及び第2のサービスサイト200及び300へのアク セスを管理制御する。該ディスパッチサーバ400は、 接続設備C4を介してインターネットINに接続されて いる。ディスパッチサーバ400は、第1のサービスサ イト200又は第2のサービスサイト300内に設ける ようにしてもよい。

【0068】ディスパッチサーバ400は、ユーザサイ ト1からアクセス要求を受けると、最初にアクセスされ るタイトルページの情報を保持している。このタイトル 与えられるレスポンスタイム情報を保持する。ディスパ 50 ページは、複数のファイルを用いて構成され、ディスパ

ッチサーバ400に存在するファイルの他、メインサー バ200a及びミラーサーバ300aから転送される例 えば画像ファイルを用いている。すなわち、ユーザサイ ト1からのアクセスがあると、該タイトルページをクラ イアント1aに形成するために、ディスパッチサーバ4 0 0 からの転送情報に加えて、メインサーバ 2 0 0 a 及 びミラーサーバ300aから画像ファイルが転送され る。

【0069】第1のサービスサイト200は、メインサ イトであり、メインサーバ200aを有する。該メイン サーバ200aは、接続設備C2 (ルータ及び回線等) を介してインターネットINに接続されている。メイン サーバ200aは、ディスパッチサーバ400によるタ イトルページの形成のために要求される画像ファイルを ユーザサイト1のクライアント1aに転送し且つその画 像ファイル転送時のスループット及び転送先IPアドレ スを調べる機能を有する。すなわち、メインサーバ20 O a は、画像転送時にクライアント1 a への画像転送の スループットを測定し、測定したスループット情報を転

【0070】第2のサービスサイト300は、メインサ イトと同様の情報を提供し得るミラーサイトであり、ミ ラーサーバ300aを有する。該ミラーサーバ300a は、メインサーバと共通の情報内容を有しており、接続 設備C3を介してインターネットINに接続されてい る。ミラーサーバ300aも、メインサーバ200aと 同様に、ディスパッチサーバ400によるタイトルペー ジの形成のために要求される画像ファイルをユーザサイ ト1のクライアント1aに転送し且つその画像ファイル 転送時のスループット及び転送先IPアドレスを調べる 機能を有する。すなわち、ミラーサーバ300aは、画 像転送時にクライアント1aへの画像転送のスループッ トを測定し、測定したスループット情報を転送先IPア ドレスとともにディスパッチサーバ400へ送信する。 【0071】ディスパッチサーバ400は、メインサー バ200a及びミラーサーバ300aかち与えられるス ループット情報に基づいて、メインサーバ200a及び ミラーサーバ300aのうちのスループットが高いほう のサーバを選定して、当該サーバのIPアドレスをユー ザサイト1に通知する。

【0072】このシステムの動作を図10のフローチャ ートを参照して説明する。WWWを使用した情報提供サ ーピスを運用する場合において、ディスパッチサーバ4 00にユーザが最初にアクセスするタイトルページを複 数のファイル例えば画像ファイルを用いて構成してお く、これらの画像ファイルには、それぞれ異なるサービ スサイトのサーバから転送され画像ファイルを含むよう に構成しておく。

テップS51)、名サーバ200a及びミラーサーバ3 00aでは、要求された画像ファイルをユーザサイト1 に転送する(ステップS52)。このとき、メインサー バ200a及びミラーサーバ300aは、画像ファイル 転送時のスループットと転送先IPアドレスを取得する とともに(ステップS53)、それらをディスパッチサ ーバ400に供給する (ステップS54)。

【0074】デイスパッチサーバ400では、各サービ スサイトのサーバからのスループット情報を比較し (ス 10 テップS55)、最もスループットが高いサーバを選択 し (ステップS56) 、当該サーバのIPアドレスをユ ーザサイト1へ通知する(ステップS57)。 ユーザサ イト1は、通知されたIPアドレスのサーバへアクセス する (ステップS58)。

【0075】なお、この発明のサイトアクセス制御シス テムは、上記実施の形態に限定されず、種々の変形・及 び応用が可能である。

【0076】なお、この発明のサイトアクセス制御シス テムは、専用のシステムとして構成することなく、通常 送先IPアドレスとともにディスパッチサーバ400へ *20* のコンピュータシステムを用いて実現することができ る。例えば、コンピュータシステムに上述の動作を実行 するためのプログラムを格納した媒体(フロッピーディ スク、CD-ROM等)から該プログラムをインストー ルすることにより、上述の処理を実行するサイトアクセ ス制御システムを構築することができる。インストール によって、当該プログラムは、コンピュータシステム内 のハードディスク等の媒体に格納されて、サイトアクセ ス制御システムを構成し、実行に供される。

【0077】また、コンピュータにプログラムを供給す るための媒体は、狭義の記録媒体に限らず、通信回線、 通信ネットワーク及び通信システムのように、一時的且 つ流動的にプログラム等の情報を保持する通信媒体等を 含む広義の記録媒体であってもよい。

【0078】例えば、インターネット等の通信ネットワ 一ク上に設けたFTPサーバに当該プログラムを登録 し、FTPクライアントにネットワークを介して配信し てもよく、通信ネットワークの電子掲示板(BBS:Bu lletin Board System)等に該プログラムを登録し、こ れをネットワークを介して配信してもよい。そして、こ 40 のプログラムを起動し、OS (Operating System) の制 御下において実行することにより、上述の処理を達成す ることができる。 さらに、通信ネットワークを介してプ ログラムを転送しながら起動実行することによっても、 上述の処理を達成することができる。

[0079]

【発明の効果】以上説明したように、この発明に係るサ イトアクセス制御システムは、同等の情報サービスを提 供する主サービスサイト及び副サービスサイトに結合さ れてこれらのサイト負荷情報を保持するディスパッチサ 【0073】ユーザからのアクセスがあった場合に(ス 50 ーバが、前記通信系を介してユーザサイトからのこれら

主サービスサイト及び副サービスサイトの少なくとも一方へのアクセス要求を受けて、前記サイト負荷情報に基づいて情報サービスの提供に適するサービスサイトを選択するとともに、選択したサービスサイトに前記アクセスを発したユーザサイトをアクセスさせるべく、該選択したサービスサイトのアドレス情報を当該ユーザサイトに提供する。従って、このシステムでは、各サービスサイトの負荷バランスが保たれ、サイト資源がががシスく利用することができ、さらに局所への負荷集中がシンス・イトの負荷ができ、さらに局所への負荷集中がシンス・クンや管理者によるメインテナンスにより停止したカンや管理者によるメインテナンスにより停止したサービスサイトへはユーザのアクセスが割り当てられないため、1つのサービスサイトの停止によりユーザへのサービスが停止することはない。したがって、ユーザは自動的に最も良好なサービスを受

17

【0080】すなわち、この発明では、複数のサービスサイトに負荷を分散してユーザのアクセス要求に応え、情報提供サービスを行う際に、効率よく負荷を分散させ、常にユーザに最適なサービスサイトからサービスを行うことができ、負荷の偏りを軽減して快適なサービスを達成し得るサイトアクセス制御システムを提供することができる。

けることのできるサイトにアクセスすることができるこ

【図面の簡単な説明】

とになる。

【図1】この発明の第1の実施の形態に係るサイトアクセス制御システムを組み込んだ情報提供システムの構成を模式的に示すブロック図である。

【図2】図1のサイトアクセス制御システムを組み込んだ情報提供システムの具体的な機能構成を模式的に示す 3プロック図である。

【図3】図1のサイトアクセス制御システムを組み込んだ情報提供システムにおける動作を説明するためのサーバ負荷情報の例を示す図である。

【図4】図1のサイトアクセス制御システムを組み込んだ情報提供システムにおけるサイト情報蓄積処理を説明するためのフローチャートである。

【図5】図1のサイトアクセス制御システムを組み込んだ情報提供システムにおけるアクセス振り分け処理を説明するためのフローチャートである。

【図6】図1のサイトアクセス制御システムを組み込んだ情報提供システムにおけるシステム全体の動作を説明するためのフローチャートである。

【図7】この発明の第2の実施の形態に係るサイトアクセス制御システムを組み込んだ情報提供システムの構成を模式的に示すブロック図である。

10 【図8】図7のサイトアクセス制御システムを組み込んだ情報提供システムにおけるシステム全体の動作を説明するためのフローチャートである。

【図9】この発明の第3の実施の形態に係るサイトアクセス制御システムを組み込んだ情報提供システムの構成を模式的に示すプロック図である。.

【図10】図9のサイトアクセス制御システムを組み込んだ情報提供システムにおけるシステム全体の動作を説明するためのフローチャートである。

【符号の説明】

20	1	ユーザサイト	
	l a	クライアント (クライ)	アントシステム)
	2, 3, 20,	30, 200, 300	
	2a, 20a,		メインサーバ
	3a, 30a,	300 a	ミラーサーバ
	4, 40, 40	0	ディスパッチサ
	ーバ		
	0.7		

	2 1	サーバCPU負荷測定部
	2 2	回線使用率取得部
	2 3	ディスク入出力負荷取得部
30	2 4	コネクション数取得部
	2 5	転送要求数取得部
	2 6	コネクション確立時間取得部
	4 1	サイト情報蓄積部
	4 2	サイト情報テーブル格納部
	4 3	振り分け管理部

C1, C2, C3, C4 接続設備 IN インターネット

【図3】

	3-E"2541(1) (3425-4")	f-t"zfff(2) (25-f-n")
サーパCPU負荷	20	40
回幕使用率	2	3
ディスク入出力負荷 コネクション数 転送要求数	0. 2	0. 5
	20	50
	120	200
コネクション確立時間	1	3

【図4】

【図5】

【図2】

【図6】

【図7】

フロントページの続き

(72) 発明者 神崎 洋

東京都江東区豊洲三丁目3番3号 エヌ・ ティ・ティ・データ通信株式会社内