# Julia Sets Theory and Algorithms

Josh Lipschultz & Ricky LeVan MATH/CAAM 435

April 15, 2014

## Quick refresher from last time:

The stable set of a a complex polynomial  $P : \mathbb{C} \to \mathbb{C}$ , denoted S(P), is the complement of J(C).

The stable set of a a complex polynomial  $P : \mathbb{C} \to \mathbb{C}$ , denoted S(P), is the complement of J(C).

## Definition

An orbit is bounded if there exists a K such that  $|Q_c^{\circ n}(z)| < K$  for all n. Otherwise the orbit is unbounded.

Preliminaries

The stable set of a a complex polynomial  $P : \mathbb{C} \to \mathbb{C}$ , denoted S(P), is the complement of J(C).

## Definition

An orbit is bounded if there exists a K such that  $|Q_c^{\circ n}(z)| < K$  for all n. Otherwise the orbit is unbounded.

## Remark

The points of  $S^1$  are supersensitive under  $Q_0$ . That is, any open ball B around  $z \in S^1$  has the property that  $\bigcup_{n=0}^{\infty} Q_0^{\circ n}(B) = \mathbb{C} \setminus \{p\}$  for at most one point p.

The Julia Set  $J_c$  is the boundary of the filled Julia set  $K_c$ . (The filled Julia set is the set of bounded points of  $Q_c$ .) We could alternatively define  $J_c$  as the closure of the set of repelling points of  $Q_c$ .

The Julia Set  $J_c$  is the boundary of the filled Julia set  $K_c$ . (The filled Julia set is the set of bounded points of  $Q_c$ .) We could alternatively define  $J_c$  as the closure of the set of repelling points of  $Q_c$ .

## Remark

For the quadratic map  $Q_0(z)=z^2$  we saw chaotic behavior only on  $S^1$  by angle doubling  $(\theta \to 2\theta)$ . We also saw that  $|Q_0(z)| \to \infty$  for all |z|>1 and  $|Q_0(z)|\to 0$  for all |z|<1.

## Definition

The Julia Set  $J_c$  is the boundary of the filled Julia set  $K_c$ . (The filled Julia set is the set of bounded points of  $Q_c$ .) We could alternatively define  $J_c$  as the closure of the set of repelling points of  $Q_c$ .

## Remark

For the quadratic map  $Q_0(z)=z^2$  we saw chaotic behavior only on  $S^1$  by angle doubling  $(\theta \to 2\theta)$ . We also saw that  $|Q_0(z)| \to \infty$  for all |z|>1 and  $|Q_0(z)|\to 0$  for all |z|<1.

## Remark

Finally, we learned that for  $Q_{-2}(z)=z^2-2$ , we have  $J_2=K_2=[-2,2]$ , so any  $z\in\mathbb{C}\setminus[-2,2]\to\infty$  as we compose  $Q_{-2}(z)$  infinitely many times.

A set  $\Lambda \subseteq \mathbb{C}$  is a Cantor set if it is a closed, totally disconnected, and perfect subset of  $\mathbb{C}$ . (Adapted from the version for an interval of the real line.)

Methodology

## **Theorem**

Preliminaries

If |c| is sufficiently large,  $\Lambda$ , the set of points whose entire forward orbits lie within the circle |z| = |c|, is a Cantor set on which  $Q_c$  is topologically conjugate to the shift map on two symbols. All points in  $\mathbb{C} - \Lambda$  tend to  $\infty$  under iteration of  $Q_c$ . Hence,  $J_c = K_c$ .

Suppose  $2 < |c| \le |z|$ . Then we have that  $|Q_c^{\circ n}(z)| \to \infty$  as  $n \to \infty$ .

#### Proof.

We use the triangle inequality to get the following estimate:

$$|Q_c(z)| \ge |z|^2 - |c| \ge |z|^2 - |z| = |z|(|z| - 1)$$
 (1)

Since |z|>2, we know that |z|-1>1, so there exists  $\lambda>0$  such that

$$|Q_c^n(z)| \ge (1+\lambda)^n |z| \tag{2}$$

Since |z| is fixed and  $(1 + \lambda)^n$  grows arbitrarily large,  $|Q_c^n(z)|$  also grows arbitrarily large, as desired.

## Theorem

Let D be the closed disk (i.e.  $\{z: |z| \le |c|\}$ ), with |c| > 2. Then the filled Julia set of  $Q_c$  is given by

$$K_c = \bigcap_{n \ge 0} Q_c^{\circ - n}(D)$$

where  $Q_c^{\circ -n}(D)$  denotes the preimage of D under  $Q_c^{\circ n}$ 

## Proof.

Consider the case where  $z \notin \bigcap_{n \geq 0} Q_c^{\circ - n}(D)$ . Then there exists some  $k \in \mathbb{N}$  such that  $z \notin Q_c^{\circ - k}(D)$ , so we have that  $Q_c^{\circ k}(z) \notin D$ . Thus by the escape criterion, z escapes to infinity under iteration of  $Q_c$ , so  $z \notin K_c$ .

Otherwise, if  $z \in \bigcap_{n \ge 0} Q_c^{\circ -n}(D)$ , then  $Q_c^{\circ n}(z) \in D$  for all  $n \in \mathbb{N}$ . Thus z is bounded under iteration of  $Q_c$ , so  $z \in K_c$ .

Let's return to the theorem we wish to prove.

Let's return to the theorem we wish to prove.

Take C to be the circle around the origin of radius |c|. What does  $Q_c^{\circ-1}(C)$  look like? Recall from last week that  $\pm \sqrt{C-c}$  is the following Lemniscate-like shape (by the Boundary Mapping Principle).



Where each 'lobe' is mapped diffeomorphically (continuously bijected) to C.

Repeating this process yields nested lobes, each a diffeomorphism to its 'parent' lobe from the previous iteration. Below is a visualization of this process for two backwards-iterations.

Repeating this process yields nested lobes, each a diffeomorphism to its 'parent' lobe from the previous iteration. Below is a visualization of this process for two backwards-iterations.



Each lobe of the  $k^{th}$  iteration of this process can be identified by a 0 or 1, as each lobe diffeomorphically maps to two inner lobes during each iteration.

Each lobe of the  $k^{\rm th}$  iteration of this process can be identified by a 0 or 1, as each lobe diffeomorphically maps to two inner lobes during each iteration.

We therefore have  $2^k$  unique lobes after k iterations.

Each lobe of the  $k^{\text{th}}$  iteration of this process can be identified by a 0 or 1, as each lobe diffeomorphically maps to two inner lobes during each iteration.

We therefore have  $2^k$  unique lobes after k iterations.

Define

$$I_{s_0s_1...s_n} = \{ z \in D \mid z \in I_{s_0}, Q_c(z) \in I_{s_1}, \dots, Q_c^{on}(z) \in I_{s_n} \}$$

Each lobe of the  $k^{\text{th}}$  iteration of this process can be identified by a 0 or 1, as each lobe diffeomorphically maps to two inner lobes during each iteration.

We therefore have  $2^k$  unique lobes after k iterations.

Define

$$I_{s_0s_1...s_n} = \{z \in D \mid z \in I_{s_0}, Q_c(z) \in I_{s_1}, \dots, Q_c^{on}(z) \in I_{s_n}\}$$

As you may have noticed, this is identical to our previous use of symbolic dynamics (in relation to the Cantor Middle-Thirds set). By similar logic to our discussion before, the following intersection is a nonempty set.

$$\bigcap_{n>0} I_{s_0s_1...s_n}$$

This gives us that, for any  $z \in \cap_{n \geq 0} I_{s_0 s_1 \dots s_n}$ ,  $Q_c^{\circ k}(z) \in D$  for all k. Hence,  $z \in K_c$ .

This gives us that, for any  $z \in \bigcap_{n \geq 0} I_{s_0 s_1 \dots s_n}$ ,  $Q_c^{\circ k}(z) \in D$  for all k. Hence,  $z \in K_c$ .

A component of  $K_c$  is defined as an infinite intersection of figure-eights and their lobes. Two components are necessarily disjoint.

This gives us that, for any  $z \in \bigcap_{n \geq 0} I_{s_0 s_1 \dots s_n}$ ,  $Q_c^{\circ k}(z) \in D$  for all k. Hence,  $z \in K_C$ .

A component of  $K_c$  is defined as an infinite intersection of figure-eights and their lobes. Two components are necessarily disjoint.

Conversely, any  $z \in K_c$  must lie in exactly one of these components, since any infinite string of 1s and 0 maps to any z by  $S(z) = s_0 s_1 \dots s_n$  provided  $z \in \cap_{n > 0} I_{s_0 s_1 \dots s_n}$ .

This gives us that, for any  $z \in \bigcap_{n \geq 0} I_{s_0 s_1 \dots s_n}$ ,  $Q_c^{\circ k}(z) \in D$  for all k. Hence,  $z \in K_C$ .

A component of  $K_c$  is defined as an infinite intersection of figure-eights and their lobes. Two components are necessarily disjoint.

Conversely, any  $z \in K_c$  must lie in exactly one of these components, since any infinite string of 1s and 0 maps to any z by  $S(z) = s_0 s_1 \dots s_n$  provided  $z \in \cap_{n \geq 0} I_{s_0 s_1 \dots s_n}$ .

Similar arguments to those we used for the Cantor set yield that [1] this correspondence is continuous and [2] that each of these infinite intersections is exactly a single point in the complex plane. The mechanics behind this exceed the scope of this lecture (and class), so we will not include them here.

## Remark

Preliminaries

 $Q_c$  is supersensitive on  $J_c$ . (As handwavy as Devaney)

#### Remark

Since  $K_c$  is a Cantor set (each component of  $K_c$  is a point) when |c| > 2, the Julia and filled Julia sets are identical ( $K_c = J_c$ ).

## Remark

When |c| > 2, the orbit of 0 tents to  $\infty$ . This will be important on Thursday.

# Algorithm 1: Algorithm to plot $K_c$

Input: grid, a list of evenly-spaced complex numbers in a rectangular region of the complex plane

```
1 for i \leftarrow 1 to N do
     for z in grid do
       z \leftarrow Q_c(z)
```

// Shade all points which didn't escape

```
4 for z in grid do
     if |z| \leq max(|c|, 2) then
        paintBlack(z)
6
```

Acko -- How to Fold a Julia Fractal

Explanation for an alternative plotting algorithm The above algorithm works well for  $K_c$  but as well for  $J_c$ . To remedy this, recall that  $Q_c$  is supersensitive on  $J_c$ . This means that any neighborhood B of some point  $z \in J_c$  has the property that  $\bigcup_{n=0}^{\infty} Q_0^{on}(B) = \mathbb{C} \setminus \{p\}$  for at most one point p. So supersensitive points serve as "attractors" for the backward iteration of  $Q_c$ , in the sense that for each supersensitive point, all of  $\mathbb{C}$  except at most one point must come arbitrarily close to it on reverse iteration.

```
Input: MaxIter, the maximum number of iterations to perform z \leftarrow randomComplexNumber()
```

```
2 for j \leftarrow 1 to MaxIter do
```

4 if 
$$binaryRand = 0$$
 then

8

9

// Don't plot stray points

if 
$$j > 100$$
 then

 $K_c$  Algorithm

 $J_c$  Algorithm

Methodology

Cantor Construction

Preliminaries

A demo of Julia-Mandelbrot correspondence

Some pictures of generalized Julia sets