中山大学本科生期末考试

考试科目:《人工智能》(B卷)

学年学期:	2021 学年第 2 学期	姓	名:	
开课单位:	计算机学院	学	号:	
考试方式:	闭卷	年	级:	

考试时长: 120 分钟 院 系: ______

《中山大学授予学士学位工作细则》第八条: "考试作弊者,不授予学士学位。"

------以下为试题区域,共3道大题,总分100分,考生请在答题纸上作答------

一、判断题(共9分)

1. 考虑以下贝叶斯网络,判断(a)-(c)的对错。(每空3分,共9分)

- (a) 给定C的前提下, A和B是条件独立的。 ()
- (b) 给定D的前提下, B和F是条件独立的。 ()
- (c) 给定B的前提下, C和D是条件独立的。 ()

二、计算题(共 30 分)

2. 假设给定如下训练数据集,其中 A_1 、 A_2 、 A_3 为二值输入特征,y为二值类标签。

训练样例	A_1	A_2	A_3	у
x_1	T	F	F	F
x_2	T	F	T	F
<i>x</i> ₃	F	T	F	F
<i>X</i> 4	T	T	T	T
<i>X</i> 5	T	T	F	T
x_6	F	F	F	T

- (a) 对一个新的测试数据,其输入特征 $A_1 = F$, $A_2 = F$, $A_3 = F$, 朴素贝叶斯分类器将会 预测 $y = ____?$ (6 分)
- (b) 假设 A_1 、 A_2 、 A_3 和 y 符合如下贝叶斯网络结构,根据题目中给出的 6 个样例计算相应的条件概率表中的取值,并求解 $P(y=T \mid A_1=F, A_3=F)$ _____? (共 14 分)

$$P(A_2 = T) =$$
____?
 $P(A_3 = T) =$ ___?

A_2	A_3	$P(A_1 = T)$
T	T	
T	F	
F	T	
F	F	

A_1	P(y = T)
T	
F	

3. 考虑以下神经网络,其中 node1 和 node2 为输入节点,node3 为输出节点,且输入节点均没有应用激活函数。输出节点 node3 的输入 $I_3 = w_{12} * x_1 + w_{23} * x_2 + \theta$,输出节点采用 sigmoid 激活函数,即 $O_3 = \frac{1}{1+e^{-I_3}}$,假定一个训练样本, $x_1 = 1, x_2 = 1$,其真实的类标签y = 1,设损失函数采用均方误差,即 $L = 0.5 * (y - O_3)^2$,用以更新网络参数。当前网络的参数初始值为: $\theta = 0, w_{13} = 0.5, w_{23} = -1$ 。请基于上述训练样本的 x_1, x_2, y 的取值,以及网络中 θ, w_{13}, w_{23} 的初始值,计算损失函数L对 w_{23} 的偏导,即 $\frac{\partial L}{\partial w_{23}}$ 的值($\sqrt{e} = 1.65$)。(10 分)

三、问答题(共 61 分)

4. 令 $KB = \{ \forall x (R(x) \to L(x)), \ \forall x (D(x) \to \neg L(x)), \ \exists x (I(x) \land D(x)) \},$ $f = \exists x (I(x) \land \neg R(x)) \text{。 试用归结法证明} KB \models f \text{。} (10分)$

5. 在下图所示的博弈树中,方框表示极大方,圆圈表示极小方。以优先生成左边结点的顺序来进行α-β剪枝搜索,试在博弈树上给出何处发生剪枝的标记,并用粗体注明最好的走步路径。(14分)

- 6. 用遗传算法求解十个城市的旅行商(TSP)问题,给出一代的演化求解过程,包括遗传算法的编码,主要操作以及算法的主要参数的设置。(8分)
- 7. 已知背包的装载量为 c=8,现有 n=5 个物品,它们的重量和价值分别是(2, 3, 5, 1, 4) 和(2, 5, 8, 3, 6)。试使用模拟退火算法求解该背包问题,写出关键的步骤。(9 分)
- 8. 在深度学习中,卷积神经网络(Convolutional Neural Network)常用于处理图像数据。假设卷积神经网络相关符号定义为(W, F, S, P, K),其中 W 是输入通道的大小,F 是卷积核大小,S 是步长,P 表示填充的大小(填充:即在图片的周边填充"0",以增加图片的大小;若 P 为 0 则表示无填充),K 是输出单元的大小。请根据卷积神经网络的定

义以及特点回答下面的问题。

- (a) 请描述卷积的基本原理并分析其与全连接神经网络的区别。(4分)
- (b) 给定如下图所示的输入图像和卷积核,计算在无填充且步长为 2 的情况下的输出图像。(3 分)

9	8	4	4	5	7
8	6	7	9	1	7
0	5	9	3	8	4
3	5	9	0	5	4
4	1	1	8	1	2
6	6	9	8	7	6
6	3	5	4	2	7
	8 0 3 4 6	8 6 0 5 3 5 4 1 6 6	8 6 7 0 5 9 3 5 9 4 1 1 6 6 9	8 6 7 9 0 5 9 3 3 5 9 0 4 1 1 8 6 6 9 8	8 6 7 9 1 0 5 9 3 8 3 5 9 0 5 4 1 1 8 1 6 6 9 8 7

输入图像

0	-1	0	
-1	3	-1	
0	-1	0	

卷积核

- (c) 假设输入图像的维度是128×128×4,其中三个维度分别表示图片的高、宽、通道数。第一层卷积神经网络定义为(4, 5, 1, 2, 32),第二层卷积神经网络定义为(32, 5, 1, 2, 64)。每个卷积层后需接一个池化层,且池化窗口的大小为 2。请问输入图像经过两层卷积神经网络后的输出图像的维度是多少?(3分)
- 9. 请根据强化学习相关知识回答下述两个问题。
- (a) 描述单智能体强化学习问题的形式化定义以及强化学习的学习目标。(5分)
- (b) 请写出 Q-learning 和 Sarsa 算法的更新公式,并说明它们的不同点。(5 分)

解:

模拟退火应用案例

己知:

物体个数: n=5背包容量: c=8重量 w=(2,3,5,1,4)价值 v=(2,5,8,3,6)

第一步: 初始化。假设初始解为 i=(11001),初始温度为T=10。计算f(i)=2+5+6=13,最优解s=i

第三步:降温,假设温度降为 T=9。如果没有达到结束标准,则 返回第二步继续执行

假设在继续运行的时候,从当前解 i=(10110)得到一个新解j=(00111),这 时候的函数值为f(j)=8+3+6=17,这是一个全局最优解。可见上面过程中接受了劣解是有好处的。

第二步: 在*T*温度下局部搜索,直到"平衡", 假设平衡条件为执行了3次内层循环。

(2-1) 产生当前解i的一个邻域解j(如何构造邻域根据具体的问题而定,这里假设为随机改变某一位的0/1值或者交换某两位的0/1值),假设j=(11100)

要注意产生的新解的合法性,要舍弃那些总重量超过背包装载量的非法解

(2-2) f(j) = 2+5+8=15 > 13=f(i),所以接受新解j i=j; f(i)=f(j)=15; 而且s=i; 要注意求解的是最大值,因此适应值越大越优

(2-3) 返回(2-1)继续执行。

(a) 假设第二轮得到的新解j=(11010),由于f(j) = 2+5+3=10 < 15=f(i),所以需要计算接受概率P(T)=exp((f(j)-f(i))/T) = exp(-0.5) = 0.607,假设random(0,1)>P(T),则不接受新解

(b) 假设第三轮得到的新解j=(10110),由于f(j) = 2+8+3=13 < 15=f(i),所以需要计算接受概率P(T)=exp((f(j)-f(i))/T) = exp(-0.3) = 0.741,假设random(0,1)<P(T),则接受新解按照一定的概率接受劣解,也是跳出局部最优的一种手段

(2-4) 这时候,T温度下的"平衡"已达到(即已经完成了3次的邻域产生),结束内层循环