Al & Machine Learning mit 8. Klasse Mathematik

Javaland 16.03.2021, Tim Schade

Steckbrief

- Tim Schade
- Berliner im Rheinland
- Java Entwickler
- Software Architekt
- DevOps begeistert
- ML vernarrt

> aff.com

Was unterscheidet Artificial Intelligence & Machine Learning?

Mat Velloso

@matvelloso

Follow

If it is written in Python, it's probably machine learning

If it is written in PowerPoint, it's probably Al

Artificial Intelligence AI = Künstliche Intelligenz KI

Was unterscheidet Artificial Intelligence & Machine Learning?

ARTIFICIAL INTELLIGENCE IS NOT NEW ARTIFICIAL INTELLIGENCE Any technique which enables MACHINE LEARNING computers to mimic human behavior Al techniques that give **DEEP LEARNING** computers the ability to learn without being explicitly A subset of ML which make programmed to do so the computation of multi-layer neural networks feasible 1950's 1960's 1970's 1980's 1990's 2000's 2010s ORACLE Copyright © 2013, Oracle and/or its affiliates. All rights reserved. https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning

Machine Learning vs. klassische Programmierung Regeln Klassisch Daten Klassische Antworten Programmierung **Training** Daten Antworten Machine Learning **Machine Learning** Regeln (auch Modell) Anwendung Produktivdaten Modell Vorhersagen

Supervised & Unsupervised Learning

Supervised Learning (Classification Algorithm) Duck Predictive Supervised Model Learning **Not Duck Not Duck** Predictive Duck Model

https://www.facebook.com/AlwithDrMalleswar/photos/a.1146377825535526/1171707946335847/?type=3&theater

Prediction mit Linearer Regression (Supervised Learning)

Wie viele Tassen Kaffee werden am Freitag getrunken? "Lagervorrat Vorhersage"

Supervised Learning benötigt Beispiel-Daten und vor allem dazugehörige -Antworten!

	Tag	Мо	Di	Mi	Do	Fr
х	Anzahl MA	1	2	3	4	5
у	Tassen Kaffee	1	3	2	3	?

Regressionsgerade mit Auge (1)

Warum?

Mit Hilfe der Geraden/der Funktion kann zu jedem Punkt x (Mitarbeiter) Die benötige Kaffeemenge vorhergesagt werden

Wie kann der Computer/ ein Algorithmus die beste Gerade finden?

a=0.7 und b=0.5 Welche Werte für a und b sagen y am besten voraus?

Regressionsgerade mit Galton (2)

Francis Galton 1822 - 1911

(8. Klasse)

$$y = a * x + b$$

$$a = \sum \frac{(x - \bar{x})(y - \bar{y})}{(x - \bar{x})^2}$$

$$b = \bar{y} - a\bar{x}$$

...

$$y = 0.5x + 1$$

$\bar{x} = 2.5$	\boldsymbol{x}	1	2	3	4
$\bar{y} = 2,25$	у	1	3	2	3
	$x-\bar{x}$	-1.5	-0.5	0.5	1.5
	$y - \bar{y}$	-1,25	0.75	-0.25	0.75
<i>Σ</i> =2,5	$(x-\bar{x})\;(y\;-\;\bar{y})$	1.875	-0,375	-0.125	1.125
Σ=5	$(x-\bar{x})^2$	2.25	0.25	0.25	2.25

$$a = \frac{2,5}{5} = 0.5$$

$$b = \bar{y} - a * \bar{x}$$

b = 2.25 - 0.5 * 2.5 = 1

Regressionsgerade mit Galton (2)

Francis Galton 1822 - 1911

Regressionsgerade mit Fehlerfunktion und Ausprobieren(3)

zufällige Geraden also zufällige Parameter für a und bz.B.: a =1 und b =1

- -> Vergleich der berechneten Werte \widehat{y} mit den tatsächlichen Werten y
- -> Loss Function zur Bestimmung der Geradenqualität (error)

•
$$l_{ges} = \frac{1}{n} (l_1 + l_2 + ... + l_n)^2$$

•
$$l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

•
$$l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

Regressionsgerade mit Fehlerfunktion und Ausprobieren(3)

•
$$l_{ges}(a,b) = \frac{1}{n}(l_1 + l_2 + ... + l_n)$$

•
$$l_{ges}(a,b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

•
$$l_{ges}(a,b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

•
$$l_{ges}(a = 1, b = 1) = 9/4 = 2,25$$

•
$$l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2 \rightarrow min!$$

Folgende Idee:

```
forSchleife (Anzahl-Epochen){
  Zufallszahlen wählen für a und b
  Loss Function Berechnen und wenn kleinster Wert,
,,merken"
}
```

"Gemerkte" Werte verwenden für lineare Funktion

$$\hat{y} = ax + b$$

Evtl. kommt man nahe an das Optimum heran (evtl. auch nicht)

Ausprobieren = Training Anzahl Versuche = Epoch

Regressionsgerade mit Fehlerfunktion und Mathematik(4)

Newtonverfahren

Taylorreihe

Gauß-Newton-Verfahren

- Gradientenverfahren (gradient descent)
- Stochastic gradient descent
- Momentum
- Adagrad
- Nesterov accelerated gradient
- ...

Adam
 (derived from adaptive moment estimation)

Überblick über "State of the Art" Algorithmen:

https://ruder.io/optimizing-gradient-descent/index.html

Regressionsgerade mit Gradientenverfahren (Gradient Descent) (5)

•
$$l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

•
$$l_{ges}(a = 1; b = 1) = 2,25$$

•
$$l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2 \rightarrow min!$$

Shaping the future of digital business

→ gft.com

Regressionsgerade mit Gradientenverfahren (Gradient Descent) (5)

Steigung herausfinden!

Differenzialrechnung 11 Klasse:

Steigung am Punkt (x|y)
 bestimmbar durch
 Ableitungsfunktion von y = f(x)
 auch genannt y' = f'(x)

Exkurs: Ableitungen & Differenzenquotienten

Regel	Funktion	1. Ableitung	Beispiel
Potenzregel	$f(a) = a^n$	$\frac{\partial}{\partial a} = f'(a) = n * a^{n-1}$	$f(a) = 2 * a^8$ $f'(a) = 16 * a^7$
Konstantenregel	f(a)=c	$\frac{\partial}{\partial a} = f'(a) = 0$	f(a) = 20 $f'(a) = 0$
Summen- /Differenzregel	$f(a) = a^n + a^m$	$\frac{\partial}{\partial a} = f'(a) = n * a^{n-1} + m * a^{m-1}$	f(a) = 2 * a2 + 3 * a f'(a) = 4 * a1 + 3
Kettenregel	$f(a) = \frac{u(v(a))}{}$	$\frac{\partial}{\partial a} = f'(a) = u'(v(a)) * v'(a)$	$f(a) = 2 * (2a - 5)^{3}$ $f'(a) = 6 * (2a - 5)^{2} * (2)$
Partielle Ableitungen	$f(a,b) = 3a^2 + 4ab - 2b^2$	Quotienten nach denen nicht abgleitet wird, werden wie Konstanten behandelt (z.B. 1)->(Konstanten Regel)	$f'_{a}(a,b) = \frac{\partial}{\partial a} = 6a + 4b$ $f'_{b}(a,b) = \frac{\partial}{\partial b} = 4a - 4b$

Exkurs: Ableitungen & Differenzenquotienten

Regel	Funktion	1. Ableitung	Beispiel
Potenzregel	$f(a) = a^n$	$\frac{\partial}{\partial a} = f'(a) = n * a^{n-1}$	f(a) = 2 * a8 f'(a) = 16 * a7
Konstantenregel	f(a) = c	$\frac{\partial}{\partial a} = f'(a) = 0$	f(a) = 20 $f'(a) = 0$
Summen- /Differenzregel	$f(a) = a^n + a^m$	$\frac{\partial}{\partial a} = f'(a) = n * a^{n-1} + m * a^{m-1}$	$f(a) = 2 * a^2 + 3 * a$ $f'(a) = 4 * a^1 + 3$
Kettenregel	f(a) = u(v(a))	$\frac{\partial}{\partial a} = f'(a) = u'(v(a)) * v'(a)$	$f(a) = 2 * (2a - 5)^3$ $f'(a) = 6 * (2a - 5)^2 * (2)$
Partielle Ableitungen	$f(a,b) = 3a^2 + 4ab - 2b^2$	Quotienten nach denen nicht abgleitet wird, werden wie Konstanten behandelt (z.B. 1)->(Konstanten Regel)	$f'_{a}(a,b) = \frac{\partial}{\partial a} = 6a + 4b$ $f'_{b}(a,b) = \frac{\partial}{\partial b} = 4a - 4b$

Partielle Ableitungen

•
$$l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\overrightarrow{ax}_i + \overrightarrow{b}))^2$$

Kettenregel

$$\frac{u'(v(a))}{\partial a} = \frac{1}{n} \sum_{i=1}^{n} \frac{2 * (y_i - (ax_i + b))}{(-x_i)} * \frac{v'(a)}{(-x_i)}$$

$$\frac{\partial}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} \frac{2 * (y_i - (axi + b)) * (-1) }{ }$$

Regressionsgerade mit Gradientenverfahren (Gradient Descent) (5)

$$\bullet \quad \frac{\partial}{\partial a} = \frac{1}{n} \sum_{i=1}^{n} 2 * (y_i - (ax_i + b)) * (-x_i)$$

$$\bullet \quad \frac{\partial}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} 2 * (y_i - (axi + b)) * (-1)$$

Let's see some Code

https://github.com/schaDev/javaland-ml8


```
public static void main(String[] args) {
                                                              Tag
                                                                             Мо
                                                                                     Di
                                                                                                                Fr
    int[] xData = {1, 2, 3, 4};
                                                           x Anzahl MA
                                                                                     2
                                                                                              3
                                                                                                       4
                                                                                                                5
    int[] vData = \{1, 3, 2, 3\};
    gradientDescent(xData, yData);
                                                                                              2
                                                                                                                ?
                                                              Tassen Kaffee 1
private static void gradientDescent(int[] xData, int[] yData) {
    List<Dto> data = IntStream.range(0, xData.length).boxed().map(i -> new Dto(xData[i], yData[i])).collect(Collectors.toList());
                                                                                                      zufällige Parameter für a und b
    double b = 1;
                                                                                                      z.B.: a = 1 und b = 1
    long epochs = 1000;
    double learningRate = 0.01;
                                                                                                           Schrittgröße = learning rate
    long n = data.size();
                                                                                                             Ausprobieren = Training
    for (int epoch = 1; epoch < epochs; epoch++) {
                                                                                                           Anzahl Versuche = Epoch
                                                                                                                                              (i)Mean Squared Error
         final Dto p = new Dto(a, b);
                                                                                                     \hat{y} = ax + b
                                                                                                                                             l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2
         ToDoubleFunction<Double> yPredicted = x -> p.a * x + p.b;
         double cost = (1d / n) * data.stream().mapToDouble(d -> d.y - Math.pow(d.y - yPredicted.applyAsDouble(d.x), 2)).sum();
                                                                                                                                              \frac{\partial}{\partial a} = \frac{1}{n} \sum_{i=1}^{n} 2 * (y_i - (ax_i + b)) * (-x_i)
         double da = (1d / n) * data.stream().mapToDouble(d -> 2 * (d.y - yPredicted.applyAsDouble(d.x)) * -d.x).sum();
                                                                                                                                              \frac{\partial}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} 2 * (y_i - (ax_i + b)) * (-1)
         double db = (1d / n) * data.stream().mapToDouble(d -> 2 * (d.y - yPredicted.applyAsDouble(d.x)) * -1).sum();
         a = a - learningRate * da;
                                                                                                      - a_{neu} = a_{alt} - schrittgröße * <math>\frac{\partial}{\partial a}
         b = b - learningRate * db;
         System.out.format("a %f, b %f cost %f epoch %d%n", a, b, cost, epoch);
```

```
def gradientDescent(x, y):
                                                                                              zufällige Parameter für a und b
     a = 1
                                                                                              z.B.: a = 1 und b = 1
     b = 1
                                                                                                     Ausprobieren = Training
     epochs = 1000
                                                                                                   Anzahl Versuche = Epoch
     learning_rate = 0.01
                                                                                                   Schrittgröße = learning rate
     n = len(x)
     for epoch in range(epochs):
                                                                                             \hat{y} = ax + b
          vPredicted = a * x + b
                                                                                             \frac{\partial}{\partial a} = \frac{1}{n} \sum_{i=1}^{n} 2 * (y_i - (ax_i + b)) * (-x_i)
          da = (1 / n) * sum(2 * (y - yPredicted) * -x)
                                                                                             \frac{\partial}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} 2 * (y_i - (ax_i + b)) * (-1)
          db = (1 / n) * sum(2 * (y - yPredicted) * -1)
                                                                                             a_{\text{neu}} = a_{\text{alt}} - \text{schrittgröße} * \frac{\partial}{\partial a}
          a = a - learning rate * da
          b = b - learning_rate * db
                                                                                            l_{ges} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (ax_i + b))^2 j Mean Squared Error
          cost = (1 / n) * sum([val ** 2 for val in (y - yPredicted)])
          print("a {} b {} cost {} epoch {}".format(a, b, cost, epoch))
                                                                                                  Tag
                                                                                                                 Мо
                                                                                                                         Di
                                                                                                                                  Mi
                                                                                                                                           Do
                                                                                                                                                    Fr
# main application
                                                                                              x Anzahl MA
xData = np.array([1, 2, 3, 4])
                                                                                                                         2
                                                                                                                                  3
                                                                                                                                           4
                                                                                                                                                    5
yData = np.array([1, 3, 2, 3])
                                                                                              y Tassen Kaffee 1
                                                                                                                                  2
                                                                                                                                           3
gradientDescent(xData, yData)
```

> aff.com

Regressionsgeraden zur Vorhersage

Kaffeverbrauch bei 5 Mitarbeitern?

$$y = 0.5 * x + 1$$

 $y = 0.5 * 5 + 1$
 $y = 3.5$

= 3,5 Tassen

j Mathem. Funktion = Modell
Ausprobieren = Training
Anzahl Versuche = Epoch
Error = Loss Funktion
(Mean Squared Error)
Schrittgröße = Learning Rate

Danke! Fragen?

GFT Deutschland Tim Schade IT Architect

Joseph-Schumpeter-Allee 1 53227 Bonn

T +49 228 2071-3225

Tim.Schade@gft.com

Shaping the future of digital business

GFT Deutschland Tim Schade IT Architect

Joseph-Schumpeter-Allee 1 53227 Bonn

T +49 228 2071-3225

Tim.Schade@gft.com