

4

Trigonometric Ratios and Identities

1. Trigonometric Ratio – Basic Terminology

The six trigonometric ratios of θ are defined as follows:

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}, \quad \cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}, \quad \tan\theta = \frac{\text{opposite}}{\text{adjacent}}$$
$$\cot\theta = \frac{\text{adjacent}}{\text{opposite}}, \quad \csc\theta = \frac{\text{hypotenuse}}{\text{opposite}}, \quad \sec\theta = \frac{\text{hypotenuse}}{\text{adjacent}}$$

2. Trigonometric identities:

$$(i) \sin^2\theta + \cos^2\theta = 1$$

(ii)
$$\sec^2\theta - \tan^2\theta = 1$$

(iii)
$$\csc^2\theta - \cot^2\theta = 1$$

3. Allied angles:

Two angles are said to be allied when their sum or difference is either zero or a multiple of $\frac{\pi}{2}$, two angles x, y are allied angles iff $|x \pm y| = 0$ or $\frac{n\pi}{2}$, $n \in N$.

$q \rightarrow$	$\frac{\pi}{2} - \theta$	$\frac{\pi}{2} + \theta$	$\pi - \theta$	$\pi + \theta$	$\frac{3\pi}{2} - \theta$	$\frac{3\pi}{2} + \theta$	$2\pi - \theta$	$2\pi + \theta$	- θ
sin	cos θ	cos θ	sin θ	-sin θ	-cos θ	-cos θ	-sin θ	sin θ	-sin θ
cos	sin θ	-sin θ	-cos θ	-cos θ	-sin θ	sin θ	cos θ	cos θ	cos θ
tan	cot θ	–cot θ	– tan θ	tan θ	cot θ	–cot θ	–tan θ	tan θ	–tan θ
cot	tan θ	–tan θ	- cot θ	cot θ	tan θ	–tan θ	–cot θ	cot θ	-cot θ
sec	cosecθ	-cosecθ	-sec θ	–sec θ	–cosec θ	cosecθ	sec θ	sec θ	sec θ
cosec	sec θ	sec θ	cosec θ	-cosec θ	-sec θ	-sec θ	–cosec θ	cosec θ	-cosec θ

4. Sum & Difference Formula

(i)
$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

(ii)
$$\sin (A - B) = \sin A \cos B - \cos A \sin B$$

(iii)
$$\cos (A + B) = \cos A \cos B - \sin A \sin B$$

(iv)
$$\cos (A - B) = \cos A \cos B + \sin A \sin B$$

(v)
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$(vi) \quad \tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

(vii)
$$\cot(A+B) = \frac{\cot B \cot A - 1}{\cot B + \cot A}$$

(viii)
$$\cot(A-B) = \frac{\cot B \cot A + 1}{\cot B - \cot A}$$

5. Product to sum

(i)
$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

(ii)
$$2\cos A \sin B = \sin (A+B) - \sin (A-B)$$

(iii)
$$2 \cos A \cos B = \cos (A+B) + \cos (A-B)$$

(iv)
$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

6. Trigonometric transformations:

(i)
$$\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

(ii)
$$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

(iii)
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

(iv)
$$\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

= $2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{D-C}{2}\right)$

Some useful Formulae:

(i)
$$\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$$

(ii)
$$\cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$$

(iii)
$$\tan(A+B)\tan(A-B) = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}$$

(iv)
$$\cot(A+B)\cot(A-B) = \frac{\cot^2 B \cot^2 A - 1}{\cot^2 B - \cot^2 A}$$

7. Some standard trigonometric values

$\frac{Angle \rightarrow}{Trigonometric\ Function} \downarrow$	15°	18°	$22\frac{1}{2}^{\circ}$	36°
sin	$\frac{\sqrt{3}-1}{2\sqrt{2}}$	$\frac{\sqrt{5}-1}{4}$	$\frac{1}{2}\sqrt{2-\sqrt{2}}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$
cos	$\frac{\sqrt{3}+1}{2\sqrt{2}}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{1}{2}\sqrt{2+\sqrt{2}}$	$\frac{\sqrt{5}+1}{4}$
tan	$2-\sqrt{3}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$	$\sqrt{2}-1$	$\sqrt{5-2\sqrt{5}}$

8. Double Angle / Triple Angle

- (i) $\sin 2A = 2 \sin A \cos A$
- (ii) $\cos 2A = \cos^2 A \sin^2 A = 2\cos^2 A 1 = 1 2\sin^2 A$ Suppose that A is not an odd multiple of $\frac{\pi}{2}$. Then

(iii)
$$\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$$

(iv)
$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

(v)
$$\tan 2 = \frac{2 \tan}{1 - \tan^2}$$
 (Here 2A is also not an odd multiple of $\frac{\pi}{2}$)

- (vi) $\sin 3A = 3 \sin A 4 \sin^3 A$, $\forall A \in \mathbb{R}$
- (vii) $\cos 3A = 4 \cos^3 A 3 \cos A$, $\forall A \in \mathbb{R}$
- (viii) $\tan 3A = \frac{3\tan A \tan^3 A}{1 3\tan^2 A}$ (3A, A are not odd multiples of $\frac{\pi}{2}$)
- (ix) $\cot 3A = \frac{3\cot A \cot^3 A}{1 3\cot^2 A}$ (3A, A are not multiples of $\frac{\pi}{2}$)

9. Half Angle

- (i) $\sin A = 2\sin\frac{A}{2}\cos\frac{A}{2}$
- (ii) $\cos A = \cos^2 \frac{A}{2} \sin^2 \frac{A}{2} = 2\cos^2 \frac{A}{2} 1 = 1 2\sin^2 \frac{A}{2}$
- (iii) $\tan A = \frac{2\tan\frac{A}{2}}{1-\tan^2\frac{A}{2}}$ (where $\frac{A}{2} \neq (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$)

10. Conditional Identities

In a Triangle If $A + B + C = \pi$, then

(i)
$$\sin 2A + \sin 2B + \sin 2C = 4\sin A \sin B \sin C$$

(ii)
$$\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

- (iii) $\cos 2A + \cos 2B + \cos 2C = -1 4 \cos A \cos B \cos C$
- (iv) $\sin^2 A + \sin^2 B + \sin^2 C = 2(1 + 4\cos A \cos B \cos C)$
- (v) $\cos^2 A + \cos^2 B + \cos^2 C = (1 2\cos A \cos B \cos C)$

11. Domains, Ranges and Periodicity of Trigonometric Functions:

T-Ratio	Domain	Range	Period
sin x	R	[-1, 1]	2π
cos x	R	[-1, 1]	2π
tan x	$R - \left\{ \left(2n+1\right)\frac{\pi}{2} \right\}; n \in I$	R	π
cot x	$R - \{n\pi : n \in I\}$	R	π
sec x	$R - \left\{ \left(2n+1\right)\frac{\pi}{2} \right\}; n \in I$	$(-\infty, -1]$ $\cup [1, \infty)$	2π
cosec x	$R - \{n\pi : n \in I\}$	$(-\infty, -1]$ $\cup [1, \infty)$	2π

12. Maxima-Minima

- (i) $a \cos \theta + b \sin \theta$ will always lie in the interval $\left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}\right]$ i.e., the maximum and minimum values are $\sqrt{a^2 + b^2}, -\sqrt{a^2 + b^2}$ respectively.
- (ii) Minimum value of $a^2 \tan^2 \theta + b^2 \cot^2 \theta$ is 2ab where a, b > 0.
- (iii) $-\sqrt{a^2 + b^2 + 2ab\cos(\alpha \beta)} < a\cos(\alpha + \theta) + b\cos(\beta + \theta)$ $\leq \sqrt{a^2 + b^2 + 2ab\cos(\alpha - \beta)}$ where α and β are known angles.

- (iv) If $\alpha, \beta, \in \left(0, \frac{\pi}{2}\right)$ and $\alpha + \beta = \sigma$ (constant) then
 - (a) Maximum value of the expression $\cos \alpha \cos \beta$, $\cos \alpha + \cos \beta$, $\sin \alpha \sin \beta$ or $\sin \alpha + \sin \beta$ occurs when $\alpha = \beta = \frac{\sigma}{2}$
 - (b) Minimum value of sec α + sec β , tan α + tan β , cosec α + cosec β occurs when $\alpha = \beta = \frac{\sigma}{2}$
- (v) If A, B, C are the angles of a triangle then maximum value of $\sin A + \sin B + \sin C$ and $\sin A \sin B \sin C$ occurs when $A = B = C = 60^{\circ}$
- (vi) In case a quadratic in $\sin \theta & \cos \theta$ is given then the maximum or minimum values can be obtained by making perfect square.
- 13. Sum of Three or More Angles
 - (i) $\sin (A + B + C) = \sin A \cos B \cos C + \cos A \sin B \cos C$ + $\cos A \cos B \sin C - \sin A \sin B \sin C = \sum \sin A \cos B$ $\cos C - \prod \sin A$

- (ii) $\cos (A + B + C) = \cos A \cos B \cos C \cos A \sin B \sin C$ $-\sin A \cos B \sin C - \sin A \sin B \sin C = \prod \cos A - \sum \cos A \sin B \sin C$
- (iii) $\tan (A + B + C)$ $= \frac{\tan A + \tan B + \tan C \tan A \tan B \tan C}{1 \tan A \tan B \tan B \tan C \tan C \tan A}$ $= \frac{\sum \tan A \prod \tan A}{1 \sum \tan A \tan B}$
- 14. Summation of Series $\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + \dots + \sin(\alpha + \overline{n-1}\beta)$ $= \frac{\sin\left(\alpha + \frac{n-1}{2}\beta\right)\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}$ $\cos \alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \dots + \cos(\alpha + \overline{n-1}\beta)$ $= \frac{\cos\left(\alpha + \frac{n-1}{2}\beta\right)\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}$

8