

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/19

ENT3036 – SEMICONDUCTOR DEVICES (NE)

14 MAR 2019 9.00 am – 11.00 am (2 Hours)

INSTRUCTION TO STUDENTS

- 1. This Question paper consists of 6 pages with 4 Questions only.
- 2. Answer all the questions and all the questions carry equal marks of 25. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

(a) A p⁺n silicon junction diode is doped with $N_a = 10^{18}$ cm⁻³ and $N_d = 10^{16}$ cm⁻³. The minority carrier hole diffusion length $L_p = 11.1$ µm and minority carrier hole diffusion coefficient $D_p = 12$ cm²/sec. The junction area is $A = 10^{-4}$ cm². Calculate the reverse saturation current and the forward-bias current for $V_A = 0.5$ V. Sketch and label the results onto a current versus voltage graph of the diode.

$$(J_S = \frac{eD_p p_{n0}}{L_p} + \frac{eD_n n_{p0}}{L_n})$$

[5+2 marks]

- (b) Draw the band diagrams of a npn BJT under zero bias and under forward active mode bias. [3 marks]
- (c) A silicon npn bipolar transistor (Fig. Q1) is uniformly doped and biased in the forward active region. The B-C junction reverse biased by 4 volts. The metallurgical base width is 1.10 μ m. The transistor doping are $N_E = 5 \times 10^{17}$ cm⁻³, $N_B = 5 \times 10^{16}$ cm⁻³ and $N_C = 5 \times 10^{15}$ cm⁻³.

$$x_{n} = \begin{bmatrix} 2\varepsilon_{S}(V_{bl} + V_{R}) \left(\frac{N_{a}}{N_{d}}\right) \left(\frac{1}{N_{a} + N_{d}}\right) \end{bmatrix}^{\frac{1}{2}} \text{ and } x_{p} = \begin{bmatrix} 2\varepsilon_{S}(V_{bl} + V_{R}) \left(\frac{N_{d}}{N_{a}}\right) \left(\frac{1}{N_{a} + N_{d}}\right) \end{bmatrix}^{\frac{1}{2}}$$
Emitter

Base

Collector

$$x_{E} = \begin{bmatrix} x_{E} & x' = 0 & x = 0 & x = x_{B} & x'' = 0 \\ x'' = x_{E} & x'' = x_{E} & x'' = x_{E} \end{bmatrix}$$

$$x' = x_{E} = \begin{bmatrix} x' = 0 & x = 0 & x = x_{B} & x'' = 0 \\ x'' = x_{E} & x'' = x_{E} \end{bmatrix}$$

Figure Q1

- (i) For T = 300 K, calculate the B-E voltage at which the minority carrier concentration at x = 0 is 10 percent of the majority carrier hole concentration.
- (ii) At this bias, determine the minority carrier hole concentration at x' = 0.
- (iii) Find the width x_p at the B-C space charge region and determine the neutral base width for this bias if x_p at the B-E junction is 0.053 μm.

2/6

(iv) Sketch and label the diagram of minority carrier distribution of the BJT.

[4+3+5+3 marks]

Continued ...

.

SSYap

(a) State two main differences of BJT and FET

[2 marks]

(b) By means of a diagram of a n-channel JFET and the ideal current voltage characteristics at different V_{GS} (label the saturation and non-saturation region in the graph), explain the operation of the JFET and the pinchoff effect at different V_{GS} .

[5+5 marks]

(c) Consider an n^+p junction of a silicon JFET at T=300 K with impurity doping concentrations of $N_a=10^{16}\,cm^{-3}$ and $N_d=10^{18}\,cm^{-3}$. The channel thickness is 0.4 μm . Find the internal pinchoff voltage (V_{po}) and the pinchoff voltage (V_p) .

$$V_{po} = \frac{ea^2N_x}{2\epsilon_s}$$

where a is the channel thickness and N_x is the doping concentration of the channel.

[4 marks]

- (d) Briefly define the followings for JFET:
 - (i) Transconductance
 - (ii) The maximum operating frequency (f_T)
 - (iii) Velocity saturation effects
 - (iv) Channel length modulation
 - (v) Substhreshold and gate current effects

 $[5 \times 1 \text{ marks}]$

(e) Briefly describe MESFET and its advantages as compared to JFET.

[2+2 marks]

Continued...

- (a) Explain the accumulation, depletion and inversion of metal oxide semiconductor (MOS) capacitors with p-type substrate with the aid of energy-band diagrams at
 - (i) zero gate bias,
 - (ii) a negative gate bias
 - (iii) a moderate positive gate bias
 - (iv) a large positive gate bias

[10 marks]

- (c) Draw the characteristic capacitance versus gate voltage curves of an MOS capacitor with p-type substrate. Label the followings:
 - (i) the region corresponds to accumulation, depletion, moderate inversion and strong inversion respectively.
 - (ii) C_{ox} , C_{sd} , C_{min} ,
 - (iii) V_{FB} , V_T

[5 marks]

- (c) A MOS device with an aluminum gate ($\phi_{ms} \cong -0.94 \,\mathrm{V}$) is fabricated on a p-type Si substrate with doping concentration $4 \times 10^{16} \,\mathrm{cm}^{-2}$. The silicon dioxide thickness $t_{ox} = 22 \,\mathrm{nm}$, and the trapped oxide charge $Q_{ss} = 4 \times 10^{10} \,\mathrm{electronic}$ charges per cm.
 - (i) Calculate C_{ox} and Q_{ss} .
 - (ii) Given $x_{\rm dT}$ (the maximum space charge width) is 1.575×10^{-5} cm, calculate $\phi_{\rm fp}$ (the potential between $E_{\rm Fi}$ and $E_{\rm Fp}$), Q'_{SD} (max) (the maximum space charge in the depletion region) and obtain the threshold voltage V_{TN} .

[2 + 5 marks]

(d) An ideal n-channel MOSFET is operated with the following parameters: channel width to length ratio W/L =12, electron mobility $\mu_n = 650 \text{ cm}^2/\text{V-s}$, $C_{\text{ox}} = 4.3 \times 10^{-7} \text{ F/cm}^2$ and threshold voltage $V_{\text{T}} = 0.40 \text{ V}$. If the transistor is biased in the saturation region, calculate the drain current for $V_{\text{GS}} = 1.2 \text{ V}$.

How will the saturation current change when V_{GS} increased?

[2+1 marks]

Continued ..

- (a) (i) With the aid of band diagram and a graph of current density versus electric field, explain "negative differential resistance". [8 marks]
 - (ii) Sketch the current-voltage curve of Gunn diode. Label the threshold voltage, the maximum operating voltage and the oscillation region. [4 marks]
- (b) (i) A n-GaAs Gunn diode with drift region length of 15 µm is oscillating between 8 and 10 V; find the average electron drift velocity from Fig. Q4 and determine the frequency of oscillation. [5 marks]

Fig. Q4 Carrier drift velocity versus electric field for Si, Ge and GaAs.

- (c) (i) Sketch the structure of an Ionization Avalanche Transit-Time (IMPATT) diode and oscillator circuit required for its operation. [4 marks]
 - (ii) An Si IMPATT diode has a drift region length of 15.0 μm and the holes drift velocity is shown in Fig. Q4. Calculate the optimum operating frequency for the diode.
 [4 marks]

Continued...

PHYSICAL CONSTANTS:

Thermal voltage:	$V_t = 0.0259 \text{ V}$
Intrinsic concentration of Silicon at 300K:	$n_i = 1.5 \times 10^{10} \mathrm{cm}^{-3}$
Intrinsic concentration of Silicon at 373K:	$n_i = 2.5 \times 10^{12} \mathrm{cm}^{-3}$
Intrinsic concentration of Gallium Arsenide at 300K:	$n_i = 1.8 \times 10^6 \text{cm}^{-3}$
Boltzmann's constant:	$k = 1.3806 \times 10^{-23} \text{J/K}$
Electronic charge:	$e = 1.6 \times 10^{-19} \mathrm{C}$
Permittivity of free space:	$\varepsilon_0 = 8.85 \times 10^{-14} \text{F/cm}$
Dielectric constant of Silicon at 300K:	$\varepsilon_{\rm r} = 11.7$
Dielectric constant of Silicon oxide at 300K:	$\varepsilon_{\rm i} = 3.9$
Dielectric constant of Gallium Arsenide at 300K	ϵ_{2} . = 13.1

End of paper.

