Data Visualization

Kylie Ariel Bemis

9/11/2018

What is a graphic?

Common statistical plots:

- ► Scatter plot
- ▶ Line plot
- ► Box plot
- ▶ Histogram
- ► Bar plot

How are these plots related?

Common statistical plots:

- Scatter plot
- ► Line plot
- ► Box plot
- ▶ Histogram
- ► Bar plot

What are their basic building blocks?

How are these plots related?

- Scatter plot
 - Maps variables to x- and y-axes
 - Uses points to represent each observation
- ▶ Line plot
 - Maps variables to x- and y-axes
 - Uses lines to connect each observation
- ► Box plot
 - ► Maps 5-number summary (min, lower-hinge, median, upper-hinge, max) to y-axis
 - Uses shapes to (boxes and whiskers) to represent these
- Histogram
 - Maps bins to x-axis and frequencies to y-axis
 - Uses bars to represent these
- Bar plot
 - ▶ Maps categorical variable to x-axis and counts (usually) to y-axis
 - Uses bars to represent these

What are the common elements?

- Some kind of data
- Mappings from data to aspects of the plot ("aesthetics")
- Geometric objects
- Potentially, statistical transformation
- Coordinate systems

We're on to something. . .

Can we break a plot into its basic components?

Consider a simple dataset:

A	В	C	D
2	3	4	a
1	2	1	a
4	5	15	b
9	10	80	b

Figure 1: http://vita.had.co.nz/papers/layered-grammar.pdf

We wish to create a scatter plot of A versus C.

Mapping aesthetics

We map variable A to x, variable C to y, and shape to D.

<i>x</i>	у	Shape
2	4	circle
1	1	circle
4	15	square
9	80	square

Figure 2: http://vita.had.co.nz/papers/layered-grammar.pdf

Building a plot

We have (1) geometric objects, (2) scales and coordinate system, and (3) plot annotations:

Figure 3: http://vita.had.co.nz/papers/layered-grammar.pdf

Building a plot (1)

And we have a plot:

Figure 4: http://vita.had.co.nz/papers/layered-grammar.pdf

Building a plot (2)

We can create a more complicated plot by faceting on a variable:

Figure 5: http://vita.had.co.nz/papers/layered-grammar.pdf

Faceting splits the data into subsets and creates subplots for each subset.

What about more complicated plots?

- Overlaying plots on top of each other
- ▶ Different datasets on the same plot
- ► Etc.

A Layered "Grammer of Graphics"

Components of a plot:

- Default dataset and set of mappings from variables to aesthetics
- One or more layers, each having:
 - A geometric object
 - A statistical transformation
 - A position adjustment
 - ▶ (Optional) A dataset
 - (Optional) A set of aesthetic mappings
- A scale for each mapped aesthetic
- A coordinate system
- A facet specification

A simple example (revisited)

```
## 1 2 3 4 a ## 2 1 2 1 a ## 3 4 5 15 b ## 4 9 10 80 b
```

A B C D

A simple example (revisited)

We wish to create a scatter plot of A versus C, using shape for D.

What are:

- The default dataset and aesthetic mappins?
- The layers?
 - ▶ The geometric object?
 - ▶ The statistical transformation?
 - ▶ The position adjustment?
- ▶ The scales for the mapped aesthetics?
- The coordinate system?
- ► The facet specification?

```
library(ggplot2)
ggplot(data=simple,
       mapping=aes(x=A, y=C, shape=D)) +
  layer(geom="point",
        stat="identity",
        position="identity") +
  scale_x_continuous() +
  scale y continuous() +
  coord_cartesian() +
  facet null()
```


Faceting

Sensible defaults

A number of these can be considered sensible defaults:

- ► For geom="point", use stat="identity" unless otherwise specified
- For geom="point", use position="identity" unless otherwise specified
- Cartesian coordinate system
- No facets unless explicitly specified

The usual way

```
ggplot(data=simple, mapping=aes(x=A, y=C, shape=D)) +
  geom_point()
```


Every geom has a default stat

- Scatter plot
- ► Line plot
- ► Box plot
- ▶ Histogram
- ► Bar plot

What are their default statistical transformations?

Every geom has a default stat

- Scatter plot geom_point
 - Identity stat_identity
- ► Line plot geom_line
 - Identity stat_identity
- Box plot geom_boxplot
 - Boxplot (five summary statistics + outliers) stat_boxplot
- ► Histogram geom_histogram
 - ▶ Binning stat_bin
- Bar plot geom_bar
 - Count stat_count

These can always be changed!

Example: Fuel Economy in Cars

mpg

```
## # A tibble: 234 x 11
##
    manufacturer model displ year cyl trans dry
## <chr>
               <chr> <dbl> <int> <int> <chr> <chr> <int> <chr> <in
## 1 audi
               a4
                      1.8 1999
                                  4 auto~ f
## 2 audi
               a4
                      1.8 1999
                                  4 manu~ f
##
   3 audi
               a4 2
                          2008 4 manu~ f
##
  4 audi
             a4 2
                          2008
                                 4 auto~ f
             a4 2.8 1999 6 auto~ f
## 5 audi
## 6 audi
             a4 2.8 1999
                                  6 manu~ f
## 7 audi
               a4 3.1 2008
                                  6 auto~ f
               a4 q~ 1.8 1999
##
   8 audi
                                  4 manu~ 4
##
   9 audi
               a4 q~ 1.8 1999
                                  4 auto~ 4
## 10 audi
                          2008
               a4 q~ 2
                                  4 manu~ 4
## # ... with 224 more rows
```

Plot engine size versus highway miles per gallon

Map class to color

Map number of cylinders to size

Facet by drive type (front/rear/4-wheel)

Add plot annotations (axis labels, title, etc.)

What if we want to add a smoothed line??

$geom_smooth()$ using method = 'loess' and formula 'y ~

Use geom_smooth

$geom_smooth()$ using method = 'loess' and formula 'y ~

geoms in ggplot2

- ► Geoms in ggplot2 represent a layer with a set of defaults
 - Geometric object
 - Statistical transformation
 - ▶ Position adjustment
- ► Geoms in ggplot2 are shortcuts for potentially complex layers
- ► Geoms in ggplot2 are sometimes redundant with other geoms

Consider a histograms and bar plots

```
ggplot(data = mpg, mapping = aes(x=class)) +
  geom_bar()

ggplot(data = mpg, mapping = aes(x=hwy)) +
  geom_histogram()
```

Why doesn't histogram use the "bar" geom?

`stat_bin()` using `bins = 30`. Pick better value with

Histograms and bar plots

We can rewrite both explicitly to use geom="bar" and different stats.

`stat_bin()` using `bins = 30`. Pick better value with

We could also use geom_bar for both

We can make a histogram with geom_bar by overwriting the default stat:

```
ggplot(data = mpg, mapping = aes(x=hwy)) +
geom_bar(stat="bin")
```

Boxplots

- Boxplots are unique geom with a unique stat
- ► They plot the five-number summary + outliers
- ▶ Here we plot side-by-side boxplots for highway mpg by class

```
ggplot(data = mpg, mapping = aes(x=class, y=hwy)) +
geom_boxplot()
```


class

A template for plotting

We can develop a template for creating plots in ggplot2:

```
ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) +
    <GEOM_FUNCTION>()
```

You will notice this is slightly different from the template that appears in the *R* for Data Science – how and why?

Overlaying geoms

As we've already seen, it is possible to overlay different geoms:

In this case, both geoms inherit the default data and aesthetic mappings.

 $\mbox{\tt \#\# `geom_smooth()` using method = 'loess' and formula 'y ~$

Different aesthetics

However, suppose we want to use different aesthetics for each geom:

`geom_smooth()` using method = 'loess' and formula 'y ~

Different aesthetics

We can either give each layer its own aesthetic mapping:

```
ggplot(data = mpg) +
  geom_point(mapping=aes(x=displ, y=hwy, color=class)) +
  geom_smooth(mapping=aes(x=displ, y=hwy))
```

Or we can supply a default aesthetic and override it when necessary:

Both produce the same plot

`geom_smooth()` using method = 'loess' and formula 'y ~

Different data

We can also specify different datasets for each layer, or allow them to inherit from the default dataset.

Fitted line for SUVs only

`geom_smooth()` using method = 'loess' and formula 'y ~

Overplotting: rounded values

Consider the following plot:

Notice how all of the data points are on neat lines?

Solution: jitter

Overplotting: too much data

```
ggplot(diamonds, mapping=aes(x=carat, y=price)) +
  geom_point()
```


Solution: transparency

```
ggplot(diamonds, mapping=aes(x=carat, y=price)) +
geom_point(alpha=1/100)
```

