Referencia - ICPC

 ${\bf Mathgic}$

 ${\rm Mayo}\ 2024$

Github ACTUALIZADO HASTA LA SECCIÓN 9. Falta 10, 11, etc.

${\rm \acute{I}ndice}$

	0.1. OJO 0.2. Algunas formulas	4
1.	Estructuras básicas	4
	1.1. Min stack	4
	1.2. Min queue	4
	1.3. Heap actualizable	5
	Heap devidanzable	0
2.	Ordenamiento	6
	2.1. Merge sort	6
3.	Matemáticas	6
	3.1. Criba de Eratóstenes	6
	3.2. Criba sobre un rango	7
	3.3. Criba segmentada	7
	3.4. Criba lineal	8
	3.5. Algoritmo extendido de Euclides	8
	3.6. Solución de ecuaciones diofánticas lineales	8
	3.7. Función Phi de Euler	9
	3.8. Función sigma	10
	3.9. Función de Moebius	10
		11
	3.10. Exponenciación binaria	11
4.	Sparse table	11
5.	Fenwick Tree	12
6.	Segment Tree	12
	3.1. Actualizaciones puntuales	12
	3.2. Actualizaciones sobre rangos	13
7.	Sqrt decomposition	14
	7.1. Algoritmo de MO	14
8.	$\mathbf{D}\mathbf{S}\mathbf{U}$	14
a	Grafos	15
Э.	0.1. Caminos mínimos	15
	9.1.1. Dijkstra	15
	9.1.1. Bijkstra	16
	9.1.3. Floyd-Warshall	16
	9.1.4. Johnson's algorithm	17
	9.2. Arboles	17
	9.2.1. MST	17
	9.2.2. LCA	18
	9.2.3. Sack	19
	9.3. Máximo flujo	19
	0.4. SCC	21
	9.4. SCC	21 21

11.Strings	24
11.1. KMP	24
11.2. Suffix array	
11.2.1. Construcción	
11.2.2. Prefijo común más largo	
11.3. Aho-Corasick	
11.4. Suffix tree	
12.Geometría	29
12.1. Convex hull	29
13.Utilidades	30
13.1. Plantilla tree	30
13.2. Números aleatorios	30
14.Bitmask	30
14.1. Útiles	30
14.2. Iterar	
14.3. Gospers' Hack	
15.Máximo de funciones	31
15.1. Li-Chao Tree	31

0.1. OJO

- a) Se usan macros (MAXN, LOGN, etc) con arreglos estáticos para más comodidad, pero puede causar RTE o MLE cuando los valores son grandes. Pensar en usar vector<> (STL) cuando sea conveniente.
- b) Temario (no oficial): https://youkn0wwho.academy/topic-list.
- c) agréguenle errores/consejos que hay que tener en cuenta sobre las implementaciones y no estemos mucho tiempo tratando de encontrar el error.

0.2. Algunas formulas

```
⊕ es el xor.

■ a|b = a \oplus b + a \& b

■ a \oplus (a \& b) = (a|b) \oplus b

■ b \oplus (a \& b) = (a|b) \oplus a

■ (a \& b) \oplus (a|b) = a \oplus b

■ a + b = a|b + a \& b = a \oplus b + 2(a \& b)

■ a - b = (a \oplus (a \& b)) - ((a|b) \oplus a) = ((a|b) \oplus b) - ((a|b) \oplus a)

■ a - b = (a \oplus (a \& b)) - (b \oplus (a \& b)) = ((a|b) \oplus b) - (b \oplus (a \& b))
```

1. Estructuras básicas

1.1. Min stack

```
template<typename T> struct min_stack{
        stack<pair<T, T>> st;
        min stack(){}
3
        min_stack(const T MAXVAL){init(MAXVAL);}
        void init(const T MAXVAL){st.push(make_pair(MAXVAL, MAXVAL));}
        void push(const T &v){st.push(make_pair(v, min(v, st.top().second)));}
        T top(){return st.top().first;}
        void pop(){if(st.size() > 1)st.pop();}
        T minV(){return st.top().second;}
        int size(){return st.size() - 1;}
10
        bool empty(){return size() == 0;}
11
   };
12
```

1.2. Min queue

```
template<typename T> struct min_queue{
        min_queue(const T &MAXVAL){ p_in.init(MAXVAL); p_out.init(MAXVAL);}
2
        void push(const T &v){p_in.push(v);}
        T front(){transfer(); return p_out.top();}
        void pop(){transfer(); p_out.pop();}
        int size(){return p_in.size() + p_out.size();}
6
        T minV() {return min(p_in.minV(), p_out.minV());}
        bool empty(){ return size() == 0;}
        void transfer(){
            if(p_out.size()) return;
10
            while(p_in.size()){
11
                p_out.push(p_in.top());
                p_in.pop();
13
```

1.3. Heap actualizable

```
template<class TPriority, class TKey> class UpdatableHeap{
    public:
2
        UpdatableHeap(){
3
             TPriority a;
             TKey b;
             nodes.clear();
6
             nodes.push_back( make_pair(a, b) );
        pair<TPriority, TKey> top() {return nodes[1];}
        void pop(){
10
             if(nodes.size() == 1) return;
             TKey k = nodes[1].second;
12
             swap_nodes(1, nodes.size() - 1);
13
             nodes.pop_back();
14
             position.erase(k);
15
             heapify(1);
16
17
        void insert_or_update(const TPriority &p, const TKey &k){
18
             int pos;
19
             if(is_inserted(k)){
20
                 pos = position[k];
21
                 nodes[pos].first += p;
22
             } else {
23
                 position[k] = pos = nodes.size();
                 nodes.push_back( make_pair(p, k) );
25
             }
             heapify(pos);
27
        bool is_inserted(const TKey &k) {
29
             return position.count(k);
31
        int get_size() {
32
             return (int)nodes.size() - 1;
33
34
        void erase(const TKey &k){
35
             if(!is_inserted(k)) return;
36
             int pos = position[k];
37
             swap_nodes(pos, nodes.size() - 1);
38
             nodes.pop_back();
39
             position.erase(k);
40
             heapify(pos);
41
        }
42
    private:
43
        vector<pair<TPriority, TKey>> nodes;
44
        map<TKey, int> position;
45
        void heapify(int pos){
46
             if(pos >= nodes.size()) return;
             while(1 < pos && nodes[pos / 2] <= nodes[pos]){
48
                 swap_nodes(pos / 2, pos);
49
                 pos /= 2;
50
```

```
}
51
             int 1 = pos * 2, r = pos * 2 + 1, maxi = pos;
52
             if(1 < nodes.size() && nodes[1] > nodes[maxi]) maxi = 1;
53
             if(r < nodes.size() && nodes[r] > nodes[maxi]) maxi = r;
54
             if(maxi != pos){
55
                 swap_nodes(pos, maxi);
56
                 heapify(maxi);
             }
58
        }
        void swap_nodes(int a, int b){
60
             position[ nodes[a].second ] = b;
61
             position[ nodes[b].second ] = a;
62
             swap(nodes[a], nodes[b]);
63
64
    };
```

2. Ordenamiento

2.1. Merge sort

Complejidad: Tiempo $O(n \log n)$ - Memoria extra O(n).

```
void mergeSort(int arr[], int ini, int fin){
        if(ini == fin) return;
2
        int mitad = (ini + fin) / 2;
3
        mergeSort(arr, ini, mitad);
        mergeSort(arr, mitad + 1, fin);
5
        int tam1 = mitad - ini + 1, tam2 = fin - mitad;
        int mitad1[tam1], mitad2[tam2];
        for(int i = ini, idx = 0; i <= mitad; ++i, idx++)</pre>
            mitad1[idx] = arr[i];
10
        for(int i = mitad + 1, idx = 0; i \le fin; ++i, idx++)
11
            mitad2[idx] = arr[i];
12
13
        for(int i = ini, idx1 = 0, idx2 = 0; i \le fin; ++i){
14
             if(idx1 < tam1 && idx2 < tam2){ /// si quedan elementos en ambas mitades
                 arr[i] = mitad1[idx1] < mitad2[idx2] ? mitad1[idx1++] : mitad2[idx2++];
16
            } else if(idx1 < tam1){ /// si solo hay elementos en mitad1
                 arr[i] = idx1 < tam1 ? mitad1[idx1++] : mitad2[idx2++];
18
19
        }
20
    }
```

3. Matemáticas

3.1. Criba de Eratóstenes

Complejidad: Tiempo $O(n \log \log n)$ - Memoria extra O(n). Calcula los primos menores o iguales a n.

```
void criba(int n, vector<int> &primos){
primos.clear();
if(n < 2) return;
vector<bool> no_primo(n + 1);
no_primo[0] = no_primo[1] = true;
for(long long i = 3; i * i <= n; i += 2){
if(no_primo[i]) continue;</pre>
```

3.2. Criba sobre un rango

Complejidad: Tiempo $O(\sqrt{b} \log \log \sqrt{b} + (b-a) \log \log (b-a))$ - Memoria extra $O(\sqrt{b} + b - a)$. Calcula los primos en el intervalo [a, b].

```
void criba_sobre_rango(long long a, long long b, vector<long long> &primos){
        a = max(a, 011);
2
        b = max(b, 011);
3
        long long tam = b - a + 1;
        vector<int> primos_raiz;
5
        criba(sqrt(b) + 1, primos_raiz);
6
        bool no_primo[tam] = {};
        primos.clear();
        for(long long p : primos_raiz){
9
             long long ini = p * max(p, (a + p - 1) / p);
10
             for(long long m = ini; m \le b; m += p){
11
                 no_primo[m - a] = true;
12
             }
13
        }
        for(long long i = 0; i < tam; ++i){
15
             if(no_primo[i] || i + a < 2) continue;</pre>
16
             primos.push_back(i + a);
17
        }
18
    }
19
```

3.3. Criba segmentada

Complejidad: Tiempo $O(\sqrt{n}\log\log\sqrt{n} + n\log\log n)$ - Memoria extra $O(\sqrt{n} + S)$. Cuenta la cantidad de primos menores o iguales a n.

```
int cuenta_primos(int n){
        if(n < 2) return 0;
2
        const int S = sqrt(n);
        vector<int> primos_raiz;
        criba(sqrt(n) + 1, primos_raiz);
        int ans = 0;
6
        vector<char> no_primo(S + 1);
        for(int ini = 0; ini <= n; ini += S){</pre>
             fill(no_primo.begin(), no_primo.end(), false);
             for(int p : primos_raiz){
10
                 int m = p * max(p, (ini + p - 1) / p) - ini;
11
                 for(; m <= S; m += p) no_primo[m] = true;</pre>
12
             }
13
             for(int i = 0; i < S && i + ini <= n; ++i)
                 if(!no_primo[i] && 1 < i + ini) ans++;</pre>
15
16
        return ans;
17
    }
18
```

3.4. Criba lineal

Complejidad: Tiempo O(n) - Memoria extra O(n). Calcula los primos menores o iguales a n y el menor primo que divide a cada entero en [2, n]. ADVERTENCIA: es O(n) pero tiene una constante grande.

```
void criba_lineal(int n, vector<int> &primos){
1
2
        primos.clear();
         if(n < 2) return;</pre>
3
         vector<int> lp(n + 1);
        for(long long i = 2; i \le n; ++i){
             if(!lp[i]){
6
                  lp[i] = i;
                 primos.push_back(i);
             }
             for(int j = 0; i * (long long)primos[j] <= n; ++j){</pre>
10
                  lp[i * primos[j]] = primos[j];
11
                  if(primos[j] == lp[i])
12
                      break;
13
             }
14
        }
15
    }
16
```

3.5. Algoritmo extendido de Euclides

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación $ax + by = \gcd(a,b)$.

```
int gcd_extendido(int a, int b, int &x, int &y){
        if(!b){
2
             x = 1;
3
             y = 0;
             return a;
        }
        int x1, y1;
        int g = gcd_extendido(b, a % b, x1, y1);
        x = y1;
        y = x1 - y1 * (a / b);
10
        return g;
11
   }
12
```

3.6. Solución de ecuaciones diofánticas lineales

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación ax + by = c o determina si no existe solución.

```
bool encuentra_solucion(int a, int b, int c, int &x, int &y, int &g){
    g = gcd_extendido(abs(a), abs(b), x, y);
    if(c % g) return false;
    x *= c / g;
    y *= c / g;
    if(a < 0) x = -x;
    if(b < 0) y = -y;
    return true;
}

Cambia a la siguiente (anterior) solución |cnt| veces. g := gcd(a, b).</pre>
```

void cambia_solucion(int &x, int &y, int a, int b, int cnt, int g = 1) {
x += cnt * b / g;

Cuenta la cantidad de soluciones x, y con $x \in [minx, maxx]$ y $y \in [miny, maxy]$.

```
int cuenta_soluciones(int a, int b, int c, int minx, int maxx, int miny, int maxy) {
        int x, y, g;
2
        if(!encuentra solucion(a, b, c, x, y, g)) return 0;
3
        /// ax + by = c ssi (a/q)x + (b/q)y = c/q
        /// Dividimos entre q para simplificar y no dividir a cada rato
5
        a /= g;
        b /= g;
        /// Signos de a, b nos sirven para pasar a la
        /// siguiente (anterior) solucion
9
        int sign_a = a > 0 ? +1 : -1;
10
        int sign_b = b > 0 ? +1 : -1;
11
        /// pasa a la minima solucion tal que minx <= x
12
        cambia_solucion(x, y, a, b, (minx - x) / b);
13
        /// si \ x < minx, pasa a la siguiente para que minx <= x
        if(x < minx) cambia_solucion(x, y, a, b, sign_b);</pre>
15
        if (x > maxx) return 0; /// si \ x > maxx, entonces no hay x solution tal que x in [minx, maxx]
16
        int lx1 = x;
17
        /// pasa a la maxima solucion tal que x \le maxx
18
        cambia_solucion(x, y, a, b, (maxx - x) / b);
19
        if(x > maxx) cambia solucion(x, y, a, b, -sign b); /// si x > maxx, pasa a la solucion anterior
20
        int rx1 = x:
21
        /// hace todo lo anterior pero con y
22
        cambia_solucion(x, y, a, b, -(miny - y) / a);
23
        if(y < miny) cambia_solucion(x, y, a, b, -sign_a);</pre>
24
        if(y > maxy) return 0;
25
        int 1x2 = x;
26
        cambia_solucion(x, y, a, b, -(maxy - y) / a);
27
        if(y > maxy) cambia_solucion(x, y, a, b, sign_a);
28
        int rx2 = x;
29
        /// como al encontrar las x tomando y como criterio no nos asegura
30
        /// que esten ordenadas, entonces las ordenamos
        if(1x2 > rx2) swap(1x2, rx2);
32
        /// obtenemos la interseccion de los intervalos
33
        int lx = max(lx1, lx2);
34
        int rx = min(rx1, rx2);
35
        if(lx > rx) return 0; /// no existen soluciones, interseccion vacia
36
        /// las soluciones (por x) van de b en b (b/q en b/q pero dividimos al principio)
37
        return (rx - lx) / abs(b) + 1;
38
    }
39
```

3.7. Función Phi de Euler

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Cuenta la cantidad de coprimos con n menores a n.

```
int phi(int n){
   if(n <= 1) return 1;
   if(!dp[n]){
   int pot = 1, p = lp[n], n0 = n;
   while(n0 % p == 0){
      pot *= p;
      n0 /= p;
   }</pre>
```

```
pot /= p;
dp[n] = pot * (p - 1) * phi(n0);
}
return dp[n];
}
```

3.8. Función sigma

Sigma 0 (σ_0). Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. 1p[i] es el menor primo que divide a i. Cuenta la cantidad de divisores de n.

```
long long sigma0(int n){
1
         if(n <= 1) return 1;</pre>
2
         if(!dp[n]){
3
             long long exp = 0, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                  exp++;
                  n0 /= p;
             }
             dp[n] = (exp + 1) * sigma0(n0);
9
10
         return dp[n];
11
    }
12
```

Sigma 1 (σ_1) . Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. 1p[i] es el menor primo que divide a i. Calcula la suma de los divisores de n.

```
long long sigma1(int n){
1
        if(n <= 1) return 1;</pre>
2
        if(!dp[n]){
3
             long long pot = 1, p = lp[n], n0 = n;
             while(n0 \% p == 0){
                 pot *= p;
6
                 n0 /= p;
             pot *= p;
             dp[n] = (pot - 1) / (p - 1) * sigma1(n0);
10
11
        return dp[n];
12
    }
13
```

3.9. Función de Moebius

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Devuelve 0 si n no es divisible por algún cuadrado. Devuelve 1 o -1 si n es divisible por al menos un cuadrado. Devuelve 1 si n tiene una cantidad par de factores primos. Devuelve -1 si n tiene una cantidad impar de factores primos.

```
int moebius(int n){
    if(n <= 1) return 1;
    if(dp[n] == -7){
        int exp = 0, p = lp[n], n0 = n;
        while(n0 % p == 0){
            exp++;
            n0 /= p;
        }
        dp[n] = (exp > 1 ? 0 : -1 * moebius(n0));
}
```

```
return dp[n];
return dp[n];
return dp[n];
```

3.10. Exponenciación binaria

Iterativa. Complejidad: Tiempo $O(\log b)$ - Memoria extra O(1).

```
int bin_exp(int a, int b){
   int ans = 1;
   while(b){
      if(b % 2) ans *= a;
      a *= a;
      b /= 2;
   }
   return ans;
}
```

Recursiva. Complejidad: Tiempo $O(\log b)$ - Memoria extra O(1).

```
int bin_exp(int a, int b) {
   if(!b) return 1;
   int tmp = bin_exp(a, b / 2);
   if(b % 2) return tmp * tmp * a;
   return tmp * tmp;
}
```

4. Sparse table

Complejidad: Tiempo de precalculo $O(n \log n)$ - Tiempo en responder $O(\log(r-l+1))$ - Tiempo en responder para operaciones idempotentes O(1) - Memoria extra $O(n \log n)$. LOGN es $\lceil \log_2(\text{MAXN}) \rceil$.

```
struct sparse_table{
        int n, NEUTRO;
2
        vector<vector<int>> ST;
3
        vector<int> lg2;
        int f(int a, int b){return a + b;}
5
        sparse_table(int _n, int data[]){
6
            n = n;
             NEUTRO = 0;
             lg2.resize(n + 1);
9
             lg2[1] = 0;
10
             for(int i = 2; i \le n; ++i) lg2[i] = lg2[i / 2] + 1;
11
             ST.resize(lg2[n] + 1, vector<int>(n + 1, NEUTRO));
12
             for(int i = 0; i < n; ++i) ST[0][i] = data[i];</pre>
13
             for(int k = 1; k <= lg2[n]; ++k){
                 int fin = (1 << k) - 1;
15
                 for(int i = 0; i + fin < n; ++i)
16
                     ST[k][i] = f(ST[k-1][i], ST[k-1][i+(1 << (k-1))]);
17
             }
18
19
        int query(int 1, int r){
20
             if(l > r) return NEUTRO;
21
             int ans = NEUTRO;
22
             for(int k = lg2[n]; 0 \le k; --k){
23
                 if(r - 1 + 1 < (1 << k)) continue;
24
                 ans = f(ans, ST[k][1]);
25
                 1 += 1 << k;
26
             }
27
```

```
return ans;
28
         }
29
         int queryIdem(int 1, int r){
30
             if(1 > r) return NEUTRO;
31
             int lg = lg2[r - 1 + 1];
32
             return f(ST[lg][1], ST[lg][r - (1 << lg) + 1]);
33
         }
34
    };
35
```

5. Fenwick Tree

Complejidad: Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct fenwick_tree{
         int n;
2
         vector<int> BIT;
3
         fenwick_tree(int _n){
             n = _n;
5
             BIT.resize(n + 1);
         void add(int pos, int x){
             while(pos <= n){</pre>
9
                  BIT[pos] += x;
10
                  pos += lsb(pos);
11
              }
12
         }
13
         int sum(int pos){
14
              int res = 0;
              while(pos){
16
                  res += BIT[pos];
17
                  pos -= lsb(pos);
18
              }
19
             return res;
20
         }
21
    };
22
```

6. Segment Tree

Nodo del Segment Tree:

```
struct nodo{
int val, lazy;
nodo():val(0), lazy(0){}/// inicializa con el neutro y sin lazy pendiente
nodo(int x, int lz = 0):val(x), lazy(lz){}
const nodo operator+(const nodo &b)const{
    return nodo(val + b.val);
}
```

6.1. Actualizaciones puntuales

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
struct node{...};
vector<node> nodes;
```

```
segment tree(int n, int data[]){
4
             nodes.resize(4 * n + 1);
5
             build(1, n, data);
6
        void build(int left, int right, int data[], int pos = 1){
             if(left == right){
                 nodes[pos].val = data[left];
10
                 return;
11
             }
12
             int mid = (left + right) / 2;
13
             build(left, mid, data, pos * 2);
14
             build(mid + 1, right, data, pos * 2 + 1);
15
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
16
17
        void update(int x, int idx, int left, int right, int pos = 1){
18
             if(idx < left || right < idx) return;</pre>
19
             if(left == right){
                 nodes[pos].val += x;
21
                 return;
22
23
             int mid = (left + right) / 2;
24
             update(x, idx, left, mid, pos * 2);
25
             update(x, idx, mid + 1, right, pos * 2 + 1);
26
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
27
28
        node query(int 1, int r, int left, int right, int pos = 1){
             if(r < left || right < 1) return node(); /// Devuelve el neutro</pre>
30
             if(1 <= left && right <= r) return nodes[pos];</pre>
31
             int mid = (left + right) / 2;
32
             return query(1, r, left, mid, pos * 2) + query(1, r, mid + 1, right, pos * 2 + 1);
33
        }
34
    };
```

6.2. Actualizaciones sobre rangos

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
1
        struct node{...};
2
        vector<node> nodes;
3
        segment_tree(int n, int data[]){...}
        void build(int left, int right, int data[], int pos = 1){...}
5
        void combineLazy(int lz, int pos){nodes[pos].lazy += lz;}
6
        void applyLazy(int pos, int tam){
            nodes[pos].val += nodes[pos].lazy * tam;
8
            nodes[pos].lazy = 0;
        }
10
        void pushLazy(int pos, int left, int right){
11
             int tam = abs(right - left + 1);
12
            if(1 < tam){
13
                 combineLazy(nodes[pos].lazy, pos * 2);
14
                 combineLazy(nodes[pos].lazy, pos * 2 + 1);
15
16
            applyLazy(pos, tam);
17
18
        void update(int x, int 1, int r, int left, int right, int pos = 1){
19
```

```
pushLazy(pos, left, right);
20
             if(r < left || right < 1) return;</pre>
21
             if(1 <= left && right <= r){
22
                 combineLazy(x, pos);
23
                 pushLazy(pos, left, right);
24
                 return;
25
             }
26
             int mid = (left + right) / 2;
27
             update(x, 1, r, left, mid, pos * 2);
28
             update(x, 1, r, mid + 1, right, pos * 2 + 1);
29
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
31
        node query(int 1, int r, int left, int right, int pos = 1){...}
32
    };
33
```

7. Sqrt decomposition

7.1. Algoritmo de MO

Complejidad: Tiempo en responder $O((n+q)\sqrt{n}F + q\log(q))$, donde O(F) es la complejidad de add() y remove().

```
const int block_size = 300; /// Ajustable
    struct query {
         int 1, r, block, i;
3
        bool operator<(const query &b) const {</pre>
             if(block == b.block) return r < b.r;</pre>
             return block < b.block;</pre>
6
    };
    void add(int idx){/**TO-DO*/}
    void remove(int idx){/**TO-DO*/}
10
    int get_answer(){return 0; /**TO-DO*/}
11
    vector<int> solve(vector<query> &queries) {
12
         vector<int> answers(queries.size());
13
         sort(queries.begin(), queries.end());
14
         int l_act = 0;
15
         int r act = -1;
16
         for(query q : queries){
             while(l_act > q.l) add(--l_act);
18
             while(r_act < q.r) add(++r_act);</pre>
19
             while(l_act < q.l) remove(l_act++);</pre>
20
             while(r_act > q.r) remove(r_act--);
21
             answers[q.i] = get_answer();
22
23
        return answers;
24
    }
```

8. DSU

Complejidad: Tiempo $O(\log(n))$ - Memoria O(n), donde n es la cantidad total de elementos. La complejidad temporal es por cada función.

P[MAXN]: guarda el representante para cada nodo.

RA[MAXN]: guarda el rango (peso) del conjunto de cada representante para el small to large.

```
struct dsu{
struct action{
```

```
int x_p, y_p, rank_y;
3
        };
        vector<int> RA, P;
5
         vector<action> actions;
6
        dsu(int n){
             RA.resize(n, 1);
             P.resize(n);
             iota(P.begin(), P.end(), 0);
10
        }
11
         int root(int x){
12
             return x == P[x] ? x : P[x] = root(P[x]);
13
14
        bool join(int x, int y, bool recording){
             x = root(x);
16
             y = root(y);
             if(x == y) return false;
18
             if(RA[x] >= RA[y]) swap(x, y);
19
             if(recording) actions.push_back({x, y, RA[y]});
20
             RA[y] += RA[x];
21
             P[x] = y;
22
             return true;
23
24
        void rollback(int cnt){
25
             while(cnt-- > 0 && actions.size()){
26
                 action act = actions.back();
27
                 actions.pop_back();
                 RA[act.y_p] = act.rank_y;
29
                 P[act.x_p] = act.x_p;
30
             }
31
        }
32
    };
33
```

9. Grafos

```
struct edge{
         int from, to;
2
         int64_t w;
3
         const bool operator<(const edge &b)const{</pre>
              return w > b.w;
5
         }
    };
    struct pos{
         int from;
9
         int64_t c;
10
         const bool operator<(const pos &b)const{</pre>
11
              return c > b.c;
12
13
    };
14
```

9.1. Caminos mínimos

9.1.1. Dijkstra

Complejidad: Tiempo $O(|E|\log |V|)$ - Memoria extra O(|E|). dist[MAXN] es el arreglo de distancias mínimas desde el nodo inicial a todos los demás.

```
int64_t dijkstra(int a, int b, vector<edge> graph[]){
        int64_t dist[MAXN];
        bool vis[MAXN];
3
        fill(dist, dist + MAXN, LLONG_MAX);
        memset(vis, 0, sizeof(vis));
5
        priority_queue<pos> q;
6
        q.push(pos{a, 0});
        dist[a] = 0;
8
        while(!q.empty()){
             pos act = q.top();
10
             q.pop();
11
             if(vis[act.from]) continue;
12
             vis[act.from] = true;
13
             for(edge &e : graph[act.from]){
14
                 if(dist[e.to] <= dist[act.from] + e.w) continue;</pre>
                 dist[e.to] = dist[act.from] + e.w;
16
                 q.push(pos{e.to, dist[e.to]});
18
19
        return dist[b];
20
    }
    9.1.2. Bellman-Ford
       Complejidad: O(|V||E|).
    vector<int> bellman_ford(int s, int n, vector<edge> &edges, bool cycles = false){
        vector<int> d(n, (cycles ? 0 : INT_MAX));
2
        d[s] = 0;
3
        vector<int> P(n, -1); /// Predecesor
4
        for(int i = 0; i < n - 1; ++i){</pre>
             for(edge &e : edges){
6
                 if(d[e.from] == INT_MAX) continue;
                 if(d[e.to] > d[e.from] + e.w){
                     d[e.to] = d[e.from] + e.w;
                     P[e.to] = e.from;
10
                 }
             }
12
13
        int last_relax = -1;
14
        for(edge &e : edges){
15
             if(d[e.from] == INT_MAX) continue;
16
             if(d[e.to] > d[e.from] + e.w){
17
                 d[e.to] = d[e.from] + e.w;
18
                 P[e.to] = e.from;
19
                 last_relax = e.to;
20
             }
21
22
        if(last_relax == -1) return d;
23
        return {}; /// VACIO
24
    }
25
    9.1.3. Floyd-Warshall
      Complejidad: O(|V|^3).
    vector<vector<int>> floyd_warshall(int n){
        vector<vector<int>> d(n, vector<int>(n, INT_MAX));
```

```
/// aqui inicializa con la lista/matriz de adyacencia
3
        /// luego calcula la dp
        for(int k = 0; k < n; ++k){
5
             for(int i = 0; i < n; ++i){</pre>
6
                 for(int j = 0; j < n; ++j){
                     if(d[i][k] == INT_MAX) continue;
                     if(d[k][i] == INT_MAX) continue;
                     if(d[i][j] > d[i][k] + d[k][j]) d[i][j] = d[i][k] + d[k][j];
10
                 }
11
             }
12
        }
13
        return d;
14
   }
```

9.1.4. Johnson's algorithm

Complejidad: $O(|V||E|\log |V|)$. Sea $p:V\to\mathbb{R}$ una función potencial del grafo. El algoritmo es como sigue:

- 1. Hacemos una transformación en el grafo cambiando los pesos w a w'(u,v) = w(u,v) + p(u) p(v).
- 2. Calculamos la distancia mínima $d': V \times V \to \mathbb{R}$ desde cada nodo a todos los demás con Dijkstra.
- 3. Finalmente, la distancia mínima de u a v en el grafo original es d(u,v) = d'(u,v) p(u) + p(v).

La función potencial p puede ser cualquiera. Usando Bellman-Ford se puede calcular el potencial p(u) como el camino más corto que termina (o empieza) en u.

9.2. Árboles

9.2.1. MST

Prim. Complejidad: Tiempo $O(|E|\log |V|)$. eCost [MAXN] es el arreglo de costos mínimos de cada nodo para incluirlo en el MST.

```
int64_t prim(vector<edge> graph[]){
         int64_t e_cost[MAXN];
2
        bool vis[MAXN];
        memset(vis, 0, sizeof(vis));
        fill(e_cost, e_cost + MAXN, LLONG_MAX);
         int64_t ans = 0;
6
        priority_queue<edge> q;
        q.push(edge{1, 1, 0});
         while(q.size()){
             int node = q.top().to;
10
             int64_t w = q.top().w;
11
             q.pop();
12
             if(vis[node]) continue;
13
             vis[node] = true;
14
             ans += w;
15
             for(edge &e : graph[node]){
16
                 if(vis[e.to] || e_cost[e.to] <= e.w) continue;</pre>
17
                 e_{cost}[e.to] = e.w;
                 q.push(e);
19
             }
21
22
        return ans;
23
```

Kruskal. Complejidad: Tiempo $O(|E| \log |E|)$.

```
int64_t kruskal(vector<edge> &edges, int n){
1
        sort(edges.begin(), edges.end());
2
        dsu mset(n);
3
        int64_t res = 0;
        for(edge &e : edges){
5
             if(mset.root(e.from) == mset.root(e.to)) continue;
6
            mset.join(e.from, e.to);
             res += e.w;
8
        }
        return res;
10
    }
11
```

Boruvka. Complejidad: Tiempo $O(|E|\log |V|)$. |V|=n. dsu.join() devuelve true si la unión se llevó a cabo o false en otro caso.

```
int64_t boruvka(vector<edge> &edges, int n){
1
        dsu mset(n);
2
        int min_edge[n];
3
        int64_t res = 0;
        while(mset.cnt_comp > 1){
5
             fill(min_edge, min_edge + n, -1);
6
             for(int i = 0; i < edges.size(); ++i){</pre>
                 int u = mset.root(edges[i].from);
                 int v = mset.root(edges[i].to);
                 if(u == v) continue;
10
                 if(min_edge[u] == -1 || edges[i].w < edges[min_edge[u]].w) min_edge[u] = i;</pre>
11
                 if(min_edge[v] == -1 || edges[i].w < edges[min_edge[v]].w) min_edge[v] = i;</pre>
12
             }
             for(int i = 0; i < n; ++i){
14
                 int idx_e = min_edge[i];
15
                 if(idx e == -1) continue;
16
                 res += mset.join(edges[idx_e].from, edges[idx_e].to) * edges[idx_e].w;
17
             }
18
        }
19
        return res;
20
    }
```

9.2.2. LCA

Complejidad: Tiempo de preproceso $O(|V|\log|V|)$. Tiempo de LCA y n-ésimo ancestro $O(\log|V|)$

```
void precalc(int node, int p = 0, int d = 1){
        depth[node] = d;
2
        P[0][node] = p;
3
        for(int k = 1; k \le LOGN; ++k)
             P[k][node] = P[k - 1][P[k - 1][node]];
5
        for(int child : tree[node])
             if(p != child) precalc(child, node, d + 1);
    int LCA(int a, int b){
9
        if(depth[b] < depth[a]) swap(a, b);</pre>
10
        int dif = depth[b] - depth[a];
11
        for(int k = LOGN; 0 <= k; --k)</pre>
12
             if(is_on(dif, k)) b = P[k][b];
13
        if(a == b) return a;
14
        for(int k = LOGN; 0 \le k; --k){
             if(P[k][a] != P[k][b]){
16
                 a = P[k][a];
```

```
b = P[k][b];
18
             }
19
20
        return P[0][a];
21
22
    int nth_ancestor(int u, int n){
23
        for(int k = LOGN; 0 \le k; --k)
24
             if(is_on(n, k)) u = P[k][u];
25
        return u;
26
    }
27
   9.2.3. Sack
       Complejidad: Tiempo O(|V| \log |V|).
    void precalc(int node, int p = 0){
1
        subtree_size[node] = 1;
2
        depth[node] = depth[p] + 1;
3
        for(int v : tree[node]){
             if(v == p) continue;
             precalc(v, node);
6
             subtree_size[node] += subtree_size[v];
        }
    void add(int node, int x, int p = 0){
10
        /// add node here
11
        /// add subtree
12
        for(int v: tree[node])
13
             if(v != p && !big[v])
14
                 add(v, x, node);
15
16
    void dfs(int node, bool keep, int p = 0){
17
        int maxi = -1, big_child = -1;
18
        for(int v : tree[node]) /// Search for big_child
19
            if(v != p && subtree_size[v] > maxi)
20
               maxi = subtree size[v], big child = v;
21
        for(int v : tree[node])
22
             if(v != p && v != big_child)
23
                 dfs(v, false, node); /// run a dfs on small childs and clear them
24
        if(big_child != -1)
25
             dfs(big_child, true, node), big[big_child] = 1; /// biq_child marked as biq and not cleared
26
        add(node, 1, p);
27
        /// answer queries here
        if(big_child != -1) big[big_child] = 0;
29
        if(!keep) add(node, -1, p);
    }
31
          Máximo flujo
   9.3.
       Complejidad: Ford-Fulkerson O(|E| \cdot maxFlow), Edmonds-Karp O(|V||E|^2).
    class ford_fulkerson {
    public:
2
        ford_fulkerson (vector<vector<edge>> &graph) : graph(graph){}
3
        int64_t get_max_flow(int s, int t){
4
             init();
5
             int64_t f = 0;
```

```
while(find_and_update(s, t, f)){}
7
             return f;
        }
q
    private:
10
        vector<vector<edge>> graph; /// graph (to, capacity)
11
        vector<edge> edges; /// List of edges (including the inverse ones)
12
        vector<vector<int>> edge_indexes; /// indexes of edges going out from each vertex
13
        void init(){
14
             edges.clear();
             edge_indexes.clear(); edge_indexes.resize(graph.size());
16
             for(int u = 0; u < graph.size(); u++){
17
                 for(edge &e : graph[u]){
18
                     edges.push_back({u, e.to, e.w, e.c, 0});
19
                     edges.push_back({e.to, u, -e.w, 0, 0});
20
                     edge_indexes[u].push_back(edges.size() - 2);
                     edge_indexes[e.to].push_back(edges.size() - 1);
22
                 }
             }
24
25
        bool find_and_update(int s, int t, int64_t &flow){
26
             // Encontrar camino desat con BFS
27
             queue<int> q;
28
             // Desde donde llego y con que arista
29
             vector<pair<int, int>> from(graph.size(), make_pair(-1, -1));
30
             q.push(s);
31
             from[s] = make_pair(s, -1);
             bool found = false;
33
             while(q.size() && (!found)){
                 int u = q.front(); q.pop();
35
                 for(int eI : edge_indexes[u]){
                     if((edges[eI].c > edges[eI].f) && (from[edges[eI].to].first == -1)){
37
                          from[edges[eI].to] = make_pair(u, eI);
                          q.push(edges[eI].to);
39
                          if(edges[eI].to == t) found = true;
40
                     }
41
42
                 }
             }
43
             if(!found) return false;
44
             // Encontrar cap. minima del camino de aumento
45
             int64_t u_flow = LLONG_MAX;
46
             int current = t;
47
             while(current != s) {
48
                 u_flow = min(u_flow, edges[from[current].second].c - edges[from[current].second].f);
49
                 current = from[current].first;
50
             }
51
             current = t;
52
             // Actualizar flujo
53
             while(current != s){
54
                 edges[from[current].second].f += u_flow;
                 edges[from[current].second^1].f -= u_flow; // Arista inversa
56
                 current = from[current].first;
             }
58
             flow += u_flow ;
59
             return true;
60
        }
61
    };
62
```

9.4. SCC

9.4.1. Kosajaru

```
Complejidad: Tiempo O(n).
    void dfs(int node, vector<int> &topo_ord){
        if(vis[node]) return;
2
        vis[node] = true;
        for(int v : graph[node]) dfs(v, topo_ord);
        topo_ord.push_back(node);
6
    void assign_scc(int node, const int id){
        if(vis[node]) return;
        vis[node] = true;
9
        scc[node] = id;
10
        for(int v : inv_graph[node]) assign_scc(v, id);
11
    int kosajaru(int n){ /// devuelve la cantidad de scc.
13
        memset(vis, 0, sizeof(vis));
        vector<int> topo ord;
15
        for(int i = 1; i <= n; ++i) dfs(i, topo_ord);</pre>
16
        reverse(topo_ord.begin(), topo_ord.end());
17
        memset(vis, 0, sizeof(vis));
18
        int id = 0;
19
        for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
20
        return id;
21
    void build_scc_graph(int n, int n_scc){
23
        for(int u = 0; u < n; ++u)
24
             for(int v : graph[u])
25
                 if(scc[u] != scc[v])
26
                     scc_graph[scc[u]].push_back(scc[v]);
27
        for(int u = 0; u < n_scc; ++u){
28
             sort(scc_graph[u].begin(), scc_graph[u].end());
             auto it = unique(scc_graph[u].begin(), scc_graph[u].end());
30
             scc_graph[u].resize(it - scc_graph[u].begin());
             for(int v : scc_graph[u])
32
                 inv_scc_graph[v].push_back(u);
        }
34
    }
```

9.5. 2-Sat

Complejidad: Tiempo en responder O(n).

```
struct two_sat{
        int n;
2
        vector<vector<int>>> graph, inv_graph;
3
        vector<int> scc, ans;
4
        vector<bool> vis;
5
        two_sat(){}
6
        two_sat(int _n){
            n = n;
             graph.resize(2 * n);
             inv_graph.resize(2 * n);
10
             scc.resize(2 * n);
11
            vis.resize(2 * n);
```

```
ans.resize(n);
13
        }
14
        void add_edge(int u, int v){
15
             graph[u].push_back(v);
16
             inv_graph[v].push_back(u);
17
18
        /// al menos una es verdadera
19
        void add_or(int p, bool val_p, int q, bool val_q){
20
             add_edge(p + (val_p ? n : 0), q + (val_q ? 0 : n));
21
             add_edge(q + (val_q ? n : 0), p + (val_p ? 0 : n));
22
        /// exactamente una es verdadera
24
        void add_xor(int p, bool val_p, int q, bool val_q){
25
             add_or(p, val_p, q, val_q);
26
             add_or(p, !val_p, q, !val_q);
28
        /// p y q tienen el mismo valor
        void add_and(int p, bool val_p, int q, bool val_q){
30
             add_xor(p, !val_p, q, val_q);
31
32
        /// Kosajaru
33
        void dfs(int node, vector<int> &topo_ord){...}
34
        void assign_scc(int node, const int id){...}
35
        /// construye respuesta
36
        bool build_ans(){
37
             fill(vis.begin(), vis.end(), false);
             vector<int> topo_ord;
39
             for(int i = 0; i < 2 * n; ++i) dfs(i, topo_ord);</pre>
             fill(vis.begin(), vis.end(), false);
41
             reverse(topo_ord.begin(), topo_ord.end());
             int id = 0;
43
             for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
             for(int i = 0; i < n; ++i){
45
                 if(scc[i] == scc[i + n]) return false;
46
                 ans[i] = (scc[i] < scc[i + n] ? 0 : 1);
47
             }
48
             return true;
49
        }
50
   };
```

10. Treap

AGREGAR PEQUEÑA DESCRIPCIÓN.

```
struct treap{
1
        typedef struct _node{
2
             long long x;
3
             int freq, cnt;
             long long p;
5
             _node *1, *r;
6
             _{node(long\ long\ _x):\ x(_x),\ p(((long\ long)(rand()) << 32 )^{rand()),}
             cnt(1), freq(1), l(nullptr), r(nullptr){}
             ~_node(){delete l; delete r;}
             void recalc(){
10
                 cnt = freq;
11
                 cnt += ((1) ? (1->cnt) : 0);
12
```

```
cnt += ((r) ? (r->cnt) : 0);
13
             }
14
         }* node;
15
        node root;
16
        node merge(node 1, node r){
17
             if(!1 || !r) return 1 ? 1 : r;
18
             if(1->p < r->p){
19
                 r->1 = merge(1, r->1);
20
                 r->recalc();
21
                 return r;
22
             } else {
                 1->r = merge(1->r, r);
24
                 1->recalc();
25
                 return 1;
26
             }
        }
28
         void split_by_value(node n, long long d, node &1, node &r){
             1 = r = nullptr;
30
             if(!n) return;
31
             if(n->x < d){
32
                 split_by_value(n->r, d, n->r, r);
33
                 1 = n;
34
             } else {
35
                 split_by_value(n->1, d, l, n->1);
36
                 r = n;
37
             }
             n->recalc();
39
40
         void split_by_pos(node n, int pos, node &1, Node &r, int l_nodes = 0){
41
             1 = r = NULL;
             if(!n) return;
43
             int cur_pos = (n->1) ? (l_nodes + n->l->cnt) : l_nodes;
             if(cur_pos < pos){</pre>
45
                 splitFirstNodes(n->r, pos, n->r, r, cur_pos + 1);
46
                 l = n;
47
             } else {
48
                 splitFirstNodes(n->1, pos, 1, n->1, 1_nodes);
49
                 r = n;
50
             }
51
             n->recalc();
52
53
         treap(): root(NULL){}
54
         void insert_value(long long x){
55
             node 1, m, r;
56
             split_by_value(root, x, 1, m);
57
             split_by_value(m, x + 1, m, r);
58
             if(m){}
59
                 m->freq++;
60
                 m->cnt++;
             } else m = new _node(x);
62
             root = merge(merge(1, m), r);
64
         void erase_value(long long x){
65
             node 1, m, r;
66
             split_by_value(root, x, 1, m);
67
             split_by_value(m, x + 1, m, r);
68
```

```
if(!m \mid | m->freq == 1){
69
                   delete m;
70
                   m = nullptr;
71
              } else {
72
                   m->freq--;
73
                   m->cnt--;
74
              }
75
              root = merge(merge(1, m), r);
76
         }
    };
78
```

11. Strings

11.1. KMP

Complejidad: Tiempo O(|s|) - Memoria extra O(|s|).

```
vector<int> prefix_function(string s){
        int n = (int)s.length();
2
        vector<int> pi(n);
3
        for (int i = 1; i < n; i++) {
             int j = pi[i-1];
5
             while (j > 0 \&\& s[i] != s[j]) j = pi[j-1];
6
             if (s[i] == s[j]) j++;
            pi[i] = j;
9
        return pi;
10
    }
11
```

11.2. Suffix array

11.2.1. Construcción

Complejidad: Tiempo $O(|s|\log(|s|))$ - Memoria O(|s|). Calcula la permutación que corresponde a los sufijos ordenados lexicográficamente. SA[i] es el índice en el cual empieza el i-ésimo sufijo ordenado.

```
int SA[MAXN], mrank[MAXN];
    int tmpSA[MAXN], tmpMrank[MAXN];
2
    void countingSort(int k, int n){
         int freqs[MAXN] = {};
         for(int i = 0; i < n; ++i){
             if(i + k < n) freqs[ mrank[i + k] ]++;</pre>
6
             else freqs[0]++;
         int m = max(100, n);
         for(int i = 0, sfs = 0; i < m; ++i){
10
             int f = freqs[i];
11
             freqs[i] = sfs;
12
13
             sfs += f;
        }
14
        for(int i = 0; i < n; ++i){
15
             if(SA[i] + k < n) tmpSA[ freqs[mrank[ SA[i] + k ]]++ ] = SA[i];</pre>
16
             else tmpSA[ freqs[0]++ ] = SA[i];
17
        for(int i = 0; i < n; ++i) SA[i] = tmpSA[i];</pre>
19
    }
20
21
    void buildSA(string &str){
```

```
int n = str.size();
23
        for(int i = 0; i < n; ++i){
24
            mrank[i] = str[i] - '#';
25
            SA[i] = i;
26
27
        for(int k = 1; k < n; k <<= 1){
28
            countingSort(k, n);
29
             countingSort(0, n);
30
            int r = 0;
31
            tmpMrank[SA[0]] = 0;
32
            for(int i = 1; i < n; ++i){
                 if(mrank[SA[i]]!=mrank[SA[i-1]]||mrank[SA[i]+k]!=mrank[SA[i-1]+k])
34
                     tmpMrank[ SA[i] ] = ++r;
35
                 else
36
                     tmpMrank[ SA[i] ] = r;
            }
38
            for(int i = 0; i < n; ++i) mrank[i] = tmpMrank[i];</pre>
        }
40
41
    inline bool suff_compare1(int idx,const string &pattern) {
42
        return (s.substr(idx).compare(0, pattern.size(), pattern) < 0);</pre>
43
44
    inline bool suff_compare2(const string &pattern,int idx) {
45
        return (s.substr(idx).compare(0, pattern.size(), pattern) > 0);
46
47
    pair<int,int> match(const string &pattern) {
        int *low = lower_bound (SA, SA + s.size(), pattern, suff_compare1);
49
        int *up = upper_bound (SA, SA + s.size(), pattern, suff_compare2);
        return make_pair((int)(low - SA),(int)(up - SA));
51
    }
```

11.2.2. Prefijo común más largo

Complejidad: Tiempo O(|s|) - Memoria O(|s|). Calcula la longitud del prefijo común más largo entre dos sufijos consecutivos (lexicográficamente) de s. lcp[i] guarda la respuesta para el i-ésimo sufijo y el (i-1)-ésimo sufijo.

```
int lcp[MAXN];
    void buildLCP(string &str){
2
         int n = str.size();
3
         int phi[n];
        phi[SA[0]] = -1;
5
         for(int i = 1; i < n; ++i) phi[ SA[i] ] = SA[i - 1];
6
         int plcp[n];
         int k = 0;
         for(int i = 0; i < n; ++i){
9
             if(phi[i] == -1){
10
                 plcp[i] = 0;
11
12
                  continue;
             }
13
              while(i + k < n \&\& phi[i] + k < n \&\& str[i + k] == str[phi[i] + k]) k++; 
14
             plcp[i] = k;
15
             k = \max(k - 1, 0);
16
17
         for(int i = 0; i < n; ++i) lcp[i] = plcp[SA[i]];</pre>
18
   }
19
```

11.3. Aho-Corasick

Construción en O(mk), donde m es el tamaño total de los strings y k el tamaño del alfabeto.

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
    const int K = 10;
    struct Vertex {
3
         int next[K];
        bool output = false;
5
         int p = -1;
6
         char pch;
         int link = -1;
         int go[K];
        Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
10
             fill(begin(next), end(next), -1);
11
             fill(begin(go), end(go), -1);
12
        }
13
    };
    vector<Vertex> t(1);
15
    void add_string(string const& s) {
16
        int v = 0;
17
        for (char ch : s) {
18
             int c = ch - '0';
19
             if (t[v].next[c] == -1) {
20
                 t[v].next[c] = t.size();
21
                 t.emplace_back(v, ch);
22
             }
23
             v = t[v].next[c];
24
25
        t[v].output = true;
26
27
    int go(int v, char ch);
28
    int get_link(int v) {
29
         if (t[v].link == -1) {
30
             if (v == 0 || t[v].p == 0)
31
                 t[v].link = 0;
32
             else
                 t[v].link = go(get_link(t[v].p), t[v].pch);
34
35
        return t[v].link;
36
37
    int go(int v, char ch) {
38
         int c = ch - '0';
39
         if (t[v].go[c] == -1) {
40
             if (t[v].next[c] != -1)
41
                 t[v].go[c] = t[v].next[c];
42
             else
43
                 t[v].go[c] = v == 0 ? 0 : go(get_link(v), ch);
45
        return t[v].go[c];
   }
47
```

11.4. Suffix tree

COPIADO Y PEGADO POR

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
const int inf = 1e9;
```

```
const int maxn = 1e6;
3
    int s[maxn];
    map<int, int> to[maxn];
    //Root is the vertex 0
    //f_pos[i] is the initial index with the letter of the edge that goes from the parent of i to i
    //len[i] is the number of letters in the edge that enters in i
    //slink[i] is the suffix link
    int len[maxn], f_pos[maxn], slink[maxn];
10
    int node, pos;
11
    int sz = 1, n = 0;
12
13
    int make_node(int _pos, int _len){
14
        f_pos[sz] = _pos;
15
         len [sz] = _len;
16
        return sz++;
17
    }
18
19
    void go_edge(){
20
         while(pos > len[to[node][s[n - pos]]]){
21
             node = to[node][s[n - pos]];
22
             pos -= len[node];
23
24
    }
25
26
    void add_letter(int c){
27
        s[n++] = c;
28
        pos++;
29
         int last = 0;
30
        while(pos > 0){
31
             go_edge();
32
             int edge = s[n - pos];
33
             int &v = to[node][edge];
             int t = s[f_pos[v] + pos - 1];
35
             if(v == 0){
36
                 v = make_node(n - pos, inf);
37
38
                 //v = make_node(n - pos, 1);
                 slink[last] = node;
39
                 last = 0;
40
             } else if(t == c) {
41
                 slink[last] = node;
42
                 return;
43
             } else {
44
                 int u = make_node(f_pos[v], pos - 1);
45
                 to[u][c] = make_node(n - 1, inf);
46
                 to[u][t] = v;
47
                 f_pos[v] += pos - 1;
48
                 len [v] -= pos - 1;
49
                 v = u;
50
                 slink[last] = u;
51
                 last = u;
52
             }
             if(node == 0) pos--;
54
             else node = slink[node];
55
        }
56
    }
57
58
```

```
void correct(int s_size){
59
         len[0] = 0;
60
         for (int i = 1; i < sz; i++){
61
              if (f_pos[i] + len[i] - 1 >= s_size){
62
                  len[i] = (s\_size - f\_pos[i]);
63
              }
64
         }
65
     }
66
67
     void print_suffix_tree(int from){
68
         cout << "Edge entering in " << from << " has size " << len[from];</pre>
         cout << " and starts in " << f_pos[from] << endl;</pre>
70
         cout << "Node " << from << " goes to: ";</pre>
71
         for (auto u : to[from]){
72
              cout << u.second << " with " << (char)u.first << " ";</pre>
74
         cout << endl;</pre>
75
         for (auto u : to[from]){
76
              print_suffix_tree(u.second);
77
78
     }
79
80
     void build(string &s){
81
         for (int i = 0; i < sz; i++){
82
              to[i].clear();
83
         }
         sz = 1;
85
         node = pos = n = 0;
         len[0] = inf;
87
         for(int i = 0; i < s.size(); i++)</pre>
              add letter(s[i]);
89
         correct(s.size());
     }
91
92
     void cutGeneralized(vector<int> &finishPoints){
93
         for (int i = 0; i < sz; i++){
94
              int init = f_pos[i];
95
              int end = f_pos[i] + len[i] - 1;
96
              int idx = lower_bound(finishPoints.begin(), finishPoints.end(), init) - finishPoints.begin();
97
              if ((idx != finishPoints.size()) && (finishPoints[idx] <= end)){//Must be cut
98
                  len[i] = (finishPoints[idx] - f_pos[i] + 1);
                  to[i].clear();
100
              }
101
         }
102
     }
103
104
105
     void build_generalized(vector<string> &ss){
106
         for (int i = 0; i < sz; i++){
              to[i].clear();
108
         }
109
         sz = 1;
110
         node = pos = n = 0;
111
         len[0] = inf;
112
         int sep = 256;
113
         vector<int> finishPoints;
114
```

```
int next = 0;
115
          for (int i = 0; i < ss.size(); i++){</pre>
116
              for (int j = 0; j < ss[i].size(); j++){</pre>
117
                   add_letter(ss[i][j]);
118
119
              next += ss[i].size();
120
              finishPoints.push_back(next);
              add_letter(sep++);
122
              next++;
123
124
          correct(next);
          cutGeneralized(finishPoints);
126
    }
127
```

12. Geometría

12.1. Convex hull

Complejidad: $O(n \log n)$. AGREGAR PEQUEÑA DESCRIPCIÓN.

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
    struct pt {
2
        double x, y;
    };
4
    int orientation(pt a, pt b, pt c) {
        double v = a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
6
        if (v < 0) return -1; // clockwise
        if (v > 0) return +1; // counter-clockwise
8
        return 0;
10
    bool cw(pt a, pt b, pt c, bool include_collinear) {
11
        int o = orientation(a, b, c);
12
        return o < 0 || (include_collinear && o == 0);
13
14
    bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
15
    void convex_hull(vector<pt>& a, bool include_collinear = false) {
16
        pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b) {
17
            return make_pair(a.y, a.x) < make_pair(b.y, b.x);</pre>
        });
19
        sort(a.begin(), a.end(), [&p0](const pt& a, const pt& b) {
             int o = orientation(p0, a, b);
21
             if (o == 0)
22
                 return (p0.x-a.x)*(p0.x-a.x) + (p0.y-a.y)*(p0.y-a.y)
23
                     < (p0.x-b.x)*(p0.x-b.x) + (p0.y-b.y)*(p0.y-b.y);
24
            return o < 0;
25
        });
        if (include_collinear) {
27
             int i = (int)a.size()-1;
             while (i \ge 0 \&\& collinear(p0, a[i], a.back())) i--;
29
             reverse(a.begin()+i+1, a.end());
30
31
        vector<pt> st;
32
        for (int i = 0; i < (int)a.size(); i++) {</pre>
33
             while (st.size() > 1 && !cw(st[st.size()-2], st.back(), a[i], include_collinear))
34
                 st.pop_back();
35
             st.push_back(a[i]);
36
        }
37
```

```
38 a = st;
39 }
```

13. Utilidades

13.1. Plantilla tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
```

13.2. Números aleatorios

mt19937_64 genera números de 64 bits.

```
random_device rd; // Inicializa el generador de numeros aleatorios
mt19937_64 generator(rd()); // Crea un generador Mersenne Twister con la semilla de random_device
uniform_int_distribution<long long> distribution(1, 1e18);
cout << distribution(generator) << '\n';
```

14. Bitmask

```
#define is_on(S, j) (S & (1ll << (j)))
    \#define\ set\_bit(S,\ j)\ (S\mid=(1ll\ <<(j)))
    \#define\ clear\_bit(S,\ j)\ (S\ \&=\ \~(1ll\ <<\ (j)))
3
    \#define\ toggle\_bit(S,\ j)\ (S\ \hat{}=\ (1ll\ <<\ (j)))
    #define lsb(S) ((S) \mathfrak{G} -(S))
    #define clear_lsb(S) (S &= (S - 1))
6
    \#define\ set\_all(S,\ n)\ (S=(1ll<<(n))-1ll)
    #define clear\_trailing\_ones(S) (S &= (S + 1))
8
    \#define\ set\_last\_bit\_off(S)\ (S \mid = (S + 1))
    #define is_power_of_two(S) (!((S) & ((S) - 1)))
10
    \#define\ nearest\_power\_of\_two(S)\ ((int)pow(2,\ (int)((loq((double)(S))\ /\ loq(2))\ +\ 0.5))\ )
11
    \#define\ is\_divisible\_by\_power\_of\_two(n,\ k)\ !((n)\ \&\ ((1ll\ <<\ (k))\ -\ 1))
12
    #define modulo(S, N) ((S) \mathfrak{G} ((N) - 1)) // S % N, N potencia de 2
```

14.1. Útiles

Hay algunas funciones de gcc que nos pueden ayudar para hacer más eficiente nuestro código y evitar algunos bucles:

```
// one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
int __builtin_ffs (int x):
    // number of leading 0-bits in x, starting at the most significant bit position. If x is 0 is undefined
    int __builtin_clz (unsigned int x):
    // number of trailing 0-bits in x, starting at the least significant bit position. If x is 0 undefined
    int __builtin_ctz (unsigned int x):
    // number of 1-bits in x.
    int __builtin_popcount (unsigned int x):
    // he parity of x, i.e. the number of 1-bits in x modulo 2.
    int __builtin_parity (unsigned int x):
```

14.2. Iterar

Dada una máscara m, iterar sobre todos sus subconjuntos

```
for(int x=m; x; ){
    --x &= m;
    //...
}
```

El código anterior itera las máscaras válidas desde la más grande hasta la más pequeña (ojo el código no itera sobre x = m) La complejidad de iterar sobre todas las submáscaras de todos los números de 1 a 2^n es $O(3^n)$.

14.3. Gospers' Hack

Sirve para generar todos las máscaras de n bits, que tengan exactamente k bits a 1 (y que sean menores o iguales que 2^n). Complejidad $O\left(\binom{n}{k}\right)$?

```
void GospersHack(int k, int n) {
    int set = (1 << k) - 1;
    int limit = (1 << n);
    while (set < limit){
        DoStuff(set);
        // Gosper's hack:
        int c = set & - set;
        int r = set + c;
        set = (((r ^ set) >> 2) / c) | r;
    }
}
```

DoStuff() is meant to be replaced with a function that processes each different value that set takes.

```
int mask = (1 << k) - 1, r,c;
while(mask <= (1 << n) - (1 << (n-k))){
    //...
    c = mask & -mask;
    r = mask + c;
    mask = r | ( (r^mask) >> 2/c );
}
```

15. Máximo de funciones

15.1. Li-Chao Tree

Dado un conjunto A con M valores a evaluar, y N funciones (tales que cada una de ellas se intersecta con el resto a lo más una vez), te devuelve $\max_{i \in [N]} (f_i(a))$ en $\log(M)$ para cualquier $a \in A$.

```
struct Function {
        long long m;
2
        long long b;
3
        long long eval(long long x){
            if (m == LLONG_MIN) return LLONG_MIN;
            return m*x+b;
6
        Function(){ m = LLONG_MIN;}
8
        Function(long long m_, long long b_): m(m_), b(b_){ }
    };
10
    struct LiChaoTree {
        vector<long long> values;
2
        long long maxV;
3
        Function *functions;
```

```
LiChaoTree(vector<long long> &values_){
5
             values = values_;
6
             sort(values.begin(), values.end());
             functions = new Function[values.size() * 4];
8
             maxV = values.size();
9
10
        //Range\ from\ l\ to\ r-1
11
        long long get(long long x){
12
             return get(x, 1, 0, maxV);
13
14
        long long get(long long x, int v, int l, int r){
15
             int m = (1 + r) / 2;
16
             long long mv = values[m];
17
             if (r - 1 == 1){
18
                 return functions[v].eval(x);
             } else if (x < mv){
20
                 return max(functions[v].eval(x), get(x, 2 * v, 1, m));
22
                 return max(functions[v].eval(x), get(x, 2 * v + 1, m, r));
23
24
        }
25
        void addFunction(Function f){
26
             addFunction(f, 1, 0, maxV);
27
28
        void addFunction(Function f, int v, int l, int r){
29
             int m = (1 + r) / 2;
             long long mv = values[m];
31
             long long lv = values[1];
32
             bool lef = f.eval(lv) > functions[v].eval(lv);
33
             bool mid = f.eval(mv) > functions[v].eval(mv);
             if (mid){//Si el actual pierde en el medio
35
                 swap(functions[v], f);
             }
37
             if (r - 1 == 1){
38
                 return;
39
             } else if (lef != mid){//El cruce esta en el lado izq.
40
                 addFunction(f, 2 * v, 1, m);
41
             } else {
42
                 addFunction(f, 2 * v + 1, m, r);
43
             }
44
45
         ~LiChaoTree(){ delete[] functions; }
46
   };
47
```