WIX1002 Fundamentals of Programming Lab 4: Flow of Control (Repetition)

1. Write a program that accepts an integer from user. Then, display its entire factors in increasing order.

2. Write a program that accepts an integer n from user and then sum the following series.

$$1 + (1+2) + (1+2+3) + \dots + (1+2+3+\dots+n)$$

3. Write a program that calculates the minimum, maximum, average and standard deviation (s) of the exam score in a subject. The program will accepts the score and quit if negative score is enter. A sample output is given below.

$$s = \sqrt{\frac{\sum X^2 - \frac{\left(\sum X\right)^2}{N}}{N - 1}}$$

Enter a score [negative score to quit]:75
Enter a score [negative score to quit]:34
Enter a score [negative score to quit]:58
Enter a score [negative score to quit]:12
Enter a score [negative score to quit]:96
Enter a score [negative score to quit]:-1
1095.0
Minimum Score: 12
Maximum Score: 96
Average Score: 55.00
Standard Deviation: 33.09

- 4. Write a program that ask user to enter the year and the first day of the year (0 for Sunday, 1 for Monday, ..., 6 for Saturday). Display the calendar for May and August.
- 5. Write a simple two players dice game. Each player will take turns to roll a dice. The first players that reach more than 100 points win the game. If the player rolls a 6, the player will score 6 points and has the chance to roll again.

- 6. Write a program that generates a non-negative random integer. Display the number of digits in the integer.
- 7. Write a program that used to calculate mortgage loan. The program will create the amortization table with equal total payment plan. The following are the formula and the sample output.

$$M = (P^* \frac{i}{12*100})/(1 - (1 + \frac{i}{12*100})^{-N})$$

M = Monthly payment

P = Principal

i = yearly interest rate in %

N = total number of months

$$C_n = M * (1 + \frac{i}{12*100})^{-(1+N-n)}$$

$$\underline{L}_n = M - \underline{C}_n$$

$$\underline{R}_n = \underline{L}_n / \frac{i}{12*100} - \underline{C}_n$$

C = Principal portion due

n = month under consideration

L = interest due

R = remaining principal balance due

Enter pr	incipal amount: 10000				
Enter in	terest in %: 4				
Enter to	tal number of month(s):	12			
Month	Monthly Payment	Principal	Interest	Unpaid Balance	Total Interest
1	851.50	818.17	33.33	9181.83	33.33
2	851.50	820.89	30.61	8360.94	63.94
3	851.50	823.63	27.87	7537.31	91.81
4	851.50	826.37	25.12	6710.94	116.93
5	851.50	829.13	22.37	5881.81	139.30
6	851.50	831.89	19.61	5049.92	158.91
7	851.50	834.67	16.83	4215.25	175.74
8	851.50	837.45	14.05	3377.80	189.79
9	851.50	840.24	11.26	2537.56	201.05
10	851.50	843.04	8.46	1694.52	209.51
11	851.50	845.85	5.65	848.67	215.16
12	851.50	848.67	2.83	0.00	217.99

8. Write a program that generates the first n prime number. n is an random integer within 0 to 100.