Практическая работа №1.

Тямгин Иван

Латентно-семантический анализ.

Для обучения поисковой системы были использованы 15 тем по 50-75 документов. Всего 950 документов. Названия документов для каждой темы были получены с помощью поискового запроса в википедии вида:

http://ru.wikipedia.org/w/index.php?title=Служебная:Поиск&limit=50&offset=0&profile=default&search=Таврия

Затем скачаны по полученным ссылкам средствами языка python.

Были выбраны следующие темы:

- Тригонометрия
- Грипп
- Автомобиль
- Хлеб
- Москва
- Техника
- Таврия
- Биржа
- Депутат
- Газ
- Яндекс
- Водка
- Русский
- Видео
- Собака

Первым шагом были вырезаны из текстов все символы, кроме русских букв. Таким образом слово — это непрерывная последовательность русских букв. Каждое слово поддалось воздействию алгоритма Портера, чтобы одинаковые слова с разными окончаниями не считались как разные.

Была построена матрица 31238x950, которая означала частоту і-го слова в ј-м документе. Матрица была нормализована с помощью TF-IDF, чтобы ключевые слова получили большой вес, а предлоги и союзы не значительный.

После чего матрица была разложена с помощью svd по 10-ми признакам. (разложение по 2-3 признакам дали существенно худший результат).

Дендрограмма

Далее построена иерархическая кластеризация документов. Расстоянием между двумя документами являлся угол между 10-мерными векторами.

Так как дендрограмма очень большая, приведена её часть:

Также попадались довольно абсурдные объединения документов на первом уровне:

Дерево было построено с помощью стандартной функции **hclust** в R. И нарисовано с помощью библиотеки **d3js** в *javascript*.

Поиск

Для каждого слова был построен чемпионский список – список документов и расстояние до этого документа. Чем меньше расстояние - тем он релевантнее для данного слова.

Поисковой запрос – неупорядоченный набор слов. Ответ на запрос – упорядоченный список документов по релевантности. Релевантность документа D - это

$$\sum_{\text{сдово S из запроса}} \frac{\text{расстояние от S до D}}{1 + \text{количество слов из запроса, присутствующих в D}}$$

Примеры запросов:

{Москва, вокзал}

- 1. https://ru.wikipedia.org/wiki/Казанский вокзал ^{91.13%}
- 2. https://ru.wikipedia.org/wiki/Ярославский вокзал ^{90.95%}
- 3. https://ru.wikipedia.org/wiki/Ленинградский вокзал 90.84%
- 4. https://ru.wikipedia.org/wiki/Белорусский вокзал 90.17%
- 5. https://ru.wikipedia.org/wiki/Киевский вокзал 90.02%
- 6. https://ru.wikipedia.org/wiki/Курский вокзал 89.61%
- 7. https://ru.wikipedia.org/wiki/Москва-Сити 89.37%
- 8. https://ru.wikipedia.org/wiki/Mocква-Каланчёвская 89.19%
- 9. https://ru.wikipedia.org/wiki/Mocква (гостиница в Москве) 88.91%
- 10. https://ru.wikipedia.org/wiki/Памятник Кутузову (Москва)

{Яндекс}

- 1. https://ru.wikipedia.org/wiki/Яндекс Нано ^{99.88%}
- 2. https://ru.wikipedia.org/wiki/Яндекс.Календарь
- 3. https://ru.wikipedia.org/wiki/Элементы Яндекса 99.87%
- 4. https://ru.wikipedia.org/wiki/Яндекс.Услуги 99.85%
- 5. https://ru.wikipedia.org/wiki/Яндекс.Открытки
- 6. https://ru.wikipedia.org/wiki/Яндекс.Shell 99.84%
- 7. https://ru.wikipedia.org/wiki/Yandex.SpeechKit 99.84%
- 8. https://ru.wikipedia.org/wiki/Яндекс.XML 99.83%
- 9. https://ru.wikipedia.org/wiki/Яндекс.Недвижимость 99.83%
- 10. https://ru.wikipedia.org/wiki/Яндекс.Навигатор 99.83

Более простая версия формулы:

$$\sum_{\text{слово S из запроса}}$$
 расстояние от S до D

давала на вид более худший результат.