Medium Access Control in Wireless Sensor Networks

Outline

- Introduction to MAC
- MAC attributes and trade-offs
- Scheduled MAC protocols
- Contention-based MAC protocols
- Case studies
- Summary

Introduction to MAC

- The role of medium access control (MAC)
 - Controls when and how each node can transmit in the wireless channel
- Why do we need MAC?
 - Wireless channel is a shared medium
 - Radios transmitting in the same frequency band interfere with each other – collisions
 - Other shared medium examples: Ethernet

Where Is the MAC?

Network model from Internet

- A sublayer of the Link layer
 - Directly controls the radio
 - The MAC on each node only cares about its neighborhood

What's New in Sensor Networks?

- A special wireless ad hoc network
 - Large number of nodes
 - Battery powered
 - Topology and density change
 - Nodes for a common task
 - In-network data processing
- Sensor-net applications
 - Sensor-triggered bursty traffic
 - Can often tolerate some delay
 - Speed of a moving object places a bound on network reaction time

Next...

- Introduction to MAC
- MAC attributes and trade-offs
- Scheduled MAC protocols
- Contention-based MAC protocols
- Case studies
- Summary

Interference / Collisions

a and b interfere and hear noise only

Packets which suffered collisions should be re-sent.

Ideally, we would want all packets to be sent collision-free, only once...

Interference on node **b** ("Hidden terminal problem")

Interference on node **b**

MACA Protocol

- Contention-based protocols
 - CSMA Carrier Sense Multiple Access
 - Ethernet (CSMA/CD) is not enough for wireless (collision at receiver cannot detect at sender)

Hidden terminal: A is hidden from C's CS

Hidden Terminal Problem

A and C want to send data to B

- 1. A senses medium idle and sends data
- 2. C senses medium idle and sends data
- 3. Collision occurs at B

Collision Avoidance w/ RTS/CTS

A and C want to send to B

- 1. A sends RTS (Request To Send) to B
- 2. B sends CTS (Clear To Send) to A C "overhears" CTS from B
- 3. C waits for duration of A's transmission

Next...

- Introduction to MAC
- MAC attributes and trade-offs
- Scheduled MAC protocols
- Contention-based MAC protocols
- Case studies
- Summary

Contention Protocols: Classics

ALOHA

- Pure ALOHA: send when there is data
- Slotted ALOHA: send on next available slot
- Both rely on retransmission when there's collision
- CSMA Carrier Sense Multiple Access
 - Listening (carrier sense) before transmitting
 - Send immediately if channel is idle
 - Backoff if channel is busy
 - non-persistent, 1-persistent and p-persistent

Contention Protocols: CSMA/CA

Hidden terminal problem

Node a is hidden from c's carrier sense

- CSMA is not enough for multi-hop networks (collision at receiver)
- CSMA/CA (CSMA with Collision Avoidance)
 - RTS/CTS handshake before send data
 - Node c will backoff when it hears b's CTS

Contention Protocols: IEEE 802.11

- IEEE 802.11 ad hoc mode (DCF)
 - Virtual and physical carrier sense (CS)
 - Network allocation vector (NAV), duration field
 - Binary exponential backoff
 - RTS/CTS/DATA/ACK for unicast packets
 - Broadcast packets are directly sent after CS
 - Fragmentation support
 - RTS/CTS reserve time for first (fragment + ACK)
 - First (fragment + ACK) reserve time for second...
 - Give up transmission when error happens

Contention Protocols: IEEE 802.11 (cont.)

- Power save (PS) mode in IEEE 802.11 DCF
 - Assumption: all nodes are synchronized and can hear each other (single hop)
 - Nodes in PS mode periodically listen for beacons
 & ATIMs (ad hoc traffic indication messages)
 - Beacon: timing and physical layer parameters
 - All nodes participate in periodic beacon generation
 - ATIM: tell nodes in PS mode to stay awake for Rx
 - ATIM follows a beacon sent/received
 - Unicast ATIM needs acknowledgement
 - Broadcast ATIM wakes up all nodes no ACK

Contention Protocols: ZigBee

- Based on IEEE 802.15.4 MAC and PHY
 - Three types devices
 - Network Coordinator
 - Full Function Device (FFD)
 - Can talk to any device, more computing power
 - Reduced Function Device (RFD)
 - Can only talk to a FFD, simple for energy conservation
 - CSMA/CA with optional ACKs on data packets
 - Optional beacons with superframes
 - Optional guaranteed time slots (GTS), which supports contention-free access

Contention Protocols: ZigBee (cont.)

- Low power, low rate (250kbps) radio
- MAC layer supports low duty cycle operation
 - Target node life time > 1 year

Next...

- Introduction to MAC
- MAC attributes and trade-offs
- Scheduled MAC protocols
- Contention-based MAC protocols
- Case studies
- Summary

MAC Protocols for WSNs

- Asynchronous MAC protocols
 - No synchronization or coordinate schedule between neighbor nodes
 - □ S-MAC, T-MAC, B-MAC, Wise MAC, etc.
- Synchronous MAC protocols
 - □ Time synchronization is achieved externally or synchronization is managed by specific node
 - □ TRAMA, DMAC, LEACH, etc.

S-MAC assume sensor networks to be composed of many small nodes deployed in an ad hoc fashion.

- The large number of nodes can also take advantage of short-range, multi-hop communication to conserve energy.
- Most communication will be between nodes as peers, rather than to a single base-station.

- S-MAC designed for reduce energy consumption and support self-configuration
 - □ To reduce energy consumption in listening to an idle channel, nodes periodically sleep
 - Neighboring nodes form virtual clusters to autosynchronize on sleep schedules
 - S-MAC applies message passing to reduce contention latency for sensor-network applications
 - ☐ https://www.youtube.com/watch?v=FmE1b7ETVd0

Locally managed synchronizations periodic sleep-listen schedules

- Every node should wakeup in Listen period Synchronization period
 - Control period (RTS/CTS)
 - X Node use CSMA before sending any packet

- Re-transmit message problem
 - Long message => re-transmission will take a long time
 - Short message => large control overhead (RTS/CTS)

- Adaptive-Listening
 - Node who overhears its neighbor's transmissions (ideally only RTS or CTS) wake up for a short period of time at the end of the data transmission.
 - •If the node is the next-hop node => remain active after data transmission, prepare to forwarding its neighbor's message.
 - •If the node does not receive anything during the adaptive listening => go back to sleep.

S-MAC-Summary

- Locally time synchronization between neighbors
- Power saving method:
- ☐ Fixed wakeup/sleep interval
- ☐ Transmit Characteristic:
- Contention transmission through CSMA

S-MAC-Summary

- Advantage
 - □ Idle listening is reduced by sleep schedules
 - Time synchronization overhead may be prevented by sleep schedule announcements
- Disadvantage
 - Adaptive listening incurs overhearing or idle listening
 - Sleep and listen periods are predefined and constant

Collision Avoidance

- S-MAC is based on contention
- Similar to IEEE 802.11 ad hoc mode (DCF)
 - Physical and virtual carrier sense
 - Randomized backoff time
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA/ACK sequence

Overhearing Avoidance

- Problem: Receive packets destined to others
- Solution: Sleep when neighbors talk
 - Basic idea from PAMAS (Singh, Raghavendra 1998)
 - But we only use in-channel signaling
- Who should sleep?
 - All immediate neighbors of sender and receiver
- How long to sleep?
 - The duration field in each packet informs other nodes the sleep interval

Message Passing

- Problem: Sensor net in-network processing requires entire message
- Solution: Don't interleave different messages
 - Long message is fragmented & sent in burst
 - RTS/CTS reserve medium for entire message
 - Fragment-level error recovery ACK
 - extend Tx time and re-transmit immediately
- Other nodes sleep for whole message time

Fairness : Energy
Msg-level latency

Implementation and Experiments

- Platform: Mica Motes
- Topology: 10-hop linear network

 S-MAC saved a lot of energy compared with a MAC without sleep

Case Study 2: B-MAC

- Another low-power MAC for sensor networks
- B-MAC design considerations
 - Simplicity: based on simple CSMA
 - Configurable options
 - Minimize idle listening
 - Based on model of periodic sensor data transfer
- B-MAC components
 - CSMA without RTS/CTS
 - Optional Low-power listening (LPL)
 - Optional ACK

Comparison of S-MAC and B-MAC

	S-MAC	B-MAC
Collision avoidance	CSMA/CA	CSMA
ACK	Yes	Optional
Message passing	Yes	No
Overhearing avoidance	Yes	No
Listen period	Pre-defined + adaptive listen	Pre-defined
Listen interval	Long	Very short
Schedule synchronization	Required	Not required
Packet transmission	Short preamble	Long preamble
Code size	6.3KB	4.4KB (LPL & ACK)

Next...

- Introduction to MAC
- MAC attributes and trade-offs
- Scheduled MAC protocols
- Contention-based MAC protocols
- Case studies
- Summary

MAC Design for Sensor Networks

- MAC protocols can be classified as scheduled and contention-based
- Major considerations
 - Energy efficiency
 - Scalability and adaptivity to number of nodes
- Major ways to conserve energy
 - Low duty cycle to reduce idle listening
 - Effective collision avoidance
 - Overhearing avoidance
 - Reducing control overhead

Scheduled vs. Contention Protocols

	Scheduled Protocols	Contention Protocols
Collisions	No	Yes
Energy efficiency	Good	Need improvement
Scalability and adaptivity	Bad	Good
Multi-hop communication	Difficult	Easy
Time synchronization	Strict	Loose or not required