The Braess's Paradox in Dynamic Traffic

Dingyi Zhuang, Yuzhu Huang, Vindula Jayawardana, Jinhua Zhao, Dajiang Suo, Cathy Wu

Agenda

- Introduction and Motivation
- Formulation and Methodology
- Experiment Setup
- Results
- Future work

Agenda

- Introduction and Motivation
- Formulation and Methodology
- Experiment Setup
- Results
- Future work

What is the Braess's Paradox?

Adding a new road to an existing road network could make traffic worse.

$$T = 3 * 10 + (3 + 50) = 83$$
 T
 $= 3 * 10 + (0 + 10) + 3 * 10$
 $= 70$

A Nagurney & L Nagurney, Invited Chapter for International Encyclopedia of Transportation, Jan 2020

Previous Equilibrium: 83 New Equilibrium: 92 **92>83**

T = (2 + 50) + (2 + 2) * 10 = 92

T = 4 * 10 + (2 + 50) = 92

= (2+2) * 10 + (2+10)

+(2+2)*10=92

Motivation

Static Assignment

Given trip demand, assign trip

based on flow conservation and

instantaneously

user equilibrium.

Dynamic Assignment

The junction effects and the interactions of human drivers are not fully studied

Microsimulation

Microscopic insight.

There are few studies. The routing strategies are less discussed.

Formulation and Methodology

Questions

- Is there Braess's Paradox in an open system (e.g. grid network)?
- When does the Paradox appear?

Grid Network

Available Routes

$$A \rightarrow C \rightarrow M \rightarrow B$$

 $A \rightarrow N \rightarrow D \rightarrow B$

Vehicle Routing

For any vehicle entering from Node 1, there are 2 decision-making points:

• At **Node A**, choose between:

$$\circ$$
 A \rightarrow C \rightarrow M \rightarrow B

$$\circ$$
 $A \rightarrow N \rightarrow D \rightarrow B$

If chosen A→C→M→B, then at Node
 C, choose between:

$$\circ$$
 C \rightarrow M \rightarrow B

$$\circ$$
 $C \rightarrow D \rightarrow B$

Criteria for route selection:

Select route with the lowest **travel cost**, $C_p(t)$

Formulation of Travel Cost

Cost Function

Edge cost: $C_e(t)$

Route cost: $C_p(t) = \sum C_e(t) 1_{e \in p}$

User cost: $C_u(t) = min\{C_p(t)\}$

Travel Time Estimation

Simulation Process

Throughout the simulation period, vehicles

- Enter from Node 1
- Travel through the network
- Exits from Node 8

At every simulation time step, each vehicle

- Travels following the IDM model
- At Node A or Node C, evaluates the travel cost of potential routes and chooses the route with the lowest estimated cost

Agenda

- Introduction and Motivation
- Formulation and Methodology
- Experiment Setup
- Results
- Future work

Experiments - Setup

Parameters of the network

- Edge length (default: 50 m ≈ 164 ft)
- Speed limit (default: 35 m/s ≈ 78 mph)

By changing combination of length + speed length,

we can change the advantage of the shortcut.

Example:

Baseline: 400 m, 35 m/s on edges

Added-path: 400 m, 35 m/s on shortcut, 10

m/s on other edges

Agenda

- Introduction and Motivation
- Formulation and Methodology
- Experiment Setup
- Results
- Future work

Network Output Flow

Baseline Network 50 m, 35 m/s

Added-Path Network 50 m, 35 m/s

Baseline Network, 200 m, 10 m/s 1000 veh/hr

Added-Path Network, 200 m, 10 m/s 1000 veh/hr

Network Output Flow

With an added path:

- Output flow from the network does not increase;
- When the shortcut is more advantageous, decrease in output flow is more obvious.

Flow on Each Route

As demand level increases,

- Flow on either of the original routes increases and converges;
- Flow on shortcut increases but then decreases after an inflection point.

Travel Times Comparison

The added path

- Improves average travel time at lower demand level
- Worsens average travel time at higher demand level
- The appearance of the "critical point" seems to show linearity with edge length and demand level

Percentage of Vehicles Using Each Route

Percentage of vehicles using the shortcut route decreases as demand level increases

Network Capacity

Baseline Network w/ additional inflow 1000 veh/hr

Added-Path Network w/ additional inflow 1000 veh/hr

Network Capacity

Conclusion

Adding a path to the grid network

- Does not increase network output flow
- Improves travel time when demand level is low
- Worsens travel time when demand level is high
- Does not improve operational capacity of the network

Agenda

- Introduction and Motivation
- Formulation and Methodology
- Experiment Setup
- Results
- Future work

Future Work

- Conduct sensitivity analysis on the design of users' travel cost function
- Generalize how real-world traffic networks might suffer from the BP;
- Explore how different traffic control strategies could potentially mitigate the Braess's Paradox

Thank you!

Dingyi Zhuang: dingyi@mit.edu

Yuzhu Huang: yuzhuh@mit.edu