Álgebra Linear I

Professora Kelly Karina

Determinantes

Determinantes

O determinante de uma matriz quadrada A_n é um número associado à mesma (que denotaremos por detA ou |A|) da seguinte forma:

•
$$n = 1$$

Se $A = [a_{11}]$ então $|A| = a_{11}$.

•
$$n=2$$

Se $B=\left(egin{array}{cc} b_{11} & b_{12} \ b_{21} & b_{22} \end{array}
ight)$ então $|B|=b_{11}b_{22}-b_{21}b_{12}.$

Exemplo:
$$|10| = 10$$
, $B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} = 7$

•
$$n = 3$$

Se $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ então
 $|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{21}a_{12}a_{33} - a_{23}a_{32}a_{11}$.

$$A = \begin{vmatrix} 1 & 2 & 0 \\ -1 & 1 & 3 \\ -2 & 0 & 5 \end{vmatrix} = 5 - 12 + 0 - 0 - 0 + 10 = 3$$

Esta expressão para o determinante de uma matriz de ordem 3 pode ser encontrada da seguinte forma:

Esta expressão para o determinante de uma matriz de ordem 3 pode ser encontrada da seguinte forma:

Esta expressão para o determinante de uma matriz de ordem 3 pode ser encontrada da seguinte forma:

• Esta expressão pode ser escrita ainda da seguinte forma:

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$|A| = a_{11}|A_{11}| - a_{12}|A_{12}| + a_{13}|A_{13}|$$

onde A_{ij} é a submatriz da matriz inicial, de onde foram retiradas a i – ésima linha e a j – ésima coluna.

Definição:

Definimos o **cofator** de A_{ij} e escrevemos Δ_{ij} da seguinte forma:

$$\Delta_{ij} = (-1)^{i+j} |A_{ij}|$$

\circ n > 4

Usaremos o desenvolvimento de Laplace para o cálculo de determinantes (fórmula de recorrência que permite calcular o determinante de uma matriz de ordem n, a partir dos determinantes das submatrizes quadradas de ordem n-1).

No caso
$$n = 4$$
, se $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$ então

$$|A| = a_{11}|\Delta_{11}| + a_{12}|\Delta_{12}| + a_{13}|\Delta_{13}| + a_{14}|\Delta_{14}|.$$

Observação:

Para a expressão acima escolhemos a linha 1 mas poderíamos ter escolhido qualquer linha ou coluna.

Seja
$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 4 & 2 & 5 & 4 \\ 3 & 0 & 4 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}.$$

Se escolhermos a terceira linha, então teremos:

$$|A| = 3\Delta_{31} + 0\Delta_{32} + 4\Delta_{33} + 2\Delta_{34}$$

$$= 3(-1)^{3+1} \begin{vmatrix} 2 & 1 & 3 \\ 2 & 5 & 4 \\ 1 & 1 & 3 \end{vmatrix} + 0(-1)^{3+2} \begin{vmatrix} 1 & 1 & 3 \\ 4 & 5 & 4 \\ 1 & 1 & 3 \end{vmatrix} +$$

$$4(-1)^{3+3} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 2 & 4 \\ 1 & 1 & 3 \end{vmatrix} + 2(-1)^{3+4} \begin{vmatrix} 1 & 2 & 1 \\ 4 & 2 & 5 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= 3 \cdot 1 \cdot 11 + 0 + 4 \cdot 1 \cdot (-8) + 2 \cdot (-1) \cdot 1 = -1$$

Propriedades:

- Se A é uma matriz quadrada, então $detA = detA^t$;
- O determinante é nulo se a matriz quadrada tiver:
 - a) uma fila (linha ou coluna) nula;
 - b) filas proporcionais;
 - uma fila igual à soma de outras filas paralelas multiplicadas por constantes (uma para cada fila);
- O determinante de uma matriz quadrada n\u00e3o se altera se somarmos a uma fila uma outra fila paralela, previamente multiplicada por uma constante;
- Invertendo-se a posição de duas linhas paralelas de uma matriz quadrada, seu determinante muda de sinal;
- Multiplicando-se por uma constante k todos os elementos de qualquer fila de uma matriz quadrada, seu determinante fica multiplicado por k;
- $det(AB) = detA \cdot detB$.

Matriz Adjunta e Matriz Inversa

Já sabemos que o cofator de A_{ij} (Δ_{ij}) é dado por:

$$\Delta_{ij} = (-1)^{i+j} |A_{ij}|$$

onde A_{ij} é a submatriz da matriz inicial, de onde foram retiradas a i— ésima linha e a j—ésima coluna.

Notação:

A matriz dos cofatores de $A = [\Delta_{ij}]$ denotaremos por cof(A).

Se
$$A=\left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right)$$
 então $cof(A)=\left(\begin{array}{cc} \Delta_{11} & \Delta_{12} \\ \Delta_{21} & \Delta_{22} \end{array}\right)$

Calculemos os cofatores (entradas de cof(A)).

$$\begin{array}{lllll} \Delta_{11} & = & (-1)^{1+1} \cdot |2| & = & 2 \\ \Delta_{12} & = & (-1)^{1+2} \cdot |1| & = & -1 \\ \Delta_{21} & = & (-1)^{2+1} \cdot |5| & = & -5 \\ \Delta_{22} & = & (-1)^{2+2} \cdot |3| & = & 3 \end{array}$$

Portanto

$$cof(A) = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$$

Definição:

Dada matriz quadrada A, chamaremos de **matriz adjunta de** A à transposta da matriz dos cofatores de A.

$$adj A = (cof(A))^t$$

Exemplo:

Se
$$A=\left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right)$$
 então $adj\ A=\left(\begin{array}{cc} 2 & -5 \\ -1 & 3 \end{array}\right)$

Teorema:

Seja A uma matriz quadrada de ordem n. Temos então que $A \cdot adj \ A = (det \ A) \cdot I_n$, onde I_n é a matriz identidade de ordem n.

Dem: (Exercício)

Definição:

Dada uma matriz quadrada A de ordem n, chamamos de inversa de A uma matriz B tal que $AB = BA = I_n$ onde I_n é a matriz identidade de ordem n. Escrevemos A^{-1} para a inversa de A.

Se
$$A = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$
 então $A^{-1} = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$

Se
$$B=\left(\begin{array}{cc} 2 & 3 \\ 1 & 4 \end{array} \right)$$
 então $B^{-1}=\frac{1}{5}\left(\begin{array}{cc} 4 & -3 \\ -1 & 2 \end{array} \right)=\left(\begin{array}{cc} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{array} \right)$

- Se A e B são matrizes quadradas de mesma ordem, ambas inversíveis então AB é inversível e $(AB)^{-1} = B^{-1}A^{-1}$.
- Nem toda matriz tem inversa;
- Se A_n tem inversa (ou seja existe A^{-1}) então

$$\begin{array}{rcl} A \cdot A^{-1} & = & I_n \\ \det (A \cdot A^{-1}) & = & \det (I_n) \\ \det A \det A^{-1} & = & \det I_n \\ \det A \det A^{-1} & = & 1 \end{array}$$

Segue que $\det A \neq 0$ e $\det A^{-1} = \frac{1}{\det A}$.

• Se $det A \neq 0$ então temos:

$$A \cdot adj A = det A \cdot I_n$$

Segue que $A^{-1} = \frac{1}{\det A} adj A$

No exemplo 1 a matriz inversa de A coincidiu com a adjunta de A, pois o determinante de A é 1.

No caso de matrizes de ordem 2 o cálculo da inversa desta forma (usando a matriz adjunta) é bem prático.

No entanto, para ordens maiores este método pode ser bem trabalhoso.

Obtenção da inversa

Exemplo:

$$A = \left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right)$$

Fazemos operações elementares com as linhas até transformar a matriz da esquerda na matriz identidade.

Operações elementares são:

- permutar duas linhas,
- multiplicar uma linha por um número não nulo ou
- somar uma linha com outra previamente multiplicada por um número.

A matriz à direita é a matriz inversa procurada.

Exercícios