深度学习

邱怡轩

今天的主题

循环神经网络(续)

实例演示

数据来源

- https://github.com/wainshine/Chinese-Names-Corpus
- >114万条已标注性别的人名

性别预测

dict,sex	
阿安,男	
阿彬,未知	
阿斌,男	
阿滨,男	
阿冰,女	
阿冰冰,女	
阿兵,男	
阿婵,女	
阿超,男	
阿朝,男	
阿琛,女	
阿臣,男	
阿辰,未知	
阿晨,未知	
<u> </u>	

石晓彦,女	
石晓艳,女	
石晓燕,女	
石晓艺,女	
石晓英,女	
石晓莹,女	
石晓颖,女	
石晓影,女	
石晓勇,男	
石晓宇,男	
石晓玉,女	
石晓云,女	
石晓泽,男	
石晓珍,女	
石筱,女	
	ı

闫志慧,女
闫志坚,男
闫志江,男
闫志杰,男
闫志娟,女
闫志军,男
闫志君,未知
闫志丽,女
闫志利,男
闫志亮,男
闫志林,男
闫志玲,女
闫志龙,男
闫志梅,女
闫志民,男

佐非,未知
佐江,男
佐军,男
佐丽,女
佐隆,男
佐明,男
佐木,未知
佐娜,女
佐楠,女
佐山,男
佐腾,男
佐威,男
佐为,男
佐樱,女
佐子,男

预处理

- ■删除未知类别
- 计算每个字出现的频率
- 选取前500个高频字
- 将范围限定在500个常用字中

	char	freq
636	王	50390
926	李	49078
1086	张	47089
1203	陈	41512
1394	刘	39986
2170	墙	1
2171	棱	1
2172	禺	1
2173	据	1
1962	莽	1

建立字典

■ 将500个常用字作为字典

```
array(['王', '李', '张', '陈', '刘', '文', '林', '明', '杨', '华', '黄', '吴', '金', '周', '晓', '国', '赵', '玉', '伟', '海', '志', '徐', '丽', '红', '建', '朱', '孙', '平', '军', '英', '春', '龙', '胡', '永', '荣', '德', '云', '成', '郭', '东', '郑', '高', '芳', '马', '何', '梅', '新', '杰', '辉', '生', '秀', '玲', '江', '俊', '洪', '强', '世', '光', '罗', '艳', '燕', '兰', '子', '庆', '峰', '忠', '梁', '宇', '凤', '谢', '霞', '美', '福', '宝', '佳', '方', '家', '唐', '许', '叶', '雪', '良', '安', '慧', '娟', '福', '宝', '佳', '方', '家', '唐',
```

■ 将汉字用 one-hot 向量编码

- $\pm = [1,0,0,...]$
- 李 = [0,1,0,...]
- * 张 = [0,0,1,...]
- 每个名字看作是一个**序**列 $x = (x_1, x_2, ...)$
 - 每个 x_t 是一个 one-hot 向量

建模原理

建立模型

■ 参考: https://pytorch.org/tutorials/intermediate/ char_rnn_classification_tutorial.html

测试结果

- 简单构建训练集(1万)和测试集(1千)
- CPU 上训练10秒钟
- 测试集准确率可达 97.9%

代码实现

■ 参见 name_classify.ipynb

改进 RNN

优缺点

- 相比于前馈神经网络和 CNN, RNN 有其独特的性质
- 优点
 - 处理任意长的序列数据
 - 利用历史信息
 - 参数数量不随序列变长而增加
- 缺点
 - 序列很长时计算量非常大
 - 梯度消失/爆炸问题

反向传播

■ 要理解 RNN 的局限,就需要明白它的反向 传播原理

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 10 - 103

May 7, 2020

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$rac{\partial L}{\partial W} = \sum_{t=1}^{T} rac{\partial L_t}{\partial W}$$

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \dots \frac{\partial h_1}{\partial W}$$

此处并不严谨,实际上等式右边只是导数的其中一项, 但这一项能提供一些直观的认识。

Gradients over multiple time steps:

$$\frac{\partial L_T}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \dots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left(\prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W}$$

Gradients over multiple time steps:

Gradients over multiple time steps:

$$rac{\partial L}{\partial W} = \sum_{t=1}^{T} rac{\partial L_t}{\partial W}$$
 Almost always < 1 Vanishing gradients

$$rac{\partial L_T}{\partial W} = rac{\partial L_T}{\partial h_T} (\prod_{t=2}^T tanh'(W_{hh}h_{t-1} + W_{xh}x_t)) W_{hh}^{T-1} rac{\partial h_1}{\partial W}$$

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$rac{\partial L}{\partial W} = \sum_{t=1}^{T} rac{\partial L_t}{\partial W}$$

What if we assumed no non-linearity?

Gradients over multiple time steps:

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$

 $\frac{\partial h_1}{\partial H}$

 $rac{dL_T}{dW} = rac{\partial L_T}{\partial h_T} W_{in}^{T-1} rac{\partial h_1}{\partial W}$

Largest singular value > 1:

Exploding gradients

Largest singular value < 1: **Vanishing gradients**

改进方法

■ 梯度爆炸: 对梯度的上限进行截断

■ 梯度消失: 更改 RNN 架构

LSTM

- 长短期记忆神经网络
- Long Short-Term Memory

 Hochreiter and Schmidhuber (1997).
 Long Short Term Memory, Neural Computation.

Vanilla RNN

LSTM

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

- i: 是否写入当前单元
- g/c̃: 多大程度上写入当前单元
- f: 是否遗忘上一个单元
- o: 多大程度上将单元转成隐藏状态

$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

■ 梯度从 c_t 传向 c_{t-1} 时只牵涉到与 f 的逐元素相乘,没有直接的矩阵乘法

- 可以更好地对梯度进行远距离传播
- "没有中间商赚差价"
- ■可以类比于残差神经网络

GRU

 \boldsymbol{h}_{t-1} \boldsymbol{h}_t + 向量和 向量元素乘 向量拼接 \boldsymbol{x}_t

本页内容取自邱锡鹏 《神经网络与深度学习》

重置门

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1} + \mathbf{b}_r), \ \tilde{\mathbf{h}}_t = \tanh(\mathbf{W}_c \mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))$$
$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1} + \mathbf{b}_z), \ \mathbf{h}_t = \mathbf{z}_t \odot \mathbf{h}_{t-1} + (1 - \mathbf{z}_t) \odot \tilde{\mathbf{h}}_t,$$

更新门

■ 多层堆叠 RNN

其他架构

■ 双向 RNN

其他架构

