

데이터전처리

실습 공지 사항

- 이번 차시 실습부터는, 구름과 colab 을 함께 사용합니다.
- 실습 **자동 채점은 구름** 에서만 진행됩니다. (colab 파일은 제출하지 않습니다)

- · 실습 내용에 따라 colab을 이용해 시각화하는 과정이 있습니다.
- 각 실습 내용을 잘 숙지하여 수행하시기 바랍니다.

이론 수업 재현하기

- 이론 수업 끝부분의 titanic data 처리 일부를 직접 재현해보세요.
 - Titanic 데이터셋의 survived, sex, fare, age, embarked 열만 사용하세요.
 - 결측치가 포함된 행, 중복 데이터는 모두 제거하세요.
 - 성별 데이터를 주어진 encoding 함수를 활용해 0과 1로 'sex_code' 열에 표시하세요.
 - 마지막으로, reset_index 메소드를 통해 index를 재설정하세요.
- 처리된 데이터 프레임을 그대로 출력하세요.

나이, 탑승 항구 결측치 채우기

- 사용할 데이터가 아래와 같이 주어집니다.
- 주어진 데이터에는 age 및 embarked 데이터에 NaN 데이터가 존재합니다.
- age 데이터 결측치를 승객 나이의 평균값으로 대체하세요!
- Embarked 데이터 결측치는 Embarked 값 중 가장 많이 등장하는 값으로 대체하세요!
- "age"와 "embarked" 컬럼에 대해 value_counts 메소드를 실행한 결과를 차례로 출력하세요.

데이터분석기초

	survived	sex	fare	age	embarked	sex_code
0	0	male	7.2500	22.0	S	e
1	1	female	71.2833	38.0	C	1
2	1	female	7.9250	26.0	5	1
3	1	female	53.1000	35.0	S	1
4	0	male	8.0500	35.0	S	e
	***	***	***		***	
886	0	male	13.0000	27.0	5	e
887	1	female	30.0000	10 A	_ S	1
888	0	female	23.4500	NaN	5	1
889	1	male	30.0000	20.0	С	e
890	0	male	7.7500	32.0	Q	e

주어지는 데이터

운임 이상치 분석

- 왼쪽 아래 그림과 같이 처리된 데이터가 주어집니다.
- Fare 데이터에 이상치를 분석하고자 합니다. 이상이 있는 데이터는 아래와 같습니다.
 - fare 값이 (제3 사분위수 + 1.5 * (제3 사분위수 제1 사분위수))를 초과하는 값은 이상치입니다.
- 이상치인 "fare" 값들의 평균을 출력하세요. 즉, 하나의 숫자가 정답으로 출력됩니다.
- 추가) Colab에서 Seaborns 라이브러리를 이용하여 Fare 데이터의 boxplot을 출력해보세요.

	survived	sex	fare	age	embarked	sex_code
0	0	male	7.2500	22.0	S	0
1	1	female	71.2833	38.0	С	1
2	1	female	7.9250	26.0	S	1
3	1	female	53.1000	35.0	S	1
4	0	male	8.0500	35.0	S	0
886	0	male	13.0000	27.0	S	0
887	1	female	30.0000	19.0	S	1
888	0	female	23.4500	28.0	S	1
889	1	male	30.0000	26.0	С	0
890	0	male	7.7500	32.0	Q	0

주어지는 데이터

성인 여부 표시

- 기본 titanic dataset 에 성인여부 여부를 표시하려고 합니다.
- 1번, 2번 문제로 처리된 데이터가 주어집니다.
- 아래 조건을 만족하는 데이터를 "adult" 컬럼으로 추가하세요.
 - "adult_male"과 "age"를 이용하여 성인임을 판별할 수 있는 기준 나이를 알아내세요.
 - "성인 남성 나이 중 최소 나이"보다 크거나 같다면 성인입니다.
 - 위 기준을 만족하는 모든 사람을 1로, 그렇지 않으면 0으로 "adult" 컬럼에 저장하세요. 저장되는 자료형은 int 형입니다.
- 이후 "adult" 컬럼에 대해 value_counts 메소드를 실행한 결과를 출력하세요.

성인 여부 표시

>	Unnamed: 0	survive	d se	х	embarked	adult_male	sex_code
0	9	9	male	•••	S	True	0
1	1	1	female		С	False	1
2	2	1	female		S	False	1
3	3	1	female		S	False	1
4	4	9	male		S	True	0
765	765	9	female		Q	False	1
766	766	1	female		S	False	1
767	767	9	female		S	False	1
768	768	1	male		C	True	0
769	769	0	male		Q	True	0

	Unnamed: 0	survived	sex	 adult_male	sex_code	adult
0	9	0	male	 True	6	1
1	1	1	female	 False	1	1
2	2	1	female	 False	1	1
3	3	1	female	 False	1	1
4	4	0	male	 True	6	1
765	765	0	female	 False	1	1
766	766	1	female	 False	1	1
767	767	0	female	 False	1	1
768	768	1	male	 True	6	1
769	769	9	male	 True	e	1

주어지는 데이터

변경된 데이터