МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САПР

ЗАДАНИЕ

по лабораторной работе №1 по дисциплине «Методы оптимизации» Тема: «Простые методы одномерного поиска минимума»

Преподаватель: Каримов А.И.

Цель работы

Изучение среды MATLAB, создание программы для реализации одного из простейших методов одномерного поиска: метода дихотомии, метода трехточечного деления, метода золотого сечения, метода Фибоначчи.

Основные теоретические положения

Методы одномерного поиска минимума используются для решения одномерной экстремальной задачи

$$x^* = \operatorname*{arg\ min}_{x \in [a;b]} f(x),\tag{1}$$

где интервал [a;b] задан, функция f(x) унимодальна на данном интервале.

Метод дихотомии (метод Больцано)

Метод средней точки является вариантом метода деления интервала пополам. Последовательные сокращения интервала неопределенности произво-дятся на основе оценки производной минимизируемой функции в центре текущего интервала.

Начальный этап Для запуска метода необходимо:

- (1) задать $[a_1, b_1]$ начальный интервал локализации минимума, на границах которого знаки производных различны, т. е. $f'(a_1)f'(b_1) < 0$; ϵ, δ малые положительные числа;
 - (2) установить счетчик числа итераций k = 1.

Основной этап

(1) Взять пробную точку x_k в центре текущего интервала

$$x_k = \frac{a_k + b_k}{2}$$

и проверить критерий окончания поиска (КОП): если

$$|f'(x_k)| \le \epsilon \text{ if } |b_k - a_k| \le \delta,$$

то остановиться ($x_k = x^*$ - аппроксимирующий минимум).

(2) Сократить текущий интервал: если $f'(x_k) > 0$, то положить $a_{k+1} = a_k$ и $b_{k+1} = x_k$, в противном случае $-a_{k+1} = x_k$, $b_{k+1} = b_k$; заменить k на k+1 и вернуться на шаг (1).

Метод трехточечного деления

В реальной вычислительной практике нахождение производной на каждой итерации может быть сопряжено со значительными трудностями. Метод трехточечного деления свободен от этого недостатка, поскольку не требует вычисления производной на шаге.

Начальный этап

- (1) Задать $[a_1, b_1]$ начальный интервал поиска, где a_1, b_1 границы интервала, удовлетворяющие условию $f'(a_1)f'(b_1) < 0$; ϵ погрешность вычисления минимума x^* .
 - (2) Положить $x_m = (a_1 + b_1)/2$ и k = 1.

Основной этап

(1) Взять 2 пробные точки

$$x_1 = a_k + L_k/4$$
 и $x_2 = b_k - L_k/4$,

где $L_k = |b_k - a_k|$ – длина текущего интервала. Точки x_1, x_2 и x_m делят $[a_k, b_k]$ на 4 равные части.

(2) Сократить текущий интервал локализации минимума:

- (2.1) если $f_1 < f_m$, то положить $a_k + 1 = a_k$, $b_{k+1} = x_m$, $x_m = x_1$, перейти к шагу (3);
- (2.2) если $f_1 \ge f_m \le f_2$, то положить $a_{k+1} = x_1$, $b_{k+1} = x_2$; иначе $-a_{k+1} = x_m$, $b_k + 1 = b_k$, $x_m = x_2$.
 - (3) Проверить критерий окончания поиска:
 - (3.1) заменить k на k+1;
- (3.2) если $L_k = |b_k a_k| \le \epsilon$, то остановиться. Если данное условие не выполняется, вернуться к шагу (1).

Метод золотого сечения

Метод золотого сечения является процедурой линейного поиска минимума унимодальной функции f(x) на замкнутом интервале [a,b], использующий не 3, а только 2 вычисления целевой функции на шаге, пользуясь свойсвом самоподобия отрезков, разделенных в отношении золотого сечения.

Начальный этап

Задать начальный интервал $[a_1,b_1]$, длину конечного интервала L_n и определить константу $\Phi=\frac{1+\sqrt{5}}{2}$. Определить малое положительное число ϵ – константу различимости двух значений x. Положить k=1. Определить $L_1=b_1-a_1$.

Основной этап

(1) Найти

$$\lambda_k = b_1 - \frac{L_k}{\Phi} \text{ if } \mu_k = a_1 + \frac{L_k}{\Phi}.$$

- (2) Сократить текущий интервал локализации: если $f(\lambda_k) > f(\mu_k)$, то положить $a_{k+1} = \lambda_k$, иначе $b_{k+1} = \mu_k$. Положить k = k+1.
- (3) Проверить критерий окончания поиска: если $L_k = |b_k a_k| \le \epsilon$, то остановиться. Если данное условие не выполняется, вернуться к шагу (1).

Метод Фибоначчи

Метод Фибоначчи является процедурой линейного поиска минимума унимодальной функции f(x) на замкнутом интервале [a,b], отличающейся от процедуры золотого сечения тем, что очередная пробная точка делит интервал локализации в отношении двух последовательных чисел Фибоначчи. Последовательность чисел Фибоначчи задается условиями $F_0 = F_1 = 1, F_{k+1} = F_k + F_{k-1}, k = 1, 2, \dots$. Начальными членами последовательности будут $1, 1, 2, 3, 5, 8, 13, \dots$ Стратегия поиска Фибоначчи требует заранее указать n – число вычислений минимизируемой функции и ϵ – константу различимости двух значений f(x). Рассмотрим один из возможных вариантов метода.

Начальный этап

- (1) Задать начальный интервал $[a_1, b_1]$, длину конечного интервала L_n и определить число n так, чтобы выполнялось условие $F_n > (b_1 a_1)/L_n$. Вычислить $\epsilon \leq L_1/F_n + 1$.
 - (2) Взять 2 пробные точки

$$\lambda_1 = a_1 + \frac{F_{n-2}}{F_n}(b_1 - a_1) \text{ if } \mu_1 = a_1 + \frac{F_{n-1}}{F_n}(b_1 - a_1).$$

Положить k=1.

Основной этап

- (1) Сократить текущий интервал локализации:
- (1.1) если $f(\lambda_k) < f(\mu_k)$, то положить $a_k + 1 = a_k$, $b_{k+1} = \mu_k$, $\mu_{k+1} = \lambda_k$ и вычислить новую точку

$$\lambda_{k+1} = ak + 1 + \frac{F_{n-k-2}}{F_{n-k}} L_{k+1},$$
 где $L_{k+1} = b_{k+1} - a_{k+1};$

перейти к шагу 2; (1.2) если $f(\lambda_k) \ge f(\mu_k)$, то положить $a_{k+1} = \lambda_k$, $b_{k+1} = bk$, $\lambda_{k+1} = \mu_k$ и вычислить

$$\mu_{k+1} = a_{k+1} + \frac{F_{n-k-1}}{F_{n-k}} L_{k+1}.$$

- (2) Проверить критерий окончания поиска:
- (2.1) заменить k на k + 1;
- (2.2) если k = n 1, перейти к шагу 3, иначе к шагу 1.
- (3) Найти аппроксимирующий минимум x^* :
- (3.1) положить $\mu_k = \lambda_k + \epsilon$;
- (3.2) если $f(\lambda_k) > f(\mu_k)$, то $x^* = (\lambda_k + b_k)/2$. В противном случае $x^* = (a_k + \mu_k)/2$.

Реализация в MATLAB

При реализации методов следует придерживаться принципа: один метод, одна функция – один *.m-файл. Следует тщательно комментировать код и писать раздел описания файла в начале, чтобы можно было воспользоваться командой help.

Пример кода

Пример грамотно оформленного кода приведен в Листинге 1.

Листинг 1: Метод золотого сечения

```
function [xmin, fmin, neval] = goldensectionsearch(f,interval,tol)
1
  % GOLDENSECTIONSEARCH searches for minimum using golden section
3
  %
           [xmin, fmin, neval] = GOLDENSECTIONSEARCH(f,interval,tol)
  1%
       INPUT ARGUMENTS:
4
   %
           f is a function
  %
           interval = [a, b] - search interval
6
7
   %
           tol - set for bot range and function value
8
  %
       OUTPUT ARGUMENTS:
9
  %
           xmin is a function minimizer
  %
           fmin = f(xmin)
10
11
           neval - number of function evaluations
12
           %unparse the search interval
13
           a = interval(1);
14
15
           b = interval(2);
16
           L = realmax; %set the largest real number
17
           neval = 0;
           Phi = (1 + sqrt(5))/2; %constant Phi
18
19
20
           while L > tol
21
                    L = b - a;
22
                    %find two points in a golden ratio
23
                    x1 = b - L/Phi;
24
                    x2 = a + L/Phi;
25
                    %evaluate th objective function
26
                    y1 = feval(f, x1);
27
                    y2 = feval(f,x2);
28
                    %set new bounds
29
                    if y1 > y2
```

```
30
                               a = x1;
31
                               xmin = x2;
                               fmin = y2;
32
33
                      else
34
                               b = x2;
35
                               xmin = x1;
36
                               fmin = y1;
                      end
38
                      %estimate the number of evaluations
39
                      neval = neval + 2;
40
             end
41
   end
```

Проверьте, как работает команда help, введя в командную строку

>>help goldensectionsearch

Убедитесь, что заглавные буквы в справочной части комментариев соответствуют полужирному шрифту при выводе справки на экран.

Визуализация

Для вывода графиков существует несколько команд MATLAB. Пусть имеются два вектора данных X и Y одинакового размера. Для начала, вызовите команду

```
1 figure(1)
```

чтобы перевести контекст на окно 1, где в дальнейшем будут выводиться графики. Затем, постройте в окне график с линейным масштабом осей

```
1 plot(X,Y)
```

Чтобы при перерисовке нового графика имеющиеся графики сохранялись, необходимо использовать команду hold on. Для отключения перерисовки используется команда hold off.

Для отрисовки графиков в логарифмическом масштабе по осям x, y и обеим осям соответственно, используйте команды

```
semilogx(X,Y);
semilogy(X,Y);
loglog(X,Y);
```

Для рисования линии с заданными координатами начала и конца используйте функцию

```
1 line(X,Y)
```

Чтобы вывести графики в одном окне, воспользуйтесь функцией

```
subplot(m,n,i);
```

Аргументы функции subplot – число графиков по вертикальной оси, число графиков по горизонтальной оси, и номер графика, начиная с левого верхнего, соответственно.

Графики по умолчанию выводятся разными цветами, начиная с синего, и непрерывной линией. Чтобы узнать о форматировании графиков, используйте команду help для вызова текстовой справки или doc для вызова справки в браузере.

Визуализируем статистику количества вычислений целевой функции и достигнутой погрешности в зависимости от заданной точности. Пусть заданная точность будет отложена

по оси x, а число вычислений – по оси y. Аналогично, построим график заданной точности и график фактически достигнутой погрешности. В Листинге 2 приведен пример кода, реализующий эту визуализацию.

Листинг 2: Визуализация статистики

```
% TEST GOLDEN SECTION SEARCH
  interval = [0, 10];
  %set the number of points on a plot
  N = 30;
4
   tolspan = logspace(-14,0,N); %evenly spaced logarithmic sequence
  Xmin = zeros(1,N);
6
   Neval = zeros(1,N);
   i = 1; %iteration counter
8
   for tol = tolspan %select the required tolerance
9
           [xmin, ~, neval] = goldensectionsearch(@f,interval,tol); %
10
              search for the xmin
           Xmin(i) = xmin; %save stats
11
12
           Neval(i) = neval;
13
           i = i + 1;
14
   end
  figure(1);
15
16 | % plot the number of evaluations
17
   subplot(2,1,1);
   semilogx(tolspan, Neval, '.-b');
18
19
   xlabel('tol');
20
  vlabel('Neval');
  %plot the error
21
22
  subplot (2,1,2);
23
  loglog(tolspan,abs(Xmin - 4),'s-b');
24
  xlabel('tol');
25
   ylabel('err');
```

Результат работы кода представлен на рисунке 1.

Интерпретируйте полученные результаты.

Второй вариант визуализации – визуализация хода решения задачи. Пусть оптимизируется функция

$$f(x) = (x - 4)^2 (2)$$

на интервале [-2;10]. Процесс последовательного вычисления точек, приближающихся к минимуму, представлен на рисунке 2.

Содержание работы и отчета

Лабораторная работа должна включать в себя *.m-файлы кодов на MATLAB для решения задачи. Отчет должен содержать титульный лист и разделы:

- Цель работы
- Основные теоретические положения.
- Коды для решения задачи оптимизации.

Рис. 1: Статистика количества вычислений функции и достигнутой точности

Номер	Функция	Минимум х*
1	$(x-3)^2 - 3x + x^2$	2,25
2	$(x-4)^4 + 8\sin(x) + 5$	≈ 4.602703
3	$\exp(x^2)^0.1$	0
4	$x^2 - 4\cos(2\pi x)$	0
5	$\cos(x)\exp(-(x-\pi)^2)$	π
6	$-2\sin\left(\sqrt{ x/2+10 }\right) - x\sin\left(\sqrt{ x-10 }\right)$	≈ 8.310296061
7	$(x-3)^2$	3
8	$\cos(2\pi(x+2)/10)$	3

Таблица 1: Тестовые функции

- Сравнение двух методов (по вариантам). Для этого на одном графике выведите число вычислений целевой функции в зависимости от требуемой точности для каждой из заданных тестовых функций. Аналогично, визуализируйте фактическую погрешность для обоих методов на другом графике.
- Выводы.

В приложении к данному документу находятся *.m-файлы, реализующие функции:

```
f %objective function (2)
goldensectionsearch %golden section search implementation
goldensectionsearchvisual %golden section search implementation
with visualization
test_goldensection %golden section search test
test_goldensectionsearchvisual %search test with visualization
```

В Таблице 1 приведены тестовые функции. Необходимо найти их минимум на интервале [-2;10]. Учтите, что некоторые из них не унимодальны!

Рис. 2: Иллюстрация процесса оптимизации

Таблица 2 содержит варианты заданий по вариантам. Номерами методов обозначены: 1 - Больцано, 2 - трехточечного деления, 3 - золотого сечения, 4 - Фибоначчи.

Вариант	Номера функций	Номера методов
1	1,5	2,1
2	2,7	1,2
3	3,4	2,3
4	2,3	2,4
5	7,5	1,3
6	5,8	3,4
7	8,2	1,2
8	6,8	3,2
9	7,1	3,1
10	7,4	3,2
11	3,4	4,1
12	4,5	3,2
13	1,8	3,1
14	3,7	1,3
15	2,6	2,1
16	3,1	3,2

Таблица 2: Варианты