CPRE 281 – Solutions to Mock Exam #1

1. (a)

X	Y	Z	XY'+YZ'+ZX'
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- (c) F = X'.Y'.Z + X'.Y.Z' + X'.Y.Z + X.Y'.Z' + X.Y'.Z + X.Y.Z'
- (d) $F(X,Y,Z) = \Sigma m(1,2,3,4,5,6)$
- (e) F = (X+Y+Z)(X'+Y'+Z')
- (f) $F(X,Y,Z) = \Pi M(0,7)$

2. (a)

P1	P0	Q1	Q0	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

(b) F = P1 Q1' + P0 Q0' Q1' + P1 P0 Q0'

(c) F = (P1+P0)(P1+Q0')(P1+Q1')(Q1'+Q0')(P0+Q1')

- (d) Cost of (b) = 19 (2 NOT, 3 AND, 1 OR, 13 inputs) Cost of (c) = 25 (2 NOT, 1 AND, 5 OR, 17 inputs)
- 3. (a) F = B'D' + D'A + ABC' + BDA'
 - (b) F = B' + CD
 - (c) B'.C'.D' = A. B'.C'.D' + A'. B'.C'.D' A.C' = A.C'.B'.D' + A.C'.B'.D + A.C'.B.D' + A.C'.B.D

$$F = B'.C'.D' + A.B.D' + B.C'.D + A.B'.D$$

4. f = (a+b)' + (c+de)' = a'b' + c'(d'+e') by DeMorgan's Law

5. ((a)
------	-----

X	Y	LHS
0	0	0
0	1	0
1	0	1
1	1	1

(b)
$$(a+b)(a'b'+a+b')$$
 = $(a+b)a'b' + (a+b)(a+b')$ 12a
= $(a+b)(a+b)' + (a+b)(a+b')$ 15b
= $0 + (a+b)(a+b')$ 8a
= $(a+b)(a+b') + 0$ 10b
= $(a+b)(a+b')$ 6b
= a 14b

(c) The dual theorem is: ab + (a'+b')ab' = a

It can be proved similarly as part (b) but using the dual version of an axiom / theorem / property in every step (i.e., if you use 12a in part (b), use 12b here).

- (b) 4x3 = 12
- (c) $F(A,B) = \Sigma m(0,3) = \Pi M(1,2) = (A+B').(A'+B)$

- (d) 4x3 = 12
- (e) 8

7. Notice that F = A'.B + A.C

(b)

OR

$$A = S = A'B + A \cdot I$$

(d) Multiplexer

Solutions to Extra Exercises

- 1. (a) 51
 - (b) 1010001₂
 - (c) $1EE_{16}$
 - (d) 110100011₂
 - (e) 7756₈
 - (f) 222₆

0

0

1

(b)	×
	Y-12-
	×->-
	Y-1

- (g) F = X'.Y + X.Y
- (h) F = (X+Y)(X'+Y)
- 3. (a) F = P1' P0 Q1' Q0' + P1 P0' Q1' Q0' + P1 P0' Q1' Q0 + P1 P0 Q1' Q0' + P1 P0 Q1' Q0 + P1 P0 Q1 Q0'
 - (b) $F = \Sigma m(4,8,9,12,13,14)$
 - (c) F = (P1+P0+Q1+Q0) (P1+P0+Q1+Q0') (P1+P0+Q1'+Q0) (P1+P0+Q1'+Q0') (P1+P0'+Q1+Q0') (P1+P0'+Q1'+Q0) (P1+P0'+Q1'+Q0') (P1'+P0+Q1'+Q0) (P1'+P0+Q1'+Q0') (P1'+P0'+Q1'+Q0')
 - (d) $F = \Pi M(0,1,2,3,5,6,7,10,11,15)$
- 4. Define:
 - D = 1 when doors are closed
 - S = 1 when seat belts are buckled
 - B = 1 when parking brake is off
 - F = 1 when warning light is on

Therefore
$$F = D S' + SB' + BD'$$

(or $F = B'D + S'B + D'S$)

D	S	В	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

The system is not a reasonable one. The warning light will turn on even for some safe situations (e.g., when D=1, S=1, B=0).

J . $\Gamma = \Lambda + DC + DL$	5.	F = A	A + BC	+ BD
------------------------------------	----	-------	--------	------

ABCD	0.	١٥	11	10
٥o	v	v	0	0
10	6	(I	1	7)/
(4)	1	1	J	回
(*)	1			

A	В	С	D	F
0	0	0	0	0
			-	
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

- 6. (a) True. By rule 8(b).
 - (b) False. ab + a'b' = 0 when a=0 and b=1
 - (c) False. ab'c + a'bc' = 0 when a = b = c = 1
 - (d) True. Can be proved by constructing a truth table.

7.	(a) $(a+b)a'b' = (a+b)(a+b)'$	15a	
	= 0	8a	
	(b) $(a'(a+a'b) = a'(a+b)$	16a	
	= a'((a')'+b)	9	
	= a'b	16b	
	(c) $(a+a'bc)(a+c)' = (a+bc)(a+c)'$		16a
	=(a+bc)a'c'		15b
	= a'(a+bc)c'		10a
	= a'((a')'+bc)c	;	9
	= a'bcc'		16b
	= a'b0		8a

=0

Y

0

0

(ab+a'b')'

0

a'b + ab'

0

1

1

0

- 9. (a) f = a'b'd + a'b'c + abd + abcCost = 46

5a

(c) Cost = 34

(d) Cost = 36

(e) Cost = 22

(f) Cost = 22

Since we can only have 4 product terms, we must have some sharing:

$$f = a'c'd + cd + acd'$$

 $g = a'c'd + b + acd'$

11. (a)
$$f = ba + ca$$

(b)
$$f = (b+a')c$$

$$F1 = ab + a'b'$$

$$F2 = F1 + c$$

$$F3 = de$$

$$F4 = d'f$$

$$F5 = F3 + F4$$

$$F6 = F2.F5$$

$$F7 = F6.g$$

(b) 3 3-LUTs are enough.

$$F1 = ab + a'b' + c$$

$$F2 = de + d'f$$

$$F3 = F1.F2.g$$