LSU Algebra Question Bank Solution

Ayanava Mandal

April 2025

Contents

1	Group Theory	1
2	Ring Theory	5
3	Module Theory	9
4	Linear Algebra	11

iv CONTENTS

Group Theory

G1: Let H be a normal subgroup of a group G, and let K be a subgroup of H.

- (a) Give an example of this situation where K is not a normal subgroup of G,
- (b) Prove that if the normal subgroup H is cyclic, then K is normal in G.

Solution 1. (a) Let $G = S_4$, $H = A_4$, and $K = \{e, (123), (132)\}$.

(b) Let $H = \langle h \rangle$ be cyclic. Let $K = \langle k \rangle$ where $k = h^a$ for some $a \in \mathbb{N}$. Since H is normal, $ghg^{-1} = h^b \in H$ for some b. $gkg^{-1} = gh^ag^{-1} = (ghg^{-1})^a = h^{ba} = k^b \in K$. So, K is normal in G.

G2: Prove that every finite group of order at least three has a nontrivial automorphism.

Solution 2. We will try this in two cases:

Case 1: The group is not abelian. Let $g \notin Z(G)$. Let ϕ_g be the nontrivial automorphism $h \mapsto ghg^{-1}$. Case 2: The group is abelian. If there is an element of order not equal to 2, the inverse map is a nontrivial automorphism. If every element is of order 2: $G = (\mathbb{Z}/2\mathbb{Z})^n$, where n > 1. Swap 2 elements. \square G3:

- (a) State the structure theorem for finitely generated Abelian group.
- (b) If p and q are distinct primes, determine the number of nonisomorphic Abelian groups of order p^3q^4 .

Solution 3. (a) If G is finitely generated Abelian group, G is isomorphic to $\mathbb{Z}^n \times \mathbb{Z}_{a_1} \times \cdots \times \mathbb{Z}_{a_r}$ where $a_i \mid a_{i+1}, \mathbb{Z}_a = \mathbb{Z}/a\mathbb{Z}$ cyclic group of order a.

(b) Let P(n) be the partition function. The number of nonisomorphic Abelian groups of order $p^3q^4 = P(3)P(4) = 3 \times 5 = 15$.

G4:Let $G = \operatorname{GL}(2, \mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p , where p is a prime.

- (a) Show that G has order $(p^2 1)(p^2 p)$.
- (b) Show that for p=2 the group G is isomorphic to the symmetric group S_3 .

Solution 4. (a) Choosing a invertible 2×2 matrix is equivalent to choosing two linearly independent vectors (which will be the columns of the matrix) from the space \mathbb{F}_p^2 . We can choose a nonzero vector in $|\mathbb{F}_p^2| - 1 = p^2 - 1$ ways and the second vector can't be a multiple of the first vector (there are p of them). So, we can choose the second vector in $p^2 - p$ ways.

(b) The group is of order 6. We just have to show that it is not abelian. Show for the elements $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. $ab = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $ba = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

G5: Let G be the group of units of the ring $\mathbb{Z}/247\mathbb{Z}$.

- (a) Determine the order of G (note that $247 = 13 \cdot 19$).
- (b) Determine the structure of G (as in the classification theorem for finitely generated abelian groups). Hint: Use the Chinese Remainder Theorem.

Solution 5. We will discuss a bit about the group of units. Let $N = 2^k p_1^{k_1} \cdots p_n^{k_n}$ where $p_i s$ are odd primes. By CRT, we have $(\mathbb{Z}_N) = (\mathbb{Z}_{2^k}) \times (\mathbb{Z}_{p_n^{k_1}}) \times \cdots \times (\mathbb{Z}_{p_n^{k_n}})$. We have the unit group

$$(\mathbb{Z}_N)^{\times} = (\mathbb{Z}_{2^k})^{\times} \times (\mathbb{Z}_{p_1^{k_1}})^{\times} \times \cdots \times (\mathbb{Z}_{p_n^{k_n}})^{\times}$$

. For odd prime powers, we have that the unit group is cyclic $(\mathbb{Z}_{p^k})^{\times} = \mathbb{Z}_{p^k - p^{k-1}}$.

For 2^k we have $(\mathbb{Z}_2)^{\times} = \mathbb{Z}_1$ the trivial group, $(\mathbb{Z}_4)^{\times} = \mathbb{Z}_2$ cyclic and $(\mathbb{Z}_{2^k})^{\times} = \mathbb{Z}_2 \times \mathbb{Z}_{2^{k-2}}$ noncyclic groups for $2^k \geq 8$. So the only time where the unit group is cyclic is $N = 1, 2, 4, p^k, 2p^k$ where p is an

odd prime. So, for N=247 the order of the group is $12\times 18=216$. And the structure of G is $\mathbb{Z}_{12}\times \mathbb{Z}_{18}=\mathbb{Z}_3\times \mathbb{Z}_4\times \mathbb{Z}_9\times \mathbb{Z}_2=\mathbb{Z}_6\times \mathbb{Z}_{36}$.

G6: Let G be the group of invertible 2×2 upper triangular matrices with entries in \mathbb{R} . Let $D \subseteq G$ be the subgroup of invertible diagonal matrices and let $U \subseteq G$ be the subgroup of matrices of the form $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$ where $x \in \mathbb{R}$ is arbitrary.

- (a) Show that U is a normal subgroup of G and that G/U is isomorphic to D.
- (b) True or False (with justification): $G \cong U \times D$

Solution 6. G7: Let G be a group and let Z denote the center of G.

- (a) Show that Z is a normal subgroup of G.
- (b) Show that if G/Z is cyclic, then G must be abellan.
- (c) Let D_6 be the dihedral group of order 6. Find the center of D_6 .

Solution 7.

G8: List all abelian groups of order 8 up to isomorphism. Identify which group on your list is isomorphic to each of the following groups of order 8. Justify your answer.

- (a) $(Z/15Z)^* = the group of units of the ring Z/15Z$.
- (b) The roots of the equation $z^8 1 = 0$ inC.

(a) Find an element of S_9 of order 20.

(c) \mathbb{F}_8^+ =the additive group of the field \mathbb{F}_8 with eight elements.

Solution 8. G9: Let S_9 denote the symmetric group on 9 elements.

- - (b) Show that there is no element of S_9 of order 18.

Solution 9.

G10: $G = \left\{ \begin{bmatrix} a & b \\ 0 & a^{-1} \end{bmatrix} : a, b \in \mathbb{R}, a > 0 \right\}$ and $N = \left\{ \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} : c \in \mathbb{R} \right\}$ are groups under matrix multiplication.

- (a) Show that N is a normal subgroup of G and that G/N is isomorphic to the multiplicative group of positive real numbers \mathbb{R}^+ .
- (b) Find a group N' with $N \subseteq N' \subseteq G$, with both inclusions proper, or prove that no such N' exists.

G11. Let R be a commutative ring with identity, and let H be a subgroup of the group of units R^* of R. Let $N = \{A \in GL(n,R) : \det A \in H\}$. Prove that N is a normal subgroup of GL(n,R) and $GL(n,R)/N \cong R^*/H$.

- G11. Let G be a group of order 2p where p is an odd prime. If G has a normal subgroup of order 2, show that G is cyclic.
- G12. Prove that every finitely generated subgroup of the additive group of rational numbers is cyclic.
- G13. Prove that any finite group of order n is isomorphic to a subgroup of the orthogonal group $O(n, \mathbb{R})$.
- G14. Prove that the group $GL(2,\mathbb{R})$ has cyclic subgroups of all orders $n \in \mathbb{N}$. (Hint: The set of matrices
- where a and b are arbitrary real numbers, is a subring of the ring of 2×2 matrices which is -b a isomorphic to \mathbb{C} .)
- G15. Let H_1 be the subgroup of \mathbb{Z}^2 generated by $\{(1,3),(1,7)\}$ and let H_2 be the subgroup of \mathbb{Z}^2 generated

by $\{(2,4),(2,6)\}$. Are the quotient groups $G_1=\mathbb{Z}^2/H_1$ and $G_2=\mathbb{Z}^2/H_2$ isomorphic? G16. Let H and N be subgroups of a group G with N normal. Prove that HN=NH and that this set is a subgroup of G.

G17. Let $G = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/30\mathbb{Z}$ and let $H = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/20\mathbb{Z}$. Express the abelian group Hom(G, H)of homomorphisms from G to H as a direct sum of cyclic groups.

G18. Let G be an abelian group generated by x, y, z subject to the relations

$$15x + 3y = 0$$
$$3x + 7y + 4z = 0$$
$$18x + 14y + 8z = 0$$

(a) Write G as a product of two cyclic groups.

- (b) Write G as a direct product of cyclic groups of prime power order.
- (c) How many elements of G have order 2?

G19. Let \mathbb{F} be a field and let

$$H(\mathbb{F}) = \left\{ \left[\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right] : a, b, c \in \mathbb{F} \right\}$$

- (a) Verify that $H(\mathbb{F})$ is a nonabelian subgroup of $GL(3,\mathbb{F})$.
- (b) If $|\mathbb{F}| = q$, what is $|H(\mathbb{F})|$?

(c) Find the order of all elements of $H(\mathbb{Z}/2\mathbb{Z})$.

(d) Verify that $H(\mathbb{Z}/2\mathbb{Z}) \cong D_8$, the dihedral group of order 8.

G20. Let R be an integral domain and let G be a finite subgroup of R^* , the group of units of R. Prove that G is cyclic.

G21. Let α and β be conjugate elements of the symmetric group S_n . Suppose that α fixes at least two symbols. Prove that α and β are conjugate via an element γ of the alternating group A_n .

G22. Are (13)(25) and (12)(45) conjugate in S_5 ? If you say "yes", find an element giving the conjugation; if you say "no", prove your answer.

G23. (a) Suppose that G is a group and $a, b \in G$ are elements such that the order of a is m and the order of b is n. If ab = ba and if m and n are relatively prime, show that the order of ab is mn.

(b) Prove that an abelian group of order pq, where p and q are distinct primes, must be cyclic.

(c) If m and n are relatively prime, must a group of order mn be cyclic? Justify your answer.

G24. Let $\varphi: G \to H$ be a surjective group homomorphism and let N be a normal subgroup of G. Show that $\varphi(N)$ is a normal subgroup of H. What happens if φ is not surjective? Explain your answer. G25. Let $Q = \{1, -1, i, -i, j, -j, k, -k\}$ be the quaternion group and $N = \{1, -1, i, -i\}$. Show that N is a normal subgroup of Q. Describe the quotient group Q/N.

G26. Let G be a finite abelian group of odd order. If $\varphi: G \to G$ is defined by $\varphi(a) = a^2$ for all $a \in G$, show that φ is an isomorphism. Generalize this result.

G27. Prove that the direct product of two infinite cyclic groups is not cyclic.

G28. Prove that if a group has exactly one element of order two, then that element is in the center of

G29. Prove that a group of order 30 can have at most 7 subgroups of order 5.

G30. Let $H = \{1, -1, i, -i\}$ be the subgroup of the multiplicative group $G = \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ consisting of the fourth roots of unity. Describe the cosets of H in G, and show that the quotient G/H is isomorphic

G31. (a) Show that the set of all elements of finite order in an abelian group form a subgroup.

(b) Let $G = \mathbb{R}/\mathbb{Z}$. Show that the set of elements of G of finite order is the subgroup \mathbb{Q}/\mathbb{Z} .

G32. Determine all the finite groups which have exactly 3 conjugacy classes.

G33. (a) Find a Sylow 2-subgroup of S_4 and identify its isomorphism type.

(b) How many Sylow 2-subgroups of S_4 are there? Please justify your answer.

G34. (a) Determine the number of Sylow p-subgroups of S_5 for each prime factor p of $|S_5|$. Please prove your assertion.

(b) Identify the isomorphism type of each Sylow p-subgroup of S₅. Please prove your assertion.

G35. Let p < q be prime numbers such that $p \mid (q-1)$. Show there exists a unique nonabelian group of order pq up to isomorphism.

G36. (a) Define what it means for a group G to act on a set A.

(b) The group $GL_2(\mathbb{C})$ acts by left-multiplication on the set of matrices $M_{2,5}(\mathbb{C})$. Describe the orbits. How many are there?

Ring Theory

R1: Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}.$

- (a) Why is R an integral domain?
- (b) What are the units in R?
- (c) Is the element 2 irreducible in R?
- (d) If $x, y \in R$, and 2 divides xy, does it follow that 2 divides either x or y? Justify your answer. R2. (a) Give an example of an integral domain with exactly 9 elements.
- (b) Is there an integral domain with exactly 10 elements? Justify your answer. R3. Let

$$F = \left\{ \left[\begin{array}{cc} a & b \\ 2b & a \end{array} \right] : a, b \in \mathbb{Q} \right\}.$$

- (a) Prove that F is a field under the usual matrix operations of addition and multiplication.
- (b) Prove that F is isomorphic to the field $\mathbb{Q}(\sqrt{2})$.
- R3. Let \mathbb{F} be a field and let $R = \mathbb{F}[X,Y]$ be the ring of polynomials in X and Y with coefficients from
- (a) Show that $M = \langle X+1, Y-2 \rangle$ is a maximal ideal of R.
- (b) Show that $P = \langle X + Y + 1 \rangle$ is a prime ideal of R.
- (c) Is P a maximal ideal of R? Justify your answer.
- R4. Let R be an integral domain containing a field k as a subring. Suppose that R is a finite-dimensional vector space over k, with scalar multiplication being the multiplication in R. Prove that R is a field.
- R5. Let R be a commutative ring with identity and let I and J be ideals of R.
- (a) Define

$$(I:J) = \{r \in R : rx \in I \text{ for all } x \in J\}$$

Show that (I:J) is an ideal of R containing I.

- (b) Show that if P is a prime ideal of R and $x \notin P$, then $(P : \langle x \rangle) = P$, where $\langle x \rangle$ denotes the principal ideal generated by x.
- (a) Define what is meant by the sum I + J and the product IJ of the ideals I and J.
- (b) If I and J are distinct maximal ideals, show that I + J = R and $I \cap J = IJ$. R6. Let \mathbb{F}_2 be the field with 2 elements.
- (a) Show that $f(X) = X^3 + X^2 + 1$ and $g(X) = X^3 + X + 1$ are the only irreducible polynomials of degree 3 in $\mathbb{F}_2[X]$.
- (b) Give an explicit field isomorphism

$$\mathbb{F}_2[X]/\langle f(X)\rangle \cong \mathbb{F}_2[X]/\langle g(X)\rangle$$

- R7. Show that $\mathbb{Z}[i]/\langle 1+i \rangle$ is isomorphic to the field \mathbb{F}_2 with 2 elements. As usual, i denotes the complex number $\sqrt{-1}$ and $\langle 1+i \rangle$ denotes the principal ideal of $\mathbb{Z}[i]$ generated by 1+i.
- R8. Consider the ring $\mathbb{Z}[X]$ of polynomials in one variable X with coefficients in \mathbb{Z} .
- (a) Find all the units of $\mathbb{Z}[X]$.
- (b) Describe an easy way to recognize the elements of the ideal I of $\mathbb{Z}[X]$ generated by 2 and X.
- (c) Find a prime ideal of $\mathbb{Z}[X]$ that is not maximal.
- R9. Determine, with justification, all of the irreducible polynomials of degree 4 over the field \mathbb{F}_2 of two elements. R10. Let $R = \mathbb{Z}[\sqrt{-10}]$.
- (a) Show that R is not a PID. (Hint: Show that 10 admits two essentially different factorizations into irreducible elements of R.)
- (b) Let $P = \langle 7, 5 + \sqrt{-10} \rangle$. Show that R/P is isomorphic to $\mathbb{Z}/7\mathbb{Z}$.

R11. Suppose that R is an integral domain and X is an indeterminate.

- (a) Prove that if R is a field, then the polynomial ring R[X] is a PID (principal ideal domain).
- (b) Show, conversely, that if R[X] is a PID, then R is a field.

R12. (a) Prove that every Euclidean domain is a principal ideal domain (PID).

(b) Give an example of a unique factorization domain that is not a PID and justify your answer.

R13. (a) Show that for each natural number $n \in \mathbb{N}$, there is an irreducible polynomial $P_n(X) \in \mathbb{Q}[X]$ of degree n.

(b) Is this true when \mathbb{Q} is replaced by \mathbb{R} ? Explain.

R14. Let R be a commutative ring with identity. If $I \subseteq R$ is an ideal, then the radical of I, denoted \sqrt{I} , is defined by

$$\sqrt{I} = \{a \in R : a^n \in I \text{ for some positive integer } n\}$$

- (a) Prove that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- (b) If P is a prime ideal of R and $r \in \mathbb{N}$, find $\sqrt{P^r}$ and justify your answer.
- (c) Find \sqrt{I} , where I is the ideal $\langle 108 \rangle$ in the ring \mathbb{Z} of integers.

R15. (a) Show that $\mathbb{Z}[i]/\langle 3+i\rangle \cong \mathbb{Z}/10\mathbb{Z}$, where i is the usual complex number $\sqrt{-1}$.

(b) Is (3+i) a maximal ideal of $\mathbb{Z}[i]$? Give a reason for your answer.

R16. Let $R = \mathbb{Z}[X]$. Answer the following questions about the ring R. You may quote an appropriate theorem, provide a counterexample, or give a short proof to justify your answer.

(a) Is R a unique factorization domain?

- (b) Is R a principal ideal domain?
- (c) Find the group of units of R.
- (d) Find a prime ideal of R which is not maximal.
- (e) Find a maximal ideal of R.

R17. An element a in a ring R is nilpotent if $a^n = 0$ for some natural number n.

- (a) If R is a commutative ring with identity, show that the set of nilpotent elements forms an ideal.
- (b) Describe all of the nilpotent elements in the ring $\mathbb{C}[X]/\langle f(X)\rangle$, where

$$f(X) = (X - 1)(X^{2} - 1)(X^{3} - 1)$$

(c) Show that part (a) need not be true if R is not commutative. (Hint: Try a matrix ring.)

R18. Let R be a ring, let R^* be the set of units of R, and let $M = R \setminus R^*$. If M is an ideal, prove that M is a maximal ideal and that moreover it is the only maximal ideal of R.

R19. (a) Let R be a PID and let I, J be nonzero ideals of R. Show that $IJ = I \cap J$ if and only if I + J = R.

(b) Show that $\mathbb{Z}/900\mathbb{Z}$ is isomorphic to $\mathbb{Z}/100\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z}$ as rings.

(a) Let $I = \langle X^2 + 2, 5 \rangle \subseteq \mathbb{Z}[X]$ and let $J = \langle X^2 + 2, 3 \rangle$. Show that I is a maximal ideal, but J is not a maximal ideal.

R20. Let F be a subfield of a field K and let $f(X), g(X) \in F[X] \setminus \{0\}$. Prove that the greatest common divisor of f(X) and g(X) in F[X] is the same as the greatest common divisor taken in K[X].

R21. Find the greatest common divisor of $X^3 - 6X^2 + X + 4$ and $X^5 - 6X + 1$ in $\mathbb{Q}[X]$.

R22. Define $\varphi : \mathbb{C}[X,Y] \to \mathbb{C}[T]$ by $\varphi(X) = T^2, \varphi(Y) = T^3$.

- (a) Show that $Ker(\varphi) = \langle Y^2 X^3 \rangle$.
- (b) Find the image of φ .

R23. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

R24. Let m, n be two non-zero integers. Prove that the greatest common divisor of m and n in \mathbb{Z} is the same as the greatest common divisor taken in $\mathbb{Z}[i]$. Generalize this to a statement about the greatest common divisor of elements a and b in a Euclidean domain R which is a subring of a Euclidean domain S

R25. Prove that the center of the matrix ring $M_n(\mathbb{R})$ is the set of scalar matrices, i.e., $C(M_n(\mathbb{R})) = \{aI_n : a \in \mathbb{R}\}.$

R26. Let $R_1 = \mathbb{F}_p[X]/\langle X^2 - 2 \rangle$ and $R_2 = \mathbb{F}_p[X]/\langle X^2 - 3 \rangle$ where \mathbb{F}_p is the field of p elements, p a prime. Determine if R_1 is isomorphic to R_2 in each of the cases p = 2, p = 5, and p = 11.

R27. (a) Show that the only automorphism of the field \mathbb{R} of real numbers is the identity.

(b) Show that any automorphism of the field \mathbb{C} of complex numbers which fixes \mathbb{R} is either the identity or complex conjugation.

R28. (a) Find all ideals of the ring $\mathbb{Z}/24\mathbb{Z}$.

(b) Find all ideals of the ring $\mathbb{Q}[X]/\langle X^2+2X-2\rangle$.

R29. Let R be an integral domain. Show that the group of units of the polynomial ring R[X] is equal to the group of units of the ground ring R.

R30. Express the polynomial $X^4 - 2X^2 - 3$ as a product of irreducible polynomials over each of the following fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_5$.

- R31. Let $\omega = (1 + \sqrt{-3})/2 \in \mathbb{C}$ and let $R = \{a + b\omega : a, b \in \mathbb{Z}\}.$
- (a) Show that R is a subring of \mathbb{C} .
- (b) Show that R is a Euclidean domain with respect to the norm function $N(z) = z\bar{z}$, where, as usual, \bar{z}

denotes the complex conjugate of z.

R32. Let I be an ideal of $\mathbb{R}[X]$ generated by an irreducible polynomial of degree 2. Show that $\mathbb{R}[X]/I$ is isomorphic to the field \mathbb{C} .

R33. Show that in the ring M of 2×2 real matrices (with the usual sum and multiplication of matrices), the only 2 -sided ideals are $\langle 0 \rangle$ and the whole ring M.

R34. Let R be a commutative ring with identity. Suppose $a \in R$ is a unit and $b \in R$ is nilpotent. Show that a + b is a unit.

R35. (b) Let R and S be commutative rings with identities 1_R and 1_S , respectively, let $f: R \to S$ be a ring homomorphism such that $f(1_R) = 1_S$. If P is a prime ideal of S show that $f^{-1}(P)$ is a prime ideal

(c) Let f be as in part (b). If M is a maximal ideal of S, is $f^{-1}(M)$ a maximal ideal of R? Prove that it is or give a counterexample.

 $R36. \ (a) \ Let \ \mathbb{H} \ be \ the \ ring \ of \ quaternions, \ q=a+b\mathbf{i}+c\mathbf{j}+d\mathbf{k}, \ where \ \mathbf{i}^2=\mathbf{j}^2=\mathbf{k}^2=\mathbf{i}\mathbf{j}\mathbf{k}=-1, \\ a,b,c,d \in \mathbb{R} \ d\mathbf{k} = \mathbf{k}^2$ \mathbb{R} . Let $q^* = a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}$ and $||q||^2 = qq^* = a^2 + b^2 + c^2 + d^2$. Show that the set \mathbb{H}_1 of quaternions with ||q|| = 1 is a group under quaternion multiplication. Hint: show $(q_1q_2)^* = q_2^*q_1^*$ and use $q^{**} = q, a^* = a$

(b) Show that the map

$$\mathbb{H} \to M_2(\mathbb{C}), \quad q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mapsto M(q) := \begin{bmatrix} a + bi & c + di \\ -c + di & a - bi \end{bmatrix} \quad i = \sqrt{-1},$$

is an \mathbb{R} -algebra homomorphism, and that $||q||^2 = \det M(q)$.

R37. Let $\mathbb{H} \to M_2(\mathbb{C})$ be the ring homomorphism of part (b) of problem R40. Show that this induces an isomorphism

$$\mathbb{H}_1 \cong SU_2 = \left\{ T \in M_2(\mathbb{C}) \mid T^t \bar{T} = I_2, \det T = 1 \right\}$$

R38. Let $\mathbb{H}_1 \to SU_2$ be the isomorphism of R 41. For each $q \in \mathbb{H}_1$, define a map $\mathbb{R}^3 \to \mathbb{R}^3$:

$$\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto R_q(\mathbf{v}) = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$$

by the rule $q(a\mathbf{i}+b\mathbf{j}+c\mathbf{k})q^*=a'\mathbf{i}+b'\mathbf{j}+c'\mathbf{k}$. Show that this makes sense: the quaternion $q(a\mathbf{i}+b\mathbf{j}+c\mathbf{k})q^*$ has only $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components. The map $\mathbf{v} \mapsto R_q(\mathbf{v})$ is clearly an invertible \mathbb{R} -linear map, hence an element of $GL(3,\mathbb{R})$. Now show that it preserves the dot-product of vectors in \mathbb{R}^3 , $(a_1,b_1,c_1)\cdot(a_2,b_2,c_2)=$ $a_1a_2 + b_1b_2 + c_1c_2$, that is

$$R_q(\mathbf{v}_1) \cdot R_q(\mathbf{v}_2) = \mathbf{v}_1 \cdot \mathbf{v}_2.$$

Hint: Let quat $(a, b, c) = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$, then

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = \left[\operatorname{quat} (\mathbf{v}_1) \operatorname{quat} (\mathbf{v}_2)^* + \operatorname{quat} (\mathbf{v}_2) \operatorname{quat} (\mathbf{v}_1)^* \right] / 2.$$

Therefore $R_q \in SO_3(\mathbb{R}) = \{T \in M_3(\mathbb{R}) \mid T^tT = I_3, \det T = 1\}$. R39. Show that the map $q \mapsto R_q$ is a homomorphism $\mathbb{H}_1 \to SO(3,\mathbb{R})$, i.e., $R_{q_1q_2} = R_{q_1}R_{q_2}$. Show that it induces an isomorphism $SU_2/\pm 1 \cong SO(3,\mathbb{R})$.

Module Theory

 $M1:Let \mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ denote the subring of \mathbb{Q} generated by \mathbb{Z} and $\frac{1}{2}$. Is $\mathbb{Z} \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ finitely generated as a \mathbb{Z} -module? Justify your answer.

M2. Let $\mathbb{Z}\left[\frac{1}{2}\right]$ denote the subring of \mathbb{Q} generated by \mathbb{Z} and $\frac{1}{2}$. Prove or disprove: $\mathbb{Z}\left[\frac{1}{2}\right]$ is a free \mathbb{Z} -module. M3. (a) Show that \mathbb{Q} is a torsion-free \mathbb{Z} -module.

(b) Is \mathbb{Q} a free \mathbb{Z} -module? Justify your answer.

M4. Show that $\mathbb{Z}/3\mathbb{Z}$ is a $\mathbb{Z}/6\mathbb{Z}$ -module and conclude that it is not a free $\mathbb{Z}/6\mathbb{Z}$ -module.

M5. Let N be a submodule of an R-module M. Show that if N and M/N are finitely generated, then M is finitely generated.

M6. Let \widetilde{G} be the abelian group with generators x, y, and z subject to the relations

$$5x + 9y + 5z = 0$$
$$2x + 4y + 2z = 0$$
$$x + y - 3z = 0.$$

Determine the elementary divisors of G and write G as a direct sum of cyclic groups.

M7. Let R be a ring and let $f: M \to N$ be a surjective homomorphism of R-modules, where N is a free R-module. Show that there exists an R-module homomorphism $g: N \to M$ such that $f \circ g = 1_N$. Show that $M = \text{Ker}(f) \oplus \text{Im}(g)$.

M8. Let R be an integral domain and let M be an R-module. A property P of M is said to be hereditary if, whenever M has property P, then so does every submodule N of M. Which of the following properties of M are hereditary? If a property is hereditary, give a brief reason. If it is not hereditary, give a counter example.

- (a) Free
- (b) Torsion
- (c) Finitely generated

M9. Let R be an integral domain. Determine if each of the following statements about R-modules is true or false. Give a proof or counterexample, as appropriate.

- (a) A submodule of a free module is free.
- (b) A submodule of a free module is torsion-free.
- (c) A submodule of a cyclic module is cyclic.
- (d) A quotient module of a cyclic module is cyclic.

M10. Let M be an R-module and let $f: M \to M$ be an R-module endomorphism which is idempotent, that is, $f \circ f = f$. Prove that $M \cong \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.

M11. Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$, where d is the greatest common divisor of n and m. M12. Compute $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Q})$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$.

M13. Let R be a commutative ring with 1 and let I and J be ideals of R. Prove that $R/I \cong R/J$ as R-modules if and only if I = J. Suppose we only ask that R/I and R/J be isomorphic as rings. Is the same conclusion valid? (Hint: Consider $F[X]/\langle X-a\rangle$ for $a\in F$.)

M14. Let $M \subseteq \mathbb{Z}^n$ be a \mathbb{Z} -submodule of rank n. Prove that \mathbb{Z}^n/M is a finite group.

M15. Let G, H, and K be finite abelian groups. If $G \times K \cong H \times K$, then prove that $G \cong H$.

M16. Let G be an abelian group and K a subgroup. For each of the following statements, decide if it is true or false. Give a proof or provide a counterexample, as appropriate.

(a) If $G/K \cong \mathbb{Z}^2$, then $G \cong K \oplus \mathbb{Z}^2$.

(b) If $G/K \cong \mathbb{Z}/2\mathbb{Z}$, then $G \cong K \oplus \mathbb{Z}/2\mathbb{Z}$.

M17. Let F be a field and let V and W be vector spaces over F. Make V and W into F[X]-modules via linear operators T on V and S on W by defining $X \cdot v = T(v)$ for all $v \in V$ and $X \cdot w = S(w)$ for all $w \in W$. Denote the resulting F[X]-modules by V_T and W_S respectively.

(a) Show that an F[X]-module homomorphism from V_T to W_S consists of an F-linear transformation $R: V \to W$ such that RT = SR.

(b) Show that $V_T \cong W_S$ as F[X]-modules if and only if there is an F-linear isomorphism $P: V \to W$

such that $T = P^{-1}SP$. M18. Let $G = \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z} \oplus \mathbb{Z}/10\mathbb{Z}$. Determine the elementary divisors and invariant factors

M19. (a) Find a basis and the invariant factors of the submodule N of \mathbb{Z}^2 generated by x=(-6,2), y = (2, -2) and z = (10, 6).

(b) From your answer to part (a), what is the structure of \mathbb{Z}^2/N ?

M20. Let R be a ring and let M be a free R module of finite rank. Prove or disprove each of the following statements.

(a) Every set of generators contains a basis.

(b) Every linearly independent set can be extended to a basis.

M21. Let R be a ring. An R-module N is called simple if it is not the zero module and if it has no $submodules\ except\ N\ and\ the\ zero\ submodule.$

(a) Prove that any simple module N is isomorphic to R/M, where M is a maximal ideal.

(b) Prove Schur's Lemma: Let $\varphi: S \to S'$ be a homomorphism of simple modules. Then either φ is zero, or it is an isomorphism.

M22. (a) Give an example of a prime ideal in a ring that is not maximal.

(b) Describe $Spec(\mathbb{C}[x])$ (polynomial ring in one variable over the complex numbers).

(c) Describe Spec($\mathbb{R}[x]$).

Linear Algebra

L1:Let V be a vector space of dimension 3 over \mathbb{C} . Let $\{v_1, v_2, v_3\}$ be a basis for V and let $T: V \to V$ be the linear transformation defined by $T(v_1) = 0$, $T(v_2) = -v_1$, and $T(v_3) = 5v_1 + v_2$.

(a) Show that T is nilpotent.

(b) Find the Jordan canonical form of T.

(c) Find a basis of V such that the matrix of T with respect to this basis is the Jordan canonical form of

T. Let p be a prime number and let V be a 2-dimensional vector space over the field \mathbb{F}_p with p elements.

(a) Find the number of linear transformations $T: V \to V$.

(b) Find the number of invertible linear transformations $T: V \to V$.

L3. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, with minimal polynomial $m_T(X)$ in $\mathbb{R}[X]$. Assume that $m_T(X)$ factors in $\mathbb{R}[X]$ as f(X)g(X) with f(X) and g(X) relatively prime. Show that \mathbb{R}^n can be written as a direct sum $\mathbb{R}^n = U \oplus V$, where U and V are T-invariant subspaces with $T|_U$ having minimal $polynomial\ f(X)\ and\ T|_{V}\ having\ minimal\ polynomial\ g(X).$

L4. Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be a nilpotent linear transformation.

(a) How is dim Ker T related to the Jordan normal form of T? How is the minimal polynomial related to the Jordan normal form?

(b) Let $T, S: \mathbb{C}^6 \to \mathbb{C}^6$ be nilpotent linear transformations such that S and T have the same minimal polynomial and dim Ker $T = \dim \operatorname{Ker} S$. Show that S and T have the same Jordan form.

(c) Show that there are nilpotent linear transformations $T, S : \mathbb{C}^8 \to \mathbb{C}^8$ such that S and T have the same $minimal\ polynomial\ and\ dim\ Ker\ T=dim\ Ker\ S,\ but\ S\ and\ T\ have\ different\ Jordan\ forms.$ That is, part (b) is false if 6 is replaced by 8.

L5. Let $\mathbb F$ be a field and let

$$0 \longrightarrow V_1 \xrightarrow{T_1} V_2 \xrightarrow{T_2} \cdots \xrightarrow{T_n} V_{n+1} \longrightarrow 0$$

be an exact sequence of finite-dimensional vector spaces and linear transformations over \mathbb{F} . means that T_1 is injective, T_n is surjective, and $\operatorname{Im}(T_i) = \operatorname{Ker}(T_{i+1})$ for $1 \le i \le n-1$. Show that

$$\sum_{i=1}^{n-1} (-1)^{i+1} \dim V_i = 0$$

L6. Let S and T be linear transformations between finite-dimensional vector spaces V and W over the field \mathbb{F} . Show that $\operatorname{Ker} S = \operatorname{Ker} T$ if and only if there is an invertible operator U on W such that

 $\tilde{L}7$. Let V be a finite-dimensional real vector space and let $T:V\to V$ be a nilpotent transformation (i.e. $T^{j} = 0$ for some positive integer j).

(a) Find the eigenvalues of T.

(b) Is I-T invertible, where $I:V\to V$ is the identity transformation? Explain fully.

(c) Give an example of two non-similar linear transformations A and B on the same finite dimensional vector space V, having identical characteristic polynomials and identical minimal polynomials.

L8. Let V be the vector space of polynomials $p(X) \in \mathbb{C}[X]$ of degree ≤ 4 . Define a linear transformation $T: V \to V$ by T(p(X)) = p''(X) (the second derivative of the polynomial p(X)). Compute the characteristic polynomial, minimal polynomial, and Jordan canonical form of the linear transformation T. L9. Let p be a prime number, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ the field with p elements, $V = \mathbb{F}_p^4$ (a 4-dimensional vector

space over \mathbb{F}_p), and W the subspace of V spanned by the three vectors $\mathbf{a}_1 = (1, 2, 2, 1), \mathbf{a}_2 = (0, 2, 0, 1),$ and $\mathbf{a}_3 = (-2, 0, -4, 3)$. Find $\dim_{\mathbb{F}_p} W$. (Note that this dimension depends on p.)