THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial 5 (Week 6)

MATH2068/2988: Number Theory and Cryptography

Semester 2, 2017

Web Page: http://www.maths.usyd.edu.au/u/UG/IM/MATH2068/

Lecturer: Dzmitry Badziahin

More difficult questions are marked with either * or **. Those marked * are at the level which MATH2068 students will have to solve in order to be sure of getting a Credit, or to have a chance of a Distinction or High Distinction. Those marked ** are mainly intended for MATH2988 students.

Recall from lectures the following multiplicative functions of a positive integer n:

 $\phi(n)$ = the number of nonnegative integers a < n such that $\gcd(a, n) = 1$,

 $\tau(n)$ = the number of positive integer divisors of n,

 $\sigma(n)$ = the sum of the positive integer divisors of n.

If n has prime factorization $p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$ with p_1,p_2,\cdots,p_r being distinct primes, then

$$\phi(n) = p_1^{k_1 - 1}(p_1 - 1) p_2^{k_2 - 1}(p_2 - 1) \cdots p_r^{k_r - 1}(p_r - 1),$$

$$\tau(n) = (k_1 + 1)(k_2 + 1) \cdots (k_r + 1),$$

$$\sigma(n) = \frac{p_1^{k_1 + 1} - 1}{p_1 - 1} \frac{p_2^{k_2 + 1} - 1}{p_2 - 1} \cdots \frac{p_r^{k_r + 1} - 1}{p_r - 1}.$$

Tutorial Exercises:

- 1. Calculate $\phi(n)$, $\sigma(n)$ and $\tau(n)$ for each of n=27,28,29,30.
- 2. What is the smallest positive integer n such that $\tau(n) = 6$?
- **3.** Recall that a positive integer n is said to be *perfect* if $\sigma(n) = 2n$ (in other words, n equals the sum of all proper positive divisors of n). Even perfect numbers were discussed in lectures; it is not known whether odd perfect numbers exist.
 - (a) Show that a power of a prime number cannot be perfect.
 - (b) Show that a number of the form $3^a \, 5^b$ (for some nonnegative integers a, b) cannot be perfect.
- **4.** For this question, let f(n) be the *product* of the positive integer divisors of n.
 - (a) Find f(2), f(3), f(6). Is f a multiplicative function?
 - *(b) Express f(n) in terms of n and $\tau(n)$. (Hint: the first question of Tutorial 1 is relevant here.)
- **5.** Primes p satisfy $\phi(p) = p 1$. Which positive integers n satisfy $\phi(n) = n 2$?

*6. Suppose that p is a prime number such that $p \equiv 3 \pmod{4}$. Show that there is no integer x such that $x^2 \equiv -1 \pmod{p}$. (Hint: use Fermat's Little Theorem.)

Extra Exercises:

- 7. What is the smallest positive integer n such that $\tau(n) = 8$?
- *8. Suppose that p is a prime number such that $p \equiv 1 \pmod{4}$.
 - (a) By considering the product

$$2 \times 4 \times 6 \times \cdots \times \left(\frac{p-1}{2}\right) \times \left(\frac{p+3}{2}\right) \times \cdots \times (p-5) \times (p-3) \times (p-1)$$

of all the even integers from 2 to p-1 inclusive, show that

$$2^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{4}} \pmod{p}.$$

- (b) Note that we either have $p \equiv 1 \pmod{8}$ or $p \equiv 5 \pmod{8}$. Show that if $p \equiv 5 \pmod{8}$, there is no integer x such that $x^2 \equiv 2 \pmod{p}$.
- **9. Let n be a positive integer. Show that $\sigma(n) + \phi(n) \geq 2n$, with equality if and only if n is either prime or equal to 1. (Hint: write $n = p^k m$ where p is a prime factor of n and $\gcd(p,m) = 1$, and find a lower bound for $\sigma(n) + \phi(n)$ in terms of $\sigma(m) + \phi(m)$.)

Selected numerical answers:

1. 18, 4, 40; 12, 6, 56; 28, 2, 30; 8, 8, 72. **2.** 12.