Université Hassan 1 Faculté Polydisciplinaire Khouribga

A. U. 2017-2018 Filière: SMA/SMI Module : Analyse I. Responsable: N.Mrhardy

Examen de Rattrapage Durée: 2h

- Les documents et téléphones portables sont formellement interdits.
- Les calculatrices sont à usage personnel.

Questions de cours (5 pts

- (1) Donner la définition:
 - (a) D'une suite bornée.
 - (b) D'une suite tendant vers $+\infty$.
- (2) Montrer, en utilisant la définition, que:
 - (a) La suite $\left(\frac{1-2\sqrt{n}}{1+\sqrt{n}}\right)_{n\in\mathbb{N}}$ converge vers -2. (b) La suite $\left(\ln(1+n^2)\right)_{n\in\mathbb{N}}$ tend vers $+\infty$.
- (3) Montrer que
 - (a) Toute suite croissante est minorée.
 - (b) La somme d'une suite convergente et une suite tendant wers $+\infty$ est une suite aui tend vers $+\infty$.
- (4) (a) Donner la définition de la continuité uniforme d'une fonction.
 - (b) Montrer que l'application $f: x \longmapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Exercice 1.(5 pts)

- (1) Calculer, si elles existent, les limites suivantes:
 - (a) $\lim_{x\to 0} \frac{\ln(1+x^2)}{\sin^2(x)}$, (b) $\lim_{x\to +\infty} \frac{E(\ln(x))}{x}$, (c) $\lim_{x\to 0} (x+\frac{\sqrt{x^2}}{x})$
- (2) En utilisant le théorème des accroissements finis, montrer (a) Pour tout x > 0

$$\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1}$$

(b) Pour tous x, y éléments de $\left[0; \frac{\pi}{2}\right]$,

$$|\ln(\tan(x)) - \ln(\tan(y))| \ge 2|x - y|$$

Exercice 2.(3pts)

 $f(x) = 1 - xE\left(\frac{1}{x}\right).$ Soit la fonction $f: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$ définit pour tout x > 0 par:

(1) Montrer que pour tout x > 0, on a

$$0 \le f(x) < x$$

(11) La nucrion y ser elle prolongeable par continuité en 0 ? Si oui, donner son prolo

Monte of the factor x > 1, f(x) = 1. La fonction f est-elle continue en 1.

(a.t) (in 1) & introd THE SHORE WHITE E WEST AND AND THE

$$f(x) = \arg \sinh\left(\frac{x^2 - 1}{2x}\right)$$

(3) Elemine la communité et la dérivabilité de f

(3) Nombres que $f'(x) = \frac{1}{x}$ si x > 0 es $f''(x) = \frac{-1}{x}$ si x < 0 (3) Din electrone une expression de f(x) en fonction de la fonction Im(x).

(the k) a convert

Sum $f:[a,b]\longrightarrow [a,b]$ une function croissance definie our un segment non trivial de R. On considere l'ensemble $E = \{x \in [a,b], j(x) \ge x\}$

(I) Montres que E solmes une borne superieure que l'en novera c.

(2) Montres par l'absurde que a ses un point axe de f. Indication: On pourse similars too done case $f(\alpha) > \alpha$ so $f(\alpha) < \alpha$