Kap 1

 $p_{\Delta}(t)=\frac{1}{\Delta}$ då $0 < t < \Delta$ annars 0 $\int_{-\infty}^{\infty}p_{\Delta}(t)dt=1$ Om f är deriverbar utom i punkterna a_1,\ldots,a_n där den har språng av höjder b_1,\ldots,b_n så är $f'(t)=f'_p(t)+b_1\delta(t-a_1)+\ldots+b_n(t-a_n)$ där f'_p är derivatan som vi kan läsa av från graf med heavside funktion

Kap 6

Faltning: $f * g(t) = \int_{-\infty}^{\infty} f(t - \tau) * g(\tau) d\tau$

Kap 8

Produkten av alla egenvärden till matris A är det A Summan av alla egenvärden till matris A är tr A vilket betyder att vi tar summan av diagonal elementen.

$$p(D) = diag(p(\lambda_1), \dots, p(\lambda_n))$$
(1)

p är vårt polynom, t.ex om vi har e^A så blir det, $p(x) = e^x$

$$p(A) = Sp(D)S^{-1} \tag{2}$$

Kap 9 - Lösa diffekvationer

Olika sätt att lösa diff ekvationer av matriser

Laplacetransformation

Diagonalisering genom variabelbyte

Om A är en diagonaliserbar matris så har det homogena systemet $\frac{du}{dt}=Au$ den allmänna lösningen

$$u = C_1 e^{\lambda_1 t} s_1 + \ldots + C_n * e^{\lambda_n t} s_n \tag{3}$$

där λ är egenvärden till $A,\,s$ är motsvarande egenvektorer och Cär godtyckliga konstanter.

Exponentialmatris

$$e^{tA} = Se^{tD}S^{-1} = Sdiag(e^{\lambda_1 t}, \dots, e^{\lambda_n * T})S^{-1}$$

$$\tag{4}$$

det homogena systemet $\frac{du}{dt} = Au$ har lösningen $u(t) = e^{tA}u(0)$

Kontrollfrågor

$$\delta(t) = \lim_{\Delta \to 0} p_{\Delta}(t) \tag{5}$$

$$\Delta(t)' = \delta(t) \tag{6}$$