neuro_decode_practice

Brennan

2022-11-07

Spiking activity


```
# Group the data into bins
save_dir_name <- file.path("Test_Binned")</pre>
```

```
## |
```

Visualize how many times each stimulus was presented
binned_file_name <- system.file(file.path("extdata", "ZD_150bins_50sampled.Rda"), package="NeuroDecodeR
label_rep_info <- get_num_label_repetitions(binned_file_name, "stimulus_ID")
plot(label_rep_info)</pre>

Label: stimulus_ID

Decoding Analysis

Performing a decoding analysis involves several steps:

1. Creating a datasource (DS) object that generates training and test splits of the data.

```
num_cv_splits <- 20
# Create the dataset
ds <- ds_basic(binned_file_name, variable_to_decode, num_cv_splits)</pre>
```

Automatically selecting sites_IDs_to_use. Since num_cv_splits = 20 and num_label_repeats_per_cv_spli

2. Optionally creating feature-preprocessor (FP) objects that learn parameters from the training data, and preprocess the training and test data.

```
# Store a function to normalize z-scores of data
fps <- list(fp_zscore())</pre>
```

3. Creating a classifier (CL) object that learns the relationship between the training data and training labels, and then evaluates the strength of this relationship on the test data.

```
# Store a function to classify the training data
cl <- cl_max_correlation()</pre>
```

4. Creating result metric (RM) objects that aggregate the predictions to create result summaries.

```
# Store a function for plotting relevant graphs for analysis
rms <- list(rm_main_results(), rm_confusion_matrix())</pre>
```

5. Running a cross-validator object that using the datasource (DS), the feature-preprocessor (FP) and the classifier (CL) objects to do a cross-validation procedure that estimates the decoding accuracy.

```
## |
```

```
# Plot main results
plot(DECODING_RESULTS$rm_main_results)
```


plot(DECODING_RESULTS\$rm_main_results, results_to_show = 'all', type = 'line')

Plot the confusion matrix
plot(DECODING_RESULTS\$rm_confusion_matrix)

plot(DECODING_RESULTS\$rm_confusion_matrix, results_to_show = "mutual_information")


```
# This code saves the data to a file if there is a valid directory listed
results_dir_name <- file.path(tempdir(), "results", "")
dir.create(results_dir_name)
log_save_results(DECODING_RESULTS, results_dir_name)</pre>
```

Warning in log_save_results(DECODING_RESULTS, results_dir_name): The manifest file does not exist.
Assuming this is the first result that is saved and creating manifest file