Simulado OBM - 2020.12.19

Problema 1

Qual é a maior quantidade de subconjuntos de 5 elementos do conjunto $\{1, 2, \dots, 20\}$ que podemos escolher de modo que quaisquer dois compartilhem exatamente 1 elemento.

Esboço. Isso lembra planos projetivos finitos. Os pontos são os elementos de $\{1, 2, \dots, 20\}$ e as retas são os subconjuntos.

Solução. A resposta é 16. Seja $S = \{1, 2, \dots, 20\}$.

Para todo $x \in S$, x pertence a, no máximo, 4 conjuntos. Prova a cargo do leitor.

Usando contagem dupla em $(x \in S, C)$, com C um dos conjuntos selecionados e $x \in C$, temos que

$$\#(C) \cdot 5 \le 20 \cdot 4,$$

isto é, $\#(C) \leq 16$.

Eis um exemplo com 16 conjuntos:

$$\{1,2,3,4,17\}; \{5,6,7,8,17\}; \{9,10,11,12,17\}; \{13,14,15,16,17\}; \\ \{1,5,9,13,18\}; \{2,6,10,14,18\}; \{3,7,11,15,18\}; \{4,8,12,16,18\}; \\ \{1,6,11,16,19\}; \{2,5,12,15,19\}; \{3,8,9,14,19\}; \{4,7,10,13,19\}; \\ \{1,4,12,14,20\}; \{2,8,11,13,20\}; \{3,5,10,16,20\}; \{4,6,9,15,20\}.$$

Problema 2

Seja ABC um triângulo e Γ seu circuncírculo. Os pontos D e E estão no segmento BC de modo que $\angle BAD = \angle CAE$. O círculo ω é tangente a AD em A e seu centro está em Γ . Seja A' a reflexão de A por BC e sejam L e K as intersecções de A'E com ω . Prove que BL e CK ou BK e CL se intersectam em Γ .

Esboço. Vamos reduzir o problema para mostrar que $ABC \sim ALK$.

Então, A é o centro da homotetia que leva BC em LK. Portanto, também é o centro da homotetia que leva BL em CK. Logo, se $X = BL \cap CK$, ABCX e ALXK são cíclicos, que termina o problema.

Problema 3

Seja d(n) a quantidade de divisores positivos de n e $\sigma(n)$ a soma dos divisores positivos de n. Determine todos os inteiros positivos para os quais

$$d(n) \mid 2^{\sigma(n)} - 1.$$

Esboço. Como $\sigma(n) \ge 1$, $2^{\sigma(n)}-1$ é impar. Logo, d(n) deve ser impar, ou seja, n é um quadrado perfeito. Seja $n=m^2$