Отчет по лабораторной работе N2

Разрывные колебания

Выполнили студенты 430 группы Виноградов И.Д., Шиков А.П.

Эксперимент

Оборудование

- 1. Схема с мультивибратором, триггером и кипп-реле.
- 2. Генератор импульсов.
- 3. Осциллограф.

Автоколебания мультивибратора

Для схемы в режиме мультивибратора были измерены период и амплитуда автоколебаний:

$$T = 250 \text{ MKC}, Amp = 0.85 \text{ B}$$

Также были зафиксированы осциллограммы и фазовая плоскость автоколебаний (см. рис. 1). На фазовой плоскости отчетливо видны ветви медленных движений устойчивого цикла.

Осциллограммы тока и напряжения

Фазовая плоскость

Режим триггера

Рис. 2: Осциллограмма в режиме триггера

Рис. 3: Деление частоты

Для схемы в режиме триггера была измерена длительность снимаемого импульса: $\tau=1$ мс (при частоте f=1 к Γ ц).

Также была исследована зависимость между длительностью импульса, и работой триггера. Существует минимальная длительность запускающего импульса $\tau_{min} = 5.7$ мкс, при которой триггер все еще работает. При увеличении длительности импульса работа схемы не нарушалась.

Минимальное значение амплитуды запускающего импульса $Amp_{min} = 0.3$ В. Увеличение амплитуды не влияет на работу триггера.

Было зафиксировано деление частоты на триггере, соответствующая осциллограмма приведена на рис. 3. На рисунке видно, что для переброса системы необходимо два импульса.

Режим кипп-реле

Для схемы кипп-реле была измерена длительность выходного сигнала T=??, а также минимальная и максимальная длительность и амплитуда запускающего импульса

При
$$f = 3$$
 кГц, $Amp = 0.4$ В:

$$0.03~{\rm mkc} < \tau < 17.3~{\rm mkc}$$

При
$$f = 3$$
 к Γ ц, $\tau = 6.67$ мкс:

$$120 \ \mathrm{mB} < Amp < 610 \ \mathrm{mB}$$