Lecture 19: Web Question Answering

Background: New trends in web search

- Despite the name information retrieval, it's not really information retrieval. It's more of document retrieval.
- New common theme in search engines: doing graph search over structured knowledge rather than traditional text search.
 - More semi-structured information embedded in web pages
- Move to mobile favors a move to speech, which favors natural language information search proving impoortance of NLU and QA.
- Toward more intelligent agents: two goals
 - 1. Things not strings
 - 2. Inference not search

Comparing 3 QA approaches

Knowledge-based approaches (Siri): current trend

- Build a semantic representation of the query: times, dates, locations, entities, numeric quantities
- Map from this semantics to query structured data or resources: geospatial databases, ontologies, etc.

Text-based QA

- Question processing: detect question type, answer type, focus, relations; formulate them as queries for the search engine
- Passage retrieval: Retrieve ranked documents; break into suitable passages and rerank.
- Answer processing: Extract candidate answers; rank candidates using evidence from relations in the text & external sources

Hybrid

- Build a shallow semantic representation of the query
- Generate answer candidates using IR methods: augmented with ontologies and semi-structured data
- $\bullet \ \ \text{Score each candidate using } \textit{richer knowledge sources} \text{: geospatial databases, temporal reasoning, taxonomical classification}$

Learning actions from web usage logs

- Bing: Towards actions
 - Recognize entity in query
 - (associated) (potential user) actions easily accessible (in the interface)
 - Click through experience can now leverage strongly-typed identifier
 - Brokered actions (one click conversions)

Entity disambiguation and linking

- Entities need to get identified and disambiguated
 - Named entity recognition
 - Entity linking ("Wikification")

Texts are knowledge

- If we want our intelligent agents to make decisions on our behalf, then we still need to construct knowledge bases.
 - For humans, going from the largely unstructured language on the web to actionable information is *effortlessly easy* (hmm...really?)
 - Not much so for the computers at the moment.
- In order to have computers work with language for knowledge, it needs to consider not just semantics but also **pragmatics**.
 - Pragmatics: taking account of *context* in determining meaning; a natural part of language understanding and use.
 - Search engines are great because they inherently take into account pragmatics.

Notable models?

- Word alignment for question answering (Scott Wen-tau Yih 2013)
 - Assume that there is an underlying alignment: describes which words in and can be associated
 - See if syntactic and semantic relations support the answer.
- Full NLP QA

- LCC (Harabagiu / Moldovan 2003)
 DrQA (Chen et al. 2017): Open-domain QA
 Stanford Attentive Reader