UCSC Extension - Digital Design with FPGA

Jae-Yang Park (jaeyangp@gmail.com)

Problem 2.6.1

1. Show that lutmask 8000 implements 4-inputs AND gate

а	b	С	d	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

F=abcd	
LUTMASK = 8000	

2. Implement a 4 inputs XOR gate using a LUT4

а	Ь	С	d	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

F = a'b'c'd + a'b'cd' + a'bc'd' + ab'c'd'	
+ab'cd +abc'd+abcd'	

LUTMASK = 6996

3. Implement the function below using a LUT4

Implement the function below using						
α	Ь	U	Ъ	F		
0	0	0	0	1		
0	0	0	1	1		
0	0	1	0	1		
0	0	1	1	1		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	1		
1	0	1	0	1		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

Problem 2.6.2

1. Implement all the 16 possible two-input functions using the above block Complete the table as follows:

		1	4		1.0	1.4	-1	-0	-4
		α0	a1	sa	ь0	b1	sb	s0	s1
1	XOR (a, b)	0	1	Ь	1	0	b	α	0
2	AND (a, b)	0	0	b	0	1	b	α	0
3	OR (a, b)	0	1	Ь	1	1	b	α	0
4	NAND (a, b)	1	1	Ь	1	0	Ь	α	0
5	NOR (a, b)	1	0	Ь	0	0	Ь	α	0
6	XNOR (a, b)	1	0	Ь	0	1	Ь	α	0
7	A < B	0	1	Ь	0	0	Ь	α	0
8	A > B	0	0	Ь	1	0	Ь	α	0
9	A LE B	1	1	Ь	0	1	Ь	α	0
10	A GE B	1	0	Ь	1	1	Ь	α	0
11	BUFFER (A)	0	0	Ь	1	1	Ь	α	0
12	BUFFER (B)	0	1	Ь	1	1	Ь	α	0
13	NOT (A)	1	1	Ь	0	0	Ь	α	0
14	NOT (B)	1	0	Ь	1	0	Ь	а	0
15	CONTRIDICTION	0	0	Ь	0	0	b	а	0
16	TAUTOLOGY	1	1	b	1	1	b	α	0

2. Implement f = ab + b'c + d using the above block

α	Ь	С	d	ab	b'c	ab+b'c+d
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	1
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	0	0	0
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	0	1	0	0	1
1	0	1	0	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	0	1	1	0	1
1	1	1	0	1	0	1
1	1	1	1	1	0	1

		α0	a1	sa	ЬО	b1	sb	s0	s1
1	AND (a, b)	0	0	Ь	0	1	Ь	а	0
3	OR (a, b)	0	1	Ь	1	1	Ь	α	0

Problem 3.7.1


```
1 # FILE:xor3gate.ucf
                                                                2
3 // Company: UCSC Extension - Digital Design with FPGA
                                                                3 # Pin assignment for SWITCHES
4 // Engineer: Jae-Yang Park
                                                                4 NET "sw<5>" LOC = "F3";
5 //
                                                                5 NET "sw<4>" LOC = "G3";
6 // Create Date:
                  19:12:43 01/27/2014
                                                                6 NET "sw<3>" LOC = "B4";
7 // Design Name:
  // Module Name:
                  xor3gate
  // Project Name:
                                                                8
10
  // Target Devices:
                                                               9 # Pin assignment for LEDs
                                                               10 NET "Led<5>" LOC = "N4" ;
11 // Tool versions:
12 // Description:
                                                               11
13 //
14 // Dependencies:
15 //
  // Revision:
16
  // Revision 0.01 - File Created
17
  // Additional Comments:
18
19
   20
21
   module xor3gate(a, b, c, f);
22
     input a, b, c;
23
     output f;
24
25
     assign f = a ^ b ^ c;
26 endmodule
27
28 module s3_xor3gate(sw, Led);
    input [5:3] sw;
output [5:5] Led;
29
30
31
     xor3gate U1 (.a(sw[5]), .b(sw[4]), .c(sw[3]), .f(Led[5]));
32
33 endmodule
```

SW5	SW4	SW3	
OFF	OFF	OFF	DIGILENT BEYOND THEONY
OFF	OFF	ON	DIGILENT BEYOND THEORY
OFF	ON	OFF	DIGILENT SEVEND THEORY
OFF	ON	ON	DIGILENT DEVOND THEORY

ON	OFF	OFF	DIGILENT DE COMO TRECO.
ON	OFF	ON	BETOND THEORY
ON	ON	OFF	DIGILENT BEYOND THEORY
ON	ON	ON	DIGILENT BEYOND THEORY

Problem 3.7.1


```
LUT4_FEE8
DitT = FEE8

Schematic Equation TruthTable: Karnaugh Map

0 = ((ID * I2) + (II * I2) + (IO * I3) + (II * I3) + (IZ * I3) + (IO * II));
```



```
timescale 1ns / 1ps
 1
   2
   // Company: UCSC Extension - Digital Design with FPGA
 3
   // Engineer: Jae-Yang Park
 4
 5
 6 // Create Date:
                    19:09:53 01/28/2014
   // Design Name:
   // Module Name:
                    mai4
 8
   // Project Name:
 9
   // Target Devices:
10
   // Tool versions:
11
   // Description:
12
13
   // Dependencies:
14
15
16
17
   // Revision 0.01 - File Created
18
   // Additional Comments:
19
   20
   module maj4(a, b, c, d, f);
22
      input a, b, c, d;
23
      output f;
24
25
      assign \ f = (a \ \& \ b) \ | \ (a \ \& \ c) \ | \ (a \ \& \ d) \ | \ (b \ \& \ c) \ | \ (b \ \& \ d) \ | \ (c \ \& \ d);
26
   endmodule
27
28
   module s3_maj4(sw, Led);
29
      input [6:3] sw;
30
      output [3:3] Led;
31
      maj4 U1 (.a(sw[6]), .b(sw[5]), .c(sw[4]), .d(sw[3]), .f(Led[3]));
32
33
34
   endmodule
35
```

```
1  # FILE:maj4.ucf

2  # Pin assignment for SWITCHES

4  NET "sw<6>" LOC = "E2";

5  NET "sw<5>" LOC = "F3";

6  NET "sw<4>" LOC = "G3";

7  NET "sw<3>" LOC = "B4";

8  # Pin assignment for LEDs

10  NET "Led<3>" LOC = "P6";

11
```

SW6	SW5	SW4	SW3	
OFF	OFF	OFF	OFF	DIGILENT BEFORE THE SET OF THE SE
OFF	OFF	OFF	ON	DIGILENT DEVOND THEORY

OFF	OFF	ON	OFF	BEYOND THEORY
OFF	OFF	ON	ON	DIGILENT BEYOND THEORY
OFF	ON	OFF	OFF	DIGILENT SEYOND THEORY
OFF	ON	OFF	ON	DIGILENT BEYOND THEORY
OFF	ON	ON	OFF	DIGILENT BEYOND THEORY
OFF	ON	ON	ON	BEYOND THEORY
ON	OFF	OFF	OFF	DIGILENT SEYOND THEORY
ON	OFF	OFF	ON	DIGILENT SEYOND THEONY
ON	OFF	ON	OFF	DIGILENT SEVOND THEORY
ON	OFF	ON	ON	DIGILENT' BEYOND THEORY

ON	ON	OFF	OFF	DIGILENT DEVOID THEORY
ON	ON	OFF	ON	DIGILENT SEYOND THEORY
ON	ON	ON	OFF	DIGILENT BEYOND THEORY
ON	ON	ON	ON	DIGILENT BEYOND THEORY IS IN IS NO IS NO IS