Introduction to Computer Systems Lecture 1 – Introduction

2022 Spring, CSE3030

Sogang University

SE3030 S'22

Team

- Instructor
 - Prof. Joo Ho Lee (AS818, jhleecs@sogang.ac.kr, 02-705-8489)
- Teaching assistants
 - Class I
 - Tae-young Eun, <u>tyen7@gmail.com</u>
 - Sejeong Oh, wwen9262@gmail.com
 - Class II
 - Yoochan Jeon, <u>saycruder123@gmail.com</u>
 - Junyong Kang, kang789082@gmail.com

Contents

Goal: Develop an general understanding of the underlying computer systems and improve system programming skills

- Data representation and arithmetic
- Machine-level program representation
- Processor architecture
- Linking
- Control flow
- Virtual memory
- System-level IO
- Network programming
- Concurrent programming

SE3030 S'22

Ints are not Integers, Floats are not Reals

- Example 1: Is $x^2 \ge 0$?
 - Float's: Yes!
 - Int's:
 - 40000 * 40000 = 1600000000
 - 50000 * 50000 = ??
- Example 2: Is (x + y) + z = x + (y + z)?
 - Unsigned & Signed Int's: Yes!
 - Float's:
 - (1e20 + -1e20) + 3.14 --> 3.14
 - 1e20 + (-1e20 + 3.14) --> ??

```
vcg@vcg:~$ ./a.out
1600000000
-1794967296
3.140000
0.000000
vcg@vcg:~$
```

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14
fun(6) -> Segmentation fault
```

Result is system specific

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;

fun(0)

fun(1)

fun(2)

fun(3)

fun(4)
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14
fun(6) -> Segmentation fault
```

Explanation:

Copy rows

Copy columns

4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

- Hierarchical memory organization
- Performance depends on access patterns
 - Including how step through multi-dimensional array

Course Perspective

- Our Course is Programmer-Centric
 - Purpose is to show that by knowing more about the underlying system, one cannot be more effective as a programmer
 - Enable you to
 - Write programs that are more reliable and efficient
 - Incorporate features that require hooks into OS
 - E.g., concurrency, signal handlers
 - Cover material in this course that you won't see elsewhere
 - Not just a course for dedicated hackers
 - We bring out the hidden hacker in everyone!

Textbooks

"Computer systems: A programmer's perspective", 3rd edition

- Randal E. Bryant and David R. O'Hallaron
- http://csapp.cs.cmu.edu/3e/students.html

- Lecture materials and class formats are referred to and improved from
 - Official lecture slides

Organization

- 3 Credits
- Lectures held via Zoom
 - Class I: Tuesday and Thursday 9:00-10:15
 - Class II: Wednesday and Friday 9:00-10:15
- Exam
 - Date and time will be announced on the cyber campus.
 - Relevant to programming assignments and pen & paper assignments.

Exercises

- We offer total 7 assignments
 - 3 programming assignments + 4 pen & paper assignments
- Handed out via the cybercampus.
- Up to 2 students can perform the assignments.
- Assignments are not graded, but we will give support and solutions.
- They are highly relevant to the exam.

Programming Assignments

- Exercises
 - PA 1: Compiler and assembler
 - PA 2: Shell program
 - PA 3: Shell program via network
- You will have 3-4 weeks per PA and submit via CyberCampus.
- We will provide additional videos about basic instructions for programming.
- Submit your code only (NOT GRADED!)

How to make a team?

- Step 1: find a team member
 - Contact your friend or find someone via the cyber campus.
 - Or, you can do it alone.
- Step 2: send the team information to a TA
 - Team name
 - Member's name and id
 - TA emails
 - Yoochan Jeon, <u>saycruder123@gmail.com</u>
 - Junyong Kang, kang789082@gmail.com

Facilities

- For each team will get an team id of the ubuntu server.
 - Address: http://cspro.sogang.ac.kr/
- How to connect
 - SSH connection
 - ssh id@cspro.sogang.ac.kr
 - Using putty
 - https://www.putty.org/

Grading

- Exam (95%)
 - Midterm & Final Exams (45% and 50%)
- Term Projects (0%)
 - 3 projects
 - Relevant to exams
- Homework (0%)
 - 4 pen & papers
 - Again relevant to exams
- Attendance (5%)
 - Your attitude and time record on the CyberCampus.

Cheating

- Penalty for cheating:
 - Removal from course with failing grade (no exceptions!)
 - Permanent mark on your record
 - Your instructors' personal contempt

- Exam modality
 - Online or offline (to be determined)
 - If it is online, we will give you how to set up your environment for taking the exam.

Role within CSE/EE Curriculum

Prerequisites

C programming

• Data, variables, types, functions, loop statements, if statements etc.

Good luck