- [1] Building Abstractions with functions
- 1.1 Getting Started
- Computer fundamentals:

representing information

specifying logic to process it

designing abstractions that manage the complexity of that topic

- Recommended textbook: Structure and Interpretation of Computer Programs (SICP)
- 1.1.1 Programming in Python
- 1.1.2 Installing Python 3
- 1.1.3 Interactive Sessions
- In an interactive Python session, you type some Python code after the ">>>". The Python interpreter reads and executes what you type, carrying out your various commands.
- To start an interactive session, type "python3" at a terminal prompt.
- Interactive controls: each session keeps a history of what you have typed. To access that history, press [Ctrl-p] (previous) or [Ctrl-n] (next). You can exit a session with [Ctrl-d], which discards the history. Up and down arrows also cycle through history on some systems.
- 1.1.4 First Example
- Statements & Expressions: Python code consists of expressions and statements. Broadly, computer programs consist of instructions to either computer some value or carry out some actions.

 Statements typically describe actions. Expressions typically describe computations.
- Functions: functions encapsulates logic that manipulates data.
- Objects: an object seamlessly bundles together data and the logic that manipulates that data, in a way that manages the complexity of both.
- Interpreters: evaluating compound expressions requires a precise procedure that interprets code in a predictable way. A program that implements such a procedure, evaluating compound expressions, is called an interpreter. When compared with other computer programs, interpreters for programming languages are unique in their generality.
- 1.1.5 Errors
- Computers are rigid: even the smallest spelling and formatting changes can cause unexpected output and errors. Learning to interpret errors and diagnose the cause of unexpected errors is called debugging.
- Some guiding principles of debugging are:

Test incrementally

Isolate errors: trace the error to the smallest fragment of code you can before correcting it.

Check your assumptions

Consult others

1.2 Elements of Programming

- Programs serve to communicate ideas among members for a programming community. Thus,
 programs must be written for people to read, and only incidentally for machines to execute.
- When we describe a language, we should pay particular attention to the means that the language provide for combining simple ideas to from more complex ideas. Each powerful language has three such mechanisms:

primitive expressions and statements: represent the simplest building blocks

means of combination: by which compound elements are built from simpler ones means of abstraction: by which compound elements can be named and manipulated as units

1.2.1 Expressions

- primitive expressions like numbers in base 10: 42
- compound expressions like numbers combined with mathematical operators: -1 -1

1.2.2 Call Expressions

- The most important kind of compound expression is a call expression, which applies a function to
- A call expression can have subexpressions.
- The order of the arguments in a call function matters.
- Function notation has three principle advantages over the mathematical convention of infix notation

functions may take an arbitrary number of arguments

function notation extends in a straightforward way to nested expressions

mathematical notations has a great variety of forms, while this complexity can be unified via the notation of call expressions

1.2.3 Importing Library Functions

• Python defines a very large number of functions, including the operator functions mentioned in the preceding section, but does not make all of their names available by default. Instead, it organizes the functions and other quantities that it knows into modules,, which together comprise the Python library. To use these elements, one imports them. Below are examples:

>>> from math import sqrt

>>> from operator import add, mul

1.2.4 Names and the Environment

- A critical aspect of a programming language it the means it provides for using names to refer to computational objects. If a value as been given a name, we say that the name binds to the value.
- In Python, we can establish new bindings using the assignment statement, like

```
>>> radius = 10
```

>>> radius

10

Here "=" is called the assignment operator. <mark>Assignment is our simplest means of abstraction</mark>.

- The possibility of binding names to values and later retrieving those values by names means that the interpreter must maintain some sort of memory that keeps track of the names, values and bindings. This memory is called an environment.
- Names can also be bound to functions, like

```
>>> f = max
>>> f
```

<built-in function max>

>>> f(1, 2, 3, 4)

 In Python, names are called variable names or variables, because they can be bound to different values in the course of executing a program. When a name is bound to a new value through assignment, it is no longer bound to any previous value. One can even bind built-in names to new values, like max.

We can assign multiple values to multiple names in a single statement, like
 area, circumference = pi * radius * radius, 2 * pi * radius
 note that after assignment, even if we change the value of radius, area will not change

(because in nature, variables are bound to values, not expressions)

- 1.2.5 Evaluating Nested Expressions
- To evaluate a call expression, Python will do the following: evaluate the operator and operand subexpressions

apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpressions

- Note that the evaluation procedure is recursive in nature. If we draw each expression that we evaluate, we can visualize the hierarchical structure of this process. This illustrations is called an expression tree. In computer science, trees conventionally grow from the top down. The objects at each point in a tree are called nodes, here they are expressions paired with values.
- 1.2.6 The Non-Pure Print Function
- Pure functions: have some input (arguments) and return some output (the result of applying them). Pure functions have the property that applying them has no effects beyond returning a value. Moreover, a pure function must always return the same value when passed in same arguments.
- Non-pure function: can generate side effects, which make some changes to the state of the
 interpreter or computer. A common side effect is to generate additional output beyond the return
 value, using the print function. The value that print returns is always None (a special Python
 value that represents nothing)
- Below is a special case:

>>>print(print(1), print(2))

1

2

None, None

#Note that None evaluates to nothing, and will not be displayed by the interpreter as a value, like >>> None

1.3 Defining New Functions

- 3 elements which make Python and other programming languages so powerful:

 Numbers and arithmetic operations are primitive built-in data values and functions

 Nested function application provides a means of combining operations

 Binding names to values provides a limited means of abstraction
- Function definition is a much more powerful abstraction technique by which a name can be bound to compound operation, which can then be referred to as a unit.
- How to define a function:

def <name> (<formal parameters>):

return <return expression>

The return expression is not evaluated right away; it is stored as part of the newly defined function and evaluated only when the function is eventually applied.

 We can use the defined function as a building block in defining other function. Actually, userdefined functions are used in exactly the same way as built-in functions

1.3.1 Environments

- An environment in which an expression is evaluated consists of a sequence of frames, depicted as
 boxes. Each frame contains bindings, each of which associates a name with its corresponding
 value.
- global frame
- The name of a function can be repeated twice, once in the frame and again as part of the function itself. The name appearing in the function is called the intrinsic name. The name in a frame is a bound name. There is a difference between the two: different names may refer to the same function, but that function itself has only one intrinsic name. The name bound to a function in a frame is the one used during evaluation. The intrinsic name of a function does not play a role
- Function signature: a description of the formal parameters of a function, like max(...). Note that the "..." here means max can take an arbitrary number of arguments.
- 1.3.2 Calling User-Defined Functions
- Applying a user-defined function introduces a second local frame, which is only accessible to that function. To apply a user-defined function to some arguments:

Bind the arguments to the names of the function's formal parameters in a new local frame. Execute the body of the function in the environment that starts with the frame

Note that the first step: bound names, is very tricky! As we have mentioned before, binding is only between values and variable names. So here what we are really doing, is not changing names for the parameters, but evaluating their values and assigning these values to new names! [see HW1 Q5]

- Name evaluation: a name evaluates to the value bound to that name in the earliest frame of the current environment in which that name is found.
- 1.3.3 Example: Calling a User-Defined Function
- 1.3.4 Local Names
- One detail of a function's implementation that should not affect the function's behavior is the implementer's choice of names for the function's formal parameters. The simplest function of it is that the parameter names of a function must remain local to the body of the function.
- 1.3.5 Choosing Names
- Important principles in choosing function and parameter names:

Function names are lowercase, with words separated by underscores. Descriptive names are encouraged.

Function names typically evoke operations applied to arguments by the interpreter, or the name of the quantity that results.

Parameter names are lowercase, with words separated by underscores. Single-word names are preferred.

Parameter names should evoke the role of the parameter in the function, not just the kind of argument that is allowed.

Single letter parameter names are acceptable when their role is obvious, but avoid 1, 0 or 1 to avoid confusion with numerals.

- 1.3.6 Functions as Abstractions
- To master the use of a functional abstraction, it is often useful to consider 3 core attributes: the domain of a function is the set of arguments it can take the range of a function is the set of values it can return

the intent of a function is the relationship it computes between inputs and output (as well as any side effects it might generate)

1.3.7 Operators

distinguish among / (normal division, which results to a floating point, or truediv in operator), //
(rounds the result to an integer, or floordiv in operator), and % (mod)

1.4 Designing Functions

The qualities of good functions:
 each function should have exactly one job
 don't repeat yourself (DRY principle)
 functions should be defined generally

1.4.1 Documentation

- A function definition will often include documentation describing the function, called a docstring, which must be indented along with the function body. Docstrings are conventionally triple quoted. The first line describes the job of the function in one line. The following lines can describe arguments and clarify the behavior of the function.
- When you call [help] with the name of a function as an argument, you see its docstring (type [q]
 to exit), like
 - >>> help(pressure)
- Comments in Python can be attached to the end of a line following the "#" symbol

1.4.2 Default Argument Values

>>> def pressure(v, t, n = 6):

• In Python, we can provide default values for the arguments of a function. When calling that function, arguments with default values are optional. If they are not provided, then the default value is bound to the formal parameter name instead. Below is an example:

```
>>> pressure (1, 273.25) # pass in 2 parameters 2269
>>> pressure (1, 273.15, 6)
2269
```

1.5 Control

• Control statements are statements that control the flow of a program's execution based on the results of logical comparisons.

1.5.1 Statements

- So far, we have seen 3 statements already: def, assignment, and return.
- Rather than being evaluated, statements are executed. Each statement describes some change to the interpreter state, and executing a statement applies that change.

1.5.2 Compound Statements

• In general, Python code is a sequence of statements. A simple statement is a single line that doesn't end in a colon. A compound statement is so-called because it's composed of other statements. Compound statements typically span multiple lines and start with a one-line header ending in colon, which identifies the type of statement. Together, a header and an indented suite of statements is called a clause. A compound statement consists of one or more clauses.

, khe	ader>:												
	<statement></statement>												
	<statement></statement>												
	····												
. «se	parating header>:												
	<statement></statement>												٠
	<statement></statement>												
• We ca	n catalog the stat	ements	we have	e leari	nt:								
	ressions, return st					tatem	ents o	are si	mple :	staten	nents.		
	ef statement is a												
	n understand multi												e first
	nent. If that state					and the same of							
	nce of statements,												
	fining Functions II:			ent .	•						•	•	•
	ever a user-defined				he se	nuence	e of c	nuses	in th	e suit	e of i	ts def	inition
	cuted in a local en												
	unction. A return s												
	st return stateme												
	of the function bei			ana n	iie, va	iue oi	THE	eiuiii	evhi	6331011	15, 1110	e i e i u	THEU
	nditional Statemen		eu.			•		•			۰		•
			n consi	. t c		ias af	bood		الأنتمام			''': E"	olausa
	litional statement i										equire	a ir	ciause,
	ional sequence of `	elit cio	auses, a	ına, rın	ally a	ın opt	ionai	eise	ciaus	e:			0
· >>>	if <expression>:</expression>		•										•
	<suite></suite>				•			•					•
· >>>	elif <expression>:</expression>						•						
	<suite></suite>												
· >>>	elșe:				•				•				
	<suite></suite>												
	mputational proces			a con	dițion	al cla	use fo	llows				•	
	luate th header's					٠							
	t is a true value, e	execute	the sui	te. Th	en, sk	ip all	subse	quent	clau	ses in	the c	onditio	nal
statemer													
• The ex	opressions inside th	e heade	r state	ments	of co	nditio	nal bl	ocks (are in	boole	an co	ntexts	: their
truth	value matter to co	introl flo	ow, but	other	wise '	their	values	are i	not as	signed	or re	eturne	d.
Pythor	n includes several f	alse val	ues, inc	luding	0, N	one, a	nd the	pool	ean v	alue F	alșe.	All oth	ner
numbe	rs are true values.												
• Pythor	n has two boolean	values: 7	True an	d Fals	e. ,								
Pythor	n has three boolean	n operat	ors: an	d, or, d	and n	ot, th	e first	two	of, wh	nich ha	as the	so-co	lled
short-	circuit evaluation l	behavior	. Below	are s	ome e	xamp	les:						
. >>>	True and 13												
. >>>	13 #evaluate each	h operar	nd; if Ti	rue, it	will 1	returr	the v	value	of the	e righ	tmost	opera	nd
	1 and True												
	True												

	>>>	1 and 2 d	and 3				0										
	>>>	3					0										
	>>>	False or	0 .														
	>>>	0 #the le	eft oper	rand i	s False	e, so	the ri	ght o	perand	d is ev	aluat	ed and	d its	value	is ret	urned	
	>>>	0 or Fals	e .														
	>>>	False															
	>>>	not 10															
	>>>	False # i	t equal:	s not	True												
		not None															
		True # it		not I	False												
1.	5.5 Ite																
		e clause s	structur	re is l	ike:										•		
		while <ex< th=""><th></th><th></th><th></th><th></th><th>0</th><th>0</th><th>•</th><th></th><th></th><th>•</th><th></th><th></th><th>•</th><th>٠</th><th></th></ex<>					0	0	•			•			•	٠	
		<suite></suite>			•			•					•		•		
1	5.6 Tes					•		٠	•	•		•	•	•			
		a functi	ion is th	e act	of ve	rifvin	a tha	t the	funct	ion's l	nehavi	or ma	tches	eyne	ctatio	ns A	
		a mecha															_
		ther func															"
•		ed value															
		to be ge															
		also serve		umen	τατιοπ:	They	/ aemo	onstra	ite no	w io	call a	runct	ion _, ar	ia wn	ar arg	ument	
		are suita															
•		when th														† .	
•	statem	ent has r														0	
•	statem execut	ient has r ion.	no effec	t. WI													
•	statem execut >>>	ent has r ion. assert f(no effec 8) == 13	t. WI													
•	statem execut >>>	nent has r ion. assert f() def f_tes	no effec 8) == 13 st():	ct. WI												0	(
	statem execut >>>	nent has r ion. assert f() def f_tes assert f	no effect 8) == 13 st(): f(2) == 1	:t. WI 3												o o o	
	statem execut >>>	ient has r ion. assert f() def f_tes assert f assert f	no effect 8) == 13 st(): F(2) == 1 F(3) == 1	:t. WI													
	statem execut >>>	ion. assert f() def f_tes assert f assert f assert f	no effects 8) == 13 st(): F(2) == 1 F(3) == 1 F(50) ==	ct. WI 3 1 1 89	hen it	is a f	false v	value,	asser	t cau	ses an	error	r that	halt	s the		
	statem execut >>>	ient has r ion. assert f() def f_tes assert f assert f	no effects 8) == 13 st(): F(2) == 1 F(3) == 1 F(50) ==	ct. WI 3 1 1 89	hen it	is a f	false v	value,	asser	t cau	ses an	error	r that	halt	s the		
	statem execut >>> >>>	ion. assert f() def f_tes assert f assert f assert f	no effects 8) == 13 st(): F(2) == 1 F(3) == 1 F(50) == a conve	ct. WI 3 1 1 89 enient	hen it	is a f	false v	value,	asser	t cau	ses an	erroi	r that	t halt	s the	a	
	statem execut >>> >>> Python functio	ion. assert f(i def f_tes assert f assert f assert f	no effect 8) == 13 st(): F(2) == 1 F(3) == 1 F(50) == a converst line	ct. WI I 89 enient of a	hen it t meth docstr	is a f	false v or plac hould	value, cing si conta	asser mple	tests ne-lin	ses an direct e desc	erroi ly in	r that the d	t halt ocstri	s the ng of unction	a	
	statem execut >>> >>> Python function	ion. assert f(i def f_tes assert f assert f assert f provides on. THE fi	no effect 8) == 13 st(): f(2) == 1 f(3) == 1 f(50) == a converst line lank line	ct. Wi 3 1 89 enient of a e. A c	hen it t meth docstr detaile	is a food foo ring sl	false v or plac hould scriptic	cing si conta on of	mple in a o argum	tests ne-lin nents	direct e desc and b	erroi ly in criptio	the don of or may	ocstri the fu	s the ng of unction ow. In	a .	e
	statem execut >>> >>> Python functio followe addition	ion. assert f(i def f_tes assert f assert f assert f provides on. THE fi ed by a b	no effects 8) == 13 st(): f(2) == 1 f(3) == 1 a converst line lank line cstring	ct. Wi 3 1 89 enient of a e. A c may i	hen it t meth docstr detaile nclude	is a food foo ring slid des	or place hould scriptic imple	cing si conta on of interc	mple in a o argum	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e
	statem execut >>> Python function follower addition interaction	ion. assert f(i def f_tes assert f assert f assert f provides on. THE fi ed by a b n, the do	no effects 8) == 13 st(): f(2) == 1 f(3) == 1 a converst line lank line cstring	ct. Wi 3 1 89 enient of a e. A c may i	hen it t meth docstr detaile nclude	is a food foo ring slid des	or place hould scriptic imple	cing si conta on of interc	mple in a o argum	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e ,
	statem execut >>> Python function follower addition interaction	ion. assert f() def f_tes assert f assert f assert f provides on. THE fi ed by a b n, the do ction can def f(n):	no effects 8) == 13 st(): f(2) == 1 f(3) == 1 a converst line lank line cstring	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e
	statem execut >>> Python function follower addition interaction	ion. assert f() def f_tes assert f assert f assert f provides on. THE fi ed by a b n, the do ction can def f(n):	8) == 13 st(): f(2) == 1 f(3) == 1 a converst line lank line cstring be veri	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e
	statem execut >>> Python function follower addition interaction	ion. assert f() def f_tes assert f assert f assert f provides on. THE fi ed by a b n, the do ction can def f(n):	no effects 8) == 13 st(): f(2) == 1 f(3) == 1 f(50) == a converst line lank line cstring be verifur	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e ,
	statem execut >>> Python function follower addition interaction	ion. assert f() def f_tes assert f assert f assert f provides on. THE fi ed by a b n, the do tion can def f(n): """ Ret	no effects 8) == 13 st(): f(2) == 1 f(3) == 1 f(50) == a converst line lank line cstring be verifur	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e .
	statem execut >>> Python function follower addition interaction	ion. assert f() assert f r r r r r r r r r r r r r r r r r r r	no effect 8) == 13 st(): f(2) == 1 f(3) == 1 f(50) == a converst line lank line cstring be veriful	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e ,
	statem execut >>> Python function follower addition interaction	ion. assert f(i def f_tes assert f assert f assert f provides on. THE fi ed by a b n, the do ction can def f(n): """ Ret >>> f(2) 55 >>> f(10	no effect 8) == 13 st(): f(2) == 1 f(3) == 1 f(50) == a converst line lank line cstring be veriful	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	· · · · · · · · · · · · · · · · · · ·
	statem execut >>> Python function follower addition interaction	ion. assert f() assert f r r r r r r r r r r r r r r r r r r r	no effect 8) == 13 st(): f(2) == 1 f(3) == 1 f(50) == a converst line lank line cstring be veriful	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	ee
	statem execut >>> Python function follower addition interaction	ion. assert f(i def f_tes assert f assert f assert f provides on. THE fi ed by a b n, the do ction can def f(n): """ Ret >>> f(2) 55 >>> f(10 458	no effect 8) == 13 st(): f(2) == 1 f(3) == 1 f(50) == a converst line lank line cstring be veriful	ct. Wi 3 1 89 enient of a e. A c may i fied v	t meth docstr detaile nclude ia the	nod for ring sl ad des a sa doct	or place hould scription imple est mo	cing si conta on of intercodule.	mple in a o argum active Belov	tests ne-lin nents sessic	direct e desc and bo	erroi ly in criptio chavio t calls	the don of or may	ocstri the fu funct	s the ng of unction ow. In	a .	e

. >>> from doctest import tes	tmod											
>>> testmod()												
TestResults(failed = 0,	atte	mpte	d = 2)) .								
• When writing Python in files,	rathe	r tha	n dire	ctly	into tl	he int	erpre	ter, t	ests a	re ty	pically	
written in the same file or a r	neighb	poring	file	with	the su	ffix "	_test	t.py".	Then	all do	ctests	can be
run by starting Python with th	ne do	ctest	comm	nand	line op	tion:	[pyth	on3 -	m doct	test (-	-v)	
<python_file>]</python_file>												
• A test that applies a single fu	nctio	n is c	alled	a uni	t test							
• autograder usage:				•								
1. To prevent the ok autograde	r froi	m inte	erpret	tina p	rint s	tatem	ents	as out	tout: r	rint v	vith 'D	EBUG:
at the front of the outputte				.51								
2. To open n interactive termina			iaate	a fa	ilina t	est fo	or au	stion	sum d	diaits	in assi	anment
lab01: [python3 ok -q sum_d			3	-,						J.		3
3. To look at an environment die			nvesti	aate	a faili	ina te	st for	r aues	tion s	um di	aits in	•
assignment lab01: [python3 o								7.		_	J	•
	. 1		g	•				•			•	0
1.6 Higher-Order Functions			•	•	•						•	•
We need to construct function	s the	it can	acce	nt of	her fi	ınctio	ns as	arour	nents	or re	turn	•
functions as values. Functions								THE RESERVE OF THE PARTY OF THE				0
1.6.1 Functions as Arguments	-,,ιω.	,	ujuro	, ,,,,,,,,		u, ç c.	attou	ingile.	0,00	, (and		
Below is an example:	•	•		0	•	•		•		٠		0
>>> def summation(n, term):		•		•	•			•			•	
, , , , dei saminarionni, remi).			•	•	•						•	
>>> def identity(x):							•	•			0	
, , , , dei idei(iii)(x).	•		•									٠
>>> def sum_naturals(x, ide	ntitu'	١.	•	•				•		•		•
, , , , dei sam_narai ats(x, ide	11,1119,	• •		0								0
1.6.2 Functions as General Meth	ade	•	•					•		•		
 With higher-order functions, v 		ain ta		4 mai		.asful	kind	of ab	ctract	ion. c	· ·	notions
express general methods of co												
							arjict	λιαί τι	urić i ioi	is , i ne	y can.	•
We learnt about two related l1. Naming and functions allow u							~+ ~t		برانيدا	٠	•	
												C 46-
2. It is only by virtue of the fa											eaure	tor the
Python language that small of					ompose	ea into	com	piex p	proces	seş.	•	۰
• 1.6.3 Defining Functions III: N												
• There are two negative consec											•	
1. The global frame becomes cl						ll fun	ctions	s, whi	ch mus	st all	be uni	que.
2. We are constrained by partic												
-> Nested function definitions ad	dress	þoth	ot th	nese	proble	ms, b	ut red	quire i	us to	enrich	our	0
environment model.				0	•							0
• Below is an example:												
>>> def sqrt(a):		0		0	•						0	0
def sqrt_update(x):												
return average(x,	a/x)											

```
def sqrt_close(x):
               return approx_eq(x * x, a)
          return improve(sqrt_update, sqrt_close)
     Note that we now place function definitions inside the body of other definitions.
 Like local assignment, local def statements only affect the local frame. These functions are only
  in scope while sart is being evaluated. Locally defined functions also have access to the name
  bindings in the scope in which they are defined. This discipline of sharing names among nested
  definitions are called lexical scoping.

    We require two extensions to our environment model to enable lexical scoping:

1. Each user-defined function has a [parent environment where it was defined.
2. When a user-defined function is called, its local frame extends its parent environment.

    Functions values each have a new annotation that we will include in environment diagrams from

  now on: a parent. The parent of a function value is the first frame of the environment in which
  that function was defined. Functions without parent annotations were defined in the global
  environment. When a user-defined function is called, the frame created has the same parent as
  that function.
1.6.4 Functions as Returned Values
Function composition: h(x) = f(q(x))
1.6.5 Example: Newton's Method
1.6.6 Currying
• Given a function f(x, y), we can define a function q such that q(x)(y) = f(x, y). Here, q is a higher-
  order function that takes in a single argument x and returns another function that takes in a
  single argument y. This transformation is called <mark>currying</mark>. Currying is useful when we require a
  function that takes in only a single argument (like the map function).
• Inverse Currying transformation:
1. given f, return g <-currying
>>> def curry(f):
     def g(x):
          def h(y):
               return f(x, y)
          return h
     return g
2. given g, return f <-uncurrying
>>> def uncurry(q):
     def f(x, y):
          return g(x)(y)
     return f
>>> uncurry(curry(f))
1.6.7 Lambda Expressions

    In Python, we can create function values on the fly using lambda expressions, which evaluate to

  unnamed functions. A lambda expression evaluates to a function that has a single return
  expression as its body. Assignment and control statements are not allowed. Below is an example:
```

>>> def compose(f, g):

```
return lambda x: f(q(x))
We can understand the structure of a lambda expression by constructing a corresponding sentence:
                                                  f(q(x))
lambda
                         X.
                   takes x and returns f(q(x))
• The result of a lambda expression is called a lambda function. It has no intrinsic name, but
  otherwise it behaves like any other function.
>>> s = lambda x: x* x
<function <lambda> at 0xf3f490>
>>> s(12)
144
1.6.8 Abstractions and First-Class Functions

    Programming languages impose restrictions on the ways in which computational elements can be

  manipulated. Elements with the fewest restrictions are said to be have first-class status. Some
  of the "rights and privileges" of first-class elements are:
1. They may be bound to names.
2. They may be passed as arguments to functions.
3. They may be returned as the results of functions.
4. They may be included in data structures.
1.6.9 Function Decorators

    Python provides special syntax to apply higher-order functions as part of executing a def

  statement, called a decorator. Below is the most common examples — trace:
>>> def trace(fn):
     def wrapped(x):
          print('->', fn, '(', x, ')')
          return fn(x)
     return wrapped
>>> @trace
    def triple(x):
          return 3 * x
>>> triple(12)
-> <function triple at 0x102a39848> (12)
36
In code, the decorator is equivalent to:
>>> def triple(x):
     return 3*x
>>> triple = trace(triple)
• The decorator symbol "@" may also be followed by a call expression. The expression following @
  is evaluated first (just as the name trace was evaluated first), the def statement second, and
  finally the result of evaluating the decorator expression is applied to the newly defined function,
  and the result if bound to the name in the def statement.
```