Nondimentionalization

seto

Tue 2nd Jun, 2015 5:45pm

Force balance equation

The following force balance equation is considered here;

$$F_{\rm H} + F_{\rm R} = 0. \tag{1}$$

The hydrodynamic interaction is assumed to be linear form of velocities.

$$F_{\rm H} = -R \cdot U. \tag{2}$$

Representative quantities

Particle radius is commonly considered as the representative length in our particle simulations: $L^* = a$.

From shear rate

One way to give the representative particle velocity in a sheared suspension is

$$U_{\rm H}^* = L^* \dot{\gamma}. \tag{3}$$

The typical hydrodynamic force is given by the typical velocity $U_{\rm H}^*$ and Stokes-drag form;

$$F_{\rm H}^* = 6\pi \eta_0 a U_{\rm H}^*. \tag{4}$$

Here, we indicate nondimensionalized variables in the hydrodynamic unit by using 'tilde', i.e., $\tilde{F} = F/F_{\rm H}^*$, etc.

[note] Since $F_{\rm H}^*$ is a function of shear rate $\dot{\gamma}$, it is not constant in stress controlled simulations and zero if system is not sheared.

From repulsive force

The repulsive force F_R is a function of particle-to-particle distance. We take the amplitude F_R^* to represent its typical strength:

$$F_{\rm R} = F_{\rm R}^* \hat{F}_{\rm R},\tag{5}$$

where 'hat' indicates nondimensionalized variables based on this repulsive force. The corresponding velocity can also be given via the Stokes-drag form;

$$U_{\rm R}^* \equiv \frac{F_{\rm R}^*}{6\pi n_0 a}.\tag{6}$$

Hydrodynamic (or shear-rate) unit

In the hydrodynamic unit, the nondimensionalized force balance equation is

$$\frac{\mathbf{F}_{\mathrm{H}}}{F_{\mathrm{H}}^{*}} + \frac{\mathbf{F}_{\mathrm{R}}}{F_{\mathrm{H}}^{*}} = 0 \quad \Longrightarrow \quad -\mathbf{R}' \cdot \tilde{\mathbf{U}} + \tilde{\mathbf{F}}_{\mathrm{R}} = 0, \tag{7}$$

where $\mathbf{R}' \equiv \mathbf{R}/6\pi\eta_0 a$.

The origin of shear-rate dependence becomes clear if the repulsive force is expressed with the typical value $F_{\mathbb{R}}^*$;

$$-\tilde{R}\cdot\tilde{U} + \frac{1}{\alpha}\hat{F}_{R} = 0. \tag{8}$$

This α indicates the competition between two representative forces:

$$\alpha \equiv \frac{F_{\rm H}^*}{F_{\rm R}^*} = \frac{\dot{\gamma}}{F_{\rm R}^*/6\pi\eta_0 a^2}. \tag{9}$$

The unit of time is

$$t_{\rm H}^* \equiv \frac{L^*}{U_{\rm H}^*} = \frac{1}{\dot{\gamma}}.\tag{10}$$

Therefore, the nondenominational time \tilde{t} is shear strain (when shear rate is constant):

$$\tilde{t} \equiv \frac{t}{t_{\text{II}}^*} = t\dot{\gamma} = \gamma. \tag{11}$$

The nondimensionalized shear rate is

$$\tilde{\dot{\gamma}} = \frac{\dot{\gamma}}{1/t_{\rm H}^*} = 1. \tag{12}$$

[note] We call this unit system "hydrodynamic". But, the essential origin for this unit system is the way to give typical velocity, i.e., $U^* = a\dot{\gamma}$. "Shear-rate" unit might be proper name.

Repulsive force unit

In the repulsive unit, the nondimensionalized force balance equation is

$$\frac{\mathbf{F}_{\mathrm{H}}}{F_{\mathrm{R}}^{*}} + \frac{\mathbf{F}_{\mathrm{R}}}{F_{\mathrm{R}}^{*}} = 0 \quad \Longrightarrow \quad -\mathbf{R}' \cdot \hat{\mathbf{U}} + \hat{\mathbf{F}}_{\mathrm{R}} = 0. \tag{13}$$

The time unit is

$$t_{\rm R}^* \equiv \frac{L^*}{U_{\rm R}^*} = \frac{6\pi\eta_0 a^2}{F_{\rm R}^*}.$$
 (14)

The nondimensionalized shear rate is

$$\hat{\hat{\gamma}} = \dot{\gamma} t_{\rm R}^* = \alpha. \tag{15}$$

In rate-controlled simulations, the relation between the nondimensionalized time $\hat{t} \equiv t/t_{\rm R}^*$ and shear strain γ is

$$\gamma \equiv \dot{\gamma}t = \dot{\gamma}t_{\rm R}^*\hat{t} = \frac{F_{\rm H}^*}{F_{\rm R}^*}\hat{t} = \alpha\hat{t},\tag{16}$$

where α is defined in (9).

In stress controlled simulations, the strain is simply given by

$$\gamma = \int_{-\tau}^{\tau} \dot{\gamma} dt = \int_{-\tau}^{\hat{\tau}} \alpha d\hat{\tau}. \tag{17}$$

Simulation data

In both ways of nondimensionalization, we can unify the output data with ones nondimensionalized by repulsive force.

	Output	Output in H.U.	Calc in H.U.	Output in R.U.	Calc in R.U.
strain	γ	$ ilde{t}$		γ	
relative viscosity	$\eta_{ m r}$	$6\pi\tilde{\sigma}$		$6\pi\hat{\sigma}/\alpha$	
time	\hat{t}	$ ilde{t}/lpha$	$ ilde{t}$	\hat{t}	\hat{t}
shear rate	$\hat{\dot{\gamma}}$	α	$\tilde{\dot{\gamma}} = 1$	$\hat{\hat{\gamma}}$	$\hat{\dot{\gamma}}$
shear stress	$\hat{\sigma}$	$lpha ilde{\sigma}$	$ ilde{\sigma}$	$\hat{\sigma}$	$\hat{\sigma}$