Stretching Practice

- 1 A new spring is 9.0 cm long. You pull it, and it is now 12.5 cm long.
 - (a) Calculate the extension.
 - (b) You now pull it harder, and make it 15.0 cm long. What is the extension now?
 - (c) When you let it go, it is now 9.0 cm long. Was the stretch elastic?
- A museum worker takes the spring out of an old clock and pulls it.
 The table shows the length of the spring when pulled with different forces.

Force (N)	0	0.1	0.2	0.3	0.4	0.5
Length (cm)	3.5	3.7	3.9	4.1		4.5
Extension (cm)		0.2				

- (a) How long was the spring before they stretched it?
- (b) Fill in the missing length.
- (c) Fill in the row with the extensions.
- (d) What is the extension for a force of $1\,\mathrm{N}$ if the pattern continues?
- (e) How much extra force is needed to make it 1 cm longer?

- 3 A spring has a 6 N/cm spring constant.
 - (a) How much force is needed to stretch it 5 cm? Use the equation

(b) How much force is needed to stretch it 2.5 cm? Use the equation

4	A spring gets 2 cm longer each time the force is made $10\mathrm{N}$ larger. (a) Calculate the force needed to make the spring $7\mathrm{cm}$ longer.					
	(b) Put a number in the box: force (in newtons) $=$ \times extension (in cm).					
5	A spring has a 20 N/cm spring constant.					
	(a) How far will a 120 N force stretch it? Use the equation					
	$\begin{array}{cccc} \text{force} \ (N) & = & spring \ constant \ (N/cm) & \times & extension \ (cm) \end{array}$					
	= 20 ×					
	(b) How far will a 70 N force stretch it? Use the equation					
	force (N) = spring constant (N/cm) \times extension (cm)					
	= ×					
6	A spring gets 1.5 cm longer when stretched by a 90 N force.					
	(a) Force to stretch it by $1 \text{ cm} = \boxed{} \div \boxed{} = \boxed{} \text{newtons}.$					
	(b) Complete the sentence: The spring constant (in N/cm) is					
	(c) A different spring gets $1.2~\rm cm$ longer when pulled with a $60~\rm N$ force. Work out the spring constant using an equation.					
	$force(N) = springconstant(N/cm) \times extension(cm)$					
	=					
7	A spring gets 6.0 cm longer each time the force goes up by 2.0 N. Calculate the extension for forces of					
	(a) 4.0 N (b) 1.0 N (c) 0.05 N					
8	Each time you stretch a spring with an extra 1 N of force it gets the amount longer, as long as you are below the					
	If you plot a graph of the force against the, the will					
	be A spring behaving like this obeys I aw. Fill in the blanks using the words best fit line , straight , curved , limit of proportionality ,					
	length, extension, same, Hooke's, Newton's, Snell's and elastic. Not all words are used.					

9 The extension of a spring for different forces is given in the table.

Force (N)	Extension (cm)
0	0.0
10	0.20
25	0.50
35	0.70
40	1.45
50	1.89

- (a) Plot a graph of the data. Add a best fit line to your points.
- (b) Label the limit of proportionality on your graph.
- (c) Is the spring obeying Hooke's law with a 45 N force?
- (d) When the spring obeys Hooke's law, how much longer does the spring get for each extra newton of force?
- 10 Complete the word equations using force, extension and spring constant.
 - (a) spring constant =
- (b) extension =
- (c) force =
- 11 Use the equation, or your understanding of springs, to answer these questions.
 - (a) Calculate the spring constant if a $64~\mathrm{N}$ force causes a $4.0~\mathrm{cm}$ extension.
 - (b) Calculate the force needed to extend a k=120 N/cm spring by 2.5 cm.
 - (c) Calculate the extension when a 550 N force stretches a k=125 N/cm spring.
- 12 A spring has a constant k=2.4 N/cm. When new and unstretched, it is 8.0 cm long. It obeys Hooke's law providing the force is less than 10.8 N.
 - (a) What will be the new **length** with a force of 3.6 N?
 - (b) What is the extension at the limit of proportionality?
 - (c) If you stretch the spring until it is 12.0 cm long, will it still obey Hooke's law?