Exercio	ce 1 : Azéotropie et miscibi	lité parti	elle			
A. Equil	libres Liquide vapeur					
1	 Courbes Points: température ébullition corps purs + azéotrope Formule littérale de la variance V=0 pour corps pur à leur température d'ébullition (N=1) V=0 pour azéotrope (r'=1 car composition liq=composition vapeur) V=2 dans domaine monophasique V=1 dans domaine biphasique (L-V) 					
2	QCM : Mélange non idéal/interactions plus faibles					
3	À ce stade, on ne peut obtenir du B pur que pour mélanges dont composition strictement supérieure à 0,4 fraction molaire de B					
4	97°C, Premières vapeurs : 0,26					
5	Distillat D ₁ : le mélange azéotropique à 0,40					
6	Résidu R ₁ : corps A pur à 0,00					
7	Initialement mélange 0,10 donc 900 moles de A et 100 moles de B Distillat D ₁ : azéotrope : tout B soit 100,0 moles + 150,0 moles de A $\frac{100}{100+150} = 0,40$ Bouilleur : Résidu R ₁ : $nA_{ini} - nA_{azéo}$: 900-150 = 750,0 moles de A					
B. Equil	quilibres liquide-liquide					
8	Tracé courbe + nom courbe et nature des 2 phases liquides non pures (L ₁ et L ₂)					
9	Limite solubilité de A dans B : 0,96					
10	Limite solubilité de B dans A : 0,10					
11	Distillat à 0,40 refroidi à 10°C : so		us la courb n _{TOT} =250 nA nB n _A +n _B	L ₁ (0,10) 146,5 16,3 162,8	n: appliquer L ₂ (0,96) 3,5 83,7 87,2	Règle des Moments Chimiques
C. Distil	llation et conclusion					
	La phase la plus richeissue de l'expérience précédente : L ₂ (nL ₂ =87,2 moles)					
12		n_{TOT} =87 nA nB n_A + n_B	(x _B = 0 3,5 2,3 5,8	at=Azéo 1,4)	Résidu = B (x _B = 1,0) 0 81,4 81,4	
13	A pur : 750/900 soit 83,3 % et B pur : 81,4/100 soit 81,4 %					
	L'azéotrope : point infranchissable en distillation. Mais possible de récupérer du B pur grâce au phénomène de miscibilité partielle des mélanges à l'état liquide.					

Exercice 2: Biopile

- 1 Anode: oxydation $C_6H_{12}O_6 + 3H_2O \rightleftharpoons C_6H_{12}O_7 + 2H_3O^+ + 2e^-$ Pôle (-)
 - Cathode: réduction $\frac{1}{2}$ O₂ + 2H₃O⁺ + 2e⁻ \rightleftharpoons 3 H₂O Pôle (+)

OU convention d'écriture

 $3 \quad 1/2 O_2 + 2H_3O^+ + 2e^- \rightleftharpoons 3 H_2O$

Milieu biologique: le solvant est donc l'eau, et toutes les espèces y sont dissoutes: leur activité s'écrit donc comme leur concentration dans l'eau normalisée par C° (dont la valeur est 1 mol/L)

$$E_{cathode} = E^{\circ}(O_2/H_2O) + \frac{RT}{2F}ln\left(\frac{[O_2]^{1/2}\times[H_3O^+]^2}{C^{\circ 5/2}}\right)$$

 $E_{anode} = E^{\circ}(ac\ glu/glucose) + \frac{RT}{2F}ln\left(\frac{[acide\ glu]\times[H_3O^+]^2}{[Glucose]\times C^{\circ 2}}\right)$

4 $C_6H_{12}O_6 + \frac{1}{2}O_2 \rightarrow C_6H_{12}O_7$ (n = 2)

Ou 2 $C_6H_{12}O_6 + O_2 \rightarrow 2 C_6H_{12}O_7$ (n = 4)

5

$$K^{\circ} = exp\left(\frac{nF}{RT} \times \left(E^{\circ}(O_2/H_2O) - E^{\circ}(ac\ glu/glucose)\right)\right)$$

Si n = 2 : K° = 1,75×10³⁹ et si n = 4 : K° = 3,00×10⁷⁸

Ou méthode du $\Delta G_r^\circ = -nF \times fem^\circ$

(attention : fem° = E°cath – E°anode)

réaction fortement favorisée thermodynamiquement dans le sens (1) (« totale »)

6 | Travail électrique : $W_{\text{\'electrique}} = -n_{e^-} \times F \times fem$

(attention : fem = Ecath – Eanode, c'est-à-dire que chaque réactant n'est pas dans les conditions standards)

Nb d'e échangés : $n_{e^-} = 2 \times n_{glucose}$ (cf question 4)

Avec une mole de glucose : $W_{\'electrique} = -154.10^3 J$

Dans 1 L de sang : n(glucose) = 5,55.10⁻³ mol $\rightarrow W_{\acute{e}lectrique} = -8,57.10^2 J$

Le signe du travail est négatif car il est cédé par le système chimique pris comme référence

 $\Delta t = \frac{W_{\text{électrique}}}{P_{\text{obs}}}$

et

 $\Delta t = 10^8$ s soit environ **3 années**.

8 Question ouverte : entre autres réponses possibles :

Intérêt d'une biopile *in vitro* : apport continu en glucose et O₂ donc inépuisable en théorie. En pratique : problèmes de dégradation des enzymes GOx et BOD dans l'organisme.