

Thomas Brooks

Marshall Space Flight Center

256.797.3147

Opto-thermal test of Zerodur Mirror

Temperature Measurements

Surface Measurements

PV: 194.1 nm RMS: 9.426 nm Astig: 17.67 nm, -1.308E+06 urad

Surface at 230K - Surface at 292K RMS SFE = 10.7nm P-V SFE = 185nm

Surface at 250K - Surface at 292K RMS SFE = 9.4nm P-V SFE = 194nm

Surface at 275K - Surface at 292K RMS SFE = 6.9nm P-V SFE = 160nm

Test Repeatability of 6nm

Surface Filtering

Gradient Method

If the black pixel is too different than more than half of the orange pixels then throw out the black pixel

Surface Filtering

Analysis

Mirror with lateral CTE gradient

Model with Mount

Correlation Process

Produce CTE Map from Zernike Shapes:

$$\left[\propto_{x,y} \right] = \sum_{n=2}^{12} \sum_{m=0}^{n} C_{n,m} \left[U_{n,m} \right]$$

 $[\propto_{x,y}]$ is the CTE Map

Test and Correlation Delta

SFE Sensitivities

SFE A, B, and C Sensitivities

SFE D, E, and F Sensitivities

Sensitivity Tables

SFE Sensitivities, c (nm RMS SFE/(ppb/C)/(C)/m											
n∖ m	-5	-4	-3	-2	-1	0	1	2	3	4	5
1					0.007		0.003				
2				0.02		0.47		0.02			
3			0.03		0.45		0.45		0.03		
4		0.03		1.07		0.13		1.06		0.03	
5	0.03		0.39		0.19		0.20		0.38		0.04

$$SFE = ch\alpha T_{p-v}$$

SFE = RMS SFE after removing power (nm)

c = SFE sensitivity coefficient found in the table

h = mirror's depth (m)

 α = mirror's CTE (ppb/K)

 $T_{p-v} = P-V$ mirror temperature (K).

SFE Hand Calculation Example

How much SFE is caused by the temperature gradient at the 230K measurement?

The mirror's depth is 0.125m, assume its CTE is 20ppb/K, and the $T_{\rm p-v}$ is 2.5 K:

$$h = 0.125 \text{ m}$$

 $\alpha = 20*10^{-9} \text{ 1/K}$
 $T_{p-v} = 2.5 \text{ K}$

SFE Hand Calculation Example

SFE Sensitivities, c (nm RMS SFE/(ppb/C)/(C)/m											
n∖ m	-5	-4	-3	-2	-1	0	1	2	3	4	5
1					0.007		0.003				
2				0.02		0.47		0.02			
3			0.03		0.45		0.45		0.03		
4		0.03		1.07		0.13		1.06		0.03	
5	0.03		0.39		0.19		0.20		0.38		0.04

Expected Temperature Distribution

$$h = 0.125 \text{ m}$$

 $\alpha = 20*10^{-9} \text{ 1/K}$
 $T_{p-v} = 2.5 \text{ K}$

$$SFE = ch\alpha T_{p-v}$$

 $SFE = 0.39 * 0.125 * 20 * 10^{-9} * 2.5 \left[m \frac{1}{^{\circ}\text{C}} ^{\circ}\text{C} \right]$
 $= 2.43nm \ RMS \ SFE$

Hand Calculation Compared to FEA

Temperature Distribution

RMS SFE = 1.28nm

Why different?

Hand	2.4 nm			
Calculation	RMS SFE			
Numerical	1.3 nm			
STOP Analysis	RMS SFE			

Questions or Comments?

Contact Information

Thomas Brooks

Thomas.brooks@nasa.gov

Work - (256) 544 -5596

Cell - (256) 544 -5596