Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки Кафедра інформатики та програмної

інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 29

Виконав студент	<u>IП-12 Скорик Родіон Олегович</u>		
·	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
1 1	(прізвище, ім'я, по батькові)		

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій

Варіант 29

Індивідуальне завдання. Наближено (із заданою точністю ε) обчислити інтеграл: $\int_{0}^{\pi} \text{Ln}(2 + \text{Sin}x) dx,$

використовуючи формулу прямокутників:

$$\int_{a}^{b} f(x)dx \approx h \cdot (f(x_{1}) + f(x_{2}) + \dots + f(x_{n})),$$
де $h = (b - a) / n$, $xi = a + i*h - h / 2$.

Розв'язання

Постановка задачі

Вхідні данні – точність, із якою має бути обрахований заданий інтеграл. Для цоьго необхідно із достатньо малим кроком обрахувати його за формулою прямокутників. Результат – дійсне число, обраховане не менш, ніж із задданою точністю.

Таблиця змінних

Змінна	Тип	Ім'я	Призначення
Точність	Дійсне	eps	Початкове
Лічильник зовінішнього	Ціле	i	Лічильник
циклу			
Лічильник вкладеного	Ціле	j	Лічильник
циклу			
Значення Х	Дійсне	xj	Початкове дане
Результат попердньої	Дійсне	res1	Перевірка точності
ітерації			
Знаходження модуля	Функція	fabs()	Обрахунок даних
дійсного числа			
Знаходження	Функція	log()	Обрахунок даних
натуральниго логарифму			
Знаходження синуса	Функція	sin()	Обрахунок даних
(аргумент у радіанах)			
Результат поточної	Дійсне	res2	Результат
ітерації			

Побудова математичної моделі

Оскільки оцінка необхдіної точності – достатньо складна математично задача, оптимальніше буде організувати перебір для значення п. Він матиме вигляд циклу, що збільшує лічильник (змінну і) на одиницю, після чого вкладеним циклом обраховується інтеграл. Оскільки для оцінки точності необхідно мати результати і поточної, і попередньої ітерації введемо для цього необхідні змінні: res1, res2, надамо їм початкове значення 0 формула для перевірки, яку будемо виконувати так: fabs(res1-res2)>eps, де eps – точність, fabs – модуль дійсного числа. Крім того, для оцінки точності потрібно мати хоча б одне значення, а тому зовнішній цикл краще реалізувати із післяумовою. Умова завершення зовнішнього циклу – досягнення необхідної точності, а вкладного досягнення його лічильника(j) значення лічильника зовнішнього(i) на цій ітерації. Оскільки a=0, b= π , то крок h рахуємо за формулою: $h=\frac{\pi}{\cdot}$. Для обчислення x на кожній ітерації вкладеного циклу введемо змінну xi, xi = h *(j-0.5). Слід також зазначити, що для обрахувння значень у вкладеному циклі необхідне використання вбудованих функцій: log() – логарифм натуральний, sin() - сінус.

Псевдокод

```
Крок 1
початок
         ввід ерѕ
         ініціалізація початкових значень змінних
         підбір п
         обрахунок формули прямокутників
         вивід res2
кінець
Крок 2
початок
         ввід ерѕ
         i:=1
         res2:=0
         підбір п
         обрахунок формули прямокутників
         вивід res2
кінець
Крок 3
початок
         ввід ерѕ
         i:=1
         res2:=0
         повторити
                      res1:=res2
                      res2:=0
                      h := \pi/i
                      j = 1
```

обрахунок формули прямокутників

$$i := i + 1$$

поки fabs(res1 - res2) > eps

все повторити

вивід res2

кінець

Крок 4

початок

ввід ерѕ

i:=1

res2:=0

повторити

res1:=res2

res2:=0

 $h := \pi/i$

j = 1

повторити

поки і<=ј

$$xj := h * (j - 0.5)$$

$$res2 := res2 + h*log(2 + sin(xj))$$

$$j:=j+1$$

все повторити

$$i = i + 1$$

поки fabs(res1 - res2) > eps

все повторити

вивід res2

кінець

Блок-схеми

Крок 3

Крок 4

Перевірка

Блок	Дія	Дія
	Початок	Початок
1	Ведення 1	Ведення 10
2	i:=1	i:=1
3	res2:=0	res2:=0
4	res1:=0	res1:=0
5	res2:=0	res2:=0
6	h:= π/1= 3.14159	h:= π/1= 3.14159
7	j:=1	j:=1
8	j<=1 -істина	j<=1 -істина
9	xj=1.5708	xj=1.5708
10	res2:= 0 + 3.14159*log(2 +	res2:= 0 + 3.14159*log(2 +
	+sin(1.5708))= 3.45139	+sin(1.5708))= 3.45139
11	j:=1+1=2	j:=1+1=2
12	j<=1-хиба	ј<=1-хиба
13	i:=1+1=2	i:=1+1=2
14	3.45139 - 0 >1 - істина	3.45139 - 0 >10 - хиба
15	res1:= 3.45139	Виведення 3.45139
16	res2:=0	
17	h:= π/2= 1.5708	
18	j:=1	
19	j<=2 -істина	
20	xj=0.785398	
21	res2:= 0 + 1.5708*log(2 +	
	$\sin(0.785398))=1.56433$	
22	j:=1+1=2	
23	j<=2 -істина	
24	xj=2.35619	
25	res2:= 0 + 1.5708*log(2 +	

	sin(2.35619))= 3.12865	
26	j:=2+1=3	
27	j<=2 -хиба	
28	i:=2+1=3	
29	3.45139 - 3.12865 = 0.322742 >1	
	– хиба	
30	Виведення 3.12865	
	Кінець	

Висновок

Під час виконання роботи було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій. Також досліджено метод приблизного обрахунку інтегралів за формулою прямокутників. Осоюливістю моєї реалізації було використання вкладених циклів: зовнішній цикл з післяумовою знаходив перебором необхідну для заданої точності кількість проміжків, на яку необхідно розбити інторвал $(0;\pi)$, а внутрішній арефметичний обраховував значення інтегралу на кожній ітерації.