Real Analysis II: Homework 01

104021615 黄翊軒

March 01, 2016

Exercise 2. P96.

Proof. (a) Let $h_1(x,y) = f(x)$. As a function on \mathbb{R}^{2n} , h_1 is measurable since $f(x) : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$. And for any $a \in \mathbb{R}$, we have

$$\{(x,y) \in \mathbb{R}^{2n} : h_1(x,y) > a\} = \{x \in \mathbb{R}^n : f(x) > a\} \times \mathbb{R}^n$$

By viewing $\mathbb{R}^n = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n}$ and using Lemma 5.2, the RHS is a measurable set in \mathbb{R}^{2n} .

Similarly, the function $h_2(x,y) = g(y)$ is also a measurable function on \mathbb{R}^{2n} . Then by Theorem 4.10, we know that

$$h_1(x,y) \cdot h_2(x,y) = f(x)g(y) : \mathbb{R}^{2n} \to \mathbb{R} \cup \{\pm \infty\}$$

is also a measurable function on \mathbb{R}^{2n} .

(b) Given E_1, E_2 , both are measurable in \mathbb{R}^n . Since $\chi_{E_1}(x) \cdot \chi_{E_2}(y) = \chi_{E_1 \times E_2}(x, y)$, by above we know that $\chi_{E_1 \times E_2}(x, y)$ is a measurable function on \mathbb{R}^{2n} . Hence the set $E_1 \times E_2$ is measurable in \mathbb{R}^{2n} . By Tonelli's theorem,

$$|E_1 \times E_2| = \int_{E_1 \times E_2} \chi_{E_1 \times E_2}(x, y) dx dy$$

$$= \int_{\mathbb{R}^n} \chi_{E_1 \times E_2}(x, y) dx dy$$

$$= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} \chi_{E_1 \times E_2}(x, y) dx \right] dy$$

$$= \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^n} \chi_{E_1}(x) \cdot \chi_{E_2}(y) dx \right] dy$$

$$= \int_{\mathbb{R}^n} \chi_{E_1}(x) dx \int_{\mathbb{R}^n} \chi_{E_2}(y) dy$$

$$= \int_{E_1} \chi_{E_1}(x) dx \int_{E_2} \chi_{E_2}(y) dy$$

$$= |E_1||E_2|$$