

W1: Scalar products, lengths and angles

Oleksandr Kulkov

ETH Zürich

26.09.2025

Exercises

Linear combinations of vectors (a)

Statement

Prove that every
$$\mathbf{v} \in \mathbb{R}^2$$
 is a lincomb of $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

Need to find λ and μ s.t. $\mathbf{v} = \lambda \mathbf{u} + \mu \mathbf{w}$. Solving the system yields $\lambda = \frac{v_1 + v_2}{2}$ and $\mu = \frac{v_2 - v_1}{2}$.

Beware of arithmetic mistakes!

Linear combinations of vectors (b)

Statement

For
$$\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, find $\mathbf{u} \in \mathbb{R}^3$ that isn't their lincomb.

 $\lambda \mathbf{v} + \mu \mathbf{w} = \mathbf{u}$ means that $\lambda = u_1$, $\mu = u_2$ and $\lambda + \mu = u_3$. We can use any vector s.t. $u_1 + u_2 \neq u_3$ as an example, e.g. (1,1,1).

Note: If problem asks for example, provide it, not just show it exists.

Geometric definitions

Definitions

- Length $\|\mathbf{v}\|$ of \mathbf{v} is its "magnitude".
- Vector projection of \mathbf{u} on \mathbf{v} is $t\mathbf{v}$ s.t. $\|\mathbf{u} t\mathbf{v}\| \to \min$.
- Scalar product $\mathbf{u} \cdot \mathbf{v}$ of \mathbf{u} and \mathbf{v} is $\|\mathbf{u}\| \cdot \|\mathbf{v}\| \cos \theta$.
- Vectors are **orthogonal** if $\theta = 90^{\circ}$.

Normed space

- Positive-definite: $\|\mathbf{v}\| \ge 0$ and $\|\mathbf{v}\| = 0 \iff \mathbf{v} = \mathbf{0}$
- Homogeneity: $\|\alpha \mathbf{v}\| = |\alpha| \cdot \|\mathbf{v}\|$
- Triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$

Inner product space

- Commutative: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- Bilinear: $(\alpha \mathbf{u} + \beta \mathbf{v}) \cdot \mathbf{w} = \alpha (\mathbf{u} \cdot \mathbf{w}) + \beta (\mathbf{v} \cdot \mathbf{w})$
- ullet Positive-definite: $\mathbf{v} \cdot \mathbf{v} \geq 0$ and $\mathbf{v} \cdot \mathbf{v} = 0 \iff \mathbf{v} = \mathbf{0}$

In \mathbb{R}^n , there are standard norms and scalar products.

Unit vectors

A unit vector is a vector of length 1. The standard unit vectors of \mathbb{R}^n :

$$\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Any $\mathbf{v} \in \mathbb{R}^n$ is a lincomb of the standard vectors with its coordinates:

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ v_2 \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ v_n \end{pmatrix} = v_1 \mathbf{e}_1 + \dots + v_n \mathbf{e}_n$$

We may use $\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z$ for $n \leq 3$.

Algebraic definition

It is natural to assume $e_i \cdot e_j = 0$ for $i \neq j$ and $e_i \cdot e_i = 1$. From this:

$$\mathbf{u} \cdot \mathbf{v} = (u_1 \mathbf{e}_1 + \dots + u_n \mathbf{e}_n) \cdot (v_1 \mathbf{e}_1 + \dots + v_n \mathbf{e}_n)$$
$$= \sum_{i=1}^n u_i v_i (\mathbf{e}_i \cdot \mathbf{e}_i) + \sum_{i \neq j} u_i v_j (\mathbf{e}_i \cdot \mathbf{e}_j)$$

Definition

ullet The **scalar product** of $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$ is the component-wise sum:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_n v_n$$

- The **length** of $\mathbf{v} \in \mathbb{R}^n$ is $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$
- \mathbf{u} and \mathbf{v} are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$

v can be decomposed in $length \ \|v\|$ and (unit) $direction \ vector \ \frac{v}{\|v\|}.$

7 / 25

Cauchy-Schwarz inequality

Allows to define the angle between vectors:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|} = \frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

 $|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\|$

Inequality proof

Let $f(t) = \|\mathbf{u} - t\mathbf{v}\|^2$. It may have at most one zero (when $\mathbf{u} = t\mathbf{v}$), but

$$f(t) = (\mathbf{u} - t\mathbf{v}) \cdot (\mathbf{u} - t\mathbf{v}) = \|\mathbf{u}\|^2 - 2t(\mathbf{u} \cdot \mathbf{v}) + t^2 \|\mathbf{v}\|^2,$$

so it is quadratic in t. Its number of zeros is determined by the sign of

$$D = 4(\mathbf{u} \cdot \mathbf{v})^2 - 4\|\mathbf{u}\|^2 \cdot \|\mathbf{v}\|^2 \le 0$$

Moreover, $D = 0 \iff |\mathbf{u} \cdot \mathbf{v}| = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \iff \mathbf{u} = t\mathbf{v}$.

Triangle inequality

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

The inequality directly follows from the Cauchy-Schwarz inequality:

$$\|\mathbf{u} + \mathbf{v}\|^2 \le \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2|\mathbf{u} \cdot \mathbf{v}| \le (\|\mathbf{u}\| + \|\mathbf{v}\|)^2$$

Scalar product from norm

We saw that $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$. Can we define scalar product from norms?

$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \pm 2(\mathbf{u} \cdot \mathbf{v}) \iff \mathbf{u} \cdot \mathbf{v} = \frac{\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2}{4}$$

Most norms aren't induced by scalar product, e.g. \mathbb{R}^2 with $\|\cdot\|_1$ -norm:

$$\mathbf{e}_x \cdot \mathbf{e}_y = \frac{\|(1,1)\|_1^2 - \|(1,-1)\|_1^2}{4} = \frac{2-2}{4} = 0,$$

which is incompatible with the fact that $\mathbf{e}_x \neq \mathbf{e}_y$. Criterion:

$$\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \frac{\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2}{2}$$

Also called the parallelogram law.

Definitions

- $\mathbf{v}_1, \dots, \mathbf{v}_n$ are **linearly independent** if neither is lincomb of others.
- ullet span $(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ is the set of all linear combinations of $\mathbf{v}_1,\ldots,\mathbf{v}_n$.

Equivalent statements

- $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent
- There is no *non-trivial* combination $\lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n = \mathbf{0}$
- None of the vectors is a linear combination of the previous ones
- ullet Any vector in $\mathrm{span}(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ is produced by a unique combination

Algebra

Span properties

- $\operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{v}) = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$ for $\mathbf{v} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n$
- $\operatorname{span}(\ldots, \lambda_i \mathbf{v}_i, \ldots) = \operatorname{span}(\ldots, \mathbf{v}_i, \ldots)$ for $\lambda_i \neq 0$
- $\operatorname{span}(\ldots, \mathbf{v}_i + \mathbf{v}_j, \ldots) = \operatorname{span}(\ldots, \mathbf{v}_i, \ldots)$ for $i \neq j$

Can use to "normalize" a set of vectors without changing their span.

Linear independence

Statement

Show that the following vectors are linearly independent:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

14 / 25

Solution

The j-th vector has 1 in the j-th component, while vectors before it have 0, so j-th vector can't be a linear combination of the previous ones.

Statement

 $L\subseteq\mathbb{R}^m$ is a line through origin 1 if there is $\mathbf{w}\neq\mathbf{0}$ s.t.

 $L = \{\lambda \mathbf{w} : \lambda \in \mathbb{R}\}.$ For $\mathbf{u} \in L$ and $\mathbf{u} \neq \mathbf{0}$, prove that $L = \{\lambda \mathbf{u} : \lambda \in \mathbb{R}\}.$

¹we will just call them lines, unless noted otherwise

Solution

How to prove A=B for sets:

- Show that $A \subseteq B$ and $B \subseteq A$
- Show that A = C and B = C for some C

Let $\mathbf{u} = \mu \mathbf{w}$ and $L' = {\lambda \mathbf{u} : \lambda \in \mathbb{R}}$. We need to show L = L'.

$$L' \subset L$$

Let $\mathbf{v} = \lambda \mathbf{u}$, then $\mathbf{v} = \lambda(\mu \mathbf{w}) = (\lambda \mu) \mathbf{w}$.

$$L \subseteq L'$$

Let $\mathbf{v} = \lambda \mathbf{w}$, then $\mathbf{v} = \lambda \left(\frac{1}{\mu}\mathbf{u}\right) = \frac{\lambda}{\mu}\mathbf{u}$, because $\mathbf{w} = \frac{1}{\mu}\mathbf{u}$.

In the second part, $\mu \neq 0$ because it would imply $\mathbf{u} = \mathbf{0}$.

Lines in \mathbb{R}^m (b)

Statement

For lines L_1 and L_2 , prove that $L_1 \cap L_2 = \{0\}$ or $L_1 \cap L_2 = L_1 = L_2$.

Solution

Note that $\mathbf{0} \in L_1 \cap L_2$ always, because $\lambda = 0$ produces $\mathbf{0}$. Now, assume there is something besides $\mathbf{0}$, that is, there is $\mathbf{w} \in L_1 \cap L_2$, s.t. $\mathbf{w} \neq \mathbf{0}$. Then, by ex. (a), we get $L_1 = \{\lambda \mathbf{w} : \lambda \in \mathbb{R}\} = L_2$.

19 / 25

Lines in \mathbb{R}^m (c)

Statement

Consider a line $L \subseteq \mathbb{R}^2$. Prove that L is a hyperplane, i.e. there is $\mathbf{d} \neq \mathbf{0}$ s.t. $L = \{ \mathbf{v} \in \mathbb{R}^2 : \mathbf{v} \cdot \mathbf{d} = 0 \}$.

Solution

Let $L = {\lambda \mathbf{v} : \lambda \in \mathbb{R}}$ and $L' = {\mathbf{u} \in \mathbb{R}^2 : \mathbf{u} \cdot \mathbf{d} = 0}$. For such d to exist, it must be that $\mathbf{d} \cdot \lambda \mathbf{v} = 0$. In coordinate form:

$$\lambda(v_x d_x + v_y d_y) = 0$$

One possible solution is $\mathbf{d} = (-v_u, v_x)$.

$$L \subseteq L'$$

We picked d in a way that $\mathbf{d} \cdot \lambda \mathbf{v} = 0$, so $\lambda \mathbf{v} \in L'$ for any $\lambda \in \mathbb{R}$.

$$L' \subseteq L$$

Let $\mathbf{d} \cdot \mathbf{u} = 0$, then $-u_x v_y + u_y v_x = 0$.

Without loss of generality, $v_x \neq 0$, then $u_y = \frac{u_x}{v_x} v_y$ and $u_x = \frac{u_x}{v_y} v_x$, meaning that $\mathbf{u} = \frac{u_x}{v} \mathbf{v}$.

21 / 25

Orthogonal projection

Statement

Given $\mathbf{u}, \mathbf{v} \in V$, find t s.t. $\|\mathbf{u} - t\mathbf{v}\| \to \min$.

Recall Cauchy-Schwarz proof, we had

$$f(t) = \|\mathbf{u} - t\mathbf{v}\|^2 = \|\mathbf{u}\|^2 - 2t(\mathbf{u} \cdot \mathbf{v}) + t^2 \|\mathbf{v}\|^2$$

Its minimum is found at f'(t) = 0, or:

$$-2(\mathbf{u} \cdot \mathbf{v}) + 2t \|\mathbf{v}\|^2 = 0 \iff t = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$$

Equivalently, $(\mathbf{u} - t\mathbf{v}) \cdot \mathbf{v} = 0$, meaning that $\mathbf{u} - t\mathbf{v}$ is orthogonal to \mathbf{v} .

Shortest path with obstacle

Statement

Given points $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^n$. Find the length of the shortest path from \mathbf{a} to \mathbf{b} that doesn't come to \mathbf{c} closer than r.

Solution

Check if $\mathbf c$ is far enough with orthogonal projection of $\mathbf c-\mathbf a$ on $\mathbf b-\mathbf a.$

$$\|\mathbf{a} - \mathbf{u}\| + r \min(\alpha, \beta) + \|\mathbf{v} - \mathbf{b}\|$$

$$\|\mathbf{a} - \mathbf{u}\| = \sqrt{\|\mathbf{a} - \mathbf{c}\|^2 - r^2}$$
 $\|\mathbf{b} - \mathbf{v}\| = \sqrt{\|\mathbf{b} - \mathbf{c}\|^2 - r^2}$ $\angle \mathbf{bcv} = \arccos \frac{r}{\|\mathbf{b} - \mathbf{c}\|}$

$$\angle \mathbf{acb} = \arccos \frac{(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c})}{\|\mathbf{a} - \mathbf{c}\| \cdot \|\mathbf{b} - \mathbf{c}\|}$$
$$\min(\alpha, \beta) = \angle \mathbf{acb} - \angle \mathbf{uca} - \angle \mathbf{bcv}$$