## Generalized Posteriors in Approximate Bayesian Computation

Sebastian Schmon<sup>1</sup>, Patrick Cannon<sup>1</sup>, Jeremias Knoblauch<sup>2</sup>

Improbable<sup>1</sup>, University of Warwick<sup>2</sup>, The Alan Turing Institute<sup>2</sup>

8 January, 2021

#### Overview

- Cast approximate Bayesian computation (ABC) as exact Bayesian inference in the presence of an implicit error model (see Wilkinson, 2013).
- Draw connections to generalized Bayesian inference (GBI).
- Use the connection to develop our understanding of kernel choice in ABC, particularly with respect to misspecification (see e.g. Frazier, Robert, and Rousseau, 2020).

# Problem setting

- Simulator  $f(\cdot \mid \theta)$  parameterized by  $\theta \in \Theta$ , intractable.
- Observations  $y \sim p^*(\cdot)$ .
- Misspecified so that  $p^* \notin \{f(\cdot \mid \theta); \theta \in \Theta\}$ , and we instead assume the true DGP satisfies  $p^* \in \{p(\cdot \mid \theta); \theta \in \Theta\}$  with

$$p(y \mid \theta) = \int_{\mathcal{X}} g(y \mid x) f(x \mid \theta) dx$$
 and  $p(\theta \mid y) \propto p(y \mid \theta) p(\theta)$ 

### **ABC**

#### **Algorithm 1:** ABC

**Input:** Simulator f, prior p, data y, summary statistics  $\eta$ , probability kernel  $K_h$ 

for i = 1 : N do

Sample from the prior  $\theta_i \sim p(\cdot)$ 

Sample from the simulator  $x_i \sim f(\cdot \mid \theta_i)$ 

Calculate weights  $w_i = K_h(\|\eta(x_i) - \eta(y)\|)$ 

**Output:** Weighted approximate posterior samples  $\{\theta_i, w_i\}$ 

### **ABC**

This induces an augmented distribution

$$p(\theta, x \mid y) := K_h(\|\eta(x) - \eta(y)\|) f(x|\theta) p(\theta). \tag{1}$$

The marginal

$$p_{ABC}(\theta \mid y) := \int p(\theta, x \mid y) dx$$
 (2)

is taken as an approximation to the Bayesian posterior  $p(\theta \mid y)$ .



### The general view

In GBI, 'generalized' Bayesian posteriors of the following form are considered

$$p_{\ell}(\theta \mid y) \propto \int \exp\left\{-w \cdot \ell(y; x)\right\} f(x \mid \theta) p(\theta) \, \mathrm{d}x.$$
 (3)

The choice w = 1 and

$$\ell(y;x) = -\log K_h(\|\eta(x) - \eta(y)\|) \tag{4}$$

recovers the ABC posterior.



## The general view

• A typical ABC choice is the 'hard-threshold' kernel

$$K_{\varepsilon}(x,y) = \mathbb{1}\{\|\eta(x) - \eta(y)\| < \varepsilon\}$$

which corresponds to noise model  $g(y \mid x) = K_{\varepsilon}(x, y)$ .

• GBI framework liberates us to pick any loss function we find meaningful.

## Simulation study

Toy example as in Frazier, Robert, and Rousseau, 2020.

We consider three choices of loss function, namely

**ST-ABC** 
$$\tilde{\ell}(x,y) = \|\eta(x) - \eta(y)\|^2$$
, equivalent to standard ABC Gaussian kernel,

**K2-ABC** 
$$\widetilde{\ell}(x,y) = \widehat{\mathrm{MMD}}^2(x,y)$$
 as used in Park, Jitkrittum, and Sejdinovic, 2016,

**W-ABC** 
$$\tilde{\ell}(x_i, y) = \mathcal{W}(x, y)$$
, related to Bernton et al., 2019.

# Simulation study



Figure: The posterior mean as a function of the degree of misspecification of the model. A comparison of ABC algorithms with a soft-threshold loss ( $\operatorname{ST-ABC}$ ), a maximum mean discrepancy ( $\operatorname{MMD}$ ) loss ( $\operatorname{K2-ABC}$ ), and a Wasserstein loss ( $\operatorname{W-ABC}$ ).

#### References

- Espen Bernton, Pierre E. Jacob, Mathieu Gerber, and Christian P. Robert. "Approximate Bayesian computation with the Wasserstein distance". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 81.2 (2019), pp. 235–269.
- David T. Frazier, Christian P. Robert, and Judith Rousseau. "Model misspecification in approximate Bayesian computation: consequences and diagnostics". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 82.2 (2020), pp. 421–444.
- Mijung Park, Wittawat Jitkrittum, and Dino Sejdinovic. "K2-ABC: Approximate Bayesian computation with kernel embeddings". In: vol. 51. Proceedings of Machine Learning Research. PMLR, 2016, pp. 398–407.
- Richard David Wilkinson. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error". In: *Statistical applications in genetics and molecular biology* 12.2 (2013), pp. 129–141.

### Thanks!



The Alan Turing Institute

