

Date: 2020-03-25 Version: 2020-04-07 13:50

Tutorial 7 for COMP 526 – Applied Algorithmics, Winter 2020

-including solutions-

It is highly recommended that you first try to solve the problems on your own before consulting the sample solutions provided below.

Problem 1 (Move-to-front transform)

Let S = (20, 30, 30, 20, 40, 30, 20, 20, 20) be an input sequence of numbers whose values are initially stored in the list Q = [20, 30, 40]. Build an output sequence and trace the content of Q throughout the execution of MTF (Move-to-Front) algorithm.

Solutions for Problem 1 (Move-to-front transform)

The MTF encoding traverses the input sequence character by character. It replaces each value by its current position in the list and then $\underline{\mathbf{m}}$ over this value $\underline{\mathbf{t}}$ of the front of the list. In case of input sequence S and initial content of Q the transformation process is as follows:

0)	$[20,\!30,\!40]$	0	5) [40, 20, 30]	2
1)	[20, 30, 40]	1	6) [30, 40, 20]	2
2)	[30, 20, 40]	0	7) $[20, 30, 40]$	0
3)	[30, 20, 40]	1	8) [20, 30, 40]	0
4)	[20, 30, 40]	2	9) [20,30,40]	

Note how the second occurrence of the repeated substring 30, 20 leads to a run (of twos).

Problem 2 (Lempel-Ziv-Welch compression)

Given word w = ASNXASNASNA over the ASCII character set (relevant parts of ASCII are provided on the right).

Construct, step by step, the Lempel-Ziv-Welch (LZW) factorization of w (i.e., the phrases encoded by one codeword) and provide the compressed representation of w; it suffices to show the encoded text C using integer numbers (no need for binary encodings).

Code	Character
65	A
78	N
83	S
88	X

Solutions for Problem 2 (Lempel-Ziv-Welch compression)

Steps of the algorithm:

Phrase	C[i]	New code	s+c
A	65	128	AS
S	83	129	SN
N	78	130	NX
X	88	131	XA
AS	128	132	ASN
N	78	133	NA
ASN	132	134	ASNA
A	65	135	

The compressed representation is C = 65, 83, 78, 88, 128, 78, 132, 65.

The LZW encoding decomposes w into phrases as follows: w = A|S|N|X|AS|N|ASN|A.

Problem 3 (No Free Lunch)

Prove the following *no-free-lunch* theorems for lossless compression.

1. Weak version: For every compression algorithm A and $n \in \mathbb{N}$ there is an input $w \in \Sigma^n$ for which $|A(w)| \geq |w|$, i.e. the "compression" result is no shorter than the input.

Hint: Try a proof by contradiction. There are different ways to prove this.

2. Strong version: For every compression algorithm A and $n \in \mathbb{N}$ it holds that

$$\left|\left\{w\in \Sigma^{\leq n}: |A(w)|<|w|\right\}\right|<\frac{1}{2}\cdot \left|\Sigma^{\leq n}\right|$$
 .

In words, less than half of all inputs of length at most n can be compressed below their original size.

Hint: Start by determining $|\Sigma^{\leq n}|$.

The theorems hold for every non-unary alphabet, but you can restrict yourself to the binary case, i.e., $\Sigma = \{0, 1\}$.

We denote by Σ^* the set of all (finite) strings over alphabet Σ and by $\Sigma^{\leq n}$ the set of all strings with size $\leq n$. As domain of (all) compression algorithms, we consider the set of (all) *injective* functions in $\Sigma^* \to \Sigma^*$, i.e., functions that map any input string to some output string (encoding), where no two strings map to the same output.

Solutions for Problem 3 (No Free Lunch)

1. Let $\Sigma = \{0, 1\}$. Assume, A is a compression method that always reduces its input size. That means, $A(\Sigma^n) \subseteq \Sigma^{\leq n-1}$. But we have $|\Sigma^n| = 2^n$ whereas

$$|\Sigma^{\leq n-1}| = \sum_{i=0}^{n-1} 2^i = 2^n - 1,$$

so A cannot be injective, a contradiction.

An alternative argument is by applying A iteratively. If A would always reduce the input size, after at most n steps, we have $A(A(\cdots(w))\cdots)=\varepsilon$ the empty string, for any input $w\in \Sigma^n$. Since A has a unique inverse A^{-1} , its decoder, applying A^{-1} some $k\leq n$ times to ε must reproduce every $w\in \Sigma^n$, but obviously $(A^{-1})^k(\varepsilon)$ can produce at most n different source texts (for $k=1,\ldots n$) in Σ^n , whereas $|\Sigma^n|=2^n>n$ for $n\geq 2$.

2. We note that

$$\left|\Sigma^{\leq n}\right| = \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$
.

Consider $A(\Sigma^{\leq n})$, i.e., the set of codewords assigned to all strings up to length n. These are $2^{n+1}-1$ many strings, but there are only $|\Sigma^{\leq n-1}|=2^n-1$ bit strings that are *strictly* shorter than n. That means $A(\Sigma^{\leq n})$ has to contain $2^{n+1}-1-(2^n-1)=2^n$ strings w of length at least n; for any of these holds $A(w)\geq |w|$, and they comprise more than half of $\Sigma^{\leq n}$.