Udacity: Machine Learning Final Project

by Rachel Foong

Project Goal

The goal of this project is to identify Enron Employees who may have committed fraud based on the public Enron financial and email dataset.

Dataset Exploration

Machine learning is useful to comb and refine the dataset that consists of **146 data points** with **21 features** with **18 Persons of Interest (POI)**.

This is especially true when there are a large number of missing values represented as "NaNs" in each feature. To analyse the data, I've replaced NaNs with 0.

Observations

- The loan advances, deferral_payments, director_fees and restricted_stock_deferred columns have the highest number of missing values
- · Out of the set, total payments and total stock value have the lowest amount of missing values

Feature	No. of NaNs	Mean	Max.	Min.
=======================================	=========	=========	========	========
bonus	64	1,333,474.23	97,343,619	0
deferral_payments	107	438,796.52	32,083,396	-102,500
deferred income		-382,762.21	0	-27,992,891
director_fees	129	19,422.49	1,398,517	0
email_address	35	N/A	N/A	N/A
exercised_stock_options	44	4,182,736.2	311,764,000	0
expenses	51	70,748.27	5,235,198	0
from_messages	60	358.6	14,368	0
<pre>from_poi_to_this_person</pre>	60	38.23	528	0
from_this_person_to_poi	60	24.29	609	0
loan_advances	142	1,149,657.53	83,925,000	0
long_term_incentive	80	664,683.95	48,521,928	0
other	53	585,431.79	42,667,589	0
poi	0	0.12	1	0
restricted_stock	36	1,749,257.02	130,322,299	-2,604,490
restricted_stock_deferred	128	20,516.37	15,456,290	-7,576,788
salary	51	365,811.36	26,704,229	0
shared_receipt_with_poi	60	692.99	5,521	0
to_messages	60	1,221.59	15,149	0
total_payments	21	4,350,621.99	309,886,585	0
total_stock_value	20	5,846,018.08	434,509,511	-44,093
=======================================	========	========	=======	========

Through this simple table, it's easy to hypothesise that the POIs are essentially skewing the Max values. When we isolate the 18 POIs, we see a different story.

POIs generally average higher in all values. It's strange to see that the Max values don't match the Max values earlier observed; which subsequently means that the outliers in the data are not all coming from POIs.

	=========	========	========	=======
eature	No. of NaNs	Mean	Max.	Min.
	=========	========	========	=======
oi	0	1.0	1	1
tal_payments	0	7,913,589.78	103,559,793	91,093
tal_stock_value	0	9,165,670.94	49,110,078	126,027
lary	1	362,142.39	1,111,258	0
ferral_payments	13	144,415.06	2,144,013	0
ercised_stock_options	6	6,975,862.44	34,348,384	0
nus	2	1,844,444.39	7,000,000	0
stricted_stock	1	2,189,808.5	14,761,694	0
stricted_stock_deferred	18	0.0	0	0
penses	0	59,873.83	127,017	16,514
an_advances	17	4,529,166.67	81,525,000	0
her	0	802,997.39	10,359,729	486
rector_fees	18	0.0	0	0
ferred_income	7	-632,691.56	0	-3,504,386
ng_term_incentive	6	803,241.61	3,600,000	0
=======================================	=========	========	========	========

Outliers

When we dig deeper into the Max. values, we find that the email address which has the Max Value for total_payments is actually the "TOTAL" value for all columns. When we remove the outlier, the Max values now match the POI values and the total means are lower.

	=========	========	========	=======
Feature	No. of NaNs	Mean	Max.	Min.
	=========	========	========	========
ooi	0	0.12	1	0
otal_payments	21	2,243,477.42	103,559,793	0
total_stock_value	20	2,889,718.12	49,110,078	-44,093
salary	51	184,167.1	1,111,258	0
deferral_payments	107	220,557.9	6,426,990	-102,500
exercised_stock_options	44	2,061,486.1	34,348,384	0
oonus	64	671,335.3	8,000,000	0
restricted_stock	36	862,546.39	14,761,694	-2,604,490
restricted_stock_deferred	128	72,911.57	15,456,290	-1,787,380
expenses	51	35,131.37	228,763	0
loan_advances	142	578,793.1	81,525,000	0
other	53	295,210.02	10,359,729	0
director_fees	129	9,911.49	137,864	0
deferred_income	97	-192,347.52	0	-3,504,386
long_term_incentive	80	334,633.99	5,145,434	0
	========	========	========	=======

While removing "TOTAL" helped in reconciling the differences between the POI and both POI and non-POI values, when we plot the two features for totals together, we find that there are still a couple of Outliers, especially one POI; namely "LAY KENNETH L".

In [1]:

from IPython.display import Image
Image("Outlier1.png")

Out[1]:

By removing "LAY KENNETH L", we get a really different look at the scatter plot and Mean/Max values.

While there seems to be a positive correlation between the two features, we can clearly see it is weak even without calculating the correlation coeff.

In [2]:

=======================================	=========	========	=======	=======
eature	No. of NaNs	Mean	Max.	Min.
=======================================	=========	========	=======	=======
oi	0	0.12	1	0
tal_payments	21	1,539,891.9	17,252,530	0
tal_stock_value	20	2,568,743.4	30,766,064	-44,093
lary	51	177,999.36	1,111,258	0
ferral_payments	107	220,680.45	6,426,990	-102,500
ercised_stock_options	44	1,837,271.53	30,766,064	0
nus	64	627,386.24	8,000,000	0
stricted_stock	36	766,024.53	13,847,074	-2,604,490
stricted_stock_deferred	127	73,417.9	15,456,290	-1,787,380
penses	51	34,682.06	228,763	0
an_advances	142	16,666.67	2,000,000	0
her	53	225,317.53	7,427,621	0
rector_fees	128	9,980.32	137,864	0
ferred_income	97	-191,599.94	0	-3,504,386
ng_term_incentive	80	311,957.83	5,145,434	0
	=========	========	========	=======

POI numbers without Kenneth Lay are also lower and Max. values also match the non-POI numbers.

Now that we have cleaned up our data, we can finally move on to feature engineering.

=======================================	========	========	=======	=======
eature	No. of NaNs	Mean	Max.	Min.
	=========	========	=======	========
oi	0	1.0	1	1
otal_payments	0	2,287,342.53	8,682,716	91,093
otal_stock_value	0	6,815,999.94	30,766,064	126,027
alary	1	320,367.18	1,111,258	0
ferral_payments	13	140,974.12	2,144,013	0
<pre>cercised_stock_options</pre>	6	5,365,714.12	30,766,064	0
onus	2	1,541,176.41	5,600,000	0
estricted_stock	1	1,450,285.82	6,843,672	0

	=========	========	=======	========
long_term_incentive	6	638,726.41	1,920,000	0
deferred_income	7	-652,261.65	0	-3,504,386
director_fees	17	0.0	0	0
other	0	240,836.71	1,573,324	486
loan_advances	17	0.0	0	0
expenses	0	57,523.35	127,017	16,514
restricted_stock_deferred	17	0.0	0	0

Feature Engineering

New Feature: % of Stock Value over Payments

At this point, while total_payments and total_stock_value have a low level of missing values and therefore one would assume a better fit for the data, it's all because these features happen to be totals of all the other features.

However this pair makes for a good feature. When comparing averages of total stock value over payments, POI seem to have a higher total stock value per total payment ratio. We can use feature selection tools to evaluate this hypothesis. I've named the new feature "stock_value_ratio". I will test this once we've determined the best feature algorithm and parameters for the original dataset.

Feature Selection

In order to better evaluate prediction of the POI by their monetary activity and attributes, I have removed all features that look at the email activity from and between poi and sender (email_address, from_messages, from_poi_to_this_person, from_this_person_to_poi, shared_receipt_with_poi). This is to also ensure the variance in the data makes sense before applying feature reduction techniques.

After removing these features, the final feature list (without the new, untested feature) is:

- 'total_payments'
- 'total stock value'
- 'salary'
- · 'deferral payments'
- · 'exercised stock options'
- 'bonus'
- · 'restricted stock'
- · 'restricted stock deferred'
- · 'expenses'
- · 'loan advances'
- 'other'
- · 'director fees'
- · 'deferred income'
- · 'long term incentive'

By using LinearSVC as an initial classifier for comparing the two feature reduction techniques, PCA seems to works best when the number of features are 10 when we get the best parameters. However, both KBest and PCA are neck to neck in terms of scores. We shall use PCA then to for feature reduction.

Image("Feature_Selection.png")

Out[3]:

Feature Scaling

To see if scaling will get a better score, I have tested scaled features to get the PCA scores and also with the classifier scores.

After scaling though, the PCA amount of variance between the variables have dropped significantly which isn't surprising given that the features are now standardized.

Algorithm comparison and Validation

With PCA as a means of feature selection, I chose GaussianNB algorithm and the Decision Tree algorithm as a means of validation. I validate by seeing what the **accuracy scores** are between the two models.

Comparing and validating models is important because it will then help me achieve a higher accuracy score in terms of identifying POIs.

GaussianNB seems to work best with unscaled features but Decision Tree works best with scaled features. I have decided to continue with Decision Tree given the low variance in accuracy scores between Scaled and Unscaled features.

```
BEFORE SCALING
------
Explained Variance:
[ 7.93417839e-01 1.12588783e-01 5.45143796e-02 1.87372640e-02
```

```
1.09751938e-02 5.34335020e-03 2.60893422e-03 1.15848667e-03
4.77398369e-04 1.03453271e-04]

GNB Score with Unscaled Features: 0.860465116279

DecisionTree Score with Unscaled features: 0.813953488372

AFTER SCALING
------
Explained Variance (with scaled features):
[ 0.36551414 0.17295331 0.12682769 0.1060265 0.06395091 0.0498712 0.03826859 0.02896928 0.02296713 0.01548911]

GNB Score with Scaled Features: 0.162790697674

DecisionTree Score with Scaled features: 0.860465116279
```

Parameter Tuning and Validation

In order to achieve the possibility of a higher score, it's best to tune the parameters of the algorithm. If I don't do this well, I'll miss out on that opportunity and could possibly overfit the data.

Under the DecisionTreeClassifier documentation (http://scikit-

<u>learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier)</u> there are several parameters that can be tuned. I've chosen to tune the criterion, max_depth and the splitter out of curiosity rather than focusing on the leaf nodes.

To sync with the tester.py random state, I have left the random state at 42.

With Grid Search CV, I found that the "entropy" criterion, mixed with the max_depth of 3 and a random splitter produced the best results.

However, with the current feature list, the score drops to 0.14.

Evaluation

Evaluating the new feature

After gaining the low score, I returned to test the new feature (stock_value_ratio) to see if it helps in gaining a higher score. I found that the score return a favourable score of 0.86.

I also find that the average precision and recall score is higher with the new feature. With the new feature, the recall score is higher than the precision score.

The higher recall score means that whenever a POI shows up in the test set, I am able to identify him/her. The cost of this is that sometimes I get some false positives where non-POIs get flagged.

A higher precision score would mean that when a POI gets flagged in my test set, I know with confidence that it's a real POI and not a false alarm. However I would probably miss the real POIs since I'm effectively reluctant to pull the trigger on edge cases.

Looking at the classification reports below, while adding a feature does have a higher precision and recall score than not, the chances of identifying a POI also becomes low due to the smaller amount of POIs in the dataset.

```
BEFORE NEW FEATURE
------
precision recall f1-score support
```

	0.0	0.50	0.03	0.05	37
	1.0	0.12	0.83	0.21	6
avg /	total	0.45	0.14	0.07	43
ΔFTFR	NEW FE	ATURF			
		precision	recall f1	-score	support
	0.0	0.86	1.00	0.92	37
	1.0	0.00	0.00	0.00	6
avg /	total	0.74	0.86	0.80	43