Project Plan

<Team : HoyKhom (KMITL)>

Member : Isara Naranirattisai

Peerawat Pipattanakulchai Siridej Phanathanate Patcharapon Jantana

Thanatcha Sangpetch

Project Objectives

พัฒนาและรวบรวมระบบเพื่อจัดการและสนับสนุนการพัฒนาผลผลิตทางการเกษตรด้วย เทคโนโลยี เพื่อติดตามผลต่างๆ เช่น การเจริญเติบโตของต้นไม้และผล สภาพอากาศ และ ความชื้น เป็น ต้น เพื่อให้สามารถวางแผนแก้ปัญหา และคาดการณ์ปัญหาล่วงหน้าได้

Project Scope

ภาพรวม

Raspberry Pi จะทำงานเป็นคาบเวลา เช่น ทุกๆ 1 วัน โดยค่าดังกล่าวจะตั้งค่าในตัว Pi เอง เมื่อ ถึงคาบเวลาที่ต้องทำจะทำการร้องขอค่าเซนเซอร์ความชื้นจาก STM32 และ ถ่ายรูปผลไม้(ในที่นี้คือ ทุเรียน) และส่งต่อไปยัง server

Server จะทำการรับค่าความชื้นดิน และ รูปภาพจาก Raspberry Pi และ อัพโหลดขึ้น Cloud
Database อัตโนมัติ

Matlab จะทำการวิเคราะห์รูปภาพและสภาพอากาศต่างๆ เมื่อมีการกดปุ่มที่โปรแกรมที่มีหน้า UI ที่เขียนจาก Matlab เมื่อวิเคราะห์เสร็จก็จะนำข้อมูลไปเก็บใน Cloud Database(คนละชุดกับที่ไปดึงมา วิเคราะห์)

Line bot จะทำการส่งคำสั่งที่ใช้ผู้ใช้สั่งผ่านทาง Line ไปยัง Line API และ Line API จะส่ง ต่อไปยัง Server เพื่อให้ Server ดึงข้อมูลการวิเคราะห์ครั้งล่าสุดไปยัง Line API แล้วส่งต่อไปยัง Line ผู้ใช้ต่อไป

Module Details

STM32

ทำการรอสัญญาณเพื่อขอข้อมูลความชื้นจาก Raspberry Pi 3 หากมีสัญญาณเข้ามาจะ ส่งค่าความชื้นไปให้ Raspberry Pi ผ่านทาง UART

Input:

- 1. สัญญาณเพื่อขอข้อมูลความชื้น จาก Raspberry Pi 3
- 2. อ่านค่าความชื่นของดินจาก Soil Moisture Sensor เป็น analog ค่าตั้งแต่ 0-4095

Output:

ค่าความชื่นของดิน มีค่า 0-100 (% ความชื้น) ส่งผ่าน UART ไปยัง
 Raspberry Pi 3

Raspberry Pi 3

จะทำงานก็ต่อเมื่อถึงเวลาครบคาบเวลาทำงาน ซึ่งค่าดังกล่าวกำหนดใน Raspberry Pi Input :

- 1. ภาพถ่ายผลทุเรียน จาก Raspberry Pi Camera V2
- 2. ค่าความชื้นของดิน จาก STM32

Output:

- 1. ส่งสัญญาญขอค่าความชื้นไปยัง STM32 ผ่านทาง UART
- 2. ส่งรูปถ่าย และ ความชื้นของดินไปยัง Server ด้วย Restful API

Server

กรณีที่ 1 เมื่อครบรอบการทำงานของ Raspberry Pi 3

Input:

- 1. ค่าอุณหภูมิ ความชื้น สภาพอากาศของวันนี้ จาก Weather API ด้วย Restful
- 2. รูปถ่าย และ ค่าความชื้นที่ได้รับจาก Raspberry Pi 3

Output:

1. อัพโหลดรูปและข้อมูลขึ้นไปยัง Cloud Database

กรณีที่ 2 มีการเรียกดูผลการวิเคราะห์ผ่านทาง Line

Input:

1. คำสั่งจากผู้ใช้ ผ่าน Line API

Output:

1. Server ส่งข้อมูลการวิเคราะห์ล่าสุดไปยัง Line API

Line bot API

เป็นส่วนติดต่อระหว่าง Server กับ Line

Input:

1. รับผลการวิเคราะห์ล่าสุดจาก Server

Output:

1. ส่งคำสั่งจากผู้ใช้ไปยัง Server

Matlab

เป็นส่วนที่เอาไว้วิเคราะห์ข้อมูลต่างๆ จาก Cloud Database และส่งผลการวิเคราะห์ กลับไปยัง Cloud Database โดยจะมี Input และ Output จาก matlab คร่าวๆดังนี้

Input:

1. รับ input จาก UI (คลิก)

Output:

2. ส่งผลการวิเคราะห์ไปยัง Server

โดย Matlab จะมีการวิเคราะห์ข้อมูล 2 ส่วนดังต่อไปนี้

การวิเคราะห์รูปผลไม้

รับรูปจาก cloud database แล้วนำมาประมวลผลผ่านโปรแกรม matlab เมื่อ ประมวลผลเสร็จนำรูปกลับไปเก็บใน cloud database อีกชุดนึง (ไม่เซฟทับ) โดย จะ มี input และ output ดังนี้ Input

รูปผลทุเรียน ที่มีพื้นหลังสีขาว

Output

ขนาดของผลทุเรียน

วิเคราะห์ข้อมูลจากข้อมูลสภาพอากาศ ความชื้น อุณหภูมิ และ อื่นๆ

รับข้อมูลจาก cloud database แล้วมาประมวลผล เป็นกราฟต่างๆ

Input

สภาพอากาศ ความชื้นอากาศ ความชื้นดิน อุณหภูมิ

Output

กราฟของการเปลี่ยนแปลง

Roles and Responsibilities

Name	Role	Core	Responsibilities					
Peach	Project Member	Image Processing , UI in Matlab	 check size of durian (Analytics) Check white balance UI in matlab other method for analysis 					
Nay (Peerawat Pipattanakulch ai)	Project Member Contact Customer	Pi and STM32	 Develop Sensor and STM32 Implement unit test between rPi STM32 Find and Analysis requirement from customers 					
Pao (Siridej Phanathanat e)	Project Member	Pi and STM32	 Develop Raspberry Pi Take pictures and POST to Restful Communicate with STM32 Optimizing Performance 					
Dream (Isara Naranirattisai)	Project Manager, Scrum Master	Server, Database	 Plan Project Monitor Project Line Bot Api (Server Side) Manage Database RESTful API Tester server part Manage GIT 					
Eao เอี่ยว (Thanatcha sangphet)	Project Member	Data analysis Image Processing	 Develop Monitoring Interface Data analytics 					
Mr. X	Customer	Farmer	Supply Project Requirement					

Necessary Tools

Hardware

Hardware: Raspberry Pi 3, STM32 Nucleo , Moisture Sensor

Software

Database: PostgreSQL (DBMS)

Image Processing and Statistic: Matlab(GUI)

Programming Language (RPi and Bot): Python 2.7

Bot: Line Bot

Server: Deploy on heroku (PaaS)

Collaboration

Working Methodology: Scrums (Trello) Version Control (collaboration): GIT

Garden

Fruit: Durian

4M:

Man:

Stm32 and PI: มีคนที่เคยมีประสบการณ์กับกล้องและส่งคนที่มี

ทักษะ STM32 และ arm ที่สุดในทีมไปด้านนี้

Bot and API: มีทักษะ python และ flask

Image Processing: เนื่องจากไม่เคยทำด้านนี้มาก่อนจึงส่งคนเรียนรู้ ไวและมีทักษะโปรแกรมมิ่งมากๆทำด้านนี้

Machine:

Raspberry Pi, Heroku Cloud, STM32

Method:

- Scrums (Trello Board)
- GIT(Bitbucket)

Manage:

Project Manage(Trello (Scrums)), Google Docs(meeting), Code collaboration (Git), Google Calendar

Work Breakdown Structure and Schedule

Gantt Chart(Work Breakdown Structure):

(AN: Afternoon, NI: Night)

				ı		ı		I I				
WBS		02/1 - 03/12	03/13		03/14		03/15		03/166		03/17	
Tasks	PIC (name)		AN	NI	AN	NI	AN	NI	AN	NI	AN	Ni
Pi & STM	N, PA											
- Learning	N, PA											
-Development	N, PA											
-Pi&STM Integration	N, PA											
-Testing	N, PA											
SERVER	D											
Learning Linebot												
- Developing Line Bot	D											
-Testing	D											
-Deploy to server	D											
-Design&Create DB	D	l										
-RESTful API	D											
Matlab												
- develop check size durian & Testing	PE											
- GUI in matlab & Testing	PE											
-check count and desease durian	PE											
-integration matlab program and fix bug	PE											
- kmean clustering	EAO											

-import and export database	EAO						
-Statictical visualization	EAO						
-Hypothesis Testing -box plot							
INTEGRATE	*						
Integrate	*						
Testing	*						
MONITORING	D						
-Daily Meeting	D						
-Team planing	*						

System Scenario

- * Server จะเป็นตัวจัดการข้อมูลต่างๆ เช่น Database และ รับข้อมูลจาก Openweather Api, รวมถึงติดต่อกับ อุปกรณ์ต่างๆ
- ** Line Bot ตัวที่ทำหน้าที่ Callback มายัง Server เมื่อมี message มาจาก user

Request Data

Image Processing

Real-Time (Optional)