这学期开始上盛茂的代数几何课,于是做一做习题,毕竟这也是作业.本节已经做完.

习题 2.1.

- 1. 令 $X = \mathbb{A}^1_k$ 为无限域 k 上的仿射直线. 令 P,Q 为 X 中两个闭点, $U = X \{P,Q\}$. 试证明 $H^1(X,\mathbb{Z}_U) \neq 0$.
- 2. 考虑更一般的情形, 令 $Y \subseteq X = \mathbb{A}_k^n$ 为一般位置的 n+1 个超平面的并. 令 U = X-Y. 试证明 $H^n(X, \mathbb{Z}_U) \neq 0$. 因此 $(2.7)^1$ 的结论已经最佳.

证明.

1. 设 $Y = \{P, Q\}$, 记 $i: Y \hookrightarrow X$. 令 $\mathbb{Z}_Y = i_*(\mathbb{Z}|_Y)$, 则显然有正合列

$$0 \to \mathbb{Z}_U \to \mathbb{Z} \to \mathbb{Z}_Y \to 0.$$

但 \mathbb{Z}_{V} 同构于 Z 在 P 和 Q 上的摩天楼层的直和, 因此 $\Gamma(X,\mathbb{Z}_{V})=\mathbb{Z}^{2}$. 所以对上述正合列取 $\Gamma(X,-)$ 得

$$0 \to 0 \xrightarrow{1} \mathbb{Z} \xrightarrow{(1,1)} \mathbb{Z}^2 \to H^1(X, \mathbb{Z}_U).$$

由于 $\mathbb{Z} \to \mathbb{Z}^2$ 不是满射, 即知 $H^1(X, \mathbb{Z}_U) \neq 0$.

2. 记 $Y_{n,k}$ 为 \mathbb{A}^{n+1} 里 k 个一般位置超平面的并集构成的子空间, $U_{n+1,k}$ 为 $Y_{n,k}$ 在 \mathbb{A}^{n+1} 里的补集. 则有 \mathbb{A}^{n+1} 上的正合列 $0 \to \mathbb{Z}_{U_{n+1,k}} \to \mathbb{Z} \to \mathbb{Z}_{Y_{n,k}} \to 0$, 其长正合列便给出 $H^{i+1}(\mathbb{A}^{n+1}, \mathbb{Z}_{U_{n+1,k}}) \cong H^{i}(\mathbb{A}^{n+1}, \mathbb{Z}_{Y_{n,k}}) \cong H^{i}(Y_{n,k}, \mathbb{Z})$

$$(i>0), \; \bigvee \not\searrow \; H^1(A^{n+1},\mathbb{Z}_{U_{n+1,k}}) = \operatorname{coker}(\mathbb{Z} \to \Gamma(Y_{n,k},\mathbb{Z})) = \begin{cases} \mathbb{Z}^{k-1} & n=0, \\ 0 & n>0. \end{cases}$$

固定 n,k. 则 $Y_{n,k}$ 中前 k-1 个超平面的并可以记作 $P\cong Y_{n,k-1}$,最后一个超平面记作 $Q\cong \mathbb{A}^n$,则 $Q\setminus P\cong U_{n,k-1}$. 从而又有正合列 $0\to \mathbb{Z}_{U_{n,k-1}}\to \mathbb{Z}_{Y_{n,k}}\to \mathbb{Z}_{Y_{n,k-1}}\to 0$. 由此又有长正合列

$$\begin{split} \cdots &\to H^{i-1}(Y_{n,k-1},\mathbb{Z}_{Y_{n,k-1}}) \to H^i(\mathbb{A}^n,\mathbb{Z}_{U_{n,k-1}}) \to H^i(Y_{n,k},\mathbb{Z}_{Y_{n,k}}) \\ &\to H^i(Y_{n,k-1},\mathbb{Z}_{Y_{n,k-1}}) \to H^{i+1}(\mathbb{A}^n,\mathbb{Z}_{U_{n,k-1}}) \to \cdots. \end{split}$$

$$\overrightarrow{\text{fif}}\ H^i(\mathbb{A}^n, U_{n,k-1}) \cong \begin{cases} H^{i-1}(Y_{n-1,k-1}, \mathbb{Z}_{Y_{n-1,k-1}}) & i>1, \\ \mathbb{Z}^{k-1} & n=1, i=0, \\ 0 & n>1, i=0. \end{cases}$$

记 $A_{n,k}^i = \begin{cases} H^i(Y_{n,k}, \mathbb{Z}_{Y_{n,k}}) \otimes \mathbb{Q} & i > 0, \\ 0 & i = 0. \end{cases}$ 上述长正合列通过 $\otimes \mathbb{Q}$ 化为

$$\cdots \rightarrow A_{n,k-1}^{i-1} \rightarrow A_{n-1,k-1}^{i-1} \rightarrow A_{n,k}^{i} \rightarrow A_{n,k-1}^{i} \rightarrow A_{n-1,k-1}^{i} \rightarrow \cdots.$$

在 n=1, i=1 时有特例: $0 \to \mathbb{Q} \to \mathbb{Q}^{k-1} \to A^1_{1,k} \to A^1_{1,k-1} \to \dots$

我们需要证明 $H^n(\mathbb{A}^n, U_{n,n+1}) \cong A_{n-1,n+1}^{n-1} \neq 0$, 或者说 $A_{n,n+2}^n \neq 0 (n > 0)$.

为此, 我们证明: 对任意 n>0 及任意 $1\leq k\leq n+1$, 有 $A^n_{n,k}=A^{n-1}_{n,k}=0$; 而对 k=n+2, 有 $A^n_{n,n+2}\neq 0$. 对 (n,k) 字典序归纳:

- $\ddot{a} = 1$, $M Y_{n,1} \cong \mathbb{A}^n$, $M \mathbb{Q}$ 是其上的松层, 因此其上同调都消失.
- 若 n=1, k=3, 则由正合列 $0 \to \mathbb{Q} \to \mathbb{Q}^2 \to A^1_{1,3} \to 0$, 得 $A^1_{1,3} \cong \mathbb{Q}$.
- 若 n > 1, k = n + 2,则由正合列 $A_{n,n+1}^{n-1} \to A_{n-1,n+1}^{n-1} \to A_{n,n+2}^n \to A_{n,n+1}^n$ 及归纳假设: $A_{n,n+1}^{n-1} = A_{n,n+1}^n = 0$ 即得 $A_{n,n+2} \cong A_{n-1,n+1}^{n-1} \neq 0$ (亦为归纳假设).

事实上这说明总有 $A^n_{n,n+2}\cong A^1_{1,3}\cong \mathbb{Q}\neq 0$. 因此 $H^n(\mathbb{A}^n,\mathbb{Z}_{U_{n,n+1}})\neq 0$.

不知道是否有 $H^1(Y_{1,3},\mathbb{Z})\cong\mathbb{Z}$. 这似乎需要显式把 δ 映射算出来.

习题 2.2. 令 $X = \mathbb{P}^1_k$ 为代数闭域 k 上的射影直线. 试证明第二章习题 1.21d 中的正合列

$$0 \to \mathcal{O} \to \mathcal{K} \to \mathcal{K}/\mathcal{O} \to 0$$

是 \mathcal{O} 的松消解. 从而由此习题 e 得出对任意 i > 0 总有 $H^i(X, \mathcal{O}) = 0$.

 $^{^{1}}$ Grothendieck 消失定理, n 维 Noether 空间的超过 n 阶上同调消失.

证明. 由于 \mathcal{X} 是 K 常值层, 其显然松. 而由习题 II, 1.21d, $\mathcal{X}/\mathcal{O} \cong \sum_{P \in X} i_P(K/\mathcal{O}_p)$, 也是松层.

由上同调长正合列即知对 i > 2 都有 $H^i(X, \mathcal{O}) = 0$,而 $H^1(X, \mathcal{O}) = \operatorname{coker}(\Gamma(X, \mathcal{K}) \to \Gamma(X, \mathcal{K}/\mathcal{O}))$. 由 II, 1.21e, $\Gamma(X, \mathcal{K}) \to \Gamma(X, \mathcal{K}/\mathcal{O})$ 满. 因此 $H^1(X, \mathcal{O}) = 0$.

习题 2.3 (子集支撑的上同调). 令 X 为拓扑空间, Y 为闭子集, $\mathscr F$ 为 Abel 群层. 令 $\Gamma_Y(X,\mathscr F)$ 表示 $\mathscr F$ 里支在 Y 上的截面的群.

- (1) 证明 $\Gamma_Y(X, -)$ 是 $\mathfrak{Ab}(X) \to \mathfrak{Ab}$ 的左正合函子. 记 $\Gamma_Y(X, -)$ 的右导出函子为 $H^i_V(X, -)$. 它们是 X 的支在 Y 上的上同调群.
- (2) 若 $0 \rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \mathcal{F}'' \rightarrow 0$ 是层的正合列, \mathcal{F}' 松, 试证明

$$0 \to \Gamma_{V}(X, \mathcal{F}') \to \Gamma_{V}(X, \mathcal{F}) \to \Gamma_{V}(X, \mathcal{F}'') \to 0$$

正合.

- (3) 证明若 \mathcal{F} 松, 则对任意 i > 0 有 $H_v^i(X,\mathcal{F}) = 0$.
- (4) 若 矛 松, 试证明

$$0 \to \Gamma_V(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}) \to \Gamma(X - Y, \mathcal{F}) \to 0$$

正合.

(5) 记 U = X - Y. 证明对任意 \mathcal{F} , 有上同调长正合列

$$\begin{split} 0 &\to H^0_Y(X,\mathcal{F}) \to H^0(X,\mathcal{F}) \to H^0(U,\mathcal{F}|_U) \\ &\to H^1_Y(X,\mathcal{F}) \to H^1(X,\mathcal{F}) \to H^1(U,\mathcal{F}|_U) \\ &\to H^2_Y(X,\mathcal{F}) \to \cdots. \end{split}$$

(6) 切除. $\Rightarrow V \neq X$ 的某个包含 Y 的开子集. 则有对 i, \mathcal{F} 自然的同构

$$H_Y^i(X,\mathscr{F})\cong H_Y^i(V,\mathscr{F}|_V).$$

证明.

- (1) $\Gamma_Y(X, -)$ 的函子性显然. 设 $0 \to \mathcal{F}' \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{F}'' \to 0$ 正合. 显然 $\Gamma_Y(X, \mathcal{F}') \to \Gamma_Y(X, \mathcal{F})$ 是单射. 而若 $s \in \Gamma_Y(X, \mathcal{F})$ 且 g(s) = 0,则由 $\Gamma(X, -)$ 左正合性知存在 $s' \in \Gamma_Y(X, \mathcal{F}')$ 使得 f(s') = s. 由于 $\mathcal{F}' \to \mathcal{F}$ 单,其在茎上也单. 于是 $s' \in \Gamma_Y(X, \mathcal{F}')$. 综上, $0 \to \Gamma_Y(X, \mathcal{F}') \to \Gamma_Y(X, \mathcal{F}') \to \Gamma_Y(X, \mathcal{F}'')$ 正合.
- (2) 设 $\mathcal{F}, \mathcal{F}', \mathcal{F}''$ 同上, 设 $s'' \in \Gamma_Y(X, \mathcal{F}'')$. 由于 \mathcal{F}' 松, 存在 $s \in \Gamma(X, \mathcal{F})$ 使得 g(s) = s''. 记 U = X Y. 由于 \mathcal{F}' 松, $0 \to \Gamma(U, \mathcal{F}') \to \Gamma(U, \mathcal{F}) \to \Gamma(U, \mathcal{F}'') \to 0$ 正合. 而 $g(s|_U) = g(s)|_U = 0$. 因 此存在 $s'_0 \in \Gamma(U, \mathcal{F}')$ 使得 $f(s'_0) = s|_U$. 再次由松性, 存在 $s' \in \Gamma(X, \mathcal{F}')$ 使得 $s|_U = s'_0$. 因此立即知道 $s' f(s) \in \Gamma_Y(X, \mathcal{F})$ 且其像为 s''. 因此

$$0 \to \Gamma_Y(X, \mathcal{F}') \to \Gamma_Y(X, \mathcal{F}) \to \Gamma_Y(X, \mathcal{F}'') \to 0$$

正合.

- (3) 取内射层 \mathcal{F} 与单射 \mathcal{F} \rightarrow \mathcal{F} . 由于内射层松, \mathcal{F} 与 \mathcal{F}/\mathcal{F} 都松. 因此由长正合列, $H_Y^n(X,\mathcal{F})\cong H_Y^{n-1}(X,\mathcal{F}/\mathcal{F})$ 且 $H_Y^1(X,\mathcal{F})=0$. 因此对 n 归纳立知 $H_Y^n(X,\mathcal{F})=0$.
- (4) 记 $\Gamma_Y(X,\mathcal{F}) \xrightarrow{i} \Gamma(X,\mathcal{F}) \xrightarrow{p} \Gamma(X-Y,\mathcal{F}) \to 0$ 按定义, i 是单射, p 是满射, 且 pi = 0. 而若 $s \in \Gamma(X,\mathcal{F})$, p(s) = 0, 则按定义 s 支在 Y 上, 即 $s \in \text{im } i$. 因此

$$0 \to \Gamma_{Y}(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}) \to \Gamma(X - Y, \mathcal{F}) \to 0$$

正合.

(5) 取 牙 的内射消解 {牙・}. 由于内射模都松,由上一个命题得知有链复形的正合列

$$0 \to \Gamma_Y(X, \mathcal{I}^{\bullet}) \to \Gamma(X, \mathcal{I}^{\bullet}) \to \Gamma(U, \mathcal{I}^{\bullet}|_{U}) \to 0$$

而 \mathcal{F}_{U} 也松, 因此也是 \mathcal{F}_{U} 的 $\Gamma(U, -)$ -零调消解. 取上述链复形短正合列对应的长正合列即为

$$0 \to H_Y^0(X, \mathcal{F}) \to H^0(X, \mathcal{F}) \to H^0(U, \mathcal{F}|_U)$$

$$\to H_Y^1(X, \mathcal{F}) \to H^1(X, \mathcal{F}) \to H^1(U, \mathcal{F}|_U)$$

$$\to H_Y^2(X, \mathcal{F}) \to \cdots.$$

(6) 首先, 我们有自然同构 $\Gamma_Y(X,\mathcal{F}) \cong \Gamma_Y(V,\mathcal{F}|_V)$, 或 $\Gamma_Y(X,\mathcal{F}) \cong \Gamma_Y(V,\mathcal{F})$. 这个同构是显然的: 我们有前者到后者的限制映射, 而其根据层公理显然双射.

现在设 \mathcal{F}^{\bullet} 是 \mathcal{F} 的内射消解, 则 $\Gamma_{Y}(X,\mathcal{F}^{\bullet}) \cong \Gamma_{Y}(V,\mathcal{F}^{\bullet}|_{V})$. 由于 $\mathcal{F}^{\bullet}|_{V}$ 也是 $\mathcal{F}|_{V}$ 的松层消解, 其上同调也 给出 $H^{\bullet}_{V}(V,\mathcal{F}|_{V})$. 因此上述自然同构就给出了上同调的自然同构.

习题 2.4 (Mayer–Vietoris 正合列). \diamondsuit Y_1, Y_2 为 X 的两个闭集. 则有支集上同调的长正合列

$$\begin{split} \cdots &\to H^i_{Y_1 \cap Y_2}(X, \mathcal{F}) \to H^i_{Y_1}(X, \mathcal{F}) \oplus H^i_{Y_2}(X, \mathcal{F}) \to H^i_{Y_1 \cup Y_2}(X, \mathcal{F}) \\ &\to H^{i+1}_{Y_1 \cap Y_2}(X, \mathcal{F}) \to \cdots. \end{split}$$

证明. 记 i_1, i_2 为 $\Gamma_{Y_1 \cap Y_2}(X, \mathcal{F})$ 到 $\Gamma_{Y_1}(X, \mathcal{F})$ 或 $\Gamma_{Y_2}(X, \mathcal{F})$ 的自然嵌入, j_1, j_2 为两者到 $\Gamma_{Y_1 \cup Y_2}(X, \mathcal{F})$ 的自然嵌入. 设 \mathcal{F} 松, 下面证明

$$0 \to \Gamma_{Y_1 \cap Y_2}(X, \mathcal{F}) \xrightarrow{i_1 + i_2} \Gamma_{Y_1}(X, \mathcal{F}) \oplus \Gamma_{Y_2}(X, \mathcal{F}) \xrightarrow{j_1 - j_2} \Gamma_{Y_1 \cup Y_2}(X, \mathcal{F}) \to 0$$

正合.

- 显然 i_1+i_2 是单射, 且 $(j_1-j_2)(i_1+i_2)=0$. 且若 $(s_1,s_2)\in\Gamma_{Y_1}(X,\mathcal{F})\oplus\Gamma_{Y_2}(X,\mathcal{F})$ 使得 $j_1(s_1)-j_2(s_2)=0$, 即 $s_1-s_2=0$, 必有 $s_1=s_2\in\Gamma_{Y_1\cap Y_2}(X,\mathcal{F})$, 即 $(s_1,s_2)\in\operatorname{im}(i_1+i_2)$. 因此 $\ker(j_1-j_2)=\operatorname{im}(i_1+i_2)$.
- 设 \mathcal{F} 松. 记 $U_1 = X Y_1, U_2 = X Y_2$. 若 $s \in \Gamma_{Y_1 \cup Y_2}(X, \mathcal{F})$, \diamondsuit $t \in \Gamma(U_1 \cup U_2, \mathcal{F})$ 为 $s|_{U_1}$ 和 $0|_{U_2}$ 的粘接. 由于 \mathcal{F} 松, 存在 $s_2 \in \Gamma(X, \mathcal{F})$ 使得 $s_2|_{U_1 \cup U_2} = t$.

由于 $s_2|_{U_2} = 0$, $s_1|_{U_1} = s|_{U_1}$, 即得 $s_2 \in \Gamma_{Y_2}(X, \mathcal{F})$, $s - s_2 \in \Gamma_{Y_1}(X, \mathcal{F})$. 因此 $j_1 - j_2$ 为满射.

现在设 罗 为任意层. 取 罗 的内射消解 罗,根据上述结论有正合列

$$0 \to \Gamma_{Y_1 \cap Y_2}(\mathcal{I}^{\bullet}, \mathcal{F}) \xrightarrow{i_1 + i_2} \Gamma_{Y_1}(\mathcal{I}^{\bullet}, \mathcal{F}) \oplus \Gamma_{Y_2}(\mathcal{I}^{\bullet}, \mathcal{F}) \xrightarrow{j_1 - j_2} \Gamma_{Y_1 \cup Y_2}(\mathcal{I}^{\bullet}, \mathcal{F}) \to 0$$

取其上同调长正合列

$$\begin{split} \cdots &\to H^i_{Y_1 \cap Y_2}(X, \mathcal{F}) \to H^i_{Y_1}(X, \mathcal{F}) \oplus H^i_{Y_2}(X, \mathcal{F}) \to H^i_{Y_1 \cup Y_2}(X, \mathcal{F}) \\ &\to H^{i+1}_{Y_1 \cap Y_2}(X, \mathcal{F}) \to \cdots. \end{split}$$

习题 2.5. 设 X 是 Zariski 空间 (II, 习题 3.17) 2 . 令 $P \in X$ 为闭点, X_P 为所有满足 $P \in \{Q\}^-$ 的点 Q 构成的子集. 称 X_P 为 X 在 P 处的局部空间, 配备诱导子空间拓扑. 令 $j: X_P \to X$ 为包含映射; 对 X 上的任意层 \mathcal{F} , 记 $\mathcal{F}_P = j^*\mathcal{F}$. 证明对任意 i,\mathcal{F} 都有

$$H^i_p(X,\mathcal{F})\cong H^i_p(X_P,\mathcal{F}_P).$$

下面的证明中需要这个引理:

引理. 设 X 为 Zariski 拓扑, Y 为任意在一般化下封闭的子集, $j: Y \to X$ 为嵌入映射. 设 \mathcal{F} 为 X 上的层, $\mathcal{F}_Y = j^*Y$. 则对 Y 中任意开集 U, 有

$$\mathcal{F}_{Y}(U) \cong \underset{U \subset \tilde{U}}{\varinjlim} \mathcal{F}(\tilde{U}),$$

其中 \tilde{U} 遍历 X 的满足条件的开集. 换句话说, \mathcal{F} 作为预层在 Y 上的限制已经是层.

证明. 由于 \mathscr{F}_Y 事实上定义为 $U \mapsto \varinjlim_{U \subset \tilde{U}} \mathscr{F}(\tilde{U})$ 的层化, 立刻有 $\varinjlim_{U \subset \tilde{U}} \mathscr{F}(\tilde{U})$ 到 $\mathscr{F}_Y(U)$ 的映射. 我们记此正向极限为 $\mathscr{F}_Y'(U)$, 此映射为 $\varphi \colon \mathscr{F}_Y'(U) \to \mathscr{F}_Y(U)$.

由于正向极限正合, $\mathscr{F}_{Y}'(U) \to \prod_{x \in U} \mathscr{F}_{X}$ 是单射. 因此易知 φ 为单射.

为证明 φ 是满射, 也就是证明 $\mathscr{F}_Y(U)$ 中任意截面 s 都是 U 附近的某个开集 \tilde{U} 的某个截面的限制. 按定义, 存在 Y 的一族开覆盖 U_i 使得 $s|_{U_i} \in \mathscr{F}_Y'(U_i)$, 即存在 X 中开集 $\tilde{U}_i \supset U_i$ 以及 $s_i \in \mathscr{F}(\tilde{U}_i)$ 使得 $s|_{U_i} = s|_{U_i}^3$;

由于 Y 拟紧,可以设 U_i 是有限开覆盖。利用归纳法,又可以规约到只有两个开集的情况。此时由于 $s_1|_{U_1 \cap U_2} = s_2|_{U_1 \cap U_2}$,存在 X 中的开集 V,使得 $U_1 \cap U_2 \subset V \subset \tilde{U_1} \cap \tilde{U_2}$,且 $s_1|_V = s_2|_V$.记 $N = (\tilde{U_1} \cap \tilde{U_2}) \setminus V$.我们证明: $\overline{N} \cap Y = \emptyset$.若不然,由于 Y 对一般化封闭,有 \overline{N} 中的某个不可约分支的一般点 ξ 属于 Y.因此 $\xi \in U_1 \cap U_2 \subset V$,从 而 $\xi \notin N$,因而 $N \cap \{\xi\}^- = \emptyset$,矛盾.

从而, 若把 U_1, U_2, V 分别改为 $U_1 \setminus \overline{N}, U_2 \setminus \overline{N}, V \setminus \overline{N}$, 就有 $V = U_1 \cap U_2$. 因此可从 s_1, s_2 拼出 $s_0 \in \mathcal{F}(\tilde{U_1} \cup \tilde{U_2})$ 使得 $s_0|_U = s$. 也就是说 φ 是满射.

²每个非空不可约闭集都有——般点的 Noether 空间.

 $^{^3}$ 这里混淆了记号,事实上应该是 s_i 在 $\mathcal{F}_Y'(U_i)$ 中的像是 s_{U_i} .

习题 2.5 的证明. 由于 Zariski 空间的开集对一般化封闭, 任意包含 P 的开集都包含 X_P , 且若 $Q \notin X_P$, 有 $P \in (X \setminus \{Q\}^-)$. 所以 $X_P = \bigcap_{P \in U \subset X} U$, 其中 U 取遍包含 P 的开集.

按习题 2.3 (6), 对任意包含 P 的开集 V, 有 $H_p^i(X,\mathcal{F})\cong H_p^i(X_P,\mathcal{F}_P)$. 若 $V\supset W$, 取 2.3 (5) 的长正合列, 有映射

取正向极限即得正合列

$$\cdots \to \varinjlim_{P \in V} H^i_P(V, \mathcal{F}|_V) \to \varinjlim_{P \in V} H^i(V, \mathcal{F}|_V) \to \varinjlim_{P \in V} H^i(V \setminus \{P\}, \mathcal{F}|_{V \setminus \{P\}}) \to \cdots.$$

即

$$\cdots \to H^i_P(X,\mathcal{F}) \to \varinjlim_{P \in V} H^i(V,\mathcal{F}) \to \varinjlim_{P \in V} H^i(V \smallsetminus \{P\},\mathcal{F}) \to \cdots.$$

此外, 在 X_P 上还有长正合列

$$\cdots \to H_p^i(X_p, \mathcal{F}_p) \to H^i(X_p, \mathcal{F}_p) \to H^i(X_p \setminus \{P\}, \mathcal{F}_p) \to \cdots$$

因此只需证明有自然同构 $H^i(X_P, \mathscr{F}_P) \cong \varinjlim_{P \in V} H^i(V, \mathscr{F})$ 及 $H^i(X_P \setminus \{P\}, \mathscr{F}_P) \cong \varinjlim_{P \in V} H^i(V \setminus \{P\}, \mathscr{F})$. 上面的引理事实上证明了在 i = 0 时,

$$\Gamma(X_P, \mathcal{F}_P) \cong \varinjlim_{P \in V} \Gamma(V, \mathcal{F})$$

$$\Gamma(X_P \setminus \{P\}, \mathcal{F}_P) \cong \varinjlim_{P \in V} \Gamma(V \setminus \{P\}, \mathcal{F}).$$

并且引理还有显然的推论: 若 \mathscr{F} 松, 则 \mathscr{F}_P 松 (因为 \varinjlim 的正合性). 因此立知: $H^i(X_P, \neg_P), H^i(X_P \setminus \{P\}, \mathscr{F}_P)$ 都是可擦函子 (因为松层对于它们是零调对象). 而 \varinjlim $H^i(V, \neg), \varinjlim$ $H^i(V \setminus \{P\}, \neg)$ 显然也是可擦函子. 因此由 δ 函子的万有性即得正合列的自然态射

$$\cdots \longrightarrow H_{P}^{i}(X, \mathcal{F}) \longrightarrow \varinjlim_{P \in V} H^{i}(V, \mathcal{F}|_{V}) \longrightarrow \varinjlim_{P \in V} H^{i}(V \setminus \{P\}, \mathcal{F}|_{V \setminus \{P\}}) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$\cdots \longrightarrow H_{P}^{i}(X_{P}, \mathcal{F}_{P}) \longrightarrow H^{i}(X_{P}, \mathcal{F}_{P}) \longrightarrow H^{i}(X_{P} \setminus \{P\}, \mathcal{F}_{P}|_{X_{P} \setminus \{P\}}) \longrightarrow \cdots$$

由五引理, 即知 $H_p^i(X,\mathcal{F}) \to H_p^i(X_P,\mathcal{F}_P)$ 亦为同构.

习题 2.6. 令 X 为 Noether 拓扑空间, $\{\mathcal{S}_{\alpha}\}_{\alpha\in A}$ 为 X 上内射层的有向系统. 证明 $\varinjlim \mathcal{S}_{\alpha}$ 亦内射. [提示: 首先证明层 \mathcal{S} 内射当且仅当对 X 的任意开子集 U, \mathbb{Z}_U 的任意子层 \mathcal{R} , 以及任意态射 $f:\mathcal{R}\to\mathcal{S}$, 其都可以扩张成 $\mathbb{Z}_U\to\mathcal{S}$ 的映射. 其次,证明这样的 \mathcal{R} 都有限生成,因此 $\mathcal{R}\to\lim_{\alpha}\mathcal{S}_{\alpha}$ 穿过某个 \mathcal{S}_{α} .]

证明. 我们按照提示顺序证明. 首先证明层 $\mathcal S$ 内射当且仅当对 X 的任意开子集 U, $\mathbb Z_U$ 的任意子层 $\mathcal R$, 以及任意态射 $f:\mathcal R\to\mathcal S$, 其都可以扩张成 $\mathbb Z_U\to\mathcal S$ 的映射.

必要性显然. 考虑充分性. 设 \mathcal{F} 是 X 上的层, $\mathcal{G} \subseteq \mathcal{F}$ 是其子层, $g:\mathcal{G} \to \mathcal{F}$ 是任意态射. 我们希望证明 g 可以延拓为 $\mathcal{F} \to \mathcal{F}$. 记 $\Sigma = \{(\mathcal{H},h) \mid \mathcal{G} \subseteq \mathcal{H} \subseteq \mathcal{F}, h: \mathcal{H} \to \mathcal{F}, h|_{\mathcal{G}} = g\}$, 其上给显然的偏序. 由 Zorn 引理, Σ 中有极大元 (\mathcal{H},h) .

若 $\mathcal{H} \neq \mathcal{F}$, 取开集 U 以及 $s \in \mathcal{F}(U) \setminus \mathcal{H}(U)$. 记映射 $\varphi \colon \mathbb{Z}_U \to \mathcal{F}$, $\varphi(t_V) = t_V s|_V$. 记 $\mathcal{R} = \varphi^{-1}(\mathcal{H})$. 由假设, 映射 $h \circ \varphi \colon \mathcal{R} \to \mathcal{F}$ 可以延拓为 $\mathbb{Z}_U \to \mathcal{F}$. 此映射和 $h \colon \mathcal{H} \to \mathcal{F}$ 拼接为 $(\mathcal{H} + \mathbb{Z}_U s) \to \mathcal{F}$, 与 (\mathcal{H}, h) 极大性矛盾. 因此只可能 $\mathcal{H} = \mathcal{F}$. 这里 $\mathcal{H} + \mathbb{Z}_U s$ 定义为 $\mathcal{H} \oplus \mathbb{Z}_U \to \mathcal{F}$ 的像.

Hartshorne 声称 $\mathcal R$ 应该是有限生成的. 我想他大约想表达 $\mathcal R$ 是 Noether 的, 即其子对象升链总稳定. 换句话说其希望说明 $\mathbb Z_U$ 是 Noether 的.

接下来我们证明 \mathbb{Z}_U 是 Abel 群层里的 Noether 对象, 即其子对象升链总稳定. 设 $\mathscr{F}_1 \subseteq \mathscr{F}_2 \subseteq \cdots \subseteq \mathbb{Z}_U$ 是 \mathbb{Z}_U 的子对象的升链. 设 U 的不可约分支为 U_1, \ldots, U_n , 则只需证明每个 $\mathscr{F}_k|_{U_i}$ 稳定. 所以不妨设 U 不可约.

设 V_k 为最大的使得 $\mathcal{F}_k(V) \neq 0$ 的开集 (若 $\mathcal{F}_k(V) = r\mathbb{Z}$, $\mathcal{F}_k(V') = s\mathbb{Z}$, 显然有 $\mathcal{F}_k(V \cup V') = \mathrm{lcm}(r,s)\mathbb{Z}$. 因此 V_k 良定). 则 V_k 是开集升链, 从而稳定. 设其稳定到 V. 则 $\mathcal{F}_k(V)$ 是 \mathbb{Z} 的子模升链, 其必定稳定. 设其稳定到 $m\mathbb{Z}$. 按定义, m>0. 对 m 的任意因子 d, 记 $C_k(d)$ 为 d 在 $\mathbb{Z}_U/\mathcal{F}_k$ 中的支集. 则 $C_k(d)$ 构成 (关于 k 的) 闭集降链. 因此每个都稳定. 也就是说, 在 k 充分大的时候, $\mathcal{F}_k \to \mathcal{F}_{k+1}$ 在每个茎上都是同构. 这也就是说 \mathcal{F}_k 稳定.

接下来, 设 \mathcal{G}_{α} 为内射层的有向系统. 设 U 是开集, \mathcal{R} 是 \mathbb{Z}_{U} 的子层, $f: \mathcal{R} \to \varinjlim \mathcal{G}_{\alpha}$. 由于 \mathbb{Z}_{U} 是 Noether 对象, $f^{-1}(\mathcal{G}_{\alpha})$ 稳定. 也就是说存在 α 使得 f 穿过 \mathcal{G}_{α} . 因此由 \mathcal{G}_{α} 的内射性, f 可以延拓为 $\mathbb{Z}_{U} \to \mathcal{G}_{\alpha} \to \varinjlim \mathcal{G}_{\alpha}$. 综上, $\varinjlim \mathcal{G}_{\alpha}$ 内射.

习题 2.7. \Diamond \mathbf{S}^1 为圆, 配备通常的拓扑. \Diamond \mathbb{Z} 为其上的常值层.

- (1) 证明 $H^1(S^1, \mathbb{Z}) \cong \mathbb{Z}$ (用我们定义的(层)上同调).
- (2) 现在令 \mathcal{R} 为 \mathbf{S}^1 上的连续实值函数层. 证明 $H^1(\mathbf{S}^1,\mathcal{R})=0$.

证明. 此处参考 MSE 问题, 感谢名为 Daniel Schpler 的 MSE 用户.

我们先处理 \mathbb{R} (配备通常的拓扑) 上的上同调. 定义 \mathbb{R} 上的层 \mathscr{F} 是区间松的当且仅当对任意两个开区间 $I \supset J$, 都有 $\mathscr{F}(I) \to \mathscr{F}(J)$ 满. 下面我们证明区间松的层都是 $\Gamma(\mathbb{R}, -)$ 零调对象.

1. 若 0 → \mathcal{F}' → \mathcal{F} → \mathcal{F}'' → 0 是 \mathbb{R} 上层的正合列, 且 \mathcal{F}' 区间松, 则

$$0 \to \Gamma(U, \mathcal{F}') \to \Gamma(U, \mathcal{F}) \to \Gamma(U, \mathcal{F}'') \to 0$$

对所有开集 U 正合. 由于开集总是开区间的不交并, 只需对 U 为开区间证明. 只需证明 $\Gamma(\mathbb{R}, \mathcal{F}') \to \Gamma(\mathbb{R}, \mathcal{F}'')$ 满. 若 $t \in \Gamma(\mathbb{R}, \mathcal{F}'')$,设 (I,s) 为其极大的区间上的提升. 在 I 的端点附近取区间 J 及 $s' \in \Gamma(J, \mathcal{F})$. 取 $r \in \Gamma(I, \mathcal{F})$ 使得 $r|_{I \cap I}$ 映射到 s - s' (这由区间松得到), 则 s - r 和 s' 可拼成 $I \cup J$ 上 t 的提升.

- 2. 若 $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ 是 R 上层的正合列, 且 $\mathcal{F}', \mathcal{F}$ 区间松, 则 \mathcal{F}'' 也区间松. 由上一条显然.
- 3. 内射层都区间松. 因为内射层都松, 所以也区间松.

综上即可证明 $H^i(\mathbb{R}, \mathcal{F}) = 0$ 对任意 i 和任意区间松 \mathcal{F} 成立. 接下来证明原问题.

(1) 取 I_u , I_d 为 \mathbf{S}^1 的上下半圆 (闭区间), 其交集为 $\{P,Q\}$. 记 \mathbb{Z}_u , \mathbb{Z}_d 为 \mathbb{Z} 在 I_u , I_d 上的限制 (并在 I_u , I_d 外用 0 延拓), 则显然有正合列

$$0 \to \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 1 \end{bmatrix}} \mathbb{Z}_u \oplus \mathbb{Z}_d \xrightarrow{\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}} \mathbb{Z}_P \oplus \mathbb{Z}_Q \to 0.$$

正合性可在茎上逐点验证. 取其上同调长正合列得

$$0 \to \mathbb{Z} \xrightarrow{\begin{bmatrix} 1 \\ 1 \end{bmatrix}} \mathbb{Z}^2 \xrightarrow{\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}} \mathbb{Z}^2 \to H^1(\mathbf{S}^1, \mathbb{Z}) \to H^1(I_u, \mathbb{Z}_u) \oplus H^1(I_d, \mathbb{Z}_d) \to 0.$$

而 I_u 可以同构于 \mathbb{R} 的闭子区间 [0,1]. 将 Z_u 以 0 延拓到 \mathbb{R} 上后,显然其区间松. 因此 $H^1(I_u,\mathbb{Z}_u)=0$. 同理, $H^1(I_d,\mathbb{Z}_d)=0$. 因此即可得出 $H^1(\mathbf{S}^1,\mathbb{Z})\cong \operatorname{coker}(\left[\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array}\right])\cong \mathbb{Z}$.

(2) 同上取 \mathcal{R}_{u} , \mathcal{R}_{d} , 记 $C(U,\mathbb{R})$ 为 U 上的连续函数族, 依然有长正合列

$$0 \to C(\mathbf{S}^1, \mathbb{R}) \to C(I_u, \mathbb{R}) \oplus C(I_d, \mathbb{R}) \to \mathbb{R}^2 \to H^1(\mathbf{S}^1, \mathcal{R}) \to H^1(I_u, \mathcal{R}_u) \oplus H^1(I_d, \mathcal{R}_d) \to 0.$$

同理, $\mathcal{R}_{u,d}$ 以 0 延拓到 \mathbb{R} 上后区间松, 因此上同调消失. 而 $C(I_u,\mathbb{R}) \oplus C(I_d,\mathbb{R}) \to \mathbb{R}^2$ 是满射. 因此 $H^1(\mathbf{S}^1,\mathcal{R}) = 0$.