Getting started guide of

Intel Optane* DC persistent memory module in Kubernetes cluster for Alauda

Author: ailin.yang@intel.com

Homework:

Persistent Memory introduction: introduction web page

Intel® Optane™ DC Persistent Memory: Benefit from Greater Capacity, Affordability and

<u>Persistence</u>

Concepts of Persistent Memory Provisioning: Region, Label, Namespace, DAX

Configuring Intel® Optane™ DC Persistent Memory for Best Performance: configuration video

Provision Intel® Optane™ DC Persistent Memory in Linux*: video

Configure, Manage, and Profile Intel® Optane™ DC Persistent Memory Modules: docs

The Intel® Optane™ DC Persistent Memory: Programming Model

Intel® Optane™ DC Persistent Memory Modules- Use ipmctl to Debug

Intel® Optane™ DC Persistent Memory Modules – Provision for KVM/QEMU

System preparation:

1. 1 Hardware configuration

It depends on the hardware that your server may be different from the one being used in this document. The brief info of the HW is below:

Intel® Server Board S2600WFT, 2x Intel® Xeon® Gold 6252 Processor 2.1GHz 24 cores; 12x 16GB DDR4 DRAM; 12x 128GB Intel Optane DC Persistent Memory

In general, it should be like configure the system to use Intel DCPMM. First it is recommended to confirm that your system has the latest BIOS that support the DCPMM and make sure that Volatile Memory Mode in the Memory Configuration is set to Auto (figure 1).

Figure 1. Volatile memory mode setting (BIOS default recommendation = AUTO).

Note: this is a screen capture of another system with different spec

Figure 2. Topologies per CPU socket (2-2-2, 6 DDR4 DIMMs, 6 DCPMM DIMMs)

Figure 2 shows the memory topology per CPU socket of the reference system. This can be confirmed by the following command:

DimmID	MemoryType	Capacity	PhysicalID De	eviceLocator
=======				
0x0001	Logical Non-Volatile Device	126.4 GiB	0x0028 CF	PU1_DIMM_A2
0x0011	Logical Non-Volatile Device	126.4 GiB	0x002c CF	PU1_DIMM_B2
0x0021	Logical Non-Volatile Device	126.4 GiB	0x0030 CF	PU1_DIMM_C2
0x0101	Logical Non-Volatile Device	126.4 GiB	0x0036 CF	PU1_DIMM_D2
0x0111	Logical Non-Volatile Device	126.4 GiB	0x003a CF	PU1_DIMM_E2
0x0121	Logical Non-Volatile Device	126.4 GiB	0x003e CF	PU1_DIMM_F2
0x1001	Logical Non-Volatile Device	126.4 GiB	0x0044 CF	PU2_DIMM_A2
0x1011	Logical Non-Volatile Device	126.4 GiB	0x0048 CF	PU2_DIMM_B2
0x1021	Logical Non-Volatile Device	126.4 GiB	0x004c CF	PU2_DIMM_C2
0x1101	Logical Non-Volatile Device	126.4 GiB	0x0052 CF	PU2_DIMM_D2
0x1111	Logical Non-Volatile Device	126.4 GiB	0x0056 CF	PU2_DIMM_E2
0x1121	Logical Non-Volatile Device	126.4 GiB	0x005a CF	PU2_DIMM_F2
N/A	DDR4	16.0 GiB	0x0026 CF	PU1_DIMM_A1
N/A	DDR4	16.0 GiB	0x002a CF	PU1_DIMM_B1
N/A	DDR4	16.0 GiB	0x002e CF	PU1_DIMM_C1
N/A	DDR4	16.0 GiB	0x0034 CF	PU1_DIMM_D1
N/A	DDR4	16.0 GiB	0x0038 CF	PU1_DIMM_E1
N/A	DDR4	16.0 GiB	0x003c CF	PU1_DIMM_F1
N/A	DDR4	16.0 GiB	0x0042 CF	PU2_DIMM_A1
N/A	DDR4	16.0 GiB	0x0046 CF	PU2_DIMM_B1
N/A	DDR4	16.0 GiB	0x004a CF	PU2_DIMM_C1
N/A	DDR4	16.0 GiB	0x0050 CF	PU2_DIMM_D1
N/A	DDR4	16.0 GiB	0x0054 CF	PU2_DIMM_E1
N/A	DDR4	16.0 GiB	0x0058 CF	PU2_DIMM_F1

To install ipmctl tool on Ubuntu:

First install the dependencies packages:

```
sudo apt-get install cmake libndctl-dev doxygen build-essential
sudo add-apt-repository ppa:jhli/libsafec
sudo apt-get update
sudo apt-get install libsafec-dev
sudo apt install ruby-full
sudo gem install asciidoctor-pdf --pre
sudo apt-get --no-install-recommends install asciidoc -y
```

Then build and install ipmctl:

```
Git clone <a href="https://github.com/intel/ipmctl.git">https://github.com/intel/ipmctl.git</a>
Cd ipmctl
mkdir output && cd output
cmake -DRELEASE=ON -DCMAKE_INSTALL_PREFIX=/ ..
make -j all
sudo make install
```

Detail of the tool, please see:

https://github.com/intel/ipmctl https://github.com/pmem/ndctl

1.2 Memory mode and App direct mode

1.2.2 Configuring DCPMM in Memory mode

```
$ # destroy all the possible namespaces existing in AppDirect mode
$ # It is necessary to unmount any partitions that are being mounted.
$ # sudo fdisk /dev/pmemXXX -> select "delete" -> select "w"
$ sudo ndctl destroy-namespace all -f
$ sudo ipmctl delete -goal
```

\$ # create a Memory Mode goal allocation for the entire DCPMM

\$ sudo ipmctl create -goal MemoryMode=100

The following configuration will be applied:

The fortowing configuration with be applied.					
SocketID	DimmID	MemorySize	AppDirect1Size	AppDirect2Size	
========		=========			
0x0000	0x0001	126.0 GiB	0.0 GiB	0.0 GiB	
0x0000	0x0011	126.0 GiB	0.0 GiB	0.0 GiB	
0x0000	0x0021	126.0 GiB	0.0 GiB	0.0 GiB	
0x0000	0x0101	126.0 GiB	0.0 GiB	0.0 GiB	
0x0000	0x0111	126.0 GiB	0.0 GiB	0.0 GiB	
0x0000	0x0121	126.0 GiB	0.0 GiB	0.0 GiB	
0x0001	0x1001	126.0 GiB	0.0 GiB	0.0 GiB	
0x0001	0x1011	126.0 GiB	0.0 GiB	0.0 GiB	
0x0001	0x1021	126.0 GiB	0.0 GiB	0.0 GiB	
0x0001	0x1101	126.0 GiB	0.0 GiB	0.0 GiB	
0x0001	0x1111	126.0 GiB	0.0 GiB	0.0 GiB	
0x0001	0x1121	126.0 GiB	0.0 GiB	0.0 GiB	
Da				•	

Do you want to continue? [y/n] y

Created following region configuration goal

SocketID	DimmID	MemorySize	AppDirect1Size	AppDirect2Size
0x0000	0x0001	126.0 GiB	0.0 GiB	0.0 GiB
0x0000	0x0011	126.0 GiB	0.0 GiB	0.0 GiB
0x0000	0x0021	126.0 GiB	0.0 GiB	0.0 GiB
0x0000	0x0101	126.0 GiB	0.0 GiB	0.0 GiB
0x0000	0x0111	126.0 GiB	0.0 GiB	0.0 GiB
0x0000	0x0121	126.0 GiB	0.0 GiB	0.0 GiB
0x0001	0x1001	126.0 GiB	0.0 GiB	0.0 GiB
0x0001	0x1011	126.0 GiB	0.0 GiB	0.0 GiB
0x0001	0x1021	126.0 GiB	0.0 GiB	0.0 GiB
0x0001	0x1101	126.0 GiB	0.0 GiB	0.0 GiB
0x0001	0x1111	126.0 GiB	0.0 GiB	0.0 GiB
0x0001	0x1121	126.0 GiB	0.0 GiB	0.0 GiB

A reboot is required to process new memory allocation goals.

- \$ sudo reboot
- \$ sudo ipmctl show -memoryresources

Capacity=1517.1 GiB

MemoryCapacity=1512.0 GiB

AppDirectCapacity=0.0 GiB

UnconfiguredCapacity=0.0 GiB

InaccessibleCapacity=5.1 GiB

ReservedCapacity=0.0 GiB

1.2.2 Configuring DCPMM in App Direct mode

\$ sudo ipmctl delete -goal

\$ sudo ipmctl create -goal PersistentMemoryType=AppDirect

The following configuration will be applied:

SocketID	DimmID	MemorySize	AppDirect1Size	AppDirect2Size
0x0000	0x0011	0.0 GiB	126.0 GiB	0.0 GiB
0x0000	0x0021	0.0 GiB	126.0 GiB	0.0 GiB
0x0000	0x0001	0.0 GiB	126.0 GiB	0.0 GiB
0x0000	0x0111	0.0 GiB	126.0 GiB	0.0 GiB
0x0000	0x0121	0.0 GiB	126.0 GiB	0.0 GiB
0x0000	0x0101	0.0 GiB	126.0 GiB	0.0 GiB
0x0001	0x1011	0.0 GiB	126.0 GiB	0.0 GiB
0x0001	0x1021	0.0 GiB	126.0 GiB	0.0 GiB
0x0001	0x1001	0.0 GiB	126.0 GiB	0.0 GiB
0x0001	0×1111	0.0 GiB	126.0 GiB	0.0 GiB
0x0001	0x1121	0.0 GiB	126.0 GiB	0.0 GiB

Deploy Pmem-csi in Kubernetes cluster

In this documentation, the deployment is based on an exist Kubernetes cluster, so setup a Kubernetes cluster is not covered, and Before start, there is something that needs to be careful here. First please make sure that the system has been configured to use Intel DCPMM in App Direct mode. Second, it is necessary to make sure that the volume groups are clean. It can be checked by using the following command.

\$ sudo vgs

Please confirm that it should return nothing before we move forward.

Also please read readme of https://github.com/intel/pmem-csi to know requirements to deploy it,

Now you can follow up this screencast guide to deploy Pmem-CSI in your Kubernetes cluster

After completing deployment, you should have it run correctly with below status:

PMEM-CSI \$ kubectl get pods						
NAME	READY	STATUS	RESTARTS	AGE		
my-csi-app-1	1/1	Running	0	8s		
my-csi-app-2	1/1	Running	0	8s		
pmem-csi-controller-0	2/2	Running	0	2m10s		
pmem-csi-node-jrfck	2/2	Running	0	2m10s		

Congratulations! You have PEME-CSI ready