Rejection Sampling

Introduction

Context: Transformation methods for sampling cannot be applied

Goal: Sample from target distribution with density $\pi(x)$ where no direct sampling is feasible.

Basic idea: Sample from instrumental proposal $q \neq \pi$; correct through rejection step to obtain a sample from π .

Requirements: Given two densities π , q with $\pi(x) \leq Mq(x)$ for all x, and some M where we note that M is larger than 1 since both π and q integrate to 1.

Intuition and Algorithm

Intuition:

- Throw darts uniformly under $M \cdot q(x)$
- ▶ Keep only those under $\pi(x)$
- ▶ Kept points follow $\pi(x)$ exactly!

The Algorithm:

- 1. Sample $X \sim q(x)$
- 2. Sample $U \sim \mathsf{Uniform}(0,1)$
- 3. Accept if $U \leq \frac{\pi(X)}{M \cdot q(X)}$

Why it works: We're sampling uniformly from the area under $\pi(x)$!

Mathematical Foundation

Proposition

The distribution of accepted samples is exactly $\pi(x)$

Proof: We need to show $P(X \in A|X \text{ accepted}) = \frac{P(X \in A, X \text{ accepted})}{P(X \text{ accepted})} = \pi(A)$.

$$P(X \in A, X \text{ accepted}) = \int_{X} \int_{0}^{1} \mathbb{I}_{A}(x) \cdot \mathbb{I}\left(u \leq \frac{\pi(x)}{Mq(x)}\right) q(x) du dx$$

$$= \int_{X} \mathbb{I}_{A}(x) \cdot \frac{\pi(x)}{Mq(x)} \cdot q(x) dx$$

$$= \int_{X} \mathbb{I}_{A}(x) \cdot \frac{\pi(x)}{M} dx = \frac{\pi(A)}{M}$$

Similarly, $P(X \text{ accepted}) = \frac{1}{M}$. Therefore: $P(X \in A | X \text{ accepted}) = \frac{\pi(A)/M}{1/M} = \pi(A)$.

Does this work for un-normalised distributions?

Often we only know π and q up to some normalising constants; i.e.

$$ilde{\pi} = rac{\pi}{Z_{\pi}}$$
 and $ilde{q} = rac{q}{Z_{q}}$

where π , q are known but Z_{π} , Z_{q} are unknown. We still need to be able to sample from $q(\cdot)$. If we can upper bound:

$$\frac{\widetilde{\pi}(x)}{\widetilde{q}(x)} \leq \widetilde{M},$$

then using $\tilde{\pi}$, \tilde{q} and \tilde{M} in the algorithm is correct. Indeed we have

$$\frac{\widetilde{\pi}(x)}{\widetilde{q}(x)} \le \widetilde{M} \iff \frac{\pi(x)}{q(x)} \le \widetilde{M} \cdot \frac{Z_q}{Z_{\pi}} \stackrel{\text{def}}{=} M$$

Waiting time: Let T denote the number of pairs (X, U) that have to be generated until X is accepted for the first time. T is geometrically distributed with parameter 1/M and in particular E(T) = M.

This is why large M is disastrous - it means you waste most of your computational effort on rejected samples!

Dimensionality: Assume π and q are Gaussian densities with same mean and $\sigma_q > \sigma_\pi$. Here $M = (\frac{\sigma_q}{\sigma_\pi})^d$ which grows with dimension. Say variance is 10% larger and d = 100: $M = 1.1^{100} \approx 14,000$ (acceptance rate $\approx 0.007\%$)

Extensions: Squeezing techniques from exercises

first success. This is exactly the setup for a geometric distribution! Why $P(\operatorname{accept}) = 1/M$? From the previous proof, we showed: $P(X \text{ accepted}) = \frac{1}{M}$. So each trial succeeds (accepts) with probability 1/M. Why $T \sim \operatorname{Geometric}(1/M)$? Think of it like coin flips: "Heads" = accept (probability 1/M), "Tails" = reject (probability 1/M). T is the number of flips until the first heads. This is the definition of a geometric distribution! $P(T = k) = \left(1 - \frac{1}{M}\right)^{k-1} \cdot \frac{1}{M}$. We fail (k-1) times, then succeed on the k-th try. Why E(T) = M? For a geometric distribution with success probability P = 1/M: $E(T) = \frac{1}{1} = \frac{1}{1/M} = M$.

Each trial (drawing X from g and U from Uniform[0, 1]) is independent. Each trial has the same probability of success (acceptance). We stop at the