WEEK: MODEL BUILDING AND DEEP LEARNING

DAY 16 (14/07/2025)

Supervised Learning Algorithms:

Today, I explored the intuitive logic behind three core **Supervised Learning algorithms**. Supervised learning means that the model learns from **labeled data**, where each input has a corresponding correct output. Understanding these algorithms is important because they form the foundation for many practical machine learning applications.

1. Simple Linear Regression

Goal:

- Predict a **continuous numeric value** based on input features.
- Example outputs: price of a house, temperature, rainfall, salary, or stock price.

Mechanism:

- Linear regression tries to find the **best fit line** through the data points.
- The "best fit line" is the line that **minimizes the total error** between predicted values and actual values.
- Once the line is computed, any new input (X) can be used to predict an output (Y).

Example:

- Predicting house prices:
 - o Input features: area in sq. ft, number of bedrooms
 - Output: predicted price in dollars

Advantages:

- Very simple and interpretable.
- Works well when the relationship between input and output is roughly linear.
- Useful as a baseline model to understand trends.

2. K-Nearest Neighbors (KNN)

Goal:

- Classify a new data point based on the labels of its **closest neighbors** in the training data.
- Example outputs: classifying images, detecting spam emails, predicting whether a customer will buy a product.

Mechanism:

- When a new data point comes in, the algorithm calculates the **distance** (usually Euclidean distance) to all points in the training dataset.
- It then selects the K closest neighbors.
- For classification, the new point is assigned the **most common label** among these K neighbors. For regression, it predicts the **average value** of the neighbors' outputs.

Example:

- Classifying animals based on height and weight:
 - If the new animal's height and weight are closest to several dogs rather than cats, it will be classified as a dog.

Advantages:

- Very simple and easy to understand.
- Non-parametric: no assumption about the underlying data distribution.
- Works well for small, clean datasets.

3. Decision Trees

Goal:

- Classify data or make decisions by asking a series of yes/no questions.
- Example outputs: spam detection, medical diagnosis, customer segmentation.

Mechanism:

- The tree starts at a **Root Node**, representing the whole dataset.
- Each **Internal Node** asks a question about a feature (e.g., "Is the pet's weight >10?").
- Based on the answer, the data moves down the appropriate branch.
- At the **Leaf Node**, the final prediction (class label or value) is made.

Example:

- Classifying fruits:
 - Feature 1: Color (red, green)
 - Feature 2: Size (small, large)
 - o Output: Apple, Cherry, or Watermelon

Advantages:

- Highly interpretable and easy to visualize.
- Can handle both numerical and categorical data.
- No need for feature scaling or normalization.

Reflection:

Today, I learned that different supervised learning algorithms have different strengths:

- Linear Regression for numeric prediction
- KNN for classifying new data points based on the similarity to existing examples
- Decision Trees for stepwise decision-making

Even with small datasets, these algorithms can provide powerful insights and form the foundation for more advanced models like neural networks.

Algorithm	Goal	Mechanism	Example
Linear Regression	Predict numeric value	Best fit line to minimize error	House price prediction
KNN	Predict class based on neighbors	Assign label of K closest points	Dog vs Cat classification
Decision Tree	Step-by-step decision	Series of yes/no questions	Fruit classification