به نام آنکه جان را فکرت آموخت

بخش هفتم: طراحی پایگاه داده رابطهای

مرتضى اميني

نیمسال اول ۹۲–۹۳

(محتویات اسلایدها برگرفته از یادداشتهای کلاسی استاد محمدتقی روحانی رانکوهی است.)

طراحی پایگاه داده رابطهای

بخش هفتم: طراحی پایگاه داده رابطهای

- □ در **طراحی پایگاه دادههای رابطهای** باید موارد زیر را مشخص نمود:
 - 🗖 مجموعهای از رابطهها
 - 🖵 کلید(های) کاندید هر رابطه
 - 🗖 کلید اصلی هر رابطه
 - 🖵 کلید(های) خارجی هر رابطه (در صورت وجود)
 - 🗖 محدودیتهای جامعیتی ناظر بر هر رابطه

-طراحی با روش بالا به پایین (Top-Down)

☐ روشهای طراحی RDB:

_طراحی با روش سنتز [نرمال ترسازی رابطهها]

طراحی پایگاه داده رابطهای (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

- 🗖 روش طراحی بالا به پایین
- ابتدا مدلسازی دادهها را (با روش E] یا UML) انجام میدهیم و سپس مدلسازی را به \square
 - مجموعهای از رابطهها تبدیل میکنیم.
 - 🔲 روش طراحی سنتز رابطهای (نرمال ترسازی)
- 🖵 ابتدا مجموعه صفات خرد جهان واقع را مشخص می کنیم. سپس با تحلیل قواعد و محدودیتهای ناظر
 - به صفات و تشخیص وابستگیهای بین آنها، صفات را متناسباً با هم سنتز میکنیم (نوعی گروهبندی)
 - تا به مجموعهای از رابطههای حتی الامکان در نرمالترین فرم دست یابیم.
 - \square در عمل «**روش ترکیبی**» استفاده میشود، یعنی ابتدا روش بالا به پایین، سپس نرمال ترسازی.

ویژگیهای طراحی خوب

بخش هفتم: طراحی پایگاه داده رابطهای

- نمایش صحیح و واضح از خردجهان واقع باشد.
- 🖵 نمایشی صحیح از «خرد جهان واقع» به گونه ای که هیچ اشتباه معنایی در پاسخگویی به پرسش های کاربران بروز نکند.
 - 🖵 تمام دادههای کاربران قابل نمایش باشد و همه محدودیتهای (قواعد) جامعیتی منظور شده باشد.
 - 🖵 معنای هر یک از صفات از هر نوعموجودیت به درستی رعایت شده باشد.
 - 🔲 كمترين ميزان اختلاط اطلاعات
 - 🔲 انعطاف پذیری دربرابر نیازهای جدید کابران
 - 🔲 کمترین افزونگی
 - 🔲 کمترین هیچمقدار
 - 🖵 کمترین مشکل در عملیات ذخیرهسازی
 - 🔲 بیشترین کارایی در بازیابی

تامین چهار ویژگی آخر به صورت همزمان، در عمل ناممکن است!

طراحي بالا به پايين

بخش هفتم: طراحی پایگاه داده رابطهای

رو نه لزوماً در نرمال ترین صورت) در طراحی RDB، تبدیل نمودار [E]ER به مجموعهای از رابطههای نرمال (و نه لزوماً در نرمال ترین صورت) در طراحی

نهایتاً طراح تصمیم می گیرد چند رابطه داشته باشد و عنوان (Heading) هر رابطه چه باشد.

🔲 در نمودار مدلسازی معنایی دادهها، حالات متعدد داریم، که در ادامه به آنها میپردازیم.

 \Box فرض: تا اطلاع ثانوی، همه صفات تک مقداری هستند و موجودیتها ضعیف نیستند.

حالت ۱: طراحی ارتباط چند به چند

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ١

- n=2 درجه ارتباط: \square
- M:N چندی ارتباط: \square

سه رابطه لازم است.

🖵 طراحی در این حالت با کمتر از سه رابطه، افزونگی و هیچمقداری زیادی پدید میآورد.

STUD (<u>STID</u>,)

COR (COID,)

SCR (STID, COID, TR, YR, GR)

حالت 1: طراحي ارتباط چند به چند (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

تعميم حالت ١

- n>2 درجه: 🖵
- 🖵 ابتدا فرض می کنیم چندی رابطه M:N:P:... است.
 - n+1 🖵 رابطه طراحی میکنیم.
- □ سپس بررسی میکنیم که آیا محدودیت(های) خاصی روی چندی ارتباط بین بعض موجودیتها وجود دارد.
 - اگر بله، این محدودیت(ها) را در مرحله نرمالترسازی دخالت میدهیم. \longrightarrow تعداد رابطهها ممکن است بیش از n+1 شود.

حالت 1: طراحی ارتباط چند به چند (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

انمره ترم سال M بانتخاب N درس P استاد

STUD (<u>STID</u>,)

COR (COID,)

PROF (PRID,)

SCP (STID, COID, PRID, GR)

- فرض برای «محدودیت»: یک استاد فقط یک درس را تدریس می کند (البته در این مورد چندی رابطه در این مورد چندی رابطه در نشده که این محدودیت لحاظ نشده است).
 - . در این صورت باید رابطه SCP را به دو رابطه (یا بیشتر) تجزیه عمودی کنیم \Box
 - 🖵 این محدودیت را در مرحله دوم طراحی (در مباحث آتی) دخالت میدهیم.

حالت ۲: طراحی ارتباط یک به چند

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۲

- n=2 درجه ارتباط: \square
- 🗖 چندی ارتباط: 1:N

دو رابطه لازم است. رابطه سمت 1 به رابطه سمت FK ،N می دهد (بیرون از کلید اصلی).

DEPT (DEID, DTID,, DPHONE)

PROF (PRID, PRNAME,, PRANK, DEID, FROM)

حالت ۲: طراحی ارتباط یک به چند (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

در چه وضعی طراحی این حالت با سه رابطه قابل توجیه است؟

۱- وقتی که مشارکت سمت N در ارتباط غیرالزامی باشد (درصد مشارکت کمتر از ۳۰ درصد) و تعداد

استاد زیاد باشد، برای کاهش مقدار Null، رابطه نمایشگر ارتباط را جدا می کنیم.

٢- فركانس ارجاع به خود ارتباط بالا باشد و به صفات ديگر با فركانس پايين ترى احتياج باشد.

۳- تعداد صفات خود ارتباط زیاد باشد و باعث زیاد شدن درجه ارتباط PROF شود.

اگر مشارکت سمت N الزامی باشد، باید این محدودیت معنایی را از طریق هیچمقدارناپذیر بودن صفت کلید \Box

خارجی (با استفاده از NOT NULL) در رابطه نمایانگر نوع موجودیت سمت N، اعلام کرد.

حالت ۳: طراحی ارتباط یک به یک

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۳

- n=2 درجه ارتباط: \square
- 🖵 چندی ارتباط: 1:1

با دو / یا سه/ یا یک رابطه طراحی می کنیم.

 \square در صورت طراحی با α رابطه، رابطه مربوط به نوع موجودیت با مشارکت الزامی، α میگیرد.

COUR (COID,, BKID)

BOOK (BKID,, BKPRICE)

حالت ۳: طراحی ارتباط یک به یک (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

- 🔲 وقتی با سه رابطه توجیه دارد:
- 🗖 مشارکت طرفین غیرالزامی باشد
- 🖵 تعداد شرکت کنندگان (نمونهها) در ارتباط زیاد باشد
- 🖵 درصد مشارکت در رابطه ضعیف (کمتر از ۳۰٪) باشد و نیز ملاحظاتی در مورد فرکانس ارجاع.

- 🔲 وقتی با **یک** رابطه توجیه دارد :
- 🖵 تعداد صفات موجودیتها کم باشد
 - 🗖 مشار کت طرفین الزامی باشد
- 🗖 فرکانس ارجاع به ارتباط کم باشد.

حالت 4: طراحي ارتباط خود ارجاع چند به چند

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۴

- 🖵 حالت خاص حالت اول
 - n=1 درجه ارتباط: \square
- M:N چندی ارتباط: \square

دو رابطه لازم است.

COUR (COID,)

بیش از یک صفت از رابطه، از یک دامنه هستند. 🚤 —— COPRECO (COID, PRECOID)

- □ گراف ارجاع: COPRECO کراف ارجاع: COPRECO
- 🔲 نتیجه: صرف وجود ارتباط با خود، چرخه ارجاع ایجاد نمی شود. باید به چندی ارتباط توجه کنیم.

حالت ۵: طراحی ارتباط خود ارجاع یک به چند

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۵

- 🖵 حالت خاص حالت دوم
 - n=1 درجه ارتباط: \square
 - 🖵 چندی ارتباط: 1:N
 - یک رابطه لازم است.

🔲 در این رابطه چه نکاتی وجود دارد؟

EMPL (EMID, ENAME, ..., EPHONE, EMGRID)

↓ EMPL گراف ارجاع: EMPL

(Recursion برنامهای در SQL بدهید که شماره تمام مدیران در سلسله مدیریت را بدهد (با استفاده از تکنیک \square

حالت 6: طراحی ارتباط خود ارجاع یک به یک

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۶

- الت خاص حالت سوم 🖵
 - n=1 درجه ارتباط: \square
 - 🖵 چندی ارتباط: 1:1

با یک یا دو رابطه طراحی میکنیم.

🔲 اگر مشارکت در همپروژگی زیاد نباشد، از مدل II استفاده میکنیم.

C.K.

(I) طراحی: STPROJST (STID, STNAME,, \underline{JSTID})

(II) طراحى: STUD (STID, STNAME,)

🔲 در STJST هر یک از صفات میتوانند کلید اصلی باشند.

 $\mathbf{STJST} \ (\underline{\underline{STID}}, \quad \underline{\underline{JSTID}})$ $\underline{C.K.}$

🔲 آیا طرز دیگری هم برای طراحی وجود دارد؟

حالت 7: طراحي موجوديت ضعيف

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۷

🗖 موجودیت ضعیف داریم.

دو رابطه لازم است؛ یکی برای نوع موجودیت قوی، یکی برای نوع موجودیت ضعیف و ارتباط شناسا.

رابطه نمایشگر موجودیت ضعیف از موجودیت قوی FK می گیرد که در ترکیب با صفت ممیزه می شود PK.

PROF (PRID, PRNAME,)

PRPUB (PRID, PTITLE, PTYPE,)

حالت ۷: طراحي موجوديت ضعيف (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

🔲 تمرین: رابطههای لازم برای مدلهای دادهای زیر طراحی شود.

در این حالت ممکن است نسبت به یک موجودیت قوی، یک صفت ممیزه داشته باشد و نسبت به موجودیت قوی دیگر، صفت ممیزه دیگری داشته باشد.

حالت 1: طراحی صفت چندمقداری

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۸

- وجود یک صفت چندمقداری برای یک نوع موجودیت. lacksquare
 - 🖵 سه تکنیک دارد:
- ۱- [تکنیک عمومی] یک رابطه برای خود نوع موجودیت و یک رابطه برای هر صفت چندمقداری.

(بنابراین اگر نوع موجودیت m، E صفت چندمقداری داشته باشد، m+1 رابطه داریم.

PROF (PRID, PRNAME,)

PRTEL (PRID, PHONE)

✓ رابطه نمایشگر صفت چندمقداری از نوع

موجودیت اصلی FK می گیرد <u>داخل کلید</u>.

حالت 1: طراحی صفت چندمقداری (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

در مدلسازی، موجودیت ضعیف به صفت چندمقداری ارجحیت دارد ولی تکنیک عمومی طراحی آنها مثل هم است.

PRHIS (PRID, TTL, FROM, TO, INSTNAME,)

انجام IOIN انجام اشکال تکنیک عمومی: اگر برای نوع موجودیت اصلی اطلاعات کامل بخواهیم، باید عمل JOIN انجام دهیم که می تواند زمانگیر باشد.

حالت 1: طراحی صفت چندمقداری (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

- ۲- [در شرایط خاص] طراحی با یک رابطه (فرض: یک صفت چندمقداری): یک رابطه برای خود نوع موجودیت و صفت چندمقداری.
- با فرض مشخص بودن حداکثر تعداد مقداری که صفت چندمقداری میگیرد، به همان تعداد صفت در رابطه در نظر میگیریم.

منال فرض: هر استاد حداکثر سه شماره تلفن دارد.

PRTELTEL (PRID, PRNAME, PRRANK, PHONE1, PHONE2, PHONE3)

- 🖵 <u>مزیت این تکنیک: JOIN</u> لازم ندارد و لزومی ندارد که هر استاد حتما یک شماره تلفن داشته باشد.
 - □ عیب این تکنیک: هیچمقدار (Null) در آن زیاد است، اگر تعداد کمی از استادان، سه شماره تلفن داشته باشند.

حالت 1: طراحی صفت چندمقداری (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

۲- [در شرایط خاص] طراحی با یک رابطه (یک رابطه برای خود نوع موجودیت و یک صفت چندمقداری)
 شامل تمام صفات نوع موجودیت و صفت چندمقداری.

دیگر صفات خود نوع موجودیت

PRTELTEL (PRID, PHONE, PRNAME, PRNAK, ...)

- 🖵 شرط اصلی استفاده: هر استاد حداقل یک تلفن داشته باشد.
- □ شرایط دیگری که بهتر است برقرار باشد: تعداد کمی از استادها بیش از یک تلفن داشته باشند (به دلیل افزونگی). دلیل افزونگی) و حتیالامکان تعداد صفات خود نوع موجودیت کم باشد (به دلیل افزونگی).

حالت 9: طراحی ارتباط IS-A

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۹

- ا بین دو نوع موجودیت. \square وجود ارتباط \square IS-A بین دو نوع
 - 🖵 چهار تکنیک دارد:

۱- فرض: نوع موجودیت n ،E زیرنوع دارد.

n+1 رابطه طراحی می کنیم. یک رابطه برای زبرنوع و یک رابطه برای هر یک از زیرنوعها.

 \mathbf{E} (EID, X, Y)

E1 (<u>EID</u>, A, B)

E2 (EID, F)

. . .

En (EID, L, M, N)

حالت 9: طراحی ارتباط IS-A (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

مزیت این تکنیک: شرط خاصی از نظر نوع تخصیص ندارد (تکنیکهای دیگری که مطرح میشود، همگی

برای شرایط خاص هستند).

🖵 عیب این تکنیک: اگر بخواهیم در مورد یک زیرنوع، اطلاعات کامل به دست آوریم، باید JOIN کنیم.

حالت 9: طراحي ارتباط IS-A (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

رابطه و البطه: برای زبرنوع، رابطه ای طراحی نمی کنیم. بنابراین صفات مشتر ک باید در رابطه نمایشگر هر زیرنوع وجود داشته باشد.

E1 (EID, X, Y, A, B)

E2 (EID, X, Y, F)

. . .

En (EID, X, Y, L, M, N)

- 🖵 شرط لازم: باید تخصیص کامل باشد. اگر نباشد، بخشی از دادههای محیط قابل نمایش نیستند.
- ایست. اول: برای به دست آوردن اطلاعات کامل زیرنوعها نیازی به JOIN نیست.
- □ نکته: در این تکنیک، لزوماً افزونگی پیش نمیآید. اگر تخصیص همپوشا باشد میزانی افزونگی پیش میآید.

حالت 9: طراحي ارتباط IS-A (ادامه)

_____ بخش هفتم: طراحی پایگاه داده رابطهای

۲- طراحی فقط با یک رابطه، با استفاده از صفت نمایشگر نوع زیرنوعها

E (EID, X, Y, A, B, F, L, M, N, TYPE)

مدير ? ? ? a1 b1 ? ? مدير

مشاور x2 y2 ? ? !2 m2 n2 مشاور

🖵 شرط استفاده از این تکنیک: تخصیص مجزا باشد؛ یعنی یک نمونه کارمند، جزء نمونههای حداکثر یک

زیرنوع باشد.

- □ مزیت این تکنیک: برای به دست آوردن اطلاعات کامل زیرنوعها نیازی به JOIN نیست.
 - 🖵 عیب این تکنیک: هیچمقدار (Null) زیاد دارد و درجه رابطه زیاد است.

حالت 9: طراحي ارتباط IS-A (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

۴- طراحی فقط با یک رابطه، با استفاده از آرایه بیتی؛ هر بیت نمایشگر نوع یک **زیرنوع**. در واقع برای

نمایش هر نمونه موجودیت، بسته به اینکه در مجموعه نمونههای کدام زیرنوع باشد، بیت مربوطهاش را ۱ میکنیم.

E	(EID,	Χ,	Y, A,	B, F,	L,	M,	N,		له بیتی TB2, منشی	,TBn)
	100	x 1	y 1					1	0	0
	200	x 2	y2					0	1	0

🖵 شرط استفاده از این تکنیک: وقتی تخصیص هم پوشا باشد (سایر شرایط همانها که در تکنیک ۳ گفته

حالت 10: طراحی ارثبری چندگانه

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۱۰

- 🖵 وجود ارثبری چندگانه بین یک زیرنوع با چندزبرنوع
- اگر زیرنوع، n زبرنوع داشته باشد، رابطه نمایشگر زیر حداقل n کلید کاندید دارد. lacksquare

STUD (STID, STNAME, ...)

EMPL (EID, ENAME, ...)

STEM (STID, EID, MAXW)

ایا ممکن است برای زیرنوع اصلاً رابطه طراحی نکنیم؟

حالت 11: طراحي زيرنوع اجتماع (U-Type)

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۱۱

اربرنوع است. (Category زیرنوع U-Type دیت E زیرنوع است. \Box

n+1 رابطه طراحی میکنیم.

حالت 11: طراحي زيرنوع اجتماع (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

- n+1 🔲 رابطه
- اگر شناسه زبرنوعها از دامنههای متفاوت باشد، رابطه نمایشگر زیرنوع، FK میدهد به رابطههای نمایشگر زبرنوعها، خارج از کلید.
- اگر شناسه زبرنوعها از یک دامنه باشد، کلید رابطه نمایشگر زیرنوع، همان کلید رابطههای نمایشگر \Box PERS (PID, ..., OID)

COMP (CID, ..., OID) هم همین نکته مطرح است.)

BANK (BID,, OID)

چون دامنه کلیدهای زبرنوعها یکسان نیست، خودمان کلید ساختگی میگذاریم. —> OWNER (OID,...)

VEHIC (VID,)

OWNS (OID, VID, F, T,)

SAVARY (VID, N, ...)

BARY (VID, T,)

حالت 11: طراحي ارتباط IS-A-PART-OF

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۱۲

- □ وجود ارتباط IS-A-PART-OF
- اگر نوع موجودیت کل، n نوع موجودیت جزء داشته باشد، تعداد n+1 رابطه طراحی می کنیم.
- E

 E(EID,)

 E1D

 E(EID,)

 EnID

 En (EnID, EID,)

 En (EnID, EID,)

حالت ۱۳: طراحی تکنیک Aggregation

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۱۳

- 🖵 استفاده از تکنیک Aggregation در مدلسازی
- ابتدا نوع موجودیت انتزاعی (بخش درون مستطیل خطچین) را طراحی می کنیم (با توجه به درجه و چندی ارتباط). سپس بخش بیرون آن را (باز هم با توجه به چندی ارتباط و درجه آن).

STUD (STID,)

COUR (COID,)

SCR (STID, COID, TR, YR, GR)

PROF (PRID,)

OFFERING (STID, COID, PRID, GR#, CLASS#)

انتخاب الستادة المره ترم سال انتخاب الماره المره الماره ا

حالت ۱۳: طراحی تکنیک Aggregation (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

- 🗖 این تکنیک چگونه کارایی سیستم را افزایش میدهد (نسبت به طراحی با یک ارتباط سه-تایی)؟
- اگر مراجعه به ارتباط «انتخاب» بالا باشد و فرکانس ارجاع به ارتباط «ارائه» پایین باشد، سیستم با این
 - طراحی کاراتر عمل میکند.

حالت ۱۴: طراحی با وجود چند ارتباط

بخش هفتم: طراحی پایگاه داده رابطهای

حالت ۱۴

- 🖵 در صورتیکه چند ارتباط مثلاً بین دو نوع موجودیت برقرار باشد.
- هر ارتباط را با توجه به وضع آن از نظر درجه و چندی ارتباط طراحی میکنیم. اما برای کاهش احتمال اشتباه در طراحی توصیه می شود اول ارتباطهای M:N، سپس 1:N و در آخر 1:1 را طراحی میکنیم.

حالت 14: طراحي با وجود چند ارتباط (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

DEPT (DEID,, DPHONE, PRID)

representation of the proof (PRID,, PRRANK, MDEID, SUB, MEMDEID, FROM, CDEID, INT)

INVITED (DEID, PRID, YR, TR)

🔲 همین سیستم حداکثر با هفت رابطه نیز قابل طراحی است.

حالت 10: ارتباط سلسله مراتبي

بخش هفتم: طراحی پایگاه داده رابطهای

تمرین: فرض می کنیم بین n نوع موجودیت، هر یک نمایش داده شده با یک نوع رکورد، ارتباط سلسله مراتبی وجود داشته باشد (بر اساس ساختار سلسله مراتبی HDS). مطلوب است طراحی این محیط در مدل رابطه ای.

طراحی RDB- روش سنتز یا نرمالتر سازی رابطهها

بخش هفتم: طراحی پایگاه داده رابطهای

ایده اصلی: یک رابطه، هر چند «نرمال » (با تعریفی که قبلاً دیدیم) ممکن است «آنومالی» (مشکل) داشته

باشد در عملیات ذخیرهسازی (در درج، حذف یا بهنگامسازی).

- ☐ آنومالی در درج: عدم امکان درج «یک فقره اطلاع» که منطقاً باید قابل درج باشد.
 - ☐ آنومالی در حذف: حذف یک اطلاع ناخواسته در پی حذف اطلاع خواسته.
 - ☐ **آنومالی در بهنگامسازی:** بروز فزون کاری.
 - 🔲 پس باید رابطه را نرمال تر کرد.

بخش هفتم: طراحی پایگاه داده رابطهای

فرمهای نرمال

🖵 نرمال بودن رابطه (نرمالیتی)، فرمها (صورتها/ سطوح/ درجات) [NF: Normal Forms] مختلفی دارد.

□ فرمالهای نرمال: 1NF - فرمهای کلاسیک کادی (Codd) 2NF □ 3NF □ (Boyce-Codd Normal Form) BCNF (Projection Join Normal Form) PJNF یا 5NF 🗖 6NF □ (Domain Key Normal Form) DKNF

رابطه بین فرمهای نرمال

بخش هفتم: طراحی پایگاه داده رابطهای

 $5NF \subset 4NF \subset BCNF \subset 3NF \subset 2NF \subset 1NF \square$

🗖 یعنی رابطهای که BCNF باشد،

مثلا 3NF هم هست.

All Relations 1NF 2NF 3NF **BCNF** 4NF 5NF

بخش هفتم: طراحی پایگاه داده رابطهای

- □ برای بررسی فرمهای نرمال، نیاز به مفاهیمی داریم از **«تئوری وابستگی**» (Dependency Theory).
 - 🗖 مفاهیمی از تئوری وابستگی:
 - (Functional Dependency) وابستگی تابعی
 - [Fully Functional Dependency] [تام] (Fully Functional Dependency)
 - 🖵 وابستگی تابعی با واسطه (Transitive Functional Dependency)

بخش هفتم: طراحی پایگاه داده رابطهای

تروشی و ایستگی تابعی: صفت R.B با صفت R.A وابستگی تابعی دارد اگر و فقط اگر به ازای یک مقدار از A

یک مقدار از ${
m B}$ متناظر باشد. به عبارت دیگر اگر t_i و t_i دو تاپل از ${
m R}$ باشند، در این صورت:

$$A \rightarrow B \iff \forall t_i, t_i \in R$$
, $IF \ t_i.A = tj.A \ THEN \ t_1.B = t_2.B$

$: A \rightarrow B \square$

- A Determines B
- B ، A ا تعیین می کند. ■

آيا داريم:

A→B? بله

R(\mathbf{A}		R		\boldsymbol{C})
1/	$\boldsymbol{\sqcap}$,	D	•		•

a_1	b_1	c_1
a_1	b_1	c_2
a_2	b_2	c_2
a_3	b ₃	c_3
a_4	b_2	c_3

$$a_3 \rightarrow b_3$$

 $a_1 \rightarrow b_1$

 $a_1 \rightarrow b_1$

 $a_2 \rightarrow b_2 \leq$

$$a_4 \rightarrow b_4$$

$$a_1 \rightarrow c_1$$
 $a_1 \rightarrow c_2$

$$a_1 \rightarrow c_1$$
 $a_1 \rightarrow c_2$

B→C؛ خير

وابستگی تابعی (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

□ نكات:

- (۱) صفات طرفین FD می توانند ساده یا مرکب باشند.
 - $A \rightarrow B$ اگر $A \rightarrow B$ ، لزوماً نداریم: $A \rightarrow B$.
- (۳) اگر $A \supseteq B$ ، به $A \to B$ نامهم یا بدیهی (Trivial) گوییم.
- $K \rightarrow G$ انگاه داریم: $G \subseteq H_R$ یا $K \rightarrow G$ یا $K \rightarrow G$ آنگاه داریم: $K \rightarrow G$

بخش هفتم: طراحی پایگاه داده رابطهای

(۵) نمایش FDهای رابطه

- به صورت یک مجموعه:

$$\mathbf{F} = \{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

- با نمودار FDها:

- روی خود عنوان رابطه با استفاده از فلشهایی:

وابستگی تابعی (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

(۶) تفسیر FD: هر FD نمایشگر یک «قاعده معنایی» از محیط است: نوعی قاعده جامعیتی (که باید به

نحوی به سیستم داده شود. خواهیم دید که در بحث طراحی، از طریق طراحی خوب به سیستم میدهیم).

STJ→STD: یک رشته فقط در یک دانشکده ارائه میشود.

STID→STD: یک دانشجو فقط در یک دانشکده تحصیل می کند.

یک اِظهار بنویسید که قاعده معنایی $X \rightarrow Y$ را پیادهسازی نماید. R(X, Y, Z) ، یک اِظهار بنویسید که قاعده معنایی

(به طور مثال می توان از EXISTS استفاده کرد)

CREATE ASSERTION XTOYFD

CHECK (NOT EXISTS (SELECT X FROM R GROUP BY X HAVING MAX(Y)!=MIN(Y)))

حساب رابطهای: (FORALL R1 (FORALL R2 IF R1.X=R2.X THEN R1.Y=R2.Y) دساب رابطه ای دادند (FORALL R1 (FORALL R2 IF R1.X=R2.X THEN R1.Y=R2.Y)

وابستگی تابعی- قواعد آرمسترانگ

بخش هفتم: طراحی پایگاه داده رابطهای

□ قواعد استنتاج آرمسترانگ

1- if $B \subseteq A$ then $A \rightarrow B \Rightarrow A \rightarrow A$

(قاعده انعكاس)

2- if $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$

(قاعدہ تعدی یا تراگذاری)

3- if $A \rightarrow B$ then $(A,C) \rightarrow (B,C)$

(قاعده افزایش)

4- if $A \rightarrow (B,C)$ then $A \rightarrow B$ and $A \rightarrow C$

(قاعده تجزیه)

5- if $A \rightarrow B$ and $C \rightarrow D$ then $(A,C) \rightarrow (B,D)$

(قاعدہ ترکیب)

6- if $A \rightarrow B$ and $A \rightarrow C$ then $A \rightarrow (B,C)$

(قاعده اجتماع)

7- if $A \rightarrow B$ and $(B,C) \rightarrow D$ then $(A,C) \rightarrow D$

(قاعده شبهتعدی)

بخش هفتم: طراحی پایگاه داده رابطهای

سه قاعده اول کامل هستند، بدین معنا که با داشتن یک مجموعه از وابستگیهای تابعی ${f F}$ ، تمام $lue{f \Box}$ وابستگیهای تابعی منطقاً قابل استنتاج از F، با همین سه قاعده به دست می آیند و هیچ وابستگی تابعی دیگر (که از F قابل استنتاج نباشد) نیز به دست نمی آید.

🗀 قاعدهی یگانگی عمومی (General Unification):

if
$$A \to B$$
 AND $C \to D$ THEN $A \cup (C - B) \to (B, D)$

چرا به این قاعده، قاعدهی یگانگی عمومی گویند؟

بخش هفتم: طراحی پایگاه داده رابطهای

- ☐ تمرین: قاعده ۲ را اثبات کنید (با استفاده از برهان خلف).
- - اما به ازای دومقدار متمایز C، مقدار B ممکن است دو مقدار متمایز با یک مقدار باشد.

در حالت اول، فرض B o B و در حالت دوم، فرض B o C نقض میشود. پس فرض خلف باطل است و حکم برقرار است.

بخش هفتم: طراحی پایگاه داده رابطهای

🔲 کاربردهای قواعد آرمسترانگ

A+ :A محاسبه بستار صفت

مجموعه تمام صفاتی که با A، وابستگی تابعی دارند.

نکته: اگر $A \leftarrow A^+ = H_R$ سوپرکلید (الگوریتم تشخیص سوپرکلید و نه کلید کاندید)

 F^+ محاسبه بستار مجموعه وابستگیهای تابعی یک رابطه:

مجموعه تمام FDهایی که از F منطقاً استنتاج میشوند:

$$F=\{A\rightarrow B, B\rightarrow C\} \Rightarrow F^+=\{A\rightarrow B, B\rightarrow C, A\rightarrow C, (A,C)\rightarrow (B,C), \ldots\}$$

وابستگی تابعی (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

- \mathbf{F}^+ کاربردهای مهم \square
- G و F های رابطه R: به طور نمونه F و F
 - $\mathsf{F}^+ = \mathsf{G}^+$ شرط معادل بودن: \square
 - هر FD که از F به دست آید، از F هم به دست می آید.
 - ۲- تشخیص FD افزونه
 - $(F-f)^+=F^+$ را افزونه گوییم، هرگاه: $F = F^+$ را افزونه گوییم، هرگاه: G = G
 - یعنی بود و نبود f در محاسبه F^+ تاثیری نداشته باشد. lacktriangle

بخش هفتم: طراحی پایگاه داده رابطهای

۳- محاسبه مجموعه کاهشناپذیر FDهای یک رابطه

سه شرط دارد:

۱- هیچ FD در آن افزونه نباشد.

۲- سمت راست هر FD، صفت ساده باشد.

۳- سمت چپ هر FD، خود کاهشناپذیر باشد: در وابستگی تابعی $X \to X$ را کاهشناپذیر (و

وابستگی $X \to Y$ را کامل) گوییم، هرگاه Y با هیچ زیرمجموعه از X (غیر از خود X)، Y نداشته باشد.

در غیر اینصورت X را کاهشپذیر گوییم و وابستگی $Y {\leftarrow} X$ را ناکامل گوییم.

اگر وجود داشته باشد، آنگاه X کاهشپذیر و $X \to Y$ یک X است. $X \to Y \to X$ ناکامل است. $(A,B) \to Y \to Y$ ناکامل $Y \to Y$

وابستگی تابعی (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

- تمرین: اگر یک FD کامل به صورت A
 ightarrow Y داشته باشیم، آنگاه FD ناکامل Y
 ightarrow (A,B) از آن قابل استنتاج \Box
 - $(A,B){
 ightarrow}(Y,B)$ اثبات: با استفاده از قاعده افزایش از $Y{
 ightarrow}$ نتیجه می گیریم \Box

با استفاده از قاعده تجزیه داریم: B $(A,B) \rightarrow B$ که یک FD بدیهی است و Yهمان حکم است.

مجموعه کاهشناپذیر چه کاربردی دارد؟

 $ext{FD ،A نابعی با واسطه (TFD):} اگر <math> ext{B}
ightarrow ext{C}
ightarrow ext{B}$ و $ext{A}
ightarrow ext{B}$ ، می گوییم $ext{C}$ با واسطه از

طريق B دارد.

اگر B o A هم برقرار باشد، آنگاه آن FD با واسطه بدیهی (نامهم) است.

فرمهاي نرمال كلاسيك كادي

بخش هفتم: طراحی پایگاه داده رابطهای

🖵 این تعریف <u>صرفاً</u> می گوید هر رابطه <u>نرمال</u> در 1NF است.

جزء PK هم نباشد) در آن، با کلید اصلی رابطه، FD کامل داشته باشد.

- یان دیگر در این رابطه FD ناکامل با کلید اصلی نداشته باشیم.
- الگوریتم تبدیل 1NF به 2NF: حذف FDهای ناکامل از طریق تجزیه عمودی رابطه به طور مناسب.

وقط اگر در 2NF باشد و هر صفت ناکلید با کلید اصلی رابطه، فقط اگر در 2NF باشد و هر صفت ناکلید با کلید اصلی رابطه، فقط

FD بى واسطە داشتە باشد (FD باواسطە نداشتە باشد).

☐ الگوريتم تبديل 2NF به 3NF: حذف FDهاى با واسطه.

بخش هفتم: طراحی پایگاه داده رابطهای

مثالی قید می کنیم و در آن تا 3NF پیش میرویم.

- در حالت کلی، تمام صفات دانشجو، درس و انتخاب در یک رابطه می توانند باشند.
 - 🔲 قواعد محيط:
 - ۱- یک دانشجو در یک رشته تحصیل می کند.
 - ۲- یک دانشجو در یک دانشکده تحصیل می کند.
 - ۳- یک رشته در یک دانشکده ارائه می شود.

FDهای ناشی از PK (سمت چپ PK)

R (STID, COID, STJ, STD, GR)

777	CO1	Phys	D11	19
777	CO2	Phys	D11	16
777	CO3	Phys	D11	11
888	CO1	Math	D12	16
888	CO2	Math	D12	18
444	CO1	Math	D12	13
555	CO1	Phys	D11	14
555	CO2	Phys	D11	12

بخش هفتم: طراحی پایگاه داده رابطهای

- رابطه ${\bf R}$ در $1 {\rm NF}$ است (چون همه صفات تک مقداری هستند) ولی آنومالی دارد و باید نرمال تر شود.
 - 🔲 آنومالیهای رابطه R:

۱ - در درج:

درج کن این فقره اطلاع درمورد یک دانشجو را: $\langle 666', \text{ `chem'}, \text{ `D16'} \rangle$ درج کن این فقره اطلاع درمورد یک درسی که گرفته شده چیست.

۲- در حذف:

فرض مى كنيم '444' در اين لحظه فقط همين تك درس را داشته باشد.

حذف كن فقط اين اطلاع را: \cdot (CO1', 13')

حذف انجام مىشود اما اطلاع ناخواسته هم حذف مىشود.

۳- در بهنگامسازی:

تغییر رشته تحصیلی دانشجو با شماره 777 به Chem.

برای انجام آن فزونکاری داریم؛ بهنگامسازی منتشرشونده (Propagating Update).

بخش هفتم: طراحی پایگاه داده رابطهای

اليل آنوماليهاي رابطه R: 🖵

- از دیدگاه عملی: پدیده اختلاط اطلاعات، یعنی اطلاعات در مورد خود موجودیت دانشجو با اطلاعات در مورد انتخاب درس مخلوط شده است.
 - از دیدگاه تئوری: وجود FDهای ناکامل \Box

 $\begin{cases}
(STID, COID) \to STJ \\
STID \to STJ
\end{cases}$ $\begin{cases}
(STID, COID) \to STD \\
STID \to STD
\end{cases}$

- این FDهای ناکامل باید از بین بروند. برای این منظور رابطه \mathbf{R} را باید چنان تجزیه عمودی کنیم که در رابطههای حاصل، \mathbf{FD} ناکامل نباشد.
 - ☐ برای این کار از عملگر پرتو استفاده می کنیم. پرتوی که منجر به یک <u>تجزیه خوب</u> شود.

بخش هفتم: طراحی پایگاه داده رابطهای

 $\Pi_{\langle STID,COID,GR \rangle}(R)$

 $\Pi_{\langle STID, STJ, STD \rangle}(R)$

SCG (STID, COID, GR)

777	CO1	19
777	CO2	16
777	CO3	11
888	CO1	16
888	CO2	18
444	CO1	13
555	CO1	14
555	CO2	12

SSD (STID, STJ, STD)

777	Phys	D11
888	Math	D12
444	Math	D12
555	Phys	D11

بخش هفتم: طراحی پایگاه داده رابطهای

\('666', 'chem', 'D16'\) درج کن: \(\cdot' \)

بدون مشکل در SSD درج می شود.

-۲ حذف کن: (CO1', 13')

بدون مشكل از SCG حذف مي شود.

بخش هفتم: طراحی پایگاه داده رابطهای

- یر طراحی جدید، FD های ناکامل از بین رفتند. بنابراین SSD و SNF هستند.
- تاکید: رابطه R است هرگاه اولاً در R باشد و ثانیاً هر صفت ناکلید با کلید اصلی، R کامل داشته باشد (رابطه، R ناکامل نداشته باشد).
 - تمرین: بررسی شود که آیا در این تجزیه همه FDها محفوظ میمانند؟ \Box
- نکته: باید توجه کنیم که در تجزیه، FDای از دست نرود، چون هر FD یک قاعده جامعیت در محیط است.
 - 🔲 توجه داشته باشید که در این تجزیه هیچ اطلاعی از دست نمیرود. یعنی اگر کاربر رابطه اصلی را به هر

دلیلی بخواهد با پیوند دو رابطه جدید به دست می آید. (پیوند از نوع CK-FK)

 $R = SCG \bowtie SSD$

بخش هفتم: طراحی پایگاه داده رابطهای

در حالت کلی اگر R_1 R_2 ، R_1 پرتوهای دلخواه از R باشند، داریم (ممکن است تاپلهای افزونه بروز R_1 کند):

 $R \subseteq R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n$

🖵 اگر در صفات پیوند هیچمقدار داشته باشیم، چه پیش میآید؟

 $T(\underline{A}, B, C, D, E) \Rightarrow T_1(A, B) T_2(B, C, D, E)$

- 🖵 تاپلهایی در پیوند از دست میروند. به این تاپلها، تاپلهای آونگان [معلق] (Dangling) گوییم.
 - در مباحث نرمالترسازی معمولا فرض بر این است که صفت (صفات) پیوند هیچمقدار ندارند. \Box

بخش هفتم: طراحی پایگاه داده رابطهای

آیا رابطههای جدید (SCG و SSD) آنومالی ندارند؟ \square

SSD (STID, STJ, STD)

 \square آنومالیهای SSD:

۱ - در درج:

اطلاع: «رشته IT در دانشكده D20 ارائه مىشود.» به دليل FD شماره ۳، اين اطلاع منطقاً بايد قابل درج باشد، اما درج ناممکن است. چون کلید ندارد، باید حداقل یک دانشجوی این رشته را بشناسیم.

۲- در حذف:

حذف كن ('Chem') حذف

حذف انجام می شود ولی اطلاع «رشته شیمی در D16 ارائه می شود»، ناخواسته حذف می شود.

۳- در بهنگامسازی:

«شماره دانشکده رشته فیزیک را عوض کنید». به تعداد تمام دانشجویان این رشته باید بهنگامسازی شود.

بخش هفتم: طراحی پایگاه داده رابطهای

دلیل آنومالیهای SSD: 🖵

انومالیهای SSD، وجود FD با واسطه بین صفت ناکلید با کلید اصلی است (به دلیل FD شماره T).

🖵 این FD باید از بین برود.

🖵 فرض کنید SSD را به صورت زیر تجزیه کنیم:

$SJ (\underline{STID}, \underline{STJ})$, $SD (\underline{STJ}, \underline{STD})$

777	Phys	Phys Math	D11
888	Math	Math	D12
444	Math Math		
555	Phys		

🖵 افزونگی کم شد!

🖵 تمرین: بررسی شود که رابطههای جدید آنومالیهای SSD را ندارند.

بخش هفتم: طراحی پایگاه داده رابطهای

این رابطهها در 3NF هستند.

- □ اولاً در 2NF هستند.
- 🖵 ثانياً FD با واسطه نداريم.
- . تمرین: بررسی شود که در این تجزیه هیچ اطلاعی از دست نمیرود و ${
 m FD}$ ها هم حفظ میشوند
- FD است اگر و فقط اگر اولاً در 2NF باشد و ثانیاً هر صفت ناکلید با کلید اصلی R باشد و ثانیاً هر صفت ناکلید با کلید اصلی R باشد).
 - 🔲 نتیجه: FDهای ناکامل و باواسطه مزاحم هستند و باید از بین بروند.
- در عمل رابطهها باید حداقل تا 3NF نرمال شوند و خواهیم دید حتی الامکان در BCNF یا بیشتر باشند.
 - در رابطه 3NF داریم که «یک بوده (واقعیت) : یک رابطه» و یا «یک شیئ : یک رابطه».

[بحث تكميلي] تجزيه خوب

بخش هفتم: طراحی پایگاه داده رابطهای

(Nonloss/Lossless Decomposition) تجزیه خوب

۱- بی حشو: در پیوند پرتوها، تاپل حشو [افزونه] بروز نکند.

۲- حافظ FDهای رابطه اصلی حفظ شوند. FDای در اثر تجزیه از دست نرود و همه FDهای رابطه اصلی حفظ شوند.

۳- بی حذف: در پیوند پرتوها هیچ تاپلی حذف نشود (صفت یا صفات پیوند هیچمقدار نباشند).

 $\mathsf{U}_{i\in\{1,\dots,n\}}\,\mathsf{H}_{\mathsf{R}_i}=\mathsf{H}_\mathsf{R}$ حافظ صفات: F

در بیشتر متون کلاسیک، بحث تجزیه خوب، تحت عنوان تجزیه بی کاست یا بی گمشدگی (Nonloss/Lossless Decomposition) مطرح شده است، که چندان مناسب به نظر نمی رسد، مگر آنکه فرض کنیم که منظور همان بی حشو و حافظ وابستگی های تابعی بودن است (و دو ویژگی دیگر تجزیه خوب را پیش فرض تجزیه خوب بدانیم).

[بحث تكميلي] تجزيه خوب (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

🗖 قضیه ریسانِن (Rissanen):

- رابطه R به دو پرتوش (R_1 و R_2) تجزیه خوب میشود، اگر R_1 و R_2 از یکدیگر مستقل باشند.
 - و R_2 مستقل از یکدیگرند اگر و فقط اگر: R_1
 - \sim بی حشو بودن \sim بی از آنها \sim باشد \sim بی حشو بودن صفت مشترک، حداقل در یکی از آنها \sim
- تمام FDهای رابطه اصلی یا در مجموعه FDهای R_1 و R_2 وجود داشته باشند یا از آنها منطقاً Fاستنتاج شوند \Rightarrow حافظ Fاها
- رقرار $A \to C$ و $B \to C$ ، $A \to B$ وابستگیهای R(A, B, C) برقرار R(A, B, C) برقرار $R_1(A, B)$ برقرار باشد، در اینصورت تجزیه خوب چنین است: $R_1(A, B)$ و $R_1(A, B)$
- در اینجا B در رابطه دوم کلید کاندید است، چون همه صفات به آن وابستگی تابعی دارند و کاهشپذیر هم نیست.

[بحث تكميلي] تجزيه خوب (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

🗖 مثال: رابطه SSD را در نظر می گیریم. این رابطه به سه شکل به پرتوهای دو گانی تجزیه می شود.

- I SS (<u>STID</u>, STJ) SD (<u>STJ</u>, STD)
- II SS (STID, STJ) SD (STID, STD)
- \mathbf{III} SS(\underline{STID} , STD) SJ (\underline{STJ} , STD)

ا خوب است، چون هر دو شرط ریسانِن را دارد. $oldsymbol{\square}$

$$\left. \begin{array}{c}
STID \to STJ \\
STJ \to STD
\end{array} \right\} \Rightarrow STID \to STD$$

- یجزیه II خوب نیست، چون FD از دست میدهد. lacksquare
- یحزیه III خوب نیست، چون FD از دست می دهد. \Box

فرم نرمال BCNF

بخش هفتم: طراحی پایگاه داده رابطهای

اصطلاح: در وابستگی تابعی A
ightarrow B (A Determines B) ابه A دترمینان گویند. \Box

CK مهم و کاهشناپذیر، R و فقط اگر در آن دترمینان هر R مهم و کاهشناپذیر، R

ىاشد.

- 🔲 در 3NF، تنها باید دترمینان رابطه PK باشد.
- 🖵 چون رابطه میتواند بیش از یک CK داشته باشد، BCNF از 3NF قویتر است.

بخش هفتم: طراحی پایگاه داده رابطهای

. بخش هفتم: طراحی پایگاه داده رابطهای

- از 3NF قوی تر است. \Rightarrow رابطه می تواند در 3NF باشد، اما در BCNF نباشد.
- رمثال دیده BCNF ما فقط یک CK داشته باشد. R اگر R در R باشد، در R فقط یک R داشته باشد. R در R در R فقط یک R فقط یک R داشته باشد. R در R در R در R فقط یک R فقط یک R داشته باشد. R در R در R فقط یک R فقط یک R در R در R در R فقط یک R فت یک R فقط یک R فقط
 - اشد. \square داشته باشد. \square داشته باشد. \square
- هم BCNF هم 3NF مجزا باشند (صفت مشترک نداشته باشند). \Rightarrow اگر R در 2 باشد، در 2 هم BCNF هم

هست

. نیست. \Rightarrow اگر R در R اشد، لزوماً در BCNF نیست. \Rightarrow اگر R در R نیست.

بخش هفتم: طراحی پایگاه داده رابطهای

الت 1-II برای حالت

دو دترمینان، هر دو هم CK هستند.

SCNG (STID, COID, STNAME, GR)
C.K.

C.K.

(فرض: هیچ دو دانشجویی نام یکسان ندارند.)

بخش هفتم: طراحی پایگاه داده رابطهای

- . کافی است یک دترمینان در رابطه پیدا کنیم که CK نیست یک دترمینان در رابطه پیدا کنیم که \square
 - \square پس در کدام فرم نرمال است \square
 - 🗖 1NF هست. چون صفتها تکمقداری هستند.
- اناکامل نداریم. خون FD ناکامل نداریم. هر صفت ناکلید با کلید اصلی FD ناکامل نداشته باشد. هست. چون اکامل نداریم. هر صفت ناکلید با کلید اصلی
 - ⇒در اينجا STNAME صفت غير كليد نيست، پس FD ناكامل نيست.
 - 🖵 3NF هست. چون FD باواسطه با کلید اصلی نداریم.
 - 🔲 آیا این رابطه تجزیه میشود؟

SCG(<u>STID, COID</u>, GR)

 \Rightarrow مستند. \Rightarrow BCNF هر دو

 $-SSN (\underbrace{STID}_{C.K.}, \underbrace{STNAME}_{C.K.})$

🔲 آیا طرز دیگر هم میشود تجزیه کرد؟ بله، به جای STNAME ،SCG در STNAME بگذاریم.

بخش هفتم: طراحی پایگاه داده رابطهای

- نشان دهید که این تجزیه خوب است؛ یعنی با پیوند پرتوها، رابطه اصلی به دست میآیدو هیچ FD از دست نمیرود.
 - \square چه پدیدهای در اینجا دیده می شود؟ این رابطه اختلاط اطلاعات دارد! با این همه 3NF است.

$\frac{\text{SCNG}}{\text{C.K.}} \times \frac{\text{COID}}{\text{C.K.}} \times \frac{\text{STNAME}}{\text{C.K.}} \times \frac{\text{GR}}{\text{C.K.}}$

نکته: صرف وجود اختلاط اطلاعات ایجاب نمی کند که رابطه در فرم نرمال ضعیفی باشد. \Box

- 🔲 تمرین: محیط دانشکده، قواعد معنایی:
- ۱- یک دانشجو یک درس را با یک استاد انتخاب می کند.
 - ۲- یک استاد فقط یک درس تدریس می کند.
 - ۳- یک درس توسط بیش از یک استاد ارائه میشود.

بخش هفتم: طراحی پایگاه داده رابطهای

🗖 فرض می کنیم طراح رابطه زیر را طراحی کرده است.

SCNG (ST#, CO#, PR#)
C.K.

- این رابطه در کدام فرم نرمال است؟
- ابتدا باید با استفاده از قواعد، CKها را مشخص کنیم. سپس نمودار FD را رسم کنیم.
 - ایا این رابطه، تجزیه خوب دارد؟
- نکته: اگر رابطه مثلاً 3NF باشد و تجزیه خوب نداشته باشد، نباید تجزیه کنیم تا رابطههای حاصل BCNF باشد.
- رابطه فوق در 3NF است و از نکته فوق این نتیجه مهم به دست میآید که این رابطه تجزیه خوب ندارد.

 $A \rightarrow B$ که در آن B ،A و B سه مجموعه از صفات هستند، اگر R(A,B,C) و R(A,B,C) در رابطه R(A,B,C) در R(A,B,C) به دو پرتو $R_1(A,B)$ و $R_2(A,C)$ تجزیه بی کاست $R_2(A,C)$ است.

------بخش هفتم: طراحی پایگاه داده رابطهای

□ تعریف زانیلو از BCNF:

، F^+ در BCNF است اگر و فقط اگر به ازای هر FD در R در R است اگر و فقط اگر به ازای هر R در R مانند $X \to A$ ، یکی از دو شرط زیر برقرار باشد :

1. آن FD نامهم باشد.

X سوپر کلید باشد. X

اگر به جای F^+ بگذاریم F، چه تغییری در شرایط پیش می آید؟

□ تعریف زانیلو از 3NF:

رابطه ی R با مجموعه FD هایش (F) در 3NF است اگر و فقط اگر به ازای هر FD در R ، مانند $X \to A$ ، یکی از سه شرط زیر برقرار باشد :

- ان FD نامهم باشد. 1
- X سوپر کلید باشد. X
- جزء کلید باشد. A

ترون وابستگی چندمقداری (MVD):

در رابطه R(A,B,C) (رابطه با سه صفت یا سه مجموعه صفات)، صفت B با صفت A دارد \Box

 ${
m B}$ اگر و فقط اگر به ازای یک مقدار ${
m A}$ ، مجموعهای به خوبی تعریف شده (خوش تعریف) از مقادیر متناظر باشد که به تغییرات C وابسته نباشد.

- یعنی به ازای هر جفت مشخص از (A,C)، مجموعه مقادیر B فقط با تغییرات A تغییر کند.
 - $A \rightarrow \rightarrow B :$ طرز نمایش \Box

وابستگي چندمقداري

بخش هفتم: طراحی پایگاه داده رابطهای

 $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C})$

a_1	$ \begin{cases} b_1 \\ b_2 \\ b_3 \end{cases} $	c_1
a_1	$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$	<i>c</i> ₂
a_2	${b_1 \brace b_7}$	<i>c</i> ₃

🔲 نکته : پدیده MVD بیان فرمال صفت چندمقداری است.

فرم نرمال 4NF

بخش هفتم: طراحی پایگاه داده رابطهای

------بخش هفتم: طراحی پایگاه داده رابطهای

□ نكات:

 $A \longrightarrow B$ باشد، به $A \longrightarrow A$ می گوییم MVD انامهم ا $A \longrightarrow B$

[اگر $A \cup B = H_R$ باشد، به $A \longrightarrow B$ می گوییم MVD اگر

Y- MVD در رابطههای با سه صفت [ساده یا مرکب] همیشه جفت است.

If $A \rightarrow \rightarrow B$ then $A \rightarrow \rightarrow (H-\{A,B\})$ یا $A \rightarrow \rightarrow C$

برای اثبات این نکته کافی است به جای یک جفت مقدار از (A, C)، یک جفت (A, B) را بگیریم، آن مجموعه برای C تشکیل میشود.

ست. هم قواعد آرمسترانگ وجود دارد که با قواعد مربوط به FDها متفاوت است.

بخش هفتم: طراحی پایگاه داده رابطهای

استاد از دانشجو گزارش آزمایشگاه میگیرد.

رابطه غیرنرمال با صفت چندمقداری

NNPSR (PR#, ST#, RE#)

🖵 در این محیط یک قاعده معنایی خاص وجود دارد: یک استاد از هر یک از دانشجویان یک گروه، هر یک از گزارشهای یک مجموعه گزارش را میگیرد.

🗖 اگر این «**قاعده معنایی**» نباشد، این مجموعهها شکل نمی *گ*یرد. NNPSR (PR# , ST# , RE#)

PR_1	\begin{pmatrix} 777 \ 888 \ 444 \end{pmatrix}	${R_1 \brace R_2}$
PR_2	{777 _} {666	$\{R_3\}$

بخش هفتم: طراحی پایگاه داده رابطهای

NNCTB(C# , T# , B#)

c_1	$\begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$	${b_1 \brace b_2}$
c_2	$\begin{cases} t_4 \\ t_7 \end{cases}$	$ \begin{cases} b_3 \\ b_4 \\ b_5 \end{cases} $

د T از روی کتاب B ارائه میشود.	کوسط استاد C توسط استاد
--------------------------------	-------------------------

بخش هفتم: طراحی پایگاه داده رابطهای

CTB(C# , T# , B#)

c_1	t_1	b_1
c_1	t_1	b_2
c_1	t_1	b_3
c_1	t_2	b_1
c_1	t_2	b_2
c_1	t_2	b_3
c_1	t_3	b_1
c_1	t_3	b_2
c_1	t_3	b_3
c_2	t_4	b_3

فرم نرمال شده ی مثال پیش:

- 🔲 فرم نرمال شده این مثال، افزونگی زیادی دارد.
 - رابطه «تمام کلید» است؛
- یعنی هیچ یک به تنهایی و هیچ ترکیب دوتایی آن CK نیست. $lue{\Box}$
 - 🔲 رابطه تمام كليد حداقل BCNF است.
 - 🖵 زیرا یک دترمینان دارد که آن هم CK است.

بخش هفتم: طراحی پایگاه داده رابطهای

- ا با این همه رابطه اخیر آنومالی دارد.
- در بهنگامسازی: شماره c_1 را عوض کن. \Box
- در درج: در درس c_1 ، کتاب b_8 نیز به عنوان مرجع درس ثبت شود. lacksquare

نمی توانیم بگوییم چون کلید نداریم نمی توانیم درج کنیم. باید قواعد معنایی رعایت شود.

$$\langle c_1, t_1, b_8 \rangle$$

باید درج کنیم:

$$\langle c_1, t_2, b_8 \rangle$$

$$\langle c_1, t_3, b_8 \rangle$$

یعنی عمل منطقاً تاپلی تبدیل شده به عمل مجموعهای

رابطه CTB باید تجزیه شود تا رابطههای حاصل $^{4}\mathrm{NF}$ شود.

بخش هفتم: طراحی پایگاه داده رابطهای

□ دلیل آنومالی این رابطه، وجود پدیده MVD است.

- یس CTB را باید چنان تجزیه کنیم که در رابطههای حاصل، MVD وجود نداشته باشد. \Box
- برای این کار CTB را پرتوگیری می کنیم به نحوی که در عنوان هر پرتو، مبدأ MVD وجود داشته باشد. \Box

$$\begin{array}{c|cccc} \mathbf{CT} & (\underline{\mathbf{C\#, T\#}}) \\ \hline & c_1 & t_1 \\ c_1 & t_2 \\ c_1 & t_3 \\ c_2 & t_4 \\ c_2 & t_2 \\ \end{array}$$

درج به صورت عملاً تاپلی و نه مجموعهای

- را ندارند. \square رابطههای جدید آنومالی CTB را ندارند.
- این دو رابطه جدید BCNF هستند، چون تمام کلید هستند. MVD مهم ندارند، پس BCNF هستند.
 - 🗖 تمرین: نشان دهید با پیوند این دو رابطه، رابطه اصلی به دست میآید.

بخش هفتم: طراحی پایگاه داده رابطهای

- قضیه فاگین (Fagin): رابطه R(A,B,C) به دو پرتوش $R_1(A,B)$ و $R_2(A,C)$ تجزیه بی کاست $R_2(A,C)$ قضیه فاگین (Nonloss) می شود اگر و فقط اگر « $A \longrightarrow B$ ».
 - 🔲 قضیه فاگین (برای MVD) تعمیم قضیه هیث (برای FD) است.
- آیا می $^{ ext{FD}}$ آیا می $^{ ext{FD}}$ مفهوم $^{ ext{FD}}$ تعمیم مفهوم $^{ ext{FD}}$ است؟ به بیان دیگر، آیا $^{ ext{FD}}$ حالت خاصی از $^{ ext{MVD}}$ است؟
 - حالت خاصی از MVD است که در آن مجموعههای خوش تعریف، تک عنصری هستند. $FD \ lue{\Box}$
 - 🗖 همچنین این استنتاج منطقی را هم داریم:

If $A \rightarrow B$ then $A \rightarrow \rightarrow B$

بخش هفتم: طراحی پایگاه داده رابطهای

□ تعریف زانیلو از 4NF:

- F^+ رابطهی R با مجموعه MVD هایش (F) در ANF است اگر و فقط اگر به ازای هر AND در ANF مانند $A \to X$ ، یکی از دو شرط زیر برقرار باشد :
 - 1. آن MVD نامهم باشد.
 - X سوپر کلید باشد. X

نکته: بحث 4NF از یک دیدگاهی اصلاً می تواند موضوعیت نداشته باشد. زیرا رابطهای که BCNF باشد و \Box MVD داشته باشد قطعاً صفت چندمقداری دارد و میدانیم در طراحی برای صفات چندمقداری، از همان ابتدا می توان رابطه های جداگانه طراحی کرد.

با این همه مفهوم MVD به عنوان بیان فرمال صفت چندمقداری قابل توجه است. \Box

حاصل پیوند این n پرتو باشد (و نه کمتر).

 $R=[JD]*(R_1, R_2, ..., R_n)$

رابطه R را نامهم گوییم هرگاه عنوان (Heading) ایکی از R_i ها همان عنوان (Heading) رابطه Rباشد.

باشد. \Longrightarrow ناشی از CK بودن یعنی عنوان همه پرتوها، در همه JDها، سوپرکلید باشد.

رابطه CTB در 5NF نیست، چون (T, T) و (T, T) سوپر کلید رابطه T0 نیستند. \Box

بخش هفتم: طراحی پایگاه داده رابطهای

STUD (STID, STNAME, STJ, STL)

فرض می کنیم که 3NF هست و FD مزاحم نداریم. \Box

STN (STID, STNAME)

SJL (STID, STJ, STL) \Rightarrow STUD=[JD]*(STN, SJL) به دو پر تو JD

STN (STID, STNAME)

SJ (STID, STJ)

STUD=[JD]*(STN, SJ, SL) به سه پرتو JD

SL (STID, STL)

در SNF است. چون عنوان همه پرتوها در همه JD های آن، سوپر کلید هستند (ناشی از کلید \sqcup کاندید هستند).

بخش هفتم: طراحی پایگاه داده رابطهای

نکته: اگر رابطهای در 3NF باشد و تمام CKهای آن ساده باشند، آن رابطه در 5NF است.

JD رابطهای است که در 4NF است ولی در 5NF نیست. JD به دو پرتو ندارد، بلکه به سه پرتوش PCD به دو پرتو ندارد، بلکه به سه پرتوش

دارد، که هیچکدام سویرکلید نیستند.

PCD (PR#, CO#, D#)

$$\begin{array}{cccc} PR_1 & co_1 & d_2 \\ PR_1 & co_2 & d_1 \\ PR_2 & co_1 & d_1 \\ PR_1 & co_1 & d_1 \end{array}$$

ارائه می $^{\circ}$ ارائه می $^{\circ}$ ارائه می $^{\circ}$ ارائه می $^{\circ}$

 BCNF تمام كليد است. \Rightarrow حداقل SPJ رابطه

$$\begin{array}{ccccc} S_1 & P_1 & J_1 \\ S_1 & P_1 & J_2 \\ S_1 & P_2 & J_1 \\ S_2 & P_1 & J_1 \end{array}$$

ندار د. \Rightarrow 4NF است.

SP (S#,

P#)

فرم نرمال 5NF (ادامه)

بخش هفتم: طراحی پایگاه داده رابطهای

📙 **فرض می کنیم** بخواهیم این رابطه را تجزیه کنیم:

این رابطه ${
m JD}$ به دو پرتوش ندارد. lacksquare

SJ (**S**#, **J**#)

M

PJ (**P**#,

J#)

🔲 یک پرتو دیگر هم می گیریم:

 $SPJ \neq [JD]^*(SP,PJ)$

SPJ (**S#**, P#, **J**#)

 $SPJ = [JD]^*(SP, PJ, SJ)$

بخش هفتم: طراحی پایگاه داده رابطهای

SPJ=[JD]*(SP, PJ, SJ)

پس SPJ، JD دارد به سه پرتوش و نه کمتر: \Box

و 5NF نیست چون عنوان (Heading) پرتوهایش سوپر کلید نیست.

در این مثال از سه فقره اطلاع دو موجودیتی، باید یک اطلاع سه موجودیتی را استنتاج کنیم، چرا که این \Box

یک محدودیت جامعیتی حاکم بر محیط است (وجود وابستگی پیوندی).

توجه داشته باشید که در حالت کلی چنین استنتاجی درست نیست و پدیده دام <u>پیوندی حلقهای</u> بروز 🔲

می کند، ولی در اینجا به دلیل وجود وابستگی پیوندی، چنین مشکلی بروز نمی کند.

بخش هفتم: طراحی پایگاه داده رابطهای

نکته: در این رابطه یک محدودیت بسیار نادر، موسوم به محدودیت با ماهیت چرخشی (CC) وجود دارد.

- با وجود تاپلهای دوم تا چهارم در رابطه SPJ باید تاپل $(S_1,\,P_1,\,J_1)$ نیز وجود داشته باشد. lacksquare
- این محدودیت ناشی از وجود (S_1,P_1) در تاپل دوم، (S_1,J_1) در تاپل سوم و (P_1,J_1) در تاپل چهارم است.
 - در واقع مقدار هر یک از سه صفت در سه تاپل از چهار تاپل رابطه SPJ یکسان است و در هر یک از سه پرتو دوتایی، یک صفت مشترک با دو پرتو دیگر وجود دارد.
 - این محدودیت در رابطه درجه n دوتست انجام می دهیم: \square
 - n+1 تعداد تاپلها: 1
 - ۲- مقدار هر صفت، در n تاپل یکسان باشد.

بخش هفتم: طراحی پایگاه داده رابطهای

$$\begin{vmatrix} a_1 & b_1 & c_2 \\ a_1 & b_1 & c_1 \\ a_2 & b_1 & c_1 \end{vmatrix}$$

ستند. \Rightarrow BCNF است. \Box سه دترمینان دارد که هر سه

ندارد. \Rightarrow 4NF است.

ندارد. \Rightarrow 5NF است.

فرم نرمال 6NF

بخش هفتم: طراحی پایگاه داده رابطهای

🗖 نکته: در رابطه درجه n، اگر غیر از کلید فقط یک صفت دیگر داشته باشد، رابطه در 6NF است.

- تئوری نرمال ترسازی به عنوان ابزار طراحی RDB، مزایا و معایبی دارد. \Box
 - 🗖 مزایای تئوری نرمال ترسازی:
- ۱ ارائه یک طراحی واضح از خُردجهان واقع (Clean Design)؛ یعنی با «کمترین اختلاط اطلاعات». یعنی در واقع رعایت یک اصل در عمل (one fact : one table).
 - ۲- کاهش بعض افزونگیها؛ آن افزونگیهایی که با پرتوگیری از بین میروند (کاهش مییابد).
 - ٣- كاهش بعض آنوماليها [ناشي از اختلاط اطلاعات].
 - ۴- بعض قواعد جامعیت را اِعمال میکنیم (ناشی از وابستگی بین صفات).
- این تئوری به طراح کمک میکند تا تصمیم بگیرد چند رابطه داشته باشد و هر رابطه عنوانش چه باشد و کلیدش چه باشد. کلیدش چه باشد.

🗖 معایب تئوری نرمال ترسازی:

۱- فزونکاری در بازیابی (اگر کاربر به هر دلیلی رابطه اصلی را بخواهد، عمل پیوند (Join) باید انجام شود که در حجم بالای داده، سربار زیادی دارد).

به دلیل همین عیب، گاه در عمل لازم است غیرنرمالسازی (Denormalization) انجام دهیم.

یعنی تبدیل حداقل دو رابطه NF(i+1) به یک رابطه NF(i).

۲- فرآیند نرمال ترسازی زمان گیر است به ویژه اگر مجموعه صفات محیط بزرگ باشد و نمودار FDها گسترده باشد.

۳- مبتنی است بر یک فرض نه چندان واقعبینانه :

- □ فرض: در آغاز مجموعهای از صفات داریم در یک مجموعه Universal
 - ا با روش سنتز صفات (دستهبندی صفات) به تعدادی رابطه میرسیم.
 - در عمل : 🖵
 - 1. ابتدا روش بالا به پایین و رسیدن به تعدادی رابطه با درجه متعارف
- 2. استفاده از این تئوری برای تست نرمالیتی (اول تست 3NF، بعد BCNF و 5NF و تجزیه رابطهها «در صورت نیاز»

۴- همه وابستگیهای بین صفات دیده نشدهاند؛ مثلاً وابستگی شمول دیده نشده است.

۵- ایجاد میزانی افزونگی؛ چون اگر بخواهیم تجزیه خوبی داشته باشیم، یا CK باید در همه پرتوها تکرار شود یا پیوندهای CK-FK وجود داشته باشد!

-9 استفاده محدود از عملگرهای جبر رابطهای. تجزیه \longrightarrow پرتو بازسازی \longrightarrow پیوند

حال آنکه در عمل گاه لازم است رابطه را تجزیه افقی کنیم:

$$ST_1 = \sigma_{STJ='Phys'}(STUD)$$

$$ST_2 = \sigma_{STJ='IT'}(STUD)$$

• • •

$$ST_n = \sigma_{STJ='Comp'}(STUD)$$

$$STUD = \bigcup_{i=1}^{n} (ST_i)$$

- ☐ به رابطههای ناشی از تجزیه افقی می گوییم:
- فرم نرمال گزینش اجتماع (تحدید اجتماع) RUNF (تحدید اجتماع) (Restriction Union Normal Form)
- $\frac{1}{2}$ النوماً در امتداد فرمهای نرمال نیست. به موازات آنها مطرح است. یعنی ممکن است رابطه $\frac{1}{2}$ باشد، تجزیه افقی کنیم و باز هم $\frac{1}{2}$ باشد.

ور چه شرایطی رابطه حاصل از تجزیه افقی از خود رابطه نرمال تر است؟

پرسش و پاسخ . . .

amini@sharif.edu