MTH 441A: Lab 3

P 1. Consider the data $y = (1, 4, 8, 9, 3, 8, 9), x_1 = (-1, 1, -1, 1, 0, 0, 0), x_2 = (-1, -1, 1, 1, 0, 1, 2).$ Let the following regression model is used:

$$\mathbb{E}(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2$$

Test the hypothesis $H_0: \beta_0 = 0, \ \beta_1 - \beta_2 = 0$. You may use 'linear Hypothesis' function from **carData** package to verify your answer.

P 2. Consider the data set and the model from **P 1.** Consider the following null hypothesis $H_0: \beta_1 = \beta_2 = \beta_3 = 0$.

- (a) Compute the restricted LSE under the null hypothesis.
- (b) Compute the restricted RSS and unrestricted RSS.
- (c) Compute the F-statistics for testing H_0 .
- (d) Verify your results from the output of lm function.

P 3. Consider the following data

Table 1: Lack of fit data

X	1.0	1.0	2.0	3.3	3.3	4.0	4.0	4.0	4.7	5.0	5.6
\mathbf{y}	10.84	9.30	16.35	22.88	24.35	24.56	25.86	29.16	24.59	22.25	25.90
X	5.6	5.6	6.0	6.0	6.5	6.9					
						21.46					

Perform a lack-of-test for the data given in the Table above. You may use 'ols_pure_error_anova' function from the package olsrr.

- P 4. For the Rocket Propellant Data, find the confidence intervals of the parameters based on
 - (a) Bonferroni method
 - (b) Maximum–modulus method
 - (c) Scheff's method.