

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC171173

1 of 76 Page:

FCC Radio Test Report FCC ID: 2AL8K-ONESCREEN-6

Original Grant

Report No. TB-FCC171173

NZS Inc. DBA Clary Icon **Applicant**

Equipment Under Test (EUT)

EUT Name Interactive Touch Screen/Interactive Flat Panel

Model No. OneScreen 6

Series Model No. OneScreen * (* stands for 0-9, or A-Z, or a-z, or blank)

Brand Name OneScreen

2019-12-21 **Receipt Date**

2019-12-21 to 2019-12-27 **Test Date**

Issue Date 2019-12-28

Standards FCC Part 15: 2019, Subpart C(15.247)

ANSI C63.10: 2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Supervisor

Engineer

Engineer

LVAN SU (**Engineer Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Report No.: TB-FCC171173
Page: 2 of 76

Contents

COI	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	12
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	
	6.4 EUT Operating Condition	19
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	21

Page: 3 of 76

	8.4 EUT Operating Condition	21
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATTA	ACHMENT B RADIATED EMISSION AND RESTRICTED BANDS REQUIREMEN	Т
TEST	Г DATA	26
	ACHMENT D BANDWIDTH TEST DATA	60
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 76

Revision History

Report No.	Version	Description	Issued Date
TB-RF171173	Rev.01	Initial issue of report	2019-12-28
CODE I			
	(D)33	The same of the sa	1000
	THE PERSON NAMED IN		20033
The state of the s	- M3	LORD L	OD A
The same	133 6	ON THE PARTY OF TH	N W
	(403)	The state of the s	
WILL WILL STREET		The same of the sa	NO TOD
000	0000		THE REAL PROPERTY.
a more		WUBA WORK	TO TOWN
The state of the s		(1000)3	
The same	133	TODA TODA	

Page: 5 of 76

1. General Information about EUT

1.1 Client Information

Applicant: NZS Inc. DBA Clary Icon

Address : 8168 Miramar Road, San Diego CA 92126, United States

Manufacturer : Shenzhen Konka E-display Co.,Ltd

Address 22A,KONKA Building,South Technology Road No.12th,High-tech

Industrial Park, Nanshan, Shenzhen China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	i	Interactive Touch Scree	en/ Interactive Flat Panel		
Models No.	:	OneScreen 6, OneScreen * (* stands for 0-9,or A-Z,or a-z,or blank)			
Model Different		All these models are the same PCB, layout and electrical circuit, the only different is model name.			
0.0037		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
33		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3) 802.11n(HT40):7 channels see note(3)		
Product		Antenna Gain:	5dBi Reverse SMA Antenna		
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)		
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Supply	:	Input: AC 100-240V, 50	0/60Hz		
Connecting I/O Port(S)		Please refer to the User's Manual The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.			
Remark	į				

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01v05.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Channel List:

Page: 6 of 76

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
Note:CH 01~CH 1	1 for 802.11b/g/n(HT2	0), CH 03~CH 09 for	802.11n(HT40)		

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

Equipment Information							
Name	Name Model FCC ID/VOC Manufacturer Used "√"						
			din-				
	Cable Information						
Number	Number Shielded Type Ferrite Core Length Note						

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode Description			
Mode 1	TX B Mode		

Page: 7 of 76

For Radiated Test					
Final Test Mode	Description				
Mode 2	TX Mode B Mode Channel 01/06/11				
Mode 3	TX Mode G Mode Channel 01/06/11				
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11				
Mode 5	TX Mode N(HT40) Mode Channel 03/06/09				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 76

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version		RtkWiFiTest-v1.8.1	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	DEF	DEF	DEF
IEEE 802.11g OFDM	DEF	DEF	DEF
IEEE 802.11n (HT20)	DEF	DEF	DEF
Channel	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

and the second s		
Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	WY STATE OF THE ST
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dedicted Emission	Level Accuracy:	. 4. 40 dD
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dadiated Emission	Level Accuracy:	. 4 20 dD
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 9 of 76

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC Accredited Test Site Number: 854351.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 76

2. Test Summary

	FCC Part	t 15 Subpart C(15.247)/ RSS 247	Issue 1			
Standard Section Test Item Judgment Remark						
FCC	IC	Test Item	Judgment	Remark		
15.203	1	Antenna Requirement	PASS	N/A		
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A		
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A		
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A		
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A		
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A		
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A		
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A		

Note: (1)"/" for no requirement for this test item.

(2)N/A is an abbreviation for Not Applicable.

(3)All tests were conducted using the adapter and antenna gain provided by the applicant, The laboratory tests only according to the information provided by the applicant.

Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Page: 11 of 76

3. Test Equipment

4. Conducted Emi	ssion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	vitching Unit Compliance Direction Systems Inc		34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	FSVR	1311.006K40-10094 5-DH	Feb. 10, 2019	Feb. 09, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 27, 2019	Jul. 26, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Cond	ucted Emission	1			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020
DE Dawar C	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020

Page: 12 of 76

5. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

THE PROPERTY OF THE PARTY OF TH	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level 56 ~ 46 *		
150kHz~500kHz	66 ~ 56 *			
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No.: TB-FCC171173
Page: 13 of 76

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 76

6. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 15 of 76

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 76

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 76

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Report No.: TB-FCC171173 18 of 76

Page:

7. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)			
Band (MHz)	Peak	Average		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC171173 Page: 19 of 76

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 76

8. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210					
Test Item	Test Item Limit Frequency Range(MH				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5			

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 76

9. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210						
Test Item Limit Frequency Range(Mi						
Peak Output Power	1 Watt or 30 dBm	2400~2483.5				

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 15.247 Meas Guidance v05. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 76

10. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)					
Test Item Limit Frequency Range(MHz)					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 15.247 Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 76

11. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is Reverse SMA Antenna. It complies with the standard requirement.

Antenna Type				
Dir.	Permanent attached antenna	THE REAL PROPERTY.		
a Burn	⊠Unique connector antenna			
	Professional installation antenna	MILE.		

Page: 24 of 76

Attachment A-- Conducted Emission Test Data

Page: 25 of 76

Remark: All modes and channels have been tested and only listed WiFi link mode that is worst data

26 of 76 Page:

Attachment B-- Radiated Emission and Restricted Bands **Requirement Test Data**

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

emperature:	25 ℃			Relative H	umidity:	55%	a	
est Voltage:	AC 12	20/60Hz	A COLUMN		1	The same	1	
nt. Pol.	Horiz	Horizontal						
est Mode:	TX B	Mode 2462I	MHz		1110	9		
emark:		Below 1GHz test data. This report only shall the worst case mode for TX IEEE 802.11b 2412MHz.						
80.0 dBuV/m								
						Limit: Margin:	_	
30				3 4 × ×	6		-ma	
*			w Amyr	Marin War	NIMM	mystyd ym my	etros.	
- Lammy my	multh	many many mand	M-44 1					
0								
30.000 40 5	0 60 7	0 80	(MHz)	300	400 5	00 600 700	1000.000	
		Reading	Correct	Measure-				
No. Mk.	Freq.	Level	Factor	m ent	Limit	O∨er		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto	
1 31	.9546	37.64	-14.48	23.16	40.00	-16.84	QP	
2 148	.4410	45.45	-21.59	23.86	43.50	-19.64	QP	
	.3130	51.05	-19.38	31.67	43.50	-11.83	QP	
4 234	.1684	47.39	-17.95	29.44	46.00	-16.56	QP	
5 309	.9977	46.77	-15.67	31.10	46.00	-14.90	QP	
6 407	.5145	40.10	-12.05	28.05	46.00	-17.95	QP	

Page: 27 of 76

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120/60Hz							
Ant. Pol.	Vertical							
Test Mode:	TX B Mode 2462MHz	TX B Mode 2462MHz						
Remark:	Below 1GHz test data. This report only shall the worst case mode for TX IEEE 802.11b 2412MHz.							
80.0 dBuV/m Limit: Margin: 30								
30.000 40 50	60 70 (MI		500 600 700 1000.000					
No. Mk. Fr	Reading Corre eq. Level Fact		it Over					
М	Hz dBuV dB	dBuV/m dBuV/	m dB Detecto					
1 31.9	546 41.30 -14.4	8 26.82 40.0	0 -13.18 QP					
2 48.33	318 47.43 -22.7	8 24.65 40.0	0 -15.35 QP					
3 119.43	361 47.05 -22.3	2 24.73 43.5	0 -18.77 QP					
4 261.97	753 46.43 -16.8	0 29.63 46.0	0 -16.37 QP					
5 309.99	977 46.90 -15.6	7 31.23 46.0	0 -14.77 QP					
6 * 407.5	145 47.47 -12.0	5 35.42 46.0	0 -10.58 QP					
*:Maximum data	x:Over limit !:over margin							

Page: 28 of 76

Above 1GHz

Temperature:	25 ℃	R	elative Humid	lity: 55	%			
Test Voltage:	AC 120V/60H	AC 120V/60Hz						
Ant. Pol.	Horizontal	The state of the s	2.0	TEN	133			
Test Mode:	TX B Mode 2	412MHz		62		TO D		
Remark:	No report for	the emission wh	nich more than	10 dB bel	low the pr	escribed		
	limit.			1111		1		
No. Mk. F	Read req. Lev	•	Measure- ment	Limit	Over			
N	MHz dBu	√ dB/m	dBuV/m	dBuV/m	dB	Detector		
1 * 4823	3.946 29.6	6 14.55	44.21	54.00	-9.79	AVG		
2 4824	4.018 42.4	6 14.55	57.01	74.00	-16.99	peak		
Emission Level= Read Level+ Correct Factor								

								1000			
Temp	eratu	ire:	25 °	C		Relative Hu	ımidity:	55%			
Test \	/oltaç	ge:	AC	120V/60Hz			GILL		- N		
Ant. F	Pol.		Vertical								
Test N	Mode	:	TX B Mode 2412MHz								
Remark:			. Wh	eport for the cribed limit.	emission w	hich more tha	an 10 dB k	elow the	1 62		
No.	Mk.	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1		4822.	698	43.34	14.55	57.89	74.00	-16.11	peak		
2	*	4822.	698	29.09	14.55	43.64	54.00	-10.36	AVG		
Emiss	sion	Level=	Read	Level+ Cor	rect Factor	r					

Page: 29 of 76

Temperatur	re:	25 ℃		Relative Hur	midity:	55%	
Test Voltag	e:	AC 120V/60Hz	35	- CHI	1		A British
Ant. Pol.		Horizontal		20	6.11	11:30	
Test Mode:		TX B Mode 243	7MHz		1 6		
Remark:		No report for the prescribed limit.		which more th	an 10 dB	below the	
No. Mk.	Freq	Reading Level	Correct Factor	Measure- ment	Limit	Over	
No. Mk.	Freq	_			Limit dBuV/m	Over	Detector
		Level dBuV	Factor	ment			Detector

Temperature:	25 °	C		Relative Hum	nidity:	55%				
Test Voltage:	AC 1	20V/60Hz			0111	13.3	1			
Ant. Pol.	Verti	cal	Marie Land		1		18.			
Test Mode:	TX E	TX B Mode 2437MHz								
Remark:		eport for the cribed limit.	emission w	hich more tha	an 10 dB l	pelow the	6			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
1 * 48	373.976	29.03	14.86	43.89	54.00	-10.11	AVG			
2 48	374.414	42.60	14.86	57.46	74.00	-16.54	peak			
Emission Lev	el= Read	Level+ Cori	ect Factor	•						

Page: 30 of 76

Temperatur	e:	25 ℃		Relative Hun	nidity:	55%	1013		
Test Voltage	e:	AC 120V/60Hz	(AU)	- CHI		-3	THE PERSON		
Ant. Pol.		Horizontal							
Test Mode:		TX B Mode 2462MHz							
Remark:		No report for th prescribed limit		hich more that	an 10 dB t	elow the	ST.		
No. Mk.	Fre	Reading q. Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	4924.4	50 42.42	15.17	57.59	74.00	-16.41	peak		
	4924.4	50 29.75	15.17	44.92	54.00	-9.08	AVG		

Temperature:	25 ℃		Relative Hur	nidity:	55%	3
Test Voltage:	AC 120V/60Hz	100	9	(III)	33	
Ant. Pol.	Vertical	Alle		1		183
Test Mode:	TX B Mode 246	2MHz	DAIL TO		A A DE	
Remark:	No report for the	e emission v	vhich more th	an 10 dB l	below the	0.11
	prescribed limit.	Millian		63.		1
No. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit	Over	
N	∕lHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4923	3.034 41.65	15.17	56.82	74.00	-17.18	peak
2 * 4923	3.034 29.39	15.17	44.56	54.00	-9.44	AVG
Emission Level	l= Read Level+ Co	rect Facto	r			

Page: 31 of 76

Temperature:	25 ℃	- 1	Relative Hur	nidity:	55%	1000		
Test Voltage:	AC 120V/60Hz		_ (1/1)		-	MILL OF		
Ant. Pol.	Horizontal							
Test Mode:	TX G Mode 2412MHz							
Remark:	No report for the e prescribed limit.	mission v	which more th	an 10 dB	below the	U.S.		
No. Mk. Fre		Correct Factor	Measure- ment	Limit	Over			
MH	z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1 * 4823.	700 29.60	14.55	44.15	54.00	-9.85	AVG		
2 4823.	772 42.42	14.55	56.97	74.00	-17.03	peak		
Emission Level=	Read Level+ Corre	ct Facto	r					

Temperature:	25	$^{\circ}$ C		Relative Hu	midity:	55%	UPS			
Test Voltage:	AC	120V/60Hz		J HATE		1 19				
Ant. Pol.	Ver	tical		3	(1/17)	1)				
Test Mode:	TX	TX G Mode 2412MHz								
Remark:		report for the scribed limit.	emission	which more th	nan 10 dB	below the				
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
1 48	23.364	42.68	14.55	57.23	74.00	-16.77	peak			
2 * 48	23.988	29.21	14.55	43.76	54.00	-10.24	AVG			
Emission Lev	/el= Read	d Level+ Cor	rect Facto	or						

Page: 32 of 76

Temp	eratı	ıre:	25	$^{\circ}$ C		Relative Hur	nidity:	55%			
Test \	Volta	ge:	AC	120V/60Hz	33	- CHI		-3	The same		
Ant. F	Pol.		Horizontal								
Test I	Mode):	TX G Mode 2437MHz								
Remark:				eport for the scribed limit.	emission v	which more th	an 10 dB	below the			
No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1		4873.5	592	41.69	14.86	56.55	74.00	-17.45	peak		
2	*	4873.5	592	29.05	14.86	43.91	54.00	-10.09	AVG		
Emis	sion	Level=	Read	Level+ Cor	rect Facto	r					

							A A			
Temperat	ure:	25 °	C		Relative Hun	nidity:	55%			
Test Volta	ige:	AC 1	120V/60Hz			CITE	17.3	a V		
Ant. Pol.		Vertical								
Test Mode	e:	TX G Mode 2437MHz								
Remark:		The second	eport for the cribed limit.	emission w	vhich more tha	an 10 dB l	below the	1 63		
No. Mi	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MH	lz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	4873.	292	43.10	14.86	57.96	74.00	-16.04	peak		
2 *	4873.	292	29.03	14.86	43.89	54.00	-10.11	AVG		
Emission	Level=	Read	Level+ Cor	rect Factor	r					

Page: 33 of 76

							_				
Temp	perati	ure:	25	${\mathbb C}$		Relative Hui	midity:	55%			
Test '	Volta	ge:	AC	120V/60Hz	33	- CHI		-3	A PARTY OF		
Ant.	Pol.		Horizontal								
Test	Mode) :	TX G Mode 2462MHz								
Rema	ark:			report for the scribed limit.	e emission v	which more th	an 10 dB	below the			
No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1		4924.0)72	40.48	15.17	55.65	74.00	-18.35	peak		
2	*	4924.0)72	29.47	15.17	44.64	54.00	-9.36	AVG		
Emis	sion	Level=	Read	l Level+ Cor	rect Facto	r					

Tempera	ture:	25 °	C	2	Relative Hum	nidity:	55%				
Test Volt	age:	AC 1	120V/60Hz			GILL	13.3	-			
Ant. Pol.		Verti	Vertical								
Test Mod	de:	TX	TX G Mode 2462MHz								
Remark:			eport for the cribed limit.	emission v	which more tha	an 10 dB l	pelow the	1 69			
No. M	lk. Fr	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	M	Ηz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
1 *	4923	676	29.45	15.17	44.62	54.00	-9.38	AVG			
2	4925	242	42.72	15.19	57.91	74.00	-16.09	peak			
Emission	n Level=	Read	Level+ Cor	rect Factor	r			•			

Page: 34 of 76

Temperature:	25 ℃	0 W	Relative Hur	nidity:	55%	1013			
Test Voltage:	AC 120V/60Hz	33				The same			
Ant. Pol.	Horizontal								
Test Mode:	TX N(HT20) Mo	TX N(HT20) Mode 2412MHz							
Remark:	No report for the prescribed limit.	emission v	which more th	an 10 dB l	below the	6			
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over				
MH	lz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
1 4824.	078 42.65	14.55	57.20	74.00	-16.80	peak			
2 * 4824.	078 29.63	14.55	44.18	54.00	-9.82	AVG			
Emission Level=	Read Level+ Cor	rect Facto	r						

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical							
Test Mode:	TX N(HT20) Mode 24	TX N(HT20) Mode 2412MHz						
Remark:	No report for the emis	No report for the emission which more than 10 dB below the						
	prescribed limit.							
No. Mk. Fre		rect Measure- ctor ment Limit	Over					
MH	lz dBuV dB	m dBuV/m dBuV/	/m dB Detector					
1 4822.	944 41.56 14.	55 56.11 74.0	0 -17.89 peak					
2 * 4822.	944 29.05 14.	55 43.60 54.0	0 -10.40 AVG					
Emission Level= Read Level+ Correct Factor								

Page: 35 of 76

Temperature	ə:	25 °	C		Relative Hum	nidity:	55%	
Test Voltage			120V/60Hz		(5/4/1)		0070	
Ant. Pol.		Horiz	zontal			611	133	
Test Mode: TX N(HT20) Mode 2437MHz							W.	
Remark:			eport for the cribed limit.	emission w	hich more tha	an 10 dB	below the	
No. Mk.	Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	МН	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4	1873.	610	43.11	14.86	57.97	74.00	-16.03	peak
2 * 4	1874.	192	29.08	14.86	43.94	54.00	-10.06	AVG
Emission Le	Emission Level= Read Level+ Correct Factor							

Temperature:	25 ℃		Relative Hun	nidity:	55%	UPS
Test Voltage:	AC 120V/60Hz		I HAVE		W 10	
Ant. Pol.	Vertical		3	(111)	17.00	- N
Test Mode: TX N(HT20) Mode 2437MHz						133
Remark:	No report for the prescribed limit.	emission w	hich more tha	an 10 dB	below the	
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over	
MH	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 4875.	.002 41.04	14.86	55.90	74.00	-18.10	peak
2 * 4875.	.002 29.14	14.86	44.00	54.00	-10.00	AVG
Emission Level=	Read Level+ Corr	ect Factor	•			

Page: 36 of 76

Temp	eratu	ıre:	25	°C	a W	Relative Hu	umidity:	55%	TO THE
Test \	Volta	ge:	AC	120V/60Hz	N				
Ant. I	Ant. Pol. Horizontal								
Test I	Mode	:	TX N(HT20) Mode 2462MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.									
No.	. Mk.	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.3	390	43.28	15.17	58.45	74.00	-15.55	peak
2	*	4924.3	390	29.40	15.17	44.57	54.00	-9.43	AVG
Emission Level= Read Level+ Correct Factor									

Temperature:	25 ℃		Relative Hu	ımidity:	55%	1		
Test Voltage:	AC 120V/60Hz		3	CILID				
Ant. Pol.	Vertical	A British		1	The same	135		
Test Mode: TX N(HT20) Mode 2462MHz								
Remark:	No report for the	emission v	vhich more th	an 10 dB l	oelow the	0 8		
	prescribed limit.	Militar		13:00		1		
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over			
MH	lz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1 4923.	004 43.23	15.17	58.40	74.00	-15.60	peak		
2 * 4923.	004 29.35	15.17	44.52	54.00	-9.48	AVG		
Emission Level= Read Level+ Correct Factor								

Page: 37 of 76

Temperature:	25 ℃		Relative Hun	nidity:	55%					
Test Voltage:	AC 120V/60Hz	33	CHI.		-01					
Ant. Pol.	Horizontal		33	671	1177					
Test Mode:	Mode: TX N(HT40) Mode 2422MHz									
Remark:	No report for the prescribed limit.	emission v	vhich more th	an 10 dB	below the					
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over					
MH	z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector				
1 * 4842.6	644 29.22	14.66	43.88	54.00	-10.12	AVG				
2 4843.	160 42.20	14.67	56.87	74.00	-17.13	peak				
Emission Level=	Emission Level= Read Level+ Correct Factor									

				_				
Temperature:	25 ℃	2	Relative Hun	nidity:	55%	and the same of		
Test Voltage:	AC 120V/60Hz			(III)	1)	a V		
Ant. Pol. Vertical								
Test Mode:	TX N(HT40) Mod	le 2422MH	Z		I WE			
Remark:	No report for the	emission v	which more th	an 10 dB	below the	2 84		
	prescribed limit.	111		6300		1		
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over			
MH	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1 4844.	.588 41.29	14.68	55.97	74.00	-18.03	peak		
2 * 4844.	.588 29.21	14.68	43.89	54.00	-10.11	AVG		
Emission Level=	Emission Level= Read Level+ Correct Factor							

Page: 38 of 76

Temperature:	25 ℃	Relative Hun	nidity:	55%	Tim.
Test Voltage:	AC 120V/60Hz			- 1	
Ant. Pol.	6.11	1133			
Test Mode:	TX N(HT40) Mode	2437MHz	10		
Remark: No report for the emission which more than 10 dB below the prescribed limit.					
No. Mk. Fre	3	Correct Measure- Factor ment	Limit	Over	
MH	lz dBuV	dB/m dBuV/m	dBuV/m	dB	Detector
1 4874.	696 42.77	14.86 57.63	74.00	-16.37	peak
2 * 4874.	696 29.07	14.86 43.93	54.00	-10.07	AVG
Emission Level=	Read Level+ Correc	ct Factor			

Tempe	ratu	ıre:	25 ℃			Relative Humidity:		55%				
Test Vo	olta	ge:	AC	AC 120V/60HZ								
Ant. Po	ol.		Vert	tical			(1177)	1)39				
Test Mode: TX N(HT40) Mode 2437MHz								133				
Remar	k:			report for the scribed limit.	emission v	which more th	an 10 dB	below the				
No.	Mk.	Free	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	2	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
1		4873.8	862	42.97	14.86	57.83	74.00	-16.17	peak			
		4873.8	000	28.99	14.86	43.85	54.00	-10.15	AVG			

Page: 39 of 76

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	Test Voltage: AC 120V/60Hz							
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX N(HT40) Mode 2452I	TX N(HT40) Mode 2452MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								
No. Mk. Fre	Reading Corre eq. Level Factor	1 1 11	Over					
MH	Hz dBuV dB/m	dBuV/m dBuV/m	dB Detector					
1 4905.	.062 42.24 15.05	5 57.29 74.00	-16.71 peak					
2 * 4905.	062 29.40 15.05	5 44.45 54.00	-9.55 AVG					
Emission Level= Read Level+ Correct Factor								

	_								
Temperatur	e:	25 °	C		Relative Hu	umidity:	55%		
Test Voltage	e:	AC 1	20V/60HZ		3	(1177)			
Ant. Pol. Vertical							133		
Test Mode:		TX N	N(HT40) Mod	le 2452MH	Z		MA		
Remark: No report for the emission which more the prescribed limit.						an 10 dB l	oelow the	1 63	
No. Mk.	Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MH	Z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1	4903.3	316	40.90	15.04	55.94	74.00	-18.06	peak	
2 *	4903.3	316	29.40	15.04	44.44	54.00	-9.56	AVG	
Emission L	Emission Level= Read Level+ Correct Factor								

40 of 76 Page:

Restricted Bands Requirement and Band-edge Test Data

(1) Radiation Test

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	51.60	2.82	54.42	74.00	-19.58	peak
2		2390.000	40.10	2.82	42.92	54.00	-11.08	AVG
3	*	2411.400	101.93	2.94	104.87	Fundamental	Frequency	AVG
4	Χ	2413.600	107.17	2.95	110.12	- Fundamental	Frequency	peak

Page: 41 of 76

N	o. M	lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2	2390.000	45.89	2.82	48.71	74.00	-25.29	peak
2		2	2390.000	34.70	2.82	37.52	54.00	-16.48	AVG
3	*	2	2412.800	95.00	2.94	97.94	Fundament	al Frequency	AVG
4	X	2	2413.200	100.08	2.95	103.03	Fundament	al Frequency	peak

Page: 42 of 76

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120/60Hz	William .	1					
Ant. Pol.	Horizontal		The second					
Test Mode:	TX B Mode 2462MHz							
Remark:	N/A	MILLER	THE PARTY OF THE P					
120.0 dBuV/m								

1	Vo. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		2462.600	105.41	3.27	108.68	Fundamental	Frequency	AVG
2	Х	(2463.200	110.58	3.28	113.86	Fundamental	Frequency	peak
3			2483.500	57.89	3.41	61.30	74.00	-12.70	peak
4			2483.500	43.83	3.41	47.24	54.00	-6.76	AVG

Page: 43 of 76

Page: 44 of 76

Page: 45 of 76

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	44.14	2.82	46.96	74.00	-27.04	peak
2		2390.000	32.74	2.82	35.56	54.00	-18.44	AVG
3	*	2418.200	86.21	2.98	89.19	Fundamental	Frequency	AVG
4	X	2418.800	97.18	2.98	100.16	Fundamental	Frequency	peak

Page: 46 of 76

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz		
Ant. Pol.	Horizontal		TIES TO THE TOTAL PROPERTY OF THE PROPERTY OF
Test Mode:	TX G Mode 2462MHz		
Remark:	N/A	THIS S	THE PARTY OF THE P

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2467.200	108.04	3.31	111.35	Fundamental	Frequency	peak
2	*	2468.600	96.56	3.31	99.87	- Fundamental	Frequency	AVG
3		2483.500	60.08	3.41	63.49	74.00	-10.51	peak
4		2483.500	44.67	3.41	48.08	54.00	-5.92	AVG

Page: 47 of 76

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2460.000	97.47	3.26	100.73	Fundamental	Frequency	peak
2	*	2468.800	87.18	3.31	90.49	- Fundamental	Frequency	AVG
3		2483.500	48.90	3.41	52.31	74.00	-21.69	peak
4		2483.500	34.82	3.41	38.23	54.00	-15.77	AVG

Page: 48 of 76

Page: 49 of 76

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
	1		2390.000	46.38	2.82	49.20	74.00	-24.80	peak
	2		2390.000	33.36	2.82	36.18	54.00	-17.82	AVG
	3	X	2418.200	96.12	2.98	99.10	Fundament	al Frequency	peak
-	4	*	2419.000	86.08	2.98	89.06	Fundamenta	al Frequency	AVG

Page: 50 of 76

No.	. Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2467.400	106.47	3.31	109.78	Fundamental I	Frequency	peak
2	*	2468.400	96.03	3.31	99.34	 Fundamental	Frequency	AVG
3		2483.500	64.53	3.41	67.94	74.00	-6.06	peak
4		2483.500	45.28	3.41	48.69	54.00	-5.31	AVG

51 of 76 Page:

Temper	ature) :	25 °	С	Ø.1		<u>a \</u>	R	Relati	ve Hu	ımidit	y:	55%	6	1	
Test Vo	Itage	:	AC 1	120/6	60Hz		3			OH)	1			1	AR	
Ant. Po	I.		Verti	cal	103			50				Cul				
Test Mo	de:		1XT	N(HT	20) N	/lode	2462	ЛHz				6			60	1
Remark	:		N/A			KB)			160	ME	150		A	1/1	ATT	
110.0 dBu	V/m															
	1 X															
	^															1
		X,														-
			-								(R	F) FCC	PART	15C (PE	AKJ	4
					3	3										1
60				+	>	۲						RF) FC	C PART	Г 15C (A	VG)	-
												•				-
				1	M. 4	<u>.</u>										
						•									~~	7
																1
																-
0.0																
2447.000	2457.0	00 24	67.00	2477	.00	2487.0	0 2497	7.00	2507.	.00 2	517.00	2527	.00		2547.00	МН
					eadi	na	Corre	oct.	Mes	asure						
No.	Mk.	Fr	eq.		eauii Leve		Fact			ent		mit	(Over		
			Hz		dBu∀		dB/m			suV/m	dE	BuV/m	<u> </u>	dB	Dete	ecto
1	X	2458	3.000		98.9	7	3.24		10	2.21	— Funda	amenta	l Freq	luency	pe	ak
	*				07.0		2.20			4 00	_					10

	No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
_			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
_	1	X	2458.000	98.97	3.24	102.21	Fundamental F	requency	peak
_	2	*	2460.800	87.97	3.26	91.23	Fundamental F	requency	AVG
_	3		2483.500	57.89	3.41	61.30	74.00	-12.70	peak
_	4		2483.500	35.95	3.41	39.36	54.00	-14.64	AVG

Page: 52 of 76

Page: 53 of 76

Page: 54 of 76

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz	THE PARTY OF THE P	1
Ant. Pol.	Horizontal		Will a
Test Mode:	TX N(HT40) Mode 2	2452MHz	
Remark:	N/A		A VIII
120.0 dBuV/m			

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2455.200	102.24	3.23	105.47	Fundamental F	requency	peak
2	*	2460.000	91.35	3.26	94.61	Fundamental F	requency	AVG
3		2483.500	60.23	3.41	63.64	74.00	-10.36	peak
4		2483.500	43.96	3.41	47.37	54.00	-6.63	AVG

Page: 55 of 76

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX N(HT40) Mode 2452	MHz	
Remark:	N/A	- WILDS	

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2458.000	93.34	3.24	96.58	Fundamenta	al Frequency	peak
2	*	2458.800	82.59	3.24	85.83	Fundamenta	I Frequency	AVG
3		2483.500	46.06	3.41	49.47	74.00	-24.53	peak
4		2483.500	33.95	3.41	37.36	54.00	-16.64	AVG

56 of 76 Page:

(2) Conducted Band Edge Test

Page: 57 of 76

Page: 58 of 76

Page: 59 of 76

Page: 60 of 76

Attachment D-- Bandwidth Test Data

Temperature:	25 °C	Relative Humidity:	55%
Test Voltage:	AC 120/60Hz		1139
Test Mode:	TX 802.11B Mode		
Channel frequenc	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	10.06	14.720	
2437	10.06	14.737	>=0.5
2462	10.07	14.716	
		l	1

802.11B Mode

2412 MHz

Page: 61 of 76

Page: 62 of 76

Temperature:	25 ℃		2 NA	Relative	Humidi	ty:	55%
Гest Voltage:	AC 12	0/60Hz			1100		
Test Mode:	TX 802	2.11G Mode		S. J. A.		111	113
Channel frequer	псу	6dB Bandw	vidth	99% B	andwid	th	Limi
(MHz)		(MHz)		(N	ЛHz)		(MH
2412		16.46		16	3.367		
2437		16.50		16	3.373		>=0.
2462		16.52		16	5.378		
		8	02.11G M	lode			
			2412 MH				
Center Freq	Analyzer - Occupied BV F 75 Ω AC 2.412000000 Ref 20.00 dBn	CORREC GHZ #IFGain:Low		ALIGN AUTO 412000000 GHz	d:>10/10	Radio St	56:02 PM Dec 25, 2019 d: None
10 dB/div Log 10.00 -10.0 -20.0 -30.0	F 75 Ω AC 2.412000000	CORREC GHZ #IFGain:Low	Center Freq: 2. Trig: Free Run	ALIGN AUTO 412000000 GHz	d:>10/10	Radio St	56:02 PM Dec 25, 2019 d: None
10 dB/div Log 10.0 -10.0	2.4120000000 Ref 20.00 dBn	CORREC GHZ #IFGain:Low	Center Free; 2.2 Trig: Free Run #Atten: 10 dB	ALIGN AUTO 412000000 GHz	d:>10/10	Radio St	56:02 PM Dec 25, 2019 d: None
Center Freq 10 dB/div Log 10.0 20.0 30.0 40.0 50.0 Center 2.412 #Res BW 100	2.4120000000 Ref 20.00 dBn	#FGain:Low	Center Free; 2.2 Trig: Free Run #Atten: 10 dB	ALIGN AUTO 412000000 GHz Avg Hol	d:>10/10	Radio St	Span 40 MHz
Center Freq 10 dB/div Log 10.0 20.0 20.0 20.0 20.0 Center 2.412 #Res BW 100 Occupied	2.4120000000 Ref 20.00 dBn	#FGain:Low	Center Free; 2.2 Trig: Free Run #Atten: 10 dB	ALIGN AUTO 412000000 GHz Avg Hol		Radio St	Span 40 MHz

Page: 63 of 76

Page: 64 of 76

Temperature:	25 ℃		Relative Humidity:	55%	
Test Voltage:	Voltage: AC 120/60Hz				
Test Mode:	est Mode: TX 802.11N(HT20) Mode				
Channel frequer	су	6dB Bandwidth	99% Bandwidth	Limit	
(MHz)		(MHz)	(MHz)	(MHz)	
2412		17.59	17.485		
2437 2462		17.59	17.484	>=0.5	
		17.58	17.483		
	"	802.11N(HT	20) Mode	1	
		2412 N	ЛНz		

Page: 65 of 76

Page: 66 of 76

Temperature:	25 ℃	A W	Relative Hu	midity:	55%
Test Voltage:	AC 120/60Hz		CHI.	1	- N
Test Mode:	TX 802.11N(H	HT40) Mode	28	61	11:39
Channel freque	ncy 6dB Ba	ndwidth	99% Band	dwidth	Lin
(MHz)	(M	Hz)	(MHz	z)	(MH
2422	36	5.42	36.01	8	
2437	36	5.43	36.00)8	>=(
2452	36	5.41	36.02	24	
	-	802.11N(HT4	l0) Mode		
		2422 M	lHz		
Center Freq	1 Analyzer - Occupied BW 1	SENSE:INT Center Freq: Trig: Free Rt #Atten: 10 db		0/10	05:26:41 PMDec 25, 2019 io Std: None io Device: BTS
10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0	2.422000000 GHz #IFGa Ref 20.00 dBm	Center Freq: Trig: Free Rt. #Atten: 10 dt	2.42200000 GHz un Avg Hold:>1 B	0/10	05:26:41 PM Dec 25, 2019 io Std: None io Device: BTS
10 dB/div Log 10 0 0.00 -10 0 0.0	2.422000000 GHz #IFGa Ref 20.00 dBm	Center Freq: Trig: Free Rt. #Atten: 10 df	2.42200000 GHz Avg Hold:>1 B	0/10 Radi	05:26:41 PM Dec 25, 2019 io Std: None io Device: BTS
10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0 -70.0 Center 2.422 #Res BW 10	2.422000000 GHz #IFGa Ref 20.00 dBm	Center Freq: Trig: Free Rt. #Atten: 10 df	2.42200000 GHz Avg Hold:>1 B	0/10 Radi	05:26:41 PM Dec 25, 2019 io Std: None io Device: BTS
Center Freq 10 dB/div Leg 10.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	2.422000000 GHz #FGa Ref 20.00 dBm 2.6Hz 0 kHz d Bandwidth 36.018 M Freq Error -11.887	#VBW Total Po IHZ kHz % of OBI	2.42200000 GHz B V 300 kHz wer 8.54 dB	m %	05:26:41 PM Dec 25, 2019 io Std: None io Device: BTS

Page: 67 of 76

Page: 68 of 76

Attachment E-- Peak Output Power Test Data

Test Conditions	: Continuous transm	itting Mode		
Temperature:	25 ℃	Relative Humidity:	: 55%	
Test Voltage:	AC 120/60Hz			
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)	
	2412	15.46		
802.11b	2437	15.51		
	2462	15.41		
	2412	14.44		
802.11g	2437	14.90		
	2462	14.38	30	
802.11n	2412	13.49	30	
(HT20)	2437	13.46		
(11120)	2462	13.52		
802.11n	2422	12.52		
(HT40)	2437	12.39		
(11170)	2452	12.06		
	Resi	ult: PASS		

	Duty Cyc	cle	
Mode	Channel frequency (MHz)	Test Result	
	2412		
802.11b	2437		
	2462		
	2412		
802.11g	2437		
	2462	>000/	
000.44	2412	>98%	
802.11n	2437		
(HT20)	2462		
000 44	2422		
802.11n	2437		
(HT40)	2452		

Page: 69 of 76

Attachment F-- Power Spectral Density Test Data

Temperature:	25 ℃	Relative I	Humidity:	55%
Test Voltage:	AC 120/6	0Hz		
Test Mode:	TX 802.1	1B Mode		
Channel Freq	uency	Power Density	Power Density Limit	
(MHz)		(dBm/3 kHz)		(dBm)
2412		-15.869		
2437 2462		-15.910	8	
		-15.869		
		802.11B Mode	<u> </u>	
		2/12 M⊔-		

2412 MHz

Page: 70 of 76

Page: 71 of 76

Temperature:	25 ℃		1////	Temperat	ure:	25 ℃
Test Voltage:	AC 120/6	0Hz		THE	013	A WWW
Test Mode:	TX 802.11	IG Mode	The last		63	7:19
Channel Fred	quency	Pow	er Densit	у		Limit
(MHz)		(dE	3m/3 kHz)			(dBm)
2412			-18.532		8	
2437			19.327			
2462			-18.713			
		802	.11G Mod	е		
		24	412 MHz			
Keysight Spectrum	Analyzer - Swept SA F 75 Ω AC CORR	EC SENSI	- TAIT	ALIGN AUTO		04:56:25 PM Dec 25, 2019
	2.412000000 GHz	PNO: Fast 🕟 T	rig: Free Run Atten: 30 dB	Avg Type: L Avg Hold: 2/		TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P NNNNN
10 dB/div Re	f Offset 3.9 dB f 23.90 dBm				Mkr1	2.411 060 GHz -18.532 dBm
Log						
13.9						

Marithment Janes Maritment Commence

#VBW 10 kHz

TOBY

72 of 76 Page:

802.11G Mode

2462 MHz

Page: 73 of 76

Į.	Temperature:	25 ℃		Temperature:	25 ℃		
	Test Voltage:	AC 120/6	0Hz	Will De			
	Test Mode:	TX 802.1	1N(HT20) Mode	5.0			
	Channel Frequency (MHz)		Power Density (dBm/3 kHz)		Limit (dBm)		
	2412 2437 2462		-18.229	9			
			-18.662 -18.669		8		
	802.11N(HT20) Mode						

11N(H12U) Mode

2412 MHz

Page: 74 of 76

Page: 75 of 76

Temperature:	25 ℃	Temperature:		25 ℃		
Test Voltage:	AC 120/60Hz					
Test Mode:	TX 802.1	X 802.11N(HT40) Mode				
Channel Frequency		Power Density		Limit		
(MHz)		(dBm/3 kHz) (dBm		(dBm)		
2422 2437		-21.123				
		-23.259		8		
2452		-21.221				
802.11N(HT40) Mode						

2422 MHz

Page: 76 of 76

----END OF REPORT----