- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - Pv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Clasificación de los algoritmos de ruteo

Según información global o descentralizada?

Global:

- Todos los routers tienen la topología completa y constos de enlaces
- Algoritmo "estado de enlace"
- Descentralizada:
- El router comoce vecinos conectados físicamente y su costo del enlace a ellos.
- Proceso iterativo de cómputo e intercambio de información con sus vecinos
- Algoritmo "vector de distancia"

Según si es estático o dinámico?

Estático:

routes cambian lentamente en el tiempo

Dinámico:

- routes cambias más rápidamente
 - Actualizaciones periódicas
 - En respuesta a cambios de costos de enlaces

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - Pv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

<u>Un Algoritmo de ruteo de estado de</u> enlace

Algoritmo de Dijkstra

- Supone topología de red y costos de enlaces conocidos a todos los nodos
 - Se logra vía "difusión de estado de enlace"
 - Todos los nodos tienen la misma información
- Se calcula el camino de costo menor desde un nodo (fuente) a todos los otros
 - Entrega la tabla de reenvío para ese nodo
- iterativo: después de k iteraciones, conoce camino de menor costo a k destinos

Notación:

- \Box c(x,y): costo del enlace desde nodo x a y; = ∞ si no es vecino directo
- D(v): valor actual del costo del camino desde fuente a destino v.
- p(v): nodo predecesor a v en el camino de fuente a v.
- N': conjunto de nodos cuyo camino de costo mínimo ya se conoce

Modelo abstracto para la red

Figure 4.25 ♦ Abstract graph model of a computer network

<u>Algoritmo de Dijsktra</u>

```
1 Inicialización:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
```

Notación:

- c(x,y): costo del enlace desde nodo x a y; = ∞ si no es vecino directo
- D(v): valor actual del costo del camino desde fuente a destino v.
- p(v): nodo predecesor a v en el camino de fuente a v.
- N': conjunto de nodos cuyo camino de costo mínimo ya se conoce

```
8 Loop
```

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 actualiza D(v) para todo v adyacente a w y no en N' usando:
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* nuevo costo a v es ya sea el costo del camino actual a v o
- 14 el costo del camino más corto conocido a w más el costo de w a v*/
- 15 until all nodes in N'

Algoritmo de Dijkstra

step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0 1 2	u ux uxy	2,u 2,u 2,u	5,u 4,x 3,y	1,u	∞ 2,x	∞ ∞ 4,y
3 4 5	uxyv uxyvw uxyvwz		<u>3,y</u>			4,y 4,y

Table 4.3 ◆ Running the link-state algorithm on the network in Figure 4.25 Capa de Red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - Pv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - O BGP
- 4.7 Ruteo Broadcast y multicast

Algoritmo Vector de Distancia (1)

Ecuación de Bellman-Ford (programación dinámica)

Define

 $d_x(y) := costo del camino de menor costo de x a y$

Entonces:

$$d_{x}(y) = \min \{c(x,v) + d_{v}(y) \}$$
v es vecino de x

Donde min es tomado sobre todos los vecinos v de x

<u>Algoritmo Vector de Distancia (2)</u>

- $\square D_{x}(y) = costo mínimo estimado de x a y$
- \square Vector de distancia: $\mathbf{D}_{\mathsf{x}} = [\mathsf{D}_{\mathsf{x}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$
- □ Nodo x conoce el costo a cada vecino v: c(x,v)
- □ Nodo x mantiene $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbf{N}]$
- Nodo x también mantiene los vectores de distancia de sus vecinos
 - Para cada vecino v, x mantiene

```
\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]
```

Algoritmo Vector de distancia (3)

Idea básica:

- Cada nodo envía periódicamente su vector de distancia estimado a sus vecinos
- Cuando el nodo x recibe un nuevo DV estimado desde un vecino, éste actualiza su propio DV usando la ecuación de B-F:

```
D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} para cada nodo y \in N
```

□ Bajo condiciones naturales, el valor estimado de $D_x(y)$ converge al menor costo real $d_x(y)$

Algoritmo Vector de Distancia (4)

Iterativo y asincrónico:

cada iteración local es causada por:

- Cambio en costo de enlace local
- Actualización de DV por mensaje de vecino

Distribuido:

- Cada nodo notifica a sus vecinos sólo cuando su DV cambia
 - Vecinos entonces notifican a sus vecinos si es necesario

Cada nodo:

wait for (cambio en costo de enlace local o llegada de mensaje desde vecino)

recompute DV estimado

if (DV a cualquier destino ha cambiado)

notificar a vecinos

Ejemplo: Vector de distancia

Figure 4.27 → Distance vector (DV) algorithm

Casos en algoritmo DV

Figure 4.28 ♦ Changes in link cost

- Considerar que y detecta el cambio:
- El caso a conduce a una situación estable en dos iteraciones.
- Caso **b** conduce a un loop
- Caso **b** la actualización toma mucho tiempo, se conoce como problema de cuenta infinita.
- ¿Solución?: Que nodo z informe a su vecino y que su ruta a x es infinita cuando z llega a x vía y
- ☐ El problema sigue cuando el loop involucra más de dos nodos de Red 4-14

<u>Comparación de Algoritmos de estado (LS) de</u> <u>enlace y vector de distancia (DV)</u>

Complejidad de mensajes

- LS: con n nodos, E enlaces, O(nE) mensajes son enviados
- DV: sólo intercambios entre vecinos
 - Tiempo de convergencia varía

Rapidez de convergencia

- LS: O(n²), algoritmo requiere O(nE) mensajes
 - Puede tener oscilaciones
- DV: tiempo de convergencia varía
 - Podría estar en loops
 - Problema de cuenta infinita

Robustez: qué pasa si un router funciona mal?

<u>LS:</u>

- Nodos pueden comunicar incorrecto costo link
- Cada nodo computa sólo su propia tabla

<u>DV:</u>

- DV nodo puede comunicar costo de camino incorrecto
- La tabla de cada nodo es usada por otros
 - error se propaga a través de la red

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - Pv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast

Ruteo Jerárquico

Nuestro estudio del ruteo hasta ahora es idealizado. Suponemos que:

- Todos los routers son idénticos
- La red es "plana"
- ... esto no es verdad en la práctica

Escala: con 200 millones de destinos:

- No podemos almacenar todos los destinos en tablas de ruteo!
- Los intercambios de tablas de ruteo inundarías los enlaces!

Autonomía administrativa

- □ internet = red de redes
- Cada administrador de red puede querer controlar el ruteo en su propia red

Ruteo Jerárquico

- Agrupar router en regiones, "sistemas autónomos" (autonomous systems, AS)
- Routers en el mismo AS corren el mismo protocolo de ruteo
 - Protocolo de ruteo "intra-AS"
 - routers en diferentes AS pueden correr diferentes protocolos intra-AS

Router de borde (Gateway router)

 Tienen enlace directo a router en otros sistemas autónomos

Ruteo Jerárquico

Figure 4.29 ♦ An example of interconnected autonomous systems

Ejemplo: definición de la tabla de reenvío en router 1d

- Supongamos que AS1 aprende del protocolo inter-AS que la subred x es alcanzable desde AS3 (gateway 1c) pero no desde AS2.
- El protocolo inter-AS propaga la información de alcance a todos los routers internos.
- Router 1d determina de la información de ruteo intra-AS que su interfaz / está en el camino de costo mínimo a 1c.
- Luego éste pone en tu tabla de re-envío (x,l).

Ejemplo: Elección entre múltiples ASes

- \square Ahora supongamos que AS1 aprende del protocolo inter-AS que la subred x es alcanzable desde AS3 y desde AS2.
- Para configurar la tabla de re-envío, router 1d debe determinar hacia qué gateway éste debería re-enviar los paquetes destinados a x.
- Ésta es también una tarea del protocolo de ruteo inter-AS!
- Ruteo de la papa caliente (Hot potato routing): enviar el paquete hacia el router más cercano de los dos.

- 4. 1 Introducción
- 4.2 Circuitos virtuales y redes de datagramas
- □ 4.3 ¿Qué hay dentro de un router?
- 4.4 IP: Internet Protocol
 - Formato de Datagrama
 - Direccionamiento IPv4
 - ICMP
 - Pv6

- 4.5 Algoritmos de ruteo
 - Estado de enlace
 - Vector de Distancias
 - Ruteo Jerárquico
- 4.6 Ruteo en la Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Ruteo Broadcast y multicast