Métodos de Simulación Física: Primer Parcial

Nombre Cédula

Instrucciones generales

El parcial está diseñado para desarrollarse en un tiempo máximo de 4 horas. Pasado ese tiempo, debe hacerse un primer envío al correo jdmunozcsimulacion@gmail.com colocando el subject "Primer Parcial Simulación: [NOMBRE], [CÉDULA]", reemplazando los espacios de [NOMBRE] y [CÉDULA] con su nombre y su cédula, respectivamente. El envío debe contener todos los códigos (.cpp o .ipynb), las gráficas en .jpg como attachments, y los datos que se le pidan como parte del texto. Luego, pueden hacer un segundo envío antes de las 11:59pm del día domingo 14 de abril. El primer envío tiene en la nota un peso del 80%, y el segundo, del 20%.

Buena suerte y buen pulso!!

Problema a desarrollar: una de Newton

Considere una cuna de Newton formada por tres péndulos iguales, con cuerdas de longitud $L=12~\rm cm$ de las que cuelgan masas esféricas de radio $R=1.5~\rm cm$ y masa $m=100~\rm g$, como se muestra en la figura. Las fuerzas elásticas de colisión entre dos esferas están gobernadas por la Ley de Hertz,

$$F = K s^{3/2} ,$$

que nos dice que F, la magnitud de la -10 -5 0 5 10 15 fuerza, es proporcional a la distancia de interpenetración aparente s entre las dos esferas a la potencia 1.5. La constante K es función de las constantes elásticas y los radios de las dos esferas, y tiene unidades de $kg/(m^{0.5}s^2)$.

a) (18pts) Construya un programa que simule el movimiento de un solo péndulo. *Sugerencia*: piense el péndulo, con todo y cuerda, como un cuerpo rígido que rota alrededor del extremo libre de la cuerda, y modele solamente el movimiento rotacional alrededor del eje fijo, con velocidad angular $\omega = \frac{d\theta}{dt}$ y aceleración angular $\alpha = \frac{d\omega}{dt} = \frac{\tau}{l}$, con $\tau = -Lmg \sin \theta$ el torque producido por la fuerza de gravedad e $I = mL^2$ el momento de inercia, como se ve en la figura.

Enviar: el programa (.cpp o .ipynb) que haga la animación, o al menos grafique en *x* vs. *y* el movimiento del péndulo, junto con el .gif o el .jpeg correspondiente.

b) (12pts) Con base en el programa anterior, modele la cuna de Newton como tres péndulos en posiciones x_0, x_1, x_2 tales que, en reposo, se encuentran justo en contacto. El primer péndulo inicia con un ángulo de 15^o , mientras que los demás inician verticalmente. Implemente los torques producidos por las fuerzas de colisión de Hertz entre las esferas.

Enviar: el programa (.cpp o .ipynb) que haga la animación, o al menos grafique en x vs. y) el movimiento del péndulo, junto con el .gif o el .jpeg correspondiente.

c) (8pts) El primer péndulo, al chocar contra el segundo, lo obliga a su vez a chocar contra el tercero, con lo cual el segundo péndulo permanece prácticamente en reposo. Grafique el torque sobre el péndulo de la mitad en función del tiempo t para valores de $K=0.1,0.2,0.5,1,2,5 \text{ y } 10 \times 10^{10} \text{ kg/(m}^{0.5}\text{s}^2)$. Las curvas resultantes parecen una oscilación seno (aunque no lo son). **Enviar:** El programa y la gráfica.

d) (6pts) Mida el torque máximo $\tau_{\rm max}$ y el tiempo $t_{\rm max}$ que dura la oscilación del torque para cada valor de K, y consigne los resultados en una tabla. Grafique $\tau_{\rm max}$ y $t_{\rm max}$ en función de K en ejes log-log y encuentre con qué leyes de potencias $\tau_{\rm max} = A \, K^a$ y $t_{\rm max} = B \, K^b$ se pueden aproximar estas dos funciones.

Enviar: La tabla de valores de τ_{\max} y t_{\max} , la gráfica y los valores hallados de los exponentes a y b.

e) (6pts) Reescale la gráfica del punto c) y compruebe que al dibujar $\tau \cdot K^{-a}$ en función de $(t-t_0) \cdot K^{-b}$ (con t_0 el instante en el que inicia el primer contacto) todas las figuras caen en una misma curva. **Enviar** la gráfica reescalada.

Para la entrega, enviar

- a) el programa (.cpp o .ipynb) que haga la animación, o al menos grafique en x vs. y el movimiento del péndulo, junto con el .gif o el .jpeg correspondiente.
- b) el programa (.cpp o .ipynb) que haga la animación, o al menos grafique en *x* vs. *y*) el movimiento del péndulo, junto con el .gif o el .jpeg correspondiente
- c) El programa y la gráfica.
- d) La tabla de valores de $\tau_{\rm max}$ y $t_{\rm max}$, la gráfica y los valores hallados de los exponentes a y b .
- e) La gráfica reescalada.