Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

SUPPORT VECTOR MACHINE

Mainly based on

https://nlp.stanford.edu/IR-book/pdf/15svm.pdf

Overview

- SVM is a huge topic
 - Integration of MMDS, IIR, and Andrew Moore's slides here
- Our foci: Assignment Project Exam Help
 - Geometric in wittign / To Owimod for mom
 - Alternative interpretation from Empirical Risk Minimization point of view. Add WeChat powcoder
 - Understand the final solution (in the dual form)
 - Generalizes well to Kernel functions
 - SVM + Kernels

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + \mathsf{b} = 0$$

Linear classifiers: Which Hyperplane?

- Lots of possible solutions for a, b, c.
- Some methods find a separating hyperplane, but so ight project Exam $\frac{1}{1000}$ Helf $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ Helf $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ Helf $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{$ [according to some criterion of expected https://powcoder.com goodness]
 - E.g., perceptron
- Support Vector Machine SWA Finat powcoder optimal* solution.
 - Maximizes the distance between the hyperplane and the "difficult points" close to decision boundary
 - One intuition: if there are no points neal the decision surface, then there are no very uncertain classification decisions

This line represents the decision boundary:

Another intuition

If you have to place a fat separator between classes, you have less choices, and so the capacity of the model has Assignment Reject Exam Help

Support Vector Machine (SVM)

 SVMs maximize the margin around the separating hyperplane.

• A.k.a. Argeigarairents Affreysect Exam

The decision function is fully specified by a subset of training samples, the support vectors at powcoder.

 Solving SVMs is a quadratic programming problem

Seen by many as the most successful current text classification method*

Maximum Margin: Formalization

- w: decision hyperplane normal vector
- x_i: data point i Assignment Project Exam Help
- y_i: class of data point i (+1 or -1) https://powcoder.com
 Classifier is: f(x_i) = sign(w x_i + b)
- Functional margido (Wie Chat pyo (wwc xo debr)
 - But note that we can increase this margin simply by scaling w, b....
- Functional margin of dataset is twice the minimum functional margin for any point
 - The factor of 2 comes from measuring the whole width of the margin

NB: Not 1/0

NB: a common trick

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + \mathbf{b} = 7.4$$
 $\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + \mathbf{b} = 3.7$ Largest Margin

Distance from the separating

Add WeChat powofdeediction

Example:

We are more sure about the class of A and B than of C

 $\mathbf{w}'\mathbf{x} + b$

Geometric Margin

- Distance from example to the separator is
- Examples closest to the hyperplane are support vectors.

 Assignment Project Exam Help

 Margin ρ of the separator is the width of separation between support vectors
- Margin p of the separator is the width of separation between support vectors of classes.
 https://powcoder.com

Algebraic derivation of finding *r*:

VeChat powtesdine x'-x is perpendicular to decision boundary so parallel to w.

Unit vector is w/||w||, so line is rw/||w||, for some r.

$$x' = x - yrw/||w||$$
.

 $\mathbf{x'}$ satisfies $\mathbf{w}^{\mathsf{T}}\mathbf{x'}$ +b = 0.

So $\mathbf{w}^{\mathsf{T}}(\mathbf{x} - \mathbf{y} \mathbf{r} \mathbf{w} / ||\mathbf{w}||) + \mathbf{b} = 0$

Recall that $||\mathbf{w}|| = \operatorname{sqrt}(\mathbf{w}^{\mathsf{T}}\mathbf{w})$.

So $\mathbf{w}^{\mathsf{T}}\mathbf{x} - \mathbf{yr}||\mathbf{w}|| + \mathbf{b} = 0$

So, solving for r gives:

 $r = y(\mathbf{w}^T\mathbf{x} + \mathbf{b})/||\mathbf{w}||$

Help from Inner Product

Remember: Dot product / inner product

$$\frac{(\|A\|\cos\theta)}{\|B\|} = \frac{\langle A,B\rangle}{\|B\|^2} B$$
 vector

A's projection onto B = (<A, B> / <B, B>) * B

Derivation of the Geometric Margin

Linear SVM Mathematically

The linearly separable case

• Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set $\{(\mathbf{x_i}, y_i)\}$

Assignment Project Exam Help
$$\lim_{\mathbf{x_i} + b} \mathbf{y_i} = 1$$
 https://powqoder.com

- For support vectors, the inequality becomes an equality
- Then, since each example's distance from the hyperplane is

$$r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$$

The margin is:

$$\Gamma = \frac{2}{\|\mathbf{w}\|}$$

Derivation of p

- Extra scale constraint:
 min_{i=1,...,n} | w^Tx_i + b | Add WeChat powcoder
- This implies:

$$w^{T}(x_a-x_b) = 2$$

 $\rho = ||x_a-x_b||_2 = 2/||w||_2$

Solving the Optimization Problem

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized; and for all $\{(\mathbf{x}_{\mathrm{Si}})\}$ in $\{(\mathbf{w}_{\mathrm{T}})\}$ in $\{(\mathbf{x}_{\mathrm{T}})\}$ in $\{(\mathbf{$

- This is now optimizing a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known class of mathematical programming problem, and many (intricate) algorithms exist for solving them (with many special ones built for swylspowcoder
- The solution involves constructing a dual problem where a Lagrange multiplier α_i is associated with every constraint in the primary problem:

Find $\alpha_1 \dots \alpha_N$ such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and

- $(1) \quad \Sigma \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

Geometric Interpretation

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized;
and for all \mathbf{w} is $\mathbf{w}^{\mathrm{T}} \mathbf{v}$ in $\mathbf{v}^{\mathrm{T}} \mathbf{v}$ is $\mathbf{w}^{\mathrm{T}} \mathbf{v}$ in $\mathbf{v}^{\mathrm{T}} \mathbf{v}$ is $\mathbf{v}^{\mathrm{T}} \mathbf{v}$ in $\mathbf{v}^{\mathrm{T}} \mathbf{v}$ is \mathbf{v}^{T}

- What are fixed and what are variables?
- Linear constraint(s): Where can the variables be?
- Quadratic objective function:
 Add Wechat powcoder

The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
 $b = y_k - \mathbf{w^T} \mathbf{x_k}$ for any $\mathbf{x_k}$ such that $\alpha_k \neq 0$

- Assignment Project Exam Help Each non-zero a, indicates that corresponding x, is a support vector.

Then the scoring function will have the form:
$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i^T} \mathbf{x} + b$$

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i^T} \mathbf{x} + b$$
Add WeChat poweoder

Q: What are the model parameters? What does f(x) mean intuitively?

- Classification is based on the sign of f(x)
- Notice that it relies on an *inner product* between the test point **x** and the support vectors x_i
 - We will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\langle x_i, x_i \rangle$ between all pairs of training points.₁₅

Soft Margin Classification

If the training data is not linearly separable, slack variables Asanghadde中的ject Exam Help allow misclassification of difficult or noisytepam/pleswcoder.com

Allow some errors

Let some points be moved potential to where they belong, at a cost

 Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

Soft Margin Classification Mathematically

[Optional]

The old formulation:

The new formulation incorporating slack variables:

Add WeChat powcoder

Find w and b such that

$$\Phi$$
 (w) =\frac{1}{2} \mathbf{w}^T \mathbf{w} + C\Sigma \xi_i \text{ is minimized and for all } \{ (\mathbf{x}_i, y_i) \} y_i (\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \text{ for all } i

- Parameter C can be viewed as a way to control overfitting
 - A regularization term

Alternative View

SVM in the "natural" form

arg min
$$\frac{1}{2} w \cdot w + C \cdot \sum_{\substack{\text{Margin}\\\text{Margin}}}^{n} \max \{0, 1 - y_i(w \cdot x_i + b)\}$$
Empirical loss L (how well we fit training data)

https://powcoder.com

Hyper-parameter related to regularization

SVM uses "Hinge Loss": Add WeChat powcoder

[Optional]

Soft Margin Classification - Solution

The dual problem for soft margin classification:

Find
$$\alpha_1 ... \alpha_N$$
 such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i \mathbf{A}_i \mathbf{S}_i \mathbf{g}_{i} \mathbf{m}_{j} \mathbf{v}_{i} \mathbf{v}_{j} \mathbf{v}_{i} \mathbf{v}_{j} \mathbf{v}_{i} \mathbf{v}_{j} \mathbf{v}_{i} \mathbf{v}_{j} \mathbf{v}_{i} \mathbf{v}_{j} \mathbf{v}_{i} \mathbf{v}_{j} \mathbf{v}_{i} \mathbf{$

- Neither slack variables ξ nor their Lagrange multipliers appear in the dual problem! Add WeChat powcoder
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

$$b = y_k (1 - \xi_k) - \mathbf{w^T} \mathbf{x}_k \text{ where } k = \underset{k'}{\operatorname{argmax}} \alpha_k$$

w is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

Classification with SVMs

- Given a new point x, we can score its projection onto the hyperplane normal:
 - I.e., compute score: $\mathbf{w} \times \mathbf{x} + b = \sum \alpha_i y_i \mathbf{x} + b$
 - Decide class/pased:onpwhetherder.eom

Add WeChat powcoder
 Can set confidence threshold t.

Score > t: yes

Score < -t. no

Else: don't know

Linear SVMs: Summary

- The classifier is a separating hyperplane.
- The most "important" training points are the support vectors; they define the hyperplan Assignment Project Exam Help
- Quadratic optimization algorithms can identify which training points $\mathbf{x_i}$ are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and of the solution, training points appear only inside inner products:

```
Find \alpha_I ... \alpha_N such that \mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} is maximized and
```

(1) $\Sigma \alpha_i y_i = 0$

(2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum_{sv \in SV} y_{sv} \cdot \alpha_{sv} \cdot \langle \mathbf{x}_{sv}, \mathbf{x} \rangle + b$$

Support Vector Regression

- Find a function f(x) with at most ε -deviation frm the target y $y_i (w^Tx_i + b) > = -\varepsilon$
- The optimization problem ext Exam Help

Find w and b such that

Φ (w) =1/2 wTw is minimized and we all at ipow code

$$y_i - (\mathbf{w}^{\mathsf{T}} \mathbf{x_i} + \mathbf{b}) \ge \mathbf{\epsilon}$$
$$y_i - (\mathbf{w}^{\mathsf{T}} \mathbf{x_i} + \mathbf{b}) \le \varepsilon$$

- We can introduce slack variables
 - Similar to soft margin loss function

Non-linear SVMs

Datasets that are linearly separable (with some noise) work out great:

But what are we going to do if the dataset is just too hard? https://powcoder.com

c.f., polynomial regression

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where item in Residential point in the second space.

The "Kernel Trick"

- The linear classifier relies on an inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- If every datapoint in the limit of the limi
- A kernel function is sping function that corresponds to an inner product in some expanded feature space.
 - Usually, no need to construct the feature space explicitly.

What about $K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^{\top} \mathbf{v})^3$?

Example

$$K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^{\top} \mathbf{v})^{2}$$

$$= 1 + 2\mathbf{u}^{\top} \mathbf{v} + (\mathbf{u}^{\top} \mathbf{v})^{2}$$

$$= 1 + 2\mathbf{u}^{\top} \mathbf{v} + (\mathbf{v}^{\top} \mathbf{v})^{2}$$

O(d²) new cross-term features

$$\phi(\mathbf{u}) = \begin{bmatrix} 1 & \sqrt{2}\mathbf{u}_1 & \dots & \sqrt{2}\mathbf{u}_d & \mathbf{u}_1^2 & \dots & \mathbf{u}_d^2 & \mathbf{u}_1\mathbf{u}_2 & \dots & \mathbf{u}_{d-1}\mathbf{u}_d \end{bmatrix}^\top$$

$$\phi(\mathbf{v}) = \begin{bmatrix} 1 & \sqrt{2}\mathbf{v}_1 & \dots & \sqrt{2}\mathbf{v}_d & \mathbf{v}_1^2 & \dots & \mathbf{v}_d^2 & \mathbf{v}_1\mathbf{v}_2 & \dots & \mathbf{v}_{d-1}\mathbf{u}_d \end{bmatrix}^\top$$
Linear Non-linear Non-linear + feature

Non-linear + feature combination

Why feature combinations?

Examples:

- Two categorical features (age & married) encoded as one-hot encoding combination = sonjunction rules Assignment Project Exam Help

 e.g., 1[age in [30, 40] AND married = TRUE]
- [..., eagerness-fqrttravel/income oder combination indicates how much to spend on travel
- e.g., "travel rarely" AND "high in tome" among other combinations

 NLP, feature vector = $1[w \in x] \rightarrow combination$ indicates two word cooccurrence (where phrase/multi-word expression (MWE) is just a special case)
- $\mathbf{x} \rightarrow \varphi(\mathbf{x})$, then a linear model in the new feature space is just $\mathbf{w}^{\mathrm{T}}\varphi(\mathbf{x})$ +b
 - each feature combination will be assigned a weight wi
 - irrelevant features combinations will get 0 weight

Why feature combinations? /2

- Also helpful for linear models
 - Linear regression assumes no interaction between Assignment Project Exam Help
 x_i and x_j
 - One can addths: wow telection terms, typically x_i
 * x_j, to still use linear regression (to learn a non-linear model!)

Inner product in an infinite dimensional space! [Optional]

RBF kernel:

$$e^{-\gamma ||x_{i}-x_{j}||^{2}} = e^{-\gamma(x_{i}-x_{j})^{2}} = e^{-\gamma x_{i}^{2}+2\gamma x_{i}x_{j}-\gamma x_{j}^{2}}$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \begin{pmatrix} \text{Assignment Project Exam Help} \\ 1 + \frac{2\gamma x_{i}x_{j}}{\text{lttps://powcoder.com!}} + \frac{(2\gamma x_{i}x_{j})^{2}}{\text{coder.com!}} + \cdots \end{pmatrix}$$

$$= e^{-\gamma x_{i}^{2}-\gamma x_{j}^{2}} \begin{pmatrix} 1 \cdot 1 + \text{Add} \frac{2\gamma}{1!} \text{We} \begin{pmatrix} \frac{2\gamma}{1!} \\ \frac{2\gamma}{1!} \end{pmatrix} \text{We} \begin{pmatrix} \frac{2\gamma}{1!} \\ \frac{2\gamma}{1!} \end{pmatrix} \text{We} \begin{pmatrix} \frac{2\gamma}{1!} \\ \frac{2\gamma}{1!} \end{pmatrix} + \cdots \end{pmatrix}$$

$$= \phi(x_{i})^{T} \phi(x_{j}) \qquad \text{, where}$$

$$\phi(x) = e^{-\gamma x^{2}} \left[1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^{2}}{2!}} x^{2}, \sqrt{\frac{(2\gamma)^{3}}{3!}} x^{3}, \cdots \right]^{T}$$

[Optional]

String Kernel

- K(s1, s2) should evaluate the similarity between the two strings
 - Without this sing "after" t "Pricese" t=Exam Help
- Intuition:
 - consider all subditings as pointing consider all subditings as pointing of the consider all subditing of the consideration and the consideratio
 - inner product in that "enhanced" feature space means the number of common substrings the two share. powcoder
- Variants:
 - (more complex): consider subsequences (with possibly gap penalty)
 - (simpler): consider all k-grams, and use Jaccard
 - bigrams(actor) = {ac, ct, to, or}
 - bigrams(actress) = {ac, ct, tr, re, es, ss}
 - Jaccard(actor, actress) = 2/8

Kernels

- Why use kernels?
 - Make non-separable problem separable.
 - Map data into better representational space
 - Can be leaster to the least the later of the
- Common kernels https://powcoder.com
 - Linear
 - Polynomial K(xA)dd TW e Chat powcoder
 - Gives feature combinations
 - Radial basis function (infinite dimensional space)

$$K(\mathbf{x}_i, \mathbf{x}_j; \sigma) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

- Text classification:
 - Usually use linear or polynomial kernels

Classification with SVMs with Kernels

Given a new point x, we can compute its score

$$\sum_{\mathbf{Assignment\ Project\ Exam\ Help}} y_{sv} \alpha_{sv} K(\mathbf{x}_{sv}, \mathbf{x}) + b$$

- Decide classed on whether or > 0
- E.g., in scikit-learn WeChat powcoder

- linear: $\langle x, x' \rangle$.
- polynomial: $(\gamma \langle x, x' \rangle + r)^d$. d is specified by keyword degree, r by coeff.
- rbf: $\exp(-\gamma ||x-x'||^2)$. γ is specified by keyword gamma, must be greater than 0.
- sigmoid $(\tanh(\gamma\langle x,x'\rangle+r))$, where r is specified by coef0.

Pros and Cons of the SVM Classifier

Pros

- High accuracy
- Fast classification Fast
- Works with cases where #features > #samples
- Can adapt to different objects (due to Kernel)
 - Any K(u, v) can be used from the week from
 - Or explicit engineer the feature space.

Cons

- Training does not scale well with number of training samples (O(d*n²) or O(d*n³))
- Hyper-parameters needs tuning

Resources for today's lecture

- Christopher J. C. Burges. 1998. A Tutorial on Support Vector Machines for Pattern Recognition
- S. T. Dumais. 1998. Using SVMs for text categorization, IEEE Intelligent Systems, 13(4)
- S. T. Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive learning algorithms and representations for text categorization. FIGURE 28, pp. 148-155. Help
- Yiming Yang, Xin Liu. 1999. A re-examination of text categorization methods. 22nd Annual International SIGIR
- Tong Zhang, Frank J. Oles Dept. Stext Pare Viza Classification Methods. Information Retrieval 4(1): 5-31
- Trevor Hastie, Robert Tibshirdhila Werman Friedman Flenchts of Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, New York.
- T. Joachims, Learning to Classify Text using Support Vector Machines. Kluwer, 2002.
- Fan Li, Yiming Yang. 2003. A Loss Function Analysis for Classification Methods in Text Categorization. ICML 2003: 472-479.
- Tie-Yan Liu, Yiming Yang, Hao Wan, et al. 2005. Support Vector Machines Classification with Very Large Scale Taxonomy, SIGKDD Explorations, 7(1): 36-43.
- 'Classic' Reuters-21578 data set: http://www.daviddlewis.com/resources/testcollections/reuters21578/