数学物理方法补充讲义

余钊焕

中山大学物理学院

https://yuzhaohuan.gitee.io/cn/teaching.html

2020年12月8日

目 录

1	Fourier 变换例题	2
2	Legendre 多项式函数图像	3
3	连带 Legendre 函数的应用	4
4	柱函数图像	6

1 Fourier 变换例题

例 1 计算矩形函数

$$f(x) = \begin{cases} 1, & |x| < 1\\ 0, & |x| > 1 \end{cases}$$
 (1.1)

的 Fourier 变换 F(k)。

解 f(x) 的 Fourier 变换为

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} \cos kx \, dx$$
$$= \frac{1}{\sqrt{2\pi}} \frac{\sin kx}{k} \Big|_{-1}^{1} = \sqrt{\frac{2}{\pi}} \frac{\sin k}{k}. \tag{1.2}$$

原函数和像函数的图像见图 1。

图 1: 矩形函数 f(x) 和它的 Fourier 变换 F(k)。

例 2 计算函数 $f(x) = e^{-a|x|}$ 的 Fourier 变换 F(k), 其中 a > 0。

解 Fourier 变换

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-a|x|} e^{-ikx} dx = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \cos kx \, dx = \sqrt{\frac{2}{\pi}} I.$$
 (1.3)

这里, 积分

$$I \equiv \int_0^\infty e^{-ax} \cos kx \, dx = -\frac{1}{a} \int_0^\infty \cos kx \, de^{-ax} = -\frac{1}{a} e^{-ax} \cos kx \Big|_0^\infty - \frac{k}{a} \int_0^\infty e^{-ax} \sin kx \, dx$$
$$= \frac{1}{a} + \frac{k}{a^2} \int_0^\infty \sin kx \, de^{-ax} = \frac{1}{a} + \frac{k}{a^2} e^{-ax} \sin kx \Big|_0^\infty - \frac{k^2}{a^2} \int_0^\infty e^{-ax} \cos kx \, dx = \frac{1}{a} - \frac{k^2}{a^2} I, \quad (1.4)$$

故

$$I = \frac{a}{a^2 + k^2}. (1.5)$$

图 2: a=2 时的函数 $f(x)=\mathrm{e}^{-a|x|}$ 和它的 Fourier 变换 F(k) 。

图 3: Legendre 多项式 $P_l(x)$ (l=0,1,2,3,4) 的函数图像。

从而得到

$$F(k) = \sqrt{\frac{2}{\pi}} \frac{a}{a^2 + k^2}.$$
 (1.6)

Legendre 多项式函数图像

头五个 Legendre 多项式的具体形式为

$$P_0(x) = 1,$$
 (2.1)

$$P_1(x) = x, (2.2)$$

$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2},\tag{2.3}$$

$$P_{2}(x) = \frac{3}{2}x^{2} - \frac{1}{2},$$

$$P_{3}(x) = \frac{5}{2}x^{3} - \frac{3}{2}x,$$
(2.3)

$$P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}. (2.5)$$

它们的函数图像如图 3 所示。

3 连带 Legendre 函数的应用

在球坐标系下对 Laplace 方程

$$\nabla^2 u(\mathbf{r}) = 0 \tag{3.1}$$

分离变量, 寻找形如

$$u(\mathbf{r}) = R(r)H(\theta)\Phi(\phi) \tag{3.2}$$

的解。考虑到关于 φ 的周期性边界条件, 可得

$$\Phi(\phi) = \{ e^{im\phi}, e^{-im\phi} \}, \quad m \in \mathbb{N}, \tag{3.3}$$

或者,

$$\Phi(\phi) = \{\cos m\phi, \sin m\phi\}, \quad m \in \mathbb{N}. \tag{3.4}$$

令 $\cos \theta = x$, $H(\theta) = P(x)$, 考虑到 $\theta = 0, \pi$ 处的自然边界条件, P(x) 应该满足本征值问题

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[(1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right] + \left(\lambda - \frac{m^2}{1 - x^2} \right) P = 0, \tag{3.5}$$

$$P(\pm 1) = 0 \quad (m \neq 0) \quad \vec{\mathfrak{A}} \quad |P(\pm 1)| < \infty \quad (m = 0).$$
 (3.6)

m=0 时对应于 Legendre 方程的本征值问题, $m\neq 0$ 时对应于连带 Legendre 方程的本征值问题。两种情况的本征值和本征函数可以统一写作

$$\lambda_l = l(l+1), \quad P(x) = \{P_l^m(x)\}, \quad l = m, m+1, \cdots$$
 (3.7)

这里 $P_l^m(x)$ 是连带 Legendre 函数。将本征值代回径向方程

$$r^{2}R''(r) + 2rR'(r) - \lambda_{l}R(r) = 0, (3.8)$$

可以解出

$$R(r) = \{r^l, r^{-(l+1)}\}. \tag{3.9}$$

因此,一般解为

$$u(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} \left[r^{l} (A_{lm} e^{im\phi} + B_{lm} e^{-im\phi}) + \frac{1}{r^{l+1}} (C_{lm} e^{im\phi} + D_{lm} e^{-im\phi}) \right] P_{l}^{m} (\cos\theta), \quad (3.10)$$

也可以写成

$$u(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} \left[r^{l} (\tilde{A}_{lm} \cos m\phi + \tilde{B}_{lm} \sin m\phi) + \frac{1}{r^{l+1}} (\tilde{C}_{lm} \cos m\phi + \tilde{D}_{lm} \sin m\phi) \right] P_{l}^{m} (\cos \theta).$$

$$(3.11)$$

例 已知半径为 a 的球面上的电势分布为 $u_0 \sin^2 \theta \sin \phi \cos \phi$,球内外无电荷,电势零点取在无穷远处,求空间各处的电势。

由于球内外无电荷,故电势在球内外均满足 Laplace 方程,定解问题为

$$\nabla^2 u = 0 \quad (r < a, r > a), \tag{3.12}$$

$$u|_{r=a} = u_0 \sin^2 \theta \sin \phi \cos \phi, \quad u|_{r=\infty} = 0.$$
 (3.13)

由 $P_2(x) = (3x^2 - 1)/2$ 可得 $P_2''(x) = (3x)' = 3$,因而

$$P_2^2(x) = (1 - x^2)P_2''(x) = 3(1 - x^2), \quad P_2^2(\cos \theta) = 3(1 - \cos^2 \theta) = 3\sin^2 \theta.$$
 (3.14)

因此,r = a 处的边界条件可以改写为

$$u|_{r=a} = u_0 \sin^2 \theta \sin \phi \cos \phi = \frac{u_0}{6} 3 \sin^2 \theta \sin 2\phi = \frac{u_0}{6} P_2^2(\cos \theta) \sin 2\phi.$$
 (3.15)

首先,求解球内 (r < a) 的电势,为了计算方便,将一般解写作

$$u_1(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} \left[\left(\frac{r}{a} \right)^l (A_{lm} \cos m\phi + B_{lm} \sin m\phi) + \left(\frac{a}{r} \right)^{l+1} (C_{lm} \cos m\phi + D_{lm} \sin m\phi) \right] P_l^m(\cos \theta).$$
(3.16)

由于球内没有电荷,球心 (r=0) 处电势应该有限,故对所有 l 和 m 均有 $C_{lm}=D_{lm}=0$ 。从而,球内的解应为

$$u_1(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} \left(\frac{r}{a}\right)^l (A_{lm}\cos m\phi + B_{lm}\sin m\phi) P_l^m(\cos\theta).$$
 (3.17)

代入 r = a 处的边界条件,得

$$u_1(a, \theta, \phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} (A_{lm} \cos m\phi + B_{lm} \sin m\phi) P_l^m(\cos \theta) = \frac{u_0}{6} P_2^2(\cos \theta) \sin 2\phi.$$
 (3.18)

可见,非零系数只有

$$B_{2,2} = \frac{u_0}{6},\tag{3.19}$$

其它系数均为零。于是得到球内的解为

$$u_1(r,\theta,\phi) = \frac{u_0}{6} \left(\frac{r}{a}\right)^2 P_2^2(\cos\theta) \sin 2\phi.$$
 (3.20)

其次,求解球外 (r > a) 的电势,将一般解写作

$$u_2(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} \left[\left(\frac{r}{a} \right)^l (\tilde{A}_{lm} \cos m\phi + \tilde{B}_{lm} \sin m\phi) + \left(\frac{a}{r} \right)^{l+1} (\tilde{C}_{lm} \cos m\phi + \tilde{D}_{lm} \sin m\phi) \right] P_l^m(\cos \theta).$$
(3.21)

由于无穷远 $(r=\infty)$ 处的电势已取为零,故对所有 l 和 m 均有 $\tilde{A}_{lm}=\tilde{B}_{lm}=0$ 。从而,球外的解应为

$$u_2(r,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} \left(\frac{a}{r}\right)^{l+1} (\tilde{C}_{lm}\cos m\phi + \tilde{D}_{lm}\sin m\phi) P_l^m(\cos\theta).$$
 (3.22)

代入 r = a 处的边界条件,得

$$u_2(a,\theta,\phi) = \sum_{m=0}^{\infty} \sum_{l=m}^{\infty} \left(\tilde{C}_{lm} \cos m\phi + \tilde{D}_{lm} \sin m\phi \right) \mathcal{P}_l^m(\cos \theta) = \frac{u_0}{6} \mathcal{P}_2^2(\cos \theta) \sin 2\phi. \tag{3.23}$$

可见, 非零系数只有

$$\tilde{D}_{2,2} = \frac{u_0}{6},\tag{3.24}$$

其它系数均为零。于是得到球外的解为

$$u_2(r,\theta,\phi) = \frac{u_0}{6} \left(\frac{a}{r}\right)^3 P_2^2(\cos\theta) \sin 2\phi.$$
 (3.25)

4 柱函数图像

头三个 Bessel 函数 $J_m(x)$ 和头三个 Neumann 函数 $N_m(x)$ 的图像如图 4 所示。 头三个虚宗量 Bessel 函数 $I_m(x)$ 和头三个虚宗量 Hankel 函数 $K_m(x)$ 的图像如图 5 所示。 当 $x \to \infty$ 且 $-\pi < \arg x < \pi$ 时,Bessel 函数 $J_{\nu}(x)$ 和 Neumann 函数 $N_{\nu}(x)$ 的渐近形式为

$$J_{\nu}(x) \sim \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\nu \pi}{2} - \frac{\pi}{4}\right), \tag{4.1}$$

$$N_{\nu}(x) \sim \sqrt{\frac{2}{\pi x}} \sin\left(x - \frac{\nu\pi}{2} - \frac{\pi}{4}\right).$$
 (4.2)

图 4: Bessel 函数 $J_0(x)$ 、 $J_1(x)$ 、 $J_2(x)$ 和 Neumann 函数 $N_0(x)$ 、 $N_1(x)$ 、 $N_2(x)$ 的图像。

 $J_0(x)$ 和 $N_0(x)$ 的渐近行为如图 6(a) 所示。

当 $x \to \infty$ 时,虚宗量 Bessel 函数 $I_{\nu}(x)$ 、虚宗量 Hankel 函数 $K_{\nu}(x)$ 的渐近形式为

$$I_{\nu}(x) \sim \frac{e^x}{\sqrt{2\pi x}}, \quad -\frac{\pi}{2} < \arg x < \frac{\pi}{2}$$
 (4.3)

$$K_{\nu}(x) \sim \sqrt{\frac{\pi}{2x}} e^{-x}, \quad -\pi < \arg x < \pi.$$
 (4.4)

 $I_0(x)$ 和 $K_0(x)$ 的渐近行为如图 6(b) 所示。

图 5: 虚宗量 Bessel 函数 $I_0(x)$ 、 $I_1(x)$ 、 $I_2(x)$ 和虚宗量 Hankel 函数 $K_0(x)$ 、 $K_1(x)$ 、 $K_2(x)$ 的图像。

图 6: Bessel 函数 $J_0(x)$ 、Neumann 函数 $N_0(x)$ 、虚宗量 Bessel 函数 $I_0(x)$ 、虚宗量 Hankel 函数 $K_0(x)$ 的渐近行为。

图 7: 球 Bessel 函数 $j_0(x)$ 、 $j_1(x)$ 、 $j_2(x)$ 和球 Neumann 函数 $n_0(x)$ 、 $n_1(x)$ 、 $n_2(x)$ 的图像。

头三个球 Bessel 函数 $j_l(x)$ 的具体形式为

$$j_0(x) = \frac{\sin x}{x},\tag{4.5}$$

$$j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x},\tag{4.6}$$

$$j_2(x) = \left(\frac{3}{x^2} - 1\right) \frac{\sin x}{x} - \frac{3\cos x}{x^2}.$$
 (4.7)

它们的图像如图 7(a) 所示。

头三个球 Neumann 函数 $n_l(x)$ 的具体形式为

$$n_0(x) = -\frac{\cos x}{x}, (4.8)$$

$$n_1(x) = -\frac{\cos x}{x^2} - \frac{\sin x}{x}, (4.9)$$

$$n_1(x) = -\frac{\cos x}{x^2} - \frac{\sin x}{x},\tag{4.9}$$

$$n_2(x) = \left(-\frac{3}{x^2} + 1\right) \frac{\cos x}{x} - \frac{3\sin x}{x^2}.$$
 (4.10)

它们的图像如图 7(b) 所示。