# **CE 412 A: Water Supply & Wastewater Disposal Systems**

Tutorial – 2022-23 II ● Part II: Wastewater Management

### TUTORIAL 2 • Monday, March 13, 2023

### **Exercise 2: Computation of Storm Runoff and Design of Storm Sewer**

Design a system of storm sewers for the area shown in Figure 1 based on the Rational Formula for the estimation of peak runoff.

**Basic Data and Assumptions** 

| Imperviousness - Built up and paved area | 0.7       |
|------------------------------------------|-----------|
| Imperviousness – Open space, lawns, etc, | 0.2       |
| Inlet time -Built up and paved area (tb) | 8 Minutes |
| Inlet time - Open space, lawns (t1)      | 15 Minute |
| Minimum velocity in sewer                | 0.8 mps   |
| Minimum depth of cover above crown       | 0.5 m     |

Consider rainfall intensity for once in 5 years storm as the area is central and high priced. (Use Table 1 for the record of rainfall intensity and frequency of rainfall).



Figure 1

#### **Procedure:**

- 1. Quantity of storm water runoff is calculated using the Rational Formula i.e Q=10CiA; where, Q: Runoff in m³/h; C: Coefficient of runoff; i: Intensity of rainfall in mm/h; and A: Area of drainage district in hectares.
- 2. Storm water runoff is determined in the following manner.

#### Residential areas

- Peripheral areas twice a year
- Central and comparatively high-priced areas once a year to once in 5 years
- Commercial and high-priced areas once in 5 years to once in 10 years

From the rainfall records for the last 25 years given in Table 1, the storm occurring once in 5 years, i.e. 5 times in 25 years, the time-intensity values for this frequency are obtained by interpolation and can be tabulated as per Table 2.

Table 1: Duration Versus Intensity of Storms

| Duration in | Intensity | 30     | 35     | 40      | 45       | 50       | 60     | 75      | 100      | 125      |
|-------------|-----------|--------|--------|---------|----------|----------|--------|---------|----------|----------|
| Minutes     | Mm/hr     | No. of | storms | of stat | ted inte | ensity o | r more | for a p | eriod of | 26 years |
| 5           |           |        |        |         |          | 100      | 40     | 18      | 10       | 2        |
| 10          |           |        |        | 90      | 72       | 41       | 25     | 10      | 5        | 1        |
| 15          |           |        | 82     | 75      | 45       | 20       | 12     | 5       | 1        |          |
| 20          |           | 83     | 62     | 51      | 31       | 10       | 9      | 4       | 2        |          |
| 30          |           | 73     | 40     | 22      | 10       | 8        | 4      | 2       |          |          |
| 40          |           | 34     | 16     | 8       | 4        | 2        | 1      |         |          |          |
| 50          |           | 14     | 8      | 4       | 3        | 1        |        |         |          |          |
| 60          |           | 8      | 4      | 2       | 1        |          |        |         |          |          |
| 90          |           | 4      | 2      |         |          |          |        |         |          |          |

Table 2: Intensity Versus Duration Data for a Storm of Given Frequency

| Intensity, i mm/h  | 30 | 35 | 40  | 45 | 50  | 60 |
|--------------------|----|----|-----|----|-----|----|
| Duration, t minute |    |    | ••• |    | ••• |    |

The generalised formula adopted for intensity and duration is

$$i = a/t^n$$

Where, i: Intensity of rainfall in mm/h; t: Duration in minutes; and a and n are constants. Values of a and n are to be estimated using regression analysis for above mentioned equation and data.

3. Using the regression equation  $i = (a / t^n)$ , i.e., after substituting the values of a and n for different values of i for various values of t can be calculated and tabulated as follows:

Table 3: Intensity-duration Curve for Once in 5 years Storm

|                      | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 60 | 80 | 100 | 120 |
|----------------------|---|----|----|----|----|----|----|----|----|----|----|-----|-----|
| i = a/t <sup>n</sup> |   |    |    |    |    |    |    |    |    |    |    |     |     |

#### 4. Calculation of Runoff Coefficient:

**Table 4: Percentage of Imperviousness of Areas** 

| S No | Type of Area                   | Percentage of Imperviousness |
|------|--------------------------------|------------------------------|
| 1    | Commercial and Industrial Area | 70-90                        |
| 2    | Residential Area               |                              |
|      | - High Density                 | 61-75                        |
|      | - Low Density                  | 35-60                        |
| 3    | Parks and undeveloped areas    | 10-20                        |

When several different surface types or land use comprise the drainage area, a composite or weighted average value of the imperviousness runoff coefficient can be computed, such as:

$$I = [(A_1I_1) + (A_2I_2) + \dots + (A_nI_n)]/[(A_1 + A_2 + \dots + A_n)]$$
(1)

Where, I is Weighted average imperviousness of the total drainage basin;  $A_1$ ,  $A_2$ , ....,  $A_n$  are Sub drainage areas; and  $I_1$ ,  $I_2$ , ....,  $I_n$  are Imperviousness of the respective sub-areas.

Imperviousness of the respective sub-areas:

#### Residential areas

- Peripheral areas twice a year
- Central and comparatively high-priced areas once a year to once in 5 years
- Commercial and high-priced areas once in 5 years to once in 10 years

**Table 5: Runoff Coefficients for Times of Concentration** 

| Duration, t, minutes                                                                | 10     | 20      | 30     | 45     | 60    | 75      | 90      | 100     | 120   | 135   | 150   | 180   |
|-------------------------------------------------------------------------------------|--------|---------|--------|--------|-------|---------|---------|---------|-------|-------|-------|-------|
| Weighted Average<br>Coefficient                                                     |        |         |        |        |       |         |         |         |       |       |       |       |
| A. Sector concentrating in stated time                                              |        |         |        |        |       |         |         |         |       |       |       |       |
| a. Impervious 0.525 0.588 0.642 0.700 0.740 0.771 0.795 0.813 0.828 0.840 0.850 0.8 |        |         |        |        |       |         |         |         |       | 0.865 |       |       |
| b. 60% Impervious                                                                   | 0.365  | 0.427   | 0.477  | 0.531  | 0.569 | 0.598   | 0.622   | 0.641   | 0.656 | 0.670 | 0.682 | 0.701 |
| c. 40% Impervious                                                                   | 0.285  | 0.346   | 0.395  | 0.446  | 0.482 | 0.512   | 0.535   | 0.554   | 0.571 | 0.585 | 0.597 | 0.618 |
| d. Pervious                                                                         | 0.125  | 0.185   | 0.230  | 0.277  | 0.312 | 0.330   | 0.362   | 0.382   | 0.399 | 0.414 | 0.429 | 0.454 |
| B. Rec                                                                              | tangle | (lengtl | n= 4 x | width) | conce | ntratin | g in st | ated ti | me    |       |       |       |
| a. Impervious                                                                       | 0.550  | 0.648   | 0.711  | 0.768  | 0.808 | 0.837   | 0.856   | 0.869   | 0.879 | 0.887 | 0.892 | 0.903 |
| b. 50% Impervious                                                                   | 0.350  | 0.442   | 0.499  | 0.551  | 0.590 | 0.618   | 0.639   | 0.657   | 0.671 | 0.683 | 0.694 | 0.713 |
| c. 30% Impervious                                                                   | 0.269  | 0.360   | 0.414  | 0.464  | 0.502 | 0.530   | 0.552   | 0.572   | 0.588 | 0.601 | 0.614 | 0.636 |
| d. Pervious                                                                         | 0.149  | 0.236   | 0.287  | 0.334  | 0.371 | 0.398   | 0.422   | 0.445   | 0.463 | 0.479 | 0.495 | 0.522 |

Source: CPHEEO, 1993

5. Another graph (Figure 2) of coefficient of runoff (C) versus rainfall duration is plotted as per values of duration of storms of interest given in Table 5.





Figure 2: Coefficient of Runoff (C) Versus Rainfall Duration after Horner Area Rectangle

6. The value of 10 C i gives the rate of runoff in m<sup>3</sup>/h per hectare of the tributary area.

#### **DESIGN OF STORM SEWER SYSTEM – Step by Step Computations**

- 1. Table 6 gives the various components of the storm sewer system design. Column 1-4 identify the location of drain, street, and manholes.
- 2. Columns 5-8 record the increment in tributary area with the given imperviousness factors. Column 9 gives the tributary area increment with weighted average imperviousness factor in column 10.
- 3. Column 11 records the inlet time at the upper end of line (drain).
- 4. Column 12 records the flow time in the drain.
- 5. Column 13 is the concentration time.
- 6. Column 14 records the Coefficient of Imperviousness corresponding to Weighted Average Imperviousness recorded in Column 10 and Concentration Time recorded in Column 13 from the data given in Table 5 or Figure 2.
- 7. Column 15 records the intensity of rainfall corresponding to the Concentration Time from the relation  $i=\frac{a}{t^n}A$  or interpolation/extrapolation based on data recorded in Table 2 for desired frequency of storm.
- 8. Column 16 records the incremental storm water flow estimated using the Rationale Formula Q = 10 C i A.
- 9. Column 17 records the total flow which is sum of incoming flow and incremental flow (column 16).
- 10. Columns 18-23 record the chosen size, required grade resulting capacity, velocity of flow for each drain or line. These designs of storm sewers are computed for each required flow and maintaining a minimum velocity.
- 11. Columns 24-26 identify the profile of the drain. Column 19 is taken form the plan.

**Table 6: Computation for Design of Storm Sewer** 

| Line   | Loc                 | ation of Dra    | in            |          | Tributary a                                      | Total | Weighted<br>Average |       |                |
|--------|---------------------|-----------------|---------------|----------|--------------------------------------------------|-------|---------------------|-------|----------------|
| Number | Street              | Manhole<br>From | Manhole<br>To | Pervious | Pervious 20 % 70 % Imperviousness Imperviousness |       | Impervious          | Area  | Imperviousness |
| 1      | 2                   | 3               | 4             | 5        | 6                                                | 7     | 8                   | 9     | 10             |
| 1      | South<br>St.        |                 |               | 0        | 0.366                                            | 0.286 | 0.274               | 0.926 |                |
| 2      |                     |                 |               | 0        | 0.488                                            | 0.167 | 0.214               | 0.869 |                |
| 3      | North<br>South St.2 |                 |               | 0        | 0.312                                            | 0.415 | 0.352               | 1.079 |                |
| 4      |                     |                 |               | 0        | 0.36                                             | 0.358 | 0.324               | 1.042 |                |
| 5      | South<br>St.        |                 |               | 0        | 0.466                                            | 0.256 | 0.274               | 0.996 |                |
| 6      | North<br>South St.3 |                 |               | 0        | 0.492                                            | 0.230 | 0.260               | 0.982 |                |
| 7      |                     |                 |               | 0        | 0.310                                            | 0.410 | 0.348               | 1.068 |                |
| 8      | South<br>St.        |                 |               | 0        | 0.466                                            | 0.256 | 0.274               | 0.996 |                |
| 9      | North<br>South St.4 |                 |               | 0        | 0.282                                            | 0.660 | 0.517               | 1.459 |                |
| 10     |                     |                 |               | 0        | 0.362                                            | 0.580 | 0.479               | 1.421 |                |
| 11     | South<br>St.        |                 |               | 0        | 0.330                                            | 0.670 | 0.494               | 1.494 |                |

Table continued to next page ... ... ...

## ... ... Table continued from previous page

|                |                           |    | Time (                                             | of Concentration                                                                | on |                              |                                 | Incremental                     | Total Flow<br>(Q) =                         |  |
|----------------|---------------------------|----|----------------------------------------------------|---------------------------------------------------------------------------------|----|------------------------------|---------------------------------|---------------------------------|---------------------------------------------|--|
| Line<br>Number | er Area Imperviousness ir |    | Time of<br>inlet (t <sub>i</sub> ) to<br>upper end | inlet $(t_i)$ to Flow $(t_f)$ in $\begin{cases} t_c = \\ t_i + t_f \end{cases}$ |    | Coefficient of<br>Runoff (C) | Intensity<br>of Rainfall<br>(i) | Flow/Runoff<br>(10 CiA)<br>m³/h | Incoming Flow + Incremental Flow/Runoff Ips |  |
| 1              | 9                         | 10 | 11                                                 | 12                                                                              | 13 | 14                           | 15                              | 16                              | 17                                          |  |
| 1              | 0.926                     |    | 12.0                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 2              | 0.869                     |    | 13.3                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 3              | 1.079                     |    | 11.0                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 4              | 1.042                     |    | 11.5                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 5              | 0.996                     |    | 12.5                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 6              | 0.982                     |    | 12.8                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 7              | 1.068                     |    | 11.0                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 8              | 0.996                     |    | 12.5                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 9              | 1.459                     |    | 10.2                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 10             | 1.421                     |    | 10.8                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |
| 11             | 1.494                     |    | 10.4                                               |                                                                                 |    |                              |                                 |                                 |                                             |  |

Table continued to next page ... ... ...

# ... ... Table continued from previous page

| Line           | Total<br>Flow<br>(Q) |           |                 | Des             | Profile         |             |           |                    |                               |    |
|----------------|----------------------|-----------|-----------------|-----------------|-----------------|-------------|-----------|--------------------|-------------------------------|----|
| Line<br>Number | lps                  | Dia<br>mm | Slope<br>m/1000 | Capacity<br>lps | Velocity<br>mps | Length<br>m | Fall<br>m | Drop in<br>Manhole | Inve<br>Eleva<br>Upper<br>end |    |
| 1              | 17                   | 18        | 19              | 20              | 21              | 22          | 23        | 24                 | 25                            | 26 |
| 1              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 2              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 3              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 4              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 5              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 6              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 7              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 8              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 9              |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 10             |                      |           |                 |                 |                 |             |           |                    |                               |    |
| 11             |                      |           |                 |                 |                 |             |           |                    |                               |    |