Universidade Veiga de Almeida

Curso: Básico das Engenharias

Disciplina: Cálculo Diferencial e Integral I

Professora: Adriana Nogueira

4^a Lista de Exercícios

Exercício 1: Determine a equação da reta tangente ao gráfico da função $f(x) = senx + x^2$ no ponto (0,0).

Exercício 2: Determine a equação da reta tangente ao gráfico da função $f(x) = x^2 + 3x + 1$ paralela à reta y + 2x + 1 = 0.

Exercício 3: Determine a equação da reta tangente à curva $y=2x^2+5x+6$ normal à reta $y+\frac{1}{5}x+4=0$.

Exercício 4: Determine a equação da reta tangente ao gráfico de $f(x) = \frac{x^3 + x}{x^2 + 1}$ no ponto de abscissa x = -1.

Exercício 5: Determine a e b em cada caso abaixo:

(a)
$$f(x) = 3ax^2 + 5x + 3$$
, sendo $f'(1) = 3$;

(b)
$$f(x) = x^2 + 5ax + 2b$$
, sendo $f(1) = 2$ e $f'(2) = 3$.

Exercício 6: Derive as funções dadas abaixo usando as regras de derivação:

(a)
$$f(x) = (x^3 + 5x + 1)senx$$

(b)
$$f(x) = 2(\cos x)(x^2 + 3x)$$

(c)
$$f(x) = \cos x + 3tgx - 5x^3$$

(d)
$$f(x) = -secx + 4x^8$$

(e)
$$f(x) = \frac{xsenx + x^3}{tgx}$$

Exercício 7: Derive as funções dadas abaixo:

(a)
$$f(x) = e^x + x^2$$

(b)
$$f(x) = xsenx - 4lnx$$

(c)
$$f(x) = secx + (lnx)(e^x)$$

(d)
$$f(x) = (x^5)(\ln x)(tgx)$$

(e)
$$f(x) = 5x^2e^x$$

(f)
$$f(x) = \frac{3 + senx}{cosx}$$

RESPOSTAS:

1)
$$y = x$$
 2) $y + \frac{1}{4} = -2(x + \frac{5}{2})$ 3) $y - 6 = 5x$ 4) $y = x$

5) a)
$$a = -\frac{1}{3}$$
 b) $a = -\frac{1}{5}$ e $b = 1$

6 a)
$$f'(x) = (3x^2 + 5)senx + (x^3 + 5x + 1)cosx$$

b)
$$f'(x) = -2(senx)(x^2 + 3x) + 2(cosx)(2x + 3)$$

c)
$$f'(x) = -senx + 3sec^2x - 15x^2$$

d)
$$f'(x) = (secx)(tgx) + 32x^7$$

e)
$$f'(x) = \frac{(senx + xcosx + 3x^2)(tgx) - (xsenx + x^3)sec^2x}{(tgx)^2}$$

$$7(a) f'(x) = e^x + 2x$$

(b)
$$f'(x) = sen x + x cos x - 4/x$$

(c)
$$f'(x) = secxtgx + (1/x)(e^x) + (lnx)(e^x)$$

(d)
$$f'(x) = (5x^4)(\ln x)(tgx) + (x^5)(1/x)(tgx) + (x^5)(\ln x)(sec^2x)$$

(e)
$$f'(x) = (10x)(e^x) + (5x^2)(e^x)$$

(f)
$$f'(x) = \frac{\cos^2 x - (3 + \operatorname{sen} x)(-\operatorname{sen} x)}{\cos^2 x}$$