5.1 微分中值定理

微分中值定理是应用导数解决函数问题的基本工具,有着广泛的应用.

一、基本方法

1. 应用罗尔定理解决函数零点(或方程实根)个数问题

命题1 设函数f(x)在[a,b]上连续,在(a,b)中n次可导,若f(x)在[a,b]上有m个不同的零点,其中m>n,则 $f^{(n)}(x)$ 在(a,b)中至少有m-n个不同的零点.

命题2 设函数f(x)在[a,b]上连续,在(a,b)中n次可导,若 $f^{(n)}(x)$ 在(a,b)中共有k个不同的零点,其中 $k \in \mathbb{N}$,则f(x)在[a,b]上至多有n+k个不同的零点.

例 1 设 a_1, a_2, \ldots, a_n 为实数且 $f(x) = a_1 \cos x + a_2 \cos 2x + \cdots + a_n \cos nx$ 在 $(0, \pi)$ 内有两个零点. 证明f''(x)在 $(0, \pi)$ 内至少有两个零点.

证 因为 $f(x) = a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx$ 在 $(0,\pi)$ 内有两个零点,所以由罗尔定理知 $f'(x) = -a_1 \sin x - 2a_2 \sin 2x - \dots - na_n \sin nx$ 有一个零点 $\xi \in (0,\pi)$. 又 $f'(0) = f'(\pi) = 0$,故由罗尔定理知f''(x)在 $(0,\xi)$ 和 (ξ,π) 中各至少有一个零点,从而f''(x)在 $(0,\pi)$ 内至少有两个零点.

2. 应用罗尔定理证明方程的根的存在性

通常要构造辅助函数,利用罗尔定理或其推广(练习5.1的第3题)来得到"存在 ξ 使得 $f'(\xi)=0$ ",或者应用命题1(或其证明中的思想)来得到"存在 ξ 使得 $f^{(n)}(\xi)=0$ ".

例 2 设函数f(x)在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 连续,在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 可导,求证:存在 $\xi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,使得 $f'(\xi) = \tan \xi$.

为
$$\varphi'(\xi) = e^{f(\xi)}[f'(\xi)\cos\xi - \sin\xi]$$
,所以 $f'(\xi)\cos\xi - \sin\xi = 0$,即 $f'(\xi) = \tan\xi$.

注 更一般的一个结果如下. 设f(x), g(x)在[a,b]可微, f(a) = f(b) = 0, 则在(a,b)中至少存在f'(x) + f(x)g'(x)的一个零点.

3. 拉格朗日中值定理的应用

例 3 设f(x)在(a,b)可导但无界. 证明f'(x)在(a,b)也无界.

证 反证. 若不然,则f'(x)在(a,b)有界. 设 $|f'(x)| \le M$, 记 $x_0 = \frac{a+b}{2}$, 则对任意 $x \in (a,b)$, $x \ne x_0$, 存在 ξ 介于x与 x_0 之间,使得 $f(x) - f(x_0) = f'(\xi)(x - x_0)$, 从而

$$|f(x)| \le |f(x_0)| + |f'(\xi)| \cdot |x - x_0| \le |f(x_0)| + M \cdot \frac{b - a}{2}.$$

记 $K = |f(x_0)| + M \cdot \frac{b-a}{2}$, 就有 $|f(x)| \le K$, $x \in (a,b)$, 与f(x)在(a,b)无界矛盾.

4. 柯西中值定理的应用

例 4 证明不等式
$$\sqrt{\frac{1-x}{1+x}} < \frac{\ln(1+x)}{\arcsin x} < 1$$
, 其中 $0 < x < 1$.

证 因为由柯西中值定理得

$$\frac{\ln(1+x)}{\arcsin x} = \frac{\ln(1+x) - \ln(1+0)}{\arcsin x - \arcsin 0} = \frac{\frac{1}{1+\xi}}{\frac{1}{\sqrt{1-\xi^2}}} = \sqrt{\frac{1-\xi}{1+\xi}},$$

其中
$$\xi \in (0, x)$$
, 所以 $\sqrt{\frac{1-x}{1+x}} < \frac{\ln(1+x)}{\arcsin x} < 1$.

二、例题

例 5 设 f(x)在 $(-\infty, +\infty)$ 上三次可导,f(x)至少有5个不同的实零点,证明: f(x) + 6f'(x) + 12f''(x) + 8f'''(x)至少有2个不同的实零点.

证 $\diamondsuit g(x) = \mathrm{e}^{\frac{x}{2}} f(x),$ 则

$$g'''(x) = \frac{e^{\frac{x}{2}}}{8} [f(x) + 6f'(x) + 12f''(x) + 8f'''(x)].$$

因为f(x)至少有5个不同的实零点,所以g(x)至少有5个不同的实零点.于是依次对g(x),g'(x),g''(x)应用罗尔定理可知g'(x),g''(x)分别至少有4,3,2个不同的实零点,再由 $e^{\frac{x}{2}}$ 恒不为0知f(x)+6f'(x)+12f''(x)+8f'''(x)至少有2个不同的实零点.

注 容易想到利用命题1来解决本题. 但是直接做辅助函数g(x), 使得g'''(x) = f(x) + 6f'(x) + 12f''(x) + 8f'''(x)且g(x)至少有5个不同的零点有困难. 因此,做辅助函数g(x),使得g'''(x) = h(x) [f(x) + 6f'(x) + 12f''(x) + 8f'''(x)]且g(x)至少有5个不同的零点,而h(x)恒不为0. 考虑 $g(x) = e^{\lambda x} f(x)$,计算g'''(x)可知取 $\lambda = \frac{1}{2}$.

例 6 设函数f(x)在[-1,1]连续,在(-1,1)三次可导,f(-1)=-1, f(1)=1, f'(0)=1,求证: 存在 $\xi \in (-1,1)$,使得 $f'''(\xi)=0$.

证 令 $F(x) = f(x) + f(0)(x^2 - 1) - x$,则F(x)在[-1,1]连续,在(-1,1)三次可导. 由f(-1) = -1,f(1) = 1,f'(0) = 1知F(-1) = F(1) = F(0) = 0,F'(0) = 0.由罗尔定理知存在 $x_1 \in (-1,0)$, $x_2 \in (0,1)$,使得 $F'(x_1) = F'(x_2) = 0$,再结合F'(0) = 0,由罗尔定理知存在 $x_3 \in (x_1,0)$, $x_4 \in (0,x_2)$,使得 $F''(x_3) = F''(x_4) = 0$. 再由罗尔定理知存

例 7 设f(x)在[a,b]连续,在(a,b)两次可导.证明存在 $\xi \in (a,b)$,使得

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{1}{4}(b-a)^2 f''(\xi).$$

证 记 $k = \frac{4}{(b-a)^2} \left[f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) \right]$,问题归为证明存在 $\xi \in (a,b)$,使得 $f''(\xi) = k$. 令 $F(t) = f(t) - 2f\left(\frac{t+b}{2}\right) + f(b) - \frac{k}{4}(b-t)^2$,则F(t)在[a,b]连续,在(a,b)两次可导,F(a) = F(b) = 0. 由罗尔定理知存在 $\eta \in (a,b)$,使得 $F'(\eta) = 0$,即 $f'(\eta) - f'\left(\frac{\eta+b}{2}\right) - \frac{k}{2}(\eta-b) = 0$. 由拉格朗日中值定理知存在 $\xi \in \left(\eta, \frac{\eta+b}{2}\right) \subseteq (a,b)$,使得 $f'(\eta) - f'\left(\frac{\eta+b}{2}\right) = f''(\xi) \cdot \frac{\eta-b}{2}$. 因此 $f''(\xi) = k$.

注 设 x_1, x_2, \cdots, x_n 是[a, b]中n个不同的点,要证明存在 $\xi \in (a, b)$,使得 $f^{(n)}(\xi) = \varphi(x_1, x_2, \cdots, x_n)$ (右边的表达式中包含f,这里强调与 x_1, x_2, \cdots, x_n 的关系).若表达式 $\varphi(x_1, x_2, \cdots, x_n)$ 关于 x_1, x_2, \cdots, x_n 具有对称性或轮换对称性,记 $k = \varphi(x_1, x_2, \cdots, x_n)$,于是 $\varphi(x_1, x_2, \cdots, x_n) - k = 0$.任意取定一个 $i \in \{1, 2, \cdots, n\}$,将 x_i 改为变量t,将所得到函数表达式作为辅助函数.有的参考书将这种方法称为"常数k值法".对于本题,不能直接用带拉格朗日余项的泰勒公式,因此考虑用罗尔定理.记 $k = \frac{4}{(b-a)^2} \left[f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) \right]$,则

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) - \frac{k}{4}(b-a)^2 = 0.$$

将a改为变量t, 取辅助函数 $F(t) = f(t) - 2f\left(\frac{t+b}{2}\right) + f(b) - \frac{k}{4}(b-t)^2$.

例 8 设 f(x)在 $(-\infty, +\infty)$ 连续可导且 f(0) = 0, $|f'(x)| \le A|f(x)|$, 其中 A 为常数. 证明 $f(x) \equiv 0$.

证 若A = 0,则 $f'(x) \equiv 0$,从而f(x)是常数函数,结合f(0) = 0就得到 $f(x) \equiv 0$. 下设A > 0,用M来记|f(x)|在 $\left[0, \frac{1}{2A}\right]$ 上的最大值,用反证法来证明M = 0. 若不然,则M > 0,当 $x \in \left[0, \frac{1}{2A}\right]$ 时,有 $\left|f'(x)\right| \leqslant A \left|f(x)\right| \leqslant A M$. 设 $x_0 \in \left(0, \frac{1}{2A}\right]$ 是 $\left|f(x)\right|$ 在 $\left[0, \frac{1}{2A}\right]$ 上的最大值点,则由拉格朗日中值定理得

$$M = |f(x_0) - f(0)| = |f'(\xi)(x_0 - 0)| \leqslant AM \cdot \frac{1}{2A} = \frac{M}{2},$$

与M > 0矛盾! 这就证明了M = 0, 从而f(x)在 $\left[0, \frac{1}{2A}\right]$ 恒等于0. 同理可证f(x)在 $\left[-\frac{1}{2A}, 0\right]$ 和 $\left[\frac{1}{2A}, \frac{1}{A}\right]$ 上恒等于0, 一直做下去,就得到 $f(x) \equiv 0$.

另证 若A=0,则 $f'(x)\equiv 0$,从而f(x)是常数函数,结合f(0)=0就得到 $f(x)\equiv 0$. 下 设A>0,任取 $x\in \left(0,\frac{1}{A}\right)$,对f在[0,x]上使用Lagrange中值定理,得

$$|f(x)| = |f(x) - f(0)| = |f'(\xi_1)|x \le A|f(\xi_1)|x,$$

其中 $\xi_1 \in (0, x)$. 再对f在 $[0, \xi_1]$ 上使用Lagrange中值定理, 得

$$|f(\xi_1)| = |f(\xi_1) - f(0)| = |f'(\xi_2)|\xi_1 \leqslant A|f(\xi_2)|\xi_1 \leqslant A|f(\xi_2)|x,$$

其中 $\xi_2 \in (0, \xi_1)$. 一直这样做下去,可得 $0 < \xi_n < \xi_{n-1} < \dots < \xi_2 < \xi_1 < x$, 使得

$$|f(\xi_i)| \le A|f(\xi_{i+1})|x \ (i=1,2,\ldots,n-1).$$

从而

$$|f(x)| \leqslant |f(\xi_1)| \cdot Ax \leqslant |f(\xi_2)| \cdot (Ax)^2 \leqslant \dots \leqslant |f(\xi_n)| \cdot (Ax)^n.$$

又f(x)在 $\left[0,\frac{1}{A}\right]$ 上连续,从而有界,因此上式中令 $n\to\infty$ 取极限,由 $Ax\in(0,1)$ 得 $|f(x)|\leqslant 0$,所以f(x)=0. $x\in\left(0,\frac{1}{A}\right)$ 是任取的,由f(x)的连续性知f(x)在 $\left[0,\frac{1}{A}\right]$ 上恒等于0. 同理可证f(x)在 $\left[-\frac{1}{A},0\right]$ 和 $\left[\frac{1}{A},\frac{2}{A}\right]$ 上恒等于0,一直做下去,就得到 $f(x)\equiv 0$.

注 更一般的一个结果如下. 设函数f(x)在[a,b]可导,f(a)=0, g(x)在[a,b]有界, λ 是非零常数,且对任意 $x\in [a,b]$,都有

$$|f(x)g(x) + \lambda f'(x)| \le |f(x)|,$$

则f(x)在[a,b]恒等于0.

例 9 求极限 $\lim_{x\to +\infty} x^2 \left[\ln(\arctan(x+1)) - \ln(\arctan x) \right]$.

解 根据拉格朗日中值定理,存在 $\xi_x \in (x, x+1)$,使得 $\ln(\arctan(x+1)) - \ln(\arctan x) = \frac{1}{\arctan \xi_x} \cdot \frac{1}{1+\xi_x^2}$. 当 $x \to \infty$ 时,有 $\xi_x \to \infty$ 且由两边夹定理知 $\frac{\xi_x}{x} \to 1$. 于是

原式 =
$$\lim_{x \to +\infty} x^2 \cdot \frac{1}{\arctan \xi_x} \cdot \frac{1}{1 + \xi_x^2} = \lim_{x \to +\infty} \frac{1}{\arctan \xi_x} \cdot \frac{1}{\frac{1}{x^2} + \frac{\xi_x^2}{x^2}} = \frac{2}{\pi} \cdot 1 = \frac{2}{\pi}$$
.

例 10 设函数f(x)在[-1,1]连续,在(-1,1)可导,f(-1)=f(1)=1, f(0)=0,求证:对任意 $c \in [-1,1]$,都存在 $\xi \in (-1,1)$,使得 $f'(\xi)=c$.

证 由拉格朗日中值定理知存在 $\xi_1 \in (-1,0), \xi_2 \in (0,1),$ 使得

$$f'(\xi_1) = \frac{f(-1) - f(0)}{-1 - 0} = -1, \quad f'(\xi_2) = \frac{f(1) - f(0)}{1 - 0} = 1.$$

再由达布定理知对任意 $c \in (-1,1)$, 都存在 $\xi \in (\xi_1,\xi_2) \subset (-1,1)$, 使得 $f'(\xi) = c$.

例 11 设f(x)在[a,b]可导, $c \in (a,b)$. 证明存在 $\xi \in (a,c)$, $\eta \in (\xi,b)$, 使得

$$f'(\xi) = \frac{f(c) - f(a)}{c - a} \mathbb{E} f'(\eta) = \frac{f(b) - f(a)}{b - a}.$$

证 由中值定理知存在 $\xi \in (a,c), \theta \in (c,b),$ 使得

$$f'(\xi) = \frac{f(c) - f(a)}{c - a} \pm f'(\theta) = \frac{f(b) - f(c)}{b - c}.$$

又

$$\frac{f(b) - f(a)}{b - a} = \frac{c - a}{b - a} \cdot \frac{f(c) - f(a)}{c - a} + \frac{b - c}{b - a} \frac{f(b) - f(c)}{b - c} = \frac{c - a}{b - a} f'(\xi) + \frac{b - c}{b - a} f'(\theta),$$

故若 $f'(\xi) = f'(\theta)$, 则取 $\eta = \theta \in (\xi, b)$, 就有

$$\frac{f(b) - f(a)}{b - a} = \frac{c - a}{b - a} f'(\xi) + \frac{b - c}{b - a} f'(\theta) = \frac{c - a}{b - a} f'(\eta) + \frac{b - c}{b - a} f'(\eta) = f'(\eta);$$

若 $f'(\xi) \neq f'(\theta)$, 则 $\frac{f(b) - f(a)}{b - a}$ 介于 $f'(\xi)$ 和 $f'(\eta)$ 之间,由达布定理知存在 $\eta \in (\xi, \theta) \subseteq (\xi, b)$, 使得

$$f'(\eta) = \frac{f(b) - f(a)}{b - a}.$$

例 12 设函数f(x)在 $(-\infty, +\infty)$ 可导且f(x)有界,对任意实数x,都有 $|f(x) + f'(x)| <math>\leq 1$,证明对任意实数x,都有 $|f(x)| \leq 1$.

证 令 $g(x) = e^x f(x)$,则由 $|f(x) + f'(x)| \le 1$ 得 $|g'(x)| \le e^x$.对任意实数x和任意y < x,由 柯西中值定理知存在 $\xi \in (y, x)$,使得 $\frac{g(x) - g(y)}{e^x - e^y} = \frac{g'(\xi)}{e^\xi}$.于是由 $|g'(\xi)| \le e^\xi$ 得

$$\left| \frac{g(x) - g(y)}{e^x - e^y} \right| \leqslant 1. \tag{*}$$

因为f(x)在 $(-\infty, +\infty)$ 有界,所以 $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \mathrm{e}^x f(x) = 0$,在(*)式中令 $y \to -\infty$ 取极限,由极限的保序性得 $\left| \frac{g(x)}{\mathrm{e}^x} \right| \leqslant 1$,即 $|f(x)| \leqslant 1$.

5.2 函数的单调性与极值

利用导数研究函数的单调性与极值的方法已经进入高中数学的教学,这里要理解方法背后的原理.

一、基本方法

1. 判断函数单调性的方法

例 1 求函数 $y = x + |\sin 2x|$ 的单调区间.

解 由
$$y = \begin{cases} x + \sin 2x, & x \in [k\pi, k\pi + \frac{\pi}{2}), \\ x - \sin 2x, & x \in [k\pi + \frac{\pi}{2}, (k+1)\pi) \end{cases}$$
 得 $y' = \begin{cases} 1 + 2\cos 2x, & x \in [k\pi, k\pi + \frac{\pi}{2}), \\ 1 - 2\cos 2x, & x \in [k\pi + \frac{\pi}{2}, (k+1)\pi), \end{cases}$
 $k \in \mathbb{Z}$. 于是当 $x \in \left(\frac{k\pi}{2}, \frac{k\pi}{2} + \frac{\pi}{3}\right)$ 时, $y' > 0$; 当 $x \in \left(\frac{k\pi}{2} + \frac{\pi}{3}, \frac{(k+1)\pi}{2}\right)$ 时, $y' > 0$. 因此, $y = x + |\sin 2x|$ 在 $\left[\frac{k\pi}{2}, \frac{k\pi}{2} + \frac{\pi}{3}\right]$ 严格递增,在 $\left[\frac{k\pi}{2} + \frac{\pi}{3}, \frac{(k+1)\pi}{2}\right]$ 严格递减, $k \in \mathbb{Z}$.

2. 求函数极值的方法

例 2 求函数 $y = (x^2 + 1) \arctan x - \frac{\pi}{4} x^2 - x$ 的极值;

解 因为
$$y = (x^2 + 1) \arctan x - \frac{\pi}{4} x^2 - x$$
, 所以

$$y' = 2x\arctan x + (x^2 + 1) \cdot \frac{1}{x^2 + 1} - \frac{\pi}{2}x - 1 = 2x\arctan x - \frac{\pi}{2}x, \ y'' = 2\arctan x + \frac{2x}{x^2 + 1} - \frac{\pi}{2}x$$

解方程y'=0得x=0或x=1,故函数 $y=(x^2+1)\arctan x-\frac{\pi}{4}x^2-x$ 的驻点为0和1. 因为 $y''(0)=-\frac{\pi}{2}<0$,y''(1)=1>0,所以由极值的二阶导数判别法知函数 $y=(x^2+1)\arctan x-\frac{\pi}{4}x^2-x$ 在x=0处取得极大值y(0)=0,在x=1处取得极小值 $y(1)=\frac{\pi}{4}-1$. □ 3. 求函数最值的方法

例 3 求函数 $f(x) = e^{\sin x} + e^{\cos x}$ 的最大值.

解 因为 $f(x) = e^{\sin x} + e^{\cos x}$ 是周期为 2π 的周期函数,所以f(x)在 $[0, 2\pi]$ 上的最大值就是f(x)的最大值. 注意到 $e^{\sin x} + e^{\cos x} \leqslant e^{|\sin x|} + e^{|\cos x|}$,可知f(x)在 $\left[0, \frac{\pi}{2}\right]$ 上的最大值就是f(x)在 $\left[0, 2\pi\right]$ 上的最大值. 对f(x)求导,得 $f'(x) = e^{\sin x} \cdot \cos x + e^{\cos x} \cdot (-\sin x)$. 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时,就有

$$f'(x) = \sin x \cos x \cdot \left(\frac{e^{\sin x}}{\sin x} - \frac{e^{\cos x}}{\cos x}\right).$$

令 $g(x) = \frac{\mathrm{e}^x}{x}$,则当 $x \in (0,1)$ 时, $g'(x) = \frac{x\mathrm{e}^x - \mathrm{e}^x}{x^2} < 0$. 于是g(x)在(0,1)中严格递减. 因此,在 $\left(0,\frac{\pi}{4}\right)$ 中 $f'(x) = \sin x \cos x \cdot \left[g(\sin x) - g(\cos x)\right] > 0$,在 $\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ 中f'(x) < 0,从而f(x)在 $\left[0,\frac{\pi}{4}\right]$ 上严格递增,在 $\left[\frac{\pi}{4},\frac{\pi}{2}\right]$ 上严格递减.由此可见f(x)在 $\frac{\pi}{4}$ 处取得最大值 $f\left(\frac{\pi}{4}\right) = 2\mathrm{e}^{\frac{\sqrt{2}}{2}}$.

二、例题

例 4 设 $0 < x < \frac{\pi}{2}$. 证明 $\left(\frac{\sin x}{x}\right)^3 > \cos x$.

故g(x)在 $\left[0, \frac{\pi}{2}\right)$ 上严格递增,从而当 $x \in \left(0, \frac{\pi}{2}\right)$ 时,有g(x) > g(0) = 0,即 $\frac{\sin x}{\sqrt[3]{\cos x}} - x > 0$.

例 5 设 f(x)在 [a,b]两次可微且 f(a)=f(b)=0, f''(x)+f'(x)g(x)-f(x)=0, 其中 g(x)为一给定函数. 证明在 [a,b]上 $f(x)\equiv 0$.

证 反证. 若不然,f(x)在 $x_0 \in (a,b)$ 取得正的最大值或负的最小值. 不妨设取得正的最大值,由 $f''(x_0) = f(x_0) > 0$ 知 x_0 是极小值点,于是f(x)在 x_0 的某邻域内为常数,与 $f''(x_0) > 0$ 矛盾.

例 6 设 f(x)在 $(-\infty, +\infty)$ 两 次 可 导 , 对 任 意 实 数 x , 有 f''(x) + xg(x)f'(x) + f(x) = 0 , 其 中 g(x) 为 一 给 定 的 非 负 函 数 . 证 明 f(x) 在 $(-\infty, +\infty)$ 有 界 .

证 令 $\varphi(x) = [f(x)]^2 + [f'(x)]^2$,则 $\varphi'(x) = 2f'(x)[f(x) + f''(x)] = -2xg(x)[f'(x)]^2$. 因 为g(x)非负,所以 $\varphi'(x)$ 在 $(-\infty, 0]$ 上非负,在 $[0, +\infty)$ 上非正. 因此, $\varphi(x)$ 在 $(-\infty, 0]$ 上单调递增,在 $[0, +\infty)$ 上单调递减,于是 $\varphi(0)$ 是 $\varphi(x)$ 在 $(-\infty, +\infty)$ 的最大值. 故 $|f(x)| \leq \sqrt{\varphi(x)} \leq \sqrt{\varphi(0)}$,即f(x)在 $(-\infty, +\infty)$ 有界.

例 7 设x > 0. 证明 $2^{-x} + 2^{-\frac{1}{x}} \le 1$.

证 记 $f(x) = 2^{-x} + 2^{-\frac{1}{x}}, x > 0$,注意到 $f(x) = f\left(\frac{1}{x}\right)$,只需证明 f(x)在(0,1]上的最大值为1. 反证. 若不然,则由 f(1) = 1, $\lim_{x \to 0^+} f(x) = 1$ 知 f(x)在(0,1)中一点 x_0 处取得最大值 $f(x_0) > 1$. 由费马定理知 $f'(x_0) = 0$,结合 $f'(x) = -2^{-x} \ln 2 + 2^{-\frac{1}{x}} \ln 2 \cdot \frac{1}{x^2}$ 得 $2^{-x_0}x_0^2 - 2^{-\frac{1}{x_0}} = 0$. 再结合 $f(x_0) > 1$ 得 $2^{-x_0} + 2^{-x_0}x_0^2 > 1$,即 $2^{x_0} < x_0^2 + 1$.记 $g(x) = 2^x - x^2 - 1$,则 $g'(x) = 2^x \ln 2 - 2x$,进而 $g''(x) = 2^x (\ln 2)^2 - 2 < 0$, $x \in [0,1]$. 因此 g(x) 在 [0,1]严格上凸,结合 g(0) = g(1) = 0得 g(x) > 0, $x \in (0,1)$.由 $g(x_0) > 0$ 得 $2^{x_0} > x_0^2 + 1$,矛盾!

例 8 设x > 0. 证明 $2^{-x} + 2^{-\frac{1}{x}} \le 1$.

证 记 $f(x) = 2^{-x} + 2^{-\frac{1}{x}}, x > 0$, 注意到 $f(x) = f\left(\frac{1}{x}\right)$, 只需证明f(x)在(0,1]上的最大值为1. 反证. 若不然,则由f(1) = 1, $\lim_{x \to 0^+} f(x) = 1$ 知f(x)在(0,1)中一点 x_0 处取得最大值 $f(x_0) > 1$.

由费马定理知 $f'(x_0) = 0$,结合 $f'(x) = -2^{-x} \ln 2 + 2^{-\frac{1}{x}} \ln 2 \cdot \frac{1}{x^2} \exists 2^{-x_0} x_0^2 - 2^{-\frac{1}{x_0}} = 0$. 再结合 $f(x_0) > 1$ 得 $2^{-x_0} + 2^{-x_0} x_0^2 > 1$,即 $2^{x_0} < x_0^2 + 1$.记 $g(x) = 2^x - x^2 - 1$,则 $g'(x) = 2^x \ln 2 - 2x$,进而 $g''(x) = 2^x (\ln 2)^2 - 2 < 0$, $x \in [0,1]$.因此g(x)在[0,1]严格上凸,结合g(0) = g(1) = 0得g(x) > 0, $x \in (0,1)$.由 $g(x_0) > 0$ 得 $2^{x_0} > x_0^2 + 1$,矛盾!

5.3 函数的凸性与函数作图

函数的凸性是不等式的一个重要来源,要掌握利用导数判断函数凸性的方法.

一、基本方法

1. 判断凸性的方法— 用定义或用充要条件

例 1 设函数 f(x)和 g(x)都下凸且 f(x)递增. 证明复合函数 $f \circ g$ 也是下凸函数.

证 因为对任何 $x_0, x_1 \in I$, $x_0 < x_1$, 任何 $t \in (0,1)$, 都有 $f(g((1-t)x_0 + tx_1)) \leqslant$ $f((1-t)g(x_0) + tg(x_1)) \leqslant (1-t)f(g(x_0)) + tf(g(x_1))$, 所以 $f \circ g$ 也是下凸函数. \Box 2.应用凸性证明不等式.

例 2 设 $p_i \geqslant 0$, $i = 1, \dots, n$ 且 $\sum_{i=1}^n p_i = 1$, f(x)下凸.证明詹森(Jensen)不等式

$$f\left(\sum_{i=1}^{n} p_i x_i\right) \leqslant \sum_{i=1}^{n} p_i f(x_i).$$

证 n=1时等式成立. 设n时詹森不等式成立, 则n+1时, 不妨设 $p_{n+1}\in(0,1)$, 就有

$$f\left(\sum_{i=1}^{n+1} p_i x_i\right) = f\left((1 - p_{n+1}) \cdot \sum_{i=1}^{n} \frac{p_i}{1 - p_{n+1}} x_i + p_{n+1} x_{n+1}\right)$$

$$\leqslant (1 - p_{n+1}) f\left(\sum_{i=1}^{n} \frac{p_i}{1 - p_{n+1}} x_i\right) + p_{n+1} f(x_{n+1})$$

$$\leqslant (1 - p_{n+1}) \sum_{i=1}^{n} \frac{p_i}{1 - p_{n+1}} f(x_i) + p_{n+1} f(x_{n+1}) = \sum_{i=1}^{n+1} p_i f(x_i).$$

由数学归纳法知对任何正整数n, 詹森不等式成立.

二、例题

例 3 设 f(x)是 $(-\infty, +\infty)$ 上的下凸函数, $\lim_{x\to\infty} \frac{f(x)}{x} = 0$,求证: f(x)是 $(-\infty, +\infty)$ 上的常数函数.

证 令g(x) = f(x) - f(0),则g(x)是 $(-\infty, +\infty)$ 上的下凸函数, $\lim_{x \to \infty} \frac{g(x)}{x} = 0$,只需证 $g(x) \equiv 0$. 反证. 若不然,则存在 $a \neq 0$,使得 $g(a) \neq 0$. 不妨设a > 0,若g(a) > 0,则x > a时,有

$$\frac{g(x)}{x} = \frac{g(x) - g(0)}{x - 0} \geqslant \frac{g(a) - g(0)}{a - 0} = \frac{g(a)}{a},$$

$$\frac{g(x)}{x} = \frac{g(x) - g(0)}{x - 0} \leqslant \frac{g(a) - g(0)}{a - 0} = \frac{g(a)}{a},$$

注 也可任取 x_0 , 先证明 $f'_+(x_0) \leq 0$, $f'_-(x_0) \geq 0$, 从而由 $f'_-(x_0) \leq f'_+(x_0)$ 知两个单侧导数都等于0, 再根据 $f'(x) \equiv 0$ 知f(x)是 $(-\infty, +\infty)$ 上的常数函数.

例 4 设 f(x) 是 区 间 (a,b) 上 的 下 凸 函 数. 证 明 对 任 意 $x \in (a,b)$,左 右 导 数 $f'_{-}(x)$ 和 $f'_{+}(x)$ 都 存 在 且 有 $f'_{-}(x) \leqslant f'_{+}(x)$,此外, $f'_{-}(x)$ 和 $f'_{+}(x)$ 都 在 (a,b) 单 调 递 增 .

证 令对任意固定的 $x \in (a,b)$,由三弦引理, $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ 作为 Δx 的函数 $\underbrace{ c(a-x,0)} + \underbrace{ c(a-x,0)} +$

得 $f'_{-}(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'_{-}(y)$. 因此 $f'_{-}(x)$ 在(a, b)单调递增,同理可证 $f'_{+}(x)$ 在(a, b)单调递增.

例 5 设f(x)是[0,1]上的下凸函数,求证: $\varphi(x)=f(x)+f(1-x)$ 在 $\left[0,\frac{1}{2}\right]$ 单调递减.

证 设 $0 \le x < y \le \frac{1}{2}$,则存在 $\lambda \in (0,1)$,使得 $y = (1-\lambda)x + \lambda(1-x)$,从而 $1-y = \lambda x + (1-\lambda)(1-x)$. 因为f(x)是[0,1]上的下凸函数,所以

$$f(y) + f(1-y) \le (1-\lambda)f(x) + \lambda f(1-x) + \lambda f(x) + (1-\lambda)f(1-x) = f(x) + f(1-x).$$

按定义知
$$\varphi(x)=f(x)+f(1-x)$$
在 $\left[0,\frac{1}{2}\right]$ 单调递减.

例 6 设 f(x)是 (a,b) (a可以是 $-\infty$, b可以是 $+\infty$)上的下凸函数,若 f(x)在 (a,b)上不单调,则存在 $x_0 \in (a,b)$,使得 f(x)在 $(a,x_0]$ 单调递减,在 $[x_0,b)$ 单调递增.

证 因为f(x)在(a,b)上不单调,所以存在 $x_1, x_2, x_3 \in (a,b), x_1 < x_2 < x_3,$ 使得 $[f(x_1) - f(x_2)][f(x_2) - f(x_3)] < 0$. 又因为f(x)是(a,b)上的下凸函数,所以 $f(x_2) \leqslant \max\{f(x_1), f(x_3)\},$ 从而由 $[f(x_1) - f(x_2)][f(x_2) - f(x_3)] < 0$ 知 $f(x_2) < f(x_1), f(x_2) < f(x_3)$. 由f(x)是(a,b)上的下凸函数知f(x)在(a,b)连续,故f(x)在 $[x_1, x_3]$ 上有最小值,并且由 $f(x_2) < f(x_1), f(x_2) < f(x_3)$ 知最小值点在 (x_1, x_3) 中,取定 $x_0 \in (x_1, x_3)$ 是f(x)在 $[x_1, x_3]$ 上的一个最小值点。对任意 $x \in (a, x_1)$,由凸性知 $x \in (a, x_1)$,由凸性知 $x \in (a, x_1)$,结合 $x \in (a, x_0]$, $x \in (a, x_0]$

情形1. $x < y < x_1$ 的情形. 这时, $f(y) \leq \max\{f(x), f(x_1)\} = f(x)$.

情形2. $x < x_1 \le y$ 的情形. 这时, $f(y) \le \max\{f(x_1), f(x_0)\} = f(x_1) \le f(x)$.

情形3. $x_1 \le x < y$ 的情形. 这时, $f(y) \le \max\{f(x), f(x_0)\} = f(x)$.

因此总有 $f(y) \leq f(x)$, 故f(x)在 $(a, x_0]$ 单调递减. 类似可证f(x)在 $[x_0, b)$ 单调递增.

另证 因为f(x)是(a,b)上的下凸函数,所以f(x)在(a,b)连续, $f'_{+}(x)$ 在(a,b)单调递增. 又f(x)在(a,b)上不单调,故存在 $x_1,x_2 \in (a,b)$,使得 $f'_{+}(x_1) < 0$, $f'_{+}(x_2) > 0$. 令 $x_0 = \inf\{x \in (a,b) | f'_{+}(x) > 0\}$,则 $x_0 \in [x_1,x_2] \subseteq (a,b)$. 因为f(x)在(a,b)连续, $f'_{+}(x)$ 在 (a,x_0) 非正,所以f(x)在 $(a,x_0]$ 单调递减;因为f(x)在(a,b)连续, $f'_{+}(x)$ 在 (x_0,b) 非负,所以f(x)在 (x_0,b) 单调递增.

例 7 设 $x_1, \dots, x_n \in (0,1), p_1, \dots, p_n$ 都是正数且 $p_1 + p_2 + \dots + p_n = 1$, 求证:

$$\frac{1 + \sum_{k=1}^{n} p_k x_k}{1 - \sum_{k=1}^{n} p_k x_k} \leqslant \prod_{k=1}^{n} \left(\frac{1 + x_k}{1 - x_k}\right)^{p_k}.$$

证 要证的不等式等价于

$$\ln\left(\frac{1+\sum_{k=1}^{n}p_kx_k}{1-\sum_{k=1}^{n}p_kx_k}\right) \leqslant \sum_{k=1}^{n}p_k\ln\left(\frac{1+x_k}{1-x_k}\right).$$

令 $f(x) = \ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x), \ 0 < x < 1, \ \text{则} f'(x) = \frac{1}{1+x} - \frac{1}{1-x} \cdot (-1) = \frac{2}{1-x^2}$ 在(0,1)严格递增,故f(x)在(0,1)严格下凸,由Jensen不等式即得上面的不等式.

例 8 若u(x)为[0,1]上的连续上凸函数且 $u(x) \ge 0$,则有

$$u(x) \geqslant \min\{x, 1 - x\} \cdot \max_{0 \leqslant t \leqslant 1} u(t).$$

证 设 $x_0 \in [0,1]$ 是u(x)的一个最大值点,那么 $\max_{0 \le t \le 1} u(t) = u(x_0)$. 由对称性,不妨设 $x_0 \ge \frac{1}{2}$, 先证 $u\left(\frac{1}{2}\right) \ge \frac{u(x_0)}{2}$. 注意到 $\frac{1}{2} = \frac{1}{2x_0} \cdot x_0 + \left(1 - \frac{1}{2x_0}\right) \cdot 0$, 就有 $u\left(\frac{1}{2}\right) \ge \frac{1}{2x_0}u(x_0) + \left(1 - \frac{1}{2x_0}\right)u(0) \ge \frac{1}{2x_0}u(x_0) \ge \frac{u(x_0)}{2}.$

再证 $u(x) \geqslant \min\{x, 1-x\}u(x_0)$. 当 $0 \leqslant x \leqslant \frac{1}{2}$ 时, $x = 2x \cdot \frac{1}{2} + (1-2x) \cdot 0$,故

$$u(x) \geqslant 2xu\left(\frac{1}{2}\right) + (1-2x)u(0) \geqslant 2xu\left(\frac{1}{2}\right) \geqslant xu(x_0);$$

当
$$\frac{1}{2} \leqslant x \leqslant 1$$
时, $x = (2-2x) \cdot \frac{1}{2} + (2x-1) \cdot 1$,故

$$u(x) \ge (2 - 2x)u\left(\frac{1}{2}\right) + (2x - 1)u(1) \ge (2 - 2x)u\left(\frac{1}{2}\right) \ge (1 - x)u(x_0).$$

这就完成了证明. □

5.4 洛必达法则

洛必达的应用方法较为固定,题目主要考察洛必达的使用条件以及符合条件后的计算求解,所以针对洛必达法则的学习应该熟练掌握洛必达法则以及各种函数的求导.

一、例题

例 1 利用洛必达法则求下列各极限:

(1)
$$\lim_{x\to 0} \frac{\tan x - x}{x - \sin x};$$

$$(2) \lim_{x \to 0} \left(\frac{1}{\arctan^2 x} - \frac{1}{x^2} \right);$$

(3)
$$\lim_{x \to \infty} \left(\tan \frac{\pi x}{2x+1} \right)^{\frac{1}{x}};$$

(4)
$$\lim_{x \to +\infty} \left(\frac{\pi}{2} - \arctan x \right)^{\frac{1}{\ln x}};$$

$$(5) \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{1 - \cos x}};$$

$$\text{if} \quad (1) \, \lim_{x \to 0} \frac{\tan x - x}{x - \sin x} = \lim_{x \to 0} \frac{\sec^2 x - 1}{1 - \cos x} = \lim_{x \to 0} \frac{1 + \cos x}{\cos^2 x} = 2.$$

(2) 因为 $\arctan x \sim x, x \to 0$, 所以

$$\lim_{x \to 0} \left(\frac{1}{\arctan^2 x} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{(x + \arctan x)(x - \arctan x)}{x^4}$$

$$= \lim_{x \to 0} \frac{x + \arctan x}{x} \cdot \lim_{x \to 0} \frac{x - \arctan x}{x^3}$$

$$= 2 \cdot \lim_{x \to 0} \frac{1 - \frac{1}{1 + x^2}}{3x^2} = 2 \cdot \frac{1}{3} = \frac{2}{3}.$$

(3) 因为
$$\lim_{x \to \infty} \frac{\ln\left(\tan\frac{\pi x}{2x+1}\right)}{x} = \lim_{x \to \infty} \frac{\cot\frac{\pi x}{2x+1} \cdot \sec^2\frac{\pi x}{2x+1} \cdot \frac{\pi}{(2x+1)^2}}{1} = \lim_{x \to \infty} \frac{\frac{2\pi}{(2x+1)^2}}{\sin\frac{2\pi x}{2x+1}} = \lim_{x \to \infty} \frac{-\frac{8\pi}{(2x+1)^3}}{\cos\frac{2\pi x}{2x+1} \cdot \frac{2\pi}{(2x+1)^2}}$$

$$\lim_{x \to \infty} \frac{-4}{(2x+1)\cos\frac{2\pi x}{2x+1}} = 0, \quad \text{所以} \lim_{x \to \infty} \left(\tan\frac{\pi x}{2x+1}\right)^{\frac{1}{x}} = e^0 = 1.$$
(4) 因为 $\lim_{x \to +\infty} \frac{\ln\left(\frac{\pi}{2} - \arctan x\right)}{\ln x} = \lim_{x \to +\infty} \frac{\frac{1}{2} - \arctan x \cdot \left(-\frac{1}{1+x^2}\right)}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{\frac{x}{1+x^2}}{\arctan x - \frac{\pi}{2}} = \lim_{x \to +\infty} \frac{\frac{1-x^2}{(1+x^2)^2}}{\frac{1}{1+x^2}} = -1, \quad \text{所以} \lim_{x \to +\infty} \left(\frac{\pi}{2} - \arctan x\right)^{\frac{1}{\ln x}} = e^{-1}.$
(5) 因为 $\lim_{x \to 0} \frac{\ln\frac{\sin x}{x}}{1 - \cos x} = \lim_{x \to 0} \frac{\sin x}{x} - 1 = \lim_{x \to 0} \frac{2(\sin x - x)}{x^3} = \lim_{x \to 0} \frac{2(\cos x - 1)}{3x^2} = \lim_{x \to 0} \frac{-x^2}{3x^2} = -\frac{1}{3}, \quad \text{所以} \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}} = e^{-\frac{1}{3}}.$

例 2 设f(x)在 $[a,+\infty)$ 可导, $\lim_{x\to+\infty} f(x)$ 和 $\lim_{x\to+\infty} f'(x)$ 都存在.证明

$$\lim_{x \to +\infty} f'(x) = 0.$$

证 由洛必达法则知

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{f'(x)}{1} = \lim_{x \to +\infty} f'(x).$$

例 3 说明不能用洛必达法则求下列极限:

$$(1) \lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{\sin x};$$

(2)
$$\lim_{x \to +\infty} \frac{x + \sin x}{x - \sin x};$$

(3)
$$\lim_{x \to 1} \frac{(x^2 + 1)\sin x}{\ln(1 + \sin\frac{\pi x}{2})};$$

(4)
$$\lim_{x \to 1} \frac{\sin \frac{\pi x}{2} + e^{2x}}{x}$$
;

证 (1) 因为当 $x \to 0$ 时, $\frac{(x^2 \sin \frac{1}{x})'}{(\sin x)'} = \frac{(2x \sin \frac{1}{x} - \cos \frac{1}{x})}{\cos x}$ 极限不存在,所以 $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$ 不能用洛必达法则求极限. 事实上, $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} (\frac{x}{\sin x}) \cdot \lim_{x \to 0} (x \sin \frac{1}{x}) = 1 \cdot 0 = 0$,极限存在.

(2) 因为 $x \to +\infty$ 时, $\frac{(x+\sin x)'}{(x-\sin x)'} = \frac{1+\cos x}{1-\cos x}$ 极限不存在,所以 $\lim_{x\to +\infty} \frac{x+\sin x}{x-\sin x}$ 不能用洛必达法则求极限. 事实上, $\lim_{x\to +\infty} \frac{x+\sin x}{x-\sin x} = \lim_{x\to +\infty} \frac{1+\frac{\sin x}{x}}{1-\frac{\sin x}{x}} = 1$,极限存在.

(3) $\lim_{x\to 1} \frac{(x^2+1)\sin x}{\ln(1+\sin\frac{\pi x}{2})}$ 不 是 $\frac{0}{0}$ 或 $\frac{*}{\infty}$ 型 的 待 定 型 , 所 以 不 能 用 洛 必 达 求 极 限 , 事 实 上 $\lim_{x\to 1} \frac{(x^2+1)\sin x}{\ln(1+\sin\frac{\pi x}{2})} = \frac{\lim_{x\to 1} (x^2+1)\sin x}{\lim_{x\to 1} \ln(1+\sin\frac{\pi x}{2})} = \frac{2\sin 1}{\ln 2}$.

 $(4) \lim_{x \to 1} \frac{\sin \frac{\pi x}{2} + e^{2x}}{x}$ 不是 $\frac{0}{0}$ 或 $\frac{*}{\infty}$ 型的待定型,所以不能用洛必达求极限,事实上 $\lim_{x \to 1} \frac{\sin \frac{\pi x}{2} + e^{2x}}{x} = \frac{\lim_{x \to 1} (\sin \frac{\pi x}{2} + e^{2x})}{\lim_{x \to 1} x} = \frac{1 + e^2}{1} = 1 + e^2.$

例 4 设

$$f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
 (1)

其中g(0) = 0, g'(0) = 0, g''(0) = 10, 求 f'(0)

解
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{g(x)}{x^2} = \lim_{x \to 0} \frac{g'(x)}{2x} = \lim_{x \to 0} \frac{g'(x) - g'(0)}{2(x - 0)} = \frac{g''(0)}{2} = 5$$

 $\mathbf{\dot{z}}$ 需要注意的是第五个等式运用的是导数的定义,不可以使用洛必达,因为不清楚g''(x)在0的去心邻域内是否存在.

例 5 设函数f(x)满足f(0) = 0,且f'(0)存在,证明 $\lim_{x \to 0^+} x^{f(x)} = 1$.

证
$$\lim_{x \to 0^+} \ln \mathbf{x}^{f(x)} = \lim_{x \to 0^+} [f(x) \ln x] = \lim_{x \to 0^+} [\frac{f(x) - f(0)}{x - 0} \cdot (x \ln x)] = f'(0) \cdot 0 = 0,$$
所以 $\lim_{x \to 0^+} \mathbf{x}^{f(x)} = \mathbf{e}^0 = 1$

例 6 已知 $\lim_{x\to 0} \frac{\ln(1+x) - ax - bx^2}{x^2} = 2$,求a, b的值.

$$\mathbf{p} \lim_{x \to 0} \frac{\ln(1+x) - ax - bx^2}{x^2} = \lim_{x \to 0} \frac{\ln(1+x) - ax}{x^2} - b = \lim_{x \to 0} \frac{\frac{1}{1+x} - a}{2x} - b = \lim_{x \to 0} \frac{1 - a(1+x)}{2x(1+x)} - b = \lim_{x \to 0} \frac{1 - a(1+x)}{2x} - b = \lim_{x \to 0} \frac{1 - a$$

例 7 讨论函数

$$f(x) = \begin{cases} \left[\frac{(1+x)^{\frac{1}{x}}}{e} \right]^{\frac{1}{x}}, & x > 0, \\ e^{-\frac{1}{2}}, & x \le 0 \end{cases}$$
 (2)

 $\Delta x = 0$ 处的连续性.

解 显然函数f(x)在x = 0处左连续,下面考虑f(x)在x = 0处的右连续性,当x > 0时,

$$\ln f(x) = \frac{\ln \frac{(1+x)^{\frac{1}{x}}}{e}}{x} = \frac{\frac{\ln(1+x)}{x} - \ln e}{x} = \frac{\ln(1+x) - x}{x^2},$$

于是

$$\lim_{x \to 0^+} \ln f(x) = \lim_{x \to 0^+} \frac{\ln(1+x) - x}{x^2} = \lim_{x \to 0^+} \frac{\frac{1}{1+x} - 1}{2x} = -\lim_{x \to 0^+} \frac{1}{2(1+x)} = -\frac{1}{2},$$

由对数函数的连续性, $\lim_{x\to 0^+}f(x)={\rm e}^{-\frac{1}{2}}=f(0)$,即 f(x) 在 x=0 处 右 连续, 所以 f(x) 在 x=0 处 连续.

5.5 泰勒公式

泰勒公式的运用较为灵活,题目也相对较难. 主要体现在不等式的证明(比如决定在哪一点处展开),这就要求对题目信息有较高的敏感度. 所以针对泰勒公式的学习除了需要熟练掌握泰勒公式的一般展开形式和一些特殊函数的马克劳林公式之外,还需要大量练习习题,以便能够较为灵活的使用泰勒公式.

一、例题

例 1 求下列各极限:

$$(1)\lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right);$$

(2)
$$\lim_{x \to +\infty} \left[\sqrt[3]{x^3 + 3x} - \sqrt{x^2 - 2x} \right];$$

$$(3) \lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4}.$$

$$\mathbf{R} \quad (1) \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin x - x}{x \sin x} = \lim_{x \to 0} \frac{-\frac{x^3}{6} + o(x^3)}{x^2} = 0.$$

(2)

$$\lim_{x \to +\infty} \left[\sqrt[3]{x^3 + 3x} - \sqrt{x^2 - 2x} \right] = \lim_{x \to +\infty} x \left[\sqrt[3]{1 + \frac{3}{x^2}} - \sqrt{1 - \frac{2}{x}} \right]$$

$$= \lim_{x \to +\infty} x \left[\left(1 + o\left(\frac{1}{x}\right) \right) - \left(1 - \frac{1}{2} \cdot \frac{2}{x} + o\left(\frac{1}{x}\right) \right) \right] = \lim_{x \to +\infty} [1 + o(1)] = 1.$$

(3) 因为
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$
, $\cos(\sin x) = 1 - \frac{1}{2} \left(x - \frac{x^3}{6} + o(x^4) \right)^2 + \frac{1}{24} \left(x + o(x^2) \right)^4 + o(x^4) = 1 - \frac{x^2}{2} + \frac{x^4}{6} + \frac{x^4}{24} + o(x^4)$, 所以 $\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4} = \lim_{x \to 0} \frac{\frac{x^4}{6} + o(x^4)}{x^4} = \frac{1}{6}$.

例 2 设f(x)在点 x_0 两次可导. 证明

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = f''(x_0).$$

证 由泰勒公式得 $f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2), f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2).$ 因此,

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = \lim_{h \to 0} \frac{f''(x_0)h^2 + o(h^2)}{h^2} = f''(x_0).$$

例 3 设 f(x)在 (a,b) 无穷次可导,对任何 $x \in (a,b)$ 和任何 $n \in \mathbb{N}^*$, $f^{(n)}(x) \ge 0$ 且 $|f(x)| \le M$. 证明对任何 $x \in (a,b)$ 和r > 0, $x + r \in (a,b)$,都有

$$f^{(n)}(x) \leqslant \frac{2Mn!}{r^n}, \quad n = 1, 2, \dots$$

 $\overline{\mathbf{u}}$ 由泰勒公式知存在 $\xi \in (x, x+r)$,使得

$$f(x+r) = f(x) + f'(x)r + \dots + \frac{f^{(n)}(x)}{n!}r^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}r^{n+1}.$$

因为 $f^{(n)}(x) \geqslant 0$ 且r > 0,所以

$$f(x+r) - f(x) \geqslant \frac{f^{(n)}(x)}{n!}r^n.$$

从而结合 $|f(x)| \leq M$ 得

$$f^{(n)}(x) \leqslant \frac{n![f(x+r) - f(x)]}{r^n} \leqslant \frac{2Mn!}{r^n}, \quad n = 1, 2, \dots$$

例 4 设f(x)在[a,b]两次可导. 证明存在 $\xi \in (a,b)$, 使得

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{1}{4}(b-a)^2 f''(\xi).$$

证 由泰勒公式,有

$$f(a) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(a - \frac{a+b}{2}\right) + \frac{f''(\xi_1)}{2}\left(a - \frac{a+b}{2}\right)^2, \quad a < \xi_1 < \frac{a+b}{2},$$

$$f(b) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(b - \frac{a+b}{2}\right) + \frac{f''(\xi_2)}{2}\left(b - \frac{a+b}{2}\right)^2, \quad \frac{a+b}{2} < \xi_2 < b.$$

相加,得

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{(b-a)^2}{4} \cdot \frac{f''(\xi_1) + f''(\xi_2)}{2}.$$

由达布定理,存在 $\xi \in [\xi_1, \xi_2] \subset (a, b)$,使得 $f''(\xi) = \frac{f''(\xi_1) + f''(\xi_2)}{2}$,故

$$f(b) - 2f\left(\frac{a+b}{2}\right) + f(a) = \frac{1}{4}(b-a)^2 f''(\xi).$$

例 5 设f(x)在[a,b]两次可导且f'(a) = f'(b) = 0. 证明存在 $\xi \in (a,b)$, 使得

$$|f''(\xi)| \geqslant \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

证 由泰勒公式得 $f\left(\frac{a+b}{2}\right) = f(a) + \frac{f''(\xi_1)}{2} \left(\frac{b-a}{2}\right)^2$, 其中 $\xi_1 \in \left(a, \frac{a+b}{2}\right)$, $f\left(\frac{a+b}{2}\right) = f(b) + \frac{f''(\xi_2)}{2} \left(\frac{b-a}{2}\right)^2$, 其中 $\xi_2 \in \left(\frac{a+b}{2}, b\right)$. 两式相减,得

$$0 = f(a) - f(b) + \frac{f''(\xi_1) - f''(\xi_2)}{2} \cdot \frac{(b-a)^2}{4},$$

从而

$$\frac{4}{(b-a)^2}|f(b)-f(a)| = \frac{|f''(\xi_1)-f''(\xi_2)|}{2}.$$

不妨设 $|f''(\xi_1)| \ge |f''(\xi_2)|$, 则取 $\xi = \xi_1$, 就有

$$|f''(\xi)| \geqslant \frac{|f''(\xi_1) - f''(\xi_2)|}{2} = \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

例 6 设函数f(x)在[0,2]两次可导,且对任意 $x \in [0,2]$,有 $|f(x)| \le 1$, $|f''(x)| \le 1$. 证明对任意 $x \in [0,2]$,有 $|f'(x)| \le 2$.

证 由泰勒公式,有

$$f(0) = f(x) + f'(x)(0-x) + \frac{f''(\xi_1)}{2}(0-x)^2$$
, 其中 ξ_1 介于 0 与 x 之间,

$$f(2) = f(x) + f'(x)(2-x) + \frac{f''(\xi_2)}{2}(2-x)^2$$
, 其中 ξ_2 介于 x 与2之间.

后式减去前式,整理得

$$2f'(x) = \frac{f''(\xi_1)}{2}x^2 - \frac{f''(\xi_2)}{2}(2-x)^2 + f(2) - f(0),$$

从而

$$2|f'(x)| \leqslant \frac{|f''(\xi_1)|}{2}x^2 + \frac{|f''(\xi_2)|}{2}(2-x)^2 + |f(2)| + |f(0)| \leqslant \frac{x^2 + (2-x)^2}{2} + 2 \leqslant 2 + 2 = 4,$$

故对任意 $x \in [0,2]$, 有|f'(x)| ≤ 2.

例 7 设f(x)在 $(-\infty, +\infty)$ 两次可导且对所有 $x \in (-\infty, +\infty)$,有

$$|f(x)| \leqslant M_0, \quad |f''(x)| \leqslant M_2,$$

其中 M_0 和 M_2 都是常数.证明:对任意实数x,有

$$|f'(x)| \leqslant \sqrt{2}M_0^{\frac{1}{2}}M_2^{\frac{1}{2}}.$$

证 $M_0 = 0$, 显然成立. 不妨设 $M_0 > 0$. 若 $M_2 = 0$, 即 $f''(x) \equiv 0$, 则f'(x)恒等于常数A, 从而 $f(x) = f(x_0) + f'(x_0)(x - x_0) = Ax + B$ 为一次函数, $x_0 \in (-\infty, +\infty)$. 又因为f(x)有界,必有A = 0. 从而 $f'(x) \equiv 0$, 命题自然成立.

若 $M_2 > 0$, 则对任何 $x \in (-\infty, +\infty)$ 和任何h > 0, 有

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)$$
 (其中 $x < \xi < x+h$)

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(\eta) \quad (\sharp + x - h < \eta < x)$$

两式相减,整理得

$$|f'(x)| = \frac{1}{2h} \left| f(x+h) - f(x-h) - \frac{h^2}{2} f''(\xi) + \frac{h^2}{2} f''(\eta) \right| \leqslant \frac{M_0}{h} + \frac{M_2}{2} h.$$

上式对任何h > 0都成立,而 $\frac{M_0}{h} + \frac{M_2}{2}h$ 在 $h_0 = \sqrt{\frac{2M_0}{M_2}}$ 处有最小值 $\sqrt{2}M_0^{\frac{1}{2}}M_2^{\frac{1}{2}}$,所以 $|f'(x)| \leq \sqrt{2}M_0^{\frac{1}{2}}M_2^{\frac{1}{2}}$.

例 8 设f(x)在点 x_0 处n+1次可导且 $f^{(n+1)}(x_0) \neq 0$, 其泰勒公式为

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \dots + \frac{h^n}{n!}f^{(n)}(x_0 + \theta h),$$

其中 $0 < \theta < 1$. 证明 $\lim_{h \to 0} \theta = \frac{1}{n+1}$.

证 由带皮亚诺余项的泰勒公式,有

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \dots + \frac{h^n}{n!}f^{(n)}(x_0) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(x_0) + o(h^{n+1}),$$

结合题设中的泰勒公式,得

$$\frac{h^n}{n!}f^{(n)}(x_0+\theta h) = \frac{h^n}{n!}f^{(n)}(x_0) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(x_0) + o(h^{n+1}).$$

又因为 $\lim_{h\to 0} \frac{f^{(n)}(x_0+\theta h)-f^{(n)}(x_0)}{\theta h} = f^{(n+1)}(x_0),$ 所以

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{f^{(n)}(x_0 + \theta h) - f^{(n)}(x_0)}{f^{(n+1)}(x_0)h} = \lim_{h \to 0} \frac{\frac{h}{n+1}f^{(n+1)}(x_0) + o(h)}{f^{(n+1)}(x_0)h} = \frac{1}{n+1}.$$

例 9 设 f(x) 在 点 x_0 处 n 次 可 导 (n 是 大 于 1 的 正 整 数), 且 $f^{(k)}(x_0) = 0$ $(k = 1, 2, \dots, n-1)$, $f^{(n)}(x_0) \neq 0$,证 明

- (1) 当n为奇数时, x_0 不是f(x)的极值点;
- (2) 当n为偶数时,若 $f^{(n)}(x_0) > 0$,则 x_0 是f(x)的极小值点,若 $f^{(n)}(x_0) < 0$,则 x_0 是f(x)的极大值点.

(2) 若 $f^{(n)}(x_0) > 0$, 则当 $0 < |x - x_0| < \delta$ 时, $f(x) - f(x_0) > 0$, 因此 x_0 是f(x)的极小值点;若 $f^{(n)}(x_0) < 0$, 则当 $0 < |x - x_0| < \delta$ 时, $f(x) - f(x_0) < 0$, 因此 x_0 是f(x)的极大值点. \square

例 10 设 f(x) 在 [0,1] 两次可导,f(0)=f(1)=0,f(x) 最小值为-1. 证明存在 $\xi\in(0,1)$,使得 $f''(\xi)=8$.

证 设 $x_0 \in (0,1)$ 是f(x)的一个最小值点,则 $f(x_0) = -1$, $f'(x_0) = 0$. 由泰勒公式,有

$$0 = f(0) = f(x_0) + f'(x_0)(0 - x_0) + \frac{f''(\xi_1)}{2}(0 - x_0)^2 = -1 + \frac{f''(\xi_1)}{2}x_0^2, \quad 0 < \xi_1 < x_0,$$

$$0 = f(1) = f(x_0) + f'(x_0)(1 - x_0) + \frac{f''(\xi_2)}{2}(1 - x_0)^2 = -1 + \frac{f''(\xi_2)}{2}(1 - x_0)^2, \quad x_0 < \xi_1 < 1.$$
于是 $f''(\xi_1) = \frac{2}{x_0^2}$, $f''(\xi_2) = \frac{2}{(1 - x_0)^2}$. 因为 $f''(\xi_1)$ 和 $f''(\xi_2)$ 这两个数中,一个大于等于8, 另一个小于等于8, 所以由达布定理知存在 $\xi \in [\xi_1, \xi_2] \subset (0, 1)$ 使得 $f''(\xi) = 8$.

例 11 设 f(x) 在 $(0, +\infty)$ 两 次 可 微 且 满足 $\lim_{x \to +\infty} f(x) = 0$, $|f''(x)| \le M$, x > 0. 证 明 $\lim_{x \to +\infty} f'(x) = 0$.

证明1. 因为 $\lim_{x\to +\infty} f(x)=0$,所以对任意 $\varepsilon>0$,存在a>0,当x>a时,有 $|f(x)|<\varepsilon$. 由5.5节的例5知,当x>a时,有 $|f'(x)|<2\sqrt{M\varepsilon}$. 按极限定义知 $\lim_{x\to +\infty} f'(x)=0$.

证明2. 要证明 $\lim_{x\to +\infty} f'(x) = 0$,即要证明: $\forall \varepsilon > 0, \exists \Delta > 0, \exists x > \Delta$ 时, $|f'(x)| < \varepsilon$,利用Taylor 公式, $\forall h > 0$,

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(\varepsilon)h^2$$

即

$$f'(x) = \frac{1}{h}[f(x+h) - f(x)] - \frac{1}{2}f''(\varepsilon)h$$

因为 $\lim_{x \to +\infty} f(x) = 0, |f''(x)| \leqslant M$,则

$$|f'(x)| \le \frac{1}{h}(|f(x+h) - 0| + |0 - f(x)|) + \frac{1}{2}Mh$$

 $\forall \varepsilon > 0$,首先可取h > 0充分小,使得 $\frac{1}{2}Mh < \frac{\varepsilon}{2}$,然后将h固定.

因为 $\lim_{x\to +\infty} f(x) = 0$,所以 $\exists \Delta > 0$, 当 $x > \Delta$ 时,

$$\frac{1}{h}(|f(x+h) - 0| + |0 - f(x)|) < \frac{\varepsilon}{2}$$

则

$$|f'(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

例 12 利用 Taylor公式证明不等式:

$$(1)x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}, x > 0$$
$$(2)(1+x)^a < 1 + ax + \frac{a(a-1)x^2}{2}, 1 < a < 2, x > 0$$

证 (1)利用带有Lagrange余项的Taylor公式,

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3(1+\xi)^3} > x - \frac{x^2}{2}, 0 < \xi < x$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4(1+\xi)^4} < x - \frac{x^2}{2} + \frac{x^3}{3}, 0 < \xi < x$$

$$(2)(1+x)^a = 1 + ax + \frac{a(a-1)x^2}{2} + \frac{a(a-1)(a-2)x^3}{6(1+\xi)^{3-a}} 0 < \xi < x$$
由于1 < a < 2,所以a(a-1)(a-2) < 0,从而Lagrange余项 $\frac{a(a-1)(a-2)x^3}{6(1+\xi)^{3-a}} < 0$,于是得

到

$$(1+x)^a < 1 + ax + \frac{a(a-1)x^2}{2}.$$

例 13 证明*e*是无理数

证 用反证法. 假设e是有理数,那么显而易见,一定存在充分大的自然数m,使得(m!)e是正整数

在e^x的Taylor公式

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta x} x^{n+1}}{(n+1)!}, \theta \epsilon(0,1)$$

中,将n取为m,并令x = 1,则

$$e^x = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{m!} + \frac{e^{\theta}}{(m+1)!}, \theta \epsilon(0,1)$$

两边同乘上m!, 便得到

$$(m!)e = (m!)[1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{m!}] + \frac{m!e^{\theta}}{(m+1)!}$$

即

$$(m!)$$
{ $e - [1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{m!}]$ } $= \frac{e^{\theta}}{(m+1)}$

按假设,等式左端是正整数,但由于 e^x 是单调增加函数,而 $\theta\epsilon(0,1)$,因此 $1< e^{\theta}<3$,代入上式的右端,就得到估计式

$$\frac{1}{m+1} < \frac{e^{\theta}}{m+1} < \frac{3}{m+1}$$

于是,对于任意正整数m>1,都有 $\frac{\mathrm{e}^{\theta}}{m+1}\epsilon(0,1)$,也就是说,上述等式的右端绝不可能是正整数,这样就导出了矛盾. 所以e 为无理数.