The Calculus of Variations

Rajendra

Roll No: 212305011

Under the guidance of

Dr. Sarath SasiAssistant Professor
Department of Mathematics

Department of Mathematics Indian Institute of Technology Palakkad

Contents

- Weak derivatives
- Sobolev spaces
- First variation, Euler-Lagrange Equation
- Second variation
- Existence of minimizers
 - Coercivity
 - Lower Semicontinuous
 - Weak Solutions of Euler-Lagrange Equation
- Constrained Minimization
 - Nonlinear Eigenvalue Problems

Weak derivatives

Definition (Weak Derivative)

Suppose $u, v \in L^1_{loc}(U)$ and α is a multi-index. We say that v is the α -th weak partial derivative of u, written

$$D^{\alpha}u=v,$$

provided

$$\int_{U} u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{U} v \, \phi \, dx \tag{1}$$

for all test functions $\phi \in C_c^{\infty}(U)$.

Notation: Where $C_c^{\infty}(U)$ denote the space of all infinitely differentiable functions $\phi: U \to \mathbb{R}$ with compact support in U, where U is a subset of \mathbb{R}^N . Any function ϕ that belongs to $C_c^{\infty}(U)$ is referred to as a *test function*.

Example: Let n = 1, U = (0, 2), and

$$u(x) = \begin{cases} x, & \text{if } 0 < x \le 1 \\ 1, & \text{if } 1 \le x < 2. \end{cases}$$

Define

$$v(x) = \begin{cases} 1, & \text{if } 0 < x \le 1 \\ 0, & \text{if } 1 \le x < 2. \end{cases}$$

Then u' = v in the weak sense.

Lemma: A weak α -th partial derivative of u, if it exists, is uniquely defined up to a set of measure zero.

Sobolev space

Definition

Fix $1 \le p \le \infty$ and let k be a nonnegative integer. The Sobolev space $W^{k,p}(U)$ consists of all locally summable functions

$$\mu:U\to\mathbb{R}$$

such that for each multi-index α with $|\alpha| \leq k$, the weak derivative $D^{\alpha}u$ exists and belongs to $L^{p}(U)$.

Definition

If $u \in W^{k,p}(U)$, we define its norm by

$$||u||_{W^{k,p}(U)} := \begin{cases} \left(\sum_{|\alpha| \le k} \int_{U} |D^{\alpha}u|^{p} dx\right)^{1/p}, & 1 \le p < \infty, \\ \sum_{|\alpha| \le k} \operatorname{ess\,sup}|D^{\alpha}u(x)|, & p = \infty. \end{cases}$$

First Variation, Euler-Lagrange Equation

Let $U \subset \mathbb{R}^n$ be a bounded, open set with smooth boundary ∂U . Suppose $L : \mathbb{R}^n \times \mathbb{R} \times U \to \mathbb{R}$ is a smooth function, Define the functional:

$$I[w] = \int_{U} L(Dw(x), w(x), x) dx. \tag{1}$$

For smooth functions $w: \bar{U} o \mathbb{R}$ satisfying, say, the boundary condition

$$w = g \quad \text{on } \partial U.$$
 (2)

Now suppose some particular smooth function u, satisfying the requisite boundary condition u=g on ∂U , happens to be a minimizer of $I[\cdot]$ among all functions w satisfying (2). Then u automatically a solution of a nonlinear partial differential equation.

To confirm this, first choose any smooth function $v \in C_c^\infty(U)$ and consider the real-valued function

$$i(\tau) := I[u + \tau v] \qquad (\tau \in \mathbb{R}).$$
 (3)

Since u is a minimizer of $I[\cdot]$ and $u + \tau v = u = g$ on ∂U , we observe that

i'(0) = 0. (4) We explicitly compute this derivative (called the *first variation*) by writing

$$i(\tau) = \int_{U} L(Du + \tau Dv, u + \tau v, x) dx.$$
 (5)

Let $\tau = 0$, to deduce from (4) that

out

 $i(\cdot)$ has a minimum at $\tau = 0$. Therefore

$$0 = i'(0) = \int_{U} \left[\sum_{i=1}^{n} L_{p_{i}}(Du, u, x) v_{x_{i}} + L_{z}(Du, u, x) v \right] dx.$$

Finally, since v has compact support, we can integrate by parts and obtain

$$0 = \int_{U} \left[-\sum_{i=1}^{n} (L_{p_i}(Du, u, x))_{x_i} + L_z(Du, u, x) \right] v dx.$$

This is true for all test function v, then u satisfies the equation:

$$\sum_{i=1}^n \frac{\partial}{\partial x_i} L_{p_i}(Du, u, x) - L_z(Du, u, x) = 0 \quad \text{in } U.$$

This is known as the Euler–Lagrange equation. \Box

Example

Example 1 (Dirichlet's principle). Take

$$L(p,z,x)=\frac{1}{2}|p|^2.$$

Then $L_{p_i} = p_i$ (i = 1, ..., n), $L_z = 0$; and so the Euler–Lagrange equation associated with the functional

$$I[w] := \frac{1}{2} \int_{U} |Dw|^2 dx$$

is

$$\Delta u = 0$$
 in U .

This fact is known as the Dirichlet's principle \square

Second Variation

We continue in the spirit of the calculations from first variation by computing now the *second variation* of $I[\cdot]$ at the function u. This we find by observing that since u gives a minimum for $I[\cdot]$, we must have

$$i''(0)\geq 0,$$

where $i(\cdot)$ is defined as above by (3). In view of (5), we can calculate Setting $\tau=0$, we derive the inequality

$$0 \le i''(0) = \int_{U} \sum_{i,j=1}^{n} L_{p_{i}p_{j}}(Du, u, x) v_{x_{i}} v_{x_{j}}$$

$$+ 2 \sum_{i=1}^{n} L_{p_{i}z}(Du, u, x) v_{x_{i}} v + L_{zz}(Du, u, x) v^{2} dx, \qquad (6)$$

for all test functions $v \in C_c^{\infty}(U)$. This estimate (6) is also valid for any Lipschitz continuous v vanishing on boundary.

By choosing specific test functions of the form

$$v(x) := \epsilon \rho \left(\frac{x \cdot \xi}{\epsilon}\right) \zeta(x) \quad (x \in U),$$

where ρ is the periodic "zig-zag" function with $|\rho'|=1$ almost everywhere, and $\zeta\in C_c^\infty(U)$, we deduce the pointwise convexity condition:

$$\sum_{i,j=1}^n L_{p_ip_j}(Du,u,x)\xi_i\xi_j \geq 0 \quad (\forall \xi \in \mathbb{R}^n, x \in U).$$

This necessary condition suggests a fundamental convexity assumption on \boldsymbol{L} for the existence theory.

Existence of minimizers

Coercivity Condition for Existence of Minimizers: To ensure the existence of a minimizer for I[w], a coercivity condition on L is required. Specifically, suppose there exist constants $\alpha>0$, $\beta\geq0$, and a fixed exponent q satisfying

$$1 < q < \infty$$
,

such that

$$L(p,z,x) \ge \alpha |p|^q - \beta$$

for all $p \in \mathbb{R}^n$, $z \in \mathbb{R}$, and $x \in U$. Then we obtain the estimate

$$I[w] \ge \alpha \|Dw\|_{L^q(U)}^q - \gamma,$$

where $\gamma=\beta|U|$. Consequently, $I[w]\to\infty$ as $\|Dw\|_{L^q}\to\infty$, ensuring that I[w] grows sufficiently to prevent arbitrarily large minimizing sequences. This coercivity condition is a key criterion for the existence of minimizers in variational problems.

Definition

We say that a function $I[\cdot]$ is (sequentially) weakly lower semicontinuous on $W^{1,q}(U)$, provided

$$I[u] \leq \liminf_{k \to \infty} I[u_k]$$

whenever

 $u_k \rightharpoonup u$ weakly in $W^{1,q}(U)$.

Theorem (Weak lower semicontinuity)

Assume that L is smooth , bounded below, and in addition that for each $z \in \mathbb{R}$ and $x \in U$ the mapping

$$p \mapsto L(p,z,x)$$

is convex. Then the functional $I[\cdot]$ is weakly lower semicontinuous on $W^{1,q}(U)$.

Theorem (Uniqueness of minimizer)

Suppose the integrand L = L(p, x) does not depend on z, and that there exists a constant $\theta > 0$ such that for every $x \in U$, $p \in \mathbb{R}^n$, and all $\xi \in \mathbb{R}^n$,

$$\sum_{i,i=1}^{n} L_{p_{i}p_{j}}(p,x) \, \xi_{i} \, \xi_{j} \, \geq \, \theta \, |\xi|^{2}.$$

In other words, $p \mapsto L(p,x)$ is uniformly convex for each x. Then any minimizer $u \in \mathcal{A}$ of the functional $I[\cdot]$ is unique.

Weak solutions of Euler-Lagrange equation

Now we define

$$\mathcal{A}:=\left\{w\in W^{1,q}(U)\;\middle|\; w=g \; ext{on}\; \partial U \; ext{in the trace sense}
ight\}$$

to denote this class of admissible functions w. Note in view of coercivity that I[w] is defined (but may equal $+\infty$) for each $w \in \mathcal{A}$. We wish next to demonstrate that any minimizer $u \in \mathcal{A}$ of $I[\cdot]$ solves the Euler–Lagrange equation in some suitable sense. We will need some growth conditions on L and its derivatives. Let us hereafter suppose

$$|L(p,z,x)| \le C(|p|^q + |z|^q + 1),$$
 (1)

and also

$$\begin{cases}
|D_{p}L(p,z,x)| \leq C(|p|^{q-1} + |z|^{q-1} + 1), \\
|D_{z}L(p,z,x)| \leq C(|p|^{q-1} + |z|^{q-1} + 1),
\end{cases}$$
(2)

for some constant C and all $p \in \mathbb{R}^n$, $z \in \mathbb{R}$, $x \in U$.

We now turn our attention to the boundary-value problem for the Euler-Lagrange PDE associated with our functional L. For a (smooth) minimizer u, one obtains

$$\begin{cases}
-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (L_{p_{i}}(Du, u, x)) + L_{z}(Du, u, x) = 0, & x \in U, \\
u = g, & x \in \partial U.
\end{cases}$$
(3)

Definition

We say $u \in A$ is a **weak solution** of the boundary-value problem (3) for the Euler-Lagrange equation provided

$$\int_{U} \sum_{i=1}^{n} L_{\rho_{i}}(Du, u, x) v_{x_{i}} + L_{z}(Du, u, x) v \, dx = 0$$

for all $v \in W_0^{1,q}(U)$.

Theorem (Solution of Euler-Lagrange equation)

Assume L verifies the growth conditions (1), (2), and $u \in A$ satisfies

$$I[u] = \min_{w \in A} I[w].$$

Then u is a weak solution of (3).

Constrained Minimization

Now let us consider applications of the calculus of variations to certain constrained minimization problems, and, in particular, discuss the role of Lagrange multipliers in the corresponding Euler-Lagrange PDE. We investigate first problems with integral constraints. To be specific, let us consider the problem of minimizing the energy functional

$$I[w] := \frac{1}{2} \int_{U} |Dw|^2 dx$$

over all functions w with, say, w = 0 on ∂U , but subject now also to the side condition that

$$J[w] := \int_U G(w) dx = 0,$$

where $G: \mathbb{R} \to \mathbb{R}$ is a given, smooth function. We will henceforth write g = G'. Assume now

$$|\sigma(z)| < C(|z| + 1)$$

and so

$$|G(z)| \leq C(|z|^2+1) \quad (z \in \mathbb{R})$$

for some constant \mathcal{C} . Let us introduce as well the appropriate admissible class

$$\mathcal{A} := \{ w \in H_0^1(U) \mid J[w] = 0 \}.$$

We suppose also that the open set $\it U$ is bounded, connected and has a smooth boundary.

Theorem (Existence of constrained minimizer)

Assume the admissible set A is nonempty. Then there exists $u \in A$ satisfying

$$I[u] = \min_{w \in \mathcal{A}} I[w].$$

Theorem (Lagrange multiplier)

Let $u \in A$ satisfy

$$I[u] = \min_{w \in \mathcal{A}} I[w]. \tag{4}$$

Then there exists a real number λ such that

$$\int_{U} Du \cdot Dv \, dx = \lambda \int_{U} g(u)v \, dx \tag{5}$$

for all $v \in H_0^1(U)$.

Remark

Thus u is a weak solution of the nonlinear boundary-value problem

$$\begin{cases} -\Delta u = \lambda g(u) & \text{in } U \\ u = 0 & \text{on } \partial U, \end{cases}$$
 (6)

where $\boldsymbol{\lambda}$ is the Lagrange multiplier corresponding to the integral constraint

$$J[u] = 0. (7)$$

A problem of the form (6) for the unknowns (u, λ) , with $u \neq 0$, is a non-linear eigenvalue problem.

Reference

- S. Kesavan, *Nonlinear Functional Analysis—A First Course*, 2nd ed., Springer, 2022, ISBN 978-981-16-6347-5.
- L. C. Evans, *Partial Differential Equations*, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, 2010, ISBN 978-0-8218-4974-3.
- B. van Brunt, *The Calculus of Variations*, Universitext, Springer, 2004, ISBN 0-387-40247-0.
- S. Kesavan, *Topics in Functional Analysis and Applications*, 3rd ed., New Age International (P) Ltd., 2019, ISBN 978-9387788954.