LINEAR REGRESSION USING GRADIENT DESCENT

Multiple features

SINGLE FEATURE

Data table

size in feet²	price in ₹1000's	
2104	400	
1416	232	
1534	315	
852	178	
3210	870	

MULTIPLE FEATURES

My = jth feature

N = number of features

\[
\frac{7}{1}(i) = feature of ith training example

\[
x^{(i)} = Value of jth feature in

ith training example.

Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (₹) in ₹1000's
\times_1	×_	׬	×4	Y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

MoleL

$$f_{V,b}(x) = V \times + b \longrightarrow f_{V,b}(x) = V \cdot x + b$$

$$f_{V,b}(x) = V_1 \times_1 + V_2 \times_2 + V_3 \times_3 + V_4 \times_4 + b$$

$$f_{V,b}(x) = V_1 \times_1 + V_2 \times_2 + V_3 \times_3 + V_4 \times_4 + b$$

 $f_{\overrightarrow{V},h}(\overrightarrow{X}) = W_1 \times_1 + W_2 \times_2 + \cdots + W_n \times_n + b$

Parameters $\vec{v} = [v_1 \ v_2 \ v_3 \ \dots \ v_n]$ $\vec{v} = [x_1 \ x_2 \ x_3 \ \dots \ x_n]$

SIGNIFICANCE OF VECTORIZATION (PROGRAMMING PYTHON & NUMPY)

Declaration

$$w = np.array([2.0, 6.5, -3.2])$$

$$b = 3$$

$$x = np.array([15, 35, 24])$$

Without Vectorization

$$f = 0$$

for j in range (n):

$$f = f +_{W[j]} *_{X[j]}$$

$$f = f + b$$

Vectorization

$$f = np.dot(w,x) + b$$

Without Vectorization

$$f = w[0] * x[0] +$$

$$w[1] * x[1] +$$

$$w[2] * x[2] + b$$

SIGNIFICANCE OF VECTORIZATION (PROGRAMMING PYTHON & NUMPY)

Without vectorization

$$f + w[0] * x[0]$$

$$t_1$$
 f + w[1] * x[1]

•••

$$t_{15}$$
 f + w[15] * x[15]

Vectorization

np.dot(w,x)

