Examen la Logica Page 1 of 1

Bilet numărul 20

1. Algebre booleene

- a) Să se definească funcțiile $\cdot,+,^- \in FB$ și să se arate că $B=\langle B,\cdot,+,^- \rangle$ formează o algebră booleană ($B=\{0,1\}$). (1 punct)
- b) Să se arate că $x_1 \cdot x_2 \cdot ... \cdot x_n = 1$ dacă și numai dacă pentru fiecare $i \in [n]$ avem $x_i = 1$ (și aceasta pentru fiecare $n \in [n]$, $n \ge 2$ și oricare valori din B ale variabilelor $x_1, x_2, ..., x_n$). (2 puncte)

2. LP

- a) Să se ARATE că pentru fiecare $F \in LP$ există $G \in LP$ şi $F \in LP$ astfel încât G este în FNC şi $F \in LP$ este în FND şi, în plus, $F \in G$ şi $F \in H$ (prin inducție structurală). (2 puncte)
- b) Rafinări (strategii și restricții) ale rezoluției (descrieți măcar trei dintre ele). (1 punct)

3. LP1

- a) Să se găsească o structură $_S$ astfel încât $_S$ să fie model pentru $_F$, unde $F = \left(\neg(\exists x)\big(P(x)\big)\land(\forall x)\big(Q(x,y)\big)\right)\leftrightarrow\left(\neg(\forall x)\big(\exists y)(\forall z)R(x,y,z)\right)$. (2 puncte)
- b) Să se definească extensia Herbrand (E(F)) pentru o formulă $_F$ aflată în FNS (închisă) și extensia Herbrand generalizată (E'(F)) pentru o formulă $_F$ aflată în FNSC (închisă). (1 punct)