Singular Value Decomposition

Jaskirat Kaur

February 23, 2024

Short Name Short title February 23, 2024 1/28

Diagonalization Review

Diagonalization is the process of transforming a square matrix into a special type of matrix called a diagonal matrix, in which all off-diagonal entries are zero.

$$A^T = (X) \Lambda X^{-1}$$

Here, A is the original matrix, Λ is the diagonal matrix, and X is the matrix whose columns are the eigenvectors of A.

Short Name Short title February 23, 2024 2 / 28

Why Do We Care About Diagonalization?

Diagonalization is important because:

• It simplifies matrix computations, such as raising a matrix to a power.

Short Name Short title February 23, 2024 3 / 28

Diagonalization and Matrix Powers

To raise A to the power of k, we use the diagonalization:

$$A^k = (PDP^{-1})^k$$

Expanding this expression:

$$A^k = PDP^{-1}PDP^{-1}\cdots PDP^{-1}$$

$$A^k = PD^k P^{-1}$$

Short Name Short title February 23, 2024 4/28

Introduction to SVD

Singular Value Decomposition (SVD) is a method of decomposing any $m \times n$ matrix, regardless of its specific properties like squareness or invertibility. The theorem states:

$$A = U\Sigma V^{T} = \sigma_{1}u_{1}v_{1}^{T} + \cdots + \sigma_{r}u_{r}v_{r}^{T}$$

where U is an orthogonal $m \times r$ matrix, Σ is an $r \times r$ diagonal matrix, and V is an orthogonal $n \times r$ matrix.

Short Name Short title February 23, 2024 5 / 28

Components of SVD

Let A be an $m \times n$ matrix of rank r. Then

$$A = U\Sigma V^{T} = \sigma_{1}u_{1}v_{1}^{T} + \cdots + \sigma_{r}u_{r}v_{r}^{T},$$

where:

- U is an orthogonal $m \times m$ matrix,
- Σ is an $m \times n$ diagonal matrix,
- V is an orthogonal $n \times n$ matrix.

Such that:

- The first r columns of U are an orthonormal basis for the column space of A.
- The first r columns of V are an orthonormal basis for the row space of A.
- **3** The last m-r columns of U are an orthonormal basis for the left null space of A.
- The last n r columns of V are an orthonormal basis for the null space of A.
- **1** The first r diagonal entries of Σ are the nonzero singular values of A_{\sim}

Short Name Short title February 23, 2024 6 / 28

SVD and Low-Rank Approximations

SVD is particularly useful for constructing low-rank approximations of A by considering only the largest singular values and corresponding singular vectors. This approach is fundamental in data compression and noise reduction.

$$A \approx \sigma_1 u_1 v_1^T + \dots + \sigma_k u_k v_k^T$$

where k < r is chosen based on the desired approximation accuracy.

 Short Name
 Short title
 February 23, 2024
 7 / 28

Image Reconstruction Using SVD

8 / 28

SVD Illustration

Figure: Source: Wikipedia

Short Name Short title February 23, 2024

Singular Value Decomposition (SVD)

$$A = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}_{2 \times 3} = \quad U = \begin{bmatrix} \mid & \mid \\ u_1 & u_2 \\ \mid & \mid \end{bmatrix}_{2 \times 2} \times \quad \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix}_{2 \times 3} \times \quad V^T = \begin{bmatrix} - & v_1^T & - \\ - & v_2^T & - \\ - & v_3^T & - \end{bmatrix}_{3 \times 3}$$

 Short Name
 Short title
 February 23, 2024
 10 / 28

Calculating the SVD

To calculate the SVD of a matrix A:

- **1** Compute the eigenvalues and eigenvectors of A^TA and AA^T .
- ② The eigenvectors of A^TA form V, and the eigenvectors of AA^T form U.
- **3** The non-zero square roots of the eigenvalues of A^TA (or AA^T) are the singular values σ_i .
- **①** Construct Σ by placing σ_i along the diagonal.
- Normalize the singular vectors to ensure orthonormality.

Short Name Short title February 23, 2024 11 / 28

Warm up

Singular value decomposition Q

Given the matrix $A=\begin{bmatrix}0&0&0&0&0\\0&1&0&0&0\\0&0&0&1&1\end{bmatrix}$, give the <code>reduced</code> singular value decomposition of A.

Note. Blanks will be interpreted as 0.

Warm up

Singular value decomposition Q

Given the matrix
$$A=\begin{bmatrix}0&0&0&0&0\\0&1&0&0&0\\0&0&0&1&1\end{bmatrix}$$
 , give the $reduced$ singular value decomposition of A .

Note. Blanks will be interpreted as 0.

Short Name Short title February 23, 2024

Permutation decomposition

Consider the matrix
$$A = egin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Is A invertible? Orthogonal? Diagonalizable? Can A be decomposed into LU? QR? $X\Lambda X^{-1}$? $Q\Lambda Q^T$? Justify your answer.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

 Short Name
 Short title
 February 23, 2024
 14 / 28

Permutation decomposition

Consider the matrix
$$A = egin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Is A invertible? Orthogonal? Diagonalizable? Can A be decomposed into LU? QR? $X\Lambda X^{-1}$? $Q\Lambda Q^T$? Justify your answer.

Approach:

- Recall the definitions and properties of matrix operations and decompositions.
- Consider the characteristics of A in terms of its columns' independence, orthogonality, and symmetry.

- A is **invertible** since it has linearly independent columns.
- A is **orthogonal** because its columns are all unit length and orthogonal to each other, indicating orthonormal columns.
- A is **diagonalizable** since it is symmetric.

Short Name Short title February 23, 2024 16 / 28

- A can be decomposed into **LU** because it is invertible. This property allows for such a decomposition when there are no zero pivots.
- A can be decomposed into QR because it has linearly independent columns. QR decomposition is applicable to matrices with full column rank.
- A can be decomposed into $X\Lambda X^{-1}$ because it is symmetric. Symmetric matrices are always diagonalizable in this form, where X can be chosen as the matrix of orthonormal eigenvectors.
- A can be decomposed into $Q\Lambda Q^T$ because it is symmetric. This is another form of diagonalization specific to symmetric matrices.
- A can be decomposed into $U\Sigma V^T$ because every matrix can be decomposed using Singular Value Decomposition (SVD), regardless of its properties.

Short Name Short title February 23, 2024 17 / 28

Pseudoinverses

Pseudoinverses

Let A be a matrix with SVD $A=U\Sigma V^T$. We define the **pseudoinverse** of A to be the matrix

$$A^+ = V \Sigma^{-1} U^T,$$

where Σ^{-1} is a diagonal matrix of inverses of singular values, $\frac{1}{\sigma_i}.$

We want to prove the following:

If $\mathbf{x}^* = A^+\mathbf{b}$, then $A\mathbf{x}^*$ is the closest vector to \mathbf{b} in the column space of A.

There are two possible ways to approach this. We will consider both.

- 1. If A^+ is the "pseudoinverse", what happens when we take AA^+ ? Use this to see if $A\mathbf{x}^*$ is the projection of \mathbf{b} onto the column space of A.
- 2. If $A\mathbf{x}^*$ is the projection of \mathbf{b} on the column space of A, this implies that $\mathbf{x}^* = \hat{\mathbf{x}}$. See whether this is the case by using the definition of $\hat{\mathbf{x}}$.

Here is a final question to consider. The consequence of this result is it gives us a way to compute least squares approximations without the requirement that the columns of A are linearly independent. Why?

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Pseudoinverses

Approach:

- Understand the concept of pseudoinverse and how it relates to projections.
- Analyze the algebraic properties of A⁺ and its effect when applied to b.

 Short Name
 Short title
 February 23, 2024
 19 / 28

Computing AA⁺

Given:
$$A^+ = V \Sigma^{-1} U^T$$

$$AA^{+} = (U\Sigma V^{T})(V\Sigma^{-1}U^{T})$$

$$= U(\Sigma V^{T}V\Sigma^{-1})U^{T}$$

$$= U(\Sigma I\Sigma^{-1})U^{T}$$

$$= UU^{T}$$

Observation: $V^TV = I$ because V is orthogonal, and $\Sigma\Sigma^{-1} = I$ as Σ is diagonal. Thus, $AA^+ = UU^T$ is a projection matrix onto the column space of A.

Short Name Short title February 23, 2024 20 / 28

Projection of b onto Column Space of A

Given:
$$x^* = A^+ b$$

$$Ax^* = A(A^+b)$$
$$= (AA^+)b$$
$$= (UU^T)b$$

Conclusion: $Ax^* = UU^Tb$ is the projection of b onto the column space of A, since UU^T is a projection matrix.

 Short Name
 Short title
 February 23, 2024
 21 / 28

Least Squares Solution and SVD

- Starting with the least squares solution: $\hat{x} = (A^T A)^{-1} A^T b$
- Substituting $A = U\Sigma V^T$ gives $\hat{x} = (V\Sigma^2 V^T)^{-1}(V\Sigma U^T)b$
- Simplifying, we get $\hat{x} = V \Sigma^{-2} V^T (V \Sigma U^T) b = V \Sigma^{-1} U^T b = A^+ b$

Conclusion: $\hat{x} = x^*$, showing that the pseudoinverse A^+ can be used to compute the least squares solution, \hat{x} , even when A does not have linearly independent columns, as every matrix has an SVD.

22 / 28

Short Name Short title February 23, 2024

Left Eigenvectors

Left eigenvectors

Let A be an $n \times n$ matrix that is diagonalizable into $A = X\Lambda X^{-1}$. We define the eigenvectors of A^T to be the **left eigenvectors** of A, since $A^T\mathbf{y} = \lambda \mathbf{y}$ gives $\mathbf{y}^T A = \lambda \mathbf{y}^T$.

Show that $A = \lambda_1 \mathbf{x_1} \mathbf{y_1}^T + \dots + \lambda_n \mathbf{x_n} \mathbf{y_n}^T$, where \mathbf{x}_i is the eigenvector associated with eigenvalue λ_i and \mathbf{y}_i is the left eigenvector associated with eigenvalue λ_i .

Hint. What is A^T ?

 Short Name
 Short title
 February 23, 2024
 23 / 28

Left Eigenvectors

Left eigenvectors

Let A be an $n \times n$ matrix that is diagonalizable into $A = X\Lambda X^{-1}$. We define the eigenvectors of A^T to be the **left eigenvectors** of A, since $A^T \mathbf{y} = \lambda \mathbf{y}$ gives $\mathbf{y}^T A = \lambda \mathbf{y}^T$.

Show that $A = \lambda_1 \mathbf{x}_1 \mathbf{y}_1^T + \dots + \lambda_n \mathbf{x}_n \mathbf{y}_n^T$, where \mathbf{x}_i is the eigenvector associated with eigenvalue λ_i and \mathbf{y}_i is the left eigenvector associated with eigenvalue λ_i .

Hint. What is A^T ?

Approach:

- Recall the concept of left eigenvectors and how they relate to the transpose of a matrix.
- Consider the properties of diagonalizable matrices and their transpose.

 Short Name
 Short title
 February 23, 2024
 24 / 28

Right and Left Eigenvectors

- **Right Eigenvectors:** For a matrix A, a right eigenvector v corresponds to an eigenvalue λ , such that $Av = \lambda v$. They are the standard eigenvectors that we often compute and use in diagonalization.
- **Left Eigenvectors:** The left eigenvectors y of a matrix A are the eigenvectors of A^T , satisfying $y^TA = \lambda y^T$ for the same eigenvalue λ . In the context of SVD, they are associated with the decomposition $A = U\Sigma V^T$, forming the columns of U.
- **Distinction:** While right eigenvectors are associated with the action of A on vectors, left eigenvectors relate to the action of A^T . In diagonalizable matrices, they provide a dual basis that makes up the invertible matrix P in the diagonalization $A = PDP^{-1}$, where P contains the right eigenvectors, and P^{-1} contains the left eigenvectors in its rows.

Calculating A^T

Starting with $A = X\Lambda X^{-1}$, compute A^T :

$$A^{T} = (X\Lambda X^{-1})^{T}$$
$$= (X^{-1})^{T} \Lambda^{T} X^{T}$$
$$= (X^{-1})^{T} \Lambda X^{T}$$

- Note: Λ is diagonal, so $\Lambda^T = \Lambda$.
- This shows A^T in a form similar to diagonalization, but with $\left(X^{-1}\right)^T$ and X^T .

◆□▶◆□▶◆壹▶◆壹▶ 壹 める○

26/28

Short Name Short title February 23, 2024

Eigenvectors of A^T

From $A^T = (X^{-1})^T \Lambda X^T$, we identify eigenvectors:

- The columns of $(X^{-1})^T$ are the eigenvectors of A^T .
- Equivalently, the rows of X^{-1} serve as the left eigenvectors of A.

This establishes a relationship between the diagonalization of A and the eigenvectors of A^T .

Short Name Short title February 23, 2024 27 / 28

Decomposing A

 $A = X\Lambda X^{-1}$ can be written as a sum of rank 1 matrices:

$$A = \sum_{i=1}^{n} \lambda_i x_i y_i^T$$

- Here, x_i are columns of X, and y_i^T are rows of X^{-1} , corresponding to the left eigenvectors.
- λ_i are the eigenvalues.

This decomposition highlights the role of eigenvalues and (left) eigenvectors in forming A.

Short Name Short title February 23, 2024 28 / 28