LAST NAME:	FIRST NAME:
SOLUTIONS	

1	/15 2	$/15 \mid 3$	/15 4	/10 5	/10 6	/10 T	75

MATH 4362 (Spring 2018) Midterm Exam One (Zweck)

Instructions: This 75 hour exam is worth 75 points. No books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem.

(1) [15 pts] Complete the table.

PDE	Order	Equilibrium or Dynamic	Linear or Nonlinear	Homogeneous or Inhomogeneous	Name
$u_t - 4u_{xx} = 0$	2	Д	L	Н	HOAT EON
$u_{tt} - 16u_{xx} = \sin x \cos t$	2	A	L	I	WAVE EQN
$u_t + uu_x = 0$	1	D	NL	Н	INVIXCID BURGERS OR MONLHEAR TRANSPORT
$u_{xx} + \mathbf{y}u_{yy} = f(x,y)$	2	E	L	I	POISSON EON
$u_t + e^{-x}u_x + u = 0$	1	D	L	11	TRANSPORT OR 1-WAY WAKE EQW

WITH DECAY

(2) [15 pts] Solve the initial value problem for u = u(t, x) given by

$$u_t - 4u_x + 3u = 0,$$

 $u(0, x) = e^{-x^2}.$

LET
$$\frac{d\alpha}{dt} = -4 \Rightarrow \alpha = -4t + 9 \Rightarrow 3in_{+}t = 9$$

LET $l(t) = u(t, sitt)) = u(t, -4t + 9)$

ALSO
$$h(0) = u(0, 5) = e^{-5^2}$$

$$\int \frac{dh}{dt} = -3 \int dt$$

$$th = e$$

So
$$u(t, -4+49) = h(t) = e^{-6^2-3t}$$

 $u(t, x) = e^{-6(+4+t)^2} - 3t$
 e^{-3t}

- (3) [15 pts] Consider the PDE for u=u(t,x) given by $u_t+x^2u_x=0$.
- (a) By solving the ODE for the characteristics show that the characteristic curve that goes through the point (t_1, x_1) is given by

$$\begin{cases} \frac{dx}{dt} = x^2 \\ x(t_1) = x_1 \end{cases}$$

$$x = x(t) = \frac{x_1}{1 + x_1(t_1 - t)}. (1)$$

- $\begin{cases} \frac{dx}{dt} = 5c^2 & \text{O che } x_1 = 0: \\ x(t_1) = x_1 & \text{O che } x_1 \neq 0: \end{cases}$ $\begin{cases} \frac{dx}{dt} = 5c^2 & \text{O che } x_1 \neq 0: \\ \frac{dx}{dt} = \frac{x_1}{dt} =$

$$\int \frac{dx}{x^2} = \int dt$$

$$-x^{-1} = t + k$$

$$k = -\frac{1}{x} - t$$
Plugin $t_{(x)} = (t_{(1)}x_{(1)})$
to get
$$k = -\frac{1}{x} - t_{(1)}$$

So
$$x^{-1} = -t - k = -t + \frac{1}{x_1 + t_1}$$

or
$$x(t) = \frac{1}{x_1} + t_1 - t$$

$$= \frac{x_1}{1 + x_1(t_1 - t)}$$

(b) Show that if $x_1 > 0$ then the characteristic curve in (1) intersects the x-axis. Sketch this curve when $(t_1,x_1)=(2,1).$

IF
$$x_1 > 0$$
 and $0 \le t \le t_1$ then $1 + x_1(t, -t) \ge 1$
So $x(t) = \frac{x_1}{1 + x_1(t, -t)} \in \mathbb{R}$. (Denominetor ± 0)

ALSO
$$x(0) = \frac{x_1}{1 + x_1 t_1}$$
 err as $1 + x_1 t_1 \ge 1$
 $x(t) = \frac{1}{3 - t}$

(c) Suppose	that $u(0, y) =$	$\cos(y)$. Find a formula for the solution,	$u = u(t, x)$, for $x \ge 0$ and $t \ge 0$.
Since	us	constant along C(2 u(t1, 21) = 4(0, 20)
whee	x(0) :	$=\frac{\times_1}{112}$	= cos (co)

So
$$u(t_1, x_1) = cos\left(\frac{x_1}{1+x_1}\right)$$

or $u(t_1x) = cos\left(\frac{x_1}{1+x_1}\right)$

(4) [10 pts] Consider the PDE for u = u(t, x) given by $u_t + (\sin x)u_x = 0$.

(a) Show that the horizontal lines x = x(t) = 0 and $x = x(t) = \pm \pi$ are characteristic curves.

$$\int \overline{x=\pm\pi} \int \frac{dx}{dt} = 0, \quad \sin x = 0, \quad \mathcal{L} \quad x = \pm\pi \quad \text{or} \quad \mathcal{C}$$

(b) Show that the characteristic, x = x(t), passing through $(t, x) = (0, \pi/2)$ is an increasing function of t.

Since CCs cannot cross (being sol of a ODE IVP)

the CC thru (0, Th) must be between lives of Z=Tr

(which are both CCs by a1).

In this region O< x < Tr So sur >0

(c) Suppose now that u = u(t, x) solves the initial value problem

$$u_t + (\sin x)u_x = 0,$$

$$u(0, x) = \begin{cases} 1 & \text{if } |x| \le \frac{\pi}{2}, \\ 0 & \text{if } |x| > \frac{\pi}{2}. \end{cases}$$

Use the sketch of the characteristic curves below to sketch the solution u at times t=1 and t=2. What is $u_{\infty}(x) = \lim_{t \to \infty} u(t,x)$?

(5)
$$ut + 3uu = 0$$
, $x \in \mathbb{R}, t \ge 0$
 $u(t, x) = \begin{cases} -2 & \text{if } x \ge 1 \\ 0 & \text{if } x \ge 1 \end{cases}$
 $CC_0 \text{ are } x = 3ut + 6$ and $u = 0$ cent on society on section.

For $4 < 1$, CC_0 Then $(0, 5)$ has $u = -2$.

So square $x = -6t + 5$

for $5 \ge 1$ (C_0 Then $(0, 5)$ has $u = 0$.

So square $x = 5$
 $u = 0$
 $u = 0$

(6) [10 pts] Suppose that u = u(t, x) is a solution of the PDE

$$u_{tt} - c^2 u_{xx} = 0. (1)$$

Let $\xi = x - ct$ and $\eta = x + ct$, and define a function $v = v(\xi, \eta)$ by

$$v(\xi,\eta) = u\left(\frac{\eta - \xi}{2c}, \frac{\eta + \xi}{2}\right)$$
 so $u(t, z) = v(\epsilon - ct, z+\epsilon t)$

Prove that u solves (1) if and only if $v_{\xi\eta} = 0$. Hence show that any solution of (1) is of the form,

$$u(t,x) = p(x-ct) + q(x+ct),$$

for some functions p and q.

$$\frac{2^{-9}}{2c} = \pm , \frac{2^{+9}}{2} = \infty$$

So
$$u(t,x) = v(c-ct, x+ct)$$

$$Mt = -cVy + cVy$$

Let
$$W = Vy$$
.
 $W_{4} = 0 \implies W(5, y) = 5(y)$

So
$$u(t,x) = p(x-ct)$$

+ $q(x+ct)$

$$\frac{\partial v}{\partial y} = \tilde{q}(\eta) \implies v(\xi, \eta) = \int \tilde{q}(\eta) d\eta + p(\xi) = q(\eta) + p(\xi)$$