Fact 3.1 If X is pseudocompact and Y is compact, then $X \times Y$ is pseudocompact.

Proof. Let $f: X \times Y \to \mathbb{R}$. As $\{x\} \times Y$ is compact, $f[\{x\} \times Y]$ is closed and bounded in \mathbb{R} for all $x \in X$. We can define $g: X \to \mathbb{R}$ as

$$g(x) = \max\{f(x, y) : y \in Y\}.$$

Fix $x_0 \in X$, we will show that g is continuous at x_0 . Let $\epsilon > 0$.

By our definition of g, there exists some $y_0 \in Y$ such that $g(x_0) = f(x_0, y_0)$. Let $r = f(x_0, y_0)$. Now, define the sets U_y 's and V_y 's as follows:

For each $y \in Y$:

If $f(x_0, y) \in (r - \epsilon, r + \epsilon)$, we can get $V_y \in \tau(Y)$ and $U_y \in \tau(X)$ such that $x_0 \in U_y, y_0 \in V_y$ and $f[U_y \times V_y] \subseteq (r - \epsilon, r + \epsilon)$. In particular, since $f(x_0, y_0) \in (r - \epsilon, r + \epsilon)$, $x_0 \in U_{y_0} \in \tau(X)$, $y_0 \in V_{y_0} \in \tau(Y)$, and $f[U_{y_0} \times V_{y_0}] \subseteq (r - \epsilon, r + \epsilon)$

If $f(x_0, y) \notin (r - \epsilon, r + \epsilon)$, then since $f(x_0, y) \leq \max\{f(x_0, y) : y \in Y\} = r$, we must have $f(x_0, y) \leq r - \epsilon$. Hence, we can get $V_y \in \tau(Y)$ and $U_y \in \tau(X)$ such that $x_0 \in U_y, y_0 \in V_y$, and $f[U_y \times V_y] \subseteq (-\infty, r)$.

The family $\{V_y:y\in Y\}$ as defined aboved is an open cover of Y. By compactness, there exists $\{V_i:1\leq i\leq n\}\subseteq \{V_y:y\in Y\}$ such that $\bigcup\{V_i:1\leq i\leq n\}=Y$. Corresponding to $\{V_i:1\leq i\leq n\}$, we have the set $\{U_i:1\leq i\leq n\}$. Let $U=\bigcap\{U_i:1\leq i\leq n\}\cap U_{y_0}$, now U is an open set containing x_0 .

Pick any $x \in U$.

On one hand, we have $\max\{f(x,y) : y \in Y\} < r + \epsilon$ because:

$$\{f(x,y): y \in Y\} = \left\{f(x,y): y \in \bigcup \{V_i: 1 \le i \le n\}\right\}$$
$$= \bigcup \left\{f\left[\{x\} \times V_i\right]: 1 \le i \le n\right\}$$
$$\subseteq \bigcup \left\{f\left[U_i \times V_i\right]: 1 \le i \le n\right\}$$
$$\subseteq (-\infty, r + \epsilon).$$

One the other hand, we have $\max\{f(x,y):y\in Y\}>r-\epsilon$ because:

$$\max\{f(x,y): y \in Y\} > f(x,y_0), \text{ and }$$

$$f(x,y_0) \in f\left[U \times \{y_0\}\right] \subseteq f\left[U_{y_0} \times \{y_0\}\right] \subseteq f\left[U_{y_0} \times V_{y_0}\right] \subseteq (r - \epsilon, r + \epsilon).$$

We have now $r - \epsilon < \max\{f(x,y) : y \in Y\} < r + \epsilon$ for all $x \in U$. Hence, $g[U] \subseteq (r - \epsilon, r + \epsilon)$, so g is continuous on X. As X is pseudocompact, g must be bounded. Therefore, f must be bounded as well. Thus, $X \times Y$ is pseudocompact.

Fact 3.2 Let X be a pseudocompact space. Let $\tau = |\beta X|^+$ and denote by $T(\tau)$ the space of all ordinal numbers less than τ . Then, $X \times T(\tau)$ is pseudocompact, and also $T(\tau)$ is pseudocompact.

Proof. Let $f: X \times T(\tau) \to \mathbb{R}$ be continuous.

By Claim 3.2.1 below, the ordinal space $T(\tau)$ is pseudocompact.

By Claim 3.2.2, there exists $\kappa_x < \tau$ such that f is constant on $\{x\} \times [\kappa_x, \tau)$. As $cf(\tau) > |X|$, there exists $\kappa = \sup_{x \in X} \{\kappa_x : x \in X\}$. Now, $f[X \times [0, \kappa+1]]$ is bounded because $X \times [0, \kappa+1]$ is pseudocompact by Fact 3.1.

For $\alpha \geq \kappa$, $f(x, \alpha) = f(x, \beta)$. Thus, $f[X \times [\kappa, \tau)] = f[X \times {\kappa}]$ which is bounded because X is pseudocompact.

The boundedness of $f[X \times [0, \kappa+1]]$ and $f[X \times [\kappa, \tau)]$ gives us that $f[X \times T(\tau)]$ is bounded. Hence, $X \times T(\tau)$ is pseudocompact.

Claim 3.2.1 The space $T(\tau)$ is pseudocompact.

Proof. Let $g: T(\tau) \to \mathbb{R}$ be a continuous function.

By way of contradiction, suppose that g is unbounded. We will define the subset $\{\alpha_i, i < \omega\} \subseteq T(\tau)$ by induction:

Step 1. Since g is unbounded, we can find $\alpha_1 \in T(\tau)$ such that $g(\alpha_1) \geq 1$.

Step N. Since $[0,\alpha_{n-1}]$ is compact in $T(\tau)$ and g is continuous, $g[[0,\alpha_{n-1}]]$ must be bounded in \mathbb{R} . But since g is unbounded, $g[(\alpha_{n-1},\tau)]$ must be unbounded in \mathbb{R} . So there exists $\alpha_n \in (\alpha_{n-1},\tau)$ such that $g(\alpha_n) \geq n$.

Having defined $\alpha_i \in T(\tau)$ for all $i < \omega$, let $\beta = \sup\{\alpha_i : i < \omega\}$. Such β exists in $T(\tau)$ because $cf(\tau) > \omega$. As g is continuous, we have

$$g(\beta) = \lim_{i < \omega} g(\alpha_i)$$

This can't happen because the sequence $\{g(\alpha_i): i<\omega\}$ diverges to infinity. Thus, g must be bounded.

Claim 3.2.2 Let $g: T(\tau) \to \mathbb{R}$ be continuous. Then g is constant on $[\kappa, \tau)$ for some $\kappa \in T(\tau)$.

Proof. By Claim 3.2.3 below, $[\alpha, \tau)$ is countably compact for all $\alpha \in T(\tau)$. This is because if $A = \{a_1, a_2, ...\}$ is a countably infinite subset of $[\alpha, \tau)$, then we can get a nondecreasing subsequence $\{a'_1, a'_2, ...\}$ of A. Let $\alpha = \lim_{n \to \infty} \{a'_1, a'_2, ...\}$, which exists because $cf(\tau) > \omega$. So A has an accumulation point, namely α . Thus $[\alpha, \tau)$ must be countably compact.

Since g is continuous, $g[[\alpha, \tau)]$ is countably compact. In metric spaces, countably compact is equivalent to compact because metric spaces are Lindelöff. Hence, $g[[\alpha, \tau)]$ is compact for all $\alpha < \tau$. Thus, there exists $p \in \bigcap_{\alpha < \tau} g[\alpha, \tau)$. To show that p is unique, suppose that there exists $q \in \bigcap_{\alpha < \tau} g[\alpha, \tau)$.

There exists some $\alpha_0 \in [0,\tau)$ such that $g(\alpha_0) = p$. As $q \in g[[\alpha_0 + 1,\tau)]$, there exists $\alpha_1 \in [\alpha_0 + 1,\tau)$ such that $g(\alpha_1) = q$. As $p \in g[[\alpha_1 + 1,\tau)]$, there exists $\alpha_2 \in [\alpha_1 + 1,\tau)$ such that $g(\alpha_2) = p$. We continue this process by induction. We have now:

$$p = g(\alpha_0) = g(\alpha_2) = g(\alpha_4) = \cdots$$

$$q = g(\alpha_1) = g(\alpha_3) = g(\alpha_5) = \cdots$$

Let $\beta = \sup\{\alpha_n : n < \omega\}$, which exists because $cf(\tau) > \omega$. By continuity of $g, g(\beta) = \lim_{n < \omega} g(\alpha_n)$. Thus,

$$p = \lim_{n < \omega} g(\alpha_{2n}) = g(\beta) = \lim_{n < \omega} g(\alpha_{2n+1}) = q$$

So, $\bigcap_{\alpha<\tau}g\left[[\alpha,\tau)\right]=\{p\}$. For each $n<\omega$, we can find some $\gamma_n\in T(\tau)$ such that $g\left[[\gamma_n,\tau)\right]\subseteq (p-\frac{1}{n},p+\frac{1}{n})$. Let $\kappa=\sup_{n<\omega}\gamma_n$. So, we have

$$g\left[\left[\kappa,\tau\right)\right]\subseteq\bigcap_{n<\omega}(p-\frac{1}{n},p+\frac{1}{n})=\{p\}.$$

Claim 3.2.3 For every Hausdorff spaces X, the following statements are equivalent:

- 1. The space X is countably compact.
- 2. For every decreasing sequence $F_1 \supset F_2 \supset \cdots$ of non-empty closed subsets of X, the intersection $\bigcap_{i=1}^{\infty} F_i$ is non-empty.
- 3. Every countably infinite subset of X has an accumulation point.

Proof.

1⇒2: Let $F_1 \supset F_2 \supset \cdots$ be non-empty closed subsets of X. If $\bigcap_{i=1}^{\infty} F_i = \emptyset$, then $\{X \backslash F_i : 1 \leq i \leq \infty\}$ would be an countable open cover of X, so there is a finite subcover $\{X \backslash F_i' : 1 \leq i \leq n\} \subseteq \{X \backslash F_i : 1 \leq i \leq \infty\}$ such that $\bigcup \{X \backslash F_i' : 1 \leq i \leq n\} = X$. Now, because the F_i 's are decreasing, without loss of generality, $F_1' \supset F_2' \supset \cdots \supset F_n'$. So, $\bigcup \{X \backslash F_i' : 1 \leq i \leq n\} = X \backslash F_n'$. Contradiction.

2⇒**1:** By way of contradiction, suppose that X is not countably compact. Let $\{U_i \in \tau(X) : 1 \le i \le \infty\}$ be a countable cover of X that does not yield an finite subcover. For each $1 \le n \le \infty$, define $F_n = X \setminus \bigcup \{U_i : 1 \le i \le n\}$. For each n, F_n is non-empty because if it is, then $\{U_i(X) : 1 \le i \le n\}$ would be a finite subcover, contradiction. Thus, we have $F_1 \supset F_2 \supset \cdots$ and each F_n is a non-empty closed subset of X.

Now, by our assumption, the intersection $\bigcap_{i=1}^{\infty} F_i$ is non-empty. So there exists some $x \in \bigcap_{i=1}^{\infty} F_i$. So $x \in F_i$ for all $1 \le i \le \infty$. That means $x \notin U_i$ for all $1 \le i \le \infty$, contradicting that $\{U_i : 1 \le i \le \infty\}$ is a cover of X.

1⇒3: By way of contradiction, suppose we have a countably infinite subset $A = \{x_i \in X : 1 \le i \le \infty\}$ with no accumulation point in X. Then every point in A is an isolated point with respect to A. For each $x_i \in A$, let $x_i \in U_{x_i} \in \tau(X)$ such that $U_{x_i} \cap A = \{x_i\}$. So $\{X \setminus A\} \cup \{U_{x_i} \in \tau(X) : 1 \le i \le \infty\}$ is an countable open cover of X that yields no finite subcover, contradicting that X is countably compact.

3⇒1: By way of contradiction, suppose that $\{U_i \in \tau(X) : 1 \leq i \leq \infty\}$ is a countable cover of X which does not yield an open subcover. Then, by the equivalence of **1** and **2**, there exists a decreasing sequence $F_1 \supset F_2 \cdots$ of non-empty closed subsets of X such that $\bigcap_{i=1}^{\infty} F_i = \emptyset$. We define the set $A = \{x_1, x_2, ...\}$ such that $x_i \in F_i$ for each $1 \leq i \leq \infty$. If A is finite, then by pigeon-hole principle, there must be some $x_j \in A$ such that x_j belongs to infinitely many F_i 's, and since F_i 's are decreasing, x'_j would have to be in all F_i 's. Contradicting $\bigcap_{i=1}^{\infty} F_i = \emptyset$. Hence, A is an infinite set. By our assumption, A has an accumulation point. Let x be an accumulation point of A.

Since $\bigcap_{i=1}^{\infty} F_i = \emptyset$, there exists an i such that $x \notin F_i$. Now, $U = X \setminus F_i$ is an open set that contains x, and U does not contain any point of the set $\{x_i, x_{i+1}, x_{i+2}...\} \subseteq F_i$. Let $V = \{x\} \cup (X \setminus \{x_1, x_2, ..., x_{i-1}\})$. V is an open set that contains x. Hence, we have $x \in (U \cap V) \in \tau(X)$.

However, $(U \cap V) \cap A = \{x\}$ by the way we defined U and V. Thus x is not an accumulation point of A, contradiction.

Fact 3.3 Let τ be an uncountable regular cardinal. Let $T(\tau)$ be the space of all ordinal numbers less than τ . Let A_{α} be closed, unbounded subset of $T(\tau)$. Let $\gamma \in T(\tau)$. Then, $\bigcap \{A_{\alpha} : \alpha < \gamma\}$ is closed, unbounded and $|\bigcap \{A_{\alpha} : \alpha < \gamma\}| = \tau$.

Proof.

We will construct the set $\{p_{\alpha} : \alpha < \tau\}$ by transfinite induction.

Step 1.

Pick any element $a_{1,1} \in A_1$, we can find some element $a_{1,2} \in A_2$ such that $a_{1,2} > a_{1,1}$ because A_2 is unbounded. Then, by continuing this process, we can define $a_{1,n}$ in the same way, for all $n < \omega$. For all $\alpha < \gamma$, If α is a successor ordinal, then since A_{α} is unbounded, we can find some $a_{1,\alpha} \in A_{\alpha}$ such that $a_{1,\alpha} > a_{1,\alpha-1}$. If α is a limit ordinal, then let $\beta = \sup_{\kappa < \alpha} \{a_{1,\kappa}\}$, which exists because $\alpha < cf(\tau)$. Now, since A_{α} is unbounded, we can find some $a_{1,\alpha} \in A_{\alpha}$ such that $a_{1,\alpha} > \beta$.

Thus, we have defined the set $\{a_{1,\alpha} : \alpha < \gamma\}$. Let $\beta_1 = \sup\{a_{1,\alpha} : \alpha < \gamma\}$, which exists because $\gamma < cf(\tau)$.

Step N. Let $a_{n,1} \in A_1$ be such that $a_{n,1} > \beta_{n-1}$. Let $a_{n,2} \in A_2$ be such that $a_{n,2} > a_{n,1}$. Now continuing the same way as in Step 1, we can define $a_{n,\alpha}$ for all $\alpha < \gamma$. Let $\beta_n = \sup\{a_{n,\alpha} : \alpha < \gamma\}$.

So, we have contructed the set $\{a_{n,\alpha}: n < \omega, \alpha < \gamma\}$.

For all $\alpha < \gamma$, $\lim_{n < \omega} a_{n,\alpha} \in A_{\alpha}$ because A_{α} is closed. Moreover, if $\alpha, \alpha' < \gamma$, then $\lim_{n < \omega} a_{n,\alpha} = \lim_{n < \omega} a_{n,\alpha'}$. So if we define $p_1 = \lim_{n < \omega} a_{n,\alpha}$ for some $\alpha < \gamma$, then $p_1 \in \bigcap \{A_{\alpha} : \alpha < \gamma\}$.

For all $\alpha < \tau$, if α is an isolated ordinal, then we start from $p_{\alpha-1} \in A_1$ in Step 1 again, and define p_{α} the same way as we did for p_1 . If α is a limit ordinal, then we let $p_{\alpha} = \sup\{p_{\kappa} : \kappa < \alpha\}$. This exists because $\alpha < cf(\tau)$.

We've finished contruction of the set $\{p_{\alpha} : \alpha < \tau\} \subseteq T(\tau)$. From the way we contructed it, this set is closed, unbounded and its cardinality is τ .

Fact 3.4 Let X be a Tychonoff space and $|X| > \aleph_0$. Let $\tau = |\beta X|^+$. Then, $T(\tau)$ can be condensed onto $T(\tau+1)$. Moreover, for any space $X, X \times T(\tau)$ condenses onto $X \times T(\tau+1)$.

Proof. Define $g: T(\tau) \to T(\tau+1)$ by $g(0) = \tau$ and $g(\alpha) = \alpha - 1$ for all $\alpha < \omega$. Now, g is one-to-one and onto. Note that g is continuous at ω because if $(\beta, \omega]$ is an open set containing $g(\omega)$, then $(\beta+1, \omega]$ is an open set such that $g[(\beta+1, \omega)] \subseteq (\beta, \omega]$, and g is continuous on all $\alpha < \omega$ because $\{\alpha\} \in T(\tau)$;

finally, g is continuous on all $\alpha > \omega$ because $g|_{(\omega,\tau)}$ is the identity function. Thus, $T(\tau)$ can be condensed onto $T(\tau+1)$.

Moreover, define $h: X \times T(\tau) \to X \times T(\tau+1)$ by $h(x,\alpha) = (x,g(\alpha))$. Since g is one-to-one, onto, and continuous, then, h must also be one-to-one, onto, and continuous.

Fact 3.5 Let Z be a Tychonoff space. Let A be a closed subset of Z, B be compact subset of βZ . The set $A \cup B$ is not compact in βZ . Then, there exists a system $D = \{D_{\alpha}\}$ satisfying the following conditions:

- 1. For each α , the set D_{α} is non-empty and closed in A.
- 2. For $\alpha > \beta, D_{\alpha} \subseteq D_{\beta}$ and if β is a limit ordinal number, then $D_{\beta} = \bigcap \{D_{\alpha} : \alpha < \beta\}.$
- 3. $\bigcap \{D_{\alpha}\} = \emptyset$.
- 4. $\overline{D_1}^{\beta Z} \cap B = \emptyset$.

Proof.

Since $A \cup B$ is not compact, there is an open cover $C \subset \tau(\beta Z)$ of $A \cup B$ that has no finite subcover. Since B is compact and C covers B, there is a finite subcover $\{C_i : 1 \leq i \leq n\} \subseteq C$ such that $B \subseteq \bigcup \{C_i : 1 \leq i \leq n\}$.

Let $E = A \setminus \bigcup \{C_i : 1 \leq i \leq n\}$. E is closed in A. E is nonempty because if it is, then that means $\{C_i : 1 \leq i \leq n\}$ covers A as well as B, contradiction. Furthermore, E is not compact. If E is compact, we can get a finite subcover $\{C_i' : 1 \leq i \leq n\}$ from C. Then, $\{C_i' : 1 \leq i \leq n\} \cup \{C_i : 1 \leq i \leq n\}$ is a finite subcover that covers $A \cup B$, contradiction.

As E is not compact, we can find an open cover $\mathcal{F} \subseteq \tau(\beta Z)$ such that no finite subcover of \mathcal{F} covers E. without loss of generality, we can assume that $|\mathcal{F}| = L(E)$, the Lindeloff number of E. We can well-order \mathcal{F} , so $\mathcal{F} = \{F_{\alpha} : \alpha < L(E)\}$. Define $D_{\alpha} = E \setminus \bigcup \{F_{\gamma} : \gamma < \alpha\}$ for each $\alpha < L(E)$. We shall verify that D satisfies all four condictions:

- 1. For each α , the set D_{α} is non-empty and closed in A. Proof- Each D_{α} is non-empty because if $D_{\alpha} = \emptyset$ for some α , then $E \setminus \bigcup \{F_{\gamma} : \gamma < \alpha\} = \text{and so } E \subseteq \{F_{\gamma} : \gamma < \alpha\}$. However, since $\alpha < L(E)$, we have a contradiction. So D_{α} is nonempty. Moreover, D_{α} is closed in A because it is closed in E, and E is closed in A.
- 2. For $\alpha > \beta$, $D_{\alpha} \subseteq D_{\beta}$ and if $\beta < L(E)$ is a limit ordinal number, then $D_{\beta} = \bigcap \{D_{\alpha} : \alpha < \beta\}.$

Proof- By the way we defined the $D_{\alpha}'s$, $D_{\alpha}\subseteq D_{\beta}$ if $\alpha>\beta$. If β a limit ordinal number, and if $D_{\beta}\neq\bigcap\{D_{\alpha}:\alpha<\beta\}$, then we replace D_{β} with the set $\bigcap\{D_{\alpha}:\alpha<\beta\}$, which is nonempty and closed in A. So now, $D_{\beta}=\bigcap\{D_{\alpha}:\alpha<\beta\}$.

- 3. $\bigcap \{D_{\alpha}\} = \emptyset$. Proof- This is true because $\bigcap \{D_{\alpha}\} = E \setminus \bigcup \{F_{\gamma} : \gamma < L(E)\} = \emptyset$.
- $4. \ \overline{E}^{\beta Z} \cap B = \emptyset.$ Since $\overline{E}^{\beta Z} \cap B = \emptyset$, and $D_1 \subseteq E$, then $\overline{D_1}^{\beta Z} \cap B = \emptyset$.

Fact 3.6 Let X be a Tychonoff space. If B_1 , B_2 are subsets of X such that $\overline{B_1}^{\beta X} \cap \overline{B_2}^{\beta X} \neq \emptyset$, then B_1 and B_2 are not completely separated in X.

Proof. Suppose B_1 and B_2 are completely separated in X. Then there exists a continuous function function $f:X\to [0,1]$ such that $f\left[B_1\right]\subseteq \{0\}$ and $f\left[B_2\right]\subseteq \{1\}$. Let $\bar{f}:\beta X\to [0,1]$ be the extension of f. The sets $\bar{f}^{-1}(0)$ and $\bar{f}^{-1}(1)$ are closed in βX such that $\overline{B_1}^{\beta X}\subseteq \bar{f}(0)$ and $\overline{B_2}^{\beta X}\subseteq \bar{f}^{-1}(1)$. Since $\bar{f}^{-1}(0)\cap \bar{f}^{-1}=\emptyset$, we have $\overline{B_1}^{\beta X}\cap \overline{B_2}^{\beta X}=\emptyset$, contradiction.

Fact 3.7 Let X be a Tychonoff space. If X is locally compact, then X can be condensed onto a compact space.

Proof. Let $X \cup \{\infty\}$ be the one-point compactification of X. Pick any $x_0 \in X$. Let K be the space $X \cup \{\infty\}$ with the point ∞ identified with x_0 . In K, the open sets containing x_0 is of the form $U_{x_0} \cup V_{\infty}$, where U_{x_0} is any open set containing x_0 in X, and V_{∞} is any open set containing ∞ in $X \times \{\infty\}$. For $x \in K \setminus \{x_0\}$, the open sets containing x in K are same as the open sets containing x in X.

K is compact with the topology we've just defined. Let $f: X \times K$ be the identity map. So, f is one-to-one and onto. Let $U_{x_0} \cup V_{\infty}$ be an open set containing $f(x_0) = x_0$, then U_{x_0} is an open set in X such that $f[U_{x_0}] = U_{x_0} \subset U_{x_0} \cup V_{\infty}$. So f is continuous on x_0 , as well as on other points of X. Hence, X can be condensed onto K.