Instructor: Tatsunari Watanabe

TA: Carlos Salinas

MA 26500-215 Quiz 10

July 25, 2016

1. Let $L \colon \mathbb{R}^3 \to \mathbb{R}^2$ be a linear map. Suppose that

$$L(1,1,0) = (1,1)$$

$$L(0,0,1) = (1,-1)$$

Find L(1, 1, 1).

2. (4 points) Does there exist a linear map $L: \mathbb{R}^2 \to \mathbb{R}$ such that for every vector $(x_1, x_2) \in \mathbb{R}^2$,

$$|L(x_1, x_2)| \le 1?$$

[Hint: Consider the map $L(x_1, x_2) = x_1$. What goes wrong if we demand that $|L(x_1, x_2)| = |x_1| \le 1$?]