

Random Planted Forest A Directly Interpretable Tree Ensemble

Meyer, J. T.⁵ Burk, L.^{1,2,3,4} Hiabu, M.⁶ Mammen, E.⁵

¹Leibniz Institute for Prevention Research and Epidemiology – BIPS

²LMU Munich ³University of Bremen

⁴Munich Center for Machine Learning (MCML)

⁵Heidelberg University ⁶University of Copenhagen

DAGStat 2025 — March 27th, 2025

1

• Individual decision trees: Easy to interpret

1

- Individual decision trees: Easy to interpret
- Random Forest (RF): Less so

1

- Individual decision trees: Easy to interpret
- Random Forest (RF): Less so
- Desirable properties:

1

- Individual decision trees: Easy to interpret
- Random Forest (RF): Less so
- Desirable properties:
 - Meaningful feature importance rather than rankings

1

- Individual decision trees: Easy to interpret
- Random Forest (RF): Less so
- Desirable properties:
 - Meaningful feature importance rather than rankings
 - Quantification of main- and interaction effects

1

- Individual decision trees: Easy to interpret
- Random Forest (RF): Less so
- Desirable properties:
 - Meaningful feature importance rather than rankings
 - Quantification of main- and interaction effects
- Additive models (LM, GAM, ...) can provide both

1

- Individual decision trees: Easy to interpret
- Random Forest (RF): Less so
- Desirable properties:
 - Meaningful feature importance rather than rankings
 - Quantification of main- and interaction effects
- Additive models (LM, GAM, ...) can provide both
- → Need to manually specify interactions in model fit

ullet Setting: Regression with target $Y_i \in \mathbb{R}^p$ and feature vector $\mathbf{x_i}$

)

- ullet Setting: Regression with target $Y_i \in \mathbb{R}^p$ and feature vector $\mathbf{x_i}$
- \bullet Decompose prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i) = \hat{m}(\mathbf{x_i})$ into

)

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}^p$ and feature vector $\mathbf{x_i}$
- \bullet Decompose prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i)=\hat{m}(\mathbf{x_i})$ into
 - \bullet Average prediction \hat{m}_0 ("intercept")

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}^p$ and feature vector $\mathbf{x_i}$
- \bullet Decompose prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i)=\hat{m}(\mathbf{x_i})$ into
 - ullet Average prediction \hat{m}_0 ("intercept")
 - \bullet Terms \hat{m}_S with $S\subseteq\{1,\dots,s\}$

- \bullet Setting: Regression with target $Y_i \in \mathbb{R}^p$ and feature vector $\mathbf{x_i}$
- \bullet Decompose prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i) = \hat{m}(\mathbf{x_i})$ into
 - ullet Average prediction \hat{m}_0 ("intercept")
 - \bullet Terms \hat{m}_S with $S\subseteq\{1,\dots,s\}$

- ullet Setting: Regression with target $Y_i \in \mathbb{R}^p$ and feature vector $\mathbf{x_i}$
- \bullet Decompose prediction $\mathbb{E}(Y_i|X=\mathbf{x}_i) = \hat{m}(\mathbf{x_i})$ into
 - Average prediction \hat{m}_0 ("intercept")
 - Terms \hat{m}_S with $S \subseteq \{1, \dots, s\}$

$$\begin{split} \hat{m}(\mathbf{x}) &= \hat{m}_0 \\ &+ \underbrace{\hat{m}_1(x_1) + \hat{m}_2(x_2) + \hat{m}_3(x_3)}_{\text{Main effects}} \\ &+ \underbrace{\hat{m}_{1,2}(x_1, x_2) + \hat{m}_{1,3}(x_1, x_3) + \hat{m}_{2,3}(x_2, x_3)}_{\text{2nd order interactions}} \\ &+ \underbrace{\hat{m}_{1,2,3}(x_1, x_2, x_3)}_{\text{3rd order interaction}} \end{split}$$

Trees in Random Forest

Planted Trees

Planted Trees

6

• Splits some nodes multiple times (→ non-binary trees)

- Splits some nodes multiple times (→ non-binary trees)
- Keeps track of features involved in split

- Splits some nodes multiple times (→ non-binary trees)
- Keeps track of features involved in split
- Degree of interaction can be constrained

- Splits some nodes multiple times (→ non-binary trees)
- Keeps track of features involved in split
- Degree of interaction can be constrained
- Stopping after adjustable number of splits

- Splits some nodes multiple times (→ non-binary trees)
- Keeps track of features involved in split
- Degree of interaction can be constrained
- Stopping after adjustable number of splits
- ullet Prediction is average of additive \hat{m}_S estimates

7

• Bikeshare regression dataset ¹

- Bikeshare regression dataset 1
- Target bikers: Number of bikers on a given day in 2011/2012

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$
 - ullet temp normalized temperature $\in [0,1]$

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$
 - ullet temp normalized temperature $\in [0,1]$
 - workingday binary → {workingday, no workingday}

Lnibniz

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$
 - temp normalized temperature $\in [0, 1]$
 - workingday binary → {workingday, no workingday}
- ullet Average prediction: $\hat{m}_0 pprox$ 143.7

Main Effects

Main Effects

Main Effects

Hour × Working Day: "Rush Hour Effect"

More 2nd Order Interactions

More 2nd Order Interactions

3rd Order Interaction

12

• Average of absolute values of term of interest

12

• Average of absolute values of term of interest

12

• Average of absolute values of term of interest

$$VI_S(X) = \frac{1}{n} \sum_{i=1}^{n} |\hat{m}_S(\mathbf{x}_i)|$$

• Unlike RF Feature importance:

12

• Average of absolute values of term of interest

$$VI_S(X) = \frac{1}{n} \sum_{i=1}^n |\hat{m}_S(\mathbf{x}_i)|$$

- Unlike RF Feature importance:
 - Scores per interaction term

12

Average of absolute values of term of interest

$$\operatorname{VI}_S(X) = \frac{1}{n} \sum_{i=1}^n |\hat{m}_S(\mathbf{x}_i)|$$

- Unlike RF Feature importance:
 - Scores per interaction term
 - Importance scores on same scale as prediction

Feature Importance per Main Term

Feature Importance per All Terms

14

Feature Importance by Order of Interaction

Related work

16

Glex²: Same ANOVA decomposition but generally for tree-based methods (e.g. XGBoost)

• Idea:

²Hiabu, Meyer, and Wright (2023)

Related work

16

- Idea:
 - Fit XGBoost with more shallow trees (e.g. max_depth = 4 ↔ max_interaction = 4)

²Hiabu, Meyer, and Wright (2023)

Related work

16

- Idea:
 - Fit XGBoost with more shallow trees (e.g. max_depth = 4 ↔ max_interaction = 4)
 - Extract component-wise predictions from tree structure

²Hiabu, Meyer, and Wright (2023)

16

- Idea:
 - Fit XGBoost with more shallow trees (e.g. max_depth = 4 ↔ max_interaction = 4)
 - Extract component-wise predictions from tree structure
- Benefit: Use existing / well known / well optimzied algorithm

²Hiabu, Meyer, and Wright (2023)

16

- Idea:
 - Fit XGBoost with more shallow trees (e.g. max_depth = 4 ↔ max_interaction = 4)
 - Extract component-wise predictions from tree structure
- Benefit: Use existing / well known / well optimzied algorithm
- Drawback: Computationally intensive post-hoc computation

²Hiabu, Meyer, and Wright (2023)

17

17

Better interpretibility → worse predictive performance?

• Benchmark comparing RPF with XGBoost, RF incl. tuning

17

- Benchmark comparing RPF with XGBoost, RF incl. tuning
- 28 datasets from OpenML-CTR23 regression benchmark suite ³

³Fischer et al. (2023)

17

- Benchmark comparing RPF with XGBoost, RF incl. tuning
- 28 datasets from OpenML-CTR23 regression benchmark suite ³
- Also comparing XGBoost / RPF with interactions restrained to 2

³Fischer et al. (2023)

17

- Benchmark comparing RPF with XGBoost, RF incl. tuning
- 28 datasets from OpenML-CTR23 regression benchmark suite ³
- Also comparing XGBoost / RPF with interactions restrained to 2
- Generally XGBoost best, RPF and RF closely behind

³Fischer et al. (2023)

Benchmark Results (Aggregated)

• Root-Relative Squared Error (RRSE) $\sqrt{\frac{SSE(Y,\hat{Y})}{SSE(Y,\bar{Y})}}$

18

Benchmark Results (Aggregated)

• Root-Relative Squared Error (RRSE) $\sqrt{\frac{SSE(Y,\hat{Y})}{SSE(Y,Y)}}$

• Featureless model scores 1, perfect score 0

18

Results for Selected Tasks

20

Random Planted Forests = Additive Random Forests

• (+) Interpretability on global and local perspective

20

- (+) Interpretability on global and local perspective
- (+) Interpretable on same scale as target

20

- (+) Interpretability on global and local perspective
- (+) Interpretable on same scale as target
- (~) Predictive performance worse but similar to comparable algorithms

20

- (+) Interpretability on global and local perspective
- (+) Interpretable on same scale as target
- (~) Predictive performance worse but similar to comparable algorithms
- (-) Computationally heavy for large data

20

- (+) Interpretability on global and local perspective
- (+) Interpretable on same scale as target
- (~) Predictive performance worse but similar to comparable algorithms
- (-) Computationally heavy for large data
- (+) R package available ⁴

⁴github.com/PlantedML/randomPlantedForest

Thank you for your attention!

www.leibniz-bips.de/en

Contact
Lukas Burk
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
burk@leibniz-bips.de

References I

22

Hiabu, Munir, Joseph T. Meyer, and Marvin N. Wright (Apr. 11, 2023). "International Conference on Artificial Intelligence and Statistics". In: ISSN: 2640-3498 Citation Key: hiabu2023unifyinglocala. PMLR, pp. 7040–7060.