《数字图像处理》课程教学大纲

审定日期: 2019 年 11 月 15 日 编写人: 沙龙龙 课程组长答名: 审定人签名:

一、课程基本信息

课程代码: 21131900

课程中文名称: 数字图像处理

课程英文名称: Digital Image Processing

讲课学时/学分: 32 课内实验学时/学分: 课外实验/科研实践学时: 16 课外研讨学时: 课外素质拓展学时:

课程类别: 专业主干课

课程性质: 必修

授课语种: 中文

适用专业: 软件工程

开设学期: 第六学期

先修课程: 无

责任单位: 地理与信息工程学院软件工程系

二、课程地位与作用

《数字图像处理》课程是软件工程专业的专业主干课,作为模式识别、计算机视觉、多媒体技术等学科的基础,是一门兼具理论性和实践性的多学科交叉综合课程。通过本课程的学习,让学生在掌握数字图像处理技术理论的基础上,培养学生运用理论解决实际问题的动手能力,加深对软件设计、模型建立、现代工程工具等的理解。

三、课程内容简介

数字图像处理是信息技术领域的重要分支,是将图像转换为数字信号在计算机中进行处理加工的过程。课程主要内容包括:数字图像处理概论、图像基本运算、图像变换、图像增强、图像复原、图像压缩、图像分割、彩色图像处理、图像表述与描述。

四、课程目标及对毕业要求的支撑

通过本课程的学习, 应达到的目标及能力如下:

目标 1: 掌握数字图像处理相关的专业术语,了解数字图像处理的发展动态,能够查阅该领域的中英文文献。

- **目标 2**: 掌握图像增强和复原的原理和方法,能够在实际应用中解决降质图像的增强或复原问题。
- **目标 3**: 掌握图像压缩编码的原理和方法,了解保真度准则和编码器的概念,了解图像压缩的国际标准。
- **目标 4**: 掌握图像分割和特征提取的原理和方法, 能够在实际应用中解决分割目标对象、识别目标对象等工程问题。
- **目标 5**: 掌握彩色图像处理的原理和方法,能够运用伪彩色和全彩色图像处理方法解决实际问题。
- **目标 6**: 熟悉图像采集、数字化、图像处理、输出结果的流程,能够运用相关理论、技术和工具、设计一个处理系统、满足实际工程的需要。

课程目标对毕业要求支撑的对应关系如下表:

课程目标	对应毕业要求	支撑强度
目标1	1-3 能够在复杂软件工程问题分析过程中,将相关工程基础、专业知识和计算模型用于软件分析设计、评价、优化等具体过程中	L
目标2	4-3 能够根据技术方案构建分析模型、设计算法和实验系统,开展实验和数据采集,能对实验结果进行分析和解释,并最终通过信息综合推导出合理有效的结论	Н
目标3	4-3 能够根据技术方案构建分析模型、设计算法和实验系统,开展实验和数据采集,能对实验结果进行分析和解释,并最终通过信息综合推导出合理有效的结论	Н
目标 4	4-3 能够根据技术方案构建分析模型、设计算法和实验系统,开展实验和数据采集,能对实验结果进行分析和解释,并最终通过信息综合推导出合理有效的结论	Н
目标 5	4-3 能够根据技术方案构建分析模型、设计算法和实验系统,开展实验和数据采集,能对实验结果进行分析和解释,并最终通过信息综合推导出合理有效的结论	Н
目标 6	4-3 能够根据技术方案构建分析模型、设计算法和实验系统,开展实验和数据采集,能对实验结果进行分析和解释,并最终通过信息综合推导出合理有效的结论	Н

(H、M、L分别表示支撑程度的高、中、低)

【说明:对工科专业要对应到分解的毕业要求观测点、非工科专业直接对应到毕业要求】

五、课程内容及教学进度安排

课程总学时为 32 学时, 共包括 10 章内容。各章节学时进度安排如下表:

序号	知识单元	授课内容	学时 分配	支撑课 程目标	授课 方式
1	概述	1.1 数字图像处理的历史、现状及应用 1.2 数字图像处理的任务和特点 1.3 数字图像处理系统的组成	2	1	启发讲授

		大丛三毛上加加上 Z如网络从加克莱特李特克贝尔			
		本单元重点知识点: 了解图像处理完整构成和应用领			
		域 			
		本单元难点知识点: 本课程与相关学科联系和交叉点			
		2.1 数字图像基本概念与表示			
	数字	2.2 数字图像感知、获取和数字化			启发
2	图像	2.3 像素间关系	2	1,6	
	基础	本单元重点知识点:图像描述,采样和量化,像素关			讲授
		系			
		本单元难点知识点:采样和量化			
	图像	3.1 线性点运算和非线性点运算			
		3.2 代数运算与逻辑运算	0	1 0	启发
3	基本	3.3 几何运算	2	1, 6	讲授
	运算	本单元重点知识点:点运算,几何运算。			
		本单元难点知识点: 灰度重采样			
		4.1 图像变换的基本理论 4.2 傅里叶变换			
		4.3 离散余弦变换			
	图像	4.4 沃尔什-哈达玛变换	•	1 0	启发
4	变换	4.5 K-L 变换	2	1, 6	讲授
		4.6 小波变换			
		本单元重点知识点:线性系统理论,傅里叶变换,小			
		波变换			
		本单元难点知识点:傅立叶变换,小波变换			
		5.1 空域增强 (基本灰度变换、直方图处理、图像相 减与图像平均、平滑空域滤波器、锐化空域滤波器)			
		5.2 频域增强(基本理论、平滑频域滤波器、锐化频			
	图像	域滤波器、同态滤波器) 本单元重点知识点:直接灰度增强,直方图处理,空	1	0 0	启发
5	增强	平早儿里点却识点: 直接灰度增强, 直方图处理, 至 域平滑、锐化滤波器, 局部增强, 频域的平滑、锐化	4	2, 6	讲授
		滤波器 本单元难点知识点: 空域局部增强的最佳算法, 同态			
		平早儿难点知识点: 至域局部增强的取任异石, 问心 滤波			
		6.1 退化模型			
		6.1 返化模型 6.2 复原技术			
		6.2			
		6.4 逆滤波复原			
		6.5			
_c	图像	6.6 中值滤波器	1	9 6	启发
6	复原		4	2, 6	讲授
		6.7 几何失真校正			
		本单元重点知识点:单纯噪声条件下的图像复原空间			
		滤波, 频域滤波削减周期噪声, 线性位置不变的退化, 估计退化函数, 维纳滤波			
		估订退化函数,维纳滤波 本单元难点知识点: 退化函数的估计及维纳滤波实现			
	pat Its.			0 0	24.115.
7	图像	7.1 基本概念	4	3, 6	启发

	压缩	7.2 无失真压缩和有限失真压缩			讲授
	,	7.3 统计编码			y, 00
		7.4 预测编码			
		7.5 变换编码			
		7.6 图像压缩技术标准			
		本单元重点知识点: 无失真图像编码, 预测编码, 变			
		换编码			
		本单元难点知识点:变换选择,子图像尺寸选择,比			
		特分配			
		8.1 间断检测 (点检测、线检测、边缘检测)			
		8.2 边缘连接和边缘检测 (局部处理、Hough 变换)			
8	图像	8.3 门限处理 (基本门限、迭代门限、最优门限)	4	4,6	启发
0	分割	8.4 基于区域的分割 (区域生长、区域分裂合并)	4	4,0	讲授
		本单元重点知识点:边缘检测,阈值分割,区域分割			
		本单元难点知识点: 阈值计算, 区域分割			
		9.1 人类视觉与色度学原理			
		9.2 颜色空间的表示与相互转换			
	亚左	9.3 伪彩色处理			
	彩色	9.4 全彩色图像处理			启发
9	图像	9.5 彩色图像分割	4	4,6	讲授
	处理	本单元重点知识点:颜色空间,伪彩色处理,全彩色			01.17
		图像处理,彩色图像分割			
		本单元难点知识点:不同颜色空间选择和转换,彩色			
		图像分割			
		10.1 颜色特征			
	图像	10.2 纹理特征			
		10.3 边界特征			<u></u> μν
10	表示	10.4 区域特征	4	4,5,6	启发
	与描	10.5 运用主成分进行描述			讲授
	述	10.6 特征提取的应用			
		本单元重点知识点:颜色特征,纹理特征,区域特征			
		本单元难点知识点:特征提取的应用			

实验安排:

序号	实验内容	重点和难点
1	图像类型转换及图像变换	图像的类型转换,图像傅里叶变换
2	图像增强	算术运算在数字图像处理中的初步应用,常用的空域增
		强算法和频域增强算法
3	图像恢复	使用 MatLab 掌握退化模型的建立方法,图像恢复的基
		本原理
4	图像分割技术	图像平滑滤波,图像中值滤波,图像边缘检测

【说明: 此处推荐采用表格形式展示内容, 也可采用其他简洁形式】

六、课程目标达成途径与措施

- 1. 课堂讲授把握主线,深入浅出讲解原理和算法,以实际背景问题引入,分析解决问题的思路与方法,对不同方法进行总结归纳比较,引导学生掌握数字图像技术处理的相关概念、原理、方法和应用场景。
- 2. 注重理论与实践相结合。在讲解算法的同时,演示 MatLab/Opencv 的设计思路、实现过程,适当结合实际工程用例,避免停留在概念和抽象的理论上。同时结合教学内容,安排 4 次实验和 4 次课后作业,督促学生在掌握理论的同时,应用于实践,不断提升学生理论分析与实践动手能力。
- 3. 教学过程中,以学生为主体,鼓励学生自主学习、团队协作等,加强职业能力的训练,运用启发引导、任务引领、问题导向、分组讨论、协同教学等多种互动式教学方法,完成课程教学任务。
- 4. 教学实施过程中,提供丰富的教育资源丰富,如课件、案例、录像、网络资源等。

七、课程的考核与成绩评定

(一) 考核形式: 本课程考核以检验学生能力培养目标达成为主要目的,以检查学生对各知识点的掌握情况和应用能力为重点内容,课程总成绩由平时成绩和期末成绩组成,课程总成绩 = 平时成绩 + 期末成绩,课程总评成绩满分为 100 分。其中,平时成绩由(课堂)日常表现、作业情况记录和课堂问答记录及课程实验组成,考查教学过程中学生对知识点的理解和掌握程度;期末成绩通过闭卷、笔答考试形式给出,主要考核数字图形处理技术的基本概念、相关算法、工具使用的掌握情况、各部分考核内容及所占比例如下表所示:

考核项目	考核主要内容	考核时间	权重
课堂问答及日常 表现	考查学生按时参加课堂学习情况,已上或正上 知识内容的掌握情况	每次课堂	10%
课后实验与作业	4个实验,4个课后作业	相关课程 结束时	40%
期末考试	全部知识单元教学内容	考试周	50%

(二) 考核与评价标准

1. 平时作业考核与评价标准

平时作业采用教材课后习题,主要考核学生对每章节知识点的复习、理解和掌握程度。 每次作业评分标准(百分制)如下表所示:

79411.	五 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, >			
评分项		作	业评价细则及得 分)	
开万坝	100~90	89~80	79~70	69~60	59~0
作业	按时交作业;概念解释清晰,分析问题条理清楚,代码层次清晰,结果正确率高于90%;表	按时交作业;概 念解释、分析问 题、计算过程等 比较清晰,结果 正确率不低于	按时交作业;概 念解释、分析问 题、计算过程等 基本清晰,结果 正确率不低于	短时迟交作业; 概念解释、分析 问题、计算过程 等基本清晰,结 果正确率不低	不交或严重超时 迟交作业;概念解 释、分析问题、计 算过程等不清晰, 结果正确率低于
	述合理,书写规范	80%; 表述比较合	70%; 表述比较	于 60%;表述基	合格水平; 表述不

 等。	理,书写比较规	合理,书写基本	本合理,书写基	合理, 书写不规范
	范等。	规范等。	本规范等。	等。

- 2. 课堂问答、日常表现考核与评价标准
- 1) 日常表现: 主要考查学生遵守学习相关规定, 按时参加课堂学习的情况。迟到、早退一次扣 1分, 旷课一次扣 2分。
- 2) 课堂问答: 就所上课堂内容、知识点随机点学生回答,根据问题难易和学生回答情况进行评价打分并做好记录。
 - 3. 期末考试考核与评价标准

期末考核方式采用闭卷考试,考核内容覆盖课程目标 1~目标 5, 题型全部为简答题和算法实现题,考核成绩采用百分制,评价分数严格按照期末试卷所给的标准答案给出相应的分数。期末终结性考核安排如下表所示。

考试时间	120 分钟	记分方式	■ 百分制 □ 等级制
终结性 考核方式	试卷考试	学生考核提交类 型	■纸版 ■电子版 □其他
试题类型、题数、	简答题: 7个、70%		
分值比例	算法实现题3个,30%		
试题难易程度	综合题: 100%		
以 题 准 勿 往 及	其它: %		
教学大纲覆盖率	教学大纲覆盖率 = 含	考题内容的学时 / 课	程 程总学时数 * 100% =
秋子八州復 二平	(92 %)		

八、课程目标达成度评价方法与改进机制

(一) **课程目标达成度评价方法**: 期末试题中全部为简答题和算法实现题。课程目标、 毕业要求指标点与考核成绩的对应关系如下表所示:

			考核环节	节及占比			
课程目标	毕业 要求 指标	期末试卷 (50)	%)	课堂问 答 (10%)	作业和实 (40)		总目标分数
		对应题型	目标 分数	目标 分数	对应 题型	目标 分数	
目标 1	1. 工 程知 识: 1-3	期末试题 1	20*0.5	1	实验1 作业1	20*0.4	10+1+8=19
目标 2	2 .工 程知	期末试题 2-7	80*0.5	7	实验 2	30*0.4	40+7+28=75

	识: 4-3		实验 3 作业 2	
目标	1.工 程知 识: 4-3		作业3	10*0.4
目标 4	1.工 程知 识: 4-3		实验 4 作业 4	20*0.4
目标 5	1.工 程知 识: 4-3		作业 5	10*0.4

1.研 究: 4-3

(二) 改进机制

学校、学院教学督导组,系课程群组的教学质量管理人员,负责组织和实施对课程教学过程与结果的评价工作。主要措施有:三级联合评估、过程监控、总结与评价、持续改进。

- 1) 三级联合评估:学校、学院、系三级联合评估。每年度进行一次课程评估,从课程目标、内容、教学实施、教学资源建设、教学效果等进行全方位的评价,提出存在问题和改进建议。
- 2) 过程监控: 学院质量监控委员会、各级领导干部及同行实施学院统一的听课制度, 监控教学实施过程并进行反馈。授课期间面向学生进行问卷调查,了解教师授课效果及教材 等资源的使用情况,并进行反馈。
- 3) 总结与评价:课程考核结束后,各课程组进行试卷分析和课程总结,针对学生对课程掌握的情况,提出目前存在的问题和后续改进的措施。
- 4) 持续改进:综合如上的评估反馈、听课反馈、学生反馈、课程总结,汇总各方面的意见和建议,在课程目标、课程学时、课程内容、授课方法、考核方式、资源建设等方面进行持续改进。

九、建议使用教材及教学参考书

建议使用教材:

- 1. 《数字图像处理(第三版)》,冈萨雷斯,阮秋琦译,电子工业出版社,2013 建议的参考资料:
- 1. 《图像工程 (第三版)》,章毓晋,清华大学出版社,2013
- 2. 《数字图像处理及 MATLAB 实现 (第 2 版) 》, 杨杰、黄朝兵, 电子工业出版社, 2011