Esame di Progettazione di Sistemi Digitali – Traccia B 9 gennaio 2025 – canale AL – prof. Pontarelli

Cognome Nome	Matr	ricola

• Gli studenti con DSA devono svolgere i primi 4 esercizi

Esercizio 1 (7 punti) Progettare un circuito sequenziale con due ingressi x e y e un'uscita z, tale che z è uguale a 1 se gli ultimi due bit degli ingressi x e y, interpretati come numeri in complemento a 2, sono concordi ed entrambi dispari. Si considerino eventuali sovrapposizioni.

La macchina a stati minima è la seguente:

Da qui si possono scrivere le equazioni della NSL e della OL con il procedimentoi solito.

matricol	а
matricoi	a

Esercizio 2 (4 punti). La funzione f(x, y, z, w) è uguale ad 1 se e solo se $y + z + \overline{w} = 0$ o $\overline{x}zw = 1$. La funzione g(x,y,z,w) è uguale a 0 se $y\bar{z}=0$, non è specificata se $x\bar{z}w=1$, ed è uguale ad 1 negli altri casi. Scrivere le tabelle di verità e disegnare il circuito che implementa f e g usando il numero minimo di multiplexer 2-a-1.

			. 1	-1			CONTRACT	e it	AS
X	5	7	w	5	3				
0	0	0	0	0	0				4
0000	0	0	\	(0			ū	9/ F
0	0	(0	0	0			9-	70
0	0	1	(0			X	-V
0	(0	0	0	11				
	ĺ	0	(0	X				
0	((0	0	0				
0000	(((1	0				7
1	0	0	0	0	0				t
П	0	0		1	0				
1	0	(Ô	0	0				
(0	ı	1	0	0				
1	1	0	0	0	(
\ 1	1	0	(0	X	_			
(1	1	0	0	10				
1) ((0	0				

A MISTARD.

Esercizio 3 (6 punti) Analizzare il circuito sequenziale in figura. Scrivere la tabella degli stati futuri e disegnare il diagramma di transizione degli stati.

5. =	5. Si
5,'=	
Q = 3	So +Si

	Sı	So	X	Si	2,	Q
	0	0	0	\	0	0
	0	0		(0	0
_	0	(0	(0	1
_	0	l	1		$\frac{0}{1}$	1 -
_	1	0	0	0	1	
-	$\overline{}$	0			10	
-	1	1	0	0	10	
	-(1	ι .	' (10	

STARTING STATE IS SI=1 So=0

Esercizio 4 (4 punti) Considerare la seguente PLA e scrivere:

- L'espressione per le funzioni Y and Z
- Trasformare l'espressione f = Y + Z, usando assiomi e teoremi dell'algebra di Boole, nella forma SOP canonica

J= CD +ACD + ABC + ABCD 2= BD +ACD

ABCD+ ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ +ABCD

matricola		

Esercizio 5 (4 punti) Convertire il numero in base 10 X = -37,75 nel formato IEEE 754 half-precision. Poi convertire Y = 0xC580 in una stringa binaria e interpretare tale stringa come un numero IEEE 754 half-precision. Calcolare X+Y in formato IEEE 754 half-precision e controllare la correttezza del risultato riconvertendolo in base 10.

$$X = 100101.11 = 1.0010111 \times 2^{5}$$

$$Exp = 5$$

$$Dias. Exp = 1525 = 20 = 10100$$

$$X = 1101000010111000$$

$$X = 0010111000$$

$$X = 1101000010111000$$

$$X = 10101010000$$

$$X = 10010101 \times 2^{5} = 0001011 \times 2^{5} = 101.1 = 5.5$$

$$1.00101101 \times 2^{5} = 0001011 \times 2^{5} = 101.1 = 5.5$$

$$1.00101101 \times 2^{5} = Exp = 5$$

$$1.0101101 \times 2^{5} = 000101101000$$

$$X + y = 1101000010101000$$

$$X + y = 1101000010101000$$

$$X + y = 11010000101010000$$

matricola

Esercizio 6 (5 punti) Considerare l'espressione $f = (yw \oplus zw) + yz$. Semplificarla e portarla in forma POS usando teoremi ed assiomi dell'algebra di Boole. Scrivere poi f in forma NAND e NOR.