In [3]: import pandas as pd
import numpy as np

In [8]: d=pd.read_csv('https://github.com/YBI-Foundation/Dataset/raw/main/Car%20Price.csv

In [9]: d.head()

Out[9]:

	Brand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission	Owner
0	Maruti	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda	Honda Amaze VX i- DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner

In [10]: d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4340 entries, 0 to 4339
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Brand	4340 non-null	object
1	Model	4340 non-null	object
2	Year	4340 non-null	int64
3	Selling_Price	4340 non-null	int64
4	KM_Driven	4340 non-null	int64
5	Fuel	4340 non-null	object
6	Seller_Type	4340 non-null	object
7	Transmission	4340 non-null	object
8	Owner	4340 non-null	object

dtypes: int64(3), object(6)
memory usage: 305.3+ KB

In [11]: d.describe()

Out[11]:

	Year	Selling_Price	KM_Driven
count	4340.000000	4.340000e+03	4340.000000
mean	2013.090783	5.041273e+05	66215.777419
std	4.215344	5.785487e+05	46644.102194
min	1992.000000	2.000000e+04	1.000000
25%	2011.000000	2.087498e+05	35000.000000
50%	2014.000000	3.500000e+05	60000.000000
75%	2016.000000	6.000000e+05	90000.000000
max	2020.000000	8.900000e+06	806599.000000

In [12]: d[['Brand']].value_counts()

Out[12]: Brand

Maruti	1280
Hyundai	821
Mahindra	365
Tata	361
Honda	252
Ford	238
Toyota	206
Chevrolet	188
Renault	146
Volkswagen	107
Skoda	68
Nissan	64
Audi	60
BMW	39
Fiat	37
Datsun	37
Mercedes-Benz	35
Mitsubishi	6
Jaguar	6
Land	5
Ambassador	4
Volvo	4
Jeep	3
OpelCorsa	2
MG	2
Isuzu	1
Force	1
Daewoo	1
Kia	1
dtype: int64	

```
In [13]: d[['Fuel']].value_counts()
Out[13]: Fuel
         Diesel
                      2153
         Petrol
                      2123
         CNG
                        40
         LPG
                        23
         Electric
                         1
         dtype: int64
In [15]: d[['Seller_Type']].value_counts()
Out[15]: Seller_Type
         Individual
                              3244
         Dealer
                               994
         Trustmark Dealer
                               102
         dtype: int64
In [16]: d[['Transmission']].value_counts()
Out[16]: Transmission
         Manual
                          3892
         Automatic
                           448
         dtype: int64
In [17]: d[['Owner']].value_counts()
Out[17]: Owner
         First Owner
                                  2832
         Second Owner
                                  1106
         Third Owner
                                   304
         Fourth & Above Owner
                                    81
         Test Drive Car
                                    17
         dtype: int64
In [19]: #d[['Fuel', 'Seller_Type', 'Transmission', 'Owner']].value_counts()
In [20]: d[['Model']].value_counts()
Out[20]: Model
         Maruti Swift Dzire VDI
                                                   69
         Maruti Alto 800 LXI
                                                   59
         Maruti Alto LXi
                                                   47
         Hyundai EON Era Plus
                                                   35
         Maruti Alto LX
                                                   35
         Mahindra KUV 100 G80 K4 Plus
                                                   1
         Mahindra KUV 100 mFALCON D75 K8
                                                   1
         Mahindra KUV 100 mFALCON D75 K8 AW
                                                   1
         Mahindra KUV 100 mFALCON G80 K2 Plus
                                                   1
         Volvo XC60 D5 Inscription
                                                   1
         Length: 1491, dtype: int64
```

Encoding of Categorial Features

```
In [23]: d.replace({'Fuel':{'Petrol':0,'Diesel':1,'CNG':2,'LPG':3,'Electric':4}},inplace=]
In [24]: d.replace({'Seller_Type':{'Individual':0,'Dealer':1,'Trustmark Dealer':2}},inplace
In [25]: d.replace({'Transmission':{'Manual':0,'Automatic':1}},inplace=True)
In [58]: d.replace({'Owner':{'First Owner':0,'Second Owner':1,'Third Owner':2,'Fourth & Akministry Akministry
```

Define y and x variable

```
In [59]: y=d['Selling_Price']
In [60]: y.shape
Out[60]: (4340,)
In [61]: y
Out[61]: 0
                   60000
         1
                  135000
                  600000
         2
                  250000
         3
                  450000
         4335
                  409999
         4336
                  409999
         4337
                  110000
         4338
                  865000
                  225000
         Name: Selling_Price, Length: 4340, dtype: int64
In [62]: x=d[['Year','KM_Driven','Fuel','Seller_Type','Transmission','Owner']]
```

In [63]: x.shape

Out[63]: (4340, 6)

In [64]: x

Out[64]:

	Year	KM_Driven	Fuel	Seller_Type	Transmission	Owner
0	2007	70000	0	0	0	0
1	2007	50000	0	0	0	0
2	2012	100000	1	0	0	0
3	2017	46000	0	0	0	0
4	2014	141000	1	0	0	1
•••						
4335	2014	80000	1	0	0	1
4336	2014	80000	1	0	0	1
4337	2009	83000	0	0	0	1
4338	2016	90000	1	0	0	0
4339	2016	40000	0	0	0	0

4340 rows × 6 columns

Get Train Test Split

In [65]: !pip install sklearn

Requirement already satisfied: sklearn in c:\users\g.ravi prakash reddy\anacond a3\lib\site-packages (0.0)

Requirement already satisfied: scikit-learn in c:\users\g.ravi prakash reddy\an aconda3\lib\site-packages (from sklearn) (1.1.0)

Requirement already satisfied: numpy>=1.17.3 in c:\users\g.ravi prakash reddy\a naconda3\lib\site-packages (from scikit-learn->sklearn) (1.20.3)

Requirement already satisfied: joblib>=1.0.0 in c:\users\g.ravi prakash reddy\a naconda3\lib\site-packages (from scikit-learn->sklearn) (1.1.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\g.ravi prakash reddy\anaconda3\lib\site-packages (from scikit-learn->sklearn) (2.2.0)

Requirement already satisfied: scipy>=1.3.2 in c:\users\g.ravi prakash reddy\an aconda3\lib\site-packages (from scikit-learn->sklearn) (1.7.1)

In [66]: from sklearn.model_selection import train_test_split

In [67]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=252

```
In [68]: x_train.shape,x_test.shape,y_train.shape,y_test.shape
Out[68]: ((3038, 6), (1302, 6), (3038,), (1302,))
```

Get Model Train

Get Model Prediction

Get Model Evaluation

```
In [75]: from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
In [76]: mean_squared_error(y_test,y_pred)
Out[76]: 193242972302.1957
In [77]: mean_absolute_error(y_test,y_pred)
Out[77]: 228808.95522977927
In [78]: r2_score(y_test,y_pred)
Out[78]: 0.40755633943708336
```

Visualisation of Actual Vs Predicted Results

```
In [79]: import matplotlib.pyplot as p
p.scatter(y_test,y_pred)
p.xlabel('Actual Price')
p.ylabel('Predicted Price')
p.title("Actual Price Vs Predicted Price")
p.show()
```


Get Future Predictions

```
In [83]: d_new=d.sample(1)
In [84]: d_new
Out[84]:
                 Brand
                         Model
                                Year Selling_Price KM_Driven Fuel Seller_Type Transmission Owner
                        Hyundai
                            i20
                                2018
                                          650000
                                                      30000
                                                               0
                                                                          0
                                                                                             0
           3720 Hyundai
                          Active
                          1.2 S
In [87]: d_new.shape
Out[87]: (1, 9)
In [89]: x_new=d_new.drop(['Brand','Model','Selling_Price'],axis=1)
In [90]: y_pred_new=l.predict(x_new)
In [91]: y pred new
Out[91]: array([495812.89330915])
```

In []: