

2002 (6m) Trieissner effect + couse + show Sic exhibit diaman (Blines T<Tc (M.F) 1) When specimen placed in weak magnetic field 2 cooled below To the magnetic flux (b) originally or in specimen is ejected / excluded / expelled from specimen 1) This property is independent of path by which the S.C. State is reached, 3) Wen SC is placed in M. F it induces I which circulated on surface in a manner that it creates M.F. everywhere equal 2 opposite to applied Tr.F.

(4) Thus, material is S.C. State does not permit any to exist within material.

5) HT T>Tc, 3= Mo CH+TM)

magnetic induction m. F Magnetisation For $T < T_c$ B = 0 $M_0(H+TM) = 0 \Rightarrow H = -M \Rightarrow X = \frac{M}{H} = -\frac{1}{2}$ © Magnetic Succeptibility X = -1 indicates that S.C. are perfectly d'amagnetic substance. West is Critical Magnetic Field? (He): He? 1) Min M.F necessary 2 destroy S.C & restore hormal resistivity is called the

(a) C. F.V. F / H is fun of Temperature

(b) H = H [I+ (T)]

(c) H = H [I+ (T)]

	(4m)		Name:	
	Distinguish Bet Type 1	2 Type	I S Date: 1	1
	Typel	1	Type?	
				200
	4AM	HTM	So	te
	State State		S,cslole	
	H _c		Hc, Hc	Ház
	101			
	to normal is sudden	. 17	is grad	lúal
	knowns as soft s. C. @			į.
3	In Type 1 SC the 3 Q is completely expelled below He.	not con	npletely ex	eculded below
4	Behaves completely diamagnotice	DIT+ do	es' not be	have cid
5	Less inclustrial Application	More	inclustrial	Applications.
(6);	PuoAl, Zn, Mo, Sn (6 Alloy	Nbn, Ba31	2 COSINHT
	one oritical field	There	arce two	
		7		,

(4m) Explain DC 2 AC Tosephson Effect Nomo: Doto: 1 Insulator 5.02 S.c1 J.J. & SC seperated by thin larger of Insulator # DC Josephson effect 1 Wen cooper pairs tunnel from one side of I to other there introduces a phase diff bet 2

Description one side of I to other there introduces a phase diff bet 2

Description one side of I to other there introduces a phase diff a DC supercurrent appears across jun even though the applied voltage is zero. # AC Josephson effect () When DC Vol is applied across J. J' it introduces an additional phase on cooper pais during tunniting.

D) As a result, when DC voltage is applied across
a JJ AC awarent is produced by Junction