Lista FOICE: Mecânica

Rafael Prado

Outubro 2019

1 ** Barra presa

A uniform bar with mass m and length l hangs on four identical light wires. The wires have been attached to the bar at distances l/3 from one another and are vertical, whereas the bar is horizontal. Initially, tensions are the same in all wires, $T_0 = mg/4$. Find tensions after one of the outermost wires has been cut.

2 ** Geometria

A slippery cylinder with radius R has been tilted to make an angle α between its axis and the horizontal. A string with length L has been attached to the highest point P of some cross-section of the cylinder, the other end of it is tied to a weight with mass m. The string takes its equilibrium position, how long (l) is the part not touching the cylinder? The weight is shifted from its equilibrium position in such a way that the shift vector is parallel to the vertical plane including the cylinder's axis; what is the period of small oscillations?

Figure 1: Cilíndro inclinado

3 ** Palitos

Four long and four half as long rods are hinged to each other forming three identical rhombi. One end of the contraption is hinged to a ceiling, the other one is attached to a weight of mass m. The hinge next to the weight is connected to the hinge above by a string. Find the tension force in the string.

Figure 2: Sistema com palitos em forma de losângulo

4 ** Orbita espiral

Uma partícula se move em duas dimensões sobre a influência de uma força central determinada pelo potencial $V(r) = \alpha r^p + \beta r^q$. Encontre as potencias p e q que tornam possível uma órbita espiral da forma $r = c\theta^2$, onde c é uma constante.

5 ** Órbita diferente

1. Encontre a força central que resulta na seguinte órbita para uma partícula de massa m e momento angular L:

$$r = a(1 + \cos \theta) \tag{1}$$

2. Uma partícula de massa m sente uma força atrativa cujo potencial é dado por $U=-C/r^4$. Encontre a seção transversal necessária para que a partícula vindo do infinito com uma velocidade inicial v_{∞} seja capturada.

6 *** Para a origem e além

Considere uma partícula de massa m se movendo em duas dimensões entre duas paredes perfeitamente refletoras que se cruzam em um ângulo χ na origem (figura abaixo). Assuma as colisões com as paredes elásticas e que não há atrito

entre partícula e parede. A partícula é atraída para a origem por um potencial $U(r)=-c/r^3$, onde c é uma constante.

Figure 3: Massa colidindo com paredes

A partícula começa a uma distância R da origem no eixo x com um vetor velocidade $\vec{v} = (v_x, v_y)$. Assuma $v_y \neq 0, v_x < 0$.

- Determine a equação para a distância mais próxima que a partícula chega da origem.
- 2. Sobre quais condições a partícula chegará na origem?
- 3. Sobre quas condições ela irá escapar para o infinito?

7 ** Tchau sistema solar

Encontre a velocidade de escape do sistema solar em relação à Terra, considerando as influências gravitacionais mais relevantes sendo do Sol e da Terra (só um modelo simplificado). Considere o movimento de translação da Terra ao redor do Sol, mas desconsidere sua rotação. Aproxime a massa da Terra como muito maior que a do objeto sendo lançado (Pode usar quais constantes achar necessárias). Uma resposta incorreta comum é $13,5\,km/s$.

8 ** Duas massas e uma mola

Uma massa m_1 com velocidade inicial v_o colide com um sistema massa-mola de massa m_2 , inicialmente em repouso e com a mola no seu comprimento natural. A mola não tem massa e possui constante elástica k. Não há atrito.

Figure 4: Duas massas e uma mola

- 1. Qual é a máxima compressão da mola?
- 2. Se depois de muito tempo da colisão os dois objetos se movem na mesma direção, quais são as velocidades v_1 e v_2 de m_1 e m_2 , respectivamente?

9 **** Três massas e uma mola

Uma bola de M se movendo com velocidade v_o em uma mesa sem atrito colide com a primeira de duas bolas idêntias, cada uma de massa $m=2\,kg$, conectadas por uma mola ideal de constante elástica $k=1\,kg/s^2$ (veja figura abaixo). Considere a colisão central, elástica, e instantânea.

Figure 5: Três massas e uma mola

- 1. Encontre o menor valor da massa M para que ela consiga colidir com o sistema de duas bolas outra vez.
- 2. Quanto tempo irá passar entre as duas colisões?

10 * Bolinha oscilando

Uma conta de massa m enfiada num aro vertical fixo de raio R, no qual desliza sem atrito, desloca-se em torno do ponto mais baixo, de tal forma que o ângulo θ permanece pequeno (figura 6). Mostre que o movimento é harmônico simples e calcule seu período.

Figure 6: Bolinha oscilando em aro

11 * Corda massiva na polia

Uma corda massiva de comprimento L e densidade de massa $\sigma \, kg/m$ está pendurada sobre uma polia sem massa. Inicialmente as extremidades da corda estão a uma distância x_o acima e embaixo da sua posição de equilíbrio. A corda é puxada com uma velocidade inicial v_o . Se o objetivo é que a corda nunca mais caia da polia, qual é o valor que v_o deve assumir? Considere que a corda é tal que a energia se conserva.

12 ** Tremendo a base

A block is situated on a slope with angle α , the coefficient of friction between them is $\mu > \tan \alpha$. The slope is rapidly driven back and forth in a way that its velocity vector \vec{u} is parallel to both the slope and the horizontal and has constant modulus v; the direction of \vec{u} reverses abruptly after each time interval τ . What will be the average velocity w of the block's motion? Assume that $g\tau \ll v$.

Figure 7: Base tremedeira

13 *** Bolona oscilando

Resolva o problema anterior (mostrar que é MHS, e calcular período de oscilação), mas agora com uma esfera maciça de raio r oscilando em uma calha cilíndrica de raio R (figura 8).

Figure 8: Bolona oscilando em calha cilíndrica

14 *** Barra oscilando

Um retângulo de altura 2a e comprimento 2b está sobre um cilíndro de raio R, fixo em uma bancada. O momento de inércia do retângulo sobre seu centro de massa é I. O retângulo recebe uma batida infinitesimal e "rola" sobre a superfície do cilíndro sem deslizar. Encontre a equação de movimento para o ângulo de inclinação do retângulo. Sobre quais condições ele vai cair do cilíndro? Sobre quais condições ele fica oscilando no cilíndro? Encontre a frequência de pequenas oscilações.

Figure 9: Retângulo oscilando em cilíndro

Gabarito

- 1. $\frac{1}{12}mg$, $\frac{1}{3}mg$, $\frac{7}{12}mg$
- 2. $l = L\pi R/2\cos\alpha; T = 2\pi\sqrt{L/g}$
- 3. T = 3mg
- 4. p = -3, q = -2
- 5. (a) $F(r) = -\frac{3L^2a}{mr^4}$

(b)
$$\sigma_{capture} = 2\pi \sqrt{\frac{2C}{mv_{\infty}^2}}$$

6. (a)
$$\frac{1}{2}mv^2 - \frac{c}{R^3} = \frac{mv_y^2R^2}{2r_{cs}^2} - \frac{c}{r_{cs}^2}$$

(b) Se
$$E > \frac{m^3 R^6 v_y^6}{54c^2}$$
, ou $E < \frac{m^3 R^6 v_y^6}{54c^2}$ e $R < \left(\frac{3c}{mv_y^2}\right)^{1/3}$

(c) Se
$$E < \frac{m^3 R^6 v_y^6}{54c^2}$$
 e $R > r_{ca}$

- 7. $16,4 \, km/s$
- 8. (a) $x_{max} = v_o \sqrt{\mu/k}$, onde μ é a massa reduzida.

(b)
$$v_1 = v_0 \frac{m_1 - m_2}{m_1 + m_2}$$
; $v_2 = v_0 \frac{2m_1}{m_1 + m_2}$

- 9. (a) $M \approx 10 \, kg$
 - (b) $\Delta t \approx 5 \, s$

10.
$$T = 2\pi \sqrt{\frac{r}{g}}$$

11.
$$v_o = x_o \sqrt{2g/L}$$

12.
$$v/\sqrt{\mu^2 \cot^2 \alpha - 1}$$

13.
$$\omega = \sqrt{\frac{5g}{7(R-r)}}$$

14.
$$a \ge R$$
; $a < R$; $\omega = \sqrt{\frac{mg(R-a)}{ma^2 + I}}$