Potential and Circuits

Electric charges travel round a circuit to make a _____. The charges can be _____ or . Electric charges are the _____ material" in a circuit.

The amount of energy transferred from the ______ store of a ___ to a charge is called the **potential**. It is measured in (V).

The potential will around a circuit.

1 Complete the sentences below with the words **potential**, **positive**, **negative**.

(a) The potential at the _____ terminal of a cell, the short side, is 0 V. The ____ at the ____ terminal, the long side, is 1.5 V.

add 1.5 V
$$\frac{-}{0 \text{ V}} \downarrow \frac{+}{b}$$

$$\frac{-1}{0 \text{ V}} |_{1.5 \text{ V}}^{+} \frac{1.5 \text{ V}}{1.5 \text{ V}} |_{\text{add } 1.5 \text{ V}}^{\text{C}}$$

$$\frac{-1}{0 \text{ V}}$$
 $\frac{+}{3.0 \text{ V}}$ add $\frac{+}{1.5 \text{ V}}$

$$\frac{-1}{0 \text{ V}} | + \frac{+}{3.0 \text{ V}} | \frac{-e}{1.5 \text{ V}}$$

(b) What is the potential at (b)?

(c) Two cells are connected together. What is the potential at (c)?

(d) Three cells are now connected together. What is the potential at (d)?

(e) The third cell is now connected in reverse. What is the potential at (e)?

2 Write down the potential in each of the boxes.

3 Write down the potential in each of the boxes.

____ circuits have _____. The energy of a ____ does ____ when passing through a junction.

4 Write down the potential in each of the boxes.

5 Write down the potential in each of the boxes.

The difference in potential across a battery or a bulb is called the			or
. When there is a	across a	, the charges	through it,
lighting it up.			

- 6 What is the potential difference for each combination of cells or **batteries**? Each cell has a potential difference of 1.5 V.
 - (a) 1-cell battery

(b) 2-cell battery

-|+

-||+|+-

(c) 3-cell battery

(d) odd 3-cell battery

<u>-</u>-||H|+

If ____ bulbs are ____ to each other on the same ____ of the circuit, we say they are in ____ . The ____ is ___ across the two.

If ___ bulbs are on ____ of the circuit, we say the ____ are in ___ . The ___ is the ___ across the two ____ of the circuit.

- 7 In the circuits in question 4, which bulbs are in series and which bulbs are in parallel?
- Go back to the circuits in questions 2, 3, 4, and 5. What is the brightness of each bulb? Are they **normal**, **dimmer** or **brighter**?