191220154 AsOpSem

1. Let c_1 be $x:=\mathbf{0}, c_2$ be while true do $x:=x+\mathbf{1}$, for any σ there is $(c_1;c_2,\sigma)=(x:=\mathbf{0};$ while true do $x:=x+\mathbf{1},\sigma)$ $\rightarrow (\mathbf{skip};$ while true do $x:=x+\mathbf{1},\sigma\{x\leadsto 0\})$ $\rightarrow (\mathbf{while} \ \mathbf{true} \ \mathbf{do} \ x:=x+\mathbf{1},\sigma\{x\leadsto 0\})$ $\rightarrow (\mathbf{if} \ \mathbf{true} \ \mathbf{then} \ (x:=x+\mathbf{1}; \mathbf{while} \ \mathbf{true} \ \mathbf{do} \ x:=x+\mathbf{1}) \ \mathbf{else} \ \mathbf{skip}, \sigma\{x\leadsto 0\})$ $\rightarrow (x:=x+\mathbf{1}; \mathbf{while} \ \mathbf{true} \ \mathbf{do} \ x:=x+\mathbf{1},\sigma\{x\leadsto 0\})$ $\rightarrow^* (\mathbf{skip}; \mathbf{while} \ \mathbf{true} \ \mathbf{do} \ x:=x+\mathbf{1},\sigma\{x\leadsto 1\})$ $\rightarrow (\mathbf{while} \ \mathbf{true} \ \mathbf{do} \ x:=x+\mathbf{1},\sigma\{x\leadsto 1\})$ There exists $\sigma'=\sigma\{x\leadsto 1\}$ so that $(c_1;c_2,\sigma)\to^* (c_2,\sigma')$. However, $(c_1,\sigma)=(x:=\mathbf{0},\sigma)\to (\mathbf{skip},\sigma\{x\leadsto 0\})$

 $(\mathbf{skip}, \sigma\{x \leadsto 0\}) \rightarrow^* (\mathbf{skip}, \sigma\{x \leadsto 1\}), \text{ thus } (c_1, \sigma) \rightarrow^* (\mathbf{skip}, \sigma')$

2. (a) the small-step operational semantics rule for ++x

(while x < 7 do $x := (x + +) + (+ + x), \{x \rightsquigarrow 6\}$)

$$\frac{\sigma(x) = \lfloor \mathbf{n} \rfloor \quad \lfloor \mathbf{n}' \rfloor = \lfloor \mathbf{n} \rfloor + 1}{(++x, \sigma) \to (\mathbf{n}', \sigma\{x \leadsto |\mathbf{n}| + 1\})}$$

(b) the full execution path for the program

while
$$x < 7$$
 do $x := (x + +) + (+ + x)$ else skip, $\{x \rightsquigarrow 14\}$)

 \rightarrow (if false do $(x := (x + +) + (+ + x);$
while $x < 7$ do $x := (x + +) + (+ + x)$) else skip, $\{x \rightsquigarrow 14\}$)
 \rightarrow (skip, $\{x \rightsquigarrow 14\}$)

3. (a) small-step operational semantics rules for the new expression

$$\frac{(c,\sigma) \rightarrow (c',\sigma')}{(\textit{do}\ c\ \textit{return}\ e,\sigma) \rightarrow (\textit{do}\ c'\ \textit{return}\ e,\sigma')}$$

$$\overline{(do\ skip\ return\ e,\sigma)}{
ightarrow (e,\sigma)}$$

(b) For each of the following properties, does it hold?

i.
$$orall e_1, e_2$$
. $(e_1+e_2) \prec (e_1+e_2+1)$
Yes.
ii. $orall e_1, e_2$. $(e_1+e_2) \prec (e_2+e_1+1)$
No. let e_1 be x, e_2 be $extbf{do} x := x-2 extbf{return} y$
for any given σ , let $extbf{n_1'} = \sigma(x)$, $extbf{n_2'} = \sigma(y)$, $\lceil extbf{n_3'}
cup = \lceil extbf{n_1'}
cup - 2
cup (e_1+e_2,\sigma)$
 $o (extbf{n_1'}+e_2,\sigma)$

$$egin{aligned} & o \left(oldsymbol{n_1'} + oldsymbol{n_2'}, \sigma\left\{x \leadsto n_3'
ight\}
ight) \ & \left(e_2 + e_1 + oldsymbol{1}, \sigma
ight) \end{aligned}$$

$$\rightarrow \, \left(\boldsymbol{n_2'} + e_1 + \boldsymbol{1}, \sigma \left\{ x \leadsto n_3' \right\} \right)$$

$$\rightarrow \left(\textbf{\textit{n}'_2} + \textbf{\textit{n}'_3} + \textbf{\textit{1}}, \sigma \{x \leadsto n'_3\} \right)$$

so we have
$$(e_1+e_2,\sigma) \, o^* \, ({m n1},\sigma_1)$$
 , $(e_2+e_1+1,\sigma) \, o^* \, ({m n2},\sigma_2)$

where
$$\lfloor \pmb{n_1} \rfloor = \lfloor \pmb{n_1'} \rfloor + \lfloor \pmb{n_2'} \rfloor$$
, $\lfloor \pmb{n_2} \rfloor = \lfloor \pmb{n_2'} \rfloor + \lfloor \pmb{n_3'} \rfloor + 1 = \lfloor \pmb{n_1'} \rfloor + \lfloor \pmb{n_2'} \rfloor - 1$

$$\lfloor m{n_1}
floor > \lfloor m{n_2}
floor$$
 , thus $(e_1+e_2) \prec (e_2+e_1+1)$ does not stand

iii.
$$\forall e. \ \neg(e \prec e)$$

No. let e be $oldsymbol{do}$ (while $oldsymbol{true}$ $oldsymbol{do}$ $oldsymbol{skip}$) $oldsymbol{return}$ $oldsymbol{0}$

there exists no
$$\mathbf{n_1}$$
, σ_1 or $\mathbf{n_2}$, σ_2 so that $(e,\sigma) \to^* (\mathbf{n_1},\sigma_1)$, $(e,\sigma) \to^* (\mathbf{n_2},\sigma_2)$ as the program loops forever, thus we can say $(e \prec e)$

iv.
$$\forall e_1,e_2,e_3.\; (e_1 \prec e_2) \land (e_2 \prec e_3) \Rightarrow (e_1 \prec e_3)$$

No. let e_1 be $\mathbf{1}$, e2 be \boldsymbol{do} (while true \boldsymbol{do} skip) return $\mathbf{0}$, e3 be $\mathbf{0}$

there exists no ${m n_2}$, ${m \sigma_2}$ so that $(e_2,\sigma) \,
ightarrow^* \, ({m n_2},{m \sigma_2})$

thus we can say $(e_1 \prec e_2)$ and $(e_2 \prec e_3)$

however, because
$$(e_1,\sigma) \, o^* \, (\mathbf{1},\sigma)$$
 and $(e_3,\sigma) \, o^* \, (\mathbf{0},\sigma)$

we have $|\mathbf{1}|>|\mathbf{0}|$, thus $(e_1 \prec e_3)$ does not stand