

Introduction to (Data Wrangling with) Tidyverse

By Nutsa Nanuashvili

24-03-2021

Tidyverse

Main Workflow

Program

Packages we're going to use today

Introducing Data - Palmer Penguins

library (palmerpenguins)

Import Data

First Overview of the Data

glimpse(penguin_data)

```
## Rows: 1,376
## Columns: 8
## $ species
                                                                   <chr> "Adelie", "Adel
## $ island
                                                                       <chr> "Torgersen", "Torgersen", "Torgersen", "Torgersen", "T...
                                                                       <chr> "male", "male", "male", "female", "female", "f...
## $ sex
## $ year
                                                                       <dbl> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, ...
## $ date
                                                                   <date> 2007-11-11, 2007-11-11, 2007-11-11, 2007-11-11, 2007-...
## $ id
                                                                   <chr> "N1A1", "N1A1", "N1A1", "N1A2", "N1A2", "N1A2"...
## $ measurements <chr> "bill_length_mm", "bill_depth_mm", "flipper_length_mm"...
                                                       <dbl> 39.1, 18.7, 181.0, 3750.0, 39.5, 17.4, 186.0, 3800.0, ...
## $ values
```


First Overview of the Data

```
slice_head (penguin data, n = 5)
```

```
## # A tibble: 5 x 8
    species island sex year date id
                                                                values
                                                measurements
    <chr> <chr> <chr> <chr> <dbl> <date> <chr> <chr>
                                                                 <dbl>
##
## 1 Adelie Torgersen male
                          2007 2007-11-11 N1A1
                                                bill length mm
                                                                  39.1
## 2 Adelie Torgersen male 2007 2007-11-11 N1A1 bill_depth_mm
                                                              18.7
## 3 Adelie Torgersen male 2007 2007-11-11 N1A1 flipper_length_mm
                                                                 181
## 4 Adelie Torgersen male 2007 2007-11-11 N1A1
                                                body_mass_g
                                                                3750
                                                                  39.5
## 5 Adelie Torgersen female 2007 2007-11-11 N1A2
                                                bill length mm
```

slice_tail and slice_sample

Exercises Part 1

map()from purrr

map()from purrr

```
## tibble [1,376 x 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ species : Factor w/ 3 levels "Adelie", "Chinstrap", ..: 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ island : Factor w/ 3 levels "Biscoe", "Dream", ..: 3 3 3 3 3 3 3 3 3 3 3 3 ...
## $ sex : Factor w/ 2 levels "female", "male": 2 2 2 2 1 1 1 1 1 1 1 ...
## $ year : num [1:1376] 2007 2007 2007 2007 ...
## $ date : Date[1:1376], format: "2007-11-11" "2007-11-11" ...
## $ id : chr [1:1376] "N1A1" "N1A1" "N1A1" "N1A1" ...
## $ measurements: chr [1:1376] "bill_length_mm" "bill_depth_mm" "flipper_length_mm" "body_mass_g" ...
## $ values : num [1:1376] 39.1 18.7 181 3750 39.5 17.4 186 3800 40.3 18 ...
```


col_types

col_types

```
## # A tibble: 1,376 x 7
      species island
                                                               values
##
                                year id
                                            measurements
                        sex
              <chr>>
                                <dbl> <chr> <chr>
                                                                <dbl>
##
      <fct>
                        <chr>
    1 Adelie
              Torgersen male
                                2007 N1A1
                                            bill length mm
                                                                 39.1
    2 Adelie
                                            bill depth mm
                                                                18.7
              Torgersen male
                                2007 N1A1
##
    3 Adelie
              Torgersen male
                                2007 N1A1
                                            flipper length mm
                                                               181
    4 Adelie
              Torgersen male
                                2007 N1A1
                                            body mass g
                                                               3750
    5 Adelie
              Torgersen female
                                2007 N1A2
                                            bill length mm
                                                                 39.5
    6 Adelie
              Torgersen female
                                2007 N1A2
                                            bill depth mm
                                                                17.4
    7 Adelie
              Torgersen female
                                            flipper length mm
                                2007 N1A2
                                                               186
    8 Adelie
              Torgersen female
                                                               3800
                                2007 N1A2
                                            body mass g
    9 Adelie
              Torgersen female
                                2007 N2A1
                                            bill length mm
                                                                40.3
## 10 Adelie Torgersen female
                                2007 N2A1
                                            bill depth mm
                                                                18
## # ... with 1,366 more rows
```


The functions for converting variables

```
col_double()
col_character()
col_date (format = "")
```

```
col_factor()
col_logical()
col_numeric()
```

Exercises Part 2

Main Workflow

Pipe Operator


```
function(data, arguments)
Same as
data %>% function(arguments)
And
function 2 (function 1 (A) )
Is equivalent of
A %>%
 function 1() %>%
 function 2()
```


Pipe Operator

Can be read as "then"


```
pasta %>%
boil_water() %>%
put_pasta(type = "penne")
add_souce (type = "marinara")
```


Tidy Data

Name	Spring	Winter	Summer
Ana	52kg	45kg	45.5kg
Mary	65kg	67kg	NA
Sandro	72kg	NA	74.5kg

Name	Season	Weight
Ana	Spring	52kg
Ana	Winter	45kg
Ana	Summer	45.5kg
Mary	Spring	65kg
Mary	Winter	67kg
Mary	Summer	NA
Sandro	Spring	72kg
Sandro	Winter	NA
Sandro	Summer	74.5kg

Tidy Data

#RLadies #rstats

```
#reshape into longer format
 weight df long = weight df %>% pivot_longer(cols = c( "Spring" ,
 "Winter", "Summer"),
                names to = "Season",
                                                    ## # A tibble: 9 x 3
                values to = "Weight",
                                                    ##
                                                        Name Season Weight
                                                    ## <chr> <chr> <chr>
                values_drop_na = FALSE )
                                                    ## 1 Ana
                                                              Spring 52kg
                                                    ## 2 Ana
                                                              Winter 45kg
## # A tibble: 3 x 4
                                                              Summer 45.5kg
                                                    ## 3 Ana
##
   Name Spring Winter Summer
                                                    ## 4 Mary
                                                              Spring 65kg
   <chr> <chr> <chr> <chr>
##
                                                              Winter 67kg
## 1 Ana 52kg 45kg
                    45.5kg
                                                    ## 5 Mary
               67kg
## 2 Mary
        65kg
                     NΑ
                                                    ## 6 Mary Summer NA
## 3 Sandro 72kg NA
                    74.5kg
                                                    ## 7 Sandro Spring 72kg
                                                    ## 8 Sandro Winter NA
  @RLadiesAMS
                                                    ## 9 Sandro Summer 74.5kg
```


Tidy Data

```
pivot wider (weight df long,
                 names from = Season,
                 values from = Weight )
## # A tibble: 3 x 4
          Spring Winter Summer
##
    Name
    <chr> <chr> <chr> <chr>
                45kg
                      45.5kg
## 1 Ana
          52kg
  2 Mary 65kg
                67kg
                      NA
## 3 Sandro 72kg
                       74.5kg
                NA
```

```
## # A tibble: 9 x 3
           Season Weight
##
    Name
    <chr> <chr> <chr>
##
           Spring 52kg
## 1 Ana
## 2 Ana
           Winter 45kg
           Summer 45.5kg
## 3 Ana
## 4 Mary Spring 65kg
## 5 Mary
           Winter 67kg
           Summer NA
## 6 Mary
## 7 Sandro Spring 72kg
## 8 Sandro Winter NA
## 9 Sandro Summer 74.5kg
```


Exercises Part 3

Main Workflow

Data Transformation

Select ()

Selects columns by their name and returns a tibble

```
dellar
```

```
## # A tibble: 5 x 5
##
    id
          species
                   island
                             sex
                                    year
    <chr> <fct> <fct>
                             <fct>
                                   <dbl>
## 1 N63A2 Chinstrap Dream
                             male
                                    2008
  2 N62A2 Chinstrap Dream
                             female 2007
## 3 N84A2 Adelie Dream
                             male
                                    2009
## 4 N67A1 Adelie Torgersen female
                                    2009
## 5 N66A2 Chinstrap Dream
                             male
                                    2007
```


Deleting columns using select

```
penguin_df_wide %>%

select( -(year:id) ) %>%

slice_sample(n = 5)
```

```
## # A tibble: 5 x 7
##
    species island sex __bill_length_mm bill_depth_mm flipper_length_~ body_mass_g
   <fct> <fct> <fct> <fct>
                                 <dbl>
                                               <dbl>
                                                               <dbl>
                                                                           <dbl>
##
## 1 Chinst~ Dream fema~
                                  40.9
                                                16.6
                                                                 187
                                                                            3200
## 2 Adelie Dream fema~
                                  36.6
                                                18.4
                                                                 184
                                                                            3475
## 3 Adelie Torge~ fema~
                                  40.2
                                                17
                                                                 176
                                                                            3450
## 4 Gentoo Biscoe fema~
                             46.2
                                               14.5
                                                                 209
                                                                            4800
## 5 Chinst~ Dream male
                                  51.3
                                                19.2
                                                                 193
                                                                            3650
```


"Helper" verbs for select

- starts with()
- ends_with()

- contains()
- everything()
- where()

"Helper" verbs

```
penguin_df_wide %>%

select( starts_with ("bill") ) %>%

slice_sample(n = 3)
```

bill_length_mm <dbl></dbl>	bill_depth_mm <dbl></dbl>
48.2	15.6
39.6	18.8
39.6	17.2

Renaming

Rearranging columns

Rearranging columns

id <chr></chr>	sex <fctr></fctr>	species <fctr></fctr>	island <fctr></fctr>	year <dbl></dbl>	bill_length_mm <dbl></dbl>	bill_depth_mm <dbl></dbl>	flipper_length_mm <dbl></dbl>	body_mass_g <dbl></dbl>
N1A1	male	Adelie	Torgersen	2007	39.1	18.7	181	3750
N1A2	female	Adelie	Torgersen	2007	39.5	17.4	186	3800
N2A1	female	Adelie	Torgersen	2007	40.3	18.0	195	3250
N3A1	female	Adelie	Torgersen	2007	36.7	19.3	193	3450
N3A2	male	Adelie	Torgersen	2007	39.3	20.6	190	3650
N4A1	female	Adelie	Torgersen	2007	38.9	17.8	181	3625

Relocate

relocate(.data, ..., .before = NULL, .after = NULL)

```
penguin_df_wide %>%

relocate( year:id, .after = last_col()) %>%

slice_sample(n = 5)
```


Relocate

relocate(.data, ..., .before = NULL, .after = NULL)

							•	
species <fctr></fctr>	island <fctr></fctr>	sex <fctr></fctr>	bill_length_mm <dbl></dbl>	bill_depth_mm <dbl></dbl>	flipper_length_mm <dbl></dbl>	body_mass_g <dbl></dbl>	year <dbl></dbl>	id <chr></chr>
Chinstrap	Dream	female	46.5	17.9	192	3500	2007	N61A1
Chinstrap	Dream	male	52.7	19.8	197	3725	2007	N64A1
Gentoo	Biscoe	male	45.0	15.4	220	5050	2008	N15A2
Chinstrap	Dream	male	50.5	19.6	201	4050	2007	N70A2
Gentoo	Biscoe	female	47.7	15.0	216	4750	2008	N54A1

Select based on a condition

where () selects a column where the condition is TRUE

```
## # A tibble: 5 x 5
      year bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
##
     <dbl>
                     <dbl>
                                    <dbl>
                                                       <db1>
                                                                   <dbl>
##
## 1
      2008
                      45.8
                                     18.9
                                                         197
                                                                    4150
                      40.2
                                     20.1
## 2
      2009
                                                         200
                                                                     3975
                                    19.4
## 3
                      41.8
                                                                    4450
      2008
                                                         198
                                    19.5
                      50
## 4
      2007
                                                         196
                                                                     3900
                      46.6
                                    17.8
## 5
      2007
                                                         193
                                                                     3800
```

Exercises Part 4

Forming new columns with mutate

```
penguin_df_wide %>%

select(contains("mm")) %>%

mutate(bill_length_cm = bill_length_mm / 10,

bill_depth_cm = bill_length_mm / 10,

flipper_length_cm = flipper_length_mm / 10)
```


Forming new columns with mutate

## 3	# <i>P</i>	A tibble: 344 x	6	↓	↓	↓
##		bill_length_mm	$\verb bill_depth_mm $	flipper_length_~	bill_length_cm	bill_depth_cm
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	39.1	18.7	181	3.91	3.91
##	2	39.5	17.4	186	3.95	3.95
##	3	40.3	18	195	4.03	4.03
##	4	NA	NA	NA	NA	NA
##	5	36.7	19.3	193	3.67	3.67
##	6	39.3	20.6	190	3.93	3.93

across

Takes 2 arguments - columns to transform & a function to apply

```
penguin_df_wide %>%

# select every column that contains "mm"in name
select(contains("mm")) %>%

# remove missing values
drop_na() %>%

# divide every column by 10
mutate(across (everything(), ~.x / 10 ) )
```


across

Takes 2 arguments - columns to transform & a function to apply

```
## # A tibble: 342 x 3
##
      bill_length_mm bill_depth_mm flipper_length_mm
               <dbl>
                              <dbl>
                                                 <dbl>
##
##
    1
                3.91
                               1.87
                                                  18.1
                3.95
                               1.74
                                                  18.6
##
##
                4.03
                               1.8
                                                 19.5
##
                3.67
                              1.93
                                                 19.3
##
                               2.06
    5
                3.93
                                                  19
##
    6
                3.89
                               1.78
                                                  18.1
```


if else(condition, true, false)

Let's divide penguins into small and large

```
# calculate median body mass of all penguins
median mass = median(penguin df wide$body mass g, na.rm = T)
penguin df wide %>%
  select(sex, body mass g) %>%
#create a new column to categorize penguins based on their mass
 mutate(size = if else(body mass g >= median mass,
"large penguin", "small penguin"))
```


if else(condition, true, false)

```
body_mass_g size
##
     sex
                  <dbl> <chr>
##
     <fct>
##
   1 male
                   3725 small_penguin
                   3950 small_penguin
##
   2 male
                   3950 small_penguin
##
   3 female
                   3700 small_penguin
##
   4 female
                   3525 small_penguin
   5 female
##
##
   6 female
                   4500 large_penguin
```

Exercises Part 5

Filtering and changing the row order

```
# choose only the rows corresponding to year 2007
penguin_df_wide %>%
  filter(year == '2007')%>%
# sort bill depth in descending order
  arrange (desc(bill_depth_mm))
```


Filtering and changing the row order

```
## # A tibble: 110 x 9
      species
                island
                                 year id
                                            bill length mm bill depth mm
                          sex
##
     <fct>
                <fct>
                          <fct> <dbl> <chr>
                                                     <dbl>
                                                                   <dbl>
    1 Adelie
               Torgersen male
                                 2007 N10A2
                                                      46
                                                                    21.5
    2 Adelie
                Torgersen male
                                 2007 N7A2
                                                      38.6
                                                                    21.2
    3 Adelie
                Dream
                          male
                                 2007 N30A2
                                                      42.3
                                                                    21.2
   4 Adelie
               Torgersen male
                                 2007 N8A1
                                                      34.6
                                                                    21.1
   5 Adelie
                          male
                                 2007 N23A2
                                                      39.2
                                                                    21.1
                Dream
    6 Adelie
               Torgersen male
                                                      42.5
                                                                    20.7
                                 2007 N9A2
   7 Adelie
                Torgersen male
                                 2007 N3A2
                                                      39.3
                                                                    20.6
    8 Chinstrap Dream
                                 2007 N68A2
                                                      51.7
                                                                    20.3
                          male
    9 Adelie
                                                                    20.2
               Torgersen <NA>
                                 2007 N5A2
                                                      42
## 10 Adelie
                          male
                                 2007 N24A1
                                                      38.8
               Dream
                                                                    20
## # ... with 100 more rows, and 2 more variables: flipper length mm <dbl>,
## #
       body mass g <dbl>
```


Filtering

```
# minimum body mass (kg) of female penguins from the Dream
# island in 2007
penguin_df_wide %>%
filter(island == 'Dream', sex == 'female') %>%
# calculate body mass in kg
transmute(body_mass_kg = body_mass_g / 1000) %>%
slice_min(body_mass_kg)
```

```
## # A tibble: 1 x 1
## body_mass_kg
## <dbl>
## 1 2.7
```


Group and Summarize Data

```
penguin_df_wide %>%
    # group for females and males

group_by(sex) %>%
    # summarize number of penguins and average mass for each

group

summarise (total_number = n(),
    average_mass = mean(body_mass_g, na.rm = T))
```


Group and Summarize Data

Exercises Part 6

The rest of tidyverse

Visualization

Working on stings

Manipulating dates

Newer better data.frame

All about factors

Advanced programming

The rest of tidyverse

From beginner to advanced guide into tidyverse

https://r4ds.had.co.nz/

https://github.com/tidyverse/tidyverse

Thank you!

Tidyverse

Base R

nutsa.nanuashvili@gmail.com

@Nutsa_Nanuash

@Nutsa-N

https://www.linkedin.com/in/nutsa-nanuashvili/

