EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 13	30 Mai 2022

Exercices

Exercice 1. (a) Montrer que $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ est primitif dans \mathbb{Q} et calculer son polynôme minimal.

- (b) Montrer que $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ est une base de $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ comme \mathbb{Q} -espace vectoriel.
- (c) Montrer que $a\sqrt{3}+b\sqrt{6} \in \mathbb{Q}(\sqrt{2},\sqrt{3})$ est primitif dans \mathbb{Q} si et seulement les nombres rationnels a,b sont non nuls.
- (d) Si $a,b,c\in\mathbb{Q}$ sont tous non nuls, montrer que $a\sqrt{2}+b\sqrt{3}+c\sqrt{6}\in\mathbb{Q}(\sqrt{2},\sqrt{3})$ est primitif dans \mathbb{Q} .

Exercice 2.

Considérons l'extension $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$. D'après l'exemple 3.6.4 (f), $|\operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)| = n$, et $\operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2) = \langle F \rangle$, où F est l'automorphisme Frobenius,

$$F: \mathbb{F}_{2^n} \ni \alpha \mapsto \alpha^2 \in \mathbb{F}_{2^n}.$$

- 1. Soit n=2, et considérons l'extension $\mathbb{F}_2 \subset \mathbb{F}_4 = \mathbb{F}_2(\alpha)$, où α est une racine de x^2+x+1 . Donnez la matrice de l'automorphisme Frobenius dans la base $\{1,\alpha\}$ en tant que \mathbb{F}_2 -espace vectoriel. Quels sont les valeurs et leurs espaces propres? Peut on diagonaliser la matrice?
- 2. Soit n=3, et considérons l'extension $\mathbb{F}_2 \subset \mathbb{F}_8 = \mathbb{F}_2(\beta)$, où β est une racine de x^3+x+1 . Donnez la matrice de l'automorphisme Frobenius dans la base $\{1,\beta,\beta^2\}$ en tant que \mathbb{F}_2 -espace vectoriel. Quels sont les valeurs et leurs espaces propres? Peut on diagonaliser la matrice sur \mathbb{F}_2 ? Sur \mathbb{F}_4 ?

Exercice 3.

Soit $f(x) = x^6 + x^3 + 1 \in \mathbb{Q}[x]$.

- 1. Montrez que f est irréductible sur \mathbb{Q} . Indication: vous pouvez utiliser le critère d'Eisenstein pour montrer que $ev_{u+1}(f)$ est irréductible et conclure.
- 2. Soit α une racine de f. Montrez que α est une 9-ième racine primitive d'unité.
- 3. Soit L le corps de décomposition de f sur \mathbb{Q} . Montrez que l'extension $\mathbb{Q} \subseteq L$ est galoisienne avec $\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/9\mathbb{Z})^{\times}$.
- 4. Construisez une extension galoisienne de \mathbb{Q} de degree 3.

Exercice 4 (Automorphismes de $\mathbb{C}(x)$).

Soit $\mathbb{C}(x)$ le corps de fractions de $\mathbb{C}[x]$. On définit deux \mathbb{C} -automorphismes F et G en posant

$$F(x) = \frac{x+i}{x-i}$$
 et $G(x) = \frac{ix-i}{x+1}$

et on considère le groupe \mathcal{A} engendré par F et G.

- 1. Calculer toutes les puissances de F, G, $F \circ G$ et $G \circ F$.
- 2. Montrer que les éléments d'ordre deux FG et GF engendrent un sous-groupe normal de \mathcal{A} isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

- 3. Montrer que F et G engendrent un groupe d'automorphismes de $\mathbb{C}(x)$ d'ordre 12.
- 4. Montrer que ce groupe est isomorphe à A_4 .

Exercice 5 (Correspondance de Galois).

Dans chacun des cas suivantes déterminer le groupe de Galois de l'extension donnée, déterminer tous ses sous-groupes et tous les sous-corps de points fixes correspondants.

- 1. $\mathbb{Q} \subset \mathbb{Q}(\sqrt{7})$.
- 2. $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- 3. $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
- 4. $\mathbb{Q} \subset E$ où E est le corps de rupture de $t^4 2t^2 1 \in \mathbb{Q}[t]$.

Indication. Ce corps de rupture est de degré 8 et on montrera qu'il s'agit de $\mathbb{Q}(\sqrt{1+\sqrt{2}},i)$. On explicitera alors un automorphisme d'ordre 2 et un autre d'ordre 4 qui ne commutent pas entre eux, si bien que le groupe de Galois est le groupe dihédral d'ordre 8.

Exercice 6.

Soit $K\subseteq L\subseteq E$ une extension algébrique tel que $K\subseteq L$ et $L\subseteq E$ sont Galois. Montrer que $K\subseteq E$ n'est pas forcément Galois.

Indication. Envisager les extensions $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$

Exercice 7. 1. Soit $K \subseteq L \subseteq E$ tel que $K \subseteq L$ et $L \subseteq E$ sont Galois et finis. Montrer qu'il existe $K \subseteq E \subseteq F$ tel que $K \subseteq F$ est Galois.

2. Soit $K \subseteq L \subseteq E$ tel que $K \subseteq L$ et $L \subseteq E$ sont séparable. Monterer que $K \subseteq E$ est séparable. **Indication.** Montrer que $L = K(\alpha)$ et $E = L(\beta)$. Pour tout $\sigma \in \operatorname{Gal}(L/K)$, considérons l'homomorphisme induit $\sigma^x : L[x] \to L[x]$. Soit $\{m_{\beta,L} = m_1, m_2, \dots, m_r\}$ l'orbite $\operatorname{Gal}(L/K)$ de $m_{\beta,L}$. Définissons $g = \prod_{i=1}^r m_i$ et soit F le corps de décomposition de g sur L. Montrer que g est séparable sur K.

Exercice 8.

Si K est un corps dénombrable, montrez que \overline{K} est également dénombrable.

Exercice 9.

Montrer que tous les groupes finis sont des groupes de Galois.

Supplementary exercise

Exercice 10. 1. Si $K \subseteq L$ est une extension purement inséparable, alors $Gal(L/K) = \{Id_L\}$.

2. Soit $K \subseteq L$ une extension finie tel que

$$[L_{insep,K}:K]|\operatorname{Gal}(L/K)| = [L:K].$$

Montrer que L est séparable sur $L_{insep,K}$.