MULTI-VIEWPOINT ENCODING AND DECODING DEVICE

Publication number: JP9275578

Publication date: 1997-10-21

Inventor: KI

KITAURA RYUJI; NOMURA TOSHIO

Applicant:

SHARP KK

Classification:

- international: H04N7/32; H04N13/02; H04N7/32; H04N13/02; (IPC1-

7): H04N13/02; H04N7/32

- European:

Application number: JP19960082215 19960404 Priority number(s): JP19960082215 19960404

Report a data error here

Abstract of JP9275578

PROBLEM TO BE SOLVED: To improve the encoding efficiency of a parallax vector and also to reduce the computational complexity of the parallax vector by estimating the compensation of both movement and parallax when a multi-viewpoint image is encoded. SOLUTION: An image input part 5 inputs a multi-viewpoint stereoscopic image after dividing it into parts images having parallax and a background image having no parallax. Then a movement compensation part 6 estimates the movement compensation based on the moved variable between the frames or fields of the parts images. A parallax compensation part 16 estimates the parallax compensation based on the parallax amount caused between the frames or fields of the parts images. A parallax divider 17 is provided for every parts image to define one of parallax vectors obtained at the part 16 as a global parallax vector and to output a local parallax vector that is defined by subtracting the global parallax vector from other parallax vectors excluding the global one.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-275578

(43)公開日 平成9年(1997)10月21日

(51) Int.Cl.⁶ H 0 4 N 13/02 7/32 設別記号 庁内整理番号

F I

技術表示箇所

H04N 13/02

7/137

Z

審査請求 未請求 請求項の数9 OL (全 14 頁)

(21)出願番号 特顧平8-82215 (71)出願人 000005049 シャープ株式会社 大阪府大阪市阿倍野区長池町22番22号 (72)発明者 北浦 竜二 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 野村 敏男 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (74)代理人 弁理士 梅田 勝

(54) 【発明の名称】 多視点画像符号化装置および復号装置

(57)【要約】

【課題】 画像高能率符号化及び復号において、特に動き補償あるいは視差補償予測を用いた多視点画像の高能率符号化及び復号装置に関するものである。従来の方法では、視差補償を行う際に視差のある部分と視差のない部分全てに対して視差補償を行なうので、効率がよくない。

【解決手段】 本発明では、視差補償手段で求められた 視差ベクトルのうちの1つをグローバル視差ベクトルと し、残りの視差ベクトルからグローバル視差ベクトルを 引いたものをローカル視差ベクトルとして出力する。

【特許請求の範囲】

【請求項1】 多視点立体画像を少なくとも1つの視差のある部品画像と、少なくとも1つの視差のない背景画像に分けて入力する入力手段と、部品画像のフレームあるいはフィールド間の動き量を用いて動き補償予測を行う動き補償手段と、部品画像のフレームあるいはフィールド間の視差量を用いて視差補償予測を行う視差補償手段と、視差ベクトル分割手段とを各部品画像毎に備える多視点符号化装置であって、前記視差ベクトルのうち 10の1つをグローバル視差ベクトルとし、残りの視差ベクトルからグローバル視差ベクトルを引いたものをローカル視差ベクトルとして出力することを特徴とする多視点画像符号化装置。

1

3 視点以上の多視点立体画像を少なくと 【請求項2】 も1つの視差のある部品画像と、少なくとも1つの視差 のない背景画像に分けて入力する入力手段と、部品画像 のフレームあるいはフィールド間の動き量を用いて動き 補償予測を行う動き補償手段と、部品画像のフレームあ るいはフィールド間の視差量を用いて視差補償予測を行 20 う視差補償手段とを各部品画像毎に備えるとともに、各 部品画像毎に 1 つの視差ベクトル分割手段と少なくとも 1つの差分器を備える多視点符号化装置であって、前記 視差ベクトル分割手段は、特定の視点間において求めら れた視差ベクトルのうちの1つをグローバル視差ベクト ルとし、残りの視差ベクトルからグローバル視差ベクト ルを引いたものをローカル視差ベクトルとして出力する とともに、前記差分器は、他の視点間において求められ たすべての視差ベクトルと前記グローバル視差ベクトル との差分を出力することを特徴とする多視点画像符号化 30 装置。

【請求項3】 請求項1または2記載の視差ベクトル分割手段は、グローバル視差ベクトルとして立体部品画像内の全ての視差ベクトルの平均を出力することを特徴とした多視点画像符号化装置。

【請求項4】 請求項1または2記載の視差ベクトル分割手段は、グローバル視差ベクトルとして立体部品画像内で最初に求めた視差ベクトルを出力することを特徴とした多視点画像符号化装置。

【請求項5】 請求項1または2記載の視差ベクトル分 40 式である。 割手段は、グローバル視差ベクトルとして立体部品画像 内の視差ベクトルの大きさをヒストグラムにして、最も 発生頻度の多い視差ベクトルを出力することを特徴とし た多視点画像符号化装置。 3283年

【請求項6】 請求項1または2記載の視差ベクトル分割手段は、現フレームあるいはフィールドのグローバル視差ベクトルとして、現フレームあるいはフィールドのグローバル視差ベクトルと直前のフレームあるいはフィールドのグローバル視差ベクトルの差分を出力することを特徴とした多視点画像符号化装置。

【請求項7】 請求項1または2記載の視差ベクトル分割手段は、ローカル視差ベクトルとして、直前に求めたローカル視差ベクトルとの差分を出力することを特徴とした多視点画像符号化装置。

【請求項8】 多視点立体画像のフレームあるいはフィールド間の動き量及び視差量を用いて、動き補償を行う動き補償手段及び視差補償を行う視差補償手段とを備える多視点画像復号装置において、入力されたグローバル視差ベクトルと前記ローカル視差ベクトルを用いて前記視差ベクトルを視差補償手段に出力する視差ベクトル合成手段と、奥行き方向の移動パラメータを画像編集手段に出力するパラメータ入力手段と、入力されたパラメータを用いて立体部品画像の奥行きを変化させて画像合成手段に出力する画像編集手段と、入力された背景画像と立体部品画像を合成する画像合成手段を備えることを特徴とした多視点画像復号装置。

【請求項9】 請求項8の多視点画像復号装置において、前記画像編集手段は、前記グローバル視差ベクトルが小さい立体部品画像から順に出力し、前記画像合成手段は、背景画像が入力された後に順次入力される立体部品画像を背景画像上に上書きすることにより画像を合成することを特徴とした多視点画像復号装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は画像高能率符号化及び復号において、特に動き補償あるいは視差補償予測を 用いた多視点画像の高能率符号化及び復号装置に関する ものである。

[0002]

【従来の技術】多視点画像の符号化において、動画像符号化の際に一般的に用いられている動き補償と、視点の異る画像間に対し視差補償を組み合わせて符号化することにより、符号化効率を向上させる方式がよく知られている。例えば文献(W. A. シュップ,安田,"視差補償および動き補償を用いたステレオ動画像のデータ圧縮",PCSJ88(1988),pp.63-64)によれば、図11に示すように、右画像に対しては動き補償のみを行なう。左画像に対しては視差補償と動き補償のうち、予測誤差がより少ない方の補償方法を選択し、符号化するという方式である。

【0003】また、動画像の符号化においてブロックマッチングによる動き補償を行なう際に、ブロックの大きさを変えて動きベクトルを求める例が、特開平6-113283号公報に開示されている。この方式では、図12に示すようにまず小ブロック71を用いて動き補償を行ない、小ブロック71に対する動きベクトル(以降、小ブロックベクトルと略す)を求める。それらの小ブロック71を複数個集めて大ブロックとし、動き補償を行ない、大ブロックに対する動きベクトル(以降、大ブロックベクトルと略す)を求める。

【0004】大ブロック70を4つの小ブロックにより構成したとすると、小ブロックベクトルが大ブロックベクトルに対して予め決められた範囲内に存在し、そこに存在する小ブロックベクトルの数が所定の閾値を越えた場合、大ブロックベクトルと、小ブロックベクトルと大ブロックベクトルの差分を伝送することにより動きベクトルの情報量を低減する。

[0005]

【発明が解決しようとする課題】しかしながら従来の方法では、視差補償を行う際に視差のある部分と視差のない部分全てに対して視差補償を行なうので、効率がよくない。しかも求まった視差ベクトルの大きさは通常、動き補償において求まる動きベクトルの大きさよりも大きくなることが多く、それをそのままの大きさで符号化するため、視差ベクトルの符号化効率がよくないという問題点がある。

【0006】またこの方式では、動き補償を用いるか視差補償を用いるかが選択的に決定されるので視差ベクトルが必ず伝送されるわけではない。従って、複数の物体が立体表示されるときに、一部の物体の奥行きだけを変 20える等の編集を行うことができない。

【0007】一方、動画像の符号化を大ブロックと小ブロックの2種類の動きベクトルにより符号化する方法では、画面全体にわたって2段階の探索をする必要があるため計算量が莫大になる。また、大ブロックは複数の小ブロックにより構成されているため、信頼度の異なる2種類のベクトル及びその差分を求めているに過ぎず、それらのベクトル間に物理的な意味の相違はない。さらに、この2種類の動きベクトルに異なる作用をもたせることができないため、部品画像編集に利用することは難 30 しい。

【0008】本発明の目的は、多視点画像の符号化において動き補償及び視差補償予測を用いることにより高効率の符号化を実現しながら、視差ベクトルを2段階に分けることにより視差ベクトルの符号化効率を向上させるとともに、視差ベクトルを求める際の計算量を低減させ、2段階に分けた視差ベクトルを利用して立体部品画像の編集を簡単に行うことができる視差補償符号化及び復号装置を提供することにある。

[0009]

【課題を解決するための手段】本発明の符号化装置は上記目的を達成するために、多視点立体画像を少なくとも1つの視差のある部品画像と、少なくとも1つの視差のない背景画像に分けて入力する入力手段と、部品画像のフレームあるいはフィールド間の動き量を用いて動き補償予測を行う動き補償手段と、部品画像のフレームあるいはフィールド間の視差量を用いて視差補償予測を行う視差補償手段と、視差ベクトル分割手段とを各部品画像毎に備える多視点符号化装置であって、前記視差ベクトル分割手段は、前記視差補償手段で求められた視差ベク50

トルのうちの1つをグローバル視差ベクトルとし、残りの視差ベクトルからグローバル視差ベクトルを引いたものをローカル視差ベクトルとして出力することを特徴とする。

【0010】また本発明の符号化装置では、3視点以上 の多視点立体画像を少なくとも1つの視差のある部品画 像と、少なくとも1つの視差のない背景画像に分けて入 力する入力手段と、部品画像のフレームあるいはフィー ルド間の動き量を用いて動き補償予測を行う動き補償手 段と、部品画像のフレームあるいはフィールド間の視差 量を用いて視差補償予測を行う視差補償手段とを各部品 画像毎に備えるとともに、各部品画像毎に1つの視差べ クトル分割手段と少なくとも1つの差分器を備える多視 点符号化装置であって、前記視差ベクトル分割手段は、 特定の視点間において求められた視差ベクトルのうちの 1つをグローバル視差ベクトルとし、残りの視差ベクト ルからグローバル視差ベクトルを引いたものをローカル 視差ベクトルとして出力するとともに、前記差分器は、 他の視点間において求められたすべての視差ベクトルと 前記グローバル視差ベクトルとの差分を出力することを 特徴とする。

【0011】また本発明では、グローバル視差ベクトルとして立体部品画像内の全ての視差ベクトルの平均を用いてもよい。

【0012】また本発明では、グローバル視差ベクトルとして立体部品画像内で最初に求めた視差ベクトルを用いてもよい。

【0013】また本発明では、グローバル視差ベクトルとして立体部品画像内の視差ベクトルの大きさをヒストグラムにして、最も発生頻度の多い視差ベクトルを用いてもよい。

【0014】また本発明では、現フレームあるいはフィールドのグローバル視差ベクトルとして、現フレームあるいはフィールドのグローバル視差ベクトルと直前のフレームあるいはフィールドのグローバル視差ベクトルの差分を用いてもよい。

【0015】また本発明では、ローカル視差ベクトルとして、直前に求めたローカル視差ベクトルとの差分を用いてもよい。

【0016】また本発明の復号装置では、多視点立体画像のフレームあるいはフィールド間の動き量及び視差量を用いて、動き補償を行う動き補償手段及び視差補償を行う視差補償手段とを備える多視点画像復号装置において、入力されたグローバル視差ベクトルを前記ローカル視差ベクトルを用いて前記視差ベクトルを視差補償手段に出力する視差ベクトル合成手段と、奥行き方向の移動パラメータを画像編集手段に出力するパラメータ入力手段と、入力されたパラメータを用いて立体部品画像の奥行きを変化させて画像合成手段に出力する画像編集手段と、入力された背景画像と立体部品画像を合成する画像

合成手段を備えることを特徴とする。

【0017】また本発明では、前記画像編集手段は、前 記グローバル視差ベクトルが小さい立体部品画像から順 に出力し、前記画像合成手段は、背景画像が入力された 後に順次入力される立体部品画像を背景画像上に上書き することにより画像を合成するようにしてもよい。

[0018]

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。

【0019】図1に本発明の画像符号化装置の第1の実 10 施の形態を示す。本実施の形態は2眼式の例であり、こ の画像符号化装置に入力する画像は、視差のない背景画 像と視差のある立体部品画像とする。背景画像と立体部 品画像はどちらも静止画像と動画像のいずれであっても よいが、ここでは両者とも動画像であるものとする。

【0020】ここで立体部品画像とは、例えば図2に示 すように、2台のカメラを平行に配置して撮影したステ レオ画像2を切り出し装置3に入力し、注視物体だけを 切り出したものを示す。また、図2の画像入力部5にお けるVOP(Video Object Plane)とは、複数の部品画像 20 によって合成画像を形成する場合の1つ1つの構成要素 を意味し、通常、形状データとテクスチャデータにより 構成されるが、ここでは説明を簡単にするために任意形 状の領域に分割された部品画像としてとり扱う。立体部 品画像 o b j。(n=1, 2, …によって異なる部品を 区別する) は視点数と同じ数の VOP_m (m=1, 2,…によって異なる視点を区別し、2眼式の場合はm= 1, 2となる) に分離されており、VOP。を背景画像 1とする。このとき2台のカメラ間隔は人の目と同じと してもよい。また2台のカメラは平行に配置されてお り、かつ上下方向のズレや歪みがないように調整されて いるので、切り出し装置から切り出された画像の視差は 垂直成分はなく、水平成分のみをもつものとする。

【0021】まず、図1を用いて背景画像の符号化方法 を説明する。動画像の符号化において、符号化の単位を ブロック (例えば16×16画素で構成される) として 符号化するブロックマッチングを用いた動き補償予測符 号化という方法が一般的によく知られている。本実施の 形態において、背景画像の符号化方法はこのブロックマ ッチングを用いた動き補償予測符号化の方法と同じであ る。例えば背景画像VOP。は、動き補償部6により前 フレームあるいはフィールドの復号画像を用いて動き補 償され、検出された動きベクトルが可変長符号化部10 に伝送される。

【0022】その後減算器7で背景画像VOP。と動き 補償された画像の差分がとられ、その差分データが変換 部8と量子化部9を通って、可変長符号化部10に伝送 される。またこの差分データは、可変長符号化部10に 入力されるとともに、逆量子化部11と逆変換部12を 景画像VOP。の復号画像がフレームメモリ14に蓄え られる。これ以降は、次の入力に対して、この繰り返し で符号化される。

【0023】次に立体部品画像の符号化について説明す る。立体部品画像 o b j:を符号化する順序を図3を用 いて説明する。符号化は以下の(a)~(d)の手順で 行なわれる。

【0024】(a)立体部品画像objュの左目用の部 品画像43はフレームあるいはフィールド内で符号化を 行なう。

【0025】(b) 部品画像43の復号画像を用いた視 差補償により、右目用の部品画像44に対してフレーム あるいはフィールド間符号化を行なう。

【0026】(c)部品画像45は部品画像43の復号 画像を用いた動き補償によりフレームあるいはフィール ド間符号化を行なう。

【0027】(d)部品画像45の復号画像を用いた視 差補償により、右目用の部品画像46はフレームあるい はフィールド間符号化を行なう。

【0028】すなわち左目用画像は動き補償で符号化さ れ、右目用画像は同時刻の左目用画像を用いた視差補償 で符号化される。以降(c)、(d)の手順を繰り返し て符号化は行なわれる。ただし(c)、(d)の手順を 繰り返して符号化するとき、予測誤差の伝搬を防ぐため に (c)、(d) の手順の代わりに(a)、(b) の手 順による符号化を、一定の周期で行なってもよい。

【0029】図1において、立体部品画像objィを構 成する左目用画像VOP』は、背景画像の符号化のとき と同様の方式で符号化を行なう。同じく立体部品画像o b j · を構成する右目用画像 V O P z は、左目用画像 V OP₁の復号画像を用いてブロックマッチングによる視 差補償を行ない、符号化する。このとき、視差補償部1 6に右目用画像VOPn と、加算器15からの左目用画 像VOP』の復号画像が入力され、視差ベクトルが求ま

【0030】視差ベクトルの求め方は、図4に示すよう に左目用の部品画像31と右目用の部品画像32を画像 33のように同一平面上に重ねて、注目ブロックに対し てマッチングを行なうことにより行う。従って1つのブ ロックに対して1つの視差ベクトルが求まる。 求まった 視差ベクトルは視差ベクトル分割器17に入力され、1 つのグローバル視差ベクトルと、それぞれの視差ベクト ルからグローバル視差ベクトルを引いた、ローカル視差 ベクトルに分けられる。

【0031】つまり立体部品画像内において、グローバ ル視差ベクトルは1個の所定のブロックの視差を表し、 ローカル視差ベクトルはそれ以外のブロックの視差から グローバル視差ベクトルを引いたものとなる。例えば、 図5のように視差ベクトル v, をグローバル視差ベクト 通り、加算器13で動き補償された画像が加算され、背 50 ルGVとすると、視差ベクトルvュ からグローバル視差

ベクトルG V引いたものがローカル視差ベクトルLV: となり、視差ベクトルvz はG V + L V: として表すこと ができる。

【0032】よって、k (k=1, 2, …) 本の視差ベクトルは1本のグローバル視差ベクトルとk-1本のローカル視差ベクトルで表すことができる。このときグローバル視差ベクトルは3次元空間における立体部品画像の奥行き(存在位置)に対応し、ローカル視差ベクトルは立体部品画像内での局所的な奥行き分布(立体形状)に対応する。

【0033】このとき、全ての視差ベクトルの平均をグローバル視差ベクトルとすることによって、ローカル視差ベクトルの情報量を低減することができる。また最初に求めた視差ベクトルをグローバル視差ベクトルとしてもよく、これによりグローバル視差ベクトルを選択する際の計算量が低減される。さらに視差ベクトルの大きさをヒストグラムにして、最も発生頻度の多い視差ベクトルをグローバル視差ベクトルとすることによって、3次元空間における立体部品画像の存在位置を適切に表現することができる。

【0034】一般的に視差ベクトルを k 本もつことに比べ、グローバル視差ベクトルを 1 本と、値の小さな k ー 1 本のローカル視差ベクトルをもつ方が視差ベクトルの情報量を低減することができる。

【0035】また立体画像において、立体画像内の隣接ブロック間における視差量の変化は少ないが、立体画像内に複数の物体が存在し、それらの物体が部品化されていない場合、異なる物体が重なり合う部分における視差は急激に変化することがある。本発明では立体部品画像を用いて部品毎に符号化を行うため、1つの立体部品画像内においてはこのような視差の急激な変化は起こらない。よって隣合うブロックのローカル視差ベクトルで差分をとることにより、ローカル視差ベクトルの情報量をさらに削減することができる。

【0036】これらのベクトルは図1の可変長符号化部10に伝送される。減算器18で、右目用画像VOP』と視差補償された画像との差分がとられ、変換部19と量子化部20を通り、可変長符号化部10に伝送される。以下、次の入力に対して、この繰り返しで符号化される。他の立体部品画像についても同様の方式で符号化される。可変長符号化部10に伝送されたデータはそこで可変長符号化され、多重化部21で多重化される。

【0037】ここでは1つの背景画像とn個の立体部品画像を符号化したが、背景画像は1つに限らず複数でも構わない。また図3において、時間方向にはグローバル視差ベクトルはそれほど急激に変わらないので、現在のグローバル視差ベクトル(例えば左目用画像45と右目用画像46で求められたグローバル視差ベクトル)と1フレームあるいはフィールド前のグローバル視差ベクトル(例えば左目用画像43と右目用画像44で求められ50

たグローバル視差ベクトル) の差分をとることによりグローバル視差ベクトルの情報量を削減することができる。

【0038】本実施の形態では2眼式の立体部品画像の符号化について述べたが、多視点立体部品画像においても同様に符号化できる。

【0039】次に本発明における第2の実施の形態について説明する。本実施の形態は第1の実施の形態の符号化装置を、多視点立体画像にも対応できるようにしたものである。このとき背景画像は、第1の実施の形態と同じ方法で符号化する。

【0040】図6に本発明の画像符号化装置の第2の実施の形態を示す。図6における入力画像は、多視点画像 VOP_m (m=1, 2, …、n=1, 2, …) である。画像 VOP_m と画像 VOP_m は、図1の画像 VOP_m と画像 VOP_m は、図1の画像 VOP_m と画像 VOP_m は加算器 51から出力されて、視差補償部53に入力される。さらに画像 VOP_m と画像 VOP_m を用いて求めたグローバル視差ベクトルが、視差補償部53に入力される。

【0041】視差補償部53では、VOPnの復号画像を用いて入力画像VOPnの視差補償を行ない、視差ベクトルを求める。求めた視差ベクトルと画像VOPnと画像VOPnを用いて求めたグローバル視差ベクトルが差分器54に入力され、それらの差分がローカル視差ベクトルとして出力される。すなわち、ここでは新たにグローバル視差ベクトルを求める必要がない。

【0042】ここで多視点画像であってもグローバル視差を共通にできることについて説明する。説明を簡略化するために3視点をもつ立体部品画像について説明する。

【0043】例えば図7に示すように、原点を O_1 、x軸を水平方向、z軸を奥行き方向とした座標系をとる。この座標上にカメラ群 C_{\bullet} (m=1, 2, 3)をそれぞれaの間隔で光軸がz軸と平行になるように、点 O_{\bullet} (m=1, 2, 3)の位置に配置する。第1の実施の形態と同様に、カメラは上下方向のズレや歪みがないように調整されているものとする。

【0044】また点A。を立体部品画像obj。の代表点とし、点A。と点O。を結び、カメラの仮想画像面(カメラにより撮影された画像面を示す)と交差する点をそれぞれA。(m=1, 2, 3)とする。点O。を通り、z 軸に平行に伸ばした直線がカメラの仮想画像面と交わる点をそれぞれQ。(m=1, 2, 3)とする。これらの点Q。は各カメラによる画像の中心点を表す。

【0045】ここで A_1 、 A_2 、 A_3 のx座標をそれぞれ x_1 、 x_2 、 x_3 とする。カメラの仮想画像面とx軸は平行ゆえ、 $|A_1A_2|$ と $|A_2A_3|$ は等しくなる。これと x_4 < x_2 < x_3 より、

 $x_1 - x_2 = x_2 - x_3$ (1)

像に合成される。

となる。

【0046】また、カメラC₁とC₂における視差ベクトルd₁は水平成分しかもたないことから、1次元ベクトルであり、ベクトルQ₁A₁からベクトルQ₂A₂を引いたものとなるので、

【0047】次にカメラC₁とC₁における視差ベクトルd₂は、ベクトルQ₃A₃からベクトルQ₁A₂を引いたものとなり、

$$d_2 = x_2 - (x_3 - a)$$
 (3)

【0048】よって式(1)~式(3)より、

$$d_1 = d_2 \tag{4}$$

となる。このように隣合うカメラ間の代表点における視差ベクトルは全て等しくなる。このことは3視点の立体画像に限らず、3以外の視点数の場合も同様である。

【0049】従って本方式では、グローバル視差ベクトルは代表点における視差ベクトルとみなすことができるので、視点数がいくつであってもグローバル視差ベクトルは1つもてばよく、多視点画像において視差ベクトルを求める際の計算量及び、視差ベクトル自体の情報量が削減できる。

【0050】ゆえに、図6において、差分器54から出力される値は、視差補償部53から出力された視差ベクトルからVOP』とVOP』の間で求めたグローバル視差ベクトルを引いたローカル視差ベクトルとすることができる。図6における他のVOPについても同様に符号化される。

【 0 0 5 1 】 次に本発明における第 3 の実施の形態につ 30 いて説明する。

【0052】図8に本実施の形態の画像復号装置を示す。本実施の形態の復号装置は図1の符号化装置を用いて符号化されたデータを復号するためのものである。背景画像と立体部品画像obj.を構成する左目用画像VOP.IIの復号方法は、一般的なブロックマッチングを用いた動き補償予測復号と同じ方法である。立体部品画像obj.を構成する右目用画像VOP.IIに対しては、左目用画像VOP.IIの復号画像を用いて視差補償を行ない、復号する。

【0053】グローバル視差ベクトルとローカル視差ベクトルは視差ベクトル合成器81に入力され、通常の視差ベクトルが合成される。画像編集部80には、パラメータ入力部82より部品画像を画像面に対して平行に動*

$$z_{A}/w = x_{A}/x_{A1} = (x_{A}-a)/(x_{A2}-a)$$
 (5)

という関係があることから、点A。のx座標x.は、

$$x_{A} = a \times x_{a1} / (x_{a1} - x_{a2} + a) = a \times x_{a1} / d_{A}$$
 (6)

と表される。 d. は物体100のもつグローバル視差べ ※ ※クトルを表し、

$$d_{a} = x_{a1} - (x_{a2} - a) (7)$$

*かすときに用いる移動量と、部品画像を画像面に対して 垂直に動かすときに用いるグローバル視差ベクトルの変 化量が編集用の値として入力される。画像編集部80に は、復号された立体部品画像とグローバル視差ベクト ル、及びグローバル視差ベクトルをもつ代表ブロックの 位置情報も入力される。画像編集部80は、これらの入 力値を用いて立体部品画像の編集を行う。復号された背 景画像と編集後の部品画像は画像合成部83で1つの画

10

【0054】グローバル視差ベクトルは3次元空間にお 10 ける立体部品画像の奥行き(存在位置)に対応するた め、より大きいグローバル視差ベクトルをもつ部品画像 は奥行き方向に関してカメラにより近い位置に存在す る。画像編集部80では、そのグローバル視差ベクトル が、小さい立体部品画像から順に出力される。また、画 像合成部83には、まず背景画像が入力され、順次入力 された立体部品画像を背景画像上に上書きする。これに より、最初に入力した左右の各画像の上に、複数の部品 画像が重なる場合は、奥行き方向のより手前の部品画像 が上に書かれることになる。このようにグローバル視差 ベクトルを用いることにより、立体部品画像を合成する 際に部品画像の重なりを正しく表現することができる。 【0055】まず、x方向の移動パラメータを入力する ことにより、立体部品画像を水平方向に平行移動する場 合について説明する。

【0056】図9において、原点を O_1 、水平方向をx軸、奥行き方向をz軸とする座標系をとる。この座標上にカメラLとRをそれぞれaの間隔で光軸がz軸と平行になるように、点 O_1 (m=1, 2)の位置に配置する。また点 A_2 (x_1 , x_2)を立体部品画像o b y_1 の代表点とし、点 A_3 と点 O_4 を結び、カメラの仮想画像面と交差する点をそれぞれ A_4 (m=1, 2)とする。

【0057】点O.を通り、z軸に平行に伸ばした直線がカメラの仮想画像面と交わる点をそれぞれQ.(m=1, 2)とする。これらの点Q.は各カメラによる画像の中心点を表す。さらにカメラの仮想画像面からx軸までの距離をwとし、z=z.平面がカメラLの光軸と交わる点をS.、カメラRの光軸と交わる点をS.(a, z.)とする。ここでA.、A.の座標をそれぞれ(x...,

w)、(xa, w)とすると、1 次元ベクトルQı Aı、 Qı Aı はそれぞれ xa 、 xa ー a となる。ここで、△O ı Ao Sı∽△Oı Aı Qı かつ△Oı Ao Sı∽△Oı Aı Qı よ り、

50 【0058】ここで、左画像面上の立体部品画像のx方

である。

向移動量を、平行方向の移動パラメータ P. で表したとする。パラメータ P. を入力とすることにより、物体 1 0 0 は物体 1 0 1 の位置に平行移動したとすると、物体 1 0 0 の代表点 A_0 (x_A , z_A) は点 B_0 (x_B , z_A) に、点 A_1 は点 B_1 (x_A , x_A) に平行移動する。 *

11

という関係があることから、物体 100 の代表点 A_0 が物体 101 の代表点 B_0 に移動したときの右画像面上における移動量 $x_{12}-x_{12}$ は、

$$\mathbf{x}_{kz} - \mathbf{x}_{kz} = \mathbf{P}. \tag{9}$$

$$\mathbf{b}_{kz} \mathbf{b}_{kz} = \mathbf{P}. \mathbf{b}_{kz} \mathbf{b}_{kz}$$

【0059】よって、物体100の代表点A。 が物体100の代表点B。に移動したときの左右の両画像面上における移動量はB、に等しい。このとき、式(6)、式(7) と同様にして、点B。の x 座標 x は、

$$x_8 = a \times (x_{si} + P_s) / d_8$$
 (10)

【0060】 d。は物体101のもつグローバル視差ベクトルを表し、

$$d_8 = (x_{s1} + P_s) - (x_{b2} - a)$$
 (11)
$$rb_0$$

【0061】式(7)、式(9)、式(11)より、 d。 = d。 (12) となり、グローバル視差ベクトルd』とd。は等しくな

【0062】このとき式(6)、式(10)、式(12)より、

$$x_8 - x_A = P_x / x_{sl} \times x_A \qquad (13)$$

となる。よって物体を水平方向に移動する際は、以下の1)、2)の手順で行なえばよい。

【0063】1) x 方向の移動パラメータ P. を入力 し、左画像上で物体 100の代表点 A. の x 座標 x 』を、左画像上の代表点 B. の x 座標 x』 + P. の位置に 平行に動かす。

【0064】2) 右画像上で、物体100の代表点A。のx座標x2を、左画像上の代表点B。のx座標x2+P、の位置に平行に動かす。

【0065】この結果、物体100は物体101の位置 に移動し、このときの3次元空間内での移動量は式(1 3)よりP./x. ×x.となる。

【0066】次に、z方向の移動パラメータを入力することにより、立体部品画像を奥行き方向(画像面に対して垂直方向)に移動する場合について図10を用いて説明する。ただし、図10で用いる座標系及び物体100の配置は図9と同じである。z方向の移動パラメータPによって、移動後のカメラと物体の距離が移動前の距離のP.倍になるとする。図10において、パラメータP.を入力し、物体100が点O.と点A。を通る直線上にある物体102の位置に移動したとすると、物体100の代表点A。(xx, zx) は点C。(xc, zc) に移動50

* ここで物体 1 0 1 の代表点 B₀ と点 O₂ を結んだ線分がカメラの仮想画像面と交わる点を点 B₂ (x₁₂, w) とすると、△O₁ O₂ A₀ ∽△A₁ A₂ A₀ かつ△O₁ O₂ B₀ ∽△B₁ B₂ B₀ より、

 $z_{A}/(z_{A}-w) = a/(x_{a2}-x_{a1}) = a/(x_{b2}-x_{a1}-P_{c})$ (8)

するが、点A、は動かない。このとき、

$$z_c = P_z \times z_A \tag{14}$$

となる。点Ozと点Coを結んだ線分がカメラの仮想画像 10 面と交わる点をCz、z=zcの平面とz軸が交わる点を Tiとする。Czの座標をそれぞれ(xcz,w)とし、物 体100の点Auを点Oiと点Auを通る直線上で移動し た後の点Coのグローバル視差ベクトルをdcとする。 【0067】またxcは、式(6)を求めるときと同様

$$x_c = a \times x_{*1} / d_c \qquad (1.5)$$

となる。ここに

$$d_c = (x_{*1} - x_{*2} + a)$$
 (16)

である。△O: A: S: S△O: C: T: より、

$$20 \quad x_c / x_A = z_c / z_A \qquad (1.7)$$

という関係があることから、式 (17) に式 (6) と式 (15) を代入して 2c を求めると、

$$z_c = (d_{\lambda}/d_c) \times z_{\lambda}$$
 (18)

【0068】よって式(14)と式(17)よりグローバル視差ベクトルdc、点Coのx座標xc及び点Czの座標xaは、

$$d_c = d_{\star}/P_{\iota} \tag{19}$$

$$x_c = P_z \times a \times x_{sl} / d_A \qquad (20)$$

$$30 \quad X_{c2} = X_{a1} + a - d_{A}/P_{2} \qquad (21)$$

となる。よって物体100を物体102に動かす場合、 左画像上の物体100の代表点A₁は動かさず、右画像 上の点A₂は x₋₁ - x₋₂ だけ動かせばよい。

【0069】ここで物体102を $-(x_c-x_\lambda)$ 移動させ、それを物体103とする。物体102の代表点C。の移動した点を物体103の代表点D。とする。さらに点D。とO、を結んだ直線がカメラの仮想画像面と交わる点をD、 (x_{41}, w) とする。点D、0 x 座標 x_{41} は、式(6)、式(19)より

$$10 \quad X_{d1} = X_{d1} / P_z \qquad (22)$$

となる。よって物体102を物体103に動かす場合、 左画像上では点 B_1 を、右画像上では点 B_2 をそれぞれ x_1 $-x_4$ だけ動かせばよい。従って、物体100を奥行き方向(物体1000の位置)に移動する場合、以下の 3)、4)の手順で行なう。

【0070】3) z 方向の移動パラメータ P. を入力し、式(19)によりグローバル視差 dc を求め、立体部品画像の左画像上の点 A 1 を水平方向に(x a ー x a)動かす。

【0071】4)式(21)及び式(22)より、xa

と x a の値を求め、立体部品画像の右画像上の点 A 2 を (x - 2 - x x 2 + x a - x at) 動かす。

【0072】ゆえに視差ベクトルをグローバル視差ベクトルとローカル視差ベクトルの2段階にしてもつことにより、z方向の移動パラメータP.を入力し、グローバル視差ベクトルを変化させて、個々の部品画像の奥行き方向の位置を簡単に変えることができる。また、水平方向の移動(手順1),2))と奥行き方向の移動(手順3),4))を組み合わせることにより、3次元空間内の任意の位置に物体を移動させることができる。

【0073】なお上下方向の移動に関しては視差は関係がないので、単に画面上で平行移動すればよい。

【0074】また本実施の形態では2眼式の立体部品画像を用いたが、多視点立体部品画像においても同様である。

[0075]

【発明の効果】以上説明したように本発明の符号化装置によれば、立体部品画像を符号化するときに用いるすべての視差ベクトルに対して、そのうちの1本の視差ベクトルをグローバル視差ベクトル(3次元空間における立 20体部品画像の奥行きに対応)とし、このグローバル視差ベクトルと他の視差ベクトルとの差分をとったものをローカル視差ベクトル(立体部品画像内での局所的な奥行き分布に対応)として、視差ベクトルを2つに分けてもつことによって、視差ベクトルを1できる。本発明においては、グローバル視差ベクトルとローカル視差ベクトルの2種類のベクトルを用いるが、これらを求める際の検索は1回でよいので、2回検索する場合と比べて計算量を削減することができる。 30

【0076】本発明の符号化装置によれば、立体画像を背景画像と立体部品画像に分けて符号化するとき、全ての視点の画像に対して視差のない部分を1つの背景画像として符号化することによって、背景画像の情報量が低減でき、符号化の効率を向上することができる。

【0077】本発明の符号化装置によれば、立体画像から切り出した立体部品画像と背景画像に分けて符号化を行なうことによって、立体画像内において急激な視差の変化が生じることがなく、マッチングするときの信頼度が向上し、また隣合う位置のローカル視差ベクトルの差 40分をとることによりローカル視差ベクトルの情報量を低減する場合でも、絶対量の大きいものが発生しない。

【0078】本発明の符号化装置によれば、立体部品画像内の全ての視差ベクトルの平均をグローバル視差ベクトルとすることによって、ローカル視差ベクトルの情報量を低減することができる。

【0079】本発明の符号化装置によれば、立体部品画 像内において最初に求めた視差ベクトルをグローバル視 差ベクトルとすることによって、グローバル視差ベクト ルを選択する際の計算量が低減される。 14

【0080】本発明の符号化装置によれば、立体部品画像内における視差ベクトルの大きさをヒストグラムにして、最も発生頻度の多い視差ベクトルをグローバル視差ベクトルとすることによって、3次元空間における立体部品画像の奥行きを適切に表現することができる。

【0081】本発明の符号化装置によれば、現フレーム あるいはフィールドのグローバル視差ベクトルと1つ前 のフレームあるいはフィールドのグローバル視差ベクト ルの差分をとることによって、グローバル視差ベクトル の情報量を減らすことができる。

【0082】本発明の符号化装置によれば、空間方向に関して、1つの多視点立体部品画像に対してグローバル視差ベクトルは1つもてばよいので、グローバル視差ベクトルの計算量及び情報量が低減でき、符号化の効率を向上することができる。

【0083】本発明の復号装置において、多視点の各画像を合成する際に複数の部品画像が重なる部分では、より大きいグローバル視差をもつ部品画像を上書きすることによって、重なりが正しく表現された多視点立体画像を復号することができる。

【0084】本発明の復号装置において、奥行き方向の 移動パラメータを入力し、立体部品画像のグローバル視 差ベクトルの値を変えることによって、簡単に任意の奥 行きをもつ立体部品画像を復号することができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態であり、背景画像と複数 の立体部品画像を符号化する符号化装置の構成図である。

【図2】カメラによる入力画像から立体部品画像を切り出すことを説明する図である。

【図3】立体部品画像の符号化を行なう順序を説明する 図である。

【図4】視差ベクトルの算出例を説明する図である。

【図5】視差ベクトルをグローバル視差ベクトルとローカル視差ベクトルで表すことを説明する図である。

【図6】本発明の別の一実施の形態であり、多視点立体 部品画像を符号化するときの符号化装置の構成図であ る

【図7】多視点立体部品画像を符号化する際に、空間方向に対しグローバル視差ベクトルを共通にもつことを説明する図である。

【図8】本発明の一実施の形態であり、背景画像と複数 の立体部品画像を復号する復号装置の構成図である。

【図9】立体部品画像の平行移動を説明する図である。

【図10】立体部品画像の奥行き方向の移動を説明する図である。

【図11】多視点画像の圧縮に関する従来例の説明図である。

【図12】2段階の動きベクトルを求める従来例の説明 50 図である。

【符号の説明】

- 1 背景画像
- 2 原画像
- 3 切り出し装置
- 43, 44, 45, 46 立体部品画像

15

- 5 画像入力部
- 6 動き補償部
- 7,18 減算器
- 8, 19 変換部
- 9,20 量子化部
- 10 可変長符号化部
- 11 逆量子化部
- 12 逆変換部
- 13, 15, 51 加算器
- 14 フレームメモリ

- * 16,53 視差補償部
 - 17,52 視差ベクトル分割器
 - 21 多重化部
 - 31 左目用立体部品画像
 - 32 右目用立体部品画像
 - 33 合成画像
 - 5 4 差分器
 - 60 比較器
 - 70 大ブロック
- 10 71 小ブロック
 - 80 編集部
 - 81 視差ベクトル合成器
 - 82 外部入力部
 - 83 画像合成部
- * 100, 101, 102, 103 物体

【図2】

【図9】

【図6】

【図7】

【図8】

【図11】

. 【図12】

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第3区分 【発行日】平成15年7月4日(2003.7.4)

【公開番号】特開平9-275578

【公開日】平成9年10月21日(1997.10.21)

【年通号数】公開特許公報9-2756

【出願番号】特願平8-82215

【国際特許分類第7版】

C08L	101/00	LSY
C08K	3/00	KAA
	3/22	KAE
	3/30	KAG
	3/32	
C08L	27/18	LGF
	51/04	LKY
	67/02	LNZ
	69/00	LPN
HO4N	13/02	
	7/32	
(FI)		
C08L	101/00	LSY
C08K	3/00	KAA
	3/22	KAE
	3/30	KAG
	3/32	
C08L	27/18	LGF
	51/04	LKY
HO4N	13/02	
	7/137	Z

【手続補正書】

【提出日】平成15年3月26日(2003.3.2 6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 少なくとも1つの視差のある多視点画像を入力する入力手段と、前記多視点画像のうち少なくとも1つの画像に対してフレームあるいはフィールド間の動き量を用いて動き補償予測を行う動き補償手段と、前記多視点画像のうち残りの画像に対してフレームあるいはフィールド間の視差量を用いて視差補償予測を行う視差補償手段と、視差ベクトル分割手段とを備える多視点符号化装置であって、前記視差ベクトル分割手段は、前記視差補償手段で求められた視差ベクトルのうちの1つをグローバル視差ベクトルとし、残りの視差ベクトルか

らグローバル視差ベクトルを引いたものをローカル視差 ベクトルとして出力することを特徴とする多視点画像符 号化装置。

【請求項2】 少なくとも1つの3視点以上の多視点画像を入力する入力手段と、前記多視点画像のうち少なくとも1つの画像に対してフレームあるいはフィールド間の動き量を用いて動き補償予測を行う動き補償手段と、前記多視点画像のうち残りの画像に対してフレームあるいはフィールド間の視差量を用いて視差補償予測を行う視差補償手段とを備えるとともに、視差ベクトル分割手段と少なくとも1つの差分器を備える多視点符号化装置であって、前記視差ベクトル分割手段は、特定の視点間において求められた視差ベクトルのうちの1つをグローバル視差ベクトルとし、残りの視差ベクトルからグローバル視差ベクトルを引いたものをローカル視差ベクトルと引いたものをローカル視差ベクトルとが記がローバル視差ベクトルとが引いたものをローカル視点間において求められたすべての視差ベクトルと前記グローバル視差ベクトルとの差分を出力することを特徴とする多

視点画像符号化装置。

【請求項3】 <u>請求項1または2記載の多視点画像は、立体部品画像であることを特徴とした多視点画像符号化</u>装置。

【請求項4】 <u>請求項3記載の立体部品画像は、背景画像を含むことを特徴とした多視点画像符号化装置</u>。

【請求項5】 請求項1または2記載の視差ベクトル分割手段は、グローバル視差ベクトルとして<u>多視点</u>画像内の全ての視差ベクトルの平均を出力することを特徴とした多視点画像符号化装置。

【請求項6】 請求項1または2記載の視差ベクトル分割手段は、グローバル視差ベクトルとして<u>多視点</u>画像内で最初に求めた視差ベクトルを出力することを特徴とした多視点画像符号化装置。

【請求項7】 請求項1または2記載の視差ベクトル分割手段は、グローバル視差ベクトルとして<u>多視点</u>画像内の視差ベクトルの大きさをヒストグラムにして、最も発生頻度の多い視差ベクトルを出力することを特徴とした多視点画像符号化装置。

【請求項8】 請求項1または2記載の視差ベクトル分割手段は、<u>現在視差補償を行っている</u>フレームあるいはフィールドのグローバル視差ベクトルとして、<u>現在視差補償を行っている</u>フレームあるいはフィールドのグローバル視差ベクトルと直前<u>に視差補償を行った</u>フレームあ

るいはフィールドのグローバル視差ベクトルの差分を出 力することを特徴とした多視点画像符号化装置。

【請求項9】 請求項1または2記載の視差ベクトル分割手段は、ローカル視差ベクトルとして、直前に求めたローカル視差ベクトルとの差分を出力することを特徴とした多視点画像符号化装置。

【請求項10】 多視点立体画像のフレームあるいはフィールド間の動き量及び視差量を用いて、動き補償を行う動き補償手段及び視差補償を行う視差補償手段とを備える多視点画像復号装置において、入力されたグローバル視差ベクトルと前記ローカル視差ベクトルを用いてが記視差ベクトルを視差補償手段に出力する視差ベクトルを視差補償手段に出力する視差ベクトルを視差補償手段に出力する視差ベクトルを視差補償手段に出力する視差ベクトルを視差補償手段に出力する視差がクトルを視差補償手段と、入力されたパラメータを用いて立体部品画像の奥行きを変化させて画像合成手段に出力する画像編集手段と、入力された背景画像と立体部品画像を合成する画像合成手段を備えることを特徴とした多視点画像復号装置。

【請求項11】 請求項<u>10</u>記載の多視点画像復号装置において、前記画像編集手段は、前記グローバル視差ベクトルが小さい立体部品画像から順に出力し、前記画像合成手段は、背景画像が入力された後に順次入力される立体部品画像を背景画像上に上書きすることにより画像を合成することを特徴とした多視点画像復号装置。