Seminar 4

- **1.** (i) Let $f: \mathbb{C}^* \to \mathbb{R}^*$ be defined by f(z) = |z|. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- (ii) Let $n \in \mathbb{N}$ and $g : \mathbb{Z} \to \mathbb{Z}_n$ be defined by $g(x) = \widehat{x}$. Prove that g is a group homomorphism between $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$.
- **2.** (i) Let $n \in \mathbb{N}$, $n \geq 2$ and let $\alpha : GL_n(\mathbb{R}) \to \mathbb{R}^*$ be defined by $\alpha(A) = \det(A)$. Show that α is a group homomorphism between $(GL_n(\mathbb{R}), \cdot)$ and (\mathbb{R}^*, \cdot) .
- (ii) Let $n \in \mathbb{N}$, $n \geq 2$ and let $\beta : M_n(\mathbb{R}) \to \mathbb{R}$ be defined by $\beta(A) = \det(A)$. Show that β is not a group homomorphism between $(M_n(\mathbb{R}), +)$ and $(\mathbb{R}, +)$.
 - 3. Determine the kernel and the image of the group homomorphisms from Ex. 1. and 2.
- **4.** Let $f: \mathbb{C}^* \to GL_2(\mathbb{R})$ be defined by $f(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that f is a group homomorphism between (\mathbb{C}^*, \cdot) and $(GL_2(\mathbb{R}), \cdot)$.
- **5.** Let $a, b \in \mathbb{N}$ and $f : \mathbb{C}^* \to \mathbb{R}^*$ be defined by $f(z) = a \cdot |z| + b$. Determine a, b such that f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) .
- **6.** Let (G,\cdot) be a group and let $f:G\to G$ be defined by $f(x)=x^{-1}$. Show that $f\in \operatorname{End}(G) \iff G$ is abelian.
 - **7.** Show that the following groups are isomorphic: $(\mathbb{Z}_n, +)$ and (U_n, \cdot) $(n \in \mathbb{N}^*)$.
 - **8.** Show that the following groups are isomorphic: Klein's group (K,\cdot) and $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$.
 - **9.** Show that the following groups are isomorphic: $(\mathbb{R},+)$ and (\mathbb{R}_+^*,\cdot) .
 - **10.** Let (G, \cdot) be a group with 3 elements. Determine $\operatorname{End}(G)$ and $\operatorname{Aut}(G)$.