

# Test report

323875-1TRFWL

Date of issue: March 23, 2017

Applicant:

Aromaestro Inc.

Product:

Aromaestro

Model:

Model 105

FCC ID: IC Reg. Number

2AKE3-ARO105 21410-ARO105

Specifications:

FCC 47 CFR Part 15 Subpart C, §15.225

Operation within the band 13.110–14.010 MHz

RSS-210 Issue 9, August 2016

Annex B.6 Devices operating in 13.110–14.010 MHz frequency band for any application





#### Test location

| Company name | Nemko Canada Inc.                                    |
|--------------|------------------------------------------------------|
| Address      | 292 Labrosse Avenue                                  |
| City         | Pointe-Claire                                        |
| Province     | QC                                                   |
| Postal code  | H9R 5L8                                              |
| Country      | Canada                                               |
| Telephone    | +1 514 694 2684                                      |
| Facsimile    | +1 514 694 3528                                      |
| Toll free    | +1 800 563 6336                                      |
| Website      | www.nemko.com                                        |
| Site number  | FCC: 722545; IC: 2040G-5 (3 m semi anechoic chamber) |

| Tested by   | Avul Nzenza, EMC/Wireless Specialist and Yong Huang, Wireless/EMC Specialist |  |
|-------------|------------------------------------------------------------------------------|--|
| Reviewed by | andrey Adelberg, Senior Wireless/EMC Specialist                              |  |
| Date        | March 23, 2017                                                               |  |
| Signature   |                                                                              |  |

#### Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

#### Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.



## Table of contents

| Table of  | contents                                                                                      | 3    |
|-----------|-----------------------------------------------------------------------------------------------|------|
| Section 1 | . Report summary                                                                              | 4    |
| 1.1       | Applicant and manufacturer                                                                    | 4    |
| 1.2       | Test specifications                                                                           | 4    |
| 1.3       | Test methods                                                                                  | 4    |
| 1.4       | Statement of compliance                                                                       | 4    |
| 1.5       | Exclusions                                                                                    | 4    |
| 1.6       | Test report revision history                                                                  | 4    |
| Section 2 | 2. Summary of test results                                                                    | 5    |
| 2.1       | FCC Part 15 Subpart C, general requirements test results                                      | 5    |
| 2.2       | FCC Part 15 Subpart C, intentional radiators test results                                     |      |
| 2.3       | IC RSS-GEN, Issue 4, test results                                                             | 5    |
| 2.4       | IC RSS-210, Issue 9, test results                                                             |      |
| Section 3 | 3. Equipment under test (EUT) details                                                         | 6    |
| 3.1       | Sample information                                                                            | 6    |
| 3.2       | EUT information                                                                               | 6    |
| 3.3       | Technical information                                                                         | 6    |
| 3.4       | Product description and theory of operation                                                   | 6    |
| 3.5       | EUT exercise details                                                                          | 6    |
| 3.6       | EUT setup diagram                                                                             | 7    |
| Section 2 | 1. Engineering considerations                                                                 | 8    |
| 4.1       | Modifications incorporated in the EUT                                                         | 8    |
| 4.2       | Technical judgment                                                                            | 8    |
| 4.3       | Deviations from laboratory tests procedures                                                   | 8    |
| Section   | 5. Test conditions                                                                            | 9    |
| 5.1       | Atmospheric conditions                                                                        |      |
| 5.2       | Power supply range                                                                            | 9    |
| Section 6 | 5. Measurement uncertainty                                                                    | . 10 |
| 6.1       | Uncertainty of measurement                                                                    | 10   |
| Section 7 | • •                                                                                           |      |
| 7.1       | Test equipment list                                                                           | 11   |
| Section 8 | 3. Testing data                                                                               | . 12 |
| 8.1       | FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits                        |      |
| 8.2       | FCC 15.215(c) 20 dB bandwidth                                                                 | 15   |
| 8.3       | RSS-Gen 6.6 Occupied bandwidth                                                                | 17   |
| 8.4       | FCC 15.225(a–c) and RSS-210 A B.6 (a–c) Field strength within the 13.110–14.010 MHz band      | 19   |
| 8.5       | FCC 15.225(d) and RSS-210 A B.6(d) Field strength of emissions outside 13.110–14.010 MHz band |      |
| 8.6       | FCC 15.225(e) and RSS-210 A B.6 Frequency tolerance of the carrier signal                     | 24   |
| Section   | ). Block diagrams of test set-ups                                                             | . 25 |
| 9.1       | Radiated emissions set-up for frequencies below 30 MHz                                        | 25   |
| 9.2       | Radiated emissions set-up                                                                     | 26   |



## Section 1. Report summary

### 1.1 Applicant and manufacturer

| Company name    | Aromaestro Inc.                       |
|-----------------|---------------------------------------|
| Address         | 40, Émilien-Marcoux street, Suite 100 |
| City            | Blainville                            |
| Province/State  | Quebec                                |
| Postal/Zip code | J7C 0B5                               |
| Country         | Canada                                |

#### 1.2 Test specifications

| FCC 47 CFR Part 15, Subpart C, Clause 15.225 | Operation in the 13.110–14.010 MHz                                        |
|----------------------------------------------|---------------------------------------------------------------------------|
| RSS-210 Issue 9, August 2016, Annex B.6      | Devices operating in 13.110–14.010 MHz frequency band for any application |

### 1.3 Test methods

| ANSI C63.10 v2013 | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices |
|-------------------|------------------------------------------------------------------------------------------------|
|                   |                                                                                                |

#### 1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

#### 1.5 Exclusions

None

#### 1.6 Test report revision history

| Revision # | Details of changes made to test report |
|------------|----------------------------------------|
| TRF        | Original report issued                 |



## Section 2. Summary of test results

#### 2.1 FCC Part 15 Subpart C, general requirements test results

| Part       | Test description          | Verdict           |
|------------|---------------------------|-------------------|
| §15.207(a) | Conducted limits          | Pass              |
| §15.31(e)  | Variation of power source | Pass <sup>1</sup> |
| §15.203    | Antenna requirement       | Pass <sup>2</sup> |
| §15.215(c) | 20 dB bandwidth           | Pass              |

Notes: <sup>1</sup> Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

#### 2.2 FCC Part 15 Subpart C, intentional radiators test results

| Part       | Test description                                                    | Verdict |
|------------|---------------------------------------------------------------------|---------|
| §15.225(a) | Field strength within 13.553–13.567 MHz band                        | Pass    |
| §15.225(b) | Field strength within 13.410–13.553 MHz and 13.567–13.710 MHz bands | Pass    |
| §15.225(c) | Field strength within 13.110–13.410 MHz and 13.710–14.010 MHz bands | Pass    |
| §15.225(d) | Field strength outside 13.110–14.010 MHz band                       | Pass    |
| §15.225(e) | Frequency tolerance of carrier signal                               | Pass    |

Notes: None

#### 2.3 IC RSS-GEN, Issue 4, test results

| Part  | Test description                                                         | Verdict                     |
|-------|--------------------------------------------------------------------------|-----------------------------|
| 6.6   | Occupied bandwidth                                                       | Pass                        |
| 6.11  | Transmitter frequency stability                                          | Pass <sup>1</sup>           |
| 7.1.2 | Receiver radiated emission limits                                        | Not applicable <sup>2</sup> |
| 7.1.3 | Receiver conducted emission limits                                       | Not applicable <sup>2</sup> |
| 8.8   | Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus | Pass                        |

Notes: <sup>1</sup> Frequency stability covered in RSS-210.

#### 2.4 IC RSS-210, Issue 9, test results

| Part      | Test description                                                             | Verdict |
|-----------|------------------------------------------------------------------------------|---------|
| A B.6 (a) | The field strength within the band 13.553–13.567 MHz.                        | Pass    |
| A B.6 (b) | The field strength within the bands 13.410–13.553 MHz and 13.567–13.710 MHz  | Pass    |
| A B.6 (c) | The field strength within the bands 13.110–13.410 MHz and 13.710–14.010 MHz. | Pass    |
| A B.6 (d) | The field strength outside the band 13.110–14.010 MHz.                       | Pass    |
| A B.6     | Carrier frequency stability                                                  | Pass    |

Notes: None

 $<sup>^{\</sup>rm 2}$  The Antennas are located within the enclosure of EUT and not user accessible.

<sup>&</sup>lt;sup>2</sup> According to sections 5.2 and 5.3 of RSS-Gen, Issue 4 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.



## Section 3. Equipment under test (EUT) details

#### 3.1 Sample information

| Receipt date           | January 24, 2017 |
|------------------------|------------------|
| Nemko sample ID number | Item # 1         |

#### 3.2 EUT information

| Product name  | Aromaestro   |
|---------------|--------------|
| Model         | Model 105    |
| Serial number | a8404115c7bf |

### 3.3 Technical information

| Operating band            | 13.553–13.567 MHz                                                                                            |
|---------------------------|--------------------------------------------------------------------------------------------------------------|
| Operating frequency       | 13.56 MHz                                                                                                    |
|                           | WIFI:OFDM                                                                                                    |
| Modulation type           | RFID: Readers to card 100 % ASK, Miller encoded, transfer speed 106 kBd to 848 kBd;Card to reader subcarrier |
|                           | load modulation, Manchester encoded or BPSK, transfer speed 106 kBd to 848 kBd                               |
| Occupied bandwidth (99 %) | 59.1 kHz                                                                                                     |
| Power requirements        | 100-120 Vac (adaptor) for 5 Vdc                                                                              |
| Emission designator       | 59K0M1D                                                                                                      |
| Antenna information       | The EUT has an integrated, non-detachable antenna.                                                           |

### 3.4 Product description and theory of operation

This RFID module is designed based on MFRC522. It is a highly integrated reader/writer for contactless communication at 13.56MHz. It supports ISO 14443A/MIFARE mode and MIFARE Classic (e.g. MIFARE Standard) products. Contactless communication using MIFARE higher transfer speeds up to 848kbit/s in both directions.

### 3.5 EUT exercise details

In the "AroRFID" software window, click on "Test RFID" to place the RFID reader in RFID tag read mode with continuous RFID 13.56 MHz carrier transmission and continuous RFID tag detection. The status bar at the bottom of the software window should display "Success". On the RFID reader, a red "MODE" LED should turn on



### 3.6 EUT setup diagram



Figure 3.6-1: Setup diagram



## **Section 4.** Engineering considerations

### 4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

#### 4.2 Technical judgment

None

#### 4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.



## **Section 5.** Test conditions

### 5.1 Atmospheric conditions

| Temperature       | 15–30 °C      |
|-------------------|---------------|
| Relative humidity | 20–75 %       |
| Air pressure      | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

#### 5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.



## Section 6. Measurement uncertainty

### 6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

| Test name                         | Measurement uncertainty, dB |
|-----------------------------------|-----------------------------|
| All antenna port measurements     | 0.55                        |
| Conducted spurious emissions      | 1.13                        |
| Radiated spurious emissions       | 3.78                        |
| AC power line conducted emissions | 3.55                        |



## Section 7. Test equipment

### 7.1 Test equipment list

Table 7.1-1: Equipment list

| Equipment                          | Manufacturer           | Model no. | Asset no. | Cal cycle | Next cal.   |
|------------------------------------|------------------------|-----------|-----------|-----------|-------------|
| 3 m EMI test chamber               | TDK                    | SAC-3     | FA002532  | 2 year    | May 25/17   |
| Flush mount turntable              | Sunol                  | FM2022    | FA002550  | _         | NCR         |
| Controller                         | Sunol                  | SC104V    | FA002551  | _         | NCR         |
| Antenna mast                       | Sunol                  | TLT2      | FA002552  | _         | NCR         |
| Power source                       | California Instruments | 5001ix    | FA002494  | 1 year    | April 29/17 |
| Receiver/spectrum analyzer         | Rohde & Schwarz        | ESU 40    | FA002071  | 1 year    | March 23/17 |
| LISN                               | Rohde & Schwarz        | ENV216    | FA002023  | 1 year    | March 8/17  |
| Bilog antenna (20–2000 MHz)        | Sunol                  | JB1       | FA002517  | 1 year    | Oct. 5/17   |
| Active loop antenna (9 kHz-30 MHz) | COM-POWER              | AL-130    | FA002722  | 1 year    | March 31/17 |
| Environmental Chamber              | ESPEC                  | EPX-4H    | FA002736  | 1 year    | March 18/17 |

Note: NCR - no calibration required

Test name

FCC 15.215(c) 20 dB bandwidth

**Specification** FCC 15 Subpart C



### Section 8. Testing data

#### 8.1 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

#### 8.1.1 Definitions and limits

#### FCC:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50  $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

#### IC:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.1-1: Conducted emissions limit

| Frequency of emission, | Conducted limit, dBμV |           |
|------------------------|-----------------------|-----------|
| MHz                    | Quasi-peak            | Average** |
| 0.15-0.5               | 66 to 56*             | 56 to 46* |
| 0.5–5                  | 56                    | 46        |
| 5–30                   | 60                    | 50        |

Note: \* -

#### 8.1.2 Test summary

| Test date     | January 26, 2017 | Temperature       | 24.9 °C   |
|---------------|------------------|-------------------|-----------|
| Test engineer | Avul Nzenza      | Air pressure      | 1004 mbar |
| Verdict       | Pass             | Relative humidity | 34 %      |

<sup>\* -</sup> The level decreases linearly with the logarithm of the frequency.

<sup>\*\* -</sup> A linear average detector is required.

Section 8 Testing data

Test name FCC 15.215(c) 20 dB bandwidth

**Specification** FCC 15 Subpart C



#### 8.1.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

#### Test receiver settings:

| Frequency span       | 150 kHz to 30 MHz                                                |
|----------------------|------------------------------------------------------------------|
| Detector mode        | Peak and Average (preview mode); Quasi-Peak (final measurements) |
| Resolution bandwidth | 9 kHz                                                            |
| Video bandwidth      | 30 kHz                                                           |
| Trace mode           | Max Hold                                                         |
| Measurement time     | 1000 ms                                                          |



#### 8.1.4 Test data



308692 \_ Conducted Emissions\_120 Vac\_Phase\_TX ON\_January 26, 2017

Conducted Emissions\_120 Vac\_Phase\_1 X ON.
Preview Result 1-PK+
Critical\_Freqs AVG
Critical\_Freqs PK+
CISPR 22 Limit - Class B, Mains (Quasi-Peak)
CISPR 22 Limit - Class B, Mains (Average)
Final\_Result CPK
Final\_Result CAV

Plot 8.1-1: Conducted emissions on phase line – 120 V<sub>AC</sub> power input



308692 \_ Conducted Emissions\_120 Vac\_Neutral\_TX ON\_January 26, 2017

Preview Result 2-AVG Preview Result 1-PK+ MaxPeak-PK+

Average-AVG
CISPR 22 Limit - Class B, Mains (Quasi-Peak)
CISPR 22 Limit - Class B, Mains (Average)

Plot 8.1-2: Conducted emissions on neutral line- 120 V<sub>AC</sub> power input

FCC 15 Subpart C

#### 8.2 FCC 15.215(c) 20 dB bandwidth

#### 8.2.1 Definitions and limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

#### 8.2.2 Test summary

| Test date     | January 26, 2017 | Temperature       | 24.9 °C   |
|---------------|------------------|-------------------|-----------|
| Test engineer | Avul Nzenza      | Air pressure      | 1004 mbar |
| Verdict       | Pass             | Relative humidity | 34 %      |

### 8.2.3 Observations, settings and special notes

#### Spectrum analyzer settings:

| Detector mode        | Peak         |
|----------------------|--------------|
| Resolution bandwidth | ≥1 % of span |
| Video bandwidth      | RBW×3        |
| Trace mode           | Max Hold     |

#### 8.2.4 Test data

#### Table 8.2-1: Lower 20 dBc frequency cross result

|   | Fundamental frequency, MHz | Lower 20 dBc frequency cross, MHz | Minimum limit, MHz | Margin, kHz |
|---|----------------------------|-----------------------------------|--------------------|-------------|
| I | 13.561                     | 13.558                            | 13.553             | 5           |

#### Table 8.2-2: Upper 20 dBc frequency cross result

| Fundamental frequency, MHz | Upper 20 dBc frequency cross,<br>MHz | Maximum limit, MHz | Margin, kHz |
|----------------------------|--------------------------------------|--------------------|-------------|
| 13.561                     | 13.565                               | 13.567             | 2           |



#### 8.2.4 Test data, continued



Date: 26.JAN.2017 16:11:01

Figure 8.2-1: 20 dB bandwidth spectrum plot



#### 8.3 RSS-Gen 6.6 Occupied bandwidth

#### 8.3.1 Definitions and limits

The emission bandwidth (xdB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3× the resolution bandwidth.

#### 8.3.2 Test summary

| Test date     | January 26, 2017 | Temperature       | 24.9 °C   |
|---------------|------------------|-------------------|-----------|
| Test engineer | Avul Nzenza      | Air pressure      | 1004 mbar |
| Verdict       | Pass             | Relative humidity | 34 %      |

#### 8.3.3 Observations, settings and special notes

#### Spectrum analyzer settings:

| Detector mode        | Peak         |
|----------------------|--------------|
| Resolution bandwidth | ≥1 % of span |
| Video bandwidth      | RBW×3        |
| Trace mode           | Max Hold     |

#### 8.3.4 Test data

#### Table 8.3-1: 99 % occupied bandwidth result

| Fundamental frequency, MHz | 99 % occupied bandwidth, kHz |
|----------------------------|------------------------------|
| 13.561                     | 59.1                         |



#### 8.3.5 Test data, continued



Date: 26.JAN.2017 16:13:37

Figure 8.3-1: 99 % occupied bandwidth



#### 8.4 FCC 15.225(a-c) and RSS-210 A B.6 (a-c) Field strength within the 13.110-14.010 MHz band

#### 8.4.1 Definitions and limits

- a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15848  $\mu$ V/m (84 dB $\mu$ V/m) at 30 m.
- b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 μV/m (50.5 dBμV/m) at 30 m
- c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 μV/m (40.5 dBμV/m) at 30 m



Figure 8.4-1: In-band spurious emissions limit @ 30 m

#### 8.4.2 Test summary

| Test date     | January 26, 2017 | Temperature       | 24.9 °C   |
|---------------|------------------|-------------------|-----------|
| Test engineer | Avul Nzenza      | Air pressure      | 1004 mbar |
| Verdict       | Pass             | Relative humidity | 34 %      |

#### 8.4.3 Observations/special notes

The measurements were performed at the distance of 3 m. 40 dB distance correction factor\* was applied to the measurement result in order to comply with 30 m limits.

 $\boldsymbol{*}$  30 m to 3 m distance correction factor calculation (for 13 MHz band):

$$40 \times Log_{10}$$
 (3 m/30 m) =  $40 \times Log_{10}$  (0.1) =  $-40$  dB

Spectrum analyzer settings:

| Detector mode        | Peak     |
|----------------------|----------|
| Resolution bandwidth | 3 kHz    |
| Video bandwidth      | 10 kHz   |
| Trace mode           | Max Hold |



#### 8.4.4 Test data



Date: 26.JAN.2017 16:07:13

Figure 8.4-2: Emission mask @ 3 m

Note: 30 m limit line is depicted on the plot above at 3 m measurement distance for comparison reasons. 30 m limit line would be 40 dB higher than 3 m one.

Table 8.4-1: Field strength measurement results within 13.11–14.01 MHz band at 3 m distance

| Frequency, MHz | Field strength, dBμV/m | Limit₃ <sub>m</sub> , dBμV/m | Margin, dB |
|----------------|------------------------|------------------------------|------------|
| 13.561         | 51.39                  | 124.0                        | 72.61      |

Table 8.4-2: Field strength measurement results within 13.11–14.01 MHz band at 30 m distance

| Frequ | iency, MHz | Field strength, dBμV/m | Limit <sub>30 m</sub> , dBμV/m | Margin, dB |
|-------|------------|------------------------|--------------------------------|------------|
| 1     | 13.561     | 11.39                  | 84.0                           | 72.61      |



#### FCC 15.225(d) and RSS-210 A B.6(d) Field strength of emissions outside 13.110-14.010 MHz band 8.5

#### Definitions and limits 8.5.1

FCC: The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in

The field strength of emissions appearing within restricted bands (as specified in §15.205) shall not exceed the limits from §15.209.

IC: The field strength of any emission outside the band 13.110–14.010 MHz shall not exceed the 30  $\mu$ V/m (29.5 dB $\mu$ V/m) limit.

Table 8.5-1: FCC §15.209 and RSS-Gen – Radiated emission limits

| Frequency,  | Field streng | gth of emissions                | Measurement distance, m |
|-------------|--------------|---------------------------------|-------------------------|
| MHz         | μV/m         | dBμV/m                          |                         |
| 0.009-0.490 | 2400/F       | $67.6 - 20 \times \log_{10}(F)$ | 300                     |
| 0.490-1.705 | 24000/F      | $87.6 - 20 \times \log_{10}(F)$ | 30                      |
| 1.705-30.0  | 30           | 29.5                            | 30                      |
| 30–88       | 100          | 40.0                            | 3                       |
| 88–216      | 150          | 43.5                            | 3                       |
| 216–960     | 200          | 46.0                            | 3                       |
| above 960   | 500          | 54.0                            | 3                       |

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test  $% \left( 1\right) =\left( 1\right) \left( 1$ 

Table 8.5-2: Restricted frequency bands

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9–410     | 4.5-5.15    |
| 0.495-0.505       | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25–7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |
| 4.20725-4.20775   | 73–74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8–75.2           | 1660–1710     | 10.6–12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123–138             | 2200–2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9–150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260–3267     | 23.6-24.0   |
| 12.29–12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240–285             | 3345.8–3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | Above 38.6  |
| 13.36–13.41       |                     |               |             |

#### 8.5.2 Test summary

| Test date     | January 26, 2017 | Temperature       | 24.9 °C   |
|---------------|------------------|-------------------|-----------|
| Test engineer | Avul Nzenza      | Air pressure      | 1004 mbar |
| Verdict       | Pass             | Relative humidity | 34 %      |



#### 8.5.3 Observations, settings and special notes

The spectrum was searched from 9 kHz to 1 GHz.

Radiated measurements were performed at a distance of 3 m.

Limit line for frequencies below 490 kHz was re-calculated to 3 m measurements distance:  $40 \times Log_{10}$  (300 m/3 m) =  $40 \times Log_{10}$  (100) = +80 dB Limit line for frequencies within 490 kHz to 30 MHz war re-calculated to 3 m measurements distance:  $40 \times \text{Log}_{10}$  (30 m/3 m) =  $40 \times \text{Log}_{10}$  (10) = +40 dB

#### Spectrum analyzer settings:

| Frequency ranges     | 9 kHz to 490 kHz | 490 kHz to 30 MHz | 30 MHz to 1000 MHz |
|----------------------|------------------|-------------------|--------------------|
| Detector mode        | Quasi-Peak       | Quasi-Peak        | Peak               |
| Resolution bandwidth | 200 Hz           | 9 kHz             | 100 kHz            |
| Video bandwidth      | 300 Hz           | 30 kHz            | 300 kHz            |
| Trace mode           | Max Hold         | Max Hold          | Max Hold           |
| Measurement time     | 100 ms           | 100 ms            | 100 ms             |

#### Test data 8.5.4



Figure 8.5-1: Field strength of spurious emissions below 30 MHz



#### 8.5.4 Test data, continued



Preview Result 1-PK+

FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

Figure 8.5-2: Field strength of spurious emissions above 30 MHz

Note: all measurement results indicated in the plot were taken with a peak detector, which is more stringent measurement, and still comply with quasi-peak limit.



#### 8.6 FCC 15.225(e) and RSS-210 A B.6 Frequency tolerance of the carrier signal

#### 8.6.1 Definitions and limits

The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01$  % ( $\pm 100$  ppm) of the operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 °C. For battery operated equipment, the equipment tests shall be performed using a new battery.

#### 8.6.2 Test summary

| Test date     | January 31, 2017 and February 3, 2017 | Temperature       | 23 °C     |
|---------------|---------------------------------------|-------------------|-----------|
| Test engineer | Yong Huang                            | Air pressure      | 1010 mbar |
| Verdict       | Pass                                  | Relative humidity | 35 %      |

#### 8.6.3 Observations, settings and special notes

#### Spectrum analyzer settings:

| Detector mode        | Peak     |
|----------------------|----------|
| Resolution bandwidth | 1 Hz     |
| Video bandwidth      | 1 Hz     |
| Trace mode           | Max Hold |

#### 8.6.4 Test data

**Table 8.6-1:** Frequency drift measurements results

| Test conditions | Frequency, MHz | Frequency drift, ±ppm | Limit, ±ppm | Margin, ppm |
|-----------------|----------------|-----------------------|-------------|-------------|
| +50 °C, Nominal | 13.5611335     | 5.456741223           | 100         | 94.5432588  |
| +20 °C, +15 %   | 13.5612065     | 0.073739746           | 100         | 99.9262603  |
| +20 °C, Nominal | 13.5612075     | Reference             | Reference   | Reference   |
| +20 °C, −15 %   | 13.5611955     | 0.884876955           | 100         | 99.115123   |
| −20 °C, Nominal | 13.5613255     | 8.701290058           | 100         | 91.2987099  |

Note: frequency drift was calculated as follows:

Frequency drift (ppm) = (( $F_{measured} - F_{reference}$ )  $\div F_{reference}$ )  $\times 1 \times 10^6$ 



## Section 9. Block diagrams of test set-ups

### 9.1 Radiated emissions set-up for frequencies below 30 MHz





### 9.2 Radiated emissions set-up

