AA/ECE/ME 548 Linear Multivariable Control Sp22 Prof Burden

today: Excurse logistics, Convas, etc

Exercise logistics, Convas, etc

Exercise 1 - solution done, working on grading

Exercise 1 - assessment - due vext Monday

Exercise 1 - due this Friday

I week 6 lectures

I guestions / office hours

* connection between stability & optimal control
i.e. Lyapunov i.e. LQR

consider min $\int_{0}^{\infty} x^{T}Qx + u^{T}Ru$ s.t. $\dot{x}/x^{+} = Ax + Bu$

* know that optimal $v^* = -Kx$ where $K = R^{-1}B^{T}P$ (\dot{x})
or $K = (B^{T}PB + R)^{-1}B^{T}PA$ (x^{+})

where P=PT>O solves a Riccotti equation

fact: closed-loop algoriums $\dot{x}/x^{+} = Ax + Bu = (A - BK)x$ ore (exponentially) stable and $v(x) = x^{+}Px$ is a Luggmon function

Zoom Page

ore (exponentially) stable and v(x) = x' rx is a Luggmov function x also the (optimal) cost-to-go

ex:
$$\ddot{y} = u \iff \chi = \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} \Rightarrow \dot{\chi} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$= A \chi + B u$$

so $u = -K \chi = -\begin{bmatrix} k_p & k_D \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix}$

* if we choose K to min $\int_{0}^{\infty} \chi^{T} Q \chi + u^{T} R u$

then we've synthesized the "optimal" PD controlor

ex: $\ddot{y} = u \iff \chi = \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} \Rightarrow \dot{\chi} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} \begin{bmatrix} \dot{$

then we've sonthesized the "optimal" PID controller

(alternatively of Beigler-Nichok)

Zoom Page 2

given rangers time-varying reference r to track, wight want to chasse K to min $\int_0^\infty g \|r - y\|^2 + r \|u\|^2$ but this poblem doesn't have a solution $\int_0^\infty = (r - y)^T \cdot g \cdot (r - y)$ let e = r - y $= \begin{bmatrix} r - y \end{bmatrix} \begin{bmatrix} g \cdot o \end{bmatrix} \begin{bmatrix} r - y \\ g \cdot o \end{bmatrix}$ $\ddot{g} = \ddot{g} \Rightarrow \dot{x} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e \\ 1 & 1 \\ e \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} e \\ 1 \\ 0 \end{bmatrix}$ $+ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \ddot{r}$