

# Analyzing 1 Billion+ NYC Yellow Taxi and Uber Rides for Taxi Drivers

Jialei Zheng Ruilin Zhong Shengjia Zhang

#### **Project Overview**

#### 1. Uber v.s. Yellow Taxi in Manhattan?

Analyze and compare relationship between ride amount of yellow taxi and Uber, at different locations and time

#### 2. Predict demands for Yellow Taxi in specified area at specific time

Given pickup location, time, weather condition, etc., apply machine learning algorithms to predict:

- Ride amount requested by passengers
- Average fare amount
- Average tip amount
- 3. Develop a web app to inform Yellow Taxi drivers of real-time predicted ride amount, distance, and tip, so that riders could make better pick-up decisions

#### **Business Value and Social Value**

- 1. Helps NYC yellow taxi drivers underprivileged population
- 2. Modeled on "Big Data" (with 20G + size, ~ 24 million data-points), can potentially scale up to predict Uber's ride requests, distance & fare amount., and other parameters of interest
- 3. Can scale up to other cities out of NYC

\$\$\$HUGE BUSINESS VALUE\$\$\$ for Drivers, Passengers, Car-sharing companies, and governments!

#### **Data Source**

- The TLC Yellow Taxi dataset
  - Pickup & drop-off locations, trip time & date, fare, tips
  - *10+ million* rides per month
  - From Jul 2015 to Jun 2016 and Apr 2014 to Sep 2014
- Uber trip data
  - Date/time, pickup coordinates
  - Incomplete: Apr 2014 to Sep 2014
- Historical weather data for each day
  - Fetched from <a href="http://weathersource.com/">http://weathersource.com/</a>
  - Collect each day's weather data into a dictionary

## **Data Processing**

• Location: from coordinate (latitude, longitude) ---> neighborhood e.g. (40.762344, -73.982364) ---> Midtown

Using **Ray-casting algorithm** that finds out if a given point lies within a predetermined area defined by a 2-D polygon

- Pickup time: divided into hours.
- Weather: collect historical weather data for each day.
- Business day or not
- Temperature in Fahrenheit

For each unique combination of:

(neighborhood, hour, is\_business\_day, weather, temperature)

Count the DAILY total rides, average fare and tips.



## **Data Processing**

| VendorID tpep_pickup_datetimtpep_dropoff_  | datatnassana | ortnin di     | lun Leniakun    | 1. Patagoda | store and fredro | noff dronoff    | i naumont 1 |
|--------------------------------------------|--------------|---------------|-----------------|-------------|------------------|-----------------|-------------|
| 2 2015/12/1 0:00 2015/12/1                 |              |               | 3. 9799 40. 765 |             |                  | . 9663 40. 7630 |             |
| pickup_area                                | pickup_hour  | trip_distance | fare_amount     | tip_amount  | is_business_day  | weather         | temperature |
| Clinton                                    | 6            | 0. 1          | 456. 78         | 0           | 1                | sunny           | 49.3        |
| Hudson_Yards_Chelsea_Flatiron_Union_Square | 19           | 82. 91        | 415             | 10          | 1                | rain            | 46          |
| West_Village                               | 3            | 0. 5          | 390             | 0           | 1                | sunny           | 49. 3       |
| West_Village                               | 23           | 37. 41        | 350             | 133         | 1                | rain            | 46          |
| Turtle_Bay_East_Midtown                    | 13           | 0. 4          | 349. 7          | 0           | 1                | sunny           | 49. 3       |
| Murray_Hill_Kips_Bay                       | 23           | 72.94         | 339. 5          | 0           | 1                | sunny           | 45. 5       |
| Hudson_Yards_Chelsea_Flatiron_Union_Square | 22           | 59. 3         | 300             | 90. 09      | 1                | rain            | 46          |
| Hudson_Yards_Chelsea_Flatiron_Union_Square | 0            | 0             | 285             | 0           | 0                | sunny           | 43. 5       |
| 2 2015/12/1 0:00 2015/12/1                 | 0:10         | 6 2.02 7      | 3. 9827 40. 731 | 31 1        | N -7             | 4. 006 40. 7452 | 23 2        |
| 1 2015/12/1 0:00 2015/12/1                 | 0:00         | 1             | 3. 9902 40. 75  | 62 5        | Y                | 0               | 0 2         |
| 1 2015/12/1 0:00 2015/12/1                 | 0:05         | 1 4           | 3, 9958 40. 743 | 1 1         | N -74            | . 0026 40. 7305 | 55 1        |
| 2 2015/12/1 0:00 2015/12/2                 | 0:00         | 1 0.9         | 1. 0054 40. 727 | 28 1        | N -7             | 3. 997 40. 7253 | 39 1        |
| 2 2015/12/1 0:00 2015/12/1                 | 0:09         | 1 1. 73 -73   | 3. 9993 40. 728 | 32 1        | N -73            | 9809 40. 7377   | 78 1        |
| area                                       | hour         | is_business   | _day weather    | r temp_cat  | trip_count       | avg_fare        | avg_tips    |
| Upper_East_Side_Carnegie_Hill              | 19           |               | 1 sunny         |             | 80 5724          | 9.14            | 1 1.345     |
| Chinatown                                  | 5            |               | 1 sunny         |             | 50 349           | 16. 43          | 1.918       |
| Lenox_Hill_Roosevelt_Island                | 1            |               | 1 sunny         |             | 50 1148          | 12.05           | 3 1. 527    |
| Clinton                                    | 2            |               | 0 sunny         |             | 40 1818          | 13. 06          | 5 1.702     |
| Hudson_Yards_Chelsea_Flatiron_Union_Square | re 8         |               | 0 sunny         |             | 60 918           | 9. 54:          | 2 1.275     |
| Gramercy                                   | 9            |               | 0 sunny         |             | 70 827           | 7 9. 5          | 7 1.415     |
| Lenox_Hill_Roosevelt_Island                | 22           |               | 0 rain          |             | 70 334           | 10.09           | 2 1.414     |
| Battery_Park_City_Lower_Manhattan          | 19           |               | 1 sunny         |             | 40 719           | 9 15. 47        | 1 2.742     |
| Murray_Hill_Kips_Bay                       | 2            |               | 1 rain          |             | 60 103           | 13. 93          | 2 1. 591    |
| Lenox_Hill_Roosevelt_Island                | 13           |               | 1 sunny         |             | 50 5458          | 10. 98          | 1 1. 282    |
| Lenox_Hill_Roosevelt_Island                | 4            |               | 0 sunny         |             | 40 399           | 9 14. 23        | 8 1.736     |
| Battery_Park_City_Lower_Manhattan          |              |               | 0 sunny         |             | 70 25:           | 20. 16          | 5 2. 786    |

# Visualization: Exploratory Data Analysis





#### ML Algorithms: Features and outcome variables

#### Objectives: predict <u>3 continuous</u> outcome variables

- Total number pickup rides (pickup\_counts)
- 2. Expected (average) trip fare (after-tax but before-tip)
- 3. Expected (average) tip fare

#### Based on <u>3 categorical and 2 continuous (numerical)</u> features:

- 1. Neighborhood of pickup location (categorical; 18 neighborhoods in Manhattan below West 110th Street and East 95th Street)
- 2. Pickup time (numerical; grouped hourly into 24 categories)
- 3. Weather (categorical; 3 categories: sunny, rain, or snow)
- 4. Business day or weekend/federal holiday (categorical; binary)
- 5. Temperature in Fahrenheit (numerical; with 10F interval i.e. 10, 20, ..., 90)

### ML Algorithms: Random Forest

Given several categorical features, we use **Random Forest**, a "panacea" for data scientists!

#### Algorithm Pros:

- 1. Can handle both categorical & numerical features
- 2. Can rank importance of features
- 3. Non-parametric  $\rightarrow$  no assumptions on raw data
- 4. Remains accuracy when a lot of data missing
- 5. Well-handles unbalanced data & non-linearity
- 6. As a decision-tree algorithm, easy to interpret



## Implementing & Tuning RF in PySpark



 $\overrightarrow{PySpark\ MLlib} \rightarrow \text{implement\ Random\ Forest\ regression\ in\ } MapReduce$ 

Tune model parameters
(number of trees, max tree
depth, split strategy, etc.) with
extensive experiments on
year-long dataset (2015Jul 2016Jun) on Jupyter Notebook



#### **Model Test Performance**

**Metrics**:

Root-mean-square deviation (RMSD) on test data (20% randomly sampled)

Best Model so far:

500 trees, 10 as max tree depth, 64 as maximum number of bins

|              | Average Fare | Average Tip   | Pickup Count |
|--------------|--------------|---------------|--------------|
| RMSE on test | \$1.26       | <b>\$0.25</b> | 630          |

## Web Application III

Use AWS S3, API Gateway and AWS Lambda Function to build a Web App.



## Thank You! **Q&A**