SFT Homework 1

Problem 1

We have

$$Z = \sum_{s_1 = \pm 1} \dots \sum_{s_N = \pm 1} \prod_{i=1}^{N} \exp(\beta J s_i s_{i+1} + \frac{1}{2} \beta B(s_i + s_{i+1})) = \sum_{s_1 = \pm 1} \dots \sum_{s_N = \pm 1} \prod_{i=1}^{N} T_{s_i, s_{i+1}}$$

If we consider s_i/s_{i+1} as the index denoting T's row/column, then

$$Z = \sum_{s_1 = \pm 1} \sum_{s_2 = \pm 1} \dots \sum_{s_N = \pm 1} T_{s_1, s_2} T_{s_2, s_3} \dots T_{s_N, s_1} = \sum_{i = \pm} \sum_{j = \pm 1} \sum_{k = \pm 1} \dots \sum_{l = \pm 1} T_{ij} T_{jk} \dots T_{li}$$

which is just

$$Z = \sum_{i=+1} (T^N)_{ii} = \operatorname{tr}(T^N) \quad \Box.$$

In matrix form, with eigenvalues λ_{\pm}

$$T = \begin{pmatrix} e^{\beta J - \beta B} & e^{-\beta J} \\ e^{-\beta J} & e^{\beta J + \beta B} \end{pmatrix} \implies \det(T - \lambda_{\pm} I) = 0$$

$$\det(T - \lambda_{\pm} I) = \lambda_{\pm}^{2} - e^{\beta J} (e^{\beta B} + e^{-\beta B}) \lambda_{\pm} + (e^{2\beta J} - e^{-2\beta J}) = 0$$

$$\lambda_{\pm} = e^{\beta J} \cosh(\beta B) \pm \sqrt{e^{2\beta J} \cosh^{2}(\beta B) - 2 \sinh^{2}(2\beta J)} \quad \Box.$$

Having found the eigenvalues of T, let M be the matrix which diagonalises T such that $D = MTM^{-1}$ where $D = \text{diag}(\lambda_-, \lambda_+)$. Since tr(ABC) = tr(BCA), we have

$$Z = \operatorname{tr}(T^N) = \operatorname{tr}(M^{-1}DMM^{-1}D...M^{-1}DM) = \operatorname{tr}(M^{-1}D^NM) = \operatorname{tr}(D^N) = \lambda_+^N + \lambda_-^N$$

But $\lambda_+ > \lambda_-$ since $e^{\beta J} \cosh(\beta B) > 0$ for real βJ and βB , then $\lim_{N \to \infty} Z \approx \lambda_+^N$. The magnetisation is

$$\tilde{m} = \frac{1}{N\beta} \frac{\partial}{\partial B} \ln Z = \frac{1}{\lambda_{+}\beta} \frac{\partial \lambda_{+}}{\partial B}$$

Note that $\lambda_{+}|_{B=0} = 2 \cosh \beta J \neq 0$ for real βJ . We must find

$$\frac{\partial \lambda_{+}}{\partial B} = \beta (e^{\beta J} \sinh(\beta B) + e^{2\beta J} \cosh(\beta B) \sinh(\beta B) [e^{2\beta J} \cosh^{2}(\beta B) - 2 \sinh(2\beta J)]^{-1/2})$$

$$\implies \tilde{m}\big|_{B=0} = \frac{1}{\lambda_{+}\beta} \frac{\partial \lambda_{+}}{\partial B}\big|_{B=0} = 0 \quad \forall \beta J \in \mathbb{R}$$

If the magnetisation is always 0, then it is constant and it along with its derivatives are not discontinuous in β . This is synonymous with there being no phases transitions as a function β or temperature T.

Problem 2

Given the approximation $s_i s_j \approx \tilde{m}(s_i + s_j) - \tilde{m}^2$, with q the number of nearest neighbour pairs per site, and $\langle ij \rangle$ is the set of nearest neighbour pairs (not sites),

$$E = -B \sum_{i=1}^{N} s_{i} - J \sum_{\langle ij \rangle} s_{i}s_{j} = -B \sum_{i=1}^{N} s_{i} - \frac{1}{2} Jq\tilde{m} \sum_{i,j=1}^{N} (s_{i} + s_{j}) + \frac{1}{2} NqJ\tilde{m}^{2}$$

$$= -(Jq\tilde{m} + B) \sum_{i=1}^{N} s_{i} + \frac{1}{2} NqJ\tilde{m}^{2}$$

$$\Longrightarrow Z = \sum_{\{s_{i}\}} e^{-\beta E[s_{i}]} = e^{-\beta \frac{1}{2} NqJ\tilde{m}^{2}} \sum_{\{s_{i}\}} e^{\beta (Jq\tilde{m} + B) \sum_{i} s_{i}} = e^{-\beta \frac{1}{2} NqJ\tilde{m}^{2}} \sum_{s_{1} = \pm 1} \dots \sum_{s_{N} = \pm 1} \prod_{i=1}^{N} e^{\beta (Jq\tilde{m} + B)s_{i}}$$

$$= e^{-\beta \frac{1}{2} NqJ\tilde{m}^{2}} (e^{\beta (Jq\tilde{m} + B)} + e^{-\beta (Jq\tilde{m} + B)})^{N} = -\beta \frac{1}{2} NqJ\tilde{m}^{2} 2^{N} \cosh^{N}(\beta (Jq\tilde{m} + B)) \quad \Box.$$

Finding the equilibrium magnetisation:

$$\tilde{m} = \frac{1}{N\beta} \frac{\partial}{\partial B} \ln Z = \frac{1}{\beta} \frac{\partial}{\partial B} \ln \cosh(\beta (B + Jq\tilde{m}))$$

$$= \frac{\beta \sinh(\beta (B + Jq\tilde{m}))}{\beta \cosh(\beta (B + Jq\tilde{m}))} = \tanh(\beta (B + Jq\tilde{m})) \quad \Box. \tag{1}$$

For B=0, we have $\tilde{m}=\tanh(Jq\tilde{m})$. Note that $\beta Jq=\frac{T_c}{T}$ such that $T< T_c \implies \beta Jq>1$ and vice versa.

Figure 43: $\tanh(Jqm\beta)$ for $Jq\beta < 1$

Figure 44: $\tanh(Jqm\beta)$ for $Jq\beta > 1$

For $T < T_c$ there are two solutions $\tilde{m} = \pm m_0$. For $T > T_c$ there is only one solution \tilde{m} . In particular as $T \to \infty$, $\beta \to 0$ and $\tilde{m} \to 0$ by the consistency equation (1).

Problem 3

By completing the square and remembering the Gaussian integral $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$,

$$\int_{-\infty}^{\infty} e^{-ax^2 + bx} = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a}} \implies e^{\frac{\beta J \alpha^2}{2N}} = \sqrt{\frac{N\beta J}{2\pi}} \int_{-\infty}^{\infty} dx \ e^{-\frac{N\beta J}{2}x^2 + \alpha\beta Jx}$$

Starting with $Z = \sum_{\{s_i\}} e^{-\beta E[s_i]}$ and letting $k = \sum_{i=1}^{N} s_i$ we can write

$$Z = \sum_{k} e^{\beta B k + \frac{\beta J}{2N} k^2} = \sum_{k} e^{\beta B k} \sqrt{\frac{N\beta J}{2\pi}} \int_{-\infty}^{\infty} dx \ e^{-\frac{N\beta J}{2} x^2 + k\beta J x}$$
$$= \sqrt{\frac{N\beta J}{2\pi}} \int_{-\infty}^{\infty} dx \ e^{-\frac{N\beta J}{2} x^2} \sum_{k} e^{k\beta (B + J x)}$$

As shown in Problem 2,

$$\sum_{k} e^{\beta(B+Jx)k} = \sum_{\{s_i\}} e^{\beta(B+Jx)\sum_{i} s_i} = 2^N \cosh^N(\beta(B+Jx))$$

Thus we get

$$Z = \sqrt{\frac{N\beta J}{2\pi}} \int_{-\infty}^{\infty} dx \ e^{-\frac{N\beta J}{2}x^2} 2^N \cosh^N(\beta(B+Jx)) = \sqrt{\frac{N\beta J}{2\pi}} \int_{-\infty}^{\infty} dx \ e^{-\frac{N\beta J}{2}x^2 + N\ln(2\cosh(\beta(B+Jx)))}$$
$$= \sqrt{\frac{N\beta J}{2\pi}} \int_{-\infty}^{\infty} dx \ e^{-NS(x)} \quad \text{where} \quad S(x) = \frac{\beta J}{2}x^2 - \ln(2\cosh(\beta(B+Jx))) \quad \Box.$$

Taking the derivative and setting to 0 yields

$$\frac{dS}{dx}\Big|_{x^*} = \beta J x^* - \beta J \tanh(\beta (B + J x^*)) = 0 \implies x^* = \tanh(\beta B + \beta J x^*)$$

In the limit of large N: $Z \approx e^{-N\beta f(\tilde{m})}$. If we make the identification $S(x) = \beta f(x)$ (where f(m) is the effective free energy per unit spin), then S achieves a minimum whenever f does (i.e. $x^* = \tilde{m}$). This explains why they follow the same self-consistency equation (1) up to a factor.

Problem 4

Below are sketches on Desmos for $\alpha_6 = -\alpha_4 = 1$ and $\alpha_2 = 0.5, 0.3, 0$ from left to right. The system

$$f(m) = \alpha_2 m^2 + \alpha_4 m^4 + \alpha_6 m^6$$

undergoes a first order phase transition when the first derivative of the free energy f(m) is discontinuous. Equivalently, \tilde{m} which minimises f(m) is discontinuous. The phase transition occurs when \tilde{m} jumps between two values.

$$\frac{\partial f}{\partial m}\Big|_{\tilde{m}} = 2\alpha_2\tilde{m} + 4\alpha_4\tilde{m}^3 + 6\alpha_6\tilde{m}^5 = 0$$

Either
$$\tilde{m}=0$$
 or $2\alpha_2+4\alpha_4\tilde{m}^2+6\alpha_6\tilde{m}^4=0 \implies \tilde{m}^2=-\frac{\alpha_4}{3\alpha_6}\pm\sqrt{(\frac{\alpha_4}{3\alpha_6})^2-\frac{\alpha_2}{3\alpha_6}}\equiv m_\pm^2.$

The solutions m_{\pm} only exist when the discriminant $(\frac{\alpha_4}{3\alpha_6})^2 - \frac{\alpha_2}{3\alpha_6}$ is non-negative (and when $m_{\pm}^2 \ge 0$). This first occurs when the discriminant is zero, or when $\alpha_2 = \frac{\alpha_4^2}{3\alpha_6}$. For the values defining the above graphs, this would be $\alpha_2 = 0.33$. However these correspond to non-zero local minima and not the 'dips' which appear after $\alpha_2 = 0.25 = \frac{\alpha_4^2}{4\alpha_6}$ (?).

Phase diagram in $\alpha_4 - \alpha_2$ plane. The red region is when the discriminant is negative, and $\tilde{m} = 0$ whereas in the green region $\tilde{m} = m_{\pm}$. The phase boundary is $\alpha_2 = \frac{1}{3\alpha_6}\alpha_4^2$.

The jump in magnetisation between 0 and m_{\pm} happens when $\alpha_2 = \frac{1}{3\alpha_6}\alpha_4^2 \implies m_{\pm}^2 = -\frac{\alpha_2}{\alpha_4}$. Thus the jump is $m_0 = \sqrt{-\alpha_2/\alpha_4}$ where $\tilde{m} = 0 \rightarrow \tilde{m} = \pm m_0$.

Finding the critical exponents for $\alpha_4 = 0$ (B = 0 for α, β , whereas $B \neq 0$ for γ, δ):

$$c \sim |T - T_c|^{-\alpha}$$
 $\tilde{m} \sim |T - T_c|^{\beta}$ $\chi \sim |T - T_c|^{-\gamma}$ $\tilde{m} \sim B^{\frac{1}{\delta}}$

We have already found $\tilde{m}^2 = \sqrt{-\frac{\alpha_2}{3\alpha_6}} \implies \left[\beta = 1/4\right]$. Using Mathematica $\alpha = 1/2$.

$$\begin{split} \widetilde{\mathbf{m}} & [T_{-}] = \left(\frac{\mathsf{Tc} - \mathsf{T}}{3 \, \alpha_{6}}\right)^{\frac{1}{4}}; \; (*\mathsf{roots} \; \widetilde{\mathbf{m}} \; *) \\ F[\beta_{-}] & = \beta \; (1/\beta - \mathsf{Tc}) \; \widetilde{\mathbf{m}} \; [1/\beta] \, ^2 + \alpha_{6} \; \beta \; \widetilde{\mathbf{m}} \; [1/\beta] \, ^6; \; (* \; \beta \mathsf{f} \left(\widetilde{\mathbf{m}} \; (\beta) \right) \, *) \\ \mathsf{T}^{^{^{\prime}}} & (-2) \; *\mathsf{F}'' \; [1/\mathsf{T}] \; // \; \mathsf{FullSimplify} \; (*\mathsf{c} = \beta^{2} \, \frac{\partial^{2}}{\partial \beta^{2}} \left[\; \beta \mathsf{f} \left(\widetilde{\mathbf{m}} \; (\beta) \right) \, \right] *) \\ & \frac{\mathsf{T} \; \sqrt{\frac{-\mathsf{T} + \mathsf{Tc}}{\alpha_{6}}}}{\sqrt{3} \; (2 \, \mathsf{T} - 2 \, \mathsf{Tc})} \end{split}$$

Near the critical point, for $B \neq 0$, $f(m) \approx -Bm + \alpha_6 m^6 \implies \tilde{m} \sim B^{\frac{1}{5}} \implies \delta = 5$. It looks like $\gamma = 1$ as in the notes.

Problem 5

I think this is the same analysis as in the notes (starting page 12) with the added possibility of a phase so that $\tilde{\psi} \sim \tilde{m}e^{i\phi}$ minimises the free energy. Maybe spontaneous symmetry breaking is then related to complex conjugating as well as the usual \mathbb{Z}_2 symmetry.

Problem 6

Thermal fluctuations negligible

To so spins align in a ferromagnetic ordering (some dirxn)

i) $g < 0 = 7 S_i^2$ term is negative so energy is minimized when most of spin in S_i^2 component (i.e maximized). This is the Ising model type ordering

ii) g = 0 = 7 neither phase preferred so both phases coexist

iii) $g > 0 = 7 S_i^2 - S_i^2$ term is negative so an energy is minimized when spin lies in x - y plane. This is the plane rotator

High T

Thermal fluctuations dominate, ordering destroyed

don't i) $g > 0 S_i^2 = 0$ recover Ising model so increasing T causes a state order ii) $g > 0 S_i^2 = 0$ recover plane rotator, g > 0 order phase transition

Problem 7

We are given $\psi(x) = \frac{1}{V}e^{ikx}\psi_k = a_ke^{2ikx}$ where I have defined $a_k = \frac{A_k}{V}$. Thus

$$\psi'(x) = 2ik\psi(x) \qquad \psi''(x) = -4k^2\psi(x)$$

which tells us

$$F = \int dx (\alpha_2 |\psi(x)|^2 + \alpha_4 |\psi(x)|^4 - \gamma |\psi'(x)|^2 + \kappa |\psi''(x)|^2)$$
$$= \int dx |a_k|^2 (\alpha_2 + \alpha_4 |a_k|^2 - 4k^2 \gamma + 16k^4 \kappa)$$

The value of \tilde{k} which minimises F is given by $\frac{\delta F}{\delta k}\Big|_{\tilde{k}} = 0$. Thus, assuming that a_k is a constant and remembering that $k = \pm k_0 \implies \tilde{k} = \pm k_0$,

$$\frac{\delta F}{\delta k}\Big|_{\tilde{k}} = -8\tilde{k}\gamma + 64\tilde{k}^3\kappa = 0 \implies \tilde{k} = 0 \text{ or } \pm \sqrt{\frac{\gamma}{8\kappa}} \implies k_0 = 0 \text{ or } \sqrt{\frac{\gamma}{8\kappa}}$$

No idea how to relate α_2 to the other constants if the (discontinuous?) order parameter is k? If the order parameter is $\psi(x)$ then you need to do $\frac{\delta\psi\psi^*}{\delta\psi}$ etc...?

Problem 8

We have $f(m) = \alpha_2 m^2 + \alpha_{2n} m^{2n}$ so that the equilibrium magnetisations are

$$\tilde{m} = 0 \text{ or } \tilde{m} = \left(\frac{T_c - T}{\alpha_{2n}n}\right)^{\frac{1}{2n-2}} \implies \left[\beta^* = \frac{1}{2n-2}\right]$$

Here β^* denotes the critical exponent while $\beta = 1/T$. Using Mathematica I showed $\alpha = 1 - 2\beta^*$.

$$\begin{split} \widetilde{m}\left[x_{-}\right] &= \left(\frac{Tc - x}{\alpha_{2} \, n}\right)^{\frac{1}{2 \, n - 2}}; \; (* \, roots \; \widetilde{m} \; *) \\ F\left[\beta_{-}\right] &= \beta \; (1 \, / \, \beta - Tc) \; \widetilde{m} \left[1 \, / \, \beta\right]^{-2} + \alpha_{2} \, n \, \beta \, \widetilde{m} \left[1 \, / \, \beta\right]^{-4} (2 \, n); \; (* \, \beta f \left(\widetilde{m} \left(\beta\right)\right) \, *) \\ T^{\wedge} \left(-2\right) \, *F'' \left[1 \, / \, T\right] \, / / \; Full Simplify \; (* \, c = \beta^{2} \, \frac{\partial^{2} \left(\beta f \left(\widetilde{m} \left(\beta\right)\right)\right)}{\partial \beta^{2}} \, *) \\ \frac{n \, T \left(\left(T - Tc\right) \, \left(\frac{-T + Tc}{n \, \alpha_{2} \, n}\right)^{\frac{1}{-1 + n}} + \left(\left(\frac{-T + Tc}{n \, \alpha_{2} \, n}\right)^{\frac{1}{2} \, n \, \alpha_{2} \, n}\right)}{(-1 + n)^{2} \; (T - Tc)^{2}} \\ \frac{n \, T \left(\left(T - Tc\right) \, \left(\frac{-T + Tc}{\alpha_{2} \, n \, n}\right)^{\frac{1}{n - 1}} + a2 \, \left(\frac{-T + Tc}{\alpha_{2} \, n \, n}\right)^{\frac{n}{n - 1}}\right)}{(-1 + n)^{2} \; (T - Tc)^{2}} \; / \cdot \; T \rightarrow Tc - y \, \& \, y \rightarrow x \, \alpha_{2} \, n \, n \, / / \; Full Simplify \\ \frac{n \, \left(Tc - y\right) \, \left(-y \, \left(\frac{y}{\alpha_{2} \, n \, n}\right)^{\frac{1}{-1 + n}} + a2 \, \left(\frac{y}{\alpha_{2} \, n \, n}\right)^{\frac{n}{-1 + n}}\right)}{(-1 + n)^{2} \, y^{2}} \; / \cdot \; y \rightarrow x \, \alpha_{2} \, n \, n \, / / \; Full Simplify \\ \frac{x^{-1 + \frac{1}{-1 + n}} \, \left(-a2 + n \, \alpha_{2} \, n\right) \; \left(-Tc + n \, x \, \alpha_{2} \, n\right)}{(-1 + n)^{2} \, n \, \alpha_{2}^{2} \, n}} \; (* \, here \; x \sim \; (Tc - T) \; so \; that \; \alpha = 1 - \frac{1}{1 - n} = 1 - 2\beta^{*} \, *) \end{cases}$$