SQL Workshop

Tree (B* tree) Traversal

sjapit@uow.edu.au
19 March 2024

Agenda

- Binary Search Tree (BST)
- Why B-Tree?
 - 2-4 Tree
- B* Tree

A Binary search tree is:

- A Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner.
- Each node in a Binary Search Tree has at most two children, a left child and a right child
- The value in each node is greater than or equal to all the values in its left child or any of that child's descendants
- The value in each node is less than all the values in its right child or any of that child's descendants

 The inorder traversal of a binary search tree produces an ordered list.

Inorder: 3, 6, 14, 17, 19

Search

- Given a "key" and a pointer "search" to the root
- Return the pointer to the node whose value is equal to key; return nil if there is no match

Search

- Given a "key" and a pointer "search" to the root
- Return the pointer to the node whose value is equal to key; return nil if there is no match

Search

- Given a "key" and a pointer "search" to the root
- Return the pointer to the node whose value is equal to key; return nil if there is no match

Search

- Given a "key" and a pointer "search" to the root
- Return the pointer to the node whose value is equal to key; return nil if there is no match

Idea:

- BST property
- Compare key with the search → value
 - if $key == (search \rightarrow value) \implies match!$
 - if $key < (search \rightarrow value)$
 - Search for the node on the left subtree
 - else search for the node on the right sub-tree

Worst-case, Best-case and Average-case BST

 The height of a node is the number of edges from the node to its most distance leaf node.

 The height of a node is the number of edges from the node to its most distance leaf node.

The height of the node A is 5.

 The height of a node is the number of edges from the node to its most distance leaf node.

The height of the node A is 5. The height of the node B is 4.

 The height of a node is the number of edges from the node to its most distance leaf node.

The height of the node A is 5. The height of the node B is 4. The height of the node C is 0.

 The height of a node is the number of edges from the node to its most distance leaf node.

The height of the node A is 5. The height of the node B is 4. The height of the node C is 0. The height of the node G is 1.

Note:

- The height of the leaf node of a path will have a height of 0.
- The height of the root of a tree is the height of the tree.

 The depth of a node is the number of edges in the path from the root node to that node.

 The depth of a node is the number of edges in the path from the root node to that node.

The depth of the node H is 5.

 The depth of a node is the number of edges in the path from the root node to that node.

The depth of the node H is 5. The depth of the node E is 3.

 The depth of a node is the number of edges in the path from the root node to that node.

The depth of the node H is 5. The depth of the node E is 3. The depth of the node F is 3.

 The depth of a node is the number of edges in the path from the root node to that node.

The depth of the node H is 5. The depth of the node E is 3. The depth of the node F is 3. The depth of the node A is 0.

 The level of a node is equal to the number of edges along the unique path between the node and the root node of the tree.

The level of a node is equal to the number of edges along the unique path between the node and the root node of the tree.
 The level of the node A = 0.

The 'root' node of the tree

 The level of a node is equal to the number of edges along the unique path between the node and the root node of the tree.

The level of the node A = 0.

The level of the node B = 1.

 The level of a node is equal to the number of edges along the unique path between the node and the root node of the tree.

The level of the node A = 0.

The level of the node B = 1.

The level of the node D = 2.

 The level of a node is equal to the number of edges along the unique path between the node and the root node of the tree.

The level of the node A = 0.

The level of the node B = 1.

The level of the node D = 2.

The level of the node C = 2.

 The level of a node is equal to the number of edges along the unique path between the node and the root node of the tree.

The level of the node A = 0.

The level of the node B = 1.

The level of the node D = 2.

The level of the node C = 2.

The level of the node H = 5.

Note:

 The depth of a node will be the same as the level of a node.

Node	Height	Depth	Level
А			
В			
С			
D			
Е			
F			
G			
Н			

Height
$$= 3$$

Depth $= 0$
Level $= 0$

Node	Height	Depth	Level
А	3	0	0
В			
С			
D			
Е			
F			
G			
Н			

Node	Height	Depth	Level
А	3	0	0
В	2	1	1
С			
D			
Е			
F			
G			
Н			

Node	Height	Depth	Level
А	3	0	0
В	2	1	1
С	0	1	1
D			
Е			
F			
G			
Н			

Node	Height	Depth	Level
А	3	0	0
В	2	1	1
С	0	1	1
D	1	2	2
Е			
F			
G			
Н			

Node	Height	Depth	Level
А	3	0	0
В	2	1	1
С	0	1	1
D	1	2	2
Е	1	2	2
F			
G			
Н			

Node	Height	Depth	Level
А	3	0	0
В	2	1	1
С	0	1	1
D	1	2	2
Е	1	2	2
F	0	3	3
G			
Н			

Node	Height	Depth	Level
А	3	0	0
В	2	1	1
С	0	1	1
D	1	2	2
Е	1	2	2
F	0	3	3
G	0	3	3
Н			

Tree

Height = 3				
Depth = 0				
Height = 2 Level = 0 Height = 0				
Depth = 1 \downarrow Depth = 1	Node	Height	Depth	Level
Level = 1 (A) Level = 1	Α	3	0	0
Height = 1 Depth = 2	В	2	1	1
Level = 2 Height = 1 Depth = 2	С	0	1	1
Level - 2	D	1	2	2
F G H Level - 2	Е	1	2	2
Height = 0 Height = 0	F	0	3	3
Depth = 3 Depth = 3 Level = 3 Level = 3	G	0	3	3
Level = 3 Level = 3	Н	0	3	3

m-Way (multi-way) Tree

• An m - way tree is a search tree in which each node can have from 0 to m subtrees, where m is defined as the order of the tree.

Order n tree, has up to n-1 keys in each node.

Properties:

- 1. Each node has 0 to m sub-trees
- 2.A node with k < m sub-trees contains k sub-tree pointers, some of which may be null, and k-1 data entries (keys)
- 3. The key values in the first sub-tree are all less than the key value in the first entry: the key values in the other sub-trees are all greater than or equal to the key value in their parent entry
- 4. The keys of the data entries are ordered $key_1 \le key_2 \le \cdots \le key_k$
- 5.All sub-trees are themselves multiway trees

- m way search tree has the same structure as the binary search tree:
 - sub-trees to the left of an entry contain data with keys that are less than the entry's key, and
 - sub-trees to the right of an entry contain data with keys that are greater than or equal to the entry's key

B-Tree

- A B-tree is an m-way search tree with the following properties:
 - 1. The root is either a leaf or it has 2...m sub-trees.
 - 2. All internal nodes have at least $\lceil m/2 \rceil$ non-null sub-trees and at most m non-null sub-trees.
 - 3. All leaf nodes are at the same level, that is, the tree is perfectly balanced.
 - 4. A leaf node has at least $\lceil m/2 \rceil 1$ and at most m-1 entries (keys).

B-Tree

Ondon	Number of sub-trees			
Order	Minimum	Maximum		
3	2	3		
4	2	4		
5	3	5		
6	3	6		
• • •	• • •	•••		
m	$\lceil m/2 \rceil$	m		

B-Tree

B*-Tree

- A B* tree index takes the form of a balanced tree in which every path from the root of the tree to a leaf of the tree is of the same length.
- The leave nodes are linked together to allow horizontal scan of the nodes at the leave level of the tree.
- B*-trees are commonly used in database systems to implement indexes, allowing for fast retrieval of data based on a key value.

B*-Tree

