	Лабортаторная работа №3 По курсу "нейроинформатика" студент: Гаврилов М.С. группа: М8О-406Б-19 вариант: 11
[n [1]:	Цель работы: Исследование свойств многослойной нейронной сети прямого распространения и алгоритмов ее обучения, применение сети в задачах классификации и аппроксимации функции. import numpy as np import pylab import torch import torch.nn as nn
	 import copy import random import sklearn as skl import sklearn.metrics 1. Классификация точек Области: • Эллипс. a = 0.4, b = 0.15, alph = pi/3, x0 = -0.2, y0 = -0.18 • Эллипс. a = 0.4, b = 0.5, alph = -pi/3, x0 = -0.2, y0 = -0.18
ı [123 	• Эплипс. a = 1, b = 1, alph = 0, x0 = 0, y0 = 0 # Уравнение эллипса в параметрическом виде. def ellipse(t,inp_arr): a, b, x0, y0 = copy.deepcopy(inp_arr) x = x0 + a * np.cos(t) y = y0 + b * np.sin(t) return x, y # Уравнение параболы в параметрическом виде. def parabola(t, p, x0, y0): x = x0 + t ** 2 / (2. * p)
ı [124	y = y0 + t return x, y # Функция вращения фигуры на заданный угол. def rotate(pt, alpha): x,y = pt xr = x * np.cos(alpha) - y * np.sin(alpha) yr = x * np.sin(alpha) + y * np.cos(alpha) return xr, yr ellipsel = [0.4,0.15,-0.2,-0.18] ellipse2 = [0.4,0.5,-0.2,-0.18] ellipse3 = [1,1,0,0]
ı [125 	<pre>ell_arr_1 = [] for t in range(0,1000,1): ell_arr_1.append(rotate(ellipse(t/100,ellipse1),np.pi/3)) ell_arr_1 = np.array(ell_arr_1) ell_arr_2 = [] for t in range(0,1000,1): ell_arr_2.append(rotate(ellipse(t/100,ellipse2),-np.pi/3)) ell_arr_2 = np.array(ell_arr_2) ell_arr_3 = []</pre>
n [126	<pre>for t in range(0,1000,1): ell_arr_3.append(ellipse(t/100,ellipse3)) ell_arr_3 = np.array(ell_arr_3) pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid() pylab.plot(ell_arr_1[:,0],ell_arr_1[:,1]) pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1]) pylab.plot(ell_arr_3[:,0],ell_arr_3[:,1]) pylab.show()</pre>
	1.00 0.75 0.50 0.25 > 0.00
	-0.25 -0.50 -0.75 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
	Функции для построения датасета: def in_ellipse(ell_arr,pt,rot = 0): a,b,x0,y0 = ell_arr pt = rotate(pt,-rot) return (((pt[0]-x0)*(pt[0]-x0))/(a*a) + ((pt[1]-y0)*(pt[1]-y0))/(b*b) < 1) def make_dataset_on(sel_cnt = 1000,class_cnt = 500): data_X = []
	<pre>data_L = [] for i in range (sel_cnt): pt = random.random()*10 choose = random.random()*3 if(choose > 2): data_X.append(rotate(ellipse(pt,ellipse1),np.pi/3)) data_L.append(0) continue if(choose > 1): data_X.append(rotate(ellipse(pt,ellipse2),-np.pi/3)) data_L.append(1) continue</pre>
	<pre>if(choose >= 0):</pre>
	<pre>for i in range (30000): pt = [(random.random()*2)-1,(random.random()*2)-1] if(in_ellipse(ellipse1,pt,np.pi/3) and class_cnt[0] < 1000): data_X.append(pt) data_L.append(0) class_cnt[0] += 1 continue if(in_ellipse(ellipse2,pt,-np.pi/3) and class_cnt[1] < 1000): data_X.append(pt) data_L.append(1)</pre>
	<pre>class_cnt[1] += 1 continue if(in_ellipse(ellipse3,pt) and class_cnt[2] < 1000): data_X.append(pt) data_L.append(2) class_cnt[2] += 1 continue data_X = np.array(data_X) data_L = np.array(data_L) return np.array(data_X),np.array(data_L)</pre>
	<pre>def calculate_wts(data_L): class_wts = [] for i in range(np.max(data_L) + 1): class_wts.append(1 - (data_L == i).mean()) class_wts = torch.tensor(class_wts,dtype = torch.float32) return class_wts Oбучающие функции def accuracy_mult(testRS,testLB):</pre>
	<pre>return (np.argmax(testRS,axis = 1) == testLB).mean() def train(net,trainXX,trainLB,n_epochs,batch_size,lr,</pre>
	<pre>for i in range(n_epochs): for j in range(int(num_batches)): batchXX = trainXX[j*batch_size : (j+1)*batch_size] batchLB = trainLB[j*batch_size : (j+1)*batch_size] optim.zero_grad() loss = criterion(model(batchXX),batchLB) loss.backward() optim.step()</pre>
	#трэйсинг обучения arr.append([i,
n [131	<pre>pylab.grid() pylab.axis([0,len(arr),0,1]) pylab.xlabel("epochs",color = "grey") pylab.ylabel("accuracy",color = "grey") pylab.plot(arr[:,0],arr[:,2]) pylab.show()</pre> Классификация датасета с точками на эллипсах data_X,data_L = make_dataset_on(sel_cnt = 1000,class_cnt = 500)
n [54]:	train_X = torch.tensor(data_X,dtype = torch.float32) train_L = torch.tensor(data_L) Демонстрация точек датасета: pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid() pylab.plot(ell_arr_1[:,0],ell_arr_1[:,1]) pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1]) pylab.plot(ell_arr_3[:,0],ell_arr_3[:,1])
	<pre>for i in range(len(data_X)): if(data_L[i] == 0): pylab.plot(data_X[i,0],data_X[i,1],'bo') if(data_L[i] == 1): pylab.plot(data_X[i,0],data_X[i,1],'ro') if(data_L[i] == 2): pylab.plot(data_X[i,0],data_X[i,1],'go') pylab.show()</pre> 1.00
	0.75 0.50 0.25 > 0.00 -0.25
	-0.50 -0.75 -1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Обучение сети:
	<pre>class_wts = calculate_wts(data_L) model = torch.nn.Sequential(nn.Linear(2,50), nn.Tanh(), nn.Linear(50,50), nn.ReLU(), nn.Linear(50,20), nn.ReLU(), nn.Linear(20,3), nn.Softmax(dim = 1))</pre>
n [57]:	arr = train(model,train_X,train_L,10000,100,0.01,criterion = torch.nn.CrossEntropyLoss(weight = class_wts)) Подсчет метрик plot_learning(arr) print("\naccuracy:\n") print((np.argmax(model(train_X).detach().numpy(),axis = 1) == np.array(train_L)).mean()) print(skl.metrics.classification_report(data_L,np.argmax(model(train_X).detach().numpy(),axis = 1))) m = skl.metrics.ConfusionMatrixDisplay.from_predictions(data_L,
	<pre>np.argmax(model(train_X).detach().numpy(),axis = 1), normalize = 'true', cmap = pylab.cm.Blues)</pre>
	0.9 0.8 0.7 0.6
	0 2000 4000 6000 8000 10000 epochs
	0.6
	0.0 2000 4000 6000 8000 10000 epochs accuracy: 0.937 precision recall f1-score support 0 0.85 1.00 0.92 365 1 1.00 0.80 0.89 315 2 1.00 1.00 1.00 320
	accuracy
	2 - 0 0 1 1 - 0.2 - 0.6 - 0.4 - 0.2
ı [58]:	Predicted label Графическая демонстрация классификации: print("blue - correct \nred - wrong\n") pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid()
	<pre>pylab.plot(ell_arr_1[:,0],ell_arr_1[:,1]) pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1]) pylab.plot(ell_arr_3[:,0],ell_arr_3[:,1]) for i in range(len(data_X)): if(data_L[i] == torch.argmax(model(train_X[i].reshape(1,2)))): pylab.plot(data_X[i,0],data_X[i,1],'bo') else: pylab.plot(data_X[i,0],data_X[i,1],'ro') pylab.show() blue - correct</pre>
	1.00
	-0.25 -0.50 -0.75 -1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
n [59]:	<pre>print("Correct Labels") pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid() pylab.plot(ell_arr_1[:,0],ell_arr_1[:,1]) pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1]) pylab.plot(ell_arr_3[:,0],ell_arr_3[:,1]) for i in range(len(data_X)): if(data_L[i] == 0): pylab.plot(data_X[i,0],data_X[i,1],'bo')</pre>
	<pre>if(data_L[i] == 1):</pre>
	<pre>pylab.ylabel("y",color = "grey") pylab.grid() for i in range(len(data_X)): if(torch.argmax(model(train_X[i].reshape(1,2))) == 0): pylab.plot(data_X[i,0],data_X[i,1],'bo') if(torch.argmax(model(train_X[i].reshape(1,2))) == 1): pylab.plot(data_X[i,0],data_X[i,1],'ro') if(torch.argmax(model(train_X[i].reshape(1,2))) == 2): pylab.plot(data_X[i,0],data_X[i,1],'go') pylab.show()</pre> Correct Labels
	1.00 0.75 0.50 0.25 > 0.00
	-0.25 -0.50 -0.75 -1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
	1.00
	-0.25 -0.50 -0.75 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
	Классификация пространственного датасета той же сетью: data_X,data_L = make_dataset_in(sel_cnt = 1000,class_cnt = 500) train_X = torch.tensor(data_X,dtype = torch.float32) train_L = torch.tensor(data_L) print("blue - correct \nred - wrong\n")
	<pre>pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid() pylab.plot(ell_arr_1[:,0],ell_arr_1[:,1]) pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1]) pylab.plot(ell_arr_3[:,0],ell_arr_3[:,1]) for i in range(len(data_X)): if(data_L[i] == torch.argmax(model(train_X[i].reshape(1,2)))): pylab.plot(data_X[i,0],data_X[i,1],'bo') else: pylab.plot(data_X[i,0],data_X[i,1],'ro')</pre>
	pylab.show() blue - correct red - wrong 1.00 0.75 0.50
	0.25 > 0.00 -0.25 -0.50 -0.75
n [90]:	-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 print("Correct Labels") pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid() pylab.plot(ell_arr_1[:,0],ell_arr_1[:,1]) pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1]) pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1])
	<pre>pylab.plot(ell_arr_3[:,0],ell_arr_3[:,1]) for i in range(len(data_X)): if(data_L[i] == 0): pylab.plot(data_X[i,0],data_X[i,1],'bo') if(data_L[i] == 1): pylab.plot(data_X[i,0],data_X[i,1],'ro') if(data_L[i] == 2): pylab.plot(data_X[i,0],data_X[i,1],'go') pylab.show() print("Predicted Labels") pylab.plot(ell_arr_1[:,0],ell_arr_1[:,1])</pre>
	<pre>pylab.plot(ell_arr_2[:,0],ell_arr_2[:,1]) pylab.plot(ell_arr_3[:,0],ell_arr_3[:,1]) pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid() for i in range(len(data_X)): if(torch.argmax(model(train_X[i].reshape(1,2))) == 0): pylab.plot(data_X[i,0],data_X[i,1],'bo') if(torch.argmax(model(train_X[i].reshape(1,2))) == 1): pylab.plot(data_X[i,0],data_X[i,1],'ro') if(torch.argmax(model(train_X[i].reshape(1,2))) == 2): pylab.plot(data_X[i,0],data_X[i,1],'go')</pre>
	pylab.show() Correct Labels 1.00 0.75 0.50 0.25
	-0.25 -0.50 -0.75 -1.00
	-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Predicted Labels 1.00
	0.25 > 0.00 -0.25 -0.50 -0.75 -1.00
īn [2]:	-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 × 2. Аппроксимация функции tin [0,4], h = 0.02 def func(t):
[2]:	<pre>def func(t): return np.cos(t**2) line = np.array([[i/1000,func(i/1000)] for i in range (0,4000)]) pylab.xlabel("x",color = "grey") pylab.ylabel("sin(x)",color = "grey") pylab.grid() pylab.plot(line[:,0],line[:,1]) pylab.show()</pre>
	1.00
	1.00 0.75 0.50 0.25 -0.25
in [4]:	0.75 0.50 0.25 -0.25 -0.50 -0.75 -1.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
n [4]:	0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 def make_dataset(line,ln = 200): train_X = [] train_Y = [] for j in range(ln): i = int(random.random()*len(line)) train_Y.append([inei][1]]) train_Y.append([linei][1]]) train_Y.append([linei][1]]) train_Y = torch.tensor(train_Y,dtype = torch.float32) train_Y = torch.tensor(train_Y,dtype = torch.float) return train_X,train_Y
	0.75 0.50 0.25 -0.50 -0.75 -1.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 def make_dataset(line, ln = 200): train_X = [] train_Y = [] for j in range(ln): i = int(random.random()*len(line)) train_X.append([i/1000]) train_Y.append([i/1000]) train_Y.append([line[i][1]]) train_Y.append([line[i][1]]) train_Y = torch.tensor(train_Y, dtype = torch.float32) train_Y = torch.tensor(train_Y, dtype = torch.float)
In [4]: In [6]:	0.75 0.50 0.25 0.00 0.25 0.00 0.05 0.0 1.5 2.0 2.5 3.0 3.5 4.0 def make_dataset(line, ln = 200): train_X = [1 train_Y = [1 for] in range(ln):
In [4]: In [7]:	0.75 0.50 0.25 0.00 0.25 0.00 0.05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 def make_dataset(line,ln = 200): (train_X = 1)
In [4]: In [7]:	0.75 0.50 0.00 0.25 0.00 0.00 0.00 0.00 0.0
In [4]: In [7]:	def make dataset(line,ln = 200): train X = [1] train X = [1] train X = [1] train X = [2] train X = [3] train X = [3] train X = [4] train X = [4] train X = [7] train X = [

In [16]:	<pre>arr = train(model,train_X,train_Y,3000,20,0.05)</pre>
	0.2 - 0.1 -
In [17]:	<pre>print("yellow - predicted points\nblue - train points\n") pylab.xlabel("x",color = "grey") pylab.ylabel("y",color = "grey") pylab.grid() pylab.plot(train_X,train_Y,'bo') pylab.plot(train_X,model(train_X).detach().numpy(),'yo') pylab.plot(line[:,0],line[:,1])</pre>
	<pre>pylab.plot(line[:,0],line[:,1]) pylab.show() yellow - predicted points blue - train points</pre> 1.0 0.5
	-0.5 -1.0
In [18]:	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ×
	0.5
	-0.5 -1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
	Вывод В ходе выполнения этой лабораторной работы я получил опыт работы с многослойнымми нейронными сетями, а также научился с их помощью решать задачу классификации точек по линейно неразделимым классам и задачу аппроксимации функции.